Package 'ampir'

October 12, 2022

```
Type Package
Title Predict Antimicrobial Peptides
Version 1.1.0
Date 2021-06-29
Description
      A toolkit to predict antimicrobial peptides from protein sequences on a genome-wide scale.
      It incorporates two support vector machine models ("precursor" and "mature") trained on pub-
      licly available antimicrobial peptide data using calculated
      physico-chemical and compositional sequence properties de-
      scribed in Meher et al. (2017) <doi:10.1038/srep42362>.
      In order to support genome-
      wide analyses, these models are designed to accept any type of protein as input
      and calculation of compositional properties has been optimised for high-
      throughput use. For best results it is important to select the model that accurately
      represents your sequence type: for full length proteins, it is recommended to use the de-
      fault "precursor" model. The alternative, "mature", model is best suited
      for mature peptide sequences that represent the final antimicrobial peptide sequence after post-
      translational processing. For details see Finger-
      hut et al. (2020) <doi:10.1093/bioinformatics/btaa653>.
      The 'ampir' package is also available via a Shiny based GUI at <a href="https:">https:</a>
      //ampir.marine-omics.net/>.
URL https://github.com/Legana/ampir
License GPL-2
Encoding UTF-8
Depends R (>= 3.5.0)
Imports Peptides, caret (>= 6.0.0), kernlab, Rcpp, parallel
RoxygenNote 7.1.1
Suggests testthat (>= 3.0.0), knitr, rmarkdown, e1071
VignetteBuilder knitr
LinkingTo Rcpp
Config/testthat/edition 3
```

2 aaseq_is_valid

NeedsCompilation yes

Author Legana Fingerhut [aut, cre] (https://orcid.org/0000-0001-6520-1397),
Ira Cooke [aut] (https://orcid.org/0000-0001-6520-1397),
Jinlong Zhang [ctb] (R/read_faa.R),
Nan Xiao [ctb] (R/calc_pseudo_comp.R)

Maintainer Legana Fingerhut < legana.fingerhut@my.jcu.edu.au>

Repository CRAN

Date/Publication 2021-06-29 07:10:05 UTC

R topics documented:

	aaseq_is_valid	2
	calculate_features	3
	calc_amphiphilicity	
	calc_hydrophobicity	4
	calc_mw	5
	calc_net_charge	5
	calc_pI	6
	calc_pseudo_comp	6
	chunk_rows	7
	df_to_faa	7
	predict_amps	8
	read_faa	9
	remove_nonstandard_aa	9
	remove_stop_codon	0
Index	1	1

aaseq_is_valid

Check protein sequences for non-standard amino acids

Description

Any proteins that contains an amino acid that is not one of the 20 standard amino acids is flagged as invalid

Usage

```
aaseq_is_valid(seq)
```

Arguments

seq

A vector of protein sequences

calculate_features 3

Value

A logical vector where TRUE indicates a valid protein sequence and FALSE indicates a sequence with invalid amino acids

calculate_features

Calculate a set of numerical features from protein sequences

Description

This function calculates set physicochemical and compositional features from protein sequences in preparation for supervised model learning

Usage

```
calculate_features(df, min_len = 10)
```

Arguments

df A dataframe which contains protein sequence names as the first column and

amino acid sequence as the second column

min_len Minimum length sequence for which features can be calculated. It is an error to

provide sequences with length shorter than this

Value

A dataframe containing numerical values related to the protein features of each given protein

Note

This function depends on the Peptides package

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015).

Examples

```
my_protein_df <- read_faa(system.file("extdata/bat_protein.fasta", package = "ampir"))
calculate_features(my_protein_df)
## Output (showing the first six output columns)
# seq_name Amphiphilicity Hydrophobicity pI Mw Charge ...
# [1] G1P6H5_MYOLU 0.4145847 0.4373494 8.501312 9013.757 4.53015 ...</pre>
```

calc_hydrophobicity

calc_amphiphilicity

Calculate amphiphilicity (or hydrophobic moment)

Description

Calculate amphiphilicity (or hydrophobic moment)

Usage

4

```
calc_amphiphilicity(seq)
```

Arguments

seq

A protein sequence

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015). The imported function originates from the Peptides package (https://github.com/dosorio/Peptides/).

calc_hydrophobicity

Calculate the hydrophobicity

Description

Calculate the hydrophobicity

Usage

```
calc_hydrophobicity(seq)
```

Arguments

seq

A protein sequence

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015). The imported function originates from the Peptides package (https://github.com/dosorio/Peptides/).

calc_mw 5

calc_mw

Calculate the molecular weight

Description

Calculate the molecular weight

Usage

```
calc_mw(seq)
```

Arguments

seq

A protein sequence

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015). The imported function originates from the Peptides package (https://github.com/dosorio/Peptides/).

calc_net_charge

Calculate the net charge

Description

Calculate the net charge

Usage

```
calc_net_charge(seq)
```

Arguments

seq

A protein sequence

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015). The imported function originates from the Peptides package (https://github.com/dosorio/Peptides/).

6 calc_pseudo_comp

calc_pI

Calculate the isoelectric point (pI)

Description

Calculate the isoelectric point (pI)

Usage

```
calc_pI(seq)
```

Arguments

seq pI

References

Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4–14 (2015). The imported function originates from the Peptides package (https://github.com/dosorio/Peptides/).

calc_pseudo_comp

Calculate the pseudo amino acid composition

Description

This function is adapted from the extractPAAC function from the protr package (https://github.com/nanxstats/protr)

Usage

```
calc_pseudo_comp(seq, lambda_min = 4, lambda_max = 19)
```

Arguments

seq A vector of protein sequences as character strings

lambda_min Minimum allowable lambda. It is an error to provide a protein sequence shorter

than lambda min+1

lambda_max For each sequence lambda will be set to one less than the sequence length or

lambda_max, whichever is smaller

References

Nan Xiao, Dong-Sheng Cao, Min-Feng Zhu, and Qing-Song Xu. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 31 (11), 1857-1859.

chunk_rows 7

chunk_rows	Determine row breakpoints for dividing a dataset into chunks for parallel processing

Description

Determine row breakpoints for dividing a dataset into chunks for parallel processing

Usage

```
chunk_rows(nrows, n_cores)
```

Arguments

nrows The number of rows in the dataset to be chunked

n_cores The number of cores that will be used for parallel processing

Value

A list of integer vectors consisting of the rows in each chunk

df_to_faa Save a dataframe in FASTA format

Description

This function writes a dataframe out as a FASTA format file

Usage

```
df_to_faa(df, file = "")
```

Arguments

df a dataframe containing two columns: the sequence name and amino acid se-

quence itself

file file path to save the named file to

Value

A FASTA file where protein sequences are represented in two lines: The protein name preceded by a greater than symbol, and a new second line that contains the protein sequence

8 predict_amps

Examples

```
my_protein <- read_faa(system.file("extdata/bat_protein.fasta", package = "ampir"))
# Write a dataframe to a FASTA file
df_to_faa(my_protein, tempfile("my_protein.fasta", tempdir()))</pre>
```

predict_amps

Predict the antimicrobial peptide probability of a protein

Description

This function predicts the probability of a protein to be an antimicrobial peptide

Usage

```
predict_amps(faa_df, min_len = 5, n_cores = 1, model = "precursor")
```

Arguments

faa_df	A dataframe obtained from read_faa containing two columns: the sequence name (seq_name) and amino acid sequence (seq_aa)
min_len	The minimum protein length for which predictions will be generated
n_cores	On multicore machines split the task across this many processors. This option does not work on Windows
model	Either a string with the name of a built-in model (mature, precursor), OR, A train object suitable for passing to the predict train function in the caret package. If omitted the default model will be used.

Value

The original input data.frame with a new column added called prob_AMP with the probability of that sequence to be an antimicrobial peptide. Any sequences that are too short or which contain invalid amin acids will have NA in this column

Examples

```
my_bat_faa_df <- read_faa(system.file("extdata/bat_protein.fasta", package = "ampir"))
predict_amps(my_bat_faa_df)
# seq_name prob_AMP
# [1] G1P6H5_MYOLU 0.9723796</pre>
```

read_faa 9

read_faa

Read FASTA amino acids file into a dataframe

Description

This function reads a FASTA amino acids file into a dataframe

Usage

```
read_faa(file = NULL)
```

Arguments

file

file path to the FASTA format file containing the protein sequences

Value

Dataframe containing the sequence name (seq_name) and sequence (seq_aa) columns

Note

This function was adapted from 'read.fasta.R' by Jinlong Zhang (jinlongzhang01@gmail.com) for the phylotools package (http://github.com/helixcn/phylotools)

Examples

```
read_faa(system.file("extdata/bat_protein.fasta", package = "ampir"))
## Output
# seq_name seq_aa
# [1] G1P6H5_MYOLU MALTVRIQAACLLLLLLASLTSYSL....
```

remove_nonstandard_aa Remove non standard amino acids from protein sequences

Description

This function removes anything that is not one of the 20 standard amino acids in protein sequences

Usage

```
remove_nonstandard_aa(df)
```

Arguments

df

A dataframe which contains protein sequence names as the first column and amino acid sequence as the second column

remove_stop_codon

Value

a dataframe like the input dataframe but with removed proteins that contained non standard amino acids

Examples

```
non_standard_df <- readRDS(system.file("extdata/non_standard_df.rds", package = "ampir"))
# non_standard_df
# seq_name seq_aa
# [1] G1P6H5_MYOLU MALTVRIQAACLLLLLLASLTSYSLLLSQTTQLADLQTQ....
# [2] fake_sequence MKVTHEUSYR$GXMBIJIDG*M80-%

remove_nonstandard_aa(non_standard_df)
# seq_name seq_aa
# [1] G1P6H5_MYOLU MALTVRIQAACLLLLLLASLTSYSLLLSQTTQLADLQTQ....</pre>
remove_stop_codon Remove stop codon at end of sequence
```

Description

Stop codons at the end of the amino acid sequences are removed

Usage

```
remove_stop_codon(faa_df)
```

Arguments

faa_df

A dataframe containing two columns: the sequence name and amino acid sequence

Value

The input dataframe without the stop codons at the end of sequences

Index

```
aaseq_is_valid, 2
calc_amphiphilicity, 4
calc_hydrophobicity, 4
calc_mw, 5
calc_net_charge, 5
calc_pI, 6
calc_pseudo_comp, 6
calculate_features, 3
chunk_rows, 7

df_to_faa, 7

predict_amps, 8

read_faa, 9
remove_nonstandard_aa, 9
remove_stop_codon, 10
```