Karnaugh Maps (K Maps)

Introduction

- Simplification of Boolean functions leads to simpler (and usually faster) digital circuits.
- Simplifying Boolean functions using identities is time-consuming and error-prone.
- K Maps are an easy and systematic method for reducing Boolean expressions.

Introduction (cont.)

- In 1953, Maurice Karnaugh was a Telecommunications Engineer at Bell Labs.
- While exploring the new field of digital logic and its application to the design of telephone circuits, he invented a graphical way of visualizing and then simplifying Boolean expressions.
- This graphical representation, now known as a Karnaugh map, or K Map, is named in his honor.

- A K Map is a matrix consisting of rows and columns that represent the output values of a Boolean function.
- The output values placed in each cell are derived from the minterms of a Boolean function.
- A minterm is a product term that contains all of the function's variables exactly once, either complemented or uncomplemented.

• For example, the minterms for a function having the inputs x and y are: \overline{xy} , \overline{xy} , \overline{xy} , and \overline{xy}

x	Y
0	0
0	1
1	0
1	1
	0 0 1

 Similarly, a function having three inputs, has the minterms that are shown in this diagram.

Minterm	x	Y	Z
ΖŢZ	0	0	0
$\overline{X}\overline{Y}Z$	0	0	1
$\overline{X}Y\overline{Z}$	0	1	0
- XYZ	0	1	1
ΧŸZ	1	0	0
ΧŸΖ	1	0	1
ΧΥZ	1	1	0
XYZ	1	1	1

- A K Map has a cell for each minterm.
- This means that it has a cell for each line for the truth table of a function.
- The truth table for the function
 F(x,y) = xy is shown at the
 right along with its
 corresponding K Map.

F(X,Y) = XY						
X	Y	XY				
0	0	0				
0	1	0				
1	0	0				
1	1 1 1					

X	0	1
0	0	0
1	0	1

- As another example, we give the truth table and K
 Map for the function,
 F(x,y) = x + y at the right.
- This function is equivalent to the OR of all of the minterms that have a value of 1. Thus:

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

F(X,Y) = X+Y				
X	Y	X+Y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

X	0	1
0	0	1
1	1	1

K Map Simplification for Two Variables

- Of course, the minterm function that we derived from our K Map was not in simplest terms.
- We can, however, reduce our complicated expression to its simplest terms by finding adjacent 1s in the K Map that can be collected into groups that are powers of two.
 - In our example, we have two such groups.
 - Can you find them?

- The best way of selecting two groups of 1s form our simple K Map is shown below.
- We see that both groups are powers of two and that the groups overlap.
- The next slide gives guidance for selecting K Map groups.

The rules of K Map simplification are:

- Groupings can contain only 1s (no 0s) or only 0s (no 1s).
- Groups can be formed only at right angles; diagonal groups are not allowed.
- The number of 1s in a group must be a power of 2 – even if it contains a single 1.
- The groups must be made as large as possible.
- Groups can overlap and wrap around the sides of the K Map.

- A K Map for three variables is constructed as shown in the diagram below.
- We have placed each minterm in the cell that will hold its value.
 - Notice that the values for the yz combination at the top of the matrix form a pattern that is not a normal binary sequence.

X	Z 00	01	11	10
0	XYZ	z z	_ XYZ	Z y Z
1	ΧŸZ	XŸZ	XYZ	XYZ

- Thus, the first row of the K Map contains all minterms where x has a value of zero.
- The first column contains all minterms where y
 and z both have a value of zero.

Consider the function:

$$F(X,Y) = \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$$

- Its K Map is given below.
 - o What is the largest group of 1s that is a power of 2?

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

This means that the function,

$$\mathbf{F}(\mathbf{X},\mathbf{Y}) = \overline{\mathbf{X}}\overline{\mathbf{Y}}\mathbf{Z} + \overline{\mathbf{X}}\mathbf{Y}\mathbf{Z} + \mathbf{X}\overline{\mathbf{Y}}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z}$$
 reduces to $F(x) = z$.

You could verify this reduction with identities or a truth table.

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

 Now for a more complicated K Map. Consider the function:

$$F(X,Y,Z) = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

- Its K Map is shown below. There are (only) two groupings of 1s.
 - o Can you find them?

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

 In this K Map, we see an example of a group that wraps around the sides of a K Map.

Our reduced function is:

$$F(X,Y,Z) = \overline{X} + \overline{Z}$$

Recall that we had six minterms in our original function!

K Map Simplification for Four Variables

- Our model can be extended to accommodate the 16 minterms that are produced by a four-input function.
- This is the format for a 16-minterm K Map.

WX Y	z 00	01	11	10
00	WXYZ	WXYZ	WXYZ	WXYZ
01	WXŸZ	WXYZ	- WXYZ	WXYZ
11	WXŸZ	WXŸZ	WXYZ	WXYZ
10	wŸŸZ	WXYZ	WXYZ	WXYZ

 We have populated the K Map shown below with the nonzero minterms from the function:

$$F(W,X,Y,Z) = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}\overline{Y}Z + \overline{W}\overline{X}Y\overline{Z} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X} +$$

o Can you identify (only) three groups in this K Map?

Recall that groups can overlap.

Y WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

- Our three groups consist of:
 - A purple group entirely within the Kmap at the right.
 - o A pink group that wraps the top and bottom.
 - o A green group that spans the corners.
- Thus we have three terms in our final function:

$$F(W,X,Y,Z) = \overline{WY} + \overline{XZ} + \overline{WYZ}$$

- It is possible to have a choice as to how to pick groups within a Kmap, while keeping the groups as large as possible.
- The (different) functions that result from the groupings below are logically equivalent.

Y WX	z 00	01	11	10
00	1		1	
01	1		1	1)
11	1			
10	1			

- Real circuits don't always need to have an output defined for every possible input.
 - o For example, some calculator displays consist of 7-segment LEDs. These LEDs can display 2^7 -1 patterns, but only ten of them are useful.
- If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don't care condition.
- They are very helpful to us in K Map circuit simplification.

- In a K Map, a don't care condition is identified by an X or d in the cell of the minterm(s) for the don't care inputs, as shown below.
- In performing the simplification, we are free to include or ignore the X's when creating our groups.

Y X	Z 00	01	11	10
00	×	1	1	X
01		×	1	
11	×		1	
10			1	

 In one grouping in the K Map below, we have the function:

$$F(W,X,Y,Z) = \overline{WY} + YZ$$

A different grouping gives us the function:

$$F(W,X,Y,Z) = \overline{WZ} + YZ$$

The truth table of:

$$F(W,X,Y,Z) = \overline{WY} + YZ$$

differs from the truth table of:

$$F(W,X,Y,Z) = WZ + YZ$$

 However, the values for which they differ, are the inputs for which we have don't care conditions.

Y WX	Z 00	01	11	10
00	X	1	1	X
01		×	1	
11	×		1	
10			1	

Y	Z 00	01	11	10
00	X	1	1	×
01		×	1	
11	X		1	
10			1	

Conclusion

- K Maps provide an easy graphical method of simplifying Boolean expressions.
- A K Map is a matrix consisting of the outputs of the minterms of a Boolean function.
- we have discussed 2- 3- and 4-input K Maps.
 This method can be extended to any number of inputs through the use of multiple tables.

Conclusion (cont.)

Recapping the rules of Kmap simplification:

- Groupings can contain only 1s (no 0s) or only 0s (no 1s).
- Groups can be formed only at right angles; diagonal groups are not allowed.
- The number of 1s in a group must be a power of 2 – even if it contains a single 1.
- The groups must be made as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.
- Use don't care conditions when you can.

More Examples...

Example 1

Derive the minimum-cost product-of-sums expression for the following function

$$f(x_1,x_2,x_3) = \Sigma_m(0,2,4,5,6,7)$$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

The function is 1 for these rows

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array}$	0 0 0 0 1	0 0 1 1 0 0	0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6 7	1 1	1 1	0	$m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

The function is 1 for these rows

The function is 0 for these rows

Two different ways to specify the same function f of three variables

$$f(x_1,x_2,x_3) = \Sigma_m(0,2,4,5,6,7)$$

$$f(x_1, x_2, x_3) = \Pi_M(1,3)$$

The Product of Maxterms Expression

$$M_1 = x_1 + x_2 + \overline{x}_3$$

$$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$$

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \Pi_{\mathbf{M}}(1, 3)$$

$$= \mathbf{M}_1 \cdot \mathbf{M}_3$$

$$= (\mathbf{x}_1 + \mathbf{x}_2 + \overline{\mathbf{x}}_3) \cdot (\mathbf{x}_1 + \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_3)$$

The Minimum POS Expression

$$f(x_1, x_2, x_3) = (x_1 + x_2 + \overline{x_3}) \cdot (x_1 + \overline{x_2} + \overline{x_3})$$

$$= (x_1 + \overline{x_3} + x_2) \cdot (x_1 + \overline{x_3} + \overline{x_2})$$

$$= (x_1 + \overline{x_3})$$

Hint: Use the following Boolean Algebra theorem

$$(x + y) \cdot (x + \overline{y}) = x$$

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			l

(b) Karnaugh map

(a) Truth table

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

(b) Karnaugh map

(a) Truth table

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			'

(b) Karnaugh map

(a) Truth table

$x^{x_1x_2}$					
¹ 3	00	01	11	10	
0	m_0	m_2	m_6	m_4	
1	m_1	m_3	m_7	m_5	

x_3 x_1 x_2	2 00	01	11	10
	00	01	11	10
0	1	1	1	1
1	O	0	1	1

Example 2

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Example 3

Derive the minimum-cost SOP and POS expression for the function

$$f(x_1, x_2, x_3, x_4) = \Sigma_m(4, 6, 8, 10, 11, 12, 15) + d(3, 5, 7, 9)$$

Let's Use a K Map

$$f(x_1, x_2, x_3, x_4) = \Sigma_m(4, 6, 8, 10, 11, 12, 15) + d(3, 5, 7, 9)$$

Let's Use a K Map

$$f(x_1, x_2, x_3, x_4) = \Sigma_m(4, 6, 8, 10, 11, 12, 15) + d(3, 5, 7, 9)$$

The SOP Expression

What about the POS Expression?

$$f(x_1, x_2, x_3, x_4) = \Sigma_m(4, 6, 8, 10, 11, 12, 15) + d(3, 5, 7, 9)$$

The POS Expression

Example 4

Use K Map to find the minimum-cost SOP and POS expression for the function

$$f(x_1, \ldots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

assuming that there are also don't-cares defined as $D = \sum (9, 12, 14)$.

Let's map the expression to the K Map

$$f(x_1, \dots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

 $D = \sum (9, 12, 14).$

Let's map the expression to the K Map

$$f(x_1, \dots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

 $D = \sum (9, 12, 14).$

Let's map the expression to the K Map

$$f(x_1, \dots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

The SOP Expression

$$f(x_1, \ldots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

 $f = x_3 x_4 + \bar{x}_1 \bar{x}_3 \bar{x}_4 + \bar{x}_2 x_4 + x_1 x_4$

What about the POS Expression?

The POS Expression

$$f = (\bar{x}_3 + x_4)(\bar{x}_1 + x_4)(x_1 + \bar{x}_2 + x_3 + \bar{x}_4)$$