Analyzing a 10x20 DataFrame with Machine Learning:

1. Task Description:

The provided Python notebook analyzes a 10x20 DataFrame with various student data attributes, including age, gender, study hours, attendance, parental education, previous scores, participation, and assignments completed. It then applies machine learning using a Logistic Regression model to predict whether a student will pass or fail based on the given attributes.

2. Task Output Screenshot:

• 10*20 DataFrame

	StudentID	Age	Gender	StudyHours	Attendance	ParentalEducation	PreviousScores	Participation	AssignmentsCompleted	Pass
0		24	Female	16	84	2	78	1	8	
1	2	21	Female	19	73		64	4	9	
2	3	22	Female	18	68	2	50	2	7	
3	4	24	Female	18	85	2	74		5	
4	5	20	Female	19	61	2	56	5	8	
5	6	22	Male	18	79		58		9	
6	7	22	Male	7	87	3	73	4	8	0
7	8	24	Female	16	66		50		9	
8	9	19	Female	11	67	3	57	3	9	
9	10	20	Female	8	94		73			0
10	11	24	Male	13	73	2	60	3	9	
11	12	20	Female	7	76		66	5	8	0
12	13	20	Male	9	95	1	57	3	9	
13	14	22	Male		99	2	84		7	0
14	15	21	Male	11	63	3	84	5	7	
15	16	20	Male	9	61		82	2	8	
16	17	23	Male	13	65	2	54	3	6	
17	18	22	Female	11	63		88		6	
18	19	19	Female	6	88	1	77	2	9	0
19	20	21	Female	8	77	1	56	2	5	0

• Classification Report For The Following Model:

Classification	Report: precision	recall	f1-score	support
Ø 1	0.00 1.00	0.00 0.50	0.00 0.67	Ø 4
accuracy			0.50	4
macro avg	0.50	0.25	Ø.33	4
weighted avg	1.00	0.50	0.67	4

• Output For Custom Datapoint:

```
Age Gender StudyHours Attendance ParentalEducation PreviousScores \
0 21 Male 12 85 2 75

Participation AssignmentsCompleted Predicted Pass
0 4 8 1
```

3. Algorithm Used In Task:

The notebook uses the following Python libraries and algorithms:

- Pandas for data manipulation and preprocessing.
- Scikit-learn for machine learning, including the LogisticRegression model.
- Numpy for random number generation.
- One-hot encoding for the 'Gender' column.
- Train-test split for evaluation.
- Accuracy score and classification report for model performance.