

Neurocomputing

Linear regression

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/neurocomputing

- ullet We have a training set of N examples $\mathcal{D}=(x_i,t_i)_{i=1..N}.$
- In **linear regression**, we want to learn a linear model (hypothesis) y that is linearly dependent on the input x:

$$y=f_{w,b}(x)=w\,x+b$$

- The **free parameters** of the model are
 - the slope w,
 - the intercept b.
- ullet The data $\mathcal{D}=(x_i,t_i)_{i=1..N}$ is given (fixed).

Mathematical model:

$$y=f_{w,b}(x)=w\,x+b$$

- ullet This corresponds to a single artificial neuron y with:
 - lacktriangle one input x,
 - lacksquare one weight w,
 - lacktriangle one bias b,
 - a linear activation function.
- We will see that this generalizes to multiple inputs and outputs.

- The goal of the linear regression (or least mean squares LMS) is to minimize the **mean square error** (mse) between the targets and the predictions.
- It is defined as the mathematical expectation of the quadratic error over the training data:

$$\mathcal{L}(w,b) = \mathbb{E}_{x_i,t_i \in \mathcal{D}}[(t_i - y_i)^2]$$

• As the training set is finite and the samples i.i.d (independent and identically distributed), we can simply replace the expectation by a sampling average:

$$\mathcal{L}(w,b) = rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2$$

- The minimum of the mse is achieved when the **prediction** $y_i = f_{w,b}(x_i)$ is equal to the **ground truth** t_i for all training examples.
- In other words, we want to minimize the residual error of the model on the data.
- It is not always possible to obtain the global minimum (0) but the closer, the better.

ullet We search for w and b which minimize the mean square error:

$$\mathcal{L}(w,b) = rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2$$

ullet We will apply *gradient descent* to iteratively modify estimates of w and b:

$$\Delta w = -\eta \, rac{\partial \mathcal{L}(w,b)}{\partial w}$$

$$\Delta b = -\eta \, rac{\partial \mathcal{L}(w,b)}{\partial b}$$

ullet Let's search for the partial derivative (gradient) of the quadratic error with respect to w:

$$rac{\partial \mathcal{L}(w,b)}{\partial w} = rac{\partial}{\partial w} [rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2]$$

• Partial derivatives are linear, so the derivative of a sum is the sum of the derivatives:

$$rac{\partial \mathcal{L}(w,b)}{\partial w} = rac{1}{N} \, \sum_{i=1}^N rac{\partial}{\partial w} (t_i - y_i)^2$$

• This means we can compute a gradient for each training example instead of for the whole training set (see later the distinction batch/online):

$$rac{\partial \mathcal{L}(w,b)}{\partial w} = rac{1}{N} \, \sum_{i=1}^N rac{\partial}{\partial w} l_i(w,b) \qquad ext{with} \qquad l_i(w,b) = (t_i - y_i)^2$$

- ullet The individual loss $l_i(w,b)=(t_i-y_i)^2$ is the composition of two functions:
 - lacksquare a square error function $g_i(y_i)=(t_i-y_i)^2$.
 - ullet the prediction $y_i=f_{w,b}(x_i)=w\,x_i+b.$
- The chain rule tells us how to derive such composite functions:

$$rac{df(g(x))}{dx} = rac{df(g(x))}{dg(x)} imes rac{dg(x)}{dx} = rac{df(y)}{dy} imes rac{dg(x)}{dx}$$

- The first derivative considers g(x) to be a single variable.
- Applied to our problem, this gives:

$$rac{\partial}{\partial w}l_i(w,b) = rac{\partial g_i(y_i)}{\partial y_i} imes rac{\partial y_i}{\partial w}$$

ullet The square error function $g_i(y)=(t_i-y)^2$ is easy to differentiate w.r.t y:

$$rac{\partial g_i(y_i)}{\partial y_i} = -2\left(t_i - y_i
ight)$$

ullet The prediction $y_i=w\,x_i+b$ also w.r.t w and b:

$$rac{\partial y_i}{\partial w} = x_i$$

$$rac{\partial y_i}{\partial b}=1$$

The partial derivative of the individual loss is:

$$rac{\partial l_i(w,b)}{\partial w} = -2 \left(t_i - y_i
ight) x_i$$

$$rac{\partial l_i(w,b)}{\partial b} = -2\left(t_i-y_i
ight)$$

• This gives us:

$$rac{\partial \mathcal{L}(w,b)}{\partial w} = -rac{2}{N} \sum_{i=1}^{N} (t_i - y_i) \, x_i$$

$$rac{\partial \mathcal{L}(w,b)}{\partial b} = -rac{2}{N} \sum_{i=1}^{N} (t_i - y_i)$$

• Gradient descent is then defined by the learning rules (absorbing the 2 in η):

$$\Delta w = \eta \, rac{1}{N} \sum_{i=1}^N (t_i - y_i) \, x_i$$

$$\Delta b = \eta \, rac{1}{N} \sum_{i=1}^N (t_i - y_i)$$

Least Mean Squares (LMS) - Ordinary Least Squares (OLS)

• LMS is a **batch** algorithm: the parameter changes are computed over the whole dataset.

$$egin{cases} \Delta w = \eta \, rac{1}{N} \sum_{i=1}^N (t_i - y_i) \, x_i \ \Delta b = \eta \, rac{1}{N} \sum_{i=1}^N (t_i - y_i) \end{cases}$$

- The parameter changes have to be applied multiple times (**epochs**) in order for the parameters to converge.
- One can stop when the parameters do not change much, or after a fixed number of epochs.

Least Mean Squares algorithm

- w = 0 ; b = 0
- for M epochs:
 - dw = 0 ; db = 0
 - for each sample (x_i, t_i) :

$$y_i = w x_i + b$$

$$\circ \ dw = dw + \left(t_i - y_i
ight) x_i$$

$$\circ db = db + (t_i - y_i)$$

- $\Delta w = \eta \, rac{1}{N} dw$
- $\Delta b = \eta \, rac{1}{N} db$

Least mean squares in action

Least mean squares

• During learning, the **mean square error** (mse) decreases with the number of epochs but does not reach zero because of the noise in the data.

Delta learning rule: Online version of LMS

 LMS is very slow, because it changes the weights only after the whole training set has been evaluated.

• It is also possible to update the weights immediately after each example using the delta learning rule:

$$egin{cases} \Delta w = \eta \left(t_i - y_i
ight) x_i \ \Delta b = \eta \left(t_i - y_i
ight) \end{cases}$$

• The batch version is more stable, but the online version is faster: the weights have already learned something when arriving at the end of the first epoch.

Delta learning rule in action (same learning rate!)

Delta learning rule

- The key idea of linear regression (one input x, one output y) can be generalized to multiple inputs and outputs.
- Multiple Linear Regression (MLR) predicts several output variables based on several explanatory variables or features:

$$egin{cases} y_1 = w_1 \, x_1 + w_2 \, x_2 + b_1 \ \ y_2 = w_3 \, x_1 + w_4 \, x_2 + b_2 \end{cases}$$

• All we have is some samples: we want to know the best model for the data.

- Let's suppose you have 13971 measurements in some Excel file, linking engine size, number of cylinders, fuel consumption and CO2 emissions of various cars.
- You want to predict fuel consumption and CO2 emissions when you know the engine size and the number of cylinders.

Engine size	Cylinders	Fuel consumption	CO2 emissions
2	4	8.5	196
2.4	4	9.6	221
1.5	4	5.9	136
3.5	6	11	255
3.5	6	11	244
3.5	6	10	230
3.5	6	10	232
3.7	6	11	255
3.7	6	12	267
•••	•••	•••	•••

ullet Noting the variables x_1 , x_2 , y_1 , y_2 , we can define our MLR problem:

$$egin{cases} y_1 = w_1 \, x_1 + w_2 \, x_2 + b_1 \ y_2 = w_3 \, x_1 + w_4 \, x_2 + b_2 \end{cases}$$

and use the least mean squares method to obtain the value of the parameters.

Note: using the Python library scikit-learn (https://scikit-learn.org), this is done in two lines of code:

- 1 from sklearn linear model import Linear Regression
- 2 reg = LinearRegression().fit(X, y)

• The system of equations:

$$egin{cases} y_1 = w_1 \, x_1 + w_2 \, x_2 + b_1 \ y_2 = w_3 \, x_1 + w_4 \, x_2 + b_2 \end{cases}$$

can be put in a matrix-vector form:

$$egin{bmatrix} y_1 \ y_2 \end{bmatrix} = egin{bmatrix} w_1 & w_2 \ w_3 & w_4 \end{bmatrix} imes egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

We simply create the corresponding vectors and matrices:

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \qquad \mathbf{y} = egin{bmatrix} y_1 \ y_2 \end{bmatrix} \qquad \mathbf{t} = egin{bmatrix} t_1 \ t_2 \end{bmatrix} \qquad \mathbf{b} = egin{bmatrix} b_1 \ b_2 \end{bmatrix} \qquad W = egin{bmatrix} w_1 & w_2 \ w_3 & w_4 \end{bmatrix}$$

- ${f x}$ is the input vector, ${f y}$ is the output vector, ${f t}$ is the target vector.
- ullet W is called the **weight matrix** and ${f b}$ the **bias vector**.

$$\mathbf{y} = f_{W,\mathbf{b}}(\mathbf{x}) = W imes \mathbf{x} + \mathbf{b}$$

W,b y t

• The model is now defined by:

$$\mathbf{y} = f_{W,\mathbf{b}}(\mathbf{x}) = W imes \mathbf{x} + \mathbf{b}$$

- The problem is exactly the same as before, except that we use vectors and matrices instead of scalars: \mathbf{x} and \mathbf{y} can have any number of dimensions, the same procedure will apply.
- This corresponds to a **linear neural network** (or linear perceptron), with one **output neuron** per predicted value y_i using the linear activation function.

• The mean square error still needs to be a scalar in order to be minimized. We can define it as the squared norm of the error **vector**:

$$\min_{W, \mathbf{b}} \, \mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathcal{D}}[||\mathbf{t} - \mathbf{y}||^2] = \mathbb{E}_{\mathcal{D}}[((t_1 - y_1)^2 + (t_2 - y_2)^2)]$$

• In order to apply gradient descent, one needs to calculate partial derivatives w.r.t the weight matrix W and the bias vector \mathbf{b} , i.e. **gradients**:

$$egin{cases} \Delta W = -\eta \,
abla_W \, \mathcal{L}(W, \mathbf{b}) \ \ \Delta \mathbf{b} = -\eta \,
abla_\mathbf{b} \, \mathcal{L}(W, \mathbf{b}) \end{cases}$$

• Some more advanced linear algebra becomes important to know how to compute these gradients:

https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf

We search the minimum of the mse loss function:

$$\min_{W,\mathbf{b}} \mathcal{L}(W,\mathbf{b}) = \mathbb{E}_{\mathcal{D}}[||\mathbf{t}-\mathbf{y}||^2] pprox rac{1}{N} \; \sum_{i=1}^N ||\mathbf{t}_i-\mathbf{y}_i||^2 = rac{1}{N} \; \sum_{i=1}^N l_i(W,\mathbf{b})$$

• The individual loss function $l_i(W, \mathbf{b})$ is the squared \mathcal{L}^2 -norm of the error vector, what can be expressed as a dot product or a vector multiplication:

$$l_i(W,\mathbf{b}) = ||\mathbf{t}_i - \mathbf{y}_i||^2 = \langle \mathbf{t}_i - \mathbf{y}_i \cdot \mathbf{t}_i - \mathbf{y}_i
angle = (\mathbf{t}_i - \mathbf{y}_i)^T imes (\mathbf{t}_i - \mathbf{y}_i)$$

• Remember:

$$\mathbf{x}^T imes \mathbf{x} = egin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} imes egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} = x_1 \, x_1 + x_2 \, x_2 + \dots + x_n \, x_n = \langle \mathbf{x} \cdot \mathbf{x}
angle = ||\mathbf{x}||_2^2$$

• The chain rule tells us in principle that:

$$abla_W \, l_i(W, \mathbf{b}) =
abla_{\mathbf{y}_i} \, l_i(W, \mathbf{b}) imes
abla_W \, \mathbf{y}_i$$

• The gradient w.r.t the output vector \mathbf{y}_i is quite easy to obtain, as it a quadratic function of $\mathbf{t}_i - \mathbf{y}_i$:

$$abla_{\mathbf{y}_i} \, l_i(W, \mathbf{b}) =
abla_{\mathbf{y}_i} \, (\mathbf{t}_i - \mathbf{y}_i)^T imes (\mathbf{t}_i - \mathbf{y}_i)^T$$

• The proof relies on product differentiation $(f \times g)' = f' g + f g'$:

$$egin{aligned}
abla_{\mathbf{y}_i} \left(\mathbf{t}_i - \mathbf{y}_i
ight)^T imes \left(\mathbf{t}_i - \mathbf{y}_i
ight) &= \left(
abla_{\mathbf{y}_i} \left(\mathbf{t}_i - \mathbf{y}_i
ight) imes \left(\mathbf{t}_i - \mathbf{y}_i
ight) + \left(\mathbf{t}_i - \mathbf{y}_i
ight) imes
abla_{\mathbf{y}_i} \left(\mathbf{t}_i - \mathbf{y}_i
ight) \ &= - (\mathbf{t}_i - \mathbf{y}_i) \ &= - 2 \left(\mathbf{t}_i - \mathbf{y}_i
ight) \end{aligned}$$

Note: We use the properties $\nabla_{\mathbf{x}} \mathbf{x}^T \times \mathbf{z} = \mathbf{z}$ and $\nabla_{\mathbf{z}} \mathbf{x}^T \times \mathbf{z} = \mathbf{x}$ to get rid of the transpose.

- The "problem" is when computing $abla_W \, \mathbf{y}_i =
 abla_W \, (W imes \mathbf{x}_i + \mathbf{b})$:
 - ullet \mathbf{y}_i is a vector and W a matrix.
 - $\nabla_W \mathbf{y}_i$ is then a Jacobian (matrix), not a gradient (vector).
- ullet Intuitively, differentiating $W imes {f x}_i+{f b}$ w.r.t W should return ${f x}_i$, but it is a vector, not a matrix...
- The gradient (or Jacobian) of $l_i(W, \mathbf{b})$ w.r.t W should be a matrix of the same size as W so that we can apply gradient descent:

$$\Delta W = -\eta \,
abla_W \, \mathcal{L}(W, \mathbf{b})$$

We already know that:

$$abla_W \, l_i(W, \mathbf{b}) = -2 \, (\mathbf{t}_i - \mathbf{y}_i) imes
abla_W \, \mathbf{y}_i$$

- ullet If \mathbf{x}_i has n elements and \mathbf{y}_i m elements, W is a m imes n matrix.
- Remember the outer product between two vectors:

$$\mathbf{u} imes \mathbf{v}^{\mathsf{T}} = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = egin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \ u_2 v_1 & u_2 v_2 & u_2 v_3 \ u_3 v_1 & u_3 v_2 & u_3 v_3 \ u_4 v_1 & u_4 v_2 & u_4 v_3 \end{bmatrix}.$$

ullet It is easy to see that the outer product between $({f t}_i-{f y}_i)$ and ${f x}_i$ gives a m imes n matrix:

$$abla_W \, l_i(W, \mathbf{b}) = -2 \, (\mathbf{t}_i - \mathbf{y}_i) imes \mathbf{x}_i^T$$

Example

• Let's prove it element per element:

$$\mathbf{y} = egin{bmatrix} y_1 \ y_2 \end{bmatrix} = W imes \mathbf{x} + \mathbf{b} = egin{bmatrix} w_1 & w_2 \ w_3 & w_4 \end{bmatrix} imes egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} b_1 \ b_2 \end{bmatrix} \ l(W, \mathbf{b}) = (\mathbf{t} - \mathbf{y})^T imes (\mathbf{t} - \mathbf{y}) = egin{bmatrix} t_1 - y_1 & t_2 - y_2 \end{bmatrix} imes egin{bmatrix} t_1 - y_1 \ t_2 - y_2 \end{bmatrix} = (t_1 - y_1)^2 + (t_2 - y_2)^2 \ \end{pmatrix}$$

ullet The Jacobian w.r.t W can be explicitly formed using partial derivatives:

$$abla_W \, l(W, \mathbf{b}) = egin{bmatrix} rac{\partial l(W, \mathbf{b})}{\partial w_1} & rac{\partial l(W, \mathbf{b})}{\partial w_2} \ rac{\partial l(W, \mathbf{b})}{\partial w_3} & rac{\partial l(W, \mathbf{b})}{\partial w_4} \end{bmatrix} = egin{bmatrix} -2 \left(t_1 - y_1
ight) x_1 & -2 \left(t_1 - y_1
ight) x_2 \ -2 \left(t_2 - y_2
ight) x_1 & -2 \left(t_2 - y_2
ight) x_2 \end{bmatrix}$$

We can rearrange this matrix as an outer product:

$$abla_W \, l(W, \mathbf{b}) = -2 \, egin{bmatrix} t_1 - y_1 \ t_2 - y_2 \end{bmatrix} imes egin{bmatrix} x_1 & x_2 \end{bmatrix} = -2 \, (\mathbf{t} - \mathbf{y}) imes \mathbf{x}^T$$

=

• Batch version (least mean squares):

$$egin{cases} \Delta W = \eta \, rac{1}{N} \sum_{i=1}^{N} \left(\mathbf{t}_i - \mathbf{y}_i
ight) imes \mathbf{x}_i^T \ \Delta \mathbf{b} = \eta \, rac{1}{N} \sum_{i=1}^{N} \left(\mathbf{t}_i - \mathbf{y}_i
ight) \end{cases}$$

• Online version (delta learning rule):

$$egin{cases} \Delta W = \eta \left(\mathbf{t}_i - \mathbf{y}_i
ight) imes \mathbf{x}_i^T \ \Delta \mathbf{b} = \eta \left(\mathbf{t}_i - \mathbf{y}_i
ight) \end{cases}$$

 This is completely equivalent to having one learning rule per parameter:

$$egin{cases} \Delta w_1 = \eta \left(t_1 - y_1
ight) x_1 \ \Delta w_2 = \eta \left(t_1 - y_1
ight) x_2 \ \Delta w_3 = \eta \left(t_2 - y_2
ight) x_1 \ \Delta w_4 = \eta \left(t_2 - y_2
ight) x_2 \end{cases} egin{cases} \Delta b_1 = \eta \left(t_1 - y_1
ight) \ \Delta b_2 = \eta \left(t_2 - y_2
ight) \ \Delta b_2 = \eta \left(t_2 - y_2
ight) \end{cases}$$

ullet The delta learning rule is always of the form: Δw = eta imes error imes input. Biases have an input of 1.

3 - Logistic regression

Logistic regression

- Let's suppose we want to perform a regression, but where the outputs t_i are bounded between 0 and 1.
- We could use a logistic (or sigmoid) function instead of a linear function in order to transform the input into an output:

$$y=\sigma(w\,x+b)=rac{1}{1+\exp(-w\,x-b)}$$

The logistic function

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

has the nice property that

$$\sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$$

Logistic regression

• We can perform a logistic regression with the same online LMS method as in the linear case:

$$l_i(w,b) = (t_i - \sigma(w\,x_i+b))^2$$

• The partial derivative of the individual loss is easy to find using the chain rule:

$$rac{\partial l_i(w,b)}{\partial w} = 2 \left(t_i - y_i
ight) rac{\partial}{\partial w} (t_i - \sigma(w \, x_i + b))$$

$$=-2\left(t_{i}-y_{i}
ight)\sigma'(w\,x_{i}+b)\,x_{i}$$

• The non-linear transfer function $\sigma(x)$ adds its derivative into the gradient:

$$\Delta w = \eta \left(t_i - y_i \right) \sigma'(w x_i + b) x_i$$

ullet With the property $\sigma'(x)=\sigma(x)\,(1-\sigma(x))$, it even becomes:

$$\Delta w = \eta \left(t_i - y_i
ight) y_i \left(1 - y_i
ight) x_i$$

so we do not even need to compute the derivative!

Logistic regression

Model:

$$y=\sigma(w\,x+b)=rac{1}{1+\exp(-w\,x-b)}$$

The delta learning rule in case of logistic regression is:

$$egin{cases} \Delta w = \eta \left(t_i - y_i
ight) y_i \left(1 - y_i
ight) x_i \ \ \Delta b = \eta \left(t_i - y_i
ight) y_i \left(1 - y_i
ight) \end{cases}$$

Generalized form of the delta learning rule

Model:

$$\mathbf{y} = f(W imes \mathbf{x} + \mathbf{b})$$

• Loss function (mse):

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \in \mathcal{D}}[||\mathbf{t} - \mathbf{y}||^2]$$

• Delta learning rule:

$$egin{cases} \Delta W = \eta \left[(\mathbf{t} - \mathbf{y}) \odot f'(W imes \mathbf{x} + \mathbf{b})
ight] imes \mathbf{x}^T \ \Delta \mathbf{b} = \eta \left(\mathbf{t} - \mathbf{y}
ight) \odot f'(W imes \mathbf{x} + \mathbf{b}) \end{cases}$$

- ullet \odot denotes element-wise multiplication, i.e. $(\mathbf{t}-\mathbf{y})\odot f'(W imes\mathbf{x}+\mathbf{b})$ is also a vector.
- In the linear case, f'(x) = 1.
- One can use any non-linear function, e.g hyperbolic tangent tanh(), ReLU, etc.
- Transfer functions are chosen for neural networks so that we can compute their derivative easily.

- The functions underlying real data are rarely linear plus some noise around the ideal value.
- In the figure, the input/output function would be better modeled by a second-order polynomial (or higher):

$$y = f_{\mathbf{w},b}(x) = w_1\,x + w_2\,x^2 + b$$

Model:

$$y = f_{\mathbf{w},b}(x) = w_1\,x + w_2\,x^2 + b$$

We can transform the input into a vector of coordinates:

$$\mathbf{x} = egin{bmatrix} x \ x^2 \end{bmatrix} \qquad \mathbf{w} = egin{bmatrix} w_1 \ w_2 \end{bmatrix}$$

The problem becomes:

$$y = \langle \mathbf{w}.\mathbf{x}
angle + b = \sum_j w_j \, x_j + b$$

ullet We can simply apply multiple linear regression (MLR) to find ${f w}$ and b:

$$egin{cases} \Delta \mathbf{w} = \eta \left(t - y
ight) \mathbf{x} \ \ \Delta b = \eta \left(t - y
ight) \end{cases}$$

• This generalizes to polynomials of any order p:

$$y = f_{\mathbf{w},b}(x) = w_1\,x + w_2\,x^2 + \ldots + w_p\,x^p + b$$

• We create a vector of powers of x (called **polynomial features**):

$$\mathbf{x} = egin{bmatrix} x \ x^2 \ x^p \end{bmatrix} \qquad \mathbf{w} = egin{bmatrix} w_1 \ w_2 \ \dots \ w_p \end{bmatrix}$$

• And apply multiple linear regression (MLR) to find w and b:

$$egin{cases} \Delta \mathbf{w} = \eta \left(t - y
ight) \mathbf{x} \ \Delta b = \eta \left(t - y
ight) \end{cases}$$

- Non-linear problem solved! The only unknown is which order for the polynomial matches best the data.
- One can perform regression with any kind of parameterized function using gradient descent.

5 - A bit of learning theory

What matters during training?

• Before going further, let's think about what we have been doing so far. We had a bunch of data samples $\mathcal{D}=(x_i,t_i)_{i=1..N}$ (the **training set**) and we decided to apply a (linear) model on it:

$$y_i = w \, x_i + b$$

• We then minimized the mean square error (mse) on that training set using gradient descent. At the end of learning, we can measure the **residual error** of the model on the data:

$$\epsilon_{\mathcal{D}} = rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2$$

We get a number, for example 0.04567. Is that good?

Regression error

• The mean square error mse is not very informative, as its value depends on how the outputs are scaled:

$$\epsilon_{\mathcal{D}} = rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2$$

• If you multiply both the data t and the prediction y by 10, the residual error will be 100 times higher, without any change to the quality of the model.

Coefficient of determination

• The **coefficient of determination** R^2 is a rescaled variant of the mse comparing the variance of the residuals to the variance of the data around its mean \hat{t} :

$$R^2 = 1 - rac{ ext{Var}(ext{residuals})}{ ext{Var}(ext{data})} = 1 - rac{\sum_{i=1}^N (t_i - y_i)^2}{\sum_{i=1}^N (t_i - \hat{t})^2}$$

• R^2 should be as close from 1 as possible. For example, if $R^2=0.8$, we can say that the **model explains** 80% of the variance of the data.

Sensibility to outliers

• Suppose we have a training set with one outlier (bad measurement, bad luck, etc).

Sensibility to outliers

• LMS would find the minimum of the mse, but it is clearly a bad fit for most points.

Sensibility to outliers

• This model feels much better, but its residual mse is higher...

- When only looking at the residual mse on the training data, one could think that the higher the order of the polynomial, the better.
- But it is obvious that the interpolation quickly becomes very bad when the order is too high.
- A complex model (with a lot of parameters) is useless for predicting new values.
- We actually do **not** care about the error on the training set.
- We care about **generalization**.

Cross-validation

- Let's suppose we dispose of m models $\mathcal{M}=\{M_1,...,M_m\}$ that could be used to fit (or classify) some data $\mathcal{D}=\{x_i,t_i\}_{i=1}^N$.
- Such a class could be the ensemble of polynomes with different orders, different algorithms (NN, SVM) or the same algorithm with different values for the hyperparameters (learning rate, regularization parameters...).
- The naive and wrong method to find the best hypothesis would be:

Wrong method!

- ullet For all models M_i :
 - lacksquare Train M_i on ${\mathcal D}$ to obtain an hypothesis h_i .
 - ullet Compute the training error $\epsilon_{\mathcal{D}}(h_i)$ of h_i on \mathcal{D} :

$$\epsilon_{\mathcal{D}}(h_i) = \mathbb{E}_{(\mathbf{x},t) \in \mathcal{D}}[(h_i(\mathbf{x}) - t)^2]$$

- ullet Select the hypothesis h_i^* with the minimal training error : $h_i^* = \mathrm{argmin}_{h_i \in \mathcal{M}} \quad \epsilon_{\mathcal{D}}(h_i)$
- This method leads to overfitting, as only the training error is used.

Cross-validation: training and test sets

- The solution is randomly take some samples out of the training set to form the test set.
- Typical values are 20 or 30 % of the samples in the test set.
- Method:
 - 1. Train the model on the training set (70% of the data).
 - 2. Test the performance of the model on the test set (30% of the data).
- The test performance will better measure how well the model generalizes to new examples.

Simple hold-out cross-validation

Algorithm

- Split the training data ${\cal D}$ into ${\cal S}_{
 m train}$ and ${\cal S}_{
 m test}$.
- For all models M_i :
 - ullet Train M_i on $\mathcal{S}_{ ext{train}}$ to obtain an hypothesis h_i .
 - ullet Compute the empirical error $\epsilon_{ ext{test}}(h_i)$ of h_i on $\mathcal{S}_{ ext{test}}$:

$$\epsilon_{ ext{test}}(h_i) = \mathbb{E}_{(\mathbf{x},t) \in \mathcal{S}_{ ext{test}}}[(h_i(\mathbf{x}) - t)^2]$$

- ullet Select the hypothesis h_i^* with the minimal empirical error : $h_i^* = \mathrm{argmin}_{h_i \in \mathcal{M}} \quad \epsilon_{ ext{test}}(h_i)$
- Disadvantages:
 - 20 or 30% of the data is wasted and not used for learning. It may be a problem when data is rare or expensive.
 - The test set must be representative of the difficulty of the training set (same distribution).

k-fold cross-validation

• Idea:

- build several different training/test sets with the same data.
- train and test each model repeatedly on each partition.
- choose the hypothesis that works best on average.

k-fold cross-validation

Algorithm

- ullet Randomly split the data ${\mathcal D}$ into k subsets of $rac{N}{k}$ examples $\{{\mathcal S}_1,\ldots,{\mathcal S}_k\}$
- For all models M_i :
 - For all k subsets \mathcal{S}_j :
 - \circ Train M_i on $\mathcal{D}-\mathcal{S}_j$ to obtain an hypothesis h_{ij}
 - \circ Compute the empirical error $\epsilon_{\mathcal{S}_i}(h_{ij})$ of h_{ij} on \mathcal{S}_j
 - lacksquare The empirical error of the model M_i on ${\cal D}$ is the average of empirical errors made on $(\mathcal{S}_j)_{j=1}^k$

$$\epsilon_{\mathcal{D}}(M_i) = rac{1}{k} \cdot \sum_{j=1}^k \epsilon_{\mathcal{S}_j}(h_{ij})$$

- ullet Select the model M_i^* with the minimal empirical error on ${\mathcal D}.$
- ullet In general k=10. Extreme cases take k=N: leave-one-out cross-validation.
- k-fold cross-validation works well, but needs a lot of repeated learning.

Training and test errors

- While the training mse always decrease with more complex models, the test mse increases after a while.
- This is called **overfitting**: learning by heart the data without caring about generalization.
- The two curves suggest that we should chose a polynomial order between 2 and 9.

Underfitting / Overfitting

- A model not complex enough for the data will underfit: its training error is high.
- A model too complex for the data will **overfit**: its test error is high.
- In between, there is the right complexity for the model: it learns the data correctly but does not overfit.

What does complexity mean?

 In polynomial regression, the complexity is related to the order of the polynomial, i.e. the number of coefficients to estimate:

$$y=f_{\mathbf{w},b}(x)=\sum_{k=1}^p w_k\,x^k+b$$

$$\mathbf{x} = egin{bmatrix} x \ x^2 \ x^p \end{bmatrix} \qquad \mathbf{w} = egin{bmatrix} w_1 \ w_2 \ \cdots \ w_p \end{bmatrix}$$

- ullet A polynomial of order p has p+1 unknown parameters (**free parameters**): the p weights and the bias.
- Generally, the complexity of a model relates to its number of free parameters:
 - The more free parameters, the more complex the model is, the more likely it will overfit.

6 - Regularized regression

Linear regression can either underfit or overfit depending on the data

Underfitting Overfitting

- When linear regression **underfits** (both training and test errors are high), the data is not linear: we need to use a **neural network**.
- When linear regression **overfits** (the test error is higher than the training error), we would like to **decrease its complexity**.

Complexity of a linear regression

• The problem is that the number of free parameters in linear regression only depends on the number of inputs (dimensions of the input space).

$$y = \sum_{i=1}^d w_i\,x_i + b$$

 \bullet For d inputs, there are d+1 free parameters: the d weights and the bias.

- We must find a way to reduce the complexity of the linear regression without changing the number of parameters, which is impossible.
- The solution is to **constrain** the values that the parameters can take: **regularization**.
- Regularization reduces the variance at the cost of increasing the bias.

L2 regularization - Ridge regression

- Using L2 regularization for linear regression leads to the Ridge regression algorithm.
- The individual loss function is defined as:

$$l_i(\mathbf{w},b) = (t_i-y_i)^2 + \lambda \, ||\mathbf{w}||^2$$

- The first part of the loss function is the classical mse on the training set: its role is to reduce the bias.
- The second part minimizes the L2 norm of the weight vector (or matrix), reducing the variance:

$$||\mathbf{w}||^2 = \sum_{i=1}^d w_i^2$$

• Deriving the regularized delta learning rule is straightforward:

$$\Delta w_i = \eta \left(\left(t_i - y_i
ight) x_i - \lambda \, w_i
ight)$$

• Ridge regression is also called weight decay: even if there is no error, all weights will decay to 0.

L1 regularization - LASSO regression

- Using **L1 regularization** for linear regression leads to the **LASSO regression** algorithm (least absolute shrinkage and selection operator).
- The individual loss function is defined as:

$$l_i(\mathbf{w},b) = (t_i - y_i)^2 + \lambda \left| \mathbf{w} \right|$$

• The second part minimizes this time the L1 norm of the weight vector, i.e. its absolute value:

$$|\mathbf{w}| = \sum_{i=1}^d |w_i|$$

Regularized delta learning rule with LASSO:

$$\Delta w_i = \eta \left(\left(t_i - y_i
ight) x_i - \lambda \operatorname{sign}(w_i)
ight)$$

• Weight decay does not depend on the value of the weight, only its sign. Weights can decay very fast to 0.

Ridge and Lasso regression

- **Ridge regression** finds the smallest value for the weights that minimize the mse.
- **LASSO regression** tries to set as many weight to 0 as possible (sparse code).
- Both methods depend on the **regularization parameter** λ . Its value determines how important the regularization term should.
- Regularization introduce a **bias**, as the solution found is **not** the minimum of the mse, but reduces the variance of the estimation, as small weights are less sensible to noise.

• LASSO allows feature selection: features with a zero weight can be removed from the training set.

Linear regression

Variable Coefficients 1000 750 250 -250-500-750Item_Type_Se Outlet_Identifier_O Outlet_Identifier_O Outlet_Identifier_O Outlet_Location_Type Outlet_Type_Supermarket Outlet_Type_Supermarket Outlet_Iype_Supermarket Outlet_Type_Grocer Outlet_Identifier_C Outlet_Identifier_C Outlet_Identifier_C et_Type_Supermarkel Outlet_Identifier_C Outlet_Identifier_C Outlet_Identifier_C Item_Type Item_Type_Frozen Item_Type_Hou Item_Type_Snack Item_Type_Baking Item_Type_Starchy Item_Type_Health and H Item_Type_ Item_Type_ Item_Type_Soft Outlet_Establishmer Item_Type_Hard Item_Type_(ltem_Type ltem_Type_Br Outlet_Location_Typ Item_Type_Fruits and Ve Variable

LASSO

L1+L2 regularization - ElasticNet

• An **ElasticNet** is a linear regression using both L1 and L2 regression:

$$l_i(\mathbf{w},b) = (t_i-y_i)^2 + \lambda_1 \left|\mathbf{w}
ight| + \lambda_2 \left|\left|\mathbf{w}
ight|
ight|^2$$

• It combines the advantages of Ridge and LASSO, at the cost of having now two regularization parameters to determine.