15.094J: Robust Modeling, Optimization, Computation

Lecture 23-24: Network Information Theory via Robust Optimization

Outline

- Origins of Information Theory
- Motivation
- Single Use Gaussian Channel
- Exponential single user channel
- 5 Two-User Gaussian Interference Channel
- 6 Effect of Noise
- Conclusions

Claude Shannon (1916-2001)

- BS, University of Michigan, 1936.
- SM, MIT, 1937.
- PhD, MIT, 1940.
- Institute of Advanced Study, Princeton, 1941.
- Bell Labs, 1942-1956.
- MIT, professor, 1956-1983.
- MIT, emeritus, 1983-2001.

Perspectives

- Shannon-1948 "A Mathematical Theory of Communication", started the field of Information theory.
- The paper is described as the Magna Carta of the modern information age.
- Like Einstein in 1906, 1915, Shannon was asking questions nobody else was asking at the time.

Citations in the Mathematical/Economics Sciences in the 20th century

- Shannon-1948: 75,000 citations.
- Keynes -1937: 25,000 citations.
- Kahneman-Tversky -1979: 35,000 citations.
- Metropolis -1953: 30,000 citations.
- von Neumann-Morgensten -1944: 25,000 citations.
- Kalman -1953: 20,000 citations.
- RSA -1978: 15,000 citations
- Karp -1972 : 9,000 citations
- Dantzig -1947: 8,000 citations
- Nash -1950: 5,000 citations

Information theory

Successes

- Characterization of the capacity of a single user channel, Shannon-1948.
- Closed form formula for the capacity of a variety of single user channels (example: additive Gaussian channel).
- Random coding with minimum-distance decoding achieves this capacity.

Challenges

- Network Information theory.
- Multi sender, multi receiver channels with interference.
- Understanding the limitations of wireless networks.

Research Objectives

- Use RO to attack stochastic systems in high dimensions.
- Connect RO and Information Theory to achieve tractability and address network information theory.
- Understand the tractability of the approach.
- Understand the limitations of the approach.

Robustness and Information Theory

- Typical sets introduced by Shannon can be viewed as uncertainty sets in RO.
- Decoding is a robustness property.

Typical Sets

Incorporating Distributional Information

- Shannon (1948) introduced the idea of Typical Sets:
- Property (a): A typical set has probability nearly 1.
- Property (b): All elements of typical set are nearly equiprobable.
- Given pdf $f(\cdot)$,

$$\mathcal{U}^{f-\mathsf{Typical}} = \left\{ (z_1, \dots, z_n) \left| -\Gamma \leq \frac{\displaystyle\sum_{i=1}^n \log f\left(z_i\right) - n \cdot \mu_{\log f}}{\sigma_{\log f} \cdot \sqrt{n}} \leq \Gamma. \right. \right\},\,$$

$$\mu_{\log f} = \int_{-\infty}^{\infty} f(x) \log f(x) dx,$$

$$\sigma_{\log f_j} = \int_{-\infty}^{\infty} f(x) (\log f(x) - \mu_{\log f})^2 dx.$$

Examples of Typical Sets

• $\tilde{z}_i \sim N(0, \sigma)$

$$\mathcal{U}_{\epsilon}^{\mathsf{G}} = \left\{ \mathbf{z} \, \middle| \, -\Gamma_{\epsilon}^{\mathsf{G}} \leq \|\mathbf{z}\|^2 - n\sigma^2 \leq \Gamma_{\epsilon}^{\mathsf{G}} \, \right\}.$$

• $\tilde{z}_i \sim Exp(\lambda)$

$$\mathcal{U}_{\epsilon}^{\mathsf{E}} = \left\{ \mathbf{z} \left| \frac{n}{\lambda} - \frac{\sqrt{n}}{\lambda} \cdot \Gamma_{\epsilon}^{\mathsf{E}} \leq \sum_{j=1}^{n} z_{j} \leq \frac{n}{\lambda} + \frac{\sqrt{n}}{\lambda} \cdot \Gamma_{\epsilon}^{\mathsf{E}}, \ \mathbf{z} \geq \mathbf{0} \right. \right\}.$$

• $\tilde{z}_i \sim U[a, b]$

$$\mathcal{U}_{\epsilon}^{U} = \left\{ \mathbf{z} \middle| \begin{array}{l} n \frac{a+b}{2} - \Gamma_{\epsilon}^{U} \sqrt{n} \leq \sum_{j=1}^{n} z_{j} \leq n \frac{a+b}{2} + \Gamma_{\epsilon}^{U} \sqrt{n}, \\ a \leq z_{j} \leq b, \ j = 1, \dots, n, \end{array} \right\} \cdot .$$

• $\tilde{z}_i \sim \text{Bin}(p)$

$$\mathcal{U}_{\epsilon}^{B} = \left\{ \mathbf{z} \middle| \begin{array}{l} np - \Gamma_{\epsilon}^{B} \sqrt{n} \leq \sum_{j=1}^{n} z_{j} \leq np + \Gamma_{\epsilon}^{B} \sqrt{n}, \\ z_{j} \in \{0,1\}, \ j = 1, \dots, n, n \neq 1, \dots \neq 1,$$

Single Use Gaussian Channel

- A transmitter wants to send M messages index by $i \in \mathcal{M}$.
- He codes the i^{th} message as a vector $\mathbf{x}_i \in \mathbb{R}^n$, and transmits it.
- ullet The receiver, receives a vector $\mathbf{y}_i \in \mathbb{R}^n$ given by

$$\mathbf{y}_i = \mathbf{x}_i + \mathbf{z}_i,$$

- \mathbf{z}_i is noise.
- Noise could be different than additive.

The Key Problem

- Coding Problem: Given power P, select x_i to represent the i^{th} message such that $||x_i||^2 \le nP$.
- Decoding Problem: Find a decoding function $g(y_i)$ that maps y_i to one of the code words:

$$\frac{1}{M}\sum_{i=1}^{M}\mathbb{P}\left[g(\mathbf{y}_i)\neq i\right]\leq \epsilon_n,$$

with $\epsilon_n \to 0$, as $n \to \infty$.

• Can we send M messages of length n with arbitrary small error ϵ_n ?

Key Insights

Decoder

$$g(\mathbf{y}) = \arg\min_{i \in \mathcal{M}} \|\mathbf{y} - \mathbf{x}_i\|.$$

Minimum distance decoding is a robustness property

$$\|\mathbf{x}_i + \mathbf{z} - \mathbf{x}_{i'}\| \ge \|\mathbf{z}\| \ \forall \mathbf{z} \in \mathcal{U}_{\epsilon}^{\mathsf{G}}, \forall i, i' \ne i$$

$$\mathcal{U}_{\epsilon}^{\mathsf{G}} = \left\{ \mathbf{z} \, \middle| \, -\Gamma_{\epsilon}^{\mathsf{G}} \leq \left\| \mathbf{z} \right\|^2 - n\sigma^2 \leq \Gamma_{\epsilon}^{\mathsf{G}} \right\}.$$

Capacity characterization

$$M_{n}^{*}(\epsilon) = \max \qquad M$$
s.t.
$$\|\mathbf{x}_{i} + \mathbf{z} - \mathbf{x}_{i'}\| \ge \|\mathbf{z}\|, \quad \forall \mathbf{z} \in \mathcal{U}_{\epsilon}^{\mathsf{G}}, \forall i, i' \in \mathcal{M}, i' \neq i,$$

$$\|\mathbf{x}_{i}\|^{2} \le nP, \qquad \forall i \in \mathcal{M}.$$

• Theorem (Shannon (1948))

$$\lim_{n \to \infty} \frac{\log_2 M_n^*(\epsilon)}{n} = \frac{1}{2} \cdot \log \left(1 + \frac{P}{\sigma^2} \right).$$

Optimal Coding

- Inputs: R, P, n, σ , ϵ , ν .
- Select γ_{ϵ} , $\mathbb{P}[\|\tilde{\mathbf{z}}_{G}\| \leq \gamma_{\epsilon}] \geq 1 \epsilon$, $\tilde{\mathbf{z}}_{G} \sim N(\mathbf{0}, \sigma \cdot I)$;
- $T = \left(\frac{1+\nu}{\zeta\nu} \cdot \frac{\gamma_{\epsilon}}{\sqrt{n}}\right)^n$, with $\zeta = \frac{\sigma}{\sqrt{n}} \cdot \Phi^{-1} \left(1 O(\epsilon)\right)$,
- $M_0 = (1 + \nu) \cdot \gamma_{\epsilon}$.;
- Let $\mathcal{Z} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_T\}$ uniformly distributed on $\mathcal{S}_n(M_0) = \left\{\mathbf{z} \in \mathbb{R}^n \middle| \|\mathbf{z}\| = M_0\right\}.$
- Wyner (1967) developed methods to construct deterministic sequences to model uniformly distributed points.

Optimal Coding

To count fraction of correct decoding:

$$v_{it} = egin{cases} 1, & ext{if } \|\mathbf{x}_i + \mathbf{z}_t - \mathbf{x}_{i'}\| \geq \|\mathbf{z}_t\| \,, \, orall i' \in \mathcal{M}, \ 0, & ext{otherwise}. \end{cases}$$

Encoding Algorithm

$$\|\mathbf{x}_i\|^2 \leq nP, \quad \forall i \in \mathcal{M},$$

$$\|\mathbf{x}_{i} - \mathbf{x}_{k} + \mathbf{z}_{t}\| + (1 - v_{it}) M_{0} \ge \|\mathbf{z}_{t}\|, \quad \forall t \in \mathcal{T}, \, \forall i, k \in \mathcal{M}, \, k \neq i,$$

$$\sum_{t=1}^{T} v_{it} \ge (1 - \epsilon) T, \qquad \forall i \in \mathcal{M},$$

$$v_{it} \in \{0,1\},$$
 $\forall i \in \mathcal{M}, t \in \mathcal{T},$

Reformulation

The set of quadratic, possibly non-convex, constraints

$$f_k(\mathbf{y}) = \mathbf{y}' \mathbf{A}_k \mathbf{y} + \mathbf{b}'_k \mathbf{y} + c_k \le 0, \ \forall k \in \mathcal{K}.$$

is equivalent to the semidefinite optimization problem

$$\begin{split} \tilde{\mathbf{A}}_k \bullet \mathbf{Y} &\leq 0, & \forall k \in \mathcal{K}, \\ Y_{11} &= 1, & \mathbf{Y} \succeq \mathbf{0}, & \mathsf{rank}\left(\mathbf{Y}\right) = 1, \end{split}$$

where

$$\mathbf{Y} = \left(egin{array}{c} 1 \\ \mathbf{y} \end{array}
ight) \left(1, \mathbf{y}'
ight), \quad ilde{\mathbf{A}}_k = \left(egin{array}{cc} c_k & \mathbf{b}_k \\ \mathbf{b}_k & \mathbf{A}_k \end{array}
ight).$$

The overall optimization problem

```
min rank (\mathbf{Y})

s.t. \mathbf{A}_{i} \bullet \mathbf{Y} \leq 0, \forall i \in \mathcal{M},

\mathbf{B}_{ikt} \bullet \mathbf{Y} \leq 0, \forall t \in \mathcal{T}, \forall i, k \in \mathcal{M}, k \neq i,

\mathbf{C}_{i} \bullet \mathbf{Y} \leq 0, \forall i \in \mathcal{M},

\mathbf{D}_{it} \bullet \mathbf{Y} = 0, \forall i \in \mathcal{M}, t \in \mathcal{T},

\mathbf{Y} \succ \mathbf{0}.
```

Algorithm

- Input : R, P, σ , n, ν , ϵ .
- Solve the rank minimization SOP to compute r^* , codewords $\{x_i\}_{i\in\mathcal{M}}$.
- If $r^* = 1$, then $R \in \mathcal{R}_n[P, \sigma, 2\epsilon]$.
- If $r^* \geq 2$, then $R \notin \mathcal{R}_n[P, (1+3\nu)\sigma, O(\epsilon)]$.
- As $n \to \infty$, $\epsilon \to 0$, $\nu \to 0$, the characterization of the asymptotic capacity of the channel is tight.

Remarks

- By solving a rank minimization SOP, we find the asymptotic capacity and the matching optimal code.
- Similar RO problems for a variety of other type of channels:
 - Binary symmetric channel,
 - Binary erasure channel,
 - Additive uniform noise channel.
 - Additive exponential channel.

Algorithm from Fazell, Hindi, Boyd -2003

Solve the convex optimization problem

$$\begin{aligned} & \text{min} & & \text{Tr}\left(\boldsymbol{X}\right) \\ & \text{s.t.} & & \tilde{\boldsymbol{A}} \bullet \boldsymbol{X} \leq \boldsymbol{0}, \\ & & & \boldsymbol{X} \succeq \boldsymbol{0}, \end{aligned}$$

and let X^0 denote the optimal solution.

• For each iteration $k=1,\ldots,K$, solve the optimization problem

$$\begin{aligned} & \min \quad \operatorname{Tr}\left(\left(\mathbf{X}^{k-1} + \delta I\right)^{-1}\mathbf{X}\right) \\ & \text{s.t.} \quad \tilde{\mathbf{A}} \bullet \mathbf{X} \leq 0, \\ & \quad \mathbf{X} \succ 0. \end{aligned}$$

Single User Gaussian Channel

Exponential single user channel

Recall Typical set

$$\mathcal{U}_{\epsilon}(\lambda) = \left\{ \mathbf{z} \left| \frac{n}{\lambda} - \frac{\sqrt{n}}{\lambda} \cdot \Gamma_{\epsilon}^{\mathsf{E}} \leq \sum_{j=1}^{n} z_{j} \leq \frac{n}{\lambda} + \frac{\sqrt{n}}{\lambda} \cdot \Gamma_{\epsilon}^{\mathsf{E}}, \ \mathbf{z} \geq \mathbf{0} \right. \right\}.$$

MLE Decoder

$$\arg\min_{i\in\mathcal{B}(\mathbf{y})}\sum_{j=1}^{n}\left(y_{j}-x_{ij}\right),$$

where
$$\mathcal{B}(\mathbf{y}) = \{i \in \mathcal{B} | y_j \geq x_{ij}, \forall j = 1, \dots, n\}.$$

• Generate \mathbf{z}_t uniformly on $\mathcal{U}_{\epsilon}\left(\frac{\lambda}{1+2\nu}\right)$ to help us count the error probability.

Algorithm

Solve

max

$$\sum_{i,k,t}^{n} v_{ikt}$$

$$\sum_{j=1}^{n} x_{ij} \le nP, \qquad \forall i = 1, \dots, 2^{nR},$$

$$\sum_{j=1}^{n} x_{ij} + (2 - v_{it} - v_{ikt}) M_0 \ge \sum_{j=1}^{n} x_{kj}, \quad \forall t, \forall i, k \ne i,$$

$$x_{ij} + z_{tj} \ge x_{kj} - M_0 (1 - v_{ikt}), \qquad \forall i, k, j, t,$$

$$\sum_{t=1}^{T} v_{it} \ge (1 - \epsilon) T, \qquad \forall i,$$

$$v_{it}, v_{ikt} \in \{0, 1\}, \qquad \forall i, k, t,$$

• If feasible, then $R \in \mathcal{R}_n^{E}[P, \lambda, 2\epsilon]$. Otherwise, then $R \notin \mathcal{R}_n^{E}\left[P, \frac{\lambda}{1 + 2\nu}, \epsilon\right]$.

Single User Exponential Channel

Two-User Gaussian Interference Channel

- Two transmitters, two receivers.
- User 1 selects a message i and transmits x_i^1 .
- User 2 selects a message k and transmits x_k^2 .
- The signal vectors \mathbf{x}_i^1 and \mathbf{x}_k^2 are power constrained, that is,

$$\|\mathbf{x}_{i}^{1}\|^{2} \leq nP_{1}, \|\mathbf{x}_{i}^{2}\|^{2} \leq nP_{2}.$$

• The received signals y^1 , y^2 are

$$y^1 = x_i^1 + h_{12}x_k^2 + \tilde{z}_1,$$

 $y^2 = x_k^2 + h_{21}x_i^1 + \tilde{z}_2,$

where h_{12}, h_{21} are interference parameters, and $\tilde{\mathbf{z}}_1, \, \tilde{\mathbf{z}}_2 \sim \mathcal{N}\left(\mathbf{0}, \sigma \cdot I\right)$.

Decoding

Suppose the noise $\tilde{\mathbf{z}}$ is distributed **uniformly** in $\mathcal{B}_n(r) = \{\mathbf{z} \in \mathbb{R}^n | ||\mathbf{z}|| \le r\}$. The maximum likelihood decoder for this channel is given by

$$i_1^* = \arg\max_{i \in \mathcal{M}^1} \left| \mathcal{B}_i^1 \right|, \text{ where } \mathcal{B}_i^1 = \left\{ k \in \mathcal{M}^2 \, : \, \left\| \mathbf{y}^1 - \left(\mathbf{x}_i^1 + h_{12} \mathbf{x}_k^2 \right) \right\| \leq r \right\}$$

$$i_2^* = \arg\max_{i \in \mathcal{M}^2} \left| \mathcal{B}_i^2 \right|, \text{ where } \mathcal{B}_i^2 = \left\{ k \in \mathcal{M}^1 \, : \, \left\| \mathbf{y}^2 - \left(\mathbf{x}_i^2 + h_{21} \mathbf{x}_k^1 \right) \right\| \leq r \right\}.$$

Parameters

- Parameter γ_{ϵ} : $\mathbb{P}\left[\|\mathbf{\tilde{z}}_{G}\| \leq \gamma_{\epsilon}\right] \geq 1 \epsilon$, $\mathbf{\tilde{z}}_{G} \sim \mathcal{N}\left(\mathbf{0}, \sigma \cdot \mathbf{I}\right)$.
- $T = \left(\frac{1+\nu}{\eta\nu} \cdot \frac{\gamma_{\epsilon}}{\sqrt{n}}\right)^n$, with $\eta = \frac{\sigma}{\sqrt{n}} \cdot \Phi^{-1} \left(1 \epsilon^{1/4}\right)$,
- $\bullet \ M_0 = (1+\nu) \cdot \gamma_{\epsilon}.$
- $\mathcal{Z} = \{ \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_T \}$ as before, $\| \mathbf{z}_t \| = M_0, \ t = 1, \dots, T$.
- "Cushion" parameters: δ_1 , δ_2 , α_1 , α_2 with the property that as $\nu \to 0$ and $n \to \infty$, δ_1 , $\delta_2 \to 0$ and α_1 , $\alpha_2 \to 1$.

Decoding

For correct decoding we would require

$$\left|\left\{k' \in \mathcal{B}^2 \mid \left\|\mathbf{y}^1 - \mathbf{x}_{i_1^*}^1 - h_{12}\mathbf{x}_k^2\right\|^2 \leq M_0^2\right\}\right| \geq$$

$$\left|\left\{k' \in \mathcal{B}^2 \mid \left\|\mathbf{y}^1 - \mathbf{x}_i^1 - h_{12}\mathbf{x}_k^2\right\|^2 \leq M_0^2\right\}\right|, \ \forall i \in \mathcal{M}^1.$$

ullet We create a "cushion" δ_1 , and instead require

$$\left| \left\{ k' \in \mathcal{B}^2 : \left\| \mathbf{y}^1 - \mathbf{x}_{i_1^*}^1 - h_{12} \mathbf{x}_k^2 \right\|^2 \le M_0^2 + \delta_1 \right\} \right| \ge$$

$$\left| \left\{ k' \in \mathcal{B}^2 : \left\| \mathbf{y}^1 - \mathbf{x}_i^1 - h_{12} \mathbf{x}_k^2 \right\|^2 \le M_0^2 - \delta_1 \right\} \right|, \, \forall i \in \mathcal{M}^1.$$

• Using this decoder, we want to ensure that the average probability of error is at most $\epsilon^{1/4}$, that is,

$$\frac{1}{M_2} \sum_{k \in \mathcal{M}^2} \mathbb{P}\left[g^1\left(\mathbf{y}^1\right) \neq i \middle| m^1 = i, m^2 = k\right] \leq \epsilon^{1/4}.$$

Variables

• "Counting" variables $\{v_i^1, v_{ik}^1, v_{ikt}^1\}_{i \in \mathcal{M}^1, k \in \mathcal{M}^2, t \in \mathcal{T}}$:

$$\begin{split} v_{ikt}^1 &= \begin{cases} 1, & \text{if } \left| \mathcal{B}_{ikt,i'}^1 \right| \leq \left| \mathcal{B}_{ikt,i}^1 \right|, \, \forall i' \in \mathcal{M}^1, \\ 0, & \text{otherwise}, \end{cases} \\ v_{ik}^1 &= \begin{cases} 1, & \text{if } \sum_{t \in \mathcal{T}} v_{ikt}^1 \geq \left(1 - \epsilon^{1/4}\right) \cdot \mathcal{T}, \\ 0, & \text{otherwise}, \end{cases} \\ v_i^1 &= \begin{cases} 1, & \text{if } \sum_{k \in \mathcal{M}^2} v_{ik}^1 \geq \left(1 - \epsilon^{1/4}\right) \cdot M_2, \\ 0, & \text{otherwise}, \end{cases} \end{split}$$

where

$$\begin{split} \mathcal{B}_{ikt,i'}^{1} &= \left\{ k' \in \mathcal{B}^{2} \ : \ \left\| \mathbf{x}_{i}^{1} - \mathbf{x}_{i'}^{1} + h_{12} \left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2} \right) + \mathbf{z}_{t} \right\|^{2} \leq \mathit{M}_{0}^{2} - \delta_{1} \right\}, \\ \mathcal{B}_{ikt,i}^{1} &= \left\{ k' \in \mathcal{B}^{2} \ : \ \left\| h_{12} \left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2} \right) + \mathbf{z}_{t} \right\|^{2} \leq \mathit{M}_{0}^{2} + \delta_{1} \right\}. \end{split}$$

More Variables

$$\begin{split} v_{ii'kk't}^{1} &= \begin{cases} 1, & \text{if } \left\| \mathbf{x}_{i}^{1} - \mathbf{x}_{i'}^{1} + h_{12} \left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2} \right) + \mathbf{z}_{t} \right\|^{2} \leq \mathit{M}_{0}^{2} - \delta_{1}, \\ 0, & \text{otherwise}, \end{cases} \\ v_{iikk't}^{1} &= \begin{cases} 1, & \text{if } \left\| h_{12} \left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2} \right) + \mathbf{z}_{t} \right\|^{2} \leq \mathit{M}_{0}^{2} + \delta_{1}, \\ 0, & \text{otherwise}. \end{cases} \end{split}$$

• The variables $\{v_k^2, v_{ki}^2, v_{ki}^2, v_{ki'i't}^2\}$ corresponding to User 2 are defined in a similar manner.

Algorithm: **Input** : n, R_1 , R_2 , σ , P_1 , P_2 , ϵ , ν .

$$\begin{split} \left\|\mathbf{x}_{i}^{1}\right\|^{2} &\leq nP_{1}, \\ \left\|\mathbf{x}_{i}^{1} - \mathbf{x}_{i'}^{1} + h_{12}\left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2}\right) + \mathbf{z}_{t}\right\|^{2} &\leq M_{0}^{2} - \delta_{1} + \left(1 - v_{ii'kk't}^{1}\right)M_{0}^{2}, \\ \left\|h_{12}\left(\mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2}\right) + \mathbf{z}_{t}\right\|^{2} &\leq M_{0}^{2} + \delta_{1} + \left(1 - v_{iikk't}^{1}\right)M_{0}^{2}, \\ \sum_{k'=1}^{M_{2}} v_{iikk't}^{1} &\geq \sum_{k'=1}^{M_{2}} v_{ii'kk't}^{1}, \\ v_{ii'kk't}^{1} &\leq v_{ikt}^{1}, \quad v_{ikt}^{1} &\leq v_{ik}^{1}, \quad v_{ik}^{1} &\leq v_{i}^{1}, \\ \sum_{t=1}^{T} v_{ikt}^{1} &\geq \left(1 - \epsilon^{1/4}\right) \cdot T \cdot v_{ik}^{1}, \\ \sum_{k=1}^{M_{2}} v_{ik}^{1} &\geq \left(1 - \epsilon^{1/4}\right) \cdot M_{2} \cdot v_{i}^{1}, \\ \sum_{k=1}^{M_{1}} v_{ik}^{1} &\geq \left(1 - \epsilon^{1/4}\right) \cdot M_{1}, \end{split}$$

Algorithm Continued

$$\begin{split} \left\| \mathbf{x}_{k}^{2} \right\|^{2} &\leq n P_{2}, \\ \left\| \mathbf{x}_{k}^{2} - \mathbf{x}_{k'}^{2} + h_{21} \left(\mathbf{x}_{i}^{1} - \mathbf{x}_{i'}^{1} \right) + \mathbf{z}_{t} \right\|^{2} &\leq M_{0}^{2} - \delta_{2} + \left(1 - v_{kk'ii't}^{2} \right) M_{0}^{2}, \\ \left\| h_{21} \left(\mathbf{x}_{i}^{1} - \mathbf{x}_{i'}^{1} \right) + \mathbf{z}_{t} \right\|^{2} &\leq M_{0}^{2} + \delta_{2} + \left(1 - v_{kkii't}^{2} \right) M_{0}^{2}, \\ \sum_{i'=1}^{M_{1}} v_{kkii't}^{2} &\geq \sum_{i'=1}^{M_{1}} v_{kk'ii't}^{2}, \\ v_{kk'ii't}^{2} &\leq v_{kit}^{2}, \quad v_{kit}^{2} &\leq v_{ki}^{2}, \quad v_{ki}^{2} &\leq v_{k}^{2}, \\ \sum_{t=1}^{T} v_{kit}^{2} &\geq \left(1 - \epsilon^{1/4} \right) \cdot T \cdot v_{ki}^{2}, \\ \sum_{i=1}^{M_{1}} v_{ki}^{2} &\geq \left(1 - \epsilon^{1/4} \right) \cdot M_{1} \cdot v_{k}^{2}, \\ \sum_{i'=1}^{M_{2}} v_{k}^{2} &\geq \left(1 - \epsilon^{1/4} \right) \cdot M_{2}, \end{split}$$

Central Result

Capacity Region

Reformulate as a rank minimization SOP

$$r^* = \min$$
 rank (Y)
s.t. $\mathbf{A}_i \bullet \mathbf{Y} \leq 0$,
 $\mathbf{B}_i \bullet \mathbf{Y} = 0$,
 $\mathbf{Y} \succeq \mathbf{0}$.

- If $r^* = 1$, then $(R_1, R_2) \in \mathcal{R}_n^{\mathsf{IC}} \left[\alpha_1 P_1, \alpha_2 P_2, \frac{h_{12}}{\alpha_2}, \frac{h_{21}}{\alpha_1}, \sigma, O(\epsilon^{1/4}) \right]$,
- If $r^* \geq 2$, then $(R_1, R_2) \notin \mathcal{R}_n^{\mathsf{IC}}[P_1, P_2, h_{12}, h_{21}, (1+3\nu)\sigma, O(\epsilon)]$,
- Note that as $n \to \infty$, ϵ , $\nu \to 0$, $\alpha_1, \alpha_2 \to 1$ and the characterization of the asymptotic capacity is tight.

Optimization problem as a function of the noise

Noise	Typical Set	Optimization Problem
Gaussian (independent)	Ball	Rank minimization with
		semidefinite constraints
Gaussian (correlated)	Ellipsoid	Rank minimization with
		semidefinite constraints
Exponential	Polyhedron	Binary mixed linear
		optimization problem
Uniform	Polyhedron	Binary mixed linear
		optimization problem
Binary symmetric noise	Polyhedron	Binary optimization
		problem

Two-user Gaussian Channel, n = 60

Extensions

- Multi-Cast channel.
- Multi-Access channel.
- Many transmitters, many receivers.

Conclusions

- The reason size becomes an issue is because of error probability guarantees.
- RO brings the power of optimization to the analysis of information theory.
- If underlying problem mixed binary, we can solve n = 300 500 and M = 200,000.
- If underlying problem SOP with rank constraints, we can solve n = 100 150 and M = 100,000.