Graphs

- 1. Graph (or Networks)
 - a. Model a wide variety of datasets
 - b. Natural graph: social networks, collaboration networks
 - i. Humans (every node is a human)
 - ii. Relationship between humans (edge between them)
 - iii. Lots of research on drug discovery graph neural networks → every node is a protein and if they interact, there is an edge
 - c. Similarity graphs
 - i. Two time series \rightarrow edge if there is a similarity between two stocks
 - d. Google
 - i. Picture \rightarrow nodes
 - ii. Edge if there are similarity or relationship between two pictures
- 2. Erdos-Renyi Model (Random Binomial graphs)
 - a. Graph requires vertex: $V = \{1,2,...,n\} = [n]$
 - b. G(n, p)
 - i. $n \rightarrow number of nodes$
 - ii. $p \rightarrow probability of connection (edge)$
 - c. For each pair of nodes, there are nC2 pairs and we toss a coin and with probability p, we add an edge
 - i. For example, there are 3 nodes
 - 1. N nodes (1,...,n). How many possible graphs exist?
 - a. $2 \wedge (nC_2)$

- ii. G(3,p)
 - 1. If all edges are disconnected, the probability is (1-p)³
 - 2. If one edge is connected, the probability is $p(1-p)^2$

- 3. If two edges are connected, the probability is $p^2(1-p)$
- 4. If all edges are connected, the probability is p³
- d. If there is a graph, there are n edges
 - i. This means that there are nC2 m non-edges
 - ii. This means that the probability is $p^m (1-p)^n (nC_2 m)$
- e. What is the probability that a sample has exactly m edges
 - i. P(a sample has exactly m edges) = $(nC_2)C_m * p^m * (1-p)^n(nC_2-m)$
- f. Number of edges in G(n,p) = M
- g. $M = X_{1,2} + X_{1,3} + ... + X_{n-1,n}$
 - i. Where Xa,b = 1 with probability p and 0 otherwise
- h. $Pr(M=k) = ({}_{n}C_{2})C_{k} * p^{k} * (1-p)^{n}({}_{n}C_{2} k)$
- 3. Properties of graphs
 - a. Neighbors of $u = N(u) = \{v: u \text{ and } v \text{ are connected with an edge}\}$
 - b. |N(u)| = deg(u) = degree
 - i. Degree of any node is Bin(n-1, p)
 - c. $Pr(deg(u) = k) = {}_{n-1}C_k * p^k * (1-p)^n(n-1-k)$

4. Phase transition

a. There is a value p* (threshold value) that

- b. T = number of triangles in G(n,p)
 - i. Pr(triangle_{1,2,3})
 - ii. $E(T) = {}_{n}C_{3} * p^{3}$

5. Definition

- a. A node I is isolated if deg(I) = 0
- b. Let X be the random variable equal to the number of isolated nodes
 - i. If there are 3 nodes, the expected number of isolated nodes is

$$3(1-p)^3 + p(1-p)^2 + p(1-p)^2 + p(1-p)^2$$

= $3(1-p)^3 + 3p(1-p)^2 = 3(1-p)^2$

- c. Define $Y_i = 1$ if deg(i) = 0 and 0 otherwise
- d. Expected number of isolated nodes by linearity of expected value is $Pr(Y_{i=1}) = (1-p)^{(n-1)}$

$$E[x] = \sum_{i=1}^{n} i = 1 \text{ to } n E(Y_1) = n*(1-p)^{(n-1)}$$

e. Covariance of Yi, Yj

i.
$$Cov(Y_i, Y_j) = E(Y_iY_j) - E(Y_i) E(Y_j)$$

= $E(Y_iY_j) - (1-p)^2(n-1)$
= $(1-p)^2(2(n-2)+1) - (1-p)^2(n-1)$

6. Definition

- a. $P = cln(n)/n \rightarrow if n \rightarrow infinity$, p goes to 0
- b. $E(x) = n(1-p)^{(n-1)}$
- c. $\lim(1+c/n)^n$ as $n \rightarrow \inf = e^c$
- d. $\lim E[x]$ as $n \rightarrow \inf$ infinity

=
$$\lim n^*(1-c\ln(n)/n)^n$$
 as $n \to infinity$

=
$$n * e^{(\ln(n-1)/n)}$$
 as $n \rightarrow infinity$

$$= n^{(1-c)}$$

$$\lim (1-c*\ln(n)/n) \land (n-1) \text{ as } n \rightarrow \inf infinity$$

$$=e^{(-c*ln(n)/n*(n-1))}$$
 as $n \to infinity$ (as $(n-1)/n$ goes to infinity, it goes to 1)

$$=e^{(-c*ln(n)/n)}$$

$$=n^{-c}$$

Therefore,
$$n*n^-c = n^(1-c)$$

i. If
$$c > 1$$
, then $E[x] = n^{(1-c)} = n^{(-delta)} = o(1) \rightarrow goes to 0$

1. If
$$c = 1 + delta$$
 (where delta is positive)

a.
$$Pr(X >= 1) \le E[x] \to 0$$

b.
$$Pr(X = 0) \rightarrow 1 - o(1) = 1$$
 when $p > ln(n)/n$