Customer Analytics

Lecture 1

Agenda

- Course administration
- What is testing and why is it useful?
- Uncertainty and probability of making a mistake; how big should the test be?
- Making smarter use of the test with targeting

Teachers

Instructor
George Knox
G.Knox@tilburguniversity.edu

Assistant
Anne van der Vliet
A.vdrVliet@tilburguniversity.edu

email about: Lectures, content email about: Assignments, administration

Marketing: then and now

Product-centric

Transaction-focused

Customer-centric

Relationship-focused

Customers are assets that generate profits over time

Customer lifecycle

Customer **development**: change in behavior over time: buying more (up-selling) or different things (cross-selling)

Customer **acquisition**: how customers are "born" or first contact with the firm.

Customer **retention**: preventing customer "death" or churn.

Marketing is about acquiring, developing and retaining customers

Customer analytics

Using customer data and statistical models to make business decisions:

- Who should be targeted for ... a marketing campaign, churn prevention, cross-selling, acquisition?
- Should we do a test before we roll it out? How big?
- How many subscriptions/transactions can we predict over time for a cohort of customers?
- How valuable is a customer to the firm over his or her lifecycle?
 How does it differ across customers?

Lectures 1-5: Short-term analytics

- Testing and Uncertainty: Why test? Quantifying uncertainty; how large should the test be?
- Models for selecting customer to target: which customers should be selected for e.g., acquisition, retention, direct mailing?
- Models for customer development: collaborative filtering, cross-selling
 - Guest lecture: Barrie Kersbergen (Bol) on Recomender systems in practice

Lectures 6-9: Long term analytics

- How does the customer base change over time as customers drop out? Why does retention increase over time?
- Customer lifetime value (CLV): who are the most valuable customers: how do you calculate the value to the firm of the customer over his or her lifecycle?
 - Guest lecture: Coolblue, Implementing CLV

Grading

1. Individual assignments: 30%

2. Computer exam (individual): 70%

Grading (2)

To pass the course you need:

- 1. final grade ≥ 6
- 2. exam grade ≥ 5

The assignment grade still counts if you take the resit

Assignments

- Each lecture has an assignment
- Due a week after following Sunday
 - Late assignments not accepted
- It's OK if you discuss with others, but all assignments are to be done individually.
- Testvision software (If you have problems with part, be sure to email Anne)

Data sets & software

- The course is organized around <u>several data sets</u> that illustrate an important concept.
 - All these examples will be "hands-on" and have an emphasis on real-time problem solving.
- We're using R this year (not SPSS as past years)
 - Advantages: widely used & lots of contributed software, free
 - Disadvantages: programming language, unpredictability of packages, updates
- R notebooks in the computer lab

Readings

Book: Blattberg, Robert C., Byung-Do Kim, and Scott A.
 Neslin. Why Database Marketing? Springer New York, 2008.
 [BKN]

 Articles: Other articles and material you can find on canvas under modules.

Weekly schedule

- Lecture
- Computer lab
- Q&A

Everything will be given online; no in-person/offline sessions

Everything will be given live and recorded

Testing and Uncertainty

E-Beer

- E-Beer sells beer over the Internet and currently has about 50,000 customers
- A customer selects the favorite brand, pays, and within 1 hour the ordered amount of beer is delivered at the specified address
- To boost sales, E-Beer developed a <u>mailing</u> to send to their customers.
- Each mailing contains a flyer to remind customers of the offered service and a key ring with the name and web address of the company

Campaign costs

• Each mailing costs € 1.50

Sending it to all customers would mean total costs of

$$\leq 1.50 \times 50000 = \leq 75000$$

Is it worth it? Do benefits > costs?

The problem is that the **benefit** is uncertain!

Testing

The objective of testing is to obtain more information before committing a large amount of resources and, hence, reduce the risk of possible failure.

- 1. Randomly select some customers; call this test sample (size = n).
- 2. Send them mailing, collect & analyze responses
- 3. Use results to decide whether to send to the rest of the population (size N-n, rollout sample).

Test Sample	Rollout Sample
n	N-n Tilburg $lacktriangle$ University

Results of test

- Assume we choose a test sample of size 5000. So, we randomly select 5000 customers and send them the mailing.
- Results of test mailing
 - 175 out of 5000 respond. So the estimated response rate: $\hat{p}=175/5000$
 - We assume the margin or profit per response is ≤ 50 : m = 50
- So should we do the rollout? How much would we expect to make if we send to the rest (rollout sample)?

Expected rollout profits

Assuming they are like the test sample, (which they are if randomly sampled):

Profit per

customer $E[rollout profit] = (N - n)(m \cdot \hat{p} - c)$ $= (45000)(50 \cdot 0.035 - 1.50)$ = 11250

customers

where

m is the margin (profit) per response (in euros) \hat{p} is the estimate of the response rate c is the cost of marketing

Option value

- Therefore, because our expected rollout profit is positive, we roll it out to the rest of the sample.
- The test gives us the option not the obligation to rollout.
 We only roll out when:

$$E[\text{rollout profit}] > 0$$

$$\Rightarrow \hat{p} > \frac{c}{m}$$
 in the example, what's the threshold?

How big is the option value?

A1 Assume the test provides perfect information.

A2 Test predicts

1. Success
$$(p = .05)$$

 $\Rightarrow (m \cdot p - c) = 1.00$

2. Failure
$$(p = .01)$$

 $\Rightarrow (m \cdot p - c) = -1.00$

A3 Success occurs 30% of the time

Value of test =
$$0.3 \cdot (50000) + 0.7 \cdot (-5000) - 0$$

= **11500**

Uncertainty

The true unobserved population response rate is p

- What we observe: sample mean estimate, $\hat{p} = \frac{1}{n} \sum_{i} x_{i}$
- Its standard error, $se(p) = \sqrt{\frac{\sigma^2}{n}} = \sqrt{\frac{p(1-p)}{n}}$
- Central limit theorem. For large enough sample, distribution of sample mean is approximately normal

$$\hat{p} \sim N(p, se(p)^2)$$

What's the probability we make a mistake?

$$P(\hat{p} < 0.03) = .027$$

Bootstrap

Sample with replacement from the original sample, using the same sample size

For $b = 1 \dots B$ bootstrap samples

- 1. Resample with replacement, $x_1^b, ... x_n^b$
- 2. Calculate estimate using this resample set, $\hat{p}_b = \frac{1}{n} \sum_i x_i^b$

You now have a distribution $\hat{p}_1, ... \hat{p}_B$.

How big should the test be?

We want to test whether our estimated

$$H_A$$
: $p > p_{BE}$

$$H_0: p \leq p_{BE}$$

where

$$p_{BE} = \frac{c}{m}$$

No rollout

rollout

Decision

How should you determine the sample size?

- Use excellent (free) software package GPower
 - http://www.gpower.hhu.de/en.html
 - Go to Test family = "Exact"
 - Statistical test = "Proportion: Difference from a constant"
 - Set power $(1 \beta) = 0.95$
 - Set $\alpha = 0.05$
 - Set constant proportion = p_{BE}
 - Set effect size equal to how much over the breakeven your best guess is, $p-p_{BE}=0.035-0.030=0.005$

Making smarter use of the test results

- So far, we've considered an "all or nothing" approach
- What if we used the test to identify profitable groups, and target mailing to them?

Test Targeted Rollout Untargeted Rollout Sample Sample (sent) Sample (not sent)

Data for the groups

 Of course we can build a model to select customers on the basis of many variables! Better predictions.

Most common

- **Demographics**: gender, ethnicity, age, income, family size, occupation, marital status, education, homeowner or renter, length of residence (typically available for prospects)
- **Transaction data**: past purchases, amounts, dates, discounts, ... Best but unavailable for prospects
 - Marketing: past mailings, content mailings, date, costs
 - (Survey data, e.g. Psychographics): attitudes, interests, activities

 See BKN chapter 8

Example: better targeting with model

- Let's say we use our test data to build a model that predicts response probability
- Profit contribution per response (m) = 80.00
- Each mailing costs 0.70
- Rollout sample size = 1000000

We sort them into deciles from most likely to least likely

Targeting: select customers based on deciles

Decile	size		р	(pm - c)	profit	cum profit
	1	100000	0.0300	1.70	170000	170000
	2	100000	0.0200	0.90	90000	260000
	3	100000	0.0140	0.42	42000	302000
	4	100000	0.0115	0.22	22000	324000
	5	100000	0.0100	0.10	10000	334000
	6	100000	0.0060	-0.22	-22000	312000
	7	100000	0.0040	-0.38	-38000	274000
	8	100000	0.0030	-0.46	-46000	228000
	9	100000	0.0010	-0.62	-62000	166000
1	0	100000	0.0005	-0.66	-66000	100000

Base case: no targeting

- Rollout to everyone or not at all.
- Response rate to entire list is 0.01

$$E[\text{rollout profit}] = (N - n)(m \cdot p - c)$$
$$= 1000000 ((80)(0.01) - 0.70)$$
$$= 100000$$

Summary

- No targeting: mail everyone, profits = 100000
- Targeting: mail top 5 deciles, profits = 334000
 - Cost is $500000 \times 0.70 = 350000$
 - ROI = profits/cost
 - Mail Top 5 ROI = 334000/350000 = 95%
 - Mail everyone ROI = 100000/700000 = 14%
 For half the cost, three times the profit

Even if the untargeted mailing campaign would be profitable, selecting customers usually is *more* profitable

Even better predictions?

Decile	siz	e p	(pr	n - c) pr	ofit	cum profit
	1	100000	0.0350	2.10	210000	210000
	2	100000	0.0220	1.06	106000	316000
	3	100000	0.0150	0.50	50000	366000
	4	100000	0.0100	0.10	10000	376000
	5	100000	0.0080	-0.06	-6000	370000
	6	100000	0.0045	-0.34	-34000	336000
	7	100000	0.0028	-0.48	-47600	288400
	8	100000	0.0018	-0.56	-55600	232800
	9	100000	0.0007	-0.64	-64400	168400
	10	100000	0.0003	-0.68	-67600	100800

ROI = 376000/280000 = 134%

Small improvements in predictions matters!

Conclusion

- Testing resolves (some, usually not all) uncertainty about the benefit of marketing.
- Testing gives the option to rollout if test results are positive
- Even more value when you use it to better target
- Next class: Recency-Frequency-Monetary (RFM) analysis

