Lista de Ejercicios de Extensiones Separables

Cristo Daniel Alvarado

8 de febrero de 2024

Ejercicio 3.1.1

Sea $f(X) \in F$ un polinomio mónico irreducible de grado ≥ 2 tal que f(X) tiene todas sus raíces iguales en algún campo de descomposición. Pruebe que $\operatorname{car}(F) = p > 0$ y que $f(X) = X^{p^n} - a$, para algún $n \in \mathbb{N}$ y $a \in F$.

Demostración:

Esto es una contradicción. $\#_c$

$$asd \quad sadf \#_c$$
 (3.1)

Ejercicio 3.1.2

Sea $f(X) \in F[X]$ un polinomio irreducible de grado $m \in \mathbb{N}^*$, y car(F) no divide a m. Demuestre que f(X) es separable.

Demostración:

Ejercicio 3.1.3

sea F un campo de caracterísitica $p \in \mathbb{N}^*$, y sea $a \in F$ tal que $a \notin F^p$. Pruebe que el polinomio $f(X) = X^{p^n} - a \in F[X]$ es irreducible para cada $n \ge 1$.

Demostración:

Ejercicio 3.1.4

Sea F un campo de característica cero, y supóngase que existe un polinomoi de grado dos irredicible sobre F[X]. Probar que hay un número infinito de polinomios irreducibles sobre F[x] de grado dos.

Demostración:

Ejercicio 3.1.5

Sea E/F la extensión de campos con $\operatorname{car}(F) = p > 0$. Pruebe que si $\alpha \in E$ es algebraico sobre F, entonces α^{p^n} es separable sobre F para algún $n \geq 0$.

Demostración:

Ejercicio 3.1.6

Sea F un campo de caracterísitica p>0, y esa α algebraico sobre F. Demuestre que α es separable sobre F si y sólo si $F(\alpha)=F(\alpha^{p^n})$ para cada $n\geq 1$.

Demostración:

Sea E/F una extensión de campos con $\operatorname{car}(F) = p > 0$, y sea $n \ge \operatorname{tal}$ que (n, p) = 1. Pruebe que para cada $\alpha \in E$, con $n\alpha \in F$, se tiene que $\alpha \in F$.

Demostración:

Ejercicio 3.1.8

Sea α algebraico sobre F. Demuestre que $[F(\alpha):F]_i$ es la multiplicidad de α en su polinomio irredicuble sobre F.

Demostración:

Ejercicio 3.1.9

Sea E/F una extensión de campos finita con E campo perfecto. Demuestre que F es también campo perfecto.

Demostración:

Ejercicio 3.1.10

Sea F un campo y \bar{F} una cerradura algebraica de F. Pruebe que \bar{F} es un campo perfecto.

Demostración:

Ejercicio 3.1.11

Sea E/F uan extensión finita de campos con car(F) = p > 0. Pruebe que la extensión E/F es separable si y sólo si $E = E^p F$.

Demostración:

Ejercicio 3.1.12

Sea E/F una extensión finita y separable con $\operatorname{car}(F) = p > 0$. Pruebe que si $\{u_1, ..., u_n\}$ es una base de E sobre F, entonces también lo es $\{u_1^{p^m}, ..., u_n^{p^m}\}$ para cualquier $m \geq 0$.

Demostración:

Ejercicio 3.1.13

Sea E/F una extensión finita de campos con F campo infinito. Pruebe que E/F es una extensión simple si y sólo si existe solamente un número finito de campos intermedios en la extensión E/F.

Demostración:

Ejercicio 3.1.14

Sea E/F una extensión de campos con $\operatorname{car}(F) = p > 0$, y sea $\alpha \in E$ algebraico sobre F. Pruebe que las siguientes condiciones son equivalentes:

- 1). α es puramente inseparable sobre F.
- 2). El polinomio irredicuble de α sobre F es de la forma $(X \alpha)^m$ para algún $m \ge 1$, donde m es una potencia de p.

Demostración:

Ejercicio 3.1.15

Sea E/F una extensión de campos con $\operatorname{car}(F) = p > 0$, y sean $\alpha \in E$ separable sobre F y $\beta \in E$ puramente inseparables sobre F. Pruebe que $F(\alpha, \beta) = F(\alpha + \beta)$. Si $\alpha \neq 0 \neq \beta$, entonces $F(\alpha, \beta) = F(\alpha\beta)$.

Demostración:

Ejercicio 3.1.16

Dar un ejemplo de una extensión finita de campos que no sea separable ni puramente inseparable.

Demostración:

Ejercicio 3.1.17

Encuentre un elemento $\alpha \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$ tal que $(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$.

Demostración:

Ejercicio 3.1.18

Sea E/F una extensión de campos finita con $\operatorname{car}(F) = p > 0$, y sea $p^r = [E:F]_i$. Supóngase que no existe una potencia p^s , con s < r tal que $E^{p^s}F$ sea separable sobre F. Pruebe que la extensión E/F es simple. (Sugerencia: Suponga primeramente que E/F es una extensión puramente inseparable).

Demostración:

Ejercicio 3.1.19

Sea F un campo de caracterísitica p > 0, y sea $E = F(\alpha, \beta)$ con $\alpha, \beta \notin F$. Supóngase que $\alpha^p, \beta^p \in F$ y que $[E:F] = p^2$. Pruebe que E/F no es una extensión simple. Exhibta un número infinito de campos intermedios.

Demostración: