Ejercicio 9

Consigna

Considere el alfabeto $\Sigma=\{a,b\}$, y los lenguajes Δ y Γ definidos inductivamente con las siguientes reglas. Demuestre que $\Gamma=\Delta$.

Reglas para Γ :

- 1. $\varepsilon \in \Gamma$
- 2. Si $\alpha \in \Gamma$, entonces $a\alpha \in \Gamma$
- 3. Si $\alpha \in \Gamma$, entonces $b\alpha \in \Gamma$

Reglas para Δ :

- 1. $\varepsilon \in \Delta$
- 2. Si $\alpha \in \Delta$, entonces $\alpha a \in \Delta$
- 3. Si $\alpha \in \Delta$, entonces $\alpha b \in \Delta$

Resolución

Primero, cambiaremos ligeramente ambas las definiciones de los lenguajes Δ y Γ para tener una regla inductiva menos. Veamos como hacerlo:

Reglas para Γ :

- 1. $\varepsilon \in \Gamma$
- 2. Si $\alpha \in \Gamma$, $x \in \Sigma$, entonces $x\alpha \in \Gamma$

Reglas para Δ :

- 1. $\varepsilon \in \Delta$
- 2. Si $\alpha \in \Delta$, $y \in \Sigma$, entonces $\alpha y \in \Delta$

Bien, ahora queremos probar que $\Delta \subseteq \Gamma$ y $\Gamma \subseteq \Delta$, esto es equivalente a decir que son iguales. Primero vamos a probar que $\Gamma \subseteq \Delta$; para esto usemos el PIP en Γ con la propiedad $P: \alpha \in \Delta$, para probar que todos sus elementos, están incluidos en Δ .

PASO BASE

 $P(\varepsilon): \varepsilon \in \Delta$: Esto se prueba por la regla (i) del lenguaje Δ .

PASO INDUCTIVO

- (H) $P(\alpha) : \alpha \in \Delta$
- (I) $P(x\alpha): x\alpha \in \Delta \text{ con } x \in \Sigma$

Entonces, lo que queremos probar es que para todo $\alpha \in \Delta$, $x\alpha \in \Delta$. Esto lo podemos probar usando el PIP para Δ . Sea $P'(\alpha) := x\alpha \in \Delta$

(SUB) PASO BASE
$$P'(\varepsilon) : x\varepsilon \in \Delta$$
.

Esto se cumple usando (i) y (ii) de la definición de Δ , ya que por (i) sabemos que ε está incluido en Δ , y por (ii) sabemos que $\forall y \in \Sigma : \varepsilon y \in \Delta$. Pero observemos que:

$$x\varepsilon = \varepsilon y$$

Porque ε es la palabra vacía, y x,y representan un símbolo de Σ . Concluyendo, esto se cumple

(SUB) PASO INDUCTIVO

- (H) $P'(\alpha): x\alpha \in \Delta$
- (I) $P'(\alpha y) : x\alpha y \in \Delta$

Asumimos que $P'(\alpha)$ es verdadera, entonces por la regla (ii) de Δ podemos decir que:

Como $x\alpha \in \Delta$ y $y \in \Sigma$; entonces:

$$x\alpha y \in \Delta$$

Esto prueba la tesis.

A su vez, volviendo a la primer inducción, esto prueba $P'(\alpha):x\alpha\in\Delta$. Por lo que probamos que $\Gamma\subseteq\Delta$.

Faltaría probar que $\Delta\subseteq \Gamma$, pero la prueba es básicamente un espejo de la que acabamos de realizar.