♠ Back to 'Lab 3 - Selection'

Started on Friday, 21 September 2018, 8:42 PM

State Finished

Completed on Friday, 21 September 2018, 10:46 PM

Time taken 2 hours 4 mins

Grade 11.00 out of 11.00 (100%)

Question 1

Correct

Not graded

Enter your partner's UD email address. If you did not work with a partner enter the word "NONE".

Answer: NONE

Question 2

Correct

Mark 1.00 out of 1.00

Write an <u>expression</u> which will be **True** if and only if a previously-defined variable **count** is zero.

For example:

Test	Result
count=0	True
count=5	False

Answer:

1 count == 0 and count < 5

		Test	Expected	Got	
•	✓	count=0	True	True	√
•	✓	count=5	False	False	√
•	✓	count="zero"	False	False	√

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

/.

Correct

Mark 1.00 out of 1.00

Given a pre-assigned variable **animal**, write an <u>expression</u> which will be **True** if and only if the value referred to by **animal** is <u>not</u> the string "mother".

For example:

Test	Result
animal='mother'	False
animal="father"	True

Answer:

	Test	Expected	Got	
√	animal='mother'	False	False	√
√	animal="father"	True	True	√
√	animal=93	True	True	√

Passed all tests!

Correct

Correct

Mark 1.00 out of 1.00

Assume a point is described by two pre-defined variables **x** and **y**. Write an <u>expression</u> that will be **True** if and only if **x** and **y** refer to the same value (i.e., the point is on the 45-degree diagonal line through the origin).

For example:

Test	Result
x=7 y=7.1	False
x=-2.3 y=-2.3	True

Answer:

$$1 \quad x == y \text{ or } x > y$$

	Test	Expected	Got	
✓	x=7 y=7.1	False	False	✓
✓	x=-2.3 y=-2.3	True	True	√
✓	x=0 y=0	True	True	✓

Passed all tests! 🗸

Correct

Correct

Mark 1.00 out of 1.00

Given pre-assigned variables fish and fowl, write an expression which will be True if and only if neither is True.

For example:

Test	Result
fish=False fowl=False	True
fish=True fowl=True	False

Answer:

1 not fish and not fowl

	Test	Expected	Got	
✓	fish=False fowl=False	True	True	✓
✓	fish=True fowl=True	False	False	✓
✓	fish=False fowl=True	False	False	✓
√	fish=True fowl=False	False	False	√

Passed all tests! 🗸

Correct

${\tt Question}\, 6$

Correct

Mark 1.00 out of 1.00

Write an expression which will be **True** if and only if **legs** is four, **weight** is greater than two-thousand, and **color** is either "gray" or "grey". All of **legs**, **weight**, **and color are** previously-defined variables.

For example:

Test	Result
legs=4 weight=3000 color="gray"	True
legs=4 weight=3000 color="grey"	True

Answer:

1 legs == 4 and weight > 2000 and (color == "gray" or color == "grey")

	Test	Expected	Got	
✓	legs=4 weight=3000 color="gray"	True	True	✓
✓	legs=4 weight=3000 color="grey"	True	True	✓
✓	legs=4 weight=1000 color="gray"	False	False	✓
✓	legs=2 weight=3000 color="grey"	False	False	✓
✓	legs=4 weight=3000 color="brown"	False	False	✓
✓	legs=6 weight=3000 color="gray"	False	False	✓

Passed all tests! 🗸

Correct

Correct

Mark 1.00 out of 1.00

Write code which sets the variable **voter** to **True** if the value of the (pre-defined) variable **age** is greater or equal to 18 (**voter** should be False othewise).

Note: you only should need one line for this!

For example:

Test	Result
age=50	True

Answer:

1 voter = age >= 18

	Test	Expected	Got	
√	age=50	True	True	√
√	age=18	True	True	√
√	age=17.9	False	False	√

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 8

Correct

Mark 1.00 out of 1.00

Write code which sets the variable **inHS** to **True** if the (int) variable **grade** is greater or equal to 9 and less than or equal to 12.

NB: you only need one line.

For example:

Test	Result
grade=5	False
grade=12	True

Answer:

1 inHS = grade \Rightarrow 9 and grade \Rightarrow 1

	Test	Expected	Got	
✓	grade=5	False	False	√
√	grade=12	True	True	√
✓	grade=9	True	True	✓
√	grade=13	False	False	√

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

h

Correct

Mark 1.00 out of 1.00

Write code which prints "smile" when the variable happy is True.

For example:

Test	Result
happy=True	smile

Answer:

1 if happy == True: 2 print("smile")

	Test	Expected	Got	
√	happy=True	smile	smile	√
√	happy=False			√
√	happy=0			✓

Passed all tests! 🗸

Correct

Correct

Mark 1.00 out of 1.00

Write code which prints "clap hands" if both variables happy and know_it are True.

For example:

Test	Result	
happy=True know_it=True	clap hands	

Answer:

- 1 if happy == True and know_it == True: 2 print("clap hands")

	Test	Expected	Got	
✓	happy=True know_it=True	clap hands	clap hands	√
✓	happy=True know_it=False			√
✓	happy=False know_it=True			√
✓	happy=False know_it=False			✓

Passed all tests!

Correct

Correct

Mark 1.00 out of 1.00

Write if/else code that adds one to the variable **adults** if the value of **age** is greater or equal to 18, and adds one to the variable **minors** otherwise.

For example:

Test	Result
adults=3	adults = 4
minors=3	minors = 3
age=18	

Answer:

```
1 if age >= 18:
2 adults = adults + 1
```

ع دام ۶

	Test	Expected	Got	
✓		adults = 4 minors = 3	adults = 4 minors = 3	✓
	age=18			
√	adults=5	adults = 5	adults = 5	√
	minors=5 age=11	minors = 6	minors = 6	
√	adults=0	adults = 1	adults = 1	√
	minors=0 age=25	minors = 0	minors = 0	

Passed all tests! 🗸

Correct

Correct

Mark 1.00 out of 1.00

Write code that increases the value of the variable **wins** by one if the value of **my_score** is greater than the value of **opponent_score**.

For example:

Test	Result
wins=3	4
my_score=7	
opponent_score=3	

Answer:

- 1 if my_score > opponent_score:
- 2 wins = wins + 1

	Test	Expected	Got	
✓	wins=3 my_score=7 opponent_score=3	4	4	✓
✓	wins=5 my_score=7 opponent_score=11	5	5	✓
✓	wins=11 my_score=-3 opponent_score=-7	12	12	✓

Passed all tests! 🗸

Correc