

1 WHAT IS CLAIMED IS:

1 1. An optical communications system for communicating information comprising:
2 a receiver subsystem comprising:
3 an optical splitter for splitting a composite optical signal having at least two
4 subbands of information and at least one tone into at least two optical
5 signals, each optical signal including a different one of the subbands and
6 one of the tones; and
7 at least two heterodyne receivers, each heterodyne receiver coupled to receive one
8 of the optical signals from the optical splitter for recovering information
9 from the subband contained in the optical signal, each heterodyne receiver
10 comprising:
11 a heterodyne detector for mixing an optical local oscillator signal with the
12 optical signal to produce an electrical signal which includes a
13 frequency down-shifted version of the subband and the tone of the
14 optical signal; and
15 a signal extractor coupled to the heterodyne detector for mixing the
16 frequency down-shifted subband with the frequency down-shifted
17 tone to produce a frequency component containing the information.

1 2. The optical communications system of claim 1 wherein the optical splitter includes a
2 separate splitter for separating each subband from the composite signal.

1 3. The optical communications system of claim 1 wherein the optical splitter includes an
2 optical power splitter for splitting the composite optical signal into optical signals which are
3 substantially the same in spectral shape.

1 4. The optical communications system of claim 1 wherein the optical splitter includes a
2 wavelength division demultiplexer for wavelength division demultiplexing the composite optical
3 signal into the optical signals.

1 5. The optical communications system of claim 1 wherein the optical splitter includes a
2 wavelength-selective optical power splitter for splitting the composite optical signal into optical
3 signals, each optical signal including a different primary subband and attenuated other subbands.

1 6. The optical communications system of claim 1 wherein:
2 the electrical signal further comprises direct detection components; and
3 the frequency down-shifted version of the subband does not spectrally overlap with the
4 direct detection components.

1 7. The optical communications system of claim 1 wherein the heterodyne detector
2 comprises:
3 an optical combiner for combining the optical local oscillator signal and the optical
4 signal; and
5 a square law detector disposed to receive the combined optical local oscillator signal and
6 optical signal.

1 8. The optical communications system of claim 1 further comprising:
2 an optical wavelength filter coupled between the optical splitter and one of the
3 heterodyne receivers.

1 9. The optical communications system of claim 1 wherein the tone for each optical signal is
2 located at an optical carrier frequency for the corresponding subband.

1 10. The optical communications system of claim 1 wherein the tone for each optical signal
2 includes a pilot tone located at a frequency other than at an optical carrier frequency for the
3 corresponding subband.

1 11. The optical communications system of claim 1 wherein at least two optical signals have
2 tones at the same frequency.

3 12. The optical communications system of claim 1 wherein the frequency component
4 includes a difference component.

1 13. The optical communications system of claim 1 wherein the receiver subsystem further
2 comprises:

3 at least two FDM demultiplexers, each FDM demultiplexer coupled to receive the
4 frequency component from one of the heterodyne receivers for FDM
5 demultiplexing the frequency component into a plurality of electrical low-speed
6 channels.

1 14. The optical communications system of claim 13 wherein the receiver subsystem further
2 comprises:

3 at least two QAM demodulation stages, each QAM demodulation stage coupled to one of
4 the FDM demultiplexers for QAM demodulating the electrical low-speed
5 channels.

1 15. The optical communications system of claim 1 further comprising:
2 a transmitter subsystem for generating the composite optical signal.

1 16. The optical communications system of claim 15 wherein the transmitter subsystem
2 comprises:

3 at least two transmitters, each for generating one of the subbands, each transmitter using a
4 different optical carrier frequency; and
5 an optical combiner coupled to the transmitters for optically combining the subbands into
6 the composite optical signal.

1 17. The optical communications system of claim 15 wherein the transmitter subsystem
2 comprises:

3 at least two electrical transmitters for generating electrical channels;
4 an FDM multiplexer coupled to the electrical transmitters for FDM multiplexing the
5 electrical channels into an electrical high-speed channel, the electrical high-speed
6 channel further including the tones; and
7 an E/O converter coupled to the FDM multiplexer for converting the electrical high-speed
8 channel into the composite optical signal.

1 18. A method for recovering information from a composite optical signal containing the
2 information, the method comprising:

3 receiving a composite optical signal having at least two subbands of information and at
4 least one tone;
5 splitting the composite optical signal into at least two optical signals, each optical signal
6 including a different one of the subbands and one of the tones; and
7 for each optical signal:
8 receiving an optical local oscillator;
9 detecting the optical signal using heterodyne detection and the optical local
10 oscillator to produce an electrical signal which includes a frequency down-
11 shifted version of the subband and the tone of the optical signal; and
12 mixing the frequency down-shifted subband with the frequency down-shifted tone
13 to produce a frequency component containing the information.

1 19. The method of claim 18 wherein the step of splitting the composite optical signal into at
2 least two optical signals includes separating each optical signal from the composite optical
3 signal.

1 20. The method of claim 18 wherein the step of splitting the composite optical signal into at
2 least two optical signals includes splitting the composite optical signal into optical signals which
3 are substantially the same in spectral shape.

1 21. The method of claim 18 wherein the step of splitting the composite optical signal into at
2 least two optical signals includes wavelength division demultiplexing the composite optical
3 signal into the optical signals.

1 22. The method of claim 18 wherein the step of splitting the composite optical signal into at
2 least two optical signals includes wavelength selectively splitting the composite optical signal
3 into optical signals, each optical signal including a different primary subband and attenuated
4 other subbands.

1 23. The method of claim 18 wherein the step of detecting the optical signal using heterodyne
2 detection and the optical local oscillator comprises:

3 optically combining the optical local oscillator signal and the optical signal; and
4 detecting the combined optical local oscillator signal and optical signal using square law
5 detection.

1 24. The method of claim 18 wherein the tone for each optical signal is located at an optical
2 carrier frequency for the corresponding subband.

1 25. The method of claim 18 wherein the tone for each optical signal includes a pilot tone
2 located at a frequency other than an optical carrier frequency for the corresponding subband.

1 26. The method of claim 18 further comprising, for each optical signal:
2 FDM demultiplexing the frequency component into a plurality of electrical low-speed
3 channels.

1 27. The method of claim 26 further comprising, for each optical signal:
2 QAM demodulating the electrical low-speed channels.

1 28. The method of claim 18 further comprising:
2 encoding the information in a composite optical signal; and
3 transmitting the composite optical signal across an optical fiber.

1 29. The method of claim 28 wherein the step of encoding the information in a composite
2 optical signal comprises:
3 encoding the information onto subbands, each subband located at a different optical
4 carrier frequency; and
5 optically combining the subbands to produce the composite optical signal.

1 30. The method of claim 28 wherein the step of encoding the information in a composite
2 optical signal comprises:
3 generating electrical channels;
4 FDM multiplexing the electrical channels into an electrical high-speed channel, the
5 electrical high-speed channel further including the tones; and
6 converting the electrical high-speed channel from electrical to optical form to produce the
7 composite optical signal.

1 31. The method of claim 28 wherein the step of encoding the information in a composite
2 optical signal comprises:
3 receiving an optical carrier; and
4 modulating the optical carrier with the information using a raised cosine modulation
5 biased at a point substantially around a V_π point.