Homework 5

Polona Oblak

The homework consists of three problems. The solutions are to be submitted to the appropriate mailbox on Učilnica before the exam, but preferably in a week. The solutions should contain a clear and well explained proofs, procedures, explanations, etc.

(1) Let V be a real vector space with an inner product f and a linear transformation $\tau:V\to V$ such that

$$f(\tau(v), w) = -f(v, \tau(w))$$

for all $v, w \in V$. Show that τ has all real eigenvalues equal to 0.

- (2) Find an inner product g on $\mathbb{R}_2[x]$ for which basis $\mathcal{B} = \{1, 1+x, 1+x^2\}$ is reciprocal to itself. Write an explicit formula for g.
- (3) In Homework 4 you proved $\alpha(p) = \int_0^1 p(x) dx$ is a linear form on $\mathbb{R}_2[x]$. For $p, q \in \mathbb{R}_2[x]$ let

$$h(p,q) = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

be an inner product on $\mathbb{R}_2[x]$. (This was proved in the classroom, no need to verify here as well.) Find a polynomial $r \in \mathbb{R}_2[x]$ such that $\alpha(p) = h(p,r)$ for all $p \in \mathbb{R}_2[x]$.