MATH 222: Week 4

Sarah Randall

Last updated: May 24, 2017

Contents

1	§14.5 Chain Rule	1
	1.1 Chain rule and implicit functions	3

1 §14.5 Chain Rule

The chain rule in 1-dimension is as follows:

For an equation y = f(x(t))

$$\frac{dy}{dt} = \frac{df}{dx}\frac{dx}{dt}$$

Example. If $y = (x(t))^2$ and $x(t) = \ln 1 + t$

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = 2x\frac{1}{1+t} = \frac{2\ln 1 + t}{1+t}$$

Example. Suppose $f(x, y) = xy + x^2 + y$

$$x(t) = \ln 1 + t, \ y(t) = e^{t^2}$$

Turn f(x,y) into a function g(t) with only the time parameter.

$$g(t) = f(x(t), y(t)) = \ln 1 + te^{t^2} + (\ln 1 + t)^2 + e^{t^2}$$

$$\frac{dg}{dt} = \frac{df}{dt} = \frac{e^{t^2}}{1+t} + 2t \ln 1 + te^{t^2} + \frac{2\ln 1 + t}{1+t} + 2te^{t^2}$$

Wherever we can, replace the values of x(t), y(t) with x(t), y(t).

$$\frac{dg}{dt} = \frac{df}{dt} = \frac{y(t)}{1+t} + 2te^{t^2}x(t) + \frac{2}{1+t} + 2te^{t^2}$$
$$= x'(t)y(t) + y'(t)x(t) + 2x'(t)x(t) + y'(t)$$

$$= x'(t)(y(t) + 2x(t)) + y'(t)(x(t) + 1)$$
$$= \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

In the second to last line, we use the fact that differentiating f with respect to x gives y + 2x and doing the same for y gives x + 1.

There are two possible cases for the chain rule. Suppose in both cases we have z = f(x, y). In the first case we have x = g(t) and y = h(t). In this case z is a differentiable function of t.

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

In the second case, x = g(s, t) and y = h(s, t). Then z is a differentiable function of both s and t.

$$\frac{dz}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds}$$
$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example. $z = e^x \cos(x+y)$, $x = s^2t$, $y = st^2$. Find $\frac{dz}{ds}$ and $\frac{dz}{dt}$.

$$\frac{\partial z}{\partial x} = e^x(\cos(x+y) - \sin(x+y))$$
$$\frac{\partial z}{\partial y} = -e^x \sin(x+y)$$

Then we need $\frac{dx}{ds}$, $\frac{dx}{dt}$, $\frac{dy}{ds}$, $\frac{dy}{dt}$

$$\frac{dx}{ds} = 2st, \ \frac{dx}{dt} = s^2$$

$$\frac{dy}{ds} = t^2, \ \frac{dy}{dt} = 2st$$

So now we can find the general equations for $\frac{dz}{ds}$ and $\frac{dz}{dt}$.

$$\frac{dz}{ds} = (e^x)(\cos(x+y) - \sin(x+y))(2st) + (-e^x)(\sin(x+y))(t^2)$$

$$\frac{dz}{dt} = (e^x)(\cos(x+y) - \sin(x+y))(s^2) + (-e^x)(\sin(x+y))(2st)$$

Example. If $g(s,t) = f(s^2 - t^2, t^2 - s^2)$ and f is differentiable, show that $t\frac{dg}{ds} + s\frac{dg}{dt} = 0$.

Based on f, $x(s,t) = s^2 - t^2$ and $y(s,t) = t^2 - s^2$. Therefore we can write that g(s,t) = f(x(s,t),y(s,t)). We need to find $\frac{dg}{dt}$ and $\frac{dg}{ds}$ and to do this we need need to differentiate x(s,t), y(s,t) by both s and t.

$$\frac{dg}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial f}{\partial x}(-2t) + \frac{\partial f}{\partial y}(2t)$$

$$\frac{dg}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = \frac{\partial f}{\partial x}(2s) + \frac{\partial f}{\partial y}(-2s)$$

If we multiply the first equation all by t and the second all by s, we get

$$t\frac{dg}{ds} = -2st\frac{\partial f}{\partial x} + 2st\frac{\partial f}{\partial y}$$

$$s\frac{dg}{dt} = 2st\frac{\partial f}{\partial x} - 2st\frac{\partial f}{\partial y}$$

Doing linear combination gives

$$t\frac{dg}{ds} + s\frac{dg}{dt} = 0$$

1.1 Chain rule and implicit functions

In 1 dimension, if we had an implicit function F(x,y)=0 we would do the following to differentiate it.

$$\frac{dF}{dx}(x,y) = 0 \implies \frac{dF}{dx}\frac{dx}{dx} + \frac{dF}{dy}\frac{dy}{dx} = 0$$

 $\frac{dx}{dx}$ always equals 1, so we get an equation for $\frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{\frac{-dF}{dx}}{\frac{dF}{dy}}$$