AutoML: Interpretability

Overview: Automated Empirical Analysis

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Idea

- Big challenge of ML: Interpretability
 - ▶ In some applications, it is required to "understand" a prediction
 - ▶ Users have less trust in systems, they can't understand

Idea

- Big challenge of ML: Interpretability
 - ▶ In some applications, it is required to "understand" a prediction
 - Users have less trust in systems, they can't understand
- AutoML is even worse?
 - AutoML is a black-box that automates the design of another blackbox (ML)
 - ▶ Also ML-developers have an basic understanding of the design of their ML pipelines
- Automated empirical interpretability helps to
 - understand the finally returned ML system
 - understand the AutoML process

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- --- AutoML generates a lot of empirical data

Cost cBudgets

Design Space Λ

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- --- AutoML generates a lot of empirical data

- Insights:
 - AutoML is yet another optimization problem
 - (Most) AutoML approach are iterative in nature
- → AutoML generates a lot of empirical data

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- → AutoML generates a lot of empirical data

 \rightsquigarrow Let's use this data to learn something about our AutoML problem

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ML pipeline with its components
 - ► Neural architecture

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ML pipeline with its components
 - ► Neural architecture
- ullet Compare what changed between λ_{def} and $\hat{\lambda}$

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ML pipeline with its components
 - ► Neural architecture
- ullet Compare what changed between λ_{def} and $\hat{\lambda}$
- $oldsymbol{\circ}$ Show $oldsymbol{\hat{\lambda}}$ on different budgets (if you used a multi-fideltiy approach)

Source: [Lindauer et al. 2019]

 Study how your AutoML tool improves cost (or loss) over time

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - you need less time next time or

Source: [Lindauer et al. 2019]

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - you need less time next time or
 - the AutoML system is still improving; so you should give it more time

Source: [Lindauer et al. 2019]

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - you need less time next time or
 - the AutoML system is still improving; so you should give it more time
- Notes:
 - ▶ Plot on log-scale to see details in the beginning
 - If you done several runs, plot distribution (e.g., median and 25/75%-quartiles)

AutoML: Interpretability

Studying the AutoML Optimization Process

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

ightharpoonup focus on how the AutoML optimizer samples from the design space Λ

Source: [Lindauer et al. 2019]

Plot of a 1D or 2D function

Source: [Lindauer et al. 2019]

- Plot of a 1D or 2D function
- Background shows the ground truth (real function values)

Source: [Lindauer et al. 2019]

- Plot of a 1D or 2D function
- Background shows the ground truth (real function values)
- Dots are sampled points in the search space

Source: [Lindauer et al. 2019]

- Plot of a 1D or 2D function
- Background shows the ground truth (real function values)
- Dots are sampled points in the search space
- Typical approach in Bayesian Optimization community

Source: [Lindauer et al. 2019]

- Plot of a 1D or 2D function
- Background shows the ground truth (real function values)
- Dots are sampled points in the search space
- Typical approach in Bayesian Optimization community
- → Impossible for higher dimensional problems?

Source: [Lindauer et al. 2019]

• Same idea as before but we have to project N-D into 2-D

- ullet Same idea as before but we have to project $N ext{-}D$ into 2-D
 - 1 Use an MDS to project down to 2-D

- Same idea as before but we have to project N-D into 2-D
 - ① Use an MDS to project down to 2-D
 - Each dot is single hyperparameter configuration

- Same idea as before but we have to project N-D into 2-D
 - **1** Use an MDS to project down to 2-D
 - Each dot is single hyperparameter configuration
 - Red squares are intermediate incumbents

- Same idea as before but we have to project N-D into 2-D
 - **1** Use an MDS to project down to 2-D
 - Each dot is single hyperparameter configuration
 - Red squares are intermediate incumbents
 - The background is colored wrt a performance-estimate (e.g., reusing model fitted during BO)

- Same idea as before but we have to project N-D into 2-D
 - Use an MDS to project down to 2-D
 - Each dot is single hyperparameter configuration
 - Red squares are intermediate incumbents
 - The background is colored wrt a performance-estimate (e.g., reusing model fitted during BO)
 - Extension: Animation by showing how points get added over time

Parallel Coordinate Plot [Golovin et al. 2017]

- Each coordinate is one hyperparameter;
- Except the most left one: cost or loss

Multi-Fidelity Checks

Source: [Lindauer et al. 2019]

- Challenge of multi-fidelity approaches:
 - ► How to choose the fidelities (a.k.a. budgets)

Multi-Fidelity Checks

Source: [Lindauer et al. 2019]

- Challenge of multi-fidelity approaches:
 - ► How to choose the fidelities (a.k.a. budgets)
- Important Property:
 - Decisions on small budgets should be reasonable for higher budgets

Multi-Fidelity Checks

Source: [Lindauer et al. 2019]

- Challenge of multi-fidelity approaches:
 - ► How to choose the fidelities (a.k.a. budgets)
- Important Property:
 - Decisions on small budgets should be reasonable for higher budgets
- Analysis:
 - Scatter plot of performance on Budget X vs. Budget Y
 - Each dot is sampled hyperparameter configuration
 - **3** Compute rank correlation (here: 0.69)

AutoML: Interpretability

Incumbent Analysis and Local Hyperparameter Importance

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

→ focus on why is the eventually returned configuration a good choice

Local Importance [Biedenkapp et al. 2018]

- Typical question of users:
 - ▶ How would the performance change if we change hyperparameter λ_i ?

Local Importance [Biedenkapp et al. 2018]

- Typical question of users:
 - How would the performance change if we change hyperparameter λ_i ?
- Problem: Running full study is often too expensive
 - ► Each run of an ML-system is potential expensive

Local Importance [Biedenkapp et al. 2018]

- Typical question of users:
 - ▶ How would the performance change if we change hyperparameter λ_i ?
- Problem: Running full study is often too expensive
 - ► Each run of an ML-system is potential expensive
 - Key Ideas:
 - Re-use probabilistic models as trained in BO
 - Plot performance change around $\hat{\pmb{\lambda}}^{(t)}$ along each dimension

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda_i} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

$$LPI(i \mid \boldsymbol{\lambda}) = \frac{VAR_{\boldsymbol{\lambda}}(i)}{\sum_{j} VAR_{\boldsymbol{\lambda}}(j)}$$
 (2)

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda_i} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

$$LPI(i \mid \lambda) = \frac{VAR_{\lambda}(i)}{\sum_{j} VAR_{\lambda}(j)}$$
 (2)

While fixing all other hyperparameters to the incumbent value, the hyperparameter with the highest variance is the most important one

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{\text{(start)}} = [1, 1, 0, 100]$$

 $\lambda^{\text{(end)}} = [0.98, 2.42, 1, 42]$

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100]$$

 $\lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$

ullet Cheap approach: Assess $oldsymbol{\lambda}^{(\mathsf{end})}$ with each hyperparameter value from $oldsymbol{\lambda}^{(\mathsf{start})}$

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100]$$

 $\lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$

- ullet Cheap approach: Assess $oldsymbol{\lambda}^{({\sf end})}$ with each hyperparameter value from $oldsymbol{\lambda}^{({\sf start})}$
- Expensive approach: Try all mixtures of $\lambda^{(end)}$ and $\lambda^{(start)}$
 - Only feasible for small spaces and fairly cheap ML systems

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100] \\ \lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$$

- Cheap approach: Assess $\lambda^{(end)}$ with each hyperparameter value from $\lambda^{(start)}$
- ullet Expensive approach: Try all mixtures of $oldsymbol{\lambda}^{(ext{end})}$ and $oldsymbol{\lambda}^{(ext{start})}$
 - Only feasible for small spaces and fairly cheap ML systems
- ullet Trade-off: Find a way from $oldsymbol{\lambda}^{(start)}$ to $oldsymbol{\lambda}^{(end)}$ in a greedy fashion [Fawcett and Hoos. 2016]

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

Given:

$$m{\lambda}^{({\sf start})} = [1, 1, 0, 100] \qquad L_{\sf start} = 20\% \ m{\lambda}^{({\sf end})} = [0.98, 2.42, 1, 42] \qquad L_{\sf end} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$

 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$
 $\lambda^{(4)} = [1, 1, 0, 42] \quad L_4 = 16\%$

Given:

$$m{\lambda}^{({
m start})} = [1, 1, 0, 100] \qquad L_{{
m start}} = 20\% \ m{\lambda}^{({
m end})} = [0.98, 2.42, 1, 42] \qquad L_{{
m end}} = 4\%$$

1st Iteration:

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$
 $\lambda^{(4)} = [1, 1, 0, 42] \quad L_4 = 16\%$

 \rightsquigarrow 1st step: λ_2 – flipping hyperparameter 3

Given:

$$m{\lambda}^{(ext{start})} = [1, 1, 0, 100] \qquad L_{ ext{start}} = 20\% \ m{\lambda}^{(s1)} = [1, 1, 1, 100] \qquad L = 7\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \qquad L_{ ext{end}} = 4\%$$

2nd Iteration:

$$\boldsymbol{\lambda}^{(1)} = [0.98, 1, 1, 100] \quad L_1 = 6\%$$

Given:

$$m{\lambda}^{(ext{start})} = [1, 1, 0, 100] \qquad L_{ ext{start}} = 20\% \ m{\lambda}^{(s1)} = [1, 1, 1, 100] \qquad L = 7\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \qquad L_{ ext{end}} = 4\%$$

2nd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 6\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 7\%$

Given:

$$\begin{array}{lll} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \\ \end{array}$$

2nd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 6\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 7\%$
 $\lambda^{(3)} = [1, 1, 1, 42]$ $L_3 = 5\%$

 \rightsquigarrow 2nd step: λ_3 – flipping hyperparameter 4

Given:

$$\begin{array}{lll} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(s2)} &= [1, 1, 1, 42] & L = 5\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \\ \end{array}$$

3rd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 4\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 5\%$

 \rightsquigarrow 2nd step: λ_3 – flipping hyperparameter 1

Ablation Path:

$$\begin{split} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 42] & L = 5\% \\ \pmb{\lambda}^{(s3)} &= [0.98, 1, 1, 42] & L = 4\% \\ \pmb{\lambda}^{(s4)} &= [0.98, 2.42, 1, 42] & L = 4\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \end{split}$$

Algorithm 1 Greedy Ablation

Input: Algorithm $\mathcal A$ with configuration space $\mathbf \Lambda$, start configuration $\mathbf \lambda^{(\mathsf{start})}$, end configuration $\mathbf \lambda^{(\mathsf{end})}$, cost metric c

$$\lambda \leftarrow \lambda^{(\text{start})};$$
 $P \leftarrow [];$

Algorithm 2 Greedy Ablation

Input: Algorithm $\mathcal A$ with configuration space $\mathbf \Lambda$, start configuration $\mathbf \lambda^{(\mathsf{start})}$, end configuration $\mathbf \lambda^{(\mathsf{end})}$, cost metric c

```
oldsymbol{\lambda} \leftarrow oldsymbol{\lambda}^{(\mathsf{start})}; \ P \leftarrow [] \ ; \ \mathbf{foreach} \ t \in \{1 \dots |oldsymbol{\Lambda}|\} \ \mathbf{do}
```

Algorithm 3 Greedy Ablation

Input: Algorithm $\mathcal A$ with configuration space $\mathbf \Lambda$, start configuration $\mathbf \lambda^{(\mathsf{start})}$, end configuration $\mathbf \lambda^{(\mathsf{end})}$, cost metric c

```
\begin{split} \boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}^{(\mathsf{start})}; \\ P &\leftarrow [] \ ; \\ \textbf{foreach} \ t \in \{1 \dots |\boldsymbol{\Lambda}|\} \ \textbf{do} \\ & \begin{vmatrix} \boldsymbol{\lambda}_{\delta}' \leftarrow \mathsf{apply} \ \delta \ \mathsf{to} \ \boldsymbol{\lambda}; \\ \mathsf{evaluate} \ c(\boldsymbol{\lambda}_{\delta}'); \end{vmatrix} \end{split}
```

Algorithm 4 Greedy Ablation

```
Input: Algorithm \mathcal A with configuration space \pmb \Lambda, start configuration \pmb \lambda^{(\mathsf{start})} end configuration \pmb \lambda^{(\mathsf{end})}, cost metric c
```

```
\lambda \leftarrow \lambda^{(\text{start})}:
   P \leftarrow []:
   foreach t \in \{1 \dots |\Lambda|\} do
        foreach \delta \in \Delta(\lambda, \lambda^{(end)}) do
                \lambda'_{\delta} \leftarrow \text{apply } \delta \text{ to } \lambda;
                 evaluate c(\lambda'_{\delta});
         Determine most important change \delta^* \in \arg\min_{\delta \in \Delta(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{(\text{end})})} c(\boldsymbol{\lambda}_{\delta});
           \lambda \leftarrow \text{apply } \delta^* \text{ to } \lambda:
            P.append(\delta^*):
```

Algorithm 5 Greedy Ablation

```
Input: Algorithm \mathcal A with configuration space \pmb \Lambda, start configuration \pmb \lambda^{(\mathsf{start})} end configuration \pmb \lambda^{(\mathsf{end})}, cost metric c
```

```
\lambda \leftarrow \lambda^{(\text{start})}:
   P \leftarrow []:
   foreach t \in \{1 \dots |\Lambda|\} do
        foreach \delta \in \Delta(\lambda, \lambda^{(end)}) do
               \lambda'_{\delta} \leftarrow \text{apply } \delta \text{ to } \lambda;
            evaluate c(\lambda'_{\delta});
         Determine most important change \delta^* \in \arg\min_{\delta \in \Delta(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{(\text{end})})} c(\boldsymbol{\lambda}_{\delta});
          \lambda \leftarrow \text{apply } \delta^* \text{ to } \lambda:
           P.append(\delta^*):
 return Ablation path P
```

 \bullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]
 - Common observations:
 - lacksquare Some hyperparameters might not matter ($oldsymbol{\lambda}_2$ in the example)

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- → We can also speedup that up by using surrogate models
 [Biedenkapp et al. 2017]
 - Common observations:
 - **①** Some hyperparameters might not matter (λ_2 in the example)
 - Often only a few of the hyperparameters have an big impact

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]
- Common observations:
 - **①** Some hyperparameters might not matter (λ_2 in the example)
 - Often only a few of the hyperparameters have an big impact
 - You have plateaus in your ablation path because of interaction effects

AutoML: Interpretability

Global Hyperparameter Importance

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

→ focus on which hyperparameters are important across the entire search space

ullet Key Idea: Surrogate models $(\Lambda o \mathbb{R})$ learn from observations how to predict the performance of a hyperparameter configuration $\lambda \in \Lambda$

- ullet Key Idea: Surrogate models $(\Lambda o \mathbb{R})$ learn from observations how to predict the performance of a hyperparameter configuration $\lambda \in \Lambda$
- These models can be used to figure out which hyperparameter was important

- ullet Key Idea: Surrogate models $(\Lambda o \mathbb{R})$ learn from observations how to predict the performance of a hyperparameter configuration $\lambda \in \Lambda$
- → These models can be used to figure out which hyperparameter was important
- For example:
 - Use forward selection [Hutter et al. 2013]
 - ► Use automatic feature relevance determination of the model (e.g., of a surrogate model based on random forest)

- ullet Key Idea: Surrogate models $(\Lambda o \mathbb{R})$ learn from observations how to predict the performance of a hyperparameter configuration $\lambda \in \Lambda$
- → These models can be used to figure out which hyperparameter was important
- For example:
 - Use forward selection [Hutter et al. 2013]
 - ► Use automatic feature relevance determination of the model (e.g., of a surrogate model based on random forest)
- Advantages:
 - Very cheap to do, since we only have to query the surrogate model several times

- ullet Key Idea: Surrogate models $(\Lambda o \mathbb{R})$ learn from observations how to predict the performance of a hyperparameter configuration $\lambda \in \Lambda$
- → These models can be used to figure out which hyperparameter was important
- For example:
 - Use forward selection [Hutter et al. 2013]
 - ▶ Use automatic feature relevance determination of the model (e.g., of a surrogate model based on random forest)
- Advantages:
 - Very cheap to do, since we only have to query the surrogate model several times
- Potential drawback:
 - ► The surrogate model might overfit to different subsets of the hyperparameters (if we don't provide sufficient data)

 Key idea: What is the importance of a hyperparameter by marginalizing over all other hyperparameter effects?

- Key idea: What is the importance of a hyperparameter by marginalizing over all other hyperparameter effects?
- Key Insight: We can use a surrogate model to compute these effects

- Key idea: What is the importance of a hyperparameter by marginalizing over all other hyperparameter effects?
- Key Insight: We can use a surrogate model to compute these effects

fANOVA [Sobobl. 1993]

Write performance predictions as a sum of components:

$$\hat{y}(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n) = \hat{f}_0 + \sum_{i=1}^n \hat{f}_i(\boldsymbol{\lambda}_i) + \sum_{i \neq j} \hat{f}_{ij}(\boldsymbol{\lambda}_i, \boldsymbol{\lambda}_j) + \dots$$

$$\hat{y}(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n) = \text{average response} + \text{main effects} +$$
2-D interaction effects + higher order effects

- Key idea: What is the importance of a hyperparameter by marginalizing over all other hyperparameter effects?
- Key Insight: We can use a surrogate model to compute these effects

fANOVA [Sobobl. 1993]

Write performance predictions as a sum of components:

$$\hat{y}(\boldsymbol{\lambda}_1,\ldots,\boldsymbol{\lambda}_n) = \hat{f}_0 + \sum_{i=1}^n \hat{f}_i(\boldsymbol{\lambda}_i) + \sum_{i\neq j} \hat{f}_{ij}(\boldsymbol{\lambda}_i,\boldsymbol{\lambda}_j) + \ldots$$
 $\hat{y}(\boldsymbol{\lambda}_1,\ldots,\boldsymbol{\lambda}_n) = \text{average response} + \text{main effects} + \text{2-D interaction effects} + \text{higher order effects}$

Variance Decomposition

$$V = \frac{1}{||\boldsymbol{\Lambda}||} \int_{\boldsymbol{\lambda}_1} \dots \int_{\boldsymbol{\lambda}_n} [(\hat{y}(\boldsymbol{\lambda}) - \hat{f}_0)^2] d\boldsymbol{\lambda}_1 \dots d\boldsymbol{\lambda}_n$$

• The fANOVA and variance decomposition can be done efficiently in linear time if the surrogate model is a random forest [Hutter et al. 2014]

• The fANOVA and variance decomposition can be done efficiently in linear time if the surrogate model is a random forest [Hutter et al. 2014]

predicted cost is marginalized over all other hyperparameter effects

Source: [Lindauer et al. 2019]

The fANOVA and variance decomposition can be done efficiently in linear time
if the surrogate model is a random forest [Hutter et al. 2014]

Source: [Lindauer et al. 2019]

- predicted cost is marginalized over all other hyperparameter effects
- Warning: The optimum on these curves does not have to be the global optimum across all hyperparameters

 How much of the variance can be explained by a hyperparameter (or combinations of hyperparamaters) marginalized over all other parameters?

Table: Exemplary analysis of PPO on cartpole

Hyperparameter	Explained Variance
Discount rate	19.3 %
Batch size	15.7 %
Learning rate	3.7 %
Likelihood ration clipping	3.4%

 How much of the variance can be explained by a hyperparameter (or combinations of hyperparamaters) marginalized over all other parameters?

Table: Exemplary analysis of PPO on cartpole

Hyperparameter	Explained Variance
Discount rate	19.3 %
Batch size	15.7 %
Learning rate	3.7 %
Likelihood ration clipping	3.4%
discount rate & batch size	10.4%
discount rate & likelihood ration clipping	4.4%

- Given compute higher-order interaction effects
 - ▶ Often too expensive for more than 2 or 3 dimensions

- Given compute higher-order interaction effects
 - ▶ Often too expensive for more than 2 or 3 dimensions
- Implicit assumption: the surrogate model models the space fairly well

- Given compute higher-order interaction effects
 - ▶ Often too expensive for more than 2 or 3 dimensions
- Implicit assumption: the surrogate model models the space fairly well
- Global analysis and local analysis of hyperparameter importance does not always agree [Biedenkapp et al. 2018]

- Given compute higher-order interaction effects
 - ▶ Often too expensive for more than 2 or 3 dimensions
- Implicit assumption: the surrogate model models the space fairly well
- Global analysis and local analysis of hyperparameter importance does not always agree [Biedenkapp et al. 2018]
- You should run both to get a good understanding of why an AutoML tool chose a configuration