Side channel protections for CSIDH

Luca De Feo

IBM Research Zürich

October 16, 2019, PHISIC, Gardanne

based on joint work with
D. Cervantes-Vázquez, M. Chenu, J.J. Chi-Domínguez, F. Rodríguez-Henríquez, B. Smith

Slides online at https://defeo.lu/docet

Why isogenies?

Six families still in NIST post-quantum competition:

Lattices 9 encryption 3 signature

Codes 7 encryption

Multivariate 4 signature

Isogenies 1 encryption

Hash-based 1 signature MPC

1 signature

Why isogenies?

Six families still in NIST post-quantum competition:

Lattices9 encryption3 signatureCodes7 encryptionMultivariate4 signatureIsogenies1 encryptionHash-based1 signatureMPC1 signature

Public key size NIST-1 level (AES128) (not to scale)

Why isogenies?

Lattices

Multivariate

Codes

Six families still in NIST post-quantum competition:

9 encryption3 signature7 encryption

4 signature

Isogenies 1 encryption

Hash-based 1 signature MPC 1 signature

190 Mcycles Lattices 0.5 - 5Codes 1 Mcycles Mcycles **Encryption performance**

Isogenies

NIST-1 level (AES128)

(not to scale)

Keywords

• An isogeny is a map between two elliptic curves;

Keywords

- An isogeny is a map between two elliptic curves;
- It is a group morphism:

$$\phi(P+Q)=\phi(P)+\phi(Q);$$

Keywords

- An isogeny is a map between two elliptic curves;
- It is a group morphism:

$$\phi(P+Q)=\phi(P)+\phi(Q);$$

• It is an algebraic map:

$$\phi(x,y) = \left(rac{g(x)}{h(x)}, y\left(rac{g(x)}{h(x)}
ight)'
ight);$$

Keywords

- An isogeny is a map between two elliptic curves;
- It is a group morphism:

$$\phi(P+Q)=\phi(P)+\phi(Q);$$

• It is an algebraic map:

$$\phi(x,y) = \left(rac{g(x)}{h(x)}, y\left(rac{g(x)}{h(x)}
ight)'
ight);$$

• It is entirely determined by its kernel (i.e., by a single point);

Keywords

- An isogeny is a map between two elliptic curves;
- It is a group morphism:

$$\phi(P+Q)=\phi(P)+\phi(Q);$$

• It is an algebraic map:

$$\phi(x,y) = \left(rac{g(x)}{h(x)}, y\left(rac{g(x)}{h(x)}
ight)'
ight);$$

- It is entirely determined by its kernel (i.e., by a single point);
- Isogeny degree = size of the kernel = order of kernel generator \approx size of the polynomials;

Isogenies: an example over \mathbb{F}_{11}

$$E: y^2 = x^3 + x$$

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

PHISIC 2019

$$j = 1728$$

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto? **Both.**

The beauty and the beast (credit: Lorenz Panny)

At this time, there are two distinct families of systems:

CSIDH [pron.: sea-side]
https://csidh.isogeny.org

SIDH

https://sike.org

CSIDH vs SIDH		a.n.i
	CSIDH	SIDH
Speed (on x64 arch., NIST 1)	\sim 70ms	\sim 6ms
Public key size (NIST 1)	64B	346B
Key compression		
ւ speed		\sim 11ms
size		209B
Submitted to NIST	no	yes
TRL	4	6
Best classical attack	$p^{1/4}$	$p^{1/4}$ $(p^{3/8})$
Best quantum attack	$ ilde{\mathcal{O}}\left(3^{\sqrt{\log_3 p}} ight)$	$p^{1/6}$ $(p^{3/8})$
Key size scales	quadratically	linearly
CPA security	yes	yes
CCA security	yes	Fujisaki-Okamoto
Constant time	it's complicated	yes
Non-interactive key exchange	yes	no
Signatures	short but (slow do not scale)	big and slow

CSIDH vs SIDH		a la la
	CSIDH	SIDH
Speed (on x64 arch., NIST 1)	\sim 70ms	\sim 6ms
Public key size (NIST 1)	64B	346B
Key compression		
ւ speed		\sim 11ms
size		209B
Submitted to NIST	no	yes
TRL	4	6
Best classical attack	$p^{1/4}$	$p^{1/4}$ $(p^{3/8})$
Best quantum attack	$\mathcal{ ilde{O}}\left(3^{\sqrt{\log_3 p}} ight)$	$p^{1/6}$ $(p^{3/8})$
Key size scales	quadratically	linearly
CPA security	yes	yes
CCA security	yes	Fujisaki-Okamoto
Constant time	it's complicated	yes
Non-interactive key exchange	yes	no
Signatures	short but (slow do not scale)	big and slow

Vertices are supersingular elliptic curves over \mathbb{F}_p .

Vertices are supersingular elliptic curves over \mathbb{F}_p .

Edges are isogenies of bounded prime degree.

— degree 3

Vertices are supersingular elliptic curves over \mathbb{F}_p .

Edges are isogenies of bounded prime degree.

- degree 3
- degree 5

Vertices are supersingular elliptic curves over \mathbb{F}_p .

Edges are isogenies of bounded prime degree.

- degree 3
- degree 5
- degree 7

- •
- •
- \bullet \bullet E_0
 - - •

- ullet A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;
- \bullet They publish E_A and E_B ;

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;
- **1** They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 o E_A$ of length $O(\log p)$;
- Bob does the same;
- **1** They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .
- **Sob** repeats his secret walk ϕ_B starting from E_A .

CSIDH data flow

Your secret: a vector of number of isogeny steps for each degree

$$(5,1,-4,\dots)$$

Your public key: (the j-invariant of) a supersingular elliptic curve

j = 0x23baf75419531a44f3b97cc9d8291a275047fcdae0c9a0c0ebb993964f821f20c11058a4200ff38c4a85e208345300033b0d3119ff4a7c1be0acd62a622002a9

Repeat:

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel (Q).

• *E*

• •

Repeat:

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

. .

ullet E_0

•

•

 $\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel $\langle Q \rangle$.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel $\langle Q \rangle$.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

Repeat:

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

. .

$$\#\langle P \rangle = 3 \cdot 7 \cdot 11$$

$$Q = [3 \cdot 11]P$$

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel $\langle Q \rangle$.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

$$\#\langle P \rangle = 3 \cdot \mathbf{5} \cdot 7 \cdot \mathbf{11}$$
 $Q = [3 \cdot 7 \cdot \mathbf{11}]P$

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel $\langle Q \rangle$.

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$
 $Q = [3 \cdot 7 \cdot 11]P$

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

Repeat:

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel ⟨Q⟩.

•

$$\#\langle P\rangle = 3\cdot 5\cdot 7\cdot 11$$

$$= \begin{bmatrix} 3 \cdot 7 \cdot 11 \end{bmatrix} P$$

$$Q = [3 \cdot 7 \cdot 11]P$$

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel (Q).

- Take a random point $P \in E(\mathbb{F}_p)$;
- Set Q = [c]P, where c is an appropriate cofactor, so that $N = \#\langle Q \rangle$ contains only useful prime factors;
- Advance by the degree N isogeny of kernel $\langle Q \rangle$.

Two obstacles for constant time:

- Some random points P may lack some factors;
- Number of isogeny evaluations dependent on secret key.

Two obstacles for constant time:

- Some random points P may lack some factors;
 Unrelated to secret key if truly random.
- Number of isogeny evaluations dependent on secret key.

Two obstacles for constant time:

- Some random points P may lack some factors; Unrelated to secret key if truly random.
- Number of isogeny evaluations dependent on secret key.

Meyer, Campos, Reith 2018; Onuki, Aikawa, Yamazaki, Takagi 2019

- "Dummy" isogenies:
 - Always do exactly the same number of isogeny evaluations per prime degree,
 - discard computations in excess;
- $4 \times$ slowdown (MCR) / $2.5 \times$ slowdown (OAYT).
- Protected against SPA...

Two obstacles for constant time:

- Some random points P may lack some factors;
 Unrelated to secret key if truly random.
- Number of isogeny evaluations dependent on secret key.

Meyer, Campos, Reith 2018; Onuki, Aikawa, Yamazaki, Takagi 2019

- "Dummy" isogenies:
 - Always do exactly the same number of isogeny evaluations per prime degree,
 - discard computations in excess;
- $4 \times$ slowdown (MCR) / $2.5 \times$ slowdown (OAYT).
- Protected against SPA... but very easy to attack by fault!

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

$$\#\langle P \rangle = 3 \cdot 7 \cdot 11$$

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

.....

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

.....

$$\#\langle P \rangle = 3 \cdot 5 \cdot 7 \cdot 11$$

• Fixed a leak related to the sampling of random points.

- Fixed a leak related to the sampling of random points.
- Speed-up both MCR and OAYT constant time implementations:
 - ► Fully Twisted Edwards implementation;
 - Use of Shortest Differential Addition Chains;

- Fixed a leak related to the sampling of random points.
- Speed-up both MCR and OAYT constant time implementations:
 - Fully Twisted Edwards implementation;
 - Use of Shortest Differential Addition Chains;
- Protection against fault attack at the cost of a $2 \times$ slowdown:
 - Got rid of "dummy isogenies".

- Fixed a leak related to the sampling of random points.
- Speed-up both MCR and OAYT constant time implementations:
 - Fully Twisted Edwards implementation;
 - Use of Shortest Differential Addition Chains;
- Protection against fault attack at the cost of a $2 \times$ slowdown:
 - Got rid of "dummy isogenies".
- Initiated study of fully constant time variant (very expensive, though).

Avoiding dummies

We change the format of the secret key:

Original: vectors with coefficients in [-B, B].

Modified: vectors with odd¹ coefficients in [-B, B].

¹Or even, all the same.

Avoiding dummies

We change the format of the secret key:

Original: vectors with coefficients in [-B, B].

Modified: vectors with odd¹ coefficients in [-B, B].

- Translate vector to sum of ± 1 vectors;
- Each vector costs exactly one isogeny evaluation per degree.

¹Or even, all the same.

Running-time: measured clock cycles

Clock cycle counts for constant-time CSIDH implementations, averaged over 1024 experiments. The ratio is computed using MCR 2018 as baseline implementation.

Implementation	CSIDH algorithm	Mcycles	Ratio
Castryck et al.	unprotected, unmodified	155	0.39
Meyer–Campos–Reith	unmodified	395	1.00
This work	MCR-style	337	0.85
	OAYT-style	239	0.61
	No-dummy	481	1.22

Summary

- Repeat with me: I need isogeny-based crypto!
- CSIDH is the new Diffie-Hellman: Very short keys, easy key validation, ...
- Implementing isogeny-based crypto efficiently is challenging, even more so with side-channel protections.

