Using Physical Informed Neural Networks to solve quasinormal modes

(... and how to solve eigenvalue problems with PyTorch.)

David Bambagüe

Juan D. Ochoa

(Dated: October 26, 2022)

Abstract

Content

- 1. A brief review of physical informed neural networks (PINNs).
- 2. The problem we want to solve: Some basics about quasinormal modes (QNM).
- **3.** Example of inverse problem: The Posh-Teller potential.
- **4.** Introduction to eigenvalue problems with PINNs.
- 5. Example of eigenvalue problem: Infinite potential (quantum) well.
- **6.** Solution to the Regge-Wheeler equation so far.

... then again, what's a PINN?

• The structure of the (general) neural network is:

input layer:
$$\mathcal{N}^0(\mathbf{x}) = \mathbf{x} \in \mathbb{R}^{N_0}$$
,

hidden layers:
$$\mathcal{N}^{\ell}(\mathbf{x}) = \sigma(\mathbf{W}^{\ell} \mathcal{N}^{\ell-1}(\mathbf{x}) + \mathbf{b}^{\ell}) \in \mathbb{R}^{N_{\ell}}$$
, for $1 \le \ell \le L - 1$

output layers:
$$\mathcal{N}^L(\mathbf{x}) = \sigma(\mathbf{W}^{\ell} \mathcal{N}^{L-1}(\mathbf{x}) + \mathbf{b}^L) \in \mathbb{R}^{N_L}$$
,

How do machines learn?

• We first choose a **loss function** that contains what a good prediction actually is.

$$C(w,b) = \text{MSE} = \frac{1}{N} \sum (\bar{Y} - Y)^2$$

• Then we apply **backpropagation** to update the weights and bias of **ALL** the neurons in the network. This is done from back to front using the **chain rule**:

$$w_{jk}^{\ell} \to w_{jk}^{\ell} - \frac{\eta}{m} \sum_{x} \frac{\partial C_x}{\partial w_{jk}^{\ell}},$$

$$b_j^{\ell} \to b_j^{\ell} - \frac{\eta}{m} \sum_x \frac{\partial C_x}{\partial b_j^{\ell}},$$

PINNs: Traditional physics model + data-driven neural network

The loss function contains the physical information (Differential equation and boundary conditions).

Encoding the physics

Dirichlet, Newman, Robin boundary conditions...

The physical problem is defined as follows:

$$f(\mathbf{x}; \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_d}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 u}{\partial x_d \partial x_d}; \lambda) = 0 \text{ on } \Omega$$
, $\mathcal{B}(u, u)$

 $f(\mathbf{x}; \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_d}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 u}{\partial x_d \partial x_d}; \lambda) = 0 \text{ on } \Omega$ $\int \mathcal{B}(u, \mathbf{x}) = 0 \text{ on } \partial \Omega$

Loss function: Euclidean norm of the ODE + boundary conditions + other regularization functions

$$\mathcal{L}(\theta; \mathcal{T}) = w_f \mathcal{L}_f(\theta; \mathcal{T}_f) + w_b \mathcal{L}_b(\theta; \mathcal{T}_b) + w_r \mathcal{L}_r(\theta; \mathcal{T}_r)$$

$$\mathcal{L}_{f}(\theta; \mathcal{T}_{f}) = \frac{1}{|\mathcal{T}_{f}|} \sum_{\mathbf{x} \in \mathcal{T}_{f}} \left\| f(\mathbf{x}; \frac{\partial \hat{u}}{\partial x_{1}}, \dots, \frac{\partial \hat{u}}{\partial x_{d}}; \frac{\partial^{2} \hat{u}}{\partial x_{1} \partial x_{1}}, \dots, \frac{\partial^{2} \hat{u}}{\partial x_{d} \partial x_{d}}; \hat{\lambda}) \right\|_{2}^{2} \qquad \mathcal{L}_{b}(\theta; \mathcal{T}_{b}) = \frac{1}{|\mathcal{T}_{b}|} \sum_{\mathbf{x} \in \mathcal{T}_{b}} \|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2}$$

$$\mathcal{L}_b(\theta; \mathcal{T}_b) = \frac{1}{|\mathcal{T}_b|} \sum_{\mathbf{x} \in \mathcal{T}_b} \|\mathcal{B}(\hat{u}, \mathbf{x})\|_2^2$$

Problems we could solve with PINNs:

- Forward problems : Well defined boundary-value ODE (or PDE) problems.
- Inverse problems : DEs with known data values but missing parameters.
- "Eigenvalue" problems: Unknown pairs eigenfunction-eigenvalue.
- Operator learning : Learning the behavior of the operator itself.

<u>Advantages</u>

- Unsupervised solutions with only the boundary and PDE information.
- Able to generate more robust models with fewer data.
- In some cases, lower computational cost.
- Easy evaluation points of solutions

Disadvantages

- Difficult to define some geometries.
- Problems with higher dimensions.
- Stochastic problems.
- Non-local behavior.
- Less precision.

Black hole perturbation theory

Quasinormal modes (QNMs) appear in the analysis of linear perturbations of fixed gravitational backgrounds. These perturbations obey linear second-order differential equations.

$$S = \frac{1}{16\pi G} \int d^d x \sqrt{-g} \left(R - 2\Lambda \right) + \int d^d x \sqrt{-g} \mathcal{L}_m$$

$$g_{\mu\nu} = g_{\mu\nu}^{BG} + h_{\mu\nu}$$

$$\Phi = \Phi^{BG} + \phi$$

Schwarzschild BH Spherical symmetry.
$$f(r) = 1 - \frac{2M}{r} - \frac{\Lambda}{3}r^2 \quad \bigg/ \quad ds^2 = -fdt^2 + \frac{1}{f}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi)$$

$$\phi(t,r,\theta) = \sum_{lm} e^{-i\omega t} \underbrace{\frac{\Psi_s(r)}{r^{(d-2)/2}}} \overline{Y_{lm}(\theta)} \qquad \frac{d^2\Psi_s}{dr_*^2} + \left(\omega^2 - V_s\right)\Psi_s = 0$$

$$dr_*/dr = 1/f$$

Regge-Wheeler:
$$\frac{a^2\Psi_s}{dr_*^2}+\left(\omega\right)$$

$$V(r) = f(r) \left[\frac{\ell(\ell+1)}{r^2} + (1-s^2) \left(\frac{2M}{r^3} - \frac{(4-s^2)\Lambda}{6} \right) \right]$$

Here s = 0, 1, 2 denotes the spin of the perturbation: scalar, electromagnetic and gravitational

Boundary conditions

$$\psi(x) = \begin{cases} e^{-i\omega x}, & x \to -\infty \\ e^{+i\omega x}, & x \to +\infty \end{cases}$$

The **horizon** leads to a boundary value problem which is **non-hermitian**, with associated **complex eigenvalues**.

Inverse problem with the DeepXDE library

We are first interested in a kind of potentials with exact solution.

$$\psi_n(x) = (\cosh(x))^{(i+1)/2} \chi_n(\sinh(x))$$

$$\omega_n = \pm \frac{1}{2} - i(n + \frac{1}{2}),$$

We need a **compact domain**:

$$y = \tanh(\mathbf{x}) \quad / \quad -1 < y < +1$$

And so, we get the differential equation:

$$(1-y^2)^2 \frac{d^2 \psi(y)}{dy^2} - 2y(1-y^2) \frac{d\psi(y)}{dy} + \left[\omega^2 - \frac{1}{2}(1-y^2)\right] \psi(y) = 0.$$

...with solutions:

$$\psi_n=(1-y^2)^{-rac{i+1}{4}}\chi_n\left(y\sqrt{1-y^2}
ight)$$
 $\omega_n=\pmrac{1}{2}-i(n+rac{1}{2}),$

Let's go to the code...

dde.maps.FNN(...) = Surrogate of DE solution $\hat{\psi}_{Re}(y)$

 $\hat{\psi}_{_{Im}}(y)$

tf.Variable(...) =

PINN approximation of QNFs (iteratively updated during training phase)

$$\hat{\omega}_{Re}; \hat{\omega}_{Im}$$

Physics constraints

dde.DirichletBC(...) = Dirichlet boundary conditions

$$\hat{\psi}_{Re}(-0.9) - \psi_{Re}(-0.9); \, \hat{\psi}_{Re}(0.9) - \psi_{Re}(0.9)$$

$$\hat{\psi}_{Im}(-0.9) - \psi_{Im}(-0.9); \, \hat{\psi}_{Im}(0.9) - \psi_{Im}(0.9)$$

dde.PointSetBC(...) = Dataset of exact wave-function solution

$$\hat{\psi}_{Re}(y) - \psi_{Re}(y); \hat{\psi}_{Im}(y) - \psi_{Im}(y)$$

 $\operatorname{def} \operatorname{de}(\mathbf{y}, \operatorname{psi}) = \operatorname{Perturbation} \operatorname{equation}(y, \hat{\psi}_{Re}, \hat{\psi}_{Im})$

$$\left\{
\kappa_b^2 (1 - y^2)^2 \cdot \frac{d^2 \hat{\psi}_{Re}(y)}{dy^2} - 2\kappa_b^2 y (1 - y^2) \cdot \frac{d \hat{\psi}_{Re}(y)}{dy} + V_0 (1 - y^2) \hat{\psi}_{Re}(y) - 2\hat{\omega}_{Re} \hat{\omega}_{Im} \hat{\psi}_{Im}(y) + (\hat{\omega}_{Re}^2 - \hat{\omega}_{Im}^2) \hat{\psi}_{Re}(y) \right\}$$

$$\kappa^2 (1 - y^2)^2 \cdot \frac{d^2 \hat{\psi}_{Im}(y)}{dy} - 2\kappa^2 y (1 - y^2) \cdot \frac{d \hat{\psi}_{Im}(y)}{dy}$$

$$\kappa_b^2 (1 - y^2)^2 \cdot \frac{d^2 \hat{\psi}_{Im}(y)}{dy^2} - 2\kappa_b^2 y (1 - y^2) \cdot \frac{d \hat{\psi}_{Im}(y)}{dy} + V_0 (1 - y^2) \hat{\psi}_{Im}(y) + 2\hat{\omega}_{Re} \hat{\omega}_{Im} \hat{\psi}_{Re}(y) + (\hat{\omega}_{Re}^2 - \hat{\omega}_{Im}^2) \hat{\psi}_{Im}(y)$$

Results

	Our PINN Aproximación					
\overline{n}	ω_{exact}	$\omega_{predict}$	MSE			
0	0.5000 - i0.5000	0.4999 - i0.4997	0.0003- $i0.0002$			
1	0.5000 - i1.5000	0.4985 - i1.4971	0.0029 - i0.0017			
2	0.5000 - i2.5000	0.4931 - i2.4908	0.0097 - i0.0038			
3	0.5000 - i3.5000	0.5014 - i3.4564	0.0205 - $i0.0121$			

Epochs

Eigenvalue problem

An Eigenvalue problem is defined as:

• Given a linear operator, the eigenvalue problem asks to find a scalar value λ and a non-zero vector v such that applying the operator to v results in a scalar multiple of v:

In the context of **quantum mechanics**

$$\hat{H}\psi(x) = E\psi(x)$$

Wave functions **orthogonal to each other** and **normalizable**.

$$\left[-rac{\hbar^2}{2m}
abla^2 + V(ec{r})
ight]\psi(ec{r}) = E\psi(ec{r})$$

Methods for solving eigenvalue problems

Change the loss function!!

$$\mathcal{F}_{3}(\mathbf{u}, (x, \theta_{u})) = \sum_{i=1}^{M} \left(\alpha \|\mathcal{T}u_{i}\|_{2}^{2} + \mu \|\mathcal{T}u_{i}\|_{\infty} + \delta \|u_{i} - u_{0}\|_{1,\partial\Omega} + \beta \left\| \|u_{i}\|_{2}^{2} - c \right\| + \gamma_{i} \|R(u_{i})\|_{2}^{2} \right) + \rho \|\theta_{u}\|_{2}^{2} + \nu \sum_{i < j} \langle u_{i}, u_{j} \rangle, \quad \text{with} \quad \mathcal{T}u := \mathcal{L}u + \lambda u$$

Error
$$(p, \lambda) = \frac{\sum_{i} [H\Psi_{t}(r_{i}, p, \lambda) - \epsilon \Psi_{t}(r_{i}, p, \lambda)]^{2}}{\int |\Psi_{t}|^{2} dr}$$

.....

$$\epsilon = \frac{\int \Psi_t^* H \Psi_t \, d\mathbf{r}}{\int |\Psi_t|^2 \, d\mathbf{r}}$$

Use special parametrization

$$\begin{aligned} |\Psi_{t}\rangle &= (1 - |\Psi_{0}\rangle\langle\Psi_{0}|) (1 - |\Psi_{1}\rangle\langle\Psi_{1}|) \dots (1 - |\Psi_{k}\rangle\langle\Psi_{k}|) |\tilde{\Psi}_{t}\rangle \\ &= (1 - |\Psi_{0}\rangle\langle\Psi_{0}| - |\Psi_{1}\rangle\langle\Psi_{1}| \dots - |\Psi_{k}\rangle\langle\Psi_{k}|) |\tilde{\Psi}_{t}\rangle . \end{aligned}$$

But...

$$\phi(\omega, x) \propto e^{+i\omega x}$$
 $(x \to +\infty)$
 $\phi(\omega, x) \propto e^{-i\omega x}$ $(x \to -\infty)$

$$\phi(\omega, x) \propto e^{+i\omega|x|}$$
 $(x \to \pm \infty)$.

... we need another method.

Loss function

Henry Jin

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley Berkeley, California 94720, United States helinjinberkeley, odu

Marios Mattheakis, Pavlos Protopapas

John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, Massachusetts 02138, United States fmariosmat, pavlios@seas.harvard.edu

$$\mathcal{L}(\theta; \mathcal{T}) = w_f \mathcal{L}_f(\theta; \mathcal{T}_f) + w_b \mathcal{L}_b(\theta; \mathcal{T}_b) + w_r \mathcal{L}_r(\theta; \mathcal{T}_r)$$

$$L_{\text{reg}} = \nu_f L_f + \nu_\lambda L_\lambda + \nu_{\text{drive}} L_{\text{drive}}$$

Where:

$$L_f = \frac{1}{f(x,\lambda)^2},$$

Non-trivial **eigenfunction**

$$L_{\lambda} = \frac{1}{\lambda^2},$$

Non-trivial **eigenvalue**

$$L_{\text{drive}} = e^{-\lambda + c}$$
.

Explores different eigenvalues

Example: Infinite potential well

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) = E\psi(x),$$

Analytic Solutions:

$$\psi_n(x) = \begin{cases} \sqrt{2}\sin(n\pi x) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$E_n = \frac{n^2 \pi^2}{2},$$

$$V(x) = \begin{cases} 0 & 0 \le x \le \ell \\ \infty & \text{otherwise} \end{cases}$$

Eigenvalues

Cost function

Let's go to the code...

Asymptotically Flat Schwarzschild BH

$$f(r) = 1 - \frac{2M}{r}$$

Here:
$$f(r)=1-rac{2M}{r}$$
 $ightharpoonup x(r)=r+2M\ln\left(rac{r}{2M}-1
ight)$

Instead, we will use the coordinates:

$$\xi = 1 - \frac{2M}{r}$$
 $0 \le \xi < 1$

Which lead to:

$$\frac{d^2\psi}{d\xi^2} + \frac{1-3\xi}{\xi(1-\xi)}\frac{d\psi}{d\xi} + \left[\frac{4M^2\omega^2}{\xi^2(1-\xi)^4} - \frac{\ell(\ell+1)}{\xi(1-\xi)^2} - \frac{1-s^2}{\xi(1-\xi)}\right]\psi = 0.$$

And we will use the ansatz:

$$\psi(\xi) = \xi^{-2iM\omega} (1 - \xi)^{-2iM\omega} e^{\frac{2iM\omega}{1 - \xi}} \chi(\xi)$$

So the real problem becomes:

$$\chi'' = \lambda_0(\xi)\chi' + s_0(\xi)\chi ,$$

$$\lambda_0(\xi) = \frac{4Mi\omega(2\xi^2 - 4\xi + 1) - (1 - 3\xi)(1 - \xi)}{\xi(1 - \xi)^2},$$

$$s_0(\xi) = \frac{16M^2\omega^2(\xi - 2) - 8Mi\omega(1 - \xi) + \ell(\ell + 1) + (1 - s^2)(1 - \xi)}{\xi(1 - \xi)^2}$$

Results

s	l	ω solver	ω 6th order WKB
0	0	0.0004 - i0.3456	0.1105 -i0.1008
0	1	0.2933 - i0.0977	0.2929 - i0.0978
0	2	0.4839 - i0.0966	0.4836 - i0.0968
1	1	0.2487 - i0.0922	0.2482 - i0.0926
1	2	0.4581 - i0.0949	0.4576 - i0.0950
1	3	0.6571 - i0.0953	0.6569 - i0.0956
2	2	0.3741 - i0.0889	0.3736 - i0.0890
2	3	0.6001 - i0.0929	0.5994 - i0.0927
2	4	0.8097 - i0.0942	0.8092 - i0.0942

Frequencies

Loss function

<u>REFERENCES</u>

- Using physics-informed neural networks to compute quasinormal modes, Alan S Cornell, Anele Ncube, and Gerhard Harmsen, Phys. Rev. D 106, 124047 Published 30 December 2022
- Henry Jin, Marios Mattheakis, and Pavlos Protopapas. Unsupervised neural networks for quantum eigenvalue problems. NeurIPS Machine Learning for Physical Sciences, 2020. URL: https://arxiv.org/abs/2010.05075, arXiv:2010.05075
- Maggiore, M. (2018b). *Gravitational Waves: Volume 2: Astrophysics and Cosmology*. Oxford University Press, USA.
- A. M. Ncube, G. E. Harmsen, and A. S. Cornell, Investigating a New Approach to Quasinormal Modes: Physics-Informed Neural Networks, in 65th Annual Conference of the South African Institute of Physics (2021) arXiv:2108.05867
- Emanuele Berti, Vitor Cardoso, Andrei O. Starinets, Quasinormal modes of black holes and black branes, Class. Quantum Gravity 26 (16) (2009) 163001
- I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural network methods in quantum mechanics, Computer Physics Communications, Volume 104, Issues 1–3,1997, Pages 1-14, ISSN 0010-4655, https://doi.org/10.1016/S0010-4655(97)00054-4.
- H. T. Cho, A. S. Cornell, Jason Doukas, T.-R. Huang, Wade Naylor, "A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method", Advances in Mathematical Physics, vol. 2012, Article ID 281705, 42 pages, 2012. https://doi.org/10.1155/2012/281705
- Anonymous authors. DEEP LEARNING SOLUTION OF THE EIGENVALUE PROBLEM FOR DIFFERENTIAL OPERATORS: https://openreview.net/pdf?id=m4baHw5LZ7M
- Maggiore, M. (2018). Gravitational Waves, pack: Volumes 1 and 2: Volume 1: Theory and Experiment, Volume 2: Astrophysics and Cosmology. Oxford University Press, USA.