

Institut für Algebra und Geometrie PD. Dr. Stefan Kühnlein Maximilian Wackenhuth, M. Sc.

Lineare Algebra 1 für Informatik

Wintersemester 24/25

Übungsblatt 1

30. Oktober 2024

Aufgabe 1 (Bilder)

Es seien M, N Mengen und $f: M \to N$ eine Abbildung. Zeigen Sie:

- a) Sind $A, B \subseteq M$, so gilt $f(A \cup B) = f(A) \cup f(B)$.
- b) Sind $A, B \subseteq M$, so gilt $f(A \cap B) \subseteq f(A) \cap f(B)$.
- c) Finden Sie ein Beispiel mit $f(A \cap B) \neq f(A) \cap f(B)$.
- d) Für alle $A, B \subset M$ gilt $f(A) \setminus f(B) \subseteq f(A \setminus B)$.

Aufgabe 2 (Eigenschaften von Abbildungen)

(5 Punkte)

Überprüfen Sie, ob die folgenden Abbildungen injektiv, surjektiv oder bijektiv sind. Geben Sie gegebenfalls eine Abbildung g bzw. h wie in Satz 1.3.13 des Vorlesungsskriptes an.

- a) $f_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto x + y,$
- b) $f_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}, (x,y) \mapsto (x+2y,2x-y),$
- c) $f_3: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \ x \mapsto x^2 + 1$. Dabei ist $\mathbb{R}_{\geq 0} := \{x \in \mathbb{R} \mid x \geq 0\}$ die Menge der nichtnegativen reellen Zahlen.
- d) $f_4: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, (x,y) \mapsto (2x+y,x+y)$

Aufgabe 3 (Injektivität und Surjektivität)

(5 Punkte)

Es seien M, N Mengen und $f: M \to N$ eine Abbildung. Zeigen Sie

- a) Für alle $B \subset N$ gilt $f(f^{-1}(B)) \subseteq B$.
- b) f ist genau dann surjektiv, wenn für alle $B \subset N$ gilt, dass $f(f^{-1}(B)) = B$.
- c) Für alle $A \subset M$ gilt $A \subseteq f^{-1}(f(A))$.
- d) f ist genau dann injektiv, wenn für alle $A \subset M$ gilt, dass $A = f^{-1}(f(A))$.

Aufgabe 4

Es sei $n \in \mathbb{N}$. Finden Sie bijektive Abbildungen $f : \mathbb{N} \to \mathbb{Z}$ und $g : \mathbb{N} \to \mathbb{N} \times \{1, \dots, n\}$.

Abgabe bis Mittwoch, den 6. November 2024 um 11:00 Uhr.