Квантовая механика. Домашнее задание 1. (сдать 25.10.2021)

МИСиС 18.10.2021

Задание 1 (1)

Вектор состояния $|\psi\rangle$ частицы, способной передвигаться по всей действительной оси, задан в координатном представлении:

$$\psi(x) = \frac{A}{x^2 + a^2} \tag{1}$$

Найти A из условия нормировки.

Задание 2 (1)

Вектор состояния $|\varphi\rangle$ частицы, способной передвигаться по всей действительной оси, задан в координатном представлении:

$$\varphi(x) = \frac{B}{x + ib} \tag{2}$$

Найти B из условия нормировки.

Задание 3 (1)

Рассчитать скалярное произведение $\langle \varphi | \psi \rangle$ из заданий 1 и 2.

Задание 4 (1)

Доказать следующее равенство для δ -функции:

$$\delta(f(x)) = \sum_{x_i} \frac{1}{|f(x_i)|} \delta(x - x_i). \tag{3}$$

где x_i - нули первого порядка функции f(x).

Задание 5 (3)

Вектор состояния частицы $|\psi\rangle$, передвигающейся в интервале $x \in [0,a]$ задан в координатном представлении:

$$\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}.\tag{4}$$

Рассмотрим 2 базисных вектора, заданных в координатном представлении:

$$f_1(x) = \alpha_1 e^{i\pi x/a}, \ f_2(x) = \alpha_2 e^{-i\pi x/a}$$
 (5)

1. Проверить, что $\langle f_1 | f_2 \rangle = 0$.

- 2. Найти константы α_1 , α_2 из условий нормировки.
- 3. Разложить исходный вектор $|\psi\rangle$ по базису $|f_{1,2}\rangle$. То есть найти коэффициенты: $c_{1,2}$ в разложении:

$$|\psi\rangle = c_1|f_1\rangle + c_2|f_2\rangle \tag{6}$$