

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen VIII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2017-18.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Prueba Intermedia.

Fecha 25 de Abril de 2018.

Duración 120 minutos.

Ejercicio 1 (3.5 puntos). Probar que la serie $\sum_{n\geqslant 0}e^{-zn}$ converge absolutamente en todo punto del dominio $\Omega=\{z\in\mathbb{C}:\operatorname{Re} z>0\}$ y uniformemente en cada subconjunto compacto contenido en Ω . Deducir que la función $g:\Omega\to\mathbb{C}$ dada por

$$g(z) = \sum_{n=0}^{\infty} e^{-zn}$$

es continua en Ω y calcular $\int_{C(2,1)} g(z)\,dz.$

Ejercicio 2 (3.5 puntos). Estudiar la derivabilidad de las funciones $f, g: \mathbb{C} \to \mathbb{C}$ dadas por

$$f(z) = \cos(\overline{z})$$
 $g(z) = (z-1)f(z)$ $\forall z \in \mathbb{C}.$

Ejercicio 3 (3 puntos). Sea Ω un abierto de \mathbb{C} y $f \in \mathcal{H}(\Omega)$. Probar que la función |f| no puede tener ningún máximo relativo estricto. Es decir, no pueden existir $z_0 \in \Omega$ y $r \in \mathbb{R}^+$ con $\overline{D}(z_0, r) \subset \Omega$ de modo que $|f(z_0)| > |f(z)|$ para cada $z \in \overline{D}(z_0, r) \setminus \{z_0\}$.