Graph Convolution over Pruned Dependency Trees Improves Relation Extraction

1. Introduction

1.1 出发点

- 依存结构对干关系抽取很重要.
- 依存树结构的句子没有一个有效的可以用mini-batch模拟的好方法.

1.2 本文贡献

- 利用 GCN 去编码依存结构的句子, 在此之上做关系抽出的任务.
- 设计了一个 path-centric pruning 方法去移除树中, 与关系抽取无关的path.
- 对模型进行了分析, 以及提出了一中 pruning 的方法(就是第二步).
- 揭示了 dependency-based 模型与 sequence models 有互补的作用.

2. Models

2.1 Graph Convolutional Networks over Dependency Trees

1) 大概框架介绍

初始版本, 和上一篇论文(SRL)中介绍的一样:

模型共有 L 层, 每一层的中间向量的计算方法为:

$$h_i^{(l)} = \sigma \left(\sum_{j=1}^n A_{ij} W^{(l)} h_j^{(l-1)} + b^{(l)} \right)$$

其中 A_{ij} 是依存树的邻接矩阵

这里有个问题是, 每个 $h_i^{(l)}$ 的大小差的很多, 因此改进版将其进行归一化:

$$h_i^{(l)} = \sigma \left(\sum_{i=1}^n \tilde{A}_{ij} W^{(l)} h_j^{(l-1)} / d_i + b^{(l)} \right),$$

其中
$$ilde{A}_{ij} = A + I.\ d_i = \Sigma_{j=1}^n ilde{A}_{ij}$$

2) 关于边的方式:

• 这里的边设定的全部是一样的 W

对照实验:

- 设置了 top-down, bottom-up, self-loop 三种形式的边, 结果没什么改进
- 设置了 dependency relation-specific parameters , 反而会对结果有不好的影响.

至于会产生这样的结果的原因, 我自己的看法是,

- 1. 用依存分析工具标注的句子的依存关系本身就存在错误, 只有方向的标注应该要比什么包含边类型的标注错误率更高一些.
- 2. 依存语法本身就是人为特征, 不一定具有百分之百的合理性. -> 这个需要验证.

论文中自己的分析是:

- 1. 提出的 GCN 模型已经有能力去学得依存关系的类型
- 2. 而增加这一部分信息将会导致overfitting

2.2 Encoding Relations with GCN

1) 模型细节

- 1. 设句子的标记为: $\mathcal{X} = [x_1, ..., x_n]$
- 2. 设两个 entities 的 span 分别是 $\mathcal{X}_s = [x_{s1}, \ldots, x_{s2}], \, \mathcal{X}_o = [x_{o1}, \ldots, x_{o2}]$
- 3. 将整个句子输入 GCN, 输出 $h^{(L)}=\mathrm{GCN}(h^{(0)})$, 一个矩阵, 每行对应着一个词汇的 embedding.
- 4. 利用两个 entities 中每个词汇的 embeddings 求 entities 的 embedding, 利用的方法是 max pooling , 例如对第一个entity:

$$h_s = f(\mathbf{h}_{s_1:s_2}^{(L)})$$
$$f: \mathbb{R}^{d \times n} \to \mathbb{R}^d$$

- 5. 再把句子的向量 也经过 max pooling
- 6. 通过一个分类器进行分类:

$$h_{\text{final}} = \text{FFNN}([h_{\text{sent}}; h_s; h_o])$$

Figure 2: Relation extraction with a graph convolutional network. The left side shows the overall architecture, while on the right side, we only show the detailed graph convolution computation for the word "relative" for clarity. A full unlabeled dependency parse of the sentence is also provided for reference.

2.3 Contextualized GCN

这里还是很上一篇论文一样, 在 GCN 的前面 concat 了一层 Bi-LSTM 层. 因为两个原因

- GNN 无法编码长距离信息
- 依存结构的解析会出现很多错误 (这个是前面没有提到的, 不知道为什么LSTM能解决这个问题)

并且,这个相比于一般的 Tree-LSTM 训练速度提升了上百倍.

3. Path-centric Pruning

3.1 理论基础

1) LCA Tree

在下面的论文中已经被指出:一个关系的大部分信息都是可以通过,从两者共有的父节点下的子树包含的. 称这个子树为 lowest common ancestor tree (LCA subtree) 如下图:

其中, 两个实体是 water 和 region, 这两个节点的公共父节点就是 poured. 因此, 这个例子下的 LCA subtree 就是整个树.

2) 冗余信息

一个句子对完整的树对于关系抽取来说不是必须的, 反而过多的path以及依存关系会影响最后的结果, 因此需要除去多余的path. (同样在下面的论文中提到)

Yan Xu, 2015b. Classifying relations via long short term memory networks along shortest dependency paths.

Makoto. 2016. End-to-end relation extraction using LSTMs on sequences and tree structures.

3.2 Path-centric Pruning

1) The Shortest Dependency Path

这个里面, 红色的就是最短路径

2) distance K

这里引入一个概念 K, 是指, 距离最短路径距离为 K 的图. 例如:

- K=0, 也就是最短路径本身
- K=1, 也就是最短路径上的点, 加上距离最短路径为K的点的全部点的子图.
 - 。 K=无穷, 是指 LCA subtree 全部.

这里测试最佳 K, 答案是 K=1 是最佳答案.

4. Experiments&Analysis

4.1 关于Path-centric Pruning

可以看出, K=1时候效果最好, 最后太多反而是不好, 也就是说 完整的tree<LCA subtree.

4.2 短距离与长距离关系

这里的 PA-LSTM 是一个 sequential 模型, 没有利用到依存信息

PA-LSTM: position-aware attention mechanism over LSTM outputs

- 看前面部分: 说明与利用依存信息的方法相比, 在短距离的关系上, 序列模型效果也很好.
- 看后面部分: 说明在长的距离上, 利用了GCN的模型更好. 但是由于 GCN 本身无法处理长距离, 因此加上一层LSTM会更好.

4.3 Ablation Study

Model	Dev F ₁
Best C-GCN	67.4
$-h_s$, h_o , and Feedforward (FF)	66.4
 LSTM Layer 	65.5
 Dependency tree structure 	64.2
 FF, LSTM, and Tree 	57.1
 FF, LSTM, Tree, and Pruning 	47.4

Table 3: An ablation study of the best C-GCN model. Scores are median of 5 models.

这里的英语的用法很有意思, 可以借鉴

4.4 Complementary Strengths of GCNs and PA-LSTMs

这里还对 C-GCNs 和 PA-LSTMs 的集成模型进行实验:

System	P	R	F_1
LR [†] (Zhang+2017)	73.5	49.9	59.4
SDP-LSTM [†] (Xu+2015b)	66.3	52.7	58.7
Tree-LSTM [‡] (Tai+2015)	66.0	59.2	62.4
PA-LSTM [†] (Zhang+2017)	65.7	<u>64.5</u>	65.1
GCN	69.8	59.0	64.0
C-GCN	69.9	63.3	<u>66.4</u> *
GCN + PA-LSTM	71.7	63.0	67.1*
C-GCN + PA-LSTM	71.3	65.4	68.2 *

对集成的结果的分析显示, 在847个dev examples上, C-GANs好, 在629个dev examples上, PA-LSTMs好. 这个差异的原因如下(在4.2中也分析过了):

- LSTMs系列更容易处理local feature
- GCNs系列更容易处理entities farther apart