Khôlles de Mathématiques \mathbb{HXII} $Structures \ algébriques, \ Corps \ \mathbb{R} \ et \ \mathbb{C}$

N. CLOAREC

Du 03-10-16 au 15-10-16

Exercice 1 Soit A un anneau intègre fini. Montrer que A est un corps.

Exercice 2 Soit A un anneau commutatif non réduit à $\{0\}$. On définit sur A les idéaux qui sont des sous-groupes de (A, +) vérifiant : si $a \in A$ et $b \in I$ alors $a.b \in I$.

- a) On suppose que les seuls idéaux de A sont $\{0\}$ et A. Montrer que A est un corps.
- b) On suppose que les idéaux I de A vérifient $\forall x,y\in A,\quad xy\in I\Rightarrow x\in I$ ou $y\in I.$ Montrer que A est un corps.

Exercice 3 Montrer qu'un morphisme de corps est injectif.

Exercice 4

a) Montrer l'existence et l'unicité des suites d'entiers $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifiant

$$\left(1+\sqrt{2}\right)^n = a_n + b_n\sqrt{2}$$

- b) Calculer $a_n^2 2b_n^2$.
- c) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $p \in \mathbb{N}^*$ tel que

$$\left(1+\sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$$

Exercice 5 Si n est un entier ≥ 2 , le rationnel $H_n = \sum_{k=1}^n \frac{1}{k}$ peut-il être entier?

a) Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Montrer

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

b) Montrer que

$$\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor$$

Exercice 7 Démontrer

$$\forall n \in \mathbb{N}^*, \lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$$

en notant |x| la partie entière d'un réel x.

Exercice 8

Soit $a \in \mathbb{C}$ tel que |a| < 1.

Déterminer l'ensemble des complexes z tels que

$$\left| \frac{z - a}{1 - \bar{a}z} \right| \le 1$$

Exercice 9 Montrer que

$$\sin\left(\frac{\pi}{5}\right) = \sqrt{\frac{5 - \sqrt{5}}{8}}$$

Exercice 10 Établir que pour tout $z \in \mathbb{C}$

$$\left(1+\frac{z}{n}\right)^n \to \exp(z)$$