

msup

唐洪山 运维部负责人

- ✓ 曾在qunar、京东科技从事运维、安全、质量、研发效能提升 相关工作
- ✓ 作为国内最早一批的DevOps/DevSecOps研究人员
- ✓ 同时还是多个国内外技术峰会的顾问专家或出品人

msup

- 1 为什么做研发过程数字化
- 2 可信的、精细的研发过程管控
- 3 切实有效的度量和改进

4 未来规划

0

行业痛点-研发效能成熟度现状

msup

超8成企业采用持续交付实践并获得研发效率的提升,但5成多企业处于基础级和全面级

基于实际情况不断优化,达到对持续交付的最佳实践

优秀级

组织内全面建立自服务形式的持续交付流水线和完备的度量体系

全面级

将持续交付实践贯穿于软件开发全生命周期,极大提升研发效率

基础级

较大范围开始推行持续交付并获得研发效率的提升

局部范围开始试点持续交付

行业痛点-如何实现快速价值交付

背景:企业需要快速创新,但往往缺少精确的用户洞察,需求模糊或多变,业务人员期望快速试错、验证、

反馈,而软件研发各环节普遍的痛点问题,影响了将有价值的产品快速交付到最终用户手中

需求

开发

测试

发布

运维

需求交付周期长

需求流转不透明

需求变更频繁

团队并行开发,版本分支管 理容易混乱,

编码规范不统一,代码质量 得不到保证

频繁手工构建、部署, 耗时 长

接口联调依赖上下游环境和 数据构造

环境配置不统一,多环境管 理困难

用例、缺陷与需求未关联, 不易追溯

手工测试耗时长, 回归量大

开发人员提测质量无法快速 验证

测试人员技术水平参差不齐, 质量无法保证 手工打包发布,人为操作风 险高

串行发布上线,业务暂停时 间长

发布失败无法快速回滚,业 务中断风险高

生产与预发、测试环境配置 不一致,导致发布失败 生产环境复杂,手工运维压力大

缺少实时监控和告警,无法 及时发现风险

团队协作沟通成本高 项目过程缺少数据度量

行业痛点-影响需求快速交付的因素

msup

软件被延迟交付的原因

行业痛点-度量指标的延迟反馈

msup

度量指标的延迟反馈

核心诉求-解决端到端的价值交付

msup

- 1 为什么做研发过程数字化
- 2 可信的、精细的研发过程管控
- 3 切实有效的度量和改进
- 4 未来规划

精细化研发过程-平台能力

msup

中央仓库

持续集成

持续交付

Git + SVN

自助权限控制

固化仓库状态

分布式可扩展

接口控制

实时同步

代码评审

分支策略

需求、迭代

任务拆分

测试用例、计划

Bug管理

变更管理

提测流程

多卡点配置

安全质量规则

发布交付

变更管理

发布流程配置

物料交付

基线控制

统计反馈

能效统计

代码统计

横纵向对比

质量分析

0

精细化研发过程-流程控制

msup®

0

精细化研发过程-质量关卡

msup

精细化研发过程-安全审计

msup

安全策略左移,将安全对应融入全生命周期

建立明确可衡量的安全标准,能够与自动化进行结合自动判定是否符合安全标准

精细化管控-分支策略

msup

ToC模式下的分支策略

分支策略特点:

- Master分支开发同学只能只读,平台可写。
- Master分支代码与线上保持一致。
- 功能分支来源Master分支,开发同学可写。
- 支持并行开发。

0

精细化管控-分支策略

msup

ToB模式下的分支策略

产品+项目双主干开发模式:

产品主干应用于共性需求的迭代更新,项目主干可支撑项目中产品的定制化需求的开发。

主要解决两方面问题:

- 一是分支策略不规范,产品迭代不稳定;
- ●二是重复创建工程,项目成果难以积累,沉淀产品。

精细化管控-安全规则

msup

精细化管控-安全规则

msup

多维度预防,实现由问责制向预防制转化,重复故障0出现

创新主导并实现JAR包黑名单拦截功能,减少了2484次故障的发生

JAR包版本冲突检查控制到16416次,避免线上发生故障

变更遗漏监控拦截到10962次,避免因变更导致的线上问题重复出现

Maven依赖查询系统开发,为后续故障分析快速、高效、精准定位问题范围提供了强有力的工具

精细化管控-提测准入

2019-07-17 18:14:24

1657

msup®

校验代码扫描结果;如果扫描缺陷数大于配置的对应数据,无法进行提测

审批酉	代码扫描配置		代码评审配置	单元	测试配置					
产品扫码配置	应用扫描配置									
扫描开关										
converity配	置: ✓ converity配置			sona	ar配置: ☑ son	ar配置				
高级缺陷标	准: 不多于	10		高级缺陷	各标准: 不多于	- 10	+ 10			
中级缺陷标	准: 不多于 - 20 +	20		中级缺陷	各标准: 不多于	- 20	+ 20			
低级缺陷标	准: 不多于 - 30 +	30		低级缺	為标准: 不多于	- 30	+ 30			
扫描人	扫描时间	版本号(1	С	Coverity扫描缺陷		Sonar扫描缺陷			是否通过标	
ココ四人	1-1181111111111111111111111111111111111	657)	高级	中级	低级	高级	中级	低级	准	

20 1

104 ¹⁰

报告

58 ¹⁰

精细化管控-提测准入

msup

应用提测时,校验是否通过代码评审;如果未通过,则不允许提测。

精细化管控-提测准入

msup®

校验代码单元测试结果;如果单元测试覆盖率小于配置的对应数据,无法进行提测

msup

1 为什么做研发过程数字化

- 2 可信的、精细的研发过程管控
- 3 切实有效的度量和改进

4 未来规划

研发过程质量度量

msup

度量类型	研发过程	度量指标	度量方法	度量目标
	代码	代码扫描健康度	统计时间段内代码扫描健 康趋势	度量代码质量
		有效代码率	上线周期内有效代码率行/ 总提交代码行	度量代码质量
		各阶段提交代码率	开发/测试阶段提交代码量	度量提测代码质量
10	提测	提测次数	单次上线提测次数	度量提测质量
研发质量度量	构建	构建失败率	构建失败数/构建总数	度量构建质量
	BUG	Bug存量趋势(新增、未 解决、已关闭、已解决)	累计各个阶段的bug按时 间进行趋势分析	度量bug是否收敛
		Bug Reopen率	Bug Reopen次数/总缺陷数	度量研发的解决质量
	测试用例	测试用例失败率	用例失败数/用例总数	度量交付质量
	CI/自动化	单元测试覆盖率/失败率	单测完成情况	度量开发过程中开发有完 善的资产自测
	发布	发布失败率	发布失败数/发布总数	度量发布质量
		发布回滚率	发布回滚数/发布总数	度量发布质量

透明研发效率和质量数据、捕捉效能盲点, 促进研发过程改进

研发过程效率度量

msup

度量类型	研发过程	度量指标	度量方法	度量目标
	BUG	响应时长	Bug从新建到下一个状态持续 时间	度量开发的相应速度
		解决时长	Bug从新建到解决的持续时间	度量开发的解决速度
		验证时长	Bug从解决到关闭的时间	度量测试的验证速度
研发效率度量	需求	响应时长	需求从新建到第一个状态的改 变时间	度量产品经理和开发的相应速 度
		完成时长	需求从新建到完成的持续时间	度量需求的解决效率
		相应时长	任务第一次发生活动的时长	度量任务的相应效率
	任务	完成时长	任务从新建到完成的持续时间	度量任务的解决效率
	构建	构建持续时长	构建完成时间-构建开始时间	度量构建效率
	部署	部署持续时长	部署完成时间-部署开始时间	度量部署效率
	发布	发布持续时长	发布完成确认时间-上线审批 完成时间	度量发布效率

透明研发效率和量数据、捕捉效能盲点, 促进研发过程改进

研发过程度量体系

msup

效能 = 认知+改进

0

研发过程度量指标模型

- 1. 研发效能指标是为解决研发实践问题、获得研发效能认知、 产生研发效能价值而设计的一种可量化的概念和相应的计 算方法。
- 2. 研发效能度量是将指标应用于特定研发数据集合从而计算 出数值结果的过程,称为度量。

度量=指标+视图

对于研发数据集合D, 指标的度量m(D)为

m(D) = f(D, M(D))

其中,M为其依赖的其他度量的集合,f为指标的计算方法。 基础指标的M为空集。

3. 为了对价值流产生认知,用户提出不同的信息需要,从而实施度量,并对度量值进行分析与决策。根据度量指标的定义,一个指标可能依赖于其他指标,并在具体的数据视图上计算出度量值。这些视图是研发数据集的一部分,而研发数据是从各类相关工具、系统或调研中收集汇总。

0

研发过程度量指标 (展示示例)

msup

研发过程度量指标 (展示示例)

msup

研发过程度量指标 (展示示例)

msup

部门效能数据分析对比

个人效能数据分析对比

研发过程度量指标 (展示示例)

msup

研发过程

msup

1 为什么做研发过程数字化

- 2 可信的、精细的研发过程管控
- 3 切实有效的度量和改进
- 4 未来规划

msup®

BizDevOps探索

关注msup公众号 获取更多AI落地实践

麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。