Ecuación ejes paralelos:

$$X_{CM} = \frac{\sum A * \bar{x}}{\sum A} \qquad Y_{CM} = \frac{\sum A * \bar{y}}{\sum A}$$

PLANTA DE CENTRO DE MASA

Calculo de Centro de Masa de cada Losa

Losa	Area	X(m)	Y(m)	A*x	A*Y
1	91.2	3	7.6	273.6	693.12
2	41.249	8.47	4.175	349.37903	172.214575
3	58.344	13.75	10	802.23	583.44
	190.793			1425.20903	1448.774575

Centro de masa de Cada edificio

Xcm	7.469923058
Ycm	7.593436735

Altura acumulada: es la suma de todos los niveles en la ruta.

Nivel	Peso Sismico (ton)	Altura Acumulada (m)	
1	337.7240375	4.25	
2	527.9765625	7.5	
3	291.1254785	13.5	
	1156.826079	25.25	

Figura 4-1 Zonificación sísmica para la República de Guatemala

4.2.1 Índice de sismicidad

- **4.2.1.1** El índice de sismicidad (I_o) es una medida relativa de la severidad esperada del sismo en una localidad. Incide sobre el nivel de protección sísmica que se hace necesario para diseñar la obra o edificación e incide en la selección del espectro sísmico de diseño.
- **4.2.1.2** Para efecto de esta norma, el territorio de la República de Guatemala se divide en macrozonas de amenaza sísmica caracterizadas por su índice de sismicidad que varía desde $I_0 = 2$ a $I_0 = 4$.
- **4.2.1.3** La distribución geográfica del índice de sismicidad se especifica en el Listado de Amenaza Sísmica por Municipios, Anexo A. Las macrozonas sísmicas se muestran gráficamente en Figura 4-1 que es el Mapa de Zonificación Sísmica de la República.
- **4.2.1.4** Adicionalmente, esta norma requiere la aplicación de un índice de sismicidad I_0 = 5 a nivel de microzona para tomar en cuenta condiciones sísmicas severas geográficamente localizadas (Como fallas geológicas activas o laderas empinadas).
- **4.2.1.5** Las zonas que deben tener índice de sismicidad I_0 = 5 están definidas en la norma NSE 2.1.

Tabla 4-1 Nivel mínimo de protección sísmica y probabilidad del sismo de diseño

Índice de	Clase de obra					
Sismicidad	Esencial	Importante	Ordinaria	Utilitaria		
lo = 5	E	E	D	С		
lo = 4	E	D	D	С		
lo = 3	D	С	С	В		
lo = 2	С	В	В	А		
Probabilidad de exceder un sismo de diseño	5% en 50 años	5% en 50 años	10% en 50 años	No aplica		

- a) ver clasificación de obra en Capítulo 3, norma NSE 1
- b) ver índice de sismicidad en Sección 4.2.1
- c) ver Sección 4.3.4, para selección de espectro sísmico de diseño según probabilidad de excederlo
- d) para ciertas obras que hayan sido calificadas como "críticas" el ente estatal correspondiente puede considerar probabilidad de excedencia de 2% en 50 años ($K_d = 1.00$ en sección 4.3.4)
- e) "esencial" e "importante" tienen la misma probabilidad de excedencia se diferencian en el Nivel de Protección y en las deformaciones laterales permitidas

4.3.3.4 Período de transición

El período T_s (en s) que separa los períodos cortos de los largos es

$$T_s = S_{1s} / S_{cs}$$
 (4-3)

4.3.3.5 Coeficiente de Sitio F_a

Tabla 4-2

Class do sitio	Índice de sismicidad					
Clase de sitio	2a	2b	3a	3b	4	
AB	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.0	1.0	1.0	1.0	
D	1.4	1.2	1.1	1.0	1.0	
E	1.7	1.2	1.0	0.9	0.9	
F	se requiere evaluación específica ver sección 4.4.1					

4.3.3.6 Coeficiente de Sitio F_v

Tabla 4-3

Clase de sitio	Índice de sismicidad					
Clase de sillo	2a	2b	3a	3b	4	
AB	1.0	1.0	1.0	1.0	1.0	
С	1.7	1.6	1.5	1.4	1.3	
D	2.0	1.8	1.7	1.6	1.5	
E	3.2	2.8	2.6	2.4	2.4	
F	se requiere evaluación específica ver sección 4.4.1					

Tabla 4-5 Tipo de fuente sísmica

Tipo de fuente	Descripción	Máxima magnitud- momento	Tasa de Corrimiento (mm por año)
А	Fallas geológicas capaces de generar eventos de gran magnitud y con alta tasa de sismicidad (nota 1)	M _o ≥ 7.0	TC ≥ 5
В	Fallas geológicas que no son A o C	$M_o \ge 7.0$ $M_o < 7.0$ $M_o \ge 6.5$	TC < 5 TC > 2 TC < 2
С	Fallas geológicas incapaces de generar eventos de gran magnitud y que tienen baja tasa de sismicidad	M _o < 6.5	TC < 2

Nota 1: la zona de subducción de Guatemala no se considera por la distancia a la fuente Nota 2: la magnitud M_{\circ} y el TC deben concurrir simultáneamente cuando se califique el tipo de fuente sísmica

Tabla 4-6 Factor N_a para períodos cortos de vibración

Tipo de fuente	Distancia horizontal más cercana a fuente sísmica (Nota 1)				
tuente	≤ 2 km 5 km ≥10 km				
Α	1.25	1.12	1.0		
В	1.12	1.0	1.0		
С	1.0	1.0	1.0		

Nota 1: tomar la distancia horizontal a la proyección horizontal de la fuente sísmica sobre la superficie; no considerar las porciones del plano de falla cuya profundidad exceda 10 km Nota 2: utilizar el factor N_a que mayor haya salido al cotejar todas las fuentes relevantes

Tabla 4-7 Factor N_v para períodos largos de vibración

Tipo de	Distancia horizontal más cercana a fuente sísmica (Nota 1)					
fuente	≤ 2 km	5 km	10 km	≥ 15 km		
Α	1.4	1.2	1.1	1.0		
В	1.2	1.1	1.0	1.0		
С	1.0	1.0	1.0	1.0		

Nota 1: tomar distancia horizontal a la proyección horizontal de la fuente sísmica sobre la superficie; no considerar las porciones del plano de falla cuya profundidad exceda 10 km Nota 2: utilizar el factor N_{ν} que mayor haya salido al cotejar todas las fuentes relevantes

Decripcion de Variables	Ingrese	Norma	Busqueda
Io= Indice de Sismicidad	4	NSE-2	Figugra: 4.5-1
Scr= Ordenada Espectral T corto (g)	1.65	NSE-2	Figugra: 4.5-1
S1r= Ordenada espectral T largo (g)	0.6	NSE-2	Figugra: 4.5-1
NPS = Nivel de Proteccion Sismica	D	NSE-2	Figura: 4.2.2-1
Prob = En 50 años	5%	NSE-2	Figura: 4.2.2-1
Fa= Coeficiente de Ssitio T corto	1	NSE-2	Tabla : 4.5-1
Fv= Coeficientes de sitio T largo	1.5	NSE-2	Tabla : 4.5-2
Na = Fac. por la proximidad de amenazas	1.12	NSE-2	Figura: 4.6.2-2
Nv = Fac. por la proximidad de amendazas	1.2	NSE-2	Figura: 4.6.2-3
Kd= Factores por nivel sismico	0.8	NSE-2	Figura: 4.5.5-1

Por clase de sitio

Scs= Scr*Fa 1.65 S1s= S1r*Fv 0.

Por intensidad Sismica

		S1s=	
Scs= Scr*Fa*Na	1.848	S1r*Fv*Nv	1.08

Periodo de Transicion

Periodo de Transicion

Ts = S1s/Scs	0.545454545
--------------	-------------

Periodo deMeseta

To= 0.2 Ts	0.109090909
------------	-------------

Aceleracion Maxima

AMSd= 0.40*Scd	0.528
----------------	-------

Componente Vertical

Svd= 0.20*Scd	0.264
	•

2.1.4.1 El periodo fundamental de vibración de una edificación se estimará en forma empírica y genérica como

$$T_a = K_T (h_n)^x$$
....(2-3)

donde

h_n es la altura total del edificio, en m, desde la base definida en la sección 1.10.4,

y según el sistema estructural se dan los siguientes 5 casos de la ecuación 2-3

(a) $K_T = 0.049$, x=0.75 para sistemas estructurales E1, E3, E4 o E5;

La estructura realizada es de Tipo E 1

T_a =K_T * (Altura de		
(h_n)^ x)		h_n (m)	13.5	Edificacion		
		K_T	0.049		Coeficiente	2.1.6
T_a	0.34510115	X	0.75		Coeficiente	2.1.6

Las ordenadas espectrales $\mathbf{S}_{\mathbf{a}}$ (T) para cualquier período de vibración T, se definen con

$$S_a(T) = S_{cd}$$
 si $T \le T_s$ (4-6 a)

$$S_a(T) = S_{1d} / T$$
 si $T > T_s$ (4-6 b)

Caso 1	Sa(T) = Scd	Cuando To≤ T≤ Ts	4.5.6-1
Caso 2	Sa(T) = S1d/T ≤ Scd	Cuando T > Ts	4.5.6-2
Caso 3	Sa (T)m= Scd (0.4+0.6 T/ To)	Cuando T< To	4.5.6-3

То	0.11
Та	0.34
Ts	0.54

TABLA 1-1 Coeficientes y factores para diseño de sistemas sismorresistentes

		Sistema				Lín	nite de met		en
	SISTEMA ESTRUCTÚRAL (sección 1.5)	Constructivo Véase		Constructivo R Ω	C _d	Niv	el de P	rotecci	ón
	(6666) 11.67	Secc1.5.8				В	С	D	Е
E1	SISTEMA DE MARCOS								
E1-A	Marcos tipo A De concreto reforzado De acero estructural	NSE 7.1 NSE 7.5	8	3	5.5 5.5	SL SL	SL SL	SL SL	SL SL
E1-B	Marcos tipo B De concreto reforzado De acero estructural	NSE 7.1 NSE 7.5	5 4.5	3 3	4.5	50 50	30 30	12 12	NP NP
E1-C	Marcos tipo C De concreto reforzado De acero estructural	NSE 7.1 NSE 7.5	3 3.5	3	3 2.5	30 30	NP NP	NP NP	NP NP
E2	SISTEMA DE CAJON Con muros estructurales De concreto reforzado A De concreto reforzado B De concreto reforzado BD De mampostería reforzada A Paneles de Concreto prefabricado	NSE 7.1 NSE 7-1 1.5.8 NSE 7.4 NSE 7.3	5 4 5 4	2.5 2.5 2.5 2.5 2.5 3	5 4 3 3 3.5	SL 50 30 30 30	75 50 30 30 30	50 30 15 20 15	30 NP 12 15
	Can nanalas da madara	NCE 76	6	2	1	20	20	15	20

Estructura tipo E1-A

De concreto reforzado

De acero estructural

Coeficiente Sismico

$$Sc = Sa(t)/R$$

Sa (T) =	1.32
R	8
Cs	0.165

Coeficiente mínimo

Cs	0.165
0.044 Scd	0.05808
0.75*kd *S1r/r	0.045

Periodo natural de vibración

Para PNVse utiliza la siguiente ecuación:

Para X

$$PNV_X = \frac{0.0906 * h_{total}}{\sqrt{D_x}}$$

Para Y

$$PNV_y = \frac{0.0906 * h_{total}}{\sqrt{D_y}}$$

Donde:

hn= la altura total del edificio, no altura total a eje.

Dx= distancia total en el eje x

Dy= distancia total en el eje y

La ecuacion a utilizar depende del eje que se desee analizar

hn (m)	13.5
Dx (m)	15.7
PNV	0.31

NOTA: El valor del PNV obtenido también servirá para determinar si a la estructura se le deberá de calcular la FUERZA TOP, pues si PNV>0.25 debe de calcularse

Nivel	Peso Sismico	H acumulada	Wsismico*hacum	Сх	Fp
1	337.72	4.25	1435.327159	0.1539	28.742
2	527.98	7.5	3959.824219	0.4246	79.293
3	291.13	13.5	3930.19396	0.4215	78.700
	1,156.83	25.25	9325.345338	1	186.734

 Vb
 190.876303

 F top
 4.142015774

Muros	
W (kg/m2)	180
Espesor t(m)	0.3
Longitud M1 (m)	1.5
Longitud M2 (m)	1.2
Area M1 (m^2)	0.45
Area M2 (m^2)	0.36
Elevador	
Lado Corto 1 (m)	1.75
Lado Corto 2 (m)	1.75
Lado Interno 1 (m)	4.35
Espesor (m)	0.3
Area (m^2)	2.355

Rigidez por Piso

Ec (kg/cm2)	282495.13
Eg (kg/cm2)	112998.05

Elevador

Lado LARGO	435
Lado Corto 1	175
Lado corto 2	175
Espe t	30

Muro (cm)

Long. M1	150
Long. M2	150
Espe t	30

K total en Y	416716.6449
--------------	-------------

	SENTIDO Y						
Eje	ELEMENTO	NIVEL	VOLAD/EMPO	b (cm)	h (cm)	Inercia	Area (cm2)
Α	MURO	3	VOLADIZO	30	150	8437500	4500
Α	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
Α	MURO	3	VOLADIZO	30	150	8437500	4500
Α	MURO	3	VOLADIZO	30	150	8437500	4500
В	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
В	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
В	EVELAVOR	3	VOLADIZO	30	175	13398437.5	5250
В	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
В	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
С	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
С	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
С	EVELADOR	3	VOLADIZO	30	175	13398437.5	5250
С	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
С	MURO	3	VOLADIZO	30	150	8437500	4500
D	MURO	3	VOLADIZO	30	150	8437500	4500
D	COLUMNA	3	VOLADIZO	45	45	341718.75	2025
D	MURO	3	VOLADIZO	30	150	8437500	4500

			Area		Ec	Ec (
Eje	ELEMENTO	Inercia	(cm2)	Altura (cm)	(kg/cm2)	kg/cm2)	
Α	MURO	8437500	4500	325	282495.13	112998.05	5.57E-06
Α	COLUMNA	341718.75	2025	325	282495.13	112998.05	1.20E-04
Α	MURO	8437500	4500	325	282495.13	112998.05	5.57E-06
Α	MURO	8437500	4500	325	282495.13	112998.05	5.57E-06
В	COLUMNA	341718.75	2025	600	282495.13	112998.05	7.49E-04
В	COLUMNA	341718.75	2025	600	282495.13	112998.05	7.49E-04
В	EVELAVOR	13398437.5	5250	600	282495.13	112998.05	2.02E-05
В	COLUMNA	341718.75	2025	600	282495.13	112998.05	7.49E-04
В	COLUMNA	341718.75	2025	600	282495.13	112998.05	7.49E-04
С	COLUMNA	341718.75	2025	460	282495.13	112998.05	3.39E-04
С	COLUMNA	341718.75	2025	460	282495.13	112998.05	3.39E-04
С	EVELADOR	13398437.5	5250	460	282495.13	112998.05	9.50E-06
С	COLUMNA	341718.75	2025	460	282495.13	112998.05	3.39E-04
С	MURO	8437500	4500	460	282495.13	112998.05	1.47E-05
D	MURO	8437500	4500	325	282495.13	112998.05	5.57E-06
D	COLUMNA	341718.75	2025	325	282495.13	112998.05	1.20E-04
D	MURO	8437500	4500	325	282495.13	112998.05	5.57E-06

Eje	ELEMENTO	Rigidez K	K total de eje
A	MURO	179,608.36	
A	COLUMNA	8,316.70	
А	MURO	179,608.36	547,141.79
A	MURO	179,608.36	
В	COLUMNA	1,335.12	
В	COLUMNA	1,335.12	
В	EVELAVOR	49,416.48	54,756.94
В	COLUMNA	1,335.12	
В	COLUMNA	1,335.12	
С	COLUMNA	2,954.08	
С	COLUMNA	2,954.08	
С	EVELADOR	105,234.56	182,134.46
С	COLUMNA	2,954.08	
С	MURO	68,037.68	

D	MURO	179,608.36	
D	COLUMNA	8,316.70	367,533.42
D	MURO	179,608.36	
K total Y		1,151,566.61	

TOMA EN X			
Eje	Dy	K	K*Dy
A	0.15	5,471.42	820.71
В	5.45	547.57	2,984.25
С	10.25	1,821.34	18,668.78
D	15.55	3,675.33	57,151.45
TOTAL	31.4	11,515.67	79,625.20

Eje	Dx	K	K*Dx
1	15.05	3,635.06	54,707.64
1	15.05	3,033.00	34,707.04
2	10.25	21,886.50	224,336.62
3	4.95	3,635.06	17,993.54
4	0.15	2,489.81	373.47
TOTAL	30.4	31,646.43	297,411.28

Ecuacion de Ejes paralelos Hallamos Centro de Rigideces

Xcr	7.84
Ycr	6.91

Xcm	7.47
Ycm	7.59

e Exentricidad	
ex (m)	0.37
ey(m)	0.68

Distribucion de Fuerzas por Eje

	Fuerza de Piso		
Nivel	Peso Sismico	h Acumulada	Fp (ton)
1	337.7240375	4.25	28.947
2	527.9765625	7.5	79.860
3	291.1254785	13.5	79.263
3	1156.826079	25.25	188.070

CARNET PAR -FUERZA EN X-X..

	Fuerza Por eje			
Eje	Nivel	K	Fp (ton)	Feje (ton)
1	3	3,635.06	79.26	9.104
2	3	21,886.50	79.26	54.816
3	3	3,635.06	79.26	9.104
4	3	2,489.81	79.26	6.236
		31,646.43		

INGRESO DE SISMO EN SENTIDO YY

