Indian Institute of Technology, Bhilai Department of Mathematics

December 30, 2020

Tutorial -1, Instructor: Dr. Avijit Pal, Linear Algebra (IC152) Semester: Winter

1. Let $V = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b > 0 \right\}$ is a subspace over the field \mathbb{R} , where the vector addition and the scalar multiplication is defined by $\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac \\ bd \end{bmatrix}$ and $t \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a^t \\ b^t \end{bmatrix}$, for $t \in \mathbb{R}$. Now define a map $T: V \to \mathbb{R}^2$ such that

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \log_2 y \\ \log_2 x \end{pmatrix}.$$

Then \longrightarrow

- (a) Find the basis β for V.
- (b) Prove that T is linear.
- (c) Calculate the kernel of T.
- (d) Find the matrix of T related to the basis β and the standard basis for \mathbb{R}^2 .
- 2. Give an example of a linear map, which has no eigen values.
- 3. Let $D: P_4 \to P_4$ be a linear transformation such that $D(p(x)) = \frac{d}{dx}p(x)$, where $p(x) \in P_4$ (the set of polynomial with degree less than or equal to 4 over \mathbb{R}). Then relative to the basis $\{1, x, x^2, x^3\}$ of P_4 , determine the matrix of D. Hence find the eigen value and eigen vector of D.
- 4. Let T be the linear operator on $M_{n\times n}(\mathbb{R})$, defined by $T(A)=A^t$. Show that ± 1 are the eigenvalues of T.
- 5. (a) Let λ be an eigen value of an $n \times n$ matrix A, prove that λ^m is an eigen value of the matrix A^m , where m is a positive integer.
 - (b) $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of a non-singular matrix A of order n. Then find the eigen values of the matrix
 - i. A^{-1} ,
 - ii. adiA.
- 6. If every non-zero vector \mathbb{R}^n be an eigen vector of a real $n \times n$ matrix A corresponding to a real eigen value λ , prove that A is the scalar matrix λI_n .