from google.colab import files
uploaded = files.upload()

Choose files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving diabetes csy to diabetes (1) csy

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(color_codes = True)
#ignore warning messages
import warnings
warnings.filterwarnings('ignore')

pima = pd.read_csv('diabetes.csv')
pima

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabete
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

pima.describe().T

		count	mean	std	min	25%	50%	
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	14
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	8
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	3
<pre>pima.isnull().values.any()</pre>								
False								
pima['Outcome'].value_counts()								
	0 500 1 268							

There are no NULL values, but 0 values do exist, following steps have been taken to replace them:

pima[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = pima[['Glucose
print(pima.isnull().sum())

```
0
Pregnancies
Glucose
                                5
                               35
BloodPressure
SkinThickness
                              227
Insulin
                              374
BMI
                               11
DiabetesPedigreeFunction
                                0
                                0
Age
Outcome
                                0
dtype: int64
```

Name: Outcome, dtype: int64

```
pima['Glucose'].fillna(pima['Glucose'].mean(), inplace = True )
pima['BloodPressure'].fillna(pima['BloodPressure'].mean(), inplace = True )
pima['SkinThickness'].fillna(pima['SkinThickness'].mean(), inplace = True )
pima['Insulin'].fillna(pima['Insulin'].mean(), inplace = True )
pima['BMI'].fillna(pima['BMI'].mean(), inplace = True )
```

print(pima.isnull().sum())

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0

0

Outcome dtype: int64

come

Results of Data Cleaning:

pima.describe().T

	count	mean	std	min	25%	50%
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.000000
Glucose	768.0	121.686763	30.435949	44.000	99.75000	117.000000
BloodPressure	768.0	72.405184	12.096346	24.000	64.00000	72.202592
SkinThickness	768.0	29.153420	8.790942	7.000	25.00000	29.153420
Insulin	768.0	155.548223	85.021108	14.000	121.50000	155.548223
ВМІ	768.0	32.457464	6.875151	18.200	27.50000	32.400000
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.372500
Age	768.0	33.240885	11.760232	21.000	24.00000	29.000000
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.000000

Distribution of Data

pima.hist(figsize=(20,16), grid=True)

from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split

Splitting Data into Training and Testing sets

```
X = pima.drop('Outcome', axis = 1)
y = pima['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random = 17)

print(X_train.shape)
print(X_test.shape)
print(y_train.size)
print(y_test.size)
```

```
(537, 8)
(231, 8)
537
231
```

Building a model using Naive Bayes Classifier

```
nbModel = GaussianNB()

nbModel.fit(X_train, y_train)

    GaussianNB()

nb_y_pred = nbModel.predict(X_test)
```

Evaluating the model using Confusion Matrix

```
nbConfusion = metrics.confusion_matrix(y_test, nb_y_pred)
nbConfusion
```

```
array([[124, 26], [ 34, 47]])
```

```
ylabel = ["Actual [Non-Diabetic]", "Actual [Diabetic]"]
xlabel = ["Pred [Non-Diabetic]", "Pred [Diabetic]"]
plt.figure(figsize=(15,6))
sns.heatmap(nbConfusion, annot=True , xticklabels = xlabel, yticklabels = ylabel,
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f671839e490>

print('Accuracy of Naive Bayes Classifier is: ', nbModel.score(X_test,y_test) * 10

Accuracy of Naive Bayes Classifier is: 74.02597402597402 %

print(classification_report(y_test, nb_y_pred))

₽		precision	recall	f1-score	support
	0 1	0.78 0.64	0.83 0.58	0.81 0.61	150 81
	accuracy macro avg weighted avg	0.71 0.74	0.70 0.74	0.74 0.71 0.74	231 231 231

```
TP = nbConfusion[1,1]
TN = nbConfusion[0,0]
FP = nbConfusion[0,1]
FN = nbConfusion[1,0]
```

```
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
Specificity = TN / (TN + FP)
print("Precision: ", Precision)
print("Recall (Sensitivity): ", Recall)
print("Specificity: ", Specificity)
```

Precision: 0.6438356164383562

Recall (Sensitivity): 0.5802469135802469

Specificity: 0.826666666666667

The above values indicate the following: Precision tells us, when the model predicts yes, how often it is correct Recall tells us, when the actual value is positive, how often it is correct Specificity, or true negative rate, tells us the proportion of actual negatives that are correctly identified

ROC AUC Score

```
ROC_AUC = metrics.roc_auc_score(y_test, nb_y_pred)
print("ROC AUC Score: ", ROC_AUC)

ROC AUC Score: 0.7034567901234567
```

This tells us how much the model is capable of distinguishing between classes; so the higher the score, the better the model is. The score is 70.3%, which means the model is performing well.

F-measure Shows the balance between Precision and Recall

```
f1 = (2*Precision*Recall)/(Precision+Recall)
print("F1 Score: ", f1)
```

F1 Score: 0.6103896103896104