

MAT 2051 TD 4

Exercice 1.

On considère \mathbf{R}^2 muni du produit scalaire usuel noté $<\cdot$ $|\cdot|>$.

Soient f_1, f_2, f_3 et f_4 des endomorphismes de \mathbf{R}^2 définies par :

$$\forall (x,y) \in \mathbf{R}^2$$
, $f_1(x,y) = (-y,-x)$, $f_2(x,y) = (2x,2y)$, $f_3(x,y) = (y,x)$ et $f_4(x,y) = (-y,x)$

- 1) Dans le cas où l'un des endomorphismes f_1, f_2, f_3 et f_4 est orthogonal, donner sa nature précise.
- 2) On considère la figure de l'annexe, qui représente un bonhomme. Dessiner les images du bonhomme par chacune des applications f_1, f_2, f_3 et f_4 .

Exercice 2.

On considère \mathbb{R}^2 muni du produit scalaire usuel noté $<\cdot\mid\cdot>$.

On note A la matrice associée à un endomorphisme f de \mathbf{R}^2 par rapport à la base canonique (orthonormée) B de \mathbf{R}^2 .

Dans les cas suivants, f est-il un endomorphisme orthogonal de \mathbb{R}^2 ? Si oui, quelle est la nature de l'endomorphisme f (c'est-à-dire une rotation ou une symétrie orthogonale).

- Si f est une rotation précisez l'angle θ de la rotation.
- Si f est une symétrie orthogonale par rapport à une droite D, déterminez alors l'équation cartésienne de D.

1)
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} \sqrt{2} & -\sqrt{3} \\ \sqrt{3} & -\sqrt{2} \end{pmatrix}$; 3) $A = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \end{pmatrix}$

Exercice 3.

On considère \mathbf{R}^2 muni du produit scalaire usuel noté $<\cdot$ $|\cdot|$ >.

Soit
$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}$$
 la matrice associée à un endomorphisme f de \mathbf{R}^2 par rapport à la base

canonique B de \mathbb{R}^2 .

- 1) Quelle est la nature de l'endomorphisme f.
- 2) L'endomorphisme f est-il une rotation ?
- 3) Prouver que f est une symétrie orthogonale par une droite D puis déterminer l'équation cartésienne de D.
- 4) Prouver que f est diagonalisable sur \mathbf{R} .
- 5) Prouver qu'il existe une base orthonormée B' de \mathbb{R}^2 (on ne cherche pas à la calculer)

telle que la matrice de
$$f$$
 par rapport à B ' est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Exercice 4.

On considère \mathbb{R}^2 muni du produit scalaire usuel noté $<\cdot\mid\cdot>$.

Soient u = (a,b) un vecteur unitaire de \mathbb{R}^2 (c'est-à-dire ||u|| = 1) et f la symétrie orthogonale par rapport à la droite D dirigée par u.

- 1) Soit v = (-b, a), montrer que $B' = \{u; v\}$ est une base orthonormée de \mathbf{R}^2
- 2) Donner $M_f(B')$, la matrice de f par rapport à la base $B' = \{u; v\}$
- 3) Montrer que la matrice f par rapport à la base canonique B de ${\bf R}^2$ est

$$M_f(B) = \begin{pmatrix} a^2 - b^2 & 2ab \\ 2ab & b^2 - a^2 \end{pmatrix}$$

Exercice 5.

Dans un espace euclidien E muni d'une base orthonormée directe $B = \{\vec{i}, \vec{j}, \vec{k}\}$, montrer que la matrice M dans la base B de la rotation d'axe dirigé par le vecteur $u = \vec{i} + \vec{k}$ et

d'angle
$$\theta = \frac{\pi}{2}$$
 est $M = \begin{pmatrix} \frac{1}{2} & \frac{-1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}$

Exercice 6. (Extrait de l'examen novembre 2017)

On considère \mathbb{R}^3 muni du produit scalaire usuel $<\cdot|\cdot>$.

Soient
$$u = (1,1,1)$$
, $v = (1,-1,0)$, $w = (1,1,-2)$ et $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$ la matrice associée à un

endomorphisme f de ${\bf R}^3$ par rapport à la base canonique $B=\left\{e_1,e_2,e_3\right\}$ de ${\bf R}^3$ où $e_1=(1,0,0)$, $e_2=(0,1,0)$ et $e_3=(0,0,1)$.

- 1) Montrer que f est un endomorphisme orthogonal et calculer det(A).
- 2) Vérifier que u est un vecteur propre de f .
- 3) Vérifier que v et w sont des vecteurs propres de f associés à la valeur propre -1.
- 4) Déterminer la dimension du sous-espace propre $E_1 = Ker(f Id_{\mathbf{R}^3})$.
- 5) Déterminer E_1^\perp l'orthogonal de E_1 .
- 6) Montrer que $E_{-1} = E_1^{\perp}$.
- 7) Calculer < v | w> puis déterminer une base orthonormée $\left\{a_1,a_2\right\}$ de E_{-1} .
- 8) Déterminer une base orthonormée $B' = \{a_1, a_2, a_3\}$ de \mathbf{R}^3 où $a_3 \in E_1$.
- 9) Déterminer la matrice associée à l'endomorphisme f par rapport à la base B'.
- 10) Préciser la nature de l'endomorphisme f.