

Квадратичная задача оптимизации

Сильно выпуклая квадратичная функция

Рассмотрим следующую квадратичную задачу оптимизации:

Условия оптимальности

$$\min_{x \in \mathbb{R}^n} f(x) = \min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top A x - b^\top x + c,$$
 где $A \in \mathbb{S}^n_{++}.$ (1)

$$Ax^* = b$$

Наискорейший спуск ака точный линейный поиск

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Более теоретический, чем практический подход к выбору шага. Он также позволяет анализировать сходимость, но точный линейный поиск может быть численно сложным, если вычисление функции занимает слишком много времени или требует слишком много ресурсов.

Интересное теоретическое свойство этого метода заключается в том. что каждая следующая итерация метода ортогональна предыдущей:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Наискорейший спуск ака точный линейный поиск

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Более теоретический, чем практический подход к выбору шага. Он также позволяет анализировать сходимость, но точный линейный поиск может быть численно сложным, если вычисление функции занимает слишком много времени или требует слишком много ресурсов.

Интересное теоретическое свойство этого метода заключается в том. что каждая следующая итерация метода ортогональна предыдущей:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Условия оптимальности:

Наискорейший спуск aka точный линейный поиск

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Более теоретический, чем практический подход к выбору шага. Он также позволяет анализировать сходимость, но точный линейный поиск может быть численно сложным, если вычисление функции занимает слишком много времени или требует слишком много ресурсов.

Интересное теоретическое свойство этого метода заключается в том, что каждая следующая итерация метода ортогональна предыдущей:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Условия оптимальности:

$$\nabla f(x_k)^T \nabla f(x_{k+1}) = 0$$

🜢 Оптимальное значение для квадратичных функций

$$\nabla f(x_k)^\top A(x_k - \alpha \nabla f(x_k)) - \nabla f(x_k)^\top b = 0 \qquad \alpha_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{\nabla f(x_k)^T A \nabla f(x_k)}$$

Рис. 1: Наискорейший спуск

Открыть в Colab 🚓

Ортогональность

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^TIx$$

$$\frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^T A \hat{x}$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^TIx$$

$$\frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^T A \hat{x} = \frac{1}{2}\hat{x}^T Q \Lambda Q^T \hat{x}$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^TIx$$

$$\frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^TA\hat{x} = \frac{1}{2}\hat{x}^TQ\Lambda Q^T\hat{x} = \frac{1}{2}\hat{x}^TQ\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^T\hat{x}$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^TIx$$

$$\frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2}\hat{x}^T A \hat{x} = \frac{1}{2}\hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2}\hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2}x^T I x$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2} \hat{x}^T A \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2} x^T I x \text{ in } \hat{x} = Q \Lambda^{-\frac{1}{2}} x \text{ in } \hat{x} = Q$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2} x^T I x$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $\hat{f}(\hat{x}) = \frac{1}{2}\hat{x}^T A \hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$$\frac{1}{2}x^T I x \qquad \qquad \frac{1}{2}\hat{x}^T A \hat{x}$$

$$\frac{1}{2} \hat{x}^T A \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda Q^T \hat{x} = \frac{1}{2} \hat{x}^T Q \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} Q^T \hat{x} = \frac{1}{2} x^T I x \text{ in } \hat{x} = Q \Lambda^{-\frac{1}{2}} x \text{ in } \hat{x} = Q$$

Предположим, у нас есть две системы координат и квадратичная функция $f(x) = \frac{1}{2}x^TIx$ выглядит так, как на левой части изображения 2, в то время как в других координатах она выглядит как $f(\hat{x}) = \frac{1}{2}\hat{x}^TA\hat{x}$, где $A \in \mathbb{S}^n_{++}$.

$rac{1}{2}x^TIx$	$rac{1}{2} \hat{x}^T A \hat{x}$
-------------------	----------------------------------

Поскольку $A=Q\Lambda Q^T$:

$$\frac{1}{2}\hat{x}^TA\hat{x}=\frac{1}{2}\hat{x}^TQ\Lambda Q^T\hat{x}=\frac{1}{2}\hat{x}^TQ\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^T\hat{x}=\frac{1}{2}x^TIx \text{ in }\hat{x}=Q\Lambda^{-\frac{1}{2}}x$$

Векторы $x \in \mathbb{R}^n$ и $y \in \mathbb{R}^n$ называются A-ортогональными (или A-сопряженными), если

$$x^TAy = 0 \qquad \Leftrightarrow \qquad x \perp_A y$$

Когда A=I, A-ортогональность превращается в ортогональность.

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Рис. 3: Иллюстрация процесса Грама-Шмидта

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Рис. 4: Иллюстрация процесса Грама-Шмидта

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Рис. 5: Иллюстрация процесса Грама-Шмидта

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Рис. 6: Иллюстрация процесса Грама-Шмидта

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Рис. 7: Иллюстрация процесса Грама-Шмидта

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

$$d_0=u_0$$

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

$$\begin{aligned} d_0 &= u_0 \\ d_1 &= u_1 - \pi_{d_0}(u_1) \end{aligned}$$

Вход: n линейно независимых векторов u_0,\dots,u_{n-1} .

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

$$\begin{split} d_0 &= u_0 \\ d_1 &= u_1 - \pi_{d_0}(u_1) \\ d_2 &= u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2) \\ &\vdots \end{split}$$

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

$$\begin{split} d_0 &= u_0 \\ d_1 &= u_1 - \pi_{d_0}(u_1) \\ d_2 &= u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2) \\ &\vdots \\ d_k &= u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k) \end{split}$$

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

$$\begin{split} d_0 &= u_0 \\ d_1 &= u_1 - \pi_{d_0}(u_1) \\ d_2 &= u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2) \\ &\vdots \\ d_k &= u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k) \end{split}$$

Вход: n линейно независимых векторов $u_0,\dots,u_{n-1}.$

Выход: n линейно независимых попарно ортогональных векторов d_0, \dots, d_{n-1} .

$$\begin{split} &d_0 = u_0 \\ &d_1 = u_1 - \pi_{d_0}(u_1) \\ &d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2) \\ &\vdots \end{split}$$

 $d_k=u_k-\sum_{i=0}^{k-1}\pi_{d_i}(u_k)$

$$d_k = u_k + \sum_{i=0}^{k-1} \beta_{ik} d_i \qquad \beta_{ik} = -\frac{\langle d_i, u_k \rangle}{\langle d_i, d_i \rangle}$$

Метод сопряженных направлений (CD)

В изотропном случае A=I метод наискорейшего спуска, запущенный из произвольной точки в nортогональных линейно независимых направлениях, сойдется за n шагов в точных арифметических вычислениях. Мы пытаемся построить аналогичную процедуру в случае $A \neq I$ с использованием концепции A-ортогональности.

- В изотропном случае A=I метод наискорейшего спуска. запущенный из произвольной точки в nортогональных линейно независимых направлениях, сойдется за n шагов в точных арифметических вычислениях. Мы пытаемся построить аналогичную процедуру в случае $A \neq I$ с использованием концепции A-ортогональности.
- Предположим, у нас есть набор из n линейно независимых A-ортогональных направлений d_0, \dots, d_{n-1} (которые будут вычислены с помощью процесса Грама-Шмидта).

- В изотропном случае A=I метод наискорейшего спуска. запущенный из произвольной точки в nортогональных линейно независимых направлениях, сойдется за n шагов в точных арифметических вычислениях. Мы пытаемся построить аналогичную процедуру в случае $A \neq I$ с использованием концепции A-ортогональности.
- Предположим, у нас есть набор из n линейно независимых A-ортогональных направлений d_0, \dots, d_{n-1} (которые будут вычислены с помощью процесса Грама-Шмидта).
- Мы хотим построить метод, который идет из x_0 в x^* для квадратичной задачи с шагами $lpha_i$, который, фактически, является разложением $x^* - x_0$ в некотором базисе:

$$x^* = x_0 + \sum_{i=0}^{n-1} \alpha_i d_i \qquad x^* - x_0 = \sum_{i=0}^{n-1} \alpha_i d_i$$

- В изотропном случае A=I метод наискорейшего спуска, запущенный из произвольной точки в nортогональных линейно независимых направлениях, сойдется за n шагов в точных арифметических вычислениях. Мы пытаемся построить аналогичную процедуру в случае $A \neq I$ с использованием концепции A-ортогональности.
- Предположим, у нас есть набор из n линейно независимых A-ортогональных направлений d_0, \dots, d_{n-1} (которые будут вычислены с помощью процесса Грама-Шмидта).
- Мы хотим построить метод, который идет из x_0 в x^* для квадратичной задачи с шагами $lpha_i$, который, фактически, является разложением $x^* - x_0$ в некотором базисе:

$$x^* = x_0 + \sum_{i=0}^{n-1} \alpha_i d_i \qquad x^* - x_0 = \sum_{i=0}^{n-1} \alpha_i d_i$$

ullet Мы докажем, что $lpha_i$ и d_i могут быть построены очень эффективно с вычислительной точки зрения (метод сопряженных градиентов).

Идея метода сопряженных направлений (CD)

Таким образом, мы формулируем алгоритм:

Предположим, что нам заранее известны линейно-независимые векторы u_0, \dots, u_{n-1} .

1. $d_0 = -\nabla f(x_0)$.

Идея метода сопряженных направлений (CD)

Таким образом, мы формулируем алгоритм:

Предположим, что нам заранее известны линейно-независимые векторы u_0, \dots, u_{n-1} .

- 1. $d_0 = -\nabla f(x_0)$.
- 2. С помощью процедуры точного линейного поиска находим оптимальную длину шага. Вычисляем lphaминимизируя $f(x_k + \alpha_k d_k)$ по формуле

$$\alpha_k = -\frac{d_k^{\top}(Ax_k - b)}{d_k^{\top}Ad_k} \tag{3}$$

Идея метода сопряженных направлений (CD)

Таким образом, мы формулируем алгоритм:

Предположим, что нам заранее известны линейно-независимые векторы u_0, \dots, u_{n-1} .

- 1. $d_0 = -\nabla f(x_0)$.
- 2. С помощью процедуры точного линейного поиска находим оптимальную длину шага. Вычисляем lphaминимизируя $f(x_k + \alpha_k d_k)$ по формуле

$$\alpha_k = -\frac{d_k^{\top}(Ax_k - b)}{d_k^{\top}Ad_k} \tag{3}$$

Выполняем шаг алгоритма:

$$x_{k+1} = x_k + \alpha_k d_k$$

Идея метода сопряженных направлений (CD)

Таким образом, мы формулируем алгоритм:

Предположим, что нам заранее известны линейно-независимые векторы u_0, \dots, u_{n-1} .

- 1. $d_0 = -\nabla f(x_0)$.
- 2. С помощью процедуры точного линейного поиска находим оптимальную длину шага. Вычисляем lphaминимизируя $f(x_k + \alpha_k d_k)$ по формуле

$$\alpha_k = -\frac{d_k^{\dagger} (Ax_k - b)}{d_k^{\dagger} A d_k} \tag{3}$$

Выполняем шаг алгоритма:

$$x_{k+1} = x_k + \alpha_k d_k$$

4. Обновляем направление: d_{k+1} получаем из u_{k+1} с помощью модифицированной процедуры Грама–Шмидта в скалярном произведении $\langle v,w \rangle_A = v^\top A w$ относительно уже построенных d_0,\dots,d_k :

$$d_{k+1} = u_{k+1} - \sum_{i=0}^k \beta_{k+1,i} \ d_i, \quad \beta_{k+1,i} = \frac{u_{k+1}^\top A d_i}{d_i^\top A d_i}$$

что обеспечивает $d_{k+1} \perp_A d_i$ для всех $j \leq k$.

Идея метода сопряженных направлений (CD)

Таким образом, мы формулируем алгоритм:

Предположим, что нам заранее известны линейно-независимые векторы u_0, \dots, u_{n-1} .

- 1. $d_0 = -\nabla f(x_0)$.
- 2. С помощью процедуры точного линейного поиска находим оптимальную длину шага. Вычисляем α минимизируя $f(x_k+\alpha_k d_k)$ по формуле

$$\alpha_k = -\frac{d_k^{\top} (Ax_k - b)}{d_k^{\top} A d_k} \tag{3}$$

3. Выполняем шаг алгоритма:

$$x_{k+1} = x_k + \alpha_k d_k$$

4. Обновляем направление: d_{k+1} получаем из u_{k+1} с помощью модифицированной процедуры Грама–Шмидта в скалярном произведении $\langle v,w \rangle_A = v^\top A w$ относительно уже построенных d_0,\dots,d_k :

$$d_{k+1} = u_{k+1} - \sum_{i=0}^k \beta_{k+1,i} \ d_i, \quad \beta_{k+1,i} = \frac{u_{k+1}^\top A d_i}{d_i^\top A d_i}$$

что обеспечивает $d_{k+1} \perp_A d_i$ для всех $j \leq k$.

5. Повторяем шаги 2–4, пока не построим n направлений, где n — размерность пространства (x).

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum_{i=1}^{n} \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum_{i=1}^{\infty} \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^{n} \alpha_i d_i$$

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum\limits_{i=0}^{\infty} \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 (Умножаем на $d_j^T A$)
$$= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i \right)$$

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum\limits_{i=0}^{\infty} \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 (Умножаем на $d_j^T A$)
$$= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i\right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i$$

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 (Умножаем на $d_j^T A$)
$$= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i\right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i$$

$$= \alpha_j d_j^\top A d_j + 0 + \ldots + 0$$

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 (Умножаем на $d_j^T A$)
$$= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i\right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i$$

$$= \alpha_j d_j^\top A d_j + 0 + \ldots + 0$$

Лемма 1. Линейная независимость А-ортогональных векторов.

Если множество векторов d_1, \dots, d_n - попарно A-ортогональны (каждая пара векторов A-ортогональна), то эти векторы линейно независимы. $A \in \mathbb{S}^n_{++}$.

Доказательство

Покажем, что если $\sum\limits_{i=0}^{\infty} \alpha_i d_i = 0$, то все коэффициенты должны быть равны нулю:

$$0 = \sum_{i=1}^n \alpha_i d_i$$
 (Умножаем на $d_j^T A$)
$$= d_j^\top A \left(\sum_{i=1}^n \alpha_i d_i\right) = \sum_{i=1}^n \alpha_i d_j^\top A d_i$$

$$= \alpha_j d_j^\top A d_j + 0 + \ldots + 0$$

Таким образом, $\alpha_{i}=0$, для всех остальных индексов нужно проделать тот же процесс

Введем следующие обозначения:

ullet $r_k=b-Ax_k$ - невязка

Введем следующие обозначения:

- ullet $r_k=b-Ax_k$ невязка
- ullet $e_k = x_k x^*$ ошибка

Введем следующие обозначения:

- ullet $r_k = b Ax_k$ невязка
- $e_k = x_k x^*$ ошибка
- ullet Поскольку $Ax^*=b$, имеем $r_k=b-Ax_k=Ax^*-Ax_k=-A(x_k-x^*)$

$$r_k = -Ae_k$$
.

 $f \to \min_{x,y,z} \bigoplus_{y,y}$ Метод сопряженных направлений (CD)

(4)

Введем следующие обозначения:

- ullet $r_{oldsymbol{\iota}}=b-Ax_{oldsymbol{k}}$ невязка
- $e_{\nu} = x_{\nu} x^*$ ошибка
- Поскольку $Ax^* = b$, имеем $r_k = b Ax_k = Ax^* Ax_k = -A(x_k x^*)$

$$r_{\nu} = -Ae_{\nu}$$
.

 \bullet Также заметим, что поскольку $x_{k+1} = x_0 + \sum\limits_{i=0}^k \alpha_i d_i$, имеем

$$e_{k+1} = e_0 + \sum_{i=0}^{k} \alpha_i d_i. {5}$$

(4)

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

Докажем, что $\delta_i = -\alpha_i$:

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i$$

Докажем, что $\delta_i = -\alpha_i$:

 $f \to \min_{x,y,z}$ Метод сопряженных направлений (CD)

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

Докажем, что $\delta_i = -\alpha_i$:

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

Докажем, что $\delta_i = -\alpha_i$:

 $d_{h}^{T}Ae_{h}$

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i, r_i \rangle}{\langle d_i, d_i d_i \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

Докажем, что $\delta_i = -\alpha_i$:

$$d_k^T A e_k = d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right)$$

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^k \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i \, r_i \rangle}{\langle d_i \, d_i \, d_j \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

Докажем, что
$$\delta_i = -\alpha_i$$
:

$$d_k^T A e_k = d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right) \overset{\perp}{=} \delta_k d_k^T A d_k$$

 $f \to \min_{x,y,z}$ Метод сопряженных направлений (CD)

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i \, r_i \rangle}{\langle d_i \, d_i \, d_j \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$\delta_i d_i \qquad \qquad d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k \, .$$

Докажем, что
$$\delta_i = -\alpha_i$$
:

$$\begin{aligned} d_k^T A e_k &= d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right) \overset{\perp_A}{=} \delta_k d_k^T A d_k \\ \delta_k &= \frac{d_k^T A e_k}{d^T A d_i} \end{aligned}$$

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i \, r_i \rangle}{\langle d_i \, d_i \, d_j \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^TAe_0 = \sum_{i=0}^{n-1} \delta_i d_k^TAd_i = \delta_k d_k^TAd_k$$

Докажем, что
$$\delta_i = -\alpha_i$$
:

$$\begin{aligned} d_k^T A e_k &= d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right) \overset{\perp_A}{=} \delta_k d_k^T A d_k \\ \delta_k &= \frac{d_k^T A e_k}{d_t^T A d_k} = -\frac{d_k^T r_k}{d_t^T A d_k} \end{aligned}$$

Лемма 2. Сходимость метода сопряженных направлений.

Предположим, мы решаем n-мерную квадратичную сильно выпуклую задачу оптимизации (1). Метод сопряженных направлений

$$x_{k+1} = x_0 + \sum_{i=0}^{k} \alpha_i d_i$$

с $\alpha_i = \frac{\langle d_i \, r_i \rangle}{\langle d_i \, d_i \, d_j \rangle}$ взятым из точного линейного поиска, сходится за не более n шагов алгоритма.

Доказательство Пусть

Умножаем обе части слева на $d_{L}^{T}A$:

$$e_0 = x_0 - x^* = \sum_{i=0}^{n-1} \delta_i d_i$$

$$d_k^T A e_0 = \sum_{i=0}^{n-1} \delta_i d_k^T A d_i = \delta_k d_k^T A d_k$$

Докажем, что $\delta_i = -\alpha_i$:

$$\begin{split} \overline{d_k^T} A e_k &= d_k^T A \left(e_0 + \sum_{i=0}^{k-1} \alpha_i d_i \right) \overset{\perp}{=} \delta_k d_k^T A d_k \\ \delta_k &= \frac{d_k^T A e_k}{d_k^T A d_k} = -\frac{d_k^T r_k}{d_k^T A d_k} \Leftrightarrow \delta_k = -\alpha_k \end{split}$$

Метод сопряженных градиентов (CG)

ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор $d_0,\dots,d_{n-1},$ позволяющий значительно ускорить процесс Грама-Шмидта.

- ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор d_0,\dots,d_{n-1} , позволяющий значительно ускорить процесс Грама-Шмидта.
- Используется процесс Грама-Шмидта с A-ортогональностью вместо Евклидовой ортогональности, чтобы получить их из набора начальных векторов.

- ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор d_0,\dots,d_{n-1} , позволяющий значительно ускорить процесс Грама-Шмидта.
- Используется процесс Грама-Шмидта с А-ортогональностью вместо Евклидовой ортогональности. чтобы получить их из набора начальных векторов.
- На каждой итерации r_0, \dots, r_{n-1} используются в качестве начальных линейно-независимых векторов для процесса Грама-Шмидта.

- ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор $d_0,\dots,d_{n-1},$ позволяющий значительно ускорить процесс Грама-Шмидта.
- Используется процесс Грама-Шмидта с А-ортогональностью вместо Евклидовой ортогональности, чтобы получить их из набора начальных векторов.
- На каждой итерации r_0, \dots, r_{n-1} используются в качестве начальных линейно-независимых векторов для процесса Грама-Шмидта.
- Основная идея заключается в том, что для произвольного метода CD процесс Грама-Шмидта вычислительно дорогой и требует квадратичного числа операций сложения векторов и скалярных произведений $\mathcal{O}(n^2)$, в то время как в случае CG мы покажем, что сложность этой процедуры может быть уменьшена до линейной $\mathcal{O}(n)$.

- ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор $d_0,\dots,d_{n-1},$ позволяющий значительно ускорить процесс Грама-Шмидта.
- Используется процесс Грама-Шмидта с А-ортогональностью вместо Евклидовой ортогональности, чтобы получить их из набора начальных векторов.
- На каждой итерации r_0, \dots, r_{n-1} используются в качестве начальных линейно-независимых векторов для процесса Грама-Шмидта.
- Основная идея заключается в том, что для произвольного метода CD процесс Грама-Шмидта вычислительно дорогой и требует квадратичного числа операций сложения векторов и скалярных произведений $\mathcal{O}(n^2)$, в то время как в случае CG мы покажем, что сложность этой процедуры может быть уменьшена до линейной $\mathcal{O}(n)$.

- ullet Это буквально метод сопряженных направлений, в котором мы выбираем специальный набор $d_0,\dots,d_{n-1},$ позволяющий значительно ускорить процесс Грама-Шмидта.
- Используется процесс Грама-Шмидта с А-ортогональностью вместо Евклидовой ортогональности, чтобы получить их из набора начальных векторов.
- На каждой итерации r_0, \dots, r_{n-1} используются в качестве начальных линейно-независимых векторов для процесса Грама-Шмидта.
- Основная идея заключается в том, что для произвольного метода CD процесс Грама-Шмидта вычислительно дорогой и требует квадратичного числа операций сложения векторов и скалярных произведений $\mathcal{O}\left(n^{2}\right)$, в то время как в случае CG мы покажем, что сложность этой процедуры может быть уменьшена до линейной $\mathcal{O}(n)$.

 $\mathsf{CG} = \mathsf{CD} + r_0, \dots, r_{n-1}$ как начальные векторы для процесса Грама-Шмидта + A-ортогональность.

Леммы для сходимости

1 Лемма 5. Невязки ортогональны друг другу в методе СС

Все невязки в методе CG ортогональны друг другу:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{6}$$

🗓 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{r_i^{\top} r_i}{r_{i-1}^{\top} r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Метод сопряженных градиентов (CG)

$$\begin{split} r_0 &:= b - Ax_0 \\ \text{if } r_0 \text{ is sufficiently small, then return } x_0 \text{ as the result } \\ d_0 &:= r_0 \\ k &:= 0 \\ \text{repeat} \\ & \alpha_k := \frac{r_k^\mathsf{T} r_k}{d_k^\mathsf{T} A d_k} \\ & x_{k+1} := x_k + \alpha_k d_k \\ & r_{k+1} := r_k - \alpha_k A d_k \\ & \text{if } r_{k+1} \text{ is sufficiently small, then exit loop} \\ & \beta_k := \frac{r_{k+1}^\mathsf{T} r_{k+1}}{r_k^\mathsf{T} r_k} \\ & d_{k+1} := r_{k+1} + \beta_k d_k \\ & k := k+1 \end{split}$$

end repeat

Закрываем квадратичный вопрос

Сходимость

Теорема 1. Если матрица A имеет только r различных собственных значений, то метод сопряженных градиентов сходится за r итераций.

Теорема 2. Следующая оценка сходимости выполняется для метода сопряженных градиентов, как для итерационного метода в сильно выпуклой задаче:

$$\|x_k - x^*\|_A \leq 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^{\kappa} \|x_0 - x^*\|_A,$$

где $\|x\|_A^2 = x^\top A x$ и $\varkappa(A) = \frac{\lambda_1(A)}{\lambda_1(A)}$ - это число обусловленности матрицы $A, \ \lambda_1(A) \geq ... \geq \lambda_n(A)$ - собственные значения матрицы A

Примечание: Сравните коэффициент геометрической прогрессии с его аналогом в методе градиентного спуска.

Численные эксперименты

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, clustered matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=600, clustered matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, uniform spectrum matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, Hilbert matrix.

Здесь должны быть видосы, но у меня не получилось их вставить, так что покажу через VSCode.

В случае, когда нет аналитического выражения для функции или ее градиента, мы, скорее всего, не сможем решить одномерную задачу минимизации аналитически. Поэтому α_L подбирается обычной процедурой линейного поиска. Но для выбора β_{ι} есть следующий математический трюк:

Для двух итераций справедливо:

$$x_{k+1} - x_k = cd_k,$$

В случае, когда нет аналитического выражения для функции или ее градиента, мы, скорее всего, не сможем решить одномерную задачу минимизации аналитически. Поэтому α_{b} подбирается обычной процедурой линейного поиска. Но для выбора β_{ι} есть следующий математический трюк:

Для двух итераций справедливо:

$$x_{k+1} - x_k = cd_k,$$

где c - некоторая константа. Тогда для квадратичного случая мы имеем:

$$\nabla f(x_{k+1}) - \nabla f(x_k) = (Ax_{k+1} - b) - (Ax_k - b) = A(x_{k+1} - x_k) = cAd_k$$

В случае, когда нет аналитического выражения для функции или ее градиента, мы, скорее всего, не сможем решить одномерную задачу минимизации аналитически. Поэтому α_{b} подбирается обычной процедурой линейного поиска. Но для выбора β_{ι} есть следующий математический трюк:

Для двух итераций справедливо:

$$x_{k+1} - x_k = cd_k,$$

где c - некоторая константа. Тогда для квадратичного случая мы имеем:

$$\nabla f(x_{k+1}) - \nabla f(x_k) = (Ax_{k+1} - b) - (Ax_k - b) = A(x_{k+1} - x_k) = cAd_k$$

Выражая из этого уравнения величину $Ad_k = rac{1}{c} \left(
abla f(x_{k+1}) -
abla f(x_k)
ight)$, мы избавляемся от знания функции в определении β_{k} , тогда пункт 4 будет переписан как:

$$\beta_k = \frac{\nabla f(x_{k+1})^\top (\nabla f(x_{k+1}) - \nabla f(x_k))}{d_{\nu}^\top (\nabla f(x_{k+1}) - \nabla f(x_k))}.$$

Этот метод называется методом Полака-Рибьера.

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \to \min_{x \in \mathbb{R}^n}$$

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

Бонус: дополнительные технические леммы и доказательства

і Лемма 3. Разложение ошибки.

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{7}$$

і Лемма 3. Разложение ошибки.

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{7}$$

Доказательство

$$e_i = e_0 + \sum_{j=0}^{i-1} \alpha_j d_j$$

і Лемма 3. Разложение ошибки.

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{7}$$

Доказательство

$$e_i = e_0 + \sum_{i=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{i=0}^{i-1} \alpha_j d_j$$

і Лемма 3. Разложение ошибки.

$$e_i = \sum_{j=i}^{n-1} -\alpha_j d_j \tag{7}$$

Доказательство

$$e_i = e_0 + \sum_{i=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{i=0}^{i-1} \alpha_j d_j = -\sum_{i=0}^{n-1} \alpha_j d_j + \sum_{i=0}^{i-1} \alpha_j d_j$$

і Лемма 3. Разложение ошибки.

$$e_i = \sum_{j=1}^{n-1} -\alpha_j d_j \tag{7}$$

Доказательство

$$e_i = e_0 + \sum_{i=0}^{i-1} \alpha_j d_j = x_0 - x^* + \sum_{i=0}^{i-1} \alpha_j d_j = -\sum_{i=0}^{n-1} \alpha_j d_j + \sum_{i=0}^{i-1} \alpha_j d_j = \sum_{i=i}^{n-1} -\alpha_j d_j$$

Лемма 4. Невязка ортогональна всем предыдущим направлениям для CD.

Рассмотрим невязку метода сопряженных направлений на k итерации r_k , тогда для любого i < k:

$$d_i^T r_k = 0 (8)$$

Лемма 4. Невязка ортогональна всем предыдущим направлениям для CD.

Рассмотрим невязку метода сопряженных направлений на k итерации r_k , тогда для любого i < k:

$$d_i^T r_k = 0 (8)$$

Доказательство

Запишем (7) для некоторого фиксированного индекса k:

Лемма 4. Невязка ортогональна всем предыдущим направлениям для CD.

Рассмотрим невязку метода сопряженных направлений на k итерации r_k , тогда для любого i < k:

$$d_i^T r_k = 0 (8)$$

Доказательство

Запишем (7) для некоторого фиксированного индекса k:

$$e_k = \sum_{j=k}^{n-1} -\alpha_j d_j$$

Лемма 4. Невязка ортогональна всем предыдущим направлениям для CD.

Рассмотрим невязку метода сопряженных направлений на k итерации r_k , тогда для любого i < k:

$$d_i^T r_k = 0 (8)$$

Доказательство

Запишем (7) для некоторого фиксированного индекса k:

$$e_k = \sum_{j=k}^{n-1} -\alpha_j d_j$$

Умножаем обе части на $-d_i^T A$.

$$-d_i^T A e_k = \sum_{j=k}^{n-1} \alpha_j d_i^T A d_j = 0$$

Таким образом, $d_i^T r_k = 0$ и невязка r_k ортогональна всем предыдущим направлениям d_i для метода CD.

i Лемма 5. Невязки ортогональны друг другу в методе CG

Все невязки в методе CG ортогональны друг другу:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{9}$$

1 Лемма 5. Невязки ортогональны друг другу в методе СС

Все невязки в методе CG ортогональны друг другу:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{9}$$

Доказательство

Запишем процесс Грама-Шмидта (2) с $\langle \cdot, \cdot \rangle$

замененным на $\langle \cdot, \cdot \rangle_A = x^T A y$

1 Лемма 5. Невязки ортогональны друг другу в методе СС

Все невязки в методе CG ортогональны друг другу:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{9}$$

Доказательство

Запишем процесс Грама-Шмидта (2) с $\langle \cdot, \cdot \rangle$ замененным на $\langle \cdot, \cdot \rangle_A = x^T A y$

$$d_i = u_i + \sum_{i=0}^{i-1} \beta_{ji} d_j \ \beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_j \rangle_A} \ (10)$$

🕯 Лемма 5. Невязки ортогональны друг другу в методе CG

Все невязки в методе CG ортогональны друг другу:

$$r_i^T r_k = 0 \qquad \forall i \neq k \tag{9}$$

Доказательство

Запишем процесс Грама-Шмидта (2) с $\langle \cdot, \cdot \rangle$ замененным на $\langle \cdot, \cdot \rangle_A = x^T A y$

$$d_i = u_i + \sum_{j=0}^{i-1} \beta_{ji} d_j \ \beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_j, d_j \rangle_A} \ (10)$$

Тогда, мы используем невязки в качестве начальных векторов для процесса и $u_i = r_i$.

🕯 Лемма 5. Невязки ортогональны друг другу в методе CG

 $r_i^T r_k = 0 \quad \forall i \neq k$

(9)

Доказательство

Запишем процесс Грама-Шмидта (2) с $\langle \cdot, \cdot \rangle$

замененным на
$$\langle \cdot, \cdot \rangle_A = x^T A y$$

Тогда, мы используем невязки в качестве начальных векторов для процесса и $u_i = r_i$.

$$\frac{\langle a_j, a_i \rangle_A}{\langle d_j, d_j \rangle_A} \quad (10)$$

 $d_i = u_i + \sum_{i=1}^{i-1} eta_{ji} d_j \;\; eta_{ji} = -rac{\langle d_j, u_i
angle_A}{\langle d_i, d_i
angle_A} \;\; ext{(10)}$ Умножаем обе части (10) на r_k^T для некоторого индекса k:

 $r_{k}^{T}d_{i} = r_{k}^{T}u_{i} + \sum_{i=0}^{i-1} \beta_{ji}r_{k}^{T}d_{j}$

$$\langle l_j, r_i \rangle_A$$
 (11

$$d_i = r_i + \sum_{i=0}^{i-1} \beta_{ji} d_j \ \beta_{ji} = -\frac{\langle d_j, r_i \rangle_A}{\langle d_i, d_i \rangle_A} \ \ (11)$$

ндекса
$$k$$
:

index

🕯 Лемма 5. Невязки ортогональны друг другу в методе CG

 $r_{i}^{T}r_{i}=0 \quad \forall i\neq k$

index

Доказательство Запишем процесс Грама-Шмидта (2) с
$$\langle \cdot, \cdot \rangle$$

замененным на
$$\langle \cdot, \cdot \rangle_A = x^T A y$$

Тогда, мы используем невязки в качестве

 $d_i = u_i + \sum_{i=1}^{i-1} eta_{ji} d_j \;\; eta_{ji} = -rac{\langle d_j, u_i
angle_A}{\langle d_i, d_i
angle_A} \;\; ext{(10)}$ Умножаем обе части (10) на r_k^T . для некоторого индекса k:

 $r_k^T d_i = r_k^T u_i + \sum_{i=0}^{i-1} \beta_{ji} r_k^T d_j$ начальных векторов для процесса и $u_i = r_i$.

Если j < i < k, то имеем лемму 4 с $d_i^T r_k = 0$ и $d_i^T r_k = 0$. Имеем:

 $r_i^T u_i = 0$ для CD $r_i^T r_i = 0$ для CG

 $d_i = r_i + \sum_{i=0}^{i-1} \beta_{ji} d_j \quad \beta_{ji} = -\frac{\langle d_j, r_i \rangle_A}{\langle d_i, d_i \rangle_A} \quad (11)$

(9)

Более того, если k=i:

$$r_k^T d_k = r_k^T u_k + \sum_{j=0}^{k-1} \beta_{jk} r_k^T d_j$$

Более того, если k = i:

$$r_{k}^{T}d_{k} = r_{k}^{T}u_{k} + \sum_{i=0}^{k-1}\beta_{jk}r_{k}^{T}d_{j} = r_{k}^{T}u_{k} + 0,$$

Более того, если k = i:

$$r_{k}^{T}d_{k} = r_{k}^{T}u_{k} + \sum_{i=0}^{k-1}\beta_{jk}r_{k}^{T}d_{j} = r_{k}^{T}u_{k} + 0,$$

Более того, если k = i:

$$r_{k}^{T}d_{k} = r_{k}^{T}u_{k} + \sum_{i=0}^{k-1}\beta_{jk}r_{k}^{T}d_{j} = r_{k}^{T}u_{k} + 0,$$

и мы имеем для любого k (из-за произвольного выбора i):

$$r_k^T d_k = r_k^T u_k$$
.

(12)

Более того, если k = i:

$$r_{k}^{T}d_{k} = r_{k}^{T}u_{k} + \sum_{i=0}^{k-1}\beta_{jk}r_{k}^{T}d_{j} = r_{k}^{T}u_{k} + 0,$$

и мы имеем для любого k (из-за произвольного выбора i):

$$r_k^T d_k = r_k^T u_k$$
.

(12)

$$r_{k+1} = r_k - \alpha_k A d_k \tag{13}$$

Лемма 6. Пересчет невязки

$$r_{k+1} = r_k - \alpha_k A d_k \tag{13}$$

$$r_{k+1} = -Ae_{k+1} = -A\left(e_k + \alpha_k d_k\right) = -Ae_k - \alpha_k Ad_k = r_k - \alpha_k Ad_k$$

Наконец, все эти вышеуказанные леммы достаточны для доказательства, что $\beta_{ii}=0$ для всех i,j, кроме соседних.

 $f \to \min_{x,y,z}$ Бонус: дополнительные технические леммы и доказательства

🗓 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A}$$

\rm 🕯 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_j, d_j \rangle_A} = -\frac{d_j^T A u_i}{d_j^T A d_j}$$

🕯 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_j \rangle_A} = -\frac{d_j^T A u_i}{d_j^T A d_i} = -\frac{d_j^T A r_i}{d_j^T A d_i}$$

1 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

1 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

🗓 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Рассмотрим процесс Грам-Шмидта в методе CG

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

Рассмотрим скалярное произведение $\langle r_i, r_{i+1} \rangle$ используя (13):

$$\langle r_i, r_{j+1} \rangle$$

🗓 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Рассмотрим процесс Грам-Шмидта в методе CG

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

Рассмотрим скалярное произведение $\langle r_i, r_{i+1} \rangle$ используя (13):

$$\langle r_i, r_{j+1} \rangle = \langle r_i, r_j - \alpha_j A d_j \rangle$$

🕯 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Рассмотрим процесс Грам-Шмидта в методе CG

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

Рассмотрим скалярное произведение $\langle r_i, r_{j+1} \rangle$ используя (13):

$$\langle r_i, r_{j+1} \rangle = \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle$$

🗓 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i+1}, r_{i+1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Рассмотрим процесс Грам-Шмидта в методе CG

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

Рассмотрим скалярное произведение $\langle r_i, r_{i+1} \rangle$ используя (13):

$$\begin{split} \langle r_i, r_{j+1} \rangle &= \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle \\ \alpha_j \langle r_i, A d_j \rangle \end{split}$$

🕯 Лемма 7. Коэффициенты для процесса Грама-Шмидта для СС

В процессе Грама-Шмидта для СС

$$\beta_{ji} = \frac{\langle r_i, r_i \rangle}{r_{i-1}, r_{i-1}}, \ i = j+1.$$

Все остальные коэффициенты равны нулю кроме i=j, но этот случай нам неинтересен.

Рассмотрим процесс Грам-Шмидта в методе CG

$$\beta_{ji} = -\frac{\langle d_j, u_i \rangle_A}{\langle d_i, d_i \rangle_A} = -\frac{d_j^T A u_i}{d_i^T A d_i} = -\frac{d_j^T A r_i}{d_i^T A d_i} = -\frac{r_i^T A d_j}{d_i^T A d_i}.$$

Рассмотрим скалярное произведение $\langle r_i, r_{j+1} \rangle$ используя (13):

$$\begin{split} \langle r_i, r_{j+1} \rangle &= \langle r_i, r_j - \alpha_j A d_j \rangle = \langle r_i, r_j \rangle - \alpha_j \langle r_i, A d_j \rangle \\ \alpha_j \langle r_i, A d_j \rangle &= \langle r_i, r_j \rangle - \langle r_i, r_{j+1} \rangle \end{split}$$

1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$ 3. Для любого другого случая: $\alpha_j\langle r_i,Ad_j\rangle=0$, потому что все невязки ортогональны друг другу.

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$ 3. Для любого другого случая: $\alpha_j\langle r_i,Ad_j\rangle=0$, потому что все невязки ортогональны друг другу.

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$ 3. Для любого другого случая: $\alpha_j\langle r_i,Ad_j\rangle=0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_j\langle r_i,Ad_j\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$ 3. Для любого другого случая: $\alpha_j\langle r_i,Ad_j\rangle=0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$
- 3. Для любого другого случая: $\check{\alpha}_i \langle r_i, A\check{d}_i \rangle = 0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{d_j^T A d_j}{d_j^T r_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$
- 3. Для любого другого случая: $\check{\alpha}_i \langle r_i, A\check{d}_i \rangle = 0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{d_j^T A d_j}{d_j^T r_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{\langle r_i, r_i \rangle}{\langle r_j, r_j \rangle}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$
- 3. Для любого другого случая: $\dot{\alpha}_i \langle r_i, A \dot{d}_i \rangle = 0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{d_j^T A d_j}{d_j^T r_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{\langle r_i, r_i \rangle}{\langle r_j, r_j \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_{i-1}\rangle-\langle r_i,r_i\rangle=-\langle r_i,r_i\rangle$
- 3. Для любого другого случая: $\dot{\alpha}_i \langle r_i, A \dot{d}_i \rangle = 0$, потому что все невязки ортогональны друг другу.

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{d_j^T A d_j}{d_j^T r_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{\langle r_i, r_i \rangle}{\langle r_j, r_j \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

- 1. Если i=j: $\alpha_i\langle r_i,Ad_i\rangle=\langle r_i,r_i\rangle-\langle r_i,r_{i+1}\rangle=\langle r_i,r_i\rangle$. Этот случай не интересен по построению процесса Грам-Шмидта.
- 2. Соседний случай i=j+1: $\alpha_i \langle r_i, Ad_i \rangle = \langle r_i, r_{i-1} \rangle \langle r_i, r_i \rangle = -\langle r_i, r_i \rangle$
- 3. Для любого другого случая: $\alpha_i \langle r_i, Ad_i \rangle = 0$, потому что все невязки ортогональны друг другу.

Наконец, мы имеем формулу для i = j + 1:

$$\beta_{ji} = -\frac{r_i^T A d_j}{d_j^T A d_j} = \frac{1}{\alpha_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{d_j^T A d_j}{d_j^T r_j} \frac{\langle r_i, r_i \rangle}{d_j^T A d_j} = \frac{\langle r_i, r_i \rangle}{\langle r_j, r_j \rangle} = \frac{\langle r_i, r_i \rangle}{\langle r_{i-1}, r_{i-1} \rangle}$$

И для направления $d_{k+1}=r_{k+1}+\beta_{k,k+1}d_k, \qquad \beta_{k,k+1}=\beta_k=rac{\langle r_{k+1},r_{k+1}
angle}{\langle r,\ r_{*}
angle}.$