# Principal Component Analysis

ST 560 Fall 2014

#### Linear Dimension Reduction

- ► Describe (most of) variation in the multivariate data using a smaller set of variables
- ▶ PCA can be thought of as a form of data reduction
- We want use a fewer number of new variables which contain most variational information that is in the full data

### **PCA**

▶ We create a new set of variables  $Z_1, Z_2, ..., Z_p$ , each of which is a linear combinations of  $X_1, X_2, ..., X_p$ :

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \ldots + a_{1p}X_p$$

$$Z_2 = a_{21}X_1 + a_{22}X_2 + \ldots + a_{2p}X_p$$

- •
- $Z_p = a_{p1}X_1 + a_{p2}X_2 + \ldots + a_{pp}X_p$
- We further require these new variables to be uncorrelated.
- ▶ This assures us that the information in  $Z_2$  doesn't overlap with the information in  $Z_1$ .
- ► Having *p* of these new variables does not give us any data reduction.
- ▶ We would like to choose only the first m of these (m < p) to focus on.

### First PC

- ▶ Choose a normalized linear combination  $Z_1$  of  $X_1, X_2, ..., X_p$  so that it accounts for as much of the variation in the original variables as possible.
- ▶ Choose a weighting vector  $\mathbf{v} = (v_1, \dots, v_p)^T$  which maximizes variance of the standardized linear combination:

$$Z = v_1 X_1 + \cdots + v_p X_p$$

▶ Choose  $\mathbf{v} \in \mathbb{R}^p$ ,  $\mathbf{v}^T \mathbf{v} = 1$  to maximize

$$Var(\mathbf{v}^T X) = \mathbf{v}^T Var(X)\mathbf{v}$$
  
=  $\mathbf{v}^T \Sigma \mathbf{v}$ 

### First PC

From the quadratic form maximization theorem,

$$Z_1 = v_{11}X_1 + \cdots + v_{1\rho}X_{\rho}$$

where  $\mathbf{v}_1 = (v_{11}, \cdots, v_{1p})^T$  is the normalized eigenvector corresponding to the largest eigenvalue of  $\Sigma$ , captures the majority of the variance.

In particular,

$$Var(Z_1) = Var(v_{11}X_1 + \cdots + v_{1p}X_p)$$

$$= \mathbf{v}_1^T \mathbf{\Sigma} \mathbf{v}_1$$

$$= \lambda_1$$

### Second PC

- Find a normalized linear combination  $Z_2 = v_1 X_1 + v_2 X_2 + \ldots + v_p X_p = \mathbf{v}^T X$  that has maximum variance of all linear combinations uncorrelated with  $Z_1 = \mathbf{v}_1^T X$ .
- Lack of correlation:

$$0 = Cov(Z_2, Z_1)$$

$$= Cov(\mathbf{v}^T X, \mathbf{v}_1^T X)$$

$$= \mathbf{v}^T Var(X) \mathbf{v}_1$$

$$= \mathbf{v}^T \mathbf{V} \Lambda \mathbf{V}^T \mathbf{v}_1$$

$$= \mathbf{v}^T \lambda_1 \mathbf{v}_1$$

▶ Thus,  $Z_2$  is orthogonal to  $Z_1$  in the statistical sense (uncorrelated) and in the geometric sense (the inner product of  $\mathbf{v}$  and  $\mathbf{v}_1$  being zero.)

## Second and subsequent PCs

Now, we want to maximize

$$Var(\mathbf{v}^TX) = \mathbf{v}_1^T \Sigma \mathbf{v}_1$$
 subject to  $\mathbf{v}^T \mathbf{v} = 1$  and  $\mathbf{v}^T \mathbf{v}_1 = 0$ .

Recall the quadratic form maximization theorem under the orthogonality constraints:

$$\begin{aligned} \max_{\mathbf{v} \in \mathbb{R}^p, \, \mathbf{v}^T \mathbf{v} = 1} & \mathbf{v}^T \Sigma \mathbf{v} &= \mathbf{v}_k^T \Sigma \mathbf{v}_k \\ \mathbf{v}^T \mathbf{v}_1 = 0, \dots, \mathbf{v}^T \mathbf{v}_{k-1} = 0 & \\ &= \lambda_k, \end{aligned}$$

We get the second PC,  $Z_2 = \mathbf{v}_2^T X$  (and subsequent PCs,  $Z_k = \mathbf{v}_k^T X$ ).



## Population PCA

Let the *p*-variable vector  $\mathbf{X} = (X_1, \dots, X_p)^T$  have the covariance matrix  $\Sigma = \mathbf{V} \wedge \mathbf{V}^T$  with

- $ightharpoonup \Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_p) \text{ with } \lambda_1 \geq \ldots \geq \lambda_p$
- ullet  $oldsymbol{\mathsf{V}} = [oldsymbol{\mathsf{v}}_1, \ldots, oldsymbol{\mathsf{v}}_p]$  orthonormal
- $\triangleright \; \Sigma \mathbf{v}_i = \lambda_i \mathbf{v}_i.$

#### Then,

- ▶ The kth eigenvector  $\mathbf{v}_k$  is the kth PC direction vector.
- ▶ The kth eigenvalue  $\lambda_k$  is the variance explained by the kth principal component score (random variable),  $Z_k = \mathbf{v}_k^T \mathbf{X}$ :  $Var(Z_k) = \lambda_k, \ k = 1, ..., p$
- $\quad \mathsf{Cov}(Z_i, Z_j) = \mathbf{v}_i^T \Sigma \mathbf{v}_j = 0, \ i \neq j.$

# PC in practice?

The first part of this chapter deals with PC from a population covariance. In practice, the covariance matrix is unknown. For a random sample  $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_n]_{p \times n}$  from a population, the sample PCA sequentially finds orthogonal directions of maximal (projected) sample variance.

Define the centered data matrix

$$\tilde{\mathbf{X}} = [\mathbf{X}_1 - \bar{\mathbf{X}}, \mathbf{X}_2 - \bar{\mathbf{X}}, \cdots, \mathbf{X}_n - \bar{\mathbf{X}}].$$

▶ The sample variance-covariance matrix is

$$\mathbf{S}_n = \frac{1}{n-1} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T.$$

▶ Eigen-decomposition of  $\mathbf{S}_n = \hat{\mathbf{V}} \hat{\Lambda} \hat{\mathbf{V}}^{\mathsf{T}}$  leads to the sample PC directions  $(\hat{\mathbf{v}}_k)$  and the variance of the kth sample scores  $(\hat{\lambda}_k)$ .



# Sample PCA

From the quadratic form maximization theorem, we can verify that

$$egin{aligned} \hat{\mathbf{v}}_k = \mathsf{arg} & \max & ilde{V}\mathit{ar}(\mathbf{v}^{\mathsf{T}}\mathbf{X}), \ \mathbf{v} \in \mathbb{R}^p, \mathbf{v}^{\mathsf{T}}\mathbf{v} = 1 \ \mathbf{v}^{\mathsf{T}}\hat{\mathbf{v}}_1 = 0, \dots, \mathbf{v}^{\mathsf{T}}\hat{\mathbf{v}}_{k-1} = 0 \end{aligned}$$

where  $\tilde{V}$  ar denotes the sample covariance. Thus,

- $\hat{\mathbf{v}}_k$  is the kth sample PC direction vectors and is the vector of the kth loadings.
- $ightharpoonup \mathbf{z}_k = \left(\hat{\mathbf{v}}_k^{\mathsf{T}} (\mathbf{X}_i \bar{\mathbf{X}})\right)_{i=1}^n = \hat{\mathbf{v}}_k^{\mathsf{T}} \tilde{\mathbf{X}}$  is the kth score vector.
- $oldsymbol{\hat{\lambda}}_k =$  the sample variance of  $oldsymbol{z}_k$

#### SVD and PCA

Consider Singular Value Decomposition of the centered data matrix:  $\tilde{\mathbf{X}}^T = \mathbf{U}\mathbf{D}\mathbf{V}^T$ . Then,

$$\mathbf{S}_{n} = \frac{1}{n-1} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^{T}$$

$$= \frac{1}{n-1} (\mathbf{U} \mathbf{D} \mathbf{V}^{T})^{T} (\mathbf{U} \mathbf{D} \mathbf{V}^{T})$$

$$= \mathbf{V} \operatorname{diag}(\frac{1}{n-1} d_{k}^{2}) \mathbf{V}^{T}.$$

#### Thus,

- ▶ PC directions: (1) the right singular vectors of the centered data matrix of size  $n \times p$  or (2) the eigenvectors of the sample covariance matrix **S**.
- ▶ Variance of PC scores: (1) the squared singular values of the (centered) data matrix/(n-1) or (2) the eigenvalues of the sample covariance matrix **S**.



# Computation of PCA

#### PCA is computed

- 1. using eigenvalue-eigenvector decomposition of **S** or
- 2. using the singular value decomposition of  $\tilde{\mathbf{X}}_{p \times n} = (\mathbf{X}_i \bar{\mathbf{X}})_{i-1}^n$

From 
$$S = V \wedge V^T$$

- 1. PC directions :  $\mathbf{v}_k$  (eigenvectors)
- 2. the *k*th sample pc (or score vectors):  $\mathbf{z}_k = \hat{\mathbf{v}}_k^{\mathsf{T}} \tilde{\mathbf{X}}$
- 3. Variance of kth PC score:  $\lambda_k$  (eigenvalues)

### From SVD of $\tilde{\mathbf{X}}^{\mathsf{T}} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$

- 1. PC directions :  $\mathbf{v}_k$  (right singular vectors)
- 2. the *k*th sample pc (or score vectors):  $\mathbf{z}_k = \hat{\mathbf{v}}_k^{\mathsf{T}} \tilde{\mathbf{X}}$
- 3. Variance of k-th PC score:  $\frac{1}{n-1}d_k^2$  (singular values<sup>2</sup>)

# Eigen-expansion

Eigen-expansion of the data matrix:

$$\tilde{\mathbf{X}}_{p imes n} = (\sum_{i=1}^p \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}) \tilde{\mathbf{X}}$$

Then, the raw data matrix can be written as

$$\mathbf{X}_{p \times n} = \bar{\mathbf{X}} + \tilde{\mathbf{X}}$$

$$= \bar{\mathbf{X}} + \sum_{i=1}^{p} \mathbf{v}_{i} (\mathbf{v}_{i}^{\mathsf{T}} \tilde{\mathbf{X}})$$

$$= \bar{\mathbf{X}} + \sum_{i=1}^{p} \mathbf{v}_{i} \mathbf{z}_{i}$$

 $z_i$ : scores, observed *i*-th PC...

 $\mathbf{v}_i$ : loadings, eigenvectors, PC direction vectors...



## Reduced Rank Representation:

Reconstruct using only the first few terms (assuming decreasing eigenvalues)

$$\mathbf{X}_m pprox \mathbf{ar{X}} + \sum_{i=1}^m \mathbf{v}_i \mathbf{z}_i$$

gives rank m approximation of data

- ▶ The larger m, the better approximation by  $\mathbf{X}_m$
- ▶ The smaller *m*, the more succinct dimension reduction of **X**

## Renaming

- Statistics: Principal Component Analysis (PCA)
- Social Sciences: Factor Analysis (PCA is a subset)
- Probability/ Electrical Eng: Karhunen Loeve expansion
- Applied Mathematics: Proper Orthogonal Decomposition (POD)
- Geo-Sciences: Empirical Orthogonal Functions (EOF)

#### Covariance vs Correlation

- ▶ Often the variables in the raw data set are very different in their scales, variabilities, etc.
- Basing the PCA on the covariance matrix would lead to variables with large variances dominating the most important principal components
- Also, changing the units of measurements would change the PCA solution.
- ▶ For this reason, it is often preferred to base the PCA solution on the eigenvectors and eigenvalues of the correlation matrix rather than the covariance matrix.
- ► This is equivalent to initially standardizing all variables and then performing the PCA base on the correlation matrix.

### Example 1: Iris Data

- ▶ This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day.
- ► The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.
- ▶ Predicted attribute: class of iris plant.
- ▶ Number of Instances: 150 (50 in each of three classes)
- ► Number of Attributes: 4 numeric, predictive attributes and the class (Iris Setosa, Iris Versicolour,Iris Virginica)

### Iris Data



- ► Attribute Information:
  - ▶ sepal length in cm
  - ► sepal width in cm
  - ▶ petal length in cm
  - ▶ petal width in cm

## Iris Data: scatter plot



(i,j)th frame: scatter plot of  $(\mathbf{x}_i, \mathbf{x}_j)$  (Iris Setosa(b), Iris Versicolour (r), Iris Virginica(g))

# Iris Data: PCA scat plot



(i,j)th frame: scatter plot of  $(\mathbf{z}_i,\mathbf{z}_j)$ 

## Iris Data: PCA scat plot



(i,j)th frame: scatter plot of  $(\mathbf{z}_i, \mathbf{z}_j)$ (Iris Setosa(b), Iris Versicolour (r), Iris Virginica(g))

## Iris Data: how many components to keep?

The criterion for PCA is a high variance in the principal components. The question involves "how much the PCs explain the variance present in the whole data?"

- Note that Variance of kth PC score is  $\lambda_k$  (kth eigenvalue of  $\bf S$ ).
- ► Total variance in the whole data is the same as the total variance explained by all PCs:

$$\sum_{k=1}^{p} Var(k \text{th PC score}) = \sum_{i=1}^{p} \lambda_{k}$$

$$= \text{trace}(\mathbf{S}) = \sum_{k=1}^{p} Var(X_{k})$$

▶ Variance explained by the first k PCs is  $\lambda_1 + \ldots + \lambda_k$ .



## Iris Data: scree plot

In scree plot  $(k, \lambda_k)$ , look for an elbow. In cumulative scree plot, proportion of variance explained  $\left(k, \frac{\sum_{i=1}^k \lambda_i}{\sum_{j=1}^p \lambda_i}\right)$ , use 90% as a cutoff.





# Which variables are most responsible for the PCs?

- Loadings of PC directions.
- ▶ Biplot- scatter plot of PC1 and PC2 scores, overlaid with p vector each representing the loadings of the first two PC directions.

#### Iris Data: PC Direction

In the Iris data, the PC loadings are

### Loadings:

```
Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.361 -0.657 0.582 0.315
Sepal.Width -0.730 -0.598 -0.320
Petal.Length 0.857 0.173 -0.480
Petal.Width 0.358 -0.546 0.754
```

# Iris Data: biplot



### Iris Data: PCA



- ▶ The 1st PC accounts for 92% of the total variation.
- ► From the 1st PC loadings: 1st PC is the weighted average of sepal length, petal length and petal width.

# Example 2: PCA for curve data



Data Points (Curves) are columns of data matrix,  $\mathbf{X}$ . Two data points are highlighted.



Data Points (Curves) are columns of data matrix, X.



Sample mean in 2-d space



Sample mean in the curve space



Mean Centered Data



#### PCA with Mean Centered Data

$$\hat{\boldsymbol{V}} = \begin{pmatrix} 0.1041 & -0.9946 \\ 0.9946 & 0.1041 \end{pmatrix}$$
 
$$\hat{\boldsymbol{\Lambda}} = \begin{pmatrix} 5.7939 & 0 \\ 0 & 1.6480 \end{pmatrix}$$



PC 1 direction 
$$\hat{\mathbf{v}}_1 = \begin{pmatrix} 0.1041 \\ 0.9946 \end{pmatrix}$$



PC 2 direction 
$$\hat{\boldsymbol{v}}_2 = \binom{-0.9946}{0.1041}$$



PC 1 and 2 directions



Projection of one data vector onto PC1 direction



Projection of data vectors onto PC1 direction



Projection of data vectors onto PC1 direction  $\hat{\lambda}_1 = 5.7939$ 



Projection of data vectors onto PC2 direction  $\hat{\lambda}_2 = 1.6480$ 



n = 50, d = 25 grid points curve data



n = 50, d = 25 grid points curve data



sample mean



mean centered data



PC1 - PC3 projections  $\hat{\lambda}_1 = 40.5, \hat{\lambda}_2 = .8, \hat{\lambda}_3 = .7$ 

#### Example 3: Olivetti Faces data

- Obtained from http://www.cs.nyu.edu/~roweis/data.html
- ► Grayscale faces 8 bit [0-255], 10 images of 40 different people.
- ▶ n = 400 total images of size  $64 \times 64$ .

### Images as data

- An image is a matrix-valued datum.
- ► For Olivetti Faces data, the matrix is of size 64 × 64, with each pixel having values between 0 and 255.
- ▶ The matrix corresponding to each observation is vectorized by stacking each column into one long vector of size  $p = 64 \times 64 = 4096$ .
- So, my data matrix X is of size 400 x 4096. Now, PCA is applied to this data matrix.

# Face data: scree plot



# Face data: scatter plot



What are the loadings?

# Face data: marching along the first 3 PC directions



- ▶ PC1: lighter to darker face
- ▶ PC2: masculin to feminin face
- ▶ PC3: rectangle to oval face, presence of eyeglasses

Approximation to the original data matrix:

$$\hat{oldsymbol{\mathsf{x}}}_i pprox ar{oldsymbol{\mathsf{x}}} + \sum_{j=1}^m oldsymbol{\mathsf{v}}_j (oldsymbol{\mathsf{y}}_j)_i$$

#### Observation index i = 1



#### Observation index i = 25



#### Observation index i = 100



### Face data PCA approximation

- ▶ Human eyes require > 50 PCs to see resemblance between  $\hat{\mathbf{x}}_i$  and  $\mathbf{x}_i$ .
- Variance explained by 50 PCs is about 90 % of total variance.
- Reconstruction by PCA most useful when
  - each datum is visually represented (rather than being just numbers)
  - data objects are images, shapes, functions.

### PC in Regression

- ▶ Predict a real-valued output Y using a set of covariates  $X = (X_1, \ldots, X_p)$ .
- Linear model assumes the regression function E(Y|X) is linear;  $E(Y|X) = \beta_0 + \sum_{i=1}^p X_i \beta_i$ .
- Assume

$$Y_i = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j + \epsilon_i,$$

where  $\epsilon_i \stackrel{i.i.d.}{\sim} (0, \sigma^2)$  for  $i = 1, \dots, n$ .

### Least Squares method

▶ Least Squares method chooses  $\beta$  which minimizes the residual sum of squares:

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} X_{ji}\beta_j)^2$$

- Using matrix notation,
  - $\hat{\beta} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{y}$  and
  - $\hat{\mathbf{y}} = \hat{\mathbf{X}}^{\mathsf{T}} \hat{\beta},$

where **X** is the  $(p+1) \times n$  design matrix with the 1's on the first row and  $\beta = (\beta_0, \dots, \beta_p)^T$ .

### Connecting LS estimate with PCA

- ► From now on, assume that data vector **y** and **X** are centered. In particular, **X** doesn't have 1's on its first row and we will fit linear model with no intercept subsequently.
- Note that for any orthonormal matrix U

$$\begin{aligned} \mathbf{y} &=& \mathbf{X}^{\mathsf{T}}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ &=& \mathbf{X}^{\mathsf{T}}\mathbf{U}\mathbf{U}^{T}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ &=& \mathbf{Z}^{\mathsf{T}}\boldsymbol{\gamma} + \boldsymbol{\epsilon} \end{aligned}$$

▶ PCR chooses PC directions for **U** and PC scores for **Z**.

# Why PCR?

► Least Squares estimate based on original input variables:

$$\begin{split} \hat{\beta} &= (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{X}\mathbf{y} \\ &= (\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}})^{-1}\mathbf{X}\mathbf{y} \\ &= \mathbf{V}\wedge^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{X}\mathbf{y} \end{split}$$

## Multicollinearity

- What is (perfect) multicollinearity?
  - ▶ the *p*-explanatory variables are not linearly independent
  - at least one vector in the set can be written as a linear combination of the other vectors
  - ▶ the *p*-explanatory variables live in the *q*-dimensional subspace of *p*-dimensional space
  - there exists zero eigenvalues of Σ
- ▶ In reality, when multicollinearity exists in the data, we observe very small sample eigenvalues.

## Multicollinearity in multiple regression

- Why this can be an issue?
- ▶ Observation 1:

$$\hat{\beta} = \mathbf{V} \wedge^{-1} \mathbf{V}^T \mathbf{X} \mathbf{y}$$
$$= \sum_{j=1}^{p} (\frac{1}{\lambda_j} \mathbf{v}_j \mathbf{v}_j^T) \mathbf{X} \mathbf{y}$$

▶ With small eigenvalues, the inversion of matrix is numerically unstable.

## Multicollinearity in multiple regression

Observation 2: Under the usual iid error assumption,

$$E(\hat{\beta}) = \beta$$

but

$$\begin{aligned} \textit{Var}(\hat{\beta}) &= & (\mathbf{X}\mathbf{X}^T)^{-1}\sigma^2 \\ &= & \sum_{j=1}^p \frac{1}{\lambda_j} \mathbf{v}_j \mathbf{v}_j^T \sigma^2 \end{aligned}$$

► Change in design matrix can change the estimate drastically.

#### What this means in PCs

- ▶ When multicollinearity exists, it appears as PCs with very small variance, hence very large values of  $\frac{1}{\lambda_L}$ .
- Any predictor variable having moderate or large coefficients in any of the PCs associated with very small eigenvalues will have a very large variance.
- ▶ How to reduce this effect?

## Principal Component Regression

▶ PC scores:  $\mathbf{z}_i = \mathbf{v}_i^\mathsf{T} \mathbf{X}$ , i = 1, ..., p.

Let 
$$\mathbf{Z}_k = \begin{bmatrix} \mathbf{z}_1 \\ \vdots \\ \mathbf{z}_k \end{bmatrix}_{k \times n}$$
 be the design matrix with the first  $k$ 

▶ PCR chooses the first k(< p) PCs in the regression analysis:

$$\mathbf{y} = \mathbf{X}\beta + \epsilon \ pprox \mathbf{Z}_k \gamma_k + \epsilon_k$$

- ▶ With the first kPC, we get  $\tilde{\gamma}_k = (\mathbf{Z}_k \mathbf{Z}_k^T)^{-1} \mathbf{Z}_k \mathbf{y}$ , coefficient estimates of the PC scores.
- ► For the original variables, we get

$$\tilde{\beta}_k = \mathbf{V}_k \tilde{\gamma}_k$$

### Principal Component Regression

▶ What do we gain?

$$\begin{aligned} \textit{Var}(\tilde{\beta}_k) &= \textit{Var}(\mathbf{V}_k \tilde{\gamma}_k) \\ &= \mathbf{V}_k (\mathbf{Z}_k \mathbf{Z}_k^T)^{-1} \mathbf{Z}_k \textit{Var}(\mathbf{y}) \mathbf{Z}_k^T (\mathbf{Z}_k \mathbf{Z}_k^T)^{-1} \mathbf{V}_k^T \\ &= \mathbf{V}_k (\text{diag}(\lambda_1, \dots, \lambda_k))^{-1} \mathbf{V}_k^T \sigma^2 \\ &= \sum_{i=1}^k \frac{1}{\lambda_j} \mathbf{v}_j \mathbf{v}_j^T \sigma^2 \end{aligned}$$

What do we lose?

$$E(\tilde{\beta}_{k}) = \mathbf{V}_{k} \underbrace{(\mathbf{Z}_{k}\mathbf{Z}_{k}^{T})^{-1}}_{= \mathbf{V}_{k}} \underbrace{\mathbf{Z}_{k}}_{= \mathbf{V}_{k}} \underbrace{E(\mathbf{y})}_{= \mathbf{V}_{k}}$$

$$= \mathbf{V}_{k} \underbrace{\Lambda_{k}^{-1}}_{= \mathbf{V}_{k}} \underbrace{\mathbf{X}^{T}}_{= \mathbf{X}} \underbrace{\mathbf{X}^{T}}_{= \mathbf{X}}$$

$$\neq \beta$$

▶ Decrease in variance for the estimator  $\tilde{\beta}_k$  is achieved at the expense of introducing bias in to the estimator  $\tilde{\beta}_k$ 

### OLS vs PCR



### OLS vs PCR



### Boston Housing Example

- X<sub>1</sub>: per capita crime rate,
- $\triangleright$   $X_2$ : proportion of residential land zoned for large lots,
- $\triangleright$   $X_3$ : proportion of nonretail business acres,
- $\triangleright$   $X_4$ : Charles River (1 if tract bounds river, 0 otherwise),
- ► X<sub>5</sub> : nitric oxides concentration,
- $\triangleright$   $X_6$ : average number of rooms per dwelling,
- $\triangleright$   $X_7$ : proportion of owner-occupied units built prior to 1940,
- $ightharpoonup X_8$ : weighted distances to five Boston employment centers,
- $ightharpoonup X_9$ : index of accessibility to radial highways,
- $ightharpoonup X_{10}$ : full-value property to radial highways,
- X<sub>11</sub>: pupil/teacher ratio,
- ►  $X_{12}$ :  $1000(B 0.63)^2I(B < 0.63)$  where B is the proportion of African American,
- ► X<sub>13</sub> : % lower status of the population,
- y: median value of owner-occupied homes in \$1000.



#### Data

- ▶ Do centering and scaling of the data so that Var(X) = Corr(X).
- ▶ Do PCA and regression with the scaled data.

#### Correlation Matrix R

| 1.0000  | -0.2005 | 0.4066  | -0.0559 | 0.4210  | -0.2192 | 0.3527  | -0.3797 | 0.6255  | 0.5828  | 0. |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----|
| -0.2005 | 1.0000  | -0.5338 | -0.0427 | -0.5166 | 0.3120  | -0.5695 | 0.6644  | -0.3119 | -0.3146 | -0 |
| 0.4066  | -0.5338 | 1.0000  | 0.0629  | 0.7637  | -0.3917 | 0.6448  | -0.7080 | 0.5951  | 0.7208  | 0  |
| -0.0559 | -0.0427 | 0.0629  | 1.0000  | 0.0912  | 0.0913  | 0.0865  | -0.0992 | -0.0074 | -0.0356 | -0 |
| 0.4210  | -0.5166 | 0.7637  | 0.0912  | 1.0000  | -0.3022 | 0.7315  | -0.7692 | 0.6114  | 0.6680  | 0  |
| -0.2192 | 0.3120  | -0.3917 | 0.0913  | -0.3022 | 1.0000  | -0.2403 | 0.2052  | -0.2098 | -0.2920 | -0 |
| 0.3527  | -0.5695 | 0.6448  | 0.0865  | 0.7315  | -0.2403 | 1.0000  | -0.7479 | 0.4560  | 0.5065  | 0  |
| -0.3797 | 0.6644  | -0.7080 | -0.0992 | -0.7692 | 0.2052  | -0.7479 | 1.0000  | -0.4946 | -0.5344 | -0 |
| 0.6255  | -0.3119 | 0.5951  | -0.0074 | 0.6114  | -0.2098 | 0.4560  | -0.4946 | 1.0000  | 0.9102  | 0  |
| 0.5828  | -0.3146 | 0.7208  | -0.0356 | 0.6680  | -0.2920 | 0.5065  | -0.5344 | 0.9102  | 1.0000  | 0  |
| 0.2899  | -0.3917 | 0.3832  | -0.1215 | 0.1889  | -0.3555 | 0.2615  | -0.2325 | 0.4647  | 0.4609  | 1  |
| -0.3851 | 0.1755  | -0.3570 | 0.0488  | -0.3801 | 0.1281  | -0.2735 | 0.2915  | -0.4444 | -0.4418 | -0 |
| 0.4556  | -0.4130 | 0.6038  | -0.0539 | 0.5909  | -0.6138 | 0.6023  | -0 4970 | 0 4887  | 0 5440  | 0  |

# PCA: Scree plot



### **PCA** loadings

#### Loadings:

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12 Comp.13
        0.251 0.315 -0.247
                                          0.220 0.778 0.153 0.260
                                                                            -0.110
crim
       -0.256 0.323 -0.296 0.129 0.321 0.323 -0.275 -0.403 0.358 -0.268
                                                                            0.263
7n
                                                -0.340 0.174 0.644 0.364
                                                                           -0.303 -0.113 -0.251
indus
        0.347 - 0.112
chas
              -0.455 -0.290 0.816
                                         -0.167
nov
       0.343 -0.219 -0.121 -0.128 0.137 0.153 -0.200
                                                                    -0.231
                                                                             0.111
                                                                                    0.804
       -0.189 -0.149 -0.594 -0.281 -0.423
                                                                     0.431
                                                                                    0.153
rm
                                                       -0.327
       0.314 -0.312
                           -0.175
                                                 0.116 -0.601
                                                                    -0.363 -0.459 -0.212
age
dis
       -0.322 0.349
                            0.215
                                                -0.104 -0.122 -0.153 0.171 -0.696
                                                                                   0.391
      0.320 0.272 -0.287 0.132 -0.204 0.143 -0.138
                                                                                   -0.107
rad
                                                             -0.471
                                                                                           -0.633
        0.338 0.239 -0.221 0.103 -0.130 0.193 -0.315
                                                             -0.177
                                                                            -0.105 -0.215
                                                                                            0.720
tax
ptratio 0.205 0.306 0.323 0.283 -0.584 -0.273
                                                     -0.318 0.254 -0.153
                                                                            0.175
                                                                                    0.210
black
       -0.203 -0.239 0.300 0.168 -0.346 0.803
        0.310
                      0.267
                                                     -0.424 -0.195 0.601
                                                                            0.271
lstat
                                   0.395
```

- ▶ The 13th PC  $\approx -0.2X_3 0.6X_9 + 0.7X_{10}$  has a small variance.
- ▶ This means that the 13th PC  $\propto -X_3 3X_9 + 3X_{10}$  is near constant.

### How many PCs? Coefficient changes





























# PC Regression coefficient



### How many PCs? Predictive performance

- ▶ One possibility: Choose *k* based on the predictive ability.
- ► Randomly split the data into two part: training (380) vs test(126).
- $\triangleright$  Fit the model on the training data using the first k PCs.
- ▶ Predict y values for the test set,  $\hat{y}$ .
- ▶ Study the prediction error  $y \hat{y}$  in the test set.
- Do the random splitting over 50 times.
- This technique is called Cross-Validation.

### PC Regression coefficient mean over 50 random splits



#### **Cross-Validation**





























### Coefficient variability

- ▶ Large variance for  $X_4$ ,  $X_{11}$  and  $X_{12}$  with 4 PCs
- ▶ Large variance for  $X_2, X_3, X_5, X_6, X_7, X_8, X_{13}$  with 11 PCs
- Go back to the whole data (no splitting).
- Check the variance of PCR coefficients:

$$Var(\tilde{\beta}_k) = \sum_{j=1}^k \frac{1}{\lambda_j} \mathbf{v}_j \mathbf{v}_j^T \sigma^2.$$

### Coefficient variability

▶ With 
$$k = 4$$
 PCs, diag( $Var(\tilde{\beta}_k)$ ) = 
$$\begin{pmatrix} 0.1333 \\ 0.1738 \\ 0.0290 \\ 0.9902 \\ 0.0838 \\ 0.3979 \\ 0.1203 \\ 0.1583 \\ 0.1553 \\ 0.1106 \\ 0.2500 \\ 0.1523 \\ 0.0827 \end{pmatrix}$$

#### PCR summary and related regression method

- Principal Component Regression (PCR) first summarizes multiple explanatory variables into a few principal component directions and then performs regression on those principal component directions.
- These principal component directions are orthogonal to each other, yet contain most of the variations in the explanatory variables.
- Thus, PCR can circumvent the potential numerical difficulty of OLS.
- Partial Least Squares is a related regression technique and it has been widely used in the field of chemometrics.
  - ► Similar to PCR, PLS also uses a small number of linear transformations of the covariates for regression.
  - PLS makes use of both covariates and the response variable to seek for suitable transformations.