On the Diversity of Capturing Variability at the Implementation Level

Xhevahire Tërnava and Philippe Collet

Tuesday 26th September, 2017

Université Côte d'Azur, CNRS, I3S, Sophia Antipolis, France

Motivation

Specification Level

Implementation Level

```
object Conf &
  final val WEIGHTED: Boolean = true
abstract class Graph { /* Common part */ }
class ConcreteGraph extends Graph {
  def adddirectededge(s: Vertex, d: Vertex, w: Int) = {
    val edge = new Edge(s, d)
    if (Conf.WEIGHTED) {
      edge.weight = w
    edges = edge :: edges
    addtoadjacencymatrix (edge)
  def addundirectededge(s: Vertex, d: Vertex, w: Int) =
                           core-code assets with
    val edge1 = new Edge(s, d)
    val edge2 = new Edge(d. s)
                           traditional techniques
    if (Conf.WEIGHTED) {
      edge1.weight = w
      edge2.weight = w
    edges = edge1 :: edges
    edges = edge2 :: edges
    addtoadjacencymatrix (edgel)
    addtoadiacencymatrix (edge2)
  def addedge(callback: (Vertex, Vertex, Int) -> Unit,
      x: Vertex . v: Vertex . w: Int = 1) = callback (x . v . w)
```

- During evolution, their mapping may deteriorate
- It's needed to reconstruct the FM, or part of it
 - ► Code is not shaped in terms of features

Motivation

Reverse engineering approaches abstract from the implementation technique

- Feature locations
- Reconstructing the FM from the propositional formula, ...
- When a single technique is used (e.g., preprocessors in C)

Motivation

Reverse engineering approaches abstract from the implementation technique

- Feature locations
- Reconstructing the FM from the propositional formula, ...
- When a single technique is used (e.g., preprocessors in C)

The addressed issues:

- 11. Capturing the variability implementation technique
- 12. Capturing features and variation points is not the same
- **13.** The importance of techniques in a reverse engineering process

Variability Realization

Core-code assets consist of: core, commonalities, variabilities

Variability Realization

Core-code assets consist of: core, commonalities, variabilities

Variable Part: abstractions

commonalities: variation points (vp-s)

variabilities : variants

variability implementation techniques

(e.g., inheritance, generic types, design patterns)

Dimensions of Diversity

Features in a feature model:

- Parent-child hierarchy
- Logical relations
- Cross-tree constraints

Variation points with variants:

- A richer set of Characteristic Properties
- Realized by diverse Techniques

Dimensions of Diversity

Features in a feature model:

- Parent-child hierarchy
- Logical relations
- Cross-tree constraints

Variation points with variants:

```
object Conf {
  final wal WEIGHTED: Boolean = true
abstract class Graph { /* Common part */
class ConcreteGraph extends Graph {
 def adddirectededge(s: Vertex, d: Vertex, w: Int) = {
    val edge = new Edge(s, d)
    if (Conf.WEIGHTED) {
      edge, weight = w
    edges = edge :: edges
    addtoadjacencymatrix (edge)
 def addundirectededge(s: Vertex, d: Vertex, w: Int) = {
    val edge1 = new Edge(s, d)
    val edge2 = new Edge(d, s)
    if (Conf.WEIGHTED) {
      edge1. weight = w
      edge2.weight = w
    edges = edge1 :: edges
    edges = edge2 :: edges
    addtoadjacencymatrix (edge1)
    addtoadiacencymatrix (edge2)
 def addedge(callback: (Vertex, Vertex, Int) => Unit,
      x: Vertex, y: Vertex, w: Int = 1) = callback(x, y, w)
```

- A richer set of Characteristic Properties
- Realized by diverse Techniques

```
vp_edgetype (26-27), v_directed (6-13), v_undirected (14-25)
vp_weight (2), v_weighted (2, 'true'), v_unweighted (2, 'false')
```

- □ Logical relation
- □ Binding time
- □ Defaults
- □ Granularity
- □ Evolution
- □ Quality criteria

- Mandatory
- Optional
- Multi-Coexisting (Or)
- Alternative

vp_edgetype with Alternative (v_directed, v_undirected), Strategy Pattern

□ Logical relation	Binding
□ Binding time	
	Static binding (S)
	Dynamic binding (D)

vp_edgetype is bound during Runtime, e.g., to v_directed

Values

(S) compilation / link (S) build / assembly (S) programming (S/D) configuration (S/D) (re) deploy (D) runtime (start-up) (D) pure runtime (operational mode)

- □ Logical relation
- □ Binding time
- □ Defaults
- □ Granularity
- Evolution
- □ Quality criteria

■ Default variant

Some variability may not be subject to frequent variations among the majority of software products in an $\ensuremath{\mathsf{SPL}}$

v_unweighted is a Default variant of vp_weight

Logical relation	Granularity	Values
Binding time	· · · · · · · · · · · · · · · · · · ·	► Component, framework
Defaults	Coarse grained	with plug-ins as variants, file, package, class, inter-
Granularity		face, frame, feature module, etc.
		► Method, field inside a
	Medium grained	class, aspect, delta module, frame, etc. Expression, statement,
	Fine grained	block of code within a method, frame, etc.

vp_weight at a Parameter level, or v_directed at a Method level

□ Logical relation

Open

□ Binding time

Closed

- □ Defaults
- □ Granularity
- □ Evolution
- □ Quality criteria

vp_edgetype is a closed vp, as it can take only 'true' or 'false' values

- □ Logical relation
- □ Binding time
- □ Defaults
- □ Granularity
- □ Evolution
- □ Quality criteria

- Preplanning effort
- Visibility of variation point
- Information hiding
- Uniformity
- Separation of Concerns (SoC)
- Traceability
- Scalability

Using strategy pattern requires more Preplanning effort than parameters

Classifications of Techniques

1. Based on the emergence time

- Traditional (e.g., inheritance, generic types, design patterns)
- Emerging (e.g., frames, feature modules, delta modules)
- 2. Based on language or tool support
 - Language-based (e.g., inheritance, feature modules, aspects)
 - Tool-based (e.g., frames)
- 3. Based on how the variability is represented and resolved
 - Annotative (e.g., preproceessor directives, frames)
 - Compositional (e.g., feature modules, delta modules, frames)
 - ▶ Positive or Negative variability (e.g., delta modules)

Classifications of Techniques

- 1. Based on the emergence time
 - Traditional (e.g., inheritance, generic types, design patterns)
 - Emerging (e.g., frames, feature modules, delta modules)
- 2. Based on language or tool support
 - Language-based (e.g., inheritance, feature modules, aspects)
 - Tool-based (e.g., frames)
- 3. Based on how the variability is represented and resolved
 - Annotative (e.g., preproceessor directives, frames)
 - Compositional (e.g., feature modules, delta modules, frames)
 - ▶ Positive or Negative variability (e.g., delta modules)

Classifications of Techniques

- 1. Based on the emergence time
 - Traditional (e.g., inheritance, generic types, design patterns)
 - Emerging (e.g., frames, feature modules, delta modules)
- 2. Based on language or tool support
 - Language-based (e.g., inheritance, feature modules, aspects)
 - Tool-based (e.g., frames)
- 3. Based on how the variability is represented and resolved
 - Annotative (e.g., preproceessor directives, frames)
 - Compositional (e.g., feature modules, delta modules, frames)
 - ▶ Positive or Negative variability (e.g., delta modules)

Catalog Building Method

Covered techniques: Used in a closed-world SPLE process

Excluded techniques: Components, frameworks, ...

Evaluation of techniques

- First process: Use 4 small case studies (in Scala)
- Second process: An Informed opinion from the existing research works (catalogs, taxonomies, studies,...)

Resulting catalog...

Legend A:	Feat	ture t	ypes	Bine			tion	Gra	nulari	ity	Fort	r	ding		2						P			_
●: good support / belong ●: possible support (difficult) ○: no support (not often applicable) / does not belong *: high; •: average; □: low E: explicit; A: ambiguous	Optional	Or Or	Alternative	Static (S)	Dynamic (D)	Defaults	Open for evolution	Coarse	Medium	Fine	Preplanning effort	Visibility of vp-s	Information hiding	Uniformity	Sep. of concerns	Traceability	Scalability	Language paradigm	Annotative	Compositional	Language-based	Tool-based	Traditional	Emerging
AD-HOC REUSE																								
Cloning / Patching	•	•	•	•,	0	0	•,	• ,	•	•	0	A/E	0	•	0	0	0,	Not specific	•	•	•	0	•	0
Conditional Execution	•	0	•	0	•	0	0	0	•	•	(A	0	0	Ó	0	ó	Not specific	•	0	•	0	•	0
(Parameters) METHODOLOGICAL REUSE	7	7	7	1,7	1,7	7	7	1,7	1,7	1,7	1	7	1	1	1,7	1,7	1	7	1	1	1	1	1	1
Preprocessor directives	•	0	•	•	0	•		•	•	•	0	A/E		•		0	•	Not specific	•			•	•	0
	2,3,4,7	2,4	1,2,3,4,7	1,2,7	1,2,7	6,7	7		1,3,4,6,7	1,3,4,6,7	1,7	7	2	1	2,7	1,2	2,7	7	1,2,4,6	1,4,6	1,3,4,6	1,3,4,6	1,3	1,3
Argument defaulting	•	0	0	•	0	•	0	0	•	0	•	Α	•	0	0	•	•	Not specific	346	3,4,6	•	0	•	0
Overriding	0	•	0	0	•	•	•	0	•	0	0	A	•	0	•	•	•	O. Oriented	0	•	•	0	•	Ó
Aggregation / Delegation	•	0	•	•	•	•	•	•	•	0	•	E	•	0	•	0	0	O. Oriented	•	•	•	0	•	0
Inheritance	•	•	o o	•	•	•	•	•	•	0	•	Α	•	0	•	•	ó	O. Oriented	ó	•	•	0	•	0
Reflections	2	2	2	2,6	2,6			6	6	0	*		6	0	2	2	2	0.00-11	2,6	2,6	6	6	_	_
Reflections	- ·	2	•	1 V	2	•	•	•	•	0	•	Е	•	O	2	-	2	O. Oriented	O	•	•	O	•	0
Aspects	•	•	•	•	•	•	•	•	•	0	•	A	0	•	•	•	•	Aspect Ori.	•	•	•	0	0	•
Polymorphism	2,4	2,4	2,4	1,2,7	1,2,7	7	7	1,7	1,7	1,7	1,7	1,7	- 1	1	1,3,7	1	2,7	1,3	2	1,2,3	1,3,7	1,3,7	1,3	1,3
Coercion (Casting)	0	0	•	•	0	•	•	•	0	0	*	Α	•	0	•	•	•	O. Oriented	0	•	•	0	•	0
Overloading	0	0	4		0	4	_	0	_	0		А	_	0			•	Procedural	_	_	_	0	3	0
Overloading	2.4	2.4	2,4	2,6	2,6	•	•	6	٠,	- 6	'	Α	•	0	2	2	2	3,4	2,6	2,6	•	0	٠,	3
Subtype polymorphism	•	•	•	0	•	•	•	•	•	0	*	A	•	0	•	•	•	O. Oriented	0	•	•	0	•	0
Parametric polymorphism	υ Φ	3,4	3,4,7		3,4,7	ó	0/		,	o o	*	E E		0				Generic prog.	_	7		7	,	0
(generics)	3,4,7	3,4	3,4,7	3,4,6,7	3,4,6,7	7	O/	6	6,7	6,7	-	6,7	•		•	•	•	3,4	6	7	4.7	4.7	3	3
Design patterns							_	_			*							O. Oriented						
Strategy pattern	,	٠,	1	0	1.6	-	•	•	٠,	0	1	Α	٠,	1	٠,	1	•	O. Orienteu	1	-	-	1	٠,	0
Decorator pattern	•	•	0	•	•	•	•	•	•	0	*	A	•	0	•	•	•	O. Oriented	0	•	•	0	•	0
Observer pattern	•	•	•	•	ď	•	•	•	•	0	*	A	•	0	•	•	•	O. Oriented	•	•	•	0	•	0
	_	_	_		_1		_	_	_		*		2	1	2	_1	_	O. Oriented	1	_1	_1	1	2	1
Template method pattern	•	0	•	0	1,6	•	•	•	•	0	*	A	•	0	•	•	•	O. Oriented	0	•	•	0	•	0
Visitor pattern	0	•	•	0	•	•	•	•	•	0	*	Α	•	o	•	•	•	O.Oriented	O	•	•	O	•	Ó
Emerging techniques																								
Frames	2.5	2,5	2,5	2,5,7	2,5,7	5,7	0/	5.7	5,7	5,7	2,7	Е	0	0	•	•	€ 2,7	Not specific	2.5	2,5	5.7	5,7	0	•
Feature Modules	0	•	O	4,3,7	•	ě	é	•	ě	ő	ť	Ã	0	ė	ě	é	ě	Feature Ori.	Ö	•	ě	ő	0	•
Date M. C.	4	1,3,4	4	1	1			1	1	1	1		1	1	1,3	1		Dalle C .	1	1,3	1,3	1,3	1,3	1,3
Delta Modules	•	•	•	•	0	•	•	•	•	0	•	A	0	•	•	•	•	Delta Ori.	•	•	•	0	0	•
Legend B:	1 1 →	Ape	1 [2]:	2 ->	Gacek	[13];	3 → 1	Muthig [221:	4 → I	atzk	e [25];	5 -	→ Pat	zke [261:		6 → Coplien	[9]:		7 →	Patzk	ce [2	41

Capturing Variability

Feature Modules

```
laver BasicGraph
   class Graph {
     Vector nodes = new Vector();
     Vector edges - new Vector():
    Edge add (Node n. Node m) {
      Edge e = new Edge(n, m);
       nodes.add(n):
       nodes.add(m);
       nodes.add(e);
       return e:
  class Edge { /* . . . */ }
  class Node ( /* ... */ }
  layer Directed:
  class Graph { / . . . . / } / . . . . /
  layer Undirected:
   class Graph { /* ... */ } /* ... */
  layer Weighted;
  class Graph { / · · · · / }
24 class Edge { /* . . . */ }
 class Weight { /* ... */ }
```

Strategy pattern with Parameters

```
object Conf &
   final and WEIGHTED: Boolean = true
4 abstract class Graph { /* Common part */
 class ConcreteGraph extends Graph {
  def adddirectededge(s: Vertex, d: Vertex, w: Int) = {
     val edge = new Edge(s, d)
     if (Conf.WEIGHTED) {
       edge.weight = w
     edges = edge :: edges
     addtoadjacencymatrix (edge)
    def addundirectededge(s: Vertex, d: Vertex, w: Int) = {
     val edge1 = new Edge(s, d)
     val edge2 = new Edge(d. s)
     if (Conf.WEIGHTED) {
       edge1.weight = w
       edge2. weight = w
     edges = edge1 :: edges
     edges = edge2 :: edges
     addtoadjacencymatrix (edgel)
     addtoadiacencymatrix (edge2)
    def addedge(callback: (Vertex, Vertex, Int) -> Unit,
       x: Vertex . v: Vertex . w: Int = 1) = callback(x, v, w)
```

Capturing Features

Logical Relation: BasicGraph (mandatory), Directed, Undirected, Weighted (optional)

Binding time: deployment; **Granularity**: feature module; No **Evolution** or **Default** concepts (Unweighted is default)

Capturing Variability

Capturing VP-s with Variants

VP-s	Lines	Granularity	Binding time	Logical R1.	Evolution
vp_edgetype vp_weight			runtime programming	alternative alternative	

Variants	Lines	Granularity	Default	VP-s
v_directed	6 – 13	method	No	vp_edgetype
v_undirected	14 - 25	method	No	vp_edgetype
v_weighted	2	value	No	vp_weight
v_unweighted	2	value	Yes	vp_weight

Legend A: ●: good support / belong ●: goosd support (difficult) ○: no support (not often applicable) / does not belong #: high: ●: average; ○: low E: explicit; A: ambiguous	Feature types			Binding time			ution	Granularity		′	effort		hiding		suz					Te Te	pas			
	Optional	or	Alternative	Static (S)	Dynamic (D)	Defaults	Open for evol	Coarse	Medium	Fine	Preplanning	Visibility of 1	Information	Uniformity	Sep. of conce	Traceability	Scalability	Language paradigm	Annotative	Composition	Language-ba	Tool-based	Traditional	cmergang
Design patterns	\bowtie	$\forall \forall$	$\forall \forall$	\sim	^	$\wedge\!\!\wedge$	$\wedge\!\!\!\wedge$	\bowtie	\sim	\sim	\sim	^	\wedge	\sim	\wedge	\sim	\vee	*****	$\vee\!\!\vee$	\otimes	\sim	$\Rightarrow \Rightarrow$	\sim	\triangle
Strategy pattern	•	1	•	0	1,6	1	•	•	1	0	*	A	1	0	1	1	•	O. Oriented	0	•	1	0	1) 1

Capturing Variability

Reconstructing the Feature Model

Capturing Features

Capturing VP-s with Variants

Summary and Future Work

Addressed issues

- Capture the variability implementation techniques (I1)
- Both features and vp-s with variants can be used to capture the variability; their meaning overlap but is not the same (I2)
- We study the diverse properties that can be captured during reverse engineering (I3)

Summary and Future Work

Addressed issues

- Capture the variability implementation techniques (I1)
- Both features and vp-s with variants can be used to capture the variability; their meaning overlap but is not the same (I2)
- We study the diverse properties that can be captured during reverse engineering (I3)

Availability Case studies and a DSL:

https://github.com/ternava/variability-cchecking

Future Work

- Using vp-s with variants during the migration of some product variants as an SPL
- Demonstrate the usage of the catalog