Министерство образования Республики Беларусь УО «Полоцкий государственный университет»

Факультет информационных технологий Кафедра технологий программирования

Методы численного анализа
Лабораторная работа №2
На тему: «Методы Рунге-Кутта, методы Адамса
для решения ОДУ»

Название: «Методы Рунге-Кутта, методы Адамса для решения ОДУ».

Цель работы: Изучить наиболее распространенный одношаговый метод Рунге-Кутта и многошаговый метод Адамса решения задачи Коши для ОДУ первого порядка.

Теоретическая часть:

Постановка задачи. Метод Рунге-Кутта

Пусть имеем задачу Коши для ОДУ первого порядка

$$\frac{du}{dx} = f(x, u(x)) \qquad 0 \le x \le X$$

$$u(0) = u_0 \tag{2}$$

И будем решать её разностными методами. Среди других явных одношаговых методов наибольшее распространение получил метод Рунге-Кутта.

Семейство явных одношаговых методов Рунге-Кутта для вычисления сеточного решения $y_{i+1} \approx u(x_{i+1})$ по уже известному значению этой функции в i-том узле, т.е. $y_i \approx u(x_i)$ может быть выражено следующим образом.

$$\frac{y_{i+1} - y_i}{h} = \sum_{j=1}^{m} A_j K_j \tag{3}.$$

Или в явном виде это семейство записать как:

$$y_{i+1} = y_i + h \sum_{j=1}^{m} A_j K_j$$
 (4),

где коэффициент

$$K_{1} = f(x_{i}, y_{i})$$

$$K_{2} = f(x_{i} + a_{2}h, y_{i} + b_{21}hK_{1})$$

$$K_{3} = f(x_{i} + a_{3}h, y_{i} + b_{31}hK_{1} + b_{32}hK_{2})$$
(5)

Коэффициенты

$$a_i, b_{is}$$
 $i = 2,3,...m, s = 1,2,..., m-1$ A_i $j = 1,2,...,m$

 $K_m = f(x_i + a_{m3}h, y_i + b_{m1}hK_1 + b_{m2}hK_2 + ... + b_{m \, m-1}hK_{m-1})$

представляют собой *константы*, значение которых выбирается из соображений точности, устойчивости и экономичности алгоритма.

Как правило, методы Рунге-Кутта со значениями m>5 не используются.

Выражения (4)-(5) описывают <u>явный т-этапный одношаговый</u> метод Рунге-Кутта. Используя одну из схем этого метода можно последовательно найти численное значение сеточной функции $y_i \approx u(x_i)$ во всех узлах сетки от i=0 до n.

Рассмотрим частные случаи метода Рунге-Кутта.

При m=1 получаем схему Эйлера. $A_1=1$, $K_1=f(x_i,y_i)$

$$\frac{y_{i+1} - y_i}{h} = f(x_i, y_i)$$

При *m*=2 получим семейство методов

$$y_{i+1} = y_i + h(A_1K_1 + A_2K_2)$$

$$K_1 = f(x_i, y_i) K_2 = f(x_i + ha_2, y_i + hb_{21}K_1)$$
(6)

Чтобы присвоить параметрам A_1, A_2, a_2, b_{21} конкретные числовые значения, нужно исследовать погрешность аппроксимации построенной схемы (6).

Потребуем выполнения следующих условий:

$$A_1 + A_2 = 1$$
 $A_2 \cdot a_2 = 0.5$ $A_2 b_{21} = 0.5$ (16)

Если выполняется только первое из условий (16), то методы Рунге-Кутта (6) будут иметь *первый порядок аппроксимации*. Если выполняются все три условия, то двухэтапные методы Рунге-Кутта будут иметь *второй порядок аппроксимации*. Рассмотрим два частных случая таких двухэтапных схем.

a)
$$A_1=A_2=rac{1}{2}$$
 $a_2=b_{21}=1$, тогда

$$K_1 = f(x_i, y_i)$$
 $K_2 = f(x_i + h, y_i + hK_1)$

И в явном виде двухэтапный метод Рунге-Кутта будет выглядеть:

$$y_{i+1} = y_i + \frac{h}{2}(K_1 + K_2) = \frac{h}{2}[f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i))]$$
(17)

Эта формула (17) совпадает с методом *Эйлера-Коши*. Иногда этот метод называют *явным методом трапеций*. Метод (17) имеет *второй порядок точности*.

6)
$$A_1 = 0$$
 $A_2 = 1$ $a_2 = b_{21} = 0.5$

В этом случае получим *явный одношаговый двухэтапный метод Рунге-Кутта*, который иначе называют метод *предиктор-корректор* (предсказывающий-исправляющий).

$$K_{1} = f(x_{i}, y_{i}) K_{2} = f(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}K_{1})$$

$$y_{i+1} = y_{i} + h(A_{1}K_{1} + A_{2}K_{2}) = y_{i} + hK_{2}$$

$$y_{i+1} = y_{i} + hf(x_{i} + 0.5h, y_{i} + 0.5hf(x_{i}, y_{i})) (18)$$

В этом методе <u>два этапа реализации</u>. Сначала по схеме Эйлера находим значение сеточной функции в середине отрезка:

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2}f(x_i, y_i)$$
 (19)

А затем находим значение сеточной функции в i+1 узле:

$$y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$$
(20)

На первом, т.е. по формуле (19) значение сеточной функции будет иметь невысокую точность, т.е первый порядок аппроксимации. А затем это значение корректируется на втором этапе так, чтобы результирующая погрешность имела второй порядок точности.

Поэтому метод предиктор-корректор имеет второй порядок точности.

При m=2 можно построить <u>множество</u> схем Рунге-Кутта, однако нельзя достигнуть третьего порядка точности.

Рассмотрим схемы методов Рунге-Кутта <u>третьего порядка точности</u> *m*=3.

a)
$$K_1 = f(x_i, y_i)$$
 $K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1)$ $K_3 = f(x_i + h, y_i - hK_1 + 2hK_2)$
 $y_{i+1} = y_i + \frac{h}{6}(K_1 + 4K_2 + K_3)$ (21)
6) $K_1 = f(x_i, y_i)$ $K_2 = f(x_i + \frac{h}{3}, y_i + \frac{h}{3}K_1)$ $K_3 = f(x_i + \frac{2h}{3}, y_i + \frac{2h}{3}K_2)$

(22)

Запишем схемы методов Рунге-Кутта четвертого порядка точности т=4.

 $y_{i+1} = y_i + \frac{h}{4}(K_1 + 3K_3)$

a)
$$K_1 = f(x_i, y_i)$$
 $K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1)$
 $K_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2)$ $K_4 = f(x_i + h, y_i + hK_3)$
 $y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$ (23)
6) $K_1 = f(x_i, y_i)$ $K_2 = f(x_i + \frac{h}{4}, y_i + \frac{h}{4}K_1)$
 $K_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2)$ $K_4 = f(x_i + h, y_i + hK_1 - 2hK_2 + 2hK_3)$
 $y_{i+1} = y_i + \frac{h}{6}(K_1 + 4K_3 + K_4)$ (24)

Приведенные формулы являются частным случаем методов Рунге-Кутта третьего и четвертого порядков. Метод *четвертого порядка* точности (23) является одним из самых распространенных методов решения задач Коши для ОДУ.

<u>Оценки погрешностей</u> различных схем Рунге-Кутта связаны с вычислением максимумов модулей соответствующих производных функции f(x,u(x)) и представляют собой достаточно сложные формулы. В связи с этим при решении конкретной задачи всегда возникает вопрос о целесообразности применения конкретной схемы Рунге-Кутта и выборе шага сетки.

<u>Шаг сетки</u> следует выбирать настолько малым, чтобы обеспечить требуемую точность. Для контроля правильности выбора шага сетки при использовании схем Рунге-Кутта (23) на практике вычисляют дробь

$$\alpha = \left| \frac{K_2^i - K_3^i}{K_1^i - K_2^i} \right| \tag{25}$$

Величина этой дроби не должна превышать нескольких сотых. В противном случае <u>шаг</u> следует уменьшить.

Для контроля вычислений можно применять двойной пересчет, т.е. решения находят для шага h и 0.5h. В соответствующих точках этих сеток решения должны совпадать в пределах заданной точности.

Пример. Методом Рунге-Кутта решить с точностью ε =0.001 задачу Коши на отрезке [0; 0.6] для уравнения y' = x + y, ecnu y(0) = 1.

Начальную величину шага h выбираем на основание неравенства $h^4 \le \varepsilon \Rightarrow h^4 \le 0.001$. Получаем h=0.15.

Все вычисления будем располагать в таблице следующим образом:

I	X_i	y_i	k	Δy_i	Точное решение
0	x_0	y_0	K_1^0		$y = 2 * e^{x_0} - x_0 - 1$
	$x_0 + 0.5h$	$y_0 + 0.5hK_1^0$	K_2^0		
	$x_0 + 0.5h$	$y_0 + 0.5hK_2^0$	K_3^{0}		
	$x_0 + h$	$y_0 + hK_3^0$	K_4^{0}	Δy_0	
1	$x_1 = x_0 + h$	$y_1 = y_0 + \Delta y_0$			$y = 2 * e^{x_1} - x_1 - 1$

$$K_{1} = f(x_{i}, y_{i}) K_{2} = f(x_{i} + 0.5h, y_{i} + 0.5hK_{1})$$

$$K_{3} = f(x_{i} + 0.5h, y_{i} + 0.5hK_{2}) K_{4} = f(x_{i} + h, y_{i} + hK_{3})$$

$$\Delta y_{i} = \frac{h}{6} (K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

Все вычисления приведены в таблице:

I	Xi	Yi	k	ΔΥί	точное решение
0	0	1	1		1
	0,075	1,075	1,15		
	0,075	1,08625	1,16125		
	0,15	1,174188	1,324188	0,173667	
1	0,15	1,173667	1,323667		1,173668485
	0,225	1,272942	1,497942		
	0,225	1,286013	1,511013		
	0,3	1,400319	1,700319	0,226047	
2	0,3	1,399715	1,699715		1,399717615
	0,375	1,527193	1,902193		
	0,375	1,542379	1,917379		
	0,45	1,687321	2,137321	0,286905	
3	0,45	1,686619	2,136619		1,686624371
	0,525	1,846866	2,371866		
	0,525	1,864509	2,389509		
	0,6	2,045045	2,645045	0,35761	
4	0,6	2,044229			2,044237601

Заполняем таблицу

$$K_1 = f(x_i, y_i) = x_0 + y_0 = 0 + 1 = 1$$

$$y_0 + 0.5hK_1^0 = 1 + 0.5*0.15*1 = 1.075$$

$$K_2 = f(x_i + 0.5h, y_i + 0.5hK_1) = 0 + 0.5*0.15 + 1 + 0.5*0.15*1 = 0.075 + 1 + 0.075 = 1.15$$

$$y_0 + 0.5hK_2^0 = 1 + 0.5*0.15*1.15 = 1.08625$$

$$K_3 = f(x_i + 0.5h, y_i + 0.5hK_2) = 0.075 + 1,08625 = 1,16125$$

$$y_0 + hK_3^0 = 1 + 0.15 * 1,16125 = 1,173667$$

$$K_4 = f(x_i + h, y_i + hK_3) = 0.15 + 1,173667 = 1,324188$$

$$\Delta y_i = \frac{h}{6} \left(K_1 + 2K_2 + 2K_3 + K_4 \right) = 0.15 * (1 + 2 * 1.15 + 2 * 1,16125 + 1,324188) / 6 = 0,173667$$

$$y_1 = y_0 + \Delta y_0 = 1 + 0,173667 = 1,173667$$
и т.д.

Многошаговые методы Адамса

В методах Адамса аппроксимация u'(x) проводится только по двум точкам, то это означает, что коэффициенты левой части принимают значения $a_0=-a_1=1, \quad a_m=0, \quad m=2,3,...,k$.

Следовательно, методы Адамса можно записать следующим образом

$$\frac{y_i - y_{i-1}}{h} = \sum_{m=0}^k b_m f_{i-m} \qquad .. \tag{1}$$

Если $b_0 = 0$ получаем <u>явные</u> (<u>экстраполяционные</u>) методы Адамса, если $b_0 \neq 0$, методы будут называться <u>неявными</u> (<u>интерполяционными</u>) методами Адамса. В зависимости от количества k предыдущих узлов, методы называются k –*шаговыми*.

Чтобы получить порядок аппроксимации конкретной многошаговой схемы, в том числе схемы Адамса, необходимо исследовать <u>невязку</u> (погрешность аппроксимации) этой схемы.

Погрешность аппроксимации схемы Адамса:

$$\psi = -\sum_{m=0}^{k} \frac{a_m}{h} u_{i-m} + \sum_{m=0}^{k} b_m f(x_{i-m}, u_{i-m}) \qquad i = k, k+1, \dots$$
 (2)

Для методов Адамса доказывается, что <u>наивысший порядок аппроксимации</u> k-шагового <u>неявного</u> метода Адамса равен $\underline{k+1}$, а наивысший порядок аппроксимации k-шагового <u>явного</u> ($b_0=0$) метода Адамса равен \underline{k} .

Приведем примеры конкретных схем Адамса.

<u>Явные</u> методы, т.е. $b_0 = 0$.

При k=1 получаем метод Эйлера,
$$\frac{y_i - y_{i-1}}{h} = f_{i-1}$$

При k=2 получим схему 2-го порядка аппроксимации

$$\frac{y_i - y_{i-1}}{h} = \frac{2}{3} f_{i-1} - \frac{1}{2} f_{i-2}$$

При k=3 получим схему 3-го порядка аппроксимации

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{12} (23f_{i-1} - 16f_{i-2} + 5f_{i-3})$$

При k=4 получим схему 4-го порядка аппроксимации

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{24} (55f_{i-1} - 59f_{i-2} + 37f_{i-3} - 9f_{i-4})$$

При k=5 получим схему 5-го порядка аппроксимации

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{720} (190f_{i-1} - 277f_{i-2} + 2616f_{i-3} - 1274f_{i-4} + 251f_{i-5})$$

Для неявных методов Адамса.

При k=1 получаем схему 2-го порядка точности $\frac{y_i-y_{i-1}}{h}=\frac{1}{2}(f_i+f_{i-1})$

При k=2 получаем схему 3-го порядка точности

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{12} (5f_i + 8f_{i-1} - f_{i-2})$$

При k=3 получаем схему 4-го порядка точности

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{24} (9f_i + 19f_{i-1} - 5f_{i-2} + f_{i-3})$$

При k=4 получаем схему 5-го порядка точности

$$\frac{y_i - y_{i-1}}{h} = \frac{1}{720} (251f_i + 646f_{i-1} - 264f_{i-2} + 106f_{i-3} - 19f_{i-4})$$

В практических расчетах чаще всего используется вариант <u>явного метода Адамса</u>, имеющий <u>4 порядок точности</u> и использующий на каждом шаге значения сеточных функций в четырех предыдущих узлах.

Схемы Адамса в квадратурах

Для построения многошаговых схем можно использовать приемы, основанные на применении интерполяционных и квадратурных формул.

Пусть имеем задачу Коши для ОДУ первого порядка

$$\frac{du}{dx} = f(x, u(x)) \qquad 0 \le x \le X \tag{1}$$

$$u(0) = u_0 \tag{2}$$

Если для аппроксимации воспользоваться интерполяционным многочленом Ньютона, то получим <u>явную</u> (экстраполяционную) схему Адамса вида:

$$y_{i+1} = y_i + h(f_i + \frac{1}{2}\Delta f_{i-1} + \frac{5}{12}\Delta^2 f_{i-2} + \frac{3}{18}\Delta^3 f_{i-3} + \frac{251}{720}\Delta^4 f_{i-4} + \frac{95}{288}\Delta^5 f_{i-5} + \dots c_k \Delta^k f_{i-k}) + R_k$$
(8)

Используется только для равномерной сетки. Здесь $f_i = f(x_i, y_i)$, h- шаг сетки , $\Delta^k f_{i-k}$ - конечные разности k-го порядка, т.е. $\Delta^k f_{i-k} = \Delta^{k-1} f_{i-k+1} - \Delta^{k-1} f_{i-k}$. Коэффициент $c_k = \int\limits_0^1 \frac{t(t+1)...(t+k-1)}{k!} dt$ $0 \le t \le 1$, а для остаточного члена имеет место оценка $R_k \le h^{k+2} c_k \, \max \left| u^{(k+2)}(x) \right| \quad x \in [0,X]$.

В этой явной схеме Адамса (8) убывание абсолютных величин слагаемых происходит в основном за счет убывания абсолютных величин конечных разностей. *Чем меньше величина шага h, тем ниже для заданной точности будет порядок k последней участвующей в вычислениях конечной разности*. Поэтому значения h и k следует подбирать таким образом,

чтобы последняя конечная разность, участвующая в вычислениях, была практически постоянной величиной в пределах заданной точности.

На практике принято использовать вариант метода Адамса с 4-м порядком точности, т.е формулу вида:

$$y_{i+1} = y_i + h(f_i + \frac{1}{2}\Delta f_{i-1} + \frac{5}{12}\Delta^2 f_{i-2} + \frac{3}{18}\Delta^3 f_{i-3}) + R_k$$
(9)

И вычисления принято располагать в таблице следующего вида:

i	X_i	y_i	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$
		•••	•••	•••	•••	•••
	x_{i-3}	y_{i-3}	f_{i-3}	Δf_{i-3}	$\Delta^2 f_{i-3}$	$\Delta^3 f_{i-3}$
	X_{i-2}	y_{i-2}	f_{i-2}			$\Delta^3 f_{i-2}$
	X_{i-1}	y_{i-1}	f_{i-1}	Δf_{i-1}	$\Delta^2 f_{i-1}$	
	X_i	\mathcal{Y}_i	f_i	Δf_i		
	X_{i+1}	y_{i+1}	f_{i+1}			
				•••		

Предположим, что таблица заполнена до точки x_i . Чтобы продолжить таблицу по строкам слева направо необходимо:

- 1. вычислить значение y_{i+1} по формуле (9);
- 2. вычислить значение f_{i+1} как правую часть исходного дифференциального уравнения;
- 3. вычислить значение Δf_i как разность двух последних значений предыдущего левого столбца;
 - 4. вычислить значение $\Delta^2 f_i$;
 - 5. вычислить значение $\Delta^3 f_i$.

Все вычисления текущего шага контролируются на последнем этапе счета по величине третьей конечной разности, которая должна быть в пределах заданной точности практически постоянной. В таком порядке вычисления продолжаются по всей области поиска решения.

Алгоритм <u>неявного</u> (<u>интерполяционного</u>) <u>метода Адамса</u>, получаемый применением интерполяционного многочлена Ньютона, имеет вид:

$$y_{i+1} = y_i + h(f_{i+1} - \frac{1}{2}\Delta f_i - \frac{1}{12}\Delta^2 f_{i-1} - \frac{1}{24}\Delta^3 f_{i-2} - \frac{19}{720}\Delta^4 f_{i-3} - \frac{3}{160}\Delta^5 f_{i-4} + \dots + c_k \Delta^k f_{i-k+1}) + R_k(10)$$

3десь $f_i = f(x_i, u_i)$, h- шаг сетки , $\Delta^k f_{i-k}$ - конечные разности k-го порядка, т.е.

$$\Delta^k f_{i-k} = \Delta^{k-1} f_{i-k+1} - \Delta^{k-1} f_{i-k} \,. \qquad \text{Коэффициент} \qquad c_k = \int\limits_0^1 \frac{t(t+1)...(t+k-1)}{k!} dt \qquad 0 \leq t \leq 1 \,, \qquad \text{а} \qquad \text{для}$$

остаточного члена имеет место оценка $R_k \leq h^{k+2} c_{k+1} \max \left| u^{(k+2)}(x) \right| \quad x \in [0,X]$.

Схема (10) является <u>неявной</u> и <u>требует итерационного метода решения</u>, что значительно усложняет ее применение. На практике обычно используют совместно явную и неявную формулы, получая, таким образом, метод <u>прогноза</u> и <u>коррекции</u> (<u>предиктор-корректор</u>). Как правило, объединяют явный и неявный методы Адамса четвертого порядка точности.

Метод прогноза и коррекции может быть реализован и на основе следующих формул Адамса: явной

$$\tilde{y}_i = y_{i-1} + \frac{h}{24} (55f_{i-1} - 59f_{i-2} + 37f_{i-3} - 9f_{i-4})$$
 (14)

Находим «предсказанное» значение функции, затем вычисляем $\widetilde{f}_i = f(x_i, \widetilde{y}_i)$ и окончательно, применяя неявную формулу Адамса, получим

$$y_{i} = y_{i-1} + \frac{h}{24} (9\tilde{f}_{i} + 19f_{i-1} - 5f_{i-2} + f_{i-3})$$
(15).

В целом метод (14)-(15) будет явным методом Адамса.

Рассмотрим пример.

Найти решение следующей задачи: $Y' = 2\frac{Y}{x} + x$ $x \ge 1$ Y(1) = 0. Взять шаг h=0.1 Применить явный метод Адамса в точках x=1.6 и x=1.7.

Решение:

Возьмем шаг h=0.1 и построим таблицу следующего вида. Порядок заполнения таблицы:

- 3аносим узловые точки, т.е значения x=1; 1.1; 1.2; 1.3; 1.4; 1.5;
- 2) Соответствующие этим узлам значения функций Y и f вычисляем методом Рунге-Кутта 4-го порядка, т.е. по формуле (23) вида:

$$y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4).$$

- 3) Составляем таблицу конечных разностей, значения которых вычисляем каждый раз как разность двух последних значений предыдущего столбца
 - 4) Находим значение ЛУ по формуле:

$$\Delta Y_i = h(f_i + \frac{1}{2}\Delta f_{i-1} + \frac{5}{12}\Delta^2 f_{i-2} + \frac{3}{18}\Delta^3 f_{i-3} + \frac{251}{720}\Delta^4 f_{i-4})$$

при i=5 получаем $\Delta Y_5 = 0,2909122$.

	X_i	Y_i	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$	$\Delta^4 f_i$	ΔY_i
0	1	0	1	0,309678	0,018207	-0,00152	0,000233	0,115323
1	1,1	0,115323	1,309678	0,327885	0,016687	-0,00129	0,000186	0,147215
2	1,2	0,262538	1,637563	0,344572	0,0154	-0,0011	0,000149	0,18085
3	1,3	0,443388	1,982135	0,359972	0,014298	-0,00095	0,000114	0,218087
4	1,4	0,659475	2,342107	0,37427	0,013346	-0,00084		0,252808
5	1,5	0,912283	2,716377	0,387617	0,012508			0,2909122
6	1,6	1,203195	3,103994	0,400125				0,3303058
7	1,7	1,533501	3,504119					0,3709118
8	1,8	1,904413						

5) вычисляем $Y_6 = Y_5 + \Delta Y_5 = 0.912283 + 0.2909122 = 1.203195$

6) вычисляем
$$f_6 = f(x_6, Y_6) = 2\frac{Y_6}{x_6} + x_6 = 2*1,203195 / 1.6 + 1.6 = 3,103994$$

7) Для i=6 переходим к п. 3, т.е. к следующему шагу - находим конечные разности и т.д.

Контрольные вопросы:

- 1. Какой метод называют предсказывающий-исправляющий?
- 2. Какой порядок точности имеет метод предиктор-корректор?
- 3. Какого порядка точности среди методов Рунге-Кутта является одним из самых распространенных методов решения задач Коши для ОДУ?
- 4. Какой наивысший порядок аппроксимации *k*-шагового неявного метода Адамса и наивысший порядок аппроксимации *k*-шагового явного метода Адамса?
- Явная (экстраполяционная) и неявная (интерполяционная) схема Адамса.
- 6. Схема предиктор-корректор.

Содержание задания:

Решить дифференциальное уравнение. Составить таблицу приближенных значений интеграла дифференциального уравнения y' = f(x,y), удовлетворяющего начальным условиям $y(x_0) = y_0$ на отрезке [a,b] с шагом h=0.1. Все вычисления вести с четырьмя десятичными знаками. Оценить погрешность вычислений.

Для решения задачи Коши ОДУ применить:

- 1. Метод Рунге-Кутта: схема предиктор-корректор, метод 4 порядка, метод 3 порядка, схему третьего порядка уточнить по правилу Рунге. (на 7-8)
 - 2. Продолжить таблицу на 3 шага методом Адамса (явным (8-9) и неявным (9-10)).

Варианты заданий:

Вариант	Задание
1	$y' = \frac{2y}{x} + x$ $y_0 = 0$ $x \in [1;1.5]$
2	$y' = \frac{xy}{1+x^2}$ $y_0 = 2$ $x \in [0;0.03]$ $h = 0.01$
3	$y' = y + (1+x)y^{\frac{1}{2}}$ $y_0 = 1$ $x \in [0;0.5]$
4	$y' = \frac{y + \sqrt{x^2 + y^2}}{x}$ $y_0 = 0$ $x \in [1;1.5]$
5	$y' = \frac{x^2y^2 - (2x+1)y + x}{x} y_0 = 0 x \in [1;1.5]$
6	$y' = -y \cos(x) + \cos(x) \sin(x)$ $y = -1$ $x \in [0:0.5]$
7	$y' = \frac{1+x}{\frac{x}{y}-1} y_0 = 1 x \in [0;0.3] h = 0.05$
8	$y' = \frac{y}{x} + \ln(xy^2)$ $y_0 = -2$ $x \in [1;1.5]$
9	$y' = y^2 + \frac{y}{x} + \frac{1}{x^2}$ $y_0 = 0$ $x \in [1; 1.5]$
10	$y' = y^{2} + \frac{y}{x} + \frac{1}{x^{2}} y_{0} = 0 x \in [1;1.5]$ $y' = \frac{xy}{1+x^{2}} - \frac{1}{1+x^{2}} y_{0} = 0 x \in [0;0.5]$
11	$y' = \frac{1}{x^2 + y^2 + 1}$ $y_0 = 0$ $x \in [0; 0.5]$
12	$y' = -x^2y^2 + \frac{x^2 - 0.5}{(1 + 0.5x)^2}$ $y_0 = 0$ $x \in [0;0.5]$
13	$y' = x + \cos(\frac{y}{\sqrt{11}})$ $y_0 = 2.5$ $x \in [2.1;3.1]$
14	$y' = \frac{1}{1+x^3y} + 2y$ $y_0 = 2.1$ $x \in [1.5;2]$ $h = 0.05$
15	$y' = 4.1x - y^2 + 0.6$ $y_0 = 3.4$ $x \in [0.6; 2.6]$ $h = 0.2$

Порядок выполнения работы:

- 1. Ознакомиться с теоретической частью по данной теме.
- 2. Ответить на контрольные вопросы к лабораторной работе.
- 3. Получить вариант задания у преподавателя.
- 4. Выполнить индивидуальное задание в соответствии с вариантом задания.
- 5. Составить отчёт о проделанной работе.
- 6. Показать программу и отчёт преподавателю.

Содержание отчёта:

- 7. Титульный лист (идентификация).
- 8. Тема и цель работы.
- 9. Краткие теоретические сведения.
- 10. Вариант и условие задания.
- 11. Анализ задания (алгоритм выполнения задания).
- 12. Основные и промежуточные результаты по каждому пункту хода выполнения работы (листинг программного кода, реализующий данный алгоритм; скриншот результатов выполнения программы; скриншоты результатов работы в математическом пакете Mathcad).
- 13. Выводы о проделанной работе.

Защита лабораторной работы проводится индивидуально. Для сдачи работы студент должен предъявить программу, отчет, ответить на контрольные вопросы, дать пояснения по выполненной работе.

Дополнительное задание:

Для решения задачи Коши ОДУ применить:

- 1. Метод Рунге-Кутта: схема предиктор-корректор, метод 4 порядка, метод 3 порядка, схему третьего порядка уточнить по правилу Рунге.
 - 2. Продолжить таблицу значений на 3 шага методом Адамса (явным и неявным). Оценить погрешность вычислений.

Вариант	Задание
1	$y' = \frac{6 - x^2 y^2}{-x^2}$ $y_0 = 2$ $x \in [1;1.5]$ $h = 0.1$
2	$y' = x + y$ $y_0 = 1$ $x \in [1;2]$ $h = 0.1$
3	$y' = \frac{-y}{1+x}$ $y_0 = 2$ $x \in [0;1]$ $h = 0.1$
4	$y' = y - \frac{2x}{y}$ $y_0 = 1$ $x \in [0;1]$ $h = 0.1$
5	$y' = \frac{y}{2\sqrt{x}}$ $y_0 = 1$ $x \in [4;6]$ $h = 0.2$
6	$y' = \frac{xy^2 + xy}{1 - x^2}$ $y_0 = 0.05$ $x \in [0; 0.5]$ $h = 0.1$
7	$y' = \frac{y^2}{x^2} - \frac{y}{x} y_0 = 1 x \in [1;3] \ h = 0.2$
8	$y' = y$ $y_0 = 1$ $x \in [1;2]$ $h = 0.1$
9	$y' = \frac{-y^2}{2x+1}$ $y_0 = 1$ $x \in [4;6]$ $h = 0.2$
10	$y' = \frac{3x^2}{x^3 + y + 1} y_0 = 1 x \in [0;1] \ h = 0.1$