NOIP2024 模拟赛

题目名称	114514	沉默乐团	深黯「军团」	终末螺旋
题目类型	传统题	传统题	传统题	传统题
目录	trans	orchestra	army	tower
可执行文件名	trans	orchestra	army	tower
输入文件名	trans.in	orchestra.in	army.in	tower.in
输出文件名	trans.out	orchestra.out	army.out	tower.out
时间限制	1.0 秒	1.0 秒	1.0秒	2.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
是否使用 SPJ	否	否	否	否
子任务数量	5	4	5	6

提交源程序文件名:

| 对于 C++ 语言 | trans.cpp | orchestra.cpp | army.cpp | tower.cpp | | :-: | :-: | :-: | :-: |

编译选项:

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参照具体需求。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于 100KB。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 选手目录下提供了快速读入模板 fastio.cpp 与使用说明。

题目背景

出题人在出这个题的时候想造个小样例。

因为这个题只需要输入一个序列,出题人想到了一个序列 [1,1,4,5,1,4]。

但是有一个要求是序列内的数互不相同。于是出题人又想到了一个序列 [1,2,4,5,3,6]。

于是这个题就有了一个小样例。

题目描述

对于一个正整数序列 b, 定义函数 trans(b) 为一个满足以下要求的正整数序列 b':

- |b| = |b'|, 且 b' 内的数互不相同。
- 对于所有满足 $1 \le i \le |b|$ 的整数 i, 有 $b_i \le b'_i$ 。
- b' 是满足以上两个要求的序列中, 字典序最小的。

可以证明 trans(b) 唯一。例如,trans([1,1,4,5,1,4]) = [1,2,4,5,3,6]。

现在给你一个长度为 n 的序列 a,满足 a 中的数互不相同。请你求出满足 $\mathrm{trans}(b)=a$ 的正整数序列 b 的个数对 10^9+7 取模的值。

可以证明只有有限多个满足要求的序列 b。

输入格式

从文件 trans.in 读入数据。

第一行一个整数 n。

第二行 n 个整数表示序列 a。

输出格式

输出到文件 trans.out 中。

一行一个整数表示答案。

样例输入输出

样例输入#1

6 1 2 4 5 3 6

样例输出#1

72

样例输入#2

7 2 9 3 10 8 4 1

样例输出#2

12

样例输入#3

20

7 8 1 2 3 12 13 9 10 11 18 19 20 14 16 17 4 5 15 6

样例输出#3

149299200

样例 #4

见选手目录下的 trans/trans4.in 与 trans/trans4.ans。

该样例满足特殊性质 B 的要求。

样例解释

对于样例一,除了[1,1,4,5,1,4]满足要求之外,[1,2,4,5,3,6],[1,1,4,4,1,1]也满足要求。

数据范围

本题使用捆绑测试与子任务依赖。

对于 100% 的数据, $1 \le n \le 2 \times 10^6, 1 \le a_i \le 4 \times 10^6$ 。

	n	特殊性质	分数	子任务依赖
Subtask1	≤ 10	А	20	
Subtask2	$\leq 5 imes 10^3$		20	Subtask1
Subtask3	$\leq 10^5$	В	20	
Subtask4	$\leq 2 imes 10^5$		20	Subtask1,2,3
Subtask5			20	Subtask1,2,3,4

其中留空表示无特殊限制。

特殊性质 A: $a_i \leq 10$ 。

特殊性质 B: a_i 随机生成,随机方式为:给定 n 与值域上界 m $(n \le m \le 4 \times 10^6)$,在 [1,m] 内等概率随机选择 n 个整数,并将其随机打乱作为序列 a。

提示

本题输入输出量可能较大,请使用快速的读写方式。

沉默乐团

题目描述

来自废墟的最华丽的演出,即将拉开帷幕!

题目描述

我们称一个正整数序列 a 是好的, 当且仅当:

- 对于每个整数 i $(1 \le i \le n)$, 都有 $l_i \le a_i \le r_i$;
- 不存在两个整数 i,j $(1 \leq i < n, 1 < j \leq n)$ 满足 $\left(\sum_{k=1}^i a_i\right) = \left(\sum_{k=j}^n a_j\right)$ 。

请你统计好的整数序列 a 的数量对 $10^9 + 7$ 取模的值。

输入格式

从文件 orchestra. in 读入数据。

第一行一个整数 n。

第二行到第 (n+1) 行,第 (i+1) 行两个整数 l_i, r_i 。

输出格式

输出到文件 orchestra.out 中。

输出一行一个整数,表示答案对 $10^9 + 7$ 取模的结果。

样例输入输出

样例输入#1

```
4
1 1
2 2
3 3
10 10
```

样例输出#1

1

样例输入#2

```
1
1 2000
```

样例输出#2

2000

样例输入#3

```
4
1 2
1 2
1 2
1 2
```

样例输出#3

2

样例输入#4

```
5
1 3
2 4
1 4
1 2
3 3
```

样例输出#4

18

样例输入#5

6 1 5 1 5 1 5 1 5 1 5 1 5

样例输出#5

5120

样例 #6

见选手目录下的 orchestra/orchestra6.in 与 orchestra/orchestra6.ans。 该样例满足特殊性质 A 的要求。

样例 #7

见选手目录下的 orchestra/orchestra7.in 与 orchestra/orchestra7.ans。

样例解释

对于样例一,显然唯一满足要求的序列为 1,2,3,10。

对于样例二,显然所有 $1 \le a_1 \le 2000$ 的序列 a 都满足要求。

对于样例三,满足要求的序列为 1,2,2,2 与 2,2,2,1。而序列 1,1,2,2 不满足要求,因为存在两个整数 i=2,j=4 满足 $\left(\sum_{k=1}^i a_i\right)=\left(\sum_{k=j}^n a_j\right)$ 。

数据范围

本题使用捆绑测试与子任务依赖。

对于 100% 的数据, $1 \le n \le 50, 1 \le l_i \le r_i \le 2 \times 10^3$ 。

	n	$\max r_i$	特殊性质	分数	子任务依赖
Subtask1	≤ 8	≤ 8		10	
Subtask2			А	30	
Subtask3		≤ 100		30	Subtask1
Subtask4				30	Subtask1,2,3

特殊性质 A: 对于所有的整数 i $(1 \leq i \leq n)$, $l_i = 1$, 且 r_i 相等。

其中留空表示无特殊限制。

深黯「军团」

题目背景

人类的心是粉红色的,与之同色的迷彩能让我们融入他们的内心。

题目描述

令 p 为一个 $1 \sim n$ 的排列。

定义 $\mathrm{Next}(p)$ 为字典序比 p 大的最小的 $1\sim n$ 的排列。特别的,

Next([n, n-1, ..., 1]) = [1, 2, ..., n].

定义 $\mathrm{Inv}(p)$ 为排列 p 的逆序对个数,即满足 $1 \leq i < j \leq n$ 且 $p_i > p_j$ 的 (i,j) 对数。

现在给你 n,k 以及一个 $1 \sim n$ 的排列 a,请你求出 $\sum_{i=0}^{k-1} \operatorname{Inv}(A_i)$ 对 MOD 取模的值,其中

$$A_i = \left\{egin{array}{ll} a & i = 0 \ \operatorname{Next}(A_{i-1}) & i > 0 \end{array}
ight.$$

输入格式

从文件 army.in 读入数据。

第一行三个非负整数 n, k, MOD。

第二行 n 个非负整数表示排列 a。

输出格式

输出到 army.out 中。

一行一个整数表示答案对 MOD 取模的值。

输入输出样例

样例输入#1

3 5 114514 2 1 3

样例输出#1

8

样例输入#2

3 36 1241 1 2 3

样例输出#2

54

样例输入#3

2 100000000000000000 215734692

1 2

样例输出#3

213446168

样例输入#4

1 10000000000000000 1919810

1

样例输出#4

0

样例输入#5

10 1234567890111213 998248354 5 2 4 8 9 10 7 1 6 3

样例输出#5

741300677

数据范围

本题使用捆绑测试与子任务依赖。

对于 100% 的数据, $1 \le n \le 5 imes 10^5, 2 \le MOD \le 10^9, 0 \le k \le 10^{18}$ 。

	n	k	分数	子任务依赖
Subtask1	≤ 500	≤ 500	20	
Subtask2	≤ 10		20	
Subtask3	$\leq 5 imes 10^5$	$\leq 5 imes 10^5$	20	Subtask1
Subtask4	$\leq 5 imes 10^3$		20	Subtask1,2
Subtask5			20	Subtask1,2,3,4

其中留空表示无特殊限制。

提示

本题输入输出量可能较大,请使用快速的读写方式。

终末螺旋

题目背景

高塔直破苍穹,大地荡然无存。

给予我们生命,却放任我们受苦的人,必将为此付出代价!

题目描述

有 2n 座高塔从左到右排成一列,分别编号为 $1\sim 2n$,每个高塔有一个 $1\sim n$ 的颜色,且对于每种颜色,恰好存在两座该颜色的高塔。

你初始可以选择手动激活这 2n 座高塔中的若干座。接下来会发生一系列连锁反应:

- 如果一座高塔被激活,则另一座与它颜色相同的高塔也会被自动激活;
- 如果两座颜色相同的高塔都被激活(设其编号分别为 $i,j\ (i < j)$),则这两座高塔之间会产生激光,自动激活所有这两座高塔之间的高塔(即对于所有 i < k < j 的高塔 k 都将其激活)。

你的目标是使所有的高塔最终都被激活(手动或自动均可)。因为你比较懒,所以你想要手动激活最少数量的高塔。另外,你还需要求出手动激活最少数量高塔的方案数对 998244353 取模的值。

我们称两种手动激活方案不同,当且仅当存在一座高塔 p 在一种方案中被选择手动激活,而在另一种方案中没有。

另外,你会接收到 q 条消息,每条消息是一个位置 p,表示第 p 座高塔与第 (p+1) 座高塔发生了交换,请你在接收到所有消息之前,以及接收到每条消息之后,都求出上述答案。

输入格式

从文件 tower.in 读入数据。

第一行两个整数 n,q,分别代表高塔颜色数以及消息数。

第二行一行 2n 个正整数,第 i 个数表示第 i 座高塔的颜色 a_i 。

第三行到第 (q+2) 行每行一个正整数 p,第 i 行的数代表第 (i-2) 条消息所交换的位置。

输出格式

输出到文件 tower.out 中。

输出 (q+1) 行,每行两个整数,以一个空格间隔,分别表示最少的激活数量,与达成最少激活数量的方案数。

第i 行表示接收到第(i-1) 条消息后的答案。

输入输出样例

样例输入#1

```
2 3
1 2 1 2
3
1
2
```

样例输出#1

1 4

1 2

1 4

2 4

样例 #2

见选手目录下的 tower/tower2.in 与 tower/tower2.ans。

样例 #3

见选手目录下的 tower/tower3.in 与 tower/tower3.ans。

样例解释

样例一中,对于初始的情况 [1,2,1,2],任意手动激活一座高塔都可以激活所有高塔,比如激活高塔 1:

- 高塔3与高塔1同色,被自动激活;
- 高塔 1,3 同色且均被激活,产生激光,激活高塔 2;
- 高塔4与高塔2同色,被自动激活。

接收到第一条消息,情况变为[1,2,2,1],只有手动激活高塔1或高塔4能激活所有高塔。

接收到第二条消息,情况变为[2,1,2,1]。

接收到第三条消息,情况变为 [2,2,1,1],其中一种手动激活最少高塔的方式为激活高塔 1,3。可以证明,不存在一种手动激活一座高塔的方式能激活所有高塔。

数据范围

本题使用捆绑测试与子任务依赖。

对于 100% 的数据, $1 \le q \le 5 \times 10^5, 1 \le a_i \le n \le 2 \times 10^5, 1 \le p < 2n$ 。

	n	q	特殊性质	分数	子任务依赖
Subtask1	$\leq 5 imes 10^3$	≤ 5		15	
Subtask2	$\leq 5 imes 10^3$	$\leq 2 imes 10^3$		15	Subtask1
Subtask3	$\leq 5 imes 10^3$			10	Subtask1,2
Subtask4		≤ 5		10	Subtask1
Subtask5			А	20	
Subtask6				30	Subtask1,2,3,4,5

其中留空表示无特殊限制。

特殊性质 A: 初始颜色序列在所有合法的颜色序列中等概率随机, p 在 [1, 2n-1] 中等概率随机。

提示

本题输入输出量可能较大,请使用快速的读写方式。