Равномерная сходимость

Мы уже проходили эту тему во втором и первом семестре, сейчас будем лишь углублять и утончять наши знания.

Пусть $X \neq \emptyset$, заданы функции $f_n, f: X \to \mathbb{R}$ (или в более общее \mathbb{C}).

Rm: 1. Обычно всегда трудно осознать, что перед нами последовательность функций.

Упр. 1. Нарисовать "мультик" из функций:

$$f_n^1(x) = \begin{cases} 1, & x < \frac{1}{n} \\ 0, & x \ge \frac{1}{n} \end{cases}, f_n^2(x) = \begin{cases} \frac{1}{n}, & x < \frac{1}{n} \\ 0, & x \ge \frac{1}{n} \end{cases}$$

Опр: 1. Последовательность функций f_n сходится поточечно к f, если $\forall x \in X$ числовая последовательность $f_n(x)$ сходится к числу f(x). Или подробнее:

$$\forall x \in X, \forall \varepsilon > 0, \exists N : \forall n > N, |f_n(x) - f(x)| < \varepsilon$$

Рассмотрим функцию $f_n^1(x)$ и в качестве $x=\frac{1}{1000}$, тогда $f_1^1(x)=\ldots=f_{999}^1(x)=1$ и дальше последовательность функций везде будет равна нулю: $f_n^1(x)=0,\ \forall n>999.$ Если взять $x=\frac{1}{10^6},$ то тогда картина будет похожей: при $n\leq 999999$ значения $f_n^1(x)$ будет равны 1 и для n>999999 будет равны 0. Таким образом, $f_n^1(x)$ в этом примере поточечно сходятся к 0.

Опр: 2. Последовательность функций f_n сходится равномерно к f на X, если:

$$\sup_{x \in X} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0$$

Или по-другому:

$$\forall \varepsilon > 0, \ \exists \ N : \forall n > N, \ \forall x \in X, \ |f_n(x) - f(x)| < \varepsilon$$

обозначаем $f_n \stackrel{X}{\Longrightarrow} f$.

Rm: 2. Отметим, что для маленьких n не запрещено, чтобы разность $\sup_{x \in X} |f_n(x) - f(x)|$ была бесконечностью. Не будем считать это плохой ситуацией. Выражение должно быть конечным, начиная с какого-то номера.

Будет ли равномерная сходимость для $f_n^1(x)$? Чтобы это понять надо взять и посмотреть, как ведет себя точная верхняя грань:

$$\sup_{x \in \mathbb{R}} |f_n^1(x) - 0| = 1 \to 0$$

То есть не будет равномерной сходимости, тогда как для $f_n^2(x)$ она будет:

$$\sup_{x \in \mathbb{R}} |f_n^2(x) - 0| = \frac{1}{n} \to 0$$

 \mathbf{Rm} : 3. Еще одна аналогия: в равномерной сходимости происходит стремление к нулю как бы сразу во всех точках x.

Утв. 1. Если $f_n \stackrel{X}{\Longrightarrow} f$, то $f_n \to f$ поточечно.

□ Очевидно из определения.

 \mathbf{Rm} : 4. Из данного утверждения следует, что равномерный предел определен единственным образом, поскольку поточечный предел это предел числовой последовательности, там единственность предела есть. И получается, что в каждой точке X предельная функция f задана однозначно.

Опр: 3. Последовательность $f_n(x)$ равномерно ограниченна, если верно следующее:

$$\exists C > 0 \colon \forall x, \, \forall n, \, |g_n(x)| \leq C$$

Утв. 2. Пусть $f_n \stackrel{X}{\Longrightarrow} f, g_n \stackrel{X}{\Longrightarrow} g,$ тогда:

- $(1) f_n + g_n \stackrel{X}{\Longrightarrow} f + g;$
- (2) если f, g ограниченны на X, то $f_n \cdot g_n \stackrel{X}{\rightrightarrows} f \cdot g$;

 \mathbf{Rm} : 5. Если не требовать ограниченности на f и g, то второй пункт будет неверным. Например:

$$X = \mathbb{R}, f_n(x) \equiv f(x) = x, g_n(x) = \frac{1}{n} \stackrel{\mathbb{R}}{\Longrightarrow} 0 \Rightarrow f_n(x) \cdot g_n(x) = \frac{x}{n}$$

И тогда точная верхняя грань у произведения $f_n(x) \cdot g_n(x)$ всегда будет бесконечностью.

Rm: 6. Заметим, что требовать ограниченности от последовательности равномерно сходящейся или требовать ограниченности от их предела это одно и то же, потому что всегда есть такая оценка:

$$|f_n(x)| \le |f_n(x) - f(x)| + |f(x)|$$

Если ограничен супремум f(x), то поскольку супремум разности $|f_n(x) - f(x)|$ стремится к нулю, то начиная с некоторого номера $f_n(x)$ тоже будет равномерно ограниченной. Или по-другому:

$$\exists C > 0 \colon |f(x)| \le C, \forall x \Rightarrow |f_n(x)| \le C + 1, \forall n > n_0, \forall x$$

Аналогично:

$$|f(x)| \le |f_n(x) - f(x)| + |f_n(x)|$$

Если ограничена равномерно последовательность $f_n(x)$, то поскольку супремум разности $|f_n(x) - f(x)|$ стремится к нулю, то начиная с некоторого номера f(x) тоже будет ограниченной. Или по-другому:

$$\exists C > 0 \colon |f_n(x)| \le C, \, \forall n > n_0, \, \forall x \Rightarrow |f(x)| \le C, \, \forall x$$

где в последнем неравенстве не прибавляем 1 к константе в силу поточечной сходимости.

(1) Оценим разность:

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

Навешиваем справа точную верхнюю грань по $x \in X$:

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le \sup_{x \in X} |f_n(x) - f(x)| + \sup_{x \in X} |g_n(x) - g(x)|$$

таким образом, правая часть больше не зависит от $x \Rightarrow$ левая часть оценивается сверху везде и можно навесить супремум слева:

$$\sup_{x \in X} |f_n(x) + g_n(x) - (f(x) + g(x))| \le \sup_{x \in X} |f_n(x) - f(x)| + \sup_{x \in X} |g_n(x) - g(x)|$$

Правая часть стремиться к нулю ⇒ левая часть тоже будет стремиться к нулю;

(2) Оценим разность:

$$|f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| = |f_n(x) \cdot g_n(x) - f(x) \cdot g_n(x) + f(x) \cdot g_n(x) - f(x) \cdot g(x)| \le$$

$$\le |f_n(x) - f(x)| \cdot |g_n(x)| + |g_n(x) - g(x)| \cdot |f(x)| = (*)$$

По условию:

$$\exists n_0, C > 0 : \forall x, \forall n > n_0, |g_n(x)| \leq C, |f(x)| \leq C$$

Тогда оценка разности будет следующей:

$$(*) \le C(|f_n(x) - f(x)| + |g_n(x) - g(x)|)$$

Аналогично предыдущему пункут навешиваем супремумы справа, затем слева и получим:

$$\sup_{x \in X} |f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| \le C \left(\sup_{x \in X} |f_n(x) - f(x)| + \sup_{x \in X} |g_n(x) - g(x)| \right)$$

Утв. 3. Пусть $f_n \stackrel{X}{\rightrightarrows} 0$ и g_n - равномерно ограниченна, тогда $f_n \cdot g_n \stackrel{X}{\rightrightarrows} 0$.

□ Оценим разность:

$$|f_n(x) \cdot g_n(x) - 0| = |f_n(x) \cdot g_n(x)| \Rightarrow \exists n_0, C > 0 : \forall x, \forall n > n_0, |f_n(x) \cdot g_n(x)| \le C|f_n(x)|$$

Тогда:

$$\sup_{x \in X} |f_n(x) \cdot g_n(x)| \le C \sup_{x \in X} |f_n(x)|$$

Правая часть стремиться к нулю \Rightarrow левая часть тоже будет стремиться к нулю.

Критерий Коши

Теорема 1. (**Критерий Коши**) Последовательность f_n сходится равномерно на X тогда и только тогда, когда выполняется условие Коши:

$$\forall \varepsilon > 0, \ \exists N : \forall n, m > N, \sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$$

Rm: 7. Буквально должно напоминать проверку полноты пространства ограниченных функций.

Rm: 8. Заметим, что доказательство в обратную сторону здесь не очевидно. Для вещественных чисел нам надо было сначала откуда-то взять предел и мы использовали теорему Больцано (огр. последовательность ⇒ выбираем сходящуюся подпоследовательность, это и есть предел), но здесь поступить аналогично не получится, поскольку с точки зрения равномерной сходимости (а даже и поточечной) здесь теорема Больцано не выполняется.

Есть задача, что из последовательности $\sin(nx)$ на отрезке [0,1] (равномерно ограниченная последовательность) нельзя выбрать поточечно сходящуюся подпоследовательность.

Также отметим, что возможность выбирать поточечную подпоследовательность связана только со случаями, когда X не более, чем счетное. Чуть далее мы пообсуждаем альтернативы теореме Больцано.

(⇒) Очевидно.

(⇐) По условию:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, \forall x \in X, |f_n(x) - f_m(x)| < \varepsilon$$

Следовательно $\forall x$, начиная с некоторого номера N числовая последовательность $\{f_n(x)\}$ - фундаментальна. По критерию Коши для числовых последовательностей $\exists \lim_{n\to\infty} f_n(x) = f(x)$. Проверим, что сходимся к этому равномерно, напишем условие Коши:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, \forall x \in X, |f_n(x) - f_m(x)| < \varepsilon$$

Фиксируем x и фиксируем n, а m устремляем к бесконечности. Поскольку мы уже знаем, что предел в каждой точке x есть, мы можем перейти в неравенстве к пределу:

$$|f_n(x) - f(x)| \le \varepsilon$$

Но все предыдущие высказывания остались в силе, следовательно:

$$\forall \varepsilon > 0, \ \exists N \colon \forall n > N, \ \forall x \in X, \ |f_n(x) - f(x)| \le \varepsilon \Rightarrow \sup_{x \in X} |f_n(x) - f(x)| \to 0$$

Будет ли выполнятся теорема Больцано? Нет, не будет.

Пример: $f_n(x) = \sin(nx)$, эта последовательность равномерно ограниченна: $\forall n, \forall x, |f_n(x)| \leq 1$. Нельзя выбрать даже поточечную сходящуюся подпоследовательность.

Если бы интересовала сходимость только равномерная, то пример построить гораздо проще:

Пример: Рассмотрим следующую последовательность $\{f_n\}$:

Рис. 1: Последовательность функций $f_n(x)$.

Если рассмотрим точную верхнюю грань:

$$\sup_{x \in X} |f_n(x) - f_m(x)| = 1$$

поскольку они все на разных промежутках отличны от нуля. Очевидно, что f_n и никакая её подпоследовательность не удовлетворяет условию Коши \Rightarrow никакая подпоследовательность не может быть сходящейся равномерно, при этом эта последовательность равномерна ограниченна.

Получается, что условия теоремы Больцано нет. Но надо помнить, что теорема Больцано связана не только с возможностью выбирать из ограниченного сходящееся, но с компактностью.

Причина: ограниченное замкнутое множество может не быть компактом, потому что для точек компакта было утверждение о том, что если задана последовательность из неё можно выбрать сходяющуюся подпоследовательность. Причина отуствия теоремы Больцано в первую очередь связана с отсутствием компактности ограниченных замкнутых множеств.

Компактность

Появляется естественный вопрос, какие множества будут компактами? Можно ли как-то описать компактность? Попробуем разобраться. Нас будут интересовать пространства ограниченных функций:

$$\mathcal{B}(X) = \{ f \colon X \to \mathbb{R}, \, \sup_{X} |f| < \infty \}$$

это метрическое пространство с метрикой $\rho(f,g) = \sup_X |f-g|$ и соответственно:

$$f_n \stackrel{X}{\Longrightarrow} f \Leftrightarrow \rho(f_n, f) \to 0$$

по определению равномерной сходимости (взятое из сходимости по метрике). Вопрос, а как устроены компакты в $\mathcal{B}(X)$? Хочется получить что-нибудь аналогичное конечномерным пространствам, где компакты это ограниченные и замкнутые множества.

Опр: 4. Множество K в метрическом пространстве (X, ρ) компактно, если всякое его покрытие открытыми множествами имеет конечное подпокрытие.

Утв. 4. Множество $K \subset \mathcal{B}(X)$ - компакт, тогда (в неметрическом пространстве это утверждение неверно):

- 1) K ограниченное множество;
- 2) K замкнутое множество (дополнение к нему открыто);
- 3) Замкнутое подмножество компакта является компактом;
- 4) Всякое бесконечное подмножество обязательно имеет предельную точку;

Rm: 9. В частности, 4) свойство означает, что у всякой последовательности элементов компакта есть сходящаяся подпоследовательность.

Для продолжения обсуждения, нам потребуется понятие ε -сети.

Опр: 5. Пусть $\varepsilon > 0$ и A - подмножество метрического пространства (X, ρ) . Множество B называется ε -сетью для множества A, если:

$$\forall a \in A, \exists b \in B : \rho(a,b) < \varepsilon$$

Rm: 10. То есть, если возьмем множество B и в каждой его точке нарисуем шарик радиуса ε , то эти шары закроют множество A.

Рис. 2: Покрытие ε - сетью.

Rm: 11. В общем случае, компактность в метрических пространствах связана не с ограниченностью, а с возможностью поймать множество в такую сеть.

Опр: 6. Если множество B выше конечное, то говорят, что A имеет конечную ε -сеть.

Утв. 5. Если у множества A есть конечная ε -сеть, то у A есть конечная 2ε -сеть из элементов A.

Пусть B это ε -сеть для A. Возьмем $b \in B$, если $B(b,\varepsilon) \cap A \neq \emptyset$, то выбираем $\tilde{a} \in B(b,\varepsilon) \cap A$ и берем все такие \tilde{a} для каждого b (их конечное число). Если шарик пустой - его можно удалить, он не участвует в образовании ε -сети. Таким образом, получаем $\tilde{A} = \{\tilde{a}\}$. Возьмем $c \in \tilde{A}$, тогда:

$$\exists b \in B \colon \rho(b,c) < \varepsilon \land \exists \tilde{a} \in \widetilde{A} \colon \rho(b,\tilde{a}) < \varepsilon \Rightarrow \rho(c,\tilde{a}) < 2\varepsilon$$

Утв. 6. Если K - компакт, то у него $\forall \varepsilon > 0$ существует конечная ε -сеть.

 \square Возьмем $\forall b \in K$ шар $B(b, \varepsilon)$, тогда их объединение покрывает K, то есть:

$$K \subset \bigcup_b B(b,\varepsilon)$$

Но эти шары открытые \Rightarrow существует конечное подпокрытие: $B(b_1, \varepsilon), \ldots, B(b_N, \varepsilon)$, по определению компакта. А значит $B = \{b_1, \ldots, b_N\}$ это и есть конечная ε -сеть.