

Assessment Report

on

"Customer Segmentation in E-commerce"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

Dhruv Kumar (202401100400082, CSE(AI&ML)-B)

Under the supervision of

"MR.ABHISHEK SHUKLA"

KIET Group of Institutions, Ghaziabad

18 APRIL, 2025

INTRODUCTION

Customer segmentation is a technique used to divide customers into smaller groups based on similar characteristics or behavior. In this project, we used customer data from an e-commerce platform to understand how different customers behave when shopping online.

We used the RFM model, which looks at:

- Recency How recently a customer made a purchase
- Frequency How often they made purchases
- Monetary How much money they spent

Based on these three factors, we applied a machine learning algorithm called KMeans Clustering to group customers into four different segments. Each segment represents a type of customer, like frequent buyers, high spenders, or inactive users.

This kind of segmentation helps businesses create better marketing strategies, send personalized offers, and improve customer satisfaction.

METHODOLOGY

APPROACH TO SOLVE THIS PROBLEM

1. Data Collection

We start with customer transaction data from an e-commerce platform, which includes details like Invoice No., Date, Customer ID, Quantity, Unit Price, etc.

2. Data Cleaning

We remove missing or incorrect data (like missing customer IDs) and calculate the total amount spent per transaction.

3. Feature Engineering (RFM Analysis)

We calculate three important values for each customer:

- Recency: Days since the last purchase
- Frequency: Total number of purchases
- Monetary: Total money spent
 This helps in understanding customer behavior.

4. Data Normalization

Since the values of Recency, Frequency, and Monetary are on different scales, we scale them using **StandardScaler** so that all features contribute equally during clustering.

5. Choosing Number of Clusters

We use the **Elbow Method** to find the optimal number of customer groups (clusters). It shows us the best value of "k" for **KMeans Clustering**.

6. KMeans Clustering

We apply the **KMeans** algorithm to group customers into clusters based on their RFM values.

7. Cluster Analysis

We analyze each cluster to understand the types of customers—like loyal customers, big spenders, or one-time buyers.

CODE:

```
# Step 1: Upload the dataset
from google.colab import files
uploaded = files.upload()
# Step 2: Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import datetime as dt
# Step 3: Load and preview the dataset
filename = list(uploaded.keys())[0]
df = pd.read csv(filename)
# Step 4: Clean and prepare the data
```

df = df[pd.notnull(df['CustomerID'])] # Remove missing CustomerIDs

```
df['InvoiceDate'] = pd.to datetime(df['InvoiceDate']) # Convert to datetime
df['TotalPrice'] = df['Quantity'] * df['UnitPrice'] # Total amount spent
# Step 5: Create RFM (Recency, Frequency, Monetary) table
reference date = df['InvoiceDate'].max() + pd.Timedelta(days=1)
rfm = df.groupby('CustomerID').agg({
  'InvoiceDate': lambda x: (reference date - x.max()).days, # Recency
  'InvoiceNo': 'nunique', # Frequency
  'TotalPrice': 'sum' # Monetary
})
rfm.columns = ['Recency', 'Frequency', 'Monetary']
# Step 6: Normalize the RFM data
scaler = StandardScaler()
rfm scaled = scaler.fit transform(rfm)
# Step 7: Find optimal clusters using Elbow Method
wcss = []
for k in range(1, 11):
  kmeans = KMeans(n clusters=k, random state=42)
  kmeans.fit(rfm scaled)
```

wcss.append(kmeans.inertia)

```
# Plot Elbow Curve
plt.figure(figsize=(8, 5))
plt.plot(range(1, 11), wcss, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('WCSS (Inertia)')
plt.title('Elbow Method For Optimal k')
plt.grid(True)
plt.show()
# Step 8: Apply KMeans Clustering (choose k=4)
kmeans = KMeans(n clusters=4, random state=42)
rfm['Cluster'] = kmeans.fit predict(rfm scaled)
# Step 9: Analyze Clusters
print("Customers per Cluster:")
print(rfm['Cluster'].value counts())
print("\nCluster Profiling (Mean RFM values):")
print(rfm.groupby('Cluster').mean())
```

```
# Step 10: Visualize Clusters (Recency vs Monetary)
plt.figure(figsize=(8, 5))
for cluster in rfm['Cluster'].unique():
    subset = rfm[rfm['Cluster'] == cluster]
    plt.scatter(subset['Recency'], subset['Monetary'], label=f'Cluster {cluster}')
plt.xlabel('Recency')
plt.ylabel('Monetary Value')
plt.title('Customer Segments (Recency vs Monetary)')
plt.legend()
plt.grid(True)
plt.show()
```

OUTPUT:

REFERENCE:

GOOGLE

KAGGLE

CHATGPT

Online Retail Dataset from UCI