What is market basket analysis?

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Selecting a bookstore layout

Exploring transaction data

TID	Transaction
1	biography, history
2	fiction
3	biography, poetry
4	fiction, history
5	biography
•••	•••
75000	fiction, poetry

• **TID** = unique ID associated with each transaction.

• Transaction = set of unique items purchased together.

What is market basket analysis?

- 1. Identify products frequently purchased together.
 - Biography and history
 - Fiction and poetry
- 2. Construct recommendations based on these findings.
 - Place biography and history sections together.
 - Keep fiction and history apart.

The use cases of market basket analysis

- 1. Build Netflix-style recommendations engine.
- 2. Improve product recommendations on an e-commerce store.
- 3. Cross-sell products in a retail setting.
- 4. Improve inventory management.
- 5. Upsell products.

Using market basket analysis

TID	Transaction
11	fiction, biography
12	fiction, biography
13	history, biography
•••	•••
19	fiction, biography
20	fiction, biography
•••	•••

Market basket analysis

- Construct association rules
- Identify items frequently purchased together

Association rules

- \circ {antecedent} \rightarrow {consequent}
 - $\{fiction\} \rightarrow \{biography\}$

Loading the data

```
import pandas as pd

# Load transactions from pandas.
books = pd.read_csv("datasets/bookstore.csv")

# Print the header
print(books.head(2))
```

```
TID Transaction

0 biography, history

1 fiction
```

For a refresher, see the Pandas Cheat Sheet.

Building transactions

```
# Split transaction strings into lists.
transactions = books['Transaction'].apply(lambda t: t.split(','))

# Convert DataFrame into list of strings.
transactions = list(transactions)
```

Counting the itemsets

```
# Print the first transaction.
print(transactions[0])
```

```
['biography', 'history']
```

```
# Count the number of transactions that contain biography and fiction.
transactions.count(['biography', 'fiction'])
```

218

Making a recommendation

```
# Count the number of transactions that contain fiction and poetry.
transactions.count(['fiction', 'poetry'])
```

5357

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Identifying association rules

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Loading and preparing data

```
import pandas as pd
# Load transactions from pandas.
books = pd.read_csv("datasets/bookstore.csv")
# Split transaction strings into lists.
transactions = books['Transaction'].apply(lambda t: t.split(','))
# Convert DataFrame into list of strings.
transactions = list(transactions)
```


Exploring the data

```
print(transactions[:5])

[['language', 'travel', 'humor', 'fiction'],
   ['humor', 'language'],
   ['humor', 'biography', 'cooking'],
   ['cooking', 'language'],
   ['travel']]
```


Association rules

- Association rule
 - Contains antecedent and consequent
 - $\{\text{health}\} \rightarrow \{\text{cooking}\}$
- Multi-antecedent rule
 - \circ {humor, travel} \rightarrow {language}
- Multi-consequent rule
 - \circ {biography} \rightarrow {history, language}

Difficulty of selecting rules

- Finding useful rules is difficult.
 - Set of all possible rules is large.
 - Most rules are not useful.
 - Must discard most rules.
- What if we restrict ourselves to simple rules?
 - One antecedent and one consequent.
 - Still challenging, even for small dataset.

Generating the rules

- fiction
- poetry
- history
- biography
- cooking

- health
- travel
- language
- humor

Generating the rules

Fiction Rules	Poetry Rules	•••	Humor Rules
fiction->poetry	poetry->fiction	•••	humor->fiction
fiction->history	poetry->history	•••	humor->history
fiction->biography	poetry->biography	•••	humor->biography
fiction->cooking	poetry->cooking	•••	humor->cooking
•••	•••	•••	•••
fiction->humor	poetry->humor	•••	

Generating rules with itertools

```
from itertools import permutations

# Extract unique items.
flattened = [item for transaction in transactions for item in transaction]
items = list(set(flattened))
```

```
# Compute and print rules.
rules = list(permutations(items, 2))
print(rules)
```

```
[('fiction', 'poetry'),
  ('fiction', 'history'),
  ...
  ('humor', 'travel'),
  ('humor', 'language')]
```

Counting the rules

Print the number of rules
print(len(rules))

72

Looking ahead

```
# Import the association rules function
from mlxtend.frequent_patterns import association_rules
from mlxtend.frequent_patterns import apriori
# Compute frequent itemsets using the Apriori algorithm
frequent_itemsets = apriori(onehot, min_support = 0.001,
                            max_len = 2, use_colnames = True)
# Compute all association rules for frequent_itemsets
rules = association_rules(frequent_itemsets,
                            metric = "lift",
                             min_{threshold} = 1.0
```

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

The simplest metric

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Metrics and pruning

- A metric is a measure of performance for rules.
 - \circ {humor} \rightarrow {poetry}
 - **0.81**
 - \circ {fiction} \rightarrow {travel}
 - **0.23**
- Pruning is the use of metrics to discard rules.
 - \circ Retain: {humor} \rightarrow {poetry}
 - \circ Discard: {fiction} \rightarrow {travel}

The simplest metric

• The support metric measures the share of transactions that contain an itemset.

number of transactions with items(s)
number of transactions

number of transactions with milk total transactions

Support for language

TID	Transaction
0	travel, humor, fiction
1	humor, language
2	humor, biography, cooking
3	cooking, language
4	travel

TID	Transaction
5	poetry, health, travel, history
6	humor
7	travel
8	poetry, fiction, humor
9	fiction, biography

Support for $\{language\} = 2 / 10 = 0.2$

Support for {Humor} \rightarrow {Language}

TID	Transaction
0	travel,humor,fiction
1	humor,language
2	humor,biography,cooking
3	cooking,language
4	travel

TID	Transaction
5	poetry,health,travel,history
6	humor
7	travel
8	poetry,fiction,humor
9	fiction,biography

SUPPORT for $\{language\} \rightarrow \{humor\} = 0.1$

Preparing the data

```
print(transactions)
[['travel', 'humor', 'fiction'],
['fiction', 'biography']]
from mlxtend.preprocessing import TransactionEncoder
# Instantiate transaction encoder
encoder = TransactionEncoder().fit(transactions)
```


Preparing the data

```
# One-hot encode itemsets by applying fit and transform
onehot = encoder.transform(transactions)

# Convert one-hot encoded data to DataFrame
onehot = pd.DataFrame(onehot, columns = encoder.columns_)
print(onehot)
```

```
biography cooking ... poetry travel
0 False   False ... False True
...
9 True   False ... False False
```


Computing support for single items

```
print(onehot.mean())
```

```
biography
          0.2
cooking
      0.2
fiction
      0.3
health
      0.1
      0.1
history
      0.5
humor
       0.2
language
      0.2
poetry
      0.4
travel
dtype: float64
```


Computing support for multiple items

```
import numpy as np

# Define itemset that contains fiction and poetry
onehot['fiction+poetry'] = np.logical_and(onehot['fiction'],onehot['poetry'])

print(onehot.mean())
```

```
biography 0.2
cooking 0.2
... ...
travel 0.4
fiction+poetry 0.1
dtype: float64
```


Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

