

### Modicon M340: 串行通讯













## A-串行通讯简介







#### 串行通讯接口





- 串行通讯接口可用于总线上各个设备的数据通讯
  - Modbus通讯协议
  - 字符串模式通讯
- 在某些型号的M340处理器模块上集成了串行通讯接口
  - BMX P34 1000 / 2010 / 2020 处理器
  - 带屏蔽的RJ45接口
  - RS232或RS485接口定义
  - XBTN文本终端或Modbus隔离分线盒供电(5V / 200 mA)









## 集成串行通讯接口特性

|      | Modbus模式                              | 字符串模式                                 |
|------|---------------------------------------|---------------------------------------|
| 类型   | 主/从                                   | 全/ 半 双工                               |
| 速率   | 缺省值19200 bit/s<br>(300 - 19200 bit/s) | 缺省值19200 bit/s<br>(300 - 19200 bit/s) |
| 连接设备 | 248                                   | 248                                   |
| 总线长度 | 干缆 : 1000 米<br>支缆 : 40 m              | 干缆 : 1000 米<br>支缆 : 40 m              |
| 信息大小 | 256 bytes                             | 1 K bytes                             |
| 服务   | 字 / 位 读操作<br>字 / 位 写操作<br>诊断          | 字符串发送字符串接收                            |









#### Modbus 与 OSI 参考模型











### 字符串模式与OSI参考模型











B-物理层









## 电气接口

■两种标准的电气接口



(\*) 只针对字符串通讯的点对点

























## C-数据链路层









### 主 / 从原理









### Modbus 数据帧



| 地址                                | 功能<br>码 | 数据        | CRC 或<br>LRC |
|-----------------------------------|---------|-----------|--------------|
| 从站地址                              | 数据操作模式  | 操作数据      | 校验           |
| 0:广播模式<br>1 至 247:非广播<br>模式中的从站地址 | 1 至 247 | 功能码定义操作模式 |              |

注意:广播模式只能用于写操作









# 广播模式 (地址 0)



所有从站无需响应









## 非广播模式 (地址 1 至 247)











### 半/全双工原理



#### ■ 半双工

- 双向数据通讯在同一传输介质上
- 双向数据通讯不能同时进行

#### ■ 全双工

- 发送与接收线路分离
- 双向数据通讯可以同时进行
- 响应时间比半双工好









## D-帧格式









#### Modbus RTU 数据帧格式

最长256 字节





(\*): 空闲时间至少为3.5个字符传输时间









### Modbus ASCII 数据帧格式

最长513个字符



报文中字符时间间隔可达1秒









### 字符串通讯的数据帧格式











### 8位数据编码

- 每个数据用1个字节进行编码
  - Modbus RTU 模式
  - 字符串模式



■ 例如: Modbus 功能码 15 (16#0F) = 写n 个位

| 16#0 |   |   | 16#F |   |   |   |   |
|------|---|---|------|---|---|---|---|
| 0    | 0 | 0 | 0    | 1 | 1 | 1 | 1 |









### 8位数据位的字符串模式

- 每个字符由11个位进行编码
- 编码示例: 奇偶校验











### 数据传输错误检测

■ 2种类型的检测



# 数据帧检测



RTU 模式:循环冗余校验

(Cyclical Redundancy Checking)

ASCII 模式:纵向冗余校验

(Longitudinal Redundancy Checking)









### E-处理器内置接口









### 内置串行通讯接口的处理器模块



- 处理器模块 BMX P34 1000 / 2010 / 2020
- LED显示面板 (1)
  - RUN 和 ERR 表示模块状态
  - SER COM 表示串行端口状态
- 集成的串行通讯端口 (2)
  - Modbus
  - 字符串
- 黑色的串行接口标记 (3)









### 串行通讯的可视化LED诊断



■ LED指示灯不同的颜色及闪烁方式表示串行通讯端口的运行 状态

| 指示灯     | 模式         | 含义                |
|---------|------------|-------------------|
| RUN     | 绿色<br>闪烁   | 模块正在运行<br>模块正在自检  |
| ERR     | 红色 闪烁      | 模块或系统错误配置错误或软件故障  |
| SER COM | 黄色闪烁<br>熄灭 | 正在数据通讯<br>当前无数据通讯 |









## F-串行端口设置









#### 串行通讯端口设置



- 打开项目浏览器中的配置文件夹,双击机架图标 (1)
- 双击处理器模块中的串口图标,打开串口通道配置端口(2)
- 在功能下拉菜单中选择通讯模式 (3)









### 通讯参数配置窗口











### Modbus主模式配置界面











### Modbus从模式配置界面











### Modbus调试界面











### 字符串模式配置界面











### 字符串模式调试界面











### G-编辑通讯程序









## M340服务器模式下支持的功能码

| Function code | Memory address | Meaning                         |  |
|---------------|----------------|---------------------------------|--|
| 01            | %M             | Read multiple output bits       |  |
| 02            | %M             | Read multiple input bits        |  |
| 03            | %MW            | Read multiple registers         |  |
| 04            | %MW            | Read multiple input registers   |  |
| 05            | %M             | Force single output bit         |  |
| 06            | %MW            | Write single register           |  |
| 15            | %M             | Write multiple output bits      |  |
| 16            | %MW            | Write multiple registers        |  |
| 23            | %MW            | Read / Write multiple registers |  |









# M340客户端模式下支持的功能码

| Function code | Memory address | Modbus request                | Communication function |
|---------------|----------------|-------------------------------|------------------------|
| 1             | %M             | Read output bits              | READ_VAR               |
| 2             | %M             | Read input bits               | READ_VAR               |
| 3             | %MW            | Read multiple registers       | READ_VAR               |
| 4             | %MW            | Read multiple input registers | READ_VAR               |
| 15            | %M             | Write multiple output bits    | WRITE_VAR              |
| 16            | %MW            | Write multiple registers      | WRITE_VAR              |









### 串行通讯的输入输出导出数据类型

#### ■ 3 种IODDT

- T\_COM\_STS\_GEN 用于所有通讯协议
- T\_COM\_MB\_BMX 用于Modbus通讯协议
- T\_COM\_CHAR\_BMX 用于字符串通讯









### 动态协议交换

- 使用WRITE\_CMD功能块可以动态改变串行通讯端口的协议类型
  - Modbus 主模式
  - Modbus 从模式
  - 字符串模式
- WRITE\_CMD (%MWr.m.c.24.bit)
  - 位12: 将当前模式改变为Modbus主模式
  - 位13:将当前模式改变为Modbus从模式
  - 位14:将当前模式改变为字符串模式
- 实现动态协议转换需首先将串行通讯端口配置为Modbus从模式









### 读写数据示例

■ 主站PLC与地址为6的从站PLC进行Modbus数据交换



















#### 写数据编程





