

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «П	оограммное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 1 по курсу «Моделирование»

Тема	Основные законы распределения случайных величин	
Студє	ент Виноградов А. О.	
Групг	ıa <u>ИУ7-76Б</u>	
Оценка (баллы)		
Препо	одаватель Рудаков И. В.	

1 Постановка задачи

Цель работы: теоретическое изучение некоторых типовых законов распределения случайных величин.

Согласно 2 варианту по списку было выполнено изучение следующих законов распределения:

- равномерное распределение на отрезке;
- нормальное распределение.

2 Равномерное распределение

Случайная величина имеет равномерное распределение на отрезке [a, b], если ее плотность распределения p(x) и функция распределения F(x) равны

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b; \\ 0, & x < ax > b. \end{cases}, F(x) = \begin{cases} 0, & x < a; \\ \frac{x-a}{b-a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (2.1)

Графики плотности распределения p(x) и функции распределения F(x) для разных значений параметров а и b приведены на рисунках ??-??.

3 Нормальное распределение

Случайная величина распределена по нормальному закону, или имеет нормальное распределение, если ее плотность

$$\varphi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}} (-\inf < m < +\inf, \sigma > 0).$$
 (3.1)

Функция нормального распределения имеет следующий вид:

$$\Phi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\inf}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dx.$$
 (3.2)

Графики плотности распределения $\varphi_{m,\sigma}(x)$ и функции распределения $\Phi_{m,\sigma}$ для разных значений параметров m и σ представлены на рисунках ??-??.