# **Brief**

- *Title:* EfficientDet: Scalable and Efficient Object Detection
- Authors: Mingxing Tan, Ruoming Pang, Quoc V. Le
- Institution: Google Research, Brain Team
- Link: https://arxiv.org/pdf/1911.09070.pdf
- Code: https://github.com/google/automl/tree/master/efficientdet
- Key-words: neural net architecture, computer vision, EfficientDet, feature extraction, object detection, CVPR 2020

# **Summary**

#### What:

- The general idea is to build a scalable model architecture with both higher accuracy and better efficiency across different resource constraints.
- Make it possible to use the model in different real-world applications like robotics or self-driving cars that need high accuracy object detectors but are limited in computational resources. Also, make it possible to use high accuracy models for applications with different resource constraints.
- Proposed:
  - BiFPN: efficient bidirectional cross-scale connections and weighted feature fusion.
  - $\circ$  **New compound scaling method**: uses the only coefficient  $\phi$  to jointly scale-up all dimensions of backbone, BiFPN, class/box network, and image resolution.
- In numbers:
  - The presented model EfficientDet-D7x achieves a new state-of-the-art 55.1 AP, outperforming prior art in both accuracy (+4 AP) and efficiency (7x fewer FLOPs)
  - achieves better efficiency than previous detectors, being 4x–9x smaller and using 13x-42x fewer FLOPs across a wide range of accuracy or resource constraints. For example, compared to RetinaNet and Mask-RCNN, the EfficientDet-D1 achieves similar accuracy with up to 8x fewer parameters and 25x fewer FLOPS.

## How:

 Proposed BiFPN: bidirectional cross-scale connections and weighted feature fusion, which is an improved classical FPN approach.



# The major updates are:

- Added extra bottom-up path aggregation network like in PANet
- Performed several optimizations for cross-scale connections:
  - Remove nodes that have only one input edge as they have less impact on feature fusion, which leads to simplification of network
  - Add an extra edge from the same level original input to the output node in order to fuse more features
  - Consider each top-down and one bottom-up path as one bidirectional layer and repeat it multiple times
- Added input weighting solves the problem of inequality of contribution to the output of features from different resolutions. Also proposed three weighting strategies:
  - $\circ$  *Unbounded fusion*:  $O = \sum_i w_i \cdot I_i$ , where  $w_i$  is a learnable weight. However, scalar weight here is unbounded, so it could potentially cause training instability.
  - Softmax-based fusion:  $O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}}$ . That solves the problem of probability normalization but leads to a significant slowdown
  - Fast normalized fusion:  $O = \sum_{i} \frac{w_i}{\varepsilon + \sum_{i} w_j}$ , where  $w_i \ge 0$  because of applying

Relu after each  $w_i$ . That is also probability normalization, but 30% faster on GPUs than softmax-based and with similar learning behavior and accuracy.

2. Present EfficientDet detection models family with **new compound scaling method.** 

#### EfficientDet architecture



The architecture is:

- ◆ ImageNet-pretrained EfficientNets as the backbone network
- Feature network that takes level 3-7 features and applies BiFPN several times
- Class and box network that makes prediction respectively to the task.

The new compound scaling method uses the only one coefficient  $\phi$  to simultaneously scale backbone, BiFPN, class/box network, and resolution with the following logic:

- Backbone network: reuse the same width/depth scaling coefficients of EfficientNet-B0 to B6, reusing ImageNet-pretrained checkpoints.
- BiFPN network:
  - $\circ$  width (#channels) are calibrated with  $W_{bifpn} = 64 \cdot 1.35^{\circ}$
  - $\circ$  depth (#layers) are figured with  $D_{bifpn}$  = 3 +  $\varphi$
- Box/class prediction network:
  - $\circ$  width is always the same as BiFPN:  $W_{pred} = W_{bifpn}$
  - o depth (#layers) are changing by  $D_{box} = D_{class} = 3 + L\phi/3 J$
- Input image resolution:  $R_{input} = 512 + \phi \cdot 128$

Scaling configs for EfficientDet D0-D6

|                   | Input       | Backbone   | BiFF        | Box/class   |             |
|-------------------|-------------|------------|-------------|-------------|-------------|
|                   | size        | Network    | #channels   | #layers     | #layers     |
|                   | $R_{input}$ |            | $W_{bifpn}$ | $D_{bifpn}$ | $D_{class}$ |
| $D0  (\phi = 0)$  | 512         | В0         | 64          | 3           | 3           |
| D1 ( $\phi = 1$ ) | 640         | <b>B</b> 1 | 88          | 4           | 3           |
| D2 ( $\phi = 2$ ) | 768         | B2         | 112         | 5           | 3           |
| D3 ( $\phi = 3$ ) | 896         | B3         | 160         | 6           | 4           |
| D4 ( $\phi = 4$ ) | 1024        | <b>B</b> 4 | 224         | 7           | 4           |
| D5 ( $\phi = 5$ ) | 1280        | B5         | 288         | 7           | 4           |
| D6 ( $\phi = 6$ ) | 1280        | B6         | 384         | 8           | 5           |
| D7 ( $\phi = 7$ ) | 1536        | B6         | 384         | 8           | 5           |
| D7x               | 1536        | <b>B</b> 7 | 384         | 8           | 5           |

# Results:

Evaluated EfficientDet for Object Detection on COCO 2017 detection dataset.
Models were trained with the same parameters on focal loss. D0-D6 models are trained for 300 epochs with a 128 batch size and D7/D7x for 600 epochs.

|                                | t    | est-d        | ev        | val  |        |       |              |       | Later   | icy (ms)         |
|--------------------------------|------|--------------|-----------|------|--------|-------|--------------|-------|---------|------------------|
| Model                          | AP   | $AP_{50}$    | $AP_{75}$ | AP   | Params | Ratio | <b>FLOPs</b> | Ratio | TitianV | V100             |
| EfficientDet-D0 (512)          | 34.6 | 53.0         | 37.1      | 34.3 | 3.9M   | 1x    | 2.5B         | 1x    | 12      | 10.2             |
| YOLOv3                         | 33.0 | 57.9         | 34.4      | -    | -      | -     | 71B          | 28x   | -       | -                |
| EfficientDet-D1 (640)          | 40.5 | 59.1         | 43.7      | 40.2 | 6.6M   | 1x    | 6.1B         | 1x    | 16      | 13.5             |
| RetinaNet-R50 (640)            | 39.2 | 58.0         | 42.3      | 39.2 | 34M    | 6.7x  | 97B          | 16x   | 25      | -                |
| RetinaNet-R101 (640            | 39.9 | 58.5         | 43.0      | 39.8 | 53M    | 8.0x  | 127B         | 21x   | 32      | -                |
| EfficientDet-D2 (768)          | 43.9 | 62.7         | 47.6      | 43.5 | 8.1M   | 1x    | 11B          | 1x    | 23      | 17.7             |
| Detectron2 Mask R-CNN R101-FPN | -    | -            | -         | 42.9 | 63M    | 7.7x  | 164B         | 15x   | -       | 56 <sup>‡</sup>  |
| Detectron2 Mask R-CNN X101-FPN | -    | -            | -         | 44.3 | 107M   | 13x   | 277B         | 25x   | -       | 103 <sup>‡</sup> |
| EfficientDet-D3 (896)          | 47.2 | 65.9         | 51.2      | 46.8 | 12M    | 1x    | 25B          | 1x    | 37      | 29.0             |
| ResNet-50 + NAS-FPN (1024)     | 44.2 | -            | -         | -    | 60M    | 5.1x  | 360B         | 15x   | 64      | -                |
| ResNet-50 + NAS-FPN (1280)     | 44.8 | 1-           | -         | -    | 60M    | 5.1x  | 563B         | 23x   | 99      | -                |
| ResNet-50 + NAS-FPN (1280@384) | 45.4 | 101          | 12        | -    | 104M   | 8.7x  | 1043B        | 42x   | 150     | -                |
| EfficientDet-D4 (1024)         | 49.7 | 68.4         | 53.9      | 49.3 | 21M    | 1x    | 55B          | 1x    | 65      | 42.8             |
| AmoebaNet+ NAS-FPN +AA(1280)   | -    | 1.5          | 1-1       | 48.6 | 185M   | 8.8x  | 1317B        | 24x   | 246     | -                |
| EfficientDet-D5 (1280)         | 51.5 | 70.5         | 56.1      | 51.3 | 34M    | 1x    | 135B         | 1x    | 128     | 72.5             |
| Detectron2 Mask R-CNN X152     | -    | ( <b>-</b> ) | -         | 50.2 | -      | -     | -            | (-)   |         | 234 <sup>‡</sup> |
| EfficientDet-D6 (1280)         | 52.6 | 71.5         | 57.2      | 52.2 | 52M    | 1x    | 226B         | 1x    | 169     | 92.8             |
| AmoebaNet+ NAS-FPN +AA(1536)   | -    | -            | -         | 50.7 | 209M   | 4.0x  | 3045B        | 13x   | 489     | -                |
| EfficientDet-D7 (1536)         | 53.7 | 72.4         | 58.4      | 53.4 | 52M    |       | 325B         |       | 232     | 122              |
| EfficientDet-D7x (1536)        | 55.1 | 74 3         | 59 9      | 54.4 | 77M    |       | 410R         |       | 285     | 153              |

### EfficientDet performance on COCO

The comparison is made for different groups of models within various accuracy/performance constraints. As a result:

- EfficientDet having better scores in each group, being 4x - 9x smaller and using 13x - 42x fewer FLOPs
- ➤ EfficientDet-D7x achieves a new state-of-the-art 55.1 AP on test-dev, improving the score by +4 AP and using 7x fewer FLOPs at the same time
- ➤ EfficientDet models are up to 4.1x faster on GPU and 10.8x faster on CPU



 Checked the influence of backbone and a new BiFPN separately and showed that both crucial for final models. Both EfficientNetB3 and BiFPN improve accuracy and decrease the number of FLOPs.

| Disentangling backbone and BiFPN |      |            |       |  |  |  |
|----------------------------------|------|------------|-------|--|--|--|
|                                  | AP   | Parameters | FLOPs |  |  |  |
| ResNet50 + FPN                   | 37.0 | 34M        | 97B   |  |  |  |
| EfficientNet-B3 + FPN            | 40.3 | 21M        | 75B   |  |  |  |
| EfficientNet-B3 + BiFPN          | 44.4 | 12M        | 24B   |  |  |  |

 Evaluated EfficientDet for Semantic Segmentation on Pascal VOC. For experiment used only one configuration of EfficientDet-D4 based model with BiFPN that uses levels 2-7, and P2 is used for final per-pixel classification. EfficientDet achieves 1.7% better accuracy with 9.8x fewer FLOPs than the prior art of DeepLabV3+.