CS7800: Advanced Algorithms

Dynamic Programming II:

- Knapsacks
- Shortest Paths
- (Gersymandering)

Jonathan Ullman 09-23-2027

The Knapsack Problem

Input: n items with values v; and weights w; and a capacity C

Output: A subset $S \subseteq \{1,...,n\}$ of items to put in the knapsack that satisfies $\sum_{i \in S} w_i \leq C$ and has maximum value $\sum_{i \in S} v_i$

v=6

Writing a Recurrence: Take I

Let OPT(i) be the optimal value using only items 1,2,...,i (for i=0,1,...,n)

Writing a Recurrence: Take II

Let OPT(i,t) to be the value of the optimal solution with items 1,2,-..., and capacity t

(for i = 0,1,...,n and t = 0,1,...,C)

assume weights
are integers >0

Case 1: i not in the opt solution

Case 2: is in the optimal solution

OPT
$$(i,t) = OPT(i-1,t)$$

OPT $(i,t) = v_i + OPT(i-1,t-\omega_i)$

OPT $(i, t) = \max \{ OPT(i-1, t), v_i + OPT(i-1, t-u_i) \}$ OPT (0, t) = 0 OPT(i, 0) = 0 OPT $(i, -) = -\infty$

Example

Running Time Analysis

#of subproblems = (n+1)(C+1) = O(nC) time per subproblem = O(1)

O(nC)
Compare to trying
all subjects, time O(2n)
Compare when there are multiple posameters

3 C Wi This alg is not really a poly time algorithm.

2nt1 miegers

Shortest Paths

and a pair of nodes tev

Output: A path from s to t of minimum total length [For every st V)

Structure of Shortest Paths

Uriting a Recorrence: Take I

Uriting a Recorrence: Take I

Writing a Recurrence: Take II

OPT (u, i) to be the length of the shortest $u \rightarrow t$ posh using at most i hops (for $u \in V$ and i = 0,1,...,n-1)

OPT
$$(u,i) = min$$

$$v: u \rightarrow v \in E$$

$$OPT(t,i) = 0$$

$$OPT(u,o) = \infty$$

$$u \neq t$$

Example

node v	a	م	c	d	e	4
OPT (v, 0)	8	8	8	8	8	0
OPT (v, 1)	m	8	3			
OPT (u, 2)				3		
•						