Métodos Estocásticos da Engenharia I Capítulo 4 - Principais Modelos Contínuos

Prof. Magno Silvério Campos

2024/1

Bibliografia

Essas notas de aulas foram baseadas nas seguintes obras:

- CAMPOS, M. A.; RÊGO, L. C.; MENDONÇA, A. F. Métodos Probabilísticos e Estatísticos com Aplicações em Engenharias e Ciências Exatas. Rio de Janeiro: LTC, 2017.
- 2 CANCHO, V.G. Notas de Aulas sobre Noções de Estatística e Probabilidade. São Paulo: USP, 2010.
- 3 HINES, W.W.; et al. Probabilidade e Estatística na Engenharia. 4. ed. Rio de Janeiro: LTC, 2006.
- MENDES, F. C. T. Probabilidade para Engenharias. Rio de Janeiro: LTC, 2010.
- MEYER, P.L. Probabilidade: Aplicações à Estatística. 2. ed. Rio de Janeiro: LTC, 1983.
- MONTGOMERY, D.C.; RUNGER, G.C. Estatística Aplicada e Probabilidade para Engenheiros. 6. ed. Rio de Janeiro: LTC, 2016.
- MORABITO, R. Modelos Probabilísticos Aplicados à Engenharia de Produção. 1. ed. São Carlos: Edufscar, 2002.

Aconselha-se pesquisá-las para se obter um maior aprofundamento e um melhor aproveitamento nos estudos.

Conteúdo Programático

- Distribuição Uniforme Contínua
- Distribuição Exponencial
- Distribuição de Gama e Erlang
- Distribuição de Weibull
- Distribuição de Raleigh
- Distribuição do Valor Extremo
- Distribuição Normal
- Distribuição Lognormal
- Distribuição Logística
- Distribuição Loglogística (ou de Fisk)
- Distribuição de Pareto Contínua
- Ditribuição Beta
- Distribuição de Cauchy (ou de Lorentz)
- Distribuição de Laplace (ou Exponencial Dupla)
- Distribuição de Gompertz
- Distribuição Triangular (UFOP/EM/DEPRO)

Distribuição Uniforme Contínua

Definição

Uma VAC X tem distribuição uniforme com parâmetros α e β se sua função de densidade é dada por

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0, & \text{caso contrário.} \end{cases}$$

A função da distribuição acumulada de uma variável aleatória uniforme contínua é:

$$F(x) = \begin{cases} 0; & x < \alpha \\ \frac{x - \alpha}{\beta - \alpha}, & \alpha \le x < \beta \\ 1, & x \ge \beta \end{cases}$$

Na figura a seguir, é mostrada a representação gráfica da função de densidade de probabilidade (figura a) e da função de distribuição acumulada da variável aleatória uniforme contínua (figura b).

Notação

A notação $X \sim U(\alpha, \beta)$ é usada para indicar que X tem distribuição uniforme no intervalo (α, β) , com $M_X(t) = \frac{e^{t\beta} - e^{t\alpha}}{t(\beta - \alpha)}, t \neq 0$.

Média e Variância

(a)
$$\mu = E(X) = \frac{\alpha + \beta}{2}$$

(b)
$$\sigma^2 = Var(X) = \frac{(\beta - \alpha)^2}{12}$$

Exemplo - [Montgomery e Runger(2016)]

Seja a variável aleatória contínua X a corrente medida em um fio delgado de cobre, em miliampéres. Considere que a faixa de X seja [0; 20 mA]. Qual é a probabilidade da medida da corrente estar entre 5 e 10 mA? Qual o valor esperado para a corrente e sua respectiva variância?

Distribuição Exponencial

Definição

Uma VAC X tem distribuição exponencial com parâmetro λ (constante real positiva, que mostra o número médio de ocorrências por unidade de medida), se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

A função da distribuição acumulada de uma VAC exponencial com parâmetro λ é dada por:

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

As figuras abaixo representam a função densidade de probabilidade e a função de distribuição acumulada de uma VAC exponencial:

Notação

A notação $X \sim Exp(\lambda)$ indica que a variável aleatória X tem distribuição exponencial com parâmetro λ , com $M_X(t) = \frac{\lambda}{\lambda - t}$, $t < \lambda$.

Média e Variância

(a)
$$\mu = E(X) = \frac{1}{\lambda}$$

(b)
$$\sigma^2 = Var(X) = \frac{1}{X^2}$$

Exemplo - [Hines e outros(2006)]

Sabe-se que um componente eletrônico tem vida útil representada por uma fdp exponencial, com taxa de falha de 10^{-5} falhas por hora.

• Qual é o tempo médio para a falha desse componente?

 Qual é a fração de tais componentes que falhariam antes da vida média esperada?

A relação da Distribuição Exponencial com a Distribuição de Poisson

A distribuição exponencial tem uma relação muito próxima com a distribuição de Poisson. Vejamos:

Seja um processo de Poisson, onde fixamos o tempo em algum valor \mathbf{t} . Então, desenvolvemos a distribuição da variável aleatória \mathbf{X} : número de ocorrências no intervalo $[0,\mathbf{t}]$:

$$f(x) = \frac{e^{-\mu}\mu^x}{x!}$$

$$= \frac{e^{-\lambda t}(\lambda t)^x}{x!}, \quad x = 0, 1, 2, 3, \dots$$
(1)

Considere, agora, a probabilidade de nenhuma ocorrência em $[0, \mathbf{t}]$, isto é,

$$f(0) = e^{-\lambda \mathbf{t}}$$

Esse resultado, também pode ser interpretado como a probabilidade de o tempo da primeira ocorrência ser maior que t.

Considerando esse tempo de ocorrência como uma variável aleatória ${f T},$ vemos que:

$$f(0) = P(T > \mathbf{t}) = e^{-\lambda \mathbf{t}}, \quad \mathbf{t} \ge 0.$$

Assim,

$$F(\mathbf{t}) = P(T \le \mathbf{t}) = 1 - P(T > \mathbf{t}) = 1 - e^{-\lambda \mathbf{t}}, \quad \mathbf{t} \ge 0.$$

E como, $f(\mathbf{t}) = F'(\mathbf{t})$, vem que:

$$f(\mathbf{t}) = \lambda e^{-\lambda \mathbf{t}}, \quad \mathbf{t} \ge 0.$$
 (2)

Que é a fdp exponencial!

Conclusão:

Se o número de ocorrências segue uma distribuição de Poisson, como mostrado em (1), então o tempo entre ocorrências sucessivas segue uma distribuição exponencial, como descrito em (2)!

Por exemplo,

Se o número de clientes que entram em uma agência bancária, em certo intervalo de funcionamento desta, segue uma Distribuição de Poisson, então o tempo entre chegadas de clientes seguirá uma distribuição exponencial.

Observe que:

Uma variável é discreta (contagem) e a outra (tempo) é contínua.

Propriedade da falta de memória da distribuição exponencial

Considere no exemplo anterior, que um componente esteja funcionando a s horas sem falhar. Qual a probabilidade dele não falhar nas próximas t horas?

Propriedade da falta de memória

$$P(T > s + t | T > s) = P(T > t)$$

Logo, a probabilidade de o componente não falhar nas próximas t horas, dado que ele não falhou nas primeiras s horas, é igual à probabilidade dele não falhar nas primeiras t horas (isto é, P(X > t)).

Note que a informação de que ele não falhou nas primeiras s horas pode ser esquecida, e por isso dizemos que a Distribuição Exponencial "não tem memória", sendo que ela é a única distribuição de VAC com essa

Exemplo - [Cancho(2010)]

O tempo de vida (em horas) de um transistor é uma variável aleatória T com fdp:

$$f(t) = \begin{cases} \frac{1}{500} e^{-\frac{t}{500}}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

- (a) Qual é a média de vida do transistor?
- (b) Qual é a probabilidade de que o tempo de vida seja maior do que a média?
- (c) Se um transistor já durou mais que 300 horas, qual é a probabilidade de que dure pelo menos outras 400 horas?

2024/1

Distribuições Gama e Erlang

Considere o seguintes parâmetros:

- λ: constante real positiva, que mostra o número médio de ocorrências por unidade de medida;
- ullet r: número de ocorrências em um processo de Poisson.

Dizemos que uma VAC X tem distribuição Gama, com parâmetros λ e r, se sua fdp é dada por:

$$f(x) = \begin{cases} \frac{\lambda}{\Gamma(r)} (\lambda x)^{r-1} e^{-\lambda x}, & com \ r > 0, \ x > 0 \\ 0, & caso \ contrário. \end{cases}$$

em que

$$\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx \; , \; para \; r > 0$$

é a chamada função Gama.

Observação 1

Pode ser mostrado que a integral na definição de $\Gamma(r)$ é finita. Além disso, integrando por partes, pode ser mostrado que

$$\Gamma(r) = (r-1)\Gamma(r-1)$$

Assim, pode-se mostrar também que se r for um inteiro positivo, temos

$$\Gamma(r) = (r-1)!$$

Alguns resultados interessantes:

$$\Gamma(1) = 0! = 1$$

$$\Gamma(1/2) = \sqrt{\pi}$$

A função gama pode ser interpretada como uma generalização para valores não-inteiros de r do termo (r-1)!.

Observação 2

Os parâmetros λ e r são frequentemente chamados de parâmetros de escala e forma, respectivamente. No entanto, devem-se verificar as definições usadas nos programas computacionais comerciais. Por exemplo, o MINITAB define o parâmetro de escala como $\frac{1}{\lambda}$.

Observação 3

Esboços da distribuição gama para alguns valores de λ e rsão mostrados na figura a seguir.

A FDA da distribuição Gama é intratável analiticamente, mas é perfeitamente obtida de softwares computacionais tais como, Excel e Minitab.

Notação

$$X \sim Gama(\lambda, r), \text{ com } M_X(t) = (\frac{\lambda}{\lambda - t})^r.$$

Média e Variância

(a)
$$\mu = E(X) = \frac{r}{\lambda}$$

(b)
$$\sigma^2 = Var(X) = \frac{r}{V^2}$$

19 / 103

Distribuição de Erlang

Se r for um número inteiro, então a distribuição Gama passa a ser chamada de Distribuição de Erlang. Neste caso, $\Gamma(r)=(r-1)!$ e a fdp anterior passa a ser dada por:

$$f(x) = \begin{cases} \frac{\lambda}{(r-1)!} (\lambda x)^{r-1} e^{-\lambda x}, & com \ r \in \mathbb{Z}^+, \ x > 0\\ 0, & caso \ contrário. \end{cases}$$

Integrando-se f(x) entre 0 e x, obtém-se a FDA de X dada por:

$$F(x) = P(X \le x) = \begin{cases} 1 - \sum_{k=0}^{r-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!}, & x > 0 \\ 0, & \text{caso contrário.} \end{cases}$$

que corresponde ao complementar da soma de termos de Poisson com média λx .

Observação 1

Note que a distribuição exponencial pode ser vista como o caso particular da distribuição de Erlang, quando r=1.

Observação 2

A figura abaixo ilustra a forma da distribuição de Erlang para alguns valores de r. Note que para r=1, ela corresponde à distribuição exponencial.

Observação 3

No limite $r \to \infty$, a distribuição de Erlang concentra toda a sua "massa

Relação entre a Distribuição de Erlang e a Distribuição Exponencial Seja a VAC X definida como a seguir:

$$X = X_1 + X_2 + X_3 + \ldots + X_r$$

em que cada uma das r VAC X_i é independente das demais e exponencialmente distribuída com parâmetro λ .

Portanto, se cada X_i representa o tempo decorrido até ocorrer um sucesso, com

$$E(X_i) = \frac{1}{\lambda} e \sigma^2(X_i) = \frac{1}{\lambda^2},$$

então a VAC X, com parâmetros λ e r, pode ser interpretada como tempo necessário até ocorrerem r sucessos e,

$$E(X) = \frac{r}{\lambda} e^{-\sigma^2(X)} = \frac{r}{\lambda^2}.$$

- イロト イ団ト イミト イミト - ミニ・タリ

Exemplo 1

A duração de certa lâmpada é uma VAC exponencialmente distribuída com média igual a $1.000\ \mathrm{horas}.$

Quando uma lâmpada queima, ela é imediatamente substituída por outra. Qual a probabilidade da duração de 3 lâmpadas trocadas uma após a outra, ser menor ou igual a 2.000 horas?

Exemplo 2

O tempo entre falhas de um laser em uma determinada máquina é distribuído exponencialmente, com média de 25.000 horas.

• Qual é o tempo esperado até que a segunda falha ocorra?

Qual é a probabilidade de que o tempo até a terceira falha exceda 50.000 horas?

Exercício

Mostre que $\Gamma(r) = (r-1)\Gamma(r-1)$.

Observação 4

Quando $\lambda=\frac{1}{2}$ e r é igual a um dos valores $\frac{1}{2},\ 1,\ \frac{3}{2},\ 2,\ \frac{5}{2},\ 3,\ \frac{7}{2},\ 4,\ \ldots,$ a distribuição Gama passa a ser denominada de Distribuição Qui-Quadrado.

Distribuição de Weibull e de Raleigh

Introdução

A distribuição de Weibull tem sido aplicada amplamente a vários fenômenos aleatórios. Uma importante área de aplicação tem sido como modelo para o tempo de falha de componentes e sistemas elétricos e mecânicos.

Uma VAC X possui distribuição de Weibull se sua fdp é dada por:

$$f(x) = \begin{cases} \frac{\beta}{\delta} \left(\frac{x-\gamma}{\delta}\right)^{\beta-1} e^{\left[-\left(\frac{x-\gamma}{\delta}\right)^{\beta}\right]}, & x > \gamma \\ 0, & \text{caso contrário.} \end{cases}$$

em que:

- $\beta > 0$ é chamado parâmetro de forma;
- $\delta > 0$ é chamado parâmetro de escala;
- $-\infty < \gamma < \infty$ é chamado parâmetro de localização;

A FDA de X é dada por

$$F(x) = \begin{cases} 1 - e^{\left[-\left(\frac{x-\gamma}{\delta}\right)^{\beta}\right]}, & x > \gamma \\ 0, & \text{caso contrário.} \end{cases}$$

Notação

 $X \sim Weibull(eta,\ \delta,\ \gamma),\ {
m com}\ E(X^k) = \delta^K \Gamma\left(rac{k}{eta}+1
ight),$ já que $M_X(t)$ não possui uma forma fechada.

Média e Variância

(a)
$$\mu = E(X) = \gamma + \delta\Gamma(1 + \frac{1}{\beta})$$

(b)
$$\sigma^2 = Var(X) = \delta^2 \{ \Gamma(1 + \frac{2}{\beta}) - [\Gamma(1 + \frac{1}{\beta})]^2 \}$$

Frequentemente, assume-se $\gamma=0$. Logo, a fdp passa a ser escrita como

$$f(x) = \begin{cases} \frac{\beta}{\delta} (\frac{x}{\delta})^{\beta - 1} e^{[-(\frac{x}{\delta})^{\beta}]}, & x > 0 \\ 0, & \text{caso contrário.} \end{cases}$$

A FDA de X passa a ser

$$F(x) = \begin{cases} 1 - e^{\left[-\left(\frac{x}{\delta}\right)^{\beta}\right]}, & x > 0 \\ 0, & \text{caso contrário.} \end{cases}$$

e,

(a)
$$\mu = E(X) = \delta\Gamma(1 + \frac{1}{\beta})$$

(b)
$$\sigma^2 = Var(X) = \delta^2 \{ \Gamma(1 + \frac{2}{\beta}) - [\Gamma(1 + \frac{1}{\beta})]^2 \}$$

Observação 1

A flexibilidade da distribuição de Weibull é ilustrada na figura abaixo:

Observação 2

Note que quando $\gamma = 0$ e $\beta = 1$ a distribuição de Weibull se reduz à distribuição exponencial com $\lambda = \frac{1}{x}$.

Nota: Embora a distribuição exponencial seja um caso especial das distribuições Gama e Weibull, as distribuições Gama e Weibull não são, em geral, permutáveis.

Distribuição de Raleigh

Quando $\gamma=0$ e $\beta=2$, a distribuição de Weibull é denominada Distribuição Raleigh. Conseqüentemente, teremos:

$$f(x) = \begin{cases} \frac{2}{\delta} \left(\frac{x}{\delta}\right) e^{\left[-\left(\frac{x}{\delta}\right)^2\right]}, & x > 0\\ 0, & \text{caso contrário.} \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{\left[-\left(\frac{x}{\delta}\right)^2\right]}, & x > 0 \\ 0, & \text{caso contrário.} \end{cases}$$

e,

(a)
$$\mu = E(X) = \delta\Gamma(\frac{3}{2})$$

(b)
$$\sigma^2 = Var(X) = \delta^2 \{ \Gamma(2) - [\Gamma(\frac{3}{2})]^2 \}$$

Exemplo 1 - [Hines e outros(2006)]

Sabe-se que a distribuição do tempo de falha para submontagens eletrônicas tem densidade de Weibull com $\gamma=0,\ \beta=\frac{1}{2}$ e $\delta=100$.

• Qual é a fração que se espera que sobreviva a 400 horas?

Qual é o tempo médio para falha?

Exemplo 2 - [Montgomery e Runger(2016)]

O tempo de falha (em horas) de um mancal em um eixo mecânico é satisfatoriamente modelado como uma variável aleatória de Weibull, com $\gamma=0,\,\beta=\frac{1}{2}$ e $\delta=5000$ horas.

• Qual é o tempo médio para falha desse mancal?

Qual é a probabilidade de uma mancal durar no mínimo 6000 horas?

Distribuição do Valor Extremo

Essa distribuição é utilizada para modelar valores extremos de certas variáveis, que podem ser mínimos ou máximos. Assim, temos duas possibilidades:

- Distribuição do Menor Valor Extremo (ou de Gumbel)
- Distribuição do Maior Valor Extremo

[1] - Distribuição do Menor Valor Extremo (ou de Gumbel)

É indicada para modelar o valor mínimo a partir de uma distribuição de observações aleatórias, descrevendo fenômenos extremos, como a temperatura mínima ou a precipitação durante uma seca.

Essa distribuição surge quando se toma o logaritmo natural de uma variável com distribuição de Weibull. Isto é, se a variável W tem uma distribuição de Weibull com fdp igual a f(w), então a variável X = ln(w) tem uma distribuição do menor valor extremo com a seguinte fdp:

$$f(x) = \frac{1}{\theta} e^{\left[\left(\frac{x-\xi}{\theta}\right) - e^{\left(\frac{x-\xi}{\theta}\right)}\right]}, -\infty < x < \infty, -\infty < \xi < \infty, \theta > 0$$

com $\theta = \frac{1}{\beta}$ e $\xi = ln(\delta)$.

Notação

$$X \sim VE_{(inf)}(\xi, \theta)$$

A FDA é dada por:

$$F(x) = 1 - e^{\left[-e^{\left(\frac{x-\xi}{\theta}\right)}\right]}$$

Média e Variância

- (a) $E(X) = \xi \nu \theta$
- (b) $Var(X) = \frac{\pi^2 \theta^2}{6}$,

sendo $\nu = 0,5772...$, conhecida como constante de Euler.

A figura abaixo ilustra distribuições de Menor Valor Extremo para valores selecionados dos parâmetros ξ e θ :

Observe que: a distribuição tem assimetria negativa.

Exemplo

Considere que a temperatura de operação para um determinado processo industrial possa ser modelada através de uma distribuição do Menor Valor Extremo, com parâmetros $\xi=30~^{\rm oC}$ e $\theta=2$. Valores de temperatura abaixo de 20 $^{\rm oC}$ são raros, porém quando acontecem, inviabilizam o processo. Deternine a probabilidade disso ocorrer, bem como a temperatura média do processo.

[2] - Distribuição do Maior Valor Extremo

É indicada para modelar o valor máximo a partir de uma distribuição de observações aleatórias, descrevendo fenômenos extremos, como velocidades de vento extremas, perdas altas de seguro e os níveis de água em um rio.

A variável X tem uma distribuição do maior valor extremo se sua fdp é dada por:

$$f(x) = \frac{1}{\alpha} e^{\left[-\left(\frac{x-\rho}{\alpha}\right) - e^{-\left(\frac{x-\rho}{\alpha}\right)} \right]}, -\infty < x < \infty, -\infty < \rho < \infty, \alpha > 0$$

Notação

$$X \sim VE_{(sup)}(\rho, \alpha)$$

A FDA é dada por:

$$F(x) = e^{\left[-e^{-\left(\frac{x-\rho}{\alpha}\right)}\right]}$$

Média e Variância

- (a) $E(X) = \rho + \nu \alpha$
- (b) $Var(X) = \frac{\pi^2 \alpha^2}{6}$,

sendo $\nu = 0,5772\ldots$, conhecida como constante de Euler.

A figura abaixo ilustra distribuições de Maior Valor Extremo para valores selecionados dos parâmetros ρ e α :

Observe que: a distribuição tem assimetria positiva.

Exemplo

Considere que valores altos de perda financeira por uma operadora de seguro veicular possam ser modelados através de um distribuição do Maior Valor Extremo, com parâmetros $\rho=$ R\$ 100.000 e $\alpha=$ 2. Determine a probabilidade de ocorrerem perdas acima do valor médio para essa seguradora.

Distribuição Normal ou Gaussiana ("De Moivre")

Introdução

A Distribuição Normal é, sob muitos aspectos, a pedra angular da estatística. Indubitavelmente, o modelo mais utilizado para a distribuição de uma variável aleatória é a **distribuição normal**.

Uma VAC X tem distribuição normal, com média μ ($-\infty < \mu < \infty$) e variância σ^2 , se tem a seguinte fdp:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty.$$

Denotação

$$X \sim N(\mu, \sigma^2), \text{ com } M_X(t) = e^{[t\mu + \frac{\sigma^2 t^2}{2}]}.$$

- (a) $E(X) = \mu$
- (b) $Var(X) = \sigma^2$ (UFOP/EM/DEPRO)

A fdp normal pode ser esboçada conforme a figura abaixo:

Propriedades

- **2** $f(x) \ge 0$;

- **6** O máximo de f(x) ocorre em $x = \mu$;
- **1** Os pontos de inflexão estão em $x = \mu \pm \sigma$.

A figura abaixo ilustra fdp's normais com valores selecionados de μ e σ^2 :

FDA normal

A FDA normal de X é dada por

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^{2}} dt$$

Alguns resultados úteis relativos à curva normal são apresentados abaixo:

Ou seja, para qualquer variável aleatória normal X,

$$P(\mu - \sigma < X < \mu + \sigma) = 0,6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) = 0,9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = 0,9973$$

Além disso, $P(X < \mu) = P(X > \mu) = 0, 5.$

Exemplo 1 - (Adaptado de [Montgomery e Runger(2016)])

Suponha que as medidas da corrente em um pedaço de fio sigam a distribuição normal, com uma média de 15 miliampéres e uma variância de 9 (miliampres)². Qual é a probabilidade da medida exceder 17 miliampéres?

Seja X a corrente em miliampéres. Logo, a probabilidade requerida é dada por P(X>17) e é mostrada como a área sombreada sob a fdp normal da figura abaixo:

$$P(X > 17) = \int_{17}^{\infty} f(x)dx = \int_{17}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

Infelizmente, não há uma expressão exata para a integral de uma fdp

Alternativamente, a probabilidade requerida anteriormente pode ser expressa em termos da FDA de X da seguinte maneira:

$$P(X > 17) = 1 - P(X \le 17) = 1 - F(17) = 1 - \int_{-\infty}^{17} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2} dt$$

Também é impossível avaliar essa integral sem se recorrer a métodos numéricos e mesmo assim, a avaliação teria de ser feita para cada par $(\mu, \sigma^2)!$

Nos próximos slides serão apresentadas maneiras de se calcular probabilidades normais.

Variável aleatória normal padrão

Uma variável aleatória normal com $\mu = 0 \ e \ \sigma^2 = 1$ e com fdp

$$\varphi(z) = f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z)^2}, -\infty < z < \infty.$$

é chamada de VA normal padrão e é denotada por $Z \sim N(0, 1^2)$.

A FDA de uma variável aleatória normal padrão é denotada por

$$\Phi(z) = F(z) = P(Z \le z)$$

A figura abaixo ilustra o cálculo de FDA's normais:

	$\Phi(z) = P(\mathbf{Z} \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u)^2} du$				
)	z	0.00	0.01	0.02	0.03
	0	0.50000	0.50399	0.50398	0.51197
	:		:		
	1.5	0.93319	0.93448	0.93574	0.93699

Fonte: Adaptado de [Montgomery e Runger(2016)], p.9

Exemplo 2 - [Montgomery e Runger(2016)]

Para a variável aleatória normal padrão em cada item a seguir, calcule a probabilidade requerida.

a)
$$P(Z > 1, 26)$$

b)
$$P(Z < -0.86)$$

c)
$$P(Z > -1, 37)$$

d)
$$P(-1, 25 < Z < 0, 37)$$

e)
$$P(Z < -4, 6)$$

d) Encontre o valor de z tal que P(Z > z) = 0,05

e) Encontre o valor de z tal que P(-z < Z < z) = 0,99

f) P(Z > 7)

Observação

Os exemplos precedentes mostram como calcular as probabilidades para as variáveis aleatórias normais padrões, isto é, para $Z \sim N(0,\ 1^2)$.

No entanto, usar a mesma abordagem para um variável aleatória normal arbitrária necessitaria uma tabela em separado para cada par possível de valores de μ e σ !

Felizmente, uma simples transformação numa VAC X normal, faz com que os cálculos sejam independentes de μ e σ . Essa idéia é explicitada a seguir:

Padronizando uma variável aleatória normal

Se X é uma variável aleatória normal com $E(X) = \mu$ e $V(X) = \sigma^2$, então a variável aleatória

$$Z = \frac{X - \mu}{\sigma}$$

é uma variável aleatória normal, com E(Z)=0 e V(Z)=1. Ou seja, Z é uma variável aleatória normal padrão.

Ao fazer essa transformação em X, dizemos que estamos padronizando X.

A partir da padronização da variável aleatória X, podemos escrever e calcular a FDA de X como a seguir:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx =$$

$$P(X \le x) = P(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}) =$$

$$P(Z \le z) = \Phi(z) = \int_{-\infty}^{z} \varphi(z) dz =$$

$$\int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z)^{2}} dz =$$

$$\int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} dx =$$

$$\Phi(\frac{x-\mu}{\sigma})$$

Exemplo 3

Suponha que $X \sim N(100, 2^2)$. Calcule $P(X \le 104)$.

Observação

Note que na relação $z=\frac{x-\mu}{\sigma},$ a variável z mede o afastamento de x em relação à média $\mu,$ em unidades de desvio padrão.

Por exemplo, calculamos acima que $F(104)=\Phi(+2)$. Logo, x=104 está dois desvios-padrão acima da média, sendo neste exemplo $\sigma=2$. Em geral,

$$x = \mu + \sigma z$$
.

Exemplo 4 - [Hines e outros(2006)]

A força de ruptura (em Newtons) de uma tela sintética é denotada por X e tem distribuição $N(800,\ 144).$

O comprador da tela exige que ela tenha uma força de, pelo menos, 772 N. Uma amostra da tela é selecionada aleatoriamente e testada. Qual é a probabilidade de atender as exigências?

Exemplo 5 - [Hines e outros(2006)]

O diâmetro primitivo da rosca em uma conexão é $X\sim N(0,4008~cm~0,0004^2~cm^2)$. As especificações do projeto são $0,4000\pm0,0010~cm$.

Desejamos determinar que fração do produtos que está dentro da tolerância.

Continuação do exemplo 5

Quando os engenheiros do processo estudam os resultados de tais cálculos, decidem substituir uma ferramenta de corte usada e ajustar a máquina que produz as conexões, de modo que a nova média cai diretamente para o valor nominal de 0,4000.

Determine a nova fração do produtos que está dentro da tolerância.

Propriedade Reprodutiva da Distribuição Normal

Teorema: Sejam X_1, X_2, \ldots, X_n variáveis aleatórias independentes onde $X_i \sim N(\mu_i, \sigma_i^2)$ para $i = 1, 2, \ldots, n$ e sejam a_0, a_1, \ldots, a_n contantes reais.

Seja a VA Y uma combinação linear das variáveis aleatórias normais X_1, X_2, \dots, X_n . Isto é,

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \ldots + a_n X_n.$$

Então, a VA Y tem distribuição normal com média e variâncias dadas por

$$\mu_y = a_0 + a_1\mu_1 + a_2\mu_2 + a_3\mu_3 + \ldots + a_n\mu_n = a_0 + \sum_{i=1}^n a_i\mu_i$$

$$\frac{\sigma^2 - a^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2 - \sqrt{\alpha^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2}}{\text{Métodos Estocásticos da Engenharia}} = \frac{\sqrt{\alpha^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2}}{\sqrt{\alpha^2\sigma^2 + a^2\sigma^2 + a^2\sigma^2}}$$

Teorema do Limite Central - enunciado 1

Se uma VA Y puder ser descrita como a soma de quaisquer outras n variáveis aleatórias independentes X_1, X_2, \ldots, X_n , cada uma com pequena contribuição para o valor de Y, então para n suficientemente grande, essa soma Y terá distribuição normal. Ou seja,

Se X_1, X_2, \dots, X_n são variáveis aleatória independentes, cada uma com

$$E(X_i) = \mu_i \ e \ \sigma^2(X_i) = \sigma_i^2,$$

então para $n \to \infty$, a soma

$$Y = X_1 + X_2 + \ldots + X_n$$

tem distribuição normal, isto é $Y \sim N(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2)$.

Exemplo 6 - [Morabito(2002)]

São fabricadas peças sem defeito com probabilidade p=0,95. Qual a probabilidade de termos no mínimo 80 peças sem defeito em um lote de 100 peças?

2024/1

Exemplo 7 - [Morabito(2002)]

5000 peças são embaladas em caixas. Os pesos das peças são variáveis aleatórias independentes, com $\mu_i = 0,5$ libra e $\sigma = 0,10$ libra. Calcule a probabilidade de que as peças na caixa excederão 2510 libras.

Distribuição Lognormal

Introdução

Variáveis em um sistema seguem, algumas vezes, uma relação exponencial como $x=e^w$.

Se o expoente for uma variável aleatória, isto é W, então $X=e^W$ será uma variável aleatória e está-se interessado na distribuição de X.

Um importante caso especial ocorre quando W tem uma distribuição normal. Nesse caso, a distribuição de X é chamada de Distribuição Lognormal.

O nome é proveniente da transformação

$$ln(X) = ln(e^W) = W, com X > 0.$$

Ou seja, o logaritmo natural de X é normalmente distribuído.

Suponha que W seja normalmente distribuída, com média μ e variância σ^2 . Então, a FDA para X é dada por

$$F(x) = P(X \le x) = P(e^W \le x) = P(W \le \ln(x)) =$$

$$P(Z \le \frac{\ln(x) - \mu}{\sigma}) = \Phi(\frac{\ln(x) - \mu}{\sigma})$$

$$\text{com } x > 0, \ Z \sim N(0, 1^2) \text{ e } F(x) = 0 \text{ para } x \le 0.$$

Portanto, seja $W \sim N(\mu, \sigma^2)$. Então, $X = e^W$ é uma variável aleatória lognormal com fdp

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{\ln(x)-\mu}{\sigma})^2}, \ \ 0 < x < \infty.$$

Atenção:

 μ e σ se referem à variável aleatória W.

Notação

$$X = e^W \sim LN(\mu, \sigma^2)$$

Média e variância

(a)
$$E(X) = e^{\mu + \frac{\sigma^2}{2}}$$

(b)
$$Var(X) = e^{(2\mu + \sigma^2)}(e^{\sigma^2} - 1)$$

A figura abaixo ilustra distribuições lognormais para valores selecionados dos parâmetros:

Exemplo - [Montgomery e Runger(2016)]

O tempo de vida de um laser semicondutor tem uma distribuição lognormal, com $\mu=10$ horas e $\sigma=1,5$ hora.

• Qual é a probabilidade do tempo de vida exceder 10.000 horas?

Qual o tempo de vida que é excedido por 99% dos lasers?

3 Determine a média do tempo de vida.

Distribuição Logística

Essa distribuição é indicada para variáveis que tenham distribuições simétricas, porém com caudas mais pesadas do que a distribuição normal.

A fdp de X é dada por:

$$f(x) = \frac{e^{-\left(\frac{x-\xi}{\theta}\right)}}{\theta \left[1 + e^{-\left(\frac{x-\xi}{\theta}\right)}\right]^2}, -\infty < x < \infty, -\infty < \xi < \infty, \theta > 0$$

Métodos Estocásticos da Engenharia

Notação

 $X \sim Log(\xi, \theta)$

A FDA é dada por:

$$F(x) = \frac{1}{1 + e^{-\left(\frac{x-\xi}{\theta}\right)}}$$

Média e Variância

- (a) $E(X) = \xi$ (b) $Var(X) = \frac{\pi^2 \theta^2}{3}$,

A figura abaixo ilustra distribuições Logística para valores selecionados dos parâmetros ξ e θ :

Observe que:

- A distribuição é simétrica em torno de ξ ;
- A distribuição tem caudas mais pesadas que a distribuição normal.

Considere que o tempo necessário para se concluir um determinado projeto de engenharia possa ser modelado através de uma distribuição Logística, com parâmetros $\xi=400$ horas e $\theta=36$. Determine a probabilidade desse projeto ultrapassar o deadline de 500 horas.

Distribuição Loglogística (ou de Fisk)

Essa distribuição surge quando se toma o logaritmo natural de uma variável com distribuição Logística. Isto é, se a variável W tem uma distribuição Logística com fdp igual a f(w), então a variável X = ln(w) tem uma distribuição Loglogística com a seguinte fdp:

$$f(x) = \frac{1}{\theta(x-\lambda)} \frac{e^{-\left(\frac{\ln(x-\lambda)-\xi}{\theta}\right)}}{\left[1 + e^{-\left(\frac{\ln(x-\lambda)-\xi}{\theta}\right)}\right]^2}, \ x > \lambda, \ \theta > 0$$

A distribuição loglogística é utilizada, por exemplo, em modelos de crescimento e para modelar respostas binárias em aplicações de bioestatística e economia.

Notação

 $X \sim Loglog(\xi, \theta, \lambda)$

A FDA é dada por:

$$F(x) = \frac{1}{1 + e^{-\left(\frac{\ln(x - \lambda) - \xi}{\theta}\right)}}$$

Média e Variância

(a)
$$E(X) = e^{(\xi)}\Gamma(1+\theta)\Gamma(1-\theta) + \lambda$$
, $\theta < 1$

(b)
$$Var(X) = e^{(2\xi)} \left[\Gamma(1+2\theta)\Gamma(1-2\theta) - \Gamma^2(1+\theta)\Gamma^2(1-\theta) \right], \theta < 1/2$$

A figura abaixo ilustra distribuições Loglogísticas para valores selecionados dos parâmetros $\xi,\,\theta$ e λ :

Um determinada carteira de investimentos financeiros possui retornos percentuais modelados segundo uma distribuição Loglogística, com parâmetros $\xi=0,\,\theta=0,4$ e $\lambda=0,7$. Determine o rendimento médio e o desvio-padrão para essa carteira.

Distribuição de Pareto Contínua

A distribuição de Pareto Contínua é útil para modelar variáveis aleatórias que apresentam o comportamento de caudas pesadas (heavy tails), isto é, para situações onde a grande maioria dos dados fica numa faixa estreita de variação e uma proporção não desprezível tem valores ordens de grandeza maior que o valor esperado da variável.

São exemplos dessas variáveis: distribuição de renda, perdas em alguns tipos de suguros, atrasos em transmissão de dados na internet, entre outras.

Uma variável X possui Ditribuição de Pareto Contínua, com parâmetros $x_0 > 0$ e $\alpha > 0$, se sua fdp é dada por:

$$f(x) = \begin{cases} \alpha x_0^{\alpha} \frac{1}{x^{(\alpha+1)}}, & x_0 > 0, \ \alpha > 0, \ x \ge x_0 \\ 0, & \text{caso contrário} \end{cases}$$

Notação

 $X \sim Pareto(\alpha, x_0)$

Função de Distribuição Acumulada

$$F(x) = \begin{cases} 1 - \left(\frac{x_0}{x}\right)^{\alpha}, & \text{se } x \ge x_0 \\ 0, & \text{se } x < x_0 \end{cases}$$

Métodos Estocásticos da Engenharia

80 / 103

Média e Variância

$$E(x) = \begin{cases} \frac{\alpha}{\alpha - 1} x_0, & \text{se } \alpha > 1\\ \infty, & \text{se } 0 < \alpha \le 1 \end{cases}$$

$$Var(x) = \begin{cases} \frac{\alpha}{(\alpha - 1)^2(\alpha - 2)} x_0^2, & \text{se } \alpha > 2\\ \infty, & \text{se } 0 < \alpha \le 2 \end{cases}$$

A figura abaixo ilustra distribuições de Pareto para valores selecionados dos parâmetros x_0 e α :

Suponha que a renda de uma determinada população possa ser modelada por uma distribuição de Pareto Contínua, com parâmetros $\alpha=1,5$ e $x_0={\rm R\$}$ 500. Determine:

- A probabilidade de se obter rendas maiores que R\$ 15 mil;
- A renda média dessa população;
- O percentual de rendas menores que a média.

Distribuição Beta

A distribuição Beta é utilizada para representar variáveis limitadas a um intervalo [a,b].

São exemplos dessas variáveis: proporção de salários pagos em relação ao custo total de uma empresa; razão entre o comprimento do ante-braço e o braço; a proporção requerida por uma atividade específica em relação ao tempo máximo de um determinado projeto; entre outras. Observe que, nestes casos, as variáveis assumem valores no intervalo contínuo [0,1].

Uma variável $X \in [a, b]$ possui distribuição Beta, com parâmetros $\alpha > 0$ e $\beta > 0$, se sua fdp é dada por:

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{(x-a)^{\alpha-1}(b-x)^{\beta-1}}{(b-a)^{\alpha+\beta-1}}, & a \le x \le b, \ \alpha > 0, \ \beta > 0\\ 0, & \text{caso contrário} \end{cases}$$

Notação

 $X \sim beta(\alpha, \beta)$

Média e Variância

Para o caso onde $X \in [0, 1]$, temos:

$$E(x) = \frac{\alpha}{\alpha + \beta}$$

$$Var(x) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}.$$

A distribuição Beta não possui uma fórmula fechada para F(X), necessitando ser definida através de métodos numéricos.

A figura abaixo ilustra distribuições Beta para valores selecionados dos parâmetros α e β :

Observe que:

- Quando $\alpha = \beta = 1$, a função Beta se reduz ao caso da distribuição contínua Uniforme;
- Quando $\alpha = \beta$, a função é simétrica ao redor de 1/2, aumentando a probabilidade ao redor desse valor à medida que a(=b) cresce;
- Quando α < β, a função é assimétrica à direita;
- lacktriangle Quando $\alpha > \beta$, a função é assimétrica à esquerda.

Exemplo - Adaptado de [Montgomery e Runger(2016)]

Considere o tempo para completar uma certa etapa de um projeto urbano. A razão desse tempo em relação ao tempo total do projeto pode ser modelada por uma distribuição Beta, com parâmetros $\alpha=2,5$ e $\beta=1$. Qual é a probabilidade dessa razão exceder 0,7?

Distribuição de Cauchy (ou Lorentz)

Muitas vezes, é útil analisar a razão entre duas variáveis normais padrão e independentes entre si. O resultado dessa razão fica bem modelado por uma distribuição de Cauchy-Lorentz, nome dado em homenagem aos pesquisadores Augustin-Louis Cauchy e Hendrik Lorentz.

Uma variável X tem distribuição de Cauchy com parâmetros α (localização) e β (escala) se sua fdp é dada por

$$f(x) = \begin{cases} \frac{1}{\pi\beta \left[1 + \left(\frac{x - \alpha}{\beta}\right)^2\right]}, & -\infty < x < \infty, \ -\infty < \alpha < \infty, \ \beta > 0 \\ 0, & \text{caso contrário} \end{cases}$$

2024/1

Notação

$$X \sim Cauchy(\alpha, \beta)$$

A FDA de X é dada por:

$$F(x) = \left\{ \begin{array}{l} \frac{1}{2} + \frac{1}{\pi} arctan\left(\frac{x-\alpha}{\beta}\right), & -\infty < x < \infty, \ -\infty < \alpha < \infty, \ \beta > 0 \\ 0, & \text{caso contrário} \end{array} \right.$$

Média e Variância

A distribuição de Cauchy pode ser considerada uma distribuição patológica, pois ela não apresenta nem média e nem variância.

A figura abaixo ilustra distribuições de Cauchy para valores selecionados dos parâmetros α e β :

Observe que: a distribuição de Cauchy, assim como no caso da distribuição Normal, também é representada por uma curva em forma de sino. No entanto, no caso da distribuição de Cauchy, as caudas se aproximam de zero mais lentamente.

Seja considerar que a razão entre o comprimento e o diâmetro de determina peça metálica possa ser modelada por uma distribuição de Cauchy, com parâmetros $\alpha=10$ e $\beta=1$. Determine a probabilidade dessa razão estar compreendida entre 7 e 8.

Distribuição de Laplace (ou Exponencial Dupla)

Pode ser utilizada quando a distribuição dos dados tiver mais picos do que a distribuição normal. Exemplos de aplicação são mais comuns em biologia e finanças.

A fdp de X é dada por:

$$f(x) = \frac{1}{2b} e^{-\left(\frac{|x-a|}{b}\right)}, -\infty < x < \infty, -\infty < a < \infty, b > 0$$

A distribuição Laplace também é conhecida como a distribuição exponencial dupla, porque é composta por duas distribuições exponenciais, uma positiva e outra negativa.

Notação

 $X \sim Laplace(a, b)$

A FDA de X é dada por:

$$F(x) = \begin{cases} \frac{1}{2}e^{\left(\frac{x-a}{b}\right)}, & x \le a\\ 1 - \frac{1}{2}e^{-\left(\frac{x-a}{b}\right)}, & x > a \end{cases}$$

Média e Variância

- (a) E(X) = a
- (b) $Var(X) = 2b^2$

A figura abaixo ilustra distribuições de Laplace para valores selecionados dos parâmetros a e b:

Observe que: a distribuição de Laplace apresenta curtose maior que 0 (leptocúrtica).

Considere que o retorno financeiro de dado investimento possa ser modelado de acordo com um distribuição de Laplace, com parâmetros a=R\$ 1 milhão e b=1. Calcule a probabilidade do retorno ser superior a R\$ 1 milhão.

Distribuição de Gompertz

Essa distribuição é muito indicada para modelar o tempo de vida a partir dos 22 anos, possuindo importantes aplicações no mercado de seguros.

Sua fdp é dada por:

$$f(x) = bc^x e^{-\left[\frac{b(c^x - 1)}{\log(c)}\right]}, \ x > 0, \ b > 0 \ e \ c > 1$$

O parâmetro b possui um valor típico em torno de $1,02\times 10^{-4}$. Já para c, um valor usual é 1,09.

Métodos Estocásticos da Engenharia

Notação

 $X \sim Gompertz(b, c)$

A FDA é dada por:

$$F(x) = 1 - e^{\left[\frac{-b(c^x - 1)}{\log(c)}\right]}$$

A figura abaixo ilustra a distribuição de Gompertz para os parâmetros $b=1,02\times 10^{-4}$ e c=1,09:

Considere que uma seguradora esteja utilizando a distribuição de Gompertz para modelar o tempo de vida de seus clientes. Para isso, ela definiu os seguintes valores de parâmetros: $b=1,02\times10^{-4}$ e c=1,09. Calcule a probabilidade de um indivíduo qualquer dessa população, apresentar tempo de vida inferior a 40 anos.

Distribuição Triangular

É indicada para descrever uma variável com amostra limitada.

Exemplos de aplicação são mais comuns quando se modela o risco de um negócio e processos estocásticos. Por exemplo, amostrar custos de produção de um nova aeronave é difícil. No entanto, é possível estimar os custos mínimos, máximos, e mais prováveis (moda) de produção.

A fdp é dada por:

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & a \le x \le c\\ \frac{2(b-x)}{(b-a)(b-c)}, & c \le x \le b, \end{cases}$$

onde a é o valor mínimo, c é a moda e b é o valor máximo.

Notação

$$X \sim \triangle(a, c, b)$$

A FDA é dada por:

$$F(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)}, & a \le x \le c\\ 1 - \frac{(b-x)^2}{(b-a)(b-c)}, & c < x \le b, \end{cases}$$

Média e Variância

(a)
$$E(X) = \frac{1}{3}(a+b+c)$$

(b)
$$Var(X) = \frac{1}{18}(a^2 + b^2 + c^2 - ab - ac - bc)$$

A figura abaixo ilustra a distribuição Triangular para valores diferentes dos parâmetros $a,\,b$ e c:

Considere que os custos de armazenagem para certo item possam ser modelados através de uma distribuição Triangular, com valor mínimo de R\$ 1.000, máximo de R\$ 1.500 e moda de R\$ 1.200. Calcule a probabilidade desse custo estar comprrendido entre R\$ 1.100 e R\$ 1.300.

- Cancho, V., 2010. Notas de aulas sobre noções de estatística e probabilidade São Paulo: USP.
- Hines, W., outros, 2006. Probabilidade e Estatística na Engenharia. Rio de Janeiro: LTC.
- Montgomery, D., Runger, G., 2016. Estatística Aplicada e Probabilidade para Engenheiros. Rio de Janeiro: LTC.
- Morabito, R., 2002. Modelos Probabilísticos Aplicados à Engenharia de Produção. São Carlos: Edufscar.

