Operációs rendszerek I.

3. Gyakorlat

2025.04.26

Készítette: Jenei Viola

Szak: PTI-BSc-L

Neptunkód: GTDIOV

Sárospatak, 2025

GTDIOV Operációs rendszerek

1. Feladat	3
a.)	3
b.)	
C.)	4
2. Feladat	6
a.) és b.)	6
3. Feladat	

1. Feladat

Adott három processz a rendszerbe, melynek beérkezési sorrendje: A, B, C. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_usrpri = 50. Az A, B processz p_nice = 0, a C processz p_nice = 10. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 201. óraütés-ig.

a.)

Határozza meg az ütemezést RR nélkül és az ütemezést RR-nal - külön-külön táblázatba

b.)

Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.

• RR nélkül

Clock tick	A pro	cess	B Pro	cess	C pro	cess	Reschedule		
Clock lick	p_usrpri	p_cpu	p_usrpri	p_cpu	p_usrpri	p_cpu	Running before	Running after	
1	50	0	50	0	50	0	Α	Α	
2	50	1	50	0	50	0	Α	Α	
10	50	9	50	0	50	0	Α	Α	
20	50	19	50	0	50	0	Α	Α	
30	50	29	50	0	50	0	Α	Α	
31	50	30	50	0	50	0	Α	Α	
40	50	39	50	0	50	0	Α	Α	
50	50	49	50	0	50	0	Α	Α	
60	50	59	50	0	50	0	Α	Α	
70	50	69	50	0	50	0	Α	Α	
80	50	79	50	0	50	0	Α	Α	
90	50	89	50	0	50	0	Α	Α	
99	50	98	50	0	50	0	Α	Α	
100	50	99	50	0	50	0	Α	Α	
101	50	100	50	0	50	0	Α	Α	
110	50	109	50	0	50	0	Α	Α	
111	50	110	50	0	50	0	Α	Α	
120	50	119	50	0	50	0	Α	Α	
130	50	129	50	0	50	0	Α	Α	
140	50	139	50	0	50	0	Α	Α	
141	50	140	50	0	50	0	Α	Α	
150	50	149	50	0	50	0	Α	Α	
160	50	159	50	0	50	0	Α	Α	
170	50	169	50	0	50	0	Α	Α	
180	50	179	50	0	50	0	Α	Α	
190	50	189	50	0	50	0	Α	Α	
191	50	190	50	0	50	0	Α	Α	
200	50	199	50	0	50	0	Α	Α	
201	50	200	50	0	50	0	Α	Α	

RR-val

J	Clock tick	A process		B Pro	cess	C pro	cess	Reschedule		
	Clock lick	p_usrpri	p_cpu	p_usrpri	p_cpu	p_usrpri	p_cpu	Running before	unning afte	
	1	50	0	50	0	50	0	Α	В	
[2	50	1	50	0	50	0	В	С	
[10	50	3	50	3	50	3	Α	В	
	20	50	7	50	6	50	6	В	С	
[30	50	10	50	10	50	9	С	Α	
	31	50	10	50	10	50	10	Α	В	
[40	50	13	50	13	50	13	Α	В	
	50	50	17	50	16	50	16	В	С	
[60	50	20	50	20	50	19	С	Α	
	70	50	23	50	23	50	23	Α	В	
[80	50	27	50	26	50	26	В	С	
	90	50	30	50	30	50	29	С	Α	
	99	50	33	50	33	50	32	С	Α	
	100	50	33	50	33	50	33	Α	В	
	101	50	34	50	33	50	33	В	С	
	110	50	37	50	36	50	36	В	С	
J	111	50	37	50	37	50	36	С	Α	
	120	50	40	50	40	50	39	С	Α	
	130	50	43	50	43	50	43	Α	В	
	140	50	47	50	46	50	46	В	С	
J	141	50	47	50	47	50	46	С	Α	
	150	50	50	50	50	50	49	С	Α	
	160	50	53	50	53	50	53	Α	В	
	170	50	57	50	56	50	56	В	С	
	180	50	60	50	60	50	59	С	Α	
[190	50	63	50	63	50	63	Α	В	
J	191	50	64	50	63	50	63	В	С	
	200	50	67	50	66	50	66	В	С	
	201	50	67	50	67	50	66	С	Α	

c.)

Igazolja a számítással (képlettel) a 100. óraütésnél az A, B és C processz p_usrpri és a p_cpu értékét, majd határozza meg a 200. óraütésnél is a két értéket. Vezesse le a 1. óraütéstől a 201. óraütésig a folyamatot.

• RR nélkül

o 100. óraütés

A processz:

- p_cpu = előző p_cpu + 1 tick * 100 tick = **100**
- p_usrpri = 50 (nem változik, mert a feladat szerint nem kell újraszámítani).

■ B és C processzek:

- Nem futottak, ezért:
- p_cpu = 0
- p_usrpri = 50.

o 200. óraütés

A processz:

- p_cpu = 100 + (1 tick * 100 tick) = 200
- p_usrpri = 50.

■ B és C processzek:

- p_cpu = 0
- p_usrpri = 50.

Összefoglalva:

A p_cpu értékei az óraütések számával lineárisan növekedtek az aktív processz esetén. A p_usrpri értéke állandó maradt, mert a feladatban nem került meghatározásra újraszámítási képlet.

RR-val

o 100. óraütés

- Minden folyamat minden harmadik tickben futott:
- A, B, C p_cpu ≈ **33**.
- p_usrpri = 50.

o 200. óraütés

- A, B, C p_cpu ≈ **66**.
- p_usrpri = 50.

o Számítás:

 $p_cpu=Tick\ szam \div 3p\ |\ cpu=|\ text\{Tick\ szám\}\ |\ div\ 3p_cpu=Tick\ szam \div 3$

 $p_usrpri=50(fix)p_usrpri=50 \mid quad(\mid text\{fix\})p_usrpri=50(fix)$

2. Feladat

Megj.: a Bankár algoritmus elkészítése Excel programmal. "Az előadáson bemutatott mintaprogram alapján készítse el a következő feladatot. Adott egy rendszerbe az alábbi erőforrások: R (R1: 10; R2: 5; R3: 7) A rendszerbe 5 processz van: P1, P2, P3, P4, P5 Kérdés: Határozza, hogy biztonságos-e holtpontmentesség szempontjából a rendszer - a következő kiinduló állapot alapján. Külön-külön táblázatba oldja meg a feladatot!.

a.) és b.)

Határozza meg a processzek által igényelt erőforrások mátrixát, illetve lépésenként vezesse le és határozza meg pillanatnyilag szabad erőforrások számát?

R1: 10 R2:5 R3: 7		IX	ENY MÁTR	I		FOGLAL				MAX. IGÉNY	
		R3	R2	R1	R3	R2	R1	R3	R2	R1	
Készlet: 2,3,0	3		4	7	(1		3	5	7	P1
	0		2	0	2	(2	2	3	P2
	0		0	6	2	(2	0	9	P3
	1		1	0	1	1		2	2	2	P4
	1		3	4	2	(3	3	4	P5
					7	2					
Készlet: 5,3,2		IX	ENY MÁTR	I							
		R3	R2	R1						SOrrend: P2,P5,P4,P1,P3	
	3		4	7							
	0		0	6							
	1		1	0							
	1		3	4							
Készlet: 5,3,4	1	IX	ÉNY MÁTR	I							
		R3		R1							
	3		4	7							
	0		0	6							
	1		1	0							
Készlet:7,4,5		IX	ENY MÁTR	I							
		R3	R2	R1							
	3		4	7							
	0		0	6							
Készlet: 7,5,5		IGÉNY MÁTRIX									
		R3	R2	R1							
	0		0	6							

c.)

Igazolja, magyarázza az egyes processzek végrehajtásának lehetséges sorrendjét számolással

- Kiinduló állapot:
 - o Szabad erőforrások (készlet): R1 = 2, R2 = 3, R3 = 0.
- Sorrend meghatározása (P2, P5, P4, P1, P3):
 - 1. P2:
 - a. Igény: [0, 2, 0].
 - b. Szabad erőforrások elegendőek → P2 lefuthat.
 - c. P2 erőforrásait felszabadítva: új készlet [5, 3, 2].
 - 2. P5:
 - a. Igény: [4, 3, 1].
 - b. Készlet elegendő \rightarrow P5 lefuthat.

- c. Felszabadítva: új készlet [5, 3, 4].
- 3. P4:
 - a. Igény: [0, 1, 1].
 - b. Készlet elegendő → P4 lefuthat.
 - c. Felszabadítva: új készlet [7, 4, 5].
- 4. P1:
 - a. Igény: [7, 4, 3].
 - b. Készlet elegendő → P1 lefuthat.
 - c. Felszabadítva: új készlet [7, 5, 5].
- 5. P3:
 - a. Igény: [6, 0, 0].
 - b. Készlet elegendő → P3 lefuthat.
 - c. Minden processz teljesítve.
- A Bankár algoritmus alapján létezik biztonságos sorrend. A rendszer biztonságos állapotban van, mivel az összes processz végrehajtható holtpont kialakulása nélkül.

3. Feladat

"Adott egy rendszerbe az alábbi erőforrások vannak: R1: 10 R2: 5 R3: 7 A rendszerbe 5 processz van: P0, P1, P2, P3, P4 Teljesíthető-e P1 (1,0,2) kérése? – azaz biztonságos-e holtpontmentesség szempontjából a következő állapot. Igazolja, magyarázza az egyes processzek végrehajtásának lehetséges sorrendjét - számolással?"

• Nem teljesíthető,R3-ból nincs elég szabad erőforrás, tehát P1 kérése azonnal elutasítandó.

	U	U	U	L	- 1	U	11	J	IX	L	111	IV U	, ,
L	MAX.	IGÉNY				FOGLAL		IGÉNY MÁTRIX				R1: 10 R2:5 R3: 7	7 Teljesíthető e: P1(1,0,2)
2	R1	R2	R3		R1	R2	R3	R1	R2	R3			
3 P1	7	5	3		0	1	0	1	. 0	2		Készlet: 2,3,0	
↓ P2	3	2	2		3	0	2	0	2	0			
5 P3	9	0	2		3	0	2	6	0	0			
5 P4	2	2	2		2	1	1	0	1	1			
7 P5	4	3	3		0	0	2	4	3	1			
3					8	2	7						