МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Компьютерная графика»

Тема: Примитивы OpenGL.

Студент гр. 9304	 Атаманов С.Д.
Студент гр. 9304	 Силкин В.А.
Преподаватель	Герасимова Т.В.

Санкт-Петербург

Цель работы.

Ознакомление с основными примитивами OpenGL.

Задание.

Разработать программу, реализующую представление определенного набора примитивов из имеющихся в библиотеке OpenGL (GL_POINT, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, GL_POLYGON).

Разработанная на базе шаблона программа должна быть пополнена возможностями остановки интерактивно различных атрибутов примитивов рисования через вызов соответствующих элементов интерфейса пользователя.

Основные теоретические положения.

GL_POINTS – каждая вершина рассматривается как отдельная точка, параметры которой не зависят от параметров остальных заданных точек. При этом вершина п определяет точку п. Рисуется N точек (п –номер текущей вершины, N –общее число вершин).

Основой графики OpenGL являются вершины. Для их определения используется команда glVertex:

void glVertex[2 3 4][s i f d](type coord)

Вызов команды определяется четырьмя координатами x, y, z и w. При этом вызов glVertex2* устанавливает координаты x и y, координата z полагается равной 0, а w-1. Вызов glVertex3* устанавливает координаты x, y, z, a w равно 1.

GL_LINES – каждая пара вершин рассматривается как независимый отрезок. Первые две вершины определяют первый отрезок, следующие две – второй отрезок и т.д., вершины (2n-1) и 2n определяют отрезок n. Всего рисуется N/2 линий. Если число вершин нечетно, то последняя просто игнорируется.

3GL_LINE_STRIP —в этом режиме рисуется последовательность из одного или нескольких связанных отрезков. Первая вершина задает начало первого отрезка, а вторая —конец первого, который является также началом второго. В общем случае, вершина $n \ (n > 1)$ определяет начало отрезка $n \ u$ конец отрезка (n - 1). Всего рисуется (N - 1) отрезок.

GL_LINE_LOOP — осуществляется рисование замкнутой кривой линии. Первая вершина задает начало первого отрезка, а вторая — конец первого, который является также началом второго. В общем случае, вершина n(n > 1) определяет начало отрезка n и конец отрезка n . Первая вершина является концом последнего отрезка. Всего рисуется n отрезков.

GL_TRIANGLES – каждая тройка вершин рассматривается как независимый треугольник. Вершины (3n-2), (3n-1), 3n (в таком порядке) определяют треугольник n. Если число вершин не кратно 3, то оставшиеся (одна или две) вершины игнорируются. Всего рисуется N/3 треугольника.

GL_TRIANGLE_STRIP —в этом режиме рисуется группа связанных треугольников, имеющих общую грань. Первые три вершины определяют первый треугольник, вторая, третья и четвертая —второй и т.д. для нечетного п вершины n, n+1 и n+2 определяют треугольник n. Для четного n треугольник определяют вершины n+1, n и n+2. Всего рисуется n+2 треугольника.

GL_TRIANGLE_FAN —в этом режиме рисуется группа связанных треугольников, имеющих общие грани и одну общую вершину. Первые три вершины определяют первый треугольник, первая, третья и четвертая —второй и т.д. Всего рисуется (N-2) треугольника.

GL_QUADS — каждая группа из четырех вершин рассматривается как независимый четырехугольник. Вершины (4n-3), (4n-2), (4n-1) и 4n определяют четырехугольник n. Если число вершин не кратно 4, то оставшиеся (одна, две или три) вершины игнорируются. Всего рисуется N/4 четырехугольника.

GL_QUAD_STRIP – рисуется группа четырехугольников, имеющих общую грань. Первая группа из четырех вершин задает первый

4четырехугольник. Третья, четвертая, пятая и шестая задают второй четырехугольник.

GL_POLYGON –задет многоугольник. При этом число вершин равно числу вершин рисуемого многоугольника.

Выполнение работы.

- 1. Средой выполнения работы был выбран фреймворк Qt. Данный фреймворк по умолчанию имеет средства работы с OpenGL.
- 2. Отображение графики выполняется с помощью класса QOpenGLWidget. Был создан класс glScene, который наследуется от класса QOpenGLWidget, а также выполнена перегрузка функций инициализации OpenGL, отрисовки графики и изменения размеров окна.

Результат работы программы представлен на рисунках 1-4.

Выводы.

В результате выполнения лабораторной работы была разработана программа, создающая графические примитивы OpenGL. Программа работает корректно. При выполнении работы были приобретены навыки работы с графической библиотекой OpenGL.