N FERNANDEZ

PULMÃO

CASO

- L Paciente do sexo masculino, 60A, C34, neoplasia maligna dos brônguios e pulmão
- \downarrow Prescrição: 6000 cGy (30 \times 200 cGy) em pulmão esquerdo

SIMULAÇÃO E ACESSÓRIOS

- La Decúbito dorsal, *head first*
- ▶ Rampa de tórax + apoio de joelhos
- L Slice da CT: 2,5 mm

L CTV 30x200 cGy, PTV 30x220 cGy, Esôfago Coração, Pulmão (D/E) e Medula

DEFINIÇÃO DOS PONTOS

MARCADOR CT → X: -0.19 Y: -29.13 Z: -0.17

ISOCENTRO → X: 3.81 Y: -25.13 Z: -1.87

La Deslocamento do primeiro dia (4.0, 4.0 e 1.7)

CONFIGURAÇÃO DE CAMPOS

 $ACELERADOR \rightarrow Synergy$

IGRT: Imagem Portal (iView)

ENERGIA → 6 MV

GEOMETRIA → 1 semiarco ida e volta

CAMPO	1_CCW		
Gantry	340° ⇄ 200°		
Incremento	18°		
Colimador	15°		
Mesa	O°		

PROPRIEDADES DE CÁLCULO E SEGMENTAÇÃO

M□□□ → Dose to medium

GRADE DE CÁLCULO → 0,27 [1] [2]

INCERTEZA DE DOSE → 1% por cálculo

CONTROL POINTS | COMP. SEGMENTO → 180 *control points* **|** 1.0 cm

ESTRATÉGIAS DE OTIMIZAÇÃO

L Modo → Otimização por restrição nas duas fases, MCO ativo na fase 1

L, PTV 30x200 cGy

Target Penalty (6060 cGy, 98% de volume, p = 50) QOD (6420 cGy, RMS = 2, SM = 0, p = 0.5)

L, Esôfago

QOD (6000 cGy, RMS = 2, SM = 0, p = 0.5)

Serial (900 cGy, SM = 0.0, PLE = 1. p = 0.1)

L Pulmão Esquerdo

QOD (5700 cGy, RMS = 2, SM = 0, p = 1) I QOD (3600 cGy, RMS = 2, SM = 3.0, p = 50) Serial (4300 cGy, SM = 0.5, PLE = 1. p = 10)

L Pulmão Direito

QOD (6000 cGy, RMS = 2, SM = 0, p = 3) I QOD (800 cGy, RMS = 2, SM = 3.0, p = 0.01) Serial (3950 cGy, SM = 0.5, PLE = 1. p = 50)

L Coração

00D (6000 cGy, RMS = 2, SM = 0, p = 1.0) I Q0D (1500 cGy, RMS = 2, SM = 3.0, p = 0.01) Serial (2500 cGy, SM = 1.2, PLE = 15. p = 1.5) I Serial (350 cGy, SM = 0, PLE = 1. p = 1)

↓ Medula

QOD (3900 cGy, RMS = 2, Opt. Over All Voxels, p = 50)

L Patient

QOD (6000 cGy, RMS = 2, SM = 0.0, p = 0.01) I QOD (4500 cGy, RMS = 20, SM = 0.5, p = 0.01) QOD (3000 cGy, RMS = 50, SM = 1.0, p = 0.01) I QOD (1500 cGy, RMS = 3, SM = 3.0, p = 0.5) Serial (2200 cGy, SM = 0.0, PLE = 15. p = 10) | Maximum Dose (6420 cGy, Opt. Over All Voxels, p = 10)

NORMALIZAÇÃO

DISTRIBUIÇÃO DE ISODOSES

ESTATÍSTICAS DO DVH

ESTRUTURA	DESCRITOR DVH	IDEAL	ACEITÁVEL	RESULTADO	VALOR
PTV 30x200 CGY	D95% [Gy]	>= 60.00 (100%)	>= 58.80 (98%)		60.00 Gy
	D0.03cc [Gy]	<= 64.80 (108%)	<= 66.00 (110%)		64.84 Gy
CORAÇÃO	Max [Gy]	< 45 Gy	< 62 Gy		61.46 Gy
	V50 [%]	< 25 %	-		4.64 %
	V45 [%]	< 65 %	-		5.77%
	V40 [%]	< 80 %			7.07 %
ESÔFAGO	Max [Gy]	< 54.0 Gy	-		24.58 Gy
	Mean [Gy]	< 34 Gy	-		19.45 Gy
PULMÕES - CTV	Mean [Gy]	< 13 Gy	< 20 Gy		11.83 Gy
	V20 [%]	< 20 %	< 37 %		19.28 %
	V5 [%]	< 65 %	-		58.86 %
MEDULA	Max [Gy]	< 45 Gy	-		30.48 Gy

REFERÊNCIAS

- [1] WOLFF, Dirk. *Monaco TPS Advanced Workshop*, Istanbul. 2019.
- [2] PRAH, Douglas. Guidelines for Monaco VMAT/IMRT Optimization. Wisconsin. 2022