Digital Logic(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Theory Assignment 4

Mengxuan Wu

1. Function Table:

S_1	S_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+	Operation
0	0	Q_3	Q_2	Q_1	Q_0	No Change
0	1	Q_3'	Q_2'	Q_1'	Q_0'	Complement the four outputs
1	0	0	0	0	0	Clear register to 0
1	1	D_3	D_2	D_1	D_0	Load parallel data

Logic Diagram:

2.

With 7 possible states, we start with 3 flip-flops.

\overline{Z}	Q_2	Q_1	Q_0
0	1	0	1
1	0	1	0
1	1	0	1
1	1	1	0
1	1	1	1
0	1	1	1
1	0	1	1

However, there are identical states with different outputs. We can add another flip-flop to make the circuit work.

\overline{Z}	Q_3	Q_2	Q_1	Q_0
0	1	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0
0	1	1	1	1
1	0	1	1	1

Now there are no identical states with different outputs.

Karnaugh Maps:

$$Z = Q_0' + Q_1' + Q_3'$$

Logic Diagram:

3. State Table:

Current State				Next State				
$\overline{Q_3}$	Q_2	Q_1	Q_0	$\overline{Q_3^+}$	Q_2^+	Q_1^+	Q_0^+	
0	0	0	0	0	0	1	0	
0	0	0	1	0	0	1	0	
0	0	1	0	0	1	1	0	
0	0	1	1	0	0	1	0	
0	1	0	0	0	0	1	0	
0	1	0	1	0	0	1	0	
0	1	1	0	1	0	0	1	
0	1	1	1	0	0	1	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	0	0	0	
1	0	1	0	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0	0	1	1	0	1	
1	1	0	1	0	0	1	0	
1	1	1	0	0	0	1	0	
_ 1	1	1	1	0	0	1	0	

Karnaugh Maps:

5, C	00	01	11	10
00	0	0	0	1
01	0	0	0	0
11	1	0	0	0
10	1	0	0	0

 D_3

00 0,0,0 0,0	§ 00	01	11	10
00	1	1	1	1
01	1	1	1	0
11	0	1	1	1
10	0	0	1	1

63.0 63.6	00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	1	0	0	0
10	0	0	0	0

 D_1

 D_0

$$\begin{split} D_3 = &Q_3 Q_1' Q_0' + Q_3 Q_2' Q_1' + Q_3' Q_2 Q_1 Q_0' \\ D_2 = &Q_3 Q_1' Q_0' + Q_3' Q_2' Q_1 Q_0' \\ D_1 = &Q_3' Q_2' + Q_3' Q_1' + Q_2 Q_0 + Q_3 Q_1 \\ D_0 = &Q_3 Q_2 Q_1' Q_0' + Q_3' Q_2 Q_1 Q_0' \end{split}$$

Logic Diagram:

4.

With Don't Cares

State Table with TFF Inputs:

Cur	Current State			Next State			TFF Input		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	T_0	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	1	0	1	0	
0	1	0	X	X	X	X	X	X	
0	1	1	1	1	1	1	0	0	
1	0	0	0	0	0	1	0	0	
1	0	1	X	X	X	X	X	X	
1	1	0	1	0	0	0	1	0	
1	1	1	1	1	0	0	0	1	

Karnaugh Maps:

 T_2

 T_1

 T_0

$$T_2 = Q_2'Q_1 + Q_2Q_1'$$

$$T_1 = Q_1'Q_0 + Q_1Q_0'$$

$$T_0 = Q_2'Q_0' + Q_2Q_0$$

In this case, the actual state table is:

Cur	rent S	State	Ne	ext Sta	ate	TFF Input		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	0	1	1	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	0	1	0	1	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

As shown in the state table, the states with don't cares form a loop. Thus, the counter may not work properly.

Without Don't Cares

We can force the unused states go to the 000 state.

State Table with TFF Inputs:

Current State			Ne	ext Sta	ate	TFF Inputs		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	0	0	0	1	0	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

Karnaugh Maps:

 T_2

 T_1

 T_0

$$T_2 = Q_2 Q_1' + Q_2' Q_1 Q_0$$

$$T_1 = Q_1 Q_0' + Q_2' Q_1' Q_0$$

$$T_0 = Q_2 Q_0 + Q_2' Q_1' Q_0'$$