17. Liczby kardynalne

Ważnym przykładem zastosowań relacji równoważności jest pojęcie równoliczności klas określone w następujący sposób.

Definicja 17.1. Dla każdego $Z: \underline{\text{Univ}}, Z$ nazywamy relacją równoliczności klas: $\Leftrightarrow Z = \simeq$, gdzie

$$(17.2) \qquad \simeq := \{ A \mapsto B | A, B : \underline{\text{Class}} \land \bigvee_{f} f : A \xrightarrow[\text{on}]{1-1} B \}.$$

Definicja 17.3. Dla dowolnych $Z, Z' : \underline{\text{Univ}}, Z$ nazywamy klasą równoliczną z klasą Z' (alt. mówimy, że Z i Z' są klasami równolicznymi) : $\Leftrightarrow Z, Z'$: Class i $Z \simeq Z'$.

Z aks. C2 wnioskujemy, że

(17.4)
$$id := \{x \mapsto y | y = x\} : Map$$

Stad $\underline{D}(id) = \underline{\Pi}(id) = \underline{Univ}$.

Definicja 17.5. Dla każdego $Z: \underline{\text{Univ}}, Z$ nazywamy odwzorowaniem identycznościowym : \Leftrightarrow Z = id.

Cwiczenie 17.6. Wykazać, że dla dowolnych A, B, C: Class zachodzą własności:

- (i) id $|_A: A \xrightarrow[]{1-1} A;$
- (ii) $f: A \xrightarrow[]{\text{on}} B \Rightarrow f^{-1}: B \xrightarrow[]{\text{on}} A \text{ dla } f: \underline{\text{Map}};$ (iii) $f: A \xrightarrow[]{\text{on}} B \land g: B \xrightarrow[]{\text{on}} C \Rightarrow g \circ f: A \xrightarrow[]{\text{on}} C \text{ dla } f, g: \underline{\text{Map}};$

Uwaga 17.7. Z ćw. 17.6 oraz wzoru (17.2) wynika, że:

- (i) $A \simeq A \text{ dla } A : \text{Class};$
- (ii) $A \simeq B \Rightarrow B \simeq A \text{ dla } A, B : \text{Class};$
- (ii) $A \simeq B \wedge B \simeq C \Rightarrow A \simeq C \text{ dla } A, B, C : \text{Class.}$

Stąd na podstawie def. 16.1 widzimy, że \simeq jest relacją równoważności w klasie <u>Class</u>, czyli $(\underline{\text{Class}}, \simeq) : \text{EqRel}.$

Za pomocą struktury (Class, \simeq) definiujemy liczby kardynalne w następujący sposób.

Definicja 17.8. Dla dowolnego $z: \underline{\text{Univ}}, z$ nazywamy $liczba kardynalna: \Leftrightarrow z: \underline{\text{Card}}:=$ $\underline{\text{Class}}/(\underline{\text{Class}}, \simeq)$. //Innymi słowy liczba kardynalna reprezentuje rodzinę klas równolicznych.//

Definicja 17.9. Dla dowolnych z: <u>Univ</u> i A: <u>Class</u>, z nazywamy mocq (alt. liczebnościq) klasy $A :\Leftrightarrow z = \overline{A} := [A/(\underline{\text{Class}}, \simeq)].$

Uwaga 17.10. Korzystając z uw. 17.7 i uw. 16.10 możemy zdefiniować funkcję

$$\operatorname{card} := (\operatorname{\underline{Class}}, \simeq)_{-}\operatorname{qmap} : \operatorname{\underline{Class}} \xrightarrow{\operatorname{on}} \operatorname{\underline{Class}}/(\operatorname{\underline{Class}}, \simeq).$$

Stąd i z def. 17.9 widzimy, że dla każdej klasy A,

$$A_{-}$$
 card = card $(A) = (\underline{\text{Class}}, \simeq)_{-}$ qmap $(A) = [A/(\underline{\text{Class}}, \simeq)] = \overline{\overline{A}},$

czyli A_{-} card jest mocą (alt. liczebnością) klasy A_{-}

Definicja 17.11. Dla dowolnego $Z : \underline{\text{Univ}}, Z \text{ nazywamy}:$

- (i) zerem (alt. liczbą zero) : $\Leftrightarrow Z = 0 := \overline{\overline{\varnothing}}$;
- (ii) jedynkq (alt. liczbq jeden) : $\Leftrightarrow Z = 1 := \overline{\{\emptyset\}}$.

Ćwiczenie 17.12. Wykazać, że $0 = \{\emptyset\}$ oraz $1 = \{L | \bigvee_x L = \{x\}\}$. Ponadto wykazać, że $0 \neq 1$.

Definicja 17.13. Dla dowolnego $Z : \underline{\text{Univ}}, Z$ nazywamy:

(i) dodawaniem (alt. operacją dodawania) liczb kardynalnych :⇔

$$Z=\mathrm{cadd}:=\{x\mapsto y|\bigvee_{A,B:\underline{\mathrm{Class}}}(x=(\overline{\overline{A}},\overline{\overline{B}})\wedge A\cap B=\varnothing\wedge y=\overline{\overline{A\cup B}})\};$$

(ii) mnożeniem (alt. operacją mnożenia) liczb kardynalnych :⇔

$$Z = \operatorname{cmul} := \{ x \mapsto y | \bigvee_{A,B: \underline{\operatorname{Class}}} (x = (\overline{\overline{A}}, \overline{\overline{B}}) \land y = \overline{\overline{A \times B}}) \};$$

(iii) porządkiem (alt. relacją porządku) liczb kardynalnych :⇔

$$Z = \operatorname{cord} := \{ x \mapsto y | \bigvee_{A,B: \text{Class}} (x = \overline{\overline{A}} \land y = \overline{\overline{B}} \land A \subset B) \}.$$

Ćwiczenie 17.14. Wykazać, że cadd : $\underline{\text{Card}} \times \underline{\text{Card}} \to \underline{\text{Card}}$, cmul : $\underline{\text{Card}} \times \underline{\text{Card}} \to \underline{\text{Card}}$ oraz cord jest relacją zwrotną i przechodnią w klasie <u>Card</u> //def. 15.1 (i), (iii)//.

Definicja 17.15. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } x, y : \underline{\text{Card}}, Z \text{ nazywamy:}$

- (i) suma liczb kardynalnych x i $y : \Leftrightarrow \mathcal{Z} = (x, y)_{-}$ cadd;
- (ii) iloczynem liczb kardynalnych x i $y :\Leftrightarrow Z = (x, y)$ cmul.

W celu uproszczenia notacji przyjmujemy:

"
$$x + y$$
" := " (x, y) _cadd ", " $x \cdot y$ " := " (x, y) _cmul ", " $x \leq y$ " := " (x, y) : cord ",

"
$$x < y$$
" := " $x \le y \land x \ne y$ ", " $x \ge y$ " := " $y \le x$ " i " $x > y$ " := " $y < x$ " dla $x, y : \underline{\text{Var}}$.

Zatem wyrażenia x + y i $x \cdot y$ oznaczają odpowiednio wyniki dodawania i mnożenia liczb kardynalnych x i y. Ponadto przyjmujemy, że

- (i) mnożenie ma wyższy priorytet niż dodawanie //czyli jest wykonywane jako pierwsze//;
- (ii) oba działania mają wyższy priorytet niż symbole relacyjne, w szczególności symbole =, \leq , \geq , <, >.
- (iii) w przypadku braku nawiasów grupujących dla operacji o tym samym priorytecie decyduje kolejność od lewej do prawej strony wyrażenia.

Uwaga 17.16. Z def. 17.13 wynika, że dla dowolnych $A, B: \underline{\text{Class}}$ zachodzą własności:

- (i) $A \cap B = \varnothing \Rightarrow \overline{A} + \overline{B} = \overline{A \cup B};$ (ii) $\overline{A} \cdot \overline{B} = \overline{A \times B};$
- (iii) $A \subset B \Leftrightarrow \overline{\overline{A}} \leqslant \overline{\overline{B}}$

Twierdzenie 17.17. Dla dowolnych a, b, c: Card mają miejsce własności:

- (i) $a + 0 = a \land a \cdot 0 = 0 \land a \cdot 1 = a$;
- (ii) a + b = b + a //przemienność dodawania//;
- (iii) (a+b)+c=a+(b+c) //łączność dodawania//;
- (iv) $a \cdot b = b \cdot a$ //przemienność mnożenia//;
- (v) $(a \cdot b) \cdot c = a \cdot (b \cdot c) // laczność mnożenia//;$
- (vi) $a \cdot (b+c) = a \cdot b + a \cdot c$ //rozdzielność mnożenia względem dodawania//.

 $Dow \acute{o}d.$ Ustalmy dowolnie $a,b,c:\underline{\mathrm{Card}}.$ Wtedy mają miejsce równości $a=\overline{\overline{A}},\,b=\overline{\overline{B}}$ i $c=\overline{\overline{C}}$ dla pewnych $A, B, C : \underline{Class}$.

Ad (i). Ponieważ $A \cap \emptyset = \emptyset$, więc na mocy uwagi 17.16(i),

Z uwagi 17.16(ii) dostajemy

$$a\cdot 0 = \overline{\overline{A}}\cdot \overline{\overline{\varnothing}} = \overline{\overline{A\times\varnothing}} = \overline{\overline{\varnothing}} = 0 \quad \text{oraz} \quad a\cdot 1 = \overline{\overline{A}}\cdot \overline{\overline{\{\varnothing\}}} = \overline{\overline{A\times\{\varnothing\}}} = \overline{\overline{A}} = a,$$

gdyż $f:=\{x\mapsto y|x:A\land y=(x,\varnothing)\}:A\xrightarrow[]{1-1}A\times\{\varnothing\}$ //czyli $A\times\{\varnothing\}\simeq A$ //. To dowodzi własności (i).

Ad (ii). Przyjmując $A':=A\times\{0\}$ i $B':=B\times\{1\}$ stwierdzamy na mocy ćw. 17.12 $/\!/0\neq 1/\!/$, że $A'\cap B'=\varnothing$. Ponadto $A'\simeq A$ i $B'\simeq B$, gdyż $f_0:=\{x\mapsto y|x:A\wedge y=(x,0)\}:A\xrightarrow{1-1} A'$ and $f_1:=\{x\mapsto y|x:B\wedge y=(x,1)\}:B\xrightarrow{1-1} B'$. Stąd $a=\overline{\overline{A'}}$ i $b=\overline{\overline{B'}}$, i korzystając z uwagi 17.16 (i) mamy

$$a+b=\overline{\overline{A'}}+\overline{\overline{B'}}=\overline{\overline{A'}\cup \overline{B'}}=\overline{\overline{B'}\cup \overline{A'}}=\overline{\overline{B'}}+\overline{\overline{A'}}=b+a,$$

co dowodzi własności (ii).

Ad (iii). Przyjmując $A'':=A'\times\{0\},\ B'':=B'\times\{0\}$ i $C'':=C\times\{1\}$ stwierdzamy na mocy ćw. 17.12 $\#0\neq1\%$, że

$$A'' \cap B'' = A'' \cap C'' = B'' \cap C'' = \emptyset.$$

Ponadto, $A'' \simeq A'$, $B'' \simeq B'$ and $C'' \simeq C$ //por. dowód wł. (ii)//. Korzystając z uwagi 17.16 (i) dostajemy

$$(a+b)+c=\left(\overline{\overline{A''}}+\overline{\overline{B''}}\right)+\overline{\overline{C''}}=\overline{\overline{A''}\cup B''}+\overline{\overline{C''}}=\overline{\left(\overline{A''}\cup B''\right)\cup C''}=\overline{\overline{A''}\cup \left(B''\cup C''\right)}$$
$$=\overline{\overline{A''}}+\overline{\overline{B''}\cup C''}=\overline{\overline{A''}}+(\overline{\overline{B''}}+\overline{\overline{C''}})=a+(b+c),$$

co dowodzi własności (iii).

Ad (iv). Ponieważ $\left\{x\mapsto y \mid \bigvee_{u:A}\bigvee_{v:B}(x=(u,v)\land y=(v,u))\right\}: A\times B\xrightarrow[\text{on}]{1-1}B\times A$, więc $A\times B\simeq B\times A$. Stąd i z uwagi. 17.16 (ii) dostajemy

$$a \cdot b = \overline{\overline{A}} \cdot \overline{\overline{B}} = \overline{\overline{A \times B}} = \overline{\overline{B} \times \overline{A}} = \overline{\overline{B}} \cdot \overline{\overline{A}} = b \cdot a$$

co dowodzi wł. (iv).

Ad (v). Ponieważ,

$$\left\{x\mapsto y\,\Big|\,\bigvee_{u:A}\bigvee_{v:B}\bigvee_{w:C}(x=((u,v),w)\wedge y=(u,(v,w)))\right\}:(A\times B)\times C\xrightarrow[\text{on}]{1-1}A\times (B\times C),$$

więc $(A \times B) \times C \simeq A \times (B \times C)$. Stąd na mocy uwagi 17.16 (ii),

$$(a \cdot b) \cdot c = (\overline{A} \cdot \overline{B}) \cdot \overline{C} = \overline{A \times B} \cdot \overline{C} = \overline{(A \times B) \times C} = \overline{A} \times (B \times C) = \overline{A} \cdot \overline{B} \times \overline{C} = \overline{A} \cdot (\overline{B} \cdot \overline{C}) = a \cdot (b \cdot c),$$
 co dowodzi wł. (v).

Ad (vi). Ponieważ $b = \overline{\overline{B''}}, c = \overline{\overline{C''}}$ i $B'' \cap C'' = \emptyset$, więc na mocy uwagi 17.16 (i), (ii) dostajemy

$$a\cdot (b+c) = \overline{\overline{A}}\cdot (\overline{\overline{B''}} + \overline{\overline{C''}}) = \overline{\overline{A}}\cdot \overline{\overline{B''}\cup C''} = \overline{\overline{A}\times (B''\cup C'')} = \overline{(\overline{A}\times B'')\cup (\overline{A}\times C'')}$$
$$= \overline{\overline{A}\times B''} + \overline{\overline{A}\times C''} = \overline{\overline{A}}\cdot \overline{\overline{B''}} + \overline{\overline{A}}\cdot \overline{\overline{C''}} = a\cdot b + a\cdot c,$$

co dowodzi wł. (vi), i tym samym kończy dowód twierdzenia.

Ćwiczenie 17.18. Wykazać, że dla dowolnych $A,B:\underline{\text{Class}}$ następujące warunki są parami równoważne:

- (i) $\overline{\overline{A}} \leqslant \overline{\overline{B}}$;
- (ii) istnieje $f: A \xrightarrow{1-1} B$;
- (iii) istnieje $g : B \xrightarrow{\text{on}} A;$
- (iv) $\overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{C}}$ dla pewnego C: Class.

Ćwiczenie 17.19. Wykazać, że dla dowolnych $a,b:\underline{\mathrm{Card}}$ zachodzą równoważności:

- (i) $a + 1 = b + 1 \Leftrightarrow a = b$;
- (ii) $a+1 \leq b+1 \Leftrightarrow a \leq b$;
- (iii) $a+1 < b+1 \Leftrightarrow a < b$.

Ćwiczenie 17.20. Wykazać, że dla dowolnego $a : \underline{\text{Card}} \setminus \{0\}$ istnieje $b : \underline{\text{Card}}$ taki, że a = b + 1.

Ćwiczenie 17.21. Wykazać, że dla każdego a: Card, a = 0 lub $a \ge 1$.

Ćwiczenie 17.22. Wykazać, że dla dowolnych a, b, c, d: Card zachodzą implikacje:

- (i) $a \le b \Rightarrow a + c \le b + c$;
- (ii) $a \le b \Rightarrow a \cdot c \le b \cdot c$;
- (iii) $a \le b \land c \le d \Rightarrow a + c \le b + d$;
- (iv) $a \le b \land c \le d \Rightarrow a \cdot c \le b \cdot d$.

Definicja 17.23. Dla każdego \mathcal{Z} : Univ, \mathcal{Z} nazywamy:

- (i) $liczba\ dwa :\Leftrightarrow Z = 2 := 1 + 1;$
- (ii) $liczba\ trzy :\Leftrightarrow Z = 3 := 2 + 1;$
- (iii) $liczba\ cztery :\Leftrightarrow Z = 4 := 3 + 1;$
- (iv) $liczba\ pięć :\Leftrightarrow Z = 5 := 4 + 1;$
- (v) liczba $sześć :\Leftrightarrow Z = 6 := 5 + 1;$
- (vi) $liczba\ siedem :\Leftrightarrow \mathbb{Z} = 7 := 6 + 1$;
- (vii) liczba osiem : $\Leftrightarrow Z = 8 := 7 + 1$;
- (viii) $liczba\ dziewięć :\Leftrightarrow Z = 9 := 8 + 1;$

Ćwiczenie 17.24. Wykazać, że 0 < 1, 1 < 2, 2 < 3, 3 < 4, 4 < 5, 5 < 6, 6 < 7, 7 < 8 i 8 < 9.

Korzystając z relacji \simeq możemy dokonać podziału wszystkich klas na klasy nieskończone i klasy skończone.

Definicja 17.25. Dla dowolnego $Z : \underline{\text{Univ}}, Z \text{ nazywamy}:$

- (i) klasą nieskończoną : $\Leftrightarrow Z$: Class i $Z \simeq A$ dla pewnego A : Class o tej własności, że $A \subset Z \neq A;$
- (ii) $klasq\ skończonq:\Leftrightarrow Z:\underline{Class}\ i\ Z$ nie jest klasą nieskończoną.

Uwaga 17.26. Symbole liczb kardynalnych określone w def. 17.11 i def. 17.23 wystarczą do zakodowania //zapisu// wszystkich liczb kardynalnych reprezentujących moce klas skończonych. W tym celu korzystamy z powszechnie stosowanego pozycyjnego systemu kodowania liczb o podstawie p := 9+1. Dlatego nie ma potrzeby wprowadzania specjalnych dodatkowych symboli do kodowania takich liczb kardynalnych.