Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 10

Конечные поля. Простое подполе и порядок конечного поля. Автоморфизм Фробениуса. Теорема существования и единственности для конечных полей. Поле из четырех элементов. Цикличность мультипликативной группы. Неприводимые многочлены над конечным полем. Подполя конечного поля.

В этой лекции будем использовать следующее обозначение: $K^{\times} = K \setminus \{0\}$ — мультипликативная группа поля K.

Пусть K — конечное поле. Тогда его характеристика отлична от нуля и потому равна некоторому простому числу p. Значит, K содержит поле \mathbb{Z}_p в качестве простого подполя.

Теорема 1. Число элементов конечного поля равно p^n для некоторого простого p и натурального n.

 \mathcal{A} оказательство. Пусть K — конечное поле характеристики p, и пусть размерность K над простым подполем \mathbb{Z}_p равна n. Выберем в K базис e_1,\ldots,e_n над \mathbb{Z}_p . Тогда каждый элемент из K однозначно представляется в виде $\alpha_1e_1+\ldots+\alpha_ne_n$, где α_1,\ldots,α_n пробегают \mathbb{Z}_p . Следовательно, в K ровно p^n элементов. \square

Пусть K — произвольное поле характеристики p>0. Рассмотрим отображение

$$\varphi \colon K \to K, \quad a \mapsto a^p.$$

Покажем, что φ — гомоморфизм. Для любых $a,b\in K$ по формуле бинома Ньютона имеем

$$(a+b)^p = a^p + C_p^1 a^{p-1} b + C_p^2 a^{p-2} b^2 + \ldots + C_p^{p-1} a b^{p-1} + b^p.$$

Так как p — простое число, то все биномиальные коэффициенты C_p^i при $1 \leqslant i \leqslant p-1$ делятся на p. Это значит, что в нашем поле характеристики p все эти коэффициенты обнуляются, в результате чего получаем $(a+b)^p=a^p+b^p$. Ясно, что $(ab)^p=a^pb^p$, так что φ — гомоморфизм. Ядро любого гомоморфизма колец является идеалом, поэтому $\operatorname{Ker} \varphi = \{0\}$, откуда φ инъективен.

Если поле K конечно, то инъективное отображение из K в K автоматически биективно. В этой ситуации φ называется автоморфизмом Фробениуса поля K.

Замечание 1. Пусть K — произвольное поле и ψ — произвольный автоморфизм (т. е. изоморфизм на себя) поля K. Легко видеть, что множество неподвижных точек $K^{\psi} = \{a \in K \mid \psi(a) = a\}$ является подполем в K.

Прежде чем перейти к следующей теореме, обсудим понятие формальной производной многочлена. Пусть K[x] — кольцо многочленов над произвольным полем K. Формальной производной называется отображение $K[x] \to K[x]$, которое каждому многочлену $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ сопоставляет многочлен $f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + a_1$. Из определения следует, что это отображение линейно. Легко проверить, что для любых $f,g \in K[x]$ справедливо привычное нам равенство (fg)' = f'g + fg' (в силу дистрибутивности умножения проверка этого равенства сводится к случаю, когда f,g — одночлены). В частности, $(f(x)^m)' = mf(x)^{m-1}$ для любых $f(x) \in K[x]$ и $m \in \mathbb{N}$.

Теорема 2. Для всякого простого числа p и натурального числа n существует единственное (c точностью до изоморфизма) поле из p^n элементов.

Доказательство. Положим $q = p^n$ для краткости.

Единственность. Пусть поле K содержит q элементов. Тогда мультипликативная группа K^{\times} имеет порядок q-1. По следствию 3 из теоремы Лагранжа мы имеем $a^{q-1}=1$ для всех $a\in K\setminus\{0\}$, откуда $a^q-a=0$ для всех $a\in K$. Это значит, что все элементы поля K являются корнями многочлена $x^q-x\in\mathbb{Z}_p[x]$. Отсюда следует, что K является полем разложения многочлена x^q-x над \mathbb{Z}_p . Из теоремы о полях разложения, формулировавшейся на прошлой лекции, следует, что поле K единственно с точностью до изоморфизма.

Существование. Пусть K — поле разложения многочлена $f(x) = x^q - x \in \mathbb{Z}_p[x]$. Тогда имеем $f'(x) = qx^{q-1} - 1 = -1$ (qx^{q-1} обнуляется, так как q делится на p, а p — характеристика поля \mathbb{Z}_p). Покажем, что многочлен f(x) не имеет кратных корней в K. Действительно, если α — корень кратности $m \ge 2$, то $f(x) = (x-\alpha)^m g(x)$ для некоторого многочлена $g(x) \in \mathbb{Z}_p[x]$. Но тогда $f'(x) = m(x-\alpha)^{m-1}g(x) + (x-\alpha)^m g'(x)$, откуда видно, что f'(x) делится на $(x-\alpha)$. Но последнее невозможно, ибо f'(x) = -1 — многочлен нулевой степени. Итак, многочлен f(x) имеет ровно q различных корней в поле K. Заметим, что эти

корни — в точности неподвижные точки автоморфизма $\varphi^n = \underbrace{\varphi \circ \ldots \circ \varphi}_{},$ где φ — автоморфизм Фробениуса.

В самом деле, для элемента $a \in K$ равенство $a^q - a = 0$ выполнено тогда и только тогда, когда $a^{p^n} = a$, т.е. $\varphi^n(a) = a$. Значит, корни многочлена $x^q - x$ образуют подполе в K, которое по определению поля разложения совпадает с K. Следовательно, в поле K ровно q элементов.

Конечные поля еще называют *полями Галуа*. Поле из q элементов обозначают \mathbb{F}_q . Например, $\mathbb{F}_p \cong \mathbb{Z}_p$.

Пример 1. Построим явно поле из четырёх элементов. Многочлен x^2+x+1 неприводим над \mathbb{Z}_2 . Значит, факторкольцо $\mathbb{Z}_2[x]/(x^2+x+1)$ является полем и его элементы — это классы $\overline{0},\overline{1},\overline{x},\overline{x+1}$ (запись \overline{a} означает класс элемента a в факторкольце $\mathbb{Z}_2[x]/(x^2+x+1)$). Например, произведение $\overline{x}\cdot\overline{x+1}$ — это класс элемента x^2+x , который равен $\overline{1}$.

Предложение 1. Мультипликативная группа конечного поля \mathbb{F}_q является циклической.

Доказательство. Заметим, что \mathbb{F}_q^{\times} — конечная абелева группа, и обозначим через m её экспоненту (см. конец лекции 4). Предположим, что группа \mathbb{F}_q^{\times} не является циклической. Тогда m < q-1 по следствию 2 лекции 4. По определению экспоненты это значит, что $a^m = 1$ для всех $a \in \mathbb{F}_q^{\times}$. Но тогда многочлен $x^m - 1$ имеет в поле \mathbb{F}_q больше корней, чем его степень, — противоречие.

Теорема 3. Конечное поле \mathbb{F}_q , где $q=p^n$, можно реализовать в виде $\mathbb{Z}_p[x]/(h(x))$, где h(x) — неприводимый многочлен степени n над \mathbb{Z}_p . В частности, для всякого $n \in \mathbb{N}$ в кольце $\mathbb{Z}_p[x]$ есть неприводимый многочлен степени n.

Доказательство. Пусть α — порождающий элемент группы \mathbb{F}_q^{\times} . Тогда минимальное подполе $\mathbb{Z}_p(\alpha)$ поля \mathbb{F}_q , содержащее α , совпадает с \mathbb{F}_q . Значит, поле \mathbb{F}_q изоморфно полю $\mathbb{Z}_p[x]/(h(x))$, где h(x) — минимальный многочлен элемента α над \mathbb{Z}_p . Из результатов прошлой лекции следует, что многочлен h(x) неприводим. Поскольку степень расширения $[\mathbb{F}_q:\mathbb{Z}_p]$ равна n, этот многочлен имеет степень n.

Теорема 4. Всякое подполе поля \mathbb{F}_q , где $q=p^n$, изоморфно \mathbb{F}_{p^m} , где m — делитель числа n. Обратно, для каждого делителя m числа n в поле \mathbb{F}_q существует ровно одно подполе из p^m элементов.

Доказательство. Пусть F — подполе поля \mathbb{F}_q . По определению простого подполя имеем $F \supset \mathbb{Z}_p$, откуда char F = p. Тогда теорема 1 нам сообщает, что $|F| = p^m$ для некоторого $m \in \mathbb{N}$. По теореме 2 имеем $F \cong \mathbb{F}_{p^m}$. Обозначим через s степень (конечного) расширения $F \subset \mathbb{F}_q$. Рассуждая так же, как в доказательстве теоремы 1, мы получим $p^n = (p^m)^s$, откуда $p^n = p^{ms}$ и m делит n.

Пусть теперь m — делитель числа n, т. е. n=ms для некоторого $s\in\mathbb{N}$. Рассмотрим многочлены $f(x)=x^{p^n}-x$ и $g(x)=x^{p^m}-x$ над \mathbb{Z}_p . Заметим, что для элемента $a\in\mathbb{F}_q$ равенства $a^{p^m}=a$ следует

$$a^{p^n}=a^{p^{ms}}=a^{(p^m)^s}=(\dots((a^{p^m})^{p^m})^{p^m}\dots)^{p^m}$$
 $(s$ раз возвели в степень $p^m)=a.$

Поэтому каждый корень многочлена g(x) является и корнем многочлена f(x). Отсюда поле разложения многочлена g(x). Значит, \mathbb{F}_{p^m} содержится в \mathbb{F}_{p^n} .

Наконец, все элементы подполя из p^m элементов неподвижны при автоморфизме $\psi = \underbrace{\varphi \circ \ldots \circ \varphi} \colon x \mapsto x^{p^m}$

 $(\varphi$ — автоморфизм Фробениуса). Поскольку число корней многочлена $x^{p^m}-x$ в поле \mathbb{F}_q не превосходит p^m , множество элементов данного подполя совпадает с множеством неподвижных точек автоморфизма ψ . Значит, такое подполе единственно.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 9, § 5)
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 5, § 2)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 14, § 68)
- [4] Р. Лидл и Г. Нидеррайтер. Конечные поля (2 тома). М.: Мир, 1988 (главы 2–3)