Damage detection of concrete slab bridges

Jeremy

December 12, 2019

Dutch Main Road Network

Stucture type	Number	Deck Area (m2)
Concrete bridge	3'131	3'319'002
Steel bridge (fixed)	88	301'997
Movable bridge	43	347'876
Tunnel	14	475'228
Aqueduct	7	86'491
Total	3'283	4'530'593

Existing SHM

- State of the art do not determine extent of damage
- ► If they do:
 - assumptions are made
 - or in a controlled experiment
- Only determine whether damage present or not
 - global health monitoring
- Detection only necessary to then take further action
 - on-site examination

Ultimate Goal

- Damage detection of concrete slab bridges
- Major problem:
 - data of damaged state not available
 - can't go around damaging bridges
- ► Then how to prototype damage detection systems without data?

Ultimate Goal

- ▶ Damage detection of concrete slab bridges
- Based on simulated data
- Validated against real data
- System can be applied to many concrete bridges
 - model is parametric
 - not just for one bridge

Bridge Model: Parametric

Generated Model: Bridge 705

Generated Model

- ► Bridge model is parametric
 - material propertes, dimensions
- ► can generate 2D beam or 3D shell model

Mesh: Deck Nodes

- ▶ base mesh = 50 * 20
- ► from piers = 12 * 68
- ightharpoonup from loads = 0 * 0
- ▶ from materials = 0 * 24
- ► from pier refinement = 66 * 0
- ► total = 128 * 112

Mesh: Pier Nodes

- ▶ base mesh = 17 * 17
- from deck = 0.0 * 7.0 (mean)
- ▶ total = 17 * 24

Animation

./animation.mp4

Unit Load Simulations

Responses via Superposition: Traffic

- ▶ 2 lanes, 4 wheel tracks
- vehicle leaving on bottom lane
- lighter vehicle leaving top lane

```
traffic_at_time_0 = [
1, 2, 0,
1, 2, 0,
0, 3, 3,
0, 3, 3]
```

Responses via Superposition: Traffic

- t rows, one per unit time
- ▶ n * 4 columns, n per wheel track
- currently using n=100 (Bridge 705 = 102.75m)
- ► TODO: n = 102.75 / wheel print length

```
traffic = [
[1, 2, 0, 1, 2, 0, 0, 3, 3, 0, 3, 3],
[2, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
```

Responses via Superposition: Unit Load Simulations

- ▶ n * 4 rows, n per wheel track
- p columns, points you want a response at
- ► Each cell is
 - the response at point p_i
 - from unit load simulation j

```
points = [
 [1, 0, 0, 2]
 [1, 0, 0, 3]
 [2, 1, 0, 3]
 [2, 1, 0, 2]
 [1, 2, 1, 2]
 [1, 2, 1, 1]
 [0, 1, 0, 1]
```

Validation: Truck 1 in experimental campaign

fix plot

Validation: Truck positions in Experimental Campaign

Validation: Displacement Diana

Validation: Displacement OpenSees

Validation: Displacement Diana

Validation: Displacement OpenSees

Validation: Displacement

Validation: Displacement

Validation: Displacement

Validation Strain: OpenSees

Validation Strain: OpenSees

Validation: Strain

Model size

Model convergence

Model run-time

Pier Settlement

Pier Settlement

Pier Settlement

Crack Zone

➤ Young's modulus *= 1/3

Crack Zone

Sydney Harbour Bridge

- "baseline" as in
 - compares to a previous baseline (snapshot)
 - baseline method to compare methods to

- ▶ at a point in time, record snapshot
- compare each sensor to each sensor: C0_pi_pj

- ▶ at a later time
- compare each sensor to each sensor: C1_pi_pj

- determine difference between snapshots
- ► D_pi_pj = | CO_pi_pj C1_pi_pj |

► map D_pi_pj to sensor positions

December - February

- December Remainder
 - ► Model agreement
 - ► Temperature in model
 - ► First ML-based damage experiment
- ► January/February
 - ► Further classification...

Questions for You

- Data on passenger vehicles?
 - Axles distances and weights
- Typical size and position of crack zones?
 - Concrete slab bridges
- Convinced by 5 variables for classification experiments?
 - vehicle loading
 - temperature load
 - pier settlement
 - cracked concrete
 - sensor noise
- What needs better explaining in this presentation?