Título	Hydrological Simulation Model on Climate Change Impact of a Lower Bhavani Basin Using GIS and SWAT	Performance of Long-Term Continuous Hydrological Models in Fluvial Flow Simulation in a Large-Scale River Basin	Simulation of Flood Peak Discharges and Volumes for Flood Risk Management in Kibera, Kenya
Autor	Nagarajan Madasamy, Valliammai Meiyappan, Manikandan Muthiah, Sujitha Elango	Zhuo Zhang	Benard Jumaa, Luke O. Olangb, Mohammed A. Hassanb, Joe Mulliganf, Paul M. Shiunduc.
Revista	Journal of the Indian Society of Remote Sensing	Scientific Reports	Physics and Chemistry of the Earth
1. Definição de Barragem		Não aborda barragens específicas, mas o controle e previsão de vazão em bacias de grande escala.	Simulações aplicadas à drenagem urbana, sem barragens, mas com foco em contenção e mitigação de cheias.
2. Tipologia de Simulação		Hidrológica contínua e comparativa entre dois modelos — SWAT e HEC-HMS (v4.9).	Hidrológica e hidrodinâmica, orientada a eventos extremos de chuva; modelo determinístico (HEC-HMS).
3. Variáveis de Entrada	ltipo de solo, declividade, dados climáticos projetados	Precipitação, uso do solo, tipos de solo, topografia (DEM), dados climáticos históricos.	Precipitação (chuvas de 50 anos), intensidade e duração, uso do solo, topografia (DEM ASTER), tipo de solo.
4. Processos Internos	Balanço hidrico, infiltração, escoamento superficial, evapotranspiração, recarga subterrânea, dinâmica de HRUs	Processos de infiltração (SCS), escoamento superficial, evapotranspiração e baseflow; simulação em sub-bacias e HRUs.	Infiltração (SCS-CN), geração de escoamento (SCS-UH), propagação de vazão (Muskingum).
5. Parâmetros de Saída		Vazão simulada nos postos fluviais, coeficiente Nash-Sutcliffe (NSE), desempenho de calibração/validação.	Vazão de pico (m³/s), volume de escoamento (m³), tempo de concentração e resposta da bacia.
6. Escopo Tecnológico		Modelagem comparativa SWAT x HEC-HMS; uso de métodos de calibração automática e estrutura modular.	Modelagem computacional no **HEC-HMS**, integração com dados de sensoriamento remoto (Sentinel-2).
7. Avaliação de Efetividade	_	NSE > 0,7 em ambos; SWAT mais preciso, HEC-HMS mais flexível e personalizável.	Boa performance em bacia não monitorada; resultados coerentes com dados observacionais.
8. Integração Sociotécnica		Suporte à gestão de recursos hídricos e mitigação de cheias em bacias de larga escala na China.	Suporte ao planejamento urbano e mitigação de enchentes em assentamentos informais.
9. Indicadores de Impacto	I(+11.6%) e deficit hidrico (29%); efeitos sobre producão	Confiabilidade dos modelos em prever vazão e resposta hidrológica sob condições de grande escala.	Vazões simuladas de 90–460 m³/s; evidência de vulnerabilidade de Kibera a cheias intensas.
10. Lacunas e Oportunidades	lintegração entre modelagem hidrologica e políticas de	Explorar uso combinado SWAT–HEC-HMS; ampliar aplicações em modelagem de cheias e previsão de riscos.	Necessidade de calibração local e integração de dados em tempo real; potencial de replicação em outras áreas urbanas.

NetLogo as a Methodological Tool for the Analysis of Social Systems	Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq)	Fields of Application of SWAT Hydrological Model—A Review
Juan Esteban Hernández Betancura Carlos Hernán González Pariasa	Asaad A. M. AL-Hussein, Shuhab Khan, Kaouther Ncibi, Noureddine Hamdi e Younes Hamed	Josip Janjić e Lidija Tadić
Multidisciplinary Reviews	Water 2022	Earth 2023
Não se aplica diretamente; o enfoque é em sistemas sociais, mas o método é aplicável a barragens sob visão agente-sociedade.		As barragens são consideradas componentes de gestão integrada de recursos hídricos, atuando no controle de vazões, na redução de sedimentos e na manutenção da qualidade da água. O estudo aborda sua representação dentro de bacias simuladas pelo modelo SWAT.
Baseada em agentes (**ABM – Agent-Based Modeling**), explorando interações entre atores e variáveis ambientais.	Utilizou-se simulação hidrológica e hidráulica integrada, combinando o HEC-HMS (para geração de hidrogramas de cheia) e o HEC-RAS (para modelagem do escoamento em regime permanente). A análise espacial foi feita com o HEC-GeoRAS no ArcGIS, resultando em mapas detalhados de risco de inundação.	A pesquisa apresenta uma revisão sobre o modelo SWAT (Soil and Water Assessment Tool), voltado à simulação de processos hidrológicos e ambientais em bacias rurais e urbanas. O modelo é semi-distribuído, baseado em unidades de resposta hidrológica (HRUs) e permite análises de longo prazo.
Parâmetros de comportamento de agentes, regras de interação, variáveis ambientais (espaço, tempo, decisão).	Foram utilizados dados de chuva, temperatura, vazão, uso e tipo de solo, declividade e elevação (DEM 14 m), além de séries temporais da NASA (1989–2021) e medições locais de descarga fluvial (2004–2021). Esses insumos permitiram avaliar o comportamento hidrológico em múltiplos períodos de retorno.	Incluem modelo digital de elevação (DEM), uso e cobertura do solo, tipo e perfil de solo, dados meteorológicos (chuva, temperatura, vento, radiação, umidade) e informações de calibração (vazão e sedimentos observados). Esses parâmetros permitem representar a variabilidade espacial da bacia.
Interações entre agentes, dinâmicas emergentes, retroalimentação, aprendizado coletivo.	O modelo simulou escoamento superficial, infiltração, propagação da onda de cheia e interação entre rugosidade e vazão, representando as condições hidráulicas de 60 seções transversais do rio. Considerou-se o coeficiente de Manning (n = 0,035) e as perdas de energia entre seções.	O SWAT simula escoamento superficial e subterrâneo, evapotranspiração, percolação, infiltração e transporte de nutrientes e sedimentos, ajustando parâmetros via calibração e análise de sensibilidade (manual ou automatizada).
Padrões emergentes, indicadores de cooperação, eficiência do sistema, estabilidade das interações.	Foram obtidos valores máximos de vazão (10,4–66,4 m³/s), volumes de cheia (29.680–2.229.200 m³) e mapas de profundidade e extensão de inundação. As áreas de alto risco corresponderam a 3,8 % da bacia, concentradas próximas à foz.	Produz resultados como balanço hídrico, vazão, carga de sedimentos, transporte de nutrientes e impactos de uso do solo e clima. Também permite avaliar cenários de manejo agrícola e práticas de conservação.
Plataforma **NetLogo**, programação visual e textual; simulações híbridas com integração a Python e GIS.	O estudo aplicou ferramentas complementares (WMS, HEC-HMS, HEC-RAS e ArcGIS 10.8) para gerar um modelo espacial completo. Essa integração permitiu avaliar a relação entre relevo, uso do solo e intensidade das cheias.	
Elevada flexibilidade para representar cenários sociais complexos; aplicável a governança e gestão de risco.	O modelo mostrou alta correlação entre precipitação e resposta hidráulica, indicando eficiência das simulações na previsão de áreas críticas. Os resultados foram validados com dados históricos de 2013 e 2018, anos de eventos extremos.	A robustez do SWAT foi verificada pela capacidade de representar processos complexos sob diferentes condições climáticas e de uso do solo, embora exija grande quantidade de dados e calibração cuidadosa.
Potencial para simular decisões humanas em situações de risco, gestão participativa e coordenação institucional.	O artigo destaca a importância do monitoramento climático contínuo e da cooperação institucional entre órgãos locais para prevenção de desastres e planejamento urbano. A ausência de estações meteorológicas locais foi apontada como limitação.	O estudo ressalta a aplicação do SWAT em planejamento ambiental e políticas de recursos hídricos, alinhadas à Diretiva-Quadro da Água da União Europeia (2000/60/EC). Defende a colaboração entre hidrólogos, gestores e órgãos públicos.
Permite analisar confiança, cooperação e resiliência social frente a eventos extremos.	Redução esperada de perdas agrícolas e residenciais; definição de zonas prioritárias de mitigação; estimativa de risco de inundação por classe (baixa, média e alta). Os impactos sociais mais severos ocorreram nas vilas próximas ao canal principal.	Destacam-se a redução de poluição difusa, mitigação de erosão, avaliação de cheias e estiagens e o suporte à gestão sustentável de bacias hidrográficas. O modelo tem sido usado para prever efeitos de urbanização e mudanças climáticas.
Integração com modelos hidrológicos (NetLogo + HEC-RAS ou SWAT); aplicação a barragens e gestão de desastres.	Sugere-se a implementação de modelos bidimensionais e o uso de dados climáticos locais em tempo real, o que ampliaria a precisão da previsão hidrodinâmica e subsidiaria planos de defesa civil mais eficazes.	São apontadas limitações em bacias não monitoradas (ungauged), carência de dados de solo fora dos EUA e necessidade de integração com modelos hidráulicos (HEC-RAS/HEC-HMS) para previsão mais completa de inundações e impactos ambientais.