Motor control II

- 1. The cerebellar circuitry
- 2. The "future" of motor control research

The cerebellum

"It seems likely that the cerebellum may be the first fragment of the higher levels of the nervous system to be understood in principle, all the way from peripheral input to peripheral output". Eccles, 1973

The cerebellum is functionally organised

The cerebellum

molecular layer

Purkinje cell layer

granule cell layer

The cerebellum – cell types

Purkinje cells output to cerebellar nuclei and vestibular nuclei

Each PC receives input from 1 climbing fibre

Mossy fibres provide sensory information

Granule cells give rise to parallel fibres

Granule cells receive input from 1-10 mossy fibres

Each PC contacted by between 200,000 and 1,000,000 granule cells

Cerebellar anatomy in numbers

~2000-10,0000 synapses from Climbing fibre to Purkinje cell

1 climbing fibre per Purkinje cell

Granule cells receive input from 1-10 mossy fibres

Each PC contacted by between 200,000 and 1,000,000 granule cells

Cerebellar output is anatomically matched to the input

Purkinje cells generate two types of spike

Simple and complex spikes as a possible basis for motor learning

The Vestibulo-ocular reflex (VOR)

Why can you read better when your head is rotating, vs. the page rotating?

Goal: Stabilise gaze during eye movement

Input: Head motion

The Vestibulo-ocular reflex (VOR)

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Copyright © 2002, Elsevier Science (USA). All rights reserved.

The VOR

The VOR in mouse

https://www.jove.com/video/3971/video-oculography-in-mice

The VOR is a form of motor learning

The VOR

The future of motor control

My opinion...

- 1. Natural behaviours
- 2. Integrated quantification and analysis

Your assignment:

In your opinion what new directions should motor control research take? (1 page max. What are the important steps that motor control researches should take to advance the field in the next 5-10 years).

We require better technical advances in measuring behaviour

Motor control research is based around (low throughput) behavioural tasks...

Akay et al., 2014

We require better technical advances in measuring behaviour

Two-dimensional analysis of gait during treadmill walking

Reflective markers & High speed camera

Semiautomatic scoring

An example of "future" directions in motor control

Nikolaas Tinbergen

"The brain builds coherent behaviours by expressing stereotyped modules of simpler action in specific sequences"

'How' (Proximate) questions

- •Mechanism (Causation) how does the behaviour get elicited? What signals are required and what pathways within the animal (for example neural pathways) are involved?
- •Development (Ontogeny)- how does the behaviour change with age, experience and environment? **'Why' (Ultimate) questions**
- •Evolution (Phylogeny) how did evolution and earlier generations/species contribute to this certain behaviour?
- •Function (Adaptation) how does this behaviour help the organism/species survive?

Depth imaging and modelling to identify behaviour "modules"

Neuron Neuro Resource

Mapping Sub-Second Structure in Mouse Behavior

Alexander B. Wiltschko,^{1,2} Matthew J. Johnson,^{1,2} Giuliano Iurilli,¹ Ralph E. Peterson,¹ Jesse M. Katon,¹ Stan L. Pashkovski,¹ Victoria E. Abraira,¹ Ryan P. Adams,² and Sandeep Robert Datta^{1,*}

¹Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA

²School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

*Correspondence: srdatta@hms.harvard.edu

http://dx.doi.org/10.1016/j.neuron.2015.11.031

Wiltschko et al., 2015, Neuron 88, 1121–1135 December 16, 2015 ©2015 Elsevier Inc.

What are the fundamental units of mouse behaviour?

Modelling of pixel data identifies simple behavioural modules

Modelling of pixel data identifies simple behavioural modules that can be identified online

Additional behavioural modules identified by 3D imaging

Transitions between behavioural states are predictable

Altering arena shape alters a subset of behavioural modules

Behavioural state changes in response to fox odour

Location determines frequency of module use

Mice alter the frequency that they use each module in different environments – but don't add or change the order of the modules to their behaviour

Circuit manipulation also alters module use but does not add new modules

Why am I talking about this?

- A "grammar" is an attractive way of describing behaviour
- Shows that machine learning can be used to "decode" aspects of behaviour
- The key is the 3D imaging of behaviour from above with a Kinect
 - This is also the weakness

How can we expand this technique to examine motor behaviour?

Can we build a standard wireframe model of a mouse? Allowing reconstruction of each joint during behaviour to understand modules of motor behaviour

Can we incorporate this with behavioural tasks presented in a more natural environment?

Can this be combined with (wireless) EMG recordings and "perturbations"?

