

ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION FIRST SEMESTER 2023-2024

Course Handout Part II

Date: 01-08-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME G521

Course Title : MECHANICAL SYSTEM DESIGN

Instructor-in-Charge : Dr Arnab Guha Instructor for lab : Dr Arnab Guha

Course Prerequisites : Knowledge in Solid Mechanics and Design of Machine Elements is desirable : Knowledge in MATLAB, ANSYS, CAM and SOLIDWORKS will be needed

Course Description: Concept of system design; modeling of structural and kinematic systems, and determination of system characteristics; reliability of systems; design of machine elements for specified reliability; concepts of optimization; techniques of design optimization for linear and non-linear problems.

Scope and Objective of the Course:

The aim of the course is to present a comprehensive and clear approach to systematic design of mechanical systems. Because of the complex nature of modern technology, it is rarely possible for an individual to tackle the design and development of a major new product single-handedly. Often a large team is required and the design process is broken down into a logical sequence of distinct steps, each with its own working methods. The design process must also be carefully planned and executed. The relevant methodologies and techniques are dealt with in this course. Case study on power transmission system design is included. Reliability, design evaluation and optimization techniques as applied to design process are also studied.

Textbooks:

- 1. "Mechanical System Design", A. Goel, Technical Publications, 1st Ed., 2020.
- 2. "Mechanical System Design", K.U. Siddiqui and M.K. Singh, New Age Publisher, 2nd Ed., 2017.

Reference books:

- 1. "Mechanical System Design", S.P. Patil, JAICO Publisher, 2nd Ed., 2012
- 2. "Design Optimization using MATLAB and SOLIDWORKS", K. Suresh, Cambridge University Press, 1st Ed., 2021

Course Plan:

Lecture	T		Text	
No.	Learning objectives	Topics to be covered	Book	
1-3	Introduction to the design Concept of system design, Model of a mechanical system, of mechanical systems Classification of mechanical systems, Nature of Mechanical Systems, Design Processes.			
4-7	Mechanical system characteristics and modelling	Classification of systems based on characteristics, Linear Graph modelling concepts, Mathematical modelling concepts, System behavior, Modelling and Simulation	TB 2	
8-10	Statistical consideration in mechanical system design	Introduction to Statistics, Causes of Variation and Frequency Distribution	TB 1	
11-12	Statistical consideration in mechanical system design	Probability Distribution Curve, Population Combinations	TB 1	
13-14	Statistical consideration in mechanical system design	Design and Natural Tolerances	TB 1	
15-16	Statistical consideration in mechanical system design	Acceptance or Rejection of component and assembly	TB 1	
17-19	Statistical consideration in mechanical system design	Reliability and factor of safety	TB 1	
20-23	Optimum design of mechanical systems	Calculus methods for optimization	TB 2, RB 1, RB 2	
24-25	Optimum design of mechanical systems	Classification of Design parameters, Adequate design and Optimum design	TB 1	
26-29	Optimum design of mechanical systems	Johnson's method of optimum design for non-linear system, Optimum design with normal and redundant specifications	TB 1	
30-31	Case Study: Design of Multi-Speed Gear Box in Machine Tools and Stepped regulation Machine Tool Gear Box of speed		TB 1, RB 1	
32-35	Case Study: Design of Machine Tool Gear Box	Kinematic design of multispeed gearbox and Kinematic diagram of gearbox	TB 1, RB	
36-40	Case Study: Design of Machine Tool Gear Box	Optimum Structure diagram, Optimum Ray diagram and Optimum Speed diagram	TB 1, RB	

Evaluation Scheme:

Component	Duration	Weightage	Date &	Nature of
			Time	component
Mid-Semester Test	90 min	20%	14/10 - 4.00 - 5.30PM	СВ
Quiz		10%		CB
Seminar on Literature review and research		5%		OB
summary related to research articles on				
mechanical system design				
Design project delivery and presentation	Throughout the	20%		OB
	semester			
Draft journal paper based on Design project		15%		OB
Comprehensive Examination	180 mins	30%	21/12	СВ
			AN	

Chamber Consultation Hour: Every Thursday, 5 pm to 6 pm in D-303.

Notices: All the notices regarding the course will be displayed on the CMS.

Make-up Policy: Only for genuine cases with prior permission

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Arnab Guha

INSTRUCTOR-IN-CHARGE

