

JINJA MODERN SENIOR SECONDARY SCHOOL

Uganda Advanced Certificate of Education S5 MIDTERM TWO 2024 CHEMISTRY Paper 1

P525/1 2 hours 45 minutes

Name
Combination INSTRUCTIONS: Answer all questions in section A and six questions in section B All questions must be answered in the spaces provided
The Periodic Table, with relative atomic masses, is supplied.
Mathematical tables (3 – figure tables) are adequate or non-programmable scientific
electronic calculators may be used
Illustrate your answers with equations where applicable.
Where necessary, use the following:
Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$
Molar volume of a gas at s.t.p is 22.4 litres.
Standard temperature = $273 K$
Standard pressure = $101325 N m^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

1.	(a)	Name three types of radiation emitted by a radioactive	$(1\frac{1}{2} marks)$
	• • • • •		
	(b)	Identify the particles emitted in	
		(i) ${}^{218}_{84}Po \rightarrow {}^{214}_{82}Pb$ (1)	mark)
	••••	(i) $^{214}_{82}Pb \rightarrow ^{214}_{83}Bi$	(1 mark)
	(c)	Complete the following nuclear reaction.	(1 mark)
2.	(a)	$^{14}_{7}N + \dots \longrightarrow ^{14}_{6}C + ^{1}_{1}H$ Write the half equations for the oxidation of manganate	
••••		(i) alkaline media	(1 mark)
•••••		(ii) acidic media	(1 mark)

 $H_2 O_{2(aq)} \rightarrow 2 H^+_{(aq)} + \ O_{2(g)} + 2 e$ Write down the overall ionic equation for the reaction between hydrogen peroxide and manganate(VII) ions in acidic media. 25.00 cm³ of a solution of acidified hydrogen peroxide required 19.00 (c) of 0.02 M manganate(VII) ions for complete reaction. Calculate the cm^3 molar concentration of hydrogen peroxide in solution. $(2\frac{1}{2} marks)$ 3. Define the term enthalpy of solution. (01 mark) (a)

The half equation for the oxidation of hydrogen peroxide is

(b)

	(D)	plastic beaker the temperature fell by 10.1°C. (i) Calculate the enthalpy of solution of ammonium nitrate. [density of water = 1 g cm ⁻³ ,
		specific heat capacity of water = $4.2 J g^{-1} K^{-1}$] (03 marks)
•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	
•••••	••••••	
		(ii) How does the lattice energy of ammonium nitrate compare with its hydration energy. Give a reason for your answer. (1½ marks)
•••••	••••••	
•••••	•••••	
	•••••	
4.	(a)	Define the term first electron affinity (1 mark)
•••••	•••••	
	• • • • • • • • • • • • • • • • • • • •	
	(b)	The first and second electron affinities of oxygen are shown by the equations below
		$O_{(g)} + e^- \rightarrow O_{(g)}^- \qquad \Delta H = -142 \ kJ \ mol^{-1}$
		$O_{(a)}^{-} + e^{-} \rightarrow O_{(a)}^{2-} \qquad \Delta H = +844 \ kI \ mol^{-1}$

		(i)	Explain the difference in the observed enthalpies for second electron affinities.	(3 marks)
•••••				
5.		and-1	ies of combustion of glucose and ethanol are 368 kJ mol ⁻¹ respectively. e equation for complete combustion of;	
		(i)	glucose	(1½ marks)
		(ii)	ethanol	(1½ marks)
	(b)	Gluce	ose ferments according to the following reaction;	
	C_6H_{12}	$_{2}O_{6(s)}$	$\xrightarrow{yeast} 2C_2H_5OH_{(l)} + 2CO_{2(g)}$	
		Calcu	alate the enthalpy change for the reaction.	(1½ marks)
•••••		•••••		
		••••••		

6.	Draw the structures and name the shapes for the following species.	
		(4½ marks)

Species	Structure	Name
(i) <i>SO</i> ₂		
(ii) H_2S		
(iv) SO_4^{2-}		
(10) $3U_4$		

` ,	Explain why mert pair effect increases down group(1v) elements	(03 marks)

	(b)	Write equations for the reactions between concentrated sulphuric acid and							
		(i)	Carbon	(1 ½ marks)					
•••••	•••••	(ii)	Tin	(1 ½ marks)					
8.	(a) Calc	dioxid	pustion of $0.260g$ of compound X produced le CO ₂ , $0.180g$ of water H ₂ O at s.t.p. he empirical formula of the compound	0.880g of carbon (3 marks).					
	••••								
	••••	•••••							
	(b)	If the (2 ma	e molecular mass of \mathbf{X} is 78 what is the structure (\mathbf{X}, \mathbf{X})						
	(c)		pound X will decolourise bromine only in togs. Suggest the type of bonding present in X	-					
	• • • • •			• • • • • • • • • • • • • • • • • • • •					

		. -			low:
Metal First Ionica	tion energy (kJ mol ⁻¹)	Mg 738	Ca 590	Sr 549	Ba 505
	ints of chlorides (°C)	708	772	873	967
Explain					
-	ionization energy decre	eases with	increas	ing aton	nic number. (2 mar
			•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••		
			•••••	• • • • • • • • • •	
••••••			•••••	• • • • • • • • • •	•••••
· · · · · · · · · · · · · · · · · · ·					
	the melting points of the ase in atomic number.	e chloride	es of the	se meta	ls increase w (2 marks)
		• • • • • • • • • • • • • • • • • • • •		•••••	

SECTION B: (54 MARKS)

Answer **six** questions from this section. Additional questions answered will **not** be marked.

10. The table below shows the rates of the reaction $X + Y \longrightarrow Z$ for different initial concentrations of X and Y

experiment number	[X]/moldm ⁻³	[Y]/moldm ⁻³	relative initial rate/ moldm ⁻³ sec ⁻¹
1	0.05	0.05	2.0×10^{-5}
2	0.10	0.05	8.0×10^{-5}
3	0.10	0.10	1.6×10^{-4}

((a)	Deter	mine	
		(i)	the order of the reaction with respect to X .	(01 mark)
		(ii)	the overall order of reaction.	(02 marks)
	•••••			
	(b)	,,	Write an expression for the rate of the reaction betw	(01 mark)

	(ii)	Calculate the rate co	nstant for the reaction and s	tate its units. (02 marks)
	••••••			
(c)	How (i)	loes the rate of the re	action vary when \mathbf{X} is halved leaving that of $\hat{\mathbf{X}}$	
	(ii)	the concentration of	${f X}$ is halved and that of ${f Y}$ do	oubled? (01 mark,
	(iii)	the concentration of	both \mathbf{X} and \mathbf{Y} are halved?	(01 mark)
alpha	nbetical on, sodit In the eleme	order, aluminium arg im and sulphur. table given below, w nts listed, state the ox hydrides and classify	rd short period of the Period gon, chlorine, magnesium pharite the formula of the hydrical sidation state(or valency) of the bonding in the hydride	de formed by the the elements in
Element	S	Formula of the hydride	Oxidation state or valency of the element	Type of bonding
Aluminiu	ım		in the hydride	
Chlorine				
Magnesiu	ım			
Phosphor	rus			
Silicon				

	0)	Sodium hydride:	ace, if any. 8 marks)
	•••••	Sulphur hydride:	reaction, which took place, if any. (3 marks) pH of the resultant solution will be (1 mark)
	•••••	ii) In each case state whether the pH of the resultant solutiless than orgreater than 7.	on will be
	Gi	ve reasons for your answer.	
12.	Expla	in each of the following observations. Aluminium fluoride is purely ionic whereas aluminium bromi	de is
•••••	•••••		

	(b)	Water is a liquid at room temperature and pressure whereas hydr									
		sulphide is a gas under the same conditions.	(3 marks)								
• • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••								
•••••	• • • • • • • • • • • • • • • • • • • •		••••••								
	• • • • • • • • • • • • • • • • • • • •										
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •								
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •								
	• • • • • • • • • • • • • • • • • • • •										
	(c)	Lead forms stable compounds in which its oxidation sate is									
		carbon forms stable compounds only in the +4 oxidation sta	ate. (3 marks)								
			,								
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••								
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •								
13.	Com	plete the following equations and in each case write the accept	oted								
	mech	nanisms for the reactions									
	(a)	+ conc. H ₂ SO ₄ heat									
	()	+ conc. H ₂ SO ₄ — heat >									
			(03 marks)								
	• • • • • • • • • • • • • • • • • • • •										
• • • • • •	• • • • • • • • • • • • • • • • • • • •										
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •								
•••••	• • • • • • • • • • • •										
											

			Br_2		
	(b)	$CH_3CH = CHCH_3 -$	CCl_4	→	(3 marks)
		Mechanism			,
•••••	•••••				
••••	•••••				
• • • • • • •	•••••	••••••		•••••	
• • • • • •	••••••		•••••	•••••	•••••
•••••	•••••		•••••		•••••
	(c)	$(CH_3)_3C - Br$ -	EtŌ/EtOH	→	
	(0)	(0113)30 21	heat		
					(03 marks)
•••••	••••••		•••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••
•••••	•••••				
••••					
14.	Stud	y the table below and ar	nswer the guest	ions that follow:	
4 F.	Stud		is wer the quest	ions muchonow.	

Element	Na	Mg	Al	Si	P	S	Cl
Atomic radius	0.156	0.136	0.125	0.117	0.110	0.106	0.099
(nm)							
Melting point /°C	98	650	660	1423	44	120	-101

(a)	Define the term atomic radius .	(01 mark)
•••••		

(b)	Expl	ain the trend in ato			(02 marks)
(c)	Writ	e the formula of th			
, ,	what	t is observed when case write an equa	each of the l	nydrides is re	
Silic	con:				
(d)	(i)	Define the term			 (01 mark)
	(ii)	State two factors			

15.	prod a)	cultural lime is manufactured by heating limestone strongly a luct is allowed to cool and a calculated amount of water in ad Write the equations for the reactions that take place	ded. (2 marks)
	b)	Give one use of lime in agriculture.	(1 mark)
	c)	Explain the trend in the thermal stability of carbonates of g metals.	$(2\frac{1}{2} marks)$
•••••			
	d)	The mineral "Dolomite" has formula Ca Mg (CO ₃) ₂ . 2.5 g was reacted with excess hydrochloric acid. 230 cm ³ of ca was evolved at room temperature. i) Write the equation for the reaction. (1 mark)	
		ii) Calculate the percentage of 'Dolomite' in the sampl (2½ marks)	e.

•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	
•••••		•••••				
•••••	••••••	•••••				
16.	a)		silicon tetra chlorido cular shape	e and tetrachloro	omethane adopt t	he same
		(i)	Name the shape ac	lopted.		(01 mark)
••••	••••••	(ii)	In which of the two	o compounds is	the bond angle g	reater? (03 marks)
•••••	•••••					
	•••••	•••••				
	(b)	equa	the condition(s) of a tion for the reaction lition(s)		n tin and chlorine	e and write (2 ½ marks)
		Equa	ntion:			
		•••••				

(c)	Explain what is observed when silicon(IV) chloride is exposed to moist air. $(2 \frac{1}{2} \text{ marks})$
17. (a) and	0.208 g of an organic compound Y containing carbon, hydrogen and oxygen only on complete combustion gave 0.609 g of carbon dioxide 0.125 g of water. Calculate the empirical formula of Y . (3 marks)
(b) ethanoic	0.53 g of Y in 22 g of ethanoic acid lowered the freezing point of acid by 0.78 K. [cryoscopic constant for ethanoic acid is 39 K mol ⁻¹ per 100 g]
	Determine the molecular formula of Y . (3 marks)
•••••	

(c)		rns with a yellow sooty flame, gives a yello y's reagent but does not form a silver mirro Identify Y .	<u> </u>
	(ii)	Write equations to show how Y can be syalcohol.	nthesised from a known (2½ marks)
	•••••		
	•••••		
•••••	•••••		

PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)															
			57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

- H indicates Atomic number
- 2. H indicates relative Atomic mass 1.0

END