Gandaki University

Manju Subedi

Bachelor of Information Technology BSM 102

Exercise on Complex Number

1. Express given complex number in the form of x + iy

a.
$$\frac{1+2i}{1-3i}$$

a.
$$\frac{1+2i}{1-3i}$$
 b. $\frac{4+\sqrt{-25}}{2-\sqrt{-9}}$

2. Write the following complex number into polar form.

a.
$$3 - 3i$$

b.
$$2i, -2i$$

c. -5 d.
$$\frac{1}{2}$$
 +

e.
$$\frac{1+i}{1-i}$$

a.
$$3-3i$$
 b. $2i, -2i$ c. -5 d. $\frac{1}{2} + \frac{1}{4}\pi i$ e. $\frac{1+i}{1-i}$ f. $\frac{3\sqrt{2}+2t}{-\sqrt{2}-(2/3)i}$ g. $\frac{-6+5i}{3i}$ h. $\frac{2+3i}{5+4i}$

g.
$$\frac{-6+5i}{3i}$$

h.
$$\frac{2+3}{5+4}$$

PRINCIPAL ARGUMENT: Let z = x + iy be any complex number then modulus of z is denoted by $|z| = \sqrt{x^2 + y^2} = r$, and $\theta = \arctan(y/x)$ is called argument of z, is denoted as "arg z."

 θ is the directed angle from the positive x-axis to the number z = x + iy. For z = 0 this angle θ is undefined. (Why?) For a given $z \neq 0$ it is determined only up to integer multiples of 2π since cosine and sine are periodic with period 2π . But one often wants to specify a unique value of arg z of a given $z \neq 0$. For this reason one defines the principal value Arg z (with capital A!) of arg z by the double inequality

$$-\pi < \operatorname{Arg} z \leq \pi$$
.

Example: Principal Value of z, i.e Arg z, if z = 1 + i

z = 1 + i has the polar form $z = \sqrt{2} \left(\cos \frac{1}{4}\pi + i \sin \frac{1}{4}\pi\right)$. Hence we obtain

 $|z| = \sqrt{2}$, $\arg z = \frac{1}{4}\pi \pm 2n\pi(n = 0, 1, \dots)$, and $\operatorname{Arg} z = \frac{1}{4}\pi$ (the principal value).

Similarly, $z = 3 + 3\sqrt{3}i = 6\left(\cos\frac{1}{3}\pi + i\sin\frac{1}{3}\pi\right), |z| = 6$, and Arg $z = \frac{1}{3}\pi$.

3. Determine the principal value of the argument.

b.
$$-20 + i$$

$$c = 4 + 3i$$

$$d = \pi^2$$

e.
$$7 \pm 7$$

a.
$$-1 - i$$
 b. $-20 + i$, $-20 - i$ c. $4 \pm 3i$ d. $-\pi^2$ e. $7 \pm 7i$ f. $(1 + i)^{12}$ g. $(9 + 9i)^3$

g.
$$(9+9i)^3$$

4. Represent in the form x + iy and graph it in the complex plane.

a.
$$\cos \frac{1}{2}\pi + i \sin \frac{1}{2}\pi$$

b.
$$4\left(\cos\frac{1}{3}\pi \pm i\sin\frac{1}{3}\pi\right)$$

c.
$$12\left(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi\right)$$

5. Find all roots in the complex plane.

a
$$\sqrt{-i}$$

$$c \sqrt[4]{-1}$$

a.
$$\sqrt{-i}$$
 b. $\sqrt[8]{1}$ c. $\sqrt[4]{-1}$ d. $\sqrt[3]{3+4i}$ e. $\sqrt[5]{-1}$

1