

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 12:

- Introduction to Neural Networks
- Backpropagation

Instructor: Preethi Jyothi

Project Abstracts

Triangulated Attention for Multimodal Learning

Music Genre Prediction

Speech to Speech Translation

Taxi Fare Prediction

Parameter identification and convergence in adaptive control

Exploring Vision Transformers

Face Recognition

ML for Sales Prediction

Review-based Rating System

Sales Forecasting using ML

Intrusion Response Automation in Cybersecurity **Song Popularity Prediction**

Floor Plan Analysis

Neural Style Transfer

Spoken Language Identification in Long-form Audio

Learning Deep Representations

OCR

Smart Indoor Positioning

Loan Approval Prediction

Pdf-to-text Conversion

Doodle Recognition

Recommendation Systems

x2

Project Abstracts

Soil Moisture Modeling of Microplastic Fraud Detection Detection Retina Classification CO₂ emissions **Detection in Soil Network Intrusion Pdf to LaTeX Detection Predicting Music Hits Optimising Credit Card Rewards** Solving **Image Fixing Backpropagation** Sudoku Segmentation by not using it at all **Stock Price Prediction Multilingual OCR and Predicting Loan Sanction Decisions Enhancing Image Translation** Resolution **Melody Generation Multimodal Representation Organ Segmentation** Learning **Learning with Noisy Algorithmic Trading Nifty Price Prediction** Radio Isotope Labels Identification **Anime Recommendation Music Recommendation System Adaptive Learning Explainable Recommendation Tool** 2D Image to 3D Model

System

What is deep learning?

"Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction."

"Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but nonlinear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level."

History of (Deep) Neural Networks

- McCulloch-Pitts Neuron Model (1943)
- Perceptrons (1957)
- Backpropagation (1960)
- Backpropagation for neural networks (1986)
- Convolutional neural networks (1989)

•

- Deep learning for speech recognition (2009)
- AlexNet (2012)
- Generative Adversarial Networks (GANs) (2014)
- AlphaGo (2016)
- Transformers (2018)
- ChatGPT (2022)

Why the resurgence?

- McCulloch-Pitts Neuron Model (1943)
- Perceptrons (1957)
- Backpropagation (1960)
- Backpropagation for neural networks (1986)
- Convolutional neural networks (1989)

•

- Deep learning for speech recognition (2009)
- AlexNet (2012)
- Generative Adversarial Networks (GANs) (2014)
- AlphaGo (2016)
- Transformers (2018)
- ChatGPT (2022)

Vast amounts of data

+

Specialized hardware, Graphics Processing Units (GPUs)

+

Improved optimization techniques and new model variants/libraries/toolkits

Feed-forward Neural Network Single Neuron

Single neuron

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

$$a_3 = g(w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3)$$

$$a_3 = g(w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3)$$

$$= g(w_{13} \cdot (g(w_{11} \cdot x_1 + w_{21} \cdot x_2 + b_1))$$

$$+ \cdots$$

$$a_{3} = g(w_{13} \cdot a_{1} + w_{23} \cdot a_{2} + b_{3})$$

$$= g(w_{13} \cdot (g(w_{11} \cdot x_{1} + w_{21} \cdot x_{2} + b_{1}))$$

$$+ w_{23} \cdot (g(w_{12} \cdot x_{1} + w_{22} \cdot x_{2} + b_{2})) + b_{3})$$

Compact matrix notation: Input $\mathbf{x} = [x_1, x_2]$ is written as a 2-dimensional vector and the layer above it is a 2-dimensional vector \mathbf{h} , a fully-connected layer is associated with:

$$\mathbf{h} = \mathbf{x}\mathbf{W} + \mathbf{b}$$

where w_{ij} in \mathbf{W} is the weight of the connection between j^{th} neuron in the input row and i^{th} neuron in the first hidden layer and \mathbf{b} is the bias vector.

$$a_{3} = g(w_{13} \cdot a_{1} + w_{23} \cdot a_{2} + b_{3})$$

$$= g(w_{13} \cdot (g(w_{11} \cdot x_{1} + w_{21} \cdot x_{2} + b_{1}))$$

$$+ w_{23} \cdot (g(w_{12} \cdot x_{1} + w_{22} \cdot x_{2} + b_{2})) + b_{3})$$

The simplest neural network is the perceptron:

$$Perceptron(\mathbf{x}) = \mathbf{x}\mathbf{W} + \mathbf{b}$$

A 1-layer feedforward neural network (multi-layer perceptron) has the form:

$$MLP(\mathbf{x}) = g(\mathbf{x}\mathbf{W}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2$$

Common Activation Functions (g)

Sigmoid: $\sigma(x) = 1/(1 + e^{-x})$

Common Activation Functions (g)

Sigmoid: $\sigma(x) = 1/(1 + e^{-x})$

Hyperbolic tangent (tanh): $tanh(x) = (e^{2x} - 1)/(e^{2x} + 1)$

Common Activation Functions (g)

Sigmoid: $\sigma(x) = 1/(1 + e^{-x})$

Hyperbolic tangent (tanh): $tanh(x) = (e^{2x} - 1)/(e^{2x} + 1)$

Rectified Linear Unit (ReLU): RELU(x) = max(0, x)

nonlinear activation functions

