ADVANCED QUANTUM MECHANICS TUTORIAL QUESTIONS WEEK 2

- 1. The raising operator for harmonic oscillator states is defined as $\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} \frac{i}{m\omega} \hat{p} \right)$.
 - (a) Express it as a differential operator in the real space representation, using harmonic oscillator (dimensionless) units.
 - (b) Taking the ground-state wavefunction $\psi_0(x)$, find $a^{\dagger}\psi_0(x)$. How does this compare to $\psi_1(x)$?
 - (c) What happens when you apply \hat{a}^{\dagger} twice to $\psi_0(x)$? What can you conclude?

Hints: the eigenstates of the harmonic oscillator are $\psi_n(x) = \mathcal{N}_n e^{-\frac{x^2}{2}} H_n(x)$ in harmonic oscillator units, with $\mathcal{N}_n = (2^n n! \sqrt{\pi})^{-1/2}$. The first few Hermite polynomials are $H_0(x) = 1$, $H_1(x) = 2x$ and $H_2(x) = 4x^2 - 2$.

- 2. Write the one-dimensional harmonic oscillator eigenvalue equation in momentum representation. Calculate the corresponding eigenfunctions, $\langle p|\psi_n\rangle$.
- 3. Consider an harmonic oscillator $\hat{H} = \frac{\hbar\omega}{2} (\hat{p}^2 + \hat{x}^2)$ and its first two normalized states, $\phi_0(x)$ and $\phi_1(x)$. Consider a system with initial wave function $\psi(x,t=0) = \cos\theta\phi_0(x) + \sin\theta\phi_1(x)$ with $0 < \theta \leqslant \pi$.
 - (a) Find the wave function at time t, $\psi(x,t)$.
 - (b) Calculate the expectation values $\langle E \rangle$, $\langle E^2 \rangle$ and the dispersion ΔE . Explain their time dependence.
 - (c) Calculate the time evolution of $\langle x \rangle$, $\langle x^2 \rangle$ and the dispersion Δx .

4. Virial theorem

Consider a one-dimensional system with the Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$ and $V(x) = \lambda x^{\alpha}$.

- (a) Calculate the commutator $[\hat{H}, \hat{x}\hat{p}]$.
- (b) By taking the expectation value of this commutator, show that for any eigenstate of \hat{H} , one has $2\langle T\rangle=\alpha\langle V\rangle$, with $\langle T\rangle$ and $\langle V\rangle$ the kinetic and potential energies of the system, respectively.
- (c) Check this relation for the harmonic oscillator.
- 5. Consider a coherent state $|z\rangle$. Starting from the definition of the Hamiltonian and the projection into Fock states,

$$|z\rangle = e^{-\frac{1}{2}|z|^2} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |n\rangle,$$

find the expectation values $\langle E \rangle$, $\langle E^2 \rangle$ and the dispersion ΔE . Discuss the precision of the energy as a function of |z|.

6. Minimum uncertainty states

- (a) Consider a coherent state $|z\rangle$. Find the expectation value of the position operator on this state, $\langle z|\hat{x}|z\rangle$.
- (b) Find the same expectation value for the momentum operator \hat{p} .
- (c) Considering $\langle z|\hat{x}^2|z\rangle$ and $\langle z|\hat{p}^2|z\rangle$, find the uncertainties of both operators over a coherent state, Δx_z^2 and Δp_z^2 .
- (d) What do you find for the product $\Delta x_z^2 \Delta p_z^2$? Comment on this result.