

ME 5374-ST

Machine Learning for Materials Science and Discovery

Fall 2025

Asst. Prof. Peter Schindler

Lecture 5 – Machine Learning Basics 1

- Overview of Artificial Intelligence (AI) and Machine Learning (ML)
- Types of ML: Supervised vs. Unsupervised Learning
- Typical ML Pipeline
- Optimization and Gradient Descent
- Multi-linear Regression and Normal Equation
- Over/Underfitting and Bias vs. Variance Tradeoff
- Error Metrics and ML Terminology

ML in Materials Science is Hot, Hot, Hot!

Data-Centric Pattern Matching Not New!

Atomic radius plotted against atomic number

Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble (1929)

Draft of table from D. Mendelejeff, Zeitschrift für Chemie 12, 405-406 (1869) (Work from Dmitrii Mendeleev)

Kepler: the first data scientist

What can one of the greatest geniuses in physics teach us about data analysis and artificial intelligence?

Artificial Intelligence and Machine Learning

Supervised vs. Unsupervised Learning

Supervised: Regression

Unsupervised: Clustering

Supervised: Classification

Unsupervised: Dim. Reduction

Machine Learning Pipeline

Zero-Order Optimization: The Curse of Dimensionality

- In ML we will need to optimize (minimize a cost function)
- Zero-order optimization:
 Sample points uniformly/randomly to find the minimum
- Curse of dimensionality

g(w)

First-order Optimization: Gradient Descent

- Take steps in the direction of the gradient ("roll down the slope")
- Need to pick a learning rate
- Non-convex functions still need sampling

Interactive Demonstration

Remark: Second-Order Optimization - Hessian / Newton's Method

Gradient descent:

- Prone to zig-zagging
- Slow near saddle points

Newton's method:

Taking steps to stationary points of the **second-order** Taylor series of a function.

- Issues with nonconvex functions
- Computing Hessian for large N expensive

Multi-linear Regression: Gradient Descent vs. Normal Equation

On Board

$$\theta = (X^T X)^{-1} X^T y$$

- Normal Equation: $\theta = (X^TX)^{-1}X^Ty$ Works for pseudo-inverse, which may be caused by
 - redundant features
 - too many features $(m \le n)$
- No choosing of learning rate
- No iterations necessary
- Matrix operations slow for large number of feature n (>10,000)

Generalized linear models:

Can easily incorporate nonlinearity to approx. functions (e.g., polynomials)

$$y = \theta_0 + \theta_1 f(x_1) + \theta_2 f(x_2) + \dots$$

Interactive Demonstration

Overfitting and Underfitting

Bias and Variance

Other Error Metrics and Terminology

• Residual:
$$r^i = y^i - y^i_{\mathrm{pred}}$$

• Mean squared error: $\mathrm{MSE} = \frac{1}{m} \sum_{i=1}^m (r^i)^2$
• Root mean squared error: $\mathrm{RMSE} = \sqrt{\mathrm{MSE}} = \sqrt{\frac{1}{m} \sum_{i=1}^m (r^i)^2}$
• Mean absolute error: $\mathrm{MAE} = \frac{1}{m} \sum_{i=1}^m \left| r^i \right|$ (less sensitive to outliers)
• Feature or Descriptor: Input variable
• Labelled example: True value/answer paired with the input variables

- Labelled example: True value/answer paired with the input variables
- Ground truth: The true label
- Hyperparameter: Model parameters that are tuned during training
- More comprehensive glossary (found through Prof. Aaron Walsh): https://developers.google.com/machine-learning/glossary

Lecture Feedback

Please, scan the QR code and take a minute to let me know how the lecture was and mention any **feedback/questions**

This form is anonymous!