$12a_{0009} (K12a_{0009})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.86386 \times 10^{139} u^{66} + 4.31229 \times 10^{138} u^{65} + \dots + 1.98538 \times 10^{140} b + 5.26231 \times 10^{141}, \\ &1.05918 \times 10^{140} u^{66} - 4.57520 \times 10^{138} u^{65} + \dots + 7.94151 \times 10^{140} a + 2.63032 \times 10^{142}, \\ &u^{67} + u^{66} + \dots + 384 u + 256 \rangle \end{split}$$

$$I_1^v = \langle a, 18v^7 - 26v^6 + 12v^5 - 78v^4 + 71v^3 + 30v^2 + 19b + 6v - 2, v^8 - 2v^7 + v^6 - 4v^5 + 6v^4 + v^3 - 2v^2 - v + 1\rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 75 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.86 \times 10^{139} u^{66} + 4.31 \times 10^{138} u^{65} + \dots + 1.99 \times 10^{140} b + 5.26 \times 10^{141}, \ 1.06 \times 10^{140} u^{66} - 4.58 \times 10^{138} u^{65} + \dots + 7.94 \times 10^{140} a + 2.63 \times 10^{142}, \ u^{67} + u^{66} + \dots + 384 u + 256 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.133372u^{66} + 0.00576112u^{65} + \cdots - 11.7330u - 33.1212 \\ -0.0938796u^{66} - 0.0217203u^{65} + \cdots - 6.32205u - 26.5053 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.209669u^{66} + 0.0230614u^{65} + \cdots + 21.6013u + 63.8657 \\ -0.0241755u^{66} + 0.0237769u^{65} + \cdots - 9.20588u - 1.31583 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.142701u^{66} - 0.0190334u^{65} + \cdots - 17.1447u - 45.4624 \\ -0.0396775u^{66} - 0.0112029u^{65} + \cdots - 10.7906u - 14.6917 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.111576u^{66} + 0.000157764u^{65} + \cdots - 14.6284u - 30.1716 \\ -0.0827762u^{66} - 0.0101687u^{65} + \cdots - 14.6284u - 30.1716 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.185494u^{66} - 0.0468383u^{65} + \cdots - 12.3954u - 62.5498 \\ -0.120165u^{66} - 0.00728459u^{65} + \cdots - 14.9632u - 36.8117 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.227252u^{66} - 0.0159592u^{65} + \cdots - 14.9632u - 36.8117 \\ -0.0938796u^{66} - 0.0217203u^{65} + \cdots - 6.32205u - 26.5053 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.280258u^{66} - 0.0158075u^{65} + \cdots - 25.1937u - 78.0193 \\ -0.194157u^{66} - 0.0107796u^{65} + \cdots - 23.6385u - 52.3816 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0947524u^{66} - 0.0190567u^{65} + \cdots - 3.59061u - 27.7303 \\ -0.0296424u^{66} - 0.00314345u^{65} + \cdots - 7.50843u - 12.6063 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.257514u^{66} + 0.0210201u^{65} + \cdots 47.1768u 88.2413$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{67} + 35u^{66} + \dots - 6u - 1$
c_{2}, c_{5}	$u^{67} + 5u^{66} + \dots + 4u + 1$
c_3	$u^{67} - 5u^{66} + \dots - 4396u + 833$
c_4, c_7	$u^{67} + u^{66} + \dots + 384u + 256$
c_6,c_{10}	$u^{67} + 3u^{66} + \dots + 3u^2 + 1$
c_8, c_9, c_{11} c_{12}	$u^{67} - 13u^{66} + \dots - 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{67} - y^{66} + \dots + 26y - 1$
c_2, c_5	$y^{67} + 35y^{66} + \dots - 6y - 1$
c_3	$y^{67} - 37y^{66} + \dots - 10001782y - 693889$
c_4, c_7	$y^{67} - 45y^{66} + \dots + 770048y - 65536$
c_6,c_{10}	$y^{67} + 13y^{66} + \dots - 6y - 1$
c_8, c_9, c_{11} c_{12}	$y^{67} + 85y^{66} + \dots - 214y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.056677 + 1.011830I		
a = 0.252444 + 1.241020I	-2.90819 + 1.25830I	-6.22598 - 0.52297I
b = -0.625082 - 0.683742I		
u = 0.056677 - 1.011830I		
a = 0.252444 - 1.241020I	-2.90819 - 1.25830I	-6.22598 + 0.52297I
b = -0.625082 + 0.683742I		
u = 0.906722 + 0.307406I		
a = -0.59144 + 2.02468I	1.04581 - 2.21513I	3.46945 + 4.65316I
b = -0.162929 - 0.884018I		
u = 0.906722 - 0.307406I		
a = -0.59144 - 2.02468I	1.04581 + 2.21513I	3.46945 - 4.65316I
b = -0.162929 + 0.884018I		
u = -0.259205 + 1.013680I		
a = 0.20161 + 1.64344I	-2.45553 - 5.81631I	-4.24111 + 7.61398I
b = -0.585248 - 0.823431I		
u = -0.259205 - 1.013680I		
a = 0.20161 - 1.64344I	-2.45553 + 5.81631I	-4.24111 - 7.61398I
b = -0.585248 + 0.823431I		
u = -1.05818		
a = -0.130055	-1.77256	-5.82730
b = -0.564378		
u = 0.024549 + 1.103900I		
a = 0.011764 + 1.076850I	-8.60500 + 3.29350I	0
b = 0.892018 - 0.929882I		
u = 0.024549 - 1.103900I		
a = 0.011764 - 1.076850I	-8.60500 - 3.29350I	0
b = 0.892018 + 0.929882I		
u = 0.850621 + 0.246223I		
a = 2.15946 - 0.58175I	-0.45674 - 4.58253I	-3.79920 + 9.11658I
b = 0.531404 + 0.791131I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.850621 - 0.246223I		
a = 2.15946 + 0.58175I	-0.45674 + 4.58253I	-3.79920 - 9.11658I
b = 0.531404 - 0.791131I		
u = -1.117870 + 0.087817I		
a = -0.34576 + 1.97594I	-2.13038 + 1.08941I	0
b = -0.269852 - 0.943591I		
u = -1.117870 - 0.087817I		
a = -0.34576 - 1.97594I	-2.13038 - 1.08941I	0
b = -0.269852 + 0.943591I		
u = -1.168910 + 0.077988I		
a = -1.115420 - 0.446467I	-9.32041 - 0.45884I	0
b = -0.898793 - 0.925547I		
u = -1.168910 - 0.077988I		
a = -1.115420 + 0.446467I	-9.32041 + 0.45884I	0
b = -0.898793 + 0.925547I		
u = 1.169990 + 0.122396I		
a = -1.54997 + 0.03674I	-9.28166 - 6.15285I	0
b = -0.893032 - 0.937574I		
u = 1.169990 - 0.122396I		
a = -1.54997 - 0.03674I	-9.28166 + 6.15285I	0
b = -0.893032 + 0.937574I		
u = -0.801751 + 0.037628I		
a = 1.81454 - 0.67480I	-0.726291 - 0.492318I	-6.66330 - 1.23227I
b = 0.533091 - 0.711518I		
u = -0.801751 - 0.037628I		
a = 1.81454 + 0.67480I	-0.726291 + 0.492318I	-6.66330 + 1.23227I
b = 0.533091 + 0.711518I		
u = 0.565014 + 0.542577I		
a = -1.22383 + 2.12227I	2.09008 - 1.39139I	6.88883 + 3.94894I
b = -0.010154 - 0.774344I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.565014 - 0.542577I		
a = -1.22383 - 2.12227I	2.09008 + 1.39139I	6.88883 - 3.94894I
b = -0.010154 + 0.774344I		
u = -1.166070 + 0.351089I		
a = -0.46834 - 2.13436I	-1.53806 + 6.56529I	0
b = -0.162727 + 0.958944I		
u = -1.166070 - 0.351089I		
a = -0.46834 + 2.13436I	-1.53806 - 6.56529I	0
b = -0.162727 - 0.958944I		
u = 0.209708 + 0.728648I		
a = -0.02695 - 1.51557I	-0.11293 + 1.90039I	0.16873 - 4.13136I
b = -0.495464 + 0.766624I		
u = 0.209708 - 0.728648I		
a = -0.02695 + 1.51557I	-0.11293 - 1.90039I	0.16873 + 4.13136I
b = -0.495464 - 0.766624I		
u = -0.464969 + 0.565453I		
a = -0.299278 - 0.865709I	-0.85344 + 1.32721I	-6.30018 - 4.02616I
b = -0.434046 + 0.466211I		
u = -0.464969 - 0.565453I		
a = -0.299278 + 0.865709I	-0.85344 - 1.32721I	-6.30018 + 4.02616I
b = -0.434046 - 0.466211I		
u = 1.191720 + 0.459562I		
a = 1.14460 - 1.50739I	-3.08979 - 6.51525I	0
b = 0.580446 + 0.918238I		
u = 1.191720 - 0.459562I		
a = 1.14460 + 1.50739I	-3.08979 + 6.51525I	0
b = 0.580446 - 0.918238I		
u = -1.240190 + 0.334781I		
a = 0.053213 + 0.132726I	-4.20067 + 1.70229I	0
b = 0.717680 + 0.579006I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.240190 - 0.334781I		
a = 0.053213 - 0.132726I	-4.20067 - 1.70229I	0
b = 0.717680 - 0.579006I		
u = -0.601061 + 0.371818I		
a = 0.128143 + 0.972761I	-7.28010 + 1.81664I	-8.55201 - 4.80888I
b = 0.851577 - 0.886506I		
u = -0.601061 - 0.371818I		
a = 0.128143 - 0.972761I	-7.28010 - 1.81664I	-8.55201 + 4.80888I
b = 0.851577 + 0.886506I		
u = 1.281160 + 0.200682I		
a = 0.0251805 + 0.1116100I	-4.97897 - 4.12056I	0
b = -0.659788 - 0.071314I		
u = 1.281160 - 0.200682I		
a = 0.0251805 - 0.1116100I	-4.97897 + 4.12056I	0
b = -0.659788 + 0.071314I		
u = -1.280000 + 0.267333I		
a = 0.84169 + 1.26843I	-7.47404 + 3.11915I	0
b = 0.647196 - 0.914761I		
u = -1.280000 - 0.267333I		
a = 0.84169 - 1.26843I	-7.47404 - 3.11915I	0
b = 0.647196 + 0.914761I		
u = 0.565494 + 0.375805I		
a = 0.148591 + 1.093030I	-7.15245 + 4.47005I	-7.71055 + 0.32064I
b = 0.839438 - 0.928418I		
u = 0.565494 - 0.375805I		
a = 0.148591 - 1.093030I	-7.15245 - 4.47005I	-7.71055 - 0.32064I
b = 0.839438 + 0.928418I		
u = -0.394937 + 0.543945I		
a = -2.11231 - 2.23101I	0.99271 - 2.93977I	4.97131 + 1.61882I
b = 0.104773 + 0.712271I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.394937 - 0.543945I		
a = -2.11231 + 2.23101I	0.99271 + 2.93977I	4.97131 - 1.61882I
b = 0.104773 - 0.712271I		
u = 0.183363 + 1.320840I		
a = -0.033195 - 1.055920I	-11.93250 + 0.86287I	0
b = 0.911335 + 0.923319I		
u = 0.183363 - 1.320840I		
a = -0.033195 + 1.055920I	-11.93250 - 0.86287I	0
b = 0.911335 - 0.923319I		
u = -0.222777 + 1.317480I		
a = -0.010363 - 1.118770I	-11.85170 - 7.53264I	0
b = 0.898644 + 0.948171I		
u = -0.222777 - 1.317480I		
a = -0.010363 + 1.118770I	-11.85170 + 7.53264I	0
b = 0.898644 - 0.948171I		
u = 0.508545 + 0.407974I		
a = -0.23707 - 1.67495I	0.19428 + 1.92540I	-0.71393 - 3.09643I
b = -0.386976 + 0.820574I		
u = 0.508545 - 0.407974I		
a = -0.23707 + 1.67495I	0.19428 - 1.92540I	-0.71393 + 3.09643I
b = -0.386976 - 0.820574I		
u = 1.375410 + 0.137221I		
a = 0.136625 + 0.141678I	-8.37009 + 2.07396I	0
b = 0.765167 - 0.641306I		
u = 1.375410 - 0.137221I		
a = 0.136625 - 0.141678I	-8.37009 - 2.07396I	0
b = 0.765167 + 0.641306I		
u = -1.297480 + 0.545966I		
a = 0.99218 + 1.66578I	-5.83001 + 11.50930I	0
b = 0.578591 - 0.954312I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.297480 - 0.545966I		
a = 0.99218 - 1.66578I	-5.83001 - 11.50930I	0
b = 0.578591 + 0.954312I		
u = 1.36159 + 0.46010I		
a = -0.1117340 - 0.0569109I	-7.18404 - 6.58171I	0
b = 0.759058 - 0.543606I		
u = 1.36159 - 0.46010I		
a = -0.1117340 + 0.0569109I	-7.18404 + 6.58171I	0
b = 0.759058 + 0.543606I		
u = -0.226790 + 0.512847I		
a = -1.193550 + 0.040521I	-0.33336 + 1.65382I	-2.71310 - 4.65579I
b = 0.239619 + 0.182955I		
u = -0.226790 - 0.512847I		
a = -1.193550 - 0.040521I	-0.33336 - 1.65382I	-2.71310 + 4.65579I
b = 0.239619 - 0.182955I		
u = 1.38489 + 0.55760I		
a = -1.17727 + 1.10112I	-12.8397 - 9.2457I	0
b = -0.891489 - 0.970679I		
u = 1.38489 - 0.55760I		
a = -1.17727 - 1.10112I	-12.8397 + 9.2457I	0
b = -0.891489 + 0.970679I		
u = -1.39960 + 0.53092I		
a = -0.017508 - 0.147534I	-13.06210 + 2.54998I	0
b = -0.927330 - 0.902590I		
u = -1.39960 - 0.53092I		
a = -0.017508 + 0.147534I	-13.06210 - 2.54998I	0
b = -0.927330 + 0.902590I		
u = -1.42700 + 0.68349I		
a = -1.05188 - 1.26038I	-15.7150 + 14.6442I	0
b = -0.889746 + 0.979952I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.42700 - 0.68349I		
a = -1.05188 + 1.26038I	-15.7150 - 14.6442I	0
b = -0.889746 - 0.979952I		
u = 1.44635 + 0.66308I		
a = 0.138752 + 0.035309I	-15.9934 - 7.9304I	0
b = -0.935151 + 0.894911I		
u = 1.44635 - 0.66308I		
a = 0.138752 - 0.035309I	-15.9934 + 7.9304I	0
b = -0.935151 - 0.894911I		
u = -1.55039 + 0.42301I		
a = -0.949405 - 0.872633I	-17.8393 + 5.4177I	0
b = -0.906199 + 0.967999I		
u = -1.55039 - 0.42301I		
a = -0.949405 + 0.872633I	-17.8393 - 5.4177I	0
b = -0.906199 - 0.967999I		
u = 1.56628 + 0.38972I		
a = -0.218508 - 0.080153I	-18.0048 + 1.3484I	0
b = -0.933842 + 0.917694I		
u = 1.56628 - 0.38972I		
a = -0.218508 + 0.080153I	-18.0048 - 1.3484I	0
b = -0.933842 - 0.917694I		

$$I_1^v = \langle a, \ 18v^7 - 26v^6 + \dots + 19b - 2, \ v^8 - 2v^7 + v^6 - 4v^5 + 6v^4 + v^3 - 2v^2 - v + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.26316v^{7} + 2.15789v^{6} + \cdots - 0.421053v + 1.47368 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.368421v^{7} - 0.421053v^{6} + \cdots + 0.789474v - 1.26316 \\ 0.263158v^{7} - 0.157895v^{6} + \cdots + 2.42105v - 0.473684 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0526316v^{7} + 0.368421v^{6} + \cdots + 0.684211v - 0.894737 \\ 0.263158v^{7} - 0.157895v^{6} + \cdots + 2.42105v - 0.473684 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.26316v^{7} - 2.15789v^{6} + \cdots + 0.421053v - 1.47368 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \\ -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.789474v^{7} + 1.47368v^{6} + \cdots - 0.263158v + 2.42105 \\ -1.73684v^{7} + 2.84211v^{6} + \cdots - 0.578947v + 2.52632 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 1.26316v^{7} - 2.15789v^{6} + \cdots + 0.421053v - 0.473684 \\ 0.473684v^{7} - 0.684211v^{6} + \cdots + 0.157895v + 1.94737 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{23}{19}v^7 - \frac{9}{19}v^6 + \frac{67}{19}v^5 + \frac{49}{19}v^4 + \frac{94}{19}v^3 - \frac{298}{19}v^2 + \frac{43}{19}v + \frac{11}{19}v^3 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^4$
c_2	$(u^2 + u + 1)^4$
c_4, c_7	u^8
	$(u^4 + u^3 + u^2 + 1)^2$
c_{8}, c_{9}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_{10}	$(u^4 - u^3 + u^2 + 1)^2$
c_{11}, c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^4$
c_4, c_7	y^8
c_6, c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_8, c_9, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.576953 + 0.283088I		
a = 0	-6.79074 - 1.13408I	-2.09237 - 2.48762I
b = -0.851808 - 0.911292I		
v = 0.576953 - 0.283088I		
a = 0	-6.79074 + 1.13408I	-2.09237 + 2.48762I
b = -0.851808 + 0.911292I		
v = -0.533637 + 0.358112I		
a = 0	-6.79074 - 5.19385I	-2.75261 + 7.88731I
b = -0.851808 - 0.911292I		
v = -0.533637 - 0.358112I		
a = 0	-6.79074 + 5.19385I	-2.75261 - 7.88731I
b = -0.851808 + 0.911292I		
v = 1.54112 + 0.21492I		
a = 0	0.211005 - 0.614778I	2.55284 - 0.89520I
b = 0.351808 - 0.720342I		
v = 1.54112 - 0.21492I		
a = 0	0.211005 + 0.614778I	2.55284 + 0.89520I
b = 0.351808 + 0.720342I		
v = -0.58443 + 1.44211I		
a = 0	0.21101 - 3.44499I	-2.20786 + 6.97475I
b = 0.351808 + 0.720342I		
v = -0.58443 - 1.44211I		
a = 0	0.21101 + 3.44499I	-2.20786 - 6.97475I
b = 0.351808 - 0.720342I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^4)(u^{67} + 35u^{66} + \dots - 6u - 1)$
c_2	$((u^2 + u + 1)^4)(u^{67} + 5u^{66} + \dots + 4u + 1)$
c_3	$((u^2 - u + 1)^4)(u^{67} - 5u^{66} + \dots - 4396u + 833)$
c_4, c_7	$u^8(u^{67} + u^{66} + \dots + 384u + 256)$
c_5	$((u^2 - u + 1)^4)(u^{67} + 5u^{66} + \dots + 4u + 1)$
c_6	$((u^4 + u^3 + u^2 + 1)^2)(u^{67} + 3u^{66} + \dots + 3u^2 + 1)$
c_8,c_9	$((u^4 + u^3 + 3u^2 + 2u + 1)^2)(u^{67} - 13u^{66} + \dots - 6u + 1)$
c_{10}	$((u^4 - u^3 + u^2 + 1)^2)(u^{67} + 3u^{66} + \dots + 3u^2 + 1)$
c_{11}, c_{12}	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{67} - 13u^{66} + \dots - 6u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2+y+1)^4)(y^{67}-y^{66}+\cdots+26y-1)$
c_2, c_5	$((y^2+y+1)^4)(y^{67}+35y^{66}+\cdots-6y-1)$
c_3	$((y^2 + y + 1)^4)(y^{67} - 37y^{66} + \dots - 1.00018 \times 10^7 y - 693889)$
c_4, c_7	$y^8(y^{67} - 45y^{66} + \dots + 770048y - 65536)$
c_6, c_{10}	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{67} + 13y^{66} + \dots - 6y - 1)$
c_8, c_9, c_{11} c_{12}	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{67} + 85y^{66} + \dots - 214y - 1)$