Ordinary Differential Equations(EMAT102L) (Lecture-8)

Department of Mathematics Bennett University, India

Outline of the Lecture

We will learn

- Lipschitz Condition
- Picard's Existence Theorem
- Examples

Existence and Uniqueness of Solution of IVP

Recall that an initial value problem can be described as

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

An initial value problem can have unique, infinitely many solutions or no solution.

- $\frac{dy}{dx} = \frac{2y}{x}$, y(2) = 4, (Unique Solution, $y = x^2$)
- $\frac{dy}{dx} = \frac{2y}{x}$, y(0) = 4 (No Solution)
- $\frac{dy}{dx} = \frac{2y}{x}$, y(0) = 0 (Infinitely Many Solutions)

Existence and Uniqueness of Solution of IVP(cont.)

Thus there arise two following fundamental questions.

Existence of a Solution

Under what conditions an initial value problem

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

has atleast one solution.

Uniqueness of a Solution

Under what conditions an initial value problem can have a **unique** solution.

The answer to the above questions is **Picard's Existence Theorem** and **Picard's Existence and Uniqueness Theorem**. But before discussing about these theorems, we need some definitions.

Bounded Function

Bounded Function

Let f be a real function defined on R, where R is the domain of the xy-plane. The function f is said to be bounded in R if there exists a positive real number M such that

$$|f(x,y)| \le M \ \forall \ (x,y) \in R$$

Lipschitz Continuity

Definition

Let f be defined on R, where R is the domain of the xy- plane. The function f is said to satisfy Lipschitz Condition (with respect to y) in R if there exists a constant K > 0 such that

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2|$$

for every $(x, y_1), (x, y_2) \in R$. The smallest such constant K is called the **Lipschitz constant**. We say f is Lipschitz continuous in R with respect to y.

Example

The function $f(x) = x^2$ is Lipschitz continuous in [-1, 4].

Consider

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |x_1 + x_2||x_1 - x_2|$$

$$\leq (|x_1| + |x_2|)|x_1 - x_2|$$

$$\leq 8|x_1 - x_2|$$

Here Lipschitz constant is 8.

Does Lipschitz Continuity implies Continuity?

Lipschitz Continuity \Rightarrow continuity.

But Continuity

⇒ Lipschitz continuity.

Counter Example

Consider the function $f(x, y) = \sqrt{y}$

Here f is continuous for all y. But f doesn't satisfy Lipschitz condition in any region that includes y = 0 as for $y_1 = 0$, we have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{\sqrt{y_2}}{y_2} = \frac{1}{\sqrt{y_2}}$$

which can be made as large as possible.

Sufficient condition for Lipschitz condition

Result

If $\frac{\partial f}{\partial y}$ exists and is bounded for all $(x, y) \in R$, then f satisfies Lipschitz condition w.r.t. y in R, where the Lipschitz constant is given by

$$K = \sup_{(x,y)\in R} \left| \frac{\partial f}{\partial y} \right|.$$

Lipschitz Condition

Example

Show that $f(x,y) = 1 + y^2$ satisfies Lipschitz condition in rectangle R defined by $R: |x| \le 1, |y| \le 2$.

Solution. Here we have

$$\frac{\partial f}{\partial y} = 2y$$

which is bounded in R. So, the Lipschitz constant is

$$K = \sup_{(x,y) \in R} \left| \frac{\partial f}{\partial y} \right| = \sup_{(x,y) \in R} |2y| = 4$$

Lipschitz Condition(cont.)

Note: Boundedness of $\frac{\partial f}{\partial y}$ is sufficient condition but not necessary for Lipschitz condition.

Counter Example

Consider the function $f(x, y) = x^3|y|$, where R is the rectangle defined by $|x| \le 1$, $|y| \le 2$.

f satisfies

$$|f(x, y_1) - f(x, y_2)| = |x^3|y_1| - x^3|y_2|| \le |x|^3|y_1 - y_2| \le |y_1 - y_2|$$

for all $(x, y_1), (x, y_2) \in R$.

• Therefore f satisfies Lipschitz condition (with respect to y) in R.

But the partial derivative $\frac{\partial f}{\partial v}$ does not exist in R.

Existence Theorem

Theorem

Let R be a rectangle and (x_0, y_0) be an interior point of R. Let

• f(x, y) be continuous at all points (x, y) in

$$R: |x - x_0| \le a, |y - y_0| \le b.$$

• Bounded in R, that is, $|f(x, y)| \le M$ for all $(x, y) \in R$.

Then, the initial Value Problem

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

has at least one solution y(x) defined for all x in the interval $|x - x_0| \le h$, where

$$h = \min\left(a, \frac{b}{M}\right).$$

Existence Theorem(cont.)

Rectangle R in the existence and uniqueness theorems

Existence Theorem-Example

Example

Check whether the solution of the following IVP

$$\frac{dy}{dx} = 2x^2 + 3y^2, \ y(0) = 1, \ R: |x| \le 1, |y - 1| \le 1$$

exists or not and if it exists, then find the interval.

Solution:

• Here $f(x, y) = 2x^2 + 3y^2$. Consider

$$|f(x,y)| = |2x^2 + 3y^2|$$

$$\leq 2|x|^2 + 3|y|^2$$

$$= 2.1 + 3.4 = 14$$

$$\Rightarrow M = 14.$$

Since f(x, y) is a polynomial.
 ⇒ f(x, y) is continuous. Thus both the conditions of Existence Theorem are satisfied.

Example(cont.)

• So, by Existence Theorem, the solution exists and it exists in

$$|x - x_0| \le h \Rightarrow |x - 0| \le h \Rightarrow |x| \le h$$

where

$$h = min(1, 1/14) \Rightarrow h = \frac{1}{14}$$
$$\Rightarrow |x| \le \frac{1}{14}.$$

