Генератор Ван де Граафа

Работу выполнил: Студент Факультета Физики НИУ ВШЭ Блуменау Марк

Внешний вид и принцип работы

1 – металлическая сфера

2 и 5 – электроды в форме щеток

3 и 6 – ролики

4 – диэлектрическая лента

7 – источник напряжения

Источник:

https://ru.wikipedia.org/wiki/Генератор_Ван_де_Г раафа#/media/Файл:Генератор_Ван_де_Грааф а.png

Теоретические сведения

Путём измерения тока в зависимости от напряжения источника, а после и периода возникновения разрядов можно вычислить напряжение пробоя воздуха по формуле , где Í — ток, Т период, D — расстояние между сферами и C ёмкость большей сферы. Для вычисления ёмкости используется формула для сферического конденсатора.

Зависимость тока от напряжения

 $I(V) = (0.99 V - 2.53) \cdot 10^{-6}$

Экспериментальные данные

D, см	U, B	Т, мс	Е, В/м
1	8	100	38.8e+5
1	11	60	36.1e+5
2	10.1	150	40.4e+5
2	13	100	37.2e+5
3	16	150	47.9e+5
3	18	100	36.7e+5

$$C = 4 \pi \epsilon_0 r = 13.9 n\Phi$$

$$E_{np} = \frac{IT}{DC}$$

Генератор Ван де Граафа как генератор ЭМИ

$$\Phi = \oint E \, dS$$

$$I_1 = \frac{dq}{dt}$$

$$I_2 = \frac{\epsilon_0 \cdot d\Phi}{dt}$$

$$I_{2} = \epsilon_{o} \frac{d}{dt} \oint E(t) \cdot dS$$

$$E(t) = U(t)/D$$

$$U(t) = q(t)/C$$

$$\oint B \cdot dl = \mu_0 \left(\epsilon_0 \frac{d}{dt} \Phi + \frac{d}{dt} q \right)$$

$$B(r,t) = \frac{\mu_o \left(I_2(t) + I_1(t) \right)}{2 \pi r}$$

$$c = E/B$$

$$E(r,I(t)) = c \frac{\mu_o(I_2(t) + I_1(t))}{2\pi r}$$

$$E_{np} = (39.5 \pm 2.8) \cdot 10^5 B/M$$

$$E_{npmaGn} = 30.9 \cdot 10^5$$
 $t = 23.3 C$ $p = 752.35 \,\text{мм pm.cm.}$

Вывод

Спасибо за внимание