

Ref-fram: 5 Vetors: 10 Constraints: 5

13

for the translational joint

$$\frac{R_2 I}{\sum_{z} + \sum_{z}^{R_2} - \sum_{3} - \sum_{3}^{R_2} = \underline{0}}$$

Tzi

 $\underline{\underline{\mathsf{U}}}_{\epsilon}^{\mathsf{T}} \cdot \underline{\mathsf{d}} = 0$

 $\phi_5 - \phi_c = 0$ Constant angle between bodie 5 f 6.

num. of links

num of joints

to exclude

or number of coordinates - num. of constraints

$$(9,4)$$
 $(m, 0)$ $(m$

b)
$$M = \begin{bmatrix} M_1 \\ M_6 \end{bmatrix}$$

$$h_3 \leq \begin{bmatrix} f_x \\ f_y - m_3 g \end{bmatrix}$$

$$h_3 = \begin{bmatrix} a_{f_x} & a_{f_y} - m_3 a_{f_y} \\ 0 & 0 \end{bmatrix}, h_6 = \begin{bmatrix} a_{f_x} - a_{f_y} - m_6 a_{f_y} \\ 0 & 0 \end{bmatrix}$$

e)
$$\ddot{C}_1 = \begin{bmatrix} \ddot{\chi}_1 \\ \ddot{y}_1 \\ \ddot{\phi}_1 \end{bmatrix}$$
 , $\ddot{C}_2 = \begin{bmatrix} \ddot{C}_1 \\ \ddot{C}_6 \end{bmatrix}$

	1	2	3	4	5	6
R	XX	ΧX				
R_2		XX	ΧX			
R_3			ХX	XX		
Ry	ХX				XX	
R ₅						XX
1	XX					
T2					XX	XX

951

A2A	L2 (O3)
r li	1/43
O ₁	
////	7///

not in the question

W ^w - 1							
		1	2	3			
	R	XX					
	R_2	XX	XX				
	R_3		XX	ХХ			
•	Ry			XX			

num of constraints

8 x 9 num of Coordinates (3 bodies * 3 cooditions)
this answer is good.

b) 2 Constraints
$$\begin{cases} L_1 \cdot \cos \phi_1 + L_2 \cdot \cos \phi_2 + L_3 \cdot \cos \phi_3 - \alpha \leq 0 \\ L_1 \cdot \sin \phi_1 + L_2 \cdot \sin \phi_2 + L_3 \cdot \sin \phi_3 - b \leq 0 \end{cases}$$

3 coord:
$$\phi_1, \phi_2, \phi_3$$

DoF = 3 -2= 1

There will be a question about Rotation matrix!

(inverse matrix = transpose matrix)

96) A) -> yes, it's a rotation matrix.
Columns & rows are perdicular to each other.

B) is a rotation mutrix as well.

because if you multiply 2 rotation matrices, you will get a rotation matrix