ATGAAGGTCTCCGTGGCTGCCCTCTCCTGCCTCATC		60
M K V S V A A L S C L M	L'V T A L G S Q	•
	V.	
GCCCGGGTCACAAAAGATGCAGAGACAGAGTTCATC	GATGTCAAAGCTTCCATTGGAAAAT	120
ARVTKDAETEFM	M S K L P L E N	
CCAGTACTTCTGGACAGATTCCATGCTACTAGTGCT	GACTGCTGCATCTCCTACACCCCA	180
P V L L D R F H A T S A		100
CGAAGCATCCCGTGTTCACTCCTGGAGAGTTACTTT	GAAACGAACAGCGAGTGCTCCAAG	240
R S I P C S L L E S Y F		240
		,
CCGGGTGTCATCTTCCTCACCAAGAAGGGGCGACGT	TTCTGTGCCAACCCCAGTGATAAG	300
P G V I F L T K K G R R		
		٠.
CAAGTTCAGGTTTGCATGAGAATGCTGAAGCTGGAC	ΔCΔCGGΔTCΔΔGΔCCΔGGΔΔGΔΔT	360
Q V Q V C M R M L K L D		
TGA 363		
^		

FIG.1

ATGAAGATCTCCGTGGCTGCAATTCCCTTCTTCCTCCTCATCACCATCGCCCTAGGGACC

M K I S V A A I P F F L L I T I A L G T

AAGACTGAATCCTCCTCACGGGGACCTTACCACCCCTCAGAGTGCTGCTTCACCTACACT

K T E S S S R G P Y H P S E C C F T Y T

ACCTACAAGATCCCGCGTCAGCGGATTATGGATTACTATGAGACCAACAGCCAGTGCTCC

T Y K I P R Q R I M D Y Y E T N S Q C S

AAGCCCGGAATTGTCTTCATCACCAAAAGGGGCCATTCCGTCTGTACCAACCCCAGTGAC

K P G I V F I T K R G H S V C T N P S D

AAGTGGGTCCAGGACTATATCAAGGACATGAAGGAGAACTGA

K W V Q D Y I K D M K E N *

FIG.2

· 1	ATGAAGGCCTTGCAGCTGCCCTCCTTGTCCTCGTCTGCACCATGGCCCTCTGCTCCTGT M K G L A A A L L V L V C T M A L C S C	60
61	GCACAAGTTGGTACCAACAAAGAGCTCTGCTGCCTCGTCTATACCTCCTGGCAGATTCCA A Q V G T N K E L C C L V Y T S W Q I P	120
121	CAAAAGTTCATAGTTGACTATTCTGAAACCAGCCCCCAGTGCCCCAAGCCAGGTGTCATC Q K F I V D Y S E T S P Q C P K P G V I	180
181	CTCCTAACCAAGAGGCCGGCAGATCTGTGCTGACCCCAATAAGAAGTGGGTCCAGAAA L L T K R G R Q I C A D P N K K W V Q K	240
241	TACATCAGCGACCTGAAGCTGAATGCCTGA 270 Y I S D L K L N A *	: ·

FIG.3

CKB-8	MKVSVAALSCLMLVTALGSQARVTKDAETEFMMSKLPLENPVLLDRFHAT 50
1IP-1α	
СКβ-8	SADCCISYTPRSIPCSLLESYFETNSECSKPGVIFLTKKGRRFCANPSDK 100
MIP-1α	PTACCFSYTSRQIPQNFIADYFETSSQCSKPGVIFLTKRSRQVCADPSEE 79
СКВ-8	QVQVCMRMLKLDTRIKTRKN 120
MP-1α	::. WVQKYVSDLELSA 92

FIG.4

1	MKGLAAALLVLVCTMALCSCAQVGTNKELCCLVYTSWQIPQKFIVD	46
,		
1	MQVSTAALAVLLCTMALCNQVLSAPLAADTPTACCFSYTSRQIPQNFIAD	50
17 [.]	YSETSPQCPKPGVILLTKRGRQICADPNKKWVQKYISDLKLNA 89	-
		•
51	YFETSSQCSKPSVIFLTKRGRQVCADPSEEWVQKYVSDLELSA 93	

FIG.5

СКв-1	MKISVAAIPFFLLITIALGTKTESSSRGPYHPSECCFTYTTYKIPRQRIM	
MIP-lα	: :	
СКв - 1	DYYETNSQCSKPGIVFITKRGHSVCTNPSDKWVQDYIKDMKEN 94	
MIP-lα	: . :: : :: :: :. :. :. DYFETSSQCSKPGVIFLTKRSRQVCADPSEEWVQKYVSDLESA 93	:

FIG.6

1 = mock, 2 and 3 = MIP1- γ -HA, 4 = I κ B-HA 5 = mock, 6 = MIP1- γ -HA, 7 = I κ B-HA

FIG.7

FIG.8

12 13 14

INJECTION

HW50 FRACTION NUMBER

F16.9A

PEAK1 PEAK2

LANE#	SAMPLE	
1 2	HW50 LOAD LOW MW MARKER	ls
3	HW50 FRACTION	12
4 5 6 7		14
7 8		18 19
9		20
11		22

FIG.9B

800 600 400 200 10 100 1000 CONCENTRATION (ng/ml)

FIG.10B

FIG.11

FIG.14

FIG.15

FIG.17

FIG.18

FIG.19

REGIONS-CARNIER-ROBSON REGIONS-CHOU-FASMAN REGIONS-GARNIER-ROBSON ALPHA, ALPHA, 0

REGIONS-CHOU-FASMAN

REGIONS-GARNIER-ROBSON

regions-garnier-robson REGIONS-CHOU-FASMAN

a hydrophilicity plot-kyte-dooutite

□ HYDROPHOBICITY PLOT—HOPP—WOODS

CA ALPHA, AMPHIPATHIC REGIONS—EISENBERG CO BETA, AMPHIPATHIC REGIONS—EISENBERG CO FLEXIBLE REGIONS—VADDI 1100 CO

FLEXIBLE REGIONS—KARPLUS—SCHULZ

a antigenic index-Jameson-Wolf

☑ SURFACE PROBABILITY PLOT—EMINI

REGIONS—CARNIER—ROBSON REGIONS—CHOU—FASMAN ALPHA,

REGIONS-GARNIER-ROBSON O BETA,

REGIONS—CHOU—FASMAN REGIONS—GARNIER—ROBSON REGIONS—CHOU—FASMAN ED ED

REGIONS-GARNIER-ROBSON Ö

A HYDROPHILICITY PLOT-KYTE-DOOLITLE

□ HYDROPHOBICITY PLOT-HOPP-WOODS

☐ ALPHA, AMPHIPATHIC REGIONS—EISENBERG ☐ BETA, AMPHIPATHIC REGIONS—EISENBERG

FLEXIBLE REGIONS—KARPLUS—SCHULZ a PEXIE

a antigenic index-Jameson-Wolf

■ SURFACE PROBABILITY PLOT—EMINI

FIG.21B

TREATMENTS	NUMBERS OF C DAY 3	NUMBERS OF CIRCULATING WBC PER MILLILITER OF BLOOD 3 DAY 6 DAY	OF BLOOD DAY 10
Gr-1 (Saline)	$8.4 \times 10^{6}\pm3.0 \times 10^{6}$	10.2 x 10 ⁶ ±3.6 x 10 ⁶	7.0 X 10 ⁶ ±9.9 x 10 ⁵
Gr-2, MPIF-1 ALONE	$7.8 \times 10^{6}\pm 2.2 \times 10^{6}$ (100%)	$7.5 \times 10^{6\pm6.5} \times 10^{5}$ (100%)	10.6 X 10 ⁶ (100%)
Gr-3, 5-Fu ALONE	$4.23 \times 10^{6} \pm 2.8 \times 10^{6}$ (54)		8.8 $\times 10^6 \pm 4.9 \times 10^5$ (83)
Gr-4, MPIF-1 PLUS 5-Fu		$3.98 \times 10^{6\pm4.3} \times 10^{5}$ (53)	9.48 X $10^6\pm9.4 \times 10^5$ (89)

FIG.22

FIG.23

	, 1			.			 -1
S DAY 9	LPP-CFC	78 ± 3.5 80 ± 14	82 ± 0	5+0	2 ± 0 DEAD	75 ±1.4	46 ±12 95 ±2.8
PER 2,000 CELLS DA	HPP-CFC	15±2 13±1	11±2	7±2	6±2 DEAD	16 ± 1.4	12±2.8 16±0
NUMBER OF COLONIES PER 2,000 CELLS DAY 6	LPP-CFC	60 ± 9.8 92 ± 11	84 ± 1.4	3.5 ± 0.7	3/±16 6±3	6.5 ± 3.5	105 ± 10 120 ± 1.4
ā	HPP-CFC	10.5 ± 0.7 12 ± 0.7	14 ± 1.4	4.5 ± 3.5	12±2 4±2.8	0	0 0
	TREATMENTS	SALINE SALINE	SALINE	5-Fu	5-Fu 5-Fu	5-Fu PLUS MPIF-1	11 11 11
	GROUP	-		2		М	

FIG.24

1) Wild type:	RVTKDAE		:
<pre>2) Mutant-1(+1):</pre>	MRVTKDAE		•
3) Mutant-2(-5 24):		RFHAT	
4) Mutant-3(-5 23):		DRFHAT	:
5) Mutant-4(-5 26):		HAT SAD	•
6) Mutant-5(-5 27):		AT SAD	:
7) Mutant-6(-8 24):		MRFHAT	
8) Mutant-7(-5 17):		EN PVLLD	:
9) Mutant-8(-5 22):		LDRFHAT	
10)Mutant-9(-8 25):		HAAGFHAT	:

FIG.25

 $\tt gtcctcggccagcctgcctgcccaccaggaggatgaaggtctccgtggctgccctctcctgcctcatgctt$ MKVSVAALSCL gttactgcccttggatcccaggcccgggtcacaaaagatgcagagacagagttcatgatgtcaaagcttcca G S O A R V T K D A E T E F M M S K L P ttqgaaaatccagtacttctggacatgctctggaggagaaagattggtcctcagatgaccctttctcatgccLËNPVLL DMLWRRKIG PQMTLSHA gcaggattccatgctactagtgctgactgctgcatctcctacaccccacgaagcatcccgtgttcactcctg ĀĞFHĀTSĀDCCISYTPRSIPCSLI gagagttactttgaaacgaacagcgagtgctccaagccgggtgtcatcttcctcaccaagaaggggcgacgtSYFETNSECSKPGVIFLTKKGRR ttctgtgccaaccccagtgataagcaagttcaggtttgcatgagaatgctgaagctggacacacggatcaagF C A N P S D K Q V Q V C M R M L K L D T R I K RKN* ${\tt cttcctgaattattttttaagaagcatttattcttgtgttctggatttagagcaattcatcttttctcacc}$ tttaaaaaaaaaaaaaaa

FIG.26A

1	MKVSVAALSCLMLVTALGSQARVTKDAETEFMMSKLPLENPVLLDMLWRR	50	MPIF-1	varian
1		46	MPIF-1	
51	KIGPOMTLSHAAGFHATSADCCISYTPRSIPCSLLESYFETNSECSKPGV		0	
47		83		
101	I IFLTKKGRRFCANPSDKQVQVCMRMLKLDTRIKTRKN 137			•
84				•

MPIF-1 MUTANTS	CONCENTRATION (ng/ml)
WILD TYPE PREPARATION K0871 MUTANT-1 MUTANT-6 HG00300-B7 MUTANT-9	100 10 50 100 10

FIG.27

ADDITIONS	CALCIUM	MOBILIZATION	RESPONSE
MIP-1α ALONE MPIF-1 ALONE MIP-1α FOLLOWED BY MPIF-1 MPIF-1 FOLLOWED BY MIP-1α		+ + - -	
MIP-1α FOLLOWED BY: PREPARATION K0871 HG00300-B7 MUTANT-6 MUTANT-1 MUTANT-9		_ _ _ _ _	
PREPARATION K0871 K0871 FOLLOWED BY MIP-1α	. •	<u>+</u> -	
HG00300-B7 HG00300-B7 FOLLOWED BY MIP	-1α	+ -	
MUTANT-6 MUTANT-6 FOLLOWED BY MIP-1	α	+ -	
MUTANT-1 MUTANT-1 FOLLOWED BY MIP-1	α	+ -	
MUTANT-9 MUTANT-9 FOLLOWED BY MIP-1	α	+	

FIG.29

PROTEINS	CHEMOTAXIS *
WILD TYPE PREPARATION K0871 MUTANT-1 MUTANT-6 HG00300-B7	50-100 ng/ml (3-4X) 10-30 ng/ml (6-7X) 50-100 ng/ml (3-4X) 50-100 ng/ml (5-7X) 10-30 ng/ml (4-5X)

FIG.30

ADDITIONS	CONCENTRATION REQUIRED FOR 50% OF MAXIMAL LPP-CFC INHIBITION (ng/ml)
MPIF-1, WILD TYPE	10-20
MUTANT-1	15-25
MUTANT-6	1-10
PREPARATION K0871	0.1-1.0
HG00300-B7	0.1-1.0

FIG.34

FIG.35A

FIG.37

FIG.38

FIG.41

FIG.42

FIG.43

FIG.44

FIG.45

FIG.46

FIG.47

FIG.48A

FIG.49

STEM	CELL	MOBILIZATION IN	STEM CELL MOBILIZATION IN RESPONSE TO ADMINISTERING MPIF-1 TO NORMAL MICE	MPIF-1 TO NORMAL MICE
EXPERIMENT		TREATMENTS	WBC/ml BLOOD	PHENOTYPE OF CELLS
			(x 106)	Gr.1 CD34+Sca-1+
		SALINE	4.7 ± 0.36	10 0.20
	. •	MPIF-1	7.1 ± 0.63	39

FIG.50

5-Fu: I.P. INJECTION, 100 mg/Kg MPIF-1: I.P. INJECTION, 1.0 mg/Kg G-CSF: I.P. INJECTION, 0.5 mg/Kg

FIG.51

5-Fu: I.P. INJECTION, 100 mg/Kg MPIF-1: I.P. INJECTION, 1.0 mg/Kg G-CSF: I.P. INJECTION, 0.5 mg/Kg

FIG.52

FIG.53

FIG.54

FIG.61

FIG.62

FIG.63

FIG.64

FIG.65

-35 Operator 1

1 AAGCTT AAAAAAACTGCAAAAAATAGTTTGACTTTGTGÄGCGÄTÄÄCÄÄT

-10 Operator 2

50 TAAGATGTACCCAÄTTGTGÄGCGĞATAACAÄTTTCACACATTAA

S/D

94 AGAGGAGAAATTA CATATG

FIG.66

520 130 $\left(\frac{1}{2}\right)$ AAGCTIAAAAAACTGCAAAAAATAGTTTGACTTGTGAGCGGATAACAATTAAGATGTACCCAATTGTGAGCGGATAACAATTTCACACATTAAAGAGGAGAAATTACATATGGACCGTTTCCACGCTACC ACECCACTGACCACCTAGAGGATG TGGGGCCAAGGTAGGCCACCACCACCACCATAGGATGAAGCTTTGGTTGAGGCTTACGAGGTTTGGCCACAATAGAAGGACTGGTTTTTTCCAGCACAAAGA AATTGCCTTGCGTCCCCCCTTTCCAGTCCGGGAAACCTGTCCAGCTGCCAGCTCCATTAATGAATCGGCCAACGCCCGGGAGAGGCCGTTTGCCTATTGGCCCTCTTCCGCTTTCCTCCTCGTCACTGA SCGCTAACCCGTCCCACAAACACGTTCAGGTTGTATGCGTATGCTGAAACTGGACACCCCGTATCAAAACCCCGTAAAAACTGATAAGGTACCTAAGTGAGTAGGGCGTCCGATCGACGACGCCTTTTT × M· O R F. H Isc TERMINATOR SKPGVIFLIKK S OPERATOR 2— YFEIN 2 \succeq 2 <u>~</u> M R M OPERATOR 1 م. S ں ٩ ج 0 _ \ _ \ S 0 1 0 0 0 V S S EcoR 1 문문 Z V

FIG.67A

920

ATTAACGCAACGCCAGTGACGCCCCAAAGGTCAGCCCTTTGCACAGCACGCTCGACGTAATTACTTAGCTGCGCCCCTCTCCGCCAAACCCATAACCCGCGAGAAGGCCGAGAGGGCGAGAGTGACT

FIG.67C

ARQVSRLESGQ

A D

R A L

S

NIOIA

2340	2470		2600			2730
AATATCTCACTCCCAATCACCCCATGCCCAACGCCACTGCCATGTCCCCTTTTCAACAACCATGCCTCAATGACCCATCCTTCCCACTGCCATGCTGCCTGC	SGTAGTGGGATACGACGTACGGAAGACACCTCATGTTATATCCCGCCCTTAACCACCATC	D Q M A L G A M R A I T E S G L R V G A D I S V V G Y D D T E D S S C Y I P P L T I I P P L T I I P P L T I I	AAACAGGATTITGGCCTGGGGGGAAACCAGGGTGGACGGCTTGCTGCAACTCTCTCAGGGCCAGGGGGGAATCAGCTGTTGCCGGTCTCACTGGTGAAAAAAAA	K Q D F R L L G Q T S V D R L L Q L S Q G Q A V K G N Q L L P V S L V K R K T T L A P	Sal I	ATACSCAAACCCCTCTCCCCGCGTTGCCGATTCATTAATGCAGCTGCCACGACTGCAAAGCCGGCAGTGAGCTGAGCTTAATGTAATGTAGCCGAATTGTCGACCAAAG HILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHILLIGHTHAATTACGTGAATGCCGTGAAAGCCTGAAGCCCTGACCTTTCCCCTTGCCGTTAATTACGTCGACCCGTGAACCCCTGAACCCCTTTCCCCCTTCCCCTTGCCTTAATTACATCCCCTTAACACCCTGCTTTCCCCTTCCCTTCCCTTCCCTTAATTACATCCCCTTAACACCCTCCT

CGGCCATCGTGCCTCCCCACTCCTGCAGTTCGGGGGCATGCGGGATAGCCGCTGCTGGTTTCCTGGATGCCGACGGATTTGCACTGCCGGTAGAACTCCGGGAGGTCGTCCTCAGCCTCAGCCTCAGCACA

,ku !!

CGACTIGGTIGAGGGCTGCCCTAGCTGGGGCCCCACCGCTTCTIGAGGTGGTACTCTAGGGGCCCACCTCCTAGTAGGTCGGCCGGGGGCCTTTTGCTAAGGCTTCGGGTTGGAAAGTATCTTCCG

GCG TGBATCGAATTTOTG TGATGGCAGGTTGGGCG TGCTTGG TCGTTTGGAACCCCAGAG TCCCGTCAGAAGAACTCGTCAAGAAGCCGATAGAAGGCGATGCGCTGCGAATCGGGAGTCGGAGGCG

F F E D L L R Y F A I R Q S D P A A

3250 $\frac{1}{1} \frac{1}{1} \frac{1}$ SATACCSTAAAGCACSAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAAGCCTATGTCCTGATAGCGGTCCGCCACACCCACGCCGCCACACACTGATCCAGAA CIATGGCATTICCTGCTCCTTCGCCAGTCGGCTAAGCGGCGGTTCGAGAAGTCGTTATAGTGCCCATCGGTTGCGATACAGGACTATCGCCAGGCGTGTGGGTCGCGGGTGTCACGTACTTAGGTCTT

9 - 1 - 0 ک د د RDAVGL C L E E A I D R T A L A I D O Y ى س **=** V _ <u>ح</u> J 7 A 7 X 9 1

TCCCCCGTAAAAGGTGGTACTATAAGCCGTTCGTCCGTACCCAGTGCTGCTGCTCTAGGAGCCGCCAGCCCGTACCCCGGAACTCGCACCCTTGTCAAGCCGACCGCCCTCGTGGGACTACGAGAA AAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATGGCATGGGTCACGAGGATCCTCGCCGTCGGCCCATGCGCCCTTGAGCCTGGCCAACAGTTCGGCTGGCGG

 \succeq æ ۵. 0 ى س \bigcirc > ی ں ပ <u>ح</u>

FIG.67E

3510 SCABBICIAGIAGGACIAGCIGITCIGGCCGAAGGIAGGCICAIGCACGAGCGACCIACGCIACAAACCGAACCACCACCACTIACCGICCAICGCCCIAGIICGCAIACGICGGCGCGCGIAAGIAGIICG

~ ≥ 2 \simeq = ۵. × ب ـــ 0 工 0 <u>∽</u> 2 ٔب 2 ⋖ 4 <u>ح</u> ≥ ~ ပ > 0 0

 \mathfrak{R}_{1} GTACTACCTATGAAAGAGCCGTCCTCGTTCCACTGTACTGTCCTCTAGGACGCGCCGTGAAGCGGGTTATCGTCGGTCAGGGAAAGGTCACTGTTGCAGCTCGTGTACTGTTGCACGCGTTCCTTGCGGG

ပ نہ ں ~ K > <u>_</u> 0 > > ىب × ی \simeq > ר ו פיר ו > نــ۵ ی 0 0 S S 工 ~ ج ~ **×** > خ

3770

S A · A D > _نا 2 S Ą 0 ى 2 _ > ننا > S ی V z ىيا 0 < ~ <u>~</u> S I I A

3000CCATIOTOTOTIGIOCOCAGICATAGCOGAATAGCOTOTOCACCCAAGGGGCCGGAAACCTGCGTGCAATCCATCTTCAATCATGGGAAACGATCCTCATCCTGIOTOTTGATCATCATCC GCTAACAGACAACACGCGTCAGTATCGCCTTATCGCAGAGGCTCCTTCGCCCCCTCTTCGACGCCCTTAGCTAGAACAAGTTAGTACGCTTTCCTAGGAGTAGGACAGAGAACTAGTCTAGAACTAGG

ىت 0 ؿ A H L ပ _ ~ 3 > ≃ ۔۔ ۍ >-0 ≥ 0

FIG.67F

D. III

+0.030

917ATAGCGGTACATTCGGGTGACGTTCGATGGACGAAAAGAAAAGGCAAAAGGGAACAGGTCTATCGGGTCATCGACTGTAAGTAGCCCCCAGTCGTGGAAAAAGACGCCTGACCGAAAGATGCACA IATCSCCATGTAAGCCCACTGCAAGCTACCTGCTTTTTCCTTTGCGCTTGTCCCTTGTCCAGATAGCCCAGTAGCTGACATTCATCCGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGT

 FIG.67G