Fragestellung

Wie genau lassen sich die Fehlerursachen einer Maschine durch Sensordaten mithilfe von Klassifikationsmodellen identifizieren (gemessen anhand von Accuracy, Precision und Recall)?

- S: Mehrere Machine-Learning-Modelle sollen entwickelt werden, das verschiedene Fehlerursachen basierend auf Sensordaten klassifizieren.
- M: Die Modellperformance wird anhand von Accuracy, Precision und Recall gemessen.
- **A:** Durch Explorative Datenanalyse und Feature Engineering machbar.
- R: Durchführbar innerhalb des geplanten Zeitrahmens auf der Grundlage eines geeigneten Datensatzes und der bisher erworbenen Kompetenzen.
- **T:** Umsetzung innerhalb von 6 Wochen mit Evaluierung in Woche 7.

Roadmap und Vorgehensweise

Datensatz

- Synthetischer Datensatz
- Sensordaten einer Fräsmaschine
- Predictive Maintenence
- Bildet Fehler und Fehlerursache ab
- 10.000 Zeilen x 14 Spalten

Input	Output
 Product-Id Type Air temperature Process temperature Torque Tool wear 	 tool wear failure heat dissipation failure power failure overstrain failure random failures

Literatur-Recherche

- Data Analytics und Predictive Maintenance
 - Predictive Maintenance in digitalenGeschäftsmodellen
- Stand der Technik
- Klassifikation oder Regression

- Datenanalyse
 - Data Mining
 - Machine Learning / mögliche Methoden
 - Ergebnisinterpretation

Vorläufige Quellen

- Seebacher, M. (2018). Einsatz von Predictive Maintenance im Bereich von Incident-Management. FH
 Technikum Wien.
- **Frick, A. (2020).** Predictive Maintenance: Abgleich der Situation in Vorarlberger Unternehmen mit dem Stand der Forschung. FH Vorarlberg.
- Ferrera, G. (2021). Überblick über maschinelle Lernverfahren für Predictive Maintenance. Hochschule Reutlingen.
- Becker, W., & Schuhknecht, F. (2020). Instandhaltungscontrolling in der digitalen Welt: Predictive Maintenance und deren Steuerung. o. V.
- Schaechtl, P., Roth, M., Goetz, S., Schleich, B., & Wartzack, S. (2023). Effiziente, prozessorientierte Konformitätsbewertung bei Toleranzsimulationen auf Basis von Klassifikationsmodellen. Prof. Dr.-Ing. Sandro Wartzack.

Code-Recherche

- Ca. 100 Notebooks auf Kaggle
- Themen:
 - Vorhersage von Maschinenfehlern:
 - Hauptkomponentenanalyse
 - Umgang mit unausgeglichenen Klassen
 - (+ Oversampling-Techniken)
 - Modellvergleich und -evaluation:

- Interessantes <u>GitHub</u> Repository
- Themen:
 - Data Preprocessing and Feature Engineering
 - Predictive Maintenance Classification

Mögliche Ansätze

Deskriptive Statistik & Visualisierung

Korrelationsanalyse und Heatmaps Hauptkomponentenanalyse (PCA)

Feature Engineering

Überwachtes Lernen: Klassifikationsmodelle

Anomalieerkennung

Modellvalidierung und Hyperparameter-Tuning