Math 324, Homework 3

For problems 1-3, use cylindrical coordinates to evaluate $\iiint_E f(x,y,z) \, dV$ for the given function and region.

- 1. f(x, y, z) = x, and E is the region enclosed by the planes z = 0, z = x + y + 5 and the cylinders $x^2 + y^2 = 4, x^2 + y^2 = 9$.
- 2. $f(x, y, z) = z\sqrt{x^2 + y^2}$ over the region $x^2 + y^2 \le z \le 8 (x^2 + y^2)$.
- 3. f(x, y, z) = z over the region $0 \le z \le x^2 + y^2 \le 9$.
- 4. Express this triple integral in cylindrical coordinates: $\int_0^1 \int_0^{\sqrt{2x-x^2}} \int_0^{\sqrt{x^2+y^2}} f(x,y,z) \, dz \, dy \, dx.$

For problems 5-8, use spherical coordinates to evaluate $\iiint_E f(x,y,z) \, dV$ for the given function and region.

- 5. $f(x, y, z) = x^2 + y^2$ over the region $4 \le x^2 + y^2 + z^2 \le 9$.
- 6. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, over the region $x^2 + y^2 + z^2 \le 2z$.
- 7. $f(x,y,z) = (1+x^2+y^2+z^2)^{-2}$, over all of \mathbb{R}^3 . [Do the integral on the ball of radius R, and then take the limit $R \to \infty$.]
- 8. $f(x, y, z) = xe^{x^2 + y^2 + z^2}$ over the part of the unit ball $x^2 + y^2 + z^2 \le 1$ that lies in the octant $x \le 0, z \le 0$, and $y \ge 0$.
- 9. (Stewart 15.10.12) Find equations for a transformation T that maps a rectangular region S in the u-v plane onto the parallelogram R in the x-y plane with vertices (0,0),(4,3),(2,4),(-2,1).
- 10. (15.10.15) Evaluate the integral $\iint_R (x-3y) dA$, where R is the triangle with vertices (0,0),(1,2),(2,1), by using the transformation x=2u+v,y=u+2v.
- 11. (Stewart 15.10.27) Evaluate $\iint_R e^{x+y} dA$, where R is the region $\{(x,y): |x|+|y|\leq 1\}$.