- 1. Guess L^F .
 - (a) Guess g.
 - i. Guess w(q, m, n), F(q). Compute $\pi(q)$ from L^F . Solve for optimal policies and value functions:
 - A. **Incumbents:** Solve for A(q, m, n), B(q) and policies $z_I^A(q, m, n), z_I^B(q)$ using Moll's iterative method. Will take as given innovation intensity by entrants, $\overline{z}_E(q, m, n) = \xi \min(m, F(q))$ (and hence $\overline{z}_E^0(q) = \xi F(q)$). HJBs are

$$(r+\theta-g)A(q,m,n) = \max_{z} \pi(q) + \theta B(q)$$

$$+ \chi_{I}z\phi(z+\overline{z}_{E}(q,m,n)) \left(A((1+\lambda)q,0,0) - A(q,m,n)\right)$$

$$- \chi_{E}\overline{z}_{E}\phi(z+\overline{z}_{E}(q,m,n))A(q,m,n)$$

$$+ \nu(\overline{z}_{E}(q,m,n)+z)A_{m}(q,m,n)$$

$$- qqA_{q}(q,m,n)$$

and

$$(r+\theta-g)B(q) = \max_{z} \pi(q) + \chi_{I}z\phi(z+\xi F(q)) \left(A((1+\lambda)q,0,0) - B(q)\right)$$
$$-\chi_{E}\xi F(q)\phi(z+\xi F(q))B(q)$$
$$-gqB'(q)$$

B. **Entrants:** Solve for $W^{NC}(q,m,n), W^F(q,m,n)$ and $F^*(q)$ using Moll's iterative method. Define $\tau(q,m,n)=(\chi_Iz_I(q,m,n)+\chi_E\overline{z}_E(q,m,n))\phi(z_I(q,m,n)+\overline{z}_E(q,m,n))$ and $L(q,m,n)=z_I(q,m,n)+\overline{z}_E(q,m,n)$. HJBs are

$$(r + \theta + \tau(q, m, n) - g)W^{F}(q, m, n) = \max_{z} \chi_{E} z \phi(z_{I}(q, m) + \overline{z}_{E}(q, m)) \left(A((1 + \lambda)q, 0) - W^{F}(q, m)\right)$$

$$-w(q, m)z - gqW_{q}^{F}(q, m) + \nu L(q, m)W_{m}^{F}(q, m)$$

and

$$(r + \theta + \tau(q, m) - g + v)W^{NC}(q, m) = vW^{F}(q, m) - gqW_q^{NC}(q, m)$$
$$+ \nu L(q, m)W_m^{NC}(q, m)$$

Really, it comes down to setting

$$F^*(q) = \sup\{m : \chi_E \phi(z_I(q, m) + \overline{z}_E(q, m))(A((1 + \lambda)q, 0) - W^F(q, m)) \ge w(q, m)\}$$

- ii. Check consistency
 - A. Check $w(q, m) + \nu W^{NC}(q, m) = w$.
 - B. Check $F^*(q) = F(q)$. If these things do not hold, update guesses for w(q, m), F(q) using some rule to be determined, and go back to (1ai).
- (b) Check consistency: compute stationary distributions and integrate to compute growth rate g^* . If not converged, update guess for g and go back to (1a).
- 2. Finally, check labor market clearing: make sure that $L^F + L^I(L^F) + L^{RD}(L^F) = 1$. If too high, lower L^F guess and go back to step 1.