PCT

WORLD INTELLECTUAL PR Internations

WO 9607615A1

INTERNATIONAL APPLICATION PUBLISHED UND

(51) International Patent Classification ⁶: C02F 1/42, B01J 47/10

A1

(11) International Publication Number:

WO 96/07615

(43) International Publication Date:

14 March 1996 (14.03.96)

(21) International Application Number:

PCT/AU95/00583

(22) International Filing Date:

8 September 1995 (08.09.95)

(30) Priority Data:

PM 8071 PM 9599 9 September 1994 (09.09.94) AU 22 November 1994 (22.11.94) AU

(71) Applicants (for all designated States except US): SOUTH AUSTRALIAN WATER CORPORATION [AU/AU]; Level 14, 77 Grenfell Street, Adelaide, S.A. 5000 (AU). ICI AUSTRALIA OPERATIONS PROPRIETARY LIMITED [AU/AU]; 1 Nicholson Street, Melbourne, VIC 3000 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NGUYEN, Hung, Van [AU/AU]; 160 Finch Street, Glen Iris, VIC 3146 (AU). BURSILL, Donald, Bruce [AU/AU]; 46 Perserverance Road, Tea Tree Gully, S.A. 5091 (AU). MORRAN, James, Young [AU/AU]; 14 Wandana Terrace, Taperoo, S.A. 5017 (AU). DRIKAS, Mary [AU/AU]; 8 York Drive, Pasadena, S.A. 5042 (AU). PEARCE, Veronica, Laurel [AU/AU]; Unit 8, 55 Alpha Street, Taringa, QLD 4068 (AU).

(74) Agents: ANGLISS, Michael et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU). (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: WATER TREATMENT PROCESS

(57) Abstract

The present invention relates to water treatment, in particular to a process for the removal of dissolved organic carbon from water. The process includes the following steps, adding an ion-exchange resin to water containing a contaminant such as dissolved organic carbon, dispersing the resin in the contaminated water to enable adsorption of the dissolved organic carbon onto the resin, and separating the resin loaded with contaminant from the water. In a preferred embodiment the process employs a magnetic ion-exchange resin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
	Burkina Faso	HU	Hungary	NO	Norway
BF		IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin		· · · · · ·	PT	Portugal
BR	Brazil	JP	Japan	RO	Romania
BY	Belarus	KE	Kenya	RU	Russian Federation
CA	Canada	KG	Kyrgystan		Sudan
CF	Central African Republic	KP	Democratic People's Republic	SD	
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DE	Denmark	MD	Republic of Moldova	UA	Ukraine
	 	MG	Madagascar	US	United States of America
ES	Spain Finler d	ML	Mali	UZ	Uzbekistan
FI	Finland	MN	Mongolia	VN	Viet Nam
FR	France	MIN	Montona	•••	
GA	Gabon				

WATER TREATMENT PROCESS

The present invention relates to water treatment, in particular to a process for the removal of dissolved organic carbon from water.

5

The processes used in water treatment are largely a function of raw water quality. Potable water supplies often contain unacceptably high levels of organic compounds dissolved, dispersed or suspended in raw water. These organic compounds are referred to herein as dissolved organic carbon (DOC). Other terms used to describe DOC include total organic carbon, organic colour, colour and natural organic matter. DOC often includes compounds such as humic and fulvic acids. Humic and fulvic acids are not discrete organic compounds but mixtures of organic compounds formed by the degradation of plant residues.

The removal of DOC from water is necessary in order to provide high quality water suitable for distribution and consumption. A majority of the compounds and materials which constitute DOC are soluble and not readily separable from the water. The DOC present in raw water renders conventional treatment difficult and expensive.

20

25

30

The provision of a safe potable water supply often requires treatment of water to make it aesthetically acceptable. The removal of suspended matter and colour is an important aspect of this treatment. Two approaches are commonly used for the removal of suspended matter and colour. One involves coagulation and the other membrane filtration.

In the process involving coagulation, a coagulant is applied to destabilise suspended matter and colour so that they coalesce and form a floc, which can then be physically removed by methods such as floating, settling, filtration or a combination thereof. Coagulants such as alum (aluminium sulphate), various iron salts and synthetic polymers are commonly used in processes for water treatment. However, many raw water sources have high levels of DOC present, which is the main cause

of the colour, and the DOC reacts with the coagulant requiring a higher coagulant dose than would be required for removal of suspended matter alone. The bulk of the floc formed may then be removed by sedimentation or flotation and the water containing the remainder of the floc passed through a filter for final clarification.

However, even after such treatment the treated water may contain as much as 30-70% of the initial DOC.

In the membrane filtration process the water is filtered through a membrane system. However, where the water contains high levels of DOC the membranes tend to be fouled by the DOC, thereby reducing the flux across the membrane, reducing the life of the membranes and increasing operating costs. Membrane systems designed to handle water containing high levels of DOC have much higher capital and operating costs than conventional membrane systems used for the production of potable water.

15

20

10

Ion-exchange resins have been used in water treatment processes for the removal of DOC by passing water treated to remove turbidity and other suspended particles through ion-exchange resin packed in columns or the like. Passing untreated water through a packed resin can cause the packed resin to become clogged and ineffective, problems similar to those faced in membrane filtration.

The present invention provides a process for the reduction or elimination of DOC from water using ion-exchange resins which can be conveniently separated from the water prior to subsequent treatment and its distribution and consumption.

25 Accordingly, we provide a process for the removal of dissolved organic carbon from water, which process includes the following steps:

- a. adding an ion-exchange resin to water containing dissolved organic carbon;
- 30 b. dispersing the resin in the water to enable adsorption of the dissolved organic carbon onto the resin; and

WO 96/07615

c. separating the resin loaded with the dissolved organic carbon from the water.

The ion-exchange resin is dispersed in the water so as to provide the maximum surface area of resin to adsorb the DOC. Dispersal of the ion-exchange resin may be achieved by any convenient means. Typically the resin may be dispersed by mechanical agitation such as stirrers and the like, mixing pumps immersed in the water or air agitation where a gas is bubbled through the water. Sufficient shear needs to be imparted on the water to achieve dispersal of the resin.

In some small scale operations for the ion exchange resin may be dispersed in a semi-fluidized bed provided pumping costs are not economically unfeasable. The use of a semi-fluidized bed is not only a convenient means for dispersal of the ion exchange resin but provides for the ready separation of the loaded resin from the water once DOC is adsorbed onto the ion exchange resin.

15

20

25

Separating the resin loaded with DOC from the water may be achieved by settling or screening or a combination thereof. Screening of the loaded resin from the water may be achieved by any convenient means. The screens may be selected with consideration for the size of resin particles to be removed from the water. The configuration of the screens may be such that clogging of the screens is reduced.

In a preferred embodiment, the ion-exchange resin may be more dense than the water and tend to settle to the bottom of the tank. This settling facilitates the convenient separation of the loaded resin from the water. Settling may be facilitated by the use of tube settlers and the like. The resin may then be collected by various means including vacuum collection, filtration and the like. It is preferable that the separation and collection means do not cause mechanical wear which may lead to attrition of the resin.

When a continuous fully suspended system is used, the resin may conveniently be separated from treated water by gravity settling. Based on resin characteristics, very effective (>99% solids removal) gravitational settling is achieved in high-rate

settling modules with retention times less than 20 minutes.

In a preferred process for separating the ion-exchange resin from the water the bulk of resin particles settle out in the first quarter of the separating basin length which is devoid of settler modules ("free-flowing" settling). Further removal of resin particles ("enhanced" settling) from treated water is performed in the settler compartment filled with modules which may be either, tilted plates or tubular modules. The bottom of the settler is designed for collection of resin particles in cylindrical, conical or pyramidal hoppers from which the resin particles are pumped back to the front of the process. In this preferred process some mixing of the settled resin in the hoppers may be required to keep it in a fluid condition and to ensure uniform resin concentration of resin in the recycle system.

The ion-exchange resins suitable for use in the process of the present invention have cationic functional groups. The cationic functional groups provide suitable sites for the adsorption of the DOC.

It is preferred that the ion-exchange resins have a diameter less than 100µM, preferably in the range of from 25µM to 75µM. This size range provides an ion-exchange resin which can be readily dispersed in the water and one which is suitable for subsequent separation from the water. The size of the resins affects the kinetics of adsorption of DOC and the effectiveness of separation. The optimal size range for a particular application may be readily determined by simple experimentation.

25

30

10

It is preferred that the ion-exchange resin is macroporous. This provides the resins with a substantially large surface area onto which the DOC can be adsorbed.

Water treatment processes involve the movement of water by stirring, pumping and other operations which can deleteriously effect the ion-exchange resin. It is preferred that the resin is manufactured from tough polymers with polystyrene crosslinkage. The resin may be selected to give the optimum balance between

20

toughness and capacity.

In the process of the present invention the amount of ion-exchange resin necessary to remove DOC from water is dependent on a number of factors including the level of DOC initially present in the water to be treated, the nature of the DOC, the desired level of DOC in the treated water, salinity, temperature, pH, the number of cycles of the resin prior to regeneration and the rate at which it is desired to treat the water to remove DOC. Typically, the amount of ion-exchange resin used to remove DOC from water will be in the range from 0.5 to 5ml of wet resin per litre of raw water, preferably 0.5 to 3ml. Higher resin concentrations may also be useful in removing DOC. Such higher concentrations allow shorter contact times and more effective DOC removal.

High doses of resin can be used to remove up to 90% of the dissolved organic carbon but the relationship is non linear and it may not be economical under normal conditions to add resin at these high doses. Sufficient resin may be added to remove a percentage of the dissolved organic carbon such that the cost of any subsequent treatment used to meet water quality objectives is minimised. For example, we have found that removal of dissolved organic carbon reduces the amount of coagulant required to achieve acceptable product water quality. It may also significantly reduce the capital and operating costs of membrane filtration processes.

Preferred ion-exchange resins are recyclable and regenerable. Recyclable resins can
be used multiple times without regeneration and continue to be effective in
adsorbing DOC. Regenerable resins are capable of treatment to remove adsorbed
DOC and such regenerated resins can then be re-introduced into the treatment
process.

We have found that, depending on the amount of resin being employed in the treatment process, the resin can be effectively recycled at least 10 times prior to regeneration and in fact at least 20 times depending on water quality. Thus, in a

continuous process only 10% or less of the loaded resin, even merely 5%, has to be taken for regeneration, the remainder can be recycled back into the treatment process.

- We have found that the used (or spent) resin may be readily treated to remove the adsorbed DOC. Accordingly, we provide a process which incorporates the following additional steps for regenerating spent ion-exchange resin:
 - a. adding the spent resin to brine;

10

- b. dispersing the spent resin in the brine for the desorption of the DOC from the resin; and
- c. separating the regenerated resin from the brine.

15

It will be understood that the term brine means any high concentration salt solution capable of causing the desorption of DOC from the resin. High concentration sodium chloride solutions are particularly useful as brine in the present process.

- The spent resin may be dispersed in the brine by any convenient means. We have found agitation by mechanical stirring or gas bubble agitation to be particularly convenient.
- Separation can be achieved by allowing the regenerated resin to settle or by simply filtering through a mesh of appropriate porosity. We have found that the brine can be recycled and used to regenerate resin for a number of times before it becomes unsuitable for use in the regeneration process. The spent brine can itself be regenerated by passage through a reverse osmosis membrane to separate the DOC from the brine. The DOC thus produced is a useful source of humic and fulvic acids.

An alternative process for regenerating spent or loaded ion exchange resin which

requires much less brine for the regeneration process may be particularly useful in a number of applications. We have found that the spent ion exchange resin may be packed into a column and the passage of a relatively small quantity of brine through it can effectively regenerate the ion exchange resin. Accordingly, we provide a process for regenerating spent ion exchange resin including the following steps:

- a. packing the spent resin into a column; and
- 10 b. passing brine through the packed column for the desorption of the DOC from the resin.

The regeneration of the spent ion exchange resin according to this process employing a packed column of spent resin enables particularly high rates of desorption of the DOC from the resin. We have found that by using this process the recyclability of the resin prior to subsequent regenerations is substantially improved.

Further, the humic and fulvic acids are present in significantly higher concentrations 20 in the elutants from the column and thus are a more convenient and economic source of humic and fulvic acids.

The process of the present invention for removal of DOC from water is particularly useful in water treatment applications for the production of potable water. However, the process could also successfully be applied to other aqueous streams where DOC removal is required, eg: industrial use applications, hospital facilities, mining applications or food processing. The process may also be applied to the treatment of waste water. A variety of organic materials, such as toxins or other contaminants, may be removed from waste water.

30

25

15

We have found that a class of ion-exchange resins is particularly suited to use in the process of the present invention. Ion-exchange resins incorporating magnetic

particles, known as magnetic ion-exchange resins agglomerate, sometimes referred to as "magnetic flocculation", due to the magnetic attractive forces between them. This property renders them particularly suited for this application as the agglomerated particles are more readily removable from the water. Accordingly, we provide a process for the removal of dissolved organic carbon from water, which process includes the following steps:

- a. adding a magnetic ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing the resin in the water to enable adsorption of the dissolved organic carbon onto the magnetic ion-exchange resin;
- c. agglomerating the magnetic ion-exchange resin loaded with the dissolved organic carbon; and
 - d. separating the agglomerated magnetic ion-exchange resin loaded with the dissolved organic carbon from the water.
- The magnetic ion-exchange resin may be dispersed in the water by any of the means described above. Sufficient shear needs to be imparted on the water to overcome the magnetic forces which cause the magnetic ion-exchange resin to agglomerate.
- Agglomeration of magnetic ion-exchange resin loaded with DOC is achieved by removing the shear which causes the resin to disperse. In an unstirred tank, the magnetic particles in the resin cause the resin to agglomerate. The agglomeration may be facilitated by the use of tube settlers and other means known to those skilled in the art.
- 30 Typically the wet magnetic ion-exchange resin is more dense than the water and once agglomeration has commenced the resin tends to settle quickly to the bottom of the tank. This settling facilitates the convenient separation of the loaded resin

15

20

30

from the water. The resin may then be collected by various means including vacuum collection, filtration, magnetic transport such as belts, pipes, disks and drums, pumps and the like. We have found vacuum collection particularly convenient. It is preferable that the separation and collection means do not cause mechanical wear which may lead to attrition of the resin.

It is preferred that the ion-exchange resins have a diameter less than 100 µM, preferably in the range of from 25 µM to 75 µM. The size of the magnetic ion-exchange resin affects the kinetics of absorption of DOC and the effectiveness of agglomeration and settling. The optimal size range for a particular application may be readily determined by simple experimentation.

The magnetic ion-exchange resin can have a discrete magnetic core or have magnetic particles dispersed throughout the resin. In resins which contain dispersed magnetic particles it is preferred that the magnetic particles are evenly dispersed throughout the resin.

A particularly preferred magnetic ion-exchange resin is described in the copending provisional application number PM8070 now filed as a PCT application designated all states including the United States of America and entitled "Polymer beads and method for preparation thereof" which application is in the names of Commonwealth Scientific and Industrial Research Organisation and ICI Australia Operations Pty Ltd.

- The spent magnetic ion-exchange resin may be treated to remove the adsorbed DOC. Accordingly, we provide a process for regenerating spent magnetic ion-exchange resin including the following steps:
 - a. adding the spent magnetic ion-exchange resin to brine;
 - b. dispersing the spent magnetic ion-exchange resin in the brine for the desorption of the DOC from the magnetic ion-exchange resin;

- c. agglomerating the regenerated magnetic ion-exchange resin; and
- d. separating the regenerated magnetic ion-exchange resin from the brine.
- An alternative process for regenerating spent or loaded magnetic ion-exchange resin which requires much less brine for the regeneration process may be particularly useful in a number of applications. We have found that the spent magnetic ion-exchange resin may be packed into a column and the passage of a small quantity of brine through it can effectively regenerate the magnetic ion exchange resin.

 Accordingly, we provide a process for regenerating spent magnetic ion exchange resin including the following steps:
 - a. packing the spent resin into a column; and

30

15 b. passing brine through the packed column for the desorption of the DOC from the resin.

The regeneration of the spent magnetic ion exchange resin according to this process employing a packed column of spent magnetic resin enables particularly high rates of desorption of the DOC from the magnetic resin. We have found that by using this process the recyclability of the magnetic resin prior to subsequent regenerations is substantially improved.

Further, the humic and fulvic acids are present in significantly higher concentrations in the elutants from the column and thus are a more convenient and economic source of humic and fulvic acids.

The process for the removal of DOC from water is useful in water treatment applications for the production of potable water. The treated water is generally disinfected prior to distribution. The levels of DOC can be as much as 70% of the initial DOC after treatment with conventional processes. This DOC may react with any applied disinfectant to produce by-products. Chlorine is often the preferred

disinfectant due its cost, ease of use and the fact that a chlorine residual can be maintained throughout the distribution system to inactivate any contamination that may be introduced after the primary disinfection. Chlorine, however, may react with DOC to form a range of by-products, the most well known being trihalomethanes (THMs). THMs have been identified as possible carcinogens and together with the other possible by-products are identified as a health risk in water treatment guidelines throughout the world. Not only can the DOC form such by-products but the oxidation of the DOC into smaller more biodegradable organics, particularly by the use of ozone as a disinfectant, provides a ready food source for bacteria and may result in the regrowth of bacteria in water storages or distribution systems.

Accordingly, we provide a process for water treatment, which includes the following steps:

- 15 a. adding an ion-exchange resin to water containing dissolved organic carbon;
 - b. dispersing said resin in the water for the adsorption of the dissolved organic carbon onto the resin;
- 20 c. separating the resin loaded with the dissolved organic carbon from the water; and
 - d. disinfecting the water.
- The steps of adding, dispersing and separating the ion-exchange resin may be accomplished by the methods described above. The water may be disinfected by any convenient means. It is particularly preferred that chlorine or chloramines are used to disinfect the water prior to its storage and/or distribution.
- 30 The magnetic ion-exchange resins may preferably be used in this process. Accordingly, we provide a process for water treatment, which includes the following steps:

- adding a magnetic ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing said magnetic ion-exchange resin in the water for the adsorption
 of the dissolved organic carbon onto the magnetic ion-exchange resin;
 - c. agglomerating the magnetic ion-exchange resin loaded with the dissolved organic carbon;
- 10 d. separating the agglomerated magnetic ion-exchange resin loaded with the dissolved organic carbon from the water; and
 - e. disinfecting the water.
- 15 The steps of adding, dispersing, agglomerating and separating the magnetic ion exchange resin may be accomplished by the methods described above.
- The process of the present invention is readily incorporated into existing water treatment facilities. For example, it may be used in conjunction with membrane filtration to improve the effectiveness of the membranes, increase the flux across 20 membranes and reduce operating costs. For new installations it may either replace membrane filtration, or if membrane filtration is still required, significantly reduce the size and hence capital and operating costs of a membrane filtration plant. In fact, the reduction in capital and operating costs may enable consideration to be filtration membrane of installation the 25 given to coagulation/sedimentation plants thereby substantially reducing the size of the plant and enabling the production of potable water without the addition of chemicals other than for disinfection purposes.
- Accordingly, in a further aspect the invention provides a process for the treatment of water which includes the following steps:

WO 96/07615

- 13 -

PCT/AU95/00583

- a. adding an ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing said resin in the water to enable adsorption of the dissolved organic carbon onto the ion-exchange resin;

5

- c. separating the ion-exchange resin loaded with the dissolved organic carbon from the water; and
- d. subjecting the water to membrane filtration.

10

In an alternative process, steps c. & d. above may be combined so that the membrane effects separation of the resin while simultaneously filtering the water.

Many water treatment facilities use a coagulation/sedimentation step in their water purification process. For example, in South Australia a six stage process, which is a typical conventional water treatment process, is used to treat the source water for distribution. The six stages are as follows:

Coagulation/Flocculation;

20 Sedimentation:

Filtration;

Disinfection:

Storage and Distribution; and

Sludge Dewatering and Disposal.

25

30

The process of the present invention may be incorporated into this water treatment process most effectively prior to coagulant addition. Typically, coagulants such as alum (aluminium sulphate), iron salts and synthetic polymers are used. The removal of DOC by the present process results in a substantial reduction in the quantity of coagulant required. In addition the removal of DOC reduces the requirement for subsequent chemical additions and improves the efficiency and/or rate of coagulation, sedimentation and disinfection. This has a beneficial impact on the

water quality produced and the size of most facilities required within the water treatment plant including sludge handling facilities. These impacts are particularly convenient in the retrofitting of the process of the present invention as they enable the present process to be conveniently incorporated without substantial change in the overall size of the water treatment plant. Accordingly, in a further aspect the invention provides a process for the removal of dissolved organic carbon from water, which process includes the following steps:

- adding an ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing the resin in the water to enable adsorption of the dissolved organic carbon onto the resin;
- c. separating the resin loaded with the dissolved organic carbon from the water; and
 - d. subjecting the water to coagulation/sedimentation.

10

25

30

Utilising the process of the present invention to remove a high proportion of the dissolved organic carbon, reduces the coagulant dose required and may allow the lower volumes of floc produced to be removed from the water directly by filtration, without the need for prior sedimentation.

Some water treatment processes employ activated carbon as a final polishing treatment to alleviate problems with taste and/or odour, to remove disinfection by-products or to remove any other pollutants. The life of the activated carbon is substantially reduced by the presence of DOC in the treated water. Accordingly, a further advantage of our process is that the useful life of activated carbon may be significantly increased. Accordingly, another useful aspect of the present invention includes the further step of subjecting the treated water to activated carbon.

On greenfield sites the use of the process of the present invention will allow

significantly smaller footprint water treatment plants to be designed and constructed. The reduction/elimination of DOC from the water using the process of the present invention may be effected in a relatively small volume basin. This is due to the fast reaction and settling rates of the process. This enables the amount of coagulant used in coagulation/sedimentation processes to be reduced which consequently reduces the size of the sedimentation facilities and the size and cost of the water treatment plant. Likewise the size and cost of membrane systems in membrane filtration plants may be reduced which in turn make membrane filtration systems more economically viable when compared with coagulation/sedimentation plants.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The invention will now be further described with reference to the following nonlimiting examples. All percentages used herein are by weight unless otherwise stated. The following test methods were used unless otherwise stated.

20

10

15

- 1. The turbidity was determined (in nephelometric turbidity units) by direct measurement using a nephelometer (Hach Ratio Turbidimeter [Model 18900]).
- 25 2. The pH was determined by glass electrodes in combination with a reference potential provided by a silver/silver chloride or saturated calomel electrode.
- The colour was calculated by comparison of the absorbance of the sample at 456 nm with a calibration curve of Pt-Co standard solutions at the same wavelength. The colour was recorded in Hazen units (HU) whereby 1 HU equals 1 ppm of platinum.

- 16 -

4. The UV Absorbance was determined spectrophotometrically at 254 nm using distilled water as a reference.

A Skalar SK12 organic carbon analyser was used to measure DOC levels.
 The analyser used a peristaltic pump to continually aspirate samples and mix them with reagents.

The sample was filtered through Whatman No. 1 filter paper overlain with 0.45 µm membrane. The sample was then acidified with sulphuric acid and sparged with nitrogen. This liberated and dispersed any inorganic or volatile organic carbon. The sample solution was then mixed with a persulphate/tetraborate reagent (34g sodium tetraborate decahydrate and 12g potassium persulphate dissolved in 1 litre of water) and passed through a UV digestion coil. This process oxidised the organic carbon to CO₂. The CO₂ was expelled from solution by acidifying and sparging, and then mixed with hydrogen (H₂) and passed over a Ni catalyst at 400 °C. This reduced the CO₂ to methane (CH₄) which was measured with a flame ionisation detector.

20 6. Total Aluminium and Total Iron were determined by inductively coupled plasma spectrometry.

7. Standard Jar Tests:

10

15

The raw water and resin treated water were subjected to jar tests which enable the evaluation of various coagulants and coagulant aids used in water treatment by simulating a conventional water treatment process, consisting of coagulation, flocculation, sedimentation and filtration. Equal volumes of water (1500 ml) were entered into jars.

The multiple stirrer operated at the "flash mix" speed, approximately 200 rpm. The test solutions of coagulant were added as quickly as possible and

flash mixed for a minute.

The speed of the mixer was reduced to the minimum required to maintain the floc uniformly suspended. Slow mixing was continued for a further 14 minutes. Towards the end of the flocculation time, the floc size was recorded.

After the slow mixing period, the paddles were quickly withdrawn and the settling of the floc particles observed.

10

5

After 15 minutes quiescent settling, approximately 60 ml of each solution was withdrawn from the sampling tap (the first 20 ml was discarded) and the settled water turbidity and pH determined on the remaining volume.

- The remaining supernatant was then carefully gravity filtered through a Whatman No. 1 filter paper. The first 50 ml of filtrate was discarded. The turbidity, colour and aluminium residuals of the filtered solution was then recorded.
- 20 8. Jar Testing Under Direct Filtration Conditions.

Jar testing was performed under the following direct filtration conditions:

- . room temperature (approx. 20°C).
- . alum and water were flash mixed for 1 minute.
- 25 . the stirring reduced to 25rpm for 4 minutes (flocculation time) for floc formation.
 - no settling of floc in contrast to Standard Jar Test.
 - water clarified by filtration with Whatman No. 1 papers prior to analysis.

30

9. Method for the Determination of Chlorine Demand

A method for determining the chlorine demand of a water sample, by standard addition of chlorine and direct measurement using DPD/FAS titration.

5 Reagents:

Chlorine demand free water

Phosphate Buffer Solution (pH 6.5)

N,N-Diethyl-1-4-phenylene diamine sulphate (DPD) Indicator Solution

Standard Ferrous Ammonium Sulphate (FAS) Titrant

Standard Chlorine Solution

A chlorine solution (approx. 1000 mg/L) of measured concentration is prepared from stock sodium hypochlorite solution (approx. 10% available chlorine after filtering through 0.45 µm membrane).

15

10

Two 100 mL volumetric flasks are filled with sample water and accurately dosed with standard hypochlorite solution to produce doses equivalent to 5, 10, 15 or 20 mg/L. A different dose is employed for each of the flasks, with the two doses adjacent in the series.

20

The samples are then left to stand in the dark at 20°C for the required contact time after which the concentration of residual chlorine is measured by the DPD/FAS titration method.

25

The chlorine demand is calculated as being the difference between the amount of chlorine in the original dose and residual chlorine concentration. The results from the titrations are averaged to obtain the demand.

NOTE: If 50.0cm³ sample used Residual = $2 \times Titre$

30

Calculation and Expression of Results

From the titration, amount of chlorine is read directly from the titre FAS titrant: 1 mL FAS = 100 ug Cl as Cl₂

Therefore for 100 mL sample 1.00 mL standard FAS titrant = 1.00 mg/L available residual chlorine.

5 Results are quoted to one decimal place.

Example Resin 1

Magnetic polymer beads were prepared in accordance with the process of the copending application in the name of CSIRO and ICI using the following raw materials:

- 1. Water: this is the continuous medium in which the organic phase is dispersed and then reacted.
- 15 2. Gosenhol GH 17: this is a high molecular weight polymeric surfactant, a polyvinyl alcohol, that disperses the organic phase in the water as droplets.
 - 3. Teric No: this is a low molecular weight surfactant that is added to further reduce the particle size of the dispersed organic phase.

20

- 4. Cyclohexanol: this is the major porogen: it is a solvent for the monomers, but a non-solvent for the polymer, and it promotes the formation of voids and internal porosity in the resin beads.
- 25 5. Dodecanol: this is the minor porogen.
 - 6. Solsperse 24000 it is a solid phase dispersing agent and is a block copolymer of poly(hydroxystearic acid) and poly(ethyleneimine).
- 30 7. Pferrox 2228HC γ-Fe₂O₃: gamma iron oxide (maghemite). This is the magnetic oxide that makes the resin beads magnetic.

- 20 -

8. DVB-50 (divinyl benzene): this is the monomer that crosslinks the beads.

9. GMA (glycidyl methacrylate): this is the monomer that is first polymerised to incorporate it into the beads, then it is quaternized to place quaternary ammonium groups into the beads, thereby creating the ion exchange sites:

- 15 10. AIBN: this is the catalyst that initiates polymerisation when the mixture is heated above 50°C.
 - 11. Trimethylamine this is the amine that reacts with the epoxy group of the glycidyl methacrylate to form quaternary ammonium ion exchange sites.

20

5

- 12. Hydrochloric acid: this is used to neutralise the high pH due to the trimethylamine.
- 13. Ethanol: this is used as a rinse and as a wetting agent.

25

30

Method

Water (6.3L) was charged to a 20L reactor and the stirrer and nitrogen purge started. Next Gosenhol • GH-17 (30g) and Teric • N9 (15g) were added, and the water phase heated to 80°C to dissolve the surfactants. While the water was heating cyclohexanol (1755g) was charged to a separate stirred mix tank and the stirrer turned on. Dodencanol (195g), SOLSPERSE • 24000 (63g), Pferrox 2228

HC γ-Fe₂O₃ (936g), divinylbenzene (410g), and glycidyl methacrylate (1541g) were added in turn. This mixture was stirred and sonicated for one hour. Azoisobutyronitrile (8g) was added and the mixture was stirred for a further five minutes before adding it to the heated water phase. The resulting dispersion was held at 80°C (±5°C) for two hours, during which time polymerisation occurs and the solid resin beads (4.17kg) were formed. The nitrogen purge is then stopped and the trimethylamine and the hydrochloric acid are added to aminate the resin. These two materials can either be pre-mixed (with great caution due to the exotherm), or added in such a way as to maintain the pH between 6 and 8. The reaction mixture is then held at 80°C for three hours. The mixture is then cooled to room 10 temperature, and the beads separated from the excess γ -Fe₂O₃ by repeated cycles of washing, settling and decanting (the beads settle much faster than the free oxide particles). The resin beads are then filtered, redispersed in ethanol, then filtered and washed with additional ethanol, then acetone, and dried with an air stream. Photomicrographs of the polymer beads produced by this example are shown in 15 Figures 1A and 1B. As can be seen, especially from Figure 1B which is a photomicrograph of cracked beads, the solid particles are evenly dispersed throughout the polymer beads.

The maghemite was well dispersed throughout the resin beads produced in this Example.

Example Resin 2

- 25 Magnetic polymer beads were prepared in accordance with the process of the copending application in the name of CSIRO and ICI using the following raw materials:
- 1. Water: this is the continuous medium in which the organic phase is dispersed and then reacted.
 - 2. Gosenhol GH 20: this is a high molecular weight polymeric surfactant, a

polyvinyl alcohol, that disperses the organic phase in the water as droplets.

- 3. Cyclohexanol: this is the major porogen: it is a solvent for the monomers, but a non-solvent for the polymer, and it promotes the formation of voids and internal porosity in the resin beads.
- 4. Toluene: this is the minor porogen.

5

- 5. Solsperse 24000 it is a solid phase dispersing agent and is a block copolymer of poly(hydroxystearic acid) and poly(ethyleneimine).
 - 6. Pferrox 2228HC γ-Fe₂O₃: gamma iron oxide (maghemite). This is the magnetic oxide that makes the resin beads magnetic.
- 7. KRATON D1102 this is a low molecular weight rubber, incorporated into the organic phase to toughen the polymer beads.
 - 8. DVB-50 (divinyl benzene): this is the monomer that crosslinks the beads.
- 20 9. GMA (glycidyl methacrylate): this is the monomer that is first polymerised to incorporate it into the beads, then it is quaternized to place quaternary ammonium groups into the beads, thereby creating the ion exchange sites.
- 10. VASO 67: this is the catalyst that initiates polymerisation when the mixture is heated above 50°C.
 - 11. Trimethylamine this is the amine that reacts with the epoxy group of the glycidyl methacrylate to form quaternary ammonium ion exchange sites.
- 30 12. Hydrochloric acid: this is used to neutralise the high pH due to the trimethylamine.

15

20

Method

Water (2333g) was charged to a 5 L reactor and the stirrer and nitrogen purge started. Next, Gosenhol GH20 (10g) was added, and the water phase heated to 80°C. While the water was heating Toluene (130g), DVB-50 (130g) and a first portion of Cyclohexanol (130g) were charged to a separate mix tank and the stirrer turned on. The Solsperse 24000 (21.84g) and the Pferrox 2228 HC γ -Fe₂O₃ (325g) were added in turn, then the mixture was stirred and sonicated for 20 minutes to thoroughly disperse the magnetic oxide. Kraton D1102 was then added and the mixture stirred for a further hour to dissolve the toughening agent. The remaining Cyclohexanol (390g) and the VAZO 67 (2.65g) were then added and the mixture was stirred for a further five minutes before adding it to the heated water phase. The resulting dispersion was then stirred and held at 80°C for two hours. The nitrogen purge was stopped and a mixture of trimethylamine (687g; 25% w/w) and hydrochloric acid (294 g; 36% w/w) added, then the mixture was then stirred and held at 80°C for a further three hours. The mixture was then cooled and the resulting polymer beads cleaned as in Example 1. Photomicrographs of the beads are shown in Figures 3A and 3B. Again, the solid magnetic oxide is well dispersed throughout the beads, and the beads are qualitatively tougher than those of Example 1. Further, the size distribution of the polymer beads was relatively narrow.

Example 1

25 Raw water was obtained from the Myponga Reservoir, South Australia. The raw water was pumped into a stirred vessel and was dosed with resin manufactured according to Example Resin 1 at a rate of 2.6ml of wet resin per litre of raw water. Resin and water were stirred in a flow through system for an average time of 10 minutes before settling for 10 minutes in a plate settler. The water passed up through the plate settler and the clarified water overflowed for collection. The temperature of the water during this process was in the range of from 14 to 16 °C.

In the continuous process resin was recycled maintaining the 2.6 ml of wet resin per litre of raw water dose rate. 90% of the resin was recycled without regeneration. The remaining 10% was sent for regeneration (see Example 2).

5 The raw water and resin treated water were subjected to Standard Jar Tests.

Analyses including DOC, UV absorption and iron were also undertaken. The results of the jar tests on the resin treated water are set out herein in Table 1 and jar tests on raw-water are set out herein in Table 2.

able 1

	Total Iron mg/L	0.637	0.355	0.026	0.016	0.016	0.015	0.012
	Total Alumin- ium mg/L	0.068	0.563	0.084	0.052	0.042	0.035	0.024
RED	DOC mg/L	4.7	4.6	3.5	3.3	3.2	3.1	3.0
FILTERED	Ultra- violet Absorb- ance (254 nm)	0.217	0.165	0.073	0.064	0.061	0.061	0.062
	Colour HU	62	42	7	4	ო	ო	2
	Turbid- ity NTU	1.2	1.1	0.2	0.12	0.13	0.11	0.11
ERED	нd	7.9	7.6	7.4	7.3	7.2	7	6.9
UNFILTE	Turbid- ity NTU	2.3	2.9	1.1	6.0	6.0	9.0	9.0
FLOC	шш	0	0	1 - 2	1 - 2	2 - 3	2 - 3	3 - 4
ALUM DOSE	mg/L	Resin Treated	10	20	30	40	20	09
	ហ			10				u T

SUBSTITUTE SHEET (RULE 26)

able 2

<u>ــــــ</u>	ALUM	FLOC	UNFILTER	RED			FILTERED	ED		
	mg/L	E E E	Turbid- ity NTU	нф	Turbid- ity NTU	Colour HU	Ultra- violet Absorb- ance (254 nm)	DOC mg/L	Total Alumin- ium mg/L	Total Iron mg/L
	Raw Water	0	1.4	7.9	6.0	119	0.522	10.5	0.092	0.74
	20	0	2	7.4	1.6	118	0.523	10.6	1.81	0.718
	30	0	4.5	7.2	3.5	120	0.505	10.4	2.36	0.645
-	40	1 - 2	3.6	7.1	0.8	31	0.252	7.1	0.417	0.097
	20	1 - 2	2.5	7	0.2	13	0.219	5.7	0.083	0.019
	09	1 - 2	2.8	6.9	0.22	10	0.127	5.4	0.077	0.013
	70	1 - 2	2.7	6.7	0.21	10	0.109	4.8	0.068	0.014

Ŋ

SUBSTITUTE SHEET (RULE 26)

Example 2

The resin taken for regeneration from the process described in Example 1 was regenerated under laboratory conditions. A sample of 10 ml of loaded resin was added to 400 ml 1M sodium chloride and mixed at flash mix speed (200 rpm) over 30 minutes at room temperature (20 °C).

The extent of the resin regeneration was measured by monitoring the increase in the ultraviolet absorbance of the regeneration solution. Ultraviolet absorbance was measured at 254 nm and the results are shown at Figure 1.

Example 3

10

River Murray water sampled at Mannum, South Australia was treated with varying resin concentrations under the following laboratory conditions:

- · Water temperature during the run was 21 °C.
- · Resin used was manufactured according to Example Resin 1.
- · Contacted resin and water by stirring at 100rpm for 10 minutes.
- Resin removed by settling for 10 minutes and passing clarified water through a 30 µm screen prior to Jar Testing. Under Direct Filtration Conditions.

The results of Jar Testing under Direct Filtration Conditions are shown in Table 3.

Table 3

5	Alum Dose			Resin Bull ml resin/			
			Colour			Turbidity	
	mg/l	1ml	2ml	3ml	1ml	2ml	3ml
	0	75	31	25	12	11	12
	5				12	12	12
10	10			21	12	12	10
	15		23	5	13	10	0.88
	20	32	8	3	11	2.1	0.24

Example 4

15

Water was sampled from the Millbrook Reservoir, South Australia and was treated with varying resin concentrations under the following laboratory conditions:

- Water temperature during the run was 14.5°C.
- Resin used was manufactured according to Example Resin 2
- 20 · Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for approximately 20 minutes and clarified water decanted.

Jar Testing Under Direct Filtration Conditions was performed. The flocculation time however, was 9 minutes at 40rpm.

The results of Jar Testing Under Direct Filtration Conditions are shown in Table 4.

rable 4

SUBSTITUTE SHEET (RULE 26)

Table 4 Cont...

•											
2	Che	Chemical Additives	Unfil- tered	F1	Filtered	•	Physica	1 & Chem	Physical & Chemical Properties	perties	
	Alum	Resin (mL/L)	Turbid- ity (NTU)	Нď	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	٥	,	28.0	7.2	21.00	42	0.234	6.4	52	1.550	1.070
	ט כ	1 =	27.0	7.4	22.00	41	0.220	7.2		1.830	1.050
•	2 د	=	29.0	7.4	23.00	36	0.210	6.3		2.180	1.080
2	2 6	r	33.0	7.4	22.00	14	0.120	5.5		2.340	0.877
- 	2 6	=	33.0	7.3	0.94	LC LC	0.072	4.9	52	0.152	•
	30 4	E	33.0	7.2	0.52	m	0.059	4.1		0.094	0.012
		,	0 80	7 3	21.00	37	0.180	5.6		1.570	1.070
Ŀ	با د) =	22.0		21.00	34	0.167	4.7		1.760	1.020
CT	ი \$	=	20.00		23.00	24	0.141	4.7		2.050	1.020
	2 6	:	23.0	7 . 7	2.40	7	0.070	3.7		0.384	0.147
	9 6	2	0.00		0.37	. m	0.054	3.2		0.105	.07
	2 0	±	29.0		0.25	7	0.046	3.0	-	0.061	0.017
	?		200								

20

Example 5

Water sampled at North Pine Dam, Brisbane, Queensland was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during the run was 19°C.
 - Resin used was manufactured according to in Example Resin 2.
 - Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for about 20 minutes and decanting the clarified water prior to Jar Testing under Direct Filtration Conditions.

10

The Jar Testing under Direct Filtration Conditions was performed. However, the flocculation time was 9 minutes at 40rpm. The results of the Jar Testing under Direct Filtration Conditions are shown in Table 5.

Table 5

ļ											
	Che	Chemical Additives	Unfil- tered	FI	Filtered		Physical	1 & Chemical		Properties	
വ	Alum	Resin (mL/L)	Turbid- ity (NTU)	Нď	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	raw 5	0 = 1	1.8		0.28	20 16	112		182	<0.005 0.331 0.414	
	15					10 8	98.0			0.192	
01	25 30 40 50			7.2	0.14 0.08 0.06	2 2 2 8 6	0.070 0.066 0.057 0.054	2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	84	0.074 0.063 0.039 0.030	0.034 0.037 0.062 0.055
15	0 5 10 15	o	1.0	7.5	0.31 0.29 0.12 0.13	13 12 8 10	0.092 0.090 0.074 0.068	3.7 3.3 3.1	118	0.009 0.329 0.180 0.122	0.030 0.025 0.028 0.029
20	20 25 30	:::				୧ ୧ ର				0.060	
25	0 5 10 15 20	H:::::	1.1	7.7.7.7.7.7.4.4.6.9.0	0.27 0.26 0.08 0.10	111 6 6 5	0.057 0.067 0.052 0.046 0.043	22222	105	<.0050.3030.1420.0960.0750.057	0.023 0.017 0.012 0.014 0.021
	30,2	=			• • 1	4	• •	• •			• 11

SUBSTITUTE SHEET (RULE 26)

Table 5 cont...

വ

	Che	Chemical Additives	Unfil- tered	F1	Filtered		Physica	Physical & Chemical Properties	ical Pro	perties	
1	Alum	Resin (mL/L)	Turbid- ity (NTU)	нd	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	0	2	1.0	7.4	0.32	80	0.045	2.4	7.2	,	
	വ	=		7.4	0.16	7	0.039		7/	.003	0.014
	10	=		7.3	90.0	7	0.032) -		0.202	0.022
	15	=		7.2	0.07	7	0.029	2.5		0.113	0.013
	20	: :		7.1	0.04	4	0.027	2.0		0.071	0.042
	۲ <u>۲</u>	: :		7.1	•	က	0.027	1.9		0.046	0.01
	မှာ က	=		7.0	0.05	4	0.026	1.7		0.034	0.014
	0	က	6.0	7.4	0.25	7	0.030	1.8	50) OOF	0.50
	ر ک	.		7.3	0.07	7	0.024		5		0.018
	01	:		7.2	0.04	ო	0.020	1.4		0.131	0.020
	15	: :		7.1	0.05	ო	0.020	1.3		0.053	9.00
	0 7	: :		7.0	0.04	2	0.020	1.3		0.055	1.00.1
	C7	: :		6.9	0.04	ო	0.019	1.5		8000	
	30	=		6.8	0.04	က	0.019	1.3		0.030	1,005
										- ,,,,,	1

SUBSTITUTE SHEET (RULE 26)

20

10

Example 6

Water sampled at Lexton Reservoir, Victoria was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during the run was 19°C.
 - · Resin used was manufactured according to in Example Resin 2.
 - · Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for about 20 minutes and decanting the clarified water prior to Jar Testing under Direct Filtration Conditions.

10

The Jar Testing under Direct Filtration Conditions was performed. However, the flocculation time was 9 minutes at 40rpm. The results of the Jar Testing under Direct Filtration Conditions are shown in Table 6.

rable (

5	Che	Chemical Additives	Unfil- tered	F1	Filtered		Physical	డు	Chemical Prop	Properties	
	Alum	Resin (mL/L)	Turbid- ity (NTU)	нd	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	raw 10	0 =	20.0		9.20	159	0.593	11.4	243		
	20	8 1		7.9	10.40	156	0.580	11.1		1.390	0.661
) 	2 Q	: =		٠	10.50	162	•	10.5			• •
	45	:		•	9.20	140	•	8.6		•	•
	50	z ;		•	2.00	50		•		•	•
	09	=		• •	0.50	29					
15	0 8	0.5	12.7	•	•	119	4		154	J	
	070	: :		•	•	140	4.	•)	• •	•
	2 6	:		•	•	114	د .	•		•	• •
	45	=		•	•	31	7	•		•	
20	50	=		7.4	0.45	24	0.195	6.1		0.270	0.031
	c				· 1	2	!	• [•	• 1
	> 5	-1 =	14.0	7.6	9.00	121	0.412	•	143	•	(C)
	2 6	:		•	•	129	.40	•		•	(7)
	3.6	:		•	•	86	.33	7.3		1.390	0.261
25	40	E		•	•	χ, ς γ, ι	$\frac{21}{2}$	•		•	0
	45	=		•	•	C 7	βŢ.	•			0
حن ا				• 11	• H	17	.16	•		•	0

SUBSTITUTE SHEET (RULE 26)

Table 6 Cont...

١											
	Che	Chemical Additives	Unfil- tered	F	Filtered		Physica	ıl & Chem	Physical & Chemical Properties	erties	
	Alum	Resin (mL/L)	Turbid- ity (NTU)	Нď	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	ء	2	13.1	7.6	6.40	87	0.301	9.9	189	0.655	0.496
	, <u>-</u>	1 =	! !		09.9	87	0.298	6.4		1.230	0.491
	2 6	:			5.80	77	0.270	6.2		1.560	0.422
	2 6	=			0.64	19	1.137	4.6		0.367	0.077
	2 5	Ξ			0.20	10.6	0.107	4.2		0.170	0.026
	200	=		7.6	0.33	10.8	0.093	3.8		0.109	0.017
		,	12.5	7 3	6.10	73	0.230	5.3	77	0.744	0.589
	> =) =) 1		6.40	70	0.224	5.0		1.290	0.522
	2 6	=			1.74	25	0.125	4.3		0.651	0.158
	2 6	=			0.25	6	0.079	3.9		0.193	0.043
	2 4	=		7.4	0.19		0.068	3.7		0.127	•
	20	ŧ		7.4	0.14	9	0.061	3.4		0.112	0.022
	0	4	11.1	7.5	6.30	90.99	0.188	4.4	55	0.708	0.546
) 	لِ										

SUBSTITUTE SHEET (RULE 26)

Example 7

Water sample at of Wanneroo Ground Water, Western Australia was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during the run was 19°C.
 - Resin used was manufactured according to in Example Resin 2.
 - · Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for about 20 minutes and decanting the clarified water prior to Jar Testing under Direct Filtration Conditions.

10

The Jar Testing under Direct Filtration Conditions was performed. However, the flocculation time was 9 minutes at 40rpm. The results of the Jar Testing under Direct Filtration Conditions are shown in Table 7.

Table 7

W	Che	Chemical Additives	Unfil- tered	F1	Filtered		Physical	l & Chemical		Properties	
ហ	Alum	Resin (mL/L)	Turbid- ity (NTU)	Нď	Turbid- ity (NTU)	Colour (HU)	UVabs (/cm, 254nm)	DOC (mg/L)	THMFP (ug/L)	Al (mg/L)	Fe (mg/L)
	raw 10	0 = =	33.0		10.70	18 4 190 202	0.481 0.468 0.463	7.0	395	0.288 0.867 0.564	1.145 1.210 1.210
10	30 40 20 20 20 40			7.3	9.00 2.10 1.60 1.54 0.98	156 41 27 26 18	0.379 0.150 0.116 0.103 0.082	6.0 3.8 3.4 2.9	130	1.69 0.185 0.122 0.133 0.117	0.831 0.167 0.116 0.105 0.077
15	0 10 20 30 40 50	0	31.0	7.5 7.5 7.3 7.3	10.00 9.80 9.60 2.10 1.80	182 175 172 40 31 28	0.408 0.398 0.396 0.147 0.110	6.0 6.3 5.2 3.6 3.0	373	0.322 0.917 1.480 0.199 0.110	1.215 1.180 0.183 0.154 0.121 0.121
20	0 10 20 30 40 50	H::::	28.0	7.1 7.0 7.0 6.8 6.8	11.30 8.90 9.00 0.68 0.68	183 159 154 17 15	0.352 0.337 0.286 0.088 0.072 0.072	4.4.9 2.2 7.2 4.3	294	0.282 0.882 0.341 0.117 0.086	1.185 1.080 0.917 0.059 0.052

SUBSTITUTE SHEET (RULE 26)

Table 7 Cont...

വ

Al (mg/L) (mg/L)	1.	<u> </u>	0.116	•	0.020	1	973	044	24	123	50	9	84	39	031	173	727 835	78	29	20	23
N1 mg/L)	316	-				L	io	•	•	•				•	0.0	• 1	, c	• •			•
~ _	•	•	0.180	•	0.045		0.407	•		•	0.263	0.581	0.646	0.119	0.081	0.268	0.567	0.261	0.104	0.069	0.040
THMFP (ug/L)	272		g)		183) 	87			169	1		73		152	1		51		
DOC (mg/L)	•	•	•	•	•		•	•	•	•	2.4	2.4	2.0	1.4	 						
UVabs (/cm, 254nm)	•	•			• 1	2	7	0	0	임	7	~	-	0	\circ \circ)	0.172	0.081	0.027	0.023	0.019
(HU)	177	15/	13	10	9	161	148	6	9	9	157	148	$\frac{128}{2}$		0 4	157	136	51	വ	က	3
iurbid- ity (NTU)		•			• i		•	•	•	• 1	11.80	10.80	9.10	0.28	0.28		•	•	•		• 1
ng,	•	•	• •	•	• 1	7.2	7.3	7.4	7.4		•	•	•	•		7.6	7.6	7.6	7.5	7.4	7.4
ity (NTU)	26.0					25.0					27.0				•	26.0					
(mL/L)	% =	E	=	=	=	ကး	= =	: :	: =		帮:	: :	: =	F	=	2	ž į	: :	: :	: :	
	٥ ٢	20 20 20 20	30	40	20	0;	010	0 6	2 5	2	01	ა ჭ) L	20	30	0	ഹ (0 1	CT C	0 6	ر ا
THE COLL CACALL ALCOHOL - CLUBBLE DO - DIGITAL STREET	(mL/L) ity ity (HU) (/cm, (mg/L) (ug/L) (NTU) (NTU) 254nm)	(mL/L) ity ity (HU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) 254nm) 254nm) 25.0 7.5 12.00 177 0.296 3.7 272	(mL/L) 1ty 1ty (HU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) 254nm) 254nm) 2 26.0 7.5 12.00 177 0.296 3.7 272	(mL/L) 1ty 1ty (HU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) 254nm) 254nm) 2 26.0 7.5 12.00 177 0.296 3.7 272	(mL/L) 1ty 1ty (HU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) 254nm) 254nm) 2 26.0 7.5 12.00 177 0.296 3.7 272	(mL/L) ity ity (HU) (/cm, (mg/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (MTU) (NTU) (MTU) (MTU) (MTU) (MG/L) (MG/	(mL/L) 1ty (hU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) (254nm) 254nm) (ng/L) (ug/L) (ug/L) (ug/L) (NTU) (NTU) 254nm) 254nm) 272 26.0 7.5 12.00 177 0.281 3.6 3.6 7.4 0.80 18 0.081 2.2 1.8 98 1.6 7.2 0.46 10 0.046 1.6 7.0 0.33 6 0.039 1.6 3.0 183	(mL/L) ity (hU) (/cm, (mg/L) (ug/L) (ng/L) (ug/L) (NTU) (NTU) (177 (0.296 3.7 272 7.5 9.60 157 (0.281 3.6 7.3 0.76 113 0.057 1.8 98 1.6 7.0 0.33 6 0.039 1.6 3.0 183 3.0 1848 0.245 3.0 183	(mL/L) ity (hTU) (/cm, (mg/L) (ug/L) (mL/L) (NTU) (NTU) (14Y) (17Y (HU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) (15Y 0.296 3.7 272 7.5 9.60 157 0.281 3.6 7.4 0.80 18 0.081 2.2 7 98 7.2 0.46 10 0.046 1.6 7.0 0.33 6 0.039 1.6 3.0 183 3.0 148 0.232 2.7 87	(mL/L) 1ty (HU) (/cm, (mg/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (/cm, (mg/L) (/cm, (m	(mL/L) 1ty (hTU) (/cm, (mg/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (NTU) (NTU) (NTU) (177 (0.296 3.7 272 7.5 9.60 157 0.281 3.6 7.4 0.80 18 0.081 2.2 7 7.2 0.46 10 0.046 1.6 7.0 0.33 6 0.039 1.6 3.0 183 3.0 183 3.0 183 3.0 183 3.0 183 3.0 184 0.232 2.7 7.4 0.33 9 0.048 1.7 87 7.4 0.33 9 0.048 1.7 87 7.4 0.33 9 0.035 1.5 7.4 0.33 9 0.035 1.5 7.7 7.7 7.3 0.30 6 0.035 1.5	(mL/L) 1ty (HU) (/cm, (mg/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (MTU)	(mL/L) ity (HU) (/cm, (mg/L) (ug/L) (MTU) (/cm, (mg/L) (ug/L) (ug/L) (/cm, (MTU)) (/cm, (mg/L) (ug/L) (ug/L) (/cm, (mg/L) (ug/L) (/cm, (mg/L) (ug/L) (/cm, (mg/L) (/cm, (ug/L)	(mL/L) 1ty (HU) (/cm, (mg/L) (ug/L) 2 26.0 7.5 12.00 177 0.296 3.7 272 " 26.0 7.5 9.60 157 0.281 3.6 3.7 272 " 7.4 0.80 18 0.081 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.6 0.081 2.2 2.2 2.2 2.2 2.2 3.6 0.081 2.2 2.2 1.8 98 98 9.055 1.8 98 98 9.055 1.6 1.6 9.8 1.8 98 9.055 1.6 1.8 98 9.066 1.6 1.6 9.0 1.8 9.0 9.046 1.6 9.0 1.8 9.0 9.0 1.6 9.0 1.6 9.0 9.0 9.0 1.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 </td <td>(mL/L) 1ty (HU) (/cm, (mg/L) (ug/L) (MTU) (NTU) (JCm, (mg/L) (ug/L) (MTU) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (JCm, (</td> <td>(mL/L) ity (HU) (7cm, (mg/L) (ug/L) (NTU) (7cm, (mg/L) (ug/L) (14TU) (NTU) (75 9.60 157 0.281 3.6 3.7 272 17.3 0.76 118 0.081 2.2 1.8 98 1.7 17.2 0.46 10 0.046 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.</td> <td>(mL/L) 1ty (NTU) (TCm, (mg/L) (ug/L) (NTU) (NTU) (NTU) (NTU) (NTU) (NTU) (NUU) (NTU) (NUU) (NUU/L) (NU</td> <td>(mL/L) 1ty (HU) (JCm, JCm, JCm, JCm, JCm, JCm, JCm, JCm,</td> <td>(mL/L) ity (NTU) (HU) (Cm, (mg/L) (ug/L) (MTU) (NTU) (</td> <td>(mL/L) 1ty (NTU) (HU) (/Cm, (mg/L) (ug/L) (MTU) (NTU) (NTU) (15 12.00 177 0.296 3.7 272 7.4 0.80 18 0.081 2.2 7.4 0.80 18 0.081 2.2 7.5 7.4 0.80 18 0.081 2.2 7.5 7.5 0.46 10 0.046 1.6 7.0 0.33 6 0.039 1.6 7.0 0.33 9.40 1448 0.232 2.7 87 7.4 0.33 9.40 1448 0.232 2.7 87 7.4 0.33 9.40 1448 0.232 2.7 87 7.4 0.22 6 0.035 1.5 7.4 0.22 6 0.035 1.5 7.5 7.5 0.28 7 0.043 1.4 73 7.5 0.28 7 0.043 1.4 73 7.5 0.28 6 0.033 1.3 1.3 7.5 0.28 6 0.035 1.3 1.3 7.5 0.28 6 0.035 1.3 1.3 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 1.8 7.5 0.28 7 0.025 1.1 1.8 7.5 0.28 7 0.025 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.</td> <td>(mL/L) ity (NTU) (YGD) (MG/L) (MG/L) (MG/L) (MTU) (YGD) (MG/L) (M</td>	(mL/L) 1ty (HU) (/cm, (mg/L) (ug/L) (MTU) (NTU) (JCm, (mg/L) (ug/L) (MTU) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (ug/L) (JCm, (mg/L) (JCm, ((mL/L) ity (HU) (7cm, (mg/L) (ug/L) (NTU) (7cm, (mg/L) (ug/L) (14TU) (NTU) (75 9.60 157 0.281 3.6 3.7 272 17.3 0.76 118 0.081 2.2 1.8 98 1.7 17.2 0.46 10 0.046 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	(mL/L) 1ty (NTU) (TCm, (mg/L) (ug/L) (NTU) (NTU) (NTU) (NTU) (NTU) (NTU) (NUU) (NTU) (NUU) (NUU/L) (NU	(mL/L) 1ty (HU) (JCm, JCm, JCm, JCm, JCm, JCm, JCm, JCm,	(mL/L) ity (NTU) (HU) (Cm, (mg/L) (ug/L) (MTU) (NTU) ((mL/L) 1ty (NTU) (HU) (/Cm, (mg/L) (ug/L) (MTU) (NTU) (NTU) (15 12.00 177 0.296 3.7 272 7.4 0.80 18 0.081 2.2 7.4 0.80 18 0.081 2.2 7.5 7.4 0.80 18 0.081 2.2 7.5 7.5 0.46 10 0.046 1.6 7.0 0.33 6 0.039 1.6 7.0 0.33 9.40 1448 0.232 2.7 87 7.4 0.33 9.40 1448 0.232 2.7 87 7.4 0.33 9.40 1448 0.232 2.7 87 7.4 0.22 6 0.035 1.5 7.4 0.22 6 0.035 1.5 7.5 7.5 0.28 7 0.043 1.4 73 7.5 0.28 7 0.043 1.4 73 7.5 0.28 6 0.033 1.3 1.3 7.5 0.28 6 0.035 1.3 1.3 7.5 0.28 6 0.035 1.3 1.3 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 8 1.52 7.5 0.28 7 0.025 1.1 1.8 7.5 0.28 7 0.025 1.1 1.8 7.5 0.28 7 0.025 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.3 7.5 0.027 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	(mL/L) ity (NTU) (YGD) (MG/L) (MG/L) (MG/L) (MTU) (YGD) (MG/L) (M

SUBSTITUTE SHEET (RULE 26)

20

PCT/AU95/00583

Example 8

Water sampled at Happy Valley Reservoir, South Australia was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during the run was 18°C.
 - Resin used was manufactured according to Example Resin 7.
 - Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for approximately 20 minutes and decanting clarified water prior to Standard Jar Testing.

10

The Standard Jar Testing was performed except that the coagulant used was ferric chloride at varying dosages. The results of the Standard Jar Testing are shown in Table 8.

aple 8

Chloride Size Dose mg/L mm 10 5 41 20 1 25 1 25 1 30 2 to 3 35 3 to 4 40 3 to 4 45 3 to 4 45 3 to 2 5 10 5 10 5 10 5 10 5 10 5 10 10												
Dose mg/L mm idity lighty HU violet ug/L mg/L Alumi- man mg/L mg/L Mlumi man mg/L mg/L Mlumi man mg/L mg/L Mlumi man mg/L mg/L mg/L Mlumi man mg/L mg/L mg/L mlum mg/L mg/L mg/L mg/L mium mg/L mg/L mg/L mium mg/L mg/L mg/L mg/L mium mg/L mg/L mg/L mg/L mium mg/L mg/L mg/L mg/L mg/L mg/L mium mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/		rerric Chloride	Floc	Unfil	tered			E.	iltered			
Column C	က	Dose mg/L		Turb- idity NTU	Нd	Turb- idity NTU	Colour HU	Ultra- violet Absorb- ance	THMFP ug/L	DOC mg/L	Total Alumi- nium mg/L	Total Iron mg/L
0 < 1 \(1 \) 0.289 \(15 \) 0.289 \(15 \) 0.328 \(0.302 \) 1.5 \(1 \) 0.302 \(1.5 \) 0.302 \(1.5 \) 0.302 \(1.5 \) 1 \(1 \) 0.4 \(6.7 \) 0.380 \(77 \) 0.390 \(132 \) 274 \(6.8 \) 0.303 \(1.3 \) 275 \(1 \) 0.390 \(132 \) 274 \(6.8 \) 0.303 \(1.3 \) 275 \(1 \) 0.390 \(132 \) 1.2 \(0.3 \) 0.222 \(141 \) 0.185 \(140 \) 0.185 \(14								(234nm)				
5 <1 5.9 7.7 7.2 3.70 57 0.289 159 7.2 0.328 0.302 10 1 6.3 6.8 4.10 88 0.429 274 6.8 0.302 1. 15 1 7.4 6.7 4.90 77 0.390 132 7.2 0.383 2. 20 1 9.1 6.5 4.40 36 0.222 141 6.0 0.185 3. 25 1 1 10.7 6.4 0.78 14 0.134 87 5.4 0.087 35 2 to 3 9.0 6.2 0.48 10 0.108 58 4.0 0.087 45 3 to 4 2.5 6.2 0.23 4 0.076 57 4.5 0.024 45 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 5 3 2.70 6.9 2.20 35 0.182 21 4.6 0.034 5 3 3.20 7.5 2.40 5.2 0.261 237 4.7 0.275 1. 20 1 to 2 2.50 7.2 0.41 5 0.089 128 3.9 0.037 20 2 to 3 1.54 7.2 0.41 5 0.068 124 3.3 0.033 20 2 to 3 0.65 7.2 0.41 5 0.068 124 3.3 0.033 20 0.034 0.035 0.068 124 3.3 0.003 20 0.034 0.033 0.033 0.055 7.7 3.0 0.034 20 0.034 0.033 0.033 0.033 0.033 20 0.034 0.033 0.		C		l.								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		כ ע	,	5.7		3.70	57	•	159	•	0.328	
15 1 7.4 6.7 4.90 77 0.390 132 7.2 0.283 3.2 25 1 1 10.7 6.4 6.7 4.90 77 0.390 132 7.2 0.283 3.2 25 1 1 10.7 6.4 0.78 14 0.134 87 5.4 0.087 0.185 3.2 2 to 3 9.0 6.2 0.23 4 0.108 58 4.9 0.027 0.390 2 to 4 3.8 6.0 0.23 4 0.108 58 4.9 0.027 0.002 45 3 to 4 2.5 6.2 0.23 4 0.084 47 4.8 0.044 0.022 0.22 3 0.066 21 4.6 0.034 0.002 0.034 0.006 2.70 6.9 2.20 35 0.182 211 4.8 0.264 0.002 0.002 0.000 0.182 2.5 0.000 0.000 0.182 2.1 4.6 0.024 0.0000 0.000 0.		, <u>-</u>	7	היי		3.80	74	•	159	•	0.302	• •
20 1 1 7.4 6.5 4.40 36 0.222 141 6.0 0.185 3. 2 to 3 9.0 6.2 0.48 10 0.108 58 4.9 0.027 0. 3 to 4 3.8 6.0 0.35 6 0.084 47 4.8 0.027 0. 45 3 to 4 2.5 6.2 0.23 4 0.076 57 4.5 0.027 0. 8		1.0	٠,	٥. د د		4.10	88	•	274	•	0.303	•
1 10.7 6.4 0.78 14 0.134 87 5.4 0.185 3.3 1.0 0.134 87 5.4 0.087 0.185 3.4 3.8 6.0 0.35 6 0.084 47 4.8 0.027 0.027 3 to 4 2.5 6.2 0.23 4 0.076 57 4.5 0.027 0.02 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0.034 0.034 3.20 7.5 2.40 52 0.261 237 4.7 0.275 1 to 2 2.50 7.3 0.76 7.3 0.76 7 0.089 128 3.9 0.107 0.107 2 to 3 1.54 7.2 0.32 4 0.054 124 3.3 0.033 0.185 2 to 3 0.65 7.2 0.23 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA		2 0	٠,	* •		4.90	77	•	132	•	0.283	•
2 to 3 9.0 6.2 0.48 10 0.134 87 5.4 0.087 0.35 10 0.108 58 4.9 0.027 0.35 10 0.108 58 4.9 0.027 0.027 3 to 4 2.5 6.2 0.23 4 0.076 57 4.5 0.02 0.34 0.32 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0.34 0.32 0.22 3 0.066 21 4.6 0.034 0.34 0.32 0.261 2.70 6.9 2.20 35 0.182 211 4.8 0.264 0.37 4.20 7.4 3.30 14 0.119 195 4.6 0.243 2.250 7.2 0.41 5 0.089 128 3.9 0.107 0.32 to 3 0.65 7.2 0.23 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA		2,40		1.6.		4.40	36	•	141		0.185	•
3 to 4 3.8 6.0 0.35 6 0.084 47 4.8 0.027 0.35 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0.34 0.35 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0.34 0.32 3.20 7.5 2.40 52 0.261 237 4.7 0.275 1.0 2.50 7.2 0.76 7.2 0.089 128 3.9 0.107 0.32 2 to 3 0.65 7.2 0.23 2 0.054 7.7 3.0 0.68 124 3.3 0.033 0.037 0.054 0.054 7.2 0.23 2 to 3 0.65 7.2 0.23 2 0.054 7.7 3.0 0.055		S C	٠ ١	10.7		0.78	14	•	87	•	0.087	•
3 to 4 2.5 6.2 0.23 4 0.076 57 4.8 0.044 0. 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0. Resin Treated Water (lmL/L)		3 C	3 \$	ب ن ن		0.48	10	•	58		0.027	• •
3 to 4 1.7 6.3 0.22 3 0.066 57 4.5 0.02 0.02 3 to 4 1.7 6.3 0.22 3 0.066 21 4.6 0.034 0. Resin Treated Water (1mL/L) 2.70 6.9 2.20 35 0.182 237 4.7 0.264 0. 4.20 7.5 2.40 52 0.261 237 4.7 0.275 1. 5.70 7.3 0.76 7 0.089 128 3.9 0.107 0. 1 to 2 2.50 7.2 0.41 5 0.078 118 3.5 0.037 0. 2 to 3 1.54 7.2 0.32 4 0.068 124 3.3 0.033 0. NA		3 5	3 1	, c		0.35	9	•	47	•	0.044	•
S.CO.4 L.7 6.3 0.22 3 0.066 21 4.6 0.034 0. Resin Treated Water (lmL/L) A.8 0.264 0. 2.70 6.9 2.20 35 0.182 211 4.8 0.264 0. 3.20 7.5 2.40 52 0.261 237 4.7 0.275 1. 4.20 7.4 3.30 14 0.119 195 4.6 0.243 2. 1 to 2 2.50 7.2 0.41 5 0.089 128 3.9 0.107 0. 2 to 3 1.54 7.2 0.32 4 0.068 124 3.3 0.033 0. 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA		ט ע די	3 1	6.5		0.23	4	•	57		0.02	•
Log 2.70 6.9 2.20 35 0.182 211 4.8 0.264 0.75 2.40 52 0.261 237 4.7 0.275 1.0 1 to 2 2.50 7.2 0.41 5 0.078 118 3.5 0.037 0.2 to 3 0.65 7.2 0.23 2 0.054 7.7 3.0 0.23 2.0 0.068 124 3.3 0.033 0.0089 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.0068 124 3.3 0.033 0.008 0.008 0.0084 77 3.0 0.008		2	3	7:1		0.22	က		21		. 0	
2.70 6.9 2.20 35 0.182 211 4.8 0.264 0. 4.20 7.5 2.40 52 0.261 237 4.7 0.275 1 4.20 7.3 0.76 7 0.089 128 3.9 0.107 0. 2 to 3 0.65 7.2 0.33 2 0.054 7.7 3.0 0.033 0.054 7.7 3.0 0.033 0.054 7.7 0.054 3.3 0.033 0. 0.054 7.7 3.0 0.033 0.054 7.7 3.0 0.089 124 3.3 0.033 0. 0.054 7.7 3.0 0.033 0.054 7.7 3.0 0.054 7.7 3.0 0.054 7.7 3.0 0.054					Re							
3.20 7.5 2.40 52 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.275 1.26		0		2.70		٦	35	1				
4.20 7.4 3.30 14 0.119 195 4.6 0.275 1 1 to 2 2.50 7.2 0.41 5 0.089 128 3.9 0.107 0. 2 to 3 1.54 7.2 0.32 4 0.068 124 3.5 0.037 0. 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA		ນ		3.20		07.0	ני ני	•	211	•	•	0.282
<1 5.70 7.3 0.76 7 0.089 128 4.6 0.243 2 1 to 2 2.50 7.2 0.41 5 0.089 128 3.9 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.037 0.037 0.037 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.054 77 3.0 NA 0.0		10		4.20	•	2 0	7 7	•	237	•	•	1.65
1 to 2 2.50 7.2 0.41 5 0.089 128 3.9 0.107 0. 2 to 3 1.54 7.2 0.32 4 0.068 124 3.3 0.033 0. 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA		15	⊽	7 70	•	200	† t	•	195	•		2.65
2 to 3 1.54 7.2 0.41 5 0.078 118 3.5 0.037 0.054 2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA 0.054 0.055		20	; ‡	2 6	•	0,:0		•	128			0.570
2 to 3 0.65 7.2 0.23 2 0.054 77 3.0 NA 0		25	3 \$	2.30	•	0.41	د		118			0.235
2 0.054 77 3.0 NA 0.		30	3 \$	4 1	•	0.32	4		124		0.033	0.156
	لاد		3	0.05	• H	0.23	2	.05	77		NA N	0.136

Table 8 Cont...

Ferric	Floc	Unf11	tered		,	F	Filtered			
 Chloride Dose mg/L	Size	Turb- idity NTU	Нф	Turb- idity NTU	Colour	Ultra- violet Absorb- ance (254nm)	THMFP ug/L	DOC mg/L	Total Alumi- nium mg/L	Total Iron mg/L
			Re	sin Tre	ated Wate	Resin Treated Water (3mL/L)				
C		6.60	7.3	3.30	13	0.069	52	3.8	0.284	0.238
. u	2	4.90	7.7	0.25	< 1	0.040	22	3.1	0.079	0.077
, <u>-</u>		00	7.6	0.11	¢1	0.033	14	2.5	0.031	0.023
1 1 2		09.0	7.5	0.10	~	0.032	16	1.8	0.022	0.027
20	3 5	38	7.3	60.0	1	0.031	12	1.9	0.018	0.032
2 C	3 5	0.34	7.2	0.09	7	0.030	24	1.9	0.018	0.044
 30	3 20 4	0.32	7.0	0.10	∵	0.028	6	1.9	0.019	0.054

- 43 -

Example 9

Water sampled at Myponga Reservoir, South Australia was treated with resin and the loaded resin contained approximately 6 milligrams DOC per ml of wet resin. The loaded resin was then subjected to a number of regeneration methods employing brine solutions having varying concentrations of sodium chloride. The resin used was manufactured according to in Example Resin 1.

In the first method the loaded resin (50ml) was dispersed in a sodium chloride solution at varying molar concentrations (100ml). In the second method a 200ml column was packed with loaded resin (50ml) and the sodium chloride solutions (100ml) were placed on top of the packed resin and the resin and sodium chloride solution were mixed thoroughly by sparging nitrogen through the column. In the third method a 200ml column was packed with loaded resin (50ml) and the sodium chloride solutions (100ml) were placed on top of the packed resin. The sodium chloride solutions were allowed to pass through the packed resin.

The resultant sodium chloride solutions were measured for UV absorbance and DOC. The results are shown in Table 9 and 10 and the higher organic content of the regenerant solution demonstrates the particular effectiveness of employing a packed column to regenerate the resin.

- 44 Optimising Regeneration With Columns

Table 9

5

Regeneration	Ultraviolet	Absorbance
Method	Sodium Chloride 1.0 Molar	Sodium Chloride 1.5 Molar
Stirred 24 hours	15.40	19.80
Column (mixed by aeration)	15.60	23.80
Column (no mixing)	24.10	29.80

15

10

Table 10

-	4	•
	ſ	٠.

25

Method*	UV Absorbance	DOC mg
Column (mixed by aeration)	21.4	50
Column (no mixing)	29.9	65

*Employed 1.5 Molar Sodium Chloride

Example 10

Water sampled from the Myponga Reservoir, South Australia was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during run was about 20°C.
 - · Resin used was manufactured according to Example Resin 1.
 - · Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for approximately 20 minutes and decanting clarified water. The clarified water was measured for UV absorbance and
- DOC. Chlorine demand tests and THMFP tests were subsequently conducted on the clarified water. The results are shown in Table 11.

Example 11

- 15 River Murray water sampled at Mamnun, South Australia was treated with varying resin concentrations under the following laboratory conditions:
 - · Water temperature during run was about 20°C.
 - · Resin used was manufactured according to in Example Resin 1.
 - Contacted resin and water by stirring at 100rpm for 10 minutes.
- Resin removed by settling for approximately 20 minutes and decanting clarified water. The clarified water was measured for UV absorbance and DOC. Chlorine demand tests and THMFP tests were subsequently conducted on the clarified water. The results are shown in Table 12.

- 46 -

Table 11

5

Resin Dose mL/L	Ultraviolet Absorbance 254nm	DOC mg/L	Chlorine Demand mg/L	THMFP ug/L
0	0.320	8.1	4.1	397
1	0.181	5.1	2.6	207
2	0.125	3.9	1.7	156
3	0.084	3.0	1.0	117

15

10

Table 12

20

Resin Dose mL/L	Ultraviolet Absorbance 254nm	DOC mg/L	Chlorine Demand mg/L	THMFP ug/L
0	0.103	4.4	3.0	212
1	0.057	3.1	2.0	135
2	0.041	2.7	1.5	102
3	0.028	2.3	1.5	80

25

Example 12

Treated effluent from the Handorf Sewage Treatment Works was treated with varying resin concentrations under the following laboratory conditions:

- 5 · Water temperature during run was approximately 20°C.
 - · Resin used was manufactured according to Example Resin 2.
 - · Contacted resin and water by stirring at 100rpm for 10 minutes.
 - Resin removed by settling for approximately 20 minutes and decanting clarified water.

10

The clarified water was then measured for UV absorbance and DOC. The results are shown in Table 13.

15

Table 13

Resin Dose mL/L	Ultraviolet Absorbance 254nm	DOC mg/L
0 1 2 3	0.164 0.131 0.109 0.092	

20

25 Example 13

Water sampled at Happy Valley, South Australia was subjected to membrane filtration in combination with resin treatment.

The membrane filtration unit was operated at 100kpa at a flow rate of 5 litres per hour. The temperature of the water was about 20°C.

The effectiveness of the membrane filtration was measured on raw water and on water treated with resin under the following laboratory conditions:

Water temperature during run was about 20°C.

5

10

- Resin used was manufactured according to Example 4.
- Contacted 4 mL/L of wet resin and water by stirring at 100rpm for 10 minutes.
- Resin removed by settling for about 20 minutes and decanting clarified water.

The results of measurements of pH, turbidity, colour, UV absorption and DOC are shown in Table 14. It can be seen that the combination of resin treatment prior to membrane filtration results in acceptable water quality without the need for additional chemicals such as coagulating agents and the like.

Table 14

15	Analysis	Raw Water		Resin Treated		
	•,	Before Membrane	After Membrane	Before Membrane	After Membrane	
20	pH Turbidity (NTU) Colour (HU) UVabs DOC (mg/L)	7.8 5.20 60 0.276	8.2 0.37 32 0.197	7.8 5.20 12 0.067	8 0.32 5 0.048	

Example 14

30

- Some waters are prechlorinated prior to the water treatment process. Water sampled at Myponga Reservoir, South Australia was prechlorinated with varying doses of chlorine under the following laboratory conditions:
 - Water treatment during the run was about 20°C.
 - The prechlorination occurred over 16 hours in the dark.

The prechlorinated water was treated with 1 millilitre of wet resin per 2 litres of prechlorinated water under the following laboratory conditions:

Water temperature during the run was about 20°C.

- 49 -

- Resin used was manufactured according to Example Resin 1.
- Contacted resin and water by stirring at 100rpm for 30 minutes.
- Resin removed by settling for about 20 minutes and decanting clarified water.

5

The clarified water was measured for colour, UV absorption and DOC and the results are shown in Table 15. These results show that the process is also effective for removing chlorinated DOC from solution.

10

Table 15

15	Prechlorination Dose mg/L	- Colour HU	UVabs	DOC mg/L
	0 mg/L 3 " 6 " 9 "	49 39 32 29	0.321 0.274 0.246 0.229	7.7 8.0 8.0 7.8
20	0 mg/L + resin 3 " " 6 " "	27 18 13 17	0.158 0.136 0.119 0.115	4.8 5.0 4.9 4.8

25

30

It will be appreciated that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention encompasses all such variations and modifications that fall within the spirit and scope. For example, the present process may be employed for the removal of contaminants other than DOC from water. It may be necessary to select an ion-exchange resin with anionic functional groups.

CLAIMS:

1. A process for the removal of dissolved organic carbon from water, which process includes the following steps:

5

- a. adding an ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing the resin in the water to enable adsorption of the dissolved
 organic carbon onto the resin; and
 - c. separating the resin loaded with the dissolved organic carbon from the water.
- 15 2. A process according to Claim 1 wherein the resin is dispersed by mechanical agitation, mixing pumps immersed in the water or air agitation.
 - 3. A process according to either Claim 1 or Claim 2 wherein the loaded resin is separated from the water by settling, screening or a combination thereof.

20

- 4. A process according to Claim 3 wherein the loaded resin is separated from the water by settling and wherein the ion exchange resin is more dense than the water.
- 25 5. A process according to Claim 4 wherein the settled resin is collected by vacuum collection.
 - 6. A process according to either Claim 4 or Claim 5 wherein the settling is facilitated by tilted plates or tubular modules.

30

7. A process according to any one of Claims 1 to 6 wherein the ion-exchange resin has cationic functional groups.

- 51 -

- 8. A process according to any one of Claims 1 to 7 wherein the ion-exchange resins is particulate and the particles have a diameter less than 100 µm.
- 9. A process according to Claims 8 wherein the ion-exchange resins particles
 5 have a diameter in the range of from 25 µm to 75 µm.
 - 10. A process according to any one of Claims 1 to 9 wherein the ion-exchange resin is macroporous.
- 10 11. A process according to any one of Claims 1 to 10 wherein the ionexchange resin is manufactured from cross-linked polystyrene based polymers.
 - 12. A process according to any one of Claims 1 to 11 wherein the ion-exchange resin is present in the water in the range of from 0.5 to 5ml of wet resin per litre of water.
 - 13. A process according to any one of Claims 1 to 12 wherein the resin is recycled and regenerated.
- 20 14. A process according to any one of Claims 1 to 13 wherein the process includes the resin regeneration steps:
 - a. packing the spent resin into a column;
- b. passing brine through the packed column for desorption of the dissolved organic carbon from the resin.
- 15. A process according to any one of Claims 1 to 14 which comprises a process for the removal of contaminants from solution wherein the ion-exchange30 resin is dispersed in the contaminated water.
 - 16. A process according to any one of Claims 1 to 15 wherein the ion-

PCT/AU95/00583

WO 96/07615

exchange resin is a magnetic ion-exchange resin.

17. A process for the removal of dissolved organic carbon from water, which process includes the following steps:

5

- adding a magnetic ion-exchange resin to water containing dissolved organic carbon;
- b. dispersing the resin in the water to enable adsorption of the dissolved
 organic carbon onto the magnetic ion-exchange resin;
 - c. agglomerating the magnetic ion-exchange resin loaded with the dissolved organic carbon; and
- 15 d. separating the agglomerated magnetic ion-exchange resin loaded with the dissolved organic carbon from the water.
- 18. A process according to Claim 17 wherein the magnetic ion-exchange resin is dispersed in the water with sufficient shear to maintain the magnetic ion-exchange resin in a dispersed state.
 - 19. A process according to either Claim 17 or Claim 18 wherein the loaded resin is separated from the water by settling, screening or a combination thereof.
- 25 20. A process according to Claim 19 wherein the loaded resin is separated from the water by settling and wherein the ion exchange resin is more dense than the water.
- 21. A process according to Claim 20 wherein the settled resin is collected by vacuum collection.
 - 22. A process according to either Claim 20 or Claim 21 wherein the settling is

facilitated by tilted plates or tubular modules.

23. A process according to any one of Claims 17 to 22 wherein the ion-exchange resin has cationic functional groups.

5

- 24. A process according to any one of Claims 17 to 23 wherein the ion-exchange resin is particulate and the particles have a diameter less than 100 µm.
- 25. A process according to any one of Claims 17 to 24 wherein the ion-10 exchange resin particles have a diameter in the range of from 25 µm to 75 µm.
 - 26. A process according to any one of Claims 17 to 25 wherein the ion-exchange resin is macroporous.
- 15 27. A process according to any one of Claims 17 to 26 wherein the ionexchange resin is manufactured from cross-linked polystyrene based polymers.
- 28. A process according to any one of Claims 17 to 27 wherein the ion-exchange resin is present in the water in the range of from 0.5 to 5ml of wet 20 resin per litre of water.
 - 29. A process according to any one of Claims 17 to 28 wherein the resin is recycled and regenerated.
- 25 30. A process according to any one of Claims 17 to 29 wherein the process includes the resin regeneration steps:
 - a. packing the spent resin into a column;
- b. passing brine through the packed column for desorption of the dissolved organic carbon from the resin.

- 31. A process according to any one of Claims 17 to 30 which comprises a process for the reproval of contaminants from solution wherein the ion-exchange resin is dispersed in the contaminated water.
- 5 32. A process according to any one of Claims 1 to 31 wherein said process includes the additional step of disinfecting the water.
 - 33. A process according to Claim 32 wherein the water is disinfected with chlorine.
- 34. A process according to any one of Claims 1 to 33 wherein said process is a pre-treatment prior to subjecting the pretreated water to membrane filtration.
- 35. A process according to any one of Claims 1 to 33 wherein said process is
 15 a pretreatment prior to subjecting the pretreated water to a coagulation/sedimentation process.
- 36. A process according to any one of Claims 1 to 35 wherein the process includes the additional step of treating the water with activated carbon after
 20 treatment with the ion-exchange resin.
 - 37. A process substantially as hereinbefore described with reference to any one of the foregoing Examples.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/AU 95/00583

A. **CLASSIFICATION OF SUBJECT MATTER**

Int Cl6: C02F 1/42, B01J 47/10

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC C02F 1/42, B01J 47/10, C02F 1/28, C02B 1/72, C02B 1/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched AU: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) DERWENT: (ION() EXCHANG:) AND (C02F 1/28)

C .	DOCUMENTS CONSIDERED TO BE RELEVAN	Т	
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim	No.
X	GB 1,559,809 A (NORTHERN ENGINEERING January 1980 Page 3, lines 42-55, page 7, lines 31-50, claim 1	G INDUSTRIES LIMITED) 30 1, figure 1 1-15	
x	AU 5595/54 (202217) B (THE PERMUTIT CO. Claim 3	MPANY LIMITED) 23 June 1955	
х	US 5,152,896 A (MAZET et al.) 6 October 1992 Whole document	1-15	
x	Further documents are listed in the continuation of Box C	X See patent family annex	
"A" docume not cor earlier interna docume or white another exhibit docume date bu	ent defining the general state of the art which is sidered to be of particular relevance document but published on or after the tional filing date ent which may throw doubts on priority claim(s) this cited to establish the publication date of citation or other special reason (as specified) ent referring to an oral disclosure, use, ion or other means ent published prior to the international filing that the priority date claimed	priority date and not in conflict with the application but cite understand the principle or theory underlying the invention document of particular relevance; the claimed invention can be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention can be considered to involve an inventive step when the document of particular relevance; the claimed invention can be considered to involve an inventive step when the docume combined with one or more other such documents, such combination being obvious to a person skilled in the art	not
20 December 19	995	Date of mailing of the international search report 28 December 1995	
Name and mailir AUSTRALIAN I PO BOX 200 WODEN ACT AUSTRALIA	NDUSTRIAL PROPERTY ORGANISATION 2606 Facsimile No.: (06) 285 3929	Authorized officer Jim LACKIE Telephone No.: (06) 283 2272	

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/AU 95/00583

	PCT/AU 95/0058				
C (Continua	C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
х	US 4,154,675 A (JOWETT et al.) 15 May 1979 Columns 3-8, claims 1-19, figures 1-6	1-15,32-37			
x	US 4,537,683 A (ISACOFF et al.) 27 August 1985 Whole document	1-15,32-37			
x	DERWENT ABSTRACT ACCESSION No. 86-281075/43, Class A 91, D 15, JP 61-204080 A (TOKUYAMA SODA KK) 10 September 1986 ABSTRACT	1			
x	DERWENT ABSTRACT ACCESSION No. 92-288534/35, Class A 91, D 15, E 19, J01, JP 04-197435 A (SUMITOMO CHEM CO LTD) 17 July 1992 ABSTRACT	1			
x	DERWENT ABSTRACT ACCESSION No. 91-255202/35, Class A 97, D 15, HU T056044 A (VILLAMOSENERGIAIPARI KI) 29 July 1991 ABSTRACT	1			
x	WO 93/21114 A (ENVIMAG B.V.) 28 October 1993 Page 6, lines 17-34, claims 1-4, figures 1-3	1-4,13,15- 20,29,31			
х	AU 20648/67 (435693) B (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION) 23 October 1969 Whole document	16-31			
x	AU 32207/78 (511749) B (ICI AUSTRALIA LIMITED AND COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION) 12 July 1979 Page 6, lines 6-11, page 10, lines 15-23, examples 8,11	16,17			
Α	EP 522856 A1 (BRADTEC LIMITED) 13 January 1993 Whole document	16-31			
Α	AU 43000/93 A (MONASH UNIVERSITY) 6 January 1994 Page 12, line 23 - page 13, line 23, claims 21-25	16-31			
x	AU 52709/79 (534146) B (ICI AUSTRALIA LIMITED AND COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION) 5 June 1980 Page 9, lines 10-21, page 10, lines 22-34, example 2.	16-31			

INTERNATIONAL SEARCH REPORT

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent D	ocument Cited in Search Report			Pater	nt Family Member		
GB	1559809	AU	22710/77	DK	876/77	NL	7702147
US	5152896	AT	92895	CA	2034077	DE	69100232
		EP	438331	ES	2046016	FR	2657076
		JP	06-121983				
US	4154675	AR	218595	AU	56408/73	BE	800402
		CA	1005585	DE	2328086	DK	146001
		ES	415487	FR	2186289	GB	1436547
		ΙE	37732	IN	139111	IT	985276
		JP	50-043054	NL	7307704		
US	4537683	CA	1191627	JP	58-133837		
wo	93/21114	EP	636109	NL	9200707		
AU	20648/67	DE	1769201	GB	1231601	US	3560378
AU	52709/79	EP	11870	ES	486502	JP	55-088841
AU	32207/78	DE	2800160	FR	2376873	GB	1577820
		JP	53-108189	US	4246355		
EP	522856	AT	112180	CA	2073568	CZ	9202169
		DE	69200465	ES	2062866	GB	9115018
		US	5397476				
AU	43000/93	EP	647160	wo	94/00237		

END OF ANNEX