Cálculo I Capítulo 2

Primitiva:

Etama-se <u>Peimitiva</u> de f a toda a função F diferenciável, tal que F'(x) = f(x)

- Se fadmite uma preimitiva dizenos que f é permitivável.
- $4 \le F(x) = G(x) \le 300 \text{ duas primitivas de}$ $f(x) = G(x) + C, C \in \mathbb{R}.$

Primitivas Imediatas e Quase Imediatas

Aplicação direta das Regras de primitivas

Podemos ter de colocar <u>múmeros</u> em falta.

r	Pill	· IIII · Iaila	
١	Formus Regras de Integração		
I	Tipo de Função a Integrar	Integral Indefinido	
	$k (k \in R)$	$kx+c, c \in R$	
The same of the sa	$u'(x)[u(x)]^{\alpha} (\alpha \in R \setminus \{-1\})$	$\frac{\left[u(x)\right]^{\alpha+1}}{\alpha+1}+c, c \in R$	
	$u'(x)a^{u(x)} (a \in R^+ \setminus \{l\})$	$\frac{a^{u(x)}}{\ln(a)} + c, c \in R$	
	$u'(x)e^{u(x)}$	$e^{u(x)} + c, c \in R$	
Committee of the Commit	$\frac{u'(x)}{u(x)}$	$ln u(x) +c, c \in R$	
	u'(x)sin[u(x)]	$-\cos\left[u\left(x\right)\right]+c, c\inR$	
	u'(x)cos[u(x)]	$sin[u(x)]+c, c \in R$	
	$u'(x)sec^{2}[u(x)]$	$tan\left[u(x)\right]+c, c\in R$	
	$u'(x)cosec^{2}[u(x)]$	$-\cot\left[u\left(x\right)\right]+c, c\in R$	
ě			

C		1-100001
tunçuo	a	integrar

Integral Indefinido

<u>g'(n)</u> √1 -(g(n))²	arcsin (g(x)) + C
g'(n) 1 +(g(n))2	arctan (g(n)) + e
g'ex sec (gen) tan (gen)	sec (cycn)) + C
g'(x) cosec (g(x) cotan (g(x))	- cosec (g(x))+ C

Primitivação por Partes

a funçad que

&colhemos para primitivar funçal que escolhemos

derival

4 caso conheça a peimitiva de ambas as funções, escolho a mais simples para derivar Laso não conheça as duas peimitivos esta escolha e obvia.

Primitivação de funções Racionais

1 verificar se a fração é própria o n propria

* se a fração é n própria, aplicar divisad de polinómios

* se a fração é propria, conduzir a uma peimitiva imediata/quase imediata ou

separar na soma de feações simples.

Como? O fatorizar denominador

2) Se temos
$$\frac{A(\pi)}{(\pi-a)(\pi-b)\cdots} = \frac{A}{\pi-a} + \frac{B}{\pi-a} + \cdots$$
Reuizes toclas
diferentes

Raiz de multipliadade K

$$= \frac{A}{\varkappa - \alpha} + \frac{B}{(\varkappa - \alpha)^2} + \cdots + \frac{K}{(\varkappa - \alpha)^K}$$

• Se temos
$$\frac{Bx+C}{ax^2+bx+e}$$
, com $b^2-4ac<0$

Primitivação por substituição

$$\int f(x) dx = \int f(g(t))g'(t) dt$$

Substituições trigonométricas

	$\sqrt{a^2-x^2}$	$x = a \sin(t)$	$t\in]-\frac{\pi}{2};\frac{\pi}{2}[$
	$\sqrt{a^2 + x^2}$	$x = a \tan(x)$	$t\in]-\frac{\pi}{2};\frac{\pi}{2}[$
	$\sqrt{x^2-a^2}$	$x = a \sec(t)$	$t \in]0; \frac{\pi}{2}[$
-			

Primitivação de funções teigonométricas

Fórmulas trigonométricas:

$$\lambda en^{2}(x) + \cos^{2}(x) = 1$$

$$1 + \cot^{2}(x) = \csc^{2}(x)$$

$$\tan^{2}(x) + 1 = \sec^{2}(x)$$

$$\lambda en(x \pm y) = \lambda en(x)\cos(y) \pm \lambda en(y)\cos(x)$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \lambda en(x) \lambda en(y)$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\lambda en^{2}(x) = \frac{1 - \cos(2x)}{2}$$

Potências impares de Seno e Coseno

$$\int \delta \ln^{2n+1} (x) dx = \int \delta \ln(x) \delta \ln^{2n} (x) dx$$

$$= \int \delta \ln(x) (1 - \cos^{2}(x))^{n} dx$$

··· desenvolver binómio e aplicar a propriedade distributiva

$$\int \cos^{2n+1}(x) dx = \int \cos(x) \cos^{2n}(x) dx$$

$$= \int \cos(x) (1 - \alpha e^{2n}(x))^{n} dx$$

·· desenvolver binómio e aplicar a propriedade distributiva

Potências pares de Seno e Coseno

$$\int \cos^{2n}(x) dx = \int \left(\frac{1+\cos(2x)}{2}\right)^n dx = \cdots$$
Framulas

$$\int \operatorname{sen}^{2n}(n) \, dx = \int \left(\frac{1 - \cos(2x)}{2} \right)^n \, dx = \dots$$
formulas

Algumas potências de tangente (usar fórmulas)

$$\int \tan(\pi) \, d\pi = \int \frac{\text{Ner}(\pi)}{\cos(\pi)} \, d\pi = \cdots$$

$$\int \tan^2(\pi) \, d\pi = \int 1 + \sec^2(\pi) \, d\pi = \cdots$$

$$\int \tan^3(\pi) \, d\pi = \int \tan(\pi) \, \tan^2(\pi) \, d\pi = \int \tan(\pi) \, \Big(1 + \sec^2(\pi) \Big) d\pi = \cdots$$