EXPERIMENT - IV

ANALYSIS OF COMBINATIONAL LOGIC CIRCUITS FOR 2X4 DECODER, 4:1 MULTIPLEXER AND OCTAL TO BINARY CONVERTER

SLOT: L37 + L38

HARSH AVINASH 20BDS0190 Instructor: Mrs. Rajalakshmi S AIM
To design a combinational logic circuit for 2x4 devader, a
4:1 Multiplener and an octal to binary converter.

MATERIALS

MATERIALS

Latest wersion of LT Spice with the [Digital Logic] Library.

PRE-REQUISITES

	PRE-REQUISITES THE WORLD STORE
•	Know how logic gates combination riquits work and how
	Know how logic goles combination circuits work and how the output varies depending on the input from the voltage
	7,000
<u>·</u>	How to construct and operate decoders; multiplexers and encoders
	How to use LT spice and install the necessary libraries.

PROCEDURE

<i> </i> ·	Download and install LT spice with the connect libraries.
	Once operational create a new simulation profile and name it
3.	Drog and drop all necessary components to construct the
4.	go to advance settings and select pust under functions
	for Voltage sources A, B. DO-MUX, DI-MUX, D2-MUX and D3.

1. V (initial) = 0 ml. (being) 1. 8
11. V (on) = 5
III. T(ruse) = /n
IV. T(fall) = 12
V. And depending on name of imputs. a. A Input.
a. A Input.
i. V. (delay) = 1m
1

	ii. T(on) = 1m	
	iii. T(period) = 2m.	
S. 84	internal logic simile for 2011 day	T leader a cond.
	6 B. Input	ist Milly lown and
	i. V(delay) = 1m	
	ii . T(on) = 2m	MARSHALS
QUI SO	ii T(period) = 4m	Litter received of the
1/	C. Do-Huy & L	Natural Salation
ad ha	c. Do-Hux Input	
st lta	i. For First Voltage Source. 1. V(delay) = im	The salmat startes of
9	2 · T(on) = 2m	- 3E10100
1 3	3. T(period) = 4m	They to enather
	4. N Cycles = 1.	Eg Me son"
أة الإدراجية	in and side of the necessary L	N c 16 1100 67 34
	(ii) for second voltage source	
	1. V (delay) = 4m	FLL SE DUCK
	2. T(on) = 1m	
1.6-22	3. T.Cperiod) = 2m	my bush and i
L may	4. N Cycles = NIL	South saturational en

	PERSONAL SE SECRETARISMENT PRESENTA STR. STR. SECT. SECT. PRINCE
	d. DI-MUX Input
: 17. :	11). foor First Voltage some
2.3	[i]. foor First Voltage source 1. V(delay) = 1m
	2. T(on) =3m
	3. T(period) = 6m
	4. N Cycles = 1
	0 25 = (25 62-77 .21
	ii. For second Voltage some
	1. V (delay) = 6m 2. T(on) = 1m
	2- T(on) = 1m
	3. T(period) = 2m

i. For First Voltage source. 1. V(delay) = 0m 2. T(on) = 3m 3. T(period) = 6m 4. N (ycles = 1. ii. For second Voltage source. 1. V(delay) = 4m 2. T(on) = 2m		4. Nlydes = NIL.
i. For First Voltage source. 1. V(delay) = 0m 2. T(on) = 3m 3. T(period) = 6m 4. N Cycles = 1. ii. For second Voltage source. 1. V(delay) = 4m 2. T(on) = 2m	e.	Dz - Mux Input.
1. $V(delay) = 0m$ 2. $T(on) = 3m$ 3. $T(period) = 6m$ 4. $N(cycles = 1)$ ii. For second Voltage souce. 1. $V(delay) = 4m$ 2. $T(on) = 2m$		_ '
i. For second Voltage souce. 1. V (delay) = 4m 2. T(on) = 3m 3. T(period) = 6m 4. N Cycles = 1.		1. V(delay) = om
ii. For second Voltage souce. 1. V (delay) = 4m 2. T(on) = 2m		2. T(on) = 3m
ii. For second Voltage source. 1. V (delay) = 4m 2. T(on) = 2m		
ii. For second Voltage souce. 1. V (delay) = 4m 2. T(on) = 2m		4. N Cycles = 1.
1. V (delay) = 4m 2. T(on) = 2m		
1. V (delay) = 4m 2. T(on) = 2m		ii For second Voltage souce.
2. T(on) = 2m		
		2. T(on) = 2m
3 T(seriod) = 4m		3 T(period) = 4m
4. Naydes = 1.		4. Noules = 1.

303	f. D3 MUX Input
10	i Fon First Vottage source.
	1. V (delay) = 4m
	2. T(con) = 2m
	3. T (period) = 4m
	4. N Cycles = 1. 0= (13416)
	Vicos Section V
_	ii. For second Voltage source
	1. Y (delay) = 7m
_	2. T(On) = 1m (0) = (10)
	3. T(period) = 2m
	4. N Cycles = 1.
-	And reporting on the nome your the It delan
1	
	g. 1-4-DEMUX input.
_	i. For First Voltage source
_	1. V(delay) = 0m
	2. T(on) =2m
-	3. T(period) = 4m
1	4. N Cycles = 1.
4	C. Diner Line L.
4	ii. For second Voltage source.
-	1. V(delay) = 4m
+	2. T(on) = 1m (0)]
+	3. T (period) = 2m
1	4. N'Cycles =1
	III. For third Voltage source.
	1. V(delay) = 6m
	2. T(on) = 2m (m)
	3. T(period) = 4m 4. N Cycles =1
	11. Al Curton -1

	VI. Comment all of them awardingly using The approprie
	labels and make sure to ground all negative ands of the
	voltage sources.
	2. T(an) = 2m
5	For Voltage somes x0 to x7
	a. V(initial) =0.
	b. V(on) =5
	c. T(nise) = In
	d. T (fall) = in
	e. T(on) = 1m
	f. T (period) = 2m
	g. Maydes=1
	In. and depending on the name vary the T(delay)
	A Charles Killing Company is
	i. x0-T(delay) = om
	ji. XI-T (delay) = 100
	iii x2-T (delay) =2m
	iv X3-T(delay) = 3m
	v. ×4-T(delay)=4m
	V1. X5-1 (delay) > 5m.
	$\sqrt{11} \times 6 = 1(\text{delay}) = 6m$
	viii \$7-T(delay)=7m
	Justina X
	Once done own the similation under trans for the
	respective amounts of time and plot the output wave forms
:	Tire seperate plots.
	a. 2x4 Decoder
	i. Simulation = . tran 8m
-	
	ii Input plots
	ii Input plots 1. 1-4-DEMUX input
<u> </u>	1. 1-4-DEMUX input 2. A input
	1. 1-4-DEMUX input 2. A input 3. B input
\(\lambda_1\)	1. 1-4-DEMUX input 2. A input 3. B input iii. Output plots
\(\frac{1}{2}\)	1. 1-4-DEMUX input 2. A input 3. B input 1111. Output plots 1. DO-DEMUX output
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1. 1-4-DEMUX input 2. A input 3. B input iii. Output plots 1. Do-DEMUX output 2. DI-DEMUX output
	1. 1-4-DEMUX in put 2. A input 3. B input 100 Output plots 1. Do-DEMUX output

b. 4:1 Kultiplener
i. Simulation = tran 8m
ii. Input plots
1. DO-MUX input
2. DI-MUX input
3. D2-MUX input
4. D3 - HUX input
5. A input
6. Binput
iii . Output plots
1. 4-1-1-Wx output

c. Octal to binary emoder	
i. Simulation = . tran 16m	3,
ii. Input plots	
1. x0, x1, x2, x3, x4, x5, x6	. x7
iii. Output plots	
1. X. output	
2. Y output	wide
3: Zoutput	0(0) 30

THEORY

DECODER

Decoder is a combinational circuit that has n' imput lines and manimum of 2" output lines. One of these outputs will be active High based on the combination of inputs pousent; when the decoder is enabled. That means decoder detects a particular code. The outputs of the decoder are nothing but the min terms of 'n' input variables lines, when it is enabled.

2X4 DECODER

Let 2 to 4 Decoder	has two in	of 2 to 4 decoder is
43, 42, 4, 8 Yo. The	block diagram	of 2 to 4 decoder is
shown in the follo	wind faure.	1
U	0 17	
	1	J .
		7/3
A,	2 104	→ Y2
No	Decoder	→ Y₁
	-	
		, 10

One of these four outputs will be i for each combination of inputs when enable, E is i . The Touth table of 2 to 4 decoder is shown below.

Enable	-	Inputs	1	6	Out	uts
F	A	A	Y3	1 72	1 7.	170
01	×	×	0	0	0	ь
hat I a de-	0	. 0	0 '	0	0	1
Marshar	0	13.	0	0	1	D
	1	0	0	Maria	0	0
of total the	1	1.1.	1	0	0	0

From Touth table we can write the Boolean functions for each output as.

Each output is having one product term. So, there are four product terms in total. We can implement these four product terms by using four AND gates having three inputs each and Iwo inverters. The circuit diagram of 2 to 4 duoder is shown in the following figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables A, 2 Ao when enable, E is equal to one of enable, E is gero, then all the outputs of decoder will be equal to zero.

MULTIPLEXER

1	HULTIPLEXER
	Hultiplener is a combinational circuit that has maximum
	of 2" data inputs, n' selection lines and single output
_	the output based on the values of selection lines.
_	the output based on the values of solution lines.
i	Since they are in solutions lines that will be 2 possible
	select only one data input. Hultiplener is also called as
· Cals	solect only one data input. Hultiplener is also called as
	Mux.

4X1 MULTIPLEXER

Just the	Selech	on Lines	output	14
No horse	5,	30	Y	11
sent me	0	will home to	10	
Same 1		mai 19 31 . 1.	colors des	
lines w	34 200	.1 01	N2	1 11
U. 15.	160 160	war is bear of	13	d'E
10			or ilaza	9130 (63
From Tru	M table	we can directly	write the	Boolean
function	four outpu	it, y as.	O VANAL OF	1615
0 1 13	0 /	market his contra	to bearing of	Chin
ele is n	Y = 5.5	I + 5,5, I + 5,5	I + 5,57	arrest
<u>alala</u> Kilom	Y = 5,'50'	I ₀ + 5,5 ₀ I, + 5,5	oI, + 5,5,73	dut 8
11 (2.10 m)	1130 G 100	a the black diese	to 3 mars	ing inv
	implemen	t this Bodean	function us	ing inv
AND gal	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal	implemen is box g	t this Bodean	function us diagram of	ing inv
multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv 4×1
multiple	implemen is box g	t this Bodean	function us diagram of	ing inv 4×1 wee
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv
AND gal multiple	implemen is box g	t this Bodean	function us diagram of	ing inv

ENCODER

An encoder is a combinational circuit that performs the reverse operation of decoder. It has maximum of 2th input lines and in output lines. It will produce a binary code equivalent to the input, which is active high. Therefore, the encoder encodes 2th input lines with in bits. It is optional to represent the enable signal in encoders.

OCTAL TO BINARY ENCODER

Octal to binary	encoder has eig	ht inputs Y,	to Yo and
three outputs A,	A. & An Actal	to hinney one	odu is nothi
but 8 to 3 encor	low. The black die	a company or the	+ 1.
Encoder is shown	: # 1 1	gram g ouar	to binary
Encoder is shown	in the Jollowa	ig figure.	
- 12-12 - 12-12-13	The river	0 00	AND GEN
4	m in the the	and the second	Sant Sant
	Octal		
16	1 / .		
75	, to	→ A ₂	107
74-	Binary	→ A.	
	Emoler.	1 1 1	\vee
73	1/	→ A o	
/			-
	*		
10			
	1	7	
At any to	. 0 11		-
At any time, only order to get the of wortal to bin	one of these	eight input	can be i' in
order to get the	e respective bin	any code. The	F. 4 411.
d ental to him		O' the	Town Labre

11	Inputs								Outputs		
	7	46	5	Y4	Y	7_1	_Y,	7,	_A	A	A
1	Ó	0	0	D	0	0	0	-	0	0	0
-	_0_	D	0.	0	0	0	1	0	0	0	® 1
1	_0_	0	0	_0_	0	1	0	0	0	91	0
-	_0_	_0_	0	_0_		0	0	0	0	1	1
-	_0	0_	0		0	0	0	0	1	0	0
-	_0_	0	-	_0_	_0,_	0	0	0	1	0	1
4	0		0	0	0	0	0	0	1	1	0
		0	0	0	0		0	0	1	1	1
	From	Trull	tab	le_u	e co	un u	sile.	the B	oolean	lundi	ins to
	Ewm each	Trull	~ /					the B	Poolean	functi	ons fo
	Ecom	/	A2/=	17 + 1	6 + Ys	+ Y4	,	the B	Boolean	functi	ins fo
	Ecom	/	~ /	Y2 + Y	16 + Ys Y6 +	+ Y4 Y3 +	/2	the B	Poolean	functi	ins fo
	Ecom	/	A2 = \	Y2 + Y	16 + Ys Y6 +	+ Y4 Y3 +	/2	the B	Poolean	functi	ins fo
	_		A2 = A0 =	Y ₁ + Y Y ₁ + Y ₁ +	16 + Ys Y6 + Ys +	+ 44 43 + 7 43 + 7	1/2				
	_		A2 = A0 =	Y ₁ + Y Y ₁ + Y ₁ +	16 + Ys Y6 + Ys +	+ 44 43 + 7 43 + 7	1/2		function of our		

The above circuit diagram contours there 4-input OR gates.

These OR gates emode the eight inputs with three bits.

SCHEMATIC DIAGRAM

2X4 DECODER

4:1 MULTIPLEXER

OCTAL TO DECIMAL ENCODER

OUTPUT WAVEFORMS 2X4 DECODER

4:1 MULTIPLEXER

OCTAL TO DECIMAL ENCODER

RESULTS AND INFERENCE:

The results are verified with the help of truth tables and LT SPICE results and hence the 2x4 Decoder, 4:1 Multiplexer and Octal to Decimal Encoder are verified.