Sistemas de Ecuaciones Diferenciales Caso Homogéneo

Algebra II FIUBA 2020

Estudiaremos sistemas de ecuaciones difereciales lineales a coeficientes constantes de la forma

$$\begin{cases} y'_1 &= a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y'_2 &= a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \vdots &= \vdots \\ y'_n &= a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n \end{cases}$$

Las funciones $y_1(t), y_2(t), \cdots, y_n(t)$ son las **incógnitas** que consideraremos funciones derivables en algún intervalo $I \subset \mathbb{R}$ y los coeficientes de las ecuaciones a_{ij} son constantes.

Si llamamos

$$Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix}, \quad Y'(t) = \begin{bmatrix} y'_1(t) \\ y'_2(t) \\ \vdots \\ y'_n(t) \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

podemos escribir el sistema en forma matricial

$$Y' = AY, A \in \mathbb{R}^{n \times n}$$

El sistema de 2x2

$$\begin{cases} y_1' = 5y_1 - 6y_2 \\ y_2' = 3y_1 - 4y_2 \end{cases}$$

se escribe como

$$Y' = AY$$
, $Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$, $A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$

La ecuación lineal de segundo orden y'' - y' - 2y = 0 puede pensarse como un sistema lineal de 2x2.

Efectivamente, llamando $y_1=y$, $y_2=y'$, resulta $y_2'=y''=y'+2y=y_2+2y_1$, entonces tenemos el siguiente sistema

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

que matricialmente se escribe como

$$Y' = AY$$
, $Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$, $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$

Buscaremos soluciones de ecuaciones del tipo Y' = AY, es decir funciones definidas en un intervalo $I \subset \mathbb{R}$

$$Y(t) = (y_1(t), \cdots, y_n(t))$$

 $y_i : I \to \mathbb{R}$ o $y_i : I \to \mathbb{C}$

derivables en 1.

En el caso de **problemas de valores iniciales** buscamos una solución que verifique además la condición inicial que está dada en $t_0 \in I$

$$\begin{cases} Y'(t) = AY(t) \\ Y(t_0) = Y_0 \end{cases}$$

Para un sistema del tipo Y'=AY, que es homogéneo , Y'-AY=0 , la función nula, Y(t)=0, es siempre solución. Pero cómo son **todas** las soluciones del sistema?

Resultado 1

Si v es autovetor de A de autovalor λ , entonces $Y(t) = ve^{\lambda t}$ es solución de Y' = AY.

Para probar esta afirmación simplemente derivamos $Y(t) = ve^{\lambda t}$

$$Y'(t) = \lambda v e^{\lambda t} = A v e^{\lambda t} = A Y$$

Si volvemos al Ejemplo 1, los autovales de A y sus correspondientes autovectores son :

$$A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}, \ v_1 = (1,1), \lambda_1 = -1, \ v_2 = (2,1), \lambda_2 = 2$$

En este caso sabemos que $Y_1(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}$ y $Y_2(t) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$ son dos soluciones de la ecuación.

Además , como la euación es lineal, cualquier combinación de ellas también será solución:

$$Y(t) = c_1 Y_1(t) + c_2 Y_2(t), \forall c_1, c_2$$

Observación

$$Y_1(t)=\begin{bmatrix}1\\1\end{bmatrix}e^{-t}$$
 y $Y_2(t)=\begin{bmatrix}2\\1\end{bmatrix}e^{2t}$ son soluciones linealmente independientes.

Para verlo propongamos una combinación lineal de ellas e igualemos a cero

$$\alpha Y_1(t) + \beta Y_2(t) = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} + \beta \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} = 0$$

entonces resulta $\alpha v_1 + \beta v_2 = 0$ y dado que v_1 y v_2 son linealmente independientes (por ser autovectores asociados a autovalores distintos) resulta $\alpha = \beta = 0$.

Notar que para demostrarlo solamente usamos la independencia lineal de v_1 y v_2 , por lo tanto podemos generalizar este resultado

Resultado 2

Sean v_i son autovectores de A de autovalor λ_i .

Si $\lambda_k \neq \lambda_r$ entonces $= e^{\lambda_k t} v_k$ y $e^{\lambda_r t} v_r$ son soluciones linealmente independientes de Y' = AY.

A partir de este resultado conocemos algunas soluciones de la ecuación pero aún tenemos pendiente averiguar cómo son todas las soluciones.

Aceptaremos el siguiente resultado:

Resultado 3

El espacio de soluciones de Y' = AY, $A \in \mathbb{R}^{n \times n}$ es un subespacio de $C^1(I, \mathbb{C}^n)$ de dimensión n.

Volviendo al Ejemplo 1, donde n=2, como conocemos dos soluciones linealmente independientes, conocemos una base del espacio de soluciones y podemos afirmar que **todas** las soluciones son de la forma

$$Y(t) = c_1 Y_1(t) + c_2 Y_2(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$

Notemos que para resolver un PVI podríamos elegir c_1 y c_2 .

Entonces, a partir del **Resultado 3**, si tenemos una base de autovectores de A, es decir si A es diagonalizable, tendremos n soluciones linealmente independientes de Y' = AY

Resultado 4

Sea A una matriz de $n \times n$ diagonalizable y sea $\{v_1, v_2, \dots v_n\}$ una base \mathbb{C}^n formada por autovectores de A asociados a los autovalores $\lambda_1, \lambda_2 \cdots, \lambda_n$.

Entonces $\{v_1e^{\lambda_1t}, v_2e^{\lambda_2t}, \cdots, v_ne^{\lambda_nt}, \}$ es una base de soluciones de Y' = AY.

En lo que sigue construiremos las soluciones de los sistemas según las características de $A \in \mathbb{R}^{2 \times 2}$ o $A \in \mathbb{R}^{3 \times 3}$

Caso A diagonal

Cuando A es una matriz diagonal

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & & & & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

sus autovalores son los elementos de la diagonal $\lambda_i = a_{ii}$ y el autovector correspondiente v_i , es el i-ésimo vector de la base canónica: $v_i = e_i$.

Notemos que el sistema Y' = AY es fácil de resolver ya que cada ecuación está desacoplda:

$$y_i'(t) = a_{ii}y_i(t) \Rightarrow y_i(t) = c_i e^{a_{ii}t}$$

Entonces la solución

$$Y = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{a_{11}t} \\ c_2 e^{a_{22}t} \\ \vdots \\ c_n e^{a_{nn}t} \end{bmatrix} = c_1 e^{a_{11}t} e_1 + c_2 e^{a_{22}t} e_2 + \dots + c_n e^{a_{nn}t} e_n$$

es combinación lineal de $v_i e^{\lambda_i t}$.

En este caso hemos podido resolver el sistema en forma sencilla porque A es una matriz diagonal.

Notemos que hemos encontrado la solución general como combinación lineal de n soluciones linealmente independientes construidas a partir de los autovectores y autovalores de A, es decir hemos hallado una base de soluciones de la ecuación Y' = AY:

$$\{e^{\lambda_1 t}e_1, e^{\lambda_2 t}e_2, \cdots, e^{\lambda_n t}e_n\}$$

Si
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 sus autovalores son $\lambda_1 = 1, \lambda_2 = 2$ y sus

auvovectores $v1 = e_1$ y $v_2 = e_2$, entonces la base de soluciones de Y' = AY es

$$\{e^te_1, e^{2t}e_2\}$$

y todas las soluciones de la ecuación son de la forma

$$Y(t) = c_1 e^t e_1 + c_2 e^{2t} e_2 = c_1 \begin{bmatrix} e^t \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix}$$

Si quisiéramos que se satisfaciera
$$Y(0) = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$Y(0) = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \Rightarrow c_1 = 2, c_2 = -3$$

y la única solución del PVI resulta

$$Y(t) = 2 \begin{bmatrix} e^t \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix}$$

Caso A diagonlizable

Si A es diagonalizable, es decir si existe una base de \mathbb{C}^n de autovectores de A: $B = \{v_1, v_2, \cdots, v_n\}$, sabemos que existe P cuyas columnas son los vectores v_i , y D una matriz diagonal

$$P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}, \qquad D = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

que satisfacen

$$A = PDP^{-1}$$

Entonces si llamamos $Y=P\tilde{Y}$, es decir $\tilde{Y}=P^{-1}Y$, el sistema de ecuaciones para \tilde{Y} resulta diagonal

$$\tilde{Y}' = P^{-1}Y' = P^{-1}AY = DP^{-1}Y = DP^{-1}P\tilde{Y} = D\tilde{Y}$$

y lo sabemos resolver

Todas sus soluciones son combinación lineal de la base de soluciones $e^{\lambda_i t} e_i$:

$$\tilde{Y} = c_1 e^{\lambda_1 t} e_1 + c_2 e^{\lambda_2 t}$$

de donde

$$Y = P\tilde{Y} = c_1 e^{\lambda_1 t} P e_1 + c_2 e^{\lambda_2 t} P e_2 + \dots + c_e^{\lambda_n t} P e_n$$
$$= c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2} v_2 + \dots + c_e^{\lambda_n t} v_n$$

Como ya vimos que $e^{\lambda_i t} v_i$ son linealmente independientes, hemos descripto todas las soluciones de la ecuación como combinación de n soluciones linealmente independientes .

Entonces una base de soluciones de la ecuación es

$$\{e^{\lambda_1 t}v_1, e^{\lambda_2 t}v_2, \cdots, e^{\lambda_n t}v_n\}$$

Observación

En el caso en que los autovalores son reales, existe una base de autovectores $v_i \in \mathbb{R}^n$ y por lo tanto la base de soluciones que construimos está formada por funciones reales.

Veámoslo en el próximo ejemplo.

Consideremos $A=\begin{bmatrix}1&-2\\2&-4\end{bmatrix}$ sus autovalores son $\lambda_1=-3,\lambda_2=0$ y sus auvovectores v1=(1,2) y $v_2=(2,1)$, entonces la base de soluciones de Y'=AY es

$$\{e^{-2t}v_1, e^{0t}v_2\}$$

de donde toda solución de la ecuación Y' = AY es de la forma

$$Y(t) = c_1 e^{-2t} (1,2) + c_2 (2,1) = (c_1 e^{-2t} + 2c_2, 2c_1 e^{-2t} + c_2)$$

Notemos que todas las soluciones resultan acotadas y convergentes cuando $t \to +\infty$.

Los comportamientos asintóticos de las soluciones están relacionados los autovalores de *A*.

Observación

Si $A \in \mathbb{R}^{n \times n}$ diagonalizable y tiene autovalores complejos, algunas de la funciones de la base de soluciones de la ecuación que construimos a partir de los autovectores y autovalores, serán complejas, sin embargo podremos construir una base de soluciones que contenga solamente funciones reales.

Para hacerlo observemos que si $\lambda=\alpha+i\beta$ es autovalor de A con autovector $v=v_R+iv_I$ donde v_R y v_I son sus partes real e imaginaria respectivamente, entonces $\overline{\lambda}=\alpha-i\beta$ también es autovalor de A y $\overline{v}=v_R-iv_I$ es auvovector ya que si conjugamos

$$A(V_R+iv_I)=(\alpha+i\beta)(V_R+iv_I)\Rightarrow A(v_R-iv_I)=(\alpha-i\beta)(V_R-iv_I)$$

entonces $Y_1(t)=e^{\lambda t}v$ e $Y_2(t)=e^{\overline{\lambda}t}\overline{v}$ son soluciones y son conjugadas.

Consideremos una combinación lineal de ellas (que también ser solución)

$$c_1 Y_1(t) + c_2 Y_2(t) = c_1 Y_1(t) + c_2 \overline{Y_1(t)} =$$

= $(c_1 + c_2) Re(Y_1(t)) + i(c_1 - c_2) Im(Y_1(t))$

esta combinación lineal también se puede escribir como combinación lineal de dos funciones reales , $Re(Y_1(t))$ y $Im(Y_1(t))$, que también son soluciones del sistema ya que

$$Re(Y_1(t)) = \frac{Y_1 + Y_2}{2}$$
 $Im(Y_1(t)) = \frac{Y_1 - Y_2}{i}$

Sea $A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$ sus autovalores son $\lambda_1 = 4 - 3i$, $\lambda_2 = 4 + 3i$ y sus auvovectores $v_1 = (1, i)$ y $v_2 = (1, -i)$, entonces una base de soluciones de Y' = AY es

$$\{Y_1(t) = e^{\lambda_1 t} v_1, Y_2(t) = e^{\lambda_2 t} v_2\}$$

Para construir una base real de soluciones procedecemos como explicamos $\{\tilde{Y}_1(t) = Re(y_1(t)), \tilde{Y}_2(t) = Im(y_1(t))\}$, que en este caso resultan

$${e^{4t}(\cos(3t), \sin(3t)), e^{4t}(-\sin(3t), \cos(3t))}$$

Si analizáramos el comportamiento asintótico de las soluciones, $t \to +\infty$, resulta que las soluciones (salvo la solución nula) son no acotadas ya que si bien el sen(3t), $\cos(3t)$ son oscilantes, el factor $e^{4t} \to +\infty$.

Observación

En el caso de ser A diagonalizable, todas las soluciones son combinación de soluciones de la forma $e^{\lambda t}v$, el comportamiento asintótico depende del valor de λ :

- lacktriangle Si existe un autovalor $\lambda \in \mathbb{R}, \lambda > 0$, habrá soluciones divergentes, es decir soluciones que satisfagan $\lim_{t \to +\infty} y(t) = \infty$
- lacktriangle Si todos los autovalores $\lambda \in \mathbb{R}, \lambda < 0$, todas las soluciones satisfacerán lím $_{t \to +\infty} y(t) = 0$
- Si $\lambda = 0$ es autovalor, la solución $e^{0t}v$ será constante
- ♦ Si $\lambda \in \mathbb{C}$, $\lambda = a + ib$, $b \neq 0$, el carácter asintótico de las soluciones dependerá del signo de a:

$$a<0$$
, $e^{(a+ib)t}v\to 0$ cuando $t\to +\infty$ $a>0$, $e^{(a+ib)t}v$ son no acotadas cuando $t\to +\infty$

Caso A no diagonalizable

Cuando A no es diagonalizable, es decir que no hay una base de autovectores de A, existen sin embargo matrices $P \in \mathbb{C}^{n \times n}$ inversible y $J \in \mathbb{C}^{n \times n}$ con una estructura particular que enseguida detallaremos, que satisfcen

$$A = PJP^{-1}, \qquad P^{-1}AP = J$$

Como en el caso de matrices diagonalizables, un cambio de variables transformará el sistema en otro de sencilla resolución.

Describiremos los casos $A \in \mathbb{R}^{2 \times 2}$ y $A \in \mathbb{R}^{3 \times 3}$

Caso $A \in \mathbb{R}^{2 \times 2}$ no diagonalizable

En este caso si A no es diagonalizable es porque tiene un autovalor real doble, λ , cuyo subespacio asociado tiene dimensión 1, es decir que hay un único autovector linealmente independiente asociado a λ , sea v_1 .

J resulta en este caso

$$J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

У

$$P = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$$

donde v_2 es un vector linealmente independiente a v_1 que satisface

$$(A - \lambda Id)v_2 = v_1$$

J se llama matriz de Jordan de A.

Si realizamos el mismo cambio de variables que hicimos en el caso diagonlizable:

$$Y = P\tilde{Y}, \qquad \tilde{Y} = P^{-1}Y$$

el sistema de ecuaciones para \tilde{Y} resulta

$$\tilde{Y}' = P^{-1}Y' = P^{-1}AY = JP^{-1}Y = JP^{-1}P\tilde{Y} = J\tilde{Y}$$

Este sistema es fácil de resolver por la forma de la matriz J y resulta que una base de soluciones es

$$\{e^{\lambda .t}v_1, e^{\lambda .t}(v_2 + tv_1)\}$$

Ya sabemos que $e^{\lambda \cdot t}v_1$ es solución, probemos que $e^{\lambda \cdot t}(v_2 + tv_1)$ también lo es (recordar que $(A - \lambda v_2) = v_1$):

$$(e^{\lambda \cdot t}(v_2 + tv_1))' = \lambda e^{\lambda \cdot t}(v_2 + tv_1) + e^{\lambda \cdot t}v_1 = e^{\lambda \cdot t}(\lambda v_2 + \lambda tv_1 + v_1) =$$

$$= e^{\lambda \cdot t}(\lambda v_2 + \lambda tv_1 + v_1) = Ae^{\lambda \cdot t}(v_2 + tv_1)$$

Consideremos $A = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix}$ su único autovalor es $\lambda_1 = -3$, el espacio de autovectores asociados tiene dimensión 1 y está generado, por ejemplo, por $v_1 = (1,1)$.

J resulta entonces

$$J = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}$$

y para hallar v2 resolvemos

$$(A+3Id)v_2=(1,1) \Rightarrow v_2=(\frac{1}{4},0)$$

entonces tenemos

$$P = \begin{bmatrix} 1 & \frac{1}{4} \\ 1 & 0 \end{bmatrix}$$

El sistema en las nuevas variables es

$$\tilde{Y}' = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \tilde{Y}$$

que se resuelve fácilmente ya que

$$\tilde{Y}_2' = -3\tilde{Y}_2, \quad \tilde{Y}_1' = -3\tilde{Y}_1 + \tilde{Y}_2$$

de donde

$$ilde{Y}(t) = (c_1 e^{-3t} + c_2 t e^{-3t}, c_2 e^{-3t}) =$$
 $= c_1 e^{-3t} (1,0) + c_2 e^{-3t} (t,1) =$

entonces, como ya sabíamos

$$Y = P\tilde{Y} = c_1 e^{-3t} v_1 + c_2 e^{-3t} (tv_1 + v_2)$$

Una vez más podemos analizar el comportamiento asintótico de las soluciones que resultan convergentes a cero ya que el factor $e^{-3t} \to 0$ para $t \to +\infty$.

Caso $A \in \mathbb{R}^{3\times3}$ no diagonalizable

Aquí se pueden dar 3 situaciones relacionadas con la cantidad de autovalores distintos de A su multiplicidad geométrica y algebraica. En todos los casos se obtine una descomposición del tipo

$$A = PJP^{-1}, \qquad P^{-1}AP = J$$

con J una matriz por bloques que contiene en la diagonal los autovalores y algunos 1 en la diagonal superior, asi como vimos en el caso de dimensión 2.

En todos los casos para resolver el sistema Y'=AY se procede como lo hicimos en el caso anterior, plantendo un cambio de variables $Y=P\tilde{Y},\ \tilde{Y}=P^{-1}Y$ y resolviendo el sistema de ecuaciones que resultan para \tilde{Y}

$$\tilde{Y}' = P^{-1}Y' = P^{-1}AY = JP^{-1}Y = JP^{-1}P\tilde{Y} = J\tilde{Y}$$

Primer caso

A tiene un solo autovalor triple y es autoespacio asociado tiene dimensión 1.

En este caso

$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

У

$$P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

donde v_1 , v_2 y v_3 son vectores linealmente independientes que satisfacen:

 v_1 es autovalor de A

$$(A - \lambda Id)v_1 = 0,$$
 $(A - \lambda Id)v_2 = v_1,$ $(A - \lambda Id)v_3 = v_2$

Haciendo el cambio de variables propuesto resulta que una base de soluciones de la ecuación Y' = AY es

$$\{e^{\lambda .t}v_1, e^{\lambda .t}(v_2+tv_1), e^{\lambda t}(\frac{t^2}{2}v_1+tv_2+v_3)\}$$

Ejercicio

Probar que para el caso anterior $e^{\lambda \cdot t} (v2 + tv_1)$ y $e^{\lambda t} (\frac{t^2}{2}v_1 + tv_2 + v_3)$ son soluciones de Y' = AY.

Para verlo derivemos $e^{\lambda \cdot t}(v2 + tv_1)$ y $e^{\lambda t}(\frac{t^2}{2}v1 + tv_2 + v_3)$ y comparemos con $A(e^{\lambda \cdot t}(v2 + tv_1)$ y $A(e^{\lambda t}(\frac{t^2}{2}v1 + tv_2 + v_3))$. Lo haremos solamente para la segunda expresión

$$(e^{\lambda t}(\frac{t^2}{2}v1 + tv_2 + v_3))' = \lambda e^{\lambda t}(\frac{t^2}{2}v1 + tv_2 + v_3) + e^{\lambda t}(tv1 + v_2) =$$

$$e^{\lambda t}(\frac{t^2}{2}Av1 + t(Av_2 - v_1) + Av3 - v_2) + e^{\lambda t}(tv1 + v_2) =$$

$$= e^{\lambda t}A(\frac{t^2}{2}v1 + tv_2 + v_3)$$

Segundo caso

A tiene un solo autovalor triple y su autoespacio asociado tiene dimensión 2. En este caso la matriz de Jordan tiene dos bloques

$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \qquad P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

donde v_1 , v_2 y v_3 son vectores linealmente independientes que satisfacen:

$$(A - \lambda Id)v_1 = 0,$$
 $(A - \lambda Id)v_2 = v_1,$ $(A - \lambda Id)v_3 = 0$

Haciendo el cambio de variables propuesto resulta que una base de soluciones de la ecuación Y' = AY es

$$\{e^{\lambda.t}v_1,e^{\lambda.t}(v_2+tv_1),e^{\lambda t}v_3\}$$

Tercer caso

A tiene un autovalor doble λ , cuyo autoespacio asociado tiene dimensión 1 y un autovalor simple $\eta.$

En este caso la matriz J tiene dos bloques

$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \eta \end{bmatrix} \qquad P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

donde v_1 es autovalor de A , es decir $(A - \lambda Id)v_1 = 0$, v_2 satisface

$$(A - \lambda Id)v_2 = v_1$$

y v_3 es un autovector asociado a η Haciendo el cambio de variables propuesto resulta que una base de soluciones de la ecuación Y'=AY es

$$\{e^{\lambda.t}v_1, e^{\lambda.t}(v_2+tv_1), e^{\eta t}v_3\}$$

Observación

Cuando A no es diagonalizable podemos , como en el caso diagonalizable, analizar el comportamiento asintótico de las soluciones a partir de sus autovalores.

Notemos que que todas las soluciones son de la forma $e^{\lambda t}$ polinomio cuyo límite para $t \to +\infty$ depende del signo de λ en caso de ser real y del valor de su parte real en caso de ser complejo.

Sea
$$A = \begin{bmatrix} 0 & -6 & 7 \\ -1 & -1 & 3 \\ -1 & 2 & 0 \end{bmatrix}$$
 sus autovalores son $\lambda_1 = 1$ autovalor doble

con un único autovector linealmente independiente, $v_1 = (1, 1, 1)$ y $\lambda_2 = -3$ autovalor simple con autovector asociado $v_3 = (2, 1, 0)$. Resolvemos la ecuación para hallar el v_2 :

$$(A - Id)v_2) = v_1 \Rightarrow v_2 = (1, 0, 1)$$

Una base de soluciones de la ecuación Y' = AY es entonces

$$\begin{aligned} &\{e^{1.t}v_1, e^{1.t}(v_2+tv_1), e^{-3t}v_3\} = \\ &= \{(e^t, e^t, e^t), (e^t(1+t), e^tt, e^t(1+t), (2e^{-3t}, e^{-3t}, 0)\} \end{aligned}$$

Sea
$$A = \begin{bmatrix} -2 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & -1 & -1 \end{bmatrix}$$
 su único autovalor es $\lambda_1 = -1$ con un

único autovector linealmente independiente asociado: $v_1 = (0,0,1)$. Entonces

$$J = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \qquad P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

$$v_2 = (-\frac{1}{3}, -\frac{1}{3}, 0)$$
 y $v_3 = (\frac{1}{9}, -\frac{2}{9}, 1)$.

Una base de soluciones de la ecuación Y' = AY es entonces

$$\{(0,0,e^{-1.t}),e^{-1.t}(-\frac{1}{3},-\frac{1}{3},t),e^{-1.t}(\frac{1}{9}-\frac{t}{3},-\frac{2}{9}-\frac{t}{3},1+\frac{t^2}{2})\}$$