Avogadro's number	$N_A = 6.02 \times 10^{23}$
Boltzmann's constant	molecules/mole
	$k = 1.38 \times 10^{-23} \text{ J/K}$
Electronic charge (magnitude)	$= 8.62 \times 10^{-5} \text{ eV/K}$
Electronic rest mass	$q = 1.60 \times 10^{-19} \text{ C}$
	$m_0 = 9.11 \times 10^{-31} \text{ kg}$
Permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
Planck's constant	$= 8.85 \times 10^{-12} \text{ F/m}$
	$h = 6.63 \times 10^{-34} \text{ J-sec}$
Room temperature value of	= 4.14 × 10 -15 eV-sec
kT	kT = 0.0259 eV
Speed of light	$c = 2.998 \times 10^{10}$ cm/sec
speed or right	Prefixes:
1 Å (angstrom) = 10 -8 cm	milli-, m- = 10 -3
1 μm (micron) = 10 - 4 cm	
1 mil = 10 ⁻³ in.	nano-, n- = 10 -9
2.54 cm = 1 in.	pico-, p- = 10 -12
1 eV = 1.6 × 10 -19 J	kilo-, $k = 10^3$
	mega-, M- = 10 ⁶
	giga G- = 109
A wavelength λ of I μm corre	

$f(E) = \frac{1}{1 + e^{(E - E_p)/kT}}$	$p_0 = N_{\varphi e}^{-(E_F - E_{\varphi})/kT}$
$n_0 = N_c e^{-(E_c - E_F)/kT}$	$N_v = 2 \left(\frac{2\pi m_\rho^* kT}{h^2} \right)^{\frac{2}{2}}$
$N_e = 2 \left(\frac{2\pi m_e^* kT}{h^2} \right)^{\frac{3}{2}}$	$n_0 p_0 = n_i^2$
$n_{\xi} = \sqrt{N_c N_v} \ e^{-E_g/2kT}$	$p_0 + N_a^+ = n_0 + N_a^-$
$n_0 = n_i e^{(E_F - E_i)/kT}$ $p_0 = n_i e^{(E_i - E_F)/kT}$	$\sigma(t) = q[n(t)\mu_n + p(t)\mu_p]$
au > =	Γ AP 7 34D

Si (300K): $E_z=1.1eV$, $n_i=1.5\times10^{10}cm^{-3}$, $E_i=Eq/2$

	μ_n	μ_p	
	(cm ² /V-sec)	(cm ² /V-sec)	
Ge	3900	1900	
Si	1350	480	
GaAs	8500	400	

$$\varepsilon_r$$
 for SiO₂ = 3.9

	n _i (in cm ⁻³)	Eg (in eV)	$\epsilon_{_T}$
Ge	2.5 × 10 ¹³	0.67	16
Si	1.5×10^{10}	1.11	11.8
GaAs	9×106	1.43	13.2
InP	The state of	1.35	12.4

$$\frac{\partial \delta n}{\partial t} = D_n \frac{\partial^2 \delta n}{\partial x^2} - \frac{\delta n}{\tau_n} \qquad L_p = \sqrt{D_p \tau_p}$$

$$\frac{\partial \delta p}{\partial t} = D_p \frac{\partial^2 \delta p}{\partial x^2} - \frac{\delta p}{\tau_p} \qquad L_n = \sqrt{D_n \tau_n}$$

$$\frac{\partial \delta n(t)}{\partial t} = -\frac{\delta n}{\tau_n} + g_{0p}$$

$$\begin{split} g(x) &= -\frac{d\mathcal{V}(x)}{dx} = -\frac{d}{dx} \left[\frac{E_i}{(-q)} \right] = \frac{1}{q} \frac{dE_i}{dx} \\ I(x) &= I_0 e^{-\alpha x} & \delta n(t) = \Delta n \ e^{-\alpha_r p_0 t} = \Delta n \ e^{-\theta / \tau_n} \\ \delta n &= \delta \ p = g_{op} \tau_n & n = n_i e^{(F_n - E_i) / kT} \\ p &= n_i e^{(E_i - F_p) / kT} \\ p_0 &= \frac{1}{q R_H} = \frac{J_x B_z}{q E_v} = \frac{(I_x / w t) B_z}{q t / A_B} = \frac{I_x B_z}{q t / A_B} \end{split}$$

$$\delta \ p(x,\,t) = \left[\frac{\Delta P}{2\sqrt{\pi D_{*}t}}\right] e^{-x^{2}/4D_{p}t} e^{-\frac{\pi}{2}} = \frac{J_{x}}{e^{2}} \quad \epsilon_{y} = \frac{J_{x}}{qp_{0}} \quad B_{z} = R_{H}J_{x}B_{z}, \quad \mu_{p} = \frac{\sigma}{qp_{0}} = \frac{1/\sigma}{q(1/qR_{H})} = \frac{R_{H}}{\rho}$$

$\mu_n = -\frac{\langle v_x \rangle}{\varepsilon_x} = \frac{q\bar{t}}{m_n^*}$ $\delta p(x, t) = \frac{\Delta P}{2\sqrt{\pi D_p t}} e^{-\frac{t}{2\sqrt{\pi D_p t}}}$

$$\begin{split} \frac{\partial \delta p}{\partial t} &= D_p \, \frac{\partial^2 \partial p}{\partial x^2} - \frac{\delta p}{\tau_p} & L_n \equiv \sqrt{D_n \tau_n} \\ \delta p(x) &= \Delta p e^{-x/L_p} \quad \frac{D}{\pi} = \frac{kT}{q} & \varepsilon_y = \frac{J_x}{q p_0} \quad B_z = R_H J_x B_z. \end{split}$$

$$J_n(x) &= q \mu_n n(x) \, \varepsilon(x) + q D_n \, \frac{d n(x)}{dx} \\ drift \qquad diffusion \qquad D_p = \frac{(\Delta x)^2}{16t_A}. \end{split}$$

drift diffusion
$$D_p = dp(x)$$

$$J_p(x) = q\mu_p \ p(x) \ \varepsilon(x) - qD_p \frac{dp(x)}{dx}$$

PERIODIC TABLE OF THE ELEMENTS

$$g(T) = \alpha_r n_i^2 = \alpha_r n_o p_o \qquad g(T) + g_{op} = \alpha_r n_o p_o + \alpha_r [(n_o + p_o) \delta n + \delta n^2] \qquad \tau = \frac{1}{\alpha_r (n_o + p_o)}$$