The Birch and Swinnerton-Dyer Conjecture On The Rank Of Elliptic Curves Over Rational Numbers

BY STEPHEN CROWLEY August 28, 2025

Table of contents

1	The Birch and Swinnerton-Dyer Conjecture	1
	1.1 Foundational Definitions	1
	1.2 L-Functions	
	1.3 The Conjecture	4
	1.4 Connection to Square-Free Numbers	4

1 The Birch and Swinnerton-Dyer Conjecture

The Birch and Swinnerton-Dyer conjecture is fundamentally about elliptic curves over the rational numbers and specifically about understanding when these curves have infinitely many rational solutions versus only finitely many.

1.1 Foundational Definitions

```
Definition 1. The integers \mathbb{Z} are the set \{\ldots, -2, -1, 0, 1, 2, \ldots\}.
```

Definition 2. The rational numbers \mathbb{Q} are the set $\{p/q: p, q \in \mathbb{Z}, q \neq 0\}$.

Definition 3. A monomial in variables $x_1,...,x_n$ is an expression of the form $x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ where each $a_i \ge 0$ is a nonnegative integer.

Definition 4. The degree of a monomial $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ is the sum $a_1 + a_2 + \cdots + a_n$.

Definition 5. A polynomial in variables $x_1, ..., x_n$ with coefficients in \mathbb{Q} is a finite linear combination of monomials: $f(x_1, ..., x_n) = \sum c_{\mathbf{a}} x_1^{a_1} \cdots x_n^{a_n}$ where $c_{\mathbf{a}} \in \mathbb{Q}$ and only finitely many $c_{\mathbf{a}}$ are nonzero.

2 Section 1

Definition 6. A homogeneous polynomial of degree d in variables x_1, \ldots, x_n is a polynomial f such that every monomial term in f has total degree d. That is, if $f = \sum c_{\mathbf{a}} x_1^{a_1} \cdots x_n^{a_n}$ where $c_{\mathbf{a}} \neq 0$, then $a_1 + \cdots + a_n = d$ for all such terms.

Definition 7. The projective plane $\mathbb{P}^2(\mathbb{Q})$ over \mathbb{Q} consists of equivalence classes [x:y:z] where $(x,y,z) \in \mathbb{Q}^3 \setminus \{(0,0,0)\}$ and $(x,y,z) \sim (\lambda x, \lambda y, \lambda z)$ for any nonzero $\lambda \in \mathbb{Q}$.

Definition 8. A projective curve C in $\mathbb{P}^2(\mathbb{Q})$ is the set $C = \{[x:y:z] \in \mathbb{P}^2(\mathbb{Q}): F(x,y,z) = 0\}$ where F(x,y,z) is a homogeneous polynomial with coefficients in \mathbb{Q} .

Definition 9. The partial derivative of a polynomial F(x, y, z) with respect to x is the polynomial $\frac{\partial F}{\partial x}$ obtained by differentiating each term: if $F = \sum c_{ijk} x^i y^j z^k$, then $\frac{\partial F}{\partial x} = \sum i \cdot c_{ijk} x^{i-1} y^j z^k$.

Definition 10. A point P = [a:b:c] on a projective curve C defined by F(x, y, z) = 0 is singular if all three partial derivatives vanish at P:

$$\frac{\partial F}{\partial x}\left(a,b,c\right) = \frac{\partial F}{\partial y}\left(a,b,c\right) = \frac{\partial F}{\partial z}\left(a,b,c\right) = 0$$

Definition 11. A projective curve is non-singular (or smooth) if it contains no singular points.

Definition 12. The genus of a non-singular projective curve defined by a homogeneous polynomial of degree d is $g = \frac{(d-1)(d-2)}{2}$.

Definition 13. An elliptic curve over \mathbb{Q} is a non-singular projective curve of genus 1 equipped with a specified rational point. It can be written in Weierstrass form as:

$$E \colon\! y^2 \, z = x^3 + a \, x \, z^2 + b \, z^3$$

where $a, b \in \mathbb{Q}$ and the discriminant $\Delta = -16 (4 a^3 + 27 b^2) \neq 0$.

Definition 14. The point at infinity on an elliptic curve in Weierstrass form is O = [0: 1:0].

Definition 15. An abelian group is a set G with an operation $+: G \times G \rightarrow G$ such that:

- 1. (Associativity) (a+b)+c=a+(b+c) for all $a,b,c\in G$
- 2. (Identity) There exists $0 \in G$ such that a + 0 = 0 + a = a for all $a \in G$
- 3. (Inverse) For each $a \in G$, there exists $-a \in G$ such that a + (-a) = 0
- 4. (Commutativity) a + b = b + a for all $a, b \in G$

Definition 16. The set $E(\mathbb{Q})$ of rational points on an elliptic curve E forms an abelian group under the chord-and-tangent law with identity element O and group operation defined as follows: For distinct points $P = [x_1: y_1: 1], Q = [x_2: y_2: 1] \in E(\mathbb{Q})$ with $P, Q \neq O$:

- 1. If $x_1 \neq x_2$, let ℓ be the line through P and Q. This line intersects E at exactly three points: P, Q, and a third point R. Define P + Q to be the point such that P + Q + R = O under the group law.
- 2. If $x_1 = x_2$ and $y_1 = -y_2$, then P + Q = O.
- 3. If P = Q and $y_1 \neq 0$, let ℓ be the tangent line to E at P. This intersects E at P (with multiplicity 2) and one other point R. Define 2P such that 2P + R = O.
- 4. For any $P \in E(\mathbb{Q})$: P + O = O + P = P.

Definition 17. The rank of an abelian group G is the dimension of $G \otimes \mathbb{Q}$ as a \mathbb{Q} -vector space.

Definition 18. A square-free integer is an integer n such that no perfect square other than 1 divides n.

1.2 L-Functions

Definition 19. Let \mathbb{F}_p denote the field with p elements, where p is prime.

Definition 20. An elliptic curve E over \mathbb{Q} has good reduction at a prime p if the curve obtained by reducing the coefficients of its Weierstrass equation modulo p is non-singular over \mathbb{F}_p .

Definition 21. An elliptic curve E over \mathbb{Q} has multiplicative reduction at a prime p if the reduced curve modulo p has exactly one singular point, which is a node (intersection of two distinct lines).

Definition 22. An elliptic curve E over \mathbb{Q} has additive reduction at a prime p if the reduced curve modulo p has a cusp or worse singularity.

Definition 23. The Hasse-Weil L-function L(E, s) of an elliptic curve E over \mathbb{Q} is defined as the Euler product:

$$L(E,s) = \prod_{pprime} L_p(E,s)^{-1}$$

which converges absolutely for $\operatorname{Re}(s) > \frac{3}{2}$, where each local L-factor $L_p(E,s)$ is defined as:

- 1. If E has good reduction at p: $L_p(E, s) = 1 a_p p^{-s} + p^{1-2s}$ where $a_p = p + 1 |E(\mathbb{F}_p)|$
- 2. If E has multiplicative reduction at p: $L_p(E,s) = 1 a_p p^{-s}$ where $a_p = \pm 1$
- 3. If E has additive reduction at p: $L_p(E, s) = 1$

4 Section 1

Definition 24. The order of vanishing of a function f(s) at $s = s_0$ is the largest integer k such that $(s - s_0)^k$ divides f(s) in a neighborhood of s_0 .

Definition 25. The Tamagawa number $c_p(E)$ of an elliptic curve E at a prime p is the index $[E(\mathbb{Q}_p): E^0(\mathbb{Q}_p)]$, where $E^0(\mathbb{Q}_p)$ is the subgroup of points with good reduction.

Definition 26. The real period Ω_E of an elliptic curve E is $\int_{E(\mathbb{R})} |\omega|$ where ω is the invariant differential on E.

Definition 27. The Shafarevich-Tate group $X(E/\mathbb{Q})$ is the kernel of the map $H^1(\mathbb{Q}, E) \to \prod_v H^1(\mathbb{Q}_v, E)$ where the product runs over all places v of \mathbb{Q} .

Definition 28. The regulator $\operatorname{Reg}(E/\mathbb{Q})$ is the determinant of the Gram matrix of the canonical height pairing on the free part of $E(\mathbb{Q})$.

1.3 The Conjecture

Conjecture 29. [Birch and Swinnerton-Dyer] Let E be an elliptic curve over \mathbb{Q} . Then:

- 1. The Shafarevich-Tate group $X(E/\mathbb{Q})$ is finite.
- 2. $\operatorname{ord}_{s=1}L(E,s) = \operatorname{rank}_{\mathbb{Z}}E(\mathbb{Q})$
- 3. $\lim_{s \to 1} \frac{L(E,s)}{(s-1)^r} = \frac{\Omega_E \cdot \operatorname{Reg}(E/\mathbb{Q}) \cdot |X(E/\mathbb{Q})| \prod_p c_p(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2} \text{ where } r = \operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}).$

1.4 Connection to Square-Free Numbers

Definition 30. The quadratic twist of an elliptic curve $E: y^2 = x^3 + ax + b$ by a square-free integer n is the curve $E_n: ny^2 = x^3 + ax + b$.

Definition 31. A congruent number is a square-free positive integer n that is the area of a right triangle with rational side lengths.

Theorem 32. Let n be a square-free positive integer. Then n is a congruent number if and only if the elliptic curve E_n : $y^2 = x^3 - n^2 x$ has positive rank. By the Birch and Swinnerton-Dyer conjecture, this is equivalent to $L(E_n, 1) = 0$.

The conjecture involves square-free numbers because the behavior of L-functions $L(E_n, s)$ at s = 1 for quadratic twists by square-free integers n determines the solvability of fundamental Diophantine equations.