Cryptography Final - May 14th 2:45pm Review Sheet

Need to know:

- Advantages and Disadvantages of one time pad
 - Advantages:
- Difference between Stream Ciphers and block ciphers
 - block ciphers are more general can you convert a block cipher into a stream cipher yes, make block size one bit
 - stream ciphers have more mathematical structure statistical attacks easier to break and easier to study
 - block ciphers have no math involved has to be reversable function
 - stream ciphers are not suitable for software but highly efficient in hardware
 - block ciphers are good in hardware and software but not as good in terms of hardware as stream cipher
 - BC what is one time pad attacks on one time pad use same key xoring two messages together gets the messages concatenated together.
 - What is 3DES bit length, keys to test in worse case 2^{56} , average 2^{55} encryption decryption and encryption
 - DES bit length, keys to test in worse case
 - Why is 2 DES not secure how does it work
 - What is meet in the middle attack cuts in half the amount of keys to check
- Brute force attacks and time it will take to do.
 - How to brute force decrypt something.
- Most likelyhood of something to happen probability
- Factorization of a number made of 2 primes product of 3 primes instead of 2 primes
 - how to find phi with 3 prime values

- given some cipher from Alice, how would you decrypt it?
- think about it for every algorithm thats out there
- also think about chinese remainder theorem
- diffie helman given q^a and q^b , finding q^{ab} is hard... how?
 - given generator, compute the q^{ab}
 - Elgamal- how it works.
 - how to involve 3 people into this?
 - sending encrypted message from alice to bob, you have g^{ab} and for bob and carol you get q^{bc} .
 - -m = 59, g = 2, p = 227. Alice has a = 8, bob b = 6, carol c = 5. $H_a = 29$, $H_b = 64$, $H_c = 32$ (all mod 227). Alice will generate g^{ab} using Bobs half mask. $F_{ab} = 12$. If you don't get the same full mask for bob and alice, its wrong. Same thing for bob and carol. $F_{bc} = 44$
 - p = 2q+1 safe prime q = $\frac{p-1}{2}$

 - $-q^1 \neq 1$
 - $-q^2 \neq 1$
 - $-g^q \neq 1$
- Diffie helman Elliptic Curve
 - Same security in EC 128 as Elgamal 256.
 - Given a curve, only thing on the curve will be the quadratic residues.
 - given a set, show me a formula to find the quadratic residues. Legranges symbol. $\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p$ if we get 1, it is a quadratic residue, -1 is going to be a non quadratic residue.
 - finding the square roots of x raise x to the (p+1)/4 and mod by p
 - get ascii character to the (x1, y1) character when turning it into a cipher m is a point on the curve. ALICE has her own multiplier, bob will have his own multiplier. - use them to encrypt their own half masks B = 4g and A = 3g. F = B * 3 (bobs halfmask

times Alice's multiplier.

- make sure you can find all of the points on the curve. you dont have to find the square roots if the number is not -1 when raised to the power of (p-1)/2 mod the number.
- the generator value is a point on the curve and the message point is a point on the curve. ALL OF THE THINGS YOU GET IS A POINT ON THE CURVE.
- (1) RSA Public Key Encryption.

Given:

n a small prime e smallest odd integer with gcd with ϕ of 1 c an encrypted message

Needed:

p and q two prime numbers whose products are n $\phi = (p-1)(q-1)$ $d=e^{-1}$

- (a) Find the primes p and q. If you do not have a prime factorization on your calculator, then know that one of them is going to be less \sqrt{n} , knowing this, we can test all primes less than \sqrt{n} .
- (b) Calculate $\phi = (p-1)(q-1)$. From here, it should be easy to find e if it is not given. Parse through lowest odd values until you find one where $gcd(e, \phi) = 1$.
- (c) Now that you have e, you have to use pulverizer to solve for d. $\phi \quad e \quad \text{Quotient} \quad \text{Remainder} \quad x_1 \quad y_1 \quad x_2 \quad y_2$