R course

Experimental design and hypothesis testing

12. - 16.09.2016

Max Planck Institute for Marine Microbiology

Christiane Hassenrück

Always know how to analyze the data before collecting it!

- → Be aware what kind of data you are collecting: continuous, discrete, percentages, binary, etc.
- → Be aware of the assumptions of the statistical tests suitable for your kind of data
- → Be aware of the limitations of field, laboratory, and statistical techniques
- → Always collect back-up samples
- → Always have a plan B (or C, or D, ...)

Always know how to analyze the data before collecting it!

Ideal scenario

- > 10 replicates for each treatment
- Additional technical replicates
- Balanced sampling design
- Normally distributed data
- No missing data
- No outliers
- No (observer) bias
- No confounding variables

Reality

- ~ 3 replicates for each treatment because of logistic constraints
- Technical replicates not comparable
- Unbalanced sampling design due to site inaccessibility
- Irregular data distribution
- Missing data due to failed measurements
- Many outliers
- Strong biases
- Highly confounded environmental data
- •

Always know how to analyze the data before collecting it!

Compromise

- Irregular data distributions:
 - Simple sampling design
 - Consider non-parametric tests and/or permutaion tests
- Missing data:
 - Collect more samples than necessary, even if they are not going to be analyzed
- Logistic contraints:
 - Instead of reducing the number of replicates, reduce the number of treatments
 - Avoid pseudoreplication

Example:

• 16S amplicon sequencing: ~ 50 € per sample

Estimated costs:

• 16S amplicon sequencing:

$$3 \times 3 \times 2 \times 5$$

Example:

• 16S amplicon sequencing: ~ 50 € per sample

Estimated costs:

16S amplicon sequencing:

Example:

16S amplicon sequencing: ~ 50 € per sample

Estimated costs:

16S amplicon sequencing:

Example:

• 16S amplicon sequencing: ~ 50 € per sample

Estimated costs:

16S amplicon sequencing:

2 x 1 x 1 x 5 = 10 replicates x 50 € =

500 €

Example:

16S amplicon sequencing: ~ 50 € per sample

Estimated costs:

16S amplicon sequencing:

Hypothesis testing

H₀: Null hypothesis

There is no significant difference between treatments

H_A: alternative hypothesis

There is a significant difference between treatments

R cannot tell you which test to use! This course: only implementation in R

Assumptions of statistical tests

- Independence of observations (name examples)
 - No pseudoreplication
- Balanced sampling design (preferred)
 - Same number of observations per treatment
- Conformity to theoretical distribution (parametric)
 - Otherwise test statistic (and p-value) meaningless
- Homoscedacity (parametric)
 - E.g. variance should not increase with the mean
- Check assumptions in R:

```
- leveneTest {car}
- shapiro.test {stats}
- qqnorm {stats}
- plot(residuals(model) ~ fitted(model))
```

- Alternatives:
 - Data tranformations (e.g. log, sqrt, asin)
 - Permutation test

Pseudoreplication

Conclusions only about difference between islands, not nutrient effect

Pseudoreplication

Repeated measures can be a good thing...

... if they are accounted for in the statistical model!

- Option 1: use means
- Option 2: build mixed models (introduce random factor 'Island')

P-values are (usually) calculated based on a theoretical mathematical

distribution

→ Reason for normality assumption

- P-values are (usually) calculated based on a theoretical mathematical distribution
 - → Reason for normality assumption

P-values depend on effect size (test statistic) and sampling size (degrees of

freedom)

- P-values are (usually) calculated based on a theoretical mathematical distribution
 - → Reason for normality assumption
- P-values depend on effect size (test statistic) and sampling size (degrees of freedom)
- The widely used significance threshold of α = 0.05 is an arbitrary number, chosen as compromise between type I and type II errors

Accept H ₀	Reject H ₀
Correct	Type II
	(false negative)
Type I (false positive)	Correct
	<u> </u>

- P-values are (usually) calculated based on a theoretical mathematical distribution
 - → Reason for normality assumption
- P-values depend on effect size (test statistic) and sampling size (degrees of freedom)
- The widely used significance threshold of α = 0.05 is an arbitrary number, chosen as compromise between type I and type II errors
- Running several tests on the same data set leads to p-value inflation

Family-wise error rate Significance threshold per comparison
$$\frac{FWER}{n} = 1 - (1 - alpha)^n - \frac{Number of comparisons}{n} \frac{n}{n} \frac{FWER}{1}$$

$$3 \qquad 0.14$$

$$1000 \qquad \sim 1$$

	Parametric	Non-parametric
Univariate		
Compare 2 treatments	T-test	Mann-Whitney-U (Wilcoxon)
Compare > 2 treatments	ANOVA Post-hoc: TukeyHSD	Kruskal-Wallis
Continuous explanatory variable	Linear regression	Spearman correlation (not regression anymore)
Mixed effects models	GLMMs Post-hoc	
Multivariate		
Ordination	PCA PCoA CA	NMDS
Hypothesis testing	RDA CCA	ANOSIM PERMANOVA
Comparing 2 multivariate objects	Mantel-test Procrustes-test	
Causal interactions	Path analysis	

Mixed-effects models

- Extension of GLMs
- Additional feature: include random effects

• GLM:
$$F = \frac{explained\ variation}{unexplained\ variation} = \frac{SS_{fixed}/df_{fixed}}{SS_{error}/df_{error}}$$

• GLMM:
$$F = \frac{explained\ variation}{unexplained\ variation} = \frac{SS_{fixed}/df_{fixed}}{SS_{random}/df_{random}}$$

- Example: repeated measurements
 - 3 treatments x 10 replicates x 3 measurements = 90 values
 - df_{fixed} ~ number of treatments
 - df_{error} ~ total sample size (without random factor)
 - df_{random} ~ number of levels in random factor

Permutations tests

- Create your own theoretical distribution of the test statistic
- Randomly reshuffle the response variable

Implemented in R as default for several tests (mostly multivariate tests)

Dissimilarity and distance

Community (dis)similarity between samples

	OTU	11	OTU2	OTU3	0	TU4				OTU	1 OT	U2	OTU3	OTU4
S1	14		2	14		14	pres	ence/	S1	1		1	1	1
S2	10		14	0		8	<u> </u>		S2	1		1	0	1
S3	0		5	0		2	abse	ence	S3	0	•	1	0	1
S4	0		0	1		0			S4	0	(C	1	0
	Asymmetrical vs. symmetrical Bray-Curtis vs. euclidean									Jaccard				
	S1	S2	S3	S4		S1	S2	S3	S4		S1	SZ	2 S3	S 4
S1	0				S1	0				S1	0			
S2	0.5	0			S2	19.8	0			S2	0.25	0		
S3	8.0	0.6	0		S3	23.3	14.7	0		S3	0.5	0.3	3 0	
S4	1.0	1	1	0	S4	23.8	19	5.5	0	S4	0.75	1	1	0

- Zeros in ecology: Is this species really not there or did we just not find it?
- → double zeros not relevant

PCA NMDS

Visualization of higher dimensional data

- Continuous environmental data
- Metric ordination based on euclidean distances
- Create new axes (principal components) along direction of highest variability (N_{PC} = N_{variables})

- Species abundance data
- Non-metric ordination based on any kind of distance/dissimilarity measure
- Show maximum variation in 2 (or 3) dimensions

More information:

GUide to STatistical Analysis in Microbial Ecology

http://mb3is.megx.net/gustame

RDA

PERMANOVA

Hypothesis testing

- Linear technique
- Variation in response matrix (e.g. microbial communities) explained by explanatory variables (e.g. environmental parameters)
- Non-parametric multivariate ANOVA
- ANOVA based on on ranked dissimilarities
- Multifactorial design

ANOSIM

- Hypothesis testing
- based on on ranked dissimilarities
- Unifactorial design

Mantel test

Procrustes test

Comparison of 2 multivariate data sets

- Correlation of dissimilarity matrices
- Comparison based on all variation

Mantel statistic r: 0.7511

Significance: 0.001

- Correlation of ordination objects
- Comparison based on the majority of the variation

Procrustes SS: 0.1266

Correlation (symmetric rotation): 0.9346

Significance: 0.001

Path analysis

- Causal (directed) relationships between blocks of variables
- Based on a priori hypotheses about biotic and abiotic interactions
- Large sample size (> 10 observations per path)
- Relationships between variable blocks:
 - Regression coefficient
 - (Partial) Mantel statistic
 - Multivariate coefficient of correlation (RV)

More examples

GUide to STatistical Analysis in Microbial Ecology

http://mb3is.megx.net/gustame