Слайд 1.

Здравствуйте, меня зовут Александр Смирнов, я студент группы М17-ИВТ-3.

Тема моей выпускной квалификационной работы: «Модель и алгоритмы обнаружения объектов на изображении с использованием глобального признакового описания».

Слайд 2.

Цель данной работы – разработка и исследование новых моделей и алгоритмов решения задачи обнаружения объектов на изображении с использованием глобального признакового описания. Для достижения этой цели были поставлены следующие задачи:

- -Обзор и анализ существующих известных методов решения задачи обнаружения объектов с использованием глобального признакового описания
- -Создание информационной модели описания объекта с использованием глобального признакового описания.
- Создание нового алгоритма формирования глобального признакового описания изображения
- -Проведение исследования с целью выявления наилучшей комбинации параметров разрабатываемой системы
- Проведение вычислительного эксперимента

Слайд 3.

Большинство методов решения данной задачи включают в себя следующие этапы: предварительная обработка изображения, построение его признакового описания и принятие решения о ??? объекта на изображении. Схема этих этапов приведена на слайде.

Слайд 4.

На данном слайде представлена информационная модель этапа обучения.

На данном этапе на вход системе подается изображение объекта, которое проходит предварительную обработку. Затем происходит формирование признакового описания, и обучение модели – признаковое описание сохраняется для дальнейшего использования.

Слайд 5.

На данном слайде представлена информационная модель этапа применения.

На данном этапе на вход системе подается изображение, на котором необходимо детектировать и классифицировать объект. Это изображение также проходит предварительную обработку, затем выполняется этап локализации объекта на изображении, формируется его признаковое описание и происходит принятие решение — классификация обнаруженного объекта.

Далее каждый этап информационной модели будет рассмотрен подробнее.

Слайд 6.

Перейдем к обзору используемого в работе набора данных. Для проведения исследования использовалась Российская база автодорожных знаков, опубликованная в 2016 году. В неё входит 179 тысяч размеченных кадров с авторегистратора, содержащих дорожные знаки. Всего в базе 156 типов дорожных знаков, и 104 тысячи их изображений, полученных кадрированием.

Слайд 7.

На данном слайде приведен пример изображения объекта, который подается на вход системе на этапе обучения. Для обучения модели было использовано 4 шаблона для каждого дорожного знака, сделанные в различных погодных условиях и при различном освещении. Примеры изображений приведены на слайде.

Слайд 8.

Для предварительной обработки изображения выполняется преобразование изображения в функцию яркости, т.е. к черно-белому виду. Для фильтрации шумов используется фильтр Гаусса.

Слайд 9.

Формирование признакового описания изображения осуществляется с использованием теории активного восприятия. Для получения вектора признаков, необходимо провести так называемое *U*-преобразование. Оно включает два этапа: *Q*-преобразование и применение фильтров. На данном слайде представлено проведение *Q*-преобразования. Изображение разбивается на сегменты, в данном случае — 4х4, и яркости внутри полученных сегментов суммируются. На выходе получаем так называемую матрицу визуальных масс.

Слайд 10.

На слайде приведен пример расчета матрицы визуальных масс для изображения дорожного знака «Пешеходный переход».

Слайд 11.

Следующим этапом *U*-преобразования является применение к матрице визуальных масс фильтров Уолша системы Хармута. Примеры всех 16ти фильтров приведены на слайде. Темный элемент фильтра означает коэффициент «-1», светлый – «+1».

Слайд 12.

На слайде приведен пример применения фильтра F_1 к матрице визуальных масс. Аналогичным образом применяются все 16 фильтров. На выходе получаем вектор спектральных коэффициентов, его пример приведен на слайде. Именно этот вектор будет выступать в роли признакового описания.

Слайд 13.

После формирования признакового описания, каждому объекту присваивается класс. В роли классов выступают нумерованные наименования знаков. Признаковое описание сохраняется для дальнейшего использования.

Слайд 14.

Перейдем к рассмотрению этапа применения. На слайде представлены образцы входных изображений. Источник – ранее упомянутая Российская база автодорожных знаков.

Слайд 15.

Предварительная обработка изображения этапа применения отличается от предварительной обработки этапа обучения. Здесь изображение конвертируется в цветовое пространство HSV, и к нему применяется фильтр Гаусса для сглаживания шумов.

Слайд 16.

На слайде показано цветовое пространство HSV в классическом представлении — трехмерный конус. Параметр Ние задается значением поворота 0-360 градусов и определяет цвет, параметр Saturation задается в диапазоне [0;1] и означает яркость цвета, параметр Value задается в диапазоне [0;1] и регулирует насыщенность цвета. Данное цветовое пространство было выбрано ввиду того, что оно наиболее близко сопоставимо с моделью восприятия цвета человеческим глазом. На дорожных знаках в различных условиях возможно появление бликов, теней, и другого рода помех, поэтому их детектирование в пространстве RGB является затруднительным.

Слайд 17.

На данном слайде представлено цветовое пространство HSV, развернутое на плоскости. В предлагаемой системе, модуль детектирования объектов работает по фильтрации цветового диапазона, в который входят искомые объекты, поэтому необходимо задать цветовые диапазоны для интересующих нас цветов — в данной работе, это синий, желтый, красный — цвета дорожных знаков.

Слайд 18.

С этой целью был разработан модуль калибровки цветового диапазона, интерфейс которого представлен на слайде. Регуляторами задаются цветовые границы для каждой компоненты пространства HSV. С помощью этого модуля настраиваются цветовые диапазоны интересующих нас цветов.

Слайд 19.

Пример настроенных диапазонов приведен на слайде.

Слайд 20.

К изображению применяется маска, выделяющая все пиксели в заданном цветовом диапазоне. Как видно, выделен интересующий нас знак, но кроме него выделены и помехи.

Слайд 21.

Для фильтрации помех применяются морфологические операции, dilation и erosion. Первая увеличивает границы объектов, вторая – уменьшает. Вначале мы применяем erosion в несколько итераций, а затем – dilation.

Слайд 22.

Так выглядит результирующая маска после применения морфологических операций. На данном изображении удалось верно детектировать объект.

Слайд 23.

Следующим этапом является построение контуров вокруг выделенных сегментов изображения. Пример, приведенный на слайде, демонстрирует, что кроме объекта, контурами обведены различные шумы.

Слайд 24.

Для избавления от таких шумов, применяется фильтрация контуров. Контуры объединяются по иерархии. Затем — фильтруются по пороговой площади (1000 пикселей), все контуры, площадь которых меньше — отбрасываются. Далее — отсечение по форме. У дорожных знаков строго определен набор форм — круг, треугольник, квадрат (ромб). Применяется алгоритм Рамера-Дугласа-Пекера для аппроксимации полученных контуров, затем происходит их фильтрация по форме.

Слайд 25.

Для принятия решения выполняется поиск ближайшего признакового описания эталонного объекта по отношению к данному объекту. В качестве меры близости используется евклидово расстояние.

Слайд 26.

В результате определяется изображение эталонного объекта, наиболее близкое к данному в евклидовом пространтсве. Также определяется класс объекта — название знака. В режиме отладки — выводится изображение обнаруженного знака поверх анализируемого изображения, а также выделяется область, в который был обнаружен знак. В режиме оценки точности положение знака и его класс сверяются с эталонными данными, выводится оценка точности.

Слайд 27.

Для вычислительного эксперимента было подготовлено три набора данных, каждый по 10 тысяч изображений. Первая выборка — изображения, отобранные из набора в случайном порядке, сделанные в различное время суток и различных погодных условиях. Вторая выборка аналогична первой, но к изображениям был добавлен шум разной интенсивности. Третья выборка также аналогична первой, но объект в кадре был повернут под разным углом.

Слайд 28.

Для вычислительного эксперимента с локализатором, были заданы различные параметры для цветовых диапазонов. Примеры на слайде.

Слайд 29.

В данном эксперименте варьировались цветовые диапазоны и количества итераций алгоритмов морфологических операций. Результаты с точностью менее 70% были опущены. Как видно из таблицы, наилучшим образом проявил себя цветовой диапазон номер два с четырьмя итерациями erosion и двумя итерациями dilation.

Слайд 30.

Таблица результатов для второй выборки приведена на слайде. Заметно, что с увеличением интенсивности шума точность локализации снижается.

Слайд 31.

Таблица результатов для третьей выборки приведена на слайде. Заметно, что поворот объекта никак не сказывается на точности локализации — результирующая точность аналогична первой выборке.

Слайд 32.

На слайде — результаты вычислительного эксперимента с классификатором, первая выборка. Эксперимент проводился только с теми изображениями, на которых объекты были верно детектированы. Как видно из таблицы, алгоритм Рамера-Дугласа-Пекера повышает точность классификации, но увеличивает среднее время обработки изображения.

Слайд 33.

Таблица результатов для второй выборки приведена на слайде. Заметно, что с увеличением интенсивности шума точность классификации снижается.

Слайд 34.

Таблица результатов для третьей выборки приведена на слайде. Заметно, что результаты классификации сопоставимы с результатами первой выборки — угол поворота объекта незначительного влияет на точность классификации. Таким образом, можно сделать вывод, что глобальное признаковое описание на основе теории активного восприятия является инвариантным к аффинным преобразованиям.

Слайд 35.

На слайде приведена точность других методов формирования признакового описания. Как видно из таблицы, предлагаемый метод не уступает аналогам по точности.

Слайд 36.

В ходе выполнения исследования был составлен обзор существующих методов решения рассматриваемой задачи, предложена новая комбинация подходов к решению задачи на различных ее этапах, реализован программный продукт для тестирования предложенного метода, проведен вычислительный эксперимент, подтверждающий корректность работы метода.

Слайд 37.

По данной работе была подготовлена публикация для международной научно-технической конференции ИСТ-2019.

Слайд 38. Демонстрация.

Слайд 39. Спасибо за внимание, я готов ответить на ваши вопросы.