UGA CSCI 4150/6150 Caleb Ashmore Adams

1 Generally Useful Maths

Trig Properties

$$\sin^2 x + \cos^2 x = 1 \qquad \sec x = \frac{1}{\cos x}$$

$$2\sin x = \sin x \cos x$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{1}{\cot x} \qquad \csc x = \frac{1}{\sin x}$$

$$\frac{d}{dx}\sin x = \cos x \qquad \frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \sec^2 x \qquad \frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2} \qquad \frac{d}{dx}\sec x = \sec x \tan x$$

Log & Exp Properties $\log x^n = n \log x \quad \log(\frac{1}{x}) = -\log x$

$$\log_{a} x = \frac{\log_{b} x}{\log_{a} x} \qquad \frac{d}{dx} e^{ax} = a e^{ax}$$

$$x^{0} = 1 \qquad x^{n} \cdot x^{m} = x^{n+m} \qquad x^{-n} = \frac{1}{x^{n}}$$

$$\log_{a} x^{n} = n \log_{a} x \qquad \frac{e^{-nx}}{e^{x}} = e^{-(n+1)x}$$

$$\log_{a}(\frac{x}{y}) = \log_{a} x - \log_{a} y$$

$$\log_{a}(xy) = \log_{a} x + \log_{a} y$$

$$\frac{d}{dx} \ln x = \frac{1}{x} \qquad \frac{d}{dx} a^{g(x)} = \ln(a) a^{g(x)} g'(x)$$

$$\frac{d}{dx} a^{g(x)} = \ln(a) a^{g(x)} g'(x) \qquad \frac{d}{dx} b^{x} = b^{x} \ln x$$

$$\frac{d}{dx} e^{g(x)} = g'(x) e^{g(x)} \qquad \frac{d}{dx} a^{x} = a^{x} \ln a$$

$$\frac{d}{dx} \log_{a}(g(x)) = \frac{g'(x)}{\ln(a)g(x)}$$

Other Derivative Rules

$$\frac{d}{dx}f(g(x)) = f'(g(x))g(x)$$

$$\frac{d}{dx}f(x)/g(x) = \frac{(f'(x)g(x) - g'(x)f(x))}{g(x)^2}$$

Useful Series

$$r^0 + r^1 + r^2 + r^3 = \frac{r^{n} - 1}{r - 1}$$

for an alternating series the following will work to start: $\sum_{n=0}^{\infty} (-1)^n \text{ or } \sum_{n=0}^{\infty} (-1)^{n+1}$

In Class Terminology

the relative error formula: $\frac{|x-\hat{x}|}{x}$ more generally, with \hat{x}, \hat{y} being rounded terms we get relative error as:

$$\frac{(x-y)-(\hat{x}-\hat{y})}{(x-y)} = relative \ error$$

these were represed strangely in class:

$$x' = f(t,x)$$
 $x(2) = 1 \rightarrow t = 2, x = 1$
If $x'' = xx'$ then $x''' = xx'' + x'x'$
When adding small number, it was m

When adding small number, it was mentioned in class that a >= or <= is preferable to a == when checking for values in a

2 Base Conversion

Decimal to Binary

For this simply find the place of the largest binary number that (of the form 2^n) that is within the number. Successivley subtract these numbers while keeping

track of their place to generate the binary that x > y > 0, the theorem states that number.

Binary to Decimal

For this notice that each place in the decimal number has a corresponding power of 2. If the decimal number has a floating point then the power is negative counting from zero. This generates a sum of $2^n + \dots + 2^2 + 2^1 + 2^{-1} + 2^{-2} + \dots + 2^{-m}$

Where n is the most significant digit and m is the least. The 2^{-1} term is the beginning of the floating point numbers. **Binary to Octal**

Simply follow the table: 000
$$\rightarrow$$
 0 001 \rightarrow 1 002 \rightarrow 2 003 \rightarrow 3 004 \rightarrow 4 005 \rightarrow 5 006 \rightarrow 6 007 \rightarrow 7

Binary to Hex

This identical to the Octal method, the Hex symbols range from 0 to F and binary from 0000 to 1111. Simply count up un binary and there is a simple conversi-

One & Two's Complement

The one's complement of a bitstring is, simply, the inverse of that bitstring. i.e. all 1s become 0s and vice versa. The two's complement of a bitstring is the one's complement +1 at the end, so that (sometimes) there is a cascade of digit flips

3 IEEE Floating Points

Definitions

s =signed bit, c =based exponent, F =fraction. The general form for this is $(-1)^{s} \cdot 2^{c-127} \cdot 1.F$, for both |s| = 1

For single precision: |c| = 8, |F| = 23For double precision: |c| = 11, |F| = 52

Machine Numbers are numbers which can be represted perfectly (no error) in an IEEE floating point format.

 $\epsilon_{single} = 2^{-23}$ and $\epsilon_{double} = 2^{-52}$, floating points have about 6 digits of accuracy because $2^{-23} \approx 1.19 \cdot 10^{-7}$ and double has about 15 digits of accuracy becase $2^{-52} \approx 2.22 \cdot 10^{-16}$

IEEE Format

recall the above formula: $(-1)^{s} \cdot 2^{c-127} \cdot 1.F$

A number will have the form $D_n \dots D_1 D_0 . F_0 F_1 \dots F_m$, to start we need to shift the values left (normalize) so that the number is now of the form: $D_n.F_0F_1...F_{m+(n-1)} \cdot 10^{n-1}$. note that the *c* term is, by definition, solved from $2^{c-127} = 2^{n-1}$

4 Loss of Significance

Loss of Precision Theorem

The general form of the theorem is as

x and y are floating point numbers such

given: $2^{-p} \le 1 - \frac{y}{x} \le 2^{-q}$

there are at most p and at least q digits lost in the subtraction x - y.

tion as: E(x) = f(x) - g(x). If we notice this approaches 0 we have a concern of loss of precision at that point. to find that point we typically view the max loss acceptable as 1, so we set the eugation to $\frac{g(x)}{f(x)} = \frac{1}{2}$. We find the x = z values that cause the $\frac{1}{2}$ flip and use a Taylor method there and use the normal formula elsewhere. We're just avoiding the loss of precision as $x \rightarrow z$.

practically speaking, we view the equa-

numerator to avoid a loss of significance. The general form for radicals in a demonitor is:

$$\sqrt[k]{x^n+r}+c\cdot \sqrt[k]{\frac{\sqrt[k]{x^n+r}-c}{\sqrt[k]{x^n+r}-c}}=\frac{x^n+r-2c}{\sqrt[k]{x^n+r}-c}$$

Small Numbers

If a set of small numbers $\{s_0, s_1, ..., s_i\}$ is each on the order of 10^{n+1} decimal places but a large large number *l* is on the order of 10ⁿ decimal places, it is better to add $\sum_{k=0}^{i} s_n$ small numbers there are before adding an *l* large number.

5 Taylor, Maclaurin, & Euler

Taylor Series

The Taylor series is a sum of derivatives of increasing order that equate to a function. The formula for the Taylor series of f(x) evaluated at a is:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3$$

Alternating Series Theorem

If $a_x \ge a_2 \ge ... \ge a_n \ge 0$ for all n and $\lim_{n\to\infty} a_n = 0$ then the alternating series $a_1 - a_2 + a_3 - a_4 + \dots$ so,

$$S = \lim_{n \to \infty} S_n = \sum_{k=1}^{\infty} (-1)^{k-1} a_k = \lim_{n \to \infty} \sum_{k=1}^{\infty} (-1)^{k-1} a_k$$

Here S is the sum and S_n is a partial sum. we note that, for all n, $|S - S_n| \le a_{n+1}$

Taylor's Method for ODEs

This method takes advantage of the previously mentioned series. here this is some step size h that we take from some f(x) value. This is the Initial Value Problem (IVP).

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2!}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \dots$$

Maclaurin Series

The Maclaurin series is just the Taylor series at the special case where x = 0. This gives the following:

$$f(x) = f(0) + f'(0) + \frac{x^2}{2!}f'''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''''(0) + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Euler's Method for ODEs

This method is just a Taylor series of order 1 with the same step term h, though many steps can be taken: f(x+h) = f(x) + f'(x)h

Error Terms

We note that Taylor's theorem in terms

Rationalizing Numerators
$$f(x+h) = \sum_{k=0}^{n} \frac{f^k(x)}{k!} h^k + E_{n+1}$$
 Thus, error terms are of the form:

$$E_{n+1} = \frac{f^{n+1}(\xi)}{(n+1)!} h^{n+1}$$

It pays off to look at the term more specifically for the problem. A lot of times the error term takes the form $\frac{(n+1)^2}{(n+1)!}$ or

$$\frac{(n+1)^2}{(n+1)}.$$

It is important to note that we only care about the $0.5 \cdot 10^n$ if our desired accuracy is to the *n*th decimal. Thus we set $E_{n+1} < 0.5 \cdot 10^n$ the n+1 portion of this is very important! To reiterate:

$$E_{n+1} = \frac{f^{n+1}(\xi)}{(n+1)!} h^{n+1} \text{ or } E_{n+1} = \frac{x^{n+1}}{(n+1)!}$$

First Derivative Formulas

For Taylor's Theorem, the forward difference formula is: $f'(x) = \frac{f(x+h)-f(x)}{h} + \text{error of } O(h)$ For Taylor's Theorem, the backwards

$$f'(x) = \frac{f(x+h)-f(x)}{h} + \text{error of } O(h)$$

difference formula is:

$$f'(x) = \frac{f(x) - f(x-h)}{h} + \text{error of } O(h)$$

 $f'(x) = \frac{f(x) - f(x - h)}{h} + \text{error of } O(h)$ For Taylor's Theorem, the central difference formula is:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \text{error of } O(h^2)$$

6 Runge-Kutta Methods

This is the 4th order (RK4) Runge-Kutta method for the Initial Value Problem (IVP):

$$x(t+h) = x(t)\frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

where the following are values of K_n :
 $K_1 = hf(t, x)$

$$K_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_1)$$

$$K_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_2)$$

 $K_4 = hf(t + h, x + K_3)$ first, the K_n values are calculated in succession. They the K_n values are filled into the first formula above.