CSE 331 Computer Organizations Homework 3

Fatih Kaan Salgır - 171044009

1 Datapath

Figure 1: Datapth

- To avoid glitches on the output, I put a register before the output and enabled on the last state. (enable_out)
- Counter and comparator are 6 bits (They could be 5 bits, but I preferred this way to simplify state diagram).
- clear will clear both counter and contents of the output register after.
- increment will increment the counter, so that we can check if we reach 32. In this case machine will go to last state.

1.1 Shfiter

- I have used 2 32-bit shift register by connecting first shifter's output bit to second shifter's input bit.
- Since our fsm will be responsible calculating unsigned numbers, first shifter's input bit should be 0.
- load_first and load_second signals will load the values to registers.
- shift signal will shift both registers to right.

2 State Diagram

Figure 2: FSM

3 Designing Control Unit

3.1 Truth Table

Table 1: Next state according to present state and inputs

s2	s1	s0	start	counter32	lsb_bit	n2	n1	n0
0	0	0	0	Х	Х	0	0	0
0	0	0	1	Х	Х	0	0	1
0	0	1	X	Х	Х	0	1	0
0	1	0	Х	1	X	1	0	1
0	1	0	X	0	0	1	0	0
0	1	0	X	0	1	0	1	1
0	1	1	X	Х	Х	1	0	0
1	0	0	X	X	Х	0	1	0
1	0	1	Х	Х	Х	0	0	0

```
n2 = s2' s1 s0' counter32 + s2' s1 s0' counter32' lsb_bit' + s2' s1 s0
n2 = s2' s1 s0' ( counter32 + counter32' lsb_bit' ) + s2' s1 s0
n2 = s2' s1 s0' ( counter32 + lsb_bit' ) + s2' s1 s0
n2 = s2' s1 ( s0' ( counter32 + lsb_bit' ) + s0 )
n2 = s2' s1 ( counter32 + lsb_bit' + s0 )

n1 = s2' s1' s0 + s2' s1 s0' counter32' lsb_bit + s2 s1' s0'
n1 = s1' ( s2' s0 + s2 s0') + s2' s1 s0' counter32' lsb_bit
n1 = s1' ( s2 XOR s0) + s2' s1 s0' counter32' lsb_bit

n0 = s2' s1' s0' start + s2' s1 s0' counter32 + s2' s1 s0' counter32' lsb_bit
n0 = s2' s1' s0' start + s2' s1 s0' ( counter32 + counter32' lsb_bit )
n0 = s2' s1' s0' start + s2' s1 s0' ( counter32 + lsb_bit )
```

Table 2: Inputs according to states

s2	s1	s0	load_product	load_multiplier	shift	enable_out	increment	clear
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	1	0	0	0	0	0	1	0
0	1	1	1	0	0	0	0	0
1	0	0	0	0	1	0	0	0
1	0	1	0	0	0	1	0	0

load_product = s2' s1 s0
load_multiplier = s2' s1' s0
shift = s2 s1' s0'
enable_out = s2 s1' s0
increment = s2' s1 s0'
clear = s2' s1' s0

Figure 3: Control Unit

4 Connecting Datapath and Control Unit & Tests

Figure 4: $11 \times 5 = 55$

Figure 5: $4619 \times 1029 = 4752951$

Figure 6: $0 \times 0 = 0$

Figure 7: $6 \times 0 = 0$

Figure 8: $128 \times 128 = 16384$

Figure 9: $1 \times 1 = 1$