

Mikroprocesorové a vestavěné systémy – Projekt

Dokumentace M – Hra na displeji

Obsah

1	Úvo	d	2	
2	Kon	ace zařízení a prostředí 2		
	2.1	Technologie	2	
		2.1.1 ESP32	2	
		2.1.2 I2C OLED displej	2	
		2.1.3 Proporcionální joystick	2	
	2.2	IDF		
		2.2.1 Platformio	3	
	2.3	Zapojení a nastavení		
3	Imp	lementace	4	
	3.1	Knihovna ssd1306.h	4	
		3.1.1 Vlastní úprava knihovny		
	3.2		4	
		ϵ	4	
		• • •	4	
		3.2.3 Míč		
		3.2.4 Kolize		
		3.2.5 Vstup joysticku		
4	Vlas	stnosti projektu	6	
	4.1		6	
	4.2	Průběh hry	6	
	43	Ovládání		

1 Úvod

Cílem tohoto projektu bylo realizovat jednoduchou hru pro platfomormu *ESP32* za použití proporcionálního *joysticku* a *I2C displeje* jako vstupního a výstupního zařízrní. Hra, která byla implementovaná, je celosvětově známá pod názvem *Ping pong*. Důvodem zvolení této hry, je právě její nenáročnost na harware, kdy je třeba pracovat pouze se třemi v čase měnícími polohu objekt a to pouze v rámci dvojrozměrného pole.

2 Konfigurace zařízení a prostředí

V této sekci budou přiblíženy technologie vyžity při vypracovávýní projektu a popsáno připojení periferií k zařízení *ESP32*.

2.1 Technologie

Počet využitých technologií při vypracování této práce byl opravdu velký, proto budou níže zmíněny se základním popisem pouze ty nejvýznamější.

2.1.1 ESP32

ESP32 je série energeticky nenáročných technologií soustředá na jeden čip. Disponuje 4 MB Flash a 320 KB RAM pamětí a 240 Mhz procesorem Xtensa® dual-core 32-bit LX6 microprocessor a další spoustou funkcí (např.: WiFi, Bluetooth, I2C, UART, 34 programovatelných obecných regitrů, atd.)(více na [2]).

2.1.2 I2C OLED displej

Display využívá pro komunikaci s deskou rozhraní *I2C*. I2C je synchronní seriové rozhraní, které využívá využívá pro komunikaci model *Master/Slave* a dva vodiče (viz [1]):

- vodič SDA (Serial clock) datový vodič,
- vodič SLC (Data clock) vodič hodinového signálu.

Displej využivá technologi OLED, která se vyznačuje faktem, že diody reprezentující černou barvu opravdu nevyzařují žádné světlo a v podání černobílého displeje tak vytváři kontrast, který produkuje ostrý obraz i pro malá rozlišení, které je tomto případě 128x64 pixelů.

2.1.3 Proporcionální joystick

Joystick má v sobě zabudované 2 na sobě nezávislé *potenciometry* pro každou osu (*X* a *Y*), pomocí kterých jsme schopni za pomocí *Analogově-digitálního převodníku* určit přesně v jaké poloze se páčka nachází. Joystick slouží zároveň také jako tlačítko. Pro komunikaci využívá vodiče:

- vodič VRx (Voltage Proportional x) napětí úměrné ose X,
- vodič VRy (Voltage Proportional y) napětí úměrné ose Y,
- vodič SW (Switch) stlačovací tlačítko.

2.2 IDF

IDF neboli *Espressif IoT Development Framework* je prostředí pro vývoj mikrokontrolérů ESP32. Jakožto framework poskytuje celou řadu nástrojů, knihoven a dokumentaci pro vývoj. IDF nativně podporuje *jazyk C* ve kterém byl taky napsán tento projekt.

2.2.1 Platformio

Platformio je vývojové prostředí, které je implementováno jako rozšíření pro aplikaci *Visual Studio Code*. Jako pro jednen z mnoha poskytuje jednotnou vývojovou platformu pro framework IDF. Umožňuje jednoduše spravovat projekty, připojená zařízení, ale také pomocí konzolového uživatelského rozhraní nastavovat obecné registry pro periferie a tak dále.

2.3 Zapojení a nastavení

Zapojení bylo provedeno podle účelů jednotlivých vodičů. Na analogové registry *GPIO36* a *GPIO39* byly připojeny jako vstup vodiče joysticku *VRx* a *VRy*. Jejich vstupní hodnoty jsou zachycovány s šířkou 12 bitů (převáděno na hodnoty 0 až 4095). Pro tlačítko na joysticku *SW* byl použit digitální registr *GPIO14* a byl nastaven jako vstupní. Pro datový vodič *SDA* a vodič hodinového signálu *SLC* byly využity registry *GPIO16* a *GPIO17* a nastaveny v *Menuconfig* dle zadání. Joystick byl připojen na 3.3 Voltový zdroj. Tento zdroj byl zvolen kvůli tomu, že AD převodník je pouze 12 bitový a nedokáže tedy reprezentovat hodnotu 5000 mV, kterou by joystick při 5 V zdroji produkoval. Špatně by se tedy pracovalo s hodnotamy ořízlými na 4095 mV, při kterých by joystick přišel o téměř poloviny rozsahu v polohách od střední výchozí polohy po krajní polohu páčky.

Obrázek 1: Schéma zapojení periferií k desce ESP32

3 Implementace

Pro implementaci bylo využito dříve zmiňované prostředí *IDF*. Pro práci s displejem byla poté využita knihovna *ssd1306* a hlavičkový soubor *font8x8_basic*. Pro čtení analogových hodnot joysticku byly využity funkce z knihovny *driver/adc.h*.

3.1 Knihovna ssd1306.h

Knihovna *ssd1306* poskytuje funkce pro jednoduché vykreslování bitmapových obrázků, textu nebo třeba linek na I2C displej. Nejvíce využívanou funkcí byla funkce *ssd1306_bitmaps*, která umožnuje vykreslit předem definovaný bitmapový obrázek na konkrétní bod displeje definovaný souřadnicemi *X* a *Y*. Dalšími hojně využívanými funkcemi byly funkce *ssd1306_clear_screen* pro nastavení všech pixelů obrazu na černou barvu nebo funkce *ssd1306_display_text* pro vykreslení textu.

Všechny znaky ASCII tabulky jsou v podobě osmi Bajtových bitmapových obrázků definovány v hlavičkovém souboru *font8x8_basic*.

3.1.1 Vlastní úprava knihovny

Fyzické překreslení displeje, tedy zobrazení vyrovnávácí paměti na displeji, je časově velice náročné. Proto pro větší plynulost programu (plynulost pohybu objektů po hrací ploše), bylo potřeba z definice funkce $ssd1306_bitmaps$ odstranit zpoždění a fyzické překreslení displeje při každém využití funkce. Díky tomu bylo možné, v rámci jedné iterace herního stavu, překreslovat objekty na displeji pouze ve vyrovnávací paměti. K pokynu k fyzickému překreslení displeje dojde vždy jednou po aktualizaci celé herní plochy.

3.2 Herní logika

Aby hra působila jako plynulá animace reagující na uživatelský vstup z joysticku, je třeba neustále v cyklu aktualizovat herní stav, myšleno aktualní pozice všech pohyblivých objektů, na základě konečného počtu údálostí, ke kterým ve hře může dojít. Těmito událostmi jsou kolize míče s hráčem či horní nebo dolní hranicí, vstup od uživatele a konec hry.

3.2.1 Pohyblivé objekty

Pohyb herních objektů je realizován překreslováním objektů na jiné místo v rámci herního pole v čase, tedy v jednotlivých herních stavech. Při překreslení prvku je potřeba prvek v původní pozici nejprve smazat a až poté je možné vykresit objekt na pozici nové. Kdyby k mazaní před přesunem nedošlo, objekt by za sebou zanechával čáru a to není žádoucí. Vzhledem k malému rozlišení displeje dochází k posunům v rámci jednotek pixelů. Větší skoky by mohly nabourat plynulost hry.

3.2.2 Hráč

Hráč je herní pohyblivý objekt reprezentován bitmapovým obrázkem oddélníku a souřadnicemi X a Y, které definují, kde se nachází levý horní roh objektu. Hráč reaguje na polohu páčky joysticku v ose Y pohybem nahoru a dolů. Vzhledem k tomu, že je joystick proporcionální, určuje poloha páčky, o kolik pixelů se hráč v ose posune v daném herním stavu. Velikost tohoto skoku reprezentuje rychlost jakou se hráč pohybuje. Tímto způsobem může hráč dosáhnout třech různých rychlostí v obou směrech.

3.2.3 Míč

Míč má na rozdíl od hráče, který je reprezentován bitmapovým obrázkem oddélníku a souřadnicemi polohy, definovaný navíc směr, kterým se neustále pohybuje, jak v *ose X*, tak v *ose Y*. Směr je polohový vektor a určuje tedy o kolik pixelů se posune v každém herním stavu.

Míč změní směr pokaždé při kolizi s:

• hráčem – směru X je přiřazeno opačné číslo aktuální hodnoty směru X,

• spodní nebo horní hranicí – směru Y je přiřazeno opačné číslo aktuální hodnoty směru Y.

Kolize poté působí jako odraz míčku od stěny, kdy na něj nepůsobí žádná gravitace. Úhel dopadu se tedy rovná úhlu odrazu.

3.2.4 Kolize

K rozpoznání kolize míče s jiným objektem dochází pomocí porovnávání poloh jednotlivých objektů. Jedná li se o dvojrozměrné objekty, je třeba při kontrolách kolizí s pravou a spodní stranou objektu přičítat k aktuální poloze taky velikost objektu. Pro rozpoznání kolize míče s hráčem je třeba porovnat polohu míče vůči hráči v obou osách.

3.2.5 Vstup joysticku

Hodnota napětí, kterou na vstup joystick produkuje ve výchozí poloze, se pohybuje kolem 1790 mV (hodnota byla vypozorována). Tuto hodnotu považujeme za výhozí. Dojde li k významnému poklesu této hodnoty, víme že páčka byla posunuta vzhůru a že se hráč bude posunovat v ose Y vzhůru, dokud se zase neustálí kolem výchozí hodnoty. To samé, ale opačně, platí pro pohyb směrem dolů. Dále jsou definovány jisté prahy, které jsou porovnávány s rozdílem mezi aktuální a výchozí hodnotou. Jejih postupné překračování určuje rychlost pohybu.

4 Vlastnosti projektu

Celý program je ovládán jen za pomoci připojeného joysticku, a to pohybem nebo stisknutím páčky. Po skončení kola, kdy jedním kolem je myšlena doba od záčátku samotné hry po prohru jednoho z kráčů, je možné spustit hru znovu od začátku.

4.1 Obrazovky

Obsah, který je na displej vykreslován, je logicky členěn na tzv. *Obrazovky*. V rámci programu je možné se setkat s následujícími *třemi* druhy obrazovek:

- 1. Úvodní obrazovka
 - zobrází se ihned po připojení mikrontroléru ke zdroji a její zobrazení trvá 5 vteřin
 - po uplynutí 5 vteřin se přepne na obrazovku číslo 2
 - zobrazuje informace o čísle projektu, autorovi a roku vytvoření programu
- 2. Obrazovka s aktivním čekáním
 - zobrazuje textovou výzvu, aby bylo stisknuto tlačítko pro zahájení hry
 - program je ve stavu, kdy aktivně čeká na stisk tlačítka
 - po stisknutí tlačítka se přepne na obrazovku číslo 3
- 3. Obrazovka hry
 - · vykresluje samotný průběh hry
 - po skončení hry se přepne zpět na obrazovku číslo 2

4.2 Průběh hry

Po zahájení hry tlačítkem dochází k odpočtu zahájení hry, který je zobrazován ve středu obrazovky. Po odpočtu hry se dá míč do pohybu a cílem hráčů je odrážet míč svojí postavou na soupeřovu stranu. Pokud kterýkoliv z hráčů míč v čas neodrazí (míč se dostane za hráče), tak to znamená prohru pro dáného hráče.

4.3 Ovládání

Hráč je ovládán pohybem páčky joysticku v ose Y. Nahnutím páčky lze dosáhnout až tří různých rychlostí pohybu hráče. Pokud je páčka ve výchozím stavu, hráč zůstátá stát na místě. Vzhledem k tomu, že hra je určena pro 2 hráče a k dispozici je joystick pouze 1, tak dohází během hry k přepínání, který hráč je aktuálně ovládán. Na tahu je vždy ten hráč, proti kterému se v dané době pohyhubuje míč.

Literatura

- [1] BIDLO, M.: Principy sériové komunikace, sériová komunikační rozhraní. [online], rev. 2023, [vid. 2023-12-10]. Dostupné z: https://moodle.vut.cz/pluginfile.php/707394/mod_folder/content/0/2022IMP04.pdf?forcedownload=1
- [2] contributors, W.: ESP32 Wikipedia, The Free Encyclopedia. rev. prosinec 2023, [vid. 2023-12-10]. Dostupné z: https://en.wikipedia.org/w/index.php?title=ESP32&oldid=1188583650