Álgebra I Práctica 2 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

- Notas teóricas
- Ejercicios de la guía:

??.	??.	??.	??.	??.	??.	??.
??.	??.	??.	??.	??.	??.	??.
??.	??.	??.	??.	??.	??.	

• Ejercicios Extras

Notas teóricas:

1.
$$\forall n \in \mathbb{N} : \sum_{i=1}^{n} i = 1 + 2 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

2.
$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} q^i = 1 + q + q^2 + \dots + q^{n-1} + q^n = \begin{cases} n+1 & \text{si } q=1\\ \frac{q^{n+1}-1}{q-1} & \text{si } q \neq 1 \end{cases}$$

- 3. Inducción: Sea $H \subseteq \mathbb{R}$ un conjunto. Se dice que H es un conjunto inductivo si se cumplen las dos condiciones siguiente:
 - $1 \in H$
 - $\forall x, x \in H \Rightarrow x + 1 \in H$
- 4. Principio de inducción: Sea $p(n), n \in \mathbb{N}$, una afirmación sobre los números naturales. Si p satisface
 - (Caso Base) p(1) es Verdadera.
 - (Paso inductivo) $\forall h \in \mathbb{N}, p(h) \ Verdadera \Rightarrow p(h+1) \ Verdadera, entonces p(n) es \ Verdadera \\ \forall n \in \mathbb{N}.$
- 5. Principio de inducción corrido: Sea $n_0 \in \mathbb{Z}$ y sea p(n), $n \geq n_0$, una afirmación sobre $\mathbb{Z}_{\geq n_0}$. Si p satisface:
 - (Caso Base) $p(n_0)$ es Verdadera.
 - (Paso inductivo) $\forall h \geq n_0, p(h)$ Verdadera $\Rightarrow p(h+1)$ Verdadera, entonces p(n) es Verdadera $\forall n \in \mathbb{N}$.
- 1. explicación de las torres de Hanoi.
 - 1) $a_1 = 1$
 - 2) $a_3 = 7$
 - 3) $a_4 = 15$
 - 4) $a_9 = a_9 + 1 + a_9 = 2a_9 + 1$

$$\to \boxed{a_n + 1 = 2a_n + 1}$$

- 2. Una sucesión $(a_n)_{n\in\mathbb{N}}$ como las torres de Hanoi $a_1=1 \wedge a_{n+1}=2a_n+1, \ \forall n\in\mathbb{N}$, es una sucesión definida por recurrencia.
- 3. El patrón de las torres de Hanoi parece ser $\underbrace{a_n = 2^n 1}_{\text{término general}} \forall n \in \mathbb{N}$. Esto puedo probarse por inducción.

$$\begin{cases} \operatorname{Proposici\'{o}n}: p(n): a_n = 2^n - 1 \\ \operatorname{Caso Base}: \ p(1) \ \operatorname{es \ verdadero}? a_1 = 2^1 - 1 = 1 \quad \checkmark \\ \operatorname{Paso \ inductivo}: \ p(h) \ \operatorname{es \ verdadero} \Rightarrow p(h+1)V? \\ \begin{cases} \operatorname{HI}: a_h = 2^h - 1 \\ \operatorname{QPQ}: a_{h+1} = 2^{h+1} \end{cases} \rightarrow \operatorname{cuentas \ y \ queda \ que} \boxed{p(n) \ \operatorname{es \ } V, \ \forall n \in \mathbb{N}} \end{cases}$$

4. \sum es una def por recurrencia $\rightarrow \sum_{k=1}^{1} a_k = a_1 \land \sum_{k=1}^{n+1} a_k = ... facil$

Principio de inducción III: Sea p(n) una proposición sobre \mathbb{N} . Si se cumple:

- 1. $p(1) \wedge p(2) V$
- 2. $\forall h \in \mathbb{N}, p(h) \land p(h+1), V \Rightarrow p(h+2) V$ (paso inductivo), entonces p(n) es verdadera.

$$p(n): a_n = 3^n$$

caso base:
$$a_1 = 3, a_2 = 9$$
 \checkmark Paso inductivo: $\forall h \in \mathbb{N}, p(h) \land p(h+1) \ V \Rightarrow p(h+2) \ V$

$$\begin{cases}
\text{HI: } a_h = 3^h \land a_{h+1} = 3^{h+1} \\
\text{Quiero probar que: } a_{h+2} = 3^{h+2} \\
\text{Usando la fórmula de recurrencia sale enseguida}
\end{cases}$$

Principio de inducción IV Sea p(n) una proposición sobre $\mathbb{Z}_{>n_0}$. Si se cumple:

- 1. $p(n_0) \wedge p(n_0 + 1) V$
- 2. $\forall h \in \mathbb{Z}_{\geq n_0}, \ p(h+1) \land p(h+2) \ V \Rightarrow p(h+2) \ V \ (\text{paso inductivo}), \ \text{entonces} \ p(n) \ \text{es verdadera}. \ \forall n \geq n_0 \ \text{entonces} \ p(n) \ \text{es verdadera}.$

Sucesión de Fibonacci: $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n, \forall n \ge 0$ Truco para sacar fórmulas a partir de Fibo.

$$F_{n+2} - F_{n+1} - F_n = 0 \to x^2 - x - 1 = 0 = \left\{ \begin{array}{l} \Phi = \frac{1+\sqrt{5}}{2} \\ \tilde{\Phi} = \frac{1-\sqrt{5}}{2} \end{array} \right\} \to \Phi^2 = \Phi + 1 \wedge \tilde{\Phi}^2 = \tilde{\Phi} + 1$$

- defino sucesiones Φ^n que satisfacen la recurrencia de la sucesión de Fibonacci pero no sus condiciones iniciales.
- puedo formar una combineta lineal talque: $(c_n)_{n\in\mathbb{N}_0}=(a\Phi^n+b\tilde{\Phi}^n)$ es la sucesión que satisface: $\begin{cases} c_o = a + b \\ c_1 = a\Phi + b\tilde{\Phi} \end{cases}$ y la recurrencia de Fibonacci. Resuelvo todo y llego a \square

Sucesione de Lucas: Generalizaciones de Fibonacci. $(a_n)_{n\in\mathbb{N}_0}$

 $a_0 = \alpha, a_1 = \beta \wedge a_{n+2} = \gamma a_{n+1} + \delta a_n, \ \forall n \ge 0, \ con\alpha, \beta, \gamma, \delta \ dados.$ Esto lo meto en la ecuación característica: $x^2 - \gamma x - \delta = 0$, necesito raíces distintas. Notar que $r^2 =$ $\gamma r^1 + \delta$, y lo mismo es para \tilde{r} . Las sucesiones (r^n) y (\tilde{r}^n) satisfacen la recurrencia de Lucas, pero no las condiciones iniciales α y β . $c_n = (ar^n + b\tilde{r}^n)$, satisface Lucas, pero las condiciones iniciales son c_0 y c_1 o $\begin{cases} a+b=\alpha \\ ra+\tilde{b}=\beta \end{cases} \rightarrow \begin{cases} ra+rb=r\alpha \\ ra+\tilde{r}b=\beta \end{cases}$ luego hago lo mismo con \tilde{r} Como resultado: $a=\frac{\beta-\tilde{r}\alpha}{r-\tilde{r}}$

Ejercicios de la guía:

1.

i) Reescribir cada una de las siguientes sumas usando el símbolo de sumatoria

¿Cómo resolver este ejercicio?

Lo que queremos hacer es compactar la suma para evitar el uso de puntos suspensivos, la notación ideal para esos casos es el símbolo de sumatoria. El primer paso es fijarse en el comportamiento de cada término de nuesta suma. Por ejemplo, en el punto ?? notamos que cada término comienza a duplicarse.

a)
$$1 + 2 + 3 + 4 + \dots + 100$$

Respuesta: $\sum_{i=1}^{100} i$

b)
$$1+2+4+8+16+\cdots+1024$$

Respuesta: $\sum_{i=0}^{10} 2^i$

c)
$$1 + (-4) + 9 + (-16) + 25 + \dots + (-144)$$

Respuesta: $\sum_{i=1}^{12} i^2 (-1)^{n+1}$

d)
$$1+9+25+49+\cdots+441$$

Respuesta:
$$\sum_{i=0}^{10} (1+2i)^2$$

e)
$$1+3+5+\cdots+(2n+1)$$

Respuesta: $\sum_{i=0}^{n} 2i+1$

f)
$$n + 2n + 3n + \dots + n^2$$

Respuesta: $\sum_{i=1}^{n} in$

ii) a)
$$5 \cdot 6 \cdots 99 \cdot 100$$

Respuesta: $\prod_{i=5}^{100} i = \frac{100!}{4!}$

b)
$$1 \cdot 2 \cdot 4 \cdot 8 \cdot 16 \cdots 1024$$

Respuesta: $\prod_{i=0}^{10} 2^i$

c)
$$n \cdot 2n \cdot 3n \cdot \cdot \cdot \cdot n^2$$

Respuesta: $\prod_{i=1}^{n} in = n^n \cdot n!$

- 2. Hacer!
- 3. Calcular

i)
$$\sum_{i=1}^{n} (4i+1)$$
 Hacer!

ii)
$$\sum_{i=6}^{n} 2(i-5)$$
 Hacer!

- 4. Calcular
 - i) $\sum_{i=0}^{n} 2^{i}$ $\sum_{i=0}^{n} 2^{i} \stackrel{q \neq 1}{=} \frac{2^{n+1}-1}{2^{-1}} = 2^{n+1} 1$
 - ii) $\sum_{i=1}^{n} q^{i}$ $\sum_{i=1}^{n} q^{i} = -1 + 1 + \sum_{i=1}^{n} q^{i} = -1 + \sum_{i=0}^{n} q^{i} = \begin{cases} n+1-1 = n & \text{si } q = 1\\ \frac{q^{n+1}-1}{q-1} 1 = \frac{q^{n+1}-q}{q-1} & \text{si } q \neq 1 \end{cases}$
- iii) Hacer!
- iv) Hacer!

.

5.

i) Hacer!

ii)
$$\underbrace{S = \frac{N(N+1)}{2} = \sum_{1}^{N} i}_{Gauss} \rightarrow \sum_{1}^{n} 2i - 1 = 2\sum_{1}^{n} i - \sum_{1}^{n} 1 = 2\frac{n(n+1)}{2} - n = n^{2} + n - n = n^{2} \quad \checkmark$$

iii)
$$\left\{ \begin{array}{l} \text{Primer caso } n = 1 \to \sum_{1}^{1} 2i - 1 = 1 = 1^{2} \quad \checkmark \\ \text{Paso inductivo } n = h \to \sum_{1}^{k} 2i - 1 = k^{2} \quad \checkmark \Rightarrow \sum_{1}^{k+1} 2i - 1 \stackrel{?}{=} (k+1)^{2} \\ \sum_{1}^{k+1} 2i - 1 = \sum_{1}^{k} 2i - 1 + 2(k+1) - 1 = k^{2} + 2k + 1 = (k+1)^{2} \quad \checkmark \end{array} \right\} \to \boxed{\sum_{i=1}^{n} (2i-1) = n^{2}}$$

3 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

6. Hacer!

7.

$$\begin{cases} \text{Primer caso } n = 1 \to \sum_{1}^{1} (-1)^{i+1} i^2 = (-1)^2 \cdot 1 = 1 \quad \checkmark \\ n = k \to \sum_{1}^{k} (-1)^{i+1} i^2 = (-1)^{k+1} \frac{k(k+1)}{2} \\ \Rightarrow \\ n = k+1 \to \sum_{1}^{k+1} (-1)^{i+1} i^2 \stackrel{?}{=} (-1)^{(k+1)+1} \frac{(k+1)(k+2)}{2} \\ \to \sum_{1}^{k+1} (-1)^{i+1} i^2 = \sum_{1}^{k} (-1)^{i+1} i^2 + \underbrace{(-1)^{k+2}(k+1)^2}_{k+1 \cdot \text{esimo}} = \underbrace{(-1)^{k+1} \frac{k(k+1)}{2} + (-1)^k (-1)^2 (k+1)^2}_{(-1)^k (k+1) \frac{(k+2)}{2}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2}_{k+1 \cdot \text{esimo}} + \underbrace{(-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (k+1) \frac{(k+2)}{2}}_{k+1 \cdot \text{esimo}} + \underbrace{(-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (k+1) \frac{(k+2)}{2}}_{k+1 \cdot \text{esimo}} + \underbrace{(-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (-1)^k (k+1) \left[-\frac{k}{2} + (k+1) \right]}_{k+1 \cdot \text{esimo}} = \underbrace{\sum_{1}^{k} (-1)^{i+1} i^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (-1)^2 (k+1)^2 + (-1)^k (-1)^k (-1)^2 (k+1)^2 + (-1)^2 ($$

- ii) Hacer!
- iii) Hacer!

$$\begin{array}{l} \text{iv)} & \prod\limits_{i=1}^{n} \left(1+a^{2^{i-1}}\right) = \frac{1-a^{2^n}}{1-a} \\ \\ \text{Primer caso } n = 1 \rightarrow \prod\limits_{i=1}^{1} (1+a^{2^{i-1}}) = 1+a^{2^0} = 1+a = \frac{1-a^{2^1}}{1-a} = \frac{(1-a)(1+a)}{1-a} = 1+a \quad \checkmark \\ \\ \text{Paso inductivo } n = k \rightarrow \prod\limits_{i=1}^{k} (1+a^{2^{i-1}}) = \frac{1-a^{2^k}}{1-a} \Rightarrow n = k+1 \rightarrow \prod\limits_{i=1}^{k+1} (1+a^{2^{i-1}}) \stackrel{?}{=} \frac{1-a^{2^{k+1}}}{1-a} \\ \\ \begin{cases} \prod\limits_{i=1}^{k+1} (1+a^{2^{i-1}}) = \prod\limits_{i=1}^{k} (1+a^{2^k}) \cdot \underbrace{1+a^{2^{i-1}}}_{k+1-\text{\'esimo}} = \frac{1-a^{2^k}}{1-a} \cdot 1+a^{2^k} \xrightarrow{\text{diferencia}}_{\text{de cuadrados}} \frac{1-(a^{2^k})^2}{1-a} = \\ \\ \frac{1-a^{2\cdot 2^k}}{1-a} = \frac{1-a^{2^{k+1}}}{1-a} \quad \checkmark \end{array}$$

v) $\prod_{i=1}^{n} \frac{n+i}{2i-3} = 2^{n}(1-2n)$

En este ejercicio conviene abrir la productoria y acomodar los factores. Por inducción:

$$\begin{cases} p(n): & \prod_{i=1}^{n} \frac{n+i}{2i-3} = 2^n (1-2n) \\ Caso \ Base: \ p(1) \ \mathrm{V?} \rightarrow & \prod_{i=1}^{1} \frac{1+i}{2i-3} = \frac{1+1}{2\cdot 1-3} = 2^1 (1-2\cdot 1) = -2 \\ Paso \ inductivo: \ Supongo \ p(k) \ \mathrm{Verdadero} & \frac{\mathrm{quiero} \ \mathrm{ver}}{\mathrm{que}} p(k+1) \ \mathrm{Verdadero} \ \mathrm{para} \ \mathrm{algún} \ k \in \mathbb{N}. \\ Hipótesis \ inductiva: \ Supongo \ \prod_{i=1}^{k} \frac{k+i}{2i-3} = 2^k (1-2k), \ \mathrm{quiero} \ \mathrm{ver} \ \mathrm{que} & \prod_{i=1}^{k+1} \frac{k+1+i}{2i-3} = 2^{k+1} (1-2(k+1)) \\ \left\{ \begin{array}{l} \prod_{i=1}^{k} \frac{k+i}{2i-3} = \frac{k+1}{2\cdot 1-3} \cdot \frac{k+2}{2\cdot 2-3} \cdot \frac{k+3}{2\cdot 3-3} \cdots \frac{2k}{2\cdot k-3} = 2^k (1-2k) \\ \prod_{i=1}^{k+1} \frac{k+1+i}{2i-3} = \frac{k+2}{2\cdot 1-3} \cdot \frac{k+3}{2\cdot 2-3} \cdot \frac{k+1+(k-1)}{2(k-1)-3} \cdot \frac{k+1+k}{2k-3} \cdot \frac{k+1+(k+1)}{2(k+1)-3} \\ \prod_{i=1}^{k+1} \frac{k+1+i}{2i-3} = \frac{k+2}{2\cdot 1-3} \cdot \frac{k+2}{2\cdot 2-3} \cdot \frac{k+3}{2\cdot 3-3} \cdots \frac{2k}{2k-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2k-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{k+1} \\ \prod_{i=1}^{k+1} \frac{k+1+i}{2i-3} = \frac{k+2}{2\cdot 1-3} \cdot \frac{k+2}{2\cdot 2-3} \cdot \frac{k+3}{2\cdot 3-3} \cdot \frac{2k+3}{2\cdot 2-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{k+1} \\ \prod_{i=1}^{k+1} \frac{k+1+i}{2i-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+3}{2\cdot 3-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2\cdot 2-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2k-1} \\ \prod_{i=1}^{k+1} \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2\cdot 2-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2(k+1)-3} \cdot \frac{2k+2}{2\cdot 2-3} \cdot \frac{2k+1}{2\cdot 2-3} \cdot \frac{2k+1}{2$$

Como p(1) es verdadero y p(k) es verdadero y p(k+1) también lo es, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$

Sea $a, b \in \mathbb{R}$. Probar que para todo $n \in \mathbb{N}$, $a^n - b^n = (a - b) \sum_{i=1}^n a^{i-1} b^{n-i}$. Deducir la fórmula de la 8. serie geométrica: para todo $a \neq 1$, $\sum_{i=1}^{n} a^{i} = \frac{a^{n+1}-1}{a-1}$.

$$\begin{cases} \text{Primer paso: } n = 1(a-b) \sum_{1}^{1} a^{i-1} \cdot b^{1-1} = a - b = a^{1} - b^{1} \quad \checkmark \\ \text{Paso inductivo: } n = ka^{k} - b^{k} = (a-b) \sum_{i=1}^{k} a^{i-1} \cdot b^{k-i} \Rightarrow a^{k+1} - b^{k+1} \stackrel{?}{=} (a-b) \sum_{i=1}^{k+1} a^{i-1} \cdot b^{k+1-i} \\ \left\{ (a-b) \sum_{i=1}^{k+1} a^{i-1} \cdot b^{k+1-i} = (a-b) \sum_{i=1}^{k} a^{i-1} \cdot \underbrace{b^{k+1-i}}_{b \cdot b^{k-i}} + \underbrace{(a-b)a^{k} \cdot b^{k+1-(k+1)}}_{k+1 \cdot \text{esimo}} = b \cdot (a-b) \sum_{i=1}^{k} a^{i-1} \cdot b^{k-i} + (a-b)a^{k} \stackrel{\text{HI}}{=} b \cdot a^{k} - b^{k} + (a-b)a^{k} = a^{k+1} - b^{k+1} \end{cases} \checkmark$$

Para deducir la fórmula de la serie geométrica
$$b = 1 \rightarrow (a-1) \sum_{i=1}^{n} a^{i-1} = a^n - 1 \rightarrow \left(a-1\right) \sum_{i=1}^{n} a^{i-1} = (a-1) \cdot (1+a+a^2+\cdots+a^{n-1}) = a^n - 1 \xrightarrow{\text{multiplico por } a \text{ y} \\ \frac{(a-1)\sum_{i=1}^{n} a^{i-1} = (a-1) \cdot (1+a+a^2+\cdots+a^{n-1}) = a^n - 1 \xrightarrow{\text{divido por } (a-1) \text{ M.A.M.}} \sum_{i=0}^{n} a^i = a+a^2+\cdots+a^n = \frac{a^{n+1}-a}{a-1} \xrightarrow{\text{M.A.M.}} \sum_{i=0}^{n} a^i = 1+a+a^2+\cdots+a^n = \frac{a^n-a}{a-1}+1 \rightarrow \left(\frac{a^n+1}{a-1} = \sum_{i=0}^{n} a^i\right)$$

- 9. Hacer!
- 10. Hacer!
- 11. Hacer!
- 12. Hacer!
- 13. Hacer!
- 14. Probar que para todo $n \geq 3$ vale que:
 - i) La cantidad de diagonales de un polígono de n lados es $\frac{n(n-3)}{2}$. Ejercicio donde hay que encontrar una fórmula a partir de algún método *creativo* para luego probar por inducción.

Se desprende del gráfico el siguiente razonamiento: En el polígono cyan de n lados voy a tener una cantidad de diagonales dada por la sucesión d_n . El polígono rojo me genera polígono que tiene un lado menos y un lado menos, cantidad que viene determinada por d_{n-1} . Las líneas punteadas son las diagonales de d_n que no estarán en d_{n-1} . Ahora voy a encontrar una relación entre ambas sucesiones. Al sacan un lado pierdo las diagonales desde 2 hasta n-2 que serían n-3 en total y además

pierdo la diagonal que conectan el vértice 1 con el n-1: $d_n=d_{n-1}+1+n-2=d_{n-1}+n-1$ $\to d_n = d_{n-1} + n - 1$

Ahora inducción:

$$p(n): d_n = \frac{n(n-3)}{2} \ \forall n \ge 3$$

 $\begin{cases} \textit{Caso Base: } p(3) \text{ verdadera }? \rightarrow \frac{3(3-3)}{2} = 0, \text{ lo cual es verdad para el triángulo.} \checkmark \\ \textit{Paso inductivo: } p(k) \text{ es verdadero para algún } k \in \mathbb{Z}_{\geq 3} \Rightarrow p(k+1) \text{ verdadera }? \\ \textit{Hipótesis Inductiva: } d_k = \frac{k(k-3)}{2} \Rightarrow d_{k+1} = \frac{(k+1)(k-2)}{2} \\ d = k+1 \stackrel{\text{def}}{=} d_k + k-1 \stackrel{\text{III}}{=} \frac{k(k-3)}{2} + k-1 = \frac{k^2-k-2}{2} = \frac{(k-2)(k+1)}{2} \end{cases} \checkmark \\ \text{Como } p(3) \land p(k) \land p(k+1) \text{ resultaron verdaderas, por el principio de inducción } p(n) \text{ es verdadera} \end{cases}$

$$d = k + 1 \stackrel{\text{def}}{=} d_k + k - 1 \stackrel{\text{HI}}{=} \frac{k(\tilde{k} - 3)}{2} + k - 1 = \frac{k^2 - k - 2}{2} = \frac{(k - 2)(k + 1)}{2}$$

 $\forall n \in \mathbb{N}_{>3}$

ii) la suma de los ángulos interiores de un polígono de n lados es $\pi(n-2)$.

En este caso estoy generando la suma de los ángulos internos de 2 polígonos, uno con α_n de n lados y otro con $n-1, \alpha_{n-1}$ Es más claro en este caso que al sacarle un lado, estoy robádo un triángulo que tiene como suma de sus ángulos internos π , entonces afirmo $\alpha_{n+1} = \alpha_n + \pi$. Ahora pruebo por inducción lo pedido. $p(n): \alpha_n = \pi(n-2) \ \forall n \geq 3$

Caso Base: p(3) verdadera ? $\rightarrow \pi(3-2) = \pi$, lo cual es verdad para el triángulo. Paso inductivo: p(k) es verdadero para algún $k \in \mathbb{Z}_{>3} \Rightarrow p(k+1)$ verdadera? Hipótesis Inductiva: $\alpha_k = \pi(k-2) \Rightarrow \alpha_{k+1} = \pi(k-1)$ $\left\{ \begin{array}{l} \alpha_k \stackrel{\text{def}}{=} \alpha_{k+1} - \pi \\ \alpha_k \stackrel{\text{HI}}{=} \pi(k-2) \end{array} \right\} \rightarrow \alpha_{k+1} = \pi(k-2) + \pi = \pi(k-1) \quad \checkmark$

Como $p(3) \wedge p(k) \wedge p(k+1)$ resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}_{>3}$

Recurrencia

15.

i) Sea $(a_n)_{n \in n\mathbb{N}}$ la sucesión de números reales definida recursivamente por: $a_1 = 2 \text{ y } a_{n+1} = 2na_n + 2^{n+1}n!, \ \forall n \in \mathbb{N}.$ Probar que $a_n = 2^n n!$.

Hecho en cuaderno, pasar

ii) Sea $(a_n)_{n \text{ } en\mathbb{N}}$ la sucesión de números reales definida recursivamente por: $a_1 = 0$ y $a_{n+1} = a_n + n(3n+1), \forall n \in \mathbb{N}$ Probar que $a_n = n^2(n-1)$.

Hecho en cuaderno, pasar

Hacer!

Hacer!

19.

20.

Ejercicios extras:

- 1. Se cumple que: $\frac{(2n)!}{n!^2} \leq (n+1)!, \ \forall n \in \mathbb{N}$?
 - 1. La proposición: $p(n) : \frac{(2n)!}{n!^2} \le (n+1)!$
 - 2. Caso base: p(n=1) es Verdadera? $\xrightarrow[n=1]{\text{evalúo}} \xrightarrow[1!]{(2\cdot 1)!} = 2 \leq (1+1)!$
 - 3. Mi **HI** es que vale $\frac{(2h)!}{h!^2} \le (h+1)!$
 - 4. Quiero probar que $\frac{(2(h+1))!}{(h+1)!^2} \le ((h+1)+1)! \xrightarrow{\text{acomodo}} \frac{(2h+2)!}{(h+1)!^2} \le (h+2)!$
 - 5. Hay que hacer cosas para poder meter la **HI** en las cuentas del punto anterior.

Noto que: $\frac{(2h+2)!}{(h+1)!^2} = \frac{(2h+2)\cdot(2h+1)\cdot(2h)!}{(h+1)^2\cdot h!^2} \stackrel{\text{HI}}{\leq} \frac{(2h+2)\cdot(2h+1)}{(h+1)^2} (h+1)! \leq (h+2)!$ Probando esa última desigualdad se prueba lo buscado.

2. Probar que, para todo $n \in \mathbb{N}$,

$$\sum_{k=1}^{n+1} \frac{3}{n+k} \le \frac{5}{2}.$$

Inducción: $p(n): \sum_{k=1}^{n+1} \frac{3}{n+k} \leq \frac{5}{2} \ \forall n \in \mathbb{N}$

Caso base: p(1):

$$\sum_{k=1}^{1+1} \frac{3}{1+k} = \frac{3}{2} + \frac{3}{3} = \frac{5}{2} \le \frac{5}{2} \to p(1) \text{ Verdadera} \quad \checkmark$$

Paso inductivo:

$$p(j): \sum_{k=1}^{j+1} \frac{3}{j+k} \leq \frac{5}{2} \text{ Verdadera } \Rightarrow \text{ quiero probar que } p(j+1): \sum_{k=1}^{j+1+1} \frac{3}{j+1+k} \leq \frac{5}{2} \text{ Verdadera}$$

En los ejercicios donde la n aparece adentro de la sumatoria, conviene abrirla para encontrar la hipótesis $inductiva: \sum_{k=1}^{j+1} \frac{3}{j+k} \leq \frac{5}{2}$

$$\sum_{k=1}^{j+1} \frac{3}{j+k} = \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} \quad \checkmark$$

$$\sum_{k=1}^{j+1+1} \frac{3}{j+1+k} = \sum_{k=1}^{j+2} \frac{3}{j+1+k} = \frac{3}{j+1+1} + \frac{3}{j+1+2} + \frac{3}{j+1+3} + \dots + \frac{3}{j+1+j-1} + \frac{3}{j+1+j} + \frac{3}{j+1+j+1} + \frac{3}{j+1+j+1} = \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+1} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{j+1} + \frac{3}{j+2} + \frac{3}{j+3} + \frac{3}{j+4} + \dots + \frac{3}{2j} + \frac{3}{2j+2} + \frac{3}{2j+3} = -\frac{3}{2j+3} + \frac{3}{2j+3} + \frac{3}{2j+3}$$

$$=\sum_{k=1}^{j+1}\frac{3}{j+k}-\frac{3}{j+1}+\frac{3}{2j+2}+\frac{3}{2j+3}=\sum_{k=1}^{j+1}\frac{3}{j+k}\underbrace{-\frac{3}{2k+2}+\frac{3}{2j+3}}_{\leq 0} \stackrel{HI}{\leq 0} \underbrace{\frac{5}{2}}-\underbrace{\frac{3}{(2k+2)(2k+3)}}_{\geq 0} \leq \frac{5}{2} \Rightarrow \sum_{k=1}^{j+2}\frac{3}{j+1+k} \stackrel{\checkmark}{\leq \frac{5}{2}} \text{ Verdadera} \qquad \checkmark$$

Dado que p(1), p(j), p(j+1) resultaron verdaderas por principio de inducción también lo es $p(n) \forall n \in \mathbb{N}$.