□ キーワード:内積,ベクトルのなす角

問題 **1.4.** 次のベクトル \vec{u} , \vec{v} の (i) 長さ $|\vec{u}|$, $|\vec{v}|$, (ii) 内積 $\vec{u} \cdot \vec{v}$ および (iii) \vec{u} と \vec{v} のなす 角 θ の余弦 ($\cos \theta$) の値を求めなさい.

$$(1) \ \vec{u} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}, \ \vec{v} = \begin{pmatrix} -2 \\ 2\sqrt{3} \end{pmatrix}$$

$$(2)$$
 $\vec{a}=\left(egin{array}{c}5\\3\end{array}
ight),\; \vec{b}=\left(egin{array}{c}2\\0\end{array}
ight)$ に対し, $\vec{u}=\vec{a}-2\vec{b},\; \vec{v}=-\vec{a}+7\vec{b}$

$$(3) \ \vec{u} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$$

$$(4) \ \vec{u} = \begin{pmatrix} -1\\3\\-2 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 5\\-2\\-7 \end{pmatrix}$$

(5)
$$\vec{a} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ に対し, $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -2\vec{a} - \vec{b}$

問題 **1.5.** 空間ベクトル
$$\begin{pmatrix} 1 \\ c \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -2 \\ c \end{pmatrix}$ が直交するように c を定めなさい.

問題 **1.6.** ベクトル \vec{a} , \vec{b} を 2 辺とする三角形の面積が $\frac{1}{2}\sqrt{|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}$ に等しいことを示しなさい. *1

^{*1} $\triangle OAB$ の面積が $\frac{1}{2}(OA$ の長さ) \times (OB の長さ) $\times \sin \theta$ であること(ただし $\theta = \angle AOB$),内積の性質 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ と三角関数の性質 $\sin^2 \theta + \cos^2 \theta = 1$ を用いて示せ.