LC28 - Solubilité

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

Introduction

9

CO₂(g)

$$CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$

 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3(aq) + H_3O(aq)$

 $HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$

 $Ca^{2+}(aq) + CO_3^{2-}(aq) \rightleftharpoons CaCO_3(s)$

Le CO₂(g) se dissout et rend l'océan plus acide

Si l'acidité de l'océan augmente trop, les ions HCO₃ (aq) et CO₃ (aq) réagissent avec H₃O (aq)

Si les concentrations de HCO₃⁻ (aq) et de CO₃²⁻ (aq) diminuent trop, le CaCO₃(s) se dissout pour les remplacer. De cette façon, le CaCO₃(s) des coquilles et des roches « tamponnent » l'océan et l'empêchent de s'acidifier au fur et à mesure que la concentration de CO₂ augmente dans l'atmosphère

I. Equilibre hétérogène en solution

3. Solubilité

	$PbI_{2(s)} =$	$Pb_{(aq)}^{2+}$	$- 2I_{(aq)}^{-}$
Etat initial	présent	0	0
Etat final	présent	$\xi = s$	$2\xi = 2s$

$$K_s = s * (2s)^2 = 4s^3$$

$$\sigma = \left[2 \lambda_{Pb^{2+}}^{0} * s + \lambda_{I^{-}}^{0} * (2s)\right] = 2s[\lambda_{Pb^{2+}}^{0} + \lambda_{I^{-}}^{0}]$$

II. Etude des facteurs d'influence

1. Influence de la température

T_{ambiante}

Présence de PbI_2 solide - Equilibre hétérogène en solution -

 $T > T_{ambiante}$

Disparition du solide $Pb^{2+}(aq) + 2I^{-}(aq)$

Retour à $T_{ambiante}$

Précipitation de PbI_2 solide - Equilibre hétérogène en solution -

II. Etude des facteurs d'influence

3. Influence du pH

III. Applications industrielles

Analyse des caractéristiques d'une eau potable (A température ambiante)

• Dureté : teneur en Mg^{2+} et Ca^{2+}

• pH: de 6,5 à 8,5

Action de la précipitation dans le traitement des eaux (exemples) :

-précipitation des métaux (effluents acides) sous forme d'hydroxyde :

$$Pb^{2+}(aq) + 2OH^{-}(aq) \rightarrow Pb(OH)_{2}(s)$$

-précipitations d'anions indésirables :

$$SO_4^{2-}(aq) + Ca^{2+}(aq) \rightarrow CaSO_4(s)$$

