Geometria e Algebra - MIS-Z

Primo Esonero

02/05/2023

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo esonero contiene 4 esercizi per un totale di 32 punti. Sia x il punteggio ottenuto nell'Esercizio 1 e sia y il punteggio totale ottenuto. Il compito è ritenuto sufficiente se $x \geq 5$ e $y \geq 18$. In tal caso il voto del primo esonero sarà dato da y.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 1 ora e 50 minuti. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio

TOTALE	

ESERCIZIO 1 [10 punti]. Esercizio Scoglio.

(a) Si determini se la matrice $A=\begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix}$ è invertibile e in caso se ne determini l'inversa.

(b) Sia $n \geq 1$. Si definisca quando n vettori di un K-spazio vettoriale V sono linearmente indipendenti.

esauriente la risposta: Π sottoinsieme $W = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}$ è un sottospazio vettoriale di \mathbb{R}^2 .
$\Box \ \mathbf{VERO}$
□ FALSO
(d) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed esauriente la risposta:
Sia V uno spazio di dimensione 1 e siano $v_1, v_2 \in V$. Allora v_1 e v_2 sono linearmente indipendenti.
\square VERO
\Box FALSO

(c) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed

(e) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed esauriente la risposta:

Sia
$$V = \mathbb{R}[X]$$
. Allora $X \in Span\{X^2 - 1, X^2 + X, X^2 - X - 2\}$.

 \square VERO

 \square FALSO

ESERCIZIO 2 [8 punti]. Sistema con parametro.

Al variare di $a \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X_1 + X_3 + X_4 = a \\ aX_2 + X_3 + X_4 = -1 \\ X_1 + X_2 + 2aX_3 + 2X_4 = 0 \\ X_1 - X_2 = 2 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

a	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [10 punti]. Sottospazi di matrici.

Si consideri il sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$ definito da

$$U = Span \left\{ \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -4 & -3 \\ 1 & -2 \end{pmatrix} \right\}$$

e si consideri il sottoinsieme W di $\mathcal{M}_2(\mathbb{R})$ costituito dalle matrici quadrate di ordine 2 i cui elementi sulla diagonale principale sono tutti nulli.

(a) Si mostri che W è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$. Se ne determini una base e la dimensione.

(b) Si determini una base e la dimensione di U+W.

(c) Si determini una base e la dimensione di $U\cap W.$

(d) Per $a \in \mathbb{R}$, si consideri il sottospazio $V_a = Span\left\{\begin{pmatrix} 1 & 1 \\ 1 & a \end{pmatrix}\right\}$. Si determini per quali valori di $a \in \mathbb{R}$ si ha $\mathcal{M}_2(\mathbb{R}) = (U + W) \oplus V$.

ESERCIZIO 4 [4 punti]. Un po' di teoria...

(a) Enunciare il lemma di Steinitz.

(b) Dimostrare che se $\{v_1,\ldots,v_n\}$ e $\{w_1,\ldots,w_m\}$ sono due basi di uno spazio vettoriale V allora n=m.