EXPERIMENT-4

AIM: To find the wavelength of mercury green light by diffraction grating using spectrometer.

APPARATUS: Spectrometer, diffraction grating element and mercury vapor lamp.

THEORY:

OBSERVATION: Least count=1/120 degrees

Grating element $(a+b) = 1/600 \text{ mm} = 1.67 \times 10^{-6} \text{ m}$

Wavelength of mercury green light actual=546.1nm

S. No	Order of	Left Spectrum			Right Spectrum		
	diffraction(n)						
		MSR	VSR	Total	MSR	VSR	Total
1	1	341	5	341.041	19	9	19.075
2	2	315	3	315.025	39	6	39.050

CALCULATION:

$$(\Theta av)_1 = 19.017$$

 $(\Theta av)_2 = 42.0125$
 $\lambda_1 = 1.67 \times 10^{-6} \times \sin(19.017) \text{ m}$
 $= 1.67 \times 10^{-6} \times 0.325$
 $= 0.54275 \times 10^{-6}$
 $= 542.75 \times 10^{-6}$
 $= 542.75 \times 10^{-6}$
 $= 1.67 \times 10^{-6} \times \sin(42.0125)$
 $= 1.67 \times 10^{-6} \times 0.669$
 $= 558.61 \text{ nm}$
 $\lambda = \lambda_1 + \lambda_2 = 550.68 \text{ nm}$.
 $\lambda = \lambda_1 + \lambda_2 = 550.68 - 546.1 = 0.87$.

RESULT: Wavelength of mercury green light as determined from experiment is 550.68nm.

Percentage error is 0.8%.

PRECAUTIONS: 1) The mechanical adjustment of the telescope should be carried.

- 2) The slit used must be as narrow as possible.
- 3) Use reading lens while recording the vernier scales.

By: Amogh Garg

2020UCO1688