Homework Assignment 2

程序代写代数型编程辅导

Problem 1. Given $g_1(t) \rightleftharpoons G_1(f), g_2(t) \rightleftharpoons G_2(f)$, please use the definitions of FT and inverse FT to proof the the following F

- a) The differentiati $j2\pi fG_1(f)$.
- **b**) The convolution
- $_{2}(T) \rightleftharpoons G_{1}(f)G_{2}(f).$ $_{2}^{2}dt = \int_{-\infty}^{\infty} |G_{1}(f)|^{2}df.$ c) Parseval's theore

ty of the signal $g(t) = e^{-|t|}$. **Problem 2. a)** Find the

has the same energy spectral density as g(t). **b)** Show that the signal $g_1(t) =$

Problem 3. Let $g_{T_0}(t)$ be a periodic signal with period π . Over the period $0 \le t < \pi$, it is defined by $g_{T_0}(t) = \cos t$. Find the Fourier transform of $g_{T_0}(t)$ and draw the frequency spectrum.

Note: $\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)],$

 $\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$ $\int e^{ax} \cos(bx) dx = \frac{e^{ax}}{a^2 + b^2} \left[\sin(x - y) + \sin(x + y) \right]$ Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com