Final Report

Sabir Meah, Michael Miller, Liyang Yuan

2022-12-16

All the files for this project, including the full code (non-important code is hidden in this report due to space constraints) and data can be found in its GitHub repo: https://github.com/smeah/biostat625group1project

Introduction

Alzheimer's disease is the most common cause of dementia and the 6th leading cause of death in American adults (Alzheimer's Association; CDC). Despite its large impact on the American populace, the science of its etiology is rapidly evolving and many things about it are still not understood. Alzheimer's disease is typically diagnosed through clinical evaluation, as dementia is a disease defined by its symptoms, not underlying biological phenomena, but more recently, radiology, such as CT scans, PET scans, and MRIs can inform and support a clinical Alzheimer's disease diagnosis.

On that line of thinking, we set off to create a machine learning model that can accurately predict the presence of Alzheimer's disease from MRI imaging. We used an Alzheimer's MRI imaging dataset from Kaggle. The data includes a total of 6400 MRI images from individuals classified into four stages: no dementia, very mild dementia, mild dementia, and moderate dementia. Each MRI result is a 128x128 .jpg image. The images have been preprocessed so that they are of a standard form and orientation, but we still will need to do the step of processing the data and gray scale standardization from .jpg images into a tabular format suitable for standard R functions.

Data Read-In

We read in the 128x128 images from .jpg files to three dimensional arrays, with the first dimension corresponding to the index of each image, then the latter two to greyscale pixel values, which we extracted using the readJPEG() function from the jpeg package.

Model 1: 3 classes with one hot encoding

For the first model we combined the mild dementia and moderate dementia cases, resulting in three distinct classes.

```
lenNoDem <- 3200
lenVeryMildDem <- 2240</pre>
lenMildDem <- 896
lenModDem <- 64
img_rows <- 128</pre>
img_cols <- 128
# Set up class indicators. One hot encoding for the three classes
totalLen <- lenNoDem+lenVeryMildDem+lenMildDem+lenModDem
noDemClass <- cbind(rep(1,lenNoDem), rep(0,lenNoDem),</pre>
                     rep(0,lenNoDem))
veryMildDemClass <- cbind(rep(0,lenVeryMildDem), rep(1,lenVeryMildDem),</pre>
                           rep(0,lenVeryMildDem))
mildModDemClass <- cbind(rep(0,lenMildDem+lenModDem), rep(0,lenMildDem+lenModDem),
                          rep(1,lenMildDem+lenModDem))
classMat <- rbind(noDemClass,</pre>
                   veryMildDemClass,
                   mildModDemClass)
# Stratify sampling by class to ensure that classes are proportionally represented
# in the training and testing data sets
noDemTestIdx <- sample(lenNoDem, round(lenNoDem/4.0), replace = FALSE)
noDemTrainIdx <- setdiff(1:lenNoDem, noDemTestIdx)</pre>
veryMildDemTestIdx <- sample((lenNoDem+1):(lenNoDem+lenVeryMildDem),</pre>
                               round(lenVeryMildDem/4.0), replace = FALSE)
veryMildDemTrainIdx <- setdiff((lenNoDem+1):(lenNoDem+lenVeryMildDem),</pre>
                               veryMildDemTestIdx)
mildDemTestIdx <- sample((lenNoDem+lenVeryMildDem+1):</pre>
```

```
(lenNoDem+lenVeryMildDem+lenMildDem),
                           round((lenMildDem)/4.0), replace = FALSE)
mildDemTrainIdx <- setdiff((lenNoDem+lenVeryMildDem+1):</pre>
                           (lenNoDem+lenVeryMildDem+lenMildDem),
                           mildDemTestIdx)
modDemTestIdx <- sample((lenNoDem+lenVeryMildDem+lenMildDem+1):</pre>
                         (lenNoDem+lenVeryMildDem+lenMildDem+lenModDem),
                          round((lenModDem)/4.0), replace = FALSE)
modDemTrainIdx <- setdiff((lenNoDem+lenVeryMildDem+lenMildDem+1):</pre>
                           (lenNoDem+lenVeryMildDem+lenMildDem+lenModDem),
                            modDemTestIdx)
mildModDemTrainIdx <- c(mildDemTrainIdx,modDemTrainIdx)</pre>
mildModDemTestIdx <- c(mildDemTrainIdx,modDemTrainIdx)</pre>
x_train <- dementia_data[c(noDemTrainIdx,veryMildDemTrainIdx,</pre>
                            mildModDemTrainIdx),,]
y_train <- classMat[c(noDemTrainIdx, veryMildDemTrainIdx,</pre>
                       mildModDemTrainIdx),]
x_test <- dementia_data[c(noDemTestIdx,veryMildDemTestIdx,</pre>
                           mildModDemTestIdx),,]
y_test <- classMat[c(noDemTestIdx,veryMildDemTestIdx,</pre>
                      mildModDemTestIdx),]
# Shuffle training data because keras does not shuffle before taking validation set
shuffleIdx <- sample(1:round(3.0*totalLen/4.0))</pre>
x_train <- x_train[shuffleIdx,,]</pre>
y_train <- y_train[shuffleIdx,]</pre>
# Reshape into tensor form in order to be compatible with keras
x_train <- array_reshape(x_train, c(nrow(x_train), img_rows, img_cols, 1))</pre>
x_test <- array_reshape(x_test, c(nrow(x_test), img_rows, img_cols, 1))</pre>
input_shape <- c(img_rows, img_cols, 1)</pre>
batch_size <- 32</pre>
num_classes <- 3</pre>
epochs <- 100
mod1 <- keras_model_sequential() %>%
  layer_conv_2d(filters = 64, kernel_size = c(3,3),
                 activation = 'relu', input_shape = input_shape) %>%
  layer_max_pooling_2d(pool_size = c(2, 2)) %>%
  layer dropout(rate = 0.25) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3,3),
                 activation = 'relu', input_shape = input_shape) %>%
  layer_max_pooling_2d(pool_size = c(2, 2)) %>%
  layer_dropout(rate = 0.25) %>%
  layer_flatten() %>%
  layer_dense(units = 128, activation = 'relu',
              kernel regularizer=regularizer 11 12(11=1e-4,12=1e-5)) %>%
  layer_dropout(rate = 0.25) %>%
  layer_dense(units = num_classes,
              activation = 'softmax')
```

```
mod1 %>% compile(
  loss = loss_categorical_crossentropy,
  optimizer = optimizer_adam(),
  metrics = c('accuracy')
)

cnn_history <- mod1 %>% fit(
  x_train, y_train,
  batch_size = batch_size,
  epochs = epochs,
  validation_split = 0.2
)

# Predict on the test data
predictProbs = predict(mod1, x_test)
```

Process Model 1 Results

```
# Calculate class predictions using the softmax probabilities
predictClass <- matrix(NA, nrow = nrow(x_test), ncol = num_classes)
for (i in 1:nrow(x_test)) {
   classVec <- rep(0, num_classes)
   classVec[which(predictProbs[i,] == max(predictProbs[i,]))] <- 1
   predictClass[i,] <- classVec
}</pre>
```

No.Dementia	$Very. \\ Mild. \\ Dementia$	${\bf Mild. Moderate. Dementia}$
0.965	0.9303571	0.9861111

Model 2: 4 classes with one hot encoding

For the first model we had represented mild dementia and moderate dementia with separate classes, resulting in four distinct classes.

Process Model 2 Results

No.Dementia	$Very. \\ Mild. \\ Dementia$	Mild.Dementia	${\bf Moderate. Dementia}$
0.97875	0.9464286	0.9642857	1