Meeting 10: More on the value of information

Sequential analysis

When the value of sample information concerns the entire sample (sometimes referred to as *single-stage sampling*) the expected net gain of sampling can be written

$$ENGS(n) = EVSI(n) - CS(n)$$

and the optimal sample size n^* satisfies

$$ENGS(n*) \ge ENGS(n)$$
 for $n = 0,1,2,...$

However, it is also possible to sample one unit at time and at each step decide whether further sampling should be conducted. This is referred to as *sequential sampling*.

In the textbook there is no attempt to formulate at general description of sequential sampling, since it is a concept closely related to the decision problem at hand.

However, to clarify things it may often be wise to draw decision trees.

Exercise 6.27

- 27. In Exercise 17, consider a sequential sampling plan with a maximum total sample size of two and analyze the problem as follows.
 - (a) Represent the situation in terms of a tree diagram.
 - (b) Using backward induction, find the ENGS for the sequential plan.
 - (c) Compare the sequential plan with a single-stage plan having n = 2.
- 17. In Exercise 16, suppose that you also want to consider other sample sizes.
 - (a) Find EVSI for a sample of size 2.
 - (b) Find EVSI for a sample of size 5.
 - (c) Find EVSI for a sample of size 10.
 - (d) If the cost of sampling is \$0.50 per unit sampled, find the expected net gain of sampling (ENGS) for samples of sizes 1, 2, 5, and 10.
- 16. In Exercise 15, suppose that sample information is available in the form of a random sample of consumers. For a sample of size one,
 - (a) find the posterior distribution if the one person sampled will purchase the item, and find the value of this sample information;
 - (b) find the posterior distribution if the one person sampled will not purchase the item, and find the value of this sample information;
 - (c) find the expected value of sample information.

15. A store must decide whether or not to stock a new item. The decision depends on the reaction of consumers to the item, and the payoff table (in dollars) is as follows.

If P(0.10) = 0.2, P(0.20) = 0.3, P(0.30) = 0.3, P(0.40) = 0.1, and P(0.50) = 0.1, what decision maximizes expected payoff? If perfect information is available, find VPI for each of the five possible states of the world and compute EVPI.

	PROPROTION OF CUSTOMERS BUYING					
DECISION	0.10	0.20	0.30	0.40	0.50	
Stock 100	-10	-2	12	22	40	
Stock 50	- 4	6	12	16	16	
Do not stock	0	0	0	0	0	

$$VPI(\theta) = R(a_{\theta}, \theta) - R(a^*, \theta)$$

$$a^* = \arg\max\{ER(a)\}$$

$$ER(Stock\ 100) = (-10) \cdot 0.2 + (-2) \cdot 0.3 + 12 \cdot 0.3 + 22 \cdot 0.1 + 40 \cdot 0.1 = 7.2$$

$$ER(\text{Stock } 50) = (-4) \cdot 0.2 + 6 \cdot 0.3 + 12 \cdot 0.3 + 16 \cdot 0.1 + 16 \cdot 0.1 = 7.8$$

$$ER(\text{Do not stock}) = 0.0.2 + 0.0.3 + 0.0.3 + 0.0.1 + 0.0.1 = 0$$

$$\Rightarrow a^* = \text{Stock } 50$$

$$\Rightarrow$$

$$VPI(0.10) = 0 - (-4) = 4$$

$$VPI(0.20) = 6 - 6 = 0$$

$$VPI(0.30) = 12 - 12 = 0$$

$$VPI(0.40) = 22 - 16 = 6$$

$$VPI(0.50) = 40 - 16 = 24$$

$$\Rightarrow$$
 EVPI = $4 \cdot 0.2 + 0 \cdot 0.3 + 0 \cdot 0.3 + 6 \cdot 0.1 + 24 \cdot 0.1 = 3.8$

- 16. In Exercise 15, suppose that sample information is available in the form of a random sample of consumers. For a sample of size one,
 - (a) find the posterior distribution if the one person sampled will purchase the item, and find the value of this sample information;
 - (b) find the posterior distribution if the one person sampled will not purchase the item, and find the value of this sample information;
 - (c) find the expected value of sample information.

Below we have used the word "BUY" instead of "PURCHASE"

(a) Posterior distribution:
$$P(\theta|BUY) = \frac{P(BUY|\theta) \cdot P(\theta)}{P(BUY)} = \frac{P(BUY|\theta) \cdot P(\theta)}{\sum_{\lambda} P(BUY|\lambda) \cdot P(\lambda)}$$

 $P(BUY|\theta) = \theta$
 \Rightarrow
 $P(BUY) = 0.10 \cdot 0.2 + 0.20 \cdot 0.3 + 0.30 \cdot 0.3 + 0.40 \cdot 0.1 + 0.50 \cdot 0.1 = 0.26$
 $P(0.10|BUY) = 0.10 \cdot 0.2/0.26 \approx 0.0769$
 $P(0.20|BUY) = 0.20 \cdot 0.3/0.26 \approx 0.2308$
 $P(0.30|BUY) = 0.30 \cdot 0.3/0.26 \approx 0.3462$
 $P(0.40|BUY) = 0.40 \cdot 0.1/0.26 \approx 0.1538$
 $P(0.50|BUY) = 0.50 \cdot 0.1/0.26 \approx 0.1923$

$$VSI(BUY) = E''R(a''|BUY) - E''R(a'|BUY)$$

$$a' = \langle = a^* \text{ from exercise } 6.15 \rangle = \text{Stock } 50$$

$$a''' = \arg\max_{a} ER(a|BUY)$$

$$ER(a|BUY) = \sum_{\theta} R(a,\theta) \cdot P(\theta|BUY)$$

$$\Rightarrow$$

$$ER(\text{Stock } 100|BUY) = (-10) \cdot 0.0769 \dots + (-2) \cdot 0.2308 \dots + 12 \cdot 0.3462 \dots + 22 \cdot 0.1538 \dots + 40 \cdot 0.1923 \dots = 14.00$$

$$ER(\text{Stock } 50|BUY) = (-4) \cdot 0.0769 \dots + 6 \cdot 0.2308 \dots + 12 \cdot 0.3462 \dots + 26 \cdot 0.1538 \dots + 16 \cdot 0.1923 \dots \approx 10.77$$

$$ER(\text{Do not stock}|BUY) = 0 \cdot 0.0769 \dots + 0 \cdot 0.2308 \dots + 0 \cdot 0.3462 \dots + 0 \cdot 0.1538 \dots + 0 \cdot 0.1923 \dots = 0$$

$$\Rightarrow a'' = \text{Stock } 100$$

$$\Rightarrow$$

$$VSI(BUY) = E''R(\text{Stock } 100|BUY) - E''R(\text{Stock } 50|BUY) = 14.00 - 10.77 = 3.23$$

Posterior distribution :
$$P(\theta|\text{NOT BUY}) = \frac{P(\text{NOT BUY}|\theta) \cdot P(\theta)}{P(\text{NOT BUY})} = \frac{P(\text{NOT BUY}|\theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{NOT BUY}|\lambda) \cdot P(\lambda)}$$

$$P(NOT BUY|\theta) = 1 - \theta$$

$$\Rightarrow$$

$$P(NOT BUY) = 0.90 \cdot 0.2 + 0.80 \cdot 0.3 + 0.70 \cdot 0.3 + 0.60 \cdot 0.1 + 0.50 \cdot 0.1 = 0.74$$

$$P(0.10|NOT BUY) = 0.90 \cdot 0.2/0.74 \approx 0.2432$$

$$P(0.20|NOT BUY) = 0.80 \cdot 0.3/0.74 \approx 0.3243$$

$$P(0.30|NOT BUY) = 0.70 \cdot 0.3/0.74 \approx 0.2838$$

$$P(0.40|NOT BUY) = 0.60 \cdot 0.1/0.74 \approx 0.0811$$

$$P(0.50|NOT BUY) = 0.50 \cdot 0.1/0.74 \approx 0.0676$$

```
VSI(NOT BUY) = E''R(a''|NOT BUY) - E''R(a'|NOT BUY)
a' = Stock 50 (Same as in (a))
a'' = \arg \max ER(a|NOT BUY)
ER(a|NOT BUY) = \sum_{a} R(a,\theta) \cdot P(\theta|NOT BUY)
ER(\text{Stock } 100|\text{NOT BUY}) = (-10) \cdot 0.2432... + (-2) \cdot 0.3243... + 12 \cdot 0.2838... +
                           22 \cdot 0.0811... + 40 \cdot 0.0676... \approx 4.81
ER(\text{Stock } 50|\text{NOT BUY}) = (-4) \cdot 0.2432... + 6 \cdot 0.3243... + 12 \cdot 0.2838... +
                           26 \cdot 0.0811... + 16 \cdot 0.0676... \approx 6.76
ER(Do not stock|NOT BUY) = 0.0.2432... + 0.0.3243... + 0.0.2838... +
                           0.0.0811...+0.0.0676...=0
\Rightarrow a'' = \text{Stock } 50
VSI(NOT BUY) = E''R(Stock 50|NOT BUY) - E''R(Stock 50|NOT BUY) = 0
```

(c)

EVSI =
$$\sum_{y}$$
 VSI(y)P(y) = 3.2 · 0.26 + 0 · 0.74 = 0.832

Alternatively:
$$EVSI = E''R(a'') - E''R(a')$$

$$E''R(a'') = E''R(a''|BUY) \cdot P(BUY) + E''R(a''|NOT BUY) \cdot P(NOT BUY) =$$

$$= E''R(Stock 100|BUY) \cdot P(BUY) + E''R(Stock 50|NOT BUY) \cdot P(NOT BUY) =$$

$$= 14.00 \cdot 0.26 + 6.76 \cdot 0.74 = 8.64$$

$$E''R(a') = E''R(a'|BUY) \cdot P(BUY) + E''R(a'|NOT BUY) \cdot P(NOT BUY) =$$

$$= E''R(Stock 50|BUY) \cdot P(BUY) + E''R(Stock 50|NOT BUY) \cdot P(NOT BUY) =$$

$$= 10.77 \cdot 0.26 + 6.76 \cdot 0.74 = 7.80$$

$$\Rightarrow EVSI = 8.64 - 7.80 = 0.84$$

- 17. In Exercise 16, suppose that you also want to consider other sample sizes.
 - (a) Find EVSI for a sample of size 2.
 - (b) Find EVSI for a sample of size 5.
 - (c) Find EVSI for a sample of size 10.
 - (d) If the cost of sampling is \$0.50 per unit sampled, find the expected net gain of sampling (ENGS) for samples of sizes 1, 2, 5, and 10.

(a) Just the case with n = 2

We need to consider all possible outcomes in a sample of size 2, i.e.

BUY, BUY

BUY, NOT BUY

NOT BUY, BUY

NOT BUY, NOT BUY

However, the second and third outcome are equal by symmetry

BUY, BUY:

Posterior distribution:
$$P(\theta|BUY,BUY) = \frac{P(BUY,BUY|\theta) \cdot P(\theta)}{P(BUY,BUY)} = \frac{P(BUY,BUY|\theta) \cdot P(\theta)}{\sum_{\lambda} P(BUY,BUY|\lambda) \cdot P(\lambda)}$$

$$P(BUY,BUY|\theta) = \theta^2$$

$$\Rightarrow$$

$$P(BUY, BUY) = 0.10^2 \cdot 0.2 + 0.20^2 \cdot 0.3 + 0.30^2 \cdot 0.3 + 0.40^2 \cdot 0.1 + 0.50^2 \cdot 0.1 = 0.082$$

$$P(0.10|BUY,BUY) = 0.10^2 \cdot 0.2/0.082 \approx 0.0244$$

$$P(0.20|BUY,BUY) = 0.20^2 \cdot 0.3/0.082 \approx 0.1463$$

$$P(0.30|BUY,BUY) = 0.30^2 \cdot 0.3/0.082 \approx 0.3293$$

$$P(0.40|BUY,BUY) = 0.40^2 \cdot 0.1/0.082 \approx 0.1951$$

$$P(0.50|BUY,BUY) = 0.50^2 \cdot 0.1/0.082 \approx 0.3049$$

```
VSI(BUY, BUY) = E''R(a''|BUY, BUY) - E''R(a'|BUY, BUY)
a' = \langle = a^* \text{ from exercise } 6.15 \rangle = \text{Stock } 50
a'' = \arg \max ER(a|BUY, BUY)
ER(a|BUY,BUY) = \sum_{a} R(a,\theta) \cdot P(\theta|BUY,BUY)
ER(\text{Stock } 100|\text{BUY},\text{BUY}) = (-10) \cdot 0.0244... + (-2) \cdot 0.1463... + 12 \cdot 0.3293... +
                             22 \cdot 0.1951... + 40 \cdot 0.3049... \approx 19.90
ER(\text{Stock } 50|\text{BUY},\text{BUY}) = (-4) \cdot 0.0244... + 6 \cdot 0.1463... + 12 \cdot 0.3293... +
                             26 \cdot 0.1951... + 16 \cdot 0.3049... \approx 12.73
ER(Do not stock|BUY,BUY) = 0.0.0244... + 0.0.1463... + 0.0.3293... +
                             0.0.1951...+0.0.3049...=0
\Rightarrow a'' = \text{Stock } 100
VSI(BUY, BUY) = E''R(Stock\ 100|BUY, BUY) - E''R(Stock\ 50|BUY, BUY) \approx
19.90 - 12.73 = 7.17
```

BUY, NOT BUY or NOT BUY, BUY:

Posterior distribution :
$$P(\theta|\text{BUY}, \text{NOT BUY}) = \frac{P(\text{BUY}, \text{NOT BUY}|\theta) \cdot P(\theta)}{P(\text{BUY}, \text{NOT BUY}|\theta) \cdot P(\theta)} = \frac{P(\text{BUY}, \text{NOT BUY}|\theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{BUY}, \text{NOT BUY}|\lambda) \cdot P(\lambda)}$$

$$P(\text{BUY}, \text{NOT BUY}|\theta) = \theta \cdot (1 - \theta)$$

$$\Rightarrow P(\text{BUY}, \text{NOT BUY}) = 0.10 \cdot 0.90 \cdot 0.2 + 0.20 \cdot 0.80 \cdot 0.3 + 0.30 \cdot 0.70 \cdot 0.3 + 0.40 \cdot 0.50 \cdot 0.1 + 0.50^2 \cdot 0.1 = 0.178$$

$$P(0.10|\text{BUY}, \text{NOT BUY}) = 0.10 \cdot 0.90 \cdot 0.2/0.178 \approx 0.1011$$

$$P(0.20|\text{BUY}, \text{NOT BUY}) = 0.20 \cdot 0.80 \cdot 0.3/0.178 \approx 0.2697$$

$$P(0.30|\text{BUY}, \text{NOT BUY}) = 0.30 \cdot 0.70 \cdot 0.3/0.178 \approx 0.3539$$

$$P(0.40|\text{BUY}, \text{NOT BUY}) = 0.40 \cdot 0.50 \cdot 0.1/0.178 \approx 0.1348$$

$$P(0.50|\text{BUY}, \text{NOT BUY}) = 0.50^2 \cdot 0.1/0.178 \approx 0.1404$$

```
VSI(BUY, NOT BUY) = E''R(a''|BUY, NOT BUY) - E''R(a'|BUY, NOT BUY)
a' = Stock 50 (as before)
a'' = \arg \max ER(a|BUY, NOT BUY)
ER(a|BUY, NOT BUY) = \sum R(a, \theta) \cdot P(\theta|BUY, NOT BUY)
ER(\text{Stock } 100|\text{BUY}, \text{NOT BUY}) = (-10) \cdot 0.1011... + (-2) \cdot 0.2697... + 12 \cdot 0.3539... +
                           22 \cdot 0.1348... + 40 \cdot 0.1404... \approx 11.28
ER(\text{Stock } 50|\text{BUY}, \text{NOT BUY}) = (-4) \cdot 0.1011... + 6 \cdot 0.2697... + 12 \cdot 0.3539... +
                           26 \cdot 0.1348... + 16 \cdot 0.1404... \approx 9.87
ER(Do not stock|BUY, NOT BUY) = 0.0.1011... + 0.0.2697... + 0.0.3539... +
                           0.0.1348...+0.0.1404...=0
\Rightarrow a'' = \text{Stock } 100
VSI(BUY, NOT BUY) = E''R(Stock 100|BUY, NOT BUY) -
E''R(\text{Stock } 50|\text{BUY}, \text{NOT BUY}) \approx 11.28 - 9.87 = 1.41
```

NOT BUY, NOT BUY:

Posterior distribution :
$$P(\theta|\text{NOT BUY}, \text{NOT BUY}) = \frac{P(\text{NOT BUY}, \text{NOT BUY}|\theta) \cdot P(\theta)}{P(\text{NOT BUY}, \text{NOT BUY})} = \frac{P(\text{NOT BUY}, \text{NOT BUY}|\theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{NOT BUY}, \text{NOT BUY}|\lambda) \cdot P(\lambda)}$$

$$P(\text{NOT BUY}, \text{NOT BUY}|\theta) = (1-\theta)^{2}$$

$$\Rightarrow P(\text{NOT BUY}, \text{NOT BUY}) = 0.90^{2} \cdot 0.2 + 0.80^{2} \cdot 0.3 + 0.70^{2} \cdot 0.3 + 0.60^{2} \cdot 0.1 + 0.50^{2} \cdot 0.1 = 0.562$$

$$P(0.10|\text{NOT BUY}, \text{NOT BUY}) = 0.90^{2} \cdot 0.2/0.562 \approx 0.2883$$

$$P(0.20|\text{NOT BUY}, \text{NOT BUY}) = 0.80^{2} \cdot 0.3/0.562 \approx 0.3416$$

$$P(0.30|\text{NOT BUY}, \text{NOT BUY}) = 0.70^{2} \cdot 0.3/0.562 \approx 0.2616$$

$$P(0.40|\text{NOT BUY}, \text{NOT BUY}) = 0.60^{2} \cdot 0.1/0.562 \approx 0.0641$$

$$P(0.50|\text{NOT BUY}, \text{NOT BUY}) = 0.50^{2} \cdot 0.1/0.562 \approx 0.0445$$

```
VSI(NOT BUY, NOT BUY) = E''R(a''|NOT BUY, NOT BUY) -
                                     E''R(a'|NOT BUY, NOT BUY)
                                     a'' = \arg \max ER(a|NOT BUY, NOT BUY)
a' = Stock 50 (as before)
ER(a|\text{NOT BUY}, \text{NOT BUY}) = \sum R(a,\theta) \cdot P(\theta|\text{NOT BUY}, \text{NOT BUY})
ER(\text{Stock } 100|\text{NOT BUY}, \text{NOT BUY}) = (-10) \cdot 0.2883... + (-2) \cdot 0.3416... + 12 \cdot 0.2616... +
                            22 \cdot 0.0641... + 40 \cdot 0.0445... \approx 2.76
ER(\text{Stock } 50|\text{NOT BUY}, \text{NOT BUY}) = (-4) \cdot 0.2883... + 6 \cdot 0.3416... + 12 \cdot 0.2616... +
                            26 \cdot 0.0641... + 16 \cdot 0.0445... \approx 5.77
ER(\text{Do not stock}|\text{NOT BUY}, \text{NOT BUY}) = 0.0.2883... + 0.0.3416... + 0.0.2616... +
                           0 \cdot 0.0641... + 0 \cdot 0.0445... = 0
\Rightarrow a'' = \text{Stock } 50
VSI(NOT BUY, NOT BUY) = E''R(Stock 50|NOT BUY, NOT BUY) –
E''R(\text{Stock } 50|\text{NOT BUY}, \text{NOT BUY}) = (5.77 - 5.77) = 0
```

$$EVSI = \sum_{y} VSI(y)P(y) =$$

- = VSI(BUY,BUY) \cdot P(BUY,BUY)+2 \cdot VSI(BUY,NOT BUY) \cdot P(BUY,NOT BUY)+ VSI(NOT BUY,NOT BUY) \cdot P(NOT BUY,NOT BUY)=
- $= 7.17 \cdot 0.082 + 2 \cdot 1.41 \cdot 0.178 + 0 \cdot 0.652 \approx 1.09$
- (a) Just the cases with n = 1 and n = 2

$$ENGS(1) = EVSI(1) - CS(1) \approx 0.84 - 0.50 \cdot 1 = 0.34$$

$$ENGS(2) = EVSI(2) - CS(2) \approx 1.09 - 0.50 \cdot 2 = 0.09$$

Finally, Exercise 6.27

- 27. In Exercise 17, consider a sequential sampling plan with a maximum total sample size of two and analyze the problem as follows.
 - (a) Represent the situation in terms of a tree diagram.
 - (b) Using backward induction, find the ENGS for the sequential plan.
 - (c) Compare the sequential plan with a single-stage plan having n = 2.

	PRO	OPORTION OF CONSUMERS PURCHASING				
		0.10	0.20	0.30	0.40	0.50
	Stock 100	-10	-2	12	22	40
DECISION	Stock 50	-4	6	12	16	16
. D	o not stock	0	0	0	0	0

Prior distribution:

$$\begin{array}{c|cc}
\theta & P(\tilde{\theta} = \theta) \\
\hline
0.10 & 0.2 \\
0.20 & 0.3 \\
0.30 & 0.3 \\
0.40 & 0.1 \\
0.50 & 0.1
\end{array}$$

$$ER(Stock 100) =$$

$$(-10) \cdot 0.2 + (-2) \cdot 0.3 + 12 \cdot 0.3 + 22 \cdot 0.1 + 40 \cdot 0.1 = \underline{7.2}$$

$$ER(Stock 50) =$$

$$(-4)\cdot 0.2 + 6\cdot 0.3 + 12\cdot 0.3 + 16\cdot 0.1 + 16\cdot 0.1 = \underline{7.8}$$
 Max

$$ER(Do not stock) =$$

$$0 \cdot 0.2 + 0 \cdot 0.3 + 0 \cdot 0.3 + 0 \cdot 0.1 + 0 \cdot 0.1 = 0$$

First sampled consumer

<u>If outcome = No purchase</u>

Posterior probabilities of θ :

<u>If outcome = Purchase</u>

Posterior probabilities of θ :

$$\begin{split} P\Big(\widetilde{\theta} = \theta \big| P_1\Big) &= \frac{P\Big(P_1 \big| \widetilde{\theta} = \theta\Big) \cdot P\Big(\widetilde{\theta} = \theta\Big)}{\Big[P\Big(P_1 \big| \widetilde{\theta} = 0.1\Big) \cdot P\Big(\widetilde{\theta} = 0.1\Big) + P\Big(P_1 \big| \widetilde{\theta} = 0.2\Big) \cdot P\Big(\widetilde{\theta} = 0.2\Big) + \Big]} = \\ &= \frac{P\Big(P_1 \big| \widetilde{\theta} = 0.3\Big) \cdot P\Big(\widetilde{\theta} = 0.3\Big) + P\Big(P_1 \big| \widetilde{\theta} = 0.4\Big) \cdot P\Big(\widetilde{\theta} = 0.4\Big) + \Big]}{P\Big(P_1 \big| \widetilde{\theta} = 0.5\Big) \cdot P\Big(\widetilde{\theta} = 0.5\Big)} \\ &= \frac{P\Big(P_1 \big| \widetilde{\theta} = \theta\Big) \cdot P\Big(\widetilde{\theta} = \theta\Big)}{0.1 \cdot 0.2 + 0.2 \cdot 0.3 + 0.3 \cdot 0.3 + 0.4 \cdot 0.1 + 0.5 \cdot 0.1} = \frac{P\Big(P_1 \big| \widetilde{\theta} = \theta\Big) \cdot P\Big(\widetilde{\theta} = \theta\Big)}{0.26} \\ &\Rightarrow P\Big(\widetilde{\theta} = 0.1 \big| P_1\Big) = 0.1 \cdot 0.2 / 0.26 = 2 / 26 \; ; \; P\Big(\widetilde{\theta} = 0.2 \big| P_1\Big) = 6 / 26 \; ; \\ P\Big(\widetilde{\theta} = 0.3 \big| P_1\Big) = 9 / 26 \; ; \; P\Big(\widetilde{\theta} = 0.4 \big| P_1\Big) = 4 / 26 \; ; \; P\Big(\widetilde{\theta} = 0.2 \big| P_1\Big) = 5 / 26 \; ; \end{split}$$

$$\begin{split} P(\widetilde{\theta} = \theta | \mathrm{NP_1}) &= \frac{P(\mathrm{NP_1} | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)}{\left[P(\mathrm{NP_1} | \widetilde{\theta} = 0.1) \cdot P(\widetilde{\theta} = 0.1) + P(\mathrm{NP_1} | \widetilde{\theta} = 0.2) \cdot P(\widetilde{\theta} = 0.2) + \right]} \\ &= \frac{P(\mathrm{NP_1} | \widetilde{\theta} = 0.3) \cdot P(\widetilde{\theta} = 0.3) + P(\mathrm{NP_1} | \widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + \left[P(\mathrm{NP_1} | \widetilde{\theta} = 0.5) \cdot P(\widetilde{\theta} = 0.5) \right]}{P(\mathrm{NP_1} | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)} \\ &= \frac{P(\mathrm{NP_1} | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)}{0.9 \cdot 0.2 + 0.8 \cdot 0.3 + 0.7 \cdot 0.3 + 0.6 \cdot 0.1 + 0.5 \cdot 0.1} \\ &= \frac{P(\mathrm{NP_1} | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)}{0.74} \\ &\Rightarrow P(\widetilde{\theta} = 0.1 | \mathrm{NP_1}) = 0.9 \cdot 0.2 / 0.74 = 18 / 74 \ ; \ P(\widetilde{\theta} = 0.2 | \mathrm{NP_1}) = 24 / 74 \ ; \\ P(\widetilde{\theta} = 0.3 | \mathrm{NP_1}) = 21 / 74 \ ; \ P(\widetilde{\theta} = 0.4 | \mathrm{NP_1}) = 6 / 74 \ ; \ P(\widetilde{\theta} = 0.2 | \mathrm{NP_1}) = 5 / 74 \ ; \end{split}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | P_1)$ 2/26 6/26 9/26 4/26 5/26

$$ER(\text{Stock } 100|P_{1}) = \\ (-10) \cdot \frac{2}{26} + (-2) \cdot \frac{6}{26} + 12 \cdot \frac{9}{26} + 22 \cdot \frac{4}{26} + 40 \cdot \frac{5}{26} \approx \underline{14.0}) \text{ Max}$$

$$ER(\text{Stock } 50|P_{1}) = \\ (-4) \cdot \frac{2}{26} + 6 \cdot \frac{6}{26} + 12 \cdot \frac{9}{26} + 16 \cdot \frac{4}{26} + 16 \cdot \frac{5}{26} \approx \underline{10.8}$$

$$ER(\text{Do not stock}|P_{1}) = \underline{0}$$

$$ER(\text{Stock } 100|\text{NP}_1) = \\ (-10) \cdot \frac{18}{74} + (-2) \cdot \frac{24}{74} + 12 \cdot \frac{21}{74} + 22 \cdot \frac{6}{74} + 40 \cdot \frac{5}{74} \approx \underline{4.8} \\ ER(\text{Stock } 50|\text{NP}_1) = \\ (-4) \cdot \frac{18}{74} + 6 \cdot \frac{24}{74} + 12 \cdot \frac{21}{74} + 16 \cdot \frac{6}{74} + 16 \cdot \frac{5}{74} \approx \underline{6.8}$$

Max

θ	0.10	0.20	0.30	0.40	0.50
$P(\tilde{\theta} = \theta NP_1)$	18/74	24/74	21/74	6/74	5/74

 $ER(Do not stock|NP_1) = 0$

Second sampled consumer, case 1

If outcome = Purchase

Posterior probabilities of θ :

$$\begin{split} P\Big(\widetilde{\theta} = \theta \big| P_2, P_1 \Big) &= \frac{P\Big(P_2, P_1 \big| \widetilde{\theta} = \theta \Big) \cdot P\Big(\widetilde{\theta} = \theta \Big)}{\Big[P\Big(P_2, P_1 \big| \widetilde{\theta} = 0.1 \Big) \cdot P\Big(\widetilde{\theta} = 0.1 \Big) + P\Big(P_2, P_1 \big| \widetilde{\theta} = 0.2 \Big) \cdot P\Big(\widetilde{\theta} = 0.2 \Big) + \Big]} \\ &= \frac{P\Big(P_2, P_1 \big| \widetilde{\theta} = 0.3 \Big) \cdot P\Big(\widetilde{\theta} = 0.3 \Big) + P\Big(P_2, P_1 \big| \widetilde{\theta} = 0.4 \Big) \cdot P\Big(\widetilde{\theta} = 0.4 \Big) + \Big[P\Big(P_2, P_1 \big| \widetilde{\theta} = 0.5 \Big) \cdot P\Big(\widetilde{\theta} = 0.5 \Big)}{\Big[P\Big(P_2, P_1 \big| \widetilde{\theta} = \theta \Big) \cdot P\Big(\widetilde{\theta} = \theta \Big) + P\Big(\widetilde{\theta} = \theta \Big)} \\ &= \frac{P\Big(P_2, P_1 \big| \widetilde{\theta} = \theta \Big) \cdot P\Big(\widetilde{\theta} = \theta \Big)}{0.1^2 \cdot 0.2 + 0.2^2 \cdot 0.3 + 0.3^2 \cdot 0.3 + 0.4^2 \cdot 0.1 + 0.5^2 \cdot 0.1} \\ \Rightarrow P\Big(\widetilde{\theta} = 0.1 \big| P_2, P_1 \Big) = 0.1^2 \cdot 0.2 / 0.26 = 2 / 82 \ ; P\Big(\widetilde{\theta} = 0.2 \big| P_2, P_1 \Big) = 12 / 82 \ ; P\Big(\widetilde{\theta} = 0.3 \big| P_2, P_1 \Big) = 27 / 82 \ ; P\Big(\widetilde{\theta} = 0.4 \big| P_2, P_1 \Big) = 16 / 82 \ ; P\Big(\widetilde{\theta} = 0.5 \big| P_2, P_1 \Big) = 25 / 82 \ ; \end{split}$$

$\frac{If outcome = No}{purchase}$

Posterior probabilities of θ :

$$\begin{split} P\Big(\widetilde{\theta} &= \theta \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = \frac{P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = \theta \big) \cdot P\Big(\widetilde{\theta} = \theta \big)}{\Big[P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = 0.1 \big) \cdot P\Big(\widetilde{\theta} = 0.1 \big) + P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = 0.2 \big) \cdot P\Big(\widetilde{\theta} = 0.2 \big) + \Big]} = \\ &= \frac{P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = 0.3 \big) \cdot P\Big(\widetilde{\theta} = 0.3 \big) + P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = 0.4 \big) \cdot P\Big(\widetilde{\theta} = 0.4 \big) + \Big[P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = 0.5 \big) \cdot P\Big(\widetilde{\theta} = 0.5 \big)}{\Big[P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = \theta \big) \cdot P\Big(\widetilde{\theta} = \theta \big) + P\Big(\widetilde{\theta} = 0.5 \big)} = \frac{P\Big(\mathrm{NP_2}, \mathrm{P_1} \big| \widetilde{\theta} = \theta \big) \cdot P\Big(\widetilde{\theta} = \theta \big)}{0.178} \\ \Rightarrow P\Big(\widetilde{\theta} = 0.1 \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = 0.1 \cdot 0.9 \cdot 0.2 / 0.26 = 18 / 178 \; ; \; P\Big(\widetilde{\theta} = 0.2 \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = 48 / 178 \; ; \\ P\Big(\widetilde{\theta} = 0.3 \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = 63 / 178 \; ; \; P\Big(\widetilde{\theta} = 0.4 \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = 24 / 178 \; ; \; P\Big(\widetilde{\theta} = 0.5 \big| \mathrm{NP_2}, \mathrm{P_1} \Big) = 25 / 178 \; ; \end{split}$$

θ	0.10	0.20	0.30	0.40	0.50
$P(\tilde{\theta} = \theta P_2, P_1)$	2/82	12/82	27/82	16/82	25/82

$$ER(\operatorname{Stock} \ 100|P_{1}) = \\ (-10) \cdot \frac{2}{82} + (-2) \cdot \frac{12}{82} + 12 \cdot \frac{27}{82} + 22 \cdot \frac{16}{82} + 40 \cdot \frac{25}{82} \approx \underline{19.9} \text{ Max}$$

$$ER(\operatorname{Stock} \ 50|P_{1}) = \\ (-4) \cdot \frac{2}{82} + 6 \cdot \frac{12}{82} + 12 \cdot \frac{27}{82} + 16 \cdot \frac{16}{82} + 16 \cdot \frac{25}{892} \approx \underline{12.7}$$

$$ER(\operatorname{Do} \ \operatorname{not} \ \operatorname{stock}|P_{1}) = \underline{0}$$

$$ER(\operatorname{Stock}\ 100|\operatorname{NP}_{2}, \operatorname{P}_{1}) = -\frac{1}{(-10) \cdot \frac{18}{178} + (-2) \cdot \frac{48}{178} + 12 \cdot \frac{63}{178} + 22 \cdot \frac{24}{178} + 40 \cdot \frac{25}{178} \approx \underline{11.3} \quad \operatorname{Max}}{ER(\operatorname{Stock}\ 50|\operatorname{NP}_{2}, \operatorname{P}_{1}) =} \\ (-4) \cdot \frac{18}{178} + 6 \cdot \frac{48}{178} + 12 \cdot \frac{63}{178} + 16 \cdot \frac{24}{178} + 16 \cdot \frac{25}{178} \approx \underline{9.9}$$

$$ER(\operatorname{Do\ not\ stock}|\operatorname{NP}_{2}, \operatorname{P}_{1}) = \underline{0}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50
 $P(\tilde{\theta} = \theta | \text{NP}_2, \text{P}_1)$ 18/178 48/178 63/178 24/178 25/178

Second sampled consumer, case 2

<u>If outcome = Purchase</u>

Posterior probabilities of θ :

$$\begin{split} P\left(\widetilde{\theta} = \theta \middle| P_{2}, NP_{1}\right) &= \left\langle \begin{array}{c} \text{Independent} \\ \text{samples (Bernoulli} \\ \text{trials} \end{array} \right\rangle = P\left(\widetilde{\theta} = \theta \middle| NP_{2}, P_{1}\right) = \frac{P\left(NP_{2}, P_{1}\middle|\widetilde{\theta} = \theta\right) \cdot P\left(\widetilde{\theta} = \theta\right)}{0.178} \\ \Rightarrow P\left(\widetilde{\theta} = 0.1\middle| P_{2}, NP_{1}\right) &= 18/178 \ ; \ P\left(\widetilde{\theta} = 0.2\middle| P_{2}, NP_{1}\right) = 48/178 \ ; \\ P\left(\widetilde{\theta} = 0.3\middle| P_{2}, NP_{1}\right) &= 63/178 \ ; \ P\left(\widetilde{\theta} = 0.4\middle| P_{2}, NP_{1}\right) = 24/178 \ ; \ P\left(\widetilde{\theta} = 0.5\middle| P_{2}, NP_{1}\right) = 25/178 \ ; \end{split}$$

$\frac{\text{If outcome} = \text{No}}{\text{purchase}}$

Posterior probabilities of θ :

$$P(\widetilde{\theta} = \theta | \text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)$$

$$= \frac{P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta)}{\left[P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.1) \cdot P(\widetilde{\theta} = 0.1) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.2) \cdot P(\widetilde{\theta} = 0.2) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.2) \cdot P(\widetilde{\theta} = 0.2) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} = 0.4) + P(\text{NP}_{2}, \text{NP}_{1}|\widetilde{\theta} = 0.4) \cdot P(\widetilde{\theta} =$$

$$\begin{split} &=\frac{P\left(\text{NP}_{2},\text{NP}_{1}\middle|\widetilde{\theta}=\theta\right)\cdot P\left(\widetilde{\theta}=\theta\right)}{0.9^{2}\cdot0.2+0.8^{2}\cdot0.3+0.7^{2}\cdot0.3+0.6^{2}\cdot0.1+0.5^{2}\cdot0.1} = \frac{P\left(\text{NP}_{2},\text{P}_{1}\middle|\widetilde{\theta}=\theta\right)\cdot P\left(\widetilde{\theta}=\theta\right)}{0.562} \\ &\Rightarrow P\left(\widetilde{\theta}=0.1\middle|\text{NP}_{2},\text{P}_{1}\right)=0.9^{2}\cdot0.2/0.562=162/562\;; P\left(\widetilde{\theta}=0.2\middle|\text{NP}_{2},\text{P}_{1}\right)=192/562\;; \\ &P\left(\widetilde{\theta}=0.3\middle|\text{NP}_{2},\text{P}_{1}\right)=147/562\;; P\left(\widetilde{\theta}=0.4\middle|\text{NP}_{2},\text{P}_{1}\right)=36/562\;; P\left(\widetilde{\theta}=0.2\middle|\text{NP}_{2},\text{P}_{1}\right)=25/562\;; \end{split}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | P_2, NP_1)$ 18/178 48/178 63/178 24/178 25/178

$$-ER(\operatorname{Stock} \ 100|P_{2}, \operatorname{NP}_{1}) = ER(\operatorname{Stock} \ 100|\operatorname{NP}_{2}, P_{1}) \approx \underline{11.3} \quad \operatorname{Max}$$

$$ER(\operatorname{Stock} \ 50|P_{2}, \operatorname{NP}_{1}) = ER(\operatorname{Stock} \ 50|\operatorname{NP}_{2}, P_{1}) \approx \underline{9.9}$$

$$ER(\operatorname{Do \ not \ stock}|P_{2}, \operatorname{NP}_{1}) = \underline{0}$$

$$ER(\operatorname{Stock} \ 100 | \operatorname{NP}_{2}, \operatorname{NP}_{1}) = \\ (-10) \cdot \frac{162}{562} + (-2) \cdot \frac{192}{562} + 12 \cdot \frac{147}{562} + 22 \cdot \frac{36}{562} + 40 \cdot \frac{25}{562} \approx \underline{2.8} \\ ER(\operatorname{Stock} \ 50 | \operatorname{NP}_{2}, \operatorname{NP}_{1}) = \\ (-4) \cdot \frac{162}{562} + 6 \cdot \frac{192}{562} + 12 \cdot \frac{147}{562} + 16 \cdot \frac{36}{562} + 16 \cdot \frac{25}{562} \approx \underline{5.8}$$
 Max
$$ER(\operatorname{Do} \ \operatorname{not} \ \operatorname{stock} | \operatorname{NP}_{2}, \operatorname{NP}_{1}) = \underline{0}$$

$$θ$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | NP_2, P_1)$ 162/562 192/562 147/562 36/562 25/562

$$ER_{\text{max}} | P_1 \text{ and sampling} = 19.9 \cdot P(P_2 | P_1) + 11.3 \cdot P(NP_2 | P_1) = \begin{pmatrix} \text{Sampling in stage 2} \\ \text{is assumed to be} \\ \text{independent of} \end{pmatrix} = 19.9 \cdot P(P_2) + 11.3 \cdot P(NP_2) = 19.9 \cdot \sum_{\theta} P(P_2 | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta) + 11.3 \cdot \sum_{\theta} P(NP_2 | \widetilde{\theta} = \theta) \cdot P(\widetilde{\theta} = \theta) = 19.9 \cdot 0.26 + 11.3 \cdot 0.74 \approx 13.54$$

$$ER_{\text{max}} | \text{NP}_1 \text{ and sampling} = 11.3 \cdot P(P_2 | \text{NP}_1) + 5.8 \cdot P(\text{NP}_2 | \text{NP}_1) =$$

= $11.3 \cdot P(P_2) + 5.8 \cdot P(\text{NP}_2) = 11.3 \cdot 0.26 + 5.8 \cdot 0.74 \approx 7.23$

$ER_{max}|P_1$ and sampling=13.54

$$ER_{\text{max}}|P_1 = \max(13.54 - 0.5, 14.8) = 14.8$$

$$ER_{\text{max}}|\text{NP}_1 = \text{max}(7.23 - 0.5, 6.8) = 6.8$$

$$ER_{\text{max}} | \text{sampling} = 14.8 \cdot P(P_1) + 6.8 \cdot P(NP_1) =$$

= $14.8 \cdot 0.26 + 6.8 \cdot 0.74 \approx 8.9$

$$ER_{\text{max}} \mid \text{optimal} = ER_{\text{max}} \mid \text{sampling} = 8.9$$

$$\Rightarrow$$
 ENGS = 8.9 – 7.2 = 1.7

Single-stage plan (from Exercise 6.17): ENGS(2) = 0.09