Подходи при доставка на софтуер

Модел на внедряване

От избрания модел на внедряване зависи огромна част от решенията, които можем да вземем:

- каналите за доставка
- регулаторните норми
- стандартите, с които има нужда да се съобразим
- други

Моделът на внедряване е план или подход за предоставяне на софтуерно решение вътрешно в организацията и/или за своите клиенти. Като вземат под внимание фактори като сигурност, контрол, гъвкавост, разходи и удобство

On-premise (На място):

При този модел софтуерът се инсталира и изпълнява върху хардуера и инфраструктурата на самата организация (внедряване на вътрешни нужди) или на клиента (при внедряване с цел външна употреба). Това означава, че компанията трябва да поддържа собствена инфраструктура, като сървъри и мрежови ресурси. Този модел може да предостави по-голям контрол и сигурност, но идва с по-големи разходи за инфраструктура и поддръжка. Опрremise също би бил и софтуер, инсталиран на потребителските машини.

Cloud (Облак):

При този модел софтуерът се доставя чрез интернет на инфраструктура, предоставена от облачни услуги като AWS, MS Azure Google Cloud Platform. Тук организацията не се занимава с физическа инфраструктура, а заплаща за използването на облачни ресурси според нуждите си. Това позволява по-ниски начални разходи. Потребителите на такъв тип софтуер го достъпва отдалечено, без необходимост да заделят собствен хардуерен ресурс.

Mobile (Мобилен)

Този модел се отнася до внедряване на софтуерни продукти, които се инсталират и изпълняват на мобилни устройства. Този вид внедряване е насочен към потребители, които използват приложенията директно на своите мобилни устройства. Може да се разглежда като частен случай на on-premise, но поради спецификите му го обособяваме като самостоятелен модел.

Изборът на модел на внедряване влияе на начина, по който продуктът се доставя, поддържа и използва, както и на потребителското изживяване.

Често срещано явление **отделни части от даден продукт да имат различен модел на внедряване от останалите части**

Канал за доставка

Ясно дефиниран процес, който ни казва, при определени характеристики на софтуера и обстоятелствата около доставката, какви са стъпките, през които да се мине, за да може продуктът да достигне до клиента и/или потребителя

Аспекти за дефиниране канал за доставка

- Модели на внедряване, за които е подходящ
- Ниво на развитие на продукта (алфа, бета версии, general availability и други)
- **Начин на предоставяне** (стандартен, early adopter, OEM pilot, специализирана разработка за клиент/група клиенти и други)
- **Комерсиализация** (пробен период (trial), безплатно, регулярно плащане (subscription), еднократно плащане (one time purchase), плащане на база употреба (pay-as-you-go))
- Целеви групи
- Място, където продукта е достъпен (URL web portal, app store)
- Регламенти за ползване (terms & conditions)
- Тип на съдържанието (patch, hotfix, инсталация, нова версия)
- Изисквания и правила, на които продукта да отговаря(лиценз, съответствие с регулации и стандарти и много други)
- Роли и отговорности
- Стъпки на процеса

Рискове при неоторизирана доставка

- Проблематични задължения за поддръжка
- Нарушения на режимите за експортен и импортен контрол
- Нарушения свързани с лицензите при използването на софтуер с отворен код и друг софтуер
- Нарушения на вътрешнофирмените правила и изисквания
- Проблеми с доказването на интелектуална собственост
- Нарушения в използването на наименования и търговски марки
- Проблеми при отчитането на приходи (поради частична доставка, например)
- Нарушения на регулаторни изисквания и изисквания от стандарти
- Липса на ясни процеси за спиране или оттегляне на доставения софтуер

On-premise софтуер

Софтуерът се инсталира и използва на сървъри и инфраструктурата на организацията или на самите машини на потребителите

Предимства:

• Контрол и сигурност

Когато инсталираме софтуер на собствените си сървъри и инфраструктура, имаме пълен контрол над тях и над данните си

• Предвидимост на натоварването

Контролът на достъпа и ексклузивното ползване на инсталацията на софтуера спомага за гарантиране на консистентното поведение и постоянна производителност на софтуера

Конфигуриране

Може да се персонализира според нуждите на организацията

Недостатъци

• Разходи за оборудване и поддръжка

Разходите включват хардуера, електроенергия, охлаждане, физическа охрана обслужване, и специалистите за внедряване и поддръжка на софтуера

• Скалируемост

Ограничена - Фиксирани ресурси без лесна възможност за разширяване. Инсталирането и конфигурирането на допълнително оборудване може да отнеме време и да бъде скъпо

Процес на доставка

Гледна Точка на доставчика

Производителя и доставчика на софтуер.

• Планиране и разработка

Началните етапи на жизнения цикъл на софтуера не са пряко зависими от модела на внедряване. При тестването и работата с изисквания моделът на внедряване е по-силно изразен.

• Избор на канал за доставка

Трябва да се подсигури, че продукта ни отговаря на всички изисквания на канала.

• Подготовка за физическата доставка

Производителя следва да подготви всички артефакти, които трябва да бъдат предоставени:

- Изпълними файлове
- Допълнителни софтуерни елементи като библиотеки, скриптове, спомагателни програми, инсталатори
- Дигитално подписване
- Криптиране
- Определяне на лицензирането и внедряването на артефактите
- Документация
- Инструкции за инсталация, конфигурация и внедряване

• Физическа доставка

Задействане на процеса според избрания канал за доставка. Клиентите и/или потребителите получават достъп до артефактите, подготвени на предходната стъпка

• Поддръжка и актуализации

Доставчика следва да предостави поддръжка, консултирайки клиентите клиентите, анализирайки проблеми и предоставяйки поправки (функционални, свързаци със сигурността, свързаци с произвотителност и други), актуализации

• Гледна точка на консуматора

• Планиране и изисквания

- Какъв вид софтуер ви е необходим и какви функционалности трябва да включва?
- Колко потребители ще го използват и какви са техните нужди?
- Какъв хардуер и операционна система са необходими за инсталацията?
- Каква сигурност и контрол върху данните се изискват?
- Какви са бюджетните ограничения и сроковете за доставка?

• Придобиване на софтуера

• Подготовка на инфраструктурата

- Производителността на хардуера, която ще бъде необходима за системата.
- Съответствието със специфичните изисквания на софтуера.
- Сигурността и надеждността на хардуера.
- Бъдещите нужди от разширение и скалируемост.
- Необходимост от виртуални машини/контейнери
- Необходими операционни системи и друг софтуер

• Внедряване

- Включването на сървъри, виртуални машини, клъстери и други.
- Конфигуриране на мрежови устройства
- Инсталация на операционни системи
- Инсталация на базов софтуер и зависимости
- Инсталация на самия софтуерен продукт
- Конфигурация и настройка на софтуера според изискванията на организацията. Това може да включва конфигуриране на бази данни, настройка на потребителски роли и права за достъп, както и други настройки на самия софтуер.

• Тестване и оптимизация

■ **Тестове на функционалността**: тестване на различните функционалности на софтуера, за да се провери дали те работят както трябва. Разглежда се всяка част от приложението и се проверява, че няма грешки или проблеми.

- **Тестове на производителността**: измерване производителността на софтуера при натоварване и определяне дали сървърите могат да се справят с него при текущите конфигурации. Ако се наблюдават забавяния или изключения, се разглеждат опции за оптимизация.
- **Тестове за сигурността**: идентифициране и коригиране на потенциални рискове и уязвимости в системата.

○ Поддръжка и актуализация

Сигурност

- **Пълен контрол**: Отличителна черта на on-premise софтуера е пълният контрол върху инфраструктурата и данните. Това предоставя възможност за персонализирани настройки за сигурността.
- **Физическа сигурност**: Фирмите трябва да осигурят физическа сигурност на сървърните си помещения и оборудване за предотвратяване на неоторизиран достъп.
- Интелигентен мониторинг: Системите за мониторинг и реакция при инциденти трябва да бъдат внимателно конфигурирани, за да засичат потенциални заплахи.
- **Редовни корекции и обновления**: Фирмите трябва активно да следят за поправки, свързани със сигурността, и да ги прилагат, за да се предотвратят уязвимости.
- Защита на данни и криптиране: Контролът на данните позволява използването на надеждни методи за защита и криптиране на информацията.
- Инцидентен план: Изграждането на инцидентен план и обучението на персонала по него е от съществено значение за бърза реакция при инциденти.

Скалируемост и оптимизация

Скалиране

- **Хоризонтално скалиране**: Този метод включва добавянето на допълнителни сървъри или ресурси на вече наличната инфраструктура. Той позволява равномерно разпределение на трафика и по-голяма надеждност.
- **Вертикално скалиране**: Този подход включва увеличаване на мощността на сървърите или инфраструктурата чрез добавяне на по-мощни компоненти или ресурси към съществуващите сървъри. Той може да подобри производителността, но се използва по-рядко от хоризонталното скалиране.
- Използване на виртуализация и контейнери: Виртуализацията и контейнеризацията позволяват по-ефективно управление на ресурсите, като позволяват на един сървър да работят множество виртуални машини или контейнери. Това подпомага оптималното използване на хардуера и ресурсите.

Оптимизация на ресурсите

- Оптимизация на оборудването: Разглеждат се възможности за актуализация на хардуера или преминаване към по-модерни технологии, които да намалят разходите и да увеличат производителността.
- **Ефективно управление на енергопотреблението**: Разработване на практики за намаляване на консумацията на електроенергия и поддържане на екологичността на дейността.
- Използване на облачни и виртуални решения: Разглеждане на възможността да се интегрират облачни решения (създаване на хибриден облак) в инфраструктура.

Актуализации