Functions

October 11, 2019

1 Functions

1.1 Definitions

Let $f \subseteq A \times B$ (so f is a relation). We say that f is a function, and write $f: A \to B$, if dom f = A and for all $x \in A$ and for all $y, z \in B$, if $(x, y) \in f$ and $(x, z) \in f$, then y = z.

If $f: A \to B$ is a function, then we often write f(a) = b instead of $(a, b) \in f$ and use f(a) to denote b.

If $f: A \to B$ is a function and $C \subseteq A$ then we use f "C as shorthand for the set $\{y | \exists x (x \in C \land (x, y) \in f)\}$ and $f \upharpoonright C$ for the set $\{(x, y) | (x, y) \in f \land x \in C\}$.

Let $f: A \to B$ be a function. We say that f is *injective* or *one-to-one* if for all $x, y \in A$ and for all $z \in B$, if $(x, z) \in f$ and $(y, z) \in f$, then x = y.

1.2 Composing Functions

Let f and g be functions with ran $f \subseteq \text{dom} g$. Then define $g \circ f$ to be the relation

$$g \circ f = \{(x,y) | \exists z ((x,z) \in f \land (z,y) \in g) \}$$

If f and g are functions with ranf \subseteq domg then $g \circ f$ is a function.

1.3 Inverse Functions

Let $f \subseteq A \times B$ be a function. The inverse of f , written f^{-1} is the relation

$$f^{-1} = \{(x, y) \in B \times A | (y, x) \in f\}$$

Let A be a set. The identity function on A is the function $id_A: A \to A$ defined by

$$id_A = \{(x, y) \in A \times A | x = y\}$$

Let $f: A \to B$ be a function. The relation f^{-1} is a function with $\text{dom } f^{-1} = \text{ran } f$ and $\text{ran } f^{-1} = A$ if and only if f is injective. Moreover, f^{-1} is injective and $f \circ f^{-1} = f^{-1} \circ f = id_A$.

1.4 Surjective Functions

Let $f: A \to B$ be a function. We say that f is *surjective* or *onto* if for all $x \in B$, there exists $y \in A$, such that $(y, x) \in f$.

If $f:A\to B$ and $g:B\to C$ are bijections, then $g\circ f$ is a bijection.

1.5 Bijection

If a function $f: A \to B$ is both injective and surjective, then we say that f is a bijection.

2 Cardinality

2.1 Definitions

Let A and B be sets. We say that A and B have the same *cardinality*, and write |A| = |B|, if there exists a function $f: A \to B$ that is a bijection.

Let A and B be sets. We write $|A| \leq |B|$ if there exists a function $f: A \to B$ that is an injection.

Note that if $|A| \leq |B|$, then |A| = |C|, for some $C \subseteq B$ (namely $C = \operatorname{ran} f$ where $f: A \to B$ is an injection).

2.2 Examples

- 1. $|\mathbb{N}| = |2\mathbb{N}| \ (f : \mathbb{N} \to 2\mathbb{N}, f(n) = 2n)$
- 2. $|\mathbb{N}| = |\mathbb{N}/\{0\}| \ (f : \mathbb{N} \to \mathbb{N}/\{0\}, f(n) = n+1)$
- 3. $|\mathbb{Z}| = |\mathbb{N}/\{1\}|$

$$f: \mathbb{Z} \to \mathbb{N}/\{1\}, f((-1)^k n) = \begin{cases} 0 & \text{if } n = 0\\ 2n + k & \text{if } n \neq 0 \end{cases}$$

2.3 Theorem

 $|\mathbb{Z}| = |\mathbb{N}|.$

$$f: \mathbb{Z} \to \mathbb{N}, f(n) = \begin{cases} 0 & \text{if } n = 0\\ 2n & \text{if } n \geqslant 1\\ -2n - 1 & \text{if } n \leqslant -1 \end{cases}$$

2.4 Infinite Sets

We say that a set A is *infinite* if there exists $f: A \to A$ that is an injection but not a surjection. (Dedekind infinite)

2.5 Examples

- 1. \mathbb{N} is infinite. $(f: \mathbb{N} \to \mathbb{N}, f(n) = n+1)$
- 2. \mathbb{Z} is infinite. $(f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x)$
- 3. \mathbb{Q} and \mathbb{R} are infinite.

$$f: \mathbb{Q} \to \mathbb{Q}(\mathbb{R} \to \mathbb{R}), f(x) = \left\{ \begin{array}{cc} x+1 & \text{if } x \geqslant 0 \\ x & \text{if } x < 0 \end{array} \right.$$

2.6 Countable Sets

Let A be a set. We say that A is countable if $|A| \leq |N|$. We say that A is countably infinite if A is countable and A is infinite.

If B is a countable set and $A \subseteq B$, then A is countable.

2.7 Examples

- 1. Any finite set is countable.
- 2. \mathbb{Z} is countably infinite.
- 3. If $A \subseteq N$, then A is countable. If A is also infinite, then A is countably infinite.

2.8 $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

1. Cantors Pairing Function is the function $: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$\pi(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$$

- 2. Cantors Pairing Function : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection.
- 3. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

2.9 Cantor's Theorem

If A is a set, then there is no injection $f: \mathcal{P}(A) \to A$.

proof by contradiction:

- 1. If $f: \mathcal{P}(A) \to A$ is an injection, then $f^{-1}: \operatorname{ran} f \to \mathcal{P}(A)$ is an bijection.
- 2. Let $Z = \{x \in \operatorname{ran} f | x \notin f^{-1}(x) \}$, and $Z \subseteq A$.
- 3. Let z = f(Z). $z \in f^{-1}(z)$ or $z \notin f^{-1}(z)$?

Note that if A is a set, then $|A| < |\mathcal{P}(A)|$.

2.10 Uncountable Sets

We say that a set is uncountable if it is not countable.

2.11 Exercises

Show that if S is an infinite set, then there exists an element $a \in S$, such that a bijection $f: S \to S - \{a\}$ exits.

Since S is (Dedekind) infinite, then there exists a function $g: S \to S$, that is injective but not surjective. Therefore, ran $g \subset S$, and there exists an element $a \in S$ such that $a \notin \text{ran } g$.

We define the set $B = \{x \in S | \exists n \in \mathbb{N}, x = g^n(a)\}$, where $g^0(a) = a, g^k(a) = g(g^{k-1}(a))$. Note that $g^m(a) = g^n(a)$ if and only if m = n, since $g : S \to S$ is injective.

Let
$$f: S \to S - \{a\}$$
 be

$$f(x) = \begin{cases} x & \text{if } x \notin B\\ g(x) & \text{if } x \in B \end{cases}$$

Show that

- 1. any subset of a countable set is countable. (If $f:A\to\mathbb{N}$ is an injection, then $f:B\to\mathbb{N}$ is also an injection, where B is a subset of A.)
- 2. the union of two countable sets is countable. (If $f_1:S_1\to\mathbb{N}$ and $f_2:S_2\to\mathbb{N}$ are both injective, then $f:S_1\cup S_2\to\mathbb{N}$

$$f(x) = \begin{cases} 2f_1(x) & \text{if } x \in S_1\\ 2f_2(x) + 1 & \text{if } x \in S_2 \end{cases}$$

is also an injection.)

```
Show that |\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|. (Obviously)
Show that \mathbb{Q} is countable. (\mathbb{Q} = \mathbb{Q}^+ \cup \{0\} \cup \mathbb{Q}^-)
Find a bijection f: \mathbb{Z}^+ \to \mathbb{N} \times \mathbb{N}. (f: \mathbb{Z}^+ \to \mathbb{N} \times \mathbb{N}, 2^x(2y+1) \mapsto (x,y))
Find a bijection f: \mathbb{N} \to \mathbb{N} \times \mathbb{N} other than Cantors Pairing Function. (f: \mathbb{Z}^+ \to \mathbb{N} \times \mathbb{N}, 2^x(2y+1) - 1 \mapsto (x,y))
Show that S = \{x \in \mathbb{R} | 1 < x < 2\} is infinite. (f: S \to S, f(x) = (x+1)/2)
```