By weak dustity theorem, for any festible dust solution y. \tilde{Z} $\tilde{y}_i \leq Z \tilde{z}_p \leq OPT$

Let y the an optimal solution to the dual LP, and consider the solution in which we choose all subsets for which the corresponding dual inequality is tight; that is the inequality is met with equality for subset 5j. I j' = Wj. Let I' denote the indices of the inequality is met with equality for subset 5j.

subsets in this Solution. We will prove that this algorithm also is an f-approximation of gorithm for the set cover problem.

The collection of subsets S_j , $j \in I'$, is a set cover.: Suppose that there exists some uncovered element e_k . Then for each subset S_j containing e_k , it must be the Cose that $\sum_{j} g_{j}^* \times w_{j}$.

Let E be the smallest difference between the RHS and LHS of all constraints involving ℓ_k ; that is, $\ell = \min_{j:\ell_k \in S_j} (W_j - \sum_{j:\ell_k \in S_j} y_j^*)$, We have $\ell > 0$.

Consider now a new dud solution y'in which $g'_k = g'_k + E$ and every other component g' is the same os in g'. Then g' is a dual feasible solution since for each j such that $e_k \in S_j$:

∑y'; = ∑y*; + ∈ ≤ wj, by the definition of €. i: e: ∈ Si i: e: ∈ Si For each i such that ex & Si:

∑ g; = ∑ y*; ≤ wj, or before. i: eiESj i: eiESj

Eurthermore, $\frac{2}{5}y'_{i} > \frac{2}{5}y'_{i}$, which contradicts

the optimality of y*. Thus, it must be the cose that all elements are covered and I'is a set lover.

The dual rounding algorithm is an f-approximation of gorithm for the set lover problem.

jet' Wj = 5 y*, i'e, esj

 $\sum_{j \in I'} W_j = \sum_{j \in I'} \sum_{j' \in I \in S_j} y_j^*$

= = = [[[E SEI! : e | E Sj3 | . y*;

< 2 fig;

 $\leq f \sum_{j=1}^{\infty} j^{*,j}$

S f. OPT

=> (EWi) /OPT <f

This of gorithm is colled dud nounding of gorithm for set lover.

The Rimol-Dual Algorithm for Set Quer: The previous two algorithms for Set lover (brimd Rounding and Dud Rounding) require solving a LP. In the dust rounding of govithm, the optimal dust solution is a lower bound for OPT. Any fessible drol solution is also a lower bound for OPT: $\tilde{\Sigma}$ $\tilde{J}_i \leq OPT$ for any fessible dual solution. If we construct our set comer using the method of dust rounding of gerithm: iEI (=> 5 7; = Wi and I'ya
i:e;es; Set lover, then we can esily show that this will a goin give an f-approximation algorithm for Set Loner (using the same set of inequalities as in the cose of dust rounding olgonithm. This is example of a primat-dust of gouthm in which we are not required to solve the dud LP. himd-dud algorithms start with a dud fessible solution, and use dud information to infer a primal, possible infeasible, Solution. If the primal solution is indeed inferrible, the dual solution is modified to invesse the value of the dust objective function.

frimd-dud Algorithm.

Je o I e of

while there exists eit U Si do

Increase the dual variable yi until there is some ℓ with $\ell \in S\ell$ such that $f : \ell \in S\ell$

I = IU{l}