Autonomous and Mobile Robotics M

22 December 2022 - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

- 1. The configuration space of a unicycle mobile robot is:
 - $(x y \theta)^T \in \mathbb{R}^3$

 - $\bigcap [x \ y \ \theta \ \gamma]^T \in \mathbb{R}^2 \times \mathbb{S}^2$
- 2. A constraint is said non-holonomic if:
 - \times the differential relation between the coordinates is not reducible to finite form
 - O finite relations between the coordinates of the system are present
 - if differentiable/integrable relations between the coordinates of the system are present
- 3. Given the constraints matrix equation in Pfaffian form $A(q)\dot{q}=0$, the admissible robot speed:
 - \bigcirc is generated by a matrix G(q) such that $\operatorname{Ker}(G(q)) = \operatorname{Im}(A(q)), \forall q$
 - \bigotimes is generated by a matrix G(q) such that $\mathrm{Im}(G(q))=\mathrm{Ker}(A(q)), \forall q$
 - \bigcirc is generated by a matrix G(q) such that $G(q) = A(q)^{-1}, \forall q$
- 4. Consider an obstacle avoidance algorithm based on potential fields
 - O a concave shape of the obstacle can in many cases avoid the problem of local minima
 - the control consists in setting the velocity of the robot equal to the gradient of the potential
 - ⊗ the overall potential is the sum of an attractive potential generated by the goal and repulsive potentials generated by the obstacles
- 5. The robot configuration space is randomly sampled taking into account feasible trajectories:
 - in the Probabilistic Roadmap algorithm;

 - () in the Voronoi Roadmap algorithm.
- 6. A process satisfies the Markov property if:
 - O the agent state is the same as the environment state
 - ⊗ one can make predictions for the future of the process based solely on its present state
 - one can make predictions for the future of the process only based on the process full history
- 7. The action value function is defined as:
 - $\bigcap q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1}|S_t = s, A_t = a]$
 - $\bigcirc q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s]$
 - $\bigotimes q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a\right]$
- 8. The Bellman optimality equation for the state value function can be written as
 - $v_*(s) = \max v_\pi(s)$
 - $\bigotimes v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$
 - $\bigotimes v_*(s) = \max_{a \in \mathcal{A}} \mathbb{E}_*[G_t | S_t = s, A_t = a]$
- 9. The λ -return is defined as:
 - $\bigcirc G_t^{\lambda} = R_{t+1} + \lambda V(S_{t+1})$
 - $\bigcirc G_t^{\lambda} = \sum_{k=0}^{\infty} \lambda^k R_{t+k+1}$
 - $\bigotimes G_t^{\lambda} = (1 \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$
- 10. In value function approximation by stochastic gradient descent, the parameter vector update is defined as:

 - $\bigcirc \Delta \mathbf{w} = \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$
 - $\bigcirc \Delta \mathbf{w} = -\frac{1}{2}\alpha \nabla_{\mathbf{w}} J(\mathbf{w})$

Autonomous and Mobile Robotics M

22 December 2022 - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable and deterministic environment with 5 states providing the following rewards

$R(s_1)$	$R(s_2)$	$R(s_3)$	$R(s_4)$	$R(s_5)$
1	0	-1	0	2

The set of possible actions is {MoveLeft, MoveRight}, proving with probability 1 the transition of the state to the left one or to the right one respectively. The environment is initially at state s_1 , and first the policy $\pi_1(\cdot) = \text{MoveRight}$ is applied for 4 time steps. Then, the policy $\pi_2(\cdot) = \text{MoveLeft}$ is applied for additional 4 time steps.

Starting from an arbitrary initialisation of the state value function and assuming a discount factor $\gamma = 1$ and a weight $\alpha = 0.5$, compute the state value function provided by a TD algorithm after the execution of π_1 and π_2 in the following two tables.

$v_{\pi_1}(s_1)$	$v_{\pi_1}(s_2)$	$v_{\pi_1}(s_3)$	$v_{\pi_1}(s_4)$	$v_{\pi_1}(s_5)$

	$v_{\pi_2}(s_1)$	$v_{\pi_2}(s_2)$	$v_{\pi_2}(s_3)$	$v_{\pi_2}(s_4)$	$v_{\pi_2}(s_5)$
ſ					

Solution:

The state value function is initialized to 0 for all the states.

v	$\sigma_{\pi_1}(s_1)$	$v_{\pi_1}(s_2)$	$v_{\pi_1}(s_3)$	$v_{\pi_1}(s_4)$	$v_{\pi_1}(s_5)$
	0	-0.5	0	1	0

$v_{\pi_2}(s_1)$	$v_{\pi_2}(s_2)$	$v_{\pi_2}(s_3)$	$v_{\pi_2}(s_4)$	$v_{\pi_2}(s_5)$
0	0.25	-0.25	0	0.5