LINGUAGGI CONTEXT FREE

Corso di Fondamenti di Informatica - modulo I

Giorgio Gambosi

a.a. 2023-2024

Linguaggi CF

La derivazione di una stringa generata da una grammatica di tipo 2 può essere rappresentata mediante una struttura ad albero. Tali alberi vengono chiamati alberi di derivazione, o alberi sintattici.

In un albero sintattico, ad ogni nodo interno è associato un simbolo non-terminale e ad ogni foglia è associato un simbolo terminale. Per ogni produzione del tipo $S \longrightarrow aSbA$ che viene applicata nel processo di derivazione, il nodo interno etichettato con S avrà nell'albero quattro figli etichettati con a, S, b, A

Data la grammatica G avente le produzioni

$$S \longrightarrow aSbA \mid ab$$

$$A \longrightarrow cAd \mid cd$$

la stringa $aaabbcdbcd \in L(\mathcal{G})$ può essere così derivata:

$$S \Longrightarrow aSbA \Longrightarrow aaSbAbA \Longrightarrow aaabbAbA$$

 \implies $aaabbcdbA \implies aaabbcdbcd$.

Albero sintattico

Albero sintattico

In questa rappresentazione non si mantiene traccia dell'ordine con cui le produzioni sono state applicate. Ad un unico albero possono corrispondere diverse derivazioni.

Vantaggio: un albero di derivazione fornisce una descrizione sintetica della struttura sintattica della stringa, indipendentemente dall'ordine con cui le produzioni sono state applicate.

Forme ridotte e forme normali

Al fine di studiare alcune proprietà dei linguaggi generati da queste grammatiche, è utile considerare grammatiche "ristrette", comprendenti soltanto produzioni con struttura particolare.

È importante dimostrare che i linguaggi non contestuali possono essere generati mediante tali tipi di grammatiche.

Grammatica in forma ridotta

Una grammatica G è in forma ridotta se

- 1. non contiene ε -produzioni (se non, eventualmente, in corrispondenza all'assioma, ed in tal caso l'assioma non compare mai al lato destro di una produzione),
- 2. non contiene produzioni unitarie, cioè produzioni del tipo

$$A \longrightarrow B$$
, con $A, B \in V_N$,

3. non contiene simboli inutili, cioè simboli che non compaiono in nessuna derivazione di una stringa di soli terminali.

Grammatica in forma ridotta

Trasformazione di una grammatica $\mathscr{G} = \langle V_T, V_N, P, S \rangle$ di tipo 2 in una grammatica equivalente in forma ridotta mediante sequenza di passi.

- 1. A partire da \mathcal{G} , derivazione di \mathcal{G}_1 di tipo 2 senza ε -produzioni tale che $L(\mathcal{G}_1) = L(\mathcal{G}) \{\varepsilon\}$.
- 2. A partire da \mathcal{G}_1 , derivazione di \mathcal{G}_2 di tipo 2 senza ε -produzioni e senza produzioni unitarie tale che $L(\mathcal{G}_2) = L(\mathcal{G}_1)$.
- 3. A partire da \mathcal{G}_2 , derivazione di \mathcal{G}_3 di tipo 2 senza ε -produzioni, senza produzioni unitarie e senza simboli inutili tale che $L(\mathcal{G}_3) = L(\mathcal{G}_2)$.
- 4. La grammatica \mathscr{G}_4 , di tipo 2, equivalente a \mathscr{G} coincide con \mathscr{G}_3 se $\varepsilon \notin L(\mathscr{G})$; altrimenti, \mathscr{G}_4 è ottenuta da \mathscr{G}_3 introducendo un nuovo assioma ed un opportuno insieme di produzioni su tale simbolo.

Teorema

Data una grammatica $G = \langle V_T, V_N, P, S \rangle$ il cui insieme di produzioni P comprende soltanto produzioni di tipo non contestuale e produzioni vuote, esiste una grammatica non contestuale G' tale che $L(G') = L(G) - \{\varepsilon\}$.

Determinazione dell'insieme $N \subseteq V_N$ dei simboli che si annullano, cioè i non terminali da cui è possibile derivare ε in G.

Costruzione di una sequenza $N_0, N_1, \dots, N_k = N$ di sottoinsiemi di V_N , con $N_0 = \{A \in V_N \mid A \longrightarrow \varepsilon \in P\}$ e N_{i+1} derivato da N_i :

$$N_{i+1} = N_i \cup \{B \in V_N \mid (B \longrightarrow \beta \in P) \land (\beta \in N_i^+)\}.$$

La costruzione termina quando $N_{k+1} = N_k$, $k \ge 0$.

 $\varepsilon \in L(G)$ se e solo se $S \in N$.

```
input grammatica G = \langle V_T, V_N, P, S \rangle; output insieme N \subseteq V_N dei simboli che si annullano; N := \{A \in V_N \mid A \longrightarrow \varepsilon \in P\}; repeat \widehat{N} := N; N := \widehat{N} \cup \{B \in V_N \mid (B \longrightarrow \beta \in P) \land (\beta \in \widehat{N}^+)\} until N = \widehat{N}
```

Costruzione dell'insieme P' delle produzioni di G':

- \odot Si esamina ciascuna produzione $A \longrightarrow \alpha$ di P, con l'esclusione delle ε -produzioni
 - Se nessun simbolo di α è annullabile: $A \longrightarrow \alpha$ è inserita in P'
 - Altrimenti α contiene k>0 simboli che si annullano: sono inserite in P' tutte le possibili produzioni ottenute da $A\longrightarrow \alpha$ eliminando da α uno dei sottoinsiemi di simboli che si annullano

```
input grammatica G = \langle V_T, V_N, P, S \rangle, insieme N \subseteq V_N dei
simboli che si annullano:
output insieme P' delle produzioni di G';
P' := \emptyset;
for each A \longrightarrow \alpha \in P con \alpha \neq \varepsilon do
   sia \alpha = Z_1, \dots, Z_t;
   J := \{i \mid Z_i \in N\};
   for each J' \in 2^J do
      if I' \neq \{1, \dots, t\} then
          sia \beta la stringa ottenuta eliminando da \alpha ogni Z_i
          con i \in I':
          P' := P' \cup \{A \longrightarrow \beta\}
```

Nel caso in cui $L(\mathcal{G})$ contiene ε , si può ottenere da \mathcal{G}' una grammatica equivalente a \mathcal{G} tramite la semplice introduzione di una ε -produzione sull'assioma di \mathcal{G}' .

Consideriamo la grammatica $G = \langle \{a,b\}, \{S,A,B\}, P,S \rangle$, le cui produzioni P sono:

$$S \longrightarrow A \mid SSa$$

$$A \longrightarrow B \mid Ab \mid \varepsilon$$

$$B \longrightarrow S \mid ab \mid aA$$
.

Sequenza di insiemi di simboli annullabili:

$$N_0 = \{A\}$$

 $N_1 = \{S, A\}$
 $N_2 = \{S, A, B\}$
 $N_3 = \{S, A, B\} = N_2 = N$

Produzioni *P'*:

$$\begin{array}{ccc} S & \longrightarrow & A \mid SSa \mid Sa \mid a \mid \varepsilon \\ A & \longrightarrow & B \mid Ab \mid b \\ B & \longrightarrow & S \mid ab \mid aA \mid a. \end{array}$$

Teorema

Per ogni grammatica $\mathscr G$ di tipo 2 senza ε -produzioni, esiste sempre una grammatica $\mathscr G'$ di tipo 2 senza ε -produzioni, priva di produzioni unitarie ed equivalente a $\mathscr G$.

Sia, per ogni $A \in V_N$, U(A), il sottoinsieme di $V_N - \{A\}$ comprendente tutti i non terminali derivabili da A applicando una sequenza di produzioni unitarie,

$$U(A) = \{ B \in V_N - \{A\} \mid A \stackrel{*}{\Longrightarrow} B \}$$

Data la grammatica $\mathcal{G} = \langle V_T, V_N, P, S \rangle$, P' è costruito:

- \odot inserendo dapprima in P' tutte le produzioni non unitarie in P
- ⊚ inserendo in P', per ogni non terminale A e per ogni $B \in U(A)$, la produzione $A \longrightarrow \beta$ se e solo se in P esiste una produzione non unitaria $B \longrightarrow \beta$

```
input Grammatica CF G = \langle V_T, V_N, P, S \rangle priva di \varepsilon-produzioni; output Grammatica CF G' = \langle V_T, V_N, P', S \rangle priva di \varepsilon-produzioni e di produzioni unitarie equivalente a G; P' := \{A \longrightarrow \alpha \in P \mid \alpha \notin V_N\}; for each A \in V_N do P' := P' \cup \{A \longrightarrow \beta \mid B \longrightarrow \beta \in P \land B \in U(A) \land \beta \notin V_N\}
```

Esercizio

Costruire un algoritmo che, data una grammatica \mathscr{G} di tipo 2 senza ε -produzioni e dato un non terminale A della grammatica, determini l'insieme U(A)

Passo iniziale: inserisci in U(A) tutti i simboli B tali che $A \longrightarrow B$

Passo iterativo: per ogni simbolo $B \in U(A)$, inserisci in U(A) tutti i simboli C tali che $B \longrightarrow C$; termina se nessun nuovo simbolo è stato inserito in U(A)

Teorema

Per ogni grammatica $\mathscr{G}=\langle V_T,V_N,P,S\rangle$ di tipo 2 senza ε -produzioni e senza produzioni unitarie, esiste sempre una grammatica \mathscr{G}' di tipo 2 senza ε -produzioni, priva di produzioni unitarie e di simboli inutili ed equivalente a \mathscr{G} .

Affinché un simbolo $A \in V_N$ non sia inutile, è necessario che nella grammatica $\mathscr G$ si abbia che:

- A sia un simbolo fecondo, vale a dire che da esso siano generabili stringhe di terminali, cioè $\exists w \in V_T^+$ tale che $A \stackrel{*}{\Longrightarrow} w$;
- A sia generabile dall'assioma in produzioni che non contengano simboli non fecondi, cioè $S \stackrel{*}{\Longrightarrow} \alpha A \beta$ con $\alpha, \beta \in (V_T \cup V_N)^*$ e, per ogni $B \in V_N$ in α o β , valga la proprietà precedente.

Equivalentemente, un simbolo $A \in V_N$ non è inutile se esiste una derivazione $S \stackrel{*}{\Longrightarrow} \alpha A\beta \stackrel{*}{\Longrightarrow} w \in V_T^+$.

Un non terminale A è fecondo se e solo se vale una delle due condizioni seguenti:

- 1. esiste $w \in V_T^+$ tale che $A \longrightarrow w \in P$;
- 2. esiste $\alpha \in (V_N \cup V_T)^*$ tale che $A \longrightarrow \alpha \in P$ e tutti i simboli non terminali in α sono fecondi.

```
input Grammatica non contestuale G = \langle V_T, V_N, P, S \rangle, priva di ε-produzioni e di produzioni unitarie; output Grammatica non contestuale \widehat{G} = \langle V_T, \widehat{V}_N, \widehat{P}, S \rangle, priva di ε-produzioni, di produzioni unitarie e di simboli non fecondi, equivalente a G; F := \emptyset; while \exists A \in V_N - F per cui \exists A \longrightarrow \alpha \in P, con \alpha \in (F \cup V_T)^* do F := F \cup \{A\}; \widehat{P} := \{A \longrightarrow \alpha \mid A \longrightarrow \alpha \in P, A \in F, \alpha \in (F \cup V_T)^*\}
```

È necessario verificare che i simboli rimasti siano generabili a partire dall'assioma.

Ciò può essere effettuato in modo iterativo, osservando che A è generabile a partire da S se vale una delle due condizioni seguenti:

- 1. esistono $\alpha, \beta \in (F \cup V_T)^*$ tali che $S \longrightarrow \alpha A\beta \in \widehat{P}$;
- 2. esistono $\alpha, \beta \in (F \cup V_T)^*$ e $B \in F$, generabile a partire da S, tali che $B \longrightarrow \alpha A \beta \in \widehat{P}$.

```
input Grammatica non contestuale \widehat{G} = \langle V_T, F, \widehat{P}, S \rangle priva
   di \varepsilon-produzioni, di produzioni unitarie e di simboli
   non fecondi:
output Grammatica non contestuale G' = \langle V_T, V_N', P', S \rangle priva
   di \varepsilon-produzioni, produzioni unitarie, simboli non fecondi,
   simboli non generabili da S, equivalente a \widehat{G};
NG := F - \{S\}:
for each A \in F - NG do
   for each \alpha \in (V_T \cup F)^* tale che A \longrightarrow \alpha \in \widehat{P} do
       for each B \in NG che appare in \alpha do
          NG := NG - \{B\};
V'_{N} := F - NG;
P' := \{A \longrightarrow \alpha \mid A \longrightarrow \alpha \in \widehat{P}, A \in V'_{N_T}, \alpha \in (V'_{N_T} \cup V_T)^*\}
```

Al fine di eliminare i simboli inutili (non fecondi e non generabili da S) è necessario applicare i due algoritmi nell'ordine dato: eliminare prima i simboli non generabili e poi quelli non fecondi può far sì che non tutti i simboli inutili vengano rimossi dalla grammatica.

Infatti, si consideri la grammatica

$$\begin{array}{ccc} S & \longrightarrow & AB \mid a \\ A & \longrightarrow & a. \end{array}$$

Procedendo prima all'eliminazione dei simboli non derivabili dall'assioma e poi all'eliminazione di quelli non fecondi, otterremmo le seguenti grammatiche:

che non è in forma ridotta.

Se invece si procede come indicato sopra si ottengono le due grammatiche $\,$

Una grammatica $\mathscr{G} = \langle V_T, V_N, P, S \rangle$ può essere estesa in una grammatica $\mathscr{G}' = \langle V_T, V_N', P', S' \rangle$ che generi anche la stringa vuota ε nel modo seguente:

- 1. $V_N' = V_N \cup \{T\}$, dove $T \notin V_N$;
- 2. $P' = P \cup \{T \longrightarrow \varepsilon\} \cup \{T \longrightarrow \alpha \mid S \longrightarrow \alpha \in P\};$
- 3. S' = T.

- L'eliminazione delle produzioni unitarie porta ad escludere la produzione 4 e ad aggiungere una terza produzione alla 1.
- L'eliminazione di simboli non fecondi porta ad escludere la produzione 2 e la seconda produzione della 1.
- © L'eliminazione dei simboli non raggiungibili porta infine ad escludere la produzione 8.

Si ottiene quindi la grammatica

$$\begin{array}{ccc} S & \longrightarrow & aUVb \mid aUWb \\ U & \longrightarrow & bU \mid b \\ V & \longrightarrow & aY \\ Y & \longrightarrow & bY \mid b \\ W & \longrightarrow & cWd \mid cd. \end{array}$$

Esercizio

Trasformare la grammatica seguente in una grammatica equivalente in forma ridotta.

$$\begin{array}{cccc} S & \longrightarrow & H \mid Z \\ H & \longrightarrow & A \mid \varepsilon \\ Z & \longrightarrow & bZb \\ A & \longrightarrow & bbABa \mid a \\ B & \longrightarrow & cB \mid BZY \mid \varepsilon \\ Y & \longrightarrow & Yb \mid b. \end{array}$$

Una grammatica di tipo 2 si dice in Forma Normale di Chomsky se tutte le sue produzioni sono del tipo $A \longrightarrow BC$ o del tipo $A \longrightarrow a$, con $A, B, C \in V_N$ ed $a \in V_T$.

Teorema

Data una grammatica G non contestuale tale che $\varepsilon \notin L(G)$, esiste una grammatica equivalente in CNF.

Come mostrato, è possibile derivare una grammatica G' in forma ridotta equivalente a G: in particolare, G' non ha produzioni unitarie.

Da G', è possibile derivare una grammatica G'' in CNF, equivalente ad essa

Sia $A \longrightarrow \zeta_{i_1} \dots \zeta_{i_n}$ una produzione di G' non in CNF. Si possono verificare due casi:

⊚ $n \ge 3$ e $\zeta_{i_j} \in V_N$, j = 1, ..., n. In tal caso, introduciamo n - 2 nuovi simboli non terminali $Z_1, ..., Z_{n-2}$ e sostituiamo la produzione $A \longrightarrow \zeta_{i_1} ... \zeta_{i_n}$ con le produzioni

$$\begin{array}{cccc} A & \longrightarrow & \zeta_{i_1} Z_1 \\ Z_1 & \longrightarrow & \zeta_{i_2} Z_2 \\ & \dots \\ Z_{n-2} & \longrightarrow & \zeta_{i_{n-1}} \zeta_{i_n}. \end{array}$$

⊚ $n \ge 2$ e $\zeta_{i_j} \in V_T$ per qualche $j \in \{1, \dots, n\}$. In tal caso per ciascun $\zeta_{i_j} \in V_T$ introduciamo un nuovo non terminale \overline{Z}_{i_j} , sostituiamo \overline{Z}_{i_j} a ζ_{i_j} nella produzione considerata e aggiungiamo la produzione $\overline{Z}_{i_j} \longrightarrow \zeta_{i_j}$. Così facendo o abbiamo messo in CNF la produzione considerata (se n=2) o ci siamo ricondotti al caso precedente (se $n \ge 3$).

Si consideri la grammatica di tipo 2 che genera il linguaggio $\{a^nb^n\mid n\geq 1\}$ con le produzioni

$$S \longrightarrow aSb$$

$$S \longrightarrow ab$$

La grammatica è in forma ridotta.

Grammatica in CNF equivalente:

- $\odot V_N = \{S, Z_1, \overline{Z}_1, \overline{Z}_2, \overline{Z}_3, \overline{Z}_4\}$

$$S \longrightarrow \overline{Z}_1 Z_1$$

$$Z_1 \longrightarrow S\overline{Z}_2$$

$$S \longrightarrow \overline{Z}_3 \overline{Z}_4$$

$$\overline{Z}_1 \longrightarrow a$$

$$\overline{Z}_2 \longrightarrow b$$

$$\overline{Z}_3 \longrightarrow a$$

$$\overline{Z}_4 \longrightarrow b$$

Forma normale di Greibach

Una grammatica di tipo 2 si dice in Forma Normale di Greibach (GNF) se tutte le sue produzioni sono del tipo $A \longrightarrow a\beta$, con $A \in V_N$, $a \in V_T$, $\beta \in V_N^*$.

Si osservi come una grammatica di tipo 3 corrisponda al caso in cui $|\beta| \leq 1$

Lemma (Sostituzione)

Sia G una grammatica di tipo 2 le cui produzioni includono

$$\begin{array}{ccc} A & \longrightarrow & \alpha_1 B \alpha_2 \\ B & \longrightarrow & \beta_1 \mid \dots \mid \beta_n, \end{array}$$

 $(\alpha_1, \alpha_2 \in V^*)$ e in cui non compaiono altre *B*-produzioni oltre a quelle indicate. La grammatica G' in cui la produzione $A \longrightarrow \alpha_1 B \alpha_2$ è stata sostituita dalla produzione

$$A \longrightarrow \alpha_1 \beta_1 \alpha_2 \mid \dots \mid \alpha_1 \beta_n \alpha_2$$

è equivalente alla grammatica G.

Lemma (Eliminazione ricursione sinistra)

Sia data una grammatica G con ricursione sinistra sul non terminale A e sia

$$A \longrightarrow A\alpha_1 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \dots \mid \beta_n,$$

l'insieme dell A-produzioni in \mathcal{G} , dove nessuna delle stringhe β_i inizia per A. La grammatica G' in cui le A-produzioni in G sono state sostituite dalle produzioni:

$$\begin{array}{ccccc} A & \longrightarrow & \beta_1 A' \mid \dots \mid \beta_n A' \mid \beta_1 \dots \mid \beta_n \\ A' & \longrightarrow & \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \alpha_1 \dots \mid \alpha_m \end{array}$$

è equivalente a G e non presenta ricursione sinistra rispetto al non terminale A.

Teorema

Ogni linguaggio non contestuale L tale che $\varepsilon \notin L$ può essere generato da una grammatica di tipo 2 in GNF.

Si assuma che G sia una grammatica CF in CNF che generai L.

La derivazione di G' da G avviene applicando iterativamente i due lemmi precedenti, a partire da un ordinamento arbitrario A_1, \ldots, A_n tra i non terminali di G.

Fase 1

- \odot per k da 2 a n
 - per j da 1 a k − 1
 - Applica il Lemma di sostituzione ad ogni produzione del tipo $A_k \longrightarrow A_i \alpha$
 - Applica il Lemma di eliminazione della ricursione sinistra ad ogni produzione del tipo $A_k \longrightarrow A_k \alpha$

Siano $B_1 \dots, B_l$ i non terminali aggiunti. A questo punto le produzioni sono tutte di uno tra i tipi:

- \odot (a) $A_k \longrightarrow A_j \gamma \operatorname{con} j > k, \gamma \in (V_N \cup \{B_1, \dots, B_l\})^*$
- \odot (b) $A_k \longrightarrow a\gamma \text{ con } a \in V_T, \gamma \in (V_N \cup \{B_1, \dots, B_l\})^*$
- \odot (c) $B_k \longrightarrow \gamma \text{ con } \gamma \in V_N \cdot (V_N \cup \{B_1, \dots, B_l\})^*$

Inoltre, le A_k -produzioni sono:

- \odot se k = n tutte del tipo (b)
- ⊚ se k < n del tipo (b) o del tipo (a), con $j \le n$

Fase 2

- \odot per h da n-1 a 1
 - per j da n a h
 - Applica il Lemma di sostituzione ad ogni produzione del tipo $A_h \longrightarrow A_j \gamma$

A questo punto le produzioni sono tutte del tipo (b) o (c)

Fase 3

- \odot per i da 1 a l
 - per *j* da 1 a *m*
 - Applica il Lemma di sostituzione ad ogni produzione del tipo $B_i \longrightarrow A_j \gamma$

A questo punto le produzioni sono tutte del tipo (b)

Data una grammatica avente le produzioni

$$\begin{array}{ccc} S & \longrightarrow & AB \mid b \\ A & \longrightarrow & b \mid BS \\ B & \longrightarrow & a \mid BA \mid AS, \end{array}$$

consideriamo in modo arbitrario l'ordinamento S,A,B tra i non terminali

Fase 1.

Sostituiamo alla produzione $B \longrightarrow AS$ la coppia di produzioni $B \longrightarrow bS \mid BSS$:

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid BS$$

$$B \longrightarrow a \mid bS \mid BA \mid BSS$$

Fase 1.

Eliminiamo la ricursione sinistra nelle *B*-produzioni, ottenendo

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid BS$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

$$B' \longrightarrow A \mid SS \mid AB' \mid SSB'.$$

Fase 2.

Sostituiamo alla produzione $A\longrightarrow BS$ le produzioni $A\longrightarrow aS\mid bSS\mid aB'S\mid bSB'S$ ottenendo

$$S \longrightarrow AB \mid b$$

$$A \longrightarrow b \mid aS \mid bSS \mid aB'S \mid bSB'S$$

$$B \longrightarrow a \mid bS \mid aB' \mid bSB'$$

$$B' \longrightarrow A \mid SS \mid AB' \mid SSB'.$$

Fase 2.

Sostituiamo alla produzione $S \longrightarrow AB$ le produzioni $S \longrightarrow aSB \mid bSSB \mid aB'SB \mid bB'SB \mid bB$ ottenendo

Fase 3.

Sostituiamo nelle *B'*-produzioni ottenendo

Esercizio

Sia data la seguente grammatica:

$$S \longrightarrow AbA \mid b$$

$$A \longrightarrow SaS \mid a.$$

Derivare una grammatica in GNF equivalente ad essa.

Pumping lemma

Teorema

Sia $L \subseteq V_T^*$ un linguaggio non contestuale. Esiste allora una costante n tale che se $z \in L$ e $|z| \ge n$ allora esistono 5 stringhe $u, v, w, x, y \in V_T^*$ tali che

- i) uvwxy = z
- $|vx| \geq 1$
- $iii) \mid vwx \mid \leq n$
- $iv) \quad \forall i \geq 0 \ uv^i w x^i y \in L.$

Pumping lemma: interpretazione come gioco a due

Se *L* è context free, Alice vince sempre questo gioco con Bob:

- 1. Alice fissa un intero n > 0 opportuno
- 2. Bob sceglie una stringa $z \in L$ con |z| > n
- 3. Alice divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$
- 4. Bob sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iwx^iy \in L$

Grammatica $G = \langle V_T, V_N, P, S \rangle$ in CNF che genera L = L(G) e sia $k = \mid V_N \mid$ il numero di simboli non terminali in G.

Qualunque albero sintattico $A(\sigma)$ relativo ad una stringa $\sigma \in V_T^*$ derivata in G sarà tale da avere tutti i nodi interni (corrispondenti a simboli non terminali) di grado 2, eccetto quelli aventi foglie dell'albero come figli, che hanno grado 1.

- ⊚ Se h è l'altezza di A (numero massimo di archi, e anche numero massimo di nodi interni, in un cammino dalla radice ad una foglia), il massimo numero di foglie l(h) è dato dal caso in cui l'albero è completo (i nodi interni hanno due figli, eccetto i padri di foglie, che ne hanno uno). Si può facilmente verificare che in tal caso abbiamo $l(h) = 2^{h-1}$, in quanto $l(1) = 1 = 2^0$ e $l(h+1) = 2 \cdot L(h) = 2 \cdot 2^{h-1} = 2^h$
- ⊚ Se l'albero sintattico $A(\sigma)$ relativo alla stringa $\sigma \in L$ ha altezza $h(\sigma)$, la lunghezza di σ è allora $|\sigma| \le 2^{h(\sigma)-1}$, e quindi $h(\sigma) \ge 1 + \log_2 |\sigma|$
- \odot Se σ è una stringa sufficientemente lunga (in questo caso, $|\sigma|>2^{|V_N|-1}$), ne risulta che $h(\sigma)\geq 1+\log_2|\sigma|>|V_N|$
- \odot Quindi, se $|\sigma| > 2^{|V_N|-1}$ esiste almeno un cammino c dalla radice ad una foglia di $A(\sigma)$ che attraversa almeno $|V_N|+1$ nodi interni

- \odot I nodi interni di $A(\sigma)$ sono etichettati da simboli non terminali (le parti sinistre della produzioni nella derivazione di σ)
- \odot Dato che i simboli non terminali sono $|V_N|$ mentre i nodi interni in c sono più di $|V_N|$, deve esistere (per il pigeonhole principle) un simbolo non terminale A che compare in due diversi nodi di c
- \odot Di questi due nodi, indichiamo con r il nodo più vicino alla radice e con s il nodo associato ad A più vicino alla foglia
- © Indichiamo con $r(\sigma)$ e $s(\sigma)$ le sottostringhe di σ corrispondenti alle foglie dei due sottoalberi $R(\sigma), S(\sigma)$ di $A(\sigma)$ aventi radice r e s
- ⊚ Dato che *s* è un discendente di *r*, necessariamente $s(\sigma)$ è una sottostringa di $r(\sigma)$, per cui esistono due sottostringhe di v, x di σ tali che $r(\sigma) = v \cdot s(sigma) \cdot x$

- ⊚ La grammatica considerata è in CNF, per cui non sono presenti produzioni unitarie (a parte quelle relative alle foglie): di conseguenza, non può essere $s(\sigma) = r(\sigma)$, e quindi |vx| > 1
- © Senza perdere generalità, possiamo assumere che $r(\sigma)$ sia il nodo in c più vicino alle foglie per il quale c'è un nodo sottostante $s(\sigma)$ associato allo stesso non terminale: quindi, il cammino più lungo da $r(\sigma)$ ad una foglia attraversa al più $|V_N|+1$ nodi interni (esso stesso incluso) .
- \odot Dalle osservazioni precedenti, ne deriva che $r(\sigma)$ ha lunghezza al più $2^{|V_N|+1-1}=2^{|V_N|}$

Poniamo $s(\sigma) = w$ e quindi $r(\sigma) = vwx$.

- \odot Gli alberi $R(\sigma)$ e $S(\sigma)$ possono essere sostituiti (avendo radice corrispondente allo stesso non terminale) l'uno all'altro all'interno di un qualunque albero sintattico
- \odot Quindi, anche la stringa uwy è generata dalla grammatica (sostituendo, in $A(\sigma)$, $S(\sigma)$ a $R(\sigma)$
- ⊚ Mediante la sostituzione opposta, anche la stringa uvvwxxy risulta generabile.

Pumping lemma

La proprietà mostrata fornisce soltanto una condizione necessaria di un linguaggio context free: non può essere utilizzata per mostrare la contestualità di un linguaggio, ma solo per dimostrarne la non contestualità.

L contestuale \implies pumping lemma verificato pumping lemma non verificato $\implies L$ non contestuale

Pumping lemma: utilizzo come gioco a due

Se Alice vince sempre questo gioco con Bob, allora L non è CF

- 1. Bob sceglie un intero n > 0
- 2. Alice sceglie una stringa $z \in L$ con |z| > n
- 3. Bob divide z in cinque partiuvwxy con $\mid vwx\mid \leq n$ e $\mid vx\mid \geq 1$
- 4. Alice sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iwx^iy \notin L$

Esempio

$$L = \{a^k b^k c^k | k > 0\}$$
 non è CF

- 1. Bob sceglie un intero n > 0
- 2. Alice sceglie la stringa $a^n b^n c^n \in L$
- 3. Bob divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$. vwx o è una sequenza di occorrenze dello stesso simbolo (ad esempio $a^h, h > 0$) o è composta di due sottosequenze di stessi simboli (ad esempio $a^rb^s, r, s > 0$). Quindi, almeno uno dei simboli a, b, c non compare in vwx e quindi né in v né in x
- 4. Alice sceglie i = 2
- 5. Alice mostra a Bob che $uv^2wx^2y \notin L$ in quanto almeno un simbolo ha aumentato il numero di occorrenze ed almeno un altro simbolo ha un numero di occorrenze invariato

Chiusura dei linguaggi CF: intersezione

Il linguaggio $L = \{a^nb^nc^n \mid n \ge 1\}$ non è context free.

Del resto, $L_1=\{a^nb^nc^m\mid n,m\geq 1\}$ e $L_2=\{a^mb^nc^n\mid n,m\geq 1\}$ sono contestuali

Ma $L=L_1 \cap L_2$, da cui deriva che la classe dei linguaggi CF non è chiusa rispetto all'intersezione

Chiusura dei linguaggi CF: unione

Dati due linguaggi context free $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$, siano $\mathscr{G}_1 = \langle \Sigma_1, V_{N1}, P_1, S_1 \rangle$ e $\mathscr{G}_2 = \langle \Sigma_2, V_{N2}, P_2, S_2 \rangle$ due grammatiche di tipo 2 tali che $L_1 = L(\mathscr{G}_1)$ e $L_2 = L(\mathscr{G}_2)$.

Il linguaggio $L=L_1\cup L_2$ potrà allora essere generato dalla grammatica di tipo 2 $\mathscr{G}=\langle \Sigma_1\cup \Sigma_2, V_{N1}\cup V_{N2}\cup \{S\}, P,S\rangle$, dove $P=P_1\cup P_2\cup \{S\longrightarrow S_1\mid S_2\}$.

Chiusura dei linguaggi CF: concatenazione

Dati due linguaggi context free $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$, siano $\mathscr{G}_1 = \langle \Sigma_1, V_{N1}, P_1, S_1 \rangle$ e $\mathscr{G}_2 = \langle \Sigma_2, V_{N2}, P_2, S_2 \rangle$ due grammatiche di tipo 2 tali che $L_1 = L(\mathscr{G}_1)$ e $L_2 = L(\mathscr{G}_2)$.

Mostriamo che il linguaggio $L = L_1 \circ L_2$ è generato dalla grammatica di tipo 2 definita come $\mathscr{G} = \langle \Sigma_1 \cup \Sigma_2, V_{N1} \cup V_{N2} \cup \{S\}, P, S \rangle$, dove $P = P_1 \cup P_2 \cup \{S \longrightarrow S_1S_2\}$.

Chiusura dei linguaggi CF: iterazione

Dato un linguaggio context free $L\subseteq \Sigma^*$, sia $\mathscr{G}=\langle \Sigma, V_N, P, S\rangle$ una grammatica di tipo 2 tale che $L=L(\mathscr{G})$.

Il linguaggio $L' = L^*$ è allora generato dalla grammatica di tipo 2 $\mathscr{G}' = \langle \Sigma, V_N \cup \{S'\}, P', S' \rangle$, dove $P' = P \cup \{S' \longrightarrow SS' \mid \varepsilon\}$.

Chiusura dei linguaggi CF: complemento

La classe dei linguaggi CF non è chiusa rispetto al complemento.

Infatti, se cosìfosse, avremmo che dati due qualunque linguaggi CF L_1, L_2 , il linguaggio $L = \overline{L}_1 \cup \overline{L}_2$ sarebbe CF anch'esso. Ma $L = L_1 \cap L_2$ e quindi ne risulterebbe la chiusura rispetto all'intersezione, che non sussiste.

Data una grammatica G di tipo 2 è decidibile stabilire se $L(G) = \emptyset$.

Assumiamo che $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ sia in CNF.

Per il pumping lemma, se esiste una stringa $z = uvwxy \in L(\mathcal{G})$ con $|z| \ge 2^{|V_N|}$, allora esiste una stringa $z' = uwy \in L(\mathcal{G})$ con $|z'| < 2^{|V_N|}$. Quindi, se il linguaggio non è vuoto, esiste una stringa in esso di lunghezza minore di $2^{|V_N|}$

In una grammatica in CNF ogni applicazione di una produzione o incrementa di uno la lunghezza della forma di frase (se la produzione è del tipo $A \longrightarrow BC$) o sostituisce un terminale a un non terminale (se è del tipo $A \longrightarrow a$). Quindi, una stringa di lunghezza 2^k è generata da una derivazione di lunghezza $2^{k+1}-1$

Per verificare se esiste una stringa di lunghezza minore di $2^{|V_N|}$ generabile, è sufficiente considerare tutte le derivazioni di lunghezza minore di $2^{|V_N|+1}-1$ che sono, al più

$$\sum_{k=1}^{2^{|V_N|+1}-2} |P|^k = \frac{|P|^{2^{|V_N|+1}-1}-1}{|P|-1} = O(2^{2^{|V_N|+1}})$$

Un metodo più efficiente consiste nel portare la grammatica in forma ridotta, verificando se esistono simboli fecondi. Condizione necessaria e sufficiente affinchè il linguaggio sia vuoto è che la grammatica non abbia simboli fecondi.

Data una grammatica G di tipo 2 è decidibile stabilire se L(G) è infinito.

Assumiamo che $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ sia in CNF.

Per il pumping lemma, se esiste una stringa $z=uvwxy\in L(\mathcal{G})$ con $|z|\geq 2^{|V_N|}$, allora esistono infinite stringhe $z_i=uv^iwx^iy\in L(\mathcal{G})$, con $i\geq 0$, e almeno una di queste ha lunghezza $|z'|<2^{|V_N|+1}$

Quindi, se il linguaggio è infinito, esiste una stringa in esso di lunghezza $z \in [2^{|V_N|}, 2^{|V_N|+1} - 1]$, che sarà derivata (in una grammatica in CNF) da una derivazione di lunghezza compresa tra $2^{|V_N|+1} - 1$ e $2^{|V_N|+2} - 3$

È possibile allora considerare tutte le derivazioni di lunghezza compresa tra $2^{|V_N|+1}-1$ e $2^{|V_N|+2}-3$ che sono al più

$$\sum_{k=2^{|V_N|+1}-1}^{2^{|V_N|+2}-3} |P|^k = \frac{|P|^{2^{|V_N|+2}-2} - |P|^{2^{|V_N|+1}-1}}{|P|-1} = O(2^{2^{|V_N|+2}})$$

e verificare se qualcuna di esse dà origine ad una stringa di terminali.

Metodo più efficiente: verificare la ciclicità del grafo orientato G=(N,A) derivato dalla grammatica in CNF che genera L, ponendo $N=V_N$ e introducendo, per ogni produzione $B\longrightarrow CD$, gli archi < B,C> e < B,D>

Una grammatica G si dice ambigua se esiste una stringa x in L(G) derivabile con due diversi alberi sintattici.

L'albero sintattico di una stringa corrisponde in qualche modo al significato della stringa stessa, quindi l'univocità di questo albero è importante per comprendere senza ambiguità tale significato

Si consideri la grammatica

$$E \longrightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid a$$
.

Essa genera tutte le espressioni aritmetiche sulla variabile *a*, ma come si vede facilmente la stessa espressione può essere derivata con alberi di derivazione diversi.

Ad esempio la stringa a + a * a può venire derivata mediante due diversi alberi.

Si consideri la grammatica

$$E \longrightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid a$$
.

Essa genera tutte le espressioni aritmetiche sulla variabile *a*, ma come si vede facilmente la stessa espressione può essere derivata con alberi di derivazione diversi.

Eliminazione dell'ambiguità:

- Introduzione di parentesi
- Precedenza tra operatori

Parentesi:

$$E \longrightarrow (E+E) \mid (E-E) \mid (E*E) \mid (E/E) \mid (E) \mid a$$
.

I due diversi alberi di derivazione che davano origine alla stessa stringa, danno ora origine alle due stringhe

$$(a + (a * a))$$
$$((a + a) * a).$$

Precedenza tra operatori:

$$E \longrightarrow E + T \mid E - T \mid T$$

$$T \longrightarrow T * F \mid T/F \mid F$$

$$F \longrightarrow (E) \mid a$$

La grammatica rappresenta nella sua struttura le relazioni di precedenza definite tra gli operatori (nell'ordine non decrescente $+,-,^*,/$) e in tal modo consente di utilizzare le parentesi soltanto quando strettamente necessario.

Riconoscimento: Data una grammatica ${\mathcal G}$ non contestuale, ${\mathcal G}$ è ambigua?

Il problema è indecidibile nel caso di CFG: non esiste quindi nessun algoritmo di decisione che, data una CFG, restituisca T se la grammatica è ambigua e F altrimenti.

Riduzioni

Indecidibilità dimostrata mediante riduzione da un altro problema di decisione \mathcal{P} , che si sa essere indecidibile.

Schema generale di dimostrazione:

- \odot si vuole mostrare che il problema \mathscr{P}_1 è indecidibile
- \odot si individua un altro problema \mathscr{P}_0 che si sa essere indecidibile
- \odot si definisce un algoritmo $\mathscr A$ che trasforma ogni istanza I_0 di $\mathscr P_0$ in una istanza $I_1=\mathscr A(I_0)$ di $\mathscr P_1$
- \odot si mostra che l'istanza I_1 è positiva per \mathscr{P}_1 se e solo I_0 è positiva per \mathscr{P}_0
- \odot si conclude che \mathscr{P}_1 è indecidibile: se così non fosse avremmo una algoritmo che decide \mathscr{P}_0 , in quanto potremmo trasformare, per mezzo di \mathscr{A} , ogni sua istanza in una istanza corrispondente di \mathscr{P}_1 che potremmo, per ipotesi, risolvere

Nel nostro caso:

- P₁ è il problema di determinare, data una grammatica CF (istanza del problema), se essa è ambigua
- \odot \mathscr{P}_0 è PCP (Problema delle Corrispondenze di Post):
 - · data una istanza del problema, composta da:
 - un alfabeto Σ
 - due sequenze di k parole $X=x_1,\ldots,x_k$ e $Y=y_1,\ldots,y_k$ costruite su Σ
 - ci si chiede se esiste una sequenza di $m \ge 1$ interi i_1, i_2, \dots, i_m in $[1, \dots, k]$ tale che risulti

$$x_{i_1} x_{i_2} \dots x_{i_m} = y_{i_1} y_{i_2} \dots y_{i_m}$$

Esempio di PCP

- ⊙ Consideriamo le due sequenze 1, 10111, 10 e 111, 10, 0 costruite sull'alfabeto {0, 1}
- si può verificare che la sequenza di interi 2, 1, 1, 3 costituisce una soluzione alla istanza di PCP considerata.
- \odot infatti, si ottiene in un caso la sequenza $10111 \cdot 1 \cdot 1 \cdot 10 = 1011111110$ e nell'altro la stessa sequenza $10 \cdot 111 \cdot 111 \cdot 0 = 1011111110$

PCP è indecidibile (dimostrazione per riduzione dal Problema della fermata)

Riduzione

- \odot Sia $A = x_1, \dots, x_k$ e $B = y_1, \dots, y_k$ una istanza (generica) di PCP su un alfabeto Σ
- Consideriamo
 - l'alfabeto $\Sigma \cup \{a_1, a_2, \dots, a_k\}$, con $a_i \notin \Sigma$, $i = 1, \dots, k$
 - il linguaggio $L' = L_A \cup L_B$ definito su Σ , in cui:

$$\begin{array}{lll} - \ L_A = \{x_{i_1} x_{i_2} \cdots x_{i_m} a_{i_m} a_{i_{m-1}} \cdots a_{i_1} & | & m \geq 1\} \\ - \ L_B = \{y_{i_1} y_{i_2} \cdots y_{i_m} a_{i_m} a_{i_{m-1}} \cdots a_{i_1} & | & m \geq 1\}. \end{array}$$

· la relativa grammatica CF

$$\mathcal{G}' = \langle \{S, S_A, S_B\}, \Sigma \cup \{a_1, \dots, a_k\}, P, S \rangle,$$

con produzioni P, per i = 1, ..., k:

Esempio

Data l'istanza ([1, 10111, 10], [111, 10, 0]), la corrispondente grammatica sarà data da:

$$S \longrightarrow A \mid B$$

$$A \quad \longrightarrow \quad 1Aa \mid 101111Ab \mid 10Ac \mid 1a \mid 101111b \mid 10c$$

$$B \longrightarrow 111Ba \mid 10Bb \mid 0Bc \mid 111a \mid 10b \mid 0c$$

Equivalenza tra istanze

Se l'istanza (A, B) di PCP ha soluzione allora \mathcal{G}' è ambigua.

- \odot Sia i_1,\ldots,i_m una soluzione di PCP, tale che quindi $x_{i_1}\cdots x_{i_m}a_{i_m}\cdots a_{i_1}=y_{i_1}\cdots x_{i_m}a_{i_m}\cdots a_{i_1}=\sigma$.
- \odot La stringa σ appartiene a L' e ammette due distinti alberi sintattici, corrispondi il primo alla derivazione

$$S \Longrightarrow S_A \Longrightarrow x_{i_1} S_A a_{i_1} \Longrightarrow x_{i_1} x_{i_2} S_A a_{i_2} a_{i_1} \stackrel{*}{\Longrightarrow} x_{i_1} \cdots x_{i_m} a_{i_m} \cdots a_{i_1},$$

e il secondo alla derivazione

$$S \Longrightarrow S_B \Longrightarrow y_{i_1} S_B a_{i_1} \stackrel{*}{\Longrightarrow} y_{i_1} \cdots y_{i_m} a_{i_m} \cdots a_{i_1} = x_{i_1} \cdots x_{i_m} a_{i_m} \cdots a_{i_1}.$$

⊚ 𝒢′ risulta dunque ambigua

Equivalenza tra istanze

Se \mathcal{G}' è ambigua allora l'istanza (A,B) di PCP ha soluzione.

- \odot Sia z una stringa di L' che ammette due distinti alberi sintattici
- \odot Per definizione di L', deve essere $z=wa_{i_m}\cdots a_{i_1}$ per un qualche $m\geq 1$
- \odot Inoltre, per definizione di L', z deve appartenere ad almeno uno tra L_A e L_B : assumiamo, senza perdere generalità, che $z \in L_A$
- ⊚ Allora, deve essere $w = x_{i_1} \cdots x_{i_m}$, e la produzione iniziale della derivazione deve essere $S \to S_A$
- ⊚ Ma per definizione di \mathscr{C}' , l'altro modo di derivare z non può che prevedere come prima produzione $S \to S_B$, per cui $w = y_{i_1} \cdots y_{i_m}$
- $\odot\;$ Ne deriva che i_1,\dots,i_m è una soluzione dell'istanza (A,B) di PCP

Esempio

Come osservato, la sequenza 2,1,1,3 costituisce una soluzione dell'istanza (positiva, quindi) di PCP.

Corrispondentemente, la stringa 1011111110caab può essere ottenuta dalle due derivazioni:

$$S \longrightarrow 10111Ab \longrightarrow 1011111Aab \longrightarrow 10111111Aaab \longrightarrow 1011111110caab$$

$$S \longrightarrow 10Bb \longrightarrow 10111Babb \longrightarrow 101111111Baab \longrightarrow 1011111110caab$$

Indecidibilità

- La trasformazione definita deriva quindi da una istanza di PCP una grammatica CF che è ambigua se e solo se l'istanza ha soluzione
- Se avessimo un algoritmo che determina se una grammatica CF è ambigua, allora potremmo determinare se una istanza di PCP ha soluzione
- o Ma un algoritmo che determina se una istanza di PCP ha soluzione non esiste
- ⊚ Quindi, non esiste un algoritmo che determina se una grammatica CF è ambigua

Esistenza di grammatica equivalente non ambigua: Un linguaggio di tipo 2 si dice inerentemente ambiguo se tutte le grammatiche che lo generano sono ambigue.

Anche il problema dell'inerente ambiguità di un linguaggio è indecidibile.