

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2022 1 of 7

Sample Information

Patient Name: 張承平 Gender: Male ID No.: A101030898 History No.: 28079869

Age: 75

Ordering Doctor: DOC1654E 林庭安 Ordering REQ.: 0BWPZTD Signing in Date: 2022/06/23

Path No.: S111-99623 **MP No.:** MY22015

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2022/06/16

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Myelodysplastic Syndrome

Table of Contents	Page	
Variants (Exclude variant in Taiwan	2	
BioBank with >1% allele frequency)		
Biomarker Descriptions	2	
Prognostic Details	3	

Report Highlights 2 Relevant Biomarkers

0 Therapies Available

0 Clinical Trials

Relevant Myelodysplastic Syndrome Variants

Gene	Finding	Gene	Finding
ASXL1	None detected	NPM1	None detected
BCOR	None detected	NRAS	None detected
CBL	None detected	NUP214	None detected
CREBBP	None detected	RUNX1	None detected
ETV6	None detected	SF3B1	None detected
EZH2	None detected	SRSF2	SRSF2 p.(P95R) c.284C>G
FLT3	None detected	STAG2	STAG2 p.(Y195*) c.585T>A
GATA2	None detected	TP53	None detected
IDH2	None detected	U2AF1	None detected
KIT	None detected	WT1	None detected
KMT2A	None detected	ZRSR2	None detected
MECOM	None detected		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	SRSF2 p.(P95R) c.284C>G serine and arginine rich splicing factor 2 Allele Frequency: 39.09% Prognostic significance: NCCN: R	None Poor	None	0
IA	STAG2 p.(Y195*) c.585T>A stromal antigen 2 Allele Frequency: 77.16% Prognostic significance: NCCN: 8	None	None	0

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

TET2 p.(Q674Ifs*12) c.2020_2039delCAGTCACTGTGTGGCACTAG

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
TET2	p.(Q674lfs*12)	c.2020_2039delCAG TCACTGTGTGGCAC TAG		chr4:106157117	43.74%	NM_001127208.2	frameshift Deletion	1982
SRSF2	p.(P95R)	c.284C>G	COSM211661	chr17:74732959	39.09%	NM_003016.4	missense	1929
STAG2	p.(Y195*)	c.585T>A		chrX:123179136	77.16%	NM_001042749.2	nonsense	1992
DNMT3A	p.(P743H)	c.2228C>A		chr2:25463265	3.30%	NM_022552.4	missense	1999

Biomarker Descriptions

SRSF2 (serine and arginine rich splicing factor 2)

Background: The SRFS2 gene encodes the serine/arginine (SR)-rich splicing factor 2, a member of the SR-rich family of pre-mRNA splicing factors which make up part of the spliceosome. SRFS2 contains an RNA recognition motif (RRM) that recognizes and binds exonic splicing enhancers (ESE) in a sequence-specific manner¹. SR proteins are essential regulators of alternative RNA splicing due to their ability to bind RNA and interact with other splicing factors. These proteins can influence the exclusion of cassette exons, a form of alternative splicing also known as exon skipping, which allows for the production of different protein isoforms^{1,2}. SRSF2 is the target of somatic missense mutations and in-frame deletions in hematological malignancies, particularly myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and myeloproliferative neoplasms (MPN)^{3,4,5}. Such mutations in SRSF2 result in a differential gain of function which influences cassette exon exclusion, thereby supporting an oncogenic role in cancer⁶.

Alterations and prevalence: Mutations in SRSF2 are observed in approximately 10% of MDS cases and 30-40% of CMML^{4,7,8}. Missense mutations at P95 are most recurrent, which leads to an amino acid change from proline to histidine (H), leucine (L), or arginine (R)⁸. Specifically, the P95H substitution alters SRSF2 affinity for ESEs and drives preferential recognition of cassette exons containing C-versus G-rich ESEs^{5,6}. Although less prevalent, recurrent in-frame deletions (P95H_R102del) are observed in primary myelofibrosis (PMF)⁹. This mutation results in the deletion of 8 amino acids which has been shown to exhibit greater variation of splicing events relative to the P95 missense mutation alone¹⁰.

Potential relevance: In CMML, SRSF2 mutations are often enriched and can be used to support diagnosis^{11,12}. SRSF2 mutations confer poor prognosis in MDS and systemic mastocytosis (SM) and are associated with decreased overall survival (OS)^{12,13,14}. In MPN, SRSF2

Biomarker Descriptions (continued)

mutations are considered high-risk mutations and are independently associated with inferior OS as well as leukemia-free survival^{15,16}. Additionally, SRSF2 mutations are predictive of leukemic transformation in patients with PMF¹⁵.

STAG2 (stromal antigen 2)

<u>Background</u>: The STAG2 gene encodes the stromal antigen 2 protein, one of the core proteins in the cohesin complex, which regulates the separation of sister chromatids during cell division^{17,18}. Components of the cohesion complex include SMC1A, SMC3, and RAD21, which bind to STAG1/STAG2 paralogs^{19,20}. Inactivating mutations in STAG2 contribute to X-linked neurodevelopmental disorders, aneuploidy, and chromosomal instability in cancer^{19,21}.

Alterations and prevalence: Somatic mutations in STAG2 include nonsense, frameshift, splice site variants¹². Somatic mutations in STAG2 are observed in various solid tumors including 14% of bladder cancer, 10% of uterine cancer, 3% of stomach cancer, and 4% of lung adenocarcinoma²². In addition, mutations in STAG2 are observed in 5-10% of myelodysplastic syndrome(MDS), 3% of acute myeloid leukemia, and 2% of diffuse large B-cell lymphoma^{12,22}.

<u>Potential relevance</u>: Nonsense, frameshift, and splice site STAG2 mutations are associated with poor prognosis in MDS¹². Truncating mutations in STAG2 lead to a loss of function in bladder cancer and are often identified as an early event associated with low grade and stage tumors²³.

TET2 (tet methylcytosine dioxygenase 2)

Background: TET2 encodes the tet methylcytosine dioxygenase 2 protein and belongs to a family of ten-eleven translocation (TET) proteins that also includes TET1 and TET3²⁴. TET2 is involved in DNA methylation, specifically in the conversion of 5-methylcytosine to 5-hydroxymethylcytosine^{25,26}. The TET proteins contain a C-terminal core catalytic domain that contains a cysteine-rich domain and a double stranded β-helix domain (DSBH)²⁷. TET2 is a tumor suppressor gene. Loss of function mutations in TET2 are associated with loss of catalytic activity and transformation to hematological malignancies^{24,25,26}

Alterations and prevalence: Somatic TET2 mutations, including nonsense, frameshift, splice site, and missense, are observed in 20-25% of myelodysplastic syndrome (MDS) associated diseases, including 40%-60% chronic myelomonocytic leukemia (CMML)¹². TET2 mutations at H1881 and R1896 are frequently observed in myeloid malignancies^{25,28}. TET2 mutations are also observed in 9% of uterine, 8% of melanoma and acute myeloid leukemia (AML), as well as 6% of diffuse large B-cell lymphoma (DLBCL).

Potential relevance: The presence of TET2 mutations may be used as one of the major diagnostic criteria in pre-primary myelofibrosis (pre-PMF) and overt PMF in the absence of JAK2/CALR/MPL mutations^{11,15}. TET2 mutations are associated with poor prognosis in PMF and increased rate of transformation to leukemia^{15,29}

Prognostic Details

Current NCCN Information

NCCN information is current as of 2022-03-31. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

SRSF2 p.(P95R) c.284C>G

Prognostic significance: NCCN: Poor

Cancer type: Myelodysplastic Syndrome Variant class: SRSF2 P95 mutation

NCCN Recommendation category: 2A

Summary:

■ NCCN Guidelines® associate the biomarker with poor prognosis

Reference: NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 3.2022]

STAG2 p.(Y195*) c.585T>A

Prognostic significance: NCCN: Poor

Cancer type: Myelodysplastic Syndrome Variant class: STAG2 truncating mutation

NCCN Recommendation category: 2A

Summary:

■ NCCN Guidelines® associate the biomarker with poor prognosis

Reference: NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 3.2022]

Date: 24 Jun 2022

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- 1. Liang et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018 Dec;32(12):2659-2671. PMID: 29858584
- Cui et al. Comparative Analysis and Classification of Cassette Exons and Constitutive Exons. Biomed Res Int. 2017;2017:7323508. doi: 10.1155/2017/7323508. Epub 2017 Dec 4. PMID: 29349080
- Meggendorfer et al. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/ myeloproliferative neoplasms. Haematologica. 2018 May;103(5):e192-e195. PMID: 29700173
- 4. Arbab et al. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology. 2018 Dec;23(10):778-784. PMID: 29757120
- 5. Kim et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell. 2015 May 11;27(5):617-30. PMID: 25965569
- Zhang et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. U.S.A. 2015 Aug 25;112(34):E4726-34. PMID: 26261309
- 7. Ethan et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017 Aug;7(8):818-831. PMID: 28572459
- 8. Thol et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012 Apr 12;119(15):3578-84. PMID: 22389253
- 9. Lasho et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood. 2012 Nov 15;120(20):4168-71. PMID: 22968464
- 10. Komeno et al. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol. Cell. Biol. 2015 Sep 1;35(17):3071-82. PMID: 26124281
- 11. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 12. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 3.2022]
- 13. NCCN Guidelines® NCCN-Systemic Mastocytosis [Version 1.2020]
- 14. Jawhar et al. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia. 2016 Dec;30(12):2342-2350. PMID: 27416984
- 15. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2022]
- 16. Vannucchi et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861-9. PMID: 23619563
- 17. Mehta et al. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett. 2013 Aug 2;587(15):2299-312. PMID: 23831059
- 18. Aquila et al. The role of STAG2 in bladder cancer. Pharmacol. Res. 2018 May;131:143-149. PMID: 29501732
- 19. Mullegama et al. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. Am. J. Med. Genet. A. 2017 May;173(5):1319-1327. PMID: 28296084
- van et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. Elife. 2017 Jul 10;6. PMID: 28691904
- 21. Solomon et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science. 2011 Aug 19;333(6045):1039-43. PMID: 21852505
- 22. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discoy. 2012 May:2(5):401-4. PMID: 22588877
- 23. Solomon et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat. Genet. 2013 Dec;45(12):1428-30. PMID: 24121789
- 24. Pan et al. The TET2 interactors and their links to hematological malignancies. IUBMB Life. 2015 Jun;67(6):438-45. PMID: 26099018
- 25. Ko et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010 Dec 9;468(7325):839-43. PMID: 21057493
- Solary et al. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014 Mar;28(3):485-96. PMID: 24220273
- 27. An et al. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp. Mol. Med. 2017 Apr 28;49(4):e323. PMID: 28450733
- 28. Kosmider et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009 Oct 8;114(15):3285-91. PMID: 19666869

Date: 24 Jun 2022

References (continued)

29. Lundberg et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220-8. PMID: 24478400