Machine Learning

Introduction

Jian Liu Penglin Dai

j.liu9@leeds.ac.uk penglindai@swjtu.edu.cn

What is Machine Learning?

Machine Learning (ML):

The field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Lee Samuel was an American pioneer in the field of computer gaming and artificial intelligence. He popularized the term "machine learning" in 1959.

Further resources on defintion:

https://www.youtube.com/watch?v=ukzFI9rgwfU

What is Machine Learning?

A Quick History of Machine Learning

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Image: Linked In | Machine Learning vs Deep learning

A Quick History of Machine Learning

1940s EIMC — Electronic Numerical Integrator and Computer Image: www.computerhistory.org

How do you use Machine Learning in your everyday life?

Some Examples

Spam filtering

Face detection

Pedestrian detection

Movie recommendation

Some Examples

Some Examples

Types of Machine Learning

Types of Machine Learning

Supervised Learning

Classification

Task: determine the discrete variable y (chair/table) given x (image)

Regression

Task: predict a continuous dependent variable y (e.g. weight) given an independent variable x (e.g. height)

Dependent variables are also called target variables.

X	у
160 154 187 174	61 53 79 70
165	?

Types of Machine Learning

Unsupervised Learning

Clustering

Task: cluster the data (e.g. height/weight) into coherent groups.

Types of Machine Learning

Reinforcement Learning

Reinforcement learning

Goal: At any state S_t , the agent learns to take the best action a_t to maximize the reward r_t .

Goals

 Know the theory behind the most popular learning algorithms for classification, clustering, and regression.

Code and apply those algorithms to datasets.

Machine Learning

Data Collection

Feature Selection

Model choice

Training

Evaluation

Data Collection:
For example, many images of various iris flowers

Feature Selection: E.g., length/widths of petal and sepal in each flower

Iris Data (red=setosa,green=versicolor,blue=virginica)

Model choice

Training

Evaluation

			Pred	lictedClass
		Setosa	Versicolor	Virginica
Actual Class	Setosa	14	1	1
	Versicolor	1	11	3
	Verginica	1	3	10

Machine Learning

Data Collection

Feature Selection

Model choice

Training

Evaluation

Most of this class