Transistors and gates

Lab Week 2

Transistors

- Work as switches
- The control is the gate
- Two sorts: one allows current when the gate is positive, the other allows it when it is negative.

Transistors

Gates

Used to compute boolean combinations of inputs

- Computes nand of two inputs
- A nand B = not (A and B)

А	В	A and B	not(A and B)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Constant High:1

Constant High: 1

A nand B holds when either A or B is false

On when A is false

On when B is false

A nand B fails when both A and B are true

Example: nand gate: putting top and bottom together

Constant High:1

A and B holds when both A and B are true

A and B fails when either A or B is false

On when A is false

On when B is false

Put together

Completed and gate

4. Flip flops and memory

If either A or B is 0 then there is only one stable configuration

If either A or B is 0 then there is only one stable configuration, eg B=0, A=1

If either input to a nand gate is 0 then its output is 1

The potential flows through the wires

We said A was 1

Output of top nand gate is 0

We can see all the wires into and out of the top nand gate and it is OK: inputs both 1, output 0

Potential flows through the wires.

We can see all the wires into and out of the bottom nand gate and it is OK: inputs both 0 output 1

Similar result if A=0, but C is now 1

Now try with A=B=1.

There are four possibilities for C and D, try C=D=0

Potential along wires is same at any point.

We can see all the wires into and out of the nand gates.

Top nand gate has inputs 1 and 0 output 1 It is not happy.

Bottom nand gate has inputs 0 and 1 output 1 It is not happy.

Similarly, if C=D=1, configuration is not stable.

But if C=0 and D=1, configuration is stable.

But if C=0 and D=1, configuration is stable.

Flip Flop's stable configurations

Two possibilities when A=B=1

5. Design a circuit...

5. Design a circuit with two inputs AA and BB, and two outputs A and B that has the following behaviour: when AA = 0 and BB = 1 then A = 1 and B = 0; when AA = 1 and BB = 1 then A = 0 and B = 1; when BB = 0 then A = 1 and B = 1.

AA	BB	A	В
0	0	1	1
0	1	1	0
1	0	1	1
1	1	0	1

5. Design a circuit with two inputs AA and BB, and two outputs A and B that has the following behaviour: when AA = 0 and BB = 1 then A = 1 and B = 0; when AA = 1 and BB = 1 then A = 0 and B = 1; when BB = 0 then A = 1 and B = 1.

AA	BB	A	В
0	0	1	1
0	1	1	0
1	0	1	1
1	1	0	1

A = AA nand BB

B=AA or (not BB)

One way to build this is using standard gates

A = AA nand BB B=AA or (not BB)

Another way would be using transistors as earlier

