Multiple Linear Regression

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn import linear_model
In [2]: user=pd.read_csv("E:\\Assignment Regression\\User_Data.csv")
        user
```

Out[2]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [19]: #Allocate the needful Column data
         x = user.iloc[:,:-1]
         y = user.iloc[:,4]
```

```
In [20]: #Drop Unnecessary Columm
    x=x.drop('Gender',axis='columns'),
    x=x.drop('User ID',axis='columns')
    x
```

Out[20]:

	Age	EstimatedSalary
0	19	19000
1	35	20000
2	26	43000
3	27	57000
4	19	76000
395	46	41000
396	51	23000
397	50	20000
398	36	33000
399	49	36000

400 rows × 2 columns

```
In [22]: reg = linear_model.LinearRegression()
    reg.fit(x_train, y_train)
```

```
In [29]: reg.coef_
```

Out[29]: array([2.44572890e-02, 4.78219567e-06])

```
In [31]: reg.score(x_test, y_test)
```

Out[31]: 0.435068929354876

```
In [32]: reg.predict([[30,40000]])
```

Out[32]: array([0.02985473])

