Solution 1: L0 Regularization

Consider the regression learning setting, i.e., $\mathcal{Y} = \mathbb{R}$, and feature space $\mathcal{X} = \mathbb{R}^p$. Let the hypothesis space be the linear models:

$$\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^p \}.$$

Suppose your loss function of interest is the L2 loss $L(y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2$. Consider the L_0 -regularized empirical risk of a model $f(\mathbf{x} \mid \boldsymbol{\theta})$:

$$\mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{0} = \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^{2} + \lambda \sum_{i=1}^{p} \mathbb{1}_{|\boldsymbol{\theta}_{i}| \neq 0}.$$

Assume that $\mathbf{X}^T\mathbf{X} = \mathbf{I}$, which holds if \mathbf{X} has orthonormal columns. Show that the minimizer $\hat{\theta}_{\text{L}0} = (\hat{\theta}_{\text{L}0,1}, \dots, \hat{\theta}_{\text{L}0,p})^{\top}$ is given by

$$\hat{\theta}_{L0,i} = \hat{\theta}_i \mathbb{1}_{|\hat{\theta}_i| > \sqrt{2\lambda}}, \quad i = 1, \dots, p,$$

where $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \dots, \hat{\theta}_p)^{\top} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is the minimizer of the unregularized empirical risk (w.r.t. the L2 loss). For this purpose, use the following steps:

(i) Derive that

$$\arg\min_{\boldsymbol{\theta}} \mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{p} -\hat{\theta}_{i} \theta_{i} + \frac{\theta_{i}^{2}}{2} + \lambda \mathbb{1}_{|\theta_{i}| \neq 0}.$$

(ii) Note that the minimization problem on the right-hand side of (i) can be written as $\sum_{i=1}^{p} g_i(\theta_i)$, where

$$g_i(\theta) = -\hat{\theta}_i \theta + \frac{\theta^2}{2} + \lambda \mathbb{1}_{|\theta| \neq 0}.$$

What is the advantage of this representation if we seek to find the θ with entries $\theta_1, \dots, \theta_p$ minimizing $\mathcal{R}_{reg}(\theta)$?

- (iii) Consider first the case that $|\hat{\theta}_i| > \sqrt{2\lambda}$ and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* = \hat{\theta}_i$. Hint: Show that $g_i(\hat{\theta}_i) < 0 = g_i(0)$ and argue that the minimizer must have the same sign as $\hat{\theta}_i$.
- (iv) Derive that $\theta_i^* = \hat{\theta}_i \mathbb{1}_{|\hat{\theta}_i| > \sqrt{2\lambda}}$, by using (iii) (and also still considering the case $|\hat{\theta}_i| > \sqrt{2\lambda}$).
- (v) Consider the complementary case of (iii) and (iv), i.e., $|\hat{\theta}_i| \leq \sqrt{2\lambda}$, and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* = 0$.

Hint: What is $g_i(0)$? Consider $\tilde{g}_i(\theta) = -\hat{\theta}_i\theta + \frac{\theta^2}{2} + \lambda$ which is the smooth extension of g_i . What is the relationship between the minimizer of g_i and the minimizer of \tilde{g}_i ?

Solution 2: Regularization

```
(a) set.seed(42)
  n = 100
  p_add = 100
  # create matrix of features
  X = matrix(rnorm(n * (p_add + 1)), ncol = p_add + 1)

Y = sin(X[,1]) + rnorm(n, sd = 0.5)
```

(b) Demonstration of

• underfitting:

```
plot(X[,1], Y)
points(sort(X[,1]), sin(sort(X[,1])), type="l", col="blue")
abline(coef(lm(Y ~ X[,1])), col="red")
```


\bullet overfitting:

\bullet L1 penalty:

```
library(glmnet)
plot(glmnet(X, Y), xvar = "lambda")
```



```
plot(glmnet(X, Y, alpha = 0), xvar = "lambda")
```


 $\bullet\,$ elastic net regularization:

```
plot(glmnet(X, Y, alpha = 0.3), xvar = "lambda")
```


• the underdetermined problem:

```
try(ls_estimator <- solve(crossprod(X), crossprod(X,Y)))
## Error in solve.default(crossprod(X), crossprod(X, Y)) :
## System ist für den Rechner singulär: reziproke Konditionszahl = 5.84511e-18</pre>
```

• the bias-variance trade-off:

```
plot(X[,1], Y, col=rgb(0,0,0,0.2))
sX1 <- sort(X[,1])</pre>
points(sX1, sin(sX1), type="1", col="blue", lwd=2)
points(sX1, fitted(lm(Y ~ X[,1]))[order(X[,1])],
       type="1", col="red")
points(sX1, fitted(lm(Y ~X[,1] + I(X[,1]^2)))[order(X[,1])],
       type="1", col="magenta")
points(sX1, fitted(lm(Y ~ X[,1] + I(X[,1]^2) + I(X[,1]^3)))[order(X[,1])],
       type="1", col="orange")
points(sX1, fitted(lm(Y \sim X[,1] + I(X[,1]^{2}) + I(X[,1]^{3}) +
                         I(X[,1]^4)))[order(X[,1])],
       type="1", col="purple")
points(sX1, fitted(lm(Y \sim X[,1] + I(X[,1]^{\sim}2) + I(X[,1]^{\sim}3) +
                         I(X[,1]^4) + I(X[,1]^5)))[order(X[,1])],
       type="1", col="green")
points(sX1, fitted(lm(Y \sim X[,1] + I(X[,1]^2) + I(X[,1]^3) +
                         I(X[,1]^4) + I(X[,1]^5) + I(X[,1]^6)))[order(X[,1])],
       type="1", col="brown")
```


• early stopping using a simple neural network:

```
library(dplyr)
library(keras)
neural_network <- keras_model_sequential()</pre>
neural_network %>%
  layer_dense(units = 50, activation = "relu") %>%
  layer_dense(units = 50, activation = "relu") %>%
  layer_dense(units = 1, activation = "relu") %>%
  compile(
    optimizer = "adam",
             = "mse",
    loss
   metric = "mse"
history_minibatches <- fit(</pre>
  object
               = neural_network,
                   = X,
  X
                   = Y,
                   = 24,
 batch_size
  epochs
  validation_split = 0.2,
  callbacks = list(callback_early_stopping(patience = 50)),
  verbose = FALSE, # set this to TRUE to get console output
  view_metrics = FALSE # set this to TRUE to get a dynamic graphic output in RStudio
plot(history_minibatches)
```

