Stress Monitoring and Detection using Physiological Sensors

Virginia Sandulescu
Dr. David Ellis
Dr. Sally Andrews
Dr. Oscar Martinez Mozos

Joint research with the School of Psychology at University of Lincoln

Motivation

- Problems in developed countries:
 - Increasing population
 - Increasing stress / anxiety -> Depression

- Consequences:
 - Decreasing the quality of life of people
 - Low productivity at work and daily life
 - Personal problems / relationships / family

Facts about depression in elderly

- Depression affects 12% of the elderly in EU (11.3 million) and 31% in Japan (10.7 million) and it is the main illness in older people ahead of dementia.
- Untreated depression negatively affects the outcome of other diseases like heart conditions, lupus, or AIDS.
- Finally, and mostly important, depression is the main cause of suicide for older people in western countries and Japan.

Example: Costs in UK

- In the UK around 12 million adults visit the doctor with stress related problems.
- Stress generates 13.3 million lost working days in UK.
- Stress has a cost of ~8.4 million pounds to UK companies
- Current doctor appointments for therapy have waiting time of 3-6 months → dangerous cumulative stress

Sensors for Stress

- How to monitor and detect stress?
- In this work we use wearable physiological sensors.

Recorded Signals

- Pulse plethysmograph (PPG): volume of blood in the tissue
- Electro-dermal activity (EDA): skin sweating activity
- Heart Rate Variability (HRV): heartbeats
- Correlation of PPG and HRV (PPG)
- Signals were sampled at a 10 Hz
- For eat time t the feature vector was:

$$x_t = \{ PPG_t, EDA_t, HRV_t, PPG_{corr} \}$$

• Each time t we classify the feature vector x_t into "stressed" and "not stressed" using a Support Vector Machine

Trier Social Stress Test (TSST)

- In TSST people carry out stressful and neutral tasks
- Neutral tasks: Talk about the weather, personal info, etc...
- Stressful tasks:
 - 1) Presentation of 5 minutes in front of 2 examiners

Trier Social Stress Test (TSST)

- In TSST people carry out stressful and neutral tasks
- Neutral tasks: Talk about the weather, personal info, etc...
- Stressful tasks:
 - 1) Count backwards from 1022 in steps of 13

Dataset Recording

• During the TSST the physiological measurements are recorded together with the corresponding label $(x_{\downarrow}, |_{\downarrow})$

$$x_t = \{ PPG_t, EDA_t, HRV_t, PPG_{corr} \},$$

$$I_t \in \{\text{"stressed"}, \text{"not stressed"} \}$$

Example Recorded Signals

Example Recorded Signals

Feature vector for time t

Feature vector for time t

Feature space

 We plot the feature vectors into the feature space which will be used by the classification algorithms.

Feature space

 We plot the feature vectors into the feature space which will be used by the classification algorithms.

New measurement

New measurement

Trier Social Stress Test (TSST)

- In TSST people carry out stressful and neutral tasks
- Neutral tasks: Talk about the weather, personal info, etc...
- Stressful tasks:
 - 1) Presentation of 5 minutes in front of 2 examiners

Trier Social Stress Test (TSST)

- In TSST people carry out stressful and neutral tasks
- Neutral tasks: Talk about the weather, personal info, etc...
- Stressful tasks:
 - 1) Count backwards from 1022 in steps of 13

Experiments

- 5 persons participated in the TSST
- Each experiment around 20 minutes
- Dataset sizes:

- We train one individual SVM for each person (adaptation)
- 75% for training, 25% for testing

Results

Participant No.	Accuracy [%]	Precision [%]
P1	78.90	80.19
P2	73.26	73.61
P3	83.08	83.87
P4	82.82	83.20
P5	76.83	76.67

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Positive=stressed

$$Precision = \frac{TP}{TP + FP}$$

Results

Participant No.	P1		P2		Р3		P4		P5	
	stressed	not stressed	not stressed	stressed						
stressed	94.04						91.55		91.62	8.38
not stressed	60.62	39.38	50.73	49.27	29.49	70.51	32.53	67.47	49.36	50.64

- Bias to positive class "stressed"
- Double check if the person was really stressed or not

Discussion

- Difficult to stress people. Each person has a different behaviour.
- Difficult to get ground truth.
- Difficult to measure stress levels (how stressed are you?)
- How well does the stress classifier generalize to other people? → global vs individual