Aula16

DATA SCIENCE IPT

TURMA 02

Artificial Neural Netwok

Vamos, diretamente apresentar o "neurônio artificial", o PERCEPTRON

O perceptron recebe entradas $1,x_1,x_2,...$ Faz uma soma ponderada com os pesos (w0, w₁..) e depois aplica uma "função de ativação", que "empurra" a saída para uma faixa determinada. Por exemplo, se usarmos como função de ativação a sigmoid, "empurraremos" a saída para a faixa (0,1)...isso parece regressão logística? **sim!**

Artificial Neural Netwok

Podemos "injetar" a saída de um perceptron na entrada de outro, formando uma **REDE NEURAL.** Na ANN da figura abaixo, há 4 perceptrons, 3 na hidden layer e um na output layer.
Como há mais de uma camada de perceptrons, temos uma MLP (multi layer perceptron)

Artificial Neural Netwok

Conteúdo

Outputs

Output layer

Na combinação dos perceptrons em uma rede neural, o arranjo mais clássico é a Feed-Forward :

Feed-Forward Neural Networks

Single layer

Multi Layer Perceptron MLP (Clássica: 1 hidden layer)

Multi Layer Perceptron
MLP ("deep" : >1 hidden
layer)

Layer 1

Layer 2

Hidden layers

Layer 3

Inputs

Modelo mais usual de rede neural Treinável via backpropagation

Pode ser ou não fully connected (todos os perceptrons de camadas sucessivas são ligados entre si)

Artificial Neural Netwok

Partindo do código ann1.ipynb, obtenha os modelos de ann (classifier, com sklearn) que acertem 100% as funções AND, OR e 75% para XOR (por que?)

Depois monte uma ann (ann2) com 3 perceptrons na hidden layer para XOR (poderiam ser 2)

Finalmente, obtenha os pesos de ann2 e implemente-a diretamente (sem predict, com threshold 0.5)

Artificial Neural Netwok

Como o sklearn obteve os pesos da rede neural ann2 do slide anterior? Vamos entender o algoritmo backpropagation.

Backpropagation

O Backpropagation foi inventado nos anos 70. Porém, só em 1986 Rumelhart, Hinton Williams publicaram "*Learning Representations by Back-Propagating Errors," que a área de Redes Neurais percebeu a importância dele, que continua até hoje.

* https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf

Parte 1: preparando a notação

w_{ij}^k = peso do perceptron j da camada k, correspondente à entrada do nó i

 a_j^k = somatória de pesos*inputs +bias do perceptron j da camada k.

o_i^k = saída do perceptron j da camada k.

g(z) = função de ativação dos perceptrons da hidden layer

 $g_o(z)$ = função de ativação dos perceptrons da output layer

n_k=número de perceptrons da camada k

Parte 2: usando a notação em definições

$$a_{j}^{k} = \sum_{i=0}^{n_{k-1}} w_{ij}^{k} o_{i}^{k-1}$$

$$o_j^k = g(a_j^k)$$

E=Erro médio quadrático = $(1/2m)\sum_{i=1}^{m}(ye^{i}-y^{i})^{2}$

w_{0j}^k= bias (b) m=número de amostras ye = y estimado y = y da amostra (real)

Parte 3 : Queremos o Gradiente de E em função de cada w_{ij} ^k!

$$\frac{dE}{dw_{ij}^k} = (1/m)\sum_{n=1}^m \frac{dE^n}{dw_{ij}^k}$$

A derivada parcial de E em relação a um peso w, é a "média" das derivadas parciais do erro de cada amostra em relação ao peso w.

Parte 4: O velho truque da regra da cadeia

$$\frac{dE}{dw_{ij}^k} = \frac{dE}{da_j^k} \frac{da_j^k}{w_{ij}^k}$$

O termo $\frac{dE}{da_j^k}$ é usualmente chamado erro e tem o símbolo : δ_j^k

$$\frac{da_{j}^{k}}{w_{ij}^{k}} = \frac{d(\sum_{i=0}^{n_{k-1}} w_{ij}^{k} o_{i}^{k-1})}{dw_{ij}^{k}} = o_{i}^{k-1}$$

Assim,
$$\frac{dE}{dw_{ij}^k} = \delta_j^k \ o_i^{k-1}$$

Omitimos o "i" de cada amostra...

Parte 5: Calculando $\frac{dE}{dw_{ii}^k}$ na output layer

$$\frac{dE}{dw_{ij}^k} = \delta_j^k \ o_i^{k-1} \quad \delta_j^k = \frac{dE}{da_j^k}$$

Na output layer,

$$\delta_j^k = \frac{dE}{da_j^k} = \frac{d(1/2 \text{ (go(ajk)-y)2)}}{da_j^k}$$

Regra da cadeia novamente

$$\delta_j^k = (go(ajk) - y). g_o'(ajk)$$

$$\frac{dE}{dw_{ij}^{k}} = (go(ajk)-y). g_o'(ajk). o_i^{k-1}$$

Parte 6: Calculando $\frac{dE}{dw_{ij}^k}$ na hidden layer

$$\frac{dE}{dw_{ij}^k} = \delta_j^k \ o_i^{k-1} \quad \delta_j^k = \frac{dE}{da_j^k}$$

Na hidden layer, para fugirmos de fazer diretamente

 $\delta_j^k = \frac{dE}{da_j^k}$ vamos apelar mais uma vez para a

regra da cadeia e utilizar a camada abaixo...

$$\frac{dE}{da_{j}^{k}} = \sum_{l=1}^{n_{k}+1} \frac{dE}{da_{l}^{k+1}} \frac{da_{l}^{k+1}}{da_{j}^{k}} = \sum_{l=1}^{n_{k}+1} \delta_{l}^{k+1} \cdot \frac{da_{l}^{k+1}}{da_{j}^{k}}$$

Backpropagation

Ainda a Parte 6: Calculando $\frac{dE}{dw_{ij}^k}$ na hidden

layer

$$\frac{dE}{da_{j}^{k}} = \sum_{l=1}^{n_{k+1}} \frac{dE}{da_{l}^{k+1}} \frac{da_{l}^{k+1}}{da_{j}^{k}} = \sum_{l=1}^{n_{k+1}} \delta_{l}^{k+1} \cdot \frac{da_{l}^{k+1}}{da_{j}^{k}}$$

$$a_{l}^{k+1} = \sum_{j=0}^{n_k} w_{jl}^{k+1} g(a_j^k) \dots$$
 regra da cadeia ...

$$\frac{da_l^{k+1}}{da_j^k} = w_{jl}^{k+1} g'(a_j^k)$$

Assim, para a hidden layer:

$$\delta_{j}^{k} = g'(a_{j}^{k}) \cdot \sum_{l=1}^{n_{k}+1} \delta_{l}^{k+1} \cdot w_{jl}^{k+1}$$
 e

$$\frac{dE}{dw_{i,i}^{k}} = g'(a_j^{k}) \cdot o_i^{k-1} \sum_{l=1}^{n_k+1} \delta_l^{k+1} \cdot w_{jl}^{k+1}$$

Parte 7:

Observe que, para a output layer :

$$\frac{dE}{dw_{ij}^{k}} = (go(a_j^{k}) - y). g_o'(a_j^{k}). o_i^{k-1} = \delta_j^{k}. o_i^{k-1}$$

E, para as hidden layers...

$$\frac{dE}{dw_{ij}^{k}} = g'(a_j^{k}) \cdot o_i^{k-1} \sum_{l=1}^{n_k+1} \delta_l^{k+1} \cdot w_{jl}^{k+1}$$

Ou seja, as hidden layers dependem de δ_l^{k+1} ...começamos calculando as derivadas parciais pela output layer e, com esse resultado, avançamos (voltando) para as hidden layers..daí o nome backpropagation..os erros...vão sendo propagados da saída para a entrada.

Parte 8:

Para o caso de função **ativação sigmoid nas hidden layers** e um **único perceptron de ativação linear (identidade)** na output layer :

Com função ativação linear,
$$g_o'(a_j^k)=1$$

$$\delta_j^k = (go(a_j^k)-y) = (a_j^k - y)$$

$$\frac{dE}{dw_{ij}^k} = (a_j^k - y) \cdot o_i^{k-1} = \delta_j^k \cdot o_i^{k-1}$$

E, para as hidden layers... $g'(a_j^k) = g(a_j^k)$.(1- $g(a_j^k)$)

Resumo: Como treinar a rede neural com backpropagation

- 1) Inicializar os pesos
- 2) Para todos os elementos da amostra:
- a) Calcular outputs (forward)
- b) Calcular erros da camada output (δ_j^k) e usá-los no cálculo das derivadas parciais em relação aos pesos da camada output
- c) Usando os valores dos erros da camada output, propagá-los (backward) para as hidden layers e usá-los nos cálculos das derivadas parciais em relação aos pesos das hidden layers
- 3) Fazer a média dos valores das derivadas obtidos com cada amostra
- 4) Usar Gradient Descent para atualizar os pesos :

$$w_{ij}^k$$
 (novo)= w_{ij}^k (antigo)- alpha* $\frac{dE}{dw_{ij}^k}$

Mais sobre backpropagation

Conteúdo

Utilizando a planilha ANN-backprop.xlsm, vamos acompanhar o algoritmo backpropagation para uma ANN com 2 perceptrons sigmoid na Camada hidden e 1 linear na output. A ideia é a rede aprender a função lógica XOR.

Revisão

Vamos voltar ao dataset de carros e criar um modelo de redes neurais feed-forward para avaliar o consumo (regressão).

Parta de ann-carro-custo_res.ipynb

Defina a hidden layer

Evolua o modelo

Cursos com Alta Performance de Aprendizado

© 2019 – Linked Education