Homework 7

- 1 Find geodesics on sphere and cylinder
- a) using straightforwardly equations for geodesics, or using the fact that for geodesic, acceleration is orthogonal to the surface.
 - b *) using the fact that geodesic is shortest.
- **2** Consider a sphere $x^2 + y^2 + z^2 = 1$ in \mathbf{E}^3 and the curve C which is the intersections of this sphere with plane y = 0.

Consider also in \mathbf{E}^3 a vector $\mathbf{X} = \frac{\partial}{\partial z} - \sqrt{3} \frac{\partial}{\partial x}$ attached at the point \mathbf{p} : $\left(x = \frac{1}{2}, y = 0, z = \frac{\sqrt{3}}{2}\right)$ and the vector $\mathbf{Y} = \frac{\partial}{\partial y}$ attached at the same point \mathbf{p} .

Show that vectors \mathbf{X} and \mathbf{Y} are tangent to the sphere and express these vector in spherical coordinates.

Describe parallel transport of vectors \mathbf{X}, \mathbf{Y} along the curve C.

- **3** a) Show that vertical lines x = a are geodesics (un-parameterised) on the Lobachevsky plane a1).
- 4 Consider a vertical ray $C: x(t) = x_0, y(t) = y_0 + t$, $0 \le t < \infty$, $(y_0 > 0)$ on the Lobachevsky plane. Find the parallel transport $\mathbf{X}(t)$ of the vector $\mathbf{X}_0 = \partial_y$ attached at the initial point (x_0, y_0) along the ray C at an arbitrary point of the ray.
- **5** Find a parameterisation of vertical lines in the Lobachevsky plane such that they become parameterised geodesics.
- **6** Show that the following transformations are isometries of Lobachevsky plane (i.e. they do not change the metric)
 - a) horizontal translation $\mathbf{r} \to \mathbf{r} + \mathbf{a}$ where $\mathbf{a} = (a, 0)$,
 - b) homothety: $\mathbf{r} \to \lambda \mathbf{r} \ (\lambda > 0)$,
 - * c) inversion with the centre at the points of the absolute (the line x=0):

$$\mathbf{r} \to \mathbf{a} + \frac{\mathbf{r} - \mathbf{a}}{|\mathbf{r} - \mathbf{a}|^2}$$
 where $\mathbf{a} = (a, 0)$:
$$\begin{cases} x' = a + \frac{x - a}{(x - a)^2 + y^2} \\ y' = \frac{y}{(x - a)^2 + y^2} \end{cases}$$
.

- **7*** Show that upper arcs of semicircles $(x-a)^2+y^2=R^2, y>0$ are (non-parametersied) geodesics.
- **8*** Let $\mathbf{X}(t)$ be parallel transport of the vector \mathbf{X} along the curve on the surface M embedded in \mathbf{E}^3 , i.e. $\nabla_{\mathbf{v}}\mathbf{X} = 0$, where \mathbf{v} is a velocity vector of the curve C and ∇ Levi-Civita connection of the metric induced on the surface. Compare the condition $\nabla_{\mathbf{v}}\mathbf{X} = 0$

1

¹⁾ As usual we consider here the realisation of Lobachevsky plane (hyperbolic plane) as upper half of Euclidean plane $\{(x,y): y>0\}$ with the metric $G=\frac{dx^2+dy^2}{y^2}$. The line x=0 is called *absolute*.

(this is condition of parallel transport for internal observer) with the condition that for the vector $\mathbf{X}(t)$, the derivative $\frac{d\mathbf{X}(t)}{dt}$ is orthogonal to the surface (this is condition of parallel transport for external observer)²⁾.

Do these two conditions coincide, i.e. do they imply the same parallel transport?

²⁾ We defined parallel transport in Geometry course using this condition