A number is called *lucky* if the sum of its digits, as well as the sum of the squares of its digits is a prime number. How many numbers between \boldsymbol{a} and \boldsymbol{b} inclusive, are lucky?

For example, a=20 and b=25. Each number is tested below:

	digit	digit	squares
value	sum	squares	sum
20	2	4,0	4
21	3	4,1	5
22	4	4,4	8
23	5	4,9	13
24	6	4,16	20
25	7	4,25	29

We see that two numbers, 21, 23 and 25 are lucky.

Note: These lucky numbers are not to be confused with Lucky Numbers

Function Description

Complete the *luckyNumbers* function in the editor below. It should return an integer that represents the number of lucky numbers in the given range.

luckyNumbers has the following parameter(s):

- *a*: an integer, the lower range bound
- b: an integer, the higher range bound

Input Format

The first line contains the number of test cases T. Each of the next T lines contains two space-separated integers, a and b.

Constraints

- $1 \le T \le 10^4$ $1 \le a \le b \le 10^{18}$

Output Format

Output T lines, one for each test case in the order given.

Sample Input

1 20 120 130

Sample Output

1

Explanation

For the first case, the lucky numbers are 11, 12, 14, and 16. For the second case, the only lucky number is **120**.