Аннотация к дисциплине

Название дисциплины	Прикладное программное обеспечение в механике			
·	сплошных сред			
Направление подготовки	01.04.04 Прикладная математика			
(специальность)	-			
Направленность	Разработка программного обеспечения и			
(профиль/программа/специализаци	математических методов решения задач с			
я)	использованием искусственного интеллекта			
Место дисциплины	Часть, формируемая участниками образовательных			
	отношений, Блока 1. Дисциплины (модули)			
Трудоемкость (з.е. / часы)	8 з. е. / 288 часов			
Цель изучения дисциплины	Развитие методологической культуры решения			
	прикладных задач механики сплошных сред с			
	использованием современного прикладного			
	программного обеспечения			
Компетенции, формируемые в	ПК-3. Способен организовывать процессы			
результате освоения дисциплины	управления разработкой наукоемкого			
	программного обеспечения.			
	ПК-4. Способен разрабатывать и исследовать			
	математические модели технических и социально-			
	экономических систем с использованием			
	современных информационных технологий.			
Содержание дисциплины	Обзор задач МСС и ППО вычислительной			
(основные разделы и темы)	гидромеханики. Система уравнений движения			
	сплошной среды. Модели турбулентности.			
	Решение задач аэрогидромеханики. Процессы			
	тепломассообмена. Решение сопряженных задач.			
	Геометрическое моделирование и построение			
	сеток. Метод конечных элементов. Модели			
	деформации материалов. Метод сглаженных			
	гидродинамических частиц.			
Форма промежуточной	Зачет, Экзамен			
аттестации				