En Küçük Kareler Sınıflandırma

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dr. Öğr. Üyesi İşık İlber Sırmatel sirmatel.github.io

Kaynak (source)

Lecture Slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe

Konu listesi

1. Sınıflandırma

2. En küçük kareler sınıflandırma

3. Çok sınıflı sınıflandırma

Bölüm 1

Sınıflandırma

Sınıflandırma

- sayısal olmayan değerler alan sonuçlar (outcome) ile veri uydurma yapmak istiyoruz
- ▶ bu tip sonuçlara bazı örnekler:
 - DOĞRU (true) veya YANLIŞ (false)
 - SPAM veya SPAM DEĞİL
 - KEDİ, KÖPEK veya FARE
- ► sonuç değerlerine etiket (*label*) veya kategori denir
- ▶ bu şekilde yapılan veri uydurmaya sınıflandırma (classification) denir
- ► sadece iki olası sonucun olduğu bir duruma bakalım
- ▶ bu sınıflandırmaya Boole veya iki-yönlü sınıflandırma denir
- ▶ sonuçları +1 ($DO\check{G}RU$) ve -1 (YANLI\$) olarak modelleyelim
- lacktriangle sınıflandırıcı formu: $\hat{y} = \hat{f}(x)$, $f: \mathbb{R}^n \to \{-1, +1\}$

Sınıflandırma - Uygulama örnekleri

- ▶ spam e-posta saptaması: x bir e-postanın özniteliklerini (sözcük sayıları vs.) içerir
- ► finansal işlemde sahtecilik saptaması: x yapılması istenen bir işlemin özniteliklerini (işlem tutarı vs.) içerir
- ▶ belge sınıflandırma: x belgenin sözcük sayıları vektörü
- ► hastalık saptaması: *x* hastanın özniteliklerini ve tahlil sonuçlarını içerir
- lacktriangle dijital haberleşme alıcısı: y gönderilen bit; x alınan işaretten n adet ölçüm içerir

Öngörü hataları

- \blacktriangleright veri noktası (x,y), öngörülen (tahmin edilen) sonuç $\hat{y}=\hat{f}(x)$
- ► sadece dört olasılık vardır:
 - doğru pozitif: y = +1 ve $\hat{y} = +1$
 - doğru negatif: y=-1 ve $\hat{y}=-1$

(bu iki durumda öngörü doğrudur/hatasızdır (correct))

- vanlıs pozitif: y = -1 ve $\hat{y} = +1$
- yanlış negatif: y = +1 ve $\hat{y} = -1$

(bu iki durumda öngörü yanlıştır/hatalıdır (wrong))

▶ hatalara birçok farklı isim verilir, örneğin: Tip 1 ve Tip 2

Karışıklık matrisi

- ightharpoonup veri kümesi $x^{(1)}, \ldots, x^{(N)}, y^{(1)}, \ldots, y^{(N)}$ ve sınıflandırıcı \hat{f} verilsin
- ► dört sonuçtan her birini sayalım:

	$\hat{y} = +1$	$\hat{y} = -1$	toplam
y = +1	$N_{ m tp}$	$N_{ m fn}$	$N_{ m p}$
y = -1	$N_{ m fp}$	$N_{ m tn}$	$N_{\rm n}$
hepsi	$N_{\mathrm{tp}} + N_{\mathrm{fp}}$	$N_{\rm fn}+N_{\rm tp}$	N

- ▶ köşegen-dışı terimlere öngörü hataları denir
- çeşitli hata oranları (error rate) ve ölçüm doğruluğu (accuracy measure) değerleri kullanılır
 - hata oranı: $\frac{N_{\text{fp}}+N_{\text{fn}}}{N}$
 - doğru pozitif oranı: $\frac{N_{\rm tp}}{N_{\rm p}}$
 - yanlış pozitif oranı: $\frac{N_{\rm fp}}{N_{\rm n}}$
- ► tasarlanan bir sınıflandırıcının başarımı bir test kümesi üzerindeki hata oranlarına göre değerlendirilir

Karışıklık matrisi - Örnek

▶ bir test kümesi üzerinde spam e-posta filtresi başarımı:

	$\hat{y} = +1$ (spam)	$\hat{y} = -1$ (spam değil)	toplam
y = +1 (spam)	95	32	127
y = -1 (spam değil)	19	1120	1139
hepsi	114	1152	1266

► hata oranı: $\frac{(19+32)}{1266} = \%4.03$

 \blacktriangleright yanlış pozitif oranı: $\frac{19}{1139} = \%1.67$

Bölüm 2

En küçük kareler sınıflandırma

En küçük kareler sınıflandırma

- ▶ standart en küçük kareler veri uydurma kullanarak model \tilde{f} 'i ikili (+1 ve -1) $y^{(i)}$ değerlerine uydurmak istiyoruz
- ▶ y = +1 olduğunda $\tilde{f}(x) + 1$ 'e yakın olmalı, y = -1 olduğunda ise +1'e yakın olmalı
- $ightharpoonup ilde{f}(x)$ bir sayıdır
- ightharpoonup model olarak $\hat{f}(x) = \operatorname{sign}(\tilde{f}(x))$ kullanalım
- ullet $\tilde{f}(x)$ 'in büyüklüğü öngörüye olan güven (confidence) ile bağıntılıdır

► MNIST veritabanı: 70000 adet 28 × 28 piksel görüntü (el yazısı rakam) içeriyor

3	0	Ч	1	9
2	j	3		4
3	5	3	6	1
7	2	8	6	9
Ч	0	9	/	1

- ➤ veri kümesi eğitim kümesi (60000) ve test kümesi (10000) olarak ayrılmış
- ▶ sol alttaki piksel daima siyah (0)
- ightharpoonup x 494-vektör: sabit 0 piksele ilave olarak sıfır-olmayan değerli 493 piksel değeri
- ightharpoonup x 784-vektör değil çünkü bazı pikseller bütün görüntülerde 0 (siyah) olduğundan veriyi sadeleştirilmiş
- lacktriangle etiketler: görüntüdeki el yazısı rakam 0 ise y=+1, aksi halde y=-1

en küçük kareler sınıflandırıcı sonuçları

lacktriangle eğitim kümesi (hata oranı %1.6)

	$\hat{y} = +1$	$\hat{y} = -1$	toplam
y = +1	5158	765	5923
y = -1	167	53910	54077
hepsi	5325	54675	60000

► test kümesi (hata oranı %1.6)

	$\hat{y} = +1$	$\hat{y} = -1$	toplam
y = +1	864	116	980
y = -1	42	8978	9020
hepsi	906	9094	10000

ightharpoonup önceden görülmemiş görüntüler üzerinde büyük ihtimalle %1.6 hata oranı elde ederiz

en küçük kareler uydurma sonuçlarının dağılımı ($\tilde{f}(x^{(i)})$ değerlerinin eğitim kümesi üzerindeki dağılımı)

en küçük kareler sınıflandırıcının katsayıları

Çarpık karar eşiği

• $\hat{f}(x) = \operatorname{sign}(\tilde{f}(x) - \alpha)$ formunda bir öngörücü (predictor) kullanalım:

$$\hat{f}(x) = \begin{cases} +1 & \tilde{f}(x) \ge \alpha \\ -1 & \tilde{f}(x) < \alpha \end{cases}$$

- $ightharpoonup \alpha$: karar eşiği (*decision threshold*)
- pozitif α için yanlış pozitif oranı daha düşük olur (bunu isteriz) ancak doğru pozitif oranı da daha düşük olur (bunu istemeyiz)
- negatif α için yanlış pozitif oranı daha yüksek olur (bunu istemeyiz) ancak doğru pozitif oranı da daha yüksek olur (bunu isteriz)
- doğru pozitife karşı yanlış pozitif oranlarını gösteren ödünleşim (trade-off) eğrisine "karar değerlendirme grafiği" (receiver operating characteristic, ROC) denir

karar eşiği lpha'nın fonksiyonu olarak hata oranları

karar değerlendirme grafiği

Bölüm 3

Çok sınıflı sınıflandırma

Çok sınıflı sınıflandırma

- ► K adet etiket (K > 2) var; etiket kümesi $\{1, 2, ..., K\}$
- lacktriangle öngörücü: $\hat{f}:\mathbb{R}^n \to \{1,\,2,\,\ldots,\,K\}$
- lacktriangle verilen öngörücü ve veri kümesi için karışıklık matrisi K imes K boyutludur
- bu matrisin bazı köşegen-dışı elemanları diğerlerinden çok daha kötü olabilir

Çok sınıflı sınıflandırma - Uyg. örnekleri

- el yazısı rakam sınıflandırma (piksel değerlerinden el yazısı rakamı tahmin etmek)
- pazarlama nüfus kesimi (marketing demographic) sınıflandırma (müşterilerin alışveriş geçmişlerinden nüfus kesimini tahmin etmek)
- hastalık tanılama (diagnosis) (tahlil sonuçları ve hasta özniteliklerinden, bir grup olası hastalık arasından doğru tanıyı tahmin etmek)
- çeviride sözcük seçimi (bağlam (context)
 özniteliklerinden, bir sözcüğün (birkaç seçenekli durumda)
 nasıl doğru çevrileceğini seçmek)
- belge konusu öngörüsü (sözcük sayısı histogramından belgenin konusunu tahmin etmek)

En küçük kareler çok sınıflı sınıflandırıcı

- her bir etiket için (diğer etiketlere karşı) bir en küçük kareler sınıflandırıcı kurulur
- ► çok sınıflı sınıflandırıcı

$$\hat{f}(x) = \operatorname{argmax}_{l \in \{1, \dots, K\}}(\tilde{f}_l(x))$$

formunda kurulur

- ightharpoonup bu sınıflandırıcı, K adet $\tilde{f}_l(x)$ arasından en yüksek değeri olanın indisi l'yi öngörü olarak seçer
- ▶ örneğin

$$\tilde{f}_1(x) = -0.7$$
 $\tilde{f}_2(x) = +0.2$ $\tilde{f}_3(x) = +0.8$

için sınıflandırıcı $\hat{f}(x)=3$ şeklinde öngörü yapar

test kümesi için karışıklık matrisi

	öngörü										
rakam	0	1	2	3	4	5	6	7	8	9	toplam
0	944	0	1	2	2	8	13	2	7	1	980
1	0	1107	2	2	3	1	5	1	14	0	1135
2	18	54	815	26	16	0	38	22	39	4	1032
3	4	18	22	884	5	16	10	22	20	9	1010
4	0	22	6	0	883	3	9	1	12	46	982
5	24	19	3	74	24	656	24	13	38	17	892
6	17	9	10	0	22	17	876	0	7	0	958
7	5	43	14	6	25	1	1	883	1	49	1028
8	14	48	11	31	26	40	17	13	756	18	974
9	16	10	3	17	80	0	1	75	4	803	1009
hepsi	1042	1330	887	1042	1086	742	994	1032	898	947	10000

hata oranı yaklaşık %14 (eğitim kümesi için olanla aynı)

yeni öznitelikler ekleme

- ▶ 5000 adet rastgele (!) öznitelik ekleyelim: $\max((Rx)_j, 0)$ ($R: 5000 \times 494$ -matris, elemanları ± 1 , rastgele seçilmiş)
- ► 5494 boyutlu yeni öznitelik vektörü için en küçük kareler sınıflandırma yapalım
- ightharpoonup sonuçlar: eğitim kümesi hata oranı %1.5, test kümesi hata oranı %2.6
- yeni öznitelikleri oluştururken biraz daha özenli olursak daha iyi sonuçlar almamız mümkün
- ► hatta, insanlar tarafından yapılan (!!) sınıflandırmadan bile daha iyi sonuçlar alınabilir

test kümesi için karışıklık matrisi (yeni öznitelikler ile)

	öngörü										
rakam	0	1	2	3	4	5	6	7	8	9	toplam
0	972	0	0	2	0	1	1	1	3	0	980
1	0	1126	3	1	1	0	3	0	1	0	1135
2	6	0	998	3	2	0	4	7	11	1	1032
3	0	0	3	977	0	13	0	5	8	4	1010
4	2	1	3	0	953	0	6	3	1	13	982
5	2	0	1	5	0	875	5	0	3	1	892
6	8	3	0	0	4	6	933	0	4	0	958
7	0	8	12	0	2	0	1	992	3	10	1028
8	3	1	3	6	4	3	2	2	946	4	974
9	4	3	1	12	11	7	1	3	3	964	1009
hepsi	997	1142	1024	1006	977	905	956	1013	983	997	10000