

Presenter: Daniel A. Masters, org 9358

Project Mentor: April Suknot, org 9354

Sandia National Laboratories

Presenter Contact: <u>damaste@sandia.gov</u> <u>danielangmasters@gmail.com</u>

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DENAO003525.

Date: 10/29/2024

Overview

- 1) What is Optical Character Recognition (OCR)?
- 2) Context of OCR and its Use-Case for Sandia National Laboratories
- 3) Dataset Creation and Preprocessing
- 4) Model Selections
- 5) Model Evaluations
- 6) Results, Future Implementation: Version 2
- 7) What I learned

Introduction: What is Optical Character Recognition?

- Typed, printed, or handwritten text from an image → machine-readable text using Al
- Feature a two-step deep learning process: <u>text detection</u> and <u>text recognition</u>

Current OCR Capabilities

Created a GUI using Gradio in Python for Out-of-the-box model, Azure OCR

• As seen in the video, Azure OCR generates good results, but it could be better...

Shortcomings of Out-of-the-Box Models

Technical Drawing Focus Areas

Tolerances:

Often contain special characters

Horizontal Dimensions:

Description Boxes (Title blocks, General Notes, Data Box,

etc.):

"Dimension labels for a basic rectangular shape: Length = 10 units. Width = 6 units, Height = 4 units."

Out-of-the-Box Models

Detecting areas of text on the image is exceptional (especially for textboxes), but correctly **recognizing** the text is difficult

Special symbols: Ø, □, ∠, ⊔, △, ⊥

Vertical text orientation:

Version 1

- Prioritized description box text extraction to produce metadata
 - Likely to contain keywords Sandia scientists will use for image retrieval

Version 2

- Prioritize correctly recognizing drawing labels
- More on this later

Project Context

- Sandia has a database with thousands of CAD technical drawing images.
- Task: Use OCR to generate metadata to speed up image retrieval for Sandia Scientists
- Technologies used: Google Colab (Python)

Dataset

- Dilemma:
 - ☐ Cannot use Sandia's technical drawing image database
 - □ No publicly available technical drawing datasets online
- Found a research paper that addresses this dilemma:
 - "Text Detection on Technical Drawings for Digitization of Brown-field Processes" by Tobias Schlangenhauf, Markus Netzer, Jan Hillinger
- Used image generators from research paper
 - Generator #1: Basic technical drawing look

Preprocessing

- Preprocessing that is included in the image generator:
 - X Randomness: Polygon shape of technical drawing, size and position of geometries, values of dimensions and tolerance symbols, augmentation params (Sharpness, Brightness, Contrast), placement of the technical drawing
- My modifications:
 - Font size, range of geometries lengths, adjusted overall spacing/padding, changed size of bounding boxes, changed range of image dimensions, added textbox

Sub-Model Selection #1: YOLOv8 (Text Detection)

Why YOLOv8?

YOLOv8

- Processes entire image in one go
- Can be easily scaled (resource efficient, multiple model sizes)
- Involves handling only one model, unified architecture = easier deployment

Faster-RCNN

- Two-stage process: First stage proposes regions, second stage classifies these regions and refines their boundaries
- Not easily scaled (resource intensive)
- Deployment involves managing multiple models: Region Proposal Network and classifier

Sub-Model Selection #2: Azure OCR (Text Recognition)

- Out-of-the-box model created by Microsoft
- Selected due to Sandia's familiarity with Microsoft Azure products
- Communicate with Azure OCR via API calls to Azure Cognitive Services (Computer Vision Service)

```
def image_to_text(image, imagename, output_path, is_pred, api_key, endpoint):
 cropped io = io.BytesIO(
 image.save(cropped io, format='JPEG')
 cropped io.seek(0)
 #initialize computer vision client
 cv client = ComputerVisionClient(endpoint, CognitiveServicesCredentials(api key)
 #read in the image as a binary
 response = cv_client.read_in_stream(cropped_io, language = 'en', raw = True)
 #creates a unique key associated with the image
 op location = response.headers['Operation-Location']
 #grab the unique key
 op id = op location.split('/')[-1]
 time.sleep(1)
 op_result = cv_client.get_read_result(op_id)
 #check if the result is ready
 if op result.status == OperationStatusCodes.succeeded:
   results read = op result.analyze result.read results
   #read each result line
   for result in results read:
    for line in result.lines:
       line text = line.text
       print(line text)
       file suffix = ' pred output.txt' if is pred else ' gt output.txt'
       file path = os.path.join(output path, imagename.split(' ')[0] + file suffix)
       #save as a text file
       with open(file path, 'a', encoding='utf-8') as f:
         f.write(line text + '\n')
```


Custom OCR System Overview

- 1. Image is fed into YOLOv8, outputs bounding box coordinates predictions
- 2. Images are cropped based on bounding box coordinates and saved
- 3. Cropped images used as input Azure OCR
- 4. Azure OCR outputs recognized text in machine-readable format, saves to text file

YOLOv8 Dictionary Output

Azure OCR Input

Azure OCR Output

Detailed dimensions of a basic design layout, indicating length, width, and height measurements for each component for easy reference and implementation.

Training, Validation and Test Sets

- 500 preprocessed images are randomly split into the train, validation, and test sets: 80%, 10%, and 10% respectively
 - Corresponding text file with ground truth bounding boxes for each image file saved under the labels folder
- Used to train, validate, and test the text detection (YOLOv8) model ONLY

First Stage: Transfer Learning for YOLOv8

- Goal for YOLOv8: detect all areas of the image that have text
- Transfer learning: retraining the final layers of a pre-trained model with new data
 - X Train YOLOv8 (freeze first 10 layers) on training and validation images and labels
 - Predict on test images, save in dictionary, compare against testing labels

```
model = YoloWrapper('medium')
model.train yolo(config file, num epochs=100, results name='ocr', val=True, single cls=True, patience=30)
    running Automatic Mixed Precision (AMP) checks with YOLOv8n..
        https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt to 'yolov8n.pt'...
         6.23M/6.23M [00:00<00:00, 23.5MB/s]
train: Scanning /content/drive/MyDrive/ocr_dataset/labels/train... 80 images, 0 backgrounds, 0 corrupt: 100%
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_
val: Scanning /content/drive/MyDrive/ocr_dataset/labels/val... 10 images, 0 backgrounds, 0 corrupt: 100%
Plotting labels to runs/detect/ocr/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically..
optimizer: Adamw(lr=0.00125, momentum=0.9) with parameter groups 77 weight(decay=0.0), 84 weight(decay=0.0005), 83 bias(decay=0.0)
ensorBoard: model graph visualization added 🛂
                                                                                                                        bb dict = {}
mage sizes 640 train, 640 val
Using 8 dataloader workers
                                                                                                                         for test image in os.listdir(preds path):
Logging results to runs/detect/ocr
Starting training for 100 epochs...
                                                                                                                               image path = os.path.join(preds path, test image)
          GPU mem box loss cls loss dfl loss Instances
                    2.611
                                      1.21
                                                                                                                               image id = os.path.basename(test image).split(' ')[0]
                    Images Instances
                                                      mAP50 mAP50-95):
                                     Box(P
                                    0.0191 0.0103
                                                     0.00274 0.00136
                                                                                                                               prediction = model.predict(image path, 0.25)
                                                                                                                               bb dict[image id] = prediction
           3.19G 2.292
                            3.291
                                     1.111
                                                        640: 100%
                                                                         5/5 [00:01<00:00, 2.91it/s]
```


YOLOv8 Results

Precision= $\frac{TP}{TP + FP}$ $Recall=\frac{TP}{TP + FN}$ $IoU = \frac{(Object \cap Detected\ box)}{(Object \cup Detected\ box)}$

- Average Intersection over Union (IoU) = 0.8823:
 - | IoU = measurement of how close a predicted bounding box is to its ground truth bounding box
- Mean Average Precision (mAP50) = 0.9939:
 - Calculates average precision across all classes at an IoU threshold of 0.5

- Mean Average Precision (mAP50-95) = **0.8151**:
 - X Average precision for each class across at each threshold 0.50 to 0.95 in increments of 0.05

Second Stage: Azure OCR Pre-processing

- Crop images from YOLOv8 bounding box output
- Upscaled cropped images using Image.LANCZOS to be at least $50x50 \rightarrow$ input into Azure OCR
- Since the cropped image is so small, it needs to be upscaled
 - > Upscaling makes the image more pixelated and harder to read
 - Use LANCZOS to maintain sharpness and clarity in the resized image

Before Lanczos

After Lanczos

Azure OCR Results

- Accuracy measured using Character Error Rate (CER)
 - CER = (Levenshtein distance / total characters in ground truth) = 0.288 * 100 = 28.8%
 - Levenshtein distance is minimum number of single-character edits necessary to change one string to the other
- Care most about the text recognition for the textboxes
 - \times CER for textboxes = 0.077, that's an accuracy of .923 or 92.3%!

Conclusion

- Text Detection YOLOv8 performed very well despite "small" dataset
 - X Achieves an IoU of <u>0.8823</u>, a mAP50 of <u>0.9939</u>, mAP50-95 of <u>0.8151</u>
- Text Recognition Azure OCR performed well on text recognition
 - X Achieves a CER of **0.288** when recognizing text from all classes
 - X Achieves a CER of **0.077** when recognizing textbox text

Future Plans: Version 1 vs Version 2

Key Differences (Version 1):

- Focus: Text Description Boxes
- Used Image Generator #1
- 500 images for training, validating and testing YOLOv8
- Out-of-the-box Azure OCR for Text Recognition

Version 1:

- Text Detection: YOLOv8 (medium size)
 - IoU: 0.8823, mAP50: <u>0.9939</u>, mAP50-95: 0.8151
- Text Recognition: Azure OCR
 - CER: 0.288

<u>Key Differences (Version 2)</u>

- Focus: Dimension Labels
- Used all three Image Generators
- 1000 images for training, validating and testing YOLOv11
- Fine-tuned Qwen-2 for Text Recognition
- 2400 images for training and testing TrOCR

Version 2:

- Text Detection: YOLOv11 (large size)
- o loU: <u>0.8939</u>, mAP50: 0.9855, mAP50-95: **0.8708**
- o Text Recognition: Transfer Learning with TrOCR
 - CER: .5503 (currently)

Dataset

Image Generator #1 Output

- Used image generators from research paper
 - Generator #1: Basic technical drawing look (700 images)
 - Purpose: Structural familiarity
 - Generator #2: Complex look (300 Images)
 - Purpose: Differentiating text and background noise
 - Added the different elements
 - Generator #3: Text Snippets (2400 Images)
 - Purpose: Orientation/symbols
 - ❖ Added: background noise, image rotation

Image Generator #2 Output

Version System Overview

- 1. After training, 100 test images → YOLOv11 → bounding boxes of all areas of text from each image
- 2. Bounding boxes used to create cropped images
- 3. Cropped images \rightarrow TrOCR \rightarrow machine readable text
- 4. Machine-readable text saved to a text file with same name as the image

1. YOLOv11 Input

2. YOLOv11 Output

0024":	[annay([[576.71,	626.44,	398.53,	62.231],
[821.93,	267.52,	87.789,	24.431],	
- [991.52,	337.8,	87.689,	24.519],	
[648.3,	311.83,	86.474,	25.817],	
[643.75,	428.33,	26.284,	54.853],	
[728.79,	420.33,	25.784,	48.453],	
[791.65,	421.61,	27.495,	38.831],	
[1043.6,	425.36,	21.901,	33.11],	
[419.07,			
[420.94,			
[979.75,	424.08,	22,994,	37.63],	
- [877.47,	543.7,	30.65,	15.729],	
[792.5,	551.91,	32.32,	18.333],	
- [811.5,	586.93,	20.349,	16.019],	
[638.23,	520.86,	53.898,	18.843],	
[725.23,	587.74,	31.53,	17.626],	
[981.05,	520.06,	29.576,	17.43]],	dtype=float3

3a. TrOCR Input

18,7

3b. TrOCR Output

18,

Lessons Learned

- Most challenging parts:
 - Dataset creation
 - Model selection
- What I learned/found helpful:
 - Don't just think about it, try it!
 - 💥 Be proactive, especially when you need help
 - 💥 Research what works, but don't be afraid to make your own approach
 - Stay calm and try to work out big issues

Reference

 Schlagenhauf, Tobias, et al. "Text Detection on Technical Drawings for the Digitization of Brown-Field Processes." Procedia CIRP, Elsevier, 18 July 2023, www.sciencedirect.com/science/article/pii/S2212827123002883.

Extra Slides

Training, Validation and Test Sets

Text Detection

- 1,000 preprocessed images randomly split into the train, validation, and test sets: 80%, 10%, 10%
 - The ground truth bounding box labels for each image file saved under the labels folder
- Image Generators 1 (70%) and Image Generator 2 (30%) used to train Text Detection Model
 - Image Generator 1 = For detecting text against basic technical drawing layout
 - Image Generator 2 = For detecting text against noisy backgrounds

<u>Text Recognition</u>

- 1,500 preprocessed images randomly split into the train, validation, and test sets: 80%, 10%, 10%
- Only Image Generator 3
 - For recognizing special technical drawing symbols/labels

Preprocessing

- Image Generator #1 Preprocessing
 - Random geometries, random text generation, several augmentations (sharpness, brightness, contrast), bounding box generation
 - 💢 I added: Padding and Cropping Adjustments, output directories, bounding box creation, output directories
- Image Generator #2 Preprocessing
 - Manage size variation, random element overlay, random text placement and dimension values
 - 💥 I added: Input 80 technical drawing element snippets, bounding box creation, output directories
- Image Generator #3 Preprocessing
 - 🤾 Random text creation and font selection, Image generation and text placement
 - 💥 I added: Random Image Rotation, kept track of bounding boxes, background noise (line, circle, rectangle)

Sub-Model #1: YOLOv11 (Text Detection)

Why YOLOv11?

YOLOv11

- Processes entire image in one go
- Can be easily scaled (resource efficient, multiple model sizes)
- Involves handling only one model, unified architecture = easier deployment

Faster-RCNN

- Two-stage process: First stage proposes regions, second stage classifies these regions and refines their boundaries
- Not easily scaled (resource intensive)
- Deployment involves managing multiple models: Region Proposal Network and classifier

YOLOv11 Results

Precision= $\frac{TP}{TP + FP}$ $Recall=\frac{TP}{TP + FN}$ $IoU = \frac{(Object \cap Detected\ box)}{(Object \cup Detected\ box)}$

- Average Intersection over Union (IoU) = <u>.8924</u>:
 - | IoU = measurement of how close a predicted bounding box is to its ground truth bounding box
- Mean Average Precision (mAP50) = 0.9774:
 - Calculates average precision across all classes at an IoU threshold of 0.5

First Stage: Transfer Learning for YOLOv11

- Goal for YOLOv8: detect all areas of the image that have text
- Transfer learning: retraining the final layers of a pre-trained model with new data
 - X Train YOLOv11 (freeze first 10 layers) on training and validation images and labels (bounding boxes)
 - Predict the bounding boxes for the test images:

Sub-Model #2: TrOCR (Text Recognition)

- Transformer-based OCR Pre-trained Model
- Selected because of it can be fine-tuned via Transfer Learning
- Uses transformer architecture for image understanding and text generation

