MagNet: a Two-Pronged Defense against Adversarial Examples

Dongyu Meng, ShangHaiTech University

Hao Chen, University of California Davis

ACM CCS 2017

Problems and Solutions:

- Problem : How to defend Machine learning models against adversarial attacks ?
- Proposed solution: MagNet, a framework that detects or reforms adversarial examples using two types of networks.
- Results: Successfully protected the targeted network from the attack by detecting or reforming the adversarial example.

Contributions of the paper :

- Formally defines adversarial examples :
 - Including metrics for evaluating defenses
- Proposes general defense against adversarial examples :
 - MageNet is independent to the target classifier it protects
 - MageNet is independent to the process of adversarial examples generation
- Proposes Gray-box attack model :
 - Gives an example of black-box attack
 - Claims that Gray-box is a reasonable attack level to consider for defenses
 - Proposes diversity-based defense against Gray-box attacks

Meaning of the paper:

 The authors could build defense elements corresponding to each causes of adversarial attacks.

 The resulting defense, which is a combination of a detector and a reformer, provides a simple but strong protection against known adversarial example generators

Adversarial examples:

- Normal Example :
 - Occur naturally: examples generated do not differ from the classifying task
- Adversarial Example:
 - Is not a normal example
 - Humans judgement will differ from the classifier's decision

Definition of adversarial examples

- S: Set of all examples (all the images or the handwritten digits)
- \mathbb{C}_t : Set of classes for the task t (e.g $\mathbb{C}_t = \{0,1,2,...,9\}$)
- Normal examples for the task $t : \mathbb{N}_t = \{x \mid x \in \mathbb{S} \text{ and } p(x) \text{ is non-negligible} \}$
- p(x) is the probability of the natural generation process for the task to emit x.
- Classifier for a task t is $f_t : \mathbb{S} \to \mathbb{C}_t$
- Ground Truth for a task t is $g_t : \mathbb{S} \to \mathbb{C}_t \cup \{\bot\}$
- Adversarial example for x for task t and a classifier f_t :
 - $x \in \mathbb{S} \setminus \mathbb{N}$ (Not a normal example)
 - $f_t(x) \neq g_t(x)$ (Classification different from ground-truth)

Causes of mis-classification (adversarial example)

1) The adversarial example is far from the boundary of the manifold of the task (e.g. blank image classified as a handwritten digit)

8

2) The adversarial example is close to the boundary of the manifold.

Distance metrics:

- Definition: adversarial examples and normal examples should be visually indistinguishable for the human perception.
- Usage of L_p norm to model the human perception

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

• Closest L_D norm to the human perception process are : L₁, L₂ and L∞

Existing attacks:

- Fast Gradient Sign Method (FGSM)
 - One-step generation based on gradient sign of loss function
 - Every data (pixels in the case of images) become either incremented or decremented by small ϵ .

$$x' = x + \epsilon \cdot sign(\nabla_x Loss(x, l_x))$$

- Iterative Gradient Sign Method
 - Using smaller steps than FGSM, and iterates the process.
 - Clips according to distance ϵ , ensuring the perturbation within that boundary.

$$x'_{i+1} = clip_{\epsilon,x}(x'_i + \alpha \cdot sign(\nabla_x Loss(x, l_x)))$$

Existing attacks:

DeepFool

- Finds nearest boundary and performs a variant of Newton's method.
- Iterative method, which extended into multiclass differentiable classifiers

Carlini's Attack

- Solves an optimization problem on δ , minimizing $\|\delta\| + c \cdot f(x + \delta)$
- Confidence κ is picked to change the confidence level of the adversarial example.
- *c* : Balancing hyperparameter

Existing defenses:

- Adversarial Training
 - Augments adversarial data with correct classes, to the training input.
- Defensive Distillation
 - Hides the gradient between the pre-softmax layer and the outputs.
 - Bypasses: proper loss function, calculation on pre-softmax layer, ...
- Adversarial Example Detection
 - Detectors: Binary classifiers to decide adversarial inputs
 - MagNet: Learns manifolds of the normal examples and uses multiple detectors and reformers.

Formal definition of the defense

- Defense against adversarial examples for a classifier $f_t: d_{f_t}: \mathbb{S} \to \mathbb{C}_t \cup \{\bot\}$
- Three ways d_{f_t} may use f_t :
 - $\checkmark d_{f_t}$ does not read the data in f_t and does not modify its parameters
 - $\checkmark d_{f_t}$ reads data in f_t and does not modify its parameters
 - $\checkmark d_{f_t}$ modifies f_t 's parameters
- Successful defense if :

$$\checkmark x \in \mathbb{N}_{\mathsf{t}}$$
 , $d_{f_t}(x) = gt(x)$

$$\checkmark x \in \mathbb{S} \setminus \mathbb{N}_{t} \text{ and } (d_{ft}(x) = \bot \text{ or } d_{ft}(x) = g_{t}(x))$$

Threat model

- Attacker knows everything about the target classifier (f_t)
- Defender knows nothing about the attacker's generation process
- Different level of knowledge on the defense by the attacker :

Knowledge on d _{ft}	Black-box	Gray-box	White-box
Oracle of d _{ft}	0	0	0
Parameters	X	X	0
Model structure, Hyperparameters, Training set, Number of epochs, other non parameters	x	О	0
Random seed	X	X	0

A. Structure:

- B. Autoencoder (ae):
- $ae = d \circ e$
- Encode $e : \mathbb{S} \to \mathbb{H}$, Decoder $d : \mathbb{H} \to \mathbb{S}$ (\mathbb{H} is the hidden representation)

$$x$$
 e d $ae(x)$

- Reconstruction error : $E(x) = ||x ae(x)||_p$
- Training an autoencoder :
 - Minimize the loss function over the training set

$$L(\mathbb{X}_{\text{train}}) = \frac{1}{|\mathbb{X}_{\text{train}}|} \sum_{x \in \mathbb{X}_{\text{train}}} ||x - ae(x)||_2$$

C. Detector:

- Detector's function $d: \mathbb{S} \to \{0,1\}$
- d(x)=0 if x is too far from the manifold (far=distance metric, too=threshold)
- Detector based on reconstruction error :
 - ✓ Do not need adversarial examples for training
 - ✓ Uses the reconstruction error to approximate the distance between test example and boundary of the manifold of the normal example
 - \checkmark t_{re} = threshold of reconstruction error to decide far-from-manifold data
 - ✓ Used L₁ and L₂ norm for reconstruction error

Detector based on probability divergence :

- ✓ Takes advantage of the target classifier
- \checkmark Compares probability mass function between f(x) and f(ae(x))
- ✓ Uses Jensen-Shanon divergence on last layer (softmax)
- ✓ Normal softmax function can saturate if largest element is much largest than the second

softmax(
$$\boldsymbol{l}$$
)_i = $\frac{\exp(l_i/T)}{\sum_{j=1}^n \exp(l_j/T)}$

T: Temperature

More temperature produces 'smoother' probability.

D. Reformer:

- Reformer's function $r: \mathbb{S} \to \mathbb{N}_t$, r(x)=x' and $f_t(x')=g_t(x)$
- Ideal reformer should not change the classification results of normal examples and should reform adversarial examples
- Noise-based reformer:
 - ✓ Adds noise from normal distribution and clips the data

$$r(\mathbf{x}) = clip(\mathbf{x} + \epsilon \cdot \mathbf{y})$$

✓ Problem : changes normal and adversarial examples blindly

D. Reformer:

- Autoencoder-based reformer :
 - ✓ Train AE to minimize reconstruction error on training set
 - ✓ Good generalization of the training set
 - \checkmark r(x)=ae(x)
 - \checkmark ae(x) = x', x' is very similar to x if x is a normal example
 - ✓ ae(y)=y', y' is very close to the manifold of the normal example is y is an adversarial example.

Is it possible to use the same AE for a detector and reformer?
Will it be as good as if we were using different AEs from the same architecture?

Diversity to mitigate Graybox attacks

- Introduce randomness to diversify the defense (same style as cryptography)
 - ✓ Train multiples AEs as candidates
 - ✓ For every session, MagNet picks randomly an AE (from a pool) for the defense
 - ✓ Possible countermeasure : the attacker trains his attack on all the AEs however the authors can increase and diversify the pool of AEs available to make it harder
- How to find a large number of diverse AEs ?
 - ✓ Train n autoencoders (same or different architecture) at the same time with random initialization.
 - ✓ Add a regularization term to the loss function to penalize resemblance of the AEs

$$L(x) = \sum_{i=1}^{n} MSE(x, ae_i(x)) - \alpha \sum_{i=1}^{n} MSE(ae_i(x), \frac{1}{n} \sum_{j=1}^{n} ae_j(x))$$

Evaluation step

- 1. Train target classifiers to be defended by MagNet.
- 2. Deploy the known attacks to generate adversarial examples.
- 3. Construct defensive devices using autoencoders.
- 4. Measure classification accuracy of the normal/adversarial examples.

Classifiers to be defended by MagNet

- CNN models for :
 - CIFAR-10 : Image classification (10 classes)
 - MNIST : 10 handwritten digits

Table 2: Training parameters of classifiers to be protected

Parameters	MNIST	CIFAR
Optimization Method	SGD	SGD
Learning Rate	0.01	0.01
Batch Size	128	32
Epochs	50	350
Data Augmentation	-	Shifting + Horizontal Flip

MNIST		CIFAR	
Conv.ReLU	$3 \times 3 \times 32$	Conv.ReLU	3 × 3 × 96
Conv.ReLU	$3 \times 3 \times 32$	Conv.ReLU	$3 \times 3 \times 96$
Max Pooling	2×2	Conv.ReLU	$3 \times 3 \times 96$
Conv.ReLU	$3 \times 3 \times 64$	Max Pooling	2×2
Conv.ReLU	$3 \times 3 \times 64$	Conv.ReLU	$3 \times 3 \times 192$
Max Pooling	2×2	Conv.ReLU	$3 \times 3 \times 192$
Dense.ReLU	200	Conv.ReLU	$3 \times 3 \times 192$
Dense.ReLU	200	Max Pooling	2×2
Softmax	10	Conv.ReLU	$3 \times 3 \times 192$
		Conv.ReLU	$1 \times 1 \times 192$
		Conv.ReLU	$1 \times 1 \times 10$
		Global Averag	e Pooling
		Softmax	10

- Accuracy on MNIST: 99.4%
- Accuracy on CIFAR-10: 90.4%

Detector and reformer architecture

• For MNIST:

Detector I & Refo	rmer	Detector II	
Conv.Sigmoid	$3 \times 3 \times 3$	Conv.Sigmoid	$3 \times 3 \times 3$
AveragePooling	2×2	Conv.Sigmoid	$3 \times 3 \times 3$
Conv.Sigmoid	$3 \times 3 \times 3$	Conv.Sigmoid	$3 \times 3 \times 1$
Conv.Sigmoid	$3 \times 3 \times 3$		
Upsampling	2×2		
Conv.Sigmoid	$3 \times 3 \times 3$		
Conv.Sigmoid	$3 \times 3 \times 1$		

• For CIFAR-10:

Detectors & Reformer					
Conv.Sigmoid	$3 \times 3 \times 3$				
Conv.Sigmoid	$3 \times 3 \times 3$				
Conv.Sigmoid	$3 \times 3 \times 1$				

Why would they use simpler Reformers for CIFAR-10 as the images are more complicated than MNIST images?

Results of MagNet:

Accuracy	Normal Examples		Adversarial Examples		
	No Defense	With MagNet	No Defense	With MagNet	
MNIST	99.4%	99.1%	0~96.8%	92.0~100%	
CIFAR10	90.6%	86.8%	0~46.0%	76.3~100%	

The authors of the paper always talked about having a low false positive rate, however they never showed any results on those rates!

(a) MNIST

Attack	Norm	Parameter	No Defense	With Defense
FGSM	L^{∞}	$\epsilon = 0.005$	96.8%	100.0%
FGSM	L^{∞}	$\epsilon = 0.010$	91.1%	100.0%
Iterative	L^{∞}	$\epsilon = 0.005$	95.2%	100.0%
Iterative	L^{∞}	$\epsilon = 0.010$	72.0%	100.0%
Iterative	L^2	$\epsilon = 0.5$	86.7%	99.2%
Iterative	L^2	$\epsilon = 1.0$	76.6%	100.0%
Deepfool	L^{∞}		19.1%	99.4%
Carlini	L^2		0.0%	99.5%
Carlini	L^{∞}		0.0%	99.8%
Carlini	L^0		0.0%	92.0%

(b) CIFAR

Attack	Norm	Parameter	No Defense	With Defense
FGSM	L^{∞}	$\epsilon = 0.025$	46.0%	99.9%
FGSM	L^{∞}	$\epsilon = 0.050$	40.5%	100.0%
Iterative	L^{∞}	$\epsilon = 0.010$	28.6%	96.0%
Iterative	L^{∞}	$\epsilon = 0.025$	11.1%	99.9%
Iterative	L^2	$\epsilon = 0.25$	18.4%	76.3%
Iterative	L^2	$\epsilon = 0.50$	6.6%	83.3%
Deepfool	L^{∞}		4.5%	93.4%
Carlini	L^2		0.0%	93.7%
Carlini	L^{∞}		0.0%	83.0%
Carlini	L^0		0.0%	77.5%

Case study on Carlini's attack:

MNIST:

& Privacy Lab

CIFAR-10:

- Reformer is good for low confidence attacks (near manifold)
- Detector is good for high confidence attacks (far from the manifold)
- They are complementary to each other, best accuracy when both are used.

Case study on Carlini's attack:

• Effect of the temperature T on the accuracy of the probability divergence -based detector :

Low-temperature detectors are more accurate on low-confidence attacks

High-temperature detectors are more accurate on high-confidence attacks

Defense against Graybox attacks

• Classification accuracy table for Carlini's attack using 8 AEs for CIFAR-10

task:

	A	В	С	D	Е	F	G	Н
A	0.0	92.8	92.5	93.1	91.8	91.8	92.5	93.6
В	92.1	0.0	92.0	92.5	91.4	92.5	91.3	92.5
C	93.2	93.8	0.0	92.8	93.3	94.1	92.7	93.6
D	92.8	92.2	91.3	0.0	91.7	92.8	91.2	93.9
E	93.3	94.0	93.4	93.2	0.0	93.4	91.0	92.8
F	92.8	93.1	93.2	93.6	92.2	0.0	92.8	93.8
G	92.5	93.1	92.0	92.2	90.5	93.5	0.1	93.4
Н	92.3	92.0	91.8	92.6	91.4	92.3	92.4	0.0
Random	81.1	81.4	80.8	81.3	80.3	81.3	80.5	81.7

• Classification accuracy on test set for cifar-10:

AE	A	В	С	D	Е	F	G	Н	Rand
Acc	89.2	88.7	89.0	89.0	88.7	89.3	89.2	89.1	89.0

Sum up of the paper:

- Creation of MagNet: a framework against adversarial perturbation
- Uses two networks: a detector (example far or close from the manifold) and a reformer (recreates the examples)
- Strong against state-of-art attacks
- Defense mechanism should be attack-independent!

Pros	Cons
Simple and effective defense system	Dependent to the model
Tested against state-of-art attacks	Only tested on image datasets
Attack-independant	No explanation on why they used autoencoder for reformers

Questions?

