ELEG 6913: Machine Learning for Big <u>Data</u>

Fall 2016

Lecture 10: Text Clustering

Dr. Xishuang Dong

Outline

- Text Clustering
- Clustering Algorithms
- Summary

(Acknowledgment: some parts of the slides are from Bing Liu, Chengxiang Zhai, and various other sources. The copyright of those parts belongs to their original owners.)

Outline

- Text Clustering
- Clustering Algorithms
- Summary

Supervised learning vs. Unsupervised learning

- Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning: The data have no target attribute.
 - We want to explore the data to find some intrinsic structures in them.

Clustering

- Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an *a priori* grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 - In fact, association rule mining is also unsupervised 5

A data set with clear cluster structure

 How would you design an algorithm for finding the three clusters in this case?

Yahoo! Hierarchy isn't clustering but is the kind of output you want from clustering

Google News: automatic clustering gives an effective news presentation metaphor (Now)

Science

An illustration

 The data set has three natural groups of data points, i.e., 3 natural clusters.

What is clustering for?

- Let us see some real-life examples
- Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts.
- Example 2: In marketing, segment customers according to their similarities
 - To do targeted marketing.

What is clustering for? (cont...)

- Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
 - To produce a topic hierarchy
- In fact, clustering is one of the most utilized data mining techniques.
 - It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 - In recent years, due to the rapid increase of online documents, text clustering becomes important.

Text Clustering

• **Text clustering** most often separates the entire corpus of documents into **mutually exclusive clusters** – each document belongs to one and only one cluster (i.e., *hard clustering*)

whereas **Topic Extraction** assigns a document to multiple topics (i.e., *soft clustering*).

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
 - •
- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance ⇒ maximized
 - Intra-clusters distance ⇒ minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

Outline

- Text Clustering
- Clustering Algorithms
- Summary

K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

```
\{x_1, x_2, ..., x_n\}, where x_i = (x_{i1}, x_{i2}, ..., x_{ir}) is a vector in a real-valued space X \subseteq R^r, and r is the number of attributes (dimensions) in the data.
```

- The k-means algorithm partitions the given data into k clusters.
 - Each cluster has a cluster center, called centroid.
 - k is specified by the user

K-means algorithm

- Given k, the k-means algorithm works as follows:
 - 1) Randomly choose k data points (seeds) to be the initial centroids, cluster centers
 - 2) Assign each data point to the closest centroid
 - 3) Re-compute the centroids using the current cluster memberships.
 - 4) If a convergence criterion is not met, go to 2).

K-means algorithm – (cont ...)

```
Algorithm k-means(k, D)
    Choose k data points as the initial centroids (cluster centers)
    repeat
3
        for each data point \mathbf{x} \in D do
           compute the distance from x to each centroid;
           assign x to the closest centroid // a centroid represents a cluster
        endfor
       re-compute the centroids using the current cluster memberships
    until the stopping criterion is met
```

Stopping/convergence criterion

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- 3. minimum decrease in the sum of squared error (SSE)

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
 (1)

 C_j is the *j*th cluster, m_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and $dist(x, m_j)$ is the distance between data point x and centroid m_i .

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

An example distance function

The k-means algorithm can be used for any application data set where the **mean** can be defined and computed. In the **Euclidean space**, the mean of a cluster is computed with:

$$\mathbf{m}_{j} = \frac{1}{|C_{j}|} \sum_{\mathbf{x}_{i} \in C_{j}} \mathbf{x}_{i} \tag{2}$$

where $|C_j|$ is the number of data points in cluster C_j . The distance from one data point \mathbf{x}_i to a mean (centroid) \mathbf{m}_i is computed with

$$dist(\mathbf{x}_{i}, \mathbf{m}_{j}) = ||\mathbf{x}_{i} - \mathbf{m}_{j}||$$

$$= (x_{i1} - m_{j1})^{2} + (x_{i2} - m_{j2})^{2} + ... + (x_{ir} - m_{jr})^{2}$$
(3)

A disk version of k-means

- K-means can be implemented with data on disk
 - In each iteration, it scans the data once.
 - The centroids can be computed incrementally.
- It can be used to cluster large datasets that do not fit in main memory
- We need to control the number of iterations
 - In practice, a limited is set (< 50).
- Not the best method. There are other scaleup algorithms, e.g., BIRCH.

22

A disk version of k-means (cont ...)

```
Algorithm disk-k-means(k, D)
      Choose k data points as the initial centriods \mathbf{m}_i, j = 1, ..., k;
      repeat
                                                           // 0 is a vector with all 0's
          initialize \mathbf{s}_i = \mathbf{0}, j = 1, \dots, k;
          initialize n_i = 0, j = 1, ..., k;
                                                            // n_i is the number points in cluster j
          for each data point \mathbf{x} \in D do
               j = \arg \min dist(\mathbf{x}, \mathbf{m}_i);
               assign x to the cluster j;
               \mathbf{s}_i = \mathbf{s}_i + \mathbf{x};
              n_{i} = n_{i} + 1;
10
          endfor
          \mathbf{m}_i = \mathbf{s}_i/n_i, i = 1, \ldots, k;
      until the stopping criterion is met
12
```

Strengths of k-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn),
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.

Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

Weaknesses of k-means: To deal with outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Weaknesses of k-means (cont ...)

• The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

(C). Iteration 2

Weaknesses of k-means (cont ...)

• If we use different seeds: good results

There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)

Weaknesses of k-means (cont ...)

• The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and
 - other clustering algorithms have their own lists of weaknesses.
- No clear evidence that any other clustering algorithm performs better in general
 - although they may be more suitable for some specific types of data or applications.
- Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!

31

Common ways to represent clusters

- Use the centroid of each cluster to represent the cluster.
 - compute the radius and
 - standard deviation of the cluster to determine its spread in each dimension
 - The centroid representation alone works well if the clusters are of the hyper-spherical shape.
 - If clusters are elongated or are of other shapes, centroids are not sufficient

Use frequent values to represent cluster

- This method is mainly for clustering of categorical data (e.g., k-modes clustering).
- Main method used in text clustering, where a small set of frequent words in each cluster is selected to represent the cluster.

Hierarchical Clustering

 Produce a nested sequence of clusters, a tree, also called Dendrogram.

Types of hierarchical clustering

- Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - merges the most similar (or nearest) pair of clusters
 - stops when all the data points are merged into a single cluster (i.e., the root cluster).
- Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - Stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

Agglomerative clustering

It is more popular then divisive methods.

- At the beginning, each data point forms a cluster (also called a node).
- Merge nodes/clusters that have the least distance.
- Go on merging
- Eventually all nodes belong to one cluster

Agglomerative clustering algorithm

```
Algorithm Agglomerative(D)
 Make each data point in the data set D a cluster,
 Compute all pair-wise distances of \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in D;
 repeat
     find two clusters that are nearest to each other;
     merge the two clusters form a new cluster c;
     compute the distance from c to all other clusters;
 until there is only one cluster left
```

An example: working of the algorithm

Measuring the distance of two clusters

- A few ways to measure distances of two clusters.
- Results in different variations of the algorithm.
 - Single link
 - Complete link
 - Average link
 - Centroids
 - •

Single link method

- The distance between two clusters is the distance between two closest data points in the two clusters, one data point from each cluster.
- It can find arbitrarily shaped clusters, but
 - It may cause the undesirable "chain effect" by noisy points

Two natural clusters are split into two

Complete link method

- The distance between two clusters is the distance of two furthest data points in the two clusters.
- It is sensitive to outliers because they are far away

Average link and centroid methods

- Average link: A compromise between
 - the sensitivity of complete-link clustering to outliers and
 - the tendency of single-link clustering to form long chains that do not correspond to the intuitive notion of clusters as compact, spherical objects.
 - In this method, the distance between two clusters is the average distance of all pair-wise distances between the data points in two clusters.
- Centroid method: In this method, the distance between two clusters is the distance between their centroids ⁴²

The complexity

- All the algorithms are at least $O(n^2)$. n is the number of data points.
- Due the complexity, hard to use for large data sets.
 - Sampling
 - Scale-up methods (e.g., BIRCH).

Distance functions

- Key to clustering. "similarity" and "dissimilarity" can also commonly used terms.
- There are numerous distance functions for
 - Different types of data
 - Numeric data
 - Nominal data
 - Different specific applications

Distance functions for numeric attributes

- Most commonly used functions are
 - Euclidean distance and
 - Manhattan (city block) distance
- We denote distance with: $dist(x_i, x_j)$, where x_i and x_j are data points (vectors)
- They are special cases of Minkowski distance. h is positive integer.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = ((x_{i1} - x_{j1})^{h} + (x_{i2} - x_{j2})^{h} + \dots + (x_{ir} - x_{jr})^{h})^{\frac{1}{h}}$$

Euclidean distance and Manhattan distance

• If h = 2, it is the Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

• If h = 1, it is the Manhattan distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ir} - x_{jr}|$$

Weighted Euclidean distance

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{w_1(x_{i1} - x_{j1})^2 + w_2(x_{i2} - x_{j2})^2 + \dots + w_r(x_{ir} - x_{jr})^2}$$

Squared distance and Chebychev distance

Squared Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}$$

• Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$$

Distance functions for binary and nominal attributes

- Binary attribute: has two values or states but no ordering relationships, e.g.,
 - Gender: male and female.
- We use a confusion matrix to introduce the distance functions/measures.
- Let the *i*th and *j*th data points be x_i and x_j (vectors)

Confusion matrix

- a: the number of attributes with the value of 1 for both data points.
- b: the number of attributes for which $x_{if} = 1$ and $x_{jf} = 0$, where $x_{if}(x_{jf})$ is the value of the fth attribute of the data point $\mathbf{x}_i(\mathbf{x}_i)$.
- c: the number of attributes for which $x_{if} = 0$ and $x_{if} = 1$.
- d: the number of attributes with the value of 0 for both data points.

Symmetric binary attributes

- A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender
- Distance function: Simple Matching
 Coefficient, proportion of mismatches of
 their values

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{b+c}{a+b+c+d}$$

Symmetric binary attributes: example

 \mathbf{x}_1 \mathbf{x}_2

1	1	1	0	1	0	0
0	1	1	0	0	1	0

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{2+1}{2+2+1+2} = \frac{3}{7} = 0.429$$

Asymmetric binary attributes

- Asymmetric: if one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state, which is typically the rare or infrequent state.
 - Jaccard coefficient is a popular measure

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{b+c}{a+b+c}$$

We can have some variations, adding weights

Nominal attributes

- Nominal attributes: with more than two states or values.
 - the commonly used distance measure is also based on the simple matching method.
 - Given two data points x_i and x_j , let the number of attributes be r, and the number of values that match in x_i and x_j be q.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{r - q}{r}$$

Outline

- Text Clustering
- Clustering Algorithms
- Summary

Summary

- Clustering is has along history and still active
 - There are a huge number of clustering algorithms
 - More are still coming every year.
- We only introduced several main algorithms. There are many others, e.g.,
 - density based algorithm, sub-space clustering, scale-up methods, neural networks based methods, fuzzy clustering, coclustering, etc.
- Clustering is hard to evaluate, but very useful in practice. This partially explains why there are still a large number of clustering algorithms being devised every year.
- Clustering is highly application dependent and to some extent subjective.

Text Clustering

Thank you!

Q&A