

Práctico 2

Ejercicio 1

Determine la resistencia total R_T de cada una de las configuraciones.

(Observe que se utilizaron sólo valores de resistor estándar.)

La resistencia Total es la resistencia R_T que una fuente de voltaje vería si la conectamos en los dos terminales disponibles del circuito.

Para cada una de las configuraciones de la figura, determine la lectura del óhmmetro.

Ejercicio 3

Determine la resistencia R, dada la lectura del óhmmetro en cada una de las configuraciones de la figura.

Ejercicio 4

Para la configuración en serie de la figura:

- a) Determine la resistencia.
- b) Calcule la corriente.
- c) Determine el voltaje que pasa a través de cada elemento resistivo.
- d) Calcule la potencia entregada por la fuente .
- e) Determine la potencia suministrada al resistor de 18 Ω .

Determine el voltaje aplicado necesario para desarrollar la corriente especificada en cada circuito de la figura.

Ejercicio 6

Determine las cantidades desconocidas para el circuito de la figura con la información proporcionada.

Ejercicio 7

Aplicando la ley del voltaje de Kirchhoff, determine los volta-jes desconocidos para las configuraciones de la figura

- a) Diseñe un circuito divisor de voltaje que permita utilizar un foco de 8 V y 50 mA en un automóvil con un sistema eléctrico de 12 V.
- b) ¿Cuál es potencia mínima en watts del resistor seleccionado si se dispone de resistores de 0.25, 0.5 y 1 W?

Ejercicio 9

Encuentre la resistencia total para cada configuración. Observe que sólo se utilizaron resistores de valor estándar.

Ejercicio 10

En las figuras se especifica la resistencia total de cada una de las configuraciones. Determine la resistencia de valor estándar desconocida.

Ejercicio 11

Para la red de la figura

- a) Determine la corriente que fluye a través de cada rama.
- b) Halle la resistencia total.
- c) Calcule If aplicando el resultado del inciso (b).
- d) Determine la corriente de la fuente utilizando el resultado del inciso a).
- e) Compare los resultados de las partes c) y d).

Use la información de la figura para calcular:

- a) El voltaje de la fuente E
- b) La resistencia R₂.
- c) La corriente I
- d) La corriente de la fuente If.
- e) La potencia suministrada por la fuente.
- f) La potencia suministrada a los resistores R₁ y R₂.
- g) Compare la potencia calculada en el inciso e) con la suma de las potencias suministradas a todos los resistores.

Ejercicio 13

Para la red de la figura, determine:

- a) El voltaje V.
- b) La corriente I2.
- c) La corriente I_f.
- d) La potencia suministrada al resistor de 12 k Ω .

Aplicando la ley de la corriente de Kirchhoff, determine las corrientes desconocidas para la red en paralelo de la figura.

Ejercicio 15

Con la información provista determine las cantidades desconocidas de las redes de la figura.

Ejercicio 16

Para cada una de las redes de la figura, determine las corrientes desconocidas.

Firmado por: Franco Ferrari

Fecha: 5/23/2025

Profesor Daniel Fernández