MACHINE LEARNING LAB 1

David O'Leary & Cillian Smith

Our initial assumptions about difficulty

MONK-1	Easiest	Only considers three attributes, which appear to have the simplest relationships.
MONK-2	Hardest	Considers all 6 attributes.
MONK-3	Intermediate	More complex than MONK-1 but still only considers 3 attributes.

- Entropy is a measure of uncertainty
- Information about predictability of a dataset

$$Entropy(S) = -\sum_{i} p_i \log_2 p_i$$

Dataset	Entropy
MONK-1	1.0
MONK-2	0.957117428264771
MONK-3	0.9998061328047111

Entropy, being a measure of uncertainty, is maximised when a distribution is uniform (all outcome are equally likely).

For a non-uniform distribution, where some outcomes are more likely to occur, the uncertainty in the outcome is decreased, resulting in a decreased entropy.

Fair Die Unfair Die

$$Entropy = -\sum_{i} p_{i} log_{2}p_{i}$$
 $P(6) = 0.5, P(1,...,5) = 0.1$

$$= -6 \cdot \frac{1}{6} \log_2 \frac{1}{6} = -5 \cdot 0.1 \log_2 0.1 - 0.5 \cdot \log_2 0.5$$

$$= 2.58bits = 2.16bits$$

Entropy is maximised for a fair die, as the outcome is fair or completely random.

For an unfair die, there is less uncertainty about its outcome, as some result will be more likely than others.

 The average gain for each attribute was calculated for each MONK dataset.

The larger the number, the higher the information gain.

Dataset	a1	a2	аЗ	a4	а5	a6
MONK-1	0.075272556	0.00583843	0.00470757	0.0263117	0.28703075	0.00075786
MONK-2	0.003756177	0.0024585	0.00105615	0.01566425	0.01727718	0.00624762
MONK-3	0.007120868	0.29373617	0.00083111	0.00289182	0.25591172	0.00707703

 Choose the attribute with the largest value for each dataset: a5 for MONK-1 and MONK-2; a2 for MONK-3

Dataset	a1	a2	а3	a4	a5	а6
MONK-1	0.075272556	0.00583843	0.00470757	0.0263117	0.28703075	0.00075786
MONK-2	0.003756177	0.0024585	0.00105615	0.01566425	0.01727718	0.00624762
MONK-3	0.007120868	0.29373617	0.00083111	0.00289182	0.25591172	0.00707703

When information gain is maximised, entropy will be as low as possible.

What is the motivation for using information gain as a heuristic for picking an attribute for splitting?

Measures the reduction in entropy of the system after splitting.

Maximising information gain means increasing predictivity of subsets.

Subsets are now more useful for classifying new data.

Entropy reduction implies highly homogenous subsets.

$$Gain(S, A) = Entropy(S) - \sum_{k \in values(A)} \frac{|S_k|}{|S|} Entropy(S_k)$$

Initial assumptions:

MONK-1 would be the least difficult for the decision tree to learn and MONK-2 would be the most difficult.

In reality:

MONK-3 was the easiest for the decision tree to learn and MONK-2 was the hardest.

	E_{train}	E_{test}
MONK-1	0.0	0.17129629629629628
MONK-2	0.0	0.30787037037037035
MONK-3	0.0	0.05555555555555

Attributes with the best information gain for a5 for the MONK-1 dataset

Value of a ₅	Attribute with highest gain	Information gain
a ₅ = 1	N/A (as a ₅ results in True)	0.0
a ₅ = 2	a ₄	0.048892202
a ₅ = 3	a ₆	0.045108537
a ₅ = 4	a ₁	0.206290746

Using the most common function the majority classes for the subsets are shown

- Pruning is a technique used to reduce overfitting.
- In terms of bias-variance, it allows us to:
 - It reduces variance.
 - It increases bias.

It does so by removing redundant parameters that may cause deviations in the accuracy of the model.

However, over-pruning may lead to underfitting, causing an increase in the bias of the model.

The goal of pruning is to find a balance between bias and variance to attain optimal performance of the model.

Optimised values of fraction:

MONK-1: 0.6

MONK-3: 0.7

Mean Errors	0.3	0.4	0.5	0.6	0.7	0.8
MONK-1	0.2371296	0.2277777	0.2154398	0.2131018	0.2160879	0.2273611
	29629629	77777777	14814814	51851851	62962962	111111110
MONK-3	0.0937962	0.0735648	0.0695370	0.0715277	0.0609259	0.0836111
	96296296	14814814	37037037	77777777	25925925	111111111

Variance	0.3	0.4	0.5	0.6	0.7	0.8
MONK-1	0.00112518	0.00173546	0.00192611	0.0023681	0.0022059	0.00112023
	359174738	161200482	720341273	625064084	560583545	224356043
MONK-3	0.00355995	0.00229052	0.00216022	0.0020919	0.0020509	0.00275120
	656149977	138324257	536752989	824964321	969378282	027434842

THANK YOU FOR LISTENING!