Mohammad Azimi - 402123100

Assignment 03

Section 02

Note: Since the system dimension is too large, refer to the source code `.mlx` files in order to be able to understand what has been done. This report in pdf format can not be useful.

A = 10×10		0		•	•	-	^		
		0 -0 9000		0 0.1812	0 -3.9440	0	0	•	
-0.044	О	0 -2	2.8200	0	0	0	0		
(0 -11.4	4800			-0.0664	0	0		
	24.8	8 7 0 0	0	0.0205	-1.0340 -0.9989	0	0		
1.000	0	0 (0.0459	0	0	0	0		
(0	0 1	.0010	0		0	0		
		0000 0 -24		0	0	0	0 9.7900		
11.100	o .	0 2		· ·	Ŭ	0	3.7300		
$B = 10 \times 3$ $10^3 \times$									
		1490 (.1050						
1.362) n n (0 0023 (0						
0.016	6	0	0						
	5		0						
))	0	0						
	0	0	0						
(0 -	0.0000	0 -0 0582						
	Ü	••••	0.0002						
C = 3×10									
0	0	0 0			0	1 0			
0	0	0 0	0		L 0	0 0			
O	O	0 0	O	0 () 1	0 0			
D = 3×3									
0	0	0							
0	0	0							
0	0	0							
sys =									
A =	x1	x2	x3	x4	x5	х6	x7	x8	x9
x1	-1.9	0	-0.68	0	0	0	0	0	0
x2 x3	0 -0 011	-8.9 0	0 -2.82	0.1812 0		0 0	0 0	0 0	0 0
x4			-2.82	-0.009451		0	0	0	-9 . 79
x5	0 24.8		0	-0.02051	-1.034	0	0	0	-0.4497
x6 x7	0 1	0 0	0 0.04593	0.04589 0		0 0	0 0	0 0	25.03 0
X/	T	0	1 001	0	0	0	0	0	0

0

0

0

0

0

x8

1.001

```
х9
                       0
                                       1
                                                                                                                                         0
                                                                                                                                                         0
    x10
                 11.48
                                                -24.84
                    x10
    x1
                0.3065
    x2
    х3
                 1.223
    х4
                       0
    х5
                       0
                       0
    хб
                       0
    x7
    x8
                       0
                       0
    х9
    x10
                -1.054
B =
                   u1
                                u2
                                             u3
                    0
                              149
                                            105
    х1
    x2
                1362
                                 0
                                               0
                    0
                             2.27
                                            434
    x3
               16.6
                                 0
                                               0
    х4
                57.5
                                 0
    х5
                                               0
                    0
                                 0
                                               0
    х6
                    0
                                 0
                                               0
    х7
                    0
                                 0
                                               0
    x8
    х9
                    0
                                 0
                                               0
                    0
    x10
                        -0.0032
                                         -58.2
 C =
           x1
                   x2
                          x3
                                 x4
                                         x5
                                                х6
                                                       x7
                                                               x8
                                                                      x9
                                                                            x10
            0
                    0
                           0
                                   0
                                          0
                                                 0
                                                         0
                                                                0
                                                                       1
                                                                               0
    у1
            0
                    0
                           0
                                   0
                                          0
                                                 0
                                                                        0
                                                                               0
    y2
                                                         1
                                                                0
    y3
                                                 0
                                                                               0
          u1
               u2
                     u3
                       0
    у1
           0
                 0
    y2
           0
                 0
                       0
    у3
           0
                 0
                       0
   Continuous-time state-space model.
G =
\left(\frac{446300160000000000000^{\frac{2}{3}}+3923667130777600000\,s+42839883829739515}{65536\left(50000000000\,s^{\frac{4}{3}}+497172550000\,s^{\frac{3}{3}}+5473129039010\,s^{\frac{2}{3}}+219044219249\,s+130200898022\right)}\right)
                                                             \frac{18638032637500000\,s^2 + 71961013707219000\,s + 630760875559205632}{25\,\sigma_1}
```

Two Left MFDs with different orders for the given transfer matrix:

 $\sigma_1 = 50000000000000 s^4 + 288700000000000 s^3 + 185818300000000 s^2 + 295378340909500 s - 6794168415529$

Checking for minimality:

```
minimal 01 = 1
```

-> The first MFD is **minimal** since the following matrix is full rank.

$$rank[D(s) \ N(s)] = full$$

The greatest common left divisor (gcld) for G is obtained as:

Smith Form of the system is derived as:

Its compact form:

Accordingly, since the Smith-McMillan form is obtained as:

SmithMcMillan =
$$\frac{\text{Smith}}{d(s)}$$
; Hence:

And its compact form:

The *McMillan degree* of a transfer-function matrix is the total number of poles in the diagonal elements of the matrix in its McMillan form. This number determines the order of any minimal state-space realization of the transfer-function matrix or the minimal order of coprime matrix-fraction models.

```
Roots of the Denominators (poles):
ans =
                                                -2.0198328918412763178064937434886
                                               0.022676932231485033226692959482812
                              -4.9527254525477250830147298426798 + 9.1941724407569773070399972494595i
                              -4.9527254525477250830147298426798 - 9.1941724407569773070399972494595i
                              -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518i
                              -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
                             -0.019000047452274916985270157320171 - 0.15334740050500866836476790402071 i
                             -0.019000047452274916985270157320171 + 0.15334740050500866836476790402071 i
ans =
                                                -2.0198328918412763178064937434886
                                               0.022676932231485033226692959482812
                              -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518 i
                              -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
poles_sum = 13
```

The total number of poles in McMillan form on the diagonal of the matrix is 14. Hence the McMillan order is 14.

Pole polynomials are as follows:

Eigenvalues of A are the system poles. Therefore, eig(A) returns system poles.

```
eigs = 10×1 complex

0.0000 + 0.0000i

0.0000 + 0.0000i

-1.8884 + 5.1089i

-1.8884 - 5.1089i

-2.0198 + 0.0000i

0.0227 + 0.0000i

-4.9527 + 9.1942i

-4.9527 - 9.1942i
```

```
-0.0190 + 0.1533i
-0.0190 - 0.1533i
```

For each element in transfer matrix, we have zeros:

```
_____
For the transfer matrix G(1,1) =
         446300160000000000000 s^2 + 3923667130777600000 s + 42839883829739515
65536 (50000000000 s^4 + 497172550000 s^3 + 5473129039010 s^2 + 219044219249 s + 130200898022)
zeros are:
  -0.86809691847272541050698226293761
-0.011057400176320110785235064522006
poles are:
  -4.9527254525477250830147298426798 + 9.1941724407569773070399972494595i
  -4.9527254525477250830147298426798 - 9.1941724407569773070399972494595i
 -0.019000047452274916985270157320171 - 0.15334740050500866836476790402071 \, \mathrm{i} \\
 -0.019000047452274916985270157320171 + 0.15334740050500866836476790402071 i.
For the transfer matrix G(2,2) =
              18638032637500000 s^2 + 71961013707219000 s + 630760875559205632
25 \left(5000000000000 \, s^4 + 28870000000000 \, s^3 + 185818300000000 \, s^2 + 295378340909500 \, s - 6794168415529\right)
zeros are:
 -1.9304884562341726396174736819778 - 5.487794549563338950541951167206i
  -1.9304884562341726396174736819778 + 5.487794549563338950541951167206i
poles are:
                 -2.0198328918412763178064937434886
                 0.022676932231485033226692959482812
 -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518i
 -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
For the transfer matrix G(2,3) =
               624668100000000 s^2 + 746070918910000 s - 420956970058820
zeros are:
  -1.612312090887977070154349792966
0.41796437422051798268053769979207
poles are:
```

```
-2.0198328918412763178064937434886
                     0.022676932231485033226692959482812
    -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518i
    -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
  For the transfer matrix G(3,2) =
            11361350000000 \, s^3 + 729060332000 \, s^2 + 10418443925465576 \, s + 8894840397192750
  s (5000000000000 s^4 + 28870000000000 s^3 + 185818300000000 s^2 + 295378340909500 s - 6794168415529)
  zeros are:
                    -0.85313280710894045446903631977535
   0.39448129342231163692614811583481 + 30.290675821762095075808850899066\,i
   0.39448129342231163692614811583481 – 30.290675821762095075808850899066 i
  poles are:
                     -2.0198328918412763178064937434886
                     0.022676932231485033226692959482812\\
    -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518i
    -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
  For the transfer matrix G(3,3) =
         s (5000000000000 s^4 + 28870000000000 s^3 + 185818300000000 s^2 + 295378340909500 s - 6794168415529)
  zeros are:
   (-1.9538343055254782528420058847449)
    -0.88556401592610411594474204428371
    0.06004947352531508768075714561844
  poles are:
                     -2.0198328918412763178064937434886
                     0.022676932231485033226692959482812
    -1.8884220201951043577100996079971 - 5.1088530320872826348108730718518i
    -1.8884220201951043577100996079971 + 5.1088530320872826348108730718518i
The system matootix S(s) is formed as in the following.
```

$$S(s) = \begin{bmatrix} SI - A & B \\ -C & D \end{bmatrix}$$

sys_matrix =

$s + \frac{19}{10}$	0	$\frac{17}{25}$	0	0	0	0	0	0	$-\frac{613}{2000}$	0	149	105
0	$s + \frac{89}{10}$	0	$-\frac{453}{2500}$	$\frac{493}{125}$	0	0	0	0	0	1362	0	0
$\frac{11}{250}$	0	$s + \frac{141}{50}$	0	0	0	0	0	0	$-\frac{1223}{1000}$	0	$\frac{227}{100}$	434
0	$\frac{287}{25}$	0	$s + \frac{5448130570019655}{576460752303423488}$	$\frac{3319}{50000}$	0	0	0	$\frac{979}{100}$	0	$\frac{83}{5}$	0	0
0	$-\frac{2487}{100}$	0	$\frac{2051}{100000}$	$s + \frac{517}{500}$	0	0	0	$\frac{4497}{10000}$	0	$\frac{115}{2}$	0	0
0	0	0	$-\frac{4589}{100000}$	$\frac{9989}{10000}$	S	0	0	$-\frac{2503}{100}$	0	0	0	0
-1	0	$-\frac{4593}{100000}$	0	0	0	S	0	0	0	0	0	0
0	0	$-\frac{1001}{1000}$	0	0	0	0	S	0	0	0	0	0
0	-1	0	0	0	0	0	0	S	0	0	0	0
$-\frac{287}{25}$	0	$\frac{621}{25}$	0	0	0	$-\frac{979}{100}$	0	0	$s + \frac{527}{500}$	0	$-\frac{2}{625}$	$-\frac{291}{5}$
0	0	0	0	0	0	0	0	-1	0	0	0	0
0	0	0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	- 1	0	0	0	0	0

The system is **non-minimum phase** since there are poles or zeros on the right side plane.