TRUE (or) FALSE

Big - O Notation:

Let f and g be functions $f,g:N\to R^+$ say that f(n)=O(g(n)) if positive integers c and n_0 exist such that for every integer $n\geq n_0$

$$f(n) \le c(g(n))$$

When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n).

(a)

True.

The statement 2n = O(n) is valid, because from the definition of Big-O notation it is clear that f(n) = c(g(n)).

(b)

False.

The statement $n^2 = O(n)$ is not valid, because $n^2 = n \cdot n$ which will grow faster than n.

That contradicts Big – O notation. Thus, $n^2 = O(n)$ is False.

(c)

False.

The statement $n^2 = O(n \log^2 n)$ is not valid, because factor n grows faster than the factor $\log^2 n$. That means f(n) > g(n), which contracts the Big -O notation.

Hence $n^2 = O(n \log^2 n)$ is false.

(d)

True.

The statement $n \log n = O(n^2)$ is valid, because the factor $\log n$ grows slower than the factor n. That means f(n) < g(n). From Big-O notation $n \log n - O(n^2)$ is true.

(e)

True.

The statement $3^n = 2^{O(n)}$ is valid, because $3^n = 2^{n\log 3}$ and $n\log 3 = O(n)$.

From Big-O notation $3^n = 2^{O(n)}$ is true.

(f)

True.

The statement $2^{2^n} = O\left(2^{2^n}\right)$ is valid, because from Big- O notation $f\left(n\right) = O\left(f\left(n\right)\right)$ for any function $f\left(n\right)$. Hence $2^{2^n} = O\left(2^{2^n}\right)$ is true.