Lezione 13 MSC Finitary CCS è Turing completo

Roberto Gorrieri

Turing-completezza

- Un formalismo è Turing-completo quando i programmi in quel formalismo possono calcolare tutte le funzioni calcolabili con macchine di Turing.
- Oltre alle macchine di Turing, altri formalismi Turingcompleti sono il lambda-calcolo, le Counter Machines (CM), ed altri ancora (linguaggi di programmazione, purchè la memoria disponibile sia infinita).
- Mostreremo come una qualunque CM possa essere modellata fedelmente da un processo di Finitary CCS, cioè pure Finitary CCS è Turing-completo.

Indecidibilità delle equivalenze

- Conseguenza della Turing-completezza è che le equivalenze comportamentali sono indecidibili per Finitary CCS.
- Se, per assurdo, fossero decidibili, allora saremmo in grado di risolvere il problema della fermata (Halting Problem), un problema che è indecidibile per formalismi Turingcompleti.

Halting Problem

- Supponiamo di avere una enumerazione dei programmi nel formalismo P₁, P₂, P₃, ...
- $halt(x,y) = 1 \text{ se } P_x(y) \text{ termina, 0 altrimenti}$
- Se halt fosse calcolabile, allora anche K(x) = halt(x, x) sarebbe calcolabile.
- Ma allora anche G(x) = 1 se K(x) = 0, G(x) indefinito se K(x) = 1, dovrebbe essere calcolabile. Supponiamo che P_i calcoli G.
- Ora se G(j)=1, allora vuol dire che K(j)=0, ma allora halt(j,j)=0, ovvero P_i(j) diverge: contraddizione!
- Similmente, se G(j) è indefinito, allora vuol dire che K(j) = 1, ovvero che halt(j,j) = 1, ovvero che P_j(j) termina: contraddizione!
- Dato che l'unica assunzione che abbiamo fatto è che halt sia calcolabile, dobbiamo concludere che halt non è calcolabile.

Counter Machines

- Usa registri/contatori dove memorizzare valori interi non negativi (cioè naturali): r₁, ..., r_n
- Inizialmente vengono messi valori v_1 , ..., v_n nei registri (se non specificato, il registro è inizializzato a 0)
- Il programma è un insieme indicizzato di istruzioni $\{(1,l_1), ...(m,l_m)\}$
- Si inizia dall'istruzione di indice 1, si procede alla successiva (a meno di istruzioni di salto) e si termina solo quando si arriva ad un indice non presente, tipicamente più grande di m.
- Se il programma termina, il risultato si trova nei registri specificati come output.

Counter Machines (2)

- Una classe speciale di CM (anch'essa Turingcompleta) usa due soli tipi di operazioni, dove assumiamo che 1≤i≤m e 1≤j≤n:
 - $-(i, Inc(r_j))$: incrementa il registro r_j e poi passa all'istruzione i+1
 - (i, DecJump (r_j,s)) : se il valore in r_j non è zero, allora decrementa r_j e poi passa all'istruzione i+1, altrimenti salta all'istruzione di indice s (dove s può essere maggiore di m).

Esempio: somma di due numeri

- Semplice programma che calcola la somma dei valori contenuti nei registri r₁ e r₂ mettendo il risultato in r₁
- Usa 3 registri, dove il registro r₃ è a zero
- Usa 3 istruzioni in sequenza:

```
\{(1 : DecJump(r_2,4)), (2 : Inc(r_1)), (3 : DecJump(r_3,1))\}
```

• Si comincia dalla prima istruzione, decrementando r_2 , poi incrementando r_1 , quindi saltando incondizionatamente alla prima istruzione, terminando quando r_2 è zero (l'istruzione 4 non esiste).

CM - definizione

- Lo stato interno della CM M = (I, n), dove I = $\{(1,I_1),...(m,I_m)\}$ e n è il numero dei registri, è dato dalla n+1-tupla (i, v_1 , --, v_n). Lo stato iniziale ha i = 1 e i vari v_i sono quelli forniti in input.
- La transizione (i, v_1 , --, v_n) \rightarrow_M (i', v'_1 , --, v'_n) avviene se:
- $I_i = Inc(r_j)$ and i' = i + 1, $v'_j = v_j + 1$, $v'_p = v_p$ for any $p \neq j$; or
- $I_i = DecJump(r_j, s), \ v_j > 0 \text{ and } i' = i + 1, \ v'_j = v_j 1, \ v'_p = v_p \text{ for any } p \neq j; \text{ or } i = DecJump(r_j, s), \ v_j = 0 \text{ and } i' = s, \ v'_p = v_p \text{ for any } p = 1, ..., n.$
- - N.B: la macchina è deterministica.

CM – definizione (2)

- Dati gli input v_1 , --, v_n , per la CM M = (I, n), lo stato interno (i, v'_1 , --, v'_n) è detto terminale se $(1, v_1, --, v_n) \rightarrow *_M (i, v'_1, --, v'_n)$ con i > m. I valori v'_1 , --, v'_n sono detti gli output.
- Se da $(1, v_1, --, v_n)$ non si raggiunge nessuna configurazione terminale, allora diciamo che la macchina, per quegli input, diverge.
- La funzione calcolata da M è

 $f_M(v_1, --, v_n) = (v'_1, --, v'_n)$ se la computazione termina in $(i, v'_1, --, v'_n)$ con i > m, indefinita altrimenti.

Exercise

Consider the CM M defined as

```
\{(1 : DecJump(r_2,4)), (2 : Inc(r_1)), (3 : DecJump(r_3,1))\}
```

- Compute the finite set of the configurations reachable from the initial one (1,3,2,0), i.e., when register r_1 holds value 3, r_2 holds value 2 and r_3 is 0.
- What is the partial function $f_M(v1,v2,v3)$ computed by M?

Classe universale minimale di CM

- 3CM = counter machines che usano tre contatori, classe universale (ovvero Turingcompleta)
- 2CM = counter machines che usano solo 2 contatori, pure universale, ma gli argomenti in input (così come gli output) vanno opportunamente codificati via godelizzazione.

Allora useremo, per semplicità, le 3CM come nostro formalismo universale.

CM in CCS

• Data una CM M = (I,3), con input v_1 , v_2 , v_3 , definiamo un processo CCS $CM_{M(v_1, v_2, v_3)}$ che modella fedelmente il comportamento della CM M.

$$CM_{M(v_1,v_2,v_3)} \stackrel{def}{=} (vL)(P_1 \mid \ldots \mid P_m \mid R_1 \mid R_2 \mid R_3 \mid B_{(v_1,v_2,v_3)})$$

dove P_i sono le costanti che definiscono le istruzioni I_i , R_j sono le costanti che definiscono i registri (contatori) r_j , B è il programmino di bootstrapping che inizializza i registri e attiva la prima istruzione e L è l'insieme delle azioni inc_j , $zero_j$, dec_j $1 \le j \le 3$ e p_i per ogni i che occorre in qualche istruzione (tipicamente $1 \le i \le m+1$)

CM in CCS (2)

• L'istruzione (i, Inc(r_i)) è definita con una costante ricorsiva:

$$P_i \stackrel{def}{=} p_i.P_i' \qquad P_i' \stackrel{def}{=} \overline{inc}_j.\overline{p}_{i+1}.P_i$$

dove p_i è l'azione che accetta l'abilitazione dell'istruzione, inc_j corrisponde all'incremento operato sul registro r_j , e ' p_{i+1} abilita la successiva istruzione di indice i+1.

• L'istruzione (i, DecJump(r_i,s)) viene modellata come

$$P_i \stackrel{def}{=} p_i.P_i' \qquad P_i' \stackrel{def}{=} \overline{zero}_j.\overline{p}_s.P_i + \overline{dec}_j.\overline{p}_{i+1}.P_i$$

dove la scelta tra zero_j e dec_j è guidata dallo stato del registro: se il registro r_j è a 0 allora solo la sincronizzazione su zero è possibile (e l'istruzione attivata è quella di indice s), mentre se il registro r_j non è a 0, allora solo la sincronizzazione su dec_j è possibile (con decremento di r_i e attivazione dell'istruzione i+1).

CM in CCS (3)

Ogni registro r_j viene modellato da un contatore R_j:

$$R_{j} \stackrel{def}{=} zero_{j}.R_{j} + inc_{j}.((va)(R_{j_{1}} | a.R_{j}))$$

 $R_{j_{1}} \stackrel{def}{=} dec_{j}.\bar{a}.\mathbf{0} + inc_{j}.((vb)(R_{j_{2}} | b.R_{j_{1}}))$
 $R_{j_{2}} \stackrel{def}{=} dec_{j}.\bar{b}.\mathbf{0} + inc_{j}.((va)(R_{j_{1}} | a.R_{j_{2}}))$

 Se assumiamo che gli input siano v₁, --, v_n allora il processo B di bootstrapping è definito come:

$$B_{(\nu_1,\ldots,\nu_n)} \stackrel{def}{=} \underbrace{\overline{inc}_1.\cdots.\overline{inc}_1}_{\nu_1 \text{ times}} \dots \underbrace{\overline{inc}_n.\cdots.\overline{inc}_n}_{\nu_n \text{ times}}.\overline{p}_1.\mathbf{0}$$

Example 3.22. Consider the CM M of Example 3.21 and Exercise 3.68. The process $CM_{M(3,2,0)}$ is:

$$CM_{M(3,2,0)} \stackrel{def}{=} (\nu L) (P_1 | P_2 | P_3 | R_1 | R_2 | R_3 | B_{(3,2,0)})$$

where:

•
$$P_1 \stackrel{def}{=} p_1.P_1'$$
 $P_1' \stackrel{def}{=} \overline{zero}_2.\overline{p}_4.P_1 + \overline{dec}_2.\overline{p}_2.P_1$

- $P_2 \stackrel{def}{=} p_2.P_2'$ $P_2' \stackrel{def}{=} \overline{inc_1}.\overline{p_3}.P_2$ • $P_3 \stackrel{def}{=} p_3.P_3'$ $P_3' \stackrel{def}{=} \overline{zero_3}.\overline{p_1}.P_3 + \overline{dec_3}.\overline{p_4}.P_3$
- $B_{(3,2,0)} \stackrel{def}{=} \overline{inc_1}.\overline{inc_1}.\overline{inc_1}.\overline{inc_2}.\overline{inc_2}.\overline{p_1}.\mathbf{0}$
- $L = \{inc_j, zero_j, dec_j \mid 1 \le j \le 3\} \cup \{p_i \mid 1 \le i \le 4\}.$

By performing the bootstrapping,
$$CM_{M(3,2,0)}$$
 reaches the state

which represents the CCS process for the CM M ready to execute the first instruction. R_1' stands for $(va)((vb)((va)(R_{1_1}|a.R_{1_2})|b.R_{1_1})|a.R_1)$, while R_2' stands for $(va)((vb)(R_{2_2}|b.R_{2_1})|a.R_2)$.

 $(\nu L)(P_1'|P_2|P_3|R_1'|R_2'|R_3|\mathbf{0}),$

CM in CCS (4)

For i = 1, ..., m, let $\langle CM_{(i,\nu_1,\nu_2,\nu_3)} \rangle$ be the set of all the terms of the form

$$(\nu L)(P_1 | \dots | P_{i-1} | P'_i | P_{i+1} | \dots | P_m | R'_1 | R'_2 | R'_3 | \mathbf{0})$$

where for j=1,2,3, $R'_j \approx Counter_{v_j}$ and R'_j cannot perform τ initially, i.e., $R'_j \stackrel{\tau}{/\!\!\!\!/} \to$. It is not difficult to see that if $Q,Q' \in \langle CM_{(i,v_1,v_2,v_3)} \rangle$ then $Q \sim Q'$.

- Lo stato iniziale (1, v₁, . . . , v_n) della CM M corrisponde ad un processo CCS in < CM_(1,v1,...,vn) >
- Ogni cambio di stato della CM M, e.g.,

$$(i, v_1, --, v_n) \rightarrow_M (i', v'_1, --, v'_n)$$

determina una sequenza di sincronizzazioni che portano da un processo in $\langle CM_{(i,v^1,...,v_n)} \rangle$ ad un processo in $\langle CM_{(i',v'^1,...,v'^n)} \rangle$

CM in CCS (5)

L'encoding della CM M in CCS con CM_M è corretto:

Proposition 3.8. Given a CM M with inputs v_1, v_2, v_3 , let $CM_{M(v_1, v_2, v_3)}$ be the CCS process defined above, such that $CM_{M(v_1, v_2, v_3)} \longrightarrow^* Q \in \langle CM_{(1, v_1, v_2, v_3)} \rangle$. Then the following hold:

- $(1, v_1, v_2, v_3) \leadsto_M^* (i, v_1', v_2', v_3')$ if and only if for all $Q \in \langle CM_{(1,v_1,v_2,v_3)} \rangle$ there exists some $Q' \in \langle CM_{(i',v_1',v_2',v_3')} \rangle$ such that $Q \longrightarrow^* Q'$;
- if $Q \in \langle CM_{(i,v'_1,v'_2,v'_3)} \rangle$ and $Q \longrightarrow^* Q'$, then there exists $Q'' \in \langle CM_{(i',v''_1,v''_2,v''_3)} \rangle$ such that $Q' \longrightarrow^* Q''$, for suitable i', v''_1, v''_2, v''_3 ;
- $(1, v_1, v_2, v_3) \uparrow \text{ if and only if } CM_{M(v_1, v_2, v_3)} \uparrow$.
 - Corollario: Finitary CCS è Turing-completo.

Rendere osservabile la terminazione

- Tutte le transizioni sono etichettate tau! Non "vedo" nulla: un processo che termina e uno che diverge sono weak bisimili
- Si assume esista una nuova istruzione P_{m+1} : con $\sqrt{\frac{def}{def}} p_{m+1} \cdot \sqrt{0}$
- Il processo $TCM_{M(v1, v2, v3)}$ nel suo complesso è ora

$$TCM_{M(v_1,v_2,v_3)} \stackrel{def}{=} (vL')(P_1 | \dots | P_m | P_{m+1} | R_1 | R_2 | R_3 | B_{(v_1,v_2,v_3)})$$

• L'istruzione (i, DecJump(r_i,s)) viene modellata come

$$P_{i} \stackrel{def}{=} p_{i}.P_{i}' \qquad P_{i}' \stackrel{def}{=} \begin{cases} \overline{zero}_{j}.\overline{p}_{s}.P_{i} + \overline{dec}_{j}.\overline{p}_{i+1}.P_{i} & \text{if } s \leq m, \\ \overline{zero}_{j}.\overline{p}_{m+1}.P_{i} + \overline{dec}_{j}.\overline{p}_{i+1}.P_{i}) & \text{otherwise} \end{cases}$$

• Con questa nuova definizione, la CM M termina sse il processo CCS $TCM_{\rm M}$ è weakly bisimile a \lor .0.

Weak bisimilarity è indecidibile

- 1. Data una enumerazione delle CM, M_1 , M_2 , ..., abbiamo anche una enumerazione di processi Finitary CCS TCM_{M1} , TCM_{M2} ...
- 2. Halting problem può essere riformulato: se y è l'encoding di v_1 , v_2 , v_3 , allora

```
h(x, y) = 1 se TCM_{Mx(v1, v2, v3)} \approx \sqrt{.0}
= 0 altrimenti
```

3. Se ≈ fosse decidibile, allora avrei trovato un algoritmo per calcolare la funzione h, che sappiamo non può esistere per formalismi Turing-completi.

Strong bisimilarity è indecidibile

- Consideriamo il processo Div = tau.Div
- Allora la CM M diverge sse TCM_{M}^{\sim} Div.
- Halting problem può essere riformulato: se y è l'encoding di v₁, v₂, v₃,

```
h'(x, y) = 0 se TCM_{Mx(v1, v2, v3)} \sim Div
= 1 altrimenti
```

Quindi anche strong bisimilarity è indecidbile tra processi di Finitary CCS.

Osservazioni (1)

Remark 3.15. (Set sort(p) is not effectively decidable) Given an enumeration of CCS processes p_1, p_2, p_3, \ldots , as well as an enumeration of actions $\mu_1, \mu_2, \mu_3, \ldots$, function

$$Srt(x,y) = \begin{cases} 1 & \text{if action } \mu_y \text{ belongs to } sort(p_x) \\ 0 & \text{otherwise} \end{cases}$$

cannot be computable. If Srt were computable, then we would solve the halting problem. In fact, in the construction above, action $\sqrt{}$ belongs to $sort(TCM_M)$ if and only if the CM M terminates. This observation has the consequence that, in general, for a finitary CCS process p the set sort(p) is not effectively decidable: even if set sort(p) is finite (hence decidable) by Corollary 4.1, it is not possible to give explicitly an algorithm that checks when a given action μ belongs to sort(p), even if we know that such an algorithm must exist. As a matter of fact, if $sort(p_x)$ were effectively decidable for all x, then function Srt would be easily effectively computable. 22

Osservazioni (2)

Exercise 3.73. (Reachability is undecidable) With the same intuition as above, one can conclude that the *reachability problem* is undecidable for finitary CCS. This can be formalized by means of the following function $Reach : \mathscr{P} \times \mathscr{P} \to \{0,1\}$:

$$Reach(p,q) = \begin{cases} 1 & \text{if } p \longrightarrow^* q \\ 0 & \text{otherwise} \end{cases}$$

Argue that if *Reach* were computable, then we would solve the halting problem for CMs. (*Hint*: CM M with inputs (v_1, v_2, v_3) terminates if and only if $TCM_{M(v_1, v_2, v_3)}$ reaches a state where instruction of index m+1 has been activated, i.e., a state/term which contains $\sqrt{.0}$)

• Il problema della reachability non può essere decidibile per formalismi Turing-completi.

Cosa succede per finite-net CCS?

- Decidibilità di reachability: posso decidere se un certo stato (ad esempio quello che fa V) è raggiungibile dallo stato iniziale. Allora ...
- Halting problem risolvibile. Allora...
- Non Turing-completezza.
- Tuttavia, bisimulation equivalence è indecidibile per finite-net CCS, perché così è per reti di Petri finite. Vedi sezione 3.5.4.

Modellazione migliore ... di 2-CM

- $CM_{M(v_1,v_2)} = (vL)(R_1|R_2|B(v_1,v_2))$
- B(v₁,v₂) inizializza i due contatori (con valori godelizzati) e, anziché terminare con il processo finito 'p₁.0, termina con con la costante P₁.
- L'istruzione (i, Inc(r_j)) è definita da
 P_i = 'inc_i.P_{i+1}
- L'istruzione (i, DecJump(r_j,s)) è modellata
 P_i = 'zero_j.P_s + 'dec_j.P_{i+1}

Modellazione migliore ... di 2-CM (2)

 I 2 contatori/registri sono definiti come al solito, per j = 1, 2,

$$R_{j} \stackrel{def}{=} zero_{j}.R_{j} + inc_{j}.((va)(R_{j_{1}}|a.R_{j}))$$

 $R_{j_{1}} \stackrel{def}{=} dec_{j}.\bar{a}.\mathbf{0} + inc_{j}.((vb)(R_{j_{2}}|b.R_{j_{1}}))$
 $R_{j_{2}} \stackrel{def}{=} dec_{j}.\bar{b}.\mathbf{0} + inc_{j}.((va)(R_{j_{1}}|a.R_{j_{2}}))$

Usano in tutto 6 costanti e 6 azioni (ovvero Inc_j/dec_j/zero_j per j = 1, 2), più le due azioni bound a e b, cioè 8 azioni in tutto.

Modellazione migliore ...di 2-CM (3)

- Quindi bastano 8 azioni per modellare qualunque 2-CM.
- Bastano (m+1) + 6 costanti per modellare una Turingmachine universale (UTM) con una 2-CM, dove m è il numero di istruzioni della 2-CM che simula la UTM e 6 sono le costanti per i 2 contatori.
- Allora CCS(h,k) è Turing-completo, dove h=m+7 e k = 8, tuttavia m è un valore grande.
- Risultato noto con minimo hxk è: CCS(25,12) è Turingcompleto, attraverso una simulazione diretta (non per mezzo di una 2-CM) di una Macchina di Turing Universale (UTM) con 15 stati e 2 simboli.