בחינה בקורס מתמטיקה דיסקרטית - מועד ב׳

27.2.02 : תאריך

מסי קורס: 01.א.203.1850

מרצה: דרי חגית הל–אור

מתרגלת: גבי מריה פקין

עליך לענות על 3 מתוך 4 השאלות הבאות

לכל שאלה ניקוד זהה, אך חלוקת הניקוד לסעיפים השונים לא בהכרח זהה.

:1 שאלה

- א. יוצרים את כל הפרמוטציות האפשריות של 26 האותיות הלועזיות.
 - DOG, BIG, OIL מרות אחד מכילות לפחות מכילות לפחות מהד מהן מכילות לפחות אחד מ
- CART, SHOW, LIKE 2. כמה מהן מכילות לפחות אחד מ. 2 הוכח תשובתך.
- ב. הוכח של**כל** קבוצה בת 10 מספרים שונים הקטנים או שווים ל-50, יש 2 תתי קבוצות שונות בנות 5 מספרים כל אחת, שסכום האיברים בהן זהה.

 $\{1,2,3,4,5,6,7,8,9,10\}$: דוגמא לקבוצה הבאה בת 10 מספרים שונים

יש 2 תתי קבוצות המכילות 5 מספרים, כך שסכום האיברים זהה. תתי הקבוצות הן:

 $\{4,5,6,7,8\}$ $\{2,3,6,9,10\}$

:2 שאלה

: א. G גרף לא מכוון. נגדיר יחסים $R_1,\,R_2$ על קדקדי G באופן הבא G

G -ט עייי הסרת עייי עיי ויי לנתק בין לנתק ליתן ליתן לא (u,v) \Leftrightarrow

.v -שונה מ- u שונה מ- u

(2 קדקדים u,v הם מנותקים אם אין מסלול ביניהם).

- .1 האם היחסים R_1, R_2 הם יחסי שקילות! הוכח או הפרך.
- אם היחס הינו יחס שקילות, התבונן במחלקות השקילות וקבע כמה צלעות שונות יכולות להתחיל במחלקת שקילות אחת ולהסתיים באחרת. הסבר.
 - ב. הוכח או הפרך הטענה הבאה:

אוי היחס S_1 - S_2 סימטרי אם A אזי היחס סימטרים על קבוצה S_1 , אם

<u>שאלה 3:</u>

: עבור \mathbf{a}_{n} עבור $\mathbf{a}_{\mathrm{n}} \geq 3$ לכל $a_{\mathrm{n}} \leq 3^{n+1}$ כי שונים כי אופנים שונים כי

$$a_n = 2a_{n-1} + 3a_{n-2}$$

 $a_1 = 2$
 $a_2 = 10$

:4 שאלה

א. יהיו בעלים ישנם המספרים. נגדיר עץ ייחוקייי כעץ בינארי של מספרים מספרים מספרים. א. יהיו מספרים מ

: יש 2 עצים ייחוקיים: (a_0,a_1,a_2) n=2 דוגמא עבור n=2

מספר $n{\geq}0$ מספר העצים החוקיים עבור n. הוכח באינדוקציה שעבור מספר העצים החוקיים שווה:

$$T_n = \sum_{k=0}^{n-1} T_k T_{n-k-1}$$

ב. יהיו $X_0...X_n$ מספרים שלמים. רוצים לחשב את סכום 1 המספרים האלו. ניתן לעשות לעשות יהיו $X_0+...+X_n+...+X_n$ זאת במספר אופנים המוגדרים ע"י הכנסת (ח זוגות) דיים לביטוי

עייי ב-5 אופנים דוגמא: עבור 1–3 ניתן לחשב את הביטוי $\mathbf{n=}3$ ב-7 אופנים עייי $\mathbf{n=}3$

: הכנסת 3 זוגות סוגריים

,
$$((X_0 + (X_1 + X_2)) + X_3)$$
 , $(X_0 + ((X_1 + X_2) + X_3))$, $(X_0 + (X_1 + (X_2 + X_3)))$
 $(((X_0 + X_1) + X_2) + X_3)$, $((X_0 + X_1) + (X_2 + X_3))$

(שים לב כי אין לשנות את סדר האיברים X_i בביטוי).

.(Xi) מספרים n+1 מספרים שניתן לחשב שניתן מספרים מספר מספרים בסמן מספרים (

תן הגדרה רקורסיבית ל- $S_{\rm n}$. הסבר תשובתך.

<u>פתרון</u> בחינה בקורס מתמטיקה דיסקרטית - מועד ב׳

27.2.02 : תאריך

מסי קורס: 01.א.203

מרצה: דרי חגית הל-אור

מתרגלת: גב׳ מריה פקין

<u>שאלה 1:</u>

א.

(הסבר שונה: נתיחס למילה כאות אחת ואז יש סהייכ 24 אותיות שונות ולהן 24! פרמוטציות.)

2. במקרה של - CART, SHOW, LIKE יתכן יותר ממילה אחת בפרמוטציה כיון שאין אותיות משותפות בין המילים. על כן יש להשתמש בחוק ההכלה וההדכה:

(i=1..3) .i- קבוצת המכילות את המכילות הפרמוטציות הפרמוטציות המכילות את המילה ה-i

נרצה לחשב

$$|A1 \cup A2 \cup A3| = |A1| + |A2| + |A3| - |A1 \cap A2| + |A2 \cap A3| + |A3 \cap A1| + |A1 \cap A2 \cap A3|$$
 (הטבר דומה לסעיף הקודם) 23! = $|Ai|$

יש 20! נתיחס מייכ 20 אותיות אחת ואז יש מהייכ 20 פרמוטציות. בתיחס למילה כאות אחת למילה (אותיות בסדרה או יש לפזר את אחר 18 האותיות (הסבר שונה או אם 2 המילים מופיעות בסדרה או יש לפזר את אחר 18 האותיות

לכל .
$$\binom{18+3-1}{18} = \binom{20}{18} = 0$$
לכל מ-3 סוגים שקול לבחור 18 עצמים אקול לבחור 18 עצמים מ-3 סוגים

בחירה כזאת יש לספור את כלהפרמוטציות של 18 האותיות. כמו כן יש לספור את

$$\binom{20}{18}$$
*18!*2!= $\frac{20!}{18!*2!}$ *18!*2!= 20! פרמוטציות 2 המילים. נקבל:

. נתיחס למילה כאות אחת ואז יש סהייכ 17 אותיות שונות ולהן 17! פרמוטציות $|A1 \cap A2 \cap A3|$

$$\binom{3}{1}$$
23!+ $\binom{3}{2}$ 20!+ $\binom{3}{3}$ 17!= 3 * 23!+3 * 20!+17! : ולכן סהייכ פרמוטציות חוקיות

שווה
$$\frac{10!}{5!} = \frac{10!}{5!}$$
. עלפי עקרון שובך היונים (סכומים=שובך, תתי קבוצות=יונים)

חייבים להיות לפחות 2 תתי קבוצות עם סכום זהה.

:2 שאלה

 R_1 היחס R_1 הוא יחס שקילת כי מקיים:

(תמיד תמיד לנתק בין לנתק (u,u) $\in R_1$ מתקיים מחקרים לכל (u,u) מתקיים מחקרים לכל מחקרים לכל מחקרים מחקרים

ער עם פיים מסלול בין u,v לכל קדקד (v,u) $\in R_1 \leftarrow (u,v) \in R_1$: v לאחר ניתוק קשת, אז כיון שהגרף איננו מכוון, יש מסלול בין v ל-v (אותו מסלול עם סדר קשתות הפוך).

ערנזיטיבי (u,w) $\in R_1 \leftarrow (u,v) \in R_1 \wedge (v,w) \in R_1$ כי אם תמיד קיים טרנזיטיבי עוע, עוק (u,w) $\in R_1 \wedge (v,w) \in R_1 \wedge (v,w) \in R_1$ מסלול בין v לאחר ניתוק קשת), ותמיד קיים מסלול בין v לאחר ניתוק v (גם לאחר ניתוק קשת), אז תמיד קיים מסלול בין v ל-v העובר דרך v.

היחס איננו יחס שקילת כי אינו מקיים טרנזיטיביות. הפרכת עייי דוגמא R_2 היחס היחס שקילת כי אינו מקיים (u,w) $\in R_1 \wedge (v,w) \in R_1$ אך איננו בגרף הבא מתקיים (u,v) $\in R_1 \wedge (v,w) \in R_1$

2. לגבי היחס R_1 : בכל מחלקת שקילות ישנם קדקדים שלא ניתן לנתק כל זוג מתוכם עייי הסרת קשת (זייא יש יותר ממסלול אחד ביניהם). נניח בשלילה שבין 2 מחלקות שקילות $[u]_{R_1}$ ו- $[u]_{R_1}$ יש יותר מקשת אחת. בהייכ נניח קשת ביו $[u]_{R_1}$ של יותר מקשת אחת. בהייכ נניח קשת ביו $[u]_{R_1}$ על $[u]_{R_1}$ ומרש יותר ממסלול אחד בין $[u]_{R_1}$ לא יש יותר מחלקתית) ומרש ל- $[u]_{R_1}$ (על אחד המסלולים שבתוך $[w]_{R_1}$). מסלול שני מ- $[u]_{R_1}$ על אחד המסלולים שבתוך $[u]_{R_1}$ (על אחד המסלולים שבתוך $[u]_{R_1}$) ומרש ל- $[u]_{R_1}$ בשתי $[u]_{R_1}$ בשתי מחלקות שקילות שונות. על כן יש לכל היותר קשת אחת בין 2 מחלקות שקילות.

$$(a,b) \in (S_1 - S_2) \Leftrightarrow$$

$$(a,b) \in S_1 \land (a,b) \notin S_1$$

:מסימטרית $S_1,\,S_2$ נובע

$$\Leftrightarrow$$
 $(b,a) \in S_1 \land (b,a) \notin S_1$

$$\Leftrightarrow$$
 $(b,a) \in (S_1 - S_2)$

(ניתן להוכיח גם עייי שמוש במטריצות).

<u>שאלה 3:</u>

: מוגדר \mathbf{a}_{n} עבור $\mathbf{a}_{\mathrm{n}} \geq 3$ לכל $a_{\mathrm{n}} \leq 3^{n+1}$ הוכח ב-2 אופנים שונים כי

$$a_n = 2a_{n-1} + 3a_{n-2}$$

$$a_1 = 2$$

$$a_2 = 10$$

<u>שאלה 4:</u>

ג. הוכחה באידוקציה שלמה:

: כי אלו האפשריים היחידים החוקיים כי $T_1 = 1$, $T_0 = 1$: בסיס האינדוקציה

 $T_2 = \sum_{k=0}^1 T_k T_{1-k} = T_0 T_1 + T_1 T_0 = 1*1+1*1 = 2:$ עבור 2 עצים חוקיים ואכן ואכן יוש 2 עצים חוקיים ואכן יוש

 $.\,T_n = \sum_{k=0}^{n-1} T_k T_{n-k-1}\,\,$ יכי ת נוכיח עבור : נוכיח נוכיח ינוכיח אידוקציה ווכיח ינוכיח אידוקציה ינוכיח אידוקציה ווכיח עבור ח

כל עץ ייחוקייי בעל n+1 קדקדים, ניתן לפרק ל-2 תתי-עצים עייי ניתוק שרש העץ.

זייא כל עץ ייחוקייי ניתן לבנות מ-2 תתי-עצים : 1) עץ ייחוקייי עם k+1 עלים 2) עץ ייחוקייי עם T_k עם T_k מסוים הוא מספר תתי העצים השונים עבור t מסוים הוא t בהתאמה. עפייי חוק הכפל מספר העצים הייחוקייםיי בעלי t+1 עלים עבור t מסוים הוא t בהתאמה. t בהתאמה. t

עלים הוא n+1 עלים בעלי n+1 עלים החוקיים בעלי n+1 עלים הוא ייכ העצים החוקיים בעלי $0 \le k \le n-1$

.ל.ש.ל.
$$T_n = \sum_{k=0}^{n-1} T_k T_{n-k-1}$$

(הערה: הוכחה מאד דומה נעשתה בכתה באחד ההרצאות האחרונות).

ד. הגדרה רקורסיבית ל- S_n . נראה כי יש התאמה חד-חד ערכית ועל בין האופנים לחישוב ביטוי המורכב מ-1+1 איברים לבין העצים הבינרים החוקיים מסעיף א. עץ הבינרי המתאים לחישוב ביטוי, מכיל את המשתנים Xi בעלים ואת הסימן + בקדקדים הפנימיים. לכל ביטוי עם סוגריים נבנה עץ עייי שאת שרש העץ נשייך ל-+ האחרון המתבצע בחישוב (זה הנמצא בסוגריים החיצוניים ביותר). באופן רקורסיבי נבנה את 2 תתי-העצים מהשרש כעצים המיצגים את 2 הביטויים המחוברים ב-+ האחרון. דוגמאות:

על כן מספר האופנים לחישוב ביטוי עם n+1 איברים לחישוב הייחוקיים לחישוב כן לחישוב לחישוב לחישוב לחישוב אווה למספר לחישוב ביטוי עם

$$\mathbf{S}_1=1$$
 , $\mathbf{S}_0=1$: אם תנאי התחלה כנייל אם $S_n=\sum_{k=0}^{n-1}S_kS_{n-k-1}$. . . מסעיף א

