

Silicon Switching Diode

- For high-speed switching applications
- Series pair configuration

BAV99 BAV99F BAV99T BAV99W BAV99S BAV99U

Туре	Package	Configuration	Marking
BAV99	SOT23	series	A7s
BAV99F*	TSFP-3	series	A7s
BAV99S	SOT363	dual series	A7s
BAV99T	SC75	series	A7s
BAV99U	SC74	dual series	A7s
BAV99W	SOT323	series	A7s

^{*} Preliminary

Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	80	V
Peak reverse voltage	V_{RM}	85	
Forward current	I _F	200	mA
Non-repetitive peak surge forward current	I _{FSM}		А
<i>t</i> = 1 μs		4.5	
<i>t</i> = 1 ms		1	
t = 1 s, single		0.5	
t = 1 s, double		0.75	
Total power dissipation	P _{tot}		mW
BAV99, <i>T</i> _S ≤ 28°C		330	
BAV99F, $T_S \le \text{tbd}$		250	
BAV99S, <i>T</i> _S ≤ 85°C		250	
BAV99T, <i>T</i> _S ≤ 104°C		250	
BAV99U, <i>T</i> _S ≤ 113°C		250	
BAV99W, $T_S \le 110^{\circ}$ C		250	
Junction temperature	$T_{\rm j}$	150	°C
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}		K/W
BAV99		≤ 360	
BAV99F		≤tbd	
BAV99S		≤ 260	
BAV99T		≤ 185	
BAV99U		≤ 150	
BAV99W		≤ 160	

 $^{^{1}\}mbox{For calculation of}\,\mbox{$R_{\mbox{thJA}}$}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Breakdown voltage	$V_{(BR)}$	85	-	-	V
$I_{(BR)} = 100 \ \mu A$					
Reverse current	I _R				μΑ
V _R = 70 V		-	-	0.15	
$V_{\rm R}$ = 25 V, $T_{\rm A}$ = 150 °C		-	-	30	
$V_{\rm R}$ = 70 V, $T_{\rm A}$ = 150 °C		-	-	50	
Forward voltage	V_{F}				mV
I _F = 1 mA		-	-	715	
<i>I</i> _F = 10 mA		_	-	855	
$I_{\rm F}$ = 50 mA		_	-	1000	
I _F = 100 mA		_	_	1200	
I _F = 150 mA		_	_	1250	

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics					
Diode capacitance	C _T	-	-	1.5	pF
$V_{R} = 0 \text{ V}, f = 1 \text{ MHz}$					
Reverse recovery time	t _{rr}	-	-	4	ns
$I_{\rm F}$ = 10 mA, $I_{\rm R}$ = 10 mA, measured at $I_{\rm R}$ = 1mA,					
R_{L} = 100 Ω					

Test circuit for reverse recovery time

Pulse generator: t_p = 100ns, D = 0.05,

$$t_{\rm r}$$
 = 0.6ns, $R_{\rm i}$ = 50 Ω

Oscillograph: R = 50, $t_r = 0.35$ ns

Reverse current $I_R = f(T_A)$

 V_{R} = Parameter

Forward Voltage $V_F = f(T_A)$

 I_{F} = Parameter

Forward current $I_F = f(V_F)$

*T*_A = 25°C

Forward current $I_F = f(T_S)$

BAV99

Forward current $I_F = f(T_S)$

BAV99S

Forward current $I_F = f(T_S)$

BAV99T

Forward current $I_F = f(T_S)$

BAV99U

Forward current $I_F = f(T_S)$

BAV99W

Permissible Puls Load $R_{thJS} = f(t_p)$ BAV99

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAV99

Permissible Puls Load $R_{thJS} = f(t_p)$ BAV99S

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAV99S

Permissible Puls Load $R_{thJS} = f(t_p)$ BAV99T

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAV99T

Permissible Puls Load $R_{thJS} = f(t_p)$ BAV99U

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAV99U

Permissible Puls Load $R_{thJS} = f(t_p)$ BAV99W

Permissible Pulse Load

$$I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$$

BAV99W

8

Foot Print

Marking Layout

Packing

Foot Print

Marking Layout

Packing

Foot Print

Marking Layout

Packing

Foot Print

Marking Layout

Packing

Foot Print

Marking Layout

Packing

Foot Print

Marking Layout

Packing

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.