Machine Learning in Public Health

Lecture 9: Deep Learning

Dr. Yang Feng

Deep Learning

- Image Classification
- Video Classification
- Natural Language Processing (NLP)

Single Layer Neural Networks

- Using $X = (X_1, X_2, \dots, X_p)$ to predict Y (Continuous)
- Two steps
 - I. The K activation $A_k, k=1,\cdots,K$ in the **hidden layer** are functions of the **input features**: X_1,\cdots,X_p .

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j)$$

Here: w_{k0} , $k=1, \dots, K$ and w_{kj} , $k=1, \dots, K$, $j=1, \dots, p$ are called **weights**, to be estimated from the training data. $g(\cdot)$ is the so-called **activation function** which is specified in advance.

2. Then, these K activations from the **hidden layer** are fed into the **output layer**, resulting in

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k.$$

Single Layer Neural Networks

FIGURE 10.1. Neural network with a single hidden layer. The hidden layer computes activations $A_k = h_k(X)$ that are nonlinear transformations of linear combinations of the inputs X_1, X_2, \ldots, X_p . Hence these A_k are not directly observed. The functions $h_k(\cdot)$ are not fixed in advance, but are learned during the training of the network. The output layer is a linear model that uses these activations A_k as inputs, resulting in a function f(X).

Activation Function

Sigmoid Activation Function:

$$g(z) = \frac{e^z}{1 + e^z}.$$

■ **ReLU** (Rectified linear unit) Activation Function:

$$g(z) = (z)_{+} = \begin{cases} 0 \text{ if } z < 0, \\ z \text{ otherwise.} \end{cases}$$

FIGURE 10.2. Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability. We have scaled it down by a factor of five for ease of comparison.

Fitting a Neural Network

 For quantitative response, typically squared-error loss is used, so we choose the minimize the RSS

$$RSS = \sum_{i=1}^{n} [y_i - f(x_i)]^2,$$

where

$$f(x_i) = \beta_0 + \sum_{k=1}^K \beta_k g(w_{k0} + \sum_{j=1}^p w_{kj} x_{ij})$$

■ Denote all parameters as θ , then we have

$$R(\theta) = \sum_{i=1}^{n} [y_i - f_{\theta}(x_i)]^2.$$

Backpropagation:

- I. Get an initial estimate θ as θ_0 , and set m=0.
- 2. Iterate until $R(\theta)$ fails to decrease:
 - I. Compute the gradient at θ^m :

$$\nabla R(\theta^m) = \frac{\partial R(\theta)}{\partial \theta}|_{\theta = \theta_m}.$$

2. Move θ a little in the opposite direction:

$$\theta^{m+1} \leftarrow \theta^m - \rho \nabla R(\theta^m).$$

• Here, ρ is the **learning rate**.

Multilayer Neural Network

Handwritten digits classification:

FIGURE 10.3. Examples of handwritten digits from the MNIST corpus. Each grayscale image has 28×28 pixels, each of which is an eight-bit number (0–255) which represents how dark that pixel is. The first 3, 5, and 8 are enlarged to show their 784 individual pixel values.

- X: 28 * 28 = 784 pixels
- Y: digits 0 9 (10 classes) -> Convert to 10 dummy variables Y_0, Y_1, \dots, Y_9

Architecture of Multilayer Neural Network

FIGURE 10.4. Neural network diagram with two hidden layers and multiple outputs, suitable for the MNIST handwritten-digit problem. The input layer has p = 784 units, the two hidden layers $K_1 = 256$ and $K_2 = 128$ units respectively, and the output layer 10 units. Along with intercepts (referred to as biases in the deep-learning community) this network has 235,146 parameters (referred to as weights).

Formulation

First Hidden Layer (for $k=1,\cdots,K_1$, here, $K_1=256$)

$$A_k^{(1)} = h_k^{(1)}(X) = g(w_{k0}^{(1)} + \sum_{j=1}^p w_{kj}^{(1)} X_j).$$

Second Hidden Layer (for $l=1,\cdots,K_2$, here, $K_2=128$)

$$A_l^{(2)} = h_l^{(2)}(X) = g(w_{l0}^{(2)} + \sum_{j=1}^{K_1} w_{lj}^{(2)} A_k^{(1)}).$$

• Output Layer (for $m = 0, 1, \dots, 9$)

$$Z_m = \beta_{m0} + \sum_{l=1}^{K_2} \beta_{ml} A_l^{(2)}.$$

Number of Parameters:

- First Hidden Layer: 256 * (784 + 1) = 200960
- Second Hidden Layer: 128 * (256 + 1) = 32896
- Final Layers: 10 * (128 + 1) = 1290
- Total Number of Parameters: 200960 + 32896 + 1290 = 235146

Activation Function and Loss Function

softmax activation function:

$$f_m(X) = Pr(Y = m|X) = \frac{e^{Z_m}}{\sum_{l=0}^9 e^{Z_l}}.$$

Loss Function: negative multinomial log-likelihood (cross-entropy)

$$-\sum_{i=1}^{n}\sum_{m=0}^{9}y_{im}\log(f_{m}(x_{i})).$$

Other Deep Learning Structures

- Convolutional Neural Networks (CNN)
 - Imaging Classification, Video Classification
 - Convolution Layers
 - Pooling Layers
- Recurrent Neural Networks (RNN)
 - Documents classification, sentiment analysis, language translation
 - Long short-term memory (LSTM) networks
 - Gated recurrent units (GRUs)
 - Bi-directional RNNs

Next Class

- Unsupervised Learning
- Principal Component Analysis