An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

Research Ideas

An Introduction to Latent Feature Model

Jiguang Li

Center for Applied Artificial Intelligence

Oct 28th, 2021

Motivation

An Introduction to Latent Feature Model

Jiguang Li

Motivations

A Finite Feature Model

Infinite Feature Model

reacure Mode

Assume we have N observations $\{x_1, \dots, x_N\}$, such that each $x_i \in R^d$. In finite mixture model, we assume each observation belongs to a **single** latent class c_i :

Let the mixture weights be θ and suppose there are K classes, the data likelihood is $P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} P(x_i|c_i = k)\theta_k$

Figure: Two Cluster Mixture

Motivation

An Introduction to Latent Feature Model

Jiguang Li

Motivations

A Finite ^Feature Model

Feature Model

reature ivioue

Assume we have N observations $\{x_1, \dots, x_N\}$, such that each $x_i \in R^d$. In finite mixture model, we assume each observation belongs to a **single** latent class c_i :

Let the mixture weights be θ and suppose there are K classes, the data likelihood is

$$P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} P(x_i|c_i = k)\theta_k$$

Figure: Two Cluster Mixture

Problem: what if each observation x_i can be generated by more than one latent class?

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Mode

Research Idea

Suppose there are N objects and K features, and the features are generated independently.

■ Each object *i* has some latent feature values, let

$$F = [f_1^T, \cdots, f_n^T]^T$$

An Introduction to Latent Feature Model

Jiguang L

Motivation

A Finite Feature Model

Infinite Feature Model

Suppose there are N objects and K features, and the features are generated independently.

- Each object *i* has some latent feature values, let $F = [f_1^T, \dots, f_n^T]^T$
- Data is generated from these latent features: P(X|F)

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

Suppose there are N objects and K features, and the features are generated independently.

- Each object *i* has some latent feature values, let $F = [f_1^T, \dots, f_n^T]^T$
- Data is generated from these latent features: P(X|F)
- let Z be an N by K matrix such that $Z_{ik} = 1$ if object i possess feature k.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

Suppose there are N objects and K features, and the features are generated independently.

- Each object *i* has some latent feature values, let $F = [f_1^T, \dots, f_n^T]^T$
- Data is generated from these latent features: P(X|F)
- let Z be an N by K matrix such that $Z_{ik} = 1$ if object i possess feature k.
- $F = Z \otimes V$, where V is the value of each feature for each object.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Mode

Research Idea

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Mode

Research Ideas

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F=Z \otimes V$. How to specify the prior for Z?

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

catare mode

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$. How to specify the prior for Z?

■ Assume each object possess feature k with probability π_k .

An Introduction to Latent Feature Model

Jiguang L

Motivation

A Finite Feature Model

Infinite Feature Model

Research Idea

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$. How to specify the prior for Z?

- Assume each object possess feature k with probability π_k .
- $P(Z|\pi) = \prod_{k=1}^K \prod_{i=1}^N P(Z_{ik}|\pi_k) = \prod_{k=1}^K \pi_k^{m_k} (1-\pi_k)^{N-m_k}$

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

Research Idea

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$. How to specify the prior for Z?

- Assume each object possess feature k with probability π_k .
- $P(Z|\pi) = \prod_{k=1}^K \prod_{i=1}^N P(Z_{ik}|\pi_k) = \prod_{k=1}^K \pi_k^{m_k} (1-\pi_k)^{N-m_k}$
- Usually, we assume $\pi_k \sim Beta(r, s)$, such that

$$P(\pi_k) = \frac{\pi_k^{r-1} (1 - \pi_k)^{s-1}}{B(r,s)}$$

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

Research Idea

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$. How to specify the prior for Z?

- Assume each object possess feature k with probability π_k .
- $P(Z|\pi) = \prod_{k=1}^K \prod_{i=1}^N P(Z_{ik}|\pi_k) = \prod_{k=1}^K \pi_k^{m_k} (1-\pi_k)^{N-m_k}$
- Usually, we assume $\pi_k \sim Beta(r,s)$, such that

$$P(\pi_k) = \frac{\pi_k^{r-1} (1 - \pi_k)^{s-1}}{B(r,s)}$$

■
$$B(r,s) = \int_0^1 \pi_k^{r-1} (1-\pi_k)^{s-1} d\pi_k = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$$

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

Secretaria I de c

In Bayesian Inference, we are interested in the posterior $P(F|X) \propto P(X|F)P(F)$, where $F = Z \otimes V$. How to specify the prior for Z?

- Assume each object possess feature k with probability π_k .
- $P(Z|\pi) = \prod_{k=1}^K \prod_{i=1}^N P(Z_{ik}|\pi_k) = \prod_{k=1}^K \pi_k^{m_k} (1-\pi_k)^{N-m_k}$
- Usually, we assume $\pi_k \sim Beta(r,s)$, such that

$$P(\pi_k) = \frac{\pi_k^{r-1} (1 - \pi_k)^{s-1}}{B(r,s)}$$

■
$$B(r,s) = \int_0^1 \pi_k^{r-1} (1-\pi_k)^{s-1} d\pi_k = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$$

$$r = \frac{\alpha}{K}, s = 1 \implies B(r, s) = \frac{\Gamma(\frac{\alpha}{K})}{\Gamma(1 + \frac{\alpha}{K})} = \frac{K}{\alpha}$$

$$(\Gamma(X) = (X - 1)\Gamma(X - 1))$$

Finite Feature Model: Distribution of Z

An Introduction to Latent Feature Model

Jiguang Li

Motivations

A Finite Feature Model

infinite Feature Mode

Dansaugh Idaa

 $P(Z) = \prod_{i=1}^{\kappa} \int (\prod_{i=1}^{N} P(Z_{ik}|\pi_k)) P(\pi_k) d\pi_k$ $=\prod^{K}\int\prod^{N}\pi_{k}^{m_{k}}(1-\pi_{k})^{N-m_{k}}P(\pi_{k})d\pi_{k}$ $= \prod_{k=1}^{K} \frac{\int \prod_{i=1}^{N} \pi_k^{m_k} (1 - \pi_k^{N-mk}) \pi_k^{\alpha/K-1}}{R(\frac{\alpha}{k}, 1)} d\pi_k$ (1) $= \prod_{k=1}^{K} \frac{B(m_k + \alpha/K, N - m_k + 1)}{B(\alpha/K, 1)}$

 $= \prod^{\kappa} \frac{\alpha/K \cdot \Gamma(m_k + \alpha/K)\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$

Recall we have defined prior for $\pi_k \sim Beta(\frac{\alpha}{K}, 1)$ and $P(Z|\pi)$:

Finite Feature Model: α controls Sparsity

An Introduction to Latent Feature Model

Jiguang Li

Motivation:

A Finite Feature Model

Infinite Feature Mode

The expectation of the number of non-zero entries in the matrix has an upper bound that is independent of K!

$$E[\sum_{i,k} Z_{i,k}] = E[\mathbb{1}^T Z \mathbb{1}] = KE[\mathbb{1}^T Z_1]$$

$$= K \sum_{i=1}^N \int_0^1 \pi_k P(\pi_k) d\pi_k$$

$$= KN \frac{\alpha/k}{1 + \alpha/K}$$

$$= \frac{N\alpha}{1 + \alpha/K} \le N\alpha$$
(2)

Infinite Feature Model

An Introduction to Latent Feature Model

Infinite Feature Model

Motivation: what if we don't know the number of latent features? Can be define a distribution of binary matrix Z which has N rows but infinite columns?

Infinite Feature Model

An Introduction to Latent Feature Model

Infinite Feature Model

Motivation: what if we don't know the number of latent features? Can be define a distribution of binary matrix Z which has N rows but infinite columns?

Naive Approach: recall in the finite case, we have shown

$$P(Z) = \prod_{k=1}^{K} \frac{\alpha/K \cdot \Gamma(m_k + \alpha/K)\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$$

What if we let $K \to \infty$?

Equivalence Classes

An Introduction to Latent Feature Model

Jiguang Li

Motivation

A Finite

Infinite

Feature Model

Research Ideas

lacksquare lof(\cdot): map binary matrices to left-ordered binary matrices.

Equivalence Classes

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

- $lof(\cdot)$: map binary matrices to left-ordered binary matrices.
- lof(Z) is obtained by reordering the columns of the binary matrix Z from left to right by the magnitude of the binary number expressed by the column:
- \blacksquare [Z]: set of binary matrices that are lof-equivalent to Z

Figure: Visualization of lof operation

Equivalence Classes

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

- $lof(\cdot)$: map binary matrices to left-ordered binary matrices.
- lof(Z) is obtained by reordering the columns of the binary matrix Z from left to right by the magnitude of the binary number expressed by the column:
- \blacksquare [Z]: set of binary matrices that are lof-equivalent to Z

Figure: Visualization of lof operation

More on Equivalence Classes

An Introduction to Latent Feature Model

Jiguang Li

Motivation

A Finite
Feature Mode

Infinite Feature Model

■ The **history** of feature k at object i is $(Z_{1,k}, \dots, Z_{i-1,k})$

More on Equivalence Classes

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

Research Idea

- The **history** of feature k at object i is $(Z_{1,k}, \dots, Z_{i-1,k})$
- k_h : number of features possessing the history h
- K_0 : number of features for which $m_k = 0$
- $K_+ = \sum_{h=1}^{2^N-1} k_h$: number of features for which $m_k > 0$, note $K = K_0 + K_+$

More on Equivalence Classes

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

■ The **history** of feature k at object i is $(Z_{1,k}, \dots, Z_{i-1,k})$

- \bullet k_h : number of features possessing the history h
- K_0 : number of features for which $m_k = 0$
- $K_+ = \sum_{h=1}^{2^N-1} k_h$: number of features for which $m_k > 0$, note $K = K_0 + K_+$
- Cardinality of |[Z]|:

$$|[Z]| = \frac{k!}{\prod_{h=0}^{2^{N-1}} k_n!}$$

Let's make $K \to \infty$

An Introduction to Latent Feature Model

Jiguang Li

Motivation

A Finite
Feature Mode

Infinite

Feature Model

$$P([Z]) = \sum_{z \in [Z]} P(Z)$$

$$= \frac{K!}{\prod_{h=0}^{2^{N-1}} k_n!} \prod_{k=1}^{K} \frac{\alpha/K \cdot \Gamma(m_k + \alpha/K) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$$
(3)

Let's make $K \to \infty$

An Introduction to Latent Feature Model

Jiguang Li

Motivation

A Finite Feature Model

Infinite Feature Model

$$P([Z]) = \sum_{z \in [Z]} P(Z)$$

$$= \frac{K!}{\prod_{h=0}^{2^{N-1}} k_n!} \prod_{k=1}^K \frac{\alpha/K \cdot \Gamma(m_k + \alpha/K) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$$
(3)

By 2-page of algebraic manipulations, mathematicians can show

$$\lim_{k \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2^N - 1} K_h!} e^{-\alpha H_N} \prod_{k=1}^{K^+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

, where
$$H_N = \sum_{j=1}^N \frac{1}{j}$$

An Introduction to Latent Feature Model

Jiguang Li

Motivation:

A Finite Feature Mode

Infinite Feature Model

Research Ideas

Figure: Indian Buffet Process

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Model

_

	۱	9			
	√	1			
	1		✓	√	
Ĉ.	✓		✓		✓

Figure: Indian Buffet Process

■ The first customer enters an Indian Buffet with infinitely many dishes.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

Feature Mode

Infinite Feature Model

Docoarch Idoa

Figure: Indian Buffet Process

- The first customer enters an Indian Buffet with infinitely many dishes.
- The first customer sample the first $Poisson(\alpha)$ dishes.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

Feature Mode

Infinite Feature Model

_

Figure: Indian Buffet Process

- The first customer enters an Indian Buffet with infinitely many dishes.
- The first customer sample the first $Poisson(\alpha)$ dishes.
- The nth customer helps himself to each dish with probability $\frac{m_k}{n}$, where m_k is the number of times dish k has been sampled

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Model

Figure: Indian Buffet Process

- The first customer enters an Indian Buffet with infinitely many dishes.
- The first customer sample the first $Poisson(\alpha)$ dishes.
- The nth customer helps himself to each dish with probability $\frac{m_k}{n}$, where m_k is the number of times dish k has been sampled
- The nth customer tries $poisson(\frac{\alpha}{n})$ dishes.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Mode

Research Ideas

Suppose have item response matrix X with size N by K, where N is the number of students, K is number of items, and X_{ik} represent whether student i answer question k correctly.

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

Research Ideas

Suppose have item response matrix X with size N by K, where N is the number of students, K is number of items, and X_{ik} represent whether student i answer question k correctly.

Partially Compensatory MIRT:

- Suppose this exam tests M latent abilities, hence students' latent traits $\theta_i \in \mathbb{R}^M$.
- $\alpha_k \in \mathbb{R}^M$: discrimination term, $d_k \in \mathbb{R}^M$: difficulty term.

An Introduction to Latent Feature Model

Jiguang L

iviotivations

A Finite Feature Mode

Infinite Feature Model

Research Ideas

Suppose have item response matrix X with size N by K, where N is the number of students, K is number of items, and X_{ik} represent whether student i answer question k correctly.

Partially Compensatory MIRT:

- Suppose this exam tests M latent abilities, hence students' latent traits $\theta_i \in \mathbb{R}^M$.
- $\alpha_k \in \mathbb{R}^M$: discrimination term, $d_k \in \mathbb{R}^M$: difficulty term.
- $P(X_{ik} = 1) = \prod_{m=1}^{M} \frac{1}{1 + \exp(-\alpha_k(\theta_i d_m))}$

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Model

Infinite Feature Model

Research Ideas

Suppose have item response matrix X with size N by K, where N is the number of students, K is number of items, and X_{ik} represent whether student i answer question k correctly.

Partially Compensatory MIRT:

- Suppose this exam tests M latent abilities, hence students' latent traits $\theta_i \in \mathbb{R}^M$.
- $\alpha_k \in \mathbb{R}^M$: discrimination term, $d_k \in \mathbb{R}^M$: difficulty term.

$$P(X_{ik} = 1) = \prod_{m=1}^{M} \frac{1}{1 + \exp\left(-\alpha_k(\theta_i - d_m)\right)}$$

■ Current Approach: let $c_{km} \sim Beta(2,2)$, $P(X_{ik} = 1) = \prod_{m=1}^{M} (\frac{1}{1 + \exp(-\alpha_k(\theta_i - d_m))})^{c_{km}}$

An Introduction to Latent Feature Model

Jiguang L

Motivations

A Finite Feature Model

Infinite Feature Model

Research Ideas

Suppose have item response matrix X with size N by K, where N is the number of students, K is number of items, and X_{ik} represent whether student i answer question k correctly.

Partially Compensatory MIRT:

- Suppose this exam tests M latent abilities, hence students' latent traits $\theta_i \in \mathbb{R}^M$.
- $\alpha_k \in \mathbb{R}^M$: discrimination term, $d_k \in \mathbb{R}^M$: difficulty term.

$$P(X_{ik} = 1) = \prod_{m=1}^{M} \frac{1}{1 + \exp\left(-\alpha_k(\theta_i - d_m)\right)}$$

■ Current Approach: let $c_{km} \sim Beta(2,2)$, $P(X_{ik} = 1) = \prod_{m=1}^{M} (\frac{1}{1 + \exp(-\alpha_k(\theta_i - d_m))})^{c_{km}}$

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Mode

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

- Advantages:
 - Flexible, no need for cross-validation.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

- Advantages:
 - Flexible, no need for cross-validation.
 - Allow the number of latent factors to grow over years.

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

Advantages:

- Flexible, no need for cross-validation.
- Allow the number of latent factors to grow over years.
- Incorporate education expertise? Fix some entries of latent matrix Z?

An Introduction to Latent Feature Model

Jiguang L

Motivation:

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

Advantages:

- Flexible, no need for cross-validation.
- Allow the number of latent factors to grow over years.
- Incorporate education expertise? Fix some entries of latent matrix Z?
- The learned Z matrix can be treated as a naive representation of the latent structure of knowledges.

An Introduction to Latent Feature Model

Jiguang L

Motivation

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

Advantages:

- Flexible, no need for cross-validation.
- Allow the number of latent factors to grow over years.
- Incorporate education expertise? Fix some entries of latent matrix Z?
- The learned Z matrix can be treated as a naive representation of the latent structure of knowledges.

Drawbacks:

■ High-dimensional?

An Introduction to Latent Feature Model

Jiguang Li

Motivation:

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

Advantages:

- Flexible, no need for cross-validation.
- Allow the number of latent factors to grow over years.
- Incorporate education expertise? Fix some entries of latent matrix Z?
- The learned Z matrix can be treated as a naive representation of the latent structure of knowledges.

Drawbacks:

- High-dimensional?
- Requires too many items?

An Introduction to Latent Feature Model

Jiguang Li

Motivation

A Finite Feature Mode

Infinite Feature Model

Research Ideas

We don't know the number of latent abilities, can we apply IDB prior to each column of the item response matrix X?

Advantages:

- Flexible, no need for cross-validation.
- Allow the number of latent factors to grow over years.
- Incorporate education expertise? Fix some entries of latent matrix Z?
- The learned Z matrix can be treated as a naive representation of the latent structure of knowledges.

Drawbacks:

- High-dimensional?
- Requires too many items?
- What about Hierarchical structure?

Reference

An Introduction to Latent Feature Model

Jiguang L

Motivation

A Finite Feature Mode

Infinite Feature Model

Research Ideas

- Thomas L. Griffiths, Zoubin Ghahramani (2011). The Indian Buffet Process: An Introduction and Review.
- Zoubin Ghahramani, Thomas L. Griffiths, Peter Sollich (2006). Bayesian nonparametric latent feature models