UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804

Deklarationsinhaber Schöck Bauteile GmbH

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-SBG-20150013-IBC1-DE

ECO EPD Ref. No. ECO-00000203

usstellungsdatum 08.04.2015

Gültig bis 07.04.202

Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 Schöck Bauteile GmbH

www.bau-umwelt.com / https://epd-online.com

1. Allgemeine Angaben

Schöck Bauteile GmbH Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 Programmhalter Inhaber der Deklaration IBU - Institut Bauen und Umwelt e.V. Schöck Bauteile GmbH Panoramastr 1 Vimbucher Straße 2 10178 Berlin D-76534 Baden-Baden Deutschland Deklarationsnummer Deklariertes Produkt/deklarierte Einheit EPD-SBG-20150013-IBC1-DE 1 m (Laufmeter) Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 Diese Deklaration basiert auf den Gültigkeitsbereich: Produktkategorienregeln: Die EPD bezieht sich auf ein spezifisches tragendes Tragende Wärmedämmelemente, 07.2014 Wärmedämmelement der Firma Schöck Bauteile (PCR geprüft und zugelassen durch den unabhängigen GmbH - Schöck Isokorb® Typ KXT50-CV35-V6-H200-Sachverständigenrat) REI120. Die Zusammenstellung, der für das Schöck Isokorb® Typ KXT erforderlichen Drucklager, Ausstellungsdatum erfolgt im Schöck Werk in Landsberg (in der Nähe von Halle). Die Endmontage aller benötigen Komponenten 08.04.2015 findet im Schöck Werk im Baden-Baden statt. Die EPD Ergebnisse für die Herstellung von Schöck Gültig bis Isokorb® Typ KXT50-CV35-V6-H200-REI120 sind 07.04.2020 ebenfalls auf alle Isokorb® Typen mit geringeren Tragstufen (KXT15 bis KXT45) anwendbar. Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen. Wermanjes Die CEN Norm /EN 15804/ dient als Kern-PCR Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß /ISO 14025/ Prof. Dr.-Ing. Horst J. Bossenmayer intern x extern (Präsident des Instituts Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Geschäftsführer IBU)

2. Produkt

2.1 Produktbeschreibung

Der Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 ist ein tragendes Wärmedämmelement zur thermischen Trennung auskragender Stahlbetonbauteile von der Deckenkonstruktion. Er besteht aus einer 120mm dicken Wärmedämmschicht aus Polystyrol-Hartschaum (Neopor®) sowie aus einem statisch wirksamen Fachwerksystem aus geschweißten Stahlstäben (Zug- und Querkraftstäbe) und einem System von Drucklagern aus ultrahochfestem Beton (HTE Compact Drucklager). Die Kräfte werden durch Verbundspannungen und Flächenpressung an die jeweiligen angrenzenden Bauteile übertragen.

Der Schöck Isokorb® Typ KXT ist in unterschiedlichen Tragstufen erhältlich. Die Tragstufen richten sich nach der erforderlichen Beanspruchung. Je nach Tragstufe variiert die Anzahl der Zugstäbe, Querkraftstäbe und HTE Compact Drucklager. Die genaue Bestückung des Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 ist in der Tabelle unter Abschnitt 2.3 aufgeführt.

Das deklarierte Produkt wird in einer Brandschutzausführung mit werkseitig an der Oberund Unterseite angebrachten Brandschutzplatten ausgeliefert und weist eine Feuerwiderstandsdauer von 120 Minuten (REI120) auf.

Die EPD Ergebnisse für die Herstellung von Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 sind ebenfalls auf alle Isokorb® Typen mit geringeren Tragstufen (KXT15 bis KXT45) anwendbar: Die Produkte der Tragstufen (KXT15 bis KXT45) haben identische Komponenten und besitzen aufgrund der geringeren Bestückung (kleinere Anzahl Stahlstäbe und Drucklager) eine geringere Masse als das deklarierte Produkt. Der Herstellungsprozess der Produkte der Tragstufen (KXT15 bis KXT45) ist der gleiche.

2.2 Anwendung

Manfred Russ,

Unabhängige/r Prüfer/in vom SVR bestellt

Der Schöck Isokorb® Typ KXT dient zur statischen Übertragung von Biegemomenten und Querkräften und wird bei auskragenden Stahlbetonkonstruktionen wie z.B. Balkonen eingesetzt. Er wird linear in der

Wärmedämmebene (z.B. Außendämmung mit Wärmedämmverbundsystem - WDVS) so angeordnet, dass der Wärmestrom lokal zwischen Innen- und Außenbereich minimiert wird und Wärmebrücken reduziert werden.

Durch seine wärmetechnisch und statisch optimierte Konstruktion gewährleistet der Isokorb® eine effektive Wärmedämmleistung, die anhand der äquivalenten Wärmeleitfähigkeit (λ_{eq}) ausgewiesen wird.

2.3 Technische Daten

Bautechnische Daten

Bezeichnung	Wert	Einheit
Typenbezeichnug KXT50-CV35-V6-	_	_
H200-REI120		_
Dämmstoffdicke	120	mm
Betondeckung /DIN 1045-1/, /DIN EN	35	mm
1992-1-1/NA/		111111
Höhe	200	mm
Länge	1000	mm
Zugstäbe (Anzahl; Durchmesser)	15 Ø 8	mm
Querkraftstäbe (Anzahl; Durchmesser)	5Ø6	mm
HTE Drucklager (Anzahl)	8	-
Feuerwiderstandsklasse		
/DIN EN 1365-2/, /DIN EN 13501-2/,	120	-
/DIN 4102-2/, /Z-15.7-240/		
Äquivalente Wärmeleitfähigkeit λeq		
/DIN EN ISO 2011/, /DIN EN ISO	0,105	W/(mK)
6946/, /Z-15.7-240/		
Wärmeleitfähigkeit des		
Wärmedämmstoffes Neopor	0,031	W/(mK)
/DIN EN 13163/		
Momententragfähigkeit bei C25/30	-44,2	kNm/m
/DIN 1045-1/, /DIN EN 1992-1-1/NA/	,_	13. 411//111
Querkrafttragfähigkeit bei C25/30 /DIN	35,3	kN/m
1045-1/, /DIN EN 1992-1-1/NA/	00,0	10.4/111

2.4 Inverkehrbringung/Anwendungsregeln Schöck Isokorb® :

Allgemeine Bauaufsichtliche Zulassung Nr. /Z-15.7-240/ des Deutschen Instituts für Bautechnik (DIBt).

2.5 Lieferzustand

Der Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 wird mit einer Länge von 1000mm und einer Höhe von 200mm hergestellt.

2.6 Grundstoffe/Hilfsstoffe

Bezeichnung	Wert	Einheit
Betonstahl B500	36,3	%
Nichtrostender Stahl B500 NR	12,9	%
Kunststoffe (PVC, PE)	11,5	%
Zementgebundene Brandschutzplatte	17,6	%
Dämmstoff (Polystyrol-Hartschaum)	2,8	%
HTE Compact Drucklager (Feinbeton)	17,9	%
Rohstoffe mit geringen GewAnteilen	1,0	%

Das Produktgewicht in Bezug auf die deklarierte Einheit beträgt 14,695 kg.

2.7 Herstellung Verarbeitung Vormaterial

Das Ausgangsmaterial für die geschweißten Betonstahl-Edelstahlverbindungen im Schöck Isokorb® wird als "Metalldraht" auf Spulen (Coils) aufgewickelt, angeliefert und in speziellen Anlagen abgehaspelt, gerichtet und auf die benötigte Länge geschnitten oder direkt vom Coil mittels anerkannten und zertifizierten Schweißverfahren auf speziellen Schweißautomaten in der eigenen Produktion in Baden-Baden hergestellt. Die Querkraftstäbe werden auf eigenen Biegemaschinen gebogen und mit einem Halteclip versehen.

Das HTE-Compact Drucklager aus Hochleistungsfeinbeton wird im Werk in Landsberg entsprechend den beim Deutschen Institut für Bautechnik hinterlegten Rezepturen in vorgefertigten Schalen aus Kunststoff gegossen, die als verlorene Schalung dienen.

Endmontage

Die für die Endmontage der Schöck Isokorb® Typen benötigten Materialien werden sowohl eigengefertigt als auch von ausgewählten Lieferanten bezogen. Die Montage der Schöck Isokorb® Typen erfolgt auf speziellen, typenbezogenen Fertigungslinien, die durch konkrete Kundenbestellungen ausgelöst werden. Bei der Endmontage im Werk Baden-Baden werden die benötigten Komponenten (Zug und Querkraftstab, Drucklager, Kunststoffschienen, Schaumteile und Brandschutzplatten) nach der gültigen Fertigungszeichnung und den entsprechenden Qualitätsvorschriften mittels mechanischer Verbindungstechnik sowie eines speziellen Schmelzklebers miteinander verbunden.

2.8 Umwelt und Gesundheit während der Herstellung

Die Kriterien für Umwelt- und Energiemanagement sowie die Anforderungen hinsichtlich des Gesundheitsschutzes am Arbeitsplatz werden entsprechend den Zertifizierungen eingehalten:

Arbeits- und Gesundheitsschutz Herstellung:

Berufsbezogenes Gesundheits- und Sicherheitsmanagement gemäß /BS OHSAS 18001:2007/.

Umweltschutz Herstellung:

Umweltmanagement gemäß /DIN EN ISO 14001/

Energiemanagement gemäß /DIN EN ISO 50001/

Qualitätsmanagement Herstellung:

Qualitätsmanagement gemäß /DIN EN ISO 9001/

Das Unternehmen ist seit 2006 nach /DIN EN ISO 9001/, seit 2013 nach /DIN EN ISO 14001/ und seit 2014 nach /DIN EN ISO 50001/, sowie nach /BS OHSAS 18001/ durch die DEKRA Certification GmbH zertifiziert.

Alle Abfallarten wie z.B. Edelstahl, Betonstahl, expandiertes Polystyrol (EPS), Kunststoffe, Holz (Holzpaletten und Holzgarnituren) und Verpackungsfolie, die bei der Herstellung des Produktes anfallen oder als überschüssiges Material übrig bleiben, werden getrennt, gelagert und dem Wertstoffkreislauf wieder zugeführt.

2.9 Produktverarbeitung/Installation

Der Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 wird als einbaufertiges Meterelement geliefert und durch ein Nut- und Federsystem miteinander linear bündig zwischen Decke und Balkonplatte angeordnet. Bei Bedarf lässt sich dieses mittels einer üblichen Handsäge auf die geforderte Anschlusslänge ablängen. Der Isokorb® wird im Rohbau während oder

alternativ nach den Verlegearbeiten der Decken- und Balkonplattenbewehrung ohne Einsatz von Hebewerkzeugen in Position gebracht, mit der vorhandenen bauseitigen Bewehrung verrödelt und gegen Aufschwimmen beim anschließenden Betoniervorgang gesichert.

Während der Verarbeitung des Schöck Isokorb[®] sind keine besonderen Maßnahmen zum Schutz der Umwelt zu treffen.

2.10 Verpackung

Der Schöck Isokorb® wird auf Holzpaletten mit seitlicher Holzgarnitur gestapelt und je nach landesspezifischer Anforderung mit oder ohne Schutzfolie umwickelt ausgeliefert.

Die einzelnen Verpackungsmaterialien werden getrennt und dem Wertstoffkreislauf wieder zugeführt. Die Rückgabe der Holzpaletten erfolgt im Rahmen des Interseroh-Systems an autorisierte Entsorgungs-unternehmen.

2.11 Nutzungszustand

Alle eingesetzten Materialien sind im Einbauzustand während der Nutzungsdauer gegen äußere Einwirkungen geschützt und für die Nutzungsdauer der Konstruktion ausgelegt. Gefährdung für Wasser, Luft und Boden können bei bestimmungsgemäßer Anwendung der Produkte nicht entstehen.

2.12 Umwelt & Gesundheit während der Nutzung

Umwelt und Gesundheit sind durch die integrierte Anwendung der Produkte im Rohbau während der Nutzungsphase nicht beeinträchtigt.

2.13 Referenz-Nutzungsdauer

Für den Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 gilt eine durch Prüfszenarien bestätigte Nutzungsdauer von mindestens 50 Jahren, welche der durchschnittlichen Gebäudenutzung und Gebäudeplanung entsprechen. Die praktische Nutzungsdauer kann jedoch durchaus höher liegen. Die Nutzungsdauer richtet sich nach Ermüdungsversuchen, die durch Belastungskollektive (Temperatur, Verformung, Umwelt) eine Lebensdauer von 50 Jahren simulieren und Bestandteil der bauaufsichtlichen Zulassung sind. Weitere Voraussetzung für die Nutzungsdauer ist, dass die

notwendigen Bedingungen für die Verpackung, den Transport, die Lagerung, den Einbau und die Verwendung erfüllt sind.

2.14 Außergewöhnliche Einwirkungen

Brand

Das deklarierte Produkt mit Brandschutzausführung hat gemäß den Brandversuchen für die allgemeine bauaufsichtliche Zulassung eine Feuerwiderstandsdauer von 120 Minuten und wird nach /DIN EN 13501/ in die Feuerwiderstandsklasse REI120 eingestuft.

Wasser

Durch die Verwendung von nichtrostenden Stählen mit entsprechender Einbindelänge in die anzuschließenden Konstruktionen ist Korrosionsgefahr ausgeschlossen. Die im Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 enthaltenen Materialien sind unter Wassereinwirkung chemisch neutral, nicht wasserlöslich und geben keine wassergefährdenden Stoffe ab.

Mechanische Zerstörung

Nicht relevant

2.15 Nachnutzungsphase

Der Rückbau erfolgt in Verbindung mit den angeschlossenen Stahlbetondecken der tragenden Konstruktion. Die Stahl-Komponenten des deklarierten Produktes können dem Wertstoffkreislauf zurückgeführt und recycelt werden. Im Hinblick auf einen effizienten Recyclingprozess ist auf einen möglichst reinen Rückbau zu achten.

2.16 Entsorgung

Die Entsorgung der nicht recycelbaren Anteile des Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120 können auf jeder Abfalldeponie mit entsprechender Abfallschlüsselnummer (gemäß Abfallcode nach europäischem Abfallverzeichnis: 170904) entsorgt werden.

2.17 Weitere Informationen

Weitere Informationen zum Produkt finden Sie unter www.schoeck.de.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Die Deklaration bezieht sich auf 1 m (Laufmeter) spezifisches tragendes Wärmedämmelement der Firma Schöck Bauteile GmbH – Schöck Isokorb® Typ KXT50-CV35-V6-H200-REI120.

Deklarierte Einheit

Bezeichnung	Wert	Einheit
Umrechnungsfaktor zu 1 kg	0,0681	-
Deklarierte Einheit	1	m
Deklarierte Einheit	1	Stück/Produkt
Gewicht pro deklarierter Einheit	14,695	kg

3.2 Systemgrenze

 $\overline{4}$

Typ der EPD: Wiege bis Werkstor – mit Optionen. Die Umweltproduktdeklaration bezieht sich auf das Produktionsstadium (A1-A3), das Entsorgungsstadium (C4) und die Verwertung, welche im Modul Gutschriften außerhalb der Systemgrenze aus Recyclingpotenzial (D) deklariert werden. Den

Aufwand für die Deponierung der nicht recycelbaren Materialien wird in Modul C4 beschrieben.

3.3 Abschätzungen und Annahmen

Annahmen werden hinsichtlich der folgenden Rohmaterialien/Vorprodukte getroffen: Mikrofaser (Rohstoff: Stahlfasern, 0,4 M-%) wird mit Stahlbeton abgeschätzt und Brandschutzband (Rohstoff: Blähgraphit, 0,1 M-%) wird als synthetischer Graphit modelliert.

3.4 Abschneideregeln

Alle angegebenen Daten aus der Betriebsdatenerhebung, d.h. alle nach Rezeptur eingesetzten Ausgangsstoffe, die eingesetzte thermische und elektrische Energie werden berücksichtigt. Die Stoffe mit einem Anteil von kleiner als 1 Prozent werden nicht mitberücksichtigt. Der Transport des Drucklagers und die für den Transport gebrauchte Verpackung von Landsberg

nach Baden-Baden werden als innerbetrieblicher Transport und innerbetriebliches Hilfsmittel betrachtet und deswegen nicht in der Ökobilanz nicht mitberücksichtigt.

Die Summe der vernachlässigten Material- und Energiemengen liegt unter 5 % entsprechend Masse, Energie oder Umweltrelevanz.

3.5 Hintergrunddaten

Alle verwendeten Hintergrunddaten wurden den Datenbanken der /GaBi 6 Software/ entnommen. Die in der GaBi-Datenbank enthaltenen konsistenten Datensätze sind dokumentiert in der online GaBi-Dokumentation /GaBi Data/. Der Datensatz "nichtrostender Stahl" ist ein Verbandsdatensatz von EUROFER und umfasst einen repräsentativen Industrie-Mix basierend auf Primärdaten Europäischer Edelstahlhersteller. Um die Vergleichbarkeit der Ergebnisse zu gewährleisten, wurden in der Ökobilanz ausschließlich die konsistenten Hintergrunddaten der GaBi-Datenbank verwendet (z.B. Datensätze zu Energie, Transporten, Hilfs- und Betriebsstoffen).

3.6 Datenqualität

Zur Modellierung des Produktstadiums des Schöck Isokorb® Typ KXT50-CV35-H200-REI120 wurden die von der Firma Schöck Bauteile GmbH erhobenen Daten über das

Produktionsjahr 2013 verwendet. Die letzte Revision der verwendeten GaBi 6 Hintergrunddaten erfolgten 2013. Die Qualität der erhobenen Daten kann als hoch angesehen werden.

3.7 Betrachtungszeitraum

Die Datengrundlage der vorliegenden Ökobilanz beruht auf Datenaufnahmen aus dem Jahr 2013. Der Betrachtungszeitraum beträgt 12 Monate.

3.8 Allokation

Die Produktionsdaten wurden entsprechend der Jahresmenge des Schöck Isokorb® Typ KXT50-CV35-H200-REI120 nach Stück allokiert. Die Rohmaterialien und Energie wurden entsprechend diesem Allokationsschlüssel berechnet. Von dem im System anfallenden Stahlschrott aus Produktion und End-of-Life wird zunächst die benötigte Menge an Sekundärstahl für die Herstellung zurückgeführt bzw. gesättigt ("closed loop"). Für anfallende Stahlschrotte nach Ablauf der Nutzungsphase wird angenommen, dass diese den End-of-Waste Status erreicht haben. Für diese Schrotte erfolgt eine Vergabe von Gutschriften, jedoch nur für die berechnete Nettoschrottmenge. Diese Gutschrift erfolgt auf Basis der Annahme, dass die Stahlproduktion mit Stahlschrotten eine Substitution von Primärstahlproduktion darstellt.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

4. LCA: Szenarien und weitere technische Informationen

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module oder können für die Entwicklung von spezifischen Szenarien im Kontext einer Gebäudebewertung genutzt werden.

Referenz Nutzungsdauer

Bezeichnung	Wert	Einheit
Referenz Nutzungsdauer	50	а

Ende des Lebenswegs (C1-C4)

Eliac acs Ecochswegs (OT-OT)							
Bezeichnung	Wert	Einheit					
Getrennt gesammelt	0	kg					
Als gemischter Bauabfall gesammelt	14,695	kg					
Zur Wiederverwendung	5,93	kg					
Zum Recycling (Edelstahl)	1,29	kg					
Zur Energierückgewinnung	0	kg					
Zur Deponierung (nicht recycelbare Materialien)	7,46	kg					

Wiederverwendungs- Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

In die Bilanz eingeschlossen ist das End-of-Life des deklarierten Produkts nach Ablauf der Nutzungsphase. Durch die Verwendung von Stahl und Edelstahl bei der Herstellung des Schöck Isokorb® Typ KXT50-CV35-H200-REI120 sind zwei Metallschrott-Fraktionen im EoL relevant: Stahlschrott und Edelstahlschrott. Die Nettoschrottmenge für Stahlschrott ist hierbei negativ (-0,392 kg), sprich es muss von außerhalb der Systemgrenzen zusätzlicher Stahlschrott hinzugefügt werden (Last), da der Bedarf an Stahlschrott in der Herstellungsphase nicht abgesättigt werden kann durch anfallenden Produktionsschrott ("prompt scrap") und EoL-Schrott ("post-consumer scrap"). Die Nettoschrottmenge für Edelstahlschrott ist positiv (1,29

kg), für diese Menge wird eine Gutschrift (wie in Kap 3.8 beschrieben) vergeben."

100	%
-0,392	kg
+1,29	kg
-	-0,392

5. LCA: Ergebnisse

ANG	ABE D	ER S	YSTEN	IGRE	NZEN	(X = I)	I ÖK(DBILA	NZ EN	THALT	TEN; M	ND = I	MODU	L NICI	HT DE	KLARIERT)
Produ	uktions m	stadiu	Stadiu Errich de Bauw	ntung es		Nutzungsstadium				Entsorgungssta				Gutschriften und Lasten außerhalb der Systemgrenze		
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung / Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau / Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х
ERGEBNISSE DER ÖKOBILANZ UMWELTAUSWIRKUNGEN: 1 m Schöck Isokorb® Typ KXT50-CV35-H200-REI120																
			_	,												_
			Param					Einheit		A1-			C4			D
			es Erwärm	nungspote		ahiaht		kg CO₂-Äo		2,50E	E+1		1,01E-			-6,30E+0
	Abbau P	otential c	es Erwärm der stratos	nungspote phärische	en Ozons		[kç	kg CO ₂ -Äo	(q.]	2,50E 7,63E	E+1 E-7		1,01E-	12		-6,30E+0 -5,12E-8
	Abbau P	otential c erungsp	es Erwärm	nungspote phärische on Boder	en Ozons n und Wa		[kç	kg CO ₂ -Äo g CFC11-Ä	(q.]	2,50E	E+1 E-7 E-1		1,01E-	12 4		-6,30E+0
	Abbau P Versau Bildu	otential o erungsp Eutr ngspoter	es Erwärm der stratos otenzial vo rophierung ntial für tro	nungspote phärische on Boder gspotenzi posphäris	en Ozons n und Was ial sches Ozo	sser	[kç [k	kg CO ₂ -Äd g CFC11-Ä kg SO ₂ -Äd g (PO ₄)3-Ä g Ethen-Ä	(q.] [.] (q.] q.]	2,50E 7,63E 1,88E 9,14E 1,59E	E+1 E-7 E-1 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E-	12 4 5 5		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3
Pote	Abbau P Versau Bildu nzial für d	otential c lerungsp Eutr ngspoter len abioti	es Erwärm der stratos otenzial vo rophierung ntial für tro ischen Ab	nungspote phärische on Boder gspotenzi posphäris bau nicht	en Ozons n und Was ial sches Ozo fossiler F	sser on Ressource	[kç [k	kg CO ₂ -Äo g CFC11-A kg SO ₂ -Äo g (PO ₄) ³ -A g Ethen-Ä [kg Sb-Äq	(q.] [.] (q.] q.]	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E	E+1 E-7 E-1 E-3 E-2 E-3		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E-	12 4 5 5		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3
Pote	Abbau P Versau Bildu nzial für d otenzial fü	otential o lerungsp Eutr ngspoter len abioti ir den ab	es Erwärm der stratos otenzial ver ophierung ntial für tro ischen Ab biotischen	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo	en Ozons n und Was ial sches Ozo fossiler Fossiler Bre	on Ressource nnstoffe	[k(kg CO ₂ -Är g CFC11-/ kg SO ₂ -Är g (PO ₄) ³ -/ rg Ethen-Ä [kg Sb-Äq [MJ]	(q.] [i.] (q.] [q.]	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E 3,30E	E+1 E-7 E-1 E-3 E-2 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E+	12 4 5 5 8 0		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1
Pote	Abbau P Versau Bildu nzial für d otenzial fü	otential o lerungsp Eutr ngspoter len abioti ir den ab	es Erwärm der stratos otenzial ver ophierung ntial für tro ischen Ab biotischen	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo	en Ozons n und Was ial sches Ozo fossiler Fossiler Bre	on Ressource nnstoffe	[k(kg CO ₂ -Är g CFC11-/ kg SO ₂ -Är g (PO ₄) ³ -/ rg Ethen-Ä [kg Sb-Äq [MJ]	(q.] [i.] (q.] [q.]	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E 3,30E	E+1 E-7 E-1 E-3 E-2 E-3 E-2	Isokon	1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E+	12 4 5 5 8 0	50-CV	-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3
Pote	Abbau P Versau Bildun nzial für d otenzial fü EBNIS 20	otential of lerungsp Eutr ngspoter len abioti ir den ab	es Erwärm der stratos otenzial vr ophierung ntial für tro ischen Ab biotischen ER ÖK	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBIL/	en Ozons n und Was ial sches Ozo fossiler F ssiler Bre	on Ressource nnstoffe ESSO	[k(kg CO ₂ -Äd g CFC11-J kg SO ₂ -Äd g (PO ₄) ³ -J g Ethen-Ä [kg Sb-Äd [MJ] ENEINS	Aq.] i.] i.] i.] i.] i.] i.] i.] i	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E 3,30E 1 m So	E+1 E-7 E-1 E-3 E-2 E-3 E-2	Isokor	1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E+	12 4 5 5 8 0	50-CV	-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 /35-H200-
Pote	Abbau P Versau Bildunzial für dotenzial fü EBNIS 20	otential contential co	es Erwärm der stratos otenzial vr ophierung tital für tro ischen Ab biotischen ER ÖK Parar	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBILA meter ergie als l	en Ozons n und War ial sches Oz fossiler Fr ssiler Bre ANZ R	sser on Ressource nnstoffe ESSO	[k(kg CO ₂ -Äk g CFC11-J kg SO ₂ -Äk g (PO ₄) ³ -J- g Ethen-Ä [kg Sb-Äq [MJ] ENEINS	Aq.] q.] q.] q.] d.] SATZ:	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E 3,30E 1 m So A1-A3	E+1 E-7 E-1 E-3 E-2 E-3 E-2	Isokor	1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E- b® Ty	12 4 5 5 8 0	50-CV	-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 -7,29E+1 -7,29E+1
Pote	Abbau P Versau Bildunzial für dotenzial fü EBNIS 20	otential c lerungsp Eutr ngspoter len abioti ir den ab SE DI	es Enwärm der stratos otenzial vr rophierung tital für tro sischen Ab biotischen ER ÖK Parar Primärenerg	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBIL/ meter ergie als l jie zur sto	en Ozons n und Wa- ial sches Ozi fossiler Bre ANZ R Energieträ fflichen N	sser on Ressource nnstoffe ESSO	[k(kg CO ₂ -Äk g CFC11-Å kg SO ₂ -Äk g (PO ₄) ³ -Å g Ethen-Ä [kg Sb-Åq [MJ] ENEINS	(q.] (q.) (q.) (q.) (q.) (q.)	2,50E 7,63E 1,88E 9,14E 1,59E 1,82E 3,30E 1 m So A1-A3 7,04E+1	E+1 E-7 E-1 E-3 E-2 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E- b® Ty C4 IND IND	12 4 5 5 8 0		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 235-H200-
Pote	Abbau P Versau Bildun nzial für d otenzial fi EBNIS 20	otential contential co	es Enwärm der stratos otenzial vr orophierung nitial für tro sischen Ab piotischen ER ÖK Parar Primärener imärenerg meuerbar	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBILA meter ergie als l jie zur sto re Primäre	en Ozons n und Wa: ial sches Ozo fossiler Bre ANZ R Energietr fflichen N energie	on Ressource nnstoffe ESSOI	[k(kg CO ₂ -Äi g CFC11-Å kg SO ₂ -Äi g (PO ₄) ³ -Å g Ethen-Ä [kg Sb-Äq [MJ] ENEINS	(q.] 	2,50E 7,63I 1,88I 9,14I 1,59I 1,82I 3,30E 1 m So A1-A3 7,04E+1 0,00E+0 7,04E+1	E+1 E-7 E-1 E-3 E-2 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E- b® Ty	12 4 5 5 8 0		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 35-H200- IND IND IND -3,37E+0
Pote Processing Proces	Abbau P Versau Bildun nzial für d otenzial fü EBNIS 20 Eme Emeue	otential contential co	es Erwärm der stratos der stratos otenzial vi rophierung ntial für tro ischen Ab piotischen ER ÖK Parar Primärenen imäreneng imeuerbar are Primär	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBILA meter ergie als I ije zur sto e Primäre energie a	en Ozons n und Wa: ial sches Ozo fossiler Bre ANZ R Energietz ifflichen N energie als Energie	on Ressource nnstoffe ESSOI	Iki	kg CO ₂ Äkg g CFC11-/ kg SO ₂ Äk g (PO ₄) ³ -/ g Ethen-Ä [kg Sb-Äq [MJ] ENEINS Einheit [MJ]	(q.] 1.] (q.] (q.] (q.] (s.ATZ:	2,50E 7,63I 1,88I 9,14I 1,59I 1,82I 3,30E 1 m So A1-A3 7,04E+1 0,00E+0 7,04E+1 3,85E+2	E+1 E-7 E-1 E-3 E-2 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E- b® Ty C4 IND IND	12 4 5 5 8 0		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 (35-H200- IND IND IND 3,37E+0 IND
Pote Processing Proces	Abbau P Versau Bildui nzial für d otenzial fü EBNIS 20 Emeue Nicht-e- licht-ernei	otential of serungspoterningspoternen abiotisir den abioti	es Enwärm der stratos otenzial vr orophierung nitial für tro sischen Ab piotischen ER ÖK Parar Primärener imärenerg meuerbar	nungspote phärische on Boder gspotenzi posphäris bau nicht Abbau fo OBIL/ meter ergie als l jie zur sto re Primäre energie ae	en Ozons n und Wa: ial sches Ozi fossiler F essiler Bre ANZ R Energietr energie als Energie stofflichen	on Ressource nnstoffe ESSO ager utzung eträger	Iki	kg CO ₂ -Äi g CFC11-Å kg SO ₂ -Äi g (PO ₄) ³ -Å g Ethen-Ä [kg Sb-Äq [MJ] ENEINS	[q.] [t.] [q.] [q.] [q.] [sATZ:	2,50E 7,63I 1,88I 9,14I 1,59I 1,82I 3,30E 1 m So A1-A3 7,04E+1 0,00E+0 7,04E+1	E+1 E-7 E-1 E-3 E-2 E-3 E-2		1,01E- 1,27E- 6,43E- 8,82E- 6,04E- 3,81E- 1,33E- b® Ty C4 IND IND 1,15E-1 IND	12 4 5 5 8 0		-6,30E+0 -5,12E-8 -7,04E-2 -3,46E-3 -3,88E-3 -1,28E-3 -7,29E+1 35-H200- IND IND IND -3,37E+0

ERGEBNISSE DER ÖKOBILANZ OUTPUT-FLÜSSE UND ABFALLKATEGORIEN	
1 m Schöck Isokorb® Typ KXT50-CV35-H200-REI120	

Parameter	Einheit	A1-A3	C4	D
Gefährlicher Abfall zur Deponie	[kg]	IND	IND	IND
Entsorgter nicht gefährlicher Abfall	[kg]	IND	IND	IND
Entsorgter radioaktiver Abfall	[kg]	IND	IND	IND
Komponenten für die Wiederverwendung	[kg]	0,00E+0	0,00E+0	IND
Stoffe zum Recycling	[kg]	6,24E-1	7,23E+0	IND
Stoffe für die Energierückgewinnung	[kg]	0,00E+0	0,00E+0	IND
Exportierte elektrische Energie	[MJ]	0,00E+0	0,00E+0	IND
Exportierte thermische Energie	[MJ]	0,00E+0	0,00E+0	IND

[MJ]

[MJ]

0,00E+0

0,00E+0

Betreffend Einsatz von Süßwasserressourcen, Gefährlicher Abfall zur Deponie, Entsorgter nicht gefährlicher Abfall, Entsorgter radioaktiver Abfall: Nicht alle, der für die Berechnung der Ökobilanz verwendeten, Dateninventare unterstützen den methodischen Ansatz zur Deklaration der Wasser- und Abfallindikatoren. Die Materialmengen, die durch diese Dateninventare abgebildet werden, tragen zu 25% zur Produktherstellung bei. Die Signifikanz dieser Dateninventare wurde über eine Sensitivitätsanalyse geprüft. Sie wird als hoch definiert. Die Indikatoren können daher nicht ausgewiesen werden (Beschluss des SVA vom 07.01.2013).

6. LCA: Interpretation

In allen Wirkungskategorien liegt der Hauptbeitrag an den Gesamt-Umweltpotentialen in der Produktionsphase (Module A1-A3). Die Lasten in dieser Phase werden hauptsächlich durch die Vorketten der Rohstoffe verursacht. Die Abbildung unten zeigt die graphische Darstellung der Ergebnisse für die Vorprodukte (Modul A1). Haupttreiber in den meisten Kategorien ist hierbei Edelstahl, das einen relevanten bis signifikanten Einfluss aufweist.

Erneuerbare Sekundärbrennstoffe

Nicht erneuerbare Sekundärbrennstoffe

Einsatz von Süßwasserressourcen

Einen gewissen Einfluss auf die Wirkungskategorien Globales Erwärmungspotential (GWP), Total nicht erneuerbare Primärenergie (PENRT), Potential für den abiotischen Ressourcenabbau – fossile Brennstoffe (ADPF) und Eutrophierungspotential (EP) hat die Herstellung von Betonstahl. Die Herstellung von Schaumteilen aus Neopor (EPS) ist von geringerer Bedeutung, hat allerdings einen relevanten Einfluss auf das Bildungspotential für troposphärisches Ozon

0,00E+0

0,00E+0

0,00E+0

0,00E+0

(POCP) – verursacht durch den Einsatz von Pentan bei der Herstellung dieses Vorproduktes. Die Herstellung des Drucklagers ist eher unwichtig oder mäßig wichtig. Die Herstellung der Brandschutzplatte hat eher geringen Einfluss auf die Ergebnisse. Die Beiträge der Brandschutzplatte sind vorwiegend auf die Vorketten der Zementherstellung zurückzuführen.

Abbildung. Graphische Darstellung der Ergebnisse für die Vorprodukte (Modul A1)

7. Nachweise

Bei bestimmungsgemäßer Verwendung sind keine negativen Auswirkungen auf Umwelt und Gesundheit zu erwarten. Das Produkt wird einbetoniert und hat keinen Kontakt zur Innenraumluft oder zur Außenschale des Gebäudes. Gesetzlich sind keine Nachweise für das Produkt erforderlich.

8. Literaturhinweise

BS OHSAS 18001

BS OHSAS 18001:2007-07-31:

Arbeitsschutzmanagementsysteme. Forderungen

DIN 1045-1

DIN 1045-1:2008-08: Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 1: Bemessung und Konstruktion

DIN 4102-2

DIN 4102-2:1977-09: Brandverhalten von Baustoffen und Bauteilen; Bauteile, Begriffe, Anforderungen und Prüfungen

DIN EN 1992-1-1/NA

DIN EN 1992-1-1/NA:2013-04: Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton – und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

DIN EN 13501-2

DIN EN 13501-2:2010-02: Klassifizierung von Bauprodukten und Arten zu ihrem Brandverhalten – Teil 2: Klassifizierung mit den Ergebnissen aus den Feuerwiderstandsprüfungen, mit Ausnahme von Lüftungsanlagen; Deutsche Fassung EN 13501-2:2007+A1:2009

DIN EN 13163

DIN EN 13163:2013-03: Wärmedämmstoffe für Gebäude – Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) – Spezifikation; Deutsche Fassung EN 13163:2012

DIN EN 1365-2

DIN EN 1365-2:2012-12: Feuerwiderstandsprüfungen für tragende Bauteile – Teil 2: Decken und Dächer; Deutsche Fassung prEN 1365-2:2012

DIN EN ISO 10211

DIN EN ISO 10211:2008-04: Wärmebrücken im Hochbau – Wärmeströme und Oberflächentemperaturen – Detaillierte Berechnungen (ISO 10211:2007); Deutsche Fassung EIN ISO 10211:2007

DIN EN ISO 6946

DIN EN ISO 6946:2008-04: Bauteile – Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient – Berechnungsverfahren (ISO 6946:2007); Deutsche Fassung EN ISO 6946:2007

DIN EN ISO 9001

DIN EN ISO 9001:2008:

Qualitätsmanagementsysteme – Erfolg durch Qualität

DIN EN ISO 14001

DIN EN ISO 14001:2009-11:

Umweltmanagementsysteme – Anforderung mit Anleitung zur Anwendung (ISO 14001:2004 + Cor. 1:2009); Deutsche und Englische Fassung EN ISO 14001:2004 + AC:2009

DIN EN ISO 50001

DIN EN ISO 50001:2011-12:

Energiemanagementsysteme – Anforderungen mit Anleitung zur Anwendung (ISO 50001:2011)

GaBi 6 Data

GaBi 6.4 dataset documentation for the softwaresystem and databases, LBP, University of Stuttgart and thinkstep AG (ehemals PE INTERNATIONAL AG), Leinfelden-Echterdingen, 2013 (http://documentation.gabi-software.com/)

GaBi 6 Software

Software and database for life cycle Engineering, LBP, University of Stuttgart and thinkstep AG (ehemals PE INTERNATIONAL AG), Leinfelden-Echterdingen, 2013

IBU 2013 Part A

PCR – Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht, Version 1.2, Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 2013

IBU 2014 Part B

PCR – Teil B: Anforderungen an die EPD für Tragende Wärmedämmelemente, Version 1.1, Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 2014

Z-15.7-240

Allgemeine bauaufsichtliche Zulassung Z-15.7-240: Schöck Isokorb mit Betondrucklager, (Geltungsdauer vom 04.07.2014 - 31.12.2015)

Institut Bauen und Umwelt e.V., Berlin (Hrsg.): Erstellung von Umweltproduktdeklarationen (EPDs);

Allgemeine Grundsätze für das EPD-Programm des Instituts Bauen und Umwelt e.V. (IBU), 2013-04.

Produktkategorienregeln für Bauprodukte Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht. 2013-04.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

EN 15804

EN 15804:2012-04+A1 2013, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

Herausgeber

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr.1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Tel | 49 (0)30 3087748- 29 | info@bau-umwelt.com | Web | www.bau-umwelt.com | www.bau-

Programmhalter

thinkstep

Ersteller der Ökobilanz

 thinkstep AG
 Tel
 +49 (0)711 341817-0

 Hauptstraße 111 - 113
 Fax
 +49 (0)711 341817-25

 70771 Leinfelden-Echterdingen
 Mail info@thinkstep.com

 Germany
 Web
 www.thinkstep.com

Inhaber der Deklaration

Schöck Bauteile GmbH Tel Vimbucher Str. 2 Fax 76534 Baden-Baden Mail Germany Web

+49 7223 967-0 +49 7223 967-454 schoeck@schoeck.de www.schoeck.de