A series of complex number (an) is denoted by the symbol $\overset{\infty}{\succeq}$ an

Consider "partial sums" of the series $S_n = \sum_{k=1}^n \alpha_k$, $k \in \mathbb{N}$ Then $(S_n)_{n=1}^{\infty}$ forms a sequence of complex numbers.

Def the series $\sum_{n=1}^{\infty}$ an converges to its sum s if the sequence $(S_n)_{n=1}^{\infty}$ of its partial sums converges to s

(cauchy criterion for Series)

Thm. Suppose a series \mathbb{Z} an converges. Then $\forall \xi > 0$, $\exists N \in \mathbb{N}$ such that if $p, q \ni N$, then $|\mathbb{Z}$ an $|< \xi$ (Sequence of partial sum is Cauchy)

Proof. Let $S_n = \frac{n}{k-1} a_k \in \mathbb{C}$. Then given (S_n) converges. (S_n) is cauchy. Thus, given E_{70} , $\exists N \in \mathbb{N}$ such that if $q, p > \mathbb{N}$ then $|S_q - S_p| < 2 \Rightarrow |\frac{\pi}{n-p} a_n| < 2$

Special case If a Series $\underset{n=1}{\overset{\sim}{\sum}}$ an Converges, then $\underset{n\to\infty}{\text{lim}}$ an =0 $\underset{n\to\infty}{\text{proof}}$. Let 9 > 0. From previous theorem, let 9 = p+1 > N. Then 4p > N, $|ap| < \varepsilon$. So 4 = 0 p > 0 p > 0

pernank. The converse of the special case is NoT true:

Thm. the hormonic series 2 th diverges

Proof. Let $S_n = \sum_{k=1}^n \frac{1}{k}$ and Suppose S_n Converges \Rightarrow S_n is Cauchy obtain NEIN 5.4. $S_{2N} - S_N = \frac{1}{3}$

$$S_{2N} - S_N = \frac{1}{2N} + \frac{1}{2N-1} + \dots + \frac{1}{N} > \frac{1}{2N} + \frac{1}{2N} + \dots + \frac{1}{2N} = \frac{N}{2N} = \frac{1}{2N}$$

But $S_{2N} - S_N < \frac{1}{3}$. Contradiction \square

Grouphi cally,

 $S_N = S_{N} = S_{N}$

Sinsler proof: (n!) diverges

Thun fet $a, z \in \mathbb{C}$.

Then the geometric series $\sum_{n=0}^{\infty} az^n$ converges if |z| < |z|Proof. fet $S_n = a + az + \cdots + az^{n-1} \Rightarrow z S_n = az + \cdots + az^n$ Thus $(z-1)S_n = az^n - 1) \Rightarrow S_n = \frac{a(1-z^n)}{1-z}$, $|z| \neq 1$ if |z| < 1, $\lim_{n \to \infty} S_n = \frac{a}{1-z}$ if |z| > 1, $(S_n) \to \infty$

Pernark:

Here's another useful situation to eval infinite series $\sum_{n=1}^{\infty} a_n$ Suppose we can write $a_n = b_n - b_{n+1}$ and the sequence $(b_n) \rightarrow 0$.

Then $S_n = b_1 - b_2 + b_2 - b_3 + \dots + b_n - b_{n+1} = b_1 - b_{n+1}$ Since $b_{n+1} \rightarrow \infty$, $S_n \rightarrow b_1$ Such a series is called a telescoping series.

Thm. Let $\underset{n=1}{\overset{\infty}{\sum}}$ an and $\underset{n=1}{\overset{\infty}{\sum}}$ by Converges, then $\underset{n=1}{\overset{\infty}{\sum}}$ anther converges

provef. (viith triangle inequality)

Let 870, obtain NI, N2 EIN such that

$$\left|\frac{q}{2}a_{n}\right| < \frac{\epsilon}{2}, \forall p,q \ge N, \left|\frac{q}{2}b_{n}\right| < \frac{\epsilon}{2}, \forall p,q \ge N_{2}$$

choose N z max (N1, N2)

then
$$\left|\sum_{n=p}^{q}a_{n}+b_{n}\right|\leq\left|\sum_{n=p}^{q}a_{n}\right|+\left|\sum_{n=p}^{q}b_{n}\right|<\varepsilon$$