

Help!! What is

... an ORF ??

ORF = open reading frame

open reading frame

Possible Amino Acid Sequences (Forward)

Nucleotide Sequence

Possible Amino Acid Sequences (Reverse)

Standard genetic code

start codon = ATG (AUG) stop codon = TAG / TAA / TGA

ORF = sequence stretch between start codon and stop codon

Help!! What is

... a protein (super)family ??

Families, superfamilies,...

- Protein family = group of proteins that share a common evolutionary origin, reflected by their related functions and similarities in sequence or structure.
 - superfamily = large group of distantly related proteins
 - subfamily = small group of closely related proteins
- Protein families are often arranged into hierarchies, with proteins that share a common ancestor subdivided into smaller, more closely related groups.

Protein domains

- Protein domains = functional and/or structural units in a protein
- Protein usually contain several protein domains

SH3 domain

RGS family

beta-adrenergic receptor kinase family

Sorting nexin family

RGS = Regulator of G-protein signalling

Help!! What is

... an E-value ??

Fake gene expression data

- Finding differentially expressed genes between healthy and disease patients
- t-test with $\alpha = 5\%$
- H₀: non-significant expression difference between the two groups

This dataset contains only random numbers

- → H₀ holds for all 10.000 "genes"
- → all the 445 genes are false-positives

Multiple testing

- Significance level α : level at which to reject $(p < \alpha)$ or accept $(p > \alpha)$ the Null hypothesis
- P-value: probability to observe a more extreme effect if H0 is true ("risk of a false-positive by random chance")
- E-value: expected number of false-positive events when N tests are performed

$$E = p \cdot N$$

Help!! What is

... BLAST ??

Why sequence alignments?

>Protein sequence

MLCPISGWAIYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSN GTVKDRSPYRTLMSCPVGEAPSPYNSRFESVAWSASACHDGISWLTIGISGPDNGAV AVLKYNGIITDTIKSWRNNTLRTQESECACVNGSCFTVMTDGPSNEQASYKIFKIEK

- Open questions
 - Homologues: are there related sequences in other organisms?
 - Function: possible biological/molecular/enzymatic function?
 - Origin: from which organisms / clade? (Example: Metagenomics)
- Global (= whole sequence) / local (= parts of the sequence) comparisons

house house

hanse haus

3 Matches

3 Matches

2 Mismatches

1 Mismatch

1 Ins./Del. (Indel)

house | || hanse

house | | | haus

- 3 Matches
- 2 Mismatches
- 3 Matches
- 1 Mismatch
- 1 Ins./Del. (Indel)

- which comparison is better?
 - → Scoring-Method
- Score should take into account...
 - Matches (+)
 - Mismatches (-)
 - Vokal/Vokal oder Kons./Kons. (-)
 - ► Vokal/Kons. (--)
 - Insertion/Deletion (-)

house | || hanse

house | | | haus

- which comparison is better?
 - → Scoring-Method
- Score should take into account...
 - Matches (+)
 - Mismatches (-)
 - Vokal/Vokal oder Kons./Kons. (-)
 - ► Vokal/Kons. (--)
 - Insertion/Deletion (-)

Scoring Verfahren

Matches/mismatches
 subtitution matrix: values represent
 frequencies of observed substitutions in
 homologous sequences (ex. BLOSUM62)

- Gaps mostly affine cost
 - gap opening (O)
 - gap extensions (E)

indels
$$I = 7$$

here:
$$-11 + 7 \times (-2) = -25$$

Which is the best alignment?

• Given 2 sequences, which is the best alignment?

BLOSUM62 Matrix O = -11: E = -2

$$S = -1$$

$$S = -12$$

$$\binom{m+n}{n} = \binom{21}{7} = 116.280$$
 possible alignments...

Dynamical programming (DP)

- Dynamical programming allows to determine exactly the best alignment
- Alignment = path in the score matrix
- Best alignment is obtained by determining at each step the best alignment
- Needleman & Wunsch = global alignment
 Smith & Watermann = local Alignment

Complexity

 $\mathcal{O}(m \cdot n)$

V-L-QS IVOP-T VLQ-S IVQPT

gap in 2nd sequence

gap in 1st sequence

(mis)match

Needlman & Wunsch: globales Alignment

1. PhaseFüllen der Matrix

2. Phase

Backtracking von unten rechts nach oben links

		v	L	Q	S
	0 K	-8	-16	-24	-32
I	-8	2 _	→ -6 —	→-14 -	→ -22
v	-16	-4	2 -	→ -6 —	→-14
Q	-24	-12	- 6	7 —	→ -1
P	-32	-20	-14	- 1	7
T	-40	-28	-22	-9	-1

Smith Watermann: lokales Alignment

1. Phase

Füllen der Matrix (negative Werte werden durch Null ersetzt)

		v	L	Q	S
	0	0	0	0	0
I	0	2	0	0	0
v	0	4	2	0	0
Q	0	0	0	7	0
P	0	0	0	0	7
T	0	0	0	0	2

2. Phase

Backtracking vom höchsten Wert bis zur ersten Null

		v	L	Q	S
	0 _	0	0	0	0
I	0	2 K	0	0	0
v	0	4	2 5	0	0
Q	0	0	0	7 K	0
P	0	0	0	0	7
T	0	0	0	0	2

VLQS IVQP

Gap = -8

Problem solved?

Enumeration of all possible alignments

complexity
$$n = m = 50$$

$$\binom{m+n}{n} = 10^{29}$$

Optimal alignment using DP

$$m \cdot n = 2500$$

Optimal alignment with database

N ~ 230 million sequences

$$N \cdot m \cdot n = 5.8 \cdot 10^{11}$$

- **Problem**: DP alignment cannot be computed for all target sequences (too long!)
- Solution: select most promissing sequences first... then do DP

Heuristic = short-cut

- Advantage: much faster!
- **Disadvantage**: maybe the right translation starts with a different letter ...

BLAST: basic local alignment search tool

Heuristic

 homologous sequences share very similar short words

(Protein: *k*=3; DNA: *k*=11)

- 2. these words reside in longer homologous sequences without gaps(HSP = high scoring pairs)
- 3. starting from HSP longer alignments with gaps can be obtained using DP.
 - \rightarrow final raw score S depends on the substitution matrix, number of matches / mismatches / gaps

BLAST 1.0 (Altschul et al., 1990) Alignments **ohne** Gaps

BLAST 2.0 (Altschul et al., 1997) Alignments **mit** Gaps

Score

Raw score obtained from the dynamical programming

$$S' = \frac{\lambda S - \ln K}{\ln 2}$$
 (bits)

E = expected number of false-positive in a database of the same size

$$E=rac{Q}{2S'}$$
 Size of the database

NCBI BLAST

E-value = number of false-positives with equal scores

RecName: Full=Nøn-symbiotic hemoglobin 0; AltName: Full=Non-vascular plant hemoglobin

Sequence ID: Q9M6 0.1 Length: 180 Number of Matches: 1

Range 1: 24 to 169 GenPept Graphics

▼ Next Match ▲ Previous Match

S =	238	
S' =	96.3	bits

Score		Expect	Method	Identities	Positives	Gaps	
96.3 bit	ts(238)	1e-24	Compositional matrix adjust	58/146(40%)	84/146(57%)	5/146(3%)	
Query	3		- EALVNSSSQLFKQNPSNYSVLF E LV S ++ K++			VVDSPKLGA ++PK+	61
Sbjct	24		EQLVKQSWEILKKDAQRNGINF				83
Query	62		FGMVRDSAVQLRATGEV-VLDGI F M D+AVQL G VL+ I				117
Sbjct	84		FMMTGDAAVQLGEKGAYQVLESI				143
Query	118		SEELSAAWEVAYDGLATAIKA S EL +AW AYD LA +KA	143			
Sbjct	144		SPELKSAWGDAYDMLAEQVKA	169			

Help!! What is

... phylogenetic tree ??

Phylogenetic tree

- Represent the evolutionary history of a set of sequences or organisms
- Beware the a tree built from a single gene can differ from the evolutionnary tree of the species!
- Trees are constructed based on multiple alignments, from which a distance matrix can be built

Outgroup

- IN an unrooted tree, one cannot tell which is the evolutionary origin
- If you know that a group of sequences is more distant than the rest ('outgroup'), then the root of the tree can be set on the branch separating the outgroup from the rest!

