8

SISTEMAS DE ECUACIONES

DIFERENCIALES LINEALES

DE PRIMER ORDEN

- **8.1** Teoría preliminar: Sistemas lineales
- **8.2** Sistemas lineales homogéneos
 - **8.2.1** Eigenvalores reales distintos
 - **8.2.2** Eigenvalores repetidos
 - **8.2.3** Eigenvalores complejos
- 8.3 Sistemas lineales no homogéneos
 - **8.3.1** Coeficientes indeterminados
 - **8.3.2** Variación de parámetros
- **8.4** Matriz exponencial

REPASO DEL CAPÍTULO 8

En las secciones 3.3, 4.8 y 7.6 tratamos con sistemas de ecuaciones diferenciales y pudimos resolver algunos de estos sistemas mediante eliminación sistemática o con transformada de Laplace. En este capítulo nos vamos a dedicar sólo a *sistemas de ecuaciones lineales diferenciales de primer orden*. Aunque la mayor parte de los sistemas que se consideran se podrían resolver usando eliminación o transformada de Laplace, vamos a desarrollar una teoría general para estos tipos de sistemas y en el caso de sistemas con coeficientes constantes, un método de solución que utiliza algunos conceptos básicos del álgebra de matrices. Veremos que esta teoría general y el procedimiento de solución son similares a los de las ecuaciones de cálculo diferencial de orden superior lineales consideradas en el capítulo 4. Este material es fundamental para analizar ecuaciones no lineales de primer orden.

8.1 TEORÍA PRELIMINAR: SISTEMAS LINEALES

REPASO DE MATERIAL

 En este capítulo se usará la notación matricial y sus propiedades se usarán con mucha frecuencia a lo largo del mismo. Es indispensable que repase el apéndice II o un texto de álgebra lineal si no está familiarizado con estos conceptos.

INTRODUCCIÓN Recuerde que en la sección 4.8 se ilustró cómo resolver sistemas de *n* ecuaciones diferenciales lineales con *n* incógnitas de la forma

$$P_{11}(D)x_{1} + P_{12}(D)x_{2} + \cdots + P_{1n}(D)x_{n} = b_{1}(t)$$

$$P_{21}(D)x_{1} + P_{22}(D)x_{2} + \cdots + P_{2n}(D)x_{n} = b_{2}(t)$$

$$\vdots$$

$$\vdots$$

$$P_{n1}(D)x_{1} + P_{n2}(D)x_{2} + \cdots + P_{nn}(D)x_{n} = b_{n}(t),$$

$$(1)$$

donde las P_{ij} eran polinomios de diferentes grados en el operador diferencial D. Este capítulo se dedica al estudio de sistemas de ED de primer orden que son casos especiales de sistemas que tienen la forma normal

$$\frac{dx_1}{dt} = g_1(t, x_1, x_2, \dots, x_n)$$

$$\frac{dx_2}{dt} = g_2(t, x_1, x_2, \dots, x_n)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{dx_n}{dt} = g_n(t, x_1, x_2, \dots, x_n).$$
(2)

Un sistema tal como (2) de *n* ecuaciones diferenciales de primer orden se llama **sistema de primer orden**.

SISTEMAS LINEALES Cuando cada una de las funciones g_1, g_2, \ldots, g_n en (2) es lineal en las variables dependientes x_1, x_2, \ldots, x_n , se obtiene la **forma normal** de un sistema de ecuaciones lineales de primer orden.

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \cdots + a_{1n}(t)x_n + f_1(t)$$

$$\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \cdots + a_{2n}(t)x_n + f_2(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \cdots + a_{nn}(t)x_n + f_n(t).$$
(3)

Nos referimos a un sistema de la forma dada en (3) simplemente como un **sistema lineal**. Se supone que los coeficientes a_{ij} así como las funciones f_i son continuas en un intervalo común I. Cuando $f_i(t) = 0$, $i = 1, 2, \ldots, n$, se dice que el sistema lineal (3) es **homogéneo**; de otro modo es **no homogéneo**.

FORMA MATRICIAL DE UN SISTEMA LINEAL Si X, A(t), y F(t) denotan matrices respectives

$$\mathbf{X} = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{pmatrix}, \quad \mathbf{A}(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix}, \quad \mathbf{F}(t) = \begin{pmatrix} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix},$$

entonces el sistema de ecuaciones diferenciales lineales de primer orden (3) se puede escribir como

$$\frac{d}{dt} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} + \begin{vmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{vmatrix}$$

o simplemente

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}. \tag{4}$$

305

Si el sistema es homogéneo, su forma matricial es entonces

$$\mathbf{X}' = \mathbf{A}\mathbf{X}.\tag{5}$$

EJEMPLO 1 Sistema escrito en notación matricial

a) Si $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$, entonces la forma matricial del sistema homogéneo

$$\frac{dx}{dt} = 3x + 4y$$

$$\frac{dy}{dt} = 5x - 7y$$
es $\mathbf{X}' = \begin{pmatrix} 3 & 4\\ 5 & -7 \end{pmatrix} \mathbf{X}$.

b) Si $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, entonces la forma matricial del sistema homogéneo

$$\frac{dx}{dt} = 6x + y + z + t$$

$$\frac{dy}{dt} = 8x + 7y - z + 10t \text{ es } \mathbf{X}' = \begin{pmatrix} 6 & 1 & 1 \\ 8 & 7 & -1 \\ 2 & 9 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} t \\ 10t \\ 6t \end{pmatrix}.$$

$$\frac{dz}{dt} = 2x + 9y - z + 6t$$

DEFINICIÓN 8.1.1 Vector solución

Un **vector solución** en un intervalo *I* es cualquier matriz columna

$$\mathbf{X} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

cuyos elementos son funciones derivables que satisfacen el sistema (4) en el intervalo.

Un vector solución de (4) es, por supuesto, equivalente a n ecuaciones escalares $x_1 = \phi_1(t), x_2 = \phi_2(t), \ldots, x_n = \phi_n(t)$ y se puede interpretar desde el punto de vista geométrico como un conjunto de ecuaciones paramétricas de una curva en el espacio. En el caso importante n=2, las ecuaciones $x_1=\phi_1(t), x_2=\phi_2(t)$ representan una curva en el plano x_1x_2 . Es práctica común llamar **trayectoria** a una curva en el plano y llamar **plano fase** al plano x_1x_2 . Regresaremos a estos conceptos y se ilustrarán en la siguiente sección.

EJEMPLO 2 Comprobación de soluciones

Compruebe que en el intervalo $(-\infty, \infty)$

$$\mathbf{X}_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} = \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix} \quad \text{y} \qquad \mathbf{X}_{2} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t} = \begin{pmatrix} 3e^{6t} \\ 5e^{6t} \end{pmatrix}$$
 son soluciones de
$$\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \mathbf{X}. \tag{6}$$

SOLUCIÓN De
$$\mathbf{X}_1' = \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix}$$
 y $\mathbf{X}_2' = \begin{pmatrix} 18e^{6t} \\ 30e^{6t} \end{pmatrix}$ vemos que

$$\mathbf{AX}_{1} = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix} = \begin{pmatrix} e^{-2t} - 3e^{-2t} \\ 5e^{-2t} - 3e^{-2t} \end{pmatrix} = \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix} = \mathbf{X}_{1}',$$

y
$$\mathbf{AX}_2 = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 3e^{6t} \\ 5e^{6t} \end{pmatrix} = \begin{pmatrix} 3e^{6t} + 15e^{6t} \\ 15e^{6t} + 15e^{6t} \end{pmatrix} = \begin{pmatrix} 18e^{6t} \\ 30e^{6t} \end{pmatrix} = \mathbf{X}_2'.$$

Gran parte de la teoría de sistemas de n ecuaciones diferenciales de primer orden es similar a la de las ecuaciones diferenciales de n—ésimo orden.

PROBLEMA CON VALORES INICIALES Sea t_0 que denota un punto en un intervalo I y

$$\mathbf{X}(t_0) = \begin{pmatrix} x_1(t_0) \\ x_2(t_0) \\ \vdots \\ x_n(t_0) \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{X}_0 = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix},$$

donde las γ_i , $i = 1, 2, \ldots, n$ son las constantes dadas. Entonces el problema

Resolver:
$$\mathbf{X}' = \mathbf{A}(t)\mathbf{X} + \mathbf{F}(t)$$

Sujeto a: $\mathbf{X}(t_0) = \mathbf{X}_0$ (7)

es un problema con valores iniciales en el intervalo.

TEOREMA 8.1.1 Existencia de una solución única

Sean los elementos de las matrices A(t) y F(t) funciones continuas en un intervalo común I que contiene al punto t_0 . Entonces existe una solución única del problema con valores iniciales (7) en el intervalo.

SISTEMAS HOMOGÉNEOS En las siguientes definiciones y teoremas se consideran sólo sistemas homogéneos. Sin afirmarlo, siempre se supondrá que las a_{ij} y las f_i son funciones continuas de t en algún intervalo común I.

PRINCIPIO DE SUPERPOSICIÓN El siguiente resultado es un principio de superposición para soluciones de sistemas lineales.

TEOREMA 8.1.2 Principio de superposición

Sea X_1, X_2, \ldots, X_k un conjunto de vectores solución del sistema homogéneo (5) en un intervalo I. Entonces la combinación lineal

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \cdots + c_k \mathbf{X}_k,$$

donde las c_i , i = 1, 2, ..., k son constantes arbitrarias, es también una solución en el intervalo.

307

EJEMPLO 3 Usando el principio de superposición

Debería practicar comprobando que los dos vectores

$$\mathbf{X}_{1} = \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t \\ -\cos t - \sin t \end{pmatrix} \quad \mathbf{y} \quad \mathbf{X}_{2} = \begin{pmatrix} 0 \\ e^{t} \\ 0 \end{pmatrix}$$

son soluciones del sistema

$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \mathbf{X}.$$
 (8)

Por el principio de superposición la combinación lineal

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t \\ -\cos t - \sin t \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ e^t \\ 0 \end{pmatrix}$$

es otra solución del sistema.

DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Estamos interesados principalmente en soluciones linealmente independientes del sistema homogéneo (5).

DEFINICIÓN 8.1.2 Dependencia/independencia lineal

Sea X_1, X_2, \ldots, X_k un conjunto de vectores solución del sistema homogéneo (5) en un intervalo I. Se dice que el conjunto es **linealmente dependiente** en el intervalo si existen constantes c_1, c_2, \ldots, c_k , no todas cero, tales que

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \cdots + c_k\mathbf{X}_k = \mathbf{0}$$

para toda *t* en el intervalo. Si el conjunto de vectores no es linealmente dependiente en el intervalo, se dice que es **linealmente independiente**.

El caso cuando k=2 debe ser claro; dos vectores solución \mathbf{X}_1 y \mathbf{X}_2 son linealmente dependientes si uno es un múltiplo constante del otro y a la inversa. Para k>2 un conjunto de vectores solución es linealmente dependiente si se puede expresar por lo menos un vector solución como una combinación lineal de los otros vectores.

WRONSKIANO En la consideración anterior de la teoría de una sola ecuación diferencial ordinaria se puede introducir el concepto del determinante **Wronskiano** como prueba para la independencia lineal. Se expresa el siguiente teorema sin prueba.

TEOREMA 8.1.3 Criterio para las soluciones linealmente independientes

Sean
$$\mathbf{X}_1 = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix}$$
, $\mathbf{X}_2 = \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix}$, ..., $\mathbf{X}_n = \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix}$

n vectores solución del sistema homogéneo (5) en un intervalo *I*. Entonces el conjunto de vectores solución es linealmente independiente en *I* si y sólo si el **Wronskiano**

$$W(\mathbf{X}_{1},\mathbf{X}_{2},\ldots,\mathbf{X}_{n}) = \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} \neq 0$$
(9)

para toda t en el intervalo.

Se puede demostrar que si $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$ son vectores solución de (5), entonces para toda t en I ya sea $W(\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n) \neq 0$ o $W(\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n) = 0$. Por tanto, si se puede demostrar que $W \neq 0$ para alguna t_0 en I, entonces $W \neq 0$ para toda t y, por tanto, las soluciones son linealmente independientes en el intervalo.

Observe que, a diferencia de la definición de Wronskiano en la sección 4, aquí la definición del determinante (9) no implica derivación.

EJEMPLO 4 Soluciones linealmente independientes

En el ejemplo 2 vimos que $\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ y $\mathbf{X}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ son soluciones del sistema (6). Es evidente que \mathbf{X}_1 y \mathbf{X}_2 son linealmente independientes en el intervalo $(-\infty,\infty)$ puesto que ningún vector es un múltiplo constante del otro. Además, se tiene

$$W(\mathbf{X}_1, \mathbf{X}_2) = \begin{vmatrix} e^{-2t} & 3e^{6t} \\ -e^{-2t} & 5e^{6t} \end{vmatrix} = 8e^{4t} \neq 0$$

para todos los valores reales de t.

DEFINICIÓN 8.1.3 Conjunto fundamental de soluciones

Cualquier conjunto \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n de n vectores solución linealmente independientes del sistema homogéneo (5) en un intervalo I se dice que es un **conjunto fundamental de soluciones** en el intervalo.

TEOREMA 8.1.4 Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para el sistema homogéneo (5) en un intervalo *I*.

Los dos teoremas siguientes son equivalentes a los teoremas $4.1.5~\mathrm{y}~4.1.6$ para sistemas lineales.

TEOREMA 8.1.5 Solución general, sistemas homogéneos

Sea X_1, X_2, \ldots, X_n un conjunto fundamental de soluciones del sistema homogéneo (5) en un intervalo I. Entonces la solución general del sistema en el intervalo es

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \cdots + c_n \mathbf{X}_n,$$

donde las c_i , i = 1, 2, ..., n son constantes arbitrarias.

EJEMPLO 5 Solución general del sistema (6)

Del ejemplo 2 sabemos que $\mathbf{X}_1 = \binom{1}{-1}e^{-2t}$ y $\mathbf{X}_2 = \binom{3}{5}e^{6t}$ son soluciones linealmente independientes de (6) en $(-\infty,\infty)$. Por tanto \mathbf{X}_1 y \mathbf{X}_2 son un conjunto fundamental de soluciones en el intervalo. La solución general del sistema en el intervalo entonces es

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}. \tag{10}$$

EJEMPLO 6 Solución general del sistema (8)

Los vectores

$$\mathbf{X}_{1} = \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t \\ -\cos t - \sin t \end{pmatrix}, \qquad \mathbf{X}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{t}, \qquad \mathbf{X}_{3} = \begin{pmatrix} \sin t \\ -\frac{1}{2}\sin t - \frac{1}{2}\cos t \\ -\sin t + \cos t \end{pmatrix}$$

son soluciones del sistema (8) en el ejemplo 3 (vea el problema 16 en los ejercicios 8.1). Ahora,

$$W(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3) = \begin{vmatrix} \cos t & 0 & \sin t \\ -\frac{1}{2}\cos t + \frac{1}{2}\sin t & e^t & -\frac{1}{2}\sin t - \frac{1}{2}\cos t \\ -\cos t - \sin t & 0 & -\sin t + \cos t \end{vmatrix} = e^t \neq 0$$

para todos los valores reales de t. Se concluye que \mathbf{X}_1 , \mathbf{X}_2 y \mathbf{X}_3 forman un conjunto fundamental de soluciones en $(-\infty, \infty)$. Por lo que la solución general del sistema en el intervalo es la combinación lineal $\mathbf{X} = c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + c_3\mathbf{X}_3$; es decir,

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ -\frac{1}{2}\cos t + \frac{1}{2}\operatorname{sen}t \\ -\cos t - \operatorname{sen}t \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t + c_3 \begin{pmatrix} -\frac{1}{2}\operatorname{sen}t - \frac{1}{2}\cos t \\ -\operatorname{sen}t + \cos t \end{pmatrix}.$$

SISTEMAS NO HOMOGÉNEOS Para sistemas no homogéneos una **solución particular X** $_p$ en el intervalo I es cualquier vector libre de parámetros arbitrarios, cuyos elementos son funciones que satisfacen el sistema (4).

TEOREMA 8.1.6 Solución general: sistemas no homogéneos

Sea X_p una solución dada del sistema no homogéneo (4) en un intervalo I y sea

$$\mathbf{X}_c = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \cdots + c_n \mathbf{X}_n$$

que denota la solución general en el mismo intervalo del sistema homogéneo asociado (5). Entonces la **solución general** del sistema no homogéneo en el intervalo es

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p.$$

La solución general X_c del sistema homogéneo relacionado (5) se llama **función complementaria** del sistema no homogéneo (4).

Solución general: sistema no homogéneo

El vector $\mathbf{X}_p = \begin{pmatrix} 3t - 4 \\ -5t + 6 \end{pmatrix}$ es una solución particular del sistema no homogéneo

$$\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 12t - 11 \\ -3 \end{pmatrix} \tag{11}$$

en el intervalo $(-\infty, \infty)$. (Compruebe esto.) La función complementaria de (11) en el mismo intervalo o la solución general de $\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \mathbf{X}$, como vimos en (10) del

ejemplo 5 que $\mathbf{X}_c = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$. Por tanto, por el teorema 8.1.6

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t} + \begin{pmatrix} 3t - 4 \\ -5t + 6 \end{pmatrix}$$

es la solución general de (11) en $(-\infty, \infty)$.

E|ERC|C|OS 8.1 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-13.

En los problemas l a 6 escriba el sistema lineal en forma matricial.

1.
$$\frac{dx}{dt} = 3x - 5y$$

$$\frac{dy}{dt} = 4x + 8y$$
2.
$$\frac{dx}{dt} = 4x - 7y$$

$$\frac{dy}{dt} = 5x$$

2.
$$\frac{dx}{dt} = 4x - 7$$

$$\frac{dy}{dt} = 5x$$

3.
$$\frac{dx}{dt} = -3x + 4y - 9z$$

$$\frac{dy}{dt} = 6x - y$$

$$\frac{dz}{dt} = 10x + 4y + 3z$$
4.
$$\frac{dx}{dt} = x - y$$

$$\frac{dy}{dt} = x + 2z$$

$$\frac{dz}{dt} = -x + z$$

5.
$$\frac{dx}{dt} = x - y + z + t - 1$$
$$\frac{dy}{dt} = 2x + y - z - 3t^2$$
$$\frac{dz}{dt} = x + y + z + t^2 - t + 2$$

6.
$$\frac{dx}{dt} = -3x + 4y + e^{-t} \operatorname{sen} 2t$$
$$\frac{dy}{dt} = 5x + 9z + 4e^{-t} \operatorname{cos} 2t$$
$$\frac{dz}{dt} = y + 6z - e^{-t}$$

En los problemas 7 a 10, reescriba el sistema dado sin el uso de matrices.

7.
$$\mathbf{X}' = \begin{pmatrix} 4 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$

8.
$$\mathbf{X}' = \begin{pmatrix} 7 & 5 & -9 \\ 4 & 1 & 1 \\ 0 & -2 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} e^{5t} - \begin{pmatrix} 8 \\ 0 \\ 3 \end{pmatrix} e^{-2t}$$

9.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -4 & 1 \\ -2 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} e^{-t} - \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} t$$

10.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -7 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 4 \\ 8 \end{pmatrix} \operatorname{sen} t + \begin{pmatrix} t - 4 \\ 2t + 1 \end{pmatrix} e^{4t}$$

En los problemas 11 a 16, compruebe que el vector \mathbf{X} es una solución del sistema dado.

11.
$$\frac{dx}{dt} = 3x - 4y$$
$$\frac{dy}{dt} = 4x - 7y; \quad \mathbf{X} = \begin{pmatrix} 1\\ 2 \end{pmatrix} e^{-5t}$$

12.
$$\frac{dx}{dt} = -2x + 5y$$

$$\frac{dy}{dt} = -2x + 4y; \quad \mathbf{X} = \begin{pmatrix} 5\cos t \\ 3\cos t - \sin t \end{pmatrix} e^{t}$$

13.
$$\mathbf{X}' = \begin{pmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{pmatrix} \mathbf{X}; \quad \mathbf{X} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} e^{-3t/2}$$

14.
$$\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{X}; \quad \mathbf{X} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^t + \begin{pmatrix} 4 \\ -4 \end{pmatrix} t e^t$$

15.
$$\mathbf{X}' = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix} \mathbf{X}; \quad \mathbf{X} = \begin{pmatrix} 1 \\ 6 \\ -13 \end{pmatrix}$$

16.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \mathbf{X}; \quad \mathbf{X} = \begin{pmatrix} \operatorname{sen} t \\ -\frac{1}{2} \operatorname{sen} t - \frac{1}{2} \cos t \\ -\operatorname{sen} t + \cos t \end{pmatrix}$$

En los problemas 17 a 20, los vectores dados son soluciones de un sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$. Determine si los vectores forman un conjunto fundamental en $(-\infty, \infty)$.

17.
$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-6t}$$

18.
$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$
, $\mathbf{X}_2 = \begin{pmatrix} 2 \\ 6 \end{pmatrix} e^t + \begin{pmatrix} 8 \\ -8 \end{pmatrix} t e^t$

19.
$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix},$$

$$\mathbf{X}_3 = \begin{pmatrix} 3 \\ -6 \\ 12 \end{pmatrix} + t \begin{pmatrix} 2 \\ 4 \\ 12 \end{pmatrix}$$

20.
$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 6 \\ -13 \end{pmatrix}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} e^{-4t}, \quad \mathbf{X}_3 = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} e^{3t}$$

En los problemas 21 a 24 compruebe que el vector \mathbf{X}_p es una solución particular del sistema dado.

21.
$$\frac{dx}{dt} = x + 4y + 2t - 7$$

 $\frac{dy}{dt} = 3x + 2y - 4t - 18; \quad \mathbf{X}_p = \begin{pmatrix} 2 \\ -1 \end{pmatrix} t + \begin{pmatrix} 5 \\ 1 \end{pmatrix}$

22.
$$\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -5 \\ 2 \end{pmatrix}; \quad \mathbf{X}_p = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

23.
$$\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \mathbf{X} - \begin{pmatrix} 1 \\ 7 \end{pmatrix} e^t; \quad \mathbf{X}_p = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + \begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^t$$

24.
$$\mathbf{X}' = \begin{pmatrix} 1 & 2 & 3 \\ -4 & 2 & 0 \\ -6 & 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} \operatorname{sen} 3t; \quad \mathbf{X}_p = \begin{pmatrix} \operatorname{sen} 3t \\ 0 \\ \cos 3t \end{pmatrix}$$

25. Demuestre que la solución general de

$$\mathbf{X}' = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \mathbf{X}$$

en el intervalo $(-\infty, \infty)$ es

$$\mathbf{X} = c_1 \begin{pmatrix} 6 \\ -1 \\ -5 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} e^{-2t} + c_3 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} e^{3t}.$$

26. Demuestre que la solución general de

$$\mathbf{X}' = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^2 + \begin{pmatrix} 4 \\ -6 \end{pmatrix} t + \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

en el intervalo $(-\infty, \infty)$ es

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} + c_2 \begin{pmatrix} 1 \\ -1 + \sqrt{2} \end{pmatrix} e^{-\sqrt{2}t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} t^2 + \begin{pmatrix} -2 \\ 4 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

8.2 SISTEMAS LINEALES HOMOGÉNEOS

REPASO DE MATERIAL

Sección II.3 del apéndice II

INTRODUCCIÓN Vimos en el ejemplo 5 de la sección 8.1 que la solución general del sistema homogéneo $\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \mathbf{X}$ es

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}.$$

Ya que los vectores solución \mathbf{X}_1 y \mathbf{X}_2 tienen la forma

$$\mathbf{X}_i = \binom{k_1}{k_2} e^{\lambda_i t}, \qquad i = 1, 2,$$

donde k_1 , k_2 , λ_1 y λ_2 son constantes, nos inquieta preguntar si siempre es posible hallar una solución de la forma

$$\mathbf{X} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} e^{\lambda t} = \mathbf{K} e^{\lambda t} \tag{1}$$

para la solución del sistema lineal homogéneo general de primer orden

$$\mathbf{X}' = \mathbf{A}\mathbf{X},\tag{2}$$

donde **A** es una matriz $n \times n$ de constantes.

EIGENVALORES Y EIGENVECTORES Si (1) es un vector solución del sistema homogéneo lineal (2), entonces $\mathbf{X}' = \mathbf{K}\lambda e^{\lambda t}$, por lo que el sistema se convierte en $\mathbf{K}\lambda e^{\lambda t} = \mathbf{A}\mathbf{K}e^{\lambda t}$. Después de dividir entre $e^{\lambda t}$ y reacomodando, obtenemos $\mathbf{A}\mathbf{K} = \lambda\mathbf{K}$ o $\mathbf{A}\mathbf{K} - \lambda\mathbf{K} = \mathbf{0}$. Ya que $\mathbf{K} = \mathbf{I}\mathbf{K}$, la última ecuación es igual a

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K} = \mathbf{0}. (3)$$

La ecuación matricial (3) es equivalente a las ecuaciones algebraicas simultáneas

$$(a_{11} - \lambda)k_1 + a_{12}k_2 + \cdots + a_{1n}k_n = 0$$

$$a_{21}k_1 + (a_{22} - \lambda)k_2 + \cdots + a_{2n}k_n = 0$$

$$\vdots$$

$$a_{n1}k_1 + a_{n2}k_2 + \cdots + (a_{nn} - \lambda)k_n = 0.$$

Por lo que para encontrar soluciones \mathbf{X} de (2), necesitamos primero encontrar una solución no trivial del sistema anterior; en otras palabras, debemos encontrar un vector no trivial \mathbf{K} que satisfaga a (3). Pero para que (3) tenga soluciones que no sean la solución obvia $k_1 = k_2 = \cdots = k_n = 0$, se debe tener

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

Esta ecuación polinomial en λ se llama **ecuación característica** de la matriz **A**. Sus soluciones son los **eigenvalores** de **A**. Una solución $\mathbf{K} \neq \mathbf{0}$ de (3) correspondiente a un eigenvalor λ se llama **eigenvector** de **A**. Entonces una solución del sistema homogéneo (2) es $\mathbf{X} = \mathbf{K}e^{\lambda t}$.

En el siguiente análisis se examinan tres casos: eigenvalores reales y distintos (es decir, los eigenvalores no son iguales), eigenvalores repetidos y, por último, eigenvalores complejos.

8.2.1 EIGENVALORES REALES DISTINTOS

Cuando la matriz \mathbf{A} $n \times n$ tiene n eigenvalores reales y distintos $\lambda_1, \lambda_2, \ldots, \lambda_n$ entonces siempre se puede encontrar un conjunto de n eigenvectores linealmente independientes $\mathbf{K}_1, \mathbf{K}_2, \ldots, \mathbf{K}_n$ y

$$\mathbf{X}_1 = \mathbf{K}_1 e^{\lambda_1 t}, \qquad \mathbf{X}_2 = \mathbf{K}_2 e^{\lambda_2 t}, \qquad \dots, \qquad \mathbf{X}_n = \mathbf{K}_n e^{\lambda_n t}$$

es un conjunto fundamental de soluciones de (2) en el intervalo $(-\infty, \infty)$.

TEOREMA 8.2.1 Solución general: Sistemas homogéneos

Sean $\lambda_1, \lambda_2, \ldots, \lambda_n$ eigenvalores reales y distintos de la matriz de coeficientes **A** del sistema homogéneo (2) y sean $\mathbf{K}_1, \mathbf{K}_2, \ldots, \mathbf{K}_n$ los eigenvectores correspondientes. Entonces la **solución general** de (2) en el intervalo $(-\infty, \infty)$ está dada por

$$\mathbf{X} = c_1 \mathbf{K}_1 e^{\lambda_1 t} + c_2 \mathbf{K}_2 e^{\lambda_2 t} + \cdots + c_n \mathbf{K}_n e^{\lambda_n t}.$$

EJEMPLO 1 Eigenvalores distintos

Resuelva

$$\frac{dx}{dt} = 2x + 3y$$

$$\frac{dy}{dt} = 2x + y.$$
(4)

SOLUCIÓN Primero determine los eigenvalores y eigenvectores de la matriz de coeficientes.

De la ecuación característica

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$$

vemos que los eigenvalores son $\lambda_1 = -1$ y $\lambda_2 = 4$.

Ahora para $\lambda_1 = -1$, (3) es equivalente a

$$3k_1 + 3k_2 = 0$$

$$2k_1 + 2k_2 = 0.$$

Por lo que $k_1=-k_2$. Cuando $k_2=-1$, el eigenvector correspondiente es

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Para $\lambda_2 = 4$ tenemos

$$-2k_1 + 3k_2 = 0$$

$$2k_1 - 3k_2 = 0$$

por lo que $k_1 = \frac{3}{2}k_2$; por tanto con $k_2 = 2$ el eigenvector correspondiente es

$$\mathbf{K}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

Puesto que la matriz de coeficientes A es una matriz 2×2 y como hemos encontrado dos soluciones linealmente independientes de (4),

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} \quad \mathbf{y} \quad \mathbf{X}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t},$$

Se concluye que la solución general del sistema es

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{4t}. \tag{5}$$

DIAGRAMA DE FASE Debe considerar que escribir una solución de un sistema de ecuaciones en términos de matrices es simplemente una alternativa al método que se empleó en la sección 4.8, es decir, enumerar cada una de las funciones y la relación entre las constantes. Si sumamos los vectores en el lado derecho de (5) y después igualamos las entradas con las entradas correspondientes en el vector en el lado izquierdo, se obtiene la expresión familiar

$$x = c_1 e^{-t} + 3c_2 e^{4t}, y = -c_1 e^{-t} + 2c_2 e^{4t}.$$

Como se indicó en la sección 8.1, se pueden interpretar estas ecuaciones como ecuaciones paramétricas de curvas en el plano xy o **plano fase.** Cada curva, que corresponde a elecciones específicas de c_1 y c_2 , se llama **trayectoria**. Para la elección de constantes $c_1 = c_2 = 1$ en la solución (5) vemos en la figura 8.2.1, la gráfica de x(t) en el plano tx, la gráfica de y(t) en el plano y y la trayectoria que consiste en los puntos y

a) gráfica de $x = e^{-t} + 3e^{4t}$

b) gráfica de $y = -e^{-t} + 2e^{4t}$

c) trayectoria definida por $x = e^{-t} + 3e^{4t}$, $y = -e^{-t} + 2e^{4t}$ en el plano fase

FIGURA 8.2.1 Una solución particular de (5) produce tres curvas diferentes en tres planos diferentes.

FIGURA 8.2.2 Un diagrama de fase del sistema (4).

en el plano fase. Al conjunto de trayectorias representativas en el plano fase, como se muestra en la figura 8.2.2 se le llama **diagrama fase** para un sistema lineal dado. Lo que parecen *dos* rectas rojas en la figura 8.2.2 son en realidad *cuatro* semirrectas definidas paramétricamente en el primero, segundo, tercero y cuarto cuadrantes con las soluciones \mathbf{X}_2 , $-\mathbf{X}_1$, $-\mathbf{X}_2$ y \mathbf{X}_1 , respectivamente. Por ejemplo, las ecuaciones cartesianas $y = \frac{2}{3}x$, x > 0 y y = -x, x > 0, de las semirrectas en el primer y cuarto cuadrantes se obtuvieron eliminando el parámetro t en las soluciones $x = 3e^{4t}$, $y = 2e^{4t}$ y $x = e^{-t}$, $y = -e^{-t}$, respectivamente. Además, cada eigenvector se puede visualizar como un vector bidimensional que se encuentra a lo largo de una de estas semirrectas. El eigenvector

$$\mathbf{K}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 se encuentra junto con $y = \frac{2}{3}x$ en el primer cuadrante y $\mathbf{K}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

se encuentra junto con y = -x en el cuarto cuadrante. Cada vector comienza en el origen; \mathbf{K}_2 termina en el punto (2, 3) y \mathbf{K}_1 termina en (1, -1).

El origen no es sólo una solución constante x=0, y=0 de todo sistema lineal homogéneo 2×2 , $\mathbf{X}'=\mathbf{A}\mathbf{X}$, sino también es un punto importante en el estudio cualitativo de dichos sistemas. Si pensamos en términos físicos, las puntas de flecha de cada trayectoria en el tiempo t se mueven conforme aumenta el tiempo. Si imaginamos que el tiempo va de $-\infty$ a ∞ , entonces examinando la solución $x=c_1e^{-t}+3c_2e^{4t},$ $y=-c_1e^{-t}+2c_2e^{4t},$ $c_1\neq 0,$ $c_2\neq 0$ muestra que una trayectoria o partícula en movimiento "comienza" asintótica a una de las semirrectas definidas por \mathbf{X}_1 o $-\mathbf{X}_1$ (ya que e^{4t} es despreciable para $t\to -\infty$) y "termina" asintótica a una de las semirrectas definidas por \mathbf{X}_2 y $-\mathbf{X}_2$ (ya que e^{-t} es despreciable para $t\to\infty$).

Observe que la figura 8.2.2 representa un diagrama de fase que es característico de todos los sistemas lineales homogéneos 2×2 $\mathbf{X}'=\mathbf{A}\mathbf{X}$ con eigenvalores reales de signos opuestos. Véase el problema 17 de los ejercicios 8.2. Además, los diagramas de fase en los dos casos cuando los eigenvalores reales y distintos tienen el mismo signo son característicos de esos sistemas 2×2 ; la única diferencia es que las puntas de flecha indican que una partícula se aleja del origen en cualquier trayectoria cuando λ_1 y λ_2 son positivas y se mueve hacia el origen en cualquier trayectoria cuando λ_1 y λ_2 son negativas. Por lo que al origen se le llama **repulsor** en el caso $\lambda_1>0$, $\lambda_2>0$ y **atractor** en el caso $\lambda_1<0$, $\lambda_2<0$. Véase el problema 18 en los ejercicios 8.2. El origen en la figura 8.2.2 no es repulsor ni atractor. La investigación del caso restante cuando $\lambda=0$ es un eigenvalor de un sistema lineal homogéneo de 2×2 se deja como ejercicio. Véase el problema 49 de los ejercicios 8.2.

EJEMPLO 2 Eigenvalores distintos

Resuelva

$$\frac{dx}{dt} = -4x + y + z$$

$$\frac{dy}{dt} = x + 5y - z$$

$$\frac{dz}{dt} = y - 3z.$$
(6)

SOLUCIÓN Usando los cofactores del tercer renglón, se encuentra

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -4 - \lambda & 1 & 1 \\ 1 & 5 - \lambda & -1 \\ 0 & 1 & -3 - \lambda \end{vmatrix} = -(\lambda + 3)(\lambda + 4)(\lambda - 5) = 0,$$

y así los eigenvalores son $\lambda_1 = -3$, $\lambda_2 = -4$ y $\lambda_3 = 5$.

Para $\lambda_1 = -3$, con la eliminación de Gauss-Jordan, se obtiene

$$(\mathbf{A} + 3\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 8 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{\text{operaciones entre renglones}} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Por tanto $k_1=k_3$ y $k_2=0$. La elección $k_3=1$ da un eigenvector y el vector solución correspondiente

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t}. \tag{7}$$

De igual manera, para $\lambda_{\rm 2} = -4$

$$(\mathbf{A} + 4\mathbf{I}|\mathbf{0}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 9 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{\text{operaciones}} \begin{pmatrix} 1 & 0 & -10 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

implica que $k_1=10k_3$ y $k_2=-k_3$. Al elegir $k_3=1$, se obtiene un segundo eigenvector y el vector solución

$$\mathbf{K}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t}. \tag{8}$$

Por último, cuando $\lambda_3 = 5$, las matrices aumentadas

$$(\mathbf{A} + 5\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -9 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \end{pmatrix} \xrightarrow{\text{operaciones}} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

producen

$$\mathbf{K}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix}, \qquad \mathbf{X}_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}. \tag{9}$$

La solución general de (6) es una combinación lineal de los vectores solución en (7), (8) y (9):

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t} + c_3 \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}.$$

USO DE COMPUTADORAS Los paquetes de software como MATLAB, *Mathematica*, *Maple* y DERIVE, ahorran tiempo en la determinación de eigenvalores y eigenvectores de una matriz **A**.

8.2.2 EIGENVALORES REPETIDOS

Por supuesto, no todos los n eigenvalores $\lambda_1, \lambda_2, \ldots, \lambda_n$ de una matriz \mathbf{A} de $n \times n$ deben ser distintos, es decir, algunos de los eigenvalores podrían ser repetidos. Por ejemplo, la ecuación característica de la matriz de coeficientes en el sistema

$$\mathbf{X}' = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} \mathbf{X} \tag{10}$$

se demuestra fácilmente que es $(\lambda+3)^2=0$, y por tanto, $\lambda_1=\lambda_2=-3$ es una raíz de multiplicidad dos. Para este valor se encuentra el único eigenvector

$$\mathbf{K}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \text{por lo que} \quad \mathbf{X}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t}$$
 (11)

es una solución de (10). Pero como es obvio que tenemos interés en formar la solución general del sistema, se necesita continuar con la pregunta de encontrar una segunda solución.

En general, si m es un entero positivo y $(\lambda - \lambda_1)^m$ es un factor de la ecuación característica, mientras que $(\lambda - \lambda_1)^{m+1}$ no es un factor, entonces se dice que λ_1 es un **eigenvalor de multiplicidad** m. En los tres ejemplos que se dan a continuación se ilustran los casos siguientes:

i) Para algunas matrices **A** de $n \times n$ sería posible encontrar m eigenvectores linealmente independientes $\mathbf{K}_1, \mathbf{K}_2, \ldots, \mathbf{K}_m$, correspondientes a un eigenvalor λ_1 , de multiplicidad $m \le n$. En este caso la solución general del sistema contiene la combinación lineal

$$c_1\mathbf{K}_1e^{\lambda_1t}+c_2\mathbf{K}_2e^{\lambda_1t}+\cdots+c_m\mathbf{K}_me^{\lambda_1t}.$$

ii) Si sólo hay un eigenvector propio que corresponde al eingenvalor λ_1 de multiplicidad m, entonces siempre se pueden encontrar m soluciones linealmente independientes de la forma

$$\mathbf{X}_{1} = \mathbf{K}_{11}e^{\lambda_{1}t}
\mathbf{X}_{2} = \mathbf{K}_{21}te^{\lambda_{1}t} + \mathbf{K}_{22}e^{\lambda_{1}t}
\vdots
\mathbf{X}_{m} = \mathbf{K}_{m1}\frac{t^{m-1}}{(m-1)!}e^{\lambda_{1}t} + \mathbf{K}_{m2}\frac{t^{m-2}}{(m-2)!}e^{\lambda_{1}t} + \cdots + \mathbf{K}_{mm}e^{\lambda_{1}t},$$

donde las \mathbf{K}_{ii} son vectores columna.

EIGENVALORES DE MULTIPLICIDAD DOS Se comienza por considerar eigenvalores de multiplicidad dos. En el primer ejemplo se ilustra una matriz para la que podemos encontrar dos eigenvectores distintos que corresponden a un doble eigenvalor.

EJEMPLO 3 Eigenvalores repetidos

Resuelva
$$\mathbf{X}' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{X}.$$

SOLUCIÓN Desarrollando el determinante en la ecuación característica

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = 0$$

se obtiene $-(\lambda+1)^2(\lambda-5)=0$. Se ve que $\lambda_1=\lambda_2=-1$ y $\lambda_3=5$. Para $\lambda_1=-1$, con la eliminación de Gauss-Jordan se obtiene de inmediato

$$(\mathbf{A} + \mathbf{I}|\mathbf{0}) = \begin{pmatrix} 2 & -2 & 2 & 0 \\ -2 & 2 & -2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \xrightarrow{\text{operaciones}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

El primer renglón de la última matriz indica que k_1 – k_2 + k_3 = 0 o k_1 = k_2 – k_3 . Las elecciones k_2 = 1, k_3 = 0 y k_2 = 1, k_3 = 1 producen, a su vez, k_1 = 1 y k_1 = 0. Por lo que dos eigenvectores correspondientes a λ_1 = -1 son

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{K}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Puesto que ningún eigenvector es un múltiplo constante del otro, se han encontrado dos soluciones linealmente independientes,

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t} \quad \mathbf{y} \quad \mathbf{X}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{-t},$$

que corresponden al mismo eigenvalor. Por último, para $\lambda_{_3}=5$ la reducción

$$(\mathbf{A} + 5\mathbf{I}|\mathbf{0}) = \begin{pmatrix} -4 & -2 & 2 & 0 \\ -2 & -4 & -2 & 0 \\ 2 & -2 & -4 & 0 \end{pmatrix} \xrightarrow{\text{operaciones entre renglones}} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

implica que $k_1=k_3$ y $k_2=-k_3$. Al seleccionar $k_3=1$, se obtiene $k_1=1$, $k_2=-1$; por lo que el tercer eigenvector es

$$\mathbf{K}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

Concluimos que la solución general del sistema es

$$\mathbf{X} = c_1 inom{1}{1} e^{-t} + c_2 inom{0}{1} e^{-t} + c_3 inom{1}{-1} e^{5t}.$$

La matriz de coeficientes \mathbf{A} del ejemplo 3 es un tipo especial de matriz conocida como matriz simétrica. Se dice que una matriz \mathbf{A} de $n \times n$ es **simétrica** si su transpuesta \mathbf{A}^T (donde se intercambian renglones y columnas) es igual que \mathbf{A} , es decir, si $\mathbf{A}^T = \mathbf{A}$. Se puede demostrar que si la matriz \mathbf{A} del sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$ es simétrica y tiene elementos reales, entonces siempre es posible encontrar n eigenvectores linealmente independientes $\mathbf{K}_1, \mathbf{K}_2, \ldots, \mathbf{K}_n$, y la solución general de ese sistema es como se muestra en el teorema 8.2.1. Como se muestra en el ejemplo 3, este resultado se cumple aun cuando estén repetidos algunos de los eigenvalores.

SEGUNDA SOLUCIÓN Suponga que λ_1 es un valor propio de multiplicidad dos y que sólo hay un eigenvector asociado con este valor. Se puede encontrar una segunda solución de la forma

$$\mathbf{K} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \qquad \mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}. \tag{12}$$

donde

Para ver esto sustituya (12) en el sistema X' = AX y simplifique:

$$(\mathbf{AK} - \lambda_1 \mathbf{K}) t e^{\lambda_1 t} + (\mathbf{AP} - \lambda_1 \mathbf{P} - \mathbf{K}) e^{\lambda_1 t} = \mathbf{0}.$$

Puesto que la última ecuación es válida para todos los valores de t, debemos tener

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{K} = \mathbf{0} \tag{13}$$

$$\mathbf{y} \qquad \qquad (\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{P} = \mathbf{K}. \tag{14}$$

La ecuación (13) simplemente establece que K debe ser un vector característico de A asociado con λ_1 . Al resolver (13), se encuentra una solución $\mathbf{X}_1 = \mathbf{K}e^{\lambda_1 t}$. Para encontrar la segunda solución X_2 , sólo se necesita resolver el sistema adicional (14) para obtener el vector \mathbf{P} .

EJEMPLO 4 Eigenvalores repetidos

Encuentre la solución general del sistema dado en (10).

SOLUCIÓN De (11) se sabe que $\lambda_1 = -3$ y que una solución es $\mathbf{X}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{-3t}$. Identificando $\mathbf{K} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ y $\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$, encontramos de (14) que ahora debemos re-

$$(\mathbf{A} + 3\mathbf{I})\mathbf{P} = \mathbf{K}$$
 o $6p_1 - 18p_2 = 3$
 $2p_1 - 6p_2 = 1$.

Puesto que resulta obvio que este sistema es equivalente a una ecuación, se tiene un número infinito de elecciones de p_1 y p_2 . Por ejemplo, al elegir $p_1=1$ se encuentra que $p_2 = \frac{1}{6}$. Sin embargo, por simplicidad elegimos $p_1 = \frac{1}{2}$ por lo que $p_2 = 0$. Entonces

$$\mathbf{P}=inom{1}{2}0$$
. Así de (12) se encuentra que $\mathbf{X}_2=inom{3}{1}te^{-3t}+inom{1}{2}e^{-3t}$. La solución gene-

ral de (10) es
$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2$$
, o

$$\mathbf{X} = c_1 \binom{3}{1} e^{-3t} + c_2 \left[\binom{3}{1} t e^{-3t} + \binom{\frac{1}{2}}{0} e^{-3t} \right].$$

Al asignar diversos valores a c_1 y c_2 en la solución del ejemplo 4, se pueden trazar las trayectorias del sistema en (10). En la figura 8.2.3 se presenta un diagrama fase de (10). Las soluciones \mathbf{X}_1 y $-\mathbf{X}_1$ determinan dos semirrectas $y = \frac{1}{3}x, x > 0$ y $y = \frac{1}{3}x$, x < 0 respectivamente, mostradas en rojo en la figura. Debido a que el único eigenvalor es negativo y $e^{-3t} \rightarrow 0$ conforme $t \rightarrow \infty$ en *cada* trayectoria, se tiene $(x(t), y(t)) \rightarrow (0, 0)$ conforme $t \rightarrow \infty$. Esta es la razón por la que las puntas de las flechas de la figura 8.2.3 indican que una partícula en cualquier trayectoria se mueve hacia el origen conforme aumenta el tiempo y la razón de que en este caso el origen sea un atractor. Además, una partícula en movimiento o trayectoria $x = 3c_1e^{-3t} + c_2(3te^{-3t} + \frac{1}{2}e^{-3t}), \ y = c_1e^{-3t} + c_2te^{-3t}, c_2 \neq 0$ tiende a (0, 0) tangencialmente a una de las semirrectas conforme $t \to \infty$. En contraste, cuando el eigenvalor repetido es positivo, la situación se invierte y el origen es un repulsor. Véase el problema 21 de los ejercicios 8.2. Similar a la figura 8.2.2, la figura 8.2.3 es característica de todos los sistemas lineales homogéneos $\mathbf{X}' = \mathbf{A}\mathbf{X}$, 2 × 2 que tienen dos eigenvalores negativos repetidos. Véase el problema 32 en los ejercicios 8.2.

EIGENVALOR DE MULTIPLICIDAD TRES Cuando la matriz de coeficientes A tiene sólo un eigenvector asociado con un eigenvalor λ_1 de multiplicidad tres, podemos

FIGURA 8.2.3 Diagrama de fase del sistema (10).

encontrar una segunda solución de la forma (12) y una tercera solución de la forma

$$\mathbf{X}_3 = \mathbf{K} \frac{t^2}{2} e^{\lambda_1 t} + \mathbf{P} t e^{\lambda_1 t} + \mathbf{Q} e^{\lambda_1 t}, \tag{15}$$

donde

$$\mathbf{K} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}, \qquad \mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}, \qquad \mathbf{y} \qquad \mathbf{Q} = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix}.$$

Al sustituir (15) en el sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$, se encuentra que los vectores columna \mathbf{K} , \mathbf{P} y \mathbf{Q} deben satisfacer

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{K} = \mathbf{0} \tag{16}$$

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{P} = \mathbf{K} \tag{17}$$

$$\mathbf{y} \qquad \qquad (\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{Q} = \mathbf{P}. \tag{18}$$

Por supuesto, las soluciones (16) y (17) se pueden usar para formar las soluciones X_1 y X_2 .

EJEMPLO 5 Eigenvalores repetidos

Resuelva
$$\mathbf{X}' = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{X}$$
.

SOLUCIÓN La ecuación característica $(\lambda - 2)^3 = 0$ demuestra que $\lambda_1 = 2$ es un eigenvalor de multiplicidad tres. Al resolver $(\mathbf{A} - 2\mathbf{I})\mathbf{K} = \mathbf{0}$, se encuentra el único eigenvector

$$\mathbf{K} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

A continuación se resuelven primero el sistema (A-2I)P=K y después el sistema (A-2I)Q=P y se encuentra que

$$\mathbf{P} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{Q} = \begin{pmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{pmatrix}$$

Usando (12) y (15), vemos que la solución general del sistema es

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{2t} \right] + c_3 \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \frac{t^2}{2} e^{2t} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0 \\ -\frac{6}{5} \\ \frac{1}{5} \end{pmatrix} e^{2t} \right]. \quad \blacksquare$$

COMENTARIOS

Cuando un eigenvalor λ_1 tiene multiplicidad m, se pueden determinar m eigenvectores linealmente independientes o el número de eigenvectores correspondientes es menor que m. Por tanto, los dos casos listados en la página 316 no son todas las posibilidades bajo las que puede ocurrir un eigenvalor repetido. Puede suceder, por ejemplo, que una matriz de 5×5 tenga un eigenvalor de multiplicidad cinco y existan tres eigenvectores correspondientes linealmente independientes. Véanse los problemas 31 y 50 de los ejercicios 8.2.

8.2.3 EIGENVALORES COMPLEJOS

Si $\lambda_1 = \alpha + \beta i$ y $\lambda_2 = \alpha - \beta i$, $\beta > 0$, $i^2 = -1$ son eigenvalores complejos de la matriz de coeficientes **A**, entonces se puede esperar de hecho que sus eigenvectores correspondientes también tengan entradas complejas.*

Por ejemplo, la ecuación característica del sistema

$$\frac{dx}{dt} = 6x - y$$

$$\frac{dy}{dt} = 5x + 4y$$
(19)

ρ9

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 6 - \lambda & -1 \\ 5 & 4 - \lambda \end{vmatrix} = \lambda^2 - 10\lambda + 29 = 0.$$

De la fórmula cuadrática se encuentra $\lambda_1 = 5 + 2i$, $\lambda_2 = 5 - 2i$.

Ahora para $\lambda_1 = 5 + 2i$ se debe resolver

$$(1 - 2i)k_1 - k_2 = 0$$
$$5k_1 - (1 + 2i)k_2 = 0.$$

Puesto que $k_2 = (1-2i)k_1$, la elección $k_1 = 1$ da el siguiente eigenvector y el vector solución correspondiente:

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix}, \qquad \mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} e^{(5+2i)t}.$$

De manera similar, para $\lambda_2 = 5 - 2i$ encontramos

$$\mathbf{K}_2 = \begin{pmatrix} 1 \\ 1+2i \end{pmatrix}, \qquad \mathbf{X}_2 = \begin{pmatrix} 1 \\ 1+2i \end{pmatrix} e^{(5-2i)t}.$$

Podemos comprobar por medio del Wronskiano que estos vectores solución son linealmente independientes y por tanto la solución general de (19) es

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} e^{(5+2i)t} + c_2 \begin{pmatrix} 1 \\ 1 + 2i \end{pmatrix} e^{(5-2i)t}. \tag{20}$$

Observe que las entradas en \mathbf{K}_2 correspondientes a λ_2 son los conjugados de las entradas en \mathbf{K}_1 correspondientes a λ_1 . El conjugado de λ_1 es, por supuesto, λ_2 . Esto se escribe como $\lambda_2 = \overline{\lambda}_1$ y $\mathbf{K}_2 = \overline{\mathbf{K}}_1$. Hemos ilustrado el siguiente resultado general.

TEOREMA 8.2.2 Soluciones correspondientes a un eigenvalor complejo

Sea **A** una matriz de coeficientes que tiene entradas reales del sistema homogéneo (2) y sea \mathbf{K}_1 un eigenvector correspondiente al eigenvalor complejo $\lambda_1 = \alpha + \beta i$, α y β reales. Entonces

$$\mathbf{K}_1 e^{\lambda_1 t}$$
 y $\overline{\mathbf{K}}_1 e^{\overline{\lambda}_1 t}$

son soluciones de (2).

^{*}Cuando la ecuación característica tiene coeficientes reales, los eigenvalores complejos siempre aparecen en pares conjugados.

[†]Note que la segunda ecuación es simplemente (1 + 2i) veces la primera.

Es deseable y relativamente fácil reescribir una solución tal como (20) en términos de funciones reales. Con este fin primero usamos la fórmula de Euler para escribir

$$e^{(5+2i)t} = e^{5t}e^{2ti} = e^{5t}(\cos 2t + i \sin 2t)$$

$$e^{(5-2i)t} = e^{5t}e^{-2ti} = e^{5t}(\cos 2t - i \sin 2t).$$

Entonces, multiplicando los números complejos, agrupando términos y reemplazando $c_1 + c_2$ por C_1 y $(c_1 - c_2)i$ por C_2 , (20) se convierte en

$$\mathbf{X} = C_1 \mathbf{X}_1 + C_2 \mathbf{X}_2, \tag{21}$$

donde

$$\mathbf{X}_1 = \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos 2t - \begin{pmatrix} 0 \\ -2 \end{pmatrix} \sin 2t \right] e^{5t}$$

$$\mathbf{X}_2 = \left[\begin{pmatrix} 0 \\ -2 \end{pmatrix} \cos 2t + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin 2t \right] e^{5t}.$$

Ahora es importante entender que los vectores \mathbf{X}_1 y \mathbf{X}_2 en (21) constituyen un conjunto linealmente independiente de soluciones reales del sistema original. Estamos justificados para despreciar la relación entre C_1 , C_2 y c_1 , c_2 , y podemos considerar C_1 y C_2 como totalmente arbitrarias y reales. En otras palabras, la combinación lineal (21) es una solución general alternativa de (19). Además, con la forma real dada en (21) podemos obtener un diagrama de fase del sistema dado en (19). A partir de (21) podemos encontrar que x(t) y y(t) son

$$x = C_1 e^{5t} \cos 2t + C_2 e^{5t} \sin 2t$$

$$y = (C_1 - 2C_2) e^{5t} \cos 2t + (2C_1 + C_2) e^{5t} \sin 2t.$$

Al graficar las trayectorias (x(t),y(t)) para diferentes valores de C_1 y C_2 , se obtiene el diagrama de fase de (19) que se muestra en la figura 8.2.4. Ya que la parte real de λ_1 es 5>0, $e^{5t}\to\infty$ conforme $t\to\infty$. Es por esto que las puntas de flecha de la figura 8.2.4 apuntan alejándose del origen; una partícula en cualquier trayectoria se mueve en espiral alejándose del origen conforme $t\to\infty$. El origen es un repulsor.

El proceso con el que se obtuvieron las soluciones reales en (21) se puede generalizar. Sea \mathbf{K}_1 un eigenvector característico de la matriz de coeficientes \mathbf{A} (con elementos reales) que corresponden al eigenvalor complejo $\lambda_1 = \alpha + i\beta$. Entonces los vectores solución del teorema 8.2.2 se pueden escribir como

$$\mathbf{K}_{1}e^{\lambda_{1}t} = \mathbf{K}_{1}e^{\alpha t}e^{i\beta t} = \mathbf{K}_{1}e^{\alpha t}(\cos\beta t + i\sin\beta t)$$
$$\overline{\mathbf{K}}_{1}e^{\overline{\lambda}_{1}t} = \overline{\mathbf{K}}_{1}e^{\alpha t}e^{-i\beta t} = \overline{\mathbf{K}}_{1}e^{\alpha t}(\cos\beta t - i\sin\beta t).$$

Por el principio de superposición, teorema 8.1.2, los siguientes vectores también son soluciones:

$$\mathbf{X}_{1} = \frac{1}{2} (\mathbf{K}_{1} e^{\lambda_{1} t} + \overline{\mathbf{K}}_{1} e^{\overline{\lambda}_{1} t}) = \frac{1}{2} (\mathbf{K}_{1} + \overline{\mathbf{K}}_{1}) e^{\alpha t} \cos \beta t - \frac{i}{2} (-\mathbf{K}_{1} + \overline{\mathbf{K}}_{1}) e^{\alpha t} \sin \beta t$$

$$\mathbf{X}_{2} = \frac{i}{2} (-\mathbf{K}_{1} e^{\lambda_{1} t} + \overline{\mathbf{K}}_{1} e^{\overline{\lambda}_{1} t}) = \frac{i}{2} (-\mathbf{K}_{1} + \overline{\mathbf{K}}_{1}) e^{\alpha t} \cos \beta t + \frac{1}{2} (\mathbf{K}_{1} + \overline{\mathbf{K}}_{1}) e^{\alpha t} \sin \beta t.$$

Tanto $\frac{1}{2}(z+\overline{z})=a$ como $\frac{1}{2}i(-z+\overline{z})=b$ son números *reales* para *cualquier* número complejo z=a+ib. Por tanto, los elementos de los vectores columna $\frac{1}{2}(\mathbf{K}_1+\overline{\mathbf{K}}_1)$ y $\frac{1}{2}i(-\mathbf{K}_1+\overline{\mathbf{K}}_1)$ son números reales. Definir

$$\mathbf{B}_{1} = \frac{1}{2} \left(\mathbf{K}_{1} + \overline{\mathbf{K}}_{1} \right) \quad \mathbf{y} \quad \mathbf{B}_{2} = \frac{i}{2} \left(-\mathbf{K}_{1} + \overline{\mathbf{K}}_{1} \right), \tag{22}$$

conduce al siguiente teorema.

FIGURA 8.2.4 Un diagrama de fase del sistema (19).

TEOREMA 8.2.3 Soluciones reales que corresponden a un eigenvalor complejo

Sea $\lambda_1 = \alpha + i\beta$ un eigenvalor complejo de la matriz de coeficientes **A** en el sistema homogéneo (2) y sean \mathbf{B}_1 y \mathbf{B}_2 los vectores columna definidos en (22). Entonces

$$\mathbf{X}_{1} = [\mathbf{B}_{1} \cos \beta t - \mathbf{B}_{2} \sin \beta t] e^{\alpha t}$$

$$\mathbf{X}_{2} = [\mathbf{B}_{2} \cos \beta t + \mathbf{B}_{1} \sin \beta t] e^{\alpha t}$$
(23)

son soluciones linealmente independientes de (2) en $(-\infty, \infty)$.

Las matrices \mathbf{B}_1 y \mathbf{B}_2 en (22) con frecuencia se denotan por

$$\mathbf{B}_1 = \operatorname{Re}(\mathbf{K}_1) \quad \mathbf{y} \quad \mathbf{B}_2 = \operatorname{Im}(\mathbf{K}_1) \tag{24}$$

ya que estos vectores son, respectivamente, las partes real e imaginaria del eigenvector \mathbf{K}_1 . Por ejemplo, (21) se deduce de (23) con

$$\mathbf{K}_{1} = \begin{pmatrix} 1 \\ 1 - 2i \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -2 \end{pmatrix},$$

$$\mathbf{B}_{1} = \operatorname{Re}(\mathbf{K}_{1}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{y} \quad \mathbf{B}_{2} = \operatorname{Im}(\mathbf{K}_{1}) = \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

EJEMPLO 6 Eigenvalores complejos

Resuelva el problema con valores iniciales

$$\mathbf{X}' = \begin{pmatrix} 2 & 8 \\ -1 & -2 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}. \tag{25}$$

SOLUCIÓN Primero se obtienen los eigenvalores a partir de

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 8 \\ -1 & -2 - \lambda \end{vmatrix} = \lambda^2 + 4 = 0.$$

los eigenvalores son $\lambda_1 = 2i$ y $\lambda_2 = \overline{\lambda_1} = -2i$. Para λ_1 el sistema

$$(2 - 2i) k_1 + 8k_2 = 0$$
$$-k_1 + (-2 - 2i)k_2 = 0$$

da $k_1 = -(2 + 2i)k_2$. Eligiendo $k_2 = -1$, se obtiene

$$\mathbf{K}_1 = \begin{pmatrix} 2+2i \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + i \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

Ahora de (24) formamos

$$\mathbf{B}_1 = \operatorname{Re}(\mathbf{K}_1) = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \quad \text{y} \quad \mathbf{B}_2 = \operatorname{Im}(\mathbf{K}_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

Puesto que $\alpha=0$, se tiene a partir de (23) que la solución general del sistema es

$$\mathbf{X} = c_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cos 2t - 2 \cos 2t \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} \cos 2t + 2 \cos 2t$$

$$= c_1 \begin{bmatrix} 2\cos 2t - 2\sin 2t \\ -\cos 2t \end{bmatrix} + c_2 \begin{bmatrix} 2\cos 2t + 2\sin 2t \\ -\sin 2t \end{bmatrix}. \tag{26}$$

FIGURA 8.2.5 Un diagrama de fase del sistema (25).

Algunas gráficas de las curvas o trayectorias definidas por la solución (26) del sistema se ilustran en el diagrama de fase de la figura 8.2.5. Ahora la condición inicial $\mathbf{X}(0) = \binom{2}{-1}$, de forma equivalente x(0) = 2 y y(0) = -1 produce el sistema algebraico $2c_1 + 2c_2 = 2$, $-c_1 = -1$, cuya solución es $c_1 = 1$, $c_2 = 0$. Así la solución para el problema es $\mathbf{X} = \binom{2\cos 2t - 2\sin 2t}{-\cos 2t}$. La trayectoria específica definida paramétricamente por la solución particular $x = 2\cos 2t - 2\sin 2t$, $y = -\cos 2t$ es la curva en rojo de la figura 8.2.5. Observe que esta curva pasa por (2,-1).

COMENTARIOS

En esta sección hemos examinado solamente sistemas homogéneos de ecuaciones lineales de primer orden en forma normal $\mathbf{X}' = \mathbf{A}\mathbf{X}$. Pero con frecuencia el modelo matemático de un sistema dinámico físico es un sistema homogéneo de segundo orden cuya forma normal es $\mathbf{X}'' = \mathbf{A}\mathbf{X}$. Por ejemplo, el modelo para los resortes acoplados en (1) de la sección 7.6.

$$m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1)$$

$$m_2 x_2'' = -k_2 (x_2 - x_1),$$
(27)

se puede escribir como donde

$$\mathbf{M}\mathbf{X}'' = \mathbf{K}\mathbf{X},$$

$$\mathbf{M} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}, \qquad \mathbf{K} = \begin{pmatrix} -k_1 - k_2 & k_2 \\ k_2 & -k_2 \end{pmatrix}, \quad \mathbf{y} \quad \mathbf{X} = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}.$$

Puesto que M es no singular, se puede resolver X'' como X'' = AX, donde $A = M^{-1}K$. Por lo que (27) es equivalente a

$$\mathbf{X}'' = \begin{pmatrix} -\frac{k_1}{m_1} - \frac{k_2}{m_1} & \frac{k_2}{m_1} \\ \frac{k_2}{m_2} & -\frac{k_2}{m_2} \end{pmatrix} \mathbf{X}.$$
 (28)

Los métodos de esta sección se pueden usar para resolver este sistema en dos formas:

• Primero, el sistema original (27) se puede transformar en un sistema de primer orden por medio de sustituciones. Si se hace $x'_1 = x_3$ y $x'_2 = x_4$, entonces $x'_3 = x''_1$ y $x'_4 = x''_2$ por tanto (27) es equivalente a un sistema de *cuatro* ED lineales de primer orden.

$$x'_{1} = x_{3}$$

$$x'_{2} = x_{4}$$

$$x'_{3} = -\left(\frac{k_{1}}{m_{1}} + \frac{k_{2}}{m_{1}}\right)x_{1} + \frac{k_{2}}{m_{1}}x_{2} \quad \text{o} \quad \mathbf{X}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_{1}}{m_{1}} - \frac{k_{2}}{m_{1}} & \frac{k_{2}}{m_{1}} & 0 & 0 \\ \frac{k_{2}}{m_{2}} & -\frac{k_{2}}{m_{2}} & 0 & 0 \end{pmatrix} \mathbf{X}. \quad (29)$$

Al encontrar los eigenvalores y los eigenvectores de la matriz de coeficientes **A** en (29), vemos que la solución de este sistema de primer orden proporciona el estado completo del sistema físico, las posiciones de las masas respecto a las posiciones de equilibrio $(x_1 \ y \ x_2)$ así como también las velocidades de las masas $(x_3 \ y \ x_4)$ en el tiempo t. Véase el problema 48a en los ejercicios 8.2.

Segundo, debido a que (27) describe el movimiento libre no amortiguado, se puede argumentar que las soluciones de valores reales del sistema de segundo orden (28) tendrán la forma

$$\mathbf{X} = \mathbf{V}\cos\omega t \quad \mathbf{y} \quad \mathbf{X} = \mathbf{V}\sin\omega t,$$
 (30)

donde V es una matriz columna de constantes. Sustituyendo cualquiera de las funciones de (30) en X'' = AX se obtiene $(A + \omega^2 I)V = 0$. (Comprobar.) Identificando con (3) de esta sección se concluye que $\lambda = -\omega^2$ representa un eigenvalor y V un eigenvector correspondiente de A. Se puede demostrar que los eigenvalores $\lambda_i = -\omega_i^2$, i = 1, 2 de **A** son negativos y por tanto $\omega_i = \sqrt{-\lambda_i}$ es un número real y representa una frecuencia de vibración (circular) (véase (4) de la sección 7.6). Con superposición de soluciones, la solución general de (28) es entonces

$$\mathbf{X} = c_1 \mathbf{V}_1 \cos \omega_1 t + c_2 \mathbf{V}_1 \sin \omega_1 t + c_3 \mathbf{V}_2 \cos \omega_2 t + c_4 \mathbf{V}_2 \sin \omega_2 t$$

$$= (c_1 \cos \omega_1 t + c_2 \sin \omega_1 t) \mathbf{V}_1 + (c_3 \cos \omega_2 t + c_4 \sin \omega_2 t) \mathbf{V}_2,$$
(31)

donde V_1 y V_2 son, a su vez, eigenvectores reales de A correspondientes a

El resultado dado en (31) se generaliza. Si $-\omega_1^2, -\omega_2^2, \ldots, -\omega_n^2$ son eigenvalores negativos y distintos y V_1, V_2, \ldots, V_n son los eigenvectores correspondientes reales de la matriz $n \times n$ de coeficientes A, entonces el sistema homogéneo de segundo orden X'' = AX tiene la solución general

$$\mathbf{X} = \sum_{i=1}^{n} (a_i \cos \omega_i t + b_i \sin \omega_i t) \mathbf{V}_i, \tag{32}$$

donde a y b representan constantes arbitrarias. Véase el problema 48b en los ejercicios 8.2.

E|ERC|C|OS 8.2 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-13.

EIGENVALORES REALES DISTINTOS

En los problemas la 12 determine la solución general del sistema dado.

1.
$$\frac{dx}{dt} = x + 2y$$
$$\frac{dy}{dt} = 4x + 3y$$

2.
$$\frac{dx}{dt} = 2x + 2y$$
$$\frac{dy}{dt} = x + 3y$$

3.
$$\frac{dx}{dt} = -4x + 2y$$
$$\frac{dy}{dt} = -\frac{5}{2}x + 2y$$

3.
$$\frac{dx}{dt} = -4x + 2y$$

$$\frac{dy}{dt} = -\frac{5}{2}x + 2y$$
4.
$$\frac{dx}{dt} = -\frac{5}{2}x + 2y$$

$$\frac{dy}{dt} = \frac{3}{4}x - 2y$$

5.
$$\mathbf{X}' = \begin{pmatrix} 10 & -5 \\ 8 & -12 \end{pmatrix} \mathbf{X}$$
 6. $\mathbf{X}' = \begin{pmatrix} -6 & 2 \\ -3 & 1 \end{pmatrix} \mathbf{X}$

$$\mathbf{6.} \ \mathbf{X}' = \begin{pmatrix} -6 & 2 \\ -3 & 1 \end{pmatrix} \mathbf{X}$$

7.
$$\frac{dx}{dt} = x + y - z$$
$$\frac{dy}{dt} = 2y$$
$$\frac{dz}{dt} = y - z$$

8.
$$\frac{dx}{dt} = 2x - 7y$$
$$\frac{dy}{dt} = 5x + 10y + 4z$$
$$\frac{dz}{dt} = 5y + 2z$$

$$\mathbf{9.} \ \mathbf{X}' = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} \mathbf{X}$$

10.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mathbf{X}$$

11.
$$\mathbf{X}' = \begin{pmatrix} -1 & -1 & 0 \\ \frac{3}{4} & -\frac{3}{2} & 3 \\ \frac{1}{8} & \frac{1}{4} & -\frac{1}{2} \end{pmatrix} \mathbf{X}$$

12.
$$\mathbf{X}' = \begin{pmatrix} -1 & 4 & 2 \\ 4 & -1 & -2 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{X}$$

En los problemas 13 y 14, resuelva el problema con valores

13.
$$\mathbf{X}' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

14.
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 4 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

Tarea para el laboratorio de computación

En los problemas 15 y 16, use un SAC o software de álgebra lineal como ayuda para determinar la solución general del sis-

15.
$$\mathbf{X}' = \begin{pmatrix} 0.9 & 2.1 & 3.2 \\ 0.7 & 6.5 & 4.2 \\ 1.1 & 1.7 & 3.4 \end{pmatrix} \mathbf{X}$$

16.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 2 & -1.8 & 0 \\ 0 & 5.1 & 0 & -1 & 3 \\ 1 & 2 & -3 & 0 & 0 \\ 0 & 1 & -3.1 & 4 & 0 \\ -2.8 & 0 & 0 & 1.5 & 1 \end{pmatrix} \mathbf{X}$$

- 17. a) Utilice software para obtener el diagrama de fase del sistema en el problema 5. Si es posible, incluya puntas de flecha como en la figura 8.2.2. También incluya cuatro semirrectas en el diagrama de fase.
 - b) Obtenga las ecuaciones cartesianas de cada una de las cuatro semirrectas del inciso a).
 - Dibuje los eigenvectores en el diagrama de fase del c)
- **18.** Encuentre los diagramas de fase para los sistemas de los problemas 2 y 4. Para cada sistema determine las trayectorias de semirrecta e incluya estas rectas en el diagrama de fase.

EIGENVALORES REPETIDOS

En los problemas 19 a 28 encuentre la solución general del sistema.

19.
$$\frac{dx}{dt} = 3x - y$$
$$\frac{dy}{dt} = 9x - 3y$$

20.
$$\frac{dx}{dt} = -6x + 5y$$
$$\frac{dy}{dt} = -5x + 4y$$

$$\mathbf{21.} \ \mathbf{X}' = \begin{pmatrix} -1 & 3 \\ -3 & 5 \end{pmatrix} \mathbf{X}$$

$$\mathbf{22.} \quad \mathbf{X}' = \begin{pmatrix} 12 & -9 \\ 4 & 0 \end{pmatrix} \mathbf{X}$$

23.
$$\frac{dx}{dt} = 3x - y - z$$

$$\frac{dy}{dt} = x + y - z$$

$$\frac{dz}{dt} = x - y + z$$

23.
$$\frac{dx}{dt} = 3x - y - z$$

$$\frac{dy}{dt} = x + y - z$$

$$\frac{dz}{dt} = x - y + z$$
24.
$$\frac{dx}{dt} = 3x + 2y + 4z$$

$$\frac{dy}{dt} = 2x + 2z$$
37.
$$X' = \begin{pmatrix} 4 & -5 \\ 5 & -4 \end{pmatrix} X$$
38.
$$X' = \begin{pmatrix} 1 & -8 \\ 1 & -3 \end{pmatrix} X$$

$$\frac{dz}{dt} = 4x + 2y + 3z$$
39.
$$\frac{dx}{dt} = z$$
40.
$$\frac{dx}{dt} = 2x + y + 2z$$

25.
$$\mathbf{X}' = \begin{pmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix} \mathbf{X}$$
 26. $\mathbf{X}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 1 \end{pmatrix} \mathbf{X}$ $\frac{dy}{dt} = -z$

26.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 1 \end{pmatrix} \mathbf{X}$$

27.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{X}$$

28.
$$\mathbf{X}' = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix} \mathbf{X}$$

En los problemas 29 y 30, resuelva el problema de valores iniciales

29.
$$\mathbf{X}' = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

30.
$$\mathbf{X}' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

31. Demuestre que la matriz de 5×5

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

tiene un eigenvalor λ , de multiplicidad 5. Demuestre que se pueden determinar tres eigenvectores linealmente independientes correspondientes a λ_1 .

Tarea para el laboratorio de computación

32. Determine los diagramas de fase para los sistemas de los problemas 20 y 21. Para cada sistema determine cualquier trayectoria de semirrecta e incluya estas líneas en el diagrama de fase.

EIGENVALORES COMPLEJOS

En los problemas 33 a 44, determine la solución general del sistema dado.

33.
$$\frac{dx}{dt} = 6x - y$$
$$\frac{dy}{dt} = 5x + 2y$$

33.
$$\frac{dx}{dt} = 6x - y$$
$$\frac{dy}{dt} = 5x + 2y$$
$$34. \frac{dx}{dt} = x + y$$
$$\frac{dy}{dt} = -2x - y$$

35.
$$\frac{dx}{dt} = 5x + y$$

$$\frac{dy}{dt} = -2x + 3y$$
36.
$$\frac{dx}{dt} = 4x + 5y$$

$$\frac{dy}{dt} = -2x + 6y$$

36.
$$\frac{dx}{dt} = 4x + 5y$$
$$\frac{dy}{dt} = -2x + 6y$$

$$\mathbf{37.} \ \mathbf{X}' = \begin{pmatrix} 4 & -5 \\ 5 & -4 \end{pmatrix} \mathbf{X}$$

38.
$$\mathbf{X}' = \begin{pmatrix} 1 & -8 \\ 1 & -3 \end{pmatrix} \mathbf{X}'$$

39.
$$\frac{dx}{dt} = z$$
$$\frac{dy}{dt} = -z$$
$$\frac{dz}{dt} = y$$

40.
$$\frac{dx}{dt} = 2x + y + 2z$$
$$\frac{dy}{dt} = 3x + 6z$$
$$\frac{dz}{dt} = -4x - 3z$$

27.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{X}$$
 28. $\mathbf{X}' = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix} \mathbf{X}$ **41.** $\mathbf{X}' = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \mathbf{X}$ **42.** $\mathbf{X}' = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4 \end{pmatrix} \mathbf{X}$

42.
$$\mathbf{X}' = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4 \end{pmatrix} \mathbf{X}$$

43.
$$\mathbf{X}' = \begin{pmatrix} 2 & 5 & 1 \\ -5 & -6 & 4 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{X}$$
 44. $\mathbf{X}' = \begin{pmatrix} 2 & 4 & 4 \\ -1 & -2 & 0 \\ -1 & 0 & -2 \end{pmatrix} \mathbf{X}$

En los problemas 45 y 46, resuelva el problema con valores iniciales.

45.
$$\mathbf{X}' = \begin{pmatrix} 1 & -12 & -14 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 4 \\ 6 \\ -7 \end{pmatrix}$$

46.
$$\mathbf{X}' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$$

Tarea para el laboratorio de computación

- **47.** Determine los diagramas de fase para los sistemas de los problemas 36, 37 y 38.
- 48. a) Resuelva (2) de la sección 7.6 usando el primer método descrito en los *Comentarios* (página 323), es decir, exprese (2) de la sección 7.6 como un sistema de cuatro ecuaciones lineales de primer orden. Use un SAC o software de álgebra lineal como ayuda para determinar los eigenvalores y los eigenvectores de una matriz de 4 × 4. Luego aplique las condiciones iniciales a su solución general para obtener (4) de la sección 7.6.
 - b) Resuelva (2) de la sección 7.6 usando el segundo método descrito en los *Comentarios*, es decir, exprese (2) de la sección 7.6 como un sistema de dos ecuaciones

lineales de segundo orden. Suponga soluciones de la forma $\mathbf{X} = \mathbf{V}$ sen ωt y $\mathbf{X} = \mathbf{V}$ cos ωt . Encuentre los eigenvalores y eigenvectores de una matriz de 2×2 . Como en el inciso a), obtenga (4) de la sección 7.6.

Problemas para analizar

49. Resuelva cada uno de los siguientes sistemas.

a)
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{X}$$
 b) $\mathbf{X}' = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \mathbf{X}$

Encuentre un diagrama de fase de cada sistema. ¿Cuál es la importancia geométrica de la recta y = -x en cada diagrama?

- **50.** Considere la matriz de 5×5 dada en el problema 31. Resuelva el sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$ sin la ayuda de métodos matriciales, pero escriba la solución general usando notación matricial. Use la solución general como base para un análisis de cómo se puede resolver el sistema usando métodos matriciales de esta sección. Lleve a cabo sus ideas.
- **51.** Obtenga una ecuación cartesiana de la curva definida paramétricamente por la solución del sistema lineal en el ejemplo 6. Identifique la curva que pasa por (2, −1) en la figura 8.2.5. [Sugerencia: Calcule *x*², *y*² y *xy*.]
- **52.** Examine sus diagramas de fase del problema 47. ¿En qué condiciones el diagrama de fase de un sistema lineal homogéneo de 2 × 2 con eigenvalores complejos está compuesto de una familia de curvas cerradas? ¿De una familia de espirales? ¿En qué condiciones el origen (0, 0) es un repulsor? ¿Un atractor?

8.3 SISTEMAS LINEALES NO HOMOGÉNEOS

REPASO DE MATERIAL

- Sección 4.4 (Coeficientes indeterminados)
- Sección 4.6 (Variación de parámetros)

INTRODUCCIÓN En la sección 8.1 vimos que la solución general de un sistema lineal no homogéneo $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$ en un intervalo I es $\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p$, donde $\mathbf{X}_c = c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \cdots + c_n\mathbf{X}_n$ es la **función complementaria** o solución general del sistema lineal homogéneo asociado $\mathbf{X}' = \mathbf{A}\mathbf{X} \mathbf{y} \mathbf{X}_p$ es cualquier **solución particular** del sistema no homogéneo. En la sección 8.2 vimos cómo obtener \mathbf{X}_c cuando la matriz de coeficientes \mathbf{A} era una matriz de constantes $n \times n$. En esta sección consideraremos dos métodos para obtener \mathbf{X}_c .

Los métodos de **coeficientes indeterminados** y **variación de parámetros** empleados en el capítulo 4 para determinar soluciones particulares de EDO lineales no homogéneas, se pueden adaptar a la solución de sistemas lineales no homogéneos $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$. De los dos métodos, variación de parámetros es la técnica más poderosa. Sin embargo, hay casos en que el método de coeficientes indeterminados provee un medio rápido para encontrar una solución particular.

8.3.1 COEFICIENTES INDETERMINADOS

LAS SUPOSICIONES Como en la sección 4.4, el método de coeficientes indeterminados consiste en hacer una suposición bien informada acerca de la forma de un vector

solución particular \mathbf{X}_p ; la suposición es originada por los tipos de funciones que constituyen los elementos de la matriz columna $\mathbf{F}(t)$. No es de sorprender que la versión matricial de los coeficientes indeterminados sea aplicable a $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$ sólo cuando los elementos de \mathbf{A} son constantes y los elementos de $\mathbf{F}(t)$ son constantes, polinomios, funciones exponenciales, senos y cosenos o sumas y productos finitos de estas funciones.

EJEMPLO 1 Coeficientes indeterminados

Resuelva el sistema $\mathbf{X}' = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -8 \\ 3 \end{pmatrix}$ en $(-\infty, \infty)$.

SOLUCIÓN Primero resolvemos el sistema homogéneo asociado

$$\mathbf{X}' = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} \mathbf{X}.$$

La ecuación característica de la matriz de coeficientes A.

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -1 - \lambda & 2 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 + 1 = 0,$$

produce los eigenvalores complejos $\lambda_1=i$ y $\lambda_2=\overline{\lambda_1}=-i$. Con los procedimientos de la sección 8.2, se encuentra que

$$\mathbf{X}_c = c_1 \begin{pmatrix} \cos t + \sin t \\ \cos t \end{pmatrix} + c_2 \begin{pmatrix} \cos t - \sin t \\ -\sin t \end{pmatrix}.$$

Ahora, puesto que $\mathbf{F}(t)$ es un vector constante, se supone un vector solución particular constante $\mathbf{X}_p = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$. Sustituyendo esta última suposición en el sistema original e igualando las entradas se tiene que

$$0 = -a_1 + 2b_1 - 8$$
$$0 = -a_1 + b_1 + 3.$$

Al resolver este sistema algebraico se obtiene $a_1=14$ y $b_1=11$ y así, una solución particular $\mathbf{X}_p=\begin{pmatrix}14\\11\end{pmatrix}$. La solución general del sistema original de ED en el intervalo $(-\infty,\infty)$ es entonces $\mathbf{X}=\mathbf{X}_c+\mathbf{X}_p$ o

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t + \sin t \\ \cos t \end{pmatrix} + c_2 \begin{pmatrix} \cos t - \sin t \\ -\sin t \end{pmatrix} + \begin{pmatrix} 14 \\ 11 \end{pmatrix}.$$

EJEMPLO 2 Coeficientes indeterminados

Resuelva el sistema $\mathbf{X}' = \begin{pmatrix} 6 & 1 \\ 4 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 6t \\ -10t + 4 \end{pmatrix}$ en $(-\infty, \infty)$.

SOLUCIÓN Se determina que los eigenvalores y los eigenvectores del sistema homogéneo asociado $\mathbf{X}' = \begin{pmatrix} 6 & 1 \\ 4 & 3 \end{pmatrix} \mathbf{X}$ son $\lambda_1 = 2$, $\lambda_2 = 7$, $\mathbf{K}_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$, y $\mathbf{K}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Por tanto la función complementaria es

$$\mathbf{X}_{c} = c_{1} \binom{1}{-4} e^{2t} + c_{2} \binom{1}{1} e^{7t}.$$

Ahora bien, debido a que $\mathbf{F}(t)$ se puede escribir como $\mathbf{F}(t) = \begin{pmatrix} 6 \\ -10 \end{pmatrix} t + \begin{pmatrix} 0 \\ 4 \end{pmatrix}$, se tratará de encontrar una solución particular del sistema que tenga la *misma* forma:

$$\mathbf{X}_p = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$$

Sustituyendo esta última suposición en el sistema dado se obtiene

$$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 4 & 3 \end{pmatrix} \left[\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \right] + \begin{pmatrix} 6 \\ -10 \end{pmatrix} t + \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

o
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} (6a_2 + b_2 + 6)t + 6a_1 + b_1 - a_2 \\ (4a_2 + 3b_2 - 10)t + 4a_1 + 3b_1 - b_2 + 4 \end{pmatrix}.$$

De la última identidad se obtienen cuatro ecuaciones algebraicas con cuatro incógnitas

$$6a_2 + b_2 + 6 = 0$$

 $4a_2 + 3b_2 - 10 = 0$
y $6a_1 + b_1 - a_2 = 0$
 $4a_1 + 3b_1 - b_2 + 4 = 0$

Resolviendo de forma simultánea las primeras dos ecuaciones se obtiene $a_2 = -2$ y $b_2=6$. Después, se sustituyen estos valores en las dos últimas ecuaciones y se despeja para a_1 y b_1 . Los resultados son $a_1=-\frac{4}{7}, b_1=\frac{10}{7}$. Por tanto, se tiene que un vector solución particular es

$$\mathbf{X}_p = \begin{pmatrix} -2\\6 \end{pmatrix} t + \begin{pmatrix} -\frac{4}{7}\\\frac{10}{7} \end{pmatrix}.$$

la solución general del sistema en $(-\infty, \infty)$ es $\mathbf{X} = \mathbf{X}_{c} + \mathbf{X}_{n}$ o

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7t} + \begin{pmatrix} -2 \\ 6 \end{pmatrix} t + \begin{pmatrix} -\frac{4}{7} \\ \frac{10}{7} \end{pmatrix}.$$

EJEMPLO 3 Forma de X

Determine la forma de un vector solución particular $\mathbf{X}_{_{D}}$ para el sistema

$$\frac{dx}{dt} = 5x + 3y - 2e^{-t} + 1$$

$$\frac{dy}{dt} = -x + y + e^{-t} - 5t + 7.$$

SOLUCIÓN Ya que $\mathbf{F}(t)$ se puede escribir en términos matriciales como

$$\mathbf{F}(t) = \begin{pmatrix} -2\\1 \end{pmatrix} e^{-t} + \begin{pmatrix} 0\\-5 \end{pmatrix} t + \begin{pmatrix} 1\\7 \end{pmatrix}$$

una suposición natural para una solución particular sería

$$\mathbf{X}_p = \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} e^{-t} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$$

COMENTARIOS

El método de coeficientes indeterminados para sistemas lineales no es tan directo como parecerían indicar los últimos tres ejemplos. En la sección 4.4 la forma de una solución particular y_p se predijo con base en el conocimiento previo de la función complementaria y_c . Lo mismo se cumple para la formación de \mathbf{X}_p . Pero hay otras dificultades: las reglas que gobiernan la forma de y_p en la sección 4.4 no conducen a la formación de \mathbf{X}_p . Por ejemplo, si $\mathbf{F}(t)$ es un vector constante como en el ejemplo 1 y $\lambda=0$ es un eigenvalor de multiplicidad uno, entonces \mathbf{X}_c contiene un vector constante. Bajo la regla de multiplicación de la página 146 se trataría comúnmente de una

solución particular de la forma $\mathbf{X}_p = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} t$. Esta no es la suposición apropiada

para sistemas lineales, la cual debe ser $\mathbf{X}_p = \binom{a_2}{b_2}t + \binom{a_1}{b_1}$. De igual manera, en

el ejemplo 3, si se reemplaza e^{-t} en $\mathbf{F}(t)$ por e^{2t} ($\lambda=2$ es un eigenvalor), entonces la forma correcta del vector solución particular es

$$\mathbf{X}_p = \begin{pmatrix} a_4 \\ b_4 \end{pmatrix} t e^{2t} + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} e^{2t} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$$

En vez de ahondar en estas dificultades, se vuelve al método de variación de parámetros.

8.3.2 VARIACIÓN DE PARÁMETROS

UNA MATRIZ FUNDAMENTAL Si $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ es un conjunto fundamental de soluciones del sistema homogéneo $\mathbf{X}' = \mathbf{A}\mathbf{X}$ en el intervalo I, entonces su solución general en el intervalo es la combinación lineal $\mathbf{X} = c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \dots + c_n\mathbf{X}_n$ o

$$\mathbf{X} = c_{1} \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} + c_{2} \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} + \dots + c_{n} \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix} = \begin{pmatrix} c_{1}x_{11} + c_{2}x_{12} + \dots + c_{n}x_{1n} \\ c_{1}x_{21} + c_{2}x_{22} + \dots + c_{n}x_{2n} \\ \vdots \\ c_{1}x_{n1} + c_{2}x_{n2} + \dots + c_{n}x_{nn} \end{pmatrix}. \tag{1}$$

La última matriz en (1) se reconoce como el producto de una matriz $n \times n$ con una matriz $n \times 1$. En otras palabras, la solución general (1) se puede escribir como el producto

$$\mathbf{X} = \mathbf{\Phi}(t)\mathbf{C},\tag{2}$$

donde ${\bf C}$ es un vector columna de $n \times 1$ constantes arbitrarias c_1, c_2, \ldots, c_n y la matriz $n \times n$, cuyas columnas consisten en los elementos de los vectores solución del sistema ${\bf X}' = {\bf A}{\bf X}$,

$$\Phi(t) = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix},$$

se llama **matriz fundamental** del sistema en el intervalo.

En el análisis siguiente se requiere usar dos propiedades de una matriz fundamental:

- Una matriz fundamental $\Phi(t)$ es no singular.
- Si $\Phi(t)$ es una matriz fundamental del sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$, entonces

$$\mathbf{\Phi}'(t) = \mathbf{A}\mathbf{\Phi}(t). \tag{3}$$

Un nuevo examen de (9) del teorema 8.1.3 muestra que det $\phi(t)$ es igual al Wronskiano $W(\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n)$. Por tanto, la independencia lineal de las columnas de $\Phi(t)$ en el intervalo I garantiza que det $\Phi(t) \neq 0$ para toda t en el intervalo. Puesto que $\Phi(t)$ es no singular, el inverso multiplicativo $\Phi^{-1}(t)$ existe para todo t en el intervalo. El resultado dado en (3) se deduce de inmediato del hecho de que cada columna de $\phi(t)$ es un vector solución de $\mathbf{X}' = \mathbf{A}\mathbf{X}$.

VARIACIÓN DE PARÁMETROS Análogamente al procedimiento de la sección 4.6, nos preguntamos si es posible reemplazar la matriz de constantes **C** en (2) por una matriz columna de funciones

$$\mathbf{U}(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_n(t) \end{pmatrix} \text{ por lo que } \mathbf{X}_p = \mathbf{\Phi}(t)\mathbf{U}(t)$$
 (4)

es una solución particular del sistema no homogéneo

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t). \tag{5}$$

Por la regla del producto la derivada de la última expresión en (4) es

$$\mathbf{X}'_{n} = \mathbf{\Phi}(t)\mathbf{U}'(t) + \mathbf{\Phi}'(t)\mathbf{U}(t). \tag{6}$$

Observe que el orden de los productos en (6) es muy importante. Puesto que $\mathbf{U}(t)$ es una matriz columna, los productos $\mathbf{U}'(t)\mathbf{\Phi}(t)$ y $\mathbf{U}(t)\mathbf{\Phi}'(t)$ no están definidos. Sustituyendo (4) y (6) en (5), se obtiene

$$\mathbf{\Phi}(t)\mathbf{U}'(t) + \mathbf{\Phi}'(t)\mathbf{U}(t) = \mathbf{A}\mathbf{\Phi}(t)\mathbf{U}(t) + \mathbf{F}(t). \tag{7}$$

Ahora si usa (3) para reemplazar $\Phi'(t)$, (7) se convierte en

0

$$\mathbf{\Phi}(t)\mathbf{U}'(t) + \mathbf{A}\mathbf{\Phi}(t)\mathbf{U}(t) = \mathbf{A}\mathbf{\Phi}(t)\mathbf{U}(t) + \mathbf{F}(t)$$

$$\mathbf{\Phi}(t)\mathbf{U}'(t) = \mathbf{F}(t).$$
(8)

Multiplicando ambos lados de la ecuación (8) por $\Phi^{-1}(t)$, se obtiene

$$\mathbf{U}'(t) = \mathbf{\Phi}^{-1}(t)\mathbf{F}(t)$$
 por tanto $\mathbf{U}(t) = \int \mathbf{\Phi}^{-1}(t)\mathbf{F}(t) dt$.

Puesto que $\mathbf{X}_{_{\mathrm{D}}} = \mathbf{\Phi}(t)\mathbf{U}(t)$, se concluye que una solución particular de (5) es

$$\mathbf{X}_{p} = \mathbf{\Phi}(t) \int \mathbf{\Phi}^{-1}(t) \mathbf{F}(t) dt.$$
 (9)

Para calcular la integral indefinida de la matriz columna $\Phi^{-1}(t)\mathbf{F}(t)$ en (9), se integra cada entrada. Así, la solución general del sistema (5) es $\mathbf{X} = \mathbf{X}_c + \mathbf{X}_D$ o

$$\mathbf{X} = \mathbf{\Phi}(t)\mathbf{C} + \mathbf{\Phi}(t) \int \mathbf{\Phi}^{-1}(t)\mathbf{F}(t) dt.$$
 (10)

Observe que no es necesario usar una constante de integración en la evaluación de $\int \Phi^{-1}(t) \mathbf{F}(t) dt$ por las mismas razones expresadas en la explicación de variación de parámetros en la sección 4.6.

EJEMPLO 4 Variación de parámetros

Resuelva el sistema

$$\mathbf{X}' = \begin{pmatrix} -3 & 1\\ 2 & -4 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 3t\\ e^{-t} \end{pmatrix} \tag{11}$$

en $(-\infty, \infty)$.

SOLUCIÓN Primero resolvemos el sistema homogéneo asociado

$$\mathbf{X}' = \begin{pmatrix} -3 & 1\\ 2 & -4 \end{pmatrix} \mathbf{X}.\tag{12}$$

la ecuación característica de la matriz de coeficientes es

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -3 - \lambda & 1 \\ 2 & -4 - \lambda \end{vmatrix} = (\lambda + 2)(\lambda + 5) = 0,$$

por lo que los eigenvalores son $\lambda_1 = -2$ y $\lambda_2 = -5$. Con el método usual se encuentra que los eigenvectores correspondientes a λ_1 y λ_2 son, respectivamente, $\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ y $\mathbf{K}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Entonces, los vectores solución del sistema (11) son

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} = \begin{pmatrix} e^{-2t} \\ e^{-2t} \end{pmatrix} \quad \mathbf{y} \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-5t} = \begin{pmatrix} e^{-5t} \\ -2e^{-5t} \end{pmatrix}.$$

Las entradas en \mathbf{X}_1 a partir de la primera columna de $\mathbf{\Phi}(t)$ y las entradas en \mathbf{X}_2 a partir de la segunda columna de $\mathbf{\Phi}(t)$. Por tanto

$$\mathbf{\Phi}(t) = \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \quad \mathbf{y} \quad \mathbf{\Phi}^{-1}(t) = \begin{pmatrix} \frac{2}{3}e^{2t} & \frac{1}{3}e^{2t} \\ \frac{1}{3}e^{5t} & -\frac{1}{3}e^{5t} \end{pmatrix}.$$

A partir de (9) obtenemos

$$\mathbf{X}_{p} = \mathbf{\Phi}(t) \int \mathbf{\Phi}^{-1}(t) \mathbf{F}(t) dt = \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \int \begin{pmatrix} \frac{2}{3}e^{2t} & \frac{1}{3}e^{2t} \\ \frac{1}{3}e^{5t} & -\frac{1}{3}e^{5t} \end{pmatrix} \begin{pmatrix} 3t \\ e^{-t} \end{pmatrix} dt$$

$$= \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \int \begin{pmatrix} 2te^{2t} + \frac{1}{3}e^{t} \\ te^{5t} - \frac{1}{3}e^{4t} \end{pmatrix} dt$$

$$= \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \begin{pmatrix} te^{2t} - \frac{1}{2}e^{2t} + \frac{1}{3}e^{t} \\ \frac{1}{5}te^{5t} - \frac{1}{25}e^{5t} - \frac{1}{12}e^{4t} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{6}{5}t - \frac{27}{50} + \frac{1}{4}e^{-t} \\ \frac{3}{5}t - \frac{21}{50} + \frac{1}{2}e^{-t} \end{pmatrix}.$$

Por tanto a partir de (10) la solución de (11) en el intervalo es

$$\mathbf{X} = \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} \frac{6}{5}t - \frac{27}{50} + \frac{1}{4}e^{-t} \\ \frac{3}{5}t - \frac{21}{50} + \frac{1}{2}e^{-t} \end{pmatrix}$$
$$= c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-5t} + \begin{pmatrix} \frac{6}{5} \\ \frac{3}{5} \end{pmatrix} t - \begin{pmatrix} \frac{27}{50} \\ \frac{21}{50} \end{pmatrix} + \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} e^{-t}.$$

PROBLEMA CON VALORES INICIALES La solución general de (5) en el intervalo se puede escribir en una forma alternativa

$$\mathbf{X} = \mathbf{\Phi}(t)\mathbf{C} + \mathbf{\Phi}(t) \int_{t_0}^t \mathbf{\Phi}^{-1}(s) \mathbf{F}(s) ds, \tag{13}$$

donde t y t_0 son puntos en el intervalo. Esta última forma es útil para resolver (5) sujeta a una condición inicial $\mathbf{X}(t_0) = \mathbf{X}_0$, porque los límites de integración se eligen de tal forma que la solución particular sea cero en $t = t_0$. Sustituyendo $t = t_0$ en (13) se obtiene $\mathbf{X}_0 = \mathbf{\Phi}(t_0)\mathbf{C}$ a partir de la que se obtiene $\mathbf{C} = \mathbf{\Phi}^{-1}(t_0)\mathbf{X}_0$. Sustituyendo este último resultado en (13) se obtiene la siguiente solución del problema con valores iniciales:

$$\mathbf{X} = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{X}_0 + \mathbf{\Phi}(t)\int_{t_0}^t \mathbf{\Phi}^{-1}(s)\mathbf{F}(s) ds.$$
 (14)

EIERCICIOS 8.3 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.

8.3.1 COEFICIENTES INDETERMINADOS

En los problemas 1 a 8 utilice el método de los coeficientes indeterminados para resolver el sistema dado.

1.
$$\frac{dx}{dt} = 2x + 3y - 7$$

$$\frac{dy}{dt} = -x - 2y + 5$$

2.
$$\frac{dx}{dt} = 5x + 9y + 2$$

$$\frac{dy}{dt} = -x + 11y + 6$$

3.
$$\mathbf{X}' = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -2t^2 \\ t+5 \end{pmatrix}$$

4.
$$\mathbf{X}' = \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 4t + 9e^{6t} \\ -t + e^{6t} \end{pmatrix}$$

5.
$$\mathbf{X}' = \begin{pmatrix} 4 & \frac{1}{3} \\ 9 & 6 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -3 \\ 10 \end{pmatrix} e^t$$

6.
$$\mathbf{X}' = \begin{pmatrix} -1 & 5 \\ -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \operatorname{sen} t \\ -2 \cos t \end{pmatrix}$$

7.
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} e^{4t}$$

8.
$$\mathbf{X}' = \begin{pmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 5 \\ -10 \\ 40 \end{pmatrix}$$

9. Resuelva
$$\mathbf{X}' = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
 sujeta a
$$\mathbf{X}(0) = \begin{pmatrix} -4 \\ 5 \end{pmatrix}.$$

10. a) El sistema de ecuaciones diferenciales para las corrientes $i_2(t)$ e $i_3(t)$ en la red eléctrica que se muestra en la figura 8.3.1 es

$$\frac{d}{dt} \binom{i_2}{i_3} = \binom{-R_1/L_1}{-R_1/L_2} - \binom{-R_1/L_1}{-(R_1 + R_2)/L_2} \binom{i_2}{i_3} + \binom{E/L_1}{E/L_2}.$$

Use el método de los coeficientes indeterminados para resolver el sistema si $R_1=2~\Omega,~R_2=3~\Omega,~L_1=1~\mathrm{h},~L_2=1~\mathrm{h},~E=60~\mathrm{V},~i_2(0)=0,~\mathrm{e}~i_3(0)=0.$

b) Determine la corriente $i_1(t)$.

FIGURA 8.3.1 Red del problema 10.

8.3.2 VARIACIÓN DE PARÁMETROS

En los problemas 11 a 30 utilice variación de parámetros para resolver el sistema dado.

11.
$$\frac{dx}{dt} = 3x - 3y + 4$$
$$\frac{dy}{dt} = 2x - 2y - 1$$

$$\frac{dt}{dt} = 2x - y$$
12. $\frac{dx}{dt} = 2x - y$

$$\frac{dt}{dy} = 3x - 2y + 4t$$

13.
$$\mathbf{X}' = \begin{pmatrix} 3 & -5 \\ \frac{3}{4} & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{t/2}$$

14.
$$\mathbf{X}' = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix} e^{2t}$$

15.
$$\mathbf{X}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$

16.
$$\mathbf{X}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 2 \\ e^{-3t} \end{pmatrix}$$

17.
$$\mathbf{X}' = \begin{pmatrix} 1 & 8 \\ 1 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 12 \\ 12 \end{pmatrix} t$$

18.
$$\mathbf{X}' = \begin{pmatrix} 1 & 8 \\ 1 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} e^{-t} \\ te^{t} \end{pmatrix}$$

19.
$$\mathbf{X}' = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 2e^{-t} \\ e^{-t} \end{pmatrix}$$

20.
$$\mathbf{X}' = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

21.
$$\mathbf{X}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \sec t \\ 0 \end{pmatrix}$$

22.
$$\mathbf{X}' = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} e^t$$

23.
$$\mathbf{X}' = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} e^{t}$$

24.
$$\mathbf{X}' = \begin{pmatrix} 2 & -2 \\ 8 & -6 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} \frac{e^{-2t}}{t}$$

25.
$$\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ \sec t \tan t \end{pmatrix}$$

26.
$$\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ \cot t \end{pmatrix}$$

27.
$$\mathbf{X}' = \begin{pmatrix} 1 & 2 \\ -\frac{1}{2} & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \csc t \\ \sec t \end{pmatrix} e^t$$

28.
$$\mathbf{X}' = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \tan t \\ 1 \end{pmatrix}$$

29.
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} e' \\ e^{2t} \\ te^{3t} \end{pmatrix}$$

30.
$$\mathbf{X}' = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ t \\ 2e^t \end{pmatrix}$$

En los problemas 31 y 32, use (14) para resolver el problema con valores iniciales.

31.
$$\mathbf{X}' = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 4e^{2t} \\ 4e^{4t} \end{pmatrix}, \quad \mathbf{X}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

32.
$$\mathbf{X}' = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1/t \\ 1/t \end{pmatrix}, \quad \mathbf{X}(1) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

33. El sistema de ecuaciones diferenciales para las corrientes $i_1(t)$ e $i_2(t)$ en la red eléctrica que se muestra en la figura 8.3.2 es

$$\frac{d}{dt} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} -(R_1 + R_2)/L_2 & R_2/L_2 \\ R_2/L_1 & -R_2/L_1 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} + \begin{pmatrix} E/L_2 \\ 0 \end{pmatrix}.$$

Utilice variación de parámetros para resolver el sistema si $R_1=8~\Omega,~R_2=3~\Omega,~L_1=1~\mathrm{h},~L_2=1~\mathrm{h},~E(t)=100~\mathrm{sen}~t~\mathrm{V},~i_1(0)=0,~\mathrm{e}~i_2(0)=0.$

FIGURA 8.3.2 Red del problema 33.

Problemas para analizar

34. Si y_1 y y_2 son soluciones linealmente independientes de las ED homogéneas asociadas para y'' + P(x)y' + Q(x)y = f(x), demuestre en el caso de una ED lineal no homogénea de segundo orden que (9) se reduce a la forma de variación de parámetros analizada en la sección 4.6.

Tarea para el laboratorio de computación

35. Resolver un sistema lineal no homogéneo $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$ usando variación de parámetros cuando \mathbf{A} es una matriz 3×3 (o más grande) es casi una tarea imposible de hacer a mano. Considere el sistema

$$\mathbf{X}' = \begin{pmatrix} 2 & -2 & 2 & 1 \\ -1 & 3 & 0 & 3 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} te^t \\ e^{-t} \\ e^{2t} \\ 1 \end{pmatrix}.$$

- **a)** Use un SAC o software de álgebra lineal para encontrar los eigenvalores y los eigenvectores de la matriz de coeficientes.
- **b)** Forme una matriz fundamental $\Phi(t)$ y utilice la computadora para encontrar $\Phi^{-1}(t)$.
- c) Use la computadora para realizar los cálculos de: $\Phi^{-1}(t)\mathbf{F}(t)$, $\int \Phi^{-1}(t)\mathbf{F}(t)\ dt$, $\Phi(t)\int \Phi^{-1}(t)\mathbf{F}(t)\ dt$, $\Phi(t)\mathbf{C}$, $\mathbf{y}\ \Phi(t)\mathbf{C} + \int \Phi^{-1}(t)\mathbf{F}(t)\ dt$, donde \mathbf{C} es una matriz columna de constantes c_1 , c_2 , c_3 $\mathbf{y}\ c_4$.
- **d)** Reescriba el resultado de la computadora para la solución general del sistema en la forma $\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p$, donde $\mathbf{X}_c = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + c_3 \mathbf{X}_3 + c_4 \mathbf{X}_4$.

8.4 MATRIZ EXPONENCIAL

REPASO DE MATERIAL

• Apéndice II.1 (definiciones II.10 y II.11)

SISTEMAS HOMOGÉNEOS Ahora veremos que es posible definir una matriz exponencial e^{At} tal que

$$\mathbf{X} = e^{\mathbf{A}t}\mathbf{C} \tag{1}$$

es una solución del sistema homogéneo $\mathbf{X}' = \mathbf{A}\mathbf{X}$. Aquí \mathbf{A} es una matriz $n \times n$ de constantes y \mathbf{C} es una matriz columna $n \times 1$ de constantes arbitrarias. Observe en (1) que la matriz \mathbf{C} se multiplica por la derecha a $e^{\mathbf{A}t}$ porque queremos que $e^{\mathbf{A}t}$ sea una matriz $n \times n$. Mientras que el desarrollo completo del significado y teoría de la matriz exponencial requeriría un conocimiento completo de álgebra de matrices, una forma de definir $e^{\mathbf{A}t}$ se basa en la representación en serie de potencias de la función exponencial escalar e^{at} :

$$e^{at} = 1 + at + a^2 \frac{t^2}{2!} + \dots + a^k \frac{t^k}{k!} + \dots = \sum_{k=0}^{\infty} a^k \frac{t^k}{k!}.$$
 (2)

La serie en (2) converge para $toda\ t$. Si se usa esta serie, con la identidad I en vez de 1 y la constante a se reemplaza por una matriz $\mathbf{A}\ n \times n$ de constantes, se obtiene una definición para la matriz $n \times n$, $e^{\mathbf{A}t}$.

DEFINICIÓN 8.4.1 Matriz exponencial

Para cualquier matriz **A** $n \times n$,

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \cdots + \mathbf{A}^k \frac{t^k}{k!} + \cdots = \sum_{k=0}^{\infty} \mathbf{A}^k \frac{t^k}{k!}.$$
 (3)

Se puede demostrar que la serie dada en (3) converge a una matriz $n \times n$ para todo valor de t. También, $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$, $\mathbf{A}^3 = \mathbf{A}(\mathbf{A})^2$, etcétera.

DERIVADA DE $e^{\mathbf{A}t}$ La derivada de la matriz exponencial es similar a la propiedad de derivación de la exponencial escalar $\frac{d}{dt}e^{at}=ae^{at}$. Para justificar

$$\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t},\tag{4}$$

derivamos (3) término por término:

$$\frac{d}{dt}e^{\mathbf{A}t} = \frac{d}{dt}\left[\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \cdots + \mathbf{A}^k \frac{t^k}{k!} + \cdots\right] = \mathbf{A} + \mathbf{A}^2t + \frac{1}{2!}\mathbf{A}^3t^2 + \cdots$$

$$= \mathbf{A}\left[\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \cdots\right] = \mathbf{A}e^{\mathbf{A}t}.$$

335

Debido a (4), ahora se puede probar que (1) es una solución de $\mathbf{X}' = \mathbf{A}\mathbf{X}$ para todo vector $n \times 1$ \mathbf{C} de constantes:

$$\mathbf{X}' = \frac{d}{dt}e^{\mathbf{A}t}\mathbf{C} = \mathbf{A}e^{\mathbf{A}t}\mathbf{C} = \mathbf{A}(e^{\mathbf{A}t}\mathbf{C}) = \mathbf{A}\mathbf{X}.$$

e^{At} **ES UNA MATRIZ FUNDAMENTAL** Si se denota la matriz exponencial e^{At} con el símbolo $\Psi(t)$, entonces (4) es equivalente a la ecuación diferencial matricial $\Psi'(t) = \mathbf{A} \Psi(t)$ (véase (3) de la sección 8.3). Además, se deduce de inmediato de la definición 8.4.1 que $\Psi(0) = e^{A0} = \mathbf{I}$, y por tanto det $\Psi(0) \neq 0$. Se tiene que estas propiedades son suficientes para concluir que $\Psi(t)$ es una matriz fundamental del sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$.

SISTEMAS NO HOMOGÉNEOS Se vio en (4) de la sección 2.4 que la solución general de la ecuación diferencial lineal única de primer orden x' = ax + f(t), donde a es una constante, se puede expresar como

$$x = x_c + x_p = ce^{at} + e^{at} \int_{t_0}^t e^{-as} f(s) ds.$$

Para un sistema no homogéneo de ecuaciones diferenciales lineales de primer orden, se puede demostrar que la solución general de $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$, donde \mathbf{A} es una matriz $n \times n$ de constantes, es

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p = e^{\mathbf{A}t}\mathbf{C} + e^{\mathbf{A}t}\int_{t_0}^t e^{-\mathbf{A}s}\mathbf{F}(s) \ ds.$$
 (5)

Puesto que la matriz exponencial e^{At} es una matriz fundamental, siempre es no singular y $e^{-As} = (e^{As})^{-1}$. En la práctica, e^{-As} se puede obtener de e^{At} al reemplazar t por -s.

CÁLCULO DE $e^{\mathbf{A}t}$ La definición de $e^{\mathbf{A}t}$ dada en (3) siempre se puede usar para calcular $e^{\mathbf{A}t}$. Sin embargo, la utilidad práctica de (3) está limitada por el hecho de que los elementos de $e^{\mathbf{A}t}$ son series de potencias en t. Con un deseo natural de trabajar con cosas simples y familiares, se trata de reconocer si estas series definen una función de forma cerrada. Véanse los problemas 1 a 4 de los ejercicios 8.4. Por fortuna, hay muchas formas alternativas de calcular $e^{\mathbf{A}t}$; la siguiente explicación muestra cómo se puede usar la transformada de Laplace.

USO DE LA TRANSFORMADA DE LAPLACE Vimos en (5) que $\mathbf{X} = e^{\mathbf{A}t}$ es una solución de $\mathbf{X}' = \mathbf{A}\mathbf{X}$. De hecho, puesto que $e^{\mathbf{A}0} = \mathbf{I}$, $\mathbf{X} = e^{\mathbf{A}t}$ es una solución de problema con valores iniciales

$$\mathbf{X}' = \mathbf{A}\mathbf{X}, \quad \mathbf{X}(0) = \mathbf{I}. \tag{6}$$

Si $\mathbf{x}(s) = \mathcal{L}\{\mathbf{X}(t)\} = \mathcal{L}\{e^{\mathbf{A}t}\}\$, entonces la transformada de Laplace de (6) es

$$s\mathbf{x}(s) - \mathbf{X}(0) = \mathbf{A}\mathbf{x}(s)$$
 o $(s\mathbf{I} - \mathbf{A})\mathbf{x}(s) = \mathbf{I}$.

Multiplicando la última ecuación por $(s\mathbf{I} - \mathbf{A})^{-1}$ se tiene que $\mathbf{x}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{I} = (s\mathbf{I} - \mathbf{A})^{-1}$. En otras palabras, $\mathcal{L}\{e^{\mathbf{A}t}\} = (s\mathbf{I} - \mathbf{A})^{-1}$ o

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\{(s\mathbf{I} - \mathbf{A})^{-1}\}.$$
 (7)

EJEMPLO 1 Matriz exponencial

Use la transformada de Laplace para calcular $e^{\mathbf{A}t}$ para $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$.

$$s\mathbf{I} - \mathbf{A} = \begin{pmatrix} s - 1 & 1 \\ -2 & s + 2 \end{pmatrix},$$

$$(s\mathbf{I} - \mathbf{A})^{-1} = \begin{pmatrix} s - 1 & 1 \\ -2 & s + 2 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{s + 2}{s(s + 1)} & \frac{-1}{s(s + 1)} \\ \frac{2}{s(s + 1)} & \frac{s - 1}{s(s + 1)} \end{pmatrix}.$$

Entonces, descomponiendo las entradas de la última matriz en fracciones parciales:

$$(s\mathbf{I} - \mathbf{A})^{-1} = \begin{pmatrix} \frac{2}{s} - \frac{1}{s+1} & -\frac{1}{s} + \frac{1}{s+1} \\ \frac{2}{s} - \frac{2}{s+1} & -\frac{1}{s} + \frac{2}{s+1} \end{pmatrix}.$$
 (8)

Se deduce de (7) que la transformada de Laplace inversa de (8) proporciona el resultado deseado.

$$e^{\mathbf{A}t} = \begin{pmatrix} 2 - e^{-t} & -1 + e^{-t} \\ 2 - 2e^{-t} & -1 + 2e^{-t} \end{pmatrix}.$$

USO DE COMPUTADORAS Para quienes por el momento están dispuestos a intercambiar la comprensión por la velocidad de solución, e^{At} se puede calcular con la ayuda de software. Véanse los problemas 27 y 28 de los ejercicios 8.4.

E|ERCICIOS 8.4 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.

En los problemas 1 y 2 use (3) para calcular e^{At} y e^{-At} .

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 2. $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

En los problemas 3 y 4 use (3) para calcular e^{At} .

3.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix}$$
 4. $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix}$

En los problemas 5 a 8 use (1) para encontrar la solución general del sistema dado.

5.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{X}$$
 6. $\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{X}$

7.
$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix} \mathbf{X}$$
 8. $\mathbf{X}' = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} \mathbf{X}$

En los problemas 9 a 12 use (5) para encontrar la solución general del sistema dado.

9.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

10.
$$\mathbf{X}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{X} + \begin{pmatrix} t \\ e^{4t} \end{pmatrix}$$

11.
$$\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

12.
$$\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \cosh t \\ \operatorname{senh} t \end{pmatrix}$$

13. Resuelva el sistema en el problema 7 sujeto a la condición inicial

$$\mathbf{X}(0) = \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}.$$

 Resuelva el sistema del problema 9 sujeto a la condición inicial

$$\mathbf{X}(0) = \binom{4}{3}.$$

En los problemas 15 a 18, use el método del ejemplo 1 para calcular e^{At} para la matriz de coeficientes. Use (1) para encontrar la solución general del sistema dado.

15.
$$\mathbf{X}' = \begin{pmatrix} 4 & 3 \\ -4 & -4 \end{pmatrix} \mathbf{X}$$
 16. $\mathbf{X}' = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \mathbf{X}$

17.
$$\mathbf{X}' = \begin{pmatrix} 5 & -9 \\ 1 & -1 \end{pmatrix} \mathbf{X}$$
 18. $\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix} \mathbf{X}$

337

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}. \tag{9}$$

En los problemas $19\ y\ 20$, compruebe el resultado anterior para la matriz dada.

- **19.** $A = \begin{pmatrix} 2 & 1 \\ -3 & 6 \end{pmatrix}$ **20.** $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- **21.** Suponga que $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, donde \mathbf{D} se define como en (9). Use (3) para demostrar que $e^{\mathbf{A}t} = \mathbf{P}e^{\mathbf{D}t}\mathbf{P}^{-1}$.
- 22. Use (3) para demostrar que

$$e^{\mathbf{D}t} = \begin{pmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{pmatrix},$$

donde **D** se define como en (9).

En los problemas 23 y 24 use los resultados de los problemas 19 a 22 para resolver el sistema dado.

23.
$$\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ -3 & 6 \end{pmatrix} \mathbf{X}$$
 24. $\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \mathbf{X}$

Problemas para analizar

25. Vuelva a leer el análisis que lleva al resultado dado en (7). ¿La matriz $s\mathbf{I} - \mathbf{A}$ siempre tiene inversa? Explique.

26. Se dice que una matriz A es **nilpotente** cuando existe algún entero m tal que $A^m = 0$. Compruebe que

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
 es nilpotente. Analice porqué es rela-

tivamente fácil calcular $e^{\mathbf{A}t}$ cuando \mathbf{A} es nilpotente. Calcule $e^{\mathbf{A}t}$ y luego utilice (1) para resolver el sistema $\mathbf{X}' = \mathbf{A}\mathbf{X}$.

Tarea para el laboratorio de computación

27. a) Utilice (1) para obtener la solución general de $\mathbf{X}' = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix} \mathbf{X}$. Use un SAC para encontrar $e^{\mathbf{A}t}$.

Luego emplee la computadora para determinar eigenvalores y eigenvectores de la matriz de coeficientes

 $\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$ y forme la solución general de acuerdo con la sección 8.2. Por último, reconcilie las dos formas de la solución general del sistema.

- **b)** Use (1) para determinar la solución general de $\mathbf{X}' = \begin{pmatrix} -3 & -1 \\ 2 & -1 \end{pmatrix} \mathbf{X}$. Use un SAC, para determinar $e^{\mathbf{A}t}$. En el caso de un resultado complejo, utilice el software para hacer la simplificación; por ejemplo, en *Mathematica*, si $\mathbf{m} = \mathbf{MatrixExp[A\ t]}$ tiene elementos complejos, entonces intente con la instrucción **Simplify[ComplexExpand[m]]**.
- 28. Use (1) para encontrar la solución general de

$$\mathbf{X}' = \begin{pmatrix} -4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{pmatrix} \mathbf{X}.$$

Use MATLAB o un SAC para encontrar e^{At} .

REPASO DEL CAPÍTULO 8

Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-15.

- En los problemas 1 y 2 complete los espacios en blanco.
- 1. El vector $\mathbf{X} = k \binom{4}{5}$ es una solución de

$$\mathbf{X}' = \begin{pmatrix} 1 & 4 \\ 2 & -1 \end{pmatrix} \mathbf{X} - \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

2. El vector $\mathbf{X} = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-9t} + c_2 \begin{pmatrix} 5 \\ 3 \end{pmatrix} e^{7t}$ es solución del

problema con valores iniciales $\mathbf{X}' = \begin{pmatrix} 1 & 10 \\ 6 & -3 \end{pmatrix} \mathbf{X}, \ \mathbf{X}(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

3. Considere el sistema lineal $\mathbf{X}' = \begin{pmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{pmatrix} \mathbf{X}$.

Sin intentar resolver el sistema, determine cada uno de los vectores

$$\mathbf{K}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{K}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{K}_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{K}_4 = \begin{pmatrix} 6 \\ 2 \\ -5 \end{pmatrix}$$

es un eigenvector de la matriz de coeficientes. ¿Cuál es la solución del sistema correspondiente a este eigenvector?

4. Considere un sistema lineal X' = AX de dos ecuaciones diferenciales, donde A es una matriz de coeficientes reales. ¿Cuál es la solución general del sistema si se sabe que $\lambda_1 = 1 + 2i$ es un eigenvalor y $\mathbf{K}_1 = \begin{pmatrix} 1 \\ \vdots \end{pmatrix}$ es un eigenvector correspondiente?

En los problemas 5 a 14 resuelva el sistema lineal dado.

5.
$$\frac{dx}{dt} = 2x + y$$
$$\frac{dy}{dt} = -x$$

5.
$$\frac{dx}{dt} = 2x + y$$

$$\frac{dy}{dt} = -x$$
6.
$$\frac{dx}{dt} = -4x + 2y$$

$$\frac{dy}{dt} = 2x - 4y$$

7.
$$\mathbf{X}' = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \mathbf{X}$$
 8. $\mathbf{X}' = \begin{pmatrix} -2 & 5 \\ -2 & 4 \end{pmatrix} \mathbf{X}$

$$8. \mathbf{X}' = \begin{pmatrix} -2 & 5 \\ -2 & 4 \end{pmatrix} \mathbf{X}'$$

$$\mathbf{9.} \ \mathbf{X}' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 3 \\ 4 & 3 & 1 \end{pmatrix} \mathbf{X}'$$

9.
$$\mathbf{X}' = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 3 \\ 4 & 3 & 1 \end{pmatrix} \mathbf{X}$$
 10. $\mathbf{X}' = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & -2 \\ 2 & 2 & -1 \end{pmatrix} \mathbf{X}$

11.
$$\mathbf{X}' = \begin{pmatrix} 2 & 8 \\ 0 & 4 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 2 \\ 16t \end{pmatrix}$$

12.
$$\mathbf{X}' = \begin{pmatrix} 1 & 2 \\ -\frac{1}{2} & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ e' \tan t \end{pmatrix}$$

13.
$$\mathbf{X}' = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ \cot t \end{pmatrix}$$

14.
$$\mathbf{X}' = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{2t}$$

15. a) Considere el sistema lineal X' = AX de tres ecuaciones diferenciales de primer orden, donde la matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix} 5 & 3 & 3 \\ 3 & 5 & 3 \\ -5 & -5 & -3 \end{pmatrix}$$

y $\lambda = 2$ es un eigenvalor conocido de multiplicidad dos. Encuentre dos soluciones diferentes del sistema correspondiente a este eigenvalor sin usar una fórmula especial (como (12) de la sección 8.2)

b) Use el procedimiento del inciso a) para resolver

$$\mathbf{X}' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X}.$$

16. Compruebe que $\mathbf{X} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} e^t$ es una solución del sistema

$$\mathbf{X}' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{X}$$

para constantes arbitrarias c_1 y c_2 . A mano, trace un diagrama de fase del sistema.