PEARSON

Chapter 2 – Number Systems and Codes

ELEVENTH EDITION

Principles and Applications

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University

Chapter 2 Objectives

- Selected areas covered in this chapter:
 - Converting between number systems.
 - Decimal, binary, hexadecimal.
 - Advantages of the hexadecimal number system.
 - Counting in hexadecimal.
 - Representing decimal numbers using the BCD code.
 - Pros and cons of using BCD.
 - Differences between BCD and straight binary.
 - Purpose of alphanumeric codes such as ASCII code.
 - Parity method for error detection.
 - Determine the parity bit to be attached to a digital data string.

Convert binary to decimal by summing the positions that contain a 1:

An example with a greater number of bits:

$$1 0 1 1 0 1 0 12 = 27 + 0 + 25 + 24 + 0 + 22 + 0 + 20 = 18110$$

- The double-dabble method avoids addition of large numbers:
 - Write down the left-most 1 in the binary number.
 - Double it and add the next bit to the right.
 - Write down the result under the next bit.
 - Continue with steps 2 and 3 until finished with the binary number.

Binary numbers verify the double-dabble method:

Given:

1

1

0

1

 \mathfrak{l}_2

Results:

$$1 \times 2 = 2$$

- Reverse process described in 2-1.
 - -Note that all positions must be accounted for.

$$45_{10} = 32 + 8 + 4 + 1 = 2^5 + 0 + 2^3 + 2^2 + 0 + 2^0$$

= 1 0 1 1 0 1₂

Another example:

$$76_{10} = 64 + 8 + 4 = 2^6 + 0 + 0 + 2^3 + 2^2 + 0 + 0$$

= 1 0 0 1 1 0 0₂

Repeated Division

Divide the decimal number by 2.

Write the remainder after each division until a quotient of zero is obtained.

The first remainder is the LSB.

The last is the MSB.

2-2 Decimal to Binary Conversion

Repeated Division

This flowchart describes the process and can be used to convert from decimal to any other number system.

Convert 37₁₀ to binary:

$$\frac{37}{2} = 18.5 \longrightarrow \text{ remainder of 1 (LSB)}$$

$$\frac{18}{2} = 9.0 \longrightarrow 0$$

$$\frac{9}{2} = 4.5 \longrightarrow 1$$

$$\frac{4}{2} = 2.0 \longrightarrow 0$$

$$\frac{2}{2} = 1.0 \longrightarrow 0$$

$$\frac{1}{2} = 0.5 \longrightarrow 1 \text{ (MSB)}$$

- Hexadecimal allows convenient handling of long binary strings, using groups of 4 bits—Base 16
 - 16 possible symbols: 0-9 and A-F

Hexadecimal point

Relationships between hexadecimal, decimal, and binary numbers.

Hexadecimal	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

2-3 Hexadecimal Number System – Hex to Decimal

 Convert from hex to decimal by multiplying each hex digit by its positional weight.

$$356_{16} = 3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

= $768 + 80 + 6$
= 854_{10}

 In a 2nd example, the value 10 was substituted for A and 15 substituted for F.

$$2AF_{16} = 2 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$$

= $512 + 160 + 15$
= 687_{10}

For practice, verify that 1BC2₁₆ is equal to 7106₁₀

2-3 Hexadecimal Number System – Decimal to Hex

- Convert from decimal to hex by using the repeated division method used for decimal to binary conversion.
- Divide the decimal number by 16
 - The first remainder is the LSB—the last is the MSB.

2-3 Hexadecimal Number System – Decimal to Hex

Convert 423₁₀ to hex:

$$\frac{423}{16} = 26 + \text{remainder of 7}$$
 $\frac{26}{16} = 1 + \text{remainder of 10}$
 $\frac{1}{16} = 0 + \text{remainder of 1}$
 $423_{10} = 1 + 7_{16}$

2-3 Hexadecimal Number System – Decimal to Hex

Convert 214₁₀ to hex:

$$\frac{214}{16} = 13 + \text{remainder of 6} - \frac{13}{16} = 0 + \text{remainder of 13} - \frac{13}{16} = 0 + \frac$$

2-3 Hexadecimal Number System – Hex to Binary

 Leading zeros can be added to the left of the MSB to fill out the last group.

For practice, verify that $BA6_{16} = 101110100110_2$

2-3 Hexadecimal Number System – Binary to Hex

- Convert from binary to hex by grouping bits in four starting with the LSB.
 - Each group is then converted to the hex equivalent
- The binary number is grouped into groups of four bits & each is converted to its equivalent hex digit.

For practice, verify that 101011111 2 = $15F_{16}$

 Convert decimal 378 to a 16-bit binary number by first converting to hexadecimal.

$$\frac{378}{16} = 23 + \text{ remainder of } 10_{10} = A_{16}$$

$$\frac{23}{16} = 1 + \text{ remainder of } 7$$

$$\frac{1}{16} = 0 + \text{ remainder of } 1$$

To perform conversions between hex & binary, it is necessary to know the four-bit binary numbers (0000 - 1111), and their equivalent hex digits.

Hex	Binary				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
Α	1010				
В	1011				
С	1100				
D	1101				
Ε	1110				
F	1111				

2-3 Hexadecimal Number System – Counting in Hex

- When counting in hex, each digit position can be incremented (increased by 1) from 0 to F.
 - On reaching value F, it is reset to 0, and the next digit position is incremented.

Example:

38,39,3A,3B,3C,3D,3E,3F,40,41,42

When there is a 9 in a digit position, it becomes an A when it is incremented.

With three hex digits, we can count from 000_{16} to FFF₁₆ which is 0_{10} to 4095_{10} — a total of $4096 = 16^3$ values.

2-4 BCD Code

- Binary Coded Decimal (BCD) is a widely used way to present decimal numbers in binary form.
 - Combines features of both decimal and binary systems.
 - Each digit is converted to a binary equivalent.
- BCD is not a number system.
 - It is a decimal number with each digit encoded to its binary equivalent.
- A BCD number is not the same as a straight binary number.
 - The primary advantage of BCD is the relative ease of converting to and from decimal.

- Convert the number 874₁₀ to BCD:
 - Each decimal digit is represented using 4 bits.
 - Each 4-bit group can never be greater than 9.

Reverse the process to convert BCD to decimal.

 Convert 0110100000111001 (BCD) to its decimal equivalent.

Divide the BCD number into four-bit groups and convert each to decimal.

 Convert 0110100000111001 (BCD) to its decimal equivalent.

Divide the BCD number into four-bit groups and convert each to decimal.

Convert BCD 0111111000001 to its decimal equivalent.

$$\underbrace{0111}_{7} 1100 \underbrace{0001}_{1}$$

The forbidden group represents an error in the BCD number.

2-5 The Gray Code

- The Gray code is used in applications where numbers change rapidly.
 - Only one bit changes from each value to the next.

Three bit binary and Gray code equivalents.

B ₂	B ₁	B ₀	G ₂	G ₁	G_0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

2-5 The Gray Code

G₂

Different?

Different?

B₁

Binary

(b)

LSB

Gray

MSB

Binary to Gray

Gray to Binary

Conversion Algorithm

From binary to Gray:

Let B[n:0] be the input array of bits in the usual binary representation, [0] being LSB Let G[n:0] be the output array of bits in Gray code G[n] = B[n]

for i = n-1 downto $0 G[i] = B[i+1] \times B[i]$

From Gray to binary:

Let G[n:0] be the input array of bits in Gray code Let B[n:0] be the output array of bits in the usual binary representation B[n] = G[n]for i = n-1 downto 0 B[i] = B[i+1] XOR G[i]

Note: A XOR B = A'B+AB'

Decimal numbers 1 – 15 in binary, hex, BCD, Gray

Decimal	Binary	Hexadecimal	BCD	GRAY
0	0	0	0000	0000
1	1	1	0001	0001
2	10	2	0010	0011
3	11	3	0011	0010
4	100	4	0100	0110
5	101	5	0101	0111
6	110	6	0110	0101
7	111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	Α	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	С	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	E	0001 0100	1001
15	1111	F	0001 0101	1000

2-7 The Byte, Nibble, and Word

- Most microcomputers handle and store binary data and information in groups of eight bits.
 - 8 bits = 1 byte.
 - A byte can represent numerous types of data/information.
- Binary numbers are often broken into groups of four bits.
 - Because a group of four bits is half as big as a byte, it was named a **nibble**.
- A word is a group of bits that represents a certain unit of information.
 - Word size can be defined as the number of bits in the binary word a digital system operates on.
 - PC word size is eight bytes (64 bits).

2-8 Alphanumeric Codes

- Represents characters and functions found on a computer keyboard.
 - 26 lowercase & 26 uppercase letters, 10 digits,
 7 punctuation marks, 20 to 40 other characters.
- ASCII American Standard Code for Information Interchange.
 - Seven bit code: 2^7 = 128 possible code groups
 - Examples of use: transfer information between computers; computers & printers; internal storage.

ASCII – American Standard Code for Information Interchange

Character	HEX	Decimal	Character	HEX	Decimal	Character	HEX	Decimal	Character	HEX	Decimal
NUL (null)	0	0	Space	20	32	@	40	64		60	96
Start Heading	1	1	!	21	33	Α	41	65	а	61	97
Start Text	2	2	"	22	34	В	42	66	b	62	98
End Text	3	3	#	23	35	С	43	67	С	63	99
End Transmit.	4	4	\$	24	36	D	44	68	d	64	100
Enquiry	5	5	%	25	37	E	45	69	е	65	101
Acknowlege	6	6	&	26	38	F	46	70	f	66	102
Bell	7	7	`	27	39	G	47	71	g	67	103
Backspace	8	8	(28	40	Н	48	72	h	68	104
Horiz. Tab	9	9)	29	41	1	49	73	i	69	105
Line Feed	Α	10	*	2A	42	J	4A	74	j	6A	106
Vert. Tab	В	11	+	2B	43	K	4B	75	k	6B	107
Form Feed	С	12	,	2C	44	L	4C	76	1	6C	108
Carriage Return	D	13	-	2D	45	M	4D	77	m	6D	109
Shift Out	Ε	14		2E	46	N	4E	78	n	6E	110

See the entire table on page 49 of your textbook.

- Binary data and codes are frequently moved between locations:
 - Digitized voice over a microwave link.
 - Storage/retrieval of data from magnetic/optical disks.
 - Communication between computer systems over telephone lines, using a modem.

- Electrical noise can cause errors during transmission.
 - Spurious fluctuations in voltage or current present in all electronic systems.

- Many digital systems employ methods for error detection—and sometimes correction.
 - One of the simplest and most widely used schemes for error detection is the parity method.

- The parity method of error detection requires the addition of an extra bit to a code group.
 - Called the parity bit, it can be either a 0 or 1,
 depending on the number of 1s in the code group.
- There are two parity methods, even and odd.
 - The transmitter and receiver must "agree" on the type of parity checking used.
 - Even seems to be used more often.

- Even parity method—the total number of bits in a group including the parity bit must add up to an even number.
 - The binary group 1 0 1 1 would require the addition of a parity bit 1, making the group 1 1 0 1 1.
 - The parity bit may be added at either end of a group.

- Odd parity method—the total number of bits in a group including the parity bit must add up to an odd number.
 - The binary group 1 1 1 1 would require the addition of a parity bit 1, making the group 1 1 1 1 1.

The parity bit becomes a part of the code word.

Adding a parity bit to the seven-bit ASCII

code produces an eight-bit code.

2-10 Applications

- When ASCII characters are transmitted there must be a way to tell the receiver a new character is coming.
 - There is often a need to detect errors in the transmission as well.
- The method of transfer is called asynchronous data communication.

2-10 Applications

- An ASCII character must be "framed" so the receiver knows where the data begins and ends.
 - The first bit must always be a start bit (logic 0).
- ASCII code is sent LSB first and MSB last.
 - After the MSB, a parity bit is appended to check for transmission errors.
 - Transmission is ended by sending a stop bit (logic 1).

Digital Systems

Principles and Applications

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University