Travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

Joon Kwon

vendredi 15 mai 2020

*

EXERCICE 1. — Distance d'un point à un hyperplan. — Soit $(w, b) \in \mathbb{R}^d \times \mathbb{R}$ et $x \in \mathbb{R}^d$. On suppose $\|w\|_2 = 1$. On considère le point $v = x - (\langle w, x \rangle + b)w$.

- 1) Montrer que $\langle w, v \rangle + b = 0$.
- 2) En déduire que

$$\min_{\substack{x' \in \mathbb{R}^d \\ \langle w, x' \rangle + b = 0}} \left\| x - x' \right\|_2 \leqslant \left| \langle w, x \rangle + b \right|.$$

3) Soit $u \in \mathbb{R}^d$ tel que $\langle w, u \rangle + b = 0$. Montrer que

$$||x-u||_2 \geqslant ||x-v||_2$$
.

4) Conclure.

Exercice 2. — Soit $(x_i, y_i)_{i \in [n]} \in \mathcal{S}(\mathcal{X}, \mathcal{Y})$ un échantillon linéairement séparable. On considère les deux problèmes d'optimisation suivants.

$$\begin{array}{ll} \text{maximiser} & \min_{i \in [n]} |\langle w, x_i \rangle + b| \\ \text{soumis aux contraintes} & \left\| w \right\|_2 = 1 \\ & \forall i \in [n], \quad y_i (\langle w, x_i \rangle + b) > 0. \end{array} \tag{*}$$

$$\begin{array}{ll} \text{minimiser} & \left\|w\right\|_2 \\ \text{soumis aux contraintes} & \forall i \in [n], \quad y_i(\langle w, x_i \rangle + b) \geqslant 1. \end{array} \tag{**}$$

Soit (\hat{w}, \hat{b}) une solution de (*). On pose :

$$\mu = \left(\min_{i \in [n]} y_i(\langle \hat{w}, x_i \rangle + \hat{b}) \right)^{-1},$$

et on considère

$$ilde{w} = \mu \hat{w}$$
 et $ilde{b} = \mu \hat{b}$.

- 1) Montrer que $h_{\tilde{w},\tilde{b}}=h_{\hat{w},\hat{b}}.$
- 2) Montrer que (\tilde{w}, \tilde{b}) est solution de (**).

