MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2006. május 9. 8:00

I.

Időtartam: 45 perc

Pótlapok száma			
Tisztázati			
Piszkozati			

OKTATÁSI MINISZTÉRIUM

Fontos tudnivalók

- A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- A megoldások sorrendje tetszőleges.
- A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot használhatja, más elektronikus vagy írásos segédeszköz használata tilos!
- A feladatok végeredményét az erre a célra szolgáló keretbe írja, a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad!
- A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrán kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- Minden feladatnál csak egy megoldás értékelhető.
- Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

1. Egy háromszög belső szögeinek aránya 2:5:11. Hány fokos a legkisebb szög?

A legkisebb szög:	2 pont	
-------------------	--------	--

2. Egy számtani sorozat első eleme 8, differenciája $-\frac{2}{3}$. Mekkora a sorozat negyedik eleme?

A sorozat negyedik eleme:	2 pont	
---------------------------	--------	--

3. A pozitív egészeket növekvő sorrendbe állítjuk. Melyik szám nagyobb: a hetedik 13-mal osztható pozitív egész, vagy a tizenharmadik 7-tel osztható pozitív egész?

Válasz:	2 pont	

4. Az alábbi adatok március első hetében mért napi hőmérsékleti maximumok (az adatokat °C-ban mérték):

hétfő	kedd	szerda	csütörtök	péntek	szombat	vasárnap
5,2	1,6	3,1	-0,6	-1,1	1,6	0

Mennyi volt ezen a héten a hőmérsékleti maximumok átlaga?

Átlag: 2 pont

5. Az a és b valós számokról tudjuk, hogy $\frac{a^2 - b^2}{a - b} = 20$. Mekkora a + b értéke?

a+b= 2 pont

6. Egy téglatest alakú akvárium belső méretei (egy csúcsból kiinduló éleinek hossza): 42 cm, 25 cm és 3 dm. Megtelik-e az akvárium, ha beletöltünk 20 liter vizet? Válaszát indokolja!

Válasz: 1 pont

- 7. Válassza ki azokat az egyenlőségeket,amelyek nem igazak minden valós számra:
 - a) $\sqrt{(x-2)^4} = (x-2)^2$
 - b) $\sqrt{(x-2)^2} = x-2$
 - c) $\sqrt{(x-2)^2} = 2 x$

Nem minden valós számra igaz:	2 pont	
	2 point	

8. Péter lekötött egy bankban 150 000 forintot egy évre, évi 4%-os kamatra. Mennyi pénzt vehet fel egy év elteltével, ha év közben nem változtatott a lekötésen?

A felvehető pénz:	2 pont	
1	-	

- **9.** Egy négytagú társaság e-mail kapcsolatban van egymással. Bármelyikük egy-egy társának legfeljebb egy levelet ír hetente. Válassza ki a felsorolt lehetőségek közül, hogy maximum hány levelet írhatott összesen egymásnak a társaság 4 tagja 1 hét alatt? Válaszát indokolja!
 - a) $4 \cdot 4 = 16$
 - b) $4 \cdot 3 = 12$
 - c) $\frac{4 \cdot 3}{2} = 6$

	2 pont	
A levelek maximális száma:	1 pont	

10. Írja fel annak az egyenesnek az egyenletét, amely átmegy a P_0 (3; -5) ponton és párhuzamos a 4x + 5y = 0 egyenletű egyenessel!

Az egyenes egyenlete:	3 pont	
-----------------------	--------	--

11. Egy 10 tagú csoportban mindenki beszéli az angol és a német nyelv valamelyikét. Hatan beszélnek közülük németül, nyolcan angolul. Hányan beszélik mindkét nyelvet? Válaszát indokolja számítással, vagy szemléltesse Venn-diagrammal!

	2 pont	
Mindkét nyelvet fő beszéli.	1 pont	

12. Az *f* függvényt a [–2; 6] intervallumon a grafikonjával értelmeztük. Mekkora *f* legkisebb, illetve legnagyobb értéke? Milyen *x* értékekhez tartoznak ezek a szélsőértékek?

f legkisebb értéke:	1 pont	
ez az $x = \dots$ értékhez tartozik.	1 pont	
f legnagyobb értéke:	1 pont	
ez az $x = \dots$ értékhez tartozik.	1 pont	

		pontszáma	programba beírt pontszám	
	I. rész			
dát	um			
javító	tanár		jegyző	

Megjegyzések:

- 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad!
- 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő!

MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2006. május 9. 8:00

II.

Időtartam: 135 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

OKTATÁSI MINISZTÉRIUM

Matematika —	középszint	Név:	osztály:
Matchiatika —	KOZCPSZIIII	1NCV	osztary

Fontos tudnivalók

- A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- A feladatok megoldási sorrendje tetszőleges.
- A **B** részben kitűzött három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a 18. feladatra nem kap pontot.

- A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár!
- Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek!
- A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de alkalmazhatóságát röviden indokolnia kell.
- A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje!
- A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrán kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- Minden feladatnál csak egyféle megoldás értékelhető.
- Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

A

- **13.** Oldja meg a következő egyenleteket:
 - a) $9^x 2 \cdot 3^x 3 = 0$
 - **b)** $\sin^2 x = 2\sin x + 3$

a)	6 pont	
b)	6 pont	
Ö.:	12 pont	

Matematika — középszint Név	v:osztály:
-----------------------------	------------

Matematika — középszint	Név:	osztály:
-------------------------	------	----------

14. Egy szabályos háromszög alapú egyenes hasáb alapéle 8 cm hosszú, palástjának területe (az oldallapok területösszege) hatszorosa az egyik alaplap területének. Mekkora a hasáb felszíne és térfogata?

Ö.:	12 pont	

Matematika — középszint	Név:	osztály:
-------------------------	------	----------

- **15.** A 12. évfolyam tanulói magyarból próbaérettségit írtak. Minden tanuló egy kódszámot kapott, amely az 1, 2, 3, 4 és 5 számjegyekből mindegyiket pontosan egyszer tartalmazta valamilyen sorrendben.
 - a) Hány tanuló írta meg a dolgozatot, ha az összes képezhető kódszámot mind kiosztották?
 - **b)** Az alábbi kördiagram a dolgozatok eredményét szemlélteti:

Adja meg, hogy hány tanuló érte el a szereplő érdemjegyeket! Válaszát foglalja táblázatba, majd a táblázat adatait szemléltesse oszlopdiagramon is!

c) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe?

a)	3 pont	
b)	6 pont	
c)	3 pont	
Ö.:	12 pont	

В

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- **16.** Adott a következő egyenletrendszer:
 - (1) $2 \lg(y+1) = \lg(x+11)$
 - (2) y = 2x
 - **a)** Ábrázolja derékszögű koordináta-rendszerben azokat a *P(x; y)* pontokat, amelyeknek koordinátái kielégítik a (2) egyenletet!
 - **b)** Milyen *x*, illetve *y* valós számokra értelmezhető mindkét egyenlet?
 - c) Oldja meg az egyenletrendszert a valós számpárok halmazán!
 - d) Jelölje meg az egyenletrendszer megoldáshalmazát az **a**) kérdéshez használt derékszögű koordináta-rendszerben!

a)	2 pont	
b)	2 pont	
c)	11 pont	
d)	2 pont	
Ö.:	17 pont	

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- 17. Egy televíziós játékban 5 kérdést tehet fel a játékvezető. A játék során a versenyző, ha az első kérdésre jól válaszol, 40 000 forintot nyer. Minden további kérdés esetén döntenie kell, hogy a játékban addig megszerzett pénzének 50, 75 vagy 100 százalékát teszi-e fel. Ha jól válaszol, feltett pénzének kétszeresét kapja vissza, ha hibázik, abba kell hagynia a játékot, és a fel nem tett pénzét viheti haza.
 - a) Mennyi pénzt visz haza az a játékos, aki mind az öt feltett kérdésre jól válaszol, s bátran kockáztatva mindig a legnagyobb tétet teszi meg?
 - **b)** Az a játékos, aki mindig helyesen válaszol, de óvatos, és a négy utolsó fordulóban pénzének csak 50%-át teszi fel, hány forintot visz haza?
 - c) A vetélkedő során az egyik versenyző az első négy kérdésre jól válaszolt. A második kérdésnél a pénzének 100%-át, a 3., 4. és 5. kérdés esetén pénzének 75%-át tette fel. Az 5. kérdésre sajnos rosszul válaszolt. Hány forintot vihetett haza ez a játékos?
 - **d)** Egy versenyző mind az 5 fordulóban jól válaszol, és közben minden fordulóban azonos eséllyel teszi meg a játékban megengedett lehetőségek valamelyikét. Mennyi annak a valószínűsége, hogy az elnyerhető maximális pénzt viheti haza?

a)	4 pont	
b)	4 pont	
c)	5 pont	
d)	4 pont	
Ö.:	17 pont	

Matematika — középszint Név	v:osztály:
-----------------------------	------------

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- **18.** Egy függőleges tartórúdra a talajtól 4 m magasan mozgásérzékelőt szereltek, a hozzákapcsolt lámpa 140°-os nyílásszögű forgáskúpban világít függőlegesen lefelé.
 - a) Készítsen vázlatrajzot az adatok feltüntetésével!
 - **b)** Milyen messze van a lámpától a legtávolabbi megvilágított pont?
 - c) Megvilágítja-e az érzékelő lámpája azt a tárgyat, amelyik a talajon a tartórúd aljától 15 m távolságra van?
 - d) A tartórúdon méterenként kampókat helyeztünk el, amelyekre fel tudjuk akasztani a mozgásérzékelő lámpáját. Alulról számítva hányadik kampót használjuk, ha azt akarjuk, hogy a vízszintes talajon ne világítson meg a lámpa 100 m²-nél nagyobb területet?

a)	2 pont	
b)	4 pont	
c)	4 pont	
d)	7 pont	
Ö.:	17 pont	

Matematika — középszint Név	v:osztály:
-----------------------------	------------

	a feladat sorszáma	elért pontszám	összesen	maximális pontszám
II./A rész	13.			12
	14.			12
	15.			12
II./B rész				17
				17
		← nem választott feladat		
	ÖSSZESEN			70

	elért pontszám	maximális pontszám
I. rész		30
II. rész		70
MINDÖSSZESEN		

dátum javító tanár

	elért pontszám	programba beírt pontszám
I. rész		
II. rész		

dátum

javító tanár jegyző