This article was downloaded by: [UQ Library]

On: 18 June 2015, At: 14:39 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Critical Reviews in Food Science and Nutrition

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/bfsn20

Food Adulteration: Sources, Health Risks and Detection Methods

Sangita Bansal^a, Apoorva Singh^a, Manisha Mangal^b, Anupam K Mangal^c & Sanjiv Kumar^d

^a Central Institute of Post Harvest Engineering and Technology- Ludhiana

To cite this article: Sangita Bansal, Apoorva Singh, Manisha Mangal, Anupam K Mangal & Sanjiv Kumar (2015): Food Adulteration: Sources, Health Risks and Detection Methods, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2014.967834

To link to this article: http://dx.doi.org/10.1080/10408398.2014.967834

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

^b Indian Agricultural Research Institute- New Delhi

^c Central Council for Research in Ayurvedic Sciences- New Delhi

^d National Medicinal Plant Board- New Delhi Accepted author version posted online: 09 Jun 2015.

Food adulteration: sources, health risks and detection methods

Sangita Bansal, Apoorva Singh, Manisha Mangal¹, Anupam K Mangal², and Sanjiv

Kumar³

Central Institute of Post Harvest Engineering and Technology- Ludhiana

- 1. Indian Agricultural Research Institute- New Delhi
- 2. Central Council for Research in Ayurvedic Sciences- New Delhi
 - 3. National Medicinal Plant Board- New Delhi

Address Correspondence to: Dr. Sangita Bansal, Senior Scientist, Division of Food Grains & Oilseed Processing, Central Institute of Post Harvest Engineering & Technology, P.O. PAU Campus, Ludhiana, 141 004, Punjab, India

Email: sangitabansal1@rediffmail.com, sangitabansal@yahoo.com

Phone: +91-161-2313165, Fax: +91-161-2308670

Food adulteration: sources, health risks and detection methods

Sangita Bansal, Apoorva Singh, Manisha Mangal¹, Anupam K Mangal², and Sanjiv

Kumar³

Central Institute of Post Harvest Engineering and Technology- Ludhiana

1. Indian Agricultural Research Institute- New Delhi

2. Central Council for Research in Ayurvedic Sciences- New Delhi

3. National Medicinal Plant Board- New Delhi

Abstract

Adulteration in food has been a concern since the beginning of civilization, as it not only

decreases the quality of food products but also results in a number of ill effects on health.

Authentic testing of food and adulterant detection of various food products is required for value

assessment and to assure consumer protection against fraudulent activities. Through this review

we intend to compile different types of adulterations made in different food items, the health

risks imposed by these adulterants and detection methods available for them. Concerns about

food safety and regulation have ensured the development of various techniques like physical,

biochemical/ immunological and molecular techniques, for adulterant detection in food.

Molecular methods are more preferable when it comes to detection of biological adulterants in

food, although physical and biochemical techniques are preferable for detection of other

adulterants in food.

Key words: food, adulteration, food safety, detection methods, adulterants

Food is the basic necessity of life. Synonyms like admixture and substitution helps to define the word adulteration. Food adulteration can be defined as lowering the quality of food by intentional or unintentional substitution of food with some inferior foreign particle or by removal of some value added food substitute from main food item. Food Safety and Standards Act of India (FSSA) defined "adulterant" as any material which is or could be employed for making the food unsafe or sub-standard or mis-branded or containing extraneous matter". According to Federal Food, Drug and Cosmetic Act (FFDCA), the primary food safety law administered by the Food and Drug Administration (FDA), food can be declared adulterated if:

- a) a substance is added which is injurious to health
- b) cheaper or inferior quality item added to food
- c) any valuable constituent is extracted from main food article
- d) quality of food is below the standards
- e) any substance has been added to increase bulk or weight
- f) to make it appear more valuable

Adulterated food is dangerous as: a) it may be toxic and effect health; b} it could deprive nutrients required to maintain proper health, c) it may cause intoxication or problems such as allergy in sensitized individuals.

However, some foods may contain toxin naturally and their consumption in large quantities can lead to serious illness. *Lathyrus sativus* is one such example which contains a neurotoxin namely β-N-oxalyl-amino-L-alanine (BOAA). Consumption of *Lathyrus sativus* in large amounts result

in a crippling disease known as lathyrism. Another example is various toxic varieties of mushrooms, like phalloidin toxin present in amanita mushroom may cause liver and kidney damage.

Types of Food Adulteration

Food adulteration involves the infusion of useless, harmful, unnecessary substances to food which decreases the quality of food. Table 1 shows certain examples of different types of food adulterations. Adulterants in food can be categorized into following categories:

Intentional adulteration is the inclusion of inferior substances having properties similar to the foods in which they are added. They are thus difficult to detect. The adulterant could be physical or biological in nature. Some examples of intentional adulteration include addition of water to liquid milk, extraneous matter to ground spices, or the removal or substitution of milk solids from the natural product etc.

Unintentional adulteration is inclusion of unwanted substances due to ignorance, carelessness or lack of proper facilities and hygiene during processing of food. This can be of acquired type like contamination of foods by bacteria or fungi, spoilage of food by rodents, entry of dust and stones, harmful residues from packing material, etc. or inherent adulteration *e.g.* presence of certain chemicals, organic compounds or radicals naturally occurring in foods like toxic varieties of pulses, mushrooms, green and other vegetables, fish and sea foods. In India, the Prevention of Food Adulteration Rules, 1955 (now covered under FSS act) sighted crop contaminant as another category of unintentional adulterant which gets added to articles of food in the process of their production (including operations carried out in crop husbandry, animal husbandry and veterinary

⁴ ACCEPTED MANUSCRIPT

medicine), manufacture, processing, preparation, treatment, packing, packaging, transport or holding of articles of such foods as a result of environmental contamination.

Metallic contamination is the intentional or unintentional inclusion of different types of metals and metal compounds in food. Out of all, lead, arsenic, mercury and cadmium are considered most toxic as their intake is highly chronic. If they accumulate in body they can cause organ damage.

Microbial contamination is the spoilage of food due to infusion of different microbes through various sources. Foods may be contaminated by microorganisms at any time from several sources during food processing like during harvest, storage, processing, distribution, handling, or preparation.

Health Risks of Adulterated food

Food adulteration contributes the society with many diseases ranging from mild to life-threatening conditions like vision problem, liver problem, skin diseases, and several stomach disorders such as diarrhea. Widely and commonly seen examples are asthma, skin diseases and cancer caused due to intake of fish, fruits, meat or milk adulterated with chemicals like formalin. Human health is highly sensitive to food adulteration and sometimes shows immediate side effects like diarrhea, dysentery and vomiting. For example, coffee powder substituted with date seed powder or tamarind can cause diarrhea (Lakshmi, 2012). Adulteration of cream filled foods, bakery items and dairy products can also cause abdominal cramps and vomiting. Improperly processed milk and canned meat may cause food poisoning and abdominal pain or other food infections usually with fever and chills.

In addition to immediate effects there may be many long term adverse effects of adulterated food. Long term effects like colon, peptic ulcers, liver diseases like cirrhosis and liver failure, heart diseases, blood disorder, bone marrow abnormality and kidney damage have been observed due to adulterants like colouring dyes, calcium carbide, urea, burnt engine oil and sometimes even due to excess amount of permitted preservatives. Some of the common food adulterant and their health effects are given in table 2.

Methods for detecting Adulterants

Substitution of any ingredient in food is either in the form of total substitution or partial substitution. Partial substitution detection is rather difficult as before investigation of the adulterant, identity of adulterants should be known, moreover investigation of partial substitution requires finding out first if the substitution/adulteration is deliberate or unintentional.

Various methods, based on morphological/ anatomical characterization, organoleptic markers (odor, color, texture) and chemical testing, have been developed to authenticate traded food commodity and to check for adulterants (Shaw *et al.*, 2002).

Today three basic strategies can be followed for demonstrating adulteration *i.e.*

- by demonstrating the presence of foreign substance or a marker in the commodity
- by demonstrating that a component is deviated from its normal level and
- by demonstrating that a profile is unlikely to occur

Among these, the first strategy of detection of adulterants by the demonstration of the presence of foreign substances or a marker is considered as the best and simplest (Wilhelmsen, 2004; 2006).

The adulterant can be detected by various techniques based on type of adulterant to be detected. These techniques include analytical, physical, chemical and most recent DNA based molecular techniques (Figure 1).

Physical methods- Various physical methods for detection of adulteration including microscopic and macroscopic visual structural analysis as well as analysis of food by analyzing the physical parameters like morphology, texture, solubility, bulk density etc. have been designed but these methods do not guarantee qualitative adulterant detection. In pharmacopeia regulatory guidelines, macroscopy, microscopy in combination with chemical profiling is prescribed to identify and authenticate herbs and medicinal plants (Sheorey and Tiwari, 2011). Visual structure analysis utilizing macroscopic and microscopic features is very useful in case of microbial detection particularly in case of fungi (Mangal et al., 2014). Moreover, microscopic examination of some spices namely cumin, coriander, chillies, and cloves lead to easy detection of extraneous starch in these powdered spices (FSSAI, 2012). In case of other adulterants, electronic or optic microscopic method for detection is not very promising expect in case of honey. Through optical microscopy adulteration of honey with cane sugar and cane sugar products are detectable. This adulteration detection is based on detection of sclerous rings, parenchyma cells and other cane sugar constitutive cells (Louveaux et al., 1978). With the advent of electron microscopy it is now possible to detect the botanical origin of honey efficiently by analyzing the surface pattern of pollen from honey. Scanning electron microscopy (SEM) has also been used to study pollen

from apple varieties (Ohe, 1991). Although improvements have been brought about by SEM, electronic microscopic analysis is not a cheap routine technique, as it requires a meticulous sample preparation.

Chemical and biochemical techniques- Various chemical and biochemical methods for detection of adulterants have been designed which can be categorized as chromatography based, spectroscopy based, immunology based and electrophoresis based. Although these methods are more accurate and sensitive than physical techniques, there industrial applicability is hampered by cost and need of specialist training (Gonzalez et al., 2003). The basic analytical approach involves various steps like: a) extraction with a suitable solvent; b) cleanup for removal of interfering matrix components; c) chromatographic separation and; d) selective detection. Among the analytical techniques of adulterant detection HPLC (High-performance liquid chromatography) is the most widely used technique. HPLC can be used as a quality control tool as it can separate various chemical constituents from mixtures; it is also used for characterizing food products or to detect adulteration. The adulteration of olive oil with hazelnut oil (Blanch et al., 1998), quince jams with apple or pear puree (Silva et al., 2000), citrus juices with flavones glycosides and polymethoxylated flavones (Mouly et al., 1998), phenolic pigments in black tea liquors (McDowell et al., 1995), proline isomers and amino acids in wines (Calabrese et al., 1995) are some of the examples where adulterant has been detected by using HPLC.

Gas chromatography (GC) is used for separating volatile organic compounds. GC along with mass spectroscopy (MS) and Fourier transform infrared spectroscopy (FTIR) has been widely used for adulterant detection as these are non destructive techniques with respect to the sample. Gas chromatography is generally used to discriminate among different varieties of the same

product, adulteration detection, and organic compound authentication and identification. GC has been utilized to differentiate wines from same regions. Volatile compounds such as 1-propanol, 2-methyl-1-propanol, 2-propen-1-ol, and 3-methyl-1-butanol in wine were measured and quantified by GC or GCMS, providing 30 physicochemical parameters usable for pattern classification (Nogueira et al., 1999). A complementary powerful tool increasingly used for the characterization of foods is that of artificial neural networks (ANNs).

Among the spectroscopic techniques, near infrared spectroscopy (NIR) helps in rapid detection of adulterants in raw material but is unable to identify the contaminant. NIR has also showed potential to be used as a tool to detect fraud and adulteration of soya based products used as animal feed (Haughey et al., 2012). Another detection method, nuclear magnetic resonance (NMR) not only detects an adulterant but also provides structural identification of the contaminant. Fourier transform infrared spectroscopy (FTIR) through detailed spectral inspection can differentiate adulterated sample from unadulterated samples but unable to identify the adulterant (Ozen and mauer, 2002). FTIR spectroscopy has shown excellent potential for detection of milk adulterants and can be used in food industry to replace less efficient and more time-consuming techniques (Nicolaou et al., 2010). Contrary to this, handheld Raman device provides fast measurements but unable to differentiate adulterated from unadulterated samples (Wen et al., 2012). Atomic Absorption Spectrometry can be utilized as validation method for analysis of lead in all foods except oils, fats and extremely fatty products (FAO/WHO, 2014). Spectrometric technique has also been utilized to determine gamma oryzanol content (%) in oils from spectrophotometer absorption measurements at the wavelength of maximum absorption near 315nm (Codex Alimentarious, 2010)

A combination of chromatographic and spectroscopic techniques has also shown a high potential for detection of adulterants, for example, GC-MS has shown potential to detect honey adulteration with commercial syrups (Matute et al., 2007). Solid phase micro-extraction-gas chromatography-mass spectroscopy (SPME-GC-MS) has also been successfully employed for the detection of adulteration of ground roasted coffee with roasted barley (Oliveira et al., 2009). Another combination of spectroscopy and chromatography LC-MS-MS has been successfully applied for determination of adulterants in herbal remedies (Bogusz et al., 2006). Recently fourier transform infrared (FTIR) spectroscopy and chemometric methods combination have been described as rapid method for adulteration detection (Nicolaou et al., 2010). One more combination of techniques like Inductive Coupled Plasma - Mass Spectrometry (ICP-MS) can be utilized as validation method for analysis of lead in all foods (FAO/WHO, 2014).

Electrophoresis technique has also been utilized in detection of food frauds, for instance electrophoretic analysis had potential to detect and quantify additional whey in milk and dairy beverages (De souza et al., 2000). Among the electrophoretic techniques capillary electrophoresis has shown capability to detect various adulterants from food samples such as capillary zone electrophoresis has been utilized to determine the adulteration of cow milk in goat milk products and adulteration in basmati rice (Cartoni et al., 1999; Vemireddy et al., 2007). Another electrophoretic technique which has potential for adulterant detection is urea-PAGE which has shown ability to detect adulteration of milk in particular the origin of species of milk. Among the immunological techniques, ELISA is most widely used form of immunoassays in adulterant detection and has advantages of high sensitivity, easy to use, reliable, low cost and fast

application over other techniques (Bottero et al., 2002; Popelka et al., 2002). This indirect enzyme-linked immunosorbent assay (ELISA) was developed for the detection and quantification of bovine milk adulteration in goat's milk. It has been observed that ELISA can be successfully used to determine adulteration of milk samples and thus ELISA kits will help in routine inspection of milk (Xue et al., 2010). Commercial enzyme-linked immunosorbent assays (ELISA) can be utilized as one of the approach in detection of melamine (FSSAI, 2008). Moreover, ELISA can also be produced in formats that are compatible with the industrial food processing environment.

Although physical and chemical techniques are easy and more convenient for routine adulterant detection in food in certain instances but they may not provide exact quantitative and qualitative results. Structural evaluation *i.e.* detection of adulterant on basis of its microscopic and macroscopic features of plant parts substituted in food in grounded form requires high expertise. Similarly, chemical profiling is very useful and has ability to detect adulterants like synthetic drugs or phytochemicals (Joshi et al., 2005), it is still avoided for adulterant detection as it involves the use of chemical standards which may be too rare or expensive, and in some cases no marker compound are known for a particular botanical (Shaw et al., 2002). DNA-based methods have the potential to complement these approaches (Lum and Hirsch, 2006) and that is why food analysis laboratories are taking advantage of the rapid development of DNA techniques, however, only a few methods have proved robust enough to be used. Different techniques utilized for adulterant detection in various food items have been summarized in table 3.

DNA based Methods /Molecular Techniques

Among various techniques for detection of adulterants, the use of DNA based molecular tools could be more ideal for adulterant detection in traded commodities of plant origin, especially, when the adulterants are biological substances. Omic techniques which involve analysis and manipulation of DNA, RNA, protein or lipid have become an important part of molecular biology, genetics and biochemistry etc. Discrimination of adulterants from original food item can easily be done by molecular markers if both adulterant and the original food show physical resemblance. Mainly three strategies are followed for detection of adulterants utilizing DNA based methods: PCR based; sequencing based and hybridization based.

Variation in species specific region of genome like mitochondrial or chloroplast genes due to insertion, deletion or transversion acts as the key to differentiate and detect biological adulterant from original food (Dhanya and Sasikumar, 2010). This forms the basis of sequencing based method. The sequencing by hybridization method is utilized for detection of adulterant on basis of small changes in nucleotide strand relative to known DNA sequence and detection can be done from a variety of possible species at the same time (Carles et al., 2005).

Although, molecular methods like sequencing and hybridization based method are irresistible for biological adulterant detection but prior sequence knowledge is required for designing primers for amplification of specific sequences (Lockley and Bardsley, 2000). In addition, large amount of DNA is required and these processes are time consuming, labour intensive and require stringent experimental conditions as compared to PCR based methods (Zammatteo et al., 2002). PCR based methods are simple, sensitive, specific and low cost thus present a high potential in adulterant detection and authentication of commodities. There are two approaches of using PCR, which have proved very useful. One is DNA barcoding, which is based on the analysis of a short

genetic marker called the "DNA barcode" in an organism's DNA. Species identification can be achieved by comparing the DNA barcode to compiled database of barcodes. This method is successful in cases where there is molecular variability between species and high quality repositories of reference sequences are available. The second method is based on the detection of single nucleotide polymorphism (SNP) that give rise to restriction fragment length polymorphism (RFLP). PCR-RFLP technique has been successfully applied in identification of the species origin of commercially available processed food products (Chandrika et al., 2010). Because PCR is used to amplify the fragments before cleavage, the sequence are sometimes known as cleavable amplifiable polymorphic sequences (CAPS).

PCR based techniques include DNA fingerprinting techniques like random amplified polymorphic DNA (RAPD), arbitrarily primed PCR (AP-PCR), DNA amplification fingerprinting (DAF), inter simple sequence repeat (ISSR), PCR restriction fragment length polymorphism (PCR-RFLP), amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite-region DNA (DAMD), sequence characterized amplified regions (SCAR), amplification refractory mutation system (ARMS), and simple sequence repeat (SSR) analysis.

A Real-time polymerase chain reaction is a laboratory technique of molecular biology, which simultaneously amplify as well as detect or quantify a targeted DNA molecule. Real-time PCR method is a fast detection method. Since the method is rapid, specific, sensitive, and highly quantitative, it may be particularly useful in the detection of hidden ground meat in vegetarian foods (Cheng et al., 2012). TaqMan-based real-time Polymerase Chain Reaction (PCR) techniques have also been applied for detection of chicken and turkey meat in raw and heat-

treated meat mixtures (Kesmen et al., 2012). Real time PCR has also been utilized in species and varietal identification in Coffee (Patrizia et al., 2010), detection of celery, mustard and sesame in food (Mustorp et al., 2008). Real time PCR has now become an accepted analytical tool for adulterant detection in food industry mainly due to its speed and specificity in analysis of food and its ability to amplify DNA sequences from highly fragmented DNA found in processed food. Duplex PCR has also been utilized for quantitative detection of poultry meat and milk adulteration (Soares et al., 2010)

Another sequencing technique single-strand conformation polymorphism (SSCP), or single-strand chain polymorphism, is based on principle of difference of single-stranded nucleotide sequences of identical length, which can then be separated according to their different conformations by gel electrophoresis. PCR–SSCP is a promising technique for identification of fish species (Cepedes et al., 1999).

Microsatellites, also known as simple sequence repeats (SSRs) or short tandem repeats (STRs) is another molecular marker which has been successfully utilized as molecular tool for adulterant detection, *e.g.* high-throughput multiplex microsatellite marker assay has shown potential for detection and quantification of adulteration in Basmati rice (Archak et al., 2007).

Among all the molecular techniques, Randomly Amplified Polymorphic DNA (RAPD) is most preferred for detecting adulterants in commercial food items due to its low operating cost and ability to discriminate different botanical species, for instance it has been utilized for the detection of plant based adulterants in chilli powder (Dhanya et al., 2008), quality control of mediterranean oregano (Marieschi et al., 2009). Although RAPD is a simple molecular marker with fast assay, easy to develop and no previous sequence information requirement; but lack of

reproducibility makes it less reliable (Marieschi et al., 2009; Macpherson et al., 1993). Development of SCAR markers *i.e.* sequenced RAPD marker facilitate easy, sensitive and specific screening of commercial samples for adulterants and obliterates the problem of reproducibility of RAPD marker. Various SCAR markers have been developed for adulterant detection. Specific instances include development of SCAR markers for detection of papaya seed adulteration in traded black pepper powder (Sasikumar et al., 2005), adulterant detection in turmeric powder (Dhanya et al., 2011) and identification of Safflower as a fraud in commercial Saffron (Javanmardi et al., 2011).

Another molecular method which is becoming increasingly popular in rapid authentication of various food commodities is loop mediated isothermal amplification (LAMP) technique. Unlike PCR, specific sequences of DNA are directly amplified under isothermal conditions utilizing a set of four specially designed primers and a polymerase having high strand displacement activity. This technique is particularly useful over PCR methods as; a) it does not require costly equipments such as thermal cycler, b) It requires less time and easy to perform, c) Results can be visualized directly in the tube. This technique has been utilized for rapid authentication and identification of food materials such as detection of GM foods, authentication of herbal medicines and detection of *E. coli* in food samples (Chaudhary et al., 2012; Chen et al., 2011; Liu et al., 2009; Sasaki et al., 2008; Wang et al., 2012; Li et al., 2013)

Molecular methods are more preferable over other methods when it comes to application of molecular techniques for detection of GM (Genetically modified) foods in non GM foods and detection of microbial contaminants in various food samples as specific genes can be targeted. Species identification and detection of contaminants like antibiotics, pesticides, residues etc. is

also possible through molecular techniques. Some examples regarding use of molecular methods for adulterant detection have been summarized in table 4.

Technical considerations for DNA based methods

Currently, among all the molecular techniques PCR acts as the best technique for investigating the authenticity of food. But there are several technical considerations to the use of PCR for amplifying DNA extracted from food samples. Like in many instances the test samples are highly processed and might have been heated to temperatures above 100° C to cook or sterilize them which results in DNA degradation. While dealing with foodstuffs, many different food matrices with oil, fats and animal tissues might be encountered therefore, it becomes imperative to optimize DNA extraction procedures before the analysis begins in order to ensure sufficient test DNA extraction and elimination/ reduction of inhibitors of the PCR (Di Pinto et al., 2007). None of the methods of DNA extraction can be utilized indiscriminately for all different types of food matrices. This problem becomes more acute as quantification of the amounts of DNA from each species is required to be done (Woolfe and Primrose, 2004).

Current Status of Adulterant Detection Techniques

The increasing number of food adulterants or contaminants in food has raised alarms about food safety and has resulted in tremendous improvements in analytical methodologies to analyze contaminants and adulterants. Nowadays food laboratories are forced to replace their classical procedures with modern analytical techniques that allow them to provide an adequate answer to global demands on food safety, quality, and traceability leading to development of more

convincing analytical methodologies including molecular methodologies for easy and low cost adulterant detection in food (Wright, 2009). Even at present, separation techniques continue to be used as one of the more preferable methodology for adulterant detection. There is a need to replace or complement these techniques with more sensitive detection techniques like spectroscopy. Among the spectroscopic technique infrared based technique like NMR and MIR are preferred. Combination of both spectroscopic and separation techniques *i.e.* hyphenated techniques like LC-MS, GC-MS and CE-MS are being preferred in industries these days. Table 5 summarizes some of commercially available kits for food adulterant detection.

For detection of biological contaminants in food, molecular techniques have evolved which employ living organisms or some of their products such as enzymes, antibodies, and/ or DNAs, to identify adulterants. Molecular methods and DNA-based techniques allow fast and more authentic detection of microbial contaminants in food and help in defining the originality of species in meats, milk etc. Biosensors have also been designed to detect microbial contaminants and various hormones in food (Xu and Ying, 2011) which provide us with the advantage of high degree of specificity and sensitivity, and the possibility of being used for inline processes monitoring during food manufacturing (Viswanathan et al., 2009). A similar new molecular approach includes the use of peptide nucleic acid (PNA)-based technologies for food analysis and food authentication (Sforza et al., 2011). Although molecular methodology for adulteration detection has stepped into the era of technique of adulterant detection and proves itself as best technique but still at industrial level its practical application has to go long way.

Acknowledgement

The authors are thankful to National Medicinal Plants Board, New Delhi, for providing financial assistance and necessary facilities for the present paper (Project code PB01/2013-14).

References

Archak, S., Reddy, L. V. and Nagaraju, J. (2007). High-throughput multiplex microsatellite marker assay for detection and quantification of adulteration in basmati rice (*Oryza sativa*). *Electrophoresis*. **28**: 2396-2405.

Babaei, S., Talebi, M. and Bahar, M. (2013). Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. *Food Control.* **35(1)**: 323–328.

Bandana, D., Mahipal, S. (2003). Molecular detection of cashew husk (*Anacardium occidentale*) adulteration in market samples of dry tea (*Camellia sinensis*). *Planta Med.* **69(9)**: 882–884.

Blanch, G. P., Mar Caja, M., Ruiz del Castillo, M. L. and Herraiz, M. (1998). Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil. *J. Agric. Food Chem.* **46**: 3153-3157.

Bogusz, M. J., Hassan, H., Al-Enazi, E., Ibrahim, Z. and Al-Tufail, M. (2006). Application of LC–ESI–MS–MS for detection of synthetic adulterants in herbal remedies. *Journal of Pharmaceutical and Biomedical Analysis*. **41**: 554–564.

Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Dillen, W. P. M. and Noordaa, V. J. (1990). Rapid and simple method for purification of nucleic acids. *Journal of Clinical Microbiology*. **28**: 495-503.

Bottero, M. T., Civera, T., Anastasio, A., Turi, R. M. and Rosati, S. (2002). Identification of cow's milk in "buffalo" cheese by duplex polymerase chain reaction. *J Food Prot.* **65(2)**: 362-366.

Buren, M., Stadler, M. and Luthy, J. (2001). Detection of wheat adulteration of spelt flour and products by PCR. European Food Research and Tech. **212**: 234-239.

Busconi, M., Foroni, C., Corradi, M., Bongiorni, C., Cattapan, F. and Fogher, C. (2003). DNA extraction from olive oil and its use in the identification of the production cultivar. *Food chemistry*. **83**: 127-134.

Calabrese, M., Stancher, B. and Riccobon, P. (1995). High-Performance Liquid Chromatography Determination of Proline Isomers in Italian Wines. *J. Agric. Food Chem.* **69**: 361-366.

Cao, H., But, P. P. and Shaw, P. C. (1996a). Authentication of the Chinese drug "Ku-di -dan" (herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). *Acta pharmaceutica Sinica*. **31**: 543-553.

Cao, H., But, P.P. and Shaw, P.C. (1996b). A molecular approach to identification of the Chinese drug 'Pu Gong Ying' (*herba Taraxaci*) and six adulterants by DNA fingerprinting using random primed polymerase chain reaction (PCR). *J Chinese Pharmaceutical Sci.* **5**: 186-194.

Carles, M., Cheung, M. K., Moganti, S., Dong, T. T., Tsim, K. W., Ip, N. Y. and Sucher, N.J. (2005). A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. *Planta Medica*. **71**: 580-584.

Cartoni, G., Coccioli, F., Jasionowska, R. and Masci, M. (1999). Determination of cows' milk in goats' milk and cheese by capillary electrophoresis of the whey protein fractions. *J. Chromatogra*. A. **846(1-2)**: 135-141.

Cepedes, A., García, T., Carrera, E., Gonzalez, I., Fernandez, A., Hernández, P. E. and Cespedes R. M. (1999). Application of polymerase chain reaction—single strand conformational

polymorphism (PCR–SSCP) to identification of flatfish species. *Journal of AOAC international*. **82(4)**: 903-907.

Chavan, P., Warude, D., Joshi, K. and Patwardhan, B. (2008). Development of SCAR (sequence characterized amplified region) markers as a complementary tool for identification of ginger (*Zingiber officinale* Roscoe) from crude drugs and multicomponent formulations. *Biotechnology and Applied Biochem.* **50**: 61-69.

Chandrika, M., Maimunah, M., Zainon, M. N. and Son, R. (2010) Identification of the species origin of commercially available processed food products by mitochondrial DNA analysis. International Food Research Journal **17**: 867-876

Chaudhary, A. A., Hemant Mohsin, M. and Ahmad, A. (2012). Application of loop mediated isothermal amplification (LAMP)-based technology for authentication of *Catharanthus roseus* (L.) G. Don. Protoplasma, **2**: 417–422.

Chen, L., Guo, J., Wang, Q., Kai, G., and Yang, L. (2011). Development of the visual loop mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. Journal of Agricultural and Food Chemistry 11: 5914–5918.

Cheng, C. Y., Shi, Y. C. and Lin, S. R. (2012). Use of real-time PCR to detect surimi adulteration in vegetarian foods. *J. Marine Sci. Tech.* **20(5)**: 570-574.

Choi, Y. E., Ahn CH, Kim BB and Yoon ES.2008. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicas. *Biological & Pharmaceutical Bulletin*. **31**: 135-138.

²¹ ACCEPTED MANUSCRIPT

Codex Alimentarious (2010). Codex standard for named vegetable oils. CODEX-STAN 210 (Amended 2003, 2005) **8**: 1-13.

Cornet, V., Govaert, Y., Moens, G., Van Loco, J., Degroodt, J. M. (2006). Development of a fast analytical method for the determination of sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection. *J Agric. Food Chem.* **54**: 639-644.

Curl, C. L. and Fenwick, G. R. (1983). On the determination of papaya seed adulteration of black pepper. *Food Chem* **12**: 241-247.

De-Souza, E. M. T., Arruda, S. F., Brandao, P. O. and Siqueira, E. M. A. (2000). Electrophoretic analysis to detect and quantify additional whey in milk and dairy beverages. *Ciênc. Tecnol. Aliment* **20**(3): 314-317.

Dhanya, K., Syamkumar, S., Jaleel, K. and Sasikumar, B. (2008). Random amplified polymorphic DNA technique for the detection of plant based adulterants in chilli powder (*Capsicum annuum*). *Journal of Spices and Aromatic Crops.* **17**: 75-81.

Dhanya, K., Syamkumar, S. and Sasikumar, B. (2009). Development and application of SCAR marker for the detection of papaya seed adulteration in traded black pepper powder. *Food Biotechnology* **23**: 97-106.

Dhanya, K and Sasikumar, S. (2010). Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Current Trends in Biotechnology and Pharmacy **4**: 454-489.

Dhanya, K., Syamkumar, S., Siju, S. and Sasikumar, B. (2011). Sequence characterized amplified region markers: A reliable tool for adulterant detection in turmeric powder. *Food Research International*. **44(9)**: 2889–2895.

Dhiman, B. and Singh, M. (2003). Molecular detection of cashew husk (*Anacardium occidentale*) adulteration in market samples of dry tea (*Camellia sinensis*). *Planta Medica* **69**: 882-884.

Di Pinto, A., Forte, V. T., Guastadisegni, M. C., Martino, C., Schena, F. P. and Tantillo, G. (2007). A comparison of DNA extraction methods for food analysis. *Food Control.* **18**: 76-80.

Downey, G., Briandet, R., Wilson, R. H. and Kemsley, E. K. (1997). Near- and Mid-Infrared Spectroscopies in food authentication: Coffee varietal identification. *J Agric. Food Chem.* **45**: 4357-4361.

Drummond, M. G., Brasil, B. S. A. F., Dalseccoa, L. S., Brasil, R. S. A. F., Teixeira, L. V. and Oliveiraa, D. A. A. (2013). A versatile real-time PCR method to quantify bovine contamination in buffalo products. *Food Control* **29**: 131-137.

FSSAI (2008). Advisory no. 2.Advisory to the state health authorities on monitoring melamine contamination of foods. FSSAI, India. http://www.fssai.gov.in/portals/0/Pdf/AdvisoryMelamineinFoods[1].pdf).

FSSAI (2012). Manual of Methods of Analysis of Foods (Spices and Condiments).

Fu, J. J. (2012). Short protocols in medical molecular biology. China Medical Science Press, Beijing.

Gonzalez-Martín, I., Hernández-Hierro, J. and González-Cabrera, J. (2007). Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa. *Analytical and Bioanalytical Chem.* **387**: 2199-2205.

Haghighi, B., Feizy, J. and Kakhk, A. H. (2007). LC Determination of Adulterated Saffron Prepared by Adding Styles Colored with Some Natural Colorants. *Chromatographia*. **66(5/6)**: 325-332.

Haughey, S. A., Graham, S. F., Cancouet, E. and Elliott, C. T. (2012). The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. *Food Chemistry* **136(3-4)**: 1557–1561.

Hernandez, M., Esteve, T. and Pla, M. (2005). Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. *J Agri. and Food Chem.* **53**: 7003-7009.

Hernandez, P. E., Martín, R., García T., Morales, P., Anguita, G., Haza, A. I., González, I. and Sanz, B. (1994). Antibody- based analytical methods for meat species determination and detecting adulteration of milk. *Food and Agricultural Immunology*. **6(1)**: 95-104.

Hirao, T., Imai, S., Sawada, H., Shiomi, N., Hachimura, S. and Kato, H. (2005). PCR method for detecting trace amounts of buckwheat (Fagopyrum spp.) in food. *Bioscience, Biotechnology and Biochemistry* **69**: 724-731.

Hurley, I. P., Ireland, H. E., Robert, C. C. and Williams, J. H. H. (2004). Application of immunological methods for the detection of species adulteration in dairy products. *Int. J Food Sci. & Tech.* **39(8)**: 873–878.

Ivanova, N. V., Fazekas, A. J. and Hebert, P. D. N. (2008). Semi-automated, membrane-based protocol for DNA isolation from plants. *Plant Molecular Biology Reporter* **26**: 186-198.

Javanmardi, N., Bagheri, A., Moshtaghi, N., Sharifi, A. and Kakhki, A. H. (2011). Identification of Safflower as a fraud in commercial Saffron using RAPD/SCAR Marker. *J Cell and Molecular Res.* **3(1)**: 31-37.

Joshi, V. C., Pullala, V. S. and Khan, I. A. (2005). Rapid and easy identification of *Illicium verum* Hook f. and its adulterant *Illicium anisatum* Linn. by fluorescent microscopy and gas chromatography. *J Assoc. Official Anal. Chemists Int.* **88**: 703-706.

Kelly, J. F., Downey, G. (2005). Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics. *J Agric. Food Chem.* **53(9)**: 3281-3286.

Kesmen, Z., Yetiman, A. E., Sahin, F. and Yetim, H. (2012). Detection of Chicken and Turkey Meat in Meat Mixtures by Using Real-Time PCR Assays. *J Food Science*. **77(2)**: C167–C173.

Khan, S. K., Mirza, J., Anwar, F., and Abdin, M. Z. (2010). Development of RAPD markers for authentication of *Piper nigrum* (L). *Environ. We Int. J. Sci. Tech.* **5**: 47-56.

Kojoma, M., Kurihara, K., Yamada, K., Sekita, S., Satake, M. and Iida, O. (2002). Genetic identification of cinnamon (*Cinnamomum* spp.) based on the *trnL-trnF* chloroplast DNA. *Planta Medica* **68**: 94-96.

Koppel, E., Stadler, M., Luthy, J. and Hubner, P. (1998). Detection of wheat contamination in oats by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) *European Food Res. and Tech.* **206**: 399-403.

Lakshmi, V. (2012). Review article on food adulteration. *International J of Sci. Inventions Toady* **1(2)**: 106-113.

Li, M., Wong, Y. L., Jiang, L. L., Wong, K. L., Wong, Y. T., Lau, C. B. S. and Shaw, P. C. (2013). Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient *Hedyotis diffusa* Willd. *Food Chem.* **141**: 2522–2525 Liu, M., Luo, Y., Tao, R., He, R., Jiang, K. and Wang, B. (2009). Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediated isothermal amplification. *Bioscience, Biotechnology, and Biochem.* **73(11)**: 2365–2369.

Lockley, A. K. and Bardsley, R. G. (2000). DNA-based methods for food authentication. *Trends in Food Sc. and Tech.* **11**: 67-77.

Lopez, S. J. (2008). TaqMan based real time PCR method for quantitative detection of basmati rice adulteration with non-basmati rice. *European Food Research and Technology*. **227**: 619-622.

Louveaux, J., Maurizio, A. and Vorwohl, G. (1978). Methods of melissopalynology. *Bee World* **59(4)**: 139-157.

Lum, M. R. and Hirsch, A. M. (2006). Molecular methods for the authentication of botanicals and detection of potential contaminants and adulterants. *Acta Horticulturae* **720**: 59-72.

Macpherson, J. M., Eckstein, P. E., Scoles, G. J. and Gajadhar, A. A. (1993). Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. *Molecular and Cellular Probes*. **7**: 293-299.

Mahajan, M. V., Gadekar, Y. P., Dighe, V. D., Kokane, R. D. and Bannalikar, A. S. (2011). Molecular detection of meat animal species targeting MT 12S rRNA gene.. *Meat Sci.* **88(1)**: 23-27.

Mangal, M., Bansal, S. and Sharma, M. (2014). Macro and micromorphological characterization of different *Aspergillus* isolates. *Legume Research* **37(4)**: 372-378

Marieschi, M., Torelli, A., Poli, F., Sacchetti, G. and Bruni, R. (2009). RAPD-based method for the quality control of mediterranean oregano and its contribution to pharmacognostic techniques. *J Agric. and Food Chem.* **57(5)**: 1835-40.

Marieschi, M., Torelli, A. and Bruni, R. (2012). Quality control of saffron (*Crocus sativus* L.): Development of SCAR markers for the detection of plant adulterants used as bulking agents. *J Agric Food Chem.* **60(44)**: 10998-1004.

Martellosi, C, Taylor, E. J., Lee, D., Graziosi, G. and Donini, P. (2005). DNA extraction and analysis from processed coffee beans. J Agric. Food Chem. **53**: 8432-8436.

Matute, A. I. R., Soria, A. C., Castro, I. M. and Sanz, M. L. (2007). A new methodology based on GC-MS to detect honey adulteration with commercial syrups. *J Agric Food Chem.* **55(18)**: 7264-9.

McDowell, I., Taylor, S. and Gay, C. (1995). The Phenolic Pigment Composition of Black Tea Liquors Part I:Predicting Quality. *J. Agric. Food Chem.* **69**: 467-474.

²⁷ ACCEPTED MANUSCRIPT

Meyer, R., Hofelein, C., Luthy, J. and Candrian, U. (1995). Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. *J. AOAC Int.* **78**: 1542–1551.

Mneney, E. E. (2010). Review of the use of molecular marker technologies for genetic improvement of cashew (*Anacardium occidentale* L.) in Tanzania. **In:** Proceedings of Second International Cashew Conference.

Mouly, P., Gaydou, E. M., Auffray, A. (1998). Simultaneous separation of flavone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. *J. Chromatogr. A.* **800**: 171-179.

Mustorp. S., Axelsson, C. E., Svensson, U. and Holck, A. (2008). Detection of celery (*Apium graveolens*), mustard (*Sinapis alba*, *Brassica juncea*, *Brassica nigra*) and sesame (*Sesamum indicum*) in food by real-time PCR. *European Food Research and Tech.* **226**: 771-778.

Muzzolupo, I. and Peri, E. (2002). Recovery and characterisation of DNA from virgin olive oil. European Food Research and Tech. **214**: 528–531.

Nicolaou, N., Xu, Y. and Goodacr, R. (2010). Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. *J. Dairy Sci.* **93**: 5651–5660.

Nieri, P., Adinolfi, B., Morelli, I., Breschi, M. C., Simoni, G. and Martinotti, E. (2003). Genetic characterization of the three medicinal *Echinacea* species using RAPD analysis. *Planta Medica*. **69**: 685-686.

Nogueira, J. M. F. and Nascimento, A. M. D. (1999). Analytical characterization of Madeira wine. *J Agric. Food Chem.* **47**: 566-575.

Ohe, K. V. D. (1991). Scanning Electron Microscopic Studies of Pollen from Apple Varieties. 6th Pollination Symposium. *Acta Hortic*: 405-409.

Oliveira, R. C. S., Oliveira, L. S., Franca, A. S. and Augusti, R. (2009). Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. *J Food Composition and Analysis*. **22(3)**: 257–261.

Oliveri, C., Frequin, M., Malferrari, G., Saltini, G., Gramegna, M., Tagliabue, R., De Blasio, P., Biunno, I. and Biagiotti, L. (2006). A simple extraction method useful to purify DNA from difficult biologic sources. *Cell Preservation Tech.* **4**: 51-54.

Ozen, B. F. and Mauer, L. J. (2002). Detection of hazelnut oil adulteration using FTIR spectroscopy. *J of Agri. and Food Chem.* **50**: 3898-3901.

Pafundo, S., Agrimonti, C., Maestri, E. and Marmiroli, N. (2007). Applicability of SCAR markers to food genomics: olive oil traceability. *J Agric. and Food Chem.* **55**: 6052-6059.

Paradkar, M. M., Singhal, R. S. and Kulkarni, P. R. (2001). A new TLC method to detect the presence of ground papaya seed in ground black pepper. *J Sci. Food and Agric.* **81**: 1322-1325.

Patrizia, T., Furlan, M., Pallavicini, A., Giorgio Graziosi Nimis, P. L. and Vignes Lebbe, R. (2010). Coffee species and varietal identification. **In:** Tools for Identifying Biodiversity: Progress and Problems. 307-313.

Philip, J., Marriott, Shellie, R. and Cornwell, C. (2001). Gas chromatographic technologies for the analysis of essential oils. *J Chromatography A.* **936**: 1–22.

Pizarro, C., Dyez, E. I. and Saiz, G. J. M. (2007). Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. *Analytica Chimica Acta*. **585**: 266-276.

Popelka, P., Popelka, P., Horska, D., Golian, J. and Marcincak, S. (2002). Detection of sheep milk and cheeses adulteration using enzyme immunoanalysis (ELISA). *Slov. Vet. J.* **27(3)**: 36-37.

Rohland, N. and Hofreiter, M. (2007). Comparison and optimization of ancient DNA extraction. *Biotechniques*. **42**: 343-352.

Ronning, S. B., Berdal, K. G., Andersen, C. B. and Holst-Jensen, A. (2006). Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat- and barley-derived DNA. *J Agric. Food Chem.* **54**: 682-697.

Rossi, S., Scaravelli, E., Germini, A., Corradini, R., Fogher, C. and Marchelli, R. (2006). A PNA-array platform for the detection of hidden allergens in foodstuffs. *European Food Res. Tech.* **223**: 1-6.

Sandberg, M., Lundberg, L., Ferm, M. and Yman, I. M. (2003). Real time PCR for the detection and discrimination of cereal contamination in gluten free foods. *European Food Res. Tech.* **217**: 344-349.

Sasaki, Y., Komatsu, K. and Nagumo, S. (2008). Rapid detection of *Panax ginseng* by loop-mediated isothermal amplification and its application to authentication of Ginseng. Biological and *Pharmaceutical Bulletin*. **31(9)**: 1806–1808.

Sasikumar, B., Syamkumar, S., Remya, R. and John Zachariah, T. (2005). PCR based detection of adulteration in the market samples of turmeric powder. *Food Biotech.* **18**: 299-306.

Scaravelli, E., Brohee, M., Marchelli, R. and Hengel, A. J. (2008). Development of three real-time PCR assays to detect peanut allergen residue in processed food products. *European Food Res. Tech.* **227**: 857-869.

Sforza, S., Corradini, R., Tedeschi, T. and Marchelli, R. (2011). Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. *Chemical Society Reviews* **40(1)**: 221–232.

Shah, S. M., Naveed, S. A. and Muhammad, A. (2013). Genetic diversity in basmati and non-basmati rice varieties based on microsatellite markers. *Pak. J. Bot.* **45(s1)**: 423-431.

Shaw, P. C., Ngan, F. N., But, P. P. H. and Wang, J. (2002). Molecular markers in Chinese medicinal materials. **In:** Authentication of Chinese medicinal materials by DNA technology (Eds.: Shaw P.C., Wang J. and But P.P.H.), World Scientific Publishing Co. 1-23.

Shelar, M. K., Bafna, A. R., Wahile, A. M. and Suresh, V. T. (2011). Evaluation of edible oils for *Argemone mexicana* seed oil adulteration. *Res. J Pharmaceutical, Biological and Chemical Sci.* **2(3)**: 927-936.

Sheorey, R. R. and Tiwari, A. (2011). Rapid amplified polymorphic DNA (RAPD) for identification of herbal materials and medicines. *J Scientific Industrial Res.* **70**: 319-326.

Shim, Y. H., Park, C. D., Kim, D. H., Cho, J. H., Cho, M. H. and Kim, H.J. (2005). Identification of *Panax* species in the herbal medicine preparations using gradient PCR method. *Biological & Pharmaceutical Bulletin*. **28**: 671-676.

Silva, B. M., Andrade, P. B., Mendes, G. C., Valentao, P., Seabra, R. M. and Ferreira, M. A. (2000). Analysis of phenolic compounds in the evaluation of commercial Quince Jam Authenticity. *J Agric. Food Chem.* **48**: 2853-2857.

Soares, S., Amaral, J. S., Mafra, I. and Oliveira, M. B. (2010). Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. *Meat Sci.* **85(3)**: 531-536.

Spencer, J. A., Kauffman, J. F., Reepmeyer, J. C., Gryniewicz, C. M., Ye, W., Toler, D. Y., Buhse, L. F. and Westenberger, B. J. (2008). Screening of heparin API by near infrared reflectance and Raman spectroscopy. J Pharmaceutical Sci. 97: 1-16.

Tripathi, M., Khanna, S. K. and Das, M. (2007). Surveillance on use of synthetic colours in eatables vis a vis Prevention of Food Adulteration Act of India. *Food Control* **18**: 211-219.

Torelli, A., Mureischi, M. and Bruni, R.(2014). Authentication of saffron in different processed retail products by means of SCAR markers. Food Control **36**:126-131.

Vemireddy, L. R., Archak, S. and Nagaraju, J. (2007). Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (*Oryza sativa*). *J Agric. Food Chem.* **55**: 8112-8117.

Viswanathan, S., Radecka, H. and Radecki, J. (2009). Electrochemical biosensors for food analysis. *Monatshefte fur Chemie*. **140(8)**: 891–899.

Vogels, J., Terwel, L., Tas, A., Berg, F., Dukel, F. and Greef, J.(1996). Detection of adulteration in orange juices by a new screening method using Proton NMR Spectroscopy in combination with pattern recognition techniques. *J Agric. Food Chem.* **44(1)**: 175–180.

Wang, F., Jiang, L., and Ge, B. (2012). Loop-mediated isothermal amplification assays for detecting shiga toxin-producing *Escherichia coli* in ground beef and human stools. *J Clinical Microbiology*. **50(1)**: 91–97.

Wen, Z. Q., Chen, G., Luo, Y., Li, G., Masatani, P., Bondarenko, P., Phillips, J. and Cao X. (2012). Assessment of spectroscopic techniques for adulteration detection of raw materials used in biopharmaceutical manufacturing. *American Pharmaceutical Review*.

WHO/FAO (2014). Procedural Manual Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission, Twenty-second edition. 1-212.

Wilhelmsen, E. C. (2004). Food Adulteration. Food Sci. and Tech. 138: 2031-2056.

Wilhelmsen. E. C. (2006). Adulteration determination. **In:** Encyclopedia of analytical chemistry: applications, theory and instrumentation. Meyers RA(Ed.). John Wiley and Sons, Inc. United States:14344.

Woolfe, M. and Primrose, S. (2004). Food forensics: using DNA technology to combat misdescription and fraud. *Trends in Biotech*. **22(5)**: 222-226

Wright, C. (2009). Analytical methods for monitoring contaminants in food- an industrial perspective. *J Chromatography A.* **1216(3)**: 316–319.

Xu, X. and Ying, Y. (2011). Microbial biosensors for environmental monitoring and food analysis. *Food Reviews Int.* **27(3)**: 300–329.

Xue, H, Hu, W., Son, H., Han, Y. and Yang, Z. (2010). Indirect ELISA for detection and quantification of bovine milk in goat milk. *J Food Sci. Tech.* **31(24)**: 370-373.

Yang, H. and Irudayaraj, J. (2002). Rapid determination of vitamin C by NIR, MIR and FT Raman techniques. *J Pharmacy and Pharmacology*. **54**: 1247-1255.

Yang, L., Fu, S., Khan, M. D., Zeng, W. and Fu, J. (2013). Molecular cloning and development of RAPD-SCAR markers for *Dimocarpus longan* variety authentication. *SpringerPlus*. **2**: 501.

Yau, F. C. F. and Nagan, F. N. (2002). Methodology and equipment for general molecular techniques. **In:** Authentication of Chinese medicinal materials by DNA technology (Eds. Shaw PC, Wang J and But PP). World Scientific Publishing Co. 25-42.

Zammatteo, N., Lockman, L., Brasseur, F., De Plaen, E., Lurquin, C., Lobert, P. E., Hamels, S., Boon, T. and Remacle, J. (2002). DNA microarray to monitor the expression of MAGE-A genes. *Clinical Chem.* **48**: 25-34.

TABLE 1: Types of Adulterants and their examples

ТҮРЕ	FEW EXAMPLES OF SUBSTANCES
	ADDED
Intentional Adulterants	
Physical adulterant	Sand, marble chips, stones, mud, other filth,
	talc, chalk powder, water, mineral oil Papaya seeds in black pepper, Argemone
Biological adulterant	seeds in mustard seed etc.
Incidental Adulterants	
Natural adulteration	Toxic varieties of pulses, mushrooms, green and other vegetables, fish and sea foods
Non natural adulteration	Pesticide residues, tin from can, droppings of rodents, larvae in foods
Metallic Contaminants	Arsenic from pesticides, lead from water,
	mercury from effluent, from chemical
	industries, tins from cans

Microbial contaminant					
 Bacterial 	Bacillus cereus, Clostridium botulinum				
	toxins, Clostridium perfringens (welchii),				
	Salmonella, Shigella sonnei, Staphylococcus				
	aureus, Streptococcus pyogenes				
Fungal	Aspergillus flavus (aflatoxin), Claviceps				
	purpurea (Ergot), Fusarium				
	sporotrichiodies, Penicillium islandicum				
Parasiticus	Trichinella spiralis, Ascaris lumbricoides,				
	Entamoeba histolytica, Ancylostoma				
	duodenale (hookworm)				

TABLE 2: Health effects of common food adulterants

ADULTERANTS IN FOOD	FOODS INVOLVED	HEALH EFFECTS OF
		ADULTERANTS
	Physical adulterants	
Sand, stone, marble chips,	Food grains, pulses etc.	Damage digestive tract
filth		
Foreign leaves or exhausted	Tea	Injurious to health, cancer
tea leaves, saw dust artificially		
colored		
	Biological adulterants	
Artificially colored foreign	Black pepper, cumin seeds,	Injurious to health, cancer
seeds	mustard seed, poppy seeds etc.	
Rancid oil	Oils	Destroys vitamin A and E
Mineral oil (white oil,	Edible oils and fats, Black	Cancer
petroleum fractions)	pepper	
Adulteration with low quality	Wheat, Mediterranean	Low quality standards affect
species	oregano, rice, olive oil, milk,	health
	meat	
Petals, husk or stem and fruits	Saffron, cashew, clove,	Low quality standards affect
of other plants, shell dust	chillies	health

Inciden	tal Adulterants (Natural/ Non 1	natural)
Pesticide residues	All types of food	Acute or chronic poisoning with damage to nerves and vital organs like liver, kidney,
		etc.
Flouride	Drinking water, sea foods, tea,	Excess fluoride causes
	etc	fluorosis (mottling of teeth,
		skeletal and neurological
		disorders)
Polycyclic Aromatic	Smoked fish, meat, mineral	Cancer
Hydrocarbons (PAH)	oil-contaminated water, oils,	
	fats and fish, especially shell-	
	fish	
	Metallic contaminants	
Arsenic	Water, Fruits such as apples	Dizziness, chills, cramps,
	sprayed over with lead	paralysis, death
	arsenate	
Barium	Foods contaminated by rat	Violent peristalsis, arterial
	poisons (Barium carbonate)	hypertension, muscular
		twitching, convulsions,
		cardiac disturbances

Cadmium	Fruit juices, soft drinks, etc. in	Itai-itai (ouch-ouch)
	contact with cadmium plated	disease, Increased salivation,
	vessels or equipment.	acute gastritis, liver and
	Cadmium contaminated water	kidney damage, prostate
	and shell-fish	cancer
Cobalt	Water, liquors	Cardiac insufficiency and
		myocardial failure
Copper	Food	Vomiting, diarrhea
Lead	Water, natural and processed	Lead poisoning causing foot-
	food	drop, insomnia, anemia,
		constipation
Mercury	Fish	Brain damage, paralysis, death
Tin and Zinc	Food	Vomiting
	Microbial contaminant	
Bacterial contaminants		
Bacillus cereus	Cereal products, custards,	Food infection (nausea,
	puddings, sauces	vomiting, abdominal pain,
		diarrhoea)
Clostridium.perfringens	Milk improperly processed or	Nausea, abdominal pains,

(Welchii) type A	canned meats, fish and gravy	diarrhoea, gas formation		
	stocks			
Salmonella spp.	Meat and meat products, raw	Salmonellosis (food infection		
	vegetables, salads, shell-fish,	usually with fever and chills)		
	eggs and egg products,			
	warmed-up leftovers			
Staphylococcus aureus	Dairy products, baked foods,	Increased salivation, vomiting,		
Enterotoxins- A,B,C,D or E	meat and meat products, low-	abdominal cramp, diarrhoea,		
	acid frozen foods, salads,	severe thirst, cold sweats,		
	cream sauces, etc. prostration			
Shigella sonnei	Milk, potato, beans, poultry,	Shigellosis (bacillary		
	tuna, shrimp, moist mixed	dysentery)		
	foods			
Fungal contaminants	I			
Aflatoxins	Aspergillus flavus	Liver cancer		
	contaminated foods such as			
	groundnuts, cottonseed etc.			
Toxins from	Grains (millet, wheat, oats, rye	Alimentary toxic aleukia		
Fusarium sporotrichioides	etc.) (ATA)(epidemic			
		panmyelotoxicosis)		

Sterigmatocystin from	Foodgrains	Potent carcinogen and
Aspergillus versicolour		mutagen, kidney and liver
Aspergillus nidulans		damage and diarrhea, Skin and
Aspergillus bipolaris		hepatic tumour
Toxins from	Yellow rice	Toxic mouldy rice disease
Penicillium inslandicum,		
Penicillium atricum,		
Penicillium citreovirede,		
Fusarium, Rhizopus,		
Aspergillus		
Parasiticus contaminants		
Ascaris lumbricoides	Any raw food or water	Ascariasis
	contaminated by human faces	
	containing eggs of the parasite	
Entamoeba histolytica	Raw vegetables and fruits	Amoebic dysentery

TABLE 3: Different food articles and adulterant detection techniques for them

Name of	Type o	of Adulterant	Methods	letection	Referenc	
Food Article	Physical/ Chemical	Biological	Physical	Biochemical	Molecular	es
SPICES						
Black	-	Papaya seeds	Papaya	Near infrared	SCAR	Dhanya
pepper			seeds can	hyper spectral		et al.,
(Piper			be	imaging (NIR		2009
nigrum)			separated	HSI)		
			out from	Mid-infrared		
			pepper as	spectroscopy		
			they are	(MIR)		
			shrunken,			
			oval in			
			shape and			
			greenish			
			brown or			
			brownish			
			black in			
			colour			

	Coated	-	Black	Gas	-	Curl and
	with		pepper	chromatograp		Fenwick.
	mineral		coated with	hy , Thin		, 1983
	oil		mineral oil	layer		
			gives	chromatograp		Paradkar
			Kerosene	hy		et al.,
			like smell			2001
Cloves	Magnesiu	Exhausted clove	Exhausted	Gas	-	Philip et
	m, salt,	(volatile oil	cloves can	chromatograp		al., 2001
	sand, earth	extracted), stem	be	hy- mass		
		and fruits of	identified	spectroscopy		
		clove	by its small			
			size and			
			shrunken			
			appearance.			
			The			
			characterist			
			ic pungent			
			taste of			
			genuine			
			cloves is			

			less				
			pronounced				
			in				
			exhausted				
			cloves				
Mustard	-	Argemone	Mustard	TLC,	HP-	Real time-	Shelar et
seed and oil		seeds/ oil	seeds have	TLC		PCR	al., 2011
		(Argemone	a smooth				Mustorp
		mexicana), rape	surface.				et al.,
		seed, ragi	The				2008
			argemone				
			seed have				
			grainy and				
			rough				
			surface and				
			are black				
			and hence				
			can be				
			separated				
			out by				
			close				

			examinatio			
			n. When			
			Mustard			
			seed is			
			pressed			
			inside it is			
			yellow			
			while for			
			argemone			
			seed it is			
			white			
Turmeric	Coloured	Wild Curcuma	When few	TLC, HPLC	RAPD	Sasikum
powder	saw dust,	spp. C. zedoaria	drops of			ar et al.,
	metanil	Rosc or 'yellow	concentrate			2005
	yellow	shotti'	d			
			hydrochlori			Dhanya
	Chalk	Starch from	c acid are			et al.,
	powder or	cheaper source;	added in a			2011
	yellow	saw dust.	spoonful of			
	soap	23 200	turmeric			
	stone		powder in			

powder	test tube,	
	instant	
	appearance	
	of pink	
	colour	
	which	
	disappears	
	on dilution	
	with water	
	shows the	
	presence of	
	turmeric. If	
	the colour	
	persists,	
	metanil	
	yellow (an	
	artificial	
	colour) a	
	non-	
	permitted	
	coal tar	
	colour is	

			present			
Chillies	Brick	Powdered fruits	When a tea	Microscopy,	RAPD	Cornet et
powder	powder,	of 'Choti ber',	spoon full	Paper		al., 2006
	salt	red beet pulp;	of chilli	chromatograp		Dhanya
	powder or	almond shell	powder is	hy, UV light		et al.,
	talc	dust, extra	taken in a	(365 nm),		2008
	powder.	amounts of	glass of	HPLC		
		bleached	water,			
		pericarp, seeds,	coloured			Tripathi
		calyx, peduncle	water			et al.,
		of chilli, starch	extract			2007
		of cheap origin,	shows the			
		tomato wastes	presence of			
			artificial			
			colour.			
	Water		Any			
	soluble		grittiness			
	coal tar		that may be			
	colour		felt on			
			rubbing the			
			sediment at			

	the bottom		
	of glass		
	confirms		
	the		
	presence of		
	brick		
	powder/san		
	d, soapy		
	and smooth		
	touch of		
	the white		
	residue at		
	the bottom		
	indicates		
	the		
	presence of		
	soap stone.		
	Water		
	soluble		
	artificial		
	colour can		

be detected	
by	
sprinkling	
small	
quantity of	
chilli or	
turmeric	
powder on	
the surface	
of water	
contained	
in a glass	
tumbler.	
The water	
soluble	
colour	
immediatel	
y starts	
descending	
in colour	
streaks	

Hing/asfoet	Coal tar	Foreign resin,	When little	-	Real tin	ne	Ronning
ida	dyes,	gum arabic,	portion of		PCR		et al.,
	gypsum,	gum resin,	the sample				2006
	red clay,	galbanum,	is shaken				Hernand
	chalk	moriacum,	with water				ez et al.,
		resin, rosin,	and				2005
		barley, wheat or	allowed to				
		rice flour, slices	settle, soap				
		of potato	stone or				
			other				
			earthy				
			matter				
			settle down				
			at the				
			bottom.				
Saffron	Synthetic	Different parts	Genuine	HPLC	SCAR		Haghighi
	dyes-	of the saffron	saffron will				et al.,
	tartrazine,	flower itself,	not break				2007
	ponceau	dried petals of	easily like				Javanmar
	2R,	safflower and	artificial				di et al.,
	sunset	Scotch	Microscop				2011

yellow,	marigold,	у		Marie	esch
amaranth,	calendula,			i et	al.,
orange	poppy, turmeric,			2012	
GG,	annatto,				
methyl	pomegranate,				
orange,	Spanish oyster				
eosin and	and maize, dyed				
Erythrosi	corn silk, meat				
ne oil;	fibre, red sandal				
honey;	wood, turmeric				
glycerine;	powder, paprika				
solutions	powder				
of					
potassium					
or					
ammoniu					
m nitrate;					
sodium					
sulphate;					
magnesiu					
m					

	sulphate;					
	barium					
	sulphate;					
	borax					
G.	г 1	<u> </u>			G :	17.
Cinnamon	Eugenol,	Cassia ;	-	-	Sequencin	Kojoma,
	cylon oil,	aromatized and			g; SSCP	et al.,
	yellow	powdered				2002
	brown	beechnut husk;				
	dye	hazel nut;				
		almond shell				
		dust				
Mediterran	-	Origanum	-	-	RAPD	Mariesch
ean		majorana; O.				i et al.,
oregano		syriacum; O.				2009
		vulgare;				
		Satureja				
		Montana				
MISCELLA	NEOUS FO	ODS			ı	

Rice	Dust,	Non basmati	These may	-	Real time	Lopez,
	pebbles	rice or other	be		PCR	2008
	stones,	breed rice	examined		SSR	Vemired
	straw,		visually to		Microsatell	dy et al.,
	weed		see foreign		ite DNA	2007
	seeds,		matter,			
	damaged		damaged		36.12.1	
	grains,		grains,		Multiplex	Archak
	weevilled		discoloured		SSR	et al.,
	grain,		grains,		Microsatell	2007
	insects,		insect,		ite DNA	
	rodent		rodent			
	hair and		contaminati			
	excreta		on etc			
Coffee		Chicory,	Gently	MIR	Real-time	Patrizia
		Arabica in	sprinkle the	spectroscopy	PCR	et al.,
		Robusta coffee	coffee			2010
		bean	powder			
			sample on			Downey
			the surface			et al.,
			of water in			1997
						1771

	a glass. The	\neg
	coffee	
	floats over	
	nd seeds the water	
	and date but chicory	
seed po	wder begins to	
	sink down	
	within a	
	few	
	seconds.	
	The falling	
	chicory	
	powder	
	particles	
	leave	
	behind	
	them a trail	
	of colour,	
	due to large	
	amount of	
	caramel.	

Sprinkle
the
suspected
coffee
powder on
white
filter/blotti
ng paper
and spray 1
percent
sodium
carbonate
solution on
it.
Tamarind
and date
seed
powder
will, if
present,
stain
blotting

			paper/filter			
			paper red.			
Tea	Iron	Cashew husk	Spread a	GC-MS	Species-	Dhiman
[Camellia	flakes	(Anacardium	small		specific	and
sinensis		occidentale L.)	quantity of		PCR	Singh,
(L.)]			sample on		ITS of 5S	2003
samples			a piece of		rRNA	
			paper, draw			Bandana
	Leather		a magnet			and
	flakes		over it. Iron			Mahipal,
			flakes cling			2003
			to the			
			magnet.			
			Prepare a			
			paper ball.			
			Fire the			
			ball and			
			drop a little			
			amount of			
			sample on			

	1					1
			it. The			
			presence of			
			leather			
			flakes			
			emits an			
			odour of			
			burnt			
			leather			
Oats		Wheat	-	-	Species-	Koppel
		contamination			specific	et al.,
					PCR	1998
Olive oil		Less expensive	Detection	MIR	SCAR	Pafundo
		oils	of origin	spectroscopy	AFLP/	et al.,
			and		RAPD	2007
			authenticity			Busconi
			verification			
			of virgin			et al.,
			olive oil			2003
						Muzzolu
						po and
						Peri,

				2002
				Yang
				and
				Irudayara
				j, 2002
Herbal	Panax species		LAMP,	Sasaki et
	ranax species			
medicine			RFLP,	al., 2008
			PCR	Shim et
				al., 2005
Detection	Allergenic		Real-time	Scaravell
of	peanut		PCR	i et al.,
potentially				2008
allergenic			Duplex	
peanut			PCR/PNA	Rossi et
(Arachis			array	al., 2006
hypogaea)				, 2 000
in foods				
Detection	Allergenic		Species	Hirao et
allergenic	Buckwheat		specific	al., 2005
buckwheat	(Fagopyrum	 	PCR (ITS	

in food		spp.)			and 5.8S	
					rRNA)	
Milk	Water,	Species of	The milk	ELISA,	PCR based	Hurley et
	urea	origin,	can easily	Fourier	method,	al., 2004
		infectious	be tested	transform	ribotyping,	
		agents	by urease	infrared	Real time	Nicolaou
			strips, also	spectroscopy	PCR	et al.,
			milk does	and		2010
	Iron and		not contain	multivariate		2010
	zinc		glucose or	analysis,		
			invert	Pulsed field		Bottero
			sugar, if	gel		et al.,
			test for	electrophoresi		2002
			glucose	s, MIR and		
			with urease	NIR		
			strip found			
			positive, it			
			means milk			
			is			
			adulterated.			

Meat	Metal,	Species of	-	ELISA	PCR-RFLP	Hernánd
	glass	origin, Addition				ez et al.,
	stones,	of cheaper meat				1994
	bones,					Mahajan
						et al.,
						2011
Juices	Cheaper	Authenticity	The Brix	Proton NMR	-	Vogels
	solid		test	spectroscopy		et al.,
	ingredient		accurately	LC-MS		1996
	S		determines	FT-IR		
	(particula		the ratio of			Kelly
	rly		solids to			and
	sugars)		water in			Downey,
			fruit juice.			2005
			The			2003
			observed			
			ratio is then			
			compared			
			with			
			predetermi			
			ned			

	standards.		
			ļ

TABLE 4: Examples of molecular techniques for adulterant /contaminant detection

FOOD ITEM	FOOD	TECHNIQUE	PRIMERS/	REFRENCES
	ADULTERANT		TARGET GENE	
Black pepper	Papaya seeds	RAPD	OPC-1	Khan et al.,
			OPC-4	2010
			OPC-6	
			OPC-7	
			OPJ09	
		SCAR	P1	Dhanya et al.,
			P2	2009
Saffron	Marigold	SCAR	ScCo ₃₉₀	Torelli et al.,
				2014
Saffron	Safflower	RAPD	OPA-14	Babaei et al.,
			MG11	2013
			MG12	
			AJO5	
			RAP1	Javanmardi et
			RAP2	al., 2011
			RAP3	
			RAP4	

			RAP6	
			RAP7	
			RAP8	
			RAP9	
			RAP10	
		SCAR	SAF-L40	Javanmardi et
			SAF-L70	al., 2011
			SAF-L4	Marieschi et al.,
				2012
Tea (Cashew husk	PCR	Species specific	Dhiman and
			PCR primers	Singh, 2003
			from intergenic	
			spacer regions of	
			5S r RNA genes	
		RAPD	OPF14	
		M II D	OTTT	Mneney, 2010
Turmeric powder (C. zedoaria Rosc	SCAR	OPA01	Dhanya et al.,
c	or 'yellow shotti'		OPE18	2011
Chilli	Dried beet pulp	RAPD	OPA-02	Dhanya et al.,

	Shell dust Z.		OPA-08	2008
	nummularia		OPA-10	
			OPA-12	
			OPA-13	
			OPA-15	
			OPC-07	
			OPC-08	
			OPD-05	
			OPD-11	
			OPJ-18	
Mediterranena	Origanum	RAPD	OPAG-06	Marieschi et al.,
Orgeno	majoran ; O.		OPAG-04	2009
	syriacum; O.		OPAG-18	
	Vulgare; Satureja			
	montana			
Cinnamon	Cinnamomum	Sequencing;	trnL-trnF	Kojoma et al.,
	cassia, C.	SSCP		2002
	zeylanicum, C.			
	burmannii and C.			
	sieboldii			
Ginger (Zingiber	Crude drugs and	SCAR	P3	Chavan et al.,
officinale)	multicomponent			2010

	formulations			
Basmati rice	Non basmati rice	Microsatellite	RM252	Shah et al.,
		markers	RM206	2013
		Microsatellite	RM1	Vemireddy et
		markers	RM44	al., 2007
			RM55	Archal et al.,
			RM72	2007
			RM171	
			RM202	
			RM241	
			RM348	
		Real time PCR	BAD2	Lopez et al.,
				2008
Spelt flour	Wheat	PCR-RFLP	γ-gliadin	Buren et al.,
			gene GAG56D	2001
			specific primers	
Peanut	Allergenic peanut	Real time PCR	Specific primers	Scaravelli et al.,
			from Ara h 3 gene	2008
			family	
Gluten free food	Wheat, rye,	Real time PCR	Specific primers	Sandberg et al.,
	barley, oats		from cereal	2003
			prolamin genes	

Ceareal based	Allergenic	PCR	ITS-1 region and	Hirao et al.,
Foods	buckwheat		5.8s rRNA gene	2005
			specific primer	
Herbal Medicine	Panax species	RAPD	OP-13B	Shim et al.,
			OP-5A	2003
		SCAR	JG14	Choi et al.,2008
Virgin Olive oil	Authencity	RAPD	PLT253	Busconi et al.,
	testing			2003
Buffalo milk	Bovine milk	PCR	Bos	Drummond et
			Bub2	al., 2013
Discrimination of	Authencity	AP-PCR	M13 forward-	Cao et al.,
the Chinese drug	testing		reverse	1996a
"Ku-di-dan"			GAL K	
(herba elephantopi)			Seq K	
		RAPD	0PC-06	
Chinese drug	Six different	AP-PCR	M13 forward	Cao et al.,
"Pu gong ying"	species of Tu		GAL K reverse	1996b
(herba	Gong Ying			
taraxaci.)		RAPD	0PC-06	
Medicinal	E. angustifolia.,	RAPD	E. angustifolia	Nieri et al.,
Echinacea species	E. pallida and E.		(OPA 20)	2003

purpurea		E. pallida (OPA	
		10)	
		E. purpurea	
		(OPA11; OPA	
		17)	
	SCAR	SCARf/r	Adinolf et al.,
			2005

TABLE 5: Commercially available kits for detection of various food adulterants

Food adulterants	Commercially available	Company	Description
	kits for them		
Physical contaminar	nts		
Marble and other	Annam Spot Test Kit	CONCERT (Centre	The "Annam Spot Test
stones, clay and		for Consumer	Kit", comprises a lens,
mud, metanil		Education, Research,	test tubes, 12 chemical
yellow		Teaching, Training	reagents and is able to
		and Testing)	test 32 food products
			besides ghee and
			edible oil

Dyes	Synthetic Dye Test Kit	RenekaBio	It is designed for
	Detection in Food		detection of dye color
			in food samples, such
			as: Rhodamine, Titan
			Yellow, and other
			colors that are not
			naturally from the
			food itself
	IAIN-C-50 Detector	ChemSee's	ChemSee's IAIN-C-50
			Detector for Illegal
			Dyes is the detector
			which can be used to
			easily determine
			whether illegal food
			colorants have been
			added to food/candy
Biological contamin	ants		
Petals, husk or stem	Annam Spot Test Kit	CONCERT (Centre	The kit can be used to
and fruits of other		for Consumer	detect 33 widely used
plants, shell dust,		Education, Research,	adulterants in 31
Rancid oil, starch		Teaching, Training	common food items

and artificially		and Testing)	
coloured foreign			
seeds			
Metallic contaminar	nts		
Cadmium, arsenic,	Heavy Metals Detection	ChemSee	Calorimetry based
Mercury, Lead and	Kit		detection method.
other Heavy Metals			Detector for Lead,
	GHM-01 Common Heavy	ChemSee	Mercury, Cadmium
	Metal Detector		and Thallium, contains
			all materials for
			sample preparation
			and built-in quality
			assurance
Arsenic	Arsenic Test Strip	Lamotte	It employs a test strip.
			Inorganic As ⁺³ and
			As^{+5} are converted to
			arsine gas. This reacts
			with the test strip in a
			closed container and
			produces yellow to
			brown color on the
			strip

Incidental Adultera	nts (Natural/ Non natural)		
Naturally occurring	Surface plasmon		SPR, an optical
tetradotoxin in	resonance (SPR)		technique that allows
seafood	immunosensors		for label-free, real-
			time, multiplexed
			analysis, and have
			detection limits that
			rival many of the
			conventional
			transduction methods
Pesticides	Rapid Test Pesticide	Renekabio	Colorimetry based
	Residue Detection Kit in		detection method.
	Food		Can detect Carbamate
			and Organophosphate
			Pesticides
	Pesticide Detection Test	Renekabio	Are a kind of enzyme
	Cards in Food		test paper used to
			detect Cholinesterase,
			Carbamate and
			Organophosphate
			Pesticides in fruits,

			vegetables, drinking
			water and hard
			surfaces
	Agri-Screen Ticket	Neogen corporation	Based on biochemical
			test
Microbial contamin	ants		
Staphylococcus	TST-RPLA toxin	Thermo Scientific	A kit for the detection
aureus	detection kit		of Staphylococcal
			toxic shock syndrome
			toxin in culture
			filtrates by reversed
			passive latex
			agglutination
	TaqMan Staphylococcus	Applied Biosystems	The TaqMan
	aureus Detection Kit		Staphylococcus aureus
			Detection Kit is part of
			a fully integrated,
			single-vendor solution
			that includes Applied
			Biosystems real-time

		PCR systems, software
		and reagents designed
		to deliver superior
		speed, simplicity and
		accuracy
BAX System Real-Time	DU PONT	The BAX System
PCR Assay		Real-Time PCR Assay
		for Staphylococcus
		aureus uses probe-
		based chemistry and
		real-time PCR
		detection to detect
		very low
		concentrations of S.
		aureus in food
		samples
Tecra Staph aureus kit	TECRA	ELISA based kit

Staphylococcus	RIDASCREEN ELISA	R-Biopharm, Inc.	The RIDASCREEN
entrotoxin	Test Kits		kits are found to be
			among the most
			reliable EIA tool for
			detection and
			identifiacation of
			Staphylococcus
			entrotoxin in food
	Tecra Staph Enterotoxins	TECRA	ELISA based kit
	kit		
Clostridium	Clostridium perfringens		Immunoassay based
	enterotoxin A (CPEnt)		detection kit to detect
	ELISA.		Clostridium on basis
			of Clostridium
			perfringens
			enterotoxin
Bacillus cereus	BCET-RPLA toxin	Thermo Scientific	A kit for the detection
	detection kit		of Bacillus cereus
			enterotoxin
			(diarrhoeal type) in
			foods and culture

			filtrates by reversed
			passive latex
			agglutination
Aflatoxin	Aflatoxin B1 test kit	BioScientific	ELISA based kit
producing fungus		MEDIBENA	
	Aflatoxin B1 FTRT	ELISA Technologies	The Flow-Through
		Laboratory Testing	Rapid Test for AFB1
		Services and	can detect AFB1 in
		Diagnostic Kits	different matrices with
			sensitivities down to 2
			ppb
	Aflatoxin B1 Elisa Kit	BIOMEDICA	ELISA based kit
Salmonella	Tecra Salmonella kit	TECRA	ELISA based kit
	VIDAS UP Salmonella	bioMerieux	ELFA based kit for
	Kits (VIDAS- SPT)		salmonella detection
			in food and
			environmental samples

Tecra Unique Salmonella	TECRA	Capture EIA based detection kit
MicroSEQ Salmonella spp. Detection Kit	Applied Biosystems	Real-time PCR based detection kit
Mericon Salmonella spp Kit	QIAGEN	Real-time PCR based detection kit
BAX Salmonella kit	Thermo Scientific	PCR based detection
Salmonella Detection Kit	Loopamp	LAMP ((Loop- mediated Isothermal Amplification) based
RapidChek Salmonella test kit	Roemer Labs	This immunoassay test uses a double antibody sandwich format

	Assurance Gold	BioControl	Enzyme Immunoassay
	EIA Salmonella		(EIA) based detection
			kit
Coliform	Test Kit for Detection of	Renekabio	To detect coilifrom in
	Coliform in Food		cooked or uncooked
			food
	VIT® E. coli/Coliform	Vermicon	Detection is based
			upon gene probe
			technology
	Tecra E.coli kit	TECRA	ELISA based kit
	The PrimerDesig genesig	Genesig	Real-time PCR based
	Kit for Escherichia coli		detection method
	0157:H7 (e.coli-0157)		
Listeria	Tecra Listeria kit	TECRA	ELISA based kit
	VIDAS Listeria	BioMerieux	ELFA based kit for
	monocytogenes Xpress		Listeria detection in
	Assay (VIDAS-LMX		food and
	assay)		environmental samples

	Listeria-Tek	Organon	ELISA based kit
	BAX Listeria Monocytogenes Kit	Thermo Scientific	PCR based detection kit
	MicroSEQ Listeria monocytogenes Detection	Applied Biosystems	Real-time PCR based detection kit
	Kit Microbact Listeria	Thermo Scientific	It is based on pH change and substrate
	Identification System		utilization
	API <i>Listeria</i> test strip	BioMerieux	Based on biochemical test
Yeast and Mold	Yeast & Mold Detection Kit in Food and Beverages	Renekabio	To detect yeast and mold in cooked food and beverage in sealed container
	Sani-Check YM: Test Kit for Detecting	Sani-Check	Sani-Check YM test kits contain

	Yeast and Mold		flexible plastic strips
			to which nutrient-
			containing filter paper
			is attached
Bacteria	Total Bacteria Count in	Renekabio	To detect and count
	Food		general bacteria cells
			in food samples (raw
			and cooked)
i	1	1	

Different Techniques for detection of Adulterants

Physical techniques

Chemical/biochemical techniques

Molecular

Structural Analysis

 Macroscopic and microscopic visual Structural evaluation

Physical property analysis

 Analysis of physical parameters viz., texture, solubility, bulk density etc.

Chromatography based

- High performance liquid chromatography (HPLC)
- Thin layer chromatography (TLC)
- Gas chromatography (GC)

Spectroscopy based

- Nuclear magnetic resonance (NMR) spectroscopy
- Gas chromatography mass spectroscopy (GC MS),
- Liquid chromatography mass spectroscopy (LC MS),
- Liquid chromatography nuclear magnetic resonance (LC NMR)

Electrophoresis based

- Polyacrylamide gel electrophoresis (PAGE)
- Capillary electrophoresis

Immunology based

• Enzyme linked immunosorbent assay (ELISA)

- PCR based
- Sequencing based
- Hybridization based

Figure 1: Various techniques to detect adulterants