Content-Based Anime Recommender System

Process

- Explode genre columns into numerous encoded features
- Remove ratings of -1
- Normalize features
- Create a profile for a user with cosine similarities
- Find most similar animes based on all cosine similarities

For a collaborative filtering method, check here

```
In [1]: import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import kaggle
```

```
In [3]: #load in data
    #individual anime data

kaggle.api.authenticate()
kaggle.api.dataset_download_files('maulipatel18/anime-content-based-recommendation-anime_df = pd.read_csv('../data/anime.csv')
anime_df.head()
```

Dataset URL: https://www.kaggle.com/datasets/maulipatel18/anime-content-based-recomm endation-system-datasets

```
In [119... #user data
    rating_df = pd.read_csv('../data/rating.csv')
    rating_df.head()
```

Out[119... user_id anime_id rating

```
0 1 20 -1
1 1 24 -1
2 1 79 -1
3 1 226 -1
4 1 241 -1
```

```
In [120... # #expand genres column
anime_df['genre'] = anime_df['genre'].str.split(',')
```

```
data_exploded = anime_df.explode('genre')

genre_dummies = pd.get_dummies(data_exploded['genre'], prefix='genre')
genre_dummies = genre_dummies.groupby(level=0).sum()
anime_df = pd.concat([anime_df, genre_dummies], axis=1)
anime_df = anime_df.drop('genre', axis=1)
anime_df.head()
```

Out[120...

	anime_id	name	type	episodes	rating	members	genre_ Adventure	genre_ Cars	geni Come
0	32281	Kimi no Na wa.	Movie	1	9.37	200630	0	0	
1	5114	Fullmetal Alchemist: Brotherhood	TV	64	9.26	793665	1	0	
2	28977	Gintama°	TV	51	9.25	114262	0	0	
3	9253	Steins;Gate	TV	24	9.17	673572	0	0	
4	9969	Gintama'	TV	51	9.16	151266	0	0	

5 rows × 88 columns

```
In [121... #remove NaN values and duplicates from anime df
anime_df = anime_df.dropna().drop_duplicates()
```

```
In [128... # create a "profile" for a user

def create_user_profile(user_id):
    #get user ratings and user watched animes
    user_ratings = rating_df[rating_df['user_id'] == user_id]
    user_animes = anime_df[anime_df['anime_id'].isin(user_ratings['anime_id'])]
```

```
#create user profile based off of attributes of each anime with rating given
user_profile = np.zeros(len(feature_cols))
for _, anime in user_animes.iterrows():
    anime_features = anime[feature_cols].values
    rating = user_ratings[user_ratings['anime_id'] == anime['anime_id']]['ratin
    user_profile = user_profile + anime_features * rating

return user_profile / len(user_animes)

def get_recs(user_id, n):
    #get user profile of the specified user
    user_profile = create_user_profile(user_id)

#find cosine similarity between user profile and all shows
    similarities = cosine_similarity([user_profile], features)[0]

#get top n recommendations
    indices = similarities.argsort()[::-1][:n]

recommendations = anime_df.iloc[indices][['name']]
    recommendations['score'] = similarities[indices]
    return recommendations

get_recs(1, 5)
```

Out[128...

	name	score
724	High School DxD New	0.986424
1036	High School DxD BorN	0.985305
900	Rakudai Kishi no Cavalry	0.984976
1057	High School DxD	0.981852
3002	Shinmai Maou no Testament	0 981762