Week 2 – part 3 : Hodgkin-Huxley Model

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 2 – Biophysical modeling: The Hodgkin-Huxley model

Wulfram Gerstner EPFL, Lausanne, Switzerland

- 2.1 Biophysics of neurons
 - Overview
- 2.2 Reversal potential
 - Nernst equation
 - 2.3 Hodgkin-Huxley Model
 - 2.4 Threshold in the Hodgkin-Huxley Model
 - where is the firing threshold?
 - 2.5. Detailed biophysical models
 - the zoo of ion channels

Neuronal Dynamics – 2. 3. Hodgkin-Huxley Model

→ Hodgkin-Huxley model

Hodgkin&Huxley (1952) Nobel Prize 1963

Neuronal Dynamics – 2.3. Hodgkin-Huxley Model

Mathematical derivation

Neuronal Dynamics – 2.3. Hodgkin-Huxley Model

Neuronal Dynamics – 2.3. Hodgkin-Huxley Model

Neuronal Dynamics – 2.3. Ion channel

$$C\frac{du}{dt} = -\sum_{k} I_{ion,k} + I(t)$$

$$I_{ion} = -g_{ion}r^{n_1}s^{n_2}$$

$$\frac{dr}{dt} = -\frac{r - r_0(u)}{\tau_r(u)} \qquad \frac{ds}{dt} = -\frac{s - s_0(u)}{\tau_r(u)}$$

Neuronal Dynamics – Exercise 2.3. Ion channel

