TAUTOLOGY INNOVATION SCHOOL

MADE BY TAUTOLOGY THAILAND DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai
 www.tautology.live

Support Vector Classification

Introduction

What is Support Vector Classification?

Data for Support Vector Classification

Pros & Cons

Real World Application

Support Vector Classification (SVC) เป็นหนึ่งใน algorithm

ประเภท supervised learning ที่ใช้สำหรับแก้ปัญหา classification โดยมี

หลักการทำงานคือการสร้าง hyperplane เพื่อจำแนกประเภทของข้อมูล

เพื่อให้มีระยะห่างระหว่างข้อมูลแต่ละประเภทมากที่สุด

สมการคณิตศาสตร์ของ Support Vector Classification

$$\hat{y} = sign(w_0 + w_1x_1 + w_2x_2 + \dots + w_px_p)$$

โดยที่

- \hat{y} คือ ค่าพยากรณ์ของตัวแปรตาม (predicted value)
- $x_1, x_2, x_3, \dots, x_p$ คือ ตัวแปรต้น (feature)
- $w_0, w_1, w_2, ... w_p$ คือ สัมประสิทธิ์ (coefficient)

Introduction

What is Support Vector Classification?

Data for Support Vector Classification

Pros & Cons

Real World Application

ตัวอย่างของข้อมูลที่เหมาะกับ SVC

ตัวอย่างของข้อมูลที่เหมาะกับ SVC

Logistic Regression แตกต่างกับ
Support Vector Classification
อย่างไร?

Introduction

What is Support Vector Classification?

Data for Support Vector Classification

Pros & Cons

Real World Application

Pros & Cons

ข้อดี

- สามารถจัดการได้กับทั้งข้อมูลที่เรียบง่าย และข้อมูลที่ซับซ้อน
- ทนทานต่อ outlier

ข้อเสีย

• เป็น algorithm ที่ซับซ้อน & ยากต่อการทำความเข้าใจ

ข้อจำกัด

• ต้องพิถีพิถันในการทำ hyperparameter tuning

Introduction

What is Support Vector Classification?

Data for Support Vector Classification

Pros & Cons

Real World Application

Real World Application

วิเคราะห์โรคมะเร็งปอดจากภาพถ่าย

โดยพิจารณาจากภาพที่พบและไม่พบก้อน เนื้อที่ปอดของผู้ป่วยจำนวนหนึ่ง

อ้างอิง : [2023, Ozcan & Peker] A classification and regression tree algorithm for heart disease modeling and prediction

Real World Application

จำแนกใบหน้าคน

โดยพิจารณาจากคนทั้งหมด 40 คน และแต่ละคนมีรูปที่แตกต่างกัน ทั้งหมด 10 รูป

อ้างอิง : [2022, Abdulrahman & Salim] Using Decision Tree Algorithms in Detecting Spam Emails Written in Malay: A Comparison Study

Introduction

What is Support Vector Classification?

Data for Support Vector Classification

Pros & Cons

Real World Application

Support Vector Classification

Support Vector Classification

Support Vector Classification เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

facebook/tautologyai

www.tautology.live

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

No Missing Features

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Real Face of the Model

เราต้องการหา $w_0, w_1, w_2, \dots, w_p$ (hyperplane) ที่ทำให้ข้อมูลแต่ละประเภทมีระยะห่างจากกันมาก ที่สุด

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

เราต้องการให้ M ถูกเขียนอยู่ในรูปของ ${f w}$

$$M = ||\mathbf{r_2} - \mathbf{r_1}||(1)\cos\theta$$
$$= ||\mathbf{r_2} - \mathbf{r_1}|||\mathbf{n}||\cos\theta$$

$$A \cdot B = AB\cos\theta$$

$$M = (\mathbf{r}_2 - \mathbf{r}_1) \cdot \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$= \frac{\mathbf{w}}{||\mathbf{w}||} \cdot (\mathbf{r}_2 - \mathbf{r}_1)$$

$$= \frac{\mathbf{w} \cdot \mathbf{r}_2 - \mathbf{w} \cdot \mathbf{r}_1}{||\mathbf{w}||}$$

$$= \frac{2}{||\mathbf{w}||}$$

$$\max M = \max \frac{2}{||\mathbf{w}||}$$

 $\max M = \min ||\mathbf{w}||$

$$\max M = \min \frac{1}{2} ||\mathbf{w}||^2$$

้ำ ก้า $\min \frac{1}{2} ||w||^2$ เฉย ๆ โดยไม่มีเงื่อนไขอะไร $w_0, w_1, w_2, \dots, w_p$ ที่ออกมาก็ต้องมีค่าเท่ากับ 0 สิ *

minimize

$$\frac{1}{2} ||\mathbf{w}||^2$$

subject to

$$\frac{1}{2} ||\mathbf{w}||^2$$
$$y_i(\mathbf{w} \cdot \mathbf{x_i}) \ge 1$$

ี ทำไมต้อง
$$y_i(\mathbf{w} \cdot \mathbf{x_i}) \geq 1$$
? "

minimize

$$\frac{1}{2} ||\mathbf{w}||^2$$

subject to

$$\frac{1}{2} ||\mathbf{w}||^2$$
$$y_i(\mathbf{w} \cdot \mathbf{x_i}) \ge 1$$

ใช้เครื่องมือที่มีชื่อว่า

- Lagrange Multipliers
- 2. Karush Kuhn Tucker Conditions

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

How to Create Model (Code)

ตัวอย่าง Code สำหรับ SVC

sex	education	acceptation
О	1	1
1	0	1
-1	0	О
О	-1	О

ตารางแสดง dataset

How to Create Model (Code)

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

```
1 clf = SVC(kernel='linear')
```

2 clf.fit(X, y)

SVC(kernel='linear')

How to Create Model (Code)

Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

- Lagrange Multipliers
- Karush Kuhn Tucker Conditions
- Sequential Minimal Optimization (SMO)
- Soft Margin
- Kernel Function
- Kernel Trick
- One-to-Rest

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Support Vector Classification

Таиты́LOGY

สมการคณิตศาสตร์ของ Support Vector Classification

$$\hat{y} = sign(w_0 + w_1x_1 + w_2x_2 + \dots + w_px_p)$$

โดยที่

- \hat{y} คือ ค่าพยากรณ์ของตัวแปรตาม (predicted value)
- $x_1, x_2, x_3, \dots, x_p$ คือ ตัวแปรต้น (feature)
- $w_0, w_1, w_2, ... w_p$ คือ สัมประสิทธิ์ (coefficient)

1-Sample

Multi-Sample

Code

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

x_1	x_2
0	1.5

\widehat{y}	
?	

• สมมติว่า w ของปัญหานี้ที่เราหามาได้คือ

$$\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

• ซึ่งทำให้เขียนสมการ \hat{y} ได้ดังต่อไปนี้

$$\hat{y} = sign(0 + x_1 + x_2)$$

= $sign(0 + (0) + (1.5))$
= $sign(1.5)$
 $\hat{y} = 1$

• ดังนั้นเราจะได้ \hat{y} ของข้อมูลชุดนี้คือ

$\mathbf{x_1}$	$\mathbf{x_2}$
0	1.5

$\widehat{oldsymbol{\mathcal{Y}}}$	
1	

1-Sample

Multi-Sample

Code

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

$\mathbf{x_1}$	$\mathbf{x_2}$
0	1.5
1.5	0
-1.5	0
0	-1.5

ŷ
?
?
?
?

• สมมติว่า w ของปัญหานี้ที่เราหามาได้คือ

$$\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

• และจากข้อมูลใน dataset เราสามารถเขียน X_b ได้ดังต่อไปนี้

$$X_b = \begin{bmatrix} 1 & 0 & 1.5 \\ 1 & 1.5 & 0 \\ 1 & -1.5 & 0 \\ 1 & 0 & -1.5 \end{bmatrix}$$

เราคำนวณค่า $\hat{\mathbf{y}}$ ได้จาก $\hat{\mathbf{y}} = sign(X_b \mathbf{w})$

$$\hat{\mathbf{y}} = sign \begin{pmatrix} \begin{bmatrix} 1 & 0 & 1.5 \\ 1 & 1.5 & 0 \\ 1 & -1.5 & 0 \\ 1 & 0 & -1.5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$$

$$= sign \begin{pmatrix} \begin{bmatrix} 1.5 \\ 1.5 \\ -1.5 \\ -1.5 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

$\mathbf{x_1}$	\mathbf{x}_{2}
0	1.5
1.5	0
-1.5	0
0	-1.5

$\widehat{\mathbf{y}}$
1
1
0
0

Prediction

1-Sample

Code

ตัวอย่าง code สำหรับการคำนวณ $\hat{\mathbf{y}}$

$\mathbf{x_1}$	\mathbf{x}_{2}
0	1.5
1.5	0
-1.5	0
0	-1.5

ŷ	
?	
?	
?	
?	

• Code สำหรับหาค่า \hat{y} จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 1.5 \\ 1.5 & 0 \\ -1.5 & 0 \\ 1 & -1.5 \end{bmatrix}$$

1 clf.predict(X)

array([1, 1, 0, 0])

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

x ₁	\mathbf{x}_2
0	1.5
1.5	0
-1.5	0
0	-1.5

ÿ
1
1
0
0

Code for this section

Open File

Model Creation.ipynb

Prediction

1-Sample

Multi-Sample

Code

Support Vector Classification

AI in Speech Recognition

- Abstract
- Why this project important?
- Who this project for?
- Sound Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อจำแนกคำจากเสียงสุนัข และแมว โดยพิจารณาจากภาพคลื่นเสียง

Why this project important?

• สามารถสร้างระบบที่ทำงานผ่านคำสั่งเสียง

• สามารถสร้างระบบแปลภาษาจากเสียง

• สามารถสร้างระบบถอดโน๊ตจากดนตรี

Who this project is for?

- 🛨 นักพัฒนาหุ่นยนต์
- → นักวิจัยด้านการรู้จำคำพูด
- 🛨 นักวิเคราะห์ข้อมูล

Sound Dataset

https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs

Sound Dataset

Feature

Target

• target : เสียงของแมว และสุนัข (cat, dog)

What we learn from this project?

Data Preparation

File

02. SOUND CLASSIFICATION

sound_classification_model.pickle

sound_classification_mc.ipynb

sound_classification_md.ipynb

Support Vector Classification

TAUTOLOGY INNOVATION SCHOOL

MADE BY TAUTOLOGY THAILAND

DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai
 www.tautology.live

Support Vector Regression

What is Support Vector Regression?

Support Vector Regression เป็นหนึ่งใน algorithm ประเภท

supervised learning ที่ใช้สำหรับแก้ปัญหา regression โดยมี

หลักการทำงานคือการสร้าง Hyperplane ที่มีค่าความผิดพลาดน้อย

ที่สุด ภายใต้ระยะ margin ที่กำหนด

What is Support Vector Regression?

What is Support Vector Classification?

สมการคณิตศาสตร์ของ Support Vector Classification

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

โดยที่

- \hat{y} คือ ค่าพยากรณ์ของตัวแปรตาม (predicted value)
- $x_1, x_2, x_3, \dots, x_p$ คือ ตัวแปรต้น (feature)
- $w_0, w_1, w_2, ... w_p$ คือ สัมประสิทธิ์ (coefficient)

What is Support Vector Classification?

minimize

$$\frac{1}{2}||\mathbf{w}||^2$$

subject to

$$y_i - \mathbf{w} \cdot \mathbf{x_i} \le \epsilon$$

$$\mathbf{w} \cdot \mathbf{x_i} - y_i \le \epsilon$$

Support Vector Regression

Data for Support Vector Regression

ตัวอย่างของข้อมูลที่เหมาะกับ SVR

Data for Support Vector Regression

ตัวอย่างของข้อมูลที่เหมาะกับ SVC

Support Vector Regression

Pros & Cons

ข้อดี

- สามารถจัดการได้กับทั้งข้อมูลที่เรียบง่าย และข้อมูลที่ซับซ้อน
- ทนทานต่อ outlier

ข้อเสีย

• เป็น algorithm ที่ซับซ้อน & ยากต่อการทำความเข้าใจ

ข้อจำกัด

• ต้องพิถีพิถันในการทำ hyperparameter tuning

Support Vector Regression

