박학다식

Weekly Presentation .2

2019311036 신새별 2018311095 장민근 2017313764 김재연 2017314786 정동진 2015313546 김창헌

Front-End

1. Front-End next week

- 버튼 크기 및 색상 변경
- 이미지 영역 디자인 변경
- 색 선택 부분 정 가운데로 배치
- 글꼴 수정 및 크기 변경
- App-bar 추가
- Flask

Model

Project Planning

구분				9월				10월				11월				12월			
Data	담당	작업내용	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	
데이터 전처리	정동진	MHMD, YouTube-8M 등, 다양한 데이터셋 확보 및 데이터 전처리																	
		실제 환경을 고려한 Noise 및 Augmentation 추가																	
Baseline Model 구현	김재연	베이스라인 모델 구현 및 성능 검증																	
Backbone Model	신새별	SCSNet, ColTran 등 다양한 SOTA 방법론 도입, 실험 및 평가																	
		Adaptive Inference 모델 구현, 실험 및 평가																	
Web UI/UX	김창헌	pyQt5를 이용한 Web Layout 설계 및 구현																	
	장민근	UI/UX 디자인 및 pth-Web 연동 구현																	

구현을 통해 적절한 bounding box 개수를 찾는 과정을 반복

Instance-Aware Image Colorization

Reference

[CVPR 2020] Instance-aware Image Colorization

[Paper] [Project Website] [Google Colab]

- Mask R-CNN을 사용한 Bounding box 선정 과정 -
- Bounding box의 최대 개수가 정해져 있다 : box_num_upbound
- 탐지된 bbox가 최대 개수를 넘는 경우 :
- 1. confidence가 높은 순으로 정렬 후 최대 개수만큼 뽑기(Original: 8)
- 2. confidence의 기준 n을 정하고 n보다 큰 confidence를 가진 bbox만 뽑기(Original : 0.9)
 - * Mask R-CNN : 이미지 내에서 각 객체에 대한 마스크를 생성
 - * Bounding box(bbox): 객체가 탐지된 박스 영역
 - * Confidence : Bounding box 내에 물체가 있을 확률

Instance-Aware Image Colorization

Confidence가 높은 순서대로 bbox를 뽑아서 1개에서 최대 8개까지 plotting

<Image 1>
박스의 개수에 따른 차이가 크지 않은 것으로 보임

Instance-Aware Image Colorization

Detection 된 부분을 자세히 보면, detect 된 box가 늘어날 수록 colorize 된 부분들이 보임

(Image 2) Instance aware colorization 의 효과가 더 자세히 보임

- Bbox가 하나만 있는 경우, 뒤 쪽에 있는 작은 자동차들이 나무로 인식되어 초록색으로 나타났지만 bbox의 개수가 늘어남에 따라 개선
- 화물차 위에 있는 남자, 화물차 자체의 색 또한 instance 가 detect 되어 그 효과가 한 눈에 보임

화물차가 detect 되고 나서 그 색이 변하는 모습

(Image 3) Instance aware colorization 의 효과가 자세히 보임

Trial and Error

만약 8개 이상의 bbox을 모두 colorization에 사용한다면?

(Image 4) Detect된 bbox가 21개인 경우

Trial and Error

만약 8개 이상의 bbox을 모두 colorization에 사용한다면?

(Image 5) Detect된 bbox가 10개인 경우

Experiments

ImageNet & ActivityNet dataset with EfficientNet

감사합니다