Postadresse: Institut: Telefon: Telefax:

 $\begin{array}{l} \text{D-52056 Aachen, Germany} \\ \text{J\"{a}gerstra}\texttt{Be} \ 17\text{-}19, \ \text{D-52066 Aachen} \\ ++49 \ 241 \ 80 \ 96900 \\ ++49 \ 241 \ 80 \ 92184 \\ \text{http://www.xtal.rwth-aachen.de} \end{array}$

GRUNDZÜGE DER KRISTALLOGRAPHIE

Lösung zur 12. Übung: Röntgenbeugung am Kristallpulver

Aufgabe 1:

Substanz 1

Nr.	2 ⊖ [°]	I	$\sin^2\Theta$	$\Delta_{\sin^2\Theta}$	$N = h^2 + k^2 + l^2$	$\frac{\lambda^2}{4a^2}$	d	hkl
1	43.0	4622	0.13432		3	0.04477	2.1034	111
2	50.1	2114	0.17928	0,04496	4	0.04482	1.7874	200
3	73.6	917	0.35883	0,17955	8	0.04485	1.2869	220
4	89.0	783	0.49127	0,13244	11	0.04466	1.0998	311
5	94.2	224	0.53662	0,04535	12	0.04472	1.0523	222
6	115.7	141	0.71683	0,18021	16	0.04480	0.91051	400
7	134.8	409	0.85232	0,13549	19	0.04486	0.83501	331
8	142.8	367	0.89826	0,04594	20	0.04491	0.81337	420
	$\overline{(\lambda^2/4a^2)} \approx 0.044798$				\Rightarrow	$a \approx 3.6$	38 Å	

Genauer Wert aus ASTM-Kartei für Kupfer: $a=3.615~{\rm \AA}$

Substanz 2

Nr.	2 ⊖ [°]	I	$\sin^2\Theta$	$\Delta_{\sin^2\Theta}$	$N = h^2 + k^2 + l^2$	$\frac{\lambda^2}{4a^2}$	d	hkl
1	27.3	1051	0.05569		3	0.01856	3.2666	111
2	31.5	8109	0.07368	0.01799	4	0.01842	2.8400	200
3	45.3	4452	0.14830	0.07462	8	0.01854	2.0018	220
\parallel 4	53.7	164	0.20399	0.05569	11	0.01854	1.7068	311
5	56.2	1212	0.22185	0.01786	12	0.01849	1.6367	222
6	65.8	481	0.29504	0.07319	16	0.01844	1.4192	400
7	72.2	87	0.35131	0.05627	19	0.01849	1.3006	331
8	74.8	892	0.36891	0.01760	20	0.01845	1.2692	420
	$\overline{(\lambda^2/4a^2)} \approx 0.01846 \qquad \Rightarrow \qquad a \approx 5.674 \text{ Å}$							

Genauer Wert aus der ASTM-Kartei für NaCl: a=5.6402 Å.

Aufgabe 2:

findet man Kupfer bzw. Natriumchlorid (siehe Aufgabenblatt Anhang A2).

Aufgabe 3:

Kupfer hat eine kubisch flächenzentrierte Struktur (kubisch dichteste Packung), Natriumchlorid ebenfalls, jedoch sind hier 2 verschiedene Atome beteiligt.

Aufgabe 4:

In der kubisch dichtesten Packung berühren sich die Atome entlang der Flächendiagonale.

$$d_{110,Cu} = \frac{a}{\sqrt{2}} = \frac{3.638\text{Å}}{\sqrt{2}} = 2.572 \text{ Å}$$

(Zum Vergleich: Atomradius nach Pauling für Kupfer = 1.28 Å.)

Beim Natriumchlorid berühren sich auf jeder Kante der Elementarzelle abwechselnd Chloridund Natriumionen. Der Abstand beider beträgt dabei die Hälfe der Kantenlänge:

$$d_{Na-Cl} = \frac{a}{2} = \frac{5.674\text{Å}}{2} = 2.837 \text{ Å}$$

Aufgabe 5:

Dichte ist Masse pro Volumen:
$$\rho = \frac{m}{V} = \frac{Z_{\text{Formeleinheiten/Elementarzelle}} \cdot m_{\text{Atom}}}{V_{\text{EZ}}}$$

Mit den Angaben aus der ASTM-Karte für Kupfer folgt:

$$M_{\rm Cu,molar} = \frac{\rho[\frac{\rm g}{\rm cm^3}] \cdot a_0^3 [\mathring{\rm A}^3] \cdot 10^{-24} [\frac{\rm cm^3}{\mathring{\rm A}^3}]}{Z_{\rm Cu/EZ} \cdot \frac{1}{6.022 \cdot 10^{23} [\frac{\rm Atome}{\rm mol}]}} = \frac{8.936 \cdot 3.6150^3 \cdot 6.022}{4 \cdot 10^{24} \cdot 10^{-23}} \frac{\rm g}{\rm mol} \approx 63.55 \frac{\rm g}{\rm mol}$$

Für Natriumchlorid folgt:

$$M_{\text{NaCl,molar}} = \frac{\rho[\frac{\text{g}}{\text{cm}^3}] \cdot a_0^3 [\text{Å}^3] \cdot 10^{-24} [\frac{\text{cm}^3}{\text{Å}}]}{Z_{\text{NaCl/EZ}} \cdot \frac{1}{6.022 \cdot 10^{23} [\frac{\text{Atome}}{\text{mol}}]}} = \frac{2.164 \cdot 5.674^3 \cdot 6.022}{4 \cdot 10^{24} \cdot 10^{-23}} \frac{\text{g}}{\text{mol}} \approx 59.51 \frac{\text{g}}{\text{mol}}$$

Dies stimmt recht gut mit den zu erwartenden molaren Massen von Kupfer (63.546 $\frac{g}{mol}$) und NaCl (58.4428 $\frac{g}{mol}$) überein.