WHAT IS CLAIMED IS:

166 CCIVIII

1	1. A method of manufacturing an ink jet printing module comprising:
2	injection molding a precursor into a mold to form a stiffened piezoelectric
3	element; and
4	positioning the piezoelectric element over an ink chamber to subject ink
5	within the chamber to a jetting pressure upon applying a jetting voltage.
1	2. The method of claim 1, wherein the stiffened piezoelectric element has a curved
2	surface over the ink chamber.
1	3. The method of claim 2, wherein the curved surface is concave relative to the ink
2	chamber.
1	4. The method of claim 2, wherein the curved surface has a substantially constant
2	radius of curvature.
1	5. The method of claim 1, wherein the piezoelectric element includes lead zirconium
2	titanate.
1	6. The method of claim 1, wherein the jetting voltage is less than 60 volts.
1	7. The method of claim 2, wherein the curved surface has a radius of curvature of
2	less than 5 millimeters.
1	8. The method of claim 2, wherein the curved surface has a radius of curvature of
2	less than 3 millimeters.
1	9. The method of claim 1, further comprising placing a first electrode and a second
2	electrode on a surface of the piezoelectric element.

2

1

1

2

1

1

2

1

2

1

- 10. The method of claim 1, wherein the piezoelectric element has a thickness of less than 50 microns.
 - 11. The method of claim 1, further comprising orienting a wall of the chamber to contact the stiffened piezoelectric element at an angle of greater than ninety degrees.
 - 12. A method of depositing ink comprising:
 - delivering ink to an ink chamber; and
 - applying a jetting voltage across a first electrode and a second electrode on a face of a stiffened piezoelectric element to subject ink within the chamber to a jetting pressure, thereby depositing ink from an exit orifice of the ink chamber.
 - 13. The method of claim 12, wherein the stiffened piezoelectric element has a curved surface over the ink chamber.
 - 14. The method of claim 13, wherein the curved surface is concave relative to the ink chamber.
 - 15. The method of claim 13, wherein the curved surface has a substantially constant radius of curvature.
- 16. The method of claim 13, wherein the piezoelectric element includes lead zirconium titanate.
- 17. The method of claim 13, wherein the jetting voltage is less than 60 volts.
- 18. The method of claim 14, wherein the curved surface has a radius of curvature of less than 5 millimeters.
 - 19. An ink jet printing module comprising:
- an ink chamber;
- a stiffened piezoelectric element having a region exposed to the ink chamber, the

4

5

6

1

2

1

2

piezoelectric element being positioned over the ink chamber to subject ink within the
chamber to jetting pressure; and
electrical contacts arranged on a surface of the piezoelectric element for activation o
the piezoelectric element.
20. The ink jet printing module of claim 19, wherein the region of the stiffened

- 20. The ink jet printing module of claim 19, wherein the region of the stiffened piezoelectric element exposed to the ink chamber has a curved surface.
- 21. The ink jet printing module of claim 20, wherein the curved surface is concave relative to the ink chamber
- 22. The ink jet printing module of claim 20, wherein the curved surface has a substantially constant radius of curvature.
- 23. The ink jet printing module of claim 19, wherein the piezoelectric element includes lead zirconium titanate.
- 24. The ink jet printing module of claim 19, wherein the piezoelectric element has a thickness of 5 to 300 microns.
- 25. The ink jet printing module of claim 19, wherein the piezoelectric element has a thickness of 10 to 250 microns
- 26. The ink jet printing module of claim 19, wherein the piezoelectric element has a thickness of less than 100 microns.
 - 27. The ink jet printing module of claim 19, wherein the chamber has a width of less than 1200 microns.
 - 28. The ink jet printing module of claim 19, wherein the chamber has a width of 50 to 1000 microns.

1

2

3

1

2

1

2

- 1 29. The ink jet printing module of claim 19, wherein the chamber has a width of 100 to 800 microns.
 - 30. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 500 to 3000 microns.
 - 31. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 1000 to 2800 microns.
 - 32. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 1500 to 2600 microns.
 - 33. The ink jet printing module of claim 19, wherein the electrodes are configured to apply a voltage of less than 60 volts.
 - 34. The ink jet printing module of claim 19, further comprising a series of chambers.
 - 35. The ink jet printing module of claim 34, wherein each of the chambers is covered by a single piezoelectric element.
 - 36. The ink jet printing module of claim 19, wherein the chamber includes a wall contacting the piezoelectric element exposed to the ink chamber at an angle of greater than ninety degrees.