1.

a. The string *aaabb* has two parse trees:

2.

ANS:

Using the algorithm from the lecture, we get the grammar $G' = (V', \Sigma, R', S)$ with $V = \{S, X, X_1, X_2, Y, A, B, C\}$, $\Sigma = \{a, b, c\}$, and R' being the following set of rules:

$$S_0 \to S$$

$$S \to XY$$

$$X \to abb \mid aXb \mid \epsilon$$

$$Y \to c \mid cY$$

$$S_0 \to S$$

$$S \to XY \mid Y$$

$$X \to abb \mid aXb \mid ab$$

$$Y \to c \mid cY$$

$$S_0 \to S$$

$$S \to XY \mid c \mid cY$$

$$X \to abb \mid aXb \mid ab$$

$$Y \to c \mid cY$$

$$S_0 \rightarrow S$$

$$S \rightarrow XY \mid c \mid cY$$

$$X \rightarrow aX_1 \mid aX_2 \mid ab$$

$$X_1 \rightarrow bb$$

$$X_2 \rightarrow Xb$$

$$Y \rightarrow c \mid cY$$

$$S \rightarrow XY \mid c \mid CY$$

$$X \rightarrow AX_1 \mid AX_2 \mid AB$$

$$X_1 \rightarrow BB$$

$$X_2 \rightarrow XB$$

$$Y \rightarrow c \mid CY$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

3. ANS:

$$(aaadbabacc, q_0, \epsilon) \rightarrow \\ \rightarrow (aaadbabacc, q_1, \$) \rightarrow \\ \rightarrow (aadbabacc, q_1, x\$) \rightarrow \\ \rightarrow (aadbabacc, q_2, x\$) \rightarrow \\ \rightarrow (adbabacc, q_2, yx\$) \rightarrow \\ \rightarrow (adbabacc, q_2, yyx\$) \rightarrow \\ \rightarrow (dbabacc, q_2, yyx\$) \rightarrow \\ \rightarrow (babacc, q_3, yyx\$) \rightarrow \\ \rightarrow (abacc, q_4, yyx\$) \rightarrow \\ \rightarrow (abacc, q_4, yxx\$) \rightarrow \\ \rightarrow (abacc, q_4, yx\$) \rightarrow \\ \rightarrow (ababacc, q_4, yx\$) \rightarrow \\ \rightarrow (abacc, q_5, x\$) \rightarrow \\ \rightarrow (abacc, q_$$

 $\rightarrow (\epsilon, q_7, \epsilon).$

4.

ANS:

Assume L is context-free. Then by the pumping lemma, there is a number p.

Let $s = 0^p 1^{p+1} 0^p$. The length |s| = 3p + 1 > p. By the lemma, s can be rewritten as

$$w = uvxyz$$
, for some $u, v, x, y, z \in \{0, 1\}^*$

and
$$|vxy| \le q$$
 and $|vy| > 0$

Case 1: vy consists of entirely 0s. Both v and y have to belong to the same group of 0s in s (either the prefix 0^p or the suffice 0^p). By the lemma the pumped string $uv^2xy^2z \in L$. However, the pumped string has the prefix 0s and suffice 0s out of balance; thus it does not belong to L. Contradiction.

Case 2: vy consists of entirely 1s. Both v and y have to belong to the group 1s in s. By the lemma the pumped string $uv^0xy^0z=uxz\in L$. However, the pumped string has at most p number of 1s; thus it does not belong to L. Contradiction.

Case 3: vy consists of mixed 0s and 1s.

- (a) If either v or y consists mixed 0s and 1s, by the lemma pumped string $uv^2xy^2z \in L$. But it contains the interleaving 0s and 1s then 0s and 1s, not in the format of 0s and 1s and then 0s; thus not belong to L. Contradiction.
- (b) If v consists of only 0s and y consists of 1s (or the other way around), by the lemma pumped string $uv^2xy^2z \in L$. However, the prefix 0s and suffix 0s in the pumped string are out of balance; thus it does not belong to L. Contradiction.

Since in all the scenarios, we have logic contradiction, the assumption that L is context-free was incorrect. Therefore, we proved that L is NOT context-free.

5.

ANS:

Ans:

7.

ANS

1.

a) first(A)= $\{a,c,\epsilon\}$ first(B)= $\{c,\epsilon\}$ first(C)= $\{a,c,d\}$

b) follow(A)= $\{a,b,c\}$

 $follow(B) = \{a,b,c\}$

 $follow(C) = \{\epsilon\}$

c)

	a	b	c
A	5,6	5	5
В	3	3	3,4
С	2	1,2	2

d) No. Some entries in the parse table consist of multiple rules.