Logik und Komplexität ÜBUNG 5

Notizen zur fünften Übung HU Berlin

Aufgabe 1)

Aufgabe 2)

Zeige 1. Falls |A| < |B| und $|A| \le 2^m$ so hat Spoiler eine Gewinnstrategie in m-Runden EF-Spiel auf A und B.

 $(**)_i$: Sind $a_{2+1},...,a_{2+i}$ und $b_{2+1},...,b_{2+i}$ die in Runden 1,...,i gewählten Elemente in A und B, so gibt es $j,j' \in 1,...,2+i$ so dass gilt:

1.
$$(a_j <^A a_{j'} \text{ und } b_j \ge^B b_j)$$
 oder $(a_j \ge^A a_{j'} \text{ und } b_j <^B b_{j'})$ oder

2.
$$Dist(a_j, a_{j'}) < 2^{m-i} \text{ und } Dist(a_j, a_{j'}) < Dist(b_j, b_{j'})$$

Zeige 2. $(**)_i$ gilt für jeden Schritt i:

IV:
$$|A| < |B| \ und \ |A| \le 2^m$$

IA: $i = 0 \ (**)_0$ gilt, durch die IV

IS: $i \to i + 1$:

Sp. wählt in Runde i+1 das Element b_{i+1} mit $b_j < b_{i+1} < b_{j'}$ mit $Dist(b_j, b_{i+1}) = 2^{m-(i+1)}$

Seien $a_j, a_{j'}$ jeweils die in Runde j, j' von Dup gespielten Elemente.

zeige: f.a. a_{i+1} gilt $(**)_{i+1}$

Fall 1: $a_{i+1} = a_j$

 $Dist(a_{i+1}, a_j) = 0 < 2^{m-(i+1)}$

 $\Rightarrow (**)_{i+1} \ gilt$

Fall 2: $a_{i+1} < a_j$

 $gilt\ nach\ (**)_{i+1}.1$

Fall 3:
$$a_{i+1} > a_{j'}$$

gilt $nach \ (**)_{i+1}.1$
Fall 4: $a_j < a_{i+1} < a_{j'}$
Fall 4.1: $dist(a_j, a_{i+1}) = dist(b_j, b_{i+1})$
 $Da \ da_{j,j'} < db_{j,j'} \Rightarrow da_{i+1,j'} < db_{i+1,j'}$
 $Da \ db_{i+1,j'} \ge 2^{m-(i+1)} \Rightarrow da_{i+1,j'} < 2^{m-(i+1)}$
 $\Rightarrow (**)_{i+1} \ gilt$
Fall 4.2: $dist(a_j, a_{i+1}) < dist(b_j, b_{i+1})$
 $Da \ db_{i+1,j'} \ge 2^{m-(i+1)} \Rightarrow da_{j,i+1} < 2^{m-(i+1)}$
 $\Rightarrow (**)_{i+1} \ gilt$
Fall 4.3: $dist(a_j, a_{i+1}) > dist(b_j, b_{i+1})$
 $da_{i+1,j} < 2^{m-i} - da_{j,i+1} \ und \ da_{j,i+1} > 2^{m-(i+1)}$
 $\Rightarrow 2^{m-i} - da_{j,i+1} < 2^{m-(i+1)} \Rightarrow (**)_{i+1} \ gilt$

Aufgabe 3)

Definition Aquivalenz für Formeln:

 $\phi \approx_m \psi \Leftrightarrow \text{ für jede Äquivalenzklasse } [(A, \bar{a})]_{\approx_m} \text{ so dass für alle } A \in [(A, \bar{a})]_{\approx_m} \text{ gilt:}$

$$A \models \phi \Leftrightarrow A \models \psi$$

Da es für jede Klasse eine Hintikka
formel gibt die Sie beschreibt gilt für alle $\phi \in FO[\sigma]$ mit
 $qr(\phi) = m$ ein $Q: \phi \equiv \bigvee_{h \in Q \subseteq m-Typen_k[\sigma]} h.$

Da $m - Typen_k[\sigma]$ endlich ist und die Potenzmenge einer endlichen Menge ebenfalls endlich ist, gibt es endlich viele Q's.

Die Vereinigung (\cup) über k sowie über m von $m-Typen_k[\sigma]$ liefert nur ebenfalls nur endlich viele Elemente. Somit ist auch bis auf die logische Äquivalenz die menge der $FO[\sigma]$ mit $qr \leq m$ und $frei \subseteq x_1, ..., x_k$ endlich.

Aufgabe 4)