

義隆電子股份有限公司

ELAN MICROELECTRONICS CORP.

EM78P567

8-BIT OTP MICRO-CONTROLLER

Version 6.6

ELAN MICROELECTRONICS CORP.

No. 12, Innovation 1st RD., Science-Based Industrial Park Hsin Chu City, Taiwan, R.O.C.

TEL: (03) 5639977 FAX: (03) 5630118

I.General Description

The EM78P567/P566/P565 is an 8-bit RISC type microprocessor with low power , high speed CMOS technology . There are 16Kx13/8Kx13/4Kx13 bits Electrical One Time Programmable Read Only Memory (OTP-ROM) within it. It provides Security bits and some One time programmable Option bits to protect the OTP memory code from any external access as well as to meet user's options.

The EM78P567/P566/P565 is integrated onto a single chip are on_chip watchdog (WDT) , RAM , A/D , D/A , tone generator, programmable real time clock /counter , internal interrupt , power down mode and tri-state I/O .

II.Feature

CPU

Operating voltage range: 2.5V 5.5V

16Kx13 Electrical One Time Programmable Read Only Memory (EM78P567)

8Kx13 Electrical One Time Programmable Read Only Memory (EM78P566)

4Kx13 Electrical One Time Programmable Read Only Memory (EM78P565)

0.5Kx8 on chip RAM

Up to 36 bi-directional tri-state I/O ports (EM78P567,EM78P566)

Up to 24 bi-directional tri-state I/O ports (EM78P565)

8 level stack for subroutine nesting

8-bit real time clock/counter (TCC)

A 8 bit counters (COUNTER1) with a 8 bit prescaler which can be a interrupt source.

A 8 bit counters (COUNTER2) with a 8 bit prescaler which can be a interrupt source.

Selective signal sources and with overflow interrupt

Programmable free running on chip watchdog timer

99.9% single instruction cycle commands

Four modes (internal clock 3.58MHz, external clock 32.768KHz)

Sleep mode: CPU and 3.58MHz clock turn off, 32.768KHz clock turn off IDLE mode: CPU and 3.58MHz clock turn off, 32.768KHz clock turn on Green mode: 3.58MHz clock turn off, CPU and 32.768KHz clock turn on Normal mode: 3.58MHz clock turn on, CPU and 32.768KHz clock turn on

Four open drain ports

Input port interrupt function

Four channels A/D circuit with 8 bits resolution.

I/O internal pull high

12 interrupt source, 8 external, 4 internal

Dual clocks operation (Internal PLL 3.58MHz, External 32.768KHz)

28 pin SOP(EM78P565AM, POVD disable) (EM78P565BM, POVD enable) or Chip (EM78P565H)

32 pin SOP(EM78P565AWM, POVD disable)(EM78P565BWM, POVD enable) or

Chip (EM78P565H)

42 pin SDIP (EM78P566AR, POVD disable) (EM78P566BR, POVD enable) or Chip(EM78P566H)

42 pin SDIP (EM78P567AR, POVD disable) (EM78P567BR, POVD enable) or Chip(EM78P567H)

44 pin QFP (EM78P566AQ, POVD disable) (EM78P566BQ, POVD enable) or Chip(EM78P566H)

44 pin QFP (EM78P567AQ, POVD disable) (EM78P567BQ, POVD enable) or Chip(EM78P567H)

48 pin QFP (EM78P567TAQ, POVD disable) (EM78P567TBQ, POVD enable) or Chip(EM78P567H)

Build in 8-bit D/A converter (R-2R)

Dual Tone generators

3.58MHz clock output shared with IO PORT

III.Application

adjunct units
 answering machines
 feature phones
 cordless phones

IV.Pin Configuration

			1				
P70/INT0	1	32	P67				
P71/INT1	2	31	P66				
P72/INT2	3	30	P65	P67	1	28	P66
P73/INT3	4	29	P64		•	27	
P74/INT4	5	28	P63	P73/INT3	2		P65
P75/INT5	6	27	P62	P74/INT4	3	26	P64
		26	1	P75/INT5	4	25	P63
P76/INT6	7		P61	P76/INT6	5	24	P62
P77/INT7	8	25	P60/3.58M	P77/INT7	6	23	P61
XIN	9	24	RESET			22	-
XOUT	10	23	VDD	XIN	7		P60/3.58M
PLLC	11	22	AVDD	XOUT	8	21	RESET
-		21		PLLC	9	20	AVDD,VDD
GND	12		P97/VREF	GND	10	19	P97/VREF
TONE	13	20	P96/AD4	TONE	11	18	P96/AD4
P90	14	19	P95/AD3			17	
P91	15	18	P94/AD2	P90	12		P95/AD3
P92/DAOUT	16	17	P93/AD1	P91	13	16	P94/AD2
1 /2/11/1001	10		1 /3/1101	P92/DAOUT	14	15	P93/AD1

32 pin SOP EM78P565AWM EM78P565BWM

28 pin SOP EM78P565AM EM78P565BM

48 pin TQFP EM78P567TAQ EM78P567TBQ

OTP PIN NAME	MASK ROM PIN NAME	P.S.
VDD	VDD	
VPP	/RESET	
DINCK	P65	
ACLK	P64	
DATAIN	P63	
PGMB	P62	
OEB	P61	
GND	GND	

Fig1. Pin Assignment

V.Functional Block Diagram

Fig2. Block diagram

VI.Pin Descriptions

PIN	I/O	DESCRIPTION			
VDD	POWER	Digital power			
AVDD		Analog power			
GND	POWER	Ground			
Xin	I	Input pin for 32.768 kHz oscillator			
Xout	O	Output pin for 32.768 kHz oscillator			
PLLC	I	Phase loop lock capacitor, connect a capacitor 0.01u to 0.047u with			
		GND.			
INT0	PORT7(0)	External interrupt			
INT1	PORT7(1)				
INT2	PORT7(2)				
INT3	PORT7(3)				
INT4	PORT7(4)				
INT5	PORT7(5)				
INT6	PORT7(6)				
INT7	PORT7(7)				
P7.0 ~P7.7	PORT7	PORT 7 can be INPUT or OUTPUT port each bit.			
		Internal Pull high function.			
P6.0 ~P6.7	PORT6	PORT 6 can be INPUT or OUTPUT port each bit.			
		Internal Pull high function.			
P8.0 ~P8.7	PORT8	PORT 8 can be INPUT or OUTPUT port each bit.			
P9.0 ~P9.7	PORT9	PORT 9 can be INPUT or OUTPUT port each bit.			
		P90 to P93 have Open drain function.			
VREF	PORT9(7)	Reference voltage input of AD converter-circuit . User use internal			
		reference voltage. This pin is normal IO PORT.			
AD1	PORT9(3)	The first input of A/D converter.			
AD2	PORT9(4)	The second input of A/D converter.			
AD3	PORT9(5)	The third input of A/D converter.			
AD4	PORT9(6)	The fourth input of A/D converter.			
DAOUT	PORT9(2)	DA signal output			
PA.0 ~PA.3	PORTA	PORTA can be INPUT or OUTPUT port each bit.			
TONE	O	Dual Tone generator output			
RESET	I	Normally high			
3.58M	PORT6(0)	3.58MHz clock output shared with PORT6(0)			
OTP pin					
OEB(P61)	I	Output enable. Active low			
PGMB(P62)	I	Program write enable. Active low			
DATAIN(P63)	I/O	Data pin			
ACLK(P64)	I	CLK for OTP memory address increment . Increasing a address needs			
1.1.2.1.(1.01)	1	two clocks.			
DINCK(P65)	I	Data latch clock. Latch a bit at the falling edge			
VPP(RESET)	I	Programming voltage input. Vpp can be varied from 10.5V to 12.5V			
(-	- 100 mps			

VII.Functional Descriptions VII.0 OTP ROM

- OTP ROM
- * The OTP ROM's size is 16k x13 bits which can be serially writen and read.
- 2. Operation Mode

mode	DATAIN(p63)	ACLK(p64)	DINCK(p65)
1.Regular mode	0	0	0
2.OTP row mode	1	0	0
3.Option mode	0	1	0
4.Bit line stress	1	1	0
5.Word line stress	0	0	1
6.Test mode	0	1	1

- 1. Regular mode: This mode is provided to program and verify OTP memory only.
- 2. OTP row mode: This mode is designed to provide capability programming and verifying of ROM data for the plastic OTP packages. One external row is added in addition to the regular ROM array. The user's data can be sequentially written into the ROM memory in OTP row by advancing the consecutive address to avoid the circuit change of program counter in microcontroller.
- 3. Option mode(Option register):

The mode provides user a special mode for selecting option.

Bit12Bit1	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Code	TONEEN	DAEN	ADEN	ROM2	ROM1	/PT

Bit0:/PT:Protect bit 0/1=enable/disable

* Bits 2~1: ROM2 and ROM1 bits can select three type of chip

(ROM2,ROM1) = (1,1) = EM78567; (ROM2,ROM1) = (1,0) = EM78566; (ROM2,ROM1) = (0,0) = EM78565

* Bit3: ADEN: A bit to enable or disable AD circuit. 1/0 = AD valid / AD invalid

* Bit5: TONEEN: A bit to enable or disable AD circuit. 1/0 = TONE valid / TONE invalid

Bit6..Bit12: code for user ID

- 4. Bit line stress mode: This mode is provides to test the reliability of ROM cells. Bit line mode is to apply the programmed drain voltage on all bit lines but all word lines are ground.
- 5. Word line stress mode: This mode is provides to test the reliability of ROM cells. Word line mode is to apply the programming gate voltage on all word lines but all bit lines are ground.
- 6. Test mode: This mode is provided for verifying the speed of data from OTP memory.
 - Mode selection

Mode is selected by voltage switch on VPP pin. The timing is as follow.

4. Regular mode: Program and Verify

After selecting the regular mode, writer can program instruction into OTP by following timing chart . The OTP 's address is increased by internal counter.

5. Test mode: Verify

After selecting the test mode, writer can verify instruction by following timing chart . The OTP 's address is increased by internal counter. The waveform is same as regular mode.

VII.1 Operational Registers

1. R0 (Indirect Addressing Register)

* R0 is not a physically implemented register. It is useful as indirect addressing pointer. Any instruction using R0 as register actually accesses data pointed by the RAM Select Register (R4).

2. R1 (TCC)

* Increased by an external signal edge applied to TCC, or by the instruction cycle clock.

Written and read by the program as any other register.

3. R2 (Program Counter)

- * The structure is depicted in Fig. 3.
- * Generates 16K × 13 on-chip ROM addresses to the relative programming instruction codes.
- * "JMP" instruction allows the direct loading of the low 10 program counter bits.
- * "CALL" instruction loads the low 10 bits of the PC, PC+1, and then push into the stack.
- * "RET" ("RETL k", "RETI") instruction loads the program counter with the contents at the top of stack.
- * "MOV R2,A" allows the loading of an address from the A register to the PC, and the ninth and tenth bits are cleared to "0".
- * "ADD R2,A" allows a relative address be added to the current PC, and contents of the ninth and tenth bits are cleared to "0".
- * "TBL" allows a relative address be added to the current PC, and contents of the ninth and tenth bits don't change. The most significant bit (A10~A13) will be loaded with the content of bit PS0~PS3 in the status register (R5) upon the execution of a "JMP", "CALL", "ADD R2,A", or "MOV R2,A" instruction.

Fig.3 Program counter organization

Fig.4 Data memory configuration

4. R	3 (Status Register)									
	7	6	5	4	3	2	1	0		
	DASRC	PAGE	DAST	T	P	Z	DC	С		

^{*} Bit 0 (C) Carry flag

^{*} Bit 4 (T) Time-out bit. Set to 1 by the "SLEP" and "WDTC" command, or during power up and reset to 0 by WDT timeout.

ENT		ИARK
T wake up from		
o mode		
T time out (not sleep mode		
SET wake up from sleep		
er up		

^{*} Bit 5 (DAST) DA START signal. When R3 bit5 is set by software in NORMAL mode . The DA converter start converting. If user clean this bit , DA converter will stop. DAOUT pin send DA signal. 0/1= STOP/START

^{*} Bit 1 (DC) Auxiliary carry flag

^{*} Bit 2 (Z) Zero flag

^{*} Bit 3 (P) Power down bit. Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.

^{*} Bit 6 PAGE : change IOCB \sim IOCC to another page , 0/1 => page0 / page1

^{*} Bit 7 (DASRC) DA convert circuit 's reference voltage. 0/1 =>VDD/2.55V

5. R4 (RAM Select Register)

- * Bits $0 \sim 5$ are used to select up to 64 registers in the indirect addressing mode.
- * Bits $6 \sim 7$ determine which bank is activated among the 4 banks.
- * See the configuration of the data memory in Fig. 4.

6. R5 (Program Page Select Register)

7	6	5	4	3	2	1	0
ADCLK1	ADCLK0	P_TONE2	P_TONE1	PS3	PS2	PS1	PS0

^{*} Bit 0 (PS0) ~ 3 (PS3) Page select bits

Page select bits

PS3	PS2	PS1	PS0	Program memory page (Address)
0	0	0	0	Page 0
0	0	0	1	Page 1
0	0	1	0	Page 2
0	0	1	1	Page 3
0	1	0	0	Page 4
0	1	0	1	Page 5
0	1	1	0	Page 6
0	1	1	1	Page 7
1	0	0	0	Page 8
1	0	0	1	Page 9
1	0	1	0	Page 10
1	0	1	1	Page 11
1	1	0	0	Page 12
1	1	0	1	Page 13
1	1	1	0	Page 14

1	1	1	1	Page 15	
1	1	1	1	1 age 13	_

^{*}User can use PAGE instruction to change page. To maintain program page by user. Otherwise, user can use far jump (FJMP) or far call (FCALL) instructions to program user's code. And the program page is maintained by EMC's complier. It will change user's program by inserting instructions within program.

*Bit4: Power control bit of Tone generator 1. User can use this bit to power on the tone generator.

*Bit5: Power control bit of Tone generator 2. User can use this bit to power on the tone generator.

R5(5,4)	Tone generator2	Tone generator1
00	Power off	Power off
01	Power off	Power on
10	Power on	Power off
11	Power on	Power on

*Bit 6~7: AD circuit 's sampling clock source.

ADCLK1	ADCLK0	Sampling rate	Operation voltage
0	0	44K	>=3V
0	1	22K	>=2.5V
1	0	11K	>=2.5V
1	1	5.5K	>=2.5V

6. R6 ~ R9 (Port 6 ~ Port 9)

7. RA (clock and RA register)

7	6	5	4	3	2	1	0
IDLE	/358E	/WDTE	RAMS	PA3	PA2	PA1	PA0

^{*} Bit0 ~ Bit3 : I/O register

0/1 = bank0/bank1.

* Bit5: (/WDTE, Watch Dog Timer register)

This control bit used to enable Watchdog timer.

0/1=disable/enable

* Bit6(PLL enable signal)

0/1=DISABLE(GREEN MODE) / ENABLE (NORMAL MODE)

The relation between 32.768K and 3.58M can see Fig5.

Fig5. The relation between 32.768 KHz and 3.58 MHz.

* Bit7 IDLE: sleep mode selection bit

0/1=sleep mode/IDLE mode. This bit will decide SLEP instruction which mode to go.

^{*} Five 8-bit I/O registers.

^{*} Bit4: (RC RD controlled General RAM selection bit)

Sub-clock and CPU will close in sleep mode. CUP will close in IDLE mode but sub-clock.

	SLEEP mode	IDLE mode	GREEN mode	NORMAL mode
Into	RA(7,6)=(0,0)	RA(7,6)=(1,0)	RA(7,6)=(x,0)	RA(7,6)=(x,1)
	+ SLEP	+ SLEP	no SLEP	no SLEP
TCC time out	X	Wake-up	Interrupt	Interrupt
		+ Interrupt		
		+ Next instruction		
WDT time out	RESET	X	RESET	RESET
	Run from		Run from	Run from
	address "0"		address "0"	address "0"
Port7 bit0	X	Wake-up	Interrupt	Interrupt
		+ Interrupt		
		+ Next instruction		

^{*}Port7 bit0 is a falling edge trigger port.

8. RB(DA data register)

	7	6	5	4	3	2	1	0
ĺ	C7	C6	C5	C4	C3	C2	C1	C0

^{*} Bit 7 – Bit0 are DA converter data control register. Bit7 is MSB and bit0 is LSB.

9. RC (RAM ADDRESS)

7	6	5	4	3	2	1	0
CIDA7	CIDA6	CIDA5	CIDA4	CIDA3	CIDA2	CIDA1	CIDA0

^{*} Bit 0 ~ Bit 7 select General RAM address up to 256. User can select two banks by RA bit4.

10. RD(RAM DATA)

* Bit 0 ~ Bit 8 are 0.5K RAM indirect data transfer register. User can see RA register how to select RAM banks.

11. RE(AD control)

7	6	5	4	3	2	1	0
SAD3	SAD2	SAD1	SVREF	START	ADPWR	IN1	IN0

^{*} Bit1~Bit0 (input of AD converter selection): These two bits can choose one of three AD input.

(IN1,IN0)	INPUT
0 0	AD1
0 1	AD2
1 0	AD3
1 1	AD4

^{*} Bit2 (ADPWR: AD converter power control register): 1/0=enable/disable

^{*&}quot;X" is mean no function

^{*} Please set to NORMAL mode before DA converter start.

^{*} User can select reference voltage by R3 bit7. And enable or disable power of DA converter by R3 bit5.

* Bit3 (START: AD converter start to sample): Set to "1", the AD will start to sample data. This bit will be cleared by hardware automatically after a sampling.

* Bit4 This register can switch AD converter reference voltage coming from internal or external voltage. If the register set to internal, then the voltage will be VDD and port9 bit7 is a normal I/O PORT. If it set to external reference voltage, then the voltage will connected to PORT9 bit7.

0/1=internal/external reference voltage.

- * Bit5 This register can switch PORT9 bit3 as IO port or AD converter input1. 0/1= IO PORT / AD input
- * Bit6 This register can switch PORT9 bit4 as IO port or AD converter input2. 0/1= IO PORT / AD input
- * Bit7 This register can switch PORT9 bit5 as IO port or AD converter input3. 0/1= IO PORT / AD input And it can switch PORT9 bit6 as IO port or AD converter input4. 0/1= IO PORT / AD input

This is a CMOS multi-channel 8-bit successive approximation A/D converter.

Features

- 44kHz maximum conversion speed at 5V.
- Adjusted full scale input
- External reference voltage input or internal reference voltage
- 4 analog inputs multiplexed into one A/D converter
- Power down mode for power saving
- A/D conversion complete interrupt
- Interrupt register, A/D control and status register, and A/D data register

12. RF (Interrupt Status Register)

1			/					
	7	6	5	4	3	2	1	0
	0	0	ADI	EXTINT2	EXTINT1	CNT2	CNT1	TCIF

- * "1" means interrupt request, "0" means non-interrupt
 - * Bit 0 (TCIF) TCC timer overflow interrupt flag. Set when TCC timer overflows.
 - * Bit 1 (CNT1) counter1 interrupt flag.
 - * Bit 2 (CNT2) counter2 interrupt flag.
 - * Bit 3 (EXTINT1) external pin interrupt flag (INT0 ~INT3) .
 - * Bit 4 (EXTINT2) external pin interrupt flag (INT4 ~INT7) .
 - * Bit 5 (ADI) AD interrupt flag after a sampling.
- * Bit 6~7: '0' always
- * High to low edge trigger, Refer to the Interrupt subsection.
- * IOCF is the interrupt mask register. User can read and clear RF register.

13. R10~R3F (General Purpose Register)

* R10~R3F (Banks 0~3) all are general purpose registers.

VII.2 Special Purpose Registers

1. A (Accumulator)

- * Internal data transfer, or instruction operand holding
- * It's not an addressable register.

CONT (Control Register)

 Soft (Control Register)										
7	6	5	4	3	2	1	0			
0	INT	TS	0	PAB	PSR2	PSR1	PSR0			

^{*} Bit 0 (PSR0) ~ Bit 2 (PSR2) TCC/WDT prescaler bits.

PSR2	PSR1	PSR0	TCC Rate	WDT Rate
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

* Bit 3 (PAB) Prescaler assignment bit.

0/1 : TCC/WDT

* Bit 4 unused

* Bit 5 (TS) TCC signal source

0: internal instruction cycle clock

1: 16.38KHz

* Bit 6 : (INT)INT enable flag

0: interrupt masked by DISI or hardware interrupt

1: interrupt enabled by ENI/RETI instructions

* Bit 7: unused

* CONT register is readable and writable.

3. IOC5 (PORT6 pull high control register)

7		6	5	4	3	2	1	0
P6P	H7	Р6РН6	P6PH5	P6PH4	P6PH3	P6PH2	P6PH1	P6PH0

- * IOC5 can control the pull high circuit of PORT6 individually.
- * 0/1 = disable /enable pull high circuit

4. IOC6 ~ IOC9 (I/O Port Control Register)

- * Five I/O direction control registers.
- * "1" put the relative I/O pin into high impedance (input port), while "0" put the relative I/O pin as output.

IOCA (OPEN DRAIN and IO	CA)
---	-----

7	6	5	4	3	2	1	0			
OD3	OD2	OD1	OD0	IOCA3	IOCA2	IOCA1	IOCA0			

- * Bit0 ~ bit3: PortA I/O direction control registers. "1" put the relative I/O pin into high impedance (input port), while "0" put the relative I/O pin as output.
- * Bit4: OD0: Open drain control register on PORT9 bit0. 0/1= disable/enable open-drain function.
- * Bit5: OD1: Open drain control register on PORT9 bit1. 0/1= disable/enable open-drain function.
- * Bit6: OD2 : Open drain control register on PORT9 bit2. 0/1= disable/enable open-drain function.
- * Bit7: OD3 : Open drain control register on PORT9 bit3. 0/1= disable/enable open-drain function.

6. IOCB (COUNTER1)

PAGE0:

7	6	5	4	3	2	1	0
CNT1B7	CNT1B6	CNT1B5	CNT1B4	CNT1B3	CBT1B2	CNT1B1	CNT1B0

Control register for 8 bit up-counter (COUNTER1) preset and read . (write = preset $\,$ INSTRUCTION: IOW $\,$ 0x0B) . After a interruption , it will count from "00".

PAGE1:

7	6	5	4	3	2	1	0	
0	0	P92S	S3.58M	CNT1CLK	PS2	PS1	PS0	

Bit0~Bit2: COUNTER1 prescaler

PS2	PS1	PS0	COUNTER1
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit3: COUNTER1 clock source. 0/1 = 16.38KHz/system clock

Bit4: S3.58M . It can switch PORT6 bit0 as IO port or 3.58Mhz clock output .

0/1 = IO PORT / 3.58MHz clock

Bit5: P92S . It can switch PORT9 bit2 as IO port or DA signal output .

0/1= IO PORT / DA signal output.

Bit6 ~Bit7: '0' always

7. IOCC (COUNTER2)

PAGE0:

7	6	5	4	3	2	1	0
CNT2B7	CNT2B6	CNT2B5	CNT2B4	CNT2B3	CBT2B2	CNT2B1	CNT2B0

Control register for 8 bit up-counter (COUNTER2) preset and read . (write = preset $\,$ INSTRUCTION: IOW $\,$ 0x0B) . After a interruption , it will count from "00".

PAGE1:

7	6	5	4	3	2	1	0
0	0	0	0	CNT2CLK	PPS2	PPS1	PPS0

Bit0~Bit2: COUNTER2 prescaler

PPS2	PPS1	PPS0	COUNTER1
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit3:COUNTER2 clock source. 0/1 = 16.38KHz/system clock

Bit4~Bit7: '0' always

8. IOCD (AD converter data register)

PAGE0:

7	6	5	4	3	2	1	0
AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0

^{*} Bit $0 \sim 7$: AD converter 's output data

PAGE1:

7	6	5	4	3	2	1	0
T17	T16	T15	T14	T13	T12	T11	T10

Tone generator 1 's frequency divider. Please Run in Normal mode.

Clock source = 111843Hz

T17~T10 = '11111111' => Tone generator1 will has 438Hz SIN wave output.

.

T17~T10 = '00000010' => Tone generator1 will has 55921Hz SIN wave output.

T17~T10 = '00000001' => Tone generator1 will has 111843Hz SIN wave output.

T17~T10 = '00000000' => no used

9. IOCE (port7 pull high control Register)

PAGE0:

Ī	7	6	5	4	3	2	1	0
	P7PH7	P7PH6	P7PH5	P7PH4	P7PH3	P7PH2	P7PH1	P7PH0

^{*} IOCE page0 can control the pull high circuit of PORT7 individually.

PAGE1:

L	11.							
	7	6	5	4	3	2	1	0
	T27	T26	T25	T24	T23	T22	T21	T20

Tone generator 2 's frequency divider. Please Run in Normal mode.

Clock source = 111843Hz

T27~T20 = '11111111' => Tone generator1 will has 438Hz SIN wave output.

.

T27~T20 = '00000010' => Tone generator1 will has 55921Hz SIN wave output.

T27~T20 = '00000001' => Tone generator1 will has 111843Hz SIN wave output.

T27~T20 = '00000000' => no used

12, 120 0000	0000 / 110 4504				
TONE1(IOCD)	ROW FREQ.				
(0xA0)	699.02Hz	1	2	3	A
(0x91)	771.33Hz	4	5	6	В
(0X83)	853.76Hz	7	8	9	С
(0X77)	939.86Hz	*	0	#	D
		1202.6 (0X5D)	1331.5(0X54)	1471.7(0X4C)	1644.8(0X44)
		TONE2(IOCE)			

10. IOCF (Interrupt Mask Register)

	7	6	5	4	3	2	1	0
Ī	0	0	ADI	EXTINT2	EXTINT1	CNT2	CNT1	TCIF

^{*} Bit $0 \sim 5$ interrupt enable bit.

0: disable interrupt

1: enable interrupt

It is very important to save ACC,R3 and R5 when processing a interruption.

	Instruction	ļ	Note
0x08	MOV	A_BUFFER,A	;Save ACC
0x09	SWAP	A_BUFFER	
0x0A	SWAPA	0x03	;Save R3 status
0x0B	MOV	R3_BUFFER,A	
0x0C	MOV	A,0x05	;Save ROM page register
0x0D	MOV	R5_BUFFER,A	

^{* 0/1 =} disable /enable pull high circuit

^{*} IOCF Register is readable and writable.

0x0E	PAGE	@0	;set page0
:	:		:
:	:		:
:	MOV	A,R5_BUFFER	;Return R5
:	MOV	0X05,A	
:	SWAPA	R3_BUFFER	;Return R3
:	MOV	0X03,A	
:	SWAPA	A_BUFFER	;Return ACC
:	RETI	_	

VII.3 TCC/WDT Prescaler

There is an 8-bit counter available as prescaler for the TCC or WDT. The prescaler is available for the TCC only or WDT only at the same time.

- An 8 bit counter is available for TCC or WDT determined by the status of the bit 3 (PAB) of the CONT register.
- See the prescaler ratio in CONT register.
- Fig. 6 depicts the circuit diagram of TCC/WDT.
- Both TCC and prescaler will be cleared by instructions which write to TCC each time.
- The prescaler will be cleared by the WDTC and SLEP instructions, when assigned to WDT mode.
- The prescaler will not be cleared by SLEP instructions, when assigned to TCC mode.

Fig. 6 Block diagram of TCC WDT

VII.4 I/O Ports

The I/O registers, Port $6 \sim \text{Port A}$, are bi-directional tri-state I/O ports. Port 6,7 can be pulled-high internally by software control. The I/O ports can be defined as "input" or "output" pins by the I/O control registers (IOC6 $\sim \text{IOCA}$) under program control. The I/O registers and I/O control registers are both readable and writable. The I/O interface circuit is shown in Fig.7. Port9 bit0 to bit3 have open drain function.

Fig. 7 The circuit of I/O port and I/O control register

VII.5 RESET and Wake-up

The RESET can be caused by

- (1) Power on reset, or Voltage detector
- (2) WDT timeout. (if enabled and in GREEN or NORMAL mode)

Note that only Power on reset, or only Voltage detector in Case(1) is enabled in the system by CODE Option bit. If Voltage detector is disabled, Power on reset is selected in Case (1). Refer to Fig. 8.

Fig. 8 Block diagram of Reset of controller

Once the RESET occurs, the following functions are performed.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- When power on, the upper 3 bits of R3 and the upper 2 bits of R4 are cleared.
- The Watchdog timer and prescaler are cleared.
- The Watchdog timer is disabled.
- The CONT register is set to all "1"
- The other register (bit7..bit0)

	- 0	(6107116100)		
R5	=	"0000000"	IOC5 = "00000000"	
R6	=	PORT	IOC6 = "11111111"	
R7	=	PORT	IOC7 = "11111111"	
R8	=	PORT	IOC8 = "11111111"	
R9	=	PORT	IOC9 = "11111111"	
RA	=	"0000xxxx"	IOCA = "00001111"	
RB	=	"11111111"	Page0 IOCB = "xxxxxxxx"	Page1 IOCB = "00000000"
RC	=	"00000000"	Page0 IOCC = "xxxxxxxx"	Page1 IOCC = "00000000"
RD	=	"xxxxxxxx"	Page0 IOCD = "xxxxxxxx"	Page1 IOCD = "11111111"
RE	=	"00000000"	Page0 IOCE = "00000000"	Page1 IOCE = "11111111"
RF	=	"00000000"	IOCF = "00000000"	

The controller can be awakened from SLEEP mode or IDLE mode (execution of "SLEP" instruction, named as SLEEP MODE or IDLE mode) by (1)TCC time out (IDLE mode only) (2) WDT time-out (if enabled) The two cases will cause the controller wake up and run from next instruction in IDLE mode and reset in SLEEP mode . After wake-up, user

should control WATCH DOG in case of reset in GREEN mode or NORMAL mode. The WATCH DOG should be open RA register before into SLEEP mode or IDLE mode . The first one case will set a flag in RF bit0 . And it will go to address 0x08 when TCC generate a interrupt and it will jump to next instruction from "SLEP" after return interrupt.

	SLEEP mode	IDLE mode	GREEN mode	NORMAL mode
Into	RA(7,6)=(0,0)	RA(7,6)=(1,0)	RA(7,6)=(x,0)	RA(7,6)=(x,1)
	+ SLEP	+ SLEP	no SLEP	no SLEP
TCC time out	Х	Wake-up	Interrupt	Interrupt
		=> Interrupt		
		=> Next		
		instruction		
WDT time out	RESET	Wake-up	RESET	RESET
	Run from	+ Next instruction	Run from	Run from
	address "0"		address "0"	address "0"

VII.6 Interrupt

The IC has internal interrupts which are falling edge triggered, as followed: TCC timer overflow interrupt (internal), two 8-bit counters overflow interrupt and AD converter interrupt.

If these interrupt sources change signal from high to low , then RF register will generate '1' flag to corresponding register if you enable IOCF register.

RF is the interrupt status register which records the interrupt request in flag bit. IOCF is the interrupt mask register. Global interrupt is enabled by ENI instruction and is disabled by DISI instruction. When one of the interrupts (when enabled) generated, will cause the next instruction to be fetched from address 008H. Once in the interrupt service routine the source of the interrupt can be determined by polling the flag bits in the RF register. The interrupt flag bit must be cleared in software before leaving the interrupt service routine and enabling interrupts to avoid recursive interrupts.

There are eight external interrupt pins including INT0 .. INT7 .

External interrupt INT0, INT1, INT2, INT3 signals are from PORT7 bit0 to bit3. If IOCF bit 3 (EXTINT1) is enable then these signal will cause interrupt and set a flag to RF bit3, or these signals will be treated as general input data.

External interrupt INT4, INT5, INT6, INT7 signals are from PORT7 bit4 to bit7. If IOCF bit 4 (EXTINT2) is enable then these signal will cause interrupt and set a flag to RF bit4, or these signals will be treated as general input data.

After reset, the next instruction will be fetched from address 000H and the instruction inturrept is 001H and the hardware inturrept is 008H.

TCC will go to address 0x08 in GREEN mode or NORMAL mode after time out. It will go to address 0x08 for interrupt sub-routine and run next instruction from "SLEP" instruction after return interrupt in IDLE mode . These two cases will set a RF flag.

Please save R3,R5 and ACC value before processing interrupt sub-routine. And return buffer value before RETI instruction.

It is very important to save ACC,R3 and R5 when processing a interruption.

	Instruction		Note	
0x08	MOV	A_BUFFER,A	;Save ACC	
0x09	SWAP	A_BUFFER		
0x0A	SWAPA	0x03	;Save R3 status	
0x0B	MOV	R3_BUFFER,A		
0x0C	MOV	A,0x05	;Save ROM page register	

0x0D	MOV	R5_BUFFER,A	
0x0E	PAGE	@0	;set page0
:	:		•
:	:		:
:	MOV	A,R5_BUFFER	;Return R5
:	MOV	0X05,A	
:	SWAPA	R3_BUFFER	;Return R3
:	MOV	0X03,A	
:	SWAPA	A_BUFFER	;Return ACC
:	RETI	_	

VII.7 Instruction Set

Instruction set has the following features:

- (1). Every bit of any register can be set, cleared, or tested directly.
- (2). The I/O register can be regarded as general register. That is, the same instruction can operates on I/O register.

The symbol "R" represents a register designator which specifies which one of the 64 registers (including operational registers and general purpose registers) is to be utilized by the instruction. Bits 6 and 7 in R4 determine the selected register bank. "b" represents a bit field designator which selects the number of the bit, located in the register "R", affected by the operation. "k" represents an 8 or 10-bit constant or literal value.

	INSTR	UCTIC	N BINARY	HEX	MNEMONIC	OPERATION	STATUS AFFECTE
				11127	WINDING	OI EMITTORY	D
0	0000	0000	0000	0000	NOP	No Operation	None
0	0000	0000	0001	0001	DAA	Decimal Adjust A	C
0	0000	0000	0010	0002	CONTW	$A \rightarrow CONT$	None
0	0000	0000	0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	T,P
0	0000	0000	0100	0004	WDTC	$0 \rightarrow WDT$	T,P
0	0000	0000	rrrr	000r	IOW R	$A \rightarrow IOCR$	None
0	0000	0001	0000	0010	ENI	Enable Interrupt	None
0	0000	0001	0001	0011	DISI	Disable Interrupt	None
0	0000	0001	0010	0012	RET	$[Top of Stack] \rightarrow PC$	None
0	0000	0001	0011	0013	RETI	$[Top of Stack] \rightarrow PC$	None
						Enable Interrupt	
0	0000	0001	0100	0014	CONTR	$CONT \rightarrow A$	None
0	0000	0001	rrrr	001r	IOR R	$IOCR \rightarrow A$	None
0	0000	0010	0000	0020	TBL	$R2+A \rightarrow R2$ bits 9,10 do not clear	Z,C,DC
0	0000	01rr	rrrr	00rr	MOV R,A	$A \rightarrow R$	None
0	0000	1000	0000	0080	CLRA	$0 \to A$	Z
0	0000	11rr	rrrr	00rr	CLR R	$0 \rightarrow R$	Z
0	0001	00rr	rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z,C,DC
0	0001	01rr	rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z,C,DC
0	0001	10rr	rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z
0	0001	11rr	rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z
0	0010	00rr	rrrr	02rr	OR A,R	$A \lor VR \rightarrow A$	Z
0	0010	01rr	rrrr	02rr	OR R,A	$A \lor VR \rightarrow R$	Z

_					
0 0010 10	rr rrrr	02rr	AND A,R	$A \& R \rightarrow A$	Z
0 0010 11	rr rrrr	02rr	AND R,A	$A \& R \rightarrow R$	Z
0 0011 00	rr rrrr	03rr	XOR A,R	$A \oplus R \rightarrow A$	Z
0 0011 01	rr rrrr	03rr	XOR R,A	$A \oplus R \rightarrow R$	Z
0 0011 10	rr rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z,C,DC
0 0011 11	rr rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z,C,DC
0 0100 00	rr rrrr	04rr	MOV A,R	$R \to A$	Z
0 0100 01	rr rrrr	04rr	MOV R,R	$R \rightarrow R$	Z
0 0100 10	rr rrrr	04rr	COMA R	$/R \rightarrow A$	Z
0 0100 11	rr rrrr	04rr	COM R	$/R \rightarrow R$	Z
0 0101 00	rr rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z
0 0101 01	rr rrrr	05rr	INC R	$R+1 \rightarrow R$	Z
0 0101 10	rr rrrr	05rr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
0 0101 11	rr rrrr	05rr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
0 0110 00	rr rrrr	06rr	RRCA R	$R(n) \rightarrow A(n-1)$	C
				$R(0) \rightarrow C, C \rightarrow A(7)$	
0 0110 01	rr rrrr	06rr	RRC R	$R(n) \rightarrow R(n-1)$	C
				$R(0) \rightarrow C, C \rightarrow R(7)$	
0 0110 10	rr rrrr	06rr	RLCA R	$R(n) \rightarrow A(n+1)$	C
				$R(7) \rightarrow C, C \rightarrow A(0)$	
0 0110 11	rr rrrr	06rr	RLC R	$R(n) \rightarrow R(n+1)$	C
				$R(7) \rightarrow C, C \rightarrow R(0)$	
0 0111 00	rr rrrr	07rr	SWAPA R	$R(0-3) \to A(4-7)$	None
				$R(4-7) \rightarrow A(0-3)$	
0 0111 01		07rr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
0 0111 10		07rr	JZA R	$R+1 \rightarrow A$, skip if zero	None
0 0111 11		07rr	JZ R	$R+1 \rightarrow R$, skip if zero	None
0 100b bb		0xxx	BC R,b	$0 \to R(b)$	None
0 101b bb		0xxx	BS R,b	$1 \rightarrow R(b)$	None
0 110b bb		0xxx	JBC R,b	if R(b)=0, skip	None
0 111b bb		0xxx	JBS R,b	if R(b)=1, skip	None
1 00kk kk	kk kkkk	1kkk	CALL k	$PC+1 \rightarrow [SP]$	None
1 0111 11		41.1.1	n m i	$(Page, k) \rightarrow PC$	> T
1 01kk kk		1kkk	JMP k	$(Page, k) \rightarrow PC$	None
1 1000 kk		18kk	MOV A,k	$k \to A$	None
1 1001 kk		19kk	OR A,k	$A \lor k \to A$	Z
1 1010 kk		1Akk	AND A,k	$A \& k \to A$	Z
1 1011 kk		1Bkk	XOR A,k	$A \oplus k \to A$	Z
1 1100 kk		1Ckk	RETL k	$k \to A$, [Top of Stack] $\to PC$	None
1 1101 kk		1Dkk	SUB A,k	$k-A \rightarrow A$	Z,C,DC
1 1110 00	00 0001	1E01	INT	$PC+1 \rightarrow [SP]$	None
		1		$001H \rightarrow PC$	
	00 kkkk	1E8k	PAGE k	K→R5	None
1 1111 kk	kk kkkk	1Fkk	ADD A,k	$k+A \rightarrow A$	Z,C,DC

VII.8 CODE Option Register

The chip has one CODE option register which is not part of the normal program memory. The option bits cannot be accessed during normal program execution.

7	6	5	4	3	2	1	0
-	-	TONEEN	DAEN	ADEN	ROM2	ROM1	/povd

* Bit 0:(/POVD): Power on voltage detector.

0: enable

1: disable

/POVD	1.6V reset	power on reset	sleep mode
			current
1	No	yes	1uA
0	Yes	yes	15uA

1.6V POVD reset	POVD
suggestion	
EM78P567	Disable
Normal mode	
EM78P567	Disable
GREEN mode	
IDLE mode	
SLEEP mode	
EM78567	Disable
Normal mode	
EM78567	Enable or disable
GREEN mode	
IDLE mode	
SLEEP mode	

* Bits 2~1: ROM2 and ROM1 bits can select three type of chip

(ROM2,ROM1) = (1,1) = EM78567; (ROM2,ROM1) = (1,0) = EM78566; (ROM2,ROM1) = (0,0) = EM78565

* Bit3: ADEN: A bit to enable or disable AD circuit.

* Bit4: DAEN: A bit to enable or disable DA circuit.

* Bit5: TONEEN: A bit to enable or disable AD circuit.

* Bit5: TONEEN: A bit to enable or disable AD circuit.

* Bit6,7 : unused

In OTP version, we name disabled POVD as A-type OTP and enabled POVD as B-type OTP.

VII.9 AD converter

This is a CMOS multi-channel 8-bit successive approximation A/D converter. Features

- 44kHz maximum conversion speed at 5V.
- Adjusted full scale input
- External reference voltage input or internal reference voltage
- 4 analog inputs multiplexed into one A/D converter
- Power down mode for power saving

- A/D conversion complete interrupt
- Interrupt register, A/D control and status register, and A/D data register

RE(AD control)

 B control)									
7	6	5	4	3	2	1	0		
SAD3	SAD2	SAD1	SVREF	START	ADPWR	IN1	IN0		

^{*} Bit1~Bit0 (input of AD converter selection) : These two bits can choose one of three AD input.

(IN1,IN0)	INPUT
0 0	AD1
0 1	AD2
1 0	AD3
1 1	AD4

Bit2 (ADPWR: AD converter power control register): 1/0=enable/disable

* Bit4 This register can switch AD converter reference voltage coming from internal or external voltage. If the register set to internal, then the voltage will be VDD and port9 bit7 is a normal I/O PORT. If it set to external reference voltage, then the voltage will connected from PORT9 bit7. 0/1=internal/external reference voltage.

- * Bit5 This register can switch PORT9 bit3 as IO port or AD converter input1.
 * Bit6 This register can switch PORT9 bit4 as IO port or AD converter input2.
 * Bit7 This register can switch PORT9 bit5 as IO port or AD converter input3.

 * O/1= IO PORT / AD input

 O/1= IO PORT / AD inp And it can switch PORT9 bit6 as IO port or AD converter input4. 0/1= IO PORT / AD input

RF (Interrupt Status Register)

 Tapt States.	, 11081011,						
7	6	5	4	3	2	1	0
0	0	ADI	-	-	-	-	-

IOCD (AD converter data register)

7	6	5	4	3	2	1	0
AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0

IOCF (Interrupt Mask Register)

7	6	5	4	3	2	1	0
0	0	ADI	-	-	-	-	-

There are four registers for A/D converter. Use one bit of interrupt control register (IOCF bit5) for A/D conversion complete interrupt. The status and control register of A/D (RE and RF) responses the A/D conversion status or takes control on A/D. The A/D data register (IOCD) stores A/D conversion result.

ADI bit in IOCF register is end of A/D conversion complete interrupt enable/disable. It enables/disables ADI flag in RF register when A/D conversion is complete. ADI flag indicates the end of an A/D conversion. The A/D converter sets the interrupt flag, ADI in RF register when a conversion is complete. The interrupt can be disabled by setting ADI bit in IOCF register to '0'.

The A/D converter has four analog input channels AD1~AD3 multiplexed into one sample and hold to A/D module. Reference voltage can be driven from VREF pin or internal power. The A/D converter itself is of an 8-bit successive approximation type and produces an 8-bit result in the IOCD data register. A conversion is initiated by setting a control bit START in RE register. Prior to conversion, the appropriate channel must be selected by setting IN0~IN1 bits in RE register and allowed for enough time to sample data. Every conversion data of A/D need 10-clock cycle time. The minimum conversion time required is 20 us (50K sample rate). START bit in RE register must be set to begin a conversion. It will be automatically reset in hardware when conversion is complete. At the end of conversion, the START bit is cleared and the A/D interrupt is activated if ADIE in IOCF = 1. ADI will be set when conversion is complete. It can be reset in

If ADI = 0 in IOCF, when A/D start conversion by setting START= 1 then A/D will continue conversion without stop and hardware won't reset START bit. In this condition, ADI is deactived. After ADI in IOCF set, ADI in RF will activate again.

To minimum operating current, all biasing circuits in the A/D module that consume DC current are power down when ADPWR bit in RE register is a '0'. When ADPWR bit is a '1', A/D converter module is operating.

User has to set PORT93 to PORT97 as AD converter input pin or bi-direction IO PORT.

^{*} Bit3 (START: AD converter start to sample): Set to "1", the AD will start to sample data. This bit will be cleared by hardware automatically after a sampling.

VIII. Absolute Operation Maximum Ratings

RATING	SYMBOL	VALUE	UNIT
DC SUPPLY VOLTAGE	Vdd	-0.3 To 6	V
INPUT VOLTAGE	Vin	-0.5 TO Vdd +0.5	V
OPERATING TEMPERATURE RANGE	Ta	0 TO 70	·

IX DC Electrical Characteristic

 $(Ta=0^{\circ}C \sim 70^{\circ}C, VDD=5V\pm5\%, VSS=0V)$

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IIL1	Input Leakage Current for input pins	VIN = VDD, VSS			±1	μА
IIL2	Input Leakage Current for bi-directional pins	VIN = VDD, VSS			±1	μА
VIH	Input High Voltage		2.5			V
VIL	Input Low Voltage				0.8	V
VIHT	Input High Threshold Voltage	/RESET, TCC	2.0			V
VILT	Input Low Threshold Voltage	/RESET, TCC			0.8	V
VIHX	Clock Input High Voltage	OSCI	3.5			V
VILX	Clock Input Low Voltage	OSCI			1.5	V
VOH1	Output High Voltage (port6,7,8,A)	IOH = -1.6mA	2.4			V
	(port9)	IOH = -6.0 mA	2.4			V
VOL1	Output Low Voltage (port6,7,8,A)	IOL = 1.6mA			0.4	V
	(port9)	IOL = 6.0 mA			0.4	V
IPH	Pull-high current	Pull-high active input pin at VSS		-10	-15	μΑ
ISB1	Power down current (SLEEP mode)	All input and I/O pin at VDD, output pin floating, WDT disabled		2	4	μΑ
ISB2	Low clock current (IDLE mode)	CLK=32.768KHz, AD, DA, Tone generator block disable, All input and I/O pin at VDD, output pin floating, WDT disabled		20	35	μΑ
ISB3	Low clock current (GREEN mode)	CLK=32.768KHz, AD, DA, Tone generator block disable, All input and I/O pin at VDD, output pin floating, WDT disabled		30	50	μА
ICC	Operating supply current (NORMAL mode)	/RESET = High, CLK=3.58MHz, All input and I/O pin at VDD, output		1.6	2.0	mA

		pin floating, AD, DA, Tone generator block disable				
Vref1	DA DC reference voltage		2.25		VDD	V
Vref2	Tone generator reference voltage		0.5		0.7	VDD
Vref3	AD external reference voltage		1.8		VDD	V
Vmax	Tone1 signal strength	Root mean square voltage	130	155	180	mV
Vmax	Tone2 signal strength	Root mean square voltage	150	175	200	mV
Enl	Differential nonlinear error				±1	LSB
Einl	Integral nonlinear error				±2	LSB
Tcv	Conversion time	Set sampling rate =44KHz			20	uS
Tda	DA output valid time				3	uS

IX AC Electrical Characteristic

(Ta=0°C ~ 70°C, VDD=5V, VSS=0V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dclk	Input CLK duty cycle		45	50	55	%
Tins	Instruction cycle time	32.768K		60		us
		3.58M		550		ns
Tdrh	Device delay hold time			18		ms
Ttcc	TCC input period	Note 1	(Tins+20)/N			ns
Twdt	Watchdog timer period	$Ta = 25^{\circ}C$		18		ms

Note 1: N= selected prescaler ratio. (OTP AC Characteristic)

Description	Symbol	Min	Тур	Max	Unit
Vpp to VDD level setup time	Trs	2			uS
Mode code setup time	Tcsu	3			uS
Mode code hold time	Tchd	2			uS
Data setup time	Tdsu	100			nS
Data hold time	Tdhd	100			nS
Program write pulse width	Tpwd		200		uS
Output enable setup time	Toed	300			nS
Data clock pulse width	Tph	100			nS

XI. Timing Diagrams

AC Test Input/Output Waveform

AC Testing: Input are driven at 2.4V for logic "1", and 0.45V for logic "0". Timing measurements are made at 2.0V for logic "1", and 0.8V for logic "0".

RESET Timing

TCC Input Timing

Fig.10 AC timing

XII. Application Circuit

Fig.11.application circuit1 (Base unit)

Fig.12.application circuit2 (Handset unit)