1 Part I

- (a) Which of the three selection methods with k predictors has the smallest training RSS? Best subset selection.
 - Best subset selection examines all possible models of size k, ensuring the one with the lowest training RSS is chosen.
 - Forward and backward stepwise selection are greedy algorithms and may miss the best subset, resulting in a higher training RSS.

(b) Which of the three selection methods with k predictors has the smallest test RSS?

It depends, but typically forward or backward stepwise selection may have lower test RSS than best subset selection.

- Best subset selection may overfit due to considering a larger number of models, leading to lower training RSS but potentially higher test RSS.
- Stepwise methods, by being more constrained, may generalize better (i.e., lower variance), leading to improved test performance in some cases.

(c) True or False: the predictors in Model 1 are a subset of the predictors in Model $\bf 2$

Scenario	Model 1	Model 2	Answer
i.	Forward selection, k variables	Forward selection, $k+1$ variables	True — Forward selection adds predictors one at a time.
ii.	Backward selection, k variables	Backward selection, $k+1$ variables	False — Backward selection removes predictors one at a time, so no guarantee of strict nesting.
iii.	Backward selection, k variables	Forward selection, $k+1$ variables	False — Different selection strategies can yield different sets.
iv.	Forward selection, k variables	Backward selection, $k+1$ variables	False — Again, different methods and not necessarily nested.
V.	Best subset selection, k variables	Best subset selection, $k+1$ variables	False — Best subset independently chooses the best model at each size; no nesting guaranteed.

1 Part II

- (a) The lasso, relative to least squares, is:
- iii. "Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance."
 - The lasso introduces a penalty on the absolute value of the coefficients (L1 penalty), which shrinks some coefficients to zero.
 - This leads to less flexibility than least squares (which fits the training data exactly).
 - By reducing variance more than it increases bias, lasso can improve test prediction accuracy.

- (b) Repeat (a) for ridge regression relative to least squares.
- iii. "Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance."
 - Ridge regression uses an L2 penalty (squares of the coefficients), which also shrinks coefficients but doesn't zero them out like lasso.
 - Like lasso, ridge regression is **less flexible** than least squares and reduces variance at the cost of increased bias.
 - If the reduction in variance outweighs the increase in bias, prediction accuracy improves.

$\mathbf{2}$

- (a) As we increase s from 0, the training RSS will:
- iv. Steadily decrease.
 - When s = 0, all $\beta_j = 0$, so the model is just the intercept.
 - As s increases, more coefficients can become non-zero, allowing a better fit.
 - Therefore, the training RSS decreases monotonically as s increases.

- (b) Repeat (a) for test RSS.
- ii. Decrease initially, and then eventually start increasing in a U shape.
 - Initially, increasing s allows the model to capture more true structure \rightarrow test RSS decreases.
 - After a point, model becomes too complex and overfits \to **test RSS increases**.
 - This yields a U-shaped curve for test RSS.

(c) Repeat (a) for variance.

iv. Steadily increase.

- As more parameters are added (increasing s), the model becomes more flexible.
- This flexibility leads to higher variance.

(d) Repeat (a) for (squared) bias.

iv. Steadily decrease.

- ullet With small s, the model is constrained, and **underfits**, resulting in high bias.
- As s increases, the model becomes more flexible and bias decreases.

3

(a) Write out the ridge regression optimization problem in this setting.

We minimize:

$$\sum_{i=1}^{2} (y_i - (\beta_1 x_{i1} + \beta_2 x_{i2}))^2 + \lambda(\beta_1^2 + \beta_2^2)$$

Given that $x_{i1} = x_{i2}$, we can rewrite as:

$$\sum_{i=1}^{2} (y_i - (\beta_1 + \beta_2)x_{i1})^2 + \lambda(\beta_1^2 + \beta_2^2)$$

(b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\beta}_1 = \hat{\beta}_2$

Since $x_{i1} = x_{i2}$ for both observations, any linear combination where $\beta_1 + \beta_2 = c$ produces the same fit. However, the ridge penalty $\lambda(\beta_1^2 + \beta_2^2)$ is minimized when $\beta_1 = \beta_2$. Therefore, ridge regression will choose $\hat{\beta}_1 = \hat{\beta}_2$.

(c) Write out the lasso optimization problem in this setting.

We minimize:

$$\sum_{i=1}^{2} (y_i - (\beta_1 x_{i1} + \beta_2 x_{i2}))^2 + \lambda(|\beta_1| + |\beta_2|)$$

Again, since $x_{i1} = x_{i2}$, this becomes:

$$\sum_{i=1}^{2} (y_i - (\beta_1 + \beta_2)x_{i1})^2 + \lambda(|\beta_1| + |\beta_2|)$$

(d) Argue that in this setting, the lasso coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are not unique

The objective function depends only on the sum $\beta_1 + \beta_2$, not the individual values. For a fixed sum, say $\beta_1 + \beta_2 = c$, the lasso penalty $|\beta_1| + |\beta_2|$ is minimized by making one of the coefficients zero if possible.

Hence, multiple combinations of β_1 and β_2 achieve the same fit but different penalties, and some may tie for the minimum. For example:

- $\beta_1 = c, \beta_2 = 0$ $\beta_1 = 0, \beta_2 = c$
- Or any combination on the line $\beta_1 + \beta_2 = c$ that minimizes the L1 norm.

Therefore, the solution is not unique.

4

(a)

```
# Load necessary libraries
library(ISLR2)
library(glmnet)
library(caret)
# Load the College data
data(College)
# (a) Split the data into a training set and a test set
set.seed(123)
train_index <- createDataPartition(College$Apps, p = 0.7, list = FALSE)</pre>
train_data <- College[train_index, ]</pre>
test_data <- College[-train_index, ]</pre>
# Prepare matrices for glmnet
x_train <- model.matrix(Apps ~ ., train_data)[, -1]</pre>
y_train <- train_data$Apps</pre>
x_test <- model.matrix(Apps ~ ., test_data)[, -1]</pre>
y_test <- test_data$Apps</pre>
```

(b)

```
# (b) Fit a linear model using least squares
lm_fit <- lm(Apps ~ ., data = train_data)
lm_pred <- predict(lm_fit, newdata = test_data)
lm_mse <- mean((lm_pred - y_test)^2)
cat("(b) Linear Model Test MSE:", lm_mse, "\n")</pre>
```

(b) Linear Model Test MSE: 1882074

(c)

```
# (c) Ridge regression with cross-validation
ridge_cv <- cv.glmnet(x_train, y_train, alpha = 0)
ridge_best_lambda <- ridge_cv$lambda.min
ridge_pred <- predict(ridge_cv, s = ridge_best_lambda, newx = x_test)
ridge_mse <- mean((ridge_pred - y_test)^2)
cat("(c) Ridge Regression Test MSE:", ridge_mse, "\n")</pre>
```

(c) Ridge Regression Test MSE: 3265646

(d)

```
# (d) Lasso regression with cross-validation
lasso_cv <- cv.glmnet(x_train, y_train, alpha = 1)
lasso_best_lambda <- lasso_cv$lambda.min
lasso_pred <- predict(lasso_cv, s = lasso_best_lambda, newx = x_test)
lasso_mse <- mean((lasso_pred - y_test)^2)
cat("(d) Lasso Regression Test MSE:", lasso_mse, "\n")

## (d) Lasso Regression Test MSE: 1942428

# Number of non-zero coefficients
lasso_model <- glmnet(x_train, y_train, alpha = 1, lambda = lasso_best_lambda)
num_nonzero <- sum(coef(lasso_model) != 0) - 1 # exclude intercept
cat("(d) Number of non-zero Lasso coefficients:", num_nonzero, "\n")</pre>
```

(d) Number of non-zero Lasso coefficients: 16

```
# Load necessary libraries
library(ggplot2)
library(gridExtra)
set.seed(42)
# Generate sample data
n <- 20
x \leftarrow seq(0, 10, length.out = n)
y \leftarrow sin(x) + rnorm(n, sd = 0.3)
df \leftarrow data.frame(x = x, y = y)
# (a) lambda = infty, m = 0 \rightarrow g(x) = constant
fit_a <- mean(y)</pre>
df_a \leftarrow data.frame(x = x, y = rep(fit_a, n))
# (b) lambda = infty, m = 1 \rightarrow g(x) = straight line
fit_b \leftarrow lm(y \sim x)
df_b <- data.frame(x = x, y = predict(fit_b))</pre>
# (c) lambda = infty, m = 2 \rightarrow g(x) = quadratic curve
fit_c \leftarrow lm(y \sim poly(x, 2))
df_c <- data.frame(x = x, y = predict(fit_c))</pre>
# (d) lambda = infty, m = 3 \rightarrow g(x) = cubic curve
fit_d \leftarrow lm(y \sim poly(x, 3))
df_d <- data.frame(x = x, y = predict(fit_d))</pre>
# (e) lambda = 0, m = 3 \rightarrow interpolate \ all \ points \ (overfit)
fit_e <- spline(x, y, n = 100, method = "natural")</pre>
df_e <- data.frame(x = fit_e$x, y = fit_e$y)</pre>
# Plotting
p_base \leftarrow ggplot(df, aes(x = x, y = y)) + geom_point() + ylim(-2, 2.5)
p_a <- p_base + geom_line(data = df_a, color = "blue") + ggtitle("(a) lambda = infty, m = 0")
p_b <- p_base + geom_line(data = df_b, color = "blue") + ggtitle("(b) lambda = infty, m = 1")</pre>
p_c <- p_base + geom_line(data = df_c, color = "blue") + ggtitle("(c) lambda = infty, m = 2")
p_d <- p_base + geom_line(data = df_d, color = "blue") + ggtitle("(d) lambda = infty, m = 3")
p_e <- p_base + geom_line(data = df_e, color = "blue") + ggtitle("(e) lambda = 0, m = 3")</pre>
# Display all plots
grid.arrange(p_a, p_b, p_c, p_d, p_e, ncol = 2)
```

(a) lambda = infty, m = 0

(b) lambda = infty, m = 1

(c) lambda = infty, m = 2

(d) lambda = infty, m = 3

