Stats Methods formulae and distributions

Probability Calculus

Discrete

Addition rule: P(A or B) = P(A) + P(B) - P(A and B)

Multiplication rule: P(A and B) = P(A|B)P(B)

Law of total probability: $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$

Bayes' theorem for single events: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Bayes' theorem for multiple exhaustive mutually exclusive events:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

Continuous

Bayes' theorem: $p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int_{-\infty}^{\infty} p(x|y)p(y)dy}$

Random variates, expectation and variance

for variates X, Y, such that $Y = \sum_{i=1}^{n} a_i X_i$:

$$E[Y] = \sum_{i=1}^{n} a_i \mu_i$$

$$V[Y] = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$

for variates X drawn from continuous distributions:

$$E[X] = \mu = \int_{-\infty}^{+\infty} x p(x) dx$$

$$V[X] = \sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx$$

Correlation coefficient:

$$\rho(X,Y) = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Discrete probability distributions

Binomial

pmf:
$$p(x|n,\theta) = \frac{n!}{(n-x)!x!}\theta^x(1-\theta)^{n-x}$$
 for $x=0,1,2,...,n$.
variates: for $X \sim \text{Binom}(n,\theta), E[X] = n\theta$ and $V[X] = n\theta(1-\theta)$

Poisson

pmf:
$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

variates: for $X \sim \text{Pois}(\lambda)$, $E[X] = \lambda$ and $V[X] = \lambda$

Continuous probability distributions

Uniform

pdf:
$$p(x|a,b)=1/(b-a)$$
 for $a\leq x\leq b$ variates: for $X\sim \mathrm{U}(a,b),\, E[X]=(b+a)/2$ and $V[X]=(b-a)^2/12$

Normal

pdf:
$$p(x|\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$$
 variates: for $X\sim \mathrm{N}(\mu,\sigma),\, E[X]=\mu$ and $V[X]=\sigma^2$ χ^2

pdf:
$$p(x|\nu) = \frac{(1/2)^{\nu/2}}{\Gamma(\nu/2)} x^{\frac{\nu}{2} - 1} e^{-x/2}$$

where for integers n , $\Gamma(n) = (n-1)!$ and $\Gamma(n + \frac{1}{2}) = \frac{(2n)!}{4^n n!} \sqrt{\pi}$.
variates: for $X \sim \chi^2_{\nu}$, $E[X] = \nu$, $V[X] = 2\nu$

Test statistics

Z-statistic:
$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

t-statistic: $T = \frac{\bar{x} - \mu}{s_x / \sqrt{n}}$

 $\chi^2\text{-statistic: }\chi^2=\sum\limits_{i=1}^n\frac{(y_i-\mu_i)^2}{\sigma_i^2}$

Table of significance levels for different statistics

Distribution	$1-\sigma$	$2-\sigma$	3 - σ	$4-\sigma$	$5-\sigma$
Standard normal p-values	0.3173	0.0455	0.0027	6.33×10^{-5}	5.73×10^{-7}
χ_1^2	1.0	4.0	9.0	16.0	25.0
χ_2^2	2.296	6.18	11.829	19.334	28.744
χ_3^2	3.527	8.025	14.156	22.061	31.812
χ_4^2	4.719	9.716	16.251	24.502	34.555
χ_5^2	5.888	11.314	18.205	26.766	37.095
t_1	1.837	13.968	235.801	10050	1110441
t_2	1.321	4.527	19.207	125.64	1320.7
t_3	1.197	3.307	9.219	32.616	156.68
t_4	1.142	2.869	6.62	17.448	56.848
t_5	1.111	2.649	5.507	12.281	31.847

Table 1: p-values and corresponding statistic values corresponding to standard normal significance levels. Subscripts give number of degrees of freedom. Note that for the one-sample t-test, d.o.f.=n-1 where n is the number of data points. For χ^2 statistics the significance levels correspond to those calculated for the survival function (1 - F(X)) where F(X) is the cdf value of the statistic value X. t is a 2-tailed distribution like the normal distribution, so statistics X correspond to p-values equal to $2 \times (1 - F(X))$.