11:4.25	
•	
11.6.20	

1) Determine if the following series diverges or converges

5:00-6:00

Observo that:

Un(n) = In(n+1)

Sin
$$\frac{1}{n}$$
 Sin $\frac{1}{n}$ $\frac{1}{2n}$ $\frac{1$

divergence or absolute convergence 2) Determine convergence,

$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{2n(n^3)}$$

This earnes converges:

Using the alternating series test, it is clear that 1/2 (noi)>0 $1/\ln(n^3) = \frac{1}{3}\ln n$ is decreasing $\left(\frac{1}{3}\ln n\right) \ge \frac{1}{3}\ln n$ and lim 1 = 0. Thus the somes converges. But

the series $\frac{20}{\sqrt{1-2}} \left(-1\right)^{n} \frac{1}{\sqrt{1-2}} = \frac{1}{\sqrt{1-2}} \frac{1}{\ln(n^2)} does not converge$

hereause $3\ln(n) \leq n$, $\Rightarrow 3\ln(n) \geq \frac{\pi}{3n} \Rightarrow \frac{\pi}{3n} = \frac{\pi}{3n}$ and $\frac{\pi}{3n} \Rightarrow \frac{\pi}{3n} \Rightarrow \frac{\pi}{3$