This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

Patent Attorney's Docket No. <u>026125-067</u>

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Johan KIESSLING et al.) Group Art Unit: 2682
Application No.: 09/676,800) Examiner: Unassigned
Filed: September 29, 2000)
For: A Portable Communication Apparatus Having a Man-machine Interface and a Method for its Operation)))

CLAIM FOR CONVENTION PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign Swedish applications in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed:

Sweden Patent Application No. 9903560-2 and 0001996-8

Filed: October 1, 1999 and May 26, 2000

In support of this claim, enclosed are certified copies of the prior foreign applications. The prior foreign applications were referred to in the oath or declaration. Acknowledgment of receipt of the certified copies is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

Date: 505 5,2001

P.O. Box 1404 Alexandria, Virginia 22313-1404 (919) 941-9240 By: Michael G. Savage
Registration No. 32,596

Thereby certify that this correspondence is being deposited with the United States Postel Service as first chisc mall in an envelope addressed to: Commessioner of Fund 1 and Trademarks, Washington, D.C. 20231, on 2-5-0/

(Typed or printed rume of percon signing the de tilicate)

(Signalize of person signing the certificate)

(Date of Signature)

(9/99)

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Telefonaktiebolaget L M Ericsson, Stockholm SE Applicant (s)
- (21) Patentansökningsnummer 9903560-2 Patent application number
- (86) Ingivningsdatum
 Date of filing

1999-10-01

Stockholm, 2000-11-09

För Patent- och registreringsverket For the Patent- and Registration Office

Therese Friberger

Avgift

Fee 170:-

STROM & GULLIKSSON > PU ADFF & KASSAN +4640237897

1999 -10- 0 1

1999-10-01 F:\PUBLIC\DOC\P\1874083.doc JA

Huvudfaxen Kassan

5

10

15

20

30

35

1

APPLICANT:

TELEFONANTIEBOLAGET L M ERICSBON

TITLE:

METHOD AND APPARATUS FOR EXECUTING SECURE DATA TRANSFER IN A WIRELESS NETWORK

Field of the Invention

The present invention relates to a method and apparatus for secure data transfer between a communication device and an application server in a wireless network, and more particularly to a method for secure data transfer between a communication device, provided with a SIM card, and an application server in a wireless network using WAP (Wireless Application Protocol) for the data transfer, wherein said SIM card contains a secret/private key, an algorithm for signing of data, a SAT application for handling the signing dialogue and the signing of data.

Description of the Prior Art

Several protocols for data transfer over wireless networks have been proposed by different mobile phone manufactures. Ericsson, Motorola, Nokia Mobile Phones, and Uniwired Planet have developed a joint standard called Wireless Application Protocol (WAP). The purpose of the Wireless Application Protocol is to provide operators, infrastructure and terminal manufactures, and content developers a common environment enabling development of advanced services for digital mobile phones and other wireless terminals or portable communication devices. For example, the WAP enables e-mail and Internet access from a digital mobile phone.

Certain services and WAP applications provided via Internet, such as ordering, order confirmations, bank services, etc, and associated transactions require a high level of security.

1999 -10- 0 1/99-10-02 F:\PUD\$IC\DOC\P\107002.40G JA

Huvudfaxen Kassan

10

25

2

WO 99/01848 discloses a procedure, which is applicable for the control of keys to applications making use of the subscriber identity module (SIM) in a mobile phone and for the control of license agreements concerning the use of such applications. Further, the procedure provides data security that allows safeguarding of the interests of the operator, module manufacturer, application developers and users of applications. A key list comprising one or more application-specific keys is stored in the subscriber identity module. A corresponding list is also stored in an application control server connected to the network, which takes care of the control of applications stored in subscriber identity modules. The application stored in the subscriber identity module is activated and/or closed by using the key list.

per Al-198 16 575 describes a method for running special applications, such as a virtual charge card, entirely or partly, in a SIM. Further, it is suggested using the SIM toolkit as a means for communication. Security is provided by means of the conventional security means and procedure of the SIM-card. For example, an antitheft security for the special application authorisation and the service data in combination with one or more PIN-codes of the SIM-card.

authorisation incorporating a way to impart to a smart card an encryption key and including a way to cause a microprocessor, by means of the encryption key and at least one number, to perform a calculation whose result comprises a first signature. The signature together with said number are transferred to a system for which authorisation is to be shown which includes a computer in which said encryption key is stored. The computer is programmed to carry out the calculation to obtain the signature and then to compare the

1999 -10- 0 1

1999-10-01 F:\903&JC\DGC\F\18140\$2.8od JR

Huvudfaxen Kassan

10

20

25

30

::::

3

latter signature with the first signature for the verification.

In the above mentioned methods all information transfer is done through SAT (SIM Application Toolkit) applications, in which the security solution also is implemented.

Another way of solving the security problem is to provide one-time password pads, wherein a "new" password is entered via the key pad of the mobile phone or the communication device every time an application is used.

There are several problems and disadvantages associated with the above mentioned prior art solutions. The security level is to low for higher values: passwords could be discovered and the password has to be entered manually making WAP applications very user unfriendly compared to for example pure SAT applications and, of course, the password has to be remembered.

Summary of the Invention

It is an object of the present invention to provide an improved method and system for executing secure data transfer between a communication device, provided with a smart card, such as a SIM card, and an application server in a wireless network using a data transfer protocol such as WAP (Wireless Application Protocol) for the data transfer.

This is accomplished by a method and system according to the invention for executing secure data transfer on the application level for communication applications executing on mobile phones according to the invention. The smart card contains a secret/private key, an algorithm for signing of data, a signing application for handling the signing dialogue and the signing of data. A communiction application, such as a WAP application, is installed on the communication device enabling communication with the

1999 -10- 0 1 1999-10-01 F:\FEBLEC\DOC\B\2074002.40C JA

Huvudfaxen Kassan

10

20

25

30

35

:[:::

::::

4

application server by means of a dialogue, and information browsing on the server is initiated from the communication device, wherein data are transferred between the server and the communication device. Further, a request requiring a secure transaction of data is send from the communication device to the server, and an agreement proposal for the secure transaction is send from the server to the communication device. If the agreement proposal is considered acceptable, the agreement proposal is returned to a security adapter. The WAP application in the communication device is suspended or terminated. Details of the transaction to be secured and a sign request are entered into at least a message, such as SMS or USSD packets, from the adapter to the smart card in the communication device in order to activate the signing application. The details of the transaction and a prompt for an accept are displayed on the communication device. If the transaction is accepted, the signing application signs the data to be send with the secret/ private key by using the algorithm, the signed data are send from the communication device to the security adapter via messages. The signature is verified and the verified signed data are send to the server for the final execution of the transaction.

Another object of the invention is to provide an apparatus for connection to a wireless network for monitoring the data transfer between the communication device and the application server.

This is accomplished by a security adapter according to the invention, providing a high level of security in data transfer on the application level for communication applications executing on communication devices.

An advantage of the present invention is that a high level of security in the data transfer is achieved in combination with conventional WAP browsing. An additional advantage is that the application on the SIM card can be

10

15

20

25

30

:::

1999 -1,0-, M-ol #:\9UBLIC\DOC\9\1674093.606 JA

Huvudfaxen Kassan

5

made very thin and flexible, because it only has to handle signing of data and no information or menu handling. Further, the system handling the information browsing and the system handling the security of the transacrtions are separated and, therefore, they can be uppdated and changed independently.

Brief Description of the Drawings

Other objects, advantages and features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which

FIG 1 illustrates a first embodiment of a network configuration comprising a security adapter according to the invention,

FIG 2 illustrates a second embodiment of a network configuration comprising a security adapter according to the invention.

FIG 3 is a flowchart of a first embodiment of the method according to the invention, and

FIG 4 is a flowchart of a second embodiment of the method according to the invention.

Detailed Description of the Invention

with reference to FIG 1 of the drawing, there is shown a first embodiment of a network configuration for executing secure data transfer between a communication device, such as a mobile phone, and an application server in a wireless network using WAP (Wireless Application Protocol) for the data transfer. The network configuration comprises a WAP (Wireless Application Protocol) mobile phone 1 - provided with a subscriber identity module (SIM) - for communication with a GSM (Global System for Mobile communications) mobile communication network 2.

35 Additionally, the SIM card contains a secret/private key,

10

15

20

25

30

::::

an algorithm for signing of data to be transferred, and a SAT (SIM Application Toolkit) application for handling the signing dialogue and the signing of data. The GSM network 2 is connected to the Internet 3 via a WAP-gateway 4.

Further, an application server 5 providing WAP applications is also connected to the Internet 3. Additionally, a security adapter 6 according to the invention is connected to the WAP-gateway for monitoring the communication between the mobile phone 1 and the application server 5.

A second embodiment of a network configuration comprising a security adapter 6 according to the invention is shown in FIG 2. In this embodiment of the network configuration the security adapter 6 is connected to the application server 5.

FIG 3 is a flowchart of a first embodiment of the method according to the invention for executing secure data transfer between a mobile phone and an application server in a wireless network.

In a first step 301, a WAP application, such as a microbrowse, is installed on the mobile phone 1 enabling communication with the application server 5 by means of a WAP dialogue.

A conventional information browsing session on the server is initiated either by a user (subscriber) from the mobile phone 1 or the application server 5 in step 302, wherein data are transferred to/from the mobile phone 1, over the GSM network 2 interfacing the Internet via the WAP gateway, from/to the application server 5. For example, a user browses to a web site providing information accessible via a WAP dialogue from the mobile WAP phone 1. The site belongs to a bookstore offering a service wherein books can be bought directly from the site. A book is selected by the user from a list of books presented on the site. When the user decides to bye the book he selects "order" from an

1999 -10- 0 1

1939-10-01 F:\PUBLIC\DOC\D\1874092.doc JA

Huvudfaxen Kassan

10

15

20

25

30

7

order menu of the site. This action initiates a sequence of operations.

First a request requiring a secure transaction of data is send from the mobile phone to the application server 5 or from the application server to the mobile phone 1 in step 303. An agreement proposal for the secure transaction is send from the server 5 to the mobile phone in step 304. If the agreement proposal is considered acceptable by the user in step 305, the agreement proposal is send to the security adapter 6 in step 306, and the WAP application in the communication device is suspended or terminated in step 307.

Details of the transaction to be secured and a sign request are entered into at least one SMS or USSD packet by the security adapter 6 in step 308. The SMS packet(s) is send from the security adapter 6 to the SIM card in the mobile phone in order to activate the SAT application in step 309. The details of the transaction and a prompt for an accept from the user are displayed on the communication device in step 310. If the transaction is accepted in step 311, the SAT application signs the data to be send with the secret/private key by using the algorithm in step 312.

The signed data is send from the communication device 1 to the security adapter 6 via SMS or USSD packets in step 313. The security adapter 6 forwards the signature for verification in an entity, such as a backend system, operatively connected to the server 5 in step 314, and the verified signed data is send to the server for the final execution of the transaction in step 315.

A flowchart of a second embodiment of the method according to the invention is shown in FIG 4. A WAP application is installed on the mobile phone 1 enabling communication with the application server 5 by means of a WAP dialogue in step 401.

1999 -10- 0+1 10-02 F:\PDMLZC\DOC\P\2874082.400 JR

Huvudfaxen Kassan

5

10

15

25

8

Information browsing on the server 5 is initiated from either the application server 5 or the mobile phone 1, wherein data are transferred over the network between the application server 5 and the mobile phone 1 in step 402.

Similar to the first embodiment described above, a request requiring a secure transaction of data is send either from the mobile phone 1 to the application server 5 in step 403, or from the application server 5 to the mobile phone 1. However, in this embodiment of the invention an agreement proposal for the secure transaction is send from the server 5 directly to the security adapter 5 in step 404, and the WAP application in the communication device is suspended or terminated in step 405.

Then, details of the transaction to be secured and a sign request are entered into at least one SMS or USSD packet in step 406, the at least one packet is send from the security adapter 6 to the SIM card in the communication device 1 in order to activate the SAT application in step 407. Further, the details of the transaction are displayed on the mobile phone 1 and it is prompted for an accept from the user in step 408. Thus, if the agreement proposal is considered acceptable and the transaction is accepted in step 409, the SAT application signs the data to be send with the secret/private key by using the algorithm in step 410.

The signed data is send from the mobile phone 1 to the security adapter via SMS or USSD packets in step 411, the signature is verified in an entity operatively connected to the server 5 in step 412, and the verified signed data is send to the server for the final execution of the transaction 413.

It is to be understood that even though numerous features and advantages of the present invention have been set forth above, together with details of the configuration

1999 -10- 1899 120-02 F.\BUREZC\DOC\F\2876082.doc JA

9

Huvudfaxen Kassan

10

15

20

25

and function of the invention, the disclosure is illustrative only.

For example, in alternative embodiments of the invention the security application on the SIM can be activated either directly from the mobile phone or from a bluetooth connection. In theses cases the answer could be stored in an Elementary File on the SIM card for later retrieval. Further, this should be combined with another Elementary File containing the status of the action.

In another embodiment of the invention a more generic solution for handling the dialogue with the user is implemented. A command interpreter implemented on the SIM card is used, allowing more dynamic downloading/updating of commands defining the application that communicates with the user.

In an alternative embodiment of the network configuration any communication device having transmitting /receiving capability, such as a portable computer, can be provided with a smart card for secure data transfer over a wireless network.

In still another embodiment of the invention the mobile phone have means whereby the user can be assured that he is really communicating directly with the security application and not with an application impersonating the real application. This is implemented as a particular icon, character, font, colour etc only available to certain applications or the operating system in the phone.

1999 -10-179-40-02 PI\PUBLEC\DOC\P\2874062.400 ZA

10

Huvudfaxen Kassan

10

20

25

30

: ::::

CLAIMS

1. A method for executing secure data transfer between a communication device (1) - provided with a smart card - and an application server (5) using a data transfer protocol for the data transfer in a wireless network (2,3), said smart card containing a secret/private key, an algorithm for signing of data, a signing application for handling the signing dialogue and the signing of data,

wherein a communication application is installed on the communication device (1) enabling communication with the application server (5) by means of a dialogue (301), and

information browsing on the server (5) is initiated from either the application server (5) or the communication device (1), wherein data are transferred over the network between the application server (5) and the communication device (1) (302),

characterised in that

a request requiring a secure transaction of data is send either from the communication device (1) to the application server (5) (303), or from the application server (5) to the communication device (1),

an agreement proposal for the secure transaction is send from the server (5) to the communication device (1) (304),

if the agreement proposal is considered acceptable (305), the agreement proposal is send to a security adapter (6) connected to the network (3) (306),

details of the transaction to be secured and a sign request are entered into at least one message (308),

the at least one message is send from the security adapter (6) to the smart card in the communication device (1) in order to activate the signing application (309),

the details of the transaction and a prompt for an accept are displayed on the communication device (310),

1999 -10-10 1 ** \PURLIC\DOC\D\ZET4882.ded JA

11

Huvudfaxen Kassan

if the transaction is accepted (311), the signing application signs the data to be send with the secret/private key by using the algorithm (312),

the signed data is send from the communication device (1) to the security adapter (6) via messages (313),

the signature is verified in an entity operatively connected to the server (5) (314), and

the verified signed data is send to the server for the final execution of the transaction (315).

10

20

2. A method for executing secure data transfer between a communication device (1) - provided with a smart card - and an application server (5) using a data transfer protocol for the data transfer in a wireless network (2,3), said smart card containing a secret/private key, an algorithm for signing of data, a signing application for handling the signing dialogue and the signing of data,

wherein a communication application is installed on the communication device (1) enabling communication with the application server (5) by means of a dialogue (401), and

information browsing on the server (5) is initiated from either the application server (5) or the communication device (1), wherein data are transferred over the network between the application server (5) and the communication device (1) (402),

characterised in that

a request requiring a secure transaction of data is send either from the communication device (1) to the application server (5) (403), or from the application server (5) to the communication device (1),

an agreement proposal for the secure transaction is send from the server (5) to a security adapter (5) connected to the network (3)(404),

1999 -10- (1999-10-0) P:\PTBLIC\DOC\F\1614082.doc JA

12

Huvudfaxen Kassan

5

10

30

35

:[::

details of the transaction to be secured and a sign request are entered into at least one message (406),

the at least one packet is send from the security adapter (6) to the smart card in the communication device (1) in order to activate the signing application (407),

the details of the transaction and a prompt for an accept are displayed on the communication device (1)(408),

if the agreement proposal is considered acceptable and the transaction is accepted (409), the signing application signs the data to be send with the secret/private key by using the algorithm (410),

the signed data is send from the communication device (1) to the security adapter via messages (411).

the signature is verified in an entity operatively connected to the server (5) (412), and

the verified signed data is send to the server for the final execution of the transaction (413).

- 3. A method according to claim 1 or 2, characterised in that the smart card is a SIM card (subscriber identity module), the data transfer protocol is the WAP (Wireless Application Protocol), the signing application is a SAT (SIM Application Toolkit) application, the communication application is a WAP application, and the message is at least an SMS or USSD packet.
 - 4. A method according to any of claims 3 characterised in that the WAP application in the communication device is suspended or terminated when the SAT application is activated (307,405).
 - 5. A system for executing secure data transfer between a communication device (1) and an application server (5) in a wireless network (2,3), said system comprising a wireless network, a communication device (1) -

1999 -10- 0 1

13

Huvudfaxen Kassan

10

15

20

provided with a smart card containing a secret/private key, an algorithm for signing of data, a signing application for handling the signing dialogue and the signing of data - connected to the network (2), and an application server (5) using a data transfer protocol for the data transfer connected to the network (3), characterised by a security adapter (6) connected to the network (2,3) for monitoring the data transfer between the communication device (1) and the application server (5), wherein said security adapter (6) comprises:

means for receiving an acceptable agreement proposal for a secure transaction from the communication device (1), means for entering details of the transaction to be

secured and a sign request into at least one message,

means for sending the at least one packet from the security adapter to the smart card in the communication device (1) in order to activate the signing application,

means for receiving signed data send from the communication device (1) via messages, and

means for sending the signed data for verification and then to the application server (5) for the final execution of the transaction.

- 6. A system according to claim 5, characterised in that the smart card is a SIM card (subscriber identity module), the data transfer protocol is the WAP (Wireless Application Protocol), the signing application is a SAT (SIM Application Toolkit) application, and the message is at least an SMS or USSD packet.
 - 7. A system according to claim 5 or 6, characterised in that said network comprises a mobile telephone network (2) for connection to the communication device (1), the Internet (3) for the connection to the application server

30

1999 -10- 0 1,000 P1/DEDIC/DOC/D/IDTAGES. 400 JA

Huvudfaxen Kassan

10

15

20

14

- (5), and a WAP gateway (4) connecting the mobile telephone network (2) to the internet (3).
- 8. A system according to claim 7, characterised in that said security adapter (6) is connected to the WAP gateway (4).
 - 9. A system according to any of the claims 5-7, characterised in that said security adapter (6) is connected to the application server (5).
 - 10. A system according to any of the claims 5-9, characterised in that said communication device is a mobile phone (1) or a portable computer having transmitting /receiving capability.
 - 11. A system according to claim 10, characterised in that the mobile phone comprises means for displaying a particular icon, character, font, or colour connected to certain applications or the operating system in the phone, wherein the user can be assured that he is really communicating directly with the security application.
- 12. A security adapter for connection to a wirless
 25 network (2,3) for monitoring the data transfer between a
 communication device (1) and an application server (5)
 connected to the network, characterised by

means for receiving an acceptable agreement proposal for a secure transaction from the communication device (1),

means for entering details of the transaction to be secured and a sign request into at least a message,

means for sending the at least one message from the security adapter (6) to a smart card in the communication device (1) in order to activate a signing application,

30

::::

1999 -10- 0 1

15

Huvudfaxen Kassan

means for receiving signed data send from the communication device (1) via messages, and means for sending the signed data for verification and then to the application server (5) for the final s execution of the transaction.

1999 -10- 0 1

16

Huvudfaxen Kassan

ABSTRACT

A method for executing secure data transfer between a communication device (1) and an application server (5) in a wireless network (2,3), wherein a request requiring a secure transaction of data is send from ether the communication device (1) or the server (5) (303), an agreement proposal for the secure transaction is send to the communication device (1) (304), if the agreement proposal is considered acceptable (305), the agreement proposal is send to a security adapter (6) (306). Details of the transaction are entered into a message (308) and send to a smart card in order to activate a signing application (309) in the smart card. The details of the transaction are displayed on the communication device (310), and if the transaction is accepted (311), the signing application signs the data and send it to the security adapter (6) via messages (313), the signature is verified, and the data is send to the server (315).

To be published with FIG 1

1999 **-10- 0 1**

Huvudfaxen Kassan

1/4

D20

1999 -10- 0 1

Huvudfaxen Kassan

FIG. 2

::::

Ink. t. Patent- och reg.verket

1999 -10- 0 1

Huvudfaxen Kassan

Ink. t. Patent- och reg.verket

1999 -10- 0 1

Huvudfoxen Kassan 4/4

FIG. 4