1. Gebhard Boeckle's lectures

1.1. Galois representations and congruences. We first discuss profinite groups. Let G be a topological group.

Theorem 1. The following are equivalent:

- (a) G is compact, Hausdorff, and totally disconnected.
- (b) G is compact, and admits a neighborhood basis of the identity by open normal subgroups.
- (c) There is a directed poset I and an inverse system (G_i) of finite (discrete) groups such that $G = \varprojlim_I G_i$.

We say that G is *profinite* if the above conditions hold. The topology on $\varprojlim G_i$ is that obtained by regarding it as a closed subgroup of the product $\prod G_i$. Constructions:

- (a) If G is discrete, then we equip it with the profinite topology $G^{\mathrm{pf}} := \varprojlim G/N$, where N runs over the finite index subgroups.
- (b) If $G = \underline{\lim} G_i$ is profinite, then
 - (i) The abelianization is given by

$$G^{ab} = G/\overline{[G,G]} = \lim_{i \to \infty} G_i^{ab},$$

and in particular, is profinite.

(ii) For H finite, write H_p for its maximal p-group quotient. Then

$$G_p = \underline{\lim}(G_i)_p$$

is a pro-p-group (and in particular, profinite).

(iii) If N < G is closed and normal, then G/N is profinite.

Example 2. (a) Let F be a field. Set $G_F := \operatorname{Aut}_F(F^{\text{sep}}) = \operatorname{Gal}(F^{\text{sep}}/F)$ profinite. Define the poset

$$\mathcal{I}_F := \{ L \subseteq F^{\text{sep}} : L \supseteq F \text{ finite Galois}, \subseteq \}.$$

Then

$$G_F \xrightarrow{\cong} \varprojlim_{L \in \mathcal{I}_F} \operatorname{Gal}(L/F).$$

(b) Let $F'\subseteq F^{\rm sep}$ be a normal extension of F. Then $G_{F'}\subseteq G_F$ is closed and normal. We may thus write

$$\operatorname{Gal}(F'/F) \cong G_F/G_{F'} = \lim_{\substack{L \in \mathcal{I}_F, \\ L \subseteq F'}} \operatorname{Gal}(L/F).$$

(c) Let N denote the natural numbers, ordered by divisibility. Then

$$\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n = \prod_{p} \mathbb{Z}_{p},$$

where the last step is the Chinese remainder theorem. We sometimes need a slight modification:

$$\hat{\mathbb{Z}}^{(p)} = \varprojlim_{p \nmid n} \mathbb{Z}/n = \prod_{\ell \text{ prime}, \ell \neq p} \mathbb{Z}_{\ell}.$$

Let's fix some notation:

(a) Let K be a number field, \mathcal{O}_K its ring of integers. Let $\operatorname{Pl}_K = \operatorname{Pl}_K^\infty \sqcup \operatorname{Pl}_K^{\operatorname{fin}}$ denote the set of places v of K. Let v be a finite place. We may then attach to it a maximal ideal \mathfrak{q}_v of \mathcal{O}_K , giving a bijection

$$\operatorname{Pl}_K^{\operatorname{fin}} \leftrightarrow \operatorname{Max}(\mathcal{O}_K).$$

We may form the residue field $k_v := \mathcal{O}_K/\mathfrak{q}_v$. We denote q_v for the cardinality of k_v . We write $\operatorname{char}(v)$ for the characteristic of k_v . We denote by $\mathcal{O}_v = \varprojlim \mathcal{O}/\mathfrak{q}_v^n$, with fraction field K_v . Also, we have a short exact sequence

$$1 \to I_v \to G_v := \operatorname{Gal}_{K_v} \to \operatorname{Gal}_{k_v} \to 1.$$

A topological generator for Gal_{k_n} is given by

$$\operatorname{Fr}_v: \alpha \mapsto \alpha^{q_v}.$$

We denote by $\operatorname{Frob}_v \in G_v$ some lift of Fr_v .

We write $S_{\infty} := \operatorname{Pl}_{K}^{\infty}$ for the set of archimedean places, so that $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in S_{\infty}} K_{v}$. For a rational prime p, we write S_{p} for the set of places v of K such that $v \mid p$.

(b) We also need some local analogues for $E \supseteq \mathbb{Q}_p$ a p-adic field. Let $\mathcal{O} = \mathcal{O}_E$ denote the ring of integers, $\pi = \pi_E$ a uniformizer, and $\mathbb{F} = \mathcal{O}_E/\pi$ the residue field, with $q = \#\mathbb{F}$. Then $E \supseteq \mathbb{Q}_q = \mathbb{Q}_p[\zeta_{q-1}] \supseteq \mathbb{Q}_p$. We have $W(\mathbb{F}) = \mathbb{Z}_q = \mathbb{Z}_p[\zeta_{q-1}]$.

Contiuing the examples, which may serve as exercises:

- (d) Let ζ_t be a primitive tth root of 1. For k a finite field, we have $G_k \cong \hat{\mathbb{Z}} = \overline{\langle \operatorname{Fr}_k \rangle}$, where $\operatorname{Fr}_k : \alpha \mapsto \alpha^{|k|}$.
- (e) Let $E \supseteq \mathbb{Q}_p$ (finite extension). Then G_E (Jannsen-Wingberg for $p \ge 2$). Local class field theory: the Artin map $E^\times \to G_E^{ab}$ is a continuous inclusion with dense image. Writing $E^\times = \pi_E^{\mathbb{Z}} \times \mathcal{O}_E^\times = \pi_E^{\mathbb{Z}} \times \mathbb{F}^\times \times \mathcal{U}_E^1$. Since the units are known to be a finitely generated \mathbb{Z}_p -module, we get as a corollary that

$$\operatorname{Hom}_{\operatorname{cts}}(G_E, \mathbb{F}_p) = H^1_{\operatorname{cts}}(G_E, \mathbb{F}_p)$$

is finite.

(f) We turn to the case of a number field K. We fix an embedding $K^{\text{sep}} \subseteq K_v^{\text{sep}}$ for each place v, which gives an embedding of Galois groups $G_v \to G_K$. For $S \subseteq \text{Pl}_K$ finite, we write

$$K_S := \{ \alpha \in K^{\text{sep}} : K(\alpha) \text{ is unramified outside } S \},$$

which is a normal (typically infinite) extension of K. We write

$$G_{K,S} := \operatorname{Gal}(K_S/K) = G_K/G_{K_S}$$

for its Galois group. We remark that if we take $v \notin S$, then since v does not ramify in K_S , we know that the map $G_v \to G_{K,S}$ factors via the quotient $G_v/I_v \cong G_{k_v}$, so that $\operatorname{Frob}_v \in G_{K,S}$ is independent of the choice of lift. On the other hand, if $v \in S$, then we might ask whether the map $G_v \hookrightarrow G_{K,S}$ (see the work of Cheniever–Clozel). The structure of $G_{K,S}$ is unknown, but global class field theory describes $G_{K,S}^{\operatorname{ab}}$. A corollary is that

$$H^1_{\mathrm{cts}}(G_{K,S}, \mathbb{F}_p) = \mathrm{Hom}_{\mathrm{cts}}(G_{K,S}, \mathbb{F}_p)$$

is finite whenever S is finite. (One can appeal to Hermite–Minkowski, or class field theory.)

(g) Consider the tame quotient of G_E , for $E \supseteq \mathbb{Q}_p$. Given $E \supseteq \mathbb{Q}_p$, we form the tower of extensions $E^{\text{tame}}/E^{\text{unr}}/E$, where

$$E^{\text{unr}} = \bigcup \{ E(\zeta_n) : p \nmid n \},$$

$$E^{\text{tame}} = \bigcup \{ E^{\text{unr}}(\sqrt[n]{\pi_E}) : p \nmid n \}.$$

It's a fact that G_E^{tame} may be expressed as the profinite completion of $\langle st :$ $sts^{-1} = t^q \rangle.$

We finally come to Galois representations. They will typically be called $\rho: G \to \mathrm{GL}_n(A)$, where G is a topological group, A is a topological ring, and ρ is a continuous map. The topology on $\mathrm{GL}_n(A)$ is the subspace topology coming from embedding inside $M_n(A) \times A$ via $g \mapsto (g, \det(g)^{-1})$, for instance. We call ρ a Galois representation if $G = G_F$ for some field F. The main examples of interest for A will be \mathbb{C} , finite fields, and p-adic fields, to interpolate $\mathrm{CNL}_{\mathcal{O}}$ (complete Noetherian local \mathcal{O} -algebras).

Exercise 1. Let G be profinite, and ρ as above.

- (a) If $A = \mathbb{C}$, then $\rho(G)$ is finite.
- (b) If $A = \overline{\mathcal{O}_p}$, then there is a finite extension $E \supseteq \mathbb{Q}_p$ such that $\rho(G) \subseteq \mathrm{GL}_n(E)$ up to conjugation.
- (c) If $A = E \supseteq \mathbb{Q}_p$ (finite extension), then after conjugation, we can assume that $\rho(G) \subseteq \operatorname{GL}_n(\mathcal{O}).$

In case (c), we have a G-stable lattice $\Lambda \cong \mathcal{O}^n \subseteq E^n$. We can apply reduction $\mathcal{O} \to \mathbb{F}$. This gives a reduction

$$\overline{\rho}_{\Lambda}: G \to \mathrm{GL}_n(\mathbb{F}).$$

Let's use the notation $\operatorname{cp}_{\alpha}$ for the characteristic polynomial of $\alpha \in M_n(A)$.

- **Theorem 3.** (a) Given a representation $r: G \to GL_n(\mathbb{F})$. Then there exists a semisimple representation $r^{ss}: G \to \mathrm{GL}_n(\mathbb{F})$ such that $\mathrm{cp}_r = \mathrm{cp}_{r^{ss}}$ (Brauer-Hesbitt), where r^{ss} is unique up to isomorphism.
- (b) We have $\operatorname{cp}_{\rho} \in \mathcal{O}[X]$ and $\operatorname{cp}_{\bar{\rho}_{\Lambda}} \in \mathbb{F}[X]$, independent of Λ .

Theorem 4. For $\rho, \rho': G_{K,S} \to \mathrm{GL}_n(E)$ semisimple, we have that $\rho \sim \rho'$ (conjugate) if and only if for all $v \in Pl_K^{fin} \setminus S$, we have

$$cp_{\rho(\operatorname{Frob}_v)} = cp_{\rho'(\operatorname{Frob}_v)}.$$

(1) p-adic cyclotomic character $\chi_n^{\text{cyc}}: G_{\mathbb{O}} \to \mathbb{Z}_n^{\times}$. We have Example 5.

$$G_{\mathbb{Q}} \circlearrowleft \mu_{p^n} = \langle \zeta_{p^n} \rangle \cong \mathbb{Z}/p^n,$$

 $(\mathbb{Z}/p^n)^{\times} = \operatorname{Aut}_{\mathbb{Z}}(\mathbb{Z}/p^n)$. Facts:

- $\chi_p^{\text{cyc}}|_{G_K}$: unramified outside $S_p \cup S_{\infty}$. $\chi_p^{\text{cyc}}(\text{Frob}_v) = q_v \in \mathbb{Z}_p^{\times}$.
- (2) The Tate module of an elliptic curve $\mathcal{E}_{/K}$. We again have $G_K \circlearrowleft \mathcal{E}[p^n](\bar{K}) \cong$ $(\mathbb{Z}/p^n)^{\oplus 2}$, which gives rise to $G_K \to \mathrm{GL}_2(\mathbb{Z}/p^n)$. In the limit, we get

$$\rho_{\mathcal{E},p}: G_K \to \mathrm{GL}_2(\mathbb{Z}_p) \hookrightarrow \mathrm{GL}_2(\mathbb{Q}_p).$$

Facts:

• $\rho_{\mathcal{E},p}$ is unramified outside $S_{\infty} \cup S_p \cup \text{Bad}$.

 \bullet For v outside those places, we have

$$\operatorname{cp}_{\rho_{\mathcal{E},p}}(\operatorname{Frob}_v) = X^2 - a_v(\mathcal{E})X + q_v,$$

where

$$a_v := \# \mathcal{E}(k_v).$$

This shows the geometric meaning of Frobenius.

References