前沿第三次轮转汇报(王鹤老师组) 柯宇斌

2200013213 信科

我的第三期工作主要是跟着陈嘉毅学长做灵巧手抓握的内容。

在本学期参加轮转介绍会后,我便联系上了学长。首先完成了一篇学长现今的论文阅读。 "FROGGeR--Fast Robust Grasp Generation via the Min-Weight Metric"。具体来说,就是利用一个 GWS 的简化来生成大量的单手抓握数据。

在阅读完论文后,学长也提供了大量相关论文,目前我们保持着一周讨论一篇的进度。同时,我在学长提供的代码上,拓展实现了双手抓握姿势的生成。除此以外,针对学长之前工作中发现的难点: GWS 近似不准确,用 GWS 拟合 TWS 的方法并不足够好; 我们认为有必要重新对 GWS 进行近似,并改进利用 GWS 的方法。

接下来,我们计划首先利用 mujoco 这一较先进的模拟环境展示我们对 GWS 的改进的效果,这也将作为我的本研内容。完成这一工作后,我们计划继续原来的计划,展示我们这一数据集在学习上面的优良性。

我将抓住这一机会,向学长多多学习,为以后的科研积攒经验。

下面是对学长论文以及我们的改进的相对详细的介绍。

Robot report

第三期轮转汇报

柯宇斌

北京大学信息科学技术学院

2024年5月6日

柯宇斌 Robot report

学长原论文

- 1 轮转简述
- 2 课题背景
- 3 学长原论文
- 4 我们的改进

- 2 课题背景
- 3 学长原论文
- 4 我们的改进

- 在学长原有论文的基础上进行改进
- FRoGGeR–Fast Robust Grasp Generation via the Min-Weight Metric
- 改进内容如下
 - 在单手的代码基础上实现了双手代码
 - 对 GWS 的近似提出了一个新的方案,提高了精度,同时保 障了效率
 - 全新的使用 GWS. 生成的效果较为优质

学长原论文

- 1 轮转简述
- 2 课题背景
- 3 学长原论文
- 4 我们的改进

问题

• 如何更好地抓取物体?

课题背景

- 抓取物体应该为任务服务,不同的任务有不同的抓取姿势
- 好的抓取姿势应该能很好地对物体施加任务所需的力

GWS and TWS

- TWS(Task Wrench Space) 任务力矩空间
 - 由任务所需力矩构成的空间
 - 常常人为指定,一般建模成规则的形状
- GWS(Grasp Wrench Space) 抓握力矩空间
 - 在某个抓握姿势下可以施加的力矩构成的空间

学长原论文

• 需要一些假设,利用数学物理知识求出

核心思路

- 对 GWS 进行某种程度的近似和简化,得到 GWS 的一个估计
- 人为指定 TWS
- 优化 GWS 使得其与 TWS 相似 (一般地,对力的放大也会使得 GWS 增大,所以标准化是一个很好的方法)

柯宇斌

我们的改进

具体操作

- $F_i = (f_{i,1}, f_{i,2}, f_{i,3}), \ \text{Il} \ 0 \le f_{i,1}, f_{i,2}^2 + f_{i,3}^2 \le \mu^2 f_{i,1}^2$
- *pi* 是接触点向量, *ni*, *di*, *ei* 是 *pi* 处的一个坐标系
- $G_i = \begin{bmatrix} n_i & d_i & e_i \\ p_i \times n_i & p_i \times d_i & p_i \times e_i \end{bmatrix} \in R^{6 \times 3}$ 把 F 映射到 W
- $W_i = G_i F_i$
- GWS 是各个 W 的并集或者闵可夫斯基和
- $W_{I_1} = \bigcup_{i=1}^m W_i \otimes \mathcal{K} W_{I_{\infty}} = \bigoplus_{i=1}^m W_i$
- 我们采用 WL~ 因为好算
- 对 f 的假设是 $f_{i,1} \leq 1$

具体操作

- 我们描绘 GWS 的边界
- $s_A(u) = argmax_{a \in A} u^T a, ||u|| = 1$
- 性质: $s_{A \oplus B}(u) = s_A(u) + s_B(u)$
- 性质: $s_{C(A)}(u) = C * S_A(C^T u)$
- $s_{W_g}(u) = s_{\bigoplus_{i=1}^m W_i}(u) = \sum_{i=1}^m s_{W_i}(u) = \sum_{i=1}^m G_i s_{F_i}(G_i^T u)$

轮转简述 ○○

- 2 课题背景
- 3 学长原论文
- 4 我们的改进

GWS 优化至 TWS

- 如何优化 GWS, 一个想法是让同一个方向的乘积尽可能大, 这样子形状越相似结果越好
- $E_t = -\sum_{k=1}^K s_T(u_k) s_{W_{\sigma}}(u_k)$

量化结果

TABLE I

COMPARISON OF OUR GWS ESTIMATOR WITH BASELINE.

	5 Contacts				7 Contacts			
		Baseline	•	Ours	Baseline			Ours
	4	6	8	Ours	4	6	8	Ours
RLE↓	5.30	2.36	1.26	0.43	6.49	2.78	-	0.70
SP ↓	0.48	0.42	0.38	0.29	0.36	0.31	-	0.26
t ↓	4e3	2e4	4e4	20	5e4	2e5	2e6	20

图 1: Enter Caption

TABLE II

HYPERPARAMETER ANALYSIS OF OUR METHOD WITH 5 CONTACTS.

	δ	(with F	$\zeta = 1e5$		1	(with	$\delta = 15^{\circ}$)
	0°	15°	30°	45°	1e3	1e4	1e5	1e6
RLE↓	0.00	0.42	5.45	19.4	0.43	0.42	0.42	0.43
SP ↓	0.44	0.36	0.36	0.36	0.55	0.45	0.36	0.29
t ↓	3.2	3.2	3.2	3.2	1.7	1.9	3.2	19.4

图 2: Enter Caption

TABLE III

0.1 MILLION FORCE-CLOSURE DEXTEROUS GRASP SYNTHESIS

	SS (%) ↑	MP (mm) ↓	$\epsilon \uparrow$
DexGraspNet	37.0	5.4	0.77
Ours	57.1	2.4	0.93

图 3: Enter Caption

轮转简述 ○○

- 2 课题背景
- 3 学长原论文
- 4 我们的改进

GWS 的近似

- 原来的是 QC (二次约束)
- $0 \le f_{i,1}, f_{i_2}^2 + f_{i,3}^2 \le \mu^2 f_{i,1}^2$
 - 我们近似为 L1, $0 \le f_{i,1}$, $|f_{i_2}| + |f_{i,3}| \le \mu f_{i,1}$
 - 同时这里我们相当于把圆形放松成正方形,但我们可以旋转 f_{i2}, f_{i3} 形成新的正方形放松,多个正方形放松等效于一个正 多边形放松,提升了近似的精度。
 - 同时这一近似将 QC 变成 LC (线性约束)

GWS 的使用

- 我们认为 GWS 最重要的是能施加指定方向的力
- 但学长的原先做法只关注了施加指定方向的力
- 却没有关注为了施加这一力所引入的其他方向的力
- 所以我们添加了偏移惩罚
- 并直接变成一个 QP (二次目标) 问题, 而不是和 TWS 拟合
- 如此一来可以直接使用现有的 LCQP 算法,较好的提高了效率。

Thanks!

轮转简述 ○○