Föreläsning 3 i ADK

Datastrukturer

Viggo Kann KTH

Översikt över kända datastrukturer

Linjära strukturer:

• Kö:

• Stack:

• Lista:

Array/vektor:

Översikt över kända datastrukturer

Träd och grafer:

Binärt träd:

Riktad graf:

Representerad som grannmatris:

	1	2	3	4	5
1		1	1	1	
2			1		
3	l			1	
1 2 3 4 5				1	1
5	1	1			

Allmänt träd:

Representerad som kantmatris:

1	L	-1		-1			-1			1
2	2	1	-1						1	
3	3		-1 1	1	-1					
4	1				1	-1	1	-1		
5	5							1	-1	-1

Binära sökträd

Ett träd som är sorterat så att mindre element är till vänster kallas sökträd.

Exempel:

Binära sökträd

```
Sök efter ett värde x i ett sökträd:
```

```
function TREESEARCH(root, x)
    if root = nil then return nil
    if root.key > x then
        return TREESEARCH(root.left, x)
    if root.key < x then
        return TREESEARCH(root.right, x)
    return root</pre>
```

PRE: root är rot till ett sökträd

POST: $(x \text{ finns i trädet} \Rightarrow x \text{-nod i trädet returneras}) \land (x \text{ finns inte i trädet} \Rightarrow \textbf{nil returneras})$

Korrekthetsbevis görs med induktion över trädstrukturen (varje delträd är ett sökträd)

Balanserade träd

Problem med binära sökträd:

• Obalanserade träd tar tid att söka i.

Dålig lösning:

• Balansera trädet, tar tid $\mathcal{O}(n)$.

Bättre lösning:

• Håll trädet balanserat efter varje insättning.

Balanserade träd

Bättre lösning:

Håll trädet balanserat efter varje insättning.

Rödsvarta träd realiserar detta genom att vidmakthålla följande tre egenskaper:

- 1 Varje trädnod är antingen röd eller svart
- 2 En röd nod kan inte ha ett rött barn.
- 3 I varje stig från en nod till vilket löv som helst under noden finns det lika många svarta noder.

Rödsvarta träd

Sökning

- ullet Använd vanlig trädsökningsalgoritm som tar tid $\mathcal{O}(\mathsf{tr}$ äddjupet)
- Största träddjupet i ett rödsvart träd begränsas av $2\log_2 n \Rightarrow$ söktid $\mathcal{O}(\log n)$

Insättning

- Sätt in elementet med vanlig trädinsättning som ett rödfärgat löv
- Om nya elementets förälder också var röd uppfylls inte egenskap 2, så då måste vi omforma trädet med hjälp av högst $\mathcal{O}(\log n)$ färgändringar och rotationer:

$$\alpha \qquad \beta \qquad \begin{array}{c} \text{H\"{o}ger-} \\ \text{rotera} \\ \\ \gamma \\ \hline \\ \text{V\"{a}nster-} \\ \text{rotera} \end{array} \qquad \alpha \qquad \times \\ \\ \gamma \\ \gamma \\ \\$$

• Ger insättningstid $\mathcal{O}(\log n)$

Borttagning

• Ta bort noden och fixa till som ovan \Rightarrow Tid $\mathcal{O}(\log n)$

ADK - F3

8

Prioritetsköer

Datastruktur där varje post har en prioritet, dvs. ett tal som anger hur viktig posten är.

Operationer:

- Insert: Stoppar in en ny post i prioritetskön
- Remove: Plockar ut posten med högst prioritet ur kön och returnerar den

Exempel på användningsområden:

- Jobbhantering på fleranvändardatorer Jobbet med högst prioritet ska köras först
- Simulering av händelser Varje händelse ska inträffa vid en viss tidpunkt; händelserna ska bearbetas i tidsordning
- Sortering Låt sorteringsnycklarna ange prioriteten
 - 1 Stoppa in alla poster som ska sorteras i prioritetskön
 - Plocka ut en post i taget. Posterna kommer i omvänd sorteringsordning, dvs största först och minsta sist.

Heapar - snabb representation av prioritetsköer

- Komplett binärträd alla nivåer i trädet är fyllda utom den sista.
 Den sista ska fyllas från vänster.
- Heapordning: Större element ovanpå mindre, dvs. varje nods barn är mindre än föräldern (eller lika stora).
- Största element finns därför alltid i roten.

Exempel på heap:

Heapar - snabb representation av prioritetsköer

Effektiv lagring av komplett binärträd:

Lagra i array A så att

- Roten finns i A[1]
- Barnen till noden i A[i] finns i A[2i] och A[2i+1]

Exempel: Heapen nedan lagras som

A: 17 9 11 6 8 1 5 2 4 3 1 2 3 4 5 6 7 8 9 10

Realisering av operationen Remove i en heap

Elementet som ska tas bort ligger i roten (A[1]).

- 1 Spara undan elementet som ligger i roten.
- 2 Ta bort det sista elementet i heapen och lägg det i roten istället.

ADK - F3 1:

Realisering av operationen Remove i en heap

Steg 3 och 4 bildar tillsammans operationen Downheap

3 Är rotelementet mindre än den största av sina barn? Byt i så fall roten och största barnet.

4 Är elementet fortfarande mindre än den största av sina barn? Byt i så fall och gör om denna punkt.

5 Nu är heapen ordnad igen (tog tid $O(\log n)$).

Förberäknad funktion

- Beräkna f(x) för alla x och lagra som en array f[x]
- Varje anrop av f går sedan på konstant tid!

Exempel: Funktion u2l(c) som översätter från stora bokstäver till små bokstäver (programkod i C)

Initiering:

Användning av funktionen:

Trie

En trie är en implementation av en mängd av strängar som ett träd

Exempel på binär trie: {001, 01, 10, 100, 11, 110}

Exempel på bokstavstrie (automat): {BAD, BAR, BARA, BARK, BO, BOCK}

Svårt att lagra effektivt!

Latmanshashning

- Hasha bara på de tre första bokstäverna i söknyckeln. Använd sedan binärsökning
- Lämpligt för sökning med få diskaccesser i stor text när indexet inte kan ligga i primärminnet

Exempel: Indexera stort svensk-engelsk lexikon

Givet:

- Stor fil L med hela lexikontexten
- Index I där varje rad är: <sökord> <position i L>

Skapa sökindex:

- Sortera I med sort
- Skapa en indexarray A[abc] som för varje abc anger var i I första ordet som börjar så finns

Förberedelse inför sökningar:

- Läs in A från fil
- Öppna filerna I och L

```
function Sökningsalgoritm(w)
    wprefix ← första 3 bokstäverna i w
    i \leftarrow A[wprefix]
    j \leftarrow A[wprefix+1]
    while j-i > 1000 \text{ do}
       m \leftarrow \left| \frac{i+j}{2} \right|
        Gå till position m i I
        Läs in nästa ord från I till s
        if s \leq w then i \leftarrow m
        else j \leftarrow m
    Gå till position i i I
    while True do
        Läs in nästa ord från I till s
        if s = w then
            Läs in positionen till x
            return x
        if s > w then
            return notfound
```

Skipplistor

- Probabilistisk datastruktur
- Enkel att implementera
- I allmänhet lika snabb som balanserade träd att söka i och enklare att ändra på

Skipplistor

Programkodsexempel i C:

• En elementpost deklareras av typen:

```
struct skipnode {
   int key;
   struct skipnode *forward[1]; // olika många pekare
}
   // beroende på nivå
```

Allokering av elementpost på nivå k:

Sökning i skipplistor

- Börja i startpostens högsta nivå
- Om forward-pekaren pekar på ett för stort element går vi ner en nivå, annars går vi framåt

Sökning i skipplistor

- Vid insättning och borttagning av element söker man på samma sätt, men håller reda på alla x i slutet av for-slingan.
- När man skapar ett nytt element slumpar man fram dess nivå:

Analys av skipplistor

Antag att:

- n = antal element i datastrukturen
- ullet p= sannolikheten att ett element på nivå i också finns på nivå i+1

Genomsnittligt antal pekare för ett element:

$$\frac{\sum\limits_{k=1}^{\infty} \text{ antal element på nivå } k}{n} = \frac{\sum\limits_{k=1}^{\infty} np^{k-1}}{n} = 1 + p + p^2 + \dots = \frac{1}{1-p}$$

Analys av skipplistor

Nivå med bara $\frac{1}{p}$ element:

$$n \cdot p^{k-1} = \frac{1}{p} \Leftrightarrow n = \left(\frac{1}{p}\right)^k \Leftrightarrow k = \log_{\frac{1}{p}} n$$

Låt $L(n) = \log_{\frac{1}{n}}(n)$

Förväntat antal jämförelser vid sökning:

- Vi mäter sökstigens längd bakifrån (från den funna posten åt vänster och uppåt till startposten)
- Vid varje rörelse åt vänster eller uppåt görs en jämförelse

Analys av sökstigens längd

- Låt c(k) = förväntat längd på en sökstig som går upp k nivåer
- Rekursionsekvation: $\begin{cases} c(0)=0 \\ c(k)=(1-p)(1+c(k))+p(1+c(k-1)) \end{cases}$
- Där 1-p är sannolikheten att vi är kvar på samma nivå, och p att vi byter nivå
- $\Rightarrow p \cdot c(k) = 1 + p \cdot c(k-1) \Rightarrow c(k) = \frac{1}{p} + c(k-1) \Rightarrow c(k) = \frac{k}{p}$
- ullet Längd av sökstig från nivå 1 till nivå $\mathit{L}(\mathit{n})$ är $\mathit{C}(\mathit{L}(\mathit{n})-1)=rac{\mathit{L}(\mathit{n})-1}{\mathit{p}}$
- På nivå L(n) förväntas $\frac{1}{p}$ element
- Om vi startar på nivå L(n) blir totala längden $\frac{L(n)-1}{p}+\frac{1}{p}=\frac{L(n)}{p}$

Analys av sökstigens längd

Hur mycket längre blir stigen om vi börjar sökningen från översta nivån?

- Pr[högsta nivån > k] = 1 Pr[högsta nivån $\le k$] = 1 (Pr[element i har nivå $\le k$]) = 1 $(1 p^k)^n \le n \cdot p^k$
- Låt X= antal nivåer över L(n) som högsta nivån är, givet att vi har $\frac{1}{p}$ element på nivå L(n).
- $E[X] = \frac{1}{p}(p^1 + p^2 + p^3 + \dots) = 1 + p + p^2 + \dots = \frac{1}{1-p}$
- Total sökstigslängd: $\frac{L(n)}{p} + \frac{1}{1-p}$

Skipplistor i praktiken

Sökstigens längd om

•
$$p = \frac{1}{2}$$
: $2 \log_2 n + 2$

•
$$p = \frac{1}{4}$$
: $4 \log_4 n + \frac{4}{3} = \frac{4 \log_2 n}{\log_2 4} + \frac{4}{3} = 2 \log_2 n + \frac{4}{3}$

Antal pekare om

•
$$p = \frac{1}{2}$$
: $\frac{1}{1 - \frac{1}{2}} = 2$

•
$$p = \frac{1}{3}$$
: $\frac{1}{1 - \frac{1}{4}} = \frac{4}{3} \approx 1.33$

Söktiden är ungefär lika för $p=\frac{1}{2}$ och $p=\frac{1}{4}$, minnesutrymmet är betydligt mindre för $p=\frac{1}{4}$, men söktidens varans ökar om $p=\frac{1}{4}$.

Skipplistor i praktiken

Jämförelse med implementation av balanserade träd:

- Söktiden för skipplista och balanserat träd är ungefär lika
- Insättnings- och borttagningstiden för balanserat träd är ungefär dubbelt så lång som för skipplista.

Implementation av skipplistor som du kan pröva:

• /afs/nada.kth.se/info/adk20/skiplist

Datastrukturs komplexitet

	Tid för uppslagning			nsättning ttagning
	Värsta fallet	Medel	Värsta fallet	Medel
Sorterad array				$\mathcal{O}(n)$
Binärt sökträd				$\mathcal{O}(\log n)$
Heap (bara största, alternativt				$\mathcal{O}(\log n)$
minsta, hittas enkelt)				, - ,
Hashtabell				
(nästa/föregående element				$\mathcal{O}(1)$
kan inte hittas enkelt)				
Rödsvart träd				$\mathcal{O}(\log n)$