МдАД: Линейная алгебра

Осень 2018

Линейная алгебра 3: 13 октября

Преподаватель: Антон Савостьянов

Ассистент: Даяна Мухаметшина

Контакты: *Антон Савостьянов, почта*: a.s.savostyanov@gmail.com, *telegram*: @mryodo Даяна Мухаметшина, почта: dayanamuha@gmail.com, *telegram*: @anniesss1

Правила игры: Домашние задания следует присылать в читаемом виде на почту преподавателя не позднее указанного при выдаче задания крайнего срока (дедлайна).

При выполнении домашнего задания приветствуется использование среды ETeX; допустим набор в редакторах Word (Libreoffice, Google Docs) и отсканированные письменные материалы.

Выполненное домашнее задание должно содержать решение задачи, по которому возможно восстановить авторский ход решения, а не только ответ.

3.1 Собственные числа и собственные вектора

Пусть A — матрица линейного оператора на пространстве V с некоторым базисом.

Определение 3.1. Собственным вектором линейного оператора A называется такой ненулевой вектор $v \in V$, что

$$Av = \lambda v$$

где λ — некое действительное число. Такие число называют собственными значениями оператора A.

Что это означается с точки зрения геометрии? Действительно, представим, что наш оператор A подействовал на все пространство V. Тогда некоторые вектора он поменял сильно, а некоторые оставил почти такими же. «Почти таким же» назовем коллинеарный, то есть умноженный на скаляр вектор. Тогда для таких векторов действие оператора (как правило, довольно сложное и мало понятное) как раз кристально очевидно: такие вектора оператор «надувает».

Определение 3.2. Собственным значением линейного оператора A называется такие число λ , что для него найдется ненулевой собственный вектор. Иными словами, уравнение $Ax = \lambda x$ имеет ненулевое решение.

Определение 3.3. Собственным подпространством линейного оператора A для собственного числа λ называется множество всех собственных векторов, соответствующих данному собственному числу. То есть собственным подпространством называется:

$$V_{\lambda} = \operatorname{Ker}(A - \lambda E)$$

Упражнение 1. Докажите, что V_{λ} и правда является линейным векторным пространством.

Откуда взялась единичная матрица? Давайте рассмотрим уравнение $Ax = \lambda x$. Несложно понять, что можно записать это уравнение, добавив матричную единицу, не нарушая пространства решений: $Ax = \lambda Ex$ Перенося все в левую часть и вынося по дистрибутивности x мы получаем как раз выражение $(A - \lambda E)x = 0$ На самом деле легко увидеть здесь линейную однородную систему (правда, с неизвестным параметром λ). Для того, что λ стало собственным числом, нужно, чтобы у такой СЛУ были ненулевые решения. Как мы уже с Вами знаем, с однородной СЛУ решений либо пространство, либо оно единственно (0); нас интересует случай, когда решений много (потому что нулевой вектор по определению не считается собственным). Значит, ранг матрицы системы $A - \lambda E$ должен быть меньше ее размерности, а следовательно матрица не должна быть обратимой. Из чего мы заключаем принципиально важную вещь:

$$\det(A - \lambda E) = 0$$

Это уже уравнение на λ , получившее название характеристического уравнения. Его корни являются собственными числами.

Теорема 3.4 (Гамильтона-Кэли). Если в характеристический многочлен $P(\lambda)$ подставить матрицу A, то он обнулится. При этом это будет многочлен минимальной степени с таким свойством для данной матрицы A.

Упражнение 2. Даны следующие отображения:

- (a) f: поворот на 30° против часовой стрелки на плоскости
- (b) q: симметрия относительно y = -x
- (c) h растяжение вдоль оси y в 5 раз
- 1. Найдите матрицы отображений f, g, fg, fh, gh;
- 2. Найдите какие-нибудь собственные вектора отображений f, g, h, fh, fg и gh, не пользуясь характеристическим уравнением;
- 3. Для тех отображений, где есть два линейно-независимых собственных вектора, переведите отображение в базис из этих векторов (такой базис называется собственным); запишите их матрицы в новом базисе.

Упражнение 3. Найдите собственные значения и собственные векторы следующих матриц

a)
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$ c) $C = \begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}$

Упражнение 4. Рассмотрите характеристический многочлен произвольной матрицы. Какие знакомые числовые характеристики матрицы вы можете в нем обнаружить?

Упражнение 5. Докажите, что матрица необратима тогда и только тогда, когда $\lambda=0$ является ее собственным значением.

3.2 Смена базиса и диагонализация

Как мы уже обсуждали выше, матрицы ассоциированы с линейными отображениями, а квадратные матрицы — с линейными операторами. Несложно заметить, что во всех наших построениях о матрицах операторов соблюдалось предположение о знании некоторого базиса пространства (например, мы говорили об операторе $f\colon V\to V$ с базисом $e_1,e_2,\ldots e_n$ в пространстве V.

Однако в одном пространстве можно выделить бесконечно много базисов. Ясно, что матрица оператора целиком и полностью зависит от выбранного базиса. Поэтому следует установить, как меняется матрица оператора при смене базиса.

Напомним, что смена базиса задается матрицей перехода T, где по столбцам лежат координаты нового базиса в старом (как и у любого оператора); чтобы сделать такой переход, достаточно умножить вектор на матрицу перехода: $Tv_f = v_e$ или $v_f = T^{-1}v_e$. Тогда:

$$y_e = A_e x_e \iff T^{-1} y_f = A_e (T^{-1} x_f) \iff y_f = T A_e T^{-1} x_f \iff y_f = A_f x_f$$

В итоге у нас вышла теорема:

Теорема 3.5. Для линейного оператора $f: V \to V$ матрицы оператора в базиса $e_1, \dots e_n$ и $f_1, \dots f_n$ связаны следующим образом:

$$A_f = T A_e T^{-1},$$

где T — матрица перехода из базиса $e_1, \dots e_n$ в базис $f_1, \dots f_n$.

Главное, что нас интересует в случае перехода к новому базису — это существенное упрощение вида матрицы оператора. В результате хотелось бы получить некую матрицу, которую легко было бы умножать на произвольные вектор. Для этого построим специальный базис:

Определение 3.6. Собственным называется базис пространства, состоящий только из собственных векторов оператора. Если мы рассматриваем пространства V размерности n, то это требование означает, что должно найтись ровно n линейно независимых собственных векторов.

Теорема 3.7. Собственные вектора с разными собственными значениями линейно независимы.

Упражнение 6. Докажите, что в собственном базисе матрица оператора имеет диагональный вид (то есть $a_{ij} = 0$ если $i \neq j$). Докажите, что если матрица оператора диагональна, то базис, в котором она записана — собственный.

Установим, при каких условиях у оператора найдется собственный базис:

- 1. Найдем все собственные числа оператора A, решая характеристическое уравнение $\det(A \lambda E) = 0$;
- 2. Если их ровно n, то найдется собственный базис, поскольку каждому собственному числу соответствует хотя бы одномерное пространство;
- 3. Если их меньше n (подумайте, может ли оказаться больше чем n корней у характеристического многочлена?), то необходимо найти размерность каждого собственного подпространства V_{λ} ; если их сумма равна n, то у оператора существует собственный базис.

Упражнение 7. К сожалению, не каждый оператора диагонализуем. Для примера изучите матрицу $I=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Чему равно I^2 ? Как это связано с комплексными числами? Приведите их матричную запись.

Упражнение 8. Найдите собственные значения и собственные векторы следующих матриц. Диагонализуемы ли они?

a)
$$A = \begin{pmatrix} 5 & 2 & -3 \\ 4 & 5 & -4 \\ 6 & 4 & -4 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix}$

Выпишите матрицы перехода, если да.

3.3 Матричные функции

Часто приходится рассматривать так называемые матричные функции. Простейший пример (за исключением многочисленных случаев применения в нейронных сетях) можно выстроить следующим образом: рассмотрим простейшее дифференциальное уравнение y'=ay. Несложно догадаться, что его решениями является любая функция вида $y=Ce^{ax}$. Теперь представьте, что мы смотрим на систему линейных дифференциальных уравнений:

$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \dots \\ y_n' = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n \end{cases}$$

Иными словами, y'=Ay, где y — вектор-функция. Хотелось бы написать, что тогда решениями аналогично являются экспоненты: $y=Ce^{Ax}$, однако тогда придется договориться о том, как считать экспоненту от матрицы.

Самый простой случай — это полиномиальные функции: в них матрицу можно просто подставить, вычисляя степени матрицы A (здесь, правда, требуется договориться, что

 $A^0=E$). Для всех остальных функций используем следующую простую операцию: заменим функции на их ряды Маклорена (то есть ряды Тейлора в точке x=0). Таким образом мы свели задачу к предыдущей: требуется исключительно научиться считать полиномиальные матричные функции. Для этого вычислим:

Упражнение 9. Пусть $A \in \mathbb{M}_n$ и A — диагональная. Вычислите A^k для произвольного k.

Упражнение 10. Пусть A диагонализуема в некотором базисе, то есть найдется такая невырожденная матрица T, что $A = TBT^{-1}$, где B — диагональная. Вычислите A^k для произвольного k. Для этого выпишите A^k , применяя выражение выше.

Упражнение 11. Вычислите e^{Ax} , пользуясь тем, что $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$ и матрица A диагонализуема в некотором базисе. Выполните такое вычисление для

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$

3.4 Квадратичные формы

Определение 3.8. Квадратичной формой q(x), где $x \in V$, V — некоторое векторное пространство, называется однородный (то есть степень каждого монома равна 2) полином второго порядка от элементов вектора x.

Например, $q_1(x,y) = x^2 - 2xy + y^2$ или $q_2(x,y,z) = x^2 - 4yz + xy$ — это квадратичные формы. Для них можно предложить альтернативную матричную запись:

$$Q_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad Q_2 = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$

Значение квадратичной формы на векторе-столбце может быть вычислено при помощи матричного умножения:

$$q(x) = x^T Q x$$

Упражнение 12. Подумайте, почему смешанные произведения $(x_i x_j, \text{ где } i \neq j)$ дают в матрице коэффициент, деленный на 2.

Также задумаемся над переходом из одного базиса в другой. Пусть матрица перехода работает как x=Ty, тогда:

$$q(x) = x^{T}Qx = (Ty)^{T}Q(Ty) = y^{T}T^{T}QTy = y^{T}(T^{T}QT)y$$

Таким образом, при смене базиса новая матрица квадратичной формы может быть вычислена при помощи матричного умножения $B = T^T A T$.

Упражнение 13. Докажите, что для произвольной квадратичной формы q(x) выполняется: $Q=Q^T$.

3.4.1 Канонический и нормальный вид квадратичных форм

Несложно понять, что для квадратичной формы $q_1(x,y)=x^2-2xy+y^2$ такой вид не является наиболее удобным и коротким. Действительно $q_1(x,y)=x^2-2xy+y^2=(x-y)^2$; допустим, мы перешли бы от переменных (x,y) к переменным (u,v), причем u=x-y и v=x. Несложно понять, что это смена базиса: из старого базиса e_1,e_2 мы перешли к новому f_1,f_2 по такому правилу:

$$\begin{cases} f_1 = e_1 - e_2 \\ f_2 = e_1 \end{cases}$$

Отметим, что квадратичная форма в таком базисе стала гораздо проще: $q_1(u,v)=u^2$ (соответственно упростилась и ее матрица).

Определение 3.9. Вид квадратичной формы q(x), при котором ее матрица Q(x) принимает диагональный вид, называется каноническим видом квадратичной формы.

Определение 3.10. Вид квадратичной формы q(x), при котором ее матрица Q(x) принимает диагональный вид, причем на диагонали стоят только числа $0,\ 1$ и -1 называется нормальным видом квадратичной формы.

Методов приведения матрицы к каноническому или нормальному виду довольно много. Самый простой из них — это метод Лагранжа, также известный как выделение полных квадратов.

Его идея заключается в том, что в форме последовательно выделяются полные квадраты, постепенно уменьшая число не собранных в них переменных. Например, пусть дана форма

$$q(x) = x^2 - 4xy + 2y^2 - 3z^2 - 6xz + 2yz$$

Выделим в ней полные квадраты, начиная с переменной x:

$$q(x) = (x - 2y - 3z)^{2} - 4y^{2} - 9z^{2} - 12yz + 2y^{2} - 3z^{2} + 2yz =$$

$$= (x - 2y - 3z)^{2} - 2y^{2} - 10yz - 12z^{2} = (x - 2y - 3z)^{2} - 2(y^{2} + 5yz + 6z^{2}) =$$

$$= (x - 2y - 3z)^{2} - 2\left(\left(y - \frac{5}{2}z\right)^{2} - \frac{25}{4}z^{2} + 6z^{2}\right) =$$

$$= (x - 2y - 3z)^{2} - 2\left(y - \frac{5}{2}z\right)^{2} + \frac{1}{4}z^{2}$$

Тогда в каноническом виде мы получим матрицу $Q=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$. Правильной идеей теперь будет написать матрицу перехода T. Заметим, что де-факто мы получили в наших

скобках замену переменных:

$$\begin{cases} u = x - 2y - 3z \\ v = y - \frac{5}{2}z \\ w = z \end{cases} = \begin{pmatrix} 1 & -1 & -3 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = C \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Заметим, что C не является матрицей перехода (поскольку она отображает старые координаты в новые), но при этом из нее легко получить матрицу перехода $T=C^{-1}$.

Другим методом приведения к каноническому виду является метод Якоби:

Теорема 3.11. Пусть все главные угловые миноры Q_k матрицы Q не равны 0 (под главными угловыми минорами подразумеваются определители квадратных матриц, полученных из матрицы Q вычеркиванием всех строк и столбцов с n-k по n; таким образом остается только матрица $k \times k$ в верхнем левом углу); положим также $Q_0 = 1$. Тогда существует такая замена координат, что

$$T^{T}QT = \sum_{k=1}^{n} \frac{Q_{k}}{Q_{k-1}} y_{k}^{2}$$

При этом матрица T будет верхнетреугольной.

Упражнение 14. Методом Якоби приведите к каноническому квадратичную форму $q(x) = x^2 - 4xy + 2y^2 - 3z^2 - 6xz + 2yz$.

Определение 3.12. Число 1 на диагонали в нормальном виде квадратичной формы называется положительным индексом инерции. Аналогично, число -1 называется отрицательным индексом инерции. Пара индексов инерции называется сигнатурой формы и не зависит от базиса.

Определение 3.13. Квадратичная форма называется положительно определенной, если для любого $x \neq 0$ q(x) > 0. Соответственно, отрицательно определенной называется форма, что q(x) < 0.

Упражнение 15. Докажите, что форма определена положительно, если ее положительный индекс инерции равен размерности пространства.

Теорема 3.14 (Критерий Сильвестра). Пусть дана квадратичная форма q(x) и ее матрица Q. Если:

- 1. Все ее главные угловые миноры Q_k положительны, то форма положительно определена;
- 2. Ее главные угловые миноры Q_k чередуют знак, начиная с минуса, то есть имеют тот же знак, что и $(-1)^k$, то форма отрицательно определена.

Упражнение 16. При каких значениях α следующие квадратичные формы будут положительно или отрицательно определены:

(a)
$$q(x) = x^2 + y^2 + 5z^2 + 2\alpha xy - 2zx + 4yz$$

(b)
$$q(x) = \alpha x^2 - 2y^2 - 3z^2 + 2xy - 2xz + 2yz$$

Для симметрических матриц (а все матрицы квадратичных форм именно такие) справедлива такая замечательная теорема:

Теорема 3.15. 1. Все собственные числа симметрической матрицы A вещественны;

- 2. Собственные вектора, принадлежащие различным собственным числам симметричной матрицы A попарно ортогональны (то есть их скалярное произведение равно 0);
- 3. Существует ортогональная замена переменных X = TY, приводящая квадратичную форму f(X) к каноническому виду, где на диагонали матрицы квадратичной формы стоят собственные числа.

Упражнение 17. Для каждой квадратичной формы найдите матрицу в стандартном базисе; ортонормированный базис, в котором матрица квадратичной формы диагональна; ортонормированный базис, в котором матрица квадратичной формы имеет нормальный вид:

(a)
$$2x^2 + 2xy + 2y^2$$

(b) $5x^2 - 2xy - 2xz + 5xy - 2yz + 5z^2$

Упражнение 18. Зная, что d^2f функции n-переменных есть квадратичная форма, исследуйте на экстремумы функцию $f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$ с точки зрения знакоопределенности соответствующей квадратичной формы.