Materials Science Machine Learning Pipeline

A comprehensive system for predicting material properties using machine learning

Project Overview

- Data processing pipeline
- ML models for prediction
- REST API for predictions
- MongoDB integration
- Visualization tools

System Architecture Core Components

- MongoDB Database
 - Data storage
 - Image handling
 - Scalable
- Data Processing
 - Cleaning
 - Feature extraction
 - Validation

Tech Stack

- Backend
 - Python 3.8+
 - Flask
 - MongoDB
- ML & Analysis
 - Scikit-learn
 - Pandas/NumPy
 - Matplotlib

Data Pipeline

- 1. Data Collection
 - Load from DataFed
 - Store in MongoDB
 - Handle JSON/images
- 2. Preprocessing
 - Feature engineering
 - Data cleaning
 - Train/test split

3. Model Training

- Multiple algorithms
- Hyperparameter tuning
- Cross-validation
- 4. Evaluation
 - Model comparison
 - Error analysis
 - Performance metrics

Model Architecture

Random Forest

```
RandomForestRegressor(
    n_estimators=200,
    max_depth=20
)
```

- Ensemble method
- Feature importance
- Parallel processing

Gradient Boosting

```
GradientBoostingRegressor(
    n_estimators=500,
    learning_rate=0.1
)
```

- Sequential learning
- Strong prediction
- Feature interaction

Model Performance

Performance

■ R²: 0.85-0.92

RMSE: 0.15-0.25 eV

Cross-Validation

- 5-fold CV
- Stratified sampling
- Nested CV

Data Distribution

Crystal Systems

- Cubic
- Tetragonal
- Orthorhombic

Band Gap Range

■ 0-2 eV: 40%

■ 2-4 eV: 35%

■ 4 eV: 25%

Feature Importance

Key Categories

- Elemental Properties
- Crystal Structure
- Composition

Top Features

- Atomic properties
- Crystal parameters
- Element ratios

Model Predictions

Random Forest

- High accuracy
- Good generalization

Gradient Boosting

- Best performance
- Complex patterns

Error Analysis

Error Analysis

Future Work

Model Enhancements

- Deep Learning models
- Transformer architectures
- Ensemble methods
- Bayesian optimization

Applications

- Materials discovery
- Property prediction
- Process optimization
- Quality control

Project Structure

```
DSCI-592/
├─ data/
    ├─ data_json/
   └─ images/
  - models/
  - plots/
  - src/
    ├─ data/
    ├─ models/
   └─ api/
  - tests/
   docs/
```

