Trick or Tweak On the (In)security of OTR's Tweaks

Raphael Bost^{1,2} Olivier Sanders³

¹Direction Générale de l'Armement - Maîtrise de l'Information ²Université de Rennes 1

³Orange Labs

Asiacrypt 2016, Hanoi

Offset Two Rounds (OTR)

- CAESAR submission by K. Minematsu (Eurocrypt '14)
- Inspired by OCB
- Rate-1 AE
- Tweakable blockcipher based
- Inverse-free (only needs E, not E^{-1})
- Two rounds Feistel construction
- Defined for any block size n.

Tweakable Blockcipher (TBC) [LRW02]

Add a public input to a blockcipher – the tweak – to add variability.

Each tweak $T \in \mathcal{T}$ (the tweak space) yields an independent pseudo-random permutation.

Tweakable Blockcipher (a.k.a tweakable PRP)

The $T \in \mathcal{T}$ indexed permutation family $\widetilde{E}_{\mathcal{K}}(T,.)$ is indistinguishable from a random permutation family $\pi(T,.)$

$$\mathbb{P}[\mathcal{K} \xleftarrow{\$} \mathcal{K} : \mathcal{A}^{\widetilde{\mathcal{E}}_{\mathcal{K}}(.,.)} \Rightarrow 1] - \mathbb{P}[\widetilde{\pi} \xleftarrow{\$} \mathsf{Perm}(\mathcal{T}, \textit{n}) : \mathcal{A}^{\widetilde{\pi}(.,.)} \Rightarrow 1] \leq \mathrm{negl}(\lambda)$$

OTR Encryption (1/2)

OTR Encryption (2/2)

OTR's security

Theorem (Theorem 3 of [Min14])

If \tilde{E} is a tweakable PRP, OTR is CPA-secure (confidentiality) and INT-CTXT-secure (unforgeability).

Instantiating the TBC

Remark

We are working in \mathbb{F}_{2^n} represented as $\mathbb{F}_2[X]/(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_2 .

- Use the XE construction
- In [Rog04]: $\widetilde{E}_K^{N,i,j}(M) = E_K(M+X^i(X+1)^j\delta)$ with $\delta = E_K(N)$

Instantiating the TBC

Remark

We are working in \mathbb{F}_{2^n} represented as $\mathbb{F}_2[X]/(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_2 .

In OTRv1-v2 [Min14], for efficiency, an other masking scheme is used:

$$\Delta_{i,b}^{N} = (X^{i+1} + b)\delta$$

$$\Delta_{\ell,b_1,b_2}^{*,N} = [(X+1)X^{\ell+1} + X \cdot b_1 + b_1 + b_2]\delta$$

The flaw

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.

The proof of this lemma relies on the following claim

Claim

Let
$$S_1(\delta) = \{X^{i+1}\delta, (X^{i+1}+1)\delta, \}$$

$$\cup \{(X^{i+2}+X^{i+1}+b_1X+b_2)\delta\}_{i=1,b_1\in\{0,1\},b_2\in\{0,1\}}$$

The elements of $S_1(\delta)$ are pairwise different.

Raphael Bost, Olivier Sanders

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.

The proof of this lemma relies on the following claim

Claim

Let
$$S_1(\delta) = \{X^{i+1}\delta, (X^{i+1}+1)\delta, \}$$

$$\cup \{(X^{i+2}+X^{i+1}+b_1X+b_2)\delta\}_{i=1,b_1\in\{0,1\},b_2\in\{0,1\}}$$

The elements of $S_1(\delta)$ are pairwise different.

Our attack

This is not true in general!

Raphael Bost, Olivier Sanders

The trick

• In [Rog04], for $\log_X(X+1) = \alpha$, as long as $0 \le i + \alpha j \le 2^n - 1$, $\{X^i(X+1)^j\}$ are pairwise distinct \Rightarrow bound i and j.

The trick

- In [Rog04], for $\log_X(X+1) = \alpha$, as long as $0 \le i + \alpha j \le 2^n 1$, $\{X^i(X+1)^j\}$ are pairwise distinct \Rightarrow bound i and j.
- In [Min14], we cannot show that, for some *q*, elements are pairwise distinct in

$$\left\{X^{i+1}, X^{i+1}+1\right\} \cup \left\{X^{i+2}+X^{i+1}+b_1X+b_2\right\}_{1 \leq i \leq q, (b_1,b_2) \in \{0,1\}^2}.$$

The trick

- In [Rog04], for $\log_X(X+1) = \alpha$, as long as $0 \le i + \alpha j \le 2^n 1$, $\{X^i(X+1)^j\}$ are pairwise distinct \Rightarrow bound i and j.
- In [Min14], we cannot show that, for some *q*, elements are pairwise distinct in

$$\{X^{i+1}, X^{i+1}+1\} \cup \{X^{i+2}+X^{i+1}+b_1X+b_2\}_{1 \leq i \leq q, (b_1,b_2) \in \{0,1\}^2}$$

• If $P(X) = X^n + X^j + 1$, there is a collision between X^n and $X^j + 1$ in $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$.

For actual block sizes (n = 64, 128)?

• If 8|n, $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$ with P with at least 5 non-zero coefficient $(P(X) = X^n + X^{j_1} + X^{j_2} + X^{j_3} + 1)$. \Rightarrow no immediate collision in general.

For actual block sizes (n = 64, 128)?

- If 8|n, $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$ with P with at least 5 non-zero coefficient $(P(X) = X^n + X^{j_1} + X^{j_2} + X^{j_3} + 1)$. \Rightarrow no immediate collision in general.
- For SW/HW efficiency, we usually choose P such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$P_{64}(X) = X^{64} + X^4 + X^3 + X + 1$$

$$P_{128}(X) = X^{128} + X^7 + X^2 + X + 1$$

For actual block sizes (n = 64, 128)?

- If 8|n, $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$ with P with at least 5 non-zero coefficient $(P(X) = X^n + X^{j_1} + X^{j_2} + X^{j_3} + 1)$. \Rightarrow no immediate collision in general.
- For SW/HW efficiency, we usually choose P such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$P_{64}(X) = X^{64} + X^4 + X^3 + X + 1$$
$$P_{128}(X) = X^{128} + X^7 + X^2 + X + 1$$

• For n = 64 with the usual P, we have a collision of the type $X^i = X^{j+1} + X^j + X + 1$:

$$X^{64} = X^4 + X^3 + X + 1$$

Consequences

Problem

There is a flaw in the proof of OTR, even for practical parameters.

Does the confidentiality of OTR break? Does the unforgeability of OTR break?

Typology of collisions

$$\left\{X^{i+1}, X^{i+1} + 1\right\}_{1 \leq i \leq q} \cup \left\{X^{i+2} + X^{i+1} + b_1X + b_2\right\}_{1 \leq i \leq q, (b_1, b_2) \in \{0, 1\}^2}$$

There are three types of collision among the tweaks' polynomials:

$$X^i = X^j + 1 \tag{1}$$

$$X^{i} = X^{j+1} + X^{j} + r(X)$$
 (2)

$$X^{i+1} + X^i = X^{j+1} + X^j + r(X)$$
 (3)

with $r(X) \in \{0, 1, X, X + 1\}.$

Attacks

Out attack

Type 1
$$(X^i = X^j + 1)$$

Break confidentiality and unforgeability.

Type 2
$$(X^i = X^{j+1} + X^j + r(X))$$

Break confidentiality if i < j. Break unforgeability o/w.

Type 3
$$(X^{i+1} + X^i = X^{j+1} + X^j + r(X))$$

Break unforgeability.

Idea: use the collision to have relations between block cipher's inputs and create collisions on the outputs.

Only one query to the encryption oracle, with a message of max(i,j) blocks.

$$n = 128$$
 in practice

Usually, for n = 128, we choose

$$P(X) = X^{128} + X^7 + X^2 + X + 1.$$

There is no trivial collision.

Remark

This is not true for all irreducible P of degree 128.

Ex:
$$P(X) = X^{128} + X^{127} + X^{61} + X^{60} + 1$$

Can we find a collision among tweaks polynomial?

• We are only interested in collisions with i and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.

- We are only interested in collisions with i and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then 'moving' it to $\mathbb{F}_{2^{128}}$.

- We are only interested in collisions with i and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then 'moving' it to $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.

- We are only interested in collisions with i and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then 'moving' it to $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).

- We are only interested in collisions with i and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then 'moving' it to $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).
- Problem: requires $O(n2^n)$ memory and $O(n2^n)$ time ...

We used time/memory tradeoffs to search for any collision with $i, j < 2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j < 2^{45}$ when $F_{2^{128}}$ is defined as $F_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

We used time/memory tradeoffs to search for any collision with $i,j < 2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j < 2^{45}$ when $F_{2^{128}}$ is defined as $F_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

Question

What about $2^{45} \leq i, j$?

Probable collision before the birthday bound

- If tweak polynomials behaved like random polynomials, we should have a collision just before the birthday bound.
- For n = 32,64, we enumerated the irreducible polynomials over \mathbb{F}_2 of degree n and search for the lowest degree colliding polynomials.

First collision for n = 32

First collision for n = 64

Conjecture for n = 128

Conjecture

There is no collision among the tweaks polynomials for $i, j < 2^{60}$ when $F_{2^{128}}$ is defined as $F_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

Conclusion

- OTRv2 is insecure for many block sizes.
- OTRv2 is secure for n = 128 when the message length is limited to 2^{45} blocks.
- OTRv2 is probably secure for n = 128 almost up to the birthday bound.
- OTRv3 fixes the issue.

Thank you!

Paper: ia.cr/2016/234