APPUNTI DI MECCANICA DEI CONTINUI

Dalle lezioni del Prof. Maurizio Vianello per il corso di Ingegneria Matematica

di Teo Bucci

Politecnico di Milano A.A. 2020/2021

© Gli autori, tutti i diritti riservati Sono proibite tutte le riproduzioni senza autorizzazione scritta degli autori. Revisione del 16 febbraio 2021 Developed by Teo Bucci - teobucci8@gmail.com

Compiled with \heartsuit

Per segnalare eventuali errori o suggerimenti potete contattare gli autori.

Indice

1	Cor	pi e deformazioni	1
	1.1	Gradiente di deformazione	2
	1.2	Deformazioni omogenee	3
	1.3	Deformazioni omogenee con punto fisso	3
	1.4	Rotazioni	3
		1.4.1 Teorema di esistenza dell'asse di rotazione	4
		1.4.2 Teorema della radice quadrata	5
		-	6
	1.5		7
		-	8
	1.6		9
	1.7	v	9
	1.8	Angoli di scorrimento	
	1.9	Tensore di Green-SaintVenant	
	-	Trasformazioni inverse e tensore di Finger	
		Variazioni di volume	
		Spostamento e gradiente di spostamento	
	1.12	spostamento e gradiente di spostamento i i i i i i i i i i i i i i i i i i i	
2	Cine	ematica 1'	7
	2.1	Campi materiali e campi spaziali	7
		2.1.1 Chiarimenti di notazioni	8
	2.2	Richiami di analisi	8
	2.3	Gradienti spaziali e materiali di velocità e accelerazione	8
	2.4	Legame tra campi spaziali e materiali	
	2.5	Variazione di volume nel tempo	
	2.6	Conservazione della massa ed equazione di continuità	
		2.6.1 Una conseguenza importante	1
	2.7	Tensore velocità di deformazione	
		2.7.1 Velocità di stiramento	
		2.7.2 Velocità di scorrimento	
	2.8	Tensore vorticità	
	2.0	2.8.1 Tensori antisimmetrici e vettori	
	2.9	Espressione del campo spaziale delle accelerazioni	
	-	Moto rigido come caso particolare	
		Curve materiali chiuse	
		Superficie materiale	
		Equazione di evoluzione della vorticità	
	2.10	2.13.1 Premessa	
		2.13.2 Deduzione	
		2.15.2 Deduzione	Ü
3	Forz	ze agenti su corpi continui 3:	1
	3.1	Forze di volume	
	3.2	Forze di contatto	
	$\frac{3.2}{3.3}$	Sforzi nei corpi continui	
	3.4	Teorema di Cauchy	
	3.5	Proprietà del tensore degli sforzi	

	3.6 3.7 3.8	I equazione "indefinita" di moto dei continui	38 39 39 41
4	Rela	azioni costitutive e fluidi	43
	4.1	Fluidi ideali comprimibili	44
		4.1.1 Aggiunta di ipotesi che b sia conservativa	45
		00	45
	4.2		45
		4.2.1 Aggiunta di ipotesi che b sia conservativa	
			46
	4.0	4.2.3 Esempio di statica relativa	
	4.3	Fluidi viscosi (newtoniani)	
	4.4	00	47
	4.4		48
	$4.5 \\ 4.6$		48 49
	4.0	Froblema di esistenza e regolarita di Navier-Stokes	49
5	App	pendice	51
	5.1	Dimostrazione 1	51
	5.2	Dimostrazione 2	53
	5.3	NB	54

Capitolo 1

Corpi e deformazioni

Studia i corpi deformabili. Abbiamo una **configurazione di riferimento**, poi il corpo viene collocato in un contesto e viene deformato in una **configurazione attuale**.

Figura 1: La deformazione e la sua inversa creano una corrispondenza biunivoca e regolare fra \mathcal{B}_* e la configurazione deformata \mathcal{B} .

I punti della configurazione di riferimento li indico con p e con x quelli della configurazione attuale. C'è una **deformazione**, cioè una corrispondenza

- uno a uno,
- regolare, almeno C^2

$$\mathbf{f}: \mathcal{B}_* \to \mathcal{E}^3 \quad \mathbf{x} = \mathbf{f}(\mathbf{p}, t)$$

Questa storia dell'uno a uno mi convince poco nel caso di autocontatto, quindi è uno a uno all'interno.

Questa storia del regolare mi convince poco nel caso di fratture

Dicendo $\mathbf{x} = \mathbf{f}(\mathbf{p}, t)$ stiamo dicendo che il punto materiale \mathbf{p} al tempo t va a collocarsi nel punto dello spazio \mathbf{x} . I punti materiali occupano punti dello spazio in funzione del tempo. Prendiamo un sistema di coordinate solidale all'osservatore, come assegnamo questa \mathbf{f} ?

$$\mathbf{p} = (X_1, X_2, X_3)$$
 $\mathbf{x} = (x_1, x_2, x_3)$

Quindi la deformazione in realtà è

$$x_1 = f_1(X_1, X_2, X_3, t)$$

$$x_2 = f_2(X_1, X_2, X_3, t)$$

$$x_3 = f_3(X_1, X_2, X_3, t)$$

A volte indicata anche con $\mathbf{x} = \chi(\mathbf{p}, t)$.

1.1 Gradiente di deformazione

Che relazione c'è tra le due frecce rosse?

$$f(p + h) - f(p) = Df(p)[h] + o(h)$$

Dove Df è la trasformazione lineare che rende vera quell'uguaglianza. Questo Df è chiamato **gradiente** di deformazione, che è un tensore.

$$Df: \mathcal{V} \to \mathcal{V}$$

che chiamiamo ${\bf F}$

$$\mathbf{F}:\mathcal{V}\to\mathcal{V}$$

Le sue componenti sono

$$F_{ik} = \left[\frac{\partial f_i}{\partial x_j}\right]$$

Qui non c'è un campo, è un gradiente tra virgolette, matematicamente c'è un'analogia, ma non c'è un campo di cui fare il gradiente.

 $\mathbf{p} + \mathbf{u}$ va a finire con buona approssimazione in $\mathbf{f}(\mathbf{p})$ più la trasformazione lineare $\mathbf{F}(\mathbf{u})$, questa cosa funziona meglio al tendere di $\mathbf{u} \to \mathbf{0}$.

$$f(p + u) = f(p) + Fu + o(u)$$

che posso scrivere anche come

$$\Delta \mathbf{x} = \mathbf{F} \Delta \mathbf{p} + o(\Delta \mathbf{p})$$

Posso scriverli anche in forma infinitesima

$$d\mathbf{x} = \mathbf{F}d\mathbf{p}$$

che è un'uguaglianza esatta, cioè a meno di infinitesimi superiori.

Chiediamo a priori, per motivi successivi, che sia

$$\det \mathbf{F} > 0$$

in aggiunta alle proprietà di regolarità e uno a uno della deformazione.

Consideriamo delle deformazioni particolarmente semplici.

1.2 Deformazioni omogenee

In queste deformazioni ${\bf F}$ è costante, non c'è l'o piccolo. Sono la prima approssimazione di una deformazione.

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}(\mathbf{p}) + \mathbf{F}(\mathbf{q} - \mathbf{p}) + o(\mathbf{q} - \mathbf{p})$$

In questo mondo ci concentreremo sulle deformazioni che lasciano fisso un punto.

1.3 Deformazioni omogenee con punto fisso

$$\begin{aligned} \mathbf{f}(\mathbf{q}) &= \mathbf{f}(\overline{\mathbf{p}}) + \mathbf{F}(\mathbf{q} - \overline{\mathbf{p}}) \\ &= \overline{\mathbf{p}} + \mathbf{F}(\mathbf{q} - \overline{\mathbf{p}}) \end{aligned}$$

Se conosco il punto fisso e il gradiente di deformazione, allora conosco la deformazione. Ogni deformazione omogenea è pari a una traslazione + una deformazione omogenea con punto fisso, perciò ci concentriamo su queste ultime, dato che le transazioni non cambiano la vera e propria deformazione.

Tutti i punti vicino a \mathbf{p} sono approssimabili a una trasformazione omogenea, tutte le deformazioni sono localmente omogenee.

1.4 Rotazioni

Indichiamo l'insieme dei tensori ortogonali con

$$\mathbf{Q} \in \text{Orth} \quad \Leftrightarrow \quad \mathbf{Q}^T = \mathbf{Q}^{-1}$$

e sono tensori che preservano il prodotto scalare

$$\mathbf{Q}\mathbf{a}\cdot\mathbf{Q}\mathbf{b} = \mathbf{a}\cdot\mathbf{b}$$

Tutti i tensori ortogonali hanno determinante ± 1

$$\det(\mathbf{I}) = \det(\mathbf{Q}) \cdot \det(\mathbf{Q}^T) = [\det(\mathbf{Q})]^2 \Rightarrow \det \mathbf{Q} = \pm 1$$

Diciamo che una rotazione è una trasformazione lineare su spazi vettoriali, un tensore

$$\mathbf{R} \in \text{Rot}$$
 \Leftrightarrow $\mathbf{R} \in \text{Orth}, \ \det \mathbf{R} = 1$

Se $\mathbf{R}_1, \mathbf{R}_2$ sono due rotazioni allora $\mathbf{R}_1 \mathbf{R}_2$ ed $\mathbf{R}_2 \mathbf{R}_1$ sono rotazioni composte.

1.4.1 Teorema di esistenza dell'asse di rotazione

Per ogni rotazione esiste un asse di rotazione.

È quell'asse e tale che Re = e.

Dimostrazione.

Infatti sapendo che $\mathbf{R}^T \mathbf{R} = \mathbf{I}$ e det $\mathbf{R} = 1$

$$\mathbf{R}^{T}(\mathbf{R} - \mathbf{I}) = -(\mathbf{R} - \mathbf{I})^{T}$$
$$\mathbf{R}^{T}\mathbf{R} - \mathbf{R}^{T} = -\mathbf{R}^{T} + \mathbf{I}$$
$$\mathbf{I} - \mathbf{R}^{T} = -\mathbf{R}^{T} + \mathbf{I}$$

Allora

$$\det \left[\mathbf{R}^T (\mathbf{R} - \mathbf{I}) \right] = \det \left[-(\mathbf{R} - \mathbf{I})^T \right]$$
$$\det \left(\mathbf{R}^T \right) \det (\mathbf{R} - \mathbf{I}) = -\det (\mathbf{R} - \mathbf{I})$$
$$\det (\mathbf{R} - \mathbf{I}) = -\det (\mathbf{R} - \mathbf{I})$$

Allora per forza

$$\det(\mathbf{R} - \mathbf{I}) = 0$$

Allora $\lambda=1$ è un autovalore di **R**. Allora c'è un autovettore **v**, e il suo corrispondente autoversore $\mathbf{e}=\frac{\mathbf{v}}{|\mathbf{v}|}$ tale che

$$\mathbf{Re} = \lambda \mathbf{e} = \mathbf{e}$$

L'asse di rotazione è l'autospazio di $\lambda = 1$.

Osservazione. Ricordiamo questo risultato di Algebra Lineare sul prodotto matrici vettori^a

$$\mathbf{A}\mathbf{B}\mathbf{c}\cdot\mathbf{d} = \mathbf{B}\mathbf{c}\cdot\mathbf{A}^T\mathbf{d} = \mathbf{c}\cdot\mathbf{B}^T\mathbf{A}^T\mathbf{d}$$

I vettori perpendicolari all'asse di rotazione, rimangono perpendicolari

$$\mathbf{a} \perp \!\!\! \perp \mathbf{e} \quad \Rightarrow \quad \mathbf{a} \cdot \mathbf{e} = 0 = \mathbf{I} \mathbf{a} \cdot \mathbf{e} = \mathbf{R}^T \mathbf{R} \mathbf{a} \cdot \mathbf{e} = \mathbf{R} \mathbf{a} \cdot \mathbf{R} \mathbf{e} = \mathbf{R} \mathbf{a} \cdot \mathbf{e} \quad \Rightarrow \quad \mathbf{R} \mathbf{a} \perp \!\!\! \perp \mathbf{e}$$

Le rotazioni non alterano il modulo dei vettori

$$|\mathbf{R}\mathbf{a}|^2 = \mathbf{R}\mathbf{a} \cdot \mathbf{R}\mathbf{a} = \mathbf{R}^T \mathbf{R}\mathbf{a} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

Definiamo un tensore simmetrico

$$\mathbf{S} \in \operatorname{Sym} \quad \Leftrightarrow \quad \mathbf{S} = \mathbf{S}^T$$

Definiamo un tensore simmetrico positivo

$$|\mathbf{S} \in \operatorname{Sym}^+| \Leftrightarrow |\mathbf{S} \in \operatorname{Sym} \wedge |\mathbf{Sa} \cdot \mathbf{a} > 0 | \forall \mathbf{a} \neq \mathbf{0}|$$

 $^{^{}a}$ ovvero possiamo spostare la matrice più a sinistra dall'altra parte del prodotto scalare, sempre a sinistra, facendone il trasposto.

1.4. Rotazioni 5

1.4.2 Teorema della radice quadrata

Sia $\mathbf{C} \in \operatorname{Sym}^+$ allora $\exists ! \ \mathbf{U} \in \operatorname{Sym}^+$ tale che $\mathbf{U}^2 = \mathbf{C}$, cioè $\mathbf{U} = \sqrt{\mathbf{C}}$.

Dimostrazione.

• Esistenza.

La matrice C essendo simmetrica e definita positiva si può diagonalizzare:

$$\mathbf{C} = \begin{bmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \lambda_2^2 & 0 \\ 0 & 0 & \lambda_3^2 \end{bmatrix}$$

rispetto a una terna. Rispetto alla stessa definisco:

$$\mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

• Unicità.

L'unicità è garantita dal positivo. Supponiamo ne esista un'altro, diverso, $\overline{\mathbf{U}}$.

$$\mathbf{U}^2 = \mathbf{C} \quad \overline{\mathbf{U}}^2 = \mathbf{C} \quad \overline{\mathbf{U}} \neq \mathbf{U}$$

Prendiamo un autovalore e un autovettore di ${\bf U}$

$$\mathbf{U}\mathbf{e} = \lambda\mathbf{e} \quad \lambda > 0$$

allora

$$\mathbf{U}^2\mathbf{e} = \mathbf{U}\mathbf{U}\mathbf{e} = \mathbf{U}\lambda\mathbf{e} = \lambda\mathbf{U}\mathbf{e} = \lambda^2\mathbf{e} \quad \Rightarrow \quad \mathbf{C}\mathbf{e} = \lambda^2\mathbf{e}$$

allora

$$(\overline{\mathbf{U}} + \lambda \mathbf{I})(\overline{\mathbf{U}} - \lambda \mathbf{I})\mathbf{e} = (\overline{\mathbf{U}}^2 + \lambda \overline{\mathbf{U}} - \lambda \overline{\mathbf{U}} - \lambda^2 \mathbf{I})\mathbf{e}$$
$$= (\mathbf{C} - \lambda^2 \mathbf{I})\mathbf{e}$$
$$= \mathbf{C}\mathbf{e} - \lambda^2 \mathbf{e} = \mathbf{0}$$

scriviamo questa uguaglianza come

$$(\overline{\mathbf{U}} + \lambda \mathbf{I}) \underbrace{(\overline{\mathbf{U}} - \lambda \mathbf{I}) \mathbf{e}}_{\mathbf{w}} = (\overline{\mathbf{U}} + \lambda \mathbf{I}) \mathbf{w} = \mathbf{0} \quad \Rightarrow \quad \overline{\mathbf{U}} \mathbf{w} = -\lambda \mathbf{w}$$

ho due possibilità: $\mathbf{w} = \mathbf{0}, \mathbf{w} \neq \mathbf{0}$.

- Se $\mathbf{w} \neq \mathbf{0}$ allora \mathbf{w} sarebbe autovettore di $\overline{\mathbf{U}}$ con autovalore − λ . Ciò è impossibile perché $\overline{\mathbf{U}}$ avrebbe un autovalore negativo, mentre invece è un tensore simmetrico positivo.
- Quindi $\mathbf{w} = \mathbf{0}$

$$\mathbf{w} = (\overline{\mathbf{U}} - \lambda \mathbf{I})\mathbf{e} = 0 \quad \Rightarrow \quad \overline{\mathbf{U}}\mathbf{e} = \lambda \mathbf{e}$$

ovvero ogni autovalore e autovettore di $\overline{\bf U}$ sono autovalori e autovettori di $\overline{\bf U}$ e viceversa. Quindi hanno i medesimi autovalori e autovettori: dall'algebra, ${\bf U}=\overline{\bf U}$.

1.4.3 Teorema di decomposizione polare

Sia $\mathbf{F} \in \operatorname{Lin}^{+1}$, allora $\exists ! \ \mathbf{R}, \mathbf{U}, \mathbf{V}$, di cui $\mathbf{R} \in \operatorname{Rot} \ \mathrm{e} \ \mathbf{U}, \mathbf{V} \in \operatorname{Sym}^+$ tali che

$$\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$$

Dimostrazione.

Il tensore che definiamo

$$\mathbf{C} = \mathbf{F}^T \mathbf{F}$$

è simmetrico:

$$\mathbf{C}^{T} = \left(\mathbf{F}^{T}\mathbf{F}\right)^{T} = \mathbf{F}^{T}\left(\mathbf{F}^{T}\right)^{T} = \mathbf{F}^{T}\mathbf{F} = \mathbf{C}$$

e definito positivo (ricordiamo che ${\bf F}$ è invertibile e ${\bf Fa}={\bf 0}$ solo se ${\bf a}={\bf 0}$):

$$\mathbf{C}\mathbf{a}\cdot\mathbf{a} = \mathbf{F}^T\mathbf{F}\mathbf{a}\cdot\mathbf{a} = \mathbf{F}\mathbf{a}\cdot\mathbf{F}\mathbf{a} = |\mathbf{F}\mathbf{a}|^2 > 0 \ \forall \mathbf{a} \neq \mathbf{0}$$

Quindi abbiamo $C \in Sym^+$, allora per il teorema della radice quadrata

$$\exists ! \ \mathbf{U} \in \mathrm{Sym}^+$$
tale che $\boxed{\mathbf{U} = \sqrt{\mathbf{C}} = \sqrt{\mathbf{F}^T\mathbf{F}}}$

Abbiamo quindi determinato C ed U, per avere l'uguaglianza F = RU ci serve da determinare come è fatto R, la sua unicità e il fatto che sia una rotazione.

$$R = FU^{-1}$$

Verifichiamo che sia una rotazione:

• è ortogonale

$$\mathbf{R}^{T}\mathbf{R} = (\mathbf{F}\mathbf{U}^{-1})^{T}(\mathbf{F}\mathbf{U}^{-1}) = \mathbf{U}^{-T}\mathbf{F}^{T}\mathbf{F}\mathbf{U}^{-1}$$
$$= \mathbf{U}^{-1}\mathbf{U}^{2}\mathbf{U}^{-1} = \mathbf{U}^{-1}\mathbf{U}\mathbf{U}\mathbf{U}^{-1} = \mathbf{I}\mathbf{I} = \mathbf{I}$$

• essendo ortogonale il suo determinante può essere solo ± 1

$$\det \mathbf{R} = (\det \mathbf{F}) \left(\det \mathbf{U}^{-1} \right) = \frac{\det \mathbf{F}}{\det \mathbf{U}}$$

ma il determinante di ${\bf F}$ è positivo per ipotesi e il determinante di ${\bf U}$ è positivo essendo simmetrico e definito positivo, quindi per forza det ${\bf R}=1$.

Quindi ${\bf R}$ definita come sopra, è una rotazione, ed è unica per costruzione.

Passiamo alla seconda parte del teorema, per determinare ${f V}$ è sufficiente definirlo come

$$\mathbf{V} = \mathbf{R}\mathbf{U}\mathbf{R}^T$$

e far vedere che è Sym⁺.

• È simmetrico, grazie alla simmetria di U

$$\mathbf{V}^T = \left(\mathbf{R}\mathbf{U}\mathbf{R}^T\right)^T = \mathbf{R}\mathbf{U}^T\mathbf{R}^T = \mathbf{R}\mathbf{U}\mathbf{R}^T = \mathbf{V}$$

ullet È positivo, grazie alla positività di ${\bf U}$ e al fatto che $\det {\bf R} \neq 0$

$$\mathbf{V}\mathbf{a} \cdot \mathbf{a} = \mathbf{R} \mathbf{U} \mathbf{R}^T \mathbf{a} \cdot \mathbf{a} = \mathbf{U} (\mathbf{R}^T \mathbf{a}) \cdot (\mathbf{R}^T \mathbf{a}) > 0 \text{ per ogni } \mathbf{a} \neq \mathbf{0}$$

¹Tensori a determinante positivo, come il gradiente di deformazione.

OSSERVAZIONE. Essendo $V = RUR^T$, prendiamo λ , e tali che

$$\mathbf{U}\mathbf{e} = \lambda\mathbf{e} \ \lambda > 0$$

se faccio

$$V(Re) = RUR^{T}(Re) = RUe = R(\lambda e) = \lambda(Re)$$

quind λ e \mathbf{Re} sono autovalori e autovettori di \mathbf{V} , ovvero \mathbf{U} e \mathbf{V} hanno gli stessi autovalori, mentre gli autovettori / autospazi si ottengono per rotazione tramite \mathbf{R} . Inoltre vale

$$\mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R} \quad \Rightarrow \quad \mathbf{U} = \mathbf{R}^T \mathbf{V} \mathbf{R}$$

1.5 Deformazioni pure

Consideriamo $\mathbf{U} \in \operatorname{Sym}^+$. Supponiamo che \mathbf{e}_i sia una terna ortonormale di autovettori di \mathbf{U} . Ricordiamo che la matrice del prodotto tensore è fatta così

$$[\mathbf{a} \otimes \mathbf{b}] = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$

In questo sistema di riferimento calcoliamo i prodotti tensori degli \mathbf{e}_i

$$\mathbf{e}_1 \otimes \mathbf{e}_1 = \begin{bmatrix} 1 \cdot 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e analogamente

$$\mathbf{e}_1 \otimes \mathbf{e}_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{e}_2 \otimes \mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Usando la terna di riferimento, la matrice del tensore U si può scrivere come

$$\mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ovvero

$$\mathbf{U} = \lambda_1[\mathbf{e}_1 \otimes \mathbf{e}_1] + \lambda_2[\mathbf{e}_2 \otimes \mathbf{e}_2] + \lambda_3[\mathbf{e}_3 \otimes \mathbf{e}_3] = \sum_{i=1}^3 \lambda_i[\mathbf{e}_i \otimes \mathbf{e}_i]$$

Torniamo alle deformazioni omogenee con $\overline{\mathbf{p}}$ fisso e consideriamo due trasformazioni diverse

$$\mathbf{f}_1(\mathbf{q}) = \overline{\mathbf{p}} + \mathbf{F}_1(\mathbf{q} - \overline{\mathbf{p}})$$

 $\mathbf{f}_2(\mathbf{q}) = \overline{\mathbf{p}} + \mathbf{F}_2(\mathbf{q} - \overline{\mathbf{p}})$

cosa succede se faccio la composta?

$$\begin{split} (\mathbf{f}_2 \circ \mathbf{f}_1)(\mathbf{q}) &= \mathbf{f}_2(\mathbf{f}_1(\mathbf{q})) = \mathbf{f}_2(\overline{\mathbf{p}} + \mathbf{F}_1(\mathbf{q} - \overline{\mathbf{p}})) \\ &= \overline{\mathbf{p}} + \mathbf{F}_2(\overline{\mathbf{p}} + \mathbf{F}_1(\mathbf{q} - \overline{\mathbf{p}}) - \overline{\mathbf{p}}) \\ &= \overline{\mathbf{p}} + \mathbf{F}_2(\mathbf{F}_1(\mathbf{q} - \overline{\mathbf{p}})) \\ &= \overline{\mathbf{p}} + \mathbf{F}_2\mathbf{F}_1(\mathbf{q} - \overline{\mathbf{p}}) \end{split}$$

Leggiamo questa cosa nell'ottica della decomposizione polare

$$f(q) = \overline{p} + F(q - \overline{p}) = \overline{p} + RU(q - \overline{p})$$

Quella \mathbf{R} dà una rotazione, ma in che senso? Le rotazioni ruotano i vettori, qui siamo nello spazio e stiamo parlando di punti.

$$\mathbf{r}(\mathbf{q}) = \overline{\mathbf{p}} + \mathbf{R}(\mathbf{q} - \overline{\mathbf{p}}) \Leftrightarrow \mathbf{r}(\mathbf{q}) - \overline{\mathbf{p}} = \mathbf{R}(\mathbf{q} - \overline{\mathbf{p}})$$

Stiamo ruotando il vettore $\mathbf{q} - \overline{\mathbf{p}}$ attorno a $\overline{\mathbf{p}}$. Ricordando

$$F = RU = VR$$

e avendo capito che la ${f R}$ è una rotazione, deduciamo che ${f U}$ e ${f V}$ sono **deformazioni pure**. Per capirlo introduciamo una terna di riferimento e studiamo

$$f(q) = \overline{p} + U(q - \overline{p})$$

mettiamo il punto fisso nell'origine

$$\overline{\mathbf{p}} = (0, 0, 0)$$
 $\mathbf{q} = (X_1, X_2, X_3)$ $\mathbf{f}(\mathbf{q}) = (x_1, x_2, x_3)$

Come assi prendo gli autovettori di U e ricordiamo che

$$\mathbf{U} = \sum_{i=1}^{3} \lambda_i [\mathbf{e}_i \otimes \mathbf{e}_i]$$

allora

$$\mathbf{f}(\mathbf{q}) = \overline{\mathbf{p}} + \left(\sum_{i=1}^{3} \lambda_{i} [\mathbf{e}_{i} \otimes \mathbf{e}_{i}]\right) (\mathbf{q} - \overline{\mathbf{p}}) = \left(\sum_{i=1}^{3} \lambda_{i} [\mathbf{e}_{i} \otimes \mathbf{e}_{i}]\right) (\mathbf{q})$$

cioé

$$\mathbf{f}(\mathbf{q}) = (\lambda_1[\mathbf{e}_1 \otimes \mathbf{e}_1] + \lambda_2[\mathbf{e}_2 \otimes \mathbf{e}_2] + \lambda_3[\mathbf{e}_3 \otimes \mathbf{e}_3]) \underbrace{(X_1\mathbf{e}_1 + X_2\mathbf{e}_2 + X_3\mathbf{e}_3)}_{(\mathbf{q})}$$

Per farlo ricordiamoci che

$$(\mathbf{a} \otimes \mathbf{b})\mathbf{v} = (\mathbf{b} \cdot \mathbf{v})\mathbf{a} \quad \land \quad \mathbf{e}_i \cdot \mathbf{e}_j = 0 \ \forall i \neq j$$

Allora

$$\mathbf{f}(\mathbf{q}) = \lambda_1 X_1 \mathbf{e}_1 + \lambda_2 X_2 \mathbf{e}_2 + \lambda_3 X_3 \mathbf{e}_3$$

cioé

$$\begin{cases} x_1 = \lambda_1 X_1 \\ x_2 = \lambda_2 X_2 \\ x_3 = \lambda_3 X_3 \end{cases}$$

quindi per passare dalle coordinate di $\overline{\mathbf{p}}$ a quelle di \mathbf{q} stiamo facendo un'estensione (o contrazione) lungo gli assi coordinati scegli come autovettori di U. Quindi possiamo avere deformazione pura seguita da rotazione, o viceversa. La rotazione è sempre la stessa, ma la deformazione è diversa (ruotata).

1.5.1 Riassunto

- Ogni deformazione finita è localmente omogenea
- Ogni deformazione omogenea è a meno di una traslazione una deformazione omogenea con punto fisso
- Ogni deformazione omogenea con punto fisso è la composizione di una rotazione preceduta (o seguita) da una deformazione pura
- \bullet Ogni deformazione pura è l'insieme di 3 estensioni (o contrazioni) lungo tre assi ortogonali, gli autospazi di ${\bf U},$ o ${\bf V}.$