YOLOv5 및 MediaPipe를 이용한 실시간 3대 운동 AI 자세 교정 서비스에 대한 연구

A Study on Real Time the big three exercises AI posture correction service Using YOLOv5 and MediaPipe

컴퓨터공학과 3학년 고영민

NDEX

- I . 과제 선정 배경 및 필요성
- Ⅱ. 선행연구 및 기술현황
- III. 추진 과정
- IV. 제안하는 방법

▌ 과제 선정 배경 및 필요성

Background and Necessity of Study Selection

I. 과제 선정 배경 및 필요성

2019년 기준, 규칙적으로 체육활동을 하고 있는 사람의 비중이 전국민의 과반수가 넘음

그 중 참여율은 보디빌딩은 16.2%로 꽤 높은 비중을 차지하고 있음

I. 과제 선정 배경 및 필요성

웨이트 3대 운동 500kg?…무리한 시도에 부상 속출

웨이트 트레이닝에서 핵심이 되는 3대 운동은 스스로 자세가 잘못되었는지 판단하기 어려운데, 잘못된 자세로 운동을 수행하게 될 경우 큰 부상을 초래

I. 과제 선정 배경 및 필요성

최근 딥러닝 기술의 발전으로 Computer Vision 분야의 객체 검출(Object Detection)과 자세 추정(Pose Estimation) 기술의 정확도가 높아짐. 따라서 비전 AI 기술들을 융합해 자세 교정 AI 서비스를 개발하여 운동 수행 중 발생할 수 있는 부상을 예방하는데 기여하고자 함

Ⅱ. 선행연구 및 기술현황

Existing Studies & Technology Status

- i . 선행연구
- ii . 기술현황

II. 선행연구 및 기술현황

i . 선행연구

논문명	사용 모델	사용 데이터셋	요약
Using Human Pose Detection to Identify and Give Feedback on Workout Form	CNN	MPII & COCO	image classification을 통해 운동 종목이 무엇인지 분류하고 pose estimation을 통해 각 관절 간의 거리를 비교한 후 사용자에게 가장 알맞은 피드백 제공

Bench Press Form Feedback:

mage

Feedback

Keep your feet planted on the ground! It will help increase your power.

Your arch is a bit excessive. Keep your butt on the bench.

Your arms are way too out in front of you. Keep them in line with your chest.

All good! Keep at it!

Ⅱ. 선행연구 및 기술현황

i . 선행연구

논문명	사용 모델	사용 데이터셋	요약
YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구	YOLOv5 OpenPose	COCO	YOLOv5와 OpenPose 모델을 융합하여 탐지 성능을 향상시킴

그림 6. 적절한 근로자 탐지 및 자세 추정 결과(건설 현장 영상) Figure 6. Appropriate worker detection and posture estimation results (construction site video)

II. 선행연구 및 기술현황

i . 선행연구

논문명	사용 모델	사용 데이터셋	요약
YOLOv7와 OpenPose를 활용한 개인 맞춤형 피트니스 운동 자세 지도 모델 설계	YOLOv7 OpenPose	COCO	사람의 관절 동작을 자동으로 인식해 교정하는 모델을 설계

3.5 자세 평가

그림 2. 운동 자세 평가 프로세스 설계

Ⅱ. 선행연구 및 기술현황

i . 선행연구

논문명	사용 모델	사용 데이터셋	요약
Yoga Pose Monitoring System using Deep Learning	CNN, LSTM, MediaPipe	-	MediaPipe를 통해 Keypoint를 추출하고 CNN과 LSTM 모델을 결합하여 해당 pose가 올바른지, 잘못된지 분류하고 피드백 제공

II. 선행연구 및 기술현황

ii . 기술현황

YOLOv5

실시간 객체 검출을 위해서는 빠른 검출 속도와 높은 정확도가 요구되는데, 1-Stage Detector 모델인 YOLOv5를 하여 사람 객체만 추출

MediaPipe

구글에서 제공하는 AI 프레임워크로서 인간의 관절을 추정하여 3개의 좌표(x, y, z)를 생성하여 33개의 관절 정보를 추정하여 제공

III. 추진 과정 Research Process

- 1. 문제 분석 및 아이디어 설계
- 2. 데이터 수집
- 3. 데이터 전처리 및 데이터 후처리
- 4. 모델 구현
- 5. 결과 테스트 및 정확도 평가
- 6. 발표 자료 및 보고서 작성

Research Process

문제 분석 및 아이디어 설계(1주) → 데이터 수집(2주) → 데이터 전처리(3~5주) → 모델 구현(5~7주) → 모델 정확도 평가(8주) → 발표 자료 및 보고서 작성(9주)

연구 초반 1단계

'문제 분석 및 아이디어 설계'에서는 관련 논문들을 살펴보며 구체적인 아이디어를 설계

'데이터 수집'에서는 YouTube, 대용량 이미지 데이터셋 제공하는 곳을 통해 학습용 데이터 수집

Research Process

문제 분석 및 아이디어 설계(1주) \rightarrow 데이터 수집(2주) \rightarrow 데이터 전처리(3~5주) \rightarrow 모델 구현(5~7주) \rightarrow 모델 정확도 평가(8주) \rightarrow 발표 자료 및 보고서 작성(9주)

연구 중반 2단계

'데이터 전처리'에서는 2주차에 수집한 데이터를 모델에 적절하게 전처리하고, 분석에 용이하게 후처리 후 여러 테스트를 진행

'모델 구현'에서는 설계한 아이디어와 전처리가 끝난 데이터를 기반으로 머신러닝/딥러닝 모델 개발

x: 0.3456111 y: 0.68180996 z: -1.4210862

x: 0.37460822

z: -1.3985937

y: 0.5834866

x: 0.3949321 y: 0.57717854

z: -1.3984721

x: 0.4116086 -- 0 5700100

landmark {

landmark {

landmark {

Research Process

문제 분석 및 아이디어 설계(1주) \rightarrow 데이터 수집(2주) \rightarrow <mark>데이터 전처리</mark>(3~5주) \rightarrow 모델 구현(5~7주) \rightarrow 모델 정확도 평가(8주) \rightarrow 발표 자료 및 보고서 작성(9주)

Raw Webcam Feed

mp_drawing.plot_landmarks(

results.pose_world_landmarks, mp_holistic.POSE_CONNECTIONS)

Research Process

문제 분석 및 아이디어 설계(1주) \rightarrow 데이터 수집(2주) \rightarrow 데이터 전처리(3~6주) \rightarrow 모델 구현(7주~11주) \rightarrow 모델 정확도 평가(12주) \rightarrow 발표 자료 및 보고서 작성(13~14주)

연구 후반 3단계

'모델 정확도 평가'에서는 테스트 데이터셋으로 모델의 정확도를 평가

'**발표 자료 및 보고서 작성**'에서는 연구 총 내용을 정리하여 발표 자료 및 보고서를 작성

IV. 제안하는 방법 How to suggest

IV. 제안하는 방법

IV. 제안하는 방법

Angle Calculation:

Vertical No. 100 Hip

a. Distance Calculation

Assume there are 2 points with the following coordinates: Point 1 (x1, y1) and Point 2 (x2, y2), below is the formula to calculate the distance between 2 points.

$$distance = \sqrt{(x1-x2)^2 + (y1-y2)^2}$$

b. Angle Calculation

Assume there are 3 points with the following coordinates: Point 1 (x1, y1), Point 2 (x2, y2) and Point 3 (x3, y3), below is the formula to calculate the angle created by 3 points.

$$angle_in_radian = arctan2 (y3 - y2, x3 - x2) - arctan2(y1 - y2, x1 - x2)$$

$$angle_in_degree = (angle_in_rad * 180)/\Pi$$

```
er = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]

[landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x, landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]

[landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x, landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
```

calculateAngle(shoulder, elbow, wrist)

YOLOv5 및 MediaPipe를 이용한 실시간 3대 운동 AI 트레이닝 서비스에 대한 연구

THANK YOU

컴퓨터공학과 3학년 고영민