CS 446: Machine Learning Homework

Due on Tuesday, Feb 13, 2018, 11:59 a.m. Central Time

1. [10 points] SVM Basics

Consider the following dataset \mathcal{D} in the two-dimensional space; $\mathbf{x}^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{1, -1\}$

i	$\mathbf{x}_1^{(i)}$	$\mathbf{x}_2^{(i)}$	$y^{(i)}$
1	-1	3	1
2	-2.5	-3	-1
3	2	-3	-1
4	4.7	5	1
5	4	3	1
6	-4.3	-4	-1

Recall a hard SVM is as follows:

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \ge 1 \quad , \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
 (1)

- (a) What is the optimal \mathbf{w} and b? Show all your work and reasoning. (Hint: Draw it out.) Your answer:
- (b) Which of the examples are support vectors?

Your answer:

(c) A standard quadratic program is as follows,

$$\begin{array}{ll}
\text{minimize} & \frac{1}{2} \mathbf{z}^{\mathsf{T}} P \mathbf{z} + \mathbf{q}^{\mathsf{T}} \mathbf{z} \\
\text{subject to} & G \mathbf{z} \leq \mathbf{h}
\end{array}$$

Rewrite Equation (1) into the above form. (i.e. define $\mathbf{z}, P, \mathbf{q}, G, \mathbf{h}$ using \mathbf{w}, b and values in \mathcal{D}). Write the constraints in the **same order** as provided in \mathcal{D} and typeset it using bmatrix.

Your answer:

(d) Recall that for a soft-SVM we solve the following optimization problem.

$$\min_{w,b,\xi^{(i)}} \frac{1}{2} \|\mathbf{w}\|^2 + C \cdot \sum_{i=1}^{|D|} \xi^{(i)} \quad \text{s.t.} \quad y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) \ge 1 - \xi^{(i)}, \xi^{(i)} \ge 0 \quad \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$$
(2)

Describe what happens to the margin when $C = \infty$ and C = 0.

Your answer:

2. [4 points] Kernels

(a) If $K_1(\mathbf{x}, \mathbf{z})$ and $K_2(\mathbf{x}, \mathbf{z})$ are both valid kernel functions, and α and β are positive, prove that

$$\alpha K_1(\mathbf{x}, \mathbf{z}) + \beta K_2(\mathbf{x}, \mathbf{z})$$

is also a valid kernel function.

Your answer:

(b) Show that $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$ is a valid kernel, for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^2$. (*i.e.* write out the $\Phi(\cdot)$, such that $K(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x})^{\mathsf{T}} \Phi(\mathbf{z})$

Your answer: