NONDETERMINISM

- Useful concept, has great impact on ToC/algorithms.
- DFA is deterministic: every step of a computation follows in a unique way from the preceding step.
 - When the machine is in a given state, and upon reading the next input symbol, we know deterministically what would be the next state.
 - Only one next state.
 - No choice !!

NONDETERMINISM

- In a nondeterministic machine, several choices may exist for the next state at any point.
- Nondeterminism is a generalization of determinism.

FIGURE 1.27

The nondeterministic finite automaton N_1

FIGURE 1.27
The nondeterministic finite automaton N_1

- More than one arrow from from q_1 on symbol 1.
- No arrow at all from q_3 on 0.
- There is & over an arrow!

How does an NFA compute?

Deterministic and nondeterministic computations with an accepting branch

FIGURE 1.27

The nondeterministic finite automaton N_1

On input **010110**

FIGURE 1.29 The computation of N_1 on input 010110

FIGURE 1.27 The nondeterministic finite automaton N_1

What is the language accepted by this NFA?

FIGURE 1.27
The nondeterministic finite automaton N_1

 It accepts all strings that contain either 101 or 11 as a substring.

- Constructing NFAs is sometimes easier than constructing DFAs.
 - Later we see that every NFA can be converted into an equivalent DFA.

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA N_2 recognizes A.

- Building DFA for this is possible, but difficult.
- Try this.

But NFA is easy to build.

EXAMPLE 1.30

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA N_2 recognizes A.

FIGURE 1.31
The NFA N_2 recognizing A

DFA for A

A DFA recognizing A

See number of states and complexity!

Formal definition of NFA

We use Σ_{ε} to mean $\Sigma \cup \{\varepsilon\}$

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Recall the NFA N_1 :

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},\$$

3.
$$\delta$$
 is given as

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$ q_1 $ $ q_3 $	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

The formal definition of computation for an NFA is similar to that for a DFA. Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w = y_1y_2 \cdots y_m$, where each y_i is a member of Σ_{ε} and a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- 3. $r_m \in F$.

Equivalence of NFAs and DFAs

 We say two machines are equivalent if they recognize the same language.

THEOREM 1.39 ------

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof

- Proof by construction.
 - We build a equal DFA for the given NFA

Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A. We construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ recognizing A.

• First, for understanding purpose, we assume that there are no edges with £ transitions.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A. We construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ recognizing A.

- Q' = P(Q).
 Every state of M is a set of states of N. Recall that P(Q) is the set of subsets of Q.
- **2.** For $R \in Q'$ and $a \in \Sigma$, let $\delta'(R, a) = \{q \in Q | q \in \delta(r, a) \text{ for some } r \in R\}$.

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$$

- 3. $q_0' = \{q_0\}$. M starts in the state corresponding to the collection containing just the start state of N.
- 4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$. The machine M accepts if one of the possible states that N could be in at this point is an accept state.

Subset construction: Example

NFA to DFA construction: Example

DFA:

 δ_{D}

{q₁}

*{q₂}

 $\{q_0, q_1\}$

 $*{q_0,q_2}$

 $\{q_1,q_2\}$

 $\{q_0, q_1, q_2\}$

 $L = \{w \mid w \text{ ends in } 01\}$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

	δ_{D}	0	1
\rightarrow [q ₀]		[q ₀ ,q ₁]	[q ₀]
	$[q_0, q_1]$	[q ₀ ,q ₁]	$[q_0, q_2]$
	*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

- Enumerate all possible subsets 0.
- 1. **Determine transitions**
- Retain only those states reachable from {q₀}

NFA to DFA: Repeating the example using *LAZY CREATION*

• L = {w | w ends in 01}

Main Idea:

Introduce states as you go (on a need basis)

Can you convert the following

What is the language accepted by this?