EFFECT OF THE REDUCED VELOCITY

$$U_R = \frac{T_{\text{SOLID}}}{T_{\text{FLUID}}} = \frac{U_0}{c}$$

Solid

 $T_{\rm SOLID}$

time

 $T_{\rm FLUID}$ Fluid

time

PRENDRE LES COURBES DANS LA DIAPO D'APRES Et le mettre à l'échelle

BOUNDARY CONDITIONS ON THE FLUID DOMAIN

BOUNDARY CONDITIONS ON THE FLUID DOMAIN

$$\underline{U} = \frac{\partial \underline{\xi}}{\partial t} = O\left(\frac{\xi_0}{T_{solid}}\right)$$

BOUNDARY CONDITIONS ON THE FLUID DOMAIN

$$\frac{U_0 T_{solid}}{L} << \frac{\xi_0}{L}$$

$$U_R << D$$

APPARENTLY STILL FLUID

GENERAL CASE

COUPLING WITH A STILL FLUID

