Nombres réels, fonctions numériques

1 Partie majorée/minorée de \mathbb{R}

Dans toute cette section, A désigne une partie non vide de \mathbb{R} .

1.1 Majorants, minorants

Définition 1 (Majorant, minorant)

Soient $m, M \in \mathbb{R}$.

• On dit que M est un majorant de A lorsque pour tout $x \in A$, $x \leq M$. Si A admet au moins un majorant, on dit que A est majorée. Autrement dit :

$$A$$
 est majorée $\iff \exists M \in \mathbb{R}, \forall x \in A, x \leqslant M.$

• On dit que m est un minorant de A lorsque pour tout $x \in A$, $x \ge m$. Si A admet au moins un minorant, on dit que A est minorée. Autrement dit :

A est minorée
$$\iff \exists m \in \mathbb{R}, \forall x \in A, x \geqslant m.$$

Remarque 1

- Lorsque A est majorée, elle admet une infinité de majorants. En effet : Si M est un majorant de A, alors tout $M' \in \mathbb{R}$ tel que M' > M est aussi un majorant de A.
- Lorsque A est minorée, elle admet une infinité de minorants. En effet : Si m est un minorant de A, alors tout $m' \in \mathbb{R}$ tel que m' < m est aussi un minorant de A.

Exemples

- A = [0, 1] est majorée (par ex. par 2) et minorée (par ex. par -3). Plus précisément : Tous les $M \ge 1$ sont des majorants de A, tous les $m \le 0$ sont des minorants de A.
- $A = \mathbb{N}$ n'est pas majorée, mais est minorée (par ex. par -1). Plus précisément : Tous les $m \leq 0$ sont des minorants de A.
- $A = \mathbb{R}_{-}$ est majorée (par ex. par 1), mais n'est pas minorée. Plus précisément : Tous les $M \ge 0$ sont des majorants de A.
- $A = \left\{\frac{1}{n}, n \in \mathbb{N}^*\right\}$ est majorée (par ex. par 3), et minorée (par ex. par -1). Plus précisément : Tous les $M \ge 1$ sont des majorants de A, tous les $m \le 0$ sont des minorants de A.

Définition 2 (Partie bornée)

On dit que A est bornée lorsqu'elle est majorée et minorée. Autrement dit :

$$A$$
 est bornée $\iff \exists (m, M) \in \mathbb{R}^2, \forall x \in A, \ m \leqslant x \leqslant M.$

Proposition 1 (Caractérisation d'une partie bornée)

On a l'équivalence : A bornée $\iff \exists K \in \mathbb{R}_+, \ \forall x \in A, \ |x| \leqslant K$.

Preuve:

• Supposons A bornée : on peut introduire $m, M \in \mathbb{R}$ tels que $\forall x \in A, m \leq x \leq M$. Posons K = max(M, -m).

Pour tout $x \in A$: $x \leq M \leq K$ et $-x \leq -m \leq K$. Ainsi, $-K \leq x \leq K$, c'est à dire $|x| \leq K$. On a bien montré : $\forall x \in A, |x| \leq K$.

• Supposons qu'il existe $K \ge 0$ tel que $\forall x \in A, |x| \le K$.

Ainsi on a $\forall x \in A, -K \leqslant x \leqslant K$.

Ceci montre que A est majorée par K, minorée par -K: A est donc bornée.

1.2 Maximum, minimum

Définition 3 (Maximum, minimum)

• On appelle maximum de A un majorant de A qui est un élément de A:

M est un maximum de $A \iff (M \in A \text{ et } \forall x \in A, x \leqslant M)$.

• On appelle minimum de A un minorant de A qui est <u>un élément de A</u>:

m est un minimum de $A \iff (m \in A \text{ et } \forall x \in A, x \geqslant m)$.

Proposition 2 (Unicité du maximum/minimum)

S'il existe, le maximum de A est unique et on le note $\boxed{\max(A)}$

S'il existe, le minimum de A est unique et on le note $\overline{\min(A)}$.

Preuve:

Supposons que M_1 et M_2 soient tous deux des maxima de A. Alors :

- $M_1 \in A$ et M_2 est un majorant de A, donc $M_1 \leqslant M_2$.
- $M_2 \in A$ et M_1 est un majorant de A, donc $M_2 \leqslant M_1$.

Ceci montre que $M_1 = M_2$. Il en va de même pour les minima.

Remarque 2

• Le maximum/minimum de A est aussi appelé "plus grand/petit élément de A".

A Attention!

Le maximum ou le minimum de A n'existent pas toujours, même lorsque A est une partie bornée!

Exemples

• A = [0, 1] est majorée par 1 et minorée par 0.

Comme $1 \in A$ et $0 \in A$, on peut dire que $\max(A) = 1$ et $\min(A) = 0$.

• A = [0, 1] est majorée, mais n'admet pas de maximum.

Les majorants de A sont exactement les $M \ge 1$, et aucun d'entre eux n'est un élément de A! On voit en revanche que 1 est le plus petit des majorants possibles...

• A = [0, 1] est minorée, mais n'admet pas de minimum.

Les minorants de A sont exactement les $m \leq 0$, et aucun d'entre eux n'est un élément de A! On voit en revanche que 0 est le plus grand des minorants possibles...

1.3 Borne supérieure, borne inférieure

<u>★</u> Théorème 1 (Borne supérieure, borne inférieure) (Admis)

• Toute partie A de \mathbb{R} non-vide et majorée admet un plus petit majorant. (minimum de l'ensemble des majorants de A)

Celui-ci est appelé borne supérieure de A et noté $\sup(A)$.

• Toute partie A de \mathbb{R} non-vide et minorée admet un plus grand minorant. (maximum de l'ensemble des minorants de A)

Celui-ci est appelé borne inférieure de A et noté inf(A).

On retiendra:

 $\sup(A)$ est le plus petit des majorants de A $\inf(A)$ est le plus grand des minorants de A

(lorsqu'ils existent)

Ceci signifie:

$$\forall x \in A, \ x \leqslant \sup(A)$$
 et $(\forall x \in A, \ x \leqslant M) \Longrightarrow M \geqslant \sup(A)$
 $\forall x \in A, \ x \geqslant \inf(A)$ et $(\forall x \in A, \ x \geqslant m) \Longrightarrow m \leqslant \inf(A)$

Exemples

• A = [0, 1] est majorée et minorée, donc admet une borne supérieure et inférieure.

Plus petit des majorants : 1, donc $\sup(A) = 1$.

Plus grand des minorants : 0, donc $\inf(A) = 0$.

Ici, les bornes supérieures et inférieures sont des éléments de A.

Ce sont donc un maximum et un minimum : $\sup(A) = \max(A) = 1$, $\inf(A) = \min(A) = 0$.

• A = [0, 1] est majorée, donc admet une borne supérieure.

Plus petit des majorants : 1, donc $\sup(A) = 1$.

Ce n'est pas un élément de A, donc A n'a pas de maximum.

• A = [0, 1] est minorée, donc admet une borne inférieure.

Plus grand des minorants : 0, donc $\inf(A) = 0$.

Ce n'est pas un élément de A, donc A n'a pas de minimum.

On peut résumer ces observations dans la proposition suivante :

Proposition 3 (Max/min et borne sup/inf)

Soit A une partie non vide de \mathbb{R} . On a les équivalences suivantes :

- A admet un maximum \iff $(A \text{ est major\'ee et sup}(A) \in A)$. Dans ce cas, $\max(A) = \sup(A)$.
- A admet un minimum \iff (A est minorée et $\inf(A) \in A$). Dans ce cas, $\min(A) = \inf(A)$.

Pour les intervalles de \mathbb{R} , on aura ainsi :

A	$\inf(A)$	$\min(A)$	$\sup(A)$	$\max(A)$
[a,b]	a	a	b	b
[a,b[a	a	b	X
]a,b]	a	X	b	b
]a,b[a	X	b	X
$[a, +\infty[$	a	a	X	X
$]a,+\infty[$	a	X	X	X
$]-\infty,b]$	X	X	b	b
$]-\infty,b[$	X	X	b	X
$]-\infty,+\infty[$	X	X	X	X

₩ Méthode : Justifier l'existence d'une borne inférieure / supérieure

- Si $A \neq \emptyset$ et A est minorée, alors A admet une borne inférieure.
- Si $A \neq \emptyset$ et A est majorée, alors A admet une borne supérieure.

Exercice 1

Soit $A = \left\{ \frac{1}{n}, n \in \mathbb{N}^* \right\}$. Montrer que A admet une borne inférieure et une borne supérieure.

S'agit-il d'un maximum/minimum? Le démontrer.

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}.$$

On a bien-sûr $A \neq \emptyset$. De plus, A est minorée (par 0) et majorée (par 1). Il en résulte que A admet une borne inférieure et une borne supérieure.

- 1 est majorant de A $(\forall n \in \mathbb{N}^*, \frac{1}{n} \leq 1)$ et $1 = \frac{1}{1} \in A$. Ainsi $1 = \max(A) = \sup(A)$.
- 0 est un minorant de A ($\forall n \in \mathbb{N}^*, \frac{1}{n} \geq 0$). Montrons que $\inf(A) = 0$ c'est à dire que 0 est le plus grand des minorants de A.

Par l'absurde : supposons qu'il existe m un minorant de A tel que m > 0.

On aurait ainsi $\forall n \in \mathbb{N}^*, \ \frac{1}{n} \geqslant m > 0$. Cette inégalité est clairement fausse pour n assez grand! Par exemple : posons $n = \lfloor \frac{1}{m} \rfloor + 1 \in \mathbb{N}$. On a $n > \frac{1}{m}$, c'est à dire $\frac{1}{n} < m$: contradiction.

Comme $0 \notin A$, cette borne inférieure n'est pas un minimum.

SPOILER...

On pourra pour le moment admettre le résultat suivant ("Théorème de la limite monotone") :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $A = \{u_n, n \in \mathbb{N}\}.$

- Si $(u_n)_{n\in\mathbb{N}}$ est strictement croissante et converge vers $\ell\in\mathbb{R}$, alors $\sup(A)=\ell$, et cette borne supérieure n'est pas atteinte (A n'admet pas de maximum).
- Si $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante et converge vers $\ell\in\mathbb{R}$, alors $\inf(A)=\ell$, et cette borne inférieure n'est pas atteinte (A n'admet pas de minimum).

Proposition 4 (Inclusion et bornes supérieures/inférieures)

Soient A et B deux parties non-vides de \mathbb{R} .

- Si $A \subset B$ et si B est majorée, alors A est majorée et $\sup(A) \leqslant \sup(B)$.
- Si $A \subset B$ et si B est minorée, alors A est minorée et $\inf(A) \ge \inf(B)$.

Preuve:

- On sait que $\forall x \in B, \ x \leq \sup(B)$. Comme $A \subset B$, on a en particulier $\forall x \in A, \ x \leq \sup(B)$. Ainsi A est non-vide et majorée par $\sup(B)$, ce qui montre que $\sup(A)$ existe et $\sup(A) \leqslant \sup(B)$.
- On sait que $\forall x \in B, \ x \geqslant \inf(B)$. Comme $A \subset B$, on a en particulier $\forall x \in A, \ x \geqslant \inf(B)$.

Ainsi A est non-vide et minorée par $\inf(B)$, ce qui montre que $\inf(A)$ existe et $\inf(A) \geqslant \inf(B)$.

2 Généralités sur les fonctions numériques

2.1 Rappels préliminaires

Définition 4 (Fonction numérique)

On appelle fonction numérique (ou fonction réelle d'une variable réelle) toute application $f: D_f \to \mathbb{R}$, où D_f est une partie non vide de \mathbb{R} .

 D_f est le domaine de définition de la fonction f.

Si D est une partie de \mathbb{R} , on note $\mathcal{F}(D,\mathbb{R})$ l'ensemble des fonctions réelles définies sur D.

Remarque 3

La majorité du temps, D_f est un intervalle ou une union d'intervalles de \mathbb{R} .

■ Définition 5 (Courbe représentative)

La courbe représentative (ou graphe) de f est

$$C_f = \{(x, f(x)), x \in D_f\} \subset \mathbb{R}^2$$

2.2 Opérations sur les fonctions numériques

■ Définition 6 (Somme, produit, quotient)

Soient f et g deux fonctions définies sur un même domaine $D \subset \mathbb{R}$.

- La somme de f et g est la fonction f+g définie par : $\forall x \in D, (f+g)(x) = f(x) + g(x)$.
- Pour tout $\lambda \in \mathbb{R}$, la fonction λf est définie par : $\forall x \in D$, $(\lambda f)(x) = \lambda f(x)$.
- Le produit de f et g est la fonction fg définie par : $\forall x \in D, (fg)(x) = f(x) \times g(x)$.
- Pour tout $k \in \mathbb{N}^*$, on peut ainsi définir la fonction $f^k = f \times f \times \ldots \times f$ (k fois)
- Si pour tout $x \in D, g(x) \neq 0$, le quotient $\frac{f}{g}$ est défini par : $\forall x \in D, \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

Définition 7 (Composition)

Soient $f:D_f\to\mathbb{R}$ et $g:D_g\to\mathbb{R}$ deux fonctions numériques. Sur le domaine

$$D_{g \circ f} = \{ x \in D_f \mid f(x) \in D_g \}$$

on peut définir la fonction composée $g \circ f$ par : $\forall x \in D_{g \circ f}, (g \circ f)(x) = g(f(x)).$

■ Définition 8 (Comparaison de deux fonctions)

Soient f et g deux fonctions définies sur un même domaine $D \subset \mathbb{R}$.

- On dit que $f \leq g$ lorsque : $\forall x \in D, f(x) \leq g(x)$.
- On dit que f < g lorsque : $\forall x \in D, f(x) < g(x)$.

Définition 9 (Maximum, minimum de deux fonctions)

Soient f et g deux fonctions définies sur un même domaine D.

- La fonction $\max(f, q)$ est définie par $\forall x \in D, \max(f, q)(x) = \max(f(x), q(x)).$
- La fonction $\min(f,g)$ est définie par $\forall x \in D, \min(f,g)(x) = \min(f(x),g(x)).$

Exercice 2

Pour tout $x \in \mathbb{R}_+$, on pose f(x) = x et $g(x) = \sqrt{x}$. Déterminer l'expression de $\max(f, g)$ et tracer sa courbe représentative.

Pour tout $x \in \mathbb{R}_+$, on a les équivalences : $x \leqslant \sqrt{x} \iff x^2 \leqslant x \iff x = 0$ ou $x \leqslant 1 \iff x \in [0,1]$. Donc : $\max(x,\sqrt{x}) = \left\{ \begin{array}{l} \sqrt{x} \text{ si } x \in [0,1] \\ x \text{ sinon} \end{array} \right.$ et on a la courbe représentative suivante :

2.3 Sens de variation d'une fonction numérique

Définition 10 (Croissance, décroissance, monotonie)

Une fonction numérique $f: D_f \to \mathbb{R}$ est dite :

- Croissante lorsque : $\forall (x,y) \in (D_f)^2, \ (x \leqslant y \Longrightarrow f(x) \leqslant f(y))$
- **Décroissante** lorsque : $\forall (x,y) \in (D_f)^2, \ (x \leq y \Longrightarrow f(x) \geqslant f(y))$
- Strictement croissante lorsque : $\forall (x,y) \in (D_f)^2$, $(x < y \Longrightarrow f(x) < f(y))$
- Strictement décroissante lorsque : $\forall (x,y) \in (D_f)^2, \ (x < y \Longrightarrow f(x) > f(y))$
- Monotone lorsque (f est croissante) ou (f est décroissante).
- Strictement monotone lorsque (f est strictement croissante) ou (f est strictement décroissante).

Remarque 4

On pourra retenir : une fonction (strictement) croissante <u>préserve les inégalités</u> (strictes). Une fonction décroissante les "inverse".

Proposition 5 (Sens de variation et composition)

- La composée de deux fonctions ayant même sens de variation est croissante.
- La composée de deux fonctions de sens de variation contraires est décroissante.

Si les croissances/décroissances sont strictes, il en va de même pour la composition.

Exemples

Sans même faire d'étude de fonction, on peut affirmer que :

- La fonction $x \mapsto \ln(x^2 + 1)$ est strictement croissante sur \mathbb{R}_+ , comme composée de fonctions strictement croissantes (ln sur \mathbb{R}_+^* et $x \mapsto x^2 + 1$ sur \mathbb{R}_+).
- La fonction $x \mapsto e^{1/x}$ est strictement décroissante sur \mathbb{R}_+^* , comme composée d'une fonction strictement croissante (exp sur \mathbb{R}) et d'une fonction strictement décroissante ($x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^*).

• La fonction $x \mapsto \frac{1}{1+e^{-x}}$ est strictement croissante sur \mathbb{R} comme composée de fonctions strictement décroissantes $(x \mapsto \frac{1}{1+x} \text{ sur } \mathbb{R}_+ \text{ et } x \mapsto e^{-x} \text{ sur } \mathbb{R}).$

Énonçons et démontrons un résultat évoqué dans le chapitre "Applications" :

Proposition 6 (Stricte monotonie et injectivité)

Si $f: D_f \to \mathbb{R}$ est strictement monotone, alors elle est injective.

Preuve:

Traitons le cas où f est strictement croissante (l'autre cas est similaire).

Montrer que f est injective revient à montrer : $\forall (x_1, x_2) \in (D_f)^2, \ x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2).$

Soient $x_1, x_2 \in D_f$ tels que $x_1 \neq x_2$. On distingue les cas :

- Si $x_1 < x_2$, alors on a $f(x_1) < f(x_2)$, donc $f(x_1) \neq f(x_2)$.
- Si $x_1 > x_2$, alors on a $f(x_1) > f(x_2)$, donc $f(x_1) \neq f(x_2)$.

Dans les deux cas on a bien $f(x_1) \neq f(x_2)$, ce qui conclut la preuve.

2.4 Majoration, minoration

Définition 11 (Fonction majorée, minorée, bornée)

Soit $f: D_f \to \mathbb{R}$ une fonction numérique.

On dit que f est majorée/minorée/bornée lorsque son ensemble image $f(D_f) = \{f(x), x \in D_f\}$ l'est.

Autrement dit:

- f est majorée $\iff \exists M \in \mathbb{R}, \forall x \in D_f, f(x) \leqslant M$
- f est minorée $\iff \exists m \in \mathbb{R}, \forall x \in D_f, f(x) \geqslant m$
- f est bornée $\iff \exists K \in \mathbb{R}_+, \forall x \in D_f, |f(x)| \leqslant K$

On pourra également dire : $M \in \mathbb{R}$ est un majorant de f, $m \in \mathbb{R}$ est un minorant de f.

Exemples

- La fonction $x \mapsto x^2$ est minorée sur \mathbb{R} (par 0, par -1...), mais n'y est pas majorée.
- La fonction sin est bornée sur \mathbb{R} : $\forall x \in \mathbb{R}$, $\sin(x) \in [-1,1]$, c'est à dire $\forall x \in \mathbb{R}$, $|\sin(x)| \leq 1$.

Définition 12 (Borne supérieure/inférieure d'une fonction)

Soit $f: D_f \to \mathbb{R}$ une fonction numérique.

Lorsque cela existe, on note $\sup(f)$ (resp. $\inf(f)$) la borne inférieure (resp. \sup érieure) de $f(D_f)$.

Autrement dit:

$$\sup(f) = \sup(\{f(x), x \in D_f\}) \quad \text{et} \quad \inf(f) = \sup(\{f(x), x \in D_f\})$$

Remarque 5

D'après le théorème de la borne supérieure/inférieure (pour les parties de \mathbb{R}) : toute fonction majorée admet une borne supérieure, toute fonction minorée admet une borne inférieure!

Définition 13 (Maximum/minimum d'une fonction)

Soit $f: D_f \to \mathbb{R}$ une fonction numérique.

Lorsque la borne $\sup(f)$ est un maximum (resp. la borne $\inf(f)$ est un minimum), on dit que la fonction f admet un maximum (resp. $\min(f)$, et on note : $\max(f) = \sup(f)$ (resp. $\min(f) = \inf(f)$).

Plus précisément, pour $x_0 \in D_f$,

- On dit que f atteint son maximum en x_0 lorsque : $\forall x \in D_f$, $f(x) \leq f(x_0)$. On a alors $\max(f) = f(x_0)$.
- On dit que f atteint son minimum en x_0 lorsque : $\forall x \in D_f$, $f(x) \ge f(x_0)$. On a alors $\min(f) = f(x_0)$.
- On dit que f admet un extremum en x_0 si elle atteint un maximum ou un minimum en x_0 .

A Attention!

Une fonction peut admettre une borne supérieure mais pas de maximum, ou une borne inférieure mais pas de minimum!

Exemples

- \bullet 0 est le minimum de $x\mapsto x^2$ sur \mathbb{R} . C'est donc également sa borne inférieure.
- \bullet 0 est la borne inférieure de exp sur $\mathbb R.$ Cependant ce n'est pas un minimum!

✓ Dessin :

Remarque 6

Si $\max(f)$ existe alors sa valeur est unique, mais ce maximum peut être atteint en différents points du domaine de définition! De même pour $\min(f)$.

Dessin :

<u>Notations</u>: Pour une fonction $f: D_f \to \mathbb{R}$, on notera parfois:

$$\sup(f) = \sup_{x \in D_f} f(x), \qquad \inf(f) = \inf_{x \in D_f} f(x),$$

$$\max(f) = \max_{x \in D_f} f(x), \qquad \min(f) = \min_{x \in D_f} f(x),$$

Exercice 3

Pour tout $x \in \mathbb{R}$, on pose $f(x) = \frac{x}{1+x^2}$.

Déterminer $\inf_{x\in\mathbb{R}}f(x)$ et $\sup_{x\in\mathbb{R}}f(x)$. S'agit-il d'un minimum/maximum ?

$$f$$
 est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2}$.

Ainsi, pour tout $x \in \mathbb{R}$, $f'(x) \geqslant 0 \Longleftrightarrow 1 - x^2 \geqslant 0 \Longleftrightarrow x^2 \leqslant 1 \Longleftrightarrow -1 \leqslant x \leqslant 1$.

On en déduit le tableau de variation suivant :

Ainsi:
$$\inf_{x \in \mathbb{R}} f(x) = f(-1) = \frac{-1}{2} = \min_{x \in \mathbb{R}} f(x)$$
 et $\sup_{x \in \mathbb{R}} f(x) = f(1) = \frac{1}{2} = \max_{x \in \mathbb{R}} f(x)$.

Définition 14 (Extremum local)

Soit $f: D_f \to \mathbb{R}$ une fonction numérique et $x_0 \in D_f$.

Lorsque les inégalités de la Définition 10 ne sont pas vraies sur D_f tout entier, mais seulement sur $D_f \cap I$ où I est un <u>intervalle ouvert</u> contenant x_0 , on dira que $f(x_0)$ est un maximum local / minimum local / extremum local.

On peut alors noter $f(x_0) = \max_{x \in D_f \cap I} f(x)$ ou $f(x_0) = \min_{x \in D_f \cap I} f(x)$

✓ Dessin :

2.5 Parité d'une fonction

Définition 15 (Fonction paire/impaire)

On dit que $f: D_f \to \mathbb{R}$ est **paire** lorsque : $\begin{cases} \bullet \text{ Pour tout } x \in D_f, \text{ on a } -x \in D_f \\ \bullet \forall x \in D_f, f(-x) = f(x) \end{cases}$

On dit que $f: D_f \to \mathbb{R}$ est **impaire** lorsque : $\begin{cases} \bullet \text{ Pour tout } x \in D_f, \text{ on a } -x \in D_f \\ \bullet \forall x \in D_f, \ f(-x) = -f(x) \end{cases}$

Exemples

• Fonctions paires: $x \mapsto x^2, x \mapsto |x|, x \mapsto \cos(x)$, fonctions constantes...

• Fonctions impaires : $x \mapsto x^3, x \mapsto \frac{1}{x}, x \mapsto \sin(x)...$

Remarque 7

Si f est impaire et $0 \in D_f$, on a nécessairement f(0) = 0.

Interprétation graphique de la parité :

- f est paire \iff C_f est symétrique par rapport à l'axe des ordonnées (symétrie axiale).
- f est impaire $\iff C_f$ est symétrique par rapport à l'origine (0,0) (symétrie centrale)

Conséquence : Si f est une fonction paire ou impaire, il suffit de l'étudier sur $D_f \cap \mathbb{R}_+$. Le comportement sur $D_f \cap \mathbb{R}_-$ est ensuite déduit par symétrie!

Exercice 4

- 1. Montrer que la fonction f définie par $\forall x \in \mathbb{R}, \ f(x) = e^{-x^2/2}$ est paire. Sans étude de fonction, dessiner l'allure de son graphe.
- 2. Montrer que la fonction g définie par $\forall x \in \mathbb{R}, \ g(x) = \frac{x}{1+|x|}$ est impaire. Sans étude de fonction, dessiner l'allure de son graphe.
- 1. Pour tout $x \in \mathbb{R}$, $f(-x) = e^{-(-x)^2/2} = e^{-x^2/2} = f(x)$ donc f est paire. $x \mapsto x^2$ est strictement croissante sur \mathbb{R}_+ , $x \mapsto e^{-x}$ est strictement décroissante sur \mathbb{R} : On en déduit que f est strictement décroissante sur \mathbb{R}_+ . Allure du graphe :
- 2. Pour tout $x \in \mathbb{R}$, $g(-x) = \frac{-x}{1 + |-x|} = \frac{-x}{1 + |x|} = -\frac{x}{1 + |x|} = -g(x)$ donc g est impaire.

Pour tout $x \ge 0$, $g(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}$. On voit donc que g est strictement décroissante sur \mathbb{R}_+ .

Allure du graphe:

2.6 Périodicité

Définition 16 (Fonction périodique)

Soit p > 0. On dit que $f: D_f \to \mathbb{R}$ est **périodique de période** p (ou p-**périodique**) lorsque :

- Pour tout $x \in D_f$, on a $x + p \in D_f$
 - $\forall x \in D_f, \ f(x+p) = f(x)$

Remarques 8

Si f est p-périodique, alors f est aussi 2p-périodique, 3p-périodique...

Plus généralement, kp est une période de f pour tout $k \in \mathbb{Z}$.

Exemples

Fonctions périodiques usuelles : cos, sin, tan, fonctions constantes

Interprétation graphique de la périodicité :

f est p-périodique $\iff C_f$ est invariant par translation "d'un multiple de p le long de

"d'un multiple de p le long de l'axe des abscisses".

Conséquence : Si $f : \mathbb{R} \to \mathbb{R}$ est périodique de période p > 0, il suffit de l'étudier sur [0, p[(ou sur n'importe quel intervalle [a, a+p[pour $a \in \mathbb{R})$). Le comportement ailleurs est déduit par translation!

Exercice 5

Soit f la fonction définie par $\forall x \in \mathbb{R}, f(x) = x - \lfloor x \rfloor$.

Montrer que f est 1-périodique. Sans étude de fonction, dessiner l'allure de son graphe.

Pour tout $x \in \mathbb{R}$, $f(x+1) = x+1 - \lfloor x+1 \rfloor = x+1 - (\lfloor x \rfloor + 1) = x - \lfloor x \rfloor = f(x)$. Donc f est 1-périodique. Pour tout $x \in [0,1]$: f(x) = x - 0 = x.

Allure du graphe:

3 Fonctions usuelles

Valeur absolue 3.1

Définition 17 (Valeur absolue)

Pour tout $x \in \mathbb{R}$ on définit la valeur absolue de x par

$$|x| = \begin{cases} x & \text{si } x \ge 0, \\ -x & \text{si } x \le 0. \end{cases}$$

ou bien, de manière équivalente,

$$|x| = \max(x, -x).$$

Remarque 9

On a aussi, pour tout $x \in \mathbb{R}$, $|x| = \sqrt{x^2}$.

Fonction:

Domaine de définition : \mathbb{R}

Signe: Positif

Domaine de dérivabilité : \mathbb{R}^*

Dérivée : $f'(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$

Parité: Paire

Proposition 7 (Propriétés de valeur absolue)

Pour tous $x, y \in \mathbb{R}$, on a :

- $|x| \geqslant 0$
- $\bullet \mid -x \mid = |x|$
- $\bullet |x| = 0 \Longleftrightarrow x = 0$

- |xy| = |x||y| Pour $y \neq 0$, $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$.

De plus pour tout $x \in \mathbb{R}$ et $a \ge 0$, on a :

- $\bullet |x| \leqslant a \Longleftrightarrow -a \leqslant x \leqslant a,$
- $|x| \geqslant a \iff x \leqslant -a \text{ ou } x \geqslant a$

Remarque 10

Pour $x, y \in \mathbb{R}$, |x - y| s'interprète naturellement comme la <u>distance</u> entre x et y.

Exercice 6

- $|x-2|=3 \iff x=-1 \text{ ou } x=5$
- $|x-3| < 1 \iff x \in]2,4[$
- $|x-1| \geqslant 2 \iff x \in]-\infty, -1] \cup [3, +\infty[$

A Attention!

On ne peut pas "passer à la valeur absolue dans une inégalité"! $x \leq y$ n'implique pas $|x| \leq |y|$ en général! (la fonction $|\cdot|$ n'est pas croissante sur \mathbb{R} ...)

★ Théorème 2 (Inégalités triangulaires)

Pour tous $x,y\in\mathbb{R},$ on a les inégalités suivantes :

- Première inégalité triangulaire : $|x+y| \le |x| + |y|$
- Seconde inégalité triangulaire : $|x| |y| \le |x y| \le |x| + |y|$

Preuve:

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

- Puisque |x| = max(x, -x), notons qu'on a toujours $x \leq |x|$ et $-x \leq |x|$. Ainsi :
- $-x \leq |x|$ et $y \leq |y|$ donc $x + y \leq |x| + |y|$.
- $-x \le |x|$ et $-y \le |y|$ donc $-x y \le |x| + |y|$.

Il en résulte que $|x+y| = max(x+y, -x-y) \le |x| + |y|$: d'où la première inégalité triangulaire.

• D'après la première inégalité triangulaire :

 $|x-y|=|x+(-y)|\leqslant |x|+|-y|=|x|+|y|$: d'où l'inégalité de droite.

De plus

- $-|x| = |(x-y) + y| \le |x-y| + |y|$ donc $|x| |y| \le |x-y|$.
- $|y| = |(y-x) + x| \le |y-x| + |x| = |x-y| + |x|$ donc $|y| |x| \le |x-y|$

Il en résulte que $\Big||x|-|y|\Big|=\max(|x|-|y|,|y|-|x|)\leqslant |x-y|$: d'où l'inégalité de gauche.

O Corollaire 1 (Inégalité triangulaire généralisée)

Soit $n \in \mathbb{N}$ et a_1, a_n, \dots, a_n des nombres réels. On a l'inégalité : $\left| \sum_{k=1}^n a_k \right| \leqslant \sum_{k=1}^n |a_k|$.

Preuve:

Récurrence facile! Si la propriété est vraie au rang n, alors au rang n+1:

$$\left| \sum_{k=1}^{n+1} a_k \right| = \left| \sum_{k=1}^n a_k + a_{n+1} \right| \leqslant \left| \sum_{k=1}^n a_k \right| + |a_{n+1}| \leqslant \sum_{k=1}^n |a_k| + |a_{n+1}| = \sum_{k=1}^{n+1} |a_k|.$$

Exercice 7

Soit $n \in \mathbb{N}^*$. Soient a_1, \ldots, a_n et b_1, \ldots, b_n des réels tels que : $\forall k \in [1, n], |a_k - b_k| \leq 1$.

Déterminer une majoration de $\left| \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \right|$.

$$\left| \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \right| = \left| \sum_{k=1}^{n} (a_k - b_k) \right| \leqslant \sum_{k=1}^{n} |a_k - b_k| \leqslant \sum_{k=1}^{n} 1 = n.$$

3.2 Partie entière

Définition 18 (Partie entière)

Pour tout $x \in \mathbb{R}$, on appelle partie entière de x le plus grand entier inférieur ou égal à x. En d'autres termes, la partie entière de x est l'unique $n \in \mathbb{Z}$ tel qu'on ait l'encadrement :

$$n \leqslant x < n + 1$$
.

La partie entière de x est notée |x|.

On retiendra: pour tout $x \in \mathbb{R}$,

$$\lfloor x \rfloor \in \mathbb{Z}$$
 et $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$

De manière équivalente : pour tout $x \in \mathbb{R}$,

$$[x] \in \mathbb{Z}$$
 et $x - 1 < [x] \leqslant x$

Exemples

$$\lfloor 5.3 \rfloor = 5$$
, $\lfloor -3.2 \rfloor = -4$, $\left\lfloor \frac{1}{2} \right\rfloor = 0$, $\left\lfloor -\frac{1}{2} \right\rfloor = -1$, $\left\lfloor 3 \right\rfloor = 3$.

Fonction:
$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & |x| \end{array}$$
.

Domaine de définition : \mathbb{R}

Sens de variation : Croissante

Signe: Négatif sur \mathbb{R}_{-} , positif sur \mathbb{R}_{+}

Domaine de dérivabilité : $\mathbb{R} \setminus \mathbb{Z}$

Dérivée : $\forall x \in \mathbb{R} \setminus \mathbb{Z}, f'(x) = 0$

Parité: Aucune

Remarques 11

• La partie entière est à bien distinguer de l'entier "le plus proche" de x, ou de la "troncature" :

|x| = 5, "Troncature" = 5, "Entier le plus proche" = 6. Pour x = 5.85:

Pour x = -3.6: |x| = -4, "Troncature" = -3, "Entier le plus proche" = -4.

• La partie entière |x| est parfois appelée "partie entière inférieure".

Exercice 8

Soit $x \in \mathbb{R}$. On pose : $\forall n \in \mathbb{N}, r_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.

Montrer que pour tout $n \in \mathbb{N}$, $r_n \in \mathbb{Q}$ et $|x - r_n| \leqslant \frac{1}{10^n}$

Soit $n \in \mathbb{N}$. On a $\lfloor 10^n x \rfloor \in \mathbb{Z}$ et $10^n \in \mathbb{N}$ donc $r_n = \frac{\lfloor 10^n x \rfloor}{10^n} \in \mathbb{Q}$.

Par définition, on a : $10^n x - 1 < \lfloor 10^n x \rfloor \le 10^n x$

$$\operatorname{donc} x - \frac{1}{10^n} < \frac{\lfloor 10^n x \rfloor}{10^n} \leqslant x \text{ c'est à dire } x - \frac{1}{10^n} < r_n \leqslant x.$$

On en déduit $0 \le x - r_n < \frac{1}{10^n}$, d'où finalement $|x - r_n| = x - r_n < \frac{1}{10^n}$.

3.3 Polynômes du second degré

Fonction:
$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & ax^2 + bx + c \end{array}$$
 avec $a,b,c \in \mathbb{R} \ (a \neq 0)$

x	$-\infty$	$-\frac{b}{2a}$	$+\infty$
f(x) $a > 0$	$+\infty$	$f(-\frac{b}{2a})$	+∞
f(x) $a < 0$	$-\infty$	$f(-\frac{b}{2a})$	$-\infty$

Domaine de dérivabilité : \mathbb{R} Dérivée : f'(x) = 2ax + b

Parité : Aucune en général Axe de symétrie : Droite verticale $x = \frac{-b}{2a}$

Calcul des racines, signe : Forme canonique : $f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right)$

En notant $\Delta = b^2 - 4ac$ on a 3 cas possibles :

• Si $\Delta > 0$, l'équation f(x) = 0 admet deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

x	$-\infty$		x_1		x_2		$+\infty$
f(x) $a > 0$		+	0	_	0	+	
f(x) $a < 0$		_	0	+	0	_	

• Si $\Delta = 0$, l'équation f(x) = 0 admet une unique solution ("double") : $x = -\frac{b}{2a}$

x	$-\infty$		$-\frac{b}{2a}$		$+\infty$
f(x) $a > 0$		+	0	+	
f(x) $a < 0$		_	0	_	

• Si $\Delta < 0$, l'équation f(x) = 0 n'admet pas de solution dans \mathbb{R} .

x	$-\infty$	$+\infty$
$f(x) \\ a > 0$	4	H
$f(x) \\ a < 0$	_	-

Lien racines / coefficients : Si $\Delta > 0$, $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$

Fonctions puissances entières positives

Définition 19 (Puissances entières positives)

Pour tout $x \in \mathbb{R}$, on définit : $x^n = x \times x \times ... \times x$ (n fois). Soit $n \in \mathbb{N}$. Ainsi par convention (produit vide): $x^0 = 1$.

Fonction: $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^n \end{array}$ avec $n \in \mathbb{N}$, $\boxed{n \text{ pair}}$

Domaine de définition : \mathbb{R} Signe: Positif

Domaine de dérivabilité : \mathbb{R}

Parité: Paire

Fonction: $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^n \end{array}$ avec $n \in \mathbb{N}, \boxed{n \text{ impair}}$

x	$-\infty$	0	$+\infty$
$f(x) = x^n$	$-\infty$	_0_	$+\infty$

Domaine de définition : \mathbb{R}

Signe : Négatif sur \mathbb{R}_{-} , positif sur \mathbb{R}_{+}

Domaine de dérivabilité : \mathbb{R}

Parité: Impaire

Remarque 12

Ainsi pour tout $x \in \mathbb{R}$, $(-x)^6 = (-1)^6 \times x^6 = x^6$ mais $(-x)^7 = (-1)^7 \times x^7 = -x^7$.

Règles de calcul / Propriétés : $x^{n+m} = x^n x^m$, $(x^n)^m = x^{nm}$ $(xy)^n = x^n y^n$, $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$ $(n, m \in \mathbb{N})$

Dérivée : $f'(x) = n x^{n-1}$

Fonctions puissances entières négatives

Définition 20 (Puissances entières négatives)

Soit $n \in \mathbb{N}^*$.

Pour tout $x \in \mathbb{R}^*$, on définit : $x^{-n} = \frac{1}{x^n}$.

Ainsi, en particulier : $x^{-1} = \frac{1}{x}$.

Fonction: $f: \begin{array}{ccc} \mathbb{R}^* & \to & \mathbb{R} \\ x & \mapsto & x^{-n} \end{array}$ $n \in \mathbb{N}^*, \boxed{n \text{ pair}}$

$$n \in \mathbb{N}^*, \boxed{n \text{ pair}}$$

Domaine de définition : \mathbb{R}^*

Domaine de dérivabilité : \mathbb{R}^*

Signe: Positif

Parité: Paire

Fonction: $f: \begin{bmatrix} \mathbb{R}^* & \to & \mathbb{R} \\ x & \mapsto & x^{-n} \end{bmatrix}$ $n \in \mathbb{N}^*, \boxed{n \text{ impair}}$

Domaine de définition : \mathbb{R}^*

Signe: Négatif sur \mathbb{R}_{+}^{*} , positif sur \mathbb{R}_{+}^{*}

Domaine de dérivabilité : \mathbb{R}^* Dérivée : $f'(x) = -n x^{-n-1} = \frac{-n}{x^{n+1}}$

Parité: Impaire

Règles de calcul / Propriétés : $x^{n+m} = x^n x^m$, $(x^n)^m = x^{nm}$ $(xy)^n = x^n y^n$, $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$

$$x^{n+m} = x^n x^m,$$

$$(x^n)^m = x^{nm}$$

$$(xy)^n = x^n y^n,$$
$$(n, m \in \mathbb{Z})$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

3.6 Exponentielle

Définition 21 (Fonction exponentielle)

On admet qu'il existe une unique fonction définie et dérivable sur $\mathbb R$ satisfaisant :

$$f' = f$$
 et $f(0) = 1$.

On note cette fonction $\exp : \mathbb{R} \to \mathbb{R}$. Pour tout $x \in \mathbb{R}$, le réel $\exp(x)$ se note aussi e^x

Fonction: exp:

Domaine de définition : \mathbb{R}

Signe: Strictement positif

Domaine de dérivabilité : \mathbb{R}

Dérivée : $\exp'(x) = e^x$

Parité: Aucune

Règles de calcul / Propriétés : $e^{x+y} = e^x e^y$, $(e^x)^y = e^{xy}$, $e^{-x} = \frac{1}{e^x}$, $e^{x-y} = \frac{e^x}{e^y}$

$$e^{x+y} = e^x e^y, \qquad ($$

$$e^{xy}, \quad \epsilon$$

$$e^{x-y} = \frac{e^x}{e^y}$$

Nombre d'Euler : $e = exp(1) \simeq 2.7$

3.7 Logarithme (népérien)

Définition 22 (Fonction logarithme népérien)

La fonction exp réalise une bijection de \mathbb{R} dans \mathbb{R}_{+}^{*} .

On peut donc introduire sa bijection réciproque $\exp^{-1}: \mathbb{R}_+^* \to \mathbb{R}$.

Cette réciproque est appelée logarithme (népérien) et notée ln.

Fonction : \ln : $\mapsto \ln(x)$

Domaine de définition : \mathbb{R}_+^*

Signe : Négatif sur [0,1], Positif sur $[1,+\infty[$

Dérivée : $\ln'(x) = \frac{1}{x}$

Domaine de dérivabilité : \mathbb{R}_+^*

Règles de calcul / Propriétés : $\forall x \in \mathbb{R}, \ \ln(e^x) = x, \qquad \forall x > 0, \ e^{\ln(x)} = x$

$$\forall x > 0, \ e^{\ln(x)} = x$$

$$\ln(x^y) = y \ln(x)$$

$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

$$\ln(xy) = \ln(x) + \ln(y) \qquad \ln(x^y) = y \ln(x), \qquad \ln\left(\frac{1}{x}\right) = -\ln(x) \qquad \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

Fonctions puissances réelles

 $Rappel: \text{Si } n \in \mathbb{N}, \quad x^n = x \times \ldots \times x \text{ (n fois)} \quad \text{et} \quad x^{-n} = \frac{1}{x^n}. \quad \text{Comment définir } x^{2/3} \text{ ou } x^\pi ? \ldots$

Définition 23 (Puissance réelle)

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ (on n'est donc pas dans le cas d'une puissance entière).

Pour tout $x \in \mathbb{R}_+^*$, on définit : $x^{\alpha} = \exp(\alpha \ln(x)) = e^{\alpha \ln(x)}$.

Remarque 13

Cette définition est bien cohérente avec le cas où $\alpha = n \in \mathbb{N}$, car d'après les propriétés de exp et ln :

$$\forall x \in \mathbb{R}_+^*, \ e^{n \ln(x)} = e^{\ln(x^n)} = x^n.$$

De même si $\alpha = -n$ avec $n \in \mathbb{N}^*$.

Attention!

Si l'exposant α n'est pas un entier relatif, la quantité x^{α} est définie uniquement pour x>0.

Exemple : $2^{\sqrt{2}}$ est bien défini, mais $(-1)^{\sqrt{2}}$ n'a pas de sens!

Fonction:

$$f: \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^{\alpha} \end{array} \quad \text{avec } \alpha \in \mathbb{R} \setminus \mathbb{Z}.$$

0 x $+\infty$

 $+\infty$ x^{α} $\alpha > 0$ $+\infty$ x^{α} $\alpha < 0$

Domaine de définition : \mathbb{R}_+^*

Domaine de dérivabilité : \mathbb{R}_+^*

Signe: Strictement positif

Dérivée : $f'(x) = \alpha x^{\alpha-1}$

 $\textbf{R\`egles de calcul:} \quad x^{\alpha+\beta} = x^{\alpha}x^{\beta}, \quad (x^{\alpha})^{\beta} = x^{\alpha\beta} \quad (xy)^{\alpha} = x^{\alpha}y^{\alpha}, \quad x^{-\alpha} = \frac{1}{x^{\alpha}}, \quad \left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$

Cas particulier important : Si $n \in \mathbb{N}^*$ et x > 0, $x^{1/n}$ est la racine n-ième de x. C'est l'unique réel positif qui, élevé à la puissance n, donne x:

$$x^{1/n} > 0$$
 et $(x^{1/n})^n = x^{\frac{n}{n}} = x$

On peut ainsi écrire : $\forall x > 0, \ x^{1/n} = \sqrt[n]{x}$

En particulier, $\forall x > 0, \ x^{1/2} = \sqrt{x}$

Remarque 14

 $x\mapsto \sqrt{x}$ est défini en x=0, mais pas $x\mapsto x^{1/2}$! C'est la seule différence entre ces deux fonctions.

3.9 Cosinus et sinus

■ Définition 24 (Fonctions trigonométriques)

Soit $x \in \mathbb{R}$ et M(x) le point d'angle x sur le cercle trigonométrique, dans un repère orthonormé.

- Le cosinus de x, noté $\cos(x)$ est l'abscisse de M(x).
- Le sinus de x, noté $\sin(x)$ est l'ordonnée de M(x).

Le dessin précédent donne les valeurs particulières : Connaissant celles-ci, on peut rapidement retrouver les autres valeurs particulières (en $-\frac{\pi}{2}$, en $\frac{3\pi}{4}$...) en dessinant le cercle trigonométrique.

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Domaine de définition : \mathbb{R} Domaine de dérivabilité : \mathbb{R}

Dérivée : $\cos'(x) = -\sin(x)$

Parité: Paire **Périodicité**: 2π -périodique

Fonction: $\sin: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sin(x) \end{array}$

			,	,	
x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin(x)$	0	→ 1 -	_0 →	-1	0

Domaine de définition : \mathbb{R} Domaine de dérivabilité : \mathbb{R}

Dérivée : $\sin'(x) = \cos(x)$

Parité : Impaire **Périodicité :** 2π -périodique

Règles de calcul / Propriétés : $\cos(x)^2 + \sin(x)^2 = 1$

 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \qquad \sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$

En particulier : $cos(x + \pi) = -cos(x)$ $sin(x + \pi) = -sin(x)$

3.10 Tangente et arctangente

Définition 25 (Fonction tangente)

On note que pour tout $x \in \mathbb{R}$, $\cos(x) = 0 \iff x \in \left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$.

Ainsi, pour $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ on peut définir : $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

À l'aide des valeurs particulières de cos et sin, on peut facilement trouver celles de tan. Les autres peuvent être retrouvées par imparité et par périodicité.

x	0	$\pi/6$	$\pi/4$	$\pi/3$
$\tan(x)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Fonction: $\tan: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\} \to \mathbb{R}$ $x \mapsto \tan(x)$

Domaine de définition : $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

Domaine de dérivabilité : $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

Dérivée : $\tan'(x) = 1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$

Parité : Impaire Périodicité : π -périodique

Définition 26 (Fonction arctangente)

La fonction tan réalise une bijection de] $-\frac{\pi}{2},\frac{\pi}{2}[$ dans $\mathbb{R}.$

On peut donc introduire la bijection réciproque $\tan^{-1}: \mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Cette réciproque est appelée arctangente et notée arctan.

Fonction : $\arctan: \begin{array}{ccc} \mathbb{R} & \rightarrow &]-\frac{\pi}{2},\frac{\pi}{2}[\\ x & \mapsto & \arctan(x) \end{array}$

x	$-\infty$	0	∞
$\arctan(x)$	$-\frac{\pi}{2}$	0	$\rightarrow \frac{\pi}{2}$

Domaine de définition : \mathbb{R} Domaine de dérivabilité : \mathbb{R}

Dérivée : $\arctan'(x) = \frac{1}{1+x^2}$

Parité: Impaire Périodicité: Aucune

Propriétés : $\forall x \in \mathbb{R}, \ \tan(\arctan(x)) = x, \quad \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ \arctan(\tan(x)) = x]$

En particulier on trouve: $\arctan(0) = 0$, $\arctan\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6}$, $\arctan(1) = \frac{\pi}{4}$, $\arctan(\sqrt{3}) = \frac{\pi}{3}$.

Attention!

La fonction arctan est la bijection réciproque de la fonction tan restreinte à] $-\frac{\pi}{2}, \frac{\pi}{2}$ [.

Ainsi, la quantité $\arctan(\tan(x))$ est bien définie pour tout x dans le domaine de définition de tan, mais n'est égale à x que pour $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]!$

Exemple: $\arctan\left(\tan\left(\frac{\pi}{4} + \pi\right)\right) = \arctan\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4} \neq \frac{\pi}{4} + \pi$

À savoir faire à l'issue de ce chapitre :

- Justifier l'existence d'une borne supérieure/inférieure.
- Déterminer le $\sup/\inf/\max/\min$ d'une partie de \mathbb{R} .
- Manipuler des valeurs absolues en distinguant éventuellement les cas.
- Manipuler l'inégalité triangulaire.
- Maîtriser le vocabulaire lié aux fonctions numériques . (sens de variation, majorant/minorant, sup/inf, max/min...)
- Mener très rapidement l'étude d'une fonction polynomiale de degré 2.
- Connaître les propriétés et règles de calcul des fonctions puissances. (en faisant notamment attention aux ensembles de définition!)
- Connaître les propriétés et règles de calcul des fonctions exp et ln.
- Connaître les propriétés et règles de calcul des fonctions cos, sin, tan, arctan. Savoir rapidement retrouver des valeurs particulières.

- Étudier rapidement une fonction : domaine, variations, allure du graphe.
- Utiliser la parité/imparité ou la périodicité pour réduire le domaine de l'étude.
- Utiliser les formules d'addition de cos et sin pour déterminer d'autres formules.

Au minimum

• Démontrer rigoureusement qu'un réel est la borne sup/inf d'une partie de \mathbb{R} . (quand il ne s'agit pas d'un maximum/minimum)

Pour les ambitieux