```
import sklearn
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

from sklearn.datasets import load_boston

```
#checking if any data is empty
check=df.isnull()
check.sum()
#output shows no empty values
```

Г⇒	CRIM	0
_	ZN	0
	INDUS	0
	CHAS	0
	NOX	0
	RM	0
	AGE	0
	DIS	0
	RAD	0
	TAX	0
	PTRATIO	0
	В	0
	LSTAT	0
	dtype:	int64

df['PRICE'] = house_price.target
df.head()

₽		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	

print(house_price.DESCR)

C→

```
.. boston dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute
    :Attribute Information (in order):
                   per capita crime rate by town
        - CRIM
        - ZN
                   proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river; 0 otherwi
        - NOX
                   nitric oxides concentration (parts per 10 million)
                   average number of rooms per dwelling
        - RM
        - AGE
                   proportion of owner-occupied units built prior to 1940
        - DIS
                   weighted distances to five Boston employment centres
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
                  1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT
                   % lower status of the population

    MEDV

                   Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
```

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

This dataset was taken from the StatLib library which is maintained at Carnegie Mellc

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that addres problems.

```
.. topic:: References
```

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceed

```
X= df.drop(axis=1,columns='PRICE')
Y= df['PRICE']
X.head()
```

С→

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	

Task 1: splitting the data

```
import sklearn.model_selection
X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X, Y, test_siz
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)
 [→ (354, 13)
     (152, 13)
     (354,)
     (152,)
from sklearn.linear_model import LinearRegression
OLS_model = LinearRegression(fit_intercept=True,normalize=False,copy_X=True)
OLS_model.fit(X_train, Y_train)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
b_coef= OLS_model.coef_
print(b_coef[12])
    -0.4867380656449212
B= pd.DataFrame(data=b_coef,index=X.columns)
X.columns
   Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO', 'B', 'LSTAT'],
           dtype='object')
B.plot.bar()
С→
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe9ede588d0>

Task2

₽		room	residential zone	highway access	crime rate	tax
	0	NaN	NaN	NaN	NaN	NaN
	1	NaN	NaN	NaN	NaN	NaN
	2	NaN	NaN	NaN	NaN	NaN
	3	NaN	NaN	NaN	NaN	NaN
	4	NaN	NaN	NaN	NaN	NaN

X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X, Y, test_siz

for lamda in range(200):
 Ridge_model =Ridge(fit_intercept=True,normalize=True,copy_X=True,alpha=lamda)

reg_coef_L

₽		crime rate	room	residential zone	highway access	tax
	0	-0.121310	3.859068	0.044466	0.242143	-0.011072
	1	-0.068001	2.880140	0.019307	-0.013911	-0.002939
	2	-0.056939	2.122684	0.017274	-0.027019	-0.002759
	3	-0.049720	1.691319	0.015636	-0.029878	-0.002554
	4	-0.044315	1.411524	0.014244	-0.029921	-0.002356
	195	-0.002133	0.046972	0.000748	-0.002046	-0.000129
	196	-0.002123	0.046737	0.000744	-0.002036	-0.000128
	197	-0.002112	0.046503	0.000740	-0.002026	-0.000128
	198	-0.002102	0.046272	0.000737	-0.002016	-0.000127
	199	-0.002092	0.046043	0.000733	-0.002007	-0.000127

200 rows × 5 columns

reg_coef_L.plot.line(figsize=(15,10))

C→

<matplotlib.axes._subplots.AxesSubplot at 0x7fe9eded99e8>

Task 3

С→

```
room residential zone highway access crime rate
X train, X test, Y train, Y test = sklearn.model selection.train test split(X, Y, test siz
from sklearn.linear_model import Lasso
reg_coef_Lasso = pd.DataFrame(columns=['crime rate',
                                   'room',
                   'residential zone',
                   'highway access'
                    ,'tax'])
Lasso_model =Lasso(fit_intercept=True,normalize=False,copy_X=True,alpha=4)
Lasso_model.fit(X_train, Y_train)
print(Lasso_model.coef_)
   [-0.
                   0.03965108 -0.
Г⇒
                                           0.
                                                        0.
                                                                    0.
       0.03706659 -0.
                               0.
                                          -0.00849255 -0.21079256 0.00464294
      -0.76847208]
for lamda in range(2,200):
  Lasso_model =Lasso(fit_intercept=True,normalize=False,copy_X=True,alpha=lamda)
 Lasso_model.fit(X_train, Y_train)
  print(Lasso_model.coef_)
  df5 = pd.DataFrame([[Lasso_model.coef_[0],Lasso_model.coef_[5],Lasso_model.coef_[1],Lass
                                   'room',
                   'residential zone',
                   'highway access'
                    ,'tax'])
 reg_coef_Lasso=reg_coef_Lasso.append(df5,ignore_index=True)
```

			FDS_ASST.lpynb - Cola	boratory	
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.02005173	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.02001727	-0.	0.
-0.]	0		•	•
[-0.	0.	-0.	0.	-0.	0.
-0. -0.	0.	-0.	-0.01998281	-0.	0.
-0. [-0.] 0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01994835		0.
-0.]	0.	0.0100	0.	0.
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01991389		0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01987943	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01984497	-0.	0.
-0.]		_		
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01981051	-0.	0.
-0. [-0.] 0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01977605		0.
-0.]	-0.	-0.01377003	-0.	0.
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01974159		0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01970713	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01967267	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01963822	-0.	0.
-0. [-0.]	-0.	0.	-0.	0
-0.	0. 0.	-0. -0.	-0.01960376		0. 0.
-0.]	-0.	-0.0100070	-0.	0.
[-0.	0.	-0.	00.		0.
-0.	0.	-0.	-0.0195693 -0.		0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01953484	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01950038	-0.	0.
-0.]				
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01946592	-0.	0.
-0. [_0]	-0.	0.	-0.	O
[-0. -0.	0. 0.	-0. -0.	-0.01943146		0. 0.
-0. -0.	8.]	-⊍.	-0.01343140	-0.	٥.
[-0.	0.	-0.	00.	0.	-0.
0.	-0.	-0.019397		-0.]
[-0.	0.	-0.	0.	-0.	0.
-0.	0.	-0.	-0.01936254		0.
-	-				

			_ ' ' '	,		
-0.]					
[-0.	0.	-0.	0.	-0.	0	
-0.	0.	-0.	-0.01932808	-0.	0	
-0.]					
[-0.	0.	-0.	0.	-0.	0	
-0.	0.	-0.	-0.01929362	-0.	0	
-0.]					
[-0.	0.	-0.	0.	-0.	0	
-0.	0.	-0.	-0.01925916	-0.	0	
-0.]					
[-0.	0.	-0.	00.		0.	
-0.	0.	-0.	-0.0192247 -0.		0.	
-0.]					
[-0.	0.	-0.	0.	-0.	0	
-0.	0.	-0.	-0.01919024	-0.	0	
-0.]					
[-0.	0.	-0.	0.	-0.	0	
-0.	0.	-0.	-0.01915578	-0.	0	
-0.]					

reg_coef_Lasso

₽	(crime rate	room	residential zone	highway access	tax
)	-0.018627	0.0	0.034923	0.109626	-0.010408
•	1	-0.000000	0.0	0.034382	0.008605	-0.007361
2	2	-0.000000	0.0	0.039651	0.000000	-0.008493
;	3	-0.000000	0.0	0.043481	0.000000	-0.009773
4	4	-0.000000	0.0	0.040648	0.000000	-0.009987
19	93	-0.000000	0.0	0.000000	-0.000000	-0.019294
19	94	-0.000000	0.0	0.000000	-0.000000	-0.019259
19	95	-0.000000	0.0	0.000000	-0.000000	-0.019225
19	96	-0.000000	0.0	0.000000	-0.000000	-0.019190
19	97	-0.000000	0.0	0.000000	-0.000000	-0.019156

198 rows × 5 columns

reg_coef_Lasso.plot.line(figsize=(15,10))

C→ <matplotlib.axes._subplots.AxesSubplot at 0x7fe9edcea4e0>

