Complex and nomenclature

Definitions
Ligands
Chelating agent
Naming

Dr. Mai Ramadan

Definitions

Complex:

consists of a metal atom or a metal ion to which several ions or molecules (called ligands) are bonded with a coordination bond.

Ligands: substances that are capable of acting as lewis bases.

Ligands can be anionic, neutral, and in rare cases cationic

A complex had a charge can be cationic, anionic, or neutral.

Complex Formula

The formula is written in [] as below, first cation followed by ligands. When different types of ligands in one complex, then they have the following order: anionic, neutral then cationic

Complex formation reaction

The reaction of producing a complex is lewis acid lewis base reaction

Coordination number

Number of coordination bonds surrounding the metal ion or central atom.

[Ag(NH3)2]+ Complex

In this complex coordination number is 2

Coordination numbers can be 2,4, or 6.

Examples of Complex

 $[Fe(CN)_6]^{-3}$: anionic complex, coordination number 6, oxidation number of Fe = +3

 $[Cr(OH)_3(H_2O)_3]$: neutral complex, coordination number 6, oxidation number of Cr =+3

 $[Cu(NH_3)_4]^{+2}$: cationic complex, coordination number 4, oxidation number of Cu = +2

 $[CrCl2(NH_3)_4]+:$ cationic complex, coordination number 6, oxidation number of Cr=+3

Examples of Complex [CoBrCl(H₂O)₄]*:

cationic complex, coordination number 6, oxidation number of Co=+3

Note:

Complex formulae is in [] first cation then ligands and has +1 charge.

Two types of ligands anionic: (-Br, and -Cl) and neutral: H2O

-Br is written in formulae followed by -Cl. This order is alphabetical.

H2O is written in () because it is polyatomic but -Br is not.

Examples of Complex

Note:

Metal ion is written first in complex inside [] followed by anionic then neutral ligand.

When different ligands of the same type (anionic, neutral) are present then they are listed in alphabetical order.

When ligands are polyatomic, their formulae are enclosed in parentheses.

Ligands are classified according to their charge (anionic, neutral, and rarely cationic) ligands.

Anionic Ligands	Names
Br	bromo
F ⁻	fluoro
O^{2-}	oxo
OH	hydroxo
CN ⁻	cyano
$C_2O_4^{2-}$	oxalato
CO ₃ ²⁻	carbonato
CH₃COO⁻	acetato

Ligands are classified according to their charge (anionic, neutral, and rarely cationic) ligands.

Neutral Ligands	Names
NH_3	ammine
H_2O	aqua
NO	Nitrosyl
CO	Carbonyl
O_2	dioxygen
N_2	dinitrogen
C_5H_5N	pyridine
H ₂ NCH ₂ CH ₂ NH ₂	ethylenediamine

Ligands are classified according to the number of electron donating group which can form coordination bonds.

Ligand builds only one coordination bond is monodentate ligand (NH3, H2O, Cl, CO, Br, CN, SCN, OH,----)

Ligand builds many coordination bonds is multidentate ligand (called also chelating agent) like -C2O4, ethylenediamine, EDTA

bisethylenediaminecopper(II) ion

Coordination number is 4

number of ligands is 2

ligands is a bidendate ligand (chelating agent) since it builds two coordination bonds

complex is called chelate

Name the ligands first, in alphabetical order and then name the metal atom or cation.

The name of some common ligands

Anionic ligands end in (-o)

Cl[−] Chlor<u>ide</u> ion, -Cl: Chlor<u>o</u>,

OH⁻: hydrox**ide** ion, -OH: hydrox**o**

NO3⁻: nitr<u>ate</u> ion, -NO3: nitr<u>ato</u>

NO2⁻: nitr<u>ite</u> ion, -NO2: nitr<u>ito</u>

The name of some common ligands

neutral ligands use the name of molecule like ethylenediamine.

Exceptions

H2O: Water, -H2O: Aqua-

NH3: Ammonia, -NH3: Ammine

CO: Carbon monoxide, -CO: carbonyl

The Greek prefixes di, tri,-- are used to designate the number of each type of ligand in the complex

When ligand is polydentate then use prefixes bis, tris, tetrakis,--

Numerical Prefixes

Number	Prefix	Number	Prefix	Number	Prefix
1	mono	5	penta (pentakis)	9	nona (ennea)
2	di (bis)	6	hexa (hexakis)	10	deca
3	tri (tris)	7	hepta	11	undeca
4	tetra (tetrakis)	8	octa	12	dodeca

After naming ligands, name the central atom. If complex is cationic use the English name of element. Cobalt: cobalt, iron: iron,

If complex is anionic, the name of metal ends with suffix —ate. Cobalt: cobaltate, Platin: platinate

For some metals latin names of metals are used in anionic complexes.

Following the name of element the oxidation state of element is given in Roman numeral in parentheses

Name of Metals in Anionic Complexes

Name of Metal	Name in an Anionic Complex
Iron	Ferrate
Copper	Cuprate
Lead	Plumbate
Silver	Argentate
Gold	Aurate
Tin	Stannate

[CoCl₄(NH₃)₂] - diamminetetrachlorocobaltate(III) ion

There are two types of ligands. In formulae anionic ligand before neutral.

Name ligands alphabetically so <u>ammine</u> first then <u>chloro</u> followed by metal ion.

Use prefix di, tetra to indicate number of each ligand in complex.

Oxidation state of cobalt is +3

Complex is anionic name of metal ends with suffix –ate.

 $[Cr(OH)_3(H_2O)_3]$ Triaquatrihydroxochromium(III)

- There are two types of ligands. In formulae anionic ligand before neutral.
- Name ligands alphabetically so <u>aqua</u> first then <u>hydroxo</u> followed by metal ion.
- Use prefix tri to indicate number of each ligand in complex.
- Oxidation state of Cr is +3
- Complex is neutral name of metal in English name.

 $[Fe(CN)_6]^{-3}$: hexacyanoferrate(III) ion

 $[Fe (oxo)_3]^{-3}$: Trisoxalatoferrate (III) ion

 $[CuBr_4]^{-3}$: tetrabromocuprate (I) ion

Na[Ag(CN)₂] : sodium dicyanoargenate

[CoCl(NH₃)₅]Cl₂: Pentaamminechlorocobalt(III) chloride

K₄[Fe(CN)₆]: Potassium hexacyanoferrate(II)

Write the chemical formula for the following:

Triaquatrithiocyanatoiron (III)

tetraflourooxocobaltate(III) ion

Bis(ethylenediamine)dinitroiron(III) ion

Bromochlorodicyanonickelate(II) ion

Sodium dithiosulfatoargenate(I)

Diaquadichlorodithiocyanatochromate(III) ion

Tetrahydroxozincate(II) ion

Hexaaquachromium (III) hexacyanoferrate (III)

Diamminediaquadichlorocobalt(III) ion

Ammonium carbonylpentacyanomanganate(II)

Hexaaquanickel(II) phosphate

Calcium diaquatetracyanocobaltate(III)

$$[CrCl2(SCN)2(H2O)2]$$

Give the IUPAC name, Coordination and oxidationnumber:

$$[\operatorname{CrI}_2(\operatorname{NH}_3)_4]^+$$

$$[Co(C2O4)(en)2]$$
⁺

$$[CuBr_4]^{-2}$$

$$[Co(NCS)_4]^{-2}$$

$$[PtCl_3(NH_3)]^{-1}$$

$$[Co(C_2O_4)_3]^{-3}$$

$$[Co(en)_3]^{+3}$$

$$[Fe(OH)(H_2O)_5]^{+2}$$

Trioxalatostannate(IV) ion

Aluminium tetrahydroxoaurate(III)

Potassium hexachloroplatinate(II)

Potassium hexacyanoferrate(II)

Pentaamminechlorocobalt(III) chloride

Triaquatrihydroxochromium(III)

Nomenclature of inorganic compounds

Dr. Mai Ramadan

Nomenclature of inorganic compounds

Common and systematic names

Laughing gas N₂O Dinitrogen monoxide

Alumina Al_2O_3 Aluminum oxide

Caustic soda NaOH Sodium hydroxide

Table salt NaCl Sodium chloride

Potash K₂CO₃ Potassium carbonate

Table 6.1 Common Names, Formulas, and Chemical Names of Familiar Substances

of Familiar Substances						
Common names	Formula	Chemical name				
Acetylene	C_2H_2	ethyne				
Lime	CaO	calcium oxide				
Slaked lime	Ca(OH) ₂	calcium hydroxide				
Water	H_2O	water				
Galena	PbS	lead(II) sulfide				
Alumina	Al_2O_3	aluminum oxide				
Baking soda	NaHCO ₃	sodium hydrogen carbonate				
Cane or beet sugar	$C_{12}H_{22}O_{11}$	sucrose				
Borax	$Na_2B_4O_7 \cdot 10 H_2O$	sodium tetraborate decahydrate				
Brimstone	S	sulfur				
Calcite, marble, limestone	CaCO ₃	calcium carbonate				
Cream of tartar	$KHC_4H_4O_6$	potassium hydrogen tartrate				
Epsom salts	$MgSO_4 \cdot 7 H_2O$	magnesium sulfate heptahydrate				
Gypsum	$CaSO_4 \cdot 2H_2O$	calcium sulfate dihydrate				
Grain alcohol	C ₂ H ₅ OH	ethanol, ethyl alcohol				
Нуро	$Na_2S_2O_3$	sodium thiosulfate				
Laughing gas	N ₂ O	dinitrogen monoxide				

NaOH

sodium hydroxide

Lye, caustic soda

system for inorganic nomenclature was devised by IUPAC [International Union of Pure and Applied Chemistry] Rules for naming inorganic substance

Elements and ions

Elements occurring as polyatomic molecules

Hydrogen H₂

Chlorine Cl₂

Sulfur S₂

oxygen O_2

Fluorine F₂

phosphorus P₄

nitrogen N₂

Bromine Br₂

Iodine I₂

Elements and ions

Elements and cations

K potassium

K⁺ potassium ion

Mg magnesium

Mg²⁺ magnesium ion

Al aluminum

Al³⁺ aluminum ion

Common polyatomic cations

NH₄ + ammonium ion

H₃O⁺ hydronium ion

 Hg_2^{2+} mercury (I) ion

Elements and ions

Element English name

Fe Iron

Latin name

Ferrum

IUPAC

Fe⁺² Iron (II) ion

Fe⁺³

Iron (III) ion

Classical

Fe⁺² Ferrous ion

Fe⁺³

Ferric ion

Classical names:

Stem of Latin name of element followed by suffix -ous, -ic

Stem: Ferr

Table 6.4 Names and Charges of Some Common Metal Ions
That Have More Than One Type of Cation

Formula	Stock System name	Classical name
Cu ¹⁺	copper(I)	cuprous
Cu ²⁺	copper(II)	cupric
$Hg^{1+}(Hg_2)^{2+}$	mercury(I)	mercurous
Hg^{2+}	mercury(II)	mercuric
Fe ²⁺	iron(II)	ferrous
Fe ³⁺	iron(III)	ferric
Sn ²⁺	tin(II)	stannous
Sn ⁴⁺	tin(IV)	stannic
Pb ²⁺	lead(II)	plumbous
Pb ⁴⁺	lead(IV)	plumbic
As^{3+}	arsenic(III)	arsenous
As^{5+}	arsenic(V)	arsenic
Ti ³⁺	titanium(III)	titanous
Ti ⁴⁺	titanium(IV)	titanic

Elements and ions

Elements and anions

Cl	chlorine	Cl	chloride ion

O oxygen
$$O^{-2}$$
 oxide ion

Elements and ions

Table 6.2 Examples of Elements Forming Anions

Symbol	Element	Stem	Anion name		
Br	bromine	brom	bromide		
Cl	chlorine	chlor	chloride		
F	fluorine	fluor	fluoride		
Н	hydrogen	hydr	hydride		
I	iodine	iod	iodide		
N	nitrogen	nitr	nitride		
O	oxygen	OX	oxide		
P	phosphorus	phosph	phosphide		
S	sulfur	sulf	sulfide		

Elements and ions

polyatomic ion – ion that contains two or more elements some common polyatomic ions

Table 6.6 Names, Formulas, and Charges of Some Common Polyatomic Ions

Name	Formula	Charge	Name	Formula	Charge
Acetate	$C_2H_3O_2^-$	-1	Cyanide	CN ⁻	-1
Ammonium	NH_4^+	+1	Dichromate	$Cr_2O_7^{2-}$	-2
Arsenate	AsO_4^{3-}	-3	Hydroxide	OH^-	-1
Hydrogen carbonate	HCO_3^-	-1	Nitrate	NO_3^-	-1
Hydrogen sulfate	HSO_4^-	-1	Nitrite	NO_2^-	-1
Bromate	BrO_3^-	-1	Permanganate	$e MnO_4^-$	-1
Carbonate	CO_3^{2-}	-2	Phosphate	PO_4^{3-}	-3
Chlorate	ClO_3^-	-1	Sulfate	SO_4^{2-}	-2
Chromate	CrO_4^{2-}	-2	Sulfite	SO_3^{2-}	-2

Elements and ions

polyatomic ion – ion that contains two or more elements some common polyatomic ions

PO₄-3 Phosph<u>ate</u> ion

H₂PO₄ Dihydrogen phosphate ion

HPO₄-2 <u>Mono</u>hydrogen phosph<u>ate</u> ion

NO₃ Nitr<u>ate</u> ion

NO₂ Nitr<u>ite</u> ion

AsO₄-3 Arsen<u>ate</u> ion

AsO₃ -3 Arsen<u>ite</u>

Elements and ions

Oxyanion

Oxidation state of Cl-atom

ClO⁻: <u>hypo</u>chlor<u>ite</u> ion +1

 ClO_2^- : chlor<u>ite</u> ion +3

 ClO_3^- : chlor<u>ate</u> ion +5

 ClO_4^- : <u>per</u>chlor<u>ate</u> ion +7

Remember:

 SO_4^{-2} : Sulfate ion SO_3^{-2} : Sulfite ion

Elements and ions

charges of selected ions

IA H ⁺	IIA								ША	IVA	VA	VIA	VIIA	
Li ⁺	Be ²⁺										N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺	0.00							Al ³⁺		P ³⁻	S ²⁻	Cl-	
K ⁺	Ca ²⁺			Cr ²⁺ Cr ³⁺	Fe ²⁺ Fe ³⁺		Cu ⁺ Cu ²⁺	Zn ²⁺					Br ⁻	
Rb ⁺	Sr ²⁺		Trans	Market Control			Ag ⁺	Cd ²⁺					1	
Cs+	Ba ²⁺													

Writing chemical formula from names of compounds a chemical compound must have a net charge of zero formula writing of ionic compounds

(a) calcium chloride

$$CI^{-}$$

CaCl2

(b) magnesium oxide

$$Mg^{2+}$$
 O^{2-}

$$O^{2-}$$

MgO

(c) barium phosphide

$$Ba_3P_2$$

(d) Silver chromate

$$CrO_4^{-2}$$

Naming binary compounds

binary compounds contain only two different elements

A. binary ionic compounds

Metal forms one type of cation

NaCl sodium chloride

CaBr₂ calcium bromide

Mg₃N₂ magnesium nitride

Li₂O lithium oxide

Naming binary compounds

Table 6.3 Examples of Compounds with Names Ending in -ide

Formula	Name	Formula	Name
AlCl ₃ Al ₂ O ₃ CaC ₂ HCl	aluminum chloride	BaS	barium sulfide
	aluminum oxide	LiI	lithium iodide
	calcium carbide	MgBr ₂	magnesium bromide
	hydrogen chloride	NaH	sodium hydride
	hydrogen iodide	Na ₂ O	sodium oxide

Naming binary compounds

B. binary ionic compounds a metal that can form two or more types of cations

Formula	IUPAC Name	classical name
FeCl ₂	iron(II) chloride	ferrous chloride
FeCl ₃	iron(III) chloride	ferric chloride
CuCl	copper(I) chloride	cuprous chloride
CuCl ₂	copper(II) chloride	cupric chloride

Naming binary compounds

B. binary ionic compounds a metal that can form two or more types of cations

iron(II) chloride FeCl₂

Cation English name (oxidation number In Latin numbers) **iron(II)** ion

ferrous chloride

Stem of latin name of metal

Fe **Ferrum**

Followed by suffix

lower oxid. state -ous

-ic higher oxid. state

Ferrous ion

Naming binary compounds

C. binary compounds containing two nonmetals

Si B P H C S I Br N Cl O F

the element that occurs first in this series is written and name first, the name of the second element retains the – *ide ending*

Latin prefix indicates the number of atoms of the element

1 mono

2 di

3 tri

4 tetra

5 penta

6 hexa

7 hepta

8 octa

9 nona

10 deca

 N_2O_3

dinitrogen trioxide

PCI₅

phosphorus pentachloride

Naming binary compounds

D. acids derived from binary compounds

HCl(g) hydrogen chloride

HCl(aq) hydrochloric acid

H₂S(g) hydrogen sulfide

H₂S(aq) hydrosulfur<u>ic</u> acid

Naming binary compounds

D. acids derived from binary compounds

Formula	Acid name	Formula	Acid name
HF	Hydrofluoric acid	HI	Hydroiodic acid
HCl	Hydrochloric acid	H ₂ S	Hydrosulfuric acid
HBr	Hydrobromic acid	H ₂ Se	Hydroselenic acid

D. acids derived from binary compounds

Name the following oxoanions and their corresponding acids:

ClO⁻: *hypo*chlor*ite* ion HClO: *hypo*chlor*ous acid*

ClO₂⁻: chlor*ite* ion HClO₂: chlor*ous acid*

 ClO_3^- : chlorate ion $HClO_3$: chlor<u>ic</u> acid

ClO₄ : *per*chlor*ate* ion HClO₄: *per*chlor*ic acid*

Acids

acid formulas often begin with H

binary acids

HCl

H2S

oxy-acids

H2SO4

HNO3

polyatomic anion acid

-ate ______ -ic acid

-ite ______ -ous acid

 PO_4^{-3} SO_4^{-2} Phosphate ion

 H_3PO_4

Phosphic acid

Sulf<u>ate</u> ion

 H_2SO_4

Sulfuric acid

 SO_3^{-2} Sulf<u>ite</u> ion

 H_2SO_3

Sulfurous acid

Acids

Table 6.9 Comparison of Acid and Anion Names for Selected Oxy-Acids

Acid	Anion	Acid	Anion
H ₂ SO ₄	SO ₄ ²⁻	H ₃ PO ₄	PO ₄ ³⁻
Sulfuric acid	Sulfate ion	Phosphoric acid	Phosphate ion
H ₂ SO ₃	SO ₃ ²⁻	H ₃ PO ₃	PO ₃ ³⁻
Sulfurous acid	Sulfite ion	Phosphorous acid	Phosphite ion
HNO ₃	NO ₃ Nitrate ion	HIO ₃	IO ₃ ⁻
Nitric acid		Iodic acid	Iodate ion
HNO ₂	NO ₂ Nitrite ion	HC ₂ H ₃ O ₂	C ₂ H ₃ O ₂ ⁻
Nitrous acid		Acetic acid	Acetate ion
H ₂ CO ₃	CO ₃ ²⁻	H ₂ C ₂ O ₄	$C_2O_4^{2-}$
Carbonic acid	Carbonate ion	Oxalic acid	Oxalate ion
H ₃ BO ₃ Boric acid	BO ₃ ³⁻ Borate ion	HBrO ₃ Bromic acid	BrO ₃ Bromate ion

Naming of compound

Compound	Ions	Name
NaHCO ₃	Na ⁺ ; HCO ₃	sodium hydrogen carbonate
NaHS	Na ⁺ ; HS ⁻	sodium hydrogen sulfide
MgNH ₄ PO ₄	Mg ²⁺ ; NH ₄ ; PO ₄ ³⁻	magnesium ammonium phosphate
NaKSO ₄	Na+; K+; SO ₄ 2-	sodium potassium sulfate

Naming of compound

Table 6.8 Names of Selected Compounds That Contain More Than One Kind of Positive Ion

Formula	Name of compound
KHSO ₄ Ca(HSO ₃) ₂ NH ₄ HS MgNH ₄ PO ₄	potassium hydrogen sulfate calcium hydrogen sulfite ammonium hydrogen sulfide magnesium ammonium phosphate
NaH ₂ PO ₄ Na ₂ HPO ₄ KHC ₂ O ₄ KAl(SO ₄) ₂ Al(HCO ₃) ₃	sodium dihydrogen phosphate sodium hydrogen phosphate potassium hydrogen oxalate potassium aluminum sulfate aluminum hydrogen carbonate

Name the following:

HBrO

HIO

BrO₃

IO₃

HBrO₄

IO₄

Determine the oxidation number of S in each of the following:

a) Na2S2O3

a)_____

b) H2SO3

b)_____

c) SO2

c)_____

d) K2S2O4

d)_____

e) Al2S3

e)_____

f) BaS2O8

f)_____

Name the following compounds.

- a) Pbl₂
- b) FeSO₄
- c) Ag₂CO₃
- d) NaCN
- e) SnS₂
- f) $Cu(NO_3)_2$
- g) $K_2C_2O_4$
- h) HgCl
- i)NaNO₂
- j) $Cu(OH)_2$

Write formulas for the following compounds.

- a) ammonium sulfide
- b) magnesium phosphate
- c) mercury(II) thiocyanate
- d) sodium iodate
- e) chromium(III) chloride
- f) potassium permanganate
- g) zinc bromide
- h) cobalt(II) perchlorate
- i)Mercury(I) chlorie
- j) Plumbous sulfide

Write formulas for the following acids and bases.

- a) nitrous acid
- b) phosphoric acid
- c) sodium hydroxide
- d) bromic acid
- e) tin(II) hydroxide
- f) hydroiodic acid
- g) hypobromous acid
- h) aluminum hydroxide
- i) zinc hydroxide

Name the following acids and bases.

- a) H2SO3
- b) b) Sn(OH)4
- c) HNO3
- d) KOH
- e) HIO4
- f) HF
- g) Fe(OH)3
- h) H2SO4
- i) H3PO3
- j) HC2H3O2
- k) HClO