

UNIVERSITY OF JAFFNA

FACULTY OF ENGINEERING

MID SEMESTER EXAMINATION- MAY 2023

Date:29/05/2023

MC 1020 - MATHEMATICS

Duration: ONE Hour

Instructions

- 1. This paper contains FIFTEEN (15) questions:
- 2. Read carefully each question and provide comprehensive answers that include all the required steps.
- 3. This examination accounts for 30% of module assessment. Total maximum mark attainable is 60.
- Show on an Argand diagram the points representing the three cube roots of unity.
 [03 marks]
- 2. Find the exact roots of the equation $z^3 1 = \sqrt{3}i$, expressing them in the form $re^{i\theta}$, where r > 0 and $\pi < \theta < \pi$.

[03 marks]

3. The points representing the cube roots of unity form a triangle D1. The points representing the roots of the equation $z^3 - 1 = \sqrt{3}i$ form a triangle D2. State a sequence of two transformations that maps D1 onto D2.

[02 marks]

4. Find the local minimum values and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.

[06 marks]

5. Find the linear approximation of a function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at the indicated point P(3, 2, 6).

[06 marks]

6. A rectangular container without a lid is to be made from $18m^2$ woodboard. Find the maximum volume of such a container.

[04 marks]

7. Calculate f_{xxyz} when $f(x, y, z) = \sin(3x + 2yz)$

[04 marks]

8. Use the total differential to estimate the change of the function $z = \sqrt{20 - 7x^2 - y^2}$ when (x, y) changes from (1, 2) to (0.98, 2.03).

[04 marks]

Page 1 of 2 - MC 1020 - MATHEMATICS ()

9. Resolve the vector, \mathbf{u}_1 , parallel, $\mathbf{u}_{||}$, and perpendicular, \mathbf{u}_{\perp} , to the vector \mathbf{v}_1 , where $\mathbf{u} = \begin{bmatrix} 2 \\ -6 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$.

[04 marks]

10. Show that $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ lies on both the planes x+y+z=3 and x-y+2z=2. Then using a cross product, find the line of intersection of the planes x+y+z=3 and x-y+2z=2.

[06 marks]

11. Calculate the area of the parallelogram whose edges are $\begin{bmatrix} 1\\3\\6 \end{bmatrix}$ and $\begin{bmatrix} -2\\0\\4 \end{bmatrix}$.

[03 marks]

12. A lecturer points a laser pointer at a screen with equation z = 0 (i.e. the y-z plane). The lecture's hand is at the point $u = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$ and the direction of the laser is u. She wants the point on the screen to appear at y-z coordinates y=5, z=5. Compute a vector u that gives the direction in which she should point the laser.

[04 marks]

13. Show that $\{x: 2x^2 + 5x - 3 = 0\} \subseteq \{x: 2x^2 + 7x + 2 = 3/x\}$.

[03 marks]

14. Show by using Venn diagrams that $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.

[04 marks]

15. Let X, Y be sets. We define the symmetric difference of X and Y to be

$$X \oplus Y = (X - Y) \cup (Y - X)$$

Draw diagrams to represent $A \oplus (B \oplus C)$ and $(A \oplus B) \oplus C$.

[04 marks]

----- End of Examination -----

Page 2 of 2 - MC 1020 - MATHEMATICS ()

ැක්නයේ අංච මෙම තීරයෙ ලියන්න. ඔබු මුගැනි ක්ෂාත මත්දේශන දැනු Write the numb of the question in this column	
10)	If \$ [1] lies on both planes then it will satisfy
-6-	the equation.
	2+y+z=3
	apply [1] => L.H.S = 1+1+1=3 = R.H.S
	So that point lies on the plane x+y+z=3.
	ス-4+2Z=2
-	apply [1] => L.H.S = 1-1+2(1)
	= 2
	$= R \cdot H \cdot S$
	So that point lies on the plane x-4+22=2.
	normal rector of 20+4+z=3 is
	normal vector of x-4+22=2 is (1)
	<u> </u>
	(%)
	direction vector of the line of intersection
	$=$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
	$\begin{pmatrix} 1 & \times & \langle -1 \\ 1 \end{pmatrix}$
	= i j k
	11-12
	=i(2+1)-i(2-1)+k(-1-1)
	= $i(2+1)-j(2-1)+k(-1-1)$ = $3i-j-2k$
	131
	$\begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$

