7/21/2017

Computer Vision: Capstone Project

Report

Summary

In this mini report I tried to capture the observations of using the following optimizers, under same conditions, i.e. metrics, batch size, training and validation set and network model.

- RMSprop Root Mean Square Propagation
 (http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
- 2. Nadam Adam with Nesterov momentum (http://cs229.stanford.edu/proj2015/054_report.pdf)
- 3. Adam an algorithm for first-order gradient-based optimization of stochastic objective functions (https://arxiv.org/pdf/1412.6980v8.pdf)
- 4. SGD

The optimizer RMSProp fared best and SDG fared worst. SGD is also slowest to converge, while RMSProp was fastest to minimize the losses.

The following sections also contain the visualization graphs of respective optimizer related model accuracies and model losses.

In addition, I also selected a bit complicated image with slanted faces of a couple as test example. SGD fared worst.

Adam

Epoch 00041: val_loss improved from 0.00369 to 0.00319, saving model to we

ights.bes t.adam.hdf5

RMSPROP

poch 00047: val_loss improved from 0.00130 to 0.00121, saving model to weights.best.rmsprop.hdf5

NADAM

poch 00046: val_loss improved from 0.00265 to 0.00258, saving model to weights.best.nadam.hdf5

SGD

poch 00049: val_loss improved from 0.01725 to 0.01705, saving model to weights.best.sgd.hdf5

