

Teknik Informatika - Fakultas Informatika

Pertemuan 12 – Tree

Author: Wahyu Andi Saputra [WAA]

Outline

Konsep Tree

Tree pada Struktur Data

Binary Tree

Tree Traversal

Konsep Tree

Konsep Tree

 adalah kumpulan node yang saling terhubung satu sama lain dalam suatu kesatuan yang membentuk layakya struktur sebuah pohon.

Merepresentasikan suatu struktur hirarki

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 G

 H

 H

 G

 H

 H

 G

 H

 H

 H

 G

 H

 H

 H

 G

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

 H

Konsep Tree

 salah satu bentuk implementasi banyak array atau linked list yang digunakan untuk menggambarkan hubungan yang bersifat hirarkis

Implementasi Tree

• Pohon keluarga

Implementasi Tree

• Penjadwalan turnamen

Implementasi Stack

• Organization Structure

Institut Teknologi **Telkom**Purwokerto

- Pengelolaan memori pada system operasi
- Operasi aritmetika pada cara kerja kalkulator
- Penyelesaian pencarian rute labirin

Tree pada Struktur Data

Predecesor	Node yang berada diatas node tertentu.		
Successor	Node yang berada dibawah node tertentu.		
Ancestor	Seluruh node yang terletak sebelum node tertentu dan		
	terletak pada jalur yang sama		
Descendant	Seluruh node yang terletak setelah node tertentu dan		
	terletak pada jalur yang sama		
Parent	Predecessor satu level di atas suatu node.		
Child	Successor satu level di bawah suatu node.		
Sibling	Node-node yang memiliki parent yang sama		
Subtree	Suatu node beserta descendantnya.		
Size	Banyaknya node dalam suatu tree		
Height	Banyaknya tingkatan dalam suatu tree		
Root	Node khusus yang tidak memiliki predecessor.		
Leaf	Node-node dalam tree yang tidak memiliki successor.		
Degree	Banyaknya child dalam suatu node		

INSTITUT TEKNOLOGI TELKOM PURWOKERTO

• Predecessor (Y,S,Z,T) = R

• Successor (T) = U, V, W

Ancestor (U) = T, R

• Descendant (T) = U, V, W

Parent (Y) = S

• Child (R) = S, T

- Sibling (U) = V, W
- Size = 8
- Height = 3
- Root = R
- Leaf = Y, Z, U, V, W
- Degree (T) = 3

Jelaskan anatomi tree dari tree berikut!

• Diagram Venn

Institut Teknologi Telkom Purwokerto

Notasi Tingkat

A	В		
		D E	I J
	С	F G H	

Institut Teknologi Telkom Purwokerto

Notasi Kurung

(A(B(D,E(I,J)),C(F,G,H)))

Buat diagram venn, notasi kurung dan notasi tingkat!

Identifikasikan!

- Ancestor (N) =
- Descendant (Y) =
- Parent (Z) =
- Child (Q) =
- Sibling (U) =
- Size =
- Height =
- Root =
- Leaf =
- Degree (R) =

Gambarkan pohon binary-nya!

- Ancestor (M) = Z, X
- Descendant (Y) = K, L
- Parent (N) = Z
- Child (Z) = M, N
- Sibling (Y) = Z
- Size = 7
- Height = 3
- Root = X
- Leaf = K, L, M, N

Binary Tree

Binary Tree

- Suatu tree dengan syarat bahwa tiap node hanya boleh memiliki maksimal dua subtree dan kedua subtree tersebut harus terpisah.
- Tiap node dalam binary tree hanya boleh memiliki paling banyak dua child.

Kategori Binary Tree

Kategori Binary Tree

Unordered tree

Ordered tree

Binary Tree

 Node pada suatu binary tree maksimum berjumlah

Jumlah maksimum node pada setiap tingkat adalah

Binary Tree

Level-0, jumlah max = 2°

Level-1, jumlah max = 21

Level-2, jumlah max = 2^2

Level-3, jumlah max = 2^3

Tree Traversal

Tree Traversal

- Penelusuran seluruh node pada binary tree.
- Metode:
 - Preorder
 - Inorder
 - Postorder

Tree Traversal: PreOrder

Secara rekursif di setiap node:

- 1. Cetak node pada root
- 2. Secara rekursif mencetak seluruh node pada subpohon kiri
- 3. Secara rekursif mencetak seluruh node pada subpohon kanan

a b c

Tree Traversal: PreOrder

a b d g h e l c f j

Tree Traversal: InOrder

Secara rekursif di setiap node:

- 1. Secara rekursif mencetak seluruh node pada subpohon kiri
- 2. Cetak data pada root
- 3. Secara rekursif mencetak seluruh node pada subpohon kanan

b a c

Tree Traversal: InOrder

gdhbeiafjc

Tree Traversal: PostOrder

Secara rekursif di setiap node:

- 1. Secara rekursif mencetak seluruh node pada subpohon kiri
- 2. Secara rekursif mencetak seluruh node pada subpohon kanan
- 3. Cetak data pada root

b c a

Tree Traversal: PostOrder

TERIMA KASIH