Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 7.04.2015r	Dzień: Wtorek				
Grupa: VII	Godzina: 12:15-15:00				
Temat ćwiczenia:					
Liniowe stabilizatory napięcia					
Dane projektowe:					
$U_0 = 11.00 \text{ V}$	$I_0 = 0.60 \text{ A}$				
l.p	Nazwisko i imię	Oceny			
1	Arkadiusz Ziółkowski				
2	Jakub Koban				

1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany o zadanych parametrach:

- 1. $U_0 = 11.00 \text{ V}$
- 2. $I_0 = 0.60 \text{ A}$

2 Obliczenia projektowe

$$U_0 = (1 + \frac{R_5}{R_6})U_{REF} \rightarrow (1 + \frac{3k\Omega}{1k\Omega})2.75V = 11V$$
 (1)

$$R_5 + R_6 \leqslant \frac{U_0}{1mA} \rightarrow 4k\Omega \leqslant 11k\Omega$$
 (2)

$$I_0 = \frac{U_{sc}}{R_4} \rightarrow \frac{0.45V}{0.68\Omega} = 0.66A$$
 (3)

3 Schemat projektowy

Rysunek 1: Schemat projektowanego układu

4 Część laboratoryjna

4.1 Charakterystyki napięciowe

U1[V]	U2	[V]	$\partial Uwy/\partial v$	$\partial Uwe[\frac{V}{V}]$	U1[V]	U2	[V]	$\partial Uwy/\partial u$	$\partial Uwe[\frac{V}{V}]$
	Iwy=0[A]	$Iwy \neq 0[A]$	Iwy=0[A]	$\text{Iwy} \neq 0[A]$		Iwy=0[A]	$Iwy \neq 0[A]$	Iwy=0[A]	$Iwy \neq 0[A]$
0.00	0.00	0.00	-	-	12.50	10.99	10.74	0.00	0.89
0.40	0.00	0.00	0.00	0.00	13.00	10.99	10.98	0.00	0.84
0.80	0.00	0.00	0.03	0.00	13.50	10.99	10.98	0.00	0.81
1.20	0.01	0.00	0.31	0.00	14.00	11.00	10.98	0.00	0.78
1.60	0.14	0.00	0.37	0.00	14.50	11.00	10.98	0.00	0.76
2.00	0.29	0.00	0.21	0.01	15.00	11.00	10.99	0.00	0.73
2.50	0.39	0.01	4.44	0.00	15.50	11.00	10.99	0.00	0.71
2.90	2.17	0.11	0.84	0.27	16.00	11.00	10.99	0.00	0.69
3.40	2.59	1.94	0.93	3.66	16.50	11.00	10.99	0.00	0.67
3.90	3.03	2.39	0.91	0.90	17.00	11.00	10.99	0.00	0.65
4.40	3.49	2.85	1.00	0.92	17.50	11.00	10.99	0.00	0.63
5.00	4.09	3.46	0.95	1.02	18.00	11.00	10.99	0.00	0.61
5.50	4.56	3.94	0.98	0.97	18.50	11.00	10.99	0.00	0.59
6.00	5.05	4.44	0.90	1.00	19.00	11.00	10.99	0.00	0.58
6.50	5.50	4.90	0.95	0.92	19.50	11.00	11.00	0.00	0.56
7.00	5.95	5.36	1.06	0.91	20.00	11.00	10.99	0.00	0.55
7.50	6.48	5.90	1.01	1.08	21.00	11.00	11.00	0.00	0.52
8.00	6.99	6.42	0.95	1.03	22.00	11.01	11.00	0.00	0.50
8.50	7.46	6.89	0.95	0.96	23.00	11.01	11.00	0.00	0.48
9.00	7.87	7.32	1.00	0.85	24.00	11.01	11.00	0.00	0.46
9.50	8.37	7.83	0.95	1.02	25.00	11.01	11.00	0.00	0.44
10.10	8.92	8.38	1.01	0.92	26.00	11.01	11.00	0.00	0.42
10.50	9.32	8.77	1.02	0.98	27.00	11.01	11.01	0.00	0.41
11.00	9.87	9.35	0.96	1.16	28.00	11.01	11.01	0.00	0.39
11.50	10.35	9.85	0.90	0.98	29.00	11.01	11.01	0.00	0.38
12.00	10.78	10.29	0.42	0.90	30.00	11.01	11.01	-	-

Rysunek 2: $U_{wy}=f(U_{we})$ przu $I_{wy}=0A$

Rysunek 3: $U_{wy}=f(U_{we})$ przu $I_{wy}\neq 0A$

Analizując przedstawione charakterystyki możemy zauważyć,
iż układ poprawnie stabilizuje napięcie od (odpowiednio) 12.5V i 13V aż do maksymalnego napięcia jakie udało nam się uzyskać z zasilacza czyli 30V. Świadczy to o tym ,
iż dropout jest równy odpowiednio około 1.5V i 2 V.

4.2 Współczynnik stabilizacji napięciowej

Rysunek 4: $\frac{\partial U_{\text{wy}}}{\partial U_{\text{we}}} = f(U_{we})$ przy I_{wy}=0A

Rysunek 5: $\frac{\partial U_{\text{wy}}}{\partial U_{\text{we}}} = f(U_{we}) \text{ przy } I_{\text{wy}} \neq 0A$

Wzpółczynnik stabilizacji napięciowej w pewnym momencie bardzo gwałtownie się zmienia z uwagi na dużą zmianę wartości napięcia (po uwzględnieniu dropoutu) z napięć bardzo niskich , które są trudno mieżalne z dużą dokładnością przez multimetr. Fragment przejściowy charakterystyki z rysunków 3 i 4 odpowiada tutaj fragmentowi oscylującemu w okół jedynki. Oscylacje są spowodowane niedokładnością przyrządów pomiarowych.

4.3 Charakterystyki zewnętrzne

Iwy [A]	$\partial Uwy/\partial Iwy[\frac{V}{A}]$	$\partial Uwy/\partial Iwy[\frac{V}{A}]$				
Uwe=15V						
0.72	0.04	-				
0.72	3.81	-3775.80				
0.72	4.99	317.49				
0.72	7.31	4645.20				
0.72	10.88	-488.36				
0.55	10.96	-0.50				
0.37	10.97	-0.07				
0.29	10.98	-0.08				
0.20	10.99	-0.07				
0.14	10.99	-0.08				
0.09	10.99	-0.08				
0.07	11.00	-0.06				
0.05	11.00	0.00				
	Uwe=30V					
0.29	0.01	-				
0.40	2.08	-18.73				
0.47	3.20	-15.96				
0.71	7.11	-16.27				
0.71	10.71	4000.00				
0.55	10.96	1.53				
0.37	10.97	0.08				
0.29	10.98	0.11				
0.20	10.99	0.08				
0.14	10.99	0.09				
0.09	11.00	0.10				
0.07	11.00	0.11				
0.05	11.00	0.04				

Rysunek 6: $U_{wy}=f(I_{wy})$ przu $U_{we}=15V$

Rysunek 7: $U_{wy}=f(I_{wy})$ przu $U_{we}=30V$

Analizując charakterystyki zewnętrzne stabilizatora zauważamy, że przy $U_{\rm we}{=}15V$ układ nie przepuszcza prądu powyżej zadanych 0.70A.

4.4 Impedancja wyjściowa

Rysunek 8: $U_{wy}=f(I_{wy})$ przu $U_{we}=15V$

Rysunek 9: $U_{wy}=f(I_{wy})$ przu $U_{we}=30V$

Do około 0.7 A układ utrzymuje stałą rezystancję wewnętrzną rzędu kilku omów/części dziesiętnych omów , po przekroczeniu tej wartości następuje nagły wzrost rezystancji, który przeciwdziała przekroczeniu zadanego napięcia. Na rysunku nr.9 obserwujemy tzw. foldback ('odwijanie' charakterystyki) co jest zabezpieczeniem układu w wypadku dalszego wzrostu napięcia wejściowego.

5 Wnioski

- 1. Zgodnie z założeniami teoretycznymi układ utrzymuje na swoim wyjściu stałe napięcie równe 11V , w związku z niedokładnością użytych elementów maksymalny prąd wyjściowy różni się od założeń jednak nie jest to duża rozbieżność (około 0.70 A wobec założonych 0.60 A).
- 2. Minimalny spadek napięcia pomiędzy wyjściem a wejściem stabilizatora, potrzebny do właściwej stabilizacji napięcia wyjściowego (dropout) dla I_{wy} =0 wynosi około 1.5V a dla I_{wy} ≠0 około 2V. Z czego wynika, iż wraz ze wzrostem obciążenia dropout również rośnie
- 3. W stabilizatorze kompensacyjnym udało nam się zaobserwować tzw.foldback który jest bardzo dobrym zabezpieczeniem układu w wypadku podawania na wejście zbyt dużych wartości napięć.