Graph Decomposition (2) — BFS and its Applications

Hengfeng Wei

hengxin 0912@gmail.com

November 18, 2014

Outline

BFS: Algorithm

BFS: Properties

Outline

BFS: Algorithm

BFS: Properties

Problem

Problem: Shortest Path

Given an undirected graph G = (V, E) and a source vertex s, to compute distance $\delta(s, u)$ for each vertex u.

 $\delta(s,u) \equiv \#$ of edges of the shortest path between s and u.

BFS on Undirected Graph

BFS with source vertex s:

- \triangleright exploring every vertex u reachable from s
- ightharpoonup computing $\delta(s,u)$, for all reachable u

BFS as a framework:

- ▶ Prim's MST algorithm
- ▶ Dijkstra's SSSP algorithm

A Physical Algorithm of BFS (Phys-BFS)

Edge Properties of Phys-BFS

$$(u,v) \in E \Rightarrow d(u) \le d(v) \le d(u) + 1$$

A Parallel Algorithm of BFS (Para-BFS)

graph: network of computers

vertex: computer

edge: network connections

To disseminate a computer virus from computer s.

Color Properties in Para-BFS

$$states \ of \ computers = \left\{ \begin{array}{ll} \mathtt{WHITE} & \mathrm{if} \ \mathrm{healthy} \\ \mathtt{GRAY} & \mathrm{if} \ \mathrm{infected} \end{array} \right.$$

A Parallel Algorithm of BFS (Para-BFS)

Algorithm 1 A Parallel Algorithm of BFS (Para-BFS).

```
procedure Para-BFS(G, s)
     for all u \in V do
           color[u] \leftarrow \mathtt{WHITE}
           d[u] \leftarrow \infty
     \operatorname{color}[s] \leftarrow \mathtt{GRAY}
     d[s] \leftarrow \infty
     Q \leftarrow \{s\}
```

```
while Q \neq \emptyset do
     u \leftarrow \text{Deg}(Q)
     for all (u, v) \in E do
          if color[v] = WHITE then
                color[v] = GRAY
                d[v] = d[u] + 1
                \operatorname{Enq}(\mathbf{Q}, v)
     \operatorname{color}[u] \leftarrow \mathtt{BLACK}
```

States of vertices:

WHILE: undiscovered

GRAY: discorvered but

BLACK: discorvered and all its neighbors has been

discorvered

WHITE \Rightarrow GRAY \Rightarrow BLACK

- 1. $(u,v) \in E$, u is BLACK $\Rightarrow v$ is either BLACK or GRAY
- 2. GRAY vertex may have adjacent WHITE vertices

 ⇒ "frontier" between discovered and undiscovered vertices
- 3. Invariant: at any time, all GRAY vertices are in the Queue

Correctness Proof Para-BFS

BFS Algorithm

Outline

BFS: Algorithm

BFS: Properties

Color Properties

Queue Properties

Correctness Proof

Edges Properties

Outline

BFS: Algorithm

BFS: Properties

Testing Bipartiteness

figure/thankyou.jpg