

SEMINARIO 3: ONTOLOGÍAS

- 1. Introducción a las ontologías
- 2.RDF y RDFS
- 3. OWL
- 4.Protégé

Información vs. conocimiento

- en la web tenemos información: gran colección de hechos
- debemos traducir esos hechos a conceptos: verdades, creencias, perspectivas, juicios, metodologías, know-how...

[Carole Goble, Nigel Shadbolt, Ontologies and the Grid Tutorial]

Problemas

- 1. ¿Cómo representamos el conocimiento para que lo pueda tratar una máquina?
- 2. ¿Cómo lo usamos en aplicaciones reales?

Ontologías

[Maedche et al., 2002]

Una ontología define los términos y conceptos comunes empleados para describir y representar un área de conocimiento.

Descripción mediante

- clases
- instancias
- relaciones
- propiedades
- funciones/procesos
- restricciones

Representación

- frases que combinan la terminología para expresar relaciones entre los términos
- estas frases aportan significado.

Expresividad de los lenguajes

** etsinf Pasos para la definición de ontologías

- 1. Determinar el alcance y el dominio de la ontología
 - o Para qué se va a utilizar, qué tipo de preguntas debe contestar, ...
- 2. Considerar la reutilización de ontologías existentes
 - o https://lov4iot.appspot.com/
- 3. Enumerar los términos importantes de la ontología
- 4. Definir las clases y la jerarquía de clases
- 5. Definir las propiedades de las clases slots
 - o Propiedades, relaciones
- 6. Definir las facetas de los slots
 - o Tipo de valor (String, Number, Boolean, Enummerated, Instance)
 - Cardinalidad del valor
- 7. Definir las instancias

Tarta de la web semantica

Fuente: Web for real people. Tim Berners-Lee

Resource Definition Framework (RDF), no es propiamente un lenguaje de ontologías pero está muy próximo

Objetivo: proporcionar un marco de representación del conocimiento estandarizado para la web

Sintaxis de RDF

- Diferentes vocabularios de XML
- http://www.w3.org/RDF/

Modelo de datos de RDF:

- Tripletas (recurso, propiedad, valor)
 - Recurso (Sujeto)
 - Propiedad (Predicado)
 - Valor (Objeto)

- Recurso: Ente del cual se habla
- Propiedad: Define relaciones del ente con otros entes o valores, aspectos específicos, características, atributos o relaciones.
- Objeto: Es la entidad (persona, animal, cosas, ...) a la que se refiere el predicado.

RDF permite construir KB basadas en una ontología, pero ¿cómo se define la ontología?

RDF Schema (RDFS)

RDFS proporciona un lenguaje básico para definir nuestro vocabulario con

- jerarquía de clases e instancias
- restricciones (sobre las propiedades)
- jerarquía también de propiedades

Se diferencia de los modelos de datos OO en que se debe seguir una metodología bottom-up: se definen las propiedades y luego se establece a qué clases caracterizan.

http://www.w3.org/TR/rdf-schema/

Vocabulario clases:

- rdfs:Resource: todos los elementos son recursos
- rdfs:Class: clase de recurso
- rdf:type: para indicar que un recurso es una instancia de una clase
- rdfs:subClassOf: para indicar que todas las instancias de una clase son instancias de otra


```
<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">
<rdfs:Class rdf:ID="MotorVehicle"/>
<rdfs:Class rdf:ID="PassengerVehicle">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>
<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>
</rdf:RDF>
```


Vocabulario propiedades:

- rdf:Property: clase de las propiedades RDF
- rdfs:subPropertyOf: para indicar que todos los recursos relacionados con una propiedad también están relacionados con otra
- rdfs:domain: para indicar que un recurso que tiene una determinada propiedad es una instancia de una o más clases
- rdfs:range: para indicar que los valores de una propiedad son instancias de una o más clases

La propiedad "registeredTo" se aplica sobre instancias de la clase "MotorVehicle" (domain) y toma valores de instancias de la clase "Person" (range)

```
<rdf:RDF xml:lang="en"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description ID="registeredTo">
    <rdf:type resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
    <rdfs:domain rdf:resource="#MotorVehicle"/>
    <rdfs:range rdf:resource="#Person"/>
    </rdf:Description>

<rdf:Description ID="rearSeatLegRoom">
    <rdf:type resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
    <rdfs:domain rdf:resource="#PassengerVehicle"/>
    <rdfs:domain rdf:resource="#Minivan"/>
    <rdfs:range rdf:resource="http://www.w3.org/2000/03/example/classes#Number"/>
    </rdf:Description>
    </rdf:RDF>
```


OWL aporta mayor expresividad, pudiendo definir

- clases como combinaciones booleanas de otras con union, intersection y complement.
- 2. clases como disjoint
- 3. dos clases como iguales equivalentClass
- dos individuos (instancias) son o no el mismo sameAs, differentFrom
- 5. cardinalidad en las propiedades
- 6. propiedades transitivas

OWL: Clases y recursos

Classes and Resources				
Property	Used to say that	Example		
intersectionOf	any instance of the first class is also an instances of all classes in the specified list	:Mother owl:intersectionOf (:Woman :Parent)		
unionOf	any instance of the first class is an instance of at least one of the classes in the specified list	:Parent owl:unionOf (:Mother:Father)		
complementOf	the first class is equivalent to everything not in the second class	:Parent owl:complementOf :NonParent		
disjointWith	the first class and second class have no members in common	:Man owl:disjointWith :Woman		
equivalentClass	the first class and the second class contain all the same members	:AdultFemaleHuman owl:equivalentClass :Woman		
sameAs	the first resource refers to the exact same thing as the second resource	:JimFromWork owl:sameAs :MyNeighborJim		
differentFrom	the first resource refers to something different from the second resource	:BobFromWork owl:differentFrom :MyNeighborBob		

https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-references-humans/

Grado en Ciencia de Datos Representación del conocimiento y razonamiento

OWL: Propiedades

Basic Property Typ	oes						
3 10. 10. 1			Example		Explanation		
	that th	is property links to simple data values				/ links t	to a date, which is a simple data value
ObjectPropertythat this property links to another resource		ex:hasSpou				to a person, which is another resource	
Logical Relationsh	ips		•				
Kind of Property Used to say			Exa	mple	Expla	nation	
TransitiveProperty		that if this property links A to B, and B to C, then it also links A to C.		ex:t	allerThan	If Ann is taller than Bob, and Bob is taller than Chuck, then Ann is taller than Chuck	
SymmetricProperty		that if the property relates A to B, then it always relates B to A as well.		ex:h	nasSpouse	If Ann is Bob's spouse, then Bob is Ann's spouse too	
AsymmetricPrope	rty	that if the property relates A to B, the it never relates B to A.	en	ex:t	allerThan		is taller than Bob, then Bob can't Ier than Ann
ReflexiveProperty		that this property always links somet itself.	thing to	ex:li	ivesWith	Every	body lives with themselves
IrreflexiveProperty		that this property never links something to itself.		ex:h	nasSpouse	Nobody is their own spouse	
FunctionalProperty		that this property only ever links to a thing.	at most one	ex:h	nasBirthday	You o	nly have one birthday
InverseFunctionalProperty		that the subject of this property is un identified by the value of this property	5 5	ex:h	nasDLNumber	I am t numb	he only person with my drivers license er
Properties Linking	Propert	ies					
Property	Used to	sed to say that Example					
inverseOf		ne two properties are the inverse of each other. For example, if Ann's child is b, then Bob's parent is Ann.		ld is	:hasChild owl:inverseOf :hasParent		
equivalentPropertytwo properties are exactly the same			:hasBirthPlace owl:equivalentProperty :hasBirthLocation				

OWL: Restricciones

Restrictions and Enumerations				
Parameter	Used to say	Example	Explanation	
cardinality min-cardinality max-cardinality	that the property can have a certain number of values (objects).	:Automobile owl:equivalentclass [
		rdf:type owl:Restriction;		
			All automobiles have 4 wheels (e.g., as opposed to a bicycle).	
		owl:onProperty :hasWheel		
].		
oneOf		:BobsChildren owl:equivalentClass [
	that all instances of a class come from the specified list		The class 'BobsChildren' has the three items:	
		owl:oneOf (:Bill :John :Mary)	Bill, John, and Mary	
].		

Grado en Ciencia de Datos Representación del conocimiento y razonamiento

hasValue	that all objects of that property have the specified value	:BobsChildren owl:equivalentClass [rdf:type owl:Restriction ; owl:onProperty :hasParent ; owl:hasValue :Bob	Each instance of BobsChildren has 'Bob' as the object of its :hasParent property.
IsomeValuesFrom	that at least one object of that property is a member of the specified class.	la a a Clattal .	Any instance of the 'Parent' class has at least one child that is a Person
].	

Grado en Ciencia de Datos Representación del conocimiento y razonamiento

		:Vegetarian owl:equivalentClass [
		rdf:type owl:Restriction;	
	that all objects of that property are	,	The class 'Vegetarian' is equivalent to the class
allValuesFrom	members of the specified class	lawlean Dranarty casta.	of things that only eat non-meat.
		owl:allValuesFrom	
		:NonMeat	
].	

Razonamiento e inferencia

Proceso de razonamiento sobre ontologías (lógica descriptiva):

- ABox (Assertion Box): El ABox es la parte de una ontología que se encarga de representar hechos o instancias específicas del dominio que se está modelando. Contiene afirmaciones concretas sobre individuos, sus propiedades y las relaciones entre ellos.
- Por ejemplo, en una ontología médica, el ABox podría incluir afirmaciones sobre pacientes específicos, como "Paciente1 tieneSíntoma Fiebre" o "Paciente2 esTratadoCon MedicamentoX".
- TBox (Terminological Box): El Tbox se encarga de definir las clases, propiedades y restricciones conceptuales que estructuran el conocimiento en la ontología. Contiene información sobre las clases, las jerarquías de clases, las propiedades, las relaciones entre clases y las restricciones sobre las instancias.
- Por ejemplo, el TBox podría definir clases como "Enfermedad", "Síntoma", "Tratamiento" y establecer relaciones como "tieneSíntoma" y "esTratadoCon".
- La distinción entre ABox y TBox es fundamental en la representación del conocimiento, ya que permite separar los hechos concretos (ABox) de la estructura conceptual y las reglas (TBox). Esto facilita la representación y el razonamiento sobre el conocimiento de manera más organizada y eficiente. Los sistemas de razonamiento y consulta en ontologías utilizan esta distinción para realizar inferencias y responder preguntas sobre la base del conocimiento contenido en el ABox y el TBox.

Ejemplo

Razonamiento e inferencia

Proceso de razonamiento sobre ontologías (lógica descriptiva):

Interfaz tell&ask

