

More Simple Arrays and the setAttitudeTarget Function

Goals

- In this tutorial you will:
 - Practice using arrays in programming
 - Learn about a new SPHERES control function:
 - setAttitudeTarget—allows you to rotate the satellite to face in whatever direction you want.

What makes a SPHERE move?

- A thruster is used to propel (move) the SPHERES satellite in a certain direction.
- There are 12 thrusters on each SPHERES satellite to help it move in 12 different directions.
 - 3 of the 12 thrusters are visible in the photo to the right.
- How does this work?
 - A tank of carbon dioxide (CO₂) gas is attached to the SPHERES satellite.
 - Each thruster releases CO₂ from the SPHERES satellite, creating a force on the satellite in the opposite direction.
- Multiple thrusters on different sides are activated to rotate the satellite to a specified pointing direction

Ready to program?

- Are you ready to write a program to rotate a satellite (control satellite attitude)?
- When you set the **position** of the SPHERES satellite, you created an array of 3 values {x,y,z}.
- (x, y, z)

 To rotate (control the attitude) of the SPHERES satellite you will also need an array of 3 values {Nx,Ny,Nz}.

- Remember what you learned about arrays before?
- Okay, let's get started

Create a New Project and a New Variable

Pages

init

main

- Select "IDE" from the menu at the top of the page
- Select "New Project"
 - Project Name: Project 3
 - Editor: Graphical Editor
 - Game: FreeMode
- Click "Create Project"
- Go the the Init page
- Declare an array called "attitude" to set the attitude of the SPHERES satellite as follows:
 - Go to the **Init** page
 - Drag the array initialization block from the Variables
 - accordion
 - Name: "attitude"
 - Length: 3
 - Leave initial values at 0, 0, 0

Assign Values to Your Array

- Go to the main page to assign values to your array
- Click on the Variables accordion
- Drag the purple "--Select--[0]
 = 0" (array assignment) block into the loop
- Use the drop down menu to select "attitude"
- Repeat 2 more times

(You need 3 attitude [0] = 0 blocks since your array has 3 members)

Assign Values to Your Array, cont.

- Change the [bracketed] part of each "attitude[0] = 0" block as follows:
 - In the first (top) block, leave "0" selected (This will represent the "x" direction)
 - In the second block change to a "1"
 (This will represent the "y" direction)
 - In the third (bottom) block change to a "2"

(This will represent the "z" direction)

 In the first (top) block, change the rightmost "0" to "1.0"


```
attitude [ 0 ] = 1 x-coordinate

attitude [ 1 ] = 0 y-coordinate

attitude [ 2 ] = 0 z-coordinate
```


setAttitudeTarget

- The SPHERES Control Function "setAttitudeTarget" allows you to set the direction for the satellite to point its Velcro (-X) face
- Attitude specifies a pointing direction (Nx, Ny, Nz), not a pointing location.

 Commanding an attitude target makes the satellite fire thrusters to rotate to the target direction, then stop.

Add setAttitudeTarget Function

- Create a statement to set the attitude of the SPHERES satellite
 - Click on the SPHERES Controls accordion
 - Drag the setPositionTarget block into your loop
 - Using the first dropdown menu, change
 PositionTarget to
 AttitudeTarget
 - Use the second dropdown to select attitude
- This program you've created tells the SPHERE to move to the target attitude defined by the array "attitude[3]"
 - The Velcro face of the SPHERES satellite will rotate to point in the positive x direction

Compile, Simulate

- Compile, Simulate
- In the Simulation Settings pop-up box:
 - " "Maximum Time":
 - Change from 90 seconds to 20 seconds
- Click "Simulate" button
- NOTE: Before playing the simulation
 - Click on the zoom-in tool at the bottom of the screen 10 times

View Simulation

- Start the simulation
 - The visible face on the SPHERES satellite will change as the satellite rotates to point in the positive x direction.
 - Look at the scoring box (top-left corner of the screen with blue label) which provides information about the blue SPHERES satellite:
 - Started at Ny = 1.00Ended at Nx = 1.00

(pointing in positive y direction) (pointing in positive x direction)

Modify Program, Compile & Simulate

- Select "Back to Project"
- Next try pointing in the negative x direction
- Change: "attitude[0] = 1" to:

"attitude[0] = -1"

Important Notes:

For these exercises, point the satellite by setting only one of the values [0], [1], [2] to +/-1 and leave the rest set to 0 as shown in the table.

- "Compile" and "Simulate" as before
- "View Results"

To point the satellite in the following directions:			
			+/- z direction
set [0] =	+/-1	0	0
set [1] =	0	+/-1	0
set [2] =	0	0	+/-1

Text Version of Code

Remember the program you wrote with "setPositionTarget" (from last time) and its C code?

```
position [ 0 ] = 2

position [ 1 ] = 2

position [ 2 ] = 0

set PositionTarget position
```

```
1 void loop() {
2   position[0] = 2;
3   position[1] = 2;
4   position[2] = 0;
5   api.setPositionTarget(position);
6 }
```

Can you figure out the C code for the "setAttitudeTarget" program you just wrote?

Text Version of Code, cont.

If the C code shown below matches what you thought- You are right!

```
attitude [ [ 0 ] = [-1 ]

attitude [ 1 ] = [ 0 ]

attitude [ 2 ] = [ 0 ]
```

```
1 void loop() {
2  attitude[0] = -1;
3  attitude[1] = 0;
4  attitude[2] = 0;
5  api.setAttitudeTarget(attitude);
6 }
```


Review

- Congratulations!
- You are getting good at programming with arrays!
- You know how to program a SPHERES satellite to rotate and point in a specific direction!

