Freitag, 14. Januar 2022 08:53

Machine Learning

- Learning from Data
- Models
- Features and Targets
- Dimensions of Machine Learning

Estimating Appartment Prices

Features? -----> Target: Price

Regression: Predicting a real number value

14:37

Kind of Iris Plant

Features? Target: Kind

Classification: Predicting a label

Is there a trend?

Linear model: $sat = \theta_0 + \theta_1 * gdp_per_capita$

Finding good models? How is "good" defined

Take GDB per capita and predict sat

Donnerstag, 6. Mai 2021

10:21

- Not enough data
- Data is not representative
- Bad data quality
- Irrelevant features
- Overfitting
- Underfitting

Adding Brasil, Mexico, ..., Norway, ... changes model Linear model does not really fit

Countries with high GDP per capita but lower sat Countries with low GDP per capita but higher sat Donnerstag, 6. Mai 2021 10:27

Komplex model Polynomial with high degree

Goal:

- Find relationship between features and targets
- Discover patterns
- Find correlations

Common terms:

- Machine Learning
- Data Mining
- Statistical Learning

Reasons why learning from data

- Constructing an abstraction for the relationship between features and targets (model)
- Complex problems where algorithmic formulation is hard
- Environments where data changes continuously
- Problems that require a long list of complicated rules

Analysis of spam emails, identifiction of offensive words and phrases

Long list of rules - not easily maintainable Adaption to changes are hard to do

Identification auf words and phrases by learning from data using suitable algorithms.

Adaption to changes much easier: just take new data and learn again

Features and Targets

Mittwoch, 30. Juni 2021

08.27

Features

- Attributes that characterize a particular instance/object
- Also called predictors

Targets

- Scalar value in case of regression
- Nominal value in case of classification

Features / Targets

Regression

Bedrooms	Bathrooms	Latitude	Longitude	Price
1	1	40.71	-73.94	3055
•••			•••	•••

Classification

Income	Job	IsMarried	Age	Loan
•••	•••		•••	Yes
•••	•••	•••	•••	No

Mittwoch, 30. Juni 2021 08:34

x1	=	x11	x12	x13	•••	x1n
x2	=	x21	x22	x23	•••	x2n
•••		•••				
xm	=	xm1	xm2	xm3	•••	xmn

у1
y2
ym

X

У

хi	Feature vector
xij	Feature value
yi	Target value
X	Feature matrix
y	Target vector

- All entries must be numbers, i.e. all feature and target values must be transformed into numbers
- Each feature vector is one instance/object

Mittwoch, 30. Juni 2021 08:53

Learning should

- be as accurate as possible
- generalize to new data as good as possible

Conflicting goals!

Learning Regimes

Freitag, 18. Juni 2021

09:41

Just remember target value wrt. feature combination

- Good accuracy
- Bad generalization
- Combinations might not exist
- Combinations might not be unique

bedrooms	bathrooms	latitude	longitude	price
0	1.0000	40.7073	-73.9664	2650
0	1.0000	40.7073	-73.9664	2850
0	1.0000	40.7073	-73.9664	2950
0	1.0000	40.7073	-73.9664	2850

Learn from neighbors (k nearest neighbor)

- Powerful
- But must store complete training data set
- No real learning
- Finding nearest neighbors requires search, might be slow

Build coarse grained groups, e.g. price per bedrooms and bathroom combinations

- Bad accuracy
- Good generalization

Bedrooms	Bathroom	Price
1	1	3000
2	1	3700
1	2	3010
•••	•••	

Build a linear model:

Price = w0 +

w1*bedrooms +

w2*bathrooms +

w3*latitude +

w4*longitude

Might be not suitable: higher number of bathrooms doesn't mean higher price

Supervision

- Supervised
- Unsupervised
- Semisupervised
- Reinforcement Learning

Data Usage

- Batch
- Online

Method

- Instance-Based
- Model-Based

Features of instances + target values

Class tags:

• Class1: orange

• Class2: blue

Features of instances and no class tags

Feature 1

Find sets of data with strong coupling and large distance between sets

10:49

Features of instances Compute cluster of regular instances

Calculate distance

Feature 1

Market Basket Analysis Learning of rules

```
{ Milk, Bread } -> { Butter }
{ PC, Monitor, Graphics Card } -> { PC Game }
```

Friday evening
{ Beer } -> { Diapers }

Example: Identification of persons on your private fotos

- Upload of fotos
- System detects same persons on different fotos (unsupervised)
- You tag with name (supervised)

Reinforcement Learning

Mittwoch, 5. Mai 2021 11:00

- Agent observes environment
- Chooses action according to strategy
- Executes action
- Gets reward or punishment
- Learns from feedback adopts strategy
- Repeat until optimal solution found (or at least a satisfying solution)

Batch Learning

- Take all data at once and learn from it
- Complete new take if data changes
- Requires long execution time and ressources in case of large training data set

Online Learning

- Incremental usage of data
- Single data points or minibatches
- Faster adoption to new data
- More volatile models

Similarity to training data

Keep all training data Use distance metrics Donnerstag, 6. Mai 2021 08:20

No storage of trainings data Just keeping model parameters, e.g. slope and intercept of separating line

References

Donnerstag, 6. Mai 2021 10:20

Parr, Howard: The Mechanics of Machine Learning, https://mlbook.explained.ai/

James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning, Springer, 2013, http://www.statlearning.com/

Géron: Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly, 2017, http://shop.oreilly.com/product/0636920052289.do