PROBLEMA 18: UNI 2022-II

Dada la ecuación de la circunferencia $x^2 + y^2 = 1$. Para cual de los siguientes valores de a positivo, la recta L: x + 2y = a, es tangente a dicha circunferencia.

A) 1

- B) $\sqrt{3}$
- C) 2
- D) 2

E) $\sqrt{5}$

CLAVE: E

PROBLEMA 19: UNI 2022-II

Calcule la pendiente de la recta que pasa por el origen de coordenadas y es tangente a la circunferencia cuya ecuación es $x^2 + y^2 + 6x - 4y + 4 = 0$

- A) 1/7
- B) $\sqrt{3}$
- C) 2
- D) 5/12 E) $\sqrt{5}/3$

1. Calcular
$$\sum_{i=17}^{900} (\sqrt{i} - \sqrt{i-1} + 2023)$$

rn Mor Desde el punto A=(k,-2), k<0, se trazan rectas tangentes a la circunferencia $C: x^2 + y^2 - 2x - 1 = 0$, si el segmento determinado po el punto de tangencia y el punto A mide $3\sqrt{2}$ u. Calcular las ecuacione cartesianas de las dos rectas tangentes.

APLICACIÓN 14 (PC 6 CEPRE UNI 2015-2)

Por el punto P(1; 2) se traza una recta tangente L a la gráfica de la ecuación: $2\sqrt{x}$, calcule la abscisa del punto de intersección de la recta L con el eje de abscisas X.

A)
$$x = -\frac{1}{4}$$

B)
$$-\frac{1}{2}$$

C)
$$x = -1$$

C)
$$x = -1$$
 D) $x = \frac{1}{2}$

E)
$$x = 1$$

CLAVE: C

APLICACIÓN 15 (PC 6 CEPRE UNI 2016-1)

La circunferencia C es tangente a la parábola $P: x^2 = 8y$ en el punto $(3; y_0)$, de tal manera que el centro de la circunferencia está en el eje Y. Determine la ecuación de la circunferencia.

A)
$$x^2 + (y - 4)^2 = 25$$

e la circunierencia.
A)
$$x^2 + (y - 4)^2 = 25$$
 B) $x^2 + \left(y - \frac{41}{8}\right)^2 = 25$ C) $x^2 + \left(y - \frac{45}{8}\right)^2 = 25$

C)
$$x^2 + \left(y - \frac{45}{8}\right)^2 = 25$$

D)
$$x^2 + (y - 3)^2 = 16$$
 E) $x^2 + (y - 4)^2 = 36$

E)
$$x^2 + (y - 4)^2 = 36$$

CLAVE: B

PROBLEMA 01

Determine la ecuación de una elipse que pasa por el punto P(2; -2), uno de sus focos es F(4; -1) y su directriz correspondiente es la recta x - 7 = 0.

A)
$$4x^2 + 5y^2 - 24x + 8y + 36 = 0$$

B)
$$4x^2 + 5y^2 - 26x + 10y + 36 = 0$$

C)
$$5x^2 + 4y^2 - 24x + 8y + 24 = 0$$

D)
$$5x^2 + 4y^2 - 26x + 10y + 24 = 0$$

E)
$$3x^2 + 4y^2 + 18x - 24y + 16 = 0$$

CLAVE: B

PROBLEMA 04

Dada la elipse \mathcal{E} : $9x^2 + 25y^2 = 225$, en la que V_1 es uno de los extremos de su eje mayor, B_1 es uno de los extremos de su eje menor y M es el punto medio de $\overline{OV_1}$. Calcule $\tan(\theta)$, si θ es el ángulo MB_1F_1 , siendo F_1 el foco relativo a V_1 y O el origen del sistema cartesiano.

- A) $\frac{6}{19}$
- B) $\frac{3}{38}$
- C) $\frac{9}{38}$
- D) $\frac{13}{38}$
- E) $\frac{13}{19}$

CLAVE: C

PROBLEMA 11

Sea la elipse

 \mathcal{E} : $4x^2 + y^2 + 16x - 6y + 9 = 0$ que es concéntrica a una circunferencia de igual área. Determine la ecuación de la circunferencia.

$$A)x^2 + y^2 + 4x - 6y + 5 = 0$$

B)
$$x^2 + y^2 + 4x + 6y - 5 = 0$$

C)
$$x^2 + y^2 + 16x - 6y - 10 = 0$$

D)
$$x^2 + y^2 + 16x + 6y - 10 = 0$$

E)
$$x^2 + y^2 + 4x - 8y - 12 = 0$$

$$\lim_{x \to 1} \frac{(x-1)^2 \sin \frac{1}{x-1}}{\sin(\pi x)}$$

38. Calcule:

a)
$$\lim_{x \to \pi/3} \frac{\operatorname{Tan} x + \operatorname{Tan} 2x}{\cos x + \cos 2x}$$

b)
$$\lim_{x \to 0} \frac{x^2 \operatorname{Sen}(1/x)}{\operatorname{Sen} x}$$

c)
$$\lim_{x \to 0} \frac{\sqrt{1 + \operatorname{Sen} x} - \sqrt{1 - \operatorname{Sen} x}}{x}.$$

a)
$$\lim_{x \to 0} \frac{\sqrt[4]{x^4 + 1} - \sqrt{x^2 + 1}}{x^2}$$
 b) $\lim_{x \to 3} \frac{x\sqrt[3]{x^2 - 1} - 6}{3 - x}$.

b)
$$\lim_{x \to 3} \frac{x \sqrt[3]{x^2 - 1} - 6}{3 - x}$$
.

33. Evalúe los siguientes límites:

a)
$$\lim_{x \to 1} \frac{x^n - 1}{x - 1}$$

c)
$$\lim_{x \to 2} \frac{x^3 + x^2 - 5x - 2}{x^2 - 4}$$

b)
$$\lim_{x \to 0} \frac{1}{x} \left[\frac{1}{(4+x)^2} - \frac{1}{16} \right]$$

b)
$$\lim_{x \to 0} \frac{1}{x} \left[\frac{1}{(4+x)^2} - \frac{1}{16} \right]$$
 d) $\lim_{x \to -1} \frac{108(x^2 + 2x)(x+1)^3}{(x^3+1)^3(x-1)}$

31. Halle
$$\lim_{x \to 0} \frac{\sqrt[3]{x^3 + 8} - \sqrt{x^2 + 4}}{x^2}$$
.

24. Evalúe:

a)
$$\lim_{x \to 1} f(x)$$
 para $f(x) = \begin{cases} \frac{x \left[\sqrt{9-x} \right]^2}{x+2}, & x \ge 1 \\ (x+3)/(2x+1), & x \in (0,1) \end{cases}$

b)
$$\lim_{x \to 3} \frac{x\sqrt{x^2 - 1} - 6}{3 - x}$$
 d) $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x^2 - x}$

d)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x^2 - x}$$

c)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^4 + x^2}$$

c)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^4 + x^2}$$
 e) $\lim_{x \to 2} \frac{\sqrt[3]{x^2 + 4} - 2}{x^3 - 2x^2 - 16x + 32}$.

17. Calcule
$$\lim_{x \to -2} \frac{\sqrt[3]{3x+5} + x + 3}{\sqrt[3]{x+1} + 1}$$
.

25. Analice los siguientes límites:

a)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x-1)^2}$$
 b) $\lim_{x \to -1} \frac{[x^2] - 1}{|x| + 1}$

b)
$$\lim_{x \to -1} \frac{\|x^2\| - 1}{|x| + 1}$$

c)
$$\lim_{x \to 1} f(x)$$
, para

$$f(x) = \begin{cases} \frac{1 - \sqrt{x}}{1 - \sqrt[3]{x}}, & x > 1\\ \frac{x^2 - \frac{1}{2}x - \frac{1}{2}}{x - 1}, & x < 1 \end{cases}$$

41. a) Halle:
$$\lim_{x \to 2\pi/3} \frac{\text{Sen } (6x)}{3x - 2\pi}$$
.

b) En la figura, C es una circunferencia unitaria cuyo centro es el origen de coordenadas, T es la recta tangente a C en el punto P y $0 < x < \pi/2$.

Halle:
$$\lim_{x \to \pi/2^{-}} \frac{DE}{OA}$$

42. Encuentre
$$\lim_{x \to 2} \frac{\text{Tg}(2\pi x) + \text{Cos}(\pi x/2) + \text{Tg}(\pi x/8)}{(x^2 + 4x - 12)} = L$$