Delaunay Triangulations Height Interpolation

Min-Te Sun, Ph.D.

How to Represent a Terrain?

• Sampling!

Which triangulation is better?

Planar Point Sets

- A maximal planar subdivision is a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity.
- Let P := {p₁, p₂, ..., p_n} be a set of points in the plane, the *triangulation* of P is now defined as a maximal planar subdivision whose vertex set is P.

Convex Hull vs Triangulation of Planar Point Set

 The convex hull boundary union of the bounded faces of T is always the convex hull of P.

• Let P be a set of n points in the plane, not all collinear, and let k denote the number of points in P that lie on the boundary of the convex hull of P. Then any triangulation of P has 2n-2-k triangles and 3n-3-k edges.

Angle-Vector

- Consider the 3*m* angles of the triangles of T, sorted by increasing value. Let $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ be the resulting sequence of angles; hence, $\alpha_i \le \alpha_j$, for $i \le j$. We call $A(T) := (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$ the *angle-vector* of T.
- We say that the angle-vector of T is larger than the angle-vector of T' if A(T) is lexicographically larger than A(T'), or, in other words, if there exists an index i with $1 \le i \le 3m$ such that $\alpha_j = \alpha_j$ for all $j \le i$, and $\alpha_i \ge \alpha_j$. \Longrightarrow We denote this as $A(T) \ge A(T')$

Angle-Optimal Triangulations

- A triangulation T is called angle-optimal if
 A(T) >= A(T') for all triangulations T' of P.
- Thales's Theorem: Let C be a circle, I a
 line intersecting C in points a and b, and p,
 q, r, and s points lying on the same side of
 I. Suppose that p and q lie on C, that r lies
 inside C, and that s lies outside
 C. Then \angle{arb} > \angle{apb}

= \angle{aqb} > \angle{asb}.

Edge Flip

- We call the edge e = \overline{p_ip_j} an illegal edge if min{α_i} < min{α_i'}.
- Let T be a triangulation with an illegal edge e. Let T' be the triangulation obtained from T by flipping e. Then A(T') > A(T).

How to Find Illegal Edge?

- Let edge \overline{p_ip_j} be incident to triangles p_ip_jp_k and p_ip_jp_i, and let C be the circle through p_i, p_j, and p_k. The edge \overline{p_ip_j} is illegal if and only if the point p_i lies in the interior of C.
- If the points p_i, p_j, p_k, p_l form a convex quadrilateral and do not lie on a common circle, then exactly one of \overline{p_ip_j} and \overline{p_kp_l} is an illegal edge.

 A legal triangulation is a triangulation that does not contain any illegal edge.

Legalize Triangulation

Algorithm LEGALTRIANGULATION(\mathcal{T})

Input. Some triangulation \mathcal{T} of a point set P.

Output. A legal triangulation of P.

1. while \mathcal{T} contains an illegal edge $\overline{p_ip_j}$ 2. do (* Flip $\overline{p_ip_j}$ *)

3. Let $p_ip_jp_k$ and $p_ip_jp_l$ be the two triangles adjacent to $\overline{p_ip_j}$.

4. Remove $\overline{p_ip_j}$ from \mathcal{T} , and add $\overline{p_kp_l}$ instead.

5. return \mathcal{T}

Delaunay Triangulation

• Dual graph of Voronoi diagram

• *Delaunay graph* of *P* is denoted by DG(*P*).

Plane Graph

 The Delaunay graph of a planar point set is a plane graph.

 We assume points are in "general position", i.e., no 4 points on a circle

Rephrase Theorem for VD in terms of Delaunay Graphs

- Let P be a set of points in the plane.
 - Three points p_i , p_j , $p_k \in P$ are vertices of the same face of the Delaunay graph of P if and only if the circle through p_i , p_j , p_k contains no point of P in its interior.
 - Two points p_i, p_j ∈ P form an edge of the Delaunay graph of P if and only if there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point of P.

Additional Theorems

- Let P be a set of points in the plane, and let T be a triangulation of P. Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle of T does not contain a point of P in its interior.
- Let P be a set of points in the plane. A triangulation T of P is legal if and only if T is a Delaunay triangulation of P.
- Let P be a set of points in the plane.
 Any angle-optimal triangulation of P is a Delaunay triangulation of P.
- Any Delaunay triangulation of P max the min angle over all triangulations of P.

Computing the Delaunay Triangulation

Computing a Delaunay triangulation of P ∪ {p₋₁, p₋₂}

Two cases when adding a random point p_r
 _{pr} lies in the interior of a triangle p_r falls on

Delaunay Triangulation Algorithm

```
Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+1 points in the plane. Output. A Delaunay triangulation of P.
        Let p_0 be the lexicographically highest point of P, that is, the rightmost
       among the points with largest y-coordinate.

Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that P is contained in the triangle p_0p_{-1}p_{-2}.

Initialize \mathfrak{T} as the triangulation consisting of the single triangle p_0p_{-1}p_{-2}.
        Compute a random permutation p_1, p_2, \dots, p_n of P \setminus \{p_0\}. for r \leftarrow 1 to n
               do (* Insert p_r into \mathfrak{T}: *)
                     Find a triangle p_i p_j p_k \in \mathcal{T} containing p_r.
                     if p_r lies in the interior of the triangle p_i p_j p_k
then Add edges from p_r to the three vertices of p_i p_j p_k, thereby
                                    splitting p_i p_j p_k into three triangles.
10.
                                    LEGALIZEEDGE(p_r, \overline{p_i p_j}, T)
                         LEGALIZEEDGE(p_r, \overline{p_1p_k}, \mathcal{T})

LEGALIZEEDGE(p_r, \overline{p_kp_i}, \mathcal{T})

else (* p_r lies on an edge of p_ip_jp_k, say the edge \overline{p_ip_j} *)
11.
13.
                                   Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to \overline{p_lp_j}, thereby splitting the two triangles incident to \overline{p_lp_j} into four triangles.
14.
15.
                                    LEGALIZEEDGE(p_r, \overline{p_i p_l}, T)
                                    LEGALIZEEDGE(p_r, \overline{p_l p_j}, \mathfrak{T})
16.
17.
                                    LEGALIZEEDGE(p_r, \overline{p_j p_k}, \mathfrak{T})
                                    LEGALIZEEDGE(p_r, \overline{p_k p_i}, T)
19. Discard p_{-1} and p_{-2} with all their incident edges from T.
```

Legalize Edge

 $LEGALIZEEDGE(p_r, \overline{p_i p_j}, \mathfrak{T})$

- (* The point being inserted is p_r, and \(\overline{p_i p_j}\) is the edge of \(\mathcal{T}\) that may need to be flipped. *)
- 2. if $\overline{p_i p_j}$ is illegal
- then Let p_ip_jp_k be the triangle adjacent to p_rp_ip_j along p_ip_j.
- 4. $(* \operatorname{Flip} \overline{p_i p_j}: *) \operatorname{Replace} \overline{p_i p_j} \text{ with } \overline{p_r p_k}.$

20. return T

- 5. LEGALIZEEDGE($p_r, \overline{p_i p_k}, \mathfrak{I}$)
- 6. LEGALIZEEDGE($p_r, \overline{p_k p_i}, \mathcal{T}$)

Correctness

• Every new edge created in DELAUNAYTRIANGULATION or in LEGALIZEEDGE during the insertion of p_r is an edge of the Delaunay graph of $\{p_{-2}, p_{-1}, p_0, \dots, p_r\}$.

How to Pick P₋₁ and P₋₂

- · Treat them "symbolically"
- $p = (x_p, y_p)$ is higher than $q = (x_q, y_q)$ if
 - $-y_p > y_q$ or
 - $-y_p = y_q$ and $x_q > x_p$.
 - The lexicographic ordering of P is defined by this relation.
- Let I₋₁ be a horizontal line lying below P, and I₋₂ be a horizontal line lying above P
 - We choose p₋₁ on l₋₁ sufficiently far to the right and p₋₂ on l₋₂ sufficiently far to the left

Determine whether or not \line{p_ip_i} is illegal

- Equivalent statements
 - p_i lies to the left of the line from p_i to p₋₁
 - p_i lies to the left of the line from p₋₂ to p_i
 - p_i is lexicographically larger than p_i
- Let \line{p_ip_j} be the edge to be tested, and let p_k and p_l
 be the other vertices of the triangles incident to \line{p_ip_j}
 - \line{p_ip_j} is an edge of \triangle{p_0p_1p_2}. These edges are always legal.
 - The indices i, j, k, I are all non-negative. This is the normal case;
 none of the points involved in the test is treated symbolically.
 - All other cases. In this case, $\{p_ip_j\}$ is legal if and only if min(k, l) < min(i, j).

of Triangles Created in Step r (1/2)

- $P_r := \{p_1, \ldots, p_r\}$
- $DG_r := DG(\{p_{-2}, p_{-1}, p_0\} \cup P_r)$
- The expected number of triangles created by DELAUNAYTRIANGULATION is at most 9n+1.
 - Initial p_r insertion creates 3 triangles and each subsequent flip creates 2 triangles
 - If after the insertion of p_r there are k edges of DG_r incident to p_r , then we have created at most 2(k-3)+3 = 2k-3 new triangles.

of Triangles Created in Step r (2/2)

- What is the average of k (deg(p_r, DG_r))?
 - DGr has at most 3(r+3) 6 edges
 - The total degree is less than 2[3(r+3) 9]=6r.
 - Backward analysis tells us it's 6!
- The # of triangles created in step r:

```
E[number of triangles created in step r] \leq E[2deg(p_r, \mathcal{D}\mathcal{G}_r) - 3]
= 2E[deg(p_r, \mathcal{D}\mathcal{G}_r)] - 3
\leq 2·6-3 = 9
```

Time Complexity

- The Delaunay triangulation of a set P of n points in the plane can be computed in O(nlogn) expected time, using O(n) expected storage.
 - The time spent by the algorithm (not counting the time to find the point location) is proportional to the number of created triangles, which is O(n).
 - The storage space is obviously O(n).

Point Location Steps (1/2)

- Locating p_r is O(1) + linear time in the number of triangles that were present at some earlier stage, but have been destroyed, and contain p_r.
- Two cases $p_i p_i p_k$ can be destroyed:
 - 1. A new point p_i has been inserted inside (or on the boundary of) $p_i p_j p_k$, and $p_i p_j p_k$ was split into three (or two) subtriangles.
 - 2. An edge flip has replaced $p_i p_j p_k$ and an adjacent triangle $p_i p_i p_l$ by the pair $p_k p_i p_l$ and $p_k p_i p_l$.
- In all cases we can say the circumcircle of a Delaunay triangle p_ip_ip_k contains p_r.

Point Location Steps (2/2)

- Denote the subset of points in P that lie in the circumcircle of a given triangle Δ by K(Δ). the total time for the point location steps is O(n+∑card(K(Δ)))
- What is card(K(∆))?
 - When r = 1 it will be n
 - When r = n it will be 0
 - Randomization allows us to "interpolate"O(n/r)

Formal Proof (1/5)

- If P is a point set in general position, then $\sum_{\Delta} \operatorname{card}(K(\Delta)) = O(n \log n)$, where the summation is over all Delaunay triangles Δ created by the algorithm.
- We denote the set of triangles of DG_r by T_r. Now the set of Delaunay triangles created in stage r equals T_r \T_{r-1}
- The above becomes: $\sum_{r=1}^{n} \left(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \right)$

Formal Proof (2/5)

• For a point q, let $k(P_r, q)$ denote the number of triangles $\Delta \in T_r$ such that $q \in K(\Delta)$, and let $k(P_r, q, p_r)$ be the number of triangles $\Delta \in T_r$ such that not only $q \in K(\Delta)$ but for which we also have that p_r is incident to Δ .

$$\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) = \sum_{q \in P \setminus P_r} k(P_r, q, p_r)$$

Formal Proof (3/5)

- Fix p_r , consider all possible permutations of P where $P_r = P_r^*$, the value $k(P_p, q, p_r)$ then depends only on the choice of p_r . Since a triangle $\Delta \in T_r$ is incident to a random point $p \in P_r^*$ with probability at most 3/r, we get $E[k(P_r, q, p_r)] \leq \frac{3k(P_r, q)}{r}$
- Sum this over all $q \in P \setminus P_r$

$$\mathrm{E}\big[\sum_{\Delta \in \mathcal{T}_r \backslash \mathcal{T}_{r-1}} \mathrm{card}(K(\Delta))\big] \leqslant \frac{3}{r} \sum_{q \in P \backslash P_r} k(P_r,q)$$

Formal Proof (4/5)

• Every $q \in P \setminus P_r$ is equally likely to appear as $p_{r+1} = \sum_{k \in P \setminus P_r} k(P_r, p_{r+1}) = \frac{1}{n-r} \sum_{q \in P \setminus P_r} k(P_r, q)$

$$=> \ \mathbb{E}\big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\big] \leqslant 3 \Big(\frac{n-r}{r}\Big) \mathbb{E}\big[k(P_r, p_{r+1})\big]$$

- $k(P_r, p_{r+1})$ is the number of triangles Δ of T_r that have $p_{r+1} \in K(\Delta)$.
 - These triangles are exactly the triangles of T_r that will be destroyed by the insertion of p_{r+1} .

$$\mathrm{E}\big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \mathrm{card}(K(\Delta))\big] \leqslant 3\Big(\frac{n-r}{r}\Big) \, \mathrm{E}\big[\mathrm{card}(\mathcal{T}_r \setminus \mathcal{T}_{r+1})\big]$$

Formal Proof (5/5)

• The number of triangles in T_m is precisely 2(m+3)-2-3 = 2m+1. Therefore, the number of triangles *destroyed* by the insertion of point p_{r+1} is exactly two less than the number of triangles *created* by the insertion of p_{r+1}

$$\mathbb{E}\left[\sum_{\Delta \in \mathcal{T}_{n} \setminus \mathcal{T}_{n-1}} \operatorname{card}(K(\Delta))\right] \leqslant 3\left(\frac{n-r}{r}\right) \left(\mathbb{E}\left[\operatorname{card}(\mathcal{T}_{r+1} \setminus \mathcal{T}_{r})\right] - 2\right)$$

 The number of triangles created by the insertion of p_{r+1} is identical to the number of edges incident to p_{r+1} in T_{r+1}, and that the expected number of these edges is at most 6.

$$\mathbb{E} \big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \big] \leqslant 12 \Big(\frac{n-r}{r} \Big)$$

Homework Assignment 9

Page 215

- 9.2
- 9.4

Bonus

Page 217

• 9.14