Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

Кафедра «Гидропневмоавтоматика»

ОТЧЕТ по лабораторным работам

по курсу: «Лопастные машины и передачи»

Лабораторная работа №1 Изучение конструкций и отдельных элементов центробежных насосов

Цель работы: Изучение устройства насосов различных типов, их конструкции, основных деталей. Составление эскизов их рабочих колес. Замер основных размеров насосов и колес. Определение по основным размерам рабочего колеса основных параметров насосов.

1.1 Общие сведения

1.1.1 Конструктивные разновидности центробежных насосов

Основной частью лопастного насоса является вращающееся рабочее колесо, снабженное лопастями. Энергия от рабочего колеса передается жидкости путем динамического взаимодействия лопастей колеса с обтекающей их жидкостью.

К лопастным насосам относят центробежные и осевые. Центробежные лопастные насосы могут быть одноступенчатыми и многоступенчатыми. К одноступенчатым (рисунок 1.1) относятся насосы с одним рабочим колесом.

Рисунок 1.1 — Центробежный одноступенчатый горизонтальный насос типа К I — рабочее колесо; 2 — переднее внутреннее бесконтактное уплотнение; 3 — конфузорный подвод; 4 — пробка отверстия для подключения вакуумметра; 5 — спиральный отвод; 6, 11 — пробка отверстия для подключения вакуумного насоса; 7 — наружное сальниковое уплотнение; 8 — вал; 9 — корпус подшипниковых опор; 10 — подшипник; 11 — масляный щуп; 12 — отверстия для разгрузки рабочего колеса от осевых сил; 13 — пробка сливного отверстия; 14 — лопасть.

Согласно классификации, центробежный насос относится к насосам с закрытым рабочим колесом 1, посаженным на консольную часть вала 8,

благодаря чему его называют консольным и относят к типу K. По расположению вала он является горизонтальным с выносными подшипниковыми опорами 10, расположенными в самостоятельном корпусе 9, служащим для них масляной ванной. Корпус подшипников жестко соединен при помощи болтов с корпусом насоса 5, представляющим отвод спирального типа. Спиральный отвод-корпус заканчивается нагнетательным патрубком с фланцем для подсоединения насоса к трубопроводу. На фланце нагнетательного патрубка и по длине спирали корпуса-отвода имеются закрытые пробками 6 и 11 отверстия для присоединения при необходимости манометра и вакуумного насоса. К поверхности торца корпуса присоединена с помощью болтов крышка, выполненная заодно с осевым подводом 3 конфузорного типа. На фланце подвода имеется отверстие 4 для присоединения вакуумметра для измерения давления на входе в рабочее колесо. Для уменьшения протечек перекачиваемой насосом жидкости из отвода через пазуху между крышкой корпуса и передним диском рабочего колеса в подводящий патрубок входа, применены внутренние бесконтактные щелевые уплотнения, действие которых основано на принципе дросселирования. Таких уплотнений в одноступенчатом насосе два. Одно из них 2 расположено у торца переднего диска рабочего колеса, а второе – между корпусом-отводом и кромкой ступицы у заднего диска рабочего колеса. Для предотвращения утечек жидкости из полости насоса между валом рабочего колеса и корпусом-отводом предусмотрено наружное уплотнение 7 сальникового типа.

В таком колесе в процессе работы возникают большие силы, называемые осевыми, которые действуют на вал вдоль оси вращения. Равнодействующая этих сил нагружает подшипники вала, следовательно, требуется усилие подшипниковых узлов. Для уменьшения этой равнодействующей и снижения действия осевых сил на ступице рабочего колеса делают разгрузочные отверстия 12, за счет которых выравнивается давление в пазухе за задним диском и на входе в рабочую полость насоса.

Консольные одноступенчатые насосы выпускаются с параметрами: подача $5...300 \text{ м}^3/\text{c}$; напор 30...60 м; частота вращения ротора 1450...2900 об/мин.

Одноступенчатые насосы сообщают жидкости ограниченный напор. Для повышения его применяют многоступенчатые насосы, в которых жидкость последовательно проходит через несколько рабочих колёс, закреплённых на одном валу (рисунок 1.2). При этом пропорционально числу колес увеличивается напор насоса.

Рисунок 1.2 — Схема многоступенчатого секционного насоса: 1 — рабочее колесо; 2 — направляющий аппарат; 3 — гидравлическая пята.

Корпус насоса состоит из отдельных секций. Функции отводяще-подводящего устройства между ступенями ротора насоса выполняют направляющие аппараты канального типа. Секционный корпус этого насоса закрыт жестяным кожухом для предупреждения потерь теплоты перекачиваемой жидкости. Иногда между корпусом и кожухом размещают стекловолокно или другой теплоизоляционный материал, что характерно для энергетических насосов.

1.1.2 Основные параметры центробежных насосов

К основным рабочим параметрам насоса относится его подача, напор, мощность, частота вращения рабочего органа (лопастного колеса), коэффициент полезного действия.

Подачей насоса называют количество жидкости, прошедшей через напорный патрубок в единицу времени. Расход жидкости, протекающей через рабочее колесо можно определить по формуле

$$Q = v_0 \cdot \frac{\pi (D_0^2 - d_{BT}^2)}{\Lambda} \cdot \eta_0, \text{ M}^3/\text{c} (\pi/\text{c})$$

где v_0 – абсолютная скорость на входе в рабочее колесо;

 $D_{\scriptscriptstyle 0}$, $d_{\scriptscriptstyle \mathrm{BT}}$ — диаметр входной воронки рабочего колеса и диаметр втулки (рисунок 1.3);

 η_0 – объемный КПД.

Рисунок 1.3 – Меридиональное сечение рабочего колеса

Напор H (м) представляет собой разность энергий единицы веса жидкости в сечении потока после насоса и перед ним. Практически определяется по эмпирической формуле

$$H = \frac{u_2^2}{2g} \cdot m, \, M$$

где $u = \omega \cdot R = \pi \cdot n \cdot D_2$ – окружная скорость;

m = 0,45...0,55 — коэффициент, учитывающий влияние неравномерности относительной скорости между лопастями и потери на преодоление гидравлического сопротивления подвода, рабочего колеса и отвода.

Полезная мощность насоса — это энергия, приобретённая за единицу времени жидкостью, прошедшей через насос, определяется по формуле

$$N_{\Pi} = \rho \cdot g \cdot H \cdot Q$$
, BT

где ρ – плотность жидкости.

Коэффициент быстроходности n_S — это число оборотов эталонного насоса данного типа, который при работе на воде развивает напор 1 м, обеспечивая подачу 75 л/с. Коэффициент быстроходности n_S выражается через удельную частоту вращения эталонного насоса, соответствующую оптимальному режиму его работы и определяется по формуле

$$n_S=3$$
,65 · $n\cdot\sqrt{Q}\left/H^{3/4}\right.$, об/мин

где n – число оборотов рабочего колеса, об/мин;

Q – подача насоса, м 3 /c;

H — напор насоса, м.

В зависимости от коэффициента быстроходности центробежные насосы делят на:

- 1) $n_S = 20 79$ об/мин тихоходные;
- 2) $n_S = 80 149$ об/мин нормальные;
- 3) $n_S = 150 299$ об/мин быстроходные.

1.4 Правила техники безопасности при выполнении работы

При выполнении лабораторной работы необходимо соблюдать инструкцию по технике безопасности при работе в лаборатории «Объемные и лопастные машины».

Запрещается проводить какие либо операции на изучаемых установках при отсутствии преподавателя или учебного мастера.

Категорически запрещается включать или выключать установки при отсутствии преподавателя или учебного мастера.

1.5 Обработка результатов измерений

- 1) Зарисовать эскиз рабочего колеса центробежного насоса, выданного преподавателем.
- 2) Определить подачу насоса по формуле

где $v_0 =$ _____м/c; $\eta_0 = 0.97$;

 D_0 , $d_{\rm BT}$ — диаметр входной воронки рабочего колеса и диаметр втулки (по эскизу);

2) Определить напор насоса по формуле

$$H = \frac{u_2^2}{2 \cdot g} \cdot m = \frac{(\pi \cdot n \cdot D_2)^2}{2 \cdot g} \cdot m = \underline{\hspace{2cm}}, M$$

где n = 1950 об/мин = 24,17 об/с – окружная скорость;

m = 0.45...0.55 — коэффициент, учитывающий влияние неравномерности относительной скорости между лопастями и потери на преодоление гидравлического сопротивления подвода, рабочего колеса и отвода.

3) Определить полезную мощность насоса по формуле

где $\rho = 1000 \text{ кг/м}^3$ - плотность жидкости.

4) Определить коэффициент быстроходности по формуле $n_S = 3,65 \cdot n \cdot \sqrt{Q} \Big/ H^{3/4} = \underline{\hspace{1.5cm}}, \text{ об/мин}$

3)	Определить и записать тип насоса:	