

November 17, 2024

Stopping times and stopped processes

▶ Remark 14.17: Given $\mathcal{X} = (X_t)_{t \in I}$, $(\mathcal{F}_t)_{t \in I}$ filtration.

A random time is an \bar{I} -valued random variable T.

T is called a stopping time if $\{T \leq t\} \in \mathcal{F}_t$ for all $t \in I$.

T stopping time defines the σ -algebra

$$\mathcal{F}_T := \{ A \in \mathcal{A} : A \cap \{ T \le t \} \in \mathcal{F}_t, t \in I \}$$

of the T-past.

The hitting time of $B \in \mathcal{B}(E)$ is $T_B := \inf\{t : X_t \in B\}$.

It is $X_T : \omega \mapsto X_{T(\omega)}(\omega)$ and $\mathcal{X}^T := (X_{T \wedge t})_{t \in I}$.

 \mathcal{X} adapted, I countable: For \mathcal{X} $\{T_B \leq t\}$ $\{X_s \in \mathcal{Y}\}$ $\{X_s \in \mathcal{Y$

Optional Stopping Theorem

Proposition 14.19: $I = \{0, 1, 2, ...\}$, T stopping time $\mathcal{X} = (X_t)_{t \in I}$ a (sub, super) martingale

$$\Rightarrow \mathcal{X}^T = (X_{T \wedge t})_{t \in I}$$
 is (sub-, super-) martingale.

Proof for \mathcal{X} sub-martingale: For $\{T>t-1\}\in\mathcal{F}_t$ is

$$\begin{aligned} \mathbf{E}[X_{T \wedge t} - X_{T \wedge (t-1)} | \mathcal{F}_{t-1}] &= \mathbf{E}[(X_t - X_{t-1}) 1_{\{T > t-1\}} | \mathcal{F}_{t-1}] \\ &= 1_{\{T > t-1\}} \mathbf{E}[X_t - X_{t-1} | \mathcal{F}_{t-1}] \ge 0, \end{aligned}$$

i.e. \mathcal{X}^{T} is a submartingale.

Martingale and $\mathcal{F}_{\mathcal{T}}$

▶ Lemma 14.20: $I = \{0, 1, 2, ...\}$, \mathcal{X} , martingale, $T \leq t$ stopping time. Then $X_T = \mathbf{E}[X_t | \mathcal{F}_T]$.

Since X_T is measurable with respect to $\mathcal{F}_T \subseteq \mathcal{F}_t$ (see Proposition 13.23), it suffices to show

$$\mathbf{E}[X_t; A] = \mathbf{E}[X_T; A], \qquad A \in \mathcal{F}_T$$

For $s \in I$, $\{T = s\} \cap A \in \mathcal{F}_s$, hence

$$\mathbf{E}[X_{T}; A] = \sum_{s=1}^{t} \mathbf{E}[X_{s}; \{T = s\} \cap A] = \sum_{s=1}^{t} \mathbf{E}[\mathbf{E}[X_{t}|\mathcal{F}_{s}]; \{T = s\} \cap A]$$
$$= \sum_{s=1}^{t} \mathbf{E}[X_{t}; \{T = s\} \cap A] = \mathbf{E}[X_{t}; A].$$

Uniform integrability

▶ Lemma 14.21: $I = \{0, 1, 2, ...\}$, $\mathcal{X} = (X_t)_{t \in I}$ martingale.

Then

$$\mathcal{X}$$
 ui $\iff \{X_T: T \text{ almost surely finite stopping time} \}$ ui.
' \Leftarrow ': clear. ' \Rightarrow ': Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ convex, $\frac{f(x)}{x} \xrightarrow{x \to \infty} \infty$, sup $_{t \in I} \mathbf{E}[f(|X_t|)] =: L < \infty, \ T < \infty$ stopping time.
Because $\mathbf{E}[X_t|\mathcal{F}_{T \wedge t}] = X_{T \wedge t}$ and $\{T \leq t\} \in \mathcal{F}_{T \wedge t}$,
$$\mathbf{E}[f(|X_T|), \{T \leq t\}] = \mathbf{E}[f(|X_{T \wedge t}|), \{T \leq t\}]$$

$$= \mathbf{E}[f(|\mathbf{E}[X_t|\mathcal{F}_{T \wedge t}]|), \{T \leq t\}]$$

$$\leq \mathbf{E}[\mathbf{E}[f(|X_t|), \{T \leq t\}] < L.$$

Optional Sampling Theorem

▶ Theorem 14.22: $I = \{0, 1, 2, ...\}$, $S \leq T < \infty$ stopping times, \mathcal{X} sub-martingale. If T is bounded or \mathcal{X} is uniformly integrable, then X_T is integrable and $X_S \leq \mathbf{E}[X_T | \mathcal{F}_S]$. Proof for $T \leq t$. Let $\mathcal{X} = \mathcal{M} + \mathcal{A}$ Doob decomposition. Then

$$X_{S} = M_{S} + A_{S} = \mathbf{E}[M_{t} + A_{S}|\mathcal{F}_{S}]$$

$$\leq \mathbf{E}[M_{t} + A_{T}|\mathcal{F}_{S}]$$

$$= \mathbf{E}[\mathbf{E}[M_{t}|\mathcal{F}_{T}] + A_{T}|\mathcal{F}_{S}]$$

$$= \mathbf{E}[M_{T} + A_{T}|\mathcal{F}_{S}]$$

$$= \mathbf{E}[X_{T}|\mathcal{F}_{S}].$$

Optional Sampling Theorem

▶ Theorem 14.22: $I = \{0, 1, 2, ...\}, S \le T < \infty$ stopping times, \mathcal{X} sub-martingale. If T is bounded or \mathcal{X} is uniformly integrable, then X_T is integrable and $X_S \leq \mathbf{E}[X_T | \mathcal{F}_S]$. Proof for \mathcal{X} ui martingale, thus $\{X_{S \wedge t}, X_{T \wedge t} : t \in I\}$ ui. For $A \in \mathcal{F}_{S, t}$, $\{S < t\} \cap A \in \mathcal{F}_{S \wedge t}$, $\mathbf{E}[X_T, A] = \lim_{t \to \infty} \mathbf{E}[X_{T \wedge t}, \{S \leq t\} \cap A]$ $=\lim_{t\to\infty} \mathbf{E}[\mathbf{E}[X_{T\wedge t}|\mathcal{F}_{S\wedge t}], \{S\leq t\}\cap A]$ $= \lim_{t \to \infty} \mathbf{E}[X_{S \wedge t}, \{S \le t\} \cap A] = \mathbf{E}[X_S, A].$

Characterization of martingales

▶ Lemma 14.23: $I = \{0, 1, 2, ...\}$, \mathcal{X} adapted. Then: \mathcal{X} martingale \iff $\mathbf{E}[X_S] = \mathbf{E}[X_T]$ for stopping times S, T, which only take two values.

'⇒': This is clear from the Optional Sampling Theorem. ' \Leftarrow ': Let $s \le t$, $A \in \mathcal{F}_s$, and $T = s1_A + t1_{A^c}$ be a stopping time such that

$$0 = \mathbf{E}[X_t - X_T] = \mathbf{E}[X_t] - \mathbf{E}[X_s, A] - \mathbf{E}[X_t, A^c] = \mathbf{E}[X_t - X_s, A].$$
 Since A was arbitrary, it follows that $\mathbf{E}[X_t | \mathcal{F}_s] = X_s$, so \mathcal{X} is a martingale.

Wald's Identities

 $m{X}_1, X_2, ... \in \mathcal{L}^1$ independent, $\mu := \mathbf{E}[X_1] = \mathbf{E}[X_2] = ...$, and $S_t := \sum_{s=1}^t X_s$, $T \le t$ stopping time. Then

$$\mathbf{E}[S_T] = \mathbf{E}[T]\mu.$$

Because ${\cal M}$ with $M_0=0$, $M_t=S_t-t\mu$ is a martingale, we have

$$0 = \mathbf{E}[M_T] = \mathbf{E}[S_T] - \mathbf{E}[T]\mu.$$

▶ $X_1, X_2, ... \in L^2$ with $\sigma^2 = \mathbf{V}[X_1] = \mathbf{V}[X_2] = ...$ and T independent, then $\mathbf{V}[S_T] = \mathbf{E}[T]\sigma^2 + \mathbf{V}[T]\mu^2$..
Indeed: $(M_t^2 - \langle M \rangle_t)_{t=0,1,2,...}$ martingale with $\langle M \rangle_t = t\sigma^2$, so

$$\mathbf{E}[T]\sigma^2 = \mathbf{E}[M_T^2] = \mathbf{V}[(S_T - T\mu)^2] = \mathbf{V}[S_T] - \mu^2 \mathbf{V}[T].$$

Ruin problem

 $ightharpoonup X_1, X_2, ... iid,$

$$P(X_1 = 1) = 1 - P(X_1 = -1) = p := 1 - q \neq \frac{1}{2},$$

$$S_0 = k$$
 and $S_t = S_0 + \sum_{i=1}^t X_i$,

 $T := \inf\{t : S_t \in \{0, N\}\} \text{ and } p_k := \mathbf{P}(S_T = 0).$ Then

$$p_k := \mathbf{P}(S_T = 0) = \frac{\left(\frac{q}{p}\right)^k - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^N}.$$

Indeed:

$$\mathbf{E}\Big[\Big(\frac{q}{p}\Big)^{X_1}\Big] = \frac{q}{p}p + \frac{p}{q}q = 1,$$

hence $Y_t := \left(\frac{q}{p}\right)_t^S$ is a martingale. Hence

$$\left(rac{q}{p}
ight)^k = \mathbf{E}[Y_0] = \mathbf{E}[Y_T] = p_k + (1-p_k)\left(rac{q}{p}
ight)^N.$$