Sekvenční logické obvody

Hodinový signál

Hodinový signál je číslicový signál (0/1), který se mění z 1->0 a 0->1 s určitou frekvencí a proporcí mezi úrovní 1 a 0 v poměru 1:1. Tedy 50% periody 1 a 50% periody 0.

Hodinový signál vstupuje do všech sekvenčních obvodů, určuje okamžik provedení a také rychlost provádění návazných operací.

Základním parametrem hodinového signálu je frekvence (f_{clk}). Často se uvádí hodinová frekvence procesoru, která je rovněž měřítkem jeho výkonu.

32768Hz - nízkopříkonové mikrokontroléry,
500kHz-24MHz – standardní mikrokontroléry
30-200MHz – středně a vysoce výkonné mikrokontroléry
200MHz-1GHz – embedded procesory (ARM, x86)
>1GHz – desktopové a serverové procesory

Synchronní klopný obvod R-S (hladinový)

O synchronním klopném obvodu R-S

- Je to základní synchronní klopný obvod
- Z něj se odvozují další klopné obvody: J-K, D, T
- Synchronní znamená, že je synchronizován hodinovým signálem
- Hladinový obvod znamená, že výstup Q se může měnit po celou dobu, kdy je hodinový signál v log. 1. Proto se musí zajistit stabilní vstupy po celou tuto dobu, aby došlo k nejvýše jedné změně výstupu Q
- Výše uvedená nevýhoda se dnes řeší tzv. hranovými klopnými obvody, které reagují (mění výstup Q) pouze s hranou (vzestupnou/sestupnou) hodinového signálu. Tyto obvody jsou konstrukčně složitější a obsahují více R-S klopných obvodů

Hranový klopný obvod typu D

PR(PRE) je asynchronní nastavení Q na log. 1 (aktivní v log. 0)

CL(CLR) je asynchronní nastavení Q na log. 0 (aktivní v log. 0)

Pozn.: asynchronní znamená, že není synchronizován s hodinovým signálem a přechod do aktivní úrovně (v našem případě log. 0) způsobí odpovídající okamžitou změnu na Q.

Převzato z DUAL D-TYPE EDGE TRIGGERED FLIP-FLOPS WIDTH PRESET AND CLEAR, datasheet, Texas Instruments Incorporated, 1988

Tento obvod lze zakoupit v obchodě se součástkami pod označením např. 74LS74

Funkce hranového klopného obvodu typu D

Klopný obvod D je jednobitovou pamětí.

Nula na signálu RESET nastaví Q do nuly bez ohledu na CLK a D. Používá se k inicializaci klopného obvodu.

Jednobitový registr se synchronním zápisem a asynchronním nulováním

Vícebitový (paralelní) registr

Posuvný registr

Cmd(1:0)	Funkce
0x	Bez změny
10	Posun vpravo
11	Nahrát hodnotu paralelně

Posuvný registr se užívá všude, kde serializují a deserializují data. Např. USB, Ethernet, UART (COM port), SATA, PCIe.

Data paralelně vstupují vstupem a, sériově vystupují na výstupu out. Nebo paralelně vstupují vstupem in a čtou se na výstupech klopných obvodů (není zakresleno). Multipexor přepíná požadovanou funkci.

Popis sekvenčních obvodů – konečné automaty (KA, anglicky FSM)

Konečný automat je definován $KA = (Q, \Sigma, \Gamma, \delta, \omega, q_0)$

Q ... množina stavů

Σ ... množina vstupních symbolů

Γ... množina výstupních symbolů

δ ... přechodová funkce

ω ... výstupní funkce

q₀ ... počáteční stav

$$\delta: Q \times \Sigma \longrightarrow Q$$

Typ Moore

$$\omega: Q \longrightarrow \Gamma$$

Typ Meally

$$\omega: Q \times \Sigma \longrightarrow \Gamma$$

Přechodová a výstupní funkce KA (Moore)

Tabulka přechodů

Q(t)	Q(t+1)		
	а	b	С
q0	q1	q2	q0
q1	q1	q2	q2
q2	q3	q2	q3
q3	q3	q1	q0

Q(t)	výstup
q0	Х
q1	У
q2	Х
q3	Z

Symboly a,b,c,x,y a z musí být posléze kódovány binárně. Např. a:00, b:01, c:10; x:00, y:01, z:10.

Určete výstupní posloupnost pro vstup ccaaabbbcbaaabcc

Přechodová a výstupní funkce KA (Moore)

Tabulka přechodů

Q(t)	Q(t+1)	
	0	1
q0	q1	q2
q1	q1	q2
q2	q3	q0
q3	q3	q0

Tabulka výstupů

Q(t)	Výstup y
q0	1
q1	1
q2	0
q3	1

Určete výstupní posloupnost pro vstup: 000100010011111111000000000011111

Přechodová a výstupní funkce KA (Meally)

Tabulka přechodů

Q(t)	Q(t+1)	
	.0	1
q0	q0	q1
q1	q2	q1
q2	q2	q3
q3	q3	q0

Tabulka výstupů

Q(t)	Výstup y	
	0	1
q0	1	0
q1	0	1
q2	1	0
q3	1	1

Určete výstupní posloupnost pro vstup 0010010011111100011000

Hardwarová realizace

