Written Homework 1.4

1. (15 pts) Let

$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}, \qquad \mathbf{A} = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$$

- (a) (10 pts) Is **u** in the subset of \mathbb{R}^3 spanned by the columns of **A**? Why or why not?
- (b) (5 pts) If it is, find the linear combination of the columns that give \mathbf{u} . If it is not, find a vector, \mathbf{v} , that is in the span of the columns of \mathbf{A} .
- a) In order to determine whether u is in the subset spanned by the columns of A, we need to find whether

$$[A][x] = [u]$$

Which is equivalent to the augmented matrix [A \mid u] having infinite solutions. However, the echelon form of the augmented matrix has a row [0 0 0 -29], which means it is inconsistent, and cannot have infinite solutions.

This means u is not in the subset spanned by the column vectors of A.

Find a vector v, that spans column vectors of A
 A vector in the Span of the column vectors must be a linear combination of the column vectors

2. (8 pts) Construct a 3×3 matrix, not in echelon form, whose columns span \mathbb{R}^3 . Show that the constructed matrix has the desired property.

3. (6 pts) Let A be a 3×4 matrix, let \mathbf{y}_1 and \mathbf{y}_2 be vectors in \mathbb{R}^3 , and let $\mathbf{w} = \mathbf{y}_1 + \mathbf{y}_2$. Suppose $\mathbf{y}_1 = A\mathbf{x}_1$ and $\mathbf{y}_2 = A\mathbf{x}_2$ for some vectors \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^4 . What property of matrix multiplication allows you to conclude that the system $A\mathbf{x} = \mathbf{w}$ is consistent?

3	Distributive Property of Matrix Multiplication Since y=Ax, and y=Ax have Some solution (x, and x=12)
CI	$A \times_{1} + A \times_{2} = y_{1} + y_{2}$ $Peccall we y_{1} + y_{2}$ $P(X_{1} + X_{2}) = W$ $Since \times_{1} \times_{2} \in \mathbb{R}^{4}$ $N_{1} + X_{2} \text{must}$
	Since X1, X2 EPR, X, +X2 must also exist and be in Pr, so there must be a solution to' Ax=W, the solution being X2 X, +X5.

4. (6 pts) Let A be a 5×3 matrix, let \mathbf{y} be a vector in \mathbb{R}^3 , and let \mathbf{z} be a vector in \mathbb{R}^5 . Suppose $A\mathbf{y} = \mathbf{z}$. What property of matrix multiplications allows you to conclude that the system $A\mathbf{x} = 4\mathbf{z}$ is consistent?

4	The Linear Property of Matrix Multiplication
	A(cU) = C(Au)
	Since Ay27
	=> 4Ay = 42
	Since y exists in p3, that means
0	Hy must also exist in 12. That
	means there must be a solution to
	Ax = 42, where $x = 4y$.