

AndeSight 使用指南

V1.0

版本记录:

版本号	日期	备注
V0.1	2017-3-1	初稿
V0.2	2017-3-1	添加快速新建 user app 工程方法
V0.3	2018-3-7	添加新内容
V0.4	2018-3-28	修改优化设置
V0.5	2018-6-8	添加工程中新增引用文件的方法
V0.6	2018-7-16	添加 AndeSight 使用常见问题
V0.7	2018-12-7	常见问题增加内容
V1.0	2019-1-15	修正部分错别字。

目录

Α	ndeSight 使用指南	1
1	安装 AndeSight IDE	4
	1.1 安装 AndeSight IDE	4
	1.2 注册 License	5
	1.3 Andesight IDE 的配置	6
2	基于 AndeSight IDE 开发软件	7
	2.1 工程导入	7
	2.2 新建应用工程	10
	2.3 新建 Library 库工程	12
	2.4 快速新建一个工程	12
	2.5 添加引用文件	13
	2.5.1 使用虚拟目录方法	13
	2.5.2 使用引用目录方法	15
	2.6 工程的配置及编译	21
	2.6.1 配置工程	21
	2.6.2 编译工程	23
	2.6.3 Code 效率达到最高时的设置	24
	2.6.4 仿真设置	24
3	代码下载及调试	27
	3.1 AICE 仿真器的使用	27
	3.2 下载代码	27

3.3 调	周试代码	.29
3	3.3.1 调试前的配置	.29
3	3.3.2 调试过程介绍	.33
4 AndeSig	ght 常见问题	.35
4.1 Aı	ndeSight 安装	.35
4.2 编	扁译	.35
4.3 Al	ICE 连接	.35
4.4 烷	茂录	.36
4.5 调	周试	.36
46 T		37

1 安装 AndeSight IDE

1.1 安装 AndeSight IDE

解压安装包后,点击 "RDS_Installer\Windows\Disk1\Setup.exe"进行安装。安装的步骤比较简单,只要按照向导一步步完成即可。安装包中也附有安装说明:

《AndeSight vxxx RDS Installation Guide UM.pdf》

在安装步骤的最后会弹出安装 libusb 库的对话框,点击安装即可。

安装完成后,在桌面上会生成两个快捷方式:

▶ 点击 "AndeSight212RDS" 打开 IDE 界面;

点击 "ICEman_ASv212RDS" 将打开命令行界面,可以使用 iceman –x –A -N reset-hold-script.tpl –H 命令,检测 PC 与开发板之间是否通讯正常。

1.2 注册 License

Andesight IDE 需要 License 进行注册。

点击 "Install now...", 或选择 "Window" -> "Preferences" -> "License":

填入 Serial 和选中 lic 文件,进行 license 的注册。

注意: Serial 就是 lic 文件的文件名。

1.3 Andesight IDE 的配置

在 Project Exploer 中选中工程并右键-> "Target configuration", "在 ICEMan

Misc Arguments" 中填写: -A -N reset-hold-script.tpl -H

同样,在 IDE 菜单栏 "Windows" -> "Preferences" -> "Target Management Default Settings" 中,在 "ICEMan Misc Arguments" 中填写:

-A -N reset-hold-script.tpl -H

2 基于 AndeSight IDE 开发软件

2.1 工程导入

打开 Andesight IDE, 首先会弹出选择 workspace 的对话框:

首次使用时,你需要 Browse 选择一个目录做为你的 workspace。你可以选择任意的目录作为 workspace 目录,建议一般将 workspace 择到 MVsO26_SDK目录下。

■ 导入工程:

选择 File -> Import, 如下图所示:

选择 Existing Projects into Workspace, 点击 Next,

点击 Brower, 选择工程所在的目录:

选择 Finish,即可导入工程。

注意: @INCLUDES 是必须要导入的工程。

2.2 新建应用工程

点击 IDE 的菜单栏 "Project" -> "Andes Project Creator" :

P20 选择 ADP-AG101P-4GB-N968A-S-32I

AP82/P40 选择 ADP-AG101P-4GB-D1088-SPU-32I

点击最右侧的 "Create Project":

如果是创建应用工程,则在"Project type"里选择"Andes Executable";如果是创建库,则选择"Andes Static Library",Toolchain 选择默认值即可,填写工程的名字后,点击"Next"或"Finish"即可创建工程。

需要注意的是,如果是新建的应用工程,则需要参考 1.3 节进行工程的配置。

nysilisan sam 11

2.3 新建 Library 库工程

如果需要新建一个 Library 库工程,则在创建工程对话框的"Project type"里选择"Andes Static Library",如上图所示,点击"Next"->"Finish"即可。注意: AP82 系列芯片为 D1088 内核,P20 系列芯片为 N968 内核,创建工程的请选择正确的芯片内核型号。

2.4 快速新建一个工程

如果想重新建立一个类似于 SDK 开发包中 MVs26_SDK/examples 的 Demo_FreeRTOS 工程,例如要建立一个名为 "iot_app" ,可以按如下步骤操作:

- 1)复制一份 Demo_FreeRTOS 文件夹,并改名为 "iot_app",放到 MVs26_SDK/examples中;
- 2)打开 MVs26_SDK/examples/iot_app 下的 ".cproject" 和 ".project" 文件,将原文件中所有的 Demo_FreeRTOS 关键字替换成 iot_app。使用大小写全字匹配。
- 3)在 IDE 的工程窗口 Import 该工程。

2.5 添加引用文件

如果工程想直接使用标准代码文件,例如 middleware FreeRTOS 代码,可以通过相对引用的方式引用整个目录或者部分代码,而不必将 FreeRTOS 代码文件 copy 到工程目录下。使用相对路劲的方法有 2 种,一个是创建虚拟目录,在工程目录结构中显示的是一个镜子图标;一个是引用目录,工程目录结构中显示的一个箭头图标。

2.5.1 使用虚拟目录方法

选中工程目录,右击选择"Import"。

13

选中 "General" 选项下的 "File System", 点击 "Next"。

点击 "Browse" , 找到需要添加的 "middleware" 文件夹, 点击确定按钮。

在弹出的对话窗口中选择具体目录,例如选择"fatfs"目录。勾选"Create

top-level folder"和 "Create links in workspace "选项及其子项。然后点击 "Finish"按钮。

以上步骤全部完成之后,在工程的左侧目录结构上看到已经成功选择了 "middleware" 目录的"fatfs"子目录及其目录中的文件。

2.5.2 使用引用目录方法

右键点击工程目录,选择"New",然后选择"Folder"。

选择 "Link to alternate location" , 然后点击 "Browse" 进行选择需要引用的目录。

找到需要引用的目录,如下图所示的"middleware"目录。然后点击确认。

16

以上步骤完成之后,引用文件夹已经成功添加,如下图所示,会将该目录下的所有目录和文件全部添加进来。

不过此时引用的是绝对路径,还需要将引用的目录的绝对地址设置为相对地址,否则工程代码包拷贝到其他电脑上会有编译找不到相关路径的错误。设置方法如

下:

右键点击 "middleware",选择 "Properties"。

在弹出的对话框点击 "Resource" ,看到显示的是绝对路径,此时点击 "Edit" 按钮。

在弹出的对话框中输入相对路径地址。点击 "OK" 按钮。

此时引用目录的方式才算真正设置完成。

如果不想编译部分已经引用的子目录和文件可以按照如下方法操作。以 "middleware" 目录下的 "audio" 目录为例子。

选中 "audio" 目录,右键单击弹出如下对话框。选择 "Properties"。

19

在弹出的对哈框左侧区域,选择"C/C++ Build",然后在"Exclude resource from build"选项前打钩,然后点击"OK"。

完成上述步骤之后,在工程的左侧目录结构的中可以看到 "audio" 目录被排到了最后面,并且"src"下的文件全部是灰色的。此时编译工程时,不会包含"audio"目录。该方法同样适用于文件操作。

注意事项:

1、引用目录方式下可以删除引用目录的根目录,但是不能删除引用目录下的任

何子目录和文件, 删除之后则 Windows 原目录下对应的目录和文件也不存在

- 了。请慎用使用删除操作。使用该方式添加目录之后注意手动修改为相对路径。
- 虚拟目录方式下则可以根据情况删除目录和文件,包括虚拟目录根目录以及 子目录和文件。

2.6 工程的配置及编译

2.6.1 配置工程

在对工程进行编译前,需要对工程进行相应的配置,如头文件路径,相应的编译选项等。点中需要编译的工程并右键,点击最下面的"Properties",弹出工程属性对话框:

如上图所示,在 "C/C++ Build" 栏下的 "Settings" 里,就是对工程编译相关的配置。在 Tool Setting 标签页里:

Andes C Compiler:编译时的配置。主要包括头文件路径设置,优化选择设置等。

Symbols:添加宏定义

Directories:添加头文件路径

Optimization: 设置优化等级和优化 flag

Debugging: 设置调试等级

Miscellaneous:设置编译条件,如果 CPU 可以执行 DSP 指令,可以在此栏中添加

-mext-dsp, 目的是让编译器自动编译出 DSP 指令。

Andes C Linker: 链接时的配置。主要包括所需链接的库/库的搜索路径,链接脚本文件的选择。

General: "Do not use standard start files" 一定要勾选

Libraries:设置库的名字及路径,m是指数学库,例如要添加libDriver.a的库,设

置如下图所示。注意:m库需要列到所有库的最后面,否则会有可能会出现编译错误。

Miscellaneous: 设置优化 flag

Andes Assembler: 汇编器的配置。大部分情况下,该项可以不用做额外配置。

Objcopy: 如果是可执行的工程,需要生成 bin 文件,"Disable"不勾选,如下图:

如果是库工程,不需要生成 bin 文件,"Disable"要勾选。

2.6.2 编译工程

和对工程编译配置一样,在编译工程前,也需要先点中相应的工程。这个和 Keil IDE 有点区别,在 Keil 里会先将某个工程置为 active 状态,表示当前的操作都是对应于这个 active 工程。而在基于 Eclipse 的 Andes IDE 中,需要先点中某个工程。

- ▶ 点中相应的工程;
- ▶ 右键该工程-> "Build Project",或者点击工具栏上的 ⁶ 进行编译;
- 在 IDE 窗口的 Console 里面查看编译的结果。(可以在菜单栏的 "Window" -> "show View" -> "Console" 里打开)

注意: 在更新了库文件以后, 需要将 project clean 一下再做编译, 以防止有些改动未得到

重新编译。

Clean Project: 选中工程并右键-> "Clean Project"

2.6.3 Code 效率达到最高时的设置

右击工程,单击 "Properties",选择 Settings->Optimization,

将 "Optimization Level"设置为: -O3:Optimize for speed,

"Other Optimization flags"设置为: -funroll-all-loops -fgcse-sm -finline-limit=500

-fno-schedule-insns -ftree-switch-shortcut

注意: Link Time Optimization(-flto)不要勾选

2.6.4 仿真设置

右击工程,单击 Target Configuration,选择 Brower...,在 Virtual 中选择所使用的 Core,在 Toolchain 中选择所使用的指令集,N968 使用nds32le-elf-mculib-v3,D1088使用nds32le-elf-mculib-v3s。Connection

Type 选择: Simulator

选择 Window-> Preferences

单击 Target Management Default Setting, Connect Type 选择 Simulator,
Simulator Misc Argument 设置为: -e "set cpu cpu-option \\"--config-mul

fast1

--conf-unaligned-access-support

on

--init-unaligned-access-support on\\""

3 代码下载及调试

3.1 AICE 仿真器的使用

软件的调试及下载需要使用在线仿真器 AICE, AICE 使用 two-wire 的方式和 CPU 进行通信。按下图方式进行连接,即可使用 AICE 仿真器进行线调试功能。

在线仿真示意图

在上图中, AICE 的右侧绿灯处(串行调试接口侧), 如果出现红灯和两个绿灯同时闪烁的情况,则表示连接有问题。

3.2 下载代码

- ▶ 选中对应的工程;
- ➤ 右键-> "Flash Burner"或点击工具栏上的 ♣,将弹出下载代码对话框;
- 选择 Flash Downloader 和要烧录的 bin 文件,设置要烧录的起始地址,点击 "Burn"。

烧录时,还可以选择是否要进行"Verification"(烧录后进行校验)或"Erase ALL" (烧录前进行 Flash 全擦除),Flash Downloader 文件和 bin 文件的位置如下图所示:

3.3 调试代码

和绝大多数数 IDE 一样,Andes IDE 支持 Debug 连接、全速跑、停止、单步、 汇编级调试、断点设置、查看或修改变量、寄存器和内存值等。

3.3.1 调试前的配置

调试有两种方式: Application Program 和 MCU Program

Application Program 配置:

点中工程并右键->Debug as->Debug configuration, 在 Application Program 上右键, 弹出调试配置窗口如下:

选择 New, 配置如下:

点击 Apply->Debug 后即可调试。

MCU Program 配置:

点中工程并右键->Debug as->Debug configuration,在 MCU Program 上右键,弹出调试配置窗口如下:

选择 New, 配置如下:

点击 Apply->Debug 后即可调试。

3.3.2 调试过程介绍

当调试配置完成之后,点击工具栏上的^参进行调试,当调试连接成功后显示如下调试界面:

下面对界面上的几处标号进行描述:

- 1: 表示当前的 PC 指针, 图中指向 main 函数的入口;
- 2: 表示汇编级调试时, PC 指针, 图中指向 main 函数的第一条汇编指令;
- 3:表示设置的断点。双击源代码右侧行号处进行设置断点,再次双击删除该断

点;

- 4: 结束本次调试并重新开始;
- 5:全速运行;
- 6: 停住(hold)当前调试。一般在全速运行后,可以点击该按钮使 CPU 停下来并 hold 住;
- 7: 结束调试;

- 8: Step Into;
- 9: Step Over;
- a: Step return;
- b: 汇编指令单步 , 即单步执行汇编指令;
- c: 表示仿真器 AICE 当前连接着 CPU,当结束调试后,该连接依然存在,可以选中该"MVSP20 AICE: 9902"并右键->"shut down"。<u>当打开两个及以上的 IDE 窗口进行调试时,进行 shut down 非常重要。</u>当一个 IDE 窗口的 AICE 处于连接状态且没有 shut down 时,另一个 IDE 窗口是不能进行 AICE 连接调试的,需要先 shut down 前一个 IDE 的 AICE 连接,才能切换到另一个 IDE 窗口进行调试。

4 AndeSight 常见问题

4.1 AndeSight 安装

- 4.1.1 安装路径不能有中文
- 4.1.2 如果安装不成功,请使用管理员权限重新安装
- 4.1.3 AndeSight 激活需要填入 Serial 和 License files 文件的位置; Serial 是 License files 的文件名(需要去掉后缀名)

4.2 编译

- 4.2.1 @INCLUDES 工程必须导入
- 4.2.2 如果库有更新,必须先 clean 工程,再编译工程
- 4.2.3 如果以上两项都试过了,可以尝试把工程中 Debug 文件夹删除,然后再编译工程

4.3 AICE 连接

首先通过 iceman -x (C:\Andestech\AndeSight300RDS\ice\andes-iceman.bat)命令, 检测连接是否正常。如果测试项全部都 PASS 了,说明连接没有问题。如果有 fail 项说明 连接有问题,请做以下检查:

- 4.3.1 物理连接是否正常,保证连通性上没有问题
- 4.3.2 测试芯片 3.3V 和 1.2V 的电压, 保证电压没有问题
- 4.3.3 给芯片重新上电,插拔一下 USB 和 AICE,也可以尝试重启 AndeSight 或电脑
- 4.3.4 确保芯片不是处于 Deepsleep 和 Powerdown 下,在这两种状态下芯片是没有办法连接上的
- 4.3.5 仿真调试 IO 有没有被代码设置成其它用途,如果被设置了,肯定是连不上的

4.3.6 现在仿真器分两种,一种是 AICE-MCU,必须接四根线, 3.3V 一定要接;另外 一种是 AICE-MINI, 3.3V 不需要接

4.4 烧录

首先保证 AICE 连接正常,如果连接是正常的,但还是不能烧录,请做一下检查:

- 4.4.1 download 文件有没有选择,选择的对不对,代码的 bin 文件有没有
- 4.4.2 检测 AICE 连接性是否正常,请参考 AICE 连接项
- 4.4.3 工程右键 ->Target configeration->Target configuration,在 Arguments

 Settings 中输入以下内容: -A -N reset-hold-script.tpl -H

 Window->Preferences->Target Management Default Settings,选择 ICE,
 在 ICEman Misc Arguments 中输入以下内容: -A -N reset-hold-script.tpl -H

4.5 调试

如果不能调试,请做以下检查:

- 4.5.1 debug 配置是否正确,如何配置请参考《代码下载及调试》章节,建议使用 MCU Program 方式进行调试
- 4.5.2 将 AndeSight 安装目录\Andestech\AndeSight300RDS\ice\interface 下的 nds32-aice.cfg.tpl 文件,替换成 tools 目录下的 nds32-aice.cfg.tpl 文件
- 4.5.3 检测 AICE 连接性是否正常,请参考 AICE 连接项

4.6 工程配置

4.6.1 如果有用到浮点型运算,将 Single Precision Constant 打勾之后,浮点型 Const 数据会以单精度方式参与运算;否则会以双精度方式参与运算。设置方法参考下图:

4.6.2 如果有用到 m 库、dsp 库,需要将 m、dsp 放到最下面,请参考下图:

联系山景

上海山景集成电路股份有限公司(Shanghai Mountain View Silicon Co Ltd)

地址: 上海浦东新区张江路 1238 弄恒越国际大厦 3号楼 4层 C

网站: www.mvsilicon.com

电话: 021-68549851