

日本国特許庁 JAPAN PATENT OFFICE

07.07.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 7月 9日

出 願 番 号 Application Number:

特願2002-200674

[ST. 10/C]:

[JP2002-200674]

出 願 人
Applicant(s):

オリヱント化学工業株式会社

REC'D 2 2 AUG 2003

WIPO PCT

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

BEST AVAILABLE CON

2003年 8月 7日

特許庁長官 Commissioner, Japan Patent Office 今井康

111 = - 352 -

【書類名】 特許願

【整理番号】 P02-70901

【提出日】 平成14年 7月 9日

【あて先】 特許庁長官殿

【発明者】

【住所又は居所】 大阪府寝屋川市讃良東町8番1号 オリヱント化学工業

株式会社内

【氏名】 竹内 浩

【発明者】

【住所又は居所】 大阪府寝屋川市讃良東町8番1号 オリヱント化学工業

株式会社内

【氏名】 須方 一明

【特許出願人】

【識別番号】 000103895

【住所又は居所】 大阪府大阪市旭区新森1丁目7番14号

【氏名又は名称】 オリヱント化学工業株式会社

【代理人】

【識別番号】 100095522

【弁理士】

【氏名又は名称】 高良 尚志

【手数料の表示】

【予納台帳番号】 002244

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9705812

【プルーフの要否】 要

【発明の名称】 核効果抑制剤、結晶性樹脂組成物及び結晶性樹脂組成物の結晶 化制御法

【特許請求の範囲】

【請求項1】

結晶性樹脂組成物中において結晶性樹脂の結晶化を制御する化合物からなる核効果抑制剤であって、

前記化合物が、4 員環以上の環状構造が3 個以上縮合環化した多環状構造から選ばれる少なくとも1 つの構造を備えた化合物のうち、ニグロシン、アニリンブラック、及び銅フタロシアニン誘導体を除く何れかの化合物であることを特徴とする核効果抑制剤。

. 【請求項2】

上記核効果抑制剤が次の要件(A)を満たすものである請求項1記載の核効果抑制剤。

(A) その核効果抑制剤を含有する結晶性樹脂組成物の結晶化温度が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度よりも低下する

【請求項3】

上記核効果抑制剤が次の要件(B)を満たすものである請求項1記載の核効果抑制剤。

(B) その核効果抑制剤を結晶性樹脂100重量部に対し0.1乃至30重量 部含有する結晶性樹脂組成物の結晶化温度が、前記結晶性樹脂組成物における結 晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度よりも4℃以 上低下する

【請求項4】

上記核効果抑制剤が次の要件(C)を満たすものである請求項1記載の核効果抑制剤。

(C) その核効果抑制剤を含有する結晶性樹脂組成物の結晶化速度が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないもの

【請求項5】

上記核効果抑制剤が次の要件(D)を満たすものである請求項1記載の核効果抑制剤。

(D) その核効果抑制剤を結晶性樹脂100重量部に対し0.1万至30重量部含有する結晶性樹脂組成物の補外結晶化開始温度と補外結晶化終了温度の差が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの補外結晶化開始温度と補外結晶化終了温度の差よりも2℃以上増加する

【請求項6】

上記核効果抑制剤が次の要件(E)を満たすものである請求項1記載の核効果抑制剤。

(E) その核効果抑制剤を含有する結晶性樹脂組成物における球晶の大きさが 、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有し ないものにおける球晶の大きさより大きくなる

【請求項7】

上記核効果抑制剤が次の要件(F)を満たすものである請求項1記載の核効果抑制剤。

(F) その核効果抑制剤を結晶性樹脂100重量部に対し0.1万至30重量 部含有する結晶性樹脂組成物における球晶の平均径が、前記結晶性樹脂組成物に おける結晶性樹脂であって前記核効果抑制剤を含有しないものにおける球晶の平 均径の2倍以上となる

【請求項8】

上記核効果抑制剤が次の要件(G)を満たすものである請求項1記載の核効果抑制剤。

(G) その核効果抑制剤を含有する結晶性樹脂組成物における所定面積中の球晶の数が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける前記所定面積中の球晶の数より少なくなる

【請求項9】

上記核効果抑制剤が次の要件(H)を満たすものである請求項1記載の核効果抑制剤。

(H) その核効果抑制剤を結晶性樹脂100重量部に対し0.1万至30重量 部含有する結晶性樹脂組成物における所定面積中の球晶の数が、前記結晶性樹脂 組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける 前記所定面積中の球晶の数に対して2/3倍以下に減少する

【請求項10】

上記化合物が、下記(a)乃至(d)から選ばれる少なくとも1つの多環状構造を備えてなる請求項1記載の核効果抑制剤。

- (a) 4 員環以上の環状構造が3個縮合環化した多環状構造
- (b) 4 員環以上の環状構造が 4 個縮合環化した多環状構造
- (c) 4 員環以上の環状構造が 5 個縮合環化した多環状構造
- (d) 4 員環以上の環状構造が 6 個以上縮合環化した多環状構造

【請求項11】

上記化合物が、下記(a)乃至(d)から選ばれる少なくとも1つの多環状構造を備えてなる請求項1記載の核効果抑制剤。

- (a) 5 員環および/または6 員環の環状構造が3 個縮合環化した多環状構造
- (b) 5 員環および/または6 員環の環状構造が4 個縮合環化した多環状構造
- (c)5員環および/または6員環の環状構造が5個縮合環化した多環状構造
- (d) 5 員環および/または 6 員環の環状構造が 6 個以上縮合環化した多環状構造

【請求項12】

上記環状構造として芳香環構造又はヘテロ環構造を有する請求項10又は11 記載の核効果抑制剤。

【請求項13】

上記(a)乃至(d)の多環状構造が、2個以上の6員環を有する構造である 請求項10又は11記載の核効果抑制剤。

【請求項14】

上記(a)乃至(d)の多環状構造がそれぞれ6員環を有するものであり、その6員環がベンゼン環および/またはピリジン環である請求項10又は11記載

【請求項15】

上記(a)乃至(d)の多環状構造がそれぞれ5員環を有するものであり、その5員環がシクロペンタジエン環および/またはピロール環である請求項10又は11記載の核効果抑制剤。

【請求項16】

上記の4員環以上の環状構造が3個縮合環化した多環状構造が、下記の骨格構造 a-1乃至 a-8 から選ばれる1種以上であり、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である請求項10記載の核効果抑制剤。

【化1】

骨格構造 a-1

【化2】

骨格構造 a-2

【化3】

骨格構造 a - 3

【化4】。

骨格構造 a-4

【化5】

骨格構造 a - 5

【化6】

骨格構造 a - 6

【化7】

骨格構造 a - 7

【化8】

骨格構造 a - 8

【請求項17】

上記の4員環以上の環状構造が4個縮合環化した多環状構造が、下記の骨格構造b-1乃至b-12から選ばれる1種以上であり、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である請求項10記載の核効果抑制剤。

【化9】

骨格構造b-1

【化10】

骨格構造b-2

【化11】

骨格構造b-3

【化12】

骨格構造b-4

【化13】

骨格構造 b - 5

【化14】

骨格構造 b - 6

【化15】

【化16】

骨格構造 b - 8

【化17】

骨格構造b-9

【化18】

骨格構造b-10

【化19】

骨格構造b-11

【化20】

骨格構造 b-12

【請求項18】

上記の4員環以上の環状構造が5個縮合環化した多環状構造が、下記の骨格構造 c-1乃至c-8から選ばれる1種以上であり、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である請求項10記載の核効果抑制剤。

【化21】

骨格構造 c-1

【化22】

骨格構造 c-2

【化23】

骨格構造 c - 3

【化24】

骨格構造 c - 4

【化25】

骨格構造 c - 5

【化26】

骨格構造 c-6

【化27】

骨格構造 c - 7

【化28】

骨格構造 c-8

【請求項19】

上記の4員環以上の環状構造が6個以上縮合環化した多環状構造が、下記の骨格構造 d-1乃至 d-10から選ばれる1種以上であり、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である請求項10記載の核効果抑制剤。

骨格構造 d-1

【化30】

骨格構造 d-2

【化31】

骨格構造d-3

【化32】

骨格構造 d-4

[化33]

骨格構造d-5

【化34】

骨格構造d-6

【化35】

骨格構造 d-7

【化36】

 $\mathfrak{D}=\mathfrak{g}^{-1}$

骨格構造 d - 8 【化37】

骨格構造 d-9

【化38】

骨格構造 d-10

【請求項20】

上記骨格構造 a - 1 が、下記の基本構造 1 乃至 8 から選ばれる 1 種以上である 請求項 1 6 記載の核効果抑制剤。

【化39】

(a-1-1) 基本構造 1

【化40】

(a-1-2) 基本構造 2

【化41】

(a-1-3) 基本構造3

【化42】

(a-1-4) 基本構造 4

【化43】

(a-1-5) 基本構造 5

【化44】

(a-1-6) 基本構造 6

【化45】

(a-1-7) 基本構造7

【化46】

(a-1-8) 基本構造 8

【請求項21】

上記骨格構造 a - 2 が、下記の基本構造 9 乃至 1 1 から選ばれる 1 以上である 請求項 1 6 記載の核効果抑制剤。

【化47】

(a-2-1) 基本構造 9

【化48】

(a-2-2) 基本構造10

【化49】

(a-2-3) 基本構造11

【請求項22】

上記骨格構造 a - 3 が、下記の基本構造 1 2 乃至 1 7 から選ばれる 1 以上である請求項 1 6 記載の核効果抑制剤。

【化50】

(a-3-1) 基本構造12

【化51】

(a-3-2) 基本構造13

【化52】

(a-3-3) 基本構造14

【化53】

(a-3-4) 基本構造15

【化54】

(a-3-5) 基本構造16

【化55】

(a-3-6) 基本構造17

【請求項23】

上記骨格構造 a - 4 が、下記の基本構造 1 8 乃至 2 3 から選ばれる 1 以上である請求項 1 6 記載の核効果抑制剤。

【化56】

(a-4-1) 基本構造18

【化57】

(a-4-2) 基本構造19

【化58】

(a-4-3) 基本構造20

【化59】

(a-4-4) 基本構造21

【化60】

(a-4-5) 基本構造22

【化61】

(a-4-6) 基本構造23

【請求項24】

上記骨格構造 a - 5 が、下記の基本構造 2 4 乃至 3 8 から選ばれる 1 種以上で

ある請求項16記載の核効果抑制剤。

【化62】

(a-5-1) 基本構造 2 4

【化63】

(a-5-2) 基本構造 2 5

【化64】

(a-5-3) 基本構造26

【化65】

(a-5-4) 基本構造27

【化66】

(a-5-5) 基本構造28

[基本構造 28 中、A は、S 、N-R 、 N^+ $(-R^1)$ $-R^2$ 又はO を示し、R 、 R^1 、D び R^2 は、それぞれ H 、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化67】

(a-5-6) 基本構造 2 9

【化68】

(a-5-7) 基本構造30

【化69】

(a-5-8) 基本構造31

【化70】

(a-5-9) 基本構造32

【化71】

(a-5-10) 基本構造33

[基本構造 3 3 中、A は、S 、N-R 、 N^+ $(-R^1)$ $-R^2$ 又はO を示し、R 、 R^1 、B び R^2 は、それぞれ H 、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化72】

(a-5-11) 基本構造34

【化73】

(a-5-12) 基本構造35

【化74】

(a-5-13) 基本構造36

【化75】

(a-5-14) 基本構造37

【化76】

(a-5-15) 基本構造38

[基本構造 38 中、A は、S 、N-R 、 N^+ ($-R^1$) $-R^2$ 又はO を示し、R 、 R^1 、及び R^2 は、それぞれ H、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【請求項25】

上記骨格構造 a - 6 が、下記の基本構造 3 9 乃至 4 9 から選ばれる 1 以上である請求項 1 6 記載の核効果抑制剤。

【化77】

(a-6-1) 基本構造39

【化78】

(a-6-2) 基本構造40

【化79】

(a-6-3) 基本構造41

【化80】

(a-6-4) 基本構造42

【化81】

(a-6-5) 基本構造43

【化82】

(a-6-6) 基本構造44

【化83】

(a-6-7) 基本構造 4 5

【化84】

(a-6-8) 基本構造 4 6

【化85】

(a-6-9) 基本構造 4 7

【化86】

(a-6-10) 基本構造48

【化87】

(a-6-11) 基本構造49

【請求項26】

上記骨格構造 a - 7 が下記の基本構造 5 0 である請求項 1 6 記載の核効果抑制 剤。

【化88】

(a-7-1) 基本構造50

【請求項27】

上記骨格構造 a - 8 が下記の基本構造 5 1 乃至 5 3 から選ばれる 1 以上である 請求項 1 6 記載の核効果抑制剤。

【化89】

(a-8-1) 基本構造 5 1

【化90】

(a-8-2) 基本構造52

【化91】

(a-8-3) 基本構造53

【請求項28】

上記4員環以上の環状構造が3個縮合環化した多環状構造が、下記の基本構造 54万至60から選ばれる1種以上である請求項10記載の核効果抑制剤。

【化92】

(a-9-1) 基本構造54

【化93】

(a-9-2) 基本構造 5 5

【化94】

(a-9-3) 基本構造 5 6

【化95】

(a-9-4) 基本構造 5 7

【化96】

(a-9-5) 基本構造58

【化97】

(a-9-6) 基本構造59

【化98】

(a-9-7) 基本構造60

【請求項29】

上記骨格構造 b-1が、下記の基本構造 6 1 乃至 6 3 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化99】

(b-1-1) 基本構造61

【化100】

(b-1-2) 基本構造62

【化101】

(b-1-3) 基本構造63

【請求項30】

上記骨格構造 b - 2 が、下記の基本構造 6 4 乃至 6 9 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化102】

(b-2-1) 基本構造64

【化103】

(b-2-2) 基本構造 65

【化104】

(b-2-3) 基本構造 6 6

【化105】

(b-2-4) 基本構造 6 7

[基本構造 6 7中、Aは、S、N-R、 N^+ $(-R^1)$ $-R^2$ 又はOを示し、R、 R^1 、D U R^2 は、それぞれ H、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化106】

(b-2-5) 基本構造 6 8

[基本構造 68 中、A は、S 、N-R 、 N^+ ($-R^1$) $-R^2$ 又はO を示し、R 、 R^1 、及び R^2 は、それぞれ H、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化107】

(b-2-6) 基本構造 6 9

【請求項31】

上記骨格構造 b - 3 が、下記の基本構造 7 0 乃至 7 3 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化108】

(b-3-1) 基本構造70

【化109】

(b-3-2) 基本構造71

【化110】

(b-3-3) 基本構造72

【化111】

(b-3-4) 基本構造73

【請求項32】

上記骨格構造 b - 4 が、下記の基本構造 7 4 及び 7 5 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化112】

(b-4-1) 基本構造74

【化113】

(b-4-2) 基本構造 7 5

【請求項33】

上記骨格構造 b - 5 が、下記の基本構造 7 6 乃至 7 8 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化114】

(b-5-1) 基本構造76

【化115】

(b-5-2) 基本構造77

【化116】

(b-5-3) 基本構造78

【請求項34】

上記骨格構造 b - 6 が、下記の基本構造 7 9 乃至 8 1 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化117】

(b-6-1) 基本構造79

【化118】

(b-6-2) 基本構造80

【化119】

(b-6-3) 基本構造 8 1

【請求項35】

上記骨格構造 b - 7が、下記の基本構造 8 2 及び 8 3 から選ばれる 1 種以上である請求項 1 7 記載の核効果抑制剤。

【化120】

(b-7-1) 基本構造82

【化121】

(b-7-2) 基本構造83

【請求項36】

上記骨格構造 b - 8 が下記の基本構造 8 4 である請求項 1 7 記載の核効果抑制 剤。

【化122】

(b-8-1) 基本構造84

【請求項37】

上記骨格構造 b - 9 が下記の基本構造 8 5 である請求項 1 7 記載の核効果抑制 剤。

【化123】

(b-9-1) 基本構造85

【請求項38】

上記骨格構造 b-10が下記の基本構造 86及び 87から選ばれる1種以上である請求項17記載の核効果抑制剤。

【化124】

(b-10-1) 基本構造86

【化125】

(b-10-2) 基本構造87

【請求項39】

上記骨格構造 b - 1 1 が下記の基本構造 8 8 である請求項 1 7 記載の核効果抑制剤。

【化126】

(b-11-1) 基本構造88

【請求項40】

上記骨格構造 b-12が下記の基本構造89である請求項17記載の核効果抑

制剤。

【化127】

$$O = \bigcup_{N} \bigcup_{N}$$

(b-12-1) 基本構造89

【請求項41】

上記4員環以上の環状構造が4個縮合環化した多環状構造が、下記の基本構造 90万至93から選ばれる1種以上である請求項10記載の核効果抑制剤。

【化128】

(b-13-1) 基本構造90

【化129】

(b-13-2) 基本構造91

【化130】

(b-13-3) 基本構造92

【化131】

(b-13-4) 基本構造93

【請求項42】

上記骨格構造 c - 1 が、下記の基本構造 9 4 及び 9 5 から選ばれる 1 種以上である請求項 1 8 記載の核効果抑制剤。

【化132】

(c-1-1) 基本構造94

【化133】

(c-1-2) 基本構造95

【請求項43】

上記骨格構造 c - 2 が下記の基本構造 9 6 である請求項 1 8 記載の核効果抑制 剤。

【化134】

(c-2-1) 基本構造 9 6

【請求項44】

上記骨格構造 c - 3 が、下記の基本構造 9 7 である請求項 1 8 記載の核効果抑制剤。

【化135】

【請求項45】

上記骨格構造 c - 4 が、下記の基本構造 9 8 及び 9 9 から選ばれる 1 種以上である請求項 1 8 記載の核効果抑制剤。

【化136】

(c-4-1) 基本構造 9 8

【化137】

(c-4-2) 基本構造99

【請求項46】

上記骨格構造 c - 5 が、下記の基本構造 1 0 0 及び 1 0 1 から選ばれる 1 種以上である請求項 1 8 記載の核効果抑制剤。

【化138】

(c-5-1) 基本構造100

【化139】

(c-5-2) 基本構造101

【請求項47】

上記骨格構造 c - 6 が下記の基本構造 1 0 2 である請求項 1 8 記載の核効果抑制剤。

【化140】

【請求項48】

上記骨格構造 c - 7 が下記の基本構造 1 0 3 である請求項 1 8 記載の核効果抑制剤。

【化141】

(c-7-1) 基本構造103

【請求項49】

上記骨格構造 c - 8 が下記の基本構造 1 0 4 である請求項 1 8 記載の核効果抑制剤。

【化142】

$$O = \bigcup_{N} \bigcup_{N}$$

(c-8-1) 基本構造104

【請求項50】

上記4員環以上の環状構造が5個縮合環化した多環状構造が、下記の基本構造 105乃至112から選ばれる1種以上である請求項10記載の核効果抑制剤。

【化143】

(c-9-1) 基本構造105

【化144】

(c-9-2) 基本構造106

【化145】

(c-9-3) 基本構造107

【化146】

(c-9-4) 基本構造108

【化147】

【化148】

(c-9-6) 基本構造110

【化149】

(c-9-7) 基本構造111

【化150】

(c-9-8) 基本構造112

【請求項51】

上記4員環以上の環状構造が6個以上縮合環化した多環状構造が、下記の基本 構造113乃至131から選ばれる1種以上である請求項10記載の核効果抑制 剤。

【化151】

(d-1-1) 基本構造113

【化152】

(d-2-1) 基本構造114

【化153】

(d-3-1) 基本構造115

【化154】

(d-4-1) 基本構造116

【化155】

(d-5-1) 基本構造117

【化156】

(d-6-1) 基本構造118

【化157】

(d-7-1) 基本構造119

【化158】

(d-8-1) 基本構造120

【化159】

(d-9-1) 基本構造121

(d-10-1) 基本構造122

【化161】

(d-11-1) 基本構造123

【化162】

(d-11-2) 基本構造124

【化163】

(d-11-3) 基本構造125

(d-11-4) 基本構造126

【化165】

(d-11-5) 基本構造127

【化166】

【化167】

(d-11-7) 基本構造129

【化168】

(d-11-8) 基本構造130

【化169】

【請求項52】

上記化合物が備える多環状構造の少なくとも1つが、水酸基、ハロゲン、ニトロ基、シアノ基、アルキル基、アルコキシ基、アラルキル基、アリル基、アルケニル基、アルキニル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、アリールアミノカルボニル基、アルキルアミノ基、アリールアミノ基、アシルアミノ基、スルホンアミド基、スルホン基、及びカルボキシル基から選ばれる1種又は2種以上を置換基として有する請求項1乃至51の何れかに記載の核効果抑制剤。

【請求項53】

上記基本骨格に、アミノ基、ジメチルアミノ基、カルボニル基、メチル基、及びアセチル基から選ばれる1種又は2種以上を置換基として有する請求項20乃至51の何れかに記載の核効果抑制剤。

【請求項54】

上記核効果抑制剤が、カチオンとアニオンとがイオン結合してなる塩である請求項1万至53の何れかに記載の核効果抑制剤。

【請求項55】

上記塩が、上記核効果抑制剤の基本構造における、スルホン基、カルボキシル 基、又は置換基を有する若しくは非置換のアミノ基がイオン化して形成された塩 である請求項54記載の核効果抑制剤。

【請求項56】

上記アニオンが、カルボン酸又はスルホン酸に起因するアニオンである請求項 5 4 記載の核効果抑制剤。

【請求項57】

上記カルボン酸及びスルホン酸が、それぞれ芳香族又は脂肪族のスルホン酸及び芳香族又は脂肪族のカルボン酸である請求項56記載の核効果抑制剤。

【請求項58】

色相が無色又は淡色である請求項1乃至57の何れかに記載の核効果抑制剤。

【請求項59】

結晶性樹脂中に請求項1乃至58の何れかに記載の核効果抑制剤を1種以上含 有してなる結晶性樹脂組成物。

【請求項60】

結晶性樹脂100重量部に対し0.1乃至30重量部の上記核効果抑制剤を含 有する請求項59記載の結晶性樹脂組成物。

【請求項61】

上記結晶性樹脂が、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂 、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフ ェニレンスルフィド樹脂、及びポリエーテルエーテルケトン樹脂から選ばれる1 又は2以上の混合物である請求項59又は60記載の結晶性樹脂組成物。

【請求項62】

上記ポリアミド樹脂が、ポリアミド6樹脂、ポリアミド66樹脂、ポリアミド 6 9 樹脂、ポリアミド 6 1 0 樹脂、又はポリアミド樹脂と他の合成樹脂とのアロ イである請求項61記載の結晶性樹脂組成物。

【請求項63】

上記結晶性樹脂組成物の結晶化温度が、その結晶性樹脂組成物における結晶性 樹脂であって上記核効果抑制剤を含有しないものの結晶化温度よりも4℃以上低 い請求項59乃至62の何れかに記載の結晶性樹脂組成物。

【請求項64】

結晶性樹脂組成物における結晶性樹脂がポリアミド樹脂であり、その結晶性樹 脂組成物の結晶化温度が、その結晶性樹脂組成物における結晶性樹脂であって上 記核効果抑制剤を含有しないものの結晶化温度よりも5℃以上低い請求項63記 載の結晶性樹脂組成物。

【請求項65】

上記結晶性樹脂組成物の補外結晶化開始温度と補外結晶化終了温度の差が、そ の結晶性樹脂組成物における結晶性樹脂であって上記核効果抑制剤を含有しない ものの補外結晶化開始温度と補外結晶化終了温度の差よりも2℃以上増加するも のである請求項59乃至62の何れかに記載の結晶性樹脂組成物。

【請求項66】

【請求項67】

上記結晶性樹脂組成物における所定面積中の球晶の数が、前記結晶性樹脂組成物における結晶性樹脂であって上記核効果抑制剤を含有しないものにおける前記所定面積中の球晶の数より少なくなるものである請求項59万至62の何れかに記載の結晶性樹脂組成物。

【請求項68】

着色剤を含有する請求項59乃至67の何れかに記載の結晶性樹脂組成物。

【請求項69】

上記着色剤が有彩色の有機顔料である請求項68記載の結晶性樹脂組成物。

【請求項70】

核剤を含有する請求項59乃至69の何れかに記載の結晶性樹脂組成物。

【請求項71】

繊維状補強材を含有する請求項59乃至70の何れかに記載の結晶性樹脂組成物。

【請求項72】

結晶性樹脂中に請求項1乃至58の何れかに記載の核効果抑制剤を1種以上含有させることにより、その核効果抑制剤を含有する結晶性樹脂組成物の結晶化温度及び結晶化速度を、その結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度及び結晶化速度よりも低下させる結晶性樹脂組成物の結晶化制御法。

【請求項73】

上記結晶化温度の低下が4℃以上である請求項72記載の結晶性樹脂組成物の結晶化制御法。

【請求項74】

結晶性樹脂中に請求項1乃至58の何れかに記載の核効果抑制剤を1種以上含有させることにより、その核効果抑制剤を含有する結晶性樹脂組成物における球

【請求項75】

結晶性樹脂中に請求項1万至58の何れかに記載の核効果抑制剤を1種以上含有させることにより、その核効果抑制剤を含有する結晶性樹脂組成物における所定面積中の球晶の数を、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける前記所定面積中の球晶の数より少なくする請求項72又は73記載の結晶性樹脂組成物の結晶化制御法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、結晶性樹脂組成物中に存在させることにより結晶化温度又は結晶化速度を低下させるための核効果抑制剤、その核効果抑制剤を含有する結晶性樹脂組成物、及び、その核効果抑制剤を用いて結晶性樹脂の結晶化温度及び結晶化速度を低下させる結晶化制御方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】

結晶性樹脂は、機械的及び化学的性質が優れているため、自動車や電気・電子製品の部品などの分野に広く用いられている。その中でも特に、エンジニアリングプラスチックの需要は、様々な分野でますます大きくなってきている。

[0003]

また、結晶性樹脂に繊維状補強材を配合することにより、耐熱性や耐薬品性を向上させたり、各用途に合わせた機械的強度を与えたりして広範な工業的用途に適合させる試みがなされている。更に最近では、電子部品、自動車部品、電装部品等の分野において、軽量化、工程の合理化及び腐食の問題を解決するために、これまで金属を用いてきた部品を、繊維強化された結晶性樹脂に替える動きが顕著である。

[0004]

成形材料として用いられる結晶性樹脂は、溶融状態から冷却していくと結晶化が起こる。結晶化の状態は、成形段階での冷却条件や結晶化の核となる微粒子、すなわち核剤の存在等により変化する。結晶性樹脂の物性は、結晶化状態に大きく影響されるので、結晶化をいかに制御するかが樹脂の特性を引き出す鍵となる。例えば前記のような核剤の存在は、結晶性樹脂の結晶化速度を増大させて結晶化温度を上昇させる効果(核効果)を有するため、成形時の冷却時間を短縮することができる。

[0005]

ところで、結晶性樹脂に対しては、装飾効果、色分け効果、成形品の耐光性向上、並びに内容物の保護及び隠蔽等の目的で着色が行われる。着色剤としては、 無機顔料、有機顔料、又は染料等が一般的に用いられ、特にカーボンブラックは 黒色着色に広く用いられている。

[0006]

結晶性樹脂の着色に用いられる無機顔料及び有機顔料等、特にカーボンブラック、並びに繊維状補強材(ガラス繊維、マイカ、タルクなどの無機充填材)は、核剤に類似した挙動を示す。従って、これらの材料の添加は、結晶化速度の増大及び微結晶化を引き起こし、靭性を著しく低下させることがある。また、これらの材料の添加は、結晶化温度の上昇を引き起こすため、射出成形における金型温度を高くすることが要求されることとなり、エネルギーコストの上昇を来たすだけではなく、成形物の冷却による収縮率を大きくすることにより成形精度を低下させることにもなる。

[0007]

このような問題点を解決するためには、前述のような着色剤や繊維状補強材等の核剤としての働きを抑制すること、すなわち、結晶化速度を低下させて微結晶化を抑えると共に結晶化温度を低下させて金型温度を低くすることができる材料を結晶性樹脂中に共存させて結晶化を制御することが有効であると考えられる。なお、以下、このような効果を核抑制効果(結晶遅延化効果)と記し、このような効果を有する材料を核効果抑制剤(結晶遅延化効果剤)と記す。

[0008]

ů.

このような考えに沿って、ニグロシン、アニリンブラック(特開昭57-1154545公報)、及び銅フタロシアニン誘導体(特開昭61-181861号公報)の使用が提案された。その後、これらの材料を用いた結晶性樹脂組成物に関する様々な改良が行われた。例えば、1)ポリアミド系車輌用部材(特開昭62-246958号公報)、2)強化良外観黒色ポリアミド樹脂組成物(特開平4-370148号公報)、3)ガラス繊維強化黒色ポリアミド樹脂組成物(特開平6-128479号公報)、4)黒色ポリアミド樹脂組成物(特開平9-255869号公報)、5)耐候性に優れた黒着色ポリアミド樹脂組成物(特開平11-34349807号公報)、6)黒着色強化ポリアミド樹脂組成物(特開2000-53861号公報)等である。

[0009]

ところが、核効果抑制剤としてこれまでに用いられてきたもののうちニグロシン及びアニリンブラックは黒色であり、銅フタロシアニン誘導体は濃青色である。そのため、着色結晶性樹脂組成物に用いる場合の色の選択幅が非常に狭く、ほとんどの場合、黒色又は黒に近い色の着色樹脂組成物に限られてきた。

[0010]

しかし、結晶性樹脂を様々な色に着色するという要望は非常に強いので、無色若しくは淡色の又は様々な色を有する核効果抑制剤(結晶性樹脂中に存在することにより、その結晶性樹脂の結晶化温度及び結晶化速度を、その結晶性樹脂が存在しない場合よりも低下させる材料)、すなわちニグロシン、アニリンブラック、又は銅フタロシアニン誘導体のように着色結晶性樹脂の色選択幅を狭めない核効果抑制剤の開発が強く望まれていた。

[0011]

本発明は、従来技術に存した上記のような課題に鑑み行われたものであって、 その目的とするところは、結晶性樹脂の結晶化温度及び結晶化速度を低下させる 核効果抑制剤を含有させて結晶性樹脂を着色する場合の色の選択を自由に行い得 る核効果抑制剤、その核効果抑制剤を含有する結晶性樹脂組成物、及び、その核 効果抑制剤を用いて結晶性樹脂の結晶化温度及び結晶化速度を低下させる結晶化

[0012]

【課題を解決するための手段】

本発明者は、結晶性樹脂に対する核効果を抑制し得る新たな物質をその立体構造に着目して研究した結果、特定の構造特性を持つ化合物を含有する結晶性樹脂組成物の結晶化温度及び結晶化速度がその化合物を含有しない場合に比し低下することを見出し、本発明を完成するに至った。

[0013]

上記目的を達成する本発明の核効果抑制剤は、

結晶性樹脂組成物中において結晶性樹脂の結晶化を制御する化合物からなる核効 果抑制剤であって、

前記化合物が、4員環以上の環状構造が3個以上縮合環化した多環状構造から選ばれる少なくとも1つの構造を備えた化合物のうち、ニグロシン、アニリンブラック、及び銅フタロシアニン誘導体を除く何れかの化合物であることを特徴とする。

[0014]

前記多環状構造としては、例えば、4 員環の環状構造と6 員環の環状構造が3個以上縮合環化したもの、5 員環の環状構造と6 員環の環状構造が3個以上縮合環化したもの、6 員環の環状構造と7 員環以上の環状構造が3個以上縮合環化したもの、4 員環の環状構造と5 員環の環状構造が3個以上縮合環化したもの、4 員環の環状構造と5 員環の環状構造と6 員環以上の環状構造が縮合環化したもの、4 具環の環状構造と6 員環以上の環状構造が3個以上縮合環化したもの、5 員環の環状構造と6 員環以上の環状構造が3個以上縮合環化したものを挙げることができる。

[0015]

また前記化合物は、前記多環状構造の1種を1又は2以上備えたもの(例えば、2以上の同一の多環状構造が単結合又は二重結合を介して直接結合したもの)でもよく、2種以上をそれぞれ1又は2以上備えたもの(例えば、2種以上の多環状構造が単結合又は二重結合を介して直接結合したもの)でもよい。

9 6 -

本発明の核効果抑制剤は、次の要件(A)を満たすものとすることができる。

(A) その核効果抑制剤を含有する結晶性樹脂組成物の結晶化温度が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度よりも低下する

[0017]

また本発明の核効果抑制剤は、次の要件(B)を満たすものとすることができる。

(B) その核効果抑制剤を結晶性樹脂100重量部に対し0.1乃至30重量 部含有する結晶性樹脂組成物の結晶化温度が、前記結晶性樹脂組成物における結 晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度よりも4℃以 上低下する

[0018]

また本発明の核効果抑制剤は、次の要件(C)を満たすものとすることができる。

(C) その核効果抑制剤を含有する結晶性樹脂組成物の結晶化速度が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化速度よりも低下する

[0019]

また本発明の核効果抑制剤は、次の要件(D)を満たすものとすることができる。

(D) その核効果抑制剤を結晶性樹脂100重量部に対し0.1乃至30重量部含有する結晶性樹脂組成物の補外結晶化開始温度と補外結晶化終了温度の差が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの補外結晶化開始温度と補外結晶化終了温度の差よりも2℃以上増加する

[0020]

また本発明の核効果抑制剤は、次の要件(E)を満たすものとすることができる。

[0021]

また本発明の核効果抑制剤は、次の要件 (F) を満たすものとすることができる。

(F) その核効果抑制剤を結晶性樹脂100重量部に対し0.1乃至30重量部含有する結晶性樹脂組成物における球晶の平均径(例えば2軸平均径のメジアン径)が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける球晶の平均径の2倍以上となる

[0022]

また本発明の核効果抑制剤は、次の要件(G)を満たすものとすることができる。

(G) その核効果抑制剤を含有する結晶性樹脂組成物における所定面積(例えば一定の表面又は断面における所定面積)中の球晶の数が、前記結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける前記所定面積中の球晶の数より少なくなる

[0023]

また本発明の核効果抑制剤は、次の要件(H)を満たすものとすることができる。

(H) その核効果抑制剤を結晶性樹脂100重量部に対し0.1乃至30重量 部含有する結晶性樹脂組成物における所定面積中の球晶の数が、前記結晶性樹脂 組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものにおける 前記所定面積中の球晶の数に対して2/3倍以下に減少する

[0024]

本発明の結晶性樹脂組成物は、結晶性樹脂中に本発明の何れかの核効果抑制剤 を1種以上含有してなるものである。

[0025]

また本発明の結晶性樹脂組成物の結晶化制御法は、

結晶性樹脂中に本発明の何れかの核効果抑制剤を1種以上含有させることにより、その核効果抑制剤を含有する結晶性樹脂組成物の結晶化温度及び結晶化速度を、その結晶性樹脂組成物における結晶性樹脂であって前記核効果抑制剤を含有しないものの結晶化温度及び結晶化速度よりも低下させるものである。

[0026]

結晶性樹脂の結晶化における結晶の成長は、まず不純物や溶融状態の高分子の 濃度揺らぎ等によって結晶核が生じることにより始まる。結晶が成長し始める大 きさをもつ結晶核が臨界核であり、臨界核よりも小さいサイズの核は、生成した り消滅したりする。また、臨界核ができるまでの期間を核生成誘導期という。結 晶性樹脂中に核剤又はそれに相当する物質を含有させると、臨界核としての結晶 核が予め存在するのと同様になる。そのため核生成誘導期を実質上経ることなく 高い温度で結晶が成長し始める。

ところが、本発明における核効果抑制剤を結晶性樹脂中に含有させると、核生成誘導期が長くなり、結晶が成長を始める温度が低下すると共に結晶化速度が低下する。このような核効果抑制現象は、前記本発明の核効果抑制剤を構成する化合物の立体構造が大きく影響している。

[0027]

本発明の核効果抑制剤における結晶性樹脂の結晶化を制御する化合物が備えることを要する構造は、4 員環以上の環状構造(環状の原子配列からなる構造)が3 個以上縮合環化した多環状構造から選ばれる少なくとも1 つの構造である。

[0028]

本発明の核効果抑制剤は以下の化合物と比較して、核効果抑制に有効性を示すことができる。4員環以上の環状構造が2個縮合環化した構造を有する化合物、4員環以上の環状構造が2個縮合環化した環状構造が単結合で繋がった構造を有する化合物、4員環以上の環状構造が単結合で3個繋がった構造を有する化合物は、何れも有効な核抑制効果を示さない。

[0029]

結晶性樹脂中に本発明の核効果抑制剤を含有させると、結晶性樹脂の核生成誘導期が長くなり、結晶が成長し始める温度が低下すると共に結晶化速度が低下す

[0030]

【発明の実施の形態】

本発明の核効果抑制剤を構成する化合物は、下記(a)乃至(d)から選ばれる少なくとも1つ構造を備えてなるものとすることができる。

- (a) 4 員環以上の環状構造が3 個縮合環化した多環状構造
- (b) 4 員環以上の環状構造が 4 個縮合環化した多環状構造
- (c) 4 員環以上の環状構造が5個縮合環化した多環状構造
- (d) 4 員環以上の環状構造が6個以上縮合環化した多環状構造

[0031]

4 員環以上の環状構造は、芳香環又はヘテロ環であることが望ましい。

[0032]

また前記核効果抑制剤のうち、ポリアミド樹脂との相溶性及びその他の物性に おいて好適なものとしては、4 員環以上の環状構造が3 個又は4 個縮合環化した 多環状構造であるものを挙げることができる。

[0033]

また上記(a) 乃至(d) は、それぞれ下記(a) 乃至(d) とすることができる。

- (a) 5 員環および/または6 員環の環状構造が3 個縮合環化した多環状構造(例えば、5 員環1つと6 員環2つの組合せ、5 員環2つと6 員環1つの組合せ、6 員環3つの組合せ等)
- (b) 5 員環および/または6 員環の環状構造が4 個縮合環化した多環状構造(例えば、5 員環1つと6 員環3つの組合せ、5 員環2つと6 員環2つの組合せ、6 員環4つの組合せ等)
- (c)5員環および/または6員環の環状構造が5個縮合環化した多環状構造(5 員環1つと6員環3つの組合せ、5員環2つと6員環3つの組合せ、5員環1つ

と6員環4つの組合せ、6員環5つの組合せ等)

(d) 5 員環および/または6 員環の環状構造が6個以上縮合環化した多環状構造 (5 員環1つと6 員環5つの組合せ、5 員環2つと6 員環4つの組合せ、5 員環3つと6 員環3つの組合せ、5 員環2つと6 員環5つの組合せ、6 員環6つ、6 員環7つの組合せ等)

[0034]

前記(a)乃至(d)の多環状構造は、2個以上の6員環を有する構造であることが好ましい。

[0035]

また前記の5員環としては、シクロペンタジエン環、ピロール環、ピロリン環、ピロリジン環、ピラゾール環、ピラゾリン環、イミダゾール環、イミダゾリン環、イミダゾリジン環、フラン環、オキソラン環、ジオキソラン環、チオフェン環、チオラン環、チアゾール環などが挙げられる。好ましくはシクロペンタジエン環、ピロール環である。

[0036]

前記(a)乃至(d)の多環状構造は、それぞれ5員環を有するものであり、 その5員環がシクロペンタジエン環および/またはピロール環であることが好ま しい。

[0037]

また上記の6員環としては、ベンゼン環、シクロヘキサン環、ピリジン環、ピペリジン環、ピラジン環、ピペラジン環、ピペリジン環、ピリドン環、ピラン環、ピロン環、オキサン環、ジオキサン環、オキサジン環、チアン環、ジチアン環、チアジン環等が挙げられる。好ましくはベンゼン環、ピリジン環である。

[0038]

前記(a)乃至(d)の多環状構造は、それぞれ6員環を有するものであり、 その6員環がベンゼン環および/またはピリジン環であることが好ましい。例えば6員環と5員環からなる多環状構造又は6員環のみからなる多環状構造とする ことができる。

[0039]

[0040]

骨格構造と基本構造と化合物例の具体的関係の例は次の通りである。

【化170】

骨格構造 a - 5

【化171】

(a-5-1) 基本構造24

【化172】

化合物例1

上記骨格構造 a - 5 は、4 員環以上の環状構造が3 個縮合環化した多環状構造に属する骨格構造の1 つである。基本構造2 4 は骨格構造 a - 5 の多種にわたる基本構造の1 つであり、化合物例1 は、基本構造2 4 に属する好適な具体例であって、1 - 位に置換基としてアミノ基を有するものである。

[0042]

【化173】

骨格構造 b-1

【化174】

(b-1-1) 基本構造59

【化175】

化合物例2

[0043]

上記骨格構造 b - 1 は、4 員環以上の環状構造が4個縮合環化した多環状構造に属する骨格構造の1つである。基本構造61は骨格構造 b - 1の多種にわたる基本構造の1つであり、化合物例2は、基本構造61に属する好適な具体例であって、1 - 位に置換基としてアミノ基を有するものである。

[0044]

【化176】

比較化合物例1

は、化合物例1及び化合物例2に対する比較化合物である。化合物例1及び化合物例2は、共に分子内に比較化合物例1 (1-アミノーナフタレン)の構造を有する。すなわち、4員環以上の環状構造が3個縮合環化した多環状構造に属する骨格構造(化合物例1)よりも1つ縮合環が少ない比較化合物例である。

[0045]

【化177】

,骨格構造 a - 6

【化178】

(a-6-4) 基本構造 4 1

【化179】

化合物例29

[0046]

上記骨格構造 a - 6 は、4 員環以上の環状構造が3 個縮合環化した多環状構造に属する骨格構造の1 つである。基本構造4 1 は骨格構造 a - 6 の多種にわたる基本構造の1 つであり、化合物例2 9 は、基本構造4 1 に属する好適な具体例である。

[0047]

【化180】

比較化合物例 6

は、化合物例29に対する比較化合物である。すなわち、4員環以上の環状構造が3個縮合環化した多環状構造に属する骨格構造(化合物例1)よりも1つ縮合環が少ない比較化合物例である。

[0048]

本発明の核効果抑制剤を含有する結晶性樹脂組成物の結晶化温度の変化及び結晶化速度の変化は、核効果抑制剤を含有する結晶性樹脂組成物(核効果抑制剤含有試料)と、結晶性樹脂組成物における結晶性樹脂のみ(核効果抑制剤非含有試料)について示差走査熱量測定(DSC)を行うことにより次のように知ることができる。

(1)結晶化温度の変化

核効果抑制剤含有試料が示す結晶化温度(T_{CP})と、核効果抑制剤非含有試料が示す結晶化温度(T_{CP})の差(結晶化温度低下 $\Delta T_{CP} = T_{CP} - T_{CP}$)でその大きさを表すことができる。 ΔT_{CP} が大きいほどその核効果抑制効果が大きいことを示し、 ΔT_{CP} が負の値をとるときは核効果が現れていることを示している。

[0050]

(2)結晶化速度の変化

補外結晶化開始温度(T_{CIP})と補外結晶化終了温度(T_{CEP})との差すなわち結晶化温度幅を $\Delta T_{C} = T_{CIP} - T_{CEP}$ で表す。核効果抑制剤を含まない試料が示す補外結晶化開始温度(T_{CIP})と補外結晶化終了温度(T_{CEP})との差、すなわち核効果抑制剤を含まない試料の結晶化温度幅を ΔT_{CEP} 0 との差、すなわち核効果抑制剤を含まない試料の結晶化温度幅を ΔT_{CEP} 0 と ΔT_{CEP} 0 で表す。

[0051]

 $\Delta\Delta T_C = \Delta T_C - \Delta T_C + \Delta T_C$ Cが大であるほど核効果抑制剤を含まない試料に比し、結晶化速度が遅くなったことを示し、負の値をとるときは速くなったことすなわち核効果が現れていることを示している。

[0052]

(1)結晶化温度の低下の検討

- ·ポリアミド66 (結晶性樹脂のみ)のT⁰CP:232.8℃
- ・化合物例1添加のポリアミド66のTCP:217.7℃

$$\Delta T_{CP} = T_{CP} = T_{CP} = +15.1$$
°C

・化合物例2添加のポリアミド66のTCP:218.6℃

$$\Delta T_{CP} = T^{0}_{CP} - T_{CP} = +14.2^{\circ}_{CP}$$

・比較化合物例1添加のポリアミド66のTCP:232.2℃

$$\Delta T_{CP} = T_{CP} - T_{CP} = +0.6$$
°C

[0053]

4 員環以上の環状構造がそれぞれ3個及び4個縮合環化した多環状構造に属す

る化合物例1及び化合物例2をポリアミド66に添加した各結晶性樹脂組成物では、ポリアミド66のみのものに比し結晶化温度が大きく低下している。しかし、化合物例1より1つ縮合環が少ない2個縮合環化した構造を持つ比較化合物例1をポリアミド66に添加した結晶性樹脂組成物の結晶化温度は、ポリアミド66のみの場合とほとんど変わらず、結晶化温度を低下させることはできないことが分かる。

[0054]

・化合物例29添加のポリアミド66のTCP:220.0℃

$$\Delta T_{CP} = T_{CP} = +12.8^{\circ}$$

・比較化合物例 6 添加のポリアミド 6 6 のTCP: 2 3 0. 8 ℃

$$\Delta T_{CP} = T_{\cdot}^{0} C_{P} - T_{CP} = +2.0^{\circ}$$

[0055]

4 員環以上の環状構造が3個縮合環化した多環状構造に属する化合物例29をポリアミド66に添加した各結晶性樹脂組成物では、ポリアミド66のみのものに比し結晶化温度が大きく低下している。しかし、化合物例29の縮合環のベンゼン環1つを1つメチル基に置き換えた(すなわち化合物例29より縮合環数が1つ少ない)比較化合物例6をポリアミド66に添加した結晶性樹脂組成物の結晶化点は、ポリアミド66のみの場合とほとんど変わっていない。

[0056]

(2)結晶化速度の低下の検討

- ・ポリアミド66 (結晶性樹脂のみ)のΔT⁰C (結晶化温度幅):9.5℃
- ・化合物例1添加のポリアミド66のΔTC (結晶化温度幅):13.7℃

$$\Delta \Delta T_C = \Delta T_C - \Delta T_C = + 4.2$$
[°]

·化合物例2添加のポリアミド66のΔTC:15.8℃

$$\Delta \Delta T C = \Delta T C - \Delta T O C = +6.3$$
[°]C

・比較化合物例1添加のポリアミド66のAT_C:8.4℃

$$\Delta \Delta T_C = \Delta T_C - \Delta T_C = -1.1^{\circ}$$

[0057]

4 員環以上の環状構造がそれぞれ3個及び4個縮合環化した多環状構造に属す

る化合物例1及び化合物例2をポリアミド66に添加した各結晶性樹脂組成物では、ΔΔTCが大きい。これは、ポリアミド66よりも結晶化速度が大きく低下していることを示している。しかし、化合物例1より1つ結合環が少ない2個結合環化した構造を持つ比較化合物例1をポリアミド66に添加した結晶性樹脂組成物の場合は負の値をとる。すなわち、ポリアミド66のみの場合よりもわずかではあるが結晶化速度を高めており、核効果を示している。

[0058]

・化合物例29添加のポリアミド66の△T_C:16.5℃

$$\Delta \Delta T_C = \Delta T_C - \Delta T_{C} = +7.0^{\circ}$$

・比較化合物例6添加のポリアミド66の△TC:9.5℃

$$\Delta \Delta T_C = \Delta T_C - \Delta T_0 C = 0 C$$

[0059]

4 員環以上の環状構造が3 個縮合環化した多環状構造に属する化合物例29をポリアミド66に添加した各結晶性樹脂組成物では、ΔΔΤ_Cが大きくなっており、ポリアミド66のみのものよりも結晶化速度が大きく低下している。しかし、比較化合物例6をポリアミド66に添加した結晶性樹脂組成物の場合には、ΔΔΤ_C=0であり、ポリアミド66の結晶化速度を低下させることができないことが分かる。

[0060]

上記データに示される通り、結晶性樹脂に添加する化合物中の4員環以上の環 状構造が縮合環化した多環状構造における環の数が3以上であるか否かによって 、結晶性樹脂の結晶化点(結晶化温度)と結晶化速度に与える影響が大きく変わ る。前記環の数が2の場合には結晶化点及び結晶化速度への影響は非常に小さく 、前記環の数が3以上の場合には結晶化点と結晶化速度は大きな低下が認められ る。

[0061]

また、化合物例1、化合物例2及び化合物例29をそれぞれ含有した結晶性樹脂組成物は、補外結晶化開始温度(TCIP)が、結晶性樹脂のみのものに比し非常に低くなっており(結晶性樹脂のみ:236.0℃、化合物例1:224.

[0062]

これらを総合すると、4 員環以上の環状構造が3 個以上縮合環化した多環状構造を備えた化合物と4 員環以上の環状構造が2 個縮合環化した構造を備えた化合物とでは、核効果抑制上、極めて大きな相違があることがわかる。

[0063]

次に、骨格構造及び基本構造の具体例を説明する。

骨格構造

[0064]

(a) 4 員環以上の環状構造が 3 個縮合環化した多環状構造として下記の骨格構造 a-1 乃至 a-8 を例示することができる。なお、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である。

[0065]

【化181】

骨格構造 a-1

【化182】

骨格構造 a-2

【化183】

骨格構造 a-3

【化184】

骨格構造 a - 4

【化185】

骨格構造 a - 5

【化186】

骨格構造 a — 6

【化187】

【化188】

骨格構造 a-8

[0066]

(b) 4 員環以上の環状構造が 4 個縮合環化した多環状構造として下記の骨格構造 b-1 乃至 b-1 2 を例示することができる。なお、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である。

【化189】

骨格構造 b-1

【化190】

骨格構造 b-2

骨格構造 b-3

【化192】

骨格構造b-4

【化193】

骨格構造b-5

【化194】

骨格構造b-6

【化195】

骨格構造 b - 7

【化196】

骨格構造 b - 8

【化197】

骨格構造b-9

【化198】

骨格構造 b-10

【化199】

骨格構造b-11

【化200】

骨格構造 b-12

[0067]

3 40

【化201】

骨格構造 c-1

【化202】

骨格構造 c-2

【化203】

骨格構造 c - 3

【化204】

【化205】

骨格構造 c - 5

【化206】

骨格構造 c-6

【化207】

骨格構造 c - 7

【化208】

骨格構造 c-8

[0068]

(d) 4 員環以上の環状構造が 6 個以上縮合環化した多環状構造として下記の骨格構造 d-1乃至 d-10を例示することができる。なお、各骨格構造を構成するそれぞれの結合は単結合又は二重結合である。

【化209】

骨格構造 d-1

【化210】

-骨格構造 d-2

【化211】

【化212】

骨格構造d-4

【化213】

骨格構造 d-5

【化214】

骨格構造 d-6

【化215】

骨格構造 d-7

骨格構造 d-8

【化217】

骨格構造 d - 9

【化218】

[0069]

基本構造

(a) 4 員環以上の環状構造が3 個縮合環化した多環状構造の好ましい基本構造の例

[0070]

(a-1) 骨格構造 a - 1 に属する好ましい基本構造の例:基本構造1乃至8 【化219】

(a-1-1) 基本構造1

【化220】

(a-1-2) 基本構造 2

【化221】

(a-1-3) 基本構造3

 $2 \leq g^{-1}$

【化222】

(a-1-4) 基本構造 4

【化223】

(a-1-5) 基本構造 5

【化224】

(a-1-6) 基本構造 6

【化225】

(a-1-7) 基本構造 7

【化226】

(a-1-8) 基本構造 8

[0071]

(a-2) 骨格構造 a-2に属する好ましい基本構造の例:基本構造 9乃至11

【化227】

(a-2-1) 基本構造 9

【化228】

(a-2-2) 基本構造10

【化229】

(a-2-3) 基本構造11

[0072]

(a-3) 骨格構造 a-3に属する好ましい基本構造の例:基本構造12乃至1

7

【化230】

(a-3-1) 基本構造12

【化231】

(a-3-2) 基本構造13

【化232】

(a-3-3) 基本構造14

【化233】

(a-3-4) 基本構造15

【化234】

(a-3-5) 基本構造16

【化235】

[0073]

(a-4) 骨格構造 a-4に属する好ましい基本構造の例:基本構造18乃至2

3

【化236】

(a-4-1)基本構造18

【化237】

(a-4-2) 基本構造19

【化238】

(a-4-3) 基本構造20

【化239】

(a-4-4) 基本構造21

【化240】

(a-4-5) 基本構造22

【化241】

(a-4-6) 基本構造23

[0074]

(a-5) 骨格構造 a - 5に属する好ましい基本構造の例:基本構造 2 4 乃至 3

8

【化242】

(a-5-1) 基本構造 2 4

【化243】

(a-5-2) 基本構造25

2 6

【化244】

(a-5-3) 基本構造 2 6

【化245】

(a-5-4) 基本構造27

【化246】

(a-5-5) 基本構造28

[基本構造 28 中、A は、S 、N-R 、 N^+ $(-R^1)$ $-R^2$ 又はO を示し、R 、 R^1 、及び R^2 は、それぞれH 、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化247】

(a-5-6) 基本構造 2 9

【化248】

(a-5-7) 基本構造30

【化249】

(a-5-8) 基本構造31

【化250】

【化251】

(a-5-10) 基本構造33

【化252】

(a-5-11) 基本構造34

【化253】

(a-5-12) 基本構造35

【化254】

【化255】

(a-5-14) 基本構造37

【化256】

(a-5-15) 基本構造38

[基本構造 38 中、A は、S、N - R 、N + $(-R^1)$ - R^2 又はO を示し、R 、 R^1 、D \cup R^2 は、それぞれ \cup 、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

[0075]

(a-6) 骨格構造 a - 6に属する好ましい基本構造の例:基本構造39乃至4

【化257】

(a-6-1) 基本構造39

【化258】

(a-6-2) 基本構造 4 0

【化259】

(a-6-3) 基本構造 4 1

【化260】

(a-6-4) 基本構造 4 2

【化261】

(a-6-5) 基本構造 4 3

【化262】

(a-6-6) 基本構造 4 4

【化263】

(a-6-7) 基本構造 4 5

【化264】

(a-6-8) 基本構造 4 6

【化265】

(a-6-9) 基本構造 4 7

200

【化266】

(a-6-10) 基本構造48

【化267】

(a-6-11) 基本構造49

[0076]

(a-7) 骨格構造 a - 7に属する好ましい基本構造の例:基本構造50

【化268】

(a-7-1) 基本構造50

(a-8) 骨格構造 a - 8に属する好ましい基本構造の例:基本構造 5 1 乃至 5

3

【化269】

(a-8-1) 基本構造51

【化270】

(a-8-2) 基本構造52

【化271】

(a-8-3) 基本構造53

[0077]

(a-9) 4 員環以上の環状構造が3 個縮合環化した多環状構造のその他の好ましい基本構造の例:基本構造54万至60

【化272】

(a-9-1) 基本構造54

【化273】

(a-9-2) 基本構造55

【化274】

(a-9-3) 基本構造 5 6

【化275】

(a-9-4) 基本構造57

【化276】

(a-9-5) 基本構造 5 8

【化277】

(a-9-6) 基本構造59

【化278】

(a-9-7) 基本構造 6 0

[0078]

(b) 4 員環以上の環状構造が 4 個縮合環化した多環状構造の好ましい基本 構造の例

[0079]

(b-1) 骨格構造 b - 1 に属する好ましい基本構造の例:基本構造 6 1 及び 6 3

【化279】

【化280】

(b-1-2) 基本構造 6 2

【化281】

(b-1-3) 基本構造 6 3

[0080]

(b-2) 骨格構造 b-2に属する好ましい基本構造の例:基本構造 64乃至 69

【化282】

(b-2-1) 基本構造 6 4

【化283】

(b-2-2) 基本構造 6 5

【化284】

(b-2-3) 基本構造 6 6

【化285】

(b-2-4) 基本構造 6 7

[基本構造 6 7中、Aは、S、N-R、N+ $(-R^1)$ - R^2 又はOを示し、R、R¹、及びR²は、それぞれH、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

2 6 .

【化286】

(b-2-5) 基本構造 68

[基本構造 6 8 中、A は、S 、N-R 、 N^+ $(-R^-1)$ $-R^-2$ 又はO を示し、R 、 R^-1 、D び R^-2 は、それぞれ H 、置換基を有する若しくは有しないアルキル基、又は、置換基を有する又は有しないアリール基を示す。]

【化287】

(b-2-6) 基本構造 6 9

[0081]

(b-3) 骨格構造 b-3に属する好ましい基本構造の例:基本構造70乃至7 3

[0082]

【化288】

(b-3-1) 基本構造70

【化289】

(b-3-2) 基本構造71

【化290】

(b-3-3) 基本構造72

【化291】

(b-3-4) 基本構造73

[0083]

(b-4) 骨格構造 b-4に属する好ましい基本構造の例:基本構造74及び7

5

【化292】

(b-4-1) 基本構造74

【化293】

(b-4-2) 基本構造75

[0084]

(b-5) 骨格構造 b-5に属する好ましい基本構造の例:基本構造76乃至7

8

【化294】

(b-5-1) 基本構造76

【化295】

(b-5-2) 基本構造77

【化296】

(b-5-3) 基本構造 7 8

[0085]

(b-6) 骨格構造 b - 6に属する好ましい基本構造の例:基本構造79乃至8

1

【化297】

(b-6-1) 基本構造 7 9

【化298】

(b-6-2) 基本構造80

【化299】

(b-6-3) 基本構造81

[0086]

(b-7) 骨格構造 b-7に属する好ましい基本構造の例:基本構造82及び8

3

【化300】

(b-7-1) 基本構造82

【化301】

(b-7-2) 基本構造83

[0087]

(b-8) 骨格構造 b - 8に属する好ましい基本構造の例:基本構造 8 4 【化 3 0 2】

(b-8-1) 基本構造84

[0088]

(b-9) 骨格構造 b - 9に属する好ましい基本構造の例:基本構造 8 5 【化 3 0 3】

(b-9-1) 基本構造 8 5

[0089]

(b-10) 4 員環以上の環状構造が 4 個縮合環化した多環状構造のその他の好ま

【化304】

(b-10-1) 基本構造86

【化305】

(b-10-2) 基本構造87

[0090]

(b-11) 4 員環以上の環状構造が 4 個縮合環化した多環状構造のその他の好ま しい基本構造の例:基本構造 8 8

【化306】

(b-11-1) 基本構造88

[0091]

(b-12) 4 員環以上の環状構造が 4 個縮合環化した多環状構造のその他の好ましい基本構造の例:基本構造 8 9

[化307]

$$O = \bigcup_{N} \bigcup_{N}$$

(b-12-1) 基本構造89

[0092]

(b-13) 員環以上の環状構造が4個縮合環化した多環状構造のその他の好ましい基本構造の例:基本構造90万至93

【化308】

(b-13-1) 基本構造90

【化309】

(b-13-2) 基本構造91

【化310】

(b-13-3) 基本構造92

【化311】

(b-13-4) 基本構造93

[0093]

(c) 4 員環以上の環状構造が5 個縮合環化した多環状構造の好ましい基本構造の例

[0094]

(c-1) 骨格構造 c - 1 に属する好ましい基本構造の例:基本構造 9 4 及び 9 5

【化312】

(c-1-1) 基本構造 9 4

【化313】

(c-1-2) 基本構造95

(c-2) 骨格構造 c - 2 に属する好ましい基本構造の例:基本構造96 【0095】

【化314】

(c-2-1) 基本構造96

(c-3) 骨格構造 c - 3 に属する好ましい基本構造の例:基本構造 9 7 【化 3 1 5】

(c-3-1) 基本構造97

[0096]

(c-4) 骨格構造 c - 4に属する好ましい基本構造の例:基本構造98及び9

9

【化316】

(c-4-1) 基本構造98

【化317】

(c-4-2) 基本構造99

[0097]

(c-5) 骨格構造 c - 5 に属する好ましい基本構造の例:基本構造100及び 101

【化318】

(c-5-1) 基本構造100

【化319】

(c-5-2) 基本構造101

[0098]

(c-6) 骨格構造 c - 6 に属する好ましい基本構造の例:基本構造 1 0 2 【化 3 2 0】

(c-6-1) 基本構造102

[0099]

(c-7) 骨格構造 c - 7に属する好ましい基本構造の例:基本構造 1 0 3

【化321】

ページ: 116/

(c-7-1) 基本構造103

[0100]

(c-8) 骨格構造 c - 8 に属する好ましい基本構造の例:基本構造 1 0 4 【化 3 2 2】

$$O = \bigcup_{N} \bigcup_{N} \bigcup_{N} O$$

(c-8-1) 基本構造104

[0101]

(c-9) 4 員環以上の環状構造が 5 個縮合環化した多環状構造のその他の好ましい基本構造の例:基本構造 1 0 5 乃至 1 1 2

【化323】

(c-9-1) 基本構造105

【化324】

(c-9-2) 基本構造106

【化325】

(c-9-3) 基本構造107

【化326】

(c-9-4) 基本構造108

【化327】

(c-9-5) 基本構造109

【化328】

(c-9-6) 基本構造110

【化329】

【化330】

(c-9-8) 基本構造112

(d) 4 員環以上の環状構造が6 個以上縮合環化した多環状構造の好ましい基本構造の例:基本構造113万至131

[0102]

【化331】

(d-1-1) 基本構造113

【化332】

(d-2-1) 基本構造114

【化333】

(d-3-1) 基本構造115

【化334】

(d-4-1) 基本構造116

【化335】

(d-5-1) 基本構造117

【化336】

(d-6-1) 基本構造118

2 6 3

【化337】

(d-7-1) 基本構造119

【化338】

(d-8-1) 基本構造120

【化339】

(d-9-1) 基本構造121

【化340】

(d-10-1) 基本構造122

【化341】

(d-11-1) 基本構造123

【化342】

(d-11-2) 基本構造124

【化343】

(d-11-3) 基本構造125

【化344】

(d-11-4) 基本構造126

【化345】

(d-11-5) 基本構造127

【化346】

(d-11-6) 基本構造128

【化347】

(d-11-7) 基本構造129

【化348】

(d-11-8) 基本構造130

【化349】

[0103]

本発明の核効果抑制剤は、カチオンとアニオンとがイオン結合した塩からなるものであってもよい。この場合の核効果抑制剤を構成する塩は、上記核効果抑制剤の基本構造における、置換基を有する若しくは非置換のアミノ基、スルホン基、又はカルボキシル基がイオン化して、アニオン又はカチオンを形成し、それが対イオンとしてのカチオン成分又はアニオン成分とイオン結合して塩を形成したものとすることができる。また前記対イオンとしてのアニオン成分は、カルボン酸又はスルホン酸に起因するアニオンであるものとすることができ、好ましいものとして、それぞれ芳香族又は脂肪族のスルホン酸及び芳香族又は脂肪族のカルボン酸から生じるアニオン成分を挙げることができる。

[0104]

本発明の核効果抑制剤は、前記多環状構造に他の置換基等が結合した化合物からなるものであってもよい。多環状構造に結合する他の置換基等は、対象とする結晶性樹脂に重大な悪影響(例えば、ポリマー鎖の切断を起こすなど)を及ぼすものでないことを要するが、対象とする結晶性樹脂に対する相溶性を補うものであることが望ましい。このような置換基の具体例としては、水酸基、ハロゲン、ニトロ基、シアノ基、アルキル基、アルコキシ基、アラルキル基、アリル基、アルキニル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アリールアミノカルボニル基、アルキルアミノ基、アリールアミノカルボニル基、アルキルアミノ基、アリールアミノ基、アミノ基、アシルアミノ基、スルホンアミド基、スルホン基、及びカルボキシル基の1種又は2種を例示することができる。好ましくは、アミノ基、ジメチルアミノ基、カルボニル基、メチル基、及びアセチル基の1種又は2種である。

[0105]

前記ハロゲンの例としては、F、C1、Br、I等が挙げられる。

[0106]

前記アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基等の炭素数1万至18のアルキル基が挙げられ

る。

[0107]

前記アルコキシ基の例としては、メトキシ基、エトキシ基、イソプロポキシ基 等の炭素数1万至18のアルコキシ基が挙げられる。

[0108]

前記アラルキル基の例としては、置換基を有する若しくは有しない、ベンジル基、 α , α '-ジメチルベンジル基等が挙げられる。

[0109]

前記アルケニル基の例としては、ビニル、プロペニル、ブテニル等が挙げられる。

[0110]

前記アリル基の例としては、 $-CH_2CH=CH_2$ 、 $-C(CH_3)=CH_2$ 等が挙げられる。

[0111]

前記アリール基の例としては、置換基(例えば炭素数1乃至18のアルキル基 又はCl、Br、I、F等のハロゲン原子等)を有する若しくは置換基を有しな い、フェニル基、トルイル基、ナフチル基等が挙げられる。

[0112]

前記アシル基の例としては、アセチル基、プロピオニル基、ブチリル基、ベン ゾイル基等が挙げられる。

[0113]

前記アルコキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基等が挙げられる。

[0114]

前記アリールオキシカルボニル基の例としては、置換基を有する若しくは置換基を有しない、フェニルオキシカルボニル基、トルイルオキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。

[0115]

前記アルキルアミノカルボニル基の例としては、メチルアミノカルボニル基、

[0116]

前記アリールアミノカルボニル基の例としては、置換基を有する若しくは置換 基を有しない、フェニルアミノカルボニル基、トルイルアミノカルボニル基、ナ フチルアミノカルボニル基等が挙げられる。

[0117]

前記アルキルアミノ基の例としては、メチルアミノ基、エチルアミノ基、プロ ピルアミノ基、イソプロピルアミノ基、ペンチルアミノ基、ドデシルアミノ基等 が挙げられる。

[0118]

前記アリールアミノ基の例としては、置換基を有する若しくは置換基を有しない、フェニルアミノ基、トルイルアミノ基、ナフチルアミノ基等が挙げられる。

[0119]

本発明の結晶性樹脂組成物における核効果抑制剤の含有量としては、例えば結晶性樹脂100重量部に対し、0.05乃至30重量部とすることができる。好ましくは0.1乃至10重量部である。結晶化温度の十分な低下のために特に好ましいのは、1乃至5重量部である。

[0120]

本発明に用いる結晶性樹脂としては、前記核効果抑制剤を添加することにより、核効果抑制効果を示す結晶性樹脂の何れをも用いることができ、例えば、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂等が挙げられる。好ましい結晶性樹脂としては、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、及びポリフェニレンスルフィド樹脂を挙げることができ、特にポリアミド樹脂において本発明の効果が顕著である。これらの結晶性樹脂は、単独で、又は2種類以上を混合して用いることができる。

[0121]

[0122]

上記のポリアミド樹脂(ナイロン)の具体例としては、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66 樹脂、ポリアミド69樹脂、ポリアミド610樹脂、ポリアミド612樹脂、ポリアミド910樹脂、ポリアミド81M樹脂等を挙げることができる。

[0123]

本発明の結晶性樹脂組成物は、その目的に応じ所望の特性を付与するために、 種々の添加剤が配合されてもよい。このような添加剤としては、例えば着色剤、 結晶核剤、離型剤、滑剤、分散剤、充填剤、安定剤、可塑剤、改質剤、紫外線吸 収剤又は光安定剤、酸化防止剤、帯電防止剤、難燃剤、及び耐衝撃性改良用のエ ラストマー等が挙げられる。

[0124]

繊維状補強材は、特に限定されず、用途及び目的に応じ従来の合成樹脂の補強 材として用い得るものを適宜使用し得る。このような繊維状補強材の例としては 、ガラス繊維、炭素繊維、及び各種有機繊維を挙げることができる。例えばガラ ス繊維の場合、その含有量は、結晶性樹脂100重量部に対し、5万至120重

[0125]

前記着色剤としては、無機顔料、有機顔料又は有機染料等を用いることができる。使用し得る着色剤の具体例としては、カーボンブラック、キノフタロン、ハンザイエロー、ローダミン6Gレーキ、キナクリドン、ローズベンガル、銅フタロシアニンブルー、及び銅フタロシアニングリーン等の無機又は有機顔料、アゾ系染料、キノフタロン系染料、アントラキノン系染料、キサンテン系染料、トリフェニルメタン系染料、フタロシアニン系染料等の各種の油溶性染料や分散染料の他、染料や顔料が高級脂肪酸や合成樹脂等で加工されたもの等が挙げられる。本発明の無色又は淡色の核効果抑制剤と種々の有彩色の有機顔料とを組み合わせることにより、フルカラーで、耐光性及び耐熱性が適正で、外観光沢の良好な成形物が得られる。

[0126]

前記結晶核剤としては、マイカ、タルク、カオリン、ワラスナイト、シリカ、グラファイト等の無機質微粒子、ガラス繊維、カーボン繊維(結晶性樹脂に通常使用されているものを使うことができ、繊維径や長さには特に制限はしない)等の無機質繊維、酸化マグネシウム、酸化アルミニウム等の金属酸化物等を例示することができる。

[0127]

離型剤、滑剤としては、カルボン酸系のステアリン酸、パルチミン酸、モンタン酸等、アミド系のエチレンビスステアリルアミド、メチレンビスステアリルアミド等、カルボン酸エステル系のステアリン酸オクチル、ステアリン酸グリセリド、モンタン酸エステル等、カルボン酸金属塩系の、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、モンタン酸エステルの部分ケン化カルシウム塩等、アルコール系のステアリルアルコール等、ワックス系のポリエチレンワックス、ポリエチレンオキシド等を例示することができる。

[0128]

[0129]

難燃剤の例としては、テトラブロモビスフェノールA誘導体、ヘキサブロモジフェニルエーテル、及びテトラブロモ無水フタル酸等のハロゲン含有化合物;トリフェニルホスフェート、トリフェニルホスファイト、赤リン及びポリリン酸アンモニウム等のリン含有化合物;尿素及びグアニジン等の窒素含有化合物;シリコンオイル、有機シラン、及びケイ酸アルミニウム等のケイ素含有化合物;三酸化アンチモン及びリン酸アンチモン等のアンチモン化合物等が挙げられる。

[0130]

本発明の結晶性樹脂組成物は、原材料を任意の配合方法を用いて配合することにより得ることができる。これらの配合成分は、通常、できるだけ均質化させることが好ましい。具体的には、例えば、全ての原材料をブレンダー、ニーダー、バンバリーミキサー、ロール、押出機等の混合機で混合し均質化させることにより、結晶性樹脂組成物を得たり、又は、一部の原材料を混合機で混合した後、残りの成分を加えて更に混合して均質化させることにより結晶性樹脂組成物を得ることもできる。また、予めドライブレンドされた原材料を、加熱した押出機で溶融混練して均質化した後、針金状に押出し、次いで所望の長さに切断して着色粒状物(着色ペレット)として得ることもできる。また、本発明の結晶性樹脂組成物を用いて、任意の方法により所望のマスターバッチを得ることができる。

[0131]

本発明の結晶性樹脂組成物の成形は、通常行われる種々の手順により行い得る。例えば、結晶性樹脂組成物のペレットを、押出機、射出成形機、ロールミル等の加工機を用いて成形することができる。また、結晶性樹脂のペレット又は粉末、粉砕された着色剤、及び必要に応じ各種の添加物を、適当なミキサー中で混合し、この混合物を加工機を用いて成形することもできる。また例えば、適当な重合触媒を含有するモノマーに着色剤を加え、この混合物を重合により所望の結晶

性樹脂とし、これを適当な方法で成形することもできる。成形方法としては、例えば、射出成形、押出成形、圧縮成形、発泡成形、ブロー成形、真空成形、インジェクションブロー成形、回転成形、カレンダー成形等、一般に行われる何れの成形方法を採用することも可能である。

[0132]

【発明の効果】

本発明の核効果抑制剤及び本発明の結晶性樹脂組成物の結晶化制御法によれば、結晶性樹脂の結晶化温度及び結晶化速度を低下させることによって核剤の働きを抑制することができる。結晶化温度の上昇や成形物の表面光沢・外観の低下を招く核剤として作用する着色剤や繊維状補強材又はその他の添加剤を結晶性樹脂組成物に含有させる場合に、本発明の核効果抑制剤又は本発明の結晶性樹脂組成物の結晶化制御法を用いることにより、それらの核剤としての作用を抑制することができるので、結晶性樹脂組成物の設計の許容幅が広くなり、広範囲の用途に対応することが可能となる。また、本発明における核効果抑制剤は、無色若しくは淡色であるか又はその他の様々な色を有するので、結晶性樹脂を着色する場合の色の設計の許容幅が広い。

[0133]

本発明の結晶性樹脂組成物は、核効果抑制剤を含有しない元の結晶性樹脂樹脂よりも結晶化温度が低下し(例えば4℃以上)、結晶化速度が低下する。そのため、冷却による成形物の収縮量が小さくなって成形の寸法精度が良くなると共に、成形物の強度の異方性が良好に低減して優れた熱時寸法安定性を示すので、寸法精度の要求が厳しい精密な成形物の製造上極めて有効である。また、成形時に、成形用の金型の温度を低くすることができるので、成形物の降温時間を短縮することができると共に金型の温度調整を容易化し、金型の温度調整設備費を低減させることができ、大型成形物の成形も比較的小さな設備で行い得る。また本発明の結晶性樹脂組成物は、含有する核効果抑制剤が無色若しくは淡色であるか又はその他の様々な色を有するものであるから、着色する場合の色の設計の許容幅が広い。

[0134]

次に実施例を挙げて本発明を具体的に説明するが、勿論本発明はこれらのみに限定されるものではない。なお、以下の記述においては、「重量部」を「部」と略す。

[0135]

測定試料作成並びに対照試料 (ポリアミド66のみの試料)のΔT⁰Cの測定

ポリアミド66(デュポン社製 商品名:Zytel 101L) 150ge、 2, 2, 2-トリフルオロエタノール1160ge と混合し、加熱により溶解させた(約70°C)。この溶解液を桐山濾紙NO. 5Aで熱時濾過した。その濾液をクロロホルム 3リットル中に投入した後、これにメタノール1リットルを加えてゲル状とした。このゲル状物を桐山濾紙NO. 5Aで熱時濾過した後、メタノール3リットルに分散させた。この分散液を濾過することにより得られた粉体を、エバポレーターで溶媒を除去した後、70°Cにて15時間以上真空乾燥させることにより、精製ポリアミド66

[0136]

精製したポリアミド66(結晶性樹脂)100部及び本発明の核効果抑制剤(下記の各表に示された化合物例)又は比較化合物例10乃至30部(特に記載が無い場合は10部)を2,2,2ートリフルオロエタノールに加えて加熱溶解させた。これをシャーレに入れて室温にて静置し、2,2,2ートリフルオロエタノールを蒸発させた後、真空乾燥機を用いて70℃で15時間以上乾燥させることにより測定試料を得た。2,2,2ートリフルオロエタノールに加熱溶解しない化合物例又は比較化合物例の場合には次のようにして測定用試料を作成した。

[0137]

精製した100部のポリアミド66及び化合物例又は比較化合物例10乃至30部を2,2,2ートリフルオロエタノールに加えて加熱し、ポリアミド66溶解させた。超音波を用いて該化合物を分散させ、次いでこれにテトラヒドロフランを加えてゲル状の分散状態としたものをシャーレに入れて室温にて静置し、2,2ートリフルオロエタノール及びテトラヒドロフランを蒸発させた。その後、真空乾燥機を用いて70℃で15時間以上乾燥させることにより測定試料を

得た。

[0138]

対照として、精製したポリアミド66のみを2,2,2ートリフルオロエタノールに加熱溶解させた後、シャーレに入れて室温にて静置した。2,2,2ートリフルオロエタノールを蒸発させた後、真空乾燥機を用い、70℃で15時間以上乾燥させることにより対照試料を得た。

[0139]

本明細書では、上記の試料作成処理をキャスト法処理と言うものとし、下記の実施例及び比較例においては、この処理方法により試料を作成した。

[0140]

各測定試料及び対照試料について、示差走査熱量計(SEIKO INSTRUMENTS INC. 社製 商品名:DSC6200、COOLING CONTROLLER)を用いて結晶化温度(T_{CP})、補外結晶化開始温度(T_{CIP})、及び補外結晶化終了温度(T_{CEP})を測定した。この熱分析においては、20 ℃から 300 ℃まで 20 ℃/minで昇温し、300 ℃を 3 分間保持し、次いで 300 ℃から 20 ℃まで 10 ℃/minで降温するというサイクルを 5 回繰り返した。各測定試料について得られた補外結晶化開始温度(T_{CIP})と補外結晶化終了温度(T_{CEP})の測定データから、結晶化温度幅(ΔT_{C})[補外結晶化終了温度と補外結晶化開始温度の差]を算出した。表 1 乃至表 2 0 に示す各化合物例及び各比較化合物例に関する T_{CP} 、 T_{CIP} 、 T_{CEP} 、 ΔT_{CO} 測定値は以上のようにして得た。

[0141]

同様に、対照試料についても結晶化温度(T^0_{CP})、補外結晶化開始温度(T^0_{CIP})、及び補外結晶化終了温度(T^0_{CEP})を測定し、結晶化温度幅(ΔT^0_{C})を算出した。

[0142]

結晶化温度の低下は、 ΔT_{CP} ($\Delta T_{CP} = T_{CP} = T_{CP}$)によって判断し、結晶化速度の低下は、 $\Delta T_{C} \geq \Delta T_{CP} = T_{CP} = T_{CP}$ によって判断した。

[0143]

結晶化温度(TCP)の測定値は、示差走査熱量計により昇温・降温を繰り返して得られた測定値のうち2乃至5回目の4回のものの平均値を用いた。補外結晶化開始温度(TCIP)及び補外結晶化終了温度(TCEP)の測定値は、前記2乃至5回目の各降温測定時の測定値の平均値を用いた。

[0144]

対照試料についても、結晶化温度(T^0_{CP})、補外結晶化開始温度(T^0_{CP})、及び補外結晶化終了温度(T^0_{CEP})の測定値を前記と同様の方法により、以下のように得た。

$$T^{0}_{CP} = 232.8^{\circ}$$

$$T^{0}CIP = 236.0^{\circ}$$

$$T^{0}CEP = 226.5^{\circ}$$

$$\Delta T^0 C = 9.5$$
°C

[0145]

実施例1乃至56は、化合物例1乃至56に関するものであり、化合物例1乃至56は、比較例1乃至20における比較化合物例1乃至20の分子構造と同様の分子構造を含む。これらの化合物例と比較化合物例について結晶化温度及び結晶化速度の低下を対比することにより、本発明の核効果抑制剤の有効性が示される。

[0146]

実施例1乃至20並びに比較例1及び2

実施例1乃至20と比較例1及び2により、アミノナフタレン構造について比較検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0147]

【表1】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
比較例1	比較化合物例1		232.2	0.6	235.2	226.8	8.4	-1.1
実施例1	化合物例1	基本構造24	218.5	14.3	225.2	211.6	13.6	4.1
実施例2	化合物例2	基本構造61	218.6	14.2	227.3	211.5	15.8	6.3
実施例3	化合物例3	基本構造76	223.6	9.2	230.2	217.7	12.5	3.0
実施例4	化合物例4	基本構造85	225.6	7.2	231.6	219.8	11.8	2.3
比較例2	比較化合物例2		232.0	0.8	235.4	227.2	8.2	-1.3
実施例5	化合物例5	基本構造1	227.7	5.1	232.3	220.6	_11.7	2.2
実施例6	化合物例6	基本構造9	227.3	5.5	233.0	221.4	11.6	2.1
実施例7	化合物例7	基本構造10	227.6	5.2	232.1	220.2	11.9	2.4
実施例8	化合物例8	基本構造11	227.5	5.3	232.4	220.8	11.6	2.1
実施例9	化合物例9	基本構造24	219.3	13.5	226.7	211.0	15.7	6.2
実施例10	化合物例10	基本構造41	218.4	14.4	227.1	211.8	15.3	5.8
実施例11	化合物例11	基本構造90	224.7	8.1	230.1	217.0	13.1	3.6
実施例12	化合物例12	基本構造91	223.9	8.9	229.1	216.7	12.4	2.9
実施例13	化合物例13	基本構造64	224.3	8.5	229.7	216.3	13.4	3.9
実施例14	化合物例14	基本構造70	216.8	16.0	225.4	209.2	16.2	6.7
実施例15	化合物例15	基本構造76	219.9	12.9	229.1	212.9	16.2	6.7
実施例16	化合物例16	基本構造84	222.3	10.5	232.0	215.9	16.1	6.6
実施例17	化合物例17	基本構造79	221.6	11.2	228.0	215.4	12.6	3.1
実施例18	化合物例18	基本構造82	222.2	10.6	228.3	215.2	13.1	3.6
実施例19	化合物例19	基本構造91	225.1	7.7	231.6	219.3	12.3	2.8
実施例20	化合物例20	基本構造93	223.2	9.6	229.1	216.4	12.7	3.2

単位:℃

[0148]

【化350】

(比較化合物例1)

【化351】

(化合物例1)

【化352】

(化合物例2)

【化353】

(化合物例3)

【化354】

(化合物例4)

[0149]

【化355】

(比較化合物例2)

【化356】

(化合物例5)

【化357】

(化合物例6)

【化358】

【化359】

(化合物例8)

【化360】

(化合物例9)

【化361】

(化合物例10)

[0150]

【化362】

(化合物例11)

【化363】

(化合物例12)

【化364】

(化合物例13)

【化365】

(化合物例14)

【化366】

$$\bigvee^{\mathsf{NH}_2}$$

(化合物例15)

[0151]

【化367】

(化合物例16)

【化368】

$$NH_2$$

(化合物例17)

[化369]

(化合物例18)

【化370】

(化合物例19)

【化371】

(化合物例20)

[0152]

実施例1乃至4と比較例1との比較考察

実施例1乃至4は、6員環、又は、5員環及び6員環が、全部で3又は4つ縮合環化した多環状構造を備え、その一部分に1-アミノナフタレン構造を含んでいる化合物である。

[0153]

ポリアミド 66 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 232 . 8 \mathbb{C} 、実施例 1 乃至 4 における結晶化温度低下 (ΔT_{CP}) は +7 . 2 乃至 +14 . 3 \mathbb{C} であり、大きな結晶化温度の低下が認められる。

[0154]

また、実施例 1 乃至 4 の結晶化温度幅(Δ T C)は、ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度幅(Δ T C) 9 . 5 C よりも + 2 . 3 乃至 + 6 . 3 C 拡大しており、結晶化速度が低下していることを示している。同時に、補

[0155]

これに対し比較例1の結晶化温度低下(ΔT_{CP})は+0.6 $\mathbb C$ であり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて-1.1 $\mathbb C$ であり、結晶化速度がやや上昇している。従って比較例1 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0156]

このように、6 員環、又は、5 員環及び6 員環が、全部で3 又は4 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していないことが分かる。

[0157]

実施例5乃至20と比較例2との比較考察

実施例5乃至20は、6員環、又は、5員環及び6員環が、全部で3又は4つ 縮合環化した多環状構造を備え、その一部分に2-アミノナフタレン構造を含ん でいる化合物である。

[0158]

ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 2 3 2 . 8 \mathbb{C} 、実施例 5 乃至 2 0 における結晶化温度低下(Δ T_{CP})は + 5 . 1 乃至 + 1 6 . 0 \mathbb{C} であり、大きく結晶化温度が低下している。

[0159]

また、実施例 5 乃至 2 0 の結晶化温度幅(Δ T $_{\rm C}$)は、ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度幅(Δ T $_{\rm C}$)9.5 $_{\rm C}$ よりも + 2.1 乃至 + 6.7 $_{\rm C}$ (Δ Δ T $_{\rm C}$)拡大しており、結晶化速度が低下していることを示している。同時に、補外結晶化開始温度(T $_{\rm C}$ I $_{\rm P}$)が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 5 乃至 2 0 の

[0160]

これに対し比較例 2 の結晶化温度低下(Δ T $_{CP}$)は+ 0. 8 $\mathbb C$ であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T $_{C}$)は対照(元の結晶性樹脂)と比べて- 1. 3 $\mathbb C$ (Δ Δ T $_{C}$) であり、結晶化速度がやや上昇している。従って比較例 2 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0161]

このように、6 員環、又は、5 員環及び6 員環が、全部で3 又は4 つ縮合環化 した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全 部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0 1 6 2]

実施例21及び22比較例3及び4

実施例21及び22と比較例3及び4により、メチルカルボナフタレン構造について比較検討した。各化合物例及び各比較化合物例の構造は下記の通りである

[0 1 6 3]

【表2】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤα
比較例3	比較化合物例3		231.7	1.8_	235.6	225.6	9.0	-0.5
比較例4	比較化合物例4		231.8	1.0	234.7	226.2	8.5	-1.0
実施例21	化合物例21	基本構造39	223.7	9.2	229.1	215.6	13.5	4.0
実施例22	化合物例22	基本構造76	214.7	18.1	230.1	215.7	14.5	5.0

単位:℃

[0164]

【化372】

(比較化合物例3)

ページ: 142/

【化373】

(比較化合物例4)

【化374】

(化合物例21)

【化375】

(化合物例22)

[0165]

実施例21及び22は、6員環が全部で3又は4つ縮合環化した多環状構造を 備え、その一部分にメチルカルボナフタレン構造を含んでいる化合物である。

[0166]

ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 2 3 2 8 \mathbb{C} 、実施例 2 1 及び 2 2 における結晶化温度低下(Δ T_{CP})は + 9 . 2 及 U+1 8 . 1 \mathbb{C} であり、大きく結晶化温度が低下している。

[0167]

また、実施例 $2\,1$ 及び $2\,2$ の結晶化温度幅($\Delta\,T\,C$)は、ポリアミド $6\,6$ (対照:元の結晶性樹脂)の結晶化温度幅($\Delta\,T\,^0\,C$) $9.\,5\,^{\circ}$ とりも $+\,4.\,0$ 及び $+\,5.\,0\,^{\circ}$ ($\Delta\,\Delta\,T\,C$)拡大しており、結晶化速度が低下していることを示している。同時に、補外結晶化開始温度($T\,C\,I\,P$)が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 $2\,1\,^{\circ}$ 及び $2\,^{\circ}$ の化合物は核効果抑制剤としての顕著な機能を有している。

[0168]

[0169]

このように、6 員環が全部で3 又は4 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0170]

実施例23乃至29並びに比較例5乃至7

実施例23乃至29と比較例5乃至7により、クロモン(1ーベンゾピランー4 (4H)ーオン)構造について比較検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0171]

【表3】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
比較例5	比較化合物例5		231.1	1.7	234.3	225.1	9.2	-0.3
比較例6	比較化合物例6		230.9	2.0	233.7	223.7	10.0	0.5
比較例7	比較化合物例7		230.8	2.0	234.5	224.6	9.9	0.4
実施例23	化合物例23	基本構造2	227.4	5.4	232.6	219.7	12.9	3.4
実施例24	化合物例24	基本構造25	224.7	8.1	228.9	216.5	12.4	2.9
実施例25	化合物例25	基本構造25	227.0	5.8	231.2	219.1	12.1	2.6
実施例26	化合物例26	基本構造29	227.0	5.8	231.8	219.9	11.9	2.4
実施例27	化合物例27	基本構造41	224.2	8.6	230.7	218.4	12.3	2.8
実施例28	化合物例28	基本構造42	227.7	5.1	232.2	220.7	11.5	2.0
実施例29	化合物例29	基本構造42	220.9	11.9	229.5	213.4	16.1	6.6

単位:℃

[0172]

[化376]

(比較化合物例5)

【化377】

(比較化合物例6)

【化378】

(比較化合物例7)

【化379】

$$H_3C$$
O OCH₃
OCH₃

(化合物例23)

【化380】

(化合物例24)

【化381】

(化合物例25)

[0173]

【化382】

(化合物例26)

【化383】

(化合物例 2 7)

【化384】

(化合物例28)

【化385】

ページ: 146/

(化合物例29)

[0174]

実施例23万至29は、6員環、又は、5員環及び6員環が、全部で3つ縮合環化した多環状構造を備え、その一部分にクロモン(1ーベンゾピラン-4(4H)ーオン)構造を含んでいる化合物である。

[0175]

ポリアミド 66 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 232 . 8 \mathbb{C} 、実施例 23 乃至 29 における結晶化温度低下 (ΔT_{CP}) は +5 . 1 乃至 +11 . 9 \mathbb{C} であり、大きく結晶化温度が低下している。

[0176]

また、実施例 23 乃至 29 の結晶化温度幅(ΔT_C)は、ポリアミド 66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9.5 \mathbb{C} よりも +2.0 乃至 +6.6 \mathbb{C} ($\Delta \Delta T_C$)拡大しており、結晶化速度が大きく低下していることを示している。同時に、補外結晶化開始温度(T_{CIP})が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 23 乃至 29 の化合物は核効果抑制剤としての顕著な機能を有している。

[0177]

これに対し比較例 5 乃至 7 の結晶化温度低下(Δ T C P)は + 2 . 0 乃至 + 1 . 7 \mathbb{C} であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T C)は対照(元の結晶性樹脂)と比べて- 0 . 3 乃至 + 0 . 5 \mathbb{C} (Δ Δ T C)であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って比較例 5 乃至 7 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0178]

このように、6 員環、又は、5 員環及び6 員環が、全部で3 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0179]

比較例8乃至10、実施例30乃至33

[0180]

【表4】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	TCEP	ΔT _C	ΔΔΤα
比較例8	比較化合物例8		231.7	1.1	235.0	226.1	8.9	-0.6
比較例9	比較化合物例9		230.9	1.9	234.0	224.7	9.3	-0.2
比較例10	比較化合物例10		230.7	2.1	233.9	224.0	10.0	0.5
実施例30	化合物例30	基本構造3	226.3	6.5	230.4	218.2	12.2	2.7
実施例31	化合物例31		224.0	8.8	230.8	219.0	11.8	2.3
実施例32	化合物例32	基本構造43	223.5	9.3	231.3	218.2	13.1	3.6
実施例33	化合物例33	基本構造73	224.0	8.8	230.6	218.0	12.6	3.1

. 単位:℃

[0181]

【化386】

(比較化合物例8)

【化387】

(比較化合物例9)

【化388】

$$H_3C$$
 CH_3
 CH_3
 CH_3

(比較化合物例10)

【化389】

(化合物例30)

【化390】

(化合物例31)

【化391】

(化合物例32)

【化392】

(化合物例33)

[0182]

実施例30万至33は、6員環、又は、5員環及び6員環が、全部で3又は4 つ縮合環化した多環状構造を備え、その一部分にクマリン構造を含んでいる化合 物である。

[0183]

ポリアミド 6.6 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 2.3.2 . 8° 、実施例 3.0 乃至 3.3 における結晶化温度低下(Δ_{TCP})は +.9.3 乃至 +6.5 であり、大きく結晶化温度が低下している。

[0184]

[0185]

これに対し比較例 8 の結晶化温度低下(Δ T $_{CP}$)は+1. 1 $\mathbb C$ であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T $_{C}$)は対照(元の結晶性樹脂)と比べて-0. 6 $\mathbb C$ であり、結晶化速度がやや上昇している。従って比較例 8 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0186]

このように、6 員環、又は、5 員環及び6 員環が、全部で3 又は4 つ縮合環化 した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全 部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0187]

また比較例9及び10は、クマリンに5員環又は6員環が単結合を介して繋がっている化合物である。

[0188]

比較例 9 及び 1 0 の結晶化温度低下(Δ T C P)は + 1 . 9 及び + 2 . 1 \mathbb{C} であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T C) は対照(元の結晶性樹脂)と比べて - 0 . 2 及び + 0 . 5 \mathbb{C} (Δ Δ T C) であり、結晶化速度にほとんど変化はない。従って比較例 9 及び 1 0 の化合物は核効果抑制剤としての機能を有していない。

[0189]

このように、5 員環以上の環の総数が3であっても、比較例9及び10のように単結合を介して例えば芳香環又はヘテロ環等の環が繋がって環の総数が3とな

った化合物は、核効果抑制剤としての機能を有していないことが分かる。

[0190]

また、実施例31及び33に示されるように、構造中に脂環構造を備えた化合物でも、核効果抑制剤としての機能を有する。

[0191]

実施例34乃至45並びに比較例11乃至13

実施例34乃至45と比較例11乃至13により、キノリン構造について比較 検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0192]

【表5】

実施例	化合物例	基本構造	T _{CP}	ΔTcp	T _{CIP}	T _{CEP}	$\Delta T_{\rm G}$	ΔΔΤα
		- 世代 - 一						
<u>比較例11</u>	比較化合物例11		230.9	1.9	234.2	225.5	8.7	-0.8
<u>実施例34</u>	化合物例34	基本構造34	219.7	13.1	228.7	212.7	16.0	6.5
実施例35	化合物例35	基本構造46	222.5	10.3	228.3	215.1	13.2	3.7
比較例12	比較化合物例12		231.6	1.2	235.2	225.8	9.4	-0.1
実施例36	化合物例36	基本構造47	213.2	19.7	225.4	204.9	20.5	11.0
実施例37	化合物例37	基本構造47	225.5	7.3	230.8	218.4	12.4	2.9
実施例38	化合物例38	基本構造47	228.6	4.3	233.1	221.2	11.9	2.4
実施例39	化合物例39	基本構造47	225.7	7.1	231.9	218.5	13.4	3.9
実施例40	化合物例40	基本構造47	221.1	11.8	229.0	212.1	17.0	7.5
実施例41	化合物例41	基本構造47	215.9	16.9	225.8	207.8	18.0	8.5
実施例42	化合物例42	基本構造48	225.6	7.2	230.5	218.5	12.0	2.5
実施例43	化合物例43	基本構造49	223.4	9.4	229.7	215.6	14.1	4.6
実施例44	化合物例44	基本構造69	218.3	14.5	226.8	211.8	15.0	5.5
比較例13	比較化合物例13		231.9	0.9	235.2	225.5	9.8	0.3
実施例45	化合物例45	基本構造111	224.7	8.1	231.1	215.5	15.6	6.1

単位:℃

[0193]

【化393】

(比較化合物例11)

【化394】

(化合物例34)

【化395】

(化合物例35)

【化396】

(比較化合物例12)

【化397】

(化合物例36)

【化398】

(化合物例37)

[0194]

【化399】

(化合物例38)

【化400】

(化合物例39)

【化401】

(化合物例40)

【化402】

(化合物例41)

【化403】

(化合物例42)

【化404】

(化合物例43)

【化405】

【化406】

(比較化合物例13)

【化407】

(化合物例45)

[0195]

実施例34乃至45は、6員環が、全部で3、4又は5つ縮合環化した多環状構造を備え、その一部分にキノリン構造を含んでいる化合物である。

[0196]

ポリアミド 6.6 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 2.3.2 . 8.0 、実施例 3.4 乃至 4.5 における結晶化温度低下 (ΔT_{CP}) は +.4.3 乃至 +.1.9 . 7.0 であり、大きな結晶化温度の低下が認められる。

[0197]

また、実施例 34 乃至 45 の結晶化温度幅(Δ T $_{\rm C}$)は、ポリアミド 66(対照:元の結晶性樹脂)の結晶化温度幅(Δ T $_{\rm C}$) 9.5 ℃よりも +2.5 乃至 +11.0 ℃(Δ Δ T $_{\rm C}$)拡大しており、結晶化速度が大きく低下していることを示している。同時に、補外結晶化開始温度(T $_{\rm C}$ $_{\rm IP}$)が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 34 乃至 45 の化合物は核効果抑制剤としての顕著な機能を有している。

[0198]

これに対し比較例11の結晶化温度低下(ΔT_{CP})は+1.9 \mathbb{C} であり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて-0.8 \mathbb{C} ($\Delta \Delta T_{C}$)であり、結晶化速度がやや上昇している。従って比較例11の化合物は核効果抑制剤としての機能を有しておらず、むしろ

[0199]

このように、6 員環が、全部で3、4 又は5 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、6 員環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0200]

比較例 12 の結晶化温度低下(ΔT_{CP})は+1.2 であり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)との差が-0.1 で($\Delta \Delta T_{C}$)であり、結晶化速度の変化はない。従って比較例 12 の化合物は核効果抑制剤としての機能を有していない。

[0201]

これに対し実施例 3 6 の化合物は、比較例 1 2 の化合物における 2 つの単環を繋ぐ単結合を含む部分を閉環した多環状構造としたフェナントロリン構造であり、この実施例 3 6 の化合物は核効果抑制剤としての顕著な機能を有していた。(実施例 3 6 Δ T_{CP} : + 1 9 . 7 \mathbb{C} 、 Δ Δ T_{C} : + 1 1 . 0 \mathbb{C} 比較例 1 2 Δ Δ T_{CP} : + 1 . 2 \mathbb{C} 、 Δ Δ Δ T_{C} : - 0 . 1 \mathbb{C})

[0202]

同様に、比較例 1 3 の化合物(2 , 2 ' - ビキノリン)の結晶化温度低下(Δ T_{CP})は + 0 . 9 ℃であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T_{C})は対照(元の結晶性樹脂)と比べて + 0 . 3 ℃(Δ Δ T_{C})であり、結晶化速度はほぼ等しい。従って比較例 1 3 の化合物は核効果抑制剤としての機能を有していない。

[0203]

実施例 45 の化合物は、比較例 13 の化合物における 6 員環 2 つが縮合環化した 2 つの環構造を繋ぐ単結合を含む部分を閉環した構造としたものであり、この 実施例 45 の化合物は核効果抑制剤としての機能を有していた。(実施例 45 ΔT_{CP} : +8.1 \mathbb{C} 、 $\Delta \Delta T_{C}$: +6.1 \mathbb{C} 比較例 13 ΔT_{CP} : +0.9 \mathbb{C} 、 $\Delta \Delta T_{C}$: 0.3 \mathbb{C})

[0204]

実施例46乃至50と比較例14乃至17により、マレイック アンハイドライド構造について比較検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0205]

【表6】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	TCEP	ΔT _c	ΔΔΤς
比較例14	比較化合物例14		232.3	0.5	234.6	225.0	9.6	0.1
比較例15	比較化合物例15		231.0	1.8	233.8	224.2	9.6	0.1
実施例46	化合物例46	基本構造52	226.5	6.3	231.4	219.3	12.1	2.6
実施例47	化合物例47	基本構造4	227.4	5.4	232.1	220.4	11.7	2.2
比較例16	比較化合物例16		233.1	-0.3	235.9	227.0	8.9	-0.6
実施例48	化合物例48	基本構造53	226.9	5.9	231.1	219.5	11.6	2.1
実施例49	化合物例49	基本構造6	227.7	5.1	231.8	220.1	11.7	2.2
比較例17	比較化合物例17		233.5	-0.7	236.9	227.1	9.8	0.3
実施例50	化合物例50	基本構造7	227.4	5.4	232.7	220.7	12.0	2.5

単位:℃

[0206]

【化408】

(比較化合物例14)

【化409】

(比較化合物例15)

【化410】

(化合物例46)

【化411】

(化合物例 4 7)

【化412】

(比較合物例16)

【化413】

(化合物例48)

【化414】

(化合物例49)

【化415】

(比較化合物例17)

【化416】

(化合物例50)

[0207]

実施例46及び47と比較例14及び15との比較考察

実施例46及び47は、5員環及び6員環が、全部で3つ縮合環化した多環状構造を備え、その一部分にマレイック アンハイドライド構造を含んでいる化合物である。

[0208]

ポリアミド 66 (対照:元の結晶性樹脂) の結晶化温度(T^0_{CP})は232.8 \mathbb{C} 、実施例 46 及び 47 における結晶化温度低下(ΔT_{CP})は+6.3 及び +5.4 \mathbb{C} ($\Delta \Delta T_{C}$) であり、大きく結晶化温度が低下している。

[0209]

[0210]

これに対し比較例 14の結晶化温度低下(ΔT_{CP})は+0.5 \mathbb{C} であり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて+0.1 \mathbb{C} ($\Delta \Delta T_{C}$)であり、結晶化速度はほとんど変わらない。従って比較例 14 の化合物は核効果抑制剤としての機能を有していない。

[0211]

このように、5員環及び6員環が、全部で3つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、5員環及び6員環が全部で2つ縮

[0212]

また比較例15は、マレイック アンハイドライドに2つの芳香環が単結合で繋がっている化合物である。この比較例15の結晶化温度低下(ΔT_{CP})は+1.8であり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて+0.1で($\Delta \Delta T_{C}$)であり、結晶化速度はほとんど変わらない。従って比較例15の化合物は核効果抑制剤としての機能を有していない。

[0213]

このように、5 員環及び6 員環が、全部で3 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、比較例15のように5 員環以上の環の総数が3であっても1つの環が他の何れかの環に単結合で繋がった化合物では核効果抑制剤の機能を有していない。

[0214]

実施例48及び49と比較例16との比較考察

実施例48及び49は、5員環及び6員環が全部で3つ縮合環化した多環状構造を備える化合物である。

[0215]

ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 2 3 2 . 8 \mathbb{C} 、実施例 4 8 及び 4 9 における結晶化温度低下(ΔT_{CP})は + 5 . 9 及び + 5 . 1 \mathbb{C} であり、大きく結晶化温度が低下している。

[0216]

また、実施例 48 及び 49 の結晶化温度幅(ΔT_C)は、ポリアミド 66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9.5 C よりも +2.1 及び +2.2 C 拡大しており、結晶化速度が大きく低下していることを示している。 同時に、補外結晶化開始温度(T_{CIP})が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 48 及び 49 の化合物は核効果抑制剤としての顕著な機能を有している。

[0217]

[0218]

このように、5 員環及び6 員環が全部で3 つ縮合環化した多環状構造を備えた 化合物は核抑制効果の機能を有しているが、比較例16のように5 員環及び6 員 環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0219]

実施例50と比較例17との比較考察

実施例50は、5員環と6員環が全部で3つ縮合環化した多環状構造を備える 化合物である。

[0220]

ポリアミド 66 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は232 . 8 \mathbb{C} 、実施例 50 における結晶化温度低下(ΔT_{CP})は+5 . 4 \mathbb{C} であり、結晶化温度が低下している。

[0221]

[0222]

これに対し比較例 17の結晶化温度低下(ΔT_{CP})は-0.7でであり、結晶化温度の変化はほとんどない。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて+0.3 \mathbb{C} ($\Delta \Delta T_{C}$) であり、結晶化速度がやや上昇している。従って比較例 17 の化合物は核効果抑制剤としての機能を有していない。

このように、5 員環と6 員環が全部で3 つ縮合環化した多環状構造を備えた化合物は核抑制効果の機能を有しているが、5 員環と6 員環が全部で2 つ縮合環化した化合物では核効果抑制剤の機能を有していない。

[0224]

実施例51及び比較例18乃至20

実施例51と比較例18乃至20により、ベンゾチアゾール構造について比較 検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0225]

【表7】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	$\Delta \Delta T_{c}$
比較例18	比較化合物例18		232.1	0.7	235.4	226.4	9.0	-0.5
比較例19	比較化合物例19		232.4	0.4	235.1	226.0	9.1	-0.4
比較例20	比較化合物例20		233.3	-0.5	236.0	227.1	8.9	-0.6
実施例51	化合物例51	基本構造5	227.6	5.2	232.8	220.2	12.6	3.1

単位:℃

[0226]

【化417】

(比較化合物例18)

【化418】

(比較化合物例19)

【化419】

(比較化合物例20)

【化420】

(化合物例51)

[0227]

実施例51は、5員環及び6員環が全部で3つ縮合環化した多環状構造を備え 、その一部分にベンゾチアゾール構造を含んでいる化合物である。

[0228]

ポリアミド 6 6 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 2 3 2 . 8 \mathbb{C} 、実施例 5 1 における結晶化温度低下(Δ T_{CP})は + 5 . 2 \mathbb{C} であり、大きく結晶化温度が低下している。

[0229]

[0230]

これに対し比較例 18 及び 19 の結晶化温度低下(Δ T CP)は +0.7 及び +0.4 ℃であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T C)は対照(元の結晶性樹脂)と比べて-0.5 及び-0.4 ℃であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って比較例 18 及び 19 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0231]

このように、5員環及び6員環が全部で3つ縮合環化した多環状構造を備えた 化合物は核抑制効果の機能を有しているが、5員環及び6員環が全部で2つ縮合 環化した化合物では核効果抑制剤の機能を有していない。

また比較例 20 は、ベンゾチアゾールに芳香環が単結合で繋がっている化合物である(環の総数は 3 つ)。この比較例 20 の結晶化温度低下(Δ T $_{CP}$)は一0.5 ℃であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T $_{C}$)は対照(元の結晶性樹脂)と比べて-0.6 ℃(Δ Δ T $_{C}$)であり、結晶化速度はやや上昇している。従って比較例 20 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0233]

このように、5員環以上の環の総数が3であっても1つの環が他の何れかの環 に単結合で繋がった化合物では核効果抑制剤の機能を有していない。

[0234]

実施例52乃至56並びに比較例21及び22

実施例52乃至56と比較例21及び22により、インデン構造について比較 検討した。各化合物例及び各比較化合物例の構造は下記の通りである。

[0235]

【表8】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤα
比較例21	比較化合物例21	_	232.1	0.7	235.1	227.0	8.1	-1.4
比較例22	比較化合物例22		232.4	0.4	234.7	227.2	7.5	-2.0
実施例52	化合物例52	基本構造18	220.7	12.1	228.9	213.1	15.8	6.3
実施例53	化合物例53	基本構造18	229.5	3.3	228.1	211.9	16.2	6.7
実施例54	化合物例54	基本構造18	222.7	10.1	229.8	215.0	14.8	5.3
実施例55	化合物例55	基本構造51	223.3	9.5	230.1	217.3	12.8	3.3
実施例56	化合物例56	基本構造57	222.1	10.7	228.4	215.7	12.7	3.2

単位:℃

[0236]

【化421】

(比較化合物例21)

【化422】

(比較化合物例22)

【化423】

(化合物例52)

【化424】

(化合物例53)

【化425】

(化合物例54)

【化426】

$$H_2N$$

(化合物例55)

【化427】

(化合物例56)

[0237]

実施例52乃至56は、5員環及び6員環が全部で3つ縮合環化した多環状構造を備え、その一部分にインデン構造を含んでいる化合物である。

[0238]

ポリアミド 66 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 232 . 8 \mathbb{C} 、実施例 52 乃至 56 における結晶化温度低下(Δ T_{CP})は +9.5 乃至 +12.1 \mathbb{C} であり、大きく結晶化温度が低下している。

[0239]

また、実施例 52乃至 56 の結晶化温度幅(Δ T C)は、ポリアミド 66(対照:元の結晶性樹脂)の結晶化温度幅(Δ T O C) 9.5 ℃よりも+3.2 乃至 +6.7 C (Δ Δ T C) 拡大しており、結晶化速度が大きく低下していることを示している。同時に、補外結晶化開始温度(T C I P)が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、実施例 52 乃至 56 の化合物は核効果抑制剤としての顕著な機能を有している。

[0240]

これに対し比較例 2 1 の結晶化温度低下(Δ T $_{CP}$)は+ 0. 7 $\mathbb C$ であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T $_{C}$)は対照(元の結晶性樹脂)と比べて- 1. 4 $\mathbb C$ (Δ Δ T $_{C}$) であり、結晶化速度はやや上昇している。従って比較例 2 1 の化合物は核効果抑制剤としての機能を有していない。

[0241]

このように、5員環及び6員環が全部で3つ縮合環化した多環状構造を備えた 化合物は核抑制効果の機能を有しているが、5員環及び6員環が全部で2つ縮合 環化した化合物では核効果抑制剤の機能を有していない。

[0242]

比較例 2 2 は、インデンに単結合で芳香環が繋がっている化合物である(環の総数が 3 つ)。この比較例 2 2 の結晶化温度低下(Δ T $_{\rm CP}$)は+ 0. 4 $\mathbb C$ であり、結晶化温度の変化はほとんどない。結晶化温度幅(Δ T $_{\rm C}$)は対照(元の結晶性樹脂)と比べて- 2. 0 $\mathbb C$ (Δ Δ T $_{\rm C}$) であり、結晶化速度はやや上昇している。従って比較例 2 2 の化合物は核効果抑制剤としての機能を有しておらず、

ページ: 165/

むしろ核剤としての働きを示している。

[0243]

このように、5 員環以上の環の総数が3であっても比較例22のように1つの環が他の何れかの環に単結合で繋がった化合物では核効果抑制剤の機能を有していない。

[0244]

実施例 5 7 乃至 9 8

実施例57乃至98は、5員環以上の環状構造が3つ縮合環化した多環状構造を備えた化合物例57乃至98に関する。各化合物例の構造は下記の通りである

[0245]

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
実施例57	化合物例57	坐个诗思	227.5	5.3	233.4	221.2	12.2	2.7
実施例58	<u> </u>		223.6	9.2	229.7	216.0	13.7	4.2
実施例59	化合物例59	基本構造19	227.4	5.4	233.2	221.6	11.6	2.1
実施例60	化合物例60	基本構造19	224.1	8.7	230.2	218.1	12.1	2.6
実施例61	化合物例61	基本構造20	225.6	7.2	231.6	218.9	12.7	3.2
実施例62	化合物例62	基本構造20	226.6	6.2	231.1	219.3	11.8	2.3
実施例63	化合物例63	基本構造21	226.4	6.4	232.6	220.7	11.9	2.4
実施例64	化合物例64	基本構造21	227.7	5.1	233.9	221.5	12.4	2.9
実施例65	化合物例65	基本構造21	227.0	5.8	233.1	221.0	12.1	2.6
実施例66	化合物例66	基本構造22	225.6	7.2	230.9	218.6	12.3	2.8
実施例67	化合物例67	基本構造23	227.1	5.7	232.6	221.1	11.5	2.0
実施例68	化合物例68	基本構造23	227.8	5.0	232.7	220.1	12.6	3.1
実施例69	化合物例69	金子 中尼20	227.7	5.1	232.7	220.1	12.6	3.1
実施例70	化合物例70	基本構造26	225.6	7.2	231.0	219.3	11.7	2.2
実施例71	化合物例71	基本構造27	224.1	8.8	232.6	214.6	18.0	8.5
実施例72	化合物例72	基本構造27	218.9	14.0	226.3	212.2	14.1	4.6
実施例73	化合物例73	基本構造27	227.7	5.1	233.0	221.2	11.8	2.3
実施例74	化合物例74	基本構造28	220.6	12.2	227.8	212.7	15.1	5.6
実施例75	化合物例75	基本構造30	226.6	6.2	231.7	219.0	12.7	3.2
実施例76	化合物例76	基本構造32	219.5	13.3	227.2	210.5	16.7	7.2
実施例77	化合物例77	基本構造33	218.9	13.9	227.0	211.5	15.5	6.0
実施例78	化合物例78	基本構造33	219.5	13.3	227.1	213.8	13.3	3.8
実施例79	化合物例79	基本構造33	224.3	8.5	230.5	217.5	13.0	3.5
実施例80	化合物例81	基本構造35	223.3	9.5	229.5	216.5	13.0	3.5
実施例81	化合物例81	基本構造37	223.7	9.1	228.4	214.2	14.2	4.7
実施例82	化合物例82	基本構造37	227.4	5.4	233.3	219.8	13.5	4.0
実施例83	化合物例83	基本構造38	219.6	13.2	228.1	212.3	15.8	6.3
実施例84	化合物例84	基本構造38	217.1	15.7	226.5	210.2	16.3	6.8
実施例85	化合物例85	基本構造38	221.8	11.0	226.7	211.9	14.8	5.3
実施例86	化合物例86		219.6	13.2	227.3	212.7	14.6	5.1
実施例87	化合物例87		221.4	11.4	228.1	215.0	13.1	3.6
実施例88	化合物例89	基本構造36	223.9	8.9	229.9	217.2	12.7	3.2
実施例89	化合物例89	基本構造41	226.9	5.9	231.5	219.6	11.9	2.4
実施例90	化合物例90		225.9	6.9	230.9	219.4	11.5	2.0
実施例91	化合物例91	基本構造45	226.6	6.2	231.7	217.3	14.4	4.9
実施例92	化合物例92	基本構造54	227.4	5.4	232.2	219.4	12.8	3.3
実施例93	化合物例93	基本構造55	227.6	5.2	232.2	219.8	12.4	2.9
実施例94	化合物例94		226.9	5.9	232.0	220.1	11.9	2.4
実施例95	化合物例95	基本構造58	226.7	6.1	233.1	221.0	12.1	2.6
実施例96	化合物例96		225.6	7.2	231.1	218.3	12.8	3.3
実施例97	<u>化合物例97</u>		224.9	7.9	230.8	218.6	12.2	2.7
実施例98	化合物例98	<u> </u>	227.8	5.0	232.7	220.6	12.1	2.6

単位:℃

【化428】

【化429】

(化合物例58)

【化430】

(化合物例59)

【化431】

(化合物例60)

【化432】

(化合物例61)

【化433】

(化合物例62)

【化434】

【化435】

(化合物例64)

【化436】

(化合物例 6 5)

【化437】

(化合物例66)

【化438】

(化合物例 6 7)

【化439】

(化合物例 6 8)

ページ: 169/

【化440】

(化合物例69)

【化441】

(化合物例70)

【化442】

(化合物例71)

【化443】

(化合物例72)

【化444】

(化合物例73)

【化445】

(化合物例74)

【化446】

(化合物例75)

【化447】

(化合物例76)

【化448】

(化合物例77)

【化449】

(化合物例78)

【化450】

(化合物例79)

【化451】

(化合物例80)

【化452】

(化合物例81)

【化453】

(化合物例82)

【化454】

(化合物例83)

【化455】

$$\begin{array}{c|c} H_3C & \\ \hline N & \\ \hline CH_3 & \\ \end{array} SCN^-$$

(化合物例84)

【化456】

(化合物例85)

【化457】

(化合物例86)

【化458】

$$H_3C$$
 N
 N
 N
 N
 CH_2CH_3
 CH_2CH_3
 CH_3COO

(化合物例87)

【化459】

(化合物例88)

【化460】

(化合物例89)

【化461】

(化合物例90)

【化462】

$$H_2N$$
 N
 NH_2

(化合物例91)

【化463】

(化合物例92)

【化464】

(化合物例93)

【化465】

(化合物例94)

【化466】

(化合物例95)

【化467】

(化合物例96)

【化468】

(化合物例97)

【化469】

(化合物例98)

[0246]

ポリアミド 66 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 232 . 8 \mathbb{C} 、実施例 57 万至 98 における結晶化温度低下(ΔT_{CP})は +5.0 万 至 +15.7 \mathbb{C} であり、大きく結晶化温度が低下している。

[0247]

また、実施例 57 万至 98 の結晶化温度幅(ΔT_C)は、ポリアミド 66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9. 5 C よりも +2 . 0 乃至 +8 . 5 C ($\Delta \Delta T_C$) 拡大しており、結晶化速度が大きく低下していることを示している。同時に、補外結晶化開始温度(T_{CIP})が元の結晶性樹脂より低

[0248]

実施例99及び100

実施例99及び100は、4員環以上の環状構造が3つ縮合環化した多環状構造を備えた化合物例100及び101に関する。各化合物例の構造は下記の通りである。

[0249]

【表10】

実施例	化合物例	基本構造	T _{CP}	ΔT_{CP}	T _{CIP}	T _{CEP}	ΔT_{c}	$\Delta \Delta T_c$
実施例99	化合物例99	基本構造50	226.0	6.8	232.6	221.1	11.5	2.0
実施例100	化合物例100	基本構造50	227.4	5.4	232.0	220.2	11.8	2.3

単位:℃

[0250]

【化470】

(化合物例99)

【化471】

(化合物例100)

[0251]

ポリアミド 66 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 232 . $8\mathbb{C}$ 、実施例 99 及び 100 における結晶化温度低下 (ΔT_{CP}) は +6.8 及び $+5.4\mathbb{C}$ であり、大きく結晶化温度が低下している。

また、実施例99及び100の結晶化温度幅(ΔT_C)は、ポリアミド66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT^0_C)9.5℃よりも+2.0及び+2.3℃拡大($\Delta \Delta T_C$)しており、結晶化速度が大きく低下していることを示している。同時に、補外結晶化開始温度(T_{CIP})が元の結晶性樹脂より低く、核誘導期間が非常に長くなっていることを示している。従って、これらの化合物は核効果抑制剤としての顕著な機能を有している。

[0253]

比較例 2 3 乃至 1 1 4

実施例1乃至100及び比較例1乃至22によって、環構造と置換基の類似性を基礎に縮合環化した環の数の違いによる結晶化温度と結晶化速度への影響を比較検討してきた。その結果、縮合環化した数が2の場合には結晶化温度と結晶化速度を下げる効果はほとんどないにもかかわらず、縮合環化した環の数が3を越えると劇的とも言える大きな効果が認められた。

この縮合環化した環の数の違いによる核抑制効果の違いをさらに確認するために、比較例23乃至114では、実施例1から100で見出された環構造及び置換基と類似した環構造や置換基を持つ化合物の核抑制効果を調べた。比較例23乃至32では環の数は3つであるが2個のみ縮合環化した構造、比較例33乃至40では環の数は3つであるが何れとも縮合環化していない構造、比較例41乃至80では2個の環が縮合環化している構造、比較例81乃至99では2個の環が縮合環化していない構造、比較例100乃至114では環の数が1つのものを示している。

[0254]

比較例23乃至40

比較例23乃至40は、5員環と6員環で構成される環の総数が3以上であるが、この3つ以上の環が縮合環化していない化合物すなわち、5員環と6員環又は6員環同士が2つ縮合環化した環状構造と単環とが単結合を介して繋がった(若しくはスピロ結合した)化合物或いは5員環又は6員環の単環同士が単結合を介して繋がった化合物に関する。各比較化合物例の構造は下記の通りである。

【表11】

比較例	比較化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
比較例23	比較化合物例23	232.1	0.7	235.4	226.9	8.5	-1.0
比較例24	比較化合物例24	233.1	-0.3	236.2	228.3	7.9	-1.6
比較例25	比較化合物例25	233.0	-0.2	236.5	227.8	8.7	-0.8
比較例26	比較化合物例26	232.9	-0.1	236.2	228.3	7.9	-1.6
比較例27	比較化合物例27	232.5	0.3	235.9	227.6	8.3	-1.2
比較例28	比較化合物例28	231.0	1.8	233.9	224.9	9.0	- 0.5
比較例29	比較化合物例29	231.7	1.1	234.1	225.3	8.8	−0.7
比較例30	比較化合物例30	232.0	0.8	235.3	226.9	8.4	-1.1
比較例31	比較化合物例31	230.8	2.0	234.1	224.9	9.2	-0.3
比較例32	比較化合物例32	230.8	2.0	233.6	223.8	9.8	0.3
比較例33	比較化合物例33	232.7	0.1	235.6	226.6	9.0	-0.5
比較例34	比較化合物例34	231.2	1.6	234.8	225.0	9.8	0.3
比較例35	比較化合物例35	231.5	1.3	234.6	225.0	9.6	0.1
比較例36	比較化合物例36	231.0	1.8	234.7	224.7	10.0	0.5
比較例37	比較化合物例37	231.2	1.6	234.9	225.2	9.7	0.2
比較例38	比較化合物例38	231.4	1.4	234.9	225.1	9.8	0.3
比較例39	比較化合物例39	230.9	1.9	234.1	223.6	10.5	1.0
比較例40	比較化合物例40	232.7	0.1	235.4	226.6	8.8	-0.7

単位:℃

[0256]

【化472】

(比較化合物例23)

【化473】

(比較化合物例24)

【化474】

(比較化合物例25)

【化475】

(比較化合物例26)

【化476】

(比較化合物例27)

【化477】

(比較化合物例28)

【化478】

(比較化合物例29)

【化479】

(比較化合物例30)

【化480】

(比較化合物例31)

【化481】

(比較化合物例32)

【化482】

(比較化合物例33)

【化483】

(比較化合物例34)

【化484】

(比較化合物例35)

【化485】

(比較化合物例36)

【化486】

(比較化合物例37)

【化487】

(比較化合物例38)

ページ: 182/

【化488】

(比較化合物例39)

【化489】

(比較化合物例40)

[0257]

比較例 23 乃至 40 の結晶化温度低下(Δ T $_{CP}$)は-0.2 乃至 +2.0 であり、結晶化温度の変化はほとんどないか又は僅かに低下している。結晶化温度幅(Δ T $_{C}$)は対照(元の結晶性樹脂)と比べて-1.6 乃至 +1.0 $\mathbb C$ (Δ Δ T $_{C}$)であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って比較例 23 乃至 40 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0258]

実施例57乃至98の結果から、5員環以上の環状構造が3つ縮合環化した多環状構造を備えた化合物は核効果抑制剤としての機能を有していた。これに対し、比較例23万至40のように、5員環以上の環の総数が3以上であっても2つの環のみが縮合環化した環状構造を持つ化合物や環の数は3つであるが何れとも縮合環化していない構造を有する化合物では核効果抑制剤の機能を有していない

[0259]

<u>比較例41乃至80</u>

比較例41乃至80は、これまでに示した核効果を抑制する化合物の構造に含まれる置換基や芳香環をもってはいるが、5員環と6員環の2つの環又は6員環

ページ: 183/

2つで構成される縮合環化した化合物に関する。各比較化合物例の構造は下記の 通りである。

[0260]

【表12】

比較例	比較化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
比較例41	比較化合物例41	232.2	0.6	235.1	226.9	8.2	-1.3
比較例42	比較化合物例42	232.8	0.0	235.8	227.7	8.1	-1.4
比較例43	比較化合物例43	233.1	-0.3	236.4	227.8	8.6	-0.9
比較例44	比較化合物例44	233.7	-0.9	236.4	228.3	8.1	-1.4
比較例45	比較化合物例45	233.0	-0.2	235.7	227.3	8.4	-1.1
比較例46	比較化合物例46	232.9	-0.1	235.8	226.6	9.2	-0.3
比較例47	比較化合物例47	233.8	-1.0	236.2	228.2	8.0	-1.5
比較例48	比較化合物例48	231.6	1.2	234.7	224.8	9.9	0.4
比較例49	比較化合物例49	233.4	-0.6	236.1	228.0	8.1	-1.4
比較例50	比較化合物例50	232.7	0.1	234.9	225.1	9.8	0.3
比較例51	比較化合物例51	233.1	-0.3	235.7	227.5	8.2	-1.3
比較例52	比較化合物例52	232.6	0.2	235.6	226.1	9.5	0.0
比較例53	比較化合物例53	232.9	-0.1	234.7	225.4	9.3	-0.2
比較例54	比較化合物例54	233.3	-0.5	236.4	227.4	9.0	-0.5
比較例55	比較化合物例55	232.3	0.5	235.0	225.6	9.4	-0.1
比較例56	比較化合物例56	234.0	-1.2	236.4	228.6	7.8	-1.7
比較例57	比較化合物例57	232.9	-0.1	236.5	227.5	9.0	-0.5
比較例58	比較化合物例58	231.8	1.0	235.8	225.7	10.1	0.6
比較例59	比較化合物例59	233.6	-0.8	236.9	228.0	8.9	-0.6
比較例60	比較化合物例60	232.3	0.5	235.1	225.6	9.5	0.0
比較例61	比較化合物例61	231.2	1.6	234.8	226.3	8.5	-1.0
比較例62	比較化合物例62	232.2	0.6	235.6	225.8	9.8	0.3
比較例63	比較化合物例63	232.9	-0.1	236.1	227.9	8.2	-1.3
比較例64	比較化合物例64	233.6	-0.8	236.8	227.9	8.9	-0.6
比較例65	比較化合物例65	232.6	0.2	235.7	225.5	10.2	0.7
比較例66	比較化合物例66	232.6	0.2	235.8	227.2	8.6	-0.9
比較例67	比較化合物例67	232.9	-0.1	236.2	227.4	8.8	-0.7
比較例68	比較化合物例68	231.9	0.9	235.1	226.0	9.1	-0.4
比較例69	比較化合物例69	232.9	-0.1	236.7	227.8	8.9	-0.6
比較例70	比較化合物例70	232.2	0.6	235.4	225.5	9.9	0.4
比較例71	比較化合物例71	231.5	1.3	234.6	225.8	8.8	-0.7
比較例72	比較化合物例72	231.4	-1.4	235.3	225.4	9.9	0.4
比較例73	比較化合物例73	232.7	-0.1	235.8	227.8	8.0	-1.5
比較例74	比較化合物例74	231.0	-1.8	233.8	224.7	9.1	-0.4
比較例75	比較化合物例75	231.5	~1.3	234.6	226.5	8.1	-1.4
比較例76	比較化合物例76	232.2	-0.6	235.7	226.9	8.8	-0.7
比較例77	比較化合物例77	231.5	-1.3	234.5	225.5	9.0	-0.5
比較例78	比較化合物例78	231.5	-1.3	234.8	225.2	9.6	0.1
比較例79	比較化合物例79	232.2	-0.6	235.6	227.5	8.1	-1.4
比較例80	比較化合物例80	231.7	-1.1	233.9	225.4	8.5	-1.0

単位:℃

[0261]

【化490】

(比較化合物例41)

【化491】

(比較化合物例42)

【化492】

(比較化合物例43)

【化493】

(比較化合物例44)

【化494】

(比較化合物例45)

【化495】

(比較化合物例46)

【化496】

(比較化合物例47)

【化497】

(比較化合物例48)

【化498】

(比較化合物例49)

[0262]

【化499】

(比較化合物例50)

【化500】

(比較化合物例51)

【化501】

$$H_2N$$

(比較化合物例52)

【化502】

(比較化合物例53)

【化503】

(比較化合物例54)

【化504】

(比較化合物例55)

【化505】

(比較化合物例56)

【化506】

(比較化合物例57)

【化507】

(比較化合物例58)

【化508】

(比較化合物例59)

[0263]

【化509】

(比較化合物例60)

【化510】

(比較化合物例61)

【化511】

(比較化合物例62)

【化512】

(比較化合物例63)

【化513】

(比較化合物例64)

【化514】

(比較化合物例65)

【化515】

(比較化合物例66)

【化516】

【化517】

(比較化合物例68)

【化518】

(比較化合物例69)

[0264]

【化519】

(比較化合物例70)

【化520】

(比較化合物例71)

【化521】

(比較化合物例72)

【化522】

(比較化合物例73)

【化523】

(比較化合物例74)

【化524】

(比較化合物例75)

【化525】

(比較化合物例76)

【化526】

(比較化合物例77)

【化527】

(比較化合物例78)

【化528】

(比較化合物例79)

【化529】

(比較化合物例80)

[0265]

比較例 4 1 乃至 8 0 の結晶化温度低下(Δ T C P)は-1. 2 乃至 +1. 7 $\mathbb C$ であり、結晶化温度の変化はほとんどないか又は僅かに低下している。また比較 例 4 1 乃至 8 0 の結晶化温度幅(Δ T C)は対照(元の結晶性樹脂)と比べて-1. 7 乃至 +0. 7 $\mathbb C$ (Δ Δ T C)であり、結晶化速度はほとんど変わらないか 又はやや上昇している。従って比較例 4 1 乃至 8 0 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示しているものが多い。

[0266]

実施例57万至98の結果から、5員環以上の環状構造が3つ縮合環化した多環状構造を備えた化合物は核効果抑制剤としての機能を有していた。これに対し、比較例41万至80の結果から、5員環以上の環が2つ縮合環化した環状構造の化合物では核効果抑制剤の機能を有していないことが分かる。

[0267]

比較例81乃至99は、比較例41乃至80と同様に2個の環構造で構成されているが、縮合環化していない化合物に関するものであり、比較例100万至114は、5員環又は6員環の単環からなる化合物に関する。

[0268]

【表13】

UL ## /PI	L おし A Mail	T _{CP}	ΔT _{CP}	TCIP	TCEP	ΔT _C	ΔΔΤα
<u>比較例</u> 比較例81	比較化合物例 比較化合物例81	232.3	0.5	234.1	226.2	7.9	-1.6
	比較化合物例82	232.3	1.5	234.6	224.8	9.8	0.3
比較例82	比較化合物例83	231.2	1.6	233.8	225.0	8.8	-0.7
比較例83	比較化合物例84	232.3	0.5	234.4	226.3	8.1	-1.4
比較例84		231.9	0.9	233.9	225.0	8.9	-0.6
比較例85	比較化合物例85		1.1	235.9	225.6	9.4	-0.1
比較例86	比較化合物例86	231.7			227.2	8.2	-1.3
比較例87	比較化合物例87	232.2	0.6	235.4		8.6	-0.9
比較例88	比較化合物例88	231.9	0.9	234.2	225.6		-0.9 -1.1
比較例89	比較化合物例89	230.8	2.0	233.0	224.6	8.4	
比較例90	比較化合物例90	232.5	0.3	235.5	226.4	9.1	-0.4
比較例91	比較化合物例91	231.9	0.9	234.5	226.2	8.3	-1.2
<u>比較例92</u>	比較化合物例92	232.2	0.6	235.1	226.4	8.7	-0.8
上較例93	比較化合物例93	232.5	0.3	234.9	226.7	8.2	-1.3
比較例94	比較化合物例94	231.2	1.6	234.4	224.8	9.6_	0.1
比較例95	比較化合物例95	230.9	1.9	234.1	225.4	8.7	-0.8
比較例96	比較化合物例96	231.6	1.2	234.8	225.6	9.2	-0.3
比較例97	比較化合物例97	231.8	1.0	234.2	225.5	8.7	-0.8
比較例98	比較化合物例98	232.4	0.4	235.4	225.1	10.3	0.8
比較例99	比較化合物例99	231.9	0.9	234.8	224.9	9.9	0.4
比較例100	比較化合物例100	233.2	-0.4	236.1	227.6	8.5	-1.0
比較例101	比較化合物例101	233.1	-0.3	235.7	227.9	7.8	-1.7
比較例102	比較化合物例102	230.8	2.0	234.8	226.7	8.1	-1.4
比較例103	比較化合物例103	232.9	-0.1	235.7	227.4	8.3	-1.2
比較例104	比較化合物例104	231.7	1.1	234.1	224.4	9.7	0.2
比較例105	比較化合物例105	231.9	0.9	235.0	227.0	8.0	-1.5
比較例106	比較化合物例106	231.8	1.0	234.5	225.9	8.6	-0.9
比較例107	比較化合物例107		-0.6	236.1	227.6	8.5	-1.0
比較例108	比較化合物例108		-0.7	236.4	227.6	8.8	-0.7
比較例109	比較化合物例109		-0.3	235.6	227.0	8.6	-0.9
比較例110	比較化合物例110		0.1	234.9	226.1	8.8	-0.7
比較例111	比較化合物例111	231.8	1.0	235.9	227.3	8.6	-0.9
比較例112	比較化合物例112		0.7	235.4	226.3	9.1	-0.4
比較例113	比較化合物例113		1.7	234.8	225.4	9.4	-0.1
比較例114	比較化合物例114		1.7	233.8	225.2	8.6	-0.9
	120+X 10 11 12/1/1 1 1 T	,	·	,		*	

単位:℃

[0269]

【化530】

(比較化合物例81)

【化531】

(比較化合物例82)

【化532】

(比較化合物例83)

【化533】

(比較化合物例84)

【化534】

(比較化合物例85)

【化535】

(比較化合物例86)

【化536】

(比較化合物例87)

【化537】

(比較化合物例88)

【化538】

(比較化合物例89)

[0270]

【化539】

(比較化合物例90)

【化540】

(比較化合物例91)

【化541】

(比較化合物例92)

【化542】

(比較化合物例93)

【化543】

(比較化合物例94)

【化544】

(比較化合物例95)

【化545】

(比較化合物例96)

【化546】

$$N = N$$

(比較化合物例97)

【化547】

(比較化合物例98)

【化548】

(比較化合物例99)

[0271]

【化549】

(比較化合物例100)

【化550】

(比較化合物例101)

【化551】

(比較化合物例102)

【化552】

(比較化合物例103)

【化553】

(比較化合物例104)

【化554】

$$H_2N$$
 N
 N
 N
 N
 N

(比較化合物例105)

【化555]

(比較化合物例106)

【化556】

(比較化合物例107)

【化557】

(比較化合物例108)

【化558】

(比較化合物例109)

[0272]

【化559】

(比較化合物例110)

【化560】

(比較化合物例111)

【化561】

(比較化合物例112)

【化562】

(比較化合物例113)

ページ: 199/

【化563】

(比較化合物例114)

[0273]

比較例 81 乃至 99 の結晶化温度低下(Δ T CP)は、+0.1 乃至 +1.9 $\mathbb C$ であり、結晶化温度の変化はほとんどないか又は僅かに低下している。結晶化温度幅(Δ T C)は対照(元の結晶性樹脂)と比べて-1.5 乃至 +0.8 $\mathbb C$ (Δ Δ T C)であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って単環同士が単結合を介して繋がった比較例 81 乃至 99 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0274]

比較例 100 乃至 114 の結晶化温度低下(Δ T C P)は、-0.7 乃至 +2 . 0 ℃であり、結晶化温度の変化はほとんどないか又は僅かに低下している。結晶化温度幅(Δ T C)は対照(元の結晶性樹脂)と比べて-1.7 乃至 +0.2 ℃であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って単環からなる比較例 100 乃至 114 の化合物は核効果抑制剤としての機能を有しておらず、むしろ核剤としての働きを示している。

[0275]

比較例23万至114の結果をまとめると、3個以上の環構造が縮合環化した 多環状構造を持つ化合物が大きな核抑制効果を持ち、環の数が3つであっても縮 合環化していないものや2以下のものはほとんど核抑制効果の無いことが明らか となった。

[0276]

<u>実施例101乃至180</u>

これまでに3個以上の環構造が縮合環化した多環状構造を持つ化合物が大きな 核抑制効果を持つことを見出してきたが、実施例101乃至180では4個以上 の環構造が縮合環化した多環状構造を有する化合物について検討した結果を示す

[0277]

<u>実施例101乃至125</u>

実施例101乃至125は、5、6又は7員環が4つ縮合環化した多環状構造 を備えた化合物例101乃至125に関する。各化合物例の構造は下記の通りで ある。

[0278]

【表14】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤο
実施例101	化合物例101	基本構造63	223.0	9.8	229.6	216.4	13.2	3.7
実施例102	化合物例102	基本構造66	217.2	15.6	225.5	209.3	16.2	6.7
実施例103	化合物例103	基本構造65	225.9	6.9	230.7	219.1	11.6	2.1
実施例104	化合物例104	基本構造67	224.7	8.1	229.1	217.4	11.7	2.2
実施例105	化合物例105	基本構造67	218.0	14.8	226.5	210.8	15.7	6.2
実施例106	化合物例106	基本構造68	217.9	14.9	226.4	210.8	15.6	6.1
実施例107	化合物例107	基本構造71	221.7	11.1	228.3	216.2	12.1	2.6
実施例108	化合物例108	基本構造72	219.6	13.2	228.0	213.6	14.4	4.9
実施例109	化合物例109	基本構造75	222.5	10.3	229.6	215.9	13.7	4.2
実施例110	化合物例110	基本構造77	224.1	8.7	230.1	217.0	13.1	3.6
実施例111	化合物例111	基本構造78	218.9	13.9	229.7	211.5	18.2	8.7
実施例112	化合物例112	基本構造62		6.3	231.9	219.5	12.4	2.9
実施例113	化合物例113		227.6	5.2	233.1	221.2	11.9	2.4
実施例114	化合物例114		227.0	5.8	232.1	220.1	12.0	2.5
実施例115	化合物例115	基本構造80	225.0	7.8	229.9	218.3	11.6	2.1
実施例116	化合物例116	基本構造81	224.4	8.4	230.8	218.0	12.8	3.3
実施例117	化合物例117	基本構造83	227.6	5.2	232.3	219.6	12.7	3.2
実施例118	化合物例118	基本構造92	227.5	5.3	232.2	219.9	12.3	2.8
実施例119	化合物例119		227.6	5.2	232.5	218.9	13.6	4.1
実施例120	化合物例120	基本構造89	224.9	7.9	230.8	218.1	12.7	3.2
実施例121	化合物例121		225.5	7.3	230.3	217.6	12.7	3.2
実施例122	化合物例122		226.3	6.5	231.8	219.4	12.4	2.9
実施例123	化合物例123		226.6	6.2	232.1	219.8	12.3	2.8
実施例124	化合物例124	基本構造87	226.0	6.8	232.6	221.1	11.5	2.0
実施例125	化合物例125		225.3	7.5	231.4	218.9	12.5	3.0

単位:℃

[0279]

【化564】

(化合物例101)

【化565】

(化合物例102)

【化566】

(化合物例103)

【化567】

(化合物例104)

【化568】

(化合物例105)

【化569】

(化合物例106)

【化570】

(化合物例107)

【化571】

(化合物例108)

【化572】

(化合物例109)

[0280]

【化573】

(化合物例110)

【化574】

(化合物例111)

【化575】

(化合物例112)

【化576】

(化合物例113)

【化577】

(化合物例114)

【化578】

(化合物例115)

【化579】

(化合物例116)

【化580】

(化合物例117)

【化581】

(化合物例118)

【化582】

(化合物例119)

[0281]

【化583】

$$0 = \bigcup_{N=1}^{N} \bigcup_{N=1}^{N} \bigcup_{N=1}^{N}$$

(化合物例120)

【化584】

(化合物例121)

【化585】

(化合物例122)

【化586】

(化合物例123)

【化587】

(化合物例124)

[12588]

(化合物例125)

[0282]

ナイロン 66 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 232. 8 \mathbb{C} 、実施例 101 乃至 125 における結晶化温度低下(ΔT_{CP})は +5.2 乃至 +15.6 \mathbb{C} であり、大きく結晶化温度が低下している。

[0283]

また、実施例101乃至125の結晶化温度幅(ΔT_C)は、ナイロン66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9.5℃よりも+2.0乃至+6.7℃($\Delta \Delta T_C$)拡大しており、結晶化速度が大きく低下していることを示している。よって、実施例101乃至125の化合物は核効果抑制剤としての顕著な機能を有している。すなわち、5、6又は7員環が4つ縮合環化した多環状構造を備えた化合物は、核効果抑制剤としての機能を有していることが示された。

[0284]

実施例126乃至148

実施例126乃至148は、5員環以上の環状構造が5つ縮合環化した多環状構造を備えた化合物例126乃至148に関する。各化合物例の構造は下記の通りである。

【表15】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔTc	ΔΔΤς
実施例126	化合物例126		227.3	5.5	232.0	220.1	11.9	2.4
実施例127	化合物例127	基本構造94	227.1	5.7	231.6	220.1	11.5	2.0
実施例128	化合物例128	基本構造96	225.7	7.1	230.8	218.1	12.7	3.2
実施例129	化合物例129	基本構造97	226.9	5.9	232.4	220.9	11.5	2.0
実施例130	化合物例130	基本構造98	226.5	6.3	231.7	219.7	12.0	2.5
実施例131	化合物例131	基本構造98	227.7	5.1	231.3	219.5	11.8	2.3
実施例132	化合物例132	基本構造98	225.4	7.4	231.6	219.2	12.4	2.9
実施例133	化合物例133	基本構造99	227.5	5.3	233.3	221.1	12.2	2.7
実施例134	化合物例134	基本構造100	227.4	5.4	232.4	220.7	11.7	2.2
実施例135	化合物例135	基本構造101	226.6	6.2_	232.1	219.6	12.5	3.0
実施例136	化合物例136	基本構造102		5.2	232.9	221.0	11.9	2.4
実施例137	化合物例137	基本構造103	226.9	5.9	232.5	220.4	12.1	2.6
実施例138	化合物例138	基本構造105	223.6	9.2	229.4	215.1	14.3	4.8
実施例139	化合物例139	基本構造106	223.4	9.4	229.6	215.8	13.8	4.3
実施例140	化合物例140	基本構造107	225.6	7.2_	229.7	217.6	12.1	2.6
実施例141	化合物例141	基本構造108		7.7	230.2	218.3	11.9	2.4
実施例142	化合物例142	基本構造109	223.6	9.2	228.6	215.5	13.1	3.6
実施例143	化合物例143	基本構造110	226.6	6.2	231.5	219.7	11.8	2.3
実施例144	化合物例144	基本構造112	226.0	6.8	230.3	218.0	12.3	2.8
実施例145	化合物例145		225.5	7.3	230.5	218.7	11.8	2.3
実施例146	化合物例146		227.7	5.1	232.8	220.6	12.2	2.7
実施例147	化合物例147		226.5	6.3	232.5	220.6	11.9	2.4
実施例148	化合物例148	基本構造104	223.6	9.2	229.9	216.5	13.4	3.9

単位:℃

[0286]

【化589】

(化合物例126)

【化590】

(化合物例127)

【化591】

(化合物例128)

【化592】

(化合物例129)

【化593】

(化合物例130)

【化594】

(化合物例131)

【化595】

(化合物例132)

ページ: 209/

【化596】

(化合物例133)

【化597】

(化合物例134)

【化598】

(化合物例135)

【化599】

(化合物例136)

【化600】

(化合物例137)

【化601】

(化合物例138)

【化602】

(化合物例139)

[0287]

【化603】

(化合物例140)

【化604】

$$H_2N$$

(化合物例141)

【化605】

(化合物例142)

【化606】

(化合物例143)

【化607】

(化合物例144)

【化608】

$$H_3CO$$
 H_3CO
 H_3CO

(化合物例145)

【化609】

(化合物例146)

【化610】

(化合物例147)

【化611】

(化合物例148)

[0288]

ナイロン 66 (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は 232. 8 \mathbb{C} 、実施例 126 乃至 148 における結晶化温度低下 (ΔT_{CP}) は +5.1 乃至 +9.4 \mathbb{C} であり、大きく結晶化温度が低下している。

[0289]

また、実施例 $1\ 2\ 6$ 乃至 $1\ 4\ 8$ の補外結晶化温度差(Δ T C)は、ナイロン 6 6 (対照:元の結晶性樹脂)の補外結晶化温度差(Δ T 0 C) 9 . 5 C より 6 + 2 . 0 乃至 + 4 . 8 C 拡大しており、結晶化速度が大きく低下していることを示

ページ: 213/

[0290]

<u>実施例149乃至180</u>

実施例149乃至180は、5員環以上の環状構造が6個以上縮合環化した多環状構造を備えた化合物例149乃至180に関する。但し実施例156及び157は、3個の環構造が縮合環化した多環状構造同士が直接二重結合した化合物に関する。各化合物例の構造は下記の通りである。

[0291]

【表16】

実施例	化合物例	基本構造	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔTc	ΔΔΤ _C
	化合物例149	基本構造113	225.2	7.6	232.3	220.4	11.9	2.4
実施例150	化合物例150	基本構造114	27.2	5.6	233.1	220.5	12.6	3.1
実施例151	化合物例151	基本構造115	227.6	5.2	233.0	221.1	11.9	2.4
実施例152	化合物例152	基本構造123	227.7	5.1	232.7	220.2	12.5	3.0
実施例153	化合物例153	基本構造117	227.5	5.3	232.9	221.2	11.7	2.2
実施例154	化合物例154	基本構造124	227.0	5.8	232.1	220.1	12.0	2.5
実施例155	化合物例155	基本構造116	227.4	5.4	231.7	220.2	11.5	2.0
実施例156	化合物例156		223.3	9.5	230.3	214.2	16.1	6.6
実施例157	化合物例157		223.0	9.8	233.0	213.2	19.8	10.3
実施例158	化合物例158		226.2	6.6	231.3	219.4	11.9	2.4
実施例159	化合物例159		228.5	4.3	232.2	220.1	12.1	2.6
実施例160	化合物例160		227.6	5.2	231.6	219.8	11.8	2.3
実施例161	化合物例161	基本構造119	227.7	5.1	232.6	220.6	12.0	2.5
実施例162	化合物例162	基本構造118	227.6	5.2	233.0	220.7	12.3	2.8
実施例163	化合物例163	基本構造126	227.5	5.3	232.7	220.0	12.7	3.2
実施例164		基本構造125	227.7	5.1	232.6	221.1	11.5	2.0
実施例165	化合物例165	基本構造127	227.7	5.1	232,1	220.1	12.0	2.5
実施例166	化合物例166	基本構造128	227.4	5.4	232.5	220.8_	11.7	2.2
実施例167	化合物例167	基本構造129	227.4	5.4	233.1	221.5	11.6	2.1
実施例168	化合物例168	基本構造120	226.0	6.8	232.0	219.9	12.1	2.6
実施例169	化合物例169	基本構造120	227.7	5.1	232.7	220.7	12.0	2.5
実施例170	化合物例170	基本構造121	227.7	5.1	232.4	220.6	11.8	2.3
実施例171	化合物例171	基本構造122	226.6	6.2	232.6	220.2	12.4	2.9
実施例172	化合物例172	基本構造122	226.1	6.7	233.0	221.4	11.6	2.1
実施例173	化合物例173	基本構造130	227.4	5.4	232.3	220.3	12.0	2.5
実施例174	化合物例174	基本構造131	227.7	5.1	232.1	219.9	12.2	2.7
実施例175	化合物例175		227.4	5.4	232.0	219.4	12.6	3.1
実施例176	化合物例176		227.0	5.8	231.6	219.9	11.7	2.2
実施例177	化合物例177		226.0	6.8	232.4	220.9	11.5	2.0
	化合物例178		225.6	7.2	231.6	219.5	12.1	2.6
	化合物例179		227.8	5.0	232.3	220.1	12.2	2.7
実施例180	化合物例180		227.8	5.0	232.7	221.2	11.5	2.0

単位:℃

[0292]

【化612】

(化合物例149)

【化613】

(化合物例150)

【化614】

(化合物例151)

【化615】

(化合物例152)

【化616】

(化合物例153)

【化617】

(化合物例154)

【化618】

(化合物例155)

【化619】

(化合物例156)

【化620】

(化合物例157)

(化合物例158)

【化622】

(化合物例159)

[0293]

э ₉ -

【化623】

(化合物例160)

【化624】

(化合物例161)

【化625】

(化合物例162)

【化626】

(化合物例163)

【化627】

(化合物例164)

【化628】

(化合物例165)

【化629】

(化合物例166)

【化630】

(化合物例167)

【化631】

(化合物例168)

【化632】

(化合物例169)

[0294]

【化633】

(化合物例170)

【化634】

(化合物例171)

【化635】

(化合物例172)

【化636】

(化合物例173)

【化637】

(化合物例174)

【化638】

(化合物例175)

【化639】

(化合物例176)

【化640】

(化合物例177)

ページ: 221/

【化641】

(化合物例178)

【化642】

(化合物例179)

【化643】

(化合物例180)

[0295]

ナイロン 66 (対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は 232. 8 \mathbb{C} 、実施例 149 乃至 180 における結晶化温度低下(ΔT_{CP})は +5.0 乃至 +9.8 \mathbb{C} であり、大きく結晶化温度が低下している。

[0296]

また、実施例 149 乃至 180 の補外結晶化温度差(ΔT_C)は、ナイロン 6 6(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9.5 \mathbb{C} よりも +2 の 乃至 +10.3 \mathbb{C} ($\Delta \Delta T_C$) 拡大しており、結晶化速度が大きく低下している。そので、5 員環以上の環状構造が 6 以上縮合環化した多環

[0297]

比較例115及び116

実施例101乃至180では、5員環または6員環が4つ以上縮合環化した化合物が核効果抑制剤として顕著な機能を有すること示してきた。これに対し比較例として、5員環又は6員環を4個以上有するが、それらを3個以上縮合環化した多環状構造を持たない化合物を挙げて比較する。

[0298]

【表17】

比較例	比較化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	$\Delta \Delta T_{c}$
	比較化合物例115	231.0	1.8	234.0	224.4	9.6	0.1
	比較化合物例116		2.6	234.4	224.7	9.7	0.2

単位:℃

[0299]

【化644】

(比較化合物例115)

(比較化合物例116)

[0300]

比較例115及び116の結晶化温度低下(ΔT_{CP})は+1.8及び+2.6℃であり、結晶化温度の変化はほとんどないか又は僅かに低下している。結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて+0.1乃至+0.2℃($\Delta \Delta T_{C}$)であり、結晶化速度はほとんど変わらない。従って比較例115及び116の化合物は核効果抑制剤としての機能を有していない。

[0301]

実施例101乃至180の結果から、5員環以上の環状構造が4つ以上縮合環化した多環状構造を備えた化合物は核効果抑制剤としての機能を有していた。これに対し、比較例115及び116の結果から、5員環または6員環を4個以上有するが、それらを3個以上縮合環化した多環状構造を持たない化合物では核効果抑制剤の機能を有していないことが分かる。

[0302]

種々の環状構造が縮合環化した多環状構造化合物、並びにこれらに様々な置換 基を導入した多環状構造を持つ化合物について行った示差走査熱量計による評価 から以下のことが明らかとなった。すなわち、4 員環以上の環状構造が3 個以上 縮合環化した多環状構造を有する化合物は、結晶性組成物中に含有されることに より、その結晶性組成物の結晶化点(結晶化温度)及び結晶化速度を有効に下げ

[0303]

実施例181

結晶性樹脂として100部のナイロン66と、核効果抑制剤としてそれぞれ2.5部の4,7ージメチルー1,10ーフェナントロリン、6,7ージヒドロー5,8ージメチル[b,j][1,10]フェナントロリン、4ーメチルー1,10ーフェナントロリン、及び3,4,7,8ーテトラメチルー1,10ーフェナントロリンを用い、前記キャスト法により測定試料を得た。この実施例における核効果抑制剤である化合物例181は、それぞれが核効果抑制剤としての機能を有している下記構造の化合物の混合物である。

[0304]

【表18】

実施例	化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤς
実施例181	化合物例181	218.3	14.5	227.9	209.4	18.5	9.0

単位:℃

【化646】

(化合物例181:化合物例36と化合物例45と化合物例37と化合物例40 の混合物)

[0305]

ナイロン66(対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は232. 8 \mathbb{C} 、実施例 181 における結晶化温度低下(ΔT_{CP})は+14. 5 \mathbb{C} である

[0306]

[0307]

実施例182乃至187

実施例182乃至187は、核効果抑制剤としての機能を有している多環状構造を備えた化合物とスルホン酸又はカルボン酸との塩の構造を有する化合物例182乃至187に関する。各化合物例の構造は下記の通りである。

[0308]

【表19】

	実施例	化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT_{c}	ΔΔΤα
	実施例182	化合物例182	217.7	15.1	228.1	209.5	18.6	9.1
L	実施例183	化合物例183	215.4	17.4	226.7	209.5	17.2	7.7
L	実施例184	化合物例184	217.4	15.4	228.3	208.7	19.6	10.1
L	実施例185	化合物例185	219.6	13.2	228.4	211.9	16.5	7.0
Ĺ	実施例186	化合物例186	217.1	15.7	227.0	209.7	17.3	7.8
	実施例187	化合物例187	218.2	14.6	228.8	209.9	18.9	9.4

単位:℃

[0309]

【化647】

(化合物例182)

【化648】

【化649】

(化合物例184)

【化650】

(化合物例185)

【化651】

(化合物例186)

【化652】

$$\begin{array}{c} + \text{NH}_3 \\ + \text{CH}_3 \\ + \text{CH}_3 \\ - \text{SO}_3 \\ \end{array}$$

(化合物例187)

[0310]

ナイロン66(対照:元の結晶性樹脂)の結晶化温度(T^0_{CP})は232.8 \mathbb{C} 、実施例182乃至187における結晶化温度低下(ΔT_{CP})は+13.2乃至+17.4 \mathbb{C} である。

[0311]

また、実施例 182乃至 187の結晶化温度幅(ΔT_C)は、ナイロン 66(対照:元の結晶性樹脂)の結晶化温度幅(ΔT_C)9.5 \mathbb{C} よりも +7.0 乃至 +10.1 \mathbb{C} ($\Delta \Delta T_C$)拡大しており、結晶化速度が大きく低下していることを示している。従って、これらの化合物は核効果抑制剤としての顕著な機能を有している。

[0312]

比較例117乃至125は、長鎖脂肪族の化合物に関する。各比較化合物例の 構造は下記の通りである。

[0313]

【表20】

比較例	比較化合物例	T _{CP}	ΔT _{CP}	T _{CIP}	T _{CEP}	ΔT _C	ΔΔΤ _C
比較例117	比較化合物例117	231.6	1.2	234.1	224.7	9.4	-0.1
比較例118	比較化合物例118	231.3	1.5	234.1	224.3	9.8	0.3
比較例119	比較化合物例119	231	1.8	233.8	224.3	9.5	0
比較例120	比較化合物例120	231.1	1.7	234.3	224.5	9.8	0.3
比較例121	比較化合物例121	231.8	1	234.5	224.7	9.8	0.3
比較例122	比較化合物例122	230.9	1.9	233.8	224.4	9.4	-0.1
比較例123	比較化合物例123	230	2.8	234.5	222.9	11.6	2.1
比較例124	比較化合物例124	232.6	0.2	234.8	225.4	9.4	-0.1
比較例125	比較化合物例125	232.1	0.7	234.4	225.2	9.2	-0.3

単位:℃

[0314]

【化653】

CH₃(CH₂)₁₆COOH

(比較化合物例117)

【化654】

CH₃(CH₂)₁₈COOH

(比較化合物例118)

【化655】

 $CH_3(CH_2)_{20}COOH$

(比較化合物例119)

【化656】

$$RO(CH_2CH_2O)_n$$
 OR' OH

(比較化合物例120)

$$CH_3(CH_2)_3CH(C_2H_5)CH_2O$$
 O
 $CH_3(CH_2)_3CH(C_2H_5)CH_2O$ OH

(比較化合物例121)

【化658】

【化659】

$$H_3C(H_2C)_7$$

 N — $(CH_3)_7CH_3$
 $H_3C(H_2C)_7$

(比較化合物例123)

【化660】

$$H_3C(H_2C)_7$$
 $H_3C(H_2C)_7$

(比較化合物例124)

(比較化合物例125)

[0315]

比較化合物例120は第一工業製薬株式会社製のプライサーフA215C(商品名)であり、比較化合物例122は第一工業製薬株式会社製のアミラヂン(商品名)である。比較化合物例120及び122中、Rはアルキル基又はアルキルアリル基を示し、nはエチレンオキサイド付加モル数を示し、R'はH又はR(CH2CH2O)nを示す。

[0316]

比較例117乃至125の結晶化温度低下(ΔT_{CP})は、+0.2乃至+2.8 ℃であり、結晶化温度の変化はほとんどないか又は僅かに低下している。また比較例117乃至125の結晶化温度幅(ΔT_{C})は対照(元の結晶性樹脂)と比べて-0.3乃至+2.1 ℃($\Delta \Delta T_{C}$)であり、結晶化速度はほとんど変わらないか又はやや上昇している。従って比較例117乃至125の化合物は核効果抑制剤としての機能を有していない。

[0317]

実施例188乃至191

実施例188乃至191では、結晶性樹脂としてポリブチレンテレフタレート 樹脂[デュポン社製 商品名:クラスチン 6130NC]を用い、核効果抑制 剤として5員環又は6員環が縮合環化した多環状構造を備えた化合物例188乃 至191を用いたものである。各化合物例の構造は下記の通りである。

[0318]

精製したPBT (ポリブチレンテレフタレート樹脂 [結晶性樹脂]) 100部 及び本発明の核効果抑制剤(表21に示された化合物例)10部を1,1,1, 3, 3, $3-\Lambda++$ フルオロー2ープロパノールに加えて加熱溶解させた。これをシャーレに入れて室温にて静置し、1, 1, 1, 3, 3, $3-\Lambda++$ フルオロー2ープロパノールを蒸発させた後、真空乾燥機を用いて70℃で15時間以上乾燥させることにより測定試料を得た。対照として、精製したPBTのみを1, 1, 3, 3, $3-\Lambda++$ フルオロー2-プロパノールに加熱溶解させた後、シャーレに入れて室温にて静置した。1, 1, 1, 3, 3, $3-\Lambda++$ フルオロー2-プロパノールを蒸発させた後、真空乾燥機を用い、70℃で15時間以上乾燥させることにより対照試料を得た(キャスト法)。

[0319]

各測定試料及び対照試料について、示差走査熱量計(SEIKO INSTRUMENTS INC. 社製 商品名:DSC6200、COOLING CONTROLLER)を用いて結晶化温度(T_{CP})、補外結晶化開始温度(T_{CIP})、及び補外結晶化終了温度(T_{CEP})を測定する熱分析を行った。この熱分析においては、20 ℃から245 ℃まで20 ℃/m inで昇温し、245 ℃を3分間保持し、次いで245 ℃から20 ℃まで10 ℃/minで降温するというサイクルを5回繰り返した。各測定試料について得られた補外結晶化開始温度(T_{CIP})と補外結晶化終了温度(T_{CEP})の測定データから、結晶化温度幅(ΔT_{C}) [補外結晶化終了温度と補外結晶化開始温度の差]を算出した。同様に、対照試料についても結晶化温度(T_{CP})、補外結晶化開始温度(T_{CP})、入び補外結晶化終了温度(T_{CEP})を測定し、結晶化温度幅(ΔT_{C})を算出した。

[0320]

結晶化温度の低下は、 ΔT_{CP} ($\Delta T_{CP} = T_{CP} = T_{CP}$)によって判断し、結晶化速度の低下は、 $\Delta T_{C} \geq \Delta T_{CP} = T_{CP} =$

[0321]

			1				
実施例	化合物例	TCP	ΔT _{CP}	T _{CIP}	TCEP	ΔT_{c}	ΔΔΤς
結晶性樹脂	添加剤なし	183.6		190.7	177.7	13.0	
実施例188	化合物例45	180.2	3.4	187.6	173.2	14.4	1.4
実施例189	化合物例133	178.8	4.8	186.9	172.3	14.6	1.6
実施例190	化合物例110	178.3	5.3	187.2	172.7	14.5	1.5
実施例191	化合物例136	179.5	4.1	187.3	172.9	14.4	1.4

単位:℃

[0322]

【化662】

(化合物例45)

【化663】

(化合物例133)

【化664】

(化合物例110)

【化665】

(化合物例136)

[0323]

PBT (対照:元の結晶性樹脂) の結晶化温度 (T^0_{CP}) は183.6 ℃であり、実施例 188 乃至 191 における結晶化温度低下(ΔT_{CP})は+3.4 乃至 +5.3 ℃である。

[0324]

また、実施例188乃至191の結晶化温度幅(ΔT_C)は、PBT(対照:元の結晶性樹脂)の結晶化温度幅(ΔT^0_C)13.0 Cよりも+1.4 乃至+1.6 C($\Delta \Delta T_C$)拡大しており、結晶化速度が低下していることを示している。従って、これらの化合物は核効果抑制剤としての機能を有している。

[0325]

実施例192乃至194並びに比較例126乃至128

実施例192乃至194並びに比較例126乃至128では、結晶性樹脂としてガラス繊維強化ナイロン66(ポリアミド樹脂:ガラス繊維=67:33の重量混合比の繊維強化ポリアミド樹脂 デュポン社製 商品名:70G33L)を用い、これに核効果抑制剤として化合物例36、29及び34(比較化合物例126乃至128)を添加し、射出成形により成形板を得た。この成形板と、ガラス繊維強化ナイロン66(元の結晶性樹脂)のみから射出成形により得た成形板とで、外観及び光沢を比較検討した。

[0326]

射出成形は次のように行った。500gの前記ガラス強化ナイロン66に5g の化合物例36、29及び34並びに比較化合物例126乃至128の何れかを 加え、ステンレス製タンブラーで20分間撹拌混合して得た混合物を、ノズル温

[0327]

光沢度試験と評価

光沢度は、光沢度計(スガ試験機社製 商品名:HG-268)を用いて、試験片に対し60度入射角での光沢値を測定した。試験片における測定部位は成形物の中央部分とした。

[0328]

一般に、光沢値の高いものが、表面の平滑性が高くて表面光沢が豊富であると 判断される。また、この試験により、試験片の平滑性のみならず、繊維強化結晶 性樹脂におけるガラス繊維などの繊維状補強材が浮き出る現象を把握することも できる。

[0329]

化合物例及び比較化合物例

実施例192:4, 7-ジメチル-1, 10-フェナントロリン (化合物例36)

実施例193:βーナフトフラボン (化合物例29)

実施例194: アクリジン オレンジ ベース(化合物例34)

比較例126: 1, 2-ジフェニルインドール (比較化合物例126)

比較例127: 2,3-ジフェニルキノキサリン(比較化合物例127)

比較例128: N-フェニル-2-ナフチルアミン(比較化合物例128)

[0330]

実施例	化合物例	表面光沢		外観
結晶性樹脂	添加剤なし	61.94	100.0%	
実施例192	化合物例36	76.16	123.0%	良好
実施例193	化合物例29	68.60	111.0%	良好
実施例194	化合物例34	69.18	112.0%	良好
比較例126	比較化合物例126	59.78	96.5%	白色のガラス浮き
比較例127	比較化合物例127	63.85	103.0%	白色のガラス浮き
比較例128	比較化合物例128	63.05	102.0%	白色のガラス浮き

[0331]

実施例192乃至194においては、元のガラス繊維強化ナイロン66より光 沢度がかなり向上した。本発明の核効果抑制剤による結晶化温度の低下により、 同一金型温度(80℃)において結晶性樹脂が溶融している期間が長くなるため 、表面光沢が向上するものと考えられる。

[0332]

実施例195乃至実施例201及び比較例129

ナイロン66及び下記化合物例を用いて前記キャスト法によって得たフィルム 状測定試料と、ナイロン66のみを用いてキャスト法によって得たフィルム状対 照試料について球晶の数を比較した。

[0333]

球晶の数は次のように計数した。すなわち、前記キャスト法によって得たフィルム状測定試料及び対照試料を、それぞれスライドガラスとカバーガラスの間に挟み、ホットプレートの上で加熱した。各フィルム状試料が融解したところで、上から押し、次いで室温で放冷した。十分に冷えた後、光学顕微鏡で偏光板を用いて観察した。この結果を表23に示す。図1乃至図7並びに図8は、それぞれ実施例195乃至201並びに比較例129における36354 μ m²の顕微鏡写真である。なお、各写真の右下の目盛りは、1目盛りが10 μ m、全長5目盛りで50 μ mである。これにより核効果抑制剤を含有する結晶性樹脂組成物における球晶の大きさよりも大きくなることが確認された。

[0334]

使用試料

ページ: 235/

実施例195:4, 7-ジメチルー1, 10-フェナントロリン (化合物例36)

7実施例196:1-アミノピレン(化合物例15)

実施例197:1-アミノアントラセン(化合物例1)

実施例198:2-アセチルフルオレン(化合物例54)

実施例199:2, 9-ジメチルー4, 7-ジフェニルー1, 10-フェナント

ロリン(化合物例41)

実施例200:3,4,7,8-テトラメチル-1,10-フェナントロリン(

化合物例40)

実施例201:2-アミノアントラセン(化合物例9)

比較例129:元の結晶性樹脂

比較例130:1-アミノナフタレン(比較化合物例1)

比較例131:2-アミノナフタレン(比較化合物例2)

比較例132:4,4 '-ジメチル-2,2' -ジピリジル (比較化合物例12

)

比較例133:2,2'ービキノリン(比較化合物例13)

[0335]

【表23】

実施例	化合物例	添加量	個/36	$6345 \mu \text{m}^2$	Tೄ[°C]
実施例195	化合物例36	10部	40	15.6%	213.8
実施例196	化合物例15	10部	107	42.8%	218.9
実施例197	化合物例1	10部	120	46.9%	219.6
実施例198	化合物例54	30部	135	52.7%	221.7
実施例199	化合物例41	10部	164	64.1%	215.8
実施例200	化合物例40	10部	191	74.6%	222.3
実施例201	化合物例9	10部	191	74.6%	221.0
比較例129	結晶性樹脂		256	100.0%	232.8
比較例130	比較化合物例1	10部	269	105.1%	232.2
比較例131	比較化合物例2	10部	278	108.6%	232.0
比較例132	比較化合物例12	10部	271	105.9%	231.6
比較例133	比較化合物例13	10部	276	107.8%	231.9

[0336]

表23に示されるように、本発明の核効果抑制剤を含有することにより、結晶 性樹脂組成物の球晶の数が少なくなる。このことから、本発明の核効果抑制剤を

【図面の簡単な説明】

【図1】

実施例195の顕微鏡写真である。

【図2】

実施例196の顕微鏡写真である。

【図3】

実施例197の顕微鏡写真である。

【図4】

実施例198の顕微鏡写真である。

【図5】

実施例199の顕微鏡写真である。

【図6】

実施例200の顕微鏡写真である。

【図7】

実施例201の顕微鏡写真である。

【図8】

比較例129の顕微鏡写真である。

図面

【図1】

【図3】

出証特2003-3063312

2010 ru

【書類名】

要約書

【要約】

【課題】 結晶性樹脂の結晶化温度及び結晶化速度を低下させる核効果抑制 剤を含有させて結晶性樹脂を着色する場合の色の選択を自由に行い得る核効果抑 制剤、その核効果抑制剤を含有する結晶性樹脂組成物、その核効果抑制剤を用い る結晶化制御法の提供。

【解決手段】 4員環以上の環状構造が3個以上縮合環化した多環状構造から選ばれる少なくとも1つの構造を備えた化合物のうち、ニグロシン、アニリンブラック、及び銅フタロシアニン誘導体を除く何れかの化合物からなる核効果抑制剤、その核効果抑制剤を含有する結晶性樹脂組成物、並びにその核効果抑制剤を用いる結晶化制御法。

【選択図】 なし

出願人履歴情報

識別番号

[000103895]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

大阪府大阪市旭区新森1丁目7番14号

氏 名 オリエント化学工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.