Group operations

Data aggregation, grouping, and pivoting

Kunal Khurana

2024-03-01

Table of contents

How to think about group operations
Data Aggregation
Apply: General split-apply-combine
Group Transformations adn 'Unwrapped' GroupBys
Pivot tables adn Cross-tabulation
Iterating over groups
Selecting a Column or Subset of Columns
Grouping with Dictionaries and Series
Grouping with Functions
Grouping with Index levels
Data Aggregation
Column-Wise multiple function application
Apply: General split-apply-combine
Suppressing the Group Keys
Quantile and Bucket analysis
Ex: Filling missing values with group-spscific values
Ex: Random Sampling and Permutation
Ex: Group weighted Average and Correlation
Ex: Group-Wise linear Regression
Group transforms and 'Unwrapped' GroupBys
Pivot tables
Cross- tabulation

How to think about group operations

- Iterating over groups
- Selecting a column or subset of columns
- Grouping with dictionaries and series
- Grouping with functions
- Grouping by Index levels

Data Aggregation

- Column-wise and Multiple Function Application
- Returning aggregated Data without Row Indexes

Apply: General split-apply-combine

- Suppressing the Group keys
- Quantile and Bucked analysis
- Filling missing and group specific values
- Random sampling and permutation
- group Weighted Average and Correlation
- group wise linear regression

Group Transformations adn 'Unwrapped' GroupBys

Pivot tables adn Cross-tabulation

• cross-tabulations: crosstab

df

	key1	key2	data1	data2
0	a	1	-0.949232	-0.859027
1	a	2	0.902370	0.987569

	key1	key2	data1	data2
2	None	3	0.805328	-0.892250
3	b	<NA $>$	0.269996	0.291597
4	\mathbf{c}	5	-1.341779	-0.229023

```
# mean of data1 using labels from key1
grouped = df["data1"].groupby(df['key1'])
grouped
```

<pandas.core.groupby.generic.SeriesGroupBy object at 0x0000018F93327910>

```
means = df['data1'].groupby([df['key1'], df["key2"]]).mean()
means
```

means.unstack()

key2 key1	1	2	5
a	-0.949232	0.90237	NaN
c	NaN	NaN	-1.341779

```
# using Series as groupkeys
states = np.array(['PB', 'DL', 'UK', 'HP', 'UP',])
years = [2001, 2002, 2005, 2001, 2009,]
df['data1'].groupby([states, years]).mean()
```

```
DL 2002
           0.902370
HP 2001
          0.269996
PB 2001
         -0.949232
UK 2005
           0.805328
UP 2009
           -1.341779
Name: data1, dtype: float64
  grouped.mean()
key1
    -0.023431
b
     0.269996
   -1.341779
Name: data1, dtype: float64
  means2 = df['data1'].groupby([df['key1'], df['key2']]).mean()
  means2
key1 key2
      1
             -0.949232
             0.902370
      5
             -1.341779
Name: data1, dtype: float64
  means2.unstack()
                       key2
                            1
                                      2
                                               5
                       key1
                             -0.949232
                                      0.90237
                                               NaN
                       a
```

NaN

 \mathbf{c}

means2.unstack(0)

NaN

-1.341779

key1 key2	a	С
1	-0.949232	NaN
2	0.902370	NaN
5	NaN	-1.341779

df.groupby('key1').mean()

	key2	data1	data2
key1			
a	1.5	-0.023431	0.064271
b	<NA $>$	0.269996	0.291597
\mathbf{c}	5.0	-1.341779	-0.229023

df

	key1	key2	data1	data2
0	a	1	-0.949232	-0.859027
1	a	2	0.902370	0.987569
2	None	3	0.805328	-0.892250
3	b	<NA $>$	0.269996	0.291597
4	\mathbf{c}	5	-1.341779	-0.229023

df.groupby(['key1', 'key2']).mean()

		data1	data2
key1	key2		
-	1	-0.949232	-0.859027
a	2	0.902370	0.987569
c	5	-1.341779	-0.229023

df.groupby(['key1', 'key2']).size()

key1 key2

```
1
               1
a
      2
               1
      5
               1
dtype: int64
  df.groupby('key1', dropna= False).size()
key1
       2
a
       1
b
С
       1
{\tt NaN}
dtype: int64
  df.groupby(['key1', 'key2'], dropna=False).size()
key1 key2
      1
               1
      2
               1
      <NA>
b
               1
      5
С
      3
NaN
dtype: int64
```

df.groupby('key1').count()

	key2	data1	data2
key1			
a	2	2	2
b	0	1	1

1

1

1

Iterating over groups

```
for name, group in df.groupby('key1'):
     print(name)
     print(group)
 key1 key2 data1
                       data2
0 a 1 -0.949232 -0.859027
         2 0.902370 0.987569
 key1 key2
           data1
3 b <NA> 0.269996 0.291597
 key1 key2 data1
                      data2
      5 -1.341779 -0.229023
  # in case of multiple key elements
  for (k1, k2), group in df.groupby(['key1','key2']):
     print((k1, k2))
     print(group)
('a', 1)
 key1 key2 data1
                       data2
0 a 1 -0.949232 -0.859027
('a', 2)
 key1 key2 data1 data2
1 a 2 0.90237 0.987569
('c', 5)
 key1 key2 data1
                      data2
4 c 5 -1.341779 -0.229023
```

dictionary data in the form of pieces

```
pieces = {name : group for name, group in df.groupby('key1')}
pieces['b']
```

	key1	key2	data1	data2
3	b	<na></na>	0.269996	0.291597

pieces['c']

	key1	key2	data1	data2
4	c	5	-1.341779	-0.229023

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000018F9795F9A0>

```
for group_key, group_values in grouped:
    print(group_key)
    print(group_values)
```

Selecting a Column or Subset of Columns

```
df.groupby('key1')['data1']

<pandas.core.groupby.generic.SeriesGroupBy object at 0x0000018F978AF040>

df.groupby('key1')[['data2']]

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000018F97822580>

# this can also be called by-
df['data1'].groupby(df['key1'])
```

```
df['data2'].groupby(df['key1'])
```

<pandas.core.groupby.generic.SeriesGroupBy object at 0x0000018F978EE970>

```
df.groupby(['key1', 'key2'])[['data2']].mean()
```

		data2
key1	key2	
	1	-0.859027
a	2	0.987569
\mathbf{c}	5	-0.229023

```
s_grouped = df.groupby(['key1', 'key2'])['data2']
s_grouped
```

<pandas.core.groupby.generic.SeriesGroupBy object at 0x0000018F97770520>

```
s_grouped.mean()
```

Grouping with Dictionaries and Series

people

	a	b	c	d	e
Kunal	0.168348	-1.118059	-0.800172	-0.866632	-0.197982
Rahul	0.200227	0.640015	1.108393	-0.085850	-0.888133
Sachin	0.847146	NaN	NaN	0.463212	-0.077719
Sorav	1.440603	0.431537	-0.670088	-0.121215	-1.211302
Andrew	-0.637420	0.237133	-0.426589	-0.631543	0.098273

	blue	red
Kunal	-1.666804	-1.147693
Rahul	1.022543	-0.047891
Sachin	0.463212	0.769427
Sorav	-0.791303	0.660838
Andrew	-1.058132	-0.302014

```
# same functionality holds for Series
map_series = pd.Series(mapping)
map_series

a    red
b    red
c    blue
d    blue
e    red
f    orange
dtype: object
```

people.groupby(map_series, axis= 'columns').count()

	blue	red
Kunal	2	3
Rahul	2	3
Sachin	1	2
Sorav	2	3
Andrew	2	3

Grouping with Functions

people.groupby(len).sum()

	a	b	c	d	е
•		0.0 - 0 0 0 0	0.00_00	-1.073697 -0.168331	

```
# mixing functions with arrays, dicitonaries, or Series
key_list = ['one', 'one', 'two', 'one', 'two']
people.groupby([len, key_list]).min()
```

		a	b	С	d	е
5	one	0.168348	-1.118059	-0.800172	-0.866632	-1.211302
6	two	-0.637420	0.237133	-0.426589	-0.631543	-0.077719

Grouping with Index levels

hier_df

fdk	IN	US	CAN
goleala	1	2	3
0	-0.973483	0.175499	-1.375942
1	-0.417278	-0.593448	-0.097291
2	-1.864057	-1.157927	0.219800
3	-0.062763	0.796581	-0.905844

to groupby level, pass level keyword

hier_df.groupby(level = 'fdk', axis = 'columns').count()

fdk	CAN	IN	US
0	1	1	1
1	1	1	1
2	1	1	1
3	1	1	1

Data Aggregation

- transformation that produces scalar values
- optimised methods

df

	key1	key2	data1	data2
0	a	1	-0.949232	-0.859027
1	a	2	0.902370	0.987569
2	None	3	0.805328	-0.892250
3	b	<NA $>$	0.269996	0.291597
4	\mathbf{c}	5	-1.341779	-0.229023

	key2	data1	data2
key1			
a	1	1.851602	1.846596
b	<NA $>$	0.000000	0.000000
c	0	0.000000	0.000000

grouped.describe()

key1	key2 count	mean	std	min	25%	50%	75%	max	data1 count	mean	 75%
a	2.0	1.5	0.707107	1.0	1.25	1.5	1.75	2.0	2.0	-0.023431	 0.4
b	0.0	<NA $>$	<NA $>$	<NA $>$	<NA $>$	<NA $>$	<NA $>$	<NA $>$	1.0	0.269996	 0.2
\mathbf{c}	1.0	5.0	<NA $>$	5.0	5.0	5.0	5.0	5.0	1.0	-1.341779	 -1.3

Column-Wise multiple function application

```
iris = pd.read_csv(r"E:\pythonfordatanalysis\semainedu26fevrier\iris.csv")
iris.head()
```

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
iris.columns
```

```
missing_values = iris.isna()
missing_values.sum = iris.isna().sum()
missing_values_percent = (iris.isna().sum() / len(iris)) * 100
iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	Sepal Length (cm)	150 non-null	float64

```
Sepal Width (cm) 150 non-null
2
                                      float64
3
    Petal Length (cm) 150 non-null
                                      float64
4
    Petal Width (cm)
                      150 non-null
                                      float64
    Species
                       150 non-null
                                      object
dtypes: float64(4), int64(1), object(1)
```

memory usage: 7.2+ KB

```
grouped.agg(['mean', 'std', peak_to_peak])
```

key1	key2 mean	std	peak_to_peak	data1 mean	std	peak_to_peak	data2 mean	std	pea
a	1.5	0.707107	1	-0.023431	1.30928	1.851602	0.064271	1.305741	1.84
b	<NA $>$	<NA $>$	<NA $>$	0.269996	NaN	0.000000	0.291597	NaN	0.00
\mathbf{c}	5.0	<NA $>$	0	-1.341779	NaN	0.000000	-0.229023	NaN	0.00

```
# dropping column as it gave traceback before
iris2 = iris.drop('Species', axis=1)
iris2.agg(['mean', 'std', peak_to_peak])
```

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
peak_to_peak	149.000000	3.600000	2.400000	5.900000	2.400000

Apply: General split-apply-combine

```
def top(iris2, n=5, column = 'Sepal Length (cm)'):
    return iris2.sort_values(column, ascending= False)[:n]
top(iris2, n=6)
```

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)
131	132	7.9	3.8	6.4	2.0
135	136	7.7	3.0	6.1	2.3
122	123	7.7	2.8	6.7	2.0
117	118	7.7	3.8	6.7	2.2
118	119	7.7	2.6	6.9	2.3
105	106	7.6	3.0	6.6	2.1

iris2.groupby('Sepal Length (cm)').apply(top)

		Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (ca
Sepal Length (cm)			- 、	` ,	_ , ,	,
4.3	13	14	4.3	3.0	1.1	0.1
	8	9	4.4	2.9	1.4	0.2
4.4	38	39	4.4	3.0	1.3	0.2
	42	43	4.4	3.2	1.3	0.2
4.5	41	42	4.5	2.3	1.3	0.3
	117	118	7.7	3.8	6.7	2.2
7 7	118	119	7.7	2.6	6.9	2.3
7.7	122	123	7.7	2.8	6.7	2.0
	135	136	7.7	3.0	6.1	2.3
7.9	131	132	7.9	3.8	6.4	2.0

recall by groupby object

result = iris2.groupby("Sepal Length (cm)").describe()

result

Sepal Length (cm)	Id	mean	std	min	25%	50%	75%	max	Sepal Width (cm) count	mean
4.3	1.0	14.000000	NaN	14.0	14.00	14.0	14.00	14.0	1.0	3.00000
4.4	3.0	30.333333	18.583146	9.0	24.00	39.0	41.00	43.0	3.0	3.03333
4.5	1.0	42.000000	NaN	42.0	42.00	42.0	42.00	42.0	1.0	2.30000

Sepal Length (cm) 4.6 4.0 20.500000 20.141168 4.0 6.25 15.0 29.25 48.0 4.0 3.3 4.7 2.0 16.500000 19.091883 3.0 9.75 16.5 23.25 30.0 2.0 3.2 4.8 5.0 25.400000 14.046352 12.0 13.00 25.0 31.00 46.0 5.0 3.1 4.9 6.0 41.666667 37.866432 2.0 16.25 36.5 35.00 107.0 6.0 28.5 5.0 10.0 39.200000 26.029044 5.0 26.25 38.5 48.50 99.0 9.0 3.4 5.1 9.0 35.111111 28.117808 1.0 20.00 24.0 45.00 99.0 90 3.4 5.2 4.0 37.500000 15.154757 28.0 28.75 31.0 39.0 49.0 40.0 49.0 49.0 40.0 49.0 40.0 10.0 35.5		Id count	mean	std	min	25%	50%	75%	max	Sepal Width (cm) count	mean
$\begin{array}{c} 4.7\\ 4.8\\ 4.8\\ 5.0\\ 25.400000\\ 10.0\\ 25.400000\\ 10.0\\ 39.200000\\ 20.0$	Sepal Length (cm)										
$\begin{array}{c} 4.8\\ 4.9\\ 6.0\\ 6.0\\ 41.666667\\ 37.866432\\ 2.0\\ 61.02\\ 37.866432\\ 2.0\\ 61.02\\ 62.029044\\ 5.0\\ 26.029044\\ 5.0\\ 26.025\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 38.5\\ 39.0\\ 39.0\\ 35.111111\\ 28.117808\\ 1.0\\ 20.002\\ 24.0\\ 24.0\\ 35.111111\\ 28.117808\\ 1.0\\ 20.002\\ 24.0\\ 32.875\\ 31.0\\ 39.75\\ 60.0\\ 49.0\\ 4$	4.6	4.0	20.500000	20.141168	4.0	6.25	15.0	29.25	48.0	4.0	3.32500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.7	2.0	16.500000	19.091883	3.0	9.75	16.5	23.25	30.0	2.0	3.20000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.8	5.0	25.400000	14.046352	12.0	13.00	25.0	31.00	46.0	5.0	3.18000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			41.666667						107.0		2.86666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	10.0	39.200000	26.029044	5.0	26.25	38.5	48.50	94.0	10.0	3.12000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											3.47777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											3.42500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											3.70000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											3.55000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2.84285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						67.75					2.81666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.0		37.821951	16.0	46.75	88.0	97.75	114.0	8.0	3.10000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						75.50		108.50			2.88571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						66.50					3.06666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0	6.0	95.166667	28.435307	63.0	80.25	85.0	111.50	139.0	6.0	2.73333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.0	94.166667	30.413265		72.50		119.00			2.85000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.2	4.0		34.798228	69.0	90.75	112.5	132.50	149.0	4.0	2.82500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.3	9.0	107.222222	30.780586		88.00	104.0	134.00		9.0	2.85555
6.6 2.0 67.500000 12.020815 59.0 63.25 67.5 71.75 76.0 2.0 2.9 6.7 8.0 112.125000 31.984092 66.0 84.75 117.0 142.00 146.0 8.0 3.0 6.8 3.0 111.333333 33.531080 77.0 95.00 113.0 128.50 144.0 3.0 3.0 6.9 4.0 114.000000 41.753243 53.0 104.00 130.5 140.50 142.0 4.0 3.1 7.0 1.0 51.000000 NaN 51.0 51.00 51.0 51.0 10.0 3.2 7.1 1.0 103.000000 NaN 103.0 103.00 103.0 103.0 103.0 103.0 103.0 3.0 7.2 3.0 122.000000 NaN 108.0 108.00 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 106.0 106.0 106.0 106.0 106.0 106.0 106.0 <td< td=""><td>6.4</td><td>7.0</td><td>107.857143</td><td>32.328669</td><td>52.0</td><td>93.50</td><td>116.0</td><td>131.00</td><td>138.0</td><td>7.0</td><td>2.95714</td></td<>	6.4	7.0	107.857143	32.328669	52.0	93.50	116.0	131.00	138.0	7.0	2.95714
6.6 2.0 67.500000 12.020815 59.0 63.25 67.5 71.75 76.0 2.0 2.9 6.7 8.0 112.125000 31.984092 66.0 84.75 117.0 142.00 146.0 8.0 3.0 6.8 3.0 111.333333 33.531080 77.0 95.00 113.0 128.50 144.0 3.0 3.0 6.9 4.0 114.000000 41.753243 53.0 104.00 130.5 140.50 142.0 4.0 3.1 7.0 1.0 51.000000 NaN 51.0 51.00 51.0 51.0 10.0 3.2 7.1 1.0 103.000000 NaN 103.0 103.00 103.0 103.0 103.0 103.0 103.0 3.0 7.2 3.0 122.000000 NaN 108.0 108.00 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 106.0 106.0 106.0 106.0 106.0 106.0 106.0 <td< td=""><td>6.5</td><td>5.0</td><td>107.200000</td><td>33.558903</td><td>55.0</td><td>105.00</td><td>111.0</td><td>117.00</td><td>148.0</td><td>5.0</td><td>3.00000</td></td<>	6.5	5.0	107.200000	33.558903	55.0	105.00	111.0	117.00	148.0	5.0	3.00000
6.7 8.0 112.125000 31.984092 66.0 84.75 117.0 142.00 146.0 8.0 3.0 6.8 3.0 111.333333 33.531080 77.0 95.00 113.0 128.50 144.0 3.0 3.0 6.9 4.0 114.000000 41.753243 53.0 104.00 130.5 140.50 142.0 4.0 3.1 7.0 1.0 51.000000 NaN 51.0 51.00 51.00 51.0 1.0 1.0 3.2 7.1 1.0 103.000000 NaN 103.0 103.00 103.0 103.00 103.0 103.0 103.0 1.0 3.0 7.2 3.0 122.000000 10.583005 110.0 118.00 126.0 128.00 130.0 3.0 3.2 7.3 1.0 108.000000 NaN 108.0 108.00 108.00 108.0 108.0 108.0 108.0 1.0 2.9 7.4 1.0 131.000000 NaN 131.0 131.0 131.0 131.0 131.0 13						63.25					2.95000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			112.125000			84.75		142.00	146.0		3.05000
6.9 4.0 114.000000 41.753243 53.0 104.00 130.5 140.50 142.0 4.0 3.1 7.0 1.0 51.000000 NaN 51.0 51.00 51.0 51.0 10.0 10.0 12.0 10.0	6.8		111.333333			95.00	113.0	128.50	144.0		3.00000
7.0 1.0 51.000000 NaN 51.0 51.00 51.0 51.00 51.0 1.0 1.0 3.2 7.1 1.0 103.000000 NaN 103.0 103.00 103.0 103.0 103.0 103.0 1.0 3.0 7.2 3.0 122.000000 10.583005 110.0 118.00 126.0 128.00 130.0 3.0 3.2 7.3 1.0 108.000000 NaN 108.0 108.00 108.00 108.0 108.0 108.0 1.0 2.9 7.4 1.0 131.000000 NaN 131.0 131.0 131.0 131.0 131.0 1.0 2.8 7.6 1.0 106.000000 NaN 106.0 106.00 106.0 106.0 106.0 1.0 3.0 7.7 4.0 124.000000 8.286535 118.0 118.75 121.0 126.25 136.0 4.0 3.0		4.0	114.000000	41.753243	53.0	104.00	130.5	140.50	142.0	4.0	3.12500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											3.20000
7.2 3.0 122.000000 10.583005 110.0 118.00 126.0 128.00 130.0 3.0 3.2 7.3 1.0 108.000000 NaN 108.0 108.00 108.0 108.0 108.0 108.0 1.0 2.9 7.4 1.0 131.000000 NaN 131.0 131.0 131.0 131.0 131.0 131.0 131.0 1.0 2.8 7.6 1.0 106.000000 NaN 106.0 106.00 106.0 106.00 106.0 106.0 1.0 3.0 7.7 4.0 124.000000 8.286535 118.0 118.75 121.0 126.25 136.0 4.0 3.0		1.0	103.000000	NaN	103.0	103.00	103.0	103.00	103.0	1.0	3.00000
7.3 1.0 108.000000 NaN 108.0 108.00 108.0 108.00 108.0 108.0 1.0 2.9 7.4 1.0 131.000000 NaN 131.0 131.0 131.0 131.0 131.0 131.0 1.0 2.8 7.6 1.0 106.000000 NaN 106.0 106.00 106.0 106.00 106.0 106.0 1.0 3.0 7.7 4.0 124.000000 8.286535 118.0 118.75 121.0 126.25 136.0 4.0 3.0	7.2	3.0	122.000000	10.583005	110.0	118.00	126.0	128.00	130.0	3.0	3.26666
7.4 1.0 131.000000 NaN 131.0 131.00 131.0 131.00 131.0 131.0 131.0 1.0 1.0 2.8 7.6 1.0 106.000000 NaN 106.0 106.00 106.0 106.00 106.0 106.0 106.0 1.0 3.0 7.7 4.0 124.000000 8.286535 118.0 118.75 121.0 126.25 136.0 4.0 3.0	7.3						108.0	108.00			2.90000
7.6 1.0 106.000000 NaN 106.0 106.00 106.0 106.00 106.0 106.0 106.0 1.0 3.0 7.7 4.0 124.000000 8.286535 118.0 118.75 121.0 126.25 136.0 4.0 3.0	7.4	1.0	131.000000	NaN	131.0	131.00	131.0	131.00	131.0	1.0	2.80000
$7.7 \hspace{1.5cm} 4.0 \hspace{0.5cm} 124.000000 \hspace{0.2cm} 8.286535 \hspace{0.5cm} 118.0 \hspace{0.5cm} 118.75 \hspace{0.5cm} 121.0 \hspace{0.5cm} 126.25 \hspace{0.5cm} 136.0 \hspace{0.5cm} 4.0 \hspace{0.5cm} 3.0$	7.6	1.0	106.000000	NaN	106.0	106.00	106.0	106.00	106.0		3.00000
											3.05000
1.0 192.000000 1010 192.0 192.0 192.0 192.0 192.0	7.9	1.0	132.000000	NaN	132.0	132.00	132.0	132.00	132.0	1.0	3.80000

[#] invoking a method inside GroupBy
def f(group):

return group.describe() grouped.apply(f)

		key2	data1	data2
key1				
	count	2.0	2.000000	2.000000
	mean	1.5	-0.023431	0.064271
	std	0.707107	1.309280	1.305741
a	\min	1.0	-0.949232	-0.859027
	25%	1.25	-0.486331	-0.397378
	50%	1.5	-0.023431	0.064271
	75%	1.75	0.439470	0.525920
	max	2.0	0.902370	0.987569
	count	0.0	1.000000	1.000000
	mean	<NA $>$	0.269996	0.291597
	std	<NA $>$	NaN	NaN
b	\min	<NA $>$	0.269996	0.291597
D	25%	<NA $>$	0.269996	0.291597
	50%	<NA $>$	0.269996	0.291597
	75%	<NA $>$	0.269996	0.291597
	max	<NA $>$	0.269996	0.291597
	count	1.0	1.000000	1.000000
	mean	5.0	-1.341779	-0.229023
	std	<NA $>$	NaN	NaN
	\min	5.0	-1.341779	-0.229023
С	25%	5.0	-1.341779	-0.229023
	50%	5.0	-1.341779	-0.229023
	75%	5.0	-1.341779	-0.229023
	max	5.0	-1.341779	-0.229023

iris2.apply(f)

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
\min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)
75%	112.750000	6.400000	3.300000	5.100000	1.800000
\max	150.000000	7.900000	4.400000	6.900000	2.500000

Suppressing the Group Keys

```
iris2.groupby('Sepal Length (cm)', group_keys = False).apply(top)
```

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)
13	14	4.3	3.0	1.1	0.1
8	9	4.4	2.9	1.4	0.2
38	39	4.4	3.0	1.3	0.2
42	43	4.4	3.2	1.3	0.2
41	42	4.5	2.3	1.3	0.3
117	118	7.7	3.8	6.7	2.2
118	119	7.7	2.6	6.9	2.3
122	123	7.7	2.8	6.7	2.0
135	136	7.7	3.0	6.1	2.3
131	132	7.9	3.8	6.4	2.0

Quantile and Bucket analysis

	data1	data2
0	-0.218315	-1.593930
1	2.851876	0.110652
2	-2.136658	-0.057209
3	1.380738	-1.014417
4	0.375207	0.910869

```
quartiles = pd.cut(frame['data1'],4)
  quartiles.head()
0
     (-1.6, 0.127]
     (1.854, 3.581]
1
     (-3.333, -1.6]
     (0.127, 1.854]
     (0.127, 1.854]
Name: data1, dtype: category
Categories (4, interval[float64, right]): [(-3.333, -1.6] < (-1.6, 0.127] < (0.127, 1.854] <
  def get_stats(group):
      return pd.DataFrame({
           'min': group.min(), 'max':group.max(),
           'count':group.count(), "mean":group.mean()
      })
  grouped3 = frame.groupby(quartiles)
  grouped3.apply(get_stats)
```

		min	max	count	mean
data1					
(2222 16]	data1	-3.326377	-1.615895	47	-2.008459
(-3.333, -1.6]	data2	-2.449983	1.891096	47	-0.031678
(-1.6, 0.127]	data1	-1.592835	0.127111	499	-0.559453
(-1.0, 0.127]	data2	-3.688831	2.891848	499	0.060442
(0.127, 1.854]	data1	0.129218	1.845841	419	0.767489
(0.127, 1.854]	data2	-3.107630	3.210868	419	0.063923
(1.854, 3.581]	data1	1.860336	3.580781	35	2.272007
(1.654, 5.561]	data2	-1.915169	1.595983	35	-0.040774

```
# the same result can also be computed with;
grouped3.agg({'min', 'max', 'count', 'mean'})
```

data1	data1 max	count	min	mean	data2 max	count	min	mean
(-3.333, -1.6]	-1.615895	47	-3.326377	-2.008459	1.891096	47	-2.449983	-0.031678
(-1.6, 0.127]	0.127111	499	-1.592835	-0.559453	2.891848	499	-3.688831	0.060442
(0.127, 1.854]	1.845841	419	0.129218	0.767489	3.210868	419	-3.107630	0.063923
(1.854, 3.581]	3.580781	35	1.860336	2.272007	1.595983	35	-1.915169	-0.040774

```
# using pandas.qcut
quartiles_samp = pd.qcut(frame['data1'], 4, labels= False)
quartiles_samp.head()
```

3 3

Name: data1, dtype: int64

```
grouped4 = frame.groupby(quartiles_samp)
```

grouped4.apply(get_stats)

		min	max	count	mean
data1					
0	data1	-3.326377	-0.634348	250	-1.220039
0	data2	-2.449983	2.891848	250	0.170686
1	data1	-0.629175	0.018952	250	-0.288017
1	data2	-2.673280	2.854084	250	-0.041068
9	data1	0.023148	0.676789	250	0.326941
2	data2	-3.688831	3.210868	250	0.070652
9	data1	0.681385	3.580781	250	1.291250
3	data2	-3.107630	2.653283	250	0.015843

Ex: Filling missing values with group-spscific values

```
s = pd.Series(np.random.standard_normal(6))
  s[::2] = np.nan
  S
0
          NaN
1
   -0.860730
2
          NaN
3
    1.412749
4
          NaN
     0.419197
dtype: float64
  s.fillna(s.mean())
0
   0.323739
1
  -0.860730
2
    0.323739
3
    1.412749
4
     0.323739
     0.419197
dtype: float64
  states = ['MP', 'UP', 'MH', 'RJ',
           'HP', 'UK', 'PB', 'KR']
  group_key = ['Centre', 'Centre', 'Centre', 'Centre',
               'North', 'North', "North", "North"]
  data4 = pd.Series(np.random.standard_normal(8),
                  index= states)
  data4
```

```
MP
      0.712152
UP
      0.211319
MH
      0.925109
RJ
   -0.204536
ΗP
      0.293047
      0.497221
UK
PΒ
      0.034935
KR
    -0.842300
dtype: float64
  # missing data for states
  data4[['MP', "PB", "KR"]] = np.nan
  data4
MP
           {\tt NaN}
UP
      0.211319
MH
      0.925109
RJ
    -0.204536
ΗP
      0.293047
      0.497221
UK
PΒ
           NaN
KR
           NaN
dtype: float64
  data4.groupby(group_key).size()
Centre
          4
North
          4
dtype: int64
  data4.groupby(group_key).mean()
Centre
          0.310630
          0.395134
dtype: float64
```

```
data4.groupby(group_key).count()
Centre
          3
North
          2
dtype: int64
  data4.groupby(group_key).mean()
Centre
          0.310630
North
          0.395134
dtype: float64
  # filling NA values from group means
  def fill_mean(group):
      return group.fillna(group.mean())
  data.groupby(group_key).apply(fill_mean)
            -1.190913
Centre MP
        UP
             0.136560
        MΗ
            -0.046813
        RJ
             0.962568
North
        ΗP
             0.477671
        UK
             -0.695437
        PΒ
              0.745012
        KR
              2.058104
dtype: float64
  data
MP
     -1.190913
UP
      0.136560
    -0.046813
MH
RJ
      0.962568
ΗP
      0.477671
UK
    -0.695437
PΒ
      0.745012
      2.058104
KR
dtype: float64
```

```
data4
MP
           {\tt NaN}
UP
      0.211319
      0.925109
MH
RJ
     -0.204536
ΗP
      0.293047
UK
      0.497221
PΒ
           NaN
KR
           NaN
dtype: float64
  # filling predefined vlaues
  fill_values = {'Centre': 0.5,
                 'North': -1}
  def fill_func(group):
      return group.fillna(fill_values[group.name])
  data4.groupby(group_key).apply(fill_func)
Centre MP
              0.500000
        UP
              0.211319
        MH
            0.925109
        RJ
           -0.204536
North
        ΗP
            0.293047
        UK
              0.497221
        PΒ
             -1.000000
             -1.000000
        KR
dtype: float64
```

Ex: Random Sampling and Permutation

```
suits = ['H', 'S', 'C', 'D'] # hearts, club, diammonds, spades
card_val = (list(range(1, 11)) + [10] * 3) * 4

base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in suits:
```

```
cards.extend(str(num) + suit for num in base_names)
  deck= pd.Series(card_val, index = cards)
  deck.head(13)
ΑH
        1
2H
        2
ЗН
        3
4H
        4
5H
        5
6H
        6
        7
7H
8H
        8
9Н
        9
10H
       10
JH
       10
KH
       10
QH
       10
dtype: int64
  # drawing first five cards from deck
  def draw(deck, n=5):
      return deck.sample(n)
  draw(deck)
6H
        6
6S
        6
7S
        7
10H
       10
9D
        9
dtype: int64
  # two random cards from each suit
  def get_suit(card):
      # last letter is suit
      return card[-1]
```

```
deck.groupby(get_suit).apply(draw, n = 2)
  KC
         10
          1
   AC
D
   JD
         10
   6D
          6
H AH
          1
   2H
          2
S 9S
          9
          1
   AS
dtype: int64
  # alternatively, group_keys = False
  deck.groupby(get_suit, group_keys= False).apply(draw, n=2)
4C
       4
KC
      10
6D
       6
JD
      10
8H
       8
AΗ
       1
JS
      10
88
       8
dtype: int64
```

Ex: Group weighted Average and Correlation

	category	data	weights
0	a	-0.272834	0.453331
1	a	1.032855	0.573681
2	a	0.123029	0.239600

	category	data	weights
3	a	-0.715634	0.474301

Ex: Group-Wise linear Regression

• using regress function of statsmodel econometrics library

Group transforms and 'Unwrapped' GroupBys

	key	value
0	a	0.0
1	b	1.0
2	\mathbf{c}	2.0
3	a	3.0
4	b	4.0
5	\mathbf{c}	5.0
6	a	6.0
7	b	7.0
8	\mathbf{c}	8.0
9	a	9.0
10	b	10.0
11	\mathbf{c}	11.0

```
# group means by key
g = df6.groupby('key')['value']
```

```
g.mean()
key
     4.5
a
     5.5
b
     6.5
Name: value, dtype: float64
  def get_mean(group):
       return group.mean()
  g.transform(get_mean)
0
      4.5
      5.5
1
2
      6.5
3
      4.5
4
      5.5
5
      6.5
6
      4.5
7
      5.5
      6.5
8
      4.5
10
      5.5
      6.5
11
Name: value, dtype: float64
  g.transform('mean')
0
      4.5
1
      5.5
2
      6.5
3
      4.5
4
      5.5
      6.5
5
6
      4.5
7
      5.5
8
      6.5
```

```
9
      4.5
10
      5.5
      6.5
11
Name: value, dtype: float64
  def times_two(group):
      return group* 2
  g.transform(times_two)
       0.0
0
1
       2.0
2
       4.0
3
       6.0
      8.0
4
      10.0
5
      12.0
6
7
      14.0
8
      16.0
9
      18.0
      20.0
10
      22.0
11
Name: value, dtype: float64
  # ranks in descending order
  def get_ranks(group):
      return group.rank(ascending=False)
  g.transform(get_ranks)
0
      4.0
      4.0
1
2
      4.0
3
      3.0
      3.0
4
5
      3.0
6
      2.0
7
      2.0
      2.0
8
9
      1.0
```

```
10
      1.0
11
      1.0
Name: value, dtype: float64
  # transformation function composed of aggregations
  def normalize(x):
      return (x - x.mean())/x.std()
  g.transform(normalize)
0
    -1.161895
1
     -1.161895
    -1.161895
3
    -0.387298
4
    -0.387298
5
    -0.387298
6
     0.387298
7
      0.387298
8
      0.387298
9
      1.161895
      1.161895
10
11
      1.161895
Name: value, dtype: float64
  g.apply(normalize)
key
     0
          -1.161895
a
     3
         -0.387298
     6
          0.387298
     9
          1.161895
b
     1
         -1.161895
          -0.387298
     4
     7
          0.387298
     10
          1.161895
     2
С
          -1.161895
     5
          -0.387298
           0.387298
     8
```

```
1.161895
     11
Name: value, dtype: float64
  # using built-in 'mean' and 'sum' functions
  g.transform('mean')
0
      4.5
      5.5
1
      6.5
2
3
      4.5
4
      5.5
      6.5
5
6
      4.5
7
      5.5
8
      6.5
      4.5
9
10
      5.5
11
      6.5
Name: value, dtype: float64
  normalized2 = (df6['value'] - g.transform('mean')) / g.transform('std')
  normalized2
    -1.161895
0
1
    -1.161895
    -1.161895
     -0.387298
4
    -0.387298
    -0.387298
6
     0.387298
      0.387298
7
8
      0.387298
9
     1.161895
      1.161895
10
      1.161895
Name: value, dtype: float64
```

Pivot tables

- summarization tool
- uses groupby facility
- pandas.pivot_table fucntion can add partial tools known as margins
- summary pivot table

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as mlt

df_iris = pd.read_csv('E:\pythonfordatanalysis\semainedu26fevrier\iris.csv')

df_iris.head()
```

	Id	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
df_iris.pivot_table(index = ['Species'])
```

	Id	Petal Length (cm)	Petal Width (cm)	Sepal Length (cm)	Sepal Width (cm)
Species					
Iris-setosa	25.5	1.464	0.244	5.006	3.418
Iris-versicolor	75.5	4.260	1.326	5.936	2.770
Iris-virginica	125.5	5.552	2.026	6.588	2.974

```
df_iris.columns
```

df_iris.pivot_table(index = ['Species', 'Petal Length (cm)'])

		Id	Petal Width (cm)	Sepal Length (cm)	Sepal Width (cm)
Species	Petal Length (cm)				
	1.0	23.000000	0.200000	4.600000	3.600000
	1.1	14.000000	0.100000	4.300000	3.000000
	1.2	25.500000	0.200000	5.400000	3.600000
	1.3	31.714286	0.257143	4.842857	3.228571
Iris-setosa	1.4	21.833333	0.216667	4.916667	3.333333
	1.5	24.714286	0.221429	5.128571	3.535714
	1.6	31.000000	0.285714	4.914286	3.342857
	1.7	17.500000	0.350000	5.400000	3.600000
	1.9	35.000000	0.300000	4.950000	3.600000
	3.0	99.000000	1.100000	5.100000	2.500000
	3.3	76.000000	1.000000	4.950000	2.350000
	3.5	70.500000	1.000000	5.350000	2.300000
	3.6	65.000000	1.300000	5.600000	2.900000
	3.7	82.000000	1.000000	5.500000	2.400000
	3.8	81.000000	1.100000	5.500000	2.400000
	3.9	71.000000	1.233333	5.533333	2.633333
	4.0	74.400000	1.220000	5.780000	2.480000
	4.1	85.666667	1.200000	5.700000	2.833333
Iris-versicolor	4.2	87.500000	1.325000	5.725000	2.900000
	4.3	86.500000	1.300000	6.300000	2.900000
	4.4	80.250000	1.325000	6.275000	2.750000
	4.5	70.571429	1.485714	5.900000	2.928571
	4.6	68.666667	1.400000	6.400000	2.900000
	4.7	66.600000	1.420000	6.440000	3.060000
	4.8	74.000000	1.600000	6.350000	3.000000
	4.9	63.000000	1.500000	6.600000	2.800000
	5.0	78.000000	1.700000	6.700000	3.000000
	5.1	84.000000	1.600000	6.000000	2.700000
	4.5	107.000000	1.700000	4.900000	2.500000
	4.8	133.000000	1.800000	6.100000	2.900000
	4.9	124.666667	1.866667	6.000000	2.833333
	5.0	127.000000	1.800000	6.000000	2.400000
	5.1	128.142857	1.971429	6.142857	2.900000
	5.2	147.000000	2.150000	6.600000	3.000000
	5.3	114.000000	2.100000	6.400000	2.950000
	5.4	144.500000	2.200000	6.550000	3.250000
	5.5	122.666667	1.900000	6.566667	3.033333

Iris-virginica

		Id	Petal Width (cm)	Sepal Length (cm)	Sepal Width (cm)
Species	Petal Length (cm)		, ,	- ` ,	. ,
	5.6	129.833333	2.050000	6.366667	2.933333
	5.7	130.333333	2.300000	6.766667	3.266667
	5.8	114.666667	1.866667	6.800000	2.833333
	5.9	123.500000	2.200000	6.950000	3.100000
	6.0	113.500000	2.150000	6.750000	3.250000
	6.1	125.666667	2.233333	7.433333	3.133333
	6.3	108.000000	1.800000	7.300000	2.900000
	6.4	132.000000	2.000000	7.900000	3.800000
	6.6	106.000000	2.100000	7.600000	3.000000
	6.7	120.500000	2.100000	7.700000	3.300000
	6.9	119.000000	2.300000	7.700000	2.600000

	C 1337 1:1 ()	Id	2.0	2.0	2.4	~ F	2.0	2 7	2.0	2.0	2.0
~ .	Sepal Width (cm)	2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
Species	Petal Length (cm)										!
	1.0	NaN	NaN	NaN							
	1.1	NaN	NaN	14.000							
	1.2	NaN	NaN	NaN							
	1.3	NaN	NaN	42.0	NaN	NaN	NaN	NaN	NaN	NaN	39.000
Iris-setosa	1.4	NaN	9.0	20.333							
	1.5	NaN	NaN	NaN							
	1.6	NaN	NaN	26.000							
	1.7	NaN	NaN	NaN							
	1.9	NaN	NaN	NaN							
	3.0	NaN	NaN	NaN	NaN	99.0	NaN	NaN	NaN	NaN	NaN
	3.3	NaN	NaN	94.0	58.0	NaN	NaN	NaN	NaN	NaN	NaN
	3.5	61.0	NaN	NaN	NaN	NaN	80.0	NaN	NaN	NaN	NaN
	3.6	NaN	65.0	NaN							
	3.7	NaN	NaN	NaN	82.0	NaN	NaN	NaN	NaN	NaN	NaN
	3.8	NaN	NaN	NaN	81.0	NaN	NaN	NaN	NaN	NaN	NaN
	3.9	NaN	NaN	NaN	NaN	70.0	NaN	71.5	NaN	NaN	NaN
	4.0	NaN	63.0	54.0	NaN	90.0	93.0	NaN	72.0	NaN	NaN
	4.1	NaN	NaN	NaN	NaN	NaN	NaN	68.0	100.0	NaN	89.000
Iris-versicolor	4.2	NaN	NaN	NaN	NaN	NaN	NaN	95.0	NaN	97.0	79.000
	4.3	NaN	86.5	NaN							

		Id									
	Sepal Width (cm)	2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
Species	Petal Length (cm)										
	4.4	NaN	NaN	88.0	NaN	NaN	91.0	NaN	NaN	NaN	76.000
	4.5	NaN	69.0	NaN	NaN	NaN	NaN	NaN	56.0	79.0	76.000
	4.6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	55.0	59.0	92.000
	4.7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	74.0	64.0	NaN
	4.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	77.0	NaN	NaN
	4.9	NaN	NaN	NaN	NaN	73.0	NaN	NaN	NaN	NaN	NaN
	5.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	78.000
	5.1	NaN	NaN	NaN	NaN	NaN	NaN	84.0	NaN	NaN	NaN
	4.5	NaN	NaN	NaN	NaN	107.0	NaN	NaN	NaN	NaN	NaN
	4.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	127.0	NaN	139.00
	4.9	NaN	NaN	NaN	NaN	NaN	NaN	124.0	122.0	NaN	128.00
	5.0	NaN	120.0	NaN	NaN	130.5	NaN	NaN	NaN	NaN	NaN
	5.1	NaN	NaN	NaN	NaN	NaN	NaN	122.5	124.5	NaN	150.00
	5.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	147.00
	5.3	NaN	NaN	NaN	NaN	NaN	NaN	112.0	NaN	NaN	NaN
	5.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	5.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	115.00
T:::	5.6	NaN	NaN	NaN	NaN	NaN	135.0	NaN	131.0	104.0	NaN
Iris-virginica	5.7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	5.8	NaN	NaN	NaN	NaN	109.0	NaN	NaN	NaN	NaN	117.50
	5.9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	103.00
	6.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	6.1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	131.0	NaN	136.00
	6.3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	108.0	NaN
	6.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	6.6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	106.00
	6.7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	123.0	NaN	NaN
	6.9	NaN	NaN	NaN	NaN	NaN	119.0	NaN	NaN	NaN	NaN

Species	Sepal Width (cm) Petal Length (cm)	Id 2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	•••
	1.0	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000	

Iris-setosa 38

Species	Sepal Width (cm) Petal Length (cm)	Id 2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
	1.1	5	5	5	5	5.0	5	5.0	5.0	5.0	14.000000
	1.2	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	1.3	5	5	42	5	5.0	5	5.0	5.0	5.0	39.000000
	1.4	5	5	5	5	5.0	5	5.0	5.0	9.0	20.333333
	1.5	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	1.6	5	5	5	5	5.0	5	5.0	5.0	5.0	26.000000
	1.7	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	1.9	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	3.0	5	5	5	5	99.0	5	5.0	5.0	5.0	5.000000
	3.3	5	5	94	58	5.0	5	5.0	5.0	5.0	5.000000
	3.5	61	5	5	5	5.0	80	5.0	5.0	5.0	5.000000
	3.6	5	5	5	5	5.0	5	5.0	5.0	65.0	5.000000
	3.7	5	5	5	82	5.0	5	5.0	5.0	5.0	5.000000
	3.8	5	5	5	81	5.0	5	5.0	5.0	5.0	5.000000
	3.9	5	5	5	5	70.0	5	71.5	5.0	5.0	5.000000
	4.0	5	63	54	5	90.0	93	5.0	72.0	5.0	5.000000
	4.1	5	5	5	5	5.0	5	68.0	100.0	5.0	89.000000
Iris-versicolor	4.2	5	5	5	5	5.0	5	95.0	5.0	97.0	79.000000
	4.3	5	5	5	5	5.0	5	5.0	5.0	86.5	5.000000
	4.4	5	5	88	5	5.0	91	5.0	5.0	5.0	76.000000
	4.5	5	69	5	5	5.0	5	5.0	56.0	79.0	76.000000
	4.6	5	5	5	5	5.0	5	5.0	55.0	59.0	92.000000
	4.7	5	5	5	5	5.0	5	5.0	74.0	64.0	5.000000
	4.8	5	5	5	5	5.0	5	5.0	77.0	5.0	5.000000
	4.9	5	5	5	5	73.0	5	5.0	5.0	5.0	5.000000
	5.0	5	5	5	5	5.0	5	5.0	5.0	5.0	78.000000
	5.1	5	5	5	5	5.0	5	84.0	5.0	5.0	5.000000
	4.5	5	5	5	5	107.0	5	5.0	5.0	5.0	5.000000
	4.8	5	5	5	5	5.0	5	5.0	127.0	5.0	139.000000
	4.9	5	5	5	5	5.0	5	124.0	122.0	5.0	128.000000
	5.0	5	120	5	5	130.5	5	5.0	5.0	5.0	5.000000
	5.1	5	5	5	5	5.0	5	122.5	124.5	5.0	150.000000
	5.2	5	5	5	5	5.0	5	5.0	5.0	5.0	147.000000
	5.3	5	5	5	5	5.0	5	112.0	5.0	5.0	5.000000
	5.4	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	5.5	5	5	5	5	5.0	5	5.0	5.0	5.0	115.000000
r	5.6	5	5	5	5	5.0	135	5.0	131.0	104.0	5.000000
Iris-virginica	5.7	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000
	5.8	5	5	5	5	109.0	5	5.0	5.0	5.0	117.500000

		Id										
Species	Sepal Width (cm) Petal Length (cm)	2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	
	5.9	5	5	5	5	5.0	5	5.0	5.0	5.0	103.000000	
	6.0	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000	
	6.1	5	5	5	5	5.0	5	5.0	131.0	5.0	136.000000	
	6.3	5	5	5	5	5.0	5	5.0	5.0	108.0	5.000000	
	6.4	5	5	5	5	5.0	5	5.0	5.0	5.0	5.000000	
	6.6	5	5	5	5	5.0	5	5.0	5.0	5.0	106.000000	
	6.7	5	5	5	5	5.0	5	5.0	123.0	5.0	5.000000	
	6.9	5	5	5	5	5.0	119	5.0	5.0	5.0	5.000000	

Cross- tabulation

```
from io import StringIO
```

```
data = """ Sample Court_paragraph
```

- 1. Il était une fois, dans un village paisible au bord de la mer,
- 2. un jeune garçon nommé Luca.
- 3. Luca aimait explorer les forêts environnantes,
- 4. où il découvrait des trésors cachés et des mystères oubliés.
- 5. Un jour, en suivant un papillon multicolore,
- 6. Luca découvrit une grotte secrète.
- 7. À l'intérieur, il trouva une carte ancienne indiquant
- 8. l'emplacement d'un trésor légendaire.
- 9. Déterminé à le trouver,
- 10. Luca partit en voyage, bravant des tempêtes et affrontant
- 11. des créatures magiques.
- 12. Après de nombreuses aventures, il trouva enfin le trésor,
- 13. qui se révéla être l'amitié des habitants de ce village enchanté.
- 14. Luca apprit alors que les véritables trésors
- 15. sont souvent cachés à l'intérieur de nous-mêmes.

0.00

```
data = pd.read_table(StringIO(data), sep = '\s+')
```

data

1.0	Il	était	une	fois,	dans	un	village	pa
2.0	un	jeune	garçon	nommé	Luca.	NaN	NaN	Na
3.0	Luca	aimait	explorer	les	forêts	environnantes,	NaN	Na
4.0	où	il	découvrait	des	trésors	cachés	et	des
5.0	Un	jour,	en	suivant	un	papillon	multicolore,	Na
6.0	Luca	découvrit	une	grotte	secrète.	NaN	NaN	Na
7.0	À	l'intérieur,	il	trouva	une	carte	ancienne	inc
8.0	l'emplacement	d'un	trésor	légendaire.	NaN	NaN	NaN	Na
9.0	Déterminé	à	le	trouver,	NaN	NaN	NaN	Na
10.0	Luca	partit	en	voyage,	bravant	des	tempêtes	et
11.0	des	créatures	magiques.	NaN	NaN	NaN	$\overline{\mathrm{NaN}}$	Na
12.0	Après	de	nombreuses	aventures,	il	trouva	enfin	le
13.0	qui	se	révéla	être	l'amitié	des	habitants	de
14.0	Luca	apprit	alors	que	les	véritables	trésors	Na
15.0	sont	souvent	cachés	à	l'intérieur	de	nous-mêmes.	Na

Court_paragraph Sample	mer,	All
la	1	1
All	1	1