Product Spaces

Definition: Projection

Let X and Y be sets. The *projection* functions $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ are defined by:

$$\pi_X(x,y) = x$$
$$\pi_Y(x,y) = y$$

Definition: Product Topology

Let X and Y be topological spaces. The *product topology* on the product $X \times Y$ is the topology with basis \mathcal{B} given by:

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{T}_X \text{ and } V \in \mathcal{T}_Y \}$$

Theorem

The basis for a product topology is in fact a basis.

Proof. Assume that X and Y are topological spaces and let:

$$\mathcal{B} = \{U \times V \mid U \in \mathcal{T}_X \text{ and } V \in \mathcal{T}_Y\}$$

Assume that $(a,b) \in X \times Y$. Since $a \in X$, there exists $U \in \mathscr{T}_X$ such that $a \in U$. Likewise, since $b \in Y$, there exists $V \in \mathscr{T}_Y$ such that $b \in V$. Therefore, $(a,b) \in U \times V \in \mathcal{B}$.

Now, assume that $U_1 \times V_1, U_2 \times V_2 \in \mathcal{B}$ and assume that $(a,b) \in U_1 \times V_1 \cap U_2 \times V_2$. This means that $a \in U_1 \cap U_2$ and $b \in V_1 \cap V_2$. But U_1 and U_2 are generated by basic sets in \mathscr{T}_X , and V_1 and V_2 are generated by basic sets in \mathscr{T}_Y . So there exists basic sets $W_1 \in \mathscr{T}_X$ and $W_2 \in \mathscr{T}_Y$ such that $a \in W_1 \subset U_1 \cap U_2$ and $b \in W_2 \subset V_1 \cap V_2$. Therefore, $W_1 \times W_2 \in \mathcal{B}$ and $(a,b) \in W_1 \times W_2 \subset U_1 \times V_1 \cap U_2 \times V_2$.

Therefore \mathcal{B} is a basis for a topology on $X \times Y$.

Theorem

Let X,Y be topological spaces. If $A\subset X$ and $B\subset Y$ are closed sets then $A\times B$ is closed in $X\times Y$.

Proof. Since A and B are closed, X - A and Y - B are open. And so:

$$(X - A) \times (X - B) = (X \times Y) - (A \times B)$$

is open. Therefore $A \times B$ is closed.

Theorem

Let X and Y be topological spaces. The product topology on $X \times Y$ is the same as the topology generated by the subbasis of inverse images of open sets under the projection functions, that is, the basis is given by:

$$\mathcal{B} = \left\{ \pi_X^{-1}(U) \mid U \in \mathscr{T}_X \right\} \cup \left\{ \pi_Y^{-1}(V) \mid V \in \mathscr{T}_Y \right\}$$

Proof. Assume $U \in \mathcal{T}_X$ and $V \in \mathcal{T}_y$:

$$\begin{split} \pi_X^{-1}(U) &= \{(x,y) \,|\, x \in U, y \in Y\} = U \times Y \\ \pi_Y^{-1}(V) &= \{(x,y) \,|\, x \in X, y \in V\} = X \times V \end{split}$$

$$\pi_X^{-1}(U) \cap \pi_Y^{-1}(V) = (U \times Y) \cap (X \times V) = (U \cap X, V \cap Y) = (U, V)$$

Example

The standard topology on \mathbb{R}^2 is not the same as the product topology on $\mathbb{R} \times \mathbb{R}$. The basic open sets in the standard topology are the open balls $B(p,\epsilon)$. But these open balls can be generated in the product topology by arbitrary unions of basic sets of the form $(p-\epsilon,p+\epsilon)\times (p-\epsilon,p+\epsilon)$, and thus the product topology is finer than the standard topology.

Notation

Let $\{X_i : i \in [n]\}$ be a finite family of topological spaces:

$$\prod_{i=1}^{n} X_i = X_1 \times X_2 \times \dots \times X_n$$

An element $x=(x_1,x_2,ldots,x_n \text{ can be views as a function } f:[n] \to \bigcup_{i=1}^n X_i \text{ where } f(i) \in X_i.$

Definition: Infinite Product

Let $\{X_{\alpha}: \alpha \in \lambda\}$ be an arbitrary collection of topological spaces. The infinite *product* of these spaces is given by:

$$\prod_{\alpha \in \lambda} X_{\alpha} = \left\{ f : \lambda \to \bigcup_{\alpha \in \lambda} X_{\alpha} \middle| \forall \alpha \in \lambda, f(\alpha) \in X_{\alpha} \right\}$$

Definition

Let $\{X_{\alpha}: \alpha \in \lambda\}$ be an arbitrary collection of topological spaces and for each $\beta \in \lambda$ define the projection function $\pi_{\beta}: \prod_{\alpha \in \lambda} X_{\alpha} \to X_{\beta}$ by $\pi_{\beta}(f) = f(\beta)$. The product topology on $\prod_{\alpha \in \lambda} X_{\alpha}$ is the one generated by the subbasis of sets of the form $\pi_{\beta}^{-1}(U_{\beta})$ where $U_{\beta} \in \mathscr{T}_{X_{\beta}}$.

Example

Let $\{X_n:n\in\mathbb{N}\}$ be a family of topological spaces and $\{U_n:n\in\mathbb{N}\}$ be a family of sets such that $U_n\in\mathscr{T}_{X_n}$:

$$\pi_{X_1}^{-1}(U_1) \cap \pi_{X_3}^{-1}(U_3) \cap \pi_{X_5}^{-1}(U_4) = (U_1 \times X_2 \times X_3 \times X_4 \times X_5 \times \cdots) \cap (X_1 \times X_2 \times U_3 \times X_4 \times X_5 \times \cdots) \cap (X_1 \times X_2 \times X_3 \times U_4 \times X_5 \times \cdots) = (U_1 \times X_2 \times U_3 \times U_4 \times X_5 \times \cdots)$$

The basis elements are the entire space except for a finite number of components.