Optimization Methods (CS1.404), Spring 2024 Lecture 20

Naresh Manwani

Machine Learning Lab, IIIT-H

March 28th, 2024

Equality Constraint Problems

Optimization problem with equality constraints is given as below.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t.
$$e_i(\mathbf{x}) = 0$$
; $i = 1 \dots m$

where $f(\mathbf{x})$, $e_1(\mathbf{x})$,..., $e_m(\mathbf{x})$ are smooth functions over \mathbb{R}^n .

Regular Point for Equality Constraint Problems

Definition

A point \mathbf{x}^* satisfying the equality constraints $e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0$ is said to be a regular point of the constraints if the gradient vectors $\nabla e_1(\mathbf{x}^*), \dots, \nabla e_m(\mathbf{x}^*)$ are linearly independent. Let $D\mathbf{e}(\mathbf{x}^*)$ be the Jacobian matrix of $\mathbf{e} = [e_1, \dots, e_m]^T$ at \mathbf{x}^* , given by

$$D\mathbf{e}(\mathbf{x}^*) = egin{bmatrix} De_1(\mathbf{x}^*) \ dots \ e_m(\mathbf{x}^*) \end{bmatrix} = egin{bmatrix}
abla e_1(\mathbf{x}^*)^T \ dots \
abla e_m(\mathbf{x}^*)^T \end{bmatrix}$$

Then, \mathbf{x}^* is regular if and only if rank $D\mathbf{e}(\mathbf{x}^*) = m$. That is, the Jacobian matrix is of full rank.

Dimension of Feasible Set of Set of Equality Constraints

The set of equality constraints $e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0, e_i : \mathbb{R}^n \to \mathbb{R}$, describes a surface

$$S = \{ \mathbf{x} \in \mathbb{R}^n \mid e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0 \}.$$

Assuming all the points in S are regular, the dimension of the surface S is n-m.

Curve on the Surface

Definition

A curve C on a surface S is a set of points $\{\mathbf{x}(t) \in S \mid t \in (a,b)\}$, continuously parameterized by $t \in (a,b)$, that is, $\mathbf{x} : (a,b) \to S$ is a continuous function.

- All the points on the curve satisfy the equation describing the surface.
- The curve passes through the point \mathbf{x}^* if there exist $t^* \in (a, b)$ such that $\mathbf{x}(t^*) = \mathbf{x}^*$.

Curve on the Surface

• The curve $C = \{\mathbf{x}(t) \in S \mid t \in (a,b)\}$ is differentiable if

$$\mathbf{x}'(t) = rac{\partial \mathbf{x}(t)}{\partial t} = egin{bmatrix} x_1'(t) \ \vdots \ x_n'(t) \end{bmatrix}$$
 exists for all $t \in (a,b)$.

• The curve $C = \{ \mathbf{x}(t) \in S \mid t \in (a,b) \}$ is twice-differentiable if

$$\mathbf{x}''(t) = rac{\partial^2 \mathbf{x}(t)}{\partial t^2} = egin{bmatrix} x_1''(t) \\ \vdots \\ x_n''(t) \end{bmatrix}$$
 exists for all $t \in (a,b)$.

• The vector $\mathbf{x}'(t)$ is the direction of the tangent to the curve at $\mathbf{x}(t)$.

Tangent Space

Definition

Tangent space at a point \mathbf{x}^* on the surface $S = \{\mathbf{x} \in \mathbb{R}^n \mid e_1(\mathbf{x}^*) = 0, \dots, e_m(\mathbf{x}^*) = 0\}$ is the set

$$\begin{split} \boldsymbol{T}(\mathbf{x}^*) &= \{ \mathbf{d} \mid D\mathbf{e}(\mathbf{x}^*)\mathbf{d} = \mathbf{0} \} \\ &= \{ \mathbf{d} \mid \nabla e_1(\mathbf{x}^*)^T\mathbf{d} = 0, \dots, \nabla e_m(\mathbf{x}^*)^T\mathbf{d} = 0 \} \end{split}$$

- Tangent space at x^* is the null-space of $De(x^*)$, which is a subspace of \mathbb{R}^n .
- Assuming x^* is a regular point, dimension of the tangent space $T(x^*)$ is $n m_{\text{the same}}$
- Tangent space passes through the origin.

Key Result: Gradient is Perpendicular to the Level Curve

- The derivative of the curve on a surface at a point is a tangent vector to the curve, hence to the surface.
- This intuition agrees with the our definition of Tangent space whenever x* is regular.

Theorem

Suppose $\mathbf{x}^* \in S$ is a regular point, and $T(\mathbf{x}^*)$ is a tangent space at \mathbf{x}^* . Then, $\mathbf{y} \in T(\mathbf{x}^*)$ if and only if there exists a differentiable curve in S passing through \mathbf{x}^* with derivative \mathbf{y} at \mathbf{x}^* .

Example

- Let $e(x,y) = x^2 + y^2$. $\nabla e(x,y) = {2x \choose 2y}$.
- Consider level curve e(x,y) = 10. Consider a point (1,3) on it. $\nabla e(1,3) = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$.
- To find the slope of the tangent for the level curve, we differentiate it with respect to x. Which gives, $2x+2y\frac{\partial y}{\partial x}=0$ or $\frac{\partial y}{\partial x}=-\frac{x}{y}$.
- At (1,3), the slope of the tangent curve is $\frac{\partial y}{\partial x}=-\frac{1}{3}$. In the vector form, it is $\mathbf{z}=\begin{pmatrix}3\\-1\end{pmatrix}$.
- It is easy to see that $\mathbf{z}^T \nabla e(1,3) = 0$.

ОМ

Normal Space

Definition

The normal space $N(\mathbf{x}^*)$ at a point \mathbf{x}^* on the surface $S = {\mathbf{x} \in \mathbb{R}^n \mid e_1(\mathbf{x}) = 0, \dots, e_m(\mathbf{x}) = 0}$ is the set

$$N(\mathbf{x}^*) = {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = D\mathbf{e}(\mathbf{x}^*)\mathbf{z}, \ \mathbf{z} \in \mathbb{R}^m}$$

- Thus, $N(\mathbf{x}^*)$ is the range of $D\mathbf{e}(\mathbf{x}^*)^T$.
- Thus, normal space is the subspace of \mathbb{R}^n spanned by the vectors $\nabla e_1(\mathbf{x}^*), \dots, \nabla e_m(\mathbf{x}^*)$.
- Normal space $N(\mathbf{x}^*)$ contains origin into it.
- Assuming x^* a regular point, dimension of the normal space $N(x^*)$ is m.

Normal Plane

Normal Plane

We define the **Normal Plane** at x^* as the set

$$\textit{NP}(\textbf{x}^*) = \textit{N}(\textbf{x}^*) + \textbf{x}^* = \{\textbf{x} + \textbf{x}^* \in \mathbb{R}^n \mid \textbf{x} \in \textit{N}(\textbf{x}^*)\}$$

We have, $T(\mathbf{x}^*) = N(\mathbf{x}^*)^{\top}$ and $N(\mathbf{x}^*) = T(\mathbf{x}^*)^{\top}$.

Lagrange's Optimality Condition for n = 2 and m = 1

Theorem

Let \mathbf{x}^* be a local minimizer of $f: \mathbb{R}^2 \to \mathbb{R}$ subject to the constraint $e(\mathbf{x}) = 0$ where $e: \mathbb{R}^2 \to \mathbb{R}$. Then $\nabla f(\mathbf{x}^*)$ and $\nabla e(\mathbf{x}^*)$ are parallel. That is, if $\nabla e(\mathbf{x}^*) \neq \mathbf{0}$, then there exist a scalar μ^* such that $\nabla f(\mathbf{x}^*) + \mu^* \nabla e(\mathbf{x}^*) = \mathbf{0}$. Here, we refer to μ^* as the Lagrange multiplier.

Lagrange's Conditions are Only Necessary, not Sufficient

Figure: (a) maximizer, (b) minimizer, (c) minimizer, (d) not an extremizer.

Lagrange's Theorem: General Case

Theorem

Let \mathbf{x}^* be a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to the constraint $\mathbf{e}(\mathbf{x}) = 0$ where $\mathbf{e}: \mathbb{R}^n \to \mathbb{R}^m$ ($m \le n$). Assume that \mathbf{x}^* is a regular point. Then there exist a scalar $\boldsymbol{\mu}^* \in \mathbb{R}^m$ such that $\nabla f(\mathbf{x}^*) + \boldsymbol{\mu}^* D \mathbf{e}(\mathbf{x}^*) = \mathbf{0}^T$. Here, we refer to $\boldsymbol{\mu}^*$ as the Lagrange multiplier vector.

When Lagrange Condition Does Not Hold?

 \mathbf{x}^* can not be an extremizer if $\nabla f(\mathbf{x}^*) \notin N(\mathbf{x}^*)$.

Lagrangian Function

• Lagrangian function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is given by:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{e}(\mathbf{x})$$

 The Lagrange condition for a local minimizer x* can be represented as

$$D\mathcal{L}(\mathbf{x}^*, \boldsymbol{\mu}^*) = \mathbf{0}^T$$

for some $\mu^* \in \mathbb{R}^m$, where the derivative operation D is with respect to the entire argument (\mathbf{x}, μ) .

Which is equivalent to solving the equations

$$D_{\mathbf{x}}\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}) = \mathbf{0}^T$$

 $D_{\boldsymbol{\mu}}\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}) = \mathbf{0}^T$

- The above represents n + m equations in n + m unknowns.
- Note that Lagrange condition is only necessary.

Example 1

Consider the optimization problem as follows.

min
$$x_1 - 3x_2$$

 $e_1(\mathbf{x}) = (x_1 - 1)^2 + x_2^2 = 1$
 $e_2(\mathbf{x}) = (x_1 + 1)^2 + x_2^2 = 1$

- Here, Feasible set $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^2 \mid (x_1 + 1)^2 + x_2^2 = 1, \ (x_1 1)^2 + x_2^2 = 1 \} = \{ (0, 0) \}.$
- $\mathcal{L}(\mathbf{x}, \mu_1, \mu_2) = x_1 3x_2 + \mu_1[(x_1 1)^2 + x_2^2 1] + \mu_2[(x_1 + 1)^2 + x_2^2 1].$

•
$$\nabla f(\mathbf{x}) = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\nabla e_1(\mathbf{x}) = \begin{bmatrix} 2(x_1 - 1) \\ 2x_2 \end{bmatrix}$, $\nabla e_2(\mathbf{x}) = \begin{bmatrix} 2(x_1 + 1) \\ 2x_2 \end{bmatrix}$.

- $\nabla f(0,0) = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\nabla e_1(0,0) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$, $\nabla e_2(\mathbf{x}) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.
- If $\mathbf{x}^* = (0,0)$ is a local minima, then $\nabla \mathcal{L}(\mathbf{x}^*, \mu_1, \mu_2) = \mathbf{0}$. Which implies, $1 2\mu_1 + 2\mu_2 = 0$ and -3 = 0, which is impossible.
- Thus, $\mathbf{x}^* = (0,0)$ is not a local minima.
- Note that $\mathbf{x}^* = (0,0)$ is not a regular point.

March 28th, 2024

 $(x_1^*, x_2^*) = (0,0)$

Example 2

- Consider the following problem: $\max_{\mathbf{x} \in \mathbb{R}^n} \frac{\mathbf{x}^T Q \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ where Q is a symmetric positive semi-definite matrix.
- Note that is **x** is a solution to the problem, then $t\mathbf{x}$ is also a solution for any $t \neq 0$. $\left(\frac{(t\mathbf{x})^T Q(t\mathbf{x})}{(t\mathbf{x})^T (t\mathbf{x})} = \frac{\mathbf{x}^T Q\mathbf{x}}{\mathbf{x}^T \mathbf{x}}\right)$.
- To avoid the multiplicity of the solutions, we add the constraint $\mathbf{x}^T \mathbf{x} = 1$.
- Thus,

$$\max_{\mathbf{x} \in \mathbb{R}^n} \frac{\mathbf{x}^T Q \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T Q \mathbf{x}$$

$$\mathbf{x} \in \mathbb{R}^n \quad \mathbf{x}^T \mathbf{x} = \mathbf{1}$$

- So, $f(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ and $e(\mathbf{x}) = 1 \mathbf{x}^T \mathbf{x}$.
- Any feasible point for this problem is regular.
- Lagrange conditions yield $2\mathbf{x}^T Q 2\mu \mathbf{x}^T = 0$ and $1 \mathbf{x}^T \mathbf{x} = 0$.
- The first condition gives $Q\mathbf{x} = \mu\mathbf{x}$. Therefore, the solution, if exists, is an eigen vector of Q.
- Let \mathbf{x}^* and μ^* be the optimal solution. Because $(\mathbf{x}^*)^T\mathbf{x}^*=1$ and $Q\mathbf{x}^*=\mu^*\mathbf{x}^*...$ This gives

$$\mu^* = (\mathbf{x}^*)^T Q \mathbf{x}^*$$

• Hence μ^* is the maximum of the objective function, and therefore, the maximum eigen value of Q.

