Assignment #2

ENEL 476

Due at 4 pm on February 28th in the dropbox on the 2nd floor of ICT

Question 1:

A transmission line operating at 2 GHz has the following distributed element terms: $R=4~\Omega/m,~L=0.4~\mu H/m,~C=200~pF/m$ and G=0.02~S/m. Find:

- (a) The propagation constant (γ)
- (b) The attenuation constant (α)
- (c) The phase constant (β)
- (d) The wavelength (λ)
- (e) The characteristic impedance (Z_0)
- (f) The phase velocity (v_p)
- (g) Is the line distortionless?

Question 2:

A lossless transmission line with a characteristic impedance of $Z_0=50~\Omega$ and wavelength of $\lambda=3$ cm is terminated with a $Z_L=100-j25~\Omega$ load. Find:

- (a) The phase constant (β)
- (b) The reflection coefficient at the load $(\Gamma(l=0))$
- (c) The standing wave ratio (SWR)
- (d) The reflection coefficient at 0.25λ from the load ($\Gamma(l=0.25\lambda)$)
- (e) The reflection coefficient at 0.5λ from the load ($\Gamma(l=0.5\lambda)$)
- (f) The reflection coefficient at 0.6λ from the load $(\Gamma(l=0.6\lambda))$

Reflection coefficient values should be in polar form.

Question 3:

A lossless transmission line ($Z_0 = 100 \Omega$) is terminated with a *purely resistive* load. If we know that the standing wave ratio is 2, what are the possible impedance values for the resistive load?

Question 4:

A lossless transmission line $(Z_0 = 70 \Omega)$ is operating at 3 GHz. If the velocity along the line is 2.2×10^8 m/s, find:

- (a) The distributed element term C in terms of pF/m
- (b) The distributed element term L in terms of $\mu H/m$

Question 5:

A lossless transmission line $(Z_0 = 50\Omega)$ is terminated by a $Z_L = 30 + j100~\Omega$ load. What is the input impedance at 0.3λ from the load? Answer in A + jB form.