Gradientenverfahren

Gradientenverfahren

Wie kann man Minima einer differenzierbaren Abbildung

 $f: \mathbb{R}^n \to \mathbb{R}$ finden?

Mehrdimensionale Differentialrechnung

Differenzierbarkeit

Gradient

Sei $f:U \to \mathbb{R}$ differenzierbare Funktion, $a \in U$ und

 $v:=\mathsf{argmax}_{||h||=1}\{\partial_h f(a)\}.$ Dann gilt

$$||\nabla f(a)||v = \nabla f(a)$$
.

Gradient

Der Gradient zeigt in die Richtung des steilsten Anstiegs.

Mehrdimensionale Differentialrechnung

Differenzierbarkeit

Beweis

Für beliebiges h gilt

$$\partial_h f(a) = df(a)h = \langle \nabla f(a), h \rangle = ||\nabla f(a)|| \cdot ||h|| \cdot \cos(\varphi)$$

wobei φ den Innenwinkel zwischen $\nabla f(a)$ und h bezeichnet. Für ||h||=1 wird somit $\partial_h f(a)$ maximal, wenn $\varphi=0$ und somit $h=\frac{\nabla f(a)}{||\nabla f(a)||}$ ist.

Extrema

Extrema

Sei $f:X\subset\mathbb{R}^n\to\mathbb{R}$ eine relle Funktion. Ein Punkt $a\in X$ heißt lokales Maximum bzw. Minimum, falls eine Umgebung U von a existiert, so dass $f(x)\leq f(a)$ bzw. $f(x)\geq f(a)$ für alle $x\in U$ gilt. Liegt einer der beiden Fälle vor, so spricht man von einem lokalen Extremum. Gilt strikt f(x)< f(a) bzw. f(x)>f(a), so nennt man das Extremum isoliert. Ist U=X so nennt man es auch globales Maximum bzw. Minimum.

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File:MaximumParaboloid.png

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File: Maximum Counterexample.png

Extrema

Extrema Mathlib

Ist $f:U\to\mathbb{R}$ differenzierbar und hat f in $a\in U$ ein lokales Extremum, so gilt

$$\frac{\partial}{\partial x_1}f(a)=\cdots=\frac{\partial}{\partial x_n}f(a)=0.$$

Sind die partiellen Ableitungen stetig, ist dies gleichbedeutend mit df(a) = 0.

Kritischer Punkt

Ein Punkt a mit df(a) = 0 wird kritischer Punkt genannt.

Extrema

Beweis

Setze $F_k(t):=f(a+te_k)$. Da f ein Extremum in a hat, hat F_k in einer hinreichend kleinen Umgebung um 0 ein Extremum. Da F_k eine Funktion einer Veränderlichen ist, gilt F'(0)=0. Da $\frac{\partial}{\partial x_k}f(a)=F'_k(0)$ folgt die Behauptung.

Gradientenverfahren

- An jedem Punkt $x_k \in \mathbb{R}^n$ zeigt der negative Gradient $d_k := -\nabla f(x_k)$ in die steilste Abstiegsrichtung.
- Für hinreichend kleines α_k folgt mit Satz über die lokale Linearisierung:

$$f(x_{k+1}) = f(x_k + \alpha_k d_k) = f(x_k) + \alpha_k df(x_k) d_k + R(\alpha_k dk)$$

- Setze $x_{k+1} = x_k + \alpha_k d_k$
- Es gilt $f(x_{k+1}) \le f(x_k)$, falls $\nabla f(x_k) \ne 0$
- Falls die folge $f(x_k)$ beschränkt ist, so ist dieser Fixpunkt x^* ein Minimum, da $\nabla f(x^*) = 0$ gelten muss.

Gradientenverfahren

Figure: Quelle: Wikipedia

Gradientenverfahren

Höhenlinien

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Funktion. Eine Kurve $\gamma: I \to \mathbb{R}^n$, auf der f konstant ist, also $f(\gamma(t)) = c$ für ein festes $c \in \mathbb{R}$ gilt, heißt Höhenlinie.

Figure: Quelle:

https://getoutside.ordnancesurvey.co.uk/guides/understanding-map-contour-lines-for-beginners/

Gradientenverfahren

Höhenlinien

Der Gradient steht senkrecht auf Höhenlinien. Dies bedeutet, dass

$$\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

gilt.

Beweis

Aus $f(\gamma(t)) = c$ folgt $\frac{d}{dt}f(\gamma(t)) = 0$. Mit der Kettenregel folgt $\frac{d}{dt}f(\gamma(t)) = df(\gamma(t)) \cdot \gamma'(t) = 0$ und damit $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$.

Backpropagation

Backpropagation

Das Gradientenverfahren angewendet auf eine Lossfunktion eines neuronalen Netzes wird als Backpropagation bezeichnet. Gegeben ist ein neuronales Netz $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^m$, und ein Datensatz $D:=\{(x_i,y_i)\}$ mit $x_i\in \mathbb{R}^n,y_i\in \mathbb{R}^m$. Finde Gewichte Omega, so dass Lossfunktion

$$L_D:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

minimal wird. Zum Beispiel

$$L_D(\omega) := \sum_{(x_i, y_i) \in D} (f(\omega, x_i) - y_i)^2$$

Backpropagation

Figure

Figure

Backpropagation

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- $k \leftarrow k + 1$

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).
- #D' = 1 stochastischer Gradientenabstieg.

Figure: Quelle: https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

Backpropagation

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D_k'}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_{\iota}}(\omega_k + \alpha d_k) = L_{D'_{\iota}}(\omega_k) + \alpha_k dL_{D'_{\iota}}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.
- $k \leftarrow k + 1$