|                       | VIII TOTAL | - California | Cuptor 184 | - | - | - | - | A . Service |
|-----------------------|------------|--------------|------------|---|---|---|---|-------------|
| Canalmanthia          |            | 1            |            |   |   |   |   |             |
| Enrolment No.         |            |              |            |   |   |   |   |             |
| militarian print (10. |            |              |            |   |   |   |   |             |

 $S_4(DSMA33B03) MA$ 

BSMS 3rd Semester, Mid-Term Examination-2018 Name of Subject: Ordinary Differential Equation

Code No: DSMA33B03

Full Marks: 50

Times: 2 Hours

Symbols used here have their usual meanings

#### Group A

### Answer all the following questions

Marks: 25

1. Solve any two of the following:

(3) (a) 
$$x^2(p^2 - y^2) + y^2 = x^4 + 2xyp$$
, where  $p = \frac{dy}{dx}$ 

(b) 
$$y = 2px + y^2p^3$$

(c) 
$$y = yp^2 + 2px$$



Solve  $axyp^2 + (x^2 - ay^2 - b)p - xy = 0$  reducing it to Clairaut's form.

Solve the differential equation  $(8p^3 - 27)x = 12p^2y$  and investigate whether a singular solution exists.

[5]

[5]

Solve  $(D^3 + D)y = 2x^2 + 4\sin x$  using method of undetermined coefficients. -2

[5]

Solve: Dx - y = t? x + Dv = 1

[4]

Group B

#### Answer all the following questions

Marks: 25

Define Exact differential equation. Solve:  $[1 + \log(xy)]dx + [1 + \frac{x}{y}]dy = 0.$ 

[1+4]

Solve the differential equation:  $y(1 + xy)dx + x(1 + xy + x^2y^2)dy = 0$ .

[4]

Define Wronskian. Obtain general solution of the differential equation  $x^2y'' + xy' - y = x^3e^x$ , by the method of variation of parameters.

[1+5]

A. Find the complete solution of  $(D^2 - 3D + 2)y = xe^{3x} + \sin 2x$ .

Obtain a suitable transformation for the dependent variable which transforms the equation

[6]

y'' + Py' + Qy = Rinto normal form. ( $\varsigma$ )

[5]

CA

Enrolment No. 1 = ds MAOI =

S<sub>3</sub>(DSMA33B04):MA

# BS-MS 3<sup>rd</sup> SEMESTER, MID TERM EXAMINATION – 2018 NAME OF THE SUBJECT: Abstract Algebra-I

CODE NO: DSMA33B04

Full Marks: 50

Time: 2 Hours

Symbols used here have their usual meanings

### GROUP - I

## Answer the following questions

1. a. Define Monoid with an example. 2

-b. Prove that a finite semi-group in which cancellation laws hold is a group.

For elements a, b in a group G, prove that the equations ax = b and ya = b have unique solutions

d. Let G be a semi-group. Suppose there exists  $e \in G$ , such that ae = a for all  $a \in G$  and for each  $a \in G$ , there exists  $a' \in G$ , such that aa' = e. Show that G is a group.

2. A. Define Commutative Ring. Field

[2+3+3+4] = 12

b. Prove that an infinite cyclic group has precisely two generators.

c. Prove that a non-zero integral domain is a field.

At. Let G be a group. Show that  $o(a^n) = \frac{o(a)}{(o(a),n)}$  for all  $a \in G$ , where n is an integer and (o(a),n) =g.c.d(o(a),n).

[2+4+3+4] = 13

### GROUP - II

### Answer the following questions

1. If G be a group and H be a nonempty subset of G. Then show that H is a subgroup of G if and 18 only if for all  $a, b \in H$ ,  $ab^{-1} \in H$ .

2. State and prove Langrange's theorem. "Converse of Langrange's theorem is not always true", explain by an example.

3. If H be a subgroups of a group G, then show that  $W = \bigcap_{g \in G} gHg^{-1}$  is a normal Subgroup of G.

4. If H be a normal subgroup of a group G and G/H be the set of all cosets  $\{aH | a \in G\}$  of G, then show that (G/H,\*) is a group, where \* define on G/H by,

for all  $aH, bH \in G/H$ , (aH) \* (bH) = abH.

5. Define permutation group. Show that the 8th roots of unity form a cyclic group. Find all [5] generators of this group. [1+3+1=5]

31

5 18 5 24 ત્રેત્ર 20+



### BSMS(PHYSICS, CHEMISTRY, MATH)/BTMT 3rd Semester Mid Term Examination, 2018

Name of Subject: Computer Programming

Paper code: DSMA33B06/DTMA33B06

Paper code: Full Marks-50

Time: 2:00 Hrs

The figures in the margin indicate full marks for the questions

### A. Answer the following 5X2 = 101. What is a variable? Give Example. 2. Write the importance of Data types with example. 3. Define Symbolic constants with example. 4. Write the differences between keyword and identifiers. 5. What are the conditional and arithmetic operators? B. Determine the value of each of the following logical expressions if a=5, b=10 and c=-6 10 a) a>b && a<c b) a < b & & a > c c) $a==c \parallel b>a$ d) b>15 && c<0||a>0 e) (a/2.0==0.0 && b/2.0!=0.0||c<0.0 12. a) What is printed when the following is executed? 4X2.5=10 for(m=0; m<3; ++m)printf("%d\n", (m%2)? m: m+2) b) Find output main() $\{int x=10;$ if(x=20) printf("TRUE"); TROE else printf("FALSE");} c) What will be the value of x when the following segment is executed? int x=10, y=15; x=(x<y)?(y+x):(y-x)25 d) State errors, if any char city; float price; int year; scanf("%c %f %d "fcity, &price, &year); D. Write Programs 4X5 = 20 Write a program to print the following 11 111 1111 11111 2: Write a program to input five(5) numbers from user and print the average of those numbers. 3. Write a program to calculate the Fibonacci series upto 10 numbers using user defined function.

4. Convert metre to centimeter and centimeter to metre using user defined function.

| Enrolment No.                                                          |                      | S <sub>3</sub> (I                      | OSMA33B0          | 5), BRANC               | H: Mathe     | ematics ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------|----------------------|----------------------------------------|-------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSMS 3rd                                                               | Semester Mid-        |                                        |                   | •                       |              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        | lame: Probabilit     |                                        |                   | · ·                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                      |                      |                                        | -                 |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | ode: DSMA33          | <b>D</b> 03                            |                   | т.                      | :            | 2115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Full Marks: 50                                                         |                      |                                        |                   |                         | imes: 2 Ho   | ours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Symbo                                                                  | ols used here h      | ave their usi                          | ual meaning       | gs                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                      | ······································ | ••••••            |                         | •••••        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | Cro                  | up-A                                   |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ans                                                                    | wer all the follo    |                                        | 16                |                         | (5 × ¹       | 5 = 25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Alis                                                                   | wer all the follo    | ming question                          | 13                |                         | (5 // 2      | , 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. What is the probability that at lead that all days are equally like |                      | people have th                         | ne same birth     | day? Assum              | e 365 days   | in a year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. Two shipments of parts are re                                       | 0.00                 | t shipment co                          | ntains 1000       | parts with              | 0% defect    | ives and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| second shipment contains 2000                                          |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| are tested and found good. Find                                        |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. In a continuous distribution who                                    |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . *                                                                    | $f(x) = y_0$         | $\frac{1}{2}x(2-x), 0 \le$             | $\leq x \leq 2$ , |                         |              | 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (i) Find mean, variance, skewn                                         | ess and kurtosis.    | (ii) Show that                         | the distributi    | ion is symme            | tric.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Let X be a random variable suc                                      | h that:              |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P(X=-2)=P(X=-                                                          | -1), P(X=2) =        | P(X=1) and                             | P(X>0)=           | = P(X < 0) =            | = P(X=0)     | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Obtain the probability mass fur                                        | nction of X and it   | s distribution i                       | function.         |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Define two-dimensional rando                                        | m variable, proba    | ability mass fu                        | nction, proba     | bility density          | y function,  | marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| probability function.                                                  |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | C72.0                | Group-B                                |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Answer quest                                                           | ion number 1 ar      | nd any three f                         | rom the rem       | aining:                 |              | = 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. (a) Define null hypothesis, crit                                    | ical region and ty   | pe-l error.                            | R                 | معلصين فيسيك م<br>أدارة | el imali     | Annual Control of the |
| (b) For a finite population,                                           |                      |                                        | d error of s      | ampling dis             | tribution o  | of sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| proportion for the case of SRS                                         | WR.                  |                                        |                   |                         |              | [3+4] 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. In Kolkata, 20% of a random                                         | sample of 900        | school childre                         | en had defec      | tive eye-sigh           | nt. In Delhi | i, 15% of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| random sample of 1600 child                                            | dren had the sar     | ne defect. Is                          | this differen     | ce between              | the two pr   | oportions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| significant? Obtain 95% confid                                         | dence limits for the | he population                          | proportions.      |                         |              | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                      |                                        | 4                 |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. 500 ball bearings have a mean                                       |                      |                                        |                   |                         | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sample of 100 ball bearings cl                                         | nosen from this g    | gro <mark>up</mark> will have          | e combined v      | veight of (a)           | between 49   | )6 gm and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 500 gm (b) more than 510 gm.                                           |                      |                                        |                   | ¥£                      | ,            | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        | 11                   |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. (a) Write down the procedures                                       |                      |                                        |                   |                         |              | a'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) Derive the test statistic for                                      | population varia     | nce (chi-squar                         | e test statistic  | c).                     |              | [3+3] 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                      | Carry                                  |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. The demand for a particular s                                       | A                    | ctory was four                         | nd to vary tro    | om day-to-da            | iy. In a san | nple study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| the following information was                                          |                      | True                                   | Wod               | Thu                     | D.           | Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. of parts demanded                                                  | Mon                  | Tue                                    | 1110              | Thu                     | Fri          | Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. of parts demanded                                                  | 1124                 | 1125                                   |                   | 1120                    | 1126         | (Civen the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test the hypothesis that the nu value of chi-square signification.     |                      |                                        |                   |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| significance.)                                                         | ance at 3, 6, 7      | are respo                              | Title             | 1, 12.39, 1             | 7.07 at 3%   | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                      |                                        |                   |                         |              | [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



### STANDARD NORMAL TABLE (Z)

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean (0) and z is 0.3944.

| <b>Z</b> | 0.00   | 0.01             | 0.02             | 0.03   | 0.04                  | 0.05             | 0.06             | 0.07             | 0.08             | 0.09   |
|----------|--------|------------------|------------------|--------|-----------------------|------------------|------------------|------------------|------------------|--------|
| 0.0      | 0.0000 | 0.0040           | 0.0080           | 0.0120 | 0.0160                | 0.0190           | 0.0239           | 0.0279           | 0.0319           | 0.0359 |
| 0.1      | 0.0398 | 0.0438           | 0.0478           | 0.0517 | 0.0557                | 0.0596           | 0.0636           | 0.0675           | 0.0714           | 0.0753 |
| 0.2      | 0.0793 | 0.0832           | 0.0871           | 0.0910 | 0.0948                | 0.0987           | 0.1026           | 0.1064           | 0.1103           | 0.1141 |
| 0.3      | 0.1179 | 0.1217           | 0.1255           | 0.1293 | 0.1 <mark>33</mark> 1 | 0.1368           | 0.1406           | 0.1443           | 0.1480           | 0.1517 |
| 0.4      | 0.1554 | 0.1591           | 0.1628           | 0.1664 | 0.1700                | 0.1736           | 0.1772           | 0.1808           | 0.1844           | 0.1879 |
| 0.5      | 0.1915 | 0.1950           | 0.1985           | 0.2019 | 0.2054                | 0.2088           | 0.2123           | 0.2157           | 0.2190           | 0.2224 |
| 0.6      | 0.2257 | 0.2291           | 0.2324           | 0.2357 | 0.2 <mark>38</mark> 9 | 0.2422           | 0.2454           | 0.2486           | 0.2517           | 0.2549 |
| 0.7      | 0.2580 | 0.2611           | 0.2642           | 0.2673 | 0.2704                | 0.2734           | 0.2764           | 0.2794           | 0.2823           | 0.2852 |
| 8.0      | 0.2881 | 0.2910           | 0.2939           | 0.2969 | 0.2995                | 0.3023           | 0.3051           | 0.3078           | 0.3106           | 0.3133 |
| 0.9      | 0.3159 | 0.3186           | 0.3212           | 0.3238 | 0.3264                | 0.3289           | 0.3315           | 0.3340           | 0.3365           | 0.3389 |
| 1.0      | 0.3413 | 0.3438           | 0.3461           | 0.3485 | 0.3508                | 0.3513           | 0.3554           | 0.3577           | 0.3529           | 0.3621 |
| 1.1      | 0.3643 | 0.3665           | 0.3686           | 0.3708 | 0.3729                | 0.3749           | 0.3770           | 0.3790           | 0.3810           | 0.3830 |
| 1.2      | 0.3849 | 0.3869           | 0.3888           | 0.3907 | 0.3925                | 0.3944           | 0.3962           | 0.3980           | 0.3997           | 0.4015 |
| 1.3      | 0.4032 | 0.4049           | 0.4066           | 0.4082 | 0.4099                | 0.4115           | 0.4131           | 0.4147           | 0.4162           | 0.4177 |
| 1.4      | 0.4192 | 0.4207           | 0.4222           | 0.4236 | 0.4251                | 0.4265           | 0.4279           | 0.4292           | 0.4306           | 0.4319 |
| 1.5      | 0.4332 | 0.4345           | 0.4357           | 0.4370 | 0.4382                | 0.4394           | 0.4406           | 0.4418           | 0.4429           | 0.4441 |
| 1.6      | 0.4452 | 0.4463           | 0.4474           | 0.4484 | 0.4495                | 0.4505           | 0.4515           | 0.4525           | 0.4535           | 0.4545 |
| 1.7      | 0.4554 | 0.4564           | 0.4573           | 0.4582 | 0.4591                | 0.4599           | 0.4608           | 0.4616           | 0.4625           | 0.4633 |
| 1.8      | 0.4641 | 0.4649           | 0.4656           | 0.4664 | 0.4671                | 0.4678           | 0.4686           | 0.4693           | 0.4699           | 0.4706 |
| 1.9      | 0.4713 | 0.4719           | 0.4726           | 0.4732 | 0.4738                | 0.4744           | 0.4750           | 0.4756           | 0.4761           | 0.4767 |
| 2.0      | 0.4772 | 0.4778           | 0.4783           | 0.4788 | 0.4793                | 0.4798           | 0.4803           | 0.4808           | 0.4812           | 0.4817 |
| 2.1      | 0.4821 | 0.4826           | 0.4830           | 0.4834 | 0.4838                | 0.4842           | 0.4846           | 0.4850           | 0.4854           | 0.4857 |
| 2.2      | 0.4861 | 0.4864           | 0.4868           | 0.4871 | 0.4875                | 0.4878           | 0.4881           | 0.4884           | 0.4887           | 0.4890 |
| 2.3      | 0.4893 | 0.4896           | 0.4898           | 0.4901 | 0.4904                | 0.4906           | 0.4909           | 0.4911           | 0.4913           | 0.4916 |
| 2.5      | 0.4918 | 0.4920<br>0.4940 | 0.4922<br>0.4941 | 0.4925 | 0.4927                | 0.4929           | 0.4931           | 0.4932           | 0.4934           | 0.4936 |
| 2.6      | 0.4953 | 0.4940           | 0.4941           | 0.4943 | 0.4945                | 0.4946           | 0.4948           | 0.4949           | 0.4951           | 0.4952 |
| 2.7      | 0.4965 | 0.4966           | 0.4967           | 0.4957 | 0.4959<br>0.4969      | 0.4960<br>0.4970 | 0.4961           | 0.4962           | 0.4963           | 0.4964 |
| 2.8      | 0.4974 | 0.4975           | 0.4976           | 0.4908 | 0.4909                | 0.4970           | 0.4971<br>0.4979 | 0.4972<br>0.4979 | 0.4973           | 0.4974 |
| 2.9      | 0.4981 | 0.4982           | 0.4982           | 0.4977 | 0.4984                | 0.4978           | 0.4979           | 0.4979           | 0.4980           | 0.4981 |
| 3.0      | 0.4987 | 0.4987           | 0.4987           | 0.4988 | 0.4988                | 0.4989           | 0.4989           | 0.4989           | 0.4986           | 0.4986 |
| 3.1      | 0.4990 | 0.4991           | 0.4991           | 0.4991 | 0.4992                | 0.4909           | 0.4909           | 0.4969           | 0.4990           | 0.4990 |
| 3.2      | 0.4993 | 0.4993           | 0.4994           | 0.4994 | 0.4994                | 0.4994           | 0.4994           | 0.4995           | 0.4993<br>0.4995 | 0.4993 |
| 3.3      | 0.4995 | 0.4995           | 0.4995           | 0.4996 | 0.4996                | 0.4996           | 0.4996           | 0.4996           | 0.4995           | 0.4995 |
| 3.4      | 0.4997 | 0.4997           | 0.4997           | 0.4997 | 0.4997                | 0.4997           | 0.4997           | 0.4997           | 0.4996           | 0.4997 |
|          |        |                  |                  |        | 3.4331                | 0.1007           | 5.1557           | 0.7001           | 0.4997           | 0.4998 |

| Enrolment N | 0. | LAN. | A LA | en ag | * Post     | A Ross   |  | **** |  |
|-------------|----|------|------|-------|------------|----------|--|------|--|
|             |    |      |      |       | \$11 BS1 V | A STREET |  |      |  |

1.00

S3(All Branch):ALL

### B. TECH 3" SEMESTER MID-TERM EXAMINATION - 2018

Subject Name: Engineering Mathematics - III

Subject code: UCH/CE/PE03C14/UCS/EC/EE/E103C13/UME03C12

Full Marks: 50

Symbols used here have their usual meanings

Time: 2 Hours

# Group A Answer all the following questions

 $[5 \times 5 = 25]$ 

- 1. The chances that doctor A will diagnose a disease X correctly is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chances of death by wrong diagnosis is 70%. A patient of doctor A, who has disease X, died. What is the probability that his disease was diagnosed correctly?
- 2. The following is the distribution function of a discrete random variable X:

| x    | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1   | 0    | 1    | 2    | 3    | 5    | 8    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| F(x) | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30 | 0.45 | 0.50 | 0.75 | 0.90 | 0.95 | 1.00 |
|      | A solution of the contract of |      |      | -    |      |      | 2 2  | -95  |

(i) Find the probability distribution of X, (ii) Find P(X is even) (iii)  $P(1 \le X \le 8)$ , (iv) Find P(X = -3 | X < 0).

3. The kms X in thousands of kms which car owners get with a certain kind of tyre is a random variable having probability density function:

$$f(x) = \begin{cases} \frac{1}{20} e^{-\frac{x}{20}}, & for \ x > 0 \\ 0, & for \ x \le 0 \end{cases}$$

Find the probabilities that one of these tyres will last (i) at most 10,000 kms, (ii) anywhere from 16,000 to 24,000 kms (iii) at least 30,000 kms.

- Define moment generating function. A random variable X is distributed at random between the values 0 and 1 so that its probability density function is:  $f(x) = kx^2(1-x^3)$ , where k is a constant. Find the value of k. Using this value of k, find its mean and variance.
- 5. A car is parked among 10 cars in a row, not at either end. On his return the owner finds that exactly 4 of the 10 places are still occupied. What is the probability that both neighboring places are empty?



### Group B

### Answer all the following questions

Marks: 25

1. Find the fourier series of the periodic function f with period  $2\pi$ , defined as follows:

$$f(x) = \begin{cases} 0, & for = \pi < x < 0 \\ x, & for 0 < x < \pi \end{cases}$$

What is the sum of the series at  $x = 0, \pm \pi, 4\pi$ .

[6]

2. Find the Fourier series of  $f(x) = \begin{cases} x, & -1 < x < 0 \\ x+2, & 0 < x < 1 \end{cases}$  and hence evaluate the value of  $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ 

[5]

3. Find the half range Sine Series of  $f(x) = \begin{cases} \frac{1}{4} - x, & 0 < x < 1/2 \\ x - \frac{3}{4}, & \frac{1}{2} < x < 1 \end{cases}$ 

[3]

4. Define linear partial differential equation with suitable example. Form a partial differential equation by the elimination of the arbitrary functions  $\phi$  from

$$\phi(x+y+z,x^2+y^2-z^2)=0.$$
 [4]

- 5. Solve:  $py + qx = xyz^2(x^2 y^2)$ . [3]
- 6. Solve:  $(x^2 y^2 yz)p + (x^2 y^2 zx)q = z(x y)$ . [4]

\*\*\*\*\*\*\*\*\*\*