3D Reconstruction based on Implicit Representation

Dong Du

dongdu@mail.ustc.edu.cn

USTC; SRIBD

2019/08/22

Task: 3D Reconstruction

• Single-view object reconstruction

3D Representation

Pixel

Volumetric grid(Voxel)
Multi-view depth/normal maps
Parametric model
Primitive-based CAD model

Point cloud Mesh

...

2D: Uniform structure

3D: Non-uniform structure

Main 3D Representation

Main 3D Representation

• Voxel (3D-CNN)

Explicit Representation

- natural extension of 2D
- high computational cost, low info efficiency, low-res output
- Point cloud (PointSetGeneration)
 - lightweight, high info efficiency
 - coarse, no surface or topological information, hard to extract a mesh
- Mesh (AtlasNet, Pixel2Mesh)
 - many good geometry properties for processing and rendering
 - irregular and hard to learning; overlapping and messy output(AtlasNet), limited topology(Pixel2Mesh)
- Hybrid (Tang&Han et al.)

Implicit Surface

• Plane: x + 2y - 3z + 1 = 0.

• Sphere: $x^2 + y^2 + z^2 - 4 = 0$.

Continuous surface

High resolution

Good geometry/property ...

• Torus:
$$(x^2 + y^2 + z^2 + R^2 - a^2)^2 - 4R^2(x^2 + y^2) = 0$$
.

• Genus 2 surface:
$$2y(y^2 - 3x^2)(1 - z^2) + (x^2 + y^2)^2 - (9z^2 - 1)(1 - z^2) = 0$$
.

Implicit Representation in Graphics

• Iso-surface

$$x^2 + y^2 + z^2 - 4 = 0.$$

- Level set
 - 0 level set (0 iso-surface)
 - volumetric representation (1 for inside, 0 for outside)
- Surface extraction method
 - Marching Cube algorithm
 - (Screened) Poisson Surface Reconstruction

How to apply implicit representation to learning?

- Binary Classifier
 - Classify all points 0 or 1
 - Input: (x, y, z)
 - Output: label (0 or1)

Deep Network: e.g. MLP

Paper list

- Learning Implicit Fields for Generative Shape Modeling, Chen et al. CVPR 2019
- DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, Park et al. CVPR oral 2019
- Occupancy Networks: Learning 3D Reconstruction in Function Space, Mescheder et al. CVPR oral 2019
- DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction, Wang et al. 2019
- Deep Level Sets: Implicit Surface Representations for 3D Shape Inference, Michalkiewicz et al. 2019

Learning Implicit Fields for Generative Shape Modeling

Zhiqin Chen Simon Fraser University

zhiqinc@sfu.ca

Hao Zhang Simon Fraser University

haoz@sfu.ca

Implicit Decoder

Training

- Data preparation
 - image, point set, point label
- Point sampling
 - uniform: 16^3 , 32^3 , 64^3 , 128^3 volumetric points
 - adaptive: sample more points near shape surfaces, neglect most points far away
- Progressive training techniques
 - first train on 16³ resolution data, then increase resolution gradually
- Loss function

$$\mathcal{L}(\theta) = \frac{\sum_{p \in S} |f_{\theta}(p) - \mathcal{F}(p)|^2 \cdot w_p}{\sum_{p \in S} w_p} \text{ , } w_p \text{ represents the inverse of sampling density near p}$$

Quality Metrics

- CD (Chamfer Distance)
- MSE (Mean Squared Error)
- IoU (Intersection over Union)
- LFD (Light Field Descriptor)
 - a set of rendered views of a 3D shape from various camera angles
 - compare the similarity of projected images

	Plane	Car	Chair	Rifle	Table
CNN64-MSE	1.47	4.37	7.76	1.62	5.80
IM64-MSE	2.14	4.99	11.43	1.91	10.67
CNN64-IoU	86.07	90.73	74.22	78.37	84.67
IM64-IoU	78.77	89.26	65.65	72.88	71.44
CNN64-CD	3.51	5.31	7.34	3.48	7.45
IM64-CD	4.22	5.28	8.96	3.78	12.05
IM256-CD	4.23	5.44	9.05	3.77	11.54
CNN64-LFD	3,375	1,323	2,555	3,515	1,824
IM64-LFD	3,371	1,190	2,515	3,714	2,370
IM256-LFD	3,236	1,147	2,453	3,602	2,201

Visual Results

3D Shape Interpolation Results

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder¹ Michael Oechsle^{1,2} Michael Niemeyer¹ Sebastian Nowozin^{3†} Andreas Geiger¹

¹Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen

²ETAS GmbH, Stuttgart

³Google AI Berlin

{firstname.lastname}@tue.mpg.de nowozin@gmail.com

Implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier

Difference

• Loss function

$$\mathcal{L}_{\mathcal{B}}^{\text{gen}}(\theta, \psi) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left[\sum_{j=1}^{K} \mathcal{L}(f_{\theta}(p_{ij}, z_i), o_{ij}) + \text{KL}\left(q_{\psi}(z|(p_{ij}, o_{ij})_{j=1:K}) \parallel p_0(z)\right) \right]$$
where $q_{\psi}(z|(p_{ij}, o_{ij})_{j=1:K})$
is Gaussian distribution.

- Inference: MISE (Multiresolution Iso-Surface Extraction)
 - Extract high-res meshes without densely evaluating all points

MISE

• Extract high-res meshes without densely evaluating all points

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Peter Florence 2,3† Jeong Joon Park^{1,3†} Julian Straub³ Richard Newcombe³ Steven Lovegrove³ ¹University of Washington ²Massachusetts Institute of Technology ³Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

SDF(Signed Distance Function)

- Represent shape's surface by a continuous volumetric field
 - magnitude: the distance of a point to the surface boundary
 - **sign**: inside (-) or outside (+) of the shape

Learning the Latent Space of Shapes

- Auto-decoder-based DeepSDF Formulation
 - latent vector z is initialized randomly from $N(0, 0.01^2)$
 - training data: vector z and shape X pairs(set of points and SDFs)

(b) Auto-decoder

DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction

Weiyue Wang*,1

Qiangeng Xu*,1

Duygu Ceylan²

¹University of Southern California Los Angeles, California

{weiyuewa, qiangenx, uneumann}@usc.edu

Radomir Mech²

Ulrich Neumann¹

²Adobe San Jose, California

{ceylan, rmech}@adobe.com

Problem: ignore details (holes or thin structures)

Key Idea: Combine global and local features

- DISN: two parts
 - camera pose estimation(for projection)
 - SDF prediction

Figure 3: Given an image and a point **p**, we estimate the camera pose and project **p** onto the image plane. DISN uses the local features at the projected location, the global features, and the point features to predict the SDF of **p**. 'MLPs' denotes multi-layer perceptrons.

Key Idea: Combine global and local features

• Local feature extraction

Camera Pose Estimation Network

$$L_{cam} = \frac{\sum_{\mathbf{p}_w \in PC_w} ||\mathbf{p}_G - (\mathbf{R}\mathbf{p}_w + \mathbf{t}))||_2^2}{\sum_{\mathbf{p}_w \in PC_w} 1},$$

Results

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference

Mateusz Michalkiewicz¹, Jhony K. Pontes¹, Dominic Jack¹, Mahsa Baktashmotlagh², Anders Eriksson²

¹School of Electrical Engineering and Computer Science, Queensland University of Technology ²School of Information Technology and Electrical Engineering, University of Queensland

Minimal Oriented Surface Models

• (Screened) Poisson Surface Reconstruction (2006, 2013)

Figure 1: Intuitive illustration of Poisson reconstruction in 2D.

Solve the Poisson equation: $\Delta \tilde{\chi} = \nabla \cdot \vec{V}$.

Minimal Oriented Surface Models

• (Screened) Poisson Surface Reconstruction (2006, 2013)

Figure 2: Points from scans of the "Armadillo Man" model (left), our Poisson surface reconstruction (right), and a visualization of the indicator function (middle) along a plane through the 3D volume.

Oriented Surface Learning

- Input: single image
- Output: points $\mathcal{X} = \{x_i\}_{i=1}^m$ with normals $\mathcal{N} = \{n_i\}_{i=1}^m$

Network

Results

Summary

- New shape representation learning for 3D reconstruction
- Lightweight network, but high-resolution output
- Easy to extract mesh with better properties

•

Limitation

- More training time
 - 15x CNN, 5x AtlasNet
- Low inference efficiency
 - OccNet: 3s per mesh
- Details depend on more points sampling (sampling algorithm)
 - uniform sampling results better than adaptive ones

•

Idea: sampling learning

Idea: spline learning

- Bezier surface
- B-Spline surface
- Non-Uniform Rational B-Spline (NURBS)

$$S(u,v)=\sum_{i=1}^k\sum_{j=1}^l R_{i,j}(u,v)P_{i,j}$$

Idea: spline learning

• Deep Parametric Shape Predictions using Distance Fields, Smirnov et al. 2019

Idea: attributes learning

- Semantic labels for segmentation
- UV-coordinates/point color for texture generation

•

Thanks!