Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Town Hall + MLP History

Class Logistics and Agenda

- Logistics:
 - Next time: Flipped Module on back propagation
- Multi Week Agenda:
 - Today: Neural Networks History, up to 1980
 - Today: Multi-layer Architectures
 - Town Hall, Lab 3 (if time)
 - Flipped: Programming Multi-layer training

Class Overview, by topic

A History of Neural Networks

Machine Learning 101

Neurons

From biology to modeling:

McCulloch and Pitts, 1943

dendrite

logic gates of the mind

Walter Pitts

Neurons

- McCulloch and Pitts, 1943
- Donald Hebb, 1949

Hebb's Law: close neurons

fire together

- · neurons "learn
- · easier synaptic
- basis of neura

Axon terminal

Node of

I was infatuated with the idea of **brainwashing** and controlling minds of others! I also invented a number of **torture procedures** like sensory deprivation and **isolation tanks**—and carried out a number of secret studies on real people!!

Donald O. Hebb

Warren McCulloch

Walter Pitts

Rosenblatt's perceptron, 1957

Frank Rosenblatt

$$a = \frac{1}{1 + \exp(-z)}$$

axon

φ

W1

 W_2 **W**3 soma

Σ

sum rows

 X_1

 X_2

X3

. . .

 X_N

input

The Mark 1 **PERCEPTRON** Perceptron Learning Rule: ~Stochastic Gradient Descent Lecture inotes for iviacnine Learning in Pytr

Layers Notation

 $\mathbf{x}^{(i)}$ One row from Table data becomes input column to model

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus

$$[\mathbf{z}^{(1)}]^{(i)} = \mathbf{W}^{(1)} \cdot [\mathbf{a}^{(1)}]^{(i)} = \mathbf{W}^{(1)}_{1:N} \cdot \mathbf{x}^{(i)} + \mathbf{b}^{(1)}$$

 $\mathbf{a}^{next} = \phi(\mathbf{z}^{current})$, concat bias term

$$\mathbf{a}^{(next)} = \begin{bmatrix} 1 \\ \phi(z_1^{curr}) \\ \vdots \\ \phi(z_N^{curr}) \end{bmatrix} \rightarrow \mathbf{a}^{(L)} = \begin{bmatrix} 1 \\ \phi(z_1^{L-1}) \\ \vdots \\ \phi(z_N^{L-1}) \end{bmatrix}$$

Generic Multiple Layers Notation

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus 11

Multiple layers notation

- Self test: How many parameters need to be trained in the above network?
 - A. $[(N+1) \times S^1] + [(S^1+1) \times S^2] + [(S^2+1) \times S^3]$
 - B. $|\mathbf{W}^{(1)}| + |\mathbf{W}^{(2)}| + |\mathbf{W}^{(3)}|$
 - C. can't determine from diagram
 - D. it depends on the sizes of intermediate variables, $\mathbf{z}^{(i)}$

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus 12

Compact feedforward notation

Training Neural Network Architectures

MY PYTHON ENVIRONMENT HAS BECOME. SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Rosenblatt's Perceptron, 1957

$$\sum_{i}^{M}(\mathbf{y}^{(i)}-\mathbf{\hat{y}}^{(i)})^{2}$$

Need objective Function, minimize MSE $J(\mathbf{W}) = ||\mathbf{Y} - \hat{\mathbf{Y}}||^2$

where ground truth $\mathbf{y}^{(i)}$ is one-hot encoded!

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^{(i)} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^{(1)} \dots \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^{(M)} = \mathbf{Y}$$

Rosenblatt's perceptron, 1957

Self Test - If this is a binary classification problem, how large is *S*, the length of yhat?

A. Can't determine

B. 2

C. 1

D. N

Adaline network, Widrow and Hoff, 1960

Marcian "Ted" Hoff

Bernard Widrow

New objective function becomes: $J(W)=||Y-W\cdot A||^2$

Need gradient $\nabla J(\mathbf{W})$ for update equation $\mathbf{W} \leftarrow \mathbf{W} + \eta \nabla J(\mathbf{W})$

We have been using the Widrow-Hoff Learning Rule

Adaline network, Widrow and Hoff, 1960

Marcian "Ted" Hoff

Bernard Widrow

need gradient $\nabla J(\mathbf{W})$ for update equation $\mathbf{W} \leftarrow \mathbf{W} + \eta \nabla J(\mathbf{W})$

For case S=1, **W** has only one row, **w** this is just **linear regression...**

$$\mathbf{w} \leftarrow \mathbf{w} + \eta [\mathbf{X} * (\mathbf{y} - \mathbf{\hat{y}})]$$

Modern Perceptron network

For case S=1, this is just **logistic regression...** and **we have already solved this!**

$$\mathbf{w} \leftarrow \mathbf{w} + \eta [\mathbf{X} * (\mathbf{y} - \mathbf{g}(\mathbf{x}))]$$

What happens when S > 1?

What if we have more than S=1?

$$\begin{bmatrix} \varphi(z_1) \\ \dots \\ \varphi(z_S) \end{bmatrix} \quad \dots \quad \begin{bmatrix} \varphi(z_1) \\ \dots \\ \varphi(z_S) \end{bmatrix} = \mathbf{Y}$$

$$\begin{bmatrix} y_1 \\ \dots \\ y_s \end{bmatrix}^{(1)} \dots \begin{bmatrix} y_1 \\ \dots \\ y_s \end{bmatrix}^{(M)} = \mathbf{Y}$$

$$J(\mathbf{W}) = ||\mathbf{Y} - \overset{\triangle}{\mathbf{Y}}||^2$$

Each target class in Y can be independently optimized

which is one-versus-all!

$$J(\mathbf{1}\mathbf{w}) = \sum_{i=1}^{n} [\mathbf{y}_1(i) - \varphi(\mathbf{1}\mathbf{w} \cdot \mathbf{x}(i))]^2$$

$$J(2\mathbf{w}) = \sum_{i=1}^{n} [y_2(i) - \varphi(2\mathbf{w} \cdot \mathbf{x}(i))]^2$$

• • •

$$J(\mathbf{S}\mathbf{W}) = \sum_{i=1}^{n} [\mathbf{y}_{\mathbf{S}}(i) - \varphi(\mathbf{S}\mathbf{W} \cdot \mathbf{X}(i))]^{2}$$

Simple Architectures: Summary

- Adaline network, Widrow and Hoff, 1960
 - linear regression
- Perceptron
 - with sigmoid: logistic regression
- One-versus-all implementation is the same as having **w**_{class} be rows of weight matrix,

W

- works in adaline
- works in logistic regression

these networks were created in the 50's and 60's but were abandoned

why were they not used?

The Rosenblatt-Widrow-Hoff Dilemma

 1960's: Rosenblatt got into a public academic argument with Marvin Minsky and Seymour Papert

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

Minsky and Papert publish limitations paper, 1969:

WATCH

DISCOVER

ATTENI

PARTICIPATE

Marvin Minsky:

Health and the human mind

TED2003 · 13:33 · Filmed Feb 2003

More Advanced Architectures: history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - technically introduced by Werbos in 1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: **Hinton is widely considered the**

founder of deep learning

David Rumelhart

Geoffrey Hinton

More Advanced Architectures: MLP

- The multi-layer perceptron (MLP):
 - two layers shown, but could be arbitrarily many layers
 - algorithm is agnostic to number of layers (kinda)

each row of **yhat**is no longer
independent of
the rows in **W**so we cannot
optimize using
one versus all!!!

 $\begin{array}{c} \phi(_{row=1}\mathbf{w}^{(2)}\cdot\,\phi(\mathbf{W}^{(1)}\mathbf{a}^{(1)})\;)\\ \\ \mathbf{yhat}^{(i)}=\\ \\ \text{one hot} \\ \end{array}$

Back propagation

- Steps:
 - propagate weights forward
 - calculate gradient at final layer
 - back propagate gradient for each layer
 via recurrence relation

$$J(\mathbf{W}) = ||\mathbf{Y} - \mathbf{\hat{Y}}||^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

Back propagation

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

use chain rule:
$$\frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}} = \frac{\partial J(\mathbf{W})}{\partial \mathbf{z}^{(l)}} \frac{\partial \mathbf{z}^{(l)}}{\partial w_{i,j}^{(l)}}$$

Solve this in explainer video for next in class assignment!

End of Session

thanks! Next time is Flipped Assignment!!!

More help on neural networks to prepare for next time:

Sebastian Raschka

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch12/ch12.ipynb

Martin Hagan

https://www.google.com/url?

sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwioprvn 27fPAhWMx4MKHYbwDlwQFggeMAA&url=http%3A%2F%2Fhagan.okstate.edu% 2FNNDesign.pdf&usg=AFQjCNG5YbM4xSMm6K5HNsG-4Q8TvOu Lw&sig2=bgT3 k-5ZDDTPZ07Qu8Oreg

Michael Nielsen

http://neuralnetworksanddeeplearning.com