Chapter 8: Network Security

Chapter goals:

- understand principles of network security:
 - cryptography and its many uses beyond "confidentiality"
 - authentication
 - message integrity
- security in practice:
 - firewalls and intrusion detection systems
 - security in application, transport, network, link layers

Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrity, authentication
- 8.4 Securing e-mail
- **8.5** Securing TCP connections: SSL
- 8.6 Network layer security: IPsec
- 8.7 Securing wireless LANs
- 8.8 Operational security: firewalls and IDS

What is network security?

- confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
- authentication: sender, receiver want to confirm identity of each other
- message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- * Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- * ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

The language of cryptography

m plaintext message $K_A(m)$ ciphertext, encrypted with key $K_A(m)$ $m = K_B(K_A(m))$

Symmetric key cryptography

- symmetric key crypto: Bob and Alice share same (symmetric) key: K_S
- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- Q: how do Bob and Alice agree on key value?

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key crypto

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

RSA: another important property

The following property will be very useful later:

$$K_B(K_B^+(m)) = m = K_B^+(K_B^-(m))$$

private key

use public key use private key first, followed by first, followed by public key

result is the same!

Authentication: yet another try

Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Digital signatures

simple digital signature for message m:

* Bob signs m by encrypting with his private key K_R , creating "signed" message, $K_{R}(m)$

Message digests

computationally expensive to public-key-encrypt long messages

goal: fixed-length, easy- tocompute digital "fingerprint"

apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- many-to-l
- produces fixed-size msg digest (fingerprint)
- given message digest x,
 computationally infeasible to
 find m such that x = H(m)

Digital signature = signed message digest

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Public key cryptography

