<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-AIDS</u> / <u>Greedy Algorithms</u> / <u>1-G-Coin Problem</u>

Started on	Thursday, 12 September 2024, 8:12 AM
State	Finished
Completed on	Thursday, 12 September 2024, 8:17 AM
Time taken	5 mins 20 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question **1**

Mark 1.00 out of 1.00

Write a program to take value V and we want to make change for V Rs, and we have infinite supply of each of the denominations in Indian currency, i.e., we have infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500, 1000} valued coins/notes, what is the minimum number of coins and/or notes needed to make the change.

Input Format:

Take an integer from stdin.

Output Format:

print the integer which is change of the number.

Example Input:

64

Output:

4

Explanaton:

We need a 50 Rs note and a 10 Rs note and two 2 rupee coins.

Answer: (penalty regime: 0 %)

```
#include <stdio.h>
int main() {
    int d[] = {1000, 500, 100, 50, 20, 10, 5, 2, 1};
    int s = sizeof(d) / sizeof(d[0]);
    int V;
    scanf("%d", &V);
    int c = 0;
    for (int i = 0; i <s; i++) {
        if (V >= d[i]) {
            c += V / d[i];
            V = V % d[i];
        }
    printf("%d",c);
    return 0;
}
```

	Input	Expected	Got	
~	49	5	5	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ 6-Implementation of Quick Sort

Jump to...

2-G-Cookies Problem -

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-AIDS</u> / <u>Greedy Algorithms</u> / <u>2-G-Cookies Problem</u>

Started on	Thursday, 19 September 2024, 8:10 AM
State	Finished
Completed on	Thursday, 19 September 2024, 8:20 AM
Time taken	10 mins 40 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie.

Each child i has a greed factor g[i], which is the minimum size of a cookie that the child will be content with; and each cookie j has a size s[j]. If s[j] >= g[i], we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.

Example 1:

Input:

3

123

2

11

Output:

1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3.

And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.

You need to output 1.

Constraints:

```
1 <= g.length <= 3 * 10^4
0 <= s.length <= 3 * 10^4
1 <= g[i], s[i] <= 2^31 - 1
```

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	2	2	2	~
	1 2			
	3			
	1 2 3			

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ 1-G-Coin Problem

Jump to...

3-G-Burger Problem ►

CS23331-Design and Analysis of Algorithms-2023 Batch-AIDS

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-AIDS</u> / <u>Greedy Algorithms</u> / <u>3-G-Burger Problem</u>

3-G-Burger Problem

Mark as done

Opened: Monday, 9 September 2024, 11:40 AM **Closed:** Monday, 28 October 2024, 9:07 AM

Attempts allowed: 10

Time limit: 1 hour

Grading method: Highest grade

Summary of your previous attempts

Attempt	State	Marks / 1.00	Grade / 10.00	Review
1	Finished Submitted Thursday, 19 September 2024, 8:40 AM	0.00	0.00	<u>Review</u>
2	Never submitted	Not yet graded	Not yet graded	Review

Your final grade for this quiz is 0.00/10.00.

Back to the course

2-G-Cookies Problem

Jump to...

4-G-Array Sum max problem ►

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-AIDS</u> / <u>Greedy Algorithms</u> / <u>4-G-Array Sum max problem</u>

Started on	Thursday, 19 September 2024, 8:18 AM
State	Finished
Completed on	Thursday, 19 September 2024, 8:51 AM
Time taken	33 mins 10 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Given an array of N integer, we have to maximize the sum of arr[i] * i, where i is the index of the element (i = 0, 1, 2, ..., N). Write an algorithm based on Greedy technique with a Complexity O(nlogn).

Input Format:

First line specifies the number of elements-n

The next n lines contain the array elements.

Output Format:

Maximum Array Sum to be printed.

Sample Input:

5

25340

Sample output:

40

Answer: (penalty regime: 0 %)

```
#include <stdio.h>
#include <stdlib.h>
int compare(const void *a, const void *b) {
    return (*(int*)a - *(int*)b);
}
int main() {
    int n;
    scanf("%d", &n);
    int *arr = (int*)malloc(n * sizeof(int));
    for (int i = 0; i < n; i++) {
        scanf("%d", &arr[i]);
    }
    qsort(arr, n, sizeof(int), compare);
    int max_sum = 0;
    for (int i = 0; i < n; i++) {
        max_sum += arr[i] * i;
    }
    printf("%d\n", max_sum);</pre>
```

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			

	Input	Expected	Got	
~	2	45	45	~
	45			
	3			

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

◄ 3-G-Burger Problem

Jump to...

5-G-Product of Array elements-Minimum ►

<u>Dashboard</u> / <u>My courses</u> / <u>CS23331-DAA-2023-AIDS</u> / <u>Greedy Algorithms</u> / <u>5-G-Product of Array elements-Minimum</u>

Started on	Thursday, 19 September 2024, 8:18 AM
State	Finished
Completed on	Thursday, 19 September 2024, 9:00 AM
Time taken	41 mins 48 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Given two arrays array_One[] and array_Two[] of same size N. We need to first rearrange the arrays such that the sum of the product of pairs(1 element from each) is minimum. That is SUM (A[i] * B[i]) for all i is minimum.

For example:

Input	Result
3	28
1	
2	
3	
4	
5	
6	

Answer: (penalty regime: 0 %)

```
#include <stdio.h>
#include <stdib.h>

int compare_asc(const void *a, const void *b) {
    return (*(int*)a - *(int*)b);
}

int compare_desc(const void *a, const void *b) {
    return (*(int*)b - *(int*)a);
}

int main() {
    int n;
    scanf("%d", &n);
    int *array_One = malloc(n * sizeof(int));
    int *array_Two = malloc(n * sizeof(int));

    for (int i = 0; i < n; i++) {</pre>
```

/
~

Input	Expected	Got	
5	590	590	~
20			
10			
30			
10			
40			
8			
9			
4			
3			
10			
	5 20 10 30 10 40 8 9 4	5 590 20 10 30 10 40 8 9 4 3	20 10 30 10 40 8 9 4 3

Passed all tests! ✔

Correct

Marks for this submission: 1.00/1.00.

◄ 4-G-Array Sum max problem

Jump to...

1-DP-Playing with Numbers ►