Multivariate analysis of 'omics data Multivariate discriminant analysis

A/Prof. Kim-Anh Lê Cao

Melbourne Integrative Genomics School of Mathematics & Statistics University of Melbourne

kimanh.lecao@unimelb.edu.au

Learning objectives for this short course

Learning objectives for this short course

Theory

- Understand the main concepts of multivariate dimension reduction methods
- ► Choose the 'right' method for the 'right' biological question
- Be aware of the benefits and limitations of all methods presented
- Interpretation of the graphical outputs

Practice

- Ability to use provided R code on own data
- ► Perform several types of multivariate analyses ranging from data exploration to biomarker selection using mixOmics
- Be critical of the results obtained

Supervised methods aim to model a relationship between the data and a measurable outcome

If the outcome is a discrete variable (e.g. type of treatment)

 \rightarrow classification.

If the outcome is a continuous variable (e.g. BMI)

ightarrow regression

Supervised analysis is different from unsupervised analysis where no explicit outcome was given!

Here we will focus on classification using multivariate methods.

Classification analysis aims

- ▶ **Descriptive** aim: weight the variables in an *optimal* manner so that their combination best separates the k classes of samples,
 - \rightarrow according to a statistical criterion
- ▶ **Predictive** aim: predicting the class of a new samples given its variables values
 - \rightarrow construction of a classifier (= set of rules)
 - → diagnostic/prognostic measures w.r.t sensitivity and specificity (ROC, AUC)

Feature selection

Classification rule built on

- ► All variables (e.g. genes) or
- a small subset of variables
- → In molecular biology, a biomarker panel or molecular signatures
- = subset of molecular features with high discriminative power.
- Multivariate variable selection often represent a diverse biomarker signature that can not be obtained using univariate statistical methods.

Example of molecular signature

Yeast metabolite data: multivariate biomarker signature w.r.t groups

Classification

Multiclass classification

Classification task may involve to separate

- Two groups (.e.g cases vs control groups)
 - → binary classification
- More than two groups (e.g. several tumour subtypes)
 - → multiclass classification

Some classification methods are designed for binary classification only (e.g. Support Vector Machine) and apply one-vs-one, one-vs-all classification for multiclass problems.

Outline of Part 2

Multivariate classification methods

Aim: Seek for a linear combination of features to characterise or separate two or more classes of samples.

Result of a linear multivariate classifier:

- ▶ Dimensionality reduction prior to classification.
- ► A classifier capable of predicting the class of a new sample based on a linear combination of features.

Multivariate classification approaches:

- Fisher's Linear Discriminant Analysis (LDA)
- Partial Least Squares Discriminant Analysis (PLS-DA)

To oversimplify, you can see this family of approaches as a 'supervised PCA'.

Multivariate classification methods

http://pvermees.andropov.org/

- Maximise the between group variability and
- Minimise the within group variability.

Parameters to choose:

- Number of components (dimensions)
 - ightarrow often K-1, or K max. (K is # classes)

Prediction of a new observation (sample):

- ► Each component score is a linear combination of variables where variables weights are defined.
- ► A new sample score can be calculated which predicts the class membership

PLS-DA includes sample group information

- covariance is an unstandardized version of the correlation (Appendix A)
- decomposition of the data matrix X in relation with the outcome Y with a set of components and loading vectors for dimension reduction

The problem to solve is:

$$\max_{||\mathbf{a}||=1, ||\mathbf{b}||=1} cov(X\mathbf{a}, Y\mathbf{b})$$

 $\mathbf{t} = X\mathbf{a}$ and $\mathbf{u} = Y\mathbf{b}$ are the PLS-DA components.

Y is coded internally in the function as a dummy matrix with K columns, so Yb is a linear combination of the outcome categories

Partial Least Squares Discriminant Analysis

Visualisation: data projected into a small subspace spanned by the components

With PCA we would have: visualisation of 63 samples x 2,300 variables (genes)

- 'Similar' samples (based on their variable values) cluster
- Unsupervised exploratory analysis: no information about sample groups included in the model

Visualisation: data projected into a small subspace spanned by the components

With PLS-DA: visualisation of 63 samples x 2,300 genes according to their tumour subtype

- Samples cluster according to their group
- Supervised analysis: aim is to separate/discriminate sample

Further dimension reduction with variable selection

Background: sparse PCA performs variable selection

- Shrinks some variable coefficients. to zero (variable selection) for each component using an optimal process with LASSO penalisations
- Each component is built on its selected variables only

Shen, H., Huang, J.Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation J. Multivariate Analysis.

sparse PLS-DA for variable selection

sparse PLS-DA includes internal variable selection to select the most discriminative variables.

- Shrinks some variable coefficients to zero (variable selection) for each component using LASSO penalisations
- Each component is built on its selected variables only

Lê Cao et al. (2011). Sparse PLS Discriminant Analysis. BMC Bioinformatics 12:253.

Outline of Part 2

The PLS-DA process

- Choose parameters based on cross-validation (CV)
- 2 Train the model, obtain molecular signature
- 3 Predict on independent test data, or evaluate performance based on CV

Parameters to choose in sPLS-DA

- Number of components: usually K − 1 is ok but needs to be checked! (K = number of sample groups / class) → argument ncomp

After parameters tuning is performed, we are able to run:

```
splsda.srbct \leftarrow splsda(X, Y, ncomp = 3, keepX = c(12, 50, 35))
```

 \rightarrow i.e. sPLS-DA on a gene expression dataset X to discriminate 4 tumour subtypes Y with chosen parameters: 3 components, selecting 12, 50 and 35 genes on each component resp.

- ► We divide our training samples *N* into *M* folds of equal size. Each sample is randomly allocated to a fold
- ▶ We train a PLS-DA model on M-1 folds and test (predict) the class of the samples form the left-out fold Evaluate the performance on the test set, e.g. classification error
- ▶ We do this *M* times (*M* folds) then repeat the process several times and average the performance across folds and repeats

The PLSDA model is formulated as:

$$Y = X\beta + E$$
,

 β is the matrix of the regression coefficients and is unknown and E is the residual matrix. X and Y are matrices of predictors and outcome.

The prediction of a new sample is then

$$Y_{predicted} = X_{new} \hat{\beta},$$

 \hat{eta} estimated regression coefficient matrix, X_{new} data matrix for new samples.

Usually, $Y_{predicted}$ is a continuous numerical value (not a class number!) that is then mapped to a class membership using a prediction distance (see prac).

- ► Classification error rate = # misclassified samples / # samples
- Balanced classification error rate to weight up minority classes
- Sensitivity: proportion of positives that are correctly predicted (e.g cases)
- Specificity: proportion of negatives that are correctly predicted (e.g. controls)

 Area Under the Curve (AUC) from a Receiver Operating Characteristic (ROC)

1 - Parameters tuning in practice: ncomp

- Set up a grid of parameters values e.g. we assess ncomp = 1, 2, ..., 5.
- ▶ Choose the number of folds M so that $N/M > 5^*$
- ightharpoonup Choose the number of repeats ~ 50
- Look at the performance for the grid of parameters values, and choose final ncomp that achieves best performance

my rule of thumb. Consider otherwise leave-one-out CV (loo)

1 - Parameters tuning in practice: ncomp

- Compare overall vs. balanced error rate (for minority classes)
- Mean error rate and standard error per component
- Could choose 3 or 4 components

2 - Parameters tuning in practice: keepX

- Set up a grid of parameters values per component* e.g. evaluate keepX = 5, 10, 25, 50, 100.
- Choose the number of folds M and repeats
- ▶ Look at the performance for the grid of parameters values, and choose final keepX per component that achieves best performance

consider going up to ncomp chosen earlier, or +1

2 - Parameters tuning in practice: keepX

- Mean error rate and standard error per keepX value
- Diamond indicates the minimum keepX value per component
- Error rate decreases as we add more components in the model

How many components do we really need?

The (common) pitfall of selection bias in classification

To correctly evaluate the performance of a classifier method during feature selection:

- feature selection and model training has to be evaluated against independent data,
- ▶ in other words: the test set should not been used in any way for the inference of the classifier
 - Otherwise over optimistic performance otherwise a.k.a overfitting, feature selection bias
- \rightarrow We use cross-validation when we cannot afford an independent test set.

Oesophageal cancer study

Proteomics assay (129 proteins) of 40 patients, with 20 Barrett's oesophagus benign or 20 oesophageal adenocarcinoma cancer samples.

Aim: develop blood tests for detection and personalised treatment

Statistical challenges:

- Small cohort (20 patients per group)
- Data range and variability with proteomics data
- Classical statistical methods fail

AK Shah, K-A, Lê Cao, B Gautier, MM Hill et al. (2015) Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarkers for oesophageal adenocarcinoma. Mol Cell Prot 14(11).

Oesophageal cancer study

Training

Sample representation on a multivariate selection of 11 proteins

AUC of the combined 11 proteins is > individual proteins

Oesophageal cancer study

Validation

Discovery cohort: identify 11 biomarkers

Validation cohort: predict on those same 11 markers

Patent: Hill M, Shah A, Lê Cao K-A (2014). Blood Test for Throat Cancer. WO2016077881A9, Australia.

Kidney transplant study

Genomics assay (p = 27K) of 40 patients with kidney transplant, with acute transplant rejection or no rejection.

Choose keepX on component 1 with tune:

5-fold CV on n=26 samples → Selection of 90 probe sets (genes) related to inflammation and innate immune responses)

Günther O., Lê Cao K-A, et al. (2014) Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology, 18(11), 682-95.

Kidney transplant study

*

Testing step

► Test samples (n_{test} = 14) overlaid with training sample set

- sPLS-DA fitted model (incl. 90 probe sets) prediction
- Performance assessed on test set

Color represents the true class

Classifier	# probes	Error rate	Sensitivity	Specificity	AUC
sPLS-DA	90	0.14	0.71	1	0.90
PLS-DA	27K (all)	0.21	0.57	1	0.82

Outline of Part 2

sPLS-DA summary I

- ► PLS-DA and sPLS-DA are supervised methods that require a categorical variable *Y* as input.
- ▶ Both methods aim to discriminate samples based on their group membership.
- Contrary to PCA, PLS-DA aims to find differences between sample groups rather than maximising the variance.

► sPLS-DA can be used at different levels: exploratory to

- biomarker discovery
- May need to use cross-validation for more 'robust' results and parameter tuning
- When performing variable selection, be aware of the problem of overfitting.

Outline of Part 2

Your turn!

srbct study to identify a subset of gene markers discriminating types of Small Round Blue Cell Tumors in 63 patients:

- Expression levels of 2,308 genes srbct\$gene (microarray)
- ▶ 4 types of tumours srbct\$class

Case Study R script is in Rscripts/casestudy_SRBCT.R:

- Preliminary PCA to explore the data
- PLS-DA and sPLS-DA
- Optional steps: parameter tuning and prediction (load results from tuning in RData/

Answer the 15 Questions to reinforce your learning

Practical