

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ГРАФОВ

Лекция 1. Введение

Пирова А.Ю. Кафедра МОСТ

Содержание

- □ Прикладные области
- □ Математические определения
- □ Основные задачи на графах
- □ Особенности параллельных алгоритмов на графах
- □ Форматы хранения графов

Прикладные области

- □ Где возникают графы большого порядка?
 - Транспортные сети
 - Коммуникационные сети
 - Веб-графы, сети цитирований
 - Социальные сети, сети сообществ
 - Энергетические системы
 - Биологические системы (взаимодействие между белками, метаболические, нейронные сети, пищевые цепочки)
 - Бизнес-процессы, кибербезопасность

Граф сети дорог Европы

https://sparse.tamu.edu/DIMACS10/europe_osm

Настоящие интегральные схемы

Модель интегральной схемы. Вершины графа - элементы схемы, гиперребра – их соединения

Автор: И. Лебедев

Частичная карта интернета, основанная на данных от 15 января 2005 г. на opte.org. Вершины графа – ІР-адреса. Длина ребра показывает временную задержку (пинг) между двумя узлами.

Граф цитат публикаций в научных журналах за 1980-2016 гг. Вершины графа — журналы, ребра — цитирования публикаций. Визуализация с помощью программы VOSviewer, на ней отображено 5000 наиболее цитируемых журналов.

Van Eck N. J., Waltman L. Visualizing freely available citation data using VOSviewer //CWTS. Retrieved. – 2017. – T. 9. https://www.cwts.nl/blog?article=n-r2r294

МАТЕМАТИЧЕСКИЕ ОПРЕДЕЛЕНИЯ

Некоторые типы графов. Общее определение

- □ Граф G(V, E) пара множеств, где V конечное множество, называемое вершинами графа, $E \subseteq V \times V$ множество пар вершин графа (u, v), называемых ребрами.
- □ Граф *неориентированный (undirected),* если вершины ребра не упорядочены, иначе *ориентированный (directed)*.
- □ Граф связный (connected), если существует путь из каждой вершины графа в любую другую. Иначе несвязный (disconnected)

Некоторые типы графов. Двудольный граф

- □ Двудольный (bipartite) граф граф G(V, E), вершины которого можно разделить на два подмножества V_1 и V_2 так, что любое ребро соединяет вершину одного подмножества только с вершиной другого подмножества
 - Граф описывает отношения между двумя множествами (авторы и публикации / фильмы, поисковые запросы и URL...)

Некоторые типы графов. Двудольный граф

Сеть «актеры - фильмы», основанная на данных сайта <u>www.imdb.com</u>.

А[i, j] = 1, если актер і играл в фильме j. Граф из коллекции Suite Sparse https://sparse.tamu.edu/Pajek/IMDB

Некоторые типы графов. DAG

- □ Ориентированный ациклический граф (DAG, directed acyclic graph) ориентированный граф, который не содержит циклов. Граф может содержать несколько путей между двумя вершинами.
 - Примеры: история изменений в распределенной системе контроля версий, Байесовские сети, граф цитат и др.
 - Подробнее: https://en.wikipedia.org/wiki/Directed_acyclic_graph

Схема полносвязной нейронной сети (Fully-Connected Neural Network) Автор: В. Кустикова

Некоторые типы графов. Гиперграф

- □ Гиперграф обобщение понятия графа. Это граф, в котором ребро может соединять любое число вершин.
 - Примеры: граф интегральной схемы, граф рекомендационной системы, граф биологической системы. Используются в машинном обучении в качестве модели данных и для регуляризации.

Некоторые типы графов. Гиперграф

Задача исследования трехстороннего взаимодействия генов: пара генов, которые изменяют корреляцию, и третьего гена, который отражает основные клеточные состояния.

Визуализация гиперграфа триплетов ДНК. Размер вершины отражает ее степень.

Kong Y., Yu T. A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale //BMC genomics. -2019. -T. 20. -N^{\odot}. 1. -C. 397.

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5787-x/figures/3

Лекция 1. Введен

ЗАДАЧИ НА ГРАФАХ

Основные задачи на графах

- □ Обход графа (graph traversal) и поиск в графе поиск в ширину, поиск в глубину
- □ Нахождение расстояния между вершинами кратчайшие пути между двумя вершинами, между всеми вершинами
- □ Поиск минимального остовного дерева
- □ Задачи раскраски графа
- □ Разделение графа, сжатие графа
- □ Поиск компонент связности, сильных компонент связности
- □ Задачи для сетей: поиск максимального потока в сети
- □ Вычисление характеристик сети: PageRank, центральности вершин / ребер, поиск сообществ
- □ Поиск подграфов, клик, треугольников и др.

Основные задачи на графах

- □ Особенность большинства задач: задачи NP-полные, на практике применяются эвристические методы
- □ Нет единой классификации задач
- □ Классификация из книги Седжвика «Фундаментальные алгоритмы на C++»:

	E	т	1	?	E T I	?	
Неориентированные графы					Орграфы		
Связность	•				Транзитивное замечание		
Полная связность		•			Сильная связность		
Эвклидов цикл	•				Цикл нечетной длины		
Гамильтонов цикл			•		Цикл четной длины		
Двудольное сочетание	•				Взвешенные графы		
Максимальное сочетание		•			Минимальное остовое дерево		
Планарность		•			Задача коммивояжера *		
Максимальная клика			•		Сети		
Раскраска в 2 цвета	•				Кратчайшие пути (неотрицательные веса) *		
Раскраска в 3 цвета			•		Кратчайшие пути (отрицательные веса)		
Кратчайшие пути	•				Максимальный поток		
Самые длинные пути					Распределение *		
Вершинное покрытие			•		Поток минимальной стоимости		
Изоморфизм				•			
			Обозн	ачения:			
			E	Легкая - извест	ффективный классический алгоритм решения (см. справку)		
			т	Решаемая - рег	не существует (трудно получить реализацию)		
4-			1.1	Нерешаемая – з	ктивное решение неизвестно (NP-трудная задача)		
TET Oro			?	Неизвестно, суц	вует ли решение		

Типовые приемы

- □ Основные схемы построения последовательных и параллельных алгоритмов на графах:
 - Жадный принцип
 - Принцип «разделяй и властвуй»
 - Динамическое программирование

Особенности параллельных алгоритмов на графах

- □ Зависимость вычислений от данных
 - Вычислительная нагрузка неизвестна заранее
 - Алгоритмы часто сформулированы итеративно
- □ Неструктурированность задач
 - Эффективность параллельного алгоритма зависит от структуры графа. Параллельный алгоритм, подходящий для графов одного вида, может быть не эффективным для графов другого вида.
 - Статическое распределение данных между потоками / процессами может привести к дисбалансу вычислительной нагрузки
 - Отсутствует векторизация

Особенности параллельных алгоритмов на графах

- □ Низкая локальность
 - Нерегулярный доступ к памяти, кэш-промахи, ошибки предсказания ветвлений
- □ Низкая арифметическая интенсивность
 - Число операций обращения к памяти значительно превышает число арифметических операций над данными

Типовые приемы

- □ Приемы для построения параллельных алгоритмов:
 - Предобработка графа: разделение по вычислительным узлам, нахождение независимого множества вершин, сжатие структуры, сортировка ребер по весу и др.
 - Отдельная обработка «нетипичных» вершин (например, с большой либо маленькой степенью)
 - Асинхронное выполнение алгоритмов
 - Рандомизация для повышения качества эвристических алгоритмов
 - Гибридизация алгоритмов: разные способы обработки больших и маленьких подграфов

ФОРМАТЫ ХРАНЕНИЯ ГРАФОВ

Форматы хранения графов (1) Матрица смежности

- \square Пусть граф G = (V, E) содержит N вершин и M ребер.
- □ Матрица смежности плотная матрица А размера $N \times N$, в которой элемент $a_{ij} = 1$, если в графе присутствует ребро между вершинами i и j, иначе $a_{ij} = 0$.
- □ Способ хранения подходит для плотных графов, то есть тех, у которых число ребер порядка Θ(N²).
- □ Для ненаправленных графов матрица смежности симметрична
- □ Память: 4 * N² байт

0	1	1	0	1
1	0	0	1	0
1	0	0	1	0
0	1	1	0	1
1	0	0	1	0

Форматы хранения графов (1) Матрица смежности

□ Хранение информации о весах:

$$a_{ij} = egin{cases} w(i,j), i \ \text{и} \ j \ \text{связаны ребром} \ 0, i = j \ \infty, i \ \text{и} \ j \ \text{не связаны} \end{cases}$$

0	5	7	8	3
5	0	8	2	8
7	8	0	2	8
∞	2	3	0	4
3	8	8	4	0

Форматы хранения графов (2). Массив ребер

- □ Массив ребер Edges ребра графа хранятся в произвольном порядке, для каждого ребра хранятся последовательно инцидентные ему вершины. Размер массива 2 * M.
- □ Хранение информации о весах ребер:
 - Eweights массив весов ребер размера M. Eweights[i] хранит вес ребра Edges[i / 2]
- □ Формат удобен для некоторых алгоритмов (например, поиск компонент связности или остовного дерева)

Edges

0 1 0 2 0 4 1 3 2 3 3 4

Eweights

5 7 3 2 2 4

Форматы хранения графов (3). Списки смежности, CRS

- □ Списки смежности (формат хранения матрицы Compressed Row Storage, CRS)
- \square Пусть граф G = (V, E) содержит N вершин и M ребер. Хранение в двух массивах:
 - Adjncy хранит номера вершин, связанных с данной,
 последовательно для вершин 0, 1, ..., N-1. Размер массива 2 * M.
 - Xadj хранит индексы начала списка смежности каждой вершины в массиве Adjncy. Дополнительно хранится «фиктивный» элемент – индекс последнего элемента массива Adjncy, увеличенный на единицу. Размер массива N + 1.
- □ Вершины, смежные с вершиной i, хранятся в массиве Adjncy по индексам от Xadj[i] до Xadj[i + 1] – 1 включительно.

Форматы хранения графов (3). Списки смежности, CRS

- □ Способ хранения подходит для разреженных графов, то есть тех, у которых число ребер одного порядка с числом вершин.
- \square Память: 4*(2*M+N+1) = 8*M+4*N+4 байт
- □ Хранение информации о весах ребер:
 - Eweights массив весов ребер размера 2 * M. Eweights[i] хранит вес ребра Adjncy[i]

Adjncy 1 2 4 0 3 0 3 1 2 4 0 3

Xadj 0 3 5 7 10 12

Eweights 5 7 3 5 2 7 2 2 3 4 3 4

Форматы хранения графов (4). Распределенные списки смежности (CRS)

- □ Хранение графа на Р процессах в CRS формате:
 - массивы Adjncy, Xadj для локальных вершин. Нумерация с 0.
 - VertexDist массив размера P + 1, описывает распределение вершин между процессами. Для процесса i локальными являются вершины с VertexDist[i] по VertexDist[i+1]–1 включительно.
 Хранится на каждом процессе

Заключение

- □ Представление данных в виде графа используется во многих прикладных областях: биологические, транспортные, коммуникационные сети, энергетические системы, веб-графы, графы социальных сетей и др.
- □ Наряду с графами общего вида, ряд моделей описывается графами специального вида. Как правило, для таких графов создаются отдельные алгоритмы обработки.
- □ Типичные задачи обработки графов обход графа, поиск кратчайших путей, разделение, вычисление характеристик графа и др. Ряд задач имеет точное решение, другие NP-трудные, решаются эвристическими методами.

Заключение

- □ Для параллельных алгоритмов обработки графов характерно отсутствие единообразной структуры данных, зависимость вычислений от данных, низкая арифметическая интенсивность. Данные в виде графа плохо «ложатся» на архитектуру памяти устройства.
- □ Для повышения эффективности параллельных алгоритмов на графах применяется ряд приемов: предобработка данных, асинхронизация вычислений, комбинирование алгоритмов.
- □ Хранение графов: для плотных графов используется представление в виде матрицы смежности, для разреженных графов списки смежности (аналог CRS). При вычислениях на распределенной памяти используются распределенные списки смежности.

Общая литература по курсу

- 1. Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн. Алгоритмы: построение и анализ, 3-е издание. М.: «Вильямс», 2013. 1328 с.
- 2. Седжвик Р. Фундаментальные алгоритмы на С++. Алгоритмы на графах: Пер. с англ./Роберт Седжвик //СПб: ООО «ДиаСофтЮП». 2002.
- 3. Grama A. et al. Introduction to parallel computing. Pearson Education, 2003. https://www-users.cs.umn.edu/~karypis/parbook/
- Erciyes K. Guide to Graph Algorithms. Springer International Publishing, 2018.
- 5. Newman M. Networks. Oxford university press, 2018.
- Easley D. et al. Networks, crowds, and markets. Cambridge: Cambridge university press, 2010. T. 8.
 https://www.cs.cornell.edu/home/kleinber/networks-book/
- 7. Список литературы к курсу проф. Шана ссылки на научную литературу по разным задачам теории графов https://people.csail.mit.edu/jshun/graph.shtml

Контакты

Нижегородский государственный университет http://www.unn.ru

Институт информационных технологий, математики и механики http://www.itmm.unn.ru

Пирова А.Ю. anna.pirova@itmm.unn.ru

