

3)
$$P(A) = {}^{4}C_{12} \cdot {}^{3}C_{12} = ,109$$

 $P(B) = {}^{8}C_{12} \cdot {}^{4}C_{11} = ,0381$
 $P(At least one item is defective) = 1 - ,381 = ,619$

9) P(none defective) =
$$\frac{10C3}{455}$$
 = ,2637
P(one item is defective) = $\frac{5C_1 \cdot 10C_2}{455}$ = ,4945

P(At least one defective) = 1-0,2637 =, 07363

5)
$$P(AUB) = \frac{10}{30} + \frac{15}{30} - \frac{5}{30} = \frac{20}{30}$$

6) (i)
$$P(A^c) = 1 - \frac{3}{8} = \frac{5}{8}$$

(ii) $P(B^c) = 1 - \frac{1}{2} = \frac{1}{2}$
(iii) $P(A^c \cap B^c) = 1 - (\frac{3}{8} + \frac{1}{2} - \frac{1}{2}) = \frac{5}{8}$
(iv) $P(A^c \cup B^c) = 1 - \frac{1}{2} = \frac{1}{2}$
(v) $P(A \neq \cap B^c) = \frac{3}{8} - \frac{1}{2} = \frac{-1}{8} = 0$

(V)
$$P(B \cap A^c) = \frac{1}{2} - \frac{1}{2} = 0$$

8)
$$k^2 - 8 = 1$$
 $(35) + 95$