VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÝCH TECHNOLOGIÍ

Semestrálny projekt ELEKTRONIKA PRO INFORMAČNÍ TECHNOLOGIE 2023/2024

Obsah

1.	Príklad	3
2.	Príklad	8
3.	Príklad	14
4.	Príklad	17
5.	Príklad	20
Tal	buľka výsledkov	23

Stanovte napětí U_{R2} a proud I_{R2}. Použijte metodu postupného zjednodušování obvodu.

Sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8 [\Omega]$
Н	135	80	680	600	260	310	575	870	355	265

Metódou zjednodušovania obvodu si najprv zistíme celkové napätie obvodu a následne postupným spätným skladaním získame hľadané hodnoty.

Sčítame sériovo zapojené zdroje napätia U₁, U₂ (celkové napätie obvodu), sériovo zapojené rezistory R₇, R₈ a spojíme paralelne zapojené rezistory R₅, R₆.

$$U_{12} = U_1 + U_2 = 215V$$

$$R_{78} = R_7 + R_8 = 620 \; \Omega$$

$$R_{56} = \frac{R_5 \times R_6}{R_5 + R_6} = \frac{100050}{289} \,\Omega$$

Spravíme zapojenie hviezda pri rezistoroch R₅₆, R₃, R₄, ktoré sú v zapojení trojuholník.

$$R_{\rm A} = \frac{R_{56} \times R_4}{R_{56} + R_4 + R_3} = \frac{516925}{4413} \,\Omega$$

$$R_{B} = \frac{R_{56} \times R_{3}}{R_{56} + R_{4} + R_{3}} = \frac{433550}{4413} \Omega$$

$$R_{\rm C} = \frac{R_3 \times R_4}{R_{56} + R_4 + R_3} = \frac{1164670}{13239} \,\Omega$$

Sčítame sériovo zapojené rezistory R₁, R_B a R₂, R_C.

$$R_{1B} = R_1 + R_B = \frac{3434390}{4413} \, \Omega$$

$$R_{2C} = R_2 + R_C = \frac{9108070}{13239} \Omega$$

Spojíme paralelne zapojené rezistory R_{1B} a R_{2C}.

$$R_{1B2C} = \frac{R_{1B} \times R_{2C}}{R_{1B} + R_{2C}} = \frac{1564033226365}{4283090106} \,\Omega$$

Sčítame sériové zapojené rezistory R_{1B2C} , R_A , R_{78} a tým získame celkový odpor obvodu (R_{EKV}). Pomocou celkového odporu a celkového napätia vypočítame celkový prúd Obvodu.

$$\begin{split} R_{EKV} &= R_{1B2C} + R_A + R_{78} = \frac{1069851995}{970562} \, \Omega \\ I &= \frac{U_{12}}{R_{EKV}} = \frac{41734166}{213970399} \, A \end{split}$$

Keďže rezistor R_{EKV} vznikol sériovým zapojením rezistorov, prúd na rezistoroch je rovnaký, a tak pomocou Ohmového zákona si vypočítame napätie pri rezistore R_{1B2C} .

Keďže rezistor R_{1B2C} vznikol paralelným zapojením rezistorov R_{1B} a R_{2C} , tak pre prúdy na týchto rezistoroch platí:

$$U_{R1B2C} = U_{R1B} = U_{R2C} = \frac{67253428733695}{944251370787} V$$

Vypočítame prúd I_{R2C}.

$$I_{R2C} = \frac{U_{R2C}}{R_{2C}} = \frac{44303631}{427940798} A$$

Prúd, ktorý prechádza medzi rezistormi I_{R2} a I_{R2} je rovnaký ako prúd I_{R2C} . Pomocou Ohmového zákona si vypočítame hľadané napätie U_{R2} .

$$I_{R2C} = I_{R2} = I_{RC} = \frac{44303631}{427940798} V = 0.1035274767 A$$

$$U_{R2} = I_{R2} \times R_2 = \frac{13291089300}{213970399} V = 62.11648603 V$$

Stanovte napětí U_{R6} a proud I_{R6}. Použijte metodu Théveninovy věty.

Sk.	U [V]	$R_1[\Omega]$	$R_2\left[\Omega\right]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
Н	220	190	360	580	205	560	250

Prepojíme zdroj napätia U a rezistor R_6 nahradíme svorkami A a B. Postupným zjednodušovaním obvodu si vypočítame hodnotu rezistora R_i .

Sčítame sériovo zapojené rezistory R2 a R3.

$$R_{23}\!=R_2+R_3=940\;\Omega$$

Spojíme paralelne zapojené rezistory R₂₃ a R₁.

$$R_{123} = \frac{R_1 \times R_{23}}{R_1 + R_{23}} = \frac{17860}{113} \,\Omega$$

Sčítame sériovo zapojené rezistory $R_{132}\ a\ R_4.$

$$R_{1234}\!=R_{123}+R_4\!=\!\frac{_{41025}}{_{113}}\,\Omega$$

Spojíme paralelne zapojené rezistory R₁₂₃₄, R₅ a tým dostaneme rezistor R_i.

$$R_i = R_{12345} = \frac{R_5 \times R_{1234}}{R_5 + R_{1234}} = \frac{4594800}{20861} \ \Omega$$

Hľadáme napätie U_i, ktoré je rovné napätiu na rezistore R₅.

Sčítame sériovo zapojené rezistory R2, R3 a R4, R5.

$$R_{45} = R_4 + 4_5 = 765 \ \Omega$$

$$R_{23} = R_2 + R_3 = 940 \; \Omega$$

Spojíme paralelne zapojené rezistory $R_{23}\,a\,R_{45}.$

$$R_{2345} = \frac{R_{23} \times R_{45}}{R_{23} + R_{45}} = \frac{143820}{341} \,\Omega$$

Sčítame sériovo zapojené prúdy R₁₂₃₄₅ a R₅ a následne určíme celkový prúd tohto obvodu.

$$R_{12345} = R_1 + R_{2345} = \frac{208610}{341} \Omega$$
$$I = \frac{U}{R_{12345}} = \frac{7502}{20861} A$$

Následne spätným skladaním sa dostaneme ku hľadanému napätiu U_i.

Keďže prúdy pri sériovom zapojení sú rovnaké tak prúd na rezistore R₂₃₄₅ je rovný celkovému prúdu tohto obvodu. Pomocou ohmového zákona si vypočítame napätie na rezistore R₂₃₄₅.

$$U_{R2345} = I \times R_{2345} = \frac{3164040}{20861} V$$

Keďže rezistory R₂₃ a R₄₅ sú v paralelnom zapojení, tak pre nich platí:

$$U_{R2345} = U_{R23} = U_{R45}$$

Pomocou Ohmového zákona si vypočítame prúd na rezistore R₄₅.

$$I_{R45} = \frac{U_{R45}}{R_{45}} = \frac{4136}{20861} A$$

Keďže rezistory R₄ a R₅ sú v sériovom zapojení tak pre ich prúdy platí:

$$I_{R45} = I_{R4} = I_{R5} \\$$

Pomocou Ohmového zákona vypočítame U_i, ktoré je rovné U₅.

$$U_i = U_{R5} = I_{R5} \times R_5 = \frac{2316160}{20861} V = 111.0282345$$

Získané hodnoty R_i , U_i dosadíme do ekvivalentného obvodu a pomocou Ohmového zákona vypočítame hľadané hodnoty.

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{231616}{981005} = 0.2361007334 \text{ A}$$

$$U_{R6} = I_{R6} \times R_6 = 59.02518336 \ V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

Sk.	U[V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
В	150	0.7	0.8	49	45	61	34	34

Označíme si smery prúdov a uzly, s ktorými budeme počítať.

Zostavíme rovnice podľa 1. Kirchhoffového zákona pre všetky uzly.

A:
$$I_1 + I_{R2} - I_{R1} = 0$$

B: $I_2 - I_{R2} - I_{R3} = 0$
C: $I_{R5} + I_{R3} - I_2 - I_{R4} = 0$

Vyjadríme si prúdy.

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_B - U_A}{R_2}$$

$$I_{R3} = \frac{U_{B-U_C}}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U - U_C}{R_5}$$

Dosadíme prúdy vyjadrené prúdy do rovníc.

A:
$$I_1 + \frac{U_B - U_A}{R_2} - \frac{U_A}{R_1} = 0$$

B: $I_2 - \frac{U_B - U_A}{R_2} - \frac{U_{B-U_C}}{R_3} = 0$
C: $\frac{U - U_C}{R_5} + \frac{U_{B-U_C}}{R_3} - I_2 - \frac{U_C}{R_4} = 0$

Upravíme rovnice.

$$A:-U_{A}R_{1}-U_{A}R_{2}+U_{B}R_{1}=-I_{1}R_{2}R_{1}$$

$$B:U_{A}R_{3}-U_{B}R_{3}-U_{B}R_{2}+U_{C}R_{2}=-I_{2}R_{2}R_{3}$$

$$C:U_{B}R_{5}R_{4}-U_{C}R_{3}R_{4}-U_{C}R_{5}R_{4}-U_{C}R_{5}R_{3}=-UR_{3}R_{4}+I_{2}R_{5}R_{3}R_{4}$$

Dosadíme hodnoty a získame 3 rovnice s 3 neznámymi (UA, UB, UC).

A:
$$-94U_A + 49U_B = -1543.5$$

B: $61U_A - 106U_B + 45U_C = -2196$
C: $1156U_B - 5304U_C = -254687.2$

Pomocou Cramerovho pravidla vypočítame hodnotu napätia U_C.

$$D = \begin{vmatrix} -94 & 49 & 0\\ 61 & -106 & 45\\ 0 & 1156 & -5304 \end{vmatrix} = -32105520$$

$$D_{UC} = \begin{vmatrix} -94 & 49 & -1543.5 \\ 61 & -106 & -2196 \\ 0 & 1156 & -254687.2 \end{vmatrix} = -2123910810$$

$$U_C = \frac{D_{UC}}{D} = \frac{22757}{344} \text{ V} = 66.15406977$$

Pomocou Ohmového zákona vypočítame prúd I_{R4} a napätie U_{R4}.

$$I_{R4} = \frac{U_C}{R_4} = \frac{22757}{11696} A = 1.945707934 A$$

$$U_{R4} = I_{R4} \times R_4 = \frac{^{22757}}{^{344}} \, V = 66.15406977 \, \, V$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L2} = U_{L2} \cdot \sin(2\pi f t + \phi L2)$ určete $|U_{L2}|$ a ϕ_{L2} . Použijte metodu smyčkových proudů. Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik ($t = \pi 2\omega$).

Sk.	$egin{array}{c} \mathbf{U}_1 \\ [\mathbf{V}] \end{array}$	U ₂ [V]	$egin{array}{c} R_1 \ [\Omega] \end{array}$	$egin{array}{c} R_2 \ [\Omega] \end{array}$	L ₁ [H]	L ₂ [H]	C ₁ [F]	C ₂ [F]	f[Hz]
Н	5	6	10	10	160× 10 ⁻³	75× 10 ⁻³	155 × 10 ⁻⁶	70×10^{-6}	95

Označíme jednotlivé smyčky a určíme ich smery.

Vypočítame si uhlovú rýchlosť a impedancie jednotlivých cievok a kondenzátorov.

$$ω = 2πf = 596.9026042 \text{ rad*s}^{-1}$$

$$Z_{L1} = jωL_1 = 95.50441667j Ω$$

$$Z_{L2} = jωL_2 = 44.76769531j Ω$$

$$Z_{C1} = \frac{-j}{ωc_1} = -10.8084851j Ω$$

$$Z_{C2} = \frac{-j}{ωc_2} = -23.93307415j Ω$$

Zostavíme rovnice pre jednotlivé smyčky podľa 2. Kirchhoffového zákona

$$\begin{split} A\colon Z_{L1} \times I_A + Z_{C1} \times (I_A \text{-} I_B) + R_1 \times (I_A \text{-} I_B) + R_2 \times (I_A \text{+} I_C) &= 0 \\ B\colon Z_{C1} \times (I_B \text{-} I_A) + R_1 \times (I_B \text{-} I_A) + Z_{L2} \times (I_B \text{+} I_C) - U_1 &= 0 \\ C\colon R_2 \times (I_C \text{+} I_A) + Z_{L2} \times (I_C \text{+} I_B) + Z_{C2} \times I_C \text{-} U_2 &= 0 \end{split}$$

Rovnice upravíme a dostaneme 3 rovnice s 3 neznámymi (IA, IB, IC).

$$\begin{split} A\colon I_A \times (Z_{L1} + Z_{C1} + R_1 + R_2) - I_B \times (Z_{C1} + R_1) + I_C \times R_2 &= 0 \\ B\colon -I_A \times (Z_{C1} + R_1) + I_B \times (Z_{C1} + R_1 + Z_{L2}) + I_C \times (Z_{L2}) &= U_1 \\ C\colon I_A \times (R_2) + I_B \times (Z_{L2}) + I_C \times (R_2 + Z_{L2} + Z_{C2}) &= U_2 \end{split}$$

Pomocou Cramerovho pravidla vypočítame hodnoty I_B a I_C.

$$D = \begin{vmatrix} 20 + 84.69593157j & -10 + 10.8084851j & 10 \\ -10 + 10.8084851j & 10 + 33.95921021j & 44.76769531j \\ 10 & 44.76769531j & 10 + 20.83462116j \end{vmatrix}$$
$$= -33488.76034 + 119409.48093j$$

$$DIB = \begin{vmatrix} 20 + 84.69593157j & 0 & 10 \\ -10 + 10.8084851j & 5 & 44.76769531j \\ 10 & 6 & 10 + 20.83462116j \end{vmatrix}$$
$$= 13826.81171 + 1594.64436j$$

DIC =
$$\begin{vmatrix} 20 + 84.69593157j & -10 + 10.8084851j & 0 \\ -10 + 10.8084851j & 10 + 33.95921021j & 5 \\ 10 & 44.76769531j & 6 \end{vmatrix}$$
$$= 2501.90672 + 6517.53405j$$

$$I_B = \frac{\textit{D}_{1B}}{\textit{D}} = -0.01772 - 0.11082j \ A$$

$$I_C = \frac{D_{IB}}{D} = 0.04515 - 0.03361j \text{ A}$$

Zo získaných hodnôt vypočítame okamžité napätie u_{L2}.

$$u_{L2} = (I_C + I_B) \times Z_{L2} = 6.46579 + 1.22797j V$$

Vypočítame $\left|U_{L2}\right|$ (amplitúda napätia na cievke).

$$|U_{L2}| = \sqrt{Re(U_{L2})^2 + Im(U_{L2})^2} = 6.58136 \text{ V}$$

Vypočítame fázový posun φ_{L2}.

$$\varphi_{L2} = arctan \frac{Im(U_{L2})}{Re(U_{L2})} = 10.75343^{\circ}$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení

 $u_C = f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Sk.	U [V]	C [F]	R [Ω]	$u_{C}(0)[V]$
Н	18	2	200	3

Ohmov zákon:

$$i = \frac{u_R}{R}$$

2. Kirchhoffov zákon:

$$U_R + u_c = U \\$$

Axiom:

$$\mathbf{u_c'} = \frac{1}{c} * i$$

Počiatočná podmienka:

$$u_c(0) = u_{CP}$$

Dosadíme Ohmov a 2. Kirchhoffov zákon do počiatočnej podmienky.

$$u_C' = \frac{1}{C} * \frac{1}{R} * u_R$$
$$u_R = U - u_C$$
$$u_C' = \frac{(U - u_C)}{RC}$$

Obyčajná diferenciálna rovnica 1. stupňa:

$$u_C' + \frac{1}{RC} * u_C = \frac{U}{RC}$$

Charakteristická rovnica:

$$\lambda + \frac{1}{RC} = 0 \implies \lambda = -\frac{1}{RC}$$

Očakávané riešenie:

$$u_c(t) = K(t) * e^{\lambda t}$$

Po dosadení charakteristickej rovnice do očakávaného riešenia:

$$u_c(t) = K(t) * e^{-\frac{1}{RC}t}$$

Zderivujeme $u_c(t)$:

$$u_c'(t) = K'(t) * e^{-\frac{1}{RC}t} + K(t) * e^{-\frac{1}{RC}t} * -\frac{1}{RC}$$

Dosadíme $u_c'(t)$, $u_c(t)$ do obyčajnej diferenciálnej rovnice 1. stupňa:

$$K'(t) * e^{-\frac{1}{RC}t} - \frac{1}{RC} * K(t) * e^{-\frac{1}{RC}t} + \frac{1}{RC} * K(t) * e^{-\frac{1}{RC}t} = \frac{U}{RC}$$
$$K'(t) * e^{-\frac{1}{RC}t} = \frac{U}{RC}$$

Hľadáme K(t):

$$K'(t) * e^{-\frac{1}{RC}t} = \frac{U}{RC} / * e^{\frac{1}{RC}t}$$

$$K'(t) = \frac{U}{RC} * e^{\frac{1}{RC}t} / \int$$

$$K(t) = \frac{U}{RC} * RC * e^{\frac{1}{RC}t} + k$$

$$K(t) = U * e^{\frac{1}{RC}t} + k$$

Dosadíme K(t) do očakávaného riešenia:

$$u_c(t) = (U * e^{\frac{1}{RC}t} + k) * e^{-\frac{1}{RC}t}$$

 $u_c(t) = U + k * e^{-\frac{1}{RC}t}$

Dosadíme do počiatočnej podmienky $u_c(0) = u_{CP}$; t = 0

$$u_{CP} = U + ke^0$$
$$k = u_{CP} - U$$

Analytické riešenie:

$$u_c(t) = U + (u_{CP} - U) * e^{-\frac{1}{RC}t}$$
$$u_c(t) = 18 + 15 * e^{-\frac{t}{400}}V$$

Skúška:

$$u_c(0) = u_{CP} = 3 V$$

$$u_c(0) = U + (u_{CP} - U) * e^{-\frac{0}{RC}}$$

$$3 = 18 + (3 - 18) * e^{0}$$

$$3 = 18 - 15 * 1$$

$$3 = 3$$

Tabuľka výsledkov

Úloha	Skupina	Výsledky
1.	Н	$U_{R2} = 62.116 \text{ V}$ $I_{R2} = 0.1035 \text{ A}$
2.	Н	$U_{R6} = 59.0252 \text{ V}$ $I_{R6} = 0.2361 \text{ A}$
3.	В	$U_{R4} = 66.1541 \text{ V}$ $I_{R4} = 1.9457 \text{ A}$
4.	Н	$ \mathbf{U_{L2}} = 6.5814 \text{ V}$ $\mathbf{\phi_{L2}} = 10.7534^{\circ}$
5.	Н	$\mathbf{u}_{C}(\mathbf{t}) = 18 + 15 * e^{-\frac{t}{400}} V$