

(V)

Week 8 Time complexity of Algorixhms

Example Algorithms LARGEST 1

1) Initially. place the # in register X, in a register called max.

if i > max Xi with the number in register max. If the # in Xi is larger swap; than the # in max, move the number in register xi to register it:

max; otherwise, to nothing.

3) Finally. the # in register max is the largest of the n number in registers X1, X2, X3, ..., Xn. of end.

how many comparisons?

<u>n-1</u>

(because n >> 17

Example

Xi > Xi+1

SNap;

i++;

Algorithms LARGESTZ

1) Do the following: for i=1.2,... 11-1, Compare the numbers X; and X;+1. place the larger one in X;+1. and smaller one in X;.

2) Finally, the number (Xn) is the largest.

Bubblesort
4 4

i.e. χ_4 χ_3 χ_4 χ_4 χ_5 χ_5 χ_6 χ_6 χ_7 χ_8 χ_8 χ_9 χ_9

 $\begin{array}{c|c}
2 \\
\hline
4 \\
\hline
3 \\
\hline
1
\end{array}$

Example

Algorithms Bubblesort

1) Do the following: for $i=1, n-1, \cdots, 3 \cdot 2$: Use Algorithm

LARGEST 2 to place in register X; the largest of X1, X2, ..., X;

2) Finally, X_1 , X_2 , ... X_n are in ascending order. $(n-1)+(n-2)+...+2+1=\frac{n(n-1)}{2}$ $\approx \frac{n^2}{2} \rightarrow n^2$

Example

Shortest Paths Algorithm

Let G(V, E) be a weighted graph, where W is a function from E to the set of positive real #5.

How to find some shortest paths from vertex a to vertex Z? L=length

- 1) Initially, let $P = \{a\}$. $T = V \{a\}$. For every vertex $t \in T$, let L(t) = W(a,t)
- 2) Select the vertex in T that has the smallest index with respect to P. Let X denote thinst vertex.
- - 4) Repeat Step 2 and 3 using P' as P and T' as T.

منسا

Week 11

$$ax + b = 0$$

$$ax^{2} + bx + c = 0$$

$$x^{2} + 2 \cdot \frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{(2a)^{2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$2x^{5} + 4x^{2} + 3x + 8 = 0$$
8: 1. 2. 4.8
2: 1. 2
$$\frac{\pm 8}{1}, \frac{\pm 8}{2}, \frac{\pm 4}{1}, \frac{\pm 4}{2}, \frac{\pm 2}{1}, \frac{\pm 1}{2}, \frac{\pm 1}{1}$$

 $ax^{4} + bx^{3} + cx^{2} + dx + e = 0$ retional zeros $x = \frac{p}{q}$ factor of a

$$1 + 2 + 3 + \dots + 10 = \sum_{k=1}^{10} K$$

 $1^{2} + 2^{2} + 3^{2} + \dots + 10^{2} = \sum_{k=1}^{10} K^{2}$

Recurrence Relations

Definition: For a numeric function (a.o.a., az..., ar...) an equation relating ar for any r.

to one or more of the ais (icr) is called <u>recurrence relation</u> or a difference
equation. az related to a1. az, a4 related to a1. az. az...

The bounding conditions are starting values from which we can carry out

a step-by-step computation to determine the other ais.

Ex: $\begin{cases} ar = 3ar_{-1} \\ a_0 = 1 \end{cases} \Rightarrow ar = ?$ bounding condition $ar = 3^r$, r = 0.1, 2, ...

Linear Recurrence Relations with constant coefficients.

 $C_0 a_r + c_1 a_{r-1} + \cdots + c_k a_{r-k} = f(r)$ C_1 's are constant. $C_0 \neq 0$, $C_k \neq 0$. K^{th} order

 $\alpha_r - 3\alpha_{r-1} = 0$. $\Gamma = 1, 2, ...$ $\Rightarrow k = 1 \Rightarrow (\alpha_o = 1)$ 1 initial condition $\alpha_r - \alpha_{r-1} - \alpha_{r-2} = 0$ $\Rightarrow k = 2 \Rightarrow (\alpha_o = 1, \alpha_o = 1)$ 2 initial condition

 \mathcal{E}_{x} . $3a_{r} - 5a_{r-1} + 2a_{r-2} = r^{2} + 5$ $a_{3} = 3$. $a_{4} = 6$ if a_{3} , a_{4} are unique, do we know now to compute a_{i} ?

Solution: $a_{5} = \frac{1}{3}(5 \cdot 6 + 2 \cdot 3 + 5^{2} + 5) = 18$. the only value for $a_{5} = \frac{119}{3}$. $a_{1} = 9(r = 4)$. $a_{1} = 25$. $a_{2} = \frac{107}{2}$ \Rightarrow there is only one value.

 ξ_{X} : $3\alpha_r - 5\alpha_{r-1} + 2\alpha_{r-2} = r^2 + 5$ $\alpha_3 = 3$, $\alpha_{20} = 5$

=> We don't know whether we have the unique solution.

Thm. The problem $Coar + C_1a_{r-1} + \cdots + C_ka_{r-k} = f(r)$ $a_{m-k} = b_k, \quad a_{m-k-1} = b_{k-1}, \quad a_{m-1} = b_1$ where Cis and bis are all constants and $Co \neq 0$, $C_k \neq 0$ completely determines a numeric function a.

Ex: $\begin{cases} a_{r-1} + a_{r-2} = 4 \\ a_{r-2} = 4 \\ 0 = 2 \end{cases}$ 0 = 2 0

Ex. $\begin{cases} a_r + a_{r-1} + a_{r-2} = 4 \\ a_o = 2, \quad a_r = 2, \quad a_z = 2 \end{cases}$ are? no Solution

b, 9m-1

14

b2 am-2 b3 am-3

bK-1 am-K-1

bk dm-K

4/

Homogeneous Solutions

Given
$$Coar + C_1 a_{r-1} + \cdots + C_k a_{r-k} = f(r)$$

Let $(a^{(k)} = a_0^{(k)}, a_1^{(k)}, a_2^{(k)}, \cdots, a_r^{(k)})$ denote the solution to $Coar + C_1 a_{r-1} + \cdots + C_k a_{r-k} = 0$

We call $a^{(k)}$ a homogeneous solution.

For a solution $a^{(k)} = a_0^{(k)}, a_1^{(k)}, \cdots, a_r^{(k)}$ that satisfies $Coar + C_1 a_{r-1} + \cdots + C_k a_{r-k} = f(r)$.

We call $a^{(p)}$ a parricular solution.

NOTES:

hth > hi. The sum of two homogeneous solutions is a homogeneous solution.

P+P = P 2. Normally. the sum of two particular solutions is not a particular solution.
However.

5. The Sum of a homogeneous Solution and a particular solution is a (total)

htptotal sol Solution to Coar + Clar, +... + Ckark = f(r)

Ex: $2a^{(h)} = a^h + a^h$ is a homogeneous colution.

m. $aa^{(h)}$ — is a homogeneous solution

m $a^{(h)}$ + $na^{(h)}$ — is a homogeneous solution.

linear closeness of the operation.

Finding a homogeneous solution $a^{(h)}$ [Coxk + Cixk + ... + Ck = 0]

Case 1: the characteristic equation of k^{th} degree has k roots/zeros.

(Special case α_1 , α_2 , ..., α_k of case 2) the homogeneous solution $\alpha_r = \frac{k}{|\alpha|} A_i \alpha_i^r$ Case 2: α_1 has multiplicately m_1 α_2 has multiplicately m_2 α_n has multiplicately m_n $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_1 + m_2 + ... + m_n = k$ $m_2 + m_2 + ... + m_n = k$ $m_3 + m_2 + ... + m_n = k$ $m_4 + m_2 + ... + m_n = k$ $m_4 + m_2 + ... + m_n = k$ $m_4 + m_2 + ... + m_n = k$ $m_4 + m_2 + ... + m_n = k$ $m_4 + m_2 + ... + m_n = k$ $m_4 + m_4 + ... + m_n = k$ m_4

 $\alpha_{r}^{(h)} = \alpha_{r}^{(h)} = \frac{n}{2} \left(\frac{n}{2} A_{r}^{(i)} r^{m_{r} \cdot j} \right) \alpha_{r}^{r}$ $\text{Ex: Solve } \begin{cases} \alpha_{r} = \alpha_{r-1} + \alpha_{r-2} \\ \alpha_{o} = 1. \quad \alpha_{r} = 1 \end{cases}$ $\text{Solution: } \alpha_{r} - \alpha_{r-1} - \alpha_{r-2} = 0$ $\text{its characteristic equation is } \alpha_{r}^{2} - \alpha_{r}^{2} = 0$ Two roots $\alpha_{r}^{(h)} = A \left(\frac{1+\sqrt{15}}{2} \right)^{r} + B \left(\frac{1-\sqrt{15}}{2} \right)^{r}$ where A. B. are constant.

 $2 \text{ (on Stands)} \Rightarrow \vdots \quad a_r^{(h)} = A \left(\frac{1+\sqrt{15}}{2}\right)^r + B \left(\frac{1-\sqrt{15}}{2}\right)^r \quad \text{where } A. B \text{ are constant.}$ $3 \text{ (in stands)} \Rightarrow \begin{cases} a_r = A^{(h)} \\ a_r = A \left(\frac{1+\sqrt{15}}{2}\right)^r + B \left(\frac{1-\sqrt{15}}{2}\right)^r \end{cases} \quad r = 0.1.2... \quad A. B \text{ are constant.}$ $\{a_o = A \left(\frac{1+\sqrt{15}}{2}\right)^o + B \left(\frac{1-\sqrt{15}}{2}\right)^o = 1 \Rightarrow \begin{cases} A + B = 1 \\ A - B = \sqrt{15} \end{cases} \Rightarrow \begin{cases} A = \frac{1}{2} \cdot \frac{5+\sqrt{15}}{5} \\ B = \frac{1}{2} \cdot \frac{5-\sqrt{15}}{5} \end{cases}$

 $\Rightarrow a_r = \frac{1}{2} \cdot \frac{5+15}{5} \left(\frac{1+15}{2} \right)^r + \frac{5-15}{10} \left(\frac{1-15}{2} \right)^r \qquad r = 0.1.2 \dots$

Check the solution with initial condition.

Ex. Find the general form of the homogeneous solution to ar + 6 ar-1 + 12 ar-2 + 8 ar-3 = 0

Solution: the characteristic equation $\alpha^3 + 6\alpha^2 + 12\alpha + 8 = 0 \rightarrow (4-2)^3$

$$\frac{\alpha^{2} + 4\alpha + 4}{\alpha^{3} + 6\alpha^{2} + 12\alpha + 8}$$

$$\frac{\alpha^{3} + 2\alpha^{2}}{4\alpha^{2} + 12\alpha}$$

$$\frac{4\alpha^{2} + 8\alpha}{4\alpha + 8}$$

$$\frac{4\alpha + 8}{4\alpha + 8}$$

: a = -2 is the zero of multiplexity 3.

: Qt = (Ar2 + Br + c) (-2) . r=0.1.2,... where A. B.C. are constant.

100

$$\begin{cases} c_0 a_r + c_1 a_{r-1} + \dots + c_k a_{r-k} = f(r) \\ a_0 = b_0, \quad a_1 = b_1, \quad \dots, \quad a_{k-1} = b_{k-1} \\ a_r = a_r^{(h)} + a_r^{(p)} \end{cases}$$

Case 2:
$$\alpha_1 \cdots m_1 \qquad m_1 + m_2 + \dots + m_n = k$$
 $\alpha_1 \cdots m_n \qquad m_1 + m_2 + \dots + m_n = k$
 $\alpha_1 \cdots m_n \qquad \alpha_1 : (A_1 \Gamma^{m-1} + \alpha_1 \Gamma^{$

Zero degree polynomial — constant one degree polynomial — linear

Example:
$$a_r + 6a_{r-1} + 12a_{r-2} + 8a_{r-3} = 0$$

 $\rightarrow 1 \cdot \alpha^3 + 6\alpha^2 + 12\alpha + 8 = 0$

8: 1, 2, 4, 8 $\alpha = \frac{p}{q}$ p must be a factor of 8; q must be a factor of 1. α could be ± 1 , ± 2 , ± 4 , ± 8 ;

a can not be positive $\rightarrow -1, -2, -4, -8$. $\alpha^3 + 6\alpha^2 + 12\alpha + 8 = (\alpha + 2)() = 0$

 $\alpha_r = (Ar^2 + Br + C)(-2)^r$ degree 2

, where A. B. C are unknown constants.

03+60+120+8 = (0+2)3

 $\alpha = -2$, multiplicity = 3

Example: Find the homogenous solution to 4ar - 20ar + 17ar-2 - 4ar-3 = 0

the char. polyn. is Solution:

$$4x^{2} - 200l + 1/0l - 4 = 0$$

 $x = \frac{p}{q}$ $p = factor of -4; q = factor of 4
 $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{4}$$

$$\alpha$$
 cannot be negative $\rightarrow 1, 2, 4, \frac{1}{2}, \frac{1}{4}$

$$\frac{2\alpha^{2} - 9\alpha + 4}{2\alpha - 1 + 17\alpha - 4}$$

$$\therefore \alpha_1 = 4$$

$$\alpha_2 = \frac{1}{2}$$

$$a_r^{(h)} = (Ar + B)(\frac{1}{2})^r + c4^r$$

where A , B. C are unknown constants.

Case 1:
$$f(r) = F_1 r^{t} + F_2 r^{t-1} + ... F_6 r + F_{t+1}$$

Then $a_r^{(p)} = \rho_1 r^{t} + \rho_2 r^{t-1} + ... + \rho_{t} r + \rho_{t+1}$

Find a particular solution to ar + 5ar-1 + 6ar-2 = 3 r2

Solution:

$$a_r^{(p)} = \rho_1 r^2 + \rho_2 r + \rho_3$$

$$(p_1r^2+p_2r+p_3) + 5(p_1(r-1)^2+p_2(r-1)+p_3)+6(p_1(r-2)^2+p_2(r-2)+p_3)=3r_0^2$$

 $12p_1r^2-(34p_1-12p_2)r+(29p_1-17p_2+12p_3)=3r_0^2$

: a particular solution is
$$a_r = \frac{1}{4} \Gamma^2 + \frac{17}{24} \Gamma + \frac{115}{288}$$
.

Will,

4

Case 2: f(r) = (F,rt + F2rt + ... + Fer + Fen) Br and β is a characteristic zero of multiplicity m, then $\alpha_r^{(p)} = r^m (p, r^t + p_2 r^{t-1} + ... + p_r r + p_{+n}) \beta^r$ when B=1. ar = r (P, rt + P2rt-1 + ... + P+r + P++1)

> Find a particular solution to Example: ar - 2ar-1 =3 1. 2

Since B=2 is a zero of the char. polynomial with multiplicity =1 Solution: :. a particular solution is ar = r.A.2 for some unknown constant A.

. A. Y. 2 - 2. A(T-1) 2 = 3.2 that's $(a_r^{(p)} = 3r \cdot 2^r)$ is a particular solution.

For ar = ar. + 7. find a particular solution. Example:

ar - ar = 7 . 1 Solution:

Since (B=1) is a zero, therefore a particular solution is Q = r. A. | " Ar for some unknown constant A.

and Ar - A(r-1) = 7

: A=7

that's. ar = Tr is a particular solution.

Solve $\begin{cases} a_r = a_{r-1} + 7 \\ a_o = 2 \end{cases}$ $a_r = a_r^{(h)} + a_r^{(p)}$

Solution:

 $as(\beta=1)$ is a zero. $a_r^{(p)} = Ar$ for some unknown constant A.

: Ar - A(r-1) = 7 = b A=7

that's (ar = 7r)

and since B=1 is a zero. ath = B. I for some unknown constant B.

.. ar = B+7r is the general format of the solution

24 a0=2, B+7.0=2 => B=2. 99 $Q_r(h) = (A_r)(8)^{r}$. the solution is $a_r = 2+7r$

Generating Function

given
$$a = (a_0, a_1, a_2, ..., a_r, ...)$$

we define $A(z) = a_0 + a_1 z + a_2 z^2 + ... + a_r z^r + ...$
 $= \sum_{i=0}^{\infty} a_i z^i$

as the generating function of a

From the equation. find A(2), the generating function of a. A(2) => ar

Let a = (3°.3'. 32. ... 35, ...) ar=35. r=0.1.2... $A(\frac{1}{2}) = \sum_{i=0}^{\infty} 3^i \cdot 2^i = \sum_{i=0}^{\infty} (32)^i = \frac{1}{1-32}$

Some properties of generating function

(I) if (b= da). where d is a constant, then

where Alzi is the generating function of a, B(z) is the generating function of b.

Example: Find the generating function of ar=3"+2", r=0.1,2...

 $a_r = 3^{r+2} = 9.3^r$ Solution

and (3°, 3', 32, ... 3"...)'s generating function is 1-32

: the generating function of
$$\alpha_r = 3^{r+2}$$
, $r=0,1,2$: is
$$A(\pm) = \frac{q}{1-3\pm}$$

(II) if
$$[c=a+b]$$
 then $[C(z)=A(z)+B(z)]$
if $[c=\alpha a+\beta b]$ then $[C(z)=\alpha A(z)+\beta B(z)]$

Given $A(z) = \frac{2+3z-6z^2}{1-2z}$ what's $a_r(r>0)$? Example:

Since
$$A(z) = \frac{2+3z-bz^2}{1-2z} = 3z + \frac{2}{1-2z}$$

and 32 is the generating function of (0.3.0.0...) $\frac{2}{1-22}$ is the generating function of $2\cdot 2^r$. r=0.1.2... (2, H, 8...)

 $\begin{array}{r}
3z \\
1-2z)-62^2+3z+2 \\
-6x^2+3z \\
2
\end{array}$

401

$$A(2) = 1$$
 \implies $a = (1, 0, 0, 0, ..., 0, ...)$

$$A(2)=2 \implies Q=(0,1,0,0,...0,...)$$

$$A(\bar{z}) = \bar{z}^2 \implies \alpha = (0, 0, 1, 0, \dots, 0, \dots)$$

Solution:
$$A(z) = \frac{3-8z}{1-5z+6z^2} = \frac{2}{1-2z^2} + \frac{1}{1-3z^2}$$

(III) if
$$br = \alpha^r \cdot \alpha_r$$
. then $B(z) = A(\alpha z)$ where α is a constant.

Example:
$$\alpha_{r=1}$$
. $r \ge 0$

$$A(\frac{1}{2}) = \frac{80}{16} \frac{1}{2} = \frac{1}{1-\frac{1}{2}}$$

$$b_{r} = \alpha^{r} 1, \quad r \ge 0$$

$$B(\frac{1}{2}) = A(\alpha \frac{1}{2}) = \frac{1}{1-\alpha \frac{1}{2}}$$

$$(IV)$$
 If $|C_r = a_rb_r|$, $C(z) \neq A(z) B(z)$

Example: Let
$$a_r = z^r$$
, $b_r = 3^r$
then $c_r = a_r \cdot b_r = z^r \cdot 3^r = 6^r$
But $A(z) = \frac{1}{1-2z}$. $B(z) = \frac{1}{1-3z}$
 $c(z) = \frac{1}{1-6z} \neq A(z) \cdot B(z)$

Let
$$C = a * b$$
. which is defined as
$$C_r = a_0 b_r + a_1 b_{r-1} + \dots + a_r b_0 = \sum_{i \neq j \neq r}^{i,j \neq 0, \dots, r} a_i b_j$$
then $C(\mathbb{Z}) = A(\mathbb{Z}) \cdot B(\mathbb{Z})$

Example: Let Ala) be the generating function of ar (120). What's the generating function of

Solution .

$$B(2) = A(3) \cdot \frac{1}{1-2} = \frac{A(3)}{1-2}$$

If A(2) = (1-2)2 is the generating function of ar (170)

what's ar (170)?

 $A(2) = \frac{1}{(1-2)^2} = \frac{1}{1-2} \cdot \frac{1}{1-8}$ Solution:

 $A(z) = \frac{1}{(1-z)^2} = \frac{1-z}{1-z} = \frac{1-z}{1-z}$ and $\frac{1}{1-z}$ is the generation of $a_r = 1$. r > 0.

(1-2) (1-2)

: A(2) = 11-24 is the generating function of

Example: A(2): (1-28)2

Solution: Let $B(Z) = \frac{1}{(1-Z)^2}$ then A(Z) = B(2Z)

$$\Rightarrow q_r = 2^r (r+1)$$

 $A(2) = \frac{1}{(2-2)^2}$ Let $B(2) = \frac{1}{(1-2)^2}$, then $A(2) = \frac{1}{4} \cdot B(\frac{1}{2})$ Solution

Let
$$B(2) = \frac{1}{(1-2)^2}$$
, then $A(2) = \frac{1}{4}$.

Solution: Method 1

The characteristic equation is \$\alpha^2 - 5\alpha + 6 = 0

$$\therefore \ \alpha_r^{(h)} = A \cdot 2^r + B \cdot 3^r \quad . \quad r \ni 0 . \quad A. B are constants.$$

(0)

and a=2 is a zero

: the Solution is

Method 2.

$$\frac{\sum_{r=3}^{\infty} \left(z^r \cdot (\alpha_r - 5\alpha_{r-1} + 6\alpha_{r-2}) \right) = \sum_{r=2}^{\infty} (2^r + r) z^r}{(A(z) - \alpha_0 - \alpha_1 z) - 5 \left(A(z) - \alpha_0 \right) z + 6 \left(A(z) \right) z^2} = \frac{4z^2}{1 - 2z} + \frac{z - 2(1 - z)^2}{(1 - z)^2}$$

$$\left[\frac{\sum_{r=2}^{\infty} 2^r z^r}{\sum_{r=2}^{\infty} 2^r z^r} = \sum_{r=2}^{\infty} 2^r z^r - 1 - 2z = \frac{1}{1 - 2z} - 1 - 2z = \frac{1}{(1 - z)^2} - 1 - 2z - 1 - 2z \right] - \left(\frac{1}{1 - z} - 1 - z \right) \right]$$

$$A(z) = \frac{1 - 8z + 27z^2 - 35z^3 + 14z^4}{(1 - z)^2 (1 - 2z)^2 (1 - 3z)}$$

$$= \frac{17/4}{1 - 3z} + \frac{1/2}{(1 - z)^2} - \frac{2}{(1 - 2z)^2} + \frac{5/4}{1 - 2} - \frac{3}{1 - 2z}$$

$$\alpha_r = \frac{17}{4} \cdot 3^r + \frac{1}{2} \cdot (r + 1) - 2(r + 1)z^r + \frac{5}{4} \cdot 1 - 3 \cdot z^r$$

 $2^{2}+42+4=0$ $2^{2}+22+22+2=0$

-4 1 56-10

$$(-2')$$
 $Z = -2$
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)
 (-2)

$$\sum_{x=2}^{\infty} (2^{x}+x) \cdot z^{x}$$

$$\sum_{x=2}^{\infty} (2^{x}+x) \cdot z^{x} = \frac{1}{1-2z} -1-2z$$

$$\lim_{x\to\infty} (2^{x}+x) \cdot z^{x} = \frac{1}{1-2z} -1-2z$$

 $= -5.2^{\Gamma} + \frac{17}{4}.3^{\Gamma} - 2\Gamma.2^{\Gamma} + \frac{\Gamma}{2} + \frac{7}{4}$

 $\frac{8}{5} |\pi_{11}|^{2} - \frac{8}{5} |z|^{4} = \frac{1}{(1-z)^{2}} - \frac{1-2z}{1-z}$

| Solution: | Solve |
$$a_r = 3a_{r-1} + 2b_{r-1}$$
 | $r > 1$ | $a_0 = 1$ | $b_0 = 0$ | $a_0 = 1$ | $b_0 = 0$ | $a_0 = 1$ | $a_$

$$A(\frac{1}{2}) = \frac{1-\frac{2}{7}}{1-4\frac{2}{7}+\frac{2}{7}} \qquad B(\frac{1}{2}) = \frac{\frac{2}{7}}{1-4\frac{2}{7}+\frac{2}{7}}$$

$$A(\frac{1}{2}) = \frac{1-\frac{2}{7}}{1-4\frac{2}{7}+\frac{2}{7}} = \frac{(3-\frac{1}{3})/6}{1-(2-\frac{1}{3})\frac{2}{7}} + \frac{(3+\frac{1}{3})/6}{1-(2+\frac{1}{3})\frac{2}{7}}$$

$$B(\frac{1}{2}) = \frac{\frac{2}{7}}{1-4\frac{2}{7}+\frac{2}{7}} = \frac{\frac{13}{7}}{1-(2+\frac{1}{3})\frac{2}{7}} - \frac{\frac{13}{7}}{1-(2+\frac{1}{3})\frac{2}{7}} = \frac{\frac{3}{7}}{1-(2+\frac{1}{3})\frac{2}{7}}$$

$$A_{r} = \frac{3-\frac{13}{6}}{6}(2+\frac{13}{7})^{r} + \frac{3+\frac{13}{6}}{6}(2+\frac{13}{7})^{r}$$

$$b_{r} = \frac{\frac{13}{7}}{6}(2+\frac{13}{7})^{r} - \frac{\frac{13}{7}}{6}(2-\frac{13}{7})^{r}$$

Example:
Solution:

Solve
$$rar + rar_{-1} - ar_{-1} = 2^{r}, r \geqslant 1$$
, given that $a_0 = 273$.
 $rar + (r-1) a_{r-1} = 2^{r}$

Let br = rar

then
$$b_r + b_{r-1} = 2^r$$
 $r \ge 1$

$$\sum_{r=1}^{\infty} b_r z^r + \sum_{r=1}^{\infty} b_{r+1} z^r = \sum_{r=1}^{\infty} 2^r z^r$$

$$\Rightarrow B(z) - b_o + z B(z) = \frac{1}{1 - 2z} - 1 \qquad b_o = 0$$

$$(1+z) B(z) = \frac{2z}{1 - 2z}$$

$$B(z) = \frac{2z}{(1 - 2z)(1+z)} = \frac{z}{1 - 2z} + \frac{-\frac{2}{3}}{1+z}$$

$$b_r = \frac{2}{3} 2^r + (-\frac{2}{3})(-1)^r$$

$$a_r = \frac{1}{r} \left[\frac{2}{3} 2^r + (-\frac{2}{3})(-1)^r \right] \qquad (7)$$

$$a_0 = 273$$

Wie

Viel.

Week 15 Iterative Solutions for Non-linear Equations

Given f(x) = 0. we try to look at some elementary methods / iterative methods for finding a solution within some designed arror.

 $f(x) = x^3 - x - 1$ find the Zeros. Example:

$$f(1) = -1 < 0$$

f(x) = 3x2-1 >0, when x E[1,2] there must be a zero between 1 and 2

Bisection Method: $\alpha_1 = \frac{1}{2}(1+2) = 1.5$

f(x,) = 0.875 > 0 Zero between 1 and 1.5

Q2 = 1 (1+1.5) = 1.25 .

 $f(\alpha_{-}) = -0.276 < 0$ zero between 125 and 1.5

 $\alpha_{5} = \frac{1}{2} (68 + 1.25) = 1.375$...

Algorithm: (Bisection Method)

Given a function f(x) continuous on the interval [ao, b.]; f(ao).f(bo) <0.

and a dosigned error E. Im-xol = E.

 $|\alpha_i - \chi_{\sigma}| \leq \left(\frac{1}{2}\right)^i$ $i \to \infty$, ϵ_{σ}

For n=0, 1, 2, ... until $(1f(m)) \leq E_0$ do: Set $m=\frac{1}{2}(a_n+b_n)$

if f(an) f(bo) <0. set an = an bn=1 = m ;

otherwise. Set ann = m, bn+1 = bn.

Finally, in would be the solution with absolute error & Eo.

Algorithm: (False - Position) J(1)=-1, f(2)=5 => zero is closer to 1 $d = \frac{|f(z)| \cdot 1 + |f(z)| \cdot 2}{|f(z)| + |f(z)|} = 1.167$ Given a function f(x) continuous on the interval [ao. b.]. flao). f(b.) <0. and a designed error Eo:

اسل

For n=0,1,2,... until the designed error E. do: take $w=\frac{\{f(b_n)\}\{a_n-\{f(a_n)\}\}b_n}{\{f(b_n)\}-\{f(a_n)\}}$

Finally, w will be the solution within absolute error Eo.

Algorithm: (Newton's)

Given f(x) continuous differentiable, and a point xo, a designed error & >0

For n=0,1,2,..., until designed error, do:

$$\chi_{n+1} = \chi_{n} - \frac{f(\chi_{n})}{f'(\chi_{n})}$$

$$\chi_{1}$$

$$\chi_{2} = \chi_{n} - \frac{f(\chi_{n})}{f'(\chi_{n})}$$

$$\chi_{2} = \chi_{n} - \frac{f(\chi_{n})}{f'(\chi_{n})}$$

little by little, move closer to Esto

$$2 \gamma_1 = \chi_0 - \frac{f(\chi_0)}{f(\chi_0)}$$

$$= 1 - \frac{-1}{2}$$

Example:
$$f(x) = x^3 - x - 1$$

 $x_0 = 1$
:
 $x_4 = 1.324718$
 $f(x_4) = 9.24 \times 10^{-7}$

$$3x^{2}-1$$

$$3(1) = \frac{1}{2}$$

$$\frac{1-4-8}{8} = \frac{1}{2} - \frac{-11/3}{2}$$

$$3 \times \frac{1}{4} - 1$$

$$= \frac{1}{2} - \frac{1}{2}$$

Fixed - Point iteration - Newton's Method Let $g(x) = x - \frac{f(x)}{f(x)}$

and Int = g(In)

Definition: (iteration function) x=g(x)If any solution of x=g(x), i.e. any fixed point of g(x) is a solution of f(x)=0, then we call g(x) an iteration function of f(x)=0

Example: Let $f(x) = x^2 - x - 2$, then all these functions are iteration function

(a) $g(x) = x^2 - 2$ fixed point: $x = g(x) = x^2 - 2$ (b) $g(x) = \sqrt{x+2}$

 $(C) \quad g(x) = 1 + \frac{1}{x}$

(d) $g(x) = x - \frac{x^2 - x - 2}{m}$. for any constant m.

Algorithm: (Fixed-Point iteration)

Given an iteration function g(x), and a starting point z_0 , for n=0, $1,2,\cdots$, until se satisfied. do: $x_{n+1} = g(x_n)$

Example: if g(x) = 1x. how can we iterate?

Assumption 1: There is an interval I = [a,b], such that for all $x \in I$, g(x) is defined and $g(x) \in I$. that's, the function g(x) maps I into itself.

Assumption 2: The iteration function is differentiable on I=[a,b], Further, there exists a non-negative constant k < 1. Such that |g(I)| < k, for all $x \in I$.

differential controllable (mild)

gizz is small

Theorem: Let $g(\pi)$ be an iteration function satisfying Assumption 1 and 2. then $g(\pi)$ has exactly one fixed point \S in I, and starting with any point in I, the sequence $x_1, x_2, \dots x_n, \dots$, generated by fixed-point iteration algorithm converges to \S .

Further, let $e_n = \xi - \chi_n$, $n = 0, 1, 2, \cdots$, we can show that $|e_n| \le \kappa^n |e_n| \le \kappa^n (b-a)$. $0 < \kappa < 1$

Example: Let $f(x) = x^2 - x - 2$. $choose g(x) = \int_{2+x}^{2+x}$

now x > 0 implies g(x) > 0and $0 < g'(x) < \frac{1}{8} < 1$

and if $x \le 7$. then $g(x) \le 3$ therefore. I = [0, 7]

therefore. for any $\chi_0 \in L0.71$. Sequence $\chi_1, \chi_2, ...$ converges to ξ . Take $\chi_0 = 0$, then

$$x_2 = \sqrt{3.41421} = 1.84775$$
, $1921 \le \left(\frac{1}{18}\right)^2 \cdot 2 = 0.25$