Discussion 4:

_ Briefly talk about Iterative Descent Methods

_ preparocessing darta

_ some tipes for #W:

Q: How are we going achieve opt point?

A: Iterative Descent Methods

if angle D (between of and d > 90°)

the direction d results in a decress
in f

if of to

38>0 s.t. f(x+xd)<f(x) +xe(0,8)

Iterative Descent Methods:

Choices of direction 1":

diagonal D'to

(2)

Newton Direction
$$\underline{d}^r = -\left(\nabla^2 f(\underline{x}^r)\right)^{-1} \nabla f(\underline{x}^r)$$

$$\frac{f(x^r+d)}{f(x^r)} \approx \frac{f(x^r)}{f(x^r+d)} + \frac{1}{2} \frac{d^T p^2 f(x^r)}{d^2} d^2$$
min $f(x^r+d)$

$$\frac{\partial}{\partial \underline{J}} = 0 \Rightarrow \nabla f(\underline{n}^r) + \nabla^2 f(\underline{n}^r) d = 0$$

$$\Rightarrow d = - (\nabla^2 f(\underline{n}^r)) \nabla f(\underline{n}^r)$$

· Benefit: Past convergerer

· Drawbook: compute inverse

Diagonalized version of Newton:

$$\frac{D^r \mathcal{B} = \text{diag} \left(\frac{\nabla^2 f(x^r)}{\nabla^2 f(x^r)} \right)^{-1}}{4^r = -D^r \nabla f(x^r)}$$

Convergence Rate: - Asymptotic bohavior of function f: e(x) = 1/x-x*11 or e(x)= |f(x)-f(x*) lim Sup (e(xr+1)) = B 1/xr-x*11 The smaller VB is, the

linear model $g(w_{2}x) = w_{2}x$ with hypothesis $h(x) = sign(w_{2}x)$

- A prediction is correct if y wTx>0

Goal: try to find a "good" model s.t.

h(n) makes few mis-prediction.

Formalize as optimization Prob. 5-training data
1-1035 function

$$J(\omega) = \frac{1}{N} \sum_{i \geq i} L(\omega^T x_i, y_i)$$

In need	order to update in to have ALL dat	4, we don't
Note	te ω by having $i: J_i(w) = \max(0)$	every single data
	J ₁ = ∫ 0 -y ₁ x ₁ √J ₁ = ∫ 0 -y ₁ x ₁	
Vector	$\nabla J_i = \begin{cases} 0 \\ -y_i \mathbf{x}_i \end{cases}$	if y;wTxi>o else

after observing (xi,yi), if it is	
mis predicted, we suplate was fo	المميح
$\omega \leftarrow \omega + y \cdot x'$	
Algorithm for Stochastic GD:	
-initialize w	
- Repeat	١
if y; u; <0	
w ← w + y; z;	
* y: (is also reffered as learning nate)	
(A) learning continues, y should be smaller	-)

· Represent	Data	in appropri	ut many
- Costago	nical		
- Costago - Racal			
- MENT	nteger		
· Stardizly			
· way	3-10(
- subtr	not by	Standard	
10.5	, , (-1 / 1	1 8 10-

Ca	tegnicel Data
	tegoricel Data inhex feature label
	1 A 1 2 B 1
	3 6 1
	4 50
	(Encoding)
æ	Converting Dummy raniable V:
	a for D distinct compenent, we
	are gonna to add D features
	which one 1 or 0

New	index f_1 f_2 f_3 f_4 label 1 1 0 0 1 4 distin 2 0 1 0 0 1 A \rightarrow 1 0 3 0 0 1 0 1 C \rightarrow 0 0 F \rightarrow 0 0	0 0
	drawbook is if you have large D, you need to add so many features!! Stoundardizing Data:	_
Vaviance	Stoundardizing Data: Assume feature 1 component one all samp one as follows 1 2 1 2 1 4 4	les
	if we replace f, by fi when 8 12 Should the model change weights for the 1 Since values in fi' are largor, model consider weights wi' compared to weight for fi, i.e. w	- 8
₩	To resolve this issue, we need to normalize all features by dividing all features by	e thoir

(Mean) Assume \$\frac{1}{2} as before but \$\frac{1}{1} as \$\frac{1}{1} \\
\text{1001} \\
\text{1002} \\
\text{1003} \\
\text{if we replace \$\frac{1}{1}\$ by \$\frac{1}{1}\$, should the model change the weights for the 1st feature? \\
\text{Again, since values in \$\frac{1}{1}\$ is larger compand to \$\frac{1}{1}\$, the weights for \$\frac{1}{1}\$, i.e. \$w'\$, would be lawger compared to the weight for \$\frac{1}{1}\$.

\text{To resolve this issue, we need to subtant all features by their corresponding mean.}

Therefore, by performing the aforementioned pro all feartures have the same importance (Next Session for handling missing data)
Tips for HW: only use numpy shuffle to suffle the indices; then
code on your own to make cross-valitation)