

Virtual, October 10-21, 2020

Andrés Bell Carlos Roberto Del-Blanco Fernando Jaureguizar Narciso García

ETSI Telecomunicación **Grupo de Tratamiento de Imágenes** Universidad Politécnica de Madrid

2020 IEEE International Symposium on Circuits and Systems **Virtual, October 10-21, 2020**

Table of contents

Virtual, October 10-21, 2020

- Introduction.
- State of the art.
- Nighttime Vehicle Detection System.
 - GHOG feature extraction.
 - Training.
 - Prediction.
- Databases.
- Results.
- Conclusions.

Introduction

Growing interest in vehicle surveillance:

Safety, security and flow

The peak of video technologies

Relevant applications

Adverse environments

State of the art

Virtual, October 10-21, 2020

Proposed taxonomy based on the approach:

Nighttime Vehicle Detection System

System overview:

General features:

- Robustness to different illumination patterns and flashes.
- Feature extraction: a single vector per image.
- Prediction: spatial grid of foveal classifiers which share the same image descriptor.

Nighttime Vehicle Detection System

Virtual, October 10-21, 2020

GHOG feature extraction:

Nighttime Vehicle Detection System

POLITÉCNICA

Training:

Nighttime Vehicle Detection System

POLITÉCNICA

Prediction and final vehicle location determination:

Databases

Nighttime Vehicle Database (NVD):

- Sequences from a surveillance camera on a highway in Gelderland (Netherlands).
- Manual annotations of vehicle centroids.
- 15 sequences and 14970 frames.
- Video characteristics:
 - Image resolution: 1280 x 720.
 - Framerate: 25 fps.
 - High compression.

Results

Virtual, October 10-21, 2020

Vehicle detection results:

- Adaptation of Faster R-CNN to point-based detections.
- Advantages of the proposed system in practical deployment.
- Flexibility in real-time requirements.

Proposed system											
Sequence	Grid resolution	# trained classifiers	P	R	F	μ_D	σ_D	$ar{t}$ CPU (ms)			
Seq3	37 x 50	327	0.988	0.902	0.943	7.134	4.894	52			
Seq4			0.930	0.892	0.911	10.170	8.380	52			
Seq6			0.979	0.923	0.950	8.890	6.920	52			
Average			0.966	0.906	0.935	8.731	6.731	52			
Adapted Faster R-CNN											
Sequence	RPN anchor scales	RPN NMS threshold	P	R	F	μ_D	σ_D	$ar{t}$ GPU (ms)			
Seq3	(16, 32, 64, 128, 256)	0.7	0.970	0.926	0.948	5.024	5.199	136			
Seq4			0.946	0.935	0.941	5.210	6.203	132			
Seq6			0.956	0.950	0.953	4.170	4.482	134			
Average			0.958	0.937	0.947	4.801	5.294	134			

	Feature extraction		Predict		
Grid resolution	Vector length	$ar{t}_{extraction}$ (ms)	# trained classifiers	$ar{t}_{prediction}$ (ms)	$ar{t}$ (ms)
13 x 17	169200	23	65	6	31
17 x 25			110	10	34
31 x 41			243	21	45
37 x 50			327	29	52
45 x 58			409	36	59
49 x 65			489	43	66

Conclusions

- Novel algorithm for vehicle detection in nighttime scenarios:
 - Based on a novel grid of foveal classifiers which share a single feature vector per image.
 - Advantages:
 - Ability to analyse complex illumination patterns and flashes.
 - Adaptability to different scenarios, objects, illumination and cameras.
 - Point-based vehicle ground-truth annotations.
- Nighttime Vehicle Database (NVD) publicly available:
 - Created to validate the proposed system.
- Real-time operation:
 - Viable with a single-threaded implementation.
- Based on a one-year research scholarship funded by the "Dirección General de Tráfico" (DGT).

Andrés Bell Carlos Roberto Del-Blanco Fernando Jaureguizar Narciso García

ETSI Telecomunicación **Grupo de Tratamiento de Imágenes** Universidad Politécnica de Madrid

2020 IEEE International Symposium on Circuits and Systems **Virtual, October 10-21, 2020**

