where $\alpha > 0$. The FWI problem in equation 7 ensures that the estimated model, while satisfying the data (and the wave equation), is smooth along the direction θ .

Figure 1, top row, shows the anisotropic regularization balls for only one term of the regularizer equation 4 and for different values of $[\sigma]_i = \sigma$ and $[\theta]_i = \theta$. We observe that for $\sigma = 0.5$, the anisotropic regularization becomes equivalent to the standard isotropic regularization. When the value of σ increases, reaching the maximum considered value of 0.9, the degree of regularization applied in the direction θ and its normal is maximally different, resulting in a needle-shaped ellipse. This shape favors models with elongated features aligned with θ , while allowing variations in the normal direction to it, as illustrated in the bottom row.

3 Algorithm

The augmented Lagrangian function of equation 7 is

$$\mathcal{L}(\theta, \sigma, u_s, m, \lambda, \nu) = \frac{1}{2} \sum_{s=1}^{n_s} \|Pu_s - d_s\|_2^2 + \alpha \mathcal{R}(m, \theta, \sigma)$$
$$+ \frac{\mu}{2} \sum_{s=1}^{n_s} \|A(m)u_s - b_s\|_2^2 - \lambda_s^T (A(m)u_s - b_s)$$
$$+ \frac{\tau}{2} \|\theta - z\|_2^2 - \nu^T (\theta - z),$$

where $z(\theta) = \min(\max(\theta, -\frac{\pi}{2}), \frac{\pi}{2})$, λ_s and ν are Lagrange multipliers associated to the constraints, and $\mu > 0$ and $\tau > 0$ are the penalty parameters. The regularization parameter $\alpha > 0$ is given, being typically determined by the discrepancy principle.

This problem can be efficiently solved using the alternating direction method of multipliers (ADMM, [15]), resulting in the following iterative procedure starting from initial guess m (typically encoding some prior information), (spatially invariant) $\sigma = 0.5$ and initial multipliers $\lambda_s = \nu = 0$:

$$\theta^{+} = \arg\min_{\theta} \mathcal{L}(\theta, \sigma, u_s, m, \lambda, \nu)$$
 (8a)

$$\sigma^{+} = \arg\min_{\sigma} \mathcal{L}(\theta^{+}, \sigma, u_{s}, m, \lambda, \nu)$$
 (8b)

$$u_s^+ = \underset{u}{\operatorname{arg \, min}} \, \mathcal{L}(\theta^+, \sigma^+, u, m, \lambda, \nu)$$
 (8c)

$$m^{+} = \arg\min_{m} \mathcal{L}(\theta^{+}, \sigma^{+}, u_{s}^{+}, m, \lambda, \nu)$$
 (8d)

$$\lambda_s^+ = \lambda_s - \mu(A(m^+)u_s^+ - b_s) \tag{8e}$$

$$\nu^{+} = \nu - \tau(\theta^{+} - z^{+}). \tag{8f}$$

Here, the updated variables at each iteration are denoted by a superscript "+". Each step of the algorithm addresses a specific subproblem, as described more in details below.

Subproblem equation 8a involves minimizing the regularization function \mathcal{R} , as defined in equation 4, with respect to θ , given the current values of m and σ . This can can be efficiently achieved using a single iteration of the Gauss-Newton method. To ensure the stability of the θ update, it is essential to incorporate a smoothing term, as suggested by [11].

Subproblem equation 8b involves minimizing \mathcal{R} with respect to σ , resulting in:

$$[\sigma]_i = \frac{[g_{z'}]_i^2}{[g_{x'}]_i^2 + [g_{z'}]_i^2},\tag{9}$$

where $([g_{x'}]_i, [g_{z'}]_i)^T = R([\theta]_i)[\nabla m]_i$ represent the rotated gradient of the current model at the ith pixel. This expression for equation 9 is justified by considering that, when $[\theta]_i$ corresponds to the correct orientation angle, we typically expect $|[g_{x'}]_i| \ll |[g_{z'}]_i|$. In this case, directly minimizing $[g_{x'}]_i^2 + [g_{z'}]_i^2$ would heavily penalize $[g_{z'}]_i$, which is undesirable because we aim to apply more smoothing along the direction defined by $[\theta]_i$. The weights $[\sigma]_i$ in equation 9 balance the contributions of gradient components in the weighted sum $[\sigma]_i^2[g_{x'}]_i^2 + (1 - [\sigma]_i)^2[g_{z'}]_i^2$, ensuring that the magnitudes of both terms are approximately equal before penalization. This adaptive weighting mechanism effectively enhances smoothing along the structural direction $[\theta]_i$ while allowing variations across it, eventually enabling the recovery of dominating structures and details in the model m. To maintain stability during the σ update, the computed weights are smoothed using a convolution with a 5×5 averaging filter; alternatively, one could incorporate a smoothing term.

A comprehensive analysis of the methods for solving subproblems equation 8c and equation 8d can be found in [14].