

User Manual **EOL Testing Machine**

FOR ADITHYA AUTO PARTS, PUNE Developed by Sasyaka Engineering Solutions Pvt. Ltd.

End of line testing machine

25/01/2020 Issue

All technical data apply at the time of going to print

All texts, representations, illustrations and drawings including this user manual are the intellectual property of Sasyaka Engineering Pvt. Ltd. and are protected by copyright law.

No part of this publication shall be reproduced or transmitted in electronic, mechanical, photocopying or any form without the prior written permission of Sasyaka Engineering solutions Pvt.Ltd.

All technical data subject to change according to the technical update.

Sasyaka Engineering Solutions Pvt. Ltd. B-10, HMT Industrial Estate, Jalahalli, Bangalore – 560 031, India.

Table of Contents

1.0	Intro	oduction	04
2.0	Syst	em Overview	• • • • • •
	2.1	Installation	05-06
3.0	Soft	ware & User Interface	07
	3.1	Settings	08
	3.2	Procedure for settings	09-10
	3.3	Maintenance Mode	11-12
	3.4	Manual Mode	13
	3.5	Autocycle Mode	14-16
	3.6	Calibration Mode	17
4.0	Ope	rating Procedure	18
5.0	Тгои	ble Shooting & Maintenance	• • • • • • • •
	5.1	Detailed trouble shooting guide	19-20
6.0	Do's	& Don'ts	21
7.0	Prev	entive Maintenance	22
8.0	Elec	trical IO List	23-26
9.0	Elec	trical BOM List	27-28
10.0	Elec	trical Flow Chart	29-31
11.0	Man	ufacturing BOM List	32-34
12.0	Mec	hanical Spare List	35
13.0	Criti	cal Spare List	36-37
14.0	Fast	ener List	38

1.0 Introduction

This is the user manual for End of line testing machine (EOL). This manual provides information as a basic document for understanding the machine and its functionalities.

- This machine has been developed as an end of line testing machine for window regulator including both software and hardware.
- This machine is used for testing certain parameters of window regulator at the end of assembly line.

It consists of:-

- 1. Mechanical Section.
- 2. Electrical Section.
- 3. Controller Section.

2.0 SYSTEM OVERVIEW

- The System contains a mechanical setup which simulates the window regulator arrangement as in the real application scenario.
- The mechanical system simulate the weight of glass along with the glass frictional force.
- The mechanical system is integrated with the software and hardware accordingly.
- The system contains actuators to engage simmulated friction weights, wire draw displacement sensor to check the stroke length of window regulator, loadcell for measuring the stall force and anti-pinch functionality (for future models), and all these systems are integrated with the software by an electrical control panel.

2.1 Installation

The steps of installation can be explained briefly as follows:

1. Packing Details:

- WR EOL-501 machine along with a printer inside the machine in a smaller box are packed inside an individual wooden enclosure.
- The industrial PC has been packed individually along with all its necessary accessories (Keyboard, Mouse).
- All the sample Window regulator parts supplied to Sasyaka by Aditya are packed in an individual box which also contains of the sheet metal cover of the IPC.
- The monitor(HMI) of the IPC has been packed individually in another small rectangular box.

2. Unpacking

- The package contains EOL machine with an inbuilt electrical panel inside control cabinet. The machine should be carefully unpacked and a survey for any physical damage is to be conducted.
- It should next be cleaned and made ready for installation. Procedures for any installation in the environment chamber should be duly followed.
- For safety, certain fragile items may have been disassembled and packed separately. This will have to be unpacked and inspected accordingly before reassembly.

3. Re-assembly:

- Connect all connectors to IPC i.e. Ethernet, NI PCIe cables, Serial ports, power cable, etc.
- Mount Tower light at its original place.
- Connect up printer.
- Mount HMI and connect all connector to ports.

4. Electrical connections:

- Make all power connections to the control cabinet as required namely, single phase 230V, 16A,50 Hz input.
- Run a thorough electrical check for loose wires and parts that may have dislodged itself during transit before switching on the electrical panel.
- Ensure the Connections between Contactor to motor.

4. Pneumatic connections:

• Incoming pneumatic air at minimum 6 Bar with tube size 8mm must be connected to the machine.

5. Location and alignment:

The EOL Machine can be placed on its respective location.

6. Setup trials:

- Setup trials will consist of the following:
 - Here the user can check all the inputs from the sensor and also checks whether all the outputs are properly connected to the actuators.
 - User can use the switches in the maintenance mode user interface for checking the inputs and outputs.
 - Calibration before taking the actual test Here the important parameters will have to be validated/calibrated by the person in-charge.
 - Test trials: Here a test device will be placed into the fixture and a few cycles will be run to check for functionality as well as validation of the values recorded. It is highly recommended that this stage is done with a set of master devices (identified by the end user) which can then be used at any stage to verify the machine.

7. Training

The person in-charge should be trained before running this machine in the following aspects:

- Machine operation
- HMI operation
- Proper loading and unloading methods of WR Fixture.
- Understanding Machine limitations and logging a problem when seen.
- Close adherence to preventive maintenance guide.
- Close adherence to daily maintenance as recommended.
- Against misuse to the equipment.

3.0 Software and User Interface

This machine is built with a software and a user interface based on LabVIEW from National Instruments. The software is custom designed for this machine. The following pages will introduce the user to this aspect of the machine.

Home screen:

Main Menu

One can navigate through the menus. Here the options that one has is as follows:

1. Automatic Mode : To Run the automatic cycle.

2. Settings : To set the initial parameter.

3. Maintance : User can Access all input and outputs.

4. Calibration : To calibrate the Analog inputs.

5. Manual Testing : To run the each testing sequence separately.

3.1 Settings:

USER ACCESS CONTROL

• The application pop-ups a virtual keyboard as soon as the user clicks settings tab. User can access the settings by typing the password. moreover ,the user can set all the initial parameters by using settings tab.

3.2 Procedure for Setting:

The user can go to settings and set the parameters.

- 1. Go UP: It is used to set the parameters of the motor when it is going up.
- Minimum Speed: The minimum linear speed of travel of the window regulator arm. The part is considered a failure if the speed value goes below the user defined value.
- Minimum time: User can set the minimum time by which the window regulator should finish its stroke, The part is considered a failure if the time value crosses the user defined value.
- Maximum time: User can set the minimum time by which the window regulator should finish its stroke, The part is considered a failure if the time value crosses the user defined value.
- Maximum running current: User can set the maximum running current window regulator that should be drawn while running, The part is considered a failure if the maximum running current value crosses the user defined value.
- Maximum stall current: User can set the maximum stall current the window regulator should draw while set in stall condition. The part is considered a failure if the maximum stall current value crosses the user defined value.

2. Stall Force:

- Minimum stall force: User can set the minimum stall force
 of the window regulator that acts on the load cell & The
 part is considered a failure if the minimum stall force value
 crosses the user defined value.
- Maximum stall force: User can set the maximum stall force
 the window regulator, act on load cell & & The part is
 considered a failure if the minimum stall force value crosses
 the user defined value.

3. Go Down:

- Maximum Speed: It is the maximum linear speed of travel of the window regulator arm. once user set this data and going the speed further below this fail part.
- Minimum travel time: User can set the minimum travel time by which the window regulator finishes its stroke, crossing the minimum travel time limit fail the part.
- Maximum travel time: The User can set the minimum time by which the window regulator finishes its stroke, The part is considered a failure if the speed value goes above the user defined value.
- Maximum Running Current: The User can set the maximum running current window regulator should drawn while running, The part is considered a failure if the speed value goes above the user defined value.

4. Check Printer:

• Label: The User can change the content of label to print by changing the part number, ID, part name.

3.3 Maintenance Mode:

In this mode you can individually check the functionality of the machine.

MAINTENANCE MODE

- 1. Inputs & Outputs: Digital inputs & Outputs.
- 2. Clamping Cylinder:
 - Clamp: To actuate the clamping cylinders.
 - Load cell cylinder Front: To actuate the load cell cylinder front.
- 3. Output: Digital outputs.
 - Motor ON: To Turn ON/OFF Supply for motor.
 - Motor CW: To Turn ON/OFF in Clockwise Direction.
 - Motor CCW: To Turn ON/OFF in Counter Clockwise Direction.
 - Motor Short: To Stop the Motor Instantaneously.
- 4. **Graph:** Live plot of force, current and string pot.
- 5. Base plate: To know the status of base plate sensors.
- 6. Home: To Navigate Back to Home Screen

- User can go to maintenance mode to troubleshoot. User can check the following by using maintenance mode in the user interface:
- 1. Access all the digital input and outputs.
- 2. Check the inputs from sensors and read switch.
- 3. Check the actuators for proper working.
- 4. Access to analog sensor values (Force, string pot, current)

3.4 Manual Mode:

- 1. Model Name: Select the Window regulator respectively of position.
- 2. Clamp: To clamp the Window regulator (WR).
- **3. Home:** Go to the home testing position.
- **4. Go up:** First Sequence.
- **5. Go Down**: Second Sequence.
- **6. Shipping Position:** Final Sequence.
- **7. De-Clamp:** De-Clamp the window regulator.
- 8. With Load: Engage the load to respective movement.
- **9. Graph:** Live graph of time v/s force & Current.
- User can run the individual testing operation using manual mode user interface. User can access all the testing sequences and check if the individual testing sequence is ready for auto loop.

3.5 Auto Cycle Mode:

Model Selection Window

- We can select the window regulator variation (Example: W501 RRH Std.) in the selection base.
- User has to enter name /ID.
- Click OK button to enter automode for the selected W.R.
- Click cancel for back to home.
- User operator get to know if the sensor actuator box (SACB) connected by the indicator at right hand side.

AUTO CYCLE MODE

- 1. Home: Navigate back to Home Screen.
- 2. View Log: View Log (Shows live log while running)
- 3. Total: Total number of parts tested.
- 4. Pass: Number of passed parts out of the total parts.
- 5. Fail: Number of failed parts out of the total parts.
- 6. Testing time: Testing time for an individual part.

- User can run the cycle automatically by going to auto mode. The following are the steps the user should do to run the autocycle.
 - 1. Select the auto mode.
 - 2. The opening auto mode user interface, user follow the instruction in the display.
- ❖ To get the log data press the View log button.

Note: In this operator has access to the log data in each day.

3.6 Calibration:

CALIBRATION MODE

- User can enter calibration tab whenever the sensor are due for calibration.
- Follow the calibration details in the calibration user interface.
- User can use calibration for calibrating all analog sensor (String pot, force sensor, current sensor).

4. 0 Operating Procedure:

Turn ON Procedure:

- 1. Connect the Main power supply cable from electrical panel to 3 Pin socket & switch it ON.
- 2. Turn on Main Switch. Make Sure that the RCCB and MCB are in ON state.
- 3. Turn on the UPS(long PRESS) and IPC.
- 4. Make Sure that all the following indicators are glowing: Machine ON RED indicator, 230V GREEN indicator, 24V GREEN indicator.
- 5. The HMI will turn on automatically.
- 6. Run the program and refer to software and user interface section for more details.

Turn OFF Procedure (COMPULSORY):

- 1. Close the application by following below mentioned steps
 - Open the task manger by clicking ctr+Alt+dlt.
 - Select the task option & click on "Run New Task".
 - Select the command concerned to Shut down.
 - Click ok
- **2.** Turn off IPC & UPS by long pressing the power button of UPS. Turn off "Mains Switch", so "230V GREEN indicator, 24V GREEN indicator goes off".

5.0 Trouble shooting and Maintenance

The following are some troubleshooting and maintenance guidelines that can be followed in the machine.

5.1 Detailed Troubleshooting guide

The entire machine can be broadly classified into control cabinet and test fixtures. Some troubleshooting tips have been documented to help the user through possible occurring faults that may arise which does not require any service help. The document is also laid out in such a way that each group can be troubleshoot in a similar style.

Sl.no	Description	Steps
		Check if main power line is connected to power source.
		Use Multi meter to check voltage level across,
		incoming voltage should be 230V
1	No Single-phase power supply to machine	Check if MCB and RCCB are turned on inside the panel.
-		Use a Multi meter to trace last point where voltage is available.
		Verify all connections as per wiring chart provided.
		Check availability of incoming 24V voltage.
		Check input of 230V into power supply.
		Check output of 24V power supply across positive
2	No 24V DC supply in machine	and negative terminals
		Check the condition of the Fuses
		Check individual wire connections to point where a
		lack of 24V has been detected.
3	Computer not turning on	Check power supply to the computer
	Compact not coming on	Check the power connection
4	Computer running but LCD not working or not responding to touch	Check the panel monitor
4		Verify that there is no screen guard used. This touch
		monitor will not work with screen guards.
		To check if the input signal of any sensor is available in the controller, the maintenance mode can be used.
_		
5	Sensor malfunctioning	Identify the sensor and check if the light is on or off
		in the software. If it is off, then the signal is not
		reaching the input module
		Check 24V supply to the sensor
		Check if the panel fan is working as this is very
6	Flocksical appel avec beating	important for maintaining the temperature within the
6	Electrical panel over heating	panel. If the fee is functioning shock if the output finger
		If the fan is functioning, check if the output finger
		guards are clogged or dirty.

	Before & during Power Up				
sl.no	Description	Steps			
1	Mains ON indicator is not lit	Please check whether incoming power is entering the system through the supplied power connector. Ensure the point is turned ON and is supplying power at the required specifications. If all above is OK, open the service panel and check with Multi meter on the incoming terminals of the Power Switch.			
2	Mains ON is lit, Power ON indicator is not lit	Please check whether the Power Switch is turned ON & the RCCB-MCB is turned ON. If all above is OK, open the service panel and check with Multi meter on the outgoing terminals of the RCCB-MCB. Also check at the Terminal blocks mounted on the back of the GA sheet.			
3	Mains ON & Power ON are lit, 24V ON indicator is not lit	Please check if the UPS is turned ON. Next check if the incoming power on the GA sheet is getting AC power supply. Next, check if the RCCB on the GA sheet is turned ON. Next check the 24V fuse TB on the GA sheet.			
4	All 3 indicators are lit, but Computer is not turning ON	Check if the UPS is ON. Use the IPC key to open its front panel. Turn ON the IPC using the rocker power switch. Open the Service Panel and ensure the plug is properly plugged into the socket on the back of the UPS. Also ensure the other end of the able is fitted securely on the back of the IPC, and that the IPC power button is switched on.			

6.0 Do's and Don'ts

Find below the list of do's and don'ts that should be followed while running the machine.

Sl.no	DO's	DON'Ts
1	Run the machine only after following the instructed procedure.	Do not bypass any sensor during operation.
2	Ensure that the machine is levelled.	Do not change alignment of any fixture
3	Check if all the fasteners are tightened.	Do not keep your fingers near any moving part
4	Constantly check for wear of parts that would affect performance.	Do not move any sensors without any reason. These settings have been reached after intensive testing.
5	Check if all sensors are mounted properly.	Do not remove any part from the machine which may be deemed to be unessential unless requested by the designer.
6	Clean all sensor holes keep them away from dirt as this could disturb signals and light intensity.	
7	Ensure that the correct fixture is being used.	

7.0 Preventive Maintenance

Preventive maintenance checklist is a useful guide on how to maintain the machine to ensure longer life of all components used. The preventive maintenance checklist is segregated into daily, weekly, monthly for convenience as well as precautions to be taken in case of long idle periods.

Daily checklist				
Sl.no	Required to	Action		
1	Check physical condition of all parts visually	Alert authorized person in this case		
2	Check if parts are loose	Tighten using a torque wrench depending on screw size		
3	Check alignment of machine with interfacing machine	Realign where necessary		
4	Check for any abnormal condition/noise	Stop the machine		
5	Clean the machine of debris before starting the machine			
6	Check if any part may have fallen into existing gaps on machine	Remove all parts that don't belong to the area		
7	Observe any damage to sensors			
8	Check if all input electrical wiring is in healthy condition			
	Weekly/ Monthly che	cklist		
Sl.no	Required to	Action		
1	Follow the daily checklist			
2	Check all electrical connections	Run the maintenance mode if required		
3	Check the health of all sensors	Visual as well as functional		
4	Observe any signs of wear and tear	This can lead to misalignment of parts. It should be watched carefully		
5	Thorough cleaning of the machine			

8.0 Electrical IO List

Inputs	Naming For Controller Mapping	NI F	Qty	
IIIputs	Training 1 of Concrotter Mapping	Controller Name	Electrical Name	4.7
Machine				
Machine ON	Machine ON	P0.0	di1 01	1
EST OP	E_stop	P0.1	di1_20	1
Pressure SW	SW Pressure	P0.2	di1 02	1
Start SW	SW_Start	P0.3	di1_21	1
Safet curtain	SC	P0.4	di1_03	1
Load lifting up				
Load lifting CLY up	RS_Load_lifting_up_Rear	P0.5	di1_22	1
	RS_Load_lifting_up_front	P0.6	di1_04	1
Load lifting down				
Load lifting CLY down	RS_Load_lifting_down_Rear	P0.7	di1_23	1
	RS_Load_lifting_down_front	P1.0	di1_05	1
Load cell cyl				
Loadcell CYL	RS_Loadcell_Rear	P1.1	di1_24	1
	RS_Loadcell_front	P1.2	di1_06	1
Reject Bin				
Reject Sensor 1		P1.3	di1_25	1
Reject Sensor 2		P1.4	di1_07	1
Reject-Door limit SW		P1.5	di1_26	1
Buffer				
Buffer 1		P1.6	di1_08	
Buffer 2		P1.7	di1_27	
Electrical Connections				
"VCC "			di1_10 24V	1
DI-GND			di1_09 24V-GND	1
			Total	14

	Baseplate related				
Clamping					
Clamping CYL					
	RS_Clamping_top_Front	C0	C0	1	
	RS_Clamping_bottom_Front	C1	C1	1	
	RS_Clamping_MotorLH_Front	C2	C2	1	
	RS_Clamping_MotorRH_Front	C3	C3	1	
Part presence					
Part presence (LH)	IPS_Part presence_top_LH	C4	C4	1	
	IPS_Part presence_Bottom_LH	C5	C5	1	
Part presence (RH)	IPS_Part presence_top_RH	C6	C6	1	
	IPS_Part presence_Bottom_RH	C7	C7	1	
Load engage					
Load engaged	IPS_Load engaged_1	C0	C0	1	
	IPS_Part presence_2	C1	C1	1	
BUFFER:			•		
	BUFFER - 1	C2	C2		
	BUFFER-2	C3	C3		
	BUFFER-3	C4	C4		
	BUFFER-4	C5	C5		
	BUFFER - 5	C6	C6		
	BUFFER-6	C7	C7		
	•	•	Total	10	

Note:
RS: Reed Switch
CYL: Cylinder
IPS: Inductive proxy sensor
SACB 1:Sensor actuator box 1
SACB 2:Sensor actuator box 2
MCO: Model Change over

DIGITAL OUTPUT					
Outputs	Naming For Controller Mapping	NI PCI	QTY		
		Controller Name	Electrical Name		
Machine					
Tower Red	TL_Red	P2.0	do1_11	1	
Tower Orange	TL_Orange	P2.1	do1_30	1	
Tower Green	TL_Green	P2.2	do1_12	1	
Tower Buzzer	TL_Buzzer	P2.3	do1_31	1	
Clamping					
Clamping CYL	SOL_Clamping	P2.4	do1_13	1	
Load lifting up					
Load lifting CLY up	SOL_Load_lifting_up_front	P2.5	do1_32	1	
Load lifting CLY up	SOL_Load_lifting_up_rear	P2.6	do1_14	1	
Load lifting down					
Load lifting CLY down	SOL_Load_lifting_down_front	P2.7	do1_33	1	
Load lifting CLY down	SOL_Load_lifting_down_rear	P3.0	do1_15	1	
Load cell Cyl					
Load cell Cyl	SOL_Loadcell	P3.1	do1_34	1	
WR Motor					
Motor ON		P3.2	do1_16	1	
Motor CW		P3.3	do1_35	1	
Motor CCW		P3.4	do1_17	1	
Motor Short		P3.5	do1_36	1	
BSL Contactor		P3.6	do1_18	1	
VCC			do1_28 24V		
D-GND			do1_19 24V-GND		
BUFFER:					
Buffer 1		P3.7	do1_37		
			Total	15	

Note:
CYL: Cylinder
SOL:Sol enoid

COUNT ER INPUT					
Inputs	Inputs Naming For Controller Mapping NI PCIe 6321				
		Controller Name	Electrical Name		
Draw Wire Sensor					
Draw Wire Sensor	Draw_wire_sensor	PFI 8	CTR0 -A	1	
		PFI 9	CTR0 -Z	1	
		PFI 10	CTR0 -B	1	
			Total	3	

9.0 Electrical BOM List

Sr.No	Part Name	Part No.	Make	Supplier
1	МСВ	A9N2P16C	Schneider	Pooja products
2	RCCB	A9N16201	Schneider	Pooja products
3	TOWER LIGHT	XVGB3S	Schneider	Pooja products
4	PUSH BUTTON - GREEN	XB5AA31N	Schneider	Pooja products
5	RED INDICATOR-230V	XB7EV04MPN	Schneider	Pooja products
6	GREEN INDICATOR-230V	XB7EV03MPN	Schneider	Pooja products
7	GREEN INDICATOR-24V	XB7EV03BPN	Schneider	Pooja products
8	CONTACTOR	LC1D32BD	Schneider	Pooja products
9	MAIN SWITCH(ROTARY)	VCF02	Schneider	Pooja products
10	EMERGENCY STOP SWITCH	XB5AS542N	Schneider	Pooja products
11	WEIDUMULLER SMPS	1469480000	weidumller	SR industries
12	POWER SUPPLY	SE-450-15	Mean well	Kanchan industrial
13	TDK_SMPS	HWS30A-24/A	TDK	Team technology
14	LINE FILTER	1-PHASE,15A,230V	EMIS	Kanchan industrial
15	1CORE CABLE,1SQ mm,RED	4510043U	Lapp	Siddhi kabel
16	1CORE CABLE,1SQ mm,BLACK	4510013U	Lapp	Siddhi kabel
17	1CORE CABLE,2.5 SQ mm,RED	4520042U	Lapp	Siddhi kabel
18	1CORE CABLE, 2.5 SQ mm, BLACK	4520012U	Lapp	Siddhi kabel
19	1CORE CABLE,0.75SQ mm,Brown	4510032U	Lapp	Siddhi kabel
20	1CORE CABLE,0.75SQ mm,Blue	4510022U	Lapp	Siddhi kabel

Sr.No	Part Name	Part No.	Make	Supplier
21	SENSOR TB	"280-560 "	Wago	Lakshmi enterprises
22	4WAY GRAY TB	"280-833 "	Wago	Lakshmi enterprises
23	4WAY BLUE TB	"280-834"	Wago	Lakshmi enterprises
24	END COVER 4 WAY	"280-314"	Wago	Lakshmi enterprises
25	2WAY GRAY TB	"280-901 "	Wago	Lakshmi enterprises
26	2WAY BLUE TB	"280-904"	Wago	Lakshmi enterprises
27	END COVER 2 WAY	"280-308 "	Wago	Lakshmi enterprises
28	SCREWLESS END STOPPER	249-116	Wago	Lakshmi enterprises
29	FUSE TB 24V	281-611/281-415	Wago	Lakshmi enterprises
30	FUSE TB END COVER	281-311	Wago	Lakshmi enterprises
31	JUMPERS	280-402	Wago	Lakshmi enterprises
32	SENSOR TB END COVER	280-319	Wago	Lakshmi enterprises
33	DIODE TB	280-941/281-491	Wago	Lakshmi enterprises
34	DIODE TB END COVER	280-340	Wago	Lakshmi enterprises
35	4WAY EARTH TB	280-837	Wago	Lakshmi enterprises
36	2WAY EARTH TB	280-907	Wago	Lakshmi enterprises
37	CABLE TRAY	45mm*45mm	Sazler	Vijesh Electricals
38	CABLE TRAY	25mm*45mm	Sazler	Vijesh Electricals
39	DIN RAIL			Vijesh Electricals
40	INDUCTIVE PROXY SENSOR		Sick	GJ sensors
41	Cable Tie	100 mm - White	KSS	SULOCHANA
42	Cable Tie	150 mm - White	KSS	SULOCHANA
43	Cable Tie	300mm-White	KSS	SULOCHANA
44	Blue Lug	2.5 sq. mm 12mm Long	Jigo	SULOCHANA
45	Blue Lug	2.5 sq. mm 8mm Long	Jigo	SULOCHANA
46	Grey Lug	0.75 sq. mm 8mm Long	Jigo	SULOCHANA
47	White Lug	0.5 sq. mm 8mm Long	Jigo	SULOCHANA
48	Grey Twin Lug	0.75 sq. mm 8mm Long	Jigo	SULOCHANA
49	Red Lug	1 sq. mm 8mm Long	Jigo	SULOCHANA
50	U type Blue lug	3D 3657 2.5 U fork insulated	Jigo	SULOCHANA
51	O blue type lug	3D 3130 2.5 SQ E5 insulated	Jigo	SULOCHANA
52	O Yellow type lug	3D 3132 2.5 SQ E6 insulated	Jigo	SULOCHANA
53	Single grip End Lug Blue	F 2-6.4 VFD 2.5sq	Jigo	SULOCHANA
54	IO module Turck	TBEN-S1-8DXP	Turck	Turck
55	POWER CABLE	PKG4M 5/TEL	Turck	Turck
56	DAISY CABLE(POWER)	PKG4M0-3 PSG4M/TEL	Turck	Turck
57	ETHERNET CABLE	PSGS4M RJ455 4414 5M	Turck	Turck
58	DAISY CABLE(ETHERNET)	PSGS4M PSGS4M 4414-0.3M	Turck	Turck
59	EXTENSION CABLE(POWER)	PKG4M 5 PSG4M/TEL	Turck	Turck
60	CURRENT SENSOR HALL EFFECT	ACS712	Allegro	-ONLINE Amazon-

10.0 Electrical Flow Chart

- 1. RCCB: A Residual Current Circuit Breaker (RCCB) is essentially a current sensing device used to protect a low voltage circuit in case of a fault. It contains a switch device that switches off whenever a fault occurs in the connected circuit.
- 2. MCB: A miniature circuit breaker (MCB) automatically switches off electrical circuit during an abnormal condition of the network means in overload condition as well as faulty condition.
- 3. Line Filter: A line filter is the kind of electronic filter that is placed between electronic equipment and a line external to it, to attenuate conducted radio frequencies -- RFI, also known as electromagnetic interference (EMI) -- between the line and the equipment.
- 4. 24V SMPS: 24V Power Supply: A power supply converts mains AC to low-voltage regulated DC Power.
- 5. **Relay:** It is an electrically operated Switch. Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as Solid state relay. Relays are used where it is necessary to control a

circuit by a separate low-power signal, or where several circuits must be controlled by one signal.

- 6. Diode TB: can be used to restrict voltage peaks due to surges, static discharge or inductive load switching.
- 7. **Controller:** It Offers high levels of processing power and connectivity for automated image processing, data acquisition, and control applications in extreme environments.
- 8. NI PCIe 6321 is a 16 AI (16-Bit, 250 kS/s), 2 AO (900 kS/s), 24 DIO Multifunction I/O Device—The PCIe-6321 offers analog I/O, digital I/O, and four 32-bit counters/timers for PWM, encoder, frequency, event counting, and more. The device delivers high-performance functionality leveraging the high-throughput PCI Express bus and multicore-optimized driver and application software.
- 9. NI PCI 6518 is a 32-Channel, ±30 V, 16 Sink/Source Inputs, 16 Source Outputs, Bank-Isolated Digital I/O Device—The PCI-6518 is an industrial digital I/O interface, with two banks optically isolated channels. The device is ideal for industrial control and manufacturing test applications. The PCI-6518 module is an industrial digital I/O interface, with eight banks of isolated channels
- 10. Current Sensor: A current sensor is a device that detects electric current in a wire, and generates a signal proportional to that current. The generated signal could be analog voltage or current or even a digital output. The generated signal can be then used to display the measured current in an ammeter or can be stored for further analysis in a data acquisition system, or can be used for the purpose of control.

The sensed current and the output signal can be:

- Alternating current input,
 - o analog output, which duplicates the wave shape of the sensed current.
 - o bipolar output, which duplicates the wave shape of the sensed current.
 - unipolar output, which is proportional to the average or RMS value of the sensed current.
- Direct current input,
 - unipolar, with a unipolar output, which duplicates the wave shape of the sensed current
 - o digital output, which switches when the sensed current exceeds a certain threshold.

- 11. Contactor: A **contactor** is an electrically-controlled switch used for switching an electrical power circuit. A contactor is typically controlled by a circuit which has a much lower power level than the switched circuit, such as a 24-volt coil electromagnet controlling a 230-volt motor switch.
- 12. Load Cell: A **load cell** is a type of transducer, specifically a *force* transducer. It converts a force such as tension, compression, pressure, or torque into an electrical signal that can be measured and standardized. As the force applied to the load cell increases, the electrical signal changes proportionally.
- 13. Load cell signal conditioner: It is a device that converts an electrical signal into another form of signal. Load cell signal conditioning may include amplification, attenuation, excitation, filtering and isolation.
- 14.IPS Sensor: An **inductive sensor** is a device that uses the principle **of electromagnetic induction** to detect or measure objects. An inductor develops a magnetic field when a current flows through it; alternatively, a current will flow through a circuit containing an inductor when the magnetic field through it changes.
- 15. String Pot: **String Pots** (also known as cable actuated position transducers, draw wire sensors, string potentiometers, and yoyo pots) convert mechanical motion into an electrical signal that may be metered, recorded, or transmitted.

11.0 Manufacturing BOM List

Sr. No.	Part Number	QTY.	Manufactured by		
1	6005	2	Sri Vivekananda Industries		
2	8009	1	Sri Vivekananda Industries		
3	70012	2	Sri Vivekananda Industries		
4	7001	2	Sri Vivekananda Industries		
5	8102	1	Sri Vivekananda Industries		
6	4010	1	Sri Vivekananda Industries		
7	4013	1	Sri Vivekananda Industries		
8	6001	4	Sri Vivekananda Industries		
9	6003	2	Sri Vivekananda Industries		
10	6201	2	Sri Vivekananda Industries		
11	6202	2	Sri Vivekananda Industries		
12	8002	1	Sri Vivekananda Industries		
13	6304	1	Sri Vivekananda Industries		
14	6204	1	Sri Vivekananda Industries		
15	8003	2	Sri Vivekananda Industries		
16	6301	2	Sri Vivekananda Industries		
17	6302	1	Sri Vivekananda Industries		
18	6305	1	Sri Vivekananda Industries		
19	7001	2	Sri Vivekananda Industries		
20	7101	6	Sri Vivekananda Industries		
21	8004	2	Sri Vivekananda Industries		
22	8005	2	Sri Vivekananda Industries		
23	8006	1	Sri Vivekananda Industries		
24	8007	1	Sri Vivekananda Industries		
25	8008	1	Sri Vivekananda Industries		
26	8101	1	Sri Vivekananda Industries		
27	8103	1	Sri Vivekananda Industries		
28	1101	1	Sri Vivekananda Industries		
29	8010	2	Sri Vivekananda Industries		
30	3011	8	Sri Vivekananda Industries		

Sr. No.	Part Number	QTY.	Manufactured by		
31	6002	2	Sri Vivekananda Industries		
32	2001	1	Sri Vivekananda Industries		
33	2002	1	Sri Vivekananda Industries		
34	2003	1	Sri Vivekananda Industries		
35	3001	1	Sri Vivekananda Industries		
36	3002	1	Sri Vivekananda Industries		
37	3003	1	Sri Vivekananda Industries		
38	4003	1	Sri Vivekananda Industries		
39	4009	8	Sri Vivekananda Industries		
40	4008	4	Sri Vivekananda Industries		
41	4007	8	Sri Vivekananda Industries		
42	4001	1	Sri Vivekananda Industries		
43	4005	1	Sri Vivekananda Industries		
44	4004	1	Sri Vivekananda Industries		
45	4006-1	2	Sri Vivekananda Industries		
46	4006-2	1	Sri Vivekananda Industries		
47	4006-3	1	Sri Vivekananda Industries		
48	5002	1	Sri Vivekananda Industries		
49	5002 (weight)	4	Sri Vivekananda Industries		
50	5002-2 (weight)	4	Sri Vivekananda Industries		
51	8007	1	Sri Vivekananda Industries		
52	L-blk	1	Sri Vivekananda Industries		
53	Left blk	1	Sri Vivekananda Industries		
54	right blk	1	Sri Vivekananda Industries		
55	1104	1	Sri Vivekananda Industries		
56	1108	1	Sri Vivekananda Industries		
57	1109	2	Sri Vivekananda Industries		
58	1111	1	Sri Vivekananda Industries		
59	1112	2	Sri Vivekananda Industries		
60	1113	2	Sri Vivekananda Industries		

Sr. No.	Part Number	QTY.	Manufactured by				
61	1114	2	Sri Vivekananda Industries				
62	1115	2	Sri Vivekananda Industries				
63	5004	1	Sri Vivekananda Industries				
64	5006	1	Sri Vivekananda Industries				
65	5006_2	1	Sri Vivekananda Industries				
66	5007	4	Sri Vivekananda Industries				
67	5010	1	Sri Vivekananda Industries				
68	5011	1	Sri Vivekananda Industries				
69	40012	2	Sri Vivekananda Industries				
70	40034	2	Sri Vivekananda Industries				
71	40035	2	Sri Vivekananda Industries				
72	encoder mount	1	Sri Vivekananda Industries				
73	8009		Sri Vivekananda Industries				
74	shafts	8	Sri Vivekananda Industries				
7.5	5002(Clamp	4	6.76				
75	bootom)	1	Sri Vivekananda Industries				
76	1109	2	Sri Vivekananda Industries				
77	1108	2	Sri Vivekananda Industries				
78	1104	1	Sri Vivekananda Industries				
79	40012	2	Sri Vivekananda Industries				
80	40032	2	Sri Vivekananda Industries				
81	8001	1	Sri Vivekananda Industries				
82	6024		Sri Vivekananda Industries				
83	top pin	4	Sri Vivekananda Industries				
84	mirro plate	4	Sri Vivekananda Industries				
85	Center foot mount	2	Sri Vivekananda Industries				
86	Index Plunger pin	4	Sri Vivekananda Industries				
87	Rejection side hook	1	Sri Vivekananda Industries				
88	Hook mounting plte	3	Sri Vivekananda Industries				
89	Hook	2	Sri Vivekananda Industries				
90	4009-1	8	Sri Vivekananda Industries				
91	6002-1	4	Sri Vivekananda Industries				
92	6204-1	1	Sri Vivekananda Industries				
93	8003-1	2	Sri Vivekananda Industries				
94	Slot block	4	Sri Vivekananda Industries				
95	1117	2	Sri Vivekananda Industries				
96	1116	4	Sri Vivekananda Industries				
	1110	Prepared b					
	sasyaka Custom		Roopa ML				
			Sasyaka Supering Solutions		21-01-2020		
-			1 of 1				
			1011				

12.0 Mechanical Spare List

Mechanical spares list

Project No : 1922 Date : 04/01/20 Made by : SR

Rev: 0

Sl No.	Description	Part No.	make	Category	Changeover forecast *	Comment
1	clamp top attachment	5010	Sasyaka/ Manufac tured	Mechanical	1 year	This is a wear part made out of nylon and may have to be replaced periodically.
2	clamp bottom attachment	5011	Sasyaka/ Manufac tured	Mechanical	1 year	This is a wear part made out of nylon and may have to be replaced periodically.
3	Roller sleever	3011	Sasyaka/ Manufac tured	Mechanical	1 year	This is a wear part made out of aluminium and may have to be replaced when damaged.
4	Metal cables		Misumi	Mechanical	5 years	
5	bearing	688-zz	SKF	Mechanical	5 years	9 of these are being used in the machine. It is recommended to keep a spare.

Please note that the change over forecast

* is based on the past usage of bought out components and not

13.0 Critical Spare List

Critical spares list

Project No : 1922 Date : 04/01/20 Made by : SR

Rev: 0

Sl No.	Description	Part No.	make	Category	Changeover forecast *	Comment
1	Wire draw displacement sensor with incremental encoder type	WPS-750-MK30-E	MICRO-EPSILON	Electrical	3 years	Critical to the functioning of the machine. Susceptable to physical damage, 4-5 week lead time
2	Load cell	C9C 0.5KN	НВМ	Electrical	5 years	Critical to the functioning of the machine,6-8 week lead time
3	Load cell's Signal amplifier	CLIPx BM-40	НВМ	Electrical	5 years	6-8 week lead time
4	Current sensor module	ACS712	Allegro & Customised by Sasyaka	Electrical	2 years	Recommended to keep a spare.
5	Fuse	0.5A,1A,5A,25A	-	Electrical	As and when required	We provide a set of spare fuses as a part of commisioning spares.
6	SSR Relay with Socket	802 PMDD 1000600	Unison	Electrical	5 years	We provide spare relays as a part of commisioning spare.
7	Contactors	LC1D32BD	Schneider	Electrical	5 years	-
8	Weidmuller SMPS	Pro eco1469480000	Weidmuller	Electrical	5 years	-
9	TDK-Lambda SMPS	HWS30A-24/A	TDK	Electrical	5 years	8 week lead time
10	Meanwell SMPS	SE-450-15	Meanwell	Electrical	5 years	

Sl No.	Description	Part No.	make	Category	Changeover forecast *	Comment
11	RCCB	A9N16201	Schneider	Electrical	5 years	
12	Reed switch	W00952025390 B	Metal-work	Electrical	5 years	There are mutiple reed switchs being used in the machine. It is recommended to keep a spare incase of accidental damage.
13	Inductive proximity sensor	WX1942	Sick	Electrical	5 years	There are mutiple proximity sensors being used in the machine. It is recommended to keep a spare incase of accidental damage.
14	clamp top attachment	5010	Sasyaka/Manufactured	Mechanical	1 year	This is a wear part made out of nylon and may have to be replaced periodically.
15	clamp bottom attachment	5011	Sasyaka/Manufactured	Mechanical	1 year	This is a wear part made out of nylon and may have to be replaced periodically.
16	Roller sleever	3011	Sasyaka/Manufactured	Mechanical	1 year	This is a wear part made out of aluminium and may have to be replaced when damaged.
17	Metal cables		Misumi	Mechanical	5 years	
18	bearing	688-zz	SKF	Mechanical	5 years	9 of these are being used in the machine. It is recommended to keep a spare.

14.0 Fastener list

ITEM NO.	SIZE	DESCRIPTION	QTY.	MAKE
1	M8 x 60	Cap Head screw	6	TVS
2	M8 x 45	Cap Head screw	4	TVS
3	M8 x 16	Cap Head screw	6	TVS
4	M6 x 75	Cap Head screw	5	TVS
5	M6 x 40	Cap Head screw	15	TVS
6	M6 x 25	Cap Head screw	10	TVS
7	M6 x 20	Cap Head screw	38	TVS
8	M6 x 16	Cap Head screw	100	TVS
9	M6 x 12	Cap Head screw	50	TVS
10	M6 x 10	Cap Head screw	20	TVS
11	M5 x 35	Cap Head screw	8	TVS
12	M5 x 25	Cap Head screw	8	TVS
13	M5 x 20	Cap Head screw	20	TVS
14	M5 x 16	Cap Head screw	24	TVS
15	M5 x 10	Cap Head screw	20	
			1	TVS
16	M5 x 10	Cap Head screw	5	TVS
17	M5 x 8	Cap Head screw	5	TVS
18	M4 x 60	Cap Head screw	3	TVS
19	M4 x 50	Cap Head screw	6	TVS
20	M4 x 25	Cap Head screw	10	TVS
21	M4 x 16	Cap Head screw	32	TVS
22	M4 x 12	Cap Head screw	22	TVS
23	M3 x 10	Cap Head screw	5	TVS
24	M2.5 x 10	Cap Head screw	5	TVS
25	M2 x 25	Cap Head screw	5	TVS
26	M2 x 10	Cap Head screw	5	TVS
27	M2 x 8	Cap Head screw	5	TVS
28	M6 x 12	Button head screw	200	TVS
29	M6 x 10	Button head screw	25	TVS
30	M5 x 20	Button head screw	16	TVS
31	M5 x 16	Button head screw	5	TVS
32	M5 x 12	Button head screw	12	TVS
33	M4 x 25	Button head screw	12	TVS
34	M4 x 16	Button head screw	24	TVS
35	M4 x 12	Button head screw	6	TVS
36	M4 x 10	Button head screw	10	TVS
37	M4 x 8	Button head screw	10	TVS
38	M3 x 8	Button head screw	14	TVS
39	M3 x 5	Button head screw	20	TVS
40	M6 x 20	CSK screw	10	TVS
41	M5 x 25	CSK screw	8	TVS
42	M4 x 40	CSK screw	6	TVS
43	M4 x 16	CSK screw	20	TVS
44	M4 x 12	CSK screw	12	TVS
45	M4 x 10	CSK screw	5	TVS
46	M3 x 8	CSK screw	8	TVS
46	M3 x 5	CSK screw	8	TVS
46	PLAIN WASHER M6	Plain washer	250	TVS
48	PLAIN WASHER M6 PLAIN WASHER M5	Plain washer	60	TVS
49	PLAIN WASHER M3	Plain washer	1	
		Nut	60	TVS
50 51	NUT M5 NUT M4	Nut Nut	6 14	TVS
51				TVS
52	THIN NUT M8	Thin nut	5	TVS
53	Dowel pin 6 x 25	Dowel pin	6	TVS
54	Dowel pin 6 x 16	Dowel pin	20	TVS
55	Dowel pin 6 x 12	Dowel pin :	10	TVS
56	Dowel pin 3 x 10	Dowel pin	6	TVS
57	Dowel pin 3 x 16	Dowel pin	10	TVS
58	Internal cir-clip 16 x 1	Internal cir-clip	12	TVS
59	Internal cir-clip 47 x 1.5	Internal cir-clip	4	TVS
60	External cir-clip 19 X 1.2	External cir-clip	6	TVS
61	External cir-clip 25 X 1	External cir-clip	4	TVS
	External cir-clip 8X 0.8	External cir-clip	3	TVS

Annexure

Electrical Charts
Please refer to the charts at the end of document.

❖ Base Plate Drawing Please refer to the charts at the end of document.

Pneumatic Circuit
Please refer to the charts at the end of document.

The backup files of the following have been given in a pen drive from Sasyaka:

- Windows embedded-8 operating system (OS)
- .exe(executable) application
- Electrical charts
- Pneumatic drawings
- Base Plate drawings
- User manual

Along with the above-mentioned soft copies, all the related data sheets in the form of a hard copies have been submitted.