Obliczenia naukowe lista 1

Stanisław Tomkowiak

27 listopada 2024

Zadanie 1

Macheps

Epsilon maszynowy czyli właśnie macheps jest to najmniejsza liczba taka, żę 1 + macheps > 1. Dzięki temu epsilonowi określamy precyzję arytmetyki. Błąd zaokrąglenia liczby wynosi dokładnie $\frac{1}{2}$ macheps.

Wyznaczenie wartości epsilonu maszynowego metodą iteracyjną polega na dodawaniu do liczby 1.0 w wybranej precyzji coraz mniejszych wartości, dopóki liczba jest większa od 1.0. Jako pierwszą liczbę ustalamy macheps=1.0 i w każdej iteracji dzielimy go przez 2. Pętla zatrzyma się na wartości macheps.

Obliczanie maszynowego epsilonu dla typu liczbowego T:

```
1: function MACHEPS(T)
2: macheps \leftarrow T(1.0)  \triangleright Inicjalizujemy macheps jako 1.0 dla typu T
3: while T(1.0) + \frac{\text{macheps}}{T(2.0)} > T(1.0) do
4: macheps \leftarrow \frac{\text{macheps}}{T(2.0)}  \triangleright Dzielimy macheps przez 2, dopóki sumowanie go z T(1.0) jest większe od 1.0
5: end while
6: return macheps  \triangleright Zwracamy obliczoną wartość macheps
7: end function
```

Poniżej przedstawiam wyniki z dokładnością do trzech cyfr znaczących dla trzech różnych metod wyznaczenia epsilonu:

	Float16	Float32	Float64
wyniki iteracyjne	0.000977		$2.22 \cdot 10^{-16}$
wyniki uzyskane za pomocą funkcji eps()	0.000977		$2.22 \cdot 10^{-16}$
wartości w float.h	brak	$1.19 \cdot 10^{-7}$	$2.22 \cdot 10^{-16}$

Wyniki dla tych trzech metod są takie same. Znaczy to, że iteracyjny sposób wyznaczenia epsilonu maszynowego jest skuteczny.

Eta

Eta jest to najmniejsza liczba większa od zera maszynowego. W zadaniu należało obliczyć iteracyjnie wartość liczby eta dla wszystkich typów zmiennopozycyjnych zgodnych ze standardem IEEE 754. Dodatkowo musieliśmy zbadać związek tej liczby z liczbą MIN_{sub} .

Wyznaczenie tych wartości jest analogiczne do wyznaczania macheps. Dzielimy liczbę 1.0 przez 2 do czasu aż jest ona większa od 0.0. Poniżej przedstawiam pseudokod:

Obliczanie liczby eta dla typu liczbowego T

```
1: function ETA(T)
2: \operatorname{eta} \leftarrow T(1.0) \triangleright Inicjalizujemy eta jako 1.0 dla typu T
3: while \frac{\operatorname{eta}}{T(2.0)} > T(0.0) do
4: \operatorname{eta} \leftarrow \frac{\operatorname{eta}}{T(2.0)} \triangleright Dzielimy eta przez 2, dopóki jest większa od 0.0
5: end while
6: return eta \triangleright Zwracamy obliczoną wartość macheps
7: end function
```

Poniżej przedstawiam wyniki dwóch różnych metod wyznaczenia eta:

	Float16	Float32	Float64
wyniki iteracyjne	6.0e-8	1.0e-45	5.0e-324
wyniki uzyskane za pomocą funkcji nextfloat(0.0)	6.0e-8	1.0e-45	5.0e-324

Wyniki dla tych dwóch metod są takie same. Znaczy to, że iteracyjny sposób wyznaczenia liczby eta jest skuteczny.

Związek liczby eta z MIN_{sub} . MIN_{sub} jest najmniejszą liczbą większą od 0.0 w formie nieznormalizowanej. Po obliczeniu liczby MIN_{sub} dla badanych typów jest ona równa liczbie eta. Wyniki funkcji minfloat(Float32) i minfloat(Float64) prezentują się następująco:

• floatmin32: 1.1754944e-38

• floatmin64: 2.2250738585072014e-308

Są one zatem wiele większe od iteracyjnej próby, wartości te są najmniejszymi wartościami większymi od 0.0 znormalizowanymi.

Max

Największa wartość jaką można otrzymać w standardzie IEEE 754. Otrzymuję ją za pomocą algorytmu w którym mnożymy liczbę previous float(1.0) razy 2 tak długo aż liczba jest różna od wartości infinity. Poniżej przedstawiam pseudokod:

Obliczanie maksymalnej wartości reprezentowalnej dla typu liczbowego T

1: **function** MAX(T)

2: $\max \leftarrow \operatorname{prevfloat}(T(1.0))$ > Inicjalizujemy max jako największą liczbę mniejszą niż 1.0 dla typu T

3: while not $sinf(max \times T(2.0))$ do

4: $\max \leftarrow \max \times T(2.0)$ \triangleright Mnożymy max przez 2, dopóki nie osiągnie nieskończoności

5: end while

6: **return** max

▶ Zwracamy obliczoną maksymalną wartość

7: end function

Poniżej przedstawiam wyniki badań:

	Float16	Float32	Float64
wyniki iteracyjne	$6.55 \cdot 10^4$	$3.40 \cdot 10^{38}$	$1.80 \cdot 10^{308}$
wynikiuzyskane za pomocą funkcji floatmax()	$6.55 \cdot 10^4$	$3.40 \cdot 10^{38}$	
wartości z raportu	brak danych	$3.40 \cdot 10^{38}$	$1.80 \cdot 10^{308}$

Wyniki są takie same. Znaczy to, że iteracyjna forma wyznaczenia maksymalnej wartości jest prawidłowa(zgadza się z danymi z raportu oraz wynikami funkcji floatmax).

Zadanie 2

Wzór wymyślony przez Kahana: $3(\frac{4}{3}-1)-1$ po obliczeniu zwraca wyniki zgodne z machepsem danego typu co do znaku. Można uznać je za poprawne ponieważ w standardzie IEEE 754 pomnożenie przez -1 to jedynie negacja pierwszego bitu. Jednak aby uznać wzór kahana za w pełni poprawny należałoby zapisać go w formie:

$$\left|3\left(\frac{4}{3}-1\right)-1\right|$$

Zadanie 3

Sprawdzenie rozmieszczenia liczb w standardzie IEEE 754 arytmetyce Float64. Z powodów bardzo dużej liczby liczb sprawdzamy tylko mały wycinek tych liczb z przedziału. Dla zbadanych wartości wynika, że przedziałe [1,2] liczby zmiennopozycyjne są rozmieszczone równomiernie. Krok tego przedziału jest równy $\delta=2^{-52}$. Zatem każda liczba występująca w tym przedziałe może być przedstawiona za pomocą wzoru $x=1+k\delta$ dla $k=1,2,...,2^{-52}-1$. Badając jednak inne przedstawione w zadaniu

przedziału obserwujemy iż kroki są inne. Przedział [0.5,1] ma krok równy $\delta = 2^{-53}$. Przedział [2,4] ma krok równy $\delta = 2^{-51}$.

W badanym standardzie w reprezentacji bitowej obserwujemy,
że przedziały $[2^k, 2^{k+1}]$ różnią się tylko mantysą. W każdym takim przedziałe znajduje się 2^t równo rozmieszczonych liczb. Widzimy zatem,
że im mniejsza cecha w danym przedziałe tym bliższe sobie liczby jesteśmy w stanie zaobserwować.

Zadanie 4

Zadanie 5

Zadanie polegało na obliczeniu iloczynu skalarnego dwóch podanych wektorów:

$$\begin{array}{ll} x &= [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] \\ y &= [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]. \end{array}$$

Uzyskać wynik mieliśmy na cztery różne sposoby dla arytmetyk Float32 i Float64. Poniżej przedstawiam wyniki tych eksperymentów:

	Float32	Float64
prawidłowa wartość	$-1.00657107000000 \cdot 10^{-11}$	$-1.00657107000000 \cdot 10^{-11}$
"w przód"	-0.4999443	$1.0251881368296672 \cdot 10^{-10}$
"w tył"	-0.4543457	$-1.5643308870494366 \cdot 10^{-10}$
"malejąco"	-0.5	0.0
"rosnąco"	-0.5	0.0

Żaden ze sposobów nie jest skuteczny. Szczególnie duże błędy pojawiają się w precyzji single. Wyniki przedstawione w tabeli nie pojawiły się bez powodu; tak duże błędy wynikają z tego, że wektory te są prawie prostopadłe do siebie. Powstają przez to duże błędy w obliczeniach. Dodatkowo, dzięki temu zadaniu widać, iż kolejność wykonywania działań w komputerze ma znaczenie. Na błędy wpływa nie tylko arytmetyka, ale także właśnie kolejność działań.

Zadanie 6

Zadanie polegało na obliczeniu wartości funkcji:

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

Dla różnych wartości argumentu $x=8^{-1},8^{-2},8^{-3},\ldots$ Warto również zaznaczyć, że z matematycznego sensu te dwie funkcje są sobie równe. Należało policzyć to w precyzji Float64. Funkcja f(x) jest równa 0.0 dla $x=8^{-9}$, natomiast funkcja g(x) jest równa 0.0 dla $x=8^{-179}$. Wynika z tego, że wyniki funkcji g(x) są dużo bardziej wiarygodne. Funkcja ta nigdy dla argumentów większych od 0 nie powinna osiągać wartości 0.0. Taka rozbieżność wyników wynika z tego, że korzystając z funkcji f(x) odejmujemy od siebie bardzo bliskie liczby przez co otrzymujemy duży błąd podczas obliczeń. W sytuacji użycia funkcji g(x) usuwamy ten problem. Przekształcając funkcje aby uniknąć odejmowania bliskich sobie liczb pozwala zwiększyć wiarygodność wyników, oraz zmniejszyć błędy podczas obliczeń.

Zadanie 7

W zadaniu mamy policzyć przybliżoną wartość pochodnej w punkcie $x_0 = 1$. Zostaje nam do tego zadania dostarczony wzór:

$$f' = \frac{f(x_0 + h) - f(x_0)}{h}$$

gdzie $h=2^{-n}\ (n=0,1,2,...,54).$ Poniżej przedstawiam wyniki na wykresie:

Dodatkowo przedstawiam wyniki pomiaru błędu względem prawidłowej wartości pochodnej tej funkcji:

Rysunek 1: Wykres błędu w zależności od liczby iteracji n.

Możemy zaobserwować, że najbliższe przybliżenie mamy dla wartości n=28. Dalsze zmniejszanie h powoduje wzrost błędu. Wynika to z arytmetyki Float64 oraz odejmowania pojawiającego się w tym wzorze. Dodatkowo, po bliższym przyjrzeniu się wartościom h+1 widzimy, że dla n=53 h+1=1. Przez ograniczenia arytmetyki w pewnym momencie zaczynamy podczas odejmowania ucinać coraz

to większe fragmenty h przez co tracimy na dokładności przybliżenia. Wniosek wynikający z tego zadania jest taki, że mimo, iż zmniejszamy coraz bardzie h to w pewnym momencie zaczynamy się oddalać od prawdziwej wartości. Wydawałoby się ze zmniejszanie tak h może nas przybliżać jednak przez ograniecznia arytmetyki ucinamy część mantysy h co oddala nas od wyników prawidłowych.