Compilers

Surname, Name	
Email	

1. After generating the DFA equivalent to the following NFA, specify the BNF expressing the regular language relevant to the DFA.

2. Given the following table of operators, with increasing precedence from top to bottom,

Operators	Associativity
&&,	left
==, !=	nonassoc
+, -	right

specify the BNF of a corresponding language for expressions based on the following requirements:

- parentheses can be used for arithmetic operators (+, -);
- parentheses cannot be used for logical operators (&&, | |);
- atomic elements of the expression are either constants or identifiers.
- **3.** After constructing the complete parsing automaton, check whether the following grammar is LR(1):

$$A \rightarrow B \mid id \mid num$$

 $B \rightarrow C \quad num \mid id$
 $C \rightarrow id \mid num \mid \varepsilon$

4. Codify in Yacc the generator of the binary abstract trees relevant to the language defined by the following BNF:

```
program \rightarrow stat-list

stat-list \rightarrow stat; stat-list \mid stat;

stat \rightarrow def-stat \mid assign-stat

def-stat \rightarrow id-list: type

id-list \rightarrow id, id-list \mid id

type \rightarrow int \mid string \mid bool

assign-stat \rightarrow id = id
```

based on the following abstract EBNF:

```
program → { def-stat | assign-stat }+ def-stat → (int | string | bool) { id }+ assign-stat → id id
```


- **5.** With reference to the BNF of point 4, specify the attribute grammar based on the following semantic constraints:
 - all definitions shall precede all assignments;
 - variable names are unique;
 - the two variables involved in assignment shall exist and be of same type;
 - a variable cannot be assigned with itself.

Notes:

- the lexical value of identifiers is stored in the **lexval** field of the tree node;
- a symbol table is used to catalog variables by means of the following functions:

```
void insert(name, type)
Type lookup(name): returns the type of variable name (INT, STRING, BOOL) if cataloged, otherwise
NULL;
```

- no other global variables can be used;
- in case of semantic error, function error (string message) is called, which prints the relevant error message before terminating the analysis.
- **6.** A language is defined by the following EBNF:

```
program \rightarrow \{ stat \}^+

stat \rightarrow assign \mid loop \mid \mathbf{break}

assign \rightarrow (indexpr \mid \mathbf{id}) = expr

indexpr \rightarrow \mathbf{id} [ expr ]

expr \rightarrow indexpr \mid \mathbf{num} \mid \mathbf{id}

loop \rightarrow \mathbf{while} \ expr \ \mathbf{do} \ \{ stat \}^+
```

Assuming that the abstract tree is binary (pointers: **child**, **brother**) and irrelevant syntax sugar is not stored, we ask to codify a procedure for P-code generation based on the following requirements:

- a) the **break** statement breaks the loop in which it appears;
- b) the language of the P-machine includes the following set of instructions:
 - LDA *id*: load address of variable *id*:
 - LOD *id*: load value of variable *id*;
 - LDI *value*: load integer *value*;
 - LAB *label*: create *label*;
 - GOF *label*: conditional jump (to false);
 - GOT label: unconditional jump;
 - IND offset: indirect load;
 - IXA scale: indexed address;
 - STO: store.
- c) the size of array elements is 4;
- d) the (overloaded) auxiliary function emit(string operator [, string operand]) is used to print an instruction of the P-machine.