#### **BOOSTING BY WELL-DESIGNED ENSEMBLE**

#### GEOMETRICAL VIEW OF ENSEMBLE LEARNING

Noboru Murata July 31, 2021

Waseda University

## TABLE OF CONTENTS

- Introduction
   majority vote
   geometrical view
- Problem Formulation
   boosting algorithm
   geometrical view of boosting
- Illustrative Examplesimple exampleapplication to face detection
- 4. Concluding Remarks

## **INTRODUCTION**

#### **MAJORITY VOTE**

 consider participating a quiz show where threesome teams compete in answering various genre questions
(10 genres such as history, politics, entertainment, sports)

- consider participating a quiz show where threesome teams compete in answering various genre questions
  (10 genres such as history, politics, entertainment, sports)
  - good threesome

poor threesome

- consider participating a quiz show where threesome teams compete in answering various genre questions
  (10 genres such as history, politics, entertainment, sports)
  - · good threesome
    - each member can answer 8 genres
    - · all the members are weak in entertainment and sports
    - stereo-typed good members
  - poor threesome
    - each member can answer 6 genres
    - · all the member are weak in different genres
    - · poor but varied members

#### **ENSEMBLE LEARNING**



#### ENSEMBLE LEARNING



# essence of ensemble learning

- · collect as varied individuals as possible
- each individual does better than random guess

(Freund 1995; Freund and Schapire 1997)

## classification problem:

- predict label y  $\in \mathcal{Y}$  from corresponding features  $\textbf{x} \in \mathcal{X}$
- construct a classifier  $h(\mathbf{x}) = \hat{y}$  from finite samples



#### obtained classifier

single classifier by cart



obtained classifier by AdaBoost



without boosting

with boosting

 select a Gaussian subject to categorical distribution



 generate a sample from a selected Gaussian







· total distribution is not a Gaussian



#### **GLOBAL EXTENSION**













# PROBLEM FORMULATION

#### problem:

• predict labels  $y \in \mathcal{Y}$  from given features  $\mathbf{x} \in \mathcal{X}$ 

#### notation:

classifier: set-valued function h

$$h: \mathbf{x} \in \mathfrak{X} \mapsto \mathfrak{C} \subset \mathfrak{Y}$$

decision function: another representation of classifier

$$f(\mathbf{x}, \mathbf{y}) = \begin{cases} 1, & \text{if } \mathbf{y} \in h(\mathbf{x}), \\ 0, & \text{otherwise,} \end{cases}$$

majority vote: linear combination of multiple classifiers

$$H(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{I} \alpha_{t} f_{t}(\mathbf{x}, \mathbf{y})$$



#### (start)

- input:  $\text{n samples } \{(\boldsymbol{x}_i, y_i); \boldsymbol{x}_i \in \mathfrak{X}, y_i \in \mathfrak{Y}, i=1,\dots,n\}, \\ \text{increasing convex function U.}$
- initialize: distribution  $D_1(i,y) = 1/n(|\mathcal{Y}|-1)$   $(i=1,\ldots,n)$ , combined decision function  $F_0(\mathbf{x},\mathbf{y}) = 0$ .
- repeat: repeat following steps (t = 1, ..., T).

# **BOOSTING ALGORITHM (2)**

### (iteration)

 step 1: select a decision function f (classifier h) which (approximately) minimizes with a distribution D<sub>t</sub>:

$$\epsilon_t(f) = \sum_{i=1}^n \sum_{y \neq v_i} \frac{f(\boldsymbol{x}_i, y) - f(\boldsymbol{x}_i, y_i) + 1}{2} D_t(i, y)$$

$$f_t(\boldsymbol{x},y) = \arg\min_{f \in \mathfrak{F}} \epsilon_t(f).$$



• step 2: calculate reliability  $\alpha_t$ :

$$\begin{split} \alpha_t &= \arg\min_{\alpha} \sum_{i=1}^n \sum_{y \in \mathcal{Y}} U\Big(F_{t-1}(\boldsymbol{x}_i, y) + \alpha f_t(\boldsymbol{x}_i, y) \\ &- F_{t-1}(\boldsymbol{x}_i, y_i) - \alpha f_t(\boldsymbol{x}_i, y_i)\Big). \end{split}$$

- step 3: update the combined decision function  $F_{t}$  and the distribution  $D_{t}$ :

$$F_t(\boldsymbol{x},\boldsymbol{y}) = F_{t-1}(\boldsymbol{x},\boldsymbol{y}) + \alpha_t f_t(\boldsymbol{x},\boldsymbol{y}),$$

$$D_{t+1}(i,y) \propto \!\! U'\left(F_t(\boldsymbol{x}_i,y) - F_t(\boldsymbol{x}_i,y_i)\right), \label{eq:definition}$$

where 
$$\sum_{i=1}^n \sum_{y\neq v_i} D_{t+1}(i,y) = 1.$$



# **BOOSTING ALGORITHM (5)**

#### (end)

 output: construct a majority vote classifier:

$$\begin{split} H(\boldsymbol{x}) &= \arg\max_{y \in \boldsymbol{\mathcal{Y}}} F_T(\boldsymbol{x}, y) \\ &= \arg\max_{y \in \boldsymbol{\mathcal{Y}}} \sum_{t=1}^T \alpha_t f_t(\boldsymbol{x}, y). \end{split}$$

## special case of boosting algorithm:

- $U(z) = \exp(z)$  (following steps are simplified)
  - step 2:

$$\alpha_{\mathsf{t}} = \frac{1}{2} \log \frac{1 - \epsilon_{\mathsf{t}}(\mathsf{f}_{\mathsf{t}})}{\epsilon_{\mathsf{t}}(\mathsf{f}_{\mathsf{t}})},$$

step 3:

$$D_{t+1}(i,y) \propto \exp\{F_t(\boldsymbol{x}_i,y) - F_t(\boldsymbol{x}_i,y_i)\}$$

(Freund and Schapire 1997)



#### (start)

- input:  $\text{n samples } \{(\boldsymbol{x}_i, y_i); \boldsymbol{x}_i \in \mathfrak{X}, y_i \in \mathfrak{Y}, i=1,\dots,n\}, \\ \text{increasing convex function U.}$
- initialize:  ${\sf q}_0({\sf y}|{\bf x}) \mbox{ (set } \xi({\sf q}_0)=0 \mbox{ for simplicity, where } \xi=({\sf U}')^{-1} \mbox{)}$
- repeat: repeat following steps (t  $= 1, \dots, T$ ).

• step 1: select decision function  $f_t$  (classifier  $h_t$ ) such that f-b' and  $q_{t-1}-\tilde{p}$  should direct as similar as possible:

$$f_t(\boldsymbol{x},y) = \arg\max_{f \in \mathfrak{F}} \langle q_{t-1} - \tilde{p}, f - b' \rangle_{\tilde{\mu}}$$

where

$$q = u\Big(\xi(q_{t-1}) + \alpha f - b(\alpha)\Big).$$





step 2: with one dimensional model

$$\mathbf{Q}_{t} = \left\{ \mathbf{q} \; \middle| \; \xi(\mathbf{q}) = \xi(\mathbf{q}_{t-1}) + \alpha \mathbf{f}_{t} - \mathbf{b}_{t}(\alpha), \; \alpha \in \mathbf{R} \right\}$$

construct orthogonal foliation  $\{\mathfrak{T}(q); q \in \mathfrak{Q}_t\}$ , then find  $\alpha_t$  with a leaf of the empirical distribution  $\tilde{p}$  and model  $Q_t$ :

$$\alpha_t = \arg\min_{q \in \Omega_t} \sum_{i=1}^n \left[ \sum_{y \in \mathcal{Y}} U\big(\xi(q(y|\boldsymbol{x}_i))\big) - \xi(q(y_i|\boldsymbol{x}_i)) \right].$$



• step 3: update qt:

$$q_t(y|\boldsymbol{x}) = u\Big(\xi(q_{t-1}(y|\boldsymbol{x})) + \alpha_t f_t(\boldsymbol{x},y) - b_t(\boldsymbol{x},\alpha_t)\Big).$$







### (end)

 output: construct a majority vote classifier:

$$H(\boldsymbol{x}) = \arg\max_{y \in \mathcal{Y}} F_T(\boldsymbol{x}, y) = \arg\max_{y \in \mathcal{Y}} \sum_{t=1}^{\cdot} \alpha_t f_t(\boldsymbol{x}, y).$$

- global model extension:
  - by using appropriately weighted training data, the learning model is extended to the direction to which the total performance can be improved
  - by extending the search space to outside of probability distributions, an efficient algorithm (coordinate descent) is derived





# classification problem:

- predict label y  $\in \mathcal{Y}$  from corresponding features  $\textbf{x} \in \mathcal{X}$
- construct a classifier  $h(\boldsymbol{x}) = \hat{y}$  from finite samples



# first round







# second round







# third round







# sample weights at each round



#### obtained classifier at each round



### obtained classifier



single classifier by cart





without boosting

with boosting

#### classification error



after AdaBoost (T=16)

without boosting

with boosting

#### **Face Detection**

Paul Viola and Michael J. Jones (May 2004). "Robust Real-Time Face Detection." In: International Journal of Computer Vision 57 (2), pp. 137–154. DOI: 10.1023/B:VISI.0000013087.49260.fb

- famous boosting application to computer vision
- adopt simple rectangle detectors as weak learners
- construct an efficient classifier with AdaBoost



### **CONCLUSION**

# we presented the following:

- · some characterization of mixture models
- some geometrical properties of U functions
  - coordinate descent algorithm
  - Pythagorean relation

in addition, possible extensions would be:

- · characterization of U
- stopping rules for the number of boosting

- Domingo, Carlos and Osamu Watanabe (June 28–July 1, 2000). "MadaBoost: A Modification of AdaBoost." In: Proceedings of COLT 2000. the Thirteenth Annual Conference on Computational Learning Theory (Palo Alto, CA, USA). Ed. by Nicolò Cesa-Bianchi and Sally A. Goldman. Morgan Kaufmann, pp. 180–189.
- Freund, Yoav (Sept. 1995). "Boosting a Weak Learning Algorithm by Majority." In: Information and Computation 121.2, pp. 256–285. DOI: 10.1006/inco.1995.1136.
- Freund, Yoav and Robert E. Schapire (Aug. 1997). "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting." In: Journal of Computer and System Sciences 55.1, pp. 119–139. DOI: 10.1006/jcss.1997.1504.
- Murata, Noboru et al. (July 2004). "Information Geometry of U-Boost and Bregman Divergence." In: Neural Computation 16.7, pp. 1437–1481. DOI: 10.1162/089976604323057452.
- Viola, Paul and Michael J. Jones (May 2004). "Robust Real-Time Face Detection." In: International Journal of Computer Vision 57 (2), pp. 137–154. DOI: 10.1023/B:VISI.0000013087.49260.fb.