Tarea corta 2

Emmanuel Zúñiga Chaves – B98729

Escuela de Ciencias de la Computación e Informática, Universidad de Costa Rica

Cl0120: Arquitectura de Computadores

Francisco Arroyo

4 de mayo, 2021

Ejercicio 1.1

Solución:

a. Sea Die size = 389 mm²

Estimated defect rate (per cm^2) = 0.3

Dado un N arbitrario, tomaremos N = 5

Para efectos prácticos tomamos el Wafer Yield como el 100% es decir 1.

Utilizamos la fórmula de Bose-Einstein:

$$Die Yield = \frac{Wafer \ yield \cdot 1}{(1 + Estimated \ defect \ rate \cdot Die \ size)^{N}}$$

Entonces, sustituyendo en la fórmula y convirtiendo el Die size a cm²

Die Yield =
$$\frac{1}{(1+0.3\cdot 3.89)^5}$$
Die Yield ≈ 0.021

b.

Una de las razones principales de la baja taza de defectos en el IBM Power5 se debe al tamaño del Yield el cual se supera en dimensión al 0.0012 y al 0.010 del Sun Niagara y AMD Optetron respectivamente. Por otro lado, hay que considerar el fabricante del procesador IBM la cual es una empresa consolidada que ha logrado establecerse como un gran referente en cuanto a calidad de los procesadores. Por lo tanto, la taza de defectos en los procesadores de IBM es mínima.

Ejercicio 1.17

Solución:

a.

$$Speedup_{overall} = \frac{1}{(1 - 0.4) + \frac{0.4}{2}}$$
$$= \frac{1}{0.6 + \frac{0.4}{2}}$$
$$\approx 1.25$$

b.

$$Speedup_{overall} = \frac{1}{(1 - 0.99) + \frac{0.99}{2}}$$

$$= \frac{1}{0.01 + \frac{0.99}{2}}$$

$$\approx 1.98$$

C.

$$Speedup_{overall} = \frac{1}{0.2 + (0.8 \cdot 0.6) + (0.8 \cdot \frac{0.4}{2})}$$
$$= \frac{1}{0.2 + 0.48 + 0.16}$$
$$\approx 1.19$$

d.

$$Speedup_{overall} = \frac{1}{0.8 + (0.2 \cdot 0.01) + (0.2 \cdot \frac{0.99}{2})}$$
$$= \frac{1}{0.8 + 0.002 + 0.099}$$