09. Linear Programming and the Simplex Algorithm

CPSC 535 \sim Spring 2019

Kevin A. Wortman

October 28, 2019

Big Ideas

- duality same problem from different perspectives
- formulations, reductions
- visualizing high geometric dimensions

Overview

- programming in math involves finding some kind of optimal solution subject to mathematically-codified constraints
 - ► (not coding e.g. C++ programming)
- ► linear programming (LP): optimize a linear objective function subject to inequalities
- very general framework
- pioneered by Soviet economist Leonid Kantorovich circa 1930s; goal was to optimize supply/demand in a communist in lieu of prices
- now used in business (operations research)
 - scheduling UPS deliveries, optimizing farm production, allocating investment portfolios, etc.

Computational Complexity

- many tough problems in P, including max-flow, reduce to LP
- on the border of P
- ▶ simplex algorithm technically takes $O(2^n)$ worst-case time, but is fast polynomial on most practical inputs
- we have pseudopolynomial algorithms with e.g. $O(n^{2.5}W)$ runtime and expensive constant factors
- ▶ open question whether there is a strongly polynomial LP algorithm with runtime e.g. $O(n^3)$, not a function of W

Standard Form

- standard form: restricted/simplified LP, easier for algorithms to solve
- later: general form which is more convenient for end-user formulations
- general reduces to standard with constant overhead
- similar situation to max-flow and robust max-flow
- actual solver algorithm sees a simplified standard form; reduction algorithm "frontend" accepts a generalized problem that is more convenient for end-users
- ▶ also a big idea in compilers canonical form

Standard Form

standard form with *n* variables and *m* constraints:

maximize
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 subject to

$$a_{1,0}x_1 + a_{1,1}x_2 + \dots + a_{1,n}c_{1,n} \leq b_1$$

 $a_{2,0}x_1 + a_{2,1}x_2 + \dots + a_{2,n}c_{2,n} \leq b_2$
 \vdots
 $a_{m,0}x_1 + a_{m,1}x_2 + \dots + a_{m,n}c_{m,n} \leq b_m$
 $x_1, x_2, \dots, x_n \geq 0$

variables: $x_1, \ldots, x_n \in \mathbb{R}$ objective function defined by coefficients $c_1, \ldots, c_n \in \mathbb{R}$ constraints defined by coefficients $a_{i,j} \in \mathbb{R}$

Standard Form Example

maximize
$$2x_1 + x_2 - \frac{1}{3}x_3$$
 subject to

$$x_1 + x_2 \le 10$$

 $-x_3 \le -2$
 $x_1, x_2, x_3 \ge 0$

Standard Form Matrix Notation

- more compact math notation
- collect:
 - ightharpoonup variables into vector $x = \langle x_1, \dots, x_n \rangle$
 - **•** objective coefficients into vector $c = \langle c_1, \dots, c_n \rangle$
 - ▶ r.h.s. of inequalities into vector $b = \langle b_1, \dots, b_m \rangle$
 - ▶ a_{i,j} coefficients into matrix A
- ► LP can be written in terms of dot-product and matrix-vector multiplication as (and note the transpose c^T):

maximize $c^T x$ subject to

$$\begin{array}{ccc} Ax & \leq & b \\ x & \geq & 0 \end{array}$$

Possible Outcomes

LPs are not always solvable!

there are three outcomes:

- 1. **solution**: concrete values for $x_1, ..., x_n$ that maximize $c^T x$ (good, usually the goal)
- 2. **unbounded**: objective can be made arbitrarily large i.e. $+\infty$ (bad, usually means there is a bug in your LP that makes it nonsensical)
- 3. **infeasible**: impossible to satisfy all constraints simultaneously (bad, usually means that either your LP is nonsensical; or your LP makes sense but meeting all your goals is impossible)

Standard-Form LP Problem

standard-form linear programming problem

input: vector $c \in \mathbb{R}^n$, vector $b \in \mathbb{R}^m$, and $m \times n$ matrix A of real numbers

output: one of

- "unbounded";
- 2. "infeasible"; or
- 3. "solution" with a vector $x \in \mathbb{R}^n$ maximizing the objective function

Exploring the Three Outcomes

- we will explore unbounded/infeasible/solution in 1D, then 2D
- dimension of an LP: #variables n
- feasible region: space of x vectors that satisfy all constraints
- halfspace: half of all geometric space,
 - ▶ 1D: one side of a point on the number line e.g. x = 3
 - ightharpoonup 2D: one side of a line e.g. y = 3x + 2
 - ▶ 3D: one side of a plane e.g. 2x + 3y z = 5
- each new constraint limits the feasible region to a halfspace
- as we go, make note of
 - the shape of the feasible region
 - optimal solutions are found at extreme points ("corners") of halfspaces
 - ▶ unbounded ⇔ feasible region extends out infinitely
 - ▶ infeasible ⇔ empty feasible region

1D Solution

- ► feasible region = intersection of all arrows = is line segment [0,3]
- optimal objective function value is $2x_1 = 2(3) = 6$

1D Unbounded

- feasible region = intersection of all arrows = open interval $[1, +\infty)$
- solution is undefined
- optimal objective function value is $2x_1 = 2(\infty) = \infty$

1D Infeasible

- feasible region = intersection of all arrows = \emptyset
- solution is undefined
- cannot evaluate objective function

2D Solution

$$\frac{1}{4}x_1 + x_2 \leq 2$$

$$-\frac{4}{5}x_1 + x_2 \leq \frac{1}{2}$$

$$x_1, x_2 \geq 0$$

Sidebar: Math Definition of a Line

- recall
 - ightharpoonup slope-intercept form y = mx + b
 - ▶ 2D LP constraint is $c_1x_1 + c_2x_2 \le b$
- ▶ substitute $x_1 = x, x_2 = y$, rearrange to slope-intercept:

$$c_1x_1 + c_2x_2 \le b$$

 $c_1(x) + c_2(y) \le b$
 $-(c_1x) - (c_1x)$
 $c_2y \le -c_1x + b$

if $c_2 > 0$ then

$$y \le -\frac{c_1}{c_2}x + \frac{b}{c_2}$$

else, $c_2 < 0$, dividing by c_2 flips \leq to \geq , and

$$y \ge -\frac{c_1}{c_2}x + \frac{b}{c_2}$$

2D Solution

$$\frac{1}{4}x_1 + x_2 \leq 2$$

$$-\frac{4}{5}x_1 + x_2 \leq \frac{1}{2}$$

$$x_1, x_2 \geq 0$$

- ► feasible region is intersection of halfspaces ⇔ polygon
- optimal solution is intersection of lines at $x_1 \approx 1.43, x_2 \approx 1.64$

2D Unbounded

$$\begin{array}{rcl} -\frac{4}{5}x_1 + x_2 & \leq & \frac{1}{2} \\ x_1, x_2 & \geq & 0 \end{array}$$

- ▶ feasible region is intersection of halfspaces ⇔ some polygon sides, one infinite side
- optimal solution undefined

2D Infeasible

$$-x_1 + x_2 \le .25$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

- ▶ feasible region is intersection of halfspaces ⇔ empty set
- optimal solution undefined

Slack Form

duality: the simplex algorithm views one LP in two ways,

- 1. standard form
- 2. slack form
- ▶ standard form: constraint says l.h.s ≤ r.h.s.
- ightharpoonup \Rightarrow the difference or "slack" between l.h.s. and r.h.s. is ≥ 0
- slack form: constraint says l.h.s. + slack = r.h.s.
- increasing objective = decreasing slack
- introduce one new basic variable to represent slack in each constraint
- (pre-existing variables are nonbasic)
- ightharpoonup z =value of objective function
- don't bother writing "maximize" or "subject to"

Standard versus Slack Form

maximize
$$x_1 + 2x_2 - \frac{1}{2}x_3$$
 subject to

$$\frac{1}{3}x_1 + x_3 \leq 5$$

$$x_1 + x_2 + x_3 \leq 100$$

$$x_1 - x_2 \leq -3$$

$$x_1, x_2, x_3 > 0$$

$$z = x_1 + 2x_2 - \frac{1}{2}x_3$$

$$x_4 = 5 - \frac{1}{3}x_1 - x_3$$

$$x_5 = 100 - x_1 - x_2 - x_3$$

$$x_6 = -3 - x_1 + x_2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

basic var's: x_4, x_5, x_6 nonbasic var's: x_1, x_2, x_3

High-Level Simplex Algorithm

- convert standard form LP to slack form
- find a feasible (probably non-optimal) initial solution
 - ▶ if this does not exist, return "infeasible"
- repeat:
 - choose a nonbasic variable x_i with positive coefficient in objective function (increasing x_i increases z)
 - ightharpoonup if no such x_i exists, return solution (it's optimal)
 - increase x_i until some basic variable x_j is decreased to zero ("tighten" the slack until we're up against a constraint)
 - if none exists, return "unbounded"
 - swap roles: rewrite slack form with x_i as basic variable and x_j as nonbasic variable

(for further details, see CLRS section 29.3)

Geometric Intuition

- a solution is a point in n-dimensional space
- ▶ intuitively, initial solution is at the origin where $x_1, ..., x_n = 0$
- ▶ (for further details, see CLRS section 29.5)
- each iteration "reels in" the solution to hug the intersection between two constraints
- continues until we either
 - 1. go "off the map" and know the LP is infeasible; or
 - 2. cannot improve any further \Rightarrow found optimal solution
- each step moves us along the border of a simplex
- simplex: n-dimensional generalization of a triangle; line segment, 2D triangle, 3D pyramid (tetrahedron), etc.

Geometric Intuition

Analysis

- in LP's formulated to solve practical problems, usually
 - ightharpoonup each of the m halfspaces intersects O(m) other halfspaces
 - $ightharpoonup \Rightarrow O(m^2)$ intersection points in the feasible region
 - ▶ \Rightarrow simplex iterates $O(m^2)$ times
 - each iteration involves evaluating n-dimension obj. function
 - $ightharpoonup \Rightarrow O(m^2n)$ worst-case time
 - order-3 polynomial, same as max-flow
 - often faster b/c each step can "jump" pretty far
- **however,** \exists feasible LP's that force simplex to take $\Omega(2^m)$ time
- ► Klee-Minty cube: $\forall d$, has n = d variables, n = d constraints, 2^d vertices, simplex is "tricked" into visiting all vertices
- this is a rare example of worst-case asymptotic analysis being misleading

Klee-Minty Cube

Klee-Minty Cube in 3D:

(image credit: Sophie Huiberts, CC-BY 4.0,

https://commons.wikimedia.org/wiki/File:Klee-Minty-cube-for-shadow-vertex-pivot-rule.png)

Summary

- for a standard-form LP with n variables and m constraints...
- ▶ simplex algorithm is fast in practice, technically takes $O(2^m)$ worst-case time
- ► Khachiyan's *ellipsoid algorithm* takes $O(n^4W)$ time
 - seminal result, proved that sub-exponential algorithms are possible
- now have faster pseudopolynomial algorithms, e.g Vaidya's alg. takes $O((n+m)^{1.5}nW)$ time
- open questions:
 - Is there a strongly-polynomial algorithm, or is LP NP-complete?
 - Is there an algorithm that has both simplex' practical speed and provable pseudonomial runtime?