الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: الرياضيات و التقني رياضي

سبب برياسي وياسي

اختبار في مادة: العلوم الفيزيائية

المدة: أربع ساعات ونصف

دورة: جوان 2012

الديوان الوطني للامتحانات والمسابقات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03,5 نقاط)

اقترح أستاذ على تلامذته تعيين سعة مكثفة C بطريقتين مختلفتين : الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت الشدة.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تمُّ تحقيق التركيب المقابل.

أولاً: المكثفة في البداية فارغة. نضع في اللحظة t=0 البادلة K في الوضع t=0 فتشحن المكثفة بالمولد t=0 الذي يعطي تيارا ثابتا شدته t=0,31 m تمكنًا من مشاهدة المنحنى البياني لتطور التوتر t=0 بين طرفي المكثفة بدلالة الزمن t=0 (الشكل t=0).

أ- أعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة ، وسعة المكثفة C و الزمن t .

- ب حد قيمة C سعة المكثفة

ثانياً: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة $U_0 = 1,6V$ نضع البادلة K في الوضع (2) في لحظة نعتبرها من جديد t=0 ، فيتم تغريغ المكثفة في ناقل أومي مقاومته t=0 .

. u_{AB} التفاضلية التي يحققها -1

 $u_{AB} = U_0 e^{\frac{1}{\tau}}$: علماً أن حلها

- اثناء تغريغ المكثفة، سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من الحصول على المنحنى البياني (الشكل-1ب). جد بيانيا قيمة ثابت الزمن t للدارة ، ثم استنتج قيمة سعة المكثفة t.

التمرين الثاني: (03 نقاط)

1- التفاعل بين الدوتريوم و التريتيوم ينتج نواة ⁴He ونيترون وتحرير طاقة.

E, (MeV /nucléon)

 E_{ℓ} النواة الربط النووي E_{ℓ} للنواة E_{ℓ} النواة E_{ℓ}

ب- الطاقة المحررة
$$|\Delta E|$$
 بدلالة طاقات الربط النووى تعطى بالعبارة:

$$|\Delta E| = |E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H)|$$

احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.

المعطيات:

النواة	$^{2}_{1}H$	³ H	⁴ ₂ He
طاقة الربط (MeV)	2,22	8,48	28,29

التمرين الثالث: (03,5 نقطة)

تتكون دارة كهربائية (الشكل-3) مما يلي:

$$E=6.0V$$
 مولد توتر مستمر قوته المحركة الكهربائية

- قاطعة -
- $r=10~\Omega$ وشیعهٔ ذاتیتها L و مقاومتها
 - . $R=200~\Omega$ ناقل أومي مقاومته

ExAO في اللحظة t=0 نغلق القاطعة K ، فبو اسطة ال

 u_{BC} و u_{AB} يمكن معاينة التوتر الكهربائي

(الشكل-4) و (الشكل-5).

ExAO ما هو الجهاز الذي يمكن وضعه بدلا من -1

لتسجيل المنحنيات البيانية السابقة؟

.
$$\frac{di}{dt}$$
 و $i(t)$ بدلالة u_{AB} عبارة عبارة u_{AB}

. i(t) بدلالة u_{BC} عبارة عبارة -3

الشكل- 4

. برتر u_{BC} و u_{AB} له الموافق له u_{BC} و برتر u_{BC} برتر -4

5-اكتب المعادلة التفاضلية التي تحققها شدة التيار الكهربائي i(t) مع إعطاء حل لها.

 I_0 جد عبارة شدة التيار الكهربائي الأعظمي-6

الذي يجتاز الدارة عند الوصول الى النظام الدائم،

ثم احسب قيمته .

auجد قيمة ثابت الزمن au بطريقتين مختلفتين مع الشرح.

احسب L ذاتية الوشيعة.

التمرين الرابع: (03,75 نقطة)

في فبراير 2012، هبت عاصفة ثلجية على شمال شرق الجزائر، فاستعملت الطائرات المروحية للجيش الوطني الشعبي لإيصال المساعدات للمتضررين خاصة في المناطق الجبلية منها.

10 K:

 $v_0 = 50m \cdot s^{-1}$ تطير المروحية على ارتفاع ثابت h من سطح الأرض بسرعة أفقية ثابتة قيمتها يُترك صندوق مواد غذائية مركز عطالته G يسقط في اللحظة t=0 انطلاقا من النقطة O مبدأ الإحداثيات وبالسرعة الابتدائية الأفقية v_0 ليرتطم بسطح الأرض في النقطة M (الشكل-6).

> $(O; \vec{i}, \vec{j})$ ندرس حركة G في المعلم المتعامد و المتجانس المرتبط بسطح الأرض الذي نعتبره غاليليا، نهمل أبعاد الصندوق و تؤثر عليه قوة وحيدة هي قوة ثقله.

> > 1- بتطبيق القانون الثاني لنيوتن جد:

 $\cdot z(t)$ و x(t) و المعادلتين الزمنيتين

z(x) ب- معادلة المسار

ج- إحداثيتي نقطة السقوط M.

د- الزمن اللازم لوصول الصندوق إلى الأرض.

الشكل-6

ثانيا:

لكي لا تتلف المواد الغذائية عند الارتطام بسطح الأرض، تم ربط الصندوق بمظلة تمكنه من النزول شاقولياً ببطء. تبقى المروحية على نفس الارتفاع h السابق في النقطة O ، ليترك الصندوق يسقط شاقوليا دون سرعة $\vec{f} = -100 \times \vec{v}$ الشكل t = 0 . يخضع الصندوق لقوة احتكاك الهواء نعبر عنها بالعلاقة t = 0حيث: \vec{v} يمثّل شعاع سرعة الصندوق في اللحظة t مع إهمال دافعة أرخميدس خلال السقوط.

الشكل-7

1- جد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الصندوق.

t سرعة مركز عطالة الصندوق بدلالة الزمن -2 سرعة مركز عطالة الصندوق بدلالة الزمن -2

أ- جد السرعة الحدية ٧.

t=10s و t=0s و التسارع في اللحظتين: t=0s و و t=0s

m=150~kg الصندوق و المظلة h=405~m ، $g=9.8~m\cdot s^{-2}$

التمرين الخامس: (02,75 نقطة)

 $\Theta Zn \left| Zn^{2+} \right| \left| Cu^{2+} \right| Cu \oplus :$ نحقق عمود دانيال

E = 1,10 V القوة المحركة الكهربائية:

R = 20 ارسم بشكل تخطيطي عمود دانيال موصو لا بناقل أومي مقاومته R = 20، موضحا عليه جهة التيار الكهربائي و اتجاه حركة الالكترونات و الشوارد.

2-اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود.

3- ماذا يحدث للمسريين عند حالة التوازن ؟

4- احسب شدة التيار الذي يجتاز الدارة.

5- احسب Q كمية الكهرباء التي ينتجها العمود بC بعد ساعتين من الاشتغال.

التمرين التجريبي: (03,5 نقطة)

تؤخذ كل المحاليل في 25°C.

الإيبوبروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات للالتهابات، شبيه بالأسبرين، مسكن للآلام و مخفض للحرارة .تباع مستحضرات الإيبوبروفين في الصيدليات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء. في كل هذا النشاط نرمز لحمض الإيبوبروفين ب $M(RCOOH) = 206g \cdot mol^{-1}$. $RCOO^{-1}$

 S_0 في بيشر به ماء فنحصل على محلول مائي محلول مائي $V_0 = 0$ من الحمض في بيشر به ماء فنحصل على محلول مائي $V_0 = 0$ تركيزه المولى $v_0 = 0$ و حجمه $v_0 = 0$

. $c_0 \approx 0{,}002 \; mol \cdot L^{-1}$: تأكد من أن

pH = 3.5 القيمة S_0 المحلول المحلول أعطى قياس

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود.

ب-اكتب كسر التفاعل Q_r لهذا التحول.

$$Q_{r,eq} = rac{x_{max} \cdot { au_f}^2}{V_0 \cdot (1 - { au_f})}$$
 : الشكل على الشكل عند التوازن تكتب على الشكل Q_r عند التوازن تكتب على الشكل

 au_{max} عنه بـ عنه بـ مسبة التقدم النهائي للتفاعل و au_{max} : التقدم الأعظمي و يعبر عنه بـ au_f

د-استنتج قيمة ثابت التوازن K.

ثانياً: للتحقق من صحة المقدار المسجل على الكيس ، نأخذ S_b حجما $V_b = 100,0 \ mL$ من محلول مائي S_b من محلول مائي $V_b = 100,0 \ mL$ لهيدروكسيد الصوديوم $(aq) + HO^-(aq) + HO^-(aq)$ تركيزه المولي $C_b = 2,0 \times 10^{-2} \ mol \cdot L^{-1}$ و نذيب فيه كليا محتوى الكيس فنحصل على محلول مائي S (نعتبر أن حجم المحلول S هو S_b) . نأخذ S_b من المحلول S_b و ونضعه في بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b المنحنى المولي S_b الشكل S_b معادلة تفاعل المعايرة هي :

$$H_3O^+(aq) + HO^-(aq) = 2H_3O(\ell)$$

1-ارسم بشكل تخطيطي عملية المعايرة.

2- عرّف نقطة التكافؤ، ثم حدّد إحداثيتي هذه النقطة E.

 $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$

4-جد كمية المادة الأصلية لشوار د $HO^-(aq)$ ، ثم استنتج تلك التي تفاعلت مع الحمض RCOOHالمتواجد في الكيس. m كتلة حمض الإيبوبروفين المتواجدة في الكيس، ماذا تستنتج؟

الموضوع الثاتي

التمرين الأول: (03 نقاط)

نسكب في بيشر حجما $V_1=50mL$ من محلول يود البوتاسيوم $K^+(aq)+I^-(aq)$ تركيزه المولي $V_1=50mL$ تركيزه المولي بيشر حجما $V_1=50mL$ نم نضيف له حجما $V_2=50mL$ من محلول بيروكسوديكبريتات البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ نركيزه المولي $C_2=0,20mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ وأن الثنائيتين المشاركتين في التفاعل هما: $C_2=0,20mol\cdot L^{-1}$

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
 - 2- أنشئ جدو لا لتقدم التفاعل، ثم عين المتفاعل المحد.
- $I_{2}\left(aq \right)$ بيّن أن التركيز المولى لثنائي اليود المتشكل $I_{2}\left(aq \right)$ في كل لحظة t يعطى بالعلاقة:

$$V = V_1 + V_2$$
 $= \frac{c_1 V_1}{2 V} - \frac{[I^-(aq)]}{2}$

 I^{-} سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوارد اليود $I^{-}(aq)$ كل I^{-} في المزيج التفاعلي ودوّنت النتائج في الجدول التالي:

t (min)	0	5	10	15	20	-25
$[I^{-}(aq)](10^{-2} mol \cdot L^{-1})$	16,0	12,0	9,6	7,7	6,1	5,1
$[I_2(aq)](10^{-2} mol \cdot L^{-1})$	يلا علي				4	

أ-أكمل الجدول، ثم ارسم المنحنى البياني f(t) = f(t) على ورقة ميليمترية ترفق مع ورقة الإجابة. $t_{1/2}$ عرق زمن نصف التفاعل $t_{1/2}$ ، ثم عين قيمته.

t = 20 min ، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة t = 20 min

التمرين الثاني: (03,25 نقطة)

1-النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي.

- أ- البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي ، عرّف البيكرال.
- . γ عفكك نواة الإيريديوم $rac{192}{77}Ir$ يعطي نواة البلاتين $rac{192}{78}Pt$ المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع
 - اكتب معادلة تفكك نواة الإيريديوم، موضّحا النمط الإشعاعي الموافق لهذا التحول النووي.
 - فسر إصدار الإشعاع م خلال هذا التحول.
 - A=3, 4×10^{14} Bq من الإيريديوم هو Ig من الإيريديوم هو
 - جد عدد أنوية الإيريديوم N الموجودة في m=1g من العينة.
 - احسب $t_{1/2}$ نصف العمر للإيريديوم.

2- إن الاندماج النووي هو مصدر الطاقة كما في الشمس و النجوم. تحدث تفاعلات متسلسلة في الشمس والتي $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$ يمكن نمذجتها بالمعادلة التالية:

MeV لهذا التفاعل بوحدة الكتل الذرية u وكذا الطاقة المحررة لتشكل نواة الهيليوم بـ Δm $c=3\times 10^8 m/s$: الفراغ: $u=1.66\times 10^{-27} kg$ ، سرعة الضوء في الفراغ: $u=1.66\times 10^{-27} kg$

 $1eV = 1.6 \times 10^{-19} J$ ، $N_A = 6.02 \times 10^{23} \, mol^{-1}$: ثابت أفو غادرو

النواة	⁴ He	$\frac{1}{1}p$	$\frac{1}{0}n$	0 1e
الكتلة بــ (u)	4,0015	1,0073	1,0087	0,0005

التمرين الثالث: (03,5 نقطة)

نحقق الدارة الكهربائية (الشكل-1) المكونة من:

- . $E=2\ V$ مولد توتر كهربائى ثابت قوته المحركة الكهربائية -
 - . R=100 Ω ناقل أومى مقاومته
 - وشيعة ذاتيتها L ومقاومتها r
 - قاطعة K

1- نغلق القاطعة X-1

أ- اكتب العلاقة التي تربط التوتر الكهربائي بين طرفي الوشيعة $u_b(t)$ والتوتر الكهربائي بين طرفي E و $u_R(t)$ المقاومة

 $u_{B}(t)$ به بدلالة شدة التيار الكهربائي i(t) ، ثم بدلالة $u_{b}(t)$ ب

 $u_{R}(t)$ المعادلة التفاضلية التي يحققها $u_{R}(t)$ للدارة.

2- يعطى حل المعادلة التفاضلية بالشكل التالي:

. و س توابت یطلب تعیینها $B \cdot A$ حیث $u_R(t) = A + Be^{-mt}$

3- يسمح تجهيز الـ ExAO بمتابعة التطور الزمنى لشدة التيار الكهربائى i(t) المار في الدارة فنحصل على

المنحنى البياني (الشكل-2).

لتكن 10 شدة التيار الكهربائي الأعظمي في النظام الدائم.

 I_0 أ-جد العبارة الحرفية للشدة

 $t\left(\mathbf{s}
ight)$. r جد بيانيا قيمة الشدة، I_{0} ، ثم استنتج مقاومة الوشيعة

 τ المنابعدي أن τ المناب مع الزمن المنابعدي أن τ متجانس مع الزمن.

د - جد بیانیا قیمهٔ τ ، ثم استنتج قیمهٔ ذاتیهٔ الوشیعهٔ L

التمرين الرابع: (03,5 نقطة)

نحضر محلولاً مائياً S_1 حجمه V=200~mL حجمه S_1 بتركيز مولي البنزويك $C_6H_5\,COOH$ بتركيز مولي

 $pH_1=3.1$ هذا المحلول فنجده $c_1=1.00 imes 10^{-2}~mol \cdot L^{-1}$

أ- اكتب معادلة تفاعل حمض البنزويك مع الماء.

ب- أنشئ جدو لا لتقدم هذا التفاعل.

ج- احسب نسبة التقدم النهائي au_{If} لهذا التفاعل . ماذا تستنتج؟

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ د - اكتب عبارة ثابت الحموضة K_{al}

هـ أثبت أن $K_{al}=c_{l} imesrac{ au_{lf}^{2}}{1- au_{lf}}$: هـ أثبت أن $K_{al}=c_{l} imesrac{ au_{lf}^{2}}{1- au_{lf}}$

 S_1 على محلول S_1 لحمض البنزويك – S_2 و نمدّده S_3 مرات بالماء فنحصل على محلول S_1 لحمض البنزويك – $pH_1'=3,6$ هذا المحلول فنجده $pH_2'=3,6$

 $.c_{I}^{'}=1,00 \times 10^{-3} \ mol \cdot L^{-1}$:أبيت أن

 au_{-} احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء.

ج- ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

التمرين الخامس: (03,25 نقطة)

يتصور العلماء في الرحلات المستقبلية نحو كوكب المريخ M وضع محطة لأجهزة الاتصالات مع الأرض على أحد أقمار هذا الكوكب، مثلا على القمر فوبوس (P) Phobos.

 $\cdot G = 6,67 \times 10^{-11} \ N \cdot m^2 \cdot kg^{-2}$ المعطيات: - ثابت التجاذب الكوني:

- $r=9,38 imes10^3~km~:P$ و القمر $M=0,38 imes10^3~km$
 - $m_p: Phobos$ و كتلة المريخ $m_M=6,44 imes 10^{-23}~kg$ و كتلة المريخ $m_p: Phobos$
 - $T_M=24h$ 37 m in 22 s حول نفسه: M=24h 37 m in 22 s

نفرض أن هذه الأجسام كروية الشكل وكتلها موزعة بانتظام على حجومها وأن حركة هذا القمر دائرية وتنسب إلى مرجع غاليلي مبدؤه O مركز كوكب المريخ (الشكل-3).

الشكل -3

P القوة التي يطبقها الكوكب M على القمر فوبوس -1

2- أ- بتطبيق القانون الثاني لنيوتن، بين أن حركة مركز عطالة هذا القمر دائرية منتظمة.

P استنتج عبارة سرعة دوران القمر P حول المريخ.

 m_M و G ، r عبارة دور حركة القمر T_{p} حول المريخ بدلالة المقادير G ، G

4- اذكر نص القانون الثالث لكبلر و بيّن أن النسبة :

$$T_P$$
 مثم استنتج قیمهٔ $T_P^2 = 9,21 \times 10^{-13} \, \mathrm{s}^2 \cdot m^{-3}$

5-أين يجب وضع محطة الاتصالات S لتكون مستقرة بالنسبة للمريخ؟ ما قيمة T_S دور المحطة في مدارها حينئذ؟

التمرين التجريبي: (03,5 نقاط)

-1 لغرض حساب زاوية الميل α لمستو يميل عن الأفق. قام فوج من التلاميذ بقذف جسم صلب (S) كتلته

في اللحظة 0=1 من النقطة 0 بسرعة m=1~kg

نحو الأعلى وفق خط الميل الأعظم لمستو أملس (الشكل-4). ν_0

باستعمال تجهيز مناسب ، تمكن التلاميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة v = f(t) التالية :

أ- بتطبيق القانون الثاني لنيوتن، ادرس طبيعة حركة الجسم (S) بعد لحظة قذفه من O .

-من بين المخططات الأربعة (1)،(2) ،(3) و(4)، ما هو المخطط الموافق لحركة الجسم (S)؟ برر.

lpha جـ احسب قيمة الزاوية

t=2s و t=0 و المصافة المقطوعة بين اللحظتين: t=2s

f في الحقيقة يخضع الجسم أثناء انزلاقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة -2

أ- أحص و مثل القوى الخارجية المؤثرة على الجسم (S).

ب-ادرس حركة مركز عطالة (S)، ثم استنتج العبارة الحرفية لتسارع حركته.

f=1,8N جاحسب قيمة التسارع من أجل ج

 $g=9.8 \text{ m}\cdot S^{-2}$

·		التمرين الأول (3,5 نقط من)
		ا <u>و لا :</u> أ- عبارة التوتر
	2x0,25	$q = i.t = C.u_{AB} \Rightarrow u_{AB} = \frac{i}{C}.t$
	0,25	$u_{AB}=a.t$: ب- معادلة المنحنى البياني
	0,25	$a=rac{i}{C}$: بمطابقة العلاقتين نجد: C حساب
	0,25	$a = \frac{i}{C} = \frac{1-0}{17.5-0} = 5.71 \times 10^{-2}$
	0,25	$C = \frac{i}{a} = \frac{0.31 \times 10^{-3}}{5.71 \times 10^{-2}} = 5.4 \times 10^{-3} F = 5.4 \text{ mF}$: each
		$\mathbf{q}_{\max} = \mathbf{i}.\mathbf{t} = \mathbf{C}.\mathbf{U}_0 \Rightarrow \mathbf{C} = \frac{\mathbf{i} \times \mathbf{t}}{\mathbf{U}_0} : \underline{\mathbf{j}}$
		و المان ال
}		$C = 5.4 \times 10^{-3} F$
		: لينك
		أ- المعادلة التفاضلية
	0,25	$u_{AB} + u_R = 0$:من قانون جمع التوترات
03,5	0,25	$u_{AB} + RC \cdot \frac{du_{AB}}{dt} = 0 \implies \frac{du_{AB}}{dt} + \frac{1}{RC}u_{AB} = 0$
		ب أقيمة ثابت الزمن 7 للدارة:
	0,25	$Lnrac{U_0}{u_{AB}}=a.t$:معادلة المنحنى البياني
		$u_{AB} = U_0.e^{-rac{t}{\tau}}$ الدينا:
	0,25	$\frac{U_0}{u_{AB}} = e^{\frac{t}{\tau}} \implies Ln \frac{U_0}{u_{AB}} = \frac{1}{\tau}.t$ و منه:
		قيمة سعة المكثفة C :
	0,25	$\mathbf{a}=rac{1}{ au}$ بمطابقة العلاقتين نجد: $\mathbf{a}=rac{1}{ au}$
	0,25	$a = \frac{1}{\tau} = \frac{2.8 - 0}{15 - 0} = 0.187 s^{-1} \implies \tau = 5.36 s \approx 5.4 s$
	0,25	$\tau = R.C = 5, 4 \text{ s}$
	0,25	$C = \frac{5,4}{1000} = 5,4 \times 10^{-3} \mathrm{F} = 5,4 \mathrm{mF}$

		التمرين الثانى: (03 نقط)
		التعريق التاتي: (30 تعد)
	0,2	1-أ- نوع التفاعل الحادث: تفاعل اندماج .
	0,2	
		و نیتر و نات
	0,5	${}^{2}_{1} H + {}^{3}_{1} H \rightarrow {}^{4}_{2} H e + {}^{1}_{0} n$
03		2- أ- منحنى أستون يمثل تغيرات طاقة الربط لكل نيكليون بدلالة العدد الكتلي A.
	0,5	- الأنوية القابلة للإنشطار A > 180.
	0,5	- الأنوية القابلة للإندماج $A < 50$.
	0,5	- الأنوية المستقرة A < 180
	0,25	3-أ ـ طاقة الربط النووي:
		$E_{\ell} = \left[\left(Z m_p + \left(A - Z \right) m_n - m \left({}_{Z}^{A} X \right) \right] . c^{2}$
		$ \Delta E = \left E_{\ell} \left({}_{2}^{4} He \right) - E_{\ell} \left({}_{1}^{2} H \right) - E_{\ell} \left({}_{1}^{3} H \right) \right $
	0,25	
	,,,,,,	
		التمرين الثالث: (03,5 نقطة)
	0,25	ExAO راسم الاهتزاز المهبطي ذي ذاكرة هو الجهاز الذي يمكن وضعه بدل -1
	0,25	$u_{AB} = ri + L \frac{di}{dt} - 2$
	0,25	$u_{BC} = Ri - 3$
	0,23	$u_{BC} = 0V$ تكون $i = 0A$ عندما $i = 0$
	0,25	i de la companya de
	,,,,,,	ومنه $u_{AB} = L \frac{di}{dt}$ اما
	0,25	u _{BC} ◄ (1) المنحنى البياني (1)
	0,25 0,25	u _{AB} ← (2) المنحنى البياني (2)
2,50		-5
	0,25	$u_{BC} = Ri$ و $u_{AB} = ri + L\frac{di}{dt}$ بما أن:
		$(R_{+})_{i=1}^{n} di_{-}$
		$(R+r)i + L\frac{di}{dt} = E$: فإن
	0,25	$R_{i}i + L\frac{di}{dt} = E$:
	0,25	المعادلة التفاضلية
		$i + \frac{L}{R_t} \frac{di}{dt} = \frac{E}{R_t}$
		$R_t \frac{dt}{dt} - R_t$

0,23	، $i=rac{E}{R_{\star}}(1-e^{-rac{t}{r}})$ المعادلة التفاضلية من الرتبة الأولى حلها أسي:
0,25	$I_0 = \frac{E}{R+r} = \frac{6.0}{210} = 28.6 \text{ mA} - 6$
0,25	7 من البيان (1) إما من النسبة 63% أو من المماس , $\tau = 2,5 \text{ms}$.
0,25	$\tau = \frac{L}{R+r} - 8$

		التمرين الرابع: (3,75 نقطة)
		<u> ie. W:</u>
		1-في مرجع غاليلي: بتطبيق القانون الثاني لنيوتن .
	0,25	$\sum \overrightarrow{F}_{\text{ext}} = \text{m.a}_{\text{G}}$
		→ →
		mg = ma
	0.25	g = a
	0,25	$\left(a_{x}=0\right)$
03,75	5	$\begin{cases} a_x = 0 \\ a_z = g \end{cases}$
05,10		
	•	$\begin{cases} \frac{dv_x}{dt} = 0 \\ \frac{dv_z}{dt} = g \end{cases} \qquad \begin{cases} v_x = v_0 = \frac{dx}{dt} \\ v_z = gt = \frac{dz}{dt} \end{cases} \qquad \begin{cases} x(t) = vt = 50t \\ z(t) = \frac{1}{2}gt^2 = 4,9t^2 \end{cases}$
	3x0,25	$\begin{cases} \frac{d\mathbf{v}_{x}}{dt} = 0 \\ \frac{d\mathbf{v}_{z}}{dt} = g \end{cases} \qquad \begin{cases} \mathbf{v}_{x} = \mathbf{v}_{0} = \frac{d\mathbf{x}}{dt} \\ \mathbf{v}_{z} = \frac{d\mathbf{z}}{dt} \end{cases} \qquad \begin{cases} \mathbf{x}(t) = \mathbf{v}t = 50t \\ \mathbf{z}(t) = \frac{1}{2}\mathbf{g}t^{2} = 4,9t^{2} \end{cases}$
		$\left \frac{dv_z}{dt} = g \right v_z = gt = \frac{dz}{dt}$
		ب- معادلة المسار:
	2x0,25	$\int \mathbf{x}(t) = 50t$
	240,23	$z = 0,002x^{2}$ ومنه: $\begin{cases} x(t) = 50t \\ z(t) = 4.9t^{2} \end{cases}$
	0.25	
	0,25	$x_{M} = \sqrt{\frac{405}{0.002}} = 450 \text{m}$ each $h = 405 \text{m}$
	0,25	$t = \sqrt{\frac{405}{49}} = 9s - 2$
		γ 4,9

	-	ثانيا: 1- تطبيق القانون الثاني لنيوتن:
		الهي مرجع عاليلي:
	0,25	$\vec{P} + \vec{f} = m\vec{a}_G \iff \sum \vec{F}_{ext} = m.\vec{a}_G$
	0,25	$mg - 100v = m \frac{dv_Z}{dt}$.
	0,25	$\frac{dv_z}{dt} = 9,8 - \frac{2}{3}v$ بالتعویض نجد؛ ۷
	0,25	$v_{\ell} = 15 \text{m/s}$. السرعة الحدية $v_{\ell} = 15 \text{m/s}$
	2x0,25	$t = 10s \begin{cases} v = v_{\ell} = 15m \cdot s^{-1} \\ a = 0; v = c^{te} \end{cases}$ $t = 0 \begin{cases} v = 0 \\ v = \frac{dv}{dt} = 9,8 \text{ m.s}^{-2} \end{cases}$
	·	
		التمرين الخامس: (02,75 نقاط) 1- شكل العمود:
	0,75	R E C C C C C C C C C C C C C C C C C C
02,75	0,25	$Cu^{2+} + 2e^{-} = Cu$:عند صفيحة النحاس
	0,25 -	$Zn = Zn^{2+} + 2e^{-}$ عند صفيحة الزنك:
	0,25	$Cu^{2+}(aq) + Zn(s) = Cu(s) + Zn^{2+}(aq)$
	0,25	3-تزداد كتلة مسرى النحاس وتقل كتلة مسرى الزنك و يتوقف العمود عن الإشتغال . 4
		$I = \frac{E}{R} = \frac{1,10}{20} = 0,055A = 55mA - 4$
	2x0,25	5-cmlp كمية الكهرباء Q:
	0,25 0,25	$Q = I \times \Delta t$ $Q = S \times 10^{-3} \times 3600 \times 2$ $Q = 55 \times 10^{-3} \times 3600 \times 2$
1 .		

	·
0,25	$C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$ $C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$
0,25	المائة الثاعل RCOOH (aq) + $H_2O(1)$ = $RCOO^-(aq)$ + $H_3O^+(aq)$
·	بما أن الماء يستعمل بوفرة فإن الحمض هو المتفاعل المحد
0,25	حساب النقدم الأعظمي x_{max} : $ c_0V_0 - x_{max=0} $ ومنه: $C_0V_0 - x_{max=0}$ ومنه: $C_0V_0 - x_{max=0}$
0,25	$x_f = n(H_3O^+) = [H_3O^+].V = 10^{-PH}.V = 10^{-3.5} \times 0,5 = 15,8 \times 10^{-5} \text{ mol}$
0,25	نسبة النقدم النهائي $\tau : \tau = \frac{x_f}{x_{max}} = \frac{15.8 \times 10^{-5}}{10^{-3}} = 15.8 \times 10^{-2}$ و منه: فنفاعل حمض الإيبوبروفين محدود في الماء.
0,25	: Q_r detail $Q_r = \frac{[H_3O^+][RCOO^-]_i}{[RCOOH]_i} = \frac{x^2/V^2_0}{C_0.V_0 - x/V_0} = \frac{x^2}{(C_0V_0 - x.)V_0}$ $Q_r = \frac{x^2}{(C_0V_0 - x.)V_0} \Rightarrow Q_{r,eq} = \frac{x_f^2}{(C_0V_0 - x_f)V_0}$ $Q_{r,eq} = \frac{x^2}{V_0(1-\tau)}$
F1	
	0,25 0,25 0,25

	0,25	د- قيمة ثابت التوازن K :
		$Q_{r,eq} = K = \frac{(15,8 \times 10^{-2})^2 10^{-3}}{0,5(1-15,8 \times 10^{-2})} = 5,9 \times 10^{-5}$
03,5	0,25	ثانياً: الشكل التخطيطي لعملية المعايرة:
	0,25	2- يناسب التكافؤ الحالة النهائية للجملة حيث كميتى المادة للمتفاعلين (معاير و معاير) تزامنيا منعدمين أي يكونا بنسب ستوكيومترية. E(10,3mL; 8,4)
		pH
	0,25 0,25 0,25	$n(HO^{-}) = C_a.V_{Ea} = 2 \times 10^{-2} \times 10,3 \times 10^{-3} = 20,6 \times 10^{-5} \text{ mol } -3$ $n(HO^{-}) = 20,6 \times 10^{-5} \times \frac{100}{20} = 103 \times 10^{-5} \text{ mol } :$ $0 \times 100 \text{ mL}$ $0 \times 10^{-5} \times 100 \times 10^{-3} = 200 \times 10^{-5} \text{ mol } -4$ $0 \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5}$ $0 \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5}$
	0,25	$m = 97 \times 10^{-5} \times 206$ ومنه: $n = \frac{m}{M} - 5$ $m = 0,199g \approx 200 \text{mg}$ وهذا يتوافق مع ماهو مكتوب على الكيس.

152

							ناط)	<u>ل: (03 ن</u>	التمرين الأو
,			•		•	21-(20) =	$= I_{2(a0)} + 2\epsilon$? -	-1
						$S_2O_{8 \text{ (aq)}}^{2-1}$	$+2e^{-}=2S$	$SO_{4 \text{ (aq)}}^{2} \dots$	
	0,25					$S_2O_8^{2-}$ (aq)	$+2I^{-}_{(aq)} =$	$SO_{4 \text{ (aq)}}^{2^{-}} \dots$ $I_{2(\text{aq)}} + 2SO_{4}^{2^{-}}$	O _{4 (aq)}
								تقدم .	2- جدول ال
			المعادلة	S_2O_8	2- (aq) +	2 <i>I</i> (aq	$I_{2(aq)}$	+ 2	$2SO_4^{2-}$ aq)
	0,5		ح.ابتدائية		10 ⁻²	1,6.10			0
			ح. إنتقالية	10	x^2-x	1,6.10 ⁻² -			2x
			ح. نهائية	10-	$^2-x_{\rm max}$	1,6.10 ⁻² -	$-2x_{\text{max}} x_{\text{max}}$	ıx	$2x_{\text{max}}$
						وض) mol			
	0,25		x	$_{\text{max}} = \frac{C}{}$	$\frac{1V_1}{2} = 0.8 \times$	(10 ⁻² mol ((مقبول		
			b		.			حد شوارد ا	المتفاعل اله
						_	ك :	: من الجدوا	1- العلاقة
				n	$(I^{-}) = C_1 V_1$	-2x	· ·	على V .	بالقسمة د
0,3			[₇]	$c_{i}V_{i}$	I^{-}] $_{(t)}$	$ [I_2]_{(t)} =$	$c_1V_1 \underline{x}$	$\frac{x}{x}$ وحيث	-=[/.]
	0,25		$\begin{bmatrix} I_2 \end{bmatrix}_{(t)} = 0$	<i>~</i> ,	_				i
	0,25			[1	$\begin{bmatrix} 2 \end{bmatrix} = 8 \times 10^{-1}$	$\frac{1}{2}\left[I^{-}\right]_{(t)}$	$molL^{-1}$	للجدول:	
	0,25		t(min)	0	5	10	15	20	25
	No.		$[I_2](10^{-2})$	0	2	3,2	4,15	4,95	5,45
			à				$[I_2]$	=f(t)	رسم الي
			\$0.50 \$1.50						
			, ,) × 10 mm				
							and the		
	0,25								
							n.		
				7					
						•			
1	.5:	3		7 3	صفحة 1مر				

الإجابة النموذجية للموضوع الثاني-مادة: العلوم الفيزيائية- شعبة: تقني رياضي+رياضيات.

	ب- زمن نصف التفاعل $(t_{1/2})$:
	هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الأعظمي،
0,25	$x_{t_{1/2}} = \frac{x_{\text{max}}}{2} : \underline{t} = t_{1/2}$
	$\frac{[I_2]_{\text{max}}}{2} = 4 \times 10^{-2}$ توافق $t_{1/2}$
0,25	($13.5 \le t_{1/2} \le 15 \text{min}$) $t_{1/2} = 14 \text{min}$) من البيان هي البيان على البيان
	: $t = 20 \min$
0,25	$v = \frac{dx}{dt} = \frac{d [I_2]V_s}{dt} = V_s \cdot \frac{d [I_2]}{dt} = 0,15 \times 10^{-3} mol / min$ يسرعة إختفاء شوارد I^- يسرعة إختفاء شوارد
0,25	$\frac{V_{I_2}}{1} = \frac{V_{I_2}}{2}$ $\Rightarrow V_{I_2} = 2V_{I_2} = 0.3 \times 10^{-3} \text{mol/min}$ من العلاقة:

		التعرين الثاني: (3,25 نقطة)
	0,25	1-أ- تعريف: البيكريل يوافق تفكك واحد في الثانية.
	0,25	$^{192}_{77}$ اب- معادلة التفكك: $^{192}_{78}$ + $^{192}_{78}$ Pt + $^{0}_{-1}$ e + γ
•	0,25	- النمط الإشعاعي الموافق لهذا التحول النووي هو: -β.
	0,25	- تفسير اصدار اشعاع γ: خلال تفكك نواة الأيريديوم ينتج نواة البلاتين في حالة مثارة * 192Pt (192 Pt - 2017)
	0,23	و تفقد إثارتها عند عودتها الى حالتها الأساسية بإصدار ٧ (موجات كهرمغناطسية)
	0,25	وفق المعادلة: $\gamma + \frac{192}{78}$ $+ * \frac{192}{78}$ وفق المعادلة: $\gamma + \frac{192}{78}$ $+ * \frac{192}{78}$
		78 7 78 1 7 78
		المراقعة الاستنام المراقعة على المراقعة المراقعة المراقعة المراقعة المراقعة المراقعة المراقعة المراقعة المراقعة
03,25	1	ج- عدد أنوية الايريديوم الموجودة في $1g$ من العينة:
	2x0,25	$N = \frac{m}{M} \cdot N_A = \frac{1}{192} \cdot 6,02 \times 10^{23} \approx 3,14 \times 10^{21} \text{ noyaux}.$
		. In 2·
		$t_{1/2} = \frac{\ln 2^{4}}{\lambda}$ $\Rightarrow t_{1/2} = \frac{N \cdot \ln 2}{A} = 6.4 \times 10^{6} \text{ s} \approx 74 \text{ jours}$ الايريديوم: $t_{1/2} = \frac{10.2^{4}}{A}$
	3x0,25	$\begin{cases} A \Rightarrow L_{1/2} = A = 0.4 \times 10^{-3} \text{ A} \end{cases}$
		\$ 1 KI
		- 2 - حساب Δm
		$\Delta m = m_i - m_f$
	0,25	=4.m(${}_{1}^{1}H$)-m(${}_{2}^{4}He$)-2m(${}_{1}^{0}e$)
	0,25	$\Delta m = 0.0267u = 4.4 \times 10^{-29} \text{kg}$
	0,220	- الطاقة المحررة:
		$E_{IIb} = \Delta m.c^2 = 0.0267u.c^2 \approx 24.87MeV$
	0,25	$E_{lib} = \Delta III.C = 0,0207 d.C = 24,0710 C$

		التمرين الثالث: (3,5 نقطة)
	0,25	$u_{R}(t)$ ، $u_{b}(t)$ ، $u_{b}(t)$ و $u_{c}(t)$. $u_{b}(t)$. $u_$
		$ (1) \cdots E = u_R(t) + u_b(t) \cdot -2 \cdot 2 \cdot $
		and the same of th
	0,25	-عبارة (u _b (t) بدلالة u _b (t): عبارة (t) ط بدلالة (t) بدلالة (t)
	0,25	$u_R(t) = R \cdot i(t) \Rightarrow i(t) = \frac{u_R(t)}{R} \Rightarrow \frac{di(t)}{dt} = \frac{1}{R} \frac{du_R(t)}{dt}$
		$u_b(t) = \frac{L}{R} \frac{du_R(t)}{dt} + r \cdot \frac{u_R(t)}{R}$ بالتعویض في (2) نجد:
		جـ - المعادلة التفاضلية:
·	0,25	$\frac{du_R(t)}{dt} + \frac{r+R}{L}u_R(t) = \frac{R}{L}E$: تصبح العلاقة (1):
		2- تعيين الثوابت B،A و m :
	0,25	$\frac{d u_R(t)}{dt} = -B.m.e^{-m.t} : u_R(t)$ نشتق
·		نعوض $u_R(t)$ و $\frac{\sigma u_R(t)}{dt}$ في المعادلة التفاضلية:
		ut.
		$B.e^{-m.t}\left(\frac{r+R}{L}-m\right)+\frac{r+R}{L}A=\frac{R}{L}E$
03,5		حتى تتحقق هذه المساواة يجب أن يكون معامل $e^{-m.t}$ معدوما و منه :
	0,25	$A = \frac{R}{r + R} E \qquad m = \frac{r + R}{L}$
		من الشروط الإبتدائية:
	0,25	$A+B=0 \Rightarrow A=-B$
	0,23	$\Rightarrow B = -\frac{R}{r+R}E$
		I + N
	0,25	$u_{R}(t') = \frac{R}{R/4} E (1 - e^{-\frac{R+r}{L}t})$
	0,25	3- أ-عبارة (_{I₀) في النظام الدائم:}
	0,25	$\frac{di(t)}{dt} = 0$ أي $i(t) = i_{max} = I_0 = Cste$ في النظام الدائم
	-	العلاقة (1) :
	,	$I_0 = \frac{E}{R + r}$
	0,25	ا الشدة (I ₀ = 18 mA بيانيا: I ₀ = 18 mA
	0,25	
	,	angle - مقاومة الوشيعة: $ angle$ - $ angle$ - مقاومة الوشيعة: $ angle$ - $ angle$ - مقاومة الوشيعة: $ angle$
	0,25	$\tau = \frac{L}{R+r}$ الزمن τ : $\frac{L}{R+r}$
	0,25	- التحليل البعدي: $s = [T] = [T] \Rightarrow [T] \times [T] \times [T] \times [T] \Rightarrow [T] = [T]$ متجانس مع الزمن.
	1001	[K, 1] [i] × [O]

	7							
		ـ قيمة $_{T}$ بيانيا : من إحدى الطريقتين (طريقة المماس عند $_{t}=0$ أو طريقة 63%) نجد:						
		$ au \simeq 4 \mathrm{m} \mathrm{s}$: (L) :						
	0,25	$L = 0,44H \Leftarrow L = \tau \cdot (R + r)$						
.	1 1,20							
		التمرين الرابع: (03,5 نقط لم)						
		اً-أ– معادلة تفاعل حمض البنزويك مع الماء						
	0,25	$C_6H_5COOH_{(aq)} + H_2O(l) = C_6H_5COO_{aq}^- + H_3O_{aq}^+$						
		ب- جدول تقدم النفاعل						
		حادلة الكاعل $C_6 H_3 COOH_{(eq)} + H_2 O(l) = H_3 O_{eq}^+ + C_6 H_3 COO_{eq}^-$						
	0,5	الحالة الإبتدائية C ₁ V أيادة الإبتدائية 0 0						
		بزيادة جراح العالة الوسطية و بريادة العسطية						
		ألحالة النهائية $C_1 Y = X_j$ مريادة X_j مريادة X_j مريادة النهائية X_j						
		$x_{ m max}=C_1.V=2 imes10^{-3}mol:x_{ m max}$ ج- قيمة التقدم الأعظمي						
	0,25	التقدم النهائي x و نسبة التقدم النهائي $ au_1$ لهذا التفاعل:						
		$x_f = 1,59 \times 10^{-4} mol $ ومنه $x_f = [H_3O^+]_f.V = 10^{-pH_1}.V$						
	0.25							
	0,25	$ \tau_1 = \frac{x_f}{x_{\text{max}}} = \frac{1,59 \times 10^{-4}}{2 \times 10^{-3}} \iff \tau_1 = 0,08 $						
		_						
03,5		$ au_1=8\%$ أي:						
	0,25	نستنتج أن حمض البنزويك ضعيف في الماء لأن نسبة تقدم تفاعله مع الماء أقل من 1 .						
		$C_6H_5COOH_{(aq)}$ / $C_6H_5COO_{(aq)}$ هو ثابت التوازن لتفاعل د- ثابت الحموضة للثنائية ($C_6H_5COOH_{(aq)}$						
		حمض البنزويك مع الماء.						
٠.	0,25-	$K_{A1}=K=rac{[C_6H_5COO_{aq}^-]_{\ell q}.[H_3O_{aq}^+]_{\ell q}}{[C_6H_5COOH_{aa}]_{\ell a}}$ عبارته:						
		$[C_6 H_5 COO_{aq}^-]_{\ell q} = [H_3 O_{aq}^+]_{\ell q} = rac{x_f}{V}$ ، ه- من جدول النقدم نجد						
	0,25	~ '						
		$[C_6H_5COOH_{aq}]_{eq} = \frac{C_1.V - x_f}{V}$						
		$K_{A1} = rac{1}{V} imes rac{x_f^2}{C_1 V - x_f}$: نعوض في عبارة ثابت الحموضة نجد						
	0,25							
		$x_f = au_1.x_{ ext{msx}} = au_1.C_1.V$ من جهة آخرى لدينا:						
		$K_{A1}=C_1.rac{ au_1^2}{1- au_1}$: نعوض x_f بعبارتها نجد						
]	$1- au_1$						

	0,25	$K_{A1} = 1 \times 10^{-2} \cdot \frac{(0,08)^2}{1 - 0,08} = 6,96 \times 10^{-5}$: K_{A1} قيمة حساب قيمة -				
·	0,25	$C_1' = \frac{C_1}{10} = 1.0 \times 10^{-3} \text{ mol.} L^{-1} \iff \frac{C_1'}{C_1} = \frac{1}{10} : -10^{-1} = 1.0 \times 10^{-3} \text{ mol.} L^{-1}$				
	0,25	$ au_2=rac{10^{-pH_2}}{C_1}$: $ au_{2f}$ النهائي $ au_{2f}$ النهائي : $ au_{2f}$				
	0,25	$ \tau_2 = 25\% : \tau_2 = \frac{10^{-3.6}}{10^{-3}} = 0.25 $				
	0,25	ج- تزداد نسبة التقدم النهائي كلما كان المحلول مخفف.				
	0,25 0,25 0,25 0,25	التمرين الخامس: $(3,25)$ نقطه التمرين الخامس: $(3,25)$ نقطه الكوكب على القمر $\overline{F}_{M/P}$ المماس . $\overline{F}_{M/P}$ القمر على القوة التي يطبقها الكوكب على القمر على القانون الثاني لنيوتن على مركز عطالة القمر $\overline{F}_{M/P} = m_{\rm P} \overline{a}_{\rm G}$ في المرجع الغاليلي: $\overline{F}_{M/P} = m_{\rm P} a_{\rm n}$ بالإسقاط على الناظم: $F_{M/P} = m_{\rm P} a_{\rm n}$				
	0,25	$G \cdot \frac{\mathbf{m}_{p} \cdot \mathbf{m}_{M}}{\mathbf{r}^{2}} = m_{p} \cdot a_{n} \Rightarrow a_{n} = G \cdot \frac{\mathbf{m}_{M}}{\mathbf{r}^{2}}$ (1) $a_{T} = 0 \Rightarrow \frac{dv}{dt} = 0 \Rightarrow v = Cste$ بالإسقاط على المماس: (2)				
	0,25	بما أن المسار دائري و سرعتها ثابتة \Rightarrow الحركة الدائرية المنتظمة.				
	2x0,25	$\begin{cases} a_n = G \cdot \frac{m_M}{r^2} \\ a_n = \frac{v^2}{r} \end{cases} \Rightarrow v = \sqrt{G \cdot \frac{m_M}{r}} : \exists v = 1$				
03,25		3- عبارة دور الحركة:				
	0,25	$T_{p} = \frac{2 \cdot \pi \cdot r}{v} \Rightarrow T_{p} = 2 \pi \sqrt{\frac{r^{3}}{G \cdot m_{M}}}$				
		4- نص القانون الثالث لكبلر: « إن مربع الدور الكوكب عن الشمس » ،				
1	0,25 57	$\frac{\frac{T_P^2}{r^3} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}{\frac{T_P^2}{r^3} = \frac{4\pi^2}{G \cdot m_M}} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}$				
	صفحة 5 من 7					

A CONTRACTOR OF THE SECOND SEC	استنتاج قیمهٔ $T_{ m p} = 2,76 imes 10^4 s \simeq 7,66 { m h}$ استنتاج قیمهٔ را کانته استنتاج تیمهٔ استنتاع تیمهٔ استناع تیمهٔ استنتاع تیمهٔ تیمهٔ استنتاع تیمهٔ استناع تیمهٔ استنتاع تیمهٔ استنتاع تیمهٔ استنتاع تیمهٔ استنتاع تیمهٔ استنتاع تیمهٔ استنتاع تی
0,25	 5- لكي يكون قمر إصطناعي (S) ثابتا بالنسبة لمحطّة في المريخ يجب أن يتواجد مركز
0,25	المريخ في مستوى المسار الذي يكون يعامد محور دوران المريخ و يكون القمر الإصطناعي في المستوي الاستواني للمريخ. وجهد حرر مهم دهميها و لهمي المستوي الاستواني للمريخ. وجهد حرر مهم المستوي الاستواني للمريخ.
 0,25	المسنوي الاستواني للمريخ. وجهت $T_s = T_M = 24h$ 37 min

، رياضي+رياضيات.	مسعبة: تقتر	الفيزيائية-	مادة: العلوم	ع النائي-	للموضو	النمودجيه	لإجاب

·	التمرين التجريبي: (03,5 نقطة)
	1- ا- طبيعة حركة الجسم (S)
(0.25)	بتطبيق القانون الثاني لنيوتن مركز عطالة على الجسم
0,25	(S) في المعلم الأرضي
0,25	$\sum \overline{F}_{dxt} = m \cdot \overline{a}_G \Leftrightarrow \overline{P} + \overline{R} = m \overline{a}_G$: الذي نعتبره غاليليا
	$a_G = -g \sin \alpha$
0.25	\overline{P} $a_G = Cste(0)$
0,25	المسار مستقیم $\overline{a_G} \times \overline{v} \langle \overline{0}$ حرکة مستقیمة متباطئة بانتظام
0,23	ب- المخطط الموافق لحركة الجسم (S) : هو المخطط (
0,25	في المرحلة الأولى: $t \in [0,1]s \Rightarrow -(2)$ متباطئة بانتظام (الصعود).
•,200	في المرحلة الثانية: $t \in [1,2]$ يغير المتحرك اتجاهه و تصبح حركته متسارعة بانتظام (النزول)
0,25	■ قيمة زاوية الميل \ ;
- 7	في المجال $t \in [0,1]$: تسارع حركة (S):
0,25	$=a_1 = \frac{\Delta V}{\Delta t} = \frac{0 - 3.5}{1 - 0} = -3.5 m / s^2$
	$a_1 = -g \sin \alpha \Rightarrow \sin \alpha = \frac{a_1}{-g} = +0,35$
0,25	⇒ α ≈ 20, 9° ≈ 21°
	د- المسافة المقطوعة بين اللحظتين 0 و 2s:
0,25	$d = \frac{1 \times 3.5}{2} + \frac{1 \times 3.5}{2} = 3.5 \text{ m}$
	2-أ - القوى الخارجية المؤثرة على الجسم (S):
0,25	يخضع الجسم (S) إلى القوى التالية: به التالية: ب
0,25	- قوة التي يؤثر بها المستوى على (S) هي: هم .
0,25	- قوة الإحتكاك f . ب- دراسة حركة مركز عطالة (S) :
	بتطبيق القانون الثاني لنيوتن على مركز عطالة (S) في
	المرجع الأرضى الذي نعتبره غاليليا
	بالإسقاط على المحور (x'x): $\overline{P} + \overline{R_N} + \overline{f} = m \cdot \overline{a_G}$
0,25	$-P \sin \alpha - f = m \cdot a'_{G}$
	$a'_{G} = -g \sin \alpha - \frac{f}{m}$ ومنه:
0,25	جـ قيمة التسارع:
	$a'_{G} = -5, 3m / s^{2}$