

AFML-TR-79-4078

DOC FILE COPY

PHASE CHANGE/HEAT STORAGE MATERIALS DATA COMPILATION

V. R. HUNTER
R. F. BLOCK
HONEYWELL INC.
AVIONICS DIVISION
ST. PETERSBURG, FLORIDA 33733

JUNE 1979

DDC NOV 13 1979 UEGETTE

TECHNICAL REPORT AFML-TR-79-4078 Final Report August 1978 — January 1979

Approved for public release; distribution unlimited.

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
TRW, INC.
ONE SPACE PARK
REDONDO BEACH, CALIFORNIA 90278

79 11 09 001

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

ROBERT M. VANVLIET, Project Engineer GARY Laser Hardened Materials Branch Lase

Electromagnetic Materials Division

GARY D. DENMAN, Program Manager Laser Hardened Materials Branch Electromagnetic Materials Division

FOR THE COMMANDER

Chief

Electromagnetic Materials Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFML/LPJ, W-PAFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

HONEYWELL REPORT DOCUMENTATION PAGE

(19)	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPONS NUMBER 2	BRARY CATALOG NUMBER
AFML+TR-79-4078	(19)
4 TITLE land Subtitle)	E DAE OF REPORT & PERIOD COVERED
PHASE CHANGE/HEAT STORAGE MATERIALS DATA COMPILATION	Final Technical Report
7 AUTHORY	B. CONTRACT OR PROJECT NUMBER(s)
V. R. Hunter R. F. Block	F33615-78-C-5081
9 PERFORMING ORGANIZATION NAME AND ADDRESS Honeywell Inc. Avionics Division St. Petersburg, FL 33733	2100-00-45 (17) 00)
Air Force Materials Laboratory (LPJ) Wright-Patterson AF Base, OH 45433	June 1979 13 NUMBER OF PAGES 12 5
14	15 SECURITY CLASS (of this report)
TRW, Inc. One Space Park	Unclassified
Redondo Beach, CA 90278	15a DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT lof the Report Documentation Page, if different t	from Report/
is supplementary notes Work performed by Honeywell Inc., sub-com	ntractor to TRW, Inc.
19 KEY WORDS (Continue on revene use of necessary and schools by block number Phase Change, Latent Heat, Thermal Storage	

(1,Pf=0724(7//6)

Pare 1

390 311

JOB

change material bibliography and more descriptive information on the prime heat storage material candidates. 21. PERFORMING DEPARTMENT

PREFACE

The following is the final report of a survey and data compilation prepared for Honeywell Systems and Research Center in compliance with P.O. 833-808-HA, Task number F0648 AA 0001, for period August 1978 through January 1979.

This work was provided to TRW, Inc., under contract number F33615-78-C-5081, for design application on the SMATH IV development program. Appendix B and C list copyrighted materials used for this survey.

ACCESSION NTIS	White Section
DDC	Buff Section
UNANNOU	
JUSTIFICA	TION
BY	
DESTRIBUT	TON/AVAILABILITY CODES
DESTRIBUT	FIDM/AVAILABILITY CODES

TABLE OF CONTENTS

				PAGE
SECTION I				
INTRODUCTION				1
SECTION II				
PHASE CHANGE HEAT STORAGE MATERIALS				3
APPENDIX				
A STORAGE MATERIALS PROPERTY DATA				13
B DATA REFERENCE LIST				31
C STORAGE DATA DOCUMENT BIBLIOGRAF	НХ			33
D DESCRIPTIVE INFORMATION ON PRIME DCMC CANDIDATES				41
E SOURCES RESEARCH IN PERFORMING TO MATERIALS TASK	HEF	RMC		47

SECTION I

INTRODUCTION

Dynamic thermal control of a component or critical surface temperature by heat storage techniques can offer unique advantages for some applications. The passive and reliable nature of this approach can be attractive for space applications. Heat storage devices employing phase change materials (PCM) typically offer the highest thermal storage density based on volume or mass. Over 500 potential low melting point (100°C) PCM's have been listed in the literature and even greater numbers of high melting point (300-600°C) PCM's are also candidates. Most of these materials fail to satisfy all the following desirable characteristics for a PCM storage application:

. High Heat of Fusion

This property defines the available storage energy for the phase change and it may be important on a weight or volume basis.

. Reversible Solid-To-Liquid Transition

The composition of the solid and liquid phase should be the same. Complete reversibility with no transition hysteresis is desirable.

. High Thermal Conductivity

This property is usually the key parameter that determines whether a PCM can be successfully applied or not. For space applications, the thermal comductivity is the main driver for transporting the storage energy to and from the solid/liquid interface in the PCM.

. High Specific Heat and Density

The storage capacity in either the liquid or solid phase can be significant to a given application.

. Long Term Reliability During Repeated Freeze/Thaw Cycling

. Dependable Freezing Behavior

. Low Volume Change During Phase Transition

This property can greatly complicate the PCM element design. Severe expansions during phase change can cause localized stresses or can require complicated expansion/contraction provisions.

. Low Vapor Pressure

Honeywell has completed a survey of available phase change heat storage materials and has compiled a list of the more attractive prime candidates for space applications. This data compilation is provided to TRW, Inc. for use on the SMATH IV Development Program.

The following Section (II) discusses the heat storage material categories and recommends a list of 31 prime PCM candidate materials. A series of Appendices are also included which contain the following background data.

- Appendix A List of over 200 PCM data.
- Appendix B A PCM data reference list. Scientists at Oak Ridge
 National Laboratory (ORNL) were consulted to review
 the list of PCM candidates. Their comments concerning the materials list and their recommendations
 for additional document reviews are presented in
 Appendix B.
- Appendix C An extensive heat storage document bibliography.
- Appendix D A compilation of additional descriptive information on some of the prime PCM candidates.
- Appendix E Brief description of the information sources researched in developing the PCM Report.

SECTION II

PHASE CHANGE HEAT STORAGE MATERIALS

Honeywell has conducted a survey of available phase change heat storage materials commonly referred to as PCM's (Phase Change Materials). This data has been obtained from the documents and technical repositories described in Appendices B, C, and E.

The PCM candidates are categorized into ten groups, each category being listed in order of melting points, from low to high.

The accuracy of the data is dependent on the number of significant digits found in the literature. The only exception is in the melting point, where the temperatures were rounded to the nearest integer. Explanatory information (S, L, M, MP) is included when specifically noted in the literature.

When data was not readily available, spaces were left to allow entry of data found at later dates.

Because of the large number of possible phase change materials, the search was limited to materials within the following parameters:

. Specific Heat	500 to 2000 J/kg ^O K	(.1 to .5 gm/cal/gm-°C)	(.1 to .5 BTU/1b°F)
. Density	800 to 6500 kg/m	(.8 to 6.5 gm/cm ³)	(50 to 400 lb/ft ³)
. Heat of Fusion	100,000 to 300,000 J/k;	(24 to 72 cal/gm)	(50 to 150 BTU/1b)
. Transition Temp	100 to 800°F	(40 to 430°C)	

PARAFFINS

Paraffins normally are of the type CnH2n+2 and have similar properties of the saturated hydrocarbon family. The materials have an intermediate value for latent heat, low thermal conductivity, and are safe. The low thermal conductivity property does limit the paraffins' effectiveness.

Properties of Paraffins:

- 1) High heat of fusion per unit weight.
- 2) Wide melting point range (23 to 151°F) which was limited to 100 and above for this search.
- 3) Flammable.
- 4) Nontoxic.
- 5) Noncorrosive.
- Chemically inert and stable below 932°F.
- 7) Negligible supercooling behavior.
- 8) Low volume change on melting.
- Low vapor pressure in the melt.
- 10) Density ranges from 43.7 to 48.1 lb/ft .
- 11) Low thermal conductivity (corrected with fillers).12) High wetting ability.
- 13) Predictable and dependable.

NON-PARAFFIN ORGANICS

This category varies widely in the organic materials and their properties. The following factors should be considered in this general category.

- Most are flammable.
- Moderate to high toxicity.
- Many have a low flash point.
- · Impurities may greatly affect melting points.
- Many of the long-chain acids show two or more crystalline forms.
- Fillers will improve thermal conductivity.
- Many will decompose when exposed to high temperatures.
- Solid-solid transitions are common.
- Many have high heats of fusion.

METALLICS

This category includes the low melting metals and metal eutectics. Because they are generally so heavy, they are usually not considered as serious prime candidates. On the other hand, they do have high heats of fusion, and high thermal conductivities.

Features of Metallics:

- 1) Low heat of fusion per unit weight.
- 2) High heat of fusion per unit volume.
- 3) High thermal conductivity (fillers not required).
- 4) Low specific heat.
 5) Relatively low vapor pressure.
- 6) Low expansion of volume on melting.
- 7) High thermal stability.
- 8) Minimal hazardous behavior.

INORGANIC SALTS

Inorganic salts are ionic, when dissolved in water they become electrolytes, can be corrosive, and have higher heats of fusion than most of the salts.

The aluminum chloride doubles in volume when melted, but does have some properties that are desirable for thermal storage materials.

79AlCl₃ is a fused salt eutectic, that is, a eutectic compound formed by two or more inorganic salts. Fused salt eutectics have the following features:

- Components can be varied with some eutectics for a choice of values for the melting point and heat of fusion.
- 2) Generally high heat of fusion.
- 3) The presence of moisture influences the melting point.
- 4) Sharp melting point.
- 5) Corrosive.
- 6) Aluminum chloride has high volumetric expansion, but is lower in eutectics.

The fluoride salt is a binary compound salt. The addition of impurities lowers the melting point and the heat of fusion. The fusions of fluoride salts generally are reported to occur sharply.

EUTECTICS

A eutectic is an alloy or solution having its components in such proportions that the melting point is the lowest possible with those components. These materials are eutectic mixtures that have not been more specifically categorized.

UREA-BASED EUTECTICS

The urea-based eutectic offers promise as a storage medium. Ammonia chloride forms a simple eutectic-type phase relationship with urea as well as its function as a nucleating agent, solving the problem of supercooling.

SALT HYDRATES

Salt hydrates may be considered alloys of anhydrous salts with a definite number of moles of water forming typical crystalline solids. Salt hydrates usually have incongruent melting points. This is because the solubility is not high enough, and on melting the lower hydrate settles to the bottom. However, there are exceptions when the solubility of the salt is sufficiently high and the solution will dissolve completely in its water of crystallization upon melting and freeze reversibly.

Features of salt hydrates:

1) High heat of fusion per unit weight and volume.

2) Small volume change upon melting.

- 3) LiNO3 . $3H_2O$, Ba(OH)2 . $8H_2O$, and Na_2HPO_4 . 12 H_2O all have congruent melting points.
- 4) Relatively high thermal conductivity for non-metals.
- 5) Supercooling, that can be minimized with the addition of nucleating agents.
- 6) Corrosive.

SOLID-SOLID

The solid state transitions give possibilities for high enthalpies, have low coefficients of thermal expansion, and negligible supercooling. Plastic crystals are organic materials with high transitional enthalpies.

Generally, these organic materials undergo solid-solid transitions at a transition temperature below the melting point, where most of the energy is absorbed.

Features of Plastic Crystals:

- 1) Soft, waxy solids that can be extruded under considerably less pressure than ordinary crystals.
- 2) High vapor pressures relative to other solids.
- 3) 10 to 50% volume changes.
- 4) Minimal supercooling.
- 5) Fairly high transition temperatures.
- 6) Generally not very toxic.
- 7) Non-corrosive.

Appendix A contains a compilation of approximately 200 PCM candidate materials that appear to offer acceptable potential for heat storage applications in satellite components. Table I lists 30 prime candidate heat storage materials that Honeywell recommends for design study as part of the SMATH IV Task 1, Thermo-Materials Analysis. It is hoped that several of these materials can be successfully applied to enhance the survivability of specific satellite components under high energy laser attack environments.

NOTES

Conversations with Dr. Stanley Cantor of ORNL resulted in some minor changes to the prime candidate thermal storage data (Table 1). Adipic acid was added to the prime PCM list and several changes and data additions were incorporated in the table. Dr. Cantor's comments on the PCM survey are summarized below:

- Many more PCM candidates exist that are not included in the tables, but none of those missed exhibit superior properties over those tabulated.
- Be aware that gallium and bismuth go through significant density changes during phase change.
- The urea-based eutectics experience significant ammonia overpressures above 100°C and decomposition takes place above 135°C.
- The solid-solid heat of fusion is sometimes not practical because of difficulty of conducting heat through the solid material.
- 5) Many thermal properties, such as thermal conductivity, specific heat, volumetric expansion, and material stability, have yet to be determined for most storage materials.

The following references were obtained as recommended by Oak Ridge National Laboratory along with resulting information:

- Janz, George, first author, "Physical Properties Data Compilation Relevant to Energy Storage", Vol. 1: Molten Salt Eutectic Data, NSRDS-NBS-61, Part I. Compiled by Molten Salts Data Center, Cogswell Laboratory, Troy, N. Y., March 1978.
 - · Verified several melting points of prime PCM candidates.
 - Basically, this is a source to find available references on specific molten salt eutectics.
- 2) Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Naturwissenshaften Und Technik", Vol. II, Part 2b, Berlin, Springer, 1961.
 - · No new or relevant information found.
- Lane, G.A., first author, "Solar Energy Subsystems Employing Isothermal Heat Storage Materials", Phase I, September 1974 -April 1975, NTIS-N76-29708, ERDA-117, May 1975.
 - Updated Ba(OH)₂ .8H₂O. Researchers assessed this material's suitability for heat storage as "promising". The results of DTA tests show supercooling, and the freezing curve experiments show little supercooling.
- Purdue University, "Thermal Physical Properties of Matter", Thermal Physical Properties Research Center, IFI/Plenum, N. Y., 1970.
 - · Nothing new found.
 - · An excellent source for thermal conductivity data.

TABLE 1

PRIME LOW TEMPERATURE PCM CANDIDATES

NAME	2 0.0 1 1 10.0 1 1 1 1 1 1 1 1 1 1 1 1 1	x 101 x					
C29 ^H Q2 319 37 38 59.5 104 2.44 C34 ^H Q3 310 54 133 61.0 110 2.34 C34 ^H Q3 320 47 131 64.0 113 2.67 G2HGONIG 320 47 137 52.0 33.7 2.18 C3HGONIG 320 47 137 52.0 33.7 2.18 C3HGONIG 320 47 137 52.0 33.7 2.18 C3HGONIG 320 47 137 52.0 33.7 2.18 C4H ₂ C3 32 34 13 138 57.7 104.0 2.43 GCHGONIC 32 152 125 57.8 103.8 2.43 C4H ₂ C4 C5	9 1 1 9 1	-	pm/cm ² lb/ft ³ Kq/m ³	F-ft (W	Matta/	COEFF.	SOURCE
C38 ⁸ 54 330 35 133 13.0 130 2.36 C34 ⁸ 54 330 35 133 61.0 110 2.36 C34 ⁸ 10 346 73 131 64.0 1115 2.67 G4 ⁸ 10 0008 299 17 62 44.7 80.3 1.87 G4 ⁸ 10 0008 399 17 62 44.7 80.3 1.87 G5 ⁸ 10 0008 C28 ⁸ 10 000 329 36 133 63.6 82.1 1.87 G5 ⁸ 10 000 000 329 36 133 63.6 82.1 1.87 G5 ⁸ 10 000 000 329 36 133 63.6 82.1 1.87 G6 ⁸ 10 000 000 329 36 131 32.0 33.7 104.0 2.03 G6 ⁸ 11 06 000 166 331 70.3 126.1 2.93 G6 ⁸ 11 06 000 166 331 70.3 126.1 2.93	9 11 11						
C34*34 330 34 133 41.0 110 2.54 C34*10 344 73 131 44.0 115 2.47 G4*709*14 329 47 117 52.0 93.7 2.13 C94*709*14 329 47 117 52.0 93.7 2.13 C94*709*14 329 47 117 52.0 93.7 2.13 C94*708*1 329 47 117 52.0 93.7 2.13 G4*708*1 354 81 178 57.7 104.0 2.42 G54*1404 43 152 333 57.8 103.4 2.42 C4*1404 43 154 331 70.3 135.1 2.53	1 1 3 1	.0083 2.2175	0083 2,5175, 976 (0)53 4 (1,178 (0)	0.0465	0.1494	.00029°F-1	
C34810 344 73 131 44.0 115 2.47 13 2.47 13 2.47 13 2.47 2 2 2 2 2 2 2 2 2	1 1	1	0.7700 770.0	1	-	1	
CB CB COOK 239 17 62 44.7 80.3 1.87 cd (2g/7cg/14) 329 47 117 52.0 93.7 3.18 ccook (Cg 2/4)	* 1	1	1	1	-	1	•
CB_3 COOK 239 17 62 44.7 80.3 1.87	• 1						
14 CallyGalls 329 47 117 52.0 93.7 2.18 COOH (C ₁₇ N ₃₅ COO) 329 54 133 45.6 82.1 1.01 C ₃ N ₅ 347 74 143 07A eminated large C ₂ N ₅ OH 354 81 178 57.7 104.0 2.42 d MOOC(CN ₂) ₄ 425 152 303 57.8 103.8 2.42 C ₆ N ₁ O ₆ 439 155 331 70.3 126.1 2.93	-	2.040 1.960	1.052963.4(1.103920.1	0.10	1.	1.0110 (2)	1. 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	5.031 ⁷ 53.102.051 ⁷³	6.0923	0.1597	1	n
C2M3CH 354 81 178 57.7 104.0 2.42 WOOC(CM2)4 425 152 305 57.8 103.8 2.42 C4M1404 439 155 331 70.3 125.1 2.93	1	1	D. 842 803 842 842 85	1	1	1	
14 NOOC(CN ₂)4 423 152 305 57.8 103.8 2.42 10 C ₆ N ₁ C ₆ C	1	1	1	fatinated to	talte los	1	
1d MOOC (CM ₂) ₄ 423 152 305 57.8 103.8 2.42 COOR 2008 155 331 70.3 126.1 2.93	1	1	(Las) (Las) (Las) 1.159 72.36 1159.0	0.131	× • 353°x	1	1. 13
1 C.M. O. 156 331 70.3 126.1 2.93	1			1		1	ORNE
277776	0	0.410	1, 403 20,34 1499.0	1	1	1	1. 10
Ga 303 30 84 39.2 34.4 0.80	0.0%2	0.340 0.181	5.903(s) 300.3 (s) (s) (s) (c) (d(s)	\$7.8 18.3		7-65 (8)	1. 9. 10
4.42	1.376	- s.m	0.53 33.1 536.0	3.8	*523°x	7.0x10° 30g-	7. 11. 18
			S - SOLID	- 25	- 60	0 10 10 10 10 10 10 10 10 10 10 10 10 10	

TABLE 1

PRIME LOW TEMPERATURE PCM CANDIDATES (Cont'd.)

TODGELA 0, 0 0 0 0 1/2 3 1/2 3 1/2 1			WELT.	MELITING POINT	11811	K238	SEAT OF TO	FUS.108		to cross	MOTT			T#1522		THEODET C	COMPOCTIVITY	THERM	12/15/76
11213 1121 448 1313 1313 645 1314.8 1.249 0.188	NAME OR NOLE .	FORMULA			0 10	041/p			8 8	10/41	* 10	1 1	4/cm)	18/113	24/83	F-11	Watts/ (Meter-Ox)	COLITY.	SOURCE
A A C A A C A A A A	INCHONIC SALTS																		
A A A A A A A A A A		Atct,	**	13.3	352	63.5		2.90	**1.0	1	0.787	****	2.4	1.63.	2400.0		1	1	1. 7. 11
LIGHT - LIGHT 513 242 594 104.7 182.9 4.23 0.105 - 1.236 - 1.2		Alci y-Maci		8.8	**	54.0	101	2.15	1	1		-	-	***	1	1	****	1	
LICT - LICH 515 242 594 104.7 142.0 4.33 0.395 1.376 1.776 107.9 1728.0 1.378 1.778 107.9 1728.0 1.378 1.378 107.9 1728.0 1.378 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0 1.378 107.9 1728.0		1.187.	58.3	310	23.8	59.8	107.	2.30	1	1	1	1	*	1	1	1	1	-	
SACREADY 2 - 119 75 120 120 2 120 2 120 - 120 2 120 - 120 2 120 120	37-61	L1C1 - L1CH	533	26.2	8		6.25	5	The second section of the second seco		*		6. 75 E	107.	X	1	1	I	3. 4. 7
CO(SME) 2 - 149 76 150 140 15 120 2.05 1 127	15.3 - 4.7			23.3	17.5	78.1	140.3	3.28	1	1	-	1	1	1	1	1	1	1	
CO(381) 2 - 349 74 150 49.4 87.0 2.02	13 - 52			0 80	5 8 0	78.22	15.01		1		1	1	1	1	ī	1	1	1	٠
0(3812) 2 - 149 74 149 149 48 4 10 2.03	NEA-BASED EUTECTIC																		
0 (NH ₂) ₂ - (185 112 2) ₄ (S4.2 101.0 2.15	81 - 16	CO (XH2) 2 -	340	7.6	163	*		20.00	1	1	1	1	1	1	1	•	*		^
903, 387, 0 303 30 86 70,7 128,0 2,97 0,370 1,55 1,55 86,865 1550 0 3,90 128,0 1328,0	15.5-14.5	CO (NH ₂) 2 -	386	113	3.23			2.14	1	1	1	-	1	* *	1	1	1	1	*
\$903.387_0 \$803.387_0 \$88,872.635 56.875 125.0 2.77 0.370 1.55 1.5512.86.575 1550 (8) 1.5512.850 (8) 1.55128.870 4- 1.5512.850 (8) 1.5512.850 (90 - 10	CO (NH ₂) 2 -	385	E			101.9	2.33	,	-	1		1	1	1	1	1	1	•
MON, 1870 101 10 86 75,7 178,0 2,97 0,370 1,55 1,55 5 8,8 6 1550 (S) 1,55 8 8 8 8 1550 (S) 1,55 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TALT				- Marie														
34,8904- 309 36 97 66.8 120.0 2.79 (0.40 0.46 0.5736 1.9246 35.20 0.93 1520 0 1.94 (5) 2.9237(5)	Lithium Ni- leate Triby-		101		Annual Printers and Publishers and P	7.57	128.0	-	-	!	¥7 ×5		2.5	25.35	1530(1)	1	ı	1	-
	Sodium Bydro- gen Phosphais Dodecabydrais		103	-	AND DESCRIPTION OF REAL PROPERTY.	6.83	120.0	-	-	0.46	1,6738	1.97.46		34.9	152020	1.53	2.9237(5)	8. 3x10 - 30g-1	r. 6
Sarium Sydro- xide Octa- Baicon; 751 82 152 53.5 116.0 2.66 0.28 0.52 1.1715 2.175 2.18 136.0 2180	Sarium Mydru Kide Octa- hydrate	Ba (OH) 2 .	33		2	\$3.5	-		hand.	0.52	1,1715	2.175	2.18	136.0	2180	4 4 4	:	1	1, 6

TABLE 2

March Marc		_					PRIM	E SOL	ID-SO	TID	PRIME SOLID-SOLID PCM CANDIDATES	DIDAT	SS				£	12/15/78
Section Sect	ann.	5	WS:T:	*		ATENT HEA		25	12121		WOLECULA.	· · · · · · · · · · · · · · · · · · ·	1 281 71	21.N.1	NEK	7 07 10510		SOUNCE NETTENETICE
Pariserythettol	• STOK	£ 8	OC C	4	C. 1/197	PTU/Ib	2/hgx10	ca/m ³	15/11	K1//K	T. Carl		00	40	cel/m	#TU/11b	3/X5X103	
136.15 531 239	PoliD-solid 2-Amino-2-methyl-1 3 Propanediol	2		1.1		a	3.5	1	1	2	9	44		+:		13.6	9.33.6	
TANGE OF THE PARTY	Pentaerythritol	:	:	ž		£7.	3.00	!	1	1	136.13	\$32	22.8	***	8.90	36.0	0.372	
ANICO DOLLUTAN - EN GEORGE S GEORGE S GEORGE S S S GEORGE S S S S S S S S S S S S S			Control of the Assessment Control of the Control of															
SOLID FIGUID WEAGUED WEATING POINT												700-Marie 1107						
SOLID LIGOID MELTING POINT												-						
SOLID LIGOID MINGRED M																		
SOLID MINGRID																		
SOLID LIQUID MELLING POINT												_						
												UID NUMED TING PO		Superson	ripts on v	grees of 6 grees cent	ensity refe igrade at v	Alch the
												-	-					

TABLE 3

						PR	PRIME HIGH TEMPERATURE PCM CANDIDATES	ICH 1	EMPE	RATUR	E PC	M CA	MDIDA	TES				MENTSTO
		XELT	MELTING POINT	TRIC	KE	KEAT OF PUSION	TUS TON	-	HEAT CABALITY	PAL. 177	Strange.		1215221	-	THE PEAL OF	THEMSEL COSCIOCITYTH	THEMOSE	9//27/**
NAME OR NOLE •	POMOTA	o*	0	o h	ACCOUNT OF THE PARTY OF THE PARTY.	MT0/	501, 97 MTU/11 1103)naa	2 2 2	× ×		pa/cm3	15/113 24/23		FTU/2r -	Matta/	EXPANSION COLFF.	FOTTCE REFERENCE
09 - 09	MC1 - KBr	**	21.5	1323	1	58.76 305.55	5 2.453	1	1	1		3.6284	6284 164.09 2828.	2828.6	1	1	-	13, 17
40.5 - 39.5	17 - NaC1	=	199	3	01.71	01.71 182.71	****	1	1	1	1	2 36 2	1,2361 139.60 2236.	2236.1		1		2
42 - 46.5 - 11.5 XF - LIF -	XF - LLF - NAT	330	63.7	355		270.2	50.43 270.22 6.280	1	1	1 2 2	1	2.5204	2.5204 157.36 2520.6	2520.6	1	ı	1	2
	27.8	•	11.4	1350	2.5	1103	17.51 1109.2 25.773	1	1	1	1	1	1	1	2.12(s) 3.7-1.7(L)	2.12(8) 3.469(8) 5.7-1.7(L) 1.2-2.9(L)	1	*
	1 17	ij	83.8	838 1558		65	50.30 450.32 10.470	1	-	1	1	4 · · · · · · · · · · · · · · · · · · ·		1827.9	1	1	1	*
,																		
										-							764 - 76 - 76 - 76	
					Acres a													
								-										
												KEY						
												wax 8	SOLID LIQUID MEASURED MELTING P	O SEE		rature in de-	alurs of densi- grees centigra- red.	Superscripts on values of density refer to the temperature in degrees centigrade at which the density was measured.

APPENDIX A
STORAGE MATERIALS PROPERTY DATA

TABLE 4

PARAFFINS

NAME:	PORMULA	MELL	DKI	MELTING POINT	MEAT OF FUSION	AC NC	HEAT CAPACITY BTU/15/09	PACITY	DENSITY	17.7	THE REAL	THEFNAL	
		y _o	20	do l	sal/as	STU/IB	10	1	ga/cm3	1b/ft ³	F-ft	SOLID COLPF.	
n-Tetredecane	C14530	279	4	4.2	\$4	9.6	1		0,77155	48.1		-	
n-Pentadecane	C15H32	283	10	80	69	00)	1	-	5,76820	47.9	1	-	
n-Hexadecane	C16H34	230	13	62	56.67	102.0	1 1	*	0.77420	48.3	1	1	
n-Beptadocane	C12H36	295	22	7.3	5.2	9.5	1	1	0.77820	48.6	1	-	
n-Octadecane	C18"38	301	80 C4	8.2	28	105	!	1	0.77420	48.3	-	1	
n-Elcosane	C20H42	310	37	9.8	59	106	.48	.53	5,77820	48.6(T)	0.0865	91000.	PRIME
n-Hoselcosane	C21H44	313	0,	104	82 **	9 8		1	0.75820	47.3	1	1	
n-Docosane	C22H46	317	;	11.12	09	107	1	!	0.76320	47.6	-	1	
n-Tricosane	C23H48	321	œ *	80	95	100	1	1	0.76420	47.7	1	1	
n-Pentacosane	C25H52	323	6	121	;	1	1	1	691.0	48.0	1	1	
n-Tetracosane	C24H50	324	27	123	1	;	1	1	0.76620	47.8	1	ı	
Paraffin Kax		328	3,5	130	35	63	. 30	.72	88.0	5.5	1	1	
n-Hexacosane	C26H54	330	26	133	19	110	1	1	0.770	68.0	-	1	PRIME
n-Reptacosane	C27H56	332	65	38	;	1	1	1	0.773	48.2	1	1	
n-Octacosane	C28M58	335	62	5	6.1	109	1	1	0.77961	148.6	1	1	
n-Nonacosane	C29H60	337	63	146	57	103	1	1	1	1	1	1	
n-Triacontane	C30H62	339	65	150	09	108	1	1	1	1	1	ı	
n-Hentriacontane	C31H64	1	!	1	32.2	57.8	!	:	1	1	1	1	
r-Dotricontane	C32H66	343	70	80 10	1	1	1	1	0.78270	348.8	ı	1	
n-Tritriacontane	C33H68	344	7.7	160	1	1	1	1	1	1	1	ŀ	
Carbowax 1000	1	330	57	103	37.3	67.0	1	. 54	1.15	71.8(5	1	.00042	
n-Tetratriacontage C34H10	C34H10	346	7.3	131	64.0	115.0	ı	1	1	1	1	1	PRINE
n-Hexatriacontane	C36H74	349	92	137	56.2	101.0	1	1	١	1	ı	ı	
21	KEY					Supers	ripts	on valu	o so	ve i su e	Superscripts on values of density refer to the		

E = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

TABLE 5

NON-PARAFFIN ORGANICS

### ##################################	44.7 80.3 47.5 85.3 47.5 85.3 47.8 83 47.8 83 47.8 88 49.8 88		s : :	9m/cm ³ lb/ft 1.05 ²⁰ 65.6 1.260 ² 78.6 1.120 69	65.6	P-ft	SOLID COEFF.	
200 29 25 29 25 29 25 29 3 29 25 29 3 29 25 29 3 29 25 29 3 29 25 29 3 29 25 29 25 29 3 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 20 20 20 20 20 20 20 20 20 20 20 20 20				1.2602	1 2 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
HCH2OH 291 18 noii 291 20- 208 29 26 2008 299 26 102 29 112 29 113 40 1 114 41 1 115 42 1 115 42 1 115 42 1 116 41 1 117 44 1 118 41 1 119 44 1				1.0520	77.98	1 1	!	
2008 291 18 293 25 2008 299 26 302 29 302 29 312 39 1 312 39 1 312 40 1 314 41 1 314 41 1 315 42 1 315 42 1 316 42 1	2. 22 4 6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			1.12602	69 77 69 66	:	!	PRIME
293-20-25-25-25-25-25-25-25-25-25-25-25-25-25-	2 4 4 4 4 4 4			1.120	69		1	
2) 6) 2 60 2 9 9 2 6 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	4 6 6 8 8			1.2491	77.98	l	1	
2)6,200 313 40 2 29 29 31 31 40 41 11 11 11 11 11 11 11 11 11 11 11 11	0 7 6 8		1 1	1	1 1	1		
202 312 312 313 40 314 41 314 41 315 42 317 44 317 44 317 44 318 45 318 45 318 45 318 45 318 46 318 47 318 47 318 47 318 47 318 318 47 318 318 47 318 47 318 47 47 318 47 47 318 47 47 318 47 47 318 47 47 318 47 47 47 47 47 47 47 47 47 47 47 47 47	4 4 4 C 00 00		1		!	1	1	
202 318 45	6 8			1		1	i	
202 318 45	4.8	_	1	!	:	:	1	
202 314 41 314 41 315 42 315 44 44 44 44 44 44 44 44 44 44 44 44 44		;	1	1	1	1	1	
314 41 314 41 315 42 317 44 502 318 45	62 110	*	1	1	1	1	1	
314 41 314 41 315 42 317 44 202 318 45	89	1	1	i	1	1	1	
314 41 315 42 317 44 202 318 45	52 93	1	1	i	1		1	
202 318 45	47 84	1	1	-	1	i	1	
318 45	48 85	!	1	1	1	1	1	
318 45	20 90	1	1	1.0820	67.4	!	1	
120 47	55 99	1	1	1	1	1	1	
	52 93.7	!	1	0.8517	53.1	:	1	PRIME

KEY
S = SOLID
L = LIQUID
M = MEASURED
WP = MELTING POINT

TABLE 5

NON-PARAFFIN ORGANICS (Cont'd.)

Polyethylene Glycol 1000 3-Heptadecanone ClyH340 2-Heptadecanone ES-254 9-Heptadecanone ClyH340 Methyl Behenate C24H4602 Ethyl Lignocerate	р Он		2 +3	-	al/gm	BTU/Ib	23				Bullet Strike	The state of the s	
	1n OH			-	-			.7	gm/cm3	gm/cm ³ lb/ft ³	F-ft	1/05	
				95-	44.5	0.08	1	;	I	1	1	1	
				90	52	9.3	:	1	1	1	1	1	
	~ ~		4.8	118	52	9.3	:	-	1		1	-	
	~ ~		20	122	!	1	1	1	1	ı	1	I	
		-	5.1	124	51	9.2	1	1	I	1	1	-	
Ocerate		325	52 1	126	3.6	101	***	1	1	1	1	1	
	-	327	*	129	52	6	1	1	T	1	1	ı	
Palmitic Acid CH3(CH2)14COOH 328	14COOH 3		55 1	131	39	70	1	!	0.85	53	1	-	
Hypophosphoric H4P206 Acid		328	55	131	25	9.5	1	1	1	1	1	1	
Tristearin (C17H15CDO) 3		329	95		45.6	82.1	1	1	0.86280	53.8	1	1	PRIME
Trimyristin (C13H27C00) 3 C3H3		330	75	135	51.	95-	1	1	!	1	1	1	
Myristic Acid C14H2802		331	5.9	136	47.5	85.5	1	1	0.8586	53.6	1		
Ethyl Cerotate C28H5602		333	09	140	5.4	9.7	1	1	1	:			
Reptadecanoic C17H3402		334	19	141	45.2	81.2	1	1	1	1	1	-	
c Acid	СИ3 (СИ2) 16 СООН 343		8 9	157	47.6	85.5	!	1	0.84769	52.9	;	-	
Oxazoline Wax -	п	347	7	165	1	1	1	1	1	1	1	1	PRIME

KEY

5 -1 K K

SOLID LIQUID MEASURED MELTING POINT

TABLE 5

NON-PARAFFIN ORGANICS (Cont'd.)

	1							
		PRIME					PRINE	
THERMAL EXPANSION SOLID COEFF.	1/07		1	1	1	1	:	
THE PAAL CONDUCTIVITY BTU/NE -	P-42		6 8 9	* * 1	;		1 1	
I.L.	1b/ft ³	72.36	65.250	* *	68.92	60.06	92.96	
DENSITY	gm/cm3 lb/ft3	1.159	1.0452	1	1.104	1.443	1.4892	
PACITY D/OF	.1	1 1	-	1	1	1	1	
HEAT CAPACITY STU/15/09	1/3	****	-	-	1	!	1	
350 N	8170/15	101	104		87.5	85.5	126.1	
HEAT OF PUSION	al/gm BTU/15	57.7	\$7.9	1	48.7	47.6	70.3	
POINT	30	1 1 30	216	230	246	31.8	331	
MELTING POINT	30	- T	102	210	611	159	166	
3.2 3.2	o [×]	354	375	383	392	432	439	
FORMULA		C2H5ON	(CH CO ₂ CH ₃) ₂	C6H4 (OH) 2	(CH2CO) 20	HOC & H & COOH	C6H1406	
NAME		Acetamide	Methyl Funarate (CH CO ₂ CH ₃) ₂	Resorcinol	Succinic	Salicylic Acid HOC6H4COOH	o-Mannitol	

KEY

SOLID LIQUID MEASURED MELTING POINT 0 -2 x &

TABLE 6

METALLICS

		X			
		PRINE			
EXPANSION SOLID COFFE	1/05		1	I	1
CONDUCTIVITY	F-ft		-	1	
17.7	1b/ft ³	368.5	849	587	620
DENSITY	gm/cm3 1b/ft3	5.9032	8.820	9.4801	8-10
PACITY 5/0F	2	1	ı	1	1
HEAT CAPACITY BTU/15/0F	15	1	1	1	1
N. O.	BTU/11b	34.4	39.1	0	13.0
HEAT OF FUSION	sal/gm BTU/lb	19.2	21.8	7.78	7.0
TKIO	\$4 O	99	136	80	25.00
MELTING POINT	30	30	50 50	20	70
MELT	×	303	333	343	343
FORMULA		5	49 Bi • 21 Int 18 Pb • 12 Sn	50.5 Bi • 26.7 343 • 13.3 Sn • 10.0 Cd	52 Bi + 26 Pb + 22 In
NACE		Gallium	Cerrolow	Cerrobend	Bismuth-Lead Indium Eutectic

XEY
S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

TABLE 7

EUTECTIC

Page 1 of 4

FORSELLA	X	MELTING POINT	TNIO	FUSION OF	OE NO	MEAT CA BTU/L	NT CAPACITY BTU/15/9F	DENSITY	,	THILNOAL COLDUCTIVITY BTU/HE -	EXPANSION SOLID COEFF.	
	ŏ	30	å,	cal/gm	al/gm BTC/lb	sn	.2	gm/cm² lb/ft	15/41	Y-22	1/08	
XX03 - NaX03 - 430	4.30	157	315	29.5	53	. 29	. 32	3M.P.	153	f	1	
наок-кон	443	170	338	80 97 97	100	1	1 1	8M.P.	114.7	1	1	
NaMo, - KNO,	495	222	432	32.8	00 00 67	. 36	.36	8M.P.	117	.33(1)	!	
KNO2 - NANO2	504	231	447	37.9	68.03	1	1		117.3	1	1	
NaNO2 - NaOH	12	25	094	S. 88 . 55	105.0	1	1	8M.P.	114.2	1	1	
CaCl2 - LiNO3	511	238	094	42.9	77.0	1	1	#M.P.	114.3	i	1	
NaNO, - NaOH	521	2 4 8	116	37.9	0.89	1 1	1	1.9103	119.3	1	1	
Sa (NO _{3) 2} - LiNO 525	525	252	485	87.7	157.5	1	1	2.133	133.2	1	1	
C.1NO ₃	527	254	061	7.06	163.7	1	1	2.4	149.8	1	1	
LIOH - NaOH	528	255	460	55.8	100.2	66.	. 39	1.9	118.6	1	-	
Mac1 - Incl2	533	260	463	47.4	85.1		1	2.5	156.1	1	1	
NaBr-NaOH	534	261	200	38.7	9.69	1	1	2.0195	126.1	1	1	
L1C1 - L1OH	535	262	504	104.7	182.	1	1	8M.P.	107.9	-	1	PRIME
Ca (NO ₃) 2 - LIC1 538	53.8	26.55	605	40.1	72.0	1	1	1.868 1.868	116.6	1	1	

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

KEY

TABLE 7

EUTECTIC (Cont'd.)

	1111000	MEL	MELTING POINT	OINT	NEAT OF FUSION	ON	REAT C	HEAT CAPACITY	NEED	DENSITY	THEROAL	THERMAL	
(MOLE :)	Y CONTROL	ŏ	00	A O	cal/gm	LC.	9 59	7	gm/cm ³ lb/ft	1b/ft ³	BTU/Hr - F-ft	SOLID COEFF.	
40.3-59.7	CaCl2 - LiNO3	541	268	482	43.63	78.37		1	1.984	123.86	1	:	
6.5-7.4-86.1	Na2CO3 - Na2O NaOH	554	1 80 74	505	56.5	x 5.10	1	1	8	117.5	:	1	
7.8-6.4-85.8	Nacl - Na ₂ CO ₃	555	282	50 8	75.7	136.0	1	1	2.1	11.11	1	1	
8.4-86.3-5.3	NaCl-NaNo3 -	260	287	526	42.6	76.4	.45	ž.	2.24(S	120.76	.377(5)	1	
95.3 - 4.7	NAOH - NA2504	995	293	527	78.1	140.3	1	1	1 1	*	1 1	1	PRIME
4.6 - 95.4	Nacl - NaNo3	570	297	567	46.8	x 0	***	9.	2.3	143.6	.35(5)	i	
1	NaMO ₃	280	307	80 80 80	43.5	78.1	.45	÷.	2.3(S) 1.9(L)	141(S) 119(L)	.33(5)	1	
!	Na2N202	58.8	315	567	58.4	104.9	1	1	1.7	106.1	1	1	
45.4-31.9-22.7	KBr-Lici-PbBr ₂ 596	965	323	581	40.42	72.61	1	1	8M.P.	167.31	1	:	
39	KC1-LiBr	900	327	620	43.92	78.89	1	1	1	1			
66.5 (app)	Na2CO3 - Na2	603	330	626	46.08	82.78	1	1	1	1	1	1	
5.3-44.2-50.5	Cacl ₂ - KCl -	603	332	630	62.01	111.38	1	1	1	1	1	I	
5.43-40.92-	Baci - xci -	610	337	607	54.63	0.00 X.4	1	!	.0287	8M.P.	1	ı	

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

KEY

TABLE 7

EUTECTIC (Cont'd.)

Page 3 of 4

COMPOSITION		MELT	MELTING POINT	DINT	MEAT OF FUSION		HEAT CAPACITY	PACITY	DENSITY		THESPAL.	THEFFALL	
(WOLE *)	FORMULA	×	00	ñ. 0	cal/gm BTU/lb	-	5 5	1 r	ps/cm ³ lb/tt	~	BTU/Hr - F-ft	SOLID COUPF.	
1.8-42.2-56	CaF2 - KC1 - Lic1	1119	338	640	65.45	117.57	5 2 2	1	l l	l		1 4 2	
5.8-43.3-50.9	CAC1 - KC1 -	613	340	644	62.78	112.77	1	1	1	1	1	8 5 1	
35-57.5-7.5	XBr-Lici-Naci	613	340	644	52.30	93.95	1 1	1	1	1	1	1	
46.5-56-3.5	KCI-LICI-LIE	619	346	657	62.63	112.5	1	1	1	1	1	-	
36-55-9	KC1-Lici-NaCl	619	346	655	67.03	120.40	1	1	1 2 2		1		
42	xc1-11C1	623	348	627	61.1	109.7	1 1	1	2.03	126.7	1	1	
1.3-37.7-34.8	21.3-37.7-34.8 KBr-KCl-LiBr- 6.1	630	357	643	44.26	79.8	-	1	8M.P. 2.21	137.97	-	1	
39	KBr-Lici	633	360	089	52.64	94.55	-	-	1 1	1	1	-	
48-52	115-8052	633	360	683	78.22	140.51	1	1	1 1 1	1	1		PRIME
61-11-28	MnCl -NaCl-NaF	643	370	71.6	51.13	91.85	-	-	1	1 1			
5-34.5-5-20	45.5-34.5-5-20 KC1-MBC12-NAC1	563	390	734	52.43	94.18	1	1	1	1	1	-	
17.8-25.2-2-57 CaCl2-NaCl- PECI2		564	391	736	28.40	51.02	1	1	1	1	-	1 1	
1	Li2CO3 - K2CO3 - Na2CO3	9999	393	708	66.2	119.0	0.00	67.	2.3	143.6	1.17	-	
20-50-30	Kcl-MgCl2 - NaCl	699	396	745	69.34	124.55	Į Į	1	i i	1	1	1	

KEY

SOLID LIQUID MEASURED MELTING POINT 8 4 X E

TABLE 7

EUTECTIC (Cont'd.)

THERMAL EXPANSION SOLID COPPE	1/01	1	1	1	1	1	1	-	1	1	ı	1	ı	1
THERMAL COLDUCTIVITY NTHAME	F-ft	1	1	1	-	1	1	1	1	1	1	-	1	1
1777	15/ft ³	1	1	1	i	1	1	1	1	1	£ .	1	1	1
TISKED	gm/cm3	-	1	1	1	1	1	1 1	1	1	1	1	1	I
PACITY B/OT	.2	1	1	1	1	1	1	1	:	1	1	1	1	1
MEAT CAPACITY BTU/1b/07	us	1	1	1	1	1		1 1	:	1	1	1	1	1
30	BTU/1b	53.11	96.11	60.02	51.97	99.46	51.21	84.24	83.94	52.32	51.89	55.17	123.11	101.15
HEAT OF FUSION	sal/gm	29.57	53.50	33.41	28.93	55.37	28.51	46.90	46.73	29.13	28.89	30.71	68.54	11.
OINT	do	750	752	756	756	763	763	763	766	766	770	770	+774	***
MELTING POINT	20	399	007	402	60.7	907	901	901	408	408	410	410	412	813
XEL	×	672	673	675	675	619	613	619	583	581	683	683	685	169
FORMULA		KC1-NaC1-PBC12	KC1-MnC1 - NaC1	BaCl2 - Ca(NO3) 675	Cacl; - Kcl - Pbcl;	Bacl2 - Cacl2 Lici	XC1-PbC12	MgC1 - CuC1	Lici-cuci	3a (NO3) 2 - NaCl 681	XC1 - PbC12	Lici- Pbc12	CAC12 - XC1 -	Bacl, MgCl, -MgCl,
COMPOSITION	(NOTE A)	35-17-48	37.7-37.3-25	41.7	3-47-50	17.1-28.8-54	48-52	10-90	20	62	67	91	2.4	13.8-39.9-

KEY S = 50

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

TABLE 8

UREA-BASED EUTECTICS

COMPOSITION	ATDRAOR	MELL	MELTING POINT	POINT	HEAT OF FUSION	OF	HEAT CAPACI BTU/15/9F	HEAT CAPACITY BTU/15/9F	DEN	DENSITY	THERMAL	THERMAL EXPANSION	
(MOLE %)		×o	00	do	cal/gm	870/15	un.	-1	dm/cm)	qm/cm ³ lb/ft ³	P-ft	1/05	
66-24-10	CO(NH2)2 -	347	3.4	133	40.6	23.0	1	:	*	1	-	1	
78-16-6	CO(NH2) 2 - KNO3	353	0	:	43.8	78.7	1	1	1	1	*	1	
70.7-22.3-7.0	CO (NH2) 2 - NANO3 - KNO3	36.4	3.1	163	39.2	70.5	1	1	1	1		1	
34-16	CO(NH2)2 - Lino3	367	7.	691	18.4	97.0	1	1	!	1	1	1	PRIME
79-4-17	CO(NH2)2 - NaCl - NaNo3	369	36	173	45.9	82.5	1	1	1	1		1	
77.5-22.5	CO(SH2) 2 - NaNO3	374	101	C# 00 rd	45.3	81.46	1	1	1	-	1	I	
17.9-22.1	CO (NH ₂) ₂ - NaMo ₃	375	70 71	183	45.1	81.0	1	1	1	1	1	ı	
88.7-8.5-2.8	CO (NH2) 2 - KNO	380	107	192	45.9	82.5	1	1	1	1	1	1	
13.5-84.5	CO(SH2)2 - Liso3	150 200 200 200	113	203	51.2	92.0	1	1	1	1	1	ı	PRIME
89.5-10.5	CO (MH ₂) 3 - BA (MŠ ₃) 2	387	:	205	41.8	75.0	1	1	i	1	1	1	
82.9-17-1	CO (NH2) 2 - NH4C1	392	113	215	50.3	\$0.4	1	1	1	1	1	I	
85-15	CO (NH2) 2 - KNO3	400	127	90	50.1	90.06	-	1	1	1	1	1	
90-10	CO (NH ₂) ₂ -	, to	97	234	56.2	101.0	1	1	1	1	ı	1	PRIME

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

TABLE 8

UREA-BASED EUTECTICS (Cont'd.)

-		-		-	The second second second	-	-	-	-	-			
COMPOSITION	PORMULA	MELT	MELTING POINT	OINT	PUSION	ON ON	HEAT C	HEAT CAPACITY	DEN	DENSITY	COLDUCTIVITY	THERMAL EXPANSION	
(NOTE A)		×o	20	St.	cal/gm	cal/gm BTU/lb	s	-12	ga/ca3	gm/cm ³ lb/ft ³	F-ft	SOLID COLFF.	
91-9	CO (NH2) 2 - XCL	90+	133	239	55.48	59.65	1	1	:	1	1	-	
57.7-23.9-	CO (NH ₂) 2 Ca (NO ₃) 2 Ca (N	416	3	257	36.8	\$17.99	1	1	1	1	-	1	
74.8-25.2	CO (NH2) 2 - Ca (NO ₃) 2	÷	158	285	43.72	78.53	1	İ	1	1	ı	ı	
									and the state of t				

KEY

0 - x &

SOLID LIQUID MEASURED MELTING POINT

TABLE 9

PUSED SALT EUTECTICS

NAME	FORMULA	MELT	MELTING POINT	TNIO	FUSION	Jon Mil	HEAT C	MEAT CAPACITY BTU/15/09	DEN	DENSITY	TIN PRAT	EXPANSION COLTS CORPR	
		×	00	is o	cal/gm BTU/lb	BTU/ID	vn.	-3	ga/cm3	ga/cm ³ lb/ft ³	F-ft	1/08	
	31 Na2504	277	•	39	95	101	-	1	1		-	-	
	79 AIC13	34.1	8	154	3.6	101	1	1	1	1	1	1	PRIME
1	66 AIC13	343	70	20 00	20	0.6	1	1	1	1	1	1	
1	SO AICL3	366	9.3	199	27	9.5	1	1	1	-	1	1	
1	66 AICI 3	366	9.3	139	63	99	1	1	1	1		***	
	KEY												

Superscripts on values of density refer to the temperature in degrees centigrade at which the density was measured.

SOLID LIQUID MEASURED MELTING POINT

SAKE

25

TABLE 10

SALT HYDRATES

THERMAL EXPANSION SOLID COEFF.		PRIME	-5 PRINE				_		_		\$	
EXPAN SOLID 1/	1	1	4.6x10-5	1	1			1	1	1	5.4×10-5	
THE REAL COLDUCTIVITY BTU/Hr - F-ft		1	.34(L) 1.69(S)	1	1	ı		1	1	1	ı	
DENSITY gm/cm ³ lb/ft ³	1	1.55*0.1d96.8	94.9	1	I	113.6		105.1	1	1	901 plos69.	
DEN gm/cm ³	1	1.55*0	1.5220	1	ı			1.68420	!	!	1.69501	
HELT CAPACITY BTU/15/99 S L	1	1	•	1	1	.35		1	1	l	.35	
S S S	1	1	97.	ı	-	85.		1	1	1	09.	
FUSION AL/9m STU/1b	73.1	128.	120.	97.	13.21	.09		1	65	9.98	06	
FUSION FUSION	40.7	70.7	8.99	54.	6.	33.		1	68.2	£8.2	47.9	***********
WELTING POINT	50	9	2	66	7.	108		1117	11.9	51	20	
1130	23	25	95	37	4	5.3		4	œ	*	6	
il &	303	303	303	310	7.	122		320	321	322	322	
FORMULA	CaC12 · 6820	LINO, 3H20	ма2нРО4 12н20	Fect, 6H20	OZHL . *0500	Ca (NO ₃) 2 4-2 moles H ₂ O 315		Fe(NO ₃) 3 .	Zn(NO3) 2 ' 4W	M950, 7H20	Na25203 5H20	
SAME	Calcium Chlor- ide Hexahy- drate	Lithium Nitrate Tribydrate	Sodium Hydro- gen Phosphate Ocdecahydrate	Ferric Chloride Hexahydrate	Cobalt Sulfate Megcahydcate	:		Ferric Mitrate Doeanydrate	1	Magnesium Sul- fate Heptahy- drate	Sodium Thio- sulfate Penta- hydrate	

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

TABLE 10

SALT HYDRATES (Cont'd.)

1	* Harring	MELT	MELTING POINT	OINT	HEAT OF FUSION	20 N	HEAT CAPACITY BTU/18/0P	PACITY	DEN	DENSITY	COLDUCTIVITY	THERMAL EXPANSION	
		N O	20	d _O	cal/gm	al/gm BTU/1b	in.	1	gm/cm ³ lb/ft	1b/ft ³	F-ft	1/01	
-	Na (NO3) 2 . 6W	326	53	127	39.60	71.1	1	1	I	1	1	-	
1	Co(NO ₃) 2 6-4 moles H2O	330	22	135	31.	55.	. 50	.37	1.87	116.7	ı	ı	
1	Mrcl2 4-2 mole	330	5	136	15.	63.	.57	.35	2.01	125.5	1	1	
Lithium Acetate Dihydrate	L1C2H3O2 .	1	on so	136	06-09	162	1	1	1	1	1	I	
Magnesium Chloride Tetra- hydrate	MgC12 4820	331	100	136	57.08	76.3	1	1	1	1	1	1	
1	Fe (NO3) 2 6W	333	09	140	30	53.9	1	1	1	-	1	1	
Sodium Bydro- Naide Monohydrate	NaOH H20	33.00	* 9	9	5.50	1117	.51	0.	2.13	133.0	.53	ı	
-	A1 (NO ₂) 3 ·	345	7.2	130	31.2	26	1	1	1	1	1	1	
Barium Mydro- Ba (OH)	84 (OH) 2 8H2O	351	œ r-	172	7.2	129	. 52	. 28	2.18	136	1	1	PRIME
1	Mg (NO3) 2' 6W	363	0,6	194	42.6	76.5	1	1	1.64	102.4	1	1	
Aluminum Po- tassium Sulfate Dodecahydrate	AIK(504)2 . 12 H20	364	7	196	;	79	1	1	1	1		ı	
Magnesium Chloride Mexa- Aydrate	MgCl ₂ · 6W	388 115	52	539	39.4	70.8		1	1.57	0.8	ı	ı	

S = SOLID
L = LIQUID
M = MEASURED
MP = MELTING POINT

KEY

TABLE 11

FLUORIDE SALTS

69.42	FORMULA	MEET	MELTING POINT	TATIO	FUSION	ž g	HEAT C	HEAT CAFACITY	NIG	DENSITY	COLDUCTIVITY	THEORY		
		×	20 x0	do	mb/les	al/gm 8TU/1b	8	7	gm/cm ³	gm/cm3 1b/ft3	DTO/Hr - F-ft	SOLID COEFF.		
	ASF6	1	1	-	14.3	25.7			:					
_	List	583	310	558	59.8	107.4	;	1	1	1	1	1	PRIME	
_	1184	673	400	720	56.5	101.5	1	!	90	174.8	1	-		
_	NaBF4	619	901	731	29.6	53.2	;	1	2.53	157.95	1	-		
-	4895F/482FF4/	869	425	765	35.0	62.9	1	1	4.19	261.58	ŀ	l		

KEY

0 4 X A

SOLID LIQUID MEASURED MELTING POINT

TABLE 12

MISCELLANEOUS

Heet 222-505 227 69 -61/gm BTU/1b S L gm/cm ² 115/t ² 3 10/m ² Heet 222-505 222-51-60- 55- 99 0.9986 62.42 NA 371 98 17631 .31 0.9986 62.42 Li 453 180 1324 105.9 190.2 5.3 330.9 7.4 149.8 KNO 613 100 612 10.6 55.0 2.4 149.8 7.4 149.8 KON 673 400 680 33.5 57.6 .32 (5 .36 (2) 2.04 7.1 131.1 7	NAME	3000	MELT	MELTING POINT	OINT	HEAT OF FUSION	do in	HEAT CAPACITY	PACITY DAOP	NEC	DENSITY	COLDUCTIVITY	EXPANSION CALL CORES	
NA 371 98 176 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 116 100 114 153 180 1324 105.9 190.2 131 131 149.8 149.8 131 130.9 131 131.1 131 131		V-05503	o N	00	å,		BTU/1b	sa		gm/cm ³	1b/ft ³	F-ft	1/05	
Na	Water	н20	273	0	32	19.69	143.1	1	!	0.99980		1	1	
XA XA XA XA XA XA LL LL LL LL	fransit Heet Series	222-505	222	-51-	450	725	99-	1	1	1.6	100	1	1	
XA 171 98 176 L1 L1 A1C1 ₂ 468 195 134 105.9 190.2 A1C1 ₃ 493 220 196 493 220 196 493 220 196 S5.0 XXO ₃ 673 400 680 13.5 57.6 .32 (S) .36 (L) 2.04														
AJC1 ₃ 468 195 181 69.5 124.9 2.4 149.8 493 220 196 138 189 198 199.2 2.4 149.8 493 220 196 196 196 196 196 196 196 196 196 196	1	Na	371	86	176		1	. 31	.31	-	1	1	1	
AJC1 ₂ 468 195 131 69.5 124.8 403 220 396	:	17	453	180	324	105.9	190.2	-	1	5.3	330.9	1	1	PRIME
XXO ₃ 673 140 K12 30.6 55.0 2.1 131.1 -		Alcla	46.8	195	151	5.69	124.8	!	1	2.4	149.8	1	1	PRIME
XOS 673 400 680 33.5 55.0 2.1 131.1 2.04 2.1 131.1	braw Salt	1	493	220	960	1 1	1	. 38	. 38	1	-	1	1	
XON 673 400 680 33.5 57.6 .32 (5) .36 (2) 2.04		KOKO 3	613	340	612	30.6	55.0	-			131.1	-	1	
	1	ком	673	400	680	33.5	57.6	.32(8)			1	1	1	

KEY SIX

= SOLID = LIQUID = MEASURED = MELTING POINT

SOLID-SOLID TABLE 13

NAME	TEM	TRANSITION	NO	OF TRANSITION	HEAT	DENSITY	7.1.1	MOLECULAR	MELA	MELTING POINT	OINT	HEAT OF	HEAT OF FUSION	
MOLE &	o ×	00	o,	cal/gm	BTU/ID	Kg/m3	1b/ft ³	WEIGHT	×°	o	do	cal/gs	Btu/lb	
Diaminopenta- orythricol	341	89	154	3	67	1	1	i	1 1	1	1	1	1	
2-Amino-2-methyl-1. 3 Propanediol	151	78	172	ç	113	1	1	105.14	352-	79-	174-	7.58	13.6	PRINE
2-perhyl-2-mitro-1, 3-propanediol	352	79	174		98	1	1	135.12	354-		178-	7.65	13.7	
Trimethylolethane	354	8	178	99	83	1160	72.42	:	1	1	1	1	1	
2-Hydroxymethyl-2- methyl-1,3-propanedibl	13.	6	178	\$	6	1	!	1	470	197	387	1.1	20	
Monominopenta- erythritol	359	85	187	9	33	1	1	1	1	1	1	1	1	
Tris (hydroxymethyl)	39.7	124	255	ç	œ œ	1	1	1	!	1	1	1	1	
2-Amino-2-hydroxy- sethyl-1,3-propanedipl	100	131	268	88 99	122	1	1	121.14	411-	178-	280-	0.9	10.8	
2,2-bis (hydroxy- methyl) propionic acid	425	152	306	69	124	1	1	114.11	425-	152-	305-	6.41	2.11	
Pentaerythritol	457	184	363	72	129	1	1	136.15	531	258	967	8.90	16.0	PRIME
	KEY													

SOLID LIQUID MEASURED MELTING POINT 0 -1 x &

APPENDIX B

DATA REFERENCE LIST

- D.V. Hale, M.J. Hoover, and M.J. O'Neill, "Phase Change Materials Handbook," Lockheed Missiles and Space Company, NASA CR-61363, September 1971.
- LeFrois, Richard T., Personal Files, "Physico-Chemical and Thermodynamic Properties of Eutectics with Melting Points Between 620-785°F".
- 3. LeFrois, Richard T., Personal Notes, "Superheater".
- 4. Venkatasetty, Dr. H.V. and Saathoff, D., Memo: "Theoretical Studies on the Thermo-Physical Properties of Eutectics Suitable for Thermal Storage Subsystem," July 30, 1975.
- 5. LeFrois, Richard T., and Venkatasetty, Dr. H.V., "A Concept for the Application of Dilute Eutectic - Active Heat Exchange to Low-Temperature Heating and Cooling," Energy Resources Center and Corporate Technology Center, Minneapolis, Minnesota, May 1978.
- Shelpuk, B., Joy P., and Crouthamel, M., "Technical and Economic Feasibility of Thermal Storage," Final Report, RCA Advanced Technology Laboratories, Camden, New Jersey, June 1976.
- Tye, R.P., Bourne, J.G., and Desjarles, A.O., "Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Impact," Dynatech R/D Company, NASA CR-135098, August 1976.
- Eichelberger, J.L., "Investigation of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost and Chemistry", Final Report, Pennwalt Corporation, King of Prussia, Pennsylvania, December 1976.
- Smithells, Colin J., "Metals Reference Book", Volume II, Butterworths Scientic Publications, London, 1955, p. 636.
- "Metals Handbook", Volume I Properties and Selection of Metals, American Society for Metals, Metals Park, Ohio, May 1972, p. 1204.
- 11. "Handbook of Physics and Chemistry", 43rd edition, The Chemical Rubber Co., 1961-62.
- 12. "Handbook of Physics and Chemistry", 52nd edition, The Chemical Rubber Co., 1971-72.

APPENDIX B (continued)

- 13. LeFrois, Richard T., and Venkatasetty, Dr. H.V., "Dilute Eutectic Storage Media for Active Heat Exchange Devices in the Temperature Range of 350 to 1000°C", Honeywell Inc., Minneapolis, Minnesota, June 1978.
- 14. Honeywell Systems and Research Division, "Solar Heat Source", July 1969, p. 3-98-99.
- Jamieson, D.T., "Liquid Thermal Conductivity A Data Survey to 1973", National Engineering Laboratory Compilation, Her Majesty's Stationery Office, 1975.
- Honeywell Systems and Research Center, "Solar Power", May 1976, p. 4-84.
- Janz, George J., et al, U.S. Department of Commerce/National Bureau of Standards, "Physical Properties Data Compilations Relevant to Energy Storage", 1. Molten Salts: Eutectic Data, NSRDS-NBS 61, Part 1, March 1978.
- "American Institute of Physics Handbook", 2nd edition, McGraw-Hill Book Company, Inc., 1963.

APPENDIX C

STORAGE DATA DOCUMENT BIBLIOGRAPHY

- "American Institute of Physics Handbook", 2nd edition, McGraw-Hill Book Company, Inc., 1963.
- Belton, Geoffrey, and Ajami, Fouad, "Thermochemistry of Salt Hydrates," University of Pennsylvania and Towne School of Civil and Mechanical Engineering, Philadelphia, Pennsylvania, May 1973.
- Eichelberger, J.L., "Investigation of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost and Chemistry," Final Report, Pennwalt Corporation, King of Prussia, Pennsylvania, December 1976.
- 4. Ferrara, A., et al, "Thermal Energy Storage Heat Exchanger," Grumman Aerospace Corporation, NASA CR-135245.
- 5. Hale, D.V., Hoover, M.J., and O'Neill, M.J., "Phase Change Materials Handbook," Lockheed Missiles and Space Company, NASA CR-61363, September 1971.
- "Handbook of Physics and Chemistry", 43rd edition, The Chemical Rubber Co., 1961-62.
- "Handbook of Physics and Chemistry", 52nd edition, The Chemical Rubber Co., 1971-72.
- 8. Honeywell Corporate Research Center, "Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Model", A Proposal to NASA-Lewis Research Center, Bloomington, Minnesota, May 1975.
- Honeywell Systems and Research Division, "Solar Heat Source", July 1969, p. 3-98-99.
- Honeywell Systems and Research Center, "Solar Power", May 1976, p. 4-84.
- 11. Jamieson, D.T., "Liquid Thermal Conductivity A Data Survey to 1973", National Engineering Laboratory Compilation, Her Majesty's Stationery Office, 1975.
- Janz, George J., et al, U.S. Department of Commerce/National Bureau of Standards, "Physical Properties Data Compilations Relevant to Energy Storage", 1. Molten Salts: Eutectic Data, NSRDS-NBS 61, Part 1, March 1978.
- LeFrois, Richard T., Personal Files, "Appendix A List of Phase Change Storage Materials".

APPENDIX C (continued)

- LeFrois, Richard T., Personal Files, "Physico-Chemical and Thermodynamic Properties of Eutectics with Melting Points Between 620-785 F".
- 15. LeFrois, Richard T., Personal Notes, "Superheater".
- 16. LeFrois, Richard T., and Venkatasetty, Dr. H.V., "A Concept for the Application of Dilute Eutectic - Active Heat Exchange to Low Temperature Heating and Cooling," Energy Resources Center and Corporate Technology Center, Minneapolis, Minnesota, May 1978.
- 17. LeFrois, Richard T., and Venkatasetty, Dr. H.V., "Dilute Eutectic Storage Media for Active Heat Exchange Devices in the Temperature Range of 350 to 1000°C", Honeywell Inc., Minneapolis, Minnesota, June 1978.
- 18. Maru, Hansraj C., et al, "Molten Salt Thermal Storage Energy Storage Systems," Final Report, Institute of Gas Technology, Chicago, Illinois, NASA CR-135419, March 1973.
- 19. "Metals Handbook", Volume I Properties and Selection of Metals, American Society for Metals, Metals Park, Ohio, May 1972, p. 1204.
- Shelpuk, B., Joy P., and Crouthamel, M., "Technical and Economic Feasibility of Thermal Storage," Final Report, RCA Advanced Technology Laboratories, Camden, New Jersey, June 1976.
- Silverman, M.D., and Engel, J.R., "Survey of Technology for Storage of Thermal Energy in Heat Transfer Salt," ORNL/TM-5682, Oak Ridge National Laboratory, Oak Ridge, Tennessee, January 1977.
- Smithells, Colin J., "Metals Reference Book", Volume II, Butterworths Scientic Publications, London, 1955, p. 636.
- 23. Tye, R.P., Bourne, J.G., and Desjarles, A.O., "Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Impact," Dynatech R/D Company, NASA CR-135098, August 1976.
- 24. Venkatasetty, Dr. H.V. and Saathoff, D.J., Memo: "Thermal Energy Storage Materials Study," Honeywell Corporate Research Center, Bloomington, Minnesota, November 1975.
- 25. Venkatasetty, Dr. H.V. and Saathoff, D., Memo: "Theoretical Studies on the Thermo-Physical Properties of Eutectics Suitable for Thermal Storage Subsystem," July 30, 1975.

1775/30303031-00306827.

ANCONTAINS FOR 2.060

THE THERME ENERGY STORAGE SYSTEMS ABOVE 459/SUP 0/C/

THE THE FER THE FOR 2.060

THE THE FER THE FOR TH

1775/0000001-C0GGGEC//
78J002270E EOF-7E-06 25.066
78J003270E EOF-7E-06 25.066
78J003270E EOF-7E-06 25.066
78J003270E EOF-7E-06 25.066
78J003270E EOF-7E-06
78J003270E EOF-7E-06
78J003270E EOF-7E-06
78J003270E EOF-7E-07

FOR THE SECULAL DISTRIBUTION OF LOW-GRADE HEAT THE LATENT STORAGE OF THERMAL ENERGY IS OF GREAT ADVANTAGE BECAUSE THE HEAT CAN GROWN THE PRESENCE OF A THE CALLOR OF A CONSTANT TEMPERATURE PERSONAL AND CHARGE OF A THE CALLOR OF A CONSTANT TEMPERATURE PROPECTLY AND CHARGE OF A THE CALLOR OF A CONSTANT TEMPERATURE OF A CONSTANT TEMPERATURE OF A CONSTANT TEMPERATURE OF A CONSTANT THE CONSTANT THE CALLOR OF A CONSTANT THE CALLOR OF A CONSTANT THE C

(continued) ABSTRACTS

ENERGY STORAGE MATERIAL STAVAILABIL ITY. COST. AND CHEMISTRY. FINAL CEMTER! 1475/030001-C000C66/7 7430004-25 COU-TE-02 22.060 1003-2969-0-1 IN-STIGATION OF METAL FLUGHIDE THERMAL REDUIT, JOLY 15:1576--DECEMBER 15:1576/ REPURT, JOLY 15:1576--DECEMBER 15:1576/ PENNALT COMP.: A 116 OF PRUSSIA, PA. (USA), TECHNOLOGICAL CE DEC 1975/DEP.: NIIS, PC A14/MF A01./

STOWAGE OF THERMAL EMPROY IN THE 400 TO 1300/50P O/C RANGE IS ATTRACTING INCREASING CONSIDERATION FOR USE IN SOLAR POWER, "WITCLER," AND COMMENCED, BY STEERS, THIS STILLS THE PRACTICALITY OF USING METAL FOUND TO STORAGE HED IN THE STORAGE HE

1775/0000001-C000CCEE//
784/00/911-C000CCEE//
784/00/91-C000CCEE//
784/00/91-C

DOE ABSTRACTS (continued)

STAC ABSTRACTS

3/5/1
ID MO. - E1760210021 610021
THERMAL EMERGY STORAGE.
TELES, MARIA

UNIV OF DEL! HEHARK

INTERSOC ENERGY CONVERS ENG CONF. 10TH. REC. UNIV OF DEL. MEHAPK. RUS 18-28 1975 PAP 759080 P 111-115. PUBL BY IEEE (CAT N 75CHD 983-7 IAE). NEW YORK: NY. 1975

DESCRIPTORS: (.HEATING. .SOLAR).

IDENTIFIERS: ENERGY STORAGE

CARD ALERT: 643

VARIOUS THERMAL STORAGE MATERIALS ARE COMPARED AND THEIR THEORETICAL AND ACTUAL PERFORMANCE LIMITATIONS ARE SUMMAPIZED. SOLID/LIQUID PHASE CHANGE PEACTIONS (HEAT OF FUSION MATERIALS, OR HEAT SINKS) ARE DESCRIBED, ESPECIALLY IN SOLAR HEATING APPLICATIONS. INEXPENSIVE MATERIALS ARE AVAILABLE THAT ARE MONTOXIC, NOT CORPOSIVE AND NOT COMPUSTIBLE. THE PROBLEMS OF SUPERCOOLING, OR OF UNMANTED LABILE CRYSTAL FORMS CAN BE CONTROLLED BY HETEROGENEOUS MUCLEATING MATERIALS OR DEVICES. RESULTS ARE PRESENTED WITH SOLUM THIDSULFATE FENTAHYDRATE MELTING AROUND 49 \$DESPEC\$ C. (120 \$DESPEC\$ F). 14 PEFS.

12/5/3

ID NO. - E1770316618 716618

THERMAL ENERGY STORAGE UNIT BASED ON LITHIUM FLUORIDE.

HEELMAN, G. A. A.

PHILIPE PEE LAB. EINDHOVEN. NETH

ENERGY CONVERT V 16 N 1-2 1976 P 35-47 CODEN: ENERBS

DESCRIPTORS: •ENERGY STORAGE.

CHED ALERI: 901

A THERMAL ENERGY STORAGE UNIT EMPLOYING LITHIUM FLUORIDE HAS FEEN FUILT TO SUPPLY HEAT TO A STIPLING ENGINE. THE HEAT TRANSPORT FROM THE ELECTRIC HEATING ELEMENTS TO THE HEAT STORAGE UNIT AND FROM THE LATTER TO THE HEAT SINK IS AFFECTED BY THE EVAPORATION AND CONDENSATION OF SODIUM. THE LIQUID SODIUM IS TRANSPORTED WITH THE AID OF CAPILLARY STRUCTURES. SO THAT THE SYSTEM OF HEAT TRANSFER HAS THE CHARACTERISTICS OF A HEAT PIPE. ALL THE EXPERIMENTS HERE CONDUCTED WITH LITHIUM FLUORIDE AS THE HEAT-ACCUMULATION MATERIAL. MUCH CHEAPER MATERIALS WITH PRACTICALLY THE SAME PROPERTIES ARE NOW AVAILABLE. THE EXPERIENCE SAINED WITH THE STORAGE UNIT FUILT COMPINED WITH LATER DEVELOPMENTS IN THE MEAT-PIPE FIELD AND IN THE USE OF ANTI-CORPOSION INHIBITORS FOR THE SALT. HAVE LED TO MORE SOPHISTICATED DESIGNS, WHICH ARE DESCRIBED. 9 PEFS.

N72 145037 Air Force Systems Command, Wright Patterson AFB. Onio. Foreign Technology Div.
THE EFFECT OF CONCENTRATED ENERGY FLUXES ON

MATERIALS

Yu. L. Krasulin, N. N. Rykalin, and M. Kh. Shorshorov. 12 Jul. 1971, 17 p. refs. Trend, mr. Child. 1971 17 p. refs. Transl into ENGLISH from Fiz. Khim. Obrab. Mater. [Moscowi] no. 4, 1967. p. 5-10.

(AF Prog 733) (AD 730079 FTS HT 23 887-71 PIA Task 166-01-8) Avail NTIS CSCL 13/8

The article is an examination of the peculiarities and the mechanism of the effect of concentrated energy sources on materials lelectron beam, laser beam, shock waves of explosives and electrical explosion of wiresl with various forms of treatment loutting dimensional machining melting welding deforming strengthening the application of coatings! Special attention is to pulse effect. Trends of future investigations in region are examined Author (GRA)

N73-26969*# Teledyne Brown Engineering, Huntsville, Ala HANDBOOK ON PASSIVE THERMAL CONTROL COATINGS

T. K. Mookhery and J. D. Hayes. Apr. 1973, 155 p. refs.

(Contract NASS 25900) (NASA CR. 124287: SE-55L-1717) Avail NTIS HC 59 75 CSCL

A handbook of passive thermal control surfaces data pertaining to the heat transfer requirements of spacecraft is presented.

Pessive temperature control techniques and the selection of control surfaces are analyzed. The space environmental damage bursaces are analyzed. The apace environmental damage mechanisms in passive thermal control surfaces are examined. Data on the coatings for which technical information is available are presented in tabular form. Emphasis was placed on consulting only those references where the experimental simulation of the space environment appeared to be more appropriate.

N74 319804 Air Force Inst. of Techs. Wright Patterson AFB

Ohio School of Engineering
PRESSURE PRODUCED BY VAPORIZATION AS A MECH
ANISM FOR REMOVING MELT FROM A TARGET SUBJECTED TO LASER RADIATION M.S. Thesis
Mattin M. Bettner Mar. 1974. 139 p. refs.
[AO. 780631. GAW/MC/74-11]. Avail. NTIS. CSCL 20/5

An analysis was made of the effect of pressure generated by vaporization of the surface of a thin stab irradiated with a high intensity laser beam. A finite element enalysis was used to obtain numerical solutions of the heat and flow equations. and a computer program was developed to perform the required calculations. Titarium and aluminum statis 0.06 and 0.127 cm thick were analyzed for response to pressure effects using peak absorbed intensities of 10,000 to 140,000 watts/kg cm. Pressures

in the low pressure regime were predicted by the model, and the model predicted that melt removal alrom the area of flux incidence occurred. The most significant effect was a reduction in time required to melt the lear surface of the slab over the computed on a strictly two dimensional heat flow analysis Stab thickness, material properties, and peak absorbed intensities all contributed to the overall effect. Author (GRA)

N78 202081 Stuttgart Univ (West Germany) Dept of Energy

DESIGN DEVELOPMENT AND SPACE QUALIFICATION OF A PROTOTYPE PHASE CHANGE MATERIAL DEVICE Final

A Abbat Oct 1975 118 p refs (ESA CRIP) 757) Avail NTIS

(ESA CRIP-157) Avail NTIS HC\$5.50
The small prototype PCM (Phase Change Material) device designed for spacecraft thermal control and having a latent storage capacity of 100 watt hours, is a hermetically sealed unit made from aluminum alloy, filled with octadecane serving as the PCM and uses aluminum honeycomb structure as the filler material. The overall weight of the device is approximately 2,400 gm. A thermal network model was successfully developed to design the PCM device and predict its thermal performance under different heat load conditions. Experiments were done following construc-tion of the prototype PCM device to obtain actual performance data and to prove its ability to withstand the space qualification procedures Experimental data indicated the device to de well suited for the desired space applications. Comparison between theory and experiments showed good agreement. Author (ESA) N76-15642# Lehigh Univ Bethlehem Fa Dept of Geological

ENERGY STORAGE USING LATENT HEAT OF PHASE CHANGE 1 HYDRATES OF DISODIUM PHOSPHATE 2 PROTOTYPE STORAGE RESERVOIR Final Report 1 Jun.

1974 - 31 Jul. 1975 Dale R. Simpson - 31 Jul. 1975 - 51 p. refs (Grant NSF P-416180-000)

PB-244756/3. NSF/RANN/SE/P416180-00/FR-75-1. NSF/RA/N-75-064) Avail NTIS HC \$4.50 CSCL 108

This report presents results of experiments and models for thermal energy storage using solution and precipitation of hydrates of disodium phosphate. The research was restricted to solutions having a sodium phosphate ratio from 2.1 to 1.4.1 and the temperature range of 10 to 60C. Solution density and pH was determined as a function of composition and temperature and the large range in values makes the measurements useful as a monitoring technique. Solubility isotherms were experimentally established in order to establish the solution with the highest yield of material undergoing a phase change. Data on a previously unreported hydrate is presented. The latent heat for the phase change of the dodecahydrate is about 100 cal/cc. The heat capacity and thermal conductivity of selected solutions and crystals are reported. By using a non-stoichiometric solution and a process of precipitation and solution, in contrast to incongruent neiting, the composition selected was cycleid without degradation The reservoir design is based on the concept of a vertical thermal stratification and the maintenance of seed crystals GRA

N77-12510") Dynasech R/D Co. Cambridge Mass THERMAL ENERGY STORAGE MATERIAL THERMOPHYSI-CAL PROPERTY MEASUREMENT AND HEAT TRANSFER

R. P. Tye. J. G. Bourne, and A. O. Destarlais 11 Aug. 1976 98 p refs

(Contract NAS3-19716)

NASA CR-135098 Rept 15031

Aved NTIS

HC AOS/MF AOT CSCL TOA

The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurated water reactor, boiling water reactor. supercritical steam reactor and high temperature gas reactor The salts considered were UNO3, 63 UOH/37 UO extects: UOH and Na28407. The thermal conductivity, specific heat lincluding and hazaron, ine tremal conductivity, specific heat including latent heat of fusion), and density of each self were measured for a temperature range of at least x or 1 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

N77-316314 Oak Ridge National Lab. Tenn. LOW TEMPERATURE THERMAL ENERGY STORAGE Quenterty Progress Report, Jul. Sep. 1976 H. W. Hoffman and R. J. Kedi. 31 Jan. 1977 23 p. (Contract W.7405 eng. 26)

(ORNL/TM 5795) Avail NTIS HC A02/MF A01
At ORNL, research efforts were continued to lai develop a time dependent analytical model that will describe a TES system

charged with a phase change material. (b) measure thermophysical properties and melt freeze cyclic behavior of interesting PCM's and (c) determine crystal lattice structures of hydrated salts and their nucleators. A report on TES subsystems for application to solar energy sources was completed and it being issuewed. In the area of program management, subcontracts were signed. Detailed reviews were completed for ten unsolicited proposals. related to TES Industries, research institutions, universities, and other national laboratory participation in the TES program, for which ORNL has management responsibilities, are listed

TAB INDEX

AD ROIS 292L FIG. 2272, 11/3, 26/3
GENERAL ELECTRIC CO PHILI ADELPHIA
PANPACE DIV
CONDUCTIVE CONTINGS FOR SATELLITES.
(U)
Insiding to 15 May 75-30 Jun 76,
by Allen E. Engley and Victor J. Belanger. Dec.
76, 896. Rept. no. 768128 4275
Contract F33613-73-C-3267. Proj. 7340, Tank
07
AFMIL TR.76-233

Unclassified report
Distribution limited to U.S. Gov't agencies only;
Test and Evaluation. Dec 76. Other requests for
this document must be referred to Director, Air
Force Materials Lab., Aim. MBE. Wright Patterson AFB, Ohio 45(1).

Descriptors: Silicon dioxide, Thermal insolation, Ceramic cisatings, Synchronous satellides, 'Electrostatic charge, Control, Prolective costings, Space technology, Electrical properties, Optical propersies, Ceramic Idees, Secondary emission, Sazing, Removal, Text methods

AD-B019 AML TILL 222, 2023, 11/2
BIT RESPARCH INST CHICAGO BL
ELECTRICALLY CONDUCTIVE PAINTS FOR
NATELLITES, (t)
Final cept. 16 Feb. 15 Sep. 26.
by J. E. Gilliszas, T. Yannauchi, Richard E. Wolf
and Charles Ray. Doc. 26, 11/2p. Contract
E1361.5 Sec. 2240. Froj. 7340, Task 07
AFML TR. 16-232

Unclassified report Prepared in cooperation with Desoto Chemical Co., Inc., Des Fisines, III.

Distribution limited to U.S. Gov't, agencies only, Yest and Evaluation, Dec. 26. Other requests for this document must be referred to Director, Air Force Majerials Lab., Attn. MBE, Wright-Patter-ton AFB, Ohio 45433.

Descriptors: Electrical conductivity, Polymers, Partin paints, Electrostatic charge, Organic osciolost, Artificial satellites, Spacecraft, Thermal projection, Costoner, Reflexionary, Charged porticles, Electrical measurement

AD-BO22 SOSE, FIM. 113, 227, 117, 1175
GENERAL ELECTRIC CO PUBLICADELPHIA
PA SPACE DIV
FABRIC COATINGS FOR SATELLITE TEMPERATERIC COATINGS FOR SATELLITE TEMPERATERIC COATINGS FOR SATELLITE TEMPERATERIC L'AD-31 DOC 76,
by Allen E. Engles, May 77, 1579. Rept. 60.
TSDS4211-Vol.1
Costract F38415-76-C-SOST, Proj. 7540. Task

AFML TR 77-65 Vol-1 Unclassified report

See also Volume 2, AD-B022 970L

Distribution limited to U.S. Gov't, agencies only, Lest and Evaluation, May 77. Other requests for this document must be referred to Director, Air Force Misterials Lab., Altin. MBL. Binglit Patterson AFI, OH (341).

Descriptors: Thermal insulation, "Silicon dusside "Falerics, "Coatings, "Spacecraft, Thermal properties, Upucal properties, Temperature control. Emittance, Hemspheres, Test methods, Space annulation chambers, Processing, Cleaning, Solvents, Flectronic scanners, Scanning, electron microscopy, Space sechnology, Adhesive bonding, Solar radiation, Reflection.

AD-D622 P761. FIA. 1173, 22/2, 11/8
GENERAL SELECTRIC CO FEBERADELPHIA
PASPACE DEV
PARRIC COATINGS FOR SATELLITE TEM.
PERATURE CONTROL VOLUME IL DEAIGN
HANTIGUNIK IL)
PINAL 100 15 Jan-31 Dec 76.
by Allen E. Engles. 1 May 77, 38p. Rept.
no. 778138211-Vol.2.
Constract F33613-78-C-5067, Proj. 7340, Task
07
ALMIL 1R 77-65-Vol.2.

Unclassified report See also Volume 1, AD B022 969L

Distribution limited to U.S. Gov't agreeies only. Test and Evaluation, May 77. Other respects for the document must be referred to Discover, Air Four Machinels Lab., Alta, MRI. Weight-Patterson AFR, OH (MA).

Descriptors: Thermal insulation, 'Eulorea, 'County, 'Spacecraft, Hambooks, Thermal properties, Ophoal properties, I empenture control. Emittanea, Almorption, Solar radiation, Processing, Degasalscation, Thermal excling texts, Electrostatic charge, RadioTreprency, Transmission, Honding, Erveronmental texts.

APPENDIX D

DESCRIPTIVE INFORMATION ON PRIME PCM CANDIDATES

n-EICOSANE

FORMULA: C20H42

MATERIAL COMPATIBILITY: Compatible with most structural materials.

SUPERCOOLING: None observed.

HAZARDS: Flammability: fire hazard is present when exposed to flame, high temperatures or strong oxidizing materials.

Toxicity: generally non-toxic.

OTHER: Non-corrosive, reliable and predictable.

ELAIDIC ACID

FORMULA: C8H7C9H16COOH

MATERIAL COMPATIBILITY: Compatible with aluminum

SUPERCOOLING: None observed

HAZARDS: Mild toxicity; non-corrosive

OTHER: Exhibits good freezing behavior

ACETIC ACID

FORMULA: CH3COOH

MATERIAL COMPATIBILITY:

Metals - Generally does not attack aluminum, stainless steel, silver and other precious metals, titanium, tantalum, and zirconium. It reacts with magnesium, nickel and nickel alloys, tin, copper and copper alloys, beryllium, chromium, zinc, in varying degrees.

Nonmetals - Compatible with fluorocarbons (TFE, FEP) graphite, glass-ceramics. Reacts with acrylics, rubbers, epoxys, nylon and phenolics.

VOLUMETRIC EXPANSION DURING PHASE CHANGE: +15.6% on melting

SUPERCOOLING: One phase supercooling of about 15°K, 27°F, 15°C

HAZARD CHARACTERISTICS:

Flash Point: 313°K (104°F, 40°C)

Autoignition Temp: 839°K (1050°F, 566°C)

Flammability: Moderate, when exposed to heat or flame; can react vigorously with oxidizing materials.

Toxicity: Caustic, irritating. When heated to decomposition, it emits toxic fumes.

TRISTEARIN

FORMULA: (C17H35COO) 3 C3H5

MATERIAL COMPATIBILITY: Compatible with aluminum.

SUPERCOOLING: None observed.

CHARACTERISTICS: On further heating after melting point, solidifies and melts again at 345°K. No unusual freezing behavior is noted.

OTHER: Non-corrosive and non-toxic.

OXAZOLINE WAX - TS-790

MATERIAL COMPATIBILITY: Very inert and consequently compatible with many materials. Exhibits container separation with quartz and pyrex.

SUPERCOOLING: None observed.

HAZARDS: Flammability: probably flammable.

OTHER: Thermal diffusivity estimated very low.

ACETAMIDE

FORMULA: C2H5ON

MATERIAL COMPATIBILITY: Compatible with aluminum.

VOLUMETRIC EXPANSION DURING PHASE CHANGE: +8.15% on melting.

SUPERCOOLING: None observed.

HAZARDS: Toxicity: emits toxic cyanide fumes when heated to decomposition.

OTHER: Good thermal diffusivity.

GALLIUM

MATERIAL COMPATIBILITY: Very corrosive.

VOLUMETRIC EXPANSION DURING PHASE CHANGE: -3.2% (Volume decreases with melting).

SUPERCOOLING: Up to 30°K, depending on purity. Very pure gallium supercools as much as 30°K, whereas impure gallium may not, depending upon the type of impurity. The presence of lithium and bismuth tend to substantially decrease supercooling. Cerium, copper, and molybdenum produce a small decrease in supercooling. Antimony, sodium, lead, silicon, and cadmium support supercooling.

CHARACTERISTICS: Excellent physical and chemical stability. Expands on freezing. Thermally stable.

LITHIUM NITRATE TRIHYDRATE

FORMULA: Lino3.3H2O

MATERIAL COMPATIBILITY: Compatible with aluminum, quartz, pyrex. Possibility of corrosion on long-term contact.

VOLUMETRIC EXPANSION DURING PHASE CHANGE: +8%

SUPERCOOLING: Without a catalyst, up to 30°K of supercooling can be expected. Zn(OH)NO3 has been reported as an effective catalyst.

HAZARDS: An effective nucleating catalyst has been reported, which prevents supercooling. Because of coordinated water of hydration, LiNo3·3H2O doesn't exhibit hazardous behavior typical of anhydrous salts.

SODIUM HYDROGEN PHOSPHATE DODECAHYDRATE

FORMULA: Na₂HPO₄·12H₂O

MATERIAL COMPATIBILITY: Corrosive to aluminum

VOLUMETRIC EXPANSION DURING PHASE CHANGE: +5.1%

SUPERCOOLING: None observed

OTHER: Melts congruently. Use of inhibitors such as sodium silicate (water glass) should overcome corrosion problems.

BARIUM HYDROXIDE OCTAHYDRATE

FORMULA: Ba (OH) 2. 8H2O

MATERIAL COMPATIBILITY: Corrosive to aluminum

HAZARDS: No particular hazards, due caution with human contact.

OTHER: Melts congruently with negligible supercooling.

APPENDIX E

SOURCES RESEARCHED IN PERFORMING THERMO-MATERIALS TASK

- Personal files of Mr. Richard LeFrois Thermal Storage Staff Engineer Honeywell Energy Resources Center Minneapolis, Minnesota
- Personal files of Dr. H.V. Venkatasetty Thermal Storage Researcher Honeywell Corporate Technology Center Minneapolis, Minnesota
- 3. Phase Change Materials Handbook, NASA CR-61363
- 4. Avionics Division Library

TAB 1971 through 1978 STAR 1971 through 1978 St. Petersburg, Florida

- 5. Energy Resources Center Library, Minneapolis, Minnesota
- 6. Corporate Technology Center Library, Minneaplis, Minnesota Professional Library Computer Search Services:
- State Technology Applications Center (STAC) NASA-Florida University of South Florida Tampa, Florida
- Energy Resources Center Library DOE Energy Abstracts Minneapolis, Minnesota
- Avionics Division Library Defense Documentation Center Search (Low Temperature Storage/Satellites) St. Petersburg, Florida