Rábalabaxúrias [UFMG]

Bruno Monteiro, Pedro Papa e Rafael Grandsire

Índice				1.16 Sack (DSU em arvores)	13
				1.17 Centroid	14
1	Grafos	3		1.18 Kruskal	14
	1.1 Centroid decomposition	3		1.19 Blossom - matching maximo em grafo geral	14
	1.2 Tarjan para Pontes	4		1.20 Max flow com lower bound	15
	1.3 Dominator Tree - Kawakami	4		1.21 Isomorfismo de Arvores	
	1.4 Kosaraju	5		1.22 MinCostMaxFlow Papa	
	1.5 Dijkstra	6		1.23 Dinic (Bruno)	
	1.6 Heavy-Light Decomposition sem Update	6		1.24 Line Tree	
	1.7 Heavy-Light Decomposition - vertice	7		1.25 2-SAT	
	1.8 LCA com HLD	8		1.26 Floyd-Warshall	
	1.9 LCA com RMQ	8		1.20 Ployd-warshan	20
	1.10 LCA com binary lifting	9	2	2 Matematica	20
	1.11 Heavy-Light Decomposition - aresta	10		2.1 Ordem de elemento do grupo	20
	1.12 Bellman-Ford	11		2.2 Pollard's Rho Alg	20
	1.13 Tarjan para SCC	11		2.3 Algoritmo de Euclides extendido	21
	1.14 Dinic (Dilson)	12		2.4 Algoritmo de Euclides	22
	1.15 Centro da Arvore	13		2.5 Divisão de Polinomios	22

	2.6	FFT	22		4.11 SegTree Persistente	47
	2.7	Miller-Rabin	24		4.12 SegTree 2D Iterativa	48
	2.8	Inverso Modular	25		4.13 BIT	48
	2.9	Variacoes do crivo de Eratosthenes	25		4.14 Order Statistic Set	49
	2.10	Totiente	26		4.15 Min queue	49
	2.11	Exponenciacao rapida	26		4.16 DSU Persistente	50
	2.12	Produto de dois long long mod m $\ \ldots \ \ldots \ \ldots \ \ldots$	26		4.17 SQRT Tree	50
า	D	mitivas	26		4.18 Wavelet Tree	51
3					4.19 Trie	52
	3.1	Primitivas de Polinomios	26			
	3.2	Primitivas Geometricas	34	5	Papa	53
	3.3	Primitivas de matriz (Rafael)	38		5.1 BIT Persistente	53
	_				5.2 Baby step Giant step	53
4	Esti	ruturas	39		5.3 LIS Rec. Resp	54
	4.1	Sparse Table	39		5.4 Aho Corasick	54
	4.2	Treap	40			
	4.3	SQRT-decomposition	41	6	Problemas	55
	4.4	BIT 2D	42		6.1 Inversion Count	55
	4.5	MergeSort Tree	42		6.2 Merge Sort Rafael	55
	4.6	SegTree	43		6.3 RMQ com Divide and Conquer	56
	4.7	SegTree Esparca	43		6.4 SOS DP	56
	4.8	SegTree Iterativa com Lazy Propagation	44		6.5 LIS2	57
	4.9	SegTree Beats	45		6.6 Convex Hull Trick (Rafael)	57
	4 10	SegTree Iterativa	47		6.7 Mininum Enclosing Circle Vasek	57

	6.8 Nim	58	8.3 vimrc	71
	6.9 Distinct Range Query com Update	59	8.4 stress.sh	72
	6.10 LIS1	60		
	6.11 Mo algorithm - distinct values	60	1 Grafos	
	6.12 Distinct Range Query	61		
	6.13 Area da Uniao de Retangulos	62	1.1 Centroid decomposition	
	6.14 Area Maxima de Histograma	63	// O(n log(n))	
	6.15 Mo algorithm - DQUERY path on trees	63	<pre>int n;</pre>	
	6.16 Mininum Enclosing Circle	64	<pre>vector < vector < int > > g(MAX); int subsize[MAX];</pre>	
	6.17 Min fixed range	65	<pre>int rem[MAX]; int pai[MAX];</pre>	
	6.18 Conectividade Dinamica	65	<pre>void dfs(int k, int last) {</pre>	
	6.19 Points Inside Polygon	66	subsize[k] = 1;	
7	Strings	67	<pre>for (int i = 0; i < (int) g[k].size(); i++) if (g[k][i] != last and !rem[g[k][i]]) { dfs(g[k][i], k);</pre>	
	7.1 Algoritmo Z	67	<pre>subsize[k] += subsize[g[k][i]]; }</pre>	
	7.2 String hashing	68	}	
	7.3 Automato de Sufixo	68	<pre>int centroid(int k, int last, int size) { for (int i = 0; i < (int) g[k].size(); i++) {</pre>	
	7.4 Suffix Array	69	<pre>int u = g[k][i]; if (rem[u] or u == last) continue;</pre>	
	7.5 Suffix Array Rafael	69	<pre>if (subsize[u] > size / 2) return centroid(u, k, size);</pre>	
	7.6 KMP	70	} // k eh o centroid return k;	
8	Extra	7 1	}	
	8.1 makefile	71	<pre>void decomp(int k, int last) { dfs(k, k);</pre>	
	8.2 template.cpp	71	dib(n, n),	

1.2 Tarjan para Pontes

```
// Computa pontos de articulação
// e pontes
//
// O(n+m)
int in[MAX];
int low[MAX];
int parent[MAX];
vector < int > g[MAX];
bool is_art[MAX];
void dfs_art(int v, int p, int &d){
    parent[v] = p;
    low[v] = in[v] = d++;
    is_art[v] = false;
    for (int j : g[v]){
        if (j == p) continue;
        if (in[j] == -1){
            dfs_art(j, v, d);
            if (low[j] >= in[v]) is_art[v] = true;
            //if (low[j] > in[v]) this edge is a bridge
```

```
low[v] = min(low[v], low[j]);
        else low[v] = min(low[v], in[j]);
    }
    if (p == -1){
        is_art[v] = false;
        int k = 0;
        for (int j : g[v])
            k += (parent[j] == v);
        if (k > 1) is_art[v] = true;
    }
}
int d = 0;
memset(in, -1, sizeof in);
dfs_art(1, -1, d);
1.3 Dominator Tree - Kawakami
// Se vira pra usar ai
//
// build - O(n)
// dominates - O(1)
int n;
namespace DTree {
    vector < int > g[MAX];
    // The dominator tree
    vector<int> tree[MAX]:
    int dfs_l[MAX], dfs_r[MAX];
    // Auxiliary data
    vector < int > rg[MAX], bucket[MAX];
    int idom[MAX], sdom[MAX], prv[MAX], pre[MAX];
    int ancestor[MAX], label[MAX];
    vector<int> preorder;
    void dfs(int v) {
```

static int t = 0;
pre[v] = ++t;

```
sdom[v] = label[v] = v:
    preorder.push_back(v);
    for (int nxt: g[v]) {
        if (sdom[nxt] == -1) {
            prv[nxt] = v;
            dfs(nxt);
        rg[nxt].push_back(v);
    }
}
int eval(int v) {
    if (ancestor[v] == -1) return v;
    if (ancestor[v]] == -1) return label[v];
    int u = eval(ancestor[v]);
    if (pre[sdom[u]] < pre[sdom[label[v]]]) label[v] = u;</pre>
    ancestor[v] = ancestor[u]:
    return label[v]:
}
void dfs2(int v) {
    static int t = 0;
    dfs_1[v] = t++;
    for (int nxt: tree[v]) dfs2(nxt);
    dfs_r[v] = t++;
}
void build(int s) {
    for (int i = 0; i < n; i++) {</pre>
        sdom[i] = pre[i] = ancestor[i] = -1;
        rg[i].clear();
        tree[i].clear();
        bucket[i].clear();
    }
    preorder.clear();
    dfs(s):
    if (preorder.size() == 1) return;
    for (int i = int(preorder.size()) - 1; i >= 1; i--) {
        int w = preorder[i];
        for (int v: rg[w]) {
            int u = eval(v);
            if (pre[sdom[u]] < pre[sdom[w]]) sdom[w] =</pre>
               sdom[u];
        }
        bucket[sdom[w]].push_back(w);
```

```
ancestor[w] = prv[w];
            for (int v: bucket[prv[w]]) {
                int u = eval(v);
                idom[v] = (u == v) ? sdom[v] : u;
            bucket[prv[w]].clear();
        for (int i = 1; i < preorder.size(); i++) {</pre>
            int w = preorder[i];
            if (idom[w] != sdom[w]) idom[w] = idom[idom[w]];
            tree[idom[w]].push_back(w);
        idom[s] = sdom[s] = -1;
        dfs2(s);
    }
    // Whether every path from s to v passes through u
    bool dominates(int u, int v) {
        if (pre[v] == -1) return 1; // vacuously true
        return dfs_1[u] <= dfs_1[v] && dfs_r[v] <= dfs_r[u];</pre>
    }
};
1.4 Kosaraju
// O(n + m)
int n;
vector < vector < int > > g(MAX);
vector < vector < int > > gi(MAX); // grafo invertido
int vis[MAX]:
stack<int> S:
int comp[MAX]; // componente conexo de cada vertice
void dfs(int k) {
    vis[k] = 1;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (!vis[g[k][i]]) dfs(g[k][i]);
```

}

S.push(k);

```
void scc(int k, int c) {
    vis[k] = 1;
    comp[k] = c;
    for (int i = 0; i < (int) gi[k].size(); i++)</pre>
        if (!vis[gi[k][i]]) scc(gi[k][i], c);
}
void kosaraju() {
    for (int i = 0; i < n; i++) vis[i] = 0;</pre>
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
    for (int i = 0; i < n; i++) vis[i] = 0;
    while (S.size()) {
        int u = S.top();
        S.pop();
        if (!vis[u]) scc(u, u);
    }
}
    Dijkstra
1.5
// encontra menor distancia de a
// para todos os vertices
// se ao final do algoritmo d[i] = INF,
// entao a nao alcanca i
//
// O(m log(n))
int n;
vector < vector < int > > g(MAX);
vector < vector < int > > w(MAX); // peso das arestas
int d[MAX]:
void dijsktra(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0;
    priority_queue < pair < int , int > > Q;
    Q.push(make_pair(0, a));
    while (Q.size()) {
        int u = Q.top().second, dist = -Q.top().first;
```

Q.pop();

```
if (dist > d[u]) continue;
        for (int i = 0; i < (int) g[u].size(); i++) {</pre>
            int v = g[u][i];
            if (d[v] > d[u] + w[u][i]) {
                d[v] = d[u] + w[u][i];
                Q.push(make_pair(-d[v], v));
            }
        }
    }
}
    Heavy-Light Decomposition sem Update
// query de min do caminho
//
// Complexidades:
// build - O(n)
// query_path - O(log(n))
#define f first
#define s second
namespace hld {
    vector < pair < int , int > > g[MAX];
    int in[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    int men[MAX], seg[2*MAX];
    void build_hld(int k, int p = -1, int f = 1) {
        v[in[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.f != p) {
```

sobe[i.f] = i.s; pai[i.f] = k;

i.s);

}

h[i.f] = (i == g[k][0] ? h[k] : i.f);

build_hld(i.f, k, f); sz[k] += sz[i.f];

if (p*f == -1) build_hld(h[k] = k, -1, t = 0);

men[i.f] = (i == g[k][0] ? min(men[k], i.s) :

if (sz[i.f] > sz[g[k][0].f]) swap(i, g[k][0]);

```
}
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        for (int i = 0; i < t; i++) seg[i+t] = v[i];</pre>
        for (int i = t-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    }
    int query_path(int a, int b) {
        if (a == b) return INF;
        if (in[a] < in[b]) swap(a, b);</pre>
        if (h[a] != h[b]) return min(men[a],
           query_path(pai[h[a]], b));
        int ans = INF, x = in[b]+1+t, y = in[a]+t;
        for (; x \le y; ++x/=2, --y/=2) ans = min({ans,
           seg[x], seg[y]);
        return ans;
    }
};
```

1.7 Heavy-Light Decomposition - vertice

```
// SegTree de soma
// query / update de soma dos vertices
// Complexidades:
// build - O(n)
// \text{ query_path - O(log^2 (n))}
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
namespace seg {
    11 seg[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
```

```
r):
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    11 query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        int m = (1+r)/2:
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1, m)
           m+1, r);
    }
    ll update(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {</pre>
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
             update(a, b, x, 2*p+1, m+1, r);
    }
};
namespace hld {
    vector < int > g[MAX];
    int in[MAX], out[MAX], sz[MAX];
    int peso[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
```

```
v[in[k] = t++] = peso[k]; sz[k] = 1;
    for (auto& i : g[k]) if (i != p) {
        pai[i] = k;
       h[i] = (i == g[k][0] ? h[k] : i);
        build_hld(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
    }
    out[k] = t;
    if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
void build(int root = 0) {
    t = 0:
    build_hld(root);
    seg::build(t, v);
ll query_path(int a, int b) {
    if (a == b) return seg::query(in[a], in[a]);
    if (in[a] < in[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return seg::query(in[b], in[a]);
    return seg::query(in[h[a]], in[a]) +
       query_path(pai[h[a]], b);
void update_path(int a, int b, int x) {
    if (a == b) return (void) seg::update(in[a], in[a],
       x);
    if (in[a] < in[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return (void)seg::update(in[b],
       in[a], x);
    seg::update(in[h[a]], in[a], x);
       update_path(pai[h[a]], b, x);
}
11 query_subtree(int a) {
    if (in[a] == out[a]-1) return seg::query(in[a],
       in[a]):
    return seg::query(in[a], out[a]-1);
void update_subtree(int a, int x) {
    if (in[a] == out[a]-1) return
       (void)seg::update(in[a], in[a], x);
```

```
seg::update(in[a], out[a]-1, x);
    }
    int lca(int a, int b) {
        if (in[a] < in[b]) swap(a, b);</pre>
        return h[a] == h[b] ? b : lca(pai[h[a]], b);
    }
};
1.8 LCA com HLD
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Para buildar pasta chamar build(root)
// Complexidades:
// build - O(n)
// lca - O(log(n))
vector < vector < int > > g(MAX);
int in[MAX], h[MAX], sz[MAX];
int pai[MAX], t;
void build(int k, int p = -1, int f = 1) {
    in[k] = t++; sz[k] = 1;
    for (int& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
    }
    if (p*f == -1) t = 0, h[k] = k, build(k, -1, 0);
}
int lca(int a, int b) {
    if (in[a] < in[b]) swap(a, b);</pre>
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}
```

1.9 LCA com RMQ

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Complexidades:
// build - O(n) + build_RMQ
// lca - RMQ
int n;
vector < vector < int > > g(MAX);
                // pos[i] : posicao de i em v (primeira
int pos[MAX];
   aparicao
int ord[2 * MAX]; // ord[i] : i-esimo vertice na ordem de
   visitação da dfs
int v[2 * MAX]; // vetor de alturas que eh usado na RMQ
int p;
void dfs(int k, int l) {
    ord[p] = k;
    pos[k] = p;
    v[p++] = 1;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (pos[g[k][i]] == -1) {
            dfs(g[k][i], l + 1);
            ord[p] = k;
            v[p++] = 1;
        }
}
void build(int root) {
    for (int i = 0; i < n; i++) pos[i] = -1;
    p = 0;
    dfs(root, 0);
    build_RMQ();
}
int lca(int u, int v) {
    int a = pos[u], b = pos[v];
    if (a > b) swap(a, b);
    return ord[RMQ(a, b)];
}
```

1.10 LCA com binary lifting

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// MAX2 = ceil(log(MAX))
//
// Complexidades:
// build - O(n log(n))
// lca - O(log(n))
vector < vector < int > > g(MAX);
int n, p;
int pai[MAX2][MAX];
int in[MAX], out[MAX];
void dfs(int k) {
    in[k] = p++;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (in[g[k][i]] == -1) {
            pai[0][g[k][i]] = k;
            dfs(g[k][i]);
    out[k] = p++;
}
void build(int raiz) {
    for (int i = 0; i < n; i++) pai[0][i] = i;</pre>
    p = 0, memset(in, -1, sizeof in);
    dfs(raiz);
    // pd dos pais
    for (int k = 1; k < MAX2; k++) for (int i = 0; i < n;
       i++)
        pai[k][i] = pai[k - 1][pai[k - 1][i]];
}
bool anc(int a, int b) { // se a eh ancestral de b
    return in[a] <= in[b] and out[a] >= out[b];
}
int lca(int a, int b) {
    if (anc(a, b)) return a;
```

```
if (anc(b, a)) return b;

// sobe a
for (int k = MAX2 - 1; k >= 0; k--)
    if (!anc(pai[k][a], b)) a = pai[k][a];

return pai[0][a];
}
```

1.11 Heavy-Light Decomposition - aresta

```
// SegTree de soma
// query / update de soma das arestas
// Complexidades:
// build - O(n)
// query_path - O(log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
#define f first
#define s second
namespace seg {
    11 \text{ seg}[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
```

```
lazy[p];
        lazy[p] = 0;
    ll query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, l, r);
        if (a <= 1 and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return 0;
        int m = (1+r)/2;
        return query(a, b, 2*p, 1, m) + query(a, b, 2*p+1,
           m+1, r);
    }
    ll update(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
        prop(p, l, r);
        if (a <= 1 and r <= b) {</pre>
            lazy[p] += x;
            prop(p, l, r);
            return seg[p];
        if (b < l or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
   }
};
namespace hld {
   vector<pair<int, int> > g[MAX];
    int in[MAX], out[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[in[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.f != p) {
            sobe[i.f] = i.s; pai[i.f] = k;
            h[i.f] = (i == g[k][0] ? h[k] : i.f);
            build_hld(i.f, k, f); sz[k] += sz[i.f];
            if (sz[i.f] > sz[g[k][0].f]) swap(i, g[k][0]);
        }
        out[k] = t;
```

```
if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    }
    void build(int root = 0) {
        t = 0;
        build_hld(root);
                                                                  //
        seg::build(t, v);
    }
    ll query_path(int a, int b) {
        if (a == b) return 0;
        if (in[a] < in[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return seg::query(in[b]+1, in[a]);
        return seg::query(in[h[a]], in[a]) +
           query_path(pai[h[a]], b);
    void update_path(int a, int b, int x) {
        if (a == b) return;
        if (in[a] < in[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return (void)seg::update(in[b]+1,
           in[a], x);
        seg::update(in[h[a]], in[a], x);
           update_path(pai[h[a]], b, x);
    11 query_subtree(int a) {
        if (in[a] == out[a]-1) return 0;
        return seg::query(in[a]+1, out[a]-1);
    void update_subtree(int a, int x) {
        if (in[a] == out[a]-1) return;
        seg::update(in[a]+1, out[a]-1, x);
    int lca(int a, int b) {
        if (in[a] < in[b]) swap(a, b);</pre>
        return h[a] == h[b] ? b : lca(pai[h[a]], b);
    }
     Bellman-Ford
// Calcula a menor distancia
```

1.12

};

```
// entre a e todos os vertices e
```

```
// detecta ciclo negativo
// Retorna 1 se ha ciclo negativo
// Nao precisa representar o grafo,
// soh armazenar as arestas
// O(nm)
int n, m;
int d[MAX];
vector<pair<int, int> > ar; // vetor de arestas
vector < int > w;
                            // peso das arestas
bool bellman_ford(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0:
    for (int i = 0; i <= n; i++)
        for (int j = 0; j < m; j++) {</pre>
            if (d[ar[j].second] > d[ar[j].first] + w[j]) {
                if (i == n) return 1;
                d[ar[j].second] = d[ar[j].first] + w[j];
            }
        }
    return 0;
      Tarjan para SCC
1.13
// O(n + m)
vector < vector < int > > g(MAX);
stack<int> s;
int vis[MAX], comp[MAX];
int id[MAX], p;
int dfs(int k) {
    int lo = id[k] = p++;
    s.push(k);
    vis[k] = 2; // ta na pilha
```

```
// calcula o menor cara q ele alcanca
    // que ainda nao esta em um scc
    for (int i = 0; i < g[k].size(); i++) {</pre>
        if (!vis[g[k][i]])
            lo = min(lo, dfs(g[k][i]));
        else if (vis[g[k][i]] == 2)
            lo = min(lo, id[g[k][i]]);
    }
    // nao alcanca ninguem menor -> comeca scc
    if (lo == id[k]) while (1) {
        int u = s.top();
        s.pop(); vis[u] = 1;
        comp[u] = k;
        if (u == k) break;
    }
    return lo;
}
void tarjan() {
    memset(vis, 0, sizeof(vis));
    p = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
}
1.14 Dinic (Dilson)
// O(n^2 m)
// Grafo bipartido -> O(sqrt(n)*m)
template <class T> struct dinic {
    struct edge {
        int v, rev;
        edge(int v_, T cap_, int rev_) : v(v_), cap(cap_),
           rev(rev ) {}
    };
    vector < vector < edge >> g;
    vector < int > level;
```

```
queue < int > q;
T flow;
int n;
dinic(int n_) : g(n_), level(n_), n(n_) {}
void add_edge(int u, int v, T cap) {
    if (u == v)
        return;
    edge e(v, cap, int(g[v].size()));
    edge r(u, 0, int(g[u].size()));
    g[u].push_back(e);
    g[v].push_back(r);
}
bool build_level_graph(int src, int sink) {
    fill(level.begin(), level.end(), -1);
    while (not q.empty())
        q.pop();
    level[src] = 0;
    q.push(src);
    while (not q.empty()) {
        int u = q.front();
        q.pop();
        for (auto e = g[u].begin(); e != g[u].end();
           ++e) {
            if (not e->cap or level[e->v] != -1)
                continue:
            level[e->v] = level[u] + 1;
            if (e->v == sink)
                return true;
            q.push(e->v);
        }
    }
    return false;
}
T blocking_flow(int u, int sink, T f) {
    if (u == sink or not f)
        return f:
    T fu = f;
    for (auto e = g[u].begin(); e != g[u].end(); ++e) {
        if (not e->cap or level[e->v] != level[u] + 1)
            continue:
```

```
T mincap = blocking_flow(e->v, sink, min(fu,
               e->cap));
            if (mincap) {
                g[e->v][e->rev].cap += mincap;
                e->cap -= mincap;
                fu -= mincap;
            }
        }
        if (f == fu)
            level[u] = -1;
        return f - fu;
    T max_flow(int src, int sink) {
        flow = 0;
        while (build_level_graph(src, sink))
            flow += blocking_flow(src, sink,
               numeric_limits <T>::max());
        return flow;
   }
};
```

1.15 Centro da Arvore

```
// Centro eh o vertice que minimiza
// a maior distancia dele pra alguem
// O centro fica no meio do diametro
// A funcao center retorna um par com
// o diametro e o centro
//
// O(n+m)
vector < vector < int > > g(MAX);
int n, vis[MAX];
int d[2][MAX];
// retorna ultimo vertice visitado
int bfs(int k, int x) {
        queue < int > q; q.push(k);
    memset(vis, 0, sizeof(vis));
    vis[k] = 1;
    d[x][k] = 0;
    int last = k;
```

```
while (q.size()) {
       int u = q.front(); q.pop();
        last = u;
        for (int i : g[u]) if (!vis[i]) {
            vis[i] = 1;
            q.push(i);
            d[x][i] = d[x][u] + 1;
        }
    }
    return last;
}
pair<int, int> center() {
    int a = bfs(0, 0);
    int b = bfs(a, 1);
    bfs(b, 0);
    int c, mi = INF;
    for (int i = 0; i < n; i++) if (max(d[0][i], d[1][i]) <
        mi = max(d[0][i], d[1][i]), c = i;
    return {d[0][a], c};
1.16 Sack (DSU em arvores)
// Responde queries de todas as sub-arvores
// offline
//
// O(n log(n))
int sz[MAX], cor[MAX], cnt[MAX];
vector < vector < int > > g(MAX);
void build(int k, int d=0) {
    sz[k] = 1;
    for (auto& i : g[k]) {
        build(i, d+1); sz[k] += sz[i];
       if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
    }
}
```

```
void compute(int k, int x, bool dont=1) {
    cnt[cor[k]] += x;
    for (int i = dont; i < g[k].size(); i++)</pre>
        compute(g[k][i], x, 0);
}
void solve(int k, bool keep=0) {
    for (int i = int(g[k].size())-1; i >= 0; i--)
        solve(g[k][i], !i);
    compute(k, 1);
        // agora cnt[i] tem quantas vezes a cor
        // i aparece na sub-arvore do k
    if (!keep) compute(k, -1, 0);
}
1.17 Centroid
// Computa os 2 centroids da arvore
//
// O(n)
int n, subsize[MAX];
vector < vector < int > > g(MAX);
void dfs(int k, int p=-1) {
    subsize[k] = 1;
    for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
    for (int i : g[k]) if (i != p) if (subsize[i] > size/2)
        return centroid(i, k, size, t);
    return k;
}
pair < int , int > centroids(int k=0) {
```

```
dfs(k):
   int i = centroid(k), i2 = i;
    for (int j : g[i]) if (2*subsize[j] == subsize[k]) i2 =
       j;
   return {i, i2};
}
1.18 Kruskal
// Gera AGM a partir do vetor de arestas
// O(m log(n))
int n;
vector < pair < int , pair < int , int > > ar; // vetor de arestas
int v[MAX];
// Union-Find em O(log(n))
void build();
int find(int k);
void une(int a, int b);
void kruskal() {
    build();
    sort(ar.begin(), ar.end());
   for (int i = 0; i < (int) ar.size(); i++) {</pre>
        int a = ar[i].s.f, b = ar[i].s.s;
        if (find(a) != find(b)) {
            une(a, b);
            // aresta faz parte da AGM
       }
   }
}
1.19 Blossom - matching maximo em grafo geral
// O(n^3)
// Se for bipartido, nao precisa da funcao
// 'contract', e roda em O(nm)
```

```
vector < vector < int > > g(MAX);
int match[MAX]; // match[i] = com quem i esta matchzado ou -1
int n, pai[MAX], base[MAX], vis[MAX];
queue < int > q;
void contract(int u, int v, bool first = 1) {
    static vector < bool > bloss;
    static int 1;
    if (first) {
        bloss = vector < bool > (n, 0);
        vector < bool > teve(n, 0);
        int k = u; l = v;
        while (1) {
            teve[k = base[k]] = 1;
            if (match[k] == -1) break;
            k = pai[match[k]];
        }
        while (!teve[l = base[l]]) l = pai[match[l]];
    while (base[u] != 1) {
        bloss[base[u]] = bloss[base[match[u]]] = 1;
        pai[u] = v;
        v = match[u];
        u = pai[match[u]];
    }
    if (!first) return;
    contract(v, u, 0);
    for (int i = 0; i < n; i++) if (bloss[base[i]]) {</pre>
        base[i] = 1;
        if (!vis[i]) q.push(i);
        vis[i] = 1;
    }
}
int getpath(int s) {
    for (int i = 0; i < n; i++) base[i] = i, pai[i] = -1,
       vis[i] = 0;
    vis[s] = 1; q = queue < int > (); q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i : g[u]) {
            if (base[i] == base[u] or match[u] == i)
```

```
continue:
            if (i == s or (match[i] != -1 and pai[match[i]]
                ! = -1))
                contract(u, i);
            else if (pai[i] == -1) {
                pai[i] = u;
                if (match[i] == -1) return i;
                i = match[i];
                vis[i] = 1; q.push(i);
            }
        }
    }
    return -1;
}
int blossom() {
    int ans = 0:
    memset(match, -1, sizeof(match));
   for (int i = 0; i < n; i++) if (match[i] == -1)</pre>
        for (int j : g[i]) if (match[j] == -1) {
            match[i] = i;
            match[j] = i;
            ans++;
            break;
        }
    for (int i = 0; i < n; i++) if (match[i] == -1) {
        int j = getpath(i);
        if (j == -1) continue;
        ans++;
        while (j != -1) {
            int p = pai[j], pp = match[p];
            match[p] = j;
            match[j] = p;
            j = pp;
        }
    }
    return ans;
}
1.20 Max flow com lower bound
```

// Manda passar pelo menos 'lb' de fluxo

```
// em cada aresta
// O(dinic)
struct lb_max_flow : dinic {
    vector<int> d;
    vector<int> e;
    lb_max_flow(int n):dinic(n + 2), d(n, 0){}
    void add(int a, int b, int c, int lb = 0){
        c = 1b;
        d[a] -= lb;
        d[b] += 1b;
        dinic::add(a, b, c);
    }
    bool check_flow(int src, int snk, int F){
        int n = d.size();
        d[src] += F;
        d[snk] -= F;
        for (int i = 0; i < n; i++){
            if (d[i] > 0){
                dinic::add(n, i, d[i]);
            } else if (d[i] < 0){</pre>
                dinic::add(i, n+1, -d[i]);
            }
        }
        int f = max_flow(n, n+1);
        return (f == F);
};
1.21 Isomorfismo de Arvores
// Duas arvores T1 e T2 sao isomorfas
// sse T1.getHash() = T2.getHash()
// O(n log(n))
map < vector < int > , int > mapp;
```

struct tree {

```
int n:
vector < vector < int > > g;
vector<int> subsize;
tree(int n) {
    g.resize(n);
    subsize.resize(n);
}
void dfs(int k, int p=-1) {
    subsize[k] = 1;
    for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
    }
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
    for (int i : g[k]) if (i != p)
        if (subsize[i] > size/2)
            return centroid(i, k, size);
    return k;
}
pair<int, int> centroids(int k=0) {
    dfs(k);
    int i = centroid(k), i2 = i;
    for (int j : g[i]) if (2*subsize[j] == subsize[k])
       i2 = j;
    return {i, i2};
}
int hashh(int k, int p=-1) {
    vector < int > v;
    for (int i : g[k]) if (i != p) v.push_back(hashh(i,
       k));
    sort(v.begin(), v.end());
    if (!mapp.count(v)) mapp[v] = int(mapp.size());
    return mapp[v];
}
11 getHash(int k=0) {
    pair < int , int > c = centroids(k);
    11 a = hashh(c.first), b = hashh(c.second);
    if (a > b) swap(a, b);
    return (a << 30) + b;
```

```
};
```

1.22 MinCostMaxFlow Papa

```
/*
  s e t pre-definidos como MAXN - 1 e MAXN - 2.
   minCostFlow(f) computa o par (fluxo, custo) com
      max(fluxo) <= f que tenha min(custo).</pre>
   minCostFlow(INF) -> Fluxo maximo de custo minimo.
  Se tomar TLE, aleatorizar a ordem dos vertices no SPFA
*/
const int MAXN = 230;
template < typename T > struct MCMF {
    struct edge {
        int to, rev, flow, cap, residual;
        T cost;
        edge() { to = 0; rev = 0; flow = 0; cap = 0; cost =
           0; residual = false; }
        edge(int _to, int _rev, int _flow, int _cap, T
           _cost, bool _residual) {
            to = _to; rev = _rev;
            flow = _flow; cap = _cap;
            cost = _cost;
            residual = _residual;
        }
    };
    int s = MAXN - 1, t = MAXN - 2;
    vector < edge > G[MAXN];
    void addEdge(int u, int v, int w, T cost) {
        edge t = edge(v, G[v].size(), 0, w, cost, false);
        edge r = edge(u, G[u].size(), 0, 0, -cost, true);
        G[u].push_back(t);
        G[v].push_back(r);
```

```
deque < int > Q;
bool is_inside[MAXN];
int par_idx[MAXN], par[MAXN];
T dist[MAXN];
bool spfa() {
    for(int i = 0; i < MAXN; i++)</pre>
        dist[i] = INF;
    dist[t] = INF;
    Q.clear();
    dist[s] = 0;
    is_inside[s] = true;
    Q.push_back(s);
    while(!Q.empty()) {
        int u = Q.front();
        is_inside[u] = false;
        Q.pop_front();
        for (int i = 0; i < (int)G[u].size(); i++)
            if(G[u][i].cap > G[u][i].flow && dist[u] +
                G[u][i].cost < dist[G[u][i].to]) {</pre>
                 dist[G[u][i].to] = dist[u] +
                    G[u][i].cost;
                 par_idx[G[u][i].to] = i;
                 par[G[u][i].to] = u;
                 if(is_inside[G[u][i].to]) continue;
                 if(!Q.empty() && dist[G[u][i].to] >
                    dist[Q.front()])
                    Q.push_back(G[u][i].to);
                 else Q.push_front(G[u][i].to);
                 is_inside[G[u][i].to] = true;
            }
    }
    return dist[t] != INF;
}
pair < int , T > minCostFlow(int flow) {
    int f = 0:
```

```
T ret = 0:
    while(f <= flow && spfa()) {</pre>
        int mn_flow = flow - f, u = t;
        while(u != s){
            mn_flow = min(mn_flow,
               G[par[u]][par_idx[u]].cap -
               G[par[u]][par_idx[u]].flow);
            u = par[u];
        }
        u = t;
        while(u != s) {
            G[par[u]][par_idx[u]].flow += mn_flow;
            G[u][G[par[u]][par_idx[u]].rev].flow -=
            ret += G[par[u]][par_idx[u]].cost * mn_flow;
            u = par[u];
        }
        f += mn_flow;
    }
    return make_pair(f, ret);
}
/*
   Opcional.
   Retorna todas as arestas originais por onde passa
      fluxo = capacidade.
 */
vector<pair<int ,int > > recover() {
    vector<pair<int, int > > used;
    for(int i = 0; i < MAXN; i++)</pre>
        for(edge e : G[i])
            if(e.flow == e.cap && !e.residual)
                used.push_back({i, e.to});
    return used;
}
```

Dinic (Bruno)

};

```
// O(n^2 m)
// Grafo com capacidades 1 -> O(sqrt(n)*m)
struct dinic{
    struct edge {
        int p, c, id; // para, capacidade, id
        edge(int p_, int c_, int id_) : p(p_), c(c_),
           id(id_) {}
    };
    vector < vector < edge >> g;
    vector < int > lev;
    dinic(int n): g(n){}
    void add(int a, int b, int c) { // de a pra b com cap. c
        g[a].pb(edge(b, c, g[b].size()));
        g[b].pb(edge(a, 0, g[a].size()-1));
    }
    bool bfs(int s, int t) {
        lev = vector\langle int \rangle(g.size(), -1); lev[s] = 0;
        queue < int > q; q.push(s);
        while (q.size()) {
            int u = q.front(); q.pop();
            for (auto& i : g[u]) {
                if (lev[i.p] != -1 or !i.c) continue;
                lev[i.p] = lev[u] + 1;
                if (i.p == t) return 1;
                q.push(i.p);
            }
        return 0;
    }
    int dfs(int v, int s, int f = INF){
        if (v == s) return f;
        int tem = f;
        for (auto& i : g[v]) {
            if (lev[i.p] != lev[v] + 1 or !i.c) continue;
            int foi = dfs(i.p, s, min(tem, i.c));
            tem -= foi, i.c -= foi, g[i.p][i.id].c += foi;
        if (f == tem) lev[v] = -1;
```

```
return f - tem;
    }
    int max_flow(int s, int t) {
        int f = 0;
        while (bfs(s, t)) f += dfs(s, t);
        return f;
};
1.24 Line Tree
// Reduz min-query em arvore para RMQ
// Se o grafo nao for uma arvore, as queries
// sao sobre a arvore geradora maxima
// Queries de minimo
//
// build - O(n log(n))
// query - O(log(n))
int n;
namespace linetree {
    int id[MAX], seg[2*MAX], pos[MAX];
    vector < int > v[MAX], val[MAX];
    vector<pair<int, pair<int, int> > ar;
    void add(int a, int b, int p) { ar.pb({p, {a, b}}); }
    void build() {
        sort(ar.rbegin(), ar.rend());
        for (int i = 0; i < n; i++) id[i] = i, v[i] = {i},</pre>
           val[i].clear():
        for (auto i : ar) {
            int a = id[i.second.first], b =
               id[i.second.second];
            if (a == b) continue;
            if (v[a].size() < v[b].size()) swap(a, b);</pre>
            for (auto j : v[b]) id[j] = a, v[a].push_back(j);
            val[a].push_back(i.first);
            for (auto j : val[b]) val[a].push_back(j);
            v[b].clear(), val[b].clear();
        }
```

```
for (int i = 0; i < n; i++) pos[v[id[0]][i]] = i;</pre>
        for (int i = n; i < 2*n-1; i++) seg[i] =
           val[id[0]][i-n];
        for (int i = n-1; i > 0; i--) seg[i] = min(seg[2*i],
            seg[2*i+1]);
    }
    int query(int a, int b) {
        a = pos[a]+n, b = pos[b]+n;
        if (a > b) swap(a, b);
        int ans = INF; b--;
        for (; a <= b; ++a/=2, --b/=2) ans = min({ans,
            seg[a], seg[b]});
        return ans;
    }
};
1.25 	 2-SAT
// Retorna se eh possivel atribuir valores
// Grafo tem que caber 2n vertices
// add(x, y) adiciona implicacao x -> y
// Para adicionar uma clausula (x ou y)
// chamar add(nao(x), y)
// Se x tem que ser verdadeiro, chamar add(nao(x), x)
// O tarjan deve computar o componente conexo
// de cada vertice em comp
//
// O(|V|+|E|)
vector < vector < int > > g(MAX);
int n:
int nao(int x) { return (x + n) \% (2*n); }
// x \rightarrow y = !x ou y
void add(int x, int y){
    g[x].pb(y);
    // contraposicao
    g[nao(y)].pb(nao(x));
}
bool doisSAT(){
```

```
tarjan();
for (int i = 0; i < m; i++)
      if (comp[i] == comp[nao(i)]) return 0;
return 1;
}</pre>
```

1.26 Floyd-Warshall

```
// encontra o menor caminho entre todo
// par de vertices e detecta ciclo negativo
// returna 1 sse ha ciclo negativo
// d[i][i] deve ser 0
// para i != j, d[i][j] deve ser w se ha uma aresta
// (i, j) de peso w, INF caso contrario
//
// O(n^3)
int n;
int d[MAX][MAX];
bool floyd_warshall() {
    for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)</pre>
    for (int j = 0; j < n; j++)
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    for (int i = 0; i < n; i++)</pre>
        if (d[i][i] < 0) return 1;</pre>
    return 0;
}
```

2 Matematica

2.1 Ordem de elemento do grupo

```
// Calcula a ordem de a em Z_n
// O grupo Zn eh ciclico sse n =
// 1, 2, 4, p^k ou 2 p^k, p primo impar
// Retorna -1 se nao achar
```

```
// O(sqrt(n) log(n))
int tot(int n); // totiente em O(sqrt(n))
int expo(int a, int b, int m); // (a^b)%m em O(log(b))
// acha todos os divisores ordenados em O(sqrt(n))
vector<int> div(int n) {
    vector<int> ret1, ret2;
    for (int i = 1; i*i <= n; i++) if (n % i == 0) {
        ret1.pb(i);
        if (i*i != n) ret2.pb(n/i);
    }
    for (int i = ret2.size()-1; i+1; i--) ret1.pb(ret2[i]);
    return ret1;
}
int ordem(int a, int n) {
    vector < int > v = div(tot(n));
    for (int i : v) if (expo(a, i, n) == 1) return i;
    return -1;
}
2.2 Pollard's Rho Alg
// Usa o algoritmo de deteccao de ciclo de Brent
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
// Eh recomendado chamar srand(time(NULL)) na main
//
// Complexidades (considerando mul constante):
// rho - esperado O(n^{(1/4)}) no pior caso
// fact - esperado menos que O(n^{(1/4)} \log(n)) no pior caso
11 mdc(11 a, 11 b) { return !b ? a : mdc(b, a % b); }
11 mul(ll a, ll b, ll m) {
    return (a*b-ll(a*(long double)b/m+0.5)*m+m)%m;
}
```

```
11 exp(ll a, ll b, ll m) {
    if (!b) return 1;
    ll ans = exp(mul(a, a, m), b/2, m);
    return b%2 ? mul(a, ans, m) : ans;
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;</pre>
    if (n % 2 == 0) return 0;
    11 d = n - 1;
    int r = 0;
    while (d \% 2 == 0) \{
        r++;
        d /= 2;
    }
    int a[9] = \{2, 3, 5, 7, 11, 13, 17, 19, 23\};
    for (int i = 0; i < 9; i++) {
        if (a[i] >= n) break;
        ll x = exp(a[i], d, n);
        if (x == 1 \text{ or } x == n - 1) \text{ continue};
        bool deu = 1;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) {
                 deu = 0;
                 break;
            }
        if (deu) return 0;
    }
    return 1;
}
11 \text{ rho}(11 \text{ n}) 
    if (n == 1 or prime(n)) return n;
    if (n % 2 == 0) return 2;
    while (1) {
```

```
11 x = 2, y = 2;
        11 \ ciclo = 2, i = 0;
        ll c = (rand() / (double) RAND_MAX) * (n - 1) + 1;
        11 d = 1;
        while (d == 1) {
            if (++i == ciclo) ciclo *= 2, y = x;
            x = (mul(x, x, n) + c) % n;
            if (x == y) break;
            d = mdc(abs(x - y), n);
        }
        if (x != y) return d;
    }
}
void fact(ll n, vector<ll>& v) {
    if (n == 1) return;
    if (prime(n)) v.pb(n);
    else {
        11 d = rho(n);
        fact(d, v);
        fact(n / d, v);
    }
}
    Algoritmo de Euclides extendido
// acha x e y tal que ax + by = mdc(a, b)
//
// O(log(min(a, b)))
int mdce(int a, int b, int *x, int *y){
    if(!a){
        *x = 0;
        *y = 1;
        return b;
    }
```

```
int X, Y;
int mdc = mdce(b % a, a, &X, &Y);
*x = Y - (b / a) * X;
*y = X;

return mdc;
```

2.4 Algoritmo de Euclides

}

```
// O(log(min(a, b)))
int mdc(int a, int b) {
    return !b ? a : mdc(b, a % b);
}
```

2.5 Divisão de Polinomios

```
// Divide p1 por p2
// Retorna um par com o quociente e o resto
// Os coeficientes devem estar em ordem
// decrescente pelo grau. Ex:
// 3x^2 + 2x - 1 \rightarrow [3, 2, -1]
// O(nm), onde n e m sao os tamanhos dos
// polinomios
typedef vector<int> vi;
pair < vi , vi > div(vi p1, vi p2) {
    vi quoc, resto;
    int a = p1.size(), b = p2.size();
    for (int i = 0; i <= a - b; i++) {</pre>
        int k = p1[i] / p2[0];
        quoc.pb(k);
        for (int j = i; j < i + b; j++)
            p1[j] = k * p2[j - i];
    }
    for (int i = a - b + 1; i < a; i++)
        resto.pb(p1[i]);
```

```
return mp(quoc, resto);
2.6 FFT
// Exemplos na main
// Soma O(n) & Multiplicacao O(nlogn)
const int MAX = 5e5;
const int MAX2 = (1 << 20); //(1 << (ceil(log2(MAX)) + 1)) + 1
const double PI = acos(-1);
struct cplx{
    double r, i;
    cplx(double r_ = 0, double i_ = 0):r(r_), i(i_){}
    const cplx operator+(const cplx &x) const{
        return cplx(r + x.r, i + x.i);
    const cplx operator - (const cplx &x) const{
        return cplx(r - x.r, i - x.i);
    const cplx operator*(double a) const {
        return cplx(r*a, i*a);
    const cplx operator/(double a)const {
        return cplx(r/a, i/a);
    const cplx operator*(const cplx x) const {
        return cplx(r*x.r - i*x.i, r*x.i + i*x.r);
    }
};
const cplx I(0, 1);
cplx X[MAX2], Y[MAX2];
int rev[MAX2];
cplx roots[MAX2];
cplx rt(int i, int n){
    double alpha = (2*i*PI)/n;
```

```
return cplx(cos(alpha), sin(alpha));
}
void fft(cplx *a, bool f, int N){
    for (int i = 0; i < N; i++)</pre>
        if (i < rev[i])</pre>
            swap(a[i], a[rev[i]]);
    int 1, r, m;
    for (int n = 2; n \le N; n *= 2) {
        cplx root = (f ? rt(1, n) : rt(-1, n));
        roots[0] = 1;
        for (int i = 1; i < n/2; i++)
            roots[i] = roots[i-1]*root;
        for (int pos = 0; pos < N; pos += n) {
            1 = pos+0, r = pos+n/2, m = 0;
            while (m < n/2) {
                 auto t = roots[m]*a[r];
                a[r] = a[1] - t;
                a[1] = a[1] + t;
                l++; r++; m++;
            }
        }
    if (f) for(int i = 0; i < N; i++) a[i] = a[i]/N;</pre>
}
//p(x) = at(i)*x^i
template < typename T > struct poly : vector < T > {
    poly(const vector<T> &coef):vector<T>(coef){}
    poly(unsigned size):vector<T>(size){}
    poly(){}
    T operator()(T x){
        T ans = 0, curr_x(1);
        for (auto c : *this) {
            ans = ans+c*curr_x;
            curr_x = curr_x*x;
        }
        return ans;
    poly <T> operator+(const poly <T> &r) {
        const poly<T> &l = *this;
```

```
int sz = max(l.size(), r.size());
    poly <T> ans(sz);
    for (unsigned i = 0; i < 1.size(); i++)</pre>
         ans[i] = ans[i]+1[i];
    for (unsigned i = 0; i < r.size(); i++)</pre>
        ans[i] = ans[i]+r[i];
    return ans;
}
poly <T> operator - (poly <T> &r) {
    for (auto &it : r) it = -it;
    return (*this)+r;
}
void fix(int k){
    if (k < this->size()) throw
       logic_error("normalizando errado");
    while (this->size() < k) this->push_back(0);
}
pair < poly < T > , poly < T >> split() {
    const poly<T> &p = *this;
    poly < T > 1, r;
    for (int i = 0; i < p.size(); i++)</pre>
        if (i&1) l.push_back(p[i]);
        else r.push_back(p[i]);
    return {1, r};
}
poly<T> operator*(const poly<T> r){
    const poly<T> &1 = *this;
    int ln = 1.size(), rn = r.size();
    int N = ln+rn+1;
    int n = 1, log_n = 0;
    while (n <= N) { n <<= 1; log_n++; }</pre>
    for (int i = 0; i < n; ++i){</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; ++j)</pre>
             if (i & (1<<j))</pre>
                 rev[i] = 1 << (log_n-1-j);
    for (int i = 0; i < ln; i++) X[i] = l[i];</pre>
    for (int i = ln; i < n; i++) X[i] = 0;</pre>
    for (int i = 0; i < rn; i++) Y[i] = r[i];</pre>
    for (int i = rn; i < n; i++) Y[i] = 0;</pre>
    fft(X, false, n);//call dft if possible
```

```
fft(Y, false, n);
        for (int i = 0; i < n; i++)</pre>
             Y[i] = X[i]*Y[i];
        fft(Y, true, n);
        poly<T> ans(N);
        for (int i = 0; i < N; i++){</pre>
             ans[i] = floor(Y[i].r + 0.25); //if T is integer
             //ans[i] = Y[i].r; //if T is floating point
        }
         while (!ans.empty() && ans.back() == 0)
             ans.pop_back();
         return ans;
    }
    pair < poly < T > , T > briot_ruffini(T r) \{//\text{for p} = Q(x - r) + \}
        R. returns (Q, R)
        const poly<T> &l = *this;
        int sz = 1.size();
        if (sz == 0) return \{poly < T > (0), 0\};
        poly < T > q(sz - 1);
        q.back() = 1.back();
        for (int i = q.size()-2; i >= 0; i--){
             cout << i << "~" << q.size() << endl;</pre>
             q[i] = q[i+1]*r + l[i+1];
        return {q, q[0]*r + 1[0]};
    }
};
template < typename T > ostream& operator << (ostream &out, const</pre>
   poly < T > &p) {
    if (p.empty()) return out;
    out << p.at(0);
    for (int i = 1; i < p.size(); i++)</pre>
        out << " + " << p.at(i) << "x^" << i;
    out << endl;</pre>
    return out;
}
int main(){ _
```

```
poly < int > p(\{-2, -1, 2, 1\});
    poly<int> q({1, 1, 1});
    poly < int > sum = p+q;
    poly<int> mult = p*q;
    cout << "p: " << p << endl;</pre>
    cout << "q: " << q << endl;</pre>
    cout << "pq: " << mult << endl;</pre>
    for (int i = 1; i <= 50; i++){</pre>
        auto P = p(i), Q = q(i), M = mult(i);
        cout << P*Q << "\t\tvs\t\t" << M << endl;</pre>
        if (abs(P*Q - M) > 1e-5) throw logic_error("bad
            implementation :(");
    }
    cout << "sucesso!" << endl;</pre>
    exit(0):
    for (int root : {1, -1, 2, -2, 3}){
        poly<int> t; int r;
        tie(t, r) = p.briot_ruffini(root);
        cout << p << "/" << poly<int>({-root, 1});
        cout << " = " << endl;
        cout << t << " + " << r << endl;
        cout << endl;</pre>
    }
    exit(0);
     Miller-Rabin
// Testa se n eh primo, n \leq 3 * 10^18
// O(log(n)), considerando multiplicacao
// e exponenciacao constantes
// multiplicacao modular
ll mul(ll x, ll y, ll m); // x*y mod m
ll exp(ll x, ll y, ll m); // x^y mod m;
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;</pre>
```

if (n % 2 == 0) return 0;

```
11 d = n - 1;
    int r = 0;
    while (d \% 2 == 0) r++, d /= 2;
    // com esses primos, o teste funciona garantido para n
       <= 3*10^18
    // funciona para n <= 3*10^24 com os primos ate 41
    int a[9] = \{2, 3, 5, 7, 11, 13, 17, 19, 23\};
    // outra opcao para n <= 2^64:</pre>
    // int a[7] = {2, 325, 9375, 28178, 450775, 9780504,
       1795265022};
    for (int i = 0; i < 9; i++) {
        if (a[i] >= n) break;
        ll x = exp(a[i], d, n);
        if (x == 1 \text{ or } x == n - 1) \text{ continue};
        bool deu = 1;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) {
                deu = 0;
                break;
            }
        }
        if (deu) return 0;
    return 1;
2.8 Inverso Modular
// Computa o inverso de a modulo b
// Se b eh primo, basta fazer
// a^{(b-2)}
```

long long inv(long long a, long long b){

return 1 < a ? b - inv(b%a,a)*b/a : 1;

}

}

2.9 Variações do crivo de Eratosthenes

```
// "O" crivo
//
// Encontra maior divisor primo
// Um numero eh primo sse div[x] == x
// fact fatora um numero <= lim
// A fatoracao sai ordenada
// \text{ crivo } - O(n \log(\log(n)))
// fact - O(log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++) if (divi[i] == 1)</pre>
        for (int j = i; j <= lim; j += i) divi[j] = i;</pre>
}
void fact(vector<int>& v, int n) {
    if (n != divi[n]) fact(v, n/divi[n]);
    v.push_back(divi[n]);
}
// Crivo de divisores
//
// Encontra numero de divisores
// ou soma dos divisores
//
// O(n log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;
    for (int i = 2; i <= lim; i++)</pre>
        for (int j = i; j <= lim; j += i) {</pre>
            // para numero de divisores
             divi[j]++;
```

2.10 Totiente

```
// O(sqrt(n))
int tot(int n){
   int ret = n;

   for (int i = 2; i*i <= n; i++) if (n % i == 0) {
      while (n % i == 0) n /= i;
      ret -= ret / i;
   }
   if (n > 1) ret -= ret / n;

return ret;
}
```

2.11 Exponenciacao rapida

```
// (x^y mod m) em O(log(y))
```

2.12 Produto de dois long long mod m

```
// 0(1)
typedef long long int ll;
ll mul(ll a, ll b, ll m) { // a*b % m
    return (a*b-ll(a*(long double)b/m+0.5)*m+m)%m;
}
```

3 Primitivas

3.1 Primitivas de Polinomios

```
#include <bits/stdc++.h>
using namespace std;
namespace algebra {
   const int inf = 1e9;
   const int magic = 500; // threshold for sizes to run the
   naive algo
```

```
namespace fft {
    const int maxn = 1 << 18;</pre>
    typedef double ftype;
    typedef complex <ftype > point;
    point w[maxn];
    const ftype pi = acos(-1);
    bool initiated = 0;
    void init() {
        if(!initiated) {
            for(int i = 1; i < maxn; i *= 2) {</pre>
                 for(int j = 0; j < i; j++) {</pre>
                     w[i + j] = polar(ftype(1), pi * j /
                        i):
                }
            }
            initiated = 1;
        }
    }
    template < typename T>
        void fft(T *in, point *out, int n, int k = 1) {
            if(n == 1) {
                 *out = *in;
            } else {
                 n /= 2;
                 fft(in, out, n, 2 * k);
                 fft(in + k, out + n, n, 2 * k);
                 for(int i = 0; i < n; i++) {</pre>
                     auto t = out[i + n] * w[i + n];
                     out[i + n] = out[i] - t;
                     out[i] += t;
                }
            }
        }
    template < typename T>
        void mul_slow(vector<T> &a, const vector<T> &b) {
            vector<T> res(a.size() + b.size() - 1);
            for(size_t i = 0; i < a.size(); i++) {</pre>
                 for(size_t j = 0; j < b.size(); j++) {</pre>
```

```
res[i + j] += a[i] * b[j];
            }
        }
        a = res;
template < typename T>
    void mul(vector<T> &a, const vector<T> &b) {
        if(min(a.size(), b.size()) < magic) {</pre>
            mul_slow(a, b);
            return;
        }
        init();
        static const int shift = 15, mask = (1 <<</pre>
           shift) - 1:
        size_t n = a.size() + b.size() - 1;
        while(__builtin_popcount(n) != 1) {
            n++:
        }
        a.resize(n);
        static point A[maxn], B[maxn];
        static point C[maxn], D[maxn];
        for(size_t i = 0; i < n; i++) {</pre>
            A[i] = point(a[i] & mask, a[i] >> shift);
            if(i < b.size()) {</pre>
                B[i] = point(b[i] & mask, b[i] >>
                    shift);
            } else {
                B[i] = 0;
            }
        fft(A, C, n); fft(B, D, n);
        for(size t i = 0: i < n: i++) {</pre>
            point c0 = C[i] + conj(C[(n - i) \% n]);
            point c1 = C[i] - conj(C[(n - i) \% n]);
            point d0 = D[i] + conj(D[(n - i) \% n]);
            point d1 = D[i] - conj(D[(n - i) \% n]);
            A[i] = c0 * d0 - point(0, 1) * c1 * d1;
            B[i] = c0 * d1 + d0 * c1;
        fft(A, C, n); fft(B, D, n);
```

```
reverse (C + 1, C + n):
            reverse (D + 1, D + n);
            int t = 4 * n;
            for(size_t i = 0; i < n; i++) {</pre>
                int64_t A0 = llround(real(C[i]) / t);
                T A1 = llround(imag(D[i]) / t);
                T A2 = llround(imag(C[i]) / t);
                a[i] = A0 + (A1 << shift) + (A2 << 2 *
                   shift):
            }
            return;
       }
template < typename T>
   T bpow(T x, size_t n) {
        return n ? n \% 2 ? x * bpow(x, n - 1) : bpow(x *
           x, n / 2) : T(1);
template < typename T>
   T bpow(T x, size_t n, T m) {
        return n ? n % 2 ? x * bpow(x, n - 1, m) % m :
           bpow(x * x % m, n / 2, m) : T(1);
template < typename T>
   T gcd(const T &a, const T &b) {
        return b == T(0)? a : gcd(b, a % b);
   }
template < typename T>
   T nCr(T n, int r) { // runs in O(r)}
       T res(1):
       for(int i = 0; i < r; i++) {
            res *= (n - T(i));
            res /= (i + 1);
        }
        return res;
   }
template < int m>
    struct modular {
        int64_t r;
        modular() : r(0) {}
        modular(int64_t rr) : r(rr) \{if(abs(r) >= m) r\}
```

```
%= m: if(r < 0) r += m:
        modular inv() const {return bpow(*this, m - 2);}
        modular operator * (const modular &t) const
           {return (r * t.r) % m;}
        modular operator / (const modular &t) const
           {return *this * t.inv();}
        modular operator += (const modular &t) {r +=
           t.r; if(r >= m) r -= m; return *this;}
        modular operator -= (const modular &t) {r -=
           t.r; if(r < 0) r += m; return *this;}
        modular operator + (const modular &t) const
           {return modular(*this) += t;}
        modular operator - (const modular &t) const
           {return modular(*this) -= t;}
        modular operator *= (const modular &t) {return
           *this = *this * t;}
        modular operator /= (const modular &t) {return
           *this = *this / t;}
        bool operator == (const modular &t) const
           {return r == t.r;}
        bool operator != (const modular &t) const
           {return r != t.r;}
        operator int64_t() const {return r;}
   };
template < int T>
   istream& operator >> (istream &in, modular <T> &x) {
        return in >> x.r;
   }
template < typename T>
    struct poly {
        vector <T> a:
        void normalize() { // get rid of leading zeroes
            while(!a.empty() && a.back() == T(0)) {
                a.pop_back();
        }
```

```
f}()vlog
polv(T a0) : a{a0}{normalize();}
poly(vector <T> t) : a(t) { normalize();}
poly operator += (const poly &t) {
    a.resize(max(a.size(), t.a.size()));
    for(size_t i = 0; i < t.a.size(); i++) {</pre>
        a[i] += t.a[i];
    }
    normalize():
    return *this;
poly operator -= (const poly &t) {
    a.resize(max(a.size(), t.a.size()));
    for(size_t i = 0; i < t.a.size(); i++) {</pre>
        a[i] -= t.a[i]:
    }
    normalize();
    return *this;
poly operator + (const poly &t) const {return
   polv(*this) += t;}
poly operator - (const poly &t) const {return
   poly(*this) -= t;}
poly mod_xk(size_t k) const { // get same
   polynomial mod x^k
   k = min(k, a.size());
   return vector < T > (begin(a), begin(a) + k);
poly mul_xk(size_t k) const { // multiply by x^k
    poly res(*this);
    res.a.insert(begin(res.a), k, 0);
    return res:
poly div_xk(size_t k) const { // divide by x^k,
   dropping coefficients
   k = min(k, a.size());
    return vector <T > (begin(a) + k, end(a));
poly substr(size_t l, size_t r) const { //
   return mod xk(r).div xk(l)
```

```
1 = min(1, a.size()):
   r = min(r, a.size());
    return vector<T>(begin(a) + 1, begin(a) + r);
poly inv(size_t n) const { // get inverse series
   mod x^n
    assert(!is_zero());
    poly ans = a[0].inv();
    size t a = 1:
    while (a < n) {
        poly C = (ans * mod_xk(2 * a)).substr(a,
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2;
    return ans.mod_xk(n);
}
poly operator *= (const poly &t) {fft::mul(a,
   t.a); normalize(); return *this;}
polv operator * (const polv &t) const {return
   poly(*this) *= t;}
poly reverse(size_t n, bool rev = 0) const { //
   reverses and leaves only n terms
    polv res(*this);
   if(rev) { // If rev = 1 then tail goes to
        res.a.resize(max(n, res.a.size()));
    std::reverse(res.a.begin(), res.a.end());
    return res.mod_xk(n);
}
pair < poly , poly > divmod_slow(const poly &b)
   const { // when divisor or quotient is small
    vector <T> A(a):
   vector <T> res:
    while(A.size() >= b.a.size()) {
        res.push_back(A.back() / b.a.back());
        if(res.back() != T(0)) {
            for(size_t i = 0; i < b.a.size();</pre>
```

```
i++) {
                A[A.size() - i - 1] -=
                    res.back() * b.a[b.a.size() -
                   i - 1];
            }
        A.pop_back();
    std::reverse(begin(res), end(res));
    return {res, A};
}
pair < poly , poly > divmod(const poly &b) const {
   // returns quotiend and remainder of a mod b
    if(deg() < b.deg()) {</pre>
        return {poly{0}, *this};
    }
    int d = deg() - b.deg();
    if(min(d, b.deg()) < magic) {</pre>
        return divmod_slow(b);
    }
    poly D = (reverse(d + 1) * b.reverse(d +
       1).inv(d + 1)).mod_xk(d + 1).reverse(d +
       1, 1);
   return {D, *this - D * b};
}
poly operator / (const poly &t) const {return
   divmod(t).first;}
poly operator % (const poly &t) const {return
   divmod(t).second;}
poly operator /= (const poly &t) {return *this =
   divmod(t).first;}
poly operator %= (const poly &t) {return *this =
   divmod(t).second:}
poly operator *= (const T &x) {
   for(auto &it: a) {
        it *= x;
    normalize();
    return *this;
}
```

```
poly operator /= (const T &x) {
    for(auto &it: a) {
        it /= x;
    normalize();
    return *this;
poly operator * (const T &x) const {return
   poly(*this) *= x;}
poly operator / (const T &x) const {return
   poly(*this) /= x;}
void print() const {
    for(auto it: a) {
        cout << it << ', ';
    cout << endl;</pre>
T eval(T x) const { // evaluates in single point
   T res(0);
    for(int i = int(a.size()) - 1; i >= 0; i--) {
        res *= x;
        res += a[i];
    }
    return res;
}
T& lead() { // leading coefficient
    return a.back();
}
int deg() const { // degree
    return a.empty() ? -inf : a.size() - 1;
bool is_zero() const { // is polynomial zero
    return a.empty();
T operator [](int idx) const {
    return idx >= (int)a.size() || idx < 0 ?</pre>
       T(0) : a[idx];
}
```

```
T& coef(size_t idx) { // mutable reference at
   coefficient
    return a[idx];
bool operator == (const poly &t) const {return a
   == t.a;}
bool operator != (const poly &t) const {return a
poly deriv() { // calculate derivative
    vector<T> res;
    for(int i = 1; i <= deg(); i++) {</pre>
        res.push_back(T(i) * a[i]);
    return res;
poly integr() { // calculate integral with C = 0
    vector < T > res = \{0\};
    for(int i = 0; i <= deg(); i++) {</pre>
        res.push_back(a[i] / T(i + 1));
    }
    return res;
size_t leading_xk() const { // Let p(x) = x^k *
   t(x), return k
    if(is_zero()) {
        return inf;
    int res = 0;
    while (a[res] == T(0)) {
        res++;
    return res;
poly log(size_t n) { // calculate log p(x) mod
    assert(a[0] == T(1));
    return (deriv().mod_xk(n) *
       inv(n)).integr().mod_xk(n);
poly exp(size_t n) { // calculate exp p(x) mod
   x^n
```

```
if(is_zero()) {
        return T(1);
    assert(a[0] == T(0));
    poly ans = T(1);
   size_t a = 1;
    while (a < n) {
        poly C = ans.log(2 * a).div_xk(a) -
           substr(a, 2 * a);
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2:
   return ans.mod_xk(n);
poly pow_slow(size_t k, size_t n) { // if k is
   small
   return k ? k % 2 ? (*this * pow_slow(k - 1,
       n)).mod_xk(n) : (*this *
       *this).mod_xk(n).pow_slow(k / 2, n):
       T(1);
poly pow(size_t k, size_t n) { // calculate
   p^k(n) mod x^n
   if(is_zero()) {
        return *this;
   if(k < magic) {</pre>
        return pow_slow(k, n);
   int i = leading_xk();
   T j = a[i];
   poly t = div_xk(i) / j;
   return bpow(j, k) * (t.log(n) *
       T(k) .exp(n).mul_xk(i * k).mod_xk(n);
poly mulx(T x) { // component-wise
   multiplication with x^k
   T cur = 1;
   polv res(*this);
   for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= cur;
```

```
cur *= x:
    }
    return res;
poly mulx_sq(T x) { // component-wise
   multiplication with x^{k^2}
    T cur = x;
    T \text{ total} = 1;
    T xx = x * x;
    polv res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= total;
        total *= cur;
        cur *= xx;
    }
    return res;
}
vector <T> chirpz_even(T z, int n) { // P(1),
   P(z^2), P(z^4), ..., P(z^2(n-1))
    int m = deg();
    if(is_zero()) {
        return vector <T>(n, 0);
    vector <T> vv(m + n);
    T zi = z.inv();
    T zz = zi * zi;
    T cur = zi;
    T \text{ total} = 1;
    for (int i = 0; i \le max(n - 1, m); i++) {
        if(i \le m) \{vv[m - i] = total:\}
        if(i < n) {vv[m + i] = total;}</pre>
        total *= cur;
        cur *= zz;
    poly w = (mulx_sq(z) * vv).substr(m, m +
       n).mulx_sq(z);
    vector <T> res(n);
    for(int i = 0; i < n; i++) {</pre>
        res[i] = w[i];
    return res;
}
```

```
vector\langle T \rangle chirpz(T z, int n) \{ // P(1), P(z), 
   P(z^2), ..., P(z^{(n-1)})
    auto even = chirpz_even(z, (n + 1) / 2);
    auto odd = mulx(z).chirpz_even(z, n / 2);
    vector <T> ans(n);
    for(int i = 0; i < n / 2; i++) {</pre>
        ans [2 * i] = even[i];
        ans[2 * i + 1] = odd[i];
    }
    if(n % 2 == 1) {
        ans[n - 1] = even.back();
    return ans;
template < typename iter >
    vector<T> eval(vector<poly> &tree, int v,
       iter 1, iter r) { // auxiliary evaluation
       function
       if(r - 1 == 1) {
            return {eval(*1)};
        } else {
            auto m = 1 + (r - 1) / 2;
            auto A = (*this % tree[2 *
               v]).eval(tree, 2 * v, 1, m);
            auto B = (*this \% tree[2 * v +
               1]).eval(tree, 2 * v + 1, m, r);
            A.insert(end(A), begin(B), end(B));
            return A;
        }
vector<T> eval(vector<T> x) { // evaluate
   polynomial in (x1, ..., xn)
   int n = x.size();
   if(is zero()) {
        return vector <T>(n, T(0));
    vector < poly > tree (4 * n);
    build(tree, 1, begin(x), end(x));
    return eval(tree, 1, begin(x), end(x));
template < typename iter >
    poly inter(vector<poly> &tree, int v, iter
```

```
1, iter r, iter ly, iter ry) { //
               auxiliary interpolation function
                if(r - 1 == 1) {
                    return {*ly / a[0]};
                } else {
                    auto m = 1 + (r - 1) / 2;
                    auto my = ly + (ry - ly) / 2;
                    auto A = (*this % tree[2 *
                       v]).inter(tree, 2 * v, 1, m, ly,
                       my);
                    auto B = (*this \% tree[2 * v +
                       1]).inter(tree, 2 * v + 1, m, r,
                       my, ry);
                    return A * tree[2 * v + 1] + B *
                       tree[2 * v]:
                }
            }
   };
template < typename T>
    poly<T> operator * (const T& a, const poly<T>& b) {
        return b * a;
   }
template < typename T>
   poly<T> xk(int k) { // return x^k
        return poly<T>{1}.mul_xk(k);
   }
template < typename T>
   T resultant(poly<T> a, poly<T> b) { // computes
       resultant of a and b
       if(b.is zero()) {
            return 0;
        } else if(b.deg() == 0) {
            return bpow(b.lead(), a.deg());
        } else {
            int pw = a.deg();
            a \%= b;
            pw -= a.deg();
           T mul = bpow(b.lead(), pw) * T((b.deg() &
               a.deg() & 1) ? -1 : 1);
            T ans = resultant(b, a);
```

```
return ans * mul:
            }
    template < typename iter >
        poly<typename iter::value_type> kmul(iter L, iter R)
           { // \text{ computes } (x-a1)(x-a2)...(x-an) \text{ without }
           building tree
            if(R - L == 1) {
                return vector < typename
                    iter::value_type>{-*L, 1};
            } else {
                iter M = L + (R - L) / 2;
                return kmul(L, M) * kmul(M, R);
            }
    template < typename T, typename iter >
        poly<T> build(vector<poly<T>> &res, int v, iter L,
           iter R) { // builds evaluation tree for
           (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = vector <T>{-*L, 1};
            } else {
                iter M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) *
                    build(res, 2 * v + 1, M, R);
            }
    template < typename T>
        poly<T> inter(vector<T> x, vector<T> y) { //
            interpolates minimum polynomial from (xi, yi)
           pairs
            int n = x.size();
            vector<poly<T>> tree(4 * n);
            return build(tree, 1, begin(x),
                end(x)).deriv().inter(tree, 1, begin(x),
                end(x), begin(y), end(y));
        }
};
using namespace algebra;
const int mod = 1e9 + 7;
```

```
typedef modular < mod > base;
typedef poly < base > polyn;
using namespace algebra;
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n = 100000;
    polyn a;
    vector < base > x;
    for(int i = 0; i <= n; i++) {</pre>
        a.a.push_back(1 + rand() % 100);
        x.push_back(1 + rand() \% (2 * n));
    sort(begin(x), end(x));
    x.erase(unique(begin(x), end(x)), end(x));
    auto b = a.eval(x);
    cout << clock() / double(CLOCKS_PER_SEC) << endl;</pre>
    auto c = inter(x, b);
    polyn md = kmul(begin(x), end(x));
    cout << clock() / double(CLOCKS_PER_SEC) << endl;</pre>
    assert(c == a % md);
    return 0;
}
```

3.2 Primitivas Geometricas

```
#include <bits/stdc++.h>
using namespace std;

#define sc(a) scanf("%d", &a)
#define sc2(a,b) scanf("%d %d", &a, &b)
#define pri(x) printf("%d\n", x)
#define prie(x) printf("%d ", x)
#define sz(x) (int)((x).size())
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define sq(x) ((x)*(x))
```

```
#define BUFF ios::sync_with_stdio(false)
typedef long long int 11;
typedef double ld;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector < vi > vvi;
typedef vector<ii> vii;
const int INF = 0x3f3f3f3f;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f11;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, v;
    pt() {}
    pt(ld x, ld y) : x(x), y(y) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;</pre>
        return y < p.y;</pre>
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y);
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       ); }
};
struct line { // reta
    pt p, q;
    line() {}
```

```
line(pt p, pt q) : p(p), q(q) {}
};
// PONTO & VETOR
ld dist(pt p, pt q) { // distancia
    return sqrt(sq(p.x - q.x) + sq(p.y - q.y));
}
ld dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
ld norm(pt v) { // norma do vetor
    return dist(pt(0, 0), v);
}
pt normalize(pt v) { // vetor normalizado
    if (!norm(v)) return v;
    v = v / norm(v);
    return v;
}
ld dot(pt u, pt v) { // produto escalar
    return u.x * v.x + u.y * v.y;
}
ld cross(pt u, pt v) { // norma do produto vetorial
    return u.x * v.y - u.y * v.x;
}
ld sarea(pt p, pt q, pt r) { // area com sinal
    return cross(q - p, r - q) / 2;
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return eq(sarea(p, q, r), 0);
}
int paral(pt u, pt v) { // se u e v sao paralelos
    u = normalize(u);
    v = normalize(v):
```

```
if (eq(u.x, v.x)) and eq(u.y, v.y) return 1;
    if (eq(u.x, -v.x) \text{ and } eq(u.y, -v.y)) \text{ return } -1;
    return 0;
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
   return sarea(p, q, r) > 0;
pt rotate(pt p, ld th) { // rotaciona o ponto th radianos
    return pt(p.x * cos(th) - p.y * sin(th),
            p.x * sin(th) + p.y * cos(th));
}
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.v, p.x);
}
// R.F.T.A
bool isvert(line r) { // se r eh vertical
    return eq(r.p.x, r.q.x);
ld getm(line r) { // coef. ang. de r
    if (isvert(r)) return DINF;
   return (r.p.y - r.q.y) / (r.p.x - r.q.x);
ld getn(line r) { // coef. lin. de r
    if (isvert(r)) return DINF;
    return r.p.y - getm(r) * r.p.x;
}
bool lineeq(line r, line s) { // r == s
    return col(r.p, r.q, s.p) and col(r.p, r.q, s.q);
}
bool paraline(line r, line s) { // se r e s sao paralelas
    if (isvert(r) and isvert(s)) return 1;
    if (isvert(r) or isvert(s)) return 0;
    return eq(getm(r), getm(s));
```

```
}
bool isinline(pt p, line r) { // se p pertence a r
    return col(p, r.p, r.q);
}
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    if (p == r.p or p == r.q) return 1;
    return paral(p - r.p, p - r.q) == -1;
}
pt proj(pt p, line r) { // projecao do ponto p na reta r
    if (r.p == r.q) return r.p;
   r.q = r.q - r.p; p = p - r.p;
    pt proj = r.q * (dot(p, r.q) / dot(r.q, r.q));
    return proj + r.p;
}
pt inter(line r, line s) { // r inter s
    if (paraline(r, s)) return pt(DINF, DINF);
    if (isvert(r)) return pt(r.p.x, getm(s) * r.p.x +
       getn(s));
    if (isvert(s)) return pt(s.p.x, getm(r) * s.p.x +
       getn(r));
    1d x = (getn(s) - getn(r)) / (getm(r) - getm(s));
    return pt(x, getm(r) * x + getn(r));
}
bool interseg(line r, line s) { // se o seg de r intercepta
   o seg de s
    if (paraline(r, s)) {
        return isinseg(r.p, s) or isinseg(r.q, s)
            or isinseg(s.p, r) or isinseg(s.q, r);
    }
    pt i = inter(r, s);
    return isinseg(i, r) and isinseg(i, s);
}
ld disttoline(pt p, line r) { // distancia do ponto a reta
```

```
return dist(p, proj(p, r));
}
ld disttoseg(pt p, line r) { // distancia do ponto ao seg
    if (isinseg(proj(p, r), r))
        return disttoline(p, r);
   return min(dist(p, r.p), dist(p, r.q));
}
ld distseg(line a, line b) { // distancia entre seg
    if (interseg(a, b)) return 0;
    ld ret = DINF;
   ret = min(ret, disttoseg(a.p, b));
   ret = min(ret, disttoseg(a.q, b));
   ret = min(ret, disttoseg(b.p, a));
    ret = min(ret, disttoseg(b.q, a));
    return ret;
}
// POLIGONO
ld polper(vector<pt> v) { // perimetro do poligono
   ld ret = 0;
    for (int i = 0; i < sz(v); i++)
        ret += dist(v[i], v[(i + 1) \% sz(v)]);
    return ret;
}
ld polarea(vector<pt> v) { // area do poligono
   ld ret = 0;
   for (int i = 0; i < sz(v); i++)
        ret += sarea(pt(0, 0), v[i], v[(i + 1) \% sz(v)]);
    return abs(ret):
}
bool onpol(pt p, vector<pt> v) { // se um ponto esta na
   fronteira do poligono
   for (int i = 0; i < sz(v); i++)
        if (isinseg(p, line(v[i], v[(i + 1) % sz(v)])))
           return 1:
```

```
return 0:
}
bool inpol(pt p, vector<pt> v) { // se um ponto pertence ao
   poligono
    if (onpol(p, v)) return 1;
    int c = 0;
    line r = line(p, pt(DINF, pi * DINF));
    for (int i = 0; i < sz(v); i++) {
        line s = line(v[i], v[(i + 1) \% sz(v)]);
        if (interseg(r, s)) c++;
    return c & 1;
}
bool interpol(vector<pt> v1, vector<pt> v2) { // se dois
   poligonos se interceptam
    for (int i = 0; i < sz(v1); i++) if (inpol(v1[i], v2))</pre>
       return 1:
    for (int i = 0; i < sz(v2); i++) if (inpol(v2[i], v1))
       return 1;
    return 0;
}
ld distpol(vector<pt> v1, vector<pt> v2) { // distancia
   entre poligonos
    if (interpol(v1, v2)) return 0;
    ld ret = DINF;
    for (int i = 0; i < sz(v1); i++) for (int j = 0; j <
       sz(v2); j++)
        ret = min(ret, distseg(line(v1[i], v1[(i + 1) %
           sz(v1)]).
                    line(v2[j], v2[(j + 1) \% sz(v2)])));
    return ret:
}
vector<pt> convexhull(vector<pt> v) { // convex hull
    vector < pt > 1, u;
    sort(v.begin(), v.end());
```

```
for (int i = 0; i < sz(v); i++) {</pre>
        while (sz(1) > 1 \text{ and } !ccw(v[i], 1[sz(1) - 1],
           l[sz(1) - 2]))
            1.pop_back();
        1.pb(v[i]);
    }
    for (int i = sz(v) - 1; i \ge 0; i--) {
        while (sz(u) > 1 \text{ and } !ccw(v[i], u[sz(u) - 1],
           u[sz(u) - 2])
            u.pop_back();
        u.pb(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (int i = 0; i < sz(u); i++) 1.pb(u[i]);
    return 1;
}
// CIRCULO
pt getcenter(pt a, pt b, pt c) { // centro da circunferencia
   dado 3 pontos
    b = (a + b) / 2;
    c = (a + c) / 2;
    return inter(line(b, b + rotate90(a - b)),
            line(c, c + rotate90(a - c)));
}
circle minCirc(vector < PT > v) { // minimum enclosing circle
    int n = v.size():
    random_shuffle(v.begin(), v.end());
    PT p = PT(0.0, 0.0);
    circle ret = circle(p, 0.0);
    for(int i = 0; i < n; i++) {</pre>
        if(!inside(ret, v[i])) {
            ret = circle(v[i], 0);
            for(int j = 0; j < i; j++) {
                if(!inside(ret, v[j])) {
```

```
ret = circle((v[i] + v[j]) / 2.0,
                        sqrt(dist2(v[i], v[j])) / 2.0);
                    for(int k = 0; k < j; k++) {
                         if(!inside(ret, v[k])) {
                             p = best0f3(v[i], v[j], v[k]);
                             ret = circle(p, sqrt(dist2(p,
                                v[i])));
                        }
                    }
                }
            }
        }
    }
    return ret;
}
// comparador pro set para fazer sweep angle com segmentos
double ang;
struct cmp {
    bool operator () (const line& a, const line& b) {
        line r = line(pt(0, 0), rotate(pt(1, 0), ang));
        return norm(inter(r, a)) < norm(inter(r, b));</pre>
};
3.3 Primitivas de matriz (Rafael)
11 mod(l1 v) { return (v + MOD) % MOD; }
11 sum(ll 1, ll r) { return mod(l+r); }
11 mult(11 1, 11 r) { return mod(1*r); }
ll inverse(ll 1) { return inv(1, MOD); }
bool equal(ll\ l,\ ll\ r) { return mod(l-r) == 0; }
template < typename T> struct matrix {
    vector < vector < T >> in;
    int row, col;
    void print(){//
```

for (int i = 0; i < row; i++){</pre>

cout << endl;</pre>

for (int j = 0; j < col; j++)

cout << in[i][j] << " ";</pre>

```
}
}
matrix(int row, int col, int op = 0):row(row), col(col),
   in(row, vector <T>(col, 0)){
    if (op) for (int i = 0; i < row; i++) in[i][i] = 1;</pre>
}
matrix(initializer_list<initializer_list<T>> c):
    row(c.size()), col((*c.begin()).size()){
        in = vector < vector < T >> (row, vector < T > (col, 0));
        int i, j;
        i = 0;
        for (auto &it : c){
            j = 0;
            for (auto &jt : it){
                 in[i][j] = jt;
                 j++;
            i++;
        }
    }
T &operator()(int i, int j){ return in[i][j]; }
//in case of a transposed matrix, swap i and j
matrix<T>& operator*=(T t){
    matrix<T> &l = *this;
    for (int i = 0; i < row; i++)</pre>
        for (int j = 0; j < col; j++)</pre>
            l(i, j) = mult(l(i, j), t); //% MOD) % MOD;
    return 1;
}
matrix <T> operator + (matrix <T> &r) {
    matrix<T> &l = *this;
    matrix<T> m(row, col, 0);
    for (int i = 0; i < row; i++)</pre>
        for (int j = 0; j < col; j++)
            m(i, j) = sum(l(i, j), r(i, j)); //% MOD) %
    return m;
matrix <T> operator*(matrix <T> &r){
    matrix < T > &l = *this;
    int row = 1.row;
```

```
int col = r.col;
    int K = 1.col;
    matrix<T> m(row, col, 0);
    for (int i = 0; i < row; i++)</pre>
        for (int j = 0; j < col; j++)
            for (int k = 0; k < K; k++)
                 m(i, j) = sum(m(i, j), mult(l(i, k),
                    r(k, j)));
    return m;
matrix<T> operator^(long long e){
    matrix < T > &m = (*this);
    if (e == 0) return matrix(m.row, m.row, 1);
    if (e == 1) return m;
    if (e == 2) return m*m;
    auto m_{-} = m^{(e/2)}; m_{-} = m_{*m_{-}};
    if (e\%2 == 1) m_{-} = m_{-} * m;
    return m_;
void multiply_r(int i, T k){
    matrix < T > &m = (*this);
    for (int j = 0; j < col; j++)</pre>
        m(i, j) = mult(m(i, j), k);
void multiply_c(int j, T k){
    matrix < T > &m = (*this);
    for (int i = 0; i < row; j++)
        m(i, j) = mult(m(i, j), k);
}
void sum_r(int i1, int i2, T k){
    matrix < T > \&m = (*this);
    for (int j = 0; j < col; j++)</pre>
        m(i1, j) = sum(m(i1, j), mult(k, m(i2, j)));
bool gaussian(int I, int J){
    matrix < T > \&m = (*this);
    T \text{ tmp} = m(I, J);
    if (equal(tmp, 0)) return false;
    multiply_r(I, inverse(tmp));
    for (int i = 0; i < row; i++)</pre>
        if (i != I) sum_r(i, I, mult(-1, m(i, J)));
```

```
multiply_r(I, tmp);
    return true;
}
T determinant(){
    matrix<T> m = (*this);
    for (int i = 0; i < row; i++)
        if (!m.gaussian(i, i)) return 0;

T ans = 1;
    for (int i = 0; i < row; i++)
        ans = mult(ans, m(i, i));
    return ans;
}
};</pre>
```

4 Estruturas

4.1 Sparse Table

```
// Resolve RMQ
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - 0(1)
namespace sparse {
    int m[MAX2][MAX], n;
    void build(int n2, int* v) {
        n = n2:
        for (int i = 0; i < n; i++) m[0][i] = v[i];
        for (int j = 1; (1<<j) <= n; j++) for (int i = 0;
           i+(1<<j) <= n; i++)
            m[j][i] = min(m[j-1][i], m[j-1][i+(1<<(j-1))]);
    }
    int query(int a, int b) {
        int j = __builtin_clz(0) - __builtin_clz(b-a+1) - 1;
        return min(m[j][a], m[j][b-(1<<j)+1]);</pre>
    }
```

4.2 Treap

```
// Usar static treap<int> t;
// Para usar, chamar o Rafael
// Complexidades:
// insert - O(log(n))
// erase - O(log(n))
// query - O(log(n))
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        int p;
        int 1, r;
        T v;
        int sz;
        T sum;
        bool rev;
        node(){}
        node(T v):p(rng()), l(-1), r(-1), v(v), sz(1),
           rev(false){}
    } t[MAX];
    int it;
    //vector < node > t;
    treap(){ it = 0; }
    int size(int i){
        if (i == -1) return 0;
        return t[i].sz;
    }
    void fix(int i){
        if (i == -1) return;
        if (t[i].rev) {
            int &1 = t[i].1;
            int &r = t[i].r;
            swap(1, r);
            t[i].sz = 1 + size(1) + size(r);
            if (1 != -1)
                t[1].rev ^= true;
```

```
if (r != -1)
            t[r].rev ^= true;
        t[i].rev = false;
    }
}
void update(int i){
    if (i == -1) return;
    t[i].sum = t[i].v;
    int l = t[i].1;
    int r = t[i].r;
    t[i].sz = 1 + size(1) + size(r);
}
void split_value(int i, int k, int &1, int &r){ //values
   must be ordered
    if (i == -1){
        1 = -1; r = -1;
        return;
    }
    fix(i);
    if (t[i].v < k){
        split_value(t[i].r, k, l, r);
        t[i].r = 1;
        1 = i;
    }
    else{
        split_value(t[i].1, k, 1, r);
        t[i].l = r;
        r = i;
    }
    update(i);
}
//implicit
void split(int i, int k, int &l, int &r, int sz = 0){
   //key
    if (i == -1){
        1 = -1; r = -1;
        return;
    }
    fix(i);
    int inc = size(t[i].1); //quantidade elementos menor
```

```
aue k
    if (sz+inc < k){
        split(t[i].r, k, l, r, sz+inc+1);
        t[i].r = 1;
       1 = i;
    }
    else{
        split(t[i].1, k, 1, r, sz);
       t[i].l = r;
       r = i;
    }
    update(i);
}
int merge(int 1, int r){ //priority
    if (1 == -1) return r;
    if (r == -1) return 1;
    fix(1); fix(r);
    if (t[1].p > t[r].p){
        t[1].r = merge(t[1].r, r);
        update(1);
       return 1;
   }
    else{
       t[r].1 = merge(1, t[r].1);
        update(r);
        return r;
    }
}
void insert(int &root, T v, int pos){
    int m = it++;
    t[m] = node(v);
    if (root == -1){
        root = m;
        return;
    }
    int 1, r;
    split(root, pos, 1, r);
   l = merge(l, m);
    1 = merge(1, r);
    root = 1;
}
```

```
T query(int &root, int M){
        int 1, m, r;
        split(root, M+1, m, r);
        split(m, M, 1, m);
        T ans = t[m].v;
        l = merge(l, m);
        l = merge(l, r);
        root = 1;
        return ans;
    }
    void reverse(int &root, int L, int R){
        int 1, m, r;
        split(root, R+1, m, r);
        split(m, L, 1, m);
        t[m].rev ^= 1;
        1 = merge(1, m);
        l = merge(l, r);
        root = 1;
    }
    void print(int i, int &size){
        if (i == -1) return;
        print(t[i].1, size);
        cout << "#" << size << ": " << t[i].v << endl;</pre>
        size++;
        print(t[i].r, size);
    }
};
4.3 SQRT-decomposition
// Resolve RMQ
// O-indexed
// MAX2 = sqrt(MAX)
//
// O bloco da posicao x eh
// sempre x/q
// Complexidades:
// build - O(n)
// query - 0(sqrt(n))
```

```
int n, q;
int v[MAX];
int bl[MAX2];
void build() {
    q = (int) sqrt(n);
     // computa cada bloco
    for (int i = 0; i <= q; i++) {</pre>
        bl[i] = INF;
        for (int j = 0; j < q and q * i + j < n; j++)
            bl[i] = min(bl[i], v[q * i + j]);
    }
}
int query(int a, int b) {
    int ret = INF;
    // linear no bloco de a
    for (; a <= b and a % q; a++) ret = min(ret, v[a]);</pre>
    // bloco por bloco
    for (; a + q <= b; a += q) ret = min(ret, bl[a / q]);</pre>
    // linear no bloco de b
    for (; a <= b; a++) ret = min(ret, v[a]);</pre>
    return ret;
}
4.4 BIT 2D
// BIT de soma 1-based
// Para mudar o valor da posicao (x, y) para k,
// faca: poe(x, y, k - sum(x, y, x, y))
// Complexidades:
// poe - O(log^2(n))
// query - O(log^2(n))
int n;
```

```
int bit[MAX][MAX];
void poe(int x, int y, int k) {
   for (int y2 = y; x <= n; x += x & -x)
        for (y = y2; y \le n; y += y & -y)
            bit[x][y] += k;
}
int sum(int x, int y) {
    int ret = 0;
    for (int y2 = y; x; x -= x & -x)
        for (y = y2; y; y -= y & -y)
            ret += bit[x][y];
    return ret;
}
int query(int x, int y, int z, int w) {
    return sum(z, w) - sum(x-1, w)
        - sum(z, y-1) + sum(x-1, y-1);
}
4.5 MergeSort Tree
// query(a, b, val) retorna numero de
// elementos em [a, b] <= val</pre>
// Usa O(n log(n)) de memoria
//
// Complexidades:
// build - O(n log(n))
// \text{ query - O(log^2(n))}
#define ALL(x) x.begin(),x.end()
int v[MAX], n;
vector < vector < int > > tree(4*MAX);
void build(int p, int l, int r) {
   if (1 == r) return tree[p].push_back(v[1]);
    int m = (1+r)/2;
   build(2*p, 1, m), build(2*p+1, m+1, r);
    merge(ALL(tree[2*p]), ALL(tree[2*p+1]),
```

```
back_inserter(tree[p]));
}
int query(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a) return 0; // to fora</pre>
    if (a \le 1 \text{ and } r \le b) // \text{ to totalmente dentro}
        return lower_bound(ALL(tree[p]), val+1) -
            tree[p].begin();
    int m = (1+r)/2;
    return query(a, b, val, 2*p, 1, m) + query(a, b, val,
       2*p+1, m+1, r);
}
4.6 SegTree
// Recursiva com Lazy Propagation
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
//
// Complexidades:
// build - O(n)
// \text{ query - O(log(n))}
// update - O(log(n))
namespace seg {
    11 seg[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    void prop(int p, int l, int r) {
        if (!lazy[p]) return;
```

```
int m = (1+r)/2:
        seg[2*p] += lazy[p]*(m-l+1);
        seg[2*p+1] += lazy[p]*(r-(m+1)+1);
        lazy[2*p] += lazy[p], lazy[2*p+1] += lazy[p];
        lazy[p] = 0;
    }
    11 query(int a, int b, int p=1, int l=0, int r=n-1) {
        if (b < 1 or r < a) return 0;
        if (a <= l and r <= b) return seg[p];</pre>
        prop(p, 1, r);
        int m = (1+r)/2;
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1, m)
           m+1. r):
    }
    ll update(int a, int b, int x, int p=1, int l=0, int
        if (b < l or r < a) return seg[p];</pre>
        if (a \le 1 \text{ and } r \le b)
            seg[p] += (11)x*(r-1+1);
            lazy[p] += x;
            return seg[p];
        }
        prop(p, 1, r);
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
    }
};
4.7 SegTree Esparca
// Query: soma do range [a, b]
// Update: flipa os valores de [a, b]
//
// Complexidades:
// build - O(n)
// query - O(log^2(n))
// update - 0(log^2(n))
typedef long long 11;
namespace seg {
```

```
unordered_map<11, int> t, laz;
void build() { t.clear(), lazy.clear(); }
void prop(ll p, int l, int r) {
    if (!lazv[p]) return;
    t[p] = r-1+1-t[p];
    if (1 != r) lazy[2*p]^=lazy[p], lazy[2*p+1]^=lazy[p];
    lazv[p] = 0;
}
int query(int a, int b, ll p=1, int l=0, int r=N-1) {
    prop(p, 1, r);
    if (b < 1 or r < a) return 0;</pre>
    if (a <= l and r <= b) return t[p];</pre>
    int m = 1+r >> 1;
    return query(a, b, 2*p, 1, m)+query(a, b, 2*p+1,
       m+1, r);
}
int update(int a, int b, ll p=1, int l=0, int r=N-1) {
    prop(p, 1, r);
    if (b < 1 or r < a) return t[p];</pre>
    if (a \le 1 \text{ and } r \le b) \{
        lazv[p] ^= 1;
        prop(p, 1, r);
        return t[p];
    }
    int m = 1+r >> 1;
    return t[p] = update(a, b, 2*p, 1, m) + update(a, b, a)
        2*p+1, m+1, r);
}
```

4.8 SegTree Iterativa com Lazy Propagation

};

```
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Para mudar, mudar as funcoes junta, poe e query
// LOG = ceil(log2(MAX))
//
```

```
// Complexidades:
// build - O(n)
// query - 0(log(n))
// update - 0(log(n))
namespace seg {
    11 \text{ seg}[2*MAX], lazy[2*MAX];
    ll junta(ll a, ll b) {
        return a+b;
    }
    // soma x na posicao p de tamanho tam
    void poe(int p, ll x, int tam, bool prop=1) {
        seg[p] += x*tam;
        if (prop and p < n) lazy[p] += x;</pre>
    }
    // atualiza todos os pais da folha p
    void sobe(int p) {
        for (int tam = 2; p /= 2; tam *= 2) {
            seg[p] = junta(seg[2*p], seg[2*p+1]);
            poe(p, lazy[p], tam, 0);
        }
    }
    // propaga o caminho da raiz ate a folha p
    void prop(int p) {
        int tam = 1 << (LOG-1);</pre>
        for (int s = LOG; s; s--, tam /= 2) {
            int i = p \gg s;
            if (lazy[i]) {
                poe(2*i, lazy[i], tam);
                poe(2*i+1, lazy[i], tam);
                lazy[i] = 0;
            }
        }
    }
    void build(int n2, int* v) {
        n = n2;
```

```
for (int i = 0; i < n; i++) seg[n+i] = v[i];
        for (int i = n-1; i; i--) seg[i] = junta(seg[2*i],
            seg[2*i+1]);
        for (int i = 0; i < 2*n; i++) lazy[i] = 0;</pre>
    }
    ll query(int a, int b) {
        11 \text{ ret} = 0;
        for (prop(a+=n), prop(b+=n); a \le b; ++a/=2, --b/=2)
           {
            if (a%2 == 1) ret = junta(ret, seg[a]);
            if (b%2 == 0) ret = junta(ret, seg[b]);
        }
        return ret;
    }
    void update(int a, int b, int x) {
        int a2 = a += n, b2 = b += n, tam = 1;
        for (; a <= b; ++a/=2, --b/=2, tam *= 2) {
            if (a\%2 == 1) poe(a, x, tam);
            if (b\%2 == 0) poe(b, x, tam);
        sobe(a2), sobe(b2);
    }
};
     SegTree Beats
// \text{ query}(a, b) - \{\{\min(v[a..b]), \max(v[a..b])\}, \sup(v[a..b])\}
// updatemin(a, b, x) faz com que v[i] \leftarrow min(v[i], x),
// para i em [a, b]
// updatemax faz o mesmo com max, e updatesum soma x
// em todo mundo do intervalo [a, b]
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log^2 (n)) amortizado
// (se nao usar updatesum, fica log(n) amortizado)
#define f first
```

#define s second

```
typedef long long 11;
const 11 LINF = 0x3f3f3f3f3f3f3f3f11;
namespace beats {
    struct node {
        int tam;
        ll sum, lazy; // lazy pra soma
        ll mi1, mi2, mi; // mi = #mi1
        ll ma1, ma2, ma; // ma = #ma1
        node(11 x = 0) {
            sum = mi1 = ma1 = x;
            mi2 = LINF, ma2 = -LINF;
            mi = ma = tam = 1;
            lazy = 0;
        node(const node& 1, const node& r) {
            sum = 1.sum + r.sum, tam = 1.tam + r.tam;
            lazy = 0;
            if (1.mi1 > r.mi1) {
                mi1 = r.mi1, mi = r.mi;
                mi2 = min(1.mi1, r.mi2);
            } else if (l.mi1 < r.mi1) {</pre>
                mi1 = l.mi1, mi = l.mi;
                mi2 = min(r.mi1, l.mi2);
            } else {
                mi1 = 1.mi1, mi = 1.mi+r.mi;
                mi2 = min(1.mi2, r.mi2);
            if (1.ma1 < r.ma1) {
                ma1 = r.ma1, ma = r.ma;
                ma2 = max(1.ma1, r.ma2);
            } else if (1.ma1 > r.ma1) {
                ma1 = l.ma1, ma = l.ma;
                ma2 = max(r.ma1, l.ma2);
            } else {
                ma1 = 1.ma1, ma = 1.ma+r.ma;
                ma2 = max(1.ma2, r.ma2);
            }
        void setmin(ll x) {
            if (x >= ma1) return;
```

```
sum += (x - ma1)*ma:
        if (mi1 == ma1) mi1 = x;
        if (mi2 == ma1) mi2 = x;
        ma1 = x;
    }
    void setmax(ll x) {
        if (x <= mi1) return;</pre>
        sum += (x - mi1)*mi;
        if (ma1 == mi1) ma1 = x;
       if (ma2 == mi1) ma2 = x;
        mi1 = x:
    }
    void setsum(ll x) {
        mi1 += x, mi2 += x, ma1 += x, ma2 += x;
        sum += x*tam:
        lazy += x;
    }
};
node seg[4*MAX];
int n, *v;
node build(int p=1, int l=0, int r=n-1) {
    if (1 == r) return seg[p] = {v[1]};
    int m = (1+r)/2;
    return seg[p] = \{build(2*p, 1, m), build(2*p+1, m+1,
       r)};
void build(int n2, int* v2) {
    n = n2, v = v2;
    build();
void prop(int p, int l, int r) {
    if (1 == r) return:
    for (int k = 0; k < 2; k++) {
        if (seg[p].lazy) seg[2*p+k].setsum(seg[p].lazy);
        seg[2*p+k].setmin(seg[p].ma1);
        seg[2*p+k].setmax(seg[p].mi1);
    seg[p].lazv = 0;
}
pair < pair < 11, 11>, 11> query (int a, int b, int p=1, int
```

```
l=0. int r=n-1) {
    if (b < l or r < a) return \{\{INF, -INF\}, 0\};
    if (a <= l and r <= b) return {{seg[p].mi1,</pre>
        seg[p].ma1}, seg[p].sum};
    prop(p, 1, r);
    int m = (1+r)/2;
    auto L = query(a, b, 2*p, 1, m), R = query(a, b,
        2*p+1, m+1, r);
    return {{min(L.f.f, R.f.f), max(L.f.s, R.f.s)},
       L.s+R.s};
}
node updatemin(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p].ma1 <= x) return seg[p];</pre>
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].ma2 < x) {
        seg[p].setmin(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemin(a, b, x, 2*p, 1, m),
                     updatemin(a, b, x, 2*p+1, m+1, r)};
}
node updatemax(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p].mi1 >= x) return seg[p];
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].mi2 > x) {
        seg[p].setmax(x);
        return seg[p];
    }
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemax(a, b, x, 2*p, 1, m),
                     updatemax(a, b, x, 2*p+1, m+1, r)};
}
node updatesum(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < 1 or r < a) return seg[p];</pre>
    if (a <= 1 and r <= b) {</pre>
        seg[p].setsum(x);
        return seg[p];
    }
```

4.10 SegTree Iterativa

```
// Consultas 0-based
// Valores iniciais devem estar em (seg[n], ..., seg[2*n-1])
// Query: soma do range [a, b]
// Update: muda o valor da posicao p para x
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
int seg[2 * MAX];
int n;
void build() {
    for (int i = n - 1; i; i--) seg[i] = seg[2*i] +
       seg[2*i+1];
}
int query(int a, int b) {
    int ret = 0:
    for (a += n, b += n; a <= b; ++a /= 2, --b /= 2) {
        if (a % 2 == 1) ret += seg[a];
        if (b \% 2 == 0) ret += seg[b];
    return ret;
}
void update(int p, int x) {
    seg[p += n] = x;
    while (p /= 2) seg[p] = seg[2*p] + seg[2*p+1];
}
```

4.11 SegTree Persistente

```
// SegTree de soma, update de somar numa posicao
//
// query(a, b, t) retorna a query de [a, b] depois de
// t updates
// update(a, x, t) faz um update v[a]+=x a partir de
// como era depois de t updates
// build - O(n)
// query - O(log(n))
// update - O(log(n))
const int MAX = 3e4+10, UPD = 2e5+10, LOG = 20;
const int MAXS = 4*MAX+UPD*LOG;
namespace perseg {
    11 seg[MAXS], lazy[MAXS];
    int T[UPD], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    11 build(int p, int l, int r) {
        if (1 == r) return seg[p] = v[1];
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        T[0] = cnt++;
        build(0, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        if (b < 1 or r < a) return 0;
        if (a <= l and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    11 query(int a, int b, int tt) {
        return query(a, b, T[tt], 0, n-1);
```

4.12 SegTree 2D Iterativa

```
// Consultas 0-based
// Um valor inicial em (x, y) deve ser colocado em
   seg[x+n][y+n]
// Query: soma do retangulo ((x1, y1), (x2, y2))
// Update: muda o valor da posicao (x, y) para val
// Nao pergunte como que essa coisa funciona
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
//
// Se for de min/max, pode tirar os if's da 'query', e fazer
// sempre as 4 operacoes. Fica mais rapido
//
// Complexidades:
// build - O(n^2)
// \text{ query - } O(\log^2(n))
// update - O(log^2(n))
int seg[2*MAX][2*MAX], n;
void build() {
    for (int x = 2*n; x; x--) for (int y = 2*n; y; y--) {
        if (x < n) seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
```

```
if (y < n) seg[x][y] = seg[x][2*y] + seg[x][2*y+1];
     }
 }
 int query(int x1, int y1, int x2, int y2) {
     int ret = 0, y3 = y1 + n, y4 = y2 + n;
     for (x1 += n, x2 += n; x1 <= x2; ++x1 /= 2, --x2 /= 2)
          for (y1 = y3, y2 = y4; y1 \le y2; ++y1 /= 2, --y2 /=
             2) {
              if (x1\%2 == 1 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x1][y1];
              if (x1\%2 == 1 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x1][y2];
              if (x2\%2 == 0 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x2][y1];
              if (x2\%2 == 0 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x2][y2];
         }
     return ret;
 }
 void update(int x, int y, int val) {
     int y2 = y += n;
     for (x += n; x; x /= 2, y = y2) {
          if (x \ge n) seg[x][y] = val;
          else seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
          while (y /= 2) seg[x][y] = seg[x][2*y] +
             seg[x][2*y+1];
     }
 }
 4.13 BIT
 // BIT de soma 1-based, v 0-based
// Para mudar o valor da posicao p para x,
 // faca: poe(x - query(p, p), p)
 // l_bound(x) retorna o menor p tal que
 // query(1, p+1) > x (0 based!)
 //
 // Complexidades:
 // build - O(n)
 // poe - O(log(n))
 // query - O(log(n))
// l_bound - O(log(n))
```

```
int n;
int bit[MAX];
int v[MAX];
void build() {
    bit[0] = 0;
    for (int i = 1; i <= n; i++) bit[i] = v[i - 1];</pre>
    for (int i = 1; i <= n; i++) {</pre>
        int j = i + (i & -i);
        if (j <= n) bit[j] += bit[i];</pre>
    }
}
// soma x na posicao p
void poe(int x, int p) {
    for (; p <= n; p += p & -p) bit[p] += x;</pre>
}
// soma [1, p]
int pref(int p) {
    int ret = 0;
    for (; p; p -= p & -p) ret += bit[p];
    return ret;
}
// soma [a, b]
int query(int a, int b) {
    return pref(b) - pref(a - 1);
}
int l_bound(ll x) {
    int p = 0;
    for (int i = MAX2; i+1; i--) if (p + (1 << i) <= n
        and bit [p + (1 << i)] <= x) x -= bit <math>[p += (1 << i)];
    return p;
}
4.14 Order Statistic Set
```

// Funciona do C++11 pra cima

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
// para declarar:
ord_set < int > s;
// coisas do set normal funcionam:
for (auto i : s) cout << i << endl;</pre>
cout << s.size() << endl;</pre>
// k-esimo maior elemento O(\log|s|):
// k=0: menor elemento
cout << *s.find_by_order(k) << endl;</pre>
// quantos sao menores do que k O(log|s|):
cout << s.order_of_key(k) << endl;</pre>
// Para fazer um multiset, tem que
// usar ord_set<pair<int, int> > com o
// segundo parametro sendo algo para diferenciar
// os ementos iguais.
// s.order_of_key({k, -INF}) vai retornar o
// numero de elementos < k
4.15 Min queue
// Tudo O(1) amortizado
template < class T> struct minstack {
    stack<pair<T, T> > s;
    void push(T x) {
        if (!s.size()) s.push({x, x});
        else s.push({x, std::min(s.top().second, x)});
    T top() { return s.top().first; }
    T pop() {
        T ans = s.top().first;
        s.pop();
        return ans;
```

```
T size() { return s.size(); }
    T min() { return s.top().second; }
};
template < class T> struct minqueue {
    minstack <T> s1, s2;
    void push(T x) { s1.push(x); }
    void move() {
        if (s2.size()) return;
        while (s1.size()) {
            T x = s1.pop();
            s2.push(x);
        }
    T front() { return move(), s2.top(); }
    T pop() { return move(), s2.pop(); }
    T size() { return s1.size()+s2.size(); }
    T min() {
        if (!s1.size()) return s2.min();
        else if (!s2.size()) return s1.min();
        return std::min(s1.min(), s2.min());
    }
};
```

4.16 DSU Persistente

```
// Complexidades:
// build - O(n)
// find - O(log(n))
// une - O(log(n))

int n, p[MAX], sz[MAX], ti[MAX];

void build() {
   for (int i = 0; i < n; i++) {
      p[i] = i;
      sz[i] = 1;
      ti[i] = -INF;
   }
}</pre>
```

```
int find(int k, int t) {
    if (p[k] == k or ti[k] > t) return k;
   return find(p[k], t);
}
void une(int a, int b, int t) {
    a = find(a); b = find(b);
   if (a == b) return;
    if (sz[a] > sz[b]) swap(a, b);
    sz[b] += sz[a];
    p[a] = b;
    ti[a] = t;
}
4.17 SQRT Tree
// RMQ em O(log log n) com O(n log log n) pra buildar
// Funciona com qualquer operacao associativa
// Tao rapido quanto a sparse table, mas usa menos memoria
// (log log (1e9) < 5, entao a query eh praticamente O(1))
//
// build - O(n log log n)
// query - O(log log n)
namespace sqrtTree {
    int n, *v;
    int pref[4][MAX], sulf[4][MAX], getl[4][MAX],
       entre [4] [MAX], sz [4];
    int op(int a, int b) { return min(a, b); }
   inline int getblk(int p, int i) { return
       (i-getl[p][i])/sz[p]; }
    void build(int p, int l, int r) {
        if (1+1 >= r) return;
        for (int i = 1; i <= r; i++) getl[p][i] = 1;</pre>
        for (int L = 1; L <= r; L += sz[p]) {</pre>
            int R = min(L+sz[p]-1, r);
            pref[p][L] = v[L], sulf[p][R] = v[R];
            for (int i = L+1; i <= R; i++) pref[p][i] =</pre>
               op(pref[p][i-1], v[i]);
```

```
for (int i = R-1; i >= L; i--) sulf[p][i] =
               op(v[i], sulf[p][i+1]);
            build(p+1, L, R);
        for (int i = 0; i <= sz[p]; i++) {</pre>
            int at = entre[p][l+i*sz[p]+i] =
               sulf[p][l+i*sz[p]];
            for (int j = i+1; j <= sz[p]; j++)</pre>
               entre[p][1+i*sz[p]+j] = at =
                    op(at, sulf[p][1+j*sz[p]]);
        }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        for (int p = 0; p < 4; p++) sz[p] = n2 = sqrt(n2);
        build(0, 0, n-1);
    }
    int query(int 1, int r) {
        if (1+1 >= r) return 1 == r ? v[1] : op(v[1], v[r]);
        int p = 0;
        while (getblk(p, 1) == getblk(p, r)) p++;
        int ans = sulf[p][l], a = getblk(p, l)+1, b =
           getblk(p, r)-1;
        if (a \le b) ans = op(ans,
           entre[p][getl[p][1]+a*sz[p]+b]);
        return op(ans, pref[p][r]);
}
      Wavelet Tree
```

4.18

```
// Usa O(sigma + n log(sigma)) de memoria,
// onde sigma = MAXN - MINN
// Depois do build, o v fica ordenado
// count(i, j, x, y) retorna o numero de elementos de
// v[i, j) que pertencem a [x, y]
// kth(i, j, k) retorna o elemento que estaria
// na poscicao k-1 de v[i, j), se ele fosse ordenado
// sum(i, j, x, y) retorna a soma dos elementos de
// v[i, j) que pertencem a [x, y]
// sumk(i, j, k) retorna a soma dos k-esimos menores
// elementos de v[i, j) (sum(i, j, 1) retorna o menor)
```

```
//
// Complexidades:
// build - O(n log(sigma))
// count - O(log(sigma))
// kth - O(log(sigma))
// sum - O(log(sigma))
// sumk - O(log(sigma))
int n, v[MAX];
vector < vector < int > > esq(4*(MAXN-MINN)), pref(4*(MAXN-MINN));
void build(int b = 0, int e = n, int p = 1, int l = MINN,
   int r = MAXN) {
    int m = (1+r)/2; esq[p].push_back(0);
       pref[p].push_back(0);
    for (int i = b; i < e; i++) {
        esq[p].push_back(esq[p].back()+(v[i]<=m));</pre>
        pref[p].push_back(pref[p].back()+v[i]);
    }
    if (1 == r) return;
    int m2 = stable_partition(v+b, v+e, [=](int i){return i
       <= m; \}) - v;
    build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
}
int count(int i, int j, int x, int y, int p = 1, int l =
   MINN, int r = MAXN) {
    if (y < 1 or r < x) return 0;
    if (x <= l and r <= y) return j-i;</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei, j-ej,
       x, y, 2*p+1, m+1, r);
}
int kth(int i, int j, int k, int p=1, int l = MINN, int r =
   MAXN) {
    if (1 == r) return 1;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return kth(ei, ej, k, 2*p, 1, m);</pre>
    return kth(i-ei, j-ej, k-(ej-ei), 2*p+1, m+1, r);
}
```

```
int sum(int i, int j, int x, int y, int p = 1, int l = MINN,
   int r = MAXN) {
   if (y < 1 or r < x) return 0;</pre>
    if (x <= 1 and r <= y) return pref[p][j]-pref[p][i];</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return sum(ei, ej, x, y, 2*p, 1, m) + sum(i-ei, j-ej, x,
       y, 2*p+1, m+1, r);
}
int sumk(int i, int j, int k, int p = 1, int l = MINN, int r
   = MAXN)
    if (1 == r) return 1*k;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return sumk(ei, ej, k, 2*p, 1, m);</pre>
    return pref[2*p][ej]-pref[2*p][ei]+sumk(i-ei, j-ej,
       k-(ej-ei), 2*p+1, m+1, r);
}
4.19 Trie
// N deve ser maior ou igual ao numero de nos da trie
// fim indica se alguma palavra acaba nesse no
//
// Complexidade:
// Inserir e conferir string S -> O(|S|)
// usar static trie T
// T.insert(s) para inserir
// T.find(s) para ver se ta
// T.prefix(s) printa as strings
// que tem s como prefixo
struct trie{
    map < char , int > t[MAX+5];
    int p;
    trie(){
        p = 1;
    void insert(string s){
        s += '$';
        int i = 0;
        for (char c : s){
```

```
auto it = t[i].find(c);
        if (it == t[i].end())
            i = t[i][c] = p++;
        else
            i = it->second;
   }
}
bool find(string s){
    s += '$':
    int i = 0;
    for (char c : s){
        auto it = t[i].find(c);
        if (it == t[i].end()) return false;
        i = it->second;
    }
    return true;
}
void prefix(string &l, int i){
    if (t[i].find('$') != t[i].end())
        cout << " " << 1 << endl;
    for (auto p : t[i]){
        l += p.first;
        prefix(l, p.second, k);
        1.pop_back();
    }
}
void prefix(string s){
    int i = 0;
    for (char c : s){
        auto it = t[i].find(c);
        if (it == t[i].end()) return;
        i = it->second;
    }
    int k = 0;
    prefix(s, i, k);
}
```

};

5 Papa

5.1 BIT Persistente

```
#include <bits/stdc++.h>
using namespace std;
typedef long long int 11;
const 11 LINF = 0x3f3f3f3f3f3f3f3f11;
#define MAXN 100010
vector < pair < int , ll > > FT [MAXN];
int n;
void clear()
    for(int i=1;i<=n;i++)</pre>
        FT[i].clear();
        FT[i].push_back({-1,0});
}
void add(int i,int v,int time)
    for(;i<=n;i+=i&(-i))</pre>
        11 last=FT[i].back().second;
        FT[i].push_back({time,last+v});
    }
}
ll get(int i,int time)
{
    ll ret=0;
    for(;i>0;i-=i&(-i))
        int pos = upper_bound(FT[i].begin(),FT[i].end(),
                     make_pair(time,LINF))-FT[i].begin()-1;
        ret+=FT[i][pos].second;
    return ret;
}
```

```
11 getRange(int a,int b,int time)
    return get(b,time)-get(a-1,time);
}
     Baby step Giant step
// Resolve Logaritmo Discreto a^x = b mod m, m primo em
   0(sqrt(n)*hash(n))
// Meet In The Middle, decompondo x = i * ceil(sqrt(n)) - j,
   i,j<=ceil(sqrt(n))
int babyStep(int a,int b,int m)
    unordered_map < int , int > mapp;
    int sq=sqrt(m)+1;
    11 asq=1;
    for(int i=0; i<sq; i++)</pre>
        asq=(asq*a)%m;
    11 curr=asq;
    for(int i=1; i<=sq; i++)</pre>
        if(!mapp.count(curr))
             mapp[curr]=i;
        curr=(curr*asq)%m;
    }
    int ret=INF;
    curr=b;
    for(int j=0; j<=sq; j++)</pre>
        if (mapp.count(curr))
             ret=min(ret,(int)(mapp[curr]*sq-j));
        curr = (curr * a) %m;
    if(ret<INF) return ret;</pre>
    return -1;
}
int main()
    int a,b,m;
    while(cin>>a>>b>>m,a or b or m)
```

```
int x=babyStep(a,m,b);
         if (x!=-1)
             cout << x << endl;</pre>
         else
             cout << "No Solution" << endl;</pre>
    return 0;
}
5.3 LIS Rec. Resp.
#include < bits / stdc++.h>
using namespace std;
#define sc(a) scanf("%d", &a)
typedef long long int 11;
const int INF = 0x3f3f3f3f;
#define MAXN 100100
int aux[MAXN], endLis[MAXN];
//usar upper_bound se puder >=
vector < int > LisRec(vector < int > v) {
    int n=v.size();
    int lis=0;
    for (int i = 0; i < n; i++){
        int it = lower_bound(aux, aux+lis, v[i]) - aux;
        endLis[i] = it+1;
        lis = max(lis, it+1);
        aux[it] = v[i];
    vector<int> resp;
    int prev=INF;
    for(int i=n-1;i>=0;i--){
        if (endLis[i] == lis && v[i] <= prev) {</pre>
             lis--;
             prev=v[i];
             resp.push_back(i);
        }
    reverse(resp.begin(),resp.end());
    return resp;
```

```
int main()
    int n;
    sc(n);
    vector < int > v(n);
    for(int i=0;i<n;i++)</pre>
        sc(v[i]);
    cout << LisRec(v).size() << endl;</pre>
    return 0;
}
5.4 Aho Corasick
const int N=100010;
const int M=26;
//N= tamanho da trie, M tamanho do alfabeto
int to[N][M], Link[N], fim[N];
int idx = 1;
void add_str(string &s)
    int v = 0;
    for (int i = 0; i < s.size(); i++) {</pre>
        if (!to[v][s[i]]) to[v][s[i]] = idx++;
        v = to[v][s[i]];
    }
    fim[v] = 1;
}
void process()
    queue < int > fila;
    fila.push(0);
    while (!fila.empty()) {
        int cur = fila.front();
        fila.pop();
        int l = Link[cur];
        fim[cur] |= fim[1];
        for (int i = 0; i < M; i++) {</pre>
             if (to[cur][i]) {
                 if (cur != 0) {
                     Link[to[cur][i]] = to[1][i];
```

```
}
                 else
                     Link[to[cur][i]] = 0;
                 fila.push(to[cur][i]);
            }
             else {
                 to[cur][i] = to[1][i];
        }
}
int resolve(string &s)
{
    int v = 0, r = 0;
    for (int i = 0; i < s.size(); i++) {</pre>
        v = to[v][s[i]];
        if (fim[v]) r++, v = 0;
    return r;
}
```

6 Problemas

6.1 Inversion Count

```
// O(n log(n))
int n;
int v[MAX];

// bit de soma
void poe(int p);
int query(int p);

// converte valores do array pra
// numeros de 1 a n
void conv() {
   vector<int> a;
   for (int i = 0; i < n; i++) a.push_back(v[i]);</pre>
```

```
sort(a.begin(), a.end());
    for (int i = 0; i < n; i++)</pre>
        v[i] = 1 + (lower_bound(a.begin(), a.end(), v[i]) -
           a.begin());
}
long long inv() {
    conv();
    build();
    long long ret = 0;
    for (int i = n - 1; i \ge 0; i - -) {
        ret += query(v[i] - 1);
        poe(v[i]);
    }
    return ret;
}
    Merge Sort Rafael
// Melhor do Brasil, segundo o autor
//
// O(n log(n))
long long merge_sort(int 1, int r, vector<int> &t){
    if (1 >= r) return 0;
    int m = (1+r)/2;
   auto ans = merge_sort(1, m, t) + merge_sort(m+1, r, t);
    static vector < int > aux; if (aux.size() != t.size())
       aux.resize(t.size());
    for (int i = 1; i <= r; i++) aux[i] = t[i];
   int i_l = 1, i_r = m+1, i = 1;
    auto move_1 = [&](){
        t[i++] = aux[i_1++];
    auto move_r = [\&](){
        t[i++] = aux[i_r++];
    };
```

```
while (i \le r){
        if (i_1 > m) move_r();
        else if (i_r > r) move_l();
        elsef
            if (aux[i_1] <= aux[i_r]) move_1();</pre>
            else{
                 move_r();
                 ans += m - i_1 + 1;
            }
        }
    return ans;
}
//inversions to turn r into l
template < typename T > 11 inv_count(vector < T > &1, vector < T >
   &r){
    int n = 1.size();
    map < T , int > occ;
    map<pair<T, int>, int> rk;
    for (int i = 0; i < n; i++)</pre>
        rk[make_pair(l[i], occ[l[i]]++)] = i;
    occ.clear();
    vector < int > v(n);
    for (int i = 0; i < n; i++)</pre>
        v[i] = rk[make_pair(r[i], occ[r[i]]++)];
    return merge_sort(0, n-1, v);
}
6.3 RMQ com Divide and Conquer
// Responde todas as queries em
// O(n log(n))
typedef pair<pair<int, int>, int> iii;
#define f first
#define s second
int n, q, v[MAX];
iii qu[MAX];
```

int ans[MAX], pref[MAX], sulf[MAX];

```
void solve(int l=0, int r=n-1, int ql=0, int qr=q-1) {
    if (1 > r or q1 > qr) return;
    int m = (1+r)/2;
    int qL = partition(qu+ql, qu+qr+1, [=](iii x){return
       x.f.s < m; \}) - qu;
    int qR = partition(qu+qL, qu+qr+1, [=](iii x){return
       x.f.f <=m;}) - qu;
    pref[m] = sulf[m] = v[m];
    for (int i = m-1; i >= 1; i--) pref[i] = min(v[i],
       pref[i+1]);
    for (int i = m+1; i <= r; i++) sulf[i] = min(v[i],</pre>
       sulf[i-1]);
    for (int i = qL; i < qR; i++)</pre>
        ans[qu[i].s] = min(pref[qu[i].f.f], sulf[qu[i].f.s]);
    solve(1, m-1, ql, qL-1), solve(m+1, r, qR, qr);
}
6.4 SOS DP
// O(n 2^n)
//iterative version
for(int mask = 0; mask < (1 << N); ++mask){
    dp[mask][-1] = A[mask]; //handle base case separately
       (leaf states)
    for(int i = 0;i < N; ++i){</pre>
        if (mask & (1<<i))</pre>
            dp[mask][i] = dp[mask][i-1] +
                dp[mask^(1<<i)][i-1];</pre>
        else dp[mask][i] = dp[mask][i-1];
    }
    F[mask] = dp[mask][N-1];
}
//memory optimized, super easy to code.
for(int i = 0; i<(1<<N); ++i) F[i] = A[i];</pre>
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1<<N);
   ++mask){
```

```
if (mask & (1<<i))</pre>
        F[mask] += F[mask^(1<<i)];
}
6.5 LIS2
// O(n log(n))
template < typename T > int lis(vector < T > &v){
    vector < T > ans;
    for (T t : v){
        auto it = upper_bound(ans.begin(), ans.end(), t);
        if (it == ans.end()) ans.push_back(t);
        else *it = t;
    return ans.size()
}
6.6 Convex Hull Trick (Rafael)
// linear
struct CHT {
    int it;
    vector<ll> a, b;
    CHT(): it(0){}
    ll eval(int i, ll x){
        return a[i]*x + b[i];
    bool useless(){
        int sz = a.size();
        int r = sz-1, m = sz-2, 1 = sz-3;
        return (b[1] - b[r])*(a[m] - a[1]) <
            (b[1] - b[m])*(a[r] - a[1]);
    }
    void add(ll A, ll B){
        a.push_back(A); b.push_back(B);
        while (!a.empty()){
```

if ((a.size() < 3) || !useless()) break;</pre>

a.erase(a.end() - 2);

b.erase(b.end() - 2);

```
}
    }
    ll get(ll x){
        it = min(it, int(a.size()) - 1);
        while (it+1 < a.size()){</pre>
            if (eval(it+1, x) > eval(it, x)) it++;
            else break;
        return eval(it, x);
   }
};
     Mininum Enclosing Circle Vasek
// O(n) com alta probabilidade
const long double EPS = 1e-12;
struct pt {
    long double x, y;
    pt() {}
    pt(long double x, long double y) : x(x), y(y) {}
    pt(const pt \& p) : x(p.x), y(p.y) \{ \}
    pt operator + (const pt& p) const { return pt(x+p.x,
       y+p.y); }
   pt operator - (const pt& p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (long double c) const { return pt(x*c, y*c
       ); }
    pt operator / (long double c) const { return pt(x/c, y/c
       ); }
};
long double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
long double dist2(pt p, pt q) { return dot(p-q, p-q); }
long double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
pt rotate90(pt p) { return pt(p.y, -p.x); }
pt interline(pt a, pt b, pt c, pt d) {
    b = b-a; d = c-d; c = c-a;
    return a+b*cross(c, d)/cross(b, d);
```

```
}
pt center(pt a, pt b, pt c) {
    b = (a+b)/2;
    c = (a+c)/2;
    return interline(b, b+rotate90(a-b), c, c+rotate90(a-c));
}
struct circle {
    pt cen;
    long double r;
    circle() {}
    circle(pt cen, long double r) : cen(cen), r(r) {}
};
bool inside(circle& c, pt& p) {
    return c.r*c.r+1e-9 > dist2(p, c.cen);
}
pt bestof3(pt a, pt b, pt c) {
    if (dot(b-a, c-a) < 1e-9) return (b+c)/2;
    if (dot(a-b, c-b) < 1e-9) return (a+c)/2;
    if (dot(a-c, b-c) < 1e-9) return (a+b)/2;
    return center(a, b, c);
}
circle minCirc(vector<pt> v) {
    int n = v.size();
    random_shuffle(v.begin(), v.end());
    pt p = pt(0, 0);
    circle ret = circle(p, 0);
    for (int i = 0; i < n; i++) if (!inside(ret, v[i])) {</pre>
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!inside(ret, v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, sqrt(dist2(v[i],
               v[i]))/2);
            for (int k = 0; k < j; k++) if (!inside(ret,
               v[k])) {
                p = bestof3(v[i], v[j], v[k]);
                ret = circle(p, sqrt(dist2(p, v[i])));
            }
        }
```

```
return ret;
6.8 Nim
// Calcula movimento otimo do jogo classico de Nim
// Assume que o estado atual eh perdedor
// Funcao move retorna um par com a pilha (0 indexed)
// e quanto deve ser tirado dela
// XOR deve estar armazenado em x
// Para mudar um valor, faca insere(novo_valor),
// atualize o XOR e mude o valor em v
// MAX2 = teto do log do maior elemento
// possivel nas pilhas
//
// O(log(n)) amortizado
int v[MAX], n, x;
stack<int> pi[MAX2];
void insere(int p) {
    for (int i = 0; i < MAX2; i++) if (v[p] & (1 << i))
       pi[i].push(p);
}
pair<int, int> move() {
    int bit = 0; while (x >> bit) bit++; bit--;
    // tira os caras invalidos
    while ((v[pi[bit].top()] & (1 << bit)) == 0)</pre>
       pi[bit].pop();
    int cara = pi[bit].top();
    int tirei = v[cara] - (x^v[cara]);
    v[cara] -= tirei;
    insere(cara);
```

return make_pair(cara, tirei);

```
// Acha o movimento otimo baseado
// em v apenas
//
// O(n)

pair<int, int> move() {
   int x = 0;
   for (int i = 0; i < n; i++) x ^= v[i];

   for (int i = 0; i < n; i++) if ((v[i]^x) < v[i])
        return make_pair(i, v[i] - (v[i]^x));
}</pre>
```

6.9 Distinct Range Query com Update

```
// build - O(n log^2(n))
// \text{ query - O(log^2(n))}
// update - 0(log^2(n))
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
int v[MAX], n, nxt[MAX], prv[MAX];
map<int, set<int> > ocor;
namespace seg {
    ord_set < ii > seg [4*MAX];
    void build(int p=1, int l=0, int r=n-1) {
        if (l == r) return (void)seg[p].insert({nxt[1], 1});
        int m = (1+r)/2;
        build(2*p, 1, m), build(2*p+1, m+1, r);
        for (ii i : seg[2*p]) seg[p].insert(i);
        for (ii i : seg[2*p+1]) seg[p].insert(i);
    int query(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
```

```
if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= 1 and r <= b) return
            seg[p].order_of_key({x, -INF});
        int m = (1+r)/2;
        return query(a, b, x, 2*p, 1, m)+query(a, b, x,
            2*p+1, m+1, r);
    void update(int a, int x, int p=1, int l=0, int r=n-1) {
        if (a < 1 or r < a) return;
        seg[p].erase({nxt[a], a});
        seg[p].insert({x, a});
        if (1 == r) return;
        int m = (1+r)/2;
        update(a, x, 2*p, 1, m), update(a, x, 2*p+1, m+1, r);
    }
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = INF;</pre>
    for (int i = 0; i < n; i++) prv[i] = -INF;</pre>
    vector<ii> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n; i++) {</pre>
        if (i and t[i].f == t[i-1].f) prv[t[i].s] = t[i-1].s;
        if (i+1 < n \text{ and } t[i].f == t[i+1].f) nxt[t[i].s] =
            t[i+1].s;
    }
    for (int i = 0; i < n; i++) ocor[v[i]].insert(i);</pre>
    seg::build();
}
void muda(int p, int x) {
    seg::update(p, x);
    nxt[p] = x;
}
int query(int a, int b) {
    return b-a+1 - seg::query(a, b, b+1);
}
```

```
void update(int p, int x) { // mudar valor na pos. p para x
    if (prv[p] > -INF) muda(prv[p], nxt[p]);
    if (nxt[p] < INF) prv[nxt[p]] = prv[p];</pre>
    ocor[v[p]].erase(p);
    if (!ocor[x].size()) {
        muda(p, INF);
        prv[p] = -INF;
    } else if (*ocor[x].rbegin() < p) {</pre>
        int i = *ocor[x].rbegin();
        prv[p] = i;
        muda(p, INF);
        muda(i, p);
    } else {
        int i = *ocor[x].lower_bound(p);
        if (prv[i] > -INF) {
            muda(prv[i], p);
            prv[p] = prv[i];
        } else prv[p] = -INF;
        prv[i] = p;
        muda(p, i);
    v[p] = x; ocor[x].insert(p);
}
6.10 LIS1
// Calcula uma LIS
// Para ter o tamanho basta fazer lis().size()
// Implementacao do algotitmo descrito em:
// https://goo.gl/HiFkn2
// O(n log(n))
const int INF = 0x3f3f3f3f;
int n, v[MAX];
vector < int > lis() {
    int I[n + 1], L[n];
```

```
// pra BB funfar bacana
    I[0] = -INF;
    for (int i = 1; i <= n; i++) I[i] = INF;</pre>
    for (int i = 0; i < n; i++) {</pre>
        // BB
        int 1 = 0, r = n;
        while (1 < r) {
            int m = (1 + r) / 2;
            if (I[m] >= v[i]) r = m;
            else 1 = m + 1;
        }
        // ultimo elemento com tamanho l eh v[i]
        I[1] = v[i]:
        // tamanho da LIS terminando com o
        // elemento v[i] eh l
        L[i] = 1;
    }
    // reconstroi LIS
    vector<int> ret;
    int m = -INF, p;
    for (int i = 0; i < n; i++) if (L[i] > m) {
        m = L[i];
        p = i;
    ret.push_back(v[p]);
    int last = m;
    while (p--) if (L[p] == m - 1) {
        ret.push_back(v[p]);
        m = L[p];
    }
    reverse(ret.begin(), ret.end());
    return ret:
6.11 Mo algorithm - distinct values
// O(s*n*f + q*(n/s)*f) optimize over s, insert/erase = O(f)
```

```
// for s = sqrt(n), O((n+q)*sqrt(n)*f)
```

}

```
const int MAX = 3e4+10;
const int SQ = sqrt(MAX);
int v[MAX];
int ans, freq[MAX];
void insert(int p){
    int o = v[p];
    freq[o]++;
    ans += (freq[o] == 1);
}
void erase(int p){
    int o = v[p];
    ans -= (freq[o] == 1);
    freq[o]--;
}
vector<int> MO(vector<ii> &q){
    ans = 0;
    memset(freq, 0, sizeof freq);
    int m = q.size();
    vector < int > ord(m), ret(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r){
        int sl = q[1].first/SQ;
        int sr = q[r].first/SQ;
        if (sl != sr) return sl < sr;</pre>
        return q[1].second < q[r].second;</pre>
    }):
    int 1 = 0, r = 0;
    insert(0);
    for (int i : ord){
        int ql, qr;
        tie(ql, qr) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);</pre>
        while (r > qr) erase(r--);
        ret[i] = ans;
    }
```

```
return ret:
}
6.12 Distinct Range Query
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
int v[MAX], n, nxt[MAX];
namespace wav {
    vector < vector < int > > esq(4*(1+MAXN-MINN));
    void build(int b = 0, int e = n, int p = 1, int l =
       MINN, int r = MAXN) {
        if (1 == r) return;
        int m = (1+r)/2; esq[p].push_back(0);
        for (int i = b; i < e; i++)</pre>
            esq[p].push_back(esq[p].back()+(nxt[i]<=m));</pre>
        int m2 = stable_partition(nxt+b, nxt+e, [=](int
           i) {return i <= m;}) - nxt;
        build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
    }
    int count(int i, int j, int x, int y, int p = 1, int l =
       MINN, int r = MAXN) {
        if (y < 1 \text{ or } r < x) \text{ return } 0;
        if (x <= l and r <= y) return j-i;</pre>
        int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
        return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei,
           j-ej, x, y, 2*p+1, m+1, r);
    }
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = MAXN+1;
    vector<ii> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n-1; i++) if (t[i].f == t[i+1].f)
       nxt[t[i].s] = t[i+1].s;
```

```
wav::build();
}
int query(int a, int b) {
    return wav::count(a, b+1, b+1, MAXN+1);
}
```

6.13 Area da Uniao de Retangulos

```
// O(n log(n))
const int MAX = 1e5+10;
namespace seg {
    pair < int , 11 > seg [4*MAX];
    ll lazy[4*MAX], *v;
    int n;
    pair<int, ll> merge(pair<int, ll> l, pair<int, ll> r){
        if (1.second == r.second) return {1.first+r.first,
           1.second};
        else if (l.second < r.second) return l;</pre>
        else return r;
    }
    pair < int, ll > build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = {1, v[1]};
        int m = (1+r)/2;
        return seg[p] = merge(build(2*p, 1, m), build(2*p+1,
           m+1, r));
    }
    void build(int n2, l1* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p].second += lazy[p];
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    pair < int, ll > query (int a, int b, int p=1, int l=0, int
```

```
r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return {0, LINF};</pre>
        int m = (1+r)/2;
        return merge(query(a, b, 2*p, 1, m), query(a, b,
            2*p+1, m+1, r));
    }
    pair < int , ll > update(int a, int b, int x, int p=1, int
       1=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        if (b < l or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = merge(update(a, b, x, 2*p, 1, m),
                 update(a, b, x, 2*p+1, m+1, r));
    }
};
11 seg_vec[MAX];
ll area_sq(vector<pair<ii, ii>> &sq){
    vector < pair < ii, ii >> up;
    for (auto it : sq){
        int x1, y1, x2, y2;
        tie(x1, y1) = it.first;
        tie(x2, y2) = it.second;
        up.push_back({{x1+1, 1}, {y1, y2}});
        up.push_back(\{\{x2+1, -1\}, \{y1, y2\}\}\});
    }
    sort(up.begin(), up.end());
    memset(seg_vec, 0, sizeof seg_vec);
    11 H_MAX = MAX;
    seg::build(H_MAX-1, seg_vec);
    auto it = up.begin();
    11 \text{ ans} = 0;
    while (it != up.end()){
        11 L = (*it).first.first;
```

```
while (it != up.end() && (*it).first.first == L){
            int x, inc, y1, y2;
            tie(x, inc) = it->first;
            tie(y1, y2) = it->second;
            seg::update(y1+1, y2, inc);
            it++;
        }
        if (it == up.end()) break;
        11 R = (*it).first.first;
        11 W = R-L;
        auto jt = seg::query(0, H_MAX-1);
        11 H = H_MAX - 1;
        if (jt.second == 0) H -= jt.first;
        ans += W*H:
    return ans;
}
6.14 Area Maxima de Histograma
// Assume que todas as barras tem largura 1,
// e altura dada no vetor v
//
// O(n)
typedef long long 11;
11 area(vector<int> v) {
    11 \text{ ret} = 0;
    stack<int> s;
    // valores iniciais pra dar tudo certo
    v.insert(v.begin(), -1);
    v.insert(v.end(), -1);
    s.push(0);
    for(int i = 0; i < (int) v.size(); i++) {</pre>
        while (v[s.top()] > v[i]) {
            11 h = v[s.top()]; s.pop();
            ret = max(ret, h * (i - s.top() - 1));
        }
```

s.push(i);

```
}
    return ret;
}
6.15 Mo algorithm - DQUERY path on trees
// https://codeforces.com/blog/entry/43230
// https://www.spoj.com/problems/COT2/
// (s*2*n*f + q*(2*n/s)*f) optimize over s, insert/erase =
   O(f)
// for s = sqrt(n), O((n+q)*sqrt(n)*f)
vector < int > g[MAX];
namespace LCA { ... }
const int MAX = 40010;
const int SQ = 316;
int w[MAX];
int st[MAX], en[MAX], hst[2*MAX];
int v[2*MAX];
int ans, freq[MAX], freqv[MAX];
void dfs(int i, int p, int &t){
    v[t] = i;
    st[i] = t++;
    for (int j : g[i]){
       if (j == p) continue;
        dfs(j, i, t);
    }
    v[t] = i;
    en[i] = t++;
}
void update(int o){
   if (freqv[o] == 1){//insert w[o]
        ans += (freq[w[o]] == 0);
```

```
freq[w[o]]++;
    if (freqv[o] != 1){//erase w[o]
        ans -= (freq[w[o]] == 1);
        freq[w[o]]--;
}
void insert(int p){
    int o = v[p];
    freqv[o]++;
    update(o);
}
void erase(int p){
    int o = v[p];
    freqv[o]--;
    update(o);
}
vector<tuple<int, int, int>> make_queries(vector<ii>> &q_){
    LCA::build(0);//any LCA alg works
    vector<tuple<int, int, int>> q;
    for (auto &it : q_){
        int 1, r;
        tie(1, r) = it;
        if (st[r] < st[l]) swap(l, r);</pre>
        int p = LCA::lca(l, r);
        int init = (p == 1) ? st[1] : en[1];
        q.push_back({init, st[r], st[p]});
    }
    return q;
}
vector<int> MO(vector<ii> &q_){
    int t = 0;
    dfs(0, -1, t);
    auto q = make_queries(q_);
    ans = 0;
    memset(freq, 0, sizeof freq);
    int m = q.size();
    vector < int > ord(m), ret(m);
```

```
iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r){
        int sl = get < 0 > (q[1])/SQ;
        int sr = get < 0 > (q[r])/SQ;
        if (sl != sr) return sl < sr;</pre>
        return get<1>(q[1]) < get<1>(q[r]);
    });
    int 1 = 0, r = 0;
    insert(0);
    for (int i : ord){
        int ql, qr, qp;
        tie(ql, qr, qp) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);
        while (r > qr) erase(r--);
        if (qp < 1 || qp > r){
            //lca out of range
            insert(qp);
            ret[i] = ans;
            erase(qp);
        }
        else ret[i] = ans;
    }
    return ret;
}
6.16
      Mininum Enclosing Circle
// O(n) com alta probabilidade
const double EPS = 1e-12;
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct pt {
    double x, y;
    pt(double x_{-} = 0, double y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    pt operator + (const pt& p) const { return pt(x+p.x,
```

```
y+p.y); }
    pt operator - (const pt& p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (double c) const { return pt(x*c, y*c); }
    pt operator / (double c) const { return pt(x/c, y/c); }
};
double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
double dist(pt p, pt q) { return sqrt(dot(p-q, p-q)); }
pt center(pt p, pt q, pt r) {
    pt a = p-r, b = q-r;
    pt c = pt(dot(a, p+r)/2, dot(b, q+r)/2);
    return pt(cross(c, pt(a.y, b.y)), cross(pt(a.x, b.x),
       c)) / cross(a, b);
}
struct circle {
    pt cen;
    double r;
    circle(pt cen_, double r_) : cen(cen_), r(r_) {}
    circle(pt a, pt b, pt c) {
        cen = center(a, b, c);
        r = dist(cen, a);
    bool inside(pt p) { return dist(p, cen) < r+EPS; }</pre>
};
circle minCirc(vector<pt> v) {
    shuffle(v.begin(), v.end(), rng);
    circle ret = circle(pt(0, 0), 0);
    for (int i = 0; i < v.size(); i++) if</pre>
       (!ret.inside(v[i])) {
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!ret.inside(v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for (int k = 0; k < j; k++) if
               (!ret.inside(v[k]))
                ret = circle(v[i], v[j], v[k]);
    }
```

```
return ret;
}
```

6.17 Min fixed range

```
// https://codeforces.com/contest/1195/problem/E
// O(n)
// ans[i] = min_{0} <= j < k v[i+j]
vector < int > min_k (vector < int > &v, int k) {
    int n = v.size();
    deque < int > d;
    auto put = [&](int i){
        while (!d.empty() && v[d.back()] > v[i])
             d.pop_back();
        d.push_back(i);
    };
    for (int i = 0; i < k-1; i++)</pre>
        put(i);
    vector < int > ans (n-k+1);
    for (int i = 0; i < n-k+1; i++){</pre>
        put(i+k-1);
        while (i > d.front()) d.pop_front();
        ans[i] = v[d.front()];
    }
    return ans;
}
```

6.18 Conectividade Dinamica

```
// Offline com Divide and Conquer e
// DSU com rollback
// O(n log^2(n))

typedef pair<int, int> T;

namespace data {
  int n, ans;
  int p[MAX], sz[MAX];
  stack<int> S;
```

```
void build(int n2) {
        n = n2;
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;</pre>
        ans = n:
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(T x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --:
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    int query() {
        return ans;
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
    }
};
int ponta[MAX]; // outra ponta do intervalo ou -1 se for
   auerv
int ans[MAX], n, q;
T qu[MAX];
void solve(int l = 0, int r = q-1) {
    if (1 >= r) {
        ans[1] = data::query(); // agora a estrutura ta certa
    }
```

```
int m = (1+r)/2, qnt = 1;
    for (int i = m+1; i <= r; i++) if (ponta[i]+1 and
       ponta[i] < 1)</pre>
        data::add(qu[i]), qnt++;
    solve(1, m);
    while (--qnt) data::rollback();
    for (int i = 1; i <= m; i++) if (ponta[i]+1 and ponta[i]
        data::add(qu[i]), qnt++;
    solve(m+1, r);
    while (qnt--) data::rollback();
}
6.19 Points Inside Polygon
// Encontra quais pontos estao
// dentro de um poligono simples nao convexo
// o poligono tem lados paralelos aos eixos
// Pontos na borda estao dentro
// Pontos podem estar em ordem horaria ou anti-horaria
//
// O(n log(n))
#define f first
#define s second
#define pb push_back
typedef long long 11;
typedef pair<int, int> ii;
const ll N = 1e9+10;
const int MAX = 1e5+10;
int ta[MAX];
namespace seg {
    unordered_map<11, int> seg;
    int query(int a, int b, ll p, ll l, ll r) {
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= l and r <= b) return seg[p];</pre>
        11 m = (1+r)/2;
        return query(a, b, 2*p, 1, m)+query(a, b, 2*p+1,
           m+1, r);
```

```
}
    int query(ll p) {
        return query(0, p+N, 1, 0, 2*N);
    int update(ll i, int x, ll p, ll l, ll r) {
        if (i < l or r < i) return seg[p];</pre>
        if (1 == r) return seg[p] += x;
        11 m = (1+r)/2;
        return seg[p] = update(i, x, 2*p, 1, m)+update(i, x,
           2*p+1, m+1, r);
    void update(ll a, ll b, int x) {
        if (a > b) return;
        update(a+N, x, 1, 0, 2*N);
        update(b+N+1, -x, 1, 0, 2*N);
    }
};
void pointsInsidePol(vector<ii>>& pol, vector<ii>>& v) {
    vector<pair<int, pair<int, ii> > ev; // {x, {tipo, {a,
       b}}}
    // -1: poe ; id: query ; 1e9: tira
    for (int i = 0; i < v.size(); i++)</pre>
        ev.pb({v[i].f, {i, {v[i].s, v[i].s}}});
    for (int i = 0; i < pol.size(); i++) {</pre>
        ii u = pol[i], v = pol[(i+1)\%pol.size()];
        if (u.s == v.s) {
            ev.pb(\{min(u.f, v.f), \{-1, \{u.s, u.s\}\}\});
            ev.pb({max(u.f, v.f), {N, {u.s, u.s}}});
            continue;
        }
        int t = N;
        if (u.s > v.s) t = -1;
        ev.pb({u.f, {t, {min(u.s, v.s)+1, max(u.s, v.s)}}});
    }
    sort(ev.begin(), ev.end());
    for (int i = 0; i < v.size(); i++) ta[i] = 0;</pre>
    for (auto i : ev) {
        pair < int , ii > j = i.s;
        if (j.f == -1) seg::update(j.s.f, j.s.s, 1);
        else if (j.f == N) seg::update(j.s.f, j.s.s, -1);
```

```
else if (seg::query(j.s.f)) ta[j.f] = 1; // ta dentro
}
```

7 Strings

}

7.1 Algoritmo Z

```
// Complexidades:
// z - O(|s|)
// \text{ match - } O(|s| + |p|)
vector<int> get_z(string s) {
    int n = s.size();
    vector < int > z(n, 0);
    // intervalo da ultima substring valida
    int 1 = 0, r = 0;
    for (int i = 1; i < n; i++) {</pre>
        // estimativa pra z[i]
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        // calcula valor correto
        while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]])
            z[i]++:
        // atualiza [l, r]
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
}
// quantas vezes p aparece em s
int match(string s, string p) {
    int n = s.size(), m = p.size();
    vector < int > z = get_z(p + s);
    int ret = 0:
    for (int i = m; i < n + m; i++)</pre>
        if (z[i] >= m) ret++;
```

```
return ret;
}
```

7.2 String hashing

```
// String deve ter valores [1, x]
// p deve ser o menor primo maior que x
// Para evitar colisao: testar mais de um
// mod; so comparar strings do mesmo tamanho
// ex : str_hash<31, 1e9+7> h(s);
      11 \text{ val} = h(10, 20);
// Complexidades:
// build - O(|s|)
// get_hash - 0(1)
typedef long long 11;
template < int P, int MOD> struct str_hash {
    int n;
    string s;
    vector<ll> h, power;
    str_hash(string s_): n(s_.size()), s(s_), h(n), power(n){
        power[0] = 1;
        for (int i = 1; i < n; i++) power[i] = power[i-1]*P</pre>
           % MOD;
        h[0] = s[0];
        for (int i = 1; i < n; i++) h[i] = (h[i-1]*P + s[i])
            % MOD;
    11 operator()(int i, int j){
        if (!i) return h[j];
        return (h[j] - h[i-1]*power[j-i+1] % MOD + MOD) %
            MOD;
};
```

7.3 Automato de Sufixo

```
// Automato que aceita os sufixos de uma string // Todas as funcoes sao lineares
```

```
namespace sam {
    int cur, sz, len[2*MAX], link[2*MAX], acc[2*MAX];
    int nxt[2*MAX][26];
    void add(int c) {
        int at = cur;
        len[sz] = len[cur]+1, cur = sz++;
        while (at != -1 and !nxt[at][c]) nxt[at][c] = cur,
           at = link[at];
        if (at == -1) { link[cur] = 0; return; }
        int q = nxt[at][c];
        if (len[q] == len[at]+1) { link[cur] = q; return; }
        int qq = sz++;
        len[qq] = len[at]+1, link[qq] = link[q];
        for (int i = 0; i < 26; i++) nxt[qq][i] = nxt[q][i];</pre>
        while (at !=-1 and nxt[at][c] == q) nxt[at][c] =
           qq, at = link[at];
        link[cur] = link[q] = qq;
    }
    void build(string& s) {
        len[0] = 0, link[0] = -1, sz++;
        for (auto i : s) add(i-'a');
        int at = cur;
        while (at) acc[at] = 1, at = link[at];
    }
    // coisas que da pra fazer:
    11 distinct_substrings() {
        11 \text{ ans} = 0;
        for (int i = 1; i < sz; i++) ans += len[i] -</pre>
           len[link[i]];
        return ans;
    }
    string longest_common_substring(string& S, string& T) {
        build(S):
        int at = 0, 1 = 0, ans = 0, pos = -1;
        for (int i = 0; i < T.size(); i++) {</pre>
            while (at and !nxt[at][T[i]-'a']) at = link[at],
               1 = len[at];
            if (nxt[at][T[i]-'a']) at = nxt[at][T[i]-'a'],
               1++;
```

```
else at = 0, 1 = 0;
            if (1 > ans) ans = 1, pos = i;
        return T.substr(pos-ans+1, ans);
    }
    11 dp[2*MAX];
    11 paths(int i) {
        auto& x = dp[i];
        if (x) return x;
        x = 1;
        for (int j = 0; j < 26; j++) if (nxt[i][j]) x +=
           paths(nxt[i][j]);
        return x;
    void kth_substring(int k, int at=0) { // k=1 : menor
       substring lexicog.
        for (int i = 0; i < 26; i++) if (k and nxt[at][i]) {
            if (paths(nxt[at][i]) >= k) {
                cout << char('a'+i);</pre>
                kth_substring(k-1, nxt[at][i]);
                return;
            }
            k -= paths(nxt[at][i]);
        }
    }
};
7.4 Suffix Array
// kasai recebe o suffix array e calcula lcp[i],
// o lcp entre s[sa[i],...,n-1] e s[sa[i+1],..,n-1]
//
// Complexidades:
// suffix_array - O(n log(n))
// kasai - O(n)
vector<int> suffix_array(string s) {
```

s += "\$";

int n = s.size(), N = max(n, 260);

for(int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];</pre>

vector < int > sa(n), ra(n);

```
for (int k = 0; k < n; k ? k *= 2 : k++) {
        vector < int > nsa(sa), nra(n), cnt(N);
        for(int i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n,
            cnt[ra[i]]++;
        for(int i = 1; i < N; i++) cnt[i] += cnt[i-1];</pre>
        for(int i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] =
            nsa[i];
        for(int i = 1, r = 0; i < n; i++) nra[sa[i]] = r +=</pre>
           ra[sa[i]] !=
            ra[sa[i-1]] or ra[(sa[i]+k)%n] !=
                ra[(sa[i-1]+k)%n];
        ra = nra;
    }
    return vector < int > (sa.begin()+1, sa.end());
}
vector<int> kasai(string s, vector<int> sa) {
    int n = s.size(), k = 0;
    vector<int> ra(n), lcp(n);
    for (int i = 0; i < n; i++) ra[sa[i]] = i;
    for (int i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        int j = sa[ra[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
    }
    return lcp;
}
     Suffix Array Rafael
// O(n log^2(n))
struct suffix_array{
    string &s;
    int n;
    vector<int> p, r, aux, lcp;
```

seg_tree < int , min_el > st;
suffix_array(string &s):

```
s(s), n(s.size()), p(n), r(n), aux(n), lcp(n){
        for (int i = 0; i < n; i++){</pre>
            p[i] = i;
            r[i] = s[i];
        }
        auto rank = [&](int i){
            if (i >= n) return -i;
            return r[i];
        };
        for (int d = 1; d < n; d *= 2){</pre>
            auto t = [&](int i){
                return make_pair(rank(i), rank(i+d));
            };
            sort(p.begin(), p.end(),
                     [&](int &i, int &j){
                     return t(i) < t(j);</pre>
                );
            aux[p[0]] = 0;
            for (int i = 1; i < n; i++)
                 aux[p[i]] = aux[p[i-1]] + (t(p[i]) >
                    t(p[i-1]));
            for (int j = 0; j < n; j++) r[j] = aux[j];
            if (aux[p[n-1]] == n-1) break;
        }
        int h = 0;
        for (int i = 0; i < n; i++){</pre>
            if (r[i] == n-1){
                lcp[r[i]] = 0;
                 continue;
            int j = p[r[i] + 1];
            while (i + h < n \&\& j + h < n \&\& s[i+h] ==
               s[j+h]) h++;
            lcp[r[i]] = h;
            h = \max(0, h-1);
        st = seg_tree < int, min_el > (&lcp);
int query(int 1, int r){
    return st.query(1, r);
```

```
}
    11 distinct_substrings(){
        11 \text{ ans} = p[0] + 1;
        for (int i = 1; i < n; i++)</pre>
             ans += p[i] - lcp[i-1] + 1;
        return ans;
    }
};
7.6 KMP
// Primeiro chama a funcao process com o padrao
// Depois chama match com (texto, padrao)
// Vai retornar o numero de ocorrencias do padrao
// p eh 1-based
//
// Complexidades:
// process - O(m)
// match - 0(n + m)
// n = |texto| e m = |padrao|
int p[MAX];
void process(string& s) {
    int i = 0, j = -1;
    p[0] = -1;
    while (i < s.size()) {</pre>
        while (j \ge 0 \text{ and } s[i] != s[j]) j = p[j];
        i++, j++;
        p[i] = j;
    }
}
int match(string& s, string& t) {
    process(t);
    int i = 0, j = 0, ans = 0;
    while (i < s.size()) {</pre>
        while (j \ge 0 \text{ and } s[i] != t[j]) j = p[j];
        i++, j++;
        if (j == t.size()) j = p[j], ans++;
    }
    return ans;
```

}

8 Extra

8.1 makefile

```
CXX = g++

CXXFLAGS = -fsanitize=address -01 -fno-omit-frame-pointer -g

-Wall -Wshadow -std=c++14 -Wno-unused-result

-Wno-sign-compare

CXXFLAGS = -fsanitize=address, undefined

-fno-sanitize-recover=all -D_GLIBCXX_DEBUG -01

-fno-omit-frame-pointer -g -Wall -Wshadow -Wconversion

-std=c++14 -Wno-unused-result -Wno-sign-compare
```

8.2 template.cpp

```
set ts=4 si ai sw=4 number mouse=a
syntax on
```

8.4 stress.sh

```
make a a2 gen
for ((i = 1; ; i++)) do
    ./gen $i > in
    ./a < in > out
    ./a2 < in > out2
    if (! cmp -s out out2) then
        echo "--> entrada:"
        cat in
        echo "--> saida1:"
        cat out
        echo "--> saida2:"
        cat out2
        break;
    fi
done
```