Approximation and parameterization of Segment Set Cover

Katarzyna Kowalska, Michał Pilipczuk

University of Warsaw, MIMUW kk371053@students.mimuw.edu.pl

21.06.2022

Overview

- 1 Set Cover
 - Geometric Set Cover
 - Segment Set Cover
- 2δ -extension
- Approximation
- Parameterization
- 5 Weighted Segment Set Cover

Problem Statement: SET COVER

Input: universe \mathcal{U} , family S of subsets of \mathcal{U} **Output:** $C \subseteq S$ such that |C| is minimal and $\bigcup C = \mathcal{U}$ Minimal subfamily that covers all elements in \mathcal{U} .

Problem Statement: GEOMETRIC SET COVER

- ullet Universe ${\mathcal U}$ is set of points in the plane
- Sets S are some geometric shapes
- ullet Formally, each set in S is intersection of $\mathcal U$ with some geometric shape.

Example for rectangles:

Problem Statement: SEGMENT SET COVER

- ullet Universe ${\mathcal U}$ is set of points in the plane
- Sets *S* are segments.

δ -extension for Segment Set Cover

- δ -extension for a segment is a segment which is longer by δ fraction at both ends
- \bullet We accept solution in which segments cover solution after $\delta\text{-extension}$
- The solution is compared to optimal solution without extension.

Example:

It is based on similar concept of δ -shrinking, which helped to provide FPT algorithm and EPTAS for (originally W[1]-hard and APX-hard) MAXIMUM WEIGHT INDEPENDENT SET OF RECTANGLES.

Preliminaries: Approximation

Given:

- instance I of the optimization problem (looking for minimal solution)
- weight of the optimal solution opt(I)

p-approximation is algorithm that yields solution of weight not larger than $p \cdot \mathsf{opt}(I)$

PTAS – polynomial time approximation scheme

For every $\epsilon>0$, there exists $(1+\epsilon)$ -approximation algorithm running in time $n^{f(\epsilon)}$ for some computable function f.

Example: KNAPSACK.

APX-hardness

For sufficiently small $\epsilon>0$, if $(1+\epsilon)$ -approximation exists, then P = NP. Example: MAX-3-SAT (how many clauses in 3-SAT can be solved)

Approximation results for Set Cover from literature

Set Cover

ullet log n approximation, no $o(\log n)$ approximation assuming $\mathsf{P}
eq \mathsf{NP}$

Geometric Set Cover

- with fat rectangles is APX-hard
- EPTAS for fat polygons with δ -extensions [Har-Peled and Lee, 2012]

Definition

Fatness of polygons au is a ratio between a radius of circle circumscribed on this polygon and inscribed in this polygon.

MAX-(3,3)-SAT

How do we prove that there doesn't exist $(1+\epsilon)$ -approximation?

MAX-(3,3)-SAT problem

Given 3-SAT instance with n variables, m clauses and every variable appears in exactly 3 clauses, find an assignment that satisfies the maximum number of clauses (not necessarily all of them).

MAX-(3,3)-SAT is NP-complete, therefore:

NP-completeness

Distinguishing if result of MAX-(3,3)-SAT is n or less than n is NP-complete.

PCP theorem

PCP Theorem

 $NP = PCP(\log n, \mathcal{O}(1)).$

PCP theorem implication [Håstad, 2001]

Distinguishing if result of MAX-(3,3)-SAT is n or at most $\frac{49}{50} \cdot n$ is NP-hard.

Therefore MAX-(3,3)-SAT does not have $(1 + \frac{1}{49})$ -approximation

Approximation of SEGMENT SET COVER

Theorem 1

SEGMENT SET COVER is APX-hard, i.e. there exists such $\epsilon > 0$ that $(1 + \epsilon)$ -approximation running in time $n^{f(\epsilon)}$ does not exist if $P \neq NP$.

How can we make this problem easier?

- Allow only segments in 2 directions (parallel to the two axes)
- Allow segments to almost cover the points, i.e. δ -extensions

Approximation of SEGMENT SET COVER

Theorem 1

SEGMENT SET COVER is APX-hard, i.e. there exists such $\epsilon > 0$ that $(1 + \epsilon)$ -approximation running in time $n^{f(\epsilon)}$ does not exist if $P \neq NP$.

How can we make this problem easier?

- Allow only segments in 2 directions (parallel to the two axes)
- ullet Allow segments to almost cover the points, i.e. δ -extensions

Remark: Set cover with polygons of bounded fatness (at least τ):

- is APX-hard;
- **2** with δ -extension has EPTAS.

Theorem 1 (rephrased)

SEGMENT SET COVER is APX-hard, even if segments are axis-parallel and problem is relaxed with $\frac{1}{2}$ -extension.

Figure: Scheme of the construction.

Results for approximation of GEOMETRIC SET COVER

	exact	δ -extensions	
fat polygons	APX-hard	EPTAS	
	[Chan and Grant, 2014]	[Har-Peled and Lee, 2012]	
segments	APX-hard*	APX-hard (Theorem 1)	
any polygons	APX-hard*	APX-hard*	

Results marked with * follow from results for more restricted settings.

Prelimiaries: Parameterized algorithms

Instance *I* of a parameterized problem now has:

- size of the instance *n*:
- parameter *k* (usually size of the solution).

Class	Upper Bound of Complexity	Example
FPT	$f(k) \cdot n^{O(1)}$	Vertex Cover
W[1]	$n^{O(k)}$	k-Clique, Grid Tiling

Prelimiaries: Parameterized algorithms

Instance I of a parameterized problem now has:

- size of the instance *n*:
- parameter k (usually size of the solution).

Class	Upper Bound of Complexity	Example
FPT	$f(k) \cdot n^{O(1)}$	Vertex Cover
W[1]	$n^{O(k)}$	k-Clique, Grid Tiling

SET COVER is:

- W[2]-complete
- no algorithm with running time $n^{k-\epsilon}$ for any $\epsilon>0$

Parameterization of SEGMENT SET COVER

Theorem 2

SEGMENT SET COVER parameterized by the solution size k can be solved in time $k^k \cdot n^{O(1)}$.

Technique: Branching over at most k+1 segments on the lines with more than k points on them.

Parameterization of SEGMENT SET COVER

Theorem 2

SEGMENT SET COVER parameterized by the solution size k can be solved in time $k^k \cdot n^{O(1)}$.

Technique: Branching over at most k+1 segments on the lines with more than k points on them.

Now let's make problem harder...

Definition of Weighted Segment Set Cover

Input: universe \mathcal{U} , subfamily S of subsets of \mathcal{U} and function of weights assigned to sets $w: S \to \mathbb{R}^+$

Output: $C \subseteq S$ such that $\sum_{c \in C} w(c)$ is minimal and $\bigcup C = \mathcal{U}$ Minimal subfamily that covers all elements in \mathcal{U} .

Definition of Weighted Segment Set Cover

Input: universe \mathcal{U} , subfamily S of subsets of \mathcal{U} and function of weights assigned to sets $w:S\to\mathbb{R}^+$

Output: $C \subseteq S$ such that $\sum_{c \in C} w(c)$ is minimal and $\bigcup C = \mathcal{U}$ Minimal subfamily that covers all elements in \mathcal{U} .

In parameterized setting: We look for the *best* solution with restricted size $|C| \le k$.

In approximation setting: It is still APX-hard, nothing interesting

Definition of Weighted Segment Set Cover

Input: universe \mathcal{U} , subfamily S of subsets of \mathcal{U} and function of weights assigned to sets $w:S\to\mathbb{R}^+$

Output: $C \subseteq S$ such that $\sum_{c \in C} w(c)$ is minimal and $\bigcup C = \mathcal{U}$ Minimal subfamily that covers all elements in \mathcal{U} .

In parameterized setting: We look for the *best* solution with restricted size $|C| \le k$.

In approximation setting: It is still APX-hard, nothing interesting

FPT results for weighted problems in literature:

- general weighted FPT framework [Shachnai and Zehavi, 2017]
- kernels for Weighted Subset Sum, Weighted Knapsack [Etscheid et al.,2017]
- WEIGHTED *st*-Cut Weighted Directed Feedback Set [Kim et al., 2021]

Parameterization of Weighted Segment Set Cover

Theorem 3

WEIGHTED SEGMENT SET COVER is W[1]-hard and there does not exists an algorithm running in time $n^{o(\sqrt{k})}$.

This result is particularly interesting, because unweighted problem has an FPT algorithm.

How can we make this problem easier?

- allow less directions (maybe just two parallel to axes);
- allow δ -extension.

Parameterization of Weighted Segment Set Cover

Theorem 3 (rephrased)

WEIGHTED SEGMENT SET COVER is W[1]-hard and there does not exists an algorithm running in time $n^{o(\sqrt{k})}$ even when segments are limited to 3 directions.

Parameterization of Weighted Segment Set Cover

Theorem 4

WEIGHTED SEGMENT SET COVER relaxed with δ -extension has an FPT algorithm.

It can be solved with algorithm running in time $O((2 + k/\delta)^k \cdot n^{O(1)})$.

Technique intuition: Provide a kernel where we choose (k, δ) -good set of points of size at most $f(k, \delta)$ on each line with more than k + 1 points on them.

Subset of a set of collinear points S is (k, δ) -good if no matter how we cover it with k segments, then these segments after δ -extension cover all points from the original set of points S.

Results of parameterization of SEGMENT SET COVER

	exact	δ -extensions
unweighted	FPT (Theorem 2)	FPT*
weighted 2 directions	???	FPT*
weighted 3 directions	W[1]-hard (Theorem 3)	FPT*
weighted any directions	W[1]-hard*	FPT (Theorem 4)

Theorem 3 (reminder)

WEIGHTED SEGMENT SET COVER is W[1]-hard and there does not exists an algorithm running in time $n^{o(\sqrt{k})}$ even when segments are limited to 3 directions.

Future work:

- prove Theorem 3 for axis-parallel segments (2 directions);
- remove the gap between the lower bound of complexity $n^{o(\sqrt{k})}$ and a simple algorithm running in time $n^{O(k)}$.

The end.