Projeto de controlador PID baseado na regra de Ziegler-Nichols

Prof. Dr. Helói F. G. Genari email:heloi.genari@ufabc.edu.br

Quadrimestre Suplementar

Prof. Helói Genari 1 / 12

Sumário

- Ação proporcional;
- Ação proporcional-integral;
- Ação proporcional-integral-derivativa.

Prof. Helói Genari 2/1

Tipos de controladores

A seguir está o diagrama de controle em malha fechada:

- Controlador proporcional: $K(s) = K_p$;
- Controlador proporcional-integral (PI): $K(s) = K_p + \frac{K_i}{s}$;
- Um possível circuito de um controlador PI é apresentado a seguir:

$$K(s) = \frac{E_0(s)}{E_I(s)} = \frac{R_4}{R_3} \frac{R_2}{R_1} \frac{(R_2 C_2 s + 1)}{R_2 C_2 s}$$

Prof. Helói Genari 3 / 12

Tipos de controladores

Controlador proporcional-integral-derivativo (PID):

$$K(s) = K_p + \frac{K_i}{s} + K_d s$$

$$= K_p \left(1 + \frac{K_i}{K_p} \frac{1}{s} + \frac{K_d}{K_p} s \right)$$

$$= K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

O controlador pode ser implementado pelo seguinte circuito:

$$K(s) = \frac{E_0(s)}{E_I(s)} = \frac{R_4}{R_3} \frac{R_2}{R_1} \frac{(R_1 C_1 s + 1)(R_2 C_2 s + 1)}{R_2 C_2 s}$$

Prof. Helói Genari 4 / 12

Controlador PID: vantagens

•	Simplicidade funcional;
•	Robustez;
•	Implementação simples;
•	Algumas técnicas de projeto não necessitam do modelo da planta.

Prof. Helói Genari 5 / 12

- Método usado para obter os valores de K_ρ, K_d e K_i;
- O método usa a resposta temporal para determinar os parâmetros do controlador;
- Método: fazer $T_d=0$ e $T_i=\infty$ e aumentar K_p até que o sistema tenha oscilações constantes (K_{Cr}) ;

Prof. Helói Genari 6 / 12

Os parâmetros do controlador são obtidos segundo a tabela:

Tipo do controlador	K_{ρ}	T_i	T_d
P	0.5 <i>K</i> _{cr}	∞	0
PI	0.45 <i>K_{cr}</i>	$\frac{1}{1.2}P_{cr}$	0
PID	0.6 <i>K_{cr}</i>	0.5 <i>P_{cr}</i>	0.125 <i>P_{cr}</i>

Prof. Helói Genari 7 / 12

Exemplo: projetar um controlador PID para a seguinte planta em realimentação unitária negativa:

$$P(s) = \frac{1}{s(s+1)(s+5)},$$

em que o sobressinal deve ser menor de 20%.

• Fazendo $T_i = \infty$ e $T_d = 0$, a malha fechada com o ganho proporcional K_p é:

$$T(s) = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

Aplicando o critério de estabilidade de Routh:

$$\begin{bmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 6 & K_{p} \\ \frac{30 - K_{p}}{6} \\ K_{p} \end{bmatrix}$$

• O valor crítico de K_p é de $K_{cr} = 30$;

Prof. Helói Genari 8 / 12

A equação característica considerando o ganho crítico é:

$$s^3 + 6s^2 + 5s + 30 = 0$$

• Substituindo $s=j\omega$ na equação característica, tem-se:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0,$$

que pode ser reescrita como:

$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0.$$

A frequência de oscilação com o ganho crítico é:

$$\omega_{cr}^2 = 5$$
 \Rightarrow $\omega_{cr} = \sqrt{5} \text{rad/s}$

Assim, pode-se escrever que:

$$P_{cr} = \frac{2\pi}{\omega_{cr}} = \frac{2\pi}{\sqrt{5}} = 2.80$$
s

O parâmetros do controlador são (tabela):

$$K_p = 0.6K_{cr} = 18$$
 $T_i = 0.5P_{cr} = 1.405$
 $T_d = 0.125P_{cr} = 0.351$

A função de transferência do controlador é:

$$K(s) = 18(1 + \frac{1}{1.405s} + 0.351s)$$

A resposta ao degrau do sistema controlado em malha fechada é mostrada a seguir:

Prof. Helói Genari 10 / 12

O controlador obtido tem um sobressinal de cerca de 60%;

 Portanto, é necessário um ajuste dos parâmetros do controlador para atingir o desempenho desejado para a malha fechada;

 Com auxílio do GNU Octave/Matlab, para iterações, os novos valores dos parâmetros do controlador são:

$$K_p = 18$$

$$T_i = 3.4$$

$$T_d = 0.7$$

Prof. Helói Genari 11 / 12

A resposta ao degrau do novo sistema controlado é mostrada a seguir:

Prof. Helói Genari 12 / 12