

Singular Value Decomposition (SVD)

Provided by:

Mohammad Hashemi

Outline

- Definition of SVD
- 2. SVD calculation
- 3. SVD applications
- Matrix approximation with SVD
- Image compression with SVD 🖺

Definition of SVD

Let M be an $m \times n$ matrix, and let r be the rank of M. Then there exists a matrix factorization called Singular Value Decomposition (SVD) of M:

$$M = U \Sigma V^{T}$$

Where:

- 1. U is an $m \times r$ column-orthonormal matrix; that is, each of its columns is a unit vector and the dot product of any two columns is 0.
- 2. Σ is a diagonal matrix where the diagonal entries are called the singular values of M.
- 3. V^T is an $r \times n$ row-orthonormal matrix; that is, each of its rows is a unit vector and the dot product of any two rows is 0.

Definition of SVD

SVD calculation

The SVD of a matrix M has a strong connection of the eigenvectors of the matrix M^TM and MM^T .

Fact 1: The rows of V^T are the eigenvectors corresponding to the positive eigenvalues of M^TM .

Fact 2: The squares of the diagonal of Σ are the positive eigenvalues of M^TM .

More specifically the i^{th} row of V^T is the eigenvector of M^TM whose corresponding eigenvalue if the square of the i^{th} entry of Σ .

SVD calculation

Fact 3: The columns of U are the eigenvectors corresponding to nonzero eigenvalues of MM^T .

Note: For any matrix M, M^TM and MM^T have the same nonzero eigenvalues.

More specifically the i^{th} row of V^T is the eigenvector of M^TM whose corresponding eigenvalue if the square of the i^{th} entry of Σ .

SVD calculation

Remark: Since M^TM is an $n \times n$ matrix and MM^T is an $m \times m$ matrix, where n and m do not necessarily equal to the r. In fact, n and m are at least as large as r, which indicates that M^TM and MM^T should have an additional n-r and m-r eigenpairs with eigenvalues of zeros.

SVD applications

Data Reduction

Principal Component Analysis

Recommender Systems

Solve Ax = B for non-square A

Google PageRank

Computer Vision Tasks

 $X_k \in \mathbb{R}^n$

 $(n \gg m)$

Linear Algebra Matrix Approximation

Assume we have X as a library of person faces with m faces. Then we can write the SVD form of X as:

about row-space of X.

Linear Algebra

Matrix Approximation

Important Note: Since there are m columns in X, there are only m linearly independent columns in this n dimensional vector space that could be spanned by these vectors.

Thus, only m columns of U matter for the representation of X.

Linear Algebra Matrix Approximation

Linear Algebra

Image compression

Let's Do Some Code! 🕮

https://github.com/SBU-CE/Linear-Algebra/04_Singular_Value_Decomposition

Thanks.

Mohammad Hashemi

mohammad99hashemi@gmail.com