MỤC LỤC

CHƯƠNG I: DAO ĐỘNG CƠ	2
CHƯƠNG II: SÓNG CƠ	23
CHƯƠNG III: DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ	31
CHƯƠNG IV: DÒNG ĐIÊN XOAY CHIỀU	35
CHƯƠNG V: SÓNG ÁNH SÁNG	48
CHƯƠNG VI: LƯỢNG TỬ ÁNH SÁNG	55
CHƯƠNG VII: HẠT NHÂN NGUYÊN TỬ	61
PHŲ LŲC	65

CHƯƠNG I: DAO ĐỘNG CƠ

CHỦ ĐỀ 1: ĐẠI CƯƠNG DAO ĐỘNG ĐIỀU HÒA

A. TÓM TẮT LÍ THUYẾT

- **1. Chu kì, tần số, tần số góc:** $\omega = 2\pi f = \frac{2\pi}{T}$; $T = \frac{t}{n}$ (t là thời gian để vật thực hiện n dao động)
- 2. Dao động:
 - a. Dao động cơ: Chuyển động qua lại quanh một vị trí đặc biệt, gọi là vị trí cân bằng.
- **b. Dao động tuần hoàn:** Sau những khoảng thời gian bằng nhau gọi là chu kỳ, vật trở lại vị trí cũ theo **hướng cũ.**
- **c. Dao động điều hòa:** là dao động trong đó li độ của vật là một hàm cosin (hay sin) theo thời gian.
- 3. Phương trình dao động điều hòa (li độ): $x = A\cos(\omega t + \varphi)$
 - + x: Li đô, đo bằng đơn vi đô dài cm hoặc m
 - + $A = x_{max}$: Biên độ (luôn có giá trị dương)
 - + Quỹ đạo dao động là một đoạn thẳng dài L = 2A
 - + ω (rad/s): tần số góc; φ (rad): pha ban đầu; (ω t + φ): pha của dao động
 - $+ x_{max} = A$, $|x|_{min} = 0$
- 4. Phương trình vận tốc: $v = x' = -\omega A \sin(\omega t + \varphi)$
- + \vec{v} luôn cùng chiều với chiều chuyển động (vật chuyển động theo chiều dương thì $\mathbf{v} > \mathbf{0}$, theo chiều âm thì $\mathbf{v} < \mathbf{0}$)
 - + \mathbf{v} luôn **sớm pha** $\frac{\pi}{2}$ so với \mathbf{x} .

Tốc độ: là độ lớn của vận tốc $|\mathbf{v}| = |\vec{v}|$

- + Tốc độ cực đại $|v|_{max}$ = $A\omega$ khi vật ở vị trí cân bằng (x = 0).
- + Tốc độ cực tiểu |v|min= 0 khi vật ở vị trí biên (x= \pm A).
- 5. Phương trình gia tốc: $a = v' = -\omega^2 A \cos(\omega t + \varphi) = -\omega^2 x$
 - + ā có độ lớn tỉ lệ với li độ và luôn hướng về vị trí cân bằng.
 - + \mathbf{a} luôn $\mathbf{s\acute{o}m}$ \mathbf{pha} $\frac{\pi}{2}$ so với \mathbf{v} ; \mathbf{a} và \mathbf{x} luôn $\mathbf{nguợc}$ \mathbf{pha} .

+ Vật ở biên:
$$x = \pm A$$
; $|\mathbf{v}|_{\min} = 0$; $|\mathbf{a}|_{\max} = A\omega^2$

- 6. Hợp lực tác dụng lên vật (lực hồi phục):
 - + \vec{F} có độ lớn tỉ lệ với li độ và luôn hướng về vị trí cân bằng.
 - + Dao động cơ đổi chiều khi hợp lực đạt giá trị cực đại.
 - + F_{hpmax} = kA = $m\omega^2 A$: tại vị trí biên
 - + F_{hpmin} = 0: tại vị trí cân bằng

7. Các hệ thức độc lập:

a)
$$\left(\frac{x}{A}\right)^2 + \left(\frac{v}{A\omega}\right)^2 = 1 \Rightarrow A^2 = x^2 + \left(\frac{v}{\omega}\right)^2$$

b) $a = -\omega^2 x$

c)
$$\left(\frac{a}{A\omega^2}\right)^2 + \left(\frac{v}{A\omega}\right)^2 = 1 \implies A^2 = \frac{a^2}{\omega^4} + \frac{v^2}{\omega^2}$$

d) F = -k.x

e)
$$\left(\frac{F}{kA}\right)^2 + \left(\frac{v}{A\omega}\right)^2 = 1 \Rightarrow A^2 = \frac{F^2}{m^2\omega^4} + \frac{v^2}{\omega^2}$$

- a) đồ thị của (v, x) là <u>đường elip</u>
- b) đồ thị của (a, x) là đoạn thẳng đi qua gốc tọa độ
- c) đồ thị của (a, v) là <u>đường elip</u>
- d) đồ thị của (F, x) là
 $\underline{\textit{doạn thẳng}}$ đi qua gốc tọa độ
- e) đồ thị của (F, v) là <u>đường elip</u>

Chú ý:

* Với hai thời điểm t_1 , t_2 vật có các cặp giá tri x_1 , v_1 và x_2 , v_2 thì ta có hệ thức tính A & T như sau:

$$\left(\frac{x_{1}}{A}\right)^{2} + \left(\frac{v_{1}}{A\omega}\right)^{2} = \left(\frac{x_{2}}{A}\right)^{2} + \left(\frac{v_{2}}{A\omega}\right)^{2} \Leftrightarrow \frac{x_{1}^{2} - x_{2}^{2}}{A^{2}} = \frac{v_{2}^{2} - v_{1}^{2}}{A^{2}\omega^{2}} \rightarrow \begin{cases} \omega = \sqrt{\frac{v_{2}^{2} - v_{1}^{2}}{x_{1}^{2} - x_{2}^{2}}} \rightarrow T = 2\pi\sqrt{\frac{x_{1}^{2} - x_{2}^{2}}{v_{2}^{2} - v_{1}^{2}}} \\ A = \sqrt{x_{1}^{2} + \left(\frac{v_{1}}{\omega}\right)^{2}} = \sqrt{\frac{x_{1}^{2}v_{2}^{2} - x_{2}^{2}v_{1}^{2}}{v_{2}^{2} - v_{1}^{2}}} \end{cases}$$

- * Sự đổi chiều các đại lượng:
- Các vector \vec{a} , \vec{F} đổi chiều khi qua VTCB.
- Vecto v đổi chiều khi qua vi trí biên.
- * Khi đi từ vị trí cân bằng 0 ra vị trí biên:
- Nếu $\vec{a} \uparrow \downarrow \vec{v} \Rightarrow$ chuyển động **chậm dần**.
- Vận tốc giảm, ly độ tăng \Rightarrow động năng giảm, thế năng tăng \Rightarrow độ lớn gia tốc, lực kéo về tăng.
- * Khi đi từ vị trí biên về vị trí cân bằng 0:
- Nếu $\vec{a} \uparrow \uparrow \vec{v} \Rightarrow$ chuyển động **nhanh dần**.
- Vận tốc tăng, ly độ giảm \Rightarrow động năng tăng, thế năng giảm \Rightarrow độ lớn gia tốc, lực kéo về giảm.
- * Ở đây không thể nói là vật dao động nhanh dần "đều" hay chậm dần "đều" vì dao động là loại chuyển động có gia tốc a biến thiên điều hòa chứ không phải gia tốc a là hằng số.
- 8. Mối liên hệ giữa dao động điều hòa (DĐĐH) và chuyển động tròn đều (CĐTĐ):
- a) DĐĐH được xem là hình chiếu vị trí của một chất điểm CĐTĐ lên một trục nằm trong mặt phẳng quỹ đạo & ngược lại

với:
$$A = R; \omega = \frac{v}{R}$$

- **Bước 1:** Vẽ đường tròn (0; R = A).
- **Bước 2:** Tại t = 0, xem vật đang ở đâu và bắt đầu chuyển động theo chiều âm hay dương:
 - + Nếu $\varphi > 0$: vật chuyển động **theo chiều âm** (về biên âm)
- + Nếu φ < 0: vật chuyển động **theo chiều dương** (về biên dương)

Dao động điều hòa x = Acos(ωt+φ)	Chuyển động tròn đều (O, R = A)
A là biên độ	R = A là bán kính
ω la tần số góc	ω la tốc độ góc
(ωt+φ) la pha dao động	(ωt+φ) là tọa độ góc
v _{max} = Aω la tốc độ cực đại	v = Rω là tốc độ dài
a_{max} = $A\omega^2$ la gia tốc cực đại	$ah_t = R\omega^2$ là gia tốc hướng tâm
$F_{phmax} = mA\omega^2$ là hợp lực cực đại tác dụng lên	$Fh_t = mA\omega^2$ là lực hướng tâm tác dụng lên vật
vật	

9. Các dạng dao động có phương trình đặc biệt:

$$a \ x = a \pm Acos(ωt + φ)$$
 với $a = const \Rightarrow$ Biên độ A Tọa độ VTCB: $x = A$ Tọa độ vị trí biên $x = \pm A$

b)
$$\mathbf{x} = \mathbf{a} \pm \mathbf{A}\mathbf{cos}^2(\omega \mathbf{t} + \boldsymbol{\varphi}) \text{ v\'oi } \mathbf{a} = \text{const} \Rightarrow \boxed{\text{Biển độ: } \frac{A}{2} \text{ ; } \omega' = 2\omega; \ \varphi' = 2\varphi}$$

B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI CÁC DẠNG BÀI TẬP

- DANG 1: Tính thời gian và đường đi trong dao động điều hòa
- a) Tính khoảng thời gian ngắn nhất để vật đi từ vị trí x_1 đến x_2 :

* Cách 1: Dùng mối liên hệ DĐĐH và CĐTĐ

$$\begin{cases} T \to 360^{0} \\ t - ? \to \Delta \phi \end{cases} \Rightarrow \boxed{\Delta t = \frac{\Delta \phi}{\omega} = \frac{\Delta \phi}{360^{0}}.T}$$

- * Cách 2: Dùng công thức tính & máy tính cầm tay
 - Nếu đi từ **VTCB đến li độ x** hoặc ngược lại: $\Delta t = \frac{1}{\omega} \arcsin \frac{|x|}{A}$
 - Nếu đi từ **VT biên đến li độ x** hoặc ngược lại: $\Delta t = \frac{1}{\omega} \arccos \frac{|x|}{A}$

b) Tính quãng đường đi được trong thời gian t:

- Biểu diễn t dưới dạng: $t=nT+\Delta t$; trong đó n là số dao động nguyên; Δt là khoảng thời gian còn lẻ ra ($\Delta t < T$).
- Tổng quãng đường vật đi được trong thời gian t: $S = n.4A + \Delta s$

Với Δs là quãng đường vật đi được trong khoảng thời gian Δt , ta tính nó bằng việc vận dụng mối liên hê giữa DĐĐH và CĐTĐ:

Ví dụ: Với hình vẽ bên thì
$$\Delta s = 2A + (A - x_1) + (A - |x_2|)$$

$$\begin{cases} \text{Neu t} = \text{T thi s} = 4\text{A} \\ \text{Neu t} = \frac{\text{T}}{2} \text{ thi s} = 2\text{A} \end{cases}$$

$$\Rightarrow \begin{cases} \text{Neu t} = \text{n.T thi s} = \text{n.4A} \\ \text{Neu t} = \text{nT} + \frac{\text{T}}{2} \text{thi s} = \text{n.4A} + 2\text{A} \end{cases}$$

Đường tròn lượng giác

Thời gian chuyển động và quãng đường tương ứng DẠNG 2: Tính tốc độ trung bình và vận tốc

trung bình

- **1. Tốc độ trung bình:** $v_{tb} = \frac{S}{\Lambda t}$ với S là quãng đường vật đi được trong khoảng thời gian Δt .
 - \Rightarrow Tốc độ trung bình **trong 1 hoặc n chu kì** là: $v_{tb} = \frac{4A}{T} = \frac{2v_{max}}{\pi}$
- **2. Vận tốc trung bình:** $\overline{v} = \frac{\Delta x}{\Delta t} = \frac{x_2 x_1}{\Delta t}$ với Δx là độ dời vật thực hiện được trong khoảng thời gian Δt.
- Đô dời trong 1 hoặc n chu kỳ bằng $0 \Rightarrow \text{Vân tốc trung bình trong 1 hoặc n chu kì bằng 0}$.
- DẠNG 3: Xác định trạng thái dao động của vật sau (trước) thời điểm t một khoảng Δt.

Với loại bài toán này, trước tiên ta kiểm tra xem $\mathbf{\omega}.\Delta \mathbf{t} = \Delta \mathbf{\phi}$ nhân giá tri nào:

- Nếu $\Delta \varphi = 2k\pi$ thì $x_2 = x_1$ và $v_2 = v_1$;
- Nếu $\Delta \varphi = (2k + 1)\pi$ thì $x_2 = -x_1 \text{ và } v_2 = -v_1$;
- Nếu **Δφ có giá trị khác**, ta dùng mối liên hệ DĐĐH và CĐTĐ để giải tiếp:
- **Bước 1**: Vẽ đường tròn có bán kính R = A (biên đô) và truc Ox nằm ngang
- **Bước 2:** Biểu diễn trang thái của vật tại thời điểm t trên quỹ đạo và vi trí tương ứng của M trên đường tròn.

Lưu ý: ứng với x đang giảm: vật chuyển động theo chiều âm; ứng với x đang tăng: vật chuyển động theo chiều dương.

- **Bước 3:** Từ góc $\Delta \phi = \omega \Delta t$ mà OM quét trong thời gian Δt , ha hình chiếu xuống truc Ox suy ra vi trí, vân tốc, gia tốc của vật tại thời điểm $t + \Delta t$ hoặc $t - \Delta t$.
- DANG 4: Tính thời gian trong một chu kỳ để |x|, |v|, |a| nhỏ hơn hoặc lớn hơn một giá trị nào đó (Dùng công thức tính & máy tính cầm tay).
- a) Thời gian trong một chu kỳ vật cách VTCB một khoảng

- b) Thời gian trong một chu kỳ tốc độ
 - $nh\mathring{o}\ hon\ v_1\ l\grave{a}$ $\Delta t = 4t_1 = \frac{1}{\omega} \arcsin\frac{|v_1|}{A\omega}$ $l\acute{o}n\ hon\ v_1\ l\grave{a}$ $\Delta t = 4t_2 = \frac{1}{\omega} \arccos\frac{|v_1|}{A\omega}$

(Hoặc sử dụng công thức độc lập từ v_1 ta tính được x_1 rồi tính như trường hợp a)

- c) Tính tương tư với bài toán cho độ lớn gia tốc nhỏ hơn hoặc lớn hơn a1!!
- \square DANG 5: Tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, W_t , W_d , F) từ thời điểm t₁ đến t₂. Trong mỗi chu kỳ, vật qua mỗi vi trí biên 1 lần còn các vi trí khác 2 lần (chưa xét chiều chuyển đông) nên:
 - **Bước 1**: Tại thời điểm t₁, xác định điểm M₁; tại thời điểm t₂, xác định điểm M₂
 - **Bước 2:** Vẽ đúng chiều chuyển đông của vật từ M_1 tới M_2 , suy ra số lần vật đi qua x_0 là a.
 - + Nếu $\Delta t < T$ thì a là kết quả, nếu $\Delta t > T \Rightarrow \Delta t = n.T + t_0$ thì số lần vật qua x_0 là 2n + a.
 - + Đặc biệt: nếu vi trí M_1 trùng với vi trí xuất phát thì số lần vật qua xo là 2n + a + 1.
- DẠNG 6: Tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wd, F) lần thứ n
- **Bước 1**: Xác định vị trí M_0 tương ứng của vật trên đường tròn ở thời điểm t = 0 & số lần vật qua vi trí x đề bài yêu cầu trong 1 chu kì (thường là 1, 2 hoặc 4 lần)
 - **Bước 2:** Thời điểm cần tìm là: $\mathbf{t} = \mathbf{n} \cdot \mathbf{T} + \mathbf{t}_0$; Với:
- + n là số nguyên lần chu kì được xác định bằng phép chia hết giữa **số lần "gần" số lần đề bài** *yêu cầu* với *số lần đi qua x trong 1 chu kì* \Rightarrow lúc này vật quay về vi trí ban đầu M_0 , và còn thiếu số lần 1, 2, ... mới đủ số lần đề bài cho.

+ \mathbf{t}_0 là thời gian tương ứng với góc quét mà bán kính OM_0 quét từ M_0 đến các vị trí M_1 , M_2 , ... còn lại để đủ số lần.

Ví dụ: nếu ta đã xác định được số lần đi qua x trong 1 chu kì là 2 lần và đã tìm được số nguyên n lần chu kì để vật quay về vị trí ban đầu M_0 , nếu còn thiếu 1 lần thì $t_o = \frac{\text{góc } M_0 O M_1}{360^0}$.T, thiếu 2 lần thì $t_o = \frac{\text{góc } M_0 O M_2}{360^0}$.T

DẠNG 7: Tính quãng đường lớn nhất và nhỏ nhất

Trước tiên ta so sánh khoảng thời gian ∆t đề bài cho với nửa chu kì T/2

∜ Trong trường hợp Δt < T/2:

* Cách 1: Dùng mối liên hế DĐĐH và CĐTĐ

Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên (VTB) nên trong cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần VTB. Do có tính đối xứng nên quãng đường lớn nhất gồm 2 phần bằng nhau đối xứng qua VTCB, còn quãng đường nhỏ nhất cũng gồm 2 phần bằng nhau đối xứng qua VTB. Vì vậy cách làm là: *Vẽ đường tròn*,

chia góc quay $\Delta \phi = \omega \Delta t$ thành 2 góc bằng nhau, đối xứng qua trục sin thẳng đứng (S_{max} là đoạn P_1P_2) và đối xứng qua trục cos nằm ngang (S_{min} là 2 lần đoạn PA).

* Cách 2: Dùng công thức tính & máy tính cầm tay

Trước tiên xác định góc quét $\Delta \phi = \omega \Delta t$, rồi thay vào công thức:

• Quãng đường lớn nhất:
$$S_{max} = 2Asin \frac{\Delta \phi}{2}$$

• Quãng đường nhỏ nhất:
$$S_{min} = 2A(1 - cos \frac{\Delta \phi}{2})$$

 \P Trong trường hợp $\Delta t > T/2$: tách $\Delta t = n.\frac{T}{2} + \Delta t'$, trong đó $n \in N * ; \Delta t' < \frac{T}{2}$

- Trong thời gian n $\frac{T}{2}$ quãng đường luôn là 2nA.
- Trong thời gian $\Delta t'$ thì quãng đường lớn nhất, nhỏ nhất tính như một trong 2 cách trên. **Chú ý:**
 - + Nhớ một số trường hợp $\Delta t < T/2$ để giải nhanh bài toán:

$$\begin{cases} \Delta t = \frac{T}{3} \rightarrow \begin{cases} S_{max} = A\sqrt{3} \text{ neu vat di tu } x = \pm \frac{A\sqrt{3}}{2} \leftrightarrow x = \mp \frac{A\sqrt{3}}{2} \\ S_{min} = A \text{ neu vat di tu } x = \pm \frac{A}{2} \leftrightarrow x = \pm A \leftrightarrow x = \pm \frac{A}{2} \end{cases} \\ \begin{cases} \Delta t = \frac{T}{4} \rightarrow \begin{cases} S_{max} = A\sqrt{2} \text{ neu vat di tu } x = \pm \frac{A\sqrt{2}}{2} \leftrightarrow x = \mp \frac{A\sqrt{2}}{2} \\ S_{min} = A(2 - \sqrt{2}) \text{ neu vat di tu } x = \pm \frac{A\sqrt{2}}{2} \leftrightarrow x = \pm A \leftrightarrow x = \pm \frac{A\sqrt{2}}{2} \end{cases} \\ \Delta t = \frac{T}{6} \rightarrow \begin{cases} S_{max} = A \text{ neu vat di tu } x = \pm \frac{A}{2} \leftrightarrow x = \mp \frac{A}{2} \\ S_{min} = A(2 - \sqrt{3}) \text{ neu vat di tu } x = \pm \frac{A\sqrt{3}}{2} \leftrightarrow x = \pm A \leftrightarrow x = \pm \frac{A\sqrt{3}}{2} \end{cases} \end{cases}$$

+ Tính tốc độ trung bình lớn nhất và nhỏ nhất: $v_{tbmax} = \frac{S_{max}}{\Delta t}$ và $v_{tbmin} = \frac{S_{min}}{\Delta t}$; với S_{max} và S_{min} tính như trên.

🔖 Bài toán ngược: Xét trong cùng quãng đường S, tìm thời gian dài nhất và ngắn nhất:

- Nếu S < 2A:
$$S = 2A\sin\frac{\omega.t_{min}}{2} \left(\textbf{t}_{min} \text{ ứng với } \textbf{S}_{max}\right); \\ S = 2A \left(1 - \cos\frac{\omega.t_{max}}{2}\right) \left(\textbf{t}_{max} \text{ ứng với } \textbf{S}_{min}\right)$$
 - Nếu S > 2A: tách S = n.2A + S ', thời gian tương ứng: $t = n\frac{T}{2} + t'$; tìm $\textbf{t'}_{max}$, $\textbf{t'}_{min}$ như trên.

Ví du: Nhìn vào bảng tóm tắt trên ta thấy, trong cùng quãng đường S = A, thì thời gian dài nhất là $\mathbf{t}_{max} = \mathbf{T/3}$ và ngắn nhất là $\mathbf{t}_{min} = \mathbf{T/6}$, đây là 2 trường hợp xuất hiện nhiều trong các đề thi!! $\$ Từ công thức tính S_{max} và S_{min} ta có cách tính nhanh quãng đường đi được trong thời gian từ t₁ đến t₂:

Ta có:

$$\overline{S} = \frac{t_2 - t_1}{T}.4A$$

- Vậy quãng đường đi được $S = \overline{S} \pm \Delta S$ hay $\overline{S} - \Delta S \leq S \leq \overline{S} + \Delta S$ hay $\overline{S} - 0.4A \leq S \leq \overline{S} + 0.4A$

DANG 8: Bài toán hai vật cùng dao động điều hòa

🦫 Bài toán 1: Bài toán hai vật gặp nhau.

- * Cách giải tổng quát:
 - Trước tiên, xác đinh pha ban đầu của hai vật từ điều kiên ban đầu.
 - Khi hai vật gặp nhau thì: $\mathbf{x_1} = \mathbf{x_2}$; giải & biên luận tìm $\mathbf{t} \Rightarrow$ thời điểm & vi trí hai vật gặp nhau.
- * Cách 2: Dùng mối liên hệ DĐĐH và CĐTĐ (có 2 trường hợp)
 - Trường hợp 1: Sự gặp nhau của hai vật dao động cùng biên độ, khác tần số.

Tình huống: Hai vật dao động điều hoà với cùng biên độ A, có vi trí cân bằng trùng nhau, nhưng với tần số $f_1 \neq f_2$ (giả sử $f_2 > f_1$). Tại t = 0, chất điểm thứ nhất có li độ x_1 ——— ♦ và chuyển đông theo chiều dương, chất điểm thứ hai có li đô x₂ chuyển đông ngược chiều dương. Hỏi sau bao lâu thì chúng gặp nhau lần đầu tiên? Có thể xảy ra hai khả năng sau:

+ Khi gặp nhau hai chất điểm chuyển động cùng chiều nhau.

Tai t = 0, trang thái chuyển đông của các chất điểm sẽ tương ứng với các bán kính của đường tròn như hình vẽ. Góc tao bởi hai bán kính khi đó là ε.

Do
$$\omega_2 > \omega_1 \implies \alpha_2 > \alpha_1$$
. Trên hình vẽ, ta có: $\epsilon = \alpha_2 - \alpha_1$

+ Khi gặp nhau, chất điểm chuyển động ngược chiều nhau:

Trên hình vẽ:
$$\alpha_1=a+a'$$
 ; $\alpha_2=b+b'$

Với lưu ý: a' + b' =
$$180^{\circ}$$
. Ta có: $\alpha_1 + \alpha_2 = a + b + 180^{\circ}$

Trong đó: a, b là các góc quét của các bán kính từ t = 0 cho đến thời điểm đầu tiên các vật tương ứng của chúng đi qua vi trí cận bằng.

Đặc biệt: nếu lúc đầu hai vật cùng xuất phát từ vị trí x₀ theo cùng chiều chuyển động. Do $\omega_2 > \omega_1$ nên vật 2 đi nhanh hơn vật 1, chúng gặp nhau tại x₁, suy ra thời điểm hai vật gặp nhau:

$$\stackrel{\exists}{M_1OA} = \stackrel{\exists}{M_2OA} \Rightarrow |\phi| - \omega_1 t = \omega_2 t - |\phi| \Rightarrow \boxed{t = \frac{2|\phi|}{\omega_1 + \omega_2}}$$

+ Với
$$\varphi > 0$$
 (Hình 2) \Rightarrow $(\pi - \varphi) - \omega_1 t = \omega_2 t - (\pi - \varphi) \Rightarrow t = \frac{2(\pi - \varphi)}{\omega_1 + \omega_2}$

- Trường hợp 2: Sự gặp nhau của hai vật dao động cùng tần số, khác biên độ.

Tình huống: Có hai vật dao động điều hòa trên hai đường thẳng song song, sát nhau, với cùng một chu kì. Vị trí cân bằng của chúng sát nhau. Biên độ dao động tương ứng của chúng là A_1 và A_2 (giả sử $A_1 > A_2$). Tại thời điểm t = 0, chất t = 0

điểm thứ nhất có li độ x_1 chuyển động theo chiều dương, chất điểm thứ hai có li độ x_2 chuyển động theo chiều dương.

- 1. Hỏi sau bao lâu thì hai chất điểm gặp nhau? Chúng gặp nhau tại li độ nào?
- 2. Với điều kiện nào thì khi gặp nhau, hai vật chuyển động cùng chiều? ngược chiều? Tại biên?

Có thể xảy ra các khả năng sau (với $\Delta \varphi = \overrightarrow{MON}$, C là độ dài của cạnh MN):

Trường hợp	Gặp nhau khi đang chuyển động ngược chiều	Gặp nhau khi đang chuyển động cùng chiều	Gặp nhau ở biên
Điều kiện xảy ra	$\cos\Delta\phi < \frac{A_2}{A_1}$	$\cos\Delta\phi > \frac{A_2}{A_1}$	$\cos\Delta\phi = \frac{A_2}{A_1}$
Hình vẽ	$ \begin{array}{c c} A_1 & M \\ \hline O & A_2 \\ \hline A_2 \\ N \end{array} $	A ₁ C h	A ₁ Δφ
Công thức cần nhớ	$\begin{cases} h_1^2 + x^2 = A_1^2 \\ C - h_1^2 + x^2 = A_2^2 \end{cases}$	$\begin{cases} x^2 + h^2 + = A_2^2 \\ x^2 + h^2 + = A_1^2 \end{cases}$	

Shai toán 2: Hai vật dao động cùng tần số, vuông pha nhau (độ lệch pha $\Delta \varphi = (2k + 1)\frac{\pi}{2}$)

- Đồ thị biểu diễn sự phụ thuộc giữa chúng có dạng elip nên ta có: $\left(\frac{x_1}{A}\right)^2 + \left(\frac{v_1}{A\omega}\right)^2 = 1$
- Kết hợp với: $\left|v_1 = \omega \sqrt{A_1^2 x_1^2}\right|$, suy ra: $\left|v_1 = \pm \frac{A_1}{A_2} \omega x_2; v_2 = \pm \frac{A_2}{A_1} \omega x_1\right|$
- * Đặc biệt: Khi $A = A_1 = A_2$ (hai vật có cùng biên độ hoặc một vật ở hai thời điểm khác nhau),ta có:

$$x_1^2 + x_2^2 = A^2$$
; $v_1 = \pm \omega x_2$; $v_2 = \pm \omega x_1$ (lấy dấu + khi k lẻ và dấu - khi k chẵn)

➡ Bài toán 3: Hiện tượng trùng phùng

Hai vật có chu kì khác nhau T và T'. Khi hai vật cùng *qua vị trí cân bằng và chuyển động cùng chiều* thì ta nói xảy ra *hiện tượng trùng phùng*. Gọi Δt là thời gian giữa hai lần trùng phùng liên tiếp nhau.

- Nếu hai chu kì xấp xỉ nhau thì $\boxed{ \Delta t = \frac{T.T'}{\left|T-T'\right|} }$
- Nếu hai chu kì khác nhau nhiều thì $\Delta t = b.T = a.T'$ trong đó: $\frac{T}{T'}$ = phân số tối giản = $\frac{a}{b}$

Chú ý: Cần phân biệt được sự khác nhau giữa bài toán hai vật gặp nhau và bài toán trùng phùng!
 DANG 9: Tổng hợp dao đông

1. Công thức tính biên độ và pha ban đầu của dao động tổng hợp:

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1}); \tan\varphi = \frac{A_{1}\sin\varphi_{1} + A_{2}\sin\varphi_{2}}{A_{1}\cos\varphi_{1} + A_{2}\cos\varphi_{2}}$$

- 2. Ảnh hưởng của độ lệch pha: $\Delta \varphi = \varphi_2 \varphi_1$ (với $\varphi_2 > \varphi_1$)
 - Hai dao động cùng pha: $\Delta \phi = k.2\pi$: $A = A_1 + A_2$
 - Hai dao động ngược pha: $\Delta \phi = (2k+1)\pi$: $A = |A_1 A_2|$
 - Hai dao động vuông pha: $\Delta \phi = (2k+1)\frac{\pi}{2}$; $A = \sqrt{A_1^2 + A_2^2}$

- Hai dao động có độ lệch pha $\Delta \phi$ = const: $|A_1$ $A_2| \leq A \leq A_1$ + A_2
- * Chú ý: Hãy nhớ bộ 3 số trong tam giác vuông: 3, 4, 5 (6, 8, 10)
- 3. Dùng máy tính tìm phương trình (dùng cho FX 570ES trở lên) Chú ý: Trước tiên đưa về dang hàm cos trước khi tổng hợp.
- Bấm chọn MODE 2 màn hình hiển thị chữ: **CMPLX**.
- Chọn đơn vị đo góc là độ bấm: \fbox{SHIFT} \fbox{MODE} $\fbox{3}$ màn hình hiển thị chữ \r{D} (hoặc chọn đơn vị góc là rad bấm: \fbox{SHIFT} \fbox{MODE} $\fbox{4}$ màn hình hiển thị chữ \r{R})
- Nhập: $\boxed{A_1}$ SHIFT $\boxed{(-)}$ $\boxed{\phi_1}$ + $\boxed{A_2}$ SHIFT $\boxed{(-)}$ $\boxed{\phi_2}$ màn hình hiển thị: $\boxed{A_1} \angle \phi_1 + \boxed{A_2} \angle \phi_2$; sau đó nhấn $\boxed{=}$
- Kết quả hiển thị số phức dạng: $\mathbf{a}+\mathbf{bi}$; bấm SHIFT $\boxed{2}$ $\boxed{3}$ $\boxed{=}$ hiển thị kết quả: $\mathbf{A} \angle \mathbf{\phi}$
- 4. Khoảng cách giữa hai dao động: $d = |x_1 x_2| = |A'\cos(\omega t + \phi')|$. Tìm d_{max} :
 - * **Cách 1:** Dùng công thức: $d_{max}^2 = A_1^2 + A_2^2 2A_1A_2\cos(\phi_1 \phi_2)$
 - * Cách 2: Nhập máy: $A_1 \angle \phi_1 A_2 \angle \phi_2$ SHIFT 2 3 = hiển thị $A' \angle \phi'$. Ta có: $d_{max} = A'$
- **5.** Ba con lắc lò xo 1, 2, 3 đặt thẳng đứng **cách đều** nhau, biết phương trình dao động của con lắc 1 và 2, tìm phương trình dao động của con lắc thứ 3 để trong quá trình dao động cả **ba vật luôn**

thẳng hàng. Điều kiện:
$$x_2 = \frac{x_1 + x_3}{2} \Rightarrow x_3 = 2x_2 - x_1$$

Nhập máy: $2(A_2 \angle \phi_2) - A_1 \angle \phi_1$ SHIFT 2 3 = hiển thị $A_3 \angle \phi_3$

6. Một vật thực hiện đồng thời 3 dao động điều hòa có phương trình là x_1 , x_2 , x_3 . Biết phương trình của x_{12} , x_{23} , x_{31} . Tìm phương trình của x_1 , x_2 , x_3 và x_4

*
$$x_1 = \frac{x_1 + x_1}{2} = \frac{x_1 + x_2 + x_1 + x_3 - (x_2 + x_3)}{2} = \frac{x_{12} + x_{13} - x_{23}}{2}$$

- * Turong tự: $x_2 = \frac{x_{12} + x_{23} x_{13}}{2}$
 - $x_3 = \frac{x_{13} + x_{23} x_{12}}{2}$
- $x = \frac{x_{12} + x_{23} + x_{13}}{2}$

- 7. Điều kiện của A_1 để A_{2max} : $A_{2max} = A_{2max}$
- $A_{2\max} = \frac{A}{\left|\sin(\varphi_2 \varphi_1)\right|}; A_1 = \frac{A}{\left|\tan(\varphi_2 \varphi_1)\right|}$
- **8.** Nếu cho A₂, thay đổi A₁ để A_{min}: $A_{min} = A_2 |\sin(\varphi_2 \varphi_1)| = A_1 |\tan(\varphi_2 \varphi_1)|$

Các dạng toán khác ta vẽ giản đồ vectơ kết hợp định lý hàm số sin hoặc hàm số cosin (xem phần phu luc).

CHỦ ĐỀ 2: CON LẮC LÒ XO

- DẠNG 1: Đại cương về con lắc lò xo
- 1. Phương trình dao động: $x = A\cos(\omega t + \varphi)$
- 2. Chu kì, tần số, tần số góc và độ biến dạng:
 - + Tần số góc, chu kỳ, tần số: $\omega = \sqrt{\frac{k}{m}}; T = 2\pi \sqrt{\frac{m}{k}}; f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

 $+ k = m\omega^2$

Chú ý: 1N/cm = 100N/m

+ Nếu lò xo treo thẳng đứng: $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{\Delta l_0}{g}}$ với $\Delta l_0 = \frac{mg}{k}$

Nhận xét: Chu kì của con lắc lò xo

- + tỉ lệ với **căn bậc 2 của m**; tỉ lệ nghịch với **căn bậc 2** của **k**
- + chỉ phụ thuộc vào \mathbf{m} và \mathbf{k} ; \mathbf{k} hông phụ thuộc vào \mathbf{A} (sự kích thích ban đầu)
- 3. Trong cùng khoảng thời gian, hai con lắc thực hiện N_1 và N_2 dao động:

$$\frac{\mathbf{m}_2}{\mathbf{m}_1} = \left(\frac{\mathbf{N}_1}{\mathbf{N}_2}\right)^2$$

- **4. Chu kì và sự thay đổi khối lượng:** Gắn lò xo k vào vật m_1 được chu kỳ T_1 , vào vật m_2 được T_2 , vào vật khối lượng $m_3 = m_1 + m_2$ được chu kỳ T_3 , vào vật khối lượng $m_4 = m_1 m_2$ ($m_1 > m_2$) được chu kỳ T_4 . Ta có: $\boxed{T_3^2 = T_1^2 + T_2^2} \text{ và } \boxed{T_4^2 = T_1^2 T_2^2}$ (chỉ cần nhớ **m tỉ lệ với bình phương của T** là
- ta có ngay công thức này) **5. Chu kì và sự thay đổi độ cứng:** Một lò xo có độ cứng k, chiều dài l được cắt thành các lò xo có độ cứng k₁, k₂, và chiều dài tương ứng là l_1 , l_2 ... thì có: $kl = k_1l_1 = k_2l_2$ (chỉ cần nhớ k tỉ lê nghich với l của lò xo)
- ☞ Ghép lò xo:
 - * Nối tiếp: $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + ...$

- * **Song song:** $k = k_1 + k_2 + ...$
 - \Rightarrow cùng treo một vật khối lượng như nhau thì:

 l_1, k_1

(chỉ cần nhớ **k tỉ lệ nghịch với bình phương của T** là ta có ngay công thức này)

DẠNG 2: Lực hồi phục, lực đàn hồi & chiều dài lò xo khi vật dao động.

1. Lực hồi phục: là nguyên nhân làm cho vật dao động, luôn hướng về vị trí cân bằng và biến thiên điều hòa cùng tần số với li độ. Lực hồi phục của CLLX không phụ thuộc khối lượng vật nặng.

$$F_{hp} = -kx = -m\omega^2x (F_{hpmin} = 0; F_{hpmax} = kA)$$

- **2. Chiều dài lò xo:** Với l_0 là chiều dài tự nhiên của lò xo
 - * Khi lò xo nằm ngang: $\Delta l_0 = 0$

Chiều dài cực đại của lò xo: $l_{max} = l_0 + A$.

Chiều dài cực tiểu của lò xo: $l_{min} = l_0 - A$.

* Khi con lắc lò xo treo thẳng đứng hoặc nằm nghiêng 1 góc α

Chiều dài khi vật ở vị trí cân bằng: $l_{cb} = l_0 + \Delta l_0$

Chiều dài ở ly độ x: $l = l_{cb} \pm x$.

Dấu "+" nếu chiều dương cùng chiều dãn của lò xo

Chiều dài cực đại của lò xo: $l_{max} = l_{cb} + A$.

Chiều dài cực tiểu của lò xo: $l_{min} = l_{cb} - A$.

Với Δl_0 được tính như sau:

- + Khi con lắc lò xo treo thẳng đứng: $\Delta l_{\theta} = \frac{\mathrm{mg}}{\mathrm{k}} = \frac{\mathrm{g}}{\omega^2}$
- + Khi con lắc nằm trên mặt phẳng nghiêng góc α : $\Delta l_{\theta} = \frac{mgsin\alpha}{k}$
- **3. Lực đàn hồi:** xuất hiện khi lò xo bị biến dạng và đưa vật về vị trí lò xo không bị biến dạng.
- a. Lò xo nằm ngang: VTCB trùng với vị trí lò xo không bị biến dạng.
 - + $F_{dh} = kx = k \Delta l$ (x = Δl : độ biến dạng; đơn vị mét)
 - + $F_{\text{dhmin}} = 0$; $F_{\text{dhmax}} = kA$

b. Lò xo treo thẳng đứng:

- Ở ly độ x bất kì: F = k ($\Delta\ell_0\pm x$) . Dấu "+" nếu chiều dương cùng chiều dãn của lò xo.

Ví dụ: theo hình bên thì $F = k(\Delta l_0 - x)$

- \dot{O} vị trí cân bằng (x = 0): $\dot{F} = k\Delta I_0$
- Lực đàn hồi cực đại (lực kéo): $F_{Kmax} = k(\Delta l_0 + A)$ (ở vị trí thấp nhất)
- Lực đẩy (lực nén) đàn hồi cực đại: $F_{Nmax} = k(A \Delta l_0)$ (ở vị trí cao nhất).
- Lực đàn hồi cực tiểu:
 - * Nếu A < $\Delta l_0 \Rightarrow$ F_{Min} = k(Δl_0 A) = FK_{min} (ở vị trí cao nhất).
 - * Nếu A $\geq \Delta l_0 \Rightarrow$ F_{Min} = 0 (ở vị trí lò xo không biến dạng: x = Δl_0)

Chú ý:

- Lực tác dụng vào điểm treo Q tại một thời điểm có độ lớn đúng bằng lực đàn hồi nhưng ngược chiều.
 - Lực kéo về là hợp lực của lực đàn hồi và trọng lực:
- + Khi con lắc lò xo nằm ngang: Lực hồi phục có độ lớn bằng lực đàn hồi (vì tai VTCB lò xo không biến dang)
 - + Khi con lắc lò xo treo thẳng đứng: Lực kéo về là hợp lực của lực đàn hồi và trọng lực.

4. Tính thời gian lò xo dãn - nén trong một chu kì:

- a. Khi $A > \Delta I$ (Với Ox hướng xuống): Trong một chu kỳ lò xo dãn (hoặc nén) 2 lần.
 - Thời gian lò xo nén tương ứng đi từ $M_{\rm 1}$ đến $M_{\rm 2}$

$$t_{n} = \frac{2\alpha}{\omega} v\acute{o}i \cos \alpha = \frac{OM}{OM_{1}} = \frac{\Delta l_{0}}{A}$$

Hoặc dùng công thức: $t_n = \frac{2}{\omega} \arccos \frac{\Delta l_0}{\Delta}$

- Thời gian lò xo dãn tương ứng đi từ M₂ đến M₁:

$$t_{d} = T - t_{n} = \frac{2(\pi - \alpha)}{\omega}$$

b. Khi $\Delta l \geq A$ (Với Ox hướng xuống): Trong một chu kỳ $t_d = T$; $t_n = 0$.

DẠNG 3: Năng lượng dao động điều hoà của CLLX

Lưu ý: Khi tính năng lương phải đổi khối lương về kg, vân tốc về m/s, ly đô về mét.

a. Thế năng:
$$W_t = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2x^2 = \frac{1}{2}m\omega^2A^2\cos^2(\omega t + \phi)$$

b. Động năng:
$$W_d = \frac{1}{2} m v^2 = \frac{1}{2} m \omega^2 A^2 \sin^2(\omega t + \phi)$$

c. Co năng:
$$W = W_t + W_d = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2A^2 = const$$

Nhận xét:

- + Cơ năng được bảo toàn và tỉ lệ với bình phương biên độ.
- + Khi tính động năng tại vị trí có li độ x thì: $\left| W = W_d W_t = \frac{1}{2} k(A^2 x^2) \right|$
- + Dao động điều hoà có tần số góc là ω, tần số f, chu kỳ T thì W_đ và W_t biến thiên với tần số góc 2ω , tần số 2f, chu kỳ T/2.
 - + Trong một chu kỳ có 4 lần $W_d = W_t$, khoảng thời gian giữa hai lần liên tiếp để $W_d = W_t$ là là T/4.
 - + Thời gian từ lúc $W_d = W_{d \max}$ ($W_t = W_{t \max}$) đến lúc $W_d = W_{d \max}$ /2 ($W_t = W_{t \max}$ /2) là T/8.

+ Thời gian từ lúc
$$W_d = W_{d \text{ max}}$$
 ($W_t = W_{t \text{ max}}$) đến lúc $W_d = W_{d \text{ max}}$ /2 ($W_t = W_{d \text{ max}}$) + Khi $W_d = nW_t \Rightarrow W = (n+1)W_t \Rightarrow x = \pm \frac{A}{\sqrt{n+1}}$; $a = \mp \frac{a_{\text{max}}}{\sqrt{n+1}}$; $v = \pm \frac{v_{\text{max}}}{\sqrt{\frac{1}{n}+1}}$

+ Khi
$$x = \pm \frac{A}{n} \Rightarrow \frac{W_d}{W_t} = \left(\frac{A}{x}\right)^2 - 1 = n^2 - 1$$

- \square DANG 4: Viết phương trình dao động điều hoà x = Acos(ω t + φ) (cm).
- * Cách 1: Ta cần tìm A, ω và φ rồi thay vào phương trình.
- 1. Cách xác định ω: Xem lại tất cả công thức đã học ở phần lý thuyết.

Ví dụ:
$$\omega = \frac{2\pi}{T} = 2\pi f = \frac{v}{\sqrt{A^2 - x^2}} = \sqrt{\frac{a}{x}} = \sqrt{\frac{|a_{max}|}{A}} = \frac{|v_{max}|}{A}$$
 hoặc $\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\Delta l}}$ (CLLX); $\omega = \sqrt{\frac{g}{l}}$ (CLEX)

2. Cách xác định A:

Ngoài các công thức đã biết như:
$$A = \sqrt{x^2 + \left(\frac{v}{\omega}\right)^2} = \frac{\left|v_{\text{max}}\right|}{\omega} = \frac{\left|a_{\text{max}}\right|}{\omega^2} = \frac{F_{\text{max}}}{k} = \frac{l_{\text{max}} - l_{\text{min}}}{2} = \sqrt{\frac{2W}{k}}$$
, khi lò

xo treo thẳng đứng ta cần chú ý thêm các trường hợp sau:

a) Kéo vật xuống khỏi VTCB một đoạn d rồi

* thả ra hoặc buông nhẹ (v = 0) thì: A = d

* truyền cho vật một vận tốc v thì:
$$x = d \Rightarrow A = \sqrt{x^2 + \left(\frac{v}{\omega}\right)^2}$$

b) Đưa vật đến vị trí lò xo không biến dạng rồi

- * thả ra hoặc buông nhẹ thì: $A = \Delta l$
- * truyền cho vật một vận tốc v thì: $x = \Delta l \Rightarrow A = \sqrt{x^2 + \left(\frac{v}{\omega}\right)^2}$

c) Kéo vật xuống đến vị trí lò xo giãn một đoạn d rồi

- * thả ra hoặc buông nhẹ thì: A = d Δl
- * truyền cho vật một vận tốc v thì: x = d $\Delta l \Rightarrow$ A = $\sqrt{x^2 + \left(\frac{v}{\omega}\right)^2}$

d) Đẩy vật lên một đoạn d

- @. Nếu d < Δl_0
 - * thả ra hoặc buông nhẹ thì A = Δl_0 d
 - * truyền cho vật một vận tốc v thì x = Δl_0 d \Rightarrow A = $\sqrt{x^2 + \left(\frac{v}{\omega}\right)^2}$

- @. Nếu d ≥ Δl_0
 - * thả ra hoặc buông nhẹ thì $A = \Delta l_0 + d$
 - * truyền cho vật một vận tốc v thì x = Δl_0 + d \Rightarrow A = $\sqrt{x^2 + \left(\frac{v}{\omega}\right)^2}$
- 3. Cách xác định φ : Dựa vào điều kiện đầu: lúc $t=t_0$
 - * Nếu t = 0:

$$-x = x_0, \text{ x\'et chiều chuyển động của vật} \Rightarrow \begin{cases} \cos \phi = \frac{x_0}{A} \Rightarrow \phi = \pm \alpha \\ v > 0 \rightarrow \phi = -\alpha; v < 0 \rightarrow \phi = \alpha \end{cases}$$

$$-x=x_{0}\text{, }v=v_{0}\Rightarrow\begin{cases} x_{_{0}}=A\cos\phi\\ v_{_{0}}=-A\omega\sin\phi \Rightarrow\tan\phi=\frac{-v_{_{0}}}{x_{_{0}}\omega}\Rightarrow\phi=?\end{cases}$$

* Nếu t = t₀: thay t₀ vào hệ
$$\begin{cases} x_0 = A\cos(\omega t_0 + \phi) \\ v_0 = -A\omega\sin(\omega t_0 + \phi) \end{cases} \Rightarrow \phi \text{ hoặc } \begin{cases} a_1 = -A\omega^2\cos(\omega t_0 + \phi) \\ v_1 = -A\omega\sin(\omega t_0 + \phi) \end{cases} \Rightarrow \phi$$

<u>Lưu ý:</u>

- Vật đi theo chiều dương thì $v>0 \to \phi<0$; đi theo chiều âm thì $v<0 \to \phi>0$.
- Có thể xác định ϕ dựa vào đường tròn khi biết li độ và chiều chuyển động của vật ở $t=t_0$:

Ví dụ: Tại t = 0

- + Vật ở biên dương: $\varphi = 0$
- + Vật qua VTCB theo chiều dương: $\varphi = -\pi/2$
- + Vât qua VTCB theo chiều âm: $\varphi = \pi/2$
- + Vật qua A/2 theo chiều dương: $\varphi = -\pi/3$
- + Vât qua vi trí -A/2 theo chiều âm: $\varphi = 2\pi/3$
- + Vật qua vị trí $A\sqrt{2}/2$ theo chiều dương: $\varphi = -3\pi/4$

* Cách khác: Dùng máy tính FX570 ES

Xác định dữ kiện: tìm ω , và tại thời điểm ban đầu (t = 0) tìm x_0 và $\frac{v_0}{\omega}$;

Với $(\frac{\mathbf{V}_0}{\omega} = \pm \sqrt{\mathbf{A}^2 - \mathbf{x}^2}$. **Chú ý:** lấy dấu "+" nếu vật chuyển động theo chiều dương.

+ Mode 2

.....

- + Nhập: $x_0 \frac{V_0}{\omega}$.i **(chú ý:** chữ **i** trong máy tính bấm **ENG**)
- + \tilde{A} n: SHIFT 2 3 = Máy tính hiện: A $\angle \phi$

* * MÔT SỐ DANG BÀI TẬP NÂNG CAO

DẠNG 5: Điều kiện của biên độ dao động

1. Vật m_1 được đặt trên vật m_2 dao động điều hoà theo phương thẳng đứng. (**Hình 1**)

Để m_1 luôn nằm yên trên m_2 trong quá trình dao động thì: $A \le \frac{g}{\omega^2} = \frac{(m_1 + m_2)g}{k}$

 m_2

2. Vật m_1 và m_2 được gắn vào hai đầu lò xo đặt thẳng đứng, m_1 dao động điều hoà. (**Hình 2**). Để m_2 luôn nằm yên trên mặt sàn trong quá trình m_1 dao động

3. Vật m_1 đặt trên vật m_2 dao động điều hoà theo phương ngang. Hệ số ma sát giữa m_1 và m_2 là μ , bỏ qua ma sát giữa m_2 và mặt sàn. (**Hình 3**). Để m_1 không trượt trên m_2 trong quá

trình dao động thì:
$$A \le \mu \frac{g}{\omega^2} = \mu \frac{(m_1 + m_2)g}{k}$$

Hình 3

DẠNG 6: Kích thích dao động bằng va chạm

Vật m chuyển đông với vận tốc v₀ đến va cham vào vật M đang đứng yên:

1. Va chạm đàn hồi: Áp dụng ĐLBT động lượng và năng lượng (dưới dạng động năng vì mặt phẳng ngang $W_t = 0$)

Từ $m.v_0 = m.v + M.V và <math>m.v_0^2 = m.v^2 + M.V^2$

$$\Rightarrow \boxed{V = \frac{2m}{m+M} v_0; v = \frac{m-M}{m+M} v_0}$$

2. Va chạm mềm (sau va chạm hai vật dính vào nhau chuyển động cùng vận tốc):

$$\text{T`w m.v_0 = (m + M).v'} \Longrightarrow \boxed{v' = \frac{m}{m + M} v_0}$$

Trường hợp: nếu vật m rơi tự do từ độ cao h so với vật M đến chạm vào M rồi cùng dao động điều hoà thì áp dụng thêm: $|\mathbf{v} = \sqrt{2gh}|$ với v là vận tốc của m ngay trước va cham

Chú ý:
$$v^2 - v_0^2 = 2a.s; v = v_0 + at; s = v_0 t + \frac{1}{2} at^2; W_{d2} - W_{d1} = A = F.s$$

- DANG 7: Dao động của vật sau khi rời khỏi giá đỡ chuyển động.
- 1. Nếu giá đỡ bắt đầu chuyển đông từ vi trí lò xo không bi biến dang thì quãng đường từ lúc bắt đầu chuyển $\hat{S} = \frac{1}{\Delta l}$
- **2.** Nếu giá đỡ bắt đầu chuyển động từ vị trí lò xo đã dãn một đoạn b thì: $|S = \Delta l b|$ Với $\left| \Delta l \right| = \frac{m(g\text{-}a)}{k}$: độ biến dạng khi giá đỡ rời khỏi vật.

- **3.** Li độ tại vị trí giá đỡ rời khỏi vật: $x = S \Delta l_0$ với $\Delta l_0 = \frac{mg}{L}$
- 🛄 DANG 8: Dao động của con lắc lò xo khi có một phần của vật nặng bị nhúng chìm trong chất lỏng
- 1. Độ biến dạng: $\Delta l_0 = \frac{(m Sh_0D)g}{k}$

- + S: tiết diên của vật năng.
- + h₀: phần bi chìm trong chất lỏng.
- + D: khối lương riêng của chất lỏng.
- 2. Tần số góc: $\omega = \sqrt{\frac{k'}{m}}$ với k' = SDg + k
- DẠNG 9: Dao động của con lắc lò xo trong hệ qui chiếu không quán tính.
- **1.** Khi CLLX dao động trong hệ qui chiếu có gia tốc, ngoài trọng lực \vec{P} và lực đàn hồi \vec{F}_{dh} của lò xo, con lắc còn chịu tác dụng của lực quán tính: $\vec{F}_{qt} = -m.\vec{a}$
- **2.** Lực quán tính luôn ngược chiều gia tốc, độ lớn lực quán tính: $F_{qt} = ma$
- 3. Khi kích thích cho vật dao động dọc theo trục lò xo với biên độ không lớn (sao cho độ biến dạng của lò xo vẫn trong giới hạn đàn hồi của lò xo) thì dao động của CLLX cũng là dao động điều hòa.
- **4.** Trong HQCCGT, chu kì CLLX là: $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{\Delta l_0}{g}} / với \Delta \ell_0 = \frac{mg}{k}$

- 5. Các trường hợp thường gặp:
- a) Trong thang máy đi lên: $\Delta l = \frac{m(g+a)}{k}$
- b) Trong thang máy đi xuống: $\Delta l = \frac{m(g-a)}{k}$

Biên độ dao động trong hai trường hợp là: A ' = A - $(\Delta l - \Delta l_0)$

c) Trong xe chuyển động ngang làm con lắc lệch góc α so với phương thẳng đứng:

$$a = \operatorname{gtan}\alpha; \ \Delta l = \frac{\operatorname{mg}}{\operatorname{k.cos}\alpha}$$

CHỦ ĐỀ 3: CON LẮC ĐƠN

- 🚨 DẠNG 1: Đại cương về con lắc đơn
- 1. Chu kì, tần số và tần số góc: $T = 2\pi \sqrt{\frac{1}{g}}$; $\omega = \sqrt{\frac{g}{l}}$; $f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$

Nhận xét: Chu kì của con lắc đơn

- + tỉ lệ thuận với **căn bậc 2** của *l*; tỉ lệ **nghịch với căn bậc 2** của **g**
- + chỉ phụ thuộc vào *I* và g; **không** phụ thuộc biên độ A và **m**.
- **2. Phương trình dao động:** $s = S_0 cos(\omega t + \varphi)$ hoặc $\alpha = \alpha_0 cos(\omega t + \varphi)$

Với
$$s = \alpha l$$
, $S_0 = \alpha_0 l$

$$\Rightarrow$$
 v = s' = $-\omega S_0 \sin(\omega t + \varphi) = -\omega l \alpha_0 \sin(\omega t + \varphi)$; $v_{max} = \omega s_0 = \omega l \alpha_0$; $v_{min} = 0$

$$\Rightarrow a_t = v' = -\omega^2 S_0 \cos(\omega t + \varphi) = -\omega^2 l \alpha_0 \cos(\omega t + \varphi) = -\omega^2 s = -\omega^2 \alpha l = -g\alpha$$

Gia tốc gồm 2 thành phần: gia tốc tiếp tuyến và gia tốc pháp tuyến (gia tốc hướng tâm)

$$\begin{vmatrix} a_t = -\omega^2 s = -g\alpha \\ a_n = \frac{v^2}{l} = g(\alpha_0^2 - \alpha^2) \end{vmatrix} \rightarrow a = \sqrt{a_t^2 + a_n^2} \rightarrow \begin{cases} VTCB : a = a_n \\ VTB : a = a_t \end{cases}$$

Lưu ý:

- + Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và α_0 << 1 rad hay α_0 << 10^0
- + S_0 đóng vai trò như A, còn s đóng vai trò như x
- 3. Hệ thức độc lập: $a = -\omega^2 s = -\omega^2 \alpha l$; $S_0^2 = s^2 + \left(\frac{v}{\omega}\right)^2$; $\alpha_0^2 = \alpha^2 + \frac{v^2}{gl}$
- **4. Lực hồi phục:** $F = -m\omega^2 s = -mg\alpha$
 - + Với con lắc đơn lực hồi phục tỉ lệ thuận với khối lượng.
 - + Với con lắc lò xo lực hồi phục không phụ thuộc vào khối lượng.
- **5. Chu kì và sự thay đổi chiều dài:** Tại cùng một nơi, con lắc đơn chiều dài l_1 có chu kỳ T_1 , con lắc đơn chiều dài l_2 có chu kỳ T_2 , con lắc đơn chiều dài $l_3 = l_1 + l_2$ có chu kỳ T_3 , con lắc đơn chiều dài $l_4 = l_1 + l_2$ có chu kỳ $t_3 = l_1 + l_2$

 $l_1 - l_2$ ($l_1 > l_2$) có chu kỳ T_4 . Ta có: $T_3^2 = T_1^2 + T_2^2$ và $T_4^2 = T_1^2 - T_2^2$ (chỉ cần nhớ I tỉ lệ với bình phương của T là ta có ngay công thức này)

6. Trong cùng khoảng thời gian, hai con lắc thực hiện N₁ và N₂ dao động:

- DẠNG 2: Vận tốc, lực căng dây, năng lượng
- **1.** $\alpha_0 \le 10^0$: $|\mathbf{v}| = \sqrt{\mathbf{gl}(\alpha_0^2 \alpha^2)}$, $\mathbf{T} = \mathbf{mg}(1 + \alpha_0^2 + \alpha^2)$; $\mathbf{W} = \frac{1}{2}\mathbf{m}\omega^2\mathbf{S}_0^2 = \frac{1}{2}\mathbf{mgl}\alpha_0^2$

$$\mathbf{2.} \ \alpha_0 > 10_0 : \ \boxed{|\mathbf{v}| = \sqrt{2gl(\cos\alpha - \cos\alpha_0)}}, \ \boxed{\mathbf{T} = mg(3\cos\alpha - 2\cos\alpha_0)}; \ \boxed{\mathbf{W} = mgh_0 = mgl(1-\cos\alpha_0)}$$

Chú ý:

+
$$v_{max}$$
 và T_{max} khi $\alpha = 0$

+
$$v_{min}$$
 và T_{min} khi $\alpha = \alpha_0$

+ Độ cao cực đại của vật đạt được so với VTCB:
$$h_{max} = \frac{v_{max}^2}{2g}$$

3. Khi
$$W_d = nW_t \Rightarrow A = \pm \frac{S_0}{\sqrt{n+1}}; \alpha = \pm \frac{\alpha_0}{\sqrt{n+1}}; v = \pm \frac{v_{max}}{\sqrt{\frac{1}{2}+1}}$$

4. Khi
$$\alpha = \frac{\alpha_0}{n} \Rightarrow \frac{W_d}{W_t} = n^2 - 1$$

- DẠNG 3: Biến thiên nhỏ của chu kì: do ảnh hưởng của các yếu tố độ cao, nhiệt độ, ..., thường đề bài yêu cầu trả lời hai câu hỏi sau:
- * Câu hỏi 11: Tính lượng nhanh (chậm) Δt của đồng hồ quả lắc sau khoảng thời gian τ đang xét
 - Ta có: $\Delta t = \tau \frac{\Delta T}{T}$ Với T là chu kỳ của đồng hồ quả lắc khi chạy đúng, τ là khoảng thời gian

đang xét

- Với
$$\Delta T$$
 được tính như sau:
$$\frac{\Delta T}{T} = \frac{1}{2}\lambda \Delta t^0 + \frac{h}{R} + \frac{1}{2}\frac{\Delta l}{l} - \frac{1}{2}\frac{\Delta g}{g} + \frac{s}{2R} + \frac{1}{2}\frac{\rho_{MT}}{\rho_{CLD}}$$

Trong đó

- $\Delta t = t_2 t_1$ là độ chênh lệch nhiệt độ
- λ là hệ số nở dài của chất làm dây treo con lắc
- h là độ cao so với bề mặt trái đất.
- s là độ sâu đưa xuống so với bề mặt trái đất.
- R là bán kính Trái Đất: R = 6400km
- $\Delta\ell=\ell_2-\ell_1$ là độ chênh lệch chiều dài
- ρ_{MT} là khối lượng riêng của môi trường đặt con lắc.
- ρ_{CLD} là khối lượng riêng của vật liệu làm quả lắc.

Cách tính: Khi bài toán không nhắc đến yếu tố nào thì ta bỏ yếu tố đó ra khỏi công thức (*) Quy ước: $\frac{\Delta T}{T} > 0$: đồng hồ chạy **chậm**; $\frac{\Delta T}{T} < 0$: đồng hồ chạy **nhanh**.

* Câu hỏi 2: Thay đổi theo nhiều yếu tố, tìm điều kiện để đồng hồ chạy đúng trở lại (T const) Ta cho $\frac{\Delta T}{T}$ = 0 như đã quy ước ta sẽ suy ra được đại lượng cần tìm từ công thức (*).

Chú ý thêm:

- + Đưa con lắc từ thiên thể này lên thiên thể khác thì: $\boxed{\frac{T_2}{T_1} = \sqrt{\frac{g_1}{g_2}} = \sqrt{\frac{M_1}{M_2}\frac{R_2^2}{R_1^2}}}$
- + Trong cùng khoảng thời gian, đồng hồ có chu kì T_1 có số chỉ t_1 , đồng hồ có chu kì T_2 có số chỉ t_2 .

$$\square$$
 DẠNG 4: Biến thiên lớn của chu kì: do con lắc chịu thêm tác dụng của ngoại lực \vec{F} không đổi (lưc quán tính, lưc từ, lưc điên, ...)

→ Lúc này con lắc xem như chịu tác dụng của trọng lực hiệu dụng hay trọng lực biểu kiến

 $\vec{P}' = \vec{P} + \vec{F} \ \, \text{và gia tốc trọng trường hiệu dụng } \ \, \vec{g}' = \vec{g} + \frac{\vec{F}}{m} \ \, (\mathring{\sigma} \ \, \text{VTCB nếu cắt dây vật sẽ rơi với gia tốc} \, \,)$

hiệu dụng này). **Chu kỳ mới của con lắc** được xác định bởi: $T' = 2\pi \sqrt{\frac{1}{g'}}$, các trường hợp sau:

- 1. Ngoại lực có phương thẳng đứng
- a) Khi con lắc đặt trong thang máy (hay di chuyển điểm treo con lắc) thì: $g' = g \pm a$ (với a là gia tốc chuyển động của thang máy)
 - + Nếu thang máy đi *lên nhanh dần* hoặc đi *xuống chậm dần* lấy dấu (+); (lúc này: ā↑)
 - + Nếu thang máy đi *lên chậm dần* hoặc đi *xuống nhanh dần* lấy dấu (-); (lúc này: a $\vec{a} \downarrow$)
- b) Khi con lắc đặt trong điện trường có vectơ cường độ điện trường \vec{E} hướng thẳng đứng:

g' = g ±
$$\frac{qE}{m}$$
: nếu vector Ē $hu\acute{o}ng$ xuống lấy dấu (+), vector Ē $hu\acute{o}ng$ lấy dấu (-)

Chú ý: Thay đúng dấu điện tích q vào biểu thức $g' = g \pm \frac{qE}{m}$; trong đó: $E = \frac{U}{d}$ (U: điện áp giữa hai bản tụ, d: khoảng cách giữa hai bản).

Ví dụ: Một con lắc đơn treo ở trần một thang máy. Khi thang máy đi **xuống nhanh dần đều** và **sau đó chậm dần đều** với **cùng một độ lớn của gia tốc**, thì chu kì dao động điều hoà của con lắc là T₁ và T₂. Tính chu kì dao động của con lắc khi thang máy **đứng yên**.

Ta có:
$$\begin{vmatrix} g_1 = g - a \\ g_2 = g + a \end{vmatrix}$$
 \Rightarrow $g_1 + g_2 = 2g$ \Rightarrow $\boxed{\frac{1}{T_1^2} + \frac{1}{T_2^2} = \frac{2}{T^2}}$ (Vì g tỉ lệ nghịch với bình phương của T)

Tương tự khi bài toán xây dựng giả thiết với con lắc đơn mang điện tích đặt trong điện trường.

- 2. Ngoại lực có phương ngang
- a) Khi con lắc treo lên trần một ôtô chuyển động ngang với gia tốc a:

Xe chuyển động nhanh dần đều

Xe chuyển động chậm dần đều

Tại vị trí cân bằng dây treo hợp với phương thẳng đứng một góc α (VTCB mới của con lắc)

$$V\acute{o}i: tan\alpha = \frac{F_{qt}}{P} = \frac{a}{g} = a \Rightarrow a = g.tan\alpha \ v\grave{a} \ g' = \sqrt{g^2 + a^2} \ hay \ g' = \frac{g}{cos\alpha} \Rightarrow T' = T\sqrt{cos\alpha}$$

b) Con lắc đặt trong điện trường nằm ngang: giống với trường hợp ôtô chuyển động ngang ở

trên với $g' = \sqrt{g^2 + \left(\frac{qE}{m}\right)^2}$. Khi đổi chiều điện trường con lắc sẽ dao động với biên độ góc 2α .

- 3* *. Ngoại lực có phương xiên
- a) Con lắc treo trên xe chuyển động trên mặt phẳng nghiêng góc α không ma sát

$$\boxed{ T' = T\sqrt{\frac{g}{g'}} \text{ hay } \boxed{ T' = T\sqrt{\cos\alpha} \text{ v\'oi } } \begin{cases} g' = g.\cos\alpha \\ a = g.\sin\alpha \\ \beta = \alpha : VTCB \end{cases} ; \text{ Lực căng dây: } \boxed{ \tau = \frac{m.a}{\sin\alpha} }$$

- b) Con lắc treo trên xe chuyển đông lên xuống dốc nghiêng góc α không ma sát
- Xe lên dốc nhanh dần hoặc xuống dốc chậm dần lấy dấu (-)
- Xe **lên đốc châm dần** hoặc **xuống đốc nhanh dần** lấy đấu (+)
- * Lực căng dây: $\tau = m\sqrt{a^2 + g^2 \pm 2a \cdot g \cdot \sin \alpha}$
- * Vị trí cân bằng: $\left| \tan \beta = \frac{a.\cos \alpha}{g \pm a.\sin \alpha} \right|$ dốc lấy dấu (+), xuống dốc lấy dấu (-)
- c) Xe xuống dốc nghiêng góc α có ma sát:

với μ là hê số ma sát.

- $\sin \alpha \mu . \cos \alpha$ * Vị trí cân bằng: $|\tan \beta|$ $\cos \alpha + \mu . \sin \alpha$
- * Luc căng dây: $|\tau = \text{m.g.cos}\alpha\sqrt{1+\mu^2}|$; với: $|a = g(\sin\alpha \mu\cos\alpha)|$
- * * MÔT SỐ DẠNG BÀI TẬP NÂNG CAO
- DANG 5: Con lắc vướng đinh (CLVĐ)
- **1. Chu kì T của CLVĐ:** $T = \frac{1}{2} (T_1 + T_2) \ln T = \frac{\pi}{\sqrt{g}} (\sqrt{l_1} + \sqrt{l_2})$

3. Tỉ số biên độ dao động 2 bên VTCB

$$\text{- G\'oc l\'on } (\alpha_0 > 10^0) \text{: V\'i } h_A = h_B \Rightarrow \ell_1 (1 \text{-} \cos \alpha_1 \text{)} = \ell_2 (1 \text{-} \cos \alpha_2) \Rightarrow \boxed{\frac{l_1}{l_2} = \frac{1 - \cos \alpha_2}{1 - \cos \alpha_1}}$$

- Gốc nhỏ (
$$\alpha_0 \le 10^0$$
) $\Rightarrow \cos \alpha \approx 1 - \frac{\alpha^2}{2}$): $\frac{l_1}{l_2} = \left(\frac{\alpha_2}{\alpha_1}\right)^2$

- **4.** Tỉ số lực căng dây treo ở vị trí biên: Góc lớn: $\left| \frac{T_A}{T_R} = \frac{\cos \alpha_1}{\cos \alpha_2} \right|$; Góc nhỏ: $\left| \frac{T_A}{T_R} = 1 + \frac{\alpha_2^2 \alpha_1^2}{2} \right|$
- 5. Tỉ số lực căng dây treo trước và sau khi vướng chốt O' (ở VTCB)

- Góc lớn:
$$\frac{T_T}{T_S} = \frac{3 - \cos \alpha_1}{3 - \cos \alpha_2}$$
;

- Gốc nhỏ:
$$\frac{T_T}{T_S} = 1 + \alpha_2^2 - \alpha_1^2$$

DANG 6: Con lắc đứt dây

Khi con lắc đứt dây vật bay theo phương tiếp tuyến với quỹ đạo tại

1. Khi vật đi qua vị trí cân bằng thì đứt dây lúc đó vật chuyển động ném ngang với vân tốc đầu là vân tốc lúc đứt dây.

Vận tốc lúc đứt dây: $v_0 = \sqrt{2g\ell(1-\cos\alpha_0)}$

Phương trình:
$$\begin{cases} \text{Theo Ox}: x = v_0 t \\ \text{Theo Oy}: y = \frac{1}{2}gt^2 \end{cases}$$

$$\Rightarrow$$
 phương trình quỹ đạo: $y = \frac{1}{2}g\frac{x^2}{v_0^2} = \frac{1}{4l(1-\cos\alpha_0)}x^2$

2. Khi vật đứt ở ly độ α thì vật sẽ chuyển động ném xiên với vận tốc ban đầu là vận tốc lúc đứt dây.

Vận tốc vật lúc đứt dây: $v_0 = \sqrt{2g\ell(\cos\alpha - \cos\alpha_0)}$

Phương trình:
$$\begin{cases} \text{Theo Ox}: x = (v_0.\cos\alpha)t \\ \text{Theo Oy}: y = (v_0.\sin\alpha)t - \frac{1}{2}gt^2 \end{cases}$$

Khi đó phương trình quỹ đạo: $y = (\tan \alpha)x - \frac{1}{2(v_0 \cos \alpha_0)^2}x^2$

Hay:
$$y = (\tan \alpha)x - \frac{1}{2v_0^2}(1 + \tan^2 \alpha)x^2$$

Chú ý: Khi vật đứt dây ở vị trí biên thì vật sẽ rơi tự do theo phương trình: $y = \frac{1}{2}gt^2$

DẠNG 7: Bài toán va chạm

Giải quyết tương tư như bài toán va cham của con lắc lò xo

CHỦ ĐỀ 4: CÁC LOẠI DAO ĐỘNG KHÁC

1. Đại cương về các dao động khác

	Dao động tự do, dao động duy trì	Dao động tắt dần	Dao động cưỡng bức, cộng hưởng
Khái niệm	 Dao động tự do là dao động của hệ xảy ra dưới tác dụng chỉ của nội lực. Dao động duy trì là dao động tắt dần được duy trì mà không làm thay đổi chu kỳ riêng của hệ. 	- Là dao động có biên độ và năng lượng giảm dần theo thời gian.	 Dao động cưỡng bức là dao động xảy ra dưới tác dụng của ngoại lực biến thiên tuần hoàn. Cộng hưởng là hiện tượng A tăng đến A_{max} khi tần số f_n = f₀
Lực tác dụng	Do tác dụng của nội lực tuần hoàn	Do tác dụng của lưc	Do tác dụng của ngoại lực tuần hoàn
Biên độ A	Phụ thuộc điều kiện ban đầu	Giảm dần theo thời	Phụ thuộc biên độ của ngoại lực và hiệu số $(f_n - f_0)$
Chu kì T	Chỉ phụ thuộc đặc tính riêng của hệ, không phụ thuộc các yếu tố bên ngoài.	Không có chu kì hoặc tần số do không tuần hoàn.	Bằng với chu kì của ngoại lực tác dụng lên hệ.
Hiện tượng đặc biệt	Không có	Sẽ không dao động khi ma sát quá lớn.	\mathbf{A}_{\max} khi tần số $f_n = f_0$
Ứng dụng	 Chế tạo đồng hồ quả lắc. Đo gia tốc trọng trường của trái đất. 	Chế tạo lò xo giảm xóc trong ôtô, xe máy	 Chế tạo khung xe, bệ máy phải có tần số khác xa tần số của máy gắn vào nó. Chế tạo các loại nhạc cụ.

2. Phân biệt giữa dao động cưỡng bức với dao động duy trì: Giống nhau:

- Đều xảy ra dưới tác dụng của ngoại lực.
- Dao động cưỡng bức khi cộng hưởng cũng có tần số bằng tần số riêng của vật.

Khác nhau:

Dao động duy trì
- Lực được điều khiển bởi chính dao động ấy
qua một cơ cấu nào đó.
- Cung cấp một lần năng lượng, sau đó hệ tự
bù đắp năng lượng cho vật dao động.
- Dao động với tần số đúng bằng tần số dao
động riêng f $_0$ của vật.
- Biên độ không thay đổi

3. Các đại lượng trong dao động tắt dần của con lắc lò xo:

Với giả thiết tại thời điểm t = 0 vật ở **vị trí biên**, ta có:

a)Độ giảm biên độ

* Độ giảm biên độ sau **mỗi chu kỳ:**
$$\Delta A = \frac{4\mu mg}{k}$$

* Độ giảm biên độ sau **N chu kỳ:**
$$\Delta A_N = A - A_N = N.\Delta A$$

* Biên độ còn lại sau N chu kỳ:
$$A_N = A - N.A_N$$

* Phần trăm biên độ **bị giảm** sau N chu kì:
$$H_{\Delta A_N} = \frac{\Delta A_N}{A} = \frac{A - A_N}{A}$$

* Phần trăm biên độ **còn lại** sau N chu kì:
$$H_{A_N} = \frac{A_N}{A} = 1 - H_{\Delta A_N}$$

b)Độ giảm cơ năng:

* Phần trăm cơ năng **bị mất** sau **1 chu kì:**
$$\frac{\Delta W}{W} = 2\frac{\Delta A}{A}$$

* Phần trăm cơ năng **còn lại** sau N chu kì:
$$H_{W_N} = \frac{W_N}{W} = 2\frac{\Delta A}{A}$$

* Phần trăm cơ năng **bị mất** (chuyển thành nhiệt) sau **N chu kì:**
$$H_{\Delta W_N} = \frac{W - W_N}{W} = 1 - H_{W_N}$$

b) Số dao động thực hiện được và thời gian trong dao động tắt dần:

* Số dao động vật thực hiện cho tới khi dừng lại: $N = \frac{A}{\Delta A} = \frac{kA}{4\mu mg}$

* Thời gian vật dao động đến lúc dừng lại:
$$\Delta t = N.T = N.2\pi\sqrt{\frac{m}{k}}$$

c) Vị trí vật đạt vận tốc cực đại trong nửa chu kì đầu tiên:

* Tại vị trí đó, lực phục hồi cân bằng với lực cản: $kx_0 = mg \rightarrow \boxed{x_0 = \frac{\mu mg}{k}}$

* Vận tốc cực đại tại vị trí đó là: $v = \omega(A - x_0)$

d) Quãng đường trong dao động tắt dần: $S = 2nA - n2\Delta A_{1/2}$ với n là số nửa chu kì.

Cách tìm n: Lấy $\frac{A}{\Delta A_{1/2}} = m, p$ - Nếu p > 5 số nửa chu kì là: n = m + 1; - Nếu $p \le 5$ số nửa chu kì là: n = m

Chú ý: Nếu $\frac{A}{\Delta A_{1/2}}$ = m nguyên, thì khi dừng lại vật sẽ ở VTCB. Khi đó năng lượng của vật bị triệt

tiêu bởi công của lực ma sát: $\frac{1}{2}kA^2 = \mu mgS \Rightarrow \boxed{S = \frac{kA^2}{2\mu mg}}$ (chỉ đúng khi vật dừng ở VTCB !!)

4. Các đại lượng trong dao động tắt dần của con lắc đơn:

- a) Giải quyết tương tự như con lắc lò xo, thay tương ứng A thành S₀; x thành s; $s = \alpha l$, S₀ = $\alpha_0 l$
- b) Để duy trì dao động cần 1 động cơ có công suất tối thiểu là:

$$\boxed{P = \frac{\Delta W}{t} = \frac{W_0 - W_N}{N.T}} \quad \text{v\'oi} \quad \boxed{W_0 = \frac{1}{2} \text{ m.g.l} \alpha_0^2 \text{ ; } W_N = \frac{1}{2} \text{ m.g.l} \alpha_N^2 \text{ ; } T = 2\pi \sqrt{\frac{l}{g}}$$

5. Bài toán cộng hưởng cơ

- A) Độ chênh lệch giữa tần số riêng f_0 của vật và tần số f của ngoại lực: $|\mathbf{f} \mathbf{f}_0|$ càng $\mathbf{nhỏ}$ thì biên độ dao động cưỡng bức \mathbf{A}_{cb} càng $\mathbf{lớn}$. Trên hình: $\mathbf{A}_1 > \mathbf{A}_2$ vì $|\mathbf{f}_1 \mathbf{f}_0| < |\mathbf{f}_2 \mathbf{f}_0|$
- B) Để cho hệ dao động với biên độ cực đại hoặc rung mạnh hoặc nước sóng sánh mạnh nhất thì xảy ra cộng hưởng.

CHƯƠNG II: SÓNG CƠ

CHỦ ĐỀ 1: ĐAI CƯƠNG VỀ SÓNG CƠ

- 1. Khái niệm về sóng cơ, sóng ngang, sóng dọc
- a. Sóng cơ: là dao động cơ lan truyền trong môi trường vật chất \rightarrow không truyền được trong chân không
- Khi sóng cơ lan truyền, các phân tử vật chất chỉ dao động tại chỗ, *pha dao động và năng lượng sóng* chuyển dời theo sóng. Quá trình truyền sóng là quá trình truyền năng lượng.
- Trong môi trường đồng tính và đẳng hướng, các phần tử gần nguồn sóng sẽ nhận được sóng sớm hơn (tức là dao động nhanh pha hơn) các phần tử ở xa nguồn.
- **b. Sóng dọc:** là sóng cơ có phương dao động **trùng** với phương truyền sóng. Sóng dọc truyền được trong *chất khí, lỏng, rắn.* Ví dụ: Sóng âm khi truyền trong không khí hay trong chất lỏng.
- **c. Sóng ngang:** là sóng cơ có phương dao động **vuông** góc với phương truyền sóng. Sóng ngang truyền được trong *chất rắn và trên mặt chất lỏng*. Ví dụ: Sóng trên mặt nước.
- 2. Các đặc trưng của sóng cơ
- a. Chu kì (tần số sóng): là đại lượng không thay đổi khi sóng truyền từ môi trường này sang môi trường khác.
- **b. Tốc độ truyền sóng:** là tốc độ lan truyền dao động trong môi trường; phụ thuộc bản chất môi trường ($V_R > V_L > V_K$) và nhiệt độ (nhiệt độ môi trường tăng thì tốc độ lan truyền càng nhanh)
- **c. Bước sóng:** $\lambda = vT = \frac{v}{f}$ Với v(m/s); T(s); $f(Hz) \Rightarrow \lambda(m) \Rightarrow$ Quãng đường truyền sóng: S = v.t
- **ĐN1:** Bước sóng là khoảng cách giữa *hai điểm gần nhau nhất* trên *cùng phương* truyền sóng dao động *cùng pha* nhau.
 - ĐN2: Bước sóng là *quãng đường* sóng lan truyền *trong một chu kì*.

Chú ý:

hoăc f.

- + Khoảng cách giữa hai ngọn sóng liên tiếp là λ ; Khoảng cách giữa n ngọn sóng là $(n-1)\lambda$
- 3. Phương trình sóng
- a. Phương trình sóng
- ightarrow Tập hợp các điểm cách đều nguồn sóng đều dao động cùng pha!

b. Độ lệch pha của 2 dao động tại 2 điểm cách nguồn: $\Delta \phi = 2\pi$

$$\Delta \phi = 2\pi \frac{\left| d_1 - d_2 \right|}{\lambda}$$

Nếu hai điểm đó nằm trên một phương truyền sóng và cách nhau một khoảng d thì: $\Delta \phi = 2\pi$

$$: \boxed{\Delta \varphi = 2\pi \frac{d}{\lambda}}$$

- + Cùng pha: $\Delta \varphi = 2k\pi \Rightarrow d = k\lambda$ (k = 1, 2, 3...).
- + **Ngược pha:** $\Delta \varphi = (2k + 1)\pi \Rightarrow d = (k + \frac{1}{2})\lambda \ (k = 0, 1, 2...).$
- **Bài toán 1:** Cho khoảng cách, độ lệch pha của 2 điểm, $v_1 \le v \le v_2$ hoặc $f_1 \le f \le f_2$. Tính v hoặc f: Dùng máy tính, bấm MODE 7; nhập hàm f(x) = v hoặc f theo ẩn f(x) = v theo ẩn f(x) = v hoặc f theo ẩn f(x) = v hoặc f0 đến f(x) trong khoảng của f(x)0 đến f(x)1 trong khoảng của f(x)2 trong khoảng của f(x)3 trong khoảng của f(x)4 trong khoảng của f(x)5 trong khoảng của f(x)6 trong khoảng của f(x)7 trong khoảng của f(x)8 trong khoảng của f(x)9 trong khoảng của
- Bài toán 2: Đề bài nhắc đến chiều truyền sóng, biết li độ điểm này tìm li độ điểm kia:

Dùng đường tròn để giải với lưu ý: **chiều dao động của các phần tử** vẫn là chiều dương lượng giác (ngược chiều kim đồng hồ) và **chiều truyền sóng là chiều kim đồng hồ**, góc quét = độ lệch

pha: $\Delta \varphi = \omega . \Delta t = 2\pi \frac{d}{\lambda}$, quy về cách thức giải bài toán

dao động điều hòa & chuyển động tròn đều

Chú ý: Trong hiện tương truyền sóng trên sơi dây, dây được kích thích dao đông bởi **nam châm điện** với tần số dòng điện là f thì tần số dao đông của dâv là 2f.

CHỦ ĐỀ 2: SÓNG ÂM

1. Sóng âm là sóng cơ truyền trong các môi trường khí, lỏng, rắn (Âm **không** truyền được trong chân không)

Hình ảnh minh họa cho cách giải bài toán 2 - chủ đề 1

- Trong chất khí và chất lỏng, sóng âm là sóng dọc.
- Trong chất rắn, sóng âm gồm cả sóng ngang và sóng doc.
- 2. Âm nghe được có tần số từ 16Hz đến 20 000Hz mà tại con người cảm nhân được. Âm này gọi là âm thanh.
 - Siêu âm: là sóng âm có tần số > 20 000Hz
 - Ha âm: là sóng âm có tần số < 16Hz
- **3. Nguồn âm** là các vật dao động phát ra âm.

Dao động âm là dao động cưỡng bức có tần số bằng tần số của nguồn phát.

- 4. Tốc độ truyền âm:
- Trong mỗi môi trường nhất đinh, tốc đô truyền âm không đổi.
- Tốc tốc truyền âm phu thuộc vào **tính đàn hồi, mật độ** và **nhiệt độ** của môi trường.
- Tốc độ: $v_{ran} > v_{long} > v_{khi}$. Khi sóng âm truyền từ không khí vào nước thì vận tốc tăng bước sóng tăng.

Chú ý: Thời gian truyền âm trong môi trường:
$$t = \frac{d}{v_{kk}} - \frac{d}{v_{mt}}$$
 với v_{kk} và v_{mt} là vận tốc truyền âm

trong không khí và trong môi trường.

- 5. Các đặc trưng vật lý của âm (tần số, cường đô (hoặc mức cường đô âm), năng lương và đồ thi dao đông của âm)
- a. Tần số của âm: Là đặc trưng quan trong. Khi âm truyền từ môi trường này sang môi trường khác thì **tần số không đổi**, tốc đô truyền âm thay đổi, bước sóng của sóng âm thay đổi.
- **b.** Cường độ âm $I(W/m^2)$ $I = \frac{W}{t.S} = \frac{P}{S}$: tại một điểm là đại lượng đo bằng năng lượng mà sóng âm

tải qua một đơn vị diện tích đặt tại điểm đó, vuông góc với phương truyền sóng trong một đơn vị thời gian.

- + W (J), P (W) là năng lương, công suất phát âm của nguồn; S (m²) là diên tích miền truyền âm.
- + Với sóng cầu thì S là diện tích mặt cầu $S = 4\pi R^2$ \rightarrow *Khi R tăng k lần thì I giảm k² lần.*
- c. Mức cường độ âm:

Chú ý: Khi hai âm chêch lệch nhau $L_2 - L_1 = 10n$ (dB) thì $I_2 = 10^n . I_1 = a . I_1$ ta nói: số nguồn âm bây giờ đã **tăng gấp a lần** so với số nguồn âm lúc đầu.

$$\text{ } \boxed{L_2 \text{ - } L_1 = 10lg \frac{I_2}{I_1} \text{ = } 20log \frac{R_1}{R_2}} \ \ \, \rightarrow \boxed{\frac{R_1}{R_2} = \sqrt{\frac{I_2}{I_1}} = \sqrt{10^{\frac{L_2 - L_1}{10}}}}$$

Chú ý các công thức toán: $g10^x = x$; $a = gx \Rightarrow x = 10^a$; gb = ga - gb

- 6. Đặc trưng sinh lí của âm: (3 đặc trưng là độ cao, độ to và âm sắc)
 - Đô cao của âm gắn liền với tần số của âm. (Đô cao của âm tăng theo tần số âm)
 - Độ to của âm là đặc trưng gắn liền với mức cường đô âm. (Độ to tăng theo mức cường độ âm)
 - **Âm sắc** gắn liền với đồ thị dao động âm, giúp ta phân biệt được các âm phát ra từ các nguồn âm, nhạc cụ khác nhau. Âm sắc phụ thuộc vào tần số và biên độ của các hoạ âm.

CHỦ ĐỀ 3: GIAO THOA SÓNG

1. Hiện tượng giao thoa sóng: là sự tổng hợp của 2 hay nhiều **sóng kết hợp** trong không gian, trong đó có những chỗ biên độ sóng được tăng cường (cực đại giao thoa) hoặc triệt tiêu (cực tiểu giao thoa). Hiện tượng giao thoa là hiện tượng đặc trưng của sóng.

Xét 2 nguồn: $u_1 = A_1 \cos(\omega t + \varphi_1) \dot{v} \dot{a} u_2 = A_2 \cos(\omega t + \varphi_2)$

Với $\Delta \varphi = \varphi_2 - \varphi_1$: là độ lệch pha của hai nguồn.

- Phương trình sóng tại M do hai sóng từ hai nguồn truyền tới:

$$u_{1M} = A_1 cos(\omega t + \phi_1 - 2\pi \frac{d_1}{\lambda}) \ v\grave{a} \ u = Acos(\omega t + \phi_2 - 2\pi \frac{d_1}{\lambda})$$

$$\Delta \varphi_{\rm M} = \varphi_{\rm 2M} - \varphi_{\rm 1M} = \frac{2\pi}{\lambda} (d_1 - d_2) + \Delta \varphi (1)$$

> Biên độ dao động tại M:
$$A_M^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi_M)$$
 (2)

4. Hai nguồn cùng biên độ: $u_1 = Acos(\omega t + \varphi_1) v \dot{\alpha} u_2 = Acos(\omega t + \varphi_2)$

- Phương trình giao thoa sóng tại M:
$$\boxed{ u_{\text{M}} = 2 A cos \left[\pi \frac{d_1 - d_2}{\lambda} + \frac{\Delta \phi}{2} \right] cos \left[\omega t - \pi \frac{d_1 + d_2}{\lambda} + \frac{\phi_1 + \phi_2}{2} \right] }$$

> Biên độ dao động tại M:
$$A_{M} = 2A\cos\left[\pi \frac{d_{1} - d_{2}}{\lambda} + \frac{\Delta \varphi}{2}\right]$$
 (1)

ightharpoonup Hiệu đường đi của hai sóng đến M: d_1 - d_2 = $(\Delta \phi_M$ - $\Delta \phi) \frac{\lambda}{2\pi}$ (2)

+ Khi
$$\Delta \phi_{M} = 2k\pi \Rightarrow \boxed{d_{1} - d_{2} = k\lambda - \frac{\Delta \phi}{2\pi}\lambda}$$
 thì $A_{Mmax} = 2A$;

+ Khi
$$\Delta \phi_{\rm M} = (2k+1)\pi \Rightarrow \left| d_1 - d_2 = (k+\frac{1}{2})\lambda - \frac{\Delta \phi}{2\pi}\lambda \right|$$
 thì $\mathbf{A}_{\rm Mmin} = \mathbf{0}$.

 \triangleright Số điểm (hoặc số đường) dao động cực đại, cực tiểu trên đoạn S_1S_2 :

* Số cực tiểu:
$$\frac{1}{\lambda} - \frac{1}{2} - \frac{\Delta \phi}{2\pi} < k < \frac{1}{\lambda} - \frac{1}{2} - \frac{\Delta \phi}{2\pi}$$

Chú ý: Không tính hai nguồn vì nguồn là điểm đặc biệt không phải là điểm cưc đại hoặc cực tiểu!!

- ♦ Hai nguồn cùng biên độ, cùng pha: $u_1 = u_2 = A\cos(\omega t + \varphi)$
- + Nếu O là **trung điểm của đoan S₁S₂** thì tai O hoặc các điểm nằm trên đường trung trực của đoạn S₁S₂ sẽ dao động với biên độ **cực đại** và bằng: $A_{\text{Mmax}} = 2A$.

+ Khi
$$\Delta \varphi_M = 2k\pi \Rightarrow \boxed{\mathbf{d}_1 - \mathbf{d}_2 = \mathbf{k}\lambda}$$
 thì $\mathbf{A}_{\mathbf{Mmax}} = \mathbf{2}\mathbf{A};$
+ Khi $\Delta \varphi_M = (2k+1)\pi \Rightarrow \boxed{\mathbf{d}_1 - \mathbf{d}_2 = (\mathbf{k} + \frac{1}{2})\lambda}$ thì $\mathbf{A}_{\mathbf{Mmin}} = \mathbf{0}.$

♦ Hai nguồn cùng biên độ, ngược pha:
$$\Delta φ = ±π$$
; $A_M = 2A \left| cos(π \frac{d_1 - d_2}{λ} ± \frac{π}{2} \right|$

Trong trường hợp hai nguồn dao động **ngược pha** nhau thì những kết quả về giao thoa sẽ "ngược lại" với kết quả thu được khi hai nguồn dao đông cùng pha.

+ Nếu O là **trung điểm của đoạn S₁S₂** thì tại O hoặc các điểm nằm trên đường trung trực của đoạn S₁S₂ sẽ dao động với biên độ **cực tiểu** và bằng: $AM_{min} = 0$.

- ♦ Hai nguồn cùng biên độ, vuông pha: $\Delta φ = ± (2k+1)\frac{π}{2}$; $A_M = 2A \left| cos(π \frac{d_1 d_2}{λ} ± \frac{π}{Δ} \right|$
- + Nếu O là trung điểm của đoạn S_1S_2 thì tại O hoặc các điểm nằm trên đường trung trực của đoạn S_1S_2 sẽ dao động với biên độ: $A_M = A\sqrt{2}$.
 - + Số điểm dao động cực đại = Số điểm cực tiểu trên đoạn S_1S_2 : $\left| -\frac{1}{\lambda} \frac{1}{4} < k < \frac{1}{\lambda} \frac{\pi}{4} \right|$

Cách tìm nhanh số điểm cực trị khi 2 nguồn cùng (hoặc ngược) pha:

Ta lấy: $S_1S_2/\lambda = m$, p (m nguyên dương, p phần thập phân sau dấu phẩy)

- * Xét hai nguồn cùng pha:
 - Khi p = 0: số cực đại là: 2m 1; số cực tiểu là 2m
 - Khi $p \neq 0$: số cực đại là: 2m + 1; số cực tiểu là 2m (khi p < 5) hoặc 2m+2 (khi $p \geq 5$)
- * Khi hai nguồn **ngược pha:** kết quả sẽ "**ngược lại**" với hai nguồn **cùng pha**.
- **Bài toán 1:** Muốn biết tại điểm M có hiệu khoảng cách đến hai nguồn là: $d_1 d_2 = \Delta d$, thuộc vân cực đại hay vân cực tiểu, ta xét tỉ số $\frac{\Delta d}{\lambda} = k$:
- + Nếu k nguyên thì M thuộc vân cực đại bậc k. Ví du: $k = 2 \rightarrow M$ thuộc vân cực đại bậc k.
- + Nếu \pmb{k} \pmb{b} án \pmb{nguy} ê \pmb{n} thì M thuộc vân $\pmb{cực}$ $\pmb{tiểu}$ $\pmb{thứ}$ \pmb{k} + $\pmb{1}$. k = 2,5 \rightarrow M thuộc vân cực tiểu thứ 3.
- $\ \ \,$ $\$

 $\begin{cases} MS_1 - MS_2 = k\lambda \\ M'S_1 - M'S_2 = k'\lambda \end{cases}$. Sau đó, nếu biết k và k ' **cùng là số nguyên** thì các vân đó là vân **cực đại** ta có:

còn nếu *cùng là số bán nguyên* thì các vân đó là vân *cực tiểu*.

 $m{\mathscr{P}}$ Bài toán 3: Muốn tìm vận tốc truyền sóng $m{v}$ hoặc tần số $m{f}$ khi biết điểm M dao động với biên độ **cực đại**, biết hiệu khoảng cách $|d_1 - d_2|$ và giữa M với đường trung trực của S_1S_2 có **N** dãy **cực đại**

khác. Ta có:
$$\left|\mathbf{d}_{1}-\mathbf{d}_{2}\right|=k\lambda=k\cdot\frac{v}{f}=\left(N+1\right)\frac{v}{f}\rightarrow v$$
 hoặc f .

Chú ý: Trên S₁S₂ khoảng cách giữa hai điểm cực đại (hoặc hai cực tiểu) gần nhau nhất là $\frac{\lambda}{2}$; khoảng cách giữa một điểm cực đại

và một điểm cực tiểu kề nó là $\frac{\lambda}{4}$.

* * MỘT SỐ DẠNG TOÁN GIAO THOA

 \square DẠNG 1: Tìm số điểm dao động với biên độ cực đại, cực tiểu giữa hai điểm M, N bất kỳ Hai điểm M, N cách hai nguồn S₁, S₂ lần lượt là \mathbf{d}_{1M} , \mathbf{d}_{2M} , \mathbf{d}_{1N} , \mathbf{d}_{2N} .

Ta đặt $\Delta d_M = d_{1M} - d_{2M}$; $\Delta d_N = d_{1N} - d_{2N}$ và giả sử: $\Delta d_M < \Delta d_N$

- Hai nguồn dao động cùng pha:
 - * Cực đại: $\Delta d_M < k\lambda < \Delta d_N$
 - * Cực tiểu: $\Delta d_M < (k + 0.5)\lambda < \Delta d_N$
- > Hai nguồn dao động ngược pha:
- * Cyrc đại: $\Delta d_M < (k + 0.5)\lambda < \Delta d_N$
- * Cực tiểu: $\Delta d_M < k\lambda < \Delta d_N$
- ightharpoonup Hai nguồn dao động lệch pha góc $\Delta \phi$ bất kì:

* Cực đại:
$$\Delta d_M < (k - \frac{\Delta \phi}{2\pi})\lambda < \Delta d_N$$

* Cực tiểu:
$$\Delta d_{M} < (k + 0.5 - \frac{\Delta \phi}{2\pi})\lambda < \Delta d_{N}$$

Ta tìm được số điểm cực đại hoặc cực tiểu trên đoạn AB là \mathbf{k} . Do mỗi đường hypebol cắt **elip** tại hai điểm \rightarrow số điểm cực đại hoặc cực tiểu trên **elip** là $2\mathbf{k}$.

Tương tự như đường elip, ta tìm được số điểm cực đại hoặc cực tiểu trên đoạn thẳng được giới hạn bởi đường kính của đường tròn và hai

điểm nguồn như cách tìm giữa hai điểm M,N (dạng 1) rồi **nhân 2**. Xét xem hai điểm đầu mút của đoạn thẳng giới hạn đó có phải là điểm cực đại hoặc cực tiểu hay không, vì hai điểm đó sẽ tiếp xúc với đường tròn khi đường cong hypebol đi qua hai điểm đó, nếu có 1 điểm tiếp xúc ta lấy tổng số điểm đã nhân 2 trừ 1; nếu 2 điểm lấy tổng số trừ $2 \rightarrow$ số điểm cực đại hoặc cực tiểu trên đường tròn.

Xét hai nguồn cùng pha:

Giả sử tại M có dao động với biên độ **cực đại**.

- Khi $|\mathbf{k}|$ = 1 thì: Khoảng cách lớn nhất từ một điểm M đến hai nguồn là: $\mathbf{d}_{1\text{max}}$ = MA
- Khi $|\mathbf{k}| = k_{\max}$ thì: Khoảng cách ngắn nhất từ một điểm M' đến hai nguồn là: $\mathbf{d}_{1\min} = \mathbf{M'A}$

Từ công thức:
$$\frac{-AB}{\lambda} < k < \frac{AB}{\lambda}$$
 với $|\mathbf{k}| = k_{\text{max}} \rightarrow d_{1\text{min}} = M'A$

Lưu ý: Với hai nguồn ngược pha và tại M dao động với biên độ cực tiểu ta làm tương tự.

Các bài toán khác: Sử dụng công thức tính hiệu đường đi và kết hợp mối liên hệ hình học giữa d_1 và d_2 với các yếu tố khác trong bài toán để giải (*liên hệ giữa các cạnh trong tam giác vuông*).

DẠNG 4: Tìm vị trí điểm M trên đường trung trực của AB, dao động cùng pha hoặc ngược pha với hai nguồn A, B.

Giả sử hai nguồn **cùng pha** có dạng: $u_1 = u_2 = A\cos\omega t$

* Cách 1: Dùng phương trình sóng.

Phương trình sóng tại M là: $u_{\text{M}} = 2A\cos\left[\pi \frac{d_1 - d_2}{\lambda}\right] \cos\left[\omega t - \pi \frac{d_1 + d_2}{\lambda}\right]$

ightharpoonup Nếu M dao động cùng pha với S₁, S₂ thì: $\pi \frac{d_1 + d_2}{\lambda} = 2k\pi \rightarrow d_2 + d_1 = k\lambda$

Vì M nằm trên đường trung trực nên $d_1 = d_2$ ta có: $d = d_1 = d_2 = k\lambda$

Từ hình vẽ ta có:
$$d \ge \frac{AB}{2} \implies k\lambda \ge \frac{AB}{2} \implies k \ge \frac{AB}{2\lambda} (k \in \mathbb{Z}) \implies k_{\min} \to d_{\min} = k_{\min} \lambda$$

Theo hình vẽ ta có: $x = OM = \sqrt{d^2 - \left(\frac{AB}{2}\right)^2}$ (điều kiện: $d \ge \frac{AB}{2}$)

 x_{\min} khi d_{\min} . Từ điều kiện trên, ta tìm được: $d_{\min} = k_{\min} \lambda \Rightarrow x_{\min}$

$$\pi \frac{d_1 + d_2}{\lambda} = (2k+)\pi \rightarrow d_2 + d_1 = (2k+)\lambda$$

Vì M nằm trên đường trung trực nên ta có: $d = d_1 = d_2 = (2k+)\frac{\lambda}{2}$

Tương tự trên, ta tìm được d_{min} và x_{min}

* Cách 2: Giải nhanh

- Điểm cùng pha gần nhất:
$$k = a + 1$$

Ta có:
$$k = \frac{AB}{2\lambda} \Rightarrow k_{l \dot{a} m \ tr \dot{o} n} = a \rightarrow \frac{\text{- Điểm cùng pha thứ n: } k = a + n}{\text{- Điểm ngược pha gần nhất: } k = a + 0,5}{\text{- Điểm ngược pha thứ n: } k = a + n - 0,5}$$

- Điểm ngược pha thứ n:
$$k = a + n - 0.5$$

DẠNG 5: Xác định số điểm cùng pha, ngược pha với hai nguồn S₁, S₂ giữa hai điểm MNtrên đường trung trực

Ta có:
$$k = \frac{S_1 S_2}{2\lambda}$$
; $d_M = \sqrt{OM^2 + \left(\frac{S_1 S_2}{2}\right)^2}$; $d_N = \sqrt{ON^2 + \left(\frac{S_1 S_2}{2}\right)^2}$

- Cùng pha khi:
$$k_M = \frac{d_M}{\lambda}$$
; $k_N = \frac{d_N}{\lambda}$

- Ngược pha khi:
$$k_M + 0.5 = \frac{d_M}{\lambda}$$
; $k_N + 0.5 = \frac{d_N}{\lambda}$

Từ k và $k_M \Rightarrow số$ điểm trên OM = a

Từ k và $k_N \Rightarrow số$ điểm trên ON = b

• Nếu M, N **khác phía** \Rightarrow số điểm trên MN: a + b (cùng trừ, khác công!!!)

Ngoài ra, ta cũng có thể sử dụng phương trình sóng và tính chất hình học để giải toán.

CHỦ ĐỀ 4: SÓNG DỪNG

1. Phản xa sóng:

- Khi phản xạ trên **vật cản cố định**, sóng phản xạ cùng tần số, cùng bước sóng và luôn luôn ngược pha với sóng tới.
- Khi phản xạ trên **vật cản tự do**, sóng phản xạ cùng tần số, cùng bước sóng và luôn luôn cùng pha với sóng tới.

- **2. Hiện tượng tạo ra sóng dừng:** Sóng tới và sóng phản xạ truyền theo cùng một phương, thì có thể giao thoa với nhau, và tạo ra một hệ sóng dừng. Trong sóng dừng có một số điểm luôn luôn đứng yên gọi là *nút*, và một số điểm luôn luôn dao động với biên độ cực đại gọi là *bụng sóng*.
- 3. Đặc điểm của sóng dừng:
 - Đầu cố định hoặc đầu dao động nhỏ là nút sóng. Đầu tự do là bụng sóng.
- Khoảng cách hai điểm nút hoặc hai điểm bụng gần nhau nhất là $\frac{\lambda}{2}$.
- Khoảng cách giữa điểm bụng và điểm nút gần nhau nhất là: $\frac{\lambda}{4}$
- Nếu sóng tới và sóng phản xạ có biên độ A (bằng biên độ của nguồn) thì biên độ dao động tại điểm bụng là 2A, bề rộng của bụng sóng là 4A.
- Khoảng thời gian giữa hai lần sợi dây căng ngang (các phần tử đi qua VTCB) là T/2.

- Vị trí các điểm dao động cùng pha, ngược pha:
- + Các điểm đối xứng qua một **bụng** thì **cùng pha** (đối xứng với nhau qua đường thẳng đi qua bụng sóng và vuông góc với phương truyền sóng). Các điểm đối xứng với nhau qua một **nút** thì dao động **ngược pha**.
- + Các điểm thuộc *cùng một bó sóng* (khoảng giữa hai nút liên tiếp) thì dao động *cùng pha* vì tại đó phương trình biên độ không đổi dấu. Các điểm nằm ở *hai phía của một nút* thì dao động *ngược pha* vì tại đó phương trình biên độ đổi dấu khi qua nút.
 - → Các điểm trên sợi dây đàn hồi khi có sóng dừng ổn định chỉ có thể cùng hoặc ngược pha.

Hình vẽ

- M, P đối xứng qua bụng B nên cùng pha dao động. Dễ thấy phương trình biên độ của M và P cùng dấu. Suy ra, M và P dao động cùng pha
- M, Q đối xứng qua nút N nên ngược pha dao động. Dễ thấy phương trình biên độ của M và Q ngược dấu nhau. Suy ra M và Q dao động ngược pha

- 4. Điều kiện để có sóng dừng:
 - a) Trường hợp hai đầu dây cố định (nút): $\ell = k \frac{\lambda}{2}$ $(k \in N^*)$;
 - * số bó sóng = số bụng sóng = k
 - * $s\tilde{o}$ nút $s\tilde{o}$ ng = k + 1

$$\rightarrow f_{k} = k \frac{v}{2l} \rightarrow \begin{cases} \lambda_{max} = 2l \\ f_{min} = \frac{v}{2l} \rightarrow f_{k} = k.f_{min} \Rightarrow f_{min} = f_{k+1} - f_{k} \end{cases}$$

Trường hợp tần số do dây đàn phát ra (hai đầu cố định): $f_k = k \frac{V}{2l}$

Ứng với:

 $k = 1 \Rightarrow$ âm phát ra âm cơ bản có tần số $f_1 = f_k = \frac{v}{2l}$

k = 2,3,4... có các hoạ âm bậc 2 (tần số $2f_1$), bậc 3 (tần số $3f_1$)...

Vây: Tần số trên dây 2 đầu cố định tỉ lê với các số nguyên liên tiếp: 1, 2, 3, ...

b) Trường hợp một đầu là nút, một đầu là bụng:

$$\ell = (2k+1)\frac{\lambda}{4} \ (k \in N)$$
 ;

* số bó sóng = k

* số bung sóng = số nút sóng = k + 1

$$\rightarrow f_k = (2k+1)\frac{v}{4l} \begin{cases} \lambda_{max} = 4l \\ f_{min} = \frac{v}{4l} \rightarrow f_k = (2k+1).f_{min} \Rightarrow f_{min} = \frac{f_{k+1} - f_k}{2} \end{cases}$$

Trường hợp tần số do ống sáo phát ra (một đầu kín, một đầu hở)

$$f_k = (2k+1)\frac{v}{4l}$$

$$k = 0 \implies$$
 âm phát ra âm cơ bản có tần số $f_1 = \frac{V}{4l}$

k = 1,2,3... có các hoạ âm bậc 3 (tần số $3f_1$), bậc 5 (tần số $5f_1$)...

Vậy: Tần số trên dây 1 đầu cố định tỉ lệ với các số nguyên lẻ liên tiếp: 1, 3, 5, ...

5. Biên độ tại 1 điểm trong sóng dừng

* Với x là khoảng cách từ M đến đầu **nút** sóng thì biên đô:

$$A_{M} = 2A \left| \sin \left(2\pi \frac{x}{\lambda} \right) \right|$$

* Với x là khoảng cách từ M đến đầu **bung** sóng thì biên đô:

$$\boxed{A_{M} = 2A \left| cos \left(2\pi \frac{x}{\lambda} \right) \right|}$$

* Các điểm có cùng biên đô (không kể điểm bung và điểm nút) cách đều nhau một khoảng $\lambda/4$. Nếu A là biên độ sóng ở nguồn thì biên độ dao động tại các điểm này sẽ là $A_i = A \sqrt{2}$

6* *. Vận tốc truyền sóng trên dây: phụ thuộc vào lực căng dây F và mật độ khối lượng trên một đơn vị chiều dài μ . Ta có: $\left| \mathbf{v} = \sqrt{\frac{F}{\Pi}} \right|$ với $\mu = \frac{m}{\Pi}$

CHƯƠNG III: DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ

CHỦ ĐỀ 1: MACH DAO ĐỘNG

- **1. Mạch dao động:** Cuộn cảm có độ tự cảm L mắc nối tiếp với tụ điện C thành mach điên kín (**R = 0**) A
- Sau khi tụ điện đã được tích điện, nó phóng điện qua cuộn cảm và tạo ra trong mạch LC một dao động điện từ tự do (hay dòng điện xoay chiều).

- **Dao động điện từ tự do**: là sự biến thiên điều hoà theo thời gian của điện tích q của một bản tụ điện và cường độ dòng điện i (hoặc cường độ điện trường \vec{E} và cảm ứng từ \vec{B}) trong mạch dao động.
- Sự hình thành dao động điện từ tự do trong mạch là do hiện tượng tự cảm.
- 2. Các biểu thức:
- a. Biểu thức điện tích: $q = q_0 \cos(\omega t + \varphi)$
- **b.** Biểu thức dòng điện: $i=q'=-\omega q_0 \sin(\omega t+\phi)=I_0 \cos(\omega t+\phi+\frac{\pi}{2})$; Với $I_0=\omega q_0=\frac{q_0}{\sqrt{LC}}$
- c. Biểu thức điện áp: $u = \frac{q}{C} = \frac{q_0}{C} \cos(\omega t + \phi) = U_0 \cos(\omega t + \phi)$; Với $U_0 = \frac{q_0}{C} = I_0 \sqrt{LC}$
- d. Bước sóng của sóng điện từ: $\lambda = \frac{c}{f} = c.2\pi\sqrt{LC} = c.2\pi\frac{q_0}{I_0}$; Với: $c = 3.10^8 \text{m/s}$

Trong đó q, i, u biến thiên điều hoà theo thời gian với cùng tần số góc: $\omega = \frac{1}{\sqrt{LC}}$

Chu kỳ riêng: $T=2\pi\sqrt{LC}=2\pi\frac{q_0}{I_0}$; tần số riêng $f=\frac{1}{2\pi\sqrt{LC}}$

Nhận xét:

- Điện tích q và điện áp u luôn cùng pha với nhau.
- Cường độ dòng điện i luôn sớm pha hơn (q và u) một góc $\pi/2$.
- 3. Năng lượng điện từ: Tổng năng lượng điện trường tụ điện và năng lượng từ trường trên cuộn cảm goi là năng lượng điên từ.

a. Năng lượng điện từ: $W = W_C + W_L = \frac{1}{2}CU_0^2 = \frac{1}{2}LI_0^2 = \frac{1}{2}\frac{q_0^2}{C}$

- b. Năng lượng điện trường: $W_C = \frac{1}{2}Cu^2 = \frac{1}{2}\frac{q^2}{C} = \frac{1}{2C}q_0^2\cos^2(\omega t + \phi)$
- c. Năng lượng từ trường: $W_L = \frac{1}{2}Li^2 = \frac{1}{2C}q_0^2\sin^2(\omega t + \phi)$

Nhận xét:

- + Trong quá trình dao động điện từ, có sự chuyển đổi từ năng lượng điện trường thành năng lượng từ trường và ngược lại, nhưng **tổng của chúng thì không đổi**.
- + Mạch dao động có tần số góc ω , tần số f và chu kỳ T thì W_L và W_C biến thiên với tần số góc 2ω , tần số 2f và chu kỳ T/2.
 - + Trong một chu kỳ có 4 lần $W_L = W_C$, khoảng thời gian giữa hai lần liên tiếp để $W_L = W_C$ là T/4.
 - + Thời gian từ lúc $W_L = W_{Lmax}$ ($W_C = WC_{max}$) đến lúc $W_L = W_{Lmax}$ /2 ($W_C = W_{Cmax}$ /2) là T/8.
 - + Thoi gian tu iuc vv L vv Liliax (...)
 + Khi $W_L = nW_C \Rightarrow q = \pm \frac{Q_0}{\sqrt{n+1}}$; $u = \pm \frac{U_0}{\sqrt{n+1}}$; $i = \pm \frac{I_0}{\sqrt{\frac{1}{n}+1}}$

* * Cách cấp năng lượng ban đầu cho mạch dao động:

- Cấp năng lượng ban đầu cho tụ: $W = \frac{1}{2}CE^2 = \frac{1}{2}CU_0^2$; Với E: là suất điện động của nguồn
- Cấp năng lượng ban đầu cho cuộn dây: W = $\frac{1}{2}LI_0^2 = \frac{1}{2}L\left(\frac{E}{r}\right)^2$; Với r là điện trở trong của nguồn

4. Các hệ thức độc lập:

a)
$$Q_0^2 = q^2 + \left(\frac{i}{\omega}\right)^2 \Rightarrow \left[\left(\frac{q}{Q_0}\right)^2 + \left(\frac{i}{I_0}\right)^2 = 1\right] hay \left[\left(\frac{u}{U_0}\right)^2 + \left(\frac{i}{I_0}\right)^2 = 1\right]$$
b)
$$W = W_C + W_L \Rightarrow \begin{cases} u^2 + \frac{L}{C}i^2 = U_0^2 \Rightarrow i = \sqrt{\frac{C}{L}(U_0^2 - u^2)} \\ i^2 + \frac{C}{L}u^2 = I_0^2 \Rightarrow u = \sqrt{\frac{L}{C}(I_0^2 - i^2)} \end{cases}$$

5. Bài toán ghép tụ:

+ Nếu
$$C_1$$
 ss C_2 ($C = C_1 + C_2$) hay L_1 nt L_2 ($L = L_1 + L_2$) thì $\boxed{\frac{1}{f^2} = \frac{1}{f_1^2} + \frac{1}{f_2^2}}; \lambda^2 = \lambda_1^2 + \lambda_2^2; T^2 = T_1^2 + T_2^2$

+ Nếu C₁ nt C₂
$$\left(\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}\right)$$
 hay L₁ ss L₂ $\left(\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2}\right)$ thì $\left[\frac{1}{T^2} = \frac{1}{T_1^2} + \frac{1}{T_2^2}; \frac{1}{\lambda^2} = \frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2}; f^2 = f_1^2 + f_2^2\right]$

Kinh nghiệm: Đừng học thuộc lòng, bạn chỉ cần nhớ mối liên hệ thuận – nghịch giữa các đại lượng **T, f, λ, C, L** với nhau ta sẽ có ngay các công thức trên!

- **6. Bài toán thời gian tụ phóng tích điện:** vận dụng sự tương quan giữa D D D H và C D T D để giải, cách thức giống chương dao động cơ. **Ví dụ:** Thời gian từ lúc tụ tích điện cực đại đến lúc tụ phóng hết điện tích là $\frac{T}{4}$
- 7. Công suất bù đắp do hao phí khi mạch dao động có điện trở thuần $R \neq 0$: dao động sẽ tắt dần. Để duy trì dao động cần cung cấp cho mạch một năng lượng có công suất:

$$P = I^{2}R = \frac{\omega^{2}C^{2}U_{0}^{2}}{2}R = \frac{U_{0}^{2}RC}{2L} (W) \Rightarrow W = P.t$$

8. Mạch dao động có L biến đổi từ $L_{Min} \rightarrow L_{Max}$ và C biến đổi từ $C_{Min} \rightarrow C_{Max}$ thì bước sóng λ của sóng điện từ phát (hoặc thu):

$$\lambda_{\text{Min}} \, \text{tương ứng với } \, L_{\text{Min}} \, \text{và } \, C_{\text{Min}} : \lambda_{\text{min}} = c \, 2\pi \, \sqrt{L_{\text{min}} C_{\text{min}}}$$

$$\lambda_{\text{Max}} \, \text{tương ứng với } \, L_{\text{Max}} \, \text{và } \, C_{\text{Max}} : \lambda_{\text{max}} = c \, 2\pi \, \sqrt{L_{\text{max}} C_{\text{max}}}$$

9. Góc quay α của tụ xoay:

- Tụ xoay có điện dung C tỉ lệ theo hàm số bậc nhất đối với góc xoay α : $C = a.\alpha + b$
 - + Từ các dữ kiện α_{min} ; α_{max} ; C_{min} ; C_{max} ta tìm được 2 hệ số a và b.
- + Từ các dữ kiện $\pmb{\lambda}$ và \pmb{L} ta tìm được \pmb{C} rồi thay vào: $C=a.\alpha+b,$ suy ra góc xoay $\pmb{\alpha}.$ Hoặc:
 - + Khi tụ quay từ α_{min} đến α (để điện dung từ C_{min} đến C) thì: $\frac{\alpha \alpha_{min}}{\alpha_{max} \alpha_{min}} = \frac{C C_{min}}{C_{max} C_{min}}$
 - + Khi tụ quay từ vị trí α_{max} về vị trí α (để điện dung từ C đến C_{max}) thì: $\frac{\alpha_{\text{max}} \alpha}{\alpha_{\text{max}} \alpha_{\text{min}}} = \frac{C_{\text{max}} C_{\text{min}}}{C_{\text{max}} C_{\text{min}}}$
 - Khi tụ xoay $C_x // C_0$: $\frac{\lambda_1^2}{\lambda_2^2} = \frac{C_1}{C_2} = \frac{C_0 + C_{x_1}}{C_0 + C_{x_2}}$

CHỦ ĐỀ 2: SÓNG ĐIÊN TỪ

1. Điện từ trường

- Khi 1 từ trường biến thiên theo thời gian thì nó sinh ra 1 **điện trường xoáy** (là 1 điện trường mà các đường sức bao quanh các đường cảm ứng từ). Ngược lại khi một điện trường biến thiên theo thời gian nó sinh ra 1 **từ trường xoáy** (là 1 từ trường mà các đường cảm ứng từ bao quanh các đường sức của điện trường)
- Dòng điện qua cuộn dây là **dòng điện dẫn**, dòng điện qua tụ điện là **dòng điện dịch** (là sự biến thiên của điện trường giữa 2 bản tụ)
- Điện trường và từ trường là 2 mặt thể hiện khác nhau của 1 loại trường duy nhất là điên từ trường.
- **2. Sóng điện từ:** là điện từ trường lan truyền trong không gian của điện từ trường biến thiên tuần hoàn theo thời gian.

a. Đặc điểm sóng điện từ:

- Sóng điện từ lan truyền được trong **chân không** với tốc độ c = $3.10^8 \ m/s$
- Sóng điện từ là sóng ngang do nó có 2 thành phần là thành phần điện \vec{E} và thành phần từ \vec{B} vuông góc với nhau và vuông góc với phương truyền sóng.

Hình 2. Sóng điện từ

Bắc

- + Các vector \vec{E} , \vec{B} , \vec{v} lập thành một tam diện thuận: xoay đinh ốc để vector \vec{E} trùng vector \vec{B} thì chiều tiến của đinh ốc là chiều của vector \vec{v}
- + Các phương trong không gian: nếu chúng ta ở mặt đất, hướng mặt về phương Bắc, lúc đó tay trái chúng ta ở hướng Tây, tay phải ở hướng Đông. Vì vậy: nếu giả sử vecto \vec{E} đang cực đại và hướng về phía Tây thì vecto \vec{B} cũng cực đại (do cùng pha) và hướng về phía Nam (như hình vẽ).

- Sóng điện từ mang năng lượng.
- Sóng điện từ bước sóng từ vài m đến vài km dùng trong thông tin vô tuyến gọi là sóng vô tuyến:

Loại sóng	Tần số	Bước sóng	Đặc tính
Sóng dài	3 - 300 KHz	$10^5 - 10^3 \mathrm{m}$	Năng lượng nhỏ, ít bị nước hấp thụ, dùng thông tin liên lạc dưới nước.
Sóng trung	0, 3 - 3 MHz	$10^3 - 10^2 \mathrm{m}$	Ban ngày tầng điện li hấp thụ mạnh, ban đêm ít bị hấp thụ => ban đêm nghe đài sóng trung rõ hơn ban ngày
Sóng ngắn	3 - 30 MHz	$10^2 - 10 \text{ m}$	Năng lượng lớn, bị tầng điện li và mặt đất phản xạ nhiều lần => thông tin trên mặt đất kể cả ngày và đêm.
Sóng cực ngắn	30 - 30000 MHz		Có năng lượng rất lớn, không bị tầng điện li hấp thụ, xuyên qua tầng điện li nên dùng thông tin vũ trụ, vô tuyến truyền hình.

- 3. Nguyên tắc chung của việc thông tin truyền thanh bằng sóng vô tuyến
- a) Phát và thu sóng điện từ: Dựa vào nguyên tắc cộng hượng điện từ trong mạch LC ($f = f_0$)
- Để phát sóng điện từ người ta mắc phối hợp 1 máy phát dao động điều hoà với 1 ăngten (là 1

mạch dao động hở)

- Để **thu** sóng điện từ người ta mắc phối hợp 1 ăngten với 1 mạch dao động có tần số riêng điều chỉnh được (để xảy ra **cộng hưởng** với tần số của sóng cần thu).

b) Nguyên tắc chung:

- a. Phải dùng sóng điện từ cao tần để tải thông tin gọi là **sóng mang.**
- b. Phải biến điệu các sóng mang: "trộn" sóng âm tần với sóng mang.
- c. Ở nơi thu phải tách sóng âm tần ra khỏi sóng mang.
- d. Khuếch đai tín hiệu thu được.

Lưu ý: Sóng mang có biên độ bằng biên độ của sóng âm tần, có tần số bằng tần số của sóng cao tần.

c) Sơ đồ khối của máy phát thanh vô tuyến điện đơn giản:

Máy phát	Máy thu
1 3 4 5	5
(1): Micrô.	(1): Anten thu.
(2): Mạch phát sóng điện từ cao tần.	(2): Mạch khuyếch đại dao động điện từ cao tần.
(3): Mạch biến điệu.	(3): Mạch tách sóng.
(4): Mạch khuyếch đại.	(4): Mạch khuyếch đại dao động điện từ âm tần.
(5): Anten phát.	(5): Loa.

Chú ý: Tìm hiểu cách xác định kinh độ và vĩ độ !!!

CHƯƠNG IV: DÒNG ĐIỆN XOAY CHIỀU

CHỦ ĐỀ 1: CÁC LOAI ĐOAN MACH

DANG 1: Viết biểu thức cường đô dòng điện và điện áp

1. Biểu thức hiệu điện thế xoay chiều:	2. Biểu thức cường độ dòng điện:	
$\mathbf{u}(\mathbf{t}) = \mathbf{U}_0 \mathbf{cos}(\boldsymbol{\omega} \mathbf{t} + \boldsymbol{\varphi}_{\mathbf{u}})$	$i(t) = I_0 \cos(\omega t + \varphi_i)$	
u(t): hiệu điện thế tức thời (V)	i(t): cường độ dòng điện tức thời (A)	
U ₀: hiệu điện thế cực đại (V)	I ₀ : cường độ dòng điện cực đại (A)	
ϕ_u : pha ban đầu của hiệu điện thế.	$oldsymbol{\phi}_{i}$: pha ban đầu của cường độ dòng điện.	

3. Các giá trị hiệu dụng:
$$U = \frac{U_0}{\sqrt{2}}$$
 (V); $I = \frac{I_0}{\sqrt{2}}$ (A)

4. Các loại đoạn mạch:

- * Đoạn mạch chỉ có **R**: u_R **cùng pha** với i; $I = \frac{U_R}{R}$
- * Đoạn mạch chỉ có **L**: u_L **sớm pha** hơn i góc $\frac{\pi}{2}$; $I = \frac{U_L}{Z_L}$; với $Z_L = L\omega$ (Ω): **cảm kháng** .
- * Đoạn mạch chỉ có **C**: u_C **chậm pha** hơn i góc $\frac{\pi}{2}$; $I = \frac{U_C}{Z_C}$; với $Z_C = \frac{1}{C\omega}$ (Ω): **dung kháng**.
- * Đoạn mạch **R, L, C mắc nối tiếp** (không phân nhánh):

- Điện áp hiệu dụng:
$$U = \sqrt{U_R^2 + (U_L - U_C)^2} = I.\sqrt{R^2 + (Z_L - Z_C)^2} = I.Z$$

Với $\left| \mathbf{Z} = \sqrt{\mathbf{R}^2 + (\mathbf{Z}_L - \mathbf{Z}_C)^2} \right|$: gọi là **tổng trở** của đoạn mạch RLC.

Chú ý: Nếu trong mạch không có dụng cụ nào thì coi như "trở kháng" của nó bằng không

- Cường độ hiệu dụng: $\boxed{I = \frac{U}{Z} = \frac{U_R}{R} = \frac{U_L}{Z_L} = \frac{U_C}{Z_C}}; \text{- Cường độ cực đại:} \boxed{I_0 = \frac{U_0}{Z} = \frac{U_{0R}}{R} = \frac{U_{0L}}{Z_L} = \frac{U_{0C}}{Z_C}}$ Độ lệch pha ϕ giữa u và i: $\boxed{\tan\phi = \frac{Z_L Z_C}{R} = \frac{U_L U_C}{U_R} = \frac{U_{0L} U_{0C}}{U_{0R}} \rightarrow \phi}$
- - + Nếu đoạn mạch có tính **cảm kháng**, tức là $Z_L > Z_C$ thì $\varphi > 0$: u **sớm pha** hơn i.
 - + Nếu đoạn mạch có tính **dung kháng**, tức là $Z_L < Z_C$ thì $\varphi < 0$: u **trễ pha** hơn i.

5. Viết biểu thức điện áp và cường đô dòng điện:

- Nếu i = $I_0\cos(\omega t + \varphi_i)$ thì u = $U_0\cos(\omega t + \varphi_i + \varphi)$.
- Nếu u = $U_0\cos(\omega t + \varphi_u)$ thì i = $I_0\cos(\omega t + \varphi_u \varphi)$.

Chú ý: Ta cũng có thể sử dụng máy tính FX 570 ES để giải nhanh chóng dạng toán này:

Ân: [MODE] [2]; [SHIFT] [MODE] [4]:

- Tìm tổng trở Z và góc lệch pha φ : **nhập máy lệnh** $[R + (Z_L Z_C)i]$
- Cho u(t) viết i(t) ta thực hiện phép **chia** hai số phức: $i = \frac{u}{\overline{Z}} = \frac{U_0 \angle \phi_u}{[R + (Z_1 Z_C)i]}$

- Cho i(t) viết u(t) ta thực hiện phép **nhân** hai số phức: $\mathbf{u} = \mathbf{i}.\overline{\mathbf{Z}} = \mathbf{I}_0 \angle \phi_i \times [\mathbf{R} + (\mathbf{Z}_L \mathbf{Z}_C)\mathbf{i}]$
- Cho u_{AM}(t); u_{MB}(t) viết u_{AB}(t) ta thực hiện phép **cộng** hai số phức: như tổng hợp hai dao động. **Thao tác cuối:** [SHIFT] [2] [3] [=]

DANG 2: Công suất của dòng điện xoay chiều - Hệ số công suất.

- Công suất tiêu thụ của mạch điện xoay chiều: $P = UIcos\phi$ Hay $P = RI^2 = U_RI = \frac{U^2R}{Z^2}$
- Hệ số công suất: $\boxed{\cos\phi = \frac{R}{Z} = \frac{U_R}{U} = \frac{U_{0R}}{U_0} = \frac{P}{UI}}$

* Ý nghĩa của hệ số công suất cosφ:

- Khi $\cos \varphi = 1$ ($\varphi = 0$): mạch chỉ có R, hoặc mạch RLC có cộng hưởng điện. Lúc đó: $P = P_{max} = UI = \frac{U^2}{R}$
- Khi $cos\phi$ = 0 (ϕ = $\pm\frac{\pi}{2}$): Mạch chỉ có L, hoặc C, hoặc có cả L và C mà không có R . Lúc đó: P = P_{min} = 0
- Nâng cao hệ số công suất $\cos \phi$ để giảm cường độ dòng điện nhằm giảm hao phí điện năng trên đường dây tải điện. Hệ số công suất của các thiết bị điện quy định phải ≥ 0.85 .

DẠNG 3: Quan hệ giữa các giá trị hiệu dụng

- Sử dụng công thức: $U^2 = U_R^2 + (U_L U_C)^2$; $\tan \phi = \frac{U_L U_C}{U_R}$; $\cos \phi = \frac{U_R}{U}$
- Sử dụng các công thức cho từng loại đoạn mạch \Rightarrow Giải các phương trình để tìm: $U_{R},\,U_{L},\,U_{C}\,...$
- Hoặc sử dụng giản đồ vector Fresnel kết hợp định lí hàm số cosin (hoặc sin) và các hệ thức lượng trong tam giác để tính U_R , U_L , U_C , $U_{...}$
- Hiện tượng đoản mạch: Toàn bộ dòng điện không đi qua phần tử ZX mà đi qua dây nối AB nên khi có hiện tượng đoản mạch ở phần tử nào ta có thể xem như không có (khuyết) phần tử đó trong mạch.
- **Bài toán 1:** Nếu có một sự thay đổi của một phần tử nào đó (R, L hay C) thì tổng trở Z thay đổi, mà **điện áp toàn mạch không đổi** nên cường độ dòng thay đổi và kéo theo điện áp trên từng phần tử cũng thay đổi, song với những phần tử không biến thiên, dù điện áp của chúng có thay đổi thì tỉ lệ điện áp giữa chúng vẫn không đổi.

Ví dụ: Phần tử C thay đổi thì tỉ lệ
$$\frac{U_R}{U_L}$$
 không đổi, nghĩa là: $\frac{U_R}{U_L} = \frac{U_R}{U_L}$

Bài toán 2: Khi mắc **lần lượt R, L, C** vào một hiệu điện thế xoay chiều ổn định thì cường độ hiệu dụng lần lượt là I₁, I², I3. Khi mắc mạch gồm **RLC nối tiếp** vào hiệu điện thế trên thì cường độ

hiệu dụng qua mạch bằng:
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}} = \frac{U}{\sqrt{\left(\frac{U}{I_1}\right)^2 + \left(\frac{U}{I_2} - \frac{U}{I_3}\right)^2}} = \frac{1}{\sqrt{\left(\frac{1}{I_1}\right)^2 + \left(\frac{1}{I_2} - \frac{1}{I_3}\right)^2}}$$

Bài toán 3: Khi cuộn dây có điện trở thuần r ta xem mạch mới như mạch RrLC mắc nối tiếp và khảo sát tương tự mạch RLC nối tiếp.

- Cuộn dây có điện trở r ≠ 0 thì cuộn dây tương đương thì cuộn dây tương đương
- Điện trở thuần tương đương là: ${f R}+{f r}$;
- Điện áp: $U = \sqrt{\left(U_R + U_r\right)^2 + \left(U_L U_C\right)^2}$ (hay $Z = \sqrt{(R+r)^2 + \left(Z_L Z_C\right)^2}$;
- Công suất toàn mạch: $P = U.I.cos\phi = (R + r)I^2$ (hay $cos\phi = \frac{r + R}{Z}$; $tan \phi = \frac{Z_L Z_C}{R + r}$)

DẠNG 4: Quan hệ giữa các giá trị tức thời.

Khi giả thiết cho **tại thời điểm t** một giá trị điện áp hay cường độ dòng điện nào đó thì ta phải hiểu đó là các giá trị tức thời.

- * Ở đoạn mạch R: $\frac{u_R}{U_R} \frac{i}{I} = 0$ (vì $R = \frac{u_R}{i} = \frac{U_R}{I}$)
- * Ở đoạn mạch L (hoặc đoạn mạch C, hoặc đoạn mạch LC): $\frac{i^2}{I_0^2} + \frac{u_L^2}{U_{0L}^2} = 1 \Rightarrow \frac{i^2}{I^2} + \frac{u_L^2}{U_L^2} = 2$
 - Tương tự: $\frac{i^2}{I_0^2} + \frac{u_c^2}{U_{0c}^2} = 1 \implies \frac{i^2}{I^2} + \frac{u_c^2}{U_c^2} = 2 \text{ và } \frac{i^2}{I_0^2} + \frac{u_{LC}^2}{U_{0LC}^2} = 1 \implies \frac{i^2}{I^2} + \frac{u_{LC}^2}{U_{LC}^2} = 2$
 - Vì $i = \frac{u_R}{R}$; $I_0 = \frac{U_{0R}}{R}$ và $\frac{i^2}{I_0^2} + \frac{u_L^2}{U_{0L}^2} = 1$ nên ta còn có: $\frac{u_R^2}{U_{0R}^2} + \frac{u_L^2}{U_{0L}^2} = 1$ và $\frac{u_R^2}{U_{0R}^2} + \frac{u_C^2}{U_{0C}^2} = 1$
 - Hai điện áp u_L và u_C ngược pha nhau, giả sử Z_L = $nZ_C \rightarrow u_L$ = $n.u_C$
 - Cả mạch ta luôn có: $u=u_R+u_L+u_C$; $i=\frac{u_R}{R}\neq\frac{u_L}{Z_L}\neq\frac{u_C}{Z_C}\neq\frac{u}{Z}$

$$\frac{U}{U_0} - \frac{I}{I_0} = 0$$
; $\frac{U}{U_0} + \frac{I}{I_0} = \sqrt{2} (\text{Vi } \frac{U}{U_0} = \frac{I}{I_0} = \frac{1}{\sqrt{2}})$

* Công suất tức thời:

 $p = u.i = UIcos(\omega t).cos(\omega t + \varphi) = \frac{1}{2}U_0I_0cos\varphi + \frac{1}{2}U_0I_0cos(2\omega t + \varphi) = Uicos\varphi + UIcos(2\omega t + \varphi)$

2 2						
	Biểu thức đúng	Biểu thức sai				
Tức thời	$i = i_R = i_L = i_C$	$i = i_R + i_L + i_C$				
Hiệu dụng	$I = I_R = I_L = I_C$					
Tức thời	$u = u_R + u_L + u_C$	$u = u_R = u_L = u_C$				
Hiệu dụng	$U = \sqrt{U_R^2 + (U_L - U_C)^2} \text{ v\'et } U \ge U_R$	$U = U_R + U_L + U_C v \grave{a} U < U_R$				
Véc to	$\vec{\mathbf{U}} = \vec{\mathbf{U}}_{\mathrm{R}} + \vec{\mathbf{U}}_{\mathrm{L}} + \vec{\mathbf{U}}_{\mathrm{C}}$					
Tức thời	$i = \frac{u_R}{R}$	$i = \frac{u_L}{Z_L}$; $i = \frac{u_C}{Z_C}$; $i = \frac{u}{Z}$				
Hiệu dụng	$I = \frac{U}{Z} = \frac{U_R}{R} = \frac{U_L}{Z_L} = \frac{U_C}{Z_C}$					
Độ lệch pha	$-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$	$-\pi \le \phi \le \pi$				

🖔 Dạng toán liên quan đến đường tròn lượng giác

1. Tính thời gian đèn huỳnh quang sáng và tắt:

Khi đặt điện áp $u = U_0 \cos(\omega t + \phi_u)$ vào hai đầu bóng đèn, biết đèn chỉ sáng lên khi $u \ge U_1$

- * Trong một chu kỳ:
 - Thời gian đèn sáng: $t_n = \frac{4}{\omega} \arccos \frac{U_L}{U_0}$

* Trong khoảng thời gian t = nT:

- Thời gian đèn sáng: $t_s = n.\Delta t_s$
- Thời gian đèn tắt: $t_t = n.\Delta t_t = t t_s$
- **2.** Sử dụng góc quét $\Delta \phi = \omega.\Delta t$ để giải dạng toán tìm điện áp và cường độ dòng điện tại thời điểm: $t_2 = t_1 + \Delta t$.

3. Số lần đổi chiều dòng điện

- Dòng điện $i=I_0\cos(2\pi ft+\phi_i)$: Trong một chu kì đổi chiều 2 lần, mỗi giây đổi chiều 2f lần.
- Nhưng nếu $\phi_i = \pm \pi/2$ thì *chỉ giây đầu tiên* đổi chiều 2f 1 lần, các giây sau đổi chiều 2f lần.

DẠNG 5: Cộng hưởng điện

a. Khi xảy ra cộng hưởng thì: $Z_L = Z_C$ ($U_L = U_C$) hay $\omega_0 = \frac{1}{\sqrt{LC}} \rightarrow LC\omega_0^2 = 1$

Lưu ý: Trong các trường hợp khác thì: $\omega = \omega_0 \sqrt{\frac{Z_L}{Z_C}}$

$$\omega = \omega_0 \sqrt{\frac{Z_L}{Z_C}}$$

b. Các biểu hiện của cộng hưởng điện:

$$Z = Z_{min} = R$$
; $U_{Rmax} = U$; $I_{max} = \frac{U}{R}$; $P_{max} = \frac{U^2}{R}$; $\cos \varphi = 1$; $\varphi = 0$

Lưu ý: Trong các trường hợp khác thì công suất của mạch được tính bằng:

$$P = I^2.R = \frac{U^2}{Z^2}.R = \frac{U^2}{R}cos^2 \phi. = P_{max} cos^2 \phi \Rightarrow \boxed{P = P_{max} .cos^2 \phi}$$

c. Đường cong công hưởng của đoan mạch RLC:

- R càng lớn thì cộng hưởng càng không rõ nét.
- Độ chênh lệch $|f f_{ch}|$ càng nhỏ thì I càng lớn.
- d. Liên hệ giữa Z và tần số f: f₀ là tần số lúc công hưởng.
 - Khi f < f_{ch}: Mach có tính dung kháng, Z và f nghịch biến.
 - Khi f > f_{ch}: Mạch có tính cảm kháng, Z và f đồng biến.

Khi $\omega = \omega_1$ hoặc $\omega = \omega_2$ thì I (hoặc P; U_R) như nhau, với $\omega = \omega_{ch}$ thì I_{Max} (hoặc P_{Max} ; U_{Rmax}) ta có: $\omega_{ch} = \sqrt{\omega_1 \omega_2}$ hay $f_{ch} = \sqrt{f_1 f_2}$ Chú ý:

- Số chỉ ampe kế cực đại.
- Cường đô dòng điên và điên áp đồng pha ($\varphi = 0$).
- Hê số công suất cực đại, công suất tiêu thu cực đại.

- * Khi mach xảy ra công hưởng thì $\mathbf{Z}_{\mathsf{Ctd}} = \mathbf{Z}_{\mathsf{L}}$
- * So sánh giá trị ZL (lúc này là Zctđ) và Zc1

- Nếu
$$Z_L > Z_{C1}$$
 ($C_{td} < C_1$) \Rightarrow C_2 ghép nt $C_1 \rightarrow Z_C = Z_{Ctd}$ - $Z_{C1} \rightarrow C_2 = \frac{1}{Z_{C-1} \cdot \omega}$

$$\text{- N\'eu Z_L < Z_{C1} ($C_{t\it d}$ > C_1)} \Rightarrow C_2 \text{ gh\'ep ss } C_1 \rightarrow Z_{C_2} = \frac{Z_{C_1}.Z_{Ct\it d}}{Z_{C_1}-Z_{Ct\it d}} \rightarrow C_2 = \frac{1}{Z_{C_2}.\omega}$$

♦ Bảng ghép linh kiên:

Ghép nối tiếp	Ghép song song
$R = R_1 + R_2 + R_n$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$
$Z_{L} = Z_{L1} + Z_{L2} + + Z_{Ln}$	$\frac{1}{Z_{L}} = \frac{1}{Z_{L1}} + \frac{1}{Z_{L2}} + \dots \frac{1}{Z_{Ln}}$
$L = L_1 + L_2 + L_n$	$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$
$Z_{C} = Z_{C1} + Z_{C2} + + Z_{Cn}$ $1 - 1 - 1 - 1$	$\frac{1}{Z_{C}} = \frac{1}{Z_{C1}} + \frac{1}{Z_{C2}} + \dots \frac{1}{Z_{Cn}}$
$\frac{\overline{C} - \overline{C_1} + \overline{C_2} + \cdots \overline{C_n}}{\overline{C_n}}$	$C = C_1 + C_2 + C_n$

DANG 6: Giải toán mach điện xoay chiều bằng giản đồ véctơ Xét mạch R,L,C mắc nối tiếp như hình vẽ:

- 1. Cách vẽ giản đồ véctơ buộc: dùng qui tắc hình bình hành (ít dùng)
- 2. Cách vẽ giản đồ vécto trươt: dùng qui tắc đa giác (thường dùng) * Chon truc nằm ngang là truc dòng điện, điểm đầu mạch làm gốc (đó là điểm 0).

fch

0

* Vẽ lần lượt các véctơ biểu diễn các điện áp, lần lượt từ O sang S nối đuôi nhau theo nguyên tắc:

R - ngang; L - lên; C - xuống.

* Nối các điểm trên giản đồ có liên quan đến dữ kiện của bài toán.

* Dựa vào các hệ thức lượng trong tam giác, các hàm số sin và cosin, các công thức toán học để tìm các điện áp hoặc góc chưa biết.

3. Một số lưu ý

- Hệ thức lượng trong tam giác:

a. Định lý hàm số sin:
$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

B C C

b. Định lý hàm số cosin:
$$a^2 = b^2 + c^2 - 2b\cos \hat{A}$$

- Hệ thức lượng trong tam giác vuông: Cho tam giác vuông ABC vuông tại A, đường cao AH = h, BC = b, AC = b, AB = c, CH = b', BH = c', ta có các hệ thức sau:

$$b^2 = ab'; c^2 = ac'; h^2 = b'c'; b.c = a.h; \frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}$$

Ví dụ ứng dụng hệ thức đường cao trong tam giác vuông: Cho mạch điện như hình vẽ.

- Nếu bài toán cho \mathbf{U}_{AM} và \mathbf{U}_{NB} ; biết \mathbf{u}_{AN} và \mathbf{u}_{MB} vuông pha với nhau. Tính \mathbf{U}_{MN}

Ta có:
$$h^2 = b'c' \rightarrow U_R^2 = U_L.U_C \rightarrow U_{MN} = U_R$$

- Nếu bài toán cho \mathbf{U}_{AN} và \mathbf{U}_{MB} ; biết \mathbf{u}_{AN} và \mathbf{u}_{MB} vuông pha với nhau.

Tính U_{MN}

$$Ta \ c\acute{o}: \frac{1}{h^2} \!=\! \frac{1}{b^2} \!+\! \frac{1}{c^2} \longrightarrow \! \frac{1}{U_R^2} \!=\! \frac{1}{U_{AN}^2} \!+\! \frac{1}{U_{MB}^2} \longrightarrow \boldsymbol{U_{MN}} = \boldsymbol{U_R}$$

🔈 Bài toán 1: Liên quan đến độ lệch pha

a. Trường hợp 1: $\phi_1 - \phi_2 = \pm \Delta \phi$ (độ lệch pha của hai đoạn mạch ở trên cùng một mạch điện) khi đó:

... \checkmark Nếu Δφ = 0 (hai điện áp đồng pha) thì $φ_1 = φ_2 \Rightarrow tanφ_1 = tanφ_2$ Lúc này ta có thể cộng các biên độ điện áp thành phần: $U = U_1 + U_2 \Rightarrow Z = Z_1 + Z_2$

✓ Nếu
$$\Delta φ = \frac{\pi}{2}$$
 (hai điện áp vuông pha), ta có: tan $φ_1$.tan $φ_2 = -1$

 $\checkmark \ \text{Neu } \Delta \phi \ \text{bất kì thì: } \tan\!\Delta \phi = \frac{\tan\phi_1 - \tan\phi_2}{1 + \tan\phi_1 \tan\phi_2} \ \text{hoặc dùng giản đồ vecto.}$

b. Trường hợp 2:
$$\phi_1 + \phi_2 = \frac{\pi}{2} \Rightarrow tan\phi_1.tan\phi_2 = 1$$

c. Trường hợp 3: $|\phi_1| + |\phi_2| = \frac{\pi}{2} \Rightarrow \tan \phi$. $\tan \phi = \pm 1$

🔈 Bài toán 2: Ứng dụng giải bài toán hộp đen

a. Trường hợp 1: Nếu u và i cùng pha thì trong hộp đen có duy nhất một điện trở R hay có đủ ba phần tử điện R, L, C nhưng $Z_L = Z_C$.

b. Trường hợp 2: Nếu u và i vuông pha nhau thì trong hộp đen không có điện trở thuần, có cuộn dây tự cảm L, có tụ điện C hoặc có cả hai.

c. Trường hợp 3: Nếu u sớm (hoặc trễ) pha hơn i một góc nhọn thì trong mạch có điện trở R và cuộn dây tự cảm L, hoặc cả ba phần tử điện R, L, C nhưng $Z_L > Z_C$ (hoặc $Z_C > Z_L$)

* Trong một trường hợp đơn giản: dùng máy tính

- Tính Z:
$$\overline{Z} = \frac{u}{i} = \frac{U_0 \angle \phi_u}{I_0 \angle \phi_i}$$
 (Phép CHIA hai số phức)

Nhập máy:
$$U_0$$
 SHIFT (-) φ_u : I_0 SHIFT (-) φ_i =

- Với tổng trở phức: $\overline{Z} = R + (Z_L Z_C)i$, nghĩa là có dạng (a + bi). với a = R; $b = (Z_L Z_C)i$
- Chuyển từ dạng $\mathbf{A} \angle \mathbf{\varphi}$ sang dạng: $\mathbf{a} + \mathbf{bi}$: bấm |SHIFT||2||4||=

DANG 7: Bài toán cực tri

Bài toán tìm **giá trị lớn nhất và nhỏ nhất** của một đại lượng vật lí khi có một yếu tố biến thiên mà dấu hiệu nhận biết **không giống** với các biểu hiện quen thuộc của **cộng hưởng điện** thì ta chon một trong các phương pháp sau để giải:

- PP1: Dùng đao hàm:

Xét hàm số y = f(x); $(x \in R)$ có đao hàm tai x = xo và liên tuc trong khoảng chứa x_0 . Nếu hàm số đat cực tri tại $x = x_0$ thì $f'(x_0) = 0$. Và:

- + Nếu f"(x₀) > 0 thì xo là điểm cực tiểu;
- + Nếu f''(x_0) < 0 thì xo là điểm cực đại.
- PP2: Dùng tính chất của tam thức bậc hai: $X \notin Y = ax^2 + bx + c$.

+ Với
$$a > 0$$
: y_{min} khi $x_{CT} = -\frac{b}{2a}$ và $y_{min} = -\frac{\Delta}{4a}$;

+ Với a < 0:
$$y_{max}$$
 khi $x_{CT} = -\frac{b}{2a}$ và $y_{max} = -\frac{\Delta}{4a}$

* **Lury ý:** Hai nghiệm
$$x_1$$
, x_2 thỏa Viet: $x_1 + x_2 = -\frac{b}{a}$; do đó $x_{CT} = \frac{1}{2}(x_1 + x_2)$

- PP3: Dùng bất đẳng thức Cauchy: $a + b \ge 2\sqrt{ab}$ (a, b dương);
 - + Dấu "=" xảy ra khi a = b, cần chon a và b sao cho tích a.b = const.
 - + Khi tích 2 số không đổi, tổng nhỏ nhất khi 2 số bằng nhau.

Khi tổng 2 số không đổi, tích 2 số lớn nhất khi 2 số bằng nhau.

* **Luy ý:** Hàm số kiểu phân thức:
$$y = ax + \frac{b}{x}$$
. Cực trị của y ứng với $ax = \frac{b}{x} \rightarrow x_{CT} = \sqrt{\frac{b}{a}}$; Hai nghiệm x_1 , x_2 thỏa: $x_1.x_2 = \frac{b}{a}$; do đó $x_{CT} = \sqrt{x_1.x_2}$

* Chú ý: Trong các bài toán cực trị điện xoay chiều, mặc dù các đại lượng không phụ thuộc nhau tường minh là hàm bậc 2 hay hàm phân thức như trong toán học nhưng chúng có biểu thức "tương

tự" nên ta có thể áp dụng $\left| \mathbf{x}_{\text{CT}} = \frac{1}{2} \left(\mathbf{x}_1 + \mathbf{x}_2 \right) \right|$ (cho quan hệ "hàm bậc 2") và $\left[\mathbf{x}_{\text{CT}} = \sqrt{\mathbf{x}_1 \cdot \mathbf{x}_2} \right]$ (cho quan

$$\hat{x} \left[\mathbf{x}_{\text{CT}} = \sqrt{\mathbf{x}_1 \cdot \mathbf{x}_2} \right]$$
 (cho quan

hệ "hàm phân thức") khi khảo sát sự phụ thuộc giữa chúng.

- PP4: Dùng giản đồ Fresnel kết hợp định lí hàm số sin, hàm cosin:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}; \quad a^2 = b^2 + c^2 - 2bc\cos \hat{A}$$

- Bài toán 1: Đoạn mạch RLC có R thay đổi

 A

 R

 R

 N

 C

 B
- 1. Tìm R để I_{max} (Z_{min}): R = 0

$$\stackrel{A}{\longleftarrow} \stackrel{R}{\longleftarrow} \stackrel{L}{\longleftarrow} \stackrel{C}{\longleftarrow} \stackrel{E}{\longleftarrow}$$

2. Tìm R để
$$P_{max}$$
: $R = |Z_L - Z_C|$, $P_{max} = \frac{U^2}{2R}$, $Z = R\sqrt{2} \implies I = \frac{U}{R\sqrt{2}}$; $\cos \varphi = \frac{\sqrt{2}}{2}$; $\varphi = \pm \frac{\pi}{4}$

3. Khi $R = R_1$ hoặc $R = R_2$ mạch có cùng công suất P.

- Ta có:
$$R_1 + R_2 = \frac{U^2}{P}$$
; $R_1 R_2 = (Z_L - Z_C)^2$; $\tan \phi_1 . \tan \phi_2 = 1 \Rightarrow \phi_1 + \phi_2 = \pi/2$

$$\tan \varphi_1. \tan \varphi_2 = 1 \implies \varphi_1 + \varphi_2 = \pi/2$$

- Với giá trị \mathbf{R}_0 thì \mathbf{P}_{max} , ta có: $R_0 = \sqrt{R_1 R_2}$; $P_{\text{max}} = \frac{U^2}{2\sqrt{R_1 R_2}}$
- 4. Trường hợp cuốn dây có điện trở R₀:
- a. Tìm R để công suất toàn mạch cực đại (P_{max}): $R + R_0 = |Z_L Z_C|$; $P_{max} = \frac{U^2}{2(R + R_0)}$

Tổng quát: $R_1 + R_2 + ... + R_n = |Z_L - Z_C|$ (Nếu khuyết L hay C thì không đưa vào).

- **b.** Tìm R để công suất trên R cực đại (P_{Rmax}): $R^2 = R_0^2 + (Z^L Z_C)^2$; $P_{Rmax} = \frac{U^2}{2(R + R_0)}$; $\cos \phi > \frac{\sqrt{2}}{2}$
- c. Khi $R = R_1$ hoặc $R = R_2$ mạch có cùng công suất P:

- Ta có:
$$R_1 + R_2 + 2r = \frac{U^2}{P}$$
; $(R_1 + r)(R_2 + r) = (Z_L - Z_C)^2$;

- **Với giá trị R₀ thì P_{max}**, ta có: $R_0 + r = \sqrt{(R_1 + r)(R_2 + r)}; P_{max} = \frac{U^2}{2\sqrt{(R_1 + r)(R_1 + r)}}$
- ightharpoonup Bài toán 2: Tìm điều kiện để U_{RL} & U_{RC} không phụ thuộc vào R
- 1. Tìm điều kiện để $U_{RC} \notin R$

$$U_{RC} = I\sqrt{R^2 + Z_C^2} = \frac{U}{\sqrt{1 + \frac{Z_L(Z_L - 2Z_C)}{R^2 + Z_C^2}}} \Rightarrow \mathbf{U_{RC}} \notin \mathbf{R} \text{ khi } \mathbf{U_{RC}} = \mathbf{U} = \mathbf{const} \text{ hay: } \boxed{Z_L = 2Z_C \Rightarrow \omega = \frac{\sqrt{2}}{\sqrt{LC}}}$$

2. Tìm điều kiện để U_{RL} \notin **R**: Tương tự, ta có: $Z_C = 2Z_L \Rightarrow \omega = \frac{1}{\sqrt{2LC}}$

- 🔈 Bài toán 3: Đoạn mạch RLC có L thay đổi
- 1. Tìm L để I_{Max}; U_{Rmax}; U_{RCmax}; U_{RCmax} (U_{MBmax}); U_{LCmin} (U_{ANmin}): $Z_L = Z_C \Rightarrow L = \frac{1}{C\omega^2}$

Lúc đó:
$$I_{max} = \frac{U}{R}$$
; $P_{max} = \frac{U^2}{R} \Rightarrow U_{Rmax} = U$ còn $U_{LCmin} = 0$

2. Tìm L để U_{Lmax} : $Z_{L} = \frac{R^2 + Z_{C}^2}{Z_{C}}$; $U_{Lmax} = \frac{U\sqrt{R^2 + Z_{C}^2}}{R}$

- Lúc này: $\vec{U} \perp \vec{U}_{RC}$ hay : $\boxed{U_L^2 = U^2 + U_R^2 + U_C^2 \implies U_L^2 U_C U_L + U^2 = 0}$
- 3. Tìm L để U_{RLmax} (U_{ANmax}):

$$Z_{L} = \frac{Z_{C} + \sqrt{4R^{2} + Z_{C}^{2}}}{2}; U_{RL max} = \frac{2UR}{\sqrt{4R^{2} + Z_{C}^{2} - Z_{C}}}$$
;
$$U_{L}^{2} - U_{C}U_{L} + U^{2} = 0$$

- Tìm L để U_{RLmin} (U_{ANmin}): $Z_L = 0$; $U_{RLmin} = \frac{\overline{UR}}{\sqrt{R^2 + Z_c^2}}$
- 4. Khi $L = L_1$ hoặc $L = L_2$ mà:
 - I hoặc P như nhau thì: $Z_C = \frac{Z_{L_1} + Z_{L_2}}{2}$

- U_L như nhau, có một giá trị của L để U_{Lmax} thì: $\boxed{\frac{1}{Z_L} = \frac{1}{2} \left(\frac{1}{Z_{L_1}} + \frac{1}{Z_{L_2}} \right)} \Rightarrow L = \frac{2L_1L_2}{L_1 + L_2}$

5. Khi L = L₁ hoặc L = L₂ thì i₁ và i₂ lệch pha nhau góc $\Delta \varphi$

Hai đoạn mạch RCL₁ và RCL₂ có cùng u_{AB} . Gọi ϕ_1 và ϕ_2 là độ lệch pha của u_{AB} so với i_1 và i_2 . Giả sử $\phi_1 > \phi_2 \Rightarrow \phi_1 - \phi_2 = \Delta \phi$:

- Nếu
$$\mathbf{I_1} = \mathbf{I_2}$$
 thì $\phi_1 = -\phi_2 = \frac{\Delta \phi}{2}$ \Rightarrow $\boxed{\tan \phi_1 = \tan \frac{\Delta \phi}{2}}$ và $\boxed{Z_c = \frac{Z_{L_1} + Z_{L_2}}{2}}$

- Nếu $\mathbf{I_1} \neq \mathbf{I_2}$ thì $\boxed{\tan\! \phi_0 = \frac{\tan\phi_1 - \tan\phi_2}{1 + \tan\phi_1 \tan\phi_2}}$ hoặc dùng giản đồ Fresnel.

🖎 Bài toán 4: Đoạn mạch RLC có C thay đổi A R R MIN C B

1. Tìm C để I_{Max}; U_{Rmax}; U_{RLmax} (U_{ANmax}); U_{LCmin} (U_{MBmin}):
$$Z_L = Z_C \Rightarrow C = \frac{1}{L\omega^2}$$
;

2. Tìm C để
$$U_{Cmax}$$
: $Z_{C} = \frac{R^{2} + Z_{L}^{2}}{Z_{L}}$; $U_{Cmax} = \frac{U\sqrt{R^{2} + Z_{L}^{2}}}{R}$

Lúc này: $\vec{U} \perp \vec{U}_{RL}$ hay: $U_C^2 = U^2 + U_R^2 + U_L^2 \implies U_C^2 - U_L U_C + U^2 = 0$

3. Tìm C để U_{RCmax} (U_{ANmax}):

$$\boxed{Z_{\text{C}} = \frac{Z_{\text{L}} + \sqrt{4R^2 + Z_{\text{L}}^2}}{2} \text{; } U_{\text{RC} \text{max}} = \frac{2UR}{\sqrt{4R^2 + Z_{\text{L}}^2} - Z_{\text{L}}}} \text{ } \text{; } \boxed{U_{\text{C}}^2 - U_{\text{L}}U_{\text{C}} + U_{\text{R}}^2 = 0}$$

Tìm C để U_{RCmin} : $Z_{\text{C}} = 0$; $U_{\text{RCmin}} = \frac{UR}{\sqrt{R^2 + Z_{\text{L}}^2}}$

- 4. Khi $C = C_1$ hoặc $C = C_2$ mà:
 - I hoặc P như nhau thì: $\boxed{Z_L = \frac{Z_{C_I} + Z_{C_2}}{2}}$
 - I hoặc P như nhau, có một giá trị của L để I_{max} hoặc P_{max} thì: $\boxed{Z_{\text{C}} = \frac{Z_{\text{C}_1} + Z_{\text{C}_2}}{2} \Rightarrow \text{C} = \frac{2C_{\text{I}}C_{\text{2}}}{C_{\text{I}} + C_{\text{2}}}}$
 - U_C như nhau, có một giá trị của C để U_{Cmax} thì: $\boxed{\frac{1}{Z_c} = \frac{1}{2} \left(\frac{1}{Z_{C_1}} + \frac{1}{Z_{C_2}} \right) \Rightarrow C = \frac{C_1 + C_2}{2}}$

5. Khi C = C_1 hoặc C = C_2 thì i_1 và i_2 lệch pha nhau góc $\Delta \phi$

Hai đoạn mạch RLC₁ và RLC₂ có cùng uAB. Gọi ϕ_1 và ϕ_2 là độ lệch pha của u_{AB} so với i_1 và i_2 . Giả sử $\phi_1 > \phi_2 \Rightarrow \phi_1 - \phi_2 = \Delta \phi$:

- Nếu
$$\mathbf{I_1} = \mathbf{I_2}$$
 thì $\phi_1 = -\phi_2 = \frac{\Delta \phi}{2} \Rightarrow \boxed{\tan \phi_1 = \tan \frac{\Delta \phi}{2}}$ và $\mathbf{Z_L} = \frac{\mathbf{Z_{C_1}} + \mathbf{Z_{C_2}}}{2}$

- Nếu $\mathbf{I_1} \neq \mathbf{I_2}$ thì $\tan \Delta \phi = \frac{\tan \phi_1 \tan \phi_2}{1 + \tan \phi_1 \tan \phi_2}$ hoặc dùng giản đồ Fresnel.
- 6. Tìm C để U_{MBmin} và tính U_{MBmin} ; $Z_L = Z_C \implies C = \frac{1}{L\omega^2}$; $U_{MBMin} = \frac{U.r}{R+r}$

- 🔈 Bài toán 5: Đoạn mạch RLC có ω thay đổi
- **1. Tìm ω để U**_{Rmax}: Ta có hiện tượng cộng hưởng: **U**_{Rmax} = **U**; khi đó $\omega_R = \sqrt{\frac{1}{LC}}$
- 2. Tìm ω để U_{Lmax} : $\omega_L = \frac{1}{C} \sqrt{\frac{2}{2\frac{L}{C} R^2}}$ (điều kiện: $2L > CR^2$); $U_{Lmax} = \frac{2UL}{R\sqrt{4LC R^2C^2}}$
- 3. Tìm $\boldsymbol{\omega}$ để U_{Cmax} : $\omega_{C} = \frac{1}{L} \sqrt{\frac{2\frac{L}{C} R^{2}}{2}}$ (điều kiện: $2L > CR^{2}$); $U_{Cmax} = \frac{2UL}{R\sqrt{4LC R^{2}C^{2}}}$

Một số lưu ý:

- Từ điều kiện: $L > \frac{CR^2}{2}$ ta có thể chứng minh được: $\omega_C < \omega_R < \omega_L$. Nghĩa là, **khi giá trị \omega tăng** dần thì điện áp trên các linh kiện sẽ lần lượt đạt cực đại theo thứ tự: C, R, L.
- Giá trị của ω để $U_L = U_{AB}$ nhỏ hơn $\sqrt{2}$ lần giá trị của ω để $U_L = U_{Lmax}$, còn giá trị của ω để $U_C = U_{AB}$ lớn hơn 2 lần giá trị của ω để $U_C = U_{Cmax}$ (điều này được chứng minh ở trang 44)
 - Khi U_{cmax} : nhận thấy $X = Z_L = \sqrt{\frac{L}{C} \frac{R^2}{2}} \Leftrightarrow \boxed{R^2 = 2Z_L.(Z_C Z_L)}$
- $\Rightarrow \frac{Z_{_L}}{R} \frac{Z_{_C} Z_{_L}}{R} = \frac{1}{2} \text{ . } \\ \text{D} \\ \text{\"{a}t: } \\ tan \\ \alpha_1 = \frac{Z_{_L}}{R} \text{ ; } \\ tan \\ \alpha_2 = \frac{Z_{_C} Z_{_L}}{R} \\ \Rightarrow \boxed{tan \\ \alpha_1.tan \\ \alpha_2 = \frac{1}{2}} \\$

- Từ hình vẽ, ta có: $Z_C^2 = Z^2 + Z_L^2$
- Khi U_{Lmax}: Tương tự như trên ta có các công thức sau:

- 4. Khi $\omega = \omega_1$ hoặc $\omega = \omega_2$ mà:
 - I hoặc P như nhau, có một giá trị của ω để I_{max} hoặc P_{max} thì: $\omega^2 = \omega_1.\omega_2 = \frac{1}{LC}$
 - I như nhau: $I_1=I_2=\frac{I_{max}}{n}$, tính giá trị R: $R=\frac{L\left|\omega_1-\omega_2\right|}{\sqrt{n^2-1}}$
 - Hệ số công suất như nhau, biết L = CR²:

$$\cos \varphi_1 = \cos \varphi_2 = \sqrt{\frac{\omega_1 \omega_2}{\omega_1^2 - \omega_1 \omega_2 + \omega_2^2}} = \frac{1}{\sqrt{1 + \left(\sqrt{\frac{\omega_1}{\omega_2}} - \sqrt{\frac{\omega_2}{\omega_1}}\right)^2}}$$

Tương tự, ta có:

$$I = \frac{I_{\text{max}}}{\sqrt{1 + \left(\sqrt{\frac{\omega_1}{\omega_2}} - \sqrt{\frac{\omega_2}{\omega_1}}\right)^2}}$$

$$| U_{R} = \frac{U_{R \max}}{\sqrt{1 + \left(\sqrt{\frac{\omega_{1}}{\omega_{2}}} - \sqrt{\frac{\omega_{2}}{\omega_{1}}}\right)^{2}}}$$

$$\mathbf{F} = \frac{\mathbf{P}_{\text{max}}}{1 + \left(\sqrt{\frac{\omega_1}{\omega_2}} - \sqrt{\frac{\omega_2}{\omega_1}}\right)^2}$$

- U_L như nhau, có một giá trị của ω để U_{Lmax} thì:

$$\mathbf{\hat{l}} : \boxed{\frac{1}{\omega_{L}^{2}} = \frac{1}{2} \left(\frac{1}{\omega_{1}^{2}} + \frac{1}{\omega_{2}^{2}} \right)} \mathbf{O}$$

- U_C như nhau, có một giá trị của ω để U_{Cmax} thì: $\omega_C^2 = \frac{1}{2}(\omega_1^2 + \omega_2^2)$

$$\lim_{C} \left[\omega_{C}^{2} = \frac{1}{2} \left(\omega_{1}^{2} + \omega_{2}^{2} \right) \right] \mathbb{Q}$$

** Khảo sát sư phu thuộc của U_L , U_C vào ω^2 :

a) Khảo sát U_L theo ω²

- Khi ω^2 = 0 thì Z_C = ∞ , I = 0 và U_L = 0
- Khi $\omega^2 = \omega_1^2$ thì U_{Lmax}
- Khi $\omega^2 = \infty$ thì $Z_L = \infty = ZA_B$, $U_L = U_{AB}$

b) Khảo sát Uc theo ω²

- Khi $\omega^2 = 0$ thì $Z_C = \infty = Z_{AB}$, và $U_C = U_{AB}$
- Khi $\omega^2 = \omega_2$ thì U_{Cmax}
- Khi $\omega^2 = \infty$ thì $Z_L = \infty$, I = 0, $U_C = 0$

+ Đồ thị của U_L cắt đường nằm ngang U_{AB} tại hai giá trị của ω là $\omega_{L_0}^2$ và ∞ . Theo ①, ta có:

$$\omega_{\rm L_0} = \frac{\omega_{\rm L}}{\sqrt{2}}$$
. Nghĩa là, giá trị ω để $U_L = U_{AB}$ nhỏ hơn $\sqrt{2}$ lần giá trị ω để U_{Lmax} .

+ Đồ thị của U_C cắt đường nằm ngang U_{AB} tại hai giá trị của ω là 0 và $\omega_{C_0}^2$. Theo ②, ta có:

 $\omega_{c_0}=\omega_{c}\sqrt{2}$. Nghĩa là, giá trị ω để U_{c} = U_{AB} lớn hơn $\sqrt{2}$ lần giá trị của ω để U_{Cmax}

MỘT SỐ DẠNG KHÁC:

 \square DANG 8: Hiệu điện thế $u = U_1 + U_0 \cos(\omega t + \varphi)$ được coi gồm một hiệu điện thế không đổi U_1 và một hiệu điện thế xoay chiều $u = U_0 \cos(\omega t + \varphi)$ đồng thời đặt vào đoạn mạch.

Khi đó công suất tiêu thụ của đoạn mạch bằng tổng công suất của 2 dòng điện (dòng không đổi

I và dòng xoay chiều có giá trị hiệu dụng I_2). Ta có: $P = P_1 + P_2$ và $I = \sqrt{I_1^2 + I_2^2}$

☑ DANG 9: Điện lượng chuyển qua tiết diện dây dẫn trong thời gian từ t₁ đến t₂

* Cách 1: Sử dụng tích phân cho hàm $i = I_0 \cos(\omega t + \varphi)$ với 2 cận là $t_1 \& t_2$

Ta có:
$$\Delta \mathbf{q} = \mathbf{i}.\Delta \mathbf{t} \Rightarrow \mathbf{q} = \int_{\mathbf{t}}^{\mathbf{t}_2} \mathbf{i}.d\mathbf{t}$$

* Cách 2: Quy bài toán này về dạng toán tính quãng đường S trong thời gian từ t_1 đến t_2

Giải tìm kết quả: $\mathbf{S} = \mathbf{n}\mathbf{A}$ rồi trả về kết quả tương ứng: $\mathbf{q} = \mathbf{n}\mathbf{q}_0 = \mathbf{n}\frac{\mathbf{l}_0}{\mathbf{q}}$

CHỦ ĐỀ 2: MÁY PHÁT ĐIỆN

Dang 1: MÁY PHÁT ĐIỆN VÀ ĐÔNG CƠ ĐIỆN.

* Nguyên tắc tạo ra dòng điện xoay chiều

Tạo ra dòng điện xoay chiều bằng máy phát điện dựa trên hiện tượng cảm ứng điện từ:

Từ thông: $\phi = NBScos(\omega t + \varphi) = \Phi_0 cos(\omega t + \varphi)$

Suất điện động:
$$e = -\frac{d\phi}{dt} = -\phi' = \omega NBSsin(\omega t + \phi) = E_0 cos(\omega t + \phi - \frac{\pi}{2})$$
.

* Tần số của dòng điện xoay chiều: Máy phát có một cuộn dây và một nam châm (gọi là một cặp cực) và rôto quay n vòng trong một giây thì tần số dòng điện là f = n. Máy có **p cặp cực** và rô to quay \mathbf{n} vòng trong một giây thì $\mathbf{f} = \mathbf{n}\mathbf{p}$.

Chú $\dot{\mathbf{v}}$: + Vì \mathbf{f} tỉ lễ với \mathbf{n} nên $\boldsymbol{\omega}$, \mathbf{E} , \mathbf{Z}_L cũng tỉ lệ với \mathbf{n} , còn \mathbf{Z}_C tỉ lệ nghịch với \mathbf{n} .

+ Khi bỏ qua điện trở các cuộn dây của máy phát xoay chiều 1 pha thì **U = E = I.Z nên** lúc này U cũng tỉ lê với n.

* Máy phát điện xoay chiều ba pha:
$$e_1 = E_o cos\omega t; e_2 = E_o cos\left(\omega t - \frac{2\pi}{3}\right); e_3 = E_o cos\left(\omega t + \frac{2\pi}{3}\right)$$

Chú ý: Khi suất điện động ở một pha đạt cực đại ($e_1 = E_0$) và hướng ra ngoài thì các suất điện động kia đạt giá trị: $e_2 = e_3 = -\frac{E_0}{2}$ và hướng vào trong.

* Đối với động cơ điện ba pha, các bài toán thường liên quan đến công suất:

Công suất tiêu thụ trên động cơ điện: $P_{co} + I^2r = UI\cos\varphi$.

$$P_{co\acute{i}ch} = \frac{A}{t}$$

$$P_{hao\ ph\acute{i}} = R.I^{2}$$

$$P_{to\grave{a}n\ ph\grave{a}n} = Uicos\varphi$$

$$P_{to\grave{a}n\ ph\grave{a}n} = P_{hao\ ph\acute{i}} + P_{co\acute{i}ch}$$

$$H = \frac{P_{toan\ phan} - P_{co\ ich}}{P_{toan\ phan}}.100\%$$

$$Irong\ do:$$

$$A: Công cơ học (công mà động cơ sảu t: thời gian ĐV: h

R: điện trở dây cuốn ĐV: Ω
$$P_{hao\ ph\acute{i}} : công suất hao phí ĐV: kW$$

$$P_{hao\ ph\acute{i}} : công suất toàn phần (công)$$$$

Trong đó:

A: Công cơ học (công mà động cơ sản ra) ĐV: kWh

Pcó ích: (công suất mà động cơ sản ra) ĐV: kW

 $P_{toàn\ phần}$: công suất toàn phần (công suất tiêu thụ của động cơ) ĐV: kW $cos \varphi$: Hệ số công suất của động cơ

U: Điện áp làm việc của động cơ. ĐV: V I: Dòng điện hiệu dụng qua động cơ. ĐV: A

Dang 2: MÁY BIẾN ÁP VÀ TRUYỀN TẢI ĐIỆN NĂNG.

a) Áp dung các công thức về biến thế liên quan đến điện áp, công suất, cường độ dòng điện: Gọi Φ là từ thông biến thiên trong lõi sắt; ZL và r là cảm kháng và điện trở trong của các cuộn dây.

- Ở cuôn sơ cấp nhân điện áp ngoài U_1 và *tư cảm ứng* sinh ra suất điên đông tư cảm e₁ nên cuôn sơ cấp đóng vai trò máy thu.

Ta có:
$$e_1 = U_1 - I_1 r_1 = I_1 . Z_{L1} = N_1 . \Phi . \omega$$
 (1)

- Ở cuôn thứ cấp diễn ra quá trình *cảm ứng điên từ* sinh ra suất điên đông cảm ứng e² và tao ra hiệu điên thế U² ở hai đầu cuôn thứ cấp nên cuộn thứ cấp đóng vai trò máy phát.

Ta có:
$$e_2 = U_2 - I_2 r_2 = I_2 \cdot Z_{L2} = N_2 \cdot \Phi . \omega$$
 (2)

- Từ (1) và (2)
$$\rightarrow \left[\frac{e_1}{e_2} = \frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} \right]$$
 (3)

- Nếu $r_1 \approx r_2 \approx 0$ thì $e_1 = U_1$ và *cuộn thứ cấp để hở* $(I_2 = 0)$ thì $e_2 = U_2 \rightarrow \left| \frac{U_1}{U_2} = \frac{N_1}{N_2} = k \right|$ **(4)**
- Khi k < 1 \rightarrow N₁ < N₂ \rightarrow U₁ < U₂: Máy tăng áp
- Khi k > 1 \rightarrow N₁ > N₂ \rightarrow U₁ > U₂: Máy hạ áp
- Hiệu suất của máy: $H = \frac{P_2}{P_1} = \frac{U_2 I_2 \cos \varphi_2}{U_1 I_1}.100\% \rightarrow P_2 = H.P_1 \text{ (5)}$
- Nếu điện năng hao phí không đáng kể (P₁ = P₂) và coi $\varphi_1 = \varphi_2$ thì: $\left| \frac{U_1}{U_2} = \frac{I_2}{I_1} \right|$ (6)

Chú ý:

+ Khi $P_1 = P_2$; $r_1 \neq r_2$ & cuộn thứ cấp chỉ có R thì: $\cos \varphi_2 = 1$, $I_2 = \frac{U_2}{R}$; $I_1 = \frac{I_2}{k}$

$$Ta \ c\'o: \ e_1 = k.e_2 \Rightarrow U_1 - I_1r_1 = k(U_2 + I_2r_2 \) \Rightarrow U_1 = k \left(U_2 + \frac{U_2}{R}r_2\right) + \frac{U_2}{k.Rr_1} \Rightarrow \boxed{U_2 = \frac{k.R.U}{k^2(R + r_2) + r_1}}$$

Khi đó hiệu suất của máy:
$$H = \frac{k^2.R}{k^2(R+r_2)+r_1}$$

+ Khi $r_1 \neq 0$ & cuộn thứ cấp để hở thì: $e_2 = U_2$. Áp dụng: $\frac{E_1}{E_2} = \frac{N_1}{N_2} \Rightarrow E_1$. Lúc này: $E_1 = U_{L1}$

Ta có:
$$\vec{U}_1 = \vec{U}_{r_1} + \vec{U}_{L_1} \implies \boxed{U_{r_1}^2 = U_1^2 - U_{L_1}^2}$$

+ Khi cuộn sơ cấp bị cuốn ngược n vòng thì suất điện động cảm ứng xuất hiện ở các cuộn sơ cấp và thứ cấp lấn lượt là $\mathbf{e}_1 = (\mathbf{N}_1 - \mathbf{2}\mathbf{n})\mathbf{e}_0$; $\mathbf{e}_2 = \mathbf{N}_2\mathbf{e}_0$; Với \mathbf{e}_0 suất điện động cảm ứng xuất hiện ở mỗi

vòng dây. Do đó:
$$\frac{e_1}{e_2} = \frac{E_1}{E_2} = \frac{U_1}{U_2} = \frac{N_1 - 2n}{N_2}$$

+ Nếu MBA có 2 đầu ra với U_1 là điện áp vào, U_2 , U_3 là điện áp ra thì: $\frac{N_1}{N_2} = \frac{U_1}{U_2}$; $\frac{N_1}{N_3} = \frac{U_1}{U_3}$

Và:
$$P_1 = P_2 + P_3$$
 hay $U_1.I_1 = U_2.I_2 + U_3.I_3$

+ Nếu MBA phân nhánh thì $\Phi_1 \neq \Phi_2$, giả sử các đường sức chia đều

cho 2 nhánh thì:
$$\Phi_1 = 2\Phi_2 \rightarrow \boxed{\frac{e_1}{e_2} = 2\frac{N_1}{N_2}}$$

b) Áp dụng các công thức về truyền tải điện năng:

- Công suất hao phí trên đường dây tải điện:
$$\Delta P = R \frac{P_A^2}{U_A^2}$$
 (thường $cos\phi = 1$)

Trong đó: P là công suất phát từ nhà máy; U là điện áp hiệu dụng từ nhà máy; $R = \rho \frac{l}{S}$ (l = 2AB) là điên trở tổng công của dây tải điên.

Chú ý: Nếu gọi công suất điện của nhà máy là P, công suất tiêu thụ của mỗi hộ dân là P₀, n là số hộ dân được cung cấp điện khi điện áp truyền đi là U, Δ P là công suất hao phí thì ta có: **P** = **nP**₀ + Δ P

- Biện pháp giảm hao phí: *Tăng U lên k lần thì giảm hao phí được k² lần* (gắn với giả thiết bài toán cho **công suất trước khi truyền tải là không đổi**).

- Hiệu suất tải điện:
$$H = \begin{cases} \frac{P_A - \Delta P}{P_A} = 1 - \frac{\Delta P}{P_A} = 1 - R \frac{P_A}{U_A^2} \\ \frac{P_B}{P_B + \Delta P} \end{cases}$$

- Sơ đồ truyền tải điện từ A đến B:

Hình 8: Mô hình truyền tải điện

Độ giảm áp trên đường dây là: $\Delta U = IR = U_{2A} - U_{1B}$

- Thường trong các đề thi ĐH bài toán truyền tải không đi kèm với máy biến áp nên sơ đồ trên ta

lược bỏ máy tăng thế và máy hạ thế: $\Delta U = IR = U_A - U_B$; $\Delta P = I^2R = P_A - P_B = \Delta U.I$

Thi giả thiết bài toán nhắc đến công suất trước khi truyền tải PA

$$H = 1 - R \frac{P_A}{U_A^2} \implies = R \frac{P_A}{U_A^2} = 1 - H$$

∽ Khi giả thiết bài toán nhắc đến **công suất nơi tiêu thụ P**_B

$$H = 1 - \frac{R}{U_A^2} P_A = 1 - \frac{R}{U_A^2} \frac{P_B}{H} \Longrightarrow \frac{R}{U_A^2} P_B = H(1 - H)$$

CHƯƠNG V: SÓNG ÁNH SÁNG

CHỦ ĐỀ 1: TÁN SẮC ÁNH SÁNG A. TÓM TẮT LÍ THUYẾT

- * Hiện tượng tán sắc ánh sáng: Là hiện tượng ánh sáng bị tách thành nhiều màu khác nhau khi đi qua mặt phân cách của hai môi trường trong suốt.
- *Ánh sáng đơn sắc là ánh sáng chỉ có một màu nhất định, có bước sóng nhất định và không bị tán sắc khi truyền qua lăng kính.

Bước sóng của ánh sáng đơn sắc $\lambda = \frac{v}{f}$, truyền trong chân không $\lambda_0 = \frac{c}{f} \Rightarrow \frac{\lambda_0}{\lambda} = \frac{c}{v} \Rightarrow \lambda = \frac{\lambda_0}{n}$

- * Chiết suất của môi trường trong suốt phụ thuộc vào màu sắc ánh sáng. Trong cùng một môi trường: $n_{d\delta} < n < n_{tím} \Rightarrow v_{d\delta} > v > v_{tím}$
- * Khi truyền qua các môi trường trong suốt khác nhau vận tốc của ánh sáng thay đổi, bước sóng của ánh sáng thay đổi còn **tần số của ánh sáng thì không thay đổi** nên **màu sắc không đổi.**
- * Ánh sáng trắng là tập hợp của vô số ánh sáng đơn sắc có màu biến thiên liên tục từ đỏ đến tím. Bước sóng của ánh sáng trắng: $0.38~\mu m \le \lambda \le 0.76~\mu m$.
- * Cầu vồng là kết quả của sự tán sắc ánh sáng Mặt Trời chiếu qua các giọt nước mưa.

B. PHÂN DANG BÀI TÂP

DANG 1: Tán sắc qua lăng kính - phản xạ toàn phần

- Khi chùm ánh sáng trắng hẹp từ không khí đi vào môi trường có chiết suất n thì: $\mathbf{r}_{\mathbf{d} \hat{o}} > \mathbf{r} > \mathbf{r}_{\text{tím}}$
- Khi chùm ánh sáng trắng hẹp từ môi trường có chiết suất n ra không khí thì: $\mathbf{ig}_{h\ d\acute{o}} > \mathbf{i}_{gh\ t\acute{u}m}$ Có 3 trường hợp có thể xảy ra:
 - + Khi $i < i_{gh \ tím}$: Tất cả các tia đều ló ra ngoài không khí với $r_{do} < r < r_{tím}$
- + Khi $i > i_{gh \ d\acute{o}}$: Tất cả các tia đều phản xạ toàn phần tại mặt phân cách, chùm tia phản xạ cũng là chùm ánh sáng trắng.
 - + Khi **i = i**gh lục: Tia Lục sẽ đi sát mặt phân cách Các tia ló ra ngoài không khí là: Đỏ, Cam, Vàng Các tia phản xa toàn phần: Lam, Chàm, Tím
- Tính bề rộng quang phổ quan sát được trên màn khi A nhỏ:

$$\Delta L = l(D_t - D_d) = l(n_t - n_d)A_{rad}$$

(với ℓ = OH: là khoảng cách từ lăng kính đến màn)

🚇 DẠNG 2: Tán sắc qua thấu kính - lưỡng chất phẳng

- ♦ Công thức tính tiêu cự của thấu kính: $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$
 - ⇒ Tính khoảng cách của tiêu điểm tia đỏ và tia tím:

$$F_{d}F_{t} = \Delta f = f_{d} - f_{t} = \frac{n_{t} - n_{d}}{\left(n_{t} - 1\right)\left(n_{d} - 1\right)\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)}$$

 \Rightarrow Tính độ dài của dải quang phổ ở dưới đáy bể: \Rightarrow Tinh độ dài của dải quang phổ ở dưới đáy bể: \Rightarrow Tinh độ dài của dải quang phổ ở dưới đáy bể:

 \Rightarrow Tính khoảng cách giữa hai tia đỏ và tím ló ra khỏi bản: \Rightarrow Tính khoảng cách giữa hai tia đỏ và tím ló ra khỏi bản: \Rightarrow Tính khoảng cách giữa hai tia đỏ và tím ló ra khỏi bản: \Rightarrow Tính khoảng cách giữa hai tia đỏ và tím ló ra khỏi bản: \Rightarrow Tính khoảng cách giữa hai tia đỏ và tím ló ra khỏi bản:

CHỦ ĐỀ 2: GIAO THOA ÁNH SÁNG A. TÓM TẮT LÍ THUYẾT

1. Hiện tượng giao thoa ánh sáng

Khái niệm: Hiện tượng giao thoa ánh sáng là hiện tượng chồng chất của hai (hay nhiều) sóng kết hợp, kết quả là trong trường giao thoa sẽ xuất hiện xen kẽ những miền sáng, những miền tối.

Điều kiện: Cũng như sóng cơ chỉ có các **sóng ánh sáng kết hợp** mới tạo ra được hiện tượng giao thoa. Nguồn sáng kết hợp là những nguồn phát ra ánh sáng có **cùng tần số và có độ lệch pha không đổi theo thời gian**.

- Đối với **ánh sáng đơn sắc**: Vân giao thoa là những vạch sáng tối xen kẽ nhau một cách đều nhau.
- Đối với **ánh sáng trắng**: Vân sáng trung tâm có màu trắng, quang phổ bậc 1 có màu cầu vồng, tím ở trong, đỏ ở ngoài. Từ quang phổ bậc 2 trở lên không rõ nét vì có một phần các màu chồng chất lên nhau.

2. Giao thoa bằng khe Young với ánh sáng đơn sắc Trong đó:

 $a = S_1S_2$ là khoảng cách giữa hai khe sáng

D = OI là khoảng cách từ hai khe sáng $S_1,\,S_2$ đến màn quan sát. Điều kiện: D>>a.

$$S_1M = d_1$$
; $S_2M = d_2$

x = OM là (toạ độ) khoảng cách từ vân trung tâm đến điểm M ta xét.

- Hiệu đường đi:
$$\Delta d = d_2 - d_1 = \frac{ax}{D}$$

- Tại M là vị trí vân sáng: $\Delta d = k\lambda$

$$\Rightarrow x_s = k \frac{\lambda D}{a}; k \in Z$$

k = 0: Vân sáng trung tâm

 $k = \pm 1$: Vân sáng bâc 1

 $k = \pm 2$: Vân sáng bậc 2

- Tại M là vị trí vân tối:

$$\Delta d = (k + 0.5)\lambda$$

$$\Rightarrow$$
 x = (k + 0, 5) $\frac{\lambda D}{a}$; k \in Z

k = 0, k = -1: Vân tối thứ nhất

k = 1, k = -2: Vân tối thứ hai

k = 2, k = -3: Vân tối thứ ba

- **Khoảng vân:** là khoảng cách giữa hai vân sáng (hoặc tối) liên tiếp nhau

$$\boxed{\mathbf{i} = \frac{\lambda \mathbf{D}}{\mathbf{a}}} \Rightarrow \begin{cases} \mathbf{x}_{s} = \mathbf{k}.\mathbf{i} \\ \mathbf{s}_{t} = (\mathbf{k} + 0.5)\mathbf{i} = (2\mathbf{k} + 1)\frac{\mathbf{i}}{2} \end{cases}$$

Giữa n vân sáng liên tiếp có (n – 1) khoảng vân.

3. Ứng dụng:

- Đo bước sóng ánh sáng: $\lambda = \frac{ia}{D}$
- Giao thoa trên bản mỏng như vết dầu loang, màng xà phòng.

B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

DANG 1: Giao thoa với một bức xa

- ② Xác định vị trí vân sáng (tối), khoảng vân: Xem lại các công thức ở phần lí thuyết.
- \diamondsuit Khoảng cách 2 vị trí vân m, n bất kì: $\Delta x = |x_m x_n|$ *Lưu ý:*

m và n *cùng phía* với vân trung tâm thì x_m và x_n *cùng dấu*; m và n *khác phía* với vân trung tâm thì x_m và x_n *khác dấu*.

Tính chất vân sáng (tối) của 1 điểm M cách vân trung tâm 1 đoạn x:

- Tại M có tọa độ x_M là vân sáng khi: $\frac{x_M}{i} = \frac{\overline{OM}}{i} = k$, điểm M là **vân sáng bậc k.**
- Tại M có tọa độ xM là vân tối khi: $\frac{X_M}{i} = k + 0.5$, điểm M là **vân tối thứ (k + 1).**

♦ Thí nghiệm được tiến hành trong môi trường trong suốt có chiết suất n thì:

Bước sóng λ và khoảng vân i giảm n lần: $\lambda' = \frac{\lambda}{n}$; i' = $\frac{i}{n}$

♦ Xác định số vân sáng - tối trong miền giao thoa có bề rộng L:

Cách 1: (nhanh nhất) Lập tỉ số $N = \frac{L}{i}$, chỉ lấy phần nguyên ta có:

- Nếu N **lẻ** thì: **số vân sáng là N, số vân tối là N + 1**, vân ngoài cùng là vân tối.
- Nếu N **chẵn** thì: **số vân tối là N, số vân sáng là N + 1**, vân ngoài cùng là vân sáng.

Cách 2: Lập tỉ số N = $\frac{L}{2i}$

- Số vân sáng là: $N_s = 2N + 1$; với $N \in Z$.
- Số vân tối là: $N_t = 2N$ nếu phần thập phân của N < 0.5;

 $N_t = 2N + 2$ nếu phần thập phân của $N \ge 0.5$.

Cách 3: (tổng quát nhất) Số giá trị k \in Z là số vân sáng (vân tối) cần tìm

- Vân sáng: $-\frac{L}{2} \le ki \le \frac{L}{2}$
- Vân tối:- $\frac{L}{2} \le (k+0.5)i \le \frac{L}{2}$

$\$ Xác định số vân sáng, vân tối giữa hai điểm M, N có toạ độ x_M , x_N (giả sử $x_M < x_N$):

- Vân sáng: $x_M \le ki \le x_N$
- Vân tối: $x_M \le (k + 0.5)i \le x_N$

Số giá tri $k \in Z$ là số vân sáng (vân tối) cần tìm

Lưu ý: M và N **cùng phía** với vân trung tâm thì x_1 và x_2 **cùng dấu**; M và N **khác phía** với vân trung tâm thì x_1 và x_2 **khác dấu**.

Dặt bản mỏng trước khe Young **

Nếu ta đặt trước khe S_1 một bản thủy tinh có chiều dày e, chiết suất

n. Hệ vân bị lệch một đoạn $\boxed{x_0 = \frac{(n-1)e.D}{a}}$ về phía S_1

♦ Tịnh tiến khe sáng S đoạn y **

Tịnh tiến nguồn sáng S theo phương S_1S_2 về phía S_1 một đoạn y thì hệ

thống vân giao thoa di chuyển theo chiều ngược lại đoạn: $x_0 = \frac{y \cdot D}{d}$

Với d là khoảng cách từ nguồn S đến mặt phẳng chứa hai khe S₁; S₂.

DẠNG 2: Giao thoa với ánh sáng trắng

 $\ensuremath{\mathfrak{D}}$ $\ensuremath{\mathfrak{P}}$ $\ensuremath{\mathfrak{P}}$ $\ensuremath{\mathfrak{P}}$ diễn tục bậc k: hay khoảng cách giữa vân tím bậc k đến vân đỏ bậc k

$$\Delta x_k = k(i_d - i_t) = k \frac{(\lambda_d - \lambda_t)D}{a}$$

Tìm những bức xạ cho vân sáng (tối) tại M có tọa độ x_M:

• Tại M những bức xạ cho **vân sáng** khi: $x_M = k \frac{\lambda D}{a} \Rightarrow \lambda = \frac{a.x_M}{k.D}$ (1)

Kết hợp với $\lambda_t \le \lambda \le \lambda_d$ ta tìm được các giá trị của k (với $k \in \mathbb{Z}$).

Thay k vào (1) để xác định các bức xạ λ cho vân sáng tại M.

• Tại M những bức xạ cho **vân tối** khi: $x_M = (k+0.5)\frac{\lambda D}{a} \Rightarrow \lambda = \frac{a.x_M}{(k+0.5).D}$ (2)

Kết hợp với $\lambda_t \le \lambda \le \lambda_d$ ta tìm được các giá trị của k (với $k \in \mathbb{Z}$)

Thay k vào (2) để xác định các bức xạ λ cho vân tối tại M.

Cách khác: dùng máy tính bấm MODE 7; nhập hàm f(x) = (1) hoặc (2) theo ẩn x = k; cho chạy nghiệm từ START 0 đến END 20 chọn STEP 1 (vì k nguyên), nhận nghiệm f(x) trong khoảng $\lambda_t \le \lambda \le \lambda_d$.

DẠNG 3: Giao thoa với nhiều ánh sáng đơn sắc

Chú ý: Hiện tượng giao thoa ánh sáng của 2 khe thứ cấp S_1 , S_2 chỉ xảy ra nếu ánh sáng có cùng bước sóng và cùng xuất phát từ 1 nguồn sáng sơ cấp điều đó có nghĩa là:

- * Hai ngọn đèn dù giống hệt nhau cũng không thể giao thoa nhau do ánh sáng từ 2 ngọn đèn **không thể cùng pha**.
- * Khi bài toán cho giao thoa với nhiều bức xạ ta phải hiểu đó là hiện tượng giao thoa của từng bức xạ riêng biệt, chứ không phải giao thoa giữa các bức xạ với nhau vì các bức xạ có bước sóng khác nhau không thể giao thoa nhau.

* Khi nguồn \hat{S} phát ra hai ánh sáng đơn sắc có bước sóng λ_1 và λ_2 :

- + Trên màn có hai hệ vân giao thoa ứng với ánh sáng có bước sóng λ_1 và bước sóng λ_2
- + \mathring{O} vị trí vân trung tâm hai vân sáng trùng nhau do $x_{S1} = x_{S2} = 0$
- + Tại các vị trí M, N ... thì hai vân lại trùng nhau khi $x_{S1}=x_{S2} \Rightarrow k_1\lambda_1=k_2\lambda_2$: Màu vân sáng tại M, N...giống màu vân sáng tại O.

a) Khoảng vân trùng (khoảng cách nhỏ nhất giữa hai vân cùng màu với vân trung tâm)

- * 2 bức xạ: $i_{12} = BCNN(i_1, i_2)$. **Cách tìm:** lấy $\frac{i_1}{i_2} = phân số tối giản = <math>\frac{a}{b}$, rồi suy ra: $i_{12} = b.i_1 = a.i_2$
- * 3 bức xạ: $i_{123} = BCNN (i_1, i_2, i_3)$. Thực hiện thao tác tương tự giữa: i_{12} và $i_3 \rightarrow i_{123}$ b) Số vân sáng trùng nhau và số vân sáng quan sát được của 2 bức xạ trên toàn bộ trường giao thoa L và trên đoạn MN ($x_M < x_N$).

$$\text{Vị trí vân sáng trùng nhau: } x_1 = x_2 \Rightarrow k_1 \frac{\lambda_1 D}{a} = k_2 \frac{\lambda_2 D}{a} \\ \Rightarrow k_1 \lambda_1 = k_2 \lambda_2 \\ \Rightarrow \frac{k_1}{k_2} = \frac{\lambda_2}{\lambda_1} = \frac{p}{q} = \frac{p.n}{q.n}$$

 $(rac{p}{q}$ là phân số tối giản và số giá trị nguyên của n là số lần trùng nhau, bài toán này luôn có nghiệm).

$$Vi tri trùng: x_{\equiv} = k_1 \frac{\lambda_1 D}{a} = p.n \frac{\lambda_1 D}{a}$$

• Cho $x \equiv$ nằm trong vùng khảo sát ($-\frac{L}{2} \le x_{\pm} \le \frac{L}{2}$ hoặc $x_{M} \le x_{\pm} \le x_{N}$) **tìm n**; ta sẽ biết được **số vân** sáng trùng nhau (N_{\pm}) và vị trí trùng nhau.

Do đã trùng $N_{=}$ vạch nên số vân sáng quan sát được là $N = (N_1 + N_2) - N_{=}$

Với $(N_1 + N_2)$ là tổng số vân sáng của cả hai bức xạ.

c) Số vân tối trùng nhau và số vân tối quan sát được của 2 bức xạ trên toàn bộ trường giao thoa L và trên đoạn MN ($x_M < x_N$).

Turong tự câu a) ta có:
$$\frac{k_1 + 0.5}{k_2 + 0.5} = \frac{\lambda_2}{\lambda_1} = \frac{p}{q} = \frac{p.(n + 0.5)}{q.(n + 0.5)} \Rightarrow x_{\text{m}} = (k_1 + 0.5) \frac{\lambda_1 D}{a} = p.(n + 0.5) \frac{\lambda_1 D}{a}$$

(Bài toán này chỉ có nghiệm khi p ; q đồng thời là hai số nguyên lẻ và chính giữa hai vân

sáng trùng là một vân tối trùng của hệ vân và ngược lại)

- Cho x_{\equiv} nằm trong vùng khảo sát $(-\frac{L}{2} \le x_{\equiv} \le \frac{L}{2}$ hoặc $x_{\mathbb{M}} \le x_{\equiv} \le x_{\mathbb{N}})$ **tìm n**; ta sẽ biết được **số vân tối trùng** nhau (N_{\equiv}) và vị trí trùng nhau.
- Số vân tối quan sát được là: $N = (N_1 + N_2) N_{\scriptscriptstyle \parallel}$. Với $(N_1 + N_2)$ là tổng số vân tối của cả hai bức xa.
- d) Số vị trí trùng nhau giữa 1 vân sáng và 1 vân tối của 2 bức xạ trên toàn bộ trường giao thoa L và trên đoạn MN ($x_M < x_N$).
 - + Vị trí của vân sáng của bức xạ 1 trùng với vân tối của bức xạ 2: $\mathbf{x} = \mathbf{k}_1 \frac{\lambda_1 \mathbf{D}}{a} = (\mathbf{k}_2 + 0.5) \frac{\lambda_2 \mathbf{D}}{a}$
 - $\Rightarrow qk_1 = p(k_2 + 0.5)$ Bài toán này chỉ có nghiệm khi p là số nguyên chẵn)
 - + Vị trí của vân sáng của bức xạ 2 trùng với vân tối của bức xạ 1: x = $(k_1 + 0.5)\frac{\lambda_1 D}{a} = k_2 \frac{\lambda_2 D}{a}$
 - $\Rightarrow \boxed{q(k_1+0.5) = p.k_2} \ \ \textit{(Bài toán này chỉ có nghiệm khi q là số nguyên chẵn)}$

CHỦ ĐỀ 3: CÁC LOAI QUANG PHỔ VÀ CÁC LOAI TIA BỰC XA

- **1. Máy quang phổ:** Là dụng cụ dùng để phân tích chùm ánh sáng phức tạp tạo thành những thành phần đơn sắc. Máy quang phổ gồm có 3 bô phân chính:
 - + Ông chuẩn trực: để tạo ra chùm tia song song
 - + Hệ tán sắc: để tán sắc ánh sáng + Buồng tối: để thu ảnh quang phổ
- 2. Các loại quang phổ và các loại tia bức xa:

	QP liên tục	QP vạch phát xạ	QP vạch hấp thụ	Tia hồng ngoại	Tia tử ngoại	Tia X
Định nghĩa	Là một dải màu biến thiên liên tục từ đỏ đến tím.	Là hệ thống các vạch màu riêng rẽ nằm trên một nền tối.	Là hệ thống những vạch tối riêng rẽ trên nền quang phổ liên tục.	Là bức xạ không nhìn thấy có bước sóng dài hơn bước sóng tia đỏ (dài hơn 0,76µm)	Là bức xạ không nhìn thấy có bước sóng ngắn hơn bước sóng tia tím (ngắn hơn 0,38µm)	Là sóng điện từ có bước sóng ngắn, từ 10 ⁻⁸ m ÷ 10 ⁻¹¹ m.
Nguồn phát	Các chất rắn, chất lỏng và chất khí ở áp suất lớn bị nung nóng.	Các chất khí hay hơi ở áp suất thấp bị kích thích nóng sáng.	Do chiếu một chùm ánh sáng qua một khối khí hay hơi được nung nóng ở nhiệt độ thấp hơn nhiệt độ của nguồn sáng trắng.	Mọi vật có nhiệt độ cao hơn nhiệt độ môi trường. lò than, lò điện, đèn dây tóc	Các vật bị nung nóng đến trên 2000°C; đèn hơi thủy ngân, hồ quang điện.	Őng rơnghen, ống cu-lít-giơ

Tổng hợp kiến thức Vật lí 12 - LTĐH

Tong nop	Kien thưc vật H	LZ - LI DII				
Tính chất	- Không phụ thuộc bản chất của vật, chỉ phụ thuộc nhiệt độ của vật Nhiệt độ càng cao, miền phát sáng của vật càng mở rộng về vùng ánh sáng có bước sóng ngắn	Nguyên tố khác nhau có quang phổ vạch riêng khác nhau về số lượng, vị trí màu sắc, độ sáng tỉ đốigiữa các vạch. (vạch quang phổ không có bề rộng)	Các vạch tối xuất hiện đúng vị trí các vạch màu của quang phổ vạch phát xạ.	- Tác dụng nhiệt - Gây ra một số phản ứng hóa học - Có thể biến điệu được như sóng cao tần - Gây ra hiện tượng quang điện trong một số chất bán dẫn.	- Tác dụng lên phim ảnh, Làm ion hóa không khí, gây phản ứng quang hóa, quang hợp, gây hiện tượng quang điện - Tác dụng sinh lí: hủy diệt tế bào da, diệt khuẩn Bị nước và thủy tinh hấp thụ rất mạnh	- Khả năng đâm xuyên mạnh - Tác dụng mạnh lên phim ảnh, làm ion hóa không khí, làm phát quang nhiều chất, gây hiện tượng quang điện ở hầu kết kim loại - Tác dụng diệt vi khuẩn, hủy diệt tế bào.
Ú'ng dụng	Đo nhiệt độ của vật	Xác định thành phần (nguyên tố), hàm lượng các thành phần trong vật.		- Sấy khô, sưởi ấm - Điều khiển từ xa - Chụp ảnh bề mặt Trái Đất từ vệ tinh - Quân sự (tên lửa tự động tìm mục tiêu, camera hồng ngoại, ống nhòm hồng ngoại)	 Khử trùng nước uống, thực phẩm Chữa bệnh còi xương Xác định vết nức trên bề mặt kim loại 	- Chiếu điện, chụp điện dùng trong y tế để chẩn đoán bệnh Chữa bệnh <i>ung thư</i> Kiểm tra vật đúc, dò bọt khí, vết nứt trong kim loại Kiểm tra hành lí hành khách đi máy bay.

Chú ý: Mặt trời là nguồn phát ra quang phổ liên tục nhưng quang phổ của mặt trời mà ta thu được trên mặt đất lại là quang phổ vạch hấp thụ của khí quyển mặt trời.

3. Thang sóng điện từ:

Miền SĐT	Sóng vô tuyến	Tia hồng ngoại	Ánh sáng nhìn thấy	Tia tử ngoại	Tia X	Tia Gamma
λ (m)	3.10 ⁴ ÷ 10 ⁻⁴	10 ⁻³ ÷ 7,6.10 ⁻⁷	7,6.10 ⁻⁷ ÷ 3,8.10 ⁻⁷	3,8.10 ⁻⁷ ÷ 10 ⁻⁹	10 ⁻⁸ ÷ 10 ⁻¹¹	Dưới 10 ⁻¹¹

vô tuyến	Hồng ngoại	Khả kiến	Tử ngoại	Tia ronghen	Tia gamma	
$\lambda \ge 10^3 \text{m}$	10 ⁸ m≥ λ≥ 0,76.10 ⁶ m	0,76.10 m≥ λ≥ 0,38.10 m	0,38μm ≥ λ≥ 10° m	$10^8 \mathrm{m} \ge \lambda \ge 10^{-11} \mathrm{m}$	λ≤10 ⁴¹ m	

DANG 1: Tia Ron-ghen

 \mathring{O} đây ta xét các bài toán xuôi, ngược liên quan đến điện áp U_{AK} , động năng của elecron, bước sóng ngắn nhất (hoặc tần số lớn nhất) mà ống Rơn-ghen phát ra.

1/ Tính bước sóng ngắn nhất của tia X phát ra:

- Theo định luật bảo toàn năng lượng:

Năng lượng dòng electron = năng lượng tia X + Nhiệt năng + (nhiệt năng rất lớn so với năng lượng tia X)

$$\Leftrightarrow \varepsilon = \varepsilon_{X} + Q \ge \varepsilon_{X} \Leftrightarrow \frac{hc}{\lambda_{Y}} \le \varepsilon \Rightarrow \lambda_{X} \ge \frac{hc}{\varepsilon}$$

- Ta có: Năng lượng dòng electron = động năng của chùm F electron khi đập vào đối Katốt

Tổng hợp kiến thức Vật lí 12 - LTĐH

$$\boxed{\epsilon = W_d + e.U_{AK}} \Rightarrow \lambda_X \ge \frac{hc}{e.U_{AK}}$$

Suy ra bước sóng ngắn nhất của tia X phát ra là: $\boxed{\lambda_{X} = \frac{hc}{eU_{AK}}} \text{ hoặc tần số lớn nhất } f_{max} = \frac{eU_{AK}}{h}$

2/ Tính nhiệt lượng làm nóng đối Katốt:

Nhiệt lượng làm nóng đối Katốt bằng tổng động năng của các quang electron đến đập vào đối

$$\text{Katốt: } \boxed{Q = W = NW_{\text{d}} = N.\epsilon} \text{ với } \boxed{N = \frac{I.t}{|e|}} \text{ với } N = \text{là tổng số quang electron đến đối Katốt.}}$$

Kết hợp với $Q = m.c.(t_2 - t_1)$; với c là nhiệt dung riêng của kim loại làm đối Katốt.

CHƯƠNG VI: LƯƠNG TỬ ÁNH SÁNG

CHỦ ĐỀ 1: QUANG ĐIỆN NGOÀI

- 1. Đinh nghĩa: Hiên tương ánh sáng làm bất các êlectron ra khỏi mặt kim loại gọi là hiện tương quang điện (hay còn gọi là hiện tương quang điện ngoài). Các electron bi bất ra trong hiện tương này goi là các electron quang điện hay quang electron.
- 2. Đinh luật về giới han quang điện: Đối với mỗi kim loại, ánh sáng kích thích phải có bước sóng λ nhỏ hơn hoặc bằng giới han quang điện λ_0 của kim loại đó ($\lambda \leq \lambda_0$) mới gây ra được hiện tương quang điện.

Chú ý: Nếu chiếu đồng thời 2 bức xa λ_1 , λ_2 và cả 2 bức xa cùng gây ra hiện tương quang điện thì ta tính toán với bức xạ có bước sóng bé hơn.

3. Giả thuyết Plăng: Lương năng lương mà mỗi lần một nguyên tử hay phân tử hấp thu hoặc phát xa có giá tri hoàn toàn xác đinh, được gọi là **lượng tử năng lượng** và được kí hiệu bằng chữ ε:

$$\varepsilon = h.f = \frac{hc}{\lambda}$$
 Trong đó: **h = 6,625.10**⁻³⁴ **J.s gọi là hằng số Plăng.**

 $\boxed{\epsilon = h.f = \frac{hc}{\lambda}} \quad \text{Trong $d\acute{o}$: $h = 6,625.10^{-34}$ J.s gọi là hằng số Plăng.}$ **4. Giới hạn quang điện:** $\boxed{\lambda_0 = \frac{hc}{A}} \quad \text{của mỗi kim loại là đặc trưng riêng của kim loại đó và cũng}$

chính là bước sóng lớn nhất của ánh sáng kích thích. Trong đó: A là công thoát của êléctrôn (đơn vi: Jun).

- 5. Thuyết lượng tử ánh sáng (thuyết phôtôn) của Anh-xtanh
 - + Ánh sáng được tạo thành bởi các hạt gọi là **phôtôn.**
- + Với mỗi ánh sáng đơn sắc có tần số f, các phôtôn đều giống nhau, mỗi phôtôn mang năng luong $\varepsilon = hf$.
- + **Phôtôn chỉ tồn tại trong trạng thái chuyển động**. Trong chân không, phôtôn bay với **tốc đô c = 3.10^8 m/s** doc theo các tia sáng.

- + Mỗi lần một nguyên tử hay phân tử phát xạ hoặc hấp thụ ánh sáng thì chúng phát ra hay hấp thu một phộtôn.
- + Năng lương của mỗi phôtôn rất nhỏ. Một chùm sáng dù yếu cũng chứa rất nhiều phôtôn do rất nhiều nguyên tử, phân tử phát ra. Vì vây ta nhìn thấy chùm sáng là liên tuc.
- + Khi ánh sáng truyền đi, các lương tử không bi thay đổi, không phu thuộc khoảng cách tới nguồn sáng.

6. Lưỡng tính sóng - hạt của ánh sáng

Ánh sáng vừa có tính chất sóng, vừa có tính chất hat. Ta nói ánh sáng có lưỡng tính sóng - hat. Trong mỗi hiện tương quang học, khi tính chất sóng thể hiện rõ thì tính chất hat lai mờ, và ngược lại.

Thể hiện tính chất sóng	Thể hiện tính chất hạt
Hiện tượng giao thoa	● Hiện tượng quang điện.
 Hiện tượng nhiễu xạ 	Hiện tượng gây phát quang.

- 7. Công suất bức xa của nguồn sáng: $P = n_f \varepsilon$. Với n_f là số phôtôn nguồn phát ra trong 1s.
- * * MỘT SỐ DẠNG BÀI TẬP NÂNG CAO
- 8. Động lượng của photon: $p = m_{ph}.c = \frac{h}{\lambda} = \frac{\epsilon}{c}$; Với m_{ph} là khối lượng tương đối tính của photon.

9. Công thức Anh-xtanh:
$$\boxed{\varepsilon = A + \frac{1}{2}mv_{0max}^2} \rightarrow \boxed{v_{0max} = \sqrt{\frac{2hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}{m}}}; với \ \textbf{h.c} = \textbf{1,9875.10}^{-25}$$

10. Định lí động năng:
$$\Delta W_{d} = A_{F_{E}} \iff \frac{1}{2} m v_{t}^{2} - \frac{1}{2} m v_{0}^{2} = q.U_{MN} = q(V_{M} - V_{N})$$

\rightarrow Bài toán 1: Tính điện thế của quả cầu cô lập về điện

Trường hợp chiếu bức xa có bước sóng $\lambda \leq \lambda_0$ vào quả cầu kim loai cô lập, các êléctrôn quang điện được bứt ra khỏi quả cầu, điện tích dương của quả cầu tăng dần nên điện thế V của quả cầu tăng dần. Điện thế V = Vmax khi các êléctrôn quang điện bứt ra khỏi quả cầu đều bi lưc điện trường hút trở lai quả cầu.

- Áp dụng công thức Anh-xtanh, ta có: $V_{\text{max}} = \frac{h\frac{c}{\lambda} A}{\frac{1}{\lambda}}$
- Đối với quả cầu kim loại bán kính R, ta có thể tính được điện tích cực đại \mathbf{Q}_{\max} của quả cầu:

$$V_{\text{max}} = k.\frac{Q_{\text{max}}}{R}$$
; với **k = 9.10**° (Nm²/C²)

ightarrow Bài toán 2: Cho hiệu điện thế UA $_K$ đặt vào tế bào quang điện, tính vận tốc của e khi đập vào Anot.

- Khi electron được tăng tốc: $\left| \frac{1}{2} m v^2 \frac{1}{2} m v_0^2 \right| = e.U_{AK} \Leftrightarrow \frac{1}{2} m v^2 (\varepsilon A) = e.U_{AK} \Rightarrow vận tốc v$
- Khi electron bị giảm tốc: $\boxed{\frac{1}{2}mv^2 \frac{1}{2}mv_0^2 = -e|U_{AK}|} \implies v$ ận tốc v

Lưu ý đổi đơn vị: 1 MeV = 10^6 eV ; 1 eV = $1,6.10^{-19}$ J ; 1 MeV = $1,6.10^{-13}$ J ; 1 A^0 = 10^{-10} m. 12. Cường độ dòng quang điện bão hòa:

12. Cường độ dòng quang điện bão hòa:
$$I_{bh} = \frac{q}{t} = n_e.e \; ; \ Với \; \textbf{n}_e \; là số eléctron bứt ra khỏi K trong 1s$$
13. Hiệu suất lượng tử:
$$H = \frac{n_e}{n_f}$$

- **14. Điều kiện để dòng quang điện triệt tiêu:** $U_{AK} \le U_h$ ($U_h < 0$), U_h gọi là hiệu điện thế hãm

$$\left| \left| e.U_h \right| = \frac{mv_{0 \max}^2}{2} \rightarrow e.U_h = hf - A \rightarrow \left| U_h \right| = \frac{hc}{e} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \right|$$

Lưu ý: Trong một số bài toán người ta lấy Uh > 0 thì đó là độ lớn.

15. Tính khoảng cách xa nhất mà mắt còn trông thấy nguồn sáng

Gọi P là công suất của nguồn sáng phát ra bức xạ λ đẳng hướng, d là đường kính của con ngươi, n là độ nhạy của mắt (số photon ít nhất lọt vào mắt mà mắt còn phát hiện ra). Ta có:

- Số photon của nguồn sáng phát ra trong 1 giây: $n_{\lambda} = \frac{P}{\epsilon} = \frac{P\lambda}{hc}$
- Gọi D là khoảng cách từ mắt đến nguồn sáng, thì số photon trên được phân bố đều trên mặt hình cầu có bán kính là D.

- Số photon qua 1 đơn vị diện tích của hình cầu trong 1 giây là: $k = \frac{h_{\lambda}}{4\pi D^2} = \frac{P\lambda}{hc.4\pi D^2}$
- Số photon lọt vào con người trong 1 giây là: $N = \pi \left(\frac{d}{2}\right)^2 . k = \frac{\pi d^2}{4} \frac{P\lambda}{hc4\pi D^2} = \frac{P\lambda d^2}{16hcD^2}$
- Để mắt còn nhìn thấy được nguồn sáng thì:

$$N \geq n \Rightarrow \frac{P\lambda d^2}{16hc.D^2} \geq n \Rightarrow D \leq \frac{d}{4}\sqrt{\frac{P\lambda}{nhc}} \Rightarrow \boxed{D_{max} = \frac{d}{4}\sqrt{\frac{P\lambda}{nhc}}}$$

16. Khi electron quang điện bay trong điện trường

- + Lực điện trường tác dụng lên electron: $\mathbf{F}_{E} = \mathbf{e}.\mathbf{E}$; với điện trường đều thì: $\mathbf{E} = \frac{\mathbf{U}}{\mathbf{A}}$
- + Khi các quang electron bật ra khỏi catot chịu lực điện trường thì thu gia tốc $a = \frac{F_E}{m} = \frac{e.E}{m} = \frac{e}{m} \cdot \frac{U}{d}$

→ Bài toán: Tính khoảng cách s tối đa mà electron rời xa được bản cực

Nếu điên trường cản là đều có cường độ E và electron bay dọc theo đường sức điện thì quãng

đường tối đa mà electron có thể rời xa được Katot là:
$$\frac{1}{2} m v_{0\text{max}}^2 = \text{e.E.S}_{\text{max}} \Rightarrow S_{\text{max}} = \frac{\frac{1}{2} m v_{0\text{max}}^2}{\text{e.E}} = \frac{\epsilon - A}{\text{e.E}}$$

→ Bài toán: Tính bán kính lớn nhất của vòng tròn trên bề mặt anot mà các electron tới đập vào

Electron sẽ bị lệch nhiều nhất khi vận tốc ban đầu v₀ vuông góc với bề mặt Katot (vuông góc với các đường sức điên), ta qui về bài toán chuyển đông ném ngang. Xét truc toa đô xOy:

- + Truc Ox: $x = v_{0max}t = R_{max}$
- + Trục Oy: $y=\frac{1}{2}at^2=\frac{1}{2}\cdot\frac{e.E}{m}$ $t^2=d$ (với d là khoảng cách giữa hai bản cực) $\Rightarrow t\Rightarrow R_{max}=v_{0max}t$
- Nếu ta thay $a = \frac{e}{m} \cdot \frac{U_{AK}}{d}$ thì: $R_{max} = v_{0max}t = v_{0max}d\sqrt{\frac{2m_e}{eU_{AK}}}$
- Nếu thay tiếp v_{0max} từ biểu thức $|e.U_h| = \frac{mv_{0max}^2}{2}$ thì $R_{max} = 2d\sqrt{\frac{U_h}{U}}$

17. Khi electron quang điện bay trong từ trường

- + Luc Lorenxo tác dung lên electron: $F_L = e.B.v_{0max}.sin\alpha$
- + Nếu $\vec{v}_0 \perp \vec{B}$ thì quỹ đạo electron là đường tròn R: $F_{ht} = F_L \Leftrightarrow m \frac{v_0^2}{R} = |e|v_0 B \Rightarrow R = \frac{1}{R}$

Nếu electron có v_{0max} thì: $R = R_{max} = \frac{m.v_{0max}}{|e|B}$

- + Nếu \vec{v}_0 xiên góc α với \vec{B} thì quỹ đạo electron là đường ốc với bán kính vòng ốc: $R = \frac{m.v_0}{|e|B\sin\alpha}$

18. Khi electron quang điện bay theo phương ngang trong miền có cả điện trường và từ **trường**, để electron không bi lệch khỏi phương ban đầu thì $\mathbf{F_E} = \mathbf{F_L} \Rightarrow \mathbf{E} = \mathbf{B.v_{omax}}$

-----**⊘ ⊘** ⊗-----CHỦ ĐỀ 2: MẪU BO

1. Tiên đề 1 (Tiên đề về trang thái dừng):

Nguyên tử chỉ tồn tại trong một số trạng thái có năng lượng xác định, gọi là các trạng thái dừng. Khi ở trong các trạng thái dừng thì nguyên tử không bức xạ và cũng không hấp thụ năng lượng.

2. Tiên đề 2 (Tiên đề về sự bức xạ và hấp thụ năng lượng của nguyên tử):

Khi nguyên tử chuyển từ trang thái dừng có năng lương En sang trang thái dừng có năng lương Em nhỏ hơn thì nguyên tử phát ra một phôtôn có năng lượng đúng

bằng hiệu
$$E_n - E_m$$
: $\varepsilon = hf_{nm} = E_n - E_m$

Ngược lại, nếu nguyên tử đang ở trong trạng thái dừng có hấp thụ bức xạ năng lượng E_m mà hấp thụ được một phôtôn có năng lượng đúng bằng hiệu E_n – E_m thì nó chuyển lên trạng thái dừng có năng lương cao E_n.

 $\vec{\textit{Chú}}$ ý: Nếu phôtôn có năng lượng hf $_{mn}$ mà $E_n < hf_{mn} < E_m$ thì nguyên tử ${\bf không}$ nhảy lên mức năng lượng nào mà vẫn ở trạng thái dừng ban đầu.

- 3. Hê quả: Ở những trang thái dừng các electron trong nguyên tử chỉ chuyển đông trên quỹ đạo có bán kính hoàn toàn xác đinh gọi là quỹ đạo dừng.
- Đối với nguyên tử Hiđrô, bán kính quỹ đao dừng tăng tỉ lê với bình phương của các số nguyên liên tiếp: $|\mathbf{r}_n = \mathbf{n}^2 \mathbf{r}_0|$ với n là số nguyên và $\mathbf{r}_0 = 5,3.10^{-11}\,\mathrm{m}$, goi là bán kính Bo

Quỹ đạo	K (n = 1)	L (n = 2)	M (n = 3)	N (n = 4)	0 (n = 5)	P (n = 6)
Bán kính	r_0	$4r_0$	$9r_0$	$16r_0$	$25r_0$	$36r_0$

Trạng thái cơ bản	Hấp thụ năng lượng	Trạng thái kích thích
(Tồn tại bền vững)	◀-···.Bức xạ năng lượng	(Chỉ tồn tại trong thời gian cỡ 10-8 s)

- 4. Tính năng lượng electron trên quỹ đạo dừng thứ n: $\left|E_n = -\frac{13.6}{n^2} (eV)\right|$ Với $n \in N^*$.
- \rightarrow Năng lượng ion hóa nguyên tử hi đrô từ trạng thái cơ bản: $E_0 = 13$, 6(eV) = 21, 76.10^{-19} J.

Quỹ đạo	K (n = 1)	L (n = 2)	M (n = 3)	N (n = 4)	O (n = 5)	P (n = 6)
Năng lượng	13,6	13,6	13,6	13,6	13,6	13,6
Ivalig lu vilg	$-\frac{1^{2}}{1^{2}}$	$-\frac{1}{2^{2}}$	$-{3^2}$	$-\frac{4^{2}}{4^{2}}$	$-\frac{1}{5^2}$	$-\frac{1}{5^2}$

- 5. Tính bước sóng khi dịch chuyển giữa hai mức năng lượng: $\frac{hc}{\lambda_{mn}} = E_m E_n \implies \lambda_{mn} = \frac{hc}{E_m E_n}$

6. Cho bước sóng này tính bước sóng khác:
$$\frac{1}{\lambda_{13}} = \frac{1}{\lambda_{12}} + \frac{1}{\lambda_{23}}$$
; $f_{13} = f_{12} + f_{23}$ (như cộng véctơ). Hoặc dùng công thức:
$$\frac{\lambda = \frac{1}{R_H \left(\frac{1}{n^2} - \frac{1}{m^2}\right)}$$
 với $\mathbf{R} = \mathbf{1}$, $\mathbf{09.10^7}$ m-1 (máy tính fx 570 ES: bấm SHIFT)

- 7. Tính bán kính quỹ đạo dùng thứ n: $r_n = n^2 r_0$; với $r_0 = 5,3.10^{-11}$ m là bán kính Bo (ở quỹ đạo K)
- 8. Khi electron chuyển mức năng lương, tìm số vach phát ra:
 - Vẽ sơ đồ mức năng lượng, vẽ các vạch có thể phát xạ rồi đếm.
 - Hoặc dùng công thức: $\boxed{N=\frac{n(n-1)}{2}}$; với **n là số vạch mức năng lượng**. **Chứng minh:** $N=C_n^2=\frac{n!}{(n-2)!2!}=\frac{n(n-1)}{2}$; trong đó C_n^2 là tổ hợp chập 2 của n.

Chứng minh:
$$N = C_n^2 = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$
; trong đó C_n^2 là tổ hợp chập 2 của m

9*. Tính vân tốc và tần số quay của electron khi chuyển đông trên quỹ đao dừng n:

Lực Culông giữa electron và hạt nhân giữ vai trò lực hướng tâm $k\frac{e^2}{r_{_{n}}^2} = m_{_{e}}\frac{v^2}{r_{_{n}}}$ nên:

$$\begin{array}{c|c} \textbf{V$\^{a}$n t\'{o}$c c\'{u}$a electron:} & v = e\sqrt{\frac{k}{m_e r_n}} = \frac{2,2.10^6}{n} \\ m/s \ v\'{o}$i } \begin{cases} k = 9.10^9 \ (Nm^2/C^2) \\ m_e = 9,1.10^{-31} kg \end{cases}$$

Tần số quay của electron: $\omega = 2\pi . f = \frac{v}{r_n} \Rightarrow \boxed{f = \frac{v}{2\pi r_n}}$

10*. Cường độ dòng điện phân tử do electron chuyển động trên quỹ đạo gây ra:

$$I = \frac{q}{t} = \frac{e}{T} = \frac{e}{2\pi}.\omega$$
 (vì electron chuyển động trên quỹ đạo tròn nên t = T)

CHỦ ĐỀ 3: QUANG ĐIỆN TRONG, QUANG PHÁT QUANG & LAZE

I. HIỆN TƯỢNG QUANG ĐIỆN TRONG

- 1. Chất quang dẫn và hiện tượng quang điện trong
- *a) Chất quang dẫn:* là chất dẫn điện kém khi không bị chiếu sáng và trở thành chất dẫn điện tốt khi bị chiếu ánh sáng thích hợp.

b) Hiện tượng quang điện trong:

- * **Khái niệm:** Hiện tượng khi chiếu ánh sáng thích hợp vào khối chất bán dẫn, làm giải phóng các êlectron liên kết để cho chúng trở thành các êlectron dẫn đồng thời tạo ra các lỗ trống cùng tham gia vào quá trình dẫn điện gọi là hiện tượng quang điện trong.
- * **Ứng dụng:** Hiện tượng quang điện trong được ứng dụng trong quang điện trở và pin quang điện. **Chú ý:**
- Khi nói đến hiện tượng quang điện trong thì luôn nhớ tới chất bán dẫn, còn với hiện tượng quang điện ngoài thì phải là kim loại.
- Bức xạ hồng ngoại có thể gây ra hiện tượng quang điện trong ở một số chất bán dẫn. Trong khi đó nó không thể gây ra hiện tượng quang điện ngoài ở bất kỳ kim loại nào.

2. Quang điện trở

- Quang điện trở là một điện trở làm bằng chất quang dẫn. Nó có cấu tạo gồm một sợi dây bằng chất quang dẫn gắn trên một để cách điện.

- Quang điện trở được ứng dụng trong các mạch điều khiển tự động.

3. Pin quang điện

- Pin quang điện (còn gọi là pin Mặt Trời) là một nguồn điện chạy bằng năng lượng ánh sáng. Nó biến đổi trực tiếp quang năng thành điện năng.
- * **Ứng dụng:** Pin quang điện được ứng dụng trong các máy đo ánh sáng, vệ tinh nhân tạo, máy tính bỏ túi... Được lắp đặt và sử dụng ở miền núi, hải đảo, những nơi xa nhà máy điện.

II. HIỆN TƯỢNG QUANG - PHÁT QUANG

1. Khái niệm về sự phát quang

Hiện tượng xảy ra ở một số chất có khả năng hấp thụ ánh sáng có bước sóng này để phát ra ánh sáng có bước sóng khác. Chất có khả năng phát quang gọi là chất phát quang.

Ví dụ: Nếu chiếu một chùm ánh sáng tử ngoại vào một ống nghiệm đựng dung dịch fluorexêin (chất diệp lục) thì dung dịch này sẽ phát ra ánh sáng màu lục. Ở đây, ánh sáng tử ngoại là ánh sáng kích thích, còn ánh sáng màu lục là do fluorexêin phát ra là *ánh sáng phát quang*

Thành trong của các đèn ống thông thường có phủ một lớp bột phát quang. Lớp bột này sẽ phát quang ánh sáng trắng khi bị kích thích bởi ánh sáng giàu tia tử ngoại do hơi thủy ngân trong đèn phát ra lúc có sự phóng điện qua nó.

Chú ý:

- Ngoài hiện tượng quang phát quang còn có các hiện tượng phát quang sau: hóa phát quang (ở con đom đóm); điện phát quang (ở đèn LED); phát quang catôt (ở màn hình ti vi).
- Sự phát sáng của đèn ống là sự quang phát quang vì: trong đèn ống có tia tử ngoại chiếu vào lớp bột phát quang được phủ bên trong thành ống của đèn.
 - Sự phát sáng của đèn dây tóc, ngọn nến, hồ quang không phải là sự quang phát quang.
- **2.** Đặc điểm của hiện tượng phát quang: bước sóng λ ' của ánh sáng phát quang bao giờ cũng **lớn hơn** bước sóng λ của ánh sáng **kích thích:** λ ' > λ (hay ϵ ' < $\epsilon \Leftrightarrow$ f ' < f) .

III. SƠ LƯỢC VỀ LAZE

1. Định nghĩa, đặc điểm, phân loại và ứng dụng của laze

- Laze là một nguồn sáng phát ra một chùm sáng cường độ lớn dựa trên việc ứng dụng hiện tượng phát xạ cảm ứng.
- Môt số đặc điểm của tia laze:
 - + Tia laze có tính đơn sắc cao.
 - + Tia laze là chùm sáng kết hợp (các phôtôn trong chùm có cùng tần số và cùng pha).
 - + Tia laze là chùm sáng song (có tính đinh hướng cao).
 - + Tia laze có cường đô lớn.

Chú ý: Tia laze không có đặc điểm công suất lớn, hiệu suất của laze nhỏ hơn 1.

- Các loại laze:

- + Laze rắn, như laze rubi (biến đổi quang năng thành quang năng).
- + Laze khí, như laze He Ne, laze CO₂.
- + Laze bán dẫn, như laze Ga Al As, sử dụng phổ biến hiện nay (bút chỉ bảng).
- Một vài ứng dụng của laze: Laze được ứng dung rồng rãi trong rất nhiều lĩnh vực
 - + Y hoc: dùng như dao mổ trong phẩu thuật mắt, chữa bệnh ngoài da...
 - + Thông tin liên lạc: sử dụng trong vô tuyến định vị, liên lạc vệ tinh, truyền tin bằng cáp quang...
 - + Công nghiệp: khoan, cắt, tôi, ... chính xác các vật liệu trong công nghiệp.

CHƯƠNG VII: HẠT NHÂN NGUYÊN TỬ

DẠNG 1: Thuyết tương đối - Cấu trúc hạt nhân

- Khối lượng **nghỉ:** m₀ ; Khối lượng **tương đối tính**:

$$\int \frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}} \ge m_0$$

- Năng lượng **nghỉ:** $W_0 = m_0c^2$; Năng lượng **toàn phần**: $W = mc^2$
- Động năng: $W_d = K = W W_0 = (m m_0)c^2$
- Hạt nhân ^A₇X, có A nuclôn; Z prôtôn và (A Z) nơtrôn
- Độ hụt khối: $\Delta m = Zm_p + (A Z)m_n m_{hn}$
- Năng lượng liên kết của hạt nhân: $W_{lk} = \Delta m.c^2$; với:1 uc₂ $\approx 931, 5 \text{ MeV}$
- Năng lượng liên kết tính riêng: $\epsilon = \frac{W_{lk}}{A}$ (đặc trưng cho tính bền vững của hạt nhân)
- Số hạt nhân trong m gam chất đơn nguyên tử: $N = \frac{m}{M}N_A$

 $V\acute{o}i N_A = 6,02.10^{23} hat/mol$ (máy tính fx 570 ES: bấm SHIFT 7 24)

- DANG 2: Phóng xạ
- * Các công thức cơ bản: Đặt $k = \frac{t}{T}$, ta có: $m = m_0.2^{-k} = m_0 e^{-\lambda t}$; $N = N_0.2^{-k} = N_0 e^{-\lambda t}$
- Số hạt nguyên tử bị phân rã bằng số hạt nhân con được tạo thành và bằng số hạt được tạo thành: $\Delta N = N_0 N = N_0 (1-e^{-\lambda_t})$
 - Khối lượng chất bị phóng xạ sau thời gian t: $\Delta m = m_0 mN = m_0 (1 e^{-\lambda t})$
 - Phần trăm chất phóng xạ còn lại: $\boxed{\frac{N}{N_0} = \frac{m}{m_0} = 2^{-k} = e^{-\lambda t}}$
 - Phần trăm chất phóng xạ bị phân rã: $\frac{\Delta N}{N_0} = \frac{\Delta m}{m_0} = 1 2^{-k} = 1 e^{-\lambda t}$
 - Tỉ lệ số nguyên tử của hạt nhân con và hạt nhân mẹ tại thời điểm t: $\frac{N_c}{N_m} = 2^k 1$

Chú ý: Nếu t << T \Leftrightarrow $e^{\lambda t}$ << 1, ta có: $\Delta N = N_0(1 - e - \lambda t) \approx N_0 \lambda t = H_0 t$ **Các trường hợp đặc biệt, học sinh cần nhớ để giải nhanh các câu hỏi trắc nghiệm:**

0 .1						<u> </u>
Thời gian t	T	2T	3T	4T	5 T	6T
Còn lại: N/N₀ hay m/m₀	1/2	1/22	1/23	1/24	$1/2^{5}$	1/26
Đã rã: $(N_0 - N)/N_0$	1/2	3/4	7/8	15/16	31/32	63/64
Tỉ lệ % đã rã	50%	75%	87,5%	93,75%	96,875%	98,4375%
Tỉ lệ (tỉ số) hạt đã rã và còn lại	1	3	7	15	31	63
Tỉ lệ (tỉ số) hạt còn lại và đã bị phân rã	1	1/3	1/7	1/15	1/31	1/63

* Tính khối lượng hạt nhân con tạo thành và thể tích khí heli sinh ra (phóng xạ α):

$$m_{\rm C} = \frac{\Delta m_{\rm m}}{A_{\rm m}}.A_{\rm C}$$
; $V_{\alpha} = \frac{\Delta m_{\rm m}}{A_{\rm m}}.22,4$ (1)

- * Tính thời gian và tính tuổi:
- a) Tính thời gian khi cho biết N_0 hoặc m_0 hoặc các dữ kiện khác mà ta tìm được N hoặc m

$$t = T \log_2 \left(\frac{N_0}{N}\right) = T \log_2 \left(\frac{m_0}{m}\right)$$

- \rightarrow Công thức trên còn dùng để tính tuổi thực vật nhờ định vị C14: lúc đó ta xem N_0 là số nguyên tử có trong **mẫu sống**, N là số nguyên tử trong **mẫu cổ**.
- b) Tính thời gian khi cho biết tỉ số $\frac{N_c}{N_m}$ hoặc $\frac{m_c}{m_m}$

- → Công thức trên còn dùng để tính tuổi khoáng vật: đá, quặng Poloni, ...
- * Tính chu kì bằng máy đếm xung:

Một mẫu phóng xạ $_{Z}^{A}X$ ban đầu trong t_{1} phút có ΔN_{1} hạt nhân bị phân rã, sau đó t phút (kể từ lúc t=0) trong t_{2} phút có ΔN_{2} hạt nhân bị phân rã. Ta có chu kì bán rã chất phóng xạ:

$$T = \frac{t}{\log_2\left(\frac{\Delta N_1}{\Delta N_2}, \frac{t_2}{t_1}\right)} \text{ N\'eu } t_2 = t_1 \text{ thì: } T = \frac{t}{\log_2\left(\frac{\Delta N_1}{\Delta N_2}\right)}$$

- * Bài toán hai chất phóng xạ với chu kì bán rã khác nhau hoặc các bài toán khác:
- Viết biểu thức số hạt hoặc khối lượng còn lại của các chất phóng xạ
- Thiết lập tỉ số của số hat hoặc khối lương các chất phóng xa
- * Các loại tia phóng xạ:

	Phóng xạ Alpha (α)	Phóng xạ Bêta: có 2 loại là β- và β+	Phóng xạ Gamma (γ).
Bản chất	Là dòng hạt nhân Hêli 4_2 He	$β$: là dòng electron $\binom{0}{-1}e$) $β$ ⁺ : là dòng electron $\binom{0}{+1}e$)	Là sóng điện từ có λ rất ngắn ($\lambda \leq 10^{-11}$ m), cũng là dòng phôtôn có năng lượng cao.
Phương trình	$ \begin{array}{c} {}^{A}_{Z}X \longrightarrow_{Z-2}^{A-4}Y + {}^{4}_{2}He \\ \text{Rút gọn:} \ {}^{A}_{Z}X \xrightarrow{\alpha} \longrightarrow_{Z-2}^{A-4}Y \\ \text{Vd:} \ {}^{226}_{88}\text{Ra} \longrightarrow_{86}^{222}\text{Rn} + {}^{4}_{2}He \\ \text{Rút gọn} \ {}^{226}_{88}\text{Ra} \xrightarrow{\alpha} \longrightarrow_{86}^{222}\text{Rn} \end{array} $	β-: ${}_{Z}^{A}X \rightarrow_{Z+1}^{A}Y + {}_{-1}^{0}e$ Ví dụ: ${}_{6}^{14}C \rightarrow_{7}^{14}N + {}_{-1}^{0}e$ β ⁺ : ${}_{Z}^{A}X \rightarrow_{Z-1}^{A}Y + {}_{+1}^{0}e$ Ví dụ: ${}_{7}^{12} \rightarrow_{6}^{12}C + {}_{1}^{0}e$	Sau phóng xạ α hoặc β xảy ra quá trình chuyển từ trạng thái kích thích về trạng thái cơ bản →phát ra phô tôn.
Tốc độ	$v \approx 2.10^7 \text{m/s}.$	$v \approx c = 3.10^8 \text{m/s}.$	$v = c = 3.10^8 \text{m/s}.$
Khả năng Ion hóa	Mạnh	Mạnh nhưng yếu hơn tia α	Yếu hơn tia α và β
Khả năng đâm xuyên	+ S _{max} ≈ 8cm trong không khí; + Xuyên qua vài μm trong vật rắn.	+ S _{max} ≈ vài m trong không khí. + Xuyên qua kim loại dày vài mm.	 + Đâm xuyên mạnh hơn tia α và β. + Có thể xuyên qua vài m bê-tông hoặc vài cm chì.
Trong điện trường	Lệch	Lệch nhiều hơn tia alpha	Không bị lệch
Chú ý	Trong chuỗi phóng xạ α thường kèm theo phóng xạ β nhưng không tồn tại đồng thời hai loại β.	Còn có sự tồn tại của hai loại hạt ${}^{A}_{z}X \rightarrow_{z-1}^{A}Y + {}^{0}_{+1}e + {}^{0}_{0}v$ nơ trinô. ${}^{A}_{z}X \rightarrow_{z+1}^{A}Y + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}$ phản nơ trinô	Không làm thay đổi hạt nhân.

DẠNG 3: Phản ứng hạt nhân

- 1) Hệ thức giữa động lượng và động năng của vật: $P^2 = 2mK$ hay $K = \frac{P^2}{2m}$
- 2) Xét phản ứng: $\frac{A_1}{Z_1}X_1 + \frac{A_2}{Z_2}X_2 = \frac{A_3}{Z_2}X_3 + \frac{A_4}{Z_1}X_4$. Giả thiết hạt $\frac{A_2}{Z_2}X_2$ đứng yên . Ta có:
- a) Năng lương tỏa ra hoặc thu vào của phản ứng hạt nhân:

$$\begin{split} \Delta E &= \left[\left(m_1 + m_2 \right) - \left(m_3 + m_4 \right) \right] c^2 = \left[\left(\Delta m_3 + \Delta m_4 \right) - \left(\Delta m_1 + \Delta m_2 \right) \right] c^2 \\ &= \left(\Delta E_3 + \Delta E_3 \right) - \left(\Delta E_1 + \Delta E_2 \right) = \left(A_3 \varepsilon_3 + A_4 \varepsilon_4 \right) - \left(A_1 \varepsilon_2 + A_2 \varepsilon_2 \right) = \left(K_3 + K_4 \right) - \left(K_1 + K_2 \right) \end{split}$$

- + Nếu $\Delta E > 0$: phản ứng **tỏa** năng lượng.
- + Nếu ΔE < 0: phản ứng **thu** năng lượng.
- b) Bài toán vận dụng các định luật bảo toàn:
- * Tổng quát: dùng để tính góc giữa phương chuyển động của các hạt

*
$$\Delta E = (K_3 + K_4) - K_1$$

* $P_4^2 = P_1^2 + P_3^2 - 2P_1P_3 \cos \alpha_1$
* $P_1^2 = P_3^2 + P_4^2 - 2P_4P_4 \cos \alpha$

* TH1: Hai hạt bay theo phương vuông góc

*
$$\Delta E = (K_3 + K_4) - K_1$$

* $P_1^2 = P_3^2 + P_4^2 \Leftrightarrow m_1 K_1 = m_3 K_3 + m_4 K_4$

* TH2: Hai hạt sinh ra có cùng vectơ vận tốc

*
$$\Delta E = (K_3 + K_4) - K_1$$

* $\frac{K_3}{K_4} = \frac{m_3}{m_4}$
* $m_1 v_1 = m_3 m_3 + m_4 v_4$

* TH3: Hai hạt sinh ra giống nhau, có cùng động năng

*
$$\Delta E = 2K_3 - K_1 = 2K_4 - K_1$$

* $P_1 = 2P_3 \cos \frac{\alpha}{2} = 2P_4 \cos \frac{\alpha}{2}$

* TH4: Phóng xạ (hạt mẹ đứng yên, vỡ thành 2 hạt con)

*
$$\Delta E = K_3 + K_4$$

* $\frac{K_3}{K_4} = \frac{v_3}{v_4} = \frac{m_4}{m_3}$

Chú ý: Khi tính vận tốc của các hạt thì:

- Động năng của các hạt phải đổi ra đơn vị J (Jun) ($1 \text{MeV} = 1,6.10^{-13}$)
- Khối lượng các hạt phải đổi ra kg $(1u = 1,66055.10^{-27} \text{kg})$

DANG 4: Năng lượng phân hạch - nhiệt hạch

* So sánh phân hạch và nhiệt hạch

_	Phân hạch	Nhiệt hạch
Định nghĩa		Là phản ứng trong đó 2 hay nhiều hạt nhân nhẹ tổng hợp lại thành một hạt nhân nặng hơn và vài notron.
Đặc điểm	Là phản ứng tỏa năng lượng.	Là phản ứng toả năng lượng.
Điều kiện	$k \ge 1$ + $k = 1$: kiểm soát được. + $k > 1$: không kiểm soát được, gây bùng nổ (bom hạt nhân).	 Nhiệt độ cao khoảng 100 triệu độ. Mật độ hạt nhân trong plasma phải đủ lớn. Thời gian duy trì trạng thái plasma ở nhiệt độ cao 100 triệu độ phải đủ lớn.
Ưu và nhược	Gây ô nhiễm môi trường (phóng xạ)	Không gây ô nhiễm môi trường.

* Một số dạng bài tập:

- Cho khối lượng của các hạt nhân trước và sau phản ứng: M0 và M . Tìm năng lượng toả ra khi xảy 1 phản ứng: $\Delta E = (M_0 M).c^2$ MeV.
 - Suy ra năng lượng toả ra trong m gam phân hạch (hay nhiệt hạch): $E = Q.N = Q.\frac{m}{A}.N$ (MeV)
 - Hiệu suất nhà máy: H = $\frac{P_{ci}}{P_{tp}}$ (%)
 - Tổng năng lượng tiêu thụ trong thời gian t: $\boxed{A = P_{\mathrm{tp}}.t}$
 - Số phân hạch: $\Delta N = \frac{A}{\Delta E} = \frac{P_{tp}.t}{\Delta E}$
 - Nhiệt lượng toả ra: Q = m.q; với q là năng suất tỏa nhiệt của nhiên liệu.
 - Goi P là công suất phát xa của Mặt Trời thì mỗi ngày đêm khối lương Mặt Trời giảm đi một

lượng bằng
$$\Delta m = \frac{\Delta E}{c^2} = \frac{P.t}{c^2}$$

- ** MỘT SỐ DẠNG TOÁN NÂNG CAO:
- * Tính độ phóng xạ H: $H = -\lambda N = H_0 \cdot e^{-\lambda t} = H \cdot 2^{-\frac{t}{T}}$
 - → Đại lượng *đặc trưng cho tính phóng xạ mạnh hay yếu* của chất phóng xạ. **Đơn vị:** 1Bq(Becoren) = 1phân rã/s. Hoặc: 1Ci(curi) = 3,7.10¹⁰ Bq.
- * Thể tích của dung dịch chứa chất phóng xạ: $V_0 = \frac{H_0}{2^{\frac{t}{T}}.H}V$; Với V là thể tích dung dịch chứa H.

CHÚC CÁC EM HỌC TỐT VÀ THI ĐẬU ĐẠI HỌC!

PHŲ LŲC

A - KIẾN THỰC TOÁN CƠ BẢN

I. LƯỢNG GIÁC

1. ĐƠN VỊ ĐO – GIÁ TRỊ LƯỢNG GIÁC CÁC CUNG

• 10 = 60' phút, 1'= 60'' (giây); $1^0 = \frac{\pi}{180} (rad)$; $1(rad) = \frac{180}{\pi} (\tilde{d}\hat{o})$

• Bảng giá trị lượng giác các cung đặc biệt.

Góc α	0^{0}	30°	45 ⁰	60°	90°	120°	135°	150°	180°	270°	360°
											2π
Giá trị	0	$\frac{\pi}{2}$	$\frac{\pi}{}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{2\pi}{2\pi}$	$\frac{3\pi}{}$	$\frac{5\pi}{}$	π	$\frac{3\pi}{2}$	2π
ja e e e e e e e e e e e	ar ar ar ar ar ar	6	4	3	2	3	4	6	100 M 100 M 100 100 100 100	2	ranananan)
$sin(\alpha)$	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	-1	0
		$\overline{2}$	2	2		2	2	$\overline{2}$			
$cos(\alpha)$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	1	$\sqrt{2}$	$\sqrt{3}$	-1	0	1
		2	2	2		2	2	2			
$tan(\alpha)$	0	$\sqrt{3}$	1	$\sqrt{3}$	+∞	-√3	-1	$\sqrt{3}$	0	-∞	0
		3		, ,		, ,		$-\frac{\sqrt{3}}{3}$			
$\cot an(\alpha)$	+∞	$\sqrt{3}$	1	$\sqrt{3}$	0	$\sqrt{3}$	-1	-√3	-∞	0	+∞
				3		3					
ในเอาอาเกลาอาเกลา	aranaranarana	2012/2012/2012/2012	1210121201012121	 	 1801	 3 3 \$ 5 5 5 4	(13/3/8/8/8/8/8	(B) B) B) B) B) B) B	15/8/5/8/5/5/5	B/W/B/W/B/B/A	1.51.101.51.101.51.51

GENELENE EN			<u> </u>	(31813181318131813181318131813181318 ₎
Cung đối	Cung bù	Cung hơn kém π	Cung phụ	Cung hơn
$(\alpha; -\alpha)$	$(\alpha; \pi - \alpha)$	$(\alpha; \pi + \alpha)$	$(\alpha; \frac{\pi}{2} - \alpha)$	$ \frac{\kappa m^{\pi}}{2} $
		100100100000000000000000000	<u> </u>	$(\alpha; \frac{\pi}{2} + \alpha)$
$cos(-\alpha) = cos(\alpha)$	$cos(\pi - \alpha) = -cos(\alpha)$	$cos(\pi + \alpha) = -cos(\alpha)$	$cos(\frac{\pi}{2} - \alpha) = sin(\alpha)$	$\cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha)$
$\sin(-\alpha) = \sin(\alpha)$	$\sin(\pi - \alpha) = \sin(\alpha)$	$\sin(\pi + \alpha) = -\sin(\alpha)$	$\frac{\cos(-2^{-4\alpha})-\sin(\alpha)}{2}$	$\cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha)$
$\tan(-\alpha) = -\tan(\alpha)$	$\tan(\pi - \alpha) = -\tan(\alpha)$	$\tan(\pi + \alpha) = \tan(\alpha)$	$\sin(\frac{\pi}{2} - \alpha) = \cos(\alpha)$	$\sin(\frac{\pi}{2} + \alpha) = \cos(\alpha)$
$\cot an(-\alpha) = -\cot an(\alpha)$	$\cot an(\pi - \alpha) = -\cot an(\alpha)$	$\cot an(\pi + \alpha) = \cot an(\alpha)$	_	_
			$\tan(\frac{\pi}{2} - \alpha) = \cot an(\alpha)$	$\tan(\frac{\pi}{2} + \alpha) = -\cot an(\alpha)$
			$\cot an(\frac{\pi}{2} - \alpha) = \tan(\alpha)$	$\cot an(\frac{\pi}{2} + \alpha) = -\tan(\alpha)$
				ransansansinansansinansansinansa

2. CÁC HẰNG ĐẮNG THỰC LƯỢNG GIÁC

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
; $\tan(\alpha)$. $\cot(\alpha) = 1$; $\frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha$; $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$

3. CÔNG THỰC BIẾN ĐỔI

a) Công thức cộng

$$\sin(a \pm b) = \sin(a).\cos(b) \pm \sin(b).\cos(a);$$

$$\cos(a \mp b) = \cos(a).\cos(b) \mp \sin(a).\sin(b);$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a).\tan(b)}$$

b) Công thức nhân đôi, nhân ba

$$\sin(2a) = 2\sin(a).\cos(a);$$

 $\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a);$
 $\sin(3a) = 3\sin(a) - 4\sin^3(a);$
 $\cos(3a) = 4\cos^3(a) - 3\cos(a);$

c) Công thức hạ bậc:
$$\cos^2(a) = \frac{1 + \cos(2a)}{2}$$
; $\sin^2(a) = \frac{1 - \cos(2a)}{2}$

d) Công thức biến đổi tổng thành tích

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

$$\sin(a) - \sin(b) = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

4. CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH CƠ BẢN:

$$\sin\alpha = \sin a \Rightarrow \begin{bmatrix} \alpha = a + k.2\pi \\ \alpha = \pi - a + k.2\pi \end{bmatrix}$$

$$\cos\alpha = \cos a \Rightarrow \alpha = \pm a + k.2$$

II. KHI GIẢI BÀI TẬP CẦN CHÚ Ý MỘT SỐ KIẾN THỰC TOÁN HỌC SAU:

1. Đạo hàm – Nguyên hàm của một số hàm cơ bản sử dụng trong Vật Lí:

Hàm số	Đạo hàm	Nguyên hàm
Y = sinx	cosx	- cosx
Y = cosx	- sinx	sinx

2. Bất đẳng thức Côsi: áp dụng cho 2 số dương a và b

$$a+b \ge 2\sqrt{a.b} \Longrightarrow \begin{bmatrix} \left(a+b\right)_{min} = 2\sqrt{ab} \\ \left(\sqrt{ab}\right)_{max} = \frac{a+b}{2} \end{bmatrix}; \text{ dấu "=" xảy ra khi a = b.}$$

Khi tích 2 số không đổi, tổng nhỏ nhất khi 2 số bằng nhau.

Khi tổng 2 số không đổi tích 2 số lớn nhất khi 2 số bằng nhau.

- 3. Tam thức bậc hai: $y = f(x) = ax^2 + bx + c$.
 - + a > 0 thì y_{min}tại đỉnh Parabol.
 - + a < 0 thì y_{max} tại đỉnh Parabol.
 - + Toạ độ đỉnh: $x = -\frac{b}{2a}$; $y = -\frac{\Delta}{4a} (\Delta = b^2 4ac)$
 - + Nếu Δ = 0 thì phương trình y = ax^2 + bx + c = 0 có nghiệm kép.
 - + Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt.

Định lý Viet:
$$x+y=S=-\frac{b}{a} \\ x.y=P=\frac{c}{a}$$
 \Rightarrow x,y là nghiệm của phương trình: X^2 – SX + P = 0

- 4. Hệ thức lượng trong tam giác
- Tam giác thường:

a. Định lý hàm số sin:
$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

- **b.** Định lý hàm số cosin: $a^2 = b^2 + c^2 2bc.\cos A$
- Tam giác vuông: Cho tam giác ABC vuông tại A có AH = h, BC = b, AC = b, AB = c, CH = b', BH = c', ta có các hệ thức sau:

$$b^2 = ab'; c^2 = ac'; h^2 = b'c'; b.c = a.h; \frac{1}{h^2} = \frac{1}{h^2} + \frac{1}{c^2}$$

5. Tính chất của phân thức:

$$\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d} = \frac{a-c}{b-d} \quad \mathbf{v} \mathbf{\hat{a}} \quad \frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a \pm b}{b} = \frac{c \pm d}{d}$$

6. Các giá trị gần đúng: $\pi^2 \approx 10$; $314 \approx 100\pi$; $0.318 \approx \frac{1}{\pi}$; $0.636 \approx \frac{2}{\pi}$, $1.41 \approx \sqrt{2}$; $1.73 \approx \sqrt{3}$

Cách đọc tê	en một số đại lu	ợng vật lý
- Aα: anpha	Ηη:êta	Υυ:ipxilon
$B\beta$: beta	Θ <i>θ9</i> : têta	$\Sigma \sigma$: xicma
Γγ:Gamma	Nv:nuy	Pρ: <i>r</i> ô
$\Delta\delta$: đenta	$M\mu$: muy	$\Pi\pi$: pi
$\mathbb{E}arepsilon$: epxilon	Λλ:lamda	Oo:omikron
Z_{ς} : zeta	Ξζ :kxi	Kκ:kappa
<i>Ττ</i> :tô	Xχ:khi	Ιι:iôta
$\Phi \varphi$: fi	Ωω:omega	

Tiền tố	Tera	Giga	Mega	Kilo	Hecto	Deca
Ký hiệu	Т	G	М	К	Н	D
Thừa số	10 ¹²	109	10 ⁶	10 ³	10 ²	10 ¹
	B	NG QUY E	ŐI THEO L	ŨY THỪA 1	0	ř.
Tiền tố	dexi	centi	mili	micro	nano	pico
Ký hiệu	d	С	m	μ	n	р
Thừa số	10 ⁻¹	10-2	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10-1

Tạo khung cho công phần lớn sử dụng tiện ích MyEqText nên bị lỗi định dạng chút ít