Discrete Mathematics and Its Applications

Lecture 2: Basic Structures: Set Theory

MING GAO

DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Sep. 27, 2018

Outline

- Set Concepts
- 2 Set Operations
- 3 Application
- Take-aways

Set

Definition

Set A is a collection of objects (or elements).

- $a \in A$: "a is an element of A" or "a is a member of A";
- a ∉ A : "a is not an element of A";
- $A = \{a_1, a_2, \dots, a_n\} : A \text{ contains } a_1, a_2, \dots, a_n;$
- Order of elements is meaningless;
- It does not matter how often the same element is listed.

Set

Definition

Set A is a collection of objects (or elements).

- $a \in A$: "a is an element of A" or "a is a member of A";
- $a \notin A$: "a is not an element of A";
- $A = \{a_1, a_2, \dots, a_n\} : A \text{ contains } a_1, a_2, \dots, a_n;$
- Order of elements is meaningless;
- It does not matter how often the same element is listed.

Set equality

Sets A and B are equal if and only if they contain exactly the same elements.

- If $A = \{9, 2, 7, -3\}$ and $B = \{7, 9, 2, -3\}$, then A = B.
- If $A = \{9, 2, 7\}$ and $B = \{7, 9, 2, -3\}$, then $A \neq B$.;
- If $A = \{9, 2, -3, 9, 7, -3\}$ and $B = \{7, 9, 2, -3\}$, then A = B.

Applications

Examples

- Bag of words model: documents, reviews, tweets, news, etc;
- Transactions: shopping list, app downloading, book reading, video watching, music listening, etc;
- Records in a DB, data item in a data streaming, etc;
- Neighbors of a vertex in a graph;

Applications

Examples

- Bag of words model: documents, reviews, tweets, news, etc;
- Transactions: shopping list, app downloading, book reading, video watching, music listening, etc;
- Records in a DB, data item in a data streaming, etc;
- Neighbors of a vertex in a graph;

"Standard" sets

- Natural numbers: $N = \{0, 1, 2, 3, \dots\}$
- Integers: $Z = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$
- Positive integers: $Z^+ = \{1, 2, 3, 4, \cdots \}$
- Real Numbers: $R = \{47.3, -12, -0.3, \dots\}$
- Rational Numbers: $Q = \{1.5, 2.6, -3.8, 15, \dots\}$

Tabular form

- $A = \{1, 2, 3, 4, 5\};$
- $B = \{-2, 0, 2\};$

Tabular form

- $A = \{1, 2, 3, 4, 5\};$
- $B = \{-2, 0, 2\};$

Descriptive form

- A = set of first five natural numbers;
- B = set of positive odd integers;

Tabular form

- $A = \{1, 2, 3, 4, 5\};$
- $B = \{-2, 0, 2\};$

Descriptive form

- A = set of first five natural numbers;
- B = set of positive odd integers;

Set builder form

- $Q = \{a/b : a \in Z \land b \in Z \land b \neq 0\};$
- $B = \{y : P(y)\}, \text{ where } P(Y) : y \in E \land 0 < y \le 50;$

Remarks

- $A = \emptyset$: empty set, or null set;
- ullet Universal set U: contains all the objects under consideration.
- $A = \{\{a, b\}, \{b, c, d\}\};$

Remarks

- $A = \emptyset$: empty set, or null set;
- Universal set U: contains all the objects under consideration.
- $A = \{\{a, b\}, \{b, c, d\}\};$

Venn diagrams

In general, a universal set is represented by a rectangle.

Definition

Definition

Set A is a subset of B iff every element of A is also an element of B, denoted as $A \subseteq B$.

• $A \subseteq B = \forall x (x \in A \rightarrow x \in B);$

Definition

- $A \subseteq B = \forall x (x \in A \rightarrow x \in B);$
- For every set S, we have: (1) $\emptyset \subseteq S$; and (2) $S \subseteq S$;

Definition

- $A \subseteq B = \forall x (x \in A \rightarrow x \in B);$
- For every set S, we have: (1) $\emptyset \subseteq S$; and (2) $S \subseteq S$;
- When we wish to emphasize that set A is a subset of set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists (x \in B \land x \notin A)$;

Definition

- $A \subseteq B = \forall x (x \in A \rightarrow x \in B);$
- For every set S, we have: (1) $\emptyset \subseteq S$; and (2) $S \subseteq S$;
- When we wish to emphasize that set A is a subset of set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists (x \in B \land x \notin A)$;
- Two useful rules: (1) $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$; (2) $(A \subseteq B) \land (B \subseteq C) \Rightarrow (A \subseteq C)$;

Definition

- $\bullet \ A \subseteq B = \forall x (x \in A \to x \in B);$
- For every set S, we have: (1) $\emptyset \subseteq S$; and (2) $S \subseteq S$;
- When we wish to emphasize that set A is a subset of set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists (x \in B \land x \notin A)$;
- Two useful rules: (1) $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$; (2) $(A \subseteq B) \land (B \subseteq C) \Rightarrow (A \subseteq C)$;

Definition

- $A \subseteq B = \forall x (x \in A \rightarrow x \in B);$
- For every set S, we have: (1) $\emptyset \subseteq S$; and (2) $S \subseteq S$;
- When we wish to emphasize that set A is a subset of set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists (x \in B \land x \notin A)$;
- Two useful rules: (1) $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$; (2) $(A \subseteq B) \land (B \subseteq C) \Rightarrow (A \subseteq C)$;
- Given a set S, the power set of S is the set of all subsets of S, denoted as $\mathcal{P}(S)$. The size of $2^{|S|}$, where |S| is the size of S.

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

• The Cartesian product of A_1, A_2, \dots, A_n is denoted as $A_1 \times A_2 \times \dots \times A_n$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) : \forall i \ a_i \in A_i\};$$

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

• The Cartesian product of A_1, A_2, \dots, A_n is denoted as $A_1 \times A_2 \times \dots \times A_n$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) : \forall i \ a_i \in A_i\};$$

• A subset R of the Cartesian product $A \times B$ is called a relation from A to B.

Remarks

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

Remarks

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

Remarks

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

• The Cartesian product of A_1, A_2, \dots, A_n is denoted as $A_1 \times A_2 \times \dots \times A_n$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) : \forall i \ a_i \in A_i\};$$

Remarks

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is set $A \times B = \{(a, b) : a \in A \land b \in B\}$, where (a, b) is a ordered 2-tuples, called ordered pairs.

• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$, the Cartesian product

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\};$$

• The Cartesian product of A_1, A_2, \dots, A_n is denoted as $A_1 \times A_2 \times \dots \times A_n$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) : \forall i \ a_i \in A_i\};$$

• A subset R of the Cartesian product $A \times B$ is called a relation from A to B.

Operators

Operators

- Union: $A \cup B = \{x : x \in A \lor x \in B\}$;
- Intersection: $A \cap B = \{x : x \in A \land x \in B\};$
- Difference: $A B = \{x : x \in A \land x \notin B\}$ (sometimes denoted as $A \setminus B$);
- Complement: $\overline{A} = U A = \{x \in U : x \notin A\};$

Operators

- Union: $A \cup B = \{x : x \in A \lor x \in B\};$
- Intersection: $A \cap B = \{x : x \in A \land x \in B\};$
- Difference: $A B = \{x : x \in A \land x \notin B\}$ (sometimes denoted as $A \setminus B$);
- Complement: $\overline{A} = U A = \{x \in U : x \notin A\};$

Operators

- Union: $A \cup B = \{x : x \in A \lor x \in B\};$
- Intersection: $A \cap B = \{x : x \in A \land x \in B\};$
- Difference: $A B = \{x : x \in A \land x \notin B\}$ (sometimes denoted as $A \setminus B$);
- Complement: $\overline{A} = U A = \{x \in U : x \notin A\};$

- $A B = A \cap \overline{B}$:
- $|A \cup B| = |A| + |B| |A \cap B|$.

Set identities

Table of logical equivalence

equivalence	name
$A \cap U = A$	Identity laws
$A \cup \emptyset = A$	
$A \cap A = A$	Idempotent laws
$A \cup A = A$	
$(A \cap B) \cap C = A \cap (B \cap C)$	Associative laws
$(A \cup B) \cup C = A \cup (B \cup C)$	
$A \cup (A \cap B) = A$	Absorption laws
$A\cap (A\cup B)=A$	
$A \cap \overline{A} = \emptyset$	Complement laws
$A \cup \overline{A} = U$	

Logical equivalence Cont'd

Table of logical equivalence

equivalence	name
$A \cup U = U$	Domination laws
$A \cap \emptyset = \emptyset$	
$A \cap B = B \cap A$	Commutative laws
$A \cup B = B \cup A$	
$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$	Distributive laws
$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$	
$\overline{(A\cap B)}=\overline{A}\cup\overline{B}$	De Morgan's laws
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	

Proof

Steps	Reasons
$\overline{A \cap B}$	primise

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg(x \in A \land x \in B)\}\$	definition of intersection

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg(x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg(x \in A \land x \in B)\}$	definition of intersection
$= \{x : \neg(x \in A) \lor \neg(x \in B)\}$	De Morgan law for logic

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg (x \in A \land x \in B)\}$	definition of intersection
$= \{x : \neg(x \in A) \lor \neg(x \in B)\}$	De Morgan law for logic
$= \{x : (x \notin A) \lor (x \notin B)\}$	definition of does not belong symbol

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg (x \in A \land x \in B)\}$	definition of intersection
$= \{x : \neg(x \in A) \lor \neg(x \in B)\}$	De Morgan law for logic
$= \{x : (x \not\in A) \lor (x \not\in B)\}$	definition of does not belong symbol
$= \{x : (x \in \overline{A}) \lor (x \in \overline{B})\}$	definition of complement

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg(x \in A \land x \in B)\}$	definition of intersection
$= \{x : \neg(x \in A) \lor \neg(x \in B)\}$	De Morgan law for logic
$= \{x : (x \not\in A) \lor (x \not\in B)\}$	definition of does not belong symbol
$= \{x : (x \in \overline{A}) \lor (x \in \overline{B})\}$	definition of complement
$= \{x : x \in (\overline{A} \cup \overline{B})\}$	definition of union

Proof

Steps	Reasons
$\overline{A \cap B}$	primise
$= \{x : x \not\in A \cap B\}$	definition of complement
$= \{x : \neg (x \in A \cap B)\}$	definition of does not belong symbol
$= \{x : \neg(x \in A \land x \in B)\}$	definition of intersection
$= \{x : \neg(x \in A) \lor \neg(x \in B)\}$	De Morgan law for logic
$= \{x : (x \not\in A) \lor (x \not\in B)\}$	definition of does not belong symbol
$= \{x : (x \in \overline{A}) \lor (x \in \overline{B})\}$	definition of complement
$=\{x:x\in(\overline{A}\cup\overline{B})\}$	definition of union
$=\overline{A}\cup\overline{B}$	meaning of set builder notation

Generalized unions and intersections

Union

- $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$;
- $A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \bigcup_{i=1}^{\infty} A_i$;

Generalized unions and intersections

Union

- $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$;
- $A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \bigcup_{i=1}^{\infty} A_i$;

Intersection

- $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$;
- $A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots = \bigcap_{i=1}^{\infty} A_i$;

Set covering problem

Input

```
Universal set U = \{u_1, u_2, \dots, u_n\}
Subsets S_1, S_2, \dots, S_m \subseteq U
Cost c_1, c_2, \dots, c_m
```


Set covering problem

Input

Universal set $U = \{u_1, u_2, \cdots, u_n\}$ Subsets $S_1, S_2, \cdots, S_m \subseteq U$ Cost c_1, c_2, \cdots, c_m

Goal

Find a set $I \subseteq \{1, 2, \dots, m\}$ that minimizes $\sum_{i \in I} c_i$, such that $\bigcup_{i \in I} S_i = U$

Set covering problem

Input

Universal set $U = \{u_1, u_2, \dots, u_n\}$ Subsets $S_1, S_2, \dots, S_m \subseteq U$ Cost c_1, c_2, \dots, c_m

Goal

Find a set $I \subseteq \{1, 2, \dots, m\}$ that minimizes $\sum_{i \in I} c_i$, such that $\bigcup_{i \in I} S_i = U$

Applications

- Document summarization
- Natural language generation
- Information cascade

Take-aways

- Set Concepts;
- Set Operations;
- Applications.

