What is Claimed:

1. A method of treating a patient undergoing a non-tissue graft therapy wherein the therapy may or does induce a deleterious immune response in the patient which method comprises administering to the patient a Cathepsin S inhibitor.

- A method of treating a patient undergoing a non-tissue graft therapy wherein the therapy induces a deleterious immune response in the patient comprising administering to the patient a Cathepsin S inhibitor.
 - 3. The method of Claim 1 or 2 wherein the therapy involves treatment of the patient with a small molecule therapeutic.
- 10 4. The method of Claim 3 wherein the small molecule therapeutic is heparin, low molecular weight heparin, procainamide, or hydralazine.
 - 5. The method of Claim 1 or 2 wherein the therapy involes treatment of the patient with a biologic.
 - 6. The method of Claim 5 wherein the biologic is a protein.
- 15 7. The method of Claim 5 wherein the biologic is an antibody.
 - 8. The method of Claim 5 wherein the biologic is Remicade[®], Refacto[®], Referon-A[®], Factor VIII, Factor VIII, Betaseron[®], Epogen[®], Embrel[®], Interferon beta, Botox[®], Fabrazyme[®], Elspar[®], Cerezyme[®], Myobloc[®], Aldurazyme[®], Verluma[®], Interferon alpha, Humira[®], Aranesp[®], Zevalin[®] or OKT3.
- 9. A method of treating immune response in a patient caused by administration of a small molecule therapeutic or a biologic to the patient which method comprises administering to the patient in need of such treatment a therapeutically effective amount of a Cathepsin S inhibitor.
 - 10. A method of treating a patient undergoing treatment with a biologic with a Cathepsin S inhibitor.
- 25 11. The method of Claim 9 wherein the immune response is caused by a small molecule therapeutic.
 - 12. The method of Claim 11 wherein the small molecule therapeutic is heparin, low molecular weight heparin, procainamide, or hydralazine.
 - 13. The method of Claim 9 wherein the immune response is caused by a biologic.
- 30 14. The method of Claim 10 or 13 wherein the biologic is a protein.
 - 15. The method of Claim 14 wherein the biologic is an antibody.
 - 16. The method of Claim 14 wherein the biologic is Remicade[®], Refacto[®], Referon-A[®], Factor VIII, Factor VIII, Betaseron[®], Epogen[®], Embrel[®], Interferon beta, Botox[®], Fabrazyme[®], Elspar[®],

Cerezyme[®], Myobloc[®], Aldurazyme[®], Verluma[®], Interferon alpha, Humira[®], Aranesp[®], Zevalin[®] or OKT3.

- 17. The method of any of the Claims 1-8 wherein the Cathepsin S inhibitor is administered prior to, concomitantly or after the therapy.
- The method of any of the Claims 9, 11, or 12 wherein the Cathepsin S inhibitor is administered prior to, concomitantly, or after the administration of the small molecule therapeutic.
 - 19. The method of any of the Claims 9, 10, and 13-16 wherein the Cathepsin S inhibitor is administered prior to, concomitantly, or after the administration of the biologic.
 - 20. The method of any of the Claims 1-19 wherein the Cathepsin S inhibitor is:
- 10 (a) a compound of Formula (Ia) or (Ib):

wherein:

E is:

(i) -C(R⁵)(R⁶)X¹ where X¹ is -CHO, -C(R⁷)(R⁸)CF₃, -C(R⁷)(R⁸)CF₂CF₂R⁹,

15 -C(R⁷)(R⁸)R¹⁰, -C(O)C(O)R¹⁰, -CH=CHS(O)₂R¹⁰, -C(R⁷)(R⁸)C(R⁷)(R⁸)OR¹⁰, -C(R⁷)(R⁸)CH₂OR¹⁰,

-C(R⁷)(R⁸)C(R⁷)(R⁸)R¹⁰, -C(R⁷)(R⁸)CH₂N(R¹¹)SO₂R¹⁰, -C(R⁷)(R⁸)CF₂C(O)NR¹⁰R¹¹,

-C(R⁷)(R⁸)C(O)NR¹⁰R¹¹, -C(R⁷)(R⁸)C(O)N(R¹¹)(CH₂)₂OR¹¹, or

-C(R⁷)(R⁸)C(O)N(R¹¹)(CH₂)₂NR¹⁰R¹¹, or

(ii) -C(R^{5a})(R^{6a})CN;

20 where:

25

30

R⁵ and R^{5a} are independently hydrogen or alkyl;

R⁶ and R^{6a} are independently selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, -alkylene-X-R¹² (where X is -O-, -NR¹³-, -S(O)_{n1}-, -CONR¹³-, -NR¹³CO-, -NR¹³C(O)O-, -NR¹³CONR¹³-, -OCONR¹³-, -NR¹³SO₂-, -SO₂NR¹³-, -NR¹³SO₂NR¹³-, -CO-, -OCO-, or -C(O)O- where n1 is 0-2, R¹² hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl and each R¹³ is hydrogen or alkyl) wherein the aromatic or alicyclic ring in R⁶ and R^{6a} is optionally substituted with one, two, or three R^a independently selected from alkyl, haloalkyl, alkoxy, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, amino, monsubstituted amino, disubstituted amino, nitro, aryloxy, benzyloxy, acyl, alkylsulfonyl, or arylsulfonyl where the aromatic or alicyclic ring

in Ra is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl; or

R⁵ and R⁶ and R^{5a} and R^{6a} taken together with the carbon atom to which both R⁵ and R⁶ and R^{5a} and R^{6a} are attached form (i) cycloalkylene optionally substituted with one or two R^b independently selected from alkyl, halo, alkylamino, dialkylamino, aryl, aralkyl, cycloalkyl, cycloalkyl, heteroaryl, heteroaralkyl, alkoxycarbonyl, or aryloxycarbonyl or (ii) heterocycloalkylene optionally substituted with one to four alkyl or one or two R^c independently selected from alkyl, haloalkyl, hydroxy, hydroxyalkyl, alkoxyalkyl, alkoxyalkyloxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aminoalkyl, acyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, heterocycloalkylalkyl, cycloalkyl, cycloalkylalkyl, -S(O)_{n2}R¹⁴, -alkylene-S(O)_{n2}R¹⁵, -COOR¹⁶, -alkylene-COOR¹⁷, -CONR¹⁸R¹⁹, or -alkylene-CONR²⁰R²¹ (where n2 is 0-2 and R¹⁴-R¹⁷, R¹⁸ and R²⁰ are independently hydrogen, alkyl, haloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkylalkyl, cycloalkylalkyl, or heterocycloalkyl and R¹⁹ and R²¹ are independently hydrogen or alkyl) wherein the aromatic or alicyclic ring in the groups attached to cycloalkylene or heterocycloalkylene is optionally substituted with one, two, or three substituents independently selected from alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, benzyl, alkoxy, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, amino, monsubstituted amino, disubstituted amino, or acyl;

R⁷ is hydrogen or alkyl;

R⁸ is hydroxy; or

5

10

15

20

25

30

R⁷ and R⁸ together form oxo;

R⁹ is hydrogen, halo, alkyl, aralkyl or heteroaralkyl;

R¹⁰ is alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, or heterocycloalkylalkyl wherein the aromatic or alicyclic ring in R¹⁰ is optionally substituted with one, two, or three R^d independently selected from alkyl, haloalkyl, alkoxy, alkoxyalkyl, cycloalkyl, hydroxy, haloalkoxy, halo, carboxy, alkoxycarbonyl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryl, aralkyl, heteroaryl, amino, monsubstituted amino, disubstituted amino, carbamoyl, or acyl wherein the aromatic or alicyclic ring in R^d is optionally substituted with one, two, or three substitutents independently selected from alkyl, haloalkyl, alkoxy, haloalkoxy, halo, hydroxy, carboxy, alkoxycarbonyl, amino, alkylamino, or dialkylamino; and

R¹¹ is hydrogen or alkyl; or

(iii) a group of formula (a):

$$X^4$$
 R^5
 R^5
 R^5
 R^5

where:

5

10

15

20

25

30

n is 0, 1, or 2;

X⁴ is selected from -NR²²-, -S-, or -O- where R²² is hydrogen, alkyl, or alkoxy; and X⁵ is -O-, -S-, -SO₂-, or -NR²³- where R²³ is selected from hydrogen, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aminoalkyl, acyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkylalkyl, -S(O)₂R²⁴, -alkylene-S(O)_{n3}-R²⁵, -COOR²⁶, -alkylene-COOR²⁷, -CONR²⁸R²⁹, or -alkylene-CONR³⁰R³¹ (where n3 is 0-2 and R²⁴-R²⁷, R²⁸ and R³⁰ are independently hydrogen, alkyl, haloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkylalkyl, heterocycloalkyl, or heterocycloalkylalkyl and R²⁹ and R³¹ are independently hydrogen or alkyl) where the aromatic or alicyclic ring in X⁵ is optionally substituted with one, two, or three substituents independently selected from alkyl, haloalkyl, alkoxy, haloalkoxy, halo, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl and one substitutent selected from aryl, aralkyl, heteroaryl, or heteroaralkyl;

R⁵ is as defined above;

R1 is hydrogen or alkyl;

R^{1a} is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkylalkyl, or –alkylene-X²-R³² [wherein X² is –NR³³-, -O-, -S(O)_{n4}-, -CO-, -COO-, -OCO-, -NR³³CO-, -CONR³³-, -NR³³SO₂-, -SO₂NR³³-, -NR³³COO-, -OCONR³³-, -NR³³CONR³⁴, or –NR³³SO₂NR³⁴- (where R³³ and R³⁴ are independently hydrogen, alkyl, or acyl and n4 is 0-2) and R³² is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, or heterocycloalkylalkyl] wherein said alkylene chain is optionally substituted with one to six halo and wherein the aromatic or alicyclic ring in R^{1a} is optionally substituted with one, two, or three R^e independently selected from alkyl, haloalkyl, alkoxy, alkylthio, alkylsulfonyl, arylsulfonyl, aminocarbonyl, aminosulfonyl, acyl, hydroxy, haloalkoxy, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryloxycarbonyl, aryl, heteroaryl, cycloalkyl, cycloalkylalkyl, aralkyl, heteroaralkyl, amino, monsubstituted amino, disubstituted amino, or acyl; or

R¹ and R^{1a} together with the carbon atoms to which they are attached form cycloalkylene

or heterocycloalkylene ring wherein said cycloalkylene or heterocycloalkylene is optionally substituted with one or two R^f independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, keto, or -SO₂R where R is alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl or heteroaralkyl where the aromatic or alicylic ring in R^f is optionally substituted with one, two, or three substitutents independently selected from alkyl, alkoxy, haloalkyl, haloalkoxy, hydroxy, halo, carboxy, or alkoxycarbonyl;

R² is hydrogen or alkyl;

5

10

15

20

25

30

R³ is hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, heterocycloalkylalkyl, amino, mono or disubstituted amino, or -alkylene-X3-R35 [wherein X^3 is $-NR^{36}$ -, -O-, -S(O)_{n5}-, -CO-, -COO-, -OCO-, -NR³⁶CO-, -CONR³⁶-, -NR³⁶SO₂-, -SO₂NR³⁶-, -NR³⁶COO-, -OCONR³⁶-, -NR³⁶CONR³⁷-, or -NR³⁶SO₂NR³⁷- (where R³⁶ and R³⁷ are independently hydrogen, alkyl, or acyl and n5 is 0-2) and R35 is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl] wherein the aromatic or alicyclic rings in R³ are optionally substituted by one, two, or three R^g independently selected from alkyl, halo, hydroxy, alkoxy, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, benzyloxy, carboxy, alkoxycarbonyl, aryloxycarbonyl, carbamoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, arylthio, arylsulfonyl, arylsulfinyl, alkoxycarbonylamino, aryloxycarbonylamino, alkylcarbamoyloxy, arylcarbamoyloxy, alkylsulfonylamino, arylsulfonylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylaminosulfonyl, amino, monosubsituted or disubstituted amino, and further wherein the aromatic and alicyclic rings in Rg are optionally substituted with one, two, or three Rh wherein Rh is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, amino, alkylamino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl;

R⁴ is hydrogen, alkyl, hydroxy, nitrile, or –(alkylene)n₆-X⁶-R³⁸ (where X⁶ is –O-, -NR³⁹-, -S(O)_{n7}-, –NR³⁹CO-, -CO-, or -OC(O)- where n6 is 0 or 1, n7 is 0-2, and R³⁹ is hydrogen or alkyl) and R³⁸ is hydrogen, alkyl, phenyl, naphthyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, indolinyl, pyranyl, thiopyranyl, furanyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, benzoxazolyl, or quinoxalinyl where R³⁸ is optionally substituted with one, two, or three Rⁱ independently selected from alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy, alkylthio, alkylsulfonyl, arylsulfonyl, aminosulfonyl, acyl, amino, monosubstituted amino, disubstituted amino, carboxy, alkoxycarbonyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, aryl, heteroaryl, or

heterocycloalkyl where the aromatic or alicyclic ring in Rⁱ is optionally substituted with one or two substituents independently selected from alkyl, halo, alkoxy, haloalkyl, haloalkoxy, hydroxy, amino, alkylamino, dialkylamino, carboxy, or alkoxycarbonyl; or

R³ and R⁴ in (Ia) or (Ib) together with the atoms to which they are attached form heteroaryl or heterocycloalkyl ring optionally fused to an aryl or heteroaryl ring wherein said rings are optionally substituted on the aromatic and/or non-aromatic portion of the rings with one, two, or three R^j;

each R^j and R^{4a} is independently:

hydrogen, alkyl optionally interrupted by one or two N, O, C(O), S, S(O), or S(O)₂ and optionally substituted by amino, hydroxy, halo, alkyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, indolinyl, pyranyl, thiopyranyl, furanyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, benzoxazolyl or quinoxalinyl;

halo, alkoxy, alkylthio, hydroxy, carboxy, aryl, aryloxy, aroyl, heteroaryl, alkanoyl, - C(O)OR where (R is hydrogen, alkyl, alkoxyalkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, aryl, arylalkyl, aminoalkyl, heterocycloalkyl, or heterocycloalkylalkyl), aminocarbonyl, aminosulfonyl, alkylsulfonyl, aryloxycarbonyl, benzyloxycarbonyl, alkanoylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxycarbonylamino, aroylamino, amino, alkylamino, dialkylamino, alkylthio, arylthio, alkylsulfonylamino, arylsulfonylamino, alkylaminosulfonyl, arylaminosulfonyl, cycloalkyl, benzyloxy, or ureido wherein each of the aforementioned groups in R^{4a} and R^j is optionally substituted with one, two, or three substituents independently selected from halo, hydroxy, alkyl, alkoxy, haloalkyl, haloalkoxy, oxo, carboxy, nitrile, nitro or NH₂C(O)-; or

(b) a compound of Formula (II):

$$\begin{array}{c|c}
R^{3c}-Q & \stackrel{R^1}{\searrow} & \stackrel{R^{1a}}{\nearrow} & H \\
R^2 & & \\
(11) & & \\
\end{array}$$

where:

5

10

15

20

25

30

E, R¹, R^{1a} and R² are as defined above;

Z is -CO- or -CH₂SO₂-; or

Q is -CO-, -SO₂-, -OCO-, -NRCO-, or -NRSO₂- where R is hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, or aralkyl;

R^{3c} is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, heterocycloalkylalkyl, or -alkylene-X⁸-R⁴⁰ [wherein X⁸ is -NR⁴¹-, -O-, -S(O)_{n8}-, -CO-, -COO-, -OCO-, -NR⁴¹CO-, -CONR⁴¹-, -NR⁴¹SO₂-, -SO₂NR⁴¹-, -NR⁴¹COO-, -OCONR⁴¹-, -NR⁴¹CONR⁴²-, or -NR⁴¹SO₂NR⁴²- (where each R⁴¹ and R⁴² is independently hydrogen, alkyl, or acyl and n8 is 0-2) and R⁴⁰ is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl] wherein the alkylene chain in R3c is optionally substituted with one to three halo atoms and the aromatic and alicyclic rings in R^{3c} are optionally substituted by one, two, or three R^k independently selected from alkyl, aminoalkyl, halo, hydroxy, alkoxy, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryloxy, benzyloxy, carboxy, alkoxycarbonyl, aryloxycarbonyl, carbamoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, arylthio, arylsulfonyl, arylsulfinyl, alkoxycarbonylamino, aryloxycarbonylamino, alkylcarbamoyloxy, arylcarbamoyloxy, alkylsulfonylamino, arylsulfonylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylaminosulfonyl, aralkylaminosulfonyl, aminocarbonyl, arylaminocarbonyl, aralkylaminocarbonyl, amino, monosubstituted or disubstituted amino, and further wherein the aromatic and alicyclic rings in Rk are optionally substituted with one, two, or three R¹ wherein R¹ is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, amino, monosubstituted amino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl; or

(c) a compound of Formula (III):

5

10

15

20

25

30

where E is as defined above;

R^{3d} and R^{3e} are independently -alkylene-X⁹-R⁴³ [wherein X⁹ is bond, -NR⁴⁴-, -O-, -S(O)_{n9}-, -CO-, -COO-, -OCO-, -NR⁴⁴CO-, -CONR⁴⁴-, -NR⁴⁴SO₂-, -SO₂NR⁴⁴-, -NR⁴⁴COO-, -OCONR⁴⁴-, -NR⁴⁴CONR⁴⁵-, or -NR⁴⁴SO₂NR⁴⁵- (where R⁴⁴ and R⁴⁵ are independently hydrogen, alkyl, or acyl and n9 is 0-2) and R⁴³ is hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, or heterocycloalkylalkyl] wherein the alkylene chain is optionally substituted with one to three halo atoms and the aromatic or alicyclic rings in R^{3d} and R^{3e} are optionally substituted by one, two, or three R^m independently selected from alkyl, halo,

hydroxy, alkoxy, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, carboxy, alkoxycarbonyl, carbamoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonylamino, alkylcarbamoyloxy, alkylsulfonylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, aminocarbonyl, amino, monosubsituted or disubstituted amino and one R^m selected from aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryloxy, benzyloxy, aryloxycarbonyl, arylthio, arylsulfonyl, arylsulfinyl, aryloxycarbonylamino, arylcarbamoyloxy, arylsulfonylamino, arylaminosulfonyl, or aralkylaminosulfonyl wherein the aromatic or alicyclic ring in R^m is optionally substituted with one, two, or three Rⁿ wherein Rⁿ is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, heteroaralkylsulfonylamino, amino, monosubstituted amino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl; or

$$R^{3f}$$
 R^{1a}
 N^{-E}
 N^{-E}

15

20

25

30

5

10

where:

E and R^{1a} are as defined above;

R^{3f} is hydrogen;

R^{3g} is hydrogen, fluoro, -OR⁴⁶ or -NR⁴⁷R⁴⁸ where:

R⁴⁶ is hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, heterocycloalkylalkyl, –(alkylene)n₁₀-X¹⁰-R⁴⁹ [wherein n10 is 0 or 1, X¹⁰ is -CO-or -CONR⁵⁰- where R⁵⁰ is hydrogen, alkyl, or alkoxyalkyl, and R⁴⁹ is hydrogen, alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl or heterocycloalkylalkyl or R⁴⁹ and R⁵⁰ together with the nitrogen atom to which they are attached from heterocycloalkyl], or –alkylene-X¹¹-R⁵¹ [wherein X¹¹ is –NR⁵²-, -O-, -S(O)_{n11}-, -COO-, -OCO-, -NR⁵²CO-, -NR⁵²SO₂-, -SO₂NR⁵²-, -NR⁵²COO-, -OCONR⁵²-, -NR⁵²CONR⁵³-, or –NR⁵²CO₂NR⁵³- where n11 is hydrogen or alkyl, R⁵² is hydrogen or alkyl, and R⁵¹ is hydrogen, alkyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl or heterocycloalkylalkyl or R⁵¹ together with R⁵² or R⁵³ in -SO₂NR⁵²-, -OCONR⁵²-, -NR⁵²CONR⁵³-, or –NR⁵²SO₂NR⁵³- form heterocycloalkyl] wherein the alkylene chain is optionally substituted

with one to three halo atoms and the aromatic or alicyclic rings in R⁴⁶ are optionally substituted by one, two, or three R^o independently selected from alkyl, halo, hydroxy, alkoxy, hydroxyalkyl, alkoxyalkyl, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, carboxy, alkoxycarbonyl, carbamoyl, alkylsulfinyl, alkylsulfonyl, alkoxycarbonylamino, alkylcarbamoyloxy, alkylsulfonylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, aminocarbonyl, amino, monosubstituted or disubstituted amino and one R^o selected from aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryloxy, benzyloxy, aryloxycarbonyl, arylthio, arylsulfonyl, arylsulfinyl, aryloxycarbonylamino, arylcarbamoyloxy, arylsulfonylamino, arylaminosulfonyl, or aralkylaminosulfonyl wherein the aromatic and alicyclic rings in R^o are optionally substituted with one, two, or three R^p wherein R^p is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, amino, monosubstituted amino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl;

R⁴⁷ is hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, or heterocycloalkylalkyl; and

R⁴⁸ is hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, alkoxycarbonyl, aryloxycarbonyl, aralkyloxycarbonyl, heteroaryloxycarbonyl, heteroaralkyloxycarbonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl, or heterocycloalkylalkyl provided that one of \mathbb{R}^{47} and \mathbb{R}^{48} is other than hydrogen and wherein the aromatic or alicyclic rings in R⁴⁷ and R⁴⁸ are optionally substituted by one, two, or three Rq independently selected from alkyl, halo, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkoxy, oxo, cyano, nitro, acyl, acyloxy, carboxy, alkoxycarbonyl, carbamoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonylamino, alkylcarbamoyloxy, alkylsulfonylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, amino, monosubstituted or disubstituted amino and one Rq selected from aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryloxy, benzyloxy, aryloxycarbonyl, arylthio, arylsulfonyl, arylsulfinyl, aryloxycarbonylamino, arylcarbamoyloxy, arylsulfonylamino, arylaminosulfonyl, or aralkylaminosulfonyl wherein the aromatic and alicyclic rings in Rq are optionally substituted with one, two, or three Rr wherein Rr is independently selected from alkyl, halo, haloalkyl, haloalkoxy, hydroxy, nitro, cyano, hydroxyalkyl, alkoxy, alkoxyalkyl, aminoalkyl, alkylthio, alkylsulfonyl, amino, monosubstituted amino, dialkylamino, aryl, heteroaryl, cycloalkyl, carboxy, carboxamido, or alkoxycarbonyl; or

R^{3f} and R^{3g} are fluoro;

5

10

15

20

25

30

(1) 7-(2,2-dimethylpropyl)-6-thiophen-2-ylmethyl-7H-pyrrolo-[2,3-d]pyrimidine-2-carbonitrile;

(m) morpholine-4-carboxylic acid [(S)-1-(4-cyano-1-methylpiperidine-4-ylcarbamoyl)-4,4-dimethylhexyl]amide;

- (n) morpholine-4-carboxylic acid [(S)-1-(4-cyano-1-propylpiperidine-4-ylcarbamoyl)-3,3,4,4-tetramethylpentyl]amide;
- 5 (o) morpholine-4-carboxylic acid [(S)-1-(4-cyano-1-propylpiperidine-4-ylcarbamoyl)-4,4-dimethylpentyl]amide;
 - (p) morpholine-4-carboxylic acid [(S)-1-(4-cyano-1-propylpiperidine-4-ylcarbamoyl)-4,4-dimethylhexyl]amide;
 - (q) morpholine-4-carboxylic acid [(R)-1-(4-cyano-1-methylpiperidine-4-ylcarbamoyl)-4,4-dimethylhexyl]amide;

10

20

- (r) 5,5-dimethyl-2-(2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)heptanoic acid (4-cyano-1-propylpiperidin-4-yl)amide;
- (l) 5,5-dimethyl-2-(2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)heptanoic acid (4-cyano-1-(3-morpholin-4-ylpropyl)piperidin-4-yl)amide;
- (m) 5,5-dimethyl-2-(2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)heptanoic acid (4-cyano-1-(2-morpholin-4-ylethyl)piperidin-4-yl)amide;
 - (n) 5,5-dimethyl-2-(2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)heptanoic acid {4-cyano-1-[2-(2-methoxyethoxy)ethyl]piperidin-4-yl}amide;
 - (o) 5,5-dimethyl-2-(2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)heptanoic acid (4-cyano-1-methylpiperidin-4-yl)amide;
 - (p) 2-(7-fluoro-2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)-5,5-dimethylheptanoic acid (4-cyano-1-propylpiperidin-4-yl)amide;
 - (q) 2-(7-fluoro-2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)-5,5-dimethylhexanoic acid {4-cyano-1-(2-morpholin-4-ylethyl)piperidin-4-yl}amide; or
- 25 (r) 2-(7-fluoro-2-oxo-2H-benzo[e][1,3]oxazin-4-ylamino)-5,5-dimethylhexanoic acid {4-cyano-1-[2-(2-methoxyethoxy)ethyl]piperidin-4-yl}amide; or a pharmaceutically acceptable salt thereof.
 - 21. Use of a Cathepsin S inhibitor for the manufacture of a medicament for combination therapy with a biologic.
- 30 22. Use of a Cathepsin S inhibitor for the manufacture of a medicament for combination therapy with a biologic wherein the Cathepsin S inhibitor treats the immune response caused by the biologic.
 - 23. The use of Claim 21 or 22 wherein the biologic is a protein.
 - 24. The use of Claim 21 or 22 wherein the biologic is an antibody.

25. The use of Claim 21 or 22 wherein the biologic is Remicade[®], Refacto[®], Referon-A[®], Factor VIII, Factor VII, Betaseron[®], Epogen[®], Embrel[®], Interferon beta, Botox[®], Fabrazyme[®], Elspar[®], Cerezyme[®], Myobloc[®], Aldurazyme[®], Verluma[®], Interferon alpha, Humira[®], Aranesp[®], Zevalin[®] or OKT3.

5