Graduate Algebra

Definition 2.3.1

Contents

1.	Week 1 [2025-09-03]	2
	1.1. Notations and recollections	
	1.2. Groups	
	1.3. Rings	
	1.4. Fields	
	1.5. Linear Algebra	3
	1.6. Cayley's Theorem	4
	1.7. A linear analogue of Cayley's Theorem	5
2.	Week 2 [2025-09-08]	
	2.1. The Quotient of a set by an equivalence relation	7
	2.2. Sub-groups	9
	2.3. Group actions	11
	2.4. Quotients of groups	11
	2.5. Quotients of groups and orbits	13
	2.6. The product of subgroups	14
	2.7. Lagrange's Theorem	16
3.	Week 3 [2025-09-15]	18
	3.1. Normal subgroups	18
	3.2. Quotient groups	20
	3.3. First isomorphism theorem	22
	3.4. Groups acting on Groups	23
	3.5. <i>p</i> -groups	24
4.	Week 4 [2025-09-22]	27
	4.1. Sylow subgroups	27
	4.2. Applications of Sylow's Theorem	29
	4.3. Rings	33
	4.4. Ring homomorphisms and kernels	34
5.	Week 5 [2025-09-29]	36
	5.1. Quotient rings	36
	5.2. Categories	37
	5.3. Modules	41
	5.4 Free modules	43

1. Week 1 [2025-09-03]

We'll begin by recalling some basic sorts of algebra that you more-or-less encountered before.

1.1. Notations and recollections

We reserve the following letters:

- N for the set of natural numbers 0, 1, 2, ...
- \mathbb{Z} for the set of *integers*, i.e. for all $\pm n$ for $n \in \mathbb{N}$
- \mathbb{Q} for the set of rational numbers m/n for $m, n \in \mathbb{Z}$ with $n \neq 0$
- \mathbb{R} for the set of *real numbers*, and
- \mathcal{C} for the set of *complex numbers* a+bi for $a,b\in\mathbb{R}$.

In this first lecture, I want to recall some of the main objects of study in algebra, including: groups, rings and fields. Ultimately, the goal today is to prove an analogue of Cayley's Theorem - see <u>Theorem 1.6.1</u> and <u>Theorem 1.7.1</u> about embedding arbitrary groups in some standard groups.

1.2. Groups

Recall that a group is a set G together with a binary operation $\cdot: G \times G \to G$ satisfying the following:

- associativity: $\forall x, y, z \in G, (xy)z = x(yz)$
- identity: $\exists e \in G, xe = ex = x$.
- inverses: $\forall x \in G, \exists y \in G, xy = yx = 1$.

Remark 1.2.1:

- a. We usually write 1 or sometimes 1_G rather than e for the inverse element of G. + we usually write x^{-1} for the inverse of $x \in G$
- b. there are *uniqueness* results that I'm eliding here; the identity 1 of G is unique, and the inverse x^{-1} of an element is unique. These statements are *consequences* of the above axioms (they don't require additional assumption.)
- c. A group is abelian if $\forall a, b \in G, ab = ba$
- d. Sometimes we write groups additively; in that case, 0 is the identity element and and the inverse of $a \in G$ is $-a \in G$. We always insist that additive groups are abelian.

Definition 1.2.2: For groups G and H, a function $\varphi: G \to H$ is a group homomorphism provided that $\forall x, y \in G, \varphi(xy) = \varphi(x)\varphi(y)$.

Definition 1.2.3: Let $\varphi: G \to H$ be a group homomorphism. The kernel of φ is

$$\ker \varphi = \{ g \in G \mid \varphi(g) = 1. \}$$

Remark 1.2.4: If $\varphi: G \to H$ is a group homomorphism, $\ker \varphi$ is a subgroup of G – i.e. $\ker \varphi$ is non-empty, and is closed under multiplication and under taking inverses.

Proposition 1.2.5: Let $\varphi: G \to H$ be a group homomorphism. Then φ is an injective (or one-to-one) function if and only if $\ker \varphi = \{1_G\}$.

1.3. Rings

Definition 1.3.1: A ring is an additive abelian group R together with a binary operation of multiplication

$$\cdot: R \times R \to R$$

which satisfies the following:

- multiplication is associative: $\forall a, b, c \in R, (ab)c = a(bc)$.
- there is a multiplicative identity: $\exists 1 \in R, \forall a \in R, 1a = a1 = a$.
- distribution laws: $\forall a, b, c \in R, a(b+c) = ab + ac$ and (b+c)a = ba + ca.

The ring R is commutative provided that $\forall a, b \in R, ab = ba$.

Example 1.3.2:

- a. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathcal{C}$ are commutative rings.
- b. For a natural number n > 1, the ring $\mathrm{Mat}_n(\mathbb{Z})$ of $n \times n$ matrices with coefficients in \mathbb{Z} is a non-commutative ring.

Definition 1.3.3: For a commutative ring R, an element $a \in R$ is a unit provided that $\exists v \in R, uv = vu = 1$.

The set R^{\times} of units in R is a group under the multiplication of R.

1.4. Fields

Definition 1.4.1: A field is a commutative ring F such that $\forall a \in F, a \neq 0 \Rightarrow a$ is a unit.

Example 1.4.2: \mathbb{Q} , \mathbb{R} , \mathcal{C} are fields, but \mathbb{Z} is not a field.

1.5. Linear Algebra

Definition 1.5.1: If F is a field, a vector space over F – or an F-vector space – is an additive abelian group V together with an operation of scalar multiplication

$$F \times V \to V$$

written $(t, v) \mapsto tv$, subject to the following:

- identity: $\forall v \in V, 1v = v$.
- associativity: $\forall a, b \in F$ and $v \in V$, a(bv) = (ab)v.
- distributive laws: $\forall a, b \in F$ and $v, w \in V$, (a + b)v = av + bv and a(v + w) = av + aw.

Remark 1.5.2: Probably in a linear algebra class you saw results stated for vector spaces over \mathbb{R} or \mathcal{C} ; however, "most" results in linear algebra remain valid for vector space over F.

Example 1.5.3: Let I be any set, and let V be the set of all functions $f: I \to F$ which have finite support. Recall that the support of f is $\{x \in I \mid f(x) \neq 0\}$.

Then V is a vector space. (The addition and scalar multiplication operations are define "pointwise" – see homework.)

Remark 1.5.4: Recall that a basis of a vector space is subset B of V which is linearly indepent and spans V.

The vector space of finitely supported functions $I \to F$ has a basis $B = \{\delta_i \mid i \in I\}$, where

$$\delta_i:I\to F$$

is the function defined by $\delta_i(j)=0$ if $i\neq j$ and $\delta_i(i)=1$.

Definition 1.5.5: If V and W are F-vector spaces, an F-linear map $\varphi:V\to W$ is a homomorphism of additive groups which satisfies the condition

$$\forall t \in F, \forall v \in V, \varphi(tv) = t\varphi(v).$$

Definition 1.5.6: If V is an F-vector space, the general linear group GL(V) is the set

$$\{\varphi: V \to V \mid \varphi \text{ is } F\text{-linear and invertible.}\}$$

 $\mathrm{GL}(V)$ is a group whose operation is given by composition of linear transformations.

Remark 1.5.7: If V is finite dimensional, so that V is isomorphic to F^n as F-vector spaces, linear algebra shows that $\mathrm{GL}(V)$ is isomorphic to the group GL_n of $n\times n$ matrices with non-zero determinant, where $n=\dim_F V$ and where the operation in GL_n is given by matrix multiplication.

1.6. Cayley's Theorem

Let Ω be any set. The set $S(\Omega)$ of all bijective functions $\psi:\Omega\to\Omega$ is a group whose operation is composition of functions.

Theorem 1.6.1 (Cayley's Theorem): Let G be any group. Then G is isomorphic to a subgroup of $S(\Omega)$ for some Ω .

Proof: Let $\Omega = G$. For $g \in G$, define a mapping $\lambda_g : G \to G$ by the rule

$$\lambda_q(h) = gh.$$

We are going to argue that the mapping $g\mapsto \lambda_g$ defines an injective group homomorphism $G\to S(\Omega)=S(G)$.

First of all, we note that $\lambda_1=\mathrm{id}$. Indeed, to check this identity of functions, let $h\in\Omega=G$. Then

$$\lambda_1(h) = 1h = h = id(h);$$

this confirms $\lambda_1=\operatorname{id}$.

Next, we note that for $g_1,g_2\in G$, we have (*) $\lambda_{g_1}\circ\lambda g_2=\lambda_{g_1g_2}$. Again, to confirm this identify of functions, we let $h\in\Omega=G$. Then

$$\left(\lambda_{g_1} \circ \lambda_{g_2}\right) h = \lambda_{g_1} \left(\lambda_{g_2}(h)\right) = \lambda_{g_1}(g_2 h) = g_1(g_2 h) = (g_1 g_2) h = \lambda_{g_1 g_2}(h)$$

as required.

Now, using (*) we see for $g \in G$ that $\lambda_g \circ \lambda_{g^{-1}} = \lambda_1 = \mathrm{id} = \lambda_{g^{-1}} \circ \lambda_g$, which proves that λ_g is bijective; thus indeed $\lambda_g \in S(\Omega) = S(G)$.

Moreover, (*) shows that the mapping $\lambda:G\to S(G)$ given by $g\mapsto \lambda_g$ is a group homomorphism.

It remains to see that λ is injective. If $g \in \ker \lambda$, then $\lambda_g = \operatorname{id}$. Thus $1 = \operatorname{id}(1) = \lambda_g(1) = g1 = g$. Thus g = 1 so that $\ker \lambda = \{1\}$ which confirms that λ is injective by Proposition 1.2.5. This completes the proof.

1.7. A linear analogue of Cayley's Theorem.

Let F be a field.

Theorem 1.7.1: Let G be any group. Then G is isomorphic to a subgroup of GL(V) for some F-vector space V.

Proof: The proof is quite similar to the proof of Cayley's Theorem.

Let V be the vector space of all finitely supported functions $f:G\to F$. Recall that V has a basis $B=\left\{\delta_{q}\mid g\in G.\right\}$

We are going to define an injective group homomorphism $G \to GL(V)$.

For $g \in G$, we may define an F-linear mapping $\lambda_g : V \to V$ by defining the value of λ_g at each vector in B. We set $\lambda_g(\delta_h) = \delta_{gh}$.

Recall that a typical element v of V has the form

$$v = \sum_{i=1}^n t_i \delta_{h_i}$$

for scalars $t_i \in F$ and elements $g_i \in G$; since λ_g is F-linear, we have

$$\lambda_g(v) = \sum_{i=1}^n t_i \delta_{gh_i}.$$

We now show that $\lambda_1 = \mathrm{id}$. To prove this, since the functions $V \to V$ are linear, it is enough to argue that the functions agree at each element of the basis B of V. Well, for $h \in G$,

$$\lambda_1(\delta_h) = \delta_{1h} = \delta_h = \mathrm{id}(\delta_h)$$

as required.

We next show for $g_1,g_2\in G$ that (*) $\lambda_{g_1}\circ\lambda_{g_2}=\lambda_{g_1g_2}$. Again, it suffices to argue that these functions agree at each element δ_h of B. For $h\in G$ we have:

$$\left(\lambda_{g_1}\circ\lambda_{g_2}\right)(\delta_h)=\lambda_{g_1}\left(\lambda_{g_2}\delta_h\right)=\lambda_{g_1}\left(\delta_{g_2h}\right)=\delta_{g_1(g_2h)}=\delta_{(g_1g_2)h}=\lambda_{g_1g_2}\delta_h$$

as required.

Now, for $g \in G$ we see that by (*) that

$$\mathrm{id} = \lambda_1 = \lambda_g \circ \lambda_{g^{-1}}$$

which proves that λ_g is invertible and hence in $\mathrm{GL}(V)$.

Moreover, (*) shows that the assignment $\lambda:G\to \mathrm{GL}(V)$ given by the rule $g\mapsto \lambda_g$ is a group homomorphism.

It remains to argue that λ is injective. Suppose that $x \in \ker \lambda$, so that $\mathrm{id} = \lambda_x$.

Then $\delta_1=\operatorname{id}(\delta_1)=\lambda_x(\delta_1)=\delta_{x1}=\delta_x$. This implies that 1=x so that indeed the kernel of λ is trivial and thus λ is injective by Proposition 1.2.5.

2. Week 2 [2025-09-08]

This week, we'll discuss quotients, and we'll begin our discussion of group actions.

2.1. The Quotient of a set by an equivalence relation

Let S be a set and let R be a relation on S. Formally, R is an assignment $R: S \times S \to \text{Prop}$ – in other words, for $a, b \in S$, R(a, b) is the proposition that a and b are related; of course R(a, b) may or may not hold.

We often use a symbol \sim or $\underset{R}{\sim}$ to indicate this proposition; thus $R(a,b) \Leftrightarrow a \underset{R}{\sim} b$.

Definition 2.1.1: The relation \sim is an equivalence relation if the following properties hold:

- reflexive: $\forall s \in S, s \sim s$.
- symmetric: $\forall s_1, s_2 \in S, s_1 \sim s_2 \Rightarrow s_2 \sim s_1$
- transitive: $\forall s_1, s_2, s_3 \in S, s_1 \sim s_2 \text{ and } s_2 \sim s_3 \Rightarrow s_1 \sim s_3$

Definition 2.1.2: If \sim is an equivalence relation on the set S, a quotient of S by \sim is a set \bar{S} together with a surjective function $\pi: S \to \bar{S}$ with the following properties:

- (Quot 1) $\forall a, b \in S, a \sim b \Rightarrow \pi(a) = \pi(b)$
- (Quot 2) Let T be any set and let f be any function $f: S \to T$ such that $\forall a, b \in S, a \sim b \Rightarrow f(a) = f(b)$. Then there is a function $\bar{f}: S \to T$ for which $f = \bar{f} \circ \pi$.

Proposition 2.1.3: Suppose that (\bar{S}_1,π_1) and (\bar{S}_2,π_2) are two quotients of the set S by the equivalence relation \sim . Let

$$\bar{\pi_2}:\bar{S}_1\to\bar{S}_2$$

be the mapping determined by the quotient property for $\left(\bar{S}_{1},\pi_{1}\right)$ using

$$T = \bar{S}_2$$
 and $f = \pi_2 : S \to \bar{S}_2$,

and let

$$\bar{\pi}_1:\bar{S}_2\to\bar{S}_1$$

be the mapping determined by the quotient property for $\left(ar{S}_{2},\pi_{2}\right)$ using

$$T=\bar{S}_1 \ \ \text{and} \ \ f=\pi_1:S\to\bar{S}_2.$$

Then the maps $\pi_2': \bar{S}_1 \to \bar{S}_2$ and $\pi_{1'}: \bar{S}_2 \to \bar{S}_1$ are inverse to one another, and in particular π_1' and π_2' are bijections.

Proof: By the definition of quotients, we have commutative diagrams

In particular, we have $\pi_2 = \bar{\pi}_2 \circ \pi_1$ and $\pi_1 = \bar{\pi}_1 \circ \pi_2$

Substitution now yields

$$\pi_1 = \bar{\pi}_1 \circ \bar{\pi}_2 \circ \pi_1$$

and

$$\pi_2 = \bar{\pi}_2 \circ \bar{\pi}_1 \circ \pi_2$$

Since π_1 and π_2 are surjective, we conclude that $id = \bar{\pi}_1 \circ \bar{\pi}_2$ and $id = \bar{\pi}_2 \circ \bar{\pi}_1$ so indeed the indicated functions are inverse to one another.

Remark 2.1.4: The point of the Proposition is that a quotient is completely determined by the property indicated in the definition – this property is an example of what is known as a universal property or sometimes as a universal mapping property. The conclusion of the Proposition shows that any two ways of constructing a quotient are equivalent in a strong sense.

One way of constructing the quotient is by considering equivalence classes, as follows:

Definition 2.1.5: For an equivalence relation \sim on a set S, the equivalence class [s] of an element $s \in S$ is the subset of S defined by

$$[s] = \{x \in S \mid x \sim s\}.$$

Proposition 2.1.6: Equivalence classes for the equivalence relation \sim have the following properties for arbitrary $s, s' \in S$:

a.
$$s \sim s' \Leftrightarrow [s] = [s']$$

b. $[s] \neq [s'] \Leftrightarrow [s] \cap [s'] = \emptyset$

Proof: Review!

Theorem 2.1.7 (Existence of quotients): For any equivalence relation \sim on a set S, there is a quotient (\bar{S}, π) .

Proof: We consider the set $\bar{S} = \{[s] \mid s \in S\}$ of equivalence classes and the mapping $\pi : S \to \bar{S}$ given by the rule $\pi(s) = [s]$.

Proposition 2.1.6 confirms condition (a) of Definition 2.1.2.

For condition (b) of <u>Definition 2.1.2</u> suppose that T is a set and that $f:S\to T$ is a function with the property that $\forall a,b\in S, a\sim b\Rightarrow f(a)=f(b)$. We must exhibit a function $\bar f:\bar S\to T$ with the property $f=\bar f\circ\pi$. If $\bar f$ exists, it must satisfy $\bar f([a])=a$ for $a\in S$. On the other hand, in view of <u>Proposition 2.1.6</u> (a), the rule $[a]\mapsto f(a)$ indeed determines a well-defined function $\bar f:\bar S\to T$. Moreover, the identity $f=\bar f\circ\pi$ evidently holds.

Remark 2.1.8: We gave an explicit construction of the quotient using equivalence classes. On the other hand, if one has a quotient (\bar{S}, π) , the equivalence class [x] of an element $x \in S$ is equal to $\pi^{-1}(\pi(x))$.

Proposition 2.1.9: If \sim is an equivalence relation on the set S, then S is the disjoint union of the equivalence classes.

Proof: Each element $x \in S$ is contained in the equivalence classes [x], so it only remains to prove that if two equivalence classes have a common element, they are equal. For this, let $x, y \in S$ and suppose that $z \in [x] \cap [y]$. Then $x \sim z$ and $y \sim z$ so that $x \sim y$ by transitivity; thus [x] = [y].

2.2. Sub-groups

Let G be a group (when giving definitions, we'll write G multiplicatively).

Definition 2.2.1: A subgroup of G is a non-empty subset $H \subseteq G$ such that H is closed under the operations of multiplication in G and inversion in G. In other words,

$$\forall a, b \in G, ab \in H \text{ and } a^{-1} \in H$$

Example 2.2.2: Consider the group $G = \mathbb{Z} \times \mathbb{Z}$ where the operation is componentwise addition. Check the following!

- a. $H_1=\{(a,b)\in G\mid 2a+3b=0\}$ is a subgroup.
- b. $H_2 = \{n(2,2) + m(1,2) \mid n, m \in \mathbb{Z}\}$ is a subgroup.

The collection of subgroups of G has a natural partial order given by *containment*.

Proposition 2.2.3: (Constructing subgroups)

- a. If H_i for $i \in I$ is a family of subgroups of G, indexed by some set I, then the intersection $\bigcap_{i \in I} H_i$ is again a subgroup of G.
- b. Let $S \subseteq G$ be a subset. There is a unique smallest subgroup $H(S) = \langle S \rangle$ containing S. In other words, for any subgroup H' of G with $S \subseteq H'$, we have $\langle S \rangle \subseteq H'$.

Remark 2.2.4:

a. If $S,T\subseteq G$ are subsets, we often write $\langle S,T\rangle$ for $\langle S\cup T\rangle$. If $S=\{s_1,s_2,...,s_n\}$ we often write $\langle S\rangle=\langle s_1,s_2,...,s_n\rangle$.

- b. The subgroup in Example 2.2.2(b) is precisely $\langle (2,2), (1,2) \rangle$.
- c. For any group G and $a \in G$, $\langle a \rangle := \langle \{a\} \rangle$ is the cyclic subgroup generated by a. If G is multiplicative, then $\langle a \rangle = \{a^n \mid n \in Z\}$ while if G is additive then $\langle a \rangle = \{na \mid n \in Z\}$.

Proposition 2.2.5: If $\varphi: G \to H$ is a group homomorphism, then ker φ is a subgroup of G.

Proposition 2.2.6: If $X \subseteq G$ is a non-empty subset of G, then X is a subgroup if and only if $(*) \quad \forall a, b \in X, ab^{-1} \in X$.

Proof: (\Rightarrow) : Immediate from the definition of a subgroup.

(\Leftarrow): Assume that (*) holds. We must show that X is a subgroup.

We first argue that X contains the identity element. Since X is non-empty, there is an element $x \in X$. Condition (*) then shows that $xx^{-1} = 1 \in X$ as required.

We now show that X is closed under inversion. Let $x \in X$. Since $1 \in X$, we apply (*) with a = 1 and b = x to learn that $1x^{-1} = x^{-1} \in X$, as required.

Finally, we show that X is closed under multiplication. Let $x, y \in X$. We have already seen that $y^{-1} \in X$. Now apply (*) with a = x and $b = y^{-1}$ to learn that

$$ab^{-1} = x(y^{-1})^{-1} = xy \in X$$

as required.

Proposition 2.2.7: Let $f:G\to H$ be a group homomorphism and let $S\subseteq G$ be any subset. Then

$$f(\langle S \rangle) \subseteq \langle f(S) \rangle.$$

Proof: Since f is a homomorphism, for any subgroup $K \subseteq G$, the image

$$f(K) = \{ f(x) \mid x \in K \}$$

is a subgroup of H. Thus $f(\langle S \rangle)$ is a subgroup containing $\langle f(S) \rangle$ of H where f(S) is the image of the set S via the function f. It now follows from Proposition 2.2.3 that $f(\langle S \rangle)$ is contained in the subgroup $\langle f(S) \rangle$ generated by f(S), as required.

2.3. Group actions

Definition 2.3.1: Let G be a group and let Ω be a set. An action of G on Ω is a mapping

$$G \times \Omega \to \Omega$$
 written $(g, x) \mapsto gx$

such that for each $x \in \Omega$ we have

- 1x = x
- $\forall g, h \in G, (gh)x = g(hx).$

For brevity, sometimes we say that Ω is a G-space.

Proposition 2.3.2: An action of a group G on a set Ω determines a homomorphism $f:G\to S(\Omega)$ such that f(g)(x)=gx for $g\in G$ and $x\in \Omega$.

Conversely, given a homomorphism $f: G \to S(\Omega)$, there is an action of G on Ω given by gx = f(g)(x) for each $g \in G$ and $x \in \Omega$.

Definition 2.3.3: Suppose that Ω is a G-space. The G-conjugacy relation on Ω is defined as follows: for $x,y\in\Omega, x\underset{C}{\sim} y$ provided that $\exists g\in G, gx=y.$

Proposition 2.3.4: The G-conjugacy relation on Ω is an equivalence relation.

Definition 2.3.5: Let Ω be a G-space, and let $\varphi:\Omega\to\Omega/\sim$ be the quotient mapping for the G-conjugacy relation; see <u>Definition 2.1.2</u>. For $x\in\Omega$, the <u>orbit</u> $\mathcal{O}_x=Gx$ of G through x is the subset of Ω defined by

$$\mathcal{O}_x = \varphi^{-1}(\varphi(x)).$$

Thus the G-orbits are the equivalence classes for the relation \sim ; see Remark 2.1.8.

Equivalently, we have $\mathcal{O}_x = \{gx \mid g \in G.\}$

Proposition 2.3.6: Ω is the disjoint union of the *G*-orbits in Ω .

Proof: This follows from <u>Proposition 2.1.9</u>.

Remark 2.3.7: Each orbit \mathcal{O}_x is itself a G-set.

2.4. Quotients of groups

Let G be a group and let H be a subgroup of G. There is an action of H on the set G by right multiplication: for $h \in H$ and $g \in G$ we can define $h \cdot g = gh^{-1}$.

We are going to consider the quotient of G by the equivalence relation of H-conjugacy; this equivalence relation is defined by

$$g \sim g' \Leftrightarrow \exists h \in H, g = g'h.$$

Definition 2.4.1: The left quotient of G by H is the quotient $(\pi, G/H)$ of G by the equivalence relation of H-conjugacy defined using the action of H on G by right multiplication as described above.

Remark 2.4.2:

- a. Of course, one can use an explicit model for the quotient by taking G/H to be the set of equivalence classes in G for the H-conjugacy relation.
- b. The equivalence classes for the relation of H-conjugacy defined by the action of right multiplication are precisely the left cosets of H in G. The class of $x \in G$ has the form

$$xH = \{xh \mid h \in H\}$$

.

For $x \in G$,

$$\pi^{-1}(\pi(x)) = xH.$$

c. We can also consider the action of H on G by left multiplication. This action determines an equivalence relation of H-conjugacy, and the quotient of G by this equivalence relation is called the right quotient of G by H and is written $(\pi, H \setminus G)$. In this case, the equivalence classes are the right cosets where the class of $x \in G$ has the form $Hx = \{hx \mid h \in H\}$.

For $x \in G$, we have $\pi^{-1}(\pi(x)) = Hx$.

Proposition 2.4.3: There is an action

$$\alpha: G \times G/H \to G/H$$

of the group G on the set G/H such that

$$\forall g, x \in G$$
, we have $\alpha(g, \pi(x)) = \pi(gx)$

where $\pi: G \to G/H$ is the quotient map.

Proof: To define the action map α , first fix $g \in G$. We are going to define the mapping

$$\alpha(g,-):G/H\to G/H.$$

Consider the mapping $\pi_g:G\to G/H$ given by the rule $\pi_g(x)=\pi(gx)$. This mapping has the property that $x\underset{H}{\sim} x'\Rightarrow \pi_g(x)=\pi_{g(x')}$. Indeed,

$$x \underset{\mathcal{H}}{\sim} x' \Rightarrow \exists h, x = x'h \Rightarrow \pi_g(x) = \pi(gx) = \pi(gx'h) = \pi(gx') = \pi_g(x')$$

by the defining property of π ; see <u>Definition 2.1.2</u>. Again using <u>Definition 2.1.2</u> we find the desired mapping $\alpha(g,-):G/H\to G/H$ with the property that

$$(\clubsuit) \quad \alpha(g,-)\circ\pi=\pi_q.$$

We now assemble the mappings $\alpha(g,-)$ to get a mapping $\alpha:G\times G/H\to G/H$ which satisfies $\alpha(g,\pi(x))=\pi(gx)$ for each $g,x\in G$, and it remains to check that α determines an action as in Definition 2.3.1.

Of course, using (\clubsuit) , we have $\alpha(1,-)\circ\pi=\pi_1=\pi=\mathrm{id}\circ\pi$; since π is surjective, it follows that $\alpha(1,-)=\mathrm{id}$. Thus $\alpha(1,z)=z$ for each $z\in G/H$, which shows that α satisfies the first requirement of <u>Definition 2.3.1</u>.

Now suppose that $g_1, g_2 \in G$. To complete the proof, we must veryify the remaining requirement of <u>Definition 2.3.1</u>; thus we must show that

$$(\blacktriangledown) \quad \alpha(g_1,\alpha(g_2,-)) = \alpha(g_1g_2,-)$$

On the one hand, using (\clubsuit) we find that

$$\alpha(g_1g_2,-)\circ\pi=\pi_{g_1g_2};$$

on the other hand, for $z \in G$ we have

$$\begin{split} (\alpha(g_1,\alpha(g_2,-))\circ\pi)(z) &= \alpha(g_1,\alpha(g_2,\pi(z))) \\ &= \alpha\Big(g_1,\pi_{g_2}(z)\Big) \quad \text{ by } (\clubsuit) \\ &= \alpha(g_1,\pi(g_2z)) \\ &= \pi(g_1(g_2z)) \quad \text{ by } (\clubsuit) \end{split}$$

Since π is surjective, (\P) follows at once. This completes the proof.

2.5. Quotients of groups and orbits.

Definition 2.5.1: Suppose that G acts on Ω_1 and on Ω_2 . A morphism of G-sets $\varphi:\Omega_1\to\Omega_2$ is a function φ with the property that $\forall g\in G$ and $\forall x\in\Omega_1$, we have $\varphi(gx)=g\varphi(x)$.

The morphism of G-sets φ is an isomorphism (of G-sets) if there is a morphism of G-sets ψ : $\Omega_2 \to \Omega_1$ such that $\varphi \circ \psi = \operatorname{id}$ and $\psi \circ \varphi = \operatorname{id}$.

Suppose that G acts on Ω and let $x \in \Omega$.

Definition 2.5.2: The stabilizer of x in G is the subgroup $\operatorname{Stab}_G(x) = \{g \in G \mid gx = x\}$.

Proposition 2.5.3: Write $H = \operatorname{Stab}_G(x)$ and recall that $\pi: G \to G/H$ is the quotient mapping. There is a unique isomorphism of G-sets $\gamma: G/H \to \mathcal{O}_x$ with the property that

$$\gamma(\pi(1)) = x$$
.

Proof: The rule $g\mapsto gx$ determines a surjective mapping $\alpha_x:G\to\mathcal{O}_x$. Recall that the action of H on G by right multiplication determines an equivalence relation \sim on G used to construct the quotient G/H.

For $g_1, g_2 \in G$ we find that

$$g_1 \sim g_2 \Rightarrow \exists h \in H, g_1 = g_2 h \Rightarrow \alpha(g_1) = \alpha(g_2 h) = g_2 h x = g_2 x = \alpha(g_2)$$

since $h \in H = \operatorname{Stab}_G(x) \Rightarrow hx = x$.

Thus <u>Definition 2.1.2</u> shows that there is a mapping $\gamma:G/H\to\mathcal{O}_x$ such that $\gamma\circ\pi=\alpha_x$. To see that γ is a mortpism of G-sets, it suffices to show that $(\clubsuit) \quad \forall g,g'$ we have

$$\gamma(g \cdot \pi(g')) = g \cdot \gamma(\pi(g')).$$

Now by the definition of the G-action on G/H we have $g \cdot \pi(g') = \pi(gg')$; see Proposition 2.4.3. Thus $\gamma(g \cdot \pi(g')) = \gamma(\pi(gg')) = \alpha_x(gg') = gg' \cdot x$. On the other hand, $g \cdot \gamma(\pi(g')) = g \cdot \alpha_{x(g')} = g \cdot g' \cdot x$ which confirms (\clubsuit). This shows that γ is indeed a morphism of G-sets.

Since α_x is surjective and $\gamma \circ \pi = \alpha_x$, also γ is surjective. It only remains to see that γ is injective. Suppose that $z, z' \in G/H$ such that $\gamma(z) = \gamma(z')$. Since $\pi: G \to G/H$ is surjective, we may choose $g, g' \in G$ with $z = \pi(g)$ and $z' = \pi(g')$. Now

$$\gamma(z) = \gamma(z') \Rightarrow \gamma(\pi(g)) = \gamma(\pi(g')) \Rightarrow \alpha_{x(g)} = \alpha_{x(g')} \Rightarrow gx = g'x.$$

We now conclude that $g^{-1}gx=x$ so that $g^{-1}g\in \operatorname{Stab}_G(x)=H$. Since the quotient mapping π is constant on H-orbits, $z=\pi(g)=\pi(gg^{-1}g')=\pi(g')=z'$. This shows that γ is injective and completes the proof.

Definition 2.5.4: The action of G on Ω is transitive if there is a single G-orbit on Ω . Equivalently, the action is transitive if the quotient Ω/\sim is a singleton set.

Example 2.5.5: Let I be a set and let G = S(I) be the group of permutations of I. Fix $x \in I$ and let $H = \operatorname{Stab}_G(x)$. Notice that G acts on I. Moreover, the G-orbit of x is precisely I - in other words, the action of G on I is transitive.

Notice that $H = S(I - \{x\})$.

Now Proposition 2.5.3 gives an isomorphism of G-sets $G/H \to I$; i.e. $S(I)/S(I - \{x\}) \to I$.

2.6. The product of subgroups

Definition 2.6.1: If $H, K \subseteq G$ are two subgroups, then H normalizes K if for each $g \in H$ we have $\operatorname{Inn}_q K \subseteq K$ (in other words, $\forall x \in K, gxg^{-1} \in K$).

Definition 2.6.2: Let H, K be subsets of G. The product of H and K is the subset

$$HK := \{xy \mid x \in H, y \in K\}$$

Proposition 2.6.3: Suppose that H, K are subgroups of G and that H normalizes K. Then $\langle H, K \rangle = HK$. In particular, HK a subgroup of G.

Proof: Let X=HK. Since any subgroup of G which contains both H and K clearly contains X, it only remains to argue that X is a subgroup. For this, we use <u>Proposition 2.2.6</u>. First note that $1=1\cdot 1\in X$, so X is non-empty. Now, let $a_1,b_2\in X$. We must argue that $a_1a_2^{-1}\in X$. By definition, there are elements $x_1,x_2\in H$ and y_1,y_2 in K with $a_i=x_iy_i$ for i=1,2. We now compute

$$a_1a_2^{-1} = x_1y_1(x_2y_2)^{-1} = x_1y_1y_2^{-1}x_2^{-1} = \left(x_1x_2^{-1}\right)\cdot \left(x_2y_1y_2^{-1}x_2^{-1}\right).$$

We notice that $x_1x_2^{-1} \in H$. Moreover, $y_1y_2^{-1} \in K$; since H normalizes K it follows that $x_2y_1y_2^{-1}x_2^{-1} \in K$.

We have now argued that $a_1a_2^{-1}$ has the form xy for $x \in H$ and $y \in K$ so that $a_1a_2^{-1} \in X$. Now <u>Proposition 2.2.6</u> indeed shows that X = HK is a subgroup.

Proposition 2.6.4: Let H, K be subgroups of G and let $\varphi : H \times K \to HK$ be the natural mapping given by $\varphi(h, k) = hk$.

- a. For each $\alpha \in HK$, the set $\varphi^{-1}(\alpha)$ is in bijection with $H \cap K$.
- b. In particular, if $H \cap K = \{1\}$, then φ is bijective.

Proof: Let $\alpha = hk \in HK$. Note for any $x \in H \cap K$ that $\varphi(hx, x^{-1}k) = \alpha$ so that $(hx, x^{-1}k) \in \varphi^{-1}(\alpha)$. We argue that the mapping

$$\gamma: H \cap K \to \varphi^{-1}(\alpha)$$
 given by $\gamma(x) = (hx, x^{-1}k)$

is bijective. Well, if $(h_1,k_1)\in \varphi^{-1}(\alpha)$ then $\varphi(h_1,k_1)=\varphi(h,k)$ so that $h_1k_1=hk$ and thus $h^{-1}h_1=kk_1^{-1}$. Now set $x=h^{-1}h_1=kk_1^{-1}\in H\cap K$ and observe that $(h_1,k_1)=\gamma(x)$. This shows that γ is surjective. To see that γ is injective, suppose that $\gamma(x)=\gamma(x')$ for $x\in H\cap K$. Then

$$(hx, x^{-1}k) = (hx', x'^{-1}k) \Rightarrow hx = hx' \Rightarrow x = x'.$$

So γ is injective and the proof of a. is complete.

Now, the mapping φ is surjective by the definition of HK. To prove b. we suppose that

$$H \cap K = \{1\}.$$

According to a. the fiber $\varphi^{-1}(\alpha)$ is a singleton for each $\alpha \in HK$; this shows that φ is injective and confirms b.

Corollary 2.6.5: If G is a finite group and H, K subgroups of G, then

$$|HK| = |H| \cdot |K| / |H \cap K|.$$

Proof: This is a consequence of <u>Proposition 2.6.4</u>.

Let's introduce some examples of groups in order to investigate this a bit more.

Example 2.6.6: For $n \in \mathbb{N}$ with $n \geq 1$, consider the symmetric group $S = S_n$ viewed as $S(\mathbb{Z}/n\mathbb{Z})$ where $\mathbb{Z}/n\mathbb{Z}$ denotes the collection of integers modulo n.

Consider the elements $\sigma, \tau \in S$ defined by the rules $\sigma(i) = i + 1$ and $\tau(i) = -i$ where the addition and negation occurs in $\mathbb{Z}/n\mathbb{Z}$.

Viewed as permutations, σ identifies with an n-cycle and τ identifies with a product of disjoint transpositions:

$$\sigma = (1,2,...,n) \text{ and } \tau = (1,n-1)(2,n-2)... = \prod_{i=1}^{\lfloor \frac{n}{2} \rfloor} (i,n-i).$$

In particular, σ has order n and τ has order 2. Moreover,

$$(\mathbf{\Psi}) \quad \tau \sigma \tau = \sigma^{-1}$$

Condition (\P) shows that the subgroup $\langle \tau \rangle$ normalizes the subgroup $\langle \sigma \rangle$. Thus <u>Proposition 2.6.3</u> shows that

$$\langle \sigma, \tau \rangle = \langle \sigma \rangle \langle \tau \rangle.$$

We call $D = \langle \sigma, \tau \rangle$ the dihedral group of order n. Note that (\P) shows that $\langle \tau \rangle$ normalizes $\langle \sigma \rangle$ so that $D = \langle \tau \rangle \cdot \langle \sigma \rangle$.

We claim:

• |D| = 2n. In fact, D is usually written D_{2n} .

To prove the claim, we apply Corollary 2.6.5; we just need to argue that

$$(\clubsuit) \quad \langle \sigma \rangle \cap \langle \tau \rangle = \{1\}.$$

Since σ has order n and τ has order n, (\clubsuit) is immediate if n is odd.

Now suppose that n=2k is even. The unique subgroup of order 2 in $\langle \sigma \rangle$ is generated by σ^k . To prove (\clubsuit) we must argue that $\sigma^k \neq \tau$.

Suppose the contrary. If $\sigma^k = \tau$ then $\sigma(n) = \tau(n) \in \mathbb{Z}/n\mathbb{Z}$. Since $\sigma^k(n) \equiv n + k \pmod{n}$ while $\tau(n) = -n \equiv n \pmod{n}$, we conclude that $n + k \equiv n \pmod{n}$; thus $k \equiv 0 \pmod{n}$ i.e. $2k \mid k$, which yields a contradiction as $k \geq 1$. This completes the proof (\clubsuit) .

2.7. Lagrange's Theorem

Let H be a subgroup of the group G and write G/H for the (left) quotient, as above. Recall that the H-cosets xH are the H-orbits for this action.

Theorem 2.7.1: There is a bijection $\varphi: (G/H) \times H \to G$ for which $\{\varphi(z,h) \mid h \in H\}\}$ is an H-orbit (i.e. a left H-coset) for each $z \in G/H$.

Proof: Indeed, using the axiom of choice we select for each $z \in G/H$ an element $g_z \in \pi^{-1}(z)$ where $\pi: G \to G/H$ is the quotient map.

Now define $\varphi: (G/H) \times H \to G$ by the rule $\varphi(z, h) = g_z h$.

To see that φ is onto, let $g \in G$. One then knows that $g \sim g_z$ for some $z \in G/H$. Since $\pi^{-1}(z) = g_z H$ it follows that $g = g_z h$ for some $h \in H$, so $g = \varphi(z, h)$.

To see that φ is injective, suppose that $\varphi(z,h)=\varphi(z',h')$. Then $g_zh=g_{z'}h'$ so that

$$(g_{z'})^{-1}g_z\in H\Rightarrow g_z\sim g_{z'}\Rightarrow z=z'.$$

Now $g_z h = g_z h' \Rightarrow h = h'$ which completes the proof that φ is injective. The remaining assertion follows from the definition of φ .

Corollary 2.7.2: Suppose that G is a finite group and that H is a subgroup of G. Then

$$|G| = |G/H| \cdot |H|.$$

Proof: Indeed, for finite sets X and Y, we have $|X \times Y| = |X| |Y|$.

3. Week 3 [2025-09-15]

3.1. Normal subgroups

Subgroups of the form $\ker \varphi$ have a property that ordinary subgroups might lack; in this section we describe this property.

Proposition 3.1.1: Let G be a group.

a. For $g \in G$, the assignment $x \mapsto gxg^{-1}$ determines a group isomorphism

$${\rm Inn}_x:G\to G$$

b. The assignment $x\mapsto {\rm Inn}_x$ determines a group homomorphism $G\to {\rm Aut}(G)$ where ${\rm Aut}(G)$ is the group of automorphisms of G.

Proof sketch:

- First check that Inn_x is a group homomorphism.
- Then check that (\spadesuit) $\operatorname{Inn}_x \circ \operatorname{Inn}_y = \operatorname{Inn}_{xy}$ for all $x,y \in G$.
- Next, check that $\operatorname{Inn}_1 = \operatorname{id}$. Using (\spadesuit) , this shows that $(\operatorname{Inn}_x)^{-1} = \operatorname{Inn}_{x^{-1}}$ so indeed Inn_x is an *automorphism* of G.
- Finally, (\spadesuit) shows that Inn is a group homomorphism.

Definition 3.1.2: A subset $N \subseteq G$ is a normal subgroup of G if N is a subgroup of G and if for any $g \in G$ and for any $x \in N$, we have $gxg^{-1} \in N$.

Using earlier notation, a subgroup N is normal if $\forall g \in G$, $\operatorname{Inn}_q N \subseteq N$.

Remark 3.1.3: If N is a normal subgroup then for every $g \in G$ we have $\operatorname{Inn}_q N = N$.

Indeed, our assumption means for every g that $\operatorname{Inn}_g N \subseteq N$. Thus $\operatorname{Inn}_g^{-1} \circ \operatorname{Inn}_g N \subseteq \operatorname{Inn}_g^{-1} N$ so that $N \subseteq \operatorname{Inn}_g^{-1} N$. Since this holds for every g, we find that $\operatorname{Inn}_g N \subseteq N \subseteq \operatorname{Inn}_g N$ for every g; this confirms the assertion.

Proposition 3.1.4: Let H be a subgroup of G.

- a. Suppose $G=\langle S \rangle$ for some subset $S\subseteq G$. Then H is normal in G if and only if $\mathrm{Inn}_x\,H=H$ for each $x\in S$.
- b. If $H=\langle T \rangle$ for some subset $T\subseteq H$, then H is normal in G if and only if $\forall t\in T, \forall x\in G, \mathrm{Inn}_x\, t\in H.$

Proof:

a. (\Rightarrow) : This follows from the definition of normal subgroup.

 (\Leftarrow) : Write $N = \{g \in G \mid \operatorname{Inn}_g H = H\}$ and check that N is a subgroup of G. It is clear that $H \subseteq N$ and by construction H is a normal subgroup of N. Now our assumption shows that $S \subseteq N$ so that $G = \langle S \rangle \subseteq N \Rightarrow N = G$ and thus H is normal in G.

b. (\Rightarrow) : Again, this implication follows from the definition of normal subgroup.

 (\Leftarrow) : Fix $x \in G$; we must argue that $\mathrm{Inn}_x H \subseteq H$. We know that Inn_x is a group homomorphism; see <u>Proposition 3.1.1</u>. It follows from <u>Proposition 2.2.7</u>

$$\operatorname{Inn}_r(\langle T \rangle) \subseteq \langle \operatorname{Inn}_r(T) \rangle$$

which indeed shows that $\operatorname{Inn}_x H \subseteq H$.

Proposition 3.1.5:

Let $N=\ker \varphi$ where $\varphi:G\to H$ is a group homomorphism. Then N is a normal subgroup of G.

Proof: We have already observed that N is a subgroup. Now let $g \in G$ and $x \in N$ so that $\varphi(x) = 1$. Now

$$\varphi \left(\mathrm{Inn}_g(x) \right) = \varphi \big(gxg^{-1} \big) = \varphi(g) \varphi(x) \varphi \big(g^{-1} \big) = \varphi(g) \varphi(g)^{-1} = 1$$

so that $\operatorname{Inn}_q N \subseteq N$ as required.

Example 3.1.6:

Consider the group $\operatorname{GL}_2(\mathbb{Q})$. For $x \in \mathbb{Q}$ write

$$\alpha(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Note for $x,y\in\mathbb{Q}$ that $\alpha(x+y)=\alpha(x)+\alpha(y)$; thus $\alpha:\mathbb{Q}\to\mathrm{GL}_2(\mathbb{Q})$ is an injective group homomorphism whose image

$$U_{\mathbb{Q}} = \{\alpha(x) \mid x \in \mathbb{Q}\} = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q} \right\}$$

is a subgroup of $GL_2(\mathbb{Q})$.

Observe that $U_{\mathbb{Z}} = \{\alpha(x) \mid x \in \mathbb{Z}\}$ is a subgroup of $U_{\mathbb{Q}}$.

For $t \in \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$, write

$$h(t) = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}.$$

For $t, s \in \mathbb{Q}^{\times}$, we have h(ts) = h(t)h(s) so that $h : \mathbb{Q}^{\times} \to \mathrm{GL}_2(\mathbb{Q})$ is an injective group homomorphism whose image

$$H = \{h(t) \mid t \in \mathbb{Q}^{\times}) = \left\{ \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{Q}^{\times} \right\}$$

is a subgroup of $GL_2(\mathbb{Q})$.

We observe for $t \in \mathbb{Q}^{\times}$ and $x \in \mathbb{Q}$ that

$$h(t)\alpha(x)h(t)^{-1}=\begin{pmatrix}t&0\\0&1\end{pmatrix}\begin{pmatrix}1&x\\0&1\end{pmatrix}\begin{pmatrix}t^{-1}&0\\0&1\end{pmatrix}=\begin{pmatrix}1&tx\\0&1\end{pmatrix}=\alpha(tx).$$

This shows that $\forall h \in H, \operatorname{Inn}_h U_{\mathbb Q} \subseteq U_{\mathbb Q}$ so that H normalizes $U_{\mathbb Q}$.

Let $n \in \mathbb{Z}$ with n > 1 and consider the subgroup $C = C_n = \langle h(n) \rangle$ of H.

The generator h(n) satisfies $\mathrm{Inn}_{h(n)}\,U_{\mathbb{Z}}\subset U_{\mathbb{Z}}$ since for $x\in\mathbb{Z}$

$$h(n)\alpha(x)h(n)^{-1} = \alpha(nx) \in U_{\mathbb{Z}}.$$

Note however that $\operatorname{Inn}_{h(n)}U_{\mathbb{Z}}$ is a proper subset of $U_{\mathbb{Z}}$; indeed, identifying $U_{\mathbb{Z}}$ with \mathbb{Z} , the image subgroup $\operatorname{Inn}_{h(n)}U_{\mathbb{Z}}$ identifies with $n\mathbb{Z}$ and of course $n\mathbb{Z}$ has index n in \mathbb{Z} .

The group $U_{\mathbb{Z}}$ is not normalized by $C = \langle h(n) \rangle$ e.g. since $\operatorname{Inn}_{h(n)}^{-1} U_{\mathbb{Z}} = \operatorname{Inn}_{h(n^{-1})} U_{\mathbb{Z}} \nsubseteq U_{\mathbb{Z}}$; indeed

$$\operatorname{Inn}_{h(n^{-1})}\alpha(1)=\alpha\bigg(\frac{1}{n}\bigg)=\begin{pmatrix}1&\frac{1}{n}\\0&1\end{pmatrix}\notin U_{\mathbb{Z}}.$$

This example shows the following: there exists a group G, subgroups H, K of G, and a subset $S \subseteq G$ for which

 $H = \langle S \rangle$ such that $\operatorname{Inn}_x K \subseteq K$ for all $x \in S$ even though H does not normalize K.

Of course, if we insist that $\operatorname{Inn}_x K = K$ for all $x \in S$ then H will normalize K; see Proposition 3.1.4.

In the proof of Proposition 3.1.4 we gave a definition of the normalizer of K in H, namely

$$N_H(K) = \{ h \in H \mid \operatorname{Inn}_h K = K \}.$$

This example shows why in that definition one needs to insist that $\operatorname{Inn}_h K = K$ for each $h \in H$ rather than simple $\operatorname{Inn}_h K \subseteq K$.

3.2. Quotient groups

Theorem 3.2.1: Let N be a subgroup of G, and write $\left(\pi_{G/N}, G/N\right)$ for the quotient. If N is a normal subgroup, then G/N is a group for which

a. the multiplication $\mu: G/N \times G/N \to G/N$ satisfies

$$\forall q, q' \in G, \pi(q)\pi(q') = \pi(qq')$$

- b. the identity is given by $1_{G/N} = \pi(1_G)$,
- c. inversion satisfies $\forall g \in G, \pi(g)^{-1} = \pi(g^{-1})$.

Moreover, the quotient map $\pi_{G/N}:G\to G/N$ is a group homomorphism.

Proof: We first confirm that there is a mapping $\mu: G/N \times G/N \to G/N$ satisfying the condition in a.

We observe that $G/N \times G/N$ may be viewed as the quotient of the product group $G \times G$ by the subgroup $N \times N$; i.e. as $(G \times G)/(N \times N)$.

Consider the function

$$\varphi: G \times G \to G/N$$

given by

$$\varphi(g,g')=\pi_{G/N}(gg').$$

We claim that φ is constant on the $N \times N$ orbits in $G \times G$. Indeed, suppose that $(g,g') = (g_1,g_1')(h,h')$ for $g,g',g_1,g_1' \in G$ and $h,h' \in H$. Thus $g=g_1h$ and $g'=g_1'h'$. Then

$$\varphi(g,g') = \pi_{G/N}(gg') = \pi_{G/N}(g_1h \cdot g_1'h') = \pi_{G/N}\big(g_1g_1'g_1'^{-1}hg_1'h'\big) = \pi_{G/N}(g_1g_1') = \varphi(g_1,g_1')$$

since N a normal subgroup

$$\Rightarrow g_1^{\prime -1}hg_1^{\prime} \in N \Rightarrow g_1^{\prime -1}hg_1^{\prime}h^{\prime} \in N.$$

Thus there is a mapping $\mu: G/N \times G/N \to G/N$ which satisfies $\mu \circ \pi_{G \times G/N \times N} = \varphi$ and μ clearly satisfies a.

Next we confirm that there is an inversion mapping $G/N \to G/N$ that satisfies b. For this, one just checks that the mapping $G \to G/N$ given by $g \mapsto \pi_{G/N}(g^{-1})$ is constant on N-orbits. Let $g, g' \in G$ and $h \in N$ and suppose that g = g'h. We must argue that

$$\pi_{G/N}(g^{-1}) = \pi_{G/N}(g'^{-1}).$$

We have

$$\left(g'h\right)^{-1} = h^{-1}g'^{-1} = g'^{-1}g'h^{-1}g'^{-1}$$

so indeed

$$\pi_{G/N}(g^{-1}) = \pi_{G/N} \left((g'h)^{-1} \right) = \pi_{G/N} (g'^{-1}g'h^{-1}g'^{-1}) = \pi_{G/N} (g'^{-1})$$

since $g'h^{-1}g'^{-1} \in N$ by the normality of N in G.

It remains to cofirm that the group axioms hold.

To confirm associativity in G/N, let $z, z', z'' \in G/N$. We must argue that (zz')z'' = z(z'z''). Since π is surjective we can write $z = \pi(g)$, $z' = \pi(g')$ and $z'' = \pi(g'')$ for $g, g', g'' \in G$. Now we see using a twice that

$$(zz')z'' = (\pi(q)\pi(q'))\pi(q'')) = \pi(qq')\pi(q'') = \pi((qq')q'').$$

A similar calculation shows that

$$z(z'z'') = \pi(g(g'g''))$$

and now the result follows by associativity in G.

Similar calculations confirm that the $\pi_{G/N}(1)$ acts as an identity and that $\pi_{G/N}(g^{-1})$ is the inverse of $\pi(G/N)(g)$.

Finally, it follows from the definitions that $\pi_{G/N}$ is a group homomorphism.

Example 3.2.2:

If G is an abelian group, then Inn_x is the trivial homomorphism for each $x \in G$, and in particular every subgroup of G is normal.

Let's consider an additive abelian group A and B any subgroup. Write $\pi:A\to A/B$ for the quotient mapping.

For $a \in A$, we often view $\pi(a)$ as the coset $a + B = \{a + x \mid x \in B\}$.

We see for $a, a' \in A$ that $\pi(a) = \pi(a') \Leftrightarrow a - a' \in B$.

3.3. First isomorphism theorem

Theorem 3.3.1:

Let $\varphi:G\to H$ be a group homomorphism, and let $K=\ker\varphi$. Assume that φ is surjective. Then there is a unique isomorphism of groups $\overline{\varphi}:G/K\to H$ such that $\varphi=\overline{\varphi}\circ\pi$ where $\pi:G\to G/K$ is the quotient homomorphism.

Proof: We first observe that – provided it exists – $\overline{\varphi}$ is unique. Indeed, for any $z \in G/K$ we may write $z = \pi(g)$ for $g \in G$ and then our assumption guarantees that

(*)
$$\overline{\varphi}(z) = \overline{\varphi}(\pi(q)) = \varphi(q).$$

So it just remains to argue that (*) determines a group isomorphism.

We first check that (*) determines a group homomorphism. Indeed, for $z, z' \in G/K$ with $z = \pi(g)$ and $z' = \pi(g')$ for $g, g' \in G$, we have

$$\overline{\varphi}(zz') = \overline{\varphi}(\pi(g)\pi(g')) = \overline{\varphi}(\pi(gg')) = \varphi(gg') = \varphi(g)\varphi(g') = \overline{\varphi}(\pi(g))\overline{\varphi}(\pi(g')) = \overline{\varphi(z)\varphi(z')}.$$

Now we observe that since φ is surjective, and since $\pi: G \to G/K$ is surjective, then $\overline{\varphi}$ is surjective.

Finally, we check that φ is injective. For this, it suffices to show that $\ker \varphi = \{1\}$; see <u>Proposition 1.2.5</u>.

So, let $z \in \ker \varphi \subseteq G/K$ and write $z = \pi(g)$ for $g \in G$. We know that

$$1_H=\overline{\varphi}(z)=\overline{\varphi}(\pi(g))=\varphi(g)$$

and we conclude that $\varphi(g)=1\Rightarrow g\in\ker\varphi$. Since $g\in\ker\varphi$, we know that $\pi(g)=\pi(1)$, in other words, $z=\pi(g)$ is the identity element of the quotient group G/K. This proves that $\ker\overline{\varphi}$ is trivial so that $\overline{\varphi}$ is injective.

3.4. Groups acting on Groups

Let G and H be groups and suppose that G acts on the set H.

Definition 3.4.1:

We say that G acts by automorphisms on H if for each $g \in G$, the mapping

$$h\mapsto g\cdot h: H\to H$$

is an automorphism of the group H.

Remark 3.4.2:

To give an action of G on H by automorphisms is the same as to give a group homomorphism $G \to \operatorname{Aut}(H)$.

Proposition 3.4.3:

If G acts on H by automorphisms, the set of fixed points

$$H^G = \{ x \in H \mid \forall g \in G, g \cdot x = x \}$$

is a subgroup of H.

Proof: Notice that $1 \in H^G$ since each each group automorphism $\psi : H \to H$ satisfies $\psi(1) = 1$. Let $x, y \in H^G$. We must argue that $x^{-1}y \in H^G$.

We first argue that $x^{-1} \in H^G$. For this, let $g \in G$. Since the action of g is an automorphism of H and since $g \cdot x = x$, we see that

$$1 = g \cdot 1 = g \cdot xx^{-1} = (g \cdot x)(g \cdot x^{-1}) = x(g \cdot x^{-1}).$$

This shows that $g \cdot x^{-1} = x^{-1}$ so that $x^{-1} \in H^G$.

Now again let $g \in G$. We must argue that $g \cdot x^{-1}y = x^{-1}y$. Since g acts as an automorphism of H we see that

$$g\cdot x^{-1}y=\big(g\cdot x^{-1}\big)(g\cdot y)=x^{-1}y$$

since $x^{-1}, y \in H^G$.

Example 3.4.4:

G acts in itself by inner automorphisms. This action is determined by the group homomorphism Inn : $G \to \operatorname{Aut}(G)$.

In this case, the subgroup $G^G = G^{\text{Inn}(G)}$ of fixed points is precisely the center Z = Z(G):

$$Z = \left\{x \in G \mid \operatorname{Inn}_g x = x\right\} = \left\{x \in G \mid gx = xg \quad \forall g \in G.\right\}$$

For $x \in G$, the stabilizer $\operatorname{Stab}_G(x)$ is known as the centralizer:

$$\operatorname{Stab}_G(x) = C_G(x) = \left\{g \in G \mid \operatorname{Inn}_q x = x\right\} = \{g \in G \mid gx = xg\}.$$

And the orbit of x is known as the conjugacy class of x:

$$\mathcal{O}_x = \operatorname{Cl}(x) = \left\{\operatorname{Inn}_q x \mid g \in G\right\} = \left\{gxg^{-1} \mid g \in G\right\}.$$

Proposition 2.5.3 gives a bijection

$$Cl(x) \simeq G/C_G(x)$$
.

Proposition 3.4.5: The center of a group G is a normal subgroup of G.

3.5. *p***-groups**

Definition 3.5.1:

For a prime number p, a finite p-group is a finite group G whose order is a power of p.

Let G be a finite p-group and suppose that G acts on the finite set E, and write E^G for the set of elements of E fixed by the action of G; thus $E^G = \{x \in E \mid \forall g \in G, g \cdot x = x\}$.

Proposition 3.5.2:

With notation as above, we have $|E| \equiv |E^G| \pmod{p}$.

Proof: Indeed, the complement $E \setminus E^G$ is the disjoint union of non-trivial orbits of G, each of which has order divisible by p.

Proposition 3.5.3:

Suppose that G acts by automorphisms on a second p-group H. The fixed points H^G form a non-trivial subgroup.

Proof: First of all, the fixed points form a subgroup because the action of an element $g \in G$ is a group automorphism of H. In more detail, since H^G is a non-empty subset of G, it is enough to argue that for every $x,y \in H^G$, we have $x^{-1}y \in H^G$.

We first argue that $x^{-1} \in H^G$. For $g \in G$, we have

$$1=g\cdot 1=g\cdot xx^{-1}=(g\cdot x)\big(g\cdot x^{-1}\big)=x\big(g\cdot x^{-1}\big).$$

Thus $g\cdot x^{-1}$ is an inverse of x so indeed $x^{-1}=g\cdot x^{-1}$. We now show that $x^{-1}y\in H^G$. For this again let $g\in G$ be arbitrary. We have

$$g\cdot x^{-1}y=\big(g\cdot x^{-1}\big)(g\cdot y)=x^{-1}y$$

which shows that $x^{-1}y \in H^G$.

Now Proposition 3.5.2 shows that p divides the order of the subgroup H^G , so H^G is indeed non-trivial..

Theorem 3.5.4: The center of a non-trivial *p*-group is non-trivial.

Proof: If G is a non-trivial p-group, consider the action of G on itself by conjugation. The subgroup of fixed points is precisely the center of G, and <u>Proposition 3.5.3</u> implies that this subgroup is non-trivial.

Corollary 3.5.5:

Let G be a finite p-group with $|G| = p^n$. There is a series of subgroups

$$\{1\} = G_n \subset G_{n-1} \subset \ldots \subset G_0 = G$$

such that G_i is normal in G for each $0 \le i < n$ and such that G_i/G_{i+1} is cyclic of order p for $0 \le i < n-1$.

Proof sketch: We proceed by induction on |G|. If |G| = 1 so that G is the trivial group, the assertion is immediate.

Now suppose given a non-trivial p-group G and suppose that the result holds for all p-groups of order < |G|.

Let Z be the center of G. Then Z is non-trivial by Theorem 3.5.4. Thus G/Z is p group with order < |G|.

By induction there is a sequence of subgroups

$$\{1\}=H_m\subset H_{m-1}\subset \ldots \subset H_0=G/Z.$$

such that H_i is normal in G/Z and H_i/H_{i+1} is cyclic of order p for each i < m.

Let $G_i = \pi^{-1}(H_i) \subset G$, where $\pi: G \to G/Z$ is the quotient homomorphism.

One must check the following:

- G_i is a normal subgroup of G,
- $G_i/G_{i+1} \simeq H_i/H_{i+1}$ is cyclic of order p for each i.

Since $G_m = \ker \pi = Z$ we have the sequence in G:

$$\{1\} \subset Z = G_m \subset G_{m-1} \subset \ldots \subset G_1 \subset G_0 = G.$$

Thus to complete the proof of the Theorem, we must demonstrate that Z has a suitable sequence of subgroup.

Thus it remains to prove the Theorem in case G is an *abelian* p-group. This proof is addressed in the homework.

4. Week 4 [2025-09-22]

4.1. Sylow subgroups

Let G be a finite group of order $n = p^m q$ with p a prime and with gcd(p, q) = 1.

Theorem 4.1.1 (Sylow's Theorem):

There exists a subgroup of G having order p^m ; such a subgroup is known as a Sylow subgroup, or a Sylow p-subgroup. Moreover:

- a. Any two Sylow p-subgroups are conjugate by an element of G.
- b. Any p-subgroup of G is contained in a Sylow p-subgroup.
- c. If r denotes the number of p-Sylow subgroups, then $r \equiv 1 \pmod{p}$ and $r \mid q$.

d.

For the proof, we consider the set E of all subsets of G having order p^m . The action of G on itself by translation induces an action of G on E: for $X \in E$, evidently $g \cdot X \in E$ where $g \cdot X = \{g \cdot x \mid x \in X\}$.

One knows that
$$|E| = \binom{|G|}{p^m} = \binom{p^mq}{p^m}$$
.

Proposition 4.1.2:
$$\binom{p^mq}{p^m} \equiv q \pmod{p}$$
.

Proof: Let X and Y be indeterminants; we work in the polynomial ring $(\mathbb{Z}/p\mathbb{Z})[X,Y]$. Write $n=p^mq$ and consider

$$(X+Y)^n = \left((X+Y)^{p^m} \right)^q = \left(X^{p^m} + Y^{p^m} \right)^q = \sum_{i=0}^q \binom{q}{i} \big(X^{p^m} \big)^i \big(Y^{p^m} \big)^{q-i}.$$

On the other hand, we have

$$(X+Y)^n = \sum_{i=0}^n \binom{n}{i} X^i Y^{n-i}.$$

and the required result follows by comparing the coefficient of $X^{p^m}Y^{(q-1)p^m}$ in the two expressions.

Definition 4.1.3: Let G be a group and let $H \subseteq G$ be a subgroup. The normalizer of H in G is the subgroup

$$N_G(H) = \left\{g \in H \mid \operatorname{Inn}_g H = H\right\};$$

it is the stabilizer of H in G for the conjugation action of G on the set of subgroups of G.

Notice that $G/N_G(H)$ is in bijection with the set of all conjugates $\{gHg^{-1} \mid g \in G\}$.

For the proof of the Theorem, we are going to use the following:

Proposition 4.1.4: Let P be a Sylow p-subgroup of G and let Q be any p-subgroup of G. Then

$$N_Q(P)=Q\cap P.$$

Proof: By definition, $N_Q(P) = Q \cap N_G(P)$, so we must show that $Q \cap N_G(P) = Q \cap P$.

Let $H=Q\cap N_G(P)$. Since $P\subseteq N_G(P)$, it is clear that $Q\cap P\subseteq H=Q\cap N_G(P)$. It remains to establish the reverse inclusion. Since $H\subseteq Q$ by definition, it only remains to prove that $H\subseteq P$.

For this, we first claim that PH is a p-subgroup of G. Assume for the moment that this claim has been established. Since PH contains P and since P is a p-subgroup of maximal possible order, we conclude that P = PH and hence that $H \subseteq P$ as required.

Since $H \subseteq N_G(P)$, the product $PH = \{xh \mid x \in P \text{ and } h \in H\}$ is a subgroup of G. Moreover, we know that

$$|PH| = \frac{|P||H|}{|P \cap H|};$$

see Corollary 2.6.5. Since |P| and |H| are powers of p, PH is a p-subgroup.

Finally, we now give:

Proof of Sylow's Theorem: Proposition 4.1.2 shows that $|E| \not\equiv 0 \pmod{p}$. Thus there must be some $X \in E$ for which the orbit $G \cdot X$ satisfies $|G \cdot X| \not\equiv 0 \pmod{p}$. If H is the *stabilizer* in G of X, there is of course a bijection between $G \cdot X$ and G/H. In particular,

$$|G/H| \not\equiv 0 \pmod{p}$$
.

Since $|G| = |H| \cdot |G/H|$, conclude that p^m divides the order of H.

On the other hand, fix $x \in X$. We claim that $H \subseteq X \cdot x^{-1}$. Indeed, for $h \in H$, since h stabilizes X we have

$$hx = x'$$
 for some $x' \in X$.

Then $h = x'x^{-1} \in X \cdot x^{-1}$ as required.

Concluding, we find that $|H| \le |X \cdot x^{-1}| = |X| = p^m$ and thus $|H| = p^m$. In particular, H is a Sylow subgroup.

Now let H' be any p-subgroup of G and consider the action of H' on the quotient G/H determined by left-multiplication. Since |G/H| = q is not divisible by p, Proposition 3.5.2 shows that $(G/H)^{H'} \neq \emptyset$. Suppose that the coset $gH \in G/H$ is fixed by H'. We claim that

$$H' \subset qHq^{-1}$$
.

Indeed, since gH is fixed by H', we have

$$x \in H' \Rightarrow xgH = gH \Rightarrow g^{-1}xgH = H \Rightarrow g^{-1}xg \in H \Rightarrow x \in gHg^{-1}.$$

This confirms that $H' \subseteq gHg^{-1}$. Thus any p-subgroup of G is contained in a Sylow subgroup. This proves (b).

Applying the argument of the preceding paragraph to the case where H' is a Sylow subgroup we see that $H' = gHg^{-1}$; this shows that any two Sylow subgroups are conjugate, proving (a).

To prove (c), let P be a Sylow p-subgroup. Note that P acts by conjugation on the set of all Sylow p-subgroups of G. We choose Sylow p-subgroups $Q_1, Q_2, ..., Q_s$ which form a system of representatives of the P-orbits for this action. We may and will take $Q_1 = P$.

For $1 \le i < s$, we write $\mathcal{O}_i = P \cdot Q_i = \{xQ_ix^{-1} \mid x \in P\}$ for the P-orbit of Q_i . Recall that \mathcal{O}_i is in bijection with the quotient $P/N_P(Q_i)$ where $N_P(Q_i)$ is the normalizer of Q_i in P.

For $1 \le i \le s$ Proposition 4.1.4 shows that $N_P(Q_i) = Q_i \cap P$.

In particular, it follows that $N_P(Q_1)=P\cap P=P$ so that $|\mathcal{O}_1|=1$. For all $2\leq i\leq s$ we have $P\neq Q_i$ so that $N_P(Q_i)=Q_i\cap P\subsetneq P$. Thus $|\mathcal{O}_i|=[P:Q_i\cap P]>1$ so that

$$|\mathcal{O}_i| \equiv 0 \pmod{p}$$
.

Finally, the number r of Sylow p-subgroups satisfies

$$r = \sum_{i=1}^s \lvert \mathcal{O}_i \rvert = 1 + \sum_{i=2}^s \lvert \mathcal{O}_i \rvert \equiv 1 (\text{mod } p)$$

which proves the first assertion of (c). The second assertion of (c) follows since

$$r = [G:N_G(P)]$$

and since $P \subseteq N_G(P)$.

For a finite group G and a prime number p, write $n_p = n_p(G)$ for the number of p-Sylow subgroups of G (this is the number r from Theorem 4.1.1).

Corollary 4.1.5:

Let $P \in \operatorname{Syl}_p(G)$. Then P is normal if and only if $n_p = 1$.

Proof: Indeed, P is normal if and only if $\operatorname{Inn}_g P = P$. Since all p-Sylow subgroups are conjugate, the result is immediate.

4.2. Applications of Sylow's Theorem

Definition 4.2.1:

Let G be a group. A subgroup H of G is characteristic if for every automorphism $\varphi: G \to G$, we have $\varphi(H) = H$.

A characteristic subgroup H is always normal, since H is invariant under all the inner automorphisms ${\rm Inn}_q$ for $g\in G$.

Example 4.2.2:

For a prime number p, let $G=\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}$; we may identify the group G with the quotient of $\mathbb{Z}\times\mathbb{Z}$ by the subgroup $N=\langle (p,0),(0,p)\rangle$ Write e=(1,0)+N and f=(0,1)+N so that $e,f\in G$ are elements of order p and

$$G = \langle e, f \rangle = \langle e \rangle + \langle f \rangle$$
 and $\langle e \rangle \cap \langle f \rangle = \{0\}.$

Since G is commutative, $H = \langle e \rangle$ is a normal subgroup of G. But H is not characteristic in G. Indeed, the automorphism $(a,b) \mapsto (b,a)$ of $\mathbb{Z} \times \mathbb{Z}$ induces an automorphism φ of $G = (\mathbb{Z} \times \mathbb{Z})/N$ for which

$$\varphi(e) = f$$
 and $\varphi(f) = e$.

Thus $\varphi(H) \neq H$.

Definition 4.2.3:

A group G is simple if for any normal subgroup $N\subseteq G$, either $N=\{1\}$ or N=G.

Any group of prime order is simple. Below we are going to find the first example of a non-abelian simple group.

Throughout the remainder of this section, G denotes a finite group.

For a prime number p we write $n_p=n_pG$) for the number of p-Sylow subgroups in G, and $\mathrm{Syl}_p=\mathrm{Syl}_pG$) for the set of Sylow p-subgroups. Recall that

$$n_p \equiv 1 (\text{mod } p) \text{ and } p \mid |G/P| \text{ for } P \in \operatorname{Syl}_p(G)$$

Proposition 4.2.4:

a. If $n_p=1$ for some prime p, then $P\in \mathrm{Syl}_p(G)$ is characteristic – and in particular normal – in G.

b. Suppose that $H \subseteq G$ is a normal subgroup, and suppose that $P \in \operatorname{Syl}_p(H)$ is a normal p-Sylow subgroup of H for some prime p. Then P is a normal subgroup of G.

Proof:

- a. For any automorphism φ of G, $\varphi(P)$ is again a p-Sylow subgroup of G. Since $n_p=1$, we then $\varphi(P)=P$ so that P is indeed characteristic.
- b. For $g \in G$, Inn_g determines an automorphism of H. Thus by (a), $\operatorname{Inn}_g P = P$ which shows that P is normal in G.

Proposition 4.2.5:

Suppose that |G| = pq for distinct prime numbers p < q.

- a. $n_q=1$ so that G has a normal Sylow q-subgroup.
- b. If p does not divides q-1 then $n_p\equiv 1$ so that G has a normal Sylow p-subgroup. In this case, G is a cyclic group.

Proof:

- a. By Theorem 4.1.1 we have $n_q \equiv 1 ({\rm mod} \ q)$ and $n_q \mid p$. Since q>p it follows that $n_q=1$.
- b. Again we have $n_p \equiv 1 \pmod{p}$ and $n_p \mid q$. Since q is prime, the only possibilities are $n_p = 1$ or $n_p = q$.

If $n_p = q$ then $q \equiv 1 \pmod{p}$ so that p divides q - 1.

If $n_p=1$ then G=PQ where P is a Sylow p-subgroup and Q is a Sylow q-subgroup. You will prove for homework that since P and Q are both normal in G, G is isomorphic to the direct product $P\times Q$. Thus

$$G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \simeq \mathbb{Z}/pq\mathbb{Z}$$

is indeed cyclic.

Proposition 4.2.6:

Suppose that the size of a p-Sylow subgroup of G is p. Then G contains exactly $(p-1)\cdot n_p$ elements of order p.

Proof: Indeed, suppose that $P,Q\in \operatorname{Syl}_p(G)$ with $P\neq Q$. Since |P|=|Q|=p is prime we know that $P\cap Q=\{1\}$. Thus

$$\left|\bigcup_{P\in\operatorname{Syl}_p}P\setminus\{1\}\right|=\sum_{P\in\operatorname{Syl}_p}(p-1)=n_p(p-1).$$

Proposition 4.2.7:

Suppose that |G|=12. Then either $n_3=1$ or G is isomorphic to the alternating group A_4 , and in that case, $n_2=1$.

Proof:

We know that $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 4$. Thus n_3 is either 1 or 4.

To complete the proof we must show that if $n_3 = 4$ then G is isomorphic to A_4 .

The group G acts by conjugation on the set $\Omega = \mathrm{Syl}_3$ of 3-Sylow subgroups, and $|\Omega| = 4$. This action determines a group homomorphism

$$\varphi: G \to S(\Omega) = S_{\Lambda}.$$

The kernel K of φ consists of all $g \in G$ which normalize each Sylow 3-subgroup. In particular for $P \in \Omega$, $K \subseteq N_G(P) = P$. Since K is normal, since P is not normal, and since |P| = 3, we conclude that $K = \{1\}$.

Thus φ is an isomorphism from G to its image in S_4 .

Since $n_3=4$, Proposition 4.2.6 shows that G contains exactly 8 elements of order 3. On the other hand, there are exactly 8 three-cycles in S_4 and all are contained in A_4 .

Thus the intersection of the image of φ with A_4 is a group containing at least 8 elements. Since both groups have order 12, they must coincide.

Finally, notice that $K=\langle (12)(34),(13)(24)\rangle$ is a normal 2-sylow subgroup of A_4 ; thus $n_2(A_4)=1.$

Proposition 4.2.8:

Suppose that |G|=30. Then $n_5=1$ so that G has a normal Sylow 5-subgroup.

Proof: Let $P \in \text{Syl}_5$ and $Q \in \text{Syl}_3$.

First suppose that neither P nor Q is normal in G. In that case, $n_5=6$ and $n_3=10$. By counting elements of order 3 and of order 5, it now follows from Proposition 4.2.6 that

$$|G| \ge 6 \cdot 4 + 10 \cdot 2 = 44 > 30.$$

This contradiction proves that at at least one of P or Q is normal in G.

Now if either P or Q is normal in G, then PQ is a subgroup of order 15. It follows from Proposition 4.2.5 that any group of order 15 is cyclic. Using Proposition 4.2.4 we then conclude that both P and Q are normal in G, and the result follows.

Proposition 4.2.9:

Suppose that |G| = 60. If $n_5 > 1$ then G is a simple group.

Proof: For any group of order 60, n_5 is either 1 or 6; thus we suppose $n_5=6$.

Let $P \in \operatorname{Syl}_5(G)$. If $N_G(P)$ is the normalizer of P, then $|G/N_G(P)| = 6$ so that $|N_G(P)| = 10$.

We proceed by contradiction; thus, we suppose that $\{1\} \neq H \subsetneq G$ is a normal subgroup of G.

First suppose that $5 \mid |H|$. Then H contains a Sylow 5-subgroup of G; since H is normal, H contains all six Sylow 5-subgroups of G. Counting elements of order 5 in H, it follows from Proposition 4.2.6 that

$$|H| \ge 6 \cdot 4 = 24.$$

Since the only divisor d of 60 with $d \geq 24$ is d = 30, we conclude that |H| = 30. Now <u>Proposition 4.2.8</u> shows that H has a normal 5-Sylow subgroup $Q \in \operatorname{Syl}_5(H)$, and <u>Proposition 4.2.4</u> shows that Q is normal in G. But this contradicts the assumption $n_5 > 1$.

This shows that

(\clubsuit) G has no normal subgroup H for which $5 \mid |H|$.

Thus we may suppose that |H| is a divisor of 60/5 = 12.

If |H| = 12, it follows from <u>Proposition 4.2.7</u> that G has a normal Sylow p-subgroup for either p = 2 or p = 3. In view of <u>Proposition 4.2.4</u>, it follows that G has a normal subgroup of order 4 or 3.

If |G| = 6, then G has a normal Sylow 3-subgroup by Proposition 4.2.5.

Thus we may suppose that |H| is one of 2, 3, 4.

Write $\overline{G} = G/H$ for the quotient group, so that $\overline{G} = 30, 20$ or 15.

We claim in each case that \overline{G} has a normal subgroup Q of order 5, i.e. that $n_5(\overline{G}) = 1$.

If $\left|\overline{G}\right|=30$ this claim follows from Proposition 4.2.8. If $\left|\overline{G}\right|=20$ note that $n_5\mid 4$ and $n_5\equiv 1\pmod{5}$ shows that $n_5\equiv 1$. Finally, if $\left|\overline{G}\right|=15$, then n_5 divides 3 and $n_5\equiv 1\pmod{5}$ again shows that $n_5\equiv 1$.

If $\pi:G\to \overline{G}=G/H$ is the quotient mapping, let $H_1=\pi^{-1}(Q)$ be the inverse image of the normal subgroup Q of order 5. You will prove for homework that H_1 is a normal subgroup of G containing H; since $H_1/H\simeq Q$ it follows that $5\mid H_1$. This contradicts (\clubsuit) and completes the proof of the Proposition.

Corollary 4.2.10:

The alternating group A_5 is a simple group of order 60.

Proof: Indeed, the subgroups $\langle (1,2,3,4,5) \rangle$ and $\langle (1,3,2,4,5) \rangle$ are two distinct 5-Sylow subgroups of A_5 so that $n_5(A_5) > 1$.

4.3. **Rings**

Let R be a ring and recall that we only consider rings with identity.

Definition 4.3.1:

A left ideal I of R is an additive subgroup of R that is closed under multiplication on the leftby elements of R.

More precisely, for each $x \in I$ and each $a \in R$, we have $ax \in I$.

Remark 4.3.2:

- a. There is an obvious related notion of right ideal.
- b. If R is commutative, then I is a left ideal if and only if I is a right ideal, and in that case we simply call I an ideal.
- c. For non-commutative R, we reserve the term ideal for an additive subgroup I which is both a left ideal and a right ideal. Sometimes we say that such an I is a two-sided ideal, for emphasis.

Let us now suppose that R is commutative.

Proposition 4.3.3:

a. Let I and J be ideals of R. The intersection $I \cap J$ is a ideal.

a. More generally, if I_x is an ideal of R for each x in the index set X, then $\bigcap_{x \in X} I_x$ is an ideal of R.

Proof: Since $b\Rightarrow a$, we prove b. Note that $0\in I_x$ for each x so that the intersection is non-empty. Let $a,b\in \bigcap_{x\in X}I_x$. We must show that a-b is in the intersection. But for $x\in X$, $a,b\in I_x\Rightarrow a-b\in I_x$ so that indeed $a-b\in \bigcap_{x\in X}I_x$.

Proposition/Definition 4.3.4:

Let $S \subset R$ be a subset. The ideal generated by S, written $\langle S \rangle$ or RS is defined to be

$$\bigcap_{S\subset I}I,$$

the intersection taken over ideals of R containing S.

Proof: This intersection is an ideal by <u>Proposition 4.3.3</u>.

Definition 4.3.5:

For $a \in R$, the principal ideal generated by a is the ideal $\langle \{a\} \rangle$ and is denoted Ra or $\langle a \rangle$.

4.4. Ring homomorphisms and kernels

Definition 4.4.1:

If R and S are commutative rings, a function $f: R \to S$ is a ring homomorphism provided that it is a homomorphisms of additive groups and that f(ab) = f(a)f(b) for every $a, b \in R$.

Proposition 4.4.2:

If $f: R \to S$ is a ring homomorphism, the kernel ker f is a ideal of R.

Proposition 4.4.3:

If I is an ideal of R, write $\pi: R \to R/I$ for the quotient homomorphisms (where R/I is the quotient additive group).

Then there is a unique ring structure on the quotient group R/I with the property that quotient mapping $\pi: R \to R/I$ is a ring homomorphism.

5. Week 5 [2025-09-29]

Categories, and modules over a ring

5.1. Quotient rings

In this section, R will denote a ring (with identity as always, but not necessarily commutative).

By a (two-sided) ideal of R, we mean an additive subgroup I of R that is closed under multiplication with R on the left and on the right.

More precisely: I is an ideal if $\forall x \in I, \forall r \in R, rx \in I$ and $xr \in I$.

If I is an ideal, then R/I is an additive abelian group, and the quotient mapping $\pi:R\to R/I$ can be viewed as the mapping $\pi(r)=r+I$.

Theorem 5.1.1:

Let I be a two-sided ideal of R. Then the quotient group R/I has the structure of a ring with identity where the multiplication satisfies

$$(a+I)(b+I) = ab+I$$
 for $a, b \in R$.

In particular, the quotient mapping $\pi:R\to R/I$ is a surjective ring homomorphism. If $I\neq R$, then $1_{R/I}\neq 0_{R/I}$.

Theorem 5.1.2 (First isomorphism theorem for rings):

Let $\varphi:R\to S$ be a surjective ring homomorphism. Recall that φ induces an isomorphism of additive groups $\overline{\varphi}:R/I\to S$ for which $\overline{\varphi}(a+I)=\varphi(a)$ for $a\in R$. Then $\overline{\varphi}$ is an isomorphism of rings.

Example 5.1.3:

Let R be a commutative ring. One checks that

$$S = \left\{ \begin{pmatrix} a & d \\ 0 & b \end{pmatrix} : a, b, c \in R \right\}$$

is a subring of $\operatorname{Mat}_3(R)$ which is not commutative if $1_R \neq 0_R$. The mapping

$$f:S \to R \times R$$
 given by $f\bigg(\begin{pmatrix} a & d \\ 0 & b \end{pmatrix}\bigg) = (a,b)$

is a surjective ring homomorphism with kernel $K = \left\{ \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \mid \alpha \in R \right\}$. According to the theorem, f induces an isomorphism

$$S/K \simeq R \times R$$
.

(Note that K is a two-sided ideal since $K = \ker f$. On the other hand, it is easy to check directly that K is a two-sided ideal of S.)

5.2. Categories

Definition 5.2.1: A category \mathcal{C} consists of the following:

- a class $Ob(\mathcal{C})$ of objects,
- a class $Mor(\mathcal{C})$ of morphisms together with class functions

$$\operatorname{dom}:\operatorname{Mor}(\mathcal{C})\to\operatorname{Ob}(\mathcal{C})$$
 and $\operatorname{codom}:\operatorname{Mor}(\mathcal{C})\to\operatorname{Ob}(\mathcal{C})$

for domain and codomain.

Denote by $\operatorname{Mor}(X,Y) = \operatorname{Mor}_{\mathcal{C}}(X,Y)$ the subclass of $\operatorname{Mor}(\mathcal{C})$ consisting of morphisms f in $\operatorname{Mor}(\mathcal{C})$ with $\operatorname{dom}(f) = X$ and $\operatorname{codom}(f) = Y$.

• for every three objects X, Y, Z there is a binary operation

$$(f,g)\mapsto g\circ f:\operatorname{Mor}(X,Y)\times\operatorname{Mor}(Y,Z)\to\operatorname{Mor}(X,Z)$$

This data is required to satisfy:

a. associativity: For f in $\operatorname{Mor}(X,Y), g$ in $\operatorname{Mor}(Y,Z)$ and h in $\operatorname{Mor}(Z,W)$ we have

$$(h \circ g) \circ f = h \circ (h \circ f).$$

b. *identity*: For every object Z, there is id_Z in $\mathrm{Mor}(Z,Z)$ such that every f in $\mathrm{Mor}(Z,X)$ satisfies $f\circ\mathrm{id}_Z=f$ and every g in $\mathrm{Mor}(X,Z)$ satisfies $\mathrm{id}_Z\circ f=f$.

Remark 5.2.2:

We often use function notation to represent morphisms – thus $f: A \to B$ denotes the morphism f in Mor(A, B). Be careful, though – in general, morphisms need not be functions.

Example 5.2.3: Here are some examples of categories.

- a. The category Set of all sets, with morphisms given by functions.
- b. The category Grp of all groups, with morphisms given by group homomorphisms.
- c. The category Ab of all abelian groups, with morphisms given by group homomorphisms.
- d. The category Top of topological spaces, with morphisms given by continuous functions.
- e. The category Ring of rings with morphisms given by ring homomorphisms.

Definition 5.2.4:

Let \mathcal{C} be a category. An object I of \mathcal{C} is said to be initial if for each object X of \mathcal{C} there is a unique morphism in $\operatorname{Mor}(I,X)$.

An object T of \mathcal{C} is said to be terminal if for each object X of \mathcal{C} there is a unique morphism in $\operatorname{Mor}(X,I)$.

Example 5.2.5:

a. The empty set is an initial object in Set. Every singleton set is a terminal object in Set.

- b. The trivial group {1} is both an initial and a terminal object in Grp
- c. The trivial group $\{0\}$ is both an initial and a terminal object in Ab

Definition 5.2.6:

Let $\mathcal C$ be a category and let X and Y in $\mathrm{Ob}(\mathcal C)$. Then X and Y are isomorphic provided that there are morphisms $f \in \mathrm{Mor}(X,Y)$ and $g \in \mathrm{Mor}(Y,X)$ such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$.

One says that f and g are isomorphisms between X and Y.

Proposition 5.2.7: Let \mathcal{C} be a category.

- a. If I, I' are initial objects, there is a unique isomorphism $I \to I'$.
- b. If T, T' are terminal objects, there is a unique isomorphism $T \to T'$.

Proof: We prove a; the proof of b is essentially the same..

For a, since I is initial, there is a unique morphism f in Mor(I, I') and since I' is initial there is a unique morphism g in Mor(I', I).

Now $f \circ g$ is a morphism in $\operatorname{Mor}(I', I')$. Since I' is initial, $\operatorname{id}_{I'}$ is the unique morphism in $\operatorname{Mor}(I', I')$ and we conclude that $\operatorname{id}_{I'} = f \circ g$.

Similarly, $g \circ f$ is a morphism in $\operatorname{Mor}(I,I)$. Since I is initial, id_I is the unique morphism in $\operatorname{Mor}(I,i)$ and we conclude that $\operatorname{id}_I = g \circ f$. Thus we have proved that $f:I \to I'$ is the required unique isomorphism.

Definition 5.2.8:

Let $\mathcal C$ be a category, let I be an index set, and let X_i be an object of $\mathcal C$ for each $i \in I$. A product of the X_i is an object X of $\mathcal C$ together with morphisms $\pi_i: X \to X_i$ for $i \in I$ such that given any object Y of $\mathcal C$ toegether with morphisms $f_i: Y \to X_i$ there is a unique morphism $f: Y \to X$ such that $f_i = \pi_i \circ f$ for each $i \in I$; i.e. the diagram

commutes for each $i \in I$.

Proposition 5.2.9:

Let $\mathcal C$ be a category, let I an index set, and let X_i be objects of $\mathcal C$ for $i\in I$. If a product (X,π_i) of the X_i exists in $\mathcal C$ where $\pi_i:X\to X_i$ for $i\in I$, it is unique up to a unique isomorphism.

In other words, if $(X', \pi_{i'})$ is a second product in \mathcal{C} , there is a unique isomorphism $f: X \to X'$ in \mathcal{C} with the property that $\pi_i = \pi_{i'} \circ f$.

Proof: We introduce a new category $\mathcal D$ depending on $\mathcal C$, I, the family X_i . An object of D is an object X of $\mathcal C$ together with morphisms $h_i:X\to X_i$ for each $i\in I$.

A morphism between objects (X,h_i) and (X',h_i') of $\mathcal D$ is a morphism φ in $\mathrm{Mor}_{\mathcal C(X,X')}$ such that $h_i=h_i'\circ \varphi$; i.e. the diagram

commutes for each $i \in I$.

One checks that \mathcal{D} is a category. It is then clear that to give a terminal object in \mathcal{D} is the same as to give a product of the X_i in \mathcal{C} . Thus the uniqueness follows from Proposition 5.2.7.

Remark 5.2.10:

If the objects X_i for $i \in I$ have a product in the category \mathcal{C} , we write

$$\prod_{i \in I} X_i$$

for the product, keeping in mind that the morphisms

$$\pi_j: \prod_{i\in I} X_i \to X_j$$

are part of the data determining a product.

Definition 5.2.11:

Let $\mathcal C$ be a category, let I be an index set, and let X_i be an object of $\mathcal C$ for each $i\in I$. A co-product of the X_i is an object X of $\mathcal C$ together with morphisms $\gamma_i:X_i\to X$ for $i\in I$ such that given any object Y of $\mathcal C$ toegether with morphisms $g_i:X_i\to Y$ there is a unique morphism $g:X\to Y$ such that $g_i=g\circ\gamma_i$ for each $i\in I$; i.e. the diagram

commutes for each $i \in I$.

Proposition 5.2.12:

Let $\mathcal C$ be a category, let I an index set, and let X_i be objects of $\mathcal C$ for $i \in I$. If a co-product (X,γ_i) of the X_i exists in $\mathcal C$ where $\gamma_i:X_i\to X$, it is unique up to a unique isomorphism.

In other words, if (X', γ_i') is a second co-product in $\mathcal C$, there is a unique isomorphism $f: X \to X'$ in $\mathcal C$ with the property that $\gamma_i = f \circ \gamma_i'$.

Remark 5.2.13: If the objects X_i for $i \in I$ have a co-product in the category \mathcal{C} , we write

$$\coprod_{i \in I} X_i$$

for the co-product, keeping in mind that the morphisms

$$\gamma_j: X_j \to \coprod_{i \in I} X_i$$

are part of the data determining a co-product.

5.3. Modules

Let R be a ring.

Definition 5.3.1:

A left R-module M is an additive abelian group M together with an operation of scalar multiplication $R \times M \to M$ satisfying

- a. identity: $1 \cdot m = m$ for every $m \in M$.
- b. associativity: (ab)m = a(bm) for every $a, b \in R$ and $m \in M$.
- c. bilinearity:
 - (a+b)m = am + bm for every $a, b \in R$ and $m \in M$
 - a(m+n) = am + an for every $a \in R$ and $m, n \in M$.

Remark 5.3.2:

There is a notion of right R-module M: for $r \in R$ and $m \in M$ the scalar multiplication is written $m \cdot r$ and this scalar multiplication must satisfy analogous of the conditions required for a left module. When R is commutative, any left module can be viewed as a right module – for $a \in R$ and $m \in M$ just define the right module action via $m \odot a = a \cdot m$ – and vice versa, so we may just speak of "R-modules" in this case.

Example 5.3.3:

- a. If R=F is a field, then the F-modules are precisely the F-vector spaces.
- b. Any abelian group is a \mathbb{Z} -module, and vice-versa.
- c. If R is a subring of some ring S, then S has the structure of an R-module.
- d. Any ideal I of R is an R-module (in particular, I is an R-submodule of the R-module R).

Proposition 5.3.4: The data of an R-module M is equivalent to the data of an additive abelian group M together with a ring homomorphism $R \to \operatorname{End}_{\mathbb{Z}}(M)$, where $\operatorname{End}_{\mathbb{Z}}(M)$ is the ring of additive endomorphisms of M.

Definition 5.3.5:

If M and N are left R-modules, a function $\varphi:M\to R$ is a homomorphism of R-modules provided that

$$\varphi(rm) = r\varphi(m)$$
 for every $r \in R$ and every $m \in M$.

Remark 5.3.6:

a. If R=F is a field, then a homomorphism of R-modules $\varphi:M\to N$ is the same as a linear map of vector spaces.

b. If A and B are abelian groups, a function $\varphi:A\to B$ is a group homomorphism if and only if it is a homomorphism of \mathbb{Z} -modules.

Definition 5.3.7: Let M be an R-module. By an R-submodule of M, we mean an additive subgroup $N \subseteq M$ such that $\forall x \in N, \forall r \in R, rx \in N$; i.e. such that $R \cdot N \subseteq N$.

Proposition 5.3.8:

Definition 5.3.9:

If R is a commutative ring, there is a category R-mod whose objects are the R-modules and whose morphisms are the R-module homomorphisms.

Proposition/Definition 5.3.10:

Let I be an index set and suppose that M_i is an R-module for each $i \in I$. The direct sum $\bigoplus_{i \in I} M_i$ of the R-modules M_i is the set of all finitely supported functions $f: I \to \bigcup_{i \in I} M_i$ with the property that $f(j) \in M_j$ for $j \in I$.

- a. $\bigoplus_{i \in I} M_i$ is an R-module with pointwise addition and scalar multiplication.
- b. Define $\iota_j: M_j \to \bigoplus_{i \in I} M_i$ by setting $\iota_j(m)$ to be the finitely supported function on I whose support is $\{j\}$ and whose value at j is m.

For each j, the map ι_j is an R-module homomorphism.

Proposition 5.3.11:

Let I be an index set and let M_i be an R-module for each $i \in I$. Write $M = \bigoplus_{i \in I} M_i$ and $\iota_j : M_j \to M$ $j \in I$ as in Proposition/Definition 5.3.10.

Then $M=\bigoplus_{i\in I}M_i$ together with the ι_j is a coproduct of the M_j in the category R -mod .

Recall that this means: Given any R-module N and R-module homomorphisms $f_j:M_j\to N$, there is a unique R-module homomorphism

 $F: M \to N$ such that $f_j = F \circ \iota_j$.

Proof: We first prove uniqueness. Consider an element

$$m\in M=\bigoplus_{i\in I}M_i.$$

Since m has finite support, we see that there are elements $m_j \in M_j$ where $m_j = 0$ for all but finitely many $j \in I$ with

$$m = \sum_{j \in I} \iota_j \bigl(m_j \bigr).$$

Now we see that

$$(\P) \quad F(m) = \sum_{j \in I} \bigl(F \circ \iota_j \bigr) \bigl(m_j \bigr) = \sum_{j \in I} f_j \bigl(m_j \bigr).$$

This proves the uniqueness once we shows that (\P) defines an R-module homomorphism. But this follows from the definition of the R-module structure on $\bigoplus_{i\in I} M_i$ and the fact that the f_j are R-module homomorphisms.

5.4. Free modules

Let R be a ring.

Definition 5.4.1:

Let F be a left R-module, let B be a set and let $\beta: B \to F$ be a fuction. Then F is a free left R-module on β provided that for any R-module X and any function $j: B \to X$, there is a unique R-module homomorphism $\varphi: F \to X$ such that $j = \varphi \circ \beta$.

Proposition 5.4.2:

Suppose that F is a free R-module on $\beta: B \to F$. Then the function β is injective (i.e. one-to-one).

Proof: Let $b_1, b_2 \in B$ and suppose that $b_1 \neq b_2$. We must show that $\beta(b_1) \neq \beta(b_2)$. To this end, let $f: B \to R$ be the function defined by

$$f(b) = \begin{cases} 1 & \text{if } b = b_1 \\ 0 & \text{otherwise} \end{cases}$$

Since F is a free R-module on β , there is an R-module homomorphism $\varphi: F \to R$ such that $\varphi \circ \beta = f$.

Then $\varphi(\beta(b_1)) = f(b_1) = 1$ while $\varphi(\beta(b_2)) = f(b_2) = 0$. Since $\varphi(\beta(b_1)) \neq \varphi(\beta(b_2))$ we must have $\beta(b_1) \neq \beta(b_2)$ as required.

We are going to argue that the free R-modules are precisely those R-modules which have a basis.

Recall that for a set I and an additive abelian group A, the support of a function

$$f: I \to A$$
 is given by $Supp(f) = \{i \in I \mid f(i) \neq 0_A\}.$

Then f has finite support provided that Supp(f) is a finite set.

Here is the definition:

Definition 5.4.3:

If M is an R-module, a function $\beta: B \to M$ for some set B is an R-basis M provided that the following hold:

• β is linearly independent i.e. if $a: B \to R$ is a finitely supported function and if

$$\sum_{b\in B} a(b)\beta(b) = 0 \text{ then } a = 0.$$

• β spans M; i.e. for $x \in M$ there is a finitely supported function $a: B \to R$ such that

$$x = \sum_{b \in B} a(b)\beta(b).$$

Notice that if $\beta: B \to M$ is an R-basis then every element $x \in M$ can be written in the form

$$x = \sum_{b \in B} a(b)\beta(b)$$

for a unique finitely supported function $a: B \to R$.

Example 5.4.4:

In general, an R-module M need not have a basis. For example, for $n \in \mathbb{N}$, n > 1, the \mathbb{Z} -module $M = \mathbb{Z}/n\mathbb{Z}$ has no \mathbb{Z} -basis, since for any $x \in M$, nx = 0 but $0 \neq n \in \mathbb{Z}$. This shows that there can be no \mathbb{Z} -linearly independent function from a non-empty set to M.

Proposition 5.4.5:

Let B be a set and let F = F(B,R) be the R-module consisting of all finitely supported maps $a: B \to R$. Consider the function $\beta_0: B \to F(B,R)$ where $\beta_0(b)$ is the function

$$\beta_0(b)(b') = \begin{cases} 1 \text{ if } b = b' \\ 0 \text{ otherwise.} \end{cases}$$

- a. Then F is a free R-module on β_0 .
- b. β_0 is an *R*-basis for *F*.

Proof: For any finitely supported function $a: B \to R$ we note that

$$(\P) \quad a = \sum_{b \in B} a(b)\beta_0(b).$$

a. To see that F is a free module on the indicated data, let N be an arbitrary R-module and let $\varphi:B\to N$ be any function. We must show that there is a unique R-module mapping $\Phi:F\to N$ such that

(*)
$$\Phi \circ \beta_0 = \varphi$$
.

We first treat uniqueness. Thus we suppose that there is a linear mapping $\Phi: F \to N$ for which $\Phi \circ \beta = \varphi$.

Using (\heartsuit) , the *R*-linearity of Φ , and the requirement (*), we see that

$$(\clubsuit) \quad \Phi(a) = \sum_{b \in B} a(b) \Phi(\beta_0(b)) = \sum_{b \in B} a(b) \varphi(b).$$

To complete the proof, it only remains to observe that the rule specified by (\clubsuit) indeed determines an R-module homomorphism; this follows from the definition of the R-module structure on F = F(B,R).

b. We first prove that β_0 is R-linearly independent. We suppose that $a:B\to R$ is a finitely supported function such that

$$\sum_{b \in B} a(b)\beta_0(b) = 0.$$

Then (\P) shows that a=0; this proves the linear independence.

Finally, we show that β_0 spans F(B,R). Let $a \in F(B,R)$. Then (\P) again shows that a has the required form.

Proposition 5.4.6:

Let B be any set, consider for $b \in B$ the R-module $M_b = R$, and let C together with $\iota_b : R \to C$ be the coproduct (direct sum) of the modules $M_b = R$ for $b \in B$.

With notation β_0 as in Proposition 5.4.5, there is an R-module isomorphism

$$\Psi: C \to F(B,R)$$

such that for each $b \in B$,

$$(\Psi \circ \iota_b)(1) = \beta_0(b).$$

Theorem 5.4.7:

Let M be an R-module, let B be a set and let $\beta: B \to F$ be a function. For $b \in B$ consider the R-module homomorphism $\iota_b: R \to M$ given by $\iota_b(r) = r\beta(b)$.

The following are equivalent:

- a. β is an R-basis for M
- b. M is a free R-module on $\beta: B \to M$.
- c. M together with the ι_b form a co-product of the R-modules $M_b=R$.

Proof: $(a \Rightarrow b)$: Let β be a basis; we show that M is free on β . Since β is a basis, we know that any $x \in M$ may be written uniquely in the form $x = \sum_{b \in B} a(b)\beta(b)$ for some $a \in F(B,R)$ where F(B,R) is the R-module of all finitely supported functions $a:B \to R$.

Thus the assignment $x\mapsto a$ defines an isomorphism of R-modules $\Psi:M\to F(B,R)$; moreover, in the notation of <u>Proposition 5.4.5</u>, we see that $\Psi\circ\beta=\beta_0$. Now the fact that M is free on β follows at once from <u>Proposition 5.4.5</u>.

 $(b\Rightarrow c)$: Suppose that M is free on β . We are going to argue that M together with the ι_b form a co-product of the modules $M_b=R$ in the category R-mod. Thus we suppose that N is any R-module and that $f_b:R\to N$ is an R-module map for each $b\in B$.

We form the function $\varphi: B \to N$ defined by $\varphi(b) = f_b(1)$.

We claim: (\spadesuit) a linear map $\Phi: M \to N$ satisfies $\Phi \circ \beta = \varphi$ if and only if it satisfies

$$\Phi \circ \iota_b = f_b$$
 for all $b \in B$.

Indeed, from definitions we have

$$\Phi\circ\beta=\varphi\Leftrightarrow\forall b\in B, (\Phi\circ\beta)(b)=\varphi(b)\Leftrightarrow\forall b\in B, (\Phi\circ\iota_b)(1)=f_b(1).$$

Now for each $b \in B$, the R-module homomorphisms $\Phi \circ \iota_b : R \to N$ and $f_b : R \to N$ are equal if and only if they agree at $1 \in R$. This proves the claim.

Since M is free on β , there is a unique linear mapping $\Phi: M \to N$ such that $\Phi \circ \beta = \varphi$. In view of (\spadesuit) it follows that Φ is the unique linear map satisfying $\forall b \in B, \Phi \circ \iota_b = f_b$ as well. This proves that M is a coproduct of the $M_b = R$ as required.

 $(c\Rightarrow a)$: Assume that (M,ι_b) is a co-product of the modules $M_b=R$ for $b\in B$. We must show that β is a basis.

According to Proposition 5.4.6, there is an R-module homomorphism $\Psi: M \to F(B,R)$ such that

$$(\Psi \circ \iota_b)(1) = \beta_0(b)$$

where F(B,R) the is the R-module of finitely supported functions $B \to R$ and where β is the mapping defined in Proposition 5.4.5.

For
$$b \in B$$
, observe that $\iota_{b(1)} = \beta(b) \Rightarrow \Psi(\beta(b)) = \beta_0(b)$; thus $\Psi \circ \beta = \beta_0$.

On the other hand, according to <u>Proposition 5.4.5</u>, F(B,R) is a free R-module on β_0 . Apply the defining property of a free module – see <u>Definition 5.4.1</u> – to the function $\beta:B\to M$ to obtain an R-module homomorphism $\Phi:F(B,R)\to M$ with the property that $\Phi\circ\beta_0=\beta$.

We claim that the R-module homomorphisms Φ and Ψ are inverse to one another. Once this claim is established, we see that β_0 is a basis of F(B,R) implies that $\beta=\Phi\circ\beta_0$ is a basis of M.

To prove the claim, first note that

$$\Phi \circ \Psi : M \to M$$

satisfies

$$\Phi \circ \Psi \circ \iota_b = \iota_b;$$

on the other hand, since M is a coproduct, id_M is the unique R-module map such that $\mathrm{id}_M\circ\iota_b=\iota_b$. Thus $\Phi\circ\Psi=\mathrm{id}_M$.

Finally note that

$$\Psi \circ \Phi : F(B,R) \to F(B,R)$$

satisfies

$$\Psi \circ \Phi \circ \beta_0 = \beta_0.$$

Since F(B,R) is a free R-module on β_0 , $\mathrm{id}_{F(B,R)}$ is the unique R-module map such that $\mathrm{id}_{F(B,R)}\circ\beta_0=\beta_0$.

Thus $\Psi \circ \Phi = \operatorname{id}_{F(B,R)}$ as required. This completes the proof.