Серия 5. Сочетания и прочее

- **1.** Докажите а) алгебраически; б) комбинаторно формулу $C_n^k \cdot C_k^\ell = C_n^\ell \cdot C_{n-\ell}^{m-k}$.
- **2.** Вычислите сумму $\sum_{k=0}^{n} 2^{k} C_{n}^{k}$.
- 3. а) (Формула Вандермонда.) Пусть $m, n, k \in \mathbb{N}$, причем $m, n \geq k$. Докажите, что $C_n^0 C_m^k + C_n^1 C_m^{k-1} + \dots + C_n^k C_m^0 = C_{m+n}^k$. б) Докажите, что $(C_n^0)^2 + (C_n^1)^2 + \dots + (C_n^n)^2 = C_{2n}^n$.
 4. Докажите тождество $C_n^0 + C_{n+1}^1 + C_{n+2}^2 + \dots + C_{n+k}^k = C_{n+k+1}^k$.
 5. Пусть $p \in \mathbb{P}$ и 0 < k < p. Докажите, что $C_p^k : p$ а) при помощи формулы; б) комбинаторно (не
- используя никаких формул).
- **6.** В левом нижнем углу доски $m \times n$ стоит фишка. Она может ходить вверх и вправо на одну клетку. Сколькими способами эта фишка может пройти в правый верхний угол?
- 7. а) В ряд выстроены n школьников. Сколькими способами можно выбрать из них k дежурных так, чтобы никакие два дежурных не стояли рядом? б) За круглым столом короля Артура сидят n рыцарей. Каждый из них враждует со своими соседями. Король хочет составить отряд из k рыцарей. Сколькими способами это можно сделать так, чтобы в этом отряде не было врагов?

Серия 5. Сочетания и прочее

- 1. Докажите а) алгебраически; б) комбинаторно формулу $C_n^k \cdot C_k^\ell = C_n^\ell \cdot C_{n-\ell}^{n-k}$
- 1. Докажите а) алгеораически, б) комоинаторно формулу $C_n \cdot C_k = C_n \cdot C_{n-\ell}$.

 2. Вычислите сумму $\sum_{k=0}^n 2^k C_n^k$.

 3. а) (Формула Вандермонда.) Пусть $m, n, k \in \mathbb{N}$, причем $m, n \geq k$. Докажите, что $C_n^0 C_m^k + C_n^1 C_m^{k-1} + \dots + C_n^k C_m^0 = C_{m+n}^k$. б) Докажите, что $(C_n^0)^2 + (C_n^1)^2 + \dots + (C_n^n)^2 = C_{2n}^n$.

 4. Докажите тождество $C_n^0 + C_{n+1}^1 + C_{n+2}^2 + \dots + C_{n+k}^k = C_{n+k+1}^k$.

 5. Пусть $p \in \mathbb{P}$ и 0 < k < p. Докажите, что $C_p^k \ \vdots \ p$ а) при помощи формулы; б) комбинаторно (не
- используя никаких формул).
- **6.** В левом нижнем углу доски $m \times n$ стоит фишка. Она может ходить вверх и вправо на одну клетку. Сколькими способами эта фишка может пройти в правый верхний угол?
- 7. а) В ряд выстроены n школьников. Сколькими способами можно выбрать из них k дежурных так, чтобы никакие два дежурных не стояли рядом? б) 3а круглым столом короля 4ртура сидят n рыцарей. Каждый из них враждует со своими соседями. Король хочет составить отряд из k рыцарей. Сколькими способами это можно сделать так, чтобы в этом отряде не было врагов?

Серия 5. Сочетания и прочее

- **1.** Докажите а) алгебраически; б) комбинаторно формулу $C_n^k \cdot C_k^\ell = C_n^\ell \cdot C_{n-\ell}^{n-k}$. **2.** Вычислите сумму $\sum_{k=0}^n 2^k C_n^k$.
- 3. а) (Формула Вандермонда.) Пусть $m, n, k \in \mathbb{N}$, причем $m, n \geq k$. Докажите, что $C_n^0 C_m^k + C_n^1 C_m^{k-1} + \dots + C_n^k C_m^0 = C_{m+n}^k$. б) Докажите, что $(C_n^0)^2 + (C_n^1)^2 + \dots + (C_n^n)^2 = C_{2n}^n$. 4. Докажите тождество $C_n^0 + C_{n+1}^1 + C_{n+2}^2 + \dots + C_{n+k}^k = C_{n+k+1}^k$. 5. Пусть $p \in \mathbb{P}$ и 0 < k < p. Докажите, что $C_p^k \in p$ а) при помощи формулы; б) комбинаторно (не
- используя никаких формул).
- **6.** В левом нижнем углу доски $m \times n$ стоит фишка. Она может ходить вверх и вправо на одну клетку. Сколькими способами эта фишка может пройти в правый верхний угол?
- 7. а) В ряд выстроены n школьников. Сколькими способами можно выбрать из них k дежурных так, чтобы никакие два дежурных не стояли рядом? б) За круглым столом короля Артура сидят n рыцарей. Каждый из них враждует со своими соседями. Король хочет составить отряд из k рыцарей. Сколькими способами это можно сделать так, чтобы в этом отряде не было врагов?

Серия 5. Сочетания и прочее

- **1.** Докажите а) алгебраически; б) комбинаторно формулу $C_n^k \cdot C_k^\ell = C_n^\ell \cdot C_{n-\ell}^{n-k}$.
- **2.** Вычислите сумму $\sum_{k=0}^{n} 2^{k} C_{n}^{k}$.
- 3. а) (Формула Вандермонда.) Пусть $m,n,k\in\mathbb{N}$, причем $m,n\geq k$. Докажите, что $C_n^0C_m^k+C_n^1C_m^{k-1}+$
- $C_n = C_n + C_n$ используя никаких формул).
- **6.** В левом нижнем углу доски $m \times n$ стоит фишка. Она может ходить вверх и вправо на одну клетку. Сколькими способами эта фишка может пройти в правый верхний угол?
- 7. а) В ряд выстроены n школьников. Сколькими способами можно выбрать из них k дежурных так, чтобы никакие два дежурных не стояли рядом? б) За круглым столом короля Артура сидят n рыцарей. Каждый из них враждует со своими соседями. Король хочет составить отряд из k рыцарей. Сколькими способами это можно сделать так, чтобы в этом отряде не было врагов?