

## Banco de Dados II Introdução

Diego Addan

DS330 - UFPR - 2023

## Para hoje

**A**presentação

Introdução a DS330

Referências

Ementa e Objetivos

Site

https://www.inf.ufpr.br/dagoncalves/\_disciplinas.html

Porque BD é importante?

onde se insere na computação atual?

#### Buscas atuais na pesquisa

- Segurança (FER)



#### Procedia Computer Science

Volume 96, 2016, Pages 1571-1580



#### Face Recognition in the Wild ☆

Wajdi Dhifli, Abdoulaye Baniré Diallo 🝳 🖂



- POI
- Displacement

#### 3bi de variações

- Occlusion
- Morfologia





Porque BD é importante e onde se insere na computação atual

#### Buscas atuais na pesquisa

- Segurança (FER)
- Saúde (fonte: the guardian journal)

## Scientists discover how to make youth last longer - in worms

Tests on roundworms show antidepressant drug can prolong life by more than 30%, but only extends young adulthood, and has no effect on later life stages



 Doenças genéticas e genes relacionados

 Repositórios de informações



Levantamento de dados conceituais como:

- características biológicas
- Ações
- Mapeamento geográfico

Relações x Volume

© Snavely, Seitz, Szeliski (2006)



© Sidenbladh, Black, Fleet (2000)



© Goesele, Snavely, Curlessetal (2007)



© Sivic, Zitnick, Szeliski (2006)



Exemplo de aplicações e algoritmos presentes em Computação Visual – SFM, Stereo Matching, Rastreamento, Reconhecimento

#### **Linked Data**

Proposto por Tim Berners-Lee (2006) para estruturar e publicar dados conectados na Web por meio de hyperlinks e anotações, de maneira a permitir buscas semânticas.

Wikipedia - Infobox

**DBpedia** 



#### **DBpedia**

| Class              | Instances |
|--------------------|-----------|
| Resource (overall) | 4,828,418 |
| Place              | 967,491   |
| Person             | 1,592,912 |
| Work               | 552,115   |
| Species            | 190,369   |
| Organisation       | 317,867   |
| Other              | 1,207,664 |

#### **Linked Data**



**Linked Data** 

2.203 datasets

19.389 links



**Bases fechadas:** 

**ISCTE:** AIM-Health

VRI: (AMR): 4 dataset

Phasic Dopamine Release

**Entre MUITAS outras** 

#### Iris Location – Annotations

We provide the annotations (iris location) of 5 iris databases:

- BERC Mobile-iris 500 images
- CASIA-IrisV3 Interval 2639 images
- MobBIO Fake 1600 images
- IIIT-Delhi Contact Lens Iris 6570 images
- MICHE-I 3191 images

We define the iris location task as the determination of the smallest squared bounding box entire region of the iris. The figure below provides some samples of these annotations.



Apps,

**Web Services** 

**Streamings** 

Dinâmicas sociais



## Ou seja

#### Aplicabilidade gigantesca:

IA, ML, contextos práticos, Federated Learning

#### Tratamento e análise

Poder de processamento x volume

Vamos praticar a modelagem de BD em projetos e práticas

**Desafios: Volume de dados** 

- Transações bancárias, interações em aplicativos, troca de dados WS

Universo gigantesco de dados e Heterogêneo

Requisições - - - BD - - - aplicações

SGBD: responsável pelo armazenamento, gerenciamento e disponibilização dos dados

- ■O SGBD intermedia a manipulação dos dados para as aplicações
- ■Como esta intermediação é feita e quais elementos estão envolvidos depende do contexto da aplicação
- Aplicações podem demandar diversas configurações de arquiteturas locais ou distribuídas (ou híbridas)

Contexto da Aplicação: OLTP x OLAP

OLTP Online Transaction Processing □ Bancos de dados "tradicionais" □ Operações de inserção, atualização e exclusão em pequenas partes do banco ■ OLAP Online Analytical Processing □ Operações de extração, recuperação e análise de dados

#### **Exemplo de OLTP**

- Gerenciamento de prontuários eletrônicos
- Sistema bancário
- Sistema bibliotecário



#### Exemplo de OLAP

- Cruzamento de dados de um survey
- Análise de dados em smartwatch
- Recomendações (Streaming, Amazon)
- Análise de dados para suporte a decisão



#### Dados de diferentes naturezas

- ■Bancos de Dados Multimídia vídeos no Youtube; exames de um hospital; etc.
- ■Sistemas de Informação Geográfica (GIS)
- ■Dados em rede: e.g., redes sociais

#### Aplicação exemplo

Gerenciamento de uma biblioteca

#### Serviços

- Cadastro de membros associados
- Registro de acervo
- Controle de empréstimos

#### Aplicação exemplo

Gerenciamento de uma biblioteca

#### Serviços

- Cadastro de membros associados
- Registro de acervo
- Controle de empréstimos

# Problemas (Aplicação cuidando diretamente de arquivos)

- Redundância não controlada
  - Repetição
  - Inconsistência
- Barreira na integração entre arquivos
- Acesso concorrente
- Integridade e recuperação

#### Aplicação exemplo

BD Unificado

Modelo que conhecemos: Relação entre os dados

Independente da aplicação - Genérico

#### Arquitetura de um SGBD

Modelo Conceitual



Modelo Lógico

Modelo Físico

#### **Modelo Conceitual**

Coleção de ferramentas conceituais

Descrevem: Dados, Relações, semântica e restrições

**Universo de discurso:** Representação de mundo/situação real (pode ser abstrato)

Abstração: Conceitos e relações - UML

#### SGBD: Modelo Conceitual

#### Analise de requisitos

- Modelo Participativo
- Não computacional

**Etapa importante!** 

#### **Database Life Cycle**

#### Etapa 1 Análise de requisitos (realidade)



Etapa 2 Projeto lógico

#### Etapa 2(a) Modelagem de dados conceitual



É possível estruturar a representação dos dados independente da

implementação?

Estruturar do ponto de vista computacional

Grafo

Tabelas

Árvores



#### SGBD:

## Modelo Lógico

## Nota Fiscal



Green Leaf Design 111 Hain Street Pleasanton, CA 99999 555.555.4444 info@greenleafdesign.com

#### Bill To:

Agua Hotel and Resort 1040 Boulevard Anytown, CA 94558 555-555-2222 (Phone) 555-555-2225 (Fax)

#### INVOICE

| Invoice        | 00016      |
|----------------|------------|
| Date:          | 03/11/2009 |
| Due Date:      | 04/10/2009 |
| Balance Due 5: | 1,937,01   |
| Customer PO#:  |            |

#### Shipment Details:

Carrier: USPS Method: Overnight Priority Tracking#: w126a3s4321sas Ship Date: 03/02/2009

Item Price (\$) Unit Total (\$) Qty Design Services - Business System 3,500.00 3,500.00 8.25% Includes lago, layout for letterfreed, 2nd sheet, \$10 envelope, and business card Design Services - Additional Concepts 125.00 125.00 8.25% includes thumboall sketches for one additional concept.

| Pre-tax Total: | 3,625.00  |
|----------------|-----------|
| Taxo           | 299.06    |
| Shipping:      | 12.95     |
| Total:         | 3,937.01  |
| Payments:      | -2,000.00 |
| Balance (\$):  | 1,937.01  |

#### No

Thanks for the work! Art hard copies and CD maked to printer per instructions.

Ship To:

Agua Hotel and Resort.

555-555-2222 (Phone)

1040 Boulevard

Anytown, CA 94558

#### Terms and Conditions

Balance Due Net 30 days.

■Considere o modelo de nota fiscal ao lado. Proponha um formato de armazenamen to para representá-la.

Fonte: WorkPoint

http://www.workingpoint.com/features/invoicing

#### Estruturado

- Formato estrito (Modelo Relacional)
- Registro tem o mesmo formato

#### Semi-estruturado

- Itens podem ter estrutura
  Diversa
- Grupos de itens compartilha estruturas



O **Modelo Lógico** vai permitir que pense nos dados independente da implementação.

- Modelo Lógico de Tabelas
- Modelo Lógico Hierárquico
- Modelo Lógico em Grafo

## Importância dos modelos



#### Modelo Lógico de Tabelas



## Livros

| ISBN               | Título                 | Categoria | Autor               | Ano  |  |
|--------------------|------------------------|-----------|---------------------|------|--|
| 9580471444         | 9580471444 Vidas Secas |           | Graciliano Ramos    | 1938 |  |
| 958047950X         | Agosto                 | Romance   | ce Rubem Fonseca    |      |  |
| 0554253216         | Micrographia           | Ciências  | Robert Hooke        | 1665 |  |
| 0195087445         | Divina Comédia         | Poesia    | Dante Alighieri     | 1308 |  |
| 0559274289         | 59274289 Le Opere      |           | Galileu Galilei     | 1811 |  |
| 0451526929 Hamlet  |                        | Drama     | William Shakespeare | 1599 |  |
| 1603033785 Othello |                        | Drama     | William Shakespeare | 1565 |  |

Esquema

Instância

Previsíveis e organizadas

Ótimas para intercâmbio de dados (R, Pandas)

Ideias para análise

# Tabelas são Ótimas para selecionar e recuperar itens

| SEQN  | RIAGENDR | RIDAGEYR | LBXIRN | LBXTIB | LBXSLDSI | LBXWBCSI | LBXLYPCT | LBXMOPCT | LBXNEPCT |
|-------|----------|----------|--------|--------|----------|----------|----------|----------|----------|
| 31131 | 2        | 44       | 52     | 310    | 105      | 5.7      | 75.8     | 7.R      | 55.1     |
| 31133 | 2        | 16       | 55     | 398    | 101      | 6,6      | 30       | 5,7      | 63,1     |
| 31137 | 2        | 14       | 39     | 372    | 182      | 6,9      | 43,3     | 8,6      | 46,4     |
| 31148 | 2        | 16       | 103    | 472    | 136      | 4,8      | 31,3     | 6,7      | 58,5     |
| 31151 | 2        | 59       | 54     | 388    | 125      | 4,3      | 37,8     | 10,4     | 39,8     |
| 31152 | 2        | 27       | 85     | 449    | 88       | 9,7      | 17,2     | 3,8      | 76,6     |
| 31153 | 2        | 44       | 50     | 410    | 97       | 8,4      | 33,3     | 6,8      | 55,3     |
| 31156 | 2        | 43       | 84     | 385    | 134      | 5.3      | 41.8     | 5.6      | 50.9     |
| 31160 | 2        | 39       | 92     | 398    | 116      | 9        | 21,2     | 8,6      | 68,1     |
| 31171 | 2        | 12       | 61     | 393    | 190      | 10.4     | 31,3     | 6,1      | 62,1     |
| 31172 | 2        | 20       | 82     | 410    | 120      | 10,9     | 19,3     | h 4,6    | 72,6     |
| 31177 | 2        | 18       | 0      | 0      | 0        | 9        | 35,3     | 5,2      | 57,7     |
| 31178 | - 2      | 14.      | 56     | 768    | 95       | 5.1      | 43.4     | 8.7      | 45.7     |
| 31183 | 2        | 33       | 130    | 293    | 100      | 6,1      | 20,2     | 12,7     | 61,4     |
| 31186 | 2        | 45       | 78     | 414    | 118      | 8,7      | 31       | 7,3      | 59       |
| 31187 | 2        | 22       | 56     | 402    | 116      | 4,9      | 32       | 5,8      | 61       |

#### **Modelo Relacional**

- Modelo mais amplamente utilizado por SGBDs
- Maiores empresas de informática oferecem soluções: IBM, Microsoft, Oracle, SAP
- ■Grandes projetos Open Source: MySQL, PostgreSQL, SQLite
- ■De celulares à data centers
- ■Mercado de U\$24bi (2012)

MR: Análise de dados segue com a relação entre características, valores e suas correlações.

Ex: Iris, Doenças Oftalmológicas, Reconhecimento Biométrico

No mundo real, nem todos os modelos de dados podem ser estruturados por tabelas.

#### Modelo Hierárquico

Naturalmente aninhado

Nota Fiscal, XML

Prontuários

Semi-Estruturado: Partes do dado não necessariamente seguem um modelo



Modelo Hierárquico: Smartwatch, series temporais



By Dhungel et al., 2020 - https://www.sciencedirect.com/science/article/pii/S0378377419310005, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84438888

# SGBD: Modelo Lógico

#### Modelo Lógico de Grafos



# SGBD: Modelo Lógico

#### Modelo Lógico de Grafos



## SGBD: Modelo Físico

Os sistemas tinham a preocupação do armazenamento:

Leitura, acesso (Bloco inteiro é acessado)

Mapeamento Lógico Relacional

MonetDB (Colunas)



## SGBD: Modelo Físico

Otimização

Representações dos dados e armazenamento

Servidor Físico (VM)

Nuvem

## SGBD: NoSQL

Sistemas com representações físicas diferentes do Relacional

## SGBD: NoSQL

Sistemas com representações físicas diferentes do Relacional

Banco de dados de documentos /JSON







SGBD: NoSQL

**Semi-Estruturados** 

Estruturas mais flexíveis

Próximo do armazenamento web

## SGBD: Banco de dados de Grafos

#### **Semi-Estruturados**







E como acontece a comunicação entre a aplicação e o SGBD?

Linguagem de Manipulação de Dados

"O quê" ao invés de "como"



#### Vantagens de um SGBD



#### Tipos de arquitetura:

- Local (VM)
- Cliente-Servidor (AWS)
- Duas Camadas (Ex. API Rest)
- Três Camadas (Loja Virtual)
- Paralelo ou Distribuido (FL)

#### **Ferramentas**



## Sumarizando

O volume de dados justifica a evolução dos SGBDs

Diferentes tipos de arquitetura

Bases estão mudando: Originalmente pensadas centralizadas agora são distribuidas

Modelagem semântica, ontológica e novas abordagens (noSql)

## Referências

1. SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Rio de Janeiro: Elsevier, 2012.

2. ELMASRI, Ramez; NAVATHE, Shamkant B. Sistemas de Banco de Dados. 6. ed. São Paulo: Pearson, 2011.

3. BEAULIEU, Alan. Aprendendo SQL. Tradução Edgard Batista Damiani. São Paulo: Novatec Editora, 2010