Packet Switching

Instructor: Jingwen CHEN
jwchen@hust.edu.cn
http://itec.hust.edu.cn/~jwchen
School of Electronic Information and
Communications
18 Oct. 2018

Outline

Basics of switching

- Packet switching mechanisms
 - Datagram switching, virtual circuit switching
- Network performance
 - Throughput, delay, delay x bandwidth product, application needs

A Taxonomy of Communication Networks

Based on the way in which nodes exchange information

Broadcast Networks

- Information sent by a node is broadcasted and hence received by every other node on the network
 - e.g., wireless LAN, shared Ethernet
- Inherent problem: how to coordinate the accesses of all nodes to the shared communications medium
 - Solution: Media Access Control (MAC) protocols
- Pros and cons
 - Low cost of deployment: few number of links and devices needed
 - Ease of usage and deployment (wireless only)
 - Limited capacity: total capacity determined by shared medium, and shared by all nodes
 - Limited coverage: caused by broadcasting
 - Local area networks (LANs), trunking communications networks

Switched Networks

- Information is transmitted to designated node(s), e.g., WANs (Telephony Network, Internet)
- Basic problem: how to forward information to intended node(s)
 - Basic idea: Design and deploy specialized nodes (e.g., routers, switches) for information delivery
- Pros and cons
 - High capacity: total capacity can be approximated with the sum of access link rates
 - Scalability: supports a large number of terminals
 - Large coverage: by adding new switches and links, able to spread around arbitrarily large geographic area
 - Cost-effectiveness: low cost per unit of capacity
 - Needs of infrastructure deployment: per-terminal links, switches

Circuit Switching

- Basics: network resources allocated to and reserved for "call" between source and destination
 - end-end resources (e.g., bandwidth) are divided into "pieces"
 - resource pieces allocated to calls
- How to divide link bandwidth into "pieces"
 - frequency division
 - time division

TDM, FDM

TDM: Time Division Mutlplexing

Circuit Switching: Resource Sharing

- TDM/FDM lead to deterministic resource occupations deterministic multiplexing
 - while a sender has no data to send, its share of resource (time slot, or frequency band) remains idle, i.e., cannot be used by other senders
- The maximum number of resource pieces, e.g., time slots, is limited
 - only limited number of hosts can send data at a moment
- Remarks: not suitable for computer communications (usually quite burst!)

Packet Switching

Basics

- hosts break application messages into packets
- packets are forwarded from one switch to the next, across links on path from source to destination
- each packet is transmitted at full link capacity

Store-and-forward

 entire packet must arrive at a switch before it can be transmitted on next link

Determining Output Ports

- When forwarding packets, switch should determine appropriate output port(s) toward destination(s)
- Classification based on means of determining output ports
 - using switching table: datagram switching, virtual circuit switching
 - indicated by source: source routing

Packet Switching: Resource Sharing

- Network resource is shared on-demand by flows of packets — statistical multiplexing
 - a flow of packets has no fixed pattern
- Efficient network resource utilization
- Appropriate to burst computer communications
- Therefore, modern Advanced Computer Networking use packet switching
- Also causes two common problems
 - Network congestion: network links may get congested due to large number of packets injected shortly
 - Challenges of resource allocation to guarantee quality of service, required by some network applications, e.g., multimedia streaming

Outline

- Basics of switching
- Packet switching mechanisms
 - Datagram switching, virtual circuit switching
- Network performance
 - Throughput, delay, delay x bandwidth product, application needs

Datagram Switching

- A host can send packets anywhere at any time
 - Each packet (also referred to as datagram) contains complete destination address
- Upon receiving a packet, a switch
 - looks at the packet's destination address,
 - consults its switching table to determine output port,
 - and stores-and-forwards this packet
- Examples: switched Ethernet, IP networks

Datagram Switching: Timing

Datagram Switching Table: Example

Destination	Port
А	3
В	0
C	3
D	3
Ш	2
F	1
G	0
Н	0

Switching table in switch 2

Datagram Forwarding Path

- All datagrams, even from the same source and to the same destination, are independently forwarded by the switches based on their switching tables
- Datagram forwarding paths are actually specified by corresponding entries in switches' switching tables
- Datagram switches run specific algorithms/protocols to build up their switching tables
 - Algorithms/protocols: how to figure out switching tables
 - Concerns: topology, ...?

Features of Datagram Switching

- Connectionless
 - No state information (associated with connections) maintained at a host/switch
- Per-packet processing (i.e., stateless)
 - All packets, even from the same source and to the same destination, are independently forwarded along their paths
- Effect of network failure
 - Failure of a switch or a link might not have any serious impacts on communications
- Hard to guarantee delivery service

Virtual Circuit Switching

- A connection, referred to as virtual circuit (VC), should be established between source and destination before data transfer
- Packets are forwarded along their VCs respectively
 - Each packet includes its virtual circuit identifier (VCI), other than complete destination address
 - Upon receiving a packet, a switch consults its VC table the packet's VCI, to determine output port, and stores-and-forwards this packet
- Examples: MPLS, ATM, Frame Relay, X.25

Virtual Circuit Switching: Timing

Virtual Circuit Table

- Each entry includes four fields
 - incoming interface
 - incoming virtual circuit identifier (VCI)
 - outgoing interface
 - outgoing VCI
- VCI has local significance only on a given link, not globally significant for the VC
- Pair <incoming interface, incoming VCI> uniquely identifies a specific VC through a switch

Virtual Circuit Table: Example

VC table in switch 1

IfIn	VCIIn	IfOut	VCIOut
2	5	1	11
	•••		•••

VC table in switch 2

lfln	VCIIn	IfOut	VCIOut
3	11	2	7

IfIn	VCIIn	IfOut	VCIOut
0	7	1	4

VC table in switch 3

Virtual Circuits

- Two types
 - permanent virtual circuits (PVC)
 - switched virtual circuits (SVC)

PVC

- manually set up by network administrator, or signaling started by network administrator
- long-lived

SVC

- dynamically set up by signaling started by a host
- short-lived

SVC Setup Process

Source host

 sends a setup message, which includes complete address of destination

Intermediate switches

- note port number over which the setup message arrives
- choose an unused VCI number
- determine the output port number
- create an entry in the VC table
- forward the setup message to downstream switch

Destination host

- chooses an available VCI value
- sends acknowledgement message along the reverse path

Intermediate switches

complete the VC table entry

SVC Setup: Example

Packet Forwarding Path and VC

- Packets are forwarded by the switches based on their VC tables
 - each packet is associated with a specific VC, indicated by the VCI in packet header
- VC is a logical connection
 - expressed by a concatenation of pairs <incoming interface.,
 incoming VCI> stored in VC tables at the switches VC traverses
 - indicating the forwarding path of associated packets within a network
- When establishing a VC, switches should determine where to place it, i.e., what next switch to take
 - The problem here is similar to the one with datagram switching network in building up its switching table

Features of Virtual Circuit Switching

- Connection-oriented
 - state information (VCs) maintained at a node
 - a host waits at least one RTT for connection setup before sending first data packet
- Each packet is related with a VC, and forwarded along the path specified by this VC
- Effect of network failure
 - switch/link failure results in all VCs over it broken
- Feasible to reserve network resource for delivering the packets of a connection (VC), and consequently to guarantee some level of service

Outline

- Basics of switching
- Packet switching mechanisms
 - Datagram switching, virtual circuit switching

- Network performance
 - Throughput, delay, delay x bandwidth product, application needs

Flow Throughput

- Flow throughput: rate (bits/time unit) at which bits transferred between sender and receiver
 - instantaneous: rate at given point in time
 - average: rate over long(er) period of time

Flow Throughput (cont.)

• $R_s < R_c$ What is average end-to-end throughput?

• $R_s > R_c$ What is average end-to-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Flow Throughput: Network Scenario

- Per-flow throughput: min(R_c, R_s, R/10)
- In practice
 - Backbone links' rates are very high, and access links' rates are low, i.e., R_c or R_s is often bottleneck

10 flows (fairly) share backbone bottleneck link R bits/sec

Network Throughput

- Network throughput: sum of output rates of all endto-end flows in a network Σ_iR_i
- Factors that influence network throughput?

M end-to-end packet flows

Delay

- Packets queue in switch buffers, i.e., store-and-forward
 - packet arrival rate exceeds output link capacity
 - packets queue, wait for turn
- Packet delay: how long it takes a packet to travel from one end of network to the other
- Round-Trip Time (RTT): two-way delay from sender to receiver and back

Packet Loss

- Queue preceding link in buffer has finite capacity
- Packet arriving to full queue dropped
- Lost packet may be retransmitted by previous node, by source end system, or not at all

Sources of Delay

1. Nodal processing

- check bit errors
- determine output link

2. Queueing

- time waiting at output link for transmission
- depends on congestion level of router

Sources of Delay (cont.)

3. Transmission delay

- R = link bandwidth (bps)
- L = packet length (bits)
- time to send bits into link = L/R

4. Propagation delay

- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

Note: s and R are very different quantities!

Nodal Delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = processing delay (usually omitted!)
 - typically a few microsecs or less
- d_{queue} = queuing delay
 - depends on congestion
- d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- d_{prop} = propagation delay
 - a few microsecs to hundreds of msecs

Queueing Delay

- R = link bandwidth (bps)
- L = packet length (bits)
- a = average packet arrival rate

traffic intensity = La/R

- La/R ~ 0: average queueing delay small
- La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

Influence of Bandwidth and Delay

- Effective flow throughput from application's point of view
 - Transfer time = transfer size / bandwidth + RTT
 - Throughput = transfer size / transfer time
 - Example: 1MB file transferred across 1Gbps link with 100ms RTT, throughput?

Network throughput

- larger amount of data (from various end-to-end sessions)
 multiplexed, more efficient utilization of network resource
- High-speed network
 - higher speed, faster transmission of large amount of data
 - however, propagation delay is limited by physical law

Needs of Applications

- Variance of bandwidth requirement
 - average rate and burst
 - example: streaming compressed video
- Problems caused by rate variance
 - congestion, packet loss due to buffer overflow
 - solution: optimized design/allocation of buffer capacity/space
- Delay jitter
 - variation of delay, caused by the variance of queuing delay
- Problem caused by jitter
 - not smooth (especially for multimedia applications)
 - solution for playback application: delaying and buffering at destination host
 - but not complete for interactive multimedia and live streaming

Summary

- Basics of packet switching
 - Fundamentals of datagram switching, virtual circuit switching
- Performance of packet-switched network
 - Throughput, latency, loss, application needs
- References
 - Sec. 1.2, 1.5, textbook
 - Sec. 1.4, [KR12]