CX2101 Algorithm Design and Analysis

Tutorial 2 (Graphs)

Week 7: Q4-Q6

This Tutorial

• Minimum spanning tree algorithm – Prim's

• Minimum spanning tree - concept

Question 4

Execute Prim's minimum spanning tree algorithm by hand on the graph below starting at vertex G.

Show the contents of arrays S, d and pi after each iteration of the while loop when a vertex is added to the MST.

2

First iteration:

	Α	В	С	D	Е	F	G
S	0	0	0	0	0	0	1
d	3	6	∞	1	3	∞	0
pi	G	G	Null	G	G	Null	Null

4th iteration: Edge EC becomes part of the MST

	Α	В	С	D	E	F	G
S	0	0	1	1	1	0	1
d	3	4	2	1	2	5	0
pi	G	С	E	G	D	D	Null
		-	_	-	-	_	_

5th iteration: Edge GA becomes part of the MST

	Α	В	C	D	E	F	G
S	1	0	1	1	1	0	1
d	3	2	2	1	2	5	0
pi	G	Α	Е	G	D	D	Null

6th iteration: Edge AB becomes part of the MST

	<u> </u>	В	С	D	E	F	G
S	1	1	1	1	1	0	1
d	3	2	2	1	2	5	0
pi	G	Α	E	G	D	D	Null

7th iteration: Edge DF becomes part of the MST

	Α	В	С	D	E	F	G
S	1	1	1	1	1	1	1
d	3	2	2	1	2	5	0
pi	G	А	E	G	D	D	Null

Question 5

In a weighted undirected graph, is the path between two vertices in a minimum spanning tree always the shortest path (i.e. a path with the minimum weight) between the two vertices in the graph?

If your answer is yes, give a proof; otherwise, give a counterexample.

Answer: No, it is not always the case.

A counterexample:

A weighted graph

Minimum Spanning Tree (MST)

- The path from vertex a to vertex b in the MST is (a, d, c, b) with weight 1 + 3 + 2 = 6.
- But the shortest path from a to b in the graph is (a, b) with weight 4, shorter than the path in the MST.

Question 6

Draw a connected graph with five nodes, six edges of respective weights 5, 6, 7, 8, 9, 10, and a minimum spanning tree of weight 28.

Is it possible to have an MST of weight 29?

- If yes, draw the graph;
- otherwise, provide your justification.

MST Property

Minimum Spanning Tree Property

Let T be a spanning tree of G, where G = (V, E, W) is a connected, weighted graph. Suppose that for every edge (u, v) of G that is not in T, if (u, v) is added to T it creates a cycle such that (u, v) is a maximum-weight edge on that cycle. Then T has the **Minimum Spanning Tree Property** (or **MST Property**, in short).

Theorem 1

Theorem 1: In a connected weighted graph G = (V, E, W), a tree T is a minimum spanning tree if and only if T has the MST property.

- Edge weights: 5, 6, 7, 8, 9, 10
- MST of weight 28: 5, 6, 7, 10 or 5, 6, 8, 9

- Edge weights: 5, 6, 7, 8, 9, 10
- MST of weight 29: 5, 6, 8, 10

What we have exercised

- Minimum spanning tree algorithm
 - Prim's algorithm
 - Running of the algorithm
 - Data structure contents in each iteration
 - Path in MST may not be a shortest path in G
- Minimum spanning tree concept
 - Understand which edges may or may not be in an MST