Obliczenia Naukowe

Sygnały wielowymiarowe Podstawy przetwarzania obrazów

> Bartek Wilczyński bartek@mimuw.edu.pl

> > 28. marcaa 2022

Plan na dziś

- Sygnały wielowymiarowe
- Obrazy jako sygnały 2D i 3D
- Przykłady sygnałów 2D i 3D w bioinformatyce
- Reprezentacja obrazów w komputerze
- Histogramy obrazów i ich modyfikacje
- Filtry liniowe (sploty) i nieliniowe
- Wykrywanie krawędzi, obiektów i inne zastosowania

Sygnały wielowymiarowe

- Sygnał wielowymiarowy to tradycyjnie funkcja wielowymiarowa zmieniająca się w czasie
- Np. Fale elektromagnetyczne w przestrzeni, albo dane meteorologiczne (ciśnienie, temperatura, wilgotność, etc.) w atmosferze
- W zasadzie nie mamy możliwości analizowania tego typu danych pomiarowych w postaci analogowej
- Często mamy dostęp do wielowymiarowych sygnałów cyfrowych

Kilka słów o optyce

- Obraz na matrycy odpowiada rzutowi pewnej liczby promieni światła wpadających przez obiektyw
- Zwykle o tym co zarejestruje kamera decydują kluczowe parametry: ogniskowa I rozmiar otworu przesłony

Obrazy w komputerze

- Jednym z typowych przykładów sygnałów 2wymiarowych są obrazy cyfrowe
- Obrazy takie składają się zwykle z prostokątnej macierzy punktów zwanych pikselami
- Każdy piksel odpowiada światłu zarejestrowanemu w danym punkcie matrycy
- Zarówno pozycje na matrycy jak i intensywności światła są skwantowane

Kolory w obrazach cyfrowych

- Światło nie jest prostym sygnałem, ale mieszanką fal o różnych częstotliwościach
- W obrazach cyfrowych musimy opisać jak widmo światła jest przedstawione
- Zwykle interesuje nas jasność i kolor światła
- Wyróżniamy obrazy w skali szarości lub kolorowe
- Kolorowe obrazy mogą być reprezentowane w postaci palety (np. pliki GIF) lub przestrzeni barw (RGB, CMYK, HSV,...)

Mantis Shrimp: Extraordinary Eyes

Homo sapiens

Neogonodactylus oestedii

Cyfryzacja obrazów RGB

Przykłady skal kolorów

RGB vs CMYK

- Addytywne vs subtraktywne mieszanie barw
- Widma absorbcyjne vs emisyjne
- Monitor vs wydruk

Przykłady obrazów 2d w bioinformatyce

 Mikroskopy konfokalne dają bardzo często obrazy komórek wymagające segmentacji oraz analizy ilościowej. Np. Odpowiedź na pytanie, ile komórek widać, jaka jest intensywność ekspresji białka wymaga zaawansowanej analizy obrazu (przykładowy obraz przeanalizowany przy pomocy aplikacji cellprofiler)

Przykłady obrazów 3d w bioinformatyce

 OpenSPIM – bardzo niedroga (~20tys Euro) platforma do badań mikorskopowych przy pomocy światła warstwowego (Light sheet microscopy, pozwalająca na uzyskiwanie obrazów 3d)

Format DICOM

- Digital Imaging an Communications in Medicine (DICOM)
 format danych wykorzystywany do zapisywania różnego rodzaju danych obrazowych w medycynie.
- Wszelkiego rodzaju obrazy 2-D jak i 3-D z prześwietleń oraz tomografii komputerowych są przekazywane w formacie DICOM 3 (wprowadzonym w latach 90-tych
- Oprócz samych pikseli (zwykle przechowywanych w formie skompresowanej), zawiera także metadane, takie jak dane pacjenta, sposób i czas pozyskania danych

Typowe problemy przy przetwarzaniu obrazów

- Poprawianie kontrastu i widoczności
- Odszumianie
- Wykrywanie krawędzi
- Wykrywanie obiektów
- Wykrywanie ruchu
- Kwantyfikacja światła
- Kwantyfikacja ruchu

Histogram obrazu

- Możemy każdy z pikseli obrazu przekształcić funkcją f(x), która jest monotonicznym przekształceniem jasności
- Pozwala to np. Na "wygładzanie" histogramu, co nasze oko postrzega jako poprawę kontrastu obrazu

New Image

New Histogram

Old image

Old Histogram

Filtry 2d do przetwarzania obrazu

- Filtry obrazu działają na tej samej zasadzie co filtry sygnałów 1d, jako sploty z mniejszą macierzą
- Filtr obrazu opisuje macierz n*n

Filtry do odszumiania

- Najprostszy filtr uśredniający, z wszystkimi wartościami 1/n**2
- Filtr Gaussowski
- Filtr medianowy –
 nieliniowy filtr, nie
 można go
 zrealizować splotem

Obrazy nie reprezentujące światła

- Możemy mieć też do czynienia z innymi obrazami: USG, termowizja, echosonda, odległościomierz podczerwony, itp.
- Tutaj przykład obrazu z czujnika kinect

Wykrywanie krawędzi

 Np. Filtr Sobel'a, czyli średnia geometryczna z filtrów wykrywających krawędzie x, y

-1	0	+1
-2	0	+2
-1	0	+1

x filter

y filter

Biblioteki do przetwarzania obrazu

- Imagemagick
- Python Imaging Library, PIL, obecnie PILLOW podstawowe operacje na obrazach
- Scipy.ndimage operacje numeryczne na obrazach
- Open Computer Vision (OpenCV)
- ImageJ i FIJI (Fiji Is Just ImageJ) do obrazów voxelowych (3d)
- Libfreenect i python dicom