α) Η συνάρτηση f ορίζεται για κάθε $x \in \mathbb{R}$. Τα διαστήματα μονοτονίας της συνάρτησης f έχουν ως εξής:

H f είναι γνησίως αύξουσα για $x \in (-\infty, -2]$ και για $x \in [0, +\infty)$.

H f είναι γνησίως φθίνουσα για $x \in [-2,0]$.

β) Γραφική λύση:

Oι ρίζες της εξίσωσης $f(x)=g(x) \Leftrightarrow x^3+3x^2-4=4x-4$ είναι οι τετμημένες των κοινών σημείων των C_f και C_g .

Από το σχήμα παρατηρούμε πως οι γραφικές παραστάσεις τέμνονται στα σημεία (-4,-20), (0,-4) και (1,0) δηλαδή στα σημεία με τετμημένες -4, 0 και 1.

Άρα, η εξίσωση έχει λύσεις τους αριθμούς -4, 0 και 1.

Αλγεβρική λύση:

Οι ρίζες της εξίσωσης f(x) = g(x) προκύπτουν από τις λύσεις της παρακάτω εξίσωσης

$$x^3 + 3x^2 - 4 = 4x - 4$$
.

Η εξίσωση ορίζεται για $x \in R$.

Άρα, οι λύσεις της εξίσωσης f(x) = g(x) είναι οι αριθμοί -4, 0 και 1.

γ) Αλγεβρικά η ανίσωση λύνεται ως εξής:

$$g(x) < f(x) \iff 4x - 4 < x^3 + 3x^2 - 4 \iff x^3 + 3x^2 - 4x > 0 \iff$$
$$(x^2 + 3x - 4)x > 0.$$

Το πρόσημο του γινομένου φαίνεται στον παρακάτω πίνακα πρόσημων:

Х	-∞		-4	(0		1	+∞
X		-		-	þ	+		+
$x^2 + 3x - 4$		+	0	-		- ()	+
$x(x^2 + 3x - 4)$		-	þ	+ (- ()	+

Άρα, το γινόμενο γίνεται θετικό για $x \in (-4,0) \cup (1,+\infty)$.