Exercice 1. On pose, pour tout réel x de l'intervalle $]-1,+\infty[$:

$$f(x) = x \ln(1+x).$$

note \mathcal{C}_f la représentation graphique de f dans un repère plan.

- 1. Déterminer les limites de f aux bornes de son intervalle de définition.
- **2. a)** Calculer f'(x) pour tout réel x de l'intervalle $]-1,+\infty[$.
 - **b)** Montrer que pour tout réel x de l'intervalle $]-1,+\infty[:f''(x)=\frac{x+2}{(1+x)^2}]$
 - c) En déduire les variations de la fonction f' sur l'intervalle $]-1,+\infty[$.
- 3. Tracer l'allure \mathcal{C}_f dans un repère du plan, en soignant le tracé au point d'abscisse 0.
- **4.** On pose $I = \int_{0}^{1} f(x) dx$.
 - **a)** Montrer que $I = \frac{\ln(2)}{2} \frac{1}{2} \int_0^1 \frac{x^2}{x+1} dx$.
 - **b)** Vérifier que : $\forall x \in [0,1], \frac{x^2}{x+1} = x 1 + \frac{1}{x+1}.$
 - \mathbf{c}) En déduire la valeur de l'intégrale I.
- **5.** On considère à présent la famille de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies sur $]-1,+\infty[$ par :

$$\forall n \in \mathbb{N}^*, \forall x \in]-1, +\infty[, f_n(x) = x^n \ln(1+x).$$

On pose alors pour tout entier naturel n non nul, $I_n = \int_0^1 f_n(x) dx$.

6. a) Montrer que pour tout entier $n \in \mathbb{N}^*$:

$$\forall n \in \mathbb{N}^*, 0 \leqslant I_n \leqslant \frac{\ln(2)}{n+1}.$$

b) Déterminer la limite de la suite $(I_n)_{n\geqslant 1}$.

Problème. ()

On note $E = \mathbb{R}^3$ et $\mathscr{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ la base canonique de \mathbb{R}^3 . On définit la matrice

$$A = \begin{pmatrix} 16 & 4 & -4 \\ -18 & -4 & 5 \\ 30 & 8 & -7 \end{pmatrix}$$

et on note $u \in \mathcal{L}(E)$ l'unique endomorphisme ayant A pour matrice dans la base \mathscr{C} .

Partie I : Étude de la matrice A

- **1. a)** Déterminer le rang de la matrice A.
 - **b**) Déterminer une base de $\operatorname{Ker} u$.
 - c) Déterminer $Ker(u Id_E)$.
- **2.** On définit les matrices $P = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 2 & 1 & -2 \end{pmatrix}$ et $Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.
- **a)** Montrer qu'il existe une base $\mathscr{B} = (e_1, e_2, e_3)$ de E telle que $P = P_{\mathscr{C} \to \mathscr{B}}$ soit la matrice de passage de la base canonique \mathscr{C} vers la base \mathscr{B} .
 - **b)** Déterminer la matrice D de l'endomorphisme u dans la base \mathscr{B} .
 - c) Exprimer la matrice A en fonction des matrices D et P.
- **3.** Calculer la matrice P^{-1} .
- **4.** Soit $M \in \mathcal{M}_3(\mathbb{R})$. Montrer que MD = DM si et seulement si M est diagonale.

Partie II : Résolution de $X^2 = A$

On propose de résoudre, dans cette partie, l'équation $X^2 = A$ dans $\mathcal{M}_3(\mathbb{R})$.

- **5.** Soit $X \in \mathcal{M}_3(\mathbb{R})$. On note $Y = P^{-1}XP$. Déterminer une condition (C) sur Y équivalente à $X^2 = A$.
- **6. a)** Montrer que si Y vérifie la condition (C), alors YD = DY.
 - **b)** En déduire que la matrice Y satisfait la condition (C) si et seulement s'il existe $(\lambda, \mu) \in \{-1, 1\}^2$

$$\text{tel que } Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 2\mu \end{pmatrix}.$$

- 7. En déduire les matrices $X \in \mathcal{M}_3(\mathbb{R})$ satisfaisant $X^2 = A$.
- **8. a**) Déterminer le nombre m de solutions de l'équation $X^2 = A$. On notera $\{X_1, \ldots, X_m\}$ l'ensemble de ces solutions.
 - **b)** Déterminer, sans calcul, la somme S de ces m solutions, i.e. $S = \sum_{i=1}^{m} X_i$.
 - c) Montrer, sans calcul, que si X_i et X_j sont deux solutions, alors X_i et X_j commutent.
 - **d)** Déterminer le produit $T = X_1 \cdots X_m$ en fonction de A.

Partie III : Calcul du commutant de A

On note $\mathscr{C}(A) = \{ M \in \mathscr{M}_3(\mathbb{R}) \; ; \; AM = MA \}$ l'ensemble des matrices qui commutent avec la matrice A.

- **9.** Montrer que $\mathscr{C}(A)$ est un \mathbb{R} -espace vectoriel.
- **10.** Montrer que $M \in \mathcal{C}(A)$ si et seulement si $P^{-1}MP$ est diagonale.
- 11. En déduire qu'il existe trois matrices M_1 , M_2 , M_3 que vous expliciterez telles que

$$\mathscr{C}(A) = \left\{ \lambda M_1 + \mu M_2 + \nu M_3, \, (\lambda, \mu, \nu) \in \mathbb{R}^3 \right\}.$$

12. Calculer la dimension de $\mathscr{C}(A)$.

Problème. () L'objectif du problème est l'étude de l'efficacité d'un traitement T destiné à éradiquer une population de cellules indésirables. Pour tester T, on agit comme suit :

- 1. On prélève une cellule unique C_0 à laquelle on applique T, ce qui a pour effet de partager C_0 en un nombre naturel aléatoire Z_1 de cellule(s) identique(s) à C_0 qu'on appellera enfant(s) de C_0 ou descendant(s) de première génération de C_0 lorsque $Z_1 > 0$. Si $Z_1 = 0$ (ce que l'on souhaite), le traitement est terminé.
- 2. Lorsque C_0 a k enfant(s) avec $k \ge 1$, on leur applique à chacun le traitement T et leur comportement sera le même que celui de C_0 et ceci indépendemment les uns des autres lorsque k > 1.
- 3. À l'issue de cette deuxième étape, on obtiendra un nombre naturel aléatoire Z_2 de descendant(s) de deuxième génération. Si $Z_2 = 0$, on s'arrête. Sinon, on poursuit dans les mêmes coniditions et, pour $n \ge 1$, on notera Z_n le nombre de descendants de n-ième génération tant que $Z_n > 0$.

Hypothèses & Mises en équation. On dispose d'un espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$ dont on ne précisera pas les caractéristiques. On supposera que $Z_0=1$. Pour tout entier naturel k, on notera $p_k=\mathbb{P}(Z_1=k)$ (ce réel représente donc la probabilité, pour une cellule quelconque, d'avoir k enfants). On supposera qu'il existe un entier naturel K non nul tel que $p_K\neq 0$ et pour tout k>K, $p_k=0$. Bien entendu, $\sum_{k=0}^K p_k=1$.

1. Soit n un entier naturel non nul. Montrer que l'ensemble des valeurs que peut prendre Z_n est $Z_n(\Omega) \subset [0, K^n]$.

Soit $n \in \mathbb{N}$ et $(X_{k,n})_{k \in \llbracket 1,K^n \rrbracket}$ des variables aléatoires indépendantes de même loi que Z_1 . $X_{k,n}$ représente le nombre d'enfants qu'aura la k-ème cellule de la n-ème génération. Alors, d'après la description précédente, si $Z_n > 0$, alors $Z_{n+1} = \sum_{k=1}^{Z_n} X_{k,n}$. Sinon, $Z_{n+1} = 0$.

2. Montrer que, s'il existe un entier $n \ge 1$ tel que $Z_n = 0$, alors pour tout entier $k \ge 0$, $Z_{n+k} = 0$.

On notera, pour tout entier naturel n, $u_n = \mathbb{P}(Z_n = 0)$. Lorsque $\lim u_n = 1$, T est dit efficace.

Remarque. Les cellules de la (n+1)ème génération de C_0 sont celles de la n-ème génération de l'ensemble des enfants de C_0 . Ceci se formalise comme suit. Soit $n \in [1, n]$.

3. Cas triviaux.

- a) Décrire la suite (Z_n) lorsque $p_0 = 1$.
- **b)** Que se passe-t-il lorsque $p_0 = 0$.

On supposera dans la suite que $p_0 \in]0,1[$.

Partie IV: Un premier exemple

On suppose dans cette partie que la loi de Z_1 est définie par $p_0 > 0$, $p_1 > 0$ et $p_0 + p_1 = 1$.

- **4.** Calculer u_0 et u_1 . Montrer que pour tout $n \ge 0$, $Z_n \in \{0, 1\}$.
- **5.** Soit n un entier naturel.
 - a) Montrer que

$$\mathbb{P}(Z_{n+1}=0) = \mathbb{P}(Z_{n+1}=0|Z_1=0)p_0 + \mathbb{P}(Z_{n+1}=0|Z_1=1)p_1.$$

- **b)** Montrer que $\mathbb{P}(Z_{n+1} = 0 | Z_1 = 1) = u_n$.
- c) En déduire que $u_{n+1} = p_0 + p_1 u_n$.
- **6.** En déduire la valeur de u_n en fonction de p_0 , p_1 et n. Le traitement est-il efficace?

Partie V : Un deuxième exemple

On suppose dans cette partie que la loi de Z_1 est définie par p_0 , p_1 , p_2 tels que $p_0 > 0$, $p_2 > 0$ et $p_0 + p_1 + p_2 = 1$.

7. Montrer que pour tout $k \in [0, 2]$, $\mathbb{P}(Z_{n+1} = 0 | Z_1 = k) = u_n^k$.

On pourra décomposer les individus de la génération n+1 en fonction de leur ancêtre de la génération 1.

8. En déduire que $\mathbb{P}(Z_{n+1}=0)=p_0+p_1u_n+p_2u_n^2$.

On note f la fonction définie pour tout réel $x \in [0,1]$ par $f(x) = p_0 + p_1 x + p_2 x^2$.

- **9. a**) Déterminer les valeurs de f(1), f'(1) puis le signe de f, f' et f'' (soyez précis quant aux inégalités strictes et larges).
- **b)** Représenter le graphe de f dans les trois cas suivants : f'(1) < 1, f'(1) = 1 et f'(1) > 1 en choisissant, dans chacun de ces cas, des valeurs simples de p_0 , p_1 et p_2 .
- **10.** On note Δ la première bissectrice, d'équation cartésienne y=x.
 - a) Montrer que, lorsque $f'(1) \leq 1$, le graphe de f se trouve au-dessus Δ .
 - b) Lorsque f'(1) = 1, montrer que le graphe de f est tangent à Δ au point de coordonnées (1,1).
 - c) Lorsque f'(1) > 1, montrer que le graphe de f recoupe Δ au point d'abscisse p_0/p_2 .
- 11. Montrer que la suite de terme général u_n est strictement croissante et majorée par $\min\{p_0/p_2, 1\}$.
- 12. En déduire la limite de (u_n) dans les différents cas envisagés. Déterminer une condition nécessaire et suffisante pour que le traitement soit efficace.

Dans la suite, on cherche à préciser la convergence de la suite (u_n) .

- **13.** Dans le cas où f'(1) < 1, montrer que pour tout entier naturel $n, 1 u_{n+1} \le (1 u_0)[f'(1)]^{n+1}$.
- **14.** On suppose que f'(1) = 1. Soit n un entier naturel.
 - **a)** Montrer que $\frac{1}{1-u_{n+1}} \frac{1}{1-u_n} = \frac{p_0}{p_1+p_0(1+u_n)} \leqslant 1$.
 - **b)** En déduire que $1 u_n \geqslant \frac{1}{n+1}$.

Partie VI : Généralisation partielle

On suppose qu'il existe un entier naturel k supérieur ou égal à 2 tel que $p_k > 0$ et $\sum_{j=0}^k p_j = 1$. On notera $m = \mathbb{E}[Z_1]$. Pour tout réel $s \in [0,1]$, on note $g_n(s) = \mathbb{E}\left[s^{Z_n}\right]$ et $g(s) = \mathbf{E}\left[s^{Z_1}\right]$. Enfin, $g^{(n)}$ désignera l'itérée n-ème de g, i.e. $g^{(n)} = \underbrace{g \circ \cdots \circ g}_{p_n(s)}$.

15. Propriétés de g.

- **a)** Exprimer g(0) et g(1) en fonction de p_0, \ldots, p_k .
- **b)** Exprimer g'(1) en fonction de m.
- c) Montrer que g'' > 0.
- **d)** Exprimer $g_n(0)$ en fonction de u_n .

16. Probabilité d'extinction.

a) Montrer que $g_n = g^{(n)}$.

On pourra décomposer en fonction des valeurs que peut prendre Z_n .

b) Montrer que la suite $(g_n(0))_{n\in\mathbb{N}}$ converge vers un réel q.

On admettra que $q = \mathbb{P}(\exists n \in \mathbb{N} ; Z_n = 0)$.

Si vous avez du temps, montrez ce résultat...

- 17. On veut montrer que g admet au plus un point fixe dans]0,1[. Pour cela, on suppose que g admet deux points fixes dans]0,1[que nous noterons q_1 et q_2 .
 - a) Montrer qu'il existe deux réels distincts $\xi_1, \xi_2 \in]0, 1[$ tels que $g'(\xi_1) = g'(\xi_2) = 1.$
 - **b)** Conclure.
- **18.** Le cas $m \le 1$. Soit f la fonction définie pour tout $s \in [0,1]$ par h(s) = g(s) s.
 - a) Montrer que la fonction h est strictement décroissante.
 - **b)** En déduire que pour tout $s \in [0, 1[, g(s) > s]$.
 - c) En déduire que q=1.

19. Le cas m > 1.

- a) Montrer qu'il existe un réel $s_0 \in [0,1[$ tel que pour tout $s \in]s_0,1[$, g(s) < s.
- **b)** En déduire que q < 1.
- **20.** Le cas m=1. On définit sur [0,1[la fonction b par $\frac{1}{1-g(s)}=\frac{1}{1-s}+b(s)$.
 - **a)** Calculer $\lim_{s\to 1} b(s)$.
 - **b)** Déterminer un équivalent de $1 g_n(0)$.