Bài giảng 24: Ước tính cỡ mẫu: Nghiên cứu 2 nhóm

Nguyễn Văn Tuấn

Viện nghiên cứu y khoa Garvan (Úc) Đại học Tôn Đức Thắng, Việt Nam

Ước tính cỡ mẫu cho nghiên cứu 2 nhóm

- Khái niệm "effect size"
- Biến outcome là biến phân loại
- Biến outcome là biến liên tục

Khái niệm effect size

Effect size

- Phân biệt giữa ảnh hưởng có ý nghĩa thực tế và ảnh hưởng có ý nghĩa thống kê
- Một ảnh hưởng có thể rất nhỏ/thấp, nhưng có ý nghĩa thống kê, khi cỡ mẫu rất lớn
- Một ảnh hưởng lớn, có ý nghĩa thực tế, nhưng có thể không có ý nghĩa thống kê vì cỡ mẫu không đủ
- Câu hỏi: Ánh hưởng có ý nghĩa thực tế (hay ý nghĩa lâm sàng) là gì?
 - Tuỳ vào bối cảnh

Effect size

$$ES = \frac{\Delta}{S}$$

D = Khác biệt trung bình giữa 2 nhóm

S = Độ lệch chuẩn

Một cách để hình dung ES

Effect size = 0.5

Interpretation of ES

Ý nghĩa	Effect size (ES)	Phần trăm trùng lấp	
Nhỏ	0.0	100	
	0.1	92.3	
	0.2	85.3	
Trung bình	0.3	78.7	
	0.4	72.6	
	0.5	67.0	
Cao	0.6	61.8	
	0.7	57.0	
	0.8	52.6	
	0.9	48.4	
	1.0	44.6	
	1.5	29.3	
	2.0	18.9	

Công thức cỡ mẫu chung

$$N = \frac{2 \times C(\alpha, \beta)}{(ES)^2}$$

- ES = effect size
- $C(\alpha, \beta) = h$ ằng số xác định bởi sai số loại I, II

α	β= 0.05	$\beta = 0.10$	β= 0.20
0.10	10.8	8.6	6.2
0.05	13.0	10.5	7.85
0.02	15.8	13.0	10.0
0.01	17.8	14.9	11.7

Cỡ mẫu cho nghiên cứu so sánh 2 tỉ lệ

Ví dụ về nghiên cứu so sánh 2 tỉ lệ

- Một nghiên cứu so sánh 2 nhóm bệnh nhân
 - Nhóm dùng thuốc hiện hành (A)
 - Nhóm dùng thuốc mới (B)
- Outcome: tử vong
- Dữ liệu kì vọng về tỉ lệ sống còn sau 3 năm
 - Thuốc A: 85%
 - Thuốc B: 90%
- Power = 0.90

Ví dụ về nghiên cứu so sánh 2 tỉ lệ

- P₁ = xác suất sống sót của nhóm 1
- P_2 = xác suất sống sót của nhóm 2
- Hiệu số (effect): $d = P_2 P_1$
- Độ lệch chuẩn của d:

$$SD = \sqrt{p_1(1-p_1) + p_2(1-p_2)}$$

Effect size

$$ES = \frac{d}{SD}$$

Cỡ mẫu cần thiết cho mỗi nhóm

$$N = \frac{C(\alpha, \beta)}{\left(ES\right)^2}$$

Áp dụng vào thực tế: tính thủ công

- $P_1 = 0.85$; $P_2 = 0.90$
- $d = P_2 P_1 = 0.90 0.85 = 0.05$
- $C(\alpha, \beta) = 10.5$

$$SD = \sqrt{0.85(1 - 0.85) + 0.90(1 - 0.90)} = 0.467$$

$$ES = \frac{d}{SD} = \frac{0.05}{0.467} = 0.107$$

• Cỡ mẫu cho **mỗi nhóm**:

$$N = \frac{C(\alpha, \beta)}{(ES)^2} = \frac{10.5}{(0.107)^2} = 917$$

Dùng R

```
power.prop.test(p1=0.85, p2=0.90, power=0.90,
sig.level=0.05)
```

Two-sample comparison of proportions power calculation

```
n = 917.3206
p1 = 0.85
p2 = 0.9
sig.level = 0.05
power = 0.9
alternative = two.sided
```

NOTE: n is number in *each* group

Bài tập

- Bạn thiết kế một nghiên cứu can thiệp.
- Nhóm chứng gồm có học sinh học chương trình hiện hành
- Nhóm can thiệp gồm học sinh theo học chương trình mới
- Outcome: Tỉ lệ tốt nghiệp (%)
 - Kì vọng nhóm chứng: 80%
 - Nhóm can thiệp sẽ tăng tỉ lệ khoảng 50%
 - Cỡ mẫu cần là bao nhiêu?

Cỡ mẫu cho nghiên cứu so sánh 2 số trung bình

Nghiên cứu so sánh 2 nhóm

- Một công trình nghiên trên 2 nhóm bệnh nhân
 - Nhóm chứng (placebo) và nhóm dùng thuốc Bx
- Endpoint: Mật độ xương (BMD)
- Chúng ta biết rằng Bx tăng BMD khoảng 5% sau 1 năm điều trị
- BMD ban $dau = 0.80 \text{ g/cm}^2$
- Độ lệch chuẩn của BMD = 0.12 g/cm²

Xem xét các thông số

- Sau 1 năm điều trị, chúng ta kì vọng:
 - Nhóm chứng sẽ có BMD trung bình: 0.80 g/cm²
 - Nhóm Bx sẽ có BMD = $0.80 \times 1.05 = 0.84 \text{ g/cm}^2$
- $d = 0.84 0.80 = 0.04 \text{ g/cm}^2$
- Effect size: ES = 0.04 / 0.12 = 0.33
- $\alpha = 0.05$, $\beta = 0.90$, $C(\alpha, \beta) = 10.5$
- Cỡ mẫu cho mỗi nhóm:

$$N = \frac{2 \times C(\alpha, \beta)}{(ES)^2} = \frac{2 \times 10.5}{(0.33)^2} = 189$$

Biểu đồ cỡ mẫu cho 2 nhóm

Sample size nomogram

Sample size nomogram

Sample size nomogram

Một cách tính nhanh (xấp xỉ)

- Nếu α = 0.05, power = 0.80 (tức β = 0.2)
- Cỡ mẫu cho mỗi nhóm (xấp xỉ):

$$N = \frac{16}{\left(ES\right)^2}$$

Dùng R

```
power.t.test(delta=0.04, sd=0.12,
sig.level=0.05, power=0.90, type="two.sample")
```

```
Two-sample t test power calculation
              n = 190.0991
          delta = 0.04
             sd = 0.12
      sig.level = 0.05
          power = 0.9
    alternative = two.sided
NOTE: n is number in *each* group
```