Séries

le 30 septembre 2016

1 Convergence et divergence de séries

Voir aussi les exercices suivants du TD 3:

- Exercice 6 : Utilisation des séries de références
- Exercice 7 : Sommations télescopiques
- ullet Exercice 8 : Une intégration terme-à-terme (le développement de $\ln(2)$)

Exercice 1 (Convergence de la série de Bâle $\sum_{k\geqslant 1} rac{1}{k^2}$)

- **1.** Montrer que $\forall n \ge 2$, l'on a $\sum_{k=2}^{n} \frac{1}{k(k-1)} = 1 \frac{1}{n}$.
 - a) Par récurrence.
 - b) En calculant et en sommant télescopiquement $\frac{1}{k-1} \frac{1}{k}$.
- 2. Application à $\sum_{k\geqslant 1} \frac{1}{k^2}$.
 - a) Montrer que $\forall n \ge 1$, on a $\sum_{k=1}^{n} \frac{1}{k^2} \le 1 + \sum_{k=2}^{n} \frac{1}{k(k-1)}$.
 - b) En déduire que la suite des sommes partielles $\sum_{k\geqslant 1}\frac{1}{k^2}$ est majorée. Conclure.

Exercice 2 (L'inégalité $\ln(n+1) - \ln(n) \leqslant \frac{1}{n} \; pour \; n \in \mathbb{N}^*)$

Montrer que $\forall n \in \mathbb{N}^*$, on a $\ln(n+1) - \ln(n) \leqslant \frac{1}{n}$. Pour cela on pourra :

- **1.** Utiliser l'inégalité $\forall x > -1$, $\ln(1+x) \leqslant x$ (ou bien : $\forall x > 0$, $\ln(x) \leqslant x 1$).
- 2. Appliquer l'inégalité des accroissements finis à la fonction ln sur le segment [n; n+1].
- 3. Écrire l'équation de la tangente au graphe $y=\ln(x)$ en $x_0=n,$ et conclure par concavité.
- **4.** Étudier les variations de la fonction $u: x \mapsto \ln(x+1) \ln(x) \frac{1}{x}$.
- 5. Encadrer l'intégrale $\int_{n}^{n+1} \frac{\mathrm{d}t}{t}$.

Exercice 3 (Divergence de la série harmonique)

Pour
$$n \in \mathbb{N}^*$$
, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer grâce à l'inégalité $\ln(k+1) \ln(k) \leqslant \frac{1}{k}$, $\forall k \geqslant 1$, que $h_n \geqslant \ln(n+1)$.
 - a) Par récurrence.
 - b) Par une sommation télescopique.
- 2. En déduire que la série harmonique $\sum_{k\geqslant 1}\frac{1}{k}$ diverge.
- 3. Montrer que les suites définies par $a_n = h_n \ln(n+1)$ et $b_n = h_n \ln(n)$ sont adjacentes. (On utilisera l'inégalité $\ln(n+1) - \ln(n) \geqslant \frac{1}{n+1}$ pour $n \geqslant 1$)

Exercice 4 (Convergence d'une série en $n^{-\frac{3}{2}}$)

1. Une inégalité pour $n \geqslant 1$

- a) Montrer $\forall n \geqslant 1$, l'écriture $\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} = \frac{1}{\sqrt{n}} \left[1 \sqrt{1 \frac{1}{n+1}} \right]$.
- **b)** Montrer que $\forall x \leq 1, \sqrt{1-x} \leq 1 \frac{x}{2}$.
- c) En déduire que $\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} \geqslant \frac{1}{2\sqrt{n}(n+1)}$

2. Application à la série $S = \sum_{n=1}^{N} \frac{1}{\sqrt{n}(n+1)}$

- a) Par une sommation télescopique, en déduire $\sum_{n=1}^{N} \frac{1}{\sqrt{n}(n+1)} \le 2 \frac{2}{\sqrt{N+1}}$.
- b) En déduire une majoration des sommes partielles de la série S.
- \mathbf{c}) En déduire que la série S est convergente.

2 Exemples d'applications en probabilités

Exercice 5 (Calculs de séries géométriques et dérivées)

Justifier la convergence et calculer la somme des séries « géométriques-et-dérivées » suivantes

1.
$$S_1 = \sum_{n=1}^{\infty} \frac{1}{10^n}$$

3.
$$S_3 = \sum_{n=2}^{\infty} \frac{n}{3^n}$$

5.
$$S_5 = \sum_{n=2}^{\infty} \frac{n(n-1)}{4^n}$$
6. $S_6 = \sum_{n=2}^{\infty} \frac{n^2 + n}{4^n}$

2.
$$S_2 = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}}$$

4.
$$S_4 = \sum_{n=1}^{\infty} \frac{2n+1}{3^n}$$

6.
$$S_6 = \sum_{n=2}^{n-2} \frac{n^2 + r}{4^n}$$

Exercice 6 (Moments du temps de deuxième atteinte)

On répète des issues indépendantes d'une expérience de Bernoulli $\mathcal{B}(p)$ soit $\epsilon_1, \epsilon_2, \epsilon_3, ...$ On note T_2 le rang d'apparition du **deuxième** succès, avec $p \in [0, 1]$, et q = 1 - p.

1. Quelles valeurs la variable aléatoire T_2 peut-elle prendre?

On admet que la loi de T_2 est donnée par : pour $\forall k \geqslant 2$, $\mathbb{P}(T_2 = k) = \underbrace{(k-1)pq^{k-2}}_{p}$ p.

- 2. Vérifier que l'on définit ainsi une loi discrète de probabilités.
- **3.** Démontrer que l'on a : $\mathbb{E}[T_2] = \frac{2}{p}$. **4.** On admet $\sum_{k=0}^{\infty} k(k-1)(k-2)q^{k-3} = \frac{6}{(1-q)^4}$. En déduire la valeur de $\mathbb{E}[T_2(T_2-2)]$.
- **5.** Montrer que $\operatorname{Var}(T_2) = \frac{2q}{r^2}$

Exercice 7 (Exemples de calculs pour une loi finie)

On note M le plus grand des résultats obtenus au jet de 2 dés à n faces (num. de 1 à $n \ge 1$).

1. Quelles valeurs la variable aléatoire M peut-elle prendre?

On admet que la loi de M est donnée par $\forall k \in [1, n], \ \mathbb{P}(M = k) = \frac{2k-1}{n^2}$

- 2. Vérifier que cette expression définit bien une loi discrète de probabilités.
- **3.** Calculer la fonction de répartition de M.
- 4. Montrer que l'on a : $\mathbb{E}[M] = \frac{(n+1)(4n-1)}{6n}$
- **5.** (Pour ceux qui aiment les calculs) On donne $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$. Montrer que $\mathbb{E}[M^2] = \frac{3n^3 + 4n^2 - 1}{6n}$ et en déduire Var(M).