Resolução da Questão Q4 - Colisão Elástica com Atrito

1. Dados do problema

- Massa m_1 colide elasticamente com a massa m_2 , inicialmente em repouso.
- m_2 está presa a um ponto fixo Q por um fio inextensível de R=0.5 m.
- Após a colisão, m_2 realiza $\frac{1}{4}$ de volta até parar no ponto C.
- Coeficiente de atrito cinético: $\mu_k = 0,2$.
- $m_2 = 2m_1$.

2. Velocidade de m_2 após o choque

a) Comprimento do arco

$$s = \frac{1}{4} \cdot 2\pi R = \frac{\pi R}{2} = \frac{\pi \cdot 0.5}{2} = \frac{\pi}{4} \text{ m}$$

b) Trabalho da força de atrito

$$f_{\rm at} = \mu_k m_2 g$$
 \Rightarrow $W_{\rm at} = -\mu_k m_2 g \cdot s = -\mu_k m_2 g \cdot \frac{\pi}{4}$

c) Energia cinética inicial = trabalho contra atrito

$$\frac{1}{2}m_2v_2^2 = \mu_k m_2 g \cdot \frac{\pi}{4} \Rightarrow v_2^2 = \frac{2\mu_k g\pi}{4} = \frac{\mu_k g\pi}{2} \Rightarrow v_2 = \sqrt{\frac{\mu_k g\pi}{2}}$$

Substituindo $\mu_k = 0.2 \text{ e } g = 9.8 \text{ m/s}^2$:

$$v_2 = \sqrt{\frac{0.2 \cdot 9.8 \cdot \pi}{2}} \approx \sqrt{3.08} \approx 1.755 \text{ m/s}$$

3. Colisão elástica frontal

a) Conservação da quantidade de movimento

$$m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f} \Rightarrow v_{1i} = v_{1f} + 2v_2$$
 (1)

b) Conservação da energia cinética

$$\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \Rightarrow v_{1i}^2 = v_{1f}^2 + 2v_2^2 \quad (2)$$

Substituindo (1) em (2):

$$(v_{1f} + 2v_2)^2 = v_{1f}^2 + 2v_2^2 \Rightarrow v_{1f}^2 + 4v_{1f}v_2 + 4v_2^2 = v_{1f}^2 + 2v_2^2$$

$$\Rightarrow 4v_{1f}v_2 + 2v_2^2 = 0 \Rightarrow 2v_2(2v_{1f} + v_2) = 0 \Rightarrow v_{1f} = -\frac{v_2}{2}$$

c) Resultados numéricos

$$v_{1f} = -\frac{1,755}{2} = -0.878 \text{ m/s}$$

$$v_{1i} = v_{1f} + 2v_2 = -0.878 + 3.51 = 2.632 \text{ m/s}$$

4. Impulso aplicado à massa m_1

$$I = \Delta p = m_1(v_{1f} - v_{1i}) = m_1(-0.878 - 2.632) = -3.51m_1 \text{ (kg·m/s)}$$

5. Resultados finais

- Velocidade de m_1 após o choque: $v_{1f} = -0.878 \text{ m/s}$
- Velocidade de m_2 após o choque: $v_{2f} = 1,755 \text{ m/s}$
- Velocidade inicial de m_1 : $v_{1i} = 2,632 \text{ m/s}$
- Impulso aplicado em m_1 : $I = -3.51m_1 \text{ kg·m/s}$