Data Structure Preview

Charles Zhang

Winter Break 2020

Contents

1	\mathbf{Tin}	Time Complexity					
	1.1	Big-O	Notation				
		1.1.1	Definitions				
		1.1.2	In terms of relative rate of growth				
		1.1.3	Rules				
	1.2	Runni	ing Time Calculations				
		1.2.1	General Rules				
		1.2.2	Conclusion				
		1.2.3	Logarithms in the Running Time				
2		Lists, Stacks, and Queues					
	2.1	Lists					
		2.1.1	Array Implementation of List				
		2.1.2	Node				
	2.2	Stacks	3				
	2.3	Queue	28				

1 Time Complexity

1.1 Big-O Notation

Time Complexity of algorithms: T(N) = O(f(N)).

1.1.1 Definitions

Definition 1.1. If $\exists c, n_0 \in \mathbb{R}$ such that $T(N) \leq cf(N)$ when $N \geq n_0$, then T(N) = O(f(N)).

Definition 1.2. If $\exists c, n_0 \in \mathbb{R}$ such that $T(N) \geq cg(N)$ when $N \geq n_0$, then $T(N) = \Omega(g(N))$.

Definition 1.3. $T(N) = \Theta(h(N)) \Leftrightarrow T(N) = O(h(N))$ and $T(N) = \Omega(h(N))$.

Definition 1.4. T(N) = o(p(N)) if T(N) = O(p(N)) and $T(N) \neq \Theta(p(N))$.

```
T(N) = 1000N, f(N) = N^2

∴ \exists n_0 = 1000, c = 1, T(N) \le cf(N) when N \ge n_0

∴ 1000N = O(N^2).
```

1.1.2 In terms of relative rate of growth

the relative rate of growth of $T(N) \leq$ relative rate of growth of f(n), T(N) = O(f(N)); the relative rate of growth of $T(N) \geq$ relative rate of growth of g(n), $T(N) = \Omega(g(N))$; the relative rate of growth of T(N) = relative rate of growth of T(N) = O(g(N)); the relative rate of growth of T(N) = O(g(N)); relative rate of growth of T(N) = O(g(N))

 $2N^2 = O(N^4) = O(N^3) = O(N^2)$, but the last option is the best answer.

Function	Name
1	Constant
logN	Logarithmic
log^2N	Log-squared
N	Linear
NlogN	
N^2	Quadratic
N^3	Cubic
2^N	Exponential

1.1.3 Rules

Rule 1.1. If
$$T_1(N) = O(f(n))$$
 and $T_2(N) = O(g(N))$, then (a) $T_1(N) + T_2(N) = O(f(N) + g(N)) = O(max(f(N), g(N)),$ (b) $T_1(N) * T_2(N) = O(f(N) * g(N)).$

Rule 1.2. If T(N) is a polynomial of degree k, then $T(N) = \Theta(N^k)$.

Rule 1.3. $log^k N = O(N)$ for any constant k(t logarithms grow very slowly).

1.2 Running Time Calculations

Here is a simple program fragment to calculate $\sum_{i=1}^{N} i_3$.

```
public static int sum( int n ){
    int partialSum;
1    partialSum = 0;
2    for( int i = 1; i <= n; i++ )
3         partialSum += i * i * i;
4    return partialSum;
}</pre>
```

The declarations count for no time. Lines 1 and 4 count for one unit each. Line 3 counts for four units per time executed (two multiplications, one addition, and one assignment) and is executed N times, for a total of 4N units. Line 2 has the hidden costs of initializing i, testing $i \leq N$, and incremented i. The total cost of all these is 1 to initialize, N + 1 for all the tests, and N for all the increments, which is 2N + 2. We ignore the costs of calling the method and returning, for a total of 6N + 4. Thus, we say that this method is O(N).

1.2.1 General Rules

Rule 1.4. - for loops

The running time of a for loop is at most the running time of the statements inside the for loop (including tests) times the number of iterations.

Rule 1.5. - Nested loops

Analyze these inside out. The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

As an example, the following program fragment is $O(N^2)$:

```
for( i = 0; i < n; i++ )
for( j = 0; j < n; j++ )
k++;
```

Rule 1.6. - Consecutive Statements

These just add.

As an example, the following program fragment, which has O(N) work followed by $O(N^2)$ work, is also $O(N^2)$:

```
for( i = 0; i < n; i++ )
    a[ i ] = 0;
for( i = 0; i < n; i++ )
    for( j = 0; j < n; j++ )
        a[ i ] += a[ j ] + i + j;
```

Rule 1.7. - if/else

For the fragment

```
if( condition )
S1
else
S2
```

the running time of an if/else statement is never more than the running time of the test plus the larger of the running times of S1 and S2.

1.2.2 Conclusion

$$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

1.2.3 Logarithms in the Running Time

Binary Search: Given an integer X and integers A_0 , A_1 , ..., A_{N-1} , which are presorted and already in memory, find i such that $A_i = X$, or return i = -1 if X is not in the input.

```
1
   /**
2
   * Performs the standard binary search.
3
    * Oreturn index where item is found, or -1 if not found.
   public static <AnyType extends Comparable<? super AnyType>>
5
6
   int binarySearch( AnyType [ ] a, AnyType x )
7
   {
       int low = 0, high = a.length - 1;
8
9
       while( low <= high )</pre>
10
11
           int mid = ( low + high ) / 2;
12
13
           if( a[ mid ].compareTo( x)<0)</pre>
14
               low = mid + 1;
15
16
           else if( a[ mid ].compareTo( x )>0)
17
               high = mid - 1;
18
           else
19
               return mid;
                              // Found
       }
20
       return NOT_FOUND; // NOT_FOUND is defined as -1
21
    }
22
```

Clearly, all the work done inside the loop takes O(1) per iteration, so the analysis requires determining the number of times around the loop. The loop starts with high - low = N - 1 and finishes with $high - low \ge -1$. Every time through the loop the value high - low must be at least halved from its previous value; thus, the number of times around the loop is at most $[\log(N-1)] + 2(As$ an example, if high - low = 128, then the maximum values of high - low after each iteration are 64, 32, 16, 8, 4, 2, 1, 0, -1). Thus, the running time is $O(\log N)$.

Binary search can be viewed as our first data structure implementation. It supports the contains operation in $O(\log N)$ time, but all other operations (in particular insert) require O(N) time.

2 Lists, Stacks, and Queues

2.1 Lists

General list of the form: $A_0, A_1, A_2..., A_{N-1}$. The size of this list is N.

2.1.1 Array Implementation of List

Linked List: To execute printList or find(x) we merely start at the first node in the list and then traverse the list by following the next links. This operation is clearly linear-time, as in the array implementation.

Figure 2.1: A linked list

Figure 2.2: Deletion from a linked list

Figure 2.3: Insertion into a linked list

Codes Implementation

```
import java.util.Arrays;

public class MyArray {

    // Array for store
    private int[] elements;

    public MyArray() {
        elements = new int[0];
    }

    // method for getting the length
```

```
}
                                                        newArr[index] = element;
// show the array
                                                        elements = newArr;
public void show() {
   System.out.println(Arrays.toString(elements));
                                                    // replace
                                                    public void set(int index, int element) {
// delete the element in the array
                                                        if (index < 0 || index >
public void delete(int index) {
                                                            elements.length - 1) {
   // bound test
                                                            throw new RuntimeException("Out of
   if (index < 0 || index >
                                                                Bounds!");
        elements.length - 1) {
       throw new RuntimeException("Out of
                                                        elements[index] = element;
           Bounds!");
   }
   int[] newArr = new int[elements.length
                                                    // linearly search
        - 17:
                                                    public int search(int target) {
   for (int i = 0; i < newArr.length; i++)</pre>
                                                        for(int i=0;i<elements.length;i++) {</pre>
                                                            if(elements[i] == target) {
       if (i < index) {</pre>
                                                                return i;
           newArr[i] = elements[i];
                                                            }
           newArr[i] = elements[i + 1];
                                                        return -1;
   }
                                                    // binary search
   elements = newArr;
}
                                                    public int binarySearch(int target) {
                                                        int begin = 0;
// get the element
                                                        int end = elements.length-1;
public int get(int index) {
                                                        int mid = (begin+end)/2;
   if (index < 0 || index >
                                                        while(true) {
        elements.length - 1) {
                                                            if(begin>=end) {
       throw new RuntimeException("Out of
                                                               return -1;
           Bounds!");
   }
                                                            if(elements[mid] == target) {
   return elements[index];
                                                               return mid;
                                                            }else{
                                                               if(elements[mid]>target) {
// insert element at the specific position
                                                                   end=mid-1;
public void insert(int index, int element) {
                                                               }else {
   int[] newArr = new int[elements.length
                                                                   begin = mid+1;
   for (int i = 0; i < elements.length;</pre>
                                                               mid=(begin+end)/2;
        i++) {
                                                           }
       if (i < index) {</pre>
                                                        }
                                                    }
           newArr[i] = elements[i];
       } else {
           newArr[i + 1] = elements[i];
                                                }
```

2.1.2 Node

• Create Nodes

Figure 2.4: Create three Nodes with data but without address

```
public class Node {
    // Data in Node
    int data;
    // the next node
    Node next;

public Node(int data) {
        this.data=data;
    }

public static void main(String[] args) {
        // Create Nodes
        Node n1 = new Node(1);
        Node n2 = new Node(2);
        Node n3 = new Node(3);
    }
}
```

• Append Nodes

Figure 2.5: Append a node

```
// Append Nodes
public Node append(Node node) {
   // Current
   Node currentNode = this;
   while(true) {
       // get out
       Node nextNode = currentNode.next;
       // last node is null
       if(nextNode==null) {
          break;
       }
       // assignment
       currentNode = nextNode;
   // append the node to the next of the current node that need to be appended
   currentNode.next=node;
   return this;
}
```

2.2 Stacks

Figure 2.6: Stack model: input to a stack is by push, output is by pop and top

Figure 2.7: Stack model: Only the top element is accessible

2.3 Queues