Deep Learning for Computer Vision

Advanced Neural Network Architectures

Nipun Batra

Sustainability Lab
IIT Gandhinagar

July 2025

Outline

- Introduction Research motivation and challenges
- Methodology Experimental setup and algorithms
- Results Performance analysis and comparisons
- Applications Real-world deployment scenarios
- Conclusion Key contributions and future work

Research Motivation

- Computer vision has transformed AI applications
- Deep learning architectures continue to evolve
- Performance gains through novel architectural innovations
- Real-world deployment challenges remain significant

Key Research Question: How can we design efficient neural architectures that maintain high accuracy while reducing computational requirements?

Experimental Setup

Datasets Used:

- ImageNet-1K (1.28M images)
- _ CIFAR-10/100
- Custom industrial dataset

Hardware:

8× NVIDIA A100 GPUs

Algorithm Implementation

```
def attention mechanism(x, num heads=8):
    """Multi-head self-attention implementation"""
    batch size, seq len, d model = x.shape
    # Split into multiple heads
    head dim = d model // num heads
    x reshaped = x.view(batch size, seq len,
                       num heads, head dim)
    # Compute attention weights
    attention weights = torch.softmax(
        torch.matmul(x reshaped, x reshaped.transpose(-2, -1))
        / math.sqrt(head dim), dim=-1
```

Performance Comparison

Model	ImageNet Top-1	FLOPs (G)	Parameters (M)
ResNet-50	76.15%	4.1	25.6
EfficientNet-B0	77.32%	0.39	5.3
Our Method	78.94%	0.31	4.2
Vision Transformer	81.28%	17.6	86.4

Key Results:

Our approach achieves 2.8× fewer FLOPs than ResNet-50

Mathematical Formulation

The attention mechanism can be expressed as:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

 $\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(\operatorname{head}_1,\ldots,\operatorname{head}_h)W^O$

where each head is computed as:

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Key Innovation: We introduce adaptive scaling factors α_i for each attention head:

$$\text{head}_i = \alpha_i \cdot \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$

Training Dynamics

Real-World Deployment

Industrial Applications:

- Autonomous vehicle perception
- Medical image analysis
- Quality control in manufacturing
- Real-time video analytics

Key Contributions

- 1. **Novel Architecture**: Adaptive attention mechanism with learnable scaling
- 2. Efficiency Gains: 2.8× reduction in computational cost
- 3. **Practical Impact**: Successful deployment in industrial settings
- 4. Open Source: Code and models available on GitHub

Publications & Impact

Recent Publications:

- Smith et al. "Adaptive Attention Networks" CVPR 2025
- Johnson et al. "Efficient Vision Models" ICCV 2024
- Wilson et al. "Mobile Computer Vision" ECCV 2024

450+

Citations

15K+

GitHub Stars

50+

Industry Partners

Thank You!

Questions & Discussion

Contact: nipun.batra@iiitd.ac.in

Lab Website: https://sustainabilitylab.org

Code: https://github.com/sustainability-lab

SUSTAINABILITY