Анализ неструктурированных данных Семинар 10

Вариационный автокодировщик

Мурат Апишев (mel-lain@yandex.ru) НИУ ВШЭ (ГУ)

21-22 ноября, 2018

Автокодировщик

- Две связанных нейронных сети
- Кодировщик переводит объект в сжатое представление
- Декодировщик
 пытается из этого
 представления
 восстановить
 исходный объект

Автокодировщий как генеративная модель

- Нейросеть-декодировщик хочется использовать для генерации новых объектов из скрытого представления
- Обычный автокодировщик для этого подходит плохо:
 - Построенное им представление не является непрерывным
 - 2. Кластеры, соответствующие разным классам объектов, разнесены в этом пространстве далеко друг от друга

Вариационный автокодировщик

- Эти проблемы решает вариационный автокодировщик
- Его сеть-кодировщик не генерирует вектор представления
- Вместо этого он генерирует параметры его распределения: вектор средних и вектор стандартных отклонений
- Далее представление генерируется на основе этих параметров
- В результате получается непрерывное пространство представлений

AE vs. VAE

Standard Autoencoder (direct encoding coordinates)

Variational Autoencoder (μ and σ initialize a probability distribution)

Вид распределения

- ▶ Проблема непрерывности решилась
- ▶ Но кластеры всё ещё будут получаться отдалёнными

Оптимизируемый функционал

- ▶ Потребуем, чтобы векторы μ и σ были близки к параметрам стандартного нормального распределения
- Так же потребуем, чтобы сеть-декодер восстанавливала входные объекты
- Итоговый функционал качества:

$$egin{aligned} \mathcal{L}(x) &= \sum_i (x_i - \hat{x}_i)^2 \ &+ \sum_j \mathrm{KL}(q_j(z|x)||\mathcal{N}(0,1)) \end{aligned}$$

i − индекс в размерности объекта,j − в размерности представления

Зачем нужны непрерывность и близость

Зачем нужны непрерывность и близость

- Пусть мы кодируем музыку и хотим сгенерировать среднее между двумя жанрами
- Для этого достаточно прибавить к вектору μ одного жанра половину вектора разницы между ними
- Пусть мы кодируем фотографии лиц
- Разность векторов средних одинаковых фотографий с очками и без даст вектор, описывающий появление очков

Interpolating between samples

Трюк с репараметризацией

- ▶ Back-propogation не может пройти через стохастический элемент
- ▶ Идея: вынесем стохастичность в отдельную случайную величину
- ▶ Параметры станут детерминированными ⇒ дифференцируемыми

VAE и генерация текстов

- На вход кодировщику подадим векторы предложений, полученных с помощью LSTM
- Декодировщик на основе вектора представления будет генерировать предложение
- Ссылки на примеры реализаций: 1, 2

Text style transfer с помощью VAE

- ▶ К сожалению, на текущий момент VAE для текстов далеко не так хороши, как для картинок
- ▶ Даже в современных статьях «перенос стиля» ограничивается переносом тональности
- ▶ В рассматриваемой работе тональность бинарная
- Идея в том, чтобы формировать векторы стиля и контента по-отдельности
- ► Также хочется, чтобы каждое пространство содержало только информацию о кодируемой сущности (стили или контент)
- ▶ Для этого используется комбинация нескольких функций потерь

Функции потерь

- $ightharpoonup J_{
 m rec}$ восстановление входа
- $ightharpoonup J_{
 m mul(s)}$ предсказание верной тональности
- $ightharpoonup J_{\mathrm{dis}(c)}$ удаление информации о стиле из пространства для контента:
 - 1. Обучаем классификатор, распознающий стиль по вектору контента
 - 2. Обучаем кодировщик создавать такое представление для контента, чтобы классификатор не мог из него найти стиль
- $ightharpoonup J_{\mathrm{mul(c)}}$ предсказание верного контента:
 - ▶ Под контентом понимается нормированный вектор «мешка слов» без стоп-слов и слов, специфичных для стиля (тональности)
 - ightharpoonup Отличия от $J_{
 m rec}$: восстанавливается только «мешок слов» (не всех) и контролируется только пространство представления контента
- $ilde{f J}_{
 m dis(s)}$ удаление информации о контенте для стиля (предсказывается тот же нормированный вектор «мешка слов»)

Архитектура сети

Примеры результатов

Original (Positive)

the food is excellent and the service is exceptional

the waitresses are friendly and helpful the restaurant itself is romantic and quiet

great deal

apart

they are clueless

both times i have eaten the lunch buffet and it was outstanding

Original (Negative)

the desserts were very bland
it was a bed of lettuce and spinach with
some italian meats and cheeses
the people behind the counter were not
friendly whatsoever
the interior is old and generally falling

VAE Transferred (Negative)

the food was bland and i am not thrilled with this

the waitresses are rude and are lazy the restaurant itself was dirty

no deal

both times i have eaten here the food was mediocre at best

VAE Transferred (Positive)

the desserts were very good

it was a huge assortment of flavors and italian food

the people behind the counter is friendly caring

the interior is old and noble

they are genuinely professionals