2.12 Introdução à análise espectral de sinais periódicos

EPUSP - PTC 3424, maio de 2017. Profa. Maria D. Miranda *

2.12.1 Motivação

- A análise espectral, muito usada em diversas aplicações da engenharia, usa os métodos de Fourier. Basicamente, esses métodos consistem na decomposição de sinais em uma base ortonormal de funções trigonométricas.
- Para obter a Transformada de Fourier (TF) de sinais de tempo contínuo pode-se utilizar a Transformada de Fourier Discreta (TFD). O cálculo eficiente da TFD pode ser efeito com um conjunto de algoritmos conhecidos como FFT (do inglês, Fast Fourier Transform).
- Como usar os algoritmos de FFT para obter a TF de um sinal de tempo contínuo?

2.12.2 Teorema da amostragem de Nyquist

Um sinal v(t) de tempo contínuo e de banda limitada, isto é, com componentes espectrais nulas para $f > f_M$, possui relação biunívoca com suas amostras

$$v(nT_a), \quad n = 0, \pm 1, \pm 2, \dots$$

se a frequência de amostragem $f_a = \frac{1}{T_a}$ satisfizer

$$f_a > 2f_M \text{ (Hz)}. \tag{1}$$

No caso de sinais periódicos v(t) de período T_s , ou seja,

$$v(t) = v(t + T_s),$$

a duração $T_0 = NT_a$ da janela durante a qual ocorre amostragem deve ser exatamente igual a um número inteiro de períodos do sinal de tempo contínuo, ou seja $T_0 = mT_s$, com m = 1, 2, ... para a FFT fornecer exatamente o mesmo espectro da SFD (Série de Fourier Discreta).

2.12.3 Amostragem de sinais senoidais com $T_0 = mT_s$

Seja p(t) o pente de impulsos com período $T_a = \frac{1}{f_a} < \frac{1}{2f_s}$, ou seja,

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_a).$$

A multiplicação de p(t) por v(t) resulta

$$v_1(t) = v(t)p(t) = v(t)\sum_{n=-\infty}^{+\infty} \delta(t - nT_a),$$

$$V_1(f) = V(f) * \left[f_a \sum_{k=-\infty}^{+\infty} \delta(f - kf_a) \right],$$

sendo $V_1(f) = \text{TF}\{v_1(t)\}$. Na Figura 1 é ilustrada a amostragem de um sinal senoidal com $T_0 = mT_s$. Note a repetição periódica das raias no espectro devido à amostragem do sinal no domínio tempo.

^{*} Algumas figuras foram gentilmente cedidas pelo Prof. Magno T. Madeira da Silva em 2008.

Figura 1: Amostragem de sinais senoidais com $T_0 = mT_s$.

Utilizando a janela retangular, chega-se a

$$v_2(t) = v_1(t) \Pi\left(\frac{t - T_0/2 + T_a/2}{T_0}\right), \quad T_0 = NT_a$$

$$V_2(f) = \left[f_a \sum_{m = -\infty}^{+\infty} V(f - mf_a)\right] * \left[T_0 \text{sinc}(fT_0)e^{-j\pi f(T_0 - T_a)}\right],$$

que é uma representação "distorcida" de $V_1(f)$. Na Figura 2 está ilustrado o sinal amostrado e janelado com uma janela retangular e o respectivo efeito no domínio da frequência.

Figura 2: Sinal amostrado janelado e o efeito no domínio da frequência.

Mudando de interpretação de tempo contínuo para a de tempo discreto, chega-se a

$$v_3(n) = \sum_{\ell=0}^{N-1} v(\ell T_a) \delta(n-\ell) = \frac{1}{2\pi} \int_0^{2\pi} V_3(e^{j\omega}) e^{j\omega n} d\omega$$
$$V_3(e^{j\omega}) = \sum_{n=0}^{N-1} v_3(n) e^{-j\omega n} = \sum_{n=0}^{N-1} v(nT_a) e^{-j\omega n}.$$

Note que

$$V_{2}(j\Omega) = \int_{-\infty}^{+\infty} v_{2}(t)e^{-j\Omega t}dt$$

$$= \int_{-T_{a}/2}^{T_{0}-T_{a}/2} \left[\sum_{n=0}^{N-1} v(nT_{a})\delta(t-nT_{a}) \right] e^{-j\Omega t}dt$$

$$= \sum_{n=0}^{N-1} v(nT_{a})e^{-j\Omega T_{a}n}.$$

Para $\omega = \Omega T_a$ vale $V_2(j\Omega) = V_3(e^{j\omega})\Big|_{\omega = \Omega T_a}$, o que justifica a mudança de interpretação. Considerando processamento digital, $V_3(e^{j\omega})$ deve ser amostrado. Para tanto, convolui-se $v_3(n)$ com a sequência periódica $p_2(n) = \sum_{i=-\infty}^{+\infty} \delta(n-Ni)$, obtendo-se $\tilde{v}_3(n)$ no domínio do tempo e $\tilde{V}_3(e^{j\omega})$ no domínio das frequências, dada por

$$\tilde{V}_3(e^{j\omega}) = \frac{2\pi}{N} \sum_{q=-\infty}^{+\infty} V_3(e^{j\frac{2\pi}{N}q}) \delta\left(\omega - q\frac{2\pi}{N}\right).$$

Na Figura 3 está ilustrado o efeito da amostragem do espectro do sinal que foi amostrado e janelado no tempo. Note que a amostragem do espectro resulta em um sinal de tempo discreto periódico.

Figura 3: Sinal no tempo discreto janelado e o efeito no domínio do tempo devido a amostragem do espectro.

Novamente, mudando de interpretação de tempo contínuo para tempo discreto, e levando-se em conta o fator multiplicativo $\frac{2\pi}{N}$, obtém-se

$$v_4(n) \quad \stackrel{\text{TFD}}{\longleftrightarrow} \quad V_4(k)$$

Na Figura 4 é mostrada a reconstrução do sinal de tempo contínuo a partir do sinal de tempo discreto.

Figura 4: Reconstrução do sinal de tempo contínuo a partir do sinal de tempo discreto.

Conclusão: Dado um sinal periódico v(t), sua TF V(f) pode ser medida com a TFD de

$$v_4(n), n = 0, 1, ..., N - 1,$$

sendo $T_0 = NT_a = mTs, m \in \mathbb{N}^*.$

Para tanto

$$\left|V(f)\right|_{f=\frac{k}{NT_a}} = \frac{V_4(k)}{N}.$$
 (2)

2.12.4 Análise espectral de sinais periódicos e seus erros

Quando $T_0 = NT_a \neq mT_s$ para m = 1, 2, ..., ou seja, quando a duração da janela não coincide com um número inteiro de períodos do sinal de tempo contínuo, podem ocorrer os seguintes tipos de erros:

- Vazamento (leakage effect),
- Recobrimento ou rebatimento (aliasing),
- Efeito cerca (picket fence effect).

2.12.5 Vazamento

Com $T_0 \neq mT_s$, a SFD representa a expansão em série de Fourier da sequência periódica mostrada em preto. Para corrigir esse erro, deve-se considerar $T_0 = T_s$, ou usar uma janela adequada.

Figura 5: Efeito do truncamento inadequado na recuperação do sinal.

2.12.6 Recobrimento ou aliasing

Aparece quando $f_a < 2f_M$.

Exemplo: Seja $v_c(t) = A\cos(\Omega t + \phi)$ um sinal de tempo contínuo, em que $\Omega = 2\pi f_s$. Este sinal é amostrado com frequência de amostragem f_a , tal que $f_a/2 < f_s$. A sequência v(n) resultante da amostragem será

$$v(n) = A\cos\left(2\pi \frac{f_s}{f_a}n + \phi\right) = A\cos\left(2\pi n - 2\pi \frac{f_s}{f_a}n - \phi\right)$$
$$= A\cos\left(2\pi \frac{f_a - f_s}{f_a}n - \phi\right).$$

Logo, duas cossenoides de frequências f_s e $f_a - f_s$ fornecem as mesmas amostras!

Uma componente de frequência $f_s > f_a/2$ será interpretada como tendo frequência $f_a - f_s$, como é mostrado na Figura 6. Na literatura, a frequência $f_a/2$ é denominada folding frequency, pois é em torno dela que o espectro se "dobra" e ocorre o rebatimento.

Figura 6: Efeito aliasing.

Solução: Aumentar f_a ou considerar um filtro anti-aliasing.

2.12.7 Efeito cerca

Seja um sinal de tempo contínuo periódico v(t) com frequência fundamental $f_0 = 500$ Hz. Este sinal possui harmônicos em $f_k = k500$ Hz, para k inteiro. Se ele for amostrado durante $T_0 = 23$ ms, a componente fundamental não aparece no espectro do sinal amostrado.

Em vez disso, aparecerão componentes em $\frac{11}{23}$ ms = 478,26 Hz e em $\frac{12}{23}$ ms = 521,74 Hz, que **cercam** o componente de 500 Hz. Na Figura 7 é ilustrado o efeito cerca.

Figura 7: Efeito cerca.

2.12.8 Amostragem de sinais senoidais $(T_0 \neq mT_s)$

Figura 8: Exemplo de amostragem de sinais senoidais com $T_0 \neq mT_s$. Interpretação em tempo contínuo.

Figura 9: Exemplo de amostragem de sinais senoidais com $T_0 \neq mT_s$. Interpretação em tempo discreto.

2.12.9 Utilização de janelas na análise espectral

Se $T_0 \neq mT_s$, ocorre o efeito cerca, que pode ser minimizado utilizando-se outras janelas com nível de lóbulo lateral menor, além da janela retangular considerada até aqui. Três aspectos merecem destaque sobre a forma da janela no domínio das frequências:

- ullet Deve possuir lóbulos laterais de menor nível possível o evita erros de vazamento.
- \bullet O lóbulo central deve ser o mais plano possível \rightarrow evita distorção de amplitude.
- O lóbulo central deve ser o mais estreito possível \rightarrow aumenta a **resolução** do espectro.

2.12.10 Janelas senoidais usuais

$$g(n) = \sum_{k=0}^{3} a_k \cos\left(\frac{\pi}{L}kn\right), \quad -L \le n \le L.$$

O comprimento N de g(n) é dado por N = L + L + 1 = 2L + 1.

a_0	a_1	a_2	a_3
1	0	0	0
0,5	0,5	0	0
0,54	0,46	0	0
0,42	0,5	0,08	0
0,24726	0,46071	0,25078	0,04125
	1 0,5 0,54 0,42	1 0 0,5 0,5 0,54 0,46 0,42 0,5	1 0 0 0,5 0,5 0 0,54 0,46 0 0,42 0,5 0,08

Figura 10: Janelas senoidais usuais em função n.

2.12.11 Parâmetros das janelas senoidais usuais

Janela	Atenuação do lób. lateral (dB)	Largura do lób. principal
Retangular	13,3	$\frac{4\pi}{N}$
Von Hann	31,5	$\frac{8\pi}{N}$
Hamming	42,7	$\frac{8\pi}{N}$
Blackman	58,1	$\frac{12\pi}{N}$
Plana	≈ 70	$\frac{16\pi}{N}$

Figura 11: TFTD das janelas em função de ω/π .

Para continuar o estudo você pode consultar: A. V. Oppenheim, R. W. Shafer, J.R. Buck, *Discrete-time signal processing*. Capítulo 10; 2a. ou 3a. edição, Prentice Hall. Outra referência útil: J. G. Proakis, D. G. Manolakis, *Digital signal processing : principles, algorithms, and applications*, 4a. edição, Prentice Hall, 2006.