WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

1. Opis teoretyczny

Na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE zamieszczone są:

- opis teoretyczny do ćwiczenia,
- przykładowe pytania kontrolne.

Podstawowymi celami ćwiczenia są:

- 1. wyznaczenie ogniskowej soczewki skupiającej,
- 2. wyznaczenie ogniskowej soczewki skupiającej metodą Bessela,
- 3. ustalenie która z powyższych metod jest obarczona mniejszą niepewnością,
- 4. wyznaczenie ogniskowej soczewki rozpraszającej.

Zadania dodatkowe do wyznaczenia i analizy:

- 1. wyznaczyć zdolność skupiającą soczewek z pomiarów metodą α), β), γ),
- 2. wyznaczyć promienie krzywizn soczewek z pomiarów metodą α), β), γ).

2. Opis układu pomiarowego

α) Wyznaczanie ogniskowej soczewki skupiającej z pomiaru położenia przedmiotu i obrazu

Szczególnie proste, a równocześnie dostatecznie dokładne, są pomiary dokonywane za pomocą ławy optycznej. Jest to zaopatrzona w podziałkę milimetrową szyna, wzdłuż której można dowolnie przesuwać świecący przedmiot, soczewkę i ekran. Świecącym przedmiotem jest zwykle przesłona w kształcie strzałki oświetlona od tyłu matową żarówką (rys. 1). Wystarczy dokonać na ławie optycznej pomiaru a (przedmiot - soczewka) oraz b (soczewka - obraz), aby wyznaczyć wartość ogniskowej zgodnie z przekształconym równaniem soczewki:

W praktyce przy stałej odległości pomiędzy przedmiotem i obrazem d=a+b wystarczy zmierzyć dwie z tych trzech wielkości.

B) Wyznaczanie ogniskowej soczewki skupiającej metodą Bessela

Odległości **a** (przedmiot – soczewka) i **b** (soczewka – obraz) występują w równaniu soczewki symetrycznie i można je przestawić bez zmiany wartości wyrażenia 1/f. Gdy zrealizujemy w praktyce te dwa wzajemnie symetryczne ustawienia przedmiotu i obrazu, to zauważymy, że odległość przedmiotu od obrazu pozostanie niezmieniona, przy czym w pierwszym przypadku otrzymujemy obraz powiększony, a w drugim zaś pomniejszony (rys. 1).

Oznaczając jak poprzednio odległość przedmiotu od obrazu przez d, a odległość między obu położeniami soczewki (dla przypadków otrzymania obrazu powiększonego i pomniejszonego) przez c, spełnione są warunki a+b=d i a - b=c.

Wstawiając wartości **a** i **b** obliczone z układu równań do równania soczewki otrzymuje się równanie:

$$\frac{2}{d+c} + \frac{2}{d-c} = \frac{1}{f}$$

 $\frac{2}{d+c}+\frac{2}{d-c}=\frac{1}{f}$ skąd po przekształceniu otrzymuje się wyrażenie na ogniskową soczewki **f** w postaci

$$f = \frac{(d+c)\cdot(d-c)}{4d} = \frac{1}{4}\cdot(d-\frac{c^2}{d})$$

Ponieważ $c^2 = d(d - 4f) > 0$, metodę tę można zastosować tylko wtedy, gdy d>4f.

Jak widać na Rys. 1 pomiar metoda β) to dwa skorelowane ze soba pomiary metoda α).

Rys. 1. Ilustracja pomiaru ogniskowej soczewki skupiającej metodą Bessela.

Wyznaczanie ogniskowej soczewki rozpraszającej

Soczewki rozpraszające tworzą obrazy pozorne, a więc takie, których nie można uzyskać na ekranie. Wartość ogniskowej takich soczewek można wyznaczyć dwiema metodami. Cechą wspólną tych metod jest utworzenie układu dwóch blisko położonych siebie soczewek rozpraszającej i skupiającej, który to układ posiada właściwości soczewki skupiającej o odpowiednio zmodyfikowanej wartości ogniskowej. Zdolność skupiająca układu dwóch blisko położonych siebie soczewek o ogniskowej f_u jest równa sumie zdolności skupiających poszczególnych soczewek o ogniskowych f_1 i f_2 :

$$\frac{1}{f_u} = \frac{1}{f_1} + \frac{1}{f_2}$$

 $\frac{1}{f_u} = \frac{1}{f_1} + \frac{1}{f_2}$ Równanie to pozwala na obliczenie ogniskowej soczewki rozpraszającej $\mathbf{f_2}$ pod warunkiem, że wytworzony układ optyczny ma właściwości soczewki skupiającej, tzn. $f_1 < f_2$, czyli $(D_1 > D_2)$: $f_2 = \frac{f_u \cdot f_1}{f_1 - f_2}$

Aby wyznaczyć f_2 należy uprzednio znać i zmierzyć f_1 .

Można jednak postąpić w inny sposób przedstawiony na rys. 2. Jeśli na drodze promieni świetlnych wychodzących z punktu A i skupionych w punkcie D za pomocą soczewki skupiającej, której środek optyczny znajduje się w punkcie B, postawić soczewkę rozpraszającą o środku optycznym w punkcie C w taki sposób, aby odległość CD byłaby mniejsza od jej ogniskowej, wówczas rzeczywisty obraz punktu A oddali się od soczewki umieszczonej w punkcie B do punktu E.

Rys. 2. Ilustracja pomiaru ogniskowej soczewki rozpraszającej.

Punkt D jest urojonym obrazem punktu E otrzymanym za pomocą samej soczewki rozpraszającej. Oznaczając odległość EC=a, DC=b otrzymuje się zgodnie z równaniem soczewki $-\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$, gdzie b jest ujemne, bo obraz jest urojony, stąd $f = \frac{a \cdot b}{a - b}$.

3. Przeprowadzenie pomiarów

Celem ćwiczenia jest wyznaczenie ogniskowej soczewki skupiającej dwoma metodami oraz ogniskowej soczewki rozpraszającej. Najpierw wykonujemy pomiary wstępne, a następnie pomiary związane z trzema kolejnymi metodami pomiarowymi.

- 1. Ustalić położenie przedmiotu *A* (czoła lampki z przesłoną w kształcie strzałki). Wartość ta będzie stała dla wszystkich pomiarów.
- 2. Oszacować niepewność maksymalną Δd wyznaczenia położenia dowolnego obiektu (przedmiot, soczewka, ekran) na ławie optycznej. Wielkość ta będzie odnosiła się do wszystkich pomiarów.

α) Wyznaczenie ogniskowej soczewki skupiającej

- 3. Umieścić na ławie optycznej pomiędzy przedmiotem a ekranem tylko soczewkę skupiającą. Tak dobrać odległości *przedmiot-soczewka (B-C₁)* oraz *soczewka-obraz (C₁-B')* by obraz był dobrze widoczny jako pomniejszony. Ustalić położenie ekranu B' (w miejscu ułatwiającym obliczenia) i zapisać.
- 4. Przesuwając soczewkę C_1 otrzymać na ekranie ostry obraz przedmiotu, wynik zapisać.
- 5. Czynności według punktu 4 powtórzyć 10-20 razy, za każdym razem dokonać zapisu niezależnego pomiaru położenia punktu C_I .

Rys. 3. Ilustracja pomiaru ogniskowej soczewki skupiającej a) obraz pomniejszony, b) obraz powiększony.

B) Wyznaczenie ogniskowej soczewki skupiającej metoda Bessela

- 6. Wykorzystać położenie ekranu B' (w miejscu ułatwiającym obliczenia) z punktu 3. Na ławie optycznej pomiędzy ekranem a przedmiotem znajduje się, jak w punkcie α, soczewka skupiająca. Tak dobrać odległości *przedmiot-soczewka (B-C₂)* oraz *soczewka-obraz (C₂-B')* by obraz był dobrze widoczny jako powiększony.
- 7. Przesuwając soczewkę C_2 otrzymać na ekranie ostry obraz przedmiotu, wynik zapisać.
- 8. Czynności według punktu 7 powtórzyć 10-20 razy, za każdym razem dokonać zapisu niezależnego pomiaru położenia punktu C_2 .

Rys. 3. Ilustracja pomiaru ogniskowej soczewki skupiającej metodą Bessela.

y) Wyznaczenie ogniskowej soczewki rozpraszającej

- Umieścić na ławie optycznej pomiędzy przedmiotem a ekranem tylko soczewkę skupiającą (jak w punkcie α lub β), ustalić i zapisać jej położenie B. Ustawić ekran D tak by obraz był dobrze widoczny.
- 10. Między ekranem a soczewką skupiającą umieścić soczewkę rozpraszającą blisko soczewki skupiającej, zapisać jej położenie *C.* Ustalić położenie ekranu *E* tak by obraz był dobrze widoczny.
- 11. Na przemian dokonywać pomiaru położenia ekranu dla:
 - samej soczewki skupiającej (D),
 - układu soczewek skupiającej i rozpraszającej (*E*), umieszczając soczewki w miejscach wyznaczonych w punktach 9 i 10.
- 12. Czynności według punktu 11 powtórzyć 10-20 razy, za każdym razem dokonać zapisu niezależnego pomiaru położenia punktów D oraz E.

Rys. 4. Ilustracja pomiaru ogniskowej soczewki rozpraszającej.

4. Opracowanie wyników pomiarów

- α) Wyznaczenie ogniskowej soczewki skupiającej i jej niepewności
 - 1. Wyznacz wszystkie odległości przedmiot soczewka $a_i = |A C_1|z$ wartości zanotowanych w tabeli pomiarowej.
 - 2. Obliczyć średnią arytmetyczną $\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$ oraz jej niepewność standardową $u(\bar{a}) = \sigma_{\bar{a}} = \sqrt{\frac{\sum_{i=1}^{n} (a_i \bar{a})^2}{(n-1)n}}$.
 - 3. Obliczyć niepewność standardową odległości przedmiot ekran z niepewności maksymalnej oszacowanej podczas pomiarów $u(d) = \frac{\Delta d}{\sqrt{3}}$. Użyj wartości u(d)do obliczeń w podpunktach β), γ).
 - 4. Wyznacz odległość obrazu od przedmiotu d=|A-B'| z wartości zanotowanych w tabeli pomiarowej.
 - 5. Obliczyć ogniskową soczewki ze wzoru $f = \frac{a \cdot b}{a+b} = \frac{a \cdot (d-a)}{d}$
 - 6. Obliczyć niepewność złożoną bezwzględną ogniskowej w oparciu o prawo przenoszenia niepewności: $u_c(f) = \sqrt{\frac{(d-2a)^2 u(a)^2}{d^2} + \frac{a^4 u(d)^2}{d^4}}.$

Wyciągnąć wniosek (*) która z niepewności pomiarowych wnosi największy wkład do niepewności złożonej?

- 7. Obliczyć niepewność złożoną względną wartości ogniskowej $u_{c,r}(f) = \frac{u_c(f)}{f}$.
- 8. Wyznaczyć (przyjmując współczynnik rozszerzenia 2) niepewność rozszerzoną $U(f) = 2 \cdot u_c(f)$.

β) Wyznaczenie ogniskowej soczewki skupiającej metoda Bessela i jej niepewności

- 9. Wyznacz wszystkie różnice w położeniach soczewek w punktach C_1 i C_2 (gdy uzyskujemy obraz pomniejszony i powiększony) $c_i = |C_2 C_1|z$ wartości zanotowanych w tabeli pomiarowej.
- 10. Wyznacz odległość obrazu od przedmiotu d=|A-B'| z wartości zanotowanych w tabeli pomiarowej.
- 11. Obliczyć średnią arytmetyczną odległości między soczewkami w punktach C_l i C_2 $\bar{c} = \frac{1}{n} \sum_{i=1}^n c_i$ oraz jej niepewność standardową $u(\bar{c}) = \sigma_{\bar{c}} = \sqrt{\frac{\sum_{i=1}^n (c_i \bar{c})^2}{(n-1)n}}$.
- 12. Obliczyć ogniskową soczewki ze wzoru f= $\frac{(d+c)\cdot(d-c)}{4d} = \frac{1}{4}\cdot(d-\frac{c^2}{d})$.
- 13. Obliczyć niepewność złożoną bezwzględną ogniskowej w oparciu o prawo przenoszenia niepewności: $u_c(f) = \frac{1}{4} \sqrt{\left[\frac{c^2+d^2}{d^2}\right]^2 u(d)^2 + \frac{4c^2}{d^2} u(c)^2}.$

Wyciągnąć wniosek (**) która z niepewności pomiarowych wnosi największy wkład do niepewności złożonej?

- 14. Obliczyć niepewność złożoną względną wartości ogniskowej $u_{c,r}(f) = \frac{u_c(f)}{f}$.
- 15. Wyznaczyć (przyjmując współczynnik rozszerzenia 2) niepewność rozszerzoną $U(f)=2\cdot u_c(f)$.

- γ) Wyznaczanie ogniskowej soczewki rozpraszającej i jej niepewności
 - 16. Wyznacz wszystkie odległości między obrazem z soczewki skupiającej a soczewką rozpraszającą $b_i = |C D|$ z wartości zanotowanych w tabeli pomiarowej.
 - 17. Obliczyć średnią arytmetyczną $\bar{b} = \frac{1}{n} \sum_{i=1}^{n} b_i$ oraz jej niepewność standardową
 - $u(\bar{b}) = \sigma_{\bar{b}} = \sqrt{\frac{\sum_{i=1}^{n} (b_i \bar{b})^2}{(n-1)n}}.$
 - 18. Wyznacz wszystkie odległości między obrazem z układów soczewek skupiającej i rozpraszającej a soczewką rozpraszającą $a_i = |C E|$ z wartości zanotowanych w tabeli pomiarowej.
 - 19. Obliczyć średnią arytmetyczną $\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$ oraz jej niepewność standardową $u(\bar{a}) = \sigma_{\bar{a}} = \sqrt{\frac{\sum_{i=1}^{n} (a_i \bar{a})^2}{(n-1)n}}$.
 - 20. Obliczyć ogniskową soczewki rozpraszającej na podstawie wzoru $f = \frac{\overline{a \cdot b}}{\overline{b} \overline{a}}$.
 - 21. Obliczyć niepewność złożoną bezwzględną ogniskowej soczewki rozpraszającej w oparciu o prawo przenoszenia niepewności: $u_c(f)=\frac{1}{(\bar{a}-\bar{b})^2}\sqrt{\overline{a^4}u(\bar{b})^2+b^4u(\bar{a})^2}$. Wyciągnąć wniosek (***) która z niepewności pomiarowych wnosi największy wkład do niepewności złożonej?
 - 22. Obliczyć niepewność złożoną względną wartości ogniskowej $u_{c,r}(f) = \frac{u_c(f)}{f}$.
 - 23. Wyznaczyć (przyjmując współczynnik rozszerzenia 2) niepewność rozszerzoną $U(f) = 2 \cdot u_c(f)$.

5. Podsumowanie (wariant podstawowy)

1. Zestawić wyznaczone wartości wielkości:

dla pomiarów z punktu α) $(f_A, u_c(f_A), u_{c,r}(f_A), U(f_A)),$ dla pomiarów z punktu β) $(f_B, u_c(f_B), u_{c,r}(f_B), U(f_B)),$ dla pomiarów z punktu γ) $(f_C, u_c(f_C), u_{c,r}(f_C), U(f_C)),$ oraz wartość odniesienia zgodnie z regułami ich prezentacji.

- 2. Przeanalizować uzyskane rezultaty:
- a) czy przedziały $(f_A + /- u_c(f_A))$ oraz $(f_B + /- u_c(f_B))$ posiadają część wspólną,
- **b)** czy spełniona jest relacja $u_{c,r}(f_B) < u_{c,r}(f_A)$ wskazująca, że pomiar metodą β) obarczony mniejszą niepewnością,

oraz dla metody y)

- c) która z niepewności pomiarowych w wybranej metodzie wnosi największy wkład do niepewności złożonej $(u_c(f_C))$;
- d) czy spełniona jest relacja $u_{c,r}(f_C) \le 0.1$, która może wskazywać na popełnienie małych błędów grubych lub systematycznych,
- e) czy spełniona jest relacja $|f_{max} f_{min}| < U(f_C)$, która może wskazywać na skupienie wyników wokół średniej z pomiarów.
- **3.** Wnioski z analizy rezultatów.
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych oraz ich przyczyn.
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Podać cele ćwiczenia i wyjaśnić czy zostały osiągnięte?

ĆWICZENIE 29

	Jptyka
Grupa, zespół w składzie	
Cele ćwiczenia: 1. wyznaczenie ogniskowej soczewki skupiającej; 2. wyznaczenie ogniskowej soczewki skupiającej metodą Bessela; 3. ustalenie która z powyższych metod jest obarczona mniejszą niepewnością, 4. wyznaczenie ogniskowej soczewki rozpraszającej;	
3.1 Wartości teoretyczne wielkości wyznaczanych lub określanych:	
3.2 Potwierdzić na stanowisku wartości parametrów i ich niepewności!	
położenie przedmiotu na ławie optycznej (A) i jego niepewność Δd i	
3.3 Pomiary i uwagi do ich wykonania:	

Kartę pomiarów proszę drukować dwustronnie

Pomiar nr	α) ogniskowa soczewki skupiającej	β) ogniskowa soczewki skupiającej metodą Bessela	γ) ogniskowa soczewki rozpraszającej $B = [cm]$	
	stałe położenie ekranu B' = [cm]		stałe położenie soczewki skupiającej C =	
	soczewka w C ₁ [cm] obraz pomniejszony	soczewka w C ₂ [cm] obraz powiększony	ekran w D [cm] tyko soczewka skupiająca	ekran w E [cm] układ obu soczewek
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				