TORIC SYMPLECTIC MANIFOLDS

SIMON GRÜNING

(DARBOUX THEOREM)

(!) We follow closely the exposition of Yannis gathered of material from Lee and Salomon's books. We take inspiration from Anna's stuff.

1. Prerequisites

Remark 1.1. Must be even dimensional

All manifolds are smooth as per anna's conventions chart centered on x means $\phi(x) = 0$.

F diffeomorphism is linear? precomposition definition of F^*

Definition 1.1 (Tubular Neighbourhood). (! ref lee)

Proposition 1.1 (Fisherman's Formula). (!ref lee) Fix a manifold M. If $X: J \prod M \rightarrow$ TM is a time-dependent vector field with time-dependent flow $\Psi: \mathcal{D} \to M$ then for any $\omega \in \Omega^k(M), (t_1, t_0, x) \in \mathcal{D}$ we have

$$\left. \frac{d}{dt} \right|_{t=t_1} \Psi_{t,t_0}^* \omega = \Psi_{t_1,t_0}^* (\mathcal{L}_{X_{t_1}} \omega)$$

with $X_{t_1} := X(t_1, \cdot) \in \mathfrak{X}(M)$.

Proposition 1.2 (Fisherman's Formula Adapted).

Proof. todo

Theorem 1.1. Canonical Form theorem

LEMMA 1.1. Let M be a manifold, $x \in M$ with basis (e_i) for T_xM . Then there exists a chart $(U, x^1, ..., x^n)$ centered on x such that for any i = 1, ..., n:

$$\left. \frac{\partial}{\partial x^i} \right|_x = e_i$$

Proposition 1.3 (Homotopy Formula). (!ref canas). Fix U, a tubular neighburhood of a submanifold S embedded in M. If $\omega \in \Omega^k(U)$ is closed and $i^*\omega = 0$ for some $i: S \hookrightarrow U$, then there exists an $\eta \in \Omega^{k-1}(U)$ with $\omega = d\eta$ and $\forall x \in S : \eta_x = 0$.

Proof. todo

2. Moser Trick

Theorem 2.1. Moser Trick

THEOREM 2.2 (Moser Isotopy). (!salomon) Fix as M a 2n-dimensional manifold and as $S \subseteq M$ a compact submanifold. If $\omega_0, \omega_1 \in \Omega^2(M)$ are close and

- (1) $\forall x \in S : \omega_0 | x = \omega_1 | x$
- (2) $\forall x \in S : \omega_0 | x, \omega_1 | x$ are nondegenerate.

then there exist neighbourhoods U_0, U_1 of S in M and a diffeomorphism $F: U_0 \to U_1$ with

$$F|_S = id_S$$

$$F^*(\omega_S|_{S^*}) = \omega_S|_{S^*}$$

Proof. asf

3. Darboux Theorem

Theorem 3.1 (Darboux's Theorem). Fix (M, ω) a 2n-dimensional symplectic manifold, $x \in M$. Then there exists a chart $(U, x^1, ..., x^n, y^1,, y^n)$ centered on x such that:

$$\omega|_U = \sum_{i=1}^n dx^i \wedge dy^i$$

.

Proof. The canonical form theorem for symplectic tensors 1.1 provides us a basis $(a_1, ..., a_n, b_1, ..., b_n)$ for T_xM such that for its dual basis $(a^1, ..., a^n, b^1, ..., b^n)$ we have

$$\omega_x = \sum_{i=1}^n da^i \wedge db^i.$$

By proposition 1.1 we further have a chart $(U, \tilde{\varphi})$ centered on x with associated coordinates $(\tilde{x}^1, ..., \tilde{x}^n, \tilde{y}^1, ..., \tilde{y}^n)$ such that for i = 1, ..., n

$$\frac{\partial}{\partial \tilde{x}^i} \Big|_x = a_i$$

$$\frac{\partial}{\partial \tilde{y}^i} \Big|_x = b_i$$

Combining the previous two results and traversing again into the dual basis we have

$$\omega_x = \sum_{i=1}^n d\tilde{x}^i|_x \wedge d\tilde{y}^i|_x.$$

Define:

$$\omega_0 := \omega|_U$$
$$\omega_1 := \sum_{i=1}^n d\tilde{x}^i \wedge d\tilde{y}^i.$$

Then ω_0, ω_1 are symplectic forms on U (!).

Application of the Moser isotopy 2.2 to the compact submanifold $x \subseteq U$ given ω_0, ω_1 provides the existence of neighbourhoods U_0, U_1 of x in U and a diffeomorphism $F: U_0 \to U_1$ with

$$F(x) = x$$
$$F^*\omega_1 = \omega_0.$$

Define now another chart (U_0, φ) with $\varphi := \tilde{\varphi}|_{U_1} \circ F$. By construction (!) the associated coordinates are

$$x^i = \tilde{x}^i \circ F$$

$$y^i = \tilde{y}^i \circ F.$$

If then follows (!) that $\varphi(x) = \tilde{\varphi}(x) = 0$. The remaining property of our chart (U_0, φ) follows by:

$$\omega|_{U_0} = \omega_0|_{U_0}$$

$$= F^*(\omega_1|U_1)$$

$$= F^*\left(\sum_{i=1}^n d\tilde{x}^i \wedge d\tilde{y}^i\right)$$

$$= \sum_{i=1}^n F^*(d\tilde{x}^i \wedge d\tilde{y}^i)$$

$$= \sum_{i=1}^n F^*(d\tilde{x}^i) \wedge F^*(d\tilde{y}^i)$$

$$= \sum_{i=1}^n dF^*(\tilde{x}^i) \wedge dF^*(\tilde{y}^i)$$

$$= \sum_{i=1}^n d(\tilde{x}^i \circ F) \wedge d(\tilde{y}^i \circ F)$$

$$= \sum_{i=1}^n dx^i \wedge dy^i.$$

4. Discussion / Applications

bla

APPENDIX A. BASICS

- (1) symplectic manifold
- (2) einstein summation convention
- (3) $T_x M$ et al.
- (4) basis of above and dual basis
- (5) coordinates associated to chart?
- (6) time dependent vector field and flow

LEMMA A.1 (refyan E.). For a smooth function F from manifolds M to N and $\omega, \eta \in \Omega(N)$ we have

$$F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta$$

Lemma A.2 (refyan E.203). For a smooth function F from manifolds M to N and $\omega \in \Omega(M)$ we have

$$F^*(d\omega) = d(F^*\omega).$$