APELLIDOS:			Nombre:				
Me presento a:	Primer parcial	Segundo parcial	Toda la asig	gnatura con los ejercicios			

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 1.-

- A.- Sea V un K-espacio vectorial. Demostrar que el conjunto $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}\subset V$ es **linealmente dependiente** si y sólo si el conjunto $\{\mathbf{u}_1,\mathbf{u}_1+\mathbf{u}_2,\mathbf{u}_1+\mathbf{u}_3\}$ también es linealmente dependiente.
- B.- En el \mathbb{R} -espacio vectorial \mathbb{R}^4 , consideremos los subespacios vectoriales

$$V_a = \langle (1, 1, 1, 1), (1, -1, -1, 1), (a, 0, 0, -a) \rangle, \qquad W_b = \begin{cases} x_2 + x_3 = 0 \\ bx_1 + x_2 + x_3 + bx_4 = 0 \end{cases}$$

Se pide:

- 1.- Estudiar, según los valores de a y b, las dimensiones de los subespacios V_a , W_b , $V_a + W_b$ y $V_a \cap W_b$. Indicar, si existen, aquellos valores de a y b tales que $V_a \oplus W_b = \mathbb{R}^4$.
- 2.- Hallar una base de \mathbb{R}^4/V_0 (donde V_0 es el subespacio V_a para a=0). Expresar el vector $(1,0,0,-1)+V_0$ con coordenadas respecto de esa base.

Ejercicio 2.- a) Definir el concepto de sistema de referencia proyectivo en un espacio proyectivo $\mathbb{P}(V)$ de dimensión $n \geq 0$. b) Se considera el espacio afín $\mathbb{A}^4(\mathbb{R})$ sumergido en el espacio proyectivo $\mathbb{P}^4(\mathbb{R})$ de la manera habitual; se denota H_{∞} el hiperplano del infinito. Se considera la variedad lineal afín L definida por

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 + 2x_3 + 3x_4 = 1 \end{cases}$$

Se pide:

- b.1) Hallar una base de la variedad proyectiva \overline{L} con el mayor número de puntos posible en el infinito.
- b.2) Hallar una base de la variedad de dirección D(L) y otra de la variedad proyectiva $\overline{L} \cap H_{\infty}$.
- b.3) Hallar la ecuación general de los hiperplanos proyectivos que contienen a L.
- b.4) Hallar los hiperplanos afines que contienen a L y al punto afín $P=(4,-6,2,1)\in\mathbb{A}^4(\mathbb{R})$.

Ejercicio 3.-

- A.- Consideremos el espacio vectorial $\mathcal{M}_{2\times 2}(\mathbb{R})$ de las matrices 2×2 con coeficientes reales.
 - 1.- Determinar cuáles de las siguientes funciones, llamadas *determinante* y traza, son homomorfismos de \mathbb{R} -espacios vectoriales:

Det:
$$\mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}$$
 Tr: $\mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ad - bc$

- 2.- Consideremos las bases canónicas de $\mathcal{M}_{2\times 2}(\mathbb{R})$ y de \mathbb{R} . Para cada función del apartado anterior que sea homomorfismo, ¿Qué orden tendrá la matriz de dicho homomorfismo, respecto de estas bases? Hallar dicha matriz.
- 3.- Para cada función del apartado 1 que sea homomorfismo, determinar si es sobreyectivo, si es inyectivo, y cuál es la dimensión de su núcleo.
- B.- Consideremos el homomorfismo $f:\mathbb{R}^3 \to \mathbb{R}^2$ cuya matriz respecto de las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 es:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Sea $L = \langle (1, -2, 3), (2, 1, 1) \rangle \subset \mathbb{R}^3$. Calcular unas ecuaciones implícitas de $f^{-1}(f(L))$.

APELLIDOS:		Nombre:						
Me presento a:	Primer parcial	Segundo parcial	Toda la asig	gnatura con los ejercicios				

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 4.- En el espacio vectorial \mathbb{R}^4 se considera el endomorfismo f_a (que depende de un parámetro real a) cuya matriz respecto de una cierta base \mathcal{B} es

$$M_a \colon \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 2 & 0 & 0 & -1 \ a & 0 & 1 & 0 \ 2 & -1 & 0 & 0 \end{array}
ight).$$

Se pide:

- 1. ¿Para qué valores del parámetro a es el endomorfismo f diagonalizable? Cuando sea el caso, calcular una base respecto de la cual la matriz de f_a sea diagonal.
- **2.** Sea F la homografía de $\mathbb{P}^3(\mathbb{R})$ definida por la matriz $A=M_1$ (es decir la que se obtiene para a=1). Hallar los puntos y los planos dobles (o fijos) de F.
- 3. Probar que, restringida al plano $H: 2x_0 x_1 x_3 = 0$, la homografía $F_{|H}$ es una homología de centro y eje incidentes. Hallar el centro y el eje.

Ejercicio 5.- a) En el espacio afín euclídeo $\mathbb{A}^4(\mathbb{R})$ se consideran las variedades lineales

$$L_1: \begin{cases} 2x_1 + x_2 - x_4 &= 0 \\ x_2 + x_4 &= 0 \end{cases}$$
 $L_2: (2,3,3,0) + \langle (1,1,1,0) \rangle.$

Se pide:

- a.1) Hallar una base ortonormal de $D(L_2)^{\perp}$.
- a.2) Hallar unas ecuaciones implícitas de una perpendicular común a L_1 y L_2 . ¿Es única? ¿Por qué?
- a.3) Calcular la distancia mínima $d(L_1, L_2)$ entre L_1 y L_2 . Hallar $P_1 \in L_1$ y $P_2 \in L_2$ tales que $d(P_1, P_2) = d(L_1, L_2)$.
- b) Se considera la matriz $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Probar que la aplicación $\phi : \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}^2$ definida por $\phi(\mathbf{u}, \mathbf{v}) = \mathbf{u}D\mathbf{v}^*$ es un producto escalar.

Ejercicio 6.- Se considera el espacio afín euclídeo $\mathbb{A}^3(\mathbb{R})$ y en él un sistema de referencia métrico respecto del cual se expresarán coordenadas y ecuaciones. Se pide: a) Probar que la matriz

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{array}\right)$$

representa una homotecia (que denotaremos h). Hallar su centro y su razón.

b) Se considera la afinidad g definida por la matriz

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 2 & 0 \\ 2 & -2 & 0 & 0 \\ 4 & 0 & 0 & -2 \end{pmatrix}.$$

Probar que $g\circ h^{-1}$ es un movimiento. ¿Es g una semejanza? ¿Por qué?

c) Se considera la afinidad f definida por la matriz

$$C = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 4 & -1 & 0 & 0 \\ 6 & 0 & 0 & -1 \end{array}\right).$$

Probar que es un movimiento y calcular sus elementos geométricos.