Home Work 1 Machine Learning Foundations

R04323050

經濟碩三 陳伯駒

1.

2.

Active Learning 中的主動是指讓機器"主動"去尋找使用者所需求的 label,資料結構上與半監督式學習有些相似,只有少部分是有經過標籤的,對於 unlabeled 的資料若要取得標籤將會浩費巨大的成本或是人力,此時將適用主動式學習。最常見的應用是在於生物與醫學實驗,像是蛋白質或是藥物的合成,都需要將化合物以某種特殊的的方式鍵結在一起。因此目標上我們想要找出某種函數形式 $f: \mathcal{X} \to \mathcal{Y}$ 是可以清楚地

分類出哪些化合物的合成方式是可以 bind to particular target(達到藥物成效),所以 labeled Y_n 就可以分為 active(binds to target) & inactive, 而其它 unlabeled Y_n 就是各 種 description of chemical compounds。透過 Active Learning 我們可以讓機器透過學習 來主動選擇可能的化學實驗,以改變化合物的鏈結方式(或調配種類),最後得到可能 達到特殊需求的新化合物 (obtaining new labels)。

3.

$$\therefore \sum_{\ell=1}^{L} \llbracket g(\mathbf{x}_{N+\ell}) \neq f(\mathbf{x}_{N+\ell}) \rrbracket \quad \text{即} \quad N+1 \cong N+L \quad \text{之間的偶數個數}.$$

Now claim:
$$\sum_{\ell=1}^{L} \llbracket g(\mathbf{x}_{N+\ell}) \neq f(\mathbf{x}_{N+\ell}) \rrbracket = \left\lfloor \frac{N+L}{2} \right\rfloor - \left\lfloor \frac{N}{2} \right\rfloor$$

First we construct the proposition $\mathbf{P_n}$: the # of even number between $1 \sim n$ is $\left\lfloor \frac{n}{2} \right\rfloor$, where $n \geq 1$.

Case 1: Let n be even number

 P_2 : # of even number between $1 \sim 2$ is $1 = \left\lfloor \frac{2}{2} \right\rfloor$, holds.

 P_4 : # of even number between $1 \sim 4$ is $2 = \lfloor \frac{4}{2} \rfloor$, holds.

Suppose P_n holds, meaning # of even number between $1 \sim n$ is $\left\lfloor \frac{n}{2} \right\rfloor$

Consider P_{n+2} , then # of even number between $1 \sim n+2$ is $\lfloor \frac{n}{2} \rfloor + 1 = * \lfloor \frac{n}{2} + 1 \rfloor = \lfloor \frac{n+2}{2} \rfloor$, holds.

Hence by mathematical induction, we know P_n holds for all n are even number.

Case 2: Let n be odd number

 P_1 : # of even number between $1 \sim 1$ is $1 = \lfloor \frac{1}{2} \rfloor$, holds.

*Let
$$|x| = m$$
, $|x+1| = M$.

By the equivalence of floor function:

$$|x| = m \Leftrightarrow m \le x < m + 1$$

$$\lfloor x+1 \rfloor = M \Leftrightarrow M \leq x+1 < M+1 \Leftrightarrow M-1 \leq x < M$$

$$M = m + 1 \Leftrightarrow |x + 1| = |x| + 1$$

 P_3 : # of even number between $1 \sim 3$ is $2 = \lfloor \frac{3}{2} \rfloor$, holds.

Suppose P_n holds, meaning # of even number between $1 \sim n$ is $\lfloor \frac{n}{2} \rfloor$

Consider P_{n+2} , similarly, P_{n+2} still holds.

Hence by mathematical induction, we know P_n holds for all n are odd number.

By case 1 & 2, we know P_n holds $\forall n$. Next, we will prove the <u>claim</u> by this proposition.

$$\begin{cases} A: N+L \texttt{為偶數}, \ N+1 \texttt{為奇數} \\ B: N+L \texttt{為奇數}, \ N+1 \texttt{為奇數} \end{cases}$$
 : # of even number = $\left\lfloor \frac{N+L}{2} \right\rfloor - \left\lfloor \frac{N+1}{2} \right\rfloor$
$$\begin{cases} C: N+L \texttt{為倚數}, \ N+1 \texttt{為偶數} \\ D: N+L \texttt{為奇數}, \ N+1 \texttt{為偶數} \end{cases}$$
 : # of even number = $\left\lfloor \frac{N+L}{2} \right\rfloor - \left\lfloor \frac{N+1}{2} \right\rfloor + \underline{1}$ (:: 多 扣 $N+1$ 這個偶數)

note that when:

甲.
$$N+1$$
 為奇數時: $\lfloor \frac{N+L}{2} \rfloor = \lfloor \frac{N}{2} \rfloor$

乙.
$$N+1$$
 為偶數時: $N-1$ 亦為偶數 (.:. $\left\lfloor \frac{N-1}{2} \right\rfloor = \left\lfloor \frac{N}{2} \right\rfloor$),另外 rewrite

$$1 - \left\lfloor \frac{N+1}{2} \right\rfloor = -(\left\lfloor \frac{N+L}{2} \right\rfloor + (-1)) = -\left\lfloor \frac{N-1}{2} \right\rfloor$$

By 甲、乙 & A、B、C、D:

we can rewrite the # of even number between $N+1 \sim N+L$ is : $\lfloor \frac{N+L}{2} \rfloor - \lfloor \frac{N}{2} \rfloor$, Q.E.D. By definition, $E_{OTS}(g,f) = \frac{1}{L}(\lfloor \frac{N+L}{2} \rfloor - \lfloor \frac{N}{2} \rfloor)$.

4.

We know $f(\mathbf{x}_n) = y_n$, $\forall (\mathbf{x}_n, y_n) \in \mathcal{D}$, where $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ 。對於 training example 中的資料,f 組合已經固定,而 $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N, \mathbf{x}_{N+1}, ..., \mathbf{x}_{N+L}\}$,因此對剩下的 $\mathbf{x}_{N+1} \sim \mathbf{x}_{N+L}$ 共有 2^L 種取法 (L 個、每個有 ±1 兩種)。

5.

Let the determisite algorithm \mathcal{A} defined by question, then

$$\mathbb{E}_{f} \{ E_{OTS}(\mathcal{A}(\mathcal{D}), f) \} = \frac{1}{2^{L}} \sum_{i=1}^{2^{L}} \frac{1}{L} \sum_{\ell=1}^{L} [g(\mathbf{x}_{N+\ell}) \neq f(\mathbf{x}_{N+\ell})]$$

$$= \frac{1}{2^{L}} \frac{1}{L} \sum_{\ell=1}^{L} \sum_{i=1}^{2^{L}} [g(\mathbf{x}_{N+\ell}) \neq f(\mathbf{x}_{N+\ell})]$$
 (since f are equally likely in prob.)
$$= \frac{1}{2^{L}} \frac{1}{L} \sum_{\ell=1}^{L} (\frac{1}{2} \times \sum_{i=1}^{2^{L}} 1)$$

$$= \frac{1}{2^{L}} \frac{1}{L} \sum_{\ell=1}^{L} 2^{L-1} = \frac{1}{2}$$

: 與所選演算法無關, 故等式成立。

6.

若要選 5 次、所挑中的 1 都是綠色的,則一定要選中骰子 A 或 D,因此機率為 $(\frac{2}{4})^5 = \frac{1}{32}$ 。

7.

先 check 使數字全為綠色的骰子組合:

數字	骰子組合
1	A或D
2	B或D
3	A或D
4	B或C
5	A或C
6	B或C

因此選 5 次中,有 4 種骰子的組合可使"some number" 全為綠: $\{(A \otimes D), (B \otimes C), (B \otimes D), (A \otimes C)\}, 共有 <math>2^5 \times 4$ 種可能性。

但以上四種組合分別會重複計算 {(DDDDD), (AAAAA), (BBBBB), (CCCCC)} 這四

種組合, 因此需扣除。

... 共有 $2^5 \times 4 - 4$ 種可能性,且 $N(S) = 4^5$

$$\therefore P = \frac{2^5 \times 4 - 4}{4^5} = \frac{31}{256}$$

8.

Steps 的平均值接近 40 左右, 且 histogram 近似於常態分佈。如下圖:

9.

In the slides, we know $T \leq \frac{R^2}{\rho^2}$, where $R^2 = \max_n \|\mathbf{x_n}\|^2$ and $\rho = \min_n y_n \frac{\mathbf{w_f^T}}{\|\mathbf{w_f}\|} \mathbf{x_n}$. 由上式可看出,T 的分子分母都有 $\|\mathbf{x_n}\|$ 的平方項,因此將所有的 $\mathbf{x_n}$ scale down linearly 對 T 的上界並無影響,無法讓演算法 overall 變快。