课程时间安排 HUFE

2025年2月26日

1 考纲内容

1.1 考核目标

- 1. 考核学生对各种数据结构的基本概念与基本原理的理解和掌握,以及运用数据结构知识分析问题和解决问题的能力。
- 2. 考核学生对数据库系统的基本概念与基本原理的理解和掌握,以及运用数据库设计方法分析问题和解决问题的能力。

1.2 考核内容

1.2.1 数据结构

1. 绪论

数据、数据元素、数据结构、数据类型、抽象数据类型的概念,数据的逻辑结构和存储结构,算法、算法描述和算法分析的概念。

2. 线性表

线性表的定义及其抽象数据类型描述,顺序表的逻辑结构定义及其基本运算,链表的逻辑结构及其基本操作。

3. 栈和队列

栈的结构特性、基本操作及在顺序存储结构和链式存储结构上基本运算的实现,队列的结构特性、基本操作及在 顺序存储结构和链式存储结构上基本运算的实现,栈和队列的基本应用。

4. 数组和广义表

数组的基本概念和存储结构、广义表的定义和存储结构。

5. 树和二叉树

树的基本概念,二叉树的概念、性质和存储结构,二叉树的遍历,线索二叉树,哈夫曼树。

6. 图

图的基本概念,图的存储结构(邻接矩阵、邻接表、十字链表和邻接多重表),图的遍历,生成树和最小生成树,最短路径。

7. 查找

查找的基本概念,线性表的查找,二叉排序树,哈希表的查找。

8. 内排序

排序的基本概念,各种排序(插入排序、交换排序、选择排序、归并排序和基数排序)的基本思想和算法分析。

1.2.2 数据库原理

1. 绪论

数据库的 4 个基本概念,数据管理技术的产生和发展,数据建模、概念模型和数据模型的三要素,数据库系统的三级模式结构,数据库的两级映像与数据独立性,数据库系统的组成。

2. 关系模型

关系模型的数据结构及形式化定义,关系操作,关系完整性,关系代数(传统的集合运算、专门的关系运算)。

3. 关系数据库标准语言 SQL

数据定义、数据查询、数据更新、空值处理、视图。

4. 数据库安全性

数据库安全性概述,数据库安全性控制。

5. 数据库完整性

数据库完整性概述,实体完整性,参照完整性,用户定义完整性,完整性约束命名子句。

6. 关系数据理论

关系数据库规范化理论的基本概念,函数依赖的定义和函数依赖的公理系统,第一/二/三范式和 BC 范式,关系模式的分解。

7. 数据库设计

数据库设计的基本步骤及各阶段的主要任务, E-R 模型及用 E-R 模型进行概念结构设计,逻辑结构设计。

8. 数据库恢复和并发控制

事务的基本概念,故障的种类,恢复的实现技术,恢复策略及具有检查点的恢复技术;并发控制的基本概念。

2 课程时间安排

基于考纲内容和各章节的难度, 我们将 24 小时的辅导时间按照以下方式进行安排:

2.1 总体时间分配

• 数据结构: 14 小时(较大比重, 难度较高)

• 数据库原理: 10 小时

• 总计: 24 小时

2.2 详细时间安排

2.2.1 数据结构部分 (14 小时)

章节内容	时间分配	教学要点
1. 绪论	1 小时	数据结构的基本概念与分类,算法分析方法
2. 线性表	2 小时	顺序表和链表的实现与基本操作,应用场景分析,
		重点讲解单链表、双链表和循环链表的操作
3. 栈和队列	2 小时	栈和队列的实现方法,顺序和链式存储结构的比
		较,经典应用问题(表达式求值、递归消除等)
4. 数组和广义表	1 小时	多维数组的存储,广义表的概念与基本操作
5. 树和二叉树	3 小时	二叉树的性质、遍历算法与应用,线索二叉树的构
		造与使用,哈夫曼树的构建和编码应用
6. 图	2 小时	图的基本概念与存储结构,图的遍历算法,最小生
		成树 (Prim 和 Kruskal 算法), 最短路径 (Dijkstra
		算法)
7. 查找	1.5 小时	顺序查找、折半查找,二叉排序树的构建与操作,
		哈希表及其处理冲突的方法
8. 内排序	1.5 小时	各类排序算法的原理与实现,时间复杂度和空间复
		杂度分析与比较

2.2.2 数据库原理部分 (10 小时)

章节内容	时间分配	教学要点
1. 绪论	0.5 小时	数据库基本概念,三级模式结构与两级映像
2. 关系模型	1.5 小时	关系数据模型的基本概念,关系代数操作(选择、
		投影、连接等)
3. SQL 语言	2.5 小时	DDL、DML、DCL 语句,复杂查询(子查询、连
		接查询、集合操作等),视图的使用
4. 数据库安全性	0.5 小时	安全机制实现方法,访问控制技术
5. 数据库完整性	1 小时	实体完整性、参照完整性和用户自定义完整性约束
		的实现
6. 关系数据理论	2 小时	函数依赖理论,各种范式的定义与转换,模式分解
7. 数据库设计	1.5 小时	E-R 模型设计, 概念模型到逻辑模型的转换, 规范
		化过程
8. 数据库恢复和并发控制	0.5 小时	事务的 ACID 属性, 锁机制, 并发控制方法, 恢复
		技术

© 2025 Isomo 3