Assignment-4

EE24BTECH11048-NITHIN.K

1 SECTION-A

- 1) If $y = m_1x + c_1$ and $y = m_2x + c_2$, $m_1 \neq m_2$ are two common tangents of circle $x^2 + y^2 = 2$ and parabola $y^2 = x$, then the value of $8|m_1m_2|$ is equal to
 - a) $3 + 4\sqrt{2}$
 - b) $-5 + 6\sqrt{2}$
 - c) $-4 + 3\sqrt{2}$
 - d) $7 + 6\sqrt{2}$
- 2) Let Q be the mirror image of the point P(1,0,1) with respect to the plane S: x + y + z = 5. If a line L passing through (1, -1, -1), parallel to the line PQ meets the plane S at R, then QR^2 is equal to:
 - a) 2
 - b) 5
 - c) 7
 - d) 11
- 3) If the solution curve y = y(x) of the differential equation $y^2 dx + (x^2 xy + y^2) dy = 0$, which passes through the point (1,1) and intersects the line $y = \sqrt{3}x$ at the point $(\alpha, \sqrt{3}\alpha)$, then the value of $\ln(\sqrt{3}\alpha)$ is equal to

 - a) $\frac{\pi}{3}$ b) $\frac{\pi}{2}$ c) $\frac{\pi}{12}$ d) $\frac{\pi}{6}$
- 4) Let x = 2t, $y = \frac{t^2}{3}$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $SA \perp BA$, where A is any point on the conic. If k is the ordinate of the centroid of $\triangle SAB$, then $\lim_{t\to 1} k$ is equal to
 - a) $\frac{17}{18}$ b) $\frac{19}{19}$
 - b)
 - c)
- 5) Let a circle C in complex plane pass through the points $z_1 = 3 + 4i$, $z_2 = 4 + 3i$ and $z_3 = 5i$. If $z \neq z_1$ is a point on C such that the line through z and z_1 is perpendicular to the line through z_2 and z_3 , then arg(z) is equal to :
 - a) $\tan^{-1}\left(\frac{2}{\sqrt{5}}\right) \pi$
 - b) $\tan^{-1}\left(\frac{24}{7}\right)' \pi$
 - c) $\tan^{-1}(3) \pi$
 - d) $\tan^{-1}(\frac{3}{4}) \pi$

2 SECTION-B

- 1) Let C_r denote the binomial coefficient of x^r in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C_1+3\cdot 2C_2+5\cdot 3C_3+...$ upto 10 terms = $\frac{\alpha\times 2^{11}}{2^{\beta}-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+...upto\,10terms\right)$ then the value of $\alpha+\beta$ is equal to
- 2) The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is
- 3) Let θ be the angle between the vectors \mathbf{a} and \mathbf{b} , where $|\mathbf{a}| = 4$, $|\mathbf{b}| = 3$, $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{3}\right)$. Then $|(\mathbf{a} \mathbf{b}) x (\mathbf{a} + \mathbf{b})|^2 + 4 (\mathbf{a} \cdot \mathbf{b})^2$ is equal to
- 5) The number of values of x in the interval $\left(\frac{\pi}{4}, \frac{7\pi}{4}\right)$ for which $14 \csc^2 x 2 \sin^2 x = 21 4 \cos^2 x$ holds, is
- 6) For a natural number n, let $a_n = 19^n 12^n$. Then, the value of $\frac{31\alpha_9 \alpha_10}{57\alpha_8}$ is
- 7) Let $f: R \to R$ be a function defined by $f(x) = \left(2\left(1 \frac{x^{25}}{2}\right)\left(2 + x^{25}\right)\right)^{\frac{1}{50}}$. If the function g(x) = f(f(f(x))) + f(f(x)), then the greatest integer less than or equal to g(1) is
- 8) Let the lines

$$L_1$$
: $\mathbf{r} = \lambda (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}), \ \lambda \in R$
 L_2 : $\mathbf{r} = (\mathbf{i} + 3\mathbf{j} + \mathbf{k}) + \mu (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) ; \ \mu \in R$

intersect at the point S. If a plane ax + by - z + d = 0 passes through S and is parallel to both the lines L_1 and L_2 , then the value of a+b+d is equal to

- 9) Let A be a 3 x 3 matrix having entries from the set $\{-1,0,1\}$. The number of all such matrices A having sum of all entries equal to 5, is
- 10) The greatest integer less than or equal to the sum of first 100 terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81},...$ is equal to