ESP32

Microcontroller

- ไมโครคอนโทรลเลอร์หรือระบบคอมพิวเตอร์ขนาดเล็ก ประกอบด้วย
 - หน่วยประมวลผลซีพียู (CPU)
 - หน่วยความจำ (Memory)
 - อินพุตเอาต์พุตพอร์ต (I/O Port) ประเภทต่าง ๆ
 - ปัจจุบันยังประกอบด้วยการสื่อสาร แบบต่าง ๆ เช่น บลูทูธ หรือ ไวไฟ (WIFI) เป็นต้น

บอร์ดที่ใช้

• ESP 32

- ซีพียูใช้สถาปัตยกรรม Tensilica LX6 แบบ 2 แกน สัญญาณนาฬิกา 240 MHz
- มีแรมในตัว 512KB
- รองรับการเชื่อมต่อรอมภายนอกสูงสุด 16MB
- WiFi มาตรฐาน 802.11 b/g/n 2.4 GHz ส่งได้ สูงสุด 150 Mbps
- Bluetooth เวอร์ชัน 4.2 (BLE)

โมดูล ESP32

บอร์ดที่ใช้

ขาต่าง ๆ ของ ESP32

- GPIO จำนวน 32 ช่อง
- รองรับ PWM ทุกช่อง
- รองรับ ADC จำนวน 12 ช่อง
- รองรับ DAC จำนวน 2 ช่อง
- รองรับ SPI จำนวน 3 ช่อง
- รองรับ I2C จำนวน 2 ช่อง
- รองรับ UART จำนวน 3 ช่อง

GPIO

- General Purpose Input/Output (GPIO)
 - เป็นขาที่ต่อตรงไปยังส่วนของโปรเซลเซอร์แต่ละขาของอุปกรณ์
 - สามารถกำหนดได้อย่างอิสระเป็นอินพุทและเอาท์พุต

การใช้งาน GPIO

PWM

- Pulse Width Modulation (PWM) ใช้กำเนิด
 - สัญญาณ PWM ประกอบด้วยสองส่วนหลัก
 - Duty Cycle
 - ความถื่
 - สำหรับเปิดปิดไฟ หรือเปิดปิดปั้มน้ำ เป็นต้น

กลุ่มเพื่อการทำงาน PMW

ADC

• Analog to Digital Conversion (ADC) เป็นการใช้เพื่อแปลงสัญญาณอนาลอกไป เป็นดิจิทัล

DAC

• Digital to Analog Conversion (DAC) แปลงสัญญาณจากดิจิทัลไปเป็นอนาลอก ไม่นิยม เท่าที่ควร เนื่องจากจะเกิดการลดทอนสัญญาณ

กลุ่มการแปลงสัญญาณ

การสื่อสาร SPI

• Serial Peripheral Interface (SPI) เป็นการสื่อสารแบบซิงโครนัสระยะใกล้ เช่น การสื่อสาร ระหว่างโปรเซสเซอร์กับอุปกรณ์รอบข้าง

การสื่อสาร I2C

• Inter-Integrated Circuit (I2C) เป็นการสื่อสารรูปแบบบัสสัญญาณ โดยอุปกรณ์ทุกตัวจะ เชื่อมบนบัส

การสื่อสาร UART

• Universal Asynchronous ReceiverTransmitter (UART) เป็นช่องทางการสื่อสาร แบบอะซิงโครนัสแบบอนุกรม

กลุ่มสื่อสาร I2C, SPI และ UART

กลุ่มที่ไม่ควรใช้

ESP 8266

Operating Voltage	3.3V
Digital I/O Pins	11
Analog Input Pins	1(3.2V Max)
Clock Speed	80/160MHz
Flash	4M Bytes
Size	34.2*25.6mm
Weight	3g

ขาการเชื่อมต่อของ ESP 8266

Pin	Function	ESP-8266 Pin
TX	TXD	TXD
RX	RXD	RXD
A0	Analog input, max 3.2V	A0
D0	Ю	GPIO16
D1	IO, SCL	GPIO5
D2	IO, SDA	GPIO4
D3	IO, 10k Pull-up	GPIO0
D4	IO, 10k Pull-up, BUILTIN_LED	GPIO2

Pin	Function	ESP-8266 Pin
D5	IO, SCK	GPIO14
D6	IO, MISO	GPIO12
D7	IO, MOSI	GPIO13
D8	IO, 10k Pull-down, SS	GPIO15
G	Ground	GND
5V	5V	-
3V3	3.3V	3.3V
RST	Reset	RST