CSD1241 Tutorial 1 Solutions

Problem 1. Given 3 vectors
$$\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

- (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $-3\vec{w}$ and $\vec{u} + \vec{v} 3\vec{w}$.
- (b) Graph in one picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
- (c) Compute the dot products $\vec{u} \cdot \vec{w}$, $(\vec{u} + \vec{v}) \cdot (-3\vec{w})$ and $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v} 3\vec{w})$.
- (d) Find the angle between the vectors \vec{u} and \vec{v} .
- (e) Find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$.

Solution. (a)
$$\vec{u} + \vec{v} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
, $\vec{v} - \vec{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $-3\vec{w} = \begin{bmatrix} -6 \\ 9 \end{bmatrix}$, $\vec{u} + \vec{v} - 3\vec{w} = \begin{bmatrix} -2 \\ 16 \end{bmatrix}$.

- (c) $\vec{u} \cdot \vec{w} = 0$, $(\vec{u} + \vec{v}) \cdot (-3\vec{w}) = 39$, $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v} 3\vec{w}) = -26$.
- (d) $\angle(\vec{u}, \vec{v}) = 45^{\circ}$.

(e)
$$\angle(\vec{v} - \vec{u}, \vec{w} - \vec{u}) = 135^{\circ}$$
.

Problem 2. Consider the points P = (2, 5), Q = (4, -1), R = (5, 2).

- (a) Find the midpoints M_{PQ} and M_{PR} of the line segments PQ and PR.
- (b) Find the midpoint M of the line segment $M_{PQ}M_{PR}$.
- (c) Find real numbers a, b such that

$$\overrightarrow{PM} = a\overrightarrow{PQ} + b\overrightarrow{PR}.$$

Solution. (a) $M_{PQ} = (3, 2), M_{PR} = (3.5, 3.5).$

(b) M = (3.25, -2.75).

(c)
$$a = b = \frac{1}{4}$$
.

Problem 3. (a) Graph in one picture the points P = (3, 2), Q = (5, 0) and R = (2, -1).

- (b) Compute the distances d(P,Q), d(P,R), d(Q,R).
- (c) Compute all three angles of the triangle $\triangle PQR$.
- (d) Compute the area of $\triangle PQR$.

Hint for d. Area $(\triangle PQR) = \frac{1}{2}PQ \times PR \times \sin(\angle P)$

Solution. (b) $d(P,Q) = 2\sqrt{2}, d(P,R) = \sqrt{10}, d(Q,R) = \sqrt{10}.$

- (c) $\angle P \approx 63.4^{\circ}, Q \approx 63.4^{\circ}, \angle R \approx 53.2^{\circ}.$
- (d) Area(PQR) ≈ 4 .

Problem 4. Consider three points A = (2, 3), B = (-2, 4), C = (-3, -2).

- (a) Find all the lengths of the sides of $\triangle ABC$.
- (b) Find all three angles of $\triangle ABC$.
- (c) Compute the area of $\triangle ABC$.
- (d) From C, draw vertically to AB and let H be the intercept of the vertical line with AB. Find the coordinates of H.

Solution. (a) $AB = \sqrt{17}, AC = 5\sqrt{2}, BC = \sqrt{37}.$

- (b) $A \approx 59^{\circ}$, $\angle B \approx 85^{\circ}$, $\angle C \approx 36^{\circ}$.
- (c) Area($\triangle ABC$) ≈ 12.5 .

(d)
$$\overrightarrow{AH} = \operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}) = \frac{\overrightarrow{AC} \cdot \overrightarrow{AB}}{\overrightarrow{AB} \cdot \overrightarrow{AB}} \overrightarrow{AB} = \frac{15}{17} \begin{bmatrix} -4\\1 \end{bmatrix} = \begin{bmatrix} -60/17\\15/17 \end{bmatrix}.$$

Since $\overrightarrow{AH} = H - A$, we obtain

$$H = A + \overrightarrow{AH} = (2,3) + \begin{bmatrix} -60/17 \\ 15/17 \end{bmatrix} = (-26/17, 66/17).$$

Problem 5. Consider three points A = (1, 1, 2), B = (0, 1, 4), C = (2, 3, 5).

- (a) Find the projection of \overrightarrow{AC} onto \overrightarrow{AB} , that is, $\operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC})$.
- (b) Find the orthogonal complement of \overrightarrow{AC} on \overrightarrow{AB} , that is,

$$\overrightarrow{AC}^{\perp} = \overrightarrow{AC} - \operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}).$$

Further, check that $\overrightarrow{AC}^{\perp}$ and \overrightarrow{AB} are orthogonal.

(c) Let D be another point such that ABCD is a parallelogram. Find D. Hint. $\overrightarrow{AD} = \overrightarrow{BC}$.

Solution. (a) $\operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}) = \begin{bmatrix} -1\\0\\2 \end{bmatrix}$.

$$\text{(b) } \overrightarrow{AC}^{\perp} = \overrightarrow{AC} - \text{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \ \overrightarrow{AC}^{\perp} \cdot \overrightarrow{AB} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = 0.$$

(c)
$$D = (3, 3, 3)$$
.

2

Problem 6. (a) Find the condition for the coordinates a, b of $\vec{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ such that \vec{x} is orthogonal to $\vec{u} = \begin{bmatrix} -7 \\ 2 \end{bmatrix}$. Could you give 3 examples of such vectors \vec{y} ? Could you give a geometric interpretation for all vectors which are orthogonal to \vec{u} ?

(b) Find the condition for the coordinates a, b, c of $\vec{y} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ such that \vec{y} is orthogonal to

 $\vec{v} = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}$. Could you give 3 examples of such vectors \vec{y} ? Do you know the geometric description for all these vectors \vec{y} ?

Solution. (a) \vec{x} and \vec{u} are orthogonal if and only if $\vec{x} \cdot \vec{u} = 0$, which implies

$$-7a + 2b = 0 \Rightarrow b = \frac{7}{2}a.$$

To give examples for \vec{x} , we simply assign values for (a, b) so that $b = \frac{7}{2}a$..

$$a=0 \Rightarrow \vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ a=1 \Rightarrow \vec{x} = \begin{bmatrix} 1 \\ 7/2 \end{bmatrix}, \ a=2 \Rightarrow \vec{x} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

Geometric description 1. Any vector \vec{x} perpendicular to \vec{u} has coordinates \vec{x} $\begin{bmatrix} a \\ 7/2a \end{bmatrix} = a \begin{bmatrix} 1 \\ 7/2 \end{bmatrix}, \text{ which is a scalar multiple of the vector } \begin{bmatrix} 1 \\ 7/2 \end{bmatrix}. \text{ Therefore, any vector perpendicular to } \vec{u} \text{ is parallel to } \begin{bmatrix} 1 \\ 7/2 \end{bmatrix}.$

Geometric description 2. Any vector \vec{x} perpendicular to \vec{u} has coordinates satisfying the equation of the line $l: y = \frac{7}{2}x$. So \vec{x} can be represented by an arrow starting at the origin O and ending at any point on the line l.

(b) We have

$$\vec{y} \perp \vec{v} \Leftrightarrow \vec{y} \cdot \vec{v} = 0 \Leftrightarrow 2a - 3b + 7c = 0.$$

To give examples of \vec{y} , we simply assign any 2 values for b, c and find a by a by a = c

 $\frac{1}{2}(3b-7c).$

$$b = c = 1 \Rightarrow a = \frac{1}{2}(3b - 7c) = -2 \Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
$$b = 2, c = 0 \Rightarrow a = \frac{1}{2}(3b - 7c) = 3 \Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$
$$b = 0, c = 2 \Rightarrow a = \frac{1}{2}(3b - 7c) = -7 \Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 2 \end{bmatrix}$$

Now we describe \vec{y} geometrically. Fix the startpoint of \vec{y} at the origin O. The endpoint of \vec{y} has coordinates a, b, c which satisfies

$$2a - 3b + 7c = 0,$$

that is, the equation of the plane 2x - 3y + 7z = 0. Therefore, the collection of vectors \vec{y} has startpoint O and endpoints lying on the plane 2x - 3y + 7z = 0.