PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

- 1 (5+5+5+5+5=30) Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
 - (a) Every algebraic extension of $\mathbb Q$ is separable.
 - (b) Every algebraic extension of $\mathbb Q$ is normal.
 - (c) A splitting field is unique up to isomorphism.
 - (d) For any polynomial $f \in K[t]$, its Galois group $Gal_K(f)$ acts transitively on the roots of f.
 - (e) Let K M L be a field extension. If K L is normal, then M L is normal.
 - (f) Let K-M-L be a field extension. If K-L is separable, then M-L is separable.
- **2** (5+5+5+5=20) (a) Let K-L be a field extension. Define what it means for $f \in K[t]$ splits over L.
 - (b) Define what it means for a field extension L:K to be a splitting field extension.
 - (c) Define what it means for a field extension L: K to be normal.
 - (d) Define what it means for a field to be algebraically closed.
- **3** (5+10+10=25) (a) Give a definition of Galois group (historical or modern).
 - (b) Let $f(t) = (t+1)^4 (t+2)^2 \in \mathbb{Q}[t]$. Find a splitting field extension $L: \mathbb{Q}$ for f and compute $[L:\mathbb{Q}]$.
 - (c) Find $Gal_{\mathbb{Q}}(L)$.
- 4 (5+10+10=25) (a) Let $f \in K[t]$, $L = K(\alpha_1, \ldots, \alpha_n)$ be the splitting field of f (here, as always, $\alpha_1, \ldots, \alpha_n$ are roots of f). Compute $\operatorname{Gal}_L(f)$.
 - (b) Let $t^8 16 \in \mathbb{Q}[t]$. Find a splitting field extension $L : \mathbb{Q}$ for f and compute $[L : \mathbb{Q}]$.
 - (c) Find $Gal_{\mathbb{Q}}(L)$.
- 5 (5+10+10+15=40) (a) Let p be a prime number and $\overline{\mathbb{F}}_p$ be a the algebraic closure of \mathbb{F}_p . Put $K := \overline{\mathbb{F}}_p(t)$. Give an example of $f \in K[X]$ such that f is inseparable, or prove that such an example does not exist.
 - (b) Find $Gal_{\mathbb{Q}}(t^3-3)$.
 - (c) Find $Gal_{\mathbb{Q}}(t^{17}-1)$.
 - (d) Find $Gal_{\mathbb{F}_2(t)}(\mathbb{F}_4(t))$.

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (5+5+5+5+5=30) Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
 - (a) Every algebraic extension of \mathbb{Q} is separable.
 - (b) Every algebraic extension of \mathbb{Q} is normal.
 - (c) A splitting field is unique up to isomorphism.
 - (d) For any polynomial $f \in K[t]$, its Galois group $Gal_K(f)$ acts transitively on the roots of f.
 - (e) Let K M L be a field extension. If K L is normal, then M L is normal.
 - (f) Let K M L be a field extension. If K L is separable, then M L is separable.

Solution. (a) TRUE. See lectures, more generally the same takes place for any field of characteristic zero.

- (b) FALSE. Take $\mathbb{Q}(2^{1/3})$.
- (c) TRUE. It was a result in lectures.
- (d) FALSE. This is true only if f is irreducible. If f is reducible, then $Gal_K(f)$ acts transitively on the roots of each irreducible factor of f.
- (e) TRUE. It was a result in lectures.
- (f) TRUE. It was a result in lectures.
- **2** (5+5+5+5=20) (a) Let K-L be a field extension. Define what it means for $f \in K[t]$ splits over L.
 - (b) Define what it means for a field extension L:K to be a splitting field extension.
 - (c) Define what it means for a field extension L: K to be normal.
 - (d) Define what it means for a field to be algebraically closed.

Solution. (a) It means that for $\varphi: K \to L$ one has $\varphi(f) = c \prod_{j=1}^{d} (t - \alpha_j)$, where $c \in \varphi(K)$ and $\alpha_j \in L$.

- (b) We assume that f splits over M (see part (a)) and $L \subseteq M$. Then L : K is a splitting field extension if L is the smallest subfield of M, containing $\varphi(K)$ over which f splits.
- (c) The extension K L is normal if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in L.
- (d) A field K is algebraically closed if any non–constant polynomial $f \in K[t]$ has a root in K.
- 3 (5+10+10=25) (a) Give a definition of Galois group (historical or modern).
 - (b) Let $f(t) = (t+1)^4 (t+2)^2 \in \mathbb{Q}[t]$. Find a splitting field extension $L : \mathbb{Q}$ for f and compute $[L : \mathbb{Q}]$.
 - (c) Find $Gal_{\mathbb{O}}(L)$.

Solution. (a) We give a modern definition. Let L: K be a field extension. Then $Gal_K(L) = Aut_K(L)$, that is a collection of automorphisms $\varphi: L \to L$ such that $\varphi(k) = k$ for any $k \in K$.

- (b) We have $f(t) = (t^2 + t 1)(t^2 + 3t + 3)$. Thus f has roots $(1 \pm \sqrt{5}/2 \text{ and } (-3 \pm i\sqrt{3})/2$. It follows that $L = \mathbb{Q}(\sqrt{5}, i\sqrt{3})$. Further $[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$ and the minimal polynomial for $i\sqrt{3}$ is $t^2 + 3$. It follows that $[L : \mathbb{Q}] = 2 \cdot 2 = 4$ thanks to the tower law.
- (c) Any $\varphi \in \operatorname{Gal}_{\mathbb{Q}}(L)$ permutes the roots of $t^2 5$ and any such φ can be extended to L by taking $\varphi(i\sqrt{3}) = \pm i\sqrt{3}$. Thus $\operatorname{Gal}_{\mathbb{Q}}(L) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and in terms of permutations one has $\operatorname{Gal}_{\mathbb{Q}}(f) = \{Id, (12), (34), (12)(34)\} \cong V_4$.

- 4 (5+10+10=25) (a) Let $f \in K[t]$, $L = K(\alpha_1, \dots, \alpha_n)$ be the splitting field of f (here, as always, $\alpha_1, \dots, \alpha_n$ are roots of f). Compute $Gal_L(f)$.
 - (b) Let $t^8 16 \in \mathbb{Q}[t]$. Find a splitting field extension $L : \mathbb{Q}$ for f and compute $[L : \mathbb{Q}]$.
 - (c) Find $Gal_{\mathbb{Q}}(L)$.

Solution. (a) One can consider the polynomials $f_j(t_1, \ldots, t_n) = t_j - \alpha_j \in L[t_1, \ldots, t_n]$. Then $f_j(\alpha_1, \ldots, \alpha_n) = 0$ but for any $\sigma \in S_n$, $\sigma \neq Id$ there is j such that $\sigma(j) = i \neq j$. Hence $\sigma f_j(\alpha_1, \ldots, \alpha_n) = \alpha_i - \alpha_j \neq 0$. Thus $\operatorname{Gal}_L(f) = \{Id\}$. Similarly, one can use the modern definition of Galois group. Then we see that any automorphism φ such that $\varphi(l) = l$ for any $l \in L$ is, obviously, Id.

- (b) We have $t^8 16 = \prod_{\varepsilon \in \sqrt[8]{1}} (t \varepsilon \sqrt{2})$. Thus $L = \mathbb{Q}(\sqrt{2}, \varepsilon_8)$, where as always $\varepsilon_8 = e^{\pi i/4} = (1+i)/\sqrt{2}$. Hence $L = \mathbb{Q}(\sqrt{2}, i)$ and $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$. Thus $[L : \mathbb{Q}(\sqrt{2})] = 2$ and by the tower law $[L : \mathbb{Q}] = 4$.
- (c) The same argument as in Question 3 gives us $\operatorname{Gal}_{\mathbb{Q}}(f) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong \{Id, (12), (34), (12)(34)\} \cong V_4$.
- 5 (5+10+10+15=40) (a) Let p be a prime number and $\overline{\mathbb{F}}_p$ be a the algebraic closure of \mathbb{F}_p . Put $K := \overline{\mathbb{F}}_p(t)$. Give an example of $f \in K[X]$ such that f is inseparable, or prove that such an example does not exist.
 - (b) Find $Gal_{\mathbb{Q}}(t^3-3)$.
 - (c) Find $Gal_{\mathbb{Q}}(t^{17}-1)$.
 - (d) Find $Gal_{\mathbb{F}_2(t)}(\mathbb{F}_4(t))$.

Solution. (a) Put $f(X) = X^p - t$. Then $f \in K[X]$ is irreducible (see lectures or apply the Eisenstein criterion and Gauss' lemma) but $f(X) = (X - \alpha)^p$, where $\alpha \in \overline{K}$, $\alpha^p = t$. Therefore, f is not separable.

- (b) The roots of $t^3 3$ are $\alpha_j := 3^{1/3} \varepsilon_3^j$, j = 0, 1, 2 and hence $\alpha_2, \alpha_3 \notin \mathbb{Q}(\alpha_1)$. Thus $\operatorname{Gal}_{\mathbb{Q}}(t^3 3) \cong S_3$ (see lectures).
- (c) This is a cyclotomic polynomial and we know that $\operatorname{Gal}_{\mathbb{Q}}(x^{17}-1)\cong \mathbb{Z}_n$, where $n=\varphi(17)=16$.
- (d) One has $\mathbb{F}_4 = \mathbb{F}_2(g)$, where g is a primitive root, i.e., $\mathbb{F}_4^* = \{1, g, g^2\}$. In particular, $g^3 = 1$ and $1 + g + g^2 = 0$. Thus g is a root of irreducible and separable polynomial $X^2 + X + 1 = 0$. Therefore $\mathbb{F}_4(t) = \mathbb{F}_2(g)(t)$ and $|\operatorname{Gal}_{\mathbb{F}_2(t)}(\mathbb{F}_4(t))| = [\mathbb{F}_4(t) : \mathbb{F}_2(t)]$. It follows that $\operatorname{Gal}_{\mathbb{F}_2(t)}(\mathbb{F}_4(t)) \cong \mathbb{Z}_2 = \{Id, \Phi\}$, where $\Phi(a) = a^2$ is the Frobenius automorphism.