Geometry through Linear Algebra

1

G V V Sharma*

1

2

3

CONTENTS

1 The Straight Line

2 Orthogonality

3 Medians of a triangle

Abstract—This textbook introduces linear algebra by exploring Euclidean geometry.

1 The Straight Line

1.1 The points $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ are as shown in Fig. 1.1. Find the equation of OA.

Solution: Let $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be any point on OA.

Then, using similar triangles,

$$\frac{x_2}{x_1} = \frac{a_2}{a_1} = m \tag{1.1}$$

$$\implies x_2 = mx_1 \tag{1.2}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.2

where m is known as the slope of the line. Thus, the equation of the line is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ mx_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.3}$$

In general, the above equation is written as

$$\mathbf{x} = \begin{pmatrix} x_1 \\ mx_1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.4}$$

1.2 Find the equation of *AB* in Fig. 1.2 **Solution:** From Fig. 1.2,

$$\frac{x_2 - a_2}{x_1 - a_1} = \frac{b_2 - a_2}{b_1 - a_1} = m \tag{1.5}$$

$$\implies x_2 = mx_1 + a_2 - ma_1 \tag{1.6}$$

From (1.6),

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ mx_1 + a_2 - ma_1 \end{pmatrix}$$
 (1.7)

$$= \mathbf{A} + (x_1 - a_1) \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.8}$$

$$= \mathbf{A} + \lambda \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.9}$$

1.3 Find the length of **A** in Fig. 1.1 **Solution:** Using Baudhayana's theorem, the

Fig. 1.4

Fig. 2.1

length of the vector A is defined as

$$\|\mathbf{A}\| = OA = \sqrt{a_1^2 + a_2^2} = \sqrt{\mathbf{A}^T \mathbf{A}}.$$
 (1.10)

Also, from (1.4),

$$\|\mathbf{A}\| = \lambda \sqrt{1 + m^2} \tag{1.11}$$

Note that λ is the variable that determines the length of **A**, since *m* is constant for all points on the line.

1.4 Find $\mathbf{A} - \mathbf{B}$.

Solution: See Fig. 1.4. From (1.9), for some λ ,

$$\mathbf{B} = \mathbf{A} + \lambda \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{1.12}$$

$$\implies \mathbf{A} - \mathbf{B} = -\lambda \begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{1.13}$$

 $\mathbf{A} - \mathbf{B}$ is marked in Fig. 1.4.

1.5 Show that $AB = ||\mathbf{A} - \mathbf{B}||$

2 ORTHOGONALITY

2.1 See Fig. 2.1. In $\triangle ABC$, $AB \perp BC$. Show that

$$(\mathbf{A} - \mathbf{B})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{2.1}$$

Solution: Using Baudhayana's theorem,

$$||\mathbf{A} - \mathbf{B}||^{2} + ||\mathbf{B} - \mathbf{C}||^{2} = ||\mathbf{C} - \mathbf{A}||^{2}$$

$$\implies (\mathbf{A} - \mathbf{B})^{T} (\mathbf{A} - \mathbf{B}) + (\mathbf{B} - \mathbf{C})^{T} (\mathbf{B} - \mathbf{C})$$

$$= (\mathbf{C} - \mathbf{A})^{T} (\mathbf{C} - \mathbf{A})$$

$$\implies 2\mathbf{A}^{T} \mathbf{B} - 2\mathbf{B}^{T} \mathbf{B} + 2\mathbf{B}^{T} \mathbf{C} - 2\mathbf{A}^{T} \mathbf{C} = 0$$
(2.3)

which can be simplified to obtain (2.1).

2.2 Let **x** be any point on *AB* in Fi.g 2.1. Show that

$$(\mathbf{x} - \mathbf{A})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{2.4}$$

2.3 If \mathbf{x} , \mathbf{y} are any two points on AB, show that

$$(\mathbf{x} - \mathbf{y})^T (\mathbf{B} - \mathbf{C}) = 0 \tag{2.5}$$

2.4 In Fig. 2.4, $BE \perp AC, CF \perp AB$. Show that $AD \perp BC$.

Fig. 2.4

Solution: Let \mathbf{x} be the intersection of BE and CF. Then, using (2.5),

$$(\mathbf{x} - \mathbf{B})^T (\mathbf{A} - \mathbf{C}) = 0$$
$$(\mathbf{x} - \mathbf{C})^T (\mathbf{A} - \mathbf{B}) = 0$$
 (2.6)

$$\implies \mathbf{x}^T (\mathbf{A} - \mathbf{C}) - \mathbf{B}^T (\mathbf{A} - \mathbf{C}) = 0$$
 (2.7)

and
$$\mathbf{x}^{T} (\mathbf{A} - \mathbf{B}) - \mathbf{C}^{T} (\mathbf{A} - \mathbf{B}) = 0$$
 (2.8)

Subtracting (2.8) from,

$$\mathbf{x}^{T}(\mathbf{B} - \mathbf{C}) + \mathbf{A}^{T}(\mathbf{C} - \mathbf{B}) = 0$$
 (2.9)

$$\implies (\mathbf{x}^T - \mathbf{A}^T)(\mathbf{B} - \mathbf{C}) = 0 \tag{2.10}$$

$$\implies (\mathbf{x} - \mathbf{A})^T (\mathbf{B} - \mathbf{C}) = 0 \qquad (2.11)$$

which completes the proof.

3 Medians of a triangle

3.1 In Fig. 3.1,

$$\frac{AB}{BC} = \frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{B} - \mathbf{C}\|} = k. \tag{3.1}$$

Show that

$$\frac{\mathbf{A} + k\mathbf{C}}{k+1} = \mathbf{B}.\tag{3.2}$$

Solution: From (1.9),

Fig. 3.1

$$\mathbf{B} = \mathbf{A} + \lambda_1 \begin{pmatrix} 1 \\ m \end{pmatrix},$$

$$\mathbf{B} = \mathbf{C} - \lambda_2 \begin{pmatrix} 1 \\ m \end{pmatrix}.$$
(3.3)

$$\implies \frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{B} - \mathbf{C}\|} = \frac{\lambda_1}{\lambda_2} = k \tag{3.4}$$

and
$$\frac{\mathbf{B} - \mathbf{A}}{\lambda_1} = \frac{\mathbf{C} - \mathbf{B}}{\lambda_2} = \begin{pmatrix} 1 \\ m \end{pmatrix}$$
, (3.5)

from (3.1). Using (3.4) and (3.4),

$$\mathbf{A} - \mathbf{B} = k \left(\mathbf{B} - \mathbf{C} \right) \tag{3.6}$$

resulting in (3.2).

3.2 If **A** and **B** are linearly independent,

$$k_1 \mathbf{A} + k_2 \mathbf{B} = 0 \implies k_1 = k_2 = 0$$
 (3.7)

Show that