

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD			PI	ESE	L		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2012

WYBRANE:

•••••	(środowisko)
••••••	(kompilator)
•••••	(nrogram użytkowy)

Czas pracy:

90 minut

Liczba punktów do uzyskania: 20

MIN-R1 1P-122

Zadanie 1. Funkcja rekurencyjna (8 pkt)

Dana jest liczba naturalna n > 0 i tablica różnych liczb całkowitych a[1..n]. Rozważamy następującą **rekurencyjną** funkcję F z argumentem i będącym liczbą naturalną, $1 \le i \le n$.

```
Funkcja F(i)

jeżeli i = n to

wynikiem jest n

w przeciwnym razie

j := F(i+1)

jeżeli a[i] < a[j] wtedy

wynikiem jest i

w przeciwnym razie

wynikiem jest j
```

a) Dla danej 10-elementowej tablicy a = [5,1,8,9,7,2,3,11,20,15] podaj w poniższej tabeli wynik wywołania funkcji F dla danego argumentu i.

i	F(i)
9	
7	
5	

- b) Niech w będzie wynikiem wywołania funkcji F dla argumentu i, $1 \le i \le n$. Wtedy a[w] w odniesieniu do pozostałych liczb w tablicy a jest zawsze
 - najmniejsza liczba w tej tablicy.
 - najmniejszą liczbą w tej tablicy spośród elementów o indeksach od *i* do *n*.
 - najmniejszą liczbą w tej tablicy spośród elementów o indeksach od 1 do i.

Podkreśl właściwą odpowiedź.

c) Ile porównań między elementami tablicy zostanie wykonanych przy wywołaniu F(512) dla n = 2012?

d) Zapisz funkcję F iteracyjnie.

Wymalnia	Nr zadania	1a	1b	1c	1d
Wypełnia egzaminator	Maks. liczba pkt	3	1	1	3
egzammator	Uzyskana liczba pkt				

Zadanie 2. Liczby osiągalne (7 pkt)

Liczbę naturalną n będziemy nazywać liczbą **osiągalną**, jeżeli istnieje takie k, że n = k + s(k), gdzie k jest liczbą naturalną, a s(k) jest sumą cyfr liczby k w zapisie dziesiętnym.

a) Uzupełnij tabelę:

Liczba n	k	s(k)	Czy <i>n</i> jest osiągalna?
505	491	14	TAK
20	-	_	NIE
28			
31			

b) Uzasadnij, że jeśli n jest liczbą czterocyfrową i n = k + s(k), to $s(k) \le 36$.

c) W wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania) zapisz algorytm sprawdzający, czy liczba naturalna *n* z przedziału [1000,9999] jest liczbą osiągalną. W swoim algorytmie wykorzystaj informację z podpunktu b).

Specyfikacja:

Dane: n – liczba naturalna z przedziału [1000,9999]

Wynik: liczba k taka, że n = k + s(k), gdy liczba n jest osiągalna; komunikat NIE, gdy n nie jest osiągalna

Algorytm:

W	Nr zadania	2a	2b	2c
Wypełnia	Maks. liczba pkt	2	1	4
egzaminator	Uzyskana liczba pkt			

Zadanie 3. Test (5 pkt)

Podpunkty a) - e) zawierają po cztery odpowiedzi. Zdecyduj, które z podanych odpowiedzi są prawdziwe (**P**), a które fałszywe (**F**). **Zaznacz znakiem X** odpowiednią komórkę w tabeli. W każdym pytaniu uzyskasz punkt tylko za komplet poprawnych odpowiedzi.

a) Poniżej przedstawiono fragment bazy danych zawierającej informacje o książkach, czytelnikach i wypożyczeniach. Pole *id_Cz* w tabeli *Czytelnicy* jest połączone relacją "jeden do wielu" z polem *id_Cz* w tabeli *Wypożyczenia*, podobnie pole *id_Ks* w tabeli *Książki* z polem *id_Ks* w tabeli *Wypożyczenia*.

Książki

id_Ks	Autor	Tytuł	Rok wydania
1	John Tolkien	Hobbit, czyli tam i z powrotem	2007
2	Ursula K. Le Guin	Czarnoksiężnik z Archipelagu	2009
3	Peter V. Brett	Malowany człowiek. Księga II	2011
4	Stanisław Lem	Bajki robotów	2006
5	Trudi Canavan	Misja Ambasadora	2011
6	John Tolkien	Dzieci Hurina	2010
7	Andrzej Sapkowski	Krew Elfów	2010

Czytelnicy

id_Cz	Imie	Nazwisko	Klasa
1	Anna	Tulik	I
2	Magda	Nowak	I
3	Marek	Krokus	I
4	Jacek	Doniec	II
5	Wojtek	Madejski	II
6	Michał	Sośnierz	II
7	Franek	Jedliński	II
8	Sandra	Biecz	III
9	Jowita	Kolska	III
10	Ala	Mleczko	III

Wypożyczenia

Nr_W	id_Ks	id_Cz
1	4	2
2	7	3
3	3	9
4	1	5
5	2	8
6	4	10
7	6	8
8	5	7
9	5	9
10	7	1

Z danych umieszczonych w tym fragmencie bazy wynika, że

	P	F
Jowita Kolska wypożyczyła "Misję Ambasadora".		
"Bajki Robotów" były wypożyczane dwa razy.		
Z podanych klas (I, II, III) najwięcej książek wypożyczyli uczniowie klasy II.		
Jacek Doniec nie wypożyczył jeszcze żadnej książki.		

b) Które z podanych pojęć i skrótów dotyczą technologii i standardów wykorzystywanych w budowie lokalnych sieci komputerowych?

	P	F
XML		
WiFi		
Ethernet		
Telnet		

c) Liczba 1E₍₁₆₎ jest równa liczbie

	P	F
101010 ₍₂₎ .		
36 ₍₈₎ .		
1110 ₍₃₎ .		
30 ₍₁₀₎ .		

d) Dla dwóch liczb 1110₍₂₎ i 10₍₂₎, ich

	P	F
suma jest równa 10000 ₍₂₎ .		
różnica jest równa 1000 ₍₂₎ .		
iloczyn jest równy 11110 ₍₂₎ .		
iloraz jest równy 111 ₍₂₎ .		

e) Licencja GNU GPL zezwala na

	P	F
uruchamianie programu do użytku domowego.		
rozpowszechnianie niezmodyfikowanej kopii programu.		
analizowanie, jak program działa i dostosowywanie go do swoich potrzeb.		
udoskonalanie programu i publiczne rozpowszechnianie własnych ulepszeń.		

Wypełnia egzaminator	Nr zadania	3a	3b	3c	3d	3e
	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

BRUDNOPIS