Clustering the feedback from Turkiye-Student-Evaluation Dataset.

- An Unsupervised Learning Problem.
- Problem Clustering Technique to deal with given data.
 - 3 clustering analysis methods:
 - K-Means Agglomerative Clustering DBSCAN on "Turkiye Student Evaluation" dataset and compared their performances.

Description:

- instr: Instructor's identifier; values taken from {1,2,3}
- class: Course code (descriptor); values taken from {1-13}
- repeat: Number of times the student is taking this course; values taken from {0,1,2,3,...}
- attendance: Code of the level of attendance; values from {0, 1, 2, 3, 4}

difficulty: Level of difficulty of the course as perceived by the student; values taken

Attribute Information

And 28 different questions: Q1-Q28 values are taken from {1,2,3,4,5}

Some question examples:

Q1: The semester course content, teaching method and evaluation system were provided at the start.

Q2: The course aims and objectives were clearly stated at the beginning of the period.

Q3: The course was worth the amount of credit assigned to it.

• • •

Q14: The Instructor came prepared for classes.

Q15: The Instructor taught in accordance with the announced lesson plan.

Q16: The Instructor was committed to the course and was understandable.

• • •

Q27: The Instructor provided solutions to exams and discussed them with students.

Q28: The Instructor treated all students in a right and objective manner

Data Pre-Processing

- ▶ Our dataset contains 5820 rows * 33 columns
- ▶ As we can see there is no missing values in our dataset.
- ► That's why we did not do any cleaning operation

RangeIndex: 5820 entries, 0 to 5819

Data columns (total 33 columns):

Data	columns (to			
#	Column	Non-Nu	ıll Count	Dtype
0	instr		on-null	int64
1			on-null	int64
2			on-null	int64
3	attendance		on-null	int64
4	difficulty		non-null	int64
5	Q1	5820 n	on-null	int64
6	Q2	5820 n	on-null	int64
7	Q3		on-null	int64
8	Q4	5820 n	on-null	int64
9	Q5	5820 n	on-null	int64
10	Q6		on-null	int64
11	Q7	5820 n	non-null	int64
12	Q8	5820 n	on-null	int64
13	Q9		on-null	int64
14	Q10	5820 n	on-null	int64
15	Q11		on-null	int64
16	Q12	5820 n	on-null	int64
17	Q13	5820 n	on-null	int64
18	Q14	5820 n	on-null	int64
19	Q15	5820 n	on-null	int64
20	Q16		on-null	int64
21	Q17		on-null	int64
22	Q18	5820 n	on-null	int64
23	Q19		on-null	int64
24	Q20		on-null	int64
25	Q21	5820 n	on-null	int64
26	Q22		on-null	int64
27	Q23	5820 n	on-null	int64
28	Q24		on-null	int64
29	Q25		on-null	int64
30	Q26		on-null	int64
31	Q27	5820 n	non-null	int64
32	Q28		on-null	int64
dtypes: int64(33)				

dtypes: int64(33) memory usage: 1.5 MB

K-MEANS

- We continued with first 7 questions also on the clustering algorithms.
- To analyze the cluster size for the k-means algorithm, at first we created this elbow graph. And saw that 3 may be our number of clusters.

K-MEANS

Then with sklearn.cluster's KMeans library, we clustered our data. And we plotted the results:

silhouette score: 0.571

Counter ({0: 2389, 2: 2158, 1: 1273})

Dendogram

- We plotted dendrogram to see how many clusters should we use.
- We decide to take number of clusters as 3.

Agglomerative Clustering

Counter ({2: 2397, 0: 2011, 1: 1412})

silhouette score: 0.571

DB SCAN

number of clusters: 3

Counter({0: 4735, 1: 691, -1: 394})

unclustered percentage: 0.06769759450171821

silhouette score: 0.327

COMPARISION OF CLUSTERING METHODS

Clustering methods	Silhouette score
K-Means Clustering	0.571
Agglomerative Clustering	0.571
DB SCAN	0.327

REFERENCES

- <u>https://github.com/naveen-chauhan/Turkiye-Student-Evaluation/blob/master/turkiye%2Bstudent%2Bevaluation.ipynb</u>
- https://www.kaggle.com/harishvutukuri/turkiye-student-evaluation