

SAINT IGNATIUS' COLLEGE, RIVERVIEW

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1999

MATHEMATICS

3/4 UNIT COMMON

Time Allowed: 2 Hours (plus 5 minutes reading time)

Directions to Candidates:

Attempt ALL questions.

all questions are of equal value.

all necessary working should be shown in every question. Marks may be deducted for areless or badly arranged work.

tandard integrals are provided.

oard-approved calculators may be used

ach question attempted is to be returned in a *separate* Writing Booklet clearly marked uestion 1, Question 2, etc. on the cover.

ach booklet must show your Student Number and the name of your Class Teacher.

ou may ask for extra Writing Booklets if you need them.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 1999 3/4 Unit Mathematics Higher School Certificate Examination.

Question 1

(a) Evaluate
$$\sin \left(\frac{\sqrt{3}}{2}\right)$$
, giving your answer in terms of π . (1 mark)

(c) Find
$$\int \frac{x}{\sqrt{x^2 - 3}} dx$$
. Use the substitution $u = x^2 - 3$. (2 m)

(d) The polynomial
$$x^3 + 2x^2 - kx + 3$$
 has a factor $(x+1)$.
Find the value of k

(e) Solve the equation
$$100e^{-3t} = 20e^{2t}$$
.

(f) (i) Sketch the graph of
$$y = f(x)$$
 where $f(x) = \log_{x}(x+2)$, showing features.

ii) Sketch, on the same axes, the graph of the inverse function
$$y = f^{-1}(x)$$
 and state the equation of $f^{-1}(x)$. (2 marks)

Differentiate
$$tan^{-1}(4x)$$
 (2 mark

(2 marks)

9

$$\frac{x}{x^2-3}$$
 dx. Use the substitution $u=x^2-3$. (2 marks)

The polynomial
$$x^3 + 2x^2 - kx + 3$$
 has a factor $(x+1)$.
Find the value of k . (2 marks)

Solve the equation
$$100e^{-3t} = 20e^{2t}$$
. (2 marks)

f) (i) Sketch the graph of
$$y = f(x)$$
 where $f(x) = \log_e(x+2)$, showing features.

(I mark)

Question 2

a Use the table of standard integrals and the substitution u = x - 1 to evaluate

$$\int_{1}^{2} \frac{dx}{\sqrt{(x-1)^{2}+4}}$$

⊕,

such that displacement, x cm from A particle moves along the x-axis

Describe the motion of the particle when t = 4.

 \odot

- Ξ Find the velocity of the particle for 0 < t < 4.
- \equiv Find the total distance travelled in the first 6 seconds.
- Ŧ Sketch the graph of velocity versus time.
- 0 after t seconds, is give by as shown in the diagram $x=t-4, t\geq 0,$
- (1 mark)
- (1 mark)
- (2 marks)
- (1 mark)

<u>c</u>

<u>0</u>

- How many roots has the equation $e^{x-2} x = 0$?

(1 mark)

Taking x = 3.3 as the first approximation, use one application of Newton's Method to find a better approximation to the x-coordinate of B.

 \equiv \odot

(3 marks)

Question 3

a

(3 marks)

helicopter to X and Y are 45° and 60° and Y on ground level. X is due East and Y is due South of the helicopter. metres is observing two targets at X A helicopter at an altitude of 500 The angles of depression from the

E

- Find the length ZY in surd form
- Find the distance between the two targets.

(2 marks) (2 marks)

Ξ Θ

Consider the function $f(x) = 3\cos^{-1}x$

3

- Θ
- Evaluate f(-1).
- Ξ Sketch the graph of y = f(x), showing features.

(2 marks) (1 mark)

 $x^2 + y^2 = 1$ and the lines y = x and The shaded area is bounded by the circle

- Show that $x^2 + y^2 = 1$ intersects y = x at $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ (1 mark)

 \odot

 \equiv Find the volume generated when this shaded area is rotated about the (4 marks)

Question 4

- (a) Consider the function $f(x) = \sqrt[3]{x^2}$
- (i) Show that f is an even function.

Find f(0).

(1 mark)

(I mark)

(iv) Show that y = f(x) has no stationary points

Find f'(x) and f''(x).

- (2 marks)
- (v) Show that y = f(x) is concave down for all x>0.
- (I mark)
- (vi) Sketch the graph of y = f(x).
- (I mark)

(1 mark)

3

XV is a diameter of a circle. WY and WX are tangents to the circle. ZYW is a straight line. $\angle ZYV = \alpha$,

9

 $\angle YWX = \gamma$ and $\angle WXY = \theta$

Prove that $\theta + \alpha = 90^{\circ}$

Θ

- (3 marks)
- (ii) Hence or otherwise prove that $\gamma = 2\alpha$.
- (2 marks)

Question 5

(a) Australia is the leading producer of the famous South Sea Pearls. The probability of finding a natural, perfect pearl in an oyster is $\frac{1}{20000}$.

In parts (i) (ii) and (iii) give your answer unsimplified using a power of a fraction

If three oysters are selected at random and opened, find the probability that

- no pearl will be found

(1 mark)

a perfect pearl will be found

9 9

(2 marks)

If n oysters are opened,

(iii) write down an expression for the probability that a perfect pearl is found.

(I mark)

(2 marks)

 hence find the number of oysters required to have at least a 50% chance of finding a perfect pearl.

An ardent fan at an AFL match waits anxiously for his favourite player "Slogger" to kick the ball from the field into his lap, as shown in the diagram. Slogger kicks the ball at an angle of elevation of 60° with initial speed Vm/s. Acceleration due to gravity is $g = 10 \text{ m/s}^2$ and the equations of motion are $x = Vt \cos\theta$ and $y = Vt \sin\theta - \frac{1}{2}gt^2$, where x and y are the respective horizontal and vertical components of displacement in metres after t seconds,

- (i) show that $y = x \tan \theta \frac{gx^2}{2V^2 \cos^2 \theta}$.
- (ii) Hence show that Slogger must kick the ball at an initial speed of approximately 28.63 m/s.

(2 marks)

(1 mark)

- (c) In a co-educational class there are 4 girls and 7 boys. Their classroom has 5 rows of 5 desks neatly arranged. Each student occupies a desk with a chair. Find the number of seating arrangements possible if,
- (i) students can sit anywhere,
- all the girls want to occupy the first row.
- (1 mark)

(1 mark)

Two particular girls and three particular boys fill the back row seated alternately.

(1 mark)

Question 6

æ

spa water, and time, t minutes. between T, the temperature in ${}^{\circ}C$ of cooling The graph represents the relationship The rate of cooling is given by

$$\frac{dT}{dt} = -k(T-A) ,$$

where k and A are constants, k>0.

Show that
$$T = A + Be^{-kt}$$
 is a solution to the differential equation $\frac{dT}{dt} = -k(T - A)$, where B is a constant.

 \odot

 \equiv

(2 marks)

(2 marks)

 $\frac{1}{90}\ln\left(\frac{14}{39}\right)$

- Ť 90 minutes.
- 9 depth in metres, t is time after 3:00 am in hours, a, n are constants motion according to the equation $D = -a\cos(mt) + 6$, where D is 9:42 am. You may assume these tides rise and fall in simple harmonic 5:14 am the tide had risen to a depth of 3.3m, then high tide occurred at Southern hemisphere. On April 13, low tide occurred at 3:00am. At The north West Australian town of Derby boasts the largest tides in the
- Θ Find the period in hours and minutes.

(ii) Hence show that
$$n = \frac{10\pi}{67}$$
.

Question 7

Show that
$$\frac{(n+9)^2(n+10)^2 - n^2(n-1)^2}{4} = 5(2n+9)(n^2+9n+45)$$
 (2 marks)

<u>a</u>

$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2}{4} (n+1)^2$$
 for $n \ge 1$, $n \in \mathbb{N}$

(4 marks)

Use (b)(i) to write a formula for
$$1^3 + 2^3 + 3^3 + ... + (n+k)^3, k \in \mathbb{N}$$
 (1 mark)

 Ξ

$$n^3 + (n+1)^3 + (n+2)^3 + ... + (n+9)^3 = 5(2n+9)(n^2+9n+45).$$
 (2 marks)

<u>o</u>

Russian Petrouchka Dolls are a set of 10 dolls which are all similar, the smallest of which has a height of 4 cm. Each doll is 1 cm taller than the previous one. The picture (Not to scale) shows the smallest five dolls in the set.

constant. Show that the total mass of the set is 8245c grams The mass of each doll is $c \times h^3$ grams where h is the height of the doll in cm and c is a

(3 marks)