Nástroje molekulární biologie

Obsah

- Analýza DNA
- Analýza sekvence proteinů
- Analýza struktury proteinů

Analýza DNA

- Molekula DNA může být rozštěpena pomocí restrikčních endonukleáz
 - štěpí DNA ve specifických místech
 - rozpoznávaná sekvence má obvykle délku 4 8 nukleotidových párů
 - výsledkem štěpení je sada DNA fragmentů
 - délka specifické sekvence předurčuje velikost fragmentů
 - pravděpodobnost výskytu delších sekvencí je menší než pravděpodobnost výskytu kratších sekvencí

Analýza DNA

- Gelová elektroforéza:
 - umožňuje oddělit jednotlivé fragmenty DNA podle velikosti
 - směs fragmentů se nanese do žlábku v horní části tenkého gelu
 - gel mikroskopická síť pórů, umístěna do elektrického pole
 - fragmenty DNA se pohybují ke kladné elektrodě
 - dlouhé úseky se pohybují pomaleji
 - fragmenty se rozdělí podle velikosti
 - z výsledků lze vytvořit restrikční mapy (charakterizují DNA pozicemi různých značek)

AGAROSE GEL ELECTROPHORESIS METHOD NEGATIVE ELECTRODE Electric 1 3 Current Plasmid **DNA Bands** Vector are DNA separated **Less** By Size 1 COPYRIGHT MOLECULAR STATION.com Add DNA Sample onto Agarose Gel Lane #2 **POSITIVE ELECTRODE** (DNA Ladder is in Lane #1) **DNA Bands are** 4 5 **Exposed on Film** 1kb 500 bp Dye Added 200 bp Under UV Binds to less) **Light DNA is** DNA Visible Copyright 2008 Molecular Station.com

Sekvenování DNA

- Stanovení sekvence nukleotidů v DNA
- Založeno na syntéze částečných kopií sekvenovaného fragmentu
 - uměle je prováděna syntéza komplementárních řetězců ke zkoumané DNA (DNA-polymeráza)
 - ve 4 oddělených reakcích se produkují různě dlouhé částečné kopie sekvenovaného fragmentu, které končí daným nukleotidem
 - seřazením částečných kopií podle délky lze stanovit pořadí bází sekvenovaného fragmentu.

Read sequence as complement of bands containing labeled strands

Hybridizace nukleových kyselin

- řetězce DNA
 - vysoce selektivně se párují se svými komplementárními řetězci
 - řetězce drží pohromadě díky vodíkovým můstkům
- Vodíkové vazby mohou být přerušeny denaturace
 - zahřáním DNA na 90° stupňů
 - vystavením DNA extrémním hodnotám pH

Hybridizace

- proces obnovení vodíkových můstků mezi komplementárními řetězci
- dochází k ní pokud jsou příčiny denaturace pomalu odstraňovány
- DNA/DNA, RNA/RNA, RNA/DNA
- umožňuje detekci specifických nukleotidových sekvencí (pozice genu na chromozomu, dochází k transkripci daného genu?, došlo k mutaci v daném genu?)

Nucleic Acid Hybridization

PCR

- Polymerase chain reaction
- Umožňuje rychle namnožit konkrétní nukleotidovou sekvenci
- Opakované kopírování templátové molekuly DNA
- Řízena **primery** krátké oligonukleotidy, párují se s templátovou DNA na počátku a na konci amplifikovaného fragmentu
- Využití denaturace a hybridizace
- Diagnostika genetických chorob

Obsah

- Analýza DNA
- Analýza sekvence proteinů
- Analýza struktury proteinů

Analýza sekvence proteinů

- Selektivní štěpení proteinu určité enzymy a chemická činidla dovolují štěpit protein mezi specifickými aminokyselinami
- Peptidové fragmenty lze oddělit sloupcovou chromatografií nebo gelovou elektroforézou
- Primární strukturu krátkých peptidů lze zjistit opakovaným odštěpováním N-koncové aminokyseliny
- Peptidové fragmenty získané různými technikami se mohou překrývat – můžeme určit sekvenci celého proteinu
- Známe-li sekvenci 20 AK můžeme sestrojit odpovídající DNA a můžeme nalézt odpovídající gen. Sekvence AK se potom nepřímo odvodí ze sekvence nukleotidů.

Obsah

- Analýza DNA
- Analýza sekvence proteinů
- Analýza struktury proteinů

Analýza struktury proteinů

- Rentgenová krystalografie
 - krystal čistého proteinu se vloží do svazku paralelních rentgenových paprsků
 - atomy v krystalu způsobí rozptýlení některých paprsků určitým způsobem
 - rozptýlené paprsky se budou zesilovat v určitých bodech a vytvoří obrazec difrakčních skvrn na detektoru
 - poloha a intenzita skvrn informace o poloze atomů v krystalu proteinu
 - Ize vytvořit 3D mapu hustoty elektronů a ze znalosti sekvence lze vytvořit atomový model
 - potřebujeme krystal proteinu

Analýza struktury proteinů

- NMR-spektroskopie
 - (nuclear magnetic resonance)
 - roztok proteinu se umístí do silného magnetického pole a je vystaven pulzům rádiové frekvence
 - jádra atomů vodíků začnou vibrovat
 - blízké atomy vodíků se navzájem ovlivňují
 - Ize identifikovat signály z atomů vodíků a určit vzdálenost interagujících párů – vzdálenost mezi různými částmi proteinové molekuly
 - stanovení struktury malých proteinů nebo jejich domén (nutná znalost sekvence)

Literatura

Knihy:

- Dan K. Krane, Michael L. Raymer: Fundamental Concepts of Bioinformatics
- Eduard Kočárek: Genetika
- Alberts a kol.: Základy buněčné biologie