

LISTA DE EXERCÍCIOS PARA 2ª AVALIAÇÃO

6876 – Álgebra Linear – Ciência da Computação – Turma 02 Professor: Marcelo Augusto de Oliveira Alberti

Transformações Lineares

01 - Determine quais das seguintes funções são aplicações lineares:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (x + y, x - y)$

b)
$$g: R^2 \to R$$

 $(x, y) \mapsto xy$

c)
$$h: M_2 \to R$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

c)
$$h: M_2 \to R$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
d) $k: P_2 \to P_3$

$$ax^2 + bx + c \mapsto ax^3 + bx^2 + cx$$

 $\boxed{\mathbf{02}}$ - a) Ache a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (2,0), T(0,1,0) = (1,1) e T(0,0,1) = (0,-1).

b) Encontre v de R^3 tal que T(v) = (3,2).

03 - a) Ache a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1) = (3,2,1), T(0,-2) = (0,1,0)?

b) Ache T(1,0) e T(0,1).

c) Ache a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^2$ tal que S(3,2,1) = (1,1), S(0,1,0) = (0,-2) e S(0,0,1) = (0,0)?

d) Ache a transformação linear $P: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $P = S \circ T$.

 $|\mathbf{04}|$ - Dados $T: U \to V$ linear e injetora e u_1, u_2, \dots, u_k , vetores LI em U, mostre que $\{T(u_1), T(u_2), ..., T(u_k)\}$ é LI.

 $\boxed{\mathbf{05}}$ - Sejam R, S e T três transformações lineares de R^3 em R^3 .

Se
$$[R] = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$
 e $[R] = \begin{bmatrix} -2 & 1 & -1 \\ 3 & 1 & 2 \\ 1 & -2 & 0 \end{bmatrix}$, ache T tal que $R = S \circ T$.

06 - Sejam $\alpha = \{(1, -1), (0, 2)\}$ e $\beta = \{(1, 0, -1), (0, 1, 2), (1, 2, 0)\}$ bases de R^2 e R^3 respectivamente e $[T]_{\beta}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}.$

- a) Ache T.
- b) Se S(x, y) = (2y, x y, x), ache $[S]_{\beta}^{\alpha}$.

$$\boxed{\mathbf{07}}$$
 - Se $R(x, y) = (2x, x - y, y)$ e $S(x, y, z) = (y - z, z - x)$,

a) Ache $[R \circ S]$.

b) Ache $[S \circ R]$.

 $\boxed{\mathbf{08}}$ - Mostre que se $T: V \longrightarrow W$ é uma transformação linear,

- a) Im(T) é um subespaço de W.
- b) ker (T) é um subespaço de V.

09 - Sejam S e T aplicações lineares de V e W. Definimos S + T como (S + T)v = S(v) + T(v) para todo $v \in V$ e definimos αS como $(\alpha S)v = \alpha \cdot S(v)$ para todo $\alpha \in V$ e $v \in V$.

- a) Mostre que S + T é uma transformação linear de V em W.
- b) Mostre que αS é uma transformação linear de V em W.
- c) Mostre que $X = \{T \mid T: V \longrightarrow W\}$ é um espaço vetorial sobre **R**.
- d) Suponha que dim V = 2 e dim W = 3. Tente procurar dim X.

 $\boxed{\mathbf{10}}$ - No exercício 6 determine $\ker T$, $\operatorname{Im} T$, $\operatorname{Im} S$, $\ker S$ e comprove a validade do teorema do núcleo e da imagem para estas transformações.

11 - Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (z, x - y, -z).

- a) Determine uma base do núcleo de T.
- b) Dê a dimensão da imagem de T.
- c) Té sobrejetora? Justifique.
- d) Faça o esboço de ker T e Im T.

12 - Sejam $\alpha = \{(0,2), (2,-1)\}$ e $\beta = \{(1,1,0), (0,0,-1), (1,0,1)\}$ bases de R^2 e R^3 , e $[S]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 0 & -4 \end{bmatrix}$. Dê a expressão para S(x,y).

13 - Seja $A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$. Encontre $\ker T_A$, $\operatorname{Im} T_A$, $\ker T_B$, $\operatorname{Im} T_B$, $\ker (T_B \circ T_A)$ e $\operatorname{Im} (T_B \circ T_A)$. Determine bases para estes seis subespaços.

Autovalores e Autovetores

Ache os autovalores e autovetores correspondentes das transformações lineares dadas. (Ex. 1 á 5)

01 -
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T(x, y) = (2y, x)$.

02 -
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T(x, y) = (x + y, 2x + y)$.

$$\boxed{\mathbf{03}}$$
 - $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(x, y, z) = (x + y, x - y + 2z, 2x + y - z)$.

04 -
$$T: P_2 \to P_2$$
 tal que $T(ax^2 + bx + c) = ax^2 + cx + b$.

05 -
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
 tal que $T(x, y, z, w) = (x, x + y, x + y + z, x + y + z + w)$.

 $\boxed{\mathbf{06}}$ - Encontre a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, tal que T tenha autovalores -2 e 3 associados aos autovetores (3y, y) e (-2y, y) respectivamente.

Ache os autovalores e autovetores das matrizes: (Ex. 7 á 13)

$$\boxed{\mathbf{07}} - A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

$$\boxed{\mathbf{08}} - A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\boxed{11} - A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\boxed{12} - A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

14 - Seja
$$A = \begin{bmatrix} -1 & -2 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
. Quais são os autovalores e autovetores de A de um espaço vetorial real.

15 - Suponha que λ_1 e λ_2 sejam autovalores distintos e diferentes de zero de $T: \mathbb{R}^2 \to \mathbb{R}^2$. Mostre que:

- a) Os autovetores v_1 e v_2 correspondentes são LI.
- b) $T(v_1)$ e $T(v_2)$ são LI.

$$\boxed{16} - \text{Seja } A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}.$$

- a) Ache os autovalores de A e de A^{-1} .
- b) Quais são os autovetores correspondentes?

Operadores Diagonalizáveis

- **01** Entre os operadores dos exercícios 1 a 6 de autovalores e autovetores, verifique quais são diagonalizáveis.
- $\boxed{\mathbf{02}}$ Dizemos que uma matriz $A_{n \times n}$ é diagonalizável se seu operador associado $T_A : \mathbb{R}^n \to \mathbb{R}^n$ for diagonalizável se, e somente se A admitir n autovetores LI. Baseado nisto, verifique quais das matrizes dos exercícios 7 a 13 (autovalores e autovedores) são diagonalizáveis.

$$\boxed{\mathbf{03}} - \text{ Dada a matriz } A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

- a) A é diagonalizável (use a definição do exercício anterior)
- b) Encontre o polinômio minimal.
- $\boxed{\mathbf{04}}$ Para quais valores de \boldsymbol{a} as matrizes abaixo são diagonalizáveis?

a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & a \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 1 & a \\ 1 & 1 \end{bmatrix}$$

05 - Sejam
$$T: R^3 \to R^3$$
 linear, $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$, base canônica de R^3 , $\beta = \{(0,1,1), (0,-1,1), (1,0,1)\}$, e $[T]_{\alpha}^{\alpha} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$.

- a) Encontre o polinômio característico de T, os autovalores de T e os autovetores correspondentes.
- b) Ache $[T]^{\beta}_{\beta}$ e o polinômio característico. Que observação vc faz a este respeito?
- c) Encontre uma base γ de R^3 , se for possível, tal que $[T]_{\gamma}^{\gamma}$ seja diagonal.