

CLAIMS

What is claimed is:

- 1 1. A method comprising:
 - 2 selecting one or more microarchitecture events relating to a microprocessor
 - 3 executing an application process to be monitored by one or more hardware
 - 4 monitors;
 - 5 establishing parameters regarding the monitoring of the microarchitecture events
 - 6 by setting one or more monitor control vectors;
 - 7 processing profile data captured by the one or more hardware monitors regarding
 - 8 the occurrence of the one or more microarchitecture events;
 - 9 identifying a region of interest in the application process for optimization based at
 - 10 least in part on the captured profile data; and
 - 11 optimizing the region of interest in the application process.
- 1 2. The method of claim 1, wherein setting each monitor control vector comprises
 - 2 setting one or more fields of the monitor control vector to control the monitoring
 - 3 of the microarchitecture event.
- 1 3. The method of claim 2, wherein setting the one or more fields of each monitor
 - 2 control vector includes setting a control field to establish the type of
 - 3 microarchitecture event that is monitored by a hardware monitor.
- 1 4. The method of claim 2, wherein setting the one or more fields of each monitor
 - 2 control vector includes setting a trigger field to control when a microarchitecture
 - 3 event is monitored.

FOB201002279680

- 1 5. The method of claim 2, wherein setting the one or more fields of each monitor
- 2 control vector includes storing a pointer in a handler field, the pointer identifying
- 3 a handler routine to process the captured profile data associated with the
- 4 occurrence of a microarchitecture event corresponding to the monitor control
- 5 vector.
- 1 6. The method of claim 1, further comprising obtaining the captured profile data for
- 2 each monitored microarchitecture event from a profile buffer.
- 1 7. The method of claim 6, wherein obtaining the captured profile data for a
- 2 microarchitecture event from the memory buffer occurs when a memory buffer in
- 3 the profile buffer that is assigned for the monitored microarchitecture event is
- 4 fully allocated.
- 1 8. The method of claim 7, further comprising setting one or more conditions for
- 2 obtaining captured profile data when the memory buffer in the profile buffer is
- 3 not fully allocated, and setting one or more conditions for transferring captured
- 4 profile data from a first level in the profile buffer to a second level in the profile
- 5 buffer.
- 1 9. The method of claim 8, further comprising receiving an interrupt or special event
- 2 handler if the buffer that is assigned for the microarchitecture event is fully
- 3 allocated or if a condition for obtaining captured profile data when the memory
- 4 buffer in the profile buffer is not fully allocated is met.

- 1 10. The method of claim 1, wherein the microarchitecture event monitored is an
2 instruction cache miss event.

1 11. A machine-readable medium having stored thereon data representing instructions
2 that, when executed by a processor, cause the processor to perform operations
3 comprising:
4 selecting one or more microarchitecture events relating to a microprocessor
5 executing an application process to be monitored by one or more hardware
6 monitors;
7 establishing parameters regarding the monitoring of the microarchitecture events
8 by setting one or more monitor control vectors;
9 processing profile data captured by the one or more hardware monitors regarding
10 the occurrence of the one or more microarchitecture events;
11 identifying a region of interest in the application process for optimization based at
12 least in part on the captured profile data; and
13 optimizing the region of interest in the application process.

1 12. The medium of claim 11, wherein setting each monitor control vector comprises
2 setting one or more fields of the monitor control vector to control the monitoring
3 of the microarchitecture event.

1 13. The medium of claim 12, wherein setting the one or more fields of each monitor
2 control vector includes setting a control field to establish the type of
3 microarchitecture event that is monitored by a hardware monitor.

TE2020-D022469

- 1 14. The medium of claim 12, wherein setting the one or more fields of each monitor
- 2 control vector includes setting a trigger field to control when a microarchitecture
- 3 event is monitored.
- 1 15. The medium of claim 12, wherein setting the one or more fields of each monitor
- 2 control vector includes storing a pointer in a handler field, the pointer identifying
- 3 a handler routine to process the captured profile data associated with the
- 4 occurrence of a microarchitecture event corresponding to the monitor control
- 5 vector.
- 1 16. The medium of claim 11, wherein the instructions include instructions that, when
- 2 executed by a processor, cause the processor to perform operations comprising
- 3 obtaining the captured profile data for each monitored microarchitecture event
- 4 from a profile buffer.
- 1 17. The medium of claim 16, wherein obtaining the captured profile data for a
- 2 microarchitecture event from the memory buffer occurs when a buffer in the
- 3 memory buffer that is assigned for the monitored microarchitecture event is fully
- 4 allocated.
- 1 18. The medium of claim 17, wherein the instructions include instructions that, when
- 2 executed by a processor, cause the processor to perform operations comprising
- 3 setting one or more conditions for obtaining captured profile data when the
- 4 memory buffer in the profile buffer is not fully allocated, and setting one or more

50000000000000000000000000000000

- 5 conditions for transferring captured profile data from a first level in the profile
6 buffer to a second level in the profile buffer.
- 1 19. The medium of claim 18, wherein the sequences of instructions include
2 instructions that, when executed by a processor, cause the processor to perform
3 operations comprising receiving an interrupt or special event handler if the buffer
4 that is assigned for the microarchitecture event is fully allocated or if a condition
5 for obtaining captured profile data when the memory buffer in the profile buffer is
6 not fully allocated is met.
- 1 20. The medium of claim 11, wherein the microarchitecture event monitored is an
2 instruction cache miss event.
- 1 21. A hardware assisted dynamic optimizer, comprising:
2 an interface to a microprocessor through which the hardware assisted dynamic
3 optimizer establishes parameters regarding the monitoring of one or more
4 microarchitecture events occurring during the execution of an application
5 by the microprocessor;
6 one or more handler routines, each handler routine including instructions to
7 process profiles of a monitored microarchitecture event that are captured
8 by the microprocessor; and
9 one or more optimizers, each optimizer including instructions for optimizing a
10 section of the application, the section of the application being chosen by
11 the hardware assisted dynamic optimizer at least in part based on the
12 captured profiles of a monitored microarchitecture event.

- 1 22. The hardware assisted dynamic optimizer of claim 21, wherein each monitor
 - 2 control vector includes a plurality of fields to control the monitoring of the
 - 3 microarchitecture event, the plurality of fields being set by the hardware assisted
 - 4 dynamic optimizer.
 - 1 23. The hardware assisted dynamic optimizer of claim 22, wherein the plurality of
 - 2 fields includes:
 - 3 a control field to establish the type of microarchitecture event that is monitored,
 - 4 a trigger field to control when the microarchitecture event is monitored, and
 - 5 a handler field to store a pointer to the handler routine for the microarchitecture
 - 6 event.
 - 1 24. The hardware assisted dynamic optimizer of claim 21, wherein optimizing a
 - 2 section of the application includes increasing the speed of processing of the
 - 3 section of the application.
 - 1 25. The hardware assisted dynamic optimizer of claim 21, wherein the hardware
 - 2 assisted dynamic optimizer obtains the captured profiles of the one or more
 - 3 microarchitecture events from a profile buffer.
 - 1 26. The hardware assisted dynamic optimizer of claim 25, wherein at least a portion
 - 2 of the profile buffer is architecturally visible to the hardware assisted dynamic
 - 3 optimizer.
 - 1 27. The hardware assisted dynamic optimizer of claim 26, wherein the profile buffer
 - 2 has a first level and a second level, and wherein the hardware assisted dynamic

FEBRUARY 2022

3 optimizer sets conditions for transferring captured profiles from the first level to
4 the second level.

1 28. The hardware assisted dynamic optimizer of claim 27, wherein the hardware
2 assisted dynamic optimizer sets one or more conditions for obtaining captured
3 profiles from the profile buffer.

1 29. The hardware assisted dynamic optimizer of claim 28, wherein a memory buffer
2 in the second level of the profile buffer is assigned to a microarchitecture event,
3 and wherein the hardware assisted dynamic optimizer accesses the profiles of the
4 microarchitecture event when the memory buffer assigned to the
5 microarchitecture event is fully allocated or when a condition for obtaining
6 captured profiles is met.

1 30. The hardware assisted dynamic optimizer of claim 29, wherein the hardware
2 assisted dynamic optimizer accesses the profiles of a microarchitecture event
3 upon receiving an interrupt or special event handler.