Topologie - Opdracht 8

Luc Veldhuis - 2538227

April 2017

Q1) Construeer een topologische ruimte met drie punten, die wel voldoet aan T_4 maar niet aan T_3 . We weten uit 9.4 dat als $T_4 + T_1 \Rightarrow T_3 + T_1$. Dus we weten zeker dat de topologische ruimte niet mag voldoen aan T_1 .

We kiezen een ruimte met 3 punten, en construeren hierop een topologie:

$$(X, \mathcal{T})$$
 met $X = \{a, b, c\}$ en $\mathcal{T} = \{\{a, b, c\}, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}\}.$

We moeten nu eerst bewijzen dat \mathcal{T} een topologie is:

- $\emptyset, X \in \mathcal{T}$
- De vereniging van (een mogelijk oneindige collectie) open delen is weer open. Ga alle niet triviale mogelijkheden na:

Kijk of alle mogelijke verenigingen van de volgende vermelingen weer open zijn:

$$\{b\}, \{c\}, \{b, c\}, \{a, b\}$$

$$\{b\} \cup \{c\} = \{b, c\} \in \mathcal{T}$$

$$\{b\} \cup \{a,b\} = \{a,b,c\} \in \mathcal{T}$$

$$\{b\} \cup \{b,c\} = \{b,c\} \in \mathcal{T}$$

$$\{c\} \cup \{a,b\} = \{a,b,c\} \in \mathcal{T}$$

$$\{c\} \cup \{b,c\} = \{b,c\} \in \mathcal{T}$$

$$\{b, c\} \cup \{a, b\} = \{a, b, c\} \in \mathcal{T}$$

Omdat we $\{b,c\}$ al hebben verenigd met alle mogelijk andere niet triviale verzamelingen (niet zichzelf, lege verzameling of gehele verzameling) en hebben laten zien dat dit ook open is, voldoet \mathcal{T} ook aan deze eis.

• De doorsnede van een eindig aantal open verzamelingen is weer open.

Ga alle niet triviale mogelijkheden na:

Kijk of alle mogelijke doornedes van de volgende vermelingen weer open zijn:

$$\{b\}, \{c\}, \{b, c\}, \{a, b\}$$

$$\{b\} \cap \{c\} = \emptyset \in \mathcal{T}$$

$$\{b\} \cap \{a,b\} = \{b\} \in \mathcal{T}$$

$$\{b\} \cap \{b,c\} = \{b\} \in \mathcal{T}$$

$$\{c\} \cap \{a,b\} = \emptyset \in \mathcal{T}$$

$$\{c\} \cap \{b,c\} = \{c\} \in \mathcal{T}$$

$$\{b,c\} \cap \{a,b\} = \{b\} \in \mathcal{T}$$

Omdat we $\{b\}$ en $\{c\}$ al hebben doorsneden met alle mogelijk andere niet triviale verzamelingen (niet zichzelf, lege verzameling of gehele verzameling) en hebben laten zien dat dit ook open is, voldoet \mathcal{T} ook aan deze eis.

Dus \mathcal{T} is inderdaad een topologie.

Nu gaan we laten zien dat (X, \mathcal{T}) voldoet aan T_4 , maar niet aan T_3 .

De voorwaarde voor T_4 is:

Als er voor elk tweetal niet-lege gesloten delen $C, D \subseteq X$ met $C \cap D$ open omgevingen U van

C en V van D bestaan met $U \cap V = \emptyset$.

De gesloten delen van deze topologie zijn:

 \emptyset , $\{a, b, c\}$, $\{a, b\}$, $\{a, c\}$, $\{a\}$, $\{c\}$

We zien dat de enige gesloten verzamelingen die een lege doorsnede hebben zijn: $\{c\} \cap \{a,b\} = \emptyset$ en $\{c\} \cap \{a\} = \emptyset$.

We kiezen nu als open omgeving van $\{c\}$: $U = \{c\}$ en als open omgeving van $\{a\}$ en $\{a,b\}$: $V = \{a,b\}$.

We zien nu direct dat $U \cap V = \emptyset$. Dus deze topologie voldoet aan T_4 .

Nu rest te laten zien dat deze topologie niet voldoet aan T_3 .

De definitie van T_3 is:

Als er voor elk punt $x \in X$ en elke gesloten deelverzameling $C \subseteq X$ met $x \notin C$, open omgevingen U van x en V van C bestaan met $U \cap V = \emptyset$.

Kies nu het punt b en gesloten deelverzameling $\{a,c\}$. Dan geldt dat $b \notin \{a,c\}$.

We zoeken nu een open omgeving voor $\{a, c\}$. De enige open verzameling die zowel a als c bevat is $U = \{a, b, c\}$. Omdat $b \in U$, bestaat er geen open deelverzameling V van b, zodat $U \cap V = \emptyset$. Dus deze topologie voldoet niet aan T_3 .

Q2) Bewijs dat een gesloten deelruimte van een normale topologische ruimte weer normaal is.

Op de gesloten deelruimte geldt de deelruimte topologie.

Neem een topologische ruimte (X, \mathcal{T}) en kies $A \subseteq X$ gesloten willekeurig.

Dan is (A, \mathcal{T}_A) weer een topologische ruimte met $\mathcal{T}_A = \{A \cap U | U \text{ open in } X\}$

Een ruimte is normaal als T_1 en T_4 gelden.

Bewijs dat T_1 geldt op de deelverzamelings topologie:

Kies een punt $a \in A$ willekeurig. Dan is $\{a\}$ gesloten als $A \setminus \{a\}$ open is in \mathcal{T}_a . Omdat T_1 geldt op \mathcal{T} , weten we $\{a\} \subseteq X$ gesloten is. Dus $U = X \setminus \{a\}$ is open in \mathcal{T} . Dan is $A \cap U = A \setminus \{a\} \in \mathcal{T}_A$. Dus $\{a\}$ is gesloten in \mathcal{T}_A voor elke $a \in A$

Bewijs dat T_4 geldt op de deelverzamelings topologie:

Gegevens is dat T_4 werkt op X.

We moeten laten zien dat:

Als er voor elk tweetal niet-lege gesloten delen $C, D \subseteq X$ met $C \cap D$ open omgevingen U van C en V van D bestaan met $U \cap V = \emptyset$.

Kies nu $C, D \subseteq A$ gesloten met $C \cap D = \emptyset$.

Iets is gesloten als het complement open is, en iets is open als het de doorsnede is van A met een open verzameling uit X. Dit kunnen we schrijven als $C = A \setminus (A \cap U_1) = (A \setminus A) \cup (A \setminus U_1) = \emptyset \cup (A \setminus U_1) = A \setminus U_1$ met $U_1 \subseteq X$ open.

Dit geldt ook voor D. Dus $D = A \setminus U_2$ met $U_2 \subseteq X$ open.

Claim: C en D zijn gesloten in \mathcal{T} :

Als C en D zijn gesloten dan en slechts dan als het complement met X open is.

Schrijf: $X \setminus C = X \setminus (A \setminus U_1) = (X \cap U_1) \cup (X \setminus A) = U_1 \cup O$ met $O = X \setminus A$. Omdat gegeven was dat A gesloten is, is $O = X \setminus A$ open in \mathcal{T} , en de vereniging van open verzamelingen is weer open.

Volgens dezelfde strategie: $X \setminus D = U_2 \cup O$ is open in \mathcal{T} . Omdat op \mathcal{T} het scheidingsaxioma T_4 geldt, en C en D beiden gesloten verzamelingen zijn met een lege doorsnede, moeten er open omgevingen $U \subseteq X$ van C en $V \subseteq X$ van D bestaan, zodat $U \cap V = \emptyset$.

Dan geldt ook dat $C \subseteq A \cap U$ en $D \subseteq A \cap V$ open zijn in \mathcal{T}_A en $A \cap U \cap A \cap V = \emptyset$.

Dus voor elke tweetal niet lege gesloten delen $C, D \subseteq A$, met $C \cap D = \emptyset$, bestaan er open omgevingen U van C en V van D met $U \cap V = \emptyset$. Dus als A gesloten is, geldt T_4 op T_A

Q3) (a) Laat X een topologische ruimte zijn. Laat zien dat de volgende twee uitspraken equivalent zijn:

- i. Voor elke tweetal $x, y \in X$, $x \neq y$, van punten in X bestaan open deelverzamelingen $U, V \subseteq X$, zodanig dat $x \in U$, $y \in V$, $x \notin V$ en $y \notin U$. (T_1 in de zin van Croom.)
- ii. Elke singleton $\{x\} \subseteq X$ is gesloten. $(T_1 \text{ in de zin van Moonen.})$

Bewijs ' $i \Rightarrow ii$ ':

Kies een $x \in X$ willekeurig. Dan geldt volgens de definitie nu dat $\forall y_i \neq x \in X$ er een open deelverzameling $y_i \in V_i$ bestaat, met $x \notin V_i$.

Neem nu de vereniging: $W = \bigcup_{i \in I} V_i$ van open omgevingen van alle punten $y_i \neq x \in X$. Dan weten we, omdat $x \notin V_i$ $\forall i$, er ook geldt dat $x \notin W$. Maar we weten ook dat $\forall y_i \in W$. Dus het enige element van X wat niet in W zit, is x. Omdat W open is geldt dat $X \setminus W = \{x\}$ gesloten is. Omdat onze x willekeurig is, geldt dit nu voor elke x.

Conclusie: elke $\{x\} \subseteq X$ is gesloten.

Bewijs ' $i \Leftarrow ii$ ':

Kies een $x, y \in X$ met $x \neq y$ willekeurig. We weten nu dat $\{x\}$ en $\{y\}$ gesloten zijn. Dus er bestaat een $X \setminus W = \{x\}$, met W open en een $X \setminus V = \{y\}$, met V open.

Neem nu als open omgeving voor x de verzameling V.

Stel $x \notin V$ dan $X \setminus V \neq \{y\}$. Tegenspraak. Dus $x \in V$ en $y \notin V$.

Neem nu als open omgeving voor y de verzameling W.

Stel $y \notin W$ dan $X \setminus W \neq \{x\}$. Tegenspraak. Dus $y \in W$ en $x \notin W$.

We hebben nu voor elk tweetal punten $x,y\in X$ met $x\neq y$ open deelverzamelingen V,W gevonden met $x\in V,\,y\in W$ en $x\not\in W$ en $y\not\in V.$

(b) Toon aan dat de product van T_1 -ruimtes weer een T_1 -ruimte is.

We hebben hierboven laten zien dat de uitspraken equivalent zijn. We kiezen nu de definitie van T_1 van Chroom om te laten zien dat het product van T_1 ruimtes weer een T_1 ruimte is. Laat $\{X_i\}_{i\in I}$ een collectie topologische ruimten zijn die voldoen aan T_1 . Laat dan $Y = \prod_{i\in I} X_i$ de productverzameling zijn met de producttopologie.

Kies nu het tweetal willekeurige punten $x, y \in Y$ met $x \neq y$. Dit betekend dat er een $j \in I$ bestaat, zodat $pr_j(x) \neq pr_j(y)$.

Nu zoeken we een open omgeving U van x met $y \notin U$ en V van y met $x \notin V$.

We weten dat X_j voldoet aan T_1 , dus er bestaat een open omgeving $U_j \subseteq X_j$ van $pr_j(x)$ met $pr_j(y) \notin U_j$ en $V_j \subseteq X_j$ van $pr_j(y)$ met $pr_j(x) \notin V_j$.

Kies nu de open omgevingen $U \subseteq Y$ van x en $V \subseteq Y$ van y als volgt:

$$U = \prod_{i \in I} \begin{cases} X_i & i \neq j \\ U_j & i = j \end{cases}$$
$$V = \prod_{i \in I} \begin{cases} X_i & i \neq j \\ V_j & i = j \end{cases}$$

Voor beide deelverzamelingen geldt er nu dat er maar 1 positie in het product is, die ongelijk is aan X_i , en op deze positie staat een open set U_j , dus U en V zijn beide open in de producttopologie.

Ook geldt voor elk tweetal punten $x, y \in Y$ met $x \neq y$ dat er open omgeving U van x bestaat met $y \notin U$ en open omgeving V van y met $x \notin V$. Dus de producttopologie van topologische ruimten die voldoen aan T_1 , voldoet aan T_1 .