What is claimed is:

- 1. A method for screening a plurality of compounds so as to identify at least one compound exhibiting cognitive enhancing activity, comprising:
 - a) determining in vitro efficacy and EC $_{50}$ values for each compound at an $\alpha_1\beta_2\gamma_2$ or an $\alpha_5\beta_3\gamma_2$ GABA $_A$ subtype receptor;
 - b) determining an in vitro efficacy value for each compound at a GABA, receptor comprising an α_2 or α_3 subunit; and
 - c) identifying as exhibiting cognitive enhancing activity a compound having: an EC_{50} value determined in a) of less than about 200nM, an efficacy value determined in a) of less than about -5%, and an efficacy value determined in b) of greater than about 5%.
- 2. The method of Claim 1 wherein the EC_{50} measured in step a) is less than 150 nM.
- 3. The method of Claim 2 wherein the in vitro efficacy measured at said $\alpha_1\beta_2\gamma_2$ GABA, subtype receptor or said $\alpha_5\beta_3\gamma_2$ GABA, subtype receptor is less than -10%.
- 4. The method of Claim 3 wherein the *in vitro* efficacy measured at said GABA_A receptor comprised of said α_2 subunit or said α_3 subunit is greater than 10%.

25

- 5. The method of Claim 1 wherein the in vitro efficacy measured at said $\alpha_1\beta_2\gamma_2$ GABA, subtype receptor or said $\alpha_5\beta_3\gamma_2$ GABA, subtype receptor is less than -10%.
- 6. The method of Claim 5 wherein the in vitro efficacy measured at said GABA, receptor comprised of said $\alpha_{\scriptscriptstyle 2}$ or said α_3 subunit is greater than 10%.
- The method of Claim 1 wherein the GABA, receptor comprised of said α_2 subunit is an $\alpha_2\beta_3\gamma_2$ GABA, receptor or the GABA, receptor comprised of said α_3 subunit is an $\alpha_3\beta_3\gamma_2$ GABA, receptor.
- 8. A method for screening compounds for cognitive enhancing activity, comprising:
 - a) selecting compounds having a binding affinity less than 100 nM at any GABA, receptor;
 - b) determining in vitro efficacy and EC_{50} values for each selected compound at an $\alpha_1\beta_2\gamma_2$ or $\alpha_5\beta_3\gamma_2\;\text{GABA}_A$ subtype receptor;
 - c) determining in vitro efficacy and EC50 values for each selected compound at a GABA, receptor comprised of an α_2 or α_3 subunit; and
 - d) identifying as having cognitive enhancing activity any compound having an EC_{50} value determined in b) of less than 200nM and an efficacy value measured in b) of less than -5%, and an efficacy value measured in c) of greater than 5%.

30

- 9. A method of providing a pharmaceutical preparation to patients in need of cognition enhancing treatment comprising:
- a) obtaining at least one compound identified as exhibiting cognition enhancing activity by the method of Claim 1; b) testing said at least one compound and submitting results of said testing as part of submission of information under a United States Federal law which regulates the manufacture, use, or sale of drugs or veterinary products;
 - c) showing a pharmaceutical preparation comprising said at least one compound to be safe for use as required by the provisions of the Federal Food Drug And Cosmetic Act; and
 - d) offering the pharmaceutical preparation for sale in the United States of America for use as a cognition enhancing drug or cognition enhancing veterinary product.
 - 10. A method for screening a plurality of compounds for cognitive enhancing activity, comprising:
 - a) determining in vitro efficacy and EC₅₀ values for each compound at $\alpha_1\beta_2\gamma_2$ or $\alpha_5\beta_3\gamma_2$ GABA, receptors;
 - b) determining in vitro efficacy for each compound at a $GABA_A$ receptor comprised of an α_2 or α_3 subunit;
 - c) determining the *in vivo* effect of each compound in an animal model for measuring cognitive enhancement;
 - d) determining the *in vivo* effects of each compound in an animal model for proconvulsant activity by measuring a seizure threshold in the presence of a seizure inducing compound or in an animal model that predicts anxiogenic effects; and

e) identifying a cognitive enhancing compound as a compound having cognitive enhancing properties when the EC_{50} measured in step a) is less than 200nM and the efficacy measured in step a) is less than -5% and the efficacy measured in step b) is greater than 5% and said compound produces a statistically significant (p <0.05) positive effect in the animal model indicative of cognitive enhancement and said compound does not produce an effect in the animal model predictive of proconvulsant activity of more than a 25% decrease in the seizure threshold in the presence of the seizure inducing drug, or does not produce a change that is statistically significant in said model, or the compound does not produce a statistically significant effect in the animal model that predicts anxiogenic effects.

- 11. A method for screening compounds for cognitive enhancing properties, comprising:
 - a) selecting compounds having binding affinities of less than 100 nM at any GABA, receptor;
 - b) measuring the *in vitro* efficacy of each compound at an $\alpha_1\beta_2\gamma_2$ or $\alpha_5\beta_3\gamma_2$ GABA, receptor;
 - c) measuring the *in vitro* efficacy of each compound at a GABA, receptor comprised of an α_2 or α_3 subunit;
 - d) measuring the *in vivo* effect of each compound in an animal model predictive of cognitive enhancement;
 - e) measuring the *in vivo* side effects of each compound in an animal model that predicts proconvulsant activity by measuring a seizure threshold in the presence of a seizure inducing compound or measuring the *in vivo* side

25

10

5

effects of each compound in an animal model that predicts anxiogenic effects; and

- f) identifying as a cognitive enhancing compound a particular compound for which the EC_{50} measured in step
- b) is less than 200nM and the efficacy measured in step
- b) is less than -5% and the efficacy measured in step
- c) is greater than 5% and said particular compound produces a statistically significant (p <0.05) positive effect in the animal model indicative of cognitive enhancement and said particular compound does not produce an effect in the animal model predictive of proconvulsant activity of more than a 25% decrease in the seizure threshold in the presence of the seizure inducing drug, or does not produce a change that is statistically significant in said model, or said particular compound does not produce a statistically significant effect in the animal model that predicts anxiogenic effects.
- 12. A method for screening compounds for hypnotic activity, comprising:
 - a) determining EC $_{50}$ and in vitro efficacy of each compound at an $\alpha_2\beta_3\gamma_2$ GABA $_A$ subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA $_A$ subtype receptor;
 - b) determining in vitro efficacy of each compound at a ${\tt GABA_A} \ \ {\tt receptor} \ \ {\tt comprised} \ \ {\tt of} \ \ {\tt and} \ \ {\tt and}$
 - c) selecting a compound having an EC_{50} determined in a) of less than 200nM, an in vitro efficacy determined in

5

a) of greater than 10% for said $\alpha_2\beta_3\gamma_2$ GABA_A subtype receptor or greater than 50% for said $\alpha_3\beta_3\gamma_2$ GABA_A subtype receptor; and an *in vitro* efficacy value determined in b) of less than 50% for the GABA_A receptor comprised of an α_1 subunit or less than 45% for the GABA_A receptor comprised of an α_5 subunit.

- 13. The method of Claim 12 wherein the *in vitro* efficacy value measured at said $\alpha_2\beta_3\gamma_2$ receptor is greater than 20% or the *in vitro* efficacy value measured said $\alpha_3\beta_3\gamma_2$ GABA_A receptor is greater than 60%.
- 14. The method of Claim 13 wherein the *in vitro* efficacy value measured at the GABA_A receptor comprised of said α_1 subunit is less than 45% or the *in vitro* efficacy value measured at the GABA_A receptor comprised of said α_5 subunit is less than 40%.
- 15. The method of Claim 12 wherein the *in vitro* efficacy value measured at the GABA_A receptor comprised of said α_1 subunit is less than 45% or the *in vitro* efficacy value measured at the GABA_A receptor comprised of said α_5 subunit is less than 40%.

- 5
- 17. The method of Claim 16 wherein the *in vitro* efficacy measured at said $\alpha_2\beta_3\gamma_2$ GABA_A subtype receptor is greater than 20% or the *in vitro* efficacy measured said $\alpha_3\beta_3\gamma_2$ GABA_A subtype receptor is greater than 60%.
- 18. The method of Claim 17 wherein the *in vitro* efficacy measured at the GABA_A receptor comprised of said α_1 subunit is less than 45% or the *in vitro* efficacy measured at the GABA_A receptor comprised of said α_5 subunit is less than 40%.
- 19. The method of Claim 16 wherein the *in vitro* efficacy measured at the GABA_A receptor comprised of said α_1 subunit is less than 45% or the *in vitro* efficacy measured at the GABA_A receptor comprised of said α_5 subunit is less than 40%.
- 20
- 20. The method of Claim 12 wherein the GABA, receptor comprised of an α_1 subunit is an $\alpha_1\beta_2\gamma_2$ GABA, subtype receptor

or the GABA, receptor comprised of an α_s subunit is an $\alpha_s\beta_3\gamma_2$ GABA, subtype receptor.

- 21. A method for screening a plurality of compounds so as to identify at least one compound exhibiting hypnotic activity, comprising:
 - a) selecting a plurality of compounds having a binding affinity of less than 100 nM at any GABA, receptor.
 - b) determining EC₅₀ and in vitro efficacy values for each selected compound at an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or at an $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;
 - c) determining in vitro efficacy values for each selected compound at a GABA, receptor comprised of an α_1 or an α_5 subunit; and
 - d) identifying as exhibiting hypnotic activity each selected compound having an EC₅₀ value determined in b) of less than 200nM, an *in vitro* efficacy value measured in b) of greater than 10% for said $\alpha_2\beta_3\gamma_2$ GABA_A subtype receptor or greater than 50% for said $\alpha_3\beta_3\gamma_2$ GABA_A subtype receptor, and an *in vitro* efficacy value determined in c) of less than 50% for the GABA_A receptor comprised of said α_1 subunit or less than 45% for the GABA_A receptor comprised of said α_5 subunit.

- 22. A method for screening a plurality of compounds so as to identify compounds exhibiting hypnotic activity, comprising:
 - a) measuring the EC₅₀ and in vitro efficacy of each compound at an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;
 - b) measuring the in vitro efficacy of each compound at a GABA receptor comprised of an α_1 or α_5 subunit; and
 - c) measuring the *in vivo* effect of each compound in an animal model indicative of hypnotic effects;
 - d) measuring the *in vivo* effect of each compound in an animal model indicative of cognitive impairment; and
 - e) identifying a compound as having hypnotic activity when the EC $_{50}$ measured in step a) is less than 200nM, the in vitro efficacy measured in step a) is greater than 10% for said $\alpha_2\beta_3\gamma_2$ GABA $_{\rm A}$ subtype receptor or greater than 50% for said $\alpha_3\beta_3\gamma_2$ GABA $_{\rm A}$ subtype receptor, and the in vitro efficacy measured in step b) is less than 50% for the GABA $_{\rm A}$ receptor comprised of said α_1 subunit or less than 45% for the GABA $_{\rm A}$ receptor compound produces a statistically significant (p <0.05) positive effect

in the animal model indicative of sedation and said compound does not produce a statistically significant effect in the animal model indicative of cognitive impairment.

5

- 23. A method for screening a plurality of compounds so as to identify at least one compound exhibiting hypnotic activity, comprising:
- a) selecting compounds having a binding affinity less than 100 nM at any GABA, receptor;
 - b) measuring the EC₅₀ and in vitro efficacy of each selected compound at an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;
 - c) measuring the in vitro efficacy of each selected compound at a GABA, receptor comprised of an α_1 or α_5 subunit; and
 - d) measuring the *in vivo* effect of each selected compound in an animal model indicative of sedative effects;

- e) measuring the *in vivo* effect of each selected compound in an animal model indicative of cognitive impairment; and
- f) identifying as having hypnotic activity each selected compound for which the EC_{50} measured in step

b) is less than 200nM, the *in vitro* efficacy measured in step b) is greater than 10% for said $\alpha_2\beta_3\gamma_2$ GABA_A subtype receptor or greater than 50% for said $\alpha_3\beta_3\gamma_2$ GABA_A subtype receptor, and the *in vitro* efficacy measured in step c) is less than 50% for the GABA_A receptor comprised of said α_1 subunit or less than 45% for the GABA_A receptor comprised of said α_5 subunit and said compound produces a statistically significant (p <0.05) positive effect in the animal model indicative of hypnotic effects and said compound does not produce a statistically significant effect in the animal model indicative of cognitive impairment.

- 24. A method for screening a plurality of compounds so as to identify compounds exhibiting anxiolytic activity, comprising:
 - a) determining in vitro efficacy and EC $_{50}$ value for each compound at an $\alpha_2\beta_3\gamma_2$ GABA $_A$ subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA $_A$ subtype receptor;
 - b) determining in vitro efficacy values for each compound at a GABA, receptor comprised of an α_1 subunit or an α_5 subunit; and

c) identifying as exhibiting anxiolytic activity each compound having an EC_{50} value determined in a) of less than 200nM and an efficacy value measured in a) greater than the efficacy measured in b).

5

- 25. The method of Claim 24 wherein the EC_{50} measured in step a) is less than 150 nM.
- 26. The method of Claim 25 wherein the in vitro efficacy measured at said $\alpha_2\beta_3\gamma_2$ or said $\alpha_3\beta_3\gamma_2$ GABA, receptor is greater than 20%.
- 27. The method of Claim 25 wherein the in vitro efficacy measured at said $\alpha_2\beta_3\gamma_2$ or said $\alpha_3\beta_3\gamma_2$ GABA, receptor is greater than 30%.
- 28. The method of Claim 27 wherein the in vitro efficacy measured at said GABA, receptor comprised of said α_1 or said α_5 subunit is less than 20%.

20

29. The method of Claim 24 wherein the in vitro efficacy measured at said $\alpha_2\beta_3\gamma_2$ or $\alpha_3\beta_3\gamma_2$ GABA, receptor is greater than 20%.

30. The method of Claim 24 wherein the in vitro efficacy measured at said $\alpha_2\beta_3\gamma_2$ or $\alpha_3\beta_3\gamma_2$ GABA, receptor is greater than 30%.

5

- 31. The method of Claim 30 wherein the in vitro efficacy measured at said GABA, receptor comprised of said α_1 or said α_5 subunit is less than 20%.
- 32. The method of Claim 24 wherein the GABA_A receptor comprised of said α_1 subunit is an $\alpha_1\beta_2\gamma_2$ GABA_A subtype receptor or the GABA_A receptor comprised of said α_5 subunit is an $\alpha_5\beta_3\gamma_2$ GABA_A subtype receptor.

15

33. A method for screening for compounds having anxiolytic activity, comprising:

a) selecting a compound having a binding affinity less than 100 nM at any $GABA_A$ receptor;

- b) measuring in vitro efficacy and EC $_{50}$ values for each compound at an $\alpha_2\beta_3\gamma_2$ or $\alpha_3\beta_3\gamma_2$ GABA, receptor;
- c) measuring in vitro efficacy values for each compound at a GABA, receptor comprised of an α_1 or α_5 subunit; and

-

5

- d) selecting a compound having an EC₅₀ value measured in a) of less than 200nM and an efficacy value measured in b) greater than the efficacy measured in c).
- 34. A method for screening compounds so as to select at least one compound having anxiolytic activity, comprising:
- a) measuring in vitro efficacy for each compound at an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;
- b) measuring in vitro efficacy and EC₅₀ values for each compound at a GABA, receptor comprised of an α_1 or α_5 subunit;
- c) measuring in vivo effects of each compound in an animal model indicative of anxiolytic activity;
- d) measuring in vivo effects of each compound in an animal model indicative of sedative effects; and
- e) selecting each compound having: an EC₅₀ value measured in a) of less than 200nM, an efficacy value measured in b) greater than the efficacy measured in step c), a statistically significant (p <0.05) positive effect in the animal model indicative of anxiolytic activity, and no statistically significant effect in the animal indicative of sedative effects.

- 35. A method for screening a plurality of compounds so as to identify at least one compound having anxiolytic activity, comprising:
- a) selecting a compound having a binding affinity less than 100 nM at any GABA, receptor;
 - b) measuring in vitro efficacy and EC₅₀ values for each selected compound at an $\alpha_2\beta_3\gamma_2$ or $\alpha_3\beta_3\gamma_2$ GABA, receptor;
 - c) measuring in vitro efficacy for each selected compound at a GABA, receptor comprised of an α_1 or α_5 subunit;
 - d) measuring in vivo effects of each selected compound in an animal model indicative of anxiolytic activity;
 - e) measuring in vivo effect of each selected compound in an animal model indicative of sedative effects; and
 - f) selecting a compound having: an EC_{50} value measured in b) of less than 200nM, an efficacy measured in c) greater than the efficacy measured in d), a statistically significant (p <0.05) positive effect in the animal model indicative of anxiolytic activity, and no statistically significant effect in the animal

20

indicative of sedative effects.

- 36. A method for screening a plurality of compounds so as to identify compounds exhibiting antidepressant activity, comprising:
 - a) determining in vitro efficacy and EC $_{50}$ values for each compound using an $\alpha_2\beta_3\gamma_2$ GABA $_A$ subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA $_A$ subtype receptor;
 - b) determining in vitro efficacy values for each compound at a GABA, receptor comprised of an $\alpha_{\scriptscriptstyle I}$ or an $\alpha_{\scriptscriptstyle S}$ subunit; and
 - c) identifying as having antidepressant activity a compound having an EC_{50} value determined in a) of less than 200nM and an efficacy value determined in a) of greater than the efficacy value determined in b).
- 37. The method of Claim 36 wherein the EC₅₀ value determined using said $\alpha_2\beta_3\gamma_2$ GABA_A subtype receptor or said $\alpha_3\beta_3\gamma_2$ GABA_A subtype receptor is less than 150 nM.
- 38. The method of Claim 37 wherein the *in vitro* efficacy measured at said $\alpha_2\beta_3\gamma_2$ or said $\alpha_3\beta_3\gamma_2$ GABA, receptor is greater than 20%.

5

- 39. The method of Claim 37 wherein the *in vitro* efficacy measured at said $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or said $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor is greater than 30%.
- 40. The method of Claim 39 wherein the in vitro efficacy measured at said GABA, receptor comprised of said α_1 subunit or said α_5 subunit is less than 20%.
 - 41. The method of Claim 36 wherein the *in vitro* efficacy measured at said $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or said $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor is greater than 20%.
 - 42. The method of Claim 36 wherein the in vitro efficacy measured at said $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or said $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor is greater than 30%.
 - 43. The method of Claim 42 wherein the in vitro efficacy measured at said GABA, receptor comprised of said α_1 subunit or said α_5 subunit is less than 20%.

44. The method of Claim 36 wherein the GABA, receptor comprised of said α_1 subunit is an $\alpha_1\beta_2\gamma_2$ GABA, subtype

5

receptor or the GABA, receptor comprised of said α_5 subunit is an $\alpha_5\beta_3\gamma_2$ GABA, subtype receptor.

- 45. A method for screening compounds for antidepressant activity, comprising:
 - a) selecting compounds having a binding affinity less than 100 nM at any GABA, receptor;
 - b) determining in vitro efficacy and EC $_{50}$ values for the selected compounds using an $\alpha_2\beta_3\gamma_2$ GABA $_A$ subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA $_A$ subtype receptor;
 - c) determining in vitro efficacy for the selected compounds using a GABA, receptor comprised of an α_1 or an α_5 subunit; and
 - d) identifying as having antidepressant activity a compound having an EC_{50} as determined in b) of less than 200nM and an efficacy value as determined in b) greater than the efficacy value determined in c).
- 46. A method for screening compounds for antidepressant activity, comprising:
 - a) determining in vitro efficacy and EC₅₀ values for each compound using an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;

- b) determining in vitro efficacy values for each compound at a GABA, receptor comprised of an α_i or an α_s subunit;
- c) determining in vivo effect of said compound in an animal model indicative of antidepressant activity;
- d) determining the *in vivo* effect of said compound in an animal model indicative of sedative effects; and
- e) identifying as an antidepressant a compound that produces an EC_{50} value as determined in a) of less than 200nM, and an efficacy value as determined in b) greater than the efficacy value from c), and (i) produces a statistically significant (p <0.05) positive effect in the animal model indicative of antidepressant activity and (ii) does not produce a statistically significant effect in the animal model indicative of sedative effects.
- 47. A method for screening compounds for antidepressant activity, comprising:
- a) selecting test compounds having a binding affinity less than 100 nM at any $GABA_A$ receptor;
 - b) determining in vitro efficacy and EC_{50} value for each test compound using an $\alpha_2\beta_3\gamma_2$ GABA, subtype receptor or an $\alpha_3\beta_3\gamma_2$ GABA, subtype receptor;

- c) determining in vitro efficacy value for each test compound at a GABA, receptor comprised of an α_1 subunit or an α_5 subunit;
- d) determining the *in vivo* effect of each test compound in an animal model indicative of antidepressant activity;
- e) determining the *in vivo* effect of each test compound in an animal model indicative of sedative effects; and f) identifying as an antidepressant a compound that produces: an EC_{50} value as determined in b) of less than 200nM, an efficacy value as determined in c) greater than the efficacy value from d), and (i) produces a statistically significant (p <0.05) positive effect in the animal model indicative of antidepressant activity and (ii) does not produce a statistically significant effect in the animal model indicative of sedative effects.
- 48. A method of providing pharmaceutical compounds to patients in need of hypnotic treatment comprising:
- a) obtaining at least one compound identified as exhibiting hypnotic activity by the method of Claim 21;
 - b) testing said at least one compound and submitting results of said testing as part of submission of

- c) showing a pharmaceutical preparation comprising said at least one compound to be safe for use as required by the provisions of the Federal Food Drug And Cosmetic Act; and
- d) offering the pharmaceutical preparation for sale in the United States of America for use as an hypnotic drug or hypnotic veterinary product.
- 49. A method of providing a pharmaceutical preparation to patients in need of anxiolytic treatment comprising:
 - a) obtaining at least one compound identified asexhibiting anxiolytic activity by the method of Claim24;
 - b) submitting information regarding the anxiolytic activity of said at least one compound as part of an application under a United States Federal law which regulates the manufacture, use, or sale of drugs or veterinary products
 - c) showing a pharmaceutical preparation comprising said at least one compound to be safe for use as required by

the provisions of the Federal Food Drug And Cosmetic Act; and

- d) offering the pharmaceutical preparation for sale in the United States of America for use as an anxiolytic drug or anxiolytic veterinary product.
- 50. A method of providing a pharmaceutical preparation to patients in need of antidepressant treatment comprising:
 - a) obtaining at least one compound identified as exhibiting antidepressant activity by the method of Claim 36;
 - b) testing said at least one compound and submitting results of said testing as part of submission of information under a United States Federal law which regulates the manufacture, use, or sale of drugs or veterinary products
 - c) showing a pharmaceutical preparation comprising said at least one compound to be safe for use as required by the provisions of the Federal Food Drug And Cosmetic Act; and
 - d) offering the pharmaceutical preparation for sale in the United States of America for use as an antidepressant drug or antidepressant veterinary product.