人工智能导论大作业

10153903015 杜云滔

文件介绍

代码介绍

1. ReadDigit.py

将二进制文件展示成图片。使用 ReadDigit 这个类实现,可使用 类函数 showPic () 指定显示哪一张图片,方便进行可视化查 看。

2. save_data.py

将解析出的二进制文件使用 numpy.ndarray 进行存储,使用 pickle 库函数进行序列化,并将image和label保存为一个数组,最后保存在data文件夹中,以 test.pkl 和 train.pkl 进行存储,方便后续操作。

需要注意的是,这里没有保存原始图像的像元值,而是进行了归一化。

3. Network.py

自己实现的前馈神经网络源代码。其中使用 Network 类初始化神经网络的输入向量和层数,使用 SGD()梯度下降进行训练。

4. Network2.py

自己实现的前馈神经网络源代码。使用交叉熵代价函数、规范化 对网络进行提升,包含过拟合问题的可视化代码。

5. **TF.py**

使用TensorFlow框架实现了两层的卷积神经网络识别手写数字。

数据介绍

1. MNIST_data

存放原始的MNIST数据集以及解压后的数据。

2. data

存放经过预处理后生成矩阵的 pkl 序列化数据。

3. pic.png

手写图像的实例。

jupyter notebook

1. Proprocess

预处理及可视化

2. network

处理反馈神经网络的代码, 调参的步骤。

3. Entropy Function

使用交叉熵代价函数代替二次代价,进行神经网络训练。

4. Overfit

可视化过拟合问题。

5. result

存放最后结果(反馈神经网络、卷积神经网络)的HTML文件。

数据介绍

选择MINIST数据集进行实验,从官网下载数据后有四个压缩包,如图所示:

📴 t10k-images-idx3-ubyte.gz	2018/3/26 19:23	gz Archive	1,611 KB
🖭 t10k-labels-idx1-ubyte.gz	2018/3/26 19:22	gz Archive	5 KB
🖭 train-images-idx3-ubyte.gz	2018/3/26 19:24	gz Archive	9,681 KB
📴 train-labels-idx1-ubyte.gz	2018/3/26 19:22	gz Archive	29 KB

分别为训练集images/label (60000个样本),测试集images/label (10000个样本)。

文件解析

根据官网的描述,首先需要将二进制文件解释成图片或数组,其中包含magic number, offset, type, value, description等信息,网上已经有很多解释,本文参考<u>这篇文章</u>对其进行解析,使用ReadDigit.py 进行可视化展示(具体细节见源码),展示结果如图所示:

序列化

save_data.py 将其序列化后的 numpy.ndarray 保存为 .pkl 文件。这里需要将解析出来的图像数组和label使用list关联起来,然后再将其做**归一化**处理(实验验证,不进行归一化,神经网络很难训练),最后使用 pickle 库函数将其保存在磁盘中待处理。

数据大小

最后解析出来存储到磁盘中,每一张图片为28*28的 numpy.ndarray 矩阵,在训练集上一共有60000个这样的矩阵, label则为(6000,1)的行向量,表示对应的值。在测试集中,有大小相同的10000个矩阵, label对应的为(1000,1)的行向量。

前馈神经网络实现

本文首先自己实现了简单的前馈神经网络,从公式推导、代码介绍、梯度下降等方面来介绍。

公式推导

符号说明

 w_{jk}^l :表示从 (l-1) 层的第k个神经元到第l层的第j个神经元的连接上的权重。虽然从直观上不太好理解为什么要这样表示(通常应该表示为 w_{kj}^l),但请先接受这种写法。可以对相邻两层的所有权重用矩阵的形式表示为 w^l 。

 σ : 表示激活函数,本文都使用Sigmoid function。

 b^l_j :表示第l层j神经元的偏置,可以对同一层的神经元表示为 b^l ,记为偏置向量。

 a_j^l :表示第l层j神经元的激活值,可以对同一层的神经元表示为 a^l ,记为激活向量。 由BP神经网络的定义可得:

$$a^l = \sigma(w^l a^{l-1} + b^l)$$
 ,

 z^l : 表示带权输入, $z^l=w^la^{l-1}+b^l$ $a^l=\sigma(z^l)$ 。

C: 表示代价函数,定义为 $C=\frac{1}{2n}\sum ||y(x)-a^L(x)||^2$,其中y(x)表示每个样本的真实输出,L表示神经网络的总层数。

代价函数

BP神经网络的向前传播很简单,就使用之前提到的矩阵形式就可以计算,当我们初始化所有权重和偏置时,得到的结果输出与目标输出肯定有较大差距,我们使用**代价函数**来度量这种差距。定义如下:

$$C = \frac{1}{2n} \sum \left| \left| y(x) - a^L(x) \right| \right|^2$$

那么,当输入和输出固定时,C就是关于w和b的函数,我们需要对其进行求偏导,以此来更新代价函数。

我们需要对代价函数进行如下定义(假设):

- 1. 代价函数可以写成一个在每个训练样本x上的代价函数 C_x 的均值 $C=\frac{1}{n}\sum_x C_x$ 。
- 2. 将C仅看成输出激活值 a^L 的函数。

以下公式,不加说明,C都指特定的 C_x 。

反向传播的四个方程

反向传播其实就是对权重和偏置变化影响函数过程的理解。最终就是需要计算 $\frac{\partial C}{\partial w_{ik}^l}$ 和 $\frac{\partial C}{\partial b_i^l}$ 。

我们首先定义一个中间量 $\delta_j^l = \frac{\partial C}{\partial z_j^l}$,表示为第l层第j个神经元的误差,然后将 δ_j^l 关联到 $\frac{\partial C}{\partial w_{jk}^l}$ 和 $\frac{\partial C}{\partial b_j^l}$ 。

这里可能会感到疑惑,为什么会定义这样一个误差呢? 我们想象,当在一个神经元的带权输入上增加一个很小的变化 Δz_j^l ,使得神经元输出由 $\sigma(z_j^l)$ 变为 $\sigma(z_j^l+\Delta z_j^l)$,那么这个变化将会向网络后面的层进行传播,最终导致整个代价产生 $\frac{\partial C}{\partial z_j^l}\Delta z_j^l$ 的变化。因此,这里有

一种启发式的认识, $\frac{\partial C}{\partial z_i^l}$ 是神经元误差的度量:

$$\delta_j^l = rac{\partial C}{\partial z_j^l}$$

在给出方程严谨的证明前,我们不妨从直观上看一下这些方程,这 有助于我们的进一步理解。

• 输出层误差方程:

- \circ $\delta^L_j = rac{\partial C}{\partial a^L_i} \sigma'(z^L_j)$
- \circ 右边的第一个项 $\frac{\partial C}{\partial a_j^L}$ 表示代价随着第j个输出激活值的变化而变化的速度。第二项刻画了在 z_j^l 处激活函数 σ 变化的速度,可以理解为 Δa_j^l 。
- 。 注意到这个式子的每一部分都是很好计算的。我们如果已知了一个代价函数和激活函数,那么在前向传播中就可以算得每一个 δ_i^L 。
- 用矩阵的形式表示第一个式子则更加简单和美妙,注意⊙表示 矩阵对应元素相乘:
- $\circ \; \delta^L =
 abla_a C \odot \sigma'(z^L)$

• 使用下一层的误差来表示当前层的误差:

- $\circ \ \delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$
- 。 当我们知道l+1层的误差 δ^{l+1} ,当我们应用转置的权重矩阵 $(w^{l+1})^T$,我们可以凭直觉理解为它是沿着网络反向移动误 差,给我们**度量在l层输出误差的计算方法**。
- \circ 然后,使用hadamard乘积运算,让误差通过l层的激活函数 反向传递回来并给出在第l层带权输入的误差 δ 。

通过组合前两个公式,我们可以计算出任意一层的带权输入 误差。

• 代价函数关于网络中任意偏置的改变率:

$$\circ \ rac{\partial C}{\partial b^i_j} = \delta^l_j$$

 \circ 通过这个方程我们发现,我们需要计算的 $\frac{\partial C}{\partial b^i_j}$ 与 δ^l_j 完全一致。

• 代价函数关于任何一个权重的改变率:

$$\circ \ rac{\partial C}{\partial w^i_{jk}} = a^{l-1}_k \delta^l_j$$

- \circ 这告诉我们如何求 $\frac{\partial C}{\partial w_{jk}^i}$ 。其中 a_k^{l-1} 和 δ_j^l 我们都已经知道如何计算了,便于理解,我们可以将其化简为:
- $\circ \ rac{\partial C}{\partial w} = a_{in} \delta_{out}$
- 。 我们发现,当激活值 a_{in} 很小时, $\frac{\partial C}{\partial w}$ 也会变得很小。这时候,我们就说权重缓慢学习,表示在进行梯度下降时,这个权重不会改变太多。

通过之前的式子,我们可以发现,如果输入神经元激活值很低,或者输出神经元已经饱和了,权重会学习的非常缓慢。这可以帮助我们选择激活函数。例如,我们可以选择一个不是sigmoid函数的激活函数,使得 σ ¹总是正数,不会趋近于0,这样会防止原始的S型神经元饱和时学习速率下降的情况。

四个基本方程的推导

总结下来一共有四个重要公式:

1.
$$\delta^L =
abla_a C \odot \sigma'(z^L)$$

$$\circ \ dots \ \delta^L_j = rac{\partial C}{\partial z^L_j}$$

$$egin{array}{l} \circ \ \therefore \delta^L_j = \sum_k rac{\partial C}{\partial a^L_k} rac{\partial a^L_k}{\partial z^L_j} = rac{\partial C}{\partial a^L_j} rac{\partial a^L_j}{\partial z^L_j} = rac{\partial C}{\partial a^L_j} \sigma'(z^L_j) \end{array}$$

2.
$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

$$\therefore \delta^l_j = rac{\partial C}{\partial z^l_j} = \sum_k rac{\partial C}{\partial z^{l+1}_k} rac{\partial z^{l+1}_k}{\partial z^l_j}$$
,表示这一层的神经元对下一层都有影响

$$\circ$$
 ... $\delta_j^l = \sum\limits_k \delta_k^{l+1} rac{\partial z_k^{l+1}}{\partial z_j^l}$

$$\circ \ dots z_k^{l+1} = \sum\limits_{j} w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1}$$

$$\circ \; \therefore rac{\partial z_k^{l+1}}{\partial z_j^l} = w_{kj}^{l+1} \sigma'(z_j^l)$$

$$\circ$$
 带入可得: $\delta_j^l = \sum\limits_k \delta_k^{l+1} w_{kj}^{l+1} \sigma'(z_j^l)$

3.
$$rac{\partial C}{\partial b^i_j} = \pmb{\delta}^l_j$$

$$\circ \ dots \ b_k^l = z_k^l - \sum_j w_{kj}^l \sigma(z_j^{l-1})$$

$$\circ \therefore \delta_j^l = \frac{\partial C}{\partial z_j^l} = \frac{\partial C}{\partial b_j^l} \frac{\partial b_j^l}{\partial z_j^l} = \frac{\partial C}{\partial b_j^l}$$

4.
$$\frac{\partial C}{\partial w_{jk}^i} = a_k^{l-1} \delta_j^l$$

$$egin{array}{l} \circ \ dots \ z_j^l = \sum\limits_{l} w_{jk}^l a_k^{l-1} + b_j^l \end{array}$$

$$\circ \therefore rac{\partial z_j^l}{\partial w_{ik}^l} = a_k^{l-1} \Rightarrow rac{\partial C}{\partial z_j^l} rac{\partial z_j^l}{\partial w_{ik}^l} = a_k^{l-1} rac{\partial C}{\partial z_j^l}$$

$$\circ \; \therefore rac{\partial \dot{C}}{\partial w^i_{ik}} = a^{l-1}_k \sigma^l_j$$

首先我们可以通过第一个公式算出 δ^L ,然后利用第二个公式的递推关系可以算出所有的 δ ,这样,我们就可以很轻松的算出我们想要的每一个 $\frac{\partial C}{\partial b_{i}^{i}}$ 以及 $\frac{\partial C}{\partial w_{ik}^{i}}$ 。

在反向传播中,为了减少计算量,很常见的方法是使用随机梯度下降。思想也很简单,每一个样本都需要进行参与求导实在是计算量太大,但我们可以只去一小部分来进行更新权重,多算几次取平均。

梯度下降

我们使用梯度下降可以加快神经网络的学习,具体原理不再赘述,可以参考我自己写的<u>这篇博客</u>。

小结

我们使用Mini-batch BGD方法来进行BP神经网络训练,具体步骤为:

- 1. 输入训练样本集合
- 2. 对每个训练样本x: 设置对应的输入激活 a_x^1 , 并进行:
 - \circ 前向传播: 对每个l=2,3,4...,L,计算 z_x^l
 - \circ 输出误差 $\sigma_x^l =
 abla_a Cx \odot \sigma'(z_x^L)$
 - \circ 反向转播误差:对每个 $l=L-1,L-2,\ldots,2$,计算 $\delta_x^l=((w^{l+1})^T\delta_x^{l+1})\odot\sigma'(z_x^l)$
- 3. 梯度下降:根据 $w^l o w^l \frac{\eta}{m} \sum_x \delta_x^l (a_x^{l-1})^T$ 和 $b^l o b^l \frac{\eta}{m} \sum_x \delta_x^l$ 更新权值和偏置。

代码介绍

1. load_data_wrapper ()

将序列化的数据加载到程序中,并将28*28的数组 reshape 为 (784,1)的向量,方便作为输入向量。

2. Network.__init__()

将输入的神经网络的参数(每一层多少个神经元)转化为对应的w和b,使用**标准正太分布**进行随机初始化。

3. Network.feedforward() 前向传播使用w和b计算每一层的激活值。

4. Network.SGD()

使用Mini-batch BGD随机选取小样本进行训练。

5. Network.backprop()

反向传播计算每一层的 Δw 和 Δb ,根据学习速率从后往前计算。

6. Netwo.evaluate()

对每一层计算出的结果进行评估准确率。

架构信息

- 选择了自己实现的前馈神经网络进行训练。
- 包含2层神经网络,第一层有100个神经元,第二层有100个神经元,输出层有10个神经元。
- ◆数w和b使用标准正太分布进行随机初始化。

- 损失函数选择的均方误差 $C = \frac{1}{2n} \sum ||y(x) a^{L}(x)||^{2}$ 。
- 激活函数选择Sigmoid function。
- 评价指标为最终的准确率,能达到98%左右。
- 迭代次数 (epoch) 为50次,每五次输出一次,结果如下(只输出了最后一次的w和b)

实现结果

```
net.SGD(training_data, 50, 10, 3.0, test_data=test_data)
Epoch 0: 8123 / 10000
Epoch 5: 8671 / 10000
Epoch 10: 9616 / 10000
Epoch 15: 9669 / 10000
Epoch 20: 9670 / 10000
Epoch 25: 9666 / 10000
Epoch 30: 9691 / 10000
Epoch 35: 9692 / 10000
Epoch 40: 9714 / 10000
Epoch 45: 9716 / 10000
the weight is [array([[ 0.91375296, -0.18528853, -1.64291544, ..., 0.00667428,
        -1.43317705, -0.29134309],
                                  1.92625232, ..., -0.05913896,
       [ 0.95753864, 0.98811756,
        1.65162323, 0.42728173],
       [-0.56106008, 0.42502855,
                                  0.34442562, ..., 0.31648228,
         0.33775879, 0.4689368],
       [-0.6459578, -1.03017731, -0.45813785, ..., -2.05104017,
        -0.57547295, -0.09048588],
       [ 2.0241108 , -0.37423648, -0.05921099, ..., -0.92418565,
```

卷积神经网络实现

架构信息

- 1. 选择了TensorFlow框架进行试验。
- 2. 构建了两层的卷积神经网络,第一层32个神经元,第二层64个神经元,全连接层有1024个神经元,最后是输出层。
- 3. 初始值w和b用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题,这里使用 tf.truncated_normal 进行初始化,使得值都小于2。
- 4. 使用交叉熵作为代价函数。
- 5. 迭代次数 (epoch) 为20000次,每1000次输出一次,最终准确率达到了99%。
- 6. 最后使用accuracy作为评价指标,结果如下图所示。

实现结果

```
step 0, training accuracy 0.22
step 1000, training accuracy 0.94
step 2000, training accuracy 1
step 3000, training accuracy 1
step 4000, training accuracy 1
step 5000, training accuracy 1
step 6000, training accuracy 0.98
step 7000, training accuracy 1
step 8000, training accuracy 0.98
step 9000, training accuracy 1
step 10000, training accuracy 1
step 11000, training accuracy 1
step 12000, training accuracy 1
step 13000, training accuracy 0.98
step 14000, training accuracy 1
step 15000, training accuracy 1
step 16000, training accuracy 1
step 17000, training accuracy 1
step 18000, training accuracy 1
step 19000, training accuracy 1
test accuracy 0.9917
```

参考资料

- 1. <u>读取mnist数据集并保存成图片</u>
- 2. Neural Networks and Deep Learning
- 3. MNIST For ML Beginners