## Intelligence Artificielle





**Dorra BEN AYED** 



# Chapitre 4

Systèmes Experts et Moteurs d'Inférence









#### **Définition**

Un système expert est un logiciel qui reproduit le comportement d'un expert humain accomplissant une tâche intellectuelle dans un domaine précis.



#### Structure d'un SE

Un système expert (SE) est composé de deux parties indépendantes :

- une base de connaissances (mémoire d'un SE)
  - ■base de faits (BDF) qui contient les séquences de faits établis et ayant une valeur de vérité vraie (constitue la partie statique)
  - **■base de règles (BDR)** qui contient l'ensemble des règles de production pouvant être appliqués aux faits. (il s'agit de la partie dynamique)
- un moteur d'inférences (MI) Il s'agit du cerveau du SE. C'est un programme qui simule le raisonnement humain



## Structure d'un SE





## Cycle d'un Moteur d'inférence

Le moteur d'inférence fonctionne en deux phases:

- Phase d'évaluation
  - 1/ Etape de Filtrage ou détection : Elle consiste à définir pour l'ensemble des règles de BC, les règles potentiellement applicables → résultat ensemble de règles
  - 2/ Etape de Sélection avec réduction de conflits: Elle consiste à choisir parmi l'ensemble des règles applicables, la règle à appliquer effectivement → résultat une règle
- Phase d'exécution
  - Elle consiste à appliquer la règle choisie et mettre à jour la base de faits BDF

Le moteur d'inférence exécute ces différentes phases de façon cyclique jusqu'à une condition d'arrêt soit vérifiée:

- Un objectif atteint
- Epuisement de toutes les connaissances
  - Etape de filtrage ne fournit aucune règles potentiellement applicable
  - Epuisement normale des règles



## Cycle d'un Moteur d'inférence





## Caractéristiques d'un Moteur d'Inférence

La programmation d'un MI nécessite la sélection d'un ensemble de critères:

- 1/ Mode d'invocation des règles
- 2/ La stratégie de recherche
- \* 3/ Régime de contrôle
- 4/ Critère de monotonie



## 1/Mode d'invocation des règles

La programmation d'un MI nécessite la sélection d'un ensemble de critères:

- 1/Mode d'invocation des règles
- 2/ La strate
- ❖ 3/ Régime
- ♦ 4/ Critère

- •MI à approche de chainage avant
- MI à approche de chainage arrière
- •MI à approche de chainage mixte



## MI à chainage avant

1) <u>Les MI à chaînage avant</u>: un MI à chaînage avant (forward chaining) détermine le résultat (ou but) à partir de la BDF. Les règles à déclencher à chaque cycle sont celles dont les prémisses appartiennent à la BDF. L'exécution de ces règles modifie la BDF et d'autres règles peuvent alors être déclenchées au cycle suivant. Ce principe sera répété jusqu'à ce que le but soit dans la BDF.

#### Exemple :

```
soit BDF = \{A, B, C, D\}
et soit la règle : A,C \rightarrow G
cette règle est déclenchable et on obtient BDF = \{A, B, C, D, G\}
```

L'étape de génération de conflit correspond à rassembler toutes les règles dont les prémisses sont dans la BDF.



## MI à chainage arrière

2) <u>Les MI à chaînage arrière</u>: un MI à chaînage arrière (backward chaining) détermine l'ensemble des règles qu'il faut invoquer pour aboutir au but (fait à établir). Le but sera alors remplacé par les prémisses qui vont constituer les nouveaux faits à établir. Les règles à tirer à chaque cycle sont alors celles dont les conclusions sont égales au (ou contiennent le) fait à établir. L'exécution de ces règles ne modifie pas la BDF mais elle remplace le problème initial par d'autres. Ce type de raisonnement correspond à une décomposition du problème en un ensemble de sous problèmes.

#### Exemple :

Soit le but à établir P, et soit la règle :

 $A, B, C \rightarrow P$ 

Pour résoudre le problème P, il suffit de résoudre les sous problèmes A, B et C.

Ce mécanisme sera répété jusqu'à ce que la dernière liste de faits à établir soit entièrement dans la BDF.

L'étape de génération de conflit consiste à rassembler toutes les règles dont les conclusions contiennent le fait à établir.



## MI à Chainage Mixte

3) <u>Les MI à chaînage mixte</u>: Ce type de moteur d'inférence peut être choisi lorsqu'une partie des faits du problème est à établir, l'autre est considérée déjà établie. Les conditions de déclenchement des règles dans ce cas peuvent porter sur les deux types de faits. Donc, pour résoudre le problème on sera amené à prendre en considération les faits déjà établis et de remplacer le problème à résoudre par une liste de sous problèmes. Ceci, correspond à un mode de raisonnement mixte faisant intervenir simultanément le chaînage avant et le chaînage arrière.



## 2/ La stratégie de recherche

La programmation d'un MI nécessite la sélection d'un ensemble de critères:

- ❖ 1/Mode d'invocation des règles
- 2/ La stratégie de recherche
- \* 3 Rég

Au cours des cycles de recherche d'un MI, on développe un **arbre de recherche** dans lequel chaque niveau correspond à l'ensemble des règles applicables (ensemble de conflits) Chaque règle déclenchée crée une nouvelle situation et de nouvelles règles à invoquer.

#### Deux principales stratégies de recherche se présentent:

- soit on développe toutes les règles d'un même niveau l'un après l'autre avant de passer au niveau suivant (stratégie en largeur d'abord)
- soit d'un niveau à un autre à chaque fois qu'on déclenche une règle et on ne revient aux règles restantes que si on épuise toutes les règles en profondeur (stratégie en profondeur d'abord)
- → Le retour arrière dans le cas où la recherche en profondeur échoue sera appelé: backtracking



## 3/ régime de contrôle

La programmation d'un MI nécessite la sélection d'un ensemble de critères:

- 1/Mode d'invocation des règles
- 2/ La stratégie de recherche
- 3/ Régime de contrôle
- \* 4/ Citère de monotonie

Le régime de contrôle d'un MI peut être:

#### •Irrévocable:

•L'application d'une règle dans un cycle du MI n'est jamais remise en cause et on n'opère pas de backtracking. S'il n'y a plus de règles à appliquer. Le MI s'arrête et signale un échec sans faire retour en arrière

#### •ou par tentative:

•Ce régime peut remettre en cause des règles déjà appliquées si elles n'ont pas abouti, et faire un backtracking en retirant aussi les faits qui en étaient déduits



#### 4/ Critère de monotonie

La programmation d'un MI nécessite la sélection d'un ensemble de critères:

- ❖ 1/Mode d'invocation des règles
- 2/ La stratégie de recherche
- ❖ 3/ Régime de contrôle
- 4/ Critère de monotonie

#### Un moteur d'inférence MI peut être :

- •monotone:
  - •En régime monotone: le MI ne fait qu'ajouter des faits à la BDF et n'élimine jamais une règle de BDR
- non monotone
  - •En régime non monotone: le MI peut en cas de retour arrière par exemple retrancher de la BDF un fait précédemment ajouté



## Exercice d'application

- Base de Fait (BDF):
- ❖ But : H
- Base des règles (BDR):
  - **R1**: B^D^E →F
  - **R2**: D^G →A
  - **R3**: C^F →A
  - **R4**: B→X
  - **R5**: D→E
  - **R6**: A^X→H
  - R7: C→D
  - R8: X^C→A
  - **R9**: X^B→D

Résoudre ce problème en appliquant l'approche de chainage avant selon une stratégie en profondeur d'abord monotone avec régime irrévocable :

- La 1ère règle qui apparaît dans l'ensemble des règles détectées est celle à appliquer
- Une règle appliquée est définitivement écartée de BDR



## Solution

#### **Solution 1**

#### Sous forme d'un tableau

| Numéro<br>d'infére<br>nce | Filtrage | sélection | déduction |
|---------------------------|----------|-----------|-----------|
|                           |          |           |           |
|                           |          |           |           |
|                           |          |           |           |

#### **Solution 2**

Sous forme d'un arbre de recherche en profondeur d'abord

# Question?





