ГУАП

КАФЕДРА № 6

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

доцент, канд. техн. наук должность, уч. степень, звание

подпись, дата

Т. П. Мишура инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 4

ИССЛЕДОВАНИЕ ШУМОВЫХ ХАРАКТЕРИСТИК ИСТОЧНИКОВ ПРОИЗВОДСТВЕННОГО ШУМА

по курсу:

БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

4326

6.10.13

подпись, дата

Г. С. Томчук инициалы, фамилия

ПРОТОКОЛ ЛАБОРАТОРНОЙ РАБОТЫ №4

«РАСЧЕТНЫЕ ПАРАМЕТРЫ ШУМОВЫХ ХАРАКТЕРИСТИК МАШИН»

	DI: Thouryx J., Bossnow E.,) Romal D., Grynol D.
ВАРИАНТ № 2	ДАТА: 14.1023 (подпись преподавателя)
	ПРОВЕДЕНИИ ИЗМЕРЕНИЙ. ОФОРМЛЕНИИ ОТЧЕТА.

F1, Гц	Lpi , дБ	Lh, дБ	ПДШХ, дБ
63		71	69
125	91	61	59
250	-	54	52
500	90	49	47
1000	89	45	43
2000	-	42	40
4000	-	40	38
8000	-	38	36
«A»	87	50	48

 $\Pi C - 45$ R=1,0 M $\Delta y=\underline{10}$, дБ

ПРИ ОФОРМЛЕНИИ ОТЧЕТА ВЫ ДОЛЖНЫ:

- рассчитать ПДШХ машины;
- рассчитать минимальное расстояние от машины, на котором ее эксплуатация не приносит вреда людям, работающим в данном помещении (источник шума считать точечным);
- указать технические методы снижения шума машины;
- построить график предельного спектра шума, заданного в работе, на него нанести график ПДШХ и шумовые характеристики машин;
- сравнить шумовые характеристики машины с ПДШХ и сделать выводы о качестве машины с точки зрения безопасности труда;
- привести формулы, используемые в заданном методе расчета, для вычисления шумовых характеристик;
- проанализировать поправки, вносимые в расчет шумовых характеристик.

ПРИМЕЧАНИЕ: Расчеты ПДШХ и расстояния, на котором шум не превышает нормативное значение, производятся с использованием формулы 9 (стр. 5 методических указаний).

1 Исходные данные

Вариант: 2.

2 Цель работы

Цель работы заключается в ознакомлении с основными понятиями о производственном шуме, методами его санитарно-гигиенического нормирования, средствами измерения шумовых характеристик машин и снижения шума на рабочих местах.

3 Расчетные формулы

Предельно допустимые значения шумовых характеристик (ПДШХ) вычисляются по формуле

$$L_{PH_j} = L_{H_j} + 10 \log_{10} \frac{S}{S_0} - \Delta_y, \tag{1}$$

где L_{H_j} — предельно допустимый уровень звука или уровень звукового давления в полосах частот (предельный спектр, ПС); $S=2\pi R^2$ — площадь измерительной поверхности в виде полусферы радиусом R, в центре которой находится источник шума; $S_0=1~{\rm M}^2$; Δ_y — поправка на групповую установку машин в типовых условиях эксплуатации.

Из формулы (1): минимальное расстояние от машины, на котором ее эксплуатация не приносит вреда людям, работающим в данном помещении, вычисляется по формуле

$$R = \sqrt{\frac{10^{0,1(L_{P_j} - L_{H_j} + \Delta_y)}}{2\pi} \cdot S_0},$$
 (2)

где L_{P_j} — уровень звуковой мощности шума, создаваемого машиной в данной октавной полосе (шумовая характеристика, ШХ).

4 Примеры вычислений

По формуле (1):
$$L_{PH} = 71 + 10 \log_{10} \frac{6,28}{1} - 10 \approx 69$$
 (дБ)

По формуле (2):
$$R = \sqrt{\frac{10^{0,1(91-61+10)}}{2\pi} \cdot 1} \approx 40$$
 (м)

5 Результаты измерений и вычислений

Таблица 1 – Расчет значений ПДШХ

Fi, Гц	Lpi (ШХ), дБ	Lh (ПС), дБ	ПДШХ, дБ
63	-	71	69
125	91	61	59
250	-	54	52
500	90	49	47
1000	89	45	43
2000	-	42	40
4000	-	40	38
8000	-	38	36
«A»	87	50	48

6 Графики предельного спектра, предельно допустимой шумовой характеристики и шумовой характеристики

Рисунок 1 – График

7 Результаты расчета минимального безопасного расстояния от источника шума

Таблица 2 – Расчет минимального допустимого расстояния

Fi , Гц	Lpi (ШХ), дБ	Lh (ПС), дБ	R , м
125	91	61	40
500	90	49	142
1000	89	45	200
«A»	87	50	89

8 Выводы о качестве машины с точки зрения безопасности труда

Согласно полученным данным и графику, шумовые характеристики превышают ПДШХ во всех октавных диапазонах, следовательно нахождение человека рядом с машиной вредно на расстоянии менее чем 40 м (125 Гц), 142 м (500 Гц), 200 м (1000 Гц), 89 м (при стандартной частотной характеристике «А»).

9 Рекомендуемые технические методы снижения шума в производственном помещении

- 1. Звукоизоляция источника шума (звукоизолирующая оболочка машины);
- 2. Звукоизолирующая перегородка между шумным и защищаемым помещениями;
- 3. Звукоизолирующая оболочка вокруг человека или его рабочего места (звукоизолирующая кабина).