PQ-PoRR

: 라운드 로빈 기반 양자 내성 블록체인 합의 알고리즘

김원웅*, 강예준*, 김현지*, 오유진* 서화정 **
* 한성대학교 대학원 IT융합공학부

요약

- 양자 컴퓨터의 발전으로 인한 기존 블록체인의 양자 위험성 대두
- Round-Robin 기반 알고리즘을 통해 공정한 블록 생성 기회 제공
- CRYSTALS-Dilithium 적용을 통한 양자 보안성 제공

PQ-PoRR

- 1) 모든 노드로부터 무작위 값 생성
- 2) 이전 블록의 생성자에게 전송
- 3) 전송 받은 무작위 값을 연접하여 해시 함수의 입력값으로 사용
- 4) 각 노드들의 랜덤 값을 해시한 값과 비교
- 5) 가장 적은 차이를 갖는 노드가 다음 블록 생성자로 선정
- 6) 해당 라운드에 생성한 적이 있는 노드는 생성자 후보에서 제외
- 7) 모든 노드가 동일한 블록 생성 횟수를 가질 때까지 1) ~ 6) 반복

성능지표

- TPS(Transaction Per Second): 1초 동안 처리된 트랜잭션의 수
- Latency: 트랜잭션이 네트워크에 나타나고 검증되기까지의 시간

TPS

- 노드의 수가 증가함에 따라 성능 저하
 - → 검증 횟수가 기하급수적으로 증가하기 때문
- Dilithium을 적용하였을 때 ECDSA 보다 낮은 성능
 - → 서명 및 키 사이즈 때문
 - → 그러나, **양자** 내성을 보장
 - → Latency 향상을 통해 극복

N	ECDSA	Dilithium
2 ¹	2068.8	1366.1
2 ²	692.3	277.5
2 ³	293.9	163.1
24	136.7	55.8
2 ⁵	61.5	16.8
26	26.2	4.7
2 ⁷	9.3	1.1

Latency

- TPS와 마찬가지로 노드가 증가함에 따라 성능 저하
- Dilithium을 적용하였을 때 ECDSA 보다 높은 성능
 - → Dilithium의 실행속도가 ECDSA에 비해 빠르기 때문
 - → 실시간성이 중요한 IoT 분야에서 실용적

N	ECDSA	Dilithium
2 ¹	0.048	0.004
2 ²	0.144	0.021
2 ³	0.340	0.036
2 ⁴	0.731	0.107
2 ⁵	1.625	0.356
26	3.816	1.272
2 ⁷	10.649	5.399