

Dr. Jan-Willem Liebezeit Raphael Wagner SoSe 2021

20 Punkte

Übungen zu: Analysis 1 für Informatik

Blatt 09

Hinweise zur Abgabe

Abgabetermin: 28.06.21, 14:00 Uhr

Abgabeformat: Im PDF-Format via Moodle. Einzelabgaben (nicht in Gruppen). Ver-

spätete Abgaben sind ausdrücklich nicht möglich!

Sonstiges: Bitte geben Sie eine Erst- und Zweitpräferenz von jeweils einer Aufgabe zur

Korrektur an.

Aufgaben

1. Berechnen Sie die Ableitung der Funktion f in allen angegebenen $x \in \mathbb{R}$, falls (10)

i)
$$f(x) = x^3(x^2+1)^2, x \in \mathbb{R}$$

iv)
$$f(x) = \frac{x-1}{x+1}, x \in \mathbb{R} \setminus \{-1\}$$

ii)
$$f(x) = \sqrt{\sqrt{x}}, x > 0$$

v)
$$f(x) = x^{\cos(x)}, x > 0$$

iii)
$$f(x) = \sinh(x)$$
 und $f(x)$
 $\cosh(x), x \in \mathbb{R}$ (siehe Blatt 06)

iii)
$$f(x) = \sinh(x)$$
 und $f(x) = \text{vi}$ $f(x) = \ln(1 + \cos^2(3e^x + 4x^3)), x \in \cosh(x), x \in \mathbb{R}$ (siehe Blatt 06)

- **2.** Sei $a < b, f: (a, b) \to \mathbb{R}$ differenzierbar und $M \ge 0$.
 - i) Zeigen Sie, dass folgende Aussagen äquivalent sind:

(8)

- a) $|f'(x)| \le M$ für alle $x \in (a, b)$
- b) $|f(x) f(y)| \le M|x y|$ für alle $x, y \in (a, b)$ (man sagt, f ist Lipschitz $stetiq = H\"{o}lderstetig der Ordnung \alpha = 1 (Blatt 08)$

ii) Zeigen Sie, dass für alle
$$x,y\in\mathbb{R}$$

$$|\sin x - \sin y| \le |x - y|.$$

- i) Bestimmen Sie die Monotonieintervalle der Funktion $f:(0,\infty)\to\mathbb{R}, x\mapsto \frac{\ln x}{x}$. 3. (4)
 - ii) Begründen Sie, welche der beiden Zahlen 2020²⁰²¹ und 2021²⁰²⁰ größer ist. (3)
 - iii) Zeigen Sie auch, dass es genau ein Paar natürlicher Zahlen $n, m \in \mathbb{N}$ gibt mit n < m und $n^m = m^n$.
- i) Zeigen Sie, dass sinh : $\mathbb{R} \to \mathbb{R}$ und $\cosh : [0, \infty) \to [1, \infty)$ bijektiv sind. 4. (6)
 - ii) Die jeweiligen Umkehrfunktionen bezeichnen wir mit arsinh : $\mathbb{R} \to \mathbb{R}$ (Areasinus hyperbolicus) und arcosh: $[1,\infty) \to [0,\infty)$ (Areakosinus hyperbolicus). Begründen Sie, dass arsinh auf \mathbb{R} und arcosh auf $(1,\infty)$ differenzierbar sind und bestimmen Sie deren Ableitung.