Discussion of "Transboudary Air Pollution in East Asia: Different bargaining power from Source-Receptor Relationship"

By Hayeon Jeong

Roberto Zuniga

December 10, 2021

Roadmap

What's the paper about?

Comments and suggestions

Conclusions

Transboundary Air Pollution

Air pollution does not respect international borders

SCALLE STATES	Source	Receptor	China	Korea	Japan
F	China		91	32.1	24.6
*	Korea		1.9	51.2	8.2
277	Japan		8.0	1.5	55.4

Transboundary Air Pollution

Air pollution does not respect international borders

Recepto Source	r China	Korea	Japan
China	91	32.1	24.6
Korea	1.9	51.2	8.2
Japan	0.8	1.5	55.4

China, Korea and Japan are not internalizing the effect of domestic emissions on others

An International Treaty to Reduce Air Pollution

China is the biggest polluter. How to get them on board?

 $\rightarrow \ \mathsf{Transfers}$

An International Treaty to Reduce Air Pollution

- China is the biggest polluter. How to get them on board?
 - → Transfers
- How should the gains be distributed?
 - → Hayeon's idea: use Nash bargaining solution and extract bargaining power from the S-R matrix

An International Treaty to Reduce Air Pollution

- China is the biggest polluter. How to get them on board?
 - → Transfers
- How should the gains be distributed?

Abatement

ightarrow Hayeon's idea: use Nash bargaining solution and extract bargaining power from the S-R matrix

Pavoff

Outcome of estimation:

				_	
	Don't join	Join		Don't join	Join
China	96.6083	102.7385	China	497.2036	1471.3
Korea	1.2543	134.1471	Korea	9.1299	182.5679
Japan	6.75	134.1471	Japan	47.848	88.2245

Roadmap

What's the paper about?

Comments and suggestions

Conclusions

.

- Comments
 - \rightarrow Interesting application of the theory
 - $\,\rightarrow\,$ Simulation results suggest that a treaty is feasible

е

- Comments
 - \rightarrow Interesting application of the theory
 - ightarrow Simulation results suggest that a treaty is feasible
- Questions and suggestions

- Comments
 - → Interesting application of the theory
 - → Simulation results suggest that a treaty is feasible
- Questions and suggestions
 - ightarrow The optimization problem is formulated as

$$\max_{a_i} \Sigma_i \pi_i(a) = \max_{a_i} \Sigma_i(B_i(a) - C_i(a_i))$$

But B_i may depend on individual abatement. The S-R matrix may help estimating $B_i(a_j)$.

е

- Comments
 - → Interesting application of the theory
 - → Simulation results suggest that a treaty is feasible
- Questions and suggestions
 - ightarrow The optimization problem is formulated as

$$\max_{a_i} \Sigma_i \pi_i(a) = \max_{a_i} \Sigma_i(B_i(a) - C_i(a_i))$$

But B_i may depend on individual abatement. The S-R matrix may help estimating $B_i(a_j)$.

ightarrow The results suggest that China is actually paying Korea and Japan to reduce their emissions

- Comments
 - → Interesting application of the theory
 - → Simulation results suggest that a treaty is feasible
- Questions and suggestions
 - → The optimization problem is formulated as

$$\max_{a_i} \sum_i \pi_i(a) = \max_{a_i} \sum_i (B_i(a) - C_i(a_i))$$

But B_i may depend on individual abatement. The S-R matrix may help estimating $B_i(a_j)$.

- ightarrow The results suggest that China is actually paying Korea and Japan to reduce their emissions
- → Why are China's marginal benefits so big? Perhaps include non-linearities or exposure-weighted damages.

- Comments
 - → Interesting application of the theory
 - → Simulation results suggest that a treaty is feasible
- Questions and suggestions
 - ightarrow The optimization problem is formulated as

$$\max_{a_i} \Sigma_i \pi_i(a) = \max_{a_i} \Sigma_i(B_i(a) - C_i(a_i))$$

But B_i may depend on individual abatement. The S-R matrix may help estimating $B_i(a_j)$.

- ightarrow The results suggest that China is actually paying Korea and Japan to reduce their emissions
- → Why are China's marginal benefits so big? Perhaps include non-linearities or exposure-weighted damages.
- → How much PM can be abated? (how much of it is Yellow dust?)

Roadmap

What's the paper about?

Comments and suggestions

Conclusions

Conclusions

- Hayeon's paper addresses an important problem. It suggest that a solution to transboundary air-pollution is possible.
- Interesting application of the theory
- Future work should refine estimation analysis: maybe account for non-linearities in marginal benefits, or exposure-weighted estimates.