Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de t

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (2 - 65 de 66

Definição básica

Modelo matemático de uma máquina que aceita uma linguagem particular sobre algum alfabeto.

Processamento de um DFA

- Leitura da esquerda para a direita.
- ► Em qualquer ponto do processamento, o resultado depende apenas do estado corrente e do conjunto de símbolos ainda não processados.

Autômato finito determinístico

Definição 1.1

- ► Um autômato finito determinístico (*DFA Deterministic Finite Automaton*) é uma quíntupla $M = \langle \Sigma, S, s_0, \delta, F \rangle$, onde:
 - Σ: alfabeto de entrada;
 - $S \neq \emptyset$: conjunto finito de estados do modelo;
 - $s_0 \in S$: estado inicial;
 - $\delta: S \times \Sigma \to S$: função de transição de estados;
 - $F \subseteq S$: conjunto de estados finais (ou de aceitação);
 - e existe no máximo uma transição para cada par $(s \in S, a \in \Sigma)$.

Configuração de um DFA

Definição 1.2

▶ A tabela de transição de estados de um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é uma matriz T tal que: $T[s, a] = \delta(s, a) \quad (\forall s \in S, \forall a \in \Sigma)$.

Ex.:
$$T = \begin{bmatrix} \delta & a & b \\ s_0 & s_1 & s_2 \\ s_1 & s_1 & s_2 \\ s_2 & s_1 & s_0 \end{bmatrix}$$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (5 - 65 de 66)

Processamento de um DFA

Exemplo 1.3

• $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle,$ onde:

 $\blacktriangleright \mathcal{L}(M) = ???$

► Reconhecedores

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (6 - 65 de 66)

Processamento de um DFA

Exemplo 1.3

► $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle$, onde:

δ	a	b
s_0	s_1	s_0
s_1	s_1	s_0

 \blacktriangleright $\mathcal{L}(M) = ???$

► Reconhecedores

Processamento de um DFA

Exemplo 1.3

• $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle,$ onde:

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
s_0 & s_1 & s_0 \\
s_1 & s_1 & s_0
\end{array}$$

 $ightharpoonup \mathcal{L}(M) = ???$

INF/UFG - LFA 2021/1 - H. Longo

▶ Reconhecedores

Exemplo 1.3

• $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle,$ onde:

 $\blacktriangleright \mathcal{L}(M) = ???$

► Reconhecedores

INF/UFG – LFA 2021/1 – H. Longo

Autômatos finitos determinísticos (9 - 65 de 66)

Processamento de um DFA

Exemplo 1.3

• $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle,$ onde:

$$\begin{array}{c|cccc} \delta & a & b \\ \hline s_0 & s_1 & s_0 \\ s_1 & s_1 & s_0 \end{array}$$

 $\blacktriangleright \mathcal{L}(M) = ???$

▶ Reconhecedores

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (10 - 65 de 66)

Processamento de um DFA

Exemplo 1.3

► $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle$, onde:

$$\begin{array}{c|cccc}
\delta & a & b \\
\hline
s_0 & s_1 & s_0 \\
s_1 & s_1 & s_0
\end{array}$$

 $\mathcal{L}(M) = (a \cup b)^* a$

► Reconhecedores

Processamento de um DFA

Exemplo 1.3

• $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle,$ onde:

 $\blacktriangleright \ \mathcal{L}(M) = (a \cup b)^* a \equiv \ (b^* a^*)^* a.$

► Reconhecedores

Diagrama de estados

Definição 1.4

- ▶ O diagrama de estados de um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é um grafo G, orientado e rotulado, definido pelas condições:
 - 1. os vértices de *G* são os elementos de *S* :
 - 2. s₀ é o vértice inicial;
 - 3. F é o conjunto de vértices finais;
 - 4. os rótulos dos arcos de G são elementos de Σ ,
 - 5. existe um arco, rotulado de a, do vértice s_i ao s_j se $\delta(s_i, a) = s_j$;
 - 6. para cada vértice s_i e símbolo $a \in \Sigma$, existe exatamente um arco rotulado a saindo de s_i .

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (13 - 65 de 66)

Exemplos de DFA's

Exemplo 1.5

► $M = \langle \{a, b\}, \{s_0, s_1\}, s_0, \delta, \{s_1\} \rangle$, onde:

$$\begin{array}{c|cccc} \delta & a & b \\ \hline s_0 & s_1 & s_0 \\ s_1 & s_1 & s_0 \end{array}$$

 $\mathcal{L}(M) = (a \cup b)^* a \equiv (b^* a^*)^* a.$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (14 - 65 de 66)

Exemplos de DFA's

Exemplo 1.6

▶ $\mathcal{L}(M) = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b$'s consecutivos}.

Exemplos de DFA's

Exemplo 1.6

▶ $\mathcal{L}(M) = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b\text{'s consecutivos}\}.$

Exemplo 1.6

• $\mathcal{L}(M) = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b$'s consecutivos}.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (17 - 65 de 66)

Exemplos de DFA's

Exemplo 1.6

▶ $\mathcal{L}(M) = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b$'s consecutivos}.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (18 - 65 de 66)

Exemplos de DFA's

Exemplo 1.6

• $\mathcal{L}(M) = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b$'s consecutivos}.

Exemplos de DFA's

Exemplo 1.6

 $\blacktriangleright \ \mathcal{L}(M) = \{w \in \{a,b\}^* \mid w \text{ possui pelo menos dois } b\text{'s consecutivos}\}.$

Configuração de um DFA

Definição 1.7

Par ordenado $[s_i, w]$, onde s_i é o estado corrente e $w \in \Sigma^*$ é a sequência de símbolos ainda não processados.

Notação

 $\longmapsto_{\scriptscriptstyle{M}}$: define uma função de $S \times \Sigma^+$ em $S \times \Sigma^*$.

Função de $S \times \Sigma^*$ em $S \times \Sigma^*$ se $\varepsilon \in \mathcal{L}(M)$.

 $[s_i, aw] \mapsto_{M} [s_j, w]$: configuração $[s_j, w]$ é obtida a partir de $[s_i, aw]$ com apenas uma transição de estados.

 $[s_i, u] \xrightarrow{*} [s_j, v]$: configuração $[s_j, v]$ pode ser obtida a partir de $[s_i, u]$ com zero ou mais transições.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (21 – 65 de 66

Configuração de um DFA

Definição 1.8

► A função \longrightarrow em $S \times \Sigma^+$ é definida por

$$[s_i, aw] \underset{M}{\longmapsto} [\delta(s_i, a), w],$$

para $a \in \Sigma$ e $w \in \Sigma^*$, onde δ é a função de transição do DFA M.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (22 - 65 de 66

Processamento de um DFA

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|ccccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$$

Processamento de um DFA

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|ccccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$$

 $\mathcal{L}(M) = (a \cup b)^* bb (a \cup b)^*$

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^* bb (a \cup b)^*$

Ca	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0, bba]$		
\longmapsto	$[s_1,ba]$		
\longmapsto	$[s_2,a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cade	eia aceita!		

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (25 – 65 de 66)

Processamento de um DFA

Exemplo 1.9

► $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

Cadeia abba		
	$[s_0, abba]$	
\longmapsto	$[s_0, bba]$	
\longmapsto	$[s_1, ba]$	
\longmapsto	$[s_2, a]$	
\longmapsto	$[s_2, \varepsilon]$	
Cadeia aceita!		

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (26 - 65 de 66)

Processamento de um DFA

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	а	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Ca	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0,bba]$		
\longmapsto	$[s_1, ba]$		
\longmapsto	$[s_2, a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cade	eia aceita!		

Processamento de um DFA

Exemplo 1.9

► $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Cadeia <i>abba</i>		
	$[s_0, abba]$	
\longrightarrow	$[s_0,bba]$	
\longrightarrow	$[s_1,ba]$	
\longrightarrow	$[s_2, a]$	
\longrightarrow	$[s_2, \varepsilon]$	
Cade	ia aceita!	

Exemplo 1.9

- $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:
 - $\begin{array}{c|cccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$
- $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Ca	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0,bba]$		
\longmapsto	$[s_1,ba]$		
\longmapsto	$[s_2,a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cade	eia aceita!		

INF/UFG – LFA 2021/1 – H. Longo

Autômatos finitos determinísticos (29 - 65 de 66)

Processamento de um DFA

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Cadeia abba		
	$[s_0, abba]$	
\longmapsto	$[s_0,bba]$	
\longmapsto	$[s_1,ba]$	
\longmapsto	$[s_2,a]$	
\longmapsto	$[s_2, \varepsilon]$	
Cade	ia aceital	

Cade	eia <i>abab</i>	
	$[s_0, abab]$	
\longmapsto	$[s_0,bab]$	
\longmapsto	$[s_1,ab]$	
\longmapsto	$[s_0, b]$	
\longmapsto	$[s_1, \varepsilon]$	
Cade	eia rejeitada!	

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (30 - 65 de 66)

Processamento de um DFA

Exemplo 1.9

INF/UFG - LFA 2021/1 - H. Longo

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Ca	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0,bba]$		
\longmapsto	$[s_1,ba]$		
\longmapsto	$[s_2,a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cade	eia aceita!		

Cadela abab			
	$[s_0, abab]$		
\longmapsto	$[s_0, bab]$		
\longmapsto	$[s_1,ab]$		
\longmapsto	$[s_0, b]$		
\longmapsto	$[s_1, \varepsilon]$		
Cade	eia rejeitada!		

Processamento de um DFA

Exemplo 1.9

• $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

	-1-!- 11
Ca	deia <i>abba</i>
	$[s_0, abba]$
\longmapsto	$[s_0,bba]$
\longmapsto	$[s_1,ba]$
\longmapsto	$[s_2, a]$
\longmapsto	$[s_2, \varepsilon]$
Cade	eia aceita!

Cadeia abab		
	$[s_0, abab]$	
\longmapsto	$[s_0, bab]$	
\longmapsto	$[s_1, ab]$	
\longmapsto	$[s_0, b]$	
\longmapsto	$[s_1, \varepsilon]$	
Cadeia rejeitada!		

Exemplo 1.9

 $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle,$ onde:

$$\begin{array}{c|cccc}
\delta & a & b \\
\hline
s_0 & s_0 & s_1 \\
s_1 & s_0 & s_2 \\
s_2 & s_2 & s_2
\end{array}$$

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Ca	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0,bba]$		
\longmapsto	$[s_1,ba]$		
\longmapsto	$[s_2,a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cadeia aceita!			

Cadeia abab			
	$[s_0, abab]$		
\longmapsto	$[s_0, bab]$		
\longmapsto	$[s_1, ab]$		
\longmapsto	$[s_0, b]$		
\longmapsto	$[s_1, \varepsilon]$		
Cadeia rejeitada!			

Processamento de um DFA

Exemplo 1.9

 $M = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle,$ onde:

δ	a	b
s_0	s_0	s_1
s_1	s_0	s_2
s_2	s_2	s_2

 $\mathcal{L}(M) = (a \cup b)^*bb(a \cup b)^*$

Cad	Cadeia abba		
	$[s_0, abba]$		
\longmapsto	$[s_0,bba]$		
\longmapsto	$[s_1,ba]$		
\longmapsto	$[s_2,a]$		
\longmapsto	$[s_2, \varepsilon]$		
Cade	ia aceital		

Cadeia abab		
	$[s_0, abab]$	
\longmapsto	$[s_0,bab]$	
\longmapsto	$[s_1,ab]$	
\longmapsto	$[s_0,b]$	
\longmapsto	$[s_1, \varepsilon]$	
Cade	ia rejeitada!	

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (33 - 65 de 66

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (34 - 65 de 66

Transição estendida

Definição 1.10

- lacktriangle A função de transição estendida $\overline{\delta}$ de um DFA, com função de transição δ , é uma função de $S \times \Sigma^*$ em S, definida recursivamente no comprimento da cadeia de entrada:
 - 1. Base:

$$|w| = 0 \Rightarrow w = \varepsilon \ \mathbf{e} \ \overline{\delta}(s_i, \varepsilon) = s_i,$$

 $|w| = 1 \Rightarrow w = a \in \Sigma \ \mathbf{e} \ \overline{\delta}(s_i, a) = \delta(s_i, a).$

2. Recursão:

$$|w| = n > 1 \Rightarrow w = ua \in \overline{\delta}(s_i, ua) = \delta(\overline{\delta}(s_i, u), a).$$

Transição estendida

Resumo

- ▶ A função estendida de transição de estados $\overline{\delta}: S \times \Sigma^* \to S$, de um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$, é definida como:
 - 1. $\overline{\delta}(s,\varepsilon) = s \quad (\forall s \in S)$
 - 2. $\overline{\delta}(s, a) = \delta(s, a) \quad (\forall \ s \in S, \ \forall \ a \in \Sigma)$
 - 3. $\overline{\delta}(s, au) = \overline{\delta}(\delta(s, a), u) \quad (\forall s \in S, \forall a \in \Sigma, \forall u \in \Sigma^*)$

Transição estendida

DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$

- ▶ *M* aceita a cadeia $w \in \Sigma^*$ se e somente se $\overline{\delta}(s_0, w) \in F$.
 - ▶ Se $w = w_1 w_2 \dots w_n$, então existem $r_0, r_1, \dots, r_n \in S$, tais que:
 - 1. $r_0 = s_0$;
 - 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1; e
 - 3. $r_n \in F$.
- ▶ *M* rejeita a cadeia $w \in \Sigma^*$ se e somente se $\overline{\delta}(s_0, w) \notin F$.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (37 - 65 de 66)

Linguagem de um DFA

Definição 1.11

- ▶ A linguagem $\mathcal{L}(M)$ de um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é o conjunto de cadeias em Σ^* aceitas por M.
- ▶ Dado o DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$, então $\mathcal{L}(M) = \{ w \mid \overline{\delta}(s_0, w) \in F \}$.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (38 - 65 de 66

Exemplos de DFA's

Exemplo 1.12

► $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|cccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$$

Exemplos de DFA's

Exemplo 1.12

 $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|cccc}
\delta & a & b \\
\hline
s_0 & s_0 & s_1 \\
s_1 & s_0 & s_2 \\
s_2 & s_2 & s_2
\end{array}$$

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

Exemplo 1.12

► $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
s_0 & s_0 & s_1 \\
s_1 & s_0 & s_2 \\
s_2 & s_2 & s_2
\end{array}$$

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (41 – 65 de 66)

Exemplos de DFA's

Exemplo 1.12

 $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|ccccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$$

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

ightharpoonup [s_0 , ababb]

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (42 - 65 de 66)

Exemplos de DFA's

Exemplo 1.12

► $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

 $\blacktriangleright \ \mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $ightharpoonup [s_0, ababb] \longmapsto [s_0, babb]$

Exemplos de DFA's

Exemplo 1.12

 $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|cccc}
\delta & a & b \\
\hline
s_0 & s_0 & s_1 \\
s_1 & s_0 & s_2 \\
s_2 & s_2 & s_2
\end{array}$$

 $\blacktriangleright \ \mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $[s_0, ababb] \longmapsto [s_0, babb] \longmapsto [s_1, abb]$

Exemplo 1.12

► $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $ightharpoonup [s_0, ababb] \longmapsto [s_1, abb] \longmapsto [s_0, bb]$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (45 - 65 de 66)

Exemplos de DFA's

Exemplo 1.12

 $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

$$\begin{array}{c|cccc} \delta & a & b \\ \hline s_0 & s_0 & s_1 \\ s_1 & s_0 & s_2 \\ s_2 & s_2 & s_2 \end{array}$$

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $[s_0, ababb] \longmapsto [s_0, babb] \longmapsto [s_1, abb] \longmapsto [s_0, bb] \longmapsto [s_1, b]$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (46 - 65 de 66)

Exemplos de DFA's

Exemplo 1.12

► $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $[s_0, ababb] \longmapsto [s_0, babb] \longmapsto [s_1, abb] \longmapsto [s_0, bb] \longmapsto [s_1, b] \longmapsto [s_2, \varepsilon]$

Exemplos de DFA's

Exemplo 1.12

 $M_1 = \langle \{a, b\}, \{s_0, s_1, s_2\}, s_0, \delta, \{s_2\} \rangle$, onde:

 $\mathcal{L}(M_1) = (a \cup ba)^*bb(a \cup b)^* \equiv (a \cup b)^*bb(a \cup b)^*$

 $\blacktriangleright [s_0, ababb] \longmapsto [s_0, babb] \longmapsto [s_1, abb] \longmapsto [s_0, bb] \longmapsto [s_1, b] \longmapsto [s_2, \varepsilon] \longmapsto [s_2]$

Diagrama de estados

Teorema 1.13

▶ Se $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é um DFA e $w \in \Sigma^*$, então w determina um único caminho p_w no diagrama de estados de M e $\overline{\delta}(s_0, w) = s_w$.

Demonstração.

► Inducão no comprimento da cadeia w.

Base: $|w| = 0 \Rightarrow \overline{\delta}(s_0, \varepsilon) = s_0$.

Hipótese: Resultado válido para todas as cadeias de comprimento máximo *n*.

INF/UFG - LFA 2021/1 - H. Longo

Diagrama de estados

Teorema 1.13

▶ Se $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é um DFA e $w \in \Sigma^*$, então w determina um único caminho p_w no diagrama de estados de M e $\overline{\delta}(s_0, w) = s_w$.

Demonstração.

▶ Indução no comprimento da cadeia w.

Passo: Seja w = ua tal que |w| = n + 1.

- 1. Por H.I., existe um único caminho p_u que processa $u \in \overline{\delta}(s_0, u) = s_u$.
- 2. O caminho p_w segue o arco rotulado a saindo de s_u .
- 3. p_w é único, pois p_u é único e somente uma aresta rotulada a sai de s_u .

INF/UFG - LFA 2021/1 - H. Longo Autômatos finitos determinísticos (49 - 65 de 66

Autômatos finitos determinísticos (50 - 65 de 66

Diagrama de estados

Teorema 1.13

▶ Se $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é um DFA e $w \in \Sigma^*$, então w determina um único caminho p_w no diagrama de estados de M e $\overline{\delta}(s_0, w) = s_w$.

Demonstração.

► Indução no comprimento da cadeia w.

Passo: Seja w = ua tal que |w| = n + 1.

- 4. O estado final de p_w é determinado pela transição $\delta(s_u, a)$.
- 5. Por definição, $\overline{\delta}(s_0, w) = \delta(\overline{\delta}(s_0, u), a)$.
- 6. Como $\overline{\delta}(s_0, u) = s_u$, então $s_w = \delta(s_u, a) = \delta(\overline{\delta}(s_0, u), a) = \overline{\delta}(s_0, w)$.

Exemplos de DFA's

Exemplo 1.14

- ▶ $\mathcal{L}(M_2) = \{w \in \{a, b\}^* \mid w \text{ não contém a subcadeia } aa\}.$

Exemplo 1.15

- ▶ $\mathcal{L}(M_3) = \{w \in \{a, b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\blacktriangleright \mathcal{L}(M_3) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2).$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (53 - 65 de 66)

Exemplos de DFA's

Exemplo 1.16

• $\mathcal{L}(M_4) = \{w \in \{a, b\}^* \mid w \text{ cont\'em nr. par de } a's \text{ e nr. impar de } b\text{'s}\}.$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (54 - 65 de 66)

Exemplos de DFA's

Exemplo 1.17

- ▶ $\mathcal{L}(M_5) = \{w \in \{a, b\}^* \mid w \text{ não contém nr. par de } a's \text{ e nr. ímpar de } b\text{'s}\}.$
- $ightharpoonup \mathcal{L}(M_5) = \{a, b\}^* \mathcal{L}(M_4).$

Exemplos de DFA's

Exemplo 1.18

- $\mathcal{L}(M_6) = \{w \in \{0, 1, 2, 3\}^* \mid \text{a soma dos dígitos de } w \text{ é divisível por } 4\}.$
 - ▶ $12302 \in \mathcal{L}(M_6)$.
 - $\qquad \qquad \bullet \quad 0130 \in \mathcal{L}(M_6).$
 - ▶ 0111 $\notin \mathcal{L}(M_6)$.

Determinismo incompleto

Definição 1.19

- Função de transição é uma função parcial de $S \times \Sigma$ em S.
- Processamento para assim que é possível determinar que uma dada cadeia não é aceitável.
 - Para antes de processar toda a cadeia e a rejeita.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (57 - 65 de 66)

Exemplos de DFA's

Exemplo 1.20

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (58 - 65 de 66)

Exemplos de DFA's

Exemplo 1.21

- ► Estado *s*₃ garante o processamento de toda a cadeia de entrada.

Exemplos de DFA's

Exemplo 1.22

- ► $\mathcal{L}(M_9) = \{a^i b^i \mid 0 \le i \le n\}$, para um n fixo.
- ► Estados *s*_i's contam o número de *a*'s e estados *q*_i's garantem um igual número de *b*'s.

Exemplo 1.23

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (61 – 65 de 66)

Exemplos de DFA's

Exemplo 1.24

 $\blacktriangleright \mathcal{L}(M_{11}) = (0 \cup 1^+00)^*1^+01(0 \cup 1)^*.$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos determinísticos (62 - 65 de 66)

Exemplos de DFA's

Exemplo 1.25

 $\blacktriangleright \ \mathcal{L}(M_{12}) = \varepsilon \cup (0 \cup 00^*1)1^*.$

Exemplos de DFA's

Exemplo 1.26

 \blacktriangleright $\mathcal{L}(M_{13}) = (0 \cup 1)^*11.$

Exemplo 1.27

 $\blacktriangleright \mathcal{L}(M_{13a}) = (0 \cup 1)^*11.$

INF/UFG - LFA 2021/1 - H. Longo Autômatos finitos determinísticos (65 - 65 de 66)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach. Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.
Languages and Machines – An Introduction to the Theory of Computer Science.
Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long.
Theory of Finite Automata – With an Introduction to Formal Languages.

Introduction to the Theory of Computation. PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (679 – 65 de 66)