VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung 2.1 Aufbau	
3	Auswertung	5
4	Diskussion	6
Lit	teratur	6

1 Theorie

In der Physik ist ein Schwarzer Körper ein theoretisches Objekt, welches seine gesamte aufgenommene Strahlung vollständig in Wärmestrahlung umwandelt. Max Planck hat für diesen Körper das Planck'sche Strahlungsgesetz entwickelt, welches sein Emissionsspektrum beschreibt. Exemplarisch können der Grafik 1 die Spektren für einen schwarzen Körper bei verschiedenen Temperaturen entnommen werden.

Abbildung 1: Plot.

Man kann im Allgemeinen bebobachten, dass sich das Strahlungsmaximum mit steigender Temperatur zu einer kleineren Wellenlänge und somit zu einer höheren Energie verschiebt. Dieser Zusammenhang wird auch durch das Wiensche Verschiebungsgesetz beschrieben.

Zudem nimmt die gesamte Leistung, die vom schwarzen Körper abgestrahlt wird, mit ansteigender Temperatur deutlich zu. Diese Tatsache, dass die abgestrahlte Leistung eines schwarzen Körpers von der Temperatur, und eben nur von dieser abhängt, wird durch das allgemeine Stefan-Boltzmann-Gesetz beschrieben:

$$P(T) = \sigma \cdot T^4 \tag{1}$$

Hierbei bezeichnet P die integrale Strahlungsdichte bezogen auf die abgestrahlte Fläche und σ die Stefan-Boltzmann-Konstante mit dem Wert $\sigma=5.67\cdot 10^{-8}\,\mathrm{W\,m^{-2}\,K^{-4}}$. Um die Strahlungseigenschaften von realen, nicht-schwarzen Körpern charakterisieren zu können, existieren verschiedene Messgrößen.

Das Absorptionsvermögen A gibt an, welcher Anteil der auftreffenden Strahlung vom Material absorbiert wird. Da der Körper die absorbierte Strahlung wieder als Wärme abgibt, ist das Emissionsvermögen ϵ gleich dem Absorptionsvermögen A. Als dritte Materialeigenschaft existiert das Reflexionsvermögen R, welches angibt, welcher Anteil der Strahlung nicht absorbiert sondern reflektiert wird. Nach dem Kirchhoffschen Strahlungsgesetz gilt der Zusammenhang

$$\epsilon = 1 - R. \tag{2}$$

Mit diesen Messgrößen erhält der schwarze Körper das Emissionsvermögen $\epsilon=1$, jeder reale Körper, in der Physik analog "grauer Körper" genannt, besitzt ein Emissionsvermögen von $\epsilon<1$. Für das Stefan-Boltzmann-Gesetz folgt mit dieser Definition für reale Körper

$$P(T) = \epsilon \cdot \sigma \cdot T^4. \tag{3}$$

[1]

2 Durchführung

2.1 Aufbau

Um das Stefan-Boltzmann-Gesetz zu überprüfen, besteht der Versuchsaufbau aus einem Lesliewürfel und einer davorstehenden Thermosäule nach Moll. Der Würfel ist im wesentlichen ein Hohlkörper, dessen vier vertikalen Seitenflächen unterschiedliche farbliche Beschaffenheiten aufweisen. Die metallischen Oberflächen sind matt, schwarz, glänzend und weiß. Sie unterscheiden sich demnach in ihrem Emissions- bzw. Absorbtionsvermögen.

Um den Würfel von innen zu erwärmen, füllt man ihn mit kochendem Wasser. Zur Temperaturmessung des Inneren wird ein Thermometer benutzt, welches über ein Loch im Deckel eingeführt wird. Nach innerer Erwärmung, beginnen die Flächen auf Grund ihrer unterschiedlichen Beschaffenheit verschiedene Wellenlängen an Wärmestrahlung abzugeben. Zur Messung jener Strahlung wird die Thermosäule benutzt.

Sie befindet sich zusammen mit dem Würfel, auf welchen sie gerichtet ist, auf einer Schiene, um einen stabilen Abstand zu gewährleisten. Die Thermosäule besteht aus einem Zylinder, der kegelförmig ausgehöhlt ist. Die Wärmestrahlung wird demnach durch die Zylinderöffnung aufgefangen und im Inneren auf eine geschärzte Detektorfläche gebündelt. In dieser Messlötstelle sitzen in Reihe geschaltete Thermoelemente. Durch eine Referenzlötstelle, welche die Außentemperatur wahrnimmt, entsteht eine Potentialdifferenz. Daraus folgt eine messbare Spannung, aus der man die Strahlintensität ableiten kann. Jenes Thermomessgerät ist sehr empfindlich. Folglich reagiert es auch auf kleinste Störungen der Umgebung, ausgelöst durch beispielsweise die Anwesenheit von Menschengruppen, ob nun stationär oder vorbeigehend. Sogar die Körperstrahlung der Experimentatoren stellt ein Messrisiko dar.

2.2 Durchführung

Zu Messen seien jeweils die Spannungen für alle Flächen des Würfels, einerseits in Abhängigkeit der Temperatur im Inneren des Würfels und andererseits in Abhängigkeit des Abstandes von der Öffnung der Thermosäule zu den Seitenfächen des Würfels.

Die Thermosäule wurde eingeschaltet. Zunächst musste jedoch die Offsetspannung $U_{\rm offset,1}$ am Anfang des Experiments ermittelt werden. Hierzu wurde die Spannung notiert, die angezeigt wurde, wenn die Thermosäule keine Strahlung aufnimmt. Zur Abdeckung wurde ein schwarzes Stück Pappe verwendet. Am Ende des Experiments wurde erneut der Offset $U_{\rm offset,2}$ ermittelt. Der Offset musste im Nachhinein linear von den gemessenen Spannungen abgezogen werden. Zusätzlich wurde noch die Raumtemperatur gemessen, da diese ebenfalls bei der Auswertung berücksichtigt werden muss.

Nach diesen Vorbereitungen wurde der Abstand auf 10cm eingestellt und der Lesliewürfel mit kochendem Wasser befüllt. Da die Temperatur anfangs sehr schnell abnimmt, begann die Messung erst bei 90 Grad. Von dort an wurden immer nach einem Temperaturabfall von deltat = 5 Grad die Spannungen an den vier Seitenfächen gemessen und tabellarisch notiert. Dieser Vorgang wurde solange wiederholt bis der Würfel eine Temperatur von 35 Grad aufwies.

Bei der Temperatur von 49 Grad wurde die Abstandsmessung an der weißen Fläche durchgeführt. Diese begann bei 10cm und endete bei 20cm. Es wurde in deltad = 1 cm Abständen gemessen. Dabei wurde besonders darauf geachtet, dass die Thermosäule beim Verschieben nur am Sockel angefasst wurde, um eine möglichst schnelle und genaue Messung zu erzielen. Danach wurde der Abstand wieder auf 10cm zurückgestellt.

Nach Abschluss der temperaturabhängigen Messung wurde, wie bereits erwähnt, erneut die Offsetspannung ermittelt. Bei Messabschluss wurde die Thermosäule abgeschaltet.

3 Auswertung

Abbildung 2: Plot.

4 Diskussion

Literatur

 $[1] \quad {\rm TU~Dortmund}.~\textit{Versuch~zum~Literaturverzeichnis}.~2014.$