

# Ferienkurs Analysis 3 für Physiker



Integration im  $\mathbb{R}^n$ 

Autor: Benjamin Rüth Stand: 8. März 2015 <u>Inhaltsverzeichnis</u> <u>Inhaltsverzeichnis</u>

## In halts verzeichn is

| 1        | Definition des Riemann-Integrals über Quadern | 3 |
|----------|-----------------------------------------------|---|
|          | 1.1 Beispiel:Volumen verschiedener Quader     | 3 |
| <b>2</b> | Integration über Normalbereiche               | 4 |
|          | 2.1 Beispiel: Fläche eines Kreises            | 4 |
| 3        | Weitere Eigenschaften des Riemann-Integrals   | 5 |
| 4        | Transformationssatz                           | 5 |
|          | 4.1 Beispiel: Kugelkoordinaten                | 5 |
| 5        | Gramsche Determinante                         | 6 |
|          | 5.1 Beispiel: Oberfläche der Einheitskugel    | 6 |
| 6        | Oberflächenintegrale im 3-Dimensionalen       | 7 |
|          | 6.1 Beispiel: Oberfläche als Nullstellenmenge | 8 |

## 1 Definition des Riemann-Integrals über Quadern

Ein Quader ist eine Teilmenge des  $\mathbb{R}^n$  der folgenden Form:

$$Q = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n]$$

Über einen solchen Quader können wir eine stetige Funktion f(x) integrieren

$$\int_{Q} f(x) d^{n}x = \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} ... \int_{a_{n}}^{b_{n}} f(x) dx_{n} ... dx_{2} dx_{1}$$

Wir können außerdem Quadern Q im  $\mathbb{R}^n$  ein Volumen  $\operatorname{vol}_n(Q)$  zuordnen, indem wir über f(x) = 1 integrieren.

$$\operatorname{vol}_n(Q) = \int\limits_Q 1 \mathrm{d}x$$

#### 1.1 Beispiel:Volumen verschiedener Quader

Wir betrachten verschiedene Quader:

$$Q_1 = [0, l] \times [0, b] \times [0, h] \in \mathbb{R}^3$$

$$Q_2 = [0, l] \times [0, b] \times \{0\} \in \mathbb{R}^3$$

$$Q_3 = [0, l] \times [0, b] \in \mathbb{R}^2$$

Nun berechnen wir die Volumina der Quader:

$$\operatorname{vol}_{3}(Q_{1}) = \int_{Q_{1}} 1 dx^{3} = \int_{0}^{l} \int_{0}^{b} \int_{0}^{h} 1 dx_{3} dx_{2} dx_{1} = l \ b \ h$$

$$\operatorname{vol}_{3}(Q_{2}) = \int_{Q_{2}} 1 dx^{3} = \int_{0}^{l} \int_{0}^{b} \int_{0}^{0} 1 dx_{3} dx_{2} dx_{1} = 0$$

$$\operatorname{vol}_{2}(Q_{3}) = \int_{Q_{3}} 1 dx^{3} = \int_{0}^{l} \int_{0}^{b} 1 dx_{2} dx_{1} = l \ b$$

Wir sehen, dass die rechteckige Fläche, die von  $Q_2$  beschrieben wird - logischerweise - kein 3 dimensionales Volumen besitzt.

### 2 Integration über Normalbereiche

Wir können auch über kompliziertere Mengen integrieren, deren Integrationsgrenzen voneinander abhängen. Wir nennen solche Mengen Normalbereiche. Eine Menge  $A \subseteq \mathbb{R}^n$  heißt Normalbereich, wenn sie wie folgt konstruiert ist:

$$A_1 = [a_1, b_1] \subseteq \mathbb{R}$$

$$A_k = \{(x, y) \in A_{k-1} \times \mathbb{R} \mid a_k(x) \le y \le b_k(x)\} \subseteq \mathbb{R}^k \text{ mit } a_k, b_k \in C(A_{k-1})$$

$$A = A_n.$$

Die Integration ist dann für 2D bzw. 3D folgendermaßen definiert:

$$\iint_A f(x,y) dy dx = \int_{x=a_1}^{b_1} \int_{a_2(x)}^{b_2(x)} f(x,y) dy dx \text{ bzw.}$$
 
$$\iiint_A f(x,y,z) dz dy dx = \int_{x=a_1}^{b_1} \int_{a_2(x)}^{b_2(x)} \int_{a_3(x,y)}^{b_3(x,y)} f(x,y,z) dz dy dx.$$

#### 2.1 Beispiel: Fläche eines Kreises

Wir wollen in diesem Beispiel die Fläche der Kreisscheibe mit Radius  $r(S_2(r))$  berechnen.

$$\operatorname{vol}_2(S_2(r)) = \int_{S_2(r)} 1 dx dy$$

Dafür definieren wir den entsprechenden Normalbereich:

$$A_1 = [-r, r] (2.1)$$

$$A_2 = \{(x,y) \in A_1 \times \mathbb{R} \mid -\sqrt{r^2 - x^2} \le y \le \sqrt{r^2 - x^2}\}$$
 (2.2)

Für die Fläche folgt nun:

$$vol_{2}(S_{2}(r)) = \int_{S_{2}(r)} 1 dy dx = \int_{-r}^{r} \int_{-\sqrt{r^{2}-x^{2}}}^{+\sqrt{r^{2}-x^{2}}} 1 dy dx 
= 2 \int_{-r}^{r} \sqrt{r^{2}-x^{2}} dx = 2 \frac{1}{2} \left[ x \sqrt{r^{2}-x^{2}} + r^{2} \arctan\left(\frac{x}{\sqrt{r^{2}-x^{2}}}\right) \right]_{-r}^{r} 
= (0 + r^{2} \frac{\pi}{2}) - (0 - r^{2} \frac{\pi}{2}) = r^{2} \pi$$

## 3 Weitere Eigenschaften des Riemann-Integrals

Um Probleme auf komplexeren Integrationsbereichen zu lösen, oder die Integration selbst zu vereinfachen erweisen sich diese Eigenschaften des Riemann-Integrals oft als nützlich:

#### Linearität:

$$\begin{split} \int_{M} \alpha f(x) \, \mathrm{d}^{n} x &= \alpha \int_{M} f(x) \, \mathrm{d}^{n} x \ \, \forall \alpha \in \mathbb{C} \\ \int_{M} [f(x) + g(x)] \, \mathrm{d}^{n} x &= \int_{M} f(x) \, \mathrm{d}^{n} x \ \, + \int_{M} g(x) \, \mathrm{d}^{n} x \end{split}$$

#### Additivität:

$$M_1, M_2 \subseteq \mathbb{R}^n, \ M_1 \cap M_2 = \emptyset$$
$$\int_{M_1 \cup M_2} f(x) \, \mathrm{d}^n x \ = \ \int_{M_1} f(x) \, d^n x \ + \ \int_{M_2} f(x) \, \mathrm{d}^n x$$

#### 4 Transformationssatz

Der Transformationssatz ist die Verallgemeinerung der Substitution ins Mehrdimensionale. Sei  $\Phi: \mathbb{R}^n \to \mathbb{R}^n$  die Funktion, durch die die Koordinaten x und u über die Gleichung  $x = \Phi(u)$  zusammenhängen.

$$\begin{array}{rcl} x_1 & = & \Phi_1(u_1, u_2, ..., u_n) \\ x_2 & = & \Phi_2(u_1, u_2, ..., u_n) \\ \vdots & & \\ x_n & = & \Phi_n(u_1, u_2, ..., u_n) \end{array}$$

Der Transformationssatz besagt:

$$\int_{M} f(x) d^{n}x = \int_{\Phi^{-1}(M)} f(\Phi(u)) |\det J\Phi(u)| d^{n}u$$

#### 4.1 Beispiel: Kugelkoordinaten

Bei Kugelkoordinaten sieht die Funktion  $\Phi:(r,\phi,\theta)\to(x,y,z)$  so aus:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(r, \phi, \theta) = \begin{pmatrix} r \sin(\theta) \cos(\phi) \\ r \sin(\theta) \sin(\phi) \\ r \cos(\theta) \end{pmatrix}$$

$$\det (J\Phi(r,\phi,\theta)) = \det \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{pmatrix} = r^2 \sin(\theta)$$

$$\int_{\mathbb{R}^3} f(x, y, z) \, dx \, dy \, dz = \int_{r=0}^{\infty} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} (f \circ \Phi)(r, \phi, \theta) r^2 \sin\theta \, dr \, d\phi \, d\theta$$

#### 5 Gramsche Determinante

Eine m-dimensionale Untermannigfaltigkeit  $M \subseteq \mathbb{R}^n$  besitzt kein Volumen. Jedoch kann man ihr ein m-dimensionales Volumen zuweisen. Beispielsweise besitzt die Oberfläche einer Kugel kein Volumen, sondern eine Fläche.

Um dieses Volumen zu berechnen benötigen wir die sog. Gramsche Determinante. Diese ist wie folgt definiert:

Sei eine Untermannigfaltigkeit parametrisiert durch  $\gamma(x)$  so nennt man  $G = \gamma'(x)^T \gamma'(x)$  den metrischen Tensor und  $g = \det(G)$  die Gramsche Determinante.

Mit diesem Hilfsmittel kann man nun einer durch  $\gamma:V\to M$  parametrisierten m-dimensionalen Untermannigfaltigkeit M ein m-dimensionales Volumen zuordnen.

$$vol_m(M) = \int_M dS = \int_V \sqrt{\det(\gamma(x)'^T \gamma(x)')} dx$$

#### 5.1 Beispiel: Oberfläche der Einheitskugel

Wir verwenden die Parametrisierung der Einheitskugel aus dem vorherigen Beispiel:

$$\gamma(\phi, \theta) = \begin{pmatrix} \cos(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

Um die Oberfläche der Einheitssphäre  $(S_2)$  zu bestimmen benötigen wir zuerst die Jacobimatrix der Parametrisierung.

$$J_{\gamma(\phi,\theta)} = \begin{pmatrix} -\sin(\phi)\sin(\theta) & \cos(\phi)\cos(\theta) \\ \cos(\phi)\sin(\theta) & \sin(\phi)\cos(\theta) \\ 0 & -\sin(\theta) \end{pmatrix} = \gamma(\phi,\theta)'$$

Daraus folgt nach ein paar Umformungen:

$$\gamma(\phi, \theta)^{\prime T} \gamma(\phi, \theta)^{\prime} = \begin{pmatrix} \sin(\theta)^2 & 0 \\ 0 & 1 \end{pmatrix}$$

Für das Volumen folgt also:

$$\operatorname{vol}_{2}(S_{2}) = \int_{0}^{2\pi} \int_{0}^{\pi} \sqrt{\det(\gamma(\phi, \theta)'^{T} \gamma(\phi, \theta)')} d\theta d\phi$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \sqrt{\det\left(\begin{array}{cc} \sin(\theta)^{2} & 0\\ 0 & 1 \end{array}\right)} d\theta d\phi$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \sqrt{\sin(\theta)^{2}} d\theta d\phi$$

$$= 2\pi \int_{0}^{\pi} \sin(\theta) d\theta = 4\pi$$

## 6 Oberflächenintegrale im 3-Dimensionalen

Haben wir eine Oberfläche im  $\mathbb{R}^3$  gegeben, können wir über diese auch auf eine andere Weise integrieren. Sei eine Parametrisierung einer Oberfläche gegeben durch:

$$\phi: B \subseteq \mathbb{R}^2 \to \mathbb{R}^3 \text{ mit } \phi(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

Die partiellen Ableitungen  $\phi_u(u,v)$  und  $\phi_v(u,v)$  spannen denn Tangentialraum auf, der Normalenenvektor ergibt sich durch  $\phi_u(u,v) \times \phi_v(u,v)$ . Wir unterscheiden nun zwei Arten von Integralen:

Sei  $f: D \subseteq \mathbb{R}^3 \to \mathbb{R}$  mit  $\phi(B) \subseteq D$  ein Skalarfeld. Man nennt

$$\iint_{\phi} f dS = \iint_{B} f(\phi(u, v)) \|\phi_{u}(u, v) \times \phi_{v}(u, v)\| du dv$$

skalares Flächenintegral.

Sei andererseits  $\vec{v}: D \subseteq \mathbb{R}^3 \to \mathbb{R}^3$  mit  $\phi(B) \subseteq D$  ein Vektorfeld. Man nennt

$$\iint_{\phi} \vec{v} \cdot d\vec{S} = \iint_{B} \vec{v}(\phi(u, v)) \cdot (\phi_{u}(u, v) \times \phi_{v}(u, v)) du dv$$

vektorielles Flächenintegral oder Flussintegral. In manchen Fällen kann es geschickter sein, das Flussintegral durch  $\iint_{\phi} \vec{v} \cdot \vec{n} \ dS$  zu bestimmen, wobei  $\vec{n}$  der Einheitsnormalenvektor ist. Es sei noch zu erwähnen, dass das Flussintegral von der Richtung des Normalenvektors abhängt. Die übliche Konvention ist, dass man den nach außen gerichteten Normalenvektor hernimmt.

## 6.1 Beispiel: Oberfläche als Nullstellenmenge

Wir nehmen an, dass eine Oberfläche  $\Omega$  gegeben ist durch  $\Omega = \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y) = z\}$ , wobei  $f: B \subseteq \mathbb{R}^2 \to \mathbb{R}$  eine stetig-differenzierbare Funktion ist. Wir können die Fläche parametrisieren durch:

$$\phi(x,y) = \begin{pmatrix} x \\ y \\ f(x,y) \end{pmatrix}.$$

Außerdem haben wir:

$$\phi_x(x,y) = \begin{pmatrix} 1 \\ 0 \\ f_x(x,y) \end{pmatrix}, \quad \phi_y(x,y) = \begin{pmatrix} 0 \\ 1 \\ f_y(x,y) \end{pmatrix}, \quad \phi_x \times \phi_y(x,y) = \begin{pmatrix} -f_x(x,y) \\ -f_y(x,y) \\ 1 \end{pmatrix}.$$

Damit ergibt sich für die Oberfläche:

$$\iint_{\Omega} 1dS = \iint_{B} \|\phi_{x}(x,y) \times \phi_{v}(x,y)\| dxdy$$
$$= \iint_{B} \sqrt{(f_{x}(x,y))^{2} + (f_{y}(x,y))^{2} + 1} dxdy$$