CHAPTER 3. MANIPULATOR KINEMATICS

• Kinematics: Science of motion without regard to the forces and moments that cause it

Link Description

Definitions

Manipulator: A set of bodies (links) connected in a **chain** by joints

Links: Bodies of a manipulator or a chain. Mathematical concept relating two neighboring joint axes

Joints: Connection between a neighboring pair of links

In robotics, for modeling, each joint has one DOF. → One link – one joint – one DOF revolute joint vs. prismatic (or sliding) joint

- Note: A (physical) joint with *n* DOF can be modeled as *n* joints (revolute and prismatic combined) of one DOF connected with *n*-1 links of zero and/or non-zero lengths.
- Numbering of links

Link 0: immobile base of manipulator (e.g., inertial frame, reference frame, ground, etc.)

Link 1: first moving body Link *i*: *i*th moving body

Link *n*: free end of manipulator

- Joint axis i: vector direction about which link i rotates relative to link i-1
- Recall: Distance between any two axes in 3D is that of the common normal which is perpendicular to both axes.

(Existence and uniqueness except for parallel axes; parallel axes have infinite number of mutual perpendiculars of equal length.)

Denavit-Hartenberg (DH) Convention

(References: [1] Sciavicco and Siciliano, *Modeling and Control of Robot Manipulators*, McGraw Hill, 1996; [2] Spong, M.W., Hutchinson, S., and Vidyasagar, M., *Robot Modeling and Control*, Wiley, 2006)

Overall steps for standard DH Convention

[DH STEP I] Attach a local frame to each link. Frame $\{i\}$ is attached rigidly to link i.

[DH STEP II] Assign DH parameters and construct DH table.

[DH STEP III] Compute homogeneous transformation matrices and forward kinematics.

[DH STEP I] Attach a local frame to each link

- Define and attach link Frame {*i*}:
 - **Step I-1)** Let Joint Axis i denote the axis of the joint connecting Link i-1 to Link i.
 - **Step I-2)** Choose axis z_i along the axis of Joint i+1.
 - **Step I-3)** Locate the origin O_i at the intersection of axis z_i with the common normal to axes z_{i-1} and z_i . Also, locate $O_{i'}$ at the intersection of the common normal with axis z_{i-1} .
 - **Step I-4)** Choose axis x_i along the common normal to axes z_{i-1} and z_i with direction from Joint i to Joint i+1. $(x_i \perp z_{i-1} \text{ and points away from } z_{i-1})$
 - **Step I-5)** Choose axis y_i so as to complete the right-handed frame.
- The DH convention gives a nonunique definition of link frames in the following cases:
 - Case 1) For Frame $\{0\}$, only direction of axis z_0 is specified; then O_0 and x_0 can be arbitrarily chosen.
 - Case 2) For Frame $\{n\}$, since there is no Joint n+1, z_n is not uniquely defined while x_n has to be normal to z_{n-1} . Typically, Joint n is revolute, and thus z_n is to be aligned with z_{n-1} .
 - Case 3) When two consecutive axes are parallel, the common normal between them is not uniquely defined.
 - Case 4) When two consecutive axes z_{i-1} and z_i intersect, x_i is chosen normal to the plane formed by z_{i-1} and z_i . The positive direction of x_i is arbitrary. The most natural choice for the origin O_i in this case is at the point of intersection of z_{i-1} and z_i . Note that, in this case, $a_i = 0$. (In general, the line that is normal to the plane formed by two intersecting axes can be viewed as a converging case of the common normal of two non-intersecting axes as they approach to each other and eventually intersect.)
 - Case 5) When Joint i is prismatic, the direction sense of z_{i-1} is arbitrary.

In general, 6 parameters are required for the transformation between two frames. However, the DH convention imposes the following 2 conditions, reducing the required number of parameters to 4:

DH1)
$$x_i \perp z_{i-1}$$
.
DH2) x_i and z_{i-1} axes intersect. $\} \rightarrow x_i$ along the common normal to axes z_{i-1} and z_i

[DH STEP II] Assign DH parameters and construct DH table

- Once the link frames have been established, the position and orientation of Frame {i} with respect to Frame $\{i-1\}$ are completely specified by the following DH parameters.
 - θ_i : Angle between axes x_{i-1} and x_i about axis z_{i-1} to be taken positive with counter-clockwise
 - d_i : Coordinate (+/-) of $O_{i'}$ along z_{i-1}
 - a_i : Distance between O_i and $O_{i'}$ (Note: x_i "with direction from Joint i to Joint i+1" or "points away from z_{i-1} " ensures that a_i is positive, thus distance, not coordinate.)
 - α_i : Angle between axes z_{i-1} and z_i about axis x_i to be taken positive with counter-clockwise
- Reference configuration (= home configuration = zero configuration) of a robot manipulator
 - : configuration with respect to which the joint displacements of the manipulator are measured
 - The configuration of a manipulator when all joint variables are equal to zero
 - The location of the end-effector and the locations of the joint axes are known.
 - Can be chosen arbitrarily; usually chosen at the location where the coordinates of all joint axes can be easily identified
 - DH parameters do not represent the angle of rotation or the distance of translation about a joint axis.
- Target configuration (= desired configuration)
 - Manipulator displaced from the reference configuration to the target configuration by a series of joint displacements about all joint axes.
 - To obtain actual joint displacements, subtract joint variables associated with the reference configuration from that of a target configuration.
- Link parameters (design) and joint variables (control) (where $\tilde{\theta}_i$ and \tilde{d}_i are reference configurations)

If joint is revolute
$$\theta_i = \tilde{\theta}_i + q_i \rightarrow \text{ joint variable: } q_i$$
 link parameters: d_i , a_i , α_i link parameters: d_i , a_i , α_i link parameters: θ_i , θ_i , θ_i link parameters: θ_i , θ_i , θ_i , θ_i link parameters: θ_i , θ_i , θ_i link par

⇒ Joint variable vector:
$$\mathbf{q} = \begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix}$$
 (for *n*-DOF manipulator)

DH parameter table

For two types Joint *i*: revolute and prismatic

Joint i	$\theta_{\scriptscriptstyle i}$	d_i	a_i	α_{i}	Joint variable q
Revolute	$\theta_i = \tilde{\theta}_i + q_i$	d_i	a_i	α_{i}	q_i
Prismatic	$ heta_i$	$d_i = \tilde{d}_i + q_i$	a_i	α_{i}	q_i

For an *n*-DOF manipulator

TOT WITH BOT TIK					
Joint #	$ heta_{\scriptscriptstyle i}$	d_i	a_i	α_{i}	Joint variable q
1 (if revolute)	$\theta_1 = \tilde{\theta}_1 + q_1$	d_1	a_1	$\alpha_{\scriptscriptstyle 1}$	q_1
2 (if prismatic)	$ heta_2$	$d_2 = \tilde{d}_2 + q_2$	a_2	α_2	q_2
:	:	:	:	:	:
<i>n</i> (if revolute)	$\theta_n = \overline{\theta}_n + q_n$	d_n	a_n	α_{n}	q_n

 Note: "DH parameter = home configuration + joint variable" in DH parameters table Clarifies which DH parameter corresponds to joint degree of freedom (revolute or prismatic) Identifies the home configuration parameter value of the corresponding joint

[DH STEP III] Compute homogeneous transformation matrices and forward kinematics

- Derivation of link transformation $^{i-1}T_i$: define Frame $\{i\}$ relative to Frame $\{i-1\}$
 - → Four transformations (sub-problems) each of four transformations will be a function of one DH parameter only

$$Rot(z,\theta_i)\colon T_{z,\theta} => Trans(0,0,d_i)\colon T_{z,d} => Trans(a_i,0,0)\colon T_{x,a} => Rot(x,\alpha_i)\colon T_{x,\alpha}$$

(Note: the rotations in this case are moving frame rotations; Euler angles; product)

$$\begin{split} & = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0 \\ \sin\theta_i & \cos\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_i & -\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

$$\therefore \begin{bmatrix} \cos \theta_i & -\cos \alpha_i \sin \theta_i & \sin \alpha_i \sin \theta_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \alpha_i \cos \theta_i & -\sin \alpha_i \cos \theta_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

- ${}^{i-1}T_i = {}^{i-1}T_i(q_i)$: function of only **one** variable q_i where $\begin{cases} \theta_i = \tilde{\theta}_i + q_i \text{ for revolute joint} \\ d_i = \tilde{d}_i + q_i \text{ for prismatic joint} \end{cases}$
- $Screw_{Q}(r,\phi)$: translation by distance r along, and rotation by angle ϕ about axis \hat{Q} Examples: $Screw_z(d,\theta) = T_{z,\theta}T_{z,d}$ and $Screw_x(a,\alpha) = T_{x,a}T_{x,\alpha}$
- Forward kinematics concatenating link transformations

$${}^{0}T_{n} = {}^{0}T_{1}(q_{1}){}^{1}T_{2}(q_{2})...{}^{i-1}T_{i}(q_{i})...{}^{n-1}T_{n}(q_{n})$$
 (for *n*-DOF manipulator) ${}^{0}T_{i} = {}^{0}T_{i}(q_{1},q_{2},...,q_{i})$: function of the first *i* joint variables

→ computes Cartesian position and orientation of the *i*th link

 ${}^{0}T_{n} = {}^{0}T_{n}(q_{1},q_{2},...,q_{n})$: function of all *n* joint variables

 \rightarrow computes Cartesian position and orientation of the last (nth) link

DH Convention Procedure Summary

- 1) Find and number consecutively the joint axes; set the directions of axes $z_0, ..., z_{n-1}$.
- 2) Choose Frame $\{0\}$ by locating the origin on axis z_0 ; axes x_0 and y_0 are chosen according to right-hand rule. If feasible, it is worth choosing Frame $\{0\}$ to coincide with the base frame.

Execute steps 3 to 5 for i = 1, ..., n-1:

- 3) Locate the origin O_i at the intersection of z_i with the common normal to axes z_{i-1} and z_i . If axes z_{i-1} and z_i are parallel and Joint i is revolute, then locate O_i so that $d_i = 0$; if Joint i is prismatic, locate O_i at a reference position for the joint range, e.g., a mechanical limit.
- 4) Choose axis x_i along the common normal to axes z_{i-1} and z_i with direction from Joint i to Joint i+1.
- 5) Choose axis y_i according to right-hand rule.

To complete:

- 6) Choose Frame $\{n\}$; if Joint n is revolute, then align z_n and z_{n-1} ; otherwise, if Joint n is prismatic, then choose z_n arbitrarily. Axis x_n is set according to step 4.
- 7) For i = 1, ..., n, construct the table of DH parameters θ_i , d_i , a_i , α_i .
- 8) On the basis of the DH parameters in 7, compute the homogenous transformation matrices ${}^{i-1}T_i(q_i)$ for $i=1,\ldots,n$.
- 9) Compute the homogenous transformation ${}^{0}T_{n}(\mathbf{q}) = {}^{0}T_{1}...{}^{n-1}T_{n}$ that yields the position and orientation of Frame $\{n\}$ with respect to Frame $\{0\}$.
- 10) Given bT_0 (from base to Frame $\{0\}$) and nT_e (from Frame $\{n\}$ to end-effector), compute the direct kinematic function as ${}^bT_e(\mathbf{q}) = {}^bT_0{}^0T_n{}^nT_e$ that yields the position and orientation of the end-effector frame with respect to the base frame.

DH Parameters (Quick Summary)

- θ_i (joint angle): joint angle from x_{i-1} to x_i about z_{i-1} (revolute joint variable)
- d_i (link offset): shortest distance between x_{i-1} to x_i axis (prismatic joint variable)
- a_i (link length): shortest distance between z_{i-1} and z_i axis
- α_i (link twist): angle from z_{i-1} to z_i about x_i axis

(Note: shortest distance between axes = length of the common normal)

Actuator Space, Joint Space, and Cartesian Space

- nx1 joint vector \mathbf{q} : set of n joint variables (generalized coordinates) that specifies the position and orientation of all the links of an n-DOF manipulator
- Joint space: vector space of all joint vectors
- Cartesian space = task-oriented space = operational space
- Actuator vector: actuator positions (determine joint vector) → actuator space
 - Examples: two actuators for a single joint, four-bar linkage (linear \rightarrow revolute), muscles, etc.
- Mappings between 3 different space representations of manipulator's position and orientation

Example: 2-Link 2R Planar Manipulator

■ DH parameters table

i	θ	d	а	α	Joint variable q_i
1	$\theta_1 = 0^{\circ} + q_1$	0	a_1	0	q_1
2	$\theta_2 = 0^\circ + q_2$	0	a_2	0	q_2

Homogeneous transformation matrix in joint space

$${}^{0}T_{2} = {}^{0}T_{1}{}^{1}T_{2} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{1}c_{2} - s_{1}s_{2} & -c_{1}s_{2} - s_{1}c_{2} & 0 & a_{1}c_{1} + a_{2}c_{1}c_{2} - a_{2}s_{1}s_{2} \\ c_{1}s_{2} + s_{1}c_{2} & c_{1}c_{2} - s_{1}s_{2} & 0 & a_{1}s_{1} + a_{2}s_{1}c_{2} + a_{2}c_{1}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \Rightarrow c_{12} = c_1 c_2 - s_1 s_2$ $\sin(\theta_1 + \theta_2) = \sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2 \Rightarrow s_{12} = s_1 c_2 + c_1 s_2$

$$\therefore {}^{0}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2R Planar Manipulator

SCARA Robot

Example: SCARA Robot

- Local frame: since all joint axes are parallel, the locations of the origins are not unique. In this case, the origins are located at each joint.
- DH parameters table

i	$\theta_{\scriptscriptstyle i}$	d_i	a_i	α_{i}	Joint variable q_i
1	$\theta_1 = 0 + q_1$	0	a_1	0	q_1

2	$\theta_2 = 0 + q_2$	0	a_2	0	q_2
3	0	$d_3 = 0 + q_3$	0	π	q_3
4	$\theta_4 = 0 + q_4$	d_4	0	0	q_4

Homogeneous transformation matrices

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{3}T_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Forward kinematics equation

$${}^{0}T_{4} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} = \begin{bmatrix} c_{12}c_{4} + s_{12}s_{4} & -c_{12}s_{4} + s_{12}c_{4} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12}c_{4} - c_{12}s_{4} & -s_{12}s_{4} - c_{12}c_{4} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & -1 & d_{3} - d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Spherical Manipulator

- Three orthogonal revolute joints, shown in its home configuration in the figures.
- The positive directions for the rotations of Joints 1, 2, and 3 are given as upward, out of the plane, and to the right, respectively, in the figures.
- Indeterminacies on: the global frame's origin O_0 and its x_0 axis; the local frame {3}; and the positive directions of x_1 and x_2 along their lines of axes (since z_0 , z_1 , and z_2 intersect). Here, they are given as in the figures, with two options for O_0 and x_0 .

Option 1

DH parameters table

i	θ_{i}	d_i	a_i	$\alpha_{_i}$	Joint variable q_i
1	$\theta_1 = -\pi / 2 + q_1$	0	0	$-\pi/2$	q_1
2	$\theta_2 = -\pi / 2 + q_2$	0	0	$\pi/2$	q_2
3	$\theta_3 = \pi / 2 + q_3$	$L_2 + L_3$	0	0	q_3

■ Homogeneous transformation matrices ($c_1 = \cos \theta_1$, $s_1 = \sin \theta_1$, etc.)

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & L_{2} + L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics equation

$${}^{0}T_{3} = \begin{bmatrix} c_{1}c_{2}c_{3} - s_{1}s_{3} & -c_{1}c_{2}s_{3} - s_{1}c_{3} & c_{1}s_{2} & (L_{2} + L_{3})c_{1}s_{2} \\ s_{1}c_{2}c_{3} + c_{1}s_{3} & -s_{1}c_{2}s_{3} + c_{1}c_{3} & s_{1}s_{2} & (L_{2} + L_{3})s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & c_{2} & (L_{2} + L_{3})c_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Option 2

DH parameters table

	i	$ heta_i$	d_i	a_i	α_{i}	Joint variable q_i
Ī	1	$\theta_1 = -\pi / 2 + q_1$	L_1	0	$-\pi/2$	q_1
Ī	2	$\theta_2 = -\pi / 2 + q_2$	0	0	$\pi/2$	q_2
	3	$\theta_3 = \pi / 2 + q_3$	$L_2 + L_3$	0	0	q_3

Homogeneous transformation matrices

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & L_{2} + L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics equation

$${}^{0}T_{3} = \begin{bmatrix} c_{1}c_{2}c_{3} - s_{1}s_{3} & -c_{1}c_{2}s_{3} - s_{1}c_{3} & c_{1}s_{2} & (L_{2} + L_{3})c_{1}s_{2} \\ s_{1}c_{2}c_{3} + c_{1}s_{3} & -s_{1}c_{2}s_{3} + c_{1}c_{3} & s_{1}s_{2} & (L_{2} + L_{3})s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & c_{2} & (L_{2} + L_{3})c_{2} + L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Remarks

- If $L_1 = L_2 = 0$, the first three frame origins intersect at a single point for both options in the figures, representing a spherical manipulator.
- As a consequence of the choice made for the coordinate frames, the block matrix ${}^{0}R_{3}$ that can be extracted from ${}^{0}T_{3}$ coincides with the rotation matrix of ZYZ Euler angles for $\theta_{1}, \theta_{2}, \theta_{3}$ with respect to the reference frame O_{0} - $x_{0}y_{0}z_{0}$.