# Econ 106

Lecture 5 Fall 2024

slides adapted from https://jhudatascience.org/tidyversecourse/dataviz.html#about-this-course-3

#### Reminders

- Lab 1 is due Sunday 11:59pm
- Poll everywhere scores are in the canvas gradebook (full credit if >50% correct)

https://pollev.com/vsovero

## #tidytuesday

Football is happening now, right?



https://x.com/jakekaupp/status/1226556813476270080?s=20

### Outline

- Visualization Background
- Introduction to ggplot2
  - Basic elements (data, aesthetics, geoms)
  - color as information

### "A picture is worth a thousand words"

- Replace (or complement) 'typical' tables of data or statistical results with figures that are more compelling and accessible.
- Two main advantages of data visualization:
  - Facilitates comparisons
  - Helps identify trends

# Why ggplot2?

Reproducibility

Part of the tidyverse

Pretty by default

Customizable



## But first, some truth about ggplot2

#### week one ....

- Full disclosure: it's not the easiest to get the hang of
- Simple visualizations are easier using base R

quality of output



time invested

### Basic Elements of a Data Visualization

- **1.** Data: the data you want to plot
- Layout: mapping variables on the plot
- **3. Data display**: how you want the data to be visualized (points, lines, bars, etc.)



### 1. Specify data

ggplot(): Creates a plot object

data specifies what data table you will use

Output: blank plot

ggplot(data = diamonds)



## 2. Specify Layout

- mapping argument specifies what should go on the x and y axes
  - x = x axis variable
  - y = y axis variable
- aes() function is required whenever you reference specific variables in your data



Output: plot with axes, no data

## 3. Specify Data Display

- requires:
  - + operator
  - geom\_point()
- Output: scatterplot



### ggplot2 functions

• ggplot(): creates a ggplot object

 aes() function is required whenever you reference specific variables in your data

geom\_XXX(): draws points/lines etc.

- +: adds components to plot
  - Modular structure

#### Scatter Plot

#### https://pollev.com/vsovero



### Data Example

We are going to work with the gender gap data:

```
jobs_gender <-
read_csv("https://raw.githubusercontent.com/rfordatascience/tidyt
uesday/master/data/2019/2019-03-05/jobs_gender.csv")</pre>
```

# tidytuesday data

#### **Data Dictionary**

jobs\_gender.csv

#### **Data Dictionary**

| variable              | class     | description                                                                       |  |
|-----------------------|-----------|-----------------------------------------------------------------------------------|--|
| year                  | integer   | Year                                                                              |  |
| occupation            | character | Specific job/career                                                               |  |
| major_category        | character | Broad category of occupation                                                      |  |
| minor_category        | character | Fine category of occupation                                                       |  |
| total_workers         | double    | Total estimated full-time workers > 16 years old                                  |  |
| workers_male          | double    | Estimated MALE full-time workers > 16 years old                                   |  |
| workers_female        | double    | Estimated FEMALE full-time workers > 16 years old                                 |  |
| percent_female        | double    | The percent of females for specific occupation                                    |  |
| total_earnings        | double    | Total estimated median earnings for full-time workers > 16 years old              |  |
| total_earnings_male   | double    | Estimated MALE median earnings for full-time workers > 16 years old               |  |
| total_earnings_female | double    | Estimated FEMALE median earnings for full-time workers > 16 years old             |  |
| wage_percent_of_male  | double    | Female wages as percent of male wages - NA for occupations with small sample size |  |

#### Exercise

Create a scatter plot with total\_earnings on the x-axis and wage\_percent\_of\_male on the y-axis

### Adjusting Plot Settings

- color: color of 1-d objects
- fill: fill color of 2-d objects
- linetype: how lines should be drawn (solid, dashed, dotted, etc.)
- shape: shape of markers in scatter plots
- size: how large objects appear
- alpha: transparency of objects (value between 0 and 1)

### Transparency

- Add argument to geom\_point()
- Reduce transparency of points
- Input: alpha = 0.1
  - 1/10 opacity
  - Range: 0-1



### Color

- Change point colors to blue
- Input: color argument

Output: blue points

Color reference chart: <a href="http://sape.inf.usi.ch/quick-reference/ggplot2/colour">http://sape.inf.usi.ch/quick-reference/ggplot2/colour</a>

#### https://pollev.com/vsovero



### Exercise: scatter plots and color

Your boss requires that all scatter plots use triangle shapes and the cornflower blue color ("cyan"). Adjust your scatter plot of total\_earnings and wage\_percent\_of\_male accordingly.



# Dplyr and ggplot

- Oftentimes you will use dplyr to create a new data frame, then plot the results using ggplot
- Remember to put in the name of the new data frame in your ggplot()

# Dplyr and ggplot

- Oftentimes you will use dplyr to create a new data frame, then plot the results using ggplot
- You can also "pipe" in the results directly into ggplot (removing the data argument inside ggplot())

#### Exercise

- Filter for occupations in computer, engineering, and science
- create a scatter plot of total\_earnings and wage\_percent\_of\_male

### Next up: Line Graphs

- Line graphs are probably the hardest graph to generate correctly (not look like a hot mess)
- To get it right, most data requires wrangling (get your data ready before ggplot) or grouping (within ggplot)

### Gapminder Data

- part of gapminder package
- For 185 countries in the world, the package provides values for life expectancy, GDP per capita, every year from 1960 to 2016.

library(dslabs)

data(gapminder)

## Fertility over Time

geom\_line()

Well, this doesn't look right. What happened?



# Fertility over Time (scatter plot)

- Displaying the data as a scatter plot can help us figure out what's going on
- There are many values of fertility for each year (one for each country)
- It doesn't make sense to draw a single line through all these points



# Fertility over Time (line for each country)

 We need to tell ggplot to create a line for each country using the group argument



Ok, but too many countries!

# Fertility over Time (line for each country)

• First, only select countries in South America, then ggplot



# Fertility over Time (line for each country)

We can use pipes to wrangle and ggplot all at once

```
gapminder %>%
filter(region=="South America") %>%
ggplot(mapping=aes(x=year, y=fertility)) +
geom_line(aes(group=country))
```



### Exercise: line graphs

Create a line graph of occupations in architecture and engineering occupations showing percent\_female by year

https://pollev.com/vsovero

# Fertility over Time (line for each continent)

 We need to collapse the data to continent by year using group\_by() and summarize() continent\_summary<-gapminder %>%
group\_by(continent, year) %>%
summarize(mean\_fertility=mean(fertility, na.rm=TRUE)

| <b>‡</b> | continent <sup>‡</sup> | year 🔷 | mean_fertility $^{\scriptsize \scriptsize $ |
|----------|------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Africa                 | 1960   | 6.571765                                                                                                                                                                                                                                                |
| 2        | Americas               | 1960   | 5.889444                                                                                                                                                                                                                                                |
| 3        | Asia                   | 1960   | 6.049787                                                                                                                                                                                                                                                |
| 4        | Europe                 | 1960   | 2.838974                                                                                                                                                                                                                                                |
| 5        | Oceania                | 1960   | 6.090833                                                                                                                                                                                                                                                |
| 6        | Africa                 | 1961   | 6.598431                                                                                                                                                                                                                                                |
| 7        | Americas               | 1961   | 5.866944                                                                                                                                                                                                                                                |
| 8        | Asia                   | 1961   | 6.036170                                                                                                                                                                                                                                                |
| 9        | Europe                 | 1961   | 2.815641                                                                                                                                                                                                                                                |
| 10       | Oceania                | 1961   | 6.080000                                                                                                                                                                                                                                                |
| 11       | Africa                 | 1962   | 6.621373                                                                                                                                                                                                                                                |
| 12       | Americas               | 1962   | 5.815278                                                                                                                                                                                                                                                |
| 13       | Asia                   | 1962   | 6.083830                                                                                                                                                                                                                                                |
| 14       | Europe                 | 1962   | 2.780256                                                                                                                                                                                                                                                |

# Fertility over Time (line for each continent)

 Then we ggplot using the group argument

```
ggplot(data=continent_summary,
mapping=aes(x=year, y=mean_fertility)) +
geom_line(aes(group=continent))
```



### Exercise

- calculate the mean percent\_female by year and by minor\_category for occupations in computer, engineering and science
- plot as a line graph

# **Color Mapping**

```
gapminder %>%
  filter(region=="South America") %>%
ggplot(mapping=aes(x=year, y=fertility)) +
geom_line(aes(group=country))
```



gapminder %>%
 filter(region=="South America") %>%
ggplot(mapping=aes(x=year, y=fertility)) +
 geom\_line(aes(color=country))



### Exercise

- calculate the mean percent\_female by year and by minor\_category for occupations in computer, engineering and science
- plot as a line graph
- color the lines by minor\_category

https://pollev.com/vsovero