MA1300 Self Practice # 13

 ${f 1.}$ (P724, #25, 30) Determine whether the sequence converges or diverges. If it converges, find the limit.

(a).
$$a_n = \frac{3+5n^2}{n+n^2}$$
,
(b). $a_n = \sqrt{\frac{n+1}{9n+1}}$.

- **2**. (P725, #80) A sequence $\{a_n\}$ is given by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$.
- (a) By mathematical induction, show that $\{a_n\}$ is increasing and bounded above by 3. Apply the Monotonic Sequence Theorem to show that $\lim_{n\to\infty} a_n$ exists.
 - (b) Find $\lim_{n\to\infty} a_n$.
 - 3. (P725, #82) Show that the sequence defined by

$$a_1 = 2, \qquad a_{n+1} = \frac{1}{3 - a_n}$$

satisfies $0 < a_n \le 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.

4. (P735, #23, 30, 40) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a).
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n},$$

(b).
$$\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^2},$$

(c).
$$\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right)$$
.

5. (P736, #64) We have seen that the harmonic series is a divergent series whose terms approach 0. Show that

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$

is another series with this property.