Introduction to Software Testing Chapter 8.1 Logic Coverage

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/

Ch. 8: Logic Coverage

Four Structures for Modeling Software

Semantic Logic Criteria (8.1)

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for <u>safety critical</u> software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose <u>some subset</u> of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- A predicate is an <u>expression</u> that evaluates to a <u>boolean</u> value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, != (relational expression)
 - boolean function calls
- Internal structure is created by logical operators
 - \neg the *negation* operator
 - $\land -$ the and operator
 - $-\vee$ the *or* operator
 - $\rightarrow -$ the implication operator
 - $-\oplus$ the exclusive or operator
 - \leftrightarrow the equivalence operator
- A clause is a predicate with no logical operators

Example and Facts

- $(a < b) \lor f(z) \land D \land (m >= n*o)$ has four clauses:
 - (a < b) relational expression
 - f (z) boolean-valued function
 - D boolean variable
 - $(m \ge n^*o) relational expression$
- Most predicates have few clauses
 - 88.5% have I clauses
 - 9.5% have 2 clauses
 - Only .65% have 4 or more!

1.35% have 3 clauses >400,000 predicates

- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

from a study of 63 open

source programs,

Translating from English

- "I am interested in SWE 637 and CS 652"
- course = swe637 OR course = cs652

Humans have trouble translating from English to Logic

- "If you leave before 6:30 AM, take Braddock to 495, if you leave after 7:00 AM, take Prosperity to 50, then 50 to 495"
- (time < 6:30 \rightarrow path = Braddock) \wedge (time > 7:00 \rightarrow path = Prosperity)
- Hmm ... this is incomplete!
- (time < 6:30 \rightarrow path = Braddock) \land (time $>= 6:30 \rightarrow$ path = Prosperity)

Logic Coverage Criteria (8.1.1)

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses
- Abbreviations:
 - P is the set of predicates
 - -p is a single predicate in P
 - C is the <u>set of clauses</u> in P
 - $-C_p$ is the <u>set of clauses</u> in <u>predicate p</u>
 - -c is a single clause in C

Predicate and Clause Coverage

• The first (and simplest) two criteria require that <u>each</u> predicate (*decision*) and <u>each</u> clause (*condition*) be evaluated to <u>both true</u> and <u>false</u>

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

- When <u>predicates</u> come from <u>conditions on edges</u>, this is <u>equivalent</u> to <u>edge coverage</u>
- PC does <u>not</u> evaluate <u>all</u> the clauses, so …

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

Predicate Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$
predicate coverage

Predicate = true a = 5, b = 10, D = true, m = 1, n = 1, o = 1 $= (5 < 10) \lor true \land (1 >= 1*1)$ $= true \lor true \land TRUE$ = true

```
Predicate = false
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) \lor false \land (1 >= 1*1)
= false \lor false \land TRUE
= false
```

Clause Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

Clause coverage

Problems with PC and CC

• PC does <u>not</u> fully exercise <u>all</u> the clauses, especially in the presence of short circuit evaluation

- CC does <u>not always</u> ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - This is definitely not what we want!
- The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called <u>Multiple Condition Coverage</u>

<u>Combinatorial Coverage (CoC)</u>: For each <u>p</u> in <u>P</u>,TR has test requirements for the clauses in <u>Cp</u> to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	((a < b) ∨ D) ∧ (m >= n*o)
- 1	Т	Т	Т	Т
2	Т	Т	F	F
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	Т
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

Combinatorial Coverage

- This is <u>simple</u>, neat, clean, and <u>comprehensive</u> ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the <u>details</u> right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active" ...

Active Clauses (8.1.2)

- Clause coverage has a weakness: The values do not always make a difference (in terms of true or false for the predicate)
- Consider the <u>first test</u> for clause coverage, which caused each clause to be true:

```
-((5 < 10) \lor true) \land (1 >= 1*1)
```

- Only the first clause counts! (actually the first clause doesn't affect the predicate value)
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

You flip the clause, and the predicate changes value

A clause C_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses C_j are such that changing C_i changes the value of p

• This is considered to make the clause active

Determining Predicates

$P = A \vee B$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$P = A \wedge B$

if B = false, p is always false.

so if B = true, $A \underline{determines} p$.

if A = true, $B \underline{determines} p$.

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in a family of criteria that have <u>subtle</u>, but <u>very important</u>, <u>differences</u>

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause C_i in C_p , choose minor clauses C_j , j != i, so that C_i determines p. TR has two requirements for each $C_i : C_i$ evaluates to true and C_i evaluates to false.

- This is a form of MCDC, which is required by the FAA for safety critical software
- Ambiguity: Do the minor clauses have to have the same values when the major clause is true and false?

Resolving the Ambiguity

$$p = a \lor (b \land c)$$

Major clause : a

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
 - Minor clauses do not need to be the same (GACC)
 - Minor clauses do need to be the same (RACC)
 - Minor clauses force the predicate to become both true and false (CACC)

General Active Clause Coverage

General Active Clause Coverage (GACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that ci determines p. TR has two requirements for each ci: c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i do not need to be the same when c_i is true as when c_i is false, that is, $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

- This is complicated!
- It is possible to satisfy GACC without satisfying <u>predicate</u> coverage
- We really want to cause predicates to be both true and false!

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i must be the same when c_i is true as when c_i is false, that is, it is required that $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

- This has been a common interpretation by <u>aviation</u> developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true)$!= $p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and **RACC**

	a	b	c	a ∧ (b ∨ c)
1	T	T	T	T
2	T	T	F	T
3	T	F	T	T
4	T	F	F	${f F}$
5	F	T	T	F
6	F	T	F	${f F}$
7	F	F	T	${f F}$
8	F	F	F	${f F}$

major clause

P_a:b=true or c = true

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs

CACC and **RACC**

- Some logical expressions can be completely satisfied under CACC, but have infeasible test requirements under RACC
 - If <u>dependency relationships</u> exist among the clauses, i.e., some <u>combinations</u> of <u>values</u> for the clauses are <u>prohibited</u>
- Consider a system with a <u>valve</u> that might be either open or closed, and several <u>modes</u>, two of which are "Operational" and "Standby." Assume the following two Constraints:
 - I. The valve must be open in "Operational" and closed in all other modes.
 - 2. The mode cannot be both "Operational" and "Standby" at the same time.
- This leads to the following clause definitions:
 - a = "The valve is closed"
 - b = "The system status is Operational"
 - c = "The system status is Standby"

CACC and **RACC**

• Suppose that a certain action can be taken only if the valve is closed and the system status is either in Operational or Standby. That is,

p = valve is closed AND (system status is Operational OR system status is Standby) = $a \land (b \lor c)$

- The constraints above can be formalized as
 - $1. \neg a \leftrightarrow b$
 - 2. \neg (b \land c)

Constraint I rules out the rows where a and b have the same values, that is, rows I, 2, 7, and 8.

Constraint 2 rules out the rows where b and c are both true, that is, rows | and 5.

RACC is infeasible for a in this predicate

	a	b	C	a ∧ (b ∨ c)	
4	_			_	violates constraints & 2
	•			•	violaces consciuntes i & 2
-2 -	_	_			violates constraint l
	•	•	•		
3	T	F	T	T	
		_	_	<u>_</u>	
4	T	F	F	F	
	_				violates constraint 2
2				Г.	violates constraint 2
6	F	т.	F	F	
•		_		Г	
7				<u>-</u>	violates constraint l
· ·					Totales competante :
8				<u> </u>	violates constraint l
	_	_	_	<u> </u>	

Inactive Clause Coverage (8.1.3)

- The <u>active</u> clause coverage criteria ensure that "major" clauses do affect the predicates
- <u>Inactive</u> clause coverage takes the opposite approach major clauses do <u>not</u> affect the predicates

Inactive Clause Coverage (ICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that c_i does not determine p. TR has four requirements for each c_i : (1) c_i evaluates to true with p true, (2) c_i evaluates to false with p true, (3) c_i evaluates to true with p false, and (4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - ci does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_i OR $c_j(c_i = true) != c_j(c_i = false)$ for all c_j .

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that c_j ($c_i = true$) = c_j ($c_i = false$) for all c_j .

Infeasibility & Subsumption (8.1.4)

Consider the predicate:

$$(a > b \land b > c) \lor c > a$$

- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, <u>infeasible test requirements</u> have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable
- Software testing is <u>inexact</u> <u>engineering</u>, <u>not science</u>

Infeasibility and Subsumption

- Infeasibility is often a problem because clauses are sometimes related to one another
- Consider

```
while (i < n && a[i] != 0) {do something to a[i]} 
// to avoid evaluating a[i] if i is out of range
```

- Clearly, it is not going to be possible to develop a test case where i < n is false and a[i] != 0 is true
- In principle, the issue of infeasibility for clause and predicate criteria is no different from that for graph criteria
 - In both cases, the solution is to satisfy test requirements that are feasible, and then decide how to treat infeasible test requirements
 - The simplest solution is to simply <u>ignore</u> infeasible requirements, which usually does not affect the quality of the tests
 - However, a <u>better solution</u> for some infeasible test requirements is to consider the counterparts of the requirements in a subsumed coverage criterion (similar to that of best-effort touring in Chapter 2)

Logic Criteria Subsumption

Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for <u>simple</u>
 <u>predicates</u>
- But how to find values for more complicated predicates?
- Definitional approach:
 - $-p_{c=true}$ is predicate p with every occurrence of c replaced by true
 - $-p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

After solving, p_c describes exactly the values needed for c
 to determine p

Examples

```
p = a \lor b
P_a = P_{a=true} \oplus P_{a=false}
= (true \lor b) XOR (false \lor b)
= true XOR b
= \neg b
```

```
p = a \wedge b
P_{a} = P_{a=true} \oplus P_{a=false}
= (true \wedge b) \oplus (false \wedge b)
= b \oplus false
= b
```

```
p = a \lor (b \land c)
P_{a} = P_{a=true} \oplus P_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= \neg (b \land c)
= \neg b \lor \neg c
```

- "NOT b > NOT c" means either b or c can be false
- RACC requires the same choice for both values of a, CACC does not

Repeated Variables

 The definitions in this chapter <u>yield the same tests</u> no matter <u>how the predicate is expressed</u>

•
$$(a \lor b) \land (c \lor b) == (a \land c) \lor b \leftarrow \frac{\text{How do you know they are equivalent?}}{\text{equivalent?}}$$

•
$$(a \land b) \lor (b \land c) \lor (a \land c)$$
 Why? How do you know two a's, b's, and c's are equivalent to one a, b, and c?

• Use the simplest form of the predicate, and <u>ignore</u> contradictory truth table assignments

A More Subtle Example

```
p = (a \land b) \lor (a \land \neg b)
p_a = p_{a=true} \oplus p_{a=false}
= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b))
= (b \lor \neg b) \oplus false
= true \oplus false
= true
```

```
p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))
= (a \lor false) \oplus (false \lor a)
= a \oplus a
= false
```

- a always determines the value of this predicate
- b never determines the value b is irrelevant! (b is redundant)

Subtle Examples

```
p = a \leftrightarrow b
P_a = P_{a=true} \oplus P_{a=false}
= (true \leftrightarrow b) \oplus (false \leftrightarrow b)
= b \oplus \neg b
= true
```

```
p = a \land b \lor a \land \neg b
P_b = P_{b=true} \oplus P_{b=false}
= (a \land true \lor a \land \neg true) \oplus (a \land false \lor a \land \neg false)
= (a \lor false) \oplus (false \lor a) = a \oplus a
= false
```

- "p_a is true" indicates that, for any value of b, a determines the value of p without regard to the value for b
- This means that for a predicate p where the p_c is the constant true, the ICC criteria are infeasible with respect to c
- Inactive clause coverage is likely to result in infeasible test requirements when applied to expressions that use equivalence or exclusive-or operators
- •If a predicate p contains a clause c such that p_c evaluates to the constant <u>false</u>, the ACC criteria are infeasible with respect to the same choice. (i.e., the clause c is redundant which is a signal of something wrong with the predicate!)

Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

	a	b	C	a ∧ (b ∨ c)	Pa	P _b	Pc	
I	Т	Т	Т	Т	(
2	Т	Т	F	Т	O	0		ı
3	Т	F	Т	Т	0		0	ı
4	Т	F	F	F		O	0	ı
5	F	Т	Т	F	O			
6	F	Т	F	F	O			
7	F	F	Т	F	0			
8	F	F	F	F				

In sum, three separate pairs of rows can cause a to determine the value of p, and only one pair each for b and c

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only I clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
- Question ... why don't complexity metrics count the number of clauses in predicates?