Assignment#2 - Unsupervised Learning

이름 : 전예찬 **학번** : 20194902

소속 : 소프트웨어대학 소프트웨어학부

1. 테스트 환경

운영체제	Windows 11 23H Education edition
개발환경	Juypter Notebook (local)
Kernel	Python 3 (ipykernel)

2. 실험 준비

a. Dataset

• Fashion MNIST data (테스트 dataset 만 사용)

images

shape	(10000, 784)
data type	float32 array

• labels

shape	(10000,)
data type	array

- images, labels 전처리
 - \circ images to pandas.DataFrame (변수 이름 : X_)

0	1	2	3	4	5	6
0	0.0	0.0	0.0	0.000000	0.0	0.000000
1	0.0	0.0	0.0	0.000000	0.0	0.000000
2	0.0	0.0	0.0	0.000000	0.0	0.000000
3	0.0	0.0	0.0	0.000000	0.0	0.000000
4	0.0	0.0	0.0	0.007843	0.0	0.003922
9995	0.0	0.0	0.0	0.000000	0.0	0.000000
9996	0.0	0.0	0.0	0.000000	0.0	0.000000
9997	0.0	0.0	0.0	0.000000	0.0	0.000000
9998	0.0	0.0	0.0	0.000000	0.0	0.000000
9999	0.0	0.0	0.0	0.000000	0.0	0.000000

10000 rows × 784 columns

∘ labels to pandas.Series (변수 이름 : y_)

```
0 9
1 2
2 1
3 1
4 6
...
9995 9
9996 1
9997 8
9998 1
9999 5
Length: 10000, dtype: int64
```

b. Experimental Setup

Clustering Algorithm

KMeans

。 **구현체** : sklearn.cluster.KMeans 클래스

• Hyper Paramter :

- n_cluster:10
- 나머지 파라미터는 모두 default parameter set 사용

DBSCAN

- 。 구현체 : sklearn.cluster.DBSCAN
- Hyper Parameter :
 - eps (epsilon) : parameter search 알고리즘을 통해 구한 최적 epsilon 값
 - min_samples : parameter search 알고리즘을 통해 구한 최적 min_samples 값
 - n_jobs : -1 (all processor)
 - 나머지 파라미터는 모두 default parameter set 사용

c. Pseudo code of Algorithms

아래에 이번 과제에서 사용한 알고리즘들을 pseudo code형태로 나열.

· Helper algorithms for main learning process

[KMeans clustering algorithm]

Algorithm 1 K-means Clustering

- 1: **procedure** KMEANSCLUSTERING $(X, n_clusters = 10)$
- 2: $kmeans \leftarrow KMeans(n_clusters = n_clusters).fit(X)$
- $3: labels \leftarrow kmeans.labels_{-}$
- 4: return labels
- 5: end procedure

Author: 20194902 Yechan Jun

[DBSCAN clustering algorithm]

Algorithm 2 DBSCAN Clustering

- 1: **procedure** DBSCANCLUSTERING($X, eps, min_samples$)
- 2: $dbscan \leftarrow DBSCAN(eps = eps, min_samples = min_samples, n_jobs = -1).fit(X)$
- 3: return dbscan.labels_
- 4: end procedure

Author: 20194902 Yechan Jun

[Transform from PCA dataset to t-SNE]

Algorithm 3 Transform PCA to t-SNE

- 1: **procedure** Transform PCA to T-SNE(X)
- 2: $n_components \leftarrow 2$
- 3: $learning_rate \leftarrow 300$
- 4: $perplexity \leftarrow 30$
- 5: $early_exaggeration \leftarrow 12$
- 6: $init \leftarrow' random'$
- 7: $tSNE \leftarrow \text{Create tSNE}$ with parameters
- 8: $test_PCA \leftarrow DataFrame(X)$
- 9: $X_test_tSNE \leftarrow tSNE$.fit and transform PCA to tSNE
- 10: $X_{test_{t}}XE \leftarrow \text{convert tSNE to Dataframe}(X_{test_{t}}XE)$
- 11: $\mathbf{return} \ X_{test_{t}} SNE$
- 12: end procedure

Author: 20194902 Yechan Jun

[Hyper parameter search for DBSCAN]

Algorithm 1 Find Best Parameters for DBSCAN

```
1: procedure FINDBESTPARAMSDBSCAN(true_labels)
       eps\_list \leftarrow arange(0.5, 10.0, 0.1)
       min\_sample\_list \leftarrow arange(5, 105, 1)
 3:
       best\_params\_per\_dim \leftarrow \{\dim : [] \text{ for dim in } [784, 100, 50, 10]\}
 4:
       for dim, X\_test\_tSNE in zip(dimensions, X\_transformed) do
 5:
           for eps in eps_list do
 6:
               for min_sample in min_sample_list do
 7:
                  labels \leftarrow DBSCAN\_CLUSTERING(X\_test\_tSNE, eps, min\_sample)
 8:
                  cur\_score \leftarrow \text{Evaluate\_Clustering}(true\_labels, labels)
9:
                  if cluster\_count > 9 then
10:
                      Append new ARI score, eps and min sample
11:
                      sort params by ARI in descending order
12:
                      slice params at index 2
13:
                  end if
14:
              end for
15:
           end for
16:
       end for
17:
       return best_params_per_dim
18:
19: end procedure
```

Author: 20194902 Yechan Jun

3. 실험 진행

아래의 pseudo code를 따라,

- 각 차원 784, 100, 54, 10에 대해
 - 。 PCA 적용
 - 。 tSNE 변형
 - 변형된 데이터셋에 대해 Kmeans 와 dbscan 클러스터링 알고리즘으로 학습후, ARI score계산 및 시각 (dbscan은 parameter search로 얻은 최적 params중 임의로 선택하여 통일 적용)

a. learning process

Algorithm 1 Main Execution

```
1: procedure MainExecution(X_-, y_-)
       dimensions \leftarrow [784, 100, 50, 10]
2:
       ari\_kmeans \leftarrow []
3:
       ari\_dbscan \leftarrow []
4:
       for dim in dimensions do
5:
           if dim = 784 then
6:
               X\_reduced \leftarrow X\_
                                                      ▷ Original image dimensions
7:
           else
8:
               X\_reduced \leftarrow ApplyPCA(X\_, dim)
9:
           end if
10:
           running algorithms and visualize for both kmeans and dbscan
11:
       end for
12:
13: end procedure
```

Author: 20194902 Yechan Jun

4. 실험 결과

a. ARI scores for both of KMeans and DBSCAN

	Dimensions	K-means ARI	DBSCAN ARI
0	784	0.436577	0.440892
1	100	0.461160	0.424607
2	50	0.405413	0.438050
3	10	0.425742	0.400305

b. KMeans visualizatoin

Kmeans cluster 100 samples plotted

KMeans cluster Without sampling

c. DBSCAN visualization (plotted 100 samples)

DBSCAN 100 samples plotted

DBSCAN Without sampling

