

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

BP

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : G02B 6/10, 6/26, 6/28, G02F 1/01		A1	(11) International Publication Number: WO 00/49434 (43) International Publication Date: 24 August 2000 (24.08.00)
<p>(21) International Application Number: PCT/GB00/00574</p> <p>(22) International Filing Date: 17 February 2000 (17.02.00)</p> <p>(30) Priority Data: 9903790.5 19 February 1999 (19.02.99) GB</p> <p>(71) Applicant (<i>for all designated States except US</i>): PROTODEL INTERNATIONAL LIMITED [GB/GB]; Binder Hamlyn, 17 Lansdowne Road, Croydon, Surrey CR9 2PL (GB).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): GILES, Ian, Peter [GB/GB]; ProtoDel International Limited, Vulcan House, Restmor Way, Hackbridge, Surrey SM6 7AH (GB). MONDANOS, Mikalis [GR/GB]; ProtoDel International Limited, Vulcan House, Restmor Way, Hackbridge, Surrey SM6 7AH (GB).</p> <p>(74) Agents: SARUP, David, Alexander et al.; Raworth Moss & Cook, Raworth House, 36 Sydenham Road, Surrey CR0 2EF (GB).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
(54) Title: OPTICAL FIBRE ATTENUATOR AND METHOD OF ATTENUATING LIGHT TRANSMITTED THROUGH AN OPTICAL FIBRE			
(57) Abstract			
<p>An optical fibre attenuator comprises an optical fibre (2) which comprises a central core (4) and an outer cladding (6). In a region (8) of the fibre, the outer cladding has been at least partially removed and/or the thickness of the outer cladding has been reduced. A material (10) has been provided at least partially over the cladding-removed region (8). The material (10) has a refractive index to couple light from the central core (4) of the optical fibre (2) so as to attenuate the light transmitted along the optical fibre (2).</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

OPTICAL FIBRE ATTENUATOR AND METHOD OF ATTENUATING LIGHT
TRANSMITTED THROUGH AN OPTICAL FIBRE

Technical Field

5 The present invention relates to an optical fibre attenuator and to a method of attenuating light transmitted through an optical fibre.

10 As used in this text, the term light covers other forms of electromagnetic radiation; however, infra-red and visible light in particular is contemplated.

Background

15 In a known single mode optical fibre, a propagating wave is contained within a central core section of the fibre through total internal reflection, the refractive index of the central core section being greater than the refractive index of the outer cladding. The guided wave has an associated evanescent field which extends some way 20 into the cladding. The precise characteristics of the evanescent field are dependent upon the fibre parameters such as dimensions and refractive index, and the wavelength of the light propagated.

25 Statements of Invention

30 The present invention relates to an optical fibre attenuator comprising an optical fibre which comprises a central core and an outer cladding, in a region of the fibre the outer cladding having been at least partially removed and/or the thickness of the outer cladding having been reduced, a material having being provided at least partially over the region, the material having a refractive index to couple light from the central core of the optical fibre so as to attenuate the light transmitted along the 35 optical fibre.

Preferably the outer cladding has been at least partially removed, for example by abrasion. Alternatively, preferably the thickness of the outer cladding is reduced,
5 in particular by stretching the optical fibre.

The present invention also relates to a corresponding method of attenuating light transmitted through an optical fibre.

10 Preferably the material is selected dependent on its refractive index to provide a predetermined attenuation. Preferably for attenuation, the refractive index of the material is greater than that of the central core of the
15 fibre.

20 Preferably the optical fibre is single mode optical fibre. Alternatively preferably the optical fibre is polarisation-maintaining fibre having two polarisation modes, the attenuations of transmitted light components in those two modes being selectable dependent upon the refractive index of the material.

25 Preferably the optical fibre attenuator is adjustable in its attenuation by adjusting the refractive index of the material.

30 Preferably the material is selected so as to have its refractive index dependent on temperature and the optical fibre attenuator includes a temperature control means to control the temperature of the material. Preferably the temperature control means is an electrically controllable heater. Preferably the material is an oil or polymer.

35 A plurality of the optical fibre attenuators can be

provided along an optical fibre, each being adjustable within predetermined ranges of attenuation settings.

Preferably an adjustable optical fibre attenuator can
5 be controlled so as to have selectively high and low
attenuation so as to act as a switch. Such switches can be
used together with an optical fibre directional coupler to
provide a switchable directional coupler. Preferably such
switches are provided at the inputs or outputs of the
10 switchable directional coupler.

Alternatively, a switchable directional coupler can
comprise two or more optical fibre attenuators in each of
which the thickness of the outer cladding is reduced in a
15 region of the fibre by stretching the fibre, the fibres
lying with their cladding-reduced regions in sufficient
proximity to each other for electromagnetic coupling.

Detailed Description of the Preferred Embodiments

Preferred embodiments of the present invention will
now be described by way of example and with reference to
the Figures in which:

Figure 1 is a cross-section of a first optical fibre
25 attenuator;

Figure 2 is an example graph of attenuation against
refractive index of the overlay material for a first
optical fibre attenuator;

30 Figure 2a is an example graph of attenuation against
refractive index for an optical fibre attenuator where the
optical fibre is polarisation-maintaining fibre.

35 Figure 3 is a cross-section of a second optical fibre

attenuator, the attenuation of which is controllable;

Figure 4 is a diagrammatic representation of an attenuation unit consisting of three controllable optical fibre attenuators;

Figure 5 is an example directional coupler using the controllable optical fibre attenuators; and

Figure 6 is an alternative switchable directional coupler.

10

As shown in Figure 1, the optical fibre attenuator consists of an optical fibre 2 having a central core 4 for light transmission and an outer cladding 6 which partially removed is a region 8. Partially removing the cladding 6 in a region 8 of the fibre 2 enables access to the evanescent field when light is transmitted.

The cladding 6 is removed using a grinding/polishing technique and the amount of cladding 6 removed, i.e. the level of interaction with the evanescent field, defines the level of attenuation achievable from a specific device. By monitoring the level of light transmitted through the fibre 2 during the grinding and polishing operations, the amount of cladding 6 removed is controlled.

25

In some alternative embodiments the fibre cladding is removed by other methods besides or in addition to abrading, e.g. chemical etching.

30

A layer of another material 10 is laid over the region 8 of optical fibre 2 from which the cladding has been at least partially removed.

35

The level of power transmitted by an optical fibre 2 with the cladding 6 partially removed, is dependent upon

the refractive index of the material 10 replacing the removed cladding. Figure 2 shows a typical variation of transmitted power as a function of the refractive index of the material 10 replacing the cladding. When the refractive
5 index of the material is below that of the core 4 the light is guided along the fibre 2. However, when the refractive index of the material 10 is greater than that of the core 4, light is coupled out of the guide into radiation modes, i.e. as an evanescent field, resulting in attenuation of
10 the level of light transmitted along the core 4.

In embodiments where the optical fibre 2 is polarisation maintaining fibre rather than single mode optical fibre, the polarisation maintaining fibre can be
15 aligned and is ground either along a selected axis or at an angle to the axis. The two polarisation modes of the polarisation maintaining fibre have different effective refractive indices in the abraded region, therefore the attenuation for each of the modes for a specific refractive
20 index of the overlay material 10 is different. A typical variation of throughput light as a function of refractive index of the material 10 replacing the cladding is shown in Figure 2a. The optical fibre attenuator operates in one or more of the three ways dependent on the properties of the
25 material 10 overlying the abraded region of the fibre. The first way is where the refractive index of the material is adjusted such that both polarisation modes can pass through the fibre with virtually no loss. The second way is when one polarisation mode has a lower attenuation than the other, providing an effective polarising action. The third way is where both modes experience a high attenuation. In some embodiments, the refractive index of the overlay material is variable.
30

35 Rather than at least partially removing the cladding

by e.g. grinding, an alternative method to access the evanescent field, which is used in some alternative embodiments, is to taper the fibre. This is achieved by heating a section of fibre to be tapered such that the
5 silica softens and then pulling the fibre to taper the cross section. This has the effect of reducing both the cladding and core diameters and the evanescent field extends beyond the cladding locally in the tapered region.

10 Fixed Attenuators

One option is to use a material 10 such as a polymer which is environmentally stable and has a refractive index greater than that of the core so as to provide a fixed attenuation. In this case, the fibre 2 is ground and
15 polished whilst monitored using an oil for lubrication having the value of refractive index of the material or some other known refractive index. The polishing process is stopped once the required attenuation is reached. Applying the material 10 to the region 8 and fixing the
20 material 10 firmly to the fibre 2 provides a stable fixed attenuator. Attenuators of various selected attenuations are producible in this way.

Variable Attenuators

As shown in Figure 2, there are transitional states in which the level of power remaining in the fibre 2 can be controlled by varying the refractive index of the material 10. Two regions can be identified, the first (A) is the steep slope where the refractive index of the material 10
30 is close to that of the core 4 and the other (B) is a shallower slope appearing at index range above that of the core 4. Either of these two regions (A) and (B) are usable to control the power of light transmitted by the optical fibre 2.

The refractive index of the material 10 in contact with the core 4 can be controlled by way of external effects such as forces, thermal changes, electro-optic changes, magneto-optic changes or optically induced changes.

A thermally controlled attenuator 11 is described below.

As shown in Figure 3, the fibre 2' with its region 8' of cladding 6' partially removed is placed within a sealed capillary tube 12 filled with material 10' and attached to a miniature temperature controlled heater 14 or Peltier element. Other types of heaters could be used. The whole device is insulated from the outside environment. An electronic control unit 6 is used to control the heater 14 to vary the temperature of the material 10' to provide continuous electronic adjustment of the attenuation.

The material 10' is selected to have a large refractive index variation with the control signal, in this case temperature. Oils and polymers having suitable properties are available as the material 10'. An example of an oil which can be used is paraffin. An example of polymers which can be used are polymethylmethacrylate (p.m.m.a.) or polyimide.

If oil is to be used, the fibre 2 is ground and polished and mounted in a small capillary tube 12 of metal or silica which is filled with the oil. The oil is selected to give the required refractive index variation over the required operational temperature range. In general the control temperature range is higher than the anticipated environmental temperature range. The ends of the tube 12 are sealed such that the fibre 2 and oil are

completed encapsulated.

In other examples, where polymer is used, the material 10' of polymer is attached directly to the optical fibre 2' 5 using one of a number of known polymer layer processing methods such as dipping. Providing a good contact is made with the optical fibre 2, the material 10' of polymer acts as a replacement cladding.

The electronic control unit 16 is designed such 10 that the temperature of the heater 14 is dependent upon the resistance selected at the input to the heater 14. In this way a series of resistors can be switched to provide several different temperature, hence attenuation, settings. 15 Different attenuation steps can be achieved by an appropriate selection of resistors.

Connecting several variable attenuators, as described above, in series with each attenuator having different 20 attenuation settings available, allows a precise attenuation from within a wide range of to be selected. An example is shown in Figure 4. This attenuation unit 18 consists of three variable attenuators 1. First attenuator 20 has attenuation steps ten times greater than the second attenuator 22 and the second attenuator 22 ten times 25 greater than the third attenuator 24.

Two Level Operation

Two modes of operation are selectable for a variable 30 attenuator 11 by switching between two temperatures of the material 10'. One mode allows at least substantially all of the signal to pass along the fibre 2'. The other mode allows light passage along the fibre 2' to be stopped. This is essentially an on/off switching.

Switchable Directional Coupler

Figure 5 shows switchable directional coupler 26 in which two attenuators 11, 11 used in two mode operation as described above, are attached to two ports c, d of a directional coupler 28. Input to port (a) will produce half the power at port c and half at port d. Therefore four output options are available by switching the two attenuators 11. The switchable directional coupler 26 can be used in the opposite direction to select input signal levels to the directional coupler 28. A network can be provided by using further directional couplers 28 each having further attenuators 11 for each of their output and/or input paths. The condition of each of the attenuators 11, such as in two level operations, is controlled electronically.

An alternative switchable directional coupler 30 is shown in Figure 6. Such a switchable directional coupler 30 is fabricated by fusing two fibres together and pulling them to taper the joined section until the required level of light is achieved at the two output fibres A', B'. Such a process is used to draw the fibres such that in the fused region 32 the evanescent fields of the two fibre cores extend beyond the cladding. The level of power coupled to the output ports A', B' is then a function of the refractive index of the medium 10" surrounding the fused region 32. Modifying this refractive index allows control of the power output from each port A', B'. By control of the refractive index as described previously in relation to variable attenuators, the power can be directed from one port to a selected other. This allows switching of the power. Many such devices can be joined together i.e. cascaded to provide multiple switching.

As shown in Figure 6, transmission of power input

either to port 1 or port 2 is controlled to ports A' and B' by varying the refractive index of the surrounding material 10" through heating. The sum of the power outputs from A' & B' equals the power input to the switchable directional coupler minus the intrinsic loss of the switchable directional coupler.

In an alternative switchable directional coupler (not shown) two or more fibres are located with their regions of reduced outer cladding in sufficient proximity to enable electromagnetic coupling through the material between the fibres.

CLAIMS:

1. An optical fibre attenuator comprising an optical fibre (2) which comprises a central core (4) and an outer cladding (6), in a region (8) of the fibre the outer cladding having been at least partially removed and/or the thickness of the outer cladding having been reduced, a material (10) having being provided at least partially over the region, the material having a refractive index to couple light from the central core (4) of the optical fibre so as to attenuate the light transmitted along the optical fibre.
2. An optical fibre attenuator according to claim 1, in which the material (10) is selected dependent on its refractive index to provide a predetermined attenuation.
3. An optical fibre attenuator according to claim 1 or claim 2, in which for attenuation, the refractive index of the material (10) is greater than that of the central core of the fibre.
4. An optical fibre attenuator according to any preceding claim, in which the optical fibre (2) is single mode optical fibre.
5. An optical fibre attenuator according to any of claims 1 to 3, in which the optical fibre (2) is polarisation maintaining fibre having two polarisation modes, the attenuations of transmitted light components in those two modes being selectable dependent upon the refractive index of the material (10).
6. An optical fibre attenuator according to any preceding claim, in which the optical fibre attenuator is adjustable

in its attenuation by adjusting the refractive index of the material (10).

7. An optical fibre attenuator according to claim 6,
5 controllable so as to have selectively high and low
attenuation so as to act as a switch.

8. An optical fibre attenuator according to any preceding
claim, in which the material (10, 10') is selected so as to
10 have its refractive index dependent on temperature and the
optical fibre attenuator includes a temperature control
means (14, 16) to control the temperature of the material.

9. An optical fibre attenuator according to claim 8, in
15 which the temperature control means is an electrically
controllable heater (14).

10. An optical fibre attenuator according to any preceding
claim, in which the material (10, 10') is an oil or
20 polymer.

11. An optical fibre attenuator according to any of claims
1 to 10, in which the outer cladding (6, 6') has been at
least partially removed.

25 12. An optical fibre attenuator according to any of claims
1 to 10, in which the thickness of the outer cladding is
reduced by stretching the optical fibre.

30 13. An attenuator comprising a plurality of the optical
fibre attenuators according to any preceding claim provided
along an optical fibre, each being adjustable within
predetermined ranges of attenuation settings.

35 14. A switchable directional coupler (26) comprising a

plurality of optical fibre attenuators (11), each according to claim 7, and an optical fibre directional coupler (28).

15. A switchable directional coupler according to claim 14
5 in which the optical fibre attenuators (11) are provided at the inputs and outputs (c, d) of the switchable directional coupler (28).

16. A switchable directional coupler (Fig. 6) comprising
10 at least two optical fibre attenuators according to any of claims 1 to 12 with their cladding reduced regions lying in sufficient proximity to each other for electromagnetic coupling.

15 17. A method of attenuating light transmitted through an optical fibre (2), the optical fibre comprising a central core (4) and an outer cladding (6), by at least partially removing and/or reducing the thickness of the outer cladding in a region (8) of the fibre, and providing a
20 material (10) at least partially over the cladding-reduced region, the material having a refractive index selected to couple light from the central core of the optical fibre so as to attenuate the light transmitted along the optical fibre (2).

-1/4-

FIG. 1

FIG. 2a

-2/4-

-3/4-

FIG. 3

FIG. 4

-4/4-

FIG. 5

FIG. 6

INTERNATIONAL SEARCH REPORT

Intern

Application No
PCT/GB 00/00574

A. CLASSIFICATION OF SUBJECT MATTER

G02B6/10, G02B6/26, G02B6/28, G02F1/01

According to International Patent Classification (IPC) or to both national classification and IPC

7

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G02B, G02F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95/05617 A (TELEFONAKTIEBOLAGET LM ERICSSON) 23 February 1995, page 3, lines 22-31, page 9, line 3 - page 11, line 18, page 12, line 30 - page 13, line 37.	1-4, 6,11, 16,17
Y	--	14,15
Y	DE 4343943 A (SIEMENS) 29 June 1995, fig. 1,2, claims 1,2,4,5.	14,15
A	--	1
X	US 4778237 A (SORIN et al.) 18 October 1988, column 2, line 43 - column 6,	1-4,6, 8,10, 11,17

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

'Special categories of cited documents:

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

Date of the actual completion of the international search

03 May 2000

Date of mailing of the international search report

04.07.00

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

GRONAU e.h.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/00574

-2-

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	line 63, column 7, line 35 - column 8, line 10. --	
X	GB 2190211 A (STC PLC) 11 November 1987, abstract, fig. 1, page 2, lines 42-74.	1-4, 11,12, 17
A	--	10
X	US 5265178 A (BRAUN ET AL.) 23 November 1993, fig. 1,2, column 5, lines 39-54.	1-3, 6,7, 10,11, 13,17
A	--	14
X	DE 4005557 A (DAIMLER-BENZ AG) 29 August 1991, column 1, lines 7-60, column 2, lines 7-51, column 3, line 8 - column 4, line 60, fig. 1,2,4,5.	1-6, 10,11
A	-----	13-15

ANHANG

Zum internationalen Recherchenbericht Über die internationale Patentanmeldung Nr.

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

ANNEX

To the International Search Report to the International Patent Application No.

PCT/GB 00/00574 SAE 268636

This annex lists the patent family members relating to the patent documents cited in the above-mentioned search report. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

ANNEXE

Au rapport de recherche International relativ à la demande de brevet international n°

La présente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche international visée ci-dessus. Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office.

Im Recherchenbericht angeführte Patentdokumente Patent document cited In search report Document de brevet cité dans le rapport de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publication
WO A1 9505617	23-02-1995	AU A1 74701/94 AU B2 690574 CN A 1113394 CN B 1047238 EP A1 664894 JP T2 8502607 NZ A 271160 SE A0 9302634 SE A 9302634 US A 5642453	14-03-1995 30-04-1998 13-12-1995 08-12-1999 02-08-1995 19-03-1996 26-02-1998 13-08-1993 14-02-1995 24-06-1997
DE A1 4343943	29-06-1995	AT E 179526 DE C0 59408173 EP A1 660142 EP B1 660142 ES T3 2133471	15-05-1999 02-06-1999 28-06-1995 28-04-1999 16-09-1999
US A 4778237	18-10-1988	AU A1 41621/85 BR A 8502725 CA A1 1259508 EP A2 164212 EP A3 164212 IL A0 74899 JP A2 61006628 NO A 851879	12-12-1985 12-02-1986 19-09-1989 11-12-1985 23-12-1987 31-07-1985 13-01-1986 09-12-1985
GB A1 2190211	11-11-1987	GB A0 8611178	18-06-1986
GB B2 2190211	13-12-1989		
US A 5265178	23-11-1993	none	
DE A1 4005557	29-08-1991	none	