Capítulo 2

Principios y notaciones

0. Definiciones: Teoría del muestreo

- Técnica para la selección de una muestra a partir de una población.
- Se espera conseguir que sus propiedades sean extrapolables a la población.
- Ahorrar recursos, y obtener resultados parecidos a los que se alcanzarían si se realizase un estudio de toda la población.
- No solo hacer estimaciones de la población sino <u>estimar también los</u> <u>márgenes de error</u> correspondientes a dichas estimaciones.
- Nunca podremos estar enteramente seguros de que el resultado sea una muestra representativa, pero sí podemos actuar de manera que esta condición se alcance con una probabilidad alta.
- Al conjunto de muestras que se pueden obtener de la población se denomina <u>espacio muestral</u>. La variable que asocia a cada muestra su probabilidad de extracción, sigue la llamada <u>distribución muestral</u>.

Índice

1. Introducción

2. Notación

1. Introducción

1.1 Problema:

Inferir a toda una población finita/ universo finito a partir de una muestra

1. 2 Etapas de una encuesta

Del diseño de la encuesta al informe final: las diferentes etapas

En estas etapas, se ha tenido en cuenta

- Población "objetivo" a estudiar (Target population) $U=\{1,...,\alpha,...,N\}$
- Unidad de observación α
- ullet Muestra $s \subset U$
- Variable de interés Y
- ullet valores tomados por la variable de interés $Y_{_{lpha}}$, $lpha \in U$
- variables auxiliares X_1, X_J conocidas sobre la población
- Marco muestral

Marco muestral

Errores

- Error de muestreo
- Error de cobertura
- Error de observación
- Error sobre la persona (unidad)
- Error de codificación

2. Notación

En el universo

Parámetros

Total de Y :
$$T_{\scriptscriptstyle Y} = \sum\limits_{lpha=1}^{\scriptscriptstyle N} Y_{\scriptscriptstyle lpha}$$

 $(Y_{\alpha} \text{ es el valor de } Y \text{ para la unidad } \alpha)$

Media de Y:
$$\overline{Y} = \frac{1}{N} \sum_{\alpha=1}^{N} Y_{\alpha}$$

$$V(Y) = \sigma^2 = \frac{1}{N} \sum_{\alpha=1}^{N} (Y_{\alpha} - \overline{Y})^2$$

$$S^{2} = \frac{1}{N-1} \sum_{a=1}^{N} (Y_{a} - \overline{Y})^{2} = \frac{N}{N-1} \sigma^{2}$$

Coeficiente de variación (CV):
$$\frac{\sigma_{Y}}{\overline{Y}}$$

En la muestra 3

- Muestra **5** Tasa de muestreo: $f = \frac{n}{N}$
- Individuos seleccionados o Unidades estadísticas seleccionadas
 i = 1, ..., n
- Valores observados $y_1, y_2,...,y_i,...y_n$
- Estimador $\hat{\overline{Y}}$ es una variable aleatoria de esperanza $E\Big(\!\hat{\overline{Y}}\!\Big)$ y varianza $V\Big(\!\hat{\overline{Y}}\!\Big)$
- ullet A partir de la muestra se estimará la varianza del estimador $\hat{V}ig(\widehat{Y}ig)$
- De forma similar, se estima T...

Estimar el total/ la media es:

- $_{ extstyle o}$ escoger un estimador $\hat{\overline{Y}}$
- $_{ extstyle \circ}$ expresar la varianza del estimador $\sqrt{\left| \widehat{\widehat{Y}}
 ight|}$
- $_{ extstyle o}$ estimar el valor de la varianza del estimador, $\hat{f V} iggl(\hat{f Y} iggr)$

 estimar la distribución del estimador (en general se asumirá normalidad)