

Figure 51.2: Let $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty, +\infty\}$ be given by $f(x) = x^2$ for $x \in \mathbb{R}$. Its graph in \mathbb{R}^2 is the magenta curve, and its epigraph is the union of the magenta curve and blue region "above" this curve. Observe that $\mathbf{epi}(f)$ is a convex set of \mathbb{R}^2 since the aqua line segment connecting any two points is contained within the epigraph.

which means that $(1 - \lambda)x_1 + \lambda x_2 \in S$ and

$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)y_1 + \lambda y_2. \tag{*}$$

Thus S must be convex and $f((1 - \lambda)x_1 + \lambda x_2) < +\infty$. Condition (*) is a little awkward, since it does not refer explicitly to $f(x_1)$ and $f(x_2)$, as these values may be $-\infty$, in which case it is not clear what the expression $(1 - \lambda)f(x_1) + \lambda f(x_2)$ means.

In order to perform arithmetic operations involving $-\infty$ and $+\infty$, we adopt the following conventions:

$$\alpha + (+\infty) = +\infty + \alpha = +\infty \qquad -\infty < \alpha \le +\infty$$

$$\alpha + -\infty = -\infty + \alpha = -\infty \qquad -\infty \le \alpha < +\infty$$

$$\alpha(+\infty) = (+\infty)\alpha = +\infty \qquad 0 < \alpha \le +\infty$$

$$\alpha(-\infty) = (-\infty)\alpha = -\infty \qquad 0 < \alpha \le +\infty$$

$$\alpha(+\infty) = (+\infty)\alpha = -\infty \qquad -\infty \le \alpha < 0$$

$$\alpha(-\infty) = (-\infty)\alpha = +\infty \qquad -\infty \le \alpha < 0$$

$$0(+\infty) = (+\infty)0 = 0 \qquad 0(-\infty) = (-\infty)0 = 0$$

$$-(-\infty) = +\infty \qquad \sup \emptyset = -\infty.$$

The expressions $+\infty + (-\infty)$ and $-\infty + (+\infty)$ are meaningless.

The following characterizations of convex functions are easy to show.

Proposition 51.1. Let C be a nonempty convex subset of \mathbb{R}^n .