Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина «Архитектура вычислительных систем»

ОТЧЕТ

к лабораторной работе №4

на тему:

«ПРОГРАММИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ РАСШИРЕНИЙ SSE/SSE2»

БГУИР 1-40-04-01

Выполнил студент группы 253504 Новиков Валерий Андреевич

(дата, подпись студента)

Проверила ассистент кафедры информатики
Калиновская Анастасия
Александровна

(дата, подпись преподавателя)

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Расширение SSE

SSE (англ. Streaming SIMD Extensions, потоковое SIMD-расширение процессора) — это набор SIMD инструкций, разработанный Intel , и впервые представленный в процессорах серии Pentium III.

Технология SSE позволяет преодолеть основную проблему ММХ — при использовании ММХ невозможно одновременно использовать инструкции сопроцессора, так как его регистры используются и для ММХ и для работы FPU.

Расширение позволяет выполнять векторные (пакетные) и скалярные инструкции.

Векторные инструкции реализуют операции сразу над четырьмя комплек тами операндов. Скалярные инструкции работают только с одним комплектом операндов — младшим 32-битным словом.

SSE включает в архитектуру процессора восемь 128-битных регистров хmm0...хmm7, каждый из которых трактуется как 4 последовательных значения с плавающей точкой одинарной точности. Расширение позволяет выполнять векторные (пакетные) и скал ярные инструкции. Векторные инструкции реализуют операции сразу над четырьмя комплектами операндов. Скалярные инструкции работают только с одним комплектом операндов — младшим 32-битным словом.

Реализация блоков SIMD осуществляется распараллеливанием вычислительного процесса между данными. То есть когда через один блок проходит поочередно множество потоков данных.

Расширение SSE2

SSE2 (англ. Streaming SIMD Extensions 2, потоковое SIMD-расширение процессора) — это

SIMD (англ. Single Instruction, Multiple Data, Одна инструкция – множес тво данных) набор инструкций, разработанный Intel , и впервые представленный в процессорах серии Pentium 4.

SSE2 использует те же восемь 128-битных регистров хmm0...хmm7 что и расширение SSE, каждый из которых трактуется как 2 последовательных значения с плав ающей точкой двойной точности. SSE2 включает в себя набор инструкций, которые производят операции со скалярными и упакованными типами данных. Также SSE2 содержит инструкции для потоковой обработки целочисленных данных в тех же 128-битных хmm регистрах, что делает это расширение более

предпочтительным для целочисленных вычислений, нежели использовани е набора инструкций ММХ.

Команды SSE2

При описании операндов инструкций использованы следующие обозначения:

- mmx любой из восьми 64-х разрядных регистров MMX.
- xmm любой из восьми 128-ми разрядных регистров.
- r32 любой 32-х разрядный регистр общего назначения: EAX, EBX и так далее.
- m128, m64, m32, m8 элемент памяти соответствующего размера в битах.
- imm8 непосредственный способ адресации, число имеющее размер байта, например, константа сдвига.

Если в качестве операнда указано только имя регистра или только элемент памяти, то это означает, что операнд может находиться только в регистре или только в ОЗУ. Если же указано сочетание обозначений имени регистра и элемента памяти, разделенное наклонной скобкой, например, xmm/m128 то операнд может находиться либо в регистре, либо в ОЗУ

ПРАКТИЧЕСКАЯ ЧАСТЬ

Цель работы: Вариант 19. Изучить программную модель SSE, изучить систему команд SSE, обработать массивы из 8 элементов по следующему выражению: F[i]=(A[i]+B[i])*(C[i]+D[i]), i=1...8;

Ход работы: на рисунке 1 представлены регистры XMM до выполнения программы, на рисунке 2 представлены входные данные, на рисунке 3 представлены регистры MMX после выполнения программы, на рисунке 4 представлены результаты программы.

Листинг 1 – Исходный код программы

```
__asm {
    xorps xmm0, xmm0
    xorps xmm1, xmm1
    xorps xmm2, xmm2
    xorps xmm3, xmm3
    xorps xmm4, xmm4
    xorps xmm5, xmm5
```

```
movups xmm0, A
punpcklbw xmm0, xmm7
movups xmm1, B
punpcklbw xmm1, xmm7
movups xmm2, C
punpcklbw xmm2, xmm7
movups xmm3, D
pmullw xmm1, xmm2
addps xmm0, xmm1
addps xmm0, xmm1
addps xmm0, xmm3
movups F, xmm0
```

}

Рисунок 1 – Регистры ХММ до выполнения программы

```
__int8 A[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };

__int8 B[8] = { 3, 3, 5, 7, 2, 1, 8, 5 };

__int8 C[8] = { 2, 2, 1, 1, 3, 2, 1, 2 };

__int16 D[8] = { 3, 2, 1, 2, 3, 4, 5, 1 };
```

Рисунок 2 – Входные данные

Рисунок 3 — Регистры XMM после выполнения программы

```
KOHCOЛЬ ОТЛАДКИ Microsoft Visual Studio
Array A:
1 2 3 4 5 6 7 8
Array B:
3 3 5 7 2 1 8 5
Array C:
2 2 1 1 3 2 1 2
Array D:
3 2 1 2 3 4 5 1

Answer, array F:
10 10 9 13 14 12 20 19
```

Рисунок 4 – Результат вычислений

Вывод: в результате лабораторной работы была изучена программная модель SSE и выполнена поставленная задача.