CONVERGENCE EN LOI

Exercice 1 (Exemples). Déterminer la limite en loi de $(Z_n)_{n\geq 1}$ dans chacun des cas suivants.

- a) $Z_n = \frac{X_n}{n}$, avec $X_n \sim \mathcal{U}(\{1, \dots, n\})$.
- b) $Z_n \sim \mathcal{B}(n, p_n)$, avec $np_n \to \lambda \in (0, \infty)$.
- c) $Z_n = \frac{X_n}{n}$, avec $X_n \sim \mathcal{G}(p_n)$ et $np_n \to \lambda \in (0, \infty)$.
- d) $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$ avec $(X_n)_{n \ge 1}$ i.i.d. et $\mathbb{E}[X_1^2] = 1$, $\mathbb{E}[X_1] = 0$.
- e) $Z_n = \frac{X_n \mathbb{E}[X_n]}{\sqrt{\text{Var}(X_n)}}$, avec $X_n \sim \mathcal{P}(\lambda_n)$ et $\lambda_n \to +\infty$. En déduire au passage la valeur de

$$\lim_{n\to\infty} \left(1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}\right)e^{-n}.$$

- f) $Z_n = \frac{X_n \mathbb{E}[X_n]}{\sqrt{\operatorname{Var}(X_n)}}$, avec $X_n \sim \Gamma(r_n, \lambda)$ et $r_n \to \infty$ lorsque $n \to \infty$.
- g) $Z_n = n \min(X_1, \dots, X_n)$, avec $(X_n)_{n \ge 1}$ i.i.d. $\mathcal{U}(0, 1)$. Y a-t-il convergence p.s.?
- h) $Z_n = h(X_n)$, avec $h: \mathbb{R} \to \mathbb{R}$ continue et $(X_n)_{n \ge 1}$ convergeant en loi vers X.

Exercice 2 Soit (X_n) une suite de variables aléatoires iid, de loi de Pareto de paramètres (b,α) : leur densité est $f(x) = \mathbf{1}_{x>b}b^{\alpha}x^{-(\alpha+1)}$ où $\alpha > 0$. On pose

$$Z_n = \frac{1}{n} \sum_{i=1}^n \ln(X_i/b).$$

- a) Montrer que Z_n converge presque sûrement vers α^{-1} .
- b) Montrer que $\sqrt{n}(Z_n \alpha^{-1})$ converge en loi vers $\mathcal{N}(0, \alpha^{-2})$.

Exercice 3 (Cas déterministe). Soit $(a_n)_{n\geq 1}$ une suite réelle. À quelle condition y a-t-il convergence en loi pour la suite aléatoire $(X_n)_{n\geq 1}$ définie par $X_n=a_n$?

Exercice 4 (Cas discret). Soient X, X_1, X_2, \ldots des v.a. dans \mathbb{Z} . Montrer que $X_n \to X$ en loi si et seulement si $\forall k \in \mathbb{Z}, \mathbb{P}(X_n = k) \to \mathbb{P}(X = k)$. Quelle est la limite de $\mathscr{B}(n, p_n)$ lorsque $np_n \to \lambda$?

Exercice 5 (Cas à densité). Soient X, X_1, X_2, \ldots des v.a. de densités respectives f, f_1, f_2, \ldots Montrer que $f_n \xrightarrow[n \to \infty]{\text{p.p.}} f \implies X_n \xrightarrow[n \to \infty]{\text{loi}} X$ et construire un contre-exemple pour la réciproque.

Exercice 6 (Cas gaussien). On suppose que pour tout $n \ge 1$, $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$. Montrer que $(X_n)_{n\ge 1}$ converge en loi si et seulement si $(\mu_n)_{n\ge 1}$ et $(\sigma_n)_{n\ge 1}$ convergent, et trouver la loi limite.

Exercice 7 Soient (A_n) des variables aléatoires iid, à valeurs dans un intervalle [a, A] où 0 < a < A. On pose $X_n = A_1 A_2 \cdots A_n$.

- a) Montrer que $X_n^{1/n}$ converge presque sûrement.
- b) On suppose que $\mathbb{E}[\ln A] = 0$. Calculer la limite en loi de $X_n^{1/\sqrt{n}}$.

Exercice 8 Soit (E_n) une suite de variables aléatoires iid de loi $\mathscr{E}(1)$. On pose

$$M_n = \max\{E_1, \dots, E_n\}.$$

Montrer que $M_n - \ln(n)$ converge en loi vers une variable aléatoire de Gumbell standard G, dont la fonction de répartition est donnée par $\mathbb{P}(G \leq x) = e^{-e^{-x}}$.

Exercice 9 (Série aléatoire). Soit $(X_k)_{k\geq 1}$ une suite de v.a.i.i.d. de loi $\mathcal{U}(\{-1,+1\})$. Montrer que la v.a. $Z:=\sum_{k=1}^{\infty}2^{-k}X_k$ est bien définie, et déterminer sa loi. *Indication*: établir l'identité

$$2^n \sin(2^{-n}t) \prod_{k=1}^n \cos(2^{-k}t) = \sin(t) \qquad (n \in \mathbb{N}, t \ge 0).$$

Exercice 10 (Suite de Cauchy) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. de loi de Cauchy $\mathscr{C}(1)$.

- a) $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ converge-t-elle en loi?
- b) $\frac{1}{n} \sum_{i=1}^{n} X_i$ converge-t-elle en loi? en proba?
- c) Montrer que, pour t > 0, $\frac{1}{\pi(t+1)} \le \mathbb{P}(X_1 > t) \le \frac{1}{\pi t}$.
- d) On note $Z_n=\frac{\max_{i=1,\dots,n}X_i}{n}$. Montrer que Z_n converge en loi vers une variable Z dont on donnera la densité.

Exercice 11 (Queue lourde). Soit $(X_n)_{n\geq 1}$ une suite de v.a.i.i.d. de densité

$$f(x) := \frac{1}{|x|^3} \mathbf{1}_{(-\infty, -1) \cup (1, +\infty)}(x).$$

- a) Vérifier que f est bien une densité, puis calculer $\mathbb{E}[X_1]$ et $\mathbb{E}[X_1^2]$. Le TCL s'applique-t-il?
- b) On note φ la fonction caractéristique de X_1 . Justifier que pour tout $t \in \mathbb{R}$,

$$\varphi(t) = 1 - 2t^2 \int_t^\infty \frac{1 - \cos(x)}{x^3} \, \mathrm{d}x.$$

- c) En déduire que $\varphi(t)=1-t^2\ln\frac{1}{t}+o\left(t^2\ln\frac{1}{t}\right)$ lorsque $t\to 0^+.$
- d) Soit $Z_n := \frac{X_1 + \dots + X_n}{\sqrt{n \ln n}}$. Conclure que $(Z_n)_{n \ge 1}$ converge en loi et préciser la limite.
- e) Soit $\theta \geq 0$. Montrer que $\lim_{n \to \infty} \mathbb{E}\left[e^{-\theta Z_n^2}\right]$ existe et la calculer.

Exercice 12 (Lois stables). On dit que X suit la loi stable de paramétres $\alpha \in [1,2]$ et $\lambda \in (0,\infty)$ si

$$\Phi_X(t) = \exp(-\lambda |t|^{\alpha}) \qquad (t \in \mathbb{R}).$$

- a) Quelles lois reconnaét-on dans les cas $\alpha=1$ et $\alpha=2$?
- b) Montrer que X admet une densité donnée par

$$f_X(x) = \frac{\lambda \alpha}{\pi} \int_0^\infty \operatorname{sinc}(xt) t^{\alpha} e^{-\lambda t^{\alpha}} dt \qquad (x \in \mathbb{R}).$$

- c) Pour quelles valeurs de α l'espérance $\mathbb{E}[X]$ existe-t-elle? Quelle est alors sa valeur?
- d) Soient $(X_n)_{n\geq 1}$ des v.a.i.i.d. de même loi que X. Quelle est la loi de $Z_n:=\frac{X_1+\cdots+X_n}{\sqrt{n}}$?
- e) Pour quelles valeurs de α la suite $(Z_n)_{n\geq 1}$ converge-t-elle en loi? Que peut-on en déduire?

Exercice 13 (Distance de Lévy). Si μ, μ' sont des mesures de probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, de fonctions de répartitions notées F, F', on définit

$$d(\mu, \mu') := \inf \left\{ \delta > 0 : \forall x \in \mathbb{R}, F(x - \delta) - \delta \le F'(x) \le F(x + \delta) + \delta \right\}.$$

Vérifier que d est une distance, et qu'elle métrise la convergence étroite.

Exercice 14 (Théorème de représentation de Skorokhod). On considére l'espace probabilisé canonique $\Omega = [0, 1]$ muni de la tribu borélienne et de la mesure de Lebesgue.

a) Soit μ une mesure de probabilité sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ de fonction de répartition F. On pose

$$X(\omega) := \inf\{t \in \mathbb{R} : F(t) > \omega\} \qquad (\omega \in \Omega).$$

Vérifier que X est une variable aléatoire sur Ω , et que sa loi est μ .

b) Soit $\mu, \mu_1, \mu_2, \ldots$ des probabilités sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, et X, X_1, X_2, \ldots les v.a. sur Ω obtenues par la construction ci-dessus. Montrer que $X_n \to X$ p.s. si et seulement si $\mu_n \Rightarrow \mu$.