Crittografia a chiave pubblica: uno sguardo alle vulnerabilità di RSA e Diffie-Hellman

Leonardo Alfreducci

Relatori Dott. Gaspare Ferraro Prof.ssa Anna Bernasconi

> Università di Pisa Dipartimento di Informatica

> > Pisa. 7 ottobre 2022

Indice

- Introduzione
- 2 RSA
- 3 Diffie-Hellman su campo primo
- 4 Diffie-Hellman su curve ellittiche
- 6 Conclusioni

Parte 1

Introduzione

Introduzione

- Una grandissima quantità di informazioni viaggia attraverso la rete: è dunque di fondamentale importanza proteggere i dati che vengono scambiati.
- Si passeranno in rassegna i due protocolli più usati per lo scambio di chiave: RSA e Diffie-Hellman, quest'ultimo analizzato su campo primo e su curve ellittiche.
- Lo scopo della tesi è quello di andare al di là di una trattazione teorica di questi due protocolli, concentrandosi piuttosto sull'aspetto pratico.

Parte 2 RSA

RSA: la teoria dietro al protocollo

- È un cifrario asimmetrico. È dunque presente una coppia di chiavi:
 - (e, n) utilizzata per cifrare (chiave pubblica);
 - (d, n) utilizzata per decifrare (*chiave privata*).
- Si scelgono due numeri primi *p* e *q*.
- Si calcola $n = p \cdot q \in \phi(n) = (p-1) \cdot (q-1)$.
- Si sceglie $e < \phi(n)$ tale che gcd(e, n) = 1.
- Si calcola $d = e^{-1} \mod \phi(n)$.
- Tutte le operazioni descritte possono essere svolte in tempo polinomiale.

Pisa, 7 ottobre 2022

RSA: cifratura e decifratura

• Per cifrare un messaggio m è sufficiente calcolare il crittogramma c come:

$$c = m^e \mod n$$
.

• Per ottenere il messaggio m dato c è sufficiente calcolarlo come:

$$m = c^d \mod n$$
.

RSA: uno sguardo alla sicurezza

- La sicurezza di RSA è garantita grazie al problema della fattorizzazione di un numero n come prodotto di due fattori $p \cdot q$.
- Per questo è importante scegliere due fattori primi molto grandi, tale che il modulo sia almeno 2048 bit, meglio ancora se 3072 bit.
- Nel 1999 è stato fattorizzato RSA-512 in circa 7 mesi utilizzando centinaia di calcolatori e impiegando l'equivalente di 8400 anni di CPU.
 - Nel 2009 lo stesso attacco poteva essere effettuato in 83 giorni da un solo calcolatore.
- Nel 2020 il numero più grande fattorizzato ha 829 bit, impiegando l'equivalente di 2700 anni di CPU.

RSA: un'analisi sperimentale sulla sicurezza

- Sono stati implementati tre algoritmi per la fattorizzazione:
 - Wheel factorization: fondamentalmente un brute force sul numero, cercando i divisori;
 - Pollard's rho factorization: di natura probabilistica, è quello più efficiente;
 - Fermat factorization: è più veloce se i due numeri primi sono vicini tra loro.
- Sono stati fattorizzati moduli da 120 bit utilizzando l'algoritmo Pollard's rho in poco meno di un'ora su un moderno calcolatore.

RSA: l'esponente pubblico e

- L'esponente pubblico non dovrebbe essere troppo grande per velocizzare la cifratura.
- Con l'Algoritmo delle quadrature successive, l'operazione può essere svolta in tempo $O(\log_2 e + hm(e))$, dove hm(e) rappresenta il peso di Hamming.
 - Il peso di Hamming rappresenta il numero di simboli diversi dal simbolo 0 dell'alfabeto utilizzato.
- L'esponente pubblico, dato che non contiene alcuna informazione, viene generalmente riutilizzato per molteplici operazioni.

RSA: valori più utilizzati di e con i rispettivi pesi di Hamming

X.509			PGP			Combinati			
	е	hm(e)	%	е	hm(e)	%	е	hm(e)	%
	65537	2	98.4921	65537	2	48.8501	65537	2	95.4933
	17	2	0.7633	17	2	39.5027	17	2	3.1035
	3	2	0.3772	41	3	7.5727	41	3	0.4574
	35	3	0.1410	19	3	2.4774	3	2	0.3578
	5	2	0.1176	257	2	0.3872	19	3	0.1506
	7	3	0.0631	23	4	0.2212	35	3	0.1339
	11	3	0.0220	11	3	0.1755	5	2	0.1111
	47	5	0.0101	3	2	0.0565	7	3	0.0596
	13	3	0.0042	21	3	0.0512	11	3	0.0313
	65535	16	0.0011	$2^{127} + 3$	3	0.0248	257	2	0.0241
	altri	_	0.0083	altri	-	0.6807	altri	-	0.0774

RSA: gli schemi di padding

- Prima di essere cifrato mediante RSA, ogni messaggio viene modificato con gli schemi di padding.
- Gli schemi di padding sono importanti in crittografia:
 - aggiungono una componente di casualità;
 - non rendono possibile un recupero anche parziale del messaggio, fissandone univocamente la lunghezza.
- Due degli schemi più utilizzati sono PKCS1 v1.5 ed OAEP.

RSA: malleabilità senza il padding

- Il padding aiuta ad evitare che RSA sia malleabile.
 - Ad esempio, se un attaccante conosce $c=m^e \mod n$, che non utilizza il padding, può sostituire $c'=c\cdot 2^e \mod n$.
 - Quando c' verrà decifrato, si otterrà 2m invece che l'originario m.
- Con il padding questa modifica molto semplice non è più possibile.

RSA: generazione errata della chiave

- L'esponente e deve essere scelto coprimo con $\phi(n)$.
- In una pre-release di Windows 10, non veniva effettuato il controllo che $gcd(e, \phi(n)) = 1$ nel momento in cui veniva scelto l'esponente pubblico.
- Il corretto funzionamento di RSA è compromesso e la decifratura non è più possibile.

RSA: la probabilità di scegliere l'esponente pubblico errato

- Ma quanto spesso questo problema si verifica nella pratica?
- Per e = 65537, la probabilità P che e|(p-1) oppure e|(q-1) è data da

$$P<\frac{1}{32000}$$

- Windows 10 è utilizzato da oltre un miliardo di dispositivi.
 - Più di 30000 utenti coinvolti.

RSA: il recupero dei messaggi erroneamente cifrati

- Se la chiave viene generata in modo errato ad ogni crittogramma potrebbero corrispondere e messaggi che lo generino.
- Se i messaggi perduti sono importanti?
- Il recupero dei messaggi è esponenziale nella dimensione di e.
 - Per fortuna, e viene generalmente scelto basso.
 - Per e = 65537 il recupero dei messaggi con un moderno calcolatore avviene in circa 30 secondi.

RSA: scartare i messaggi durante il recupero

- Come si possono scartare i messaggi automaticamente?
- Analizzando il contesto.
- Analizzando i messaggi che rispettano le caratteristiche degli schemi di padding.

RSA: esponente pubblico corto

- Un bug di un'implementazione imponeva e = 1.
- Si deve prestare attenzione che intervenga la riduzione in modulo.

RSA: moduli ripetuti

- È comune che uno stesso modulo *n* sia condiviso tra più host.
 - Il 4% dei moduli usati in HTTPS risulta condiviso tra più host.
 - Il 60% delle chiavi SSH e il 65% di quelle usate per IPv4 risultano condivise.
 - Non è una vulnerabilità se gli host non sono correlati.
- Molti router e dispositivi della stessa linea di un produttore condividono lo stesso modulo: si possono decifrare i testi a vicenda.
- A causa di problemi con il PRNG e con i seed iniziali molte chiavi sono risultate uguali.

RSA: un fattore in comune

- Se un primo è condiviso tra due moduli n_1 e n_2 è possibile trovarlo facilmente come $gcd(n_1, n_2)$.
- Esistono dataset pubblici contenenti moduli RSA, per verificare se uno dei due primi è condiviso.

Parte 3

Diffie-Hellman su campo primo

DH su campo primo: la teoria dietro al protocollo

- È un protocollo per lo scambio di chiave.
- A e B, che vogliono comunicare, si devono accordare su due parametri:
 - un numero primo p;
 - un generatore g di \mathbb{Z}_p^* .
- Per lo scambio di chiave:
 - A e B scelgono due interi casuali a, b tali che 1 < a, b < p 1;
 - A calcola $n_A = g^a \mod p$, B calcola $n_B = g^b \mod p$;
 - $A \in B$ si scambiano rispettivamente n_A ed n_B ;
 - A calcola $k = n_B^a \mod p$, B calcola $k = n_A^b \mod p$;
 - $k \in \text{condivisa poich} \in k = g^{a \cdot b} \mod p$.

DH su campo primo: uno sguardo alla sicurezza

• Un attaccante per decifrare la comunicazione dovrebbe calcolare il logaritmo discreto:

$$a = \log_g n_A$$
 oppure $b = \log_g n_B$.

- Ad oggi non sono noti algoritmi eseguire questa operazione in tempo polinomiale.
- L'attacco migliore è l'*Index calculus*, che ha complessità $O(2^{\sqrt{b \cdot \ln b}})$.
- p dal 2013 dovrebbe essere almeno di 2048 bit.
 - Nel 2015 quasi tutti i server HTTPS, IPSec e SSH supportavano primi a 1024 bit.
 - Il calcolo del logaritmo discreto con p a 530 bit è stato effettuato nel 2007.
- Questo protocollo è soggetto ad attacchi man-in-the-middle.
- Negli ultimi standard i parametri del gruppo vengono scelti da una lista.

DH su campo primo: moduli non primi

- In alcune implementazioni p non è un primo.
- È una vulnerabilità solo se p ha fattori primi molto piccoli.
 - Si potrebbe usare il *Teorema cinese del resto*.
 - Il calcolo del logaritmo discreto si presume sia difficile tanto quanto il problema della fattorizzazione.

DH su campo primo: valori da evitare

- Sottogruppi di ordine 1 e 2 sono da evitare come scambi di chiave.
- Se g genera l'intero gruppo, allora sono presenti i sottogruppi di ordine 1 e 2.
 - Se viene scambiato il valore 1, il segreto condiviso non può che essere 1.

DH su campo primo: un bit insicuro

- Con il sottogruppo di ordine 2 la situazione è più grave.
 - B è un host che ricicla la stessa chiave Diffie-Hellman per molteplici connessioni.
 - A (l'attaccante) manda a B il valore di scambio $n_A = -1$.
 - La chiave condivisa non può che essere 1 o -1.
 - Avendo modo di verificare quale delle due sia la chiave risultante, A può capire se il segreto di B è un numero pari o dispari, facendo perdere così un bit di sicurezza a B.
- Nel 2016 il 3% dei server HTTPS e il 34% dei server SSH accettava -1 come valore di scambio.

Parte 4

Diffie-Hellman su curve ellittiche

Pisa, 7 ottobre 2022

Crittografia su curve ellittiche: una panoramica

- La crittografia su curve ellittiche, a parità di sicurezza, richiede chiavi di molti meno bit.
 - Di conseguenza, le operazioni sono più veloci.
- Si comparano nella seguente tabella i bit necessari a parità di sicurezza nei tre protocolli descritti.

RSA e DH	ECC			
(bit del modulo)	(bit dell'ordine)			
1024	160			
2048	224			
3072	256			
7680	384			
15360	512			

Crittografia su curve ellittiche: il protocollo Diffie-Hellman

- Diffie-Hellman si presta molto bene all'applicazione su curve ellittiche.
- È stato adottato su larga scala negli ultimi 10 anni.
- Ad oggi è utilizzato da più del 65% degli scambi di chiave.

DH su curve ellittiche: la teoria dietro al protocollo

- A e B, che vogliono comunicare, si devono accordare su due parametri:
 - una curva ellittica prima $E_p(a,b) = \{(x,y) \in \mathbb{Z}_p^2 | y^2 \mod p = (x^3 + a \cdot x + b) \mod p\} \cup \{0\};$
 - un generatore G primo facente parte di un sottogruppo della curva di ordine n.
- Per lo scambio di chiave:
 - A e B scelgono due interi casuali a, b tali che a, b < n;
 - A calcola $P_A = a \cdot G$, B calcola $P_B = b \cdot G$;
 - A e B si scambiano rispettivamente P_A ed P_B :
 - A calcola $k = a \cdot P_B$, B calcola $k = b \cdot P_A$;
 - k è condivisa poiché $k = n_A \cdot n_B \cdot G$.

DH su curve ellittiche: uno sguardo alla sicurezza

- La sicurezza è basata sulla difficoltà di calcolare, dati due punti P e Q, il più piccolo intero k tale che P = k · Q.
 - Chiamato problema della risoluzione del logaritmo discreto su curve ellittiche.
 - Il migliore attacco ad oggi è *Pollard rho* che ha complessità $O(2^{b/2})$.
 - Un attaccante per compromettere la comunicazione dovrebbe calcolare i più piccoli valori a oppure b tali che, rispettivamente:

$$P_A = a \cdot G$$
 oppure $P_B = b \cdot G$.

• Si fa affidamento a curve sicure, scelte da una lista del NIST.

DH su curve ellittiche: i parametri della curva P-384

- È una delle curve ellittiche più utilizzate e raccomandate.
- $p = 2^{284} 2^{128} 2^{96} + 2^{32} 1$:
- a = -3:
- $b=27580193559959705877849011840389048093056905856361568521\$ 428707301988689241309860865136260764883745107765439761230575, avente la proprietà che $2^{383} < b < 2^{384};$
- $N \simeq 2^{384} 2^{190}$, che rappresenta l'*ordine della curva*, ovvero il numero di punti che ammette al suo interno.

DH su curve ellittiche: attacco con curva invalida

- Attacco simile a quello descritto per DH su campo primo.
- Se il valore inviato non giace sulla curva ed ha un ordine basso q_i , un attaccante può calcolare il segreto della vittima modulo q_i .
- Se la vittima ricicla il suo segreto per molteplici connessioni, effettuando questo attacco più volte si può recuperare l'intero segreto.
- Si dovrebbe controllare che il punto inviato giaccia sulla curva corretta.
 - Nel 2015 tre di otto popolari librerie TLS non effettuavano questo controllo.
 - Si è stimato che nel 2015 lo 0,8% dei siti HTTPS non effettuavano questo controllo.

Pisa, 7 ottobre 2022

Parte 5

Conclusioni

Conclusioni

- RSA è molto più soggetto ad errori di implementazione e per questo si cerca di non utilizzarlo.
- La strada è sempre più verso le curve ellittiche.
- I protocolli presentati non sono sicuri per utilizzi post-quantistici.
 - L'Algoritmo di Shor sui computer quantistici permette di calcolare la fattorizzazione e il logaritmo discreto per le curve ellittiche in tempo polinomiale probabilistico.
- La crittografia è in continuo studio ed evoluzione: ciò che oggi è considerato sicuro domani potrebbe non esserlo.
 - La fattorizzazione e il calcolo del logaritmo discreto sono problemi che ad oggi non conoscono algoritmi polinomiali per il loro calcolo, ma potrebbero esistere.
 - È importante e fondamentale restare aggiornati con gli studi.
- A luglio 2022 il NIST ha pubblicato gli algoritmi resistenti ai computer quantistici.
 - Un mese dopo questi algoritmi sono stati violati utilizzando dei classici calcolatori.

Fine

Grazie per l'attenzione!

