Engineering DesignENGR 13x2

Engineering Tools I

• • Agenda

- Estimation
- o Working with Numbers
 - Units
 - Sig Figs
- o Dimensioning & Tolerancing
- o Types of Graphs

The purpose of this chapter is to highlight some of the knowledge tools, software tools, and procedural tools that are found in the designer's "toolkit."

- Some topics discussed in this chapter
 - Estimation
 - Working with numbers
 - Graphing
 - Prototyping
 - Reverse engineering
 - Computer analysis
 - Spreadsheets
 - Solid modeling and CAD
 - Simulation

• • • Estimation

- o Incredibly powerful tool
 - Quick, "back of the envelope" (BoE) calculations -- approximation is OK!
 - Set the boundaries of what is "reasonable"
 - Requires good engineering judgment
- o An example . . .

My friend's truck needs to be painted . . .

How much paint do we need to buy? (5 gal? 1 gal? 1 qt?)

• • • Estimate the paint required

• • • Estimate the paint required

Practice

- o How many party balloons can you fit in this lecture room?
 - Along with your estimate, be sure to state any assumptions you made!

• • • Working with numbers

- o Engineers work with numbers
 - Units
 - Reconciling units
 - Significant figures

• • Units

- Nearly every calculation will involve the use of units
 - SI units and English
 - Consistency is critical
 - Prefixes for SI (see Table 4.1 & 4.2)
 - milli => 10^{-3} , micro => 10^{-6} , nano => 10^{-9} , ...
 - kilo => 10^3 , mega => 10^6 , giga => 10^9 , ...
 - Unit reconciliation
 - At the end of your calculation, your units should be correct (i.e. m³ for volume)
 - Good check for your calculations

• • Unit reconciliation - example

- Volume of a cylindrical tank
 - $V = \pi r^2 h$
 - Units of r = m
 - Units of h = m
 - $m^2 \times m = m^3$ (appropriate units for volume)
- o Ideal gas law
 - PV = nRT
 - In SI units, R (gas constant) = 8.314 J/mol·K
 - What units should be used for P, V, n, and T?

• • Significant figures

- o What is "significant"?
 - Any non-zero digit
 - Zeros, EXCEPT:
 - Leading zeros that serve as "placeholders" to indicate the scale of a decimal number (<1) are not significant.
 - Trailing zeros that serve as "placeholders" to indicate the scale of a number are <u>not</u> significant
 - Note that trailing zeros to the right of the decimal point are significant
- o How many sig figs?
 - 1208.1
 - 0.50
 - 0.0254
 - 52,000,000
 - 52.0 x 10⁶

• • Sig figs - precision

- Precision
 - A number cannot be more precise than its least significant digit
 - A quantity cannot be specified with more precision than its measured precision
 - The precision of any calculation is determined by the least precise number in the calculation
- What is the proper answer to this equation? $127 \times 0.50 / 5.3 =$
- o Calculator produces 11.98113
 - => answer should be reported as 12
 - Don't let your calculator fool you!

- No part can be machined to exact dimensions
 - Why?
- The tolerance on a dimension specifies the acceptable degree of error in the fabricated part
- Tight tolerances are more expensive
 - Why?
 - You must decide which dimensions are critical and worthy of the extra cost.

Main chassis plate

Tolerance table	
All dimensions in cm	
±0.5	
±0.1	
±0.05	
±0.001	

• • Graphing

- Be familiar with these graphing types (outlined in section 4.3) and when you would use each
 - x-y
 - Semi-log
 - Log-log
 - Polar
 - Three-dimensional

Figure 4.5 Examples of *x-y* plots having simple linear scales.

Figure 4.6 Plot of cell density versus time. Both axes of the graph are linear.

Figure 4.7 Data points of Table 4.3 plotted on a semilog graph. Because the cell density increases exponentially with time, using a logarithmic vertical axis allows more points to be included in the range of the graph.

Figure 4.8 Response of a car suspension system to a constant magnitude stimulus of varying frequency. In this case, both scales are best represented logarithmically.

Design Concepts for Engineers, Fourth Edition, Mark N. Horenstein © 2010 by Pearson Education, Inc. All rights reserved

Figure 4.9 Polar plot of antenna pattern. The length of the vector from the origin represents the strength of the reception at a given angle θ .

Antenna reception vs angle

Figure 4.11 Isometric plot of the height of a semiconductor surface as a function of position *x-y* over the plane.

Design Concepts for Engineers, Fourth Edition, Mark N. Horenstein © 2010 by Pearson Education, Inc. All rights reserved

Figure 4.12 Example of a contour plot. The isobars indicate the surface profile of a silicon chip.

