Review for Exam I

- 1. Larry claims that it is true that $\lim_{x\to\sqrt{7}}\lfloor x\rfloor=\lfloor\sqrt{7}\rfloor$, but Larry can't remember the justification for this calculation. Explain to Larry what function property justifies this calculation. Write your answer in sentence form.
- 2. Find the value of $\lim_{x \to \pi} (5\lfloor x \rfloor \lfloor 5x \rfloor)$.
- 3. Define a function $A(x) = x^2|x|$. Use the definition of the derivative as a limit of a Newton quotient to find the value of A'(0).
- 4. Find the value of $\lim_{x\to 2^{(-)}} \lfloor x \rfloor$.
- 5. The *domain* of the natural exponential function is ______.
- 6. The *range* of the natural exponential function is ______.
- 7. The *domain* of the natural logarithm function is ______.
- 8. The *range* of the natural logarithm function is ______.
- 9. Find an equation of the tangent line (TL) to the curve y = x(x-4). The point of tangency is (x = 5, y = 5).
- 10. Find an equation of the tangent line (TL) to the curve $y = e^x$. The point of tangency is (x = 0, y = 1).
- 11. Find the *natural domain* of the function whose formula is $W(x) = \frac{5}{x} \frac{x}{5}$.
- 12. Find the *natural domain* of the function whose formula is $Q(x) = \frac{5}{1-\frac{1}{x}}$.
- 13. Find each derivative
 - (a) $\frac{d}{dx} \left[\sqrt{107} \right]$
 - (b) $\frac{d}{dx} \left[2x^2 + 31x + 107 \right]$
 - (c) $\frac{d}{dx} \left[\sqrt{2}x \sqrt{2x} \right]$
 - (d) $\frac{d}{dx}[(x-5)(x-7)]$
 - (e) $\frac{d}{dx} \left[\frac{x-1}{x} \right]$
 - (f) $\frac{d}{dx}[(x+6)(x+8)]$
 - (g) $\frac{d}{dx} \left[\frac{x+6}{x+8} \right]$
 - (h) $\frac{d}{dx}[xe^x]$

(i)
$$\frac{d}{dx} \left[\frac{x^2 + 1}{x^2 - 1} \right]$$

14. Sketch a graph of $y = \begin{cases} x/20 & x < 20 \\ 1 & x \ge 20 \end{cases}$.

Find a formula for $\frac{dy}{dx}$.

15. In the year 1969 at age 11, child actress Eve Plumb purchased a Malibu beach house for \$55,000. Forty-seven years later she sold it for \$3.9 million. Her annual percent yield *r* on this investment is given by the solution to

$$3,900,000 = 55,000 \times (1+r)^{47}$$
.

Find Eve Plumb's return on this investment. You will need to solve the given equation for r.

- 16. After graduation, suppose your starting salary is \$64,000. Further, suppose that you expect to earn a 3.5% pay rise each year you work. What is your salary for your 40^{th} year of work? **Hint:** Your salary for your 3^{rd} year of work is \$64,000 × 1.035^2 .
- 17. Define $Q(x) = x^3 + 1$ and $dom(Q) = (-\infty, \infty)$. Find the formula and the domain of Q^{-1} .
- 18. Find the *natural domain* of the function *F* whose formula is $F(x) = \frac{1}{5 + \frac{1}{x}}$
- 19. Find the value of each limit:

(a)
$$\lim_{x \to 0} \frac{x|x|}{x}$$
.

(b)
$$\lim_{x \to 1^{(-)}} \begin{cases} 3 & x < 1 \\ x & 1 \le x \end{cases}$$

(c)
$$\lim_{x \to 1^{(+)}} \begin{cases} 3 & x < 1 \\ x & 1 \le x \end{cases}$$

(d)
$$\lim_{x \to 1} \begin{cases} 3 & x < 1 \\ x & 1 \le x \end{cases}$$

(e)
$$\lim_{x \to 1} \begin{cases} 3 & x < 10 \\ \ln(x^x + 1)\sin(1/x) & 10 \le x \end{cases}$$

(f)
$$\lim_{x \to 5} \frac{\sqrt{x+2} - \sqrt{7}}{x-5}$$

(g)
$$\lim_{x \to \pi} \frac{\sqrt{x+\pi} - \sqrt{2\pi}}{x-\pi}$$

(h)
$$\lim_{x \to 3} \frac{\sqrt{x+\pi} - \sqrt{2\pi}}{x-\pi}$$

(i)
$$\lim_{x \to \sqrt{107}} \frac{x}{|x|}$$

(j)
$$\lim_{x \to -\sqrt{107}} \frac{x}{|x|}$$

20. Find each of the following limits. Use the rules

Rule #0 (constant) $\lim_{x\to c} (a) = a$.

Rule #1 (linearity) $\lim_{x \to c} (aF(x) + bG(x)) = a \lim_{x \to c} (F(x)) + b \lim_{x \to c} (G(x)).$

Rule #2 (product) $\lim_{x\to c} (F(x)G(x)) = \lim_{x\to c} (F(x)) \times \lim_{x\to c} (G(x)).$

Rule #3 (quotient) Provided $\lim_{x\to c}(G(x))\neq 0$, we have $\lim_{x\to c}\frac{F(x)}{G(x)}=\frac{\lim_{x\to c}(F(x))}{\lim_{x\to c}(G(x))}$.

Rule #4 (power) $\lim_{x \to c} F(x)^n = \left(\lim_{x \to c} F(x)\right)^n$.

Rule #5 (root) Provided $\left(\lim_{x\to c} F(x)\right)^{1/n}$ is real, $\lim_{x\to c} F(x)^{1/n} = \left(\lim_{x\to c} F(x)\right)^{1/n}$.

Rule #6 (polynomial) Provided *F* is a polynomial, we have $\lim_{x\to c} F(x) = F(c)$

Rule #7 (rational) Provided F is a rational function and $c \in \text{dom}(F)$, we have $\lim_{x \to c} F(x) = F(c)$.

to justify each of your steps by referencing one of our rules numbered zero through seven.

- $\boxed{2} \qquad \text{(a) } \lim_{x \to \pi} \left(x^3 + x \right)$
- (b) $\lim_{x \to \sqrt{2}} \sqrt{x+1}$
- 2 (c) $\lim_{x \to \sqrt{2}} \frac{x+1}{x-1}$