

Abaque permettant la détermination de l'ordre n d'un filtre de BUTTERWORTH, les paramètres Amax, Amin et k étant donnés.

# Fonction de transmission des filtres de BUTTERWORTH (la fonction de transfert est l'inverse de la fonction de transmission)

|      | Cellule                           | V <sub>m</sub>              | $\omega_m$     | $F^{-1}(p) = V_1/V_2$                                                                                                                                                      |
|------|-----------------------------------|-----------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | 1                                 |                             |                | p <sup>2</sup> + 1,414 2 p + 1                                                                                                                                             |
| 3    | 1 2                               | 1,15                        | 0,707          | $p^2 + 1,000 \ 0 \ p + 1$<br>p + 1                                                                                                                                         |
| 4    | 1 2                               | 1,41                        | 0,840          | $p^2 + 1,847 7 p + 1$<br>$p^2 + 0,765 3 p + 1$                                                                                                                             |
| 5    | 1<br>2<br>3                       | 1,70                        | 0,899          | $p^2 + 1,6180 p + 1$<br>$p^2 + 0,6180 p + 1$<br>p + 1                                                                                                                      |
| 6    | 1<br>2<br>3                       | 1,99                        | 0,930          | $p^2 + 1,931 8 p + 1$<br>$p^2 + 1,414 2 p + 1$<br>$p^2 + 0,517 6 p + 1$                                                                                                    |
| 7    | 1<br>2<br>3<br>4                  | 1,02<br>2,30                | 0,471<br>0,949 | $p^{2} + 1,8019p + 1$<br>$p^{2} + 1,2469p + 1$<br>$p^{2} + 0,4450p + 1$<br>p + 1                                                                                           |
| 8    | 1<br>2<br>3<br>4                  | 1,08<br>2,61                | 0,618<br>0,961 | $p^{2} + 1,9615p + 1$ $p^{2} + 1,6629p + 1$ $p^{2} + 1,1111p + 1$ $p^{2} + 0,3901p + 1$                                                                                    |
| 9    | 1<br>2<br>3<br>4<br>5             | 1,15<br>2,92                | 0,707<br>0,969 | $   \begin{array}{r}     p^2 + 1,879 \ 3 \ p + 1 \\     p^2 + 1,532 \ 0 \ p + 1 \\     p^2 + 1,000 \ 0 \ p + 1 \\     p^2 + 0,347 \ 2 \ p + 1 \\     p + 1   \end{array} $ |
|      |                                   |                             | 80-<br>A(dB)   |                                                                                                                                                                            |
| ∠(dB | 3)<br>2<br>1<br>0<br>0 0,2 0,4 0, | 22<br>3<br>4<br>5<br>7<br>6 | 40             | 9/8<br>7<br>6<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                      |



Abaque permettant la détermination de l'ordre n d'un filtre de TCHEBYCHEFF, les paramètres Amax, Amin et k étant donnés.

## Fonction de transmission des filtres de TCHEBYCHEFF pour une d'ondulation en bande passante : Amax = 0,1dB (la fonction de transfert est l'inverse de la fonction de transmission)

| n    | Cellule               | V <sub>m</sub>                | ω <sub>m</sub>                   | $F^{-1}(p) = V_1/V_2$                                                                                                                                     |
|------|-----------------------|-------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | 1                     | 1,01                          | 0,707                            | $0,301 \ 7 \ p^2 + 0,715 \ 8 \ p + 1$                                                                                                                     |
| 3    | 1 2                   | 1,44                          | 1,104                            | 0,5918 p <sup>2</sup> + 0,573 6 p + 1<br>1,031 p + 1                                                                                                      |
| 4    | 1 2                   | 2,24                          | 1,091                            | 0,751 8 $p^2$ + 0,397 2 $p$ + 1<br>1,605 3 $p^2$ + 2,047 5 $p$ + 1                                                                                        |
| Б    | 1<br>2<br>3           | 3,32<br>1,09                  | 1,067<br>0,505                   | 0,836 8 $p^2$ + 0,278 7 $p$ + 1<br>1,572 5 $p^2$ + 1,371 2 $p$ + 1<br>1,855 $p$ + 1                                                                       |
| 6    | 1<br>2<br>3           | 4,66<br>1,43                  | 1,050<br>0,707                   | $3,797 \ 0 \ p^2 + 3,250 \ 6 \ p + 1$<br>$0,885 \ 4 \ p^2 + 0,203 \ 1 \ p + 1$<br>$1,436 \ 0 \ p^2 + 0,899 \ 9 \ p + 1$                                   |
| 7    | 1<br>2<br>3<br>4      | 6,25<br>1,04<br>1,91          | 1,038<br>0,315<br>0,801          | 0,915 3 $p^2$ + 0,153 4 $p$ + 1<br>3,028 3 $p^2$ + 2,056 0 $p$ + 1<br>1,327 6 $p^2$ + 0,623 7 $p$ + 1<br>2,654 $p$ + 1                                    |
| 8    | 1<br>2<br>3<br>4      | 8,09<br>2,50<br>1,30          | 1,030<br>0,855<br>0,517          | 6,867 5 $p^2$ + 4,417 8 $p$ + 1<br>0,935 0 $p^2$ + 0,119 6 $p$ + 1<br>1,251 7 $p^2$ + 0,456 1 $p$ + 1<br>2,402 6 $p^2$ + 1,310 3 $p$ + 1                  |
| 9    | 1<br>2<br>3<br>4<br>5 | 1,67<br>10,19<br>1,03<br>3,18 | 0,631<br>1,024<br>0,228<br>0,890 | 2,009 8 $p^2$ + 0,894 4 $p$ + 1<br>0,948 5 $p^2$ + 0,095 6 $p$ + 1<br>4,966 5 $p^2$ + 2,711 2 $p$ + 1<br>1,198 5 $p^2$ + 0,348 1 $p$ + 1<br>3,442 $p$ + 1 |
| Amax | 6 n=5                 | astito i                      | A(dB) 60 40                      | 9 8 7 6 5 5 7 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                       |

### Fonction de transmission des filtres de TCHEBYCHEFF pour une d'ondulation en bande passante : Amax = 0,5dB (la fonction de transfert est l'inverse de la fonction de transmission)

|      | Cellule               | V <sub>m</sub>                | 00,00                            | $F^{-1}(p) = V_1/V_2$                                                                                                                                     |
|------|-----------------------|-------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | 1                     | 1,05                          | 0,707                            | $0.659 \ 5 \ p^2 + 0.940 \ 2 \ p + 1$                                                                                                                     |
| 3    | 1 2                   | 1,78                          | 0,972                            | 0,875 3 p <sup>2</sup> + 0,548 3 p + 1<br>1,596 p + 1                                                                                                     |
| 4    | 1 2                   | 2,98                          | 1,001                            | 0,940 2 $p^2$ + 0,329 7 $p$ + 1<br>2,805 7 $p^2$ + 2,375 5 $p$ + 1                                                                                        |
| 5    | 1<br>2<br>3           | 1,30<br>4,57                  | 0,552<br>1,005                   | 2,097 4 $p^2$ + 1,229 6 $p$ + 1<br>0,965 4 $p^2$ + 0,216 1 $p$ + 1<br>2,759 $p$ + 1                                                                       |
| 6    | 1<br>2<br>3           | 6,53<br>1,88                  | 1,005<br>0.707                   | 6,369 5 $p^2$ + 3,691 7 $p$ + 1<br>0,977 4 $p^2$ + 0,151 8 $p$ + 1<br>1,694 8 $p^2$ + 0,719 1 $p$ + 1                                                     |
| 7    | 1<br>2<br>3<br>4      | 8,85<br>1,22<br>2,62          | 1,004<br>0,383<br>0,791          | 0.984 1 $p^2$ + 0.112 1 $p$ + 1<br>3.938 8 $p^2$ + 1.818 2 $p$ + 1<br>1.477 3 $p^2$ + 0.471 9 $p$ + 1<br>3.903 $p$ + 1                                    |
| 8    | 1<br>2<br>3<br>4      | 11,54<br>1,69<br>3,50         | 1,004<br>0,538<br>0,842          | 11,356 8 $p^2$ + 4,980 9 $p$ + 1<br>0,988 2 $p^2$ + 0,086 2 $p$ + 1<br>2,788 2 $p^2$ + 1,036 7 $p$ + 1<br>1,348 9 $p^2$ + 0,335 1 $p$ + 1                 |
| 9    | 1<br>2<br>3<br>4<br>5 | 2,27<br>1,20<br>14,58<br>4,50 | 0,637<br>0,294<br>1,003<br>0,877 | 2,209 7 $p^2$ + 0,671 7 $p$ + 1<br>6,396 2 $p^2$ + 2,385 0 $p$ + 1<br>0,990 8 $p^2$ + 0,068 2 $p$ + 1<br>1,266 8 $p^2$ + 0,251 3 $p$ + 1<br>5,040 $p$ + 1 |
| Amax | 7                     |                               | A (dB)                           | 9/8/7                                                                                                                                                     |
|      | 6 n=5                 |                               | 20                               | 7<br>0=2                                                                                                                                                  |

### Fonction de transmission des filtres de TCHEBYCHEFF pour une d'ondulation en bande passante : Amax = 1dB (la fonction de transfert est l'inverse de la fonction de transmission)

| n                | Cellule               | V <sub>m</sub>                | w <sub>m</sub>                   | $F^{-1}(p) = V_1/V_2$                                                                                                                                             |
|------------------|-----------------------|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                | 1                     | 1,12                          | 0,707                            | 0.907 0 p <sup>2</sup> + 0.995 6 p + 1                                                                                                                            |
| 3                | 1 2                   | 2,08                          | 0,933                            | 1,005 8 ρ <sup>2</sup> + 0,497 0 ρ + 1<br>2,023 ρ + 1                                                                                                             |
| 4                | 1 2                   | 3,59<br>1,01                  | 0,973<br>0,228                   | 1,013 6 $\rho^2$ + 0,282 8 $\rho$ + 1<br>3,579 1 $\rho^2$ + 2,411 3 $\rho$ + 1                                                                                    |
| 5                | 1<br>2<br>3           | 1,49<br>5,57                  | 0,565<br>0,986                   | 2,329 3 p <sup>2</sup> + 1,091 1 p + 1<br>1,011 8 p <sup>2</sup> + 0,181 0 p + 1<br>3,454 p + 1                                                                   |
| 6                | 1<br>2<br>3           | 8,01<br>2,25                  | 0,991<br>0,707                   | 8,018 8 $\rho^2$ + 3,721 7 $\rho$ + 1<br>1,009 3 $\rho^2$ + 0,125 5 $\rho$ + 1<br>1,793 0 $\rho^2$ + 0,609 2 $\rho$ + 1                                           |
| 7                | 1<br>2<br>3<br>4      | 1,40<br>3,19<br>10,91         | 0,402<br>0,787<br>0,994          | 4,339 3 $p^2$ + 1,606 1 $p$ + 1<br>1,530 3 $p^2$ + 0,391 9 $p$ + 1<br>1,007 3 $p^2$ + 0,092 0 $p$ + 1<br>4,868 $p$ + 1                                            |
| 8                | 1<br>2<br>3<br>4      | 4,29<br>2,02<br>14,24         | 0,838<br>0,544<br>0,995          | 14,232 6 $\rho^2$ + 5,009 8 $\rho$ + 1<br>1,382 0 $\rho^2$ + 0,275 5 $\rho$ + 1<br>2,933 7 $\rho^2$ + 0,875 4 $\rho$ + 1<br>1,005 8 $\rho^2$ + 0,070 4 $\rho$ + 1 |
| 9                | 1<br>2<br>3<br>4<br>5 | 1,37<br>2,76<br>18,03<br>5,54 | 0,312<br>0,639<br>0,996<br>0,873 | 7,024 2 $p^2$ + 2,103 3 $p$ + 1<br>2,280 1 $p^2$ + 0,556 6 $p$ + 1<br>1,004 7 $p^2$ + 0,055 6 $p$ + 1<br>1,289 6 $p^2$ + 0,205 4 $p$ + 1<br>6,276 $p$ + 1         |
| A <sub>max</sub> | 7<br>n=8-4            |                               | A(dB)                            | 9/8/7/6/5                                                                                                                                                         |
|                  | n=2                   | V                             | 20                               | n=2                                                                                                                                                               |

#### Fonction de transmission des filtres de LEGENDRE

#### (la fonction de transfert est l'inverse de la fonction de transmission)

#### Fonction de transmission des filtres de BESSEL

#### (la fonction de transfert est l'inverse de la fonction de transmission)

| n | Cellule               | V <sub>m</sub>                | © <sub>m</sub> | $F^{-1}(p) = V_1/V_2$                                                                                                                                     |
|---|-----------------------|-------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | 1                     |                               |                | $0.6180 p^2 + 1.3616 p + 1$                                                                                                                               |
| 3 | 1 2                   |                               |                | $0.477 \ 1 \ p^2 + 0.999 \ 6 \ p + 1$<br>$0.756 \ p + 1$                                                                                                  |
| 4 | 1 2                   | 1,02                          | 0,768          | 0,388 9 $p^2$ + 0,774 2 $p$ + 1 0,488 9 $p^2$ + 1,339 6 $p$ + 1                                                                                           |
| 5 | 1<br>2<br>3           | 1,09                          | 1,116          | 0,412 8 $p^2$ + 1,140 1 $p$ + 1<br>0,324 5 $p^2$ + 0,621 5 $p$ + 1<br>0,665 $p$ + 1                                                                       |
| 6 | 1<br>2<br>3           | 1,17                          | 1,376          | 0,388 7 $p^2$ + 1,221 7 $p$ + 1<br>0,350 4 $p^2$ + 0,968 6 $p$ + 1<br>0,275 6 $p^2$ + 0,513 0 $p$ + 1                                                     |
| 7 | 1<br>2<br>3<br>4      | 1,25                          | 1,595          | 0,339 4 $p^2$ + 1,094 4 $p$ + 1<br>0,301 0 $p^2$ + 0,830 3 $p$ + 1<br>0,238 0 $p^2$ + 0,433 2 $p$ + 1<br>0,593 $p$ + 1                                    |
| 8 | 1<br>2<br>3<br>4      | 1,34                          | 1,787          | 0,316 1 $p^2$ + 1,111 2 $p$ + 1<br>0,297 9 $p^2$ + 0,975 3 $p$ + 1<br>0,262 1 $p^2$ + 0,720 2 $p$ + 1<br>0,208 7 $p^2$ + 0,372 7 $p$ + 1                  |
| 9 | 1<br>2<br>3<br>4<br>5 | 1,42                          | 1,962          | 0,283 4 $p^2$ + 1,024 3 $p$ + 1<br>0,263 5 $p^2$ + 0,871 0 $p$ + 1<br>0,185 4 $p^2$ + 0,325 7 $p$ + 1<br>0,231 0 $p^2$ + 0,631 9 $p$ + 1<br>0,538 $p$ + 1 |
|   |                       |                               |                |                                                                                                                                                           |
|   |                       |                               | 40-<br>A(dB)   | 9 // 6<br>8 5<br>7 4                                                                                                                                      |
|   | A (dB)                |                               |                | 9 // 6                                                                                                                                                    |
|   | A(dB)                 | $n=2$ $0.4  0.6  0.8 f/f_{p}$ | A(dB)          | 9 // 6<br>8 5<br>7 4                                                                                                                                      |



Abaque permettant la détermination de l'ordre n d'un filtre de CAUER, les paramètres Amax, Amin et k étant donnés.

# Fonction de transmission des filtres de CAUER pour une d'ondulation en bande passante : Amax = 1dB et pour une atténuation en bande coupée : Amin = 50dB (la fonction de transfert est l'inverse de la fonction de transmission)

|     | Cellule | 40 <sub>00</sub> | ω <sub>m</sub>        | V <sub>m</sub> | $F^{-1}(p) = V_1/V_2$                                         |
|-----|---------|------------------|-----------------------|----------------|---------------------------------------------------------------|
| 3   | 1       | 3,974 5          | 1,054                 | 1,808          | $(1,000 \ p^2 + 0,475 \ 7 \ p + 1)/(0,063 \ 3 \ p^2 + 1)$     |
| - T | 2       |                  |                       |                | 1,969 p + 1                                                   |
| 4   | 1       | 4,664 4          |                       |                | $(3,086 \ p^2 + 2,177 \ 9 \ p + 1)/(0,045 \ 9 \ p^2 + 1)$     |
| 7   | 2       | 2,042 5          | 1,011                 | 3,084          | $(1,006 p^2 + 0.240 4 p + 1)/(0.239 6 p^2 + 1)$               |
|     | 1       | 2,152 3          | 0,796                 | 1,227          | $(1.870 p^2 + 0.849 8 p + 1)/(0.215 8 p^2 + 1)$               |
| 5   | 2       | 1,457 9          | 1,001                 | 4,181          | $(1,004 p^2 + 0,125 7 p + 1)/(0,470 4 p^2 + 1)$               |
|     | 3       |                  | ZOGIA .               |                | 2,874 p + 1                                                   |
|     | 1       | 3,592 8          |                       |                | $\{4,680 \ p^2 + 2,711 \ 7 \ p + 1\}/\{0,077 \ 4 \ p^2 + 1\}$ |
| 6   | 2       | 1,493 4          | 0,866                 | 1,981          | $(1,398 p^2 + 0,3816 p + 1)/(0,4483 p^2 + 1)$                 |
|     | 3       | 1,221 5          | 0,999                 | 4,957          | $(1,002 p^2 + 0,066 5 p + 1)/(0,670 1 p^2 + 1)$               |
|     | 1       | 1,879 8          | 0,714                 | 1,191          | $(2,339 p^2 + 0,967 5 p + 1)/(0,282 9 p^2 + 1)$               |
| 7   | 2       | 1,236 6          | 0,921                 | 2,584          | $\{1,195\ p^2+0,186\ 3\ p+1\}/(0,653\ 9\ p^2+1)$              |
| *   | 3       | 1,112 2          | 0,999                 | 5,441          | $(1,001 p^2 + 0,035 3 p + 1)/(0,808 3 p^2 + 1)$               |
|     | 4       |                  |                       |                | 3,231 p + 1                                                   |
|     |         |                  |                       |                |                                                               |
|     |         | A(c              | 60<br>1B) 7 6<br>40 5 |                | 6                                                             |



En amplitude

En temps de propagation de groupe

Réponse des filtres de BESSEL (sur l'axe des abscisses, la pulsation est normalisée)



Egalisation du temps de groupe avec les filtres de BESSEL