4.2 Exercise 1 - Kc

- 1. For each of the following equilibria, write the expression for the equilibrium constant K_c and state its units:
- i) $2NO_2(g) == N_2O_4(g)$
- ii) $CH_3CH_2CO_2H(1) + CH_3CH_2OH(1) == CH_3CH_2CO_2CH_2CH_3(1) + H_2O(1)$
- iii) $H_2(g) + I_2(g) == 2HI(g)$
- iv) $2SO_2(g) + O_2(g) == 2SO_3(g)$
- v) $N_2(g) + 3H_2(g) == 2NH_3(g)$
- 2. For the equilibrium $PCl_5(g) == PCl_3(g) + Cl_2(g)$ the equilibrium concentrations of PCl_5 , PCl_3 and Cl_2 are 1.0, 0.205 and 0.205 moldm⁻³ respectively. Calculate the value of K_c .
- 3. For the equilibrium $2N_2O_5(g) == 2N_2O_4(g) + O_2(g)$ The equilibrium concentrations are $[N_2O_5] = 1.0$ moldm⁻³, $[N_2O_4] = 0.11$ moldm⁻³, $[O_2] = 0.11$ moldm⁻³. Calculate the value of K_c .
- 4. The reaction for the formation of hydrogen iodide does not go to completion but reaches an equilibrium: $H_2(g) + I_2(g) == 2HI(g)$ A mixture of 1.9 mol of H_2 and 1.9 mol of I_2 was prepared and allowed to reach equilibrium in a closed vessel on 250 cm³ capacity. The resulting equilibrium mixture was found to contain 3.0 mol of HI. Calculate the value of Kc.
- 5. Consider the equilibrium: $N_2O_4(g) == 2NO_2(g)$. 1 mol of dinitrogen tetroxide, N_2O_4 , was introduced into a vessel of volume 10 dm³. At equilibrium 50% had dissociated. Calculate Kc for the reaction.
- 6. In an experiment, 9.0 moles of nitrogen and 27 moles of hydrogen were placed into a vessel of volume 10 dm³ and allowed to reach equilibrium. It was found that two thirds of the nitrogen and hydrogen were converted into ammonia. Calculate Kc for the reaction.

 N₂(g) + 3H₂(g) == 2NH₃(g)
- 7. Hydrogen chloride can be oxidised to chlorine by the Deacon process: $4HCl(g) + O_2(g) == 2Cl_2(g) + 2H_2O(g)$ 0.800 mol of hydrogen chloride was mixed with 0.200 mol of oxygen in a vessel of volume 10 dm³. At equilibrium it was found that the mixture contained 0.200 mol of hydrogen chloride. Calculate Kc for the reaction.
- 8. A 0.04 sample of SO₃ is introduced into a 3.04 litre vessel and allowed to reach equilibrium. The amount of SO₃ present at equilibrium is found to be 0.0284 mole. Calculate the value of K_c for the reaction $2SO_3(g) == 2SO_2(g) + O_2(g)$.

- 9. The reaction between carbon monoxide and hydrogen proceeds according to the equilibrium $CO(g) + 2H_2(g) == CH_3OH(g)$ A 1 litre flask maintained at 700K contains 0.1 mole of carbon monoxide. After 0.3 mole of hydrogen is added, 0.06 mol of ethanol are formed. Calculate the equilibrium constant K_c .
- 10. When 1.0 mole each of ethanoic acid and ethanol were allowed to reach equilibrium in a sealed vessel of volume 500 cm^3 , the amount of ethanoic acid present at equilibrium was found to be 0.33 mole. Calculate the value of K_c for the reaction $CH_3COOH + CH_3CH_2OH == CH_3COOCH_2CH_3 + H_2O(1)$
- 11. At 723K, hydrogen and iodine react together and the following equilibrium is established: $H_2(g) + I_2(g) == 2HI(g)$ The value of K_c for this equilibrium is 64. In an experiment, equal amounts of hydrogen and iodine were mixed together, and the equilibrium mixture of the three gases in a container of volume 1 dm³ at 723K was found to contain 1.5 moles of iodine. Calculate the concentration of hydrogen iodide in the mixture at 723K.