La biogéographie est l'étude de la répartition géographiques des espèces. Aujourd'hui, ce terme est souvent remplacé par celui de macroécologie. Outre la distinction historique, ce mot met en avant l'importance du rapport des espèces à leur environnement (biotique ou abtiotique) plutôt que la dimension évolutive pourtant tout aussi importante. C'est pour garder à l'esprit la richesse des facteurs qui dessinent les aires de répartition que je garde le terme de biogéographie, discipline dont je dresse un portrait dans la présente introduction. J'y aborde aussi bien la complexité de la compréhension de la distribution spatiale des espèces que les cadres théoriques associés. Chemin faisant, je discute de l'importance du lien qu'il existe entre les interactions écologiques et la répartition des espèces ; cette réflexion est l'essence même de ma thèse.

Des îles et des espèces

En suivant Wallace

Dans l'introduction de son livre *Island Life* paru en 1881, le célèbre naturaliste Alfred Russel Wallace nous rapporte deux faits étonnants qui justifient pleinement l'examen attentif de la répartition géographique des espèces (Wallace, 1881). Premièrement, le biogéographe démontre, à l'aide de nombreux exemples, que l'éloignement entre deux régions du monde n'est pas suffisant pour conclure quand à l'éloignement de leur composition faunistique et floristique. Ainsi, la comparaison des avifaunes du l'île japonaise d'Hokkaido et de l'Angleterre, séparées par des milliers de kilomètres, révèle une proximité des paysages ornithologiques très supérieure à celle constatée dans l'analyse comparée des oiseaux des îles indonésiennes de Bali et de Lombok pourtant distantes de quelques kilomètres seulement. Deuxièmement, en s'appuyant sur les différences des faunes brésiliennes et africaines, Wallace souligne la faiblesse du pouvoir prédictif des variables climatiques pour décrire les compositions faunistiques présentes sous des latitudes similaires. Ces constatations soulignent l'utilité de croiser les informations des distributions à la lumière d'une analyse taxonomique pour y apporter du sens. Dans le cadre de la théorie de l'évolution¹, encore toute jeune en 1881, cette analyse taxonomique est une analyse historique : Wallace montre que la compréhension d'un problème spatial, celui des aires de répartition de groupes d'espèces, n'est possible que par une compréhension temporelle, celle de l'histoire des espèces. Cette idée est clairement énoncée dans la suite de son introduction :

« Many years study of this class of subjects has convinced me that there is no short abd easy method of dealing with them; because they are, in their very nature, the visible outcome and residual product of the whole past history of the earth. »

Tout au long de son livre, Wallace démontre que la connaissance à l'échelle mondiale de la distribution des êtres vivants permet d'associer les différentes îles aux grands ensembles régionnaux biologiques (que nous appelons aujourd'hui écozones) sur la base des ressemblances biologiques des espèces qui témoignent du lien temporel unissant les différentes

¹Wallace a publié en 1858 un article *On the Tendency of Varieties to Depart Indefinitely From the Original Type* qui témoigne très clairement que ses idées sur les varitions temporelles des espèces étaient très proches de celles de Charles Darwin a qui il avait d'ailleurs envoyé son manuscrit (Wallace, 1858).

zones géographiques de la Terre. Ce travail de caractérisation d'ensemble géographiques conduit notamment Wallace, dans un article de 1860 (Wallace, 1860), à tracer la ligne éponyme séparant l'écozone indomalaise de l'écozone australienne (séparant les îles de Bali et Lomonk mentionnée au paragraphe précédent). La connaissance apportée à la géographie par l'histoire est saisissante et les exemples de Wallace deviennent autant d'arguments en faveur de la théorie de l'évolution. Le discours de Wallace porte sur des processus à des échelles spatiales et temporelles très grandes², ce qui apporte certes un éclairage substantiel qui se double cependant d'un obstacle épistémologique majeur : si l'explication ultime de la présence d'une espèce en un point donné est le produit d'une série de contingences historiques, quelles peuvent être les fondations d'une théorie de la biogéographie? Ce n'est qu'au XXème siècle que des réponses convaincantes émergeront.

En suivant MacArthur et Wilson

Parmi les visions les plus importantes de la biogéographie ce trouve celle contenue dans le livre publié en 1967 *The Theory of Island Biogeography*, produit de la fructueuse rencontre du mathématicien et biologiste Robert MacArthur et du myrmécologue Edward Wilson³. A partir d'un grand nombre de données sur les faunes insulaires de diverses régions du monde, ces auteurs ont construit un cadre théorique puissant pour expliquer les variations du nombre d'espèce trouvé sur ces îles (MacArthur and Wilson, 1967). Leur démarche théorique permet de lier des observations a un modèle mathématique donnant une explication simple et convaincante des variations étudiées. Ils font ainsi basculer la discipline dans une ère nouvelle, ce dont les auteurs étaient conscients, en atteste le premier paragraphe du dernier chapitre de leur livre :

« Biogeography has long remained in a natural history phase, accumulating information about the distribution of species and higher taxa and the taxonomic composition of biotas. Interpretative reasoning has been largely directed to the solution of special problems connected with the histories of individuals taxa and biotas. Without doubt this descriptive activity will continue to be of fundamental importance to the science, one of the most physically adventurous of all scientific entreprises and, in the richness of the detail it unfolds, esthetically pleasing. But biogeography is also in a position to enter an equally interesting experimental and thereotical phase. »

Dans cet extrait, MacArthur et Wilson affirment que l'étude de la distribution des espèces doit sortir du royaumes des contingences historiques pour devenir un objet de science au sens d'être manipulé aussi bien expérimentalement que par l'abstraction mathématique. La validation expérimentale de la théorie a d'ailleurs été menée par Wilson et son étudiant au doctorat de l'époque Daniel Simberloff devenu depuis un célèbre écologue (Daniel S Simberloff and Edward O Wilson, 1969). Le travail d'abstraction mathématique a été conduit par MacArthur dans le livre de 1967 et

²L'âge de la terre est très débattu à l'époque. Bien que l'ensemble des savants s'accordent pour aller bien au-delà des 6000 ans bibliques, il n'y a alors pas de consensus. Wallace affirme à la page 212 du chapitre 10 de *Island Life* que la vie se développait il y a au moins 500 millions d'années (Wallace, 1881), ce qui est audacieux pour l'époque mais bien en-dessous de l'âge des plus anciens fossiles découverts à ce jour qui est estimé à 3.4 milliards d'années (Wacey et al., 2011).

³Cet actuel professeur émérite à l'université d'Harvard est reconnu pour ses apports en biologie et en sociologue, il est notamment l'auteur de 32 livres. C'est pour son immense connaissance des fourmis que j'ai choisi l'adjectif de myrmécologue.

prolongé dans les annexes de son livre de 1972 (MacArthur, 1972). Ces auteurs proposent une explication de la variation spécifique des îles fondée sur deux processus opposés : la colonisation d'espèce depuis le continent qui augmente le nombre d'espèce sur l'île et un processus d'extinction locale qui diminue ce nombre. C'est en reliant ces processus aux propriétés physiques de l'île (aire et isolation) et en interprétant la richesse spécifique des îles en terme d'équilibre entre ces deux processus que les auteurs parviennent à expliquer de manière convaincante les relations observées entre richesse spécifique, taille de l'île et isolement. Dans le troisième temps de cette introduction, je reviens amplement sur cette théorie nommée théorie de la biogéographie des îles que je noterai TIB dans la suite.

Le paradigme de la TIB est un lègue qui a eu un impact considérable sur les développements théoriques en écologie (Warren et al., 2015). Au centre du projet de la TIB se loge la volonté de mettre l'espèce au coeur de la biogéographie afin de permettre à la discipline de s'enrichir des mécanismes biologiques qui sont un moteur essentiel de la variation dans la distribution des espèces. L'intérêt de leur *biogéographie de l'espèce* (terme donné à l'avant-dernière phrase de leur livre) est dans l'affirmation qu'il faut regarder les contraintes conjointes de l'évolution (qui met un certains nombre d'espèces avec des caractéristiques propres en présence) et du contexte écologique qui détermine les conditions d'extinction. Cette intrication de l'écologie et de l'évolution est bien inscrite dans la pensée de MacArthur et Wilson même si la puissance de leur vision réside dans le fait de les occulter en partie.

Près de 50 ans après la parution de leur livre, une des clef en biologie semble être la compréhension des rétroactions qu'il existe entre écologie et évolution dans les variations spatiales et temporelles de la biodiversité. Je reprend ci-dessous trois aphorismes cités par Schoener (2011a) concernant les liens entre biologie, écologie et évolution :

- 1. « Nothing in biology makes sense except in the light of evolution. » (Dobzhansky, 1973)
- 2. « Nothing in evolutionary biology makes sense except in the light of ecology. » (Grant and Grant, 2008)
- 3. « Nothing in evolution or ecology makes sense except in the light of the other. » (F. Pelletier et al., 2009)

La chronologie de ces citations est un indice de la reconnaissance actuel du besoin (de la nécessité?) de croiser écologie et évolution. Un parallèle avec les sciences humaines me semble possible dans lequel l'écologie serait à la biologie ce que la géographie est aux sciences humaines et l'évolution serait à la biologie ce que l'histoire est aux sciences humaines. Nous pouvons certes étudier l'une sans l'autre, mais le dialogue entre les deux disciplines est indispensable. En son absence, les disciplines avancent en trainant avec elles des hypothèses fortes sur l'autre qui finiront éventuellement par nuire à une compréhension plus profonde de la biologie. Par exemple, supposer que les variations démographiques ont des origines purement écologiques devient problématique si les variations génétiques sont suffisantes pour expliquer qu'une partie importante de cette variation comme cela l'a été montré sur une population de mutons de Soay (Pelletier et al., 2007). Je ne cherche pas à nier l'utilité des savoirs acquis de manière autonome par un champ disciplinaire, j'insiste simplement sur l'importance de mettre ces connaissances en commun dans une synthèse indispensable pour décrypter l'information contenue dans les distributions d'espèce.

Quelles informations renferment les distributions d'espèces?

Cette question est non seulement une invitation à découvrir les raisons de la présence de tel ou tel organisme en un lieu donné du globe, mais elle suggère aussi que certaines informations ne peuvent pas être obtenues par l'analyse de la répartition géographique des espèces. Les auteurs mentionnés dans les paragraphes précédents y ont apporté des éléments de réponse cruciaux : Wallace a montré que les distributions géographiques reflétaient en partie les liens de parenté entre les espèces, quant à MacArthur et Wilson, ils ont suggérés que ces distributions étaient le résultat de processus écologiques dynamiques. Examiner les aires de répartition, en détailler la géométrie exacte et les variations spatio-temporelle, faire des recoupements entre les répartitions géographiques de différentes espèces ou encore avec la distribution de variables abiotiques sont des démarches fondamentales pour en apprécier les mécanismes sous-jacents.

Dans son ouvrage de 1972, MacArthur discute de l'ensemble de ces mécanismes, il considère aussi bien le rôle que peuvent jouer les variables climatiques que celui des interactions écologiques. En plus des exemples concrets amenés pour illustrer ses propos, MacArthur développe des modèles mathématiques pour prolonger la discussion. Au chapitre 2, il formalise l'impact de la compétition sur la coexistence des espèces aboutissant ainsi sur un principe de ségrégation spatiale des espèces liées par ce type de relation : deux compétiteurs ne peuvent pas co-occurer (résider durablement au même endroit) sauf éventuellement sur zone très restreinte de leur distribution (MacArthur, 1972). Toujours dans cet ouvrage, MacArthur évoque la distribution en damier (*checkerboard*) que peuvent générer des espèces en compétition. La discussion sur ce type de distribution sera approfondie par Jared Diamond (Diamond, 1975) dont les travaux déclencheront un débat important sur la determination de modèle nul de co-occurrence (Connor and Simberloff, 1979) et sur laquelle ma thése apporte quelques éléments nouveaux.

L'étude sur un grand nombre d'espèce de leurs limites spatiales permet d'y déceler des généralités quant aux mécanismes qui les déterminent (MacArthur, 1972). L'examen des variations spatio-temporelles apporte une information très utile sur l'importance relative des divers mécanismes. Le contexte des changements climatiques est une bonne illustration de ce principe car les bouleversements actuels des répartitions géographiques permettent en effet de pointer le rôle majeur de certains mécanismes évolutifs auparavant sous-estimés (Lavergne et al., 2010). Enfin, l'examen des distributions doit aussi être un examen des co-distributions, il faut s'intéresser à l'information de sous ensembles d'espèces et notamment les espèces en interaction afin de tester si la biologie laisse des empreintes dans la géométrie des aires de répartition. Par exemple, dans ma thèse je propose de regarder l'intersection des l'aire associée à un ensemble de proies pour savoir ce qu'elle nous apprend sur la distribution de leur prédateur.

Enjeux de la connaissance de la répartition géographique des espèces

Les observations et la compréhension des causes profondes de la géométrie et la dynamique des aires de répartitions des espèces ont déjà amené à des découvertes majeures en écologie et en évolution. La phase d'expérimentation et de théorisation de la biogéographie décrite par MacArthur et Wilson se poursuit et se tourne vers un objectif très ambitieux : faire de la biogéographie une discipline prédictive, pourvoyeuse de prédictions fiables sur les aires de répartitions

futures de n'importe quelle espèce. Ce problème est d'autant plus présent dans la littérature récente que nous sommes dans un contexte où ces aires sont profondément bouleversées. En biogéographie, les changements climatiques ont en effet canalisés l'attention des chercheurs qui constatent avec stupeur l'ampleur à laquelle la biodiversité mondiale est affectée (Koh, 2004, Bellard et al. (2012)). La volonté d'anticiper la localisation future des espèces a également engendré des efforts conséquents pour développer des outils statistiques essentiellement centrés sur la corrélation entre les variables abiotiques et les données de présence (d'occurrence) des espèces (Elith et al., 2006).

En ciblant l'étude de la distribution de certaines espèces, la biogéographie rencontrent des enjeux socio-économiques majeurs. Ainsi, pour un pays comme la France, la restriction des zones favorables à la croissance de la vigne envisagée è l'aide des scénarios de changements climatique (Hannah et al., 2013) pourrait conduire à des pertes économiques importantes et un bouleversement identitaire des grandes régions viticoles. De plus, détecter aujourd'hui un potentiel viticole futur dans des régions où cette production n'existe pas peut conduire à des augmentations drastiques du prix des terres agricoles. En guise de second exemple, je pose la question suivant : où seront les érablières de demain? La réponse est donnée par la détermination de la répartition future des aires favorables à la croissance de l'érable à sucre (*Acer saccharum*) et de sa capacité à les atteindre afin de s'y établir. Je termine avec un troisième exemple : la perte des pollinisateurs et notamment des abeilles. Pas moins de quatre grandes classes de facteurs d'origine anthropique les mettent en danger : les changements climatiques, le changement dans l'utilisation des terres⁴, l'apparition de nouveaux pathogènes (dont l'acarien parasite *Varroa destructoa* vecteur de nombreux virus) et l'arrivée d'espèces invasives (comme le frelon asiatique) (Vanbergen, 2013). Le défi actuel est de prédire la distribution future des pollinisateurs en intégrant ces multiples aspects et leurs interactions. De plus, dans le cas des espèces invasives, il faut comprendre comment une espèce peut sortir de son aire de répartition naturelle et en établir une nouvelle.

Actuellement, les outils de prédictions des aires de répartition future reposent essentiellement sur les scénarios de changements climatiques. La démarche est cohérente : la connaissance basée sur les corrélations de variables climatiques permet d'établir une relation climat-présence. En utilisant les résultats des climatologues qui dérivent les variations climatiques associées à des scénarios d'émission de gaz a effet de serre par les activités humaine, les biogéographes établissent les probabilités de présence des espèces dans les conditions climatiques futures. Cependant, la relation climat-présence n'est qu'une facette du lien qui unissent les espèces à l'espace et chaque nouvelle invasion nous montre à quel point il est difficile de prédire les aires de répartitions. Ces problèmes de qualité de prédictions sont le reflet de lacunes théoriques qui amènent plusieurs chercheurs à se positionner en faveur d'un renouvellement des fondations théoriques pour édifier une biogéographie plus intégrative (M. V. Lomolino, 2000, Beck et al. (2012), Thuiller et al. (2013)). Bien sur, ces appels soulèvent des défis importants dont on ne peut qu'espérer qu'ils soient relevés au plus vite pour faire face à l'urgence.

⁴Les changements dans l'utilisations des terres sont accompagnés, entre autres, de l'utilisation parfois massive de pesticides de la famille des néonicotinoïdes affaiblissant les colonies.

Travail théorique et modélisation

Avant d'énumérer, avec des exemples concrets, l'ensemble des forces qui régissent la répartition géographique d'une espèce, je souligne dans cette partie l'importance du travail de théorie et de modélisation qui joue un rôle prépondérant dans ma thèse.

Rassembler et intégrer des faits

Le travail de théorie est avant tout la mise en cohésion d'un certain nombre de faits, d'observations. Dans la TIB, par exemple, MacArthur et Wilson proposent une explication cohérente de l'augmentation de la richesse spécifique dans les îles de plus grande taille. Trois principes encadrent la construction d'une théorie scientifique :

- 1. la théorie doit pouvoir être testées (par une expérience ou par la récolte de données),
- 2. la théorie doit être falsifiable : la théorie demeure valide tant qu'elle n'est pas prouvée fausse, tant qu'une théorie alternative ne la supplante pas,
- 3. la théorie doit être parcimonieuse, ne pas invoquer de multiples processus sans raison (c'est-à-dire sans une augmentation du nombre de faits expliqués), c'est un principe qui est aussi connu sous le nom de Rasoir d'Ockham.

Une boutade, dont je ne suis pas capable de me souvenir son auteur, énonce que les physiciens expliquent 95% de l'univers avec 5 règles alors que les économistes expliquent 5% des phénomènes qu'ils étudient avec 95 règles⁵. Le problème n'est pas tant de dénigrer une discipline mais de constater d'un côté la puissance prédictive d'une théorie mature et de l'autre, les problèmes posés par une théorie lacunaire. En biogéographie, j'ai le sentiment que les théories manquent de maturité, la TIB donne certes une vision cohérente de la richesse spécifique insulaire mais c'est une théorie peu précise : prédire un nombre d'espèce n'aide que partiellement à comprendre le monde qui nous entoure. Pour faire un peu de prospective, une théorie qui donnerait des prédictions sur la topologie des réseaux et la composition en masse des espèces présentes supplanterait la TIB car elle expliquerait davantage de faits au prix probable d'une complexité supérieure.

Des modèles pour explorer et tester la théorie

Le terme de modèle signifie simplement que l'objet en question à des propriétés bien connues. Un organisme modèle, par exemple, est un organisme souvent facile à élever et manipuler pour lequel beaucoup de connaissances ont été acquises, iL sert souvent d'unité empirique pour un ou plusieurs groupes de recherche. Les modèles statistiques sont des outils pour tester des relations basées sur des hypothèses issues de théories. De même, pour un travail de modélisation

⁵Une variante indique que les économistes ont prédit 12 des trois dernières crises économiques. Je pense que pour ce qui est de nos capacités de prédictions, la biogéographie est plus proche de l'économie que la de la physique..

mathématique, la description du modèle est contenu dans une série d'équations dérivée d'une théorie. A travers les modèles, quelle qu'en soit leur nature on explore et on teste une théorie que l'on a éventuellement participé à établir.

Les modèles sont souvent décrits comme une simplification de la réalité : comment, en effet, prétendre que les mécanismes biologiques décelés chez *Arabidopsis Thaliana*⁶ sont les mêmes à l'oeuvre pour l'ensemble des plantes à fleurs? pour combien de systèmes proie-prédateur le modèle de Lotka-Volterra est-il pertinent? Les limites des modèles doivent être reconnues mais il ne faut pas nier l'apport de ces derniers. Les modèles sont autant de chance pour explorer une ou plusieurs prédiction d'une théorie. Le choix du modèle employé est lié à l'histoire du chercheur qui l'utilise, à ses propensions mentales à utiliser avec succès telle ou telle démarche scientifique, c'est ce que rappelle Kevin McCann dans la préface de son livre *Food Webs* (McCann, 2011):

« It just so happens that some people find it easier to think about things in terms of x's and y's, and other in terms rabbits of and lynx. »

En d'autres termes, certaines personnes ont plus de facilités pour penser en termes d'abstraction mathématique alors que d'autres font meilleur usage de manipulations plus concrètes. Je suis plutôt dans la première catégorie de personne, je pense que les mathématiques sont un cadre de penser très puissant comme l'indique le grand écologue Robert May (May, 2004):

« The virtue of mathematics in such a contexte is that it forces clarity and precision upon the conjecture, thus enabling meaningful comparison between the consequences of basics assumptions and the empirical facts. Here mathematics is seen in its quintesence: no more, but no less, than a way to think clealy. »

Dans ma thèse, j'ai essayé d'utiliser les mathématiques pour développer des modèles dont le point de départ a été une réflexion collective autour du rôle que pouvaient jouer les interactions dans la répartition géographique des espèces. J'ai alors établi un cadre théorique avec lequel j'ai dérivé des prédictions dont certaines semblent être vérifiées dans les données empiriques.

Nouvelles prédictions

Après l'établissement d'une théorie expliquant un certain nombre de faits et pour laquelle un certain nombre de tests ont été réalisés, le raisonnement fondé sur celle-ci peut conduire à la production de nouvelles prédictions dont la vérification la renforceront. En revanche, l'apparition des faits expérimentaux en désaccord avec cette théorie demanderont des réponses qui se traduiront soit par une meilleur compréhension de la limite d'application de la théorie soit par l'émergence d'une théorie nouvelle qui expliquera ces faits nouveaux tout en couvrant le rayon de compréhension de la théorie précédente. Ces dernières années, la physique nous a donné deux exemples très probants du pouvoir de l'imagination avec la vérification expérimentale de théories énoncées bien avant que les outils permettant de la vérifier existent. En 2012, c'est la détection du Boson de Higgs dont l'existence fut prédite en 1964⁷. Cette année, c'est

⁶Il s'agit de la plante modèle par excellence dont le génome fut le premier à être séquencé chez les plantes (Arabidopsis Genome Initiative, 2000).

⁷Pour plus de détail, je réfère le lecteur au bulletin du CERN disponible en ligne http://cds.cern.ch/journal/CERNBulletin/2012/28/News% 20Articles/1459456?ln=fr

la détection des ondes gravitationnelles soit 100 ans après qu'Einstein en ait prédit l'existence (Waldrop, 2016). En biogéographie, une théorie devrait être capable, par exemple, de dresser des cartes d'invasibilité à l'échelle mondiale pour l'ensemble des espèces. Je pense que nous en sommes encore loin, néanmoins, le chemin pour y parvenir passe par une connaissance approfondie de l'ensemble des mécanismes qui interviennent dans le tracé des aires de répartition, c'est-à-dire connaître leur nature, la portée de leur action mais aussi leurs interactions et leurs importances relatives.

Les processus qui façonnenet les aires de répartition

Biogéographie historique

Il s'agit de la compréhension des impacts sur les êtres vivants des évènements de grande amplitude temporelle (allant de quelques milliers d'années à plusieurs millions d'années). C'est dans l'étude de la proximité des taxons mais aussi des fossiles éventuels que l'on peut déchiffrer les mouvements de colonisation des différentes branches de l'arbre du vivant. Pour prendre un exemple de phénomène de très grande amplitude, on peut faire appel à la théorie de la dérive des continents établie par Alfred Lothar Wegener⁸ qui implique que des groupes éventuellement proches il y a des millions d'années ont été séparés et ont donné naissance à des lignées différentes. Aujourd'hui, nous sommes capables de retracer ces liens de parenté à l'aide de phylogénies moléculaires qui sont des outils très efficaces pour estimer le temps que sépare différents. Ainsi, par la comparaison des génomes mitochondriaux, il a été montré récemment que les lémuriens (primates malgaches) ont été séparées de toute autre lignée de primates il y a 60 millions d'année environs (Finstermeier et al., 2013). Cette séparation questionne bien sur sur la série d'évènements qui ont conduit à l'isolation de ce groupe de singes à Madagascar et à la construction des communautés que nous y observons actuellement (Razafindratsima et al., 2013).

Les processus de grandes amplitudes temporelles sont cependant dominés par leur composante historique (et donc non reproductible) et prédire des phénomènes tel que l'extinction des dinosaures est, dans le meilleur des cas, très compliqué. Néanmoins, dans les mouvements de grandes amplitudes se manifestent des processus qui sont en permanence à l'oeuvre. Ainsi, l'étude de la diversification des bousiers entreprise par Joachim Hortal et collègues (Hortal et al., 2011) montre que la dernière glaciation a laissé des empreintes encore visibles dans la carte de répartition de la diversité de ce groupe : la limite de la thermocline 0°C durant le dernier maximum glacier (il ya 21000 ans environs) sépare les zones de fortes diversifiées en bousier des autres. De plus, ils montrent que la diversité phylogénique des espèces nordiques, c'est-à-dire plus tolérantes au froid, est un sous-ensemble phylogénétique bien identifié, par conséquent peu de branches des bousiers sont à l'origine des colonisations nordiques. Ainsi, après une contraction de la zone favorable au développement des bousiers, les mouvements de colonisation ont marqué à la fois la carte de répartition de la richesse spécifique de ce groupe mais aussi la carte de la répartition des différentes branches de l'arbre phylogénétique des bousiers européens (Hortal et al., 2011).

⁸La similarité des fossiles trouvés sur des continents très éloignés a été un des arguments enb faveur de cette théorie.

Capactés de dispersion

La remonté nordique des bousiers depuis le dernier maximum glacier est le résultat d'événements de dispersion individuel. Au cours de leur vie, les bousiers parcourent de grandes distances à la recherche de nourriture, on peut imaginer qu'au fil des génération, si les conditions environnementales le permettent, certains individus établissent des populations de plus en plus nordiques. Ce qui est vrai pour ce groupe d'espèce mobile l'est aussi pour des espèces sessiles comme les plantes qui possèdent également des capacités de dispersion du fait de la dissémination de leurs semences par des mécanismes très diversifiés. Ce rapport à l'espace des différents organismes est une forme de diffusion : des mouvements stochastiques conduisent à une augmentation de la répartition (c'est une question de probabilité), mais cette diffusion n'est pas totalement libre.

Plusieurs types de contrainte limitent l'élargissement de l'aire de répartition d'une espèce. Pour les espèces terrestres, les mers et les océans sont des obstacles majeurs à la colonisation de nouveaux territoires. A l'échelle régionale, les rivières, les hauts reliefs peuvent fortement limiter la dispersion d'une espèce. De même, pour les plantes dont la stratégie de dissémination est l'anémochorie, la vitesse et la direction des vents sont des facteurs primordiaux pour comprendre la propagation de l'espèces. Enfin, à l'échelle du paysage, il existe très souvent une mosaïque d'habitats plus ou moins favorables à la dispersion d'une espèce. Toutes ces possibilités sont complexes à intégrer et c'est en partie pour cela que la théorie en biogéographie a été fondé sur les îles, les flux de colonisation y étant relativement faciles à identifier: de la côte la plus proche vers l'île.

Dans l'expérience historique de Simberloff et Wilson qui valida la TIB, les chercheurs ont éradiqué la faune de six îlots de mangrove rouge dans la Baie de Floride et ils ont alors observé qu'en une année, la richesse spécifique en insecte était similaire à celle constatée avant de commencer l'expérience (Daniel S. Simberloff and Edward O. Wilson, 1969). Ainsi, les événements de colonisation, bien qu'individuel, peuvent être assez fréquents pour conduire rapidement à l'établissement de populations et même d'une communauté locale d'insecte. A l'échelle d'un continent, malgré les divers obstacles physiques, il est très probable qu'une espèce donnée puisse, en un temps plus ou moins long, atteindre n'importe quelle zone du continent. Cependant, le plus souvent, les aires de répartition des espèces sont limitées à une portion du continent. Pour comprendre ces restrictions, il faut invoquer les performances des espèces dans des conditions environnementales données.

Contraintes abiotiques et niche écologique

Dans le chapitre 6 de son livre de 1972 Geographical Ecology MacArthur (1972) illustre l'importance des contraintes climatiques avec l'exemple de l'aire de répartition du cactus Saguaro (Cereus giganteus en 1972 mais aujourd'hui Carnegiea gigantea). Ce résident des hauteurs du désert de Sonora (bordé à l'ouest par l'océan pacifique) est sensible au gel et ne peut guère résister à une exposition de quelques dizaines d'heures au gel. Cette contrainte physiologique explique bien les limites nord et est de sa répartition. Pour la limite sud, il semblerait que l'abondance des pluies hivernales qu'il y trouve lui soit défavorables. En s'appuyant sur les conditions climatiques actuelles dans lesquelles le

cactus se développe, des résultats récents prédisent que dans le cadre des changements climatiques, *Carnegiea gigantea* trouvera refuge a des altitudes supérieures mais que ce mouvement pourrait être entravé par l'augmentation de la fréquence des feux (Springer et al., 2015).

Cette démarche de croisement de la limite des aires de répartition avec des variables climatiques est une forme répandue de la détermination de la niche écologique d'une espèce. Ce concept de niche est très débattu en écologie et son caractère élusif s'accompagne d'un certains nombre de problèmes de définition. Afin d'éviter ces problèmes, je parlerai de la niche au sens de Joseph Grinnel qui en tentant d'expliquer la restriction de la répartition du Moqueur de Californie écrit :

« An explanation of this restricted distribution is probably to be found in the close adjustment of the bird in various physiological and psychological respects to a narrow range of environmental conditions. »

Dans ses travaux, Grinnel montre que la présence du Moqueur de Californie est fortement corrélée à des conditions de températures et d'humidité assez élevées (Grinnell, 1917). Ainsi la niche écologique au sens de Grinnel est un ensemble de conditions environmentales dans laquelle une espèces donné est trouvée. Si on ne se restreint pas aux observations in situ et que l'on détermine l'ensemble des conditions d'existence possibles, alors on caractérise une niche écologique théorique appelée niche fondamentale. Cette caractérisation expérimentale a été poussée à son paroxysme dans l'article de Michael Kearney et Waren Porter sur le gecko nocturne australien Heteronotia binoei (Kearney and Porter, 2004). Ils ont montrés qu'en combinant des mesures physiologiques (dont le taux métaboliques au repos, la température cumulée nécessaire au bon développement des oeufs et des mesures de températures caractéristiques) avec des données climatiques, ils obtenaient une bonne concordance des probabilités d'occurrence et des observations, justifiant ainsi la démarche prédictive en s'appuyant sur des scénarios de changements climatiques pour aller essayer de comprendreles répartitions futures. De manière générale, cette méthode est la recherche de facteurs abiotiques limitant le développement d'une espèce et donc sa répartition géographique. Au niveau du Panama, par exemple, Engelbrecht et al. (2007) ont montrés que les distributions locales et régionales de 48 espèces d'arbres s'expliquent par la sensibilité à la sécheresse, donc à une variation dans la disponibilité d'une ressource. Ces corrélations convaincantes fondent les modèles de distributions d'espèces (SDM en référence au terme anglais utilisé souvent dans le reste de la thèse) qui sont des solutions techniques (statistiques) pour l'application de la méthode générale que je viens de décrire (Elith et al., 2006, Elith and Leathwick (2009)).

L'engouement actuel autour de ces modèles est lié à l'espoir de pouvoir faire des prédictions fiables sur la géographie de la biodiversité mondiale de demain dans un contexte de changement climatique. Cette démarche s'est appliquée avec succès à différents cas, par exemple en 2009, Tingley et collègues ont ainsi montré que sur 53 espèces d'oiseaux étudiés dans la Sierra Nevada, 48 ont colonisé de nouveaux sites où les conditions de température et de précipitations leur étaient plus favorables (Tingley et al., 2009). Une autre justification de l'utilisation abondant des SDMs est la relative facilité

⁹En 1957, Hutchinson propose de voir la niche écologique comme un hyperespace (un espace d'un grand nombre de dimension) dans lequel une espèce peut se développer. Le problème est de savoir quelles sont les dimensions et notamment si les autres espèces sont parmi ces dimensions. Pour essayer d'avoir une définition plus claire de la niche écologique, certains auteurs proposent de parler de la niche comme un espace où le taux de croissance net de l'espèce est supérieur à 0 (Chase and Leibold, 2003). En dépit de l'aspect plus quantitatif de cette définition, un problème subsiste, celui de trouver une méthode générale pour trouver cet espace.

de leur mise en application grâce à l'abondance des données climatiques et des données d'occurence et au partage des implémentations numériques de ces méthodes statistiques. Pour le premier type de données, WorldClim illustre cette facilité d'accès en proposant des données à l'échelle mondiale gratuitement téléchargables (voir http://worldclim.org, Hijmans et al. (2005)). Pour les données d'occurrence, plusieurs initiatives offrent des données gratuites dont les plus exhaustives sont celles disponibles sur le portail de données sur la biodiversité à l'échelle mondiale GBIF (Global Biodiversity Information Facility, voir http://www.gbif.org) qui présentent cependant des biais liés à l'inégalité d'échantillonnage des régions du globe (Beck et al., 2014). Enfin pour ce qui est le partage des implémentations des SDM, on peut évoquer le logiciel libre R (R Core Team, 2015) qui a des paquets dédiés à l'utilisation des SDMs et qui sont largement utilisé dans la communauté scientifique.

Un des principaux problèmes posés par l'utilisation massive de ces approches est le manque est la faible remise en question des hypothèses sur lesquelles elles reposent. Le message délivré par les SDMs doit être pris comme une potentialité : étant donné les conditions actuelles dans lesquelles une espèce est trouvée et sachant les variations climatiques donnés par les modèles climatologiques, s'il n'existe pas d'obstacle majeur au mouvement de l'espèce en question, alors il est probable que celle-ci se déplace en suivant les conditions climatiques qui sont similaires à celles dans laquelle elle est actuellement trouvée, ce qui nous permet de savoir ou sera l'espèce demain. Ce message est délivré en supposant que 1- une forme d'équilibre de la distribution des espèces et des conditions climatiques actuelles et 2- que les espèces sont indépendantes (Jeschke and Strayer, 2008). Ces deux hypothèses sont très fortes et demandent un examen approfondi. Etant donné que ma thèse porte sur la seconde, je propose de la discuter dans le paragraphe suivant.

Réseaux d'interactions : interdépendance des espèces

Au chapitre 6 de son livre *Geographical Ecology*, MacArthur parle précisément du rôle que peut avoir la compétition dans la distribution des espèces (MacArthur, 1972). Il reprend l'exemple donné par Brown en 1971 de l'exclusion compétitive de deux espèces de de tamias, *Eutamias dorsalis* et *E. umbrinus*, dans les forêts d'altitude (au-dessus des déserts) de pins et de genévriers (*pinyon-juniper woodland*) du sud ouest des Etats-Unis. L'article de Brown montre bien comment une différence comportementale peut engendrer une séparation des distributions locales. Ainsi, l'agressivité de *Eutamias dorsalis* lui est favorable dans les forêts clairsemées de basse-altitude où son compétiteur doit dépenser beaucoup d'énergie pour lui échapper en se réfugiant dans un arbre, elle devient pénalisante lorsque l'abondance des arbres augmente car cela facilite la fuite de *E. umbrinus* (Brown, 1971). La ségrégation locale des deux espèces reflète donc bien une interaction biotique, il y donc a une information comportementale dans ces aires de répartition.

Au-delà de la compétition, l'écologie des réseaux nous montre aujourd'hui la difficulté de concevoir les espèces comme étant des entités indépendantes, elles sont reliées par des relations de natures très diverses. Les relations trophiques sont les plus évidentes, il existe cependant une myriade d'interactions non trophiques qui affectent aussi la démographie des espèces (voir Kéfi et al. (2012) pour une réflexion sur le sujet et une classification de ces interactions). De plus,

aucun argument théorique ne justifie actuellement la primauté d'un type d'interaction sur les autres. Récemment, les interactions trophiques et non-trophiques ont été exhaustivement analysées pour 104 espèces des écosystèmes intertidaux rocheux de la partie centrale de la côte chilienne révélant ainsi que les interactions non-trophiques y étaient globalement plus abondantes et concentrées sur les bas niveau trophiques (Kéfi et al., 2015).

L'écologie des réseaux est traversée de débats dont le plus important est sans doute celui de la relation qu'il existe entre la diversité spécifique d'un écosystème et sa stabilité (May, 1973, McCann (2000)). Autour de cette question, l'écologie s'est considérablement enrichit en terme d'outils mathématiques. Une preuve récente réside dans la mise en évidence par Stefano Allesina et Si Tang du caractère déstabilisant des interactions de compétition et de mutualisme et du rôle stabilisant des relations trophiques (Allesina and Tang, 2012). Ce résultat est en effet la mise en application directe d'un résultat mathématique récent établi par Terence Tao et Vam Vu (Tao et al., 2010). Les réseaux contiennent de nombreuses informations sur l'écologie des population et à mon avis, ils doivent être placés au centre d'une théorie intégrative de la biogéographie. Cette idée n'est pas seulement la mienne, MacArthur et Wilson l'ont suggérée au dernier paragraphe de leur théorie de la biogéographie avec ces mots (MacArthur and Wilson, 1967) :

« In short, biogeography appears to us to have developed to the extent that it can be reformulated in terms of the first principles of population ecology and genetics. »

Et pour appuyer cette phrase dans son entièreté, je développe un certain nombre d'idées relatives à l'importance des échanges génétiques.

Echanges d'informations génétiques et processus micro-evolutifs

La vie, telle que nous la connaissons, pérennise l'information accumulée au cours du temps via à un support moléculaire, l'ADN. J'ai déjà évoqué que les informations véhiculées par cette molécule pouvaient permettent d'établir des relations de parenté entre les espèces. Cette possibilité est rendue possible par les mécanismes qui la modifient. L'information génétique d'un individu est un ensemble de bases dont la séquence renferme l'ensemble de l'information pour assurer le développement de l'individu. Néanmoins, le code génétique de certaines cellules de l'individu peut être modifiées (des mutations) et si ces cellules sont celles qui seront transmises à la descendance, alors ces modifications peuvent être transmises à la génération suivant. Sous certaines conditions, la mutation peut rester dans la population, c'est le moteur de la variation à l'échelle populationnelle du code génétique. Bien loin d'être une combinaison précise de pair de bases, l'ADN d'une espèces est en effet un ensemble de possibilités, un ensemble de versions du code possible mais contraint par un certaines règles. Pour schématiser, les échanges de gènes doivent rester possibles entre individus d'une même espèce. A l'échelle des populations, tant que les échanges d'informations sont importants, la compatibilité est assurée mais lorsque ces échanges diminuent ou même cessent, les supports d'information peuvent alors diverger au point d'empêcher les échanges, ce qui conduit à la distinction deux espèces. Bien que cette vision soit très simplifiée, elle permet de comprendre que l'ADN de deux espèces puissent refléter leur lien de parenté qu'il permet l'établissement d'une phylogénie moléculaire.

Cela étant dit, les causes de la divergence de l'ADN sont multiples et ce qui m'intéresse ici, ce sont que ces variations puissent engendrer un différentiel démographique possitive dans un milieu nouvellement exploré par une population alors que cette même variation dans un autre milieu ne l'était pas. La vitesse des mécanismes mis en jeu semble bien plus rapide au point que ceux-ci puissent jouer des rôles prépondérant dans la réponse des espèces aux changements climatiques (Lavergne et al., 2010). En 2009, Joan Balanyá et collègues publient un article dans lequel ils comparent la composition génétique de la mouche *Drosophila subobscura* entre des échantillons contemporains et des échantillons prélevé 24 années auparavant en Europe et en Amérique (où elle a été introduite accidentellement). Leurs résultats montrent que dans les zones de réchauffement climatique avéré, il y a aussi un changement de la composition génotypique avec une plus grande importance des génomes adaptés aux températures chaudes (Balanyá et al., 2006).

Les preuves récentes de l'impact des variations génétiques rapides sur la démographie des espèces populations poussent les chercheurs à se demander si négliger ces processus dans les travaux de dynamique des populations est une hypothèse raisonnable (F Pelletier et al., 2009, Post and Palkovacs (2009), Schoener (2011b)). Takehito Yoshida et collègues ont montré en 2003 que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciflorus* conduit à un changement dans la fréquence et la phase des cycles de la dynamiques proie-prédateur (Yoshida et al., 2003). En 2009, une étude basée sur un suivi de plus de 20 ans d'une population de moutons Soay sur l'île d'Hirta dans l'archipel de Saint-Kilda (au nord-est de l'Écosse), Fanie Pelletier et collèges établissent les variations dans la taille corporelle des ovins, d'origine génétique, et les variations dans leur survie et leur reproduction, ils démontrent alors que les facteurs génétiques peuvent contribuer jusqu'à 20% dans la croissance de la population certaine année. Les conséquences des dynamiques eco-evolutives et l'intégration des flux d'information génétique sont certainement capitaux pour comprendre la biodiversité de demain (Sexton et al., 2009, Lavergne et al. (2010)). Nous sommes face à un enjeu appliqué capital et pourtant nos connaissances fondamentales restent insuffisantes. Pour illustrer ces lacunes et l'urgence dans laquelle nous nous trouvons, je discute d'un exemple concret : l'invasion européenne du frelon asiatique.

L'invasion européenne du frelon asiatique

Vespa velutina est une espèce présente depuis le nord-est de l'Inde jusqu'à l'est de la Chine et de la péninsule et de l'indochinoise à l'archipel indonésien (Villemant et al., 2006). Dix sous-espèces sous identifiées dont Vespa velutina nigrithorax qui a été observé pour la première fois en France en 2004 dans le Lot-et-Garonne chez un producteur de bonsaï qui importe régulièrement des poteries du Yunnan (Villemant et al., 2006). Ce frelon généraliste se nourrit notamment des abeilles domestiques et les conséquences sur les récoltes de miel sont désastreuses et ce même dans les zones d'origine où l'abeille asiatique (Apis cerana) est pourtant capable de tuer efficacement le frelon. Pour ce faire, les abeilles forment une boule autour du frelon et battent des ailes pour augmenter la température corporelle de leur prédateur, ce qui conduit à la mort de ce dernier. L'abeille européenne (Apis mellifera) est capable d'utiliser la même stratégie de défense mais avec une effacité moindre (Villemant et al., 2006). Ce frelon représente un danger pour l'entomofaune européenne et aussi menace l'apiculture qui s'ajoute aux nombreuses autres que connait actuellement le secteur (Vanbergen, 2013). Plusieurs éléments sont remarquables dans ce cas d'invasion : c'est un cas unique

(première colonisation avec succès d'une nouvelle espèce frelon en France), la rapidité de propagation de ce frelon, le besoin urgent d'anticiper sa répartition dans les prochaines années pour mettre le plus rapidement en place les mesures d'éradication.

Après son arrivée en 2004, le frelon s'étendait déjà en 2006 largement sur l'Aquitaine vec une aire de répartition française constituée d'une bande de 300km du nord au sud et de 150 km d'est en ouest (Villemant et al., 2006) et cela malgré l'éradication systématique des nids détectés. Alors que 2 nids étaient observés en 2004, 1636 nids ont été observé en 2009 et en 2013 près des trois quarts des départements étaient affectés (Robinet et al., 2016). Des travaux récents tentent de caractériser les conditions climatiques favorables au développement de l'espèce (Villemant et al., 2011) et révèlent alors qu'une large partie de l'Europe occidentale est une zone de développement probable. Un autre phénomène intéressant lié à cette invasion est que dans la même période de la colonisation européenne, le frelon est arrivé la Corée du Sud où sa propagation est cependant bien moins rapide (Villemant et al., 2011). L'explication plausible de la différence de succès de la même espèce est une différence dans de la composition en espèce proche des deux régions : en Europe, il n'y a qu'une espèce de frelon *Vespa crabro*, alors qu'il y en a de six en Corée du Sud dont *Vesp mandarinia* qui est une meilleur compétitrice (Villemant et al., 2011). Cette nécessité de faire appel à la composition biologique pour comprendre les raisons d'un changement d'aire de répartition est ce qui donne tout l'intérêt du travail théorique mené durant ma thèse.

Cadre théorique de la thèse

Les développements entrepris durant ma thèse sont des tentatives d'encrage des interactions écologiques dans la TIB. Je vais maintenant revenir sur cette théorie plus en détail pour expliquer pourquoi elle a marqué durablement l'écologie. Je signale d'ailleurs que ces idées étaient partagées par d'autres écologues et qu'il y a, à ma connaissance, deux autres découvertes indépendantes des idées qui ont conduit à la théorie. La première découverte est attribuée au spécialiste des lépidoptères Eugene Gordon Munroe qui a formulé dès 1948, des idées similaires dans 5 des 555 pages de sa dissertation de graduation (Brown and Lomolino, 1989, Lomolino and Brown (2009)). La seconde est celle de Richard Levins et Harold Heatwole qui publie en 1963, soit la même année que l'article fondateur de la TIB, l'idée d'un équilibre de la richesse spécifique régit par les mêmes processus que ceux décrits par MacArthur et Wilson (Levins and Heatwole, 1963). Néanmoins, ce sont sans aucun doute MacArthur et Wilson qui ont marqués les écologues par l'ensemble des développements présentés dans leur livre de 1967, *The Theory of Island Biogeography* (MacArthur et al., 1967).

Une vision puissante de la dynamique des distributions d'espèces

Dans la préface de l'ouvrage de 1967, MacArthur et Wilson doutent que les idées proposées résisteraient longtemps à l'essort de la biogéographie expérimentale dont ils furent des acteurs de premier plan :

« We do not seriously believe that that the particular formulations advanced in in the chapters to follow will fit for very long the exacting results of future empirical investigation. »

Et pourtant près de 50 ans après la parution de ce livre, leurs travaux sont le fondement de nombreux développements récents, en témoigne le livre paru en 2010 *The Theory of Island Biogeography Revisited* (Losos and Ricklefs, 2010) et l'article de perspectives publié récemment par Ben Warren et collègues dans *Ecology Letters* (Warren et al., 2015). L'idée majeure de la TIB est simple et puissante : étant donné une île colonisable par un ensemble d'espèces depuis un continent voisin, la diversité locale résulte de la balance entre 1- des évènements de colonisation depuis le continent et 2- des extinctions locales. La TIB est une métaphore, le cas simple d'un territoire isolé (l'île) où les flux d'individus depuis le pool d'espèces régionales (le continent) sont facilement représentables. Le modèle peut donc être étendu à de nombreux cas où un territoire isolé est colonisé par les organismes à proximité, par exemple après un incendie ou une fragmentation de l'habitat (Cook et al., 2002). Au chapitre 5 de son livre de 1972, MacArthur prend notamment l'exemple des îlots de paramo (végétation andine située au-dessus des forêts mais en-dessous des neiges éternelles). De manière générale, le modèle est acceptable est très adaptable au prix d'un certains nombre d'hypothèse notamment une certaine rigidité du réservoir d'espèces régional (au moins en nombre d'espèce) et une absence de rétroaction dans la communauté locale sur celui-ci.

Il y a une forme de hasard et de nécessité qui fait écho à l'oeuvre de Jaques Monod (Monod, 1970). Ce prix Nobel de médecine présente les mutations au niveau de l'ADN comme une source de hasard dont la persistance n'est rendu possible que dans un cadre physico-chimico-évolutifs précis, la nécessité. Dans les travaux de MacArthur et Wilson, l'événement de colonisation peut être interprété comme un pourvoyeur de stochasticité alors que les contraintes écologiques régissent l'organisation des communautés. Outre le fait que la prédiction de la colonisation ne peut se faire qu'en terme de fréquence, le caractère stochastique de cette dernière donne une dimension historique aux assemblages insulaires. L'arrivée d'une espèce est en fait un tirage aléatoire (éventuellement pondéré par les capacités respectives de dispersion) dans un réservoir régional d'une singularité historique car l'espèce en question à une histoire évolutive propre et des singularités physiologiques qui en découlent. A son arrivée sur l'île, son éventuelle insertion est déterminée par la rencontre des singularités de l'espèce et du contexte biotique et abiotique de l'île. Les espèces installées sur une île ont ainsi été passées au crible des contraintes écologiques, de cette forme de nécessité qui est renouvelée à chaque nouvelle insertion. C'est ainsi que l'on peut décrire le moteur de la reconfiguration perpétuelle des réseaux écologiques locaux. Une telle dynamique peut être également analysée comme une imbrication de deux échelles de processus : régionalement, le réservoir d'espèce est façonné par une histoire évolutive de grande amplitude lié à des processus climatiques eux aussi de grande échelle, alors que les événements insulaires relèvent de processus de plus courte portée (Ricklefs, 1987).

Enfin, la TIB, bien que cela soit rarement souligné, fait l'hypothèse de l'équivalence écologique des espèces considérées : il n'y a ni plantes ni animaux, ni proies ou prédateurs, simplement des espèces qui compte pour un. Étant donné les exemples choisit par les auteurs on peut néanmoins penser que la théorie est développé pour des groupes d'espèce au rôle écologique similaire et phylogénétiquement proches. Ainsi, le premier exemple données est pour l'herpétofaune

(amphibiens et réptiles) et non sur un inventaire exhaustif de toutes les espèces de l'île (MacArthur and Wilson, 1967). Cette hypothèse est à relier aux objectifs des auteurs notamment celui d'expliquer les relations constatées entre la taille des îles et leur richesse spécifique, pour y arriver réduire les espèces à deux caractéristiques est suffisant et convénient. La démarche peut néanmoins être perçue comme antithétique pour des auteurs qui cherchent à formuler une « biogéographie de l'espèce » et de surcroit quand on connait la qualité de ces deux naturalistes (Lomolino and Brown, 2009). Cependant, la forme d'équivalence amenée par MacArthur et Wilson ne nie la diversité et la complexité, elle est plutôt une abstraction nécessaire pour capturer les processus essentiels, pour aller au-delà des singularités des êtres vivants, vers des généralisations (Lomolino and Brown, 2009).

Le modèle mathématique et les prédictions de la TIB

Je ne rentre pas ici dans les détails mathématiques du modèle, ils sont néanmoins abordés dans le premier chapitre et aussi dans les deux annexes de la thèse 10 . J'écris ci-dessous l'équation qui résume à elle seule le paradigme livré par la TIB : les P espèces d'un continent colonisent l'île avec un taux individuel c, ce qui en augmente la richesse spécifique S mais augmente les risques d'extinctions dont le taux par espèce est noté e:

$$\frac{dS}{dt} = c(P - S) - eS \tag{1}$$

La dynamique ainsi engendrée conduit S jusqu'à un équilibre S_{eq} pour lequel les variations temporelles s'annullent, qui est donné par :

$$S_{eq} = P \frac{c}{c+e} \tag{2}$$

Cet équilibre est une prédiction très importante de la théorie, c'est même le point de départ des développements mathématiques dans le livre de 1967 (MacArthur and Wilson, 1967). L'existence d'un tel équilibre a été validée par l'expérience de défaunation de Simerloff et Wilson mentionnée plus haut (Daniel S Simberloff and Edward O Wilson, 1969). Une seconde prédiction de la TIB est la variation de cet équilibre avec les caractéristiques de l'île. Dès leurs article de 1963, MacArthur et Wilson présentent la taille de l'île comme un un facteur affectant le taux d'extinction : plus l'île est grande, moins le risque d'extinction est grand (MacArthur and Wilson, 1963). De même, ils supposent que l'isolement de l'île en affecte le flux de migrants : plus l'île est isolée moins les évènements de colonisation sont fréquents. J'ai résumé la vision classique de la TIB sur la figure fig. 1 en y ajoutant les graphiques de l'article de 1963. Cette prédiction de la théorie en est aussi l'origine : MacArthur et Wilson expliquent avec ces mécanismes que les

¹⁰La première annexe est un article de vulgarisation qui aborde de manière didactique la formulation la plus simple du modèle. La seconde annexe est aborde des aspects plus techniques qui ont été l'objet d'un article dont je suis co-auteur.

îles de plus grandes tailles est plus d'espèces mais aussi que des exceptions liées à l'isolement puisse exister. Cette relation est d'ailleurs présentée dés le début du chapitre 2 de la TIB avec l'augmentation linéaire du nombre d'espèce de l'herpetofaune avec le logarithme de la surface des îles de l'ouest des Caraïbes.

De manière plus générale, la TIB fournit une explication à la relation aire-espèce qui est un des objets les plus discutés de l'écologie (M. Lomolino, 2000). Il s'agit de la courbe d'augmentation de la richesse spécifique (S) avec la surface d'échantillonnage (A). La question soulevée par l'étude de ces courbes porte sur la nature des mécanismes qui régissent les variations régionales. La TIB propose une explication à cette relation et supporte une courbe de la forme $S = CA^z$ avec les observations présentées (MacArthur and Wilson, 1967). La relation aire-espèce est surtout connue pour ses applications dans le domaine de la conservation¹¹. Elle permet d'estimer la taille qu'une zone de protection doit avoir pour atteindre un objectif de sauvegarde chiffré en nombre d'espèce (Neigel, 2003, Desmet and Cowling (2004)). La relation peut être aussi utilisée dans le sens inverse pour apprécier les taux d'extinction liés à une dégradation d'habitat (He and Hubbell, 2011).

L'importance de la TIB dans des développements théoriques plus récents

La théorie des métapopulations

Bien que ne représentant que cinq pour-cents des terres émergées, ce sont bien les observations de la faune des îles qui ont mené à une vision paradigmatique de la biogéographie. L'importance des îles s'expliquent par leur relative abondance, leur disparité, leur diversité, la relative simplicité des assemblages biologiques qu'on y trouve et aussi, comme je l'ai évoqué précédemment, par la clarté des flux de migrations (Simberloff, 1974). Cette dernière propriété est souvent absente pour des populations continentales 12 . La théorie des métapopulations s'intéresse justement aux populations reliées entre elles par des flux de migrations (Hanski, 2010). Le premier modèle de métapopulations a été proposé par Levins 13 lors d'une réflexion sur le contrôle démographique des ravageurs dans les cultures (Levins, 1969). Pour un ravageur donné, les îlots de culture sont autant de patchs où une population peut se maintenir et disperser dans les autres patchs alentour. Levins montre alors que les mesures de la lutte biologique doivent être conduites à large échelle pour en augmenter les probabilités de succès, c'est-à-dire d'extinction régional du ravageur (Levins, 1969). Le modèle est simple et très proche de celui de la TIB : l'évolution de la proportion p est aussi gouvernée par des évènements de colonisation e et d'extinction e et d'ex

$$\frac{dp}{dt} = cp(1-p) - ep \tag{3}$$

¹¹Récemment Wilson a répondu à une entrevue dans laquelle il se base sur cette relation pour indiquer la proportion de la Terre qu'il faudrait épargner afin de maximiser la sauvegarde des espèce sans pour autant empêcher le développement humain http://www.nytimes.com/2016/03/13/opinion/sunday/the-global-solution-to-extinction.html.

¹²Les îles sont cependant souvent dans des archipels où la lecture de ces flux n'est pas si simple.

¹³Richard Levins qui avec Heatwole est un des co-découvreurs des idées de la TIB.

Figure 1: La Théorie de la biogéographie des Iles. (A) illustre l'évolution des taux de colonisation et d'extinction est présentée pour deux îles aux caractéristiques différentes. Les tailles relatives des îles et les distances qui les séparent du continent sont schématisées sur la droite, les couleurs associent les îles à leurs courbes respectives. Le réservoir d'espèce régional (P) est constitué de 100 espèces, les taux de colonisation et d'extinction sont exprimés en terme de probabilité d'évènement (de colonisation ou d'extinction). Les points marquent les intersections entre les courbes d'extinction et de colonisation c'est-à-dire lorsque ces processus s'équilibrent. L'abscisse de ces point indique les richesses spécifiques de l'île à l'équiibre S_{eq} . (B) et (C) sont respectivement les figures 4 et 5 extraites de l'article de 1963 de MacArthur et Wilson qui livre essentiellement le même message que celui illustré en (A) (MacArthur and Wilson, 1963). La forme convexe des courbes de 1963 sont justifiées par des facteurs biologiques qui ne sont pas intégrés dans l'équation qui confère une forme concave aux courbes comme vu en (A).

La différence fondamentale avec la TIB est que la migration dépend de la proportion de patchs occupés: plus elle est importante plus la migration est importante. Parmi les démonstrations il y a les travaux menés notamment par Ikkha Hanski sur les population du Mélitée du plantain (*Melitaea cinxia*) au sud-ouest de la Finland (Hanski, 1998). En plus de données un cadre de penser plus réaliste en terme de configuration spatiale, les dynamiques populationnelles associées sont bien comprises et mènent à des risques d'extinction mieux évalués (Hanski, 1998). C'est aussi un cadre aproprié pour insérer l'étude des flux génétiques liés à l'arrangement spatial des populations. Ainsi, toujours sur ces mêmes populations de papillon, Ilik Saccheri et collègues montrent qu'en ajoutant le degrés d'hétérozygotie, ils obtiennet des prédictions précises quant l'extinction locale des populations (Saccheri et al., 1998). Les travaux théoriques autour du concept de metapopulations proposent un certain nombre de paradigmes qui permettent d'évaluer le rôle que je joue les processus de colonisation et d'extinction dans les variations spatio-temporelles de la démographie d'une espèce (Leibold et al., 2004). La prépondérance de ces mécanismes qui font la force de la TIB et de la théorie des métapopulations a été poussée à son paroxysme dans la théorie neutre de la biogéographie.

La théorie neutre de la biogéographie et le débat qu'elle soulève

La théorie neutre postule l'équivalence écologique entre les différents individus d'espèces éventuellement différentes et décrit les dynamiques populationnelles reposant sur les différences d'abondance relative à l'échelle régionale et locale. Ainsi, en 1997, dans l'article fondateur de la théorie neutre, Stephen Hubbell décrit un modèle dans lequel le replacement d'un individu mort dans une communauté locale est le résultat d'un tirage aléatoire : le nouvel individu peut soit être recruté localement et la probabilité que l'individu soit d'une espèce donnée dépend de l'abondance relative de cette dernière dans la communauté locale soit le nouvel individu peut-être un immigrant dont l'identité de l'espèce à laquelle il appartient est liée à l'abondance à l'échelle régionale de celle-ci (Hubbell, 1997). En plus des exemples données dans l'article de 1997, Hubbell montre de manière convaincante que dans la foret tropical du Panama, à la suite d'un chablis, le recrutement de l'arbre n'est pas prévisible par ces carctéritque et que le recrutement est similaire à la composition alentour (Hubbell, 1999). La dynamique engendrée est appelée la dérive écologique, elle dominée par la stochasticité qui conduit preque certainement à l'extinction presque certaine de toutes les espèces, ce qui est contrebalancée par l'apparition d'espèces nouvelles (Hubbell, 2010, Ricklefs (2003)).

La théorie neutre partage beaucoup de charactéristiques avec la TIB: en plus des principes fondamentaux d'extinction et de colonisation et du d'équivalence écologique, elle implique imbrication des échelles régionales et locales. Comme le fait remarquer Hubbell en 2010 dans le chapitre qu'il écrit dans *The Theory of Island Biogeography Revisited*, la théorie neutre place l'équivalence écologique au niveau des individus et non plus au niveau des espèces (Hubbell, 2010). Une conséquence directe revendiquée par Hubbell est que cette hypothèse explique la forme convexe des courbes de colonisation et d'extinction décrites par MacArthur et Wislon mais que n'explique pas leur modèle (voir fig. 1 et Hubbell (2010)). Le principe d'équivalence et la palce importante que semble joué le hasard dans cette théorie a soulevé de très vif débat avec des démonstrations à charge contre la véracité de la théorie (voir par exemple McGill and Collins (2003) et Ricklefs (2003)). A mon sens, l'équivalence écologique doit, comme dans le cas de la TIB, être

prise pour une abstraction de la sigularité des espèces, une simplification de la diversité des systèmes biologiques, pour isoler une portion restreinte des phénomènes qui la modifient pour en évaluer finalement le pouvoir explicatif. Bien qu'un certain nombre de cas d'études permettent de rejeter cette théorie (McGill and Collins, 2003, John et al. (2007)), les defenseurs de la théorie neutre affirment qu'elle est tout aussi utile quand une étude en démontre la fausseté (Rosindell et al., 2012). La théorie neutre peut en effet être présentée comme une jauge qui mesure sur l'importance des processus de différentiation de niches (Wennekes et al., 2012). Ainsi pour certaines communauté la dérive écologique est plus importante que dans d'autre et du point du vue de formalisme des solutions ont déjà été proposée pour dresser un continuum de la théorie neutre vers la théorie de la niche écologique (Gravel et al., 2006). Malgrés les possibilités offertent par ces deux théories, elles occultent largement les interactions écologiques qui sont factuelles; si les observations donnent crédit à ces théories, une théorie intégrative de la biogéographie doit expliquer pouquoi.

Le rôle des interactions dans la distribution des espèces

Ma thèse a pour objectif de trouver des leviers pour comprendre comment les interactions peuvent affecter la répartition géographique des espèces et de comprendre où chercher les traces qu'elles pourraient éventuellement laisser dans les données d'occurrence des espèces. Comme je l'ai mentionné plus haut cette idée est très ancienne, Wallace le remarque dans son livre publié en 1881:

« Both compétition and predation appear now to be much more important in biogeography than people had formely guesses » (Wallace (1881):28)

Le problème de ces relations écologiques est leur spécificité, l'unicité de chacune d'entre elle, dont découle nos difficultés pour les prévoir bien que des travaux récents explorent des pistes prometeuse pour les prédire notamment sur la base de relations allométriques entre proie et prédateur (Gravel et al., 2013). Au point de vue théorique et à l'examen des chapitres du dernier livre de MacArthur (MacArthur, 1972), on peut que l'intégration des interactions est une étape clef pour aller vers une biogéographie intégrative et c'est dans cette direction que j'ai mené ma thèse en essayant d'apporter quelques pistes de réflexion.

Importance des interactions dans la distribution

Dans la théorie de la biogéographie des îles, les interactions sont en fait omniprésentes car ells sont une des composantes principales du processus d'extinction. Cependant dans la formulation du modèle, elles ne sont jamis mentionnées explicitement, cachés dans le taux d'extinction e. Comme je le montre à la figure fig. 1, la différence dans l'allure des courbes déssinées par MacArthur et Wilson et celles obtenues en suposant un taux d'immigration et de colonisation sont différentes. D'après les auteurs, l'immigration devient plus difficile lorsque les espèces s'accumulent sur l'île et les extinctions sont de plus en plus fréquentes dues à l'intensification des interactions. Pour parler en terme de réseau

d'interaction, l'accumulation d'espèces sur l'île sature le réseau local et rend difficile l'intégration d'une nouvelle espèce et le rend de plus en plus instable. Une interprétation en terme de communauté de la TIB est tout à fait possible mais les liens entre les espèces ne sont pas formulés mathématiquement en 1967.

Depuis les années 60, la littérature théorique n'a cessé de discuter le rôle joué par les interactions intra- et interspécifiques dans la distribution spatiale des espèces. Il est reconnu que l'interdépendance des espèces conditionne, l'aspect favorable de l'environnement au sens large (biotique et abiotique). En 2009, Robert Holt et Michael Barfield discutent de l'impact de la prédation sur la répartition d'espèces en compétition insistant alors sur le rôle majeur des interactions dans le dessin des aires de répartition (Holt and Barfield, 2009). En 2012, William Godsoe et Luke Harmon Godsoe introduisent les interactions dans un modèle simple de distribution d'espèce et montre comment la probabilité de présence d'une espèce peut être affectée par la distribution d'une seconde et concluent que cela doit affecter vraisemblablement la qualité de prédictions des SDMs (Godsoe and Harmon, 2012). Ils remettent alors en question ces derniers dotn triomphe à la fin du siècle dernier avait relégué les interactions écologiques au second plan en démontrant que la corrélation avec les variables climatiques étaient peut-être suffisante, au moins en première approximation pour expliquer les aires de répartitions (Pearson and Dawson, 2003). Pourtant, dès 1998, le travail précurseur d'Andrew Davis et collègues montrent que les interactions pourraient affectées nos prédictions (Davis et al., 1998) remantant ainsi largement en cause l'hypoythèse d'indépendance des espèces (Jeschke and Strayer, 2008). L'expérience dont les résultats sont publié en 1998 est une annalyse d'abondance de trois espèces de drospophile le long d'un gradient de températive. Les comparaison d'abondance sont menées pour toues les combinaisons possibles de ces trois mouches (assemblages à 1, 2 ou 3 espèces) mais aussi en présence ou en absence d'un parasitoïdes. La démonstration est sans appel, la compétition et paraitsisme affectent draistquement la survie le long du gradient de température, les interactions affectent probablement les réponse au changements climatque.

Plus récemment, on constate une grande motivation pour intégrer les relations écologiques dans les modèles de distribution d'espèces (Kissling et al., 2012, Guisan and Rahbek (2011)). Une méhodologie récente appelée JSDM intègre par exemple les corrélations dans la présence des espèces pour améliorer les prédictions (Pollock et al., 2014). Néanmoins, ces efforts se heurtent à un manque de maturité des modèles et théories qui cherchent à rassembler distribution et interactions. Parmi les tarvaux récents, Franck Jabot et Jordi Bascompte ont rassemblé metacommunautés et écologie des réseaux souligner importance des relation écologique dans la répartition géographique des espèces (Jabot and Bascompte, 2012). De même, Dominique Gravel et collègues introduisent en 2011 l'interdépendance proie-prédateur dans le modèle de la TIB menant aux prémices d'une théorie trophique de la biogéographie des îles (Gravel et al., 2011) préfigurée par Holt (Holt, 2009).

C'est dans la lignée de ces développements théoriques récents que s'inscrit mon premier chapitre de thèse. J'y ai montré comment l'intégration du concept de réseau écologique dans la TIB était possible tout en ajoutant la reconnaissance de performances plus ou moins importantes des espèces dans un contexte abiotique donné (niche écologique). Pour y arriver, j'ai montré l'interêt de ne pas considérer des espèces une à une mais bien sous forme d'assemblage. Du point de vie technique, mon travail montre aussi qu'un retour au processus stochastique tels que ceux présentés en 1967 est une

démarche puissante pour ajouter des processus dans le modèle original.

Figure 2: **Intégration des interactions et des containtes abiotiques dans la TIB.** Pour intégrer les interactions j'ai considéré n'on pa un ensmeble d'espèce indépendant mais un des espèce au sein d'un réseau décrit à l'échelle régional (a). Comme dans la TIB ces espèces peuvent être colonisée l'île (b), mais dans le modèle que j'ai développé, les taux de colonisation varient avec le long d'un gradient environemntal (c). Enfin les interactions influencent les taux d'extinction locaux (d).

Un problème d'échelle?

En repartant de l'exemple classique de la ségrégations spatiales des tamias *Eutamias dorsalis* et *E. umbrinus* (Brown, 1971), j'aiprécédemment mis en évidence qu'une information sur les interactions contenus dans l'analyse des aires de répartitions. Il y a cependant deux caractéristiques importantes qui peuvent faire obstacle à l'abondance de ce type de lecture : la singularité de l'interaction et son caractère locale. Je reviens un peu plus bas sur la première prpopriété et m'arrête ici sur la seconde. Une idée forte relative aux interactions est leur rôle majeur à l'échelle locale qui a des conséquences de moins en moins perceptible au fur et à mesure que l'on cosidère des échelles spatiales de plus en plus grande (voir l'unique figure de McGill (2010)). Du point de vue théorique, c'est tout à fait ce qui est décrit dans la TIB car c'est à l'échelle locale que les interactions influencent l'extinction. Néanmoins, ces conséquences locales sont présentent sur l'ensemble de la distribution de l'espèce, il est alors pertient de se demander pourquoi nous ne sommes pas capables de détecterles interactions en examinant les distributions d'espèces. En fait, nous avons des preuves que cela est possible dans certains cas. En 2010, Nicholas Gotelli et collègues divisent l'avifaune danoise en différentes catégories fondées sur la similarité écologique et démontrent que les espèces d'une même catégorie sont très souvent significativement ségréguées (Gotelli et al., 2010). De même, en 2007, Risto Heikkinen et collègues avaient ibtenu

des performances accrues de leurs modèles statistiques par l'utilisation de la répartition de six espèces de pics pour expliquer la présence de quatre espèces de hiboux (Heikkinen et al., 2007). Dans cette même étude, le signal est plus fort quand les données sont sur de 10x10km que 40x40km en faveur d'une dépendance à l'échelle, récemment supportée par d'autres travaux (Belmaker et al., 2015). Ce qui est remarquable dans les travaux de Gotelli et de Heikkinen est que l'utilisation d'une connaissance biologique et écologique a permis de révéler une trace des interaction dans la distribution d'espèces.

La dépendance spatiale de la detection des intéractions est facile à comprendre : en examinant des données de présence à des échelles spatiales de plus en plus large, le nombre d'espèces s'accumule (c'est le principe de la relation aire-espèce) menant à la dégradation de l'information potentielle contenu dans différence plus locales. Cela signifie que l'information nécessaire pour déceler des empreintes laissé par les interactions sera fournit par des données à l'échelles relativemnt dfine, cela ne permet pas de conclure sur le rayon d'action de ces interactions. Pour dépasser la question spatiale, il fait aussi envidagée l'impact de la nature des interactions sur la répartitin géographique. Ainsi, en 2014, Miguel Araújo et Alejandro Rozenfeld ont prouvé théoriquemnet que les les interactions positives (mutualisme) se propageaient davantage que les intéractions négatives (Araújo and Rozenfeld, 2014), la nature de la relation qui unie des espèces peut donc influencer la perte d'information contenue dans les aire de répartition. Suite à mes travaux sur l'intégrations des interactions, je me suis penché sur un autre aspect qui peut influencer la perte d'information dans dans les données de présence : l'abondance des interactions. Au chapitre 2, je montre que les interactions directes et indirectes affactent les données de distributions mais aussi que l'abondance des interactions rend difficile de distinguer la co-occurrence d'espèces en interactions d'une co-occurrence aléatoire. Ce qui est encore plus intéressant, c'est que j'ai accumulé un un certains nombre d'indices dans des données de présence et d'abscence réelle qui semblent confirmer nos prédictions. Je discute de ces résultats dans le troisième chapitre de ma thèse mon troisième chapitre.

En constant que l'abondance des interactions peut justifier l'hypothèse d'indépendance des espèces, je soulève le même paradoxe que celui relevé par MacArthur dans son oeuvre de 1972 (MacArthur, 1972) :

« A few decades ago it as fashionable for ecologist to study communities in the arctic on the grounds that these would be very simple communities and hence easy to understand. Many excellent ecologists still follow this belied, but there are others who feel that it may be easier to understand the extremely complex communities. This sounds paradoxical: How can a more complex communities by easier to understand? A possible answer might be that complex community has has strong interactions among species so that the lives of the separate species are less independent than in a simple community. Where there is greater interdependence, patterns may be more conspicuous. »

Encore une fois, je déplace le problème car si l'interdépendance est importante pour des système smple, le porblème est de prédire aund ces systèmes le sont. Autrement dit il serait peut-être pertinent de situer les prédictions en biogéogrpahie au niveau du réseau écologique. Le problème d'échelle n'est plus seulemnt spatial et temporel il est aussi un problème d'échelle biologique : individus, population, communauté ou réseaux?

Vers une biogéographie énergétique

Le problème d'échelle biologique est aussi un problème de catégorisation des espèces. J'ai suggéré que les prédiction étaient plus facile pour des espèces généralistes que pour des espèces spécialistes. Malheureusement le spectre est très large et plutôt balancé avec un continum entre des espèces hyperspécialistes de d'autres très généralistes (Timothée Poisot et al., 2015). On peit néamoins espérer que la réduction des espèces à un certains nombres de traits (McGill et al., 2006, T. Poisot et al. (2015)) et des réseaux à un certains nombre de propriétés puissent permettrent des généralisations utiles dans notre compréhension de leur distribution. Il m'apparaît aujourd'hui urgent que le niveau bon niveau de détail dans nos descriptions des systèmes écologiques soit trouvé afin de renforcer les fondements théoriques de la dynamique des aires de répartitions.

Une piste prometteuse pour prolonger la recherche des propriétés est me semble-t-il de s'appuyer sur la nature profonde des espèces : des sytèmes énergétiques qui se perpétuent. La lecture de la théorie de la dynamique du budget énergétique de Sebastian Kooijman (Kooijman, 2000) m'a été très profitable pour cerner les possibilités offertes par une telle approche. Si, comme il est montré par Kooijman, il est possible de dériver de manière précise un grande nombre de propriétés énergétiques des espèces sur leur masse et leur forme, alors les espoirs sont grands de pouvoir trouver des règles d'assemblages fiables des commautés et donc de comprendre d'un point de vue méchaniste les extinctions locales. Ce sont les mêmes espoirs que ceux nourrit par la théorie métabolique de l'écologie qui rassemble des relations entre la taille des espèces et différentes de leurs propriétés (Brown et al., 2004) qui montrent en somme qu'il est possible d'aller au dela de l'espèce (T. Poisot et al., 2015). Mes réflexions sur l'intersection entre la TIB et une vision énergétique de l'écologue sont présentées au chapitre 4 de ma thèse, dans un chapitre qui se veut aussi comme une ouverture vers les projets de recherche que j'aimerais mener dans un futur proche.

Allesina, S., Tang, S., 2012. Stability criteria for complex ecosystems. Nature 483, 205–208. doi:10.1038/nature10832 Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815. doi:10.1038/35048692

Araújo, M.B., Rozenfeld, A., 2014. The geographic scaling of biotic interactions. Ecography 37, 406–415. doi:10.1111/j.1600-0587.2013.00643.x

Balanyá, J., Oller, J.M., Huey, R.B., Gilchrist, G.W., Serra, L., 2006. Global genetic change tracks global climate warming in Drosophila subobscura. Science (New York, N.Y.) 313, 1773–5. doi:10.1126/science.1131002

Beck, J., Ballesteros-Mejia, L., Buchmann, C.M., Dengler, J., Fritz, S.A., Gruber, B., Hof, C., Jansen, F., Knapp, S., Kreft, H., Schneider, A.-K., Winter, M., Dormann, C.F., 2012. What's on the horizon for macroecology? Ecography 35, 001–011. doi:10.1111/j.1600-0587.2012.07364.x

Beck, J., Böller, M., Erhardt, A., Schwanghart, W., 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics 19, 10–15. doi:10.1016/j.ecoinf.2013.11.002

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of

biodiversity. Ecology letters 15, 365–377. doi:10.1111/j.1461-0248.2011.01736.x

Belmaker, J., Zarnetske, P., Tuanmu, M.-N., Zonneveld, S., Record, S., Strecker, A., Beaudrot, L., 2015. Empirical evidence for the scale dependence of biotic interactions. Global Ecology and Biogeography 24, 750–761. doi:10.1111/geb.12311

Brown, J.H., 1971. Mechanisms of Competitive Exclusion Between Two Species of Chipmunks. Ecology 52, 305–311. doi:10.2307/1934589

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. doi:10.1890/03-9000

Brown, J.H., Lomolino, M.V., 1989. Independent Discovery of the Equilibrium Theory of Island Biogeography. Ecology 70, 1954–1957. doi:10.2307/1938125

Chase, J.M., Leibold, M.A., 2003. Ecological niches: linking classical and contemporary approaches. doi:10.1007/s13398-014-0173-7.2

Connor, E.F., Simberloff, D., 1979. The Assembly of Species Communities: Chance or Competition? Ecology 60, 1132. doi:10.2307/1936961

Cook, W.M., Lane, K.T., Foster, B.L., Holt, R.D., 2002. Island theory, matrix effects and species richness patterns in habitat fragments. Ecology Letters 5, 619–623. doi:10.1046/j.1461-0248.2002.00366.x

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B., Wood, S., 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786. doi:10.1038/35842

Desmet, P., Cowling, R., 2004. Using the species-area relationship to set baseline targets for conservation. Ecology And Society 9, 1–39.

Diamond, J.M., 1975. Assembly of species communities, in: Cody, M.L., Diamond, J.M. (Eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts, USA., pp. 342–444.

Dobzhansky, T., 1973. Nothing in Biology Makes Sense except in the Light of Evolution. The American Biology Teacher 35, 125–129. doi:10.2307/4444260

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., S. Wisz, M., E. Zimmermann, N., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151. doi:10.1111/j.2006.0906-7590.04596.x

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and

Time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697. doi:10.1146/annurev.ecolsys.110308.120159

Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T. a, Tyree, M.T., Turner, B.L., Hubbell, S.P., 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82. doi:10.1038/nature05747

Finstermeier, K., Zinner, D., Brameier, M., Meyer, M., Kreuz, E., Hofreiter, M., Roos, C., 2013. A Mitogenomic Phylogeny of Living Primates. PLoS ONE 8, 1–10. doi:10.1371/journal.pone.0069504

Godsoe, W., Harmon, L.J., 2012. How do species interactions affect species distribution models? Ecography 35, 811–820. doi:10.1111/j.1600-0587.2011.07103.x

Gotelli, N.J., Graves, G.R., Rahbek, C., 2010. Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences 107, 5030–5035. doi:10.1073/pnas.0914089107

Grant, P.R., Grant, B.R., 2008. How and Why Species Multiply: The Radiation of Darwin's Finches, Princeton series in evolutionary biology. Princeton University Press.

Gravel, D., Canham, C.D., Beaudet, M., Messier, C., 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecology letters 9, 399–409. doi:10.1111/j.1461-0248.2006.00884.x

Gravel, D., Massol, F., Canard, E., Mouillot, D., Mouquet, N., 2011. Trophic theory of island biogeography. Ecology Letters 14, 1010–1016. doi:10.1111/j.1461-0248.2011.01667.x

Gravel, D., Poisot, T., Albouy, C., Velez, L., Mouillot, D., 2013. Inferring food web structure from predator-prey body size relationships. Methods in Ecology and Evolution 4, 1083–1090. doi:10.1111/2041-210X.12103

Grinnell, J., 1917. The Niche-Relationships of the California Thrasher. The Auk 34, 427–433. doi:10.2307/4072271

Guisan, A., Rahbek, C., 2011. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography 38, 1433–1444. doi:10.1111/j.1365-2699.2011.02550.x

Hannah, L., Roehrdanz, P.R., Ikegami, M., Shepard, A.V., Shaw, M.R., Tabor, G., Zhi, L., Marquet, P.a., Hijmans, R.J., 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences 110, 6907–6912. doi:10.1073/pnas.1210127110

Hanski, I., 2010. The Theories of Island Biogeography and Metapopulation Dynamics, in: The Theory of Island Biogeography Revisited. Princeton University Press, Princeton, NJ, p. 476.

Hanski, I., 1998. Metapopulation dynamics. Nature reviews 396, 41-49. doi:10.1016/0169-5347(89)90061-X

He, F., Hubbell, S.P., 2011. Species-area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–71. doi:10.1038/nature09985

Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G., Körber, J.-H., 2007. Biotic interactions improve prediction

of boreal bird distributions at macro-scales. Global Ecology and Biogeography 16, 754–763. doi:10.1111/j.1466-8238.2007.00345.x

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978. doi:10.1002/joc.1276

Holt, R.D., 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America 106 Suppl, 19659–65. doi:10.1073/pnas.0905137106

Holt, R.D., Barfield, M., 2009. Trophic interactions and range limits: the diverse roles of predation. Proceedings. Biological sciences / The Royal Society 276, 1435–1442. doi:10.1098/rspb.2008.1536

Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A., Lobo, J.M., 2011. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters 14, 741–748. doi:10.1111/j.1461-0248.2011.01634.x

Hubbell, S.P., 2010. Neutral Theory and the Theory of Island Biogeography, in: Losos, J.B., Ricklefs, R.E. (Eds.), The Theory of Island Biogeography Revisited. Princeton University Press, Princeton, NJ, p. 479.

Hubbell, S.P., 1999. Light-Gap Disturbances, Recruitment Limitation, and Tree Diversity in a Neotropical Forest. Science 283, 554–557. doi:10.1126/science.283.5401.554

Hubbell, S.P., 1997. A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16, S9–S21. doi:10.1007/s003380050237

Jabot, F., Bascompte, J., 2012. Bitrophic interactions shape biodiversity in space. Proceedings of the National Academy of Sciences of the United States of America 109, 4521–4526. doi:10.1073/pnas.1107004109

Jeschke, J.M., Strayer, D.L., 2008. Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy of Sciences 1134, 1–24. doi:10.1196/annals.1439.002

John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M., Hubbell, S.P., Valencia, R., Navarrete, H., Vallejo, M., Foster, R.B., 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences 104, 864–869. doi:10.1073/pnas.0604666104

Kearney, M., Porter, W.P., 2004. MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD. Ecology 85, 3119–3131. doi:10.1890/03-0820

Kéfi, S., Berlow, E.L., Wieters, E.A., Joppa, L.N., Wood, S.A., Brose, U., Navarrete, S.A., 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303. doi:10.1890/13-1424.1

Kéfi, S., Berlow, E.L., Wieters, E.A., Navarrete, S.A., Petchey, O.L., Wood, S.A., Boit, A., Joppa, L.N., Lafferty, K.D., Williams, R.J., Martinez, N.D., Menge, B.A., Blanchette, C.A., Iles, A.C., Brose, U., 2012. More than a

meal... integrating non-feeding interactions into food webs. Ecology Letters 15, 291–300. doi:10.1111/j.1461-0248.2011.01732.x

Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E., O'Hara, R.B., 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39, 2163–2178. doi:10.1111/j.1365-2699.2011.02663.x

Koh, L.P., 2004. Species Coextinctions and the Biodiversity Crisis. Science 305, 1632–1634. doi:10.1126/science.1101101

Kooijman, S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511565403

Lavergne, S., Mouquet, N., Thuiller, W., Ronce, O., 2010. Biodiversity and Climate Change: Integrating Evolutionary and Ecological Responses of Species and Communities. Annual Review of Ecology, Evolution, and Systematics 41, 321–350. doi:10.1146/annurev-ecolsys-102209-144628

Leibold, M.a., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, a., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613. doi:10.1111/j.1461-0248.2004.00608.x

Levins, R., 1969. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bulletin of the Entomological Society of America 15, 237–240. doi:10.1093/besa/15.3.237

Levins, R., Heatwole, H., 1963. On the distribution of organisms on islands. Caribbean Journal of Science 3, 173-177.

Lomolino, M., 2000. Ecology's most general, yet protean pattern: the species area relationship. Journal of Biogeography 27, 17–26.

Lomolino, M.V., 2000. A call for a new paradigm of island biogeography. Global Ecology and Biogeography 9, 1–6. doi:10.1046/j.1365-2699.2000.00185.x

Lomolino, M.V., Brown, J.H., 2009. The reticulating phylogeny of island biogeography theory. Q. Rev. Biol. 84, 357–390. doi:10.1017/CBO9781107415324.004

Losos, J.B., Ricklefs, R.E., 2010. The Theory of Island Biogeography Revisited. Princeton University Press, Princeton, NJ.

MacArthur, R.H., 1972. Geographical Ecology: Patterns in the Distribution of Species, Biology / [princeton university press]. Princeton University Press.

MacArthur, R.H., Wilson, E.O., 1967. Theory of Island Biogeography, Princeton landmarks in biology. Princeton

University Press, Princeton, NJ.

MacArthur, R.H., Wilson, E.O., 1963. An equilibrium theory of insular zoogeography. Evolution 17, 373–387.

MacArthur, R.H., Wilson, E.O., MacArthur, W., 1967. The theory of island biogeography. doi:10.2307/1796430

May, R.M., 2004. Uses and abuses of mathematics in biology. Science (New York, N.Y.) 303, 790–3. doi:10.1126/science.1094442

May, R.M., 1973. Stability and complexity in model ecosystems. Monographs in population biology 6, 1–235. doi:10.1109/TSMC.1978.4309856

McCann, K.S., 2011. Food Webs, Monographs in population biology. Princeton University Press.

McCann, K.S., 2000. The diversity-stability debate. Nature 405, 228-33. doi:10.1038/35012234

McGill, B., Collins, C., 2003. A unified theory for macroecology based on spatial patterns of abundance. Evolutionary Ecology Research 5, 469–492. doi:10.1038/nature01569.1.

McGill, B.J., 2010. Matters of Scale. Science 328, 575-576. doi:10.1126/science.1188528

McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M., 2006. Rebuilding community ecology from functional traits. Trends in ecology & evolution 21, 178–185. doi:10.1016/j.tree.2006.02.002

Monod, J., 1970. Le hasard et la n{é}c{é}ssit{é}: Editions Du Seuil.

Neigel, J., 2003. Species-area relatioships and marine conservation. Ecological Applications 13, 138–145. doi:10.1890/1051-0761(2003)013[0138:SARAMC]2.0.CO;2

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371. doi:10.1046/j.1466-822X.2003.00042.x

Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S., Coulson, T., 2007. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574. doi:10.1126/science.1139024

Pelletier, F., Garant, D., Hendry, a P., 2009. Eco-evolutionary dynamics. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 1483–9. doi:10.1098/rstb.2009.0027

Pelletier, F., Garant, D., Hendry, A., 2009. Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1483–1489. doi:10.1098/rstb.2009.0027

Poisot, T., Kéfi, S., Morand, S., Stanko, M., Marquet, P.A., Hochberg, M.E., 2015. A continuum of specialists and generalists in empirical communities. PLoS ONE 10, 1–12. doi:10.1371/journal.pone.0114674

Poisot, T., Stouffer, D.B., Gravel, D., 2015. Beyond species: why ecological interactions vary through space and time. Oikos 124, 243–251. doi:10.1101/001677

Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O'Hara, R.B., Parris, K.M., Vesk, P.A., McCarthy, M.A., 2014.

Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5, 397–406. doi:10.1111/2041-210X.12180

Post, D.M., Palkovacs, E.P., 2009. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 1629–40. doi:10.1098/rstb.2009.0012

R Core Team, 2015. R: A Language and Environment for Statistical Computing.

Razafindratsima, O.H., Mehtani, S., Dunham, A.E., 2013. Extinctions, traits and phylogenetic community structure: Insights from primate assemblages in Madagascar. Ecography 36, 047–056. doi:10.1111/j.1600-0587.2011.07409.x

Ricklefs, R.E., 2003. A comment on Hubbell's zero-sum ecological drift model. Oikos 1001, 185-192.

Ricklefs, R.E., 1987. Community diversity: relative roles of local and regional processes. Science 235, 167–171. doi:10.1126/science.235.4785.167

Robinet, C., Suppo, C., Darrouzet, E., 2016. Rapid spread of the invasive yellow-legged hornet in France: the role of human-mediated dispersal and the effects of control measures. Journal of Applied Ecology. doi:10.1111/1365-2664.12724

Rosindell, J., Hubbell, S.P., He, F., Harmon, L.J., Etienne, R.S., 2012. The case for ecological neutral theory. Trends in Ecology and Evolution 27, 203–208. doi:10.1016/j.tree.2012.01.004

Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., Hanski, I., 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494. doi:Doi 10.1038/33136

Schoener, T.W., 2011a. The Newest Synthesis: Understanding Ecological Dynamics. Science 331, 426–429. doi:10.1126/science.1193954

Schoener, T.W., 2011b. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science (New York, N.Y.) 331, 426–9. doi:10.1126/science.1193954

Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J., 2009. Evolution and Ecology of Species Range Limits. Annual Review of Ecology, Evolution, and Systematics 40, 415–436. doi:10.1146/annurev.ecolsys.110308.120317

Simberloff, D.S., 1974. Equilibrium Theory of Island Biogeography and Ecology. Annual Review of Ecology and Systematics 5, 161–182. doi:10.1146/annurev.es.05.110174.001113

Simberloff, D.S., Wilson, E.O., 1969. Experimental Zoogeography of Islands: The Colonization of Empty Islands. Ecology 50, 278–296. doi:10.2307/1934856

Simberloff, D.S., Wilson, E.O., 1969. Experimental zoogeography of islands: a model for insular colonization. Ecology 50, 296–314. doi:10.2307/1934856

Springer, A., Swann, D., Crimmins, M., 2015. Climate change impacts on high elevation saguaro range expansion.

Journal of Arid Environments 116, 57-62. doi:10.1016/j.jaridenv.2015.02.004

Tao, T., Vu, V., Krishnapur, M., 2010. Random matrices: Universality of ESDs and the circular law. The Annals of Probability 38, 2023–2065. doi:10.1214/10-AOP534

Thuiller, W., Münkemüller, T., Lavergne, S., Mouillot, D., Mouquet, N., Schiffers, K., Gravel, D., 2013. A road map for integrating eco-evolutionary processes into biodiversity models. Ecology Letters 16, 94–105. doi:10.1111/ele.12104

Tingley, M.W., Monahan, W.B., Beissinger, S.R., Moritz, C., 2009. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences of the United States of America 106 Suppl, 19637–43. doi:10.1073/pnas.0901562106

Vanbergen, A.J., 2013. Threats to an ecosystem service: Pressures on pollinators. Frontiers in Ecology and the Environment 11, 251–259. doi:10.1890/120126

Villemant, C., Barbet-Massin, M., Perrard, A., Muller, F., Gargominy, O., Jiguet, F., Rome, Q., 2011. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biological Conservation 144, 2142–2150. doi:10.1016/j.biocon.2011.04.009

Villemant, C., Haxaire, J., Streito, J., 2006. Premier bilan de l'invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bulletin de la Société entomologique de France 111, 535–538.

Wacey, D., Kilburn, M.R., Saunders, M., Cliff, J., Brasier, M.D., 2011. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience 4, 698–702. doi:10.1038/ngeo1238

Waldrop, M.M., 2016. The hundred-year quest for gravitational waves — in pictures. Nature. doi:10.1038/nature.2016.19340

Wallace, A.R., 1881. Island Life: Or, The Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates. Harper & brothers.

Wallace, A.R., 1860. On the Zoological Geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society of London. Zoology 4, 172–184. doi:10.1111/j.1096-3642.1860.tb00090.x

Wallace, A.R., 1858. On the Tendency of Varieties to depart indefinitely from the Original Type. Proceedings of the Linnean Society Of London 3, 53–62.

Warren, B.H., Simberloff, D., Ricklefs, R.E., Aguilée, R., Condamine, F.L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J.M., Hengl, T., Norder, S.J., Rijsdijk, K.F., Sanmartín, I., Strasberg, D., Triantis, K.a., Valente, L.M., Whittaker, R.J., Gillespie, R.G., Emerson, B.C., Thébaud, C., 2015. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecology Letters 18, 200–217. doi:10.1111/ele.12398

Wennekes, P.L., Rosindell, J., Etienne, R.S., 2012. The Neutral—Niche Debate: A Philosophical Perspective. Acta

Biotheoretica 60, 257–271. doi:10.1007/s10441-012-9144-6

Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F., Hairston, N.G., 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303–6. doi:10.1038/nature01767