$(xy)^a(yx)^b(xy)^c=(yx)^c(xy)^b(yx)^a$ является тождеством в S_k , если для каждого z - порядка k-перестановки выполняется хотя бы одно из следующих правил:

$$z|a$$
 и $z|(b-c)$ (1)

$$z|c \quad \mathbf{u} \quad z|(b-a) \tag{2}$$

$$z|b \quad \mathbf{u} \quad z|(a+c) \tag{3}$$

Определение 1. Циклической перестановкой из k элементов c шагом s будем называть такую циклическую перестановку, в которой элемент c номером i переходит в элемент c номером i+s ($\mod k$).

Далее будем считать, что элементы перестановки длины k - это числа от 0 до k-1.

Лемма 1. Существуют такие перестановки x и y из S_k , что xy - циклическая перестановка c шагом -1, a yx - циклическая перестановка c шагом 1.

Доказательство. Рассмотрим перестановку $x: i \to -i \pmod k$ и $y: i \to -i + 1 \pmod k$.

$$x = \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & k-3 & k-2 & k-1 \\ 0 & k-1 & k-2 & k-3 & \dots & 3 & 2 & 1 \end{pmatrix}$$

$$y = \begin{pmatrix} 0 & 1 & 2 & 3 & \dots & k-3 & k-2 & k-1 \\ 1 & 0 & k-1 & k-2 & \dots & 4 & 3 & 2 \end{pmatrix}$$

Тогда

$$xy: i \xrightarrow{y} (-i+1) \xrightarrow{x} (-(-i+1)) == i-1,$$

$$yx: i \xrightarrow{x} (-i) \xrightarrow{y} (-(-i)+1) == i+1$$

Лемма 2. Пусть $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ - тождество в S_k , где k - нечетное. Тогда $a - b + c \equiv 0 \pmod{k}$.

Доказательство. Зафиксируем перестановки xy и yx из Леммы 1. Рассмотрим перестановочный автомат, в котором переход по символам осуществляется соответствующими перестановками x и y. Тогда, чтобы $(xy)^a(yx)^b(xy)^c$

 $=(yx)^c(xy)^b(yx)^a$ было тождеством для такого автомата, требуется, чтобы автомат закончил читать обе части равенства в одном состоянии, то есть

$$(-a) + b + (-c) \equiv c + (-b) + a \pmod{k}$$
 (4)

что эквивалентно

$$2(a - b + c) \equiv 0 \pmod{k} \tag{5}$$

Из того, что k нечетно, следует

$$(a - b + c) \equiv 0 \pmod{k}$$

. \square

Лемма 3. Пусть $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ - тождество в S_k , где k - четное. Тогда $a - b + c \equiv 0 \pmod{\frac{k}{2}}$.

Доказательство. Рассмотрим перестановочный автомат, как в доказательстве Леммы 2. Аналогично, получим

$$2(a - b + c) \equiv 0 \pmod{k} \tag{6}$$

Из того, что k четно, следует

$$(a-b+c) \equiv 0 \pmod{\frac{k}{2}}$$

. \square

Следствие 1. Пусть $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ - тождество в S_k . Тогда $a - b + c \equiv 0 \pmod{\frac{\operatorname{lcm}(k)}{2}}$.

Доказательство. Из Леммы 2 $a-b+c\equiv 0$ по модулю наименьшего общего кратного всех нечетных чисел, меньших k. По Лемме 3 $a-b+c\equiv 0$ по модулю предмаксимальной степени числа 2, не превосходящей k. Отсюда следует, что $a-b+c\equiv 0\pmod{\frac{\mathrm{lcm}(k)}{2}}$.

Теорема 1. Пусть $(xy)^a(yx)^b(xy)^c=(yx)^c(xy)^b(yx)^a$ - тождество в S_k $u\ a+b+c\leq \frac{\mathrm{lcm}(k)}{2}$. Тогда b=a+c.

Доказательство. Сразу заметим, что ни одно из чисел a, b, c не равно 0, так как в противном случае мы будем рассматривать тождество другого типа.

Из Следствия 1 вытекает, что

$$b - a - c = \frac{\operatorname{lcm}(k)}{2}m,$$

где $m \in \mathbb{Z}$. Откуда

$$b = a + c + \frac{\operatorname{lcm}(k)}{2}m > 0.$$

Получим цепочку неравенств

$$0 < a + c + \frac{\operatorname{lcm}(k)}{2}m < \frac{\operatorname{lcm}(k)}{2} + \frac{\operatorname{lcm}(k)}{2}m = \frac{\operatorname{lcm}(k)}{2}(m+1),$$

то есть m > -1.

С другой стороны, подставим b в a + b + c, получим

$$2(a+c) + \frac{\operatorname{lcm}(k)}{2}m \le \frac{\operatorname{lcm}(k)}{2}$$

или

$$2(a+c) \le \frac{\operatorname{lcm}(k)}{2}(1-m)$$

Поскольку сумма a и c должна быть положительным числом, требуется

$$\frac{\operatorname{lcm}(k)}{2}(1-m) > 0,$$

то есть m < 1.

Значит, при заданных ограничениях m=0, что влечет b=a+c. \square

Следствие 2. Для кратчайшего тождества вида $(xy)^a(yx)^b(xy)^c = (yx)^c(xy)^b(yx)^a$ выполняется b = a + c.

Доказательство. Достаточно показать, что существуют тождества, для которых $a+b+c \leq \frac{\mathrm{lcm}(k)}{4}$ (тогда кратчайшее тождество также удовлетворяет этому условию, а по теореме для всех тождеств с таким свойством выполняется b=a+c).

Пусть $m=2k/3,\ a:=lcm(m),\ c:=lcm(k-m)\cdot P(m),\ b:=a+c,$ где P(m) - произведение всех простых и степеней простых чисел из

множества $\{m+1,...,k\}$. a и c взяты из доказательства длины тождества из двух блоков. Оттуда же понятно, что любой порядок перестановки делит или a, или c, а, благодаря выбору b, делит и соответствующую разность. Длина такого тождества, конечно, в два раза больше длины тождества из двух блоков $(e^{\frac{2}{3}k+O(\frac{k}{\log k})})$, однако все равно асимптотически меньше, чем $\frac{\operatorname{lcm}(k)}{4}$ (который равен $e^{k+O(\frac{k}{\log k})}$).

Теперь, вооружившись утверждением о связи показателей степеней рассматриваемого тождества, можно доказать обратное утверждение, т.е. если $(xy)^a(yx)^b(xy)^c \equiv_k (yx)^c(xy)^b(yx)^a$, то выполняется хотя бы одно из условий 1 - 3. Для этого нам понадобится доказать еще несколько лемм. Однако заметим сразу, что равенство b=a+c делает истинной вторые части утверждений 1 - 3, если первые истинны.

Лемма 4. Если $(xy)^a(yx)^b(xy)^c \equiv_k (yx)^c(xy)^b(yx)^a$, тогда хотя бы одно из чисел a, b, c делится на 2.

Доказательство. От противного. Пусть a, b, c нечетны. Тогда $b \neq a + c$, поскольку их четность не совпадает. Противоречие.

Лемма 5. Если $(xy)^a(yx)^b(xy)^c \equiv_k (yx)^c(xy)^b(yx)^a$ и $k \geq 4$, тогда хотя бы одно из чисел a, b, c делится на 3.

Доказательство. От противного. Пусть ни одно из чисел a, b, c не делится на 3. Тогда возможны лишь два варианта:

- 1. $a \equiv_3 c \equiv_3 1$ и $b \equiv_3 2$
- 2. $a \equiv_3 c \equiv_3 2$ и $b \equiv_3 1$

(В остальных случаях хотя бы одно из чисел оказывается кратным трем)

Рассмотрим автомат относительно символов xy, yx на рисунке 1. Такой автомат можно получить, взяв за перестановку по x (0)(1,2,3), по y - (1)(3,2,0). Начальное состояние 0.

В первом случае автомат закончит читать левую часть тождества в состоянии 3 (после прочтения $(xy)^a$ окажется в состоянии 1, затем, прочитав $(yx)^b$ придет в состояние 3 в цикле), а правую - в состоянии 1 (после прочтения $(yx)^c$ окажется в состоянии 3 и в нем останется после $(xy)^b$).

Рис. 1:

Во втором случае автомат закончит читать левую часть тождества в состоянии 1 (после прочтения $(xy)^a$ окажется в состоянии 2, затем, прочитав $(yx)^b$ останется в состоянии 2), а правую - в состоянии 2 (после прочтения $(yx)^c$ окажется в состоянии 1 и перейдет в состояние 2 после $(xy)^b$).

Получили противоречие с тем, что данная пара - тождество.

Лемма 6. Если $(xy)^a(yx)^b(xy)^c \equiv_k (yx)^c(xy)^b(yx)^a$ и $k \geq 4$, тогда хотя бы одно из чисел a, b, c делится на k.

Доказательство. От противного. Пусть ни одно из чисел a, b, c не делится на k. Разберем несколько случаев.

1. $2a \equiv_k 0$.

Поскольку мы предположили, что $a\not\equiv_k 0$, значит $a\equiv_k \frac{k}{2}$. Так как $a+c=b,\,b\not\equiv_k 0$ по предположению, то $c\not\equiv_k a$.

Рассмотрим автомат \mathcal{A} , в котором xy - перестановка с шагом 1, в которой поменяли местами a и c, а yx - перестановка с шагом -1 (см. Рисунок 2). Данный автомат различит слова $(xy)^a(yx)^b(xy)^c$ и $(yx)^c(xy)^b(yx)^a$.

 $\mathscr A$ закончит читать второе слово в состоянии c-a (см. Рисунок 4). Корректность переходов:

Рис. 2: Циклxyавтомата \mathscr{A}

Рис. 3: Чтение слова $(xy)^a(yx)^b(xy)^c$ автоматом $\mathscr A$

Рис. 4: Чтение слова $(yx)^c(xy)^b(yx)^a$ автоматом $\mathscr A$

- $-c \not\equiv_k a$ и $-c \not\equiv_k c$ поскольку иначе в обоих случаях он был бы равен $\frac{k}{2}$ и совпадал бы с a;
- b-c=a из Теоремы 1.

 \mathscr{A} закончит читать второе слово в состоянии с номером 2c (см. Рисунок 4). Корректность переходов:

- $c-b\equiv_k -a$ из Теоремы 1, а $a\equiv_k -a$ поскольку $a\equiv_k \frac{k}{2}$;
- $2c \not\equiv_k c$ поскольку по предположению $c \not\equiv_k 0$.

Конечное состояние при чтении $(yx)^c(xy)^b(yx)^a$ зависит от того, совпадает ли 2c с a по модулю k:

- $2c \equiv_k a$, тогда состоянием с номером 2c будет состояние c, которое не совпадает с c-a, поскольку -a не сравнимо с нулем по модулю k;
- $2c \not\equiv_k a$, тогда конечным состоянием будет 2c, которое не совпадает с c-a, поскольку $a+c \not\equiv_k 0$.

2. $2a \not\equiv_k 0$ и $2a \not\equiv_k -c$

Рассмотрим автомат \mathscr{B} , в котором xy - перестановка с шагом 1, а yx - перестановка с шагом -1, в которой поменяли местами a и 2a (см. Рисунок 5). Данный автомат различит слова $(xy)^a(yx)^b(xy)^c$ и $(yx)^c(xy)^b(yx)^a$.

 \mathscr{B} закончит читать $(xy)^a(yx)^b(xy)^c$ в состоянии a (см. Рисунок 6). Корректность переходов:

Рис. 5: Циклyxавтомата ${\mathscr B}$

Рис. 6: Чтение слова $(xy)^a(yx)^b(xy)^c$ автоматом ${\mathscr B}$

Рис. 7: Чтение слова $(yx)^c(xy)^b(yx)^a$ автоматом \mathscr{B}

Рис. 8: Чтение слова $(yx)^c(xy)^b(yx)^a$ автоматом $\mathscr B$ в случае, когда $2a\equiv_k -c$

• 2a - b = a - c по Теореме 1, $a - c \not\equiv_k a$, так как $-c \not\equiv_k 0$ по предположению, и $a - c \not\equiv_k 2a$, так как $a + c \not\equiv_k 0$ также по предположению.

 \mathscr{B} закончит читать $(yx)^c(xy)^b(yx)^a$ в состоянии 2a (см. Рисунок 7). Корректность переходов:

- $-c \not\equiv_k a$, поскольку $a + c \not\equiv_k 0$ по предположению, и $-c \not\equiv_k 2a$ по заданному ограничению;
- b-a=c по Теореме 1.

Состояния a и 2a не совпадают, так как $a\not\equiv_k 0$ по предположению.

3.
$$2a \not\equiv_k 0$$
 и $2a \equiv_k -c$ и $3a \not\equiv_k 0$

Рассмотрим автомат \mathscr{B} из предыдущего случая (см. Рисунок 5). В этом случае этот автомат также разделит рассматриваемую пару слов.

Чтение слова $(xy)^a(yx)^b(xy)^c$ будет абсолютно таким же, как и в предыдущем случае. Чтение слова $(yx)^c(xy)^b(yx)^a$ закончится в состоянии -a (см. Рисунок 8). Корректность переходов:

- $2a \equiv_k -c$ по заданному ограничению;
- $a+b\equiv_k 0$ поскольку $a+b=2a+c\equiv_k 2a-2a=0$ по Теореме 1 и заданному ограничению;
- $-a \not e quiv_k a$, так как $2a \not\equiv_k 0$, и $-a \not e quiv_k a$, поскольку $3a \not\equiv_k 0$ по заданному ограничению.

Состояния a и -a также не совпадают.

4. $2a\not\equiv_k 0$ и $2a\equiv_k -c$ и $3a\equiv_k 0$ Поскольку $3a\equiv_k 0$, то $a\equiv_k \frac{k}{3}$ или $a\equiv_k \frac{2k}{3}$