Universidade de São Paulo Arthur Font Gouveia - 12036152

MAC0352 - Redes de Computadores e Sistemas Distribuídos Resumo - Encontro 4

1. Borda e núcleo da rede

1.1. Redes de acesso e meios físicos

A borda da rede é composta por sistemas finais que executam programas de aplicação. Já o núcleo da rede é formado por uma malha de roteadores interconectados, no qual os dados podem ser transferidos através da comutação de pacotes ou da comutação de cirucuitos. A conexão de um sistema final aos roteadores de borda é feita através dos meios de acesso, também chamados de redes de acesso. Pode-se reunir as redes de acesso em três grupos: o residencial, o móvel (redes celulares) e o institucional.

A principal característica de uma rede de acesso é a largura de banda, medida em Mbps, que indica quantos dados podem ser enviados/recebidos por segundo, ou seja, a taxa de download e upload. Também podemos citar o atraso, a taxa de perda de pacotes e o tipo de acesso. Em geral, o tipo de acesso em redes residenciais é dedicado e o acesso em redes institucionais é compartilhado.

1.2. Arquiteturas de redes a cabo: visão geral

As arquiteturas de redes com conexão via cabo utilizam o cabo coaxial e a infraestrutura de transmissão do sinal da telvisão a cabo preexistente em grande parte do território brasileiro. A infraestrutura pode ser resumida da seguinte forma: o cabo coaxial chega até o modem, o qual possui saídas para conectar cabos Ethernet e/ou pontos de acesso, que também são chamados de roteadores.

O ponto final do cabo coaxial chega aos servidores da empresa provedora de acesso a Internet. Esses servidores são responsáveis por verificar os pacotes e prover a estrutura da internet através de roteadores.

Os cabos Ethernet e os pontos de acesso conectam os sistemas finais ao roteador, provendo acesso a rede de forma compartilhada ou dedicada. Atualmente, muitos modems já possuem o ponto de acesso via Wi-Fi.

As redes locais (LAN – Local Acess Network) interligam dispositivos dentro de um mesmo espaço físico com a finalidade de trocar informações. Em um rede local, os sistemas finais conectam-se ao ponto de acesso (roteador de acesso), o qual conecta-se ao servidor principal da instituição, que pode ou não se conectar a Internet. Em uma rede residencial, podemos destacar os seguintes componentes típicos, o modem, o roteador/firewall, e os pontos de acesso sem fio.

1.3. Sobre a borda e o núcleo

Podemos agrupar o núcleo em uma central compartilhada composta de milhares de kilometros de cabos e satélites, também chamada de Backbone, e em provedores de acesso, que nos permite conectar ao BackBone. No núcleo da rede, as informações trafegam através da comutação de pacotes. É possível também organizar uma rede utilizando a comutação de circuitos.

2. Estrutura da Internet: rede de redes

A estrutura da Internet é mapeada grosseiramente de maneira hierárquica. No centro encontram-se os ISPs (Internet Service Provider) de "zona-1", que possuem cobertura nacional e internacional. A zona-1 provê interconexão de modo privativo e interconexão nos pontos de acesso (NAPs) da rede pública.

Mais externamente encontram-se os ISPs de "zona-2". No Brasil podemos citar a RNP (Rede Nacional de Nacional de Ensino e Pesquisa) e a ANSP (Academic Network at São Paulo).

As ISPs de "zona-3" e as ISPs locais são clientes de ISPs de zonas mais altas e conectam os sistemas finais ao resto da Internet. Portanto, para um pacote chegar ao seu destino, utliza-se uma conexão fim-a-fim (E2E – End-to-end), na qual o pacote passa através de muitas redes.

3. Arquitetura em camadas

3.1. Camadas de protocolos

As redes são complexas, portanto houve a necessidade de organizar a arquitetura de uma rede através de camadas de protocolos. Cada camada implementa um serviço através das próprias estruturas internas e confia nos serviços oferecidos pela camada inferior.

3.2. Analogia com a organização de uma viagem aérea

A organização de uma viagem aérea é composta por uma série de passos e cada passo possui suas ações e confia nos serviços oferecidos pela camada inferior. Neste

caso, o piloto sabe conduzir a aeronave mas não necessita de informações sobre as bagagens dos passageiros, por exemplo.

3.3. Por que as camadas?

As camadas são importantes para resolver sistemas complexos, quebrando os problemas em problemas menores, utilizando estruturas modularizadas que permitem a identificação e o relacionamento das partes de um sistema.

3.4. Pilha de protocolos da Internet e encapsulamento

Os protocolos da Internet são organizados em formato de pilha, no qual as camadas vizinhas possuem comunicação entre si através de protocolos. A comunicação vai ganhando informações conforme se aproxima do sistema final. Cada camada adiciona um cabeçalho com as devidas informações modularizadas.

Referências

1. RASMUSSEN, Bruna. LAN, WLAN, MAN, WAN, PAN: conheça os principais tipos de redes. Disponível em: https://canaltech.com.br/infra/lan-wlan-man-wan-pan-conheca-os-principais-tipos-de-redes/. Acesso em: 27 abr. 2021.