- 1. Wyznacz funkcję odwrotną do funkcji f(x) oraz podaj dziedzinę i zbiór wartości każdej z nich, jeśli:
 - (a) $f(x) = \frac{1}{2^x + 4}$,
 - (b) $f(x) = \frac{3 \cdot 2^x + 2}{2^x + 1}$.
- 2. Naszkicuj wykres funkcji f(x) oraz funkcji do niej odwrotnej $f^{-1}(x)$, podaj dziedzinę i zbiór wartości funkcji $f^{-1}(x)$, jeśli:
 - (a) $f(x) = 2^x$, $x \in \mathbb{R}$,
 - (b) $f(x) = \log_2(x), \quad x \in \mathbb{R}_+,$
 - (c) $f(x) = \sin x$, $x \in [2\pi; \frac{5}{2}\pi]$,
 - (d) $f(x) = \cos x$, $x \in [-3\pi; -2\pi]$.
- 3. Oblicz wartość wyrażenia:
 - (a) $\arccos\left(\sin\left(\frac{32}{5}\pi\right)\right)$,
 - (b) $\arcsin\left(\cos\left(-\frac{7}{11}\pi\right)\right)$.
- 4. Wyznacz funkcje odwrotne do funkcji hiperbolicznych:
 - (a) $sh : \mathbb{R} \to \mathbb{R}$,
 - (b) th: $\mathbb{R} \to (-1; 1)$.
- 5. Wykaż, że dla $x \in \mathbb{R}$ zachodzą równości:
 - (a) $\cosh^2 x \sinh^2 x = 1,$
 - (b) $ch2x = ch^2x + sh^2x,$
 - (c) $\sinh 2x = 2 \sinh x \cosh x$.
- 6. Oblicz granicę ciągu:
 - (a) $\lim_{n \to \infty} \frac{4^n + 5^n}{2^{2n+1} + 5^{n+1}},$
 - (b) $\lim_{n \to \infty} \sqrt[n]{2^n + 7^n + n + 1}$,
 - (c) $\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}}{1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n}}$
 - (d) $\lim_{n \to \infty} \frac{\sqrt{n^2 + 5} n}{\sqrt{n^2 + 2} n}$,
 - (e) $\lim_{n \to \infty} \sqrt[n]{\frac{3^n + 4^n}{4^n + 5^n}}$,
 - (f) $\lim_{n\to\infty} \frac{\cos\left(\frac{n\pi}{2}\right)}{n+1}$,

(g)
$$\lim_{n\to\infty} \frac{3^{n-1} + (-2)^n}{3^{n+1} + (-2)^{n+2}}$$
,

(h)
$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2} \cdot 4^n + n \cdot 3^n + 5n^3}$$
,

(i)
$$\lim_{n \to \infty} \left(n - \sqrt{n^2 + n} \right)$$
,

(j)
$$\lim_{n \to \infty} \frac{\binom{n+2}{n}}{1+2+3+\ldots+n}.$$