Organización física de archivos e índices

Sivana Hamer - sivana.hamer@ucr.ac.cr Escuela de Ciencias de la Computación Licencia: CC BY-NC-SA 4.0

Podemos guardar datos de distintas maneras

- Volatil
- Rapido
- Caro
- Poca capacidad alm.

Memoria secondaria

- No volatil
- Lenta
- Barato
- Mayor capacidad alm.

Memoria ternaria

- No volatil
- Similar a secundaria
- Medio desmontable
- Offline

Las bases de datos guardan los datos en memoria no volátil (en memoria magnetica)

Se guardan respaldos de los datos en cintas magnéticas

Se tiene la siguiente jerarquía de datos

Las bases de datos se guardan en archivos

Cada archivo se divide en unidades lógicas de longitud fijas denominadas páginas

La manera más frecuente para encontrar páginas es con el directorio de páginas

Los registros de las páginas se guardan generalmente utilizando *slotted-page structure*

Cada registro guarda una colección de items de datos de distintas columnas de una relación

Generalmente, se guardan los registros con longitud variable

Los registros pueden no ser guardados en varias páginas (unspanned)

Page
$$j+1$$
 Record 4 Record 5 Record 6

... O se pueden guardar un registro en varias páginas (spanned)

Se puede calcular para los páginas *unspanned* la cantidad de de registros que entran dentro de una página (*blocking factor*)

Se puede calcular la cantidad la cantidad de páginas *b* ocupadas para guardar *r* registros

r is the number of records to save.

La cantidad de páginas que se buscan depende el orden de

los registros

Ordenado
Busqueda binaria O(log n)

No ordenado

Búsqueda lineal avg O(n/2)

Se puede ver la información del almacenamiento físico en SQL Server

SELECT sys.fn_PhysLocFormatter(%%physloc%%) AS [File:Page:Slot], * **FROM** T;

Los DBMS utilizan estructuras auxiliares para realizar búsquedas de registros más rápidas

Existen dos tipos de estructuras auxiliares

Ordenados

Indices ordenados

Los índices son como bibliotecas, que utilizan una llave para buscar donde se encuentra un libro

Existen diversos tipos de índices ordenados

Estan los indices primarios, que crean un índice basado en una llave primaria con los datos ordenados por ella.

Estan los indices clustered, que crean un índice basado en atributos no llave, con los datos ordenados por el atributo.

Están los índices secundarios (llave) con un índice para datos que no se encuentran ordenados por la llave.

Están los índices secundarios (llave) con un índice para datos que no se encuentran ordenados por la llave.

¿Cuántos índices primarios se pueden tener?

¿Cuántos índices clustering se pueden tener?

¿Se puede tener un índice primario y clustering a la vez?

¿Cuantos índices secundarios se pueden tener?

¿Se puede tener un índice secundario cuando hay uno primario o de clustering?

Indices multinivel

Los DBMS principalmente usan B+ trees

Buscar en B+ Trees

Buscar 9

Buscar 9

Buscar 9

Algorithm 1 Searching for a record that has a search key value v as the index of a B+ Tree of order p

```
function FIND(v)
   n = tree.getRootPage();
   n.readPage();
   p = n.getNumberPointers();
   while (!n.isLeafNode()) do
       l = n.qetLarger(v);
                                           \triangleright The node n with i x_i values, get those that are v < x_i
       xi, pi = l.min(); \triangleright Finds the smallest x_i that is larger than v with the respective pointer p_i
       if (xi.isNull()) then
                                                                                               \triangleright v > x_i
          n = n.getLastPointer();
                                                                     \triangleright Gets last non-null pointer of n
       else if (v == xi) then
                                                                                               \triangleright v = x_i
          n = n.getNext(pi);
                                                                       \triangleright Gets the pointer following p_i
       else
                                                                                               \triangleright v < x_i
                                                                           n = pi;
       end if
       n.readPage();
   end while
   r = n.hasRecordWithKey(v)
   if (!r.isNull()) then
                                                             ▶ We did found a record with the value
       return n;
   else
                                                         ▶ We did not found a record with the value
       return null;
   end if
end function
```

Insertar en B+ Trees

Borrar en B+ Trees

Referencias

- R. Elmasri and S. Navathe, Fundamentals of database systems, 7th ed. Pearson, 2016, chapters 16 and 17.
- A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts,
 7th ed. New York, NY: McGraw-Hill, 2020, chapter 12, 13 and 14.
- A. Crotty and L. Ma. Lecture #3, #4, #5,#6 and #7. [Online]. Available: https://15445.courses.cs.cmu.edu/fall2021/schedule.html
- Microsoft. Sql server guides. [Online]. Available: https://docs.microsoft.com/en-us/sql/ relational-databases/sql-server-guides
- Microsoft. Database files and filegroups. [Online]. Available: https://docs.microsoft.com/en-us/sql/ relational-databases/databases/database-files-and-filegroups