第九章 中央处理器

9.4 指令周期流程图

数据通路: 指令周期中信息在功能部件间传送的路径(与功能和寻址方式有关)

计算机组成原理

操作控制: Write、Read 输入控制: PC_{in}、AR_{in}、DRM_{in}、DR_{in} 输出控制: PC_{out}、DR_{out}

输入控制: IR_{in}

输出控制: IR_imm_{out}

操作控制: ADD、SUB

输入控制: X_{in}、Z_{in}、PSW_{in}

输出控制: Z_{out} 选择控制:Ads

> 输入控制: R_{in} 输出控制: R_{out} 选择控制:RegR、RegW

寄存器组 Regs R# W#

Nux2
Nux3
O 1 O 1
RegR
rs rt rd

3 '

1) 所有向公共总线的输出端具有三态功能,图中白色小三角;2)数据通路的构建是一个动态过程,与需要支持的指令有关

指令	指令功能
Add rd,rs,rt	$(R_{[rs]}) + (R_{[rt]}) \rightarrow R_{[rd]}$
Addi rt,rs,imm	$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$
lw rt, imm(rs)	$(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$
Sw rt, imm(rs)	$(R_{[rt]}) \rightarrow M[((R_{[rs]}) + S_Ext_{32}(imm))]$
Beq rs,rt,imm	当 $(R_{[rs]}) = (R_{[rt]})$ PC ← PC + 4 +sign_extend(offset 0 ²)

; '

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{IPCI}) \rightarrow IR$$

2)数据通路1

$$PC \rightarrow AR \xrightarrow{l} MEM \rightarrow DR \rightarrow IR$$

$$T_1$$
 PC_{out}, AR_{in}

7 '

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{IPCI}) \rightarrow IR$$

$$(PC) + 4 \rightarrow PC$$

2)数据通路1

$$PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$$

T ₁	PC _{out} 、AR _{in}
T ₂	Read 、 DRM _{in}

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{IPCI}) \rightarrow IR$$

$$(PC) + 4 \rightarrow PC$$

2)数据通路1

$$PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$$

T ₁	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T ₃	DR _{out} 、 IR _{in}

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{[PC]}) \rightarrow IR$$

 $(PC) + 4 \rightarrow PC$

2)数据通路1

 $PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$

T ₁	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T ₃	DR _{out} 、IR _{in}

3)数据通路2

$$PC \rightarrow X/Mux1 \rightarrow ALU \rightarrow Z \rightarrow PC$$
 $T_1 \qquad PC_{out}, X_{in}$

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{[PC]}) \rightarrow IR$$

 $(PC) + 4 \rightarrow PC$

2)数据通路1

 $PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$

T_1	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T_3	DR _{out} 、IR _{in}

3)数据通路2

T ₁	PC _{out} 、 X _{in}
T_2	Ads=0、ADD、Zin

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{[PC]}) \rightarrow IR$$

 $(PC) + 4 \rightarrow PC$

2)数据通路1

 $PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$

T_1	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T_3	DR _{out} 、IR _{in}

3)数据通路2

$$PC \rightarrow X/Mux1 \rightarrow ALU \rightarrow Z \rightarrow PC$$

T ₁	PC _{out} 、 X _{in}
T ₂	Ads=0、ADD、Zin
T ₃	Z _{out} 、PC _{in}

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{[PC]}) \rightarrow IR$$

 $(PC) + 4 \rightarrow PC$

2)数据通路1

 $PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$

T_1	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T ₃	DR _{out} 、IR _{in}

3)数据通路2

 $PC \rightarrow X/Mux1 \rightarrow ALU \rightarrow Z \rightarrow PC$

T ₁	PC _{out} 、 X _{in}
T ₂	Ads=0、ADD、Zin
T ₃	Z _{out} , PC _{in}

1.取指阶段的数据通路

1)取指令阶段的任务

$$(Mem_{[PC]}) \rightarrow IR$$

 $(PC) + 4 \rightarrow PC$

2)数据通路1

 $PC \rightarrow AR \rightarrow MEM \rightarrow DR \rightarrow IR$

T ₁	PC _{out} 、AR _{in}
T ₂	Read、DRM _{in}
T ₃	DR _{out} 、IR _{in}

3)数据通路2

 $PC \rightarrow X/Mux1 \rightarrow ALU \rightarrow Z \rightarrow PC$

T_1	PC _{out} 、 X _{in}
T ₂	Ads=0、ADD、Zin
T ₂	Z _{out} , PC _{in}

2. ADD指令执行数据通路

1) Add rd,rs,rt 的功能

$$(\mathsf{R}_{[\mathsf{rs}]}) + (\mathsf{R}_{[\mathsf{rt}]}) \rightarrow \mathsf{R}_{[\mathsf{rd}]}$$

- 2)执行阶段的数据通路
- (1)数据通路1

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

2. ADD指令执行数据通路

1) Add rd,rs,rt 的功能

$$(R_{[rs]}) + (R_{[rt]}) \rightarrow R_{[rd]}$$

- 2)执行阶段的数据通路
- (2)数据通路2

$$rt \rightarrow M_{ux2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z$$

 $T_1 \mid RegR, R_{out}, Ads, ADD, Z_{in}$

2. ADD指令执行数据通路

1) Add rd,rs,rt 的功能

$$(R_{[rs]}) + (R_{[rt]}) \rightarrow R_{[rd]}$$

- 2)执行阶段的数据通路
- (3)数据通路3

 $T_1 \mid Z_{out}, RegW, R_{in}$

2. ADD指令执行数据通路

1) Add rd,rs,rt 的功能

$$(R_{[rs]}) + (R_{[rt]}) \rightarrow R_{[rd]}$$

2)执行阶段数据通路汇总

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

$$rt \rightarrow M_{ux2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z$$

 T_1 RegR、R_{out}、Ads、ADD、Z_{in}

 $Z \rightarrow Regs ; rd \rightarrow M_{ux3} \rightarrow Regs$

 $T_1 \mid Z_{out}, RegW, R_{in}$

2. ADD指令执行数据通路

1) Add rd,rs,rt 的功能

$$(R_{[rs]}) + (R_{[rt]}) \rightarrow R_{[rd]}$$

2)执行阶段数据通路汇总

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$rt \rightarrow M_{ux2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z$$

 $Z \rightarrow Regs ; rd \rightarrow M_{ux3} \rightarrow Regs$

T ₁	RegR=0、R _{out} 、X _{in}
T ₂	RegR、R _{out} 、Ads、ADD、Z _{in}
T ₃	Z _{out} 、RegW、R _{in}

2. Addi 指令执行数据通路

1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$$

2)执行阶段的数据通路

(1)数据通路1

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

- 2. Addi 指令执行数据通路
- 1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$$

- 2)执行阶段的数据通路
- (2)数据通路2

$$IR_{[imm]} \rightarrow Mux1 \rightarrow ALU \rightarrow Z$$

该数据通路能满足指令功能要求吗?

为什么?

如何完善?

- 2. Addi 指令执行数据通路
- 1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$$

- 2)执行阶段的数据通路
- (2)数据通路2

$$[R_{[imm]} \rightarrow Ext \rightarrow Mux1 \rightarrow ALU \rightarrow Z]$$

 $T_1 \mid IR_{imm_{out}}$, Ads, ADD, Z_{in}

2. Addi 指令执行数据通路

1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$$

2)执行阶段的数据通路

(3)数据通路3

$$Z \rightarrow Regs / rt \rightarrow M_{ux3} \rightarrow Regs$$

$$T_1 \mid Z_{out}, RegW=0, R_{in}$$

2. Addi 指令执行数据通路

1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_-Ext_{32}(imm) \rightarrow R[rt]$$

2)执行阶段的数据通路汇总

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

 $IR_{[imm]} \rightarrow Ext \rightarrow Mux1 \rightarrow ALU \rightarrow Z$

 $T_1 \mid IR_{imm_{out}}$, Ads, ADD, Z_{in}

 $Z \rightarrow Regs ; rt \rightarrow M_{ux3} \rightarrow Regs$

 $T_1 \mid Z_{out}, RegW=0, R_{in}$

2. Addi 指令执行数据通路

1) Addi rt,rs,imm 指令的功能

$$(R_{[rs]}) + S_Ext_{32}(imm) \rightarrow R[rt]$$

2)执行阶段的数据通路

$$T_1$$
 RegR=0, R_{out}, X_{in}

 T_2 | IR_imm_{out}, Ads, ADD, Z_{in}

$$T_3$$
 Z_{out} RegW=0, R_{in}

- ◆设计CPU时,指令功能 ←→ 功能部件
- ◆编程的平台相关性

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

- 2)执行阶段的数据通路
- (1)数据通路1

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

$$(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$$

- 2)执行阶段的数据通路
- (2)数据通路2

$$IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow AR$$

 $T_1 \mid IR_{imm_{out}}$, Ads, ADD, Z_{in}

27`

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

- 2)执行阶段的数据通路
- (2)数据通路2

 T_1 IR_imm_{out}, Ads, ADD, Z_{in} T_2 Z_{out} , AR_{in}

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

- 2)执行阶段的数据通路
- (3)数据通路3

 $AR \rightarrow Mem \rightarrow DR$

 T_1 Read, DRM_{in}

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

- 2)执行阶段的数据通路
- (3)数据通路3

 $AR \rightarrow Mem \rightarrow DR$

 T_1 Read, DRM_{in}

- 3. LW 指令执行数据通路
- 1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

- 2)执行阶段的数据通路
- (4)数据通路4

 $DR \rightarrow Regs / rt \rightarrow M_{ux3} \rightarrow Regs$

 $T_1 \mid DR_{out}, RegW=0, R_{in}$

3. LW 指令执行数据通路

1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

2)执行阶段的数据通路汇总

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

$$IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow AR$$

 $T_1 \mid IR_{imm_{out}}$, Ads, ADD, Z_{in}

 $T_2 \mid Z_{out}, AR_{in}$

 $AR \rightarrow Mem \rightarrow DR$

T₁ Read, DRM_{in}

 $DR \rightarrow Regs / rt \rightarrow M_{ux3} \rightarrow Regs$

 $T_1 \mid DR_{out}, RegW=0, R_{in}$

3. LW 指令执行数据通路

1) lw rt, imm(rs)指令的功能

 $(M[(R_{[rs]})+S_Ext_{32}(imm)]) \rightarrow R[rt]$

2)执行阶段的数据通路汇总

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow AR$$

 $AR \rightarrow Mem \rightarrow DR$

 $DR \rightarrow Regs / rt \rightarrow M_{ux3} \rightarrow Regs$

T ₁	RegR=0、R _{out} 、X _{in}
T ₂	$IR_{imm_{out}}$, Ads , ADD , Z_{in}
T ₃	Z _{out} 、AR _{in}
T ₄	Read、DRM _{in}
T ₅	DR _{out} 、RegW=0、R _{in}

4. SW 指令执行数据通路

1) Sw rt, imm(rs)指令的功能

$$(R_{[rt]}) \rightarrow M[((R_{[rs]}) + S_Ext_{32}(imm))]$$

2)lw执行阶段的数据通路

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow AR$$

 $AR \rightarrow Mem \rightarrow DR$

 $DR \rightarrow Regs / rt \rightarrow M_{ux3} \rightarrow Regs$

T_1 RegR=0	R _{out} ,	X_{in}
--------------	--------------------	----------

T_2	IR_imm _{out} 、	Ads、	ADD 、	Z_{in}
-------	-------------------------	------	-------	----------

Z_{out}	AR_{in}
	Z_{out}

T₄ Read DRM_{in}

 T_5 DR_{out}, RegW=0, R_{in}

4. SW 指令执行数据通路

1) Sw rt, imm(rs)指令的功能

$$(R_{[rt]}) \rightarrow M[((R_{[rs]}) + S_Ext_{32}(imm))]$$

2)执行阶段的数据通路

rs
$$\rightarrow$$
M_{ux2} \rightarrow Regs \rightarrow X
IR_[imm] \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow AR

 $rt \rightarrow M_{ux2} \rightarrow Regs / Regs \rightarrow DR$

 $DR \rightarrow M[AR]$

T_1 RegR=0, R _{out} , X _{in}	
--	--

T₂ | IR_imm_{out}, Ads, ADD, Z_{in}

 T_3 Z_{out} , AR_{in}

T₄ RegR、R_{out}、DR_{in}

T₅ Write

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

当
$$(R_{[rs]}) = (R_{[rt]})$$

PC \leftarrow PC + 4 + imm<< 2

PC+4 如何理解?

指令执行阶段PC内容即为"PC +4"

如何判断(R_[rs])=(R_[rt])?

利用ALU的减法功能实现

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

 $PC \leftarrow PC + 4 + sign_extend(offset || 0^2)$

2)执行阶段的数据通路

(1)数据通路1

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

(2)数据通路2

$$rt \rightarrow M_{UX2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow PSW$$

T₁ RegR, R_{out}, Ads, SUB, PSW_{in}

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

 $PC \leftarrow PC + 4 + sign_extend(offset || 0^2)$

2)执行阶段的数据通路

(3)数据通路3

$$PC \rightarrow X$$

(4)数据通路4

$$IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow PC$$

通路4能实现指令的功能吗?

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

 $PC \leftarrow PC + 4 + sign_extend(offset || 0^2)$

2)执行阶段的数据通路

(3)数据通路3

$$PC \rightarrow X$$

(4)数据通路4

$$\begin{array}{c} IR_{[imm]} \rightarrow Ext \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow PC \\ & \boxed{\downarrow} \end{array}$$

 $IR_{[imm]} \rightarrow Ext \rightarrow \longleftarrow 2 \rightarrow M_{ux4} \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow PC$

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

Write Read

40

操作控制信号

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

Write Read

PC

41 -----

操作控制信号

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

 $PC \leftarrow PC + 4 + sign_extend(offset || 0^2)$

2)执行阶段的数据通路

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

$$T_1$$
 RegR=0, R_{out} , X_{in}

$$rt \rightarrow M_{UX2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow PSW$$

$$T_1 \mid RegR$$
 , R_{out} , Ads , SUB, PSW $_{in}$

 $PC \rightarrow X$

$$IR_{[imm]} \rightarrow Ext \rightarrow \boxed{\leftarrow 2} \rightarrow M_{ux4} \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow PC$$

$$T_1$$
 IR_imm_{out}, I_imms=0, Ads, ADD Z_{in}

5. Beq 指令执行数据通路

1) beq rs,rt,imm指令的功能

 $PC \leftarrow PC + 4 + sign_extend(offset || 0^2)$

2)执行阶段的数据通路

$$rs \rightarrow M_{ux2} \rightarrow Regs \rightarrow X$$

 $rt \rightarrow M_{UX2} \rightarrow Regs \rightarrow M_{ux1} \rightarrow ALU \rightarrow PSW$

$$PC \rightarrow X$$

$$IR_{[imm]} \rightarrow Ext \rightarrow \leftarrow 2 \rightarrow M_{ux4} \rightarrow M_{ux1} \rightarrow ALU \rightarrow Z \rightarrow PC$$

- T_1 RegR=0, R_{out}, X_{in}
- T₂ | RegR, R_{out}, Ads, SUB, PSW_{in}
- T₃ PC_{out}, X_{in}
- $T_4 \mid IR_imm_{out}, I_imms=0, Ads, ADD, Z_{in}$
- T₅ Z_{out}, PC_{in}

44`

6. 指令周期流图的回溯修改

计算机组成原理

