الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأوّل: (04 نقاط)

. C(1;1;3) و B(0;-2;2)، A(2;2;0) نعتبر النقط B(0;-2;2)، نعتبر النقط المتعامد والمتجانس $O(\vec{i},\vec{j},\vec{k})$ نعتبر

- . (BC) اكتب معادلة ديكارتية للمستوي (P) الذي يشمل النقطة A ويعامد المستقيم (BC)
- . x+2y-z=0 : هي (P') المستوي المحوري للقطعة $\begin{bmatrix} AB \end{bmatrix}$ ، تحقق أن معادلة ((P') هي (2
 - . بيّن أنّ المستويين (P) و (P') يتقاطعان وفق مستقيم (Δ) ، يطلب إيجاد تمثيل وسيطي له .
- (ABC) و (Δ) بيّن أنّ النقطة G مرجح الجملة المثقلة G المثقلة G المثقلة G المثقلة G بيّن أنّ النقطة G مرجح النقط G من الفضاء التي تحقق: $\|\overrightarrow{MA} + \overrightarrow{MB} 12\overrightarrow{MC}\| = 10$

التمرين الثاني: (04 نقاط)

نعتبر الدالة العددية f المعرّفة على المجال $[-\infty;1]$ ب $[-\infty;1]$ ب المستوي المعادلة [x,y] المستقيم ذا المعادلة [x,y] المستقيم ذا المعادلة [x,y] المستقيم ذا المعادلة [x,y]

- $u_0=-1$ المتتالية العددية المعرّفة بحدها الأول u_0 حيث $u_n=-1$. $u_{n+1}=f(u_n)$ ، $u_n=-1$ عدد طبيعي
 - اعد رسم الشكل المقابل ثم مثّل على حامل محور الغواصل المعابل ثم مثّل على حامل محور الغواصل u_1 ، u_2 ، u_1 ، u_0 ، الحدود ثم ضع تخميناً حول اتجاه تغيّر المتتالية (u_n) وتقاريها.
 - . $u_n < 1$ ، n عدد طبیعي (2) برهن بالتراجع أنّ: من أجل كل عدد طبيعي
 - ادرس اتجاه تغيّر المتتالية (u_n) ثم استنتج انّها متقاربة.
- $v_n = \frac{2}{1-u_n}$ ، n عدد طبیعی المعرّفة کما یلي: من أجل کل عدد (v_n) المعرّفة کما المعرّفة کما با نعتبر
- . n بدلالة v_n بدلالة عين عبارة حدها العام v_n بدلالة المتتالية v_n بدلالة المتتالية v_n
 - $\lim_{n \to +\infty} u_n$ واحسب والحد العام العام u_n بدلالة الحد العام واحسب (ب

التمرين الثالث: (05) نقاط)

المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$.

 $z_{C}=-i$ و $z_{B}=2+i$ ، $z_{A}=-1$: نعتبر النقط B ، A و B ، A

- . ABC على الشكل الأسي ثم استنتج طبيعة المثلث (1 $\frac{Z_A-Z_C}{Z_B-Z_C}$
 - A الذي مركزه C ويحول B الذي العبارة المركبة للتشابه المباشر C الذي مركزه
 - S بالتشابه D والنقطة D بالنسبة الى D والنقطة D بالتشابه D بالتشابه D
 - $z_E = 1 2i$ عيّن z_E لاحقة D ثم تحقق أن: $z_E = 1 2i$
 - ب) حدّد طبيعة الرباعي ADEB.
- (B و A عن M مجموعة النقط M من المستوي ذات اللاحقة M من المستوي ذات اللاحقة M

.
$$\arg(z-z_A) - \arg(z-z_B) = \frac{\pi}{2} + 2k\pi$$
 ; $k \in \mathbb{Z}$

تحقق أنّ النقطة C تنتمى الى Γ)، ثم حدّد طبيعة المجموعة Γ وأنشئها.

التمرين الرابع: (07 نقاط)

 $f(x) = -2x + 3 + 2\ln\left(\frac{x-1}{x-2}\right)$: ينكن الدالة العددية $D_f = \left[-\infty; 1\right] = -\infty; 1$ المعرفة على $D_f = \left[-\infty; 1\right] = -\infty; 1$ عند الدالة العددية المعرفة على $D_f = \left[-\infty; 1\right] = -\infty; 1$ وليكن $\left(0; \vec{i}, \vec{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس والمتعامد والمتجانس والمتعامد والمتعام

- انيجتين بيانيا. $\lim_{x \stackrel{>}{\longrightarrow} 2} f(x)$ ، $\lim_{x \stackrel{>}{\longrightarrow} 1} f(x)$: احسب النهايتين بيانيا ، أ
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ب احسب (پ
- . f الدالة $f'(x) = -2 \frac{2}{(x-1)(x-2)}$ ، f من f من أجل كل f من f من أجل كل أجل كل أحد من أحد من أجل كل أحد من أج
 - . f(3-x)+f(x)=0 و $(3-x)\in D_f$ ، D_f من x عدد حقیقي x من أجل كل عدد حقیقي (x من أجل كل عدد حقیقي x
 - ب استنتج أنّ $\left(C_{f}\right)$ يقبل مركز تناظر يُطلب تعيين إحداثييه.
- لأبت أنّ المعادلة f(x)=0 تقبل حلا وحيدا α على المجال β 0,45;0,46 ثم استنتج أنّها تقبل حلا أخر β يطلب تعيين حصر له.
- . (Δ) بيّن أنّ المستقيم (Δ) ذا المعادلة: y=-2x+3 مقارب مائل لـ (C_f) ، ثم ادرس وضعية (Δ) بالنسبة لـ (Δ)
 - $\cdot ig(C_fig)$ و (Δ) ارسم (f 6
 - .]2; $+\infty$ على $\ln\left(\frac{x-1}{x-2}\right)$ على أنّ الدالة: $(x \mapsto (x-1)\ln(x-1) (x-2)\ln(x-2) + (x-1)\ln(x-1) (x-2)\ln(x-2)$ على (7)

ثم احسب بدلالة etaمساحة الحيّز المستوي المُحدد بالمنحنى (C_f) والمستقيمات التي معادلاتها:

x = 3 y = -2x + 3

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأوّل: (04 نقاط)

 $\left(O; \vec{i}, \vec{j}, \vec{k} \right)$ الفضاء منسوب إلى المعلم المتعامد والمتجانس

. D(4;7;0) ، C(0;5;2) ، B(-1;2;-3) ، A(1;1;0) نعتبر النقط

- . بيّن أن النقط $B \cdot A$ و B تعين مستو (1
- $\cdot (AC)$ و (AB) و أثبت أنّ المستقيم (CD) عمودي على كل من المستقيمين (CD) و
- $\cdot (ABC)$. والمستوي (ABC)، ثم احسب المسافة بين النقطة D والمستوي والمستوي بين النقطة عبين النقطة والمستوي
 - (3) أ) حدّد طبيعة المثلث ABC.
 - ب) احسب حجم رياعي الوجوه ABCD

التمرين الثاني: (04 نقاط)

- $.4^{5k}\equiv 1[11]$ ، k عدد طبیعی (1
- استنتج تبعا لقيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 4^n على 11 (2)
- . 11يقبل القسمة على 11 يقبل العدد $(2 \times 2017^{5n+3} + 3 \times 1438^{10n} + 1)$ يقبل العدد (3 عدد طبيعي العدد العدد (3 بيّن أنّ: من أجل كل
 - . 11عيّن قيم العدد الطبيعي n التي يكون من أجلها العدد ($2 \times 2017^{5n+2} + n 3$) قابلا للقسمة على $(2 \times 2017^{5n+2} + n 3)$

التمربن الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$.

 $z_D=\overline{z}_C$ و $z_C=\overline{z}_C$ و التي لواحقها $z_C=\overline{z}_A$ ، $z_A=1+i$: و التي لواحقها $z_C=\overline{z}_C$ و عتبر النقط

- \cdot اكتب z_A و z_C على الشكل الأسي ثم استنتج الشكل الأسي للعددين z_C و z_A
 - . $(z_A)^n = (z_B)^n$ عيّن قيم العدد الطبيعي n التي تحقق (ب
 - B الذي يحول D إلى A ويحول D إلى A إلى A الذي يحول D إلى A الذي يحول A ويحول A إلى A
 - . ADCB جسب طويلة العدد المركب $\frac{z_C-z_B}{z_D-z_A}$ ثمّ استنتج طبيعة الرباعي (ب
 - $\{(A;2),(B;2),(C;-1),(D;-1)\}$ مرجح الجملة مرجح الجملة عبد الجملة عبد (3 النقطة G
- $2\overline{MA} + 2\overline{MB} \overline{MC} \overline{MD} = \sqrt{5}$ لتكن (1) مجموعة النقط 1 من المستوي بحيث: (1) لتكن (1) مجموعة النقط 1 من (1)، ثم حدد طبيعة المجموعة (1) وعناصرها المميزة وأنشئها.

التمرين الرابع: (07 نقاط)

- gنعتبر الدالة العددية g المعرّفة على \mathbb{R} كما يلي: الدالة العددية (I
 - 1) ادرس اتجاه تغير الدالة و.
- ية العدد $\alpha\in]-1,48\,;-1,47$ عقبل حلا وحيدا $\alpha\in [-1,48\,;-1,47]$ عقبل حلا وحيدا وحيدا وحيدا وحيدا g(x)=0 عقبل العدد الحقيقي g(x)=0 بيّن أنّ المعادلة g(x)=0 .
 - $f(x) = \frac{x^3 6}{x^2 + 2}$ نعتبر الدالة العددية f المعرّفة على $\mathbb R$ كما يلي: (II

 $\left(\mathrm{O}\,;ec{i}\,,ec{j}
ight)$ سنجانس وليكن والمتعامد والمتجانس المستوي المنسوب المياني في المستوي المنسوب المعلم المتعامد والمتجانس والمتعامد والمتجانس المستوي

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (أ (1

$$f'(x) = \frac{x g(x)}{(x^2 + 2)^2}$$
 ، x عدد حقیقی عدد کل عدد بین أنّ من أجل کل عدد حقیقی

ثم ادرس اتجاه تغير الدالة f وشكّل جدول تغيراتها.

- $\cdot \left(C_f
 ight)$ بيّن أنّ المستقيم y=x ذا المعادلة y=x مقارب مائل للمنحنى (1 (2
 - . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم
 - $f(\alpha)$ بيّن أنّ $f(\alpha) = \frac{3}{2}$ ثم استنتج حصرا للعدد (3
 - (C_f) ارسم المستقيم (Δ) والمنحنى (4
- نرمز بS الى مساحة الحيز المستوي المحدد بالمنحني (C_f) والمستقيمات التي معادلاتها (x=0) برمز بx=0 ، x=0

$$\frac{3}{2}\alpha^2 \le S \le -3\alpha$$
 : ثم بيّن أنّ : من أجل كل $3 \le f(\alpha)$ ، $x \in [\alpha; 0]$ ثم بيّن أنّ : من أجل كل