Neural networks

Spyros Samothrakis Research Fellow, IADS University of Essex

February 28, 2017

About

Linear function approximation with SGD

From linear regression to neural networks

Practical aspects

Conclusion

1/38

2/38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

ABOUT

- ▶ We will try to get a practical understanding of neural networks
 - ► The topic is massive
- \blacktriangleright The field has changed names a number of times
 - ► Connectionist systems
 - ► Neural networks
 - ► Deep learning
- ▶ They are all the same stuff, different name
 - ► Re-branding

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT

LINEAR FUNCTION APPROXIMATION

- ▶ One of the simplest ways to do a prediction
- ► In case we have a single variable/feature/co-variate, we are trying to learn
 - $\hat{f}_w(x) = w_1 x + w_0$
- \blacktriangleright w_0 is often called the bias
- ightharpoonup x is a sample from the data
- ► Let's load some data

Data Loading

```
df_linear = pd.DataFrame()
df_linear["AGE"] = df[["AGE"]].copy()
df_linear["INCOME"] = df[["INCOME" + str(i) for i in range(1,8)]].sum(axis = 1)
df_linear["YEARSCH"] = df[["YEARSCH"]].copy()
df_linear["ENGLISH"] = df[["ENGLISH"]].copy()
df_linear["FERTIL"] = df[["FERTIL"]].copy()
df_linear["YRSSERV"] = df[["YRSSERV"]].copy()
```

Is there another way we could have done the same?

5/38

7/38

VISUALISATION

g = sns.jointplot("INCOME", "AGE", data=df_linear, color = "r")

6/38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

VISUALISATION - LINEAR REGRESSION

g = sns.jointplot("INCOME", "AGE", data=df_linear, color = "r", kind="reg")

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT

STOCHASTIC GRADIENT DESCENT (SGD)

- ▶ Let's define a cost function $J_w(x,y)$, which signifies how far we are from the solution
- ▶ We have seen such cost functions before in terms of evaluating prediction

$$J_w(x,y) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{f}_w \left(x^{(i)} \right) \right)^2$$

► For just one example we have:

$$J_w(x^{(0)}, y^{(0)}) = \left(y^{(0)} - \hat{f}_w\left(x^{(i)}\right)\right)^2$$

$$w = w - \eta \cdot \nabla_w J_w(x, y)$$

GRADIENTS

The gradient $\nabla_w J_w(x,y)$ is the direction of steepest descent¹

$$\nabla_w J_w(x,y) \equiv \left[\frac{\partial J_w(x,y)}{\partial w_0}, \frac{\partial J_w(x,y)}{\partial w_1}, ..., \frac{\partial J_w(x,y)}{\partial w_n} \right]$$

9/38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT

FIND THE GRADIENT

from sympy import Function, Symbol, latex, init_printing
y0,y1,y2 = symbols('y^(0),y^(1),y^(2)')
x0, x1, x2, x = symbols('x^(0), x^(1), x^(2), x')

f = (x*w1 + w0)
w0,w1 = symbols('w0, w1')
mse = ((f.subs(x, x0) - y0)**2)

mse.diff(w0)
mse.diff(w1)

$$\frac{\partial J_w(x,y)}{\partial w_0} = 2\left(w_0 + w_1 x^{(0)} - y^{(0)}\right)$$
$$\frac{\partial J_w(x,y)}{\partial w_1} = 2x^{(0)}\left(w_0 + w_1 x^{(0)} - y^{(0)}\right)$$

10/38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

SOME SIMPLIFICATIONS

$$\begin{split} [w_0, w_1] &= [w_0, w_1] - \eta \cdot \left[\frac{\partial J_w(x, y)}{\partial w_0}, \frac{\partial J_w(x, y)}{\partial w_1} \right] \\ [w_0, w_1] &= \\ [w_0, w_1] - \eta \cdot \left[2 \left(w_0 + w_1 x^{(0)} - y^{(0)} \right), 2x^{(0)} \left(w_0 + w_1 x^{(0)} - y^{(0)} \right) \right] \\ [w_0, w_1] &= [w_0, w_1] - \eta \cdot \left[2 \left(y^{(0)} - \hat{f_w} \left(x^{(i)} \right) \right), 2x^{(0)} \left(y^{(0)} - \hat{f_w} \left(x^{(i)} \right) \right) \right] \\ [w_0, w_1] &= [w_0, w_1] - \eta \cdot \left[\left(y^{(0)} - \hat{f_w} \left(x^{(i)} \right) \right), x^{(0)} \left(y^{(0)} - \hat{f_w} \left(x^{(i)} \right) \right) \right] \end{split}$$

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

MINI-BATCHES

- ► We used only one example
- ► This is called "online learning"
- ▶ But it's common to use "mini-batches"
 - ightharpoonup i.e., a number of samples togeather
- ► You would use every single sample
 - ► Often mini-batching much faster
 - ► Finding the right number of batches is tricky
 - ▶ Finding η is tricky

12 / 38

¹https://commons.wikimedia.org/wiki/File:Gradient_Visual.svg

WHAT IF WE HAD THREE WEIGHTS AND TWO FEATURES?

► Let's do the derivations

About Linear function approximation with SGD From linear regression to neural networks Practical aspect

SOME ANIMATIONS

http://imgur.com/a/Hqolp

http://imgur.com/SmDARzn

By Alec Reed

14/38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

Creating higher order features

- ▶ What if the relationship between the features and the rewards is not linear?
- ▶ What if there is some other relationship?
- ► We can learn higher order features
- ▶ So for example, if we have x_0, x_1
 - ► Superscripts are rows, subscripts are columns!
- ▶ We can create new features x_0^2, x_0x_1, x_0^2

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

REGRESSION WITH HIGHER ORDER FEATURES

from sklearn.preprocessing import PolynomialFeatures

degree = 1
model = make_pipeline(PolynomialFeatures(degree),StandardScaler(), SGDRegressor())
model.fit(X, y)
y_hat = model.predict(X)

15 / 38

13 / 38

ADDING ANY OTHER KIND OF FEATURE

- ► How about we add features in the form
 - $ightharpoonup \max(0, x_0)$
 - $\rightarrow \max(0.3, x_0)$
 - $ightharpoonup sin(x_0)$
 - \blacktriangleright $sin(max(0, x_0))$
- ► The list is endless
- ▶ Or, even better, *discover* those features

18 / 38

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

BUILDING ABSTRACTIONS

- ► You rarely operate directly on the input space
 - ▶ People seem to be building abstract features
- ▶ We go from shapes and colours to forms to objects
- ► From primitive sounds to music
- ► Hierarchies of features extractors

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

LEARNING FEATURES

► Let's revisit our example

$$\hat{f}_w(x) = w_1 x + w_0$$

► Let's add some depth using another function

$$\hat{f}_{w^{(0)}}(x) = w_1^{(0)} \hat{g}_w(x) + w_0^{(0)}$$

$$\hat{g}_{w^{(1)}}(x) = \max\left(w_1^{(1)}x + w_0^{(1)}, 0.3\right)$$

- \blacktriangleright The neuron above (g) are known as a "leaky rectifier" neuron
 - ► But it's just a function the neuron terminology comes from the original inspiration
 - ► Can you see why the name "deep learning" stuck?

19 / 38

LEARNING

► Use the same error function to find errors

$$J_w(x^{(0)}, y^{(0)}) = (y^{(0)} - \hat{f_w}(x^{(i)}))^2$$

▶ Update each weight using the same method

$$w = w - \eta \cdot \nabla_w J_w(x, y)$$

$$\nabla_w J_w(x,y) \equiv \left[\frac{\partial J_w(x,y)}{\partial w_0}, \frac{\partial J_w(x,y)}{\partial w_1}, ..., \frac{\partial J_w(x,y)}{\partial w_n} \right]$$

▶ Use the chain rule to calculate partial derivatives

$$\frac{d}{dx}\left[f\left(g(x)\right)\right] = f'(g(x))g'(x)$$

About Linear function approximation with SGD From linear regression to neural networks Practical aspect

CONVEXITY

- ► We are going downhill
- ▶ What if the error surface is smooth, it's all good
- ► But what if the error surface is rugged mess with ups and downs?
- ► Local optima are not global optima
- ► Thus, NN training often somewhat unstable

22 / 38

About Linear function approximation with SGD. From linear regression to neural networks. Practical aspects

THEANO, TENSORFLOW

- ► As you understand doing all these calculations by hand is tedious
- ► Every new time of neuron or layer you invent would require a new gradient calculation
- ► Auto-differentiation
 - ► Theano
 - ► Tensorflow
- ► You just describe your network/graph
- ▶ The rest is done automatically by the machine

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

Building a network

- ▶ There are multiple packages for neural networks
- ► I think the most popular is Keras
- ▶ Though a massive number of people are using Lasagne

23 / 38

21/38

Keras API

```
inputs = Input(shape=(1,))

x = Dense(64)(inputs)
x = PReLU()(x) # Non-linearity
x = Dense(64)(x)
x = PReLU()(x) # Non-linearity
predictions = Dense(1, activation='linear')(x)

model = Model(input=inputs, output=predictions)
model.compile(optimizer='adam',loss='mse')

model.fit(...)
```

25 / 38

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT. OUTPUT PLOT 80 70 60 50 40 30 20 10 training points 0 50000 100000 150000 250000 350000

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

INPUT LAYER

inputs = Input(shape=(22,))

- ► The first layer
- ► Does not contain any neurons
 - \blacktriangleright Terminology changes between authors
- ► "Number of columns"
- ► "Number of features"

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

HIDDEN LAYERS

x = PReLU()(x) # Non-linearity

x = Dense(64)(x)

x = PReLU()(x) # Non-linearity

- ▶ "Dense" layers specify the number of neurons
- ▶ You need to follow them up with a non-linear transformation
- ▶ Alternately you can pass this as parameter "activation"
- ▶ Non-linearity is often called the "activation function"

27 / 38

OUTPUT LAYER

predictions = Dense(1, activation='linear')(x)
model = Model(input=inputs, output=predictions)

- ► The output layer
- ► A normal Dense layer
- ► "Number of outputs"
- ▶ You can predict multiple outputs at once

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT

Cost (or objective) functions

- ► You can do both regression and classification with neural networks
- ▶ All it changes it the output layer and the objective function
- ► Categorical cross-entropy for classification
 - ► You need to convert your outputs to one-hot encoding
- ► Mean squared error for prediction

30 / 38

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

NEURON TYPES

► Also called activation functions or non-linearities

29 / 38

2

About Linear function approximation with SGD From Linear regression to neural networks Practical aspects

Learning Algorithms

- ▶ We have just seen SGD, which forms the basis of every modern learning algorithm for NNs
 - ▶ It will be dethroned eventually, but nobody knows from what
- ► SGD does not take into account specific information about individual weights
 - ▶ Not the curvature of the search space
- ► There are methods that auto-adapt the learning rate per individual weight
 - ► Adam
 - ► RMSProp
- ► Adam should be your default option

²http://lamda.nju.edu.cn/weixs/project/CNNTricks/imgs/relufamily.png

REGULARISATION

- ► Overfitting is a massive problem with enough variables you can fit anything
- \blacktriangleright ℓ_1 : Turn your weights down to zero
- ▶ ℓ_2 : Make all your weights small
- ▶ You can define the regularisation strength
- ► Dropout:
 - ▶ Remove some of the weights during training uniform random
 - ▶ During testing/using put use everything, but toned down
 - \blacktriangleright Implemented as a distinct layer

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

(BATCH) NORMALISATION

- ► Implemented as a different layer
- ► Covariate swift impact learning negatively
- ► Normalise the weights of each layer

$$\hat{w} = \frac{w - \mu}{\sigma}$$

$$y = \gamma \hat{w} + \beta$$

- \triangleright γ and β are special types of parameters, to be learned as well
 - ► They scale and shift a bit
- ► Stops "internal covariate shift"
 - ► Accelerates learning

34 / 38

About Linear function approximation with SGD From linear regression to neural networks Practical aspects

WEIGHT SHARING / MULTIPLE OUTPUTS

- ► You can create pathways for different things that share the same weights
- ► Thus imposing stronger regularisation
 - ► Use same features for different tasks
- ► Very effective method of generalising
- ► You can use different pathways within the same network

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECTS

Metrics/ callbacks

- ► When should you stop training?
 - \blacktriangleright After *i* iterations over the whole dataset
 - ► After the validation error stops improving
- ► Save best validation model
 - ▶ ... and use this for testing
- ► Reduce learning rates, log etc
- ► "Callbacks"

35 / 38

33 / 38

CREATING CUSTOM LAYERS

```
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np
class MyLayer(Layer):
    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(MyLayer, self).__init__(**kwargs)
    def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        self.W = self.add_weight(shape=(input_shape[1], self.output_dim),
                                initializer='random_uniform',
                                trainable=True)
        super(MyLayer, self).build() # Be sure to call this somewhere!
    def call(self, x, mask=None):
        return K.dot(x, self.W)
    def get_output_shape_for(self, input_shape):
        return (input_shape[0], self.output_dim)
```

ABOUT LINEAR FUNCTION APPROXIMATION WITH SGD FROM LINEAR REGRESSION TO NEURAL NETWORKS PRACTICAL ASPECT:

CONCLUSION

37 / 38

- ► We have touched upon neural networks
- ► It's a really hot topic right now
- ► Requires a bit of dedication
- ► New algorithms are coming out every day

³https://keras.io/layers/writing-your-own-keras-layers/