

Общероссийский математический портал

Е. И. Железнов, Достаточные условия существования предельных циклов, Изв. вузов. Матем., 1957, номер 1, 127–132

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 176.52.29.84

5 марта 2023 г., 23:45:05

Е. И. Железнов

ДОСТАТОЧНЫЕ УСЛОВИЯ СУЩЕСТВОВАНИЯ ПРЕДЕЛЬНЫХ ЦИКЛОВ

1. В работе [1] Н. Н. Красовский изучал вопрос об устойчивости в целом системы

$$\dot{x} = f_1(x) + ay,$$

 $y = bx + f_2(y),$ (1.1)

при выполнении обобщенных условий Рауса-Гурвица.

$$h_1(x) + h_2(y) < 0,$$
 (1.2)

$$h_1(x) h_2(y) - ab > 0,$$
 (1.3)

где

$$h_1(x) = \frac{f_1(x)}{x}, h_2(y) = \frac{f_2(y)}{y}.$$

Он показал, что при выполнении условий (1,2), (1.3), травиальное решение системы (1.1) асимптотически устойчиво в целом.

В данной заметке будет рассматриваться нарушение условия (1.2). Таким образом, мы предполагаем выполнение следующих условий:

$$h_1(x) + h_2(y) < 0$$
 (1.4)

внутри некоторой окрестности начала координат;

$$h_1(x) + h_2(y) > 0$$
 (1.5)

вне некоторой окрестности начала координат.

 Π е м м а 1.1. Π ри $ab \neq 0$ и выполнении условий (1.3) и (1.5) существуют такие числа c_1 , c_2 , что имеет место:

$$c_1c_2=ab,$$

$$h_1(x) + c_2 \geqslant 0, h_1(x) c_2 - ab \geqslant 0,$$
 (1.6)

$$h_2(y) + c_1 \geqslant 0, h_2(y) c_1 - ab \geqslant 0,$$
 (1.7)

причем (1.6) и (1.7) выполняются вне некоторого прямоугольника ($-\alpha' < x < \alpha, -\beta' < y < \beta$).

Доказательство этой леммы аналогично доказательству леммы

3.1 работы [1].

 $\vec{\Pi}$ емма 1.2. Если $f_1(x)$, $f_2(y)$ удовлетворяют условиям (1.3) и (1.5), то имеет место, по крайней мере, одно из следующих соотношений:

$$\lim_{\|x\| \to \infty} \left[\int_{0}^{x} (c_{2} f_{1}(\mathbf{x}) - abx) dx + (h_{1}(\mathbf{x}) + c_{2}) \|\mathbf{x}\| \right] = +\infty, \quad (1.8)$$

$$\lim_{|y| \to \infty} \left[\int_{0}^{y} (c_{1}f_{2}(y) - aby) \, dy + (h_{2}(y) + c_{1}) \, |y| \right] = \infty. \tag{1.9}$$

Доказательство этой леммы проводится тем же методом, что и леммы (3.2) работы [1].

Теорема 1.1. Если $ab \neq 0$ и выполняются (1.3), (1,4), (1,5), то

система (1.1) имеет предельный цикл.

Доказательство. Из условий (1.3) и (1.4) на основании теоремы 3.2 работы [1] вытекает, что травиальное решение x = y = 0 системы (1.1) асимптотически устойчиво.

Рассмотрим теперь функцию, выведенную Н. Н. Красовским

в работе [1]:

$$2\mathbf{v} = (ay - c_2 x)^2 + 2 \int_0^x [c_2 f_1(x) - abx] dx + \frac{a^2}{c_1} \int_0^y [c_1 f_2(y) - aby] dy,$$
(1.10)

которая, в силу условий (1.6°) и (1.7), будет определенно положительной, по крайней мере, вне некоторого прямоугольника.

Взяв полную производную по времени от функции (1.10), в силу системы (1.1), мы будем иметь

$$\frac{dv}{dt} = [h_1(x) + c_2] [h_1(x) c_2 - ab] x^2 + \frac{a^2}{c_1^2} [h_2(y) + c_1] [h_2(y) c_1 - ab] y^2.$$
(1.11)

Если рассмотрим линии уровня функции (1.10), то (1.11) говорит о том, что отрицательные полутраектории системы (1.1) пересекают их извне во внутрь или, по крайней мере, не выходят в обратном направлении. Значение функции 2v(x,y) в точке A обозначим v_A . Рассматривая отрицательную полутраекторию f(A,t), мы увидим, что она будет находиться в области

$$(ay - c_2x)^2 \leqslant v_A . \tag{1.12}$$

Из леммы (1.2) вытекает существование числа $oldsymbol{x}_0>0$ такого, что будет

$$\int_{0}^{x} [c_{2}f_{1}(x) - abx] dx > v_{A}. \qquad (1.13)$$

или

$$[h_1(\mathbf{x}_0) + c_2] x_0 > V \overline{v_A}.$$
 (1.14)

Если выполняется (1.13), то отрицательная полутраектория f(A, t) не может пересечь прямую $x = x_0$, т. к. там будет выполняться неравенство

$$2v(xy) > \int_{0}^{x} [c_2 f_1(x) - abx] dx > v_A.$$

Пусть теперь выполняется (1.14). Мы будем имегь

$$\frac{dx}{dt} = f_1(x) + c_2x + ay - c_2x,$$

и тогда внутри полосы

мы имеем

$$\frac{dx}{dt} > 0$$
,

т. е. отрицательная полутраектория пересекает прямую $x = x_0$ справа

Точно так же можно найти такое отрицательное число $x_1 < 0$, что траектория f(A, t) при t < 0 пересечет прямую $x = x_1$ слева направо. Таким образом, отрицательная полутраектория остается в ограниченной области и, следовательно, траектория должна иметь а-предельное множество. Так как у нас имеется только одна единственная особая точка x = y = 0, которая является ω -предельной точкой, то на основании теоремы 4 [2], предельное множество лежит на замкнутой траектории. Теорема доказана.

Пример: Рассмотрим систему:

$$\dot{x} = \frac{x(x^2 - 1)}{x^2 + 2} - y,$$

$$\dot{y} = x + \frac{y^3}{y^2 + 1}.$$
(1.15)

Введем обозначения:

$$h_1(x) = \frac{x^2-1}{x^2+2}, h_2(y) = \frac{y^2}{y^2+1}.$$

Легко заметить, что $h_1(x)$ и $h_2(y)$ удовлетворяют условиям

$$-\frac{1}{2} < h_1(x) < 1,$$

$$0 < h_2(y) < 1,$$

$$h_1(x) h_2(y) - ab > 0,$$

где

$$a = -1, b = 1.$$

При достаточно малых (x), (y) будет выполняться неравенство

$$h_1(x) + h_2(y) < 0,$$
 (1.16)

а при достаточно больших (х) и (у) выполняется

$$h_1(x) + h_2(y) > 0.$$
 (1.17)

Очевидно, что границей областей (1.16) и (1.17) является линия

$$h_1(x) + h_2(y) = 0.$$

Ее уравнение будет иметь вид

0434. Математика — 9

$$y^2 = \frac{1 - x^2}{1 + 2x^2}. ag{1.18}$$

Легко заметить, что (1.18) — замкнутая кривая, внутри ее выполняется (1.16), вне — (1.17). Таким образом, система (1.15) имеет предельный цикл.

2. В данном параграфе рассматривается система (1.1). Предполагается, что условие (1.3) выполняется во всей плоскости и

$$h_1(x) + h_2(y) < 0,$$
 (2.1)

129

причем область (2.1) бесконечная и, в то же время, не является всей плоскостью. Легко заметить, что ab < 0. Действительно, если ab > 0, то из (1.3) имеем

$$sign h_1(x) = sign h_2(y),$$

а этого быть не может, так как в этом случае (1.2) не могло бы

. Лемма 2.1. Пусть выполняются условия (1.3) и (2.1). Тогда для некоторой окрестности начала координат существуют числа c_1 и c_2 , удовлетворяющие условиям:

$$h_1(x) + c_2 \leq 0, \ h_1(x)c_2 - ab \gg 0,$$
 (2.2)

$$h_2(y) + c_1 \leq 0, h_2(y) c_1 - ab \gg 0.$$
 (2.3)

(Доказательство см. в работе [1] стр. 656-657).

Здесь будем рассматривать только случай a>0, b<0, так как случай a<0, b>0 линейным преобразованием сводится к первому. Лемма 2.2. Если выполняются (1.3), (2.1) и существуют такие

постоянные числа т и с, что выполняются условия:

$$f_2(y) > m, \tag{2.4}$$

$$\lim_{x \to \infty} \left[f_1(x) + \frac{bc}{2} x^2 + amc x \right] > -M, \tag{2.5}$$

где M— некоторое постоянное число, то система (1.1) имеет траекторию, уходящую в бесконечность.

Доказательство. Интегрируя дифференциальное уравнение

$$\frac{dy}{dx} = \frac{bx + f_2(y)}{f_1(x) + ay},$$
 (2.6)

которое эквивалентно системе (1.1), получим

$$y + \frac{1}{a}f_1(x) = y_0 + \frac{1}{a}f_1(x) + \int_{x}^{x} \frac{bx + f_2(y)}{f_1(x) + ay} dy.$$
 (2.7)

Возьмем какую-нибудь точку $A(x_0, y_0)$, лежащую между кривыми

$$y = -\frac{1}{a}f_1(x) \text{ if } x = -\frac{1}{b}f_2(y). \tag{2.8}$$

Возьмем A так, чтобы вдоль f(A, t) на некотором промежутке $0 < t < t_1$ выполнялось

$$y + \frac{1}{a} f_1(x) > \frac{1}{a}$$
 (2.9)

Из (2.7) и (2.9) следует:

$$y + \frac{1}{a}f_1(x) > y_0 - \frac{bc}{2a}x_0 - mcx_0 + \frac{1}{a}f_1(x) + \frac{bc}{2a}x^2 + mcx.$$
 (2.10)

Выбирая начальные значения (x_0, y_0) так, чтобы

$$y_0 - \frac{bc}{2a} x_0 - mcx_0 > M + \frac{1}{c}$$

мы увидим, что (2.9) не нарушится ни при каких t>0. Это значит, что траектория всегда будет расположена выше кривой

$$y = -\frac{1}{a}f_1(x).$$

Лемма доказана.

Теорема 2.1. Пусть выполняются условия (1.3), (2.1), (2.4) и, кроме того,

$$\lim_{x \to -\infty} \left[\frac{1}{a} f_1(x) + \int_0^x \frac{bx + m}{f_1(x) + ay_0} dx \right] = -\infty$$
 (2.11)

для всех достаточно больших $y_0 > 0$,

$$f_1(x) > Ax^2$$
, где $A + \frac{bc}{2} > 0$ (2.12)

для всех достаточно больших x, тогда система (1.1) имеет предельный цикл.

Доказательство. Докажем, что из (2.12) вытекает (2.5). Действительно, мы имеем при x достаточно больших

$$f_1(x) + \frac{bc}{2}x^2 + amcx > Ax^2 + \frac{bc}{2}x^2 + amcx.$$
 (2.13)

Очевидно, что

$$\lim_{x \to \infty} \left(Ax^2 + \frac{bc}{2} x^2 + amcx \right) = \infty \tag{2.14}$$

и, таким образом, (2.5) выполняется.

Далее, легко заметить выполнение неравенства

$$\frac{1}{a}f_1(x) + \int_0^x \frac{bx + m}{f_1(x) + ay_1} dx > \frac{1}{a}f_1(x) + \int_0^x \frac{bx + m}{x_2 + \omega + ay_1} dx, \qquad (2.15)$$

где y₁ < 0 и достаточно большое по абсолютной величине.

Ввиду того, что мы рассматриваем случаи m < 0, b < 0, то дегко заметить существование такого числа $-\alpha < 0$, для которого при достаточно больших x будет выполняться неравенство

$$\frac{bx + m}{x^{2+8} + ay_1} > -\alpha. \tag{2.16}$$

Из (2.15) и (2.16) следует теперь

$$\frac{1}{a}f_1(x) + \int_0^x \frac{bx+m}{f_1(x)+ay_1} dx > \frac{1}{a}x^{2+\epsilon} - \alpha x.$$
 (2.17)

Так как

$$\lim_{x\to\infty}\left(\frac{1}{a}x^{2+\varepsilon}-\alpha x\right)=\infty,$$

TO

$$\lim_{x \to \infty} \left[\frac{1}{a} f_1(x) + \int_0^x \frac{bx + m}{f_1(x) + ay_1} dx \right] = \infty.$$
 (2.18)

Из леммы 2.2 следует, что между кривыми (2.8) существует такая точка P, что f(P,t) при $t\to\infty$ уходит в бесконечность. Легко заметить, что f(P,t) при некотором $t=t_0<0$ пересечет ось OY. Возьмем теперь произвольную точку на положительной полуоси ординат $P_0(0,y_0)$, где y_0 — достаточно большое число, и покажем, что траектория $f(P_0,t)$ при некотором отрицательном t пересечет кривую

$$v = -\frac{1}{a} f_1(x).$$

Действительно, если бы это было не так, то вдоль этой траектории выполнялось бы неравенство

$$y + \frac{1}{a}f_1(x) < y_0 + \frac{1}{a}f_1(x) + \int_0^x \frac{bx + m}{f_1(x) + ay_1} dx,$$
 (2.19)

которое противоречиво, так левая часть должна быть всегда положительной, в то время, как правая часть при достаточно больших по абсолютной величине x будет отрицательной. Далее, легко доказывается, что $f(P_0 t)$ при некотором $t=t_1<0$ пересечет отрицательную полуось ординат.

Пусть теперь $P_1(0, y_1)$ — произвольная точка на отрицательной полуоси OY, то отрицательная полутраектория $f(P_1, t)$ пересечет кривую

$$y = -\frac{1}{a}f_1(x).$$

Если мы предположим, что это будет не так, то вдоль этой траектории будем иметь

$$y + \frac{1}{a}f(x) > y_1 + \frac{1}{a}f_1(x) + \int_0^x \frac{bx + m}{f_1(x) + ay_1} dx,$$
 (2.20)

которое при достаточно больших х будет противоречить с (2.18).

Рассматривая дальнейшее поведение отрицательной полутраектории, мы увидим, что она ограничена, и поэтому должна иметь α-предельное множество, которое и будет являться предельным циклом, так как начало координат является ω-предельной точкой.

Теорема доказана.

Уральский политехнический институт имени С. М. Кирова

Поступило 30 IX 1957

ЛИТЕРАТУРА

1. Н. Н. Красовский, ПММ, т. XVII, в. 6, 1953. 2. В. В. Немыцкий, В. В. Степанов, Качественная теория дифференциальных уравнений, М.—Л., 1949.