• Transfer functions of SFG 3-8. Find the transfer functions Y_7/Y_1 and Y_2/Y_1 of the SFGs shown in Fig. 3P-8.

Figure 3P-8

· Application of SFG

3-9. Signal-flow graphs may be used to solve a variety of electric network problems. Shown in Fig. 3P-9 is the equivalent circuit of an electronic circuit. The voltage source $e_d(t)$ represents a

(b)

Figure 3P-9

disturbance voltage. The objective is to find the value of the constant k so that the output voltage $e_o(t)$ is not affected by $e_d(t)$. To solve the problem, it is best to first write a set of cause-and-effect equations for the network. This involves a combination of node and loop equations. Then construct an SFG using these equations. Find the gain e_o/e_d with all other inputs set to zero. For e_d not to affect e_o , set e_o/e_d to zero.

3-10. Show that the two systems shown in Figs. 3P-10(a) and (b) are equivalent.

3-11. Show that the two systems shown in Figs. 3P-11(a) and (b) are not equivalent.

Figure 3P-11

• Transfer functions of SFG

• SFG

SFG

3-12. Find the following transfer functions for the SFG shown in Fig. 3P-12.

$$\left. \frac{Y_6}{Y_1} \right|_{Y_7 = 0} \qquad \left. \frac{Y_6}{Y_7} \right|_{Y_1 = 0}$$

Figure 3P-12

· Transfer functions of SFG

3-13. Find the following transfer functions for the SFG shown in Fig. 3P-13. Comment on why the results for parts (c) and (d) are not the same.

(a)
$$\frac{Y_7}{Y_1}\Big|_{Y_8=0}$$
 (b) $\frac{Y_7}{Y_8}\Big|_{Y_1=0}$ (c) $\frac{Y_7}{Y_4}\Big|_{Y_8=0}$ (d) $\frac{Y_7}{Y_4}\Big|_{Y_1=0}$

(c)
$$\frac{Y_7}{Y_4}\Big|_{Y_8}$$

(d)
$$\frac{Y_7}{Y_4}\Big|_{Y_1=0}$$

Figure 3P-13

· Transfer functions of block diagrams

3-14. The block diagram of a feedback control system is shown in Fig. 3P-14. Find the following transfer functions:

(a)
$$\frac{Y(s)}{R(s)}\Big|_{N}$$

(b)
$$\frac{Y(s)}{F(s)}$$

(a)
$$\frac{Y(s)}{R(s)}\Big|_{N=0}$$
 (b) $\frac{Y(s)}{E(s)}\Big|_{N=0}$ (c) $\frac{Y(s)}{N(s)}\Big|_{R=0}$

(d) Find the output Y(s) when R(s) and N(s) are applied simultaneously.

- Transfer function of dc-motor control system
- **3-17.** Figure 3P-17 shows the block diagram of a dc-motor control system. The signal N(s) denotes the frictional torque at the motor shaft.
- (a) Find the transfer function H(s) so that the output Y(s) is not affected by the disturbance torque N(s).
- (b) With H(s) as determined in part (a), find the value of K so that the steady-state value of e(t) is equal to 0.1 when the input is a unit-ramp function, $r(t) = tu_s(t)$, $R(s) = 1/s^2$, and N(s) = 0. Apply the final-value theorem.

Figure 3P-17

- Transfer function of position-control system
- **3-18.** The block diagram of the position-control system of the electronic word processor is shown in Fig. 3P-18.
- (a) Find the loop transfer function $\Theta_o(s)/\Theta_e(s)$ (the outer feedback path is open).
- (b) Find the closed-loop transfer function $\Theta_o(s)/\Theta_r(s)$.

Figure 3P-18

- Turboprop engine
- **3-19.** The coupling between the signals of the turboprop engine shown in Fig. 2-2 is shown in Fig. 3P-19. The signals are defined as

$$R_1(s)$$
 = fuel rate $R_2(s)$ = propeller blade angle $Y_1(s)$ = engine speed $Y_2(s)$ = turbine inlet temperature

- (a) Draw an equivalent SFG for the system.
- (b) Find the Δ of the system using the SFG gain formula.
- (c) Find the following transfer functions:

$$\frac{Y_1(s)}{R_1(s)}\bigg|_{R_2=0} \qquad \frac{Y_1(s)}{R_2(s)}\bigg|_{R_1=0} \qquad \frac{Y_2(s)}{R_1(s)}\bigg|_{R_2=0} \qquad \frac{Y_2(s)}{R_2(s)}\bigg|_{R_1=0}$$