

Existence of the Critical Point in ϕ^4 Field Theory*

Oliver A. McBryan** and Jay Rosen***

Department of Mathematics, The Rockefeller University, New York, NY 10021, USA

Abstract. We consider the ϕ^4 quantum field theory in two and three spacetime dimensions. In the single phase region the physical mass (inverse correlation length) $m(\sigma)$ decreases continuously to zero as the bare mass parameter σ approaches a critical value σ_c from above. In three dimensions the critical point σ_c is in the single phase region and the physical mass vanishes there, $m(\sigma_c) = 0$.

A consequence of our results is that the critical exponent ν governing the approach to infinite correlations is bounded below (rigorously) by its classical value, 1/2.

I. Introduction and Results

In this paper we show that in the single phase region, the physical mass of the $\lambda:\phi^4:_d+\sigma:\phi^2:_d$ quantum field theory, for space-time dimension d=2,3, is a continuous increasing function of σ which assumes all strictly positive values. From the point of view of physics this is important since it ensures that by a suitable choice of coupling constants these theories can describe particles of any assigned mass; in short, the theory is mass renormalizable.

Let $\langle \rangle_{\sigma}$ denote expectations for the $\lambda: \phi^4:_d + \sigma: \phi^2:_d$ euclidean quantum field theory, obtained as a limit of expectations $\langle \rangle_{\sigma,L}$ for the half-Dirichlet theory in volume L, see [1, 2] for details. We fix the Wick ordering mass μ_0 throughout the paper. The long range order $\mathcal{L}(\sigma)$ and the energy gap $\mu(\sigma)$ are defined by:

$$\mathcal{L}(\sigma)^{2} = \lim_{|r| \to \infty} \langle \phi(0)\phi(r) \rangle_{\sigma},$$

$$\mu(\sigma) = -\lim_{|r| \to \infty} |r|^{-1} \ln \langle \phi(0)\phi(r) \rangle_{\sigma}.$$
(1.1)

The set $\Sigma \equiv \{\sigma | \mathcal{L}(\sigma) = 0\}$ of zero long range order is the single phase region where these models are known to have a unique vacuum, see Simon [2]. By the GKS inequalities [2, 3, 4], $\mathcal{L}(\sigma)$ is decreasing in σ . Thus Σ is a proper right half-

^{*} Supported in part by the National Science Foundation under Grant MPS74-13252

^{**} Present address: Dept. of Mathematics, Cornell University, Ithaca, N.Y. 14853, USA

^{***} Present address: Dept. of Mathematics, University of Massachusetts, Amherst, Mass., USA

line, since $\mathcal{L}(\sigma)$ is known to be zero for σ sufficiently large by the cluster expansions of Glimm, Jaffe and Spencer [5], Magnen and Seneor [6], and Feldman and Osterwalder [7], while $\mathcal{L}(\sigma)$ is nonzero for σ sufficiently negative by the existence of phase transitions for these models, see Glimm et al. [8] and Fröhlich et al. [9].

The energy gap $\mu(\sigma)$ is an increasing function of σ , again by the *GKS* inequalities, and clearly $\mu(\sigma)$ vanishes outside of the single phase region. We define the critical point σ_c by:

$$\sigma_c = \sup \{ \sigma | \mu(\sigma) = 0 \}$$
.

For σ in the single phase region (in particular, whenever $\mu(\sigma) > 0$), note that $\mu(\sigma)$ equals the physical mass $m(\sigma)$ which is defined for any σ by:

$$m(\sigma) = -\lim_{|r| \to \infty} |r|^{-1} \ln(\langle \phi(0)\phi(r) \rangle_{\sigma} - \mathcal{L}(\sigma)^{2}). \tag{1.2}$$

Glimm and Jaffe [10], have shown that $m(\sigma)$ is continuous in σ for $\sigma > \sigma_c + \varepsilon$, any $\varepsilon > 0$ (while their proof is for d=2, it extends in a straightforward way to d=3). Also, the cluster expansions [5–7] show that $m(\sigma) \uparrow \infty$ as $\sigma \uparrow \infty$.

Our principal result is a proof that for the models studied here, $m(\sigma) = \mu(\sigma) \downarrow 0$ as $\sigma \downarrow \sigma_c$. Specifically we show that for any $\sigma_2 > \sigma_c$ there is a constant such that

$$m(\sigma) = \mu(\sigma) \le \operatorname{const}(\sigma - \sigma_c)^{1/2}, \, \sigma_c < \sigma \le \sigma_2.$$
 (1.3)

Thus from the discussion in the previous paragraph, $m(\sigma)$ takes on continuously all values in $(0, \infty)$ as σ ranges over (σ_c, ∞) . The bound (1.3) implies that the critical exponent ν governing the approach to infinite correlation length, defined by $m(\sigma) \sim (\sigma - \sigma_c)^{\nu}$, is bounded below by its classical value: $\nu \ge 1/2$. Further bounds on critical exponents follow as in [10]. In particular, for the exponent α for the specific heat we obtain $\alpha \le 2\nu$ if d=2 and $\alpha \le \nu/2$ if d=3.

The bound (1.3) implies that $\mu(\sigma_c)=0$ but this does not imply that the physical mass $m(\sigma)$ vanishes at the critical point, because of the possibility that the critical point may not be in the single phase region Σ . However in the case d=3 we can show that $\sigma_c \in \Sigma$, and thus $m(\sigma_c)=0^1$. To show that $\sigma_c \in \Sigma$, we note that the Lehmann spectral formula provides a uniform bound, for $\sigma > \sigma_c$ on the decay of the two point function:

$$\langle \phi(0)\phi(r)\rangle_{\sigma} = \int_{0}^{\infty} d\varrho_{\sigma}(a)(4\pi|r|)^{-1}e^{-a|r|}, \, \sigma \in \Sigma, \, d = 3,$$

$$\leq |r|^{-1} \int_{0}^{\infty} d\varrho_{\sigma}(a)(4\pi)^{-1}e^{-a}, \, |r| \geq 1,$$

$$= |r|^{-1} \langle \phi(0)\phi((1,\mathbf{0}))\rangle_{\sigma} \leq |r|^{-1} \langle \phi(0)\phi((1,\mathbf{0}))\rangle_{\sigma}.$$
(1.4)

Here $d\varrho_{\sigma}(a)$ is the spectral measure for the two-point function and we have used the monotone decrease of the two-point function as a function of σ .

The bound (1.4) extends to the critical point σ_c , showing $\sigma_c \in \Sigma$, because $\langle \phi(0)\phi(r)\rangle_{\sigma}$ is continuous from above in σ . To prove continuity from above in σ we note that $\langle \phi(0)\phi(r)\rangle_{\sigma,L}$ is continuous in σ , and is monotone increasing both as L increases or σ decreases, allowing the interchange of the limits $L \uparrow \infty$, $\sigma \downarrow \sigma_c$.

¹ The result $m(\sigma_c) = 0$ is also true for lattice ϕ^4 field theories and for Ising models in dimensions $d \ge 3$ (see the Appendix)

Our results still leave open a number of questions about the nature of the critical point in $:\phi^4:_d$ theories. For d=3 there could be an interval $\{\sigma_0, \sigma_c\}$, either open or semi-open, of values of σ lying in the single phase region but below the critical point. Thus the physical mass $m(\sigma)$ would vanish in the interval $\{\sigma_0, \sigma_c\}$ as in:

$$\frac{\mathcal{L}(\sigma) > 0 \left\{ m(\sigma) = 0 \mid m(\sigma) > 0 \right\}}{\sigma_0}.$$

Behavior of $m(\sigma)$, $\mathcal{L}(\sigma)$.

Similar behavior could occur for d=2, with the additional possibility that the physical mass might be discontinuous at the critical point. This could occur if the long range order is discontinuous at $\sigma_c: \mathcal{L}(\sigma_c) \neq 0$. Behavior of this type actually occurs in certain Ising type models with long range interactions and is known as the Thoules's effect [11]. Finally, we are unable to say anything about the behavior of the physical mass in the multiphase region. In particular, we cannot rule out the possibility that $m(\sigma)$ is discontinuous from below at σ_0 , or that there might be regions below σ_0 where $m(\sigma)$ vanishes. Such pathologies are not expected to appear in $:\phi^4:_d$ models, the anticipated picture for the critical point being that which occurs in the exactly soluble two-dimensional Ising model where $\sigma_0 = \sigma_c$, $m(\sigma_c) = 0$ and the physical mass $m(\sigma)$ is continuous and strictly monotone increasing as one moves away from σ_c in either direction, see for example [12].

Glimm and Jaffe [10], were the first to study the dependence of the physical mass on σ . Using the Lebowitz inequality [2, 13, 14] they established continuity of $m(\sigma)$ above σ_c . Using related methods, Baker [15] showed the continuity of a pseudomass in lattice ϕ^4 models and in [16], Rosen showed how these ideas could be modified to prove continuity of the mass itself for ϕ^4 lattice fields in the single phase-region. This paper extends these ideas to the continuum limit for space-time dimensions d=2,3.

In Section II we define a pseudomass $\mu^{\gamma}(\sigma)$ (more precisely it is a pseudoenergy gap) as the limit of finite volume quantities $\mu^{\gamma}(\sigma, L)$. The $\mu^{\gamma}(\sigma, L)$ are defined so as to be always strictly positive, even for $\sigma < \sigma_c$. In section III we relate the pseudomass and energy gap by bounds of the form

$$\mu \tilde{\ }(\sigma) \leq \mu(\sigma) \leq \operatorname{const} \mu \tilde{\ }(\sigma) \,.$$
 (1.5)

In Section IV we show that $\mu^{\sim}(\sigma, L)$ is Lipschitz continuous in σ , using the Lebowitz inequality [2, 13, 14] and ϕ -bounds [2, 18, 19]. Heuristically, our proof amounts to obtaining a bound of the form:

$$\frac{d}{d\sigma}\mu^{\gamma}(\sigma, L) \leq \operatorname{const}\mu^{\gamma}(\sigma, L)^{-d-1}, \tag{1.6}$$

with the constant uniformly bounded in σ , L for σ in compact sets. Since $\mu^{\sim}(\sigma, L) > 0$, such a bound makes sense, and we may integrate (1.6) to obtain Lipschitz continuity of $\mu^{\sim}(\sigma, L)$ and thus also of $\mu^{\sim}(\sigma)$. The bound (1.5) implies that $\mu^{\sim}(\sigma) = 0$, $\sigma < \sigma_c$, and continuity then implies $\mu^{\sim}(\sigma_c) = 0$. Therefore, again using (1.5), $\mu(\sigma_c) = 0$ and $\mu(\sigma) \downarrow 0$ as $\sigma \downarrow \sigma_c$. Thus all of our results follow from the continuity of $\mu^{\sim}(\sigma)$. The

bound (1.3) is proved in [10], for d=2, under the assumption that $m(\sigma) \to 0$ as $\sigma \to \sigma_c$ (which we have now proved). The proof given in [10] applies also to the case d=3.

II. Definition and Properties of the Pseudomass

Let $\sigma_1 < \sigma_c < \sigma_2$ be fixed numbers on either side of σ_c . We will use σ_1 , σ_2 as reference points and throughout the paper we assume $\sigma_1 \le \sigma \le \sigma_2$. By the GKS inequalities [2-4],

$$0 < \langle \phi(0)\phi((1/2, \mathbf{0})) \rangle_{\sigma} \le \phi(0)\phi((1/2, \mathbf{0})) \rangle_{\sigma} = A^{2} < \infty . \tag{2.1}$$

It is convenient to normalize the field by $\psi(r) \equiv \phi(r)(1+A)^{-1}$ so that

$$0 < \langle \psi(0)\psi(r) \rangle_{\sigma,L} \le \langle \psi(0)\psi(r) \rangle_{\sigma} < 1, |r| \ge 1/2, \sigma \ge \sigma_1,$$

$$\mu(\sigma) = -\lim_{|r| \to \infty} |r|^{-1} \ln \langle \psi(0)\psi(r) \rangle, \qquad (2.2)$$

where we have used the monotonity properties of the two-point function in L, |r|. We define the pseudomass $\mu \tilde{\ }(\sigma)$ as the limit of finite volume quantities $\mu \tilde{\ }(\sigma,L)$ which are monotone decreasing in the volume $|L| \geq 1$ of squares L centered at the origin in spacetime:

$$\tilde{\mu}(\sigma) = \lim_{L \to \infty} \mu^{\gamma}(\sigma, L) = \inf_{L} \mu^{\gamma}(\sigma, L). \tag{2.3}$$

For each pair of points $r, s \in L$, $|r-s| \ge 1$, we define $\mu^{\sim}(\sigma, L, r, s)$ to be the unique solution μ^{\sim} of the equation

$$e^{-\tilde{\mu}|r-s|}(1+(\mu^{\tilde{\gamma}}|r-s|)^{(d+1)/2})^{-1} \equiv \langle \psi(r)\psi(s) \rangle_{\sigma,L}$$
 (2.4)

and we define the finite volume pseudomass by

$$\mu^{\sim}(\sigma, L) = \inf \left\{ \mu^{\sim}(\sigma, L, r, s) | r, s \in L, |r - s| \ge 1 \right\}. \tag{2.5}$$

That (2.4) has a unique, strictly positive solution follows from the fact that the strictly monotone decreasing function $e^{-x}(1+x^{(d+1)/2})^{-1}$ ranges over (0, 1) as x ranges over (0, ∞), while the right side of (2.3) lies in (0, 1) by (2.2). The monotone decreasing property of $\mu^{\gamma}(\sigma, L, r, s)$ and $\mu^{\gamma}(\sigma, L)$ in L follows since $\langle \psi(r)\psi(s)\rangle_{\sigma,L}$ is monotone increasing in L. Similarly, $\mu^{\gamma}(\sigma)$, $\mu^{\gamma}(\sigma, L)$, $\mu^{\gamma}(\sigma, L, r, s)$ are all monotone increasing in σ since $\langle \psi(r)\psi(s)\rangle_{\sigma,L}$ is monotone decreasing in σ . We note that by the continuity of $\langle \psi(r)\psi(s)\rangle_{\sigma,L}$ in r, s there are $r_{\sigma,L}$, $s_{\sigma,L} \in L$ with

$$\mu^{\sim}(\sigma, L) = \mu^{\sim}(\sigma, L, r_{\sigma, L}, s_{\sigma, L}) > 0$$
.

We will later use the following result:

Lemma 1. $\mu^{\sim}(\sigma, L)$ is continuous from below in σ .

Proof. Let $\sigma_i \uparrow \sigma$. By compactness, there is a subsequence σ_j' of σ_i and a pair of points $r, s \in L$ with $r_{\sigma_j', L} \to r$, $s_{\sigma_j', L} \to s$, $|r - s| \ge 1$. Thus by the continuity of $\mu^{\sim}(\sigma, L, r, s)$ in σ, r, s :

$$\mu \tilde{\ }(\sigma'_j,L) = \mu \tilde{\ }(\sigma_j,L,r_{\sigma'_j,L},s_{\sigma'_j,L}) \xrightarrow[j \to \infty]{} \mu \tilde{\ }(\sigma,L,r,s) \geqq \mu \tilde{\ }(\sigma,L) \, .$$

But $\mu(\sigma'_j, L) \leq \mu(\sigma', L)$ by monotonicity in σ ; continuity from below in σ follows.

III. Comparison of Energy Gap and Pseudomass

We relate the properties of the pseudomass to the energy gap $\mu(\sigma)$ by the following result:

Theorem 2. For all $\sigma \ge \sigma_1$, $\mu^{\sim}(\sigma) \le \mu(\sigma) \le (d+3)\mu^{\sim}(\sigma)$.

Proof. To establish the left-hand inequality, we fix $r, |r| \ge 1$. For any $L \ni r$, we have by (2.4) and $\mu \tilde{\ } (\sigma, L) \ge \mu \tilde{\ } (\sigma)$:

$$-|r|^{-1} \ln \langle \psi(0)\psi(r) \rangle_{\sigma,L} \ge \mu^{\sim}(\sigma) + |r|^{-1} \ln (1 + (\mu^{\sim}(\sigma)|r|)^{(d+1)/2}).$$

Since the right-hand side is independent of L,

$$-|r|^{-1} \ln \langle \psi(0)\psi(r) \rangle_{\sigma} \ge \mu^{\gamma}(\sigma) + |r|^{-1} \ln (1 + (\mu^{\gamma}(\sigma)|r|)^{(d+1)/2}).$$

The left-hand inequality of Theorem 2 follows on taking $|r| \rightarrow \infty$.

To establish the right-hand inequality, we prove below that

$$\mu(\sigma) \le -2|r|^{-1} \ln \langle \psi(0)\psi(r) \rangle_{\sigma}, |r| \ge 1. \tag{3.1}$$

Thus for each L we have by (2.4) and translation invariance:

$$\begin{split} \mu(\sigma) & \leq -2|r_{\sigma,L} - s_{\sigma,L}|^{-1} \ln \langle \psi(r_{\sigma,L}) \psi(s_{\sigma,L}) \rangle_{\sigma} \\ & \leq -2|r_{\sigma,L} - s_{\sigma,L}|^{-1} \ln \langle \psi(r_{\sigma,L}) \psi(s_{\sigma,L}) \rangle_{\sigma,L} \\ & = 2[\mu (\sigma, L) + |r_{\sigma,L} - s_{\sigma,L}|^{-1} \ln (1 + (\mu (\sigma, L)|r_{\sigma,L} - s_{\sigma,L}|)^{(d+1)/2})] \\ & \leq (d+3)\mu (\sigma, L), \end{split}$$

where we have used $\ln(1+x^a) \le \ln(1+x)^a \le ax$, $a \ge 1$, $x \ge 0$. The right-hand inequality of Theorem 2 follows on letting $L \to \infty$.

To prove the bound (3.1), we introduce test-functions $f(\cdot) \varepsilon C_0^{\infty}(R^d)$, with supports in the sphere of radius 1/4, and we define smeared fields by $\psi_f(r) = \int d^dx f(x-r)\psi(x)$. Thus by translation invariance and Osterwalder-Schrader positivity [17]

$$\langle \psi_{f}(0)\psi_{f}(r)\rangle_{\sigma} = \langle \psi_{f}(-n/2)\psi_{f}(r-n/2)\rangle_{\sigma}, n \equiv (1/2, \mathbf{0}),$$

$$\leq \langle \psi_{f}(0)\psi_{f}(n)\rangle_{\sigma}^{1/2}\langle \psi_{f}(0)\psi_{f}(2r-n)\rangle_{\sigma}^{1/2}$$

$$\leq \langle \psi_{f}(0)\psi_{f}(n)\rangle_{\sigma} \lim_{l \to \infty} \langle \psi_{f}(0)\psi_{f}(2^{l}(r-n)+n)\rangle_{\sigma}^{1/2^{l}}$$

$$= \langle \psi_{f}(0)\psi_{f}(n)\rangle_{\sigma} e^{-\mu(\sigma)|r-n|}, \qquad (3.2)$$

where in the second to last step, we have iterated the previous inequality infinitely often, while in the last step we have used the definition (2.2) of $\mu(\sigma)$. The bound (3.1) now follows from (3.2) by choosing a sequence $f(\cdot) \to \delta^{(d)}(\cdot)$, and noting that for $|r| \ge 1$, $|r-n| \ge |r|/2$ and that $\langle \psi(0)\psi(n) \rangle_{\sigma} \le 1$ by (2.2).

IV. Continuity of the Pseudomass

Theorem 3. For any σ_1 , σ_2 there is a constant $k(\sigma_1, \sigma_2)$ with:

$$0 \leq \mu \tilde{\ } (\sigma')^{d+2} - \mu \tilde{\ } (\sigma)^{d+2} \leq k(\sigma' - \sigma), \ \sigma_1 \leq \sigma \leq \sigma' \leq \sigma_2 \ . \tag{4.1}$$

Proof. It is sufficient to prove (4.1) with $\mu^{\sim}(\sigma)$ replaced by $\mu^{\sim}(\sigma, L)$ and a constant k independent of L. We will show below that there is a constant c, independent of L and of σ , $\sigma_1 \leq \sigma \leq \sigma_2$, such that

$$\frac{d}{d\sigma} \mu^{\sim}(\sigma, L, r, s)^{d+2}|_{r_{\sigma, L}, s_{\sigma, L}} \leq c. \tag{4.2}$$

Thus for each $\sigma \in [\sigma_1, \sigma_2)$, there is a $\sigma''(\sigma, L) > \sigma$ with

$$\mu^{\sim}(\sigma', L, r_{\sigma,L}, s_{\sigma,L})^{d+2} - \mu^{\sim}(\sigma, L, r_{\sigma,L}, s_{\sigma,L})^{d+2} \le (c+1)(\sigma' - \sigma), \tag{4.3}$$

for $\sigma \leq \sigma' \leq \sigma''$. Since $\mu \tilde{\ } (\sigma', L) \leq \mu \tilde{\ } (\sigma', L, r_{\sigma, L}, s_{\sigma, L})$, with equality when $\sigma' = \sigma$, (4.3) implies that for $\sigma \leq \sigma' \leq \sigma''$:

$$\mu \tilde{(\sigma', L)}^{d+2} - \mu \tilde{(\sigma, L)}^{d+2} \le (c+1)(\sigma' - \sigma).$$
 (4.4)

Let $I_{\sigma,L}$ denote the maximal interval in $[\sigma, \sigma_2]$ containing σ and such that (4.4) is valid for $\sigma' \in I_{\sigma,L}$. To complete the proof of Theorem 3, we need only show that $I_{\sigma,L} \equiv [\sigma, \sigma_2]$ for all σ, L . By Lemma 1, $I_{\sigma,L}$ is closed: $I_{\sigma,L} = [\sigma, \sigma']$ for some $\sigma' = \sigma'(\sigma, L)$. If $\sigma' + \sigma_2$, then $I_{\sigma,L} \notin I_{\sigma,L}$, and yet for $\sigma' \in I_{\sigma,L}$:

$$\begin{split} & \mu \tilde{\,\,\,}(\sigma',L)^{d+2} - \mu \tilde{\,\,\,}(\sigma,L)^{d+2} = \mu \tilde{\,\,\,}(\sigma',L)^{d+2} - \mu \tilde{\,\,\,}(\sigma\hat{\,\,\,},L)^{d+2} + \mu \tilde{\,\,\,}(\sigma\hat{\,\,\,},L)^{d+2} - \mu \tilde{\,\,\,}(\sigma,L)^{d+2} \\ & \leq (c+1)(\sigma'-\sigma\hat{\,\,\,}) + (c+1)(\sigma\hat{\,\,\,}-\sigma) = (c+1)(\sigma'-\sigma) \,, \end{split}$$

which implies that $I_{\sigma,L} \subseteq I_{\sigma,L}$. The contradiction forces the conclusion that $\sigma = \sigma_2$. It remains to prove the bound (4.2). Differentiating the defining relation (2.4) for $\mu = \mu(\sigma, L, r, s)$ with respect to σ we obtain:

$$\begin{split} |r-s| \big[1 + 2^{-1} (d+1) (\mu \tilde{\ } |r-s|)^{(d-1)/2} (1 + (\mu \tilde{\ } |r-s|)^{(d+1)/2})^{-1} \big] \langle \psi(r) \psi(s) \rangle_{\sigma,L} \frac{d\mu^{\sim}}{d\sigma} \\ &= -\frac{d}{d\sigma} \langle \psi(r) \psi(s) \rangle_{\sigma,L} \\ &= \int_{L} d^{d}t \left\{ \langle \psi(r) \psi(s) : \phi^{2}(t) : \rangle_{\sigma,L} - \langle \psi(r) \psi(s) \rangle_{\sigma,L} \langle : \phi^{2}(t) : \rangle_{\sigma,L} \right\} \\ &\leq (1+A)^{2} \int_{L} d^{d}t \langle \psi(r) \psi(t) \rangle_{\sigma,L} \langle \psi(t) \psi(s) \rangle_{\sigma,L} \,, \end{split}$$

where we have used the Lebowitz inequality [2, 13, 14] in the last step, and (1+A) is the normalization factor relating ϕ and ψ , see (2.1). Bounding below by 1 the term in rectangular brackets, we have:

$$\frac{d\mu^{\sim}}{d\sigma} \leq (1+A)^{2} |r-s|^{-1} \langle \psi(r)\psi(s) \rangle_{\sigma,L}^{-1} \int_{L} d^{d}t \langle \psi(r)\psi(t) \rangle_{\sigma,L} \langle \psi(t)\psi(s) \rangle_{\sigma,L}. \tag{4.5}$$

We decompose the region of integration into four parts: L=I, II, III, IV and we denote the corresponding contributions to (4.5) by D_{I} , ..., D_{IV} . Here $I=\{t\in L:|t-r|, |t-s|\geq 1\}$, II = $\{t\in L:|t-r|\geq 1>|t-r|\}$, III = $\{t\in L:|t-r|\geq 1>|t-s|\}$ and IV = $\{t\in L:|t-r|, |t-s|< 1\}$. The derivative in (4.2) is to be evaluated at the point $r=r_{\sigma,L}$, $s=s_{\sigma,L}$ and in the following we set r, s equal to these values.

In region I, using the definition (2.4) and the fact that $\mu \tilde{\ }(\sigma, L) = \mu \tilde{\ }(\sigma, L, r, s)$, we obtain

$$\begin{split} &D_{\rm I} \! \leq \! (1+A)^2 |r-s|^{-1} (1+(\mu \, (\sigma,L)|r-s|)^{(d+1)/2}) \! \int \! d^dt e^{-\tilde{\mu} \, (\sigma,L) \{|r-t|+|t-s|-|r-s|\}} \\ &(1+(\mu \, (\sigma,L)|r-t|)^{(d+1)/2})^{-1} (1+(\mu \, (\sigma,L)|t-s|)^{(d+1)/2})^{-1} \\ &\leq \! c_1 |r-s|^{(d-1)/2} \! \mu \, (\sigma,L)^{-d-1} \! \int \! d^dt |r-t|^{-(d+1)/2} |t-s|^{-(d+1)/2} \\ &\leq \! c_1 |r-s|^{(d-3)/2} \! \mu \, (\sigma,L)^{-d-1} \! \int \! d^dt (|t||t-(1,\mathbf{0})|)^{-(d+1)/2} \\ &\leq \! c_2 \! \mu \, (\sigma,L)^{-d-1} \; . \end{split}$$

Here and in what follows, all constants c_i are uniform in L and in σ , for $\sigma \in [\sigma_1, \sigma_2]$. In particular using monotonicity in σ , L (and identifying L with |L|), we may choose

$$c_1 = (1+A)^2 (1+\mu(\sigma_2, 1)^{(d+1)/2}), c_2 = c_1 \int d^dt (|t||t-(1, 0)|)^{-(d+1)/2}.$$

For region II, we have the bound:

$$\begin{split} &D_{\mathrm{II}} \leq (1+A)^{2} |r-s|^{-1} (1 + (\mu \tilde{\gamma}(\sigma, L)|r-s|)^{(d+1)/2}) \int_{\mathrm{II}} d^{d}t \, e^{-\tilde{\mu} \, (\sigma, L) \{|t-s|-|r-s|\}} \\ &(1 + (\mu \tilde{\gamma}(\sigma, L)|t-s|)^{(d+1)/2})^{-1} \langle \psi(r)\psi(t) \rangle_{\sigma, L} \\ &\leq c_{3} \int_{|t|<1} d^{d}t \langle \psi(0)\psi(t) \rangle_{\sigma} \,, \end{split} \tag{4.6}$$

where $c_3 = (1+A)^2 2^{(d+1)/2} e^{\tilde{\mu} (\sigma_2, 1)}$ and we have noted that

$$|t-s|-|r-s| \ge -|r-t| \ge -1$$
, $|r-s| \le 1+|t-s| \le 2|t-s|$.

An identical estimate applies to D_{III} , while for region IV we note that either |r-t| or |t-s| is greater than 1/2 since $|r-s| \ge 1$. Thus by (2.1) either $\langle \psi(r)\psi(t)\rangle_{\sigma}$ or $\langle \psi(t)\psi(s)\rangle_{\sigma}$ is bounded by 1 so that:

$$D_{\text{IV}} \leq (1+A)^{2} |r-s|^{-1} (1 + (\mu^{\sim}(\sigma, L)|r-s|)^{(d+1)/2}) e^{\tilde{\mu} (\sigma, L)|r-s|} \int_{|t| \leq 1} d^{d}t \langle \psi(0)\psi(t) \rangle_{\sigma},$$

$$\leq c_{4} \int_{|t| \leq 1} d^{d}t \langle \psi(0)\psi(t) \rangle_{\sigma},$$
(4.7)

where $c_4 = (1+A)^2(1+(2\mu^{\gamma}(\sigma_2,1)^{(d+1)/2})e^{2\tilde{\mu}(\sigma_2,1)}$ and we have noted that region IV is empty unless $|r-s| \le 2$. To bound the integrals in (4.6), (4.7) we observe that by translation invariance:

$$\int_{|t| \leq 1} d^{d}t \langle \psi(0)\psi(t) \rangle_{\sigma} \leq (2\pi)^{-1} \int_{|s| \leq 1} d^{d}s \int_{|t| \leq 1} d^{d}t \langle \psi(s)\psi(t+s) \rangle_{\sigma}.$$

$$\leq \int_{|s| \leq 2} d^{d}s \int_{|r| \leq 2} d^{d}r \langle \psi(s)\psi(r) \rangle_{\sigma}, r = t + s,$$

$$= \langle \psi(\chi_{2})^{2} \rangle_{\sigma} \leq \langle \psi(\chi_{2})^{2} \rangle_{\sigma_{1}} \equiv c_{5}, \tag{4.8}$$

where $\psi(\chi_2)$ denotes the field ψ smeared with the characteristic function χ_2 of the circle (sphere) of radius 2, and in the last step we have used a ϕ -bound [2, 18, 19]. Combining (4.5), (4.6), (4.7) we obtain, with $c_6 = (2c_3 + c_4)c_5$,

$$D_{II} + D_{III} + D_{IV} \leq c_6 \leq c_7 \mu^{\sim} (\sigma, L)^{-d-1}$$
,

where $c_7 = c_6 \mu^{\gamma} (\sigma_2, 1)^{d+1}$, which completes the proof of (4.2).

Acknowledgement. We would like to thank James Glimm for a number of useful conversations.

Appendix

Theorem. In lattice ϕ^4 field theories or in Ising models, the critical point is in the single phase region for dimension $d \ge 3$.

Proof. Without loss of generality we consider the lattice spacing to be one. By a result of Fröhlich et al. [9], the two-point function in momentum space has the representation:

$$S_{\sigma}(p) = c_{\sigma} \delta^{(d)}(p) + f_{\sigma}(p) \tag{A.1}$$

where for $\sigma_1 \leq \sigma_c \leq \sigma_2$ there is a constant a with

$$0 \le f_{\sigma}(p) \le a/p^2, \, \sigma_1 \le \sigma \le \sigma_2 \,. \tag{A.2}$$

For δ^{-1} integral, let $h_{\delta}(x) \equiv (2\pi)^{d/2} (1 + 2\delta^{-1})^{-d} \chi_{\delta}(x)$ where $\chi_{\delta}(x)$ is the characteristic function of $\{x \in Z^d : |x_i| \le \delta^{-1}, i = 1, ..., d\}$. The lattice fourier transform of h_{δ} satisfies, for $d \ge 3$,

$$h_{\delta}^{\sim}(0) = 1, \int_{|p_i| \le \pi} d^d p p^{-2} |h_{\delta}^{\sim}(p)| \to 0 \quad \text{as} \quad \delta \to 0.$$
 (A.3)

Thus from (A.1)–(A.3), we see that the constant c_{σ} is given by:

$$c_{\sigma} = \lim_{\delta \to 0} c_{\sigma,\delta} \equiv \lim_{\delta \to 0} \int_{|p_i| \le \pi} d^d p S_{\sigma}(p) h_{\delta}(p).$$

By definition, $c_{\sigma} = 0$ for $\sigma > \sigma_c$ and we wish to prove that $c_{\sigma_c} = 0$, which is equivalent to showing that $c_{\sigma_c,\delta} \to 0$ as $\delta \to 0$. Assuming for the moment that $c_{\sigma,\delta}$ is continuous from above in σ , it is therefore sufficient to prove that $c_{\sigma,\delta}$ converges to zero as $\delta \to 0$, uniformly in $\sigma_c < \sigma \le \sigma_2$. This follows immediately from the bound:

$$c_{\sigma,\delta} = \int d^d p S_{\sigma}(p) h_{\delta}(p) \leq a \int d^d p p^{-2} |h_{\delta}(p)|, \sigma_c < \sigma \leq \sigma_2$$
.

To prove the assumed upper semi-continuity of $c_{\sigma,\delta}$ in σ , note that

$$c_{\sigma,\delta} = \int d^d p S_{\delta}(p) h^{\sim}_{\delta}(p) = \sum_{x \in \mathbb{Z}^d} S_{\sigma}(x) h_{\delta}(x)$$

$$= \lim_{L \to \infty} \lim_{\sigma' \to \sigma^+} \sum_{x \in L} S_{\sigma',L}(x) h_{\delta}(x) . \tag{A.4}$$

Since $h_{\delta}(x)$ is positive with $S_{\sigma',L}$ positive and monotone increasing both as $\sigma' \to \sigma +$ and as $L \to \infty$, the two limits in (A.4) may be interchanged, proving the required upper-semi-continuity in σ .

References

- Nelson, E.: Probability theory and Euclidean field theory. In: Constructive quantum field theory (eds. G. Velo, A. S. Wightman). Berlin-Heidelberg-New York: Springer 1973
- 2. Simon, B.: The $P(\phi)_2$ Euclidean (quantum) field theory. Princeton: Princeton University Press 1974
- 3. Griffiths, R.: J. Math. Phys. 8, 478-489 (1967)
- 4. Guerra, F., Rosen, L., Simon, B.: Ann. Math. 101, 111-259 (1975)
- Glimm, J., Jaffe, A., Spencer, T.: In: Constructive quantum field theory (eds. G. Velo, A. S. Wightman). Berlin-Heidelberg-New York: Springer 1973

- 6. Magnen, J., Sénéor, R.: Ann. Inst. H. Poincaré 24, 95-159 (1976)
- 7. Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled ϕ_3^4 quantum field theories. Harvard University Preprint, 1975
- 8. Glimm, J., Jaffe, A., Spencer, T.: Commun. math. Phys. 45, 203-216 (1975)
- Frohlich, J., Simon, B., Spencer, T.: Phase transitions and continuous symmetry breaking. The Rockefeller University preprint, 1975
- 10. Glimm, J., Jaffe, A.: Phys. Rev. D 10, 536-539 (1974)
- 11. Dyson, F.: Commun. math. Phys. 21, 269-283 (1971)
- McCoy, B., Wu, T.T.: The two-dimensional Ising model. Cambridge: Harvard University 1973
- 13. Lebowitz, J. L.: Commun. math. Phys. 35, 87—92 (1974)
- 14. Griffiths, R., Simon, B.: Commun. math. Phys. 33, 145-164 (1973)
- 15. Baker, G.: J. Math. Phys. 16, 1324-1346 (1975)
- 16. Rosen, J.: Mass renormalization for the $\lambda \phi^4$ Euclidean lattice field. Adv. Math., to appear
- 17. Osterwalder, K., Schrader, R.: Commun. math. Phys. 42, 281—305 (1975)
- 18. Glimm, J., Jaffe, A.: J. Math. Phys. 13, 1568—1584 (1972)
- 19. Seiler, E., Simon, B.: Nelson's symmetry and all that in the Yukawa and $(\phi^4)_3$ field theories. Princeton preprint

Communicated by A. S. Wightman

Received March 29, 1976; in revised form May 27, 1976