Homework 10

Mos Kullathon

921425216

1. Determine whether the following series is convergent or divergent. We may use any tests available

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n}$$

As a p-series where p=2, $\sum_{n=1}^{\infty}\frac{1}{n^2}$ converges. Since $\frac{1}{n^2}\geq \frac{1}{n^22^n}$ for $n\geq 1$, by comparison test $\sum_{n=1}^{\infty}\frac{1}{n^22^n}$ converges.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n}$$
 converges.

(ii)
$$\sum_{n=2}^{\infty} rac{3n^3 + 2n^2 + 2}{n^4 - 1}$$

Let
$$a_n=rac{3n^3+2n^2+2}{n^4-1}$$
 and $b_n=rac{1}{n}$.

Then,

$$egin{aligned} rac{a_n}{b_n} &= rac{n(3n^3 + 2n^2 + 2)}{n^4 - 1} = rac{3n^4 + 2n^3 + 2n}{n^4 - 1} \ &\therefore \lim_{n o \infty} rac{a_n}{b_n} = \lim_{n o \infty} rac{3n^4 + 2n^3 + 2n}{n^4 - 1} = 3. \end{aligned}$$

Since $\frac{a_n}{b_n} o 3$ and $\sum_{n=1}^\infty b_n = \sum_{n=1}^\infty \frac{1}{n}$ is a p-series such that p=1 (and as such, diverges), by limit comparison test $\sum_{n=2}^\infty \frac{3n^3+2n^2+2}{n^4-1}$ also diverges.

(iii)
$$\sum_{n=1}^{\infty} rac{n^{1/3}}{(n^{3/2}-1)^{1/2}}$$

The first term is undefined. Therefore, the sum does not exist.

$$n=1 \implies rac{1^{1/3}}{(1^{3/2}-1)^{1/2}} = rac{1}{0}$$

(iv)
$$\sum_{n=1}^{\infty} rac{n^2 \ln n}{n^5 + 2n - 1}$$

Let
$$a_n=rac{n^2\ln n}{n^5+2n-1}$$
 and $b_n=rac{n^\epsilon}{n^3}$ for some small values of $\epsilon>0$.

Then,

$$egin{aligned} rac{a_n}{b_n} &= rac{n^2 \ln n}{n^5 + 2n - 1} \cdot rac{n^3}{n^\epsilon} = rac{n^5 \ln n}{n^\epsilon (n^5 + 2n - 1)} \ &\therefore \lim_{n o \infty} rac{a_n}{b_n} = \lim_{n o \infty} rac{\ln n}{n^\epsilon} = 0. \end{aligned}$$

Since $\frac{a_n}{b_n} o 0$ and $\sum_{n=0}^\infty b_n = \sum_{n=0}^\infty \frac{n^\epsilon}{n^3}$ converges by p-series for $0<\epsilon<2$, then by limit comparison test, $\sum_{n=0}^\infty \frac{n^2 \ln n}{n^5+2n-1}$ also converges.

(v)
$$\sum_{n=1}^{\infty} (-1)^{n^2} rac{n+1}{n!}$$

Let $a_n = (-1)^{n^2} rac{n+1}{n!}$.

Then,

$$a_{n+1} = rac{(-1)^{(n+1)^2}(n+1)+1}{(n+1)!} = rac{(-1)^{n^2+2n+1}(n+2)}{(n+1)n!}$$

and

$$egin{align} \left| rac{a_{n+1}}{a_n}
ight| &= \left| rac{(-1)^{n^2+2n+1}(n+2)}{(n+1)n!} \cdot rac{n!}{(-1)^{n^2}(n+1)}
ight| \ &= \left| rac{(-1)^{2n+1}(n+2)}{(n+1)^2}
ight| \ & \therefore \lim_{n o\infty} \left| rac{a_{n+1}}{a_n}
ight| = 0 < 1. \end{split}$$

By ratio test, the series converges absolutely.

(vi)
$$\sum_{n=1}^{\infty} rac{(n!)^3}{(3n)!}$$

Let
$$a_n=rac{(n!)^3}{(3n)!}.$$

Then,

$$egin{aligned} a_{n+1} &= rac{((n+1)!)^3}{(3(n+1))!} \ &= rac{((n+1)!)^3}{(3n+3)!} \ &= rac{((n+1)n!)^3}{(3n+3)(3n+2)(3n+1)(3n)!} \ &= rac{(n+1)^3(n!)^3}{(3n+3)(3n+2)(3n+1)(3n)!} \end{aligned}$$

and

$$egin{align} \left| rac{a_{n+1}}{a_n}
ight| &= \left| rac{(n+1)^3 (n!)^3}{(3n+3)(3n+2)(3n+1)(3n)!} \cdot rac{(3n)!}{(n!)^3}
ight| \ &= \left| rac{(n+1)^3}{(3n+3)(3n+2)(3n+1)}
ight| \ & \therefore \lim_{n o\infty} \left| rac{a_{n+1}}{a_n}
ight| &= rac{1}{3^3} = rac{1}{27} < 1. \end{split}$$

By ratio test, the series converges absolutely.

(vii)
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n$$

Let
$$a_n = \left(\frac{n}{3n+1}\right)^n$$
.

Then,

$$|a_n|^{rac{1}{n}}=\left|\left(rac{n}{3n+1}
ight)^n
ight|^{rac{1}{n}}=\left|rac{n}{3n+1}
ight|=rac{n}{3n+1},\quad n\geq 1$$

and

$$\lim_{n o\infty}|a_n|^{rac{1}{n}}=\lim_{n o\infty}rac{n}{3n+1}=rac{1}{3}<1.$$

By root test, the series converges absolutely.

(viii)
$$\sum_{n=2}^{\infty} rac{(-1)^n}{\ln n}$$
 Let $a_n = rac{1}{\ln n}$.

Since $\ln n$ is monotonically increasing, its reciprocal $a_n=\frac{1}{\ln n}$ must be monotonically decreasing.

Then,

$$\lim_{n o\infty}a_n=\lim_{n o\infty}rac{1}{\ln n}=0.$$

By alternating series test, the series converges.

(ix)
$$\sum_{n=2}^{\infty} (-1)^n \ln n$$

$$\lim_{n o\infty} \ln n = \infty$$

By divergence test, the series diverges.

2. Find the radius of convergence and interval of convergence for the following power series

(i)
$$\sum_{n=0}^{\infty} \frac{1}{n2^n} x^n$$

$$egin{aligned} a_n &= rac{x^n}{n2^n}, \quad a_{n+1} &= rac{x^{n+1}}{(n+1)2^{n+1}} \ igg| rac{a_{n+1}}{a_n} igg| &= igg| rac{x^{n+1}}{(n+1)2^{n+1}} \cdot rac{n2^n}{x^n} igg| \ &= igg| rac{xn}{2(n+1)} igg| \ &= |x| rac{n}{2n+2}, \quad n \geq 0 \
angle \therefore L &= \lim_{n o \infty} igg| rac{a_{n+1}}{a_n} igg| &= rac{|x|}{2} \implies L < 1 \iff |x| < 2 \end{aligned}$$

$$|x| < 2 \iff -2 < x < 2,$$

by ratio test, the series converges absolutely for -2 < x < 2 centered at x = 0.

$$x = -2 \implies \sum_{n=0}^{\infty} \frac{1}{n2^n} (-2)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$$

Since $rac{1}{n} o 0$, by alternating series test, the series converges at x=-2.

$$x = 2 \implies \sum_{n=0}^{\infty} \frac{1}{n2^n} (2)^n = \sum_{n=0}^{\infty} \frac{1}{n}$$

At x=2, the series is a p-series such that p=1. Therefore, the series diverges at x=2.

As such:

- the radius of convergence is 2
- the interval of convergence is [-2, 2).

(ii)
$$\sum_{n=0}^{\infty} rac{(x-1)^n}{\sqrt{n}}$$

$$a_n = rac{(x-1)^n}{\sqrt{n}}, \quad a_{n+1} = rac{(x-1)^{n+1}}{\sqrt{n+1}}$$
 $\left|rac{a_{n+1}}{a_n}
ight| = \left|rac{(x-1)^{n+1}}{\sqrt{n+1}} \cdot rac{\sqrt{n}}{(x-1)^n}
ight|$
 $= \left|rac{\sqrt{n}(x-1)}{\sqrt{n+1}}
ight|$
 $= |x-1|rac{\sqrt{n}}{\sqrt{n+1}}, \quad n \ge 0$
 $\therefore L = \lim_{n o \infty} \left|rac{a_{n+1}}{a_n}
ight| = |x-1| \implies L < 1 \iff |x-1| < 1$

Since

$$|x-1| < 1 \iff -1 < x-1 < 1 \iff 0 < x < 2,$$

by ratio test, the series converges absolutely for 0 < x < 2 centered at x = 1.

$$x = 0 \implies \sum_{n=0}^{\infty} \frac{(0-1)^n}{\sqrt{n}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Since $\frac{1}{\sqrt{n}} \to 0$, by alternating series test, the series converges at x=0.

$$x=2 \implies \sum_{n=0}^{\infty} rac{(2-1)^n}{\sqrt{n}} = \sum_{n=0}^{\infty} rac{1^n}{\sqrt{n}} = \sum_{n=0}^{\infty} rac{1}{n^{1/2}}$$

At x=2, the series is a p-series such that $p=\dfrac{1}{2}.$ Therefore, the series diverges at x=2.

As such:

- the radius of convergence is 1
- ullet the interval of convergence is [0,2).

(iii)
$$\sum_{n=2}^{\infty} rac{1}{n \ln n} x^n$$

$$egin{aligned} \left| rac{a_{n+1}}{a_n}
ight| &= \left| rac{x^{n+1}}{(n+1)\ln(n+1)} \cdot rac{n\ln n}{x^n}
ight| \\ &= \left| rac{nx\ln n}{(n+1)\ln(n+1)}
ight| \\ \therefore L &= \lim_{n o \infty} \left| rac{a_{n+1}}{a_n}
ight| &= \lim_{n o \infty} \left| rac{nx\ln n}{(n+1)\ln(n+1)}
ight| \\ &= \lim_{n o \infty} \left| rac{nx}{n+1}
ight| \cdot \lim_{n o \infty} \left| rac{\ln n}{\ln(n+1)}
ight| \\ &= |x| \cdot \lim_{n o \infty} \left| rac{1}{n+1}
ight| \\ &= |x| \end{aligned}$$

 $a_n = rac{x^n}{n \ln n}, \quad a_{n+1} = rac{x^{n+1}}{(n+1) \ln (n+1)}$

$$|x| < 1 \iff -1 < x < 1,$$

by ratio test, the series converges absolutely for -1 < x < 1.

$$x = -1 \implies \sum_{n=2}^{\infty} \frac{1}{n \ln n} (-1)^n$$

Since $\frac{1}{n \ln n} \to 0$, by alternating series test, the series converges at x = -1.

$$x=1 \implies \sum_{n=2}^{\infty} \frac{1}{n \ln n} (1)^n = \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

Let $g(x) = \frac{1}{x \ln x}$. Since g'(x) < 0 for $x \geq 2$, we apply the integral test.

$$u = \ln x \implies \mathrm{d}u = \frac{1}{x}\,\mathrm{d}x$$
 $\iff \mathrm{d}x = x\,\mathrm{d}u$
 $x = 2 \implies u = \ln 2$
 $x = n \implies u = \ln n$
 $\lim_{n \to \infty} \int_{2}^{n} \frac{1}{x \ln x}\,\mathrm{d}x = \lim_{n \to \infty} \int_{\ln 2}^{\ln n} \frac{x\,\mathrm{d}u}{xu}$
 $= \lim_{n \to \infty} \left[\ln u\right]_{\ln 2}^{\ln n}$
 $= \lim_{n \to \infty} \ln(\ln n) - \ln(\ln 2)$
 $= \infty$

By integral test, the series diverges at x=1.

As such:

- the radius of convergence is 1
- the interval of convergence is [-1, 1).

(iv)
$$\sum_{n=2}^{\infty} (2+rac{1}{n})^n x^n$$

$$egin{aligned} a_n &= \left(2+rac{1}{n}
ight)^n x^n \ &|a_n|^{rac{1}{n}} &= \left|\left(2+rac{1}{n}
ight)x
ight| \ dots L &= \lim_{n o\infty}|a_n|^{rac{1}{n}} &= |2x| \implies L < 1 \iff |2x| < 1 \end{aligned}$$

$$|2x| < 1 \iff |x| < rac{1}{2} \iff -rac{1}{2} < x < rac{1}{2},$$

by root test, the series converges absolutely for $-\frac{1}{2} < x < \frac{1}{2}$ centered at x=0.

$$x=-rac{1}{2} \Longrightarrow \sum_{n=2}^{\infty} \left(2+rac{1}{n}
ight)^n \left(-rac{1}{2}
ight)^n \ a_n = \left(2+rac{1}{n}
ight)^n \left(-rac{1}{2}
ight)^n \ |a_n|^{rac{1}{n}} = \left|\left(2+rac{1}{n}
ight)\left(-rac{1}{2}
ight)
ight|$$

Since $|a_n|^{\frac{1}{n}} o -1$, by root test, the series converges at $x=-\frac{1}{2}$.

$$x=rac{1}{2} \implies \sum_{n=2}^{\infty} \left(2+rac{1}{n}
ight)^n \left(rac{1}{2}
ight)^n$$

$$\lim_{n \to \infty} \left(2 + \frac{1}{n}\right)^n \left(\frac{1}{2}\right)^n = \lim_{n \to \infty} \left(\left(2 + \frac{1}{n}\right)\left(\frac{1}{2}\right)\right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^n$$

$$= \lim_{n \to \infty} e^{n \ln\left(1 + \frac{1}{2n}\right)}$$

$$= \lim_{n \to \infty} \exp \frac{\ln\left(1 + \frac{1}{2n}\right)}{1/n}$$

$$= \exp \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{1}{2n}} \cdot -\frac{1}{2n^2}}{-\frac{1}{n^2}}$$

$$= \exp \lim_{n \to \infty} \frac{1}{1 + \frac{1}{2n}} \cdot \frac{1}{2}$$

$$= \exp \frac{1}{2}$$

$$= \sqrt{e} \quad \approx 1.64872$$

Since
$$\left(2+rac{1}{n}
ight)^n\left(rac{1}{2}
ight)^n o\sqrt{e}$$
, by divergence test, the series diverges at $x=rac{1}{2}$.

As such:

- the radius of convergence is $\frac{1}{2}$
- the interval of convergence is $\left[-\frac{1}{2}, \frac{1}{2}\right)$.

3. Section 6.1

In the following exercises, given that $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$ with convergence in (-1,1), find the power series for each function with the given center a, and identify its interval of convergence.

(35)
$$f(x) = \frac{x}{1-x^2}$$
; $a = 0$

$$egin{align} f(x) &= rac{x}{1-x^2} \ &= \sum_{n=0}^{\infty} x(x^2)^n, \quad |x^2| < 1 \ &= \sum_{n=0}^{\infty} x^{2n+1}, \quad |x| < 1 \ \end{gathered}$$

$$|x| < 1 \iff -1 < x < 1,$$

f(x) converges within -1 < x < 1.

Then,

$$f(-1) = \sum_{n=0}^{\infty} (-1)^{2n+1}$$

Since $\lim_{n \to \infty} (-1)^{2n+1}$ does not exist, f(-1) diverges by divergence test.

$$f(1) = \sum_{n=0}^{\infty} 1^{2n+1}$$

Since $\lim_{n o \infty} 1^{2n+1} = 1$, f(1) diverges by divergence test.

As such,

$$f(x)=rac{x}{1-x^2}=\sum_{n=0}^{\infty}x^{2n+1},\quad x\in (-1,1).$$

(37)
$$f(x) = rac{x^2}{1+x^2}; a = 0$$

$$egin{align} f(x)&=rac{x^2}{1+x^2}\ &=rac{x^2}{1-(-x^2)}\ &=\sum_{n=0}^{\infty}x^2(-x^2)^n,\quad \left|-x^2
ight|<1\ &=\sum_{n=0}^{\infty}(-1)^nx^{2n+2},\quad \left|x
ight|<1 \end{split}$$

$$|x| < 1 \iff -1 < x < 1,$$

f(x) converges within -1 < x < 1.

Then,

$$f(-1) = \sum_{n=0}^{\infty} (-1)^n (-1)^{2n+2} = \sum_{n=0}^{\infty} (-1)^{3n+2}$$

Since $\lim_{n o \infty} (-1)^{3n+2}$ does not exist, f(-1) diverges by divergence test.

$$f(1) = \sum_{n=0}^{\infty} (-1)^n (1)^{2n+2} = \sum_{n=0}^{\infty} (-1)^n$$

Since $\lim_{n o \infty} (-1)^n$ does not exist, f(1) diverges by divergence test.

As such,

$$f(x)=rac{x^2}{1+x^2}=\sum_{n=0}^{\infty}(-1)^nx^{2n+2},\quad x\in(-1,1)$$

(39)
$$f(x) = \frac{1}{1-2x}$$
; $a = 0$

$$egin{align} f(x) &= rac{1}{1-2x} \ &= \sum_{n=0}^{\infty} (2x)^n, \quad |2x| < 1 \ &= \sum_{n=0}^{\infty} 2^n x^n, \quad |x| < rac{1}{2} \ \end{aligned}$$

$$|x| < \frac{1}{2} \iff -\frac{1}{2} < x < \frac{1}{2},$$

f(x) converges within $-rac{1}{2} < x < rac{1}{2}.$

Then,

$$f\left(-rac{1}{2}
ight) = \sum_{n=0}^{\infty} 2^n \left(-rac{1}{2}
ight)^n = \sum_{n=0}^{\infty} (-1)^n$$

Since $\lim_{n \to \infty} (-1)^n$ does not exist, $f\left(-\frac{1}{2}\right)$ diverges by divergence test.

$$f\left(rac{1}{2}
ight) = \sum_{n=0}^{\infty} 2^n \left(rac{1}{2}
ight)^n = \sum_{n=0}^{\infty} 1$$

Since $\lim_{n o \infty} 1 = 1$, f(1) diverges by divergence test.

As such,

$$f(x)=rac{1}{1-2x}=\sum_{n=0}^{\infty}2^nx^n,\quad x\in\left(-rac{1}{2},rac{1}{2}
ight)$$

(41)
$$f(x) = \frac{x^2}{1-4x^2}$$
; $a=0$

$$egin{align} f(x)&=rac{x^2}{1-4x^2}\ &=\sum_{n=0}^{\infty}x^2(4x^2)^n,\quad |4x^2|<1\ &=\sum_{n=0}^{\infty}x^24^nx^{2n},\quad |x^2|<rac{1}{4}\ &=\sum_{n=0}^{\infty}4^nx^{2n+2},\quad |x|<rac{1}{2} \end{aligned}$$

$$|x| < rac{1}{2} \iff -rac{1}{2} < x < rac{1}{2},$$

f(x) converges within $-rac{1}{2} < x < rac{1}{2}.$

Then,

$$f\left(-rac{1}{2}
ight) = \sum_{n=0}^{\infty} 4^n \left(-rac{1}{2}
ight)^{2n+2}.$$

Since $\lim_{n \to \infty} 4^n \left(-\frac{1}{2}\right)^{2n+2}$ does not exist, by divergence test $f\left(-\frac{1}{2}\right)$ diverges.

$$f\left(rac{1}{2}
ight) = \sum_{n=0}^{\infty} 4^n \left(rac{1}{2}
ight)^{2n+2}$$

Since

$$egin{aligned} \lim_{n o\infty}4^n\left(rac{1}{2}
ight)^{2n+2} &= \lim_{n o\infty}rac{4^n}{2^{2n+2}} \ &= \lim_{n o\infty}rac{4^n}{2^{2n}\cdot 2^2} \ &= \lim_{n o\infty}rac{4^n}{(2^2)^n\cdot 2^2} \ &= \lim_{n o\infty}rac{1}{4} \ &= rac{1}{4} \end{aligned}$$

by divergence test $f\left(\frac{1}{2}\right)$ diverges.

As such,

$$f(x)=rac{x^2}{1-4x^2}=\sum_{n=0}^{\infty}4^nx^{2n+2},\quad x\in\left(-rac{1}{2},rac{1}{2}
ight)$$

4. Find

(i) The Taylor polynomial of degree 3 of $f(x)=x^{2/3}$ at x=8

$$f(x) = x^{2/3} \implies f'(x) = \frac{2}{3}x^{-1/3}$$

$$\implies f''(x) = -\frac{2}{9}x^{-4/3}$$

$$\implies f'''(x) = \frac{8}{27}x^{-7/3}$$

$$f(8) = 8^{2/3} = 4$$

$$f'(8) = \frac{2}{3} \cdot 8^{-1/3} = \frac{1}{3}$$

$$f''(8) = -\frac{2}{9} \cdot 8^{-4/3} = -\frac{1}{72}$$

$$f'''(8) = \frac{8}{27} \cdot 8^{-7/3} = \frac{1}{432}$$

$$\therefore \sum_{n=0}^{3} \frac{f^{(n)}(x)}{n!} (x-8)^n = f(8) + f'(8)(x-8) + \frac{f''(8)(x-8)^2}{2!} + \frac{f''(8)(x-8)^3}{3!}$$

$$= 4 + \frac{x-8}{3} - \frac{(x-8)^2}{72 \cdot 2!} + \frac{(x-8)^3}{432 \cdot 3!}$$

$$= 4 + \frac{x-8}{3} - \frac{(x-8)^2}{144} + \frac{(x-8)^3}{2592}$$

(ii) The Taylor polynomial of degree 2 of $f(x) = \sec x$ at x=0

$$f(x) = \sec x \implies f'(x) = \sec x \tan x$$

$$\implies f''(x) = (\sec x \tan^2 x) + \sec^3 x$$

$$f(0) = \sec 0 \qquad = 1$$

$$f'(0) = \sec 0 \tan 0 \qquad = 0$$

$$f''(0) = (\sec 0 \tan^2 0) + \sec^3 0 = 1$$

$$\therefore \sum_{n=0}^{2} \frac{f^{(n)}(x)}{n!} (x - 0)^n = f(0) + f'(0)x + \frac{f''(0)x^2}{2!}$$

$$= 1 + 0x + \frac{x^2}{2!}$$

$$= 1 + \frac{x^2}{2}$$

5. Find the Taylor series expansion of the following functions using the formula

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Identify their interval of convergence. You may need to use differentiation and integration of the Taylor series.

Center of convergence not specified

The following answers for questions 5(i) through 5(iii) assumes that the center of convergence is at x=0.

(i)
$$\frac{1}{2+3x}$$

Let the center of convergence be at x = 0.

$$egin{aligned} rac{1}{2+3x} &= rac{1}{2(1+rac{3}{2}x)} \ &= rac{1}{2} \cdot rac{1}{1-(-rac{3}{2}x)} \ &= \sum_{n=0}^{\infty} rac{1}{2} \left(-rac{3}{2}x
ight)^n \,, \quad \left|-rac{3}{2}x
ight| < 1 \ &= \sum_{n=0}^{\infty} rac{(-3)^n}{2(2)^n} x^n, \quad |x| < rac{2}{3} \ &= \sum_{n=0}^{\infty} rac{(-3)^n}{2^{n+1}} x^n, \quad |x| < rac{2}{3} \end{aligned}$$

Since

$$|x|<rac{2}{3}\iff -rac{2}{3}< x<rac{2}{3},$$

the series converges within $-\frac{2}{3} < x < \frac{2}{3}$.

Then,

$$x = -rac{2}{3} \implies \sum_{n=0}^{\infty} rac{(-3)^n}{2^{n+1}} \left(-rac{2}{3}
ight)^n = \sum_{n=0}^{\infty} rac{2^n}{2^{n+1}}$$

Since $rac{2^n}{2^{n+1}} o rac{1}{2}$, the series diverges by divergence test at $x=-rac{2}{3}$.

$$x=rac{2}{3} \implies \sum_{n=0}^{\infty} rac{(-3)^n}{2^{n+1}} \left(rac{2}{3}
ight)^n = \sum_{n=0}^{\infty} (-1)^n rac{2^n}{2^{n+1}}$$

--

Since $\frac{2^n}{2^{n+1}} \to \frac{1}{2}$, the series diverges by divergence (and therefore the limit of the summand does not exist) test at $x=\frac{2}{3}$.

As such, the interval of convergence for a series centered at x=0 is $\left(-\frac{2}{3},\frac{2}{3}\right)$.

(ii)
$$\frac{1}{(1-2x)^2}$$

Let the center of convergence be at x = 0.

$$egin{aligned} rac{1}{1-2x} &= \sum_{n=0}^{\infty} (2x)^n, \quad |2x| < 1 \ &= \sum_{n=0}^{\infty} 2^n x^n, \quad |x| < rac{1}{2} \end{aligned}$$

Since

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{1-2x}\right) = \frac{1}{(1-2x)^2},$$

then

$$egin{align} rac{1}{(1-2x)^2} &= \sum_{n=1}^\infty 2n(2x)^{n-1}, \quad |x| < rac{1}{2} \ &= \sum_{n=1}^\infty 2^n nx^{n-1}, \quad |x| < rac{1}{2}. \end{gathered}$$

And since

$$|x| < -rac{1}{2} \iff -rac{1}{2} < x < rac{1}{2},$$

the series converges within $-\frac{1}{2} < x < \frac{1}{2}$.

Then,

$$x=-rac{1}{2} \implies \sum_{n=1}^{\infty} (-1)^{n-1} 2n$$

Since $2n o \infty$, the series diverges by divergence test at $x = -\frac{1}{2}$.

$$x=rac{1}{2} \implies \sum_{n=1}^{\infty} 2n$$

Since $2n o \infty$, the series diverges by divergence test at $x = \frac{1}{2}$.

As such, the interval of convergence for a series centered at x=0 is $\left(-\frac{1}{2},\frac{1}{2}\right)$.

(iii) $\ln(1+x)$

Let the center of convergence be at x=0.

$$rac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad |x| < 1$$

Since

$$\int \frac{1}{1+x} \, \mathrm{d}x = \ln(1+x),$$

then

$$\ln(1+x) = \sum_{n=0}^{\infty} rac{(-1)^n x^{n+1}}{n+1}, \quad |x| < 1.$$

And since

$$|x| < 1 \iff -1 < x < 1,$$

the series converges within -1 < x < 1.

Then,

$$x = -1 \implies \sum_{n=0}^{\infty} (-1)^{2n+1} \frac{1}{n+1} = \sum_{n=0}^{\infty} -\frac{1}{n+1}$$

Since $-\frac{1}{n+1} \approx -\frac{1}{n}$ for large values of n, the series diverges at x=-1 by p-series test.

$$x=1 \implies \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1}$$

Since $\dfrac{1}{n+1} o 0$, the series converge at x=1 by alternating series test.

As such, the interval of convergence for a series centered at x=0 is (-1,1].