Problem Set 4

Jakub Gadawski Optimization methods

April 3, 2020

Exercise 1

Let $f: X \to \mathbb{R}, X \in \mathbb{R}^n$ -convex Prove, that:

a) $f-convex \iff epif-convex$ Proof. " \Longrightarrow "
Let $f-convex \land epif-not convex \Longrightarrow \exists_{(x,z_1),(y,z_2)\in epif}\exists_{\lambda\in[0,1]}\lambda x+(1-\lambda)y\notin X\vee f(\lambda x+(1-\lambda)y)>\lambda z_1+(1-\lambda)x_2$ $X-convex \Longrightarrow \lambda x+(1-\lambda)y\in X$ We have to consider, if $f(\lambda x+(1-\lambda)y)>\lambda z_1+(1-\lambda)z_2$ is possible. $f-convex \Longrightarrow \lambda f(x)+(1-\lambda)f(y)\geq f(\lambda x+(1-\lambda)y)$ On the other hand, from definition of $z_1,z_2,\lambda z_1+(1-\lambda)z_2\geq \lambda f(x)+(1-\lambda)f(y)$ So, from the first inequality $\lambda f(x)+(1-\lambda)f(y)>\lambda f(x)+(1-\lambda)f(y)$ Which is impossible.

" ___ ,

We know, that $epif - convex \iff$

 $\forall_{(x,z_1),(y,z_2)\in epif} \forall_{\lambda\in[0,1]} \lambda x + (1-\lambda)y \in X \land f(\lambda x + (1-\lambda)y) \leq \lambda z_1 + (1-\lambda)z_2 \implies f-convex$ Especially for $z_1 = f(x), z_2 = f(y)$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

b) $f - convex \implies \forall_{\alpha \in \mathbb{R}} Z_{\alpha}(f) - convex$

Proof. Let $f - convex \land \exists_{\alpha \in \mathbb{R}} Z_{\alpha}(f) - not \ convex \implies \exists_{\lambda \in [0,1]} \exists_{x,y \in Z_{\alpha}(f)} f(\lambda x + (1-\lambda)y) > \alpha$ But, $f - convex \implies f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$ Which means, that $\lambda f(x) + (1-\lambda)f(y) < \lambda \implies x \notin Z_{\alpha}(f) \lor y \notin Z_{\alpha}(f)$

Which is impossible.

Left handed implication is impossible. Let $\alpha = 2 \wedge f(x) = sin(x)$ Then $Z_2(sin(x)) = \mathbb{R} - convex$, but sin(x) - not convex

c) $f - quasiconvex \iff \forall_{\alpha \in \mathbb{R}} Z_{\alpha}(f) - convex$ Proof.