Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 32

Виконав студент ІП-12 Федій Олександр Валерійович				
	(шифр, прізвище, ім'я, по батькові)			
Перевірив				
	(прізвище ім'я по батькові)			

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій

Варіант 32

Задача 4.32.

32. Для заданого дійсного х і натурального п обчислити

$$y = \frac{1}{\sum_{i=0}^{n} \frac{1}{i^2} \sin x}$$
 для $x = 0,5$

Постановка задачі. Результатом задачі буде ціле додатне число. Для виконання цієї задачі потрібно побудувати арифметичний цикл, умовою якого буде перевірка лічильника з умовою повторення даного циклу.

Математична побудова. Складемо таблицю змінних.

Змінна	Тип	Ім'я	Призначення
Значення п	Натуральне	n	Початкове дане
Значення х	Дійсне	X	Початкове дане
Лічильник	Натуральне	i	Проміжне дане
Сума	Дійсне	um	Проміжне дане
Значення у	Дійсне	у	Результат
Синус числа	Функція	sin	Проміжне
			значення
Квадрат числа	Функція	sqr	Піднесення числа
			до 2 степеня

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію арифметичного циклу та знаходження змінної y

Псевдокод

```
крок 1
початок
Ввести п
Знайти значення циклу та значення у
кінець
крок 2
початок
Ввести п
x = 0.5
Sum = 0
     повторити
      для i від 1 до n
      Sum += 1/sqr(i)
     все повторити
y=1/(Sum*sin(x))
Вивести у
кінець
```

Блок-схема

Крок 1

Ввести *п*Знайти значення циклу та значення у

Вивести у

Кінець

Крок 2

Випробування алгоритму

Перевіримо привильність роботи алгоритму на довільних конкретних значеннях початкових даних:

Блок	Дія
	Початок
1	Введення n = 4
2	i=1
	i = 1/sqr(1)=1
	sum=0+1=1
3	i=2
	i = 1/sqr(2)=1/4
	Sum=5/4
4	i=3
	i = 1/sqr(3) = 1/9
	Sum=5/4+1/9=49/36
5	i=4
	i=1/sqr(4)=1/16
	Sum=49/36+1/16=205/144
6	$y=1/((205/144)*\sin(0.5))$
	=144/205*sin(0.5)=0.33676720760490353
	Вивід: 0.33676720760490353
	Кінець

Висновок

Під час виконання лабораторної роботи було досліджено особливості роботи арифметичних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій шляхом виконання алгебраїчної задачі.