

Bölüm 2: 8086 Pinler

Mikroişlemciler

8086 Pin Diyagram

8086

- Intel 8086, 16-bit HMOS mikroişlemcisidir.
- 40 pinlik DIP entegre devre olarak bulunur.
- Çalışması için 5V DC besleme kullanır.
- 20 hatlı bir adres yolu kullanır.
- 16 hatlı bir veri yolu vardır.
- Adres yolu çoklamalı (multiplexed) modunda çalışır.
 - Çoklamalı hatlar birden fazla amaç için kullanılır.
 - 16 düşük adres (low order address) hatları veri (data) ile çoklanır.
 - 4 yüksek adres (high order address) hatları durum (status) ile çoklanır.

- Mikroişlemciler, harici bellek ve giriş/çıkış aygıtlarına veri yolu ve adres yolu üzerinden bağlanır.
- 8086'da ise bu durum iki nedenden dolayı daha karmaşıktır.
 - 40 pinli DIP paket:
 - Tüm işlevler için pin sayısı yetersizdir.
 - Bu nedenle adres, veri ve durum bilgisi aynı pin üzerinden iletilir.
 - 20 bitlik adres yolu ve 16 bitlik veri yolu:
 - Segment yazmaçları 20 bitlik adres yolu sağlar.
 - Ancak veri yolu yalnızca 16 bit genişliğindedir.
 - Fazladan 4 adres biti vardır.

- 16 adet AD0-AD15 pinleri veri iletiminde çoklanarak kullanılır.
- A16-A19 pinleri ise adres ve durum sinyalleri için çoklanarak kullanılır.
- S2, S1 ve S0 pinleri ise işlemcinin durumunu belirten sinyalleri taşır.
- HE'/S7 pini veri yolunu etkinleştirmek,
- RD' pini ise okuma işlemi için kullanılır.

8086 Yazma İşlemi

- Dört T durumundan oluşan bir veri yolu döngüsü ile gerçekleştirilir.
- T1 durumunda, yazma işleminin hedef adresi pinlere gönderilir.
- T2, T3 ve T4 durumlarında yazılacak veri pinlere gönderilir.
- T durumlarına göre pinlerin işlevleri değişir.
 - T1 durumunda pinler adres bilgisi taşır,
 - T2'den T4'e kadar olan durumlarda veri taşır.

8086 Okuma İşlemi

- Dört T durumundan oluşan bir veri yolu döngüsü ile gerçekleştirilir.
- T1 yazma ile aynı, okuma işleminin hedef adresi pinlere gönderilir.
- T2 durumunda 8086'nın çıkış devreleri tri-state durumuna geçer. Böylece harici bellek, veri yoluna veri yazabilir.
- T3 durumunda harici bellek (veya giriş/çıkış cihazı) okuma işlemi için gerekli olan veriyi veri yoluna yerleştirir.
- T4 durumunda 8086, veri yolundaki veri pinlerden okunur.

1/20/2023

- AD0-AD15: Adres/Veri yolu.
 - Düşük adres yolu hatlarıdır.
 - Veri hattı ile çoklanır.
 - Bellek adresi için kullanıldığında A sembolü kullanılır (A0-A15).
 - Veri aktarımında D sembolü kullanılır (D0-D7, D8-D15 veya D0-D15).
- A16-A19:
 - Yüksek adres yolu hatlarıdır.
 - Durum sinyalleri ile çoklanır.

10

- Bu pinler T4, T1 ve T2 zamanlarında aktiftir.
- T3 ve Tw (hazır pasif durumdayken) sırasında pasif duruma döner (1,1,1).
- 8288 veri yolu kontrolcüsü tarafından,
 - bellek ve G/Ç işlemi erişim kontrol sinyallerini oluşturmak için kullanılır.
- T4 zamanında durum pinlerindeki değişiklik,
 - veri yolu döngüsünün (bus cycle) başladığını gösterir.
- Düşük (*low*) sinyal 0
- Yüksek (high) sinyal 1

S2	S1	S0	Characteristics
0	0	0	Interrupt acknowledge
0	0	1	Read I/O port
0	1	0	Write I/O port
0	1	1	Halt
1	0	0	Code access
1	0	1	Read memory
1	1	0	Write memory
1	1	1	Passive state

- A16/S3, A17/S4, A18/S5, A19/S6.
- Belirtilen adres hatları ile ilgili durum sinyalleri çoklanır.

A17/S4	A16/S3	Function
0	0	Extra segment access
0	1	Stack segment access
1	0	Code segment access
1	1	Data segment access

BHE'/S7 ve RD' Pinleri

- BHE'/S7: Bus High Enable/Status
 - T1 zamanında düşük durumdadır.
 - Düşük (*low*) durumda iken etkindir. (*active*)
 - Veriyi D8-D15 üzerinde aktifleştirmek (enable) için kullanılır.
 - Veri yolunun üst kısmına bağlı 8-bit bir aygıt, BHE sinyalini kullanır.
 - S7 durum sinyali ile çoklanır.
 - S7 durum sinyali T2, T3 ve T4 zamanlarında kullanılabilir (available).
- RD': Okuma
 - Okuma işlemi için kullanılır.
 - Çıkış sinyalidir ve düşük olduğunda etkindir.

- READY: Hazır Sinyali
 - Bellek veya aygıttan gelir, veri transferinin tamamlandığını belirtir.
 - 8284A saat üreteci tarafından senkronize edilir.
 - Mikroişlemciye hazır girişi sağlar.
 - Yüksek (high) durumda iken etkindir. (active)
- INTR: Kesme Talebi
 - Tetikleyici giriş sinyalidir.
 - Komutun son saat döngüsünde kesme talebini belirtir.
 - Kesme talebi olursa, işlemci kesme kabul döngüsüne girer.
 - Yüksek durumda iken etkindir. Dahili olarak senkronize edilir.

- NMI: Maskelenemeyen Kesme
 - Kenar tetiklemeli (edge triggered) bir giriş sinyalidir.
 - Tip II bir kesmeye neden olur.
 - Ardından kesme vektörü tablosunda işaret edilen yordam yürütülür.
 - NMI, yazılım tarafından içsel (internally) olarak maskelenemez.
 - Düşük konumdan yükseğe geçiş, komutun sonunda kesmeyi başlatır.
 - Bu giriş dahili olarak senkronize edilmiştir.
- INTA: Kesme Kabul
 - Kesme kabul döngüsünün T2, T3 ve Tw zamanlarında düşük durumdadır.
- MN/MX': Minimum/Maksimum
 - İşlemcinin hangi modda çalışacağını gösterir.

- RQ'/GT1', RQ'/GT0': İstek/Bağış (Request/Grant)
 - Yerel veri yolu yöneticisi tarafından kullanılır.
 - Mikroişlemciyi döngü sonunda yerel veri yolunu bırakmaya zorlar.
 - Her bir pin çift yönlüdür (bi-directional).
 - RQ'/GT0', RQ'/GT1"den yüksek önceliklidir.
- LOCK': Kilit
 - Düşük (*low*) durumda iken etkindir. (*active*)
 - Aktifken sistem veri yolunu diğerlerinin kontrol etmesine izin verilmez.
 - Bir sonraki komut tamamlanana kadar etkindir.

TEST' ve CLK Pinleri

- TEST': Test Pin
 - 'WAIT' komutu tarafından kullanılır.
 - Değeri düşük (0) ise, işlem devam eder;
 - değilse, işlemci boşta (idle state) kalır.
 - Giriş, her saat döngüsünde (leading edge) dahili senkronize edilir.
- CLK: Saat Girişi
 - İşlemler ve veri yolu kontrol için temel zamanlamayı sağlar.
 - %33 görev döngüsüne sahip bir asimetrik kare dalgadır.
 - Its an asymmetric square wave with a 33% duty cycle.

- RESET: Sıfırlama Pini
 - Mikroişlemcinin mevcut faaliyetini derhal sona erdirmesini gerektirir.
 - Sinyalin en az dört saat döngüsü yüksek (1) olması gerekmektedir.
- Vcc: Güç Beslemesi
 - Mikroişlemcinin güç kaynağıdır.
 - Mikroişlemci, doğru çalışabilmek için +5V DC besleme alır.
- GND: Toprak
 - Mikroişlemcinin toprak bağlantısıdır.
 - Devrenin doğru çalışabilmesi için toprak bağlantısı sağlar.

QS1, QS0 Pinleri

Komut kuyruğunun durumunu gösterir.

QS1	QS0	Status
0	0	No operation
0	1	First byte of op code from queue
1	0	Empty the queue
1	1	Subsequent byte from queue

M/IO', DT/R Pinleri

- M/IO': Bellek ve Giriş/Çıkış
 - Bellek ve G/Ç işlemlerini ayırır.
 - Yüksek ilen M sinyali aktif, düşük iken IO' sinyali aktif durumdadır.
 - Yüksek olduğunda, bellek işlemleri gerçekleşir.
 - Düşük olduğunda, çevresel aygıtlardan giriş/çıkış işlemleri gerçekleşir.
- DT/R: Veri Gönderme/Alma
 - 8286 veya 8287 veri yolu transceiver kullanan sistemlerde gereklidir.
 - A transceiver is a combination transmitter/receiver in a single package.
 - Veri akışının yönü, transceiver tarafından kontrol edilir.

- DEN: Veri Etkinleştirme (Data Enable)
 - 8286/8287 transceiver'lı sistemlerde çıkış etkinleştirme işlevi görür.
 - Bellek ve G/Ç erişiminde, INTA döngülerinde aktif düşük (0) durumda
- HOLD/HOLDA: Tutma / Tutma Kabul
 - Başka bir bileşenin yerel veri yolunu istediğini gösterir.
 - Aktif yüksek (1) bir sinyaldir.
 - HOLD isteği alan mikroişlemci,
 - T4 veya T1 saat döngüsünün ortasında,
 - Onay (acknowledge) olarak HOLDA'yı (yüksek) yayınlar.

- ALE: Adres Kilidi Etkinleştirme (Address Latch Enable)
 - 8282/8283 adres kilidini kilitlemek için kullanılır.
 - Bir veri yolunun T1 zamanında aktif yüksek (1) durumdadır.
 - ALE sinyali her zaman bir tam sayıdır.

8288 Bus Controller

Interrupt Vector Table

Byte 0

30 1/20/2023

SON