Symplectic topology and Toric Varieties Part II: Hamiltonian geometry and Delzant's Theorem

Abdullah Ahmed¹

¹Department of Mathematics Lahore University of Management Sciences, Pakistan Supervisor: Dr. Shaheen Nazir

LUMS, May 13, 2024

Table of Contents

- Review of symplectic structure
- 2 Hamiltonian actions
- 3 Generalisation through Lie Theory
- 4 Delzant's Theorem

Table of Contents

- Review of symplectic structure
- 2 Hamiltonian actions
- 3 Generalisation through Lie Theory
- 4 Delzant's Theorem

• A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .

- A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .
- For M compact, given any vector field $X: M \to TM$, there exists a unique family of diffeomorphisms denoted by exp(tX) called the flow such that $exp(tX)|_{t=0} = \mathrm{id}_M$ and $\frac{d}{dt}exp(tX)(p) = X_{exp(tX)(p)}$.

- A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .
- For M compact, given any vector field $X: M \to TM$, there exists a unique family of diffeomorphisms denoted by exp(tX) called the flow such that $exp(tX)|_{t=0} = \operatorname{id}_M$ and $\frac{d}{dt}exp(tX)(p) = X_{exp(tX)(p)}$.
- The flows passing through a specific initial point $p \in M$ are called *integral curves*, and form a group under composition.

- A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .
- For M compact, given any vector field $X: M \to TM$, there exists a unique family of diffeomorphisms denoted by exp(tX) called the flow such that $exp(tX)|_{t=0} = \operatorname{id}_M$ and $\frac{d}{dt}exp(tX)(p) = X_{exp(tX)(p)}$.
- The flows passing through a specific initial point $p \in M$ are called *integral curves*, and form a group under composition.
- The Lie derivative is an operator defined on differential forms which measures change along a vector field: $\mathfrak{L}_X \omega = \frac{d}{dt} \exp(tX)^* \omega|_{t=0}$.

- A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .
- For M compact, given any vector field $X: M \to TM$, there exists a unique family of diffeomorphisms denoted by exp(tX) called the flow such that $exp(tX)|_{t=0} = \operatorname{id}_M$ and $\frac{d}{dt}exp(tX)(p) = X_{exp(tX)(p)}$.
- The flows passing through a specific initial point $p \in M$ are called *integral curves*, and form a group under composition.
- The Lie derivative is an operator defined on differential forms which measures change along a vector field: $\mathfrak{L}_X \omega = \frac{d}{dt} \exp(tX)^* \omega|_{t=0}$.
- (Cartan's formula) $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, where $i_X \omega = \omega(X,;)$ is a 1-form.

- A symplectic manifold (M, ω) is an even-dimensional smooth manifold equipped with a non-degenerate, closed 2-form ω .
- For M compact, given any vector field $X: M \to TM$, there exists a unique family of diffeomorphisms denoted by exp(tX) called the flow such that $exp(tX)|_{t=0} = \operatorname{id}_M$ and $\frac{d}{dt}exp(tX)(p) = X_{exp(tX)(p)}$.
- The flows passing through a specific initial point $p \in M$ are called *integral curves*, and form a group under composition.
- The Lie derivative is an operator defined on differential forms which measures change along a vector field: $\mathfrak{L}_X \omega = \frac{d}{dt} \exp(tX)^* \omega|_{t=0}$.
- (Cartan's formula) $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, where $i_X \omega = \omega(X,;)$ is a 1-form.
- The Lie bracket W = [X, Y] of two vector fields X, Y is the unique vector field W such that $W_p f = X_p Y f Y_p X f$ for all p and $f \in C^{\infty}(M)$.

Table of Contents

- Review of symplectic structure
- 2 Hamiltonian actions
- 3 Generalisation through Lie Theory
- 4 Delzant's Theorem

Definition

A vector field X on a symplectic manifold (M, ω) is called symplectic if it preserves ω in the sense that $\mathfrak{L}_X \omega = 0$.

Definition

A vector field X on a symplectic manifold (M, ω) is called symplectic if it preserves ω in the sense that $\mathfrak{L}_X \omega = 0$.

• Using the Cartan homotopy formula: $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, an equivalent criterion is $di_X \omega = 0$.

Definition

A vector field X on a symplectic manifold (M, ω) is called symplectic if it preserves ω in the sense that $\mathfrak{L}_X \omega = 0$.

- Using the Cartan homotopy formula: $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, an equivalent criterion is $di_X \omega = 0$.
- Example: $X=\frac{\partial}{\partial \theta_i}$ is symplectic on $(\mathbb{T}^2, d\theta_1 \wedge d\theta_2)$.

Definition

A vector field X on a symplectic manifold (M, ω) is called symplectic if it preserves ω in the sense that $\mathfrak{L}_X \omega = 0$.

- Using the Cartan homotopy formula: $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, an equivalent criterion is $di_X \omega = 0$.
- Example: $X = \frac{\partial}{\partial \theta_i}$ is symplectic on $(\mathbb{T}^2, d\theta_1 \wedge d\theta_2)$.
- Imposing an extra condition, we produce Hamiltonian vector fields:

Definition

A vector field X on a symplectic manifold (M, ω) is called symplectic if it preserves ω in the sense that $\mathfrak{L}_X \omega = 0$.

- Using the Cartan homotopy formula: $\mathfrak{L}_X \omega = di_X \omega + i_X d\omega$, an equivalent criterion is $di_X \omega = 0$.
- Example: $X = \frac{\partial}{\partial \theta_i}$ is symplectic on $(\mathbb{T}^2, d\theta_1 \wedge d\theta_2)$.
- Imposing an extra condition, we produce Hamiltonian vector fields:

Definition

A vector field X_H on a symplectic manifold (M,ω) is called Hamiltonian if $i_X\omega=dH$ is exact. H is then called the Hamiltonian function of X.

• By non-degeneracy of ω , every $H \in C^{\infty}(M)$ has a corresponding Hamiltonian vector field.

- By non-degeneracy of ω , every $H \in C^{\infty}(M)$ has a corresponding Hamiltonian vector field.
- Hamiltonian functions are preserved by their respective Hamiltonian vector fields. (Cartan formula)

- By non-degeneracy of ω , every $H \in C^{\infty}(M)$ has a corresponding Hamiltonian vector field.
- Hamiltonian functions are preserved by their respective Hamiltonian vector fields. (Cartan formula)
- Example: Every symplectic vector field is locally Hamiltonian.

- By non-degeneracy of ω , every $H \in C^{\infty}(M)$ has a corresponding Hamiltonian vector field.
- Hamiltonian functions are preserved by their respective Hamiltonian vector fields. (Cartan formula)
- Example: Every symplectic vector field is locally Hamiltonian.
- Example: $X_h = \frac{\partial}{\partial \theta}$ is Hamiltonian on $(S^2, d\theta \wedge dh)$, where h is the height function.

- By non-degeneracy of ω , every $H \in C^{\infty}(M)$ has a corresponding Hamiltonian vector field.
- Hamiltonian functions are preserved by their respective Hamiltonian vector fields. (Cartan formula)
- Example: Every symplectic vector field is locally Hamiltonian.
- Example: $X_h = \frac{\partial}{\partial \theta}$ is Hamiltonian on $(S^2, d\theta \wedge dh)$, where h is the height function.
- Example: The exactness condition above reduce to Hamilton's equations on the trajectory of a particle moving in standard phase space $(\mathbb{R}^{2n}, \sum_i dq_i \wedge dp_i)$, with $H: \mathbb{R}^{2n} \to \mathbb{R}$ as the energy function.

• The ideas above can be reformulated in terms of \mathbb{R} -actions or S^1 -actions on (M,ω) : $t\leftrightarrow \rho_t\subset Diff(M)$.

- The ideas above can be reformulated in terms of \mathbb{R} -actions or S^1 -actions on (M, ω) : $t \leftrightarrow \rho_t \subset Diff(M)$.
- ρ_t can be differentiated to obtain X, of which it is an integral curve.

- The ideas above can be reformulated in terms of \mathbb{R} -actions or S^1 -actions on (M,ω) : $t\leftrightarrow \rho_t\subset Diff(M)$.
- \bullet ρ_t can be differentiated to obtain X, of which it is an integral curve.

Definition

If an $\mathbb R$ or S^1 -action has an associated vector field that is either symplectic or Hamiltonian, the action is called symplectic or Hamiltonian respectively.

- The ideas above can be reformulated in terms of \mathbb{R} -actions or S^1 -actions on (M,ω) : $t\leftrightarrow \rho_t\subset Diff(M)$.
- \bullet ρ_t can be differentiated to obtain X, of which it is an integral curve.

Definition

If an \mathbb{R} or S^1 -action has an associated vector field that is either symplectic or Hamiltonian, the action is called symplectic or Hamiltonian respectively.

• Example: Let \mathbb{R} act on $(\mathbb{R}^{2n}, \omega = \sum_i dx_i \wedge dy_i)$ as $\rho_t(p) = (x_1, ..., x_n, y_1 - t, y_2, ..., y_n)$. The corresponding vector field is the constant vector field $X = -\frac{\partial}{\partial y_1}$, with Hamiltonian function x_1 .

- The ideas above can be reformulated in terms of \mathbb{R} -actions or S^1 -actions on (M,ω) : $t\leftrightarrow \rho_t\subset Diff(M)$.
- \bullet ρ_t can be differentiated to obtain X, of which it is an integral curve.

Definition

If an $\mathbb R$ or S^1 -action has an associated vector field that is either symplectic or Hamiltonian, the action is called symplectic or Hamiltonian respectively.

- Example: Let \mathbb{R} act on $(\mathbb{R}^{2n}, \omega = \sum_i dx_i \wedge dy_i)$ as $\rho_t(p) = (x_1, ..., x_n, y_1 t, y_2, ..., y_n)$. The corresponding vector field is the constant vector field $X = -\frac{\partial}{\partial y_1}$, with Hamiltonian function x_1 .
- Let S^1 act on S^2 as $\rho_{\theta}(\alpha, h) = (\alpha + \theta, h)$. The corresponding vector field is the Hamiltonian vector field $X_h = \frac{\partial}{\partial \theta}$.

Table of Contents

- Review of symplectic structure
- 2 Hamiltonian actions
- 3 Generalisation through Lie Theory
- 4 Delzant's Theorem

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

• \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

- \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.
- Most matrix groups GL(V), U(n), SU(n), O(n) etc are Lie groups.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

- \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.
- Most matrix groups GL(V), U(n), SU(n), O(n) etc are Lie groups.

Definition

A Lie algebra is a vector space $\mathfrak g$ equipped with a bilinear, anti-symmetric binary operation [; ; ;] called the Lie bracket, that satisfies the Jacobi identity [x,[y,z]]+[z,[x,y]]+[y,[z,x]]=0.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

- \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.
- Most matrix groups GL(V), U(n), SU(n), O(n) etc are Lie groups.

Definition

A Lie algebra is a vector space $\mathfrak g$ equipped with a bilinear, anti-symmetric binary operation [;,;] called the Lie bracket, that satisfies the Jacobi identity [x,[y,z]]+[z,[x,y]]+[y,[z,x]]=0.

• The vector space $\chi(M)$ of all vector fields on M is a Lie algebra with the Lie bracket $[X,Y]_p f = X_p Y f - Y_p X f$.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

- \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.
- Most matrix groups GL(V), U(n), SU(n), O(n) etc are Lie groups.

Definition

A Lie algebra is a vector space $\mathfrak g$ equipped with a bilinear, anti-symmetric binary operation [;,;] called the Lie bracket, that satisfies the Jacobi identity [x,[y,z]]+[z,[x,y]]+[y,[z,x]]=0.

- The vector space $\chi(M)$ of all vector fields on M is a Lie algebra with the Lie bracket $[X,Y]_p f = X_p Y f Y_p X f$.
- $\chi^{ham}(M)$ and $\chi^{symp}(M)$ form Lie-subalgebras of $\chi(M)$.

Definition

A Lie group is a manifold G equipped with a group structure where the multiplication and inverse operations are also smooth.

- \mathbb{R}^n and \mathbb{T}^n are Lie groups under standard addition.
- Most matrix groups GL(V), U(n), SU(n), O(n) etc are Lie groups.

Definition

A Lie algebra is a vector space $\mathfrak g$ equipped with a bilinear, anti-symmetric binary operation [;,;] called the Lie bracket, that satisfies the Jacobi identity [x,[y,z]]+[z,[x,y]]+[y,[z,x]]=0.

- The vector space $\chi(M)$ of all vector fields on M is a Lie algebra with the Lie bracket $[X,Y]_p f = X_p Y f Y_p X f$.
- $\chi^{ham}(M)$ and $\chi^{symp}(M)$ form Lie-subalgebras of $\chi(M)$.
- How are Lie algebras and Lie groups related to each other?

Left-invariant vector fields

Definition

Let G be a Lie group, and L_g be the smooth map that denotes left multiplication by $g \in G$. A vector field X is left-invariant if $(L_g)_*X = X$.

• The set of left-invariant vector fields is a vector space.

Left-invariant vector fields

Definition

Let G be a Lie group, and L_g be the smooth map that denotes left multiplication by $g \in G$. A vector field X is left-invariant if $(L_g)_*X = X$.

- The set of left-invariant vector fields is a vector space.
- If X and Y are left-invariant, then so is $[X, Y] \Rightarrow$ the set of left-invariant vector fields is a Lie-algebra.

Left-invariant vector fields

Definition

Let G be a Lie group, and L_g be the smooth map that denotes left multiplication by $g \in G$. A vector field X is left-invariant if $(L_g)_*X = X$.

- The set of left-invariant vector fields is a vector space.
- If X and Y are left-invariant, then so is $[X, Y] \Rightarrow$ the set of left-invariant vector fields is a Lie-algebra.
- There is a natural one-to-one correspondence between left-invariant vector fields, and T_eG with: $X \leftrightarrow X_e$.

Left-invariant vector fields

Definition

Let G be a Lie group, and L_g be the smooth map that denotes left multiplication by $g \in G$. A vector field X is left-invariant if $(L_g)_*X = X$.

- The set of left-invariant vector fields is a vector space.
- If X and Y are left-invariant, then so is [X, Y] ⇒ the set of left-invariant vector fields is a Lie-algebra.
- There is a natural one-to-one correspondence between left-invariant vector fields, and T_eG with: $X \leftrightarrow X_e$.
- For every Lie group G, $T_eG = \mathfrak{g}$ has a natural Lie algebra structure with the Lie bracket inherited from vector fields!

Left-invariant vector fields

Definition

Let G be a Lie group, and L_g be the smooth map that denotes left multiplication by $g \in G$. A vector field X is left-invariant if $(L_g)_*X = X$.

- The set of left-invariant vector fields is a vector space.
- If X and Y are left-invariant, then so is [X, Y] ⇒ the set of left-invariant vector fields is a Lie-algebra.
- There is a natural one-to-one correspondence between left-invariant vector fields, and T_eG with: $X \leftrightarrow X_e$.
- For every Lie group G, $T_eG = \mathfrak{g}$ has a natural Lie algebra structure with the Lie bracket inherited from vector fields!
- Example: The Lie algebra associated with G = U(n) is $\mathfrak{g} = i\mathfrak{H}$, the space of skew-hermitian matrices.

• Let G be a Lie group, and consider the conjugation map $C_g: a \mapsto gag^{-1}$.

- Let G be a Lie group, and consider the conjugation map $C_g: a \mapsto gag^{-1}$.
- The derivative at the identity gives an isomorphism of the Lie algebra g with itself.

- Let G be a Lie group, and consider the conjugation map $C_g: a \mapsto gag^{-1}$.
- ullet The derivative at the identity gives an isomorphism of the Lie algebra ${\mathfrak g}$ with itself.
- This gives a natural representation of G over its Lie algebra: $Ad: g \leftrightarrow Ad_g = C_{g_*} \in GL(\mathfrak{g})$ (adjoint representation).

- Let G be a Lie group, and consider the conjugation map $C_g: a \mapsto gag^{-1}$.
- ullet The derivative at the identity gives an isomorphism of the Lie algebra ${\mathfrak g}$ with itself.
- This gives a natural representation of G over its Lie algebra: $Ad: g \leftrightarrow Ad_g = C_{g_*} \in GL(\mathfrak{g})$ (adjoint representation).
- It's dual representation over \mathfrak{g}^* is given by $Ad_g^*(\zeta)(X) = \zeta(Ad_{g^{-1}}X)$ (coadjoint representation).

- Let G be a Lie group, and consider the conjugation map $C_g: a \mapsto gag^{-1}$.
- ullet The derivative at the identity gives an isomorphism of the Lie algebra ${\mathfrak g}$ with itself.
- This gives a natural representation of G over its Lie algebra: $Ad: g \leftrightarrow Ad_g = C_{g_*} \in GL(\mathfrak{g})$ (adjoint representation).
- It's dual representation over \mathfrak{g}^* is given by $Ad_g^*(\zeta)(X) = \zeta(Ad_{g^{-1}}X)$ (coadjoint representation).
- These representations can be interpreted as a G-action on its Lie algebra \mathfrak{g} , and allow generalization the theory of Hamiltonian actions.

Definition

A symplectic action $\psi: G \to \mathit{Sympl}(M, \omega)$ is Hamiltonian if there exists a map $\mu: M \to \mathfrak{g}^*$ satisfying:

(i) For each $X \in \mathfrak{g}$, define $\mu^X : p \mapsto \mu_p(X) \in \mathbb{R}$, and let \tilde{X} be the vector field generated on M by the action of the integral curve of X through e in $G: \{exp(tX)|t \in \mathbb{R}\}$. Then $d\mu^X = i_{\tilde{X}}\omega$.

(ii) $\mu \circ \psi_{\mathbf{g}} = Ad_{\mathbf{g}}^* \circ \mu$ for all $\mathbf{g} \in \mathbf{G}$, i.e, μ is equivariant.

• (M, ω, G, μ) is called a *Hamiltonian G-space*, and μ is called the *moment map*.

Definition

A symplectic action $\psi: G \to \mathit{Sympl}(M, \omega)$ is Hamiltonian if there exists a map $\mu: M \to \mathfrak{g}^*$ satisfying:

(i) For each $X \in \mathfrak{g}$, define $\mu^X : p \mapsto \mu_p(X) \in \mathbb{R}$, and let \tilde{X} be the vector field generated on M by the action of the integral curve of X through e in $G: \{exp(tX)|t \in \mathbb{R}\}$. Then $d\mu^X = i_{\tilde{X}}\omega$.

(ii) $\mu \circ \psi_g = Ad_g^* \circ \mu$ for all $g \in G$, i.e, μ is equivariant.

- (M, ω, G, μ) is called a *Hamiltonian G-space*, and μ is called the *moment map*.
- This is stronger than the original definition even for $G = \mathbb{R}$ or S^1 (case X = 1).

Definition

A symplectic action $\psi: G \to \mathit{Sympl}(M, \omega)$ is Hamiltonian if there exists a map $\mu: M \to \mathfrak{g}^*$ satisfying:

- (i) For each $X \in \mathfrak{g}$, define $\mu^X : p \mapsto \mu_p(X) \in \mathbb{R}$, and let X be the vector field generated on M by the action of the integral curve of X through e in $G: \{exp(tX)|t \in \mathbb{R}\}$. Then $d\mu^X = i_{\tilde{X}}\omega$.
- (ii) $\mu \circ \psi_g = Ad_g^* \circ \mu$ for all $g \in G$, i.e, μ is equivariant.
 - (M, ω, G, μ) is called a *Hamiltonian G-space*, and μ is called the *moment map*.
 - This is stronger than the original definition even for $G = \mathbb{R}$ or S^1 (case X = 1).
 - Example: The \mathbb{T}^n -action on \mathbb{C}^n given by $(\psi_{\alpha}(z))_j = e^{ik_j\alpha_j}z_j$, has moment map $(\mu(z))_j = \frac{-1}{2}k_j|z_j|^2 + c_j$.

Definition

A symplectic action $\psi: G \to \operatorname{Sympl}(M,\omega)$ is Hamiltonian if there exists a map $\mu: M \to \mathfrak{g}^*$ satisfying:

- (i) For each $X \in \mathfrak{g}$, define $\mu^X : p \mapsto \mu_p(X) \in \mathbb{R}$, and let \tilde{X} be the vector field generated on M by the action of the integral curve of X through e in $G: \{exp(tX)|t \in \mathbb{R}\}$. Then $d\mu^X = i_{\tilde{X}}\omega$.
- (ii) $\mu \circ \psi_g = Ad_g^* \circ \mu$ for all $g \in G$, i.e, μ is equivariant.
 - (M, ω, G, μ) is called a *Hamiltonian G-space*, and μ is called the *moment map*.
 - This is stronger than the original definition even for $G = \mathbb{R}$ or S^1 (case X = 1).
 - Example: The \mathbb{T}^n -action on \mathbb{C}^n given by $(\psi_{\alpha}(z))_j = e^{ik_j\alpha_j}z_j$, has moment map $(\mu(z))_i = \frac{-1}{2}k_i|z_i|^2 + c_i$.
 - Example: U(n) acts on \mathbb{C}^n with moment map $\mu(z)(X) = \frac{i}{2}z^*Xz$.

• Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of Lie algebra/Chevalley cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < i} c([X_i,X_i],X_0,...,\hat{X}_i,...,\hat{X}_i,...,\hat{X}_k)$.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of *Lie algebra/Chevalley cohomology groups* $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < i} c([X_i,X_i],X_0,...,\hat{X}_i,...,\hat{X}_i,...,\hat{X}_k).$
- Every symplectic action is Hamiltonian if $H^1(\mathfrak{g};\mathbb{R})=H^2(\mathfrak{g};\mathbb{R})=0$.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of Lie algebra/Chevalley cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < j} c([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_k)$.
- Every symplectic action is Hamiltonian if $H^1(\mathfrak{g};\mathbb{R})=H^2(\mathfrak{g};\mathbb{R})=0$.
- Moment maps are unique for Hamiltonian G-actions if $H^1(\mathfrak{g};\mathbb{R})=0$.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of Lie algebra/Chevalley cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < j} c([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_k)$.
- Every symplectic action is Hamiltonian if $H^1(\mathfrak{g};\mathbb{R})=H^2(\mathfrak{g};\mathbb{R})=0$.
- Moment maps are unique for Hamiltonian G-actions if $H^1(\mathfrak{g};\mathbb{R})=0$.

Definition

Let G be a compact Lie group with Lie algebra \mathfrak{g} . If the commutator ideal $[\mathfrak{g},\mathfrak{g}]=\{\text{linear combinations of }[X,Y] \text{ for any } X,Y\in\mathfrak{g}\}=\mathfrak{g}$, then G is semisimple.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of Lie algebra/Chevalley cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < j} c([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_k)$.
- Every symplectic action is Hamiltonian if $H^1(\mathfrak{g};\mathbb{R})=H^2(\mathfrak{g};\mathbb{R})=0$.
- Moment maps are unique for Hamiltonian G-actions if $H^1(\mathfrak{g};\mathbb{R})=0$.

Definition

Let G be a compact Lie group with Lie algebra \mathfrak{g} . If the commutator ideal $[\mathfrak{g},\mathfrak{g}]=\{\text{linear combinations of }[X,Y] \text{ for any } X,Y\in\mathfrak{g}\}=\mathfrak{g}$, then G is semisimple.

• Symplectic actions by compact semisimple Lie groups are Hamiltonian as $H^1(\mathfrak{g};\mathbb{R})=[\mathfrak{g},\mathfrak{g}]^0$.

- Note that if $H^1_{de\ Rham}(M;\mathbb{R})=0$, then $\chi^{ham}(M)=\chi^{symp}(M)$.
- Motivates the formation of Lie algebra/Chevalley cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ under the linear map $\delta: \Lambda^k \mathfrak{g}^* \to \Lambda^{k-1} \mathfrak{g}^*$ with $\delta c(X_0,...,X_k) = \sum_{i < j} c([X_i,X_j],X_0,...,\hat{X}_i,...,\hat{X}_j,...,X_k)$.
- Every symplectic action is Hamiltonian if $H^1(\mathfrak{g};\mathbb{R})=H^2(\mathfrak{g};\mathbb{R})=0$.
- Moment maps are unique for Hamiltonian G-actions if $H^1(\mathfrak{g};\mathbb{R})=0$.

Definition

Let G be a compact Lie group with Lie algebra \mathfrak{g} . If the commutator ideal $[\mathfrak{g},\mathfrak{g}]=\{\text{linear combinations of }[X,Y] \text{ for any } X,Y\in\mathfrak{g}\}=\mathfrak{g}$, then G is semisimple.

- Symplectic actions by compact semisimple Lie groups are Hamiltonian as $H^1(\mathfrak{g};\mathbb{R})=[\mathfrak{g},\mathfrak{g}]^0$.
- Useful note: For compact and connected Lie groups, $H_{de\ Rham}^k(M;\mathbb{R}) = H^k(\mathfrak{g};\mathbb{R}).$

Table of Contents

- Review of symplectic structure
- 2 Hamiltonian actions
- 3 Generalisation through Lie Theory
- 4 Delzant's Theorem

Theorem (Marsden-Weinstein-Meyer)

Let (M, ω, G, μ) be Hamiltonian G-space for a compact Lie group G. Assume G acts freely on $\mu^{-1}(0)$. Then:

- (i) the orbit space $M_{red} = \mu^{-1}(0)/G$ is a manifold.
- (ii) there is a symplectic form ω_{red} on M_{red} with $i^*\omega = \pi^*\omega_{red}$, where $i: \mu^{-1}(0) \to M$ is inclusion, and $\pi: \mu^{-1}(0) \to M_{red}$ is projection.

Theorem (Marsden-Weinstein-Meyer)

Let (M, ω, G, μ) be Hamiltonian G-space for a compact Lie group G. Assume G acts freely on $\mu^{-1}(0)$. Then:

- (i) the orbit space $M_{red} = \mu^{-1}(0)/G$ is a manifold.
- (ii) there is a symplectic form ω_{red} on M_{red} with $i^*\omega = \pi^*\omega_{red}$, where $i: \mu^{-1}(0) \to M$ is inclusion, and $\pi: \mu^{-1}(0) \to M_{red}$ is projection.
 - The pair (M_{red}, ω_{red}) is called the *symplectic quotient*.

Theorem (Marsden-Weinstein-Meyer)

Let (M, ω, G, μ) be Hamiltonian G-space for a compact Lie group G. Assume G acts freely on $\mu^{-1}(0)$. Then:

- (i) the orbit space $M_{red} = \mu^{-1}(0)/G$ is a manifold.
- (ii) there is a symplectic form ω_{red} on M_{red} with $i^*\omega = \pi^*\omega_{red}$, where $i: \mu^{-1}(0) \to M$ is inclusion, and $\pi: \mu^{-1}(0) \to M_{red}$ is projection.
 - The pair (M_{red}, ω_{red}) is called the *symplectic quotient*.
 - Example: For the natural action of U(k) on $\mathbb{C}^{k\times n}$, $\mu^{-1}(0)=\{A|AA^{\dagger}=Id\}$ is freely acted upon, and $\mu^{-1}(0)/G=Gr_{\mathbb{C}}(k,n)$.

$\overline{\mathsf{Theorem}}$ (Marsden-Weinstein-Meyer)

Let (M, ω, G, μ) be Hamiltonian G-space for a compact Lie group G. Assume G acts freely on $\mu^{-1}(0)$. Then: (i) the orbit space $M_{\text{red}} = \mu^{-1}(0)/G$ is a manifold.

- (ii) there is a symplectic form ω_{red} on M_{red} with $i^*\omega = \pi^*\omega_{red}$, where $i: \mu^{-1}(0) \to M$ is inclusion, and $\pi: \mu^{-1}(0) \to M_{red}$ is projection.
 - The pair (M_{red}, ω_{red}) is called the *symplectic quotient*.
 - Example: For the natural action of U(k) on $\mathbb{C}^{k\times n}$, $\mu^{-1}(0)=\{A|AA^{\dagger}=Id\}$ is freely acted upon, and $\mu^{-1}(0)/G=Gr_{\mathbb{C}}(k,n)$.
 - Example: For the usual rotation action of S^1 on \mathbb{C}^{n+1} , $\mu^{-1}(0)=S^{2n+1}$, and $\mu^{-1}(0)/G\cong\mathbb{CP}^n$, with ω_{red} being exactly the Fubini-Study form.

• Sketch of proof of (ii):

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.
- Using dimension arguments and statement above, ker $\mu_{*,p} = (T_p \mathfrak{D}_p)^{\omega_p}$ and $im \ \mu_{*,p} = \mathfrak{g}_p^0$, where \mathfrak{D}_p is the G-orbit through p, and \mathfrak{g}_p is the Lie algebra of the stabilizer of p.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.
- Using dimension arguments and statement above, ker $\mu_{*,p}=(T_p\mathfrak{D}_p)^{\omega_p}$ and im $\mu_{*,p}=\mathfrak{g}_p^0$, where \mathfrak{D}_p is the G-orbit through p, and \mathfrak{g}_p is the Lie algebra of the stabilizer of p.
- G acts freely on $\mu^{-1}(0) \Rightarrow \mu_*$ is surjective $\Rightarrow \mu^{-1}(0)$ is a closed submanifold $\Rightarrow \ker \mu_{*,p} = T_p \mu^{-1}(0)$.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.
- Using dimension arguments and statement above, ker $\mu_{*,p}=(T_p\mathfrak{O}_p)^{\omega_p}$ and im $\mu_{*,p}=\mathfrak{g}_p^0$, where \mathfrak{O}_p is the G-orbit through p, and \mathfrak{g}_p is the Lie algebra of the stabilizer of p.
- G acts freely on $\mu^{-1}(0) \Rightarrow \mu_*$ is surjective $\Rightarrow \mu^{-1}(0)$ is a closed submanifold $\Rightarrow \ker \mu_{*,p} = T_p \mu^{-1}(0)$.
- Equivariance $\Rightarrow \mu^{-1}(0)$ is *G*-invariant $\Rightarrow T_p \mathfrak{O}_p \subset T_p \mu^{-1}(0) \Rightarrow T_p \mathfrak{O}_p$ is isotropic.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.
- Using dimension arguments and statement above, ker $\mu_{*,p} = (T_p \mathfrak{D}_p)^{\omega_p}$ and $im \ \mu_{*,p} = \mathfrak{g}_p^0$, where \mathfrak{D}_p is the G-orbit through p, and \mathfrak{g}_p is the Lie algebra of the stabilizer of p.
- G acts freely on $\mu^{-1}(0) \Rightarrow \mu_*$ is surjective $\Rightarrow \mu^{-1}(0)$ is a closed submanifold $\Rightarrow \ker \mu_{*,p} = T_p \mu^{-1}(0)$.
- Equivariance $\Rightarrow \mu^{-1}(0)$ is *G*-invariant $\Rightarrow T_p \mathfrak{O}_p \subset T_p \mu^{-1}(0) \Rightarrow T_p \mathfrak{O}_p$ is isotropic.
- This defines a canonical symplectic form $\omega_{red}([u],[v]) = \omega(u,v)$ on $T_p\mu^{-1}(0)/T_p\mathfrak{O}_p \cong T_{[p]}M_{red}$.

- Sketch of proof of (ii):
- Let $\mu_{*,p}: T_pM \to \mathfrak{g}^*$ be the differential at p of the moment map.
- $d\mu = i_{\tilde{X}}\omega \Rightarrow \omega_p(\tilde{X}_p, v) = \mu_{*,p}(v)(X)$ for all $X \in \mathfrak{g}$ and $p \in M$.
- Using dimension arguments and statement above, ker $\mu_{*,p}=(T_p\mathfrak{O}_p)^{\omega_p}$ and im $\mu_{*,p}=\mathfrak{g}_p^0$, where \mathfrak{O}_p is the G-orbit through p, and \mathfrak{g}_p is the Lie algebra of the stabilizer of p.
- G acts freely on $\mu^{-1}(0) \Rightarrow \mu_*$ is surjective $\Rightarrow \mu^{-1}(0)$ is a closed submanifold $\Rightarrow \ker \mu_{*,p} = T_p \mu^{-1}(0)$.
- Equivariance $\Rightarrow \mu^{-1}(0)$ is *G*-invariant $\Rightarrow T_p \mathfrak{O}_p \subset T_p \mu^{-1}(0) \Rightarrow T_p \mathfrak{O}_p$ is isotropic.
- This defines a canonical symplectic form $\omega_{red}([u],[v]) = \omega(u,v)$ on $T_p\mu^{-1}(0)/T_p\mathfrak{O}_p \cong T_{[p]}M_{red}$.
- More generally, shifted moment maps allow for reduction across other levels $\mu^{-1}(\zeta)$ as long as they are preserved under the action.

Theorem (Atiyah, Guilleman-Sternberg)

Let (M,ω) be a compact and connected symplectic manifold with a Hamiltonian \mathbb{T}^m action on it with moment map μ . Then the levels of μ are connected, and $\mu(M)$ is the convex hull of the image of fixed points of the action.

Theorem (Atiyah, Guilleman-Sternberg)

Let (M, ω) be a compact and connected symplectic manifold with a Hamiltonian \mathbb{T}^m action on it with moment map μ . Then the levels of μ are connected, and $\mu(M)$ is the convex hull of the image of fixed points of the action.

Definition

An effective group action is such that $\cap_{p \in M} Stab(p) = \{e\}$.

Theorem (Atiyah, Guilleman-Sternberg)

Let (M, ω) be a compact and connected symplectic manifold with a Hamiltonian \mathbb{T}^m action on it with moment map μ . Then the levels of μ are connected, and $\mu(M)$ is the convex hull of the image of fixed points of the action.

Definition

An effective group action is such that $\cap_{p \in M} Stab(p) = \{e\}.$

• A smooth effective \mathbb{T}^m action is a submersion at some point p, and thus must have at least m+1 fixed points.

Theorem (Atiyah, Guilleman-Sternberg)

Let (M, ω) be a compact and connected symplectic manifold with a Hamiltonian \mathbb{T}^m action on it with moment map μ . Then the levels of μ are connected, and $\mu(M)$ is the convex hull of the image of fixed points of the action.

Definition

An effective group action is such that $\cap_{p \in M} Stab(p) = \{e\}.$

- ullet A smooth effective \mathbb{T}^m action is a submersion at some point p, and thus must have at least m+1 fixed points.
- As $T_p \mathfrak{O}_p$ is isotropic, dim $M \geq 2m$.

Definition

A symplectic toric manifold is a compact and connected symplectic manifold (M, ω) , equipped with a \mathbb{T}^m action with $m = \frac{1}{2} dim M$.

Definition

A symplectic toric manifold is a compact and connected symplectic manifold (M, ω) , equipped with a \mathbb{T}^m action with $m = \frac{1}{2} \text{dim} M$.

• Example: S^1 acting on S^2 by rotations with moment map $\mu = h$ is a symplectic toric manifold with $\mu(S^2) = [-1, 1]$.

Definition

A symplectic toric manifold is a compact and connected symplectic manifold (M, ω) , equipped with a \mathbb{T}^m action with $m = \frac{1}{2} \text{dim} M$.

- Example: S^1 acting on S^2 by rotations with moment map $\mu = h$ is a symplectic toric manifold with $\mu(S^2) = [-1, 1]$.
- \mathbb{CP}^2 is toric under the Fubini-Study structure and action $(e^{i\theta_1},e^{i\theta_2})[z_0,z_1,z_2]=[z_0,e^{i\theta_1}z_1,e^{i\theta_2}z_2]$ with moment map $\mu([z])=\frac{-1}{2}(\frac{|z_1|^2}{|z|^2},\frac{|z_2|^2}{|z|^2}).$ $\mu(\mathbb{CP}^2)=?$

Definition

A symplectic toric manifold is a compact and connected symplectic manifold (M, ω) , equipped with a \mathbb{T}^m action with $m = \frac{1}{2} \text{dim} M$.

- Example: S^1 acting on S^2 by rotations with moment map $\mu = h$ is a symplectic toric manifold with $\mu(S^2) = [-1, 1]$.
- \mathbb{CP}^2 is toric under the Fubini-Study structure and action $(e^{i\theta_1},e^{i\theta_2})[z_0,z_1,z_2]=[z_0,e^{i\theta_1}z_1,e^{i\theta_2}z_2]$ with moment map $\mu([z])=\frac{-1}{2}(\frac{|z_1|^2}{|z|^2},\frac{|z_2|^2}{|z|^2}).$ $\mu(\mathbb{CP}^2)=?$
- What about \mathbb{CP}^3 under a similar action?

Definition

A symplectic toric manifold is a compact and connected symplectic manifold (M, ω) , equipped with a \mathbb{T}^m action with $m = \frac{1}{2} \text{dim} M$.

- Example: S^1 acting on S^2 by rotations with moment map $\mu = h$ is a symplectic toric manifold with $\mu(S^2) = [-1, 1]$.
- \mathbb{CP}^2 is toric under the Fubini-Study structure and action $(e^{i\theta_1},e^{i\theta_2})[z_0,z_1,z_2]=[z_0,e^{i\theta_1}z_1,e^{i\theta_2}z_2]$ with moment map $\mu([z])=\frac{-1}{2}(\frac{|z_1|^2}{|z|^2},\frac{|z_2|^2}{|z|^2})$. $\mu(\mathbb{CP}^2)=?$
- What about \mathbb{CP}^3 under a similar action?
- An observation: Dimension of the face + Dimension of the stabilizer=m.

Delzant Polytopes

Definition

A Delzant polytope \triangle in \mathbb{R}^n is a convex polytope that is:

- (i) simple, i.e, has n edges meeting each vertex;
- (ii) rational, i.e, each edge meeting at a vertex p is of the form $p + tu_i$ where $u_i \in \mathbb{Z}^n$;
- (iii) smooth, i.e, for each vertex p, $\{u_i\}$ forms a \mathbb{Z} -basis of \mathbb{Z}^n .

Delzant Polytopes

Definition

- A Delzant polytope \triangle in \mathbb{R}^n is a convex polytope that is:
- (i) simple, i.e, has n edges meeting each vertex;
- (ii) rational, i.e, each edge meeting at a vertex p is of the form $p + tu_i$ where $u_i \in \mathbb{Z}^n$;
- (iii) smooth, i.e, for each vertex p, $\{u_i\}$ forms a \mathbb{Z} -basis of \mathbb{Z}^n .

• Which of the above are Delzant polytopes?

Delzant Polytopes

Definition

A Delzant polytope \triangle in \mathbb{R}^n is a convex polytope that is:

- (i) simple, i.e, has n edges meeting each vertex;
- (ii) rational, i.e, each edge meeting at a vertex p is of the form $p + tu_i$ where $u_i \in \mathbb{Z}^n$:
- (iii) smooth, i.e, for each vertex p, $\{u_i\}$ forms a \mathbb{Z} -basis of \mathbb{Z}^n .

- Which of the above are Delzant polytopes?
- Any Delzant polytope can be written as the intersection of half-spaces $\triangle = \{x \in \mathbb{R}^n | \langle x, v_i \rangle \leq \lambda_i \}$ where $\lambda_i \in \mathbb{R}$ and v_i are outward pointing vectors (usually chosen to be primitive) to each *facet*.

Delzant's Theorem

Theorem (Delzant, 1988)

There is a one-to-one correspondence between symplectic toric manifolds and Delzant polytopes:

$$(M^{2n}, \omega, \mathbb{T}^n, \mu) \leftrightarrow \mu(M).$$

We shall sketch the proof of the surjectivity.

Delzant's Theorem

Theorem (Delzant, 1988)

There is a one-to-one correspondence between symplectic toric manifolds and Delzant polytopes:

$$(M^{2n}, \omega, \mathbb{T}^n, \mu) \leftrightarrow \mu(M).$$

- We shall sketch the proof of the surjectivity.
- Motivation: Every *n*-dimensional Delzant polytope with *d* facets can be formed by the intersection of an affine plane with the negative orthant \mathbb{R}^d_- .
- Idea: For an *n*-dimensional Delzant polytope with *d* facets, we show that there is symplectic quotient of $(\mathbb{C}^d, \omega_0, \mathbb{T}^d, \mu)$ with action $(e^{2\pi i t_1}, ..., e^{2\pi i t_d}) \cdot (z_1, ..., z_d) = (e^{2\pi i t_1} z_1, ..., e^{2\pi i t_d} z_d)$ and moment map $\phi(z_1, ..., z_d) = -\pi(|z_1|^2, ..., |z_d|^2) + (\lambda_1, ..., \lambda_d)$ that does the job.

• Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi: \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi : \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi : \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.
- Induces an exact sequence $0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi: \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.
- Induces an exact sequence $0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$.
- Induces a dual exact sequence $0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathfrak{n}^* \to 0$.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi: \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.
- Induces an exact sequence $0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$.
- Induces a dual exact sequence $0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathfrak{n}^* \to 0$.
- Sub-action of N is Hamiltonian with moment map $i^* \circ \phi$.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi: \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.
- Induces an exact sequence $0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$.
- Induces a dual exact sequence $0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathfrak{n}^* \to 0$.
- Sub-action of *N* is Hamiltonian with moment map $i^* \circ \phi$.
- $Z = (i^* \circ \phi)^{-1}(0)$ is a (d+n)-dimensional compact submanifold of \mathbb{C}^d and N acts freely on Z.

- Let $\triangle = \{x \in (\mathbb{R}^n)^* | \langle x, v_i \rangle \leq \lambda_i, i = 1, ..., d\}$ and $\{e_i\}$ be standard basis of \mathbb{R}^d .
- Define the surjective map $\pi: \mathbb{R}^d \to \mathbb{R}^n$ via $\pi(e_i) = v_i$, with $\pi(\mathbb{Z}^d) = \mathbb{Z}^n$.
- Pull π down to a map $\mathbb{T}^d \to \mathbb{T}^n$. Let $N = \ker \pi$ be a (d n) dimensional sub-torus.
- Induces an exact sequence $0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$.
- Induces a dual exact sequence $0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathfrak{n}^* \to 0$.
- Sub-action of *N* is Hamiltonian with moment map $i^* \circ \phi$.
- $Z = (i^* \circ \phi)^{-1}(0)$ is a (d+n)-dimensional compact submanifold of \mathbb{C}^d and N acts freely on Z.
- Using Marsden-Weinstein-Meyer reduction, we obtain a symplectic quotient $(M_{\triangle}, \omega_{\triangle})$, which is a Hamiltonian \mathbb{T}^n space.

• Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.
- ullet $\pi(e_1)=1$ and $\pi(e_2)=-1\Rightarrow \ker\pi=\operatorname{span}(e_1+e_2)\Rightarrow N\cong S^1.$

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.
- ullet $\pi(e_1)=1$ and $\pi(e_2)=-1\Rightarrow \ker\pi=\operatorname{span}(e_1+e_2)\Rightarrow N\cong S^1.$
- $i^*(x_1, x_2) = x_1 + x_2$ and $i^* \circ \phi(z_1, z_2) = -\pi(|z_1|^2 + |z_2|^2) + a$.

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.
- ullet $\pi(e_1)=1$ and $\pi(e_2)=-1\Rightarrow \ker\pi=\operatorname{span}(e_1+e_2)\Rightarrow N\cong S^1.$
- $i^*(x_1, x_2) = x_1 + x_2$ and $i^* \circ \phi(z_1, z_2) = -\pi(|z_1|^2 + |z_2|^2) + a$.
- $(i^* \circ \phi)^{-1}(0) = S_{\frac{a}{\pi}}^2$

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.
- ullet $\pi(e_1)=1$ and $\pi(e_2)=-1\Rightarrow \ker\pi=\operatorname{span}(e_1+e_2)\Rightarrow N\cong S^1.$
- $i^*(x_1, x_2) = x_1 + x_2$ and $i^* \circ \phi(z_1, z_2) = -\pi(|z_1|^2 + |z_2|^2) + a$.
- $(i^* \circ \phi)^{-1}(0) = S_{\frac{a}{\pi}}^2$
- $(M_{\triangle}, \omega_{\triangle}) = (\mathbb{CP}^1, \omega_{FS})$, has a standard toric structure under rotational action of $\mathbb{T}^2/N = S^1$.

- Consider the Delzant polytope $\triangle = [0, a] \subset \mathbb{R}^*$ with n = 1 and d = 2, $v_1 = 1$ and $v_2 = -1$.
- \triangle is defined by $\langle x, v_1 \rangle \leq 0$ and $\langle x, v_2 \rangle \leq a$.
- ullet $\pi(e_1)=1$ and $\pi(e_2)=-1\Rightarrow \ker\pi=\operatorname{span}(e_1+e_2)\Rightarrow N\cong S^1.$
- $i^*(x_1, x_2) = x_1 + x_2$ and $i^* \circ \phi(z_1, z_2) = -\pi(|z_1|^2 + |z_2|^2) + a$.
- $(i^* \circ \phi)^{-1}(0) = S_{\frac{a}{\pi}}^2$.
- $(M_{\triangle}, \omega_{\triangle}) = (\mathbb{CP}^1, \omega_{FS})$, has a standard toric structure under rotational action of $\mathbb{T}^2/N = S^1$.
- Neat observation: Consider a face F of $\phi(Z)$ of dimension n-r dimension of the stabilizer of a point $z \in Z$ with image in F has dimension r.

Thank you![2][1][3]

Mathematical Methods of Classical Mechanics.

Springer-Verlag, 1974.

Annas Cannas de Silva.

Lectures on Symplectic Geometry, volume 1764 of Lecture Notes in Mathematics.

Springer-Verlag, 2001.

Jr. Kirillov, Alexander.

Introduction to Lie Groups and Lie Algebras.

Cambridge Studies in Advanced Mathematics, 2008.