Proof of 1000-digit Fibonacci Number

Alan Sorani

May 28, 2024

We want to invert the explicit formula for the Fibonacci numbers as to get an O(1) solution. Since F_n is approximately $\frac{\phi^n}{\sqrt{5}}$, the index n of F_n will be approximated by $\log_{\phi} \left(\sqrt{5}F_n\right)$.

Theorem 0.1. Let F_n be the n^{th} Fibonacci number, for n > 1. Then if F is a Fibonacci number, its index n such that $F = F_n$ is given by $n(F) = [\log_{\varphi}(\sqrt{5}F)]$, where $[\cdot]$ is rounding to the nearest integer.

Proof. It is known that $F_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$, where $\varphi = \frac{1 + \sqrt{5}}{2}$ is the golden ratio and where $\psi = \frac{1 - \sqrt{5}}{2}$. We get

$$\left| F_n - \frac{\psi^n}{\sqrt{5}} \right| = \left| \frac{\psi^n}{\sqrt{5}} \right|$$
$$= \frac{1}{\sqrt{5}} |\psi^n|$$

where $|\psi^n| < \frac{1}{2}$ for n > 1 since

$$|\psi| = \frac{\sqrt{5} - 1}{2} < \frac{3 - 1}{2} = 1 < \sqrt{2}.$$

Hence

$$\left| F_n - \frac{\psi^n}{\sqrt{5}} \right| \le \frac{1}{2\sqrt{5}}.$$

Taking $N(F) = \log_{\varphi}(\sqrt{5}F)$, since φ^x is convex in x we get that

$$|N(F_n) - n| \le |\varphi^{N(F_n)} - \varphi^n|$$

$$= |\varphi^{\log_{\varphi}(\sqrt{5}F)} - \varphi^n|$$

$$= |\sqrt{5}F_n - \varphi^n|$$

$$= \sqrt{5} |F_n - \frac{\varphi^n}{\sqrt{5}}|$$

$$\le \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2}.$$

Hence

$$n = [N(F)] = \left[\log_{\varphi}\left(\sqrt{5}F\right)\right],$$

as required.

Corollary 0.2. The minimal $n \in \mathbb{N}$ such that F_n has at least k digits is one of the following

$$\left[\log_{\varphi}\left(\sqrt{5}\right) + (k-1)\log_{\varphi}(10)\right],$$
$$\left[\log_{\varphi}\left(\sqrt{5}\right) + (k-1)\log_{\varphi}(10)\right] + 1.$$

Proof. We need to find n such that $F_n \ge 10^{k-1}$ and $F_{n-1} \le 10^{k-1}$. We have

$$n = \left[\log_{\varphi}\left(\sqrt{5}F_n\right)\right] \ge \left[\log_{\varphi}\left(\sqrt{5}\cdot 10^{k-1}\right)\right]$$

and

$$n-1 = \left[\log_{\varphi}\left(\sqrt{5}F_{n-1}\right)\right] \le \left[\log_{\varphi}\left(\sqrt{5}\cdot 10^{k-1}\right)\right].$$

Therefore, n is either $\left[\log_{\varphi}\left(\sqrt{5}\cdot 10^{k-1}\right)\right]$ or $\left[\log_{\varphi}\left(\sqrt{5}\cdot 10^{k-1}\right)\right]+1$. Using basic properties of the logarithm, we get the result.