දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධ්‍යයන පොදු සහතික පතු (උසස් පෙළ), 12 ශේණිය, අවසාන චාර පෙරනුරු පරික්ෂණය, 2023 මාර්තු General Certificate of Education (Adv. Level), Grade 12, Third Term Test, March 2023

රසායන විදනව II Chemistry II

පැය තුනයි. Three hours

විභාග අංකය :

- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * ඇවගාඩ්රෝ නියතය NA = 6.022 x 10²³ mol⁻¹
- * ප්ලාන්ක් නියතය h = 6.626 x 10⁻³⁴ J s
- * ආලෝකයේ පුවේගය $c = 3 \times 10^8 \, {
 m m \ s}^1$
- * සර්වනු වායු නියනය R = $8.314\,\mathrm{J\,K^{1}}\mathrm{mol^{-1}}$
- 🛘 A කොටස වාුනගත රචනා (පිටු 2 9)
- සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මෙම ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - 🔲 B කොටස සහ C කොටස රචනා (පිටු 10 16)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න.
- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස්වල පිළිතුරු A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පත්‍රයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B හා C කොටස් පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

පරීකෘකවරුන්ගේ පුයෝජනය සඳහා පමණි.

	කොටස	පුශ්න අංකය	ලැබූ ලකුණු
		01	
Ì	OA /	/ 02	1 26 10
	$\angle F$	03	
		04	The state of the s
		05	
	В	06	
		07	
		08	
	С	09	
		10	
	එකතුව		
	එකතුව පුතිශතය		

	අවසාන ලකුණ
ඉලක්කමෙන්	
අකුරින් 💮 🤇	arn
	අත්සන
උත්තර පතු පරීකෘක	
Service 1	

A කොටස - වපුහගත රචනා

- * පුශ්න හතරට ම මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 100 කි.)
- 01. (a) පහත සඳහන් පුකාශ සතෳ ද නැතහොත් අසතෳ ද යන බව තිත් ඉරි මත සඳහන් කරන්න. (හේතු දක්වීම අවශෳ නොවේ)

 - (iv) NO₂ ් හි O-N-O බන්ධන කෝණය ClO₂ හි O-Cl-O බන්ධන කෝණයට වඩා කුඩා වේ.......

(ලකුණු 25)

(b)(i) HCNO අණුව (fulminic acid) සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් වපුහය අදින්න. එහි සැකිල්ල පහත දී ඇත. H-C-N-O

22 A/L අප [papers grp]

(ii) NCO (cyanate ion) සඳහා වඩාත්ම ස්ථායි වපුහය පහත දක්වේ. මෙම අයනය සඳහා තවත් ලුවිස් වපුහ (සම්ප්‍රයුක්ත වපුහ) දෙකක් අදින්න.

$$O - C = N$$

(iii) පහත සඳහන් ලුවිස් තිත් ඉරි වසුහය සහ එහි ලේබල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න.

$$CH_3 - C - N - N = C - CH_3$$

 $1 \quad 2 \quad 3 \quad 4$

		C ¹	N ²	N ³	C ⁴
1	VSEPR යුගල්				
II,	ඉලෙක්ටුෝන යුගල ජහාමිතිය				
Ш	හැඩය				
IV	මුහුම්කරණය -			-	- 1

(iv)			σ බන්ධන සෑදීමට සහභාගී වන පරමාණුක / ටසෙහි ආකාරයටම වේ.)	
	(1)	$C^1 - O$	C ¹	O
	(II)	$C^1 - N^2$	C ¹	N ²
	(III)	$N^2 - H$	N ²	Н
	(IV)	$N^2 - N^3$	N ²	N ³
	(V)	$N^3 - C^4$	N ³	C ⁴
	(VI)	C ⁴ - Cl	C ⁴	CI
(v)		Mark. 122	ා ලද ලුවිස් වනුහයෙහි පහත සඳහන් පරමාණුවල අංකනය (iii) කොටසෙහි	π බන්ධන සෑදීමට සහභාගි වන පරමාණුක ී ආකාරයටම වේ.)
	(I)	$C^1 - O$	C ¹	O
2 (c)				C ⁴ (ලකුණු 50) දෑ සකසන්න. (හේතු දක්වීම අවශා නොවේ)
	(i)	CO ₂ , CO ₃ ² , CO	HCONH ₂	(C - O බන්ධන දිග)
		<	< <	••••••
	(ii)	NH ₃ , NCl ₃ , NC	O_2^- , NH_4^+	(N වටා බන්ධන කෝණය)
		<	<< <	••••••
	(iii)	කහ ආලෝකය, කො	ළ ආලෝකය, රතු ආලෝකය, පාරජ	ම්බුල කිරණ (ෆෝටෝන මවුලයක ශක්තිය)
		<	<< <	••••••
	(iv)	Li, Na, O, F		(පළමු අයනිකරණ ශක්තිය)
	(v)	Li ₂ CO ₃ , Na ₂ CO ₃	< < < < < K ₂ CO ₃ , Cs ₂ CO ₃	(ජල දුාවානතාවය)
		<	<	(ලකුණු 25)

02. (a)	A, B හා C යනු s ගොනුවට අයත් විකිරණශීලී නොවන ලෝහ තුනකි. A හා B එකම ආවර්තයට අයත් අනුයා	න
	මුලදුවා දෙකක් වන අතර B හා C එකම කාණ්ඩයට අයත් වේ.	
*	B ජලය සමග පුතිකියා නොකරන නමුත් හුමාලය සමග පුතිකියා කරයි.	
*	C අඩංගු ලවණ බන්සන් දල්ලට වර්ණයක් ලබා නොදේ.	
(i)	A, B හා C මූලදුවා හඳුනාගන්න.	
	A B C	
(ii)	B හුමාලය සමග සිදුකරන පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.	
(iii)	C ඔබුවෙන ජලය සමග තවුර තත්ත්ව යටුවත් කෙවුන් සම්බන කරයි ද යන්න සමග රහය සම	.,
(111)	C මුලදවා ජලය සමග කවර තත්ත්ව යටතේ කෙසේ පුතිකිුයා කරයි ද යන්න තුලිත රසායනික සමීකරණ මගි දක්වන්න.	53
	I	
	II	
(iv)	A වාතයේ දහනයෙන් ලැබෙන එල හා ඒවායේ වර්ණ සඳහන් කරන්න.	
	වලය වර්ණය	
2	7 A/Lasa nancear	
	Π	
(v)	C මූලදුවා වාතයේ දහනය කළ විට කුමක් නිරීකෂණය කළ හැකි ද?	
	I	
	II	
(vi)	C වාතයේ දහනයෙන් ලැබෙන එල මිශුණයට ජලය ස්වල්පයක් එකතු කළ විට සිදුවන පුතිකිුයා සඳහා තුලි	ත
	රසායනික සමීකරණ ලියන්න. -	
	I	
(vii)	II	
(111)	ඉයය. (11) ද ප්රජන පාසුප කදුනා කැනම සදහා සදුකළ හැක ප්රක්ෂාපක සහ එහි නාරක්ෂණය සඳහන කරනන.	
(viii)	A අඩංගු ලවණයක් පහන්සිළු පරීකෂාවේ දී ලබා දෙන වර්ණය කුමක් ද?	

(ix)	C මුලදුවෘ අඩංගු ලවණ බන්සන් දූල්ලට වර්ණයක් ලබා නොදීමට හේතුව සඳහන් කරන්න.	

(x)	A, B හා C මූලදුවා අතරින් උභයගුණි ඔක්සයිඩයක් සාදන මූලදුවා කුමක් ද?	
, ,	, 205 1 1 2 0 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2	
	(ලකුණු 5	6)

(b) පහත සඳහන් සංයෝගවල ජලීය දුාවණ ඔබට සපයා ඇත.

KI, $Na_2S_2O_3$, K_2SO_4 , $Mg(HCO_3)_2$, NaCl, Na_2CO_3

(i) ඉහත දී ඇති දුාවණ අතරින් පහත සඳහන් පරික්ෂණ හා නිරීක්ෂණවලට අදාළ දුාවණය තෝරා නිගමනය තීරුවේ ලියන්න.

	පරිකුණය	නිරීක ණය	නිගමනය
I	 ජලීය AgNO₃ එකතු කරන ලදී. නනුක NH₃ එකතු කරන ලදී 	සුදු පැහැ අවක්ෂේපයක් ඇති විය. අවක්ෂේපය දිය විය.	
II	• Pb(CH3COO)2 දාවණය එකතු කරන ලදී.	තද කහ පැහැති අවක්ෂේපයක් ඇති විය.	
Ш	• දාවණය තදින් රත් කරන ලදී.	වායු බුබුලු පිට විය. සුදු පැහැති අවක්ෂේපයක් ලැබුණි.	
IV	 Pb(NO₃)₂ ජලීය දාවණය එකතු කරන ලදී අවක්ෂේපය රත් කරන ලදී 	සුදු පැහැ අවක්ෂේපයක් ඇති විය. කළු පැහැ ඝනයක් ලැබුණි.	
v	 BaCl₂ දාවණය එකතු කරන ලදී තනුක HNO₃ එකතු කරන ලදී 	සුදු පැහැ අවක්ෂේපයක් ඇති විය. අවක්ෂේපය දිය විය	

(II) ĝ	හත I සට V දක්වා පරිකෘණ වලට අදාළ තුලින් රසායනක් සමකරණ ලියන්න.
I	
2112 III	2A/Læ8 papers grp]
IV	
v	
	(ලකුණු 44)

03.	(a)	Na ₂ CO ₃ සහ HCl අම්ලය අතර පුතිකිුයාවේ එන්තැල්පි විපර්යාසය සෙවීම සඳහා පහත කිුියාමාර්ගය අනුගමනය කරන ලදී.
	*	නිර්ජලීය Na ₂ CO ₃ 2.12 g ස්කන්ධයක් 1 mol dm ⁻³ සාන්දුණයෙන් යුත් HCl අමලය 50 cm ² සමග පුතිකිුයා කරවන ලදී.
	*	එහිදී සිදු වූ උෂ්ණත්ව වැඩි වීම 3.5 ⁰ C විය.
		Na ₂ CO ₃ සහ HCl අතර පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
	(7	
	(ii)	පුතිකිුයා කරන Na ₂ CO ₃ සහ HCl මවුල පුමාණ ගණනය කර සීමාකාරී පුතිකිුයකය සඳහන් කරන්න. (C = 12, O = 16)
		•••••••••••••••••••••••••••••••••••••••

	(iii)	දාවණයේ ඝනත්වය 1 g cm ⁻³ ද විශිෂ්ට තාප ධාරිතාව 4.2 J g ⁻¹ K ⁻¹ ද නම් පුතිකිුයාවේදී හුවමාරු වන තාප
	,	පුමාණය ගණනය කරන්න.
		22 A/L &8 [papers grp]
	(iv)	ඉහත (i) හි සඳහන් පුතිකිුයාවේ එන්තැල්පි විපර්යාසයේ ලකුණ කුමක් ද?
	(v)	ඉහත (i) හි Na ₂ CO ₃ මුළුමනින් ම උදාසින වීමේ පුතිකිුයාව සඳහා එන්තැල්පි විපර්යාසය ගණනය කරන්න.

	(vi)	ඉහත (v) කොටසේ ගණනය කරන ලද එන්තැල්පි විපර්යාසය සම්මත එන්තැල්පි විපර්යාසයට සමාන නොවේ.
		මෙයට හේතු දෙකක් සඳහන් කරන්න.
		•

(vii) NaHCO $_3(aq)+HCl(aq)$ \longrightarrow NaCl $(aq)+H_2O(l)+CO_2(g)$ යන, පුතිකියාව සඳහා එන්නැල්පි විපර්යාසය +25 kJ mol^{-1} වේ. ඉහත (v) කොටසෙහි ඔබ ගණනය කළ අගය ද යොදාගෙන $Na_2CO_3(s)+HCl(aq)$ \longrightarrow NaHCO $_3(aq)+NaCl(aq)$ පුතිකියාවේ එන්නැල්පි විපර්යාසය සුදුසු තාප රසායනික චකුයක් ඇඳ ගණනය කරන්න.

22 A/L æ8 [papers grp]

(ලකුණු 100)

- 04 (a) A,B,C හා D යනු අණුක සුතුය C_5H_{10} වන ඇලිෆැටික ඇල්කීනයේ වපුහ සමාවයවික හතරකි. ඒවා පාර නිමාණ සමාවයවිකතාව නොදක්වයි.
 - * මෙම සමාවයවික සාන්දු සල්ෆියුරික් අම්ලය සමඟ පුතිකියා කරවා ජල විච්ඡේදනය කළ විට A හා B මගින් පිළිවෙළින් E හා F යන ද්විතියික මධාාසාර දෙක ද C හා D මගින් එකම G නමැති තෘතික මධාාසාරය ද ලබා දේ.
 - * A හි තාපාංකය B හි තාපාංකයට වඩා වැඩිය.
 - (I). A, B, C හා D යන සමාවයවික වල වපුහ අදින්න.

A	С
В	D

(ii) E, F හා G සංයෝග වල වනුහ අදින්න.

E	F	G

((iii)	F	සංයෝගය PCC	. සමග	පතිකියාවෙන්	ලබා දෙන H	එලයේ	වාහනය (ෑදින්න.
٠,		•	woowswa r co	, 200		Con Chart		C.quiu c	+ 4,000

120	T	-			la construcción de la construcción	00	0	_		00	
(1V	∣ ⊢ නා	G	චක්ලනක්න්	වෙන්කර	හඳුනා ග	ැනම සඳහ	ා සදු කැ	දු හැක	පරක්ෂාවක්	සහ නිර්ස	ෂණ ලියන්න.

පරිකුණය	
නිරීකු ණය	

(v) H සංයෝගයේ IUPAC නාමය ලියන්න

22 A/L &8 papers grays 55

(b) පහත දක්වා ඇති එක් එක් පුතිකියා මගින් ලැබෙන එලවල වපුහ දී ඇති කොටුව තුළ අදින්න.

(i)
$$CH_3CH_2CH = CH_2 \xrightarrow{HBr} H_2O_2$$

(iv)
$$CH_3C \equiv CCH_3$$
 $\xrightarrow{H_2/Pd}$ $\xrightarrow{BaSO_4}$ ක්විනොලින්

(ලකුණු 25)

(c) එතීන් හා HBr අතර පුතිකියාව සලකන්න.

$$H = C = H + HBr \longrightarrow H - C - C - H$$

$$H = H$$

$$H = H$$

$$H = H$$

ඉහත පුතිකිුයාවට අනුව පහත දී ඇති වගන්තිවල වරහන් තුළ ඇති අදාළ නොවන පිළිතුරු කපා හරින්න. ඉහත පුතිකිුයාවේ දී

- (i) එතීන් (නියුක්ලියොෆිලික / ඉලෙක්ටොෆිලික) (ආකලන / ආදේශ) ප්‍රතිකියාවක් සිදු කරයි.
- (ii) එතීන් හි කාඛන් පරමාණුවල මුහුම්කරණය (sp³/sp²/ sp) සිට (sp³/sp²/ sp) දක්වා වෙනස් වේ.
- (iii) මෙම පුතිකියාව සඳහා යන්තුණය ලියන්න.

(ලකුණු 20)

22 A/L අපි [papers grp]

* * *

B කොටස - රචනා

- * පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට ලකුණු 150 බැගින් ලැබේ.)
- 05.(a) පරිමාව 4.157 dm³ වන දෘඩ සංවෘත බඳුනක් තුළ MCO $_3$. 2H $_2$ O නම් සජල ලවණය අඩංගු වේ. බඳුන තුළ උෂ්ණත්වය 227 0 C දක්වා වැඩි කළ විට ලවණයේ වූ ජලය මුළුමනින්ම වාෂ්ප ලෙස ඉවත් වී නිර්ජලීය MCO $_3$ ලවණය බවට පත් වු අතර බඳුන තුළ පීඩනය 2 x 10 5 Pa විය.
 - බදුන තුළ වූ MCO₃ . 2H₂O ලවණ මවුල සංඛ්‍යාව ගණනය කරන්න.
 - (ii) බඳුන තුළ උෂ්ණත්වය 427 0 C දක්වා වැඩි කළ විට MCO3 ලවණය පහත පරිදි තාප වියෝජනය විය.
 - $22_{(1)}$ CO_2 Objection emitted by q? $MO(s) + CO_2(g)$ $O(s) + CO_2(g)$
 - (II) බඳුන තුළ CO₂ හි ආංශික පීඩනය ගණනය කරන්න.
 - (III) 427 ⁰C දී බඳුන තුළ මුළු පීඩනය සොයන්න.
 - (IV) ඉහත ගණනයේ දී ඔබ විසින් සිදු කළ උපකල්පන දෙකක් සඳහන් කරන්න.

(ලකුණු 65)

(b) සම්මත තත්ත්ව යටතේ ඔක්සිජන් වායුවේ මවුලික පරිමාව සෙවීමේ පරිකෂණයක දී ශිෂායෙක් විසින් ජලයේ යටිකුරු විස්ථාපනය මගින් ඔක්සිජන් වායුව රැස් කර ගන්නා ලදී. පරිකෂණයේ දී ලබාගත් දත්ත හා පුතිඵල පහත පරිදි වේ.

* KClO₃ සහිත නලයේ ආරම්භක ස්කන්ධය = 33.72 g

* රත් කිරීමෙන් පසු ශේෂය සහිත නලයේ ස්කන්ධය = 33.08 g

* රැස් කරගත් මක්සිජන් වායු පරිමාව $= 540 \, \mathrm{cm}^3$

* කාමර උෂ්ණත්වය = $30 \, ^{0}\mathrm{C}$

* වායු ගෝලීය පීඩනය = 760 mm Hg

* කාමර උෂ්ණත්වයේ දී ජලයේ සංතෘප්ත වාෂ්ප පීඩනය = 31.8 mm Hg

* සම්මත උෂ්ණත්වය = 273 K

* සම්මත පීඩනය = 1.013 x 10⁵ Pa

(1 mmHg = 133.32 Pa)

- (i) KClO3 තාප වියෝජනය සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ඔක්සිජන් වායු මවුල සංඛ්‍‍‍ පාව ගණනය කරන්න.
- (iii) සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී ඔක්සිජන්වල මවුලික පරිමාව ගණනය කරන්න.
- (iv) "එකම උෂ්ණත්වය හා පීඩනයේ දී ඕනෑම වායුවක මවුල එකක් අත්පත් කර ගන්නා පරිමාව නියත වේ." මෙය කුමන නියමය සමඟ සම්බන්ධ වේ ද?
- (v) ඉහත (iv) හි සඳහන් කළ නියමය ලියන්න.

- (vi) ඉහත (iv) හි සඳහන් කළ නියමය ඇසුරින් වායුවක මවුලික ස්කන්ධය (M) සහ ඝනත්වය (d) අතර සම්බන්ධතාවය M=kd බව පෙන්වන්න. (k යනු නියතයකි) (ලකුණු 85)
- 06. (a) (i) අයනික සංයෝගයක සම්මත දුලිස් විසටන එන්තැල්පිය අර්ථ දක්වන්න.
 - පහත දී ඇති දත්ත භාවිතයෙන් KBr(s) සඳහා සම්මත දුලිස් විඝටන එන්තැල්පිය බෝන්හේබර් චකුයක් (ii) භාවිතයෙන් ගණනය කරන්න.

89 kJ mol⁻¹ K (s) හි සම්මත ඌර්ධවපාතන එන්තැල්පිය 31 kJ mol⁻¹ Br₂(1) හි සම්මත වාෂ්පිකරණ එන්නැල්පිය 193 kJ mol⁻¹ Br₂(g) හි සම්මත බන්ධන විසටන එන්තැල්පිය 419 kJ mol⁻¹ K(g) හි සම්මත පළමු අයනිකරණ එන්තැල්පිය -194 kJ mol⁻¹ Br (g) හි සම්මත පළමු ඉලෙක්ටෝනකරණ එන්නැල්පිය -246 kJ mol-1 KBr(s) හි සම්මත උත්පාදන එන්තැල්පිය

- (iii) K⁺(g) හා Br⁻(g) අයන සඳහා සම්මත සජලන එන්තැල්පි පිළිවෙළින් -322 kJ mol⁻¹සහ -348 kJ mol⁻¹වේ නම් KBr(s) හි සම්මත දාවණ එන්තැල්පි විපර්යාසය ගණනය කරන්න. (ඉහත (ii) හි පිළිතුර භාවිතයෙන්)
- (iv) 25 ⁰C දී හි KBr(s) උත්පාදනයේ සම්මත ගිබ්ස් ශක්ති විපර්යාසය -381 kJ mol⁻¹ වේ නම් KBr(s) උත්පාදනය සඳහා සම්මත එන්ටොපි විපර්යාසය ගණනය කරන්න.

(ලකුණු 65)

- විදපුත් චුම්භක විකිරණයක් යනු කුමක් ද? (b) (i)
 - විද්යුත් චුම්භක වර්ණාවලියේ දල සටහනක් අදින්න. (ii)
 - (iii) උත්තේපිත පොටෑසියම් වාෂ්පය මගින් වීමෝචනය කරන විද්යුත් චුම්භක විකිරණයේ සංඛාෟතය 7.35 x 10¹⁴ s⁻¹ වේ.
 - එම විද්යුත් චුම්භක චිකිරණයේ ශක්ති පැකට්ටුවක ශක්තිය ගණනය කරන්න.
 - II. එම විදයුත් චුම්භක විකිරණ මගින් 1200 J ශක්තියක් ලබා ගැනීමට අවශා ශක්ති පැකට්ටු සංඛාාව කොපමණ ද? (ලකුණු 45)
- (c) FeCl₃ ජලීය දාවණයක සාන්දුණය 1 x 10⁻⁴ mol dm⁻³ වේ. (Fe 56, Cl 35.5)
 - (i) මෙම දුාවණයේ Cl සාන්දුණය ppm වලින් සොයන්න.
 - (ii) ඉහත FeCl₃ දුාවණයෙන් 100 cm³ ගෙන එයට NaCl 0.585 g ක ස්කන්ධයක් එකතු කරන ලදී. එම දුාවණයේ Cl සාන්දුණය mol dm 3 වලින් ගණනය කරන්න. (ලකුණු 40)

- 07. (a) Fe²⁺ අයන දාවණයක සාන්දුණය නිර්ණය කිරීම සඳහා ශිෂායෙක් විසින් අනුගමනය කරන ලද කිුයා පිළිවෙළ පහත දක්වේ.
 - * Fe²⁺ දුාවණය 25.0 cm³ අනුමාපන ප්ලාස්කුවට දමා ගන්නා ලදී. එයට 2 mol dm⁻³ H₂SO₄ අම්ලය 25 cm³ සහ සාන්දු H₃PO₄ අම්ලය 5 cm³ එකතු කරන ලදී.
 - * 0.02 mol dm⁻³ KMnO₄ ද්‍රාචණය බියුරෙට්ටුවට ප්‍රජා ගන්නා ලදී.
 - අනුමාපන ප්ලාස්තුවේ ඇති දාවණයට නියත වර්ණයක් ලැබෙන තුරු බියුරෙට්ටුවේ ඇති දාවණය සමඟ
 අනුමාපනය කරන ලදී.
 - * අන්ත ලක්ෂයේ දී බියුරෙට්ටු පාඨාංකය 30.00 cm³ විය.
 - (I) මෙහි දී සිදුවන ඔක්සිකරණ ඔක්සිහරණ පුතිකියාව සඳහා තුලින අයනික සමීකරණය ලියන්න.
 - (ii) අනුමාපනය සඳහා වැය වු KMnO4 මවුල සංඛ්‍යාව ගණනය කරන්න.
 - (iii) දාවණයේ Fe²⁺ සාන්දණය ගණනය කරන්න.
 - (iv) මෙම අනුමාපනයේ දී H₃PO₄ අම්ලයේ කාර්යය කුමක් ද?
 - (v) අන්ත ලක්ෂයයේ දී සිදුවන වර්ණ විපර්යාසය සඳහන් කරන්න.
 - (vi) Fe²⁺ දාවණය 25.00 cm³ මැන ගැනීම සඳහා භාවිතා කරන පරිමාමිතික උපකරණය කුමක් ද?
 - (vii) Fe²⁺ දාවණය ප්ලාස්කුවට එකතු කර ගන්නා ආකාරය රූප සටහනකින් දක්වන්න.
 - (viii) මෙම අනුමාපනයේ දී දර්ශකය ලෙස කියා කරන්නේ කුමක් ද?

(ලකුණු 90)

- (b) M යනු හතරවන ආවර්තයට අයත් d ගොනුවේ මුලදුවායකි. M හි නයිටේටයේ ජලීය දාවණය X_1 රෝස පැහැතිය. X_2 දාවණය වැඩිපුර NaOH සමග රෝස පැහැති X_2 අවක්ෂේපය සාදයි. X_2 සාන්දු NH_3 හමුවේ වර්ණවත් X_3 දාවණය පාදන අතර ස්වයං ඔක්සිකරණය නිසා තද වර්ණයක් ඇති X_4 බවට පත් වේ.
 - (i) M හඳුනාගන්න.
 - (ii) M හි භූමි අවස්ථාවේ ඉලෙක්ටුෝන විනාහසය ලියන්න.
 - (iii) M හි වඩාත් ම ස්ථායි ඔක්සිකරණ අංක සඳහන් කරන්න.
 - (iv) X_1, X_2, X_3 හා X_4 වල රසායනික සුනු ලියන්න.
 - (v) X_3 හා X_4 දාවණවල වර්ණ සහ IUPAC නාම සඳහන් කරන්න.
 - (vi) X₁ දාවණය සාන්දු HCl සමග සාදන සංකීර්ණයේ සූතුය, වර්ණය හා IUPAC නම සඳහන් කරන්න.

(ලකුණු 60)

C කොටස - රචනා

- * පුශ්ත දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට ලකුණු 150 බැගින් ලැබේ.)
- 08. (a) (i) සාමානෳ තත්ත්ව යටතේ අසංතෘප්තතාව පිළිබඳ පරිකෂණවලට බෙන්සීන් පිළිතුරු දෙයි ද? නොදෙයි ද?
 - (ii) අසංතෘප්තතාව පිළිබඳ පරිකෂණ දෙකක් හා අදාළ නිරීකෂණ ඇපුරින් ඔබේ පිළිතුරට හේතුව කෙටියෙන් පැහැදිලි කරන්න.
 - (iii) පහත දී ඇති සම්මත හයිඩුජනිකරණ එන්තැල්පි දත්ත ඇපුරෙන් බෙන්සීන් හි කෙතුලේ වුහුහයක සහ සතහ බෙන්සීන් අණුවක ස්ථායිතාව කෙටියෙන් පැහැදිලි කරන්න.

(b) පහත දී ඇති පුතිකාරක පමණක් භාවිත කරමින් දී ඇති පරිවර්තනය පියවර පහකින් සිදු කරන ආකාරය පෙන්වන්න.

HBr H⁺/H₂O මධාසාරිය KOH H⁺/KMnO₄ ජලිය KOH CH₃CH₂MgBr

22 A/L æs [papers grp

$$\begin{array}{cccc} \text{CH}_3\text{CH}_2\text{CH}_2\text{CI} & \longrightarrow & \text{CH}_3 - \overset{\text{OH}}{\text{C}} - \text{CH}_3 \\ & & \text{CH}_2\text{CH}_3 \end{array}$$

(ලකුණු 50)

(c) ඇල්කයින වල π බන්ධන එකිනෙකට ස්වායත්තව ප්තිකියා කරයි. එය සනාථ කිරීම සඳහා එතයින්වලට HBr ආකලනය වන ආකාරය සමීකරණ ඇසුරෙන් පමණක් ඉදිරිපත් කරන්න. 09.(a) ජලීය දුාවණයක ඇති අයන හඳුනා ගැනීම සඳහා ශිෂායෙක් විසින් සිදු කරන ලද කියාකාරකම සහ ලැබු නිරීකෘණ පහත වගුවේ දක් වේ.

	කි්යාකාරක ම	නිරීකෳණය						
I.	ජලීය දුාවණයෙන් ස්වල්පයක් පහන් සිළු පරීකෂාවට ලක් කරන ලදී.	කහ පැහැති දුල්ලක් ලැබුණි.						
11.	ජලීය දාවණයේ කොටසකට තනුක HCl එකතු කරන ලදී.	ලා කහ පැහැති ආවිලතාවයක් සහිත දාවණයක් (A) සමග කටුක ගන්ධයක් ඇති වායුවක් (B) පිටවිය.						
III.	ජලීය දාවණයේ තවත් කොටසකට අලුත සෑදු FeSO ₄ දාවණය එකතු කර පරීක්ෂා තලයේ බිත්තිය දිගේ සාන්දු H ₂ SO ₄ අම්ලය බිංදු කිහිපයක් එකතු කරන ලදී.	දාවණ දෙක හමුවන ස්ථානයේ දුඹුරු පැහැ වලයක් නිරික්ෂණය විය.						
IV.	ජලීය දාවණයේ තවත් කොටසකට BaCl ₂ දාවණය එකතු කරන ලදී.	තනුක HNO3 හි අදාවා සුදු පැහැති අවක්ෂේපයක් (C) ලැබුණි.						

- (i) A, B, C වල රසායනික සුතු ලියන්න.
- (ii) ජලීය දුාවණයේ අඩංගු අයන මොනවා ද?
- (iii) ඉහත II, සහ IV පරික්ෂණ වලට අදාළ තුලිත අයනික සමීකරණ ලියන්න.
- (iv) C පහන්සිළු පරීක්ෂාවේ දී ලබාදෙන වර්ණය කුමක් ද?
- (v) B වායුව හඳුනා ගැනීම සඳහා සිදු කළ හැකි පරීක්ෂාවක් සඳහන් කරන්න.

(ලකුණු 75)

(b) පරිමාමිතික විශ්ලේෂණයකදී NaNO₃ , (NH₄)₂SO₄ සහ (NH₄)₂ C₂O₄ අඩංගු ඝන මිශුණයක් විශ්ලේෂණය කිරීම සඳහා ශිෂායෙක් විසින් පහත සඳහන් කියාපිළිවෙළ අනුගමනය කරන ලදී.

පියවර 1

සන මිශුණය ජලයේ දියකර පරිමාව 250 cm³ වන තෙක් සකසා එයින් දුාවණ 25 cm³ ගෙන NaOH වැඩි පුමාණයක් සමඟ නටවන ලදී. ඉන් පිටවු NH, වායුව අවශෝෂණය සඳහා 0.05 mol dm⁻³ HCl දුාවණයකින් 25.00 cm³ වැය විය.

පියවර 2

මෙයින් ලැබෙන දාවණය Al කුඩු එකතු කර නැවත රත් කරන ලදී. එහිදී පිටවු NH₃ සියල්ලම අවශෝෂණය කිරීම සඳහා 0.05 mol dm⁻³ HCl දාවණයකින් 20.00 cm³ වැය විය.

පියවර 3

ඉතිරි දාවණය සමඟ සම්පූර්ණයෙන් පුතිකිුයා කිරීමට තනුක H $_2$ SO $_4$ වලින් ආම්ලික 0.02 mol dm $^{-3}$ KMnO $_4$ දාවණය $30.00\,\mathrm{cm}^3$ අවශා විය.

- (i) පියවර 1 දී සිදුවන සියළු ප්‍රතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) එනයින් දාවණයේ ඇති NH₄ සාන්දණය ගණනය කරන්න.
- (iii) පියවර 2 දී සිදුවන ඔක්සිකරණ ඔක්සිහරණ පුතිකියාව සඳහා තුලිත අයනික සමීකරණය ලියන්න.
- (iv) දාවණයේ NH3 සාන්දුණය ගණනය කරන්න.
- (v) තනුක H₂SO₄ මගින් ආම්ලික කරන ලද MnO₄ හා C₂O₄² අතර පුතිකියාව සඳහා තුලිත අයනික සමීකරණය ලියන්න
- (vi) දාවණයේ $C_2O_4^{2-}$ සාන්දුණය ගණනය කරන්න.

(ලකුණු 75)

10.(a) (i) පහත වගුවේ අංක I සිට IX දක්වා හිස්තැන්වලට අදාළ නිරීකෘණ ලියන්න.

සංලයා්ගය	නිරිකුණය									
	Na ලෝහය සමග	ජලීය NaOH සමග	ජලිය Na ₂ CO ₃ සමග							
C ₂ H ₅ OH	I	IV	VII							
О — он	II	v	VIII							
СН3СООН	III	VI	IX							

(ii) පහත සඳහන් එක් එක් සංයෝග යුගලය එකිනෙකින් වෙන්කර හඳුනා ගන්නා ආකාරය සඳහන් කරන්න.

I $CH_3 CH_2 CHO ED CH_3 - C - CH_3$

II $CH_3 CH_2 C \equiv CH \iff CH_3 C \equiv C CH_3$

(ලකුණු 50)

(b) පහත ප්‍රතිකියාව ඇසුරෙන් දී ඇති ප්‍රශ්නවලට පිළිතුරු සපයන්න.

$$CH_3$$
- CH - CH_2OH + CH_3 CH_2 - C - OH $\xrightarrow{(x)}$ D

- (i) P එලයේ වනුහය අදින්න.
- (ii) X සඳහා යෙදිය යුතු ප්‍රතිකාරකය කුමක් ද?
- (iii) P සංයෝගය CH3 MgBr සමග පුතිකියා කරවා ජල විච්ඡේදනය කළ විට ලැබෙන පුධාන එලයේ වනුහය අදින්න.

(iv) පහත පුතිකිුයා අනුකුමය සලකන්න.

$$CH_3 \stackrel{\parallel}{-C} - CH_3 \stackrel{\leq \otimes \omega}{\longrightarrow} A \xrightarrow{H^+} B$$

- I ඉහත A හා B එල පිළිවෙළින් ලියන්න.
- II ජලීය භෂ්ම ඇති විට සිදු කරන මෙම පුතිකිුයා වර්ගය හඳුන්වන විශේෂ නම කුමක් ද? (ලකුණු 55)
- (c) (i) එතින් හා Br2 අතර පුතිකියාව සඳහා යන්තුණය ලියන්න.
 - (ii) එහිදී ලැබෙන එලයට මධාසාර KOH දුමු විට ලැබෙන එලය අදින්න. (ලකුණු 45)

22 A/L &8 [papers grp

l H	ආචර්තිතා වගුව													2 He			
3 Li	4 Be												6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	.											14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rb	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	100 Sg	107 Bb	108 Hs	109 Mt	110 Uum	111 Uuu	112 Uub	113 Uut					
58	59	192	0	61	62	63	64		65	66	67	68	6		70	71	
Ce	Pr		ld	Pm	Sm	Eu	G		ТЬ	Dy	Но	Er	-	m	Yo	Lu	
90 Th	91 Pa)2 U	93 Np	94 Pu	95 Am	96 Cr		97 Bk	98 Cf	99 Es	100 Fm			102 No	103 Lr	