Chem "Structure of Matter" Summary

Tuesday, January 03, 2023 10:32 PM

1. Definition of atom:

Atom id the tiniest particle in an object that can't be divided anymore.

2. Elements:

- → Identical atoms joined together.
- → All elements are composed of identical atoms.
- → All elements that are made up of same atoms are identical.

3. Structure of an atom:

- → Atom is mostly an empty space that is made up of 2 parts.
- i. Nucleus (in the center)
- ii. Electron cloud (space between energy levels)
- → The nucleus is made up of 2 sub-atomic particles:
- i. Protons:
 - \rightarrow Symbol: p^+
 - → Positively charged particles
- ii. Neutrons:
- \rightarrow Symbol: n^0
- → Don't have any charge

 \rightarrow Symbol: e^-

→ Negatively charged particles

The nucleus is surrounded by a structure called electron cloud.

Contains sub-atomic particle: electrons

4. Fundamental particles of an atom:

- ✓ Protons (p^+)
- ✓ Electrons (e⁻)
- ✓ Neutrons (n^0)
- 5. The atom is electrically neutral
- ⇒ Number of protons = number of electrons

Sub-atomic	Symbol	Relative	Location
particles		charge	
Protons	p ⁺	$1p^+ \rightarrow 1+$	Inside the nucleus
Neutrons	n^0	0	Inside the nucleus
Electrons	e-	$1e^- \rightarrow 1 -$	Outside the nucleus, in the electron cloud
			on the energy level

5. Charge of the atom:

 $\overline{Q_{atom}} = Q_{nucleus} + Q_{electron\ cloud}$

 $Q_{atom} = Q_{protons} + Q_{neutrons} + Q_{electrons}$

But the atom is electrically neutral, Z= atomic number = number of protons= number of electrons

 $\Rightarrow Q_{atom} = 0$

6. Charge of Nucleus (Nuclear charge):

 $Q_{nucleus} = Q_{protons} + Q_{neutrons}$

 $\Rightarrow Q_{nucleus} = Q_{protons}$

 $\Rightarrow Q_{electron \ cloud} = number \ of \ protonsx \ relative \ charge \ of \ 1 \ protons$

7. Charge of electron cloud:

 $\Rightarrow Q_{electron\ cloud} = Q_{electrons}$

 $\Rightarrow Q_{electron \ cloud} = number \ of \ electrons \ x \ relative \ charge \ of \ 1 \ electron$

8. Atomic Number:

ightarrow Symbolized by letter "Z"

→ Identifies the atom

→ Atomic number = number of protons

→ But, in a neutral atom, number of protons = number of electrons

⇒ Z = atomic number = number of protons = number of electrons

9. Mass number:

→ Symbolized by letter "A"

→ Mass number = atomic number + number of neutrons

 \rightarrow A=Z + N

 \Rightarrow Z = A - N

 \Rightarrow N= A - Z

But, the atomic number = number of protons

⇒ A= number of protons + number of neutrons

 \Rightarrow A = number of nucleons

Number of neutrons+ number of protons, where both are located in the nucleus.

REMARK!!!

In an atom, there is number of neutrons, but charge of the nucleus = 0

10. Chemical symbol/ atomic symbol/ nuclear symbol/ chemical representation:

11. Electron configuration:

→ **Definition**:

Arrangement of electrons on energy levels around the nucleus.

The maximum number an energy level can occupy id known by the

following rule: Stoner's Rule: $2n^2$

Number of energy levels

→ Energy levels:

K: 1^{st} energy level

* n=1 $\rightarrow 2n^2 = 2(1)^2 = 2$ electrons

⇒ Maximum number of electrons K can occupy = 2 electrons

L: 2nd energy level

* n=2 $\rightarrow 2n^2 = 2(2)^2 = 4$ electrons

⇒ Maximum number of electrons L can occupy = 4 electrons

L: 2^{na} energy level

* n=2
$$\rightarrow 2n^2 = 2(2)^2 = 4$$
 electrons

⇒ Maximum number of electrons L can occupy = 4 electrons

M: 3rd energy level

* n=3
$$\rightarrow 2n^2 = 2(3)^2 = 8$$
 electrons

⇒ Maximum number of electrons M can occupy = 8 electrons

N: 4th energy level

* n=4
$$\rightarrow 2n^2 = 2(4)^2 = 8$$
 electrons

⇒ Maximum number of electrons N can occupy = 8 electrons

Maximum number of electrons L,M and N can occupy = 8 electrons

12. Valance electrons and Valance shell:

Number of electrons

Outer energy level

On the outer energy level

Outer shell

⇒ Number of electron on the valance shell

Out

Last energy level

13. Lewis dot symbol:

Representation of the valance electrons by dots.

→ To write the Lewis dot symbol:

1st. Place the symbol of the atom

2nd. Surround it by the valance electrons represented by dots in a clock wise manner.

14. Stability:

Duet rule

Octet rule

Stability by 2 electrons

Stability by 8 electrons

→ All the atoms do their best to resemble the nearest noble gases.

stable gases since they have full outer energy levels

Helium (He) by duet rule : 2 valance electrons
Neon (Ne)

Argon (Ar)

By octet rule: 8 valance electrons