Introduction to Digital Design and Computer Architecture

3. Sequential Logic

Lilia Kirakosyan

Russian-Armenian University

2025

Introduction to Sequential Logic

- Sequential logic circuits have memory.
- Outputs depend on:
 - Current input values
 - Prior states of the system
- Key Definitions:
 - State: Information necessary to determine future behavior.
 - State elements: Latches and flip-flops storing bits of state.
 - Synchronous circuits: Combine logic with a bank of flip-flops.

State Elements in Digital Circuits

The state of a circuit influences its future behavior

- State elements store state:
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

Fundamental building block of other state elements

- Two outputs: Q, \bar{Q}
- No inputs

Behavior of a Bistable Circuit

Consider the two possible cases:

- $\mathbf{Q} = \mathbf{0}$: then Q = 1, $\bar{Q} = 0$ (consistent)
- $\mathbf{Q} = \mathbf{1}$: then Q = 0, $\bar{Q} = 1$ (consistent)

Stores 1 bit of state in the state variable, Q (or \bar{Q})

But there are no inputs to control the state.

SR (Set/Reset) Latch

SR (Set/Reset) Latch

- SR Latch
- Consider the four possible cases:

•
$$S = 1, R = 0$$

•
$$S = 0, R = 1$$

•
$$S = 0, R = 0$$

•
$$S = 1, R = 1$$

•
$$S=1, R=0$$
:
then $Q=1$ and $\bar{Q}=0$

•
$$S = 0, R = 1$$
:
then $Q = 0$ and $\bar{Q} = 1$

- S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$
- S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$

- S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$
- S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$

- S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$
- S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$

- S = 1, R = 0: then Q = 1 and $\overline{Q} = 0$
- Memory!:
- S = 0, R = 1: then Q = 0 and $\overline{Q} = 1$
- Invalid State:

SR Latch Symbol

- **SR** stands for *Set/Reset Latch*:
 - Stores one bit of state (Q).
- Control what value is being stored with S, R inputs:
 - Set: Make the output 1 (S = 1, R = 0, Q = 1)
 - Reset: Make the output 0 (S = 0, R = 1, Q = 0)

Must do something to avoid invalid states!

SR Latch Invalid States

• Invalid State:

- Occurs when S = 1, R = 1.
- This leads to both Q=0 and $\bar{Q}=0$, violating the fundamental rule that $\bar{Q}\neq Q$.

Solution:

- Avoid S = 1 and R = 1 inputs in practical implementations.
- Use additional circuitry (e.g., clocked latches or flip-flops) to handle edge cases.

Always ensure S = 0 or R = 0 to maintain valid states.

D Latch Internal Circuit

- The D Latch stores data based on the input D and the clock CLK.
- When CLK = 1:
 - If D = 0, Q = 0, $\bar{Q} = 1$.
 - If D = 1, Q = 1, $\bar{Q} = 0$.
- When CLK = 0, the output remains unchanged (previous state is held).

CLK	D	D	S	R	Q
0	Х				
1	0				
1	1				

D Latch Internal Circuit

- The D Latch stores data based on the input D and the clock CLK.
- When CLK = 1:
 - If D = 0, Q = 0, $\bar{Q} = 1$.
 - If D = 1, Q = 1, $\bar{Q} = 0$.
- When CLK = 0, the output remains unchanged (previous state is held).

CLK	D	D	S	R	Q
0	Х	\bar{x}	0	0	Q_{prev}
1	0	1	0	1	0
1	1	0	1	0	1

D Flip-Flop

Inputs: CLK, D

- Function:
 - Samples *D* on the **rising edge** of CLK.
 - When CLK rises from 0 to 1:
 - D passes through to Q.
 - Otherwise, Q holds its **previous value**.
 - Q changes **only** on the rising edge of CLK.
- Called edge-triggered.
- Activated on the clock edge.

Flip-Flop Symbols

Registers

