UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 2. stopnja

Tia Krofel, Brina Ribič, Matej Rojec VaR on option portfolio

Seminarska naloga pri predmetu Upravljanje tveganj

Mentor: dr. Aleš Ahčan

Contents

1 Elementary definitions for options			y definitions for options	3
2	Osnovno o VaR			
	2.1 K	ako	izračunamo VaR	4
	2.	1.1	Variančno-kovariančna metoda	4
	2.	1.2	Zgodovinska simulacija	4
	2.	1.3	Monte Carlo simulacija	4
3	Neline	eare	a VaR	4

1 Elementary definitions for options

A stock option is the right to buy or sell a stock at a certain price in the future. The stock is called the underlying security (we usally say just the underlying). There are two main types of options, a put and a call option. A call option gives the owner the right to buy the underlying, while a put option gives the holder the right to sell the underlying. The price at which the stock may be bought or sold is the exercise price, also called the striking price. A stock option affords this right to buy or sell for only a limited period of time; thus, each option has an expiration date. We will focous on listed options, meaning they are traded on an exchange where a secondary market exists, thus we will not cover the topic of over the counter options.

To summarise a stock options contract is defined by following 4 characteristics:

- 1. the option type (put, call),
- 2. the expiration date of the contract,
- 3. the striking price of the contract,
- 4. the underlying stock name.

An options is closly linked to it's underlying stock. Meaning that its price changes as the price of the underlying changes.

2 Osnovno o VaR

"Value at Risk" oziroma VaR je mera, ki je opredeljena kot največja potencialna sprememba v vrednosti portfelja pri določeni, dovolj visoki stopnji zaupanja za vnaprej določeno časovno obdobje. Ponavadi je stopnja zaupanja 95% ali 99%. VaR nam pove, koliko lahko izgubim z x% verjetnostjo v nekem časovnem obdobju. Ponavadi se uporablja krajše časovno obdobje, recimo dan, teden ali nekaj tednov. To pomeni, če je VaR za neko sredstvo 100 milijonov evrov v obdobju enega tedna s stopnjo zaupanja 95%, potem je samo 5% verjetnost, da bo vrednost sredstva padla za več kot 100 milijonov evrov v katerem koli tednu.

Let us now give a formal definition of value at risk.

Definicija 1. Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\alpha \in (0, 1)$. VaR $_{\alpha}(X)$ is defined as the $(1 - \alpha)$ quntile of X. So:

$$VaR_{\alpha}(X) := -\inf\{x \in \mathbb{R} \mid F_X(x) > \alpha\} = F_{-X}^{-1}(1 - \alpha).$$

Obstajajo trije osnovni pristopi, kako izračunati VaR. Lahko ga izračunamo analitično s predpostavkami o porazdelitvah donosov za tržna tveganja, zraven pa moramo upoštevati variance in kovariance med temi tveganji. VaR lahko ocenimo tudi s hipotetičnim portfeljem preko historičnih podatkov ali z Monte Carlo simulacijo.

Nas bo zanimalo, kaj se zgodi, če imamo sredstvo, ki je izvedeni finančni instrument. V tem primeru moramo nekoliko modificirati VaR. Recimo pri opcijah, moramo pri oceni tveganja upoštevati nelinarno gibanje cen (gamma učinek) in posredna volatilnost (vega učinek). Za opcije bomo nelinearno gibanje cen ocenili analitično (delta-gamma) ali s simulacijo.

2.1 Kako izračunamo VaR

2.1.1 Variančno-kovariančna metoda

Variančno-kovariančna metoda je parametrična metoda, ki predpostavlja, da so donosi, kateri določajo vrednost portfelja, porazdeljeni normalno. Slučajna spremenljivka je porazdeljena normalno s parametroma μ (povprečje) in varianco σ^2 oziroma standardnim odklonom σ , če je gostota podana z

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right],\tag{1}$$

kjer je $x \in \mathbb{R}$. Ta metoda je uporabna, ker je v celoti definirana samo z dvema parametroma. Hkrati nam zagotavlja direktne formule za izračun kumulativnih porazdelitvenih funkcij; velja namreč

$$P(X < x) = \mu + \alpha_{cl}\sigma, \tag{2}$$

kjer je cl izbrana stopnja zaupanja (npr. 95%) in α_{cl} je standardna normalna spremenljivka pri izbrani stopnji zaupanja (npr. $\alpha_{0.95} = 1.645$).

VaR za eno naložbo je potem enak

$$VaR = MV \cdot \alpha_{cl} \cdot \sigma, \tag{3}$$

kjer je MV tržna vrednost temelja. Pri izračunu VaR za portfelj, ki je sestavljen iz več pozicij, moramo upoštevati tudi diverzifikacije oziroma razpršitve naložb. Pri opcijah se ta metoda izkaže za učinkovito, potrebno jo je le nekoliko modificirati. Ker je vrednost opcije odvisna od več dejavnikov ter imamo nelinearno povezavo med vrednostjo opcije in donosnostjo temelja, moramo izračunati še nekaj dodatnih parametrov, da bo rezultat korekten.

2.1.2 Zgodovinska simulacija

Zgodovinska simulacija omogoča zelo preprosto in intuitivno oceno VaR. Temelji na vrstnem redu opazovanih podatkov; recimo, da imamo 100 opažanj, potem je šesto po vrsti VaR pri stopnji zaupanja 95%. Zavedati pa se moramo, da lahko pride do večjih napak pri tem načinu izračuna VaR zaradi ekstremnih dogodkov, dolžine opazovanega obdobja, ... Prav tako ta metoda ni primerna za izračun nelinernega VaR oziroma za izračun VaR za opcije, saj je historične podatke za opcije težko dobiti in jih med seboj primerjati.

2.1.3 Monte Carlo simulacija

Monte Carlo simulacija je danes v praksi zelo uporabna saj je precej prilagodljiva za veliko različic VaR. Izkazalo se bo, da je uporabna tudi za izračun nelinearnega VaR.

3 Nelinearen VaR

Osnovna različica VaR predpostavlja linearno povezavo med donosi in spremembo vrednosti pozicije oziroma da je relativna sprememba portfelja linearna funkcija

donosa temelja (delnice, obveznice ...) Tu predpostavljamo, da imajo donosi vrednostnega papirja večrazsežno normalno porazdelitev.

Pri opcijskih pozicijah je nelinearna povezava med spremembo vrednosti pozicije in donosom. To lahko pojasnimo s preprosto opcijo na delnico. Cena opcije je $V(S_t, K, T, R, \sigma)$ v odvisnosti od cene delnice S_t ob času t, izvršilne cene K, časa dospelosti T. Cena opcije je odvisna tudi od netvegane obrestne mere R nekega vrednostnega papirja, ki ima enak čas dospelosti kot opcija ter od standardnega odklona σ cene delnice v časovnem obdobju opcije. Zato moramo uporabiti drugačen pristop za računanje VaR za portfelj iz opcij. Uporabili bomo delta, gama in deltagama pristop.

Pri vseh različicah še vedno predpostavljamo, da so donosi vrednostnih papirjev porazdeljeni normalno. Dodatno dopuščamo nelinearno zvezo med vrednostjo pozicije in donosi temelja. Natančneje, dovoljujemo gama učinek, torej da relativna sprememba portfelja iz derivativov (v našem primeru opcij) ni več normalno porazdelja. Zaradi tega ne moremo več VaR definirati kot 1.65 krat standardni odklon portfelja. Namesto tega VaR izračunamo v dveh glavnih korakih. Najprej izračunamo prve štiri momente porazdelitve donosa portfelja, tj., povprečje, standardni odklon, skewness, kurtosis. Potem poiščemo porazdelitev, ki ima enake prve štiri momente kot porazdelitev donosa portfelja in izračunamo peti percentil (ali prvi, odvidno od problema). Od tod dobimo VaR.