Lecture 5Balanced Three Phase Systems

- Agenda

Lecture

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

Three Phase Voltages and Current

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Identify Balanced Three Phase System Components
- Compute the Voltages and Currents in a balanced three phase system.

Things to Watch out For.

- The Operator "a"
- Neutral Conductor

BALANCED THREE-PHASE SYSTEMS

Balanced Three-Phase Voltages

Transforming to phasors, we get

$$\overrightarrow{V}_{a} = V \angle \theta$$

$$\overrightarrow{V}_{b} = V \angle \theta - 120^{\circ}$$

$$\overrightarrow{V}_{c} = V \angle \theta + 120^{\circ}$$

Balanced Three-Phase Currents

The currents

$$i_a = \sqrt{2} I_m \cos(\omega t + \theta)$$

$$i_b = \sqrt{2} I_m \cos (\omega t + \theta - 120^\circ)$$

$$i_c = \sqrt{2} I_m \cos (\omega t + \theta + 120^\circ)$$

are three-phase balanced.

In phasor form, we get

$$\overrightarrow{I}_a = \mathbf{I} \angle \theta$$

$$\overrightarrow{I}_b = I \angle \theta - 120^{\circ}$$

$$\vec{I}_c = I \angle \theta + 120^{\circ}$$

Balanced Three-Phase System

A balanced three-phase system consists of:

- 1. Balanced three-phase sinusoidal sources;
- 2. Balanced three-phase loads; and
- 3. The connecting wires have equal impedances.

A balanced three-phase load has:

- a) Equal impedances per phase; or
- b) Equal P and Q per phase.

Note: The load may be connected in wye or delta.

Three Phase System Components

- Sources
- Loads
- Lines

Three-Phase Sources

Wye-Connected Source

Delta-Connected Source

Note 1: The synchronous generator is a three-phase machine designed to generate balanced three-phase voltages.

Note 2: Neutral point *n* exists only for wye-connected systems.

Three-Phase Loads

Wye-Connected Load

Delta-Connected Load

Note: Neutral point *n* 'exists only for wye-connected systems.

Given $V_a = 200/0^{\circ}$ volts, $V_b = 200/-120^{\circ}$ volts and $V_c = 200/120^{\circ}$ volts. Find the phasor currents I_a , I_b and I_c . Also, find P and Q supplied to Z_a , Z_b and Z_c and the load power factor.

Mesh equations using loop currents I_1 and I_2 .

$$V_a - V_b = 2(Z_f + Z_L)I_1 - (Z_f + Z_L)I_2$$

 $V_b - V_c = -(Z_f + Z_L)I_1 + 2(Z_f + Z_L)I_2$

Substitution gives

$$300 + j173.2 = (16 + j12)I_1 - (8 + j6)I_2$$
$$- j346.4 = -(8 + j6)I_1 + (16 + j12)I_2$$

Solving simultaneously we get

$$I_1 = 20\angle -36.87^{\circ}$$
 A
 $I_2 = 20\angle -96.87^{\circ}$ A

Solving for currents I_a, I_b and I_c:

$$I_a = I_1 = 20 \angle -36.87^{\circ}$$
 A

$$I_{h} = I_{2} - I_{1} = 20 \angle -156.87^{\circ}$$

$$I_c = -I_2 = 20 \angle 83.13^{\circ}$$
 A

Note: Currents I_a , I_b and I_c are balanced.

Try to get the sum of the currents. What is it equal to?

Power and Reactive Power supplied to load impedances Z_a , Z_b and Z_c .

$$P_a = P_b = P_c = |I|^2 R = (20)^2 (7) = 2800 \text{ Watts}$$

 $Q_a = Q_b = Q_c = |I|^2 X = (20)^2 (5) = 2000 \text{ VARs}$

Note: These equations for P and Q are correct if R and X are used

The Operator "a"

Define:
$$a = 1 \angle 120^{\circ} = 1e^{j2\pi/3} = -0.5 + j0.866$$

 $a^2 = 1 \angle 240^{\circ} = 1e^{j4\pi/3} = -0.5 - j0.866$
 $a^3 = 1 \angle 360^{\circ} = 1e^{j2\pi} = 1 \angle 0^{\circ} = 1$

Note: $1 + a + a^2 = 0$

The sum of three-phase balanced phasors is zero.

Definitions: Voltages in Three-Phase Systems

Line-to-Line Voltage (V_{II})

The voltage across any two line terminals.

Line-to-Neutral Voltage (V_{LN})

The voltage across any one line terminal and neutral.

Phase Voltage (V_P)

The voltage across any one leg of a 3-phase system.

- Wye-connected: $V_P = V_{LN}$
- Delta-connected: $V_p = V_{LL}$

Line-to-Line, Line-to-Neutral, and Phase Voltages

Consider a three-phase wye-connected generator or a three-phase wye-connected load.

For a Delta Connected System?

For a balanced WYE-connected three-phase system, from KVL:

$$V_{ab} = V_{an} + V_{nb}$$

$$= V_{an} - V_{bn}$$

$$= V \angle 0^{\circ} - V \angle -120^{\circ}$$

$$= V (1 - a^{2})$$

$$V_{ab} = V (\sqrt{3} \angle 30^{\circ})$$

$$\left|V_{LL}\right| = \sqrt{3} \left|V_{LN}\right|$$

Definitions: Currents in Three-Phase Systems

Line Current (I_L)

The current flowing through lines from source to load.

Phase Current (I_P)

The current flowing through any one leg of the system.

- Wye connection: $I_P = I_L$
- Delta connection: $I_P = \frac{I_L}{\sqrt{3}}$

Note: There is no definition for "Line-to-Line Current."

Line and Phase Currents

Consider a three-phase delta-connected generator or a three-phase delta-connected load.

For the balanced DELTA-connected three-phase load, from KCL:

$$I_{A} = I_{ab} - I_{ca}$$

= $I \angle 0^{\circ} - I \angle 120^{\circ}$
= $I (1 \angle 0^{\circ} - 1 \angle 120^{\circ})$
= $I (1-a)$
 $I_{A} = I (\sqrt{3} \angle -30^{\circ})$

$$\left|I_L\right| = \sqrt{3} \left|I_P\right|$$

Voltage and Current Equations

For balanced three-phase systems:

Wye - connected

Delta - connected

$$|V_{LL}| = \sqrt{3} |V_{LN}|$$

$$I_p = I_L$$

$$V_P = V_{LL}$$

$$I_p = \frac{I_L}{\sqrt{3}}$$

Δ-Y Conversion for Generators

Given a balanced 3-phase delta connected generator, what is its equivalent wye?

Note: The line-to-line voltages must be the same.

If
$$V_{ab} = V_L \angle \alpha$$
, then $V_{an} = (1/\sqrt{3}) V_L \angle \alpha - 30^\circ$

Conversion for a Generator with Z

Given \vec{V}_{ab} and Z_{Δ} , find \vec{V}_{an} and Z_{Y}

We get

$$\vec{V}_{an} = (\frac{1}{\sqrt{3}} \angle - 30^{\circ}) \vec{V}_{ab}$$

The Neutral Conductor

Consider a balanced three-wire three-phase system with wyeconnected generator and loads.

The Neutral Conductor

- 1. The sum of balanced phasors is zero.
- 2. If a neutral conductor is connected between n and n', no current will flow through the neutral conductor.
- 3. The nodes n and n' are at the same potential!
- 4. \square We can analyze the circuit using single-phase analysis.

Example

The terminal voltage of a wye-connected load consisting of three equal impedances of $20 \angle 30^\circ$ Ω is 4.4 kV line-to-line. The impedance of each of the three lines connecting the load to a bus at a substation is $Z_L = 1.4 \angle 75^\circ$. Find the line-to-line voltage at the substation bus.

The magnitude of voltage-to-neutral at the load is:

$$V_{a'n'} = \frac{4400}{\sqrt{3}} = 2540 \text{ V } \angle 0^{\circ} \text{ (as reference)}$$

$$I_{a'n'} = \frac{2540 \angle 0^{\circ}}{20 \angle 30^{\circ}} = 127 \,\text{A} \angle -30^{\circ}$$

The line-to-neutral voltage at the substation is:

$$\begin{split} V_{a'n'} + I_{a'n'} \cdot Z_L &= 2540 \angle 0^\circ + 127 \angle -30^\circ \left(1.4 \angle 75^\circ \right) \\ &= 2666 + j125.7 \\ &= 2670 \angle 2.70^\circ \text{V} + \underbrace{\frac{127 \angle -30^\circ \text{ A}}{1.4 \angle 75^\circ \Omega}}_{1.4 \angle 75^\circ \Omega} \end{split}$$

The voltage magnitude $2670 \angle 2.7^{\circ}$ at the substation is $4.62 \text{ kV} \ge 67\sqrt{3}$

Homework

Balanced 3-phase system with $V_{ab} = 173.2 \angle 0^{\circ}$ and wye-connected load with $Z_{LOAD} = 10 \angle 20^{\circ}$ Ω . Assume a-b-c phase sequence.

- 1. Draw the described balanced three phase system. Don't forget to properly label the voltages and currents
- 2. Determine all phasor voltages and currents.