Singular Value Decomposition

Singular Value Decomposition

$$A ext{ is } m imes n$$

$$A = ext{(orthogonal) (diagonal) (orthogonal)}$$

$$A = U \sum V^T$$

$$A = U\Sigma V^{T} \longrightarrow A = \sigma_1 u_1 v_1^{T} + \sigma_2 u_2 v_2^{T} + \Box + \sigma_r u_r v_r^{T}$$

Applications of the SVD

Image processing

• Suppose a satellite takes a picture, and wants to send it to earth. The picture may contain 1000 by 1000 "pixels"—little squares each with a definite color. We can code the colors, in a range between black and white, and send back 1,000,000 numbers

Applications of the SVD: Image processing

- It is better to find the essential information in the 1000 by 1000 matrix, and send only that.
- Typically, some are significant and others are extremely small.
- If we keep 60 and throw away 940, then we send only the corresponding 60 columns of U, and V.
- If only 60 terms are kept, we send 60 times 2000 numbers instead of a million.
- The other 940 columns are multiplied by small singular values that are being ignored. In fact, we can do the matrix multiplication as columns times rows:

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + [] + \sigma_r u_r v_r^T$$

Applications of the SVD: Image processing

• The SVD of a 32-times-32 digital image A is computed

$$\sigma_1 u_1 v_1^T$$

$$\sigma_2 u_2 v_2^T$$

$$\sigma_3 u_3 v_3^T$$

$$\sigma_4 u_4 v_4^T$$

$$\sigma_6 u_6 v_6^T$$

$$\sigma_7 u_7 v_7^T$$

$$\sigma_8 u_8 v_8^T$$

Applications of the SVD: Image processing

$$A_s = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \square + \sigma_s u_s v_s^T$$

Inverses

- The SVD makes it easy to compute (and understand) the inverse of a matrix. We exploit the fact that U and V are orthogonal, meaning their transposes are their inverses, i.e., $U^TU = UU^T = I$ and $V^TV = VV^T = I$.
- The inverse of A (if it exists) can be determined easily from the SVD, namely:

For orthogonal matrix X: $(X)^1=(X)^T$

7

Pseudo-inverse

- The SVD also makes it easy to see when the inverse of a matrix doesn't exist. Namely, if any of the singular values $\Sigma_{ii} = 0$, then the Σ^{-1} doesn't exist, because the corresponding diagonal entry would be $1/\Sigma_{ii} = 1/0$.
- If a matrix A has any zero singular values (let's say $\Sigma_{jj}=0$), then multiplying by A effectively destroys information because it takes the component of the vector along the right singular vector v and multiplies it by zero.
 - We can't recover this information, so there's no way to "invert" the mapping Ax to recover the original x that came in.

Pseudo-inverse

- If a matrix A has any zero singular values (let's say $\Sigma_{jj} = 0$), then multiplying by A effectively destroys information because it takes the component of the vector along the right singular vector v and multiplies it by zero.
 - We can't recover this information, so there's no way to "invert" the mapping Ax to recover the original x that came in.
- The best we can do is to recover the components of x that weren't destroyed via multiplication with zero.
 - The matrix that recovers all recoverable information is called the pseudo-inverse, and is often denoted A^{\dagger}

SVD of non-square matrix

• If A is $m \times n$ non-square matrix, then U is $m \times m$ and V is $n \times n$, and S is $m \times n$ is non-square and therefore has only $\min(m,n)$ non-zero singular values. Such matrices are (obviously) non-intertible, though we can compute their pseudo-inverses using the formula above.

Pseudo-inverse

- Suppose we have an $n \times n$ matrix A, which has only k non-zero singular values.
- The pseudoinverse of A can then be written similarly to the inverse: $A^\dagger = U \Sigma^\dagger V^T$

Inverses: Condition number

- In practical situations, a matrix may have singular values that are not exactly equal to zero, but are so close to zero that it is not possible to accurately compute them.
 - In such cases, the matrix is what we call ill-conditioned, because dividing by the singular values (values that are arbitrarily close to zero) will result in numerical errors.
- The degree to which ill-conditioning prevents a matrix from being inverted accurately depends on the ratio of its largest to smallest singular value, a quantity known as the condition number.

condition number =
$$\Sigma_{11}/\Sigma_{nn}$$

• The larger the condition number, the more practically non-invertible it is.

Document matrices

Find a subset of the terms that accurately clusters the documents

- Q: how exactly is dim. reduction done?
 - set the smallest eigenvalues to zero:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.99 \\ 0 & 0 & 5.99 \\ 0 & 0 & 0.58 \\ 0 & 0 & 0.71 \\ 0.71 \end{bmatrix}$$

```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71 \\ 0 & 0 & 0 & 0.71 & 0.71 \end{bmatrix}
```

```
      1
      1
      1
      0
      0

      2
      2
      2
      0
      0

      1
      1
      1
      0
      0

      1
      1
      1
      0
      0

      5
      5
      5
      0
      0

      0
      0
      0
      2
      2

      0
      0
      0
      3
      3

      0
      0
      0
      1
      1
```

```
0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27
```



```
      1
      1
      1
      0
      0

      2
      2
      2
      0
      0

      1
      1
      1
      0
      0

      5
      5
      5
      0
      0

      0
      0
      0
      2
      2

      0
      0
      0
      3
      3

      0
      0
      0
      1
      1
```


Social-network matrices

Find a subset of the groups that accurately clusters social-network users

Recommendation systems

Find a subset of the products that accurately describe the behavior or the customers

Geometrical Interpretation: Eigenvalues and Eigenvectors

• Consider a covariance matrix, A, i.e., $A = 1/n S S^T$ for some S

 $\mathbf{A} = \begin{bmatrix} 1 & .75 \\ .75 & 1 \end{bmatrix} \Rightarrow \lambda_1 = 1.75, \lambda_2 = 0.25$

• Ellipse: major axis as the larger eigenvalue and the minor axis as the smaller eigenvalue

- The SVD tells us that we can think of the action of A upon any vector x in terms of three steps
 - 1. rotation (multiplication by V which doesn't change vector length of x).
 - 2. stretching along the cardinal axes (where the I'th component is stretched by s_i).
 - 3. another rotation (multipication by U).

Thus, one good way to understand what \boldsymbol{A} does is to find which vectors are mapped to the "main axes" of the ellipsoid.

- In this case A is just a scaling matrix.
- The <u>eigen decomposition</u> of A tells us which orthogonal axes it scales, and by how much:

Geometric analysis of linear transformations

• If we are lucky: $A = V \Sigma V^T$, V orthogonal (true if A is symmetric)

• The eigenvectors of A are the axes of the ellipse

$$\begin{array}{ccc} AV & = & V \sum \\ AVV^T & = & V \sum V^T \\ A & = & V \sum V^T \end{array}$$

• In general A will also contain rotations, not just scales:

$$A\mathbf{v}_{i} = \sigma_{i}\mathbf{u}_{i}, \quad \sigma_{i} \geq 0$$

• In general A will also contain rotations, not just scales:

Singular value decomposition (SVD)

Singular value decomposition (Computation)

Singular value decomposition (SVD)

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

First, we compute the singular values σ_i by finding the eigenvalues of AA^T

$$AA^T = \begin{bmatrix} \mathbf{11} & \mathbf{1} \\ \mathbf{1} & \mathbf{11} \end{bmatrix}$$

- Setting determinant $det(AA^T \lambda) = 0$
 - $\lambda^2-22\lambda+120=(\lambda-10)(\lambda-12)$, so the singular values are $\sigma_1=\sqrt{10}$ and $\sigma_2=\sqrt{12}$.

To calculate the eigen vector

$$Av = \lambda v \Rightarrow \begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$(11 - \lambda)x_1 + x_2 = 0$$

 $x_1 + (11 - \lambda)x_2 = 0$

- For $\lambda = 10$ $x_1 + x_2 = 0 \Longrightarrow x_1 = -x_2$
- which is true for lots of values, so we'll pick ${\bf x}_1=1$ and $x_2=-1$
- Similarly, for $\lambda=12$, x1=1 and x2=1

$$U = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• Finally, we have to convert this matrix into an orthogonal matrix which we do by applying the *Gram-Schmidt orthonormalization* process to the column vectors.

$$U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

• Similarly, V can be calculated by following the same process by calculating the eigenvectors of A^TA

$$U=egin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

• Similarly, V can be calculated by following the same process by calculating the eigenvectors of A^TA

$$V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{2}} & -1 & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

•
$$U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{2}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix} S = \begin{bmatrix} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{bmatrix}$$

$$A_{mn} = USV^T = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

SVD and Rank-k approximations

$$\left(\begin{array}{c} A_k \\ \end{array}\right) = \left(\begin{array}{c} U_k \\ \end{array}\right) \cdot \left(\begin{array}{c} \Sigma_k \\ \end{array}\right) \cdot \left(\begin{array}{c} V_k^T \\ \end{array}\right)$$

Best Rank-k approximations (A_k) :

Eckart-Young theorem

◆ Let A and B be any $m \times n$ matrices, with B having rank k. Then

$$||A - A_k||_F \le ||A - B||_F$$

Frobenius Norm

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2}$$

$$||A||_F = \sqrt{Tr(A^TA)}$$

$$||A||_F = \sqrt{\sum_{i=1}^n \lambda_i(A)}$$

 λ_i is the ith non-zero eigenvalues of A^*A , $A^*conjugate\ transpose$

$$||A - A_k||_F = \sqrt{\sum_{ij} (A_{ij} - (A_k)_{ij})^2} = \sqrt{1^2 + 0^2 + 2^2 + 0^2 + 2^2 + 0^2 + 2^2 + 0^2 + 2^2} = \sqrt{17} = 4.1231$$

$$||A - B||_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2} = \sqrt{(-2)^2 + 2^2 + 0^2 + 0^2 + (-3)^2 + 0^2 + 0^2 + 2^2} = \sqrt{33} = 5.7446$$

• Let A and B be any $m \times n$ matrices, with B having rank k. Then

$$||A - A_k||_F \le ||A - B||_F$$

R	ANK 3		R	ANK	3			RANK 3	
1	2	3	0	2	1		3	0	3
5	6	7	5	4	7		5	9	7
3	5	4	1	5	2		3	1	4
	\boldsymbol{A}			A_{I}	č			B	

Frobenius Norm

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2}$$

$$||A||_F = \sqrt{Tr(A^T A)}$$

$$||A||_F = \sum_{i=1}^n \lambda_i(A)$$

 λ_i is the ith non-zero eigenvalues of A^*A , A^* conjugate transpose

$$= ||A - A_k||_F$$

 $\sqrt{Tr((A-A_k)^T(A-A_k))} = \sqrt{5+4+8} = \sqrt{17}$

 $A - A_k = 0 2 0$

Best Rank-k approximations (A_k) :

RANK 3

Eckart-Young theorem

RANK 3

• Let A and B be any $m \times n$ matrices, with B having rank k. Then

$$||A - A_k||_F \le ||A - B||_F$$

RANK 3

A		3	0	3		1	2	0		3	2	1
		7	9	5		7	4	5		7	6	5
		4	1	3		2	5	1		4	5	3
			В			k	A_{i}				\boldsymbol{A}	
l l					n			2	0	1		
	$-A_k))$. (A –	$A_k)^*$	(A -	$\sum \lambda_i$			0	2	0	$A_k =$	A – A
					$\overline{i=1}$	1		2	0	2		
$= A - A_k _F$	$347 = \sqrt{17}$	12.68	4+	53 +	$= \sqrt{0.3}$	=						

Frobenius Norm

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m (a_{ij})^2}$$

$$||A||_F = \sqrt{Tr(A^T A)}$$

$$||A||_F = \left| \sum_{i=1}^n \lambda_i(A) \right|$$

 λ_i is the ith non-zero eigenvalues of A^*A , $A^*conjugate\ transpose$

Frobenius Norm

$$||A||_F^2 = Tr(A^T A)$$

• Let A_k is the best rank-k approximation of A

$$||A - A_k||_F^2 = Tr((A - A_k)^T (A - A_k))$$

$$= Tr((U\Sigma V^T - U\Sigma_k V^T)^T (U\Sigma V^T - U\Sigma_k V^T))$$

$$= Tr((V\Sigma U^T - V\Sigma_k U^T) (U\Sigma V^T - U\Sigma_k V^T))$$

$$= Tr((V\Sigma - V\Sigma_k) U^T U(\Sigma V^T - \Sigma_k V^T))$$

$$= Tr(V(\Sigma - \Sigma_k) (\Sigma - \Sigma_k) V^T)$$

$$= Tr(VV^T (\Sigma - \Sigma_k) (\Sigma - \Sigma_k))$$

$$= \sum_{i=k+1}^n \lambda_i(A)$$

Power method for computing the SVD

Power method for computing the SVD

• Let
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$
 and $x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

- To compute x_1 , we multiply Ax_0 to get
- The Frobenius norm of the Ax_0 is $\sqrt{5^2 + 8^2} = 9.434$, then
- For the next iteration, we compute
- The Frobenius norm of the result is 6.971, so we divide to obtain
- For the next iteration, we compute
- The Frobenius norm of the result is 6.997, so we divide to obtain
- The *x* after convergence

Power method for computing the SVD

Hence,

$$\lambda_1 = x^T A x = \begin{bmatrix} 0.447 & 0.894 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix} = 6.993$$

Determining λ_2

To find the second eigenpair we create a new matrix

$$A^* = A - \lambda_1 x x^T$$

- Then, use power iteration on A^* to compute its largest eigenvalue.
- The obtained x^* and λ^* correspond to the second largest eigenvalue and the corresponding eigenvector of matrix A.

Reference

- Feature Extraction, K. Ramachandra Murthy
- Singular Value Decomposition Tutorial Kirk Baker
- Eigen Decomposition and Singular Value Decomposition, Based on the slides by Mani Thomas Modified and extended by Longin Jan Latecki
- Statistical Modeling and Analysis of Neural Data (NEU 560) Princeton University, Spring 2018
 Jonathan Pillow