Réseaux de Petri IN310 - Modèles des SE

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

Modèle formel

- ▶ 1962, Carl Adam Petri : Communication et composition entre automates
- Outil de modélisation de systèmes dynamiques : permet de raisonner sur les objets, les ressources et leur changement d'état
- Outil mathématique (formel) et outil graphique
 - permet de représenter le vrai parallélisme, la concurrence, contraintes de précédence,
 - ▶ analyse de bonnes propriétés (vivacité, borné, etc.) et propriétés structurelles : aide efficiente durant les phases de conception
 - peut être simulé et implémenté directement par un joueur de RdP

- Applications :
 - évaluation de performances,
 - analyse et vérification formelles,
 - protocoles de communication,
 - contrôle de systèmes de production,
 - systèmes d'information (organisation d'entreprises),
 - gestion de bases de données,
 - ► IHM, etc.

- ▶ Etat : les différentes *phases* par lesquelles passe le système ;
- ➤ Variables d'état : ensemble de variables qui permettent de connaître l'état du système.
 - Système continu : les variables d'état évoluent continuellement dans le temps;
 - Système à événements discrets : les variables d'état changent brusquement à certains instants
- Evénement : son occurrence fait changer l'état du système
- Activité : boîte noire représente lŽévolution du système entre 2 événements

Présentation informelle

Éléments de base

- ▶ Place : interprétée comme condition, état partiel, ensemble de ressources
- ▶ Transition : associée à un événement qui a lieu dans le système
- ▶ Jeton : indique que la condition associée à la place est vérifiée (ou le nombre d'éléments qui la vérifient)

Présentation informelle

Comportement dynamique

- état : répartition des jetons dans les places,
- occurrence d'un événement : tir de la transition,
 - enlever les jetons des places d'entrée,
 - mettre les jetons dans les places de sortie.

Définitions

- Modèle formel, peut être caractérisé par :
 - graphe avec comportement dynamique ; représentation naturelle pour le concepteur,
 - ensemble de matrices d'entiers : comportement dynamique décrit par un système linéaire : représentation naturel pour l'ordinateur ;
 - système de règles : peut être utilisé avec les techniques d'I.A;
- Validation par analyse et simulation ;
- Représente : parallélisme, synchronisme, séquence, conflit, concurrence.

Définitions

Réseaux de Petri $R = \langle P, T, Pre, Post \rangle$

- P est un ensemble fini de places de dimension n;
- T est un ensemble fini de transitions de dimension m;
- ▶ $Pre : P \times T \rightarrow \mathbb{N}$ est l'application d'*entrée* (places précédentes),
- ▶ Post : $P \times T \rightarrow \mathbb{N}$ est l'application de sortie (places suivantes),

Réseau de Petri marqué $N = \langle R, M \rangle$

- R est un réseau de Petri,
- M: P → N est le marquage initial (distribution de jetons dans les places)

Définitions

Exemple

$$ightharpoonup R = \langle P, T, Pre, Post \rangle$$

$$P = \{p_1, p_2, p_3\}$$

$$T = \{a, b, c, d\}$$

Post
$$(p_1, a) = 1$$
, $Pre(p_1, b) = 1$, $Post(p_2, b) = 1$

Graphe et notation matricielle

Réseau de Petri marqué $N = \langle R, M \rangle$

$$a$$
 p_1
 p_2
 p_3
 p_4
 p_4
 p_5
 p_7
 p_8
 p_8

$$P = \{p_1, p_2, p_3\}, \qquad T = \{a, b, c, d\}$$

$$\textit{Pre} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Post = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$^{t}M = \begin{pmatrix} 0 & 3 & 0 \end{pmatrix}$$

Séquence

- séquence d'un processus de fabrication :
 - ▶ P_i : phase i de l'opération sur la pièce,
 - ▶ t_i : passage d'une phase à une autre;
- portion de l'itinéraire d'un système de transport :
 - P_i : chariot traverse la section i,
 - ▶ t_i: passage d'un chariot d'une section à une autre;

Fork

- à partir de l'activité J₁, deux activités sont crées (J₂ et J₃),
- $ightharpoonup J_2$ et J_3 évoluent de façon indépendante.

Join

- évolution indépendante de t₁ et t₂ (évolution assynchrone),
- ▶ synchronisme en *t*₃.

Choix

- ▶ choix entre t_2 (seq. P_2P_3) et t_3 (seq. P_4P_5) : seulement une peut être tirée;
- ▶ les 2 séquences exécuteront *P*₆.

Répétition

- ▶ choix entre t₂ e t₃,
- ▶ répéter la séq. P₂P₃ un certain nombre de fois avant de exécuter P₄.

Allocation de ressources

- un même chariot doit servir différentes machines,
- un opérateur doit exécuter différentes activités (une à la fois).

Exemple : Système par lot

- ▶ peut produire deux produits (Pr_1 et Pr_2), utilisant 2 réacteurs (R_1 e R_2) de façon concurrente,
- ▶ produit Pr_1 : est produit par R_1 ou R_2 ; doit être, au préalable, stocké dans le *buffer* B_1 ou B_2 (respectivement).
- ▶ produit Pr_2 : est produit par le réacteur R_2 .

Règle de fonctionnement

Transition sensibilisée à partir de M

- ▶ il y a un numéro suffisant de jetons dans les places d'entrée,
- $\blacktriangleright \ \forall p \in P, \ M(p) \ge Pre(p,t)$
- $ightharpoonup M \geq Pre(.,t)$

Tir d'une transition à partir de M

- $ightharpoonup \forall p \in P, \ M'(p) = M(p) Pre(p, t) + Post(p, t)$
- ▶ M' = M Pre(., t) + Post(., t) = M + C(., t)

Règle de fonctionnement

- Enlève Pre(p, t) jetons de chaque place précédente p (poids de l'arc d'entrée), et met Post(p, t) jetons à chaque place de sortie p,
- Représente le changement d'état dû à l'ocurrence de l'événement associé à t.

Conflit et parallélisme

► Conflit structurel : ssi t₁ et t₂ ont au moins une place d'entrée en commun

$$\exists p \in P, \quad Pre(p, t_1) Pre(p, t_2) \neq 0$$

► Conflit effectif : ssi t₁ et t₂ sont en conflit structurel et sont sensibilisées par le marquage *M*

$$M \geq Pre(., t_1)$$
 et $M \geq Pre(., t_2)$

▶ Parallélisme structurel : si t₁ et t₂ ne possèdent pas de place d'entrée en commun

$$\forall p \in P \quad Pre(p, t_1) Pre(p, t_2) = 0 \text{ ou } Pre(., t_1)^T \times Pre(., t_2) = 0$$

ightharpoonup Parallélisme effectif : t_1 et t_2 sont parallèles structurellement et

$$M \geq Pre(., t_1) e M \geq Pre(., t_2)$$