МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Лабораторная работа № 8 по курсу «Численные методы»

Группа: М8О-407Б-21

Студент: А. В. Крючков

Преподаватель: Ю.В. Сластушенский

Оценка:

Дата: 01.12.2024

1 Тема

Метод конечных разностей решения многомерных задач математической физики. Методы расщепления

2 Задание

Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением U(x,t). Исследовать зависимость погрешности от сеточных параметров τ, h_x, h_y .

10.

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + b \frac{\partial^2 u}{\partial y^2} + \sin x \sin y (\mu \cos \mu t + (a+b) \sin \mu t)$$

$$u(0, y, t) = 0,$$

$$u_x(\pi, y, t) = -\sin y \sin(\mu t),$$

$$u(x, 0, t) = 0,$$

$$u_y(x, \pi, t) = -\sin x \sin(\mu t),$$

$$u(x, y, 0) = 0$$

Аналитическое решение: $U(x, y, t) = \sin x \sin y \sin(\mu t)$

1).
$$a = 1, b = 1, \mu = 1$$

2).
$$a = 2, b = 1, \mu = 1$$
.

3).
$$a=1, b=2, \mu=1$$

4).
$$a = 1, b = 1, \mu = 2$$

3 Листинг кода

Исходный код: https://github.com/crewch/nm-labs/blob/main/lab8/lab8.ipynb

Метод переменных направлений:

Метод дробных шагов:

График точного и численного решения задачи

4 Выводы

Как мы можем увидеть, конечно-разностные схемы для решения многомерных задач математической физики, а если точнее, методы расщепления имеют высокую точность и, при достаточной мелкости hx, hy, τ способны достигать настолько маленькую погрешность, что ей можно будет пренебречь при решении реальных задач математической физики.

5 Список используемой литературы

1. Раздел 5. Численные методы решения дифференциальных уравнений с частными производными – https://mainfo.ru/mietodichieskiie-matierialy