Théorème de la double limite

On va ici démontrer le résultat suivant :

Théorème 1. Soit $[a, b] \subset \mathbb{R}$, avec éventuellement $b = +\infty$. Soit (f_n) une suite de fonctions définies sur [a, b], à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On suppose que :

- la suite (f_n) converge vers une fonction f uniformément sur [a, b];
- chaque fonction f_n admet une limite finie λ_n en b.

Alors, la suite (λ_n) admet une limite finie λ , et f a pour limite λ en b.

Dans toute la suite, on suppose donnée une suite de fonctions (f_n) vérifiant les hypothèses du théorème. On pose I = [a, b[pour alléger les écritures.

Etape 1 : la suite (λ_n) est bornée

En prenant $\varepsilon = 1$ dans la définition de la convergence uniforme, on peut choisir $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0 \quad \forall t \in I \quad |f(t) - f_n(t)| \leqslant 1$$

On en déduit :

$$\forall p \geqslant n_0 \quad \forall q \geqslant n_0 \quad \forall t \in I \quad |f_p(t) - f_q(t)| \leqslant |f_p(t) - f(t)| + |f(t) - f_q(t)| \leqslant 2$$

Pour p et q fixés, on fait tendre t vers b dans cette inégalité : on obtient

$$\forall p \geqslant n_0 \quad \forall q \geqslant n_0 \quad |\lambda_p - \lambda_q| \leqslant 2$$

En particulier, avec $q = n_0$:

$$\forall p \geqslant n_0 \quad |\lambda_p - \lambda_{n_0}| \leqslant 2 \quad \text{d'où} \quad |\lambda_p| \leqslant 2 + |\lambda_{n_0}|$$

La suite (λ_n) est donc bornée à partir du rang n_0 , donc (λ_n) est bornée.

Etape 2 : la suite (λ_n) converge

La suite (λ_n) est une suite bornée de nombres complexes, on peut donc en extraire une suite $(\lambda_{\varphi(n)})$ convergente; notons λ la limite de cette suite extraite. On va montrer que (λ_n) converge en fait vers λ .

Soit $\varepsilon > 0$. En reprenant le début du raisonnement de l'étape 1, avec $\varepsilon/4$ à la place de la valeur 1, on obtient un rang n_1 tel que

$$\forall p \geqslant n_1 \quad \forall q \geqslant n_1 \quad |\lambda_p - \lambda_q| \leqslant \frac{\varepsilon}{2}$$

Puisque φ est une fonction d'extraction, on sait que $\varphi(n) \geqslant n$ pour tout $n \in \mathbb{N}$. Si $p \geqslant n_1$, on a donc aussi $\varphi(p) \geqslant p \geqslant n_1$, donc

$$\forall p \geqslant n_1 \quad |\lambda_p - \lambda_{\varphi(p)}| \leqslant \frac{\varepsilon}{2}$$

Puisque $(\lambda_{\varphi(n)})$ a pour limite λ , on peut choisir n_2 tel que

$$\forall p \geqslant n_2 \quad |\lambda_{\varphi(p)} - \lambda| \leqslant \frac{\varepsilon}{2}$$

Avec $n_0 = \max\{n_1, n_2\}$, on a donc finalement

$$\forall p \geqslant n_0 \quad |\lambda_p - \lambda| \leqslant |\lambda_p - \lambda_{\varphi(p)}| + |\lambda_{\varphi(p)} - \lambda| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

On peut trouver un tel n_0 pour tout choix de $\varepsilon > 0$, la suite (λ_n) a bien pour limite λ .

Conclusion

Dans le cas où $b \in \mathbb{R}$, on peut maintenant utiliser le théorème de continuité. On prolonge chaque fonction f_n par continuité en b, en posant $f_n(b) = \lambda_n$. On pose de plus $f(b) = \lambda$. On ne sait pas encore si f est continue en b, mais la suite $(f_n(b))$ converge bien vers f(b).

Puisque l'on a rajouté à l'intervalle un seul point b, en lequel on a convergence simple de la suite, on sait que l'on a encore convergence uniforme sur [a, b] de la suite (f_n) vers f.

Puisque les fonctions f_n sont continues en b, la convergence uniforme permet de conclure que f l'est aussi; on a donc $\lambda = f(b) = \lim_{t \to b} f(t)$.

Dans le cas $b=+\infty$, la démonstration du théorème de continuité s'adapte facilement pour obtenir encore une fois $\lambda=\lim_{t\to+\infty}f(t)$, en remplaçant les conditions du type " $t\in[b-\alpha,b[$ " par des conditions du type " $t\geqslant A$ ".