

FCC PART 15.247 TEST REPORT

For

Gajah International (HK) Co., Ltd.

18/F Bel Trade Commercial Building, 1-3, Burrows Street, Wan Chai, Hong Kong

FCC ID: UFKMD7018A00

Product Type:

Report Type:

Test Engineer: Rocky Kang

Report Number: RSZ130829001-00B

Report Date: 2013-09-06

Alvin Huang RF Leader

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLING LIST AND DETAILS.	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §2.1093 – RF EXPOSURE	9
APPLICABLE STANDARD	9
Result	9
FCC §15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY.	
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY.	
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST FROEEBORE TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	40

APPLICABLE STANDARD	
TEST PROCEDURE	40
TEST EQUIPMENT LIST AND DETAILS	40
Test Data	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	54
APPLICABLE STANDARD	54
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	54
TEST DATA	55
FCC §15.247(e) - POWER SPECTRAL DENSITY	60
APPLICABLE STANDARD	60
TEST PROCEDURE	60
TEST EQUIPMENT LIST AND DETAILS	60
Test Data	60
PRODUCT SIMILARITY DECLARATION LETTER	68

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Gajah International (HK) Co., Ltd*'s product, model number: *PTAB780 (FCC ID: UFKMD7018A00)* or the "EUT" in this report was a 7"*MID*, which was measured approximately: 211.9 mm (L) x 157.7 mm (W) x 17.9 mm (H), rated input voltage: DC 3.7V battery or DC 5V from adapter.

Report No.: RSZ130829001-00B

Adapter Information:

Model: YN12W-0500200UU Input: 100-240V~50/60Hz, 0.3A

Output: DC 5V, 2A

Note: The serial models PTAB780 and MD7018A are electrically identical, they have the same PCB layout and schematics, the differences between them is just the model number, model PTAB780 was selected for fully testing, the details was explained in the attached product similarity declaration letter that provided and guaranteed by applicant.

* All measurement and test data in this report was gathered from production sample serial number: 1308141 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2013-08-29.

Objective

This report is prepared on behalf of *Gajah International (HK) Co., Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submission with FCC ID: UFKMD7018A00.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

FCC Part 15.247 Page 4 of 68

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Report No.: RSZ130829001-00B

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 68

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RSZ130829001-00B

For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11.

For 802.11n-HT40 mode, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2422	6	2447
2	2427	7	2452
3	2432	/	/
4	2437	/	/
5	2442	/	/

EUT was tested with Channel 1, 4 and 7.

EUT Exercise Software

WIFI test with adb command.

802.11b: Data rate: 1 Mbps, the power level is 30 802.11g: Data rate: 6 Mbps, the power level is 40 802.11n-HT20: Data rate: MCS0, the power level is 40 802.11n-HT40: Data rate: MCS0, the power level is 40

Equipment Modifications

No modification was made to the EUT tested.

FCC Part 15.247 Page 6 of 68

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

Report No.: RSZ130829001-00B

External I/O Cabling List and Details

Cable Description	Length (m)	From	То	
Unshielded Detachable USB Cable	1.0	EUT	Adapter	

Block Diagram of Test Setup

FCC Part 15.247 Page 7 of 68

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 8 of 68

FCC §15.247 (i) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RSZ130829001-00B

According to KDB 447498 D01 Gen veral RF Exposure Guidance v05

Result

According to FCC KDB 447498 D01 General RF Exposure Guidance v05 generic portable criteria

The Max output power: 8.87 dBm=7.71 mW

According to the Appendix A of KDB 447498, the exclusion thresholds for 2450 MHz is 10 mW

Conclusion:

The time-averaged output power is 7.71 mW < the exclusion thresholds 10 mW, so stand-alone SAR evaluation is not required.

Result: Compliance

FCC Part 15.247 Page 9 of 68

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ130829001-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has a PIFA antenna arrangement for Wi-Fi which was permanently attached and the antenna gain is -3dBi, fulfill the requirement of this section. Please refer to the external photos.

Result: Compliance.

FCC Part 15.247 Page 10 of 68

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Report No.: RSZ130829001-00B

Port	Measurement uncertainty
AC Mains	3.26 dB (k=2, 95% level of confidence)
CAT 3	3.70 dB (k=2, 95% level of confidence)
CAT 5	3.86 dB (k=2, 95% level of confidence)
CAT 6	4.64 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15.247 Page 11 of 68

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Report No.: RSZ130829001-00B

The receptacle was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the receptacle was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2013-06-17	2014-06-17
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6650.12- 101613-Yb	2013-05-07	2014-05-07
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2013-08-09	2014-08-09
Rohde & Schwarz	CE Test software	EMC 32	8.95	-	-

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, with the worst margin reading of:

12.6 dB at 27.334000/27.518000 MHz in the Line conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

in BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 12 of 68

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2013-09-03.

Test mode: Transmitting & Charging

AC 120V/60Hz, Line:

EMI Auto Test L

Report No.: RSZ130829001-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
26.882000	47.3	20.3	60.0	12.7	QP
26.882000	32.3	20.3	50.0	17.7	Ave.
27.334000	47.4	20.3	60.0	12.6	QP
27.334000	32.2	20.3	50.0	17.8	Ave.
27.374000	47.3	20.3	60.0	12.7	QP
27.374000	32.2	20.3	50.0	17.8	Ave.
27.518000	47.4	20.3	60.0	12.6	QP
27.518000	31.9	20.3	50.0	18.1	Ave.
27.702000	47.0	20.3	60.0	13.0	QP
27.702000	31.6	20.3	50.0	18.4	Ave.
27.814000	47.0	20.3	60.0	13.0	QP
27.814000	31.5	20.3	50.0	18.5	Ave.

FCC Part 15.247 Page 13 of 68

AC 120V/60Hz, Neutral:

EMI Auto Test N

Report No.: RSZ130829001-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.458000	42.0	19.5	56.7	14.7	QP
0.458000	33.9	19.5	46.7	12.8	Ave.
0.530000	35.7	19.5	56.0	20.3	QP
0.530000	21.6	19.5	46.0	24.4	Ave.
0.570000	41.7	19.5	56.0	14.3	QP
0.570000	32.5	19.5	46.0	13.5	Ave.
26.514000	43.3	20.4	60.0	16.7	QP
26.514000	32.5	20.4	50.0	17.5	Ave.
26.914000	42.7	20.4	60.0	17.3	QP
26.914000	32.3	20.4	50.0	17.7	Ave.
26.994000	43.0	20.4	60.0	17.0	QP
26.994000	31.9	20.4	50.0	18.1	Ave.

Note:

- 1) Correction Factor =LISN/ISN VDF (Voltage Division Factor) + Cable Loss + Pulse Limiter Attenuation The corrected factor has been input into the transducer of the test software.
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15.247 Page 14 of 68

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ130829001-00B

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) will not be taken into consideration for the test data recorded in the report

EUT Setup

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The receptacle was connected to an AC 120V/60 Hz power source

FCC Part 15.247 Page 15 of 68

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Report No.: RSZ130829001-00B

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 16 of 68

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	8447E	1937A01046	2013-08-09	2014-08-09
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2013-05-09	2014-05-09
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
SUPER ULTRA	Amplifier	ZVA-213+	N/A	2012-11-24	2013-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2010-10-14	2013-10-13

Report No.: RSZ130829001-00B

Test Results Summary

According to the data in the following table, with the worst margin reading of:

4.78 dB at 4924.0 MHz in the Horizontal polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

in BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2013-09-03.

Test Mode: Transmitting

FCC Part 15.247 Page 17 of 68

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

30 MHz-25 GHz:

802.11b Mode:

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2412 M	Hz)			
2412.0	98.99	PK	114	1.2	Н	6.13	105.12	/	/
2412.0	94.61	Ave.	114	1.2	Н	6.13	100.74	/	/
2412.0	80.62	PK	107	1.5	V	6.13	86.75	/	/
2412.0	85.37	Ave.	107	1.5	V	6.13	91.50	/	/
4824.0	52.17	PK	167	1.4	Н	12.40	64.57	74	9.43
4824.0	30.27	Ave.	167	1.4	Н	12.40	42.67	54	11.33
9648.0	23.21	Ave.	233	1.3	Н	19.29	42.50	54	11.50
448.5	43.28	QP	120	1.3	V	-11.4	31.88	46	14.12
7236.0	23.26	Ave.	16	1.5	V	16.62	39.88	54	14.12
2375.7	28.57	Ave.	121	1.3	V	6.13	34.70	54	19.30
9648.0	35.17	PK	233	1.3	Н	19.29	54.46	74	19.54
2384.5	27.57	Ave.	116	1.5	Н	6.13	33.70	54	20.30
7236.0	36.17	PK	16	1.5	V	16.62	52.79	74	21.21
2493.0	25.17	Ave.	49	1.4	Н	7.21	32.38	54	21.62
2375.7	43.20	PK	121	1.3	V	6.13	49.33	74	24.67
2493.0	40.27	PK	49	1.4	Н	7.21	47.48	74	26.52
2384.5	41.03	PK	116	1.5	Н	6.13	47.16	74	26.84
			Middle C	Channel	(2437 N	/IHz)			
2437.0	95.68	PK	111	1.3	Н	7.21	102.89	/	/
2437.0	90.27	Ave.	111	1.3	Н	7.21	97.48	/	/
2437.0	89.24	PK	50	1.2	V	7.21	96.45	/	/
2437.0	84.97	Ave.	50	1.2	V	7.21	92.18	/	/
4874.0	32.34	Ave.	335	1.4	Н	12.46	44.80	54	9.20
9748.0	23.34	Ave.	17	1.4	Н	19.40	42.74	54	11.26
4874.0	49.77	PK	335	1.4	Н	12.46	62.23	74	11.77
448.5	44.90	QP	12	1.4	V	-11.4	33.50	46	12.50
7311.0	24.50	Ave.	339	1.3	V	16.49	40.99	54	13.01
2492.0	28.83	Ave.	139	1.5	Н	7.21	36.04	54	17.96
7311.0	37.27	PK	339	1.3	V	16.49	53.76	74	20.24
9748.0	34.24	PK	17	1.4	Н	19.40	53.64	74	20.36
2388.4	27.16	Ave.	348	1.4	Н	6.13	33.29	54	20.71
2492.0	45.23	PK	139	1.5	Н	7.21	52.44	74	21.56
2368.2	25.34	Ave.	225	1.2	V	5.48	30.82	54	23.18
2368.2	41.28	PK	225	1.2	V	5.48	46.76	74	27.24
2388.4	40.27	PK	348	1.4	Н	6.13	46.40	74	27.60

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 18 of 68

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			High Ch	nannel (2	2462 M	Hz)			
2462.0	96.23	PK	38	1.6	Н	7.21	103.44	/	/
2462.0	91.94	Ave.	38	1.6	Н	7.21	99.15	/	/
2462.0	89.48	PK	337	1.5	V	7.21	96.69	/	/
2462.0	85.19	Ave.	337	1.5	V	7.21	92.40	/	/
4924.0	31.27	Ave.	65	1.4	Н	12.50	43.77	54	10.23
4924.0	51.24	PK	65	1.4	Н	12.50	63.74	74	10.26
9848.0	23.05	Ave.	164	1.2	Н	19.39	42.44	54	11.56
7386.0	25.65	Ave.	88	1.3	V	15.91	41.56	54	12.44
448.5	42.50	QP	71	1.5	V	-11.4	31.10	46	14.90
9848.0	35.12	PK	164	1.2	Н	19.39	54.51	74	19.49
7386.0	38.46	PK	88	1.3	V	15.91	54.37	74	19.63
2498.7	24.15	Ave.	145	1.2	Н	7.21	31.36	54	22.64
2372.8	24.28	Ave.	45	1.5	V	6.13	30.41	54	23.59
2384.2	24.24	Ave.	235	1.4	Н	6.13	30.37	54	23.63
2384.2	41.54	PK	235	1.4	Н	6.13	47.67	74	26.33
2372.8	40.57	PK	45	1.5	V	6.13	46.70	74	27.30
2498.7	39.23	PK	145	1.2	Н	7.21	46.44	74	27.56

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 19 of 68

802.11g Mode:

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected Factor	Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	(dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2412 M	Hz)			
2412.0	102.13	PK	88	1.5	Н	6.13	108.26	/	/
2412.0	86.08	Ave.	88	1.5	Н	6.13	92.21	/	/
2412.0	91.84	PK	326	1.3	V	6.13	97.97	/	/
2412.0	75.01	Ave.	326	1.3	V	6.13	81.14	/	/
4824.0	36.19	Ave.	5	1.5	V	12.40	48.59	54	5.41
4824.0	55.17	PK	5	1.5	V	12.40	67.57	74	6.43
9648.0	23.35	Ave.	195	1.4	Н	19.29	42.64	54	11.36
7236.0	25.40	Ave.	31	1.4	V	16.62	42.02	54	11.98
448.5	43.13	QP	90	1.2	V	-11.4	31.73	46	14.27
9648.0	36.28	PK	195	1.4	Н	19.29	55.57	74	18.43
2492.8	27.16	Ave.	183	1.5	Н	7.21	34.37	54	19.63
7236.0	35.92	PK	31	1.4	V	16.62	52.54	74	21.46
2492.8	45.17	PK	183	1.5	Н	7.21	52.38	74	21.62
2386.3	25.34	Ave.	62	1.4	Н	6.13	31.47	54	22.53
2356.4	24.17	Ave.	116	1.3	V	5.48	29.65	54	24.35
2386.3	40.16	PK	62	1.4	Н	6.13	46.29	74	27.71
2356.4	38.45	PK	116	1.3	V	5.48	43.93	74	30.07
			Middle C	hannel	(2437 N	MHz)			
2437.0	101.56	PK	73	1.4	Н	7.21	108.77	/	/
2437.0	85.37	Ave.	73	1.4	Н	7.21	92.58	/	/
2437.0	92.23	PK	97	1.4	V	7.21	99.44	/	/
2437.0	75.24	Ave.	97	1.4	V	7.21	82.45	/	/
4874.0	54.28	PK	326	1.5	Н	12.46	66.74	74	7.26
4874.0	33.48	Ave.	326	1.5	Н	12.46	45.94	54	8.06
9748.0	22.42	Ave.	63	1.4	Н	19.40	41.82	54	12.18
448.5	44.71	QP	201	1.3	V	-11.4	33.31	46	12.69
7311.0	23.67	Ave.	246	1.3	V	16.49	40.16	54	13.84
9748.0	37.75	PK	63	1.4	Н	19.40	57.15	74	16.85
7311.0	39.75	PK	246	1.3	V	16.49	56.24	74	17.76
2494.2	26.37	Ave.	322	1.3	Н	7.21	33.58	54	20.42
2389.1	24.67	Ave.	113	1.2	Н	6.13	30.80	54	23.20
2494.2	43.25	PK	322	1.3	Н	7.21	50.46	74	23.54
2372.6	23.42	Ave.	87	1.4	V	6.13	29.55	54	24.45
2389.1	39.54	PK	113	1.2	Н	6.13	45.67	74	28.33
2372.6	38.67	PK	87	1.4	V	6.13	44.80	74	29.20

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 20 of 68

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected Factor	Corrected	15 247	C Part 7/205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	(dB)	Amplitude (dBuV/m)		Margin (dB)
			High Ch	nannel (2	2462 MI	Hz)			
2462.0	100.24	PK	14	1.4	Н	7.21	107.45	/	/
2462.0	84.35	Ave.	14	1.4	Н	7.21	91.56	/	/
2462.0	92.21	PK	221	1.3	V	7.21	99.42	/	/
2462.0	76.48	Ave.	221	1.3	V	7.21	83.69	/	/
4924.0	56.72	PK	118	1.5	Н	12.50	69.22	74	4.78
4924.0	34.34	Ave.	118	1.5	Н	12.50	46.84	54	7.16
9848.0	21.30	Ave.	32	1.3	Н	19.39	40.69	54	13.31
448.5	43.48	QP	128	1.3	V	-11.4	32.08	46	13.92
7386.0	23.61	Ave.	264	1.5	V	15.91	39.52	54	14.48
7386.0	39.35	PK	264	1.5	V	15.91	55.26	74	18.74
9848.0	35.44	PK	32	1.3	Н	19.39	54.83	74	19.17
2486.7	25.18	Ave.	128	1.3	Н	7.21	32.39	54	21.61
2371.3	25.48	Ave.	273	1.3	V	6.13	31.61	54	22.39
2486.7	43.66	PK	128	1.3	Н	7.21	50.87	74	23.13
2384.2	24.36	Ave.	188	1.4	Н	6.13	30.49	54	23.51
2371.3	42.35	PK	273	1.3	V	6.13	48.48	74	25.52
2384.2	40.18	PK	188	1.4	Н	6.13	46.31	74	27.69

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 21 of 68

802.11n-HT20 Mode:

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2412 M	Hz)			
2412.0	96.75	PK	358	1.4	Н	6.13	102.88	/	/
2412.0	78.24	Ave.	358	1.4	Н	6.13	84.37	/	/
2412.0	90.35	PK	221	1.4	V	6.13	96.48	/	/
2412.0	70.65	Ave.	221	1.4	V	6.13	76.78	/	/
9648.0	23.51	Ave.	245	1.4	Н	19.29	42.80	54	11.20
7236.0	24.11	Ave.	136	1.5	V	16.62	40.73	54	13.27
448.5	43.97	QP	238	1.3	V	-11.4	32.37	46	13.63
4824.0	26.57	Ave.	244	1.3	Н	12.40	38.97	54	15.03
9648.0	37.34	PK	245	1.4	Н	19.29	56.63	74	17.37
7236.0	39.65	PK	136	1.5	V	16.62	56.27	74	17.73
4824.0	43.65	PK	244	1.3	Н	12.40	56.05	74	17.95
2387.6	23.57	Ave.	2	1.2	Н	6.13	29.70	54	24.30
2484.3	22.27	Ave.	323	1.2	Н	7.21	29.48	54	24.52
2375.0	22.35	Ave.	12	1.3	V	6.13	28.48	54	25.52
2484.3	39.35	PK	323	1.2	Н	7.21	46.56	74	27.44
2375.0	40.32	PK	12	1.3	V	6.13	46.45	74	27.55
2387.6	40.32	PK	2	1.2	Н	6.13	46.45	74	27.55
		•	Middle C	hannel	(2437 N	(Hz)		•	
2437.0	95.06	PK	129	1.6	Н	7.21	102.27	/	/
2437.0	76.27	Ave.	129	1.6	Н	7.21	83.48	/	/
2437.0	90.21	PK	326	1.2	V	7.21	97.42	/	/
2437.0	71.92	Ave.	326	1.2	V	7.21	79.13	/	/
9748.0	23.60	Ave.	326	1.2	Н	19.40	43.00	54	11.00
4874.0	30.27	Ave.	246	1.3	Н	12.46	42.73	54	11.27
4874.0	48.27	PK	246	1.3	Н	12.46	60.73	74	13.27
7311.0	24.20	Ave.	321	1.3	V	16.49	40.69	54	13.31
448.5	43.98	QP	230	1.3	V	-11.4	32.58	46	13.42
7311.0	39.55	PK	321	1.3	V	16.49	56.04	74	17.96
9748.0	35.38	PK	326	1.2	Н	19.40	54.78	74	19.22
2485.2	24.58	Ave.	94	1.5	Н	7.21	31.79	54	22.21
2387.0	24.42	Ave.	41	1.3	Н	6.13	30.55	54	23.45
2376.7	24.33	Ave.	326	1.2	V	6.13	30.46	54	23.54
2387.0	43.02	PK	41	1.3	Н	6.13	49.15	74	24.85
2485.2	40.01	PK	94	1.5	Н	7.21	47.22	74	26.78
2376.7	41.04	PK	326	1.2	V	6.13	47.17	74	26.83

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 22 of 68

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected	15 247	C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBuV/m)		Margin (dB)
			High Ch	nannel (2	2462 M	Hz)			
2462.0	97.24	PK	157	1.4	Н	7.21	104.45	/	/
2462.0	78.32	Ave.	157	1.4	Н	7.21	85.53	/	/
2462.0	92.60	PK	100	1.3	V	7.21	99.81	/	/
2462.0	74.61	Ave.	100	1.3	V	7.21	81.82	/	/
4924.0	30.62	Ave.	317	1.2	Н	12.50	43.12	54	10.88
9848.0	23.23	Ave.	274	1.2	Н	19.39	42.62	54	11.38
448.5	43.94	QP	127	1.3	V	-11.4	32.54	46	13.46
7386.0	24.52	Ave.	263	1.3	V	15.91	40.43	54	13.57
4924.0	46.10	PK	317	1.2	Н	12.50	58.60	74	15.40
9848.0	36.20	PK	274	1.2	Н	19.39	55.59	74	18.41
7386.0	38.57	PK	263	1.3	V	15.91	54.48	74	19.52
2378.6	24.52	Ave.	321	1.5	V	6.13	30.65	54	23.35
2387.8	24.30	Ave.	23	1.4	Н	6.13	30.43	54	23.57
2486.7	23.20	Ave.	83	1.4	Н	7.21	30.41	54	23.59
2387.8	42.02	PK	23	1.4	Н	6.13	48.15	74	25.85
2378.6	41.58	PK	321	1.5	V	6.13	47.71	74	26.29
2486.7	39.04	PK	83	1.4	Н	7.21	46.25	74	27.75

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 23 of 68

802.11n-HT40 Mode:

Frequency	Re	eceiver	Turntable	Rx Aı	ntenna	Corrected Factor	Corrected Amplitude	15 247	C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	(dB)	(dBuV/m)		Margin (dB)
			Low Ch	annel (2422 M	Hz)			
2422.0	98.68	PK	183	1.6	Н	6.13	104.81	/	/
2422.0	79.85	Ave.	183	1.6	Н	6.13	85.98	/	/
2422.0	90.11	PK	104	1.5	V	6.13	96.24	/	/
2422.0	70.63	Ave.	104	1.5	V	6.13	76.76	/	/
4844.0	52.21	PK	152	1.2	Н	12.40	64.61	74	9.39
9688.0	25.11	Ave.	172	1.4	Н	19.29	44.40	54	9.60
4844.0	31.34	Ave.	152	1.2	Н	12.40	43.74	54	10.26
448.5	44.84	QP	37	1.3	V	-11.4	33.44	46	12.56
7266.0	24.33	Ave.	40	1.2	V	16.62	40.95	54	13.05
9688.0	40.20	PK	172	1.4	Н	19.29	59.49	74	14.51
2388.0	51.75	PK	142	1.4	Н	6.13	57.88	74	16.12
2388.0	30.32	Ave.	142	1.4	Н	6.13	36.45	54	17.55
7266.0	39.64	PK	40	1.2	V	16.62	56.26	74	17.74
2379.0	48.35	PK	202	1.2	V	6.13	54.48	74	19.52
2379.0	26.85	Ave.	202	1.2	V	6.13	32.98	54	21.02
2489.7	25.71	Ave.	263	1.3	Н	7.21	32.92	54	21.08
2489.7	43.62	PK	263	1.3	Н	7.21	50.83	74	23.17
	•		Middle C	hannel	(2437 N	(Hz)		'	
2437.0	96.54	PK	23	1.5	Н	7.21	103.75	/	/
2437.0	77.58	Ave.	23	1.5	Н	7.21	84.79	/	/
2437.0	89.54	PK	251	1.4	V	7.21	96.75	/	/
2437.0	70.12	Ave.	251	1.4	V	7.21	77.33	/	/
4874.0	51.26	PK	357	1.5	Н	12.46	63.72	74	10.28
448.5	46.46	QP	203	1.3	V	-11.4	35.06	46	10.94
4874.0	30.36	Ave.	357	1.5	Н	12.46	42.82	54	11.18
9748.0	22.10	Ave.	109	1.2	Н	19.40	41.50	54	12.50
7311.0	24.36	Ave.	193	1.4	V	16.49	40.85	54	13.15
2493.2	49.35	PK	313	1.4	Н	7.21	56.56	74	17.44
2493.2	28.93	Ave.	313	1.4	Н	7.21	36.14	54	17.86
9748.0	35.46	PK	109	1.2	Н	19.40	54.86	74	19.14
2385.0	27.92	Ave.	119	1.4	Н	6.13	34.05	54	19.95
7311.0	36.54	PK	193	1.4	V	16.49	53.03	74	20.97
2385.0	46.32	PK	119	1.4	Н	6.13	52.45	74	21.55
2376.4	24.35	Ave.	215	1.5	V	6.13	30.48	54	23.52
2376.4	43.26	PK	215	1.5	V	6.13	49.39	74	24.61

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 24 of 68

Frequency	Re	eceiver	Turntable	Rx An	itenna	Corrected Factor	Corrected		C Part 7/205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	(dB)	Amplitude (dBuV/m)	Limit (dBµV/m)	Margin (dB)
			High Ch	nannel (2	2452 M	Hz)			
2452.0	95.03	PK	92	1.5	Н	7.21	102.24	/	/
2452.0	76.63	Ave.	92	1.5	Н	7.21	83.84	/	/
2452.0	88.41	PK	35	1.3	V	7.21	95.62	/	/
2452.0	68.25	Ave.	35	1.3	V	7.21	75.46	/	/
4904.0	53.20	PK	236	1.3	Н	12.46	65.66	74	8.34
4904.0	31.24	Ave.	236	1.3	Н	12.46	43.70	54	10.30
448.5	44.07	QP	120	1.3	V	-11.4	32.67	46	13.33
9808.0	21.26	Ave.	227	1.4	Н	19.29	40.55	54	13.45
7356.0	22.36	Ave.	121	1.3	V	15.91	38.27	54	15.73
2485.3	50.32	PK	196	1.4	Н	7.21	57.53	74	16.47
2485.3	29.87	Ave.	196	1.4	Н	7.21	37.08	54	16.92
9808.0	37.65	PK	227	1.4	Н	19.29	56.94	74	17.06
7356.0	38.46	PK	121	1.3	V	15.91	54.37	74	19.63
2388.0	27.32	Ave.	181	1.5	Н	6.13	33.45	54	20.55
2375.8	26.54	Ave.	334	1.3	V	6.13	32.67	54	21.33
2388.0	44.85	PK	181	1.5	Н	6.13	50.98	74	23.02
2375.8	43.62	PK	334	1.3	V	6.13	49.75	74	24.25

Report No.: RSZ130829001-00B

Note:

Corrected Amplitude = Corrected Factor + Reading
Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor
Margin = Limit- Corrected Amplitude

FCC Part 15.247 Page 25 of 68

Conducted Spurious Emissions at Antenna Port:

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 26 of 68

802.11b High Channel

Report No.: RSZ130829001-00B

802.11g Low Channel

FCC Part 15.247 Page 27 of 68

802.11g Middle Channel

Report No.: RSZ130829001-00B

802.11g High Channel

FCC Part 15.247 Page 28 of 68

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 29 of 68

802.11n-HT20 High Channel

Report No.: RSZ130829001-00B

802.11n-HT40 Low Channel

FCC Part 15.247 Page 30 of 68

Report No.: RSZ130829001-00B

3.SEP.2013 12:19:59

Date:

802.11n-HT40 High Channel

FCC Part 15.247 Page 31 of 68

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB emission bandwidth shall be at least 500 kHz.

Report No.: RSZ130829001-00B

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r01

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Rocky Kang on 2013-09-03.

Test Mode: Transmitting

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.247 Page 32 of 68

Channel	Frequency (MHz)	Data Rate (Mbps)	6 dB Emissions Bandwidth (MHz)	Limit (MHz)			
802.11b mode							
Low	2412	1	10.16	>0.5			
Middle	2437	1	10.16	>0.5			
High	2462	1	10.16	>0.5			
802.11g mode							
Low	2412	6	16.47	>0.5			
Middle	2437	6	16.47	>0.5			
High	2462	6	16.47	>0.5			
802.11n-HT20 mode							
Low	2412	MCS0	17.68	>0.5			
Middle	2437	MCS0	17.68	>0.5			
High	2462	MCS0	17.68	>0.5			
802.11n-HT40 mode							
Low	2422	MCS0	35.83	>0.5			
Middle	2437	MCS0	35.83	>0.5			
High	2452	MCS0	35.83	>0.5			

802.11b Low Channel

FCC Part 15.247 Page 33 of 68

802.11b Middle Channel

Report No.: RSZ130829001-00B

802.11b High Channel

FCC Part 15.247 Page 34 of 68

802.11g Low Channel

Report No.: RSZ130829001-00B

802.11g Middle Channel

FCC Part 15.247 Page 35 of 68

802.11g High Channel

Report No.: RSZ130829001-00B

802.11n-HT20 Low Channel

FCC Part 15.247 Page 36 of 68

802.11n-HT20 Middle Channel

Report No.: RSZ130829001-00B

802.11n-HT20 High Channel

FCC Part 15.247 Page 37 of 68

802.11n-HT40 Low Channel

Report No.: RSZ130829001-00B

802.11n-HT40 Middle Channel

FCC Part 15.247 Page 38 of 68

802.11n-HT40 High Channel

Report No.: RSZ130829001-00B

FCC Part 15.247 Page 39 of 68

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ130829001-00B

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r01

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum analyzer.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2013-09-03.

FCC Part 15.247 Page 40 of 68

Test mode: Transmitting

Channel	Frequency (MHz)	Data Rate (Mbps)	Peak Output Power (dBm)	Average Output Power (dBm)	Limit (dBm)	Result	
			802.11b mode				
Low	2412	1	11.13	7.94	30	Pass	
Middle	2437	1	10.83	7.71	30	Pass	
High	2462	1	10.22	7.13	30	Pass	
	802.11g mode						
Low	2412	6	15.94	8.52	30	Pass	
Middle	2437	6	15.85	8.60	30	Pass	
High	2462	6	15.75	8.65	30	Pass	
		8	02.11n-HT20 mode				
Low	2412	MCS0	16.10	8.65	30	Pass	
Middle	2437	MCS0	16.07	8.87	30	Pass	
High	2462	MCS0	16.00	8.58	30	Pass	
802.11n-HT40 mode							
Low	2422	MCS0	15.78	8.50	30	Pass	
Middle	2437	MCS0	15.78	8.56	30	Pass	
High	2452	MCS0	15.77	8.41	30	Pass	

802.11b RF Peak Output Power, Low Channel

FCC Part 15.247 Page 41 of 68

802.11b RF Average Output Power, Low Channel

802.11b RF Peak Output Power, Middle Channel

FCC Part 15.247 Page 42 of 68

802.11b RF Average Output Power, Middle Channel

802.11b RF Peak Output Power, High Channel

FCC Part 15.247 Page 43 of 68

802.11b RF Average Output Power, High Channel

802.11g RF Peak Output Power, Low Channel

FCC Part 15.247 Page 44 of 68

802.11g RF Average Output Power, Low Channel

Report No.: RSZ130829001-00B

802.11g RF Peak Output Power, Middle Channel

FCC Part 15.247 Page 45 of 68

802.11g RF Average Output Power, Middle Channel

802.11g RF Peak Output Power, High Channel

FCC Part 15.247 Page 46 of 68

802.11g RF Average Output Power, High Channel

802.11n-HT20 RF Peak Output Power, Low Channel

FCC Part 15.247 Page 47 of 68

802.11n-HT20 RF Average Output Power, Low Channel

802.11n-HT20 RF Peak Output Power, Middle Channel

FCC Part 15.247 Page 48 of 68

802.11n-HT20 RF Average Output Power, Middle Channel

802.11n-HT20 RF Peak Output Power, High Channel

FCC Part 15.247 Page 49 of 68

802.11n-HT20 RF Average Output Power, High Channel

802.11n-HT40 RF Peak Output Power, Low Channel

FCC Part 15.247 Page 50 of 68

802.11n-HT40 RF Average Output Power, Low Channel

802.11n-HT40 RF Peak Output Power, Middle Channel

FCC Part 15.247 Page 51 of 68

802.11n-HT40 RF Average Output Power, Middle Channel

802.11n-HT40 RF Peak Output Power, High Channel

FCC Part 15.247 Page 52 of 68

802.11n-HT40 RF Average Output Power, High Channel

FCC Part 15.247 Page 53 of 68

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ130829001-00B

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r01

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 54 of 68

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

Report No.: RSZ130829001-00B

The testing was performed by Rocky Kang on 2013-09-03.

Test Result: Compliance

Please refer to following plots.

FCC Part 15.247 Page 55 of 68

802.11b Band Edge, Left Side

Report No.: RSZ130829001-00B

802.11b Band Edge, Right Side

FCC Part 15.247 Page 56 of 68

802.11g Band Edge, Left Side

802.11g Band Edge, Right Side

FCC Part 15.247 Page 57 of 68

802.11n-HT20 Band Edge, Left Side

Report No.: RSZ130829001-00B

802.11n-HT20 Band Edge, Right Side

FCC Part 15.247 Page 58 of 68

802.11n-HT40 Band Edge, Left Side

Report No.: RSZ130829001-00B

802.11n-HT40 Band Edge, Right Side

FCC Part 15.247 Page 59 of 68

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ130829001-00B

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r01

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Rocky Kang on 2013-09-03.

EUT operation mode: Transmitting

FCC Part 15.247 Page 60 of 68

Channel	Frequency (MHz)	Data Rate (Mbps)	Power spectral density (dBm/3 kHz)	≤Limit (dBm)			
	802.11b mode						
Low	Low 2412 1 -17.51 8						
Middle	2437	1	-17.72	8			
High	2462	1	-17.44	8			
		802.11g mo	de				
Low	2412	6	-19.70	8			
Middle	2437	6	-18.91	8			
High	2462	6	-19.97	8			
	802.11n-HT20 mode						
Low	2412	MCS0	-16.94	8			
Middle	2437	MCS0	-19.44	8			
High	2462	MCS0	-17.47	8			
802.11n-HT40 mode							
Low	2422	MCS0	-23.41	8			
Middle	2437	MCS0	-21.52	8			
High	2452	MCS0	-21.84	8			

Report No.: RSZ130829001-00B

Power Spectral Density, 802.11b Low Channel

FCC Part 15.247 Page 61 of 68

Report No.: RSZ130829001-00B

Power Spectral Density, 802.11b High Channel

FCC Part 15.247 Page 62 of 68

Power Spectral Density, 802.11g Low Channel

Report No.: RSZ130829001-00B

Power Spectral Density, 802.11g Middle Channel

FCC Part 15.247 Page 63 of 68

Power Spectral Density, 802.11g High Channel

Power Spectral Density, 802.11n-HT20 Low Channel

FCC Part 15.247 Page 64 of 68

Power Spectral Density, 802.11n-HT20 Middle Channel

Report No.: RSZ130829001-00B

Power Spectral Density, 802.11n-HT20 High Channel

FCC Part 15.247 Page 65 of 68

Power Spectral Density, 802.11n-HT40 Low Channel

Power Spectral Density, 802.11n-HT40 Middle Channel

FCC Part 15.247 Page 66 of 68

Report No.: RSZ130829001-00B

Power Spectral Density, 802.11n-HT40 High Channel

FCC Part 15.247 Page 67 of 68

PRODUCT SIMILARITY DECLARATION LETTER

Gajah International (HK) Co.,Ltd
18/F Bel Trade Commercial Building, 1-3, Burrows Street, Wan Chai, Hong Kong.
Tel: +852-6326 5997

2013-9-2

Product Similarity Declaration

Report No.: RSZ130829001-00B

To Whom It May Concern,

We, Gajah International (HK) Co.,Ltd. hereby declare that our 7"MID, Model Number: MD7018A is electrically identical with PTAB780 that was certified by BACL. They are just different in model numbers due to marketing purposes.

Please contact me if you have any question.

Ying Keong Chaw General Manager

***** END OF REPORT *****

FCC Part 15.247 Page 68 of 68