Série 3 du mardi 4 octobre 2016

Exercice 1.

Montrer que la suite $(x_n)_{n=0}^{\infty}$ définie par $x_0=1$ et

$$x_{n+1} = \frac{1}{2} (x_n + \sin(x_n)\cos(x_n)), \forall n \in \mathbb{N}$$

converge. Calculer sa limite.

Indications

- 1.) Utiliser la relation $|\sin(t)| < t$, $\forall t > 0$ pour montrer que $x_n > 0$.
- 2.) Montrer que la suite $(x_n)_{n=0}^{\infty}$ est décroissante, bornée inférieurement.

Exercice 2.

Montrer que la suite $(x_n)_{n=0}^{\infty}$ définie par $x_0 = 3$, $x_1 = 2$ et

$$x_{n+1} = \sqrt[3]{x_n + x_{n-1}}$$

converge. Calculer sa limite.

On suppose connue la fonction $x \mapsto \sqrt[3]{x}$.

Indications

Montrer récursivement que $1 < x_{n+1} < x_n < x_{n-1}$.

Exercice 3 (* A rendre).

Démontrer le théorème suivant:

Théorème: Soient $(x_n)_{n=0}^{\infty}$ une suite croissante et $(y_n)_{n=0}^{\infty}$ une suite décroissante telles que $\lim_{n\to\infty}(x_n-y_n)=0$. Alors on a

- 1.) pour tout $n \in \mathbb{N}$: $x_0 \le x_1 \le x_2 \le \ldots \le x_n \le y_n \le y_{n-1} \le \ldots \le y_0$.
- $2.) \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$

Exercice 4.

Construire explicitement une suite de rationnels qui converge vers $\sqrt{5}$.

Indication: Adapter la méthode vue au cours.