

# DOONSIDE TECHNOLOGY HIGH SCHOOL MATHEMATICS FACULTY

Trial HSC Examination 2001

# **2U Mathematics**

Time Allowed: Three Hours

#### Directions to candidates:

- \* Attempt ALL questions.
- \* All questions are of equal value.
- \* Show all necessary working.
- \* Marks may be deducted for careless or badly arranged work.
- \* Only Board-approved calculators may be used.
- \* Standard Integrals are printed on the last page. These may be removed for your convenience.
- \* Start each question on a new sheet of paper.

| QUES | Use a SEPARATE Sheet of Paper                                                            | Marks |
|------|------------------------------------------------------------------------------------------|-------|
| (a)  | Express $0.304304304$ in the form $\frac{a}{b}$ where $a$ and $b$ have no common factor. | 2     |
| (b)  | Factorise $3x^2 - 2x - 1$ .                                                              | 2     |
| (c)  | Solve and graph the solution of $ 2x+1  < 2$ on a number line.                           | 2     |
| (d)  | Find the value of $8^{\frac{1}{2}}$ correct to 3 decimal places.                         | 2     |
| (e)  | Find a primitive function for                                                            | 2     |
|      | $x^{-2} + 6$ .                                                                           |       |
| (f)  | Find the exact value of $\tan 60^{\circ} + \tan 150^{\circ}$ .                           | 2     |

Use a SEPARATE Sheet of Paper

Marks



Find the gradient of the line AB.

1

Show that the equation of AB is 3x + 4y - 24 = 0

2

Calculate the acute angle  $\theta$  to the nearest whole degree.

2

Given that OC meets AB at right angles, calculate the distance OC.

2

(e) (i) Show OC has equation 4x - 3y = 0

2

(ii) Find the distance BC.

2

(iii) Show that  $\frac{OC}{BC} = \frac{OA}{OB}$ 

Use a SEPARATE Sheet of Paper

Marks

(a) Obtain all solutions to

2

$$9^x - 28 \times 3^x + 27 = 0$$

(b)



In the diagram, AB | DE.  $\angle$ ABC =  $\alpha$ .  $\angle$ CDE =  $\beta$ .

2

Explain why the reflex angle DCB =  $180 + \beta$  -  $\alpha$ .

(c) Differentiate the following with respect to x.

(i) 
$$\frac{\tan x}{x}$$

2

(ii)  $\sin^3 x$ 

**QUESTION 3 CONTINUED** 

MARKS

(d) The diagram shows the face of a 20m wide vertical cliff. The distances  $d_1$ - $d_6$  are given in the table.



| $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $d_6$ |
|-------|-------|-------|-------|-------|-------|
| 15    | 14    | 5.4   | 8.8   | 15    | 14.4  |

- (i) Find an estimate for the area of the cliff face using the trapezoidal rule. 2 Give your answer correct to the nearest square metre.
- (ii) Is the estimate greater than or less than the actual area of the cliff? 2 Justify your answer.

#### Use a SEPARATE Sheet of Paper

Marks

- (a) For the quadratic function  $f(x) = Ax^2 7x + 3$ , f(2) = -3.
  - (i) Find the value of A.

1

(ii) If the two roots of the equation f(x) = 0 are  $\alpha$  and  $\beta$ , find the value of  $\alpha^2 + \beta^2$ .

2

- (b) The unit circle shown has equation  $x^2 + y^2 = 1$  y
  - (i) Write the coordinates of the point P in terms of angle  $\theta$ .



- (ii) Explain why  $\sin^2 \theta + \cos^2 \theta = 1$
- (iii) If  $\sin \theta = \frac{8}{17}$  find 2 possible values for  $\cos \theta$ .



(c) The figure shows a circle, centre O.

AX and BX are tangents to the circle from the external point X.

OA and OB are the radii at the points of contact of the tangents.

AX h OA and BX h OB



- (i) By considering the triangles AOX and BOX prove that AX = BX.
- (ii) If AO = r and  $\angle AOX = \theta$ , show that the area of  $OAXB = r^2 \tan \theta$ . 2

2

## Use a SEPARATE Sheet of Paper Marks QUESTION 5 In a geometric sequence $T_1 = 27$ and $T_4 = 1$ (a) 1 Find the common ratio, r. (i) 2 Find the limiting sum (ii) Consider the series $97 \div 91 + 85 + 79 + \dots$ b) 1 Find the common difference, d (i) Find the largest n such that $S_n > 0$ 2 (ii) Find the following Integrals (c $\int_0^{\frac{\pi}{4}} \sec^2 x. dx$ 1 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} \, dx$

#### QUESTION 5 CONTINUED

MARKS

(d) The graph shows y' and y'' for a function y = f(x).

3



Sketch the graph of y = f(x) clearly showing the x values of any turning points and points of inflexion.

Use a SEPARATE Sheet of Paper

Marks

(a)



Some red and white balls are placed in a bag.

The tree diagram shows the probabilities relating to the selection of two balls from the bag, without replacement.

Find (i) The probability that the two balls are different colours.

2

(ii) The number of red balls and white balls in the bag.

1

b) Due to adverse weather conditions the population P of a certain invertebrate is falling according to the rule:

$$P = 2000000e^{kt}$$

where t is the time in years after January 1<sup>st</sup> 2002.

At the end of 4 years the population is half the initial population.

(i) What is the initial population?

1

(ii) Calculate the value of k.

2

(iii) How many invertebrates will there be after 16 years?

1

(iv) When will the species be extinct? (P < 1)

1

(c) Sketch the curve  $y = 2\sin 2x + 1$  in the domain  $0 \le x \le \pi$  showing the main features of the graph.

3

(ii) State a solution to  $0 = 2 \sin 2x + 1$  in the domain  $0 \le x \le \pi$ 

Use a SEPARATE Sheet of Paper

Marks

2

(a) The graph shows y = f(x) for  $0 \le x \le k$ 



The value of  $\int_0^k f(x).dx$  is known to be 3.5 units. If A = 5 and B = 4 find the area C.

(b)



The curve represented on the graph is an ellipse which has equation  $4x^2 + 9y^2 = 36$ 

(i) Show that the curve crosses the x axis at (3,0) and (-3,0).

1

3

(ii) Obtain the volume generated when the curve is rotated about the x axis.

#### **QUESTION 7 CONTINUED**

Marks

2



(c

- T graph shows the functions  $y = \sin x$  and  $y = \cos x$ 
  - (i) Show that the x coordinates of the points of intersection of these two curves in the domain shown are  $x = \frac{\pi}{4}$  and  $x = \frac{5\pi}{4}$
  - (ii) Calculate the area enclosed between the two curves in the diagram. (Give your answer in exact terms.)

| Question 8                                   |      | mation and                                                                                     |       |  |
|----------------------------------------------|------|------------------------------------------------------------------------------------------------|-------|--|
|                                              |      | Use a SEPARATE Sheet of Paper                                                                  | Marks |  |
| (a)                                          | (i)  | For what values of $k$ does the quadratic equation $kx^{2} + (k+3) x - 1 = 0$ have real roots? | 2     |  |
|                                              | (ii) | For what values of $k$ is the quadratic expression $kx^2 + (k+3)x - 1$ positive definite?      | 2     |  |
| (b)                                          | (i)  | Show that $\frac{d}{dx}(x \ln x - x) = \ln x$                                                  | 1     |  |
|                                              | (ii) | Hence evaluate $\int_{1}^{e^{2}} \ln x.dx$ .<br>Leave your answer in exact form.               | 2     |  |
| (c) Solve the pair of simultaneous equations |      | e the pair of simultaneous equations                                                           | 2     |  |
|                                              |      | $\log_{10} \frac{x}{y} = 2$                                                                    |       |  |
|                                              |      | $\log_{10} x + \log_{10} y = 4$                                                                |       |  |
| (d)                                          | Find | the equation of the tangent to the curve $y = \ln(\sqrt{x})$ when $x = e$                      | 3     |  |

#### Question 9

#### Use a SEPARATE Sheet of Paper

Marks

- (a) For the parabola  $8x = y^2$  find
  - (i) The Vertex

1

(ii) The Focus

1

(iii) The Directrix

1

- (b) If  $\log_x a = 3.6$  and  $\log_x b = 2$  find:
  - (i)  $\log_x \sqrt[3]{a}$

1

(ii)  $\log_x ab$ 

1

(iii)  $\log_x \frac{b}{a}$ 

1

The diagram represents a right conical container, with radius r. The height of the container = kr. Also the sum of the radius and the height = 1 m.



(i) Show that the volume of the cone is given

by  $V = \frac{\pi}{3} \cdot \frac{k}{(1+k)^3}$ 

2

(ii) Find the value of k which maximises the volume of the cone.

3

(iii) Calculate this maximum volume.

Use a SEPARATE Sheet of Paper

Marks

(a) A particle is moving along the x axis and its velocity is given by the equation

 $v = 8t - t^2$ .

(i) At what time(s) was the particle at rest?

1

(ii) Find the displacement (x) as a function of t if the particle was initially at x = 3.

(iii) Find when the particle has zero acceleration.

1

2

1

- (iv) What is the total distance travelled by the particle in the first 4 seconds.
- b) Consider the isosceles triangle ABC which has perimeter 1m and two sides of length *x* as shown in the diagram.

The angle at the apex is  $\theta$  radians and M is the midpoint of the base BC.



(i) Calculate the length of the altitude of the triangle, AM

2

(ii) Show 
$$\cos\left(\frac{\theta}{2}\right) = \frac{\sqrt{x - \frac{1}{4}}}{x}$$

1

(iii) Show that the area of the triangle is given by

$$A = (\frac{1}{2} - x)\sqrt{x - \frac{1}{4}}$$

### QUESTION 10 CONTINUED

MARKS

2

1

(c) In the diagram OA = OB = 11 units. AC is a straight line segment.

OC = 13 units.  $\angle OCA = 50^{\circ}$ .



- (i) Use the sine rule to calculate  $\angle OAC$  correct to the nearest degree.
- (4)
- (ii) Determine the size of  $\angle OBC$ .

#### STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

NOTE:  $\ln x = \log_e x$ , x > 0