Lecture 4: The Entropy Methods

Tianpei Xie

Jan. 19th., 2023

Contents

1	Log	garithmic Sobolev Inequality	2
	1.1	Bernoulli Logarithmic Sobolev Inequality	2
	1.2	Gaussian Logarithmic Sobolev Inequality	4
	1.3	Information Theory Interpretation	6
	1.4	Logarithmic Sobolev Inequality for General Probability Measures	7
2	The	e Entropy Methods	8
	2.1	Herbst's Argument	8
	2.2	Bounded Difference Inequality via Entropy Methods	11
	2.3	Modified Logarithmic Sobolev Inequalities	11
	2.4	Poisson Logarithmic Sobolev Inequality	12
3	Applications		13
	3.1	Lipschitz Functions of Gaussian Variables	13
	3.2	Suprema of Gaussian Process	
	3.3	Concentration of Convex Lipschitz Functions	15
	3.4	Concentration on the Hypercube	15
	3.5	Gaussian Hypercontractivity	15
	3.6	Hypercontractivity for Boolean Polynomials	15
	3.7	The Johnson-Lindenstrauss Lemma	
	3.8	Exponential Tail Bounds for Self-Bounding Functions	

1 Logarithmic Sobolev Inequality

1.1 Bernoulli Logarithmic Sobolev Inequality

• Remark (Setting)

Consider a *uniformly distributed binary vector* $Z = (Z_1, ..., Z_n)$ on the hypercube $\{-1, +1\}^n$. In other words, the components of X are *independent*, *identically distributed* random sign (Rademacher) variables with $\mathbb{P}\{Z_i = -1\} = \mathbb{P}\{Z_i = +1\} = 1/2$ (i.e. symmetric Bernoulli random variables).

Let $f: \{-1, +1\}^n \to \mathbb{R}$ be a real-valued function on **binary hypercube**. X := f(Z) is an induced real-valued random variable. Define $\widetilde{Z}^{(i)} = (Z_1, \dots, Z_{i-1}, Z'_i, Z_{i+1}, \dots, Z_n)$ be the sample Z with i-th component replaced by an independent $copy Z'_i$. Since $Z, \widetilde{Z}^{(i)} \in \{-1, +1\}^n$, $\widetilde{Z}^{(i)} = (Z_1, \dots, Z_{i-1}, -Z_i, Z_{i+1}, \dots, Z_n)$, i.e. the i-th sign is **flipped**. Also denote the i-th Jackknife sample as $Z_{(i)} = (Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n)$ by leaving out the i-th component. $\mathbb{E}_{(-i)}[X] := \mathbb{E}[X|Z_{(i)}]$.

Denote the *i*-th component of **discrete gradient** of f as

$$\nabla_i f(z) := \frac{1}{2} \left(f(z) - f(\widetilde{z}^{(i)}) \right)$$

and
$$\nabla f(z) = (\nabla_1 f(z), \dots, \nabla_n f(z))$$

• Remark (Jackknife Estimate of Variance)
Recall that the Jackknife estimate of variance

$$\mathcal{E}(f) := \mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - \mathbb{E}_{(-i)}\left[f(\widetilde{Z}^{(i)})\right]\right)^{2}\right]$$
$$= \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - f(\widetilde{Z}^{(i)})\right)^{2}\right].$$

Using the notation of discrete gradient of f, we see that

$$\mathcal{E}(f) := 2\mathbb{E}\left[\left\|\nabla f(Z)\right\|_{2}^{2}\right]$$

ullet Remark ($Entropy\ Functional$)

Recall that the entropy functional for f is defined as

$$H_{\Phi}(f(Z)) = \operatorname{Ent}(f) := \mathbb{E}\left[f(Z)\log f(Z)\right] - \mathbb{E}\left[f(Z)\right]\log \left(\mathbb{E}\left[f(Z)\right]\right).$$

• Proposition 1.1 (Logarithmic Sobolev Inequality for Rademacher Random Variables). [Boucheron et al., 2013]

If $f: \{-1,+1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the n-dimensional binary hypercube and assume that Z is uniformly distributed over $\{-1,+1\}^n$. Then

$$Ent(f^2) \le \mathcal{E}(f)$$
 (1)

$$\Leftrightarrow \operatorname{Ent}(f^2(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right] \tag{2}$$

Proof: The key is to apply the tensorization property of Φ -entropy. Let X = f(Z). By tensorization property,

$$\operatorname{Ent}(X^2) \le \sum_{i=1}^n \mathbb{E}\left[\operatorname{Ent}_{(-i)}(X^2)\right]$$

where $\text{Ent}_{(-i)}(X^2) := \mathbb{E}_{(-i)} [X^2 \log X^2] - \mathbb{E}_{(-i)} [X^2] \log (\mathbb{E}_{(-i)} [X^2]).$

It thus suffice to show that for all i = 1, ..., n,

$$\operatorname{Ent}_{(-i)}(X^2) \le \frac{1}{2} \mathbb{E}_{(-i)} \left[\left(f(Z) - f(\widetilde{Z}^{(i)}) \right)^2 \right].$$

Given any fixed realization of $Z_{(-i)}$, $X = f(Z) = \widetilde{f}(Z_i)$ can only takes two different values with equal probability. Call these two values a and b. See that

$$\operatorname{Ent}_{(-i)}(X^2) = \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right)$$
$$\frac{1}{2}\mathbb{E}_{(-i)}\left[\left(f(Z) - f(\widetilde{Z}^{(i)})\right)^2\right] = \frac{1}{2}\left(a - b\right)^2.$$

Thus we need to show

$$\frac{1}{2}a^2\log a^2 + \frac{1}{2}b^2\log b^2 - \frac{1}{2}(a^2 + b^2)\log\left(\frac{a^2 + b^2}{2}\right) \le \frac{1}{2}(a - b)^2.$$

By symmetry, we may assume that $a \ge b$. Since $(|a| - |b|)^2 \le (a - b)^2$, without loss of generality, we may further assume that $a, b \ge 0$.

Define

$$h(a) := \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right) - \frac{1}{2}(a - b)^2$$

for $a \in [b, \infty)$. h(b) = 0. It suffice to check that h'(b) = 0 and that h is concave on $[b, \infty)$. Note that

$$h'(a) = a \log a^2 + 1 - a \log \left(\frac{a^2 + b^2}{2}\right) - 1 - (a - b)$$
$$= a \log \frac{2a^2}{(a^2 + b^2)} - (a - b).$$

So h'(b) = 0. Moreover,

$$h''(a) = \log \frac{2a^2}{(a^2 + b^2)} + 1 - \frac{2a^2}{(a^2 + b^2)} \le 0$$

due to inequality $\log(x) + 1 \le x$.

• Remark (*Logarithmic Sobolev Inequality* \Rightarrow *Efron-Stein Inequality*). [Boucheron et al., 2013]

Note that for f non-negative,

$$Var(f(Z)) \le Ent(f^2(Z)).$$

Thus logarithmic Sobolev inequality (1) implies

$$Var(f(Z)) \le \mathcal{E}(f)$$

which is the Efron-Stein inequality.

• Corollary 1.2 (Logarithmic Sobolev Inequality for Asymmetric Bernoulli Random Variables). [Boucheron et al., 2013]

If $f: \{-1, +1\}^n \to \mathbb{R}$ be an arbitrary real-valued function and $Z = (Z_1, \dots, Z_n) \in \{-1, +1\}^n$ with $p = \mathbb{P}\{Z_i = +1\}$. Then

$$Ent(f^2) \le c(p) \mathbb{E}\left[\|\nabla f(Z)\|_2^2 \right] \tag{3}$$

where

$$c(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

Note that $\lim_{p\to 1/2} c(p) = 2$.

1.2 Gaussian Logarithmic Sobolev Inequality

• Proposition 1.3 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \le 2\mathbb{E}\left[\left\|\nabla f(Z)\right\|_{2}^{2}\right]. \tag{4}$$

Proof: We first prove for n=1, where $f: \mathbb{R} \to \mathbb{R}$ is continuous differentiable and Z is standard Gaussian distribution. Without loss of generality, assume that $\mathbb{E}\left[f'(Z)\right] < \infty$ since it is trivial when $\mathbb{E}\left[f'(Z)\right] = \infty$. By density argument, it suffice to prove the proposition when f is twice differentiable with bounded support.

Now let $\epsilon_1, \ldots, \epsilon_n$ be independent Rademacher random variables and introduce

$$S_n := \frac{1}{\sqrt{n}} \sum_{j=1}^n \epsilon_j.$$

Note that $\epsilon_i \in \{-1, +1\}$ with equal probability, thus

$$\mathbb{E}_{(-i)}[S_n] = \frac{1}{2} \left[\left(\frac{1}{\sqrt{n}} \sum_{j \neq i} \epsilon_j + \frac{1}{\sqrt{n}} \right) + \left(\frac{1}{\sqrt{n}} \sum_{j \neq i} \epsilon_j - \frac{1}{\sqrt{n}} \right) \right]$$
$$= \frac{1}{2} \left[\left(S_n + \frac{1 - \epsilon_i}{\sqrt{n}} \right) + \left(S_n - \frac{1 + \epsilon_i}{\sqrt{n}} \right) \right].$$

In the proof of Gaussian Poincaré inequality, we show that by central limit theorem,

$$\limsup_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^{n} \left| f(S_n) - f\left(S_n - \frac{2\epsilon_i}{\sqrt{n}}\right) \right|^2\right] = 4\mathbb{E}\left[(f'(Z))^2 \right].$$

On the other hands, for any continuous uniformly bounded function f, by central limit theorem,

$$\lim_{n \to \infty} \operatorname{Ent}\left(f^2(S_n)\right) = \operatorname{Ent}(f^2(Z))$$

The proof is then completed by invoking the logarithmic Sobolev inequality for Rademacher random variables

$$\operatorname{Ent}\left(f^{2}(S_{n})\right) \leq \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n} \left| f\left(S_{n}\right) - f\left(S_{n} - \frac{2\epsilon_{i}}{\sqrt{n}}\right) \right|^{2}\right]$$

$$\Rightarrow \lim_{n \to \infty} \operatorname{Ent}\left(f^{2}(S_{n})\right) \leq \frac{1}{2} \lim_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^{n} \left| f\left(S_{n}\right) - f\left(S_{n} - \frac{2\epsilon_{i}}{\sqrt{n}}\right) \right|^{2}\right]$$

$$\Rightarrow \operatorname{Ent}(f^{2}(Z)) \leq 2\mathbb{E}\left[\left(f'(Z)\right)^{2}\right].$$

The extension of the result to dimension $n \geq 1$ follows easily from the sub-additivity of entropy which states that

$$\operatorname{Ent}(f^2) \le \sum_{i=1}^n \mathbb{E}\left[\mathbb{E}_{(-i)}\left[f^2(Z)\log f^2(Z)\right] - \mathbb{E}_{(-i)}\left[f^2(Z)\right]\log \mathbb{E}_{(-i)}\left[f^2(Z)\right]\right]$$

where $\mathbb{E}_{(-i)}[\cdot]$ denotes the integration with respect to *i*-th variable Z_i only. Thus by induction, for all *i*

$$\mathbb{E}_{(-i)}\left[f^2(Z)\log f^2(Z)\right] - \mathbb{E}_{(-i)}\left[f^2(Z)\right]\log \mathbb{E}_{(-i)}\left[f^2(Z)\right] \leq 2\mathbb{E}_{(-i)}\left[(\partial_i f(Z))^2\right].$$

Thus

$$\operatorname{Ent}(f^2) \le 2\mathbb{E}\left[\mathbb{E}_{(-i)}\left[\sum_{i=1}^n (\partial_i f(Z))^2\right]\right] = 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right].$$

• Remark (Dimension Free Property).

The Gaussian logarithmic Sobolev inequality has a constant C=2 that is **independent of** dimension n:

$$\mathbb{E}_{\mu}\left[f^{2}\right] \leq 2\mathbb{E}_{\mu}\left[\left\|\nabla f\right\|_{2}^{2}\right].$$

This dimension-free property is related to the concentration of Gaussian measure μ . As a consequence, this inequality can be extended to functions of Gaussian measure on infinite dimensional space, such as Gibbs measure, Gaussian process etc.

• Remark (Equivalent Form of Gaussian Logarithmic Sobolev Inequality) Assume $f: \mathbb{R}^n \to (0, \infty)$ and $\int_{\mathbb{R}^n} f d\mu = 1$ under Gaussian measure μ . Substituting $f \to \sqrt{f}$, the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) = \int f \log f d\mu \le \frac{1}{2} \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{5}$$

• Remark (Gaussian Logarithmic Sobolev Inequality \Rightarrow Gaussian Poincaré Inequality). [Boucheron et al., 2013]

Recall that the Gaussian Poincaré inequality

$$\operatorname{Var}(f(Z)) \le \mathbb{E}\left[\|\nabla f(Z)\|_2^2\right]$$

Since

$$(1+t)\log(1+t) = t + \frac{t^2}{2} + o(t^2)$$

as $t \to 0$, we can get for Gaussian measures,

$$\operatorname{Ent}_{\mu}(1+\epsilon h) = \frac{\epsilon^2}{2} \operatorname{Var}_{\mu}(h) + o(\epsilon^2).$$

Similarly,

$$\int \frac{\|\nabla(1+\epsilon h)\|_{2}^{2}}{1+\epsilon h} d\mu = \epsilon^{2} \int \|\nabla h\|_{2}^{2} d\mu + o(\epsilon^{2}).$$

Thus from the Gaussian logarithmic Sobolev inequality,

$$\operatorname{Ent}_{\mu}(1+\epsilon h) \leq \frac{1}{2} \int \frac{\|\nabla(1+\epsilon h)\|_{2}^{2}}{1+\epsilon h} d\mu$$

$$\Leftrightarrow \frac{\epsilon^{2}}{2} \operatorname{Var}_{\mu}(h) + o(\epsilon^{2}) \leq \frac{\epsilon^{2}}{2} \int \|\nabla h\|_{2}^{2} d\mu + o(\epsilon^{2})$$

$$\Leftrightarrow \operatorname{Var}(f(Z)) \leq \mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right] \quad \text{as } \epsilon \to 0.$$

Thus the Gaussian logarithmic Sobolev inequality implies the Gaussian Poincaré inequality.

1.3 Information Theory Interpretation

• Remark (Information Interpretation of Gaussian Logarithmic Sobolev Inequality)

Let ν, μ be two probability measures on $(\mathcal{X}^n, \mathscr{F})$, $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ and $\nu \ll \mu$. Define $f := \frac{d\nu}{d\mu}$ be the Radon-Nikodym derivative of ν with respect to μ (i.e f is the probability density function of ν with respect to μ). Then the entropy becomes **the relative entropy**

$$\operatorname{Ent}_{\mu}(f) := \mathbb{E}_{\mu} [f \log f] = \mathbb{KL} (\nu \parallel \mu)$$

since $\mathbb{E}_{\mu}[f] = \int_{\mathcal{X}^n} f d\mu = 1$.

On the other hand, the (relative) Fisher information is defined as

$$I(\nu \parallel \mu) := \mathbb{E}_{\nu} \left[\|\nabla \log f\|_{2}^{2} \right]$$

$$= \int \left\| \frac{\nabla f}{f} \right\|_{2}^{2} d\nu = \int \frac{\|\nabla f\|_{2}^{2}}{f^{2}} d\nu$$

$$= \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu$$

Thus the information interpretation of the Gaussian logarithmic Sobolev inequality is

$$\mathbb{KL}(\nu \parallel \mu) \le \frac{1}{2} I(\nu \parallel \mu) \tag{6}$$

where μ is a Gaussian measure and $\nu \ll \mu$ with density function f. Note that the Fisher information metric is the Riemannian metric induced by the relative entropy.

1.4 Logarithmic Sobolev Inequality for General Probability Measures

• From functional analysis, we have the Sobolev inequality,

Remark (The Sobolev Inequality) [Evans, 2010] The Sobolev inequality states for smooth function $f: \mathbb{R}^n \to \mathbb{R}$ in Sobolev space where $n \geq 3$ and $p = \frac{2n}{n-2} > 2$

$$||f||_p^2 \le C_n \int_{\mathbb{D}^n} |\nabla f|^2 \, dx.$$

The inequality is sharp when the constant

$$C_n := \frac{1}{\pi n(n-2)} \left(\frac{\Gamma(n)}{\Gamma(n/2)}\right)^{2/n}$$

• Proposition 1.4 (Euclidean Logarithmic Sobolev Inequality). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function and m be Lebesgue measure on \mathbb{R}^n , then

$$Ent_{m}(f^{2}) \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \mathbb{E}_{m} \left[\|\nabla f\|_{2}^{2} \right] \right)$$

$$\Leftrightarrow \int f^{2} \log \left(\frac{f^{2}}{\int f^{2} dx} \right) dx \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \int |\nabla f|^{2} dx \right)$$

$$(7)$$

• Definition (Logarithmic Sobolev Inequality for General Probability Measure). A probability measure μ on \mathbb{R}^n is said to satisfy the <u>logarithmic Sobolev inequality</u> for some constant C > 0 if for any smooth function f

$$\operatorname{Ent}_{\mu}(f^{2}) \leq C \operatorname{\mathbb{E}}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] \tag{8}$$

holds for any *continuous differentiable* function $f : \mathbb{R}^n \to \mathbb{R}$. The left-hand side is called *the entropy functional*, which is defined as

$$\operatorname{Ent}(f^2) := \mathbb{E}_{\mu} \left[f^2 \log f^2 \right] - \mathbb{E}_{\mu} \left[f^2 \right] \log \mathbb{E}_{\mu} \left[f^2 \right]$$
$$= \int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu.$$

The right-hand side is defined as

$$\mathbb{E}_{\mu} \left[\|\nabla f\|_2^2 \right] = \int \|\nabla f\|_2^2 d\mu.$$

Thus we can rewrite the logarithmic Sobolev inequality in functional form

$$\int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu \le C \int \|\nabla f\|_2^2 d\mu \tag{9}$$

• Remark (Logarithmic Sobolev Inequality)
For non-negative function f, we can replace $f \to \sqrt{f}$, so that the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) \le C \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{10}$$

• Remark (Modified Logarithmic Sobolev Inequality via Convex Cost and Duality) For some convex non-negative cost $c: \mathbb{R}^n \to \mathbb{R}_+$, the convex conjugate of c (Legendre transform of c) is defined as

$$c^*(x) := \sup_{y} \left\{ \langle x, y \rangle - c(y) \right\}$$

Then we can obtain the modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\mu}(f) \le \int f^2 \, c^* \left(\frac{\nabla f}{f}\right) d\mu \tag{11}$$

2 The Entropy Methods

2.1 Herbst's Argument

• Remark Recall that the Φ -entropy for $\Phi(x) = x \log(x)$ as

$$H_{\Phi}(X) = \operatorname{Ent}(X) := \mathbb{E}[X \log X] - \mathbb{E}[X] \log(\mathbb{E}[X]).$$

The variational formulation of $H_{\Phi}(X)$ is

$$\operatorname{Ent}(X) = \sup_{T} \left\{ X \left(\log(T) - \log(\mathbb{E}[T]) \right) \right\}$$

• Remark (Tensorization Property of Entropy Functional) Let $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ be the probability distribution for $Z = (Z_1, \ldots, Z_n)$ on $(\mathcal{X}^n, \mathscr{F})$. For any measurable function $f : \mathcal{X}^n \to \mathbb{R}$, let $X = f(Z_1, \ldots, Z_n)$ so that $\mathbb{E}[X \log X] < \infty$. The sub-additivity of entropy function (i.e. the tensorization property) states that

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(f) \leq \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{Ent}_{\mu_i}(f) \right]$$

where the subscript μ_i indicates that the integration concerns the *i*-th variable only.

• Remark (Entropy Functional for Moment Generating Function) Let $X = e^{\lambda Z}$ where Z is a random variable. The entropy function of X becomes

$$\operatorname{Ent}(e^{\lambda Z}) = \mathbb{E}\left[\lambda Z e^{\lambda Z}\right] - \mathbb{E}\left[e^{\lambda Z}\right] \log\left(\mathbb{E}\left[e^{\lambda Z}\right]\right)$$

Denote $\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right]$. Then

$$\begin{split} \psi'_{Z-\mathbb{E}[Z]}(\lambda) &= \frac{d}{d\lambda} \log \mathbb{E} \left[e^{\lambda(Z-\mathbb{E}[Z])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda(Z-\mathbb{E}[Z])} \right]} \mathbb{E} \left[(Z - \mathbb{E}\left[Z \right]) \, e^{\lambda(Z-\mathbb{E}[Z])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} e^{\lambda \mathbb{E}[Z]} \mathbb{E} \left[(Z - \mathbb{E}\left[Z \right]) \, e^{\lambda(Z-\mathbb{E}[Z])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \mathbb{E} \left[(Z - \mathbb{E}\left[Z \right]) \, e^{\lambda Z} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \mathbb{E} \left[Z e^{\lambda Z} \right] - \mathbb{E}\left[Z \right] \\ &\Rightarrow \lambda \, \psi'_{Z-\mathbb{E}[Z]}(\lambda) = \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[\lambda Z \right] \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[\lambda Z \right] \mathbb{E} \left[e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{\mathbb{E} \mathrm{nt}(e^{\lambda Z})}{\mathbb{E} \left[e^{\lambda Z} \right]} \end{split}$$

Thus we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} = \lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda). \tag{12}$$

Our strategy is based on using (12) the sub-additivity of entropy and then univariate calculus to derive upper bounds for the derivative of $\psi(\lambda)$. By solving the obtained differential inequality, we obtain tail bounds via Chernoff's bounding.

• Proposition 2.1 (Herbst's Argument) [Boucheron et al., 2013, Wainwright, 2019] Let Z be an integrable random variable such that for some $\nu > 0$, we have, for every $\lambda > 0$,

$$\frac{Ent(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} \le \frac{\nu\lambda^2}{2} \tag{13}$$

Then, for every $\lambda > 0$, the logarithmic moment generating function of centered random variable $(Z - \mathbb{E}[Z])$ satisfies

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \le \frac{\nu\lambda^2}{2}.$$

Proof: The condition of the proposition means, via (12), that

$$\lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu \lambda^2}{2},$$

or equivalently,

$$\frac{1}{\lambda}\psi'_{Z-\mathbb{E}[Z]}(\lambda) - \frac{1}{\lambda^2}\psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu}{2}.$$

Setting $G(\lambda) = \lambda^{-1} \psi_{Z-\mathbb{E}[Z]}(\lambda)$, we see that the differential inequality becomes

$$G'(\lambda) \le \frac{\nu}{2}.$$

Since $G(\lambda) \to 0$ as $\lambda \to 0$, which implies that

$$G(\lambda) \le \frac{\nu\lambda}{2},$$

and the result follows.

• Remark (*Entropy Methods*)

The **key** strategy of **entropy** methods to prove the concentration of function f(Z) of independent variables Z is as follows

1. Apply the tensorization of property of the entropy functional on f(Z)

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(f) \leq \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{Ent}_{\mu_i}(f) \right]$$

where $\mu := \mu_1 \otimes \ldots \otimes \mu_n$ is the distribution of Z and the subscript μ_i indicates that the integration concerns the *i*-th variable only.

2. Then we **bound the entropy** for each individual variables Z_i conditioning on the rest of them, i.e. $Z_{(-i)} := (Z_1, \ldots, Z_{i-1}, Z_i, \ldots, Z_n)$. Typically, we use **the Herbst's argument**, when $f(Z) = e^{\lambda Z}$

$$\operatorname{Ent}_{\mu_i}(e^{\lambda Z}) \le \phi(\lambda) \operatorname{\mathbb{E}}_{\mu_i} \left[e^{\lambda Z} \right].$$

Or, we can use the logarithmic Sobolev inequality if Z is Gaussian or Bernoulli distribution,

$$\operatorname{Ent}_{\mu_i}(e^{\lambda Z}) \le 2\mathbb{E}_{\mu_i} \left[\left\| \nabla e^{\lambda Z/2} \right\|_2^2 \right] = \frac{\lambda^2}{2} \mathbb{E}_{\mu_i} \left[e^{\lambda Z} \left\| \nabla Z \right\|_2^2 \right].$$

3. Then we **bound** the entire entropy

$$\operatorname{Ent}_{\mu_1 \otimes \ldots \otimes \mu_n}(e^{\lambda Z}) \leq \phi(\lambda) \operatorname{\mathbb{E}}_{\mu_1 \otimes \ldots \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{\mathbb{E}}_{\mu_i} \left[e^{\lambda Z} \right] \right] = n \phi(\lambda) \operatorname{\mathbb{E}}_{\mu_1 \otimes \ldots \otimes \mu_n} \left[e^{\lambda Z} \right]$$

or

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(f) \leq \frac{\lambda^2}{2} \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \mathbb{E}_{\mu_i} \left[e^{\lambda Z} \|\nabla Z\|_2^2 \right] \right].$$

- 4. Apply the Herbst's argument to obtain differential inequality for the logarithmic moment generating function $\psi_{f(Z)}$
- 5. Obtain concentration results based on *Chernoff's inequality*.

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] > t\right\} \leq \inf_{\lambda > 0} \exp\left(\psi_{f(Z)}(\lambda) - \lambda t\right) \leq \inf_{\lambda > 0} \exp\left(\phi(\lambda) - \lambda t\right)$$

2.2 Bounded Difference Inequality via Entropy Methods

2.3 Modified Logarithmic Sobolev Inequalities

• Proposition 2.2 (A Modified Logarithmic Sobolev Inequalities for Moment Generating Function) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $Z_{(-i)} = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ and $X_{(-i)} = f_i(Z_{(-i)})$ where $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ is an arbitrary function. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-X_{(-i)}))\right]$$
(14)

Proof: Recall the tensorization of entropy

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(Y) \leq \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{Ent}_{\mu_i}(Y) \right].$$

We bound each term on the right-hand side by the variational formulation of entropy

$$\operatorname{Ent}_{\mu_i}(Y) \le \mathbb{E}_{\mu_i} \left[Y(\log Y - \log u) - (Y - u) \right]$$

for any u > 0. Let $u = Y_{(-i)} = g_i(Z_{(-i)})$. We have

$$\operatorname{Ent}_{\mu_i}(Y) \le \mathbb{E}_{\mu_i} \left[Y(\log Y - \log Y_{(-i)}) - (Y - Y_{(-i)}) \right].$$

Applying above inequality to the variable $Y = e^{\lambda X}$ and $Y_{(-i)} = e^{\lambda X_{(-i)}}$, one obtain

$$\operatorname{Ent}_{\mu_{i}}(e^{\lambda X}) \leq \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\log e^{\lambda X} - \log e^{\lambda X_{(-i)}}) - (e^{\lambda X} - e^{\lambda X_{(-i)}}) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\lambda (X - X_{(-i)}) - (e^{\lambda X} - e^{\lambda X_{(-i)}})) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \left(\lambda (X - X_{(-i)}) - e^{-\lambda X} (e^{\lambda X} - e^{\lambda X_{(-i)}}) \right) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \left(\lambda (X - X_{(-i)}) + e^{-\lambda (X - X_{(-i)})} - 1 \right) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \phi \left(-\lambda (X - X_{(-i)}) \right) \right]$$

where $\phi(x) = e^x - x - 1$. Thus the proof is completed.

• Proposition 2.3 (Symmetrized Modified Logarithmic Sobolev Inequalities) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $\widetilde{X}^{(i)} = f(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-\widetilde{X}^{(i)}))\right]$$
(15)

Moreover, denoting $\tau(x) = x(e^x - 1)$, for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(-\lambda(X-\widetilde{X}^{(i)})_{+})\right],$$
$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(\lambda(\widetilde{X}^{(i)}-X)_{-})\right].$$

Proof: Note that $X_{(-i)}$ and $\widetilde{X}^{(i)}$ are both independent from Z_i . The first inequality is the same as the proposition above. For the second inequality, use the fact that

$$\mathbb{E}_{\mu_i} \left[e^{\lambda X} \phi \left(\lambda (\widetilde{X}^{(i)} - X)_+ \right) \right] = \mathbb{E}_{\mu_i} \left[e^{\lambda \widetilde{X}^{(i)}} \phi \left(\lambda (X - \widetilde{X}^{(i)})_+ \right) \right]$$
$$= \mathbb{E}_{\mu_i} \left[e^{\lambda X} e^{-\lambda (X - \widetilde{X}^{(i)})} \phi \left(\lambda (X - \widetilde{X}^{(i)})_+ \right) \right].$$

and

$$\mathbb{E}_{\mu_{i}}\left[e^{\lambda X}\phi\left(-\lambda(\widetilde{X}^{(i)}-X)\right)\right] = \mathbb{E}_{\mu_{i}}\left[e^{\lambda X}\phi\left(-\lambda(\widetilde{X}^{(i)}-X)_{+}\right)\right] + \mathbb{E}_{\mu_{i}}\left[e^{\lambda X}\phi\left(\lambda(\widetilde{X}^{(i)}-X)_{+}\right)\right] \\
= \mathbb{E}_{\mu_{i}}\left[e^{\lambda X}\left\{\phi\left(-\lambda(\widetilde{X}^{(i)}-X)\right) + e^{-\lambda(X-\widetilde{X}^{(i)})}\phi\left(\lambda(X-\widetilde{X}^{(i)})_{+}\right)\right\}\right].$$

Finally note that $\phi(x) + e^x \phi(-x) = \tau(x) = x(e^x - 1)$.

2.4 Poisson Logarithmic Sobolev Inequality

• Proposition 2.4 (Modified Logarithmic Sobolev Inequality for Bernoulli Random Variable). [Boucheron et al., 2013]

Let $f: \{0,1\} \to (0,\infty)$ be a **non-negative** real-valued function defined on the binary set $\{0,1\}$. Define **the discrete derivative** of f at $x \in \{0,1\}$ by

$$\nabla f := f(1-x) - f(x).$$

Let X be a Bernoulli random variable with parameter $p \in (0,1)$ (i.e. $\mathbb{P}\{X=1\}=p$). Then

$$Ent(f(X)) \le (p(1-p))\mathbb{E}\left[\nabla f(X)\nabla \log f(X)\right].$$
 (16)

and

$$Ent(f(X)) \le (p(1-p))\mathbb{E}\left[\frac{|\nabla f(X)|^2}{f(X)}\right].$$
 (17)

• Proposition 2.5 (Poisson Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let f: N→ (0,∞) be a non-negative real-valued function defined on the set of non-negative integers N. Define the discrete derivative of f at x ∈ N by

$$\nabla f := f(x+1) - f(x).$$

Let X be a Poisson random variable. Then

$$Ent(f(X)) \le (\mathbb{E}[X])\mathbb{E}[\nabla f(X)\nabla \log f(X)].$$
 (18)

and

$$Ent(f(X)) \le (\mathbb{E}[X])\mathbb{E}\left[\frac{|\nabla f(X)|^2}{f(X)}\right].$$
 (19)

3 Applications

3.1 Lipschitz Functions of Gaussian Variables

- Theorem 3.1 (Rademacher Theorem). If $f: U \to \mathbb{R}$ is a L-Lipschitz function where $U \subseteq \mathbb{R}^n$, then f is differentiable almost everywhere in U and the essential supremum of the norm of its derivative is bounded by its Lipschitz constant.
- Theorem 3.2 (Lipschitz Functions of Gaussian Variables) [Boucheron et al., 2013] Let $Z = (Z_1, ..., Z_n)$ be a vector of n independent standard normal random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ denote an L-Lipschitz function, that is, there exists a constant L > 0 such that for all $x, y \in \mathbb{R}^n$,

$$|f(x) - f(y)| \le L ||x - y||.$$

Then, for all $\lambda \in \mathbb{R}$.

$$\psi_{f(Z)-\mathbb{E}[f(Z)]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(f(Z)-\mathbb{E}[f(Z)])}\right] \le \frac{L^2\lambda^2}{2}$$
(20)

Proof: By a standard density argument we may assume that f is differentiable with gradient uniformly bounded by L according to Rademacher theorem. We may also assume, without loss of generality, that $\mathbb{E}[f(Z)] = 0$. Using the Gaussian logarithmic Sobolev inequality for the function $e^{\lambda f/2}$, we obtain

$$\operatorname{Ent}(e^{\lambda f}) \leq 2\mathbb{E}\left[\left\|\nabla e^{\lambda f/2}\right\|_{2}^{2}\right]$$

$$= 2\mathbb{E}\left[\left\|\frac{\lambda}{2}e^{\lambda f/2}\nabla f\right\|_{2}^{2}\right]$$

$$= \frac{\lambda^{2}}{2}\mathbb{E}\left[e^{\lambda f}\|\nabla f\|_{2}^{2}\right]$$

$$\leq \frac{\lambda^{2}}{2}\mathbb{E}\left[e^{\lambda f}\right]L^{2}$$

$$\Rightarrow \frac{\operatorname{Ent}(e^{\lambda f})}{\mathbb{E}\left[e^{\lambda f}\right]} \leq \frac{L^{2}\lambda^{2}}{2}$$

By Herbst's argument, this implies that $\lambda \psi'(\lambda) - \psi(\lambda) \leq \frac{L^2 \lambda^2}{2}$. Let $G(\lambda) := \lambda^{-1} \psi(\lambda)$, we have $G'(\lambda) \leq L^2/2$, so we have

$$\psi_{f(Z)}(\lambda) \le \frac{L^2 \lambda^2}{2} \qquad \blacksquare$$

• Theorem 3.3 (Gaussian Concentration Inequality / The Tsirelson-Ibragimov-Sudakov Inequality) [Boucheron et al., 2013, Wainwright, 2019] Let $Z = (Z_1, ..., Z_n)$ be a vector of n independent standard normal random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ denote an L-Lipschitz function. Then, for all t > 0,

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} \le \exp\left(-\frac{t^2}{2L^2}\right). \tag{21}$$

Proof: The previous theorem states that f(Z) is sub-Gaussian distributed with parameter $\nu = L^2$. By Markov's inequality,

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} = \mathbb{P}\left\{e^{\lambda(f(Z) - \mathbb{E}\left[f(Z)\right])} \ge e^{\lambda t}\right\} \le \frac{\mathbb{E}\left[e^{\lambda f(Z) - \mathbb{E}\left[f(Z)\right]}\right]}{e^{\lambda t}}$$
$$\le \inf_{\lambda > 0} \exp\left(\psi(\lambda) - \lambda t\right)$$
$$\le \inf_{\lambda > 0} \exp\left(\frac{L^2 \lambda^2}{2} - \lambda t\right)$$
$$= \exp\left(-\frac{t^2}{2L^2}\right)$$

where $\lambda^* = \frac{t}{L^2}$.

• Remark (Dimension-Free Concentration)

An important feature of the theorem is that the right-hand side does not depend on the dimension n. This inequality has served as a benchmark for the development of concentration inequalities during the last three decades.

3.2 Suprema of Gaussian Process

• Definition (Gaussian Process)

Let T be a metric space. A stochastic process $(X_t)_{t\in T}$ is a Gaussian process indexed by T if for any finite collection $\{t_1,\ldots,t_n\}\subset T$, the vector (X_{t_1},\ldots,X_{t_n}) has a jointly Gaussian distribution.

In addition, we assume that T is **totally bounded** (i.e. for every t > 0 it can be covered by finitely many balls of radius t) and that the Gaussian process is **almost surely continuous**, that is, with probability 1, X_t is a continuous function of t.

• Theorem 3.4 (Concentration of Suprema of Gaussian Process) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019, Giné and Nickl, 2021] Let (X_t)_{t∈T} be an almost surely continuous centered Gaussian process indexed by a totally bounded set T. If

$$\sigma^2 := \sup_{t \in T} \mathbb{E}\left[X_t^2\right],$$

then $Z = \sup_{t \in T} X_t$ satisfies $Var(Z) \leq \sigma^2$, and for all u > 0,

$$\mathbb{P}\left\{Z - \mathbb{E}\left[Z\right] \ge u\right\} \le \exp\left(-\frac{u^2}{2\sigma^2}\right) \tag{22}$$

and

$$\mathbb{P}\left\{\mathbb{E}\left[Z\right] - Z \ge u\right\} \le \exp\left(-\frac{u^2}{2\sigma^2}\right) \tag{23}$$

Proof: We assume that T is a *finite set*. The extension to arbitrary *totally bounded* T is based on a *separability argument* and *monotone convergence*. We may assume, for simplicity, that $T = \{1, ..., n\}$. Let Σ be the covariance matrix of the centered Gaussian

vector $X = (X_1, \dots, X_n)$. Denote by A the square root of the positive semidefinite matrix Γ . If $Y = (Y_1, \dots, Y_n)$ is a vector of independent standard normal random variables, then

$$f(Y) = \max_{i=1,\dots,n} (AY)_i$$

has the same distribution as $Z = \max_{i=1,...,n} X_i$. Hence, we can apply the Gaussian concentration inequality by bounding the Lipschitz constant of f. By the Cauchy-Schwarz inequality, for all $u, v \in \mathbb{R}^n$ and i = 1,...,n,

$$|(Au)_i - (Av)_i| \le ||A_{i:}||_2 ||u - v||_2$$

Since $||A_{i:}||_2^2 = \sum_j A_{i,j}^2 = \text{Var}(X_i)$, we get

$$|f(u) - f(v)| \le \max_{i=1,\dots,n} |(Au)_i - (Av)_i| \le \sigma ||u - v||_2$$

Therefore, f is Lipschitz with constant σ and the tail bounds follow from the Gaussian concentration inequality. The variance bound follows from the Gaussian Poincaré inequality.

- 3.3 Concentration of Convex Lipschitz Functions
- 3.4 Concentration on the Hypercube
- 3.5 Gaussian Hypercontractivity
- 3.6 Hypercontractivity for Boolean Polynomials
- 3.7 The Johnson-Lindenstrauss Lemma
- 3.8 Exponential Tail Bounds for Self-Bounding Functions

References

- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.
- Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models. Cambridge university press, 2021.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.