Probabilidad II

Curso 2023 Licenciatura en Estadística

DEPARTAMENTO DE MÉTODOS CUANTITATIVOS

Segundo parcial – 30 de junio

- 1. (15pt) Sea $X_{n,p}$ una variable aleatoria con distribución binomial de parámetros (n,p). Considere su función generatriz de probabilidad $\varphi(s) = \mathbb{E}(s^{X_{n,p}})$, con $s \in \mathbb{R}$.
 - a) Probar que $\varphi(s) = (ps + q)^n$, $(s \in \mathbb{R})$, donde q = 1 p.
 - b) Probar que $\varphi'(1) = \mathbb{E}(X_{n,p})$, y que $\varphi''(1) = \mathbb{E}(X_{n,p}(X_{n,p}-1))$. Concluir de las relaciones anteriores que $\text{Var}(X_{n,p}) = npq$.
- 2. (10pt) Sea X una variable aleatoria con función de distribución F. Consideremos la sucesión de variables aleatorias $X_n = X + 1/n$, con $n \in \mathbb{N}$. Probar que X_n tiende en distribución a X.
- 3. (20pt) Sean X_1, X_2, \ldots una sucesión de variables aleatorias en L^2 centradas. Supongamos que las variables aleatorias son no correlacionadas, i.e. $\mathbb{E}(X_i X_j) = 0$ si $i \neq j$.
 - a) Probar que $Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n)$.
 - b) Probar que si además se tiene $\operatorname{Var}(X_i) \leq C\sqrt{n}$, con C constante, entonces $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{L^2}{\to} 0$.
- 4. (15pt) Considere una sucesión de variables aleatorias X_n , y X en L^2 .
 - a) Probar que si X_n converge a X en L^2 , entonces X_n convege en probabilidad a X.
 - b) Probar que el recíproco no es cierto dando un contraejemplo.

¹Recordar que $X_{n,p}$ toma valores $0,1,\ldots,n$ con probabilidades $\mathbb{P}(X_{n,p}=k)=\binom{n}{k}p^k(1-p)^{n-k}$, para $k=0,1,\ldots,n$.