Лабораторная работа №4. Использование стека для программирования алгоритма вычисления алгебраических выражений

Одной из задач при разработке трансляторов является задача расшифровки арифметических выражений, например:

$$r:=(a + b) * (c + d) - e;$$

В выражении a + b a и b — операнды, + операция. Такая запись называется **инфиксной** формой. Возможны также обозначения +ab — **префиксная**, ab+ — **постфиксная** форма. В наиболее распространенной инфиксной форме для указания последовательности выполнения операций необходимо расставлять скобки. Польский математик Я. Лукашевич обратил внимание на тот факт, что при записи выражений в постфиксной форме скобки не нужны, а последовательность операндов и операций удобна для расшифровки, основанной на применении эффективных методов. Поэтому постфиксная запись выражений получила название **обратной польской записи (ОПЗ)**. Например, в ОПЗ вышеприведенное выражение выглядит следующим образом:

$$r = ab + cd + *e -;$$

Алгоритм вычисления такого выражения основан на использовании стека. При просмотре выражения слева направо каждый операнд заносится в стек. В результате для каждой встреченной операции, относящиеся к ней операнды будут двумя верхними элементами стека. Берем из стека эти операнды, выполняем очередную операцию над ними, и результат помещаем в стек.

Решение задач преобразования инфиксного выражения в постфиксную запись и вычисление выражения в ОПЗ оформить в виде класса с соответствующими методами.

Задание 1.

Pазработать программу в соответствии с вариантом, реализующую расшифровку и вычисление арифметических выражений с использованием стека. Использовать C++ Builder.

В основе программы должны лежать два алгоритма: а) преобразование арифметического выражения из инфиксной формы в постфиксную (форму обратной польской записи); б) расшифровка и вычисление выражения в постфиксной форме. Для контроля вычислить выражение обычным образом.

Использовать визуальные компоненты.

Варианты заданий

Выражение	а	b	с	d	e	Результат
1. a/(b-c)*(d+e)	8.6	2.4	5.1	0.3	7.9	- 26.12
2. (a+b)*(c-d)/e	7.4	3.6	2.8	9.5	0.9	- 81.89
3. $a-(b+c*d)/e$	3.1	5.4	0.2	9.6	7.8	2.16
4. $a/b-((c+d)*e)$	1.2	0.7	9.3	6.5	8.4	- 131.006
5. a*(b-c+d)/e	9.7	8.2	3.6	4.1	0.5	168.78
6. (a+b)*(c-d)/e	0.8	4.1	7.9	6.2	3.5	2.38
7. <i>a</i> *(<i>b</i> – <i>c</i>)/(<i>d</i> + <i>e</i>)	1.6	4.9	5.7	0.8	2.3	- 0.413
8. a/(b*(c+d))-e	8.5	0.3	2.4	7.9	1.6	1.151
9. (a+(b/c-d))*e	5.6	7.4	8.9	3.1	0.2	0.666
10. a*(b+c)/(d-e)	0.4	2.3	6.7	5.8	9.1	- 1.091
11. a-(b/c*(d+e))	5.6	3.2	0.9	1.7	4.8	- 17.51
12. (a-b)/(c+d)*e	0.3	6.7	8.4	9.5	1.2	- 0.429
13. <i>a</i> /(<i>b</i> + <i>c</i> - <i>d</i> * <i>e</i>)	7.6	4.8	3.5	9.1	0.2	1.173
14. a*(b-c)/(d+e)	0.5	6.1	8.9	2.4	7.3	- 0.144
15. (a+b*c)/(d-e)	9.1	0.6	2.4	3.7	8.5	- 2.196