

AD-A100 444

ANALYTICS INC WILLOW GROVE PA  
THE HUMAN OPERATOR SIMULATOR. VOLUME VIII. APPLICATIONS TO ASSE--ETC(U)  
JUN 77 F A GLENN, M I STRIEB, R J WHERRY N62269-77-C-0109

F/0 5/8

NL

UNCLASSIFIED

1 OF  
200444



TR-1233-A



END  
DATE  
FILED  
7-8-81  
DTIC



**233-A**

**DISCLAIMER NOTICE**

**THIS DOCUMENT IS BEST QUALITY  
PRACTICABLE. THE COPY FURNISHED  
TO DTIC CONTAINED A SIGNIFICANT  
NUMBER OF PAGES WHICH DO NOT  
REPRODUCE LEGIBLY.**

Technical Report 1233-A  
Contract No. N62269-77-C-0109

LEVEL II

①

THE HUMAN OPERATOR SIMULATOR  
VOLUME VIII

APPLICATIONS TO ASSESSMENT OF  
OPERATOR LOADING

Floyd A. Glenn  
Melvin I. Strieb  
Robert J. Wherry, Jr.

Analytics  
2500 Maryland Road  
Willow Grove, Pa. 19090

14 June 1977

JUN 22 1981

Final Report

*Prepared for*  
Crew Systems Department  
Naval Air Development Center  
Warminster, Pa. 18974

DISTRIBUTION STATEMENT A

Approved for public release;  
Distribution Unlimited

4/C

## TABLE OF CONTENTS

|                                                                                                               |    |
|---------------------------------------------------------------------------------------------------------------|----|
| <b>1. INTRODUCTION</b>                                                                                        |    |
| <b>2. MODELS FOR MANUAL PURSUIT TRACKING</b>                                                                  |    |
| 2.1 Control Theory Models .....                                                                               | 2  |
| 2.2 Information Processing .....                                                                              | 2  |
| 2.3 The HOS Tracking Model .....                                                                              | 3  |
| 2.3.1 Rationale .....                                                                                         | 3  |
| 2.3.2 Notation .....                                                                                          | 5  |
| 2.3.3 Sequence of Operation .....                                                                             | 5  |
| 2.3.4 The Learning Functions .....                                                                            | 6  |
| 2.4 Parametric Behavior of the HOS Tracking Model .....                                                       | 10 |
| 2.4.1 Measures of Performance .....                                                                           | 10 |
| 2.4.2 Simulation Studies .....                                                                                | 11 |
| 2.4.3 Conclusions .....                                                                                       | 15 |
| 2.4.4 Recommendations .....                                                                                   | 18 |
| <b>3. STUDIES OF WORKLOAD</b>                                                                                 |    |
| 3.1 Study 1 -- The Effects of Task Difficulty and Time-Sharing on Tracking Performance .....                  | 20 |
| 3.2 Study 2 -- The Effect of Length of "Alternation Period" on Primary Task Performance .....                 | 22 |
| 3.3 Study 3 -- The Effect of Interruption Time on Tracking Performance .....                                  | 26 |
| 3.4 Study 4 -- The Effect on Tracking Performance of the Operator's Criterion of Acceptable Performance ..... | 26 |
| <b>4. CONCLUSION</b>                                                                                          |    |

### REFERENCES

### APPENDICES:

- I. HOPROC CODE AND HOS INPUTS FOR PARAMETRIC STUDIES
- II. HOPROC CODE AND HOS INPUTS FOR WORKLOAD STUDIES
- III. CHANGES TO HOS FOR TRACKING AND WORKLOAD STUDIES
- IV. DESCRIPTION AND LIST OF EVAL

|                                                |          |
|------------------------------------------------|----------|
| Accession For                                  |          |
| NTIS GFA&I <input checked="" type="checkbox"/> |          |
| DTIC TAB <input type="checkbox"/>              |          |
| Unannounced <input type="checkbox"/>           |          |
| Identification <i>See at file</i>              |          |
| By _____                                       |          |
| Distribution _____                             |          |
| Availability Codes _____                       |          |
| Avail and/or _____                             |          |
| Dist Special _____                             |          |
| A                                              | 23<br>97 |

LIST OF FIGURES

|    |                                                                                |    |
|----|--------------------------------------------------------------------------------|----|
| 1. | Mean Learned Gain vs. Signal Frequency .....                                   | 13 |
| 2. | Mean Learned Extrapolation Time vs. Signal Frequency .....                     | 14 |
| 3. | Root Mean Squared Error vs. Signal Frequency .....                             | 16 |
| 4. | Percent Time on Target vs. Signal Frequency .....                              | 17 |
| 5. | Alternation Period vs. RMS Error and Time on Target .....                      | 24 |
| 6. | Seconds from Interruption of Tracking vs. Time on Target .....                 | 25 |
| 7. | Percent Time on Primary Task vs. Percent Time on Target<br>and RMS Error ..... | 28 |

LIST OF TABLES

|    |                                               |    |
|----|-----------------------------------------------|----|
| 1. | Learning Functions for Pursuit Tracking ..... | 8  |
| 2. | Results of Parametric Runs .....              | 12 |
| 3. | Results of Study 1 .....                      | 21 |
| 4. | Results of Study 2 .....                      | 23 |
| 5. | Results of Study 3 .....                      | 27 |
| 6. | Results of Study 4 .....                      | 30 |

## 1. INTRODUCTION

This study was undertaken as part of a continuing series of studies designed to validate the Human Operator Simulator (HOS). HOS is intended to be used as a system evaluation tool that can be applied to a detailed system design prior to the development of a hardware prototype. Consequently, an assessment of its ability to model operator workload problems realistically was considered to be of prime importance. The study was designed to show that HOS, a general-purpose model of human performance, can accurately simulate the kinds of complex interactions between competing task demands experienced by a human operator performing a complex mission.

Other analytic approaches to the modeling of task workload have been developed (e.g., Siegel and Wolf, 1962; Murphy and Gurman, 1972; Linton, Jahns, and Chatelier, 1977) but they all require the user to supply explicit estimates of task demands in terms of processing time and channel requirements. HOS, on the other hand, requires that the user supply only fairly objective information about hardware system configuration and dynamics, operator size and general performance characteristics, and sequences of task operations.

In this study, an operator performing both a primary pursuit tracking task and a "neutral" secondary task was simulated. The tracking task was adopted as the primary task because of the following:

- (1) It is commonly encountered by operators of modern control systems.
- (2) Its continuous nature ensures that it will be sensitive to interruptions by a secondary task.
- (3) It permits definitions of continuously variable performance measures.

The secondary task is neutral in the sense that the operator "does nothing," thereby avoiding the task interactions that occur when two tasks compete for processing channels. The secondary task was an externally scheduled interruption of the tracking task. Experimentally, this could be achieved by, for example, blanking out the display so that an operator engaged in visually monitored pursuit tracking could not see the display for a specified length of time. The study examined how primary task performance was influenced by the schedule of interruptions and other parameters that affect the difficulty of the tracking task (i.e., signal characteristics and the operator's criterion of acceptable performance).

## 2. MODELS FOR MANUAL PURSUIT TRACKING

While a simple model could be constructed that would enable HOS to perform a simple tracking function, our objective was to devise a model that would embody the kind of adaptive characteristics that human operators possess. In this section, we will discuss the rationale behind the particular model that was used, the model itself, and the simulation studies that were performed to determine some general performance features of the model. Section 3 discusses studies in which the completed tracking model was used with a variety of interruption schedules to address some basic workload measurement issues.

### 2.1 Control Theory Models

Most investigators who have modeled tracking behavior have adopted the "black box" approach characteristic of mathematical control theory. These control theory models have resulted in some significant insights into the organization of skilled human performance. They can achieve exceptionally accurate predictions of performance on most tracking tasks and can account for the systematic changes in performance when some interesting task factors are varied (e.g., the dynamics of the control-display relationship). However, they generally explicitly disregard the operator's internal processing structure, and often fail to provide a sufficiently detailed description of performance components to enable reliable predictions of tracking performance to be made in many situations of interest. For example, they do not permit the identification of tasks that could be performed concurrently without compromising performance on the tracking task.

In general, the best tracking model would be one whose parameter values could be determined completely from observable characteristics of the tracking apparatus and the operator's basic performance characteristics (e.g., reaction time, fatigue level). Unfortunately, control theory models generally do not admit these possibilities. Rather, the control theory approach fits a general model to a specific task situation by estimating all free parameters in order to best fit the model to actual performance. Such a modeling strategy is clearly inapplicable to the prediction of operator performance with a proposed hardware system before a prototype system can be constructed, especially if the proposed system is very different from other systems for which performance data is available.

### 2.2 Information Processing

A number of investigators have studied the cognitive and motor components of tracking performance and some fairly comprehensive conceptual models have been advanced (e.g., Crossman, 1960). But, to date, there has been a singular absence in the published literature of detailed models on the operation of the processing components that contribute to tracking performance. The two factors that are probably most responsible for this are:

- (1) Most human information processing operations are generally understood as discrete events (e.g., detection, decision, response), while tracking performance is apparently continuous.
- (2) People are generally recognized to be extremely flexible information processors.

The problem raised by the apparent continuity of tracking performance in many situations and the presumed discreteness of human performance components, can be resolved by the modeler in a number of ways. One way is to question the continuous nature of tracking performance on theoretical or empirical grounds. Hick (1948), for example, has argued that the refractory period of neural processes must force the human operator to act as a discontinuous controller. Indeed, frequent, abrupt control movements have been observed even when the tracked signal is slow and fluid (North, Lomnicki, and Zaremba, 1948). Some psychologists have suggested that all human perceptual processing can occur only as quantitative events that are paced by a rapid biological cycle (Stroud, 1955; Kristofferson, 1967). Though compelling evidence against this theory of the "psychological moment" has been raised by experiments reported by Allport (1968) and Baron (1971), there are still clear limitations in the rates at which perceptual and motor events can proceed. Fitts and Posner (1967) suggest that the number of repetitive stimuli that can be perceptually distinguished and the frequency at which repetitive motor processes can be executed are both limited to about ten events per second. Of course, people are quite capable of executing complex continuous movements that last for many seconds, but even so, it is possible that such movements are composed completely of discrete processes. Since the perception and decision operations that must constitute the basis of human tracking performance are generally considered to be discrete processes, it is natural to use a discrete model to describe tracking.

The second point recognizes that different individuals will use very different processing strategies on the same task and even a single individual may use very different strategies on two tracking tasks that appear to differ only slightly. This tends to frustrate attempts to model behavior in tasks like tracking where the operator may choose from many different processing strategies. People probably try out several different strategies before they adopt a stable strategy, and even that final strategy may undergo frequent modifications in response to feedback. But since the possible strategies must be limited by the type of information available to the operator and by the operator's ability to interpret that information, there are only a few possibilities that require consideration.

### 2.3 The HOS Tracking Model

#### 2.3.1 Rationale

In our model, we attempted to identify the information that could be available in a typical tracking task and the factors that

determine how that information will be used. This was then formulated into a model of how the information is processed to effect control movements. In addition to providing an understanding of tracking performance, it was expected that this research would provide valuable information for use in a general-purpose model of human performance. Our approach was to start with a basic model, identify the deficiencies of that model, and then modify it accordingly.

The model was developed for a pursuit tracking task in which a single display indicated the values of both the signal and the track. The value of the track was controlled by the position of a rotary knob. Our basic model assumed that the operator repeatedly executed a basic adjustment cycle consisting of:

- (1) Reading the value of the signal.
- (2) Reading the value of the track.
- (3) Computing the error (i.e., the difference between the signal and track values).
- (4a) Terminating the adjustment cycle if the error was less than a tolerance limit, or
- (4b) Computing the amount of knob turn required to make the track equal to the signal (using the precise gain factor that relates knob movements to changes in the track value), and making the appropriate change if the error is greater than the tolerance limit.

Since this model makes no provision for learning, it can be considered to be a description of the stable performance of a trained operator.

Even ignoring the fact that details, such as the speed and accuracy of the component processes, have to be specified, it is clear that inadequacies exist in the model. For example, the model assumes that the operator knows the precise gain factor that relates changes in the knob's value to changes in the value of the track. While this assumption would not necessarily result in inaccurate performance predictions, it does compromise both the face validity and the generality of the model. Moreover, the model assumes that the operator does not rely on his experience based on previous adjustment cycles to anticipate future values of the signal. This assumption would preclude the occurrence of tracking overshoots at signal inflections and tracking lags shorter than the operator's reaction time. Since real operators do frequently overshoot the maxima and minima of the signal and, for some signals, exhibit very short lags, modifications to the basic model were clearly necessary. The modifications that were implemented provide the model with the capability to learn both a signal extrapolation time and an estimate for the system gain factor.

### 2.3.2 Notation

In discussing the modified tracking model, the following notation will be used:

$s_n$  = the operator's estimate of the signal value on the  $n^{\text{th}}$  adjustment cycle

$s_n^*$  = the operator's extrapolated estimate of the signal value on the  $n^{\text{th}}$  cycle

$t_n$  = the extrapolation time used by the operator on the  $n^{\text{th}}$  cycle

$T_n$  = the operator's estimate of the track value on the  $n^{\text{th}}$  cycle

$g_n$  = the operator's estimate of the gain factor on the  $n^{\text{th}}$  cycle

$\Delta$  = the operator's tolerance for being "on target" (assumed to be constant)

$L_t$  = the extrapolation time learning function

$L_g$  = the gain factor learning function

### 2.3.3 Sequence of Operations

The model assumes that on any adjustment cycle, the operator performs the following sequence of operations:

- (1) Reads the value of the signal,  $s_n$
- (2) Computes the new values for the extrapolation time,  
 $t_n = L_t(t_{n-1}, \dots)$
- (3) Computes the extrapolated signal value,  $s_n^*$
- (4) Reads the value of the track,  $T_n$
- (5a) Terminates the adjustment cycle if  $|s_n^* - T_n| \leq \Delta$ , or
- (5b) Computes the new value for the gain factor,  
 $g_n = L_g(g_{n-1} \dots)$ , the desired knob turn, and makes the appropriate adjustment if  $|s_n^* - T_n| > \Delta$ .

The speeds and accuracies for the display reading and control manipulation operations are automatically assigned by HOS micro-models. The HOS micro-model for display reading, described in detail in Volume VII of this series, models the reading process by a sequence of discrete

micro-absorptions that are terminated either when successive estimates differ by a small enough amount that the operator is considered to have "learned" the value, or when a time limit for the reading process is exceeded. The estimated value of the display on each micro-absorption is obtained by averaging the actual value of the display with a value extrapolated linearly from the previous two micro-absorption estimates. The time consumed by each micro-absorption is defined as a constant cost plus an additional amount dependent on the dissimilarity between the estimated values of the current and previous micro-absorptions. The effects of this display reading model in the tracking simulation studies are:

- Display values are always read to within a narrowly defined additive tolerance of the actual value
- The time for each reading varies between about .02 seconds and about .2 seconds
- The longest reading times are associated with the most extremely nonlinear changes in signal values.

The HOS control manipulation micro-model causes the adjustments to be made to precisely the intended setting. Manipulations require an amount of time that is a linear function of the magnitude of the adjustment. The time consumed in turning a knob is given by the function

$$\text{time (in seconds)} = .0029A + .0982$$

where A is the angle in degrees through which the knob is turned.

All operations, other than display readings and knob adjustments (i.e., all computations and the one comparison), were assigned zero time costs.

#### 2.3.4 The Learning Functions

The two learning functions were defined so that the amount of information that the operator had to store and use was kept to a minimum. In order to be able to extrapolate the signal value, it was necessary to assume that the operator "knew" both the current and previous estimates of the signal and the times when those estimates were obtained. He also had to know the current and previous values of the track, the current working values for the gain factor and extrapolation time, and a running average for the absolute tracking error.

A gain learning function must be sensitive to the effect of the most recent control manipulation, increasing the estimated gain factor if that manipulation was too large and decreasing the estimated gain if the manipulation was too small. An extrapolation time learning function must be sensitive to the extent to which the track is tending to lead or lag behind the signal, increasing the extrapolation time if the track is lagging behind the signal and decreasing the extrapolation time if the

track is leading the signal. A set of learning functions that have these properties is shown in Table 1. The parameters  $\phi$ ,  $\theta$ , the initial learning rates for extrapolation and gain, and  $\delta$ , the relative size of random changes to the gain, are input constants.  $\phi$ ,  $\theta$ , and  $\delta$  are defined on the range of 0 to 1 and are considered to be of approximately the same magnitude.

These learning functions imply that the effective learning rates on any adjustment cycle ( $\phi_n$  and  $\theta_n$ ) are the product of the base learning rates and the ratio of the estimated error ( $E_n$ ) to the average absolute error ( $A_n$ ) on any cycle. Thus, relatively small changes are made to both the extrapolation and gain values when the tracking error is relatively small and relatively large changes are made when the tracking error is large.

The extrapolation learning function increments or decrements the old extrapolation value by the product of the old extrapolation value and the effective learning rate, incrementing when the track lags behind the signal and decrementing when the track leads the signal.

The gain learning function determines the new gain by taking a weighted average of the old gain and an estimate for the "ideal" gain, the weighting factor being the effective learning rate. The ideal gain calculation assumes that the signal will not change appreciably over a single adjustment cycle. Then, if the actual adjustment on the  $n-1^{st}$  cycle was optimal, the error on the  $n^{th}$  cycle would be zero. The actual adjustment made on the  $n-1^{st}$  cycle,  $\alpha$ , is given by

$$\alpha = \frac{s_n^* - T_n}{g_{n-1}} \approx -\frac{E_{n-1}}{g_{n-1}}$$

and the adjustment that would have been optimal for that cycle,  $\alpha^*$ , is given by

$$\alpha = -\frac{E_{n-1}}{g^*}$$

where  $g^*$  is the corresponding optimal gain.

Since the actual adjustment changed the tracking error from  $E_{n-1}$  to  $E_n$  and the optimal adjustment would have changed the error from  $E_{n-1}$  to 0, the assumption that the control is linear implies that

$$\frac{\alpha^*}{\alpha} = \frac{E_{n-1}}{E_{n-1} - E_n} \approx \frac{g_{n-1}}{g^*}$$

TABLE 1. LEARNING FUNCTIONS FOR PURSUIT TRACKING

I. For running average of absolute error:

$$A_n = .9 A_{n-1} + .1 |E_n|$$

II. For extrapolation:

$$t_n = \begin{cases} (1 + \phi_n) t_{n-1} & \text{if } s_n \leq s_{n-1} \\ (1 - \phi_n) t_{n-1} & \text{if } s_n > s_{n-1} \end{cases}$$

where  $\phi_n = \max \left( \min \left( \frac{\phi E_n}{A_n}, .2 \right), -.2 \right)$

III. For gain:

$$g_n = [\theta_n f_n + (1 - \theta_n)] g_{n-1}$$

where  $\theta_n = \min \left( .9, \frac{\theta |E_n|}{A_n} \right)$

and

$$f_n = \begin{cases} \max \min \left( 1 - \frac{E_n}{E_{n-1}}, 2 \right), .5 & \text{if } E_{n-1} = 0 \text{ and } \frac{E_n}{E_{n-1}} \leq 1 \\ 1 + \delta \text{ with probability } \frac{1}{2} \\ \frac{1}{1 + \delta} \text{ with probability } \frac{1}{2} & \text{if } E_{n-1} = 0 \text{ or } \frac{E_n}{E_{n-1}} > 1 \end{cases}$$

where  $E_n = T_n - s_n$  is the estimated error on the  $n^{\text{th}}$  adjustment cycle

and that

$$g^* \approx \frac{E_{n-1} - E_n}{E_{n-1}} g_{n-1}.$$

If, however, the adjustment causes an increase in the error, i.e., if

$$\frac{E_n}{E_{n-1}} > 1,$$

then this formula implies that  $g^*$  and  $g_{n-1}$  must have different signs, corresponding to a change in the estimated directional relationship between the control and the track value. Since such sign changes would result in a highly unstable learning process, it was assumed that the operator knows the directional correspondence between the control and the display. Therefore, the model permits only positive estimates for the gain. When

$$\frac{E_n}{E_{n-1}} > 1$$

or when

$$E_{n-1} = 0,$$

a new value for the ideal gain was considered to be indeterminable. Since such indeterminate cases represent conditions of deteriorating tracking performance, the new gain value for that cycle was randomly defined as a fixed increment or decrement from the old gain, each change occurring with a probability of .5.

For both gain learning and extrapolation learning, the maximum change made to either the gain or extrapolation time on a single cycle is indicated by the truncation operations shown in Table 1. These limitations keep the gain learning from being dominated by the special cases

$$E_n \ll 0 < E_{n-1}$$

and

$$E_{n-1} < 0 \ll E_{n-1}$$

and extrapolation learning by the special case:

$$|E_n| \gg \frac{A_n}{\theta}.$$

## 2.4 Parametric Behavior of the HOS Tracking Model

Despite its similarity to the linear learning models that have been extensively studied by mathematical psychologists (Bush and Mosteller, 1956; Norman, 1968), the tracking model is sufficiently different from those models so that very different methods of analysis are necessary. In particular, other mathematical models for learning have dealt principally with the learning of probabilities and probability distributions rather than with the learning of strategic parameters like system gain and extrapolation time. Also, other learning models were developed for situations in which learning occurred on discrete trials for which the experimenter-controlled events (e.g., stimuli and rewards) were scheduled independently. For the tracking situation, the stimulus is continuous and successive learning events are consequently correlated. Further complicating the analysis of the tracking model is the fact that the learning functions are discontinuous unlike the learning functions used in other models. And even if none of these features had precluded an analysis of the model, the fact that it uses two interacting learning functions would have made the model sufficiently intractable analytically. Thus, the only viable method for studying the behavior of the model is to examine the results of dynamic simulations for a variety of different model parameters and different types of signal.

### 2.4.1 Measures of Performance

In evaluating the behavior of the tracking model, it is important to consider both the accuracy of tracking performance and the "success" of the two learning processes. Two different tracking performance measures, root-mean-squared-error (RMSE) and percent-time-on-target (PTOT) were used to assess tracking accuracy, since it would have been impossible to predict which measure would be most sensitive to the performance differences.\* The success of the learning process was evaluated based on its stability (i.e., variance and regression over time) and central tendency.

Each tracking trial lasted for 60 seconds of simulated time and started with an initial gain value of 200 display units per degree of knob turn (the actual gain of the simulated system) and an initial extrapolation time of .1 second (somewhat less than the adjustment cycle time of the simulated operator). Performance data were collected only for the last 50 seconds of each trial. Trials were conducted for several values of the model parameters  $\theta$ ,  $\delta$ , and  $\phi$ , the objective being to get a general idea of how the parameters governed model performance. In all cases, the signal was sinusoidal with an offset of 10,000 units and an amplitude of either 4000 or 8000 units. For each combination of model parameters, the first tracking trial was conducted with a signal frequency of .1 cycles/second and subsequent trials with the same

---

\* For present purposes, PTOT is arbitrarily defined as the percentage of time that the track is within 400 units of the signal.

parameters used signal frequencies increased by a factor of  $\sqrt{2}$  until performance was degraded to an uninteresting level.

#### 2.4.2 Simulation Studies

The results of these parametric runs are shown in Table 2. Section A of the table demonstrates the baseline performance -- without learning, but with a precisely correct gain value and a fairly small extrapolation time. Note that the two overall performance measures, RMSE and PTOT, appear to be about equally sensitive to each increment in signal frequency. In Section B of Table 2, only the gain learning features of the model were being exercised and, in Section C, only the extrapolation time learning component was active. Sections D and E indicate how the model behaves when both the gain and extrapolation time learning features are exercised together. In Section E, the signal had twice the amplitude of the signal used in Section D. Finally, Section F displays model performance when both gain and extrapolation time are learned but at rates that are twice as large as those used in other cases. Data for only three different signal frequency values are presented in Section F because during the simulation with the fourth frequency (.2828 cycles per second), an unrealistically large estimate for the extrapolation time resulted in a knob-turn that was not completed during the span of the simulation.

Figure 1 shows how the learned gain value varies with signal frequency. From Tabl. 2 it can be seen that the points with the largest gain values correspond to trials with large regression coefficients, so the results are, in fact, underestimates of any ultimately stable gain value that might (or might not) be attained. When only gain learning is present (case b), the learned gain is fairly accurate (with respect to actual system gain) at the lowest frequency. It stabilizes at a value about 35% above the actual system gain at the midrange of frequencies from .2 to .4 cycles/second and becomes unstable above .5656 cycles/second. When both gain and extrapolation time are being learned (case d), similar stable gain values are learned for low signal frequencies, but the model appears to become unstable at a lower frequency (by .4 cycles/second) than in case b. Curiously, when the signal amplitude is doubled and both learning processes are operative (case e), a fairly high gain value is learned at the lowest signal frequency, while lower, more accurate values are learned for slightly higher frequencies, with instability occurring at roughly the same point as at the smaller signal amplitude. When the learning rates for both processes are doubled (case f), the learned gain appears to be virtually the same as when the smaller learning rates are used.

Figure 2 shows how the learned extrapolation time varies with signal frequency. Again, the regression coefficients in Table 2, indicate that the larger extrapolation times correspond to the means of values that increase systematically with simulation time. All model cases show basically the same relationship between learned extrapolation time and signal frequency when the signal amplitude is constant. At the lowest frequency (.1 cycles/second) a stable extrapolation time of

TABLE 2. RESULTS OF PARAMETRIC RUNS

| $\theta$ | $\delta$ | $\phi$ | GAIN       |                 |        |             | EXTRAPOLATION TIME |        |             |                | PTOT<br>(SIZE<br>= 400) |      |
|----------|----------|--------|------------|-----------------|--------|-------------|--------------------|--------|-------------|----------------|-------------------------|------|
|          |          |        | SIGNAL AMP | SIGNAL FREQ(HZ) | MEAN   | STAND. DEV. | REGRESS. COEF.     | MEAN   | STAND. DEV. | REGRESS. COEF. | RMSE                    |      |
| 0        | 0        | 0      | 4000       | .1              | 200.00 | --          | --                 | .100   | --          | --             | 265.0                   | 88.5 |
| 0        | 0        | 0      | 4000       | .1414           | 200.00 | --          | --                 | .100   | --          | --             | 354.0                   | 71.2 |
| 0        | 0        | 0      | 4000       | .2000           | 200.00 | --          | --                 | .100   | --          | --             | 639.0                   | 42.5 |
| 0        | 0        | 0      | 4000       | .2828           | 200.00 | --          | --                 | .100   | --          | --             | 1264.9                  | 22.4 |
| 0        | 0        | 0      | 4000       | .4000           | 200.00 | --          | --                 | .100   | --          | --             | 2461.0                  | 5.4  |
| 0        | 0        | 0      | 4000       | .5657           | 200.00 | --          | --                 | .100   | --          | --             | 3873.6                  | 4.6  |
|          |          |        |            |                 |        |             |                    |        |             |                |                         |      |
| .05      | .02      | 0      | 4000       | .1000           | 175.56 | 10.00       | -.041              | .100   | --          | --             | 262.1                   | 89.2 |
| .05      | .02      | 0      | 4000       | .1414           | 220.50 | 15.66       | -.237              | .100   | --          | --             | 385.3                   | 62.3 |
| .05      | .02      | 0      | 4000       | .2000           | 277.22 | 24.40       | 1.191              | .100   | --          | --             | 782.9                   | 28.5 |
| .05      | .02      | 0      | 4000       | .2828           | 279.89 | 16.84       | .015               | .100   | --          | --             | 1425.3                  | 14.5 |
| .05      | .02      | 0      | 4000       | .4000           | 265.83 | 9.72        | .162               | .100   | --          | --             | 2878.9                  | 5.3  |
| .05      | .02      | 0      | 4000       | .5657           | 320.27 | 54.53       | 2.886              | .100   | --          | --             | 3349.7                  | 6.0  |
| .05      | .02      | 0      | 4000       | .8000           | 642.60 | 200.61      | 11.000             | .100   | --          | --             | 3509.4                  | 5.5  |
|          |          |        |            |                 |        |             |                    |        |             |                |                         |      |
| 0        | 0        | .05    | 4000       | .1000           | 200.00 | --          | --                 | .224   | .040        | .000           | 169.2                   | 99.6 |
| 0        | 0        | .05    | 4000       | .1414           | 200.00 | --          | --                 | .246   | .051        | .001           | 322.0                   | 83.5 |
| 0        | 0        | .05    | 4000       | .2000           | 200.00 | --          | --                 | .311   | .066        | .000           | 786.3                   | 45.2 |
| 0        | 0        | .05    | 4000       | .2828           | 200.00 | --          | --                 | .415   | .086        | .001           | 1689.1                  | 14.6 |
| 0        | 0        | .05    | 4000       | .4000           | 200.00 | --          | --                 | 4.336  | 3.681       | .213           | 45125.0                 | 1.0  |
| 0        | 0        | .05    | 4000       | .5657           | 200.00 | --          | --                 | 1.419  | 1.105       | .055           | 18633.3                 | 1.4  |
| 0        | 0        | .05    | 4000       | .8000           | 200.00 | --          | --                 | .451   | .199        | .006           | 10262.7                 | 1.9  |
|          |          |        |            |                 |        |             |                    |        |             |                |                         |      |
| .05      | .02      | .05    | 4000       | .1000           | 202.95 | 29.11       | .927               | .224   | .046        | .000           | 172.7                   | 98.7 |
| .05      | .02      | .05    | 4000       | .1414           | 231.24 | 48.95       | -.2244             | .262   | .061        | .000           | 301.4                   | 84.9 |
| .05      | .02      | .05    | 4000       | .2000           | 359.49 | 44.58       | 1.998              | .433   | .097        | .003           | 811.7                   | 35.8 |
| .05      | .02      | .05    | 4000       | .2828           | 246.57 | 30.74       | -.582              | .470   | .101        | .002           | 1796.6                  | 11.7 |
| .05      | .02      | .05    | 4000       | .4000           | 535.29 | 291.07      | 15.955             | 11.394 | 10.819      | .600           | 24907.7                 | 1.0  |
| .05      | .02      | .05    | 4000       | .5657           | 678.14 | 549.22      | 29.564             | 5.240  | 6.165       | .336           | 14121.3                 | 1.4  |
|          |          |        |            |                 |        |             |                    |        |             |                |                         |      |
| .05      | .02      | .05    | 8000       | .1000           | 352.34 | 56.67       | 1.388              | .433   | .098        | .003           | 686.0                   | 46.1 |
| .05      | .02      | .05    | 8000       | .1414           | 244.46 | 35.14       | -.1284             | .397   | .081        | .000           | 1005.0                  | 31.2 |
| .05      | .02      | .05    | 8000       | .2000           | 194.00 | 42.62       | -.2162             | .525   | .128        | .001           | 2522.3                  | 11.8 |
| .05      | .02      | .05    | 8000       | .2828           | 195.72 | 24.66       | -.1182             | 1.054  | .478        | .026           | 11424.2                 | 2.1  |
| .05      | .02      | .05    | 8000       | .4000           | 399.03 | 215.93      | 11.811             | 4.133  | 3.814       | .210           | 27039.4                 | 1.0  |
| .05      | .02      | .05    | 8000       | .5657           | 771.80 | 583.47      | 32.142             | 3.227  | 3.533       | .189           | 15864.0                 | 1.4  |
|          |          |        |            |                 |        |             |                    |        |             |                |                         |      |
| .10      | .04      | .10    | 4000       | .1000           | 210.53 | 27.31       | .537               | .211   | .068        | .000           | 201.75                  | 96.0 |
| .10      | .04      | .10    | 4000       | .1414           | 213.14 | 30.76       | -.122              | .235   | .066        | .000           | 336.2                   | 79.3 |
| .10      | .04      | .10    | 4000       | .2000           | 328.23 | 81.15       | 2.600              | .400   | .152        | .002           | 885.8                   | 39.0 |



FIGURE 1. MEAN LEARNED GAIN VS. SIGNAL FREQUENCY



FIGURE 2. MEAN LEARNED EXTRAPOLATION TIME VS. SIGNAL FREQUENCY |

about .22 seconds is learned. At higher signal frequencies, larger extrapolation times are obtained, the relationship being approximately exponential over the midrange of frequencies. The extrapolation time peaks at .4 cycles per second in all cases and is followed by a slightly lower, but still unstable, value at the next higher frequency. For the larger signal amplitude (case e), the major difference occurs at the lower signal frequencies where the extrapolation time obtained is considerably larger than for the other case.

In Figure 3, the overall tracking performance accuracy measured by RMSE is plotted as a function of signal frequency. In Figure 4, accuracy as measured by PTOT is plotted. Both plots show the same general trends, though the trends are somewhat more apparent in Figure 3 because of the scales used. Approximately the same performance is achieved when neither quantity is learned and when only the gain is learned. When the extrapolation time is learned, performance is essentially unaffected by the addition of gain learning. Whenever the extrapolation time is learned, performance is better than the corresponding baseline level (case a) at the two lowest frequencies and worse than baseline at the higher frequencies. Tracking accuracy is poorest at .4 cycles per second, the point at which the extrapolation time learning process was least stable. Not surprisingly, performance with the doubled signal amplitude is uniformly worse than with the standard amplitude signal except at the highest frequencies where performance was comparable to that obtained in the other extrapolation time learning situations.

#### 2.4.3 Conclusions

These results indicate that the model performance is reasonable for most situations. However, some unexpected, but unmistakable, trends are evident. The fact that the learned model parameters do not stabilize in some situations is disturbing, since it is difficult to conceive of a corresponding feature in human tracking performance. However, large estimated gain values correspond to small knob adjustments. Thus, the "unstable" gain values obtained at high frequencies tend to dampen the knob turning responses, which would have been more erratic without gain learning. When the signal frequency is slow enough to permit fairly successful tracking, the gain learning model behaves quite reasonably, converging near the actual system gain.

The extrapolation time learning exhibits some suspicious characteristics with unstable learning at frequencies above .2828 cycles per second and with larger rather than smaller times being obtained as the frequencies increase. Since, however, it is not clear how people extrapolate the signal in such a situation, the trend may, in fact, constitute a valid description of a real component of human tracking behavior.

Although detailed time plots of signal and track have not been included because of their low information content, it should be noted that extrapolation learning, either alone or with gain learning, produced overshoots at signal inflections and definite compensation for the operator's tendency to lag behind the signal. Gain learning alone did



FIGURE 3. ROOT MEAN SQUARED ERROR VS. SIGNAL FREQUENCY



FIGURE 4. PERCENT TIME ON TARGET VS. SIGNAL FREQUENCY

not. Gain learning could have been expected to generate such features if the learned gain value were smaller than the actual system gain, but that did not happen reliably in any of the situations that were simulated.

#### 2.4.4 Recommendations

Before further development of our model is undertaken, a systematic comparison of the model predictions with the performance of real human operators should be made. The experiments that we have simulated should be a good starting place for such a study. In addition, it would be desirable to compare both human and model performance with signals more complex than a simple sine wave. In this context, it would be valuable to study the extent to which the model could be characterized as a linear system. Such investigations will probably result in modifications to the model, especially to the extrapolation learning component, but without such studies, it is impossible to determine what changes are necessary.

### 3. STUDIES OF WORKLOAD

Tasks that are vulnerable to degradation by interruption could reasonably be said to impose a greater workload on the human operator. therefore, if the workload requirement of a continuous task like tracking could be characterized by a performance function that related performance when the primary task is interrupted for any given percentage of time to uninterrupted tracking performance, a major step toward defining a general workload metric would have been achieved. If, however, the performance function was dependent on the particular interruption schedule, even though the total amount of interruption time was fixed, then it would be much less useful in assessing workload. The studies to be described in this section were undertaken to determine the feasibility of a general workload metric using HOS's ability to simulate interrupted tracking tasks. While the validity of these studies are, of course, dependent upon a validation of the HOS tracking model, the studies do provide interesting insight into the workload metric issue and a solid set of performance data for eventual comparison with experimental data.

Since there is no a priori way to determine which might be most sensitive to the factors being examined, both root-mean-squared error (RMSE) and percent time-on-target (PTOT) were used as measures of performance. For PTOT, five different criteria of "on-target" were used to insure that any real effects would be detected.

The specific code that implements the tracking model and other input data required by these studies is listed in Appendix II.\* Some minor modifications were made to HOS in order to simplify the required data processing. These modifications are discussed in Appendix III. In order to compute the performance measures reported in these studies, a special purpose data analysis program (called EVAL) was written. That program is described and listed in Appendix IV. Each tracking trial in the four studies to be described lasted for 220 simulated seconds. Performance data were collected only over the last 200 seconds in order to avoid transient effects. The parameters used for all of the workload studies to be reported are:

$$\theta = .05$$

$$\delta = .02$$

$$\phi = .05$$

and, except for Study 4,

$$\Delta = 800 \text{ units.}$$

---

\* The code and data used for the parametric studies described in Section 2 are listed in Appendix I.

### 3.1      Study 1 -- The Effects of Task Difficulty and Time-Sharing on Tracking Performance

This study examined the sensitivity of the HOS tracking model to changes in signal characteristics and secondary task loading. It was expected that as the frequencies and amplitudes of the component sine waves that form the signal became faster and larger, respectively, performance should degrade. Similarly, it was expected that performance would be worse with secondary task interruptions than without them. These hypotheses were tested by requiring the simulated operator to track three different signals both with and without the secondary task for a total of six simulation trials. The three signals were the composite of three sine waves of different frequencies and amplitudes, as shown below:

|          | AMP  | FREQ (Hz) | AMP  | FREQ (Hz) | AMP  | FREQ (Hz) |
|----------|------|-----------|------|-----------|------|-----------|
| Signal 1 | 2000 | 1/10      | 1400 | 1/7       | 800  | 1/4       |
| Signal 2 | 4000 | 1/20      | 2800 | 1/14      | 1600 | 1/8       |
| Signal 3 | 4000 | 1/10      | 2800 | 1/7       | 1600 | 1/4       |

Thus, all three signals had the same basic shape. Signal 1 differed from Signal 3 only by having the component amplitudes reduced by a factor of two and Signal 2 differed from Signal 3 by having the component frequencies reduced by a factor of two.

The results for Study 1 are presented in Table 3. They indicate definite performance degradation when either the frequency or the amplitude of the signal increases or when secondary task interruptions occur. Nothing further can be concluded from these results about the relationship between performance and signal characteristics since only two sets of frequencies and amplitudes were used.\*

The data in Table 3 clearly indicate that when examining the performance decrements caused by interruptions to the primary task, one must be aware of the implications of using a specific performance measure. For example, if one uses the differences between displayed scores as the measure of performance decrement, then, based on RMSE, performance on Signal 1 is least degraded by introducing interruptions and performance on Signal 3 is most degraded. If differences between PTOT are taken, though, exactly the opposite results are obtained. If the ratios of scores rather than the differences are used, yet another ordering is obtained and if the PTOT scores are converted to "time off target" scores still another ordering. One is forced to conclude, therefore,

---

\* However, the studies described in Section 2 examined the relationship between model performance and signal characteristics without any secondary task interruptions in more detail.

TABLE 3. RESULTS OF STUDY 1

|               |                    | TASK ALTERNATION<br>PERIOD'S DURATION |       |       |                    |      |      | SUMMARY OF ANALYSIS OF CRITERION MEASURES |      |      |                               |     |  |
|---------------|--------------------|---------------------------------------|-------|-------|--------------------|------|------|-------------------------------------------|------|------|-------------------------------|-----|--|
| SIGNAL<br>NO. | TOTAL %<br>OF TIME |                                       |       |       | INTERNAL<br>LIMITS |      |      | RMS<br>ERROR                              |      |      | PERCENT TIME-ON-TARGET; SIZE: |     |  |
|               |                    | TOTAL                                 | TRACK | DELAY |                    |      |      | 1600                                      | 800  | 500  | 300                           | 100 |  |
| 1             | 100.0              | 6.0                                   | 6.0   | .0    | 800                | 455  | 99.4 | 93.7                                      | 74.7 | 48.9 | 17.5                          | 396 |  |
|               | 1                  | 60.0                                  | 10.0  | 4.0   | 800                | 1417 | 81.6 | 65.1                                      | 44.4 | 28.7 | 9.7                           | 173 |  |
| 2             | 100.0              | 6.0                                   | 6.0   | .0    | 800                | 562  | 99.9 | 82.7                                      | 56.3 | 35.8 | 13.2                          | 215 |  |
|               | 2                  | 60.0                                  | 10.0  | 4.0   | 800                | 2625 | 71.5 | 59.0                                      | 40.2 | 24.3 | 8.4                           | 155 |  |
| 3             | 100.0              | 6.0                                   | 6.0   | .0    | 800                | 910  | 91.7 | 71.5                                      | 50.4 | 32.8 | 11.3                          | 625 |  |
|               | 3                  | 60.0                                  | 10.0  | 4.0   | 800                | 3357 | 66.5 | 51.2                                      | 37.7 | 23.9 | 8.1                           | 309 |  |

that any scaling of task difficulty according to the size of the performance decrement produced by introduction of a secondary task is arbitrary and must be used with caution, if at all.

### 3.2 Study 2 -- The Effect of Length of "Alternation Period" on Primary Task Performance

There are many reasons why one would expect tracking performance to vary when the percentage of interruption time is held constant and the specific time for each primary and secondary task execution is varied. For one thing, as the length of the interruption increases, the farther (on the average) the signal is likely to have drifted from the last "acquired" position. However, increasing primary task execution time gives the operator more time to make corrections once he returns to the primary task. Therefore, it is more likely that he will be able to resume satisfactory tracking of the signal. Returning to stable performance after an interruption also requires that the two component learning processes and error compensation have time to stabilize. Thus, the recovery time is likely to be dependent on the learning rates. Therefore, varying the alternation period between tasks could lead to either improved, unchanged or degraded performance depending on the choice of signal characteristics and model parameters.

Study 2 addresses these questions. A single signal was used for all trials (Signal 3 from Study 1) and six different alternation periods were examined. In each case, sixty percent of the time was spent on the primary task and forty percent on the secondary task. The length of the primary-secondary alternation cycle was varied from 2.5 seconds to 15 seconds in 2.5 second increments.

The results of this study are shown in Table 4 and plotted in Figure 5. Both RMSE and PTOT are negatively accelerated functions. All PTOT scores indicate that the best performance for the particular combination of model and signal parameters used was obtained at an alternation period of 10 seconds, although the drop-off at longer periods is very slight. It is not clear whether RMSE would continue to rise at alternation periods longer than those examined but it definitely increases over the lower part of its range and is near its maximum value at 10 seconds. Thus, the alternation period which PTOT indicates as optimal is clearly sub-optimal by the RMSE measure.

Tracking performance degrades at the beginning of an interruption and recovers after an interruption. Figure 6 shows the degradation and recovery time trajectories as measured by PTOT with a criterion tolerance of 1600 units. The envelopes marked "recovery" and "deterioration" are the envelopes of the averaged second-by-second scores for the six trials in the study. The dashed curves are "eyeball" fits based on the two recovery points (i.e., the average of the first second and the average of the second second) plotted for each alternation period. The trajectories indicate that after two seconds of time on the primary task, recovery is virtually complete. Recovery tends to be slower at the ten-second alternation period than at other periods, raising further doubts about the PTOT maximum noted above.

TABLE 4. RESULTS OF STUDY 2

| SUMMARY OF ANALYSIS OF CRITERION MEASURES |                 |                 |       |                 |                               |                        |                 |                        |         |
|-------------------------------------------|-----------------|-----------------|-------|-----------------|-------------------------------|------------------------|-----------------|------------------------|---------|
| TASK ALTERNATION PERIOD'S DURATION        |                 |                 |       |                 | PERCENT TIME-ON-TARGET: SIZE: |                        |                 |                        |         |
| TRACKING                                  |                 | INTERNAL LIMITS |       |                 | RMS ERROR                     |                        | CONTROL ADJUSTS |                        |         |
| SIGNAL NO.                                | TOTAL % OF TIME | TOTAL TRACK     | DELAY | INTERNAL LIMITS | RMS ERROR                     | PERCENT TIME-ON-TARGET | ADJUSTS         | PERCENT TIME-ON-TARGET | ADJUSTS |
| 3                                         | 60.0            | 2.5             | 1.0   | 800             | 3004                          | 42.7                   | 31.0            | 20.5                   | 12.5    |
| 3                                         | 60.0            | 5.0             | 2.0   | 800             | 3243                          | 59.9                   | 42.1            | 27.6                   | 16.3    |
| 3                                         | 60.0            | 7.5             | 4.5   | 800             | 3613                          | 65.9                   | 44.5            | 30.3                   | 18.8    |
| 3                                         | 60.0            | 10.0            | 6.0   | 800             | 3357                          | 66.5                   | 51.2            | 37.7                   | 27.9    |
| 3                                         | 60.0            | 12.5            | 7.5   | 800             | 3523                          | 65.7                   | 49.7            | 33.4                   | 20.7    |
| 3                                         | 60.0            | 15.0            | 9.0   | 800             | 3713                          | 65.2                   | 49.0            | 34.3                   | 21.5    |



FIGURE 5. ALTERNATION PERIOD VS. RMS ERROR AND TIME ON TARGET



**FIGURE 6. SECONDS FROM INTERRUPTION OF TRACKING VS. TIME ON TARGET**

### 3.3 Study 3 -- The Effect of Interruption Time on Tracking Performance

If the time spent working on the primary task after each interruption is fixed and only the duration of interruptions is allowed to vary, then longer interruptions should result in poorer overall tracking performance. Study 3 examines this effect. Signal 3 of Study 1 was again used for all trials. For each trial, the simulated operator was permitted to work for six seconds on the primary task without interruption. The length of the interruptions were varied from zero to six seconds in one second increments so that the percentage of time spent on the primary task varied from 100 to 50 percent.

The results for this study are listed in Table 5 and plotted in Figure 7. The lines in Figure 7 are least-square fits. As is clear, both RMSE and PTOT vary linearly with the percentage of time on the primary task. It is interesting to note that the y-intercepts of the PTOT fits are approximately the time-on-target frequencies that would be expected if the operator spent no time on the tracking task and if the signal values were uniformly distributed over the signal range (1600 units to 18,400 units) while the track element was fixed at some value within that range.\*

### 3.4 Study 4 -- The Effect on Tracking Performance of the Operator's Criterion of Acceptable Performance

The effort that an operator will expend in performing a task is clearly dependent on what he considers acceptable performance to be. If the task is such that the operator has difficulty achieving acceptable performance, then we would expect him to devote all of his available effort to the task or else reassess his objectives. If acceptable performance can be achieved without devoting full effort to the task, then some of his reserve capacity might be available for another task. Therefore, if we were to give an operator a series of tracking tasks, each with a narrower criterion of acceptable performance, performance should improve until the criterion became smaller than the attainable performance. When too narrow a criterion was used, performance might degrade simply because the narrow criterion kept the operator from tracking the lower frequency. Such experiments would be virtually impossible to perform with a real human operator, since there is no reliable way to determine or control the internal criterion the operator is using. With HOS, however, the criterion of acceptable performance can be directly manipulated and its effects on tracking performance observed.

Study 4 examines the effects of varying the operator's internal criterion of successful performance for two different interruption cycles. The operator's criterion was varied from 0 to 800 in 200 unit increments. The two interruption cycles were six seconds of tracking

---

\* The expected PTOT values are 19.0 percent for a criterion of 1600, 9.5 percent for a criterion of 800, 6.0 percent for a criterion of 500, 3.6 percent for a criterion of 300, and 1.2 percent for a criterion of 100.

TABLE 5. RESULTS OF STUDY 3

|                 |                    | SUMMARY OF ANALYSIS OF CRITERION MEASURES |       |       |                    |      |      |              |      |      |                    |     |  |
|-----------------|--------------------|-------------------------------------------|-------|-------|--------------------|------|------|--------------|------|------|--------------------|-----|--|
|                 |                    | PERCENT TIME-ON-TARGET; SIZE:             |       |       |                    |      |      |              |      |      |                    |     |  |
|                 |                    | TASK ALTERNATION<br>PERIODS DURATION      |       |       | INTERNAL<br>LIMITS |      |      | RMS<br>ERROR |      |      | CONTROL<br>ADJUSTS |     |  |
| TRACKING<br>NO. | TOTAL %<br>OF TIME | TOTAL                                     | TRACK | DELAY |                    |      |      | 1600         | 800  | 500  | 300                | 100 |  |
| 3               | 100.0              | 6.0                                       | 6.0   | .0    | 800                | 910  | 91.7 | 71.5         | 50.4 | 32.8 | 11.3               | 625 |  |
| 3               | 85.7               | 7.0                                       | 6.0   | 1.0   | 800                | 1582 | 83.2 | 64.7         | 43.8 | 27.6 | 9.5                | 402 |  |
| 3               | 75.0               | 8.0                                       | 6.0   | 2.0   | 800                | 2109 | 77.3 | 58.3         | 40.9 | 25.4 | 9.0                | 362 |  |
| 3               | 66.7               | 9.0                                       | 6.0   | 3.0   | 800                | 3083 | 70.4 | 52.1         | 36.2 | 21.5 | 6.9                | 321 |  |
| 3               | 60.0               | 10.0                                      | 6.0   | 4.0   | 800                | 3326 | 66.8 | 51.5         | 37.9 | 24.0 | 8.2                | 309 |  |
| 3               | 54.5               | 11.0                                      | 6.0   | 5.0   | 800                | 3968 | 59.2 | 44.8         | 30.9 | 18.4 | 6.0                | 243 |  |
| 3               | 50.0               | 12.0                                      | 6.0   | 6.0   | 800                | 4318 | 56.9 | 42.4         | 30.5 | 18.5 | 6.2                | 220 |  |



**FIGURE 7. PERCENT TIME ON PRIMARY TASK VS.  
PERCENT TIME ON TARGET AND RMS ERROR**

followed by a two second interruption and six seconds of tracking followed by a four second interruption. Signal 3 from Study 1 was again used for all trials.

The results of this study are shown in Table 6. Every decrease in the criterion produces an increase in the number of control adjustments but the performance measures remain essentially the same. Neither RMSE nor PTOT for the two largest target sizes show any systematic changes. However, PTOT for the three smallest target sizes (i.e., 500, 300, and 100 units) do show an improvement in tracking performance with each narrowing of the criterion and interruption cycle time.

The findings of this study are interesting in that they indicate how the apparent workload imposed by a tracking task can be changed when the operator adjusts his internal criterion of acceptable performance. When there are no secondary task interruptions, the operator may achieve acceptable performance with a relatively loose criterion tolerance. When the tracking task is periodically interrupted by the demands of other tasks, however, the operator may have to narrow his criterion in order to maintain performance. Of course, if it was the operator's responsibility to schedule the interruption sequence, he might relax his criterion of acceptable performance in order to minimize adjustment time. He could then work on the other tasks, thereby keeping each tracking interruption brief. Therefore, while it is apparent that the operator's workload increases whenever his criterion is narrowed (other things being equal), these studies indicate that measures like RMSE and PTOT might not show any change in performance.

TABLE 6. RESULTS OF STUDY 4

| TASK ALTERNATION<br>PERIOD'S DURATION |                    |       |       |       |                    | SUMMARY OF ANALYSIS OF CRITERION MEASURES |      |      |      |      |      |                    |
|---------------------------------------|--------------------|-------|-------|-------|--------------------|-------------------------------------------|------|------|------|------|------|--------------------|
| SIGNAL<br>NO.                         | TOTAL %<br>OF TIME | TOTAL | TRACK | DELAY | INTERNAL<br>LIMITS | RMS<br>ERROR                              | 1600 | 800  | 500  | 300  | 100  | CONTROL<br>ADJUSTS |
| 3                                     | 75.0               | 8.0   | 6.0   | 2.0   | 800                | 2109                                      | 77.3 | 58.3 | 40.9 | 25.4 | 9.0  | 362                |
| 3                                     | 75.0               | 8.0   | 6.0   | 2.0   | 600                | 2041                                      | 78.6 | 62.3 | 45.6 | 29.8 | 10.9 | 442                |
| 3                                     | 75.0               | 8.0   | 6.0   | 2.0   | 400                | 2123                                      | 78.3 | 60.2 | 44.1 | 30.0 | 12.1 | 511                |
| 3                                     | 75.0               | 8.0   | 6.0   | 2.0   | 200                | 1999                                      | 79.7 | 61.4 | 47.9 | 32.0 | 11.0 | 591                |
| 3                                     | 75.0               | 8.0   | 6.0   | 2.0   | 0                  | 1923                                      | 78.6 | 62.1 | 49.6 | 35.9 | 12.9 | 696                |
| 3                                     | 60.0               | 10.0  | 6.0   | 4.0   | 800                | 3357                                      | 66.5 | 51.2 | 37.7 | 23.9 | 8.1  | 309                |
| 3                                     | 60.0               | 10.0  | 6.0   | 4.0   | 600                | 3224                                      | 64.2 | 48.0 | 35.2 | 22.4 | 7.5  | 343                |
| 3                                     | 60.0               | 10.0  | 6.0   | 4.0   | 400                | 3228                                      | 66.5 | 51.4 | 40.0 | 25.9 | 9.2  | 383                |
| 3                                     | 60.0               | 10.0  | 6.0   | 4.0   | 200                | 3111                                      | 66.5 | 50.3 | 39.7 | 27.9 | 10.3 | 446                |
| 3                                     | 60.0               | 10.0  | 6.0   | 4.0   | 0                  | 3393                                      | 67.4 | 52.1 | 42.0 | 30.9 | 11.7 | 569                |

4. CONCLUSION

The parametric studies in Section 2 and the workload studies in Section 3 demonstrate that the HOS tracking model exhibits the types of performance features that would be expected of a human operator. Some of its features were unexpected but no totally implausible findings were obtained. The instability of the learning process for some parameter values and for some signal characteristics is disturbing and deserves further investigation. The results obtained in these studies deserve to be replicated with real human operators in order both to validate the model and to corroborate our findings. Whether or not such research indicated that modifications to the tracking model were necessary, the potential usefulness of HOS in the assessment of the workload characteristics of crew station designs has been clearly demonstrated.

#### REFERENCES

- Allport, D.A., Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 1968, 59, pp. 395-406.
- Analytics, Inc., The Human Operator Simulator. Volume II: HOS User's Guide, TR 1181-A, Analytics, Inc., Willow Grove, Pennsylvania, October 1975.
- Baron, J., The threshold of successiveness. Perception and Psychophysics, 1971, 10 (4A), pp. 201-207.
- Bush, R.R. and Mosteller, F., Stochastic Models for Learning, Wiley (New York), 1955.
- Crossman, E.R.F.W., The information-capacity of the human motor-system in pursuit tracking. The Quarterly Journal of Experimental Psychology, 1960, 12, pp. 1-16.
- Fitts, P.M. and Posner, M.I., Human Performance, Brooks/Cole Publishing Co. (Belmont, California), 1967.
- Hick, W.E., The discontinuous functioning of the human operator in pursuit tasks. The Quarterly Journal of Experimental Psychology, 1948, 1, pp. 36-51.
- Kristofferson, A.B., Attention and psychophysical time. Acta Psychologica, 1967, 27, pp. 93-100.
- Linton, P., Jahns, D.W., and Chatelier, Pa., Operator workload assessment model: An evaluation of a VF/VA-V/STOL system. Presented at NATO/AGARD Aerospace Medical Panel Specialists Meeting, Kolin, FRG, 18-22 April 1977.
- Murphy, J.V. and Gurman, B.S., The integrated cockpit procedure for identifying control and display requirements of aircraft in advanced time periods. In: Guidance and Control Displays. NATO/AGARD Conference Proceedings CP-96, 1972.
- Norman, M.F., On the linear model with two absorbing barriers. Journal of Mathematical Psychology, 1968, 5 (2), pp. 225-241.
- North, J.D., Lomnicki, Z.A., and Zaremba, S.K., The design and interpretation of human control experiments. Ergonomics, 1958, 1, pp. 314-327.
- Siegel, A.I. and Wolf, J.J., A model for digital simulation of two-operator man-machine systems. Ergonomics, 1962, 5, pp. 557-572.

Strieb, M.I., Glenn, F.A., Fisher, C., and Fitts, L., The Human Operator Simulator. Volume VII: LAMPS Air Tactical Officer Simulation, TR 1200, Analytics, Inc., Willow Grove, Pennsylvania, November 1976.

Stroud, J.M., The fine structure of psychological time. In: H. Quastler (ed.), Information Theory in Psychology, Free Press (New York), 1955.

APPENDIX I  
HOPROC CODE AND HOS INPUTS FOR PARAMETRIC STUDIES

**APPENDIX I**  
**HOPROC CODE AND HQS INPUTS FOR PARAMETRIC STUDIES**

This appendix contains a listing of the HOPROC code and HOS inputs used in the parametric studies presented in Section 2. A full discussion of HOPROC and HOS data card formats is presented in Volume II of this series, the HOS Users' Guide.

HQS TEST CASE - GENERAL TRACKING MODEL

SYSTEM SETTING SECTION

STATE SECTION

ARGUMENT SECTION

XDISP  
XCONTI

DISPLAY SECTION

TRACK SCALE FEET  
SIGNAL SCALE FEET  
SECONDARY

CONTROL SECTION

START MOMENTARY  
STNE-WAVE-GENERATOR MOMENTARY  
KNOB

SYMBOL SECTION

OPERATOR FUNCTIONS  
 GO TO 10000  
 2000 CONTINUE  
 $G = FST(ONEW GATNS)$   
 $TF (G.GT.0.)$  GO TO 2  
 $PTIMF = STIMF + 10.$   
 $TF (NG.IF.1)$  GO TO 1  
 $AVG = GSUM / NG$   
 $SD = 0.$   
 $VAR = (GSD - NG*AVG*AVG) / (NG - 1.)$   
 $TF (VAR.IF.0.)$  GO TO 1  
 $SD = SORT(VAR)$   
 1 CONTINUE  
 $WRITE (6,2000) AVG,SD,NG$   
 2000 FORMAT (6X,\*FOR COMPLETED PHASE MEAN GATM =\*,F10.2,4Y,8SD =\*,  
 $+ F10.2,4X,*OBSERVATIONS =*,I5)  
 SDG = 0.  
 $TF (NG.IF.1)$  GO TO 3  
 $VAR = (NG-1.)*VAR/NG$   
 $TF (VAR.IF.0.)$  GO TO 3  
 $SDG = SORT(VAR)$   
 $AVT = TSUM/NG$   
 $SDT = 0.$   
 $VAR = TSD/NG - AVT*AVT$   
 $TF (VAR.IF.0.)$  GO TO 3  
 $SDT = SORT(VAR)$   
 $AVGT = TGSUM/NG$   
 $COR = (AVGT-AVG*AVT) / (SDG*SDT)$   
 $PFG = (AVGT-AVG*AVT) / VAR$   
 3 CONTINUE  
 $WRITE (6,2003) COR,PFG,AVT,SDG,SDT$   
 2003 FORMAT (10X,*COR,C0FFF. =*,F8.5,5X,*PFG,C0FFF. =*,F10.4,5X,  
 $+ *AVT =*,F10.2,5X,*SDG =*,F10.2,5X,*SDT =*,F10.2)  
 $NG = 0$   
 $GSUM = GSD = 0.$   
 $TSUM = TSD = TGSUM = 0.$   
 $G = FST(9) = 200.$   
 2 CONTINUE  
 $XT = TFRFF(4) - STIMF$   
 $TF (XT.GT.0.)$  CALL RANKER(XT)  
 $PF = CF$   
 $ID = PTRACK>$   
 $KD = PSTGNAL>$   
 $CF = FST(ID) - FST(KD)$$$

```

AVGERRP = .9 * AVGERRP + .1 * ARS(CF)
IF (AVGERRP.LT.SMALL) AVGERRP=SMALL
THETA = ATHFT * ARS(CF) / AVGERRP
IF (THETA.GT..9) THETA=.9
IF (THETA.LT.0.) THETA=0.
XNG = 1.0
IF (PF.FD.0..AND.CF.FD.0.) GO TO 8
IF ((CF.GF.PF.AND.PF.GF.0.).OR.(CF.LF.PF.AND.PF.LF.0.)) GO TO 6
XNG=1.0-CF/PF
IF (XNG.GT.2.) XNG = 2.
IF (XNG.LT..5) XNG = .5
GO TO 8

6   XPN = RANF(DUMMY)
IF (XPN.GT..5) XNG=ADEFLT
IF (XPN.LT..5) XNG=SDFLT
7   G = THETA*G*XNG + (1.0-THETA)*G
IF (STIME.LT.RTIME) GO TO 4
GSUM = GSUM + G
GSD = GSD + G*G
TSUM = TSUM + STIME
TSO = TSO + STIME*RTIME
TGSUM = TGSUM + G*RTIME
NG = NG + 1
CONTINUE
"NEW GATIN" = G

GN = FST("NEW GATIN")
IF (GN.LT.SMALL) GN=SMALL
"KNOR CHANGE" = (DEFTRF("TRACK") - FST("TRACK"))/GN

READ (5,500) THETA,DEFITA,FXRATE,DELAY
500 FORMAT (4F8.3)
WRITE (6,501) THETA,DEFITA,FXRATE,DELAY
501 FORMAT (///* PARAMETERS FOR THIS RUN ARE AS FOLLOWS:/* THETA =*.+
* FR.3/* DEFITA =*FR.3/* FXRATE =*,FR.3/* DELAY =*.FR.3)
ADEFLT = 1.0 + DEFITA
SDFLT = 1.0 / ADEFLT
ATHFT = THETA
AVGERRP = 0.
"PARAMETERS" = THETA

TD = CSTGMAI>
FT = FSTIME(TD) - PESTIM(TD)
IF (FT.LT.SMALL) FT=SMALL
KD = CXFTIME>
RTIME = FST(KD)
YY = FST(TD)+(FST(TD)-PEST(TD))*(STIME+RTIME-FSTIME(TD))/FT
"EXVAL" = XX

```

```

TF (FST(12).GT.0.) GO TO 12
PTIME = STTIME + 10.
TF (NX.LF.1) GO TO 11
AVG = YSUM / NX
SD = 0.
VAR = (XSD - NX*AVG*AVG) / (NX - 1.)
TF (VAR.LF.0.) GO TO 11
SD = SQRT(VAR)
11 CONTINUE
WRITF (6,8001) AVG,SD,NX
8001 FORMAT (6X,*FOR COMPLETED PHASE MEAN EXTIME =*,F10.4,4X,*SD =*,
* F10.4,4X,*OBSERVATIONS =*,I5)
SDX = 0.
TF (NX.LF.1) GO TO 13
VAR = (NX-1.)*VAR/NX
TF (VAR.LF.0.) GO TO 13
SDX = SQRT(VAR)
AVT = TTSUM/NX
SDT = 0.
VAR = TTSO/NX - AVT*AVT
TF (VAR.LF.0.) GO TO 13
SDT = SQRT(VAR)
AVXT = TXSUM/NX
COR = (AVXT-AVG*AVT)/(SDX*SDT)
PFG = (AVXT-AVG*AVT)/VAR
13 CONTINUE
WRITF (6,8003) COR,PFG,AVT,SDX,SDT
NX = 0
YSUM = XSD = 0.
TTSUM = TTSO = TXSUM = 0.
FST(12) = .1
12 CONTINUE
KD = #EXTIME#
TD = #TRACK#
JD = #STGMAI#
DS = CS
CS = FST(JD)
CFRP = FST(TD) - FST(JD)
EXT = FST(KD)
TF (AVGCFRP.LT.SMALL) AVGCFRP = SMALL
XLR = FXRATE*CFRP/AVGCFRP
TF (XLR.GT..?) XLR=.?
TF (XLR.LT.-.?) XLR=-.?
TF (CS.GT.DS) XLR=-XLR
X = (1.+XLR)*EXT
TF (STTIME.LT.PTIME) GO TO 14
YSUM = XSUM + X
XSD = XSD + X*X
TTSUM = TTSUM + STTIME
TTSO = TTSO + STTIME*STTIME
TXSUM = TXSUM + X*STTIME
NX = NX + 1
CONTINUE
#EXTIME# = X

```

```

CALL RANKER(DELAY)
TNOPRO = 1
"SECONDARY DELAY" = DELAY

TT = STAC1(R)
X = FST(TT)
"TAACUPH" = X

HARDWARE FUNCTIONS
GO TO 10000
9000 CONTINUE
T = @KNOR>
IF(TERFF(TWANT)-STIME.EQ.0)RETURN
"RATE1"=(DEFTRF(T)-FST(T))/(TERFF(TWANT)-STIME)

TM = MODE1 (@KNOR>)
GATM = PAMA(TM,9)
"RATE2" = GATM*RATE1

T=@XCHTI>
CALL PFF(T)
"UPDATE1"=RATE(T)*(STIME-TIME(T))

T=@XCHTI>
CALL PFF(T)
J=@XTSP>
CALL PFF(J)
"UPDATE0"=RATE(J)*(STIME-TIME(T))

READ(5,100) AMP,FREQ,OFFSET
100 FORMAT (3(F8.2,1X))
WRITE (6,101) AMP,FREQ,OFFSET
101 FORMAT (* AMP =*,F8.2/* FREQ =*,F8.2/* OFFSET =*,F8.2//)
"SIINF=WAVEFACTORS"=]

KK = STLAST/60.
LL = STIME/60.
TF (KK,F0,LL) GO TO 200
LL = LL + 1
WRITE (6,2000) LL,FST(12),FST(9)
2000 FORMAT (1X,*BEGINNING PHASE *,T1.4X,*EXTIME =*,F10.4,6X,
+ *GATM =*,F10.2)
FREQ = FREQ*1.41421356
WRITE (6,2001) FREQ
2001 FORMAT (1X,*NEW SIGNAL FREQUENCY =*,F12.8)
FST(9) = FST(12) = -1.
200 CONTINUE
STLAST = STIME
"NEW SIGNAL" = AMP*SIN(STIME*FREQ) + OFFSET

```

HARDWARE PROCEDURES

DEFINE PROCEDURE TO SIMULATE START.

FND: DETERMINE SINE-WAVE-FACTORS.

DEFINE PROCEDURE TO SIMULATE SINE-WAVE-GENERATOR.

MID: DETERMINE NEW-SIGNAL.

SET SIGNAL TO NEW-SIGNAL.

DEFINE PROCEDURE TO SIMULATE KNOB.

START: DETERMINE RATE1.

SET RATE OF KNOB TO RATE1.

DETERMINE RATE2.

SET RATE OF TRACK TO RATE2.

MIDEND: COMPUTE-UPDATE-DC USING TRACK, KNOB.

FND: SET RATE OF KNOB TO 0.

DEFINE COMPUTE-UPDATE-DC USING XDISP,XCNTL.

DETERMINE UPDATEC.

INCREASE XCONT BY UPDATEC.

DETERMINE UPDATED.

INCREASE XDISP BY UPDATED.

OPERATOR PROCEDURES

DEFINE MISSION.

COMPUTE PARAMETERS.

DEPRESS START.

DEPRESS STNF-WAVE-GENERATOR.

SET LIMITS OF TRACK TO TACCR.

MONITOR TRACK.

MONITOR SECONDARY.

IF TIME OF SIMULATION IS LESS THAN 10000 SECONDS THEN WAIT.

DEFINE PROCEDURE TO ADJUST TRACK.

READ SIGNAL.

COMPUTE EXTIME.

COMPUTE EXVAL.

SET TRACK TO RESULT.

READ TRACK.

IF TRACK IS WITHIN LIMITS THEN GO TO 1 NOW.

COMPUTE NEW-GATN.

COMPUTE KNOB-CHANGE.

TURN KNOB BY RESULT.

COMPUTE TACCR.

1:

DEFINE PROCEDURE TO ADJUST SECONDARY.

COMPUTE SECONDARY-DELAY.

|                      |                                                    |
|----------------------|----------------------------------------------------|
| SYSTEM               | PURSUIT TRACKING MODEL                             |
| DISPLAY SECTION      |                                                    |
| TRACK                | 1 0.1 1 12 12 12 10000.                            |
| SIGNAL               | 4 0 1 1 12 12 12 0                                 |
| SECONDARY            | 1 0 1 1 0 0 0 0                                    |
| CONTROL SECTION      |                                                    |
| START                | 2 0 1 1 -15 12 0 0                                 |
| SINE WAVE GENERATOR  | 5 0 1 1 -12 12 0 0                                 |
| KNOB                 | 3 0 1 1 -5 12 0 0                                  |
| OPERATOR FUNCTIONS   |                                                    |
| EXTIME               | 2 0 1 1 0 .1                                       |
| FXVAL                | 2 0 1 1 0 0                                        |
| KNOB CHANGE          | 2 0 1 1 0 0                                        |
| NEW GATM             | 2 0 1 1 0 200.                                     |
| PARAMETERS           | 2 0 1 1 0 1.0                                      |
| SECONDARY DELAY      | 2 0 1 1 0 0                                        |
| TACCTR               | 2 0 1 1 0 0                                        |
| PROCEDURE SECTION    |                                                    |
| MISSION              | 1.0                                                |
| TRACK                | 1.0                                                |
| SECONDARY            | 1.0                                                |
| MODEL SPECIFICATIONS |                                                    |
| MODEL 1              | 4 1 500 .015 2.0                                   |
| MODEL 2              | 7 3 0 .01 1. 0 0 .01                               |
| MODEL 3              | 9 2 1 0 2. 0 0 300 10 200                          |
| MODEL 4              | 4 1 500 .015 5.0                                   |
| MODEL 5              | 7 4 5 .01 1.0 0 0 999.                             |
| END OF MODEL SPECS   |                                                    |
| HUMAN OPERATOR SPECS |                                                    |
| EYES                 | 12 0 0 .01 33 48                                   |
| HANDS                | 6 6 -18 -6 5 -18                                   |
| SHOULDERS            | 6 0 -6 -6 0 -6                                     |
| END OF HUMAN SPECS   |                                                    |
| INTERRUPTION DATA    | 0.0 6.0                                            |
| PRINT PARAMETERS     | .07 .9 .01 ? .? 1. .01 5. 5. 10. 10. 10. 3. 3. .01 |
| PLOT ASTERISKS       |                                                    |
| PRINT MESSAGES       |                                                    |
| TIMEPOINT ENDPOINT   | 181                                                |
| R                    |                                                    |
| .0                   | .0                                                 |
| 4000.0               | 2.513272 .05                                       |
| #                    | 10000.0                                            |

**APPENDIX II**  
**HOPROC CODE AND HOS INPUTS FOR WORKLOAD STUDIES**

APPENDIX II  
HOPROC CODE AND HOS INPUTS FOR WORKLOAD STUDIES

This appendix contains a full listing of the HOPROC code and HOS inputs used in the workload studies described in Section 3 of this report. A full discussion of HOPROC and HOS data card formats is presented in Volume II of this series, the HOS Users' Guide.

|                               |                                        |
|-------------------------------|----------------------------------------|
| SYSTEM<br>SETTING SECTION     | HOS TEST CASE - GENERAL TRACKING MODEL |
| STATE SECTION                 |                                        |
| ARGUMENT SECTION              |                                        |
| XDISP<br>XCONT                |                                        |
| DISPLAY SECTION               |                                        |
| TRACK SCALE FFFF              |                                        |
| SIGNAL SCALE FFFF             |                                        |
| SECONDARY                     |                                        |
| CONTROL SECTION               |                                        |
| START MOMENTARY               |                                        |
| STNF-WAVE-GENERATOR MOMENTARY |                                        |
| KNOB                          |                                        |
| SYMBOL SECTION                |                                        |

OPERATOR FUNCTIONS  
 GO TO 10000  
 2000 CONTINUE  
 G = FST(1NEW.GATN)  
 XT = TDEFF(4) - STIME  
 IF (XT.GT.0.) CALL RANKER(XT)  
 PF = CF  
 TD = #TRACKS  
 KD = #SIGMA >  
 CF = FST(TD) - FST(KD)  
 TF (TDLAY.EQ.0.) GO TO 9  
 AVGFRP = .9 \* AVGFRP + .1 \* ABS(CF)  
 TF (AVGFRP.LT.SMALL) AVGFRP=SMALL  
 THETA = ATHTA \* ABS(CF) / AVGFRP  
 TF (THETA.GT..9) THETA=.9  
 TF (THETA.LT.0.) THETA=0.  
 XNG = 1.0  
 TF (PF.EQ.0..AND.CF.EQ.0.) GO TO 8  
 TF ((CF.GE.PF.AND.PF.GE.0.),OP.(CF,LE,PF.AND.PF,LE,0.)) GO TO 6  
 XNG=1.0-CF/PF  
 TF (XNG.GT.2.) XNG = 2.  
 TF (XNG.LT..5) XNG = .5  
 GO TO 9  
 A YPN = RANF(DIMMY)  
 TF (YPN.GT..5) XNG=ADEFIT  
 TF (YPN.LT..5) XNG=SDEFIT  
 R G = THETARG\*XNG + (1.0-THETA)\*G  
 O CONTINUE  
 TF (TDLAY.GT.0) TDelay = TDelay - 1  
 "1NEW.GATN" = G  
  
 GN = FST(1NEW.GATN)  
 TF (GN.LT.SMALL) GN=SMALL  
 "KNOR CHANGE" = (DESIREF(#TRACKS) - FST(#TRACKS))/GN  
  
 READ (5,500) THETA,DELT,EXPATE,DELAY  
 500 FORMAT (4F8.3)  
 WRITE (6,501) THETA,DELT,EXPATE,DELAY  
 501 FORMAT (///\* PARAMETERS FOR THIS RUN APF AS FOLLOWS:/\*/\* THETA =\*,  
 + F8.3/\* DELTA =\*F8.3/\* EXPATE =\*.F8.3,/\* DFLAY =\*.F8.3)  
 ADEFIT = 1.0 + DELTA  
 SDEFIT = 1.0 / ADEFIT  
 ATHTA = THETA  
 AVGFRP = 0.  
 TDelay = 0  
 "PARAMETERS" = THETA

```

TD = #STGNAL>
FT = FSTTIME(TD) - PESTIME(TD)
TF (FT.LT.SMALL) FT=SMALL
KD = #EXTIME>
PTIME = FST(KD)
YY = FST(TD)+(FST(TD)-PEST(TD))*(STIME+PTIME-FSTIME(TD))/FT
#EXVAL" = YY

KD = #EXTIME>
TD = #TRACKS>
ID = #STGNAL>
DS = CS
CS = FST(ID)
CFRR = FST(TD) - FST(ID)
EXT = FST(KD)
TF (AVGERR.LT.SMALL) AVGERR = SMALL
Y1D = EXRATE*CFRR/AVGERR
TF (Y1D.GT..2) Y1D=.2
TF (Y1D.LT.-.2) Y1D=-.2
TF (CS.GT.DS) Y1D=-Y1D
TF (TD.LT.AY.FD.1) Y1D = 0.
#EXTIME" = (1.+Y1D)*EXT

CALL RANKED(DELAY)
TDELAY = 1
TNPRO = 1
#SECONDARY DELAY" = DELAY

TT = #TACCIIPS>
Y = FST(TT)
#TACCIPI" = X

```

```

HARDWARE FUNCTIONS
GO TO 10000
0000 CONTINUE
T = <KNOR>
IF(TREFE(IWANT)-STTIME.F0.0)RETURN
"RATE1"=(DESTRF(T)-EST(T))/(TREFE(IWANT)-STTIME)

TM = MODE1(<KNOR>)
GAIN = PARA(TM,9)
"RATE2" = GAIN*"RATE1"

T=<XCNTI>
CALL RFF(T)
"UPDATE1"=RATE(T)*(STTIME-TIME(I))

T=<XCNTI>
CALL RFF(T)
I=<XDTSR>
CALL RFF(J)
"UPDATE0"=RATE(J)*(STTIME-TIME(T))

100 READ(5,100) AMP,FRFO,OFFSET
FORMAT (3(F8.2,1X))
WPTTF (6,101) AMP,FRFO,OFFSET
FORMAT (* AMP =*,FR.2/* FRFO =*,FR.2/* OFFSET =*,FR.2//)
"SIINE-WAVE-FACTORS"=1

XA = SIN(STTIME*FRFO)
XR = .7*SIN(10.*STTIME*FRFO/7.)
XC = .4*SIN(2.5*STTIME*FRFO)
"NEW SIGNAL" = AMP*(XA+XR+XC) + OFFSET

```

HARDWARE PROCEDURES

DEFINE PROCEDURE TO SIMULATE START.

END: DETERMINE SINE-WAVE-FACTORS.

DEFINE PROCEDURE TO SIMULATE SINE-WAVE-GENERATOR.

MID: DETERMINE NEW-SIGNAL.

SET SIGNAL TO NEW-SIGNAL.

DEFINE PROCEDURE TO SIMULATE KNOB.

START: DETERMINE RATE1.

SET RATE OF KNOB TO RATE1.

DETERMINE RATE2.

SET RATE OF TRACK TO RATE2.

MIDEND: COMPUTE-UPDATE-DC USING TRACK, KNOB.

END: SET RATE OF KNOB TO 0.

DEFINE COMPUTE-UPDATE-DC USING XDTSP,XCONT.

DETERMINE UPDATEC.

INCREASE XCONT BY UPDATEC.

DETERMINE UPDATED.

INCREASE XDTSP BY UPDATED.

OPERATOR PROCEDURES

DEFINE MISSION.

COMPUTE PARAMETERS.

ADDRESS START.

ADDRESS SYNC-WAVE-GENERATOR.

SET LIMITS OF TRACK TO TACUP.

MONITOR TRACK.

MONITOR SECONDARY.

IF TIME OF SIMULATION IS LESS THAN 10000 SECONDS THEN WAIT.

DEFINE PROCEDURE TO ADJUST TRACK.

READ SIGNAL.

COMPUTE EXTIME.

COMPUTE EXVAL.

SET TRACK TO RESULT.

READ TRACK.

IF TRACK IS WITHIN LIMITS THEN GO TO 1 NOW.

COMPUTE NEW-GAIN.

COMPUTE KNOB-CHANGE.

TURN KNOB BY RESULT.

COMPUTE TACUP.

DEFINE PROCEDURE TO ADJUST SECONDARY.

COMPUTE SECONDARY-DELAY.

|                      |                         |         |     |      |     |      |     |        |    |     |
|----------------------|-------------------------|---------|-----|------|-----|------|-----|--------|----|-----|
| SYSTEM               | PIRELLIT TRACKING MODEL |         |     |      |     |      |     |        |    |     |
| DISPLAY SECTION      |                         |         |     |      |     |      |     |        |    |     |
| TRACK                | 1                       | 0       | 1   | 1    | 12  | 12   | 12  | 10000. |    |     |
| SIGNAL               | 4                       | 0       | 1   | 1    | 12  | 12   | 12  | 0      |    |     |
| SECONDARY            | 1                       | 0       | 1   | 1    | 0   | 0    | 0   | 0      |    |     |
| CONTROL SECTION      |                         |         |     |      |     |      |     |        |    |     |
| START                | 2                       | 0       | 1   | 1    | -15 | 12   | 0   | 0      |    |     |
| STME WAVE GENERATOR  | 5                       | 0       | 1   | 1    | -12 | 12   | 0   | 0      |    |     |
| XNOR                 | 3                       | 0       | 1   | 1    | -6  | 12   | 0   | 0      |    |     |
| OPERATOR FUNCTIONS   |                         |         |     |      |     |      |     |        |    |     |
| EXTIME               | 2                       | 0       | 1   | 1    | 0   | .    | 1   |        |    |     |
| EXVAL                | 2                       | 0       | 1   | 1    | 0   | 0    |     |        |    |     |
| XNOR CHANGE          | 2                       | 0       | 1   | 1    | 0   | 0    |     |        |    |     |
| NEW GAIN             | 2                       | 0       | 1   | 1    | 0   | 200. |     |        |    |     |
| PARAMETERS           | 2                       | 0       | 1   | 1    | 0   | 1.0  |     |        |    |     |
| SECONDARY DELAY      | 2                       | 0       | 1   | 1    | 0   | 0    |     |        |    |     |
| TACLOC               | 2                       | 0       | 1   | 1    | 0   | 0    |     |        |    |     |
| PROCEDURE SECTION    |                         |         |     |      |     |      |     |        |    |     |
| MISSTON              |                         |         | 1.0 |      |     |      |     |        |    |     |
| TRACK                |                         |         | 1.0 |      |     |      |     |        |    |     |
| SECONDARY            |                         |         | 1.0 |      |     |      |     |        |    |     |
| MODEL SPECIFICATIONS |                         |         |     |      |     |      |     |        |    |     |
| MODEL 1              | 4                       | 1       | 500 | .015 | 2.0 |      |     |        |    |     |
| MODEL 2              | 7                       | 3       | 0   | .01  | 1.0 | 0    | 0   | .01    |    |     |
| MODEL 3              | 9                       | 2       | 1   | 0    | 2.  | 0    | 0   | 300    | 10 | 200 |
| MODEL 4              | 4                       | 1       | 500 | .015 | 5.0 |      |     |        |    |     |
| MODEL 5              | 7                       | 4       | 5   | .01  | 1.0 | 0    | 0   | 999.   |    |     |
| END OF MODEL SPFX    |                         |         |     |      |     |      |     |        |    |     |
| HUMAN OPERATOR SPFX  |                         |         |     |      |     |      |     |        |    |     |
| EYES                 | 12                      | 0       | 0   | .01  | 33  | 42   |     |        |    |     |
| HANDS                | 6                       | 6       | -18 | -6   | 5   | -18  |     |        |    |     |
| SHOULDERS            | 6                       | 0       | -6  | -6   | 0   | -6   |     |        |    |     |
| END OF HUMAN SPFX    |                         |         |     |      |     |      |     |        |    |     |
| INTERRUPTION DATA    | 0.0                     | 6.0     |     |      |     |      |     |        |    |     |
| PIIN PARAMETERS      | .07                     | .9      | .01 | 2.   | .2  | 1.   | .01 | 5.     | 5. | 10. |
| PILOT ASTERISKS      |                         |         |     |      |     |      |     |        |    |     |
| PRINT MESSAGES       |                         |         |     |      |     |      |     |        |    |     |
| TIME ENDPOINT        | 121                     |         |     |      |     |      |     |        |    |     |
| 8                    |                         |         |     |      |     |      |     |        |    |     |
| .0                   | .0                      | .05     |     |      |     |      |     |        |    |     |
| 4000.0               | 2.513272                | 10000.0 |     |      |     |      |     |        |    |     |
| 4                    |                         |         |     |      |     |      |     |        |    |     |

**APPENDIX III**  
**CHANGES TO HOS FOR TRACKING AND WORKLOAD STUDIES**

APPENDIX III  
CHANGES TO HOS FOR TRACKING AND WORKLOAD STUDIES

The interrupted tracking simulations described in Section 3 required several minor modifications to HOS. These changes replaced the normal operator-controlled sequencing of procedures by a time-controlled sequence dependent upon an input alternation period. The modified version of HOS was also used for the parametric studies reported in Section 2 for which the duration of each interrupt was set to zero. The changes made to the standard version of HOS were:

- (1) Four new variables -- TPRIM, TBETW, DURINT, and INDPRO were added to COMMON JUNK. TPRIM is the time when each execution of the primary procedure begins. TBETW is the time between interrupts (i.e., the time spent on the primary task for each alternation period). DURINT is the duration of each interrupt. INDPRO is the indicator of which procedure should be executed at any time (INDPRO = 1 for the primary procedure and INDPRO = 2 for the secondary procedure).
- (2) Four cards

```
IF (INDPRO.EQ.2.OR.STIME.LT.(TPRIM+TBETW)) GO TO 1025
```

```
INDPRO = 2
```

```
GO TO 1040
```

```
1025 CONTINUE
```

were inserted immediately after statement label 1020 in the HOS main routine.

- (3) Three cards

```
IF(IP.NE.28) GO TO 280
```

```
TPRIM = STIME
```

```
INDPRO = 1
```

were inserted immediately prior to statement label 280 in subroutine ENDPROC.

- (4) One card

```
IF(MARGIN(1).EQ.10HINTERRUPTI) GO TO 820
```

was inserted in the list of IF statements between statement labels 301 and 310 in the subroutine INPROC.

(5) Six cards

820 CONTINUE

CALL NEWORD

DURINT = DIGITS

CALL NEWORD

TBETW = DIGITS

GO TO 290

were inserted immediately prior to the END card in the subroutine INPROC.

(6) One card

IF(IC.NE.1) IC=INDPRO+1

These changes require one additional input data card that is not required by the standard version of HOS. That card has the words INTERRUPTION DATA starting in column 1 and two numbers starting in column 21. The first number specifies the length of each interruption and the second number specifies the length of each primary task execution.

**APPENDIX IV**  
**DESCRIPTION AND LIST OF EVAL**

APPENDIX IV  
DESCRIPTION AND LIST OF EVAL

The analysis program EVAL computes a variety of tracking performance statistics from data appearing on one of the output files created by HOS. This file, originally created for use by the HODAC graph-generating subroutine TGRAPH, is a series of two-word (60 bits per word) micro-reports that describe simulation events. The low-order twelve bits of the first word contains a message number that identifies the report. The only message numbers recognized by EVAL are:

| <u>NUMBER</u> | <u>MESSAGE</u>                           |
|---------------|------------------------------------------|
| 13            | START TO COMPUTE ...                     |
| 35            | BEGIN MANIPULATING ... WITH LEFT HAND    |
| 36            | COMPLETE MANIPULATING ... WITH LEFT HAND |
| 62            | COMPLETE COMPUTATION OF ...              |
| 80            | ACTUAL VALUE OF ... CHANGED              |

Other messages appearing on the file are ignored by EVAL.

The next twelve bits of the first word contain the dictionary entry number of the device, function, or procedure referenced by the message. The highest order 30 bits contain the simulation time at which the message was produced. For messages 13, 35, 36, and 62, the second word contains the estimated value (EST) of the referenced item in its low order 50 bits and the integerized value of the hab strength of the item multiplied by 1,000 in its high order 10 bits. For message number 80, the full 60 bits of the second word are used to represent the new actual value of the referenced item.

The program EVAL consists of four routines. The main routine, EVAL, processes all input data cards, monitors the operations of tape reading and data accumulation, and prints out summary statistics. The subroutine EDATA accumulates all RMSE and PTOT performance statistics according to directives from the main routine. The subroutine TREAD reads the next micro-report on the HOS output tape and transfers the message data to the calling routine via the formal arguments of the subroutine. The function SIGNAL determines the value of the signal being tracked at any given simulation time.

Input data specifying the parameters of the signal being tracked and the type of analysis to be performed are required by EVAL. Each input data card must contain an identifying label starting in column 1 and a single number starting in column 21. The recognized identifying labels are:

INTERVAL  
DELAY  
START  
END  
SIGNAL OFFSET  
SIGNAL FREQ1  
SIGNAL FREQ2  
SIGNAL FREQ3  
SIGNAL AMP1  
SIGNAL AMP2  
SIGNAL AMP3  
LIMIT  
TIMELINE

The INTERVAL card specifies the size of each data collection interval. The DELAY card indicates the length of time at the beginning of each primary task execution before the first data collection interval for that execution will begin. The START and END cards specify the simulation times over which the analysis is to be performed. The cards that specify signal characteristics are self-explanatory. Each LIMIT card (up to five are allowed) specifies a PTOT criterion tolerance to be used in the analysis. The TIMELINE card (which needs no number in its second field) indicates that a timeline analysis is to be printed while the tape is being processed. No timeline report is printed if the TIMELINE card is omitted.

The logic of the program is reasonably straightforward and will not be described in detail. Comment cards in each routine indicate the function performed by each section of code. In order to assist the programmer in interpreting and modifying the program, the following list of variable descriptions is offered. After the list of variable descriptions is a full list of the EVAL program followed by a sample program output.

| <u>VARIABLE NAME</u> | <u>DESCRIPTION</u>                                                                                                                              |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| AEND                 | end time for analysis                                                                                                                           |
| AMP(I)               | amplitudes of the three sine wave components of the signal                                                                                      |
| ASTART               | start time for analysis                                                                                                                         |
| BTIM(I)              | start time for I <sup>th</sup> buffer interval during a movement                                                                                |
| BUFCTI(I)            | CTINT for the I <sup>th</sup> buffer interval                                                                                                   |
| BUFEAR(I)            | error at return to primary for I <sup>th</sup> buffer interval                                                                                  |
| BUFINIT(I)           | indication of whether (1) or not (0) interval data accumulators are to be initialized after processing data for I <sup>th</sup> buffer interval |
| BUFTSR(I)            | time since return to primary task for I <sup>th</sup> buffer interval                                                                           |
| CAERRT               | cumulative absolute error at initiations of primary procedure                                                                                   |
| CAESEC               | cumulative absolute error at initiations of secondary procedure                                                                                 |
| CLEVEL               | value of "track" when at a constant value between movements                                                                                     |
| CTINT                | time when current data collection interval began                                                                                                |
| CUECI                | cumulative squared error for current interval                                                                                                   |
| CUEPRI               | cumulative squared error for primary procedure                                                                                                  |
| CUESEC               | cumulative squared error for secondary procedure                                                                                                |
| ECI                  | cumulative error for current interval                                                                                                           |
| ECUM(I)              | cumulative error for primary procedure if I = 1 and for secondary procedure if I = 2                                                            |

| <u>VARIABLE NAME</u> | <u>DESCRIPTION</u>                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECUM(I,J)            | cumulative error for Jth interval after start of primary procedure if I = 1 or of secondary procedure if I = 2                                                                       |
| ERRET                | actual error when current execution of primary procedure began                                                                                                                       |
| ETIM(I)              | end time for I <sup>th</sup> buffer interval                                                                                                                                         |
| IINT(I)              | NINT for I <sup>th</sup> buffer interval                                                                                                                                             |
| IMOVE                | 1 if a movement is in progress, 2 if a movement has been completed but data has not been stored because "actual value changed" message has not yet been encountered, and 0 otherwise |
| INTEND(I)            | 1 if the I <sup>th</sup> buffer interval marks the end of a timed interval and 0 otherwise                                                                                           |
| ITLIM(I)             | integerized value of the I <sup>th</sup> criterion tolerance (TLIM(I)) for PTOT determinations                                                                                       |
| MARGIN(I)            | the I <sup>th</sup> (first or second) word in the identifier field of an input data card                                                                                             |
| MOVEALL              | counter of all control movements over time span of analysis                                                                                                                          |
| MOVECI               | counter of movements for current interval                                                                                                                                            |
| NAERRT               | number of initiations of primary procedure                                                                                                                                           |
| NAESEC               | number of initiations of secondary procedure                                                                                                                                         |
| NBUF                 | number of items in movement buffer                                                                                                                                                   |
| NCI                  | number of error observations for current interval                                                                                                                                    |
| NCPRI                | number of observations of squared error for primary procedure                                                                                                                        |
| NCSEC                | number of observations of squared error for secondary procedure                                                                                                                      |

| <u>VARIABLE NAME</u> | <u>DESCRIPTION</u>                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NINT                 | Current interval number after beginning of executing procedure (maximum of 20) if interval data is being collected -- value is positive for primary procedure and negative for secondary procedure -- value of 0 indicates primary procedure is executing but no data should be collected and value of -30 indicates that secondary procedure is executing but no data should be collected |
| NLIMIT               | the number of PTOT criterion limits specified in the input data                                                                                                                                                                                                                                                                                                                            |
| NOBS(I)              | number of observations of RMSE measures for Ith interval after start of primary procedure                                                                                                                                                                                                                                                                                                  |
| NSEC(I)              | number of observations of RMSE measures for Ith interval after start of secondary procedure                                                                                                                                                                                                                                                                                                |
| NTLINE               | number of lines on current page of timeline output                                                                                                                                                                                                                                                                                                                                         |
| OFFSET               | signal offset                                                                                                                                                                                                                                                                                                                                                                              |
| PCINT                | time when current processing chunk of current data collection interval began                                                                                                                                                                                                                                                                                                               |
| PRIMT                | total time spent on primary procedure                                                                                                                                                                                                                                                                                                                                                      |
| SAERRT               | sum of squares of absolute errors at initiations of primary procedure                                                                                                                                                                                                                                                                                                                      |
| SAESEC               | sum of squares of absolute errors at initiations of secondary procedure                                                                                                                                                                                                                                                                                                                    |
| SCENI(I)             | sum of RMSE measures for all observations of Ith interval after start of primary procedure                                                                                                                                                                                                                                                                                                 |
| SECT                 | total time spent on secondary procedure                                                                                                                                                                                                                                                                                                                                                    |
| SESEC(I)             | sum of RMSE measures for all observations of Ith interval after start of secondary procedure                                                                                                                                                                                                                                                                                               |
| SF(I)                | frequencies of the three sine wave components of the signal                                                                                                                                                                                                                                                                                                                                |

| <u>VARIABLE NAME</u> | <u>DESCRIPTION</u>                                                                                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMOVEI(I)            | sum of numbers of observed control movements over all observations of the I <sup>th</sup> interval after the start of the primary procedure                                         |
| SSCENI(I)            | sum of squares of RMSE measures for all observations of the I <sup>th</sup> interval after start of primary procedure                                                               |
| SSESEC(I)            | sum of squares of RMSE measures for all observations of I <sup>th</sup> interval after start of secondary procedure                                                                 |
| SSMOVEI(I)           | sum of squares of numbers of observed control movements over all observations of the I <sup>th</sup> interval after the start of the primary procedure                              |
| SSTTNI(I,J)          | sum of squares of the percent times on target with respect to criterion tolerance J for all observations of the I <sup>th</sup> interval after the start of the primary procedure   |
| SSTTSEC(I,J)         | sum of squares of the percent times on target with respect to criterion tolerance J for all observations of the I <sup>th</sup> interval after the start of the secondary procedure |
| STTNI(I,J)           | sum of the observed percent times on target with respect to criterion tolerance J for all observations of the I <sup>th</sup> interval after the start of the primary procedure     |
| STTSEC(I,J)          | sum of the observed percent times on target with respect to criterion tolerance J for all observations of the I <sup>th</sup> interval after the start of the secondary procedure   |
| TBMOVE               | time when current movement began                                                                                                                                                    |
| TDEL                 | user-specified delay after beginning of primary task when first data collection interval begins                                                                                     |
| TEMOVE               | time when most recent movement ended                                                                                                                                                |

| <u>VARIABLE NAME</u>                                            | <u>DESCRIPTION</u>                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TINT                                                            | user-specified duration of each data collection interval                                                                                                                                                                                                                                                                                                                                                       |
| TLAST                                                           | time of the previous micro-report message                                                                                                                                                                                                                                                                                                                                                                      |
| TLIM(I)                                                         | the user-specified value of the I <sup>th</sup> criterion tolerance (in the order specified by the user) for PTOT determinations                                                                                                                                                                                                                                                                               |
| TOTCI(I)                                                        | cumulative number of "on-target" observations with respect to the I <sup>th</sup> criterion tolerance for current data collection interval (observations are regularly spaced at .01 second intervals)                                                                                                                                                                                                         |
| TOTPRI(I)                                                       | cumulative number of "on target" observations with respect to the I <sup>th</sup> criterion tolerance for all time on the primary procedure                                                                                                                                                                                                                                                                    |
| TOTSEC(I)                                                       | cumulative number of "on-target" observations with respect to the I <sup>th</sup> criterion tolerance for all time on the secondary procedure                                                                                                                                                                                                                                                                  |
| TPRIM                                                           | 0 if the primary procedure is not executing and otherwise is the time that the current execution began                                                                                                                                                                                                                                                                                                         |
| TSECO                                                           | 0 if the secondary procedure is not executing and otherwise is the time that the current execution began                                                                                                                                                                                                                                                                                                       |
| T1, T2, V1, V2,<br>NN, INTCUM<br>(formal arguments of<br>EDATA) | The track element moves along the straight line connecting the points (T1, V1) and (T2, V2) where V1 is the track value at time T1 and V2 is the track value at time T2. NN is the interval number relative to the start of the procedure for which data is to be accumulated. If INTCUM=1 data for the current interval should be stored and accumulator variables should be initialized, but not if INTCUM=0 |
| ST, IM, ID, VAL<br>(formal arguments of TREAD)                  | Data values obtained by TREAD from reading of next micro-report on HOS output tape. ST is simulation time of report. IM is the code number of the message (see text above for interpretation of code). ID is the dictionary pointer referenced by                                                                                                                                                              |

| <u>VARIABLE NAME</u>                  | <u>DESCRIPTION</u>                                                                      |
|---------------------------------------|-----------------------------------------------------------------------------------------|
| ST, IM, ID, VAL<br>(continued)        | the report. VAL is the value (estimated or actual) of the item referenced by the report |
| T<br>(function of argument of SIGNAL) | the simulation time for which the signal value is to be returned                        |



```

9013 FORMAT (1H1,15X,*DATA FOR F-COMPARISONS OF MEAN SQUARED ERROR*//  

+ 13X,*INTFRVAL. NUMRFR OF*.1PX*MFRN SQUARFD UNITSFND/  

+ * PROCFLIRF. NIMRFR OBSERVATIONS MEAN FERROR*.6X.  

+ *FERROR*.7X,*VARTANCFF*)  

9014 FORMAT (/1X,A9.5X,I2.6X,I7.6X,F9.3.5X,F11.2,3X,F11.?)  

9015 FORMAT (/1X,A9.4X,*ALL*,6X,I7.6X,F9.3.5X,F11.2,3X,F11.?)  

C  

C RF AND INPUT DATA CARDS  

C ****  

C NL.TMFT = 0  

TTI = 0  

CONTINUUF  

PEAN (5.9000) MARGIN•VALUF  

TF (FOF(5).FO.1) GO TO 200  

CONTINUUF  

WRTTF (6,9001) MARGIN•VALUF  

-----  

TF (MARGIN(1).FO.RHTTMFLINE) TT1=1  

TF (MARGIN(1).FO.RHINTERVAL) TINT = VALUF  

TF (MARGIN(1).FO.SHDFLAY) TDEL = VALUF  

TF (MARGIN(1).NF.SHLJMT) GO TO 110  

NL.TMFT = NL.TMFT + 1  

TF (NLIMIT.LF.5) GO TO 105  

WRTTF (6,9011)  

GO TO 100  

CONTINUUF  

TLM(NLJMT) = VALUF  

TTI.TM(NLJMT) = VALUF  

GO TO 100  

-----  

105 CONTINUUF  

TF (MARGIN(1).FO.SHTSTART) ASTART = VALUF  

TF (MARGIN(1).FO.3HFND) AFEND = VALUF  

TF (MARGIN(1).FO.10HSIGNAL OFF) OFFSFT = VALUF  

TF (MARGIN(1).FO.10HSIGNAL FR.F AND. MARGIN(2).FO.2H01) SF(1)=VALUF  

TF (MARGIN(1).FO.10HSIGNAL FR.F AND. MARGIN(2).FO.2H02) SF(2)=VALUF  

TF (MARGIN(1).FO.10HSIGNAL FR.F AND. MARGIN(2).FO.2H03) SF(3)=VALUF  

IF (MARGIN(1).FO.10HSIGNAL AMP.AND. MARGIN(2).FO.1H1) AMP(1)=VALUF  

IF (MARGIN(1).FO.10HSIGNAL AMP.AND. MARGIN(2).FO.1HP) AMP(2)=VALUF

```

```

    IF (MARGIN(1) .EQ. 10H SIGNAL AMP.AND.MARGIN(2) .EQ. 1H3) AND(?)=VAL !IF
GO TO 100
*****MAKESURE THAT SIGNAL CHARACTERISTICS HAVE BEEN SPECIFIED.
CONTNUF
X = OFFSFT*SF(1)*SF(2)*SF(3)*AMP(1)*AMP(2)*AMP(3)
IF (X.NE.0.) GO TO 210
WPTF (6,9002)
STOP 1
C INITIALIZE PROCESSING INDICATORS
CONTNUF
TMOVE = 0
CLFVFL = OFFSET
NINT = 1
READ NEXT MESSAGE ON TAPF
CONTNUF
TLAST = ST
IF (TSUR.NE.1) GO TO 2210
TSUR = 0
ST = TST
TM = JM
TN = JD
VAL = TVALUF
GO TO 2201
CONTNUF
CALL TRFAD(ST,TM,JD,VAL)
CONTNUF
IF (TM.FO.TFF) GO TO 700
IF (ST.GT.AFEND) GO TO 700
2210
CONTNUF
CALL TRFAD(ST,TM,JD,VAL)
CONTNUF
IF (TM.FO.TFF) GO TO 700
IF (ST.GT.AFEND) GO TO 700
2201
IF (.NOT.(ST.GF.ASTAPT.ANN.TLAST.LT.ASTAPT)) GO TO 221
PRTMT = SFCT = 0.
CAFQRT = SAFRRT = CAFSFC = SAFSEC = 0.
NAFRQT = NAFSEC = 0.

```

```

221    CONTINUE
      TF ((ST-CTINT).LT.TINT) GO TO 2220
      ST = ST
      JM = IM
      JD = ID
      TVALUF = VAL
      ST = CTINT + TINT
      IM = ID = 0
      TSIR = 1
      CONTINUE
      TF ((IM.NE.13.AND.IM.NF.62).OR.ID.NF.14) GO TO 300
      C
      C   PROCESS MESSAGE THAT INDICATES THE END OF A PROCEDURE.
      C
      IF (ST.LT.ASTART) GO TO 260
      IF (IMOVF.GT.0) GO TO 240
      IF ((ST-CTINT).EQ.0.) GO TO 260
      TF (NINT.GT.0) NINT = 0
      TF (NINT.LT.0) NINT = -30
      CALL EDATA(PCTINT,ST,CLFVFL,CLEVEL,NTNT,0)
      TF (ITL.FQ.0) GO TO 260
      TSR = CTINT - TPRIV
      IF (NINT.LT.0) TSP = CTINT - TSFCN
      RMSF = SORT(CUECI/NCT)
      NO 222 I=1.NLIM
      PTOT(I) = 100.*TOTCI(I)/NCT
      CONTINUE
      NTIINF = NTLNIF + 2
      TF (NTLINF.LF.60) GO TO 225
      WRITE (6,9003) TTLIM
      NTIINF = 6
      CONTINUE
      WRTTF (6,9004) CTINT,ST,TSR,ERRET,MUVFCI,RMSE,(PTOT(I).I=1,NLIM)
      GO TO 260
      CONTINUE
      TAUFI = TAUFI + 1
      TF (TAUFI.F.10) GO TO 245
      WRTTF (6,9005) ST,IM,IN,VAL
      GO TO 260

```

```

245    CONTINUUF
          RTTM(1RUF) = PCINT
          FTTM(1RUF) = ST
          INTFND(1RUF) = 0
          INT(1RUF) = NINT
          RUFINIT(1RUF) = 1.
          CONTINUUF
          CTINT = PCINT = ST
          TF (TM0VF*ST.0) GO TO 262
          NOVFCI = 0
          CUFCT = 0.
          NCT = 0.

          FCI = 0.
          DO 261 T=1.5
              TOTCI(T) = 0.
          CONTINUUF
          FRPFT = CLFVFL - SIGNAL(ST)
          TF (TM.F0.62) GO TO 270
          NTNT = -1
          PRIMT = PRIMT + ST - TPRIM
          TPRIM = 0.
          TSFCN = ST
          CAFSFC = CAFSEC + ARS(FRPFT)
          SAFSFC = SAFSEC + FRPFT*FRRET
          NAFSFC = NAESEC + 1
          GO TO 270
          CONTINUUF
          TPRIM = ST
          CAFRPT = CAFRRT + ARS(FRPFT)
          SAFRPT = SAFRRT + FRPFT*FRRET
          NAFRPT = NAFRRT + 1
          NINT = 0
          TF (TDEL.E0.0.) NINT=1
          SECT = SFCT + ST - TSFCN
          TSFCN = 0.
          GO TO 220
          CONTINUUF

```

\*\*\*\*\*

```

C IS IT THE END OF A TIMFD INTERVAL
C *****
C TF (NINT.LT.0) GO TO 305
C TF ((ST-TPRTM).LT.TNFL) GO TO 400
C TF (CTINT.FQ.TPRTM.AND.TDEI.NE.0.) GO TO 310
305 CONTINUE
C TF ((ST-CTINT).LT.TINT) GO TO 400
310 CONTINUE
C TF ((ST.LT.ASTART) GO TO 360
C TF (TMQVF.GT.0) GO TO 340
CALL FDATA(PCMINT,ST,CLFVEL,CLFVEL,NINT.)
C TF (TTL.FQ.0) GO TO 360
TSR = CTINT - TPRIM
C TF (NINT.LT.0) TSP = CTINT - TSFCO
RMSE = SORT(CUECI/NCT)
DO 311 J=1,NLIMIT
PTOT(I) = 100.*TOTCI(I)/NCT
CONTINUE
NTLINF = NTLINF + 2
C TF (NTLINE.LF.60) GO TO 320
WRITF (6,9003) ITLM
NTLINF = 6
311 CONTINUE
WRITF (6,9004) CTINT,ST,TSR,ERRRET,MQVFCI,RMSE,(PTOT(I),I=1,NLTMT)
320 CONTINUE
WRITF (6,9005) ST,IM,IN,VAL
GO TO 360
CONTINUE
340 TRIF = TRUF + 1
TF (TRUF.LF.10) GO TO 345
WRITF (6,9005) ST,IM,IN,VAL
GO TO 360
CONTINUE
345 RTIM(TRUF) = DCTINT
FTTM(TRUF) = ST
NTEND(TRUF) = 1
RUFTRSR(TRUF) = CTINT - TPRTM
TF (NINT.LT.0) RUFTRSR(TRUF) = CTINT - TSFCO
RUFFAR(TRUF) = FRPFT
RUFCTI(TRUF) = CTINT -

```

```

TINT(TRUF) = NINT
RUFTNIT(TRUF) = 1.
CONTINUF
  IF (NINT.LT.0) GO TO 365
  NINT = NINT + 1
  IF ((ST.LT.(TPRIM+TNFL+TINT)) NINT=0
  IF (NINT.GT.20) NINT=0
  GO TO 366
CONTINUF
  NINT = NINT - 1
  IF (NINT.LT.-20) NINT = -30
366
CONTINUF
  CTNT = PCNT = ST
  TF ((MOVVF.GT.0) GO TO 400
  MOVFCI = 0
  CUFCT = 0.
  NCT = 0
  FCI = 0.
  DO 361 I=1,5
    TOTCI(I) = 0.
    CONTINUF
361
CONTINUF
  *****
  C  IS TT THF RFGTNNING OF A KNOT TURNK
  C  *****
  C  TF (TM.NF.35.OR.TN.NF.R) GO TO 500
  TF ((ST.LT.ASTAPT) GO TO 410
  MOVFCI = MOVFCI + 1
  MOVFAIL = MOVFAIL + 1
  TF ((ST-PCNT).FO.0.) GO TO 410
  CALL EDATA(PCNT,ST,RLFVFL,CLFVFL,NINT,0)
CONTINUF
  TRMOVE = PCNT = ST
  TWOVF = 1
  TRUF = 0
  GO TO 220
CONTINUF
  *****
  C  IS TT THF END OF A KNOT TURNK
  C

```

```

C ***** *****
C TF (TM.NF•36•OF.1D.NF.R) GO TO 600
C TRUF = TRUF + 1
C IF (TRUF•LF.10) GO TO 510
C WRTTF (.6•9005) ST,IM,IN,VAL
C GO TO 520
C
C CONTINUF
C RTTM(TRUF) = PCTNT
C FTTM(TRUF) = ST
C INTFND(TRUF) = 0
C INTN(TRUF) = NTNT
C RUFNTT(TRUF) = 0.
C
C CONTINUF
C TMOVF = ?
C TMMOVE = PCTNT = <T
C GO TO 220
C
C CONTINUF
C TF (TMOVF,NF.2) GO TO 220
C
C IS THE ACTUAL VALUF OF TRACK CHANGED
C
C IF (TM.NF.R0.OR.TD.NF.3) GO TO 220
C IF (TRUF.GT.0) GO TO 610
C WRTF (.6•9006) ST,IM,IN,VAL
C GO TO 650
C
C STOP DATA FOR EVENTS TN MOVEMENT RUFFR
C
C CONTINUF
C NRUF = TRUF
C
C DFTFRMINF PARAMTRS OF RESPONSE-TIME FUNCTION R(T) = A*T+R
C
C A = (VAL - CLEVFL) / (TFMOVE - TBMOVF)
C R = (CLEVFL*TEMVF - VAL*TRMOVE) / (TFMOVE - TRMOVE)
C
C TRUF = 0
C
C CONTINUF
C TRUF = TRUF + 1
C
C IF (TRUF.GT.NRUF) GO TO 650
C IF (RTTM(TRUF).LT.ASTAPT) GO TO 640

```

```

    TF (PTIM(IRRUF)•FO•FTIM(IRRUF)) GO TO 630
    V1 = A•RTIM(IRRUF) + R
    V2 = A•FTIM(IRRUF) + R
    CALL EDATA(ARTIM(IRRUF)•FTIM(IRRUF),V1•V2•IINT(IRRUF)•INTFND(IRRUF))

630   CONTINUE
    IF (TTL•FO.0) GO TO 640
    IF (INTFND(IRRUF)•NF.1) GO TO 640
    TSP = RUFFSR(IRRUF)
    DO 631 I=1•NLIMIT
    PTOT(I) = 100.*TOTCI(I)/NCT
    CONTINUE
    RMSF = SORT(CUECI/NCT)
    T1 = RUFFCT(IRRUF)
    T2 = FTIM(IRRUF)
    FPP = RUFFAR(IRRUF)
    NTLINF = NTLINF + ?
    IF (NTLINF•LF•60) GO TO 635
    WRTTF (6,9003) TTLIM
    NTLINF = 6
    CONTINUE
    WRTTF (6,9004) T1•T2•TSP•ERP•MOVECT•RMSF, (PTOT(I)•I=1•NLTMT)

635   CONTINUE
    TF (RUFFINIT(IRRUF)•FO.0.) GO TO 620
    MOVECT = 0.
    CUECT = 0.
    NCT = 0.
    FCT = 0.
    DO 641 I=1•S
    TOTCI(I) = 0.
    CONTINUE
    GO TO 620
    CONTINUE
    IRRUF = NRUF = 0
    CLFVFL = VAL
    TMOVEF = 0
    GO TO 220
    *****

```

```

C PROCESSING OF TAPF IS COMPLETE
C
C CONTINUE
C
C PROCESSES FINAL SEGMENT OF DATA
C
C IF (TM.FQ.IFF) ST = TLAST
C IF (TMOVF.NF.0) GO TO 701
C IF (PCTINT.FQ.ST) GO TO 701
C CALL EDATA(PCTINT,ST,CLFVFL,CLFVEL,NNTN,0)
C
C CONTINUE
C IF (NINT.GF.0) PRMT = PRMT + TPRTM - ST
C IF (NINT.LT.0) SFCT = SFCT + TSFCN - ST
C
C PRINT CUMULATIVE DATA.
C
C NAMF = THPRPTMAY
C WRITE (6,9007) NAMF,TTI,TM
C
DO 720 N=1,20
    IF (NORS(N).EQ.0) GO TO 730
    TSR = TDFL + (N-1)*TTNT
    RMSM = SCFTN(N)/NORS(N)
    TF (NORS(N).EQ.0) GO TO 705
    VAR = SSFCFT(N)/(NORS(N)-1.) - NORS(N)*PMSTM*RMSM/(NORS(N)-1.)
    TF (VAR.LE.0.) GO TO 705
    RMSDN = SORT(VAR)
    GO TO 706
CONTINUE
RMSDN = 0.
CONTINUE
XMVDN = 0.
XMV = SMOVFT(N)/NORS(N)
TF (NORS(N).EQ.0) GO TO 707
VAR = SSMOVFT(N)/(NORS(N)-1.) - NORS(N)*XAV*XMV/(NORS(N)-1.)
TF (VAR.LE.0.) GO TO 707
XMVDN = SORT(VAR)
CONTINUE
NN 715 T=1,NI,1.MIT

```

```

PTOT(I) = STTN(I,N,I)/NORS(N)

IF (NORS(N).EQ.1) GO TO 714
VAR = SSTTN(I,N,I)/(NORS(N)-1.)
- NORS(N)*PTOT(I)*PTOT(I)/(NORS(N)-1.)
IF (VAR.LF.0.) GO TO 714
PTOTS(I) = SORT(VAR)
GO TO 715
CONTINUE
PTOTS(I) = 0.

CONTINUE
WRITE(6,9008) N*NORS(N)*TSR*XMV*RMSM*(PTOT(I),I=1,NLIMIT)
WRITE(6,9012) XMVSD,RMSSD,(PTOTS(I),I=1,NLIMIT)
CONTINUE
715
CONTINUE
NAMF = QHSFSECONDARY
WRTTF(6,9007) NAMF,TTIM
DO 733 N=1,20
IF (NSFC(N).EQ.0) GO TO 734
TSR = (N-1.)*TTNT
RMSSD = 0.

RMSM = SESEC(N)/NSFC(N)
TF (NSFC(N).EQ.1) GO TO 731
VAR = SSFSFC(N)/(NSFC(N)-1.)-NSFC(N)*RMSM*RMSM/(NSFC(N)-1.)
TF (VAR.LF.0.) GO TO 731
RMSSD = SORT(VAR)
CONTINUE
XMV = XMVSD = 0.
DO 732 I=1,NLIMIT
PTOT(I) = STTSEC(N,I)/NSFC(N)
PTOTS(I) = 0.
TF (NSFC(N).EQ.1) GO TO 732
VAR = SSTTSFC(N,I)/(NSEC(N)-1.)
- NSFC(N)*PTOT(I)*PTOT(I)/(NSFC(N)-1.)
IF (VAR.LF.0.) GO TO 732
PTOTS(I) = SORT(VAR)
CONTINUE
WRITE(6,9008) N*NSFC(N)*TSR*XMV*RMSM*(PTOT(I),I=1,NLIMIT)
WRITE(6,9012) XMVSD,RMSSD,(PTOTS(I),I=1,NLIMIT)
CONTINUE
733

```

```

734 CONTINUEF
      WRITE (6,9009) ITIM
      NAMEF = 7HPRIMARY
      FRFM = CAFRRT/NAFRRT
      VAR = SAFRPT/NAFRPT-1.) - NAFRRT*FRFM*(NAFRRT-1.)
      FRFSN = SORT (VAR)
      RMSF = SORT (CUFPRT/NCPRT)
      DO 735 I=1,NLTMIT
      PTOT(I) = 100.*TOTPRT(I)/NCPRT
      CONTINUEF
      WRITE (6,9010) NAMEF, PRIMT, FREM, ERFSN, MOVFALL, RMSF,
      *(PTOT(I)).I=1,NLTMIT)
      IF (NAESFC.LE.1) GO TO 741
      NAMEF = 9HSSECONDARY
      FRFM = CAFSEC/NAFSFC
      VAR = SAFSFC/(NAFSFC-1.) - NAFSEC*FRFM*(NAESFC-1.)
      FRFSN = SORT (VAR)

735 CONTINUEF
      WRITE (6,9010) NAMEF, SECT, ERESD, I7, RMSF, (PTOT(I).I=1,NLTMIT)
      *IF (NCSFC.F0.0) GO TO 741
      RMSF = SORT (CUESEC/NCSFC)
      DO 740 I=1,NLTMIT
      PTOT(I) = 100.*TOTSF(C(I))/NCSFC
      CONTINUEF
      I7 = 1
      WRITE (6,9010) NAMEF, SECT, ERESD, I7, RMSF, (PTOT(I).I=1,NLTMIT)
      CONTINUEF
      NAMEF = 4HARTH
      T = PRIMT + SECT
      N = NAFRRT + NAFSFC
      FRFM = (CAFRT+CAFSEC)/N
      VAR = (SAFRPT+SAFSFC)/(N-1.) - N*FRFM*FREM/(N-1.)
      FRFSN = SORT (VAR)
      RMSF = SORT ((CUFPRT+CUFSEC)/(NCPRT+NCSFC))
      DO 745 I=1,NLTMIT
      PTOT(I) = 100.*(TOTPRT(I)+TOTSF(C(I))/(NCPRT+NCSFC))
      CONTINUEF
      WRITE (6,9010) NAMEF, FREM, ERFSN, MOVFALL, RMSF, (PTOT(I).I=1,NLTMIT)
      *****
      C INITIALIZE ALL VARIARLFS IN ORDER TO PROCESS NEXT SEGMENT OF TAPF
      *****

```

```

C CUFCT = CUFPT = CUFSCF = FCI = 0.
NCT = NCPT = NCSCF = MNVFCI = 0
FCIM(1) = FCIM(2) = 0.
DO 790 T=1,20
  SCFNI(T) = SSCFNI(T) = SMOVFT(T) = SSMOVFT(T) = 0.
  SFSFC(T) = SSFSFC(T) = 0.
  NORS(T) = NSFC(T) = 0.
  FCUM(I,J) = FCUM(I,J,I) = 0.
  NTERP(I,J) = NIFRR(I,J,I) = 0.
DO 780 J=1,5
  STTNI(I,J) = SSTTNI(T,J) = STTSFC(T,J) = SSTTSFC(T,J) = 0.
CONTINUE
780
DO 795 T=1,5
  TOTCI(T) = TOTPRT(T) = TOTSEC(T) = 0.
CONTINUE
795
  PRWT = SFCT = 0.
  MNVFCI = MOVEALL = 0.
  CAFRPT = SAFRPT = CAFSFC = SAFSEC = 0.
  NAFFPT = NAFFSEC = 0.
  PFDN(5,9000) MAPDTN,VALUE
  TF(FDF(5),NF,1) GO TO 101
STOP
FND

SUBROUTINE EDATA(T1,T2,V1,V2,NN,INTCUM)
COMMON /STORF/ CUFCT, TOTCT(5), NCI, CUFPT, TOTPPR(5), NCPT, CUFSCF,
  + TOTSEC(5), NCSCF, SCFNI(20), SSCENI(20), SSTMNT(20,5),
  + NORS(20), TLIM(5), NI, LIMIT, MOVECI, SMOVFT(20),
  + *SESF(20), SSFSFC(20), STTSFC(20,5), NSFC(20),
  + *FCIM(P), FCIM(2,20), NTERP(2,20), FCI
DATA T/0./

9000 FORMAT (IX,*$*$ FRRP ON CALL TO FNATA/* T1=*,FR,2*4X,*T2=*,*
  + FR,2*4X,*V1=*,FR,2*4X,*V2=*,FR,2*4X,*NN=*,13,4X,*INTCIM=*,T2)
  + IF (T1*FN,T2) GO TO 100
  + A = (V2 - V1) / (T2 - T1)
  + R = (V1*T2 - V2*T1) / (T2 - T1)

```

```

10 CONTINUE
    IF (T.LT.T1) GO TO 20
    FRR = A*T + R - SIGNAL(T)
    FCT = FCT + FPR
    CIECT = CIECT + FPR*FRR
    ARFRR = ARS(FRR)
    DO 11 I=1,NLIMIT
        IF (ARFRR.LF.TLIM(I)) TOTCT(I)=TOTCT(I)+1.0
    11 CONTINUE
    NCT = NCT + 1
    IF (NN.LT.0) GO TO 15
    CUFPRI = CUFPRI + FRR*FRR
    FCUM(I) = FCUM(I) + FRR
    DO 12 I=1,NLIMIT
        IF (ARFRR.LF.TLIM(I)) TOTPRI(I)=TOPRI(I)+1.0
    12 CONTINUE
    NCPR1 = NCPR1 + 1
    GO TO 20
    CONTINUE
15 CUESFC = CUESFC + FPR*FRR
    FCUM(?) = FCUM(?) + FPR
    DO 16 I=1,NLIMIT
        IF (ARFRR.LF.TLIM(I)) TOTSFC(I)=TOTSFC(I)+1.0
    16 CONTINUE
    NCSC = NCSC + 1
    CONTINUE
    T = T + .01
    IF (T.T.T2) GO TO 10
    20 CONTINUE
    IF (NTCUM.NF.1.0R.NN.F0.0) RETURN
    IF (NN.LT.0) GO TO 125
    IF (NN.LF.20) GO TO 110
    WRITE (6,9000) T1,T2,V1,V2,NN,INTCUM
    RETURN
    110 CONTINUE
    NTFR(1.NN) = NTFR(1.NN) + NCI
    FCUMT(1.NN) = FCUMT(1.NN) + FCT
    SMOVFT(NN) = SMOVFT(NN) + MOVFCT

```



```
IF FIND(12) RUFF
TF (EOF(12).NF.0) GO TO 50
COUNT = 1
CONTINUE
IF (RUFF(ICOUNT).FO.FF) GO TO 50
ST = RUFF(ICOUNT).AND.TFF
TM = RUFF(ICOUNT).AND.7777R
IN = SHIFT(RUFF(ICOUNT).-12).AND.7777R
VAL = RUFF(ICOUNT+1)
RETURN
CONTINUE
TM = TFF
RETURN
END
50
```

FUNCTION SIGNAL (T)  
COMMON /SIG/SF(3)\*AMP(3)\*OFFSFT  
SIGNAL = AMP(1)\*SIN(SF(1)\*T) + AMP(2)\*SIN(SF(2)\*T)  
+ AMP(3)\*SIN(SF(3)\*T) + OFFSFT  
+ RFTION  
FN0

? ? 1  
SIGNAL  
SIG  
MAPRA  
MAPRA  
SIGNAL  
SIGNAL

TIME TIME  
START  
TNTFRVAL.  
SIGNAL OFFSET  
SIGNAL FRF01  
SIGNAL FRF02  
SIGNAL FRF03  
SIGNAL AMP1  
SIGNAL AMP2  
SIGNAL AMP3  
LIMIT  
LIMIT  
LIMIT  
LIMIT  
LIMIT

-0.000000  
20.000000  
2.000000  
10000.000000  
•628318  
•997597  
1.570795  
4000.000000  
2800.000000  
1600.000000  
1600.000000  
800.000000  
500.000000  
300.000000  
100.000000

## TIMEFLINE DATA FOR PRIMARY TASK AT TIME INTERVAL

| INTERVAL FROM | TIME STUFF | FROM AT | NO. UNITS  | PWS FROM | PERCENT TOTAL (100) | PERCENT TOTAL (500) | PERCENT TOTAL (100) | PERCENT TOTAL (500) | PERCENT TOTAL (100) |
|---------------|------------|---------|------------|----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 10.17         | 20.17      | 2.00    | 155.00     | 6216.75  | .000                | .000                | .000                | .000                | .000                |
| 20.17         | 22.17      | .00     | 1779.54    | 1162.65  | 45.500              | 60.500              | 49.000              | 25.000              | 8.500               |
| 22.17         | 24.17      | 2.00    | 1770.54    | 2        | 392.78              | 100.000             | 98.500              | 76.500              | 17.000              |
| 24.17         | 26.17      | 4.00    | 1770.54    | A        | 628.01              | 99.000              | 97.500              | 56.000              | 9.000               |
| 26.17         | 28.26      | 6.00    | 1770.54    | A        | 1650.52             | 220.222             | .000                | .000                | .000                |
| 28.26         | 30.26      | .00     | -1596.97   | 0        | 2110.81             | 67.500              | 40.500              | 27.500              | 14.500              |
| 30.26         | 31.26      | 2.00    | -1596.97   | 0        | 9630.35             | .000                | .000                | .000                | .000                |
| 31.26         | 32.26      | .00     | -10791.27  | 3        | 6768.89             | 46.000              | 42.500              | 31.500              | 10.500              |
| 32.26         | 34.27      | 2.00    | -10791.27  | 4        | 378.17              | 100.000             | 100.000             | 92.500              | 39.000              |
| 34.27         | 36.26      | 4.00    | -10791.27  | 2        | 156.33              | 100.000             | 100.000             | 80.000              | 42.500              |
| 36.27         | 38.27      | 6.00    | -10791.27  | 0        | 203.78              | 100.000             | 100.000             | 100.000             | .000                |
| 38.27         | 40.27      | .00     | 195.40     | 0        | 1794.50             | 67.000              | 54.500              | 49.000              | 17.000              |
| 40.27         | 41.27      | 2.00    | 195.60     | A        | 4779.81             | .000                | .000                | .000                | .000                |
| 41.27         | 42.27      | .00     | 20000.23   | 5        | 1263.12             | 98.500              | 45.500              | 31.500              | 4.000               |
| 42.27         | 44.27      | 2.00    | 20000.23   | 2        | 461.27              | 100.000             | 91.500              | 65.000              | 17.500              |
| 44.27         | 46.27      | 4.00    | 20000.23   | A        | 1072.57             | 94.000              | 80.000              | 66.000              | 16.500              |
| 46.27         | 48.29      | .00     | -1969.95   | 0        | 1642.84             | 71.500              | 52.000              | 43.500              | 12.000              |
| 48.29         | 50.29      | 2.00    | -1969.95   | 0        | 8278.87             | .000                | .000                | .000                | .000                |
| 50.29         | 52.29      | .00     | -106641.94 | C        | 6131.29             | 61.500              | 21.500              | 10.500              | 2.000               |
| 52.29         | 54.29      | 2.00    | -106641.94 | A        | 1214.11             | 79.500              | 70.000              | 74.000              | 11.000              |
| 54.29         | 56.29      | 4.00    | -106641.94 | 1        | 616.96              | 35.500              | 36.000              | 69.500              | 32.500              |
| 56.29         | 58.29      | 6.00    | -106641.94 | 0        | 1046.91             | 100.000             | 100.000             | .000                | .000                |
| 58.29         | 60.29      | .00     | 471.70     | 0        | 640.21              | 100.000             | 68.500              | 42.500              | 8.000               |
| 60.29         | 62.29      | 2.00    | 471.70     | 0        | 1245.17             | 66.000              | 75.500              | 19.000              | 11.000              |
| 62.29         | 64.29      | .00     | -6064.19   | 2        | 859.57              | 01.000              | 66.000              | 59.000              | 8.000               |
| 64.29         | 66.29      | 2.00    | -6064.19   | 4        | 497.27              | 100.000             | 80.000              | 64.500              | 7.000               |
| 66.29         | 68.29      | 4.00    | -6064.19   | 7        | 81A.65              | 92.517              | 84.000              | 56.219              | 9.457               |
| 68.29         | 70.29      | 6.00    | -6064.19   | 0        | 2945.88             | .000                | .000                | .000                | .000                |

## TIME-LINE DATA FOR PRIMARY TASK AT TIME INTERVAL

| INTERVAL | END      | TIME SINCE END OF PREV. | NO. HOURS | PERCENT TOTAL (100%) |
|----------|----------|-------------------------|-----------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 44.0-74  | 44.0-74  | .00                     | -2871.30  | 0                    | 1076.30              | 49.500               | 49.500               | 17.500               |
| 69.0-74  | 70.0-74  | 2.00                    | -2971.30  | 0                    | 4570.35              | 11.500               | 500                  | .000                 |
| 70.0-74  | 72.0-74  | .00                     | -7062.05  | 2                    | 5664.56              | 19.500               | 4.500                | .500                 |
| 72.0-74  | 74.0-74  | 2.00                    | -7062.05  | 2                    | 1927.61              | 77.000               | 42.000               | 19.000               |
| 74.0-74  | 76.0-74  | 2.00                    | -7062.05  | 2                    | 1049.11              | 82.000               | 65.000               | 54.000               |
| 76.0-74  | 76.0-74  | 6.00                    | -7062.05  | 0                    | 921.37               | 100.000              | 8000                 | 8000                 |
| 78.0-74  | 78.0-74  | 0.00                    | -828.00   | 0                    | 2527.87              | 15.000               | 0.000                | 0.000                |
| 78.0-74  | 80.0-74  | 2.00                    | -929.00   | 0                    | 4451.65              | 0.000                | 0.000                | 0.000                |
| 80.0-74  | 82.0-74  | 2.00                    | -66623.26 | 2                    | 3640.82              | 50.000               | 27.000               | 14.500               |
| 82.0-74  | 84.0-74  | 2.00                    | -66623.26 | 2                    | 540.70               | 100.000              | 96.000               | 50.000               |
| 84.0-74  | 86.0-74  | 4.00                    | -66623.26 | 2                    | 664.28               | 96.500               | 82.500               | 57.500               |
| 86.0-74  | 86.0-74  | 6.00                    | -66623.26 | 0                    | 1160.91              | 100.000              | 8000                 | 8000                 |
| 88.0-74  | 88.0-74  | 0.00                    | -1177.31  | 0                    | 1963.76              | 32.000               | 19.000               | 7.000                |
| 88.0-74  | 90.0-74  | 2.00                    | -1177.31  | 0                    | 210.43               | 01.000               | 50.000               | 24.000               |
| 90.0-74  | 92.0-74  | 2.00                    | -1177.20  | 2                    | 1956.61              | 42.500               | 16.000               | 9.500                |
| 92.0-74  | 94.0-74  | 2.00                    | -1177.20  | 0                    | 812.04               | 94.000               | 74.000               | 57.500               |
| 94.0-74  | 96.0-74  | 4.00                    | -1177.20  | 2                    | 1144.77              | 79.000               | 56.000               | 30.000               |
| 96.0-74  | 98.0-74  | 2.00                    | -1177.20  | 0                    | 746.31               | 100.000              | 100.000              | 8000                 |
| 98.0-74  | 100.0-74 | 2.00                    | -744.41   | 0                    | 1991.96              | 56.201               | 2.015                | .000                 |
| 100.0-74 | 100.0-74 | 2.00                    | -744.41   | 0                    | 1410.26              | 0.000                | 0.000                | 0.000                |
| 100.0-77 | 102.0-77 | .00                     | -9956.90  | 7                    | 56647.54             | 47.500               | 30.500               | 27.000               |
| 102.0-77 | 104.0-77 | 2.00                    | -9956.90  | 4                    | 277.70               | 100.000              | 99.500               | 80.000               |
| 104.0-77 | 106.0-77 | 4.00                    | -9956.90  | 7                    | 525.02               | 100.000              | 92.500               | 79.000               |
| 106.0-77 | 108.0-77 | 2.00                    | -9956.90  | 0                    | 477.70               | 100.000              | 100.000              | 12.500               |
| 108.0-77 | 110.0-77 | 4.00                    | -9956.90  | 0                    | 400.67               | 100.000              | 75.000               | 6.000                |
| 110.0-77 | 112.0-77 | 2.00                    | -545.42   | 0                    | 615.81               | 100.000              | 66.500               | 56.000               |
| 112.0-77 | 114.0-77 | 2.00                    | -807.95   | 0                    | 1269.57              | 70.500               | 41.500               | 15.500               |
| 114.0-77 | 116.0-77 | 2.00                    | -807.95   | 0                    | 1997.62              | 80.000               | 79.500               | 12.500               |

## TIME-FREQUENCY DATA FOR PRIMARY TASK BY TIME INTERVAL

| INTERVAL | CRADY   | TIME STUFF | FINGER AT | NO. UNITS | RMS FREQD | PERRNT TOTAL (A00) |
|----------|---------|------------|-----------|-----------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 114.044  | 114.044 | 4.000      | 807.95    | 6         | 410.36    | 100.000            | 95.000             | 77.000             | 49.000             | 16.000             | 16.000             |
| 114.044  | 114.044 | 4.000      | 807.95    | 0         | 42.005    | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            |
| 114.044  | 114.044 | .000       | -40.21    | 0         | 1225.44   | 74.000             | 37.000             | 21.000             | 13.500             | 5.000              | 5.000              |
| 114.044  | 114.044 | 2.000      | -40.21    | 0         | 4657.69   | 70.000             | 10.500             | 12.000             | 7.500              | 2.500              | 2.500              |
| 120.044  | 120.044 | .000       | -9195.10  | 0         | 5668.90   | 71.000             | 13.500             | 10.000             | 8.000              | 4.000              | 4.000              |
| 120.044  | 120.044 | 2.000      | -9195.10  | 2         | 917.55    | 92.000             | 8.500              | 10.000             | 9.000              | 3.000              | 3.000              |
| 124.044  | 124.044 | 4.000      | -9195.10  | 2         | 267.24    | 100.000            | 97.000             | 95.000             | 44.000             | 14.500             | 14.500             |
| 126.044  | 126.044 | .000       | -9195.10  | 0         | 519.05    | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            |
| 126.044  | 126.044 | .000       | 512.62    | 0         | 1195.68   | 77.000             | 63.017             | 25.000             | 14.573             | 4.521              | 4.521              |
| 126.044  | 126.044 | 2.000      | 512.62    | 0         | 2155.78   | 28.000             | 9.000              | 0.000              | 0.000              | 0.000              | 0.000              |
| 126.044  | 126.044 | .000       | -5250.65  | 0         | 420.70    | 100.000            | 81.500             | 49.500             | 18.000             | 7.500              | 7.500              |
| 126.044  | 126.044 | 2.000      | -5250.65  | 0         | 615.00    | 100.000            | 90.000             | 57.500             | 42.000             | 14.000             | 14.000             |
| 126.044  | 126.044 | 4.000      | -5250.65  | 0         | 100.13    | 100.000            | 90.500             | 77.500             | 51.000             | 16.500             | 16.500             |
| 126.044  | 126.044 | .000       | -555.65   | 0         | 100.75    | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            |
| 126.044  | 126.044 | .000       | 201.00    | 0         | 3618.76   | 28.000             | 12.500             | 6.500              | 2.000              | 0.000              | 0.000              |
| 126.044  | 126.044 | 2.000      | 201.00    | 0         | 3564.16   | 22.000             | 11.500             | 7.000              | 4.000              | 1.500              | 1.500              |
| 140.040  | 140.040 | .000       | -5272.12  | 0         | 3928.42   | 39.801             | 22.836             | 25.373             | 17.916             | 8.458              | 8.458              |
| 142.040  | 142.040 | 2.000      | -5272.12  | 4         | 760.50    | 93.447             | 78.886             | 51.256             | 33.668             | 13.568             | 13.568             |
| 144.040  | 144.040 | 4.000      | -5272.12  | 7         | 169.25    | 100.000            | 100.000            | 87.000             | 51.000             | 16.000             | 16.000             |
| 144.040  | 144.040 | .000       | -5272.12  | 0         | 756.00    | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            |
| 144.040  | 144.040 | .000       | -741.00   | 0         | 1287.67   | 44.000             | 31.500             | 24.000             | 17.500             | 6.000              | 6.000              |
| 144.040  | 144.040 | 2.000      | -741.00   | 0         | 7421.07   | 0.000              | 0.000              | 0.000              | 0.000              | 0.000              | 0.000              |
| 145.050  | 145.050 | .000       | -6026.16  | 7         | 1011.81   | 65.000             | 51.500             | 40.500             | 30.000             | 13.000             | 13.000             |
| 145.050  | 145.050 | 2.000      | -6026.16  | 2         | 122.10    | 100.000            | 100.000            | 83.500             | 67.000             | 10.000             | 10.000             |
| 146.050  | 146.050 | 4.000      | -6026.16  | 2         | 196.56    | 100.000            | 100.000            | 94.000             | 10.000             | 3.000              | 3.000              |
| 146.050  | 146.050 | .000       | -6026.16  | 0         | 67.00     | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            | 100.000            |
| 148.052  | 148.052 | .000       | -50.55    | 0         | 7752.88   | 17.500             | 21.000             | 15.000             | 10.500             | 5.000              | 5.000              |
| 149.052  | 149.052 | 2.000      | -50.55    | 0         | 4025.11   | 21.000             | 7.500              | 4.000              | 4.000              | 1.500              | 1.500              |

## TIME/LINE DATA FOR PRIMARY TASSS AT TIME INTERVAL

| INTERVAL | STADT  | TIME STAMP | FRONT AT  | No.   | DNC      | PFCFNT    | PFCFNT    | PFCFNT   | PFCFNT   | PFCFNT   | PERCENT  |
|----------|--------|------------|-----------|-------|----------|-----------|-----------|----------|----------|----------|----------|
|          |        | REFLXION   | REFLXION  | WAVES | FRM#     | TOT(1400) | TOT(1400) | TOT(500) | TOT(500) | TOT(500) | Rate(1m) |
| 160.52   | 142.52 | .000       | -1268.000 | 7     | 1971.05  | 55.000    | 15.500    | 6.000    | 3.000    | 3.000    | .500     |
| 162.52   | 144.52 | 2.000      | -1268.000 | 4     | 152.76   | 100.000   | 100.000   | 51.500   | 54.000   | 19.000   | 19.000   |
| 164.52   | 146.52 | 4.000      | -1268.000 | 0     | 748.27   | 98.500    | 63.500    | 42.000   | 26.500   | 5.000    | 5.000    |
| 166.52   | 148.52 | 6.000      | -1268.000 | 0     | 1721.03  | 100.000   | 0.000     | 0.000    | 0.000    | 0.000    | 0.000    |
| 168.52   | 160.52 | .000       | -1198.42  | 0     | 1819.30  | 40.500    | 3.000     | 0.000    | 0.000    | 0.000    | 0.000    |
| 170.52   | 170.52 | 2.000      | -1198.42  | 0     | 10497.26 | 0.000     | 0.000     | 0.000    | 0.000    | 0.000    | 0.000    |
| 170.52   | 172.52 | 0.000      | -10676.01 | 2     | 427.70   | 52.500    | 50.500    | 15.000   | 22.500   | 4.500    | 4.500    |
| 172.52   | 174.52 | 2.000      | -10676.01 | 5     | 413.23   | 100.000   | 93.500    | 78.500   | 57.000   | 19.000   | 19.000   |
| 174.52   | 176.52 | 4.000      | -10676.01 | 2     | 127.78   | 100.000   | 97.500    | 48.000   | 73.500   | 24.000   | 24.000   |
| 174.52   | 178.52 | 6.000      | -10676.01 | 0     | 129.52   | 100.000   | 100.000   | 100.000  | 100.000  | 0.000    | 0.000    |
| 176.52   | 179.52 | .000       | -126.75   | 0     | 250.53   | 52.261    | 40.201    | 34.673   | 30.151   | 8.000    | 8.000    |
| 178.52   | 180.52 | 2.000      | -126.75   | 0     | 4497.38  | 10.000    | 1.500     | 0.000    | 0.000    | 0.000    | 0.000    |
| 180.52   | 182.52 | 0.000      | 642.01    | 1     | 857.98   | 95.000    | 62.000    | 22.000   | 16.500   | 3.500    | 3.500    |
| 182.52   | 184.52 | 2.000      | 642.01    | 0     | 322.84   | 100.000   | 100.000   | 100.000  | 49.000   | 16.000   | 16.000   |
| 184.52   | 186.52 | 4.000      | 642.01    | 0     | 747.79   | 100.000   | 42.000    | 31.000   | 17.000   | 3.000    | 3.000    |
| 186.52   | 188.52 | 6.000      | 642.01    | 0     | 69.66    | 100.000   | 100.000   | 100.000  | 100.000  | 66.000   | 66.000   |
| 188.52   | 190.52 | .000       | 10.07     | 0     | 1620.66  | 77.500    | 72.500    | 19.000   | 11.500   | 1.500    | 1.500    |
| 190.52   | 190.52 | 2.000      | 10.07     | 0     | 7947.92  | 0.000     | 0.000     | 0.000    | 0.000    | 0.000    | 0.000    |
| 190.52   | 192.52 | 0.000      | -9877.67  | 4     | 6783.77  | 16.500    | 13.000    | 27.000   | 2.500    | 1.000    | 1.000    |
| 192.52   | 194.52 | 2.000      | -9877.67  | 10    | 1133.65  | 91.005    | 71.642    | 57.714   | 35.323   | 11.940   | 11.940   |
| 194.52   | 196.52 | 4.000      | -9877.67  | 5     | 740.74   | 94.975    | 76.884    | 63.317   | 38.891   | 14.070   | 14.070   |
| 196.52   | 198.52 | 6.000      | -9877.67  | 0     | 701.80   | 100.000   | 100.000   | 100.000  | 0.000    | 0.000    | 0.000    |
| 198.52   | 200.52 | .000       | 204.17    | 0     | 927.71   | 90.000    | 72.500    | 65.500   | 36.500   | 11.500   | 11.500   |
| 200.52   | 200.52 | 2.000      | 204.13    | 0     | 1708.67  | 44.500    | 20.000    | 18.000   | 10.500   | 3.500    | 3.500    |
| 202.52   | 202.52 | 0.000      | -792.51   | 2     | 465.01   | 0.500     | 49.500    | 57.500   | 56.500   | 17.500   | 17.500   |
| 204.52   | 204.52 | 4.000      | -792.51   | 4     | 123.00   | 100.000   | 100.000   | 85.500   | 61.500   | 14.000   | 14.000   |
| 206.52   | 206.52 | 6.000      | -792.51   | 7     | 1046.97  | 91.000    | 70.500    | 54.500   | 35.000   | 9.000    | 9.000    |
| 208.52   | 208.52 | .000       | -792.51   | 0     | 1687.74  | 0.000     | 0.000     | 0.000    | 0.000    | 0.000    | 0.000    |

## TIME IN DATA FOR PRIMARY TASK AT TIME INTERVAL

| INTERVAL<br>END | TIME<br>OF TURN | ROUND AT<br>TURN | No.<br>WHEEL | PMS<br>FPMR | PERCENT<br>TOT(1000) | PERCENT<br>TOT(500) | PERCENT<br>TOT(100) |         |
|-----------------|-----------------|------------------|--------------|-------------|----------------------|---------------------|---------------------|---------|
| 208.61          | 208.61          | .00              | -1658.75     | 0           | 879.67               | 91.000              | 72.000              | 39.000  |
| 210.61          | 210.61          | .00              | -1659.75     | 0           | 5746.64              | .000                | .000                | .000    |
| 212.61          | 212.61          | .00              | -8280.25     | 7           | 1603.69              | 14.000              | 7.500               | 4.000   |
| 212.61          | 214.61          | .00              | -8280.25     | 7           | 929.11               | 91.000              | 45.000              | 20.000  |
| 214.61          | 216.61          | 4.00             | -8280.25     | 6           | 1277.92              | 80.000              | 65.000              | 47.500  |
| 216.61          | 218.61          | 6.00             | -8280.25     | 0           | 269.01               | 100.000             | 100.000             | 100.000 |

| INTERVAL<br>NUMBER | NUMBER OF<br>MOVES. | TIME SINCE<br>PFTIPN | CUMULATIVE DATA FOR PRIMARY |             |                  | PERCENT<br>TOTAL | PERCENT<br>TOTAL | PERCENT<br>TOTAL |
|--------------------|---------------------|----------------------|-----------------------------|-------------|------------------|------------------|------------------|------------------|
|                    |                     |                      | NUMBER OF<br>MOVEMENTS      | RMS<br>FPTD | PERCENT<br>TOTAL |                  |                  |                  |
| 1                  | 20                  | .00                  | 5.25                        | 3523.77     | 58.165           | 38.162           | 27.844           | 17.771           |
|                    |                     | ( 1.00)              | ( 2274.44)                  | ( 25.076)   | ( 21.302)        | ( 17.471)        | ( 16.488)        | ( 16.160)        |
| 2                  | 20                  | 2.00                 | 4.80                        | 680.40      | 94.878           | 82.201           | 62.775           | 41.650           |
|                    |                     | ( 2.65)              | ( 416.03)                   | ( 7.674)    | ( 20.960)        | ( 21.304)        | ( 16.594)        | ( 13.950)        |
| 3                  | 20                  | 4.00                 | 5.40                        | 692.27      | 94.101           | 82.773           | 62.852           | 36.753           |
|                    |                     | ( 2.35)              | ( 308.29)                   | ( 8.097)    | ( 14.771)        | ( 19.487)        | ( 14.855)        | ( 12.76)         |

## CUMULATIVE DATA FOR SECONDARY TASK BY TIME INTERVAL

| TIME INTERVAL<br>NUMBER OF<br>MRS. | NUMBER OF<br>TIME STAMP<br>RETURN | RMS<br>FRDOP   | PERCENT<br>TOT(160)   | PERCENT<br>TOT(800) | PERCENT<br>TOT(500) | PERCENT<br>TOT(100) |
|------------------------------------|-----------------------------------|----------------|-----------------------|---------------------|---------------------|---------------------|
| 1                                  | 19                                | .00<br>( .00)  | 1914.82<br>( 1n50.51) | 63.286<br>( 25.005) | 39.056<br>( 24.954) | 26.200<br>( 18.3RA) |
| 2                                  | 19                                | 2.00<br>( .00) | 5131.28<br>( 2R23.7A) | 21.342<br>( 32.199) | 13.553<br>( 75.846) | 8.842<br>( 17.248)  |

CUMULATIVE DATA BY SOURCE/DUP

| PREFERENCE | TOTAL<br>TIME | ABSOLUTE<br>WEAN<br>S.H. | NO.<br>MYSSES | RMS<br>FRONT       |                    | PFRCNT<br>TOT(100) |                    | PFRCNT<br>TOT(300) |                    | PFRCNT<br>TOT(300) |  |
|------------|---------------|--------------------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
|            |               |                          |               | PFRCNT<br>TOT(100) | PFRCNT<br>TOT(100) | PFRCNT<br>TOT(100) | PFRCNT<br>TOT(100) | PFRCNT<br>TOT(300) | PFRCNT<br>TOT(300) |                    |  |
| PRIARY     | 120.48        | 5144.21                  | 4101.02       | 369                | 2510.64            | 82.359             | 67.662             | 51.091             | 32.022             | 10.954             |  |
| SFOMINARY  | 80.00         | 748.65                   | 755.85        | 0                  | 4353.37            | 41.979             | 25.856             | 17.071             | 11.363             | 3.873              |  |
| ROTH       | 200.48        | 2056.43                  | 3670.71       | 369                | 3157.19            | 66.475             | 51.239             | 37.727             | 23.907             | 8.112              |  |

