

# Customer Churn Modeling

### **Connex Communications**

Connex is a communications company that provides phone, internet, and streaming services. In addition, they offer supportive services like online security, device protection, etc.

Connex would like to utilize machine learning methodologies to create a model that gives them the ability to get ahead of customer churn.

# **Key Questions**



### What model can best predict churn?

Test and optimize a variety of machine learning algorithms

Use product subscription status, account, and demographic information as inputs into the modeling process



### Which features (inputs) are more likely to predict churn?

Utilize logistic regression feature coefficients and the feature\_importances\_ tool in sklearn's random forest



# Getting to Answers

# The Data

Kaggle Telco Dataset



7,032 observations

30 Features

### **Products**

- Phone
- Multiple Lines
- Internet
- Online Security
- Online Backup
- Device Protection
- Tech Support
- Streaming TV
- Streaming Movie

### **Account Info**

- Time as Customer
- Contract Type
- Payment Method
- Paperless Billing
- Monthly Charges
- Total Charges

### **Demographics**

- Senior
- Dependents
- Gender
- Partner

### Churn

### Last month

- Yes
- No

# Approach

EDA + Benchmark

- Logistic Regression
- Evaluate key metrics
- Address class imbalance

Test More Models

- Decision Trees, Random
   Forest, XGBoost
- Tune hyperparameters

Determine Winner

- Best performing model
- Most important features

Identify Further Optimizations

- Identify further tuning opportunities
- Explore other ideas

Tools: Pandas – Sklearn – Imblearn - Numpy

# Which metric should we use to optimize the model?



### Recall

It's better for the business to cast the net wider and capture more potential churn customers than to use precision metric and miss potential churn customers.

### Recall



# correctly classified as churn

# of actual churn in dataset

### Precision



# of actual churn in dataset

# correctly classified as churn

### F1



The harmonic mean of precision and recall. Penalize situations where precision or recall is significantly better than other



Model Performance

### Model Settings:

- Default hyperparameters
- Oversampling

# Benchmark

Started with Logistic Regression

| Model               | Recall | Precision | F1  |
|---------------------|--------|-----------|-----|
| Logistic Regression | 80%    | 48%       | 60% |

# Feature Probability

Coefficient Odds Review: Feature Probability of Churn (Logistic Regression)



### **Highest Probability of Indicating Churn**

- TotalCharges
- Fiber Internet Service

### **Lowest Probability of Indicating Churn**

- Tenure
- Two Year Contract

### Model Settings:

- Default hyperparameters
- Oversampling

## Test More Models

### Additional algorithms

| Model               | Recall | Precision | F1  |
|---------------------|--------|-----------|-----|
| Logistic Regression | 80%    | 48%       | 60% |
| XGBoost             | 74%    | 50%       | 60% |
| Random Forest       | 60%    | 57%       | 58% |
| Decision Tree       | 48%    | 47%       | 48% |

# Tune Hyperparameters

Random Forest + Decision Tree

- Default
  hyperparameters
  Oversampling
- Tuned hyperparameters
- Oversampling

| Model                               | Recall | Precision | F1  |
|-------------------------------------|--------|-----------|-----|
| Logistic Regression                 | 80%    | 48%       | 60% |
| Random Forest Hyperparameters Tuned | 76%    |           |     |
| XGBoost                             | 74%    | 50%       | 60% |
| Random Forest                       | 60%    | 57%       | 58% |
| Decision Tree                       | 48%    | 47%       | 48% |
| Decision Tree Hyperparameters Tuned | 48%    |           |     |

 $Random\ Forest\ Gridsearch\ Best\ Parameters:\ max\_features:\ 23,\ n\_estimators:\ 119$ 

Decision Tree Gridsearch Best Parameters: max\_depth: 1, min\_samples\_leaf: 1



(thus far in the process)

| Model                               | Recall |  |
|-------------------------------------|--------|--|
| Logistic Regression                 | 80%    |  |
| Random Forest Hyperparameters Tuned | 76%    |  |

Let's compare how the features performed for each model

# Feature Comparison by Model

Both models agree that Total Charges is the most important, differ on others



### Top 15 Important Features



0.75

1.00

1.25

1.50

1.75

2.00

0.25

Coefficient Odds

0.00

0.50

PhoneService Yes

InternetService Fiber

TotalCharges -

### **Random Forest, Tuned Hyperparameters**





Recall: 80% Recall: 76%



### Modeling

- Try Voting + Stacking Ensemble Methods
  - To learn the different aspects of the data with each model
  - · Add naïve bayes into the mix
- Further hyperparameter tuning
  - · Experiment with probability threshold
  - XGBoost could be a winning model with tuning
  - Logistic Regression:
    - Grid search with lasso regression to reduce feature space and determine impact on model score
- Explore 'Total Charges' feature
  - Feature engineer: bin by range to determine specific total charges that indicate churn
  - Look for price sensitivity research within the company. Findings could contribute to feature engineering.

### Coding

Update pipeline to work with Gridsearch

Consider utilizing some of the flows discovered while doing this project

# Discussion