1 Ideal gas mixer

1.1 Utility functions

For emptying the input pipe I into the furnace

And for emptying the furnace into the filtration system, which filters all CO₂ back into the input pipe.

```
yield
s Furnace SettingInput 100
l x IAnalyzer TotalMoles
brgtz -3
s Furnace SettingInput 0
j ra

emptyFurnace:
yield
s Furnace SettingOutput 100
l x Furnace TotalMoles
brgtz -3
s Furnace SettingOutput 0
```

fillFurnace:

1.2 Mixing algorithm

Considering a system of only one gas g with a hot source H of temperature t_H and a cold source C of temperature t_C , we can calculate an optimal formulation for bringing a furnace F (with volume $v_F = 1000$, initial pressure p_F and initial temperature t_F) to a desired pressure p_T and temperature t_T . This is accomplished by removing an amount n_R from the furnace and/or adding an amount n_I at a specific temperature t_I , where I is composed from amounts n_H and n_C from the H and C sources. Several gas-law derived equations constrain this process:

$$t_T n_T = t_F (n_F - n_R) + t_I n_I (1)$$

j ra

$$n_T = n_F - n_R + n_I \tag{2}$$

$$t_I n_I = t_H n_H + t_C n_I \tag{3}$$

Where n_R , t_I and $n_I = n_H + n_C$ are to be determined. Note the constraint for pressures and temperatures in this system for specific volumes or an arbitrary volume M:

$$t_C \le t_M \le t_H$$
, $0 \le n_M$, $0 \le n_R \le n_F$.

Solving Equation 1 for n_I provides a surface bounded in two dimensions by $0 \le n_R \le n_F$ and $t_C \le t_I \le t_H$, but where $0 \le n_I$ is potentially unbounded (Figure 1).

$$(n_R, t_I, f): f(n_R, t_I) = n_I = \frac{t_T n_T + t_F (n_R - n_F)}{t_I}.$$

Equation 2 further restricts potential solutions. Given a satisfactory n_R , $n_I = n_T - n_F + n_R$. Then we instead solve Equation 1 for t_I . As a result, these restricted solutions lie within a curve embed-

Figure 1: The (n_R, t_I, f) solution surface and (n_R, h, g) embedded curve.

ded within the surface.

$$(n_R, h, g):$$
 $g(n_R) = n_I = n_T - n_F + n_R,$ $h(n_R) = t_I = \frac{t_T n_T - t_F (n_F - n_R)}{n_T - n_F + n_R}$

With respect to n_R , h is monotone increasing; thus

(a) *H* and *C* mixture added.

Figure 2: Example solutions.