

2: Filter

The filter would couse oscilatory effects.

Method 2: Integrator/Gain Compensation Integrators tend to drift, but placing it in a closed loop circuit will compensate for the drift by correcting it. Vont Advantages · Step imput has zero steady state error Visadvantages · Slower Potential for Overstoot Gain = 36.4· K > so if we want to operate at -20: 400 = 36.4 · K => K = 400 Offerating Lead Compensation [Control, Equalizer] Point By adding a zero, we can warp the locus to give us a more speedy system (also while adding some overshoot). When we add a O, it tends to make the system more noisy. If we add a pule for to the left, that WIM help. Talces care of kigh frequency Zeros tend to \sim 10 times the distance of the Zero amplify noise

How do you trailed it? Vout = - 2p

$$tan\left(tan^{-1}\frac{\omega_{ep}}{2c-\sigma_{ep}}-tan^{-1}\frac{\omega_{ep}}{2c-\sigma_{ep}}\right)=tan(\Theta_{net})$$

=>
$$\frac{\omega_{op}(P_c - \sigma_{op}) - \omega_{op}(P_c - \sigma_{op})}{(P_c - \sigma_{op})(P_c - \sigma_{op}) + \omega_{op}^2}$$
 = $\frac{1}{2}$

=>
$$tan (6ne+) = \frac{WoePc - WoePc - WoePc + WoOce}{2cPc - Coe(2c+Pc) + Oce^2 + WoePc} = \frac{Woe(Pc - 2c)}{2cPc - Coe(2c+Pc) + Oce^2 + WoePc}$$

Let $Pc = \angle 2c$ Where $\angle 1s$ typically ≤ 10

$$= \frac{\omega_{or}(\Delta z_{c} - z_{c})}{\Delta z_{c}^{2} - \omega_{op}(\Delta z_{c}) z_{c}} = \frac{\omega_{op}(\Delta z_{c}^{2} - \omega_{op}(\Delta z_{c}^{2} + \omega_{op})}{\Delta z_{c}^{2} - \omega_{op}(\Delta z_{c}^{2} + \omega_{op}) + \omega_{op}}$$

$$= > \Delta z_{c}^{2} \tan \Theta_{ret} - [\omega_{op}(\Delta z_{c}^{2} + \omega_{op}) \tan \Theta_{ret} + \omega_{op}(\Delta z_{c}^{2} + \omega_{op}) \tan \Theta_{ret} = 0$$

$$z_{c} = - \frac{1}{2} + \frac{1}{2} \frac{1}{$$

We know Onet, lets plug it into the EQ we just found

$$\mathcal{E} = 30 \cdot 11 + \tan 27^{\circ} + 30 \cdot 9 + \frac{1}{30 \cdot 11 + \tan 27^{\circ} + 30 \cdot 9}^{2} - \frac{1}{40 \cdot 12 \cdot 30^{2}} + \frac{1}{30 \cdot 11 + \tan 27^{\circ}}$$

- Ze also was -21,6 Which does not really make sense.

$$\frac{G}{I+GH} \longrightarrow I+ k \frac{n(s)}{d(s)} = 0$$

$$=> k \frac{n(s)}{d(s)} = -1$$

Now lets say we trave:
$$\frac{K(53.12)}{5+62.5}$$

$$= > k = \frac{5}{53.13}$$

= k = 5 Where s is the point at which we would like to operate.