

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE SISTEMAS INTEGRADOS

EM608 – Elementos de Máquinas ES690 – Sistemas Mecânicos

2º Semestre de 2020 - Projeto 1

A Figura 1 apresenta um eixo de transmissão composto por duas engrenagens na região central e com rolamentos montados nas extremidades. Com base na aplicação desejada, o eixo irá operar sob rotação cíclica entre 1500 a 2000 RPM, com potência de 3HP e em temperatura inferior 400°C. As engrenagens possuem diâmetros de 80 mm (pinhão) e 150 mm (coroa ou engrenagem), ângulos de pressão ϕ de 20° e são montadas ao eixo com chavetas, sendo que os rasgos no eixo possuem raio de entalhe de 0,25 mm. Visto que o eixo deve ser dimensionado para vida infinita e considerando uma confiabilidade de 90%, um aço SAE 1045 (Tabela 1) foi escolhido para fabricar o eixo através do processo de usinagem. As chavetas, por sua vez, serão confeccionadas em aço baixo-carbono SAE 1010 (Tabela 2).

Figura 1 – Eixo de transmissão:(a)Vista Frontal; (b) Vista Lateral. Dimensões: A=50mm; B=100mm; C=50mm.

Tabela 1 – Propriedades Mecânicas do Aço SAE 1045

Propriedade	Valor
Resistência a tração (Sut) [Mpa]	627
Resistência ao Escoamento (Sy) [Mpa]	531

Tabela 2 – Propriedades Mecânicas do Aço SAE 1010

Propriedade	Valor
Resistência a tração (Sut) [MPa]	53
Resistência ao Escoamento (Sy) [MPa]	44

Com base na descrição previamente realizada e nas propriedades mecânicas da Tabela 1, determine os diâmetros das três principais secções deste eixo de transmissão (**d1**, **d2** e **d3**) considerando um coeficiente de segurança igual a 3.

ν	~	4	(r)	۱ ^b
\mathbf{n}_t	=	А	$\frac{\overline{d}}{d}$	J

where:

D/d	A	b	
6.00	0.878 68	-0.332 43	
3.00	0.893 34	-0.308 60	
2.00	0.908 79	-0.285 98	
1.50	0.938 36	-0.257 59	
1.20	0.970 98	-0.217 96	
1.10	0.951 20	-0.237 57	
1.07	0.975 27	-0.209 58	
1.05	0.981 37	-0.196 53	
1.03	0.980 61	-0.183 81	
1.02	0.960 48	-0.177 11	
1.01	0.919 38	-0.170 32	

$$K_t \cong A \left(\frac{r}{d}\right)^b$$
 where :

D/d	A	b
2.00	0.863 31	-0.238 65
1.33	0.848 97	-0.231 61
1.20	0.83425	-0.216 49
1.09	0.903 37	-0.126 92