日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 1月30日

出願番号 Application Number:

人

特願2003-022075

[ST. 10/C]:

[JP2003-022075]

出 願
Applicant(s):

ローム株式会社

与許庁長官 Commissioner, Japan Patent Office 2003年12月 5日

今井原

【書類名】 特許願

【整理番号】 JP020577P

【提出日】 平成15年 1月30日

【あて先】 特許庁長官 殿

【国際特許分類】 H05H 1/46

【発明者】

【住所又は居所】 京都市右京区西院溝崎町21 ローム株式会社内

【氏名】 篠原 壽邦

【特許出願人】

【識別番号】 000116024

【氏名又は名称】 ローム株式会社

【代理人】

【識別番号】 100094145

【弁理士】

【氏名又は名称】 小野 由己男

【連絡先】 06-6316-5533

【選任した代理人】

【識別番号】 100106367

【弁理士】

【氏名又は名称】 稲積 朋子

【手数料の表示】

【予納台帳番号】 020905

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 プラズマ処理装置

【特許請求の範囲】

【請求項1】

反応器内の試料にプラズマ処理を行うプラズマ処理装置であって、

マイクロ波を発生するマイクロ波発生手段と、

前記マイクロ波発生手段に接続され、前記試料の処理面に沿う板状に形成されており、マイクロ波発生手段から発生したマイクロ波の電界強度分布を前記試料の処理面に沿って概ね均一にする誘電体と、

前記マイクロ波により前記反応器内に発生するプラズマを用いて前記試料を処理する処理手段とを有し、

前記マイクロ波発生手段の前記誘電体と接する面(以下、導入面)には、前記マイクロ波発生手段から前記誘電体にマイクロ波を導入する複数の導入部が設けられており、前記導入部の中心位置の各々は、同一方向に延びた前記導入面上の複数の軸上に設けられており、各々の前記軸の位置において前記誘電体内のマイクロ波の位相が揃っている、プラズマ処理装置。

【請求項2】

各々の前記軸の位置に、前記誘電体内のマイクロ波の腹と腹あるいは節と節が 位置している、請求項1に記載のプラズマ処理装置。

【請求項3】

前記誘電体は、前記試料の処理面に沿う断面が矩形状に形成されており、前記軸の互いの距離 L_1 は、実質的に下記式(1)を満たす、請求項1に記載のプラズマ処理装置

 $L_1 = n_{L1} (\lambda_1 / 2) \quad \cdots \quad (1)$

ここで、 λ_1 :前記誘電体内のマイクロ波の波長

nL1:1以上の整数。

【請求項4】

前記誘電体は前記試料の処理面に沿う断面が長方形状または正方形状に形成されており、前記軸は前記誘電体の対向する二辺に沿う方向に延びている、請求項

3に記載のプラズマ処理装置。

【請求項5】

前記導入面は長方形状または正方形状に形成されており、前記軸は前記導入面の辺方向の中心軸に関して線対称である、請求項4に記載のプラズマ処理装置。

【請求項6】

前記誘電体の端面と前記軸との距離Dが、実質的に、下記式(2)を満たす、 請求項5に記載のプラズマ処理装置

$$D = n_D (1/4) \lambda_1 \cdots (2)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

np:1以上の整数。

【請求項7】

前記誘電体は、前記試料に沿う断面が矩形状で、前記導入部が2つの前記軸上に交互に設けられており、前記2つの軸上に交互に隣接して配置された前記導入部の中心間の軸方向における距離L3は、実質的に、下記式(3)を満たす、請求項1に記載のプラズマ処理装置

$$L_3 = n_{L3} (\lambda_1 / 2) \cdots (3)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

nL3:1以上の整数。

【請求項8】

前記マイクロ波発生手段と前記誘電体との間にさらにH分岐導波管が設けられ、前記導入面が少なくとも2以上に分割されている、請求項3に記載のプラズマ処理装置。

【請求項9】

少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が同相の場合、隣接する前記導入面における前記導入部の間隔L4は、実質的に下記式(4)を満たす、請求項8に記載のプラズマ処理装置

$$L_4 = 2 n_{1/4} (\lambda_1 / 2) \cdots (4)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

n L4:1以上の整数。

【請求項10】

少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が逆相の場合、隣接する前記導入面における前記導入部の間隔L4は、実質的に下記式(5)を満たす、請求項8に記載のプラズマ処理装置

$$L_4 = (2 n_{14} + 1) (\lambda_1 / 2) \cdots (5)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

n14:1以上の整数。

【請求項11】

前記マイクロ波発生手段と前記誘電体との間にさらにE分岐導波管が設けられ、前記導入面が少なくとも2以上に分割されている、請求項3に記載のプラズマ処理装置。

【請求項12】

少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が同相の場合、隣接する前記導入面における前記導入部の間隔L4は、実質的に下記式(4)を満たす、請求項11に記載のプラズマ処理装置

$$L_4 = (2 n_{14} + 1) (\lambda_1 / 2) \cdots (6)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

n14:1以上の整数。

【請求項13】

少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が逆相の場合、隣接する前記導入面における前記導入部の間隔L4は、実質的に下記式(7)を満たす、請求項11に記載のプラズマ処理装置

$$L_4 = 2 n_{L4} (\lambda_1 / 2) \cdots (7)$$

ここで、 λ_1 :前記誘電体内のマイクロ波の波長

n_{L4}:1以上の整数。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、マイクロ波により発生したプラズマを利用するプラズマ処理装置に

関するものである。

[0002]

【従来の技術】

IC(integrated circuit)の形成には、マイクロ波(例えば、2.45GHz)を用いたプラズマ処理装置が用いられている。このマイクロ波を用いたプラズマ処理装置では、高い周波数を有するマイクロ波により高密度、かつ低電子温度のプラズマを得ることができる。よって、ゲート酸化膜等の薄膜への電気的破壊や物理的破壊の影響を抑えることができる。このようにマイクロ波を用いると効率よくダメージの少ない薄膜を形成することができる。

[0003]

しかし、近年、ICの微細化及びウェハの大口径化が進み、それに伴い大口径な薄膜を均一に作成することが要求されている。そこで、マイクロ波がプラズマにより反射・吸収される性質を利用し、不均一なマイクロ波をプラズマに反射・吸収させて均一化する方法が用いられている。この方法は、例えば、円形状または円筒形状の処理室の外側部分のみからマイクロ波の導入を行って不均一なマイクロ波を導入し、そのマイクロ波の不均一性をプラズマにより吸収し、バランスをとることで均一な薄膜形成を行っている。

[0004]

また、別の方法として、マイクロ波を導入する導入窓を分岐し、処理装置内の 誘電体にマイクロ波を均一に導入することで、大口径な薄膜を形成する技術が開 示されている(例えば特許文献 1 参照)。

[0005]

【特許文献1】

特開平8-316198号

[0006]

【発明が解決しようとする課題】

しかし、マイクロ波の不均一性をプラズマにより吸収する方法では、ガスの流量・組成比、圧力、試料温度等のプロセス条件の変化に対してマイクロ波の均一性を保ちにくい。

5/

また、前記特許文献1による方法においても、複数の導入窓を介して1つの処理室内部の誘電体にマイクロ波が導入されるため、それぞれの導入窓から導入されるマイクロ波がお互いに干渉し合い、マイクロ波が不均一となる。

[0007]

このような不均一となったマイクロ波により不均一なプラズマが発生し、不均一なプラズマにより励起・活性化されたガス分子により、試料面に対し均一な処理を施すのが困難となっている。

そこで、本発明は、試料の処理面に対して均一な処理を施すことができるプラ ズマ処理装置を提供することを目的とする。

[0008]

【課題を解決するための手段】

上記課題を解決するために、本願第1発明は、反応器内の試料にプラズマ処理を行うプラズマ処理装置であって、マイクロ波を発生するマイクロ波発生手段と、前記マイクロ波発生手段に接続され、前記試料の処理面に沿う板状に形成されており、マイクロ波発生手段から発生したマイクロ波の電界強度分布を前記試料の処理面に沿って概ね均一にする誘電体と、前記マイクロ波により前記反応器内に発生するプラズマを用いて前記試料を処理する処理手段とを有し、前記マイクロ波発生手段の前記誘電体と接する面(以下、導入面)には、前記マイクロ波発生手段から前記誘電体にマイクロ波を導入する複数の導入部が設けられており、前記導入部の中心位置の各々は、同一方向に延びた前記導入面上の複数の軸上に設けられており、各々の前記軸の位置において前記誘電体内のマイクロ波の位相が揃っているプラズマ処理装置を提供する。

[0009]

上記の構成により、マイクロ波発生手段の導入面における各々の導入部の中心位置における、誘電体内のマイクロ波の位相を揃えることができる。よって、軸上の導入部を介して誘電体に導入されるマイクロ波が互いに打ち消し合う等の干渉を低減し、マイクロ波を均一化(以下の"均一"とは"試料の処理面に沿う方向に概ね均一"をいうものとする。)し易くなり、均一なプラズマを発生させることができる。

本願第2発明は、前記第1発明において各々の前記軸の位置に、前記誘電体内のマイクロ波の腹と腹あるいは節と節が位置しているプラズマ処理装置を提供する。

[0010]

各々の軸上の導入部から誘電体に導入されるマイクロ波と誘電体内のマイクロ 波との結合度を高めることができる。

本願第3発明は、前記第1発明において、前記誘電体は、前記試料の処理面に 沿う断面が矩形状に形成されており、前記軸の互いの距離L₁は、実質的に下記 式(1)を満たすプラズマ処理装置を提供する。

 $L_1 = n_{L1} (\lambda_1 / 2) \cdots (1)$

ここで、λ1:前記誘電体内のマイクロ波の波長

nl1:1以上の整数である。

$[0\ 0\ 1\ 1]$

マイクロ波が伝播する誘電体の断面を上記のように矩形状とすることで、マイクロ波の電界強度分布が試料の処理面に沿って全体として概ね均一となり、均一なプラズマが発生する。このプラズマにより励起・活性化されたガス分子によって均一な薄膜形成やエッチングなどが可能となる。また、ガスの流量・組成比等のプロセス条件の変更やメンテナンス等によるプロセス条件の変化に対しても、マイクロ波が伝播する領域が矩形状であるためマイクロ波の電界強度分布が偏りにくい。よって、プロセスマージンを拡大することができる。

$[0\ 0\ 1\ 2]$

本願第4発明は、前記第3発明において、前記誘電体は前記試料の処理面に沿う断面が長方形状または正方形状に形成されており、前記軸は前記誘電体の対向する二辺に沿う方向に延びているプラズマ処理装置を提供する。

上記の構成により、誘電体内のマイクロ波をさらに均一にすることができる。 本願第5発明は、前記第4発明において、前記導入面は長方形状または正方形 状に形成されており、前記軸は前記導入面の辺方向の中心軸に関して線対称であ るプラズマ処理装置を提供する。

[0013]

上記の構成により、導入部から導入されるマイクロ波と誘電体内のマイクロ波 との結合度が同程度となり、マイクロ波を均一化し易くなる。

また、マイクロ波発生手段の前記軸と直交する方向の幅 W_1 が、概ね L_1 に等しくなるように設定すると好ましい。このように幅 W_1 を設定することで、導入部から導入されるマイクロ波と誘電体内のマイクロ波との結合度を高めることができる。

本願第6発明は、前記第5発明において、前記誘電体の端面と前記軸との距離 Dが、実質的に、下記式(2)を満たすプラズマ処理装置を提供する。

[0014]

 $D = n_D (1/4) \lambda_1 \cdots (2)$

ここで、λ1:前記誘電体内のマイクロ波の波長

nn:1以上の整数である。

上記の構成により、誘電体とマイクロ波発生手段との結合部をチョークと逆の 関係とすることができるので、両者のより高い結合度を得ることができる。よっ て、マイクロ波を均一化し易くなる。

本願第7発明は、前記第1発明において、前記誘電体は、前記試料に沿う断面が矩形状で、前記導入部が2つの前記軸上に交互に設けられており、前記2つの軸上に交互に隣接して配置された前記導入部の中心間の軸方向における距離L3は、実質的に、下記式(3)を満たすプラズマ処理装置を提供する。

[0015]

 $L_3 = n_{L3} \left(\lambda_1 / 2 \right) \quad \cdots \quad (3)$

ここで、λ1:前記誘電体内のマイクロ波の波長

nL3:1以上の整数である。

上記の構成により、両軸上の交互の導入部から誘電体に導入されるマイクロ波 の位相をそろえ、マイクロ波を均一化し易くなる。

本願第8発明は、前記第3発明において、前記マイクロ波発生手段と前記誘電体との間にさらにH分岐導波管が設けられ、前記導入面が少なくとも2以上に分割されているプラズマ処理装置を提供する。

 $[0\ 0\ 1\ 6]$

上記のように分岐導波管を使用することで、大型の処理装置であっても均一に マイクロ波を供給することができる。

本願第9発明は、前記第8発明において、少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が同相の場合、隣接する前記導入面における前記導入部の間隔L4は、実質的に下記式(4)を満たすプラズマ処理装置を提供する。

$$L_4 = 2 n_{14} (\lambda_1 / 2) \cdots (4)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

n₁₄:1以上の整数である。

[0017]

上記の構成により、各々の導入部における誘電体内におけるマイクロ波の位相 が揃うため、互いに打ち消し合う等の干渉が低減する。

本願第10発明は、前記第8発明において、少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が逆相の場合、隣接する前記導入面における前記導入部の間隔 L_4 は、実質的に下記式(5)を満たすプラズマ処理装置を提供する。

$$L_4 = (2 n_{14} + 1) (\lambda_1 / 2) \cdots (5)$$

ここで、λ1:前記誘電体内のマイクロ波の波長

n₁₄:1以上の整数である。

[0018]

前記第9発明と同様の効果を奏する。

本願第11発明は、前記第3発明において、前記マイクロ波発生手段と前記誘電体との間にさらにE分岐導波管が設けられ、前記導入面が少なくとも2以上に分割されているプラズマ処理装置を提供する。

前記第8発明と同様の効果を奏する。

本願第12発明は、前記第11発明において、少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が同相の場合、隣接する前記導入面における前記導入部の間隔 L_4 は、実質的に下記式(4)を満たすプラズマ処理装置を提供する。

[0019]

 $L_4 = (2 n_{14} + 1) (\lambda_1 / 2) \cdots (6)$

ここで、λ1:前記誘電体内のマイクロ波の波長

n14:1以上の整数である。

前記第9発明と同様の効果を奏する。

本願第13発明は、前記第11発明において、少なくとも2以上に分割されている前記導入面の各々から前記誘電体に導入されるマイクロ波が逆相の場合、隣接する前記導入面における前記導入部の間隔 L_4 は、実質的に下記式(7)を満たすプラズマ処理装置を提供する。

[0020]

 $L_4 = 2 n_{14} (\lambda_1 / 2) \cdots (7)$

ここで、λ1:前記誘電体内のマイクロ波の波長

n₁₄:1以上の整数である。

前記第9発明と同様の効果を奏する。

[0021]

【発明の実施の形態】

<プラズマ処理装置>

プラズマ処理装置は、マイクロ波発生器、処理室及び処理室上部のマイクロ波 伝搬領域を有しており、以下のように処理が行われる。

マイクロ波発生器より発生したマイクロ波がマイクロ波伝搬領域を伝搬し、ガス雰囲気の処理室内に電界が形成される。この電界とガスとによりプラズマが発生し、プラズマにより生成された化学種により成膜、エッチング、気相洗浄等の処理が処理室内の試料に施される。

[0022]

このようなプラズマを利用したプラズマ処理装置には、プラズマにより酸化・ 窒化を行う装置(以下、プラズマ酸窒化装置という)、プラズマCVD(Che mical Vapor Deposition)装置、プラズマエッチング 装置、プラズマアッシング装置、プラズマ洗浄装置、プラズマアニール装置等が ある。 以下に、本発明のプラズマ処理装置として、プラズマ酸窒化装置を例に挙げて 説明する。

<第1実施形態例>

図1は第1実施形態例に係るプラズマ酸窒化装置の外観、図2は図1のA-A を含み、試料12の処理面に垂直な方向における図1の装置の断面図、図3は図2の断面における矩形導波管2と円形誘電体7内のマイクロ波の波長との関係を示す説明図である。

[0023]

第1実施形態例に係るプラズマ酸窒化装置は、マイクロ波発生器1、2つの分岐2a、2bが設けられた矩形導波管2及びチャンバ4を有している。チャンバ4には、成膜ガス等のガスを導入するガス導入口5及びガスを排出するガス排出口6が取り付けられている。また、チャンバ4は、円筒形状のチャンバ蓋(以下、円形チャンバ蓋)4aと円筒形状の処理室(以下、円形処理室)4bとを有している。円形処理室4bには、円形チャンバ蓋4aと対向する位置に試料12を処理するための試料台11が設けられている。円形処理室4bの側面には、ガス導入口5から成膜ガス等のガスを円形処理室4bに供給するガス導入部10が設けられている。一方、円形チャンバ蓋4aには、試料12の処理面に沿う断面が円形状の誘電体(以下、円形誘電体)7が円形処理室4bの上部を覆うように設けられている。チャンバ4上には、矩形導波管2及び矩形導波管2に接続されたマイクロ波発生器1が設けられている。

[0024]

ここで、分岐2a、2bの位置と円形誘電体7内のマイクロ波の波長との関係・ を以下のように設定する。

図3に示すように、分岐2a、2bの中心が位置する軸A1と軸A2のそれぞれの位置における円形誘電体7のマイクロ波の位相が揃うように、軸A1と軸A2の間隔を設定するか、あるいは円形誘電体7の材質を選択する。軸A1及び軸A2の位置において、円形誘電体7内のマイクロ波の腹と腹、あるいは節と節とが位置するように設定すると、各々の軸A1及び軸A2上に位置する分岐2a、2bから円形誘電体7に導入されるマイクロ波と円形誘電体7内のマイクロ波と

の結合度をさらに高めることができるので好ましい。このように軸A1と軸A2の位置を設定することで、図3に示す分岐2a、2bのそれぞれの位置における円形誘電体7内のマイクロ波の位相を揃えることができる。よって、両軸上に位置する分岐2a、2bから円形誘電体7に導入されるマイクロ波が互いに打ち消し合う等の干渉を低減し、マイクロ波を試料12の処理面に沿う方向に概ね均一化することができる。(以下、電界強度分布が概ね均一なマイクロ波を、均一なマイクロ波と称する。また、以下の"均一"とは"試料12の処理面に沿う方向に概ね均一"をいうものとする)。そのため、均一なマイクロ波により均一にプラズマが発生し、このプラズマにより励起・活性化されたガス分子によって均一な薄膜形成が可能となる。

[0025]

矩形導波管3のかわりに、スロットアンテナ等その他のアンテナを設けても良い。

また、誘電体としては、石英、フッ素樹脂、ポリエチレン、ポリスチレン等の 誘電損失の少ない物質が好ましい。誘電体は、真空、空気、ガス等比誘電率が" 1"である場合を含む。また、誘電体の表面の少なくとも一部が導体で覆われて いる場合を含む。このプラズマ酸窒化装置では、例えば以下のように成膜の処理 が行われる。

[0026]

まず、ガス排出口6より排気を行って、円形処理室4b内を所定の真空度にし、ガス導入口5及びガス導入部10を介して円形処理室4b内にガスを導入する。次に、マイクロ波発生器1より発生したマイクロ波を、矩形導波管2の分岐2a、2bから円形誘電体7に導入し、その電界強度分布を均一化する。そのマイクロ波を円形処理室4b内に導入し、プラズマを発生させる。発生したプラズマは、ガス分子を励起・活性化させ化学種を生成し、試料12の表面に薄膜を形成する。

[0027]

また、上記では誘電体として円形誘電体7を使用したが、試料12の処理面に 沿う断面が矩形状の誘電体を使用すると、マイクロ波の進行方向と垂直な壁面で 反射されたマイクロ波が、処理室の中央部に偏らず全体として均一な電界強度分布となる。この均一なマイクロ波により均一にプラズマが発生し、均一な薄膜形成が可能となる。また、ガスの流量・組成比等のプロセス条件の変更やメンテナンス等によるプロセス条件の変化が生じても、マイクロ波が伝播する領域が矩形状であるためマイクロ波の電界強度分布が偏りにくく、ガスの流量・組成比等のプロセスマージンを拡大することができる。

[0028]

さらに、矩形導波管 2 内のマイクロ波と円形誘電体 7 内のマイクロ波の位相関係が実質的に揃うように円形誘電体 7 の材質を選択する。なお、位相関係が揃うように矩形導波管 2 の形状もしくは構造を変更することもできる。

また、矩形導波管 2 内のマイクロ波と円形誘電体 7 内のマイクロ波の腹と腹、あるいは節と節の位置が一致するように設定すると、矩形導波管 2 及び円形誘電体 7 内のマイクロ波が互いに干渉するのを防ぐことができ、好ましい。このように設定することで、矩形導波管 2 及び円形誘電体 7 内のそれぞれのマイクロ波が同時に定在波条件を満たすことができる。そのため、それぞれの伝搬領域内を伝搬するマイクロ波がお互いに干渉して定在波条件を乱すのを低減することができる。よって、マイクロ波の減衰を抑えて、均一なマイクロ波の分布を形成し、均一なプラズマにより均一な薄膜を生成することができる。

[0029]

本実施形態では、矩形導波管 2 が 2 つに分岐している場合を例に挙げたが、 2 つ以上に分岐していてもよい。矩形導波管 2 を 2 つ以上に分岐した場合には、例えば、分岐 2 a、 2 b、 2 c …の中心が位置する軸 A 1、軸 A 2、軸 A 3 …との間隔を前記と同様に次のように設定する。軸 A 1 と軸 A 2 との距離、軸 A 2 と軸 A 3 との距離、軸 A 1 と軸 A 3 との距離…を、実質的に、円形誘電体 7 内のマイクロ波の半波長の整数倍を満たすように設定する。

<第1実施例>

以下の図4~図9を参照し、第1実施形態例に係るプラズマ酸窒化装置について、第1実施例を挙げてより具体的に説明する。図4は第1実施例のプラズマ酸窒化装置の外観、図5は図4のB-B'を含む図中X軸に垂直な図4の装置の断

面図、図6は図4に示すプラズマ酸窒化装置の要部の分解斜視図、図7はH面スロットアンテナのスロット形状、図8(a)は図4のプラズマ酸窒化装置のH面スロットアンテナ30の底面30cにおけるスロット30dの位置とH面スロットアンテナ30内のマイクロ波の波長との関係を示す説明図、図8(b)は図4のプラズマ酸窒化装置の図中Y軸に垂直な断面におけるH面スロットアンテナ30と矩形誘電体15内のマイクロ波の波長との関係を示す説明図、図9(a)、(b)は、2つのH面スロットアンテナにおけるスロット30dの配置図である。なお図4、6または7に示すように、矩形誘電体15の試料12の処理面に沿う断面において、二組の対向する平行な二辺と同一なそれぞれの方向をX方向及びY方向とし、X、Y方向と垂直な方向を2方向とする。

[0030]

図4に示すように、本実施例に係るプラズマ酸窒化装置は、矩形導波管20、 H面スロットアンテナ30及び試料12の処理面に沿う断面が矩形状のチャンバ (以下、矩形チャンバ)25を有している。また、矩形チャンバ25には、試料 12の処理面に沿う断面が長方形状または正方形状の処理室(以下、矩形処理室)25b及び矩形処理室25bを覆う、試料12の処理面に沿う断面が長方形状 または正方形状のチャンバ蓋(以下、矩形チャンバ蓋)25aが設けられている

$[0\ 0\ 3\ 1]$

図5、図6に示すように、矩形チャンバ蓋25 a は、試料12の処理面に沿う断面が長方形状または正方形状の誘電体(以下、矩形誘電体)15を有している。図6に示すように、矩形誘電体15上には、試料12の処理面に沿う断面が長方形状または正方形状のH面スロットアンテナ30が、矩形誘電体15の対向する二辺とH面スロットアンテナ30の対向する二辺とが同一方向となるように載置されている。このH面スロットアンテナ30により矩形導波管20から矩形誘電体15にマイクロ波が導入される。図5、図7に示すように、H面スロットアンテナ30は、上部30a、側部30b及び底部30cを有している。底部30cつまりH面スロットアンテナ30のH面には、図7に示すようにH面スロットアンテナ30のY方向に沿って、長方形状のスロット30dが形成されている。

H面スロットアンテナ30上部には矩形導波管20が搭載されている。ガス導入口5及びガス排出口6の構成は、前記第1実施形態例と同様である。

[0032]

本実施例に係るプラズマ酸窒化装置では、スロット30dの配置位置と、H面 スロットアンテナ30と矩形誘電体15とのマイクロ波の波長の関係を設定して いる。まず、スロット30dの配置位置について説明する。

[H面スロットアンテナのスロットの配置位置]

第1に、長方形状のスロット30dが、図8(a)に示すように、底部30cのY方向に延びる軸A1、A2上に交互に設けられている。ここで、図8に示す前記の軸A1と軸A2との間隔 L_1 を、実質的に、次式(8)を満たすように設定する。

 $L_1 = n_{L1} (\lambda_{15}/2) \cdots (8)$

ここで、 λ_{15} は矩形誘電体 1 5内のマイクロ波の波長、 n_{L1} は 1 以上の整数である。このように軸 A 1 と軸 A 2 との間隔 L_1 を設定することで、図 8 (b) に示すように、各々の軸 A 1 と軸 A 2 のスロット 3 0 d の位置において、底部 3 0 c の X 方向における矩形誘電体 1 5内のマイクロ波の位相関係を揃えることができる。よって、両軸上のスロット 3 0 d から矩形誘電体 1 5 に導入されるマイクロ波が互いに打ち消し合う等の干渉が低減し、低損失かつ均一なマイクロ波分布を得ることができる。

[0034]

また、スロット30 dのY方向の長さ L_2 及び/または軸A1、A2上に交互に隣接して配置されたスロット30 dのY方向における中心位置の距離 L_3 を、実質的に、次式(9)(10)を満たすように設定すると好ましい。

$$L_2 = n_{L2} (\lambda_{30}/2) \cdots (9)$$

 $L_3 = n_{L3} (\lambda_{30}/2) \cdots (10)$

ここで、 λ_{30} はH面スロットアンテナ30内のマイクロ波の波長、 n_{L2} 、 n_{L3} は1以上の整数である。このように設定すると、 L_2 がH面スロットアンテナ30内のマイクロ波の共鳴長となり、H面スロットアンテナから矩形誘電体15に

導入されるマイクロ波と矩形誘電体 15内のマイクロ波との結合度を高めることができる。また L_3 を上記のように設定することで、両軸上の交互のスロット 3 0 d から矩形誘電体 15 に導入されるマイクロ波の位相及び結合度を揃えることができる。

[0035]

さらに、図8(a)に示すように、スロット30dの中心位置とH面スロットアンテナ内をY方向に伝搬するマイクロ波の腹の位置とが一致していると、より結合度が高くなり好ましい。

また、H面スロットアンテナ30のY方向の中心軸に関して線対称になるように軸A1、A2を設定し、その軸上にスロット30dを配置すると好ましい。このようにスロット30dを配置することで、スロット30dから導入されるマイクロ波と矩形誘電体15内のマイクロ波との結合度が同程度となり、マイクロ波を均一化し易くなる。

[0036]

また、H面スロットアンテナ30のX方向の幅 W_1 が、実質的に、下記式(1)を満たすように設定すると好ましい。

[0037]

【数1】

$W_1 \simeq L_1 \cdots (11)$

このように幅 W_1 を設定することで、スロット30dから導入されるマイクロ波と矩形誘電体15内のマイクロ波との結合度を高めることができる。

第2に、矩形誘電体15のY方向に沿う端面と軸A1、A2とのそれぞれの距離Dが、実質的に、D=np(1/4) λ_{15} を満たすように軸A1、A2を設定し、その軸上にスロット30 dを配置する。ここで、 λ_{15} は矩形誘電体15内のマイクロ波の波長、npは1以上の整数である。このように距離Dを設定することで、スロット30 dから導入されるマイクロ波と矩形誘電体15内のマイクロ波との結合度を高めたり、逆に異常放電を抑制することができる。つまり、例えば矩形誘電体15とH面スロットアンテナ30との結合部をチョークと逆の関係

とすることができるので、両者のより高い結合度を得ることができる。よって、マイクロ波を均一化し易くなる。結合度の高低は、例えば、結合度を高める場合にはnDとして奇数を選択し、異常放電を抑制する場合にはnDとして偶数を選択する。

[マイクロ波の波長の関係]

次に、 $H面スロットアンテナ30内のマイクロ波の波長<math>\lambda_{30}$ と、矩形誘電体15内のマイクロ波の波長 λ_{15} との関係について説明する。

[0038]

軸A1及び軸A2のそれぞれから矩形誘電体15に導入されるマイクロ波が同位相の場合は下記式(12)を満たすように、逆位相の場合は下記式(13)を満たすように設定する。

 $\lambda_{30}/2 = 2 \text{ m} (1/2) \lambda_{15} \cdots (12)$

 $\lambda_{30}/2 = (2 m + 1) (1/2) \lambda_{15} \cdots (13)$

ここで、mは1以上の整数である。前記式(12)または(13)の関係を満たすように、H面スロットアンテナの形状もしくは構造を変更することもできる。このように設定することで、H面スロットアンテナ30及び矩形誘電体15内のそれぞれのマイクロ波の位相位置が一致し、同時に定在波条件を満たすことができる。そのため、それぞれの伝搬領域内を伝搬するマイクロ波がお互いに干渉して定在波条件を乱すのを低減することができる。よって、マイクロ波の減衰を抑えて、均一なマイクロ波を発生させ易く、均一なプラズマにより均一な薄膜を生成することができる。

[0039]

上記では、単独のH面スロットアンテナ30のみを使用しているが、矩形導波管を分岐して複数のH面スロットアンテナ30と接続し、矩形誘電体15にマイクロ波を導入しても良い。分岐することで、大型の処理装置であっても均一にマイクロ波を供給することができる。分岐の方法としては、例えば2つに分岐する場合には、2つのH面スロットアンテナ30内部のマイクロ波の位相状態が同相となるH分岐や、位相状態が逆相となるE分岐を使用することができる。

図9 (a)、(b)は、矩形導波管2をH分岐またはE分岐に分岐後、2つの

H面スロットアンテナ30を介して矩形誘電体15にマイクロ波を導入する場合の、H面スロットアンテナ30の底部30cにおけるスロット30dの配置位置及びH面スロットアンテナ30内のY方向のマイクロ波の波形を示している。図9におけるH面スロットアンテナ30における軸A1及び軸A2上に位置するスロット30dの配置方法は、図8と同様である。

[0040]

図9(a)はスロット30dが同じ位置に配置された2つの同一のH面スロットアンテナ30の平面図、同図(b)はスロット30dがY方向に関して線対称に配置された2つの同一のH面スロットアンテナ30の平面図である。ここで、図9(a)に示すように、2つのH面スロットアンテナ30におけるスロット30dの配置位置が同じ場合を "同相の配置位置"とし、同図(b)に示すように線対称で、互いの配置位置が対称の場合を "逆相の配置位置"とする。また、図9に示すように、隣接するH面スロットアンテナ30のスロット30dのX方向の間隔をL $_4$ とする。図9(a)、(b)では、図中左側の波形は左側のH面スロットアンテナ30内のマイクロ波を、図中右側の波形は、それぞれH分岐、E分岐後の右側のH面スロットアンテナ30内のマイクロ波を示している。

[0041]

[0042]

【表1】

L₄の距離

H面スロット アンテナの位相関係	H分岐	E分岐
同相	$\frac{\lambda_{15}}{2}(2n_{L4})$	$\frac{\lambda_{15}}{2}(2n_{L4}+1)$
逆相	$\frac{\lambda_{15}}{2}(2n_{L4}+1)$	$\frac{\lambda_{15}}{2}(2n_{L4})$

以上のように間隔L4を設定することで、スロット30dから矩形誘電体15 に導入されるマイクロ波の位相が揃うため、互いに打ち消し合う等の干渉が低減 する。

また、H面スロットアンテナ30内でのマイクロ波の干渉等を低減するため、シングルモードでの動作が可能な形状とするのが好ましい。シングルモードで動作可能なH面スロットアンテナ30の例えばY方向の長さLyは、下記式(14)より求まる。

[0043]

【数2】

$$\lambda_{30} = \frac{1}{\sqrt{\left(\frac{1}{\lambda}\right)^2 - \left(\frac{1}{2LY}\right)^2}} \dots (14)$$

ここで、 λ_{30} はH面スロットアンテナ30内のマイクロ波の波長、 λ は自由空間波長である。

なお、H面スロットアンテナの代わりに、E面スロットアンテナ、円形導波管 、同軸導波管、スロット以外の結合素子等を使用することもできる。

本実施例に係るプラズマ酸窒化装置では、上記のようにスロット30dの配置位置と、H面スロットアンテナ30と矩形誘電体15とのマイクロ波の波長の関係を設定することで、均一に薄膜を形成することができる。さらに、本実施例では、矩形誘電体15、矩形処理室25b、矩形導波管20等の試料12の処理面

に沿う断面が矩形状であるため、マイクロ波の電界強度分布が偏りにくく、ガス の流量・組成比等のプロセスマージンを拡大することができる。

[0044]

ただし、矩形処理室25bは、その中で発生したプラズマによりマイクロ波が吸収されるため通常マイクロ波が伝搬する領域ではない。よって、矩形処理室25bの試料12の処理面に沿う方向の断面は必ずしも矩形状である必要はない。しかし、マイクロ波が完全に吸収されずに矩形処理室25b内を伝搬する場合があるので、不均一なマイクロ波によりプラズマの均一性が乱されないように矩形処理室25bの試料12処理面に沿う断面を矩形状とするのが好ましい。このようにすることで、プラズマの均一性をさらに高め、より均一な薄膜を形成することができ、また均一なプラズマを得るためのプロセスマージンを広げることができる。

[0045]

また上記では、H面スロットアンテナ30、矩形誘電体15、矩形処理室25 b、矩形チャンバ蓋25a等の形状は、長方形状または正方形状以外の矩形状に 形成されていても良い。なお、二組の対向する二辺が平行な矩形状に形成されて いると、マイクロ波の偏りが少なくより好ましい。

<第2実施例>

以下に、第1実施形態例に係るプラズマ酸窒化装置について、第2実施例を挙 げてさらに詳細に説明する。第2実施例に係るプラズマ酸窒化装置は、以下に記 載の矩形アンテナ誘電体、矩形スロット板36及び矩形封止誘電体38以外につ いては、第1実施例と同様の構成を有している。

[0046]

第2実施例に係るプラズマ酸窒化装置の外観は図4と同様である。図10は図4のB-B'を含む図中X軸に垂直な断面図、図11は図10のプラズマ酸窒化装置の要部の分解斜視図である。

矩形チャンバ蓋25 a は、図10、図11に示すように、上から順にそれぞれ 試料12の処理面に沿う断面が矩形状の誘電体(以下、矩形アンテナ誘電体)3 4、スロット36 a が設けられた、試料12の処理面に沿う断面が矩形状のスロ ット板(以下、矩形スロット板)36及び試料12の処理面に沿う断面が矩形状の封止誘電体(以下、矩形封止誘電体)38を有している。

[0047]

以下に、本実施例に係るプラズマ酸窒化装置の各部について詳細に説明する。 「矩形アンテナ誘電体」

矩形状に形成されている矩形アンテナ誘電体34は、マイクロ波の電界強度分布を均一化する。また、矩形アンテナ誘電体34は、矩形処理室25bとの間に設けられた矩形スロット板36により、矩形アンテナ誘電体34内のマイクロ波と矩形処理室25b内のプラズマにより反射されたマイクロ波との結合を抑制されている。そのため、矩形アンテナ誘電体34内を伝搬するマイクロ波はプラズマによる影響を受けにくく、マイクロ波の電界強度分布を均一化し易い。

[矩形封止誘電体]

矩形封止誘電体38は、矩形状に形成されており、矩形スロット板36より導入されたマイクロ波の電界強度分布の均一性を保持したままあるいはさらに高め、矩形封止誘電体38下方の矩形処理室25bにプラズマを発生させるための電界を形成する。また、矩形封止誘電体38は、真空状態の矩形処理室25bを大気から隔離し、清浄空間に保つ。

[矩形スロット板]

矩形スロット板36は、矩形アンテナ誘電体34から導入されるマイクロ波の電界強度分布の均一性を、スロット36aにより保持したままあるいはさらに高める。また、矩形処理室25bで発生されるプラズマの影響が、矩形アンテナ誘電体34に及ぶのを抑制している。矩形スロット板36は、必ずしも試料12の処理面に沿う断面が矩形状である必要はなく、矩形アンテナ誘電体34、矩形封止誘電体38及び矩形処理室25bを覆う形状であれば良く、例えば円形状であっても良い。

[0048]

上記のように、矩形アンテナ誘電体34、矩形スロット板36及び矩形封止誘電体38により、矩形封止誘電体38内のマイクロ波の電界強度分布がさらに均一化される。

[その他の実施形態例]

- (A) 本発明は、シリコンプロセス以外の化合物、FPD(Flat Panel Display)プロセス等に適用可能である。また、プラズマを用いないマイクロ波照射装置、マイクロ波加熱装置等にも適用可能である。
- (B) 前記実施例は、必要に応じて組み合わせて用いることができる。

[0049]

【発明の効果】

本発明を用いれば、試料の処理面に対して均一な処理を施すことができるプラ ズマ処理装置を提供することができる。

【図面の簡単な説明】

【図1】

第1実施形態例に係るプラズマ酸窒化装置の外観図。

図2

A-A'を含む試料の処理面に垂直な方向における図1の装置の断面図。

[図3]

図2の断面における矩形導波管2と円形誘電体7内のマイクロ波の波長との関係を示す説明図。

図4

第1実施例のプラズマ酸窒化装置の外観図。

【図5】

図4のB-B'を含む図中X軸に垂直な図4の装置の断面図。

【図6】

図4に示すプラズマ酸窒化装置の要部の分解斜視図。

【図7】

H面スロットアンテナのスロット形状。

【図8】

- (a) 図4のプラズマ酸窒化装置のスロット30dの位置とH面スロットアンテナ30内のマイクロ波の波長との関係を示す説明図。
 - (b)図4のプラズマ酸窒化装置のY方向に垂直な断面におけるH面スロット

アンテナ30及び矩形アンテナ誘電体34内のマイクロ波の波長との関係を示す 説明図。

【図9】

- (a) 2つのH面スロットアンテナにおけるスロット30dの配置図(1)。
- (b) 2つのH面スロットアンテナにおけるスロット30dの配置図(2)。

【図10】

図4のB-B'を含む図中X軸に垂直な断面図。

【図11】

図10のプラズマ酸窒化装置の要部の分解斜視図。

【符号の説明】

- 1 マイクロ波発生器
- 2、20 矩形導波管
- 2 a 、2 b 分岐
- 3 同軸アンテナ
- 4 チャンバ
- 4 a 円形チャンバ蓋
- 4 b 円形処理室
- 7 円形誘電体
- 12 試料
- 15 矩形誘電体
- 25 矩形チャンバ
- 25a 矩形チャンバ蓋
- 25b 矩形処理室
- 30 H面スロットアンテナ
- 34 矩形アンテナ誘電体
- 38 矩形封止誘電体
- 36 矩形スロット板

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【書類名】 要約書

【要約】

【課題】 本発明は、試料の処理面に対して均一な処理を施すことができる プラズマ処理装置を提供することを目的とする。

【解決手段】 マイクロ波発生手段1に接続され、試料12の処理面に沿う板状に形成されており、マイクロ波発生手段1から発生したマイクロ波の電界強度分布を前記試料12の処理面に沿って概ね均一にする誘電体7と、前記マイクロ波により発生するプラズマを用いて前記試料12を処理する処理手段とを有し、前記マイクロ波発生手段1の前記誘電体7と接する面(以下、導入面)には、前記マイクロ波発生手段1から前記誘電体7にマイクロ波を導入する複数の導入部2a、2bが設けられており、前記導入部2a、2bの中心位置の各々は、同一方向に延びた前記導入面上の複数の軸上に設けられており、各々の前記軸の位置において前記誘電体内のマイクロ波の位相が揃っているプラズマ処理装置を提供する。

【選択図】 図2

特願2003-022075

出願人履歴情報

識別番号

[000116024]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

京都府京都市右京区西院溝崎町21番地

氏 名 ローム株式会社