June 2005 Intake Paper 1 (FM1) [Examination date: 29 August 2006]

1.
$$4\pi a^2$$

2.
$$\frac{1}{r} - \frac{2}{r+2} + \frac{1}{r+3}$$
; $\frac{7}{6} - \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3}$

3. ii)
$$\frac{16}{15\pi}$$

5.
$$\frac{1}{12}$$

6.
$$\frac{5\pi}{8}$$

7. i)
$$y = \frac{3}{a}e^{ax} + \frac{1}{a}e^{ax}$$
; (ii) $y = Ae^x + Be^{2x} + 3\cos x + \sin x$

9. PROVE

ii)
$$Max.(-4,-11)$$
; $Min.(0,5)$

10. iii) Intersection (0, 5)

11E. i)
$$\frac{15}{\sqrt{62}}$$
 (ii) $\begin{pmatrix} \frac{71}{31} \\ \frac{40}{31} \\ \frac{58}{31} \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix}$ (iii) $\frac{\sqrt{60294}}{62}$

110. a) 3;
$$\begin{cases} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
 (b) i) $\lambda_1 = 1$, $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$; $\lambda_2 = 2$, $\mathbf{e}_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$; $\lambda_3 = -3$, $\mathbf{e}_3 = \begin{pmatrix} 1 \\ 8 \\ 5 \end{pmatrix}$