

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Parsery LALR(1)

Teoria kompilacji

Dr inż. Janusz Majewski Modyfikacje Marcin Kuta

Gramatyki LALR(k) (Look Ahead LR(k))

Duża klasa gramatyk mających praktyczne zastosowanie nie należy do SLR(1), ale dla tych gramatyk daje się skonstruować parser o rozmiarze tablicy sterującej (funkcje "f" i "g") identycznym z SLR(1), tyle że przy pomocy trochę bardziej skomplikowanego algorytmu. Klasa ta nazywa się LALR(1) i z praktycznego punktu widzenia jest najważniejszą podklasą LR(1), gdyż:

- 1) Jest dostatecznie szeroka, żeby objąć znaczną większość języków programowania.
- 2) Rozmiar tablicy sterującej parsera jest jeszcze do przyjęcia (w odróżnieniu od kanonicznego LR(1)).

Rdzeń zbioru LR(1)-sytuacji

CORE – rdzeń zbioru LR(1) – sytuacji

A - zbiór LR(1) – sytuacji

$$CORE(\mathcal{A}) = \{ [A \rightarrow \alpha \bullet \beta] \mid [A \rightarrow \alpha \bullet \beta, u] \in \mathcal{A} \}$$

Twierdzenie

 \mathcal{J}_0 – kanoniczny system zbiorów LR(0) – sytuacji w G

 \mathcal{J}_1 – kanoniczny system zbiorów LR(1) – sytuacji w G

$$\mathcal{J}_0 = \{ CORE(A) : A \in \mathcal{J}_1 \}$$

CORE(GOTO(...))

Twierdzenie

$$CORE(GOTO_1(\mathcal{A}, x)) = GOTO_0(CORE(\mathcal{A}), x)$$

 $x \in (V \cup \Sigma)$

gdzie:

GOTO₁ – funkcja GOTO dla zbioru LR(1)-sytuacji

GOTO₀ – funkcja GOTO dla zbioru LR(0)-sytuacji

e- relacja równości rdzeni

$$e \subset J_1 \times J_1 : A_1 e A_2 \stackrel{!}{\Leftrightarrow} CORE(A_1) = CORE(A_2)$$

Gramatyka LALR(1)

$$G = \langle V, \Sigma, P, S \rangle \in \mathcal{G}_{BK}$$

 \mathcal{J}_1 – kanoniczny system zbiorów LR(1) – sytuacji dla G
 $\mathcal{J} = \{ \mathcal{B}([A]_e) : A \in \mathcal{J}_1 \};$
gdzie:

$$\mathcal{B}([A]_{e}) = \bigcup_{C \in [A]_{e}} (C \in \mathcal{J}_{1})$$

G – gramatyka LALR(1) \Leftrightarrow ($\forall \mathcal{B} \in \mathcal{J}$) (\mathcal{B} - zgodny)

Przykład (łączenie zbiorów LR(1)-sytuacji)

$$J_{1} = \{ A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6} \}$$

$$e = \{ (A_{1}, A_{1}), (A_{2}, A_{2}), (A_{3}, A_{3}), (A_{4}, A_{4}), (A_{2}, A_{3}), (A_{3}, A_{2}), (A_{2}, A_{4}), (A_{4}, A_{2}), (A_{3}, A_{4}), (A_{4}, A_{3}), (A_{5}, A_{5}), (A_{6}, A_{5}), (A_{5}, A_{6}), (A_{6}, A_{6}) \}$$

$$B_{1} = A_{1}$$

$$B_{2} = A_{2} \cup A_{3} \cup A_{4}$$

$$B_{3} = A_{5} \cup A_{6}$$

$$J = \{ B_{1}, B_{2}, B_{3} \}$$

Przykład c.d.

Konstrukcja tablicy parsera LALR(1)

WEJŚCIE: $G = \langle V, T, P, S \rangle \in \mathcal{G}_{BK}$

WYJŚCIE: Tablica LALR(1)

ALGORYTM:

- 1. Wyznaczamy \mathcal{J}_1 kanoniczny system zbiorów LR(1)-sytuacji dopuszczalnych
- 2. Konstruujemy zbiór klas abstrakcji dla relacji e:

$$J := \{ \mathcal{B}([\mathcal{A}]_{e}) : \mathcal{A} \in J_{1} \};$$

$$/* J = \{ \mathcal{B}_{0}, \mathcal{B}_{1}, ..., \mathcal{B}_{n} \}$$

$$gdzie \mathcal{B}_{i} = \mathcal{A}_{(i1)} \cup \mathcal{A}_{(i2)} \cup ... \cup \mathcal{A}_{(i mi)}$$

$$i = 0, 1, ..., n$$

$$[\mathcal{A}_{(i1)}]_{e} = [\mathcal{A}_{(i2)}]_{e} = ... = [\mathcal{A}_{(i mi)}]_{e} */$$

3. Określamy funkcje f i g dla $\mathcal{J} = \{ \mathcal{B}_0, \mathcal{B}_1, ..., \mathcal{B}_n \}$ identycznie, jak to miało miejsce w przypadku kanonicznego LR(1);


```
G' = \langle V' = \{ S', S, L, R \}, T = \{ =, *, \underline{id} \}, P', S' \rangle
P' = \{
          (0) S' \rightarrow S
          (1) S \rightarrow L = R
          (2) S \rightarrow R
          (3) L \rightarrow *R
          (4) L \rightarrow id
          (5) R \rightarrow L
FIRST_1(S) = \{*, id\}
                                        FOLLOW_1(S) = \{\$\}
                                        FOLLOW_{1}(L) = \{\$, =\}
FIRST_1(L) = \{*, id\}
                                        FOLLOW_{1}(R) = \{\$, =\}
FIRST_{1}(R) = \{*, id\}
```


Sprawdzenie czy poniższa gramatyka G' jest SLR(1)?

Próbujemy skonstruować \mathcal{J}_0 – kanoniczny system LR(0) – sytuacji

```
\mathcal{A}_0 = \{
                                \int S' \rightarrow \bullet S I,
                                  \int S \rightarrow \bullet L = R /
                                  \int S \rightarrow \bullet R  ],
                                  \int L \rightarrow \bullet *R ],
                                  \int L \rightarrow \bullet id ,
                                  \int R \rightarrow \bullet L I
\mathcal{A}_1 = GOTO(\mathcal{A}_0, S) = \{ f S' \rightarrow S \bullet \} \}
\mathcal{A}_2 = GOTO(\mathcal{A}_0, L) = \{ [S \rightarrow L^{\bullet} = R] \}
                                                        \int R \rightarrow L \bullet I
```

- 1) $S' \rightarrow S$
- 2) $S \rightarrow L = R$
- 3) $S \rightarrow R$
- 4) $L \rightarrow *R$
- 5) $L \rightarrow \underline{id}$
- 6) $R \rightarrow L$

$$FOLLOW_1(S) = \{\$\}$$

 $FOLLOW_1(L) = \{\$, =\}$
 $FOLLOW_1(R) = \{\$, =\}$

$$\mathcal{A}_2 = GOTO(\mathcal{A}_0, L) = \{ [S \rightarrow L^{\bullet} = R], \\ [R \rightarrow L^{\bullet}] \}$$

Ponieważ:

$$FOLLOW_{1}(R) = \{\$, =\}$$

Więc:

$$f(T_2, =) = \underline{red-6}$$

$$f(T_2, =) = \underline{shift}$$
konflikt!

gramatyka nie jest SLR(1)!

Konstruujemy \mathcal{J}_1 – kanoniczny system zbiorów LR(1)–sytuacji.

$$\mathcal{A}_{0} = \{ [S' \rightarrow \bullet S, \$], \\ [S \rightarrow \bullet L = R, \$], \\ [S \rightarrow \bullet R, \$], \\ [L \rightarrow \bullet *R, \$ / =], \\ [L \rightarrow \bullet \underline{id}, \$ / =], \\ [R \rightarrow \bullet L, \$] \}$$

$$\mathcal{A}_{1} = \{ [S' \rightarrow S \bullet, \$] \} \qquad \mathcal{A}_{1} = GOTO(\mathcal{A}_{0}, S)$$

$$\mathcal{A}_{2} = \{ [S \rightarrow L \bullet = R, \$] \} \qquad \mathcal{A}_{2} = GOTO(\mathcal{A}_{0}, L)$$

$$[R \rightarrow L \bullet, \$] \}$$

1)
$$S' \rightarrow S$$

2) $S \rightarrow L = R$

3)
$$S \rightarrow R$$

4)
$$L \rightarrow *R$$

5)
$$L \rightarrow \underline{id}$$

6)
$$R \rightarrow L$$

$$\mathcal{A}_{3} = \{ [S \rightarrow R^{\bullet}, \$] \}$$

$$\mathcal{A}_{4} = \{ [L \rightarrow *\bullet R, \$/=], \\ [L \rightarrow \bullet L, \$/=], \\ [L \rightarrow \bullet *R, \$/=], \\ [L \rightarrow \bullet \underline{id}, \$/=] \}$$

$$\mathcal{A}_{5} = \{ [L \rightarrow \underline{id} \bullet, \$/=] \}$$

$$\mathcal{A}_{6} = \{ [S \rightarrow L = \bullet R, \$], \\ [R \rightarrow \bullet L, \$], \\ [L \rightarrow \bullet *R, \$], \\ [L \rightarrow \bullet *R, \$], \\ [L \rightarrow \bullet *d, \$] \}$$

$$\mathcal{A}_3 = GOTO(\mathcal{A}_0, R)$$

 $\mathcal{A}_4 = GOTO(\mathcal{A}_0, *)$

$$A_5 = GOTO(A_0, \underline{id})$$

$$\mathcal{A}_6 = GOTO(\mathcal{A}_2, =)$$

- 1) $S' \rightarrow S$
- 2) $S \rightarrow L = R$
- 3) $S \rightarrow R$
- 4) $L \rightarrow *R$
- 5) $L \rightarrow \underline{id}$
- 6) $R \rightarrow L$

$$\mathcal{A}_7 = \{ [L \rightarrow *R \bullet, \$/=] \}$$
 $\mathcal{A}_8 = \{ [R \rightarrow L \bullet, \$/=] \}$

$$\mathcal{A}_{9} = \{ [S \rightarrow L = R^{\bullet}, \$] \}$$

$$\mathcal{A}_{10} = \{ [L \rightarrow *^{\bullet}R, \$],$$

$$[R \rightarrow {^{\bullet}L}, \$],$$

$$[L \rightarrow {^{\bullet}id}, \$] \}$$

$$A_7 = GOTO(A_4, R)$$

$$A_8 = GOTO(A_4, L)$$

$$A_4 = GOTO(A_4, *)$$

$$A_5 = GOTO(A_4, \underline{id})$$

$$A_9 = GOTO(A_6,R)$$

$$A_{10}=GOTO(A_6,*)$$

- 1) $S' \rightarrow S$
- 2) $S \rightarrow L = R$
- 3) $S \rightarrow R$
- 4) $L \rightarrow *R$
- 5) $L \rightarrow \underline{id}$
- 6) $R \rightarrow L$

$$\mathcal{A}_{11} = \{ [L \to \underline{id}^{\bullet}, \$] \}$$

$$\mathcal{A}_{12}=\{[R \rightarrow L^{\bullet}, \$]\}$$

$$A_{13}=\{[L\rightarrow *R\bullet, \$]\}$$

1)
$$S' \rightarrow S$$

2)
$$S \rightarrow L = R$$

3)
$$S \rightarrow R$$

4)
$$L \rightarrow *R$$

5)
$$L \rightarrow id$$

6)
$$R \rightarrow L$$

$$A_{11}=GOTO(A_6, \underline{id})$$

$$A_{12}=GOTO(A_6,L)$$

$$\mathcal{A}_{13}=GOTO(\mathcal{A}_{10},R)$$

$$A_{12}=GOTO(A_{10},L)$$

$$\mathcal{A}_{10}=GOTO(\mathcal{A}_{10},*)$$

$$A_{11}=GOTO(A_{10},\underline{id})$$

$$\mathcal{B}_0 = \mathcal{A}_0$$

$$\mathcal{B}_1 = \mathcal{A}_1$$

$$\mathcal{B}_2 = \mathcal{A}_2$$

$$\mathcal{B}_3 = \mathcal{A}_3$$

$$\underline{\mathcal{B}}_{4} = \mathcal{A}_{4} \cup \mathcal{A}_{10}$$

$$\underline{\mathcal{B}}_5 = \underline{\mathcal{A}}_5 \cup \underline{\mathcal{A}}_{11}$$

$$\mathcal{B}_6 = \mathcal{A}_6$$

$$\underline{\mathcal{B}}_{7} = A_{7} \cup A_{13}$$

$$\underline{\mathcal{B}}_{8} = \underline{\mathcal{A}}_{8} \cup \underline{\mathcal{A}}_{12}$$

$$\mathcal{B}_9 = \mathcal{A}_9$$

$$\mathcal{B}_1 = \text{GOTO}(\mathcal{B}_0, S)$$

$$\mathcal{B}_2 = \text{GOTO}(\mathcal{B}_0, L)$$

$$\mathcal{B}_3 = \text{GOTO}(\mathcal{B}_0, R)$$

$$\mathcal{B}_4 = \text{GOTO}(\mathcal{B}_0, *)$$

$$\mathcal{B}_5 = \text{GOTO}(\mathcal{B}_0, \underline{\text{id}})$$

$$\mathcal{B}_6 = \text{GOTO}(\mathcal{B}_2, =)$$

$$\mathcal{B}_7 = \text{GOTO}(\mathcal{B}_4, R)$$

$$\mathcal{B}_8 = \text{GOTO}(\mathcal{B}_4, L)$$

$$\mathcal{B}_4 = \text{GOTO}(\mathcal{B}_4, *)$$

$$\mathcal{B}_5 = \text{GOTO}(\mathcal{B}_4, \underline{\text{id}})$$

$$\mathcal{B}_9 = \text{GOTO}(\mathcal{B}_6, R)$$

$$\mathcal{B}_4 = \text{GOTO}(\mathcal{B}_6, *)$$

$$\mathcal{B}_5 = \text{GOTO}(\mathcal{B}_6, \underline{\text{id}})$$

$$\mathcal{B}_8 = \text{GOTO}(\mathcal{B}_6, L)$$

TABLICA LALR(1)

stan		g					
	\$	=	*	<u>id</u>	S	L	R
T_0			shift-4	shift-5	T_1	T_2	T_3
T_1	<u>acc</u>						
T_2	<u>red-5</u>	shift-6					
T_3	red-2						
T_4			shift-4	shift-5		T_8	T_7
T_5	<u>red-4</u>	<u>red-4</u>					
T_6			shift-4	shift-5		T_8	T_9
T_7	red-3	<u>red-3</u>					
T_8	<u>red-5</u>	<u>red-5</u>					
T ₉	<u>red-1</u>						

(Kanoniczny LR(1) ma o 4 stany więcej)

Zależności pomiędzy klasami gramatyk

Każda gramatyka LR(0)
jest gramatyką SLR(1).
Każda gramatyka SLR(1)
jest gramatyką LALR(1).
Każda gramatyka LALR(1)
jest gramatyką LR(1).

```
G_{LR(0)} \subset G_{SLR(1)} \subset G_{LALR(1)} \subset G_{LR(1)}
G_{LR(0)} \neq G_{SLR(1)} \neq G_{LALR(1)} \neq G_{LR(1)}
```


Języki bezkontekstowe deterministyczne a języki LR

Język bezkontekstowy nazywamy deterministycznym, gdy jest on akceptowany przez deterministyczny automat ze stosem.

$$L_{\text{CFL DET}} = L_{\text{LR}(1)}$$

Każdy język bezkontekstowy deterministyczny ma swoją gramatykę LR(1).

Każdy język bezkontekstowy deterministyczny posiadający własność przedrostkową ma swoją gramatykę LR(0).

Języki LL a języki LR

$$L_{LL(K)} \subset L_{LR(K)}$$

 $L_{LL(K)} \neq L_{LR(K)}$

Każda gramatyka LL(k) jest gramatyką LR(k). Istnieją języki LR(k), które nie są generowane przez żadną gramatykę LL(k).

Języki LL(0) są jednoelementowe.

Podklasy języków bezkontekstowych

Konstrukcja parserów bottom-up

Typ gramatyki	Automat
LR(0)	LR(0)-sytuacje
SLR(1)	LR(0)-sytuacje
LALR(1)	LR(0)-sytuacje lub LR(1)-sytuacje
LR(1)	LR(1)-sytuacje

Konstrukcja parserów bottom-up

Typ gramatyki	Redukcje
LR(0)	$reduce(q, a) = \{ A \rightarrow \alpha : A \rightarrow \alpha . \in q \}$
SLR(1)	$reduce(q,a) = \{A \rightarrow \alpha : A \rightarrow \alpha . \in q \text{ i } a \in Follow(A) \}$
LALR(1)	$reduce(q,a) = \{A \rightarrow \alpha : A \rightarrow \alpha . \in q \text{ i } a \in LA(q,A \rightarrow \alpha) \}$
LR(1)	$reduce(q,a) = \{ A \rightarrow \alpha : (A \rightarrow \alpha., a) \in q \}$

Złożoność algorytmów konstrukcji parserów bottom-up

N – suma długości prawych stron produkcji

Typ gramatyki	Złożoność
LL(1)	N^2
SLR(1)	2 ^{N+logN}
LALR(1)	2 ^{2N+logN}
LR(1)	2 ^{N^2+logN}
SLR(k)	2 ^{N+k·logN}
LR(k)	$2^{N^{(k+1)+logN}}$

- Konstrukcja LALR(1)-automatów najbardziej efektywna
- Najczęściej stosowana do konstrukcji analizatorów składniowych języków programowania