

Welcome to the course!

What is statistical inference?

The process of making claims about a population based on information from a sample

What is statistical inference?

Assume two populations prefer cola at same rate

The sample data

The sample data (take 2)

Vocabulary

- Null hypothesis (H_o): The claim that is not interesting
- Alternative hypothesis (H_A): The claim corresponding to the research hypothesis

The "goal" is to disprove the null hypothesis

Example: cheetah speed

- Compare speed of two different subspecies of cheetah
- **Ho**: Asian and African cheetahs run the same speed, on average
- H_A: African cheetahs are faster than Asian cheetahs, on average

Example: election

- From a sample, the researchers would like to claim that Candidate X will win Apopulation measure!
- H_o: Candidate X will get half the votes
- H_A: Candidate X will get more than half the votes

FOUNDATIONS OF INFERENCE

Let's practice!

Randomized distributions

Logic of inference

Generating a distribution of the statistic from the null population gives information about whether the observed data are inconsistent with the null hypothesis

Original data

Location	Cola	Orange
East	28	6
West	19	7

First shuffle, same as original

Location	Cola	Orange
East	28	6
West	19	7

Second shuffle

Location	Cola	Orange
East	27	7
West	20	6

Third shuffle

Location	Cola	Orange
East	28	8
West	21	5

Fourth shuffle

Location	Cola	Orange
East	25	9
West	22	4

Fifth shuffle

Location	Cola	Orange
East	29	5
West	18	8

One random permutation

Many random permutations

```
> soda %>%
    rep_sample_n(size = nrow(soda), reps = 5) %>%
    mutate(drink_perm = sample(drink)) %>%
    group_by(replicate, location) %>%
    summarize(prop_cola_perm = mean(drink_perm == "cola"),
              prop_cola = mean(drink == "cola")) %>%
    summarize(diff_perm = diff(prop_cola_perm),
              diff_orig = diff(prop_cola)) # West - East
# A tibble: 5 \times 3
  replicate diff_perm diff_orig
      <int> <dbl>
                              <dbl>
          1 - 0.09276018 - 0.09276018
         2 - 0.09276018 - 0.09276018
         3 0.11085973 -0.09276018
            0.17873303 - 0.09276018
             0.11085973 - 0.09276018
```


Randomization distribution

FOUNDATIONS OF INFERENCE

Let's practice!

Using the randomization distribution

Data consistent with null?

```
> table(soda)
        location
drink East West
 cola 28
 orange
> soda %>%
    group_by(location) %>%
    summarize(mean(drink == "cola"))
# A tibble: 2 × 2
  location `mean(drink == "cola")`
    <fctr>
                             <dbl>
                        0.8235294
     East
     West
                         0.7307692
```


Significance

How extreme are the observed data?

```
> set.seed(470)
> soda_perm <- soda %>%
    rep_sample_n(size = nrow(soda), reps = 100) %>%
    mutate(drink_perm = sample(drink)) %>%
    group_by(replicate, location) %>%
    summarize(prop_cola_perm = mean(drink_perm == "cola"),
              prop_cola = mean(drink == "cola")) %>%
    summarize(diff_perm = diff(prop_cola_perm),
              diff_orig = diff(prop_cola)) # West - East
> soda_perm %>%
    summarize(count = sum(diff_orig >= diff_perm),
              proportion = mean(diff_orig >= diff_perm))
# A tibble: 1 \times 2
  count proportion
             <dbl>
  <int>
     38
              0.38
```


FOUNDATIONS OF INFERENCE

Let's practice!

Study conclusions

Significance

We fail to reject the null hypothesis: There is no evidence that our data are inconsistent with the null hypothesis

NHANES: random sample

- Representative sample of US population
- Conclusions from sample may apply to population
- Nothing to report in this case

FOUNDATIONS OF INFERENCE

Let's practice!