# Interferon- $\gamma$ induction of GBP5 in HeLa cells

Clayton W. Seitz

October 23, 2022

### The principle of Interferon- $\gamma$ induced transcriptional memory



Figure 1

Siwek et al. Activation of Clustered IFNg Target Genes Drives Cohesin-Controlled Transcriptional Memory. Molecular Cell 2020

#### RNA flow model for transcription dynamics and RNA transport





Show tiled images Needs validation in another cell line

# Rare HeLa cell GBP5 expression @ 24h after reinduction with IFN- $\gamma$



# Intensity histogram for rare GBP5 expression



- ightharpoonup Very few ( $\sim$  1%) reinduced cells express GBP5, but those that do express at high levels (relative to GAPDH)
- lacktriangle Control sample validates this effect is coupled to IFN- $\gamma$

#### Comments on ergodicity of transcription

#### 1. Priming leads to more transcription



# 2. Priming leads to more cells transcribing



- ▶ RNA flow cannot apply to non-ergodic systems (yet ergodicity is often assumed)
- lacktriangle Previous work suggests that IFN- $\gamma$  induces epigenetic changes at the GBP5 locus
- What is the epigenetic change? Is the epigenetic change all or nothing?

## Epigenetic changes at GBP genes after IFN- $\gamma$ treatment

Siwek et al. Activation of Clustered IFNg Target Genes Drives Cohesin-Controlled Transcriptional Memory. Molecular Cell 2020



Measuring epigenetic changes with super-resolution imaging

### Details on STORM timing setup



## Using STORM to measure epigenetic changes

But it is difficult to study epigenetic changes at a single gene, without additional methods e.g., DNA FISH + STORM microscopy. Let's talk about STORM