A Level Maths - S3 Sam Robbins 13SE

Estimation, confidence intervals and tests

1 Estimators

A statistic that is used to estimate a population parameter is an **estimator**.

A particular individual value is an **estimate**.

Bias is how far the estimator is from the true value

If a statistic T is used as an estimator for a population parameter θ then the bias is:

$$E(T) - \theta$$

If $E(T) = \theta$ then the statistic is unbiased

1.1 Proving $E(\overline{X}) = \mu$

Prove that \overline{X} is an unbiased estimator for μ when the population is normally distributed

A random sample $X_1, X_2, X_3...X_N$ is taken for a population with $X \sim N(\mu, \sigma^2)$

$$\overline{X} = \frac{1}{n} \sum X$$

$$E(\overline{X}) = E\left(\frac{1}{n} \sum X\right)$$

$$E(\overline{X}) = \frac{1}{n} \left(E(X_1) + E(X_2) + E(X_3) \dots + E(X_N)\right)$$

$$E(\overline{X}) = \frac{1}{n} (\mu + \mu + \mu \dots + \mu)$$

$$E(\overline{X}) = \frac{1}{n} (n\mu)$$

$$E(\overline{X}) = \mu$$

1.2 Variance

$$Var(\overline{X}) = \frac{\sigma^2}{\text{Sample size}}$$

We use S^2 as an estimator for σ^2

$$S^2 = \frac{1}{n-1} \left(\Sigma X^2 - n \overline{X}^2 \right)$$

1.3 Uniform Distributions

Random variable X is continuously uniform $[0, \alpha]$. A sample $X_1, X_2...X_N$ is taken Show that \overline{X} is a biased estimate and state the bias

$$\overline{X} = \frac{0+\alpha}{2} = \frac{\alpha}{2}$$

$$E(\overline{X}) = E(\frac{\alpha}{2}) = \frac{1}{2}E(\alpha) = \frac{\alpha}{2}$$

$$\text{Bias} = \frac{\alpha}{2} - \alpha = -\frac{\alpha}{2}$$

A Level Maths - S3 Sam Robbins 13SE

2 Standard error

Standard error
$$=\frac{\sigma}{\sqrt{n}}$$
 or $\frac{s}{\sqrt{n}}$

3 Central limit theorem

The central limit theorem (C.L.T.) states that if $X_1, X_2, X_3...$ is a random sample, from any distribution with mean μ and variance σ^2 . Then the sample means, \overline{X} are distributed with a normal distribution.

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

For this, the sample size must be greater than 50