Neural ODE solvers

Al Tech, 22.05.2022

Michał Stypułkowski

University of Wrocław

Source: link

Introduction

Differential equations

"Since Newton, mankind has come to realize that the laws of physics are always expressed in the language of differential equations."

- Steven Strogatz

Differential equations - overview

- 1. Ordinary differential equations (ODEs):
 - Equation with a function of one independent variable.
 - Often describing change of function in time.
 - Some of ODEs have closed-form solutions.

Differential equations - overview

- Ordinary differential equations (ODEs):
 - Equation with a function of one independent variable.
 - Often describing change of function in time.
 - Some of ODEs have closed-form solutions.
- Partial differential equations (PDEs):
 - Equation with a function of at least two independent variables.
 - Usually no analytical solutions.

Differential equations - examples

- Ordinary differential equations (ODEs):
 - Pandemic model.
 - Predator-prey equations.
 - Newton's law of cooling/heating.
- Partial differential equations (PDEs):
 - Diffusion process.
 - Fluid dynamics.
 - Black–Scholes equation.

Differential equations - examples

- Ordinary differential equations (ODEs):
 - Pandemic model.
 - Predator-prey equations.
 - Newton's law of cooling/heating.
- Partial differential equations (PDEs):
 - Diffusion process.
 - Fluid dynamics.
 - Black–Scholes equation.

Differential equations - examples

- Ordinary differential equations (ODEs):
 - Pandemic model.
 - Predator-prey equations.
 - Newton's law of cooling/heating.
- Partial differential equations (PDEs):
 - Diffusion process.
 - Fluid dynamics.
 - Black–Scholes equation.

MORE FUN

But way more difficult :(

Numerical ODE solvers

Initial value problem

We face an **initial value problem** of the form:

$$x'(t) = f(t, x)$$
$$x(t_0) = x_0$$

We will often call function f a dynamic function.

Taylor series

Using the Taylor series of a real infinitely differentiable function \boldsymbol{x} at point t+h we can get:

$$x(t+h) = x(t) + hx'(t) + \frac{1}{2!}h^2x''(t) + \frac{1}{3!}h^3x'''(t) + \frac{1}{4!}h^4x^{(4)}(t) + \dots$$

Taylor series

Using the Taylor series of a real infinitely differentiable function \boldsymbol{x} at point t+h we can get:

$$x(t+h) = x(t) + hx'(t) + \frac{1}{2!}h^2x''(t) + \frac{1}{3!}h^3x'''(t) + \frac{1}{4!}h^4x^{(4)}(t) + \dots$$

In other words, when we know the function \mathcal{X} and its value at time t, we can calculate its value small step in the future using infinite number of derivatives!

Taylor series

Using the Taylor series of a real infinitely differentiable function \boldsymbol{x} at point t+h we can get:

$$x(t+h) = x(t) + hx'(t) + \frac{1}{2!}h^2x''(t) + \frac{1}{3!}h^3x'''(t) + \frac{1}{4!}h^4x^{(4)}(t) + \dots$$

In other words, when we know the function \mathcal{X} and its value at time t, we can calculate its value small step in the future using infinite number of derivatives!

LET US APPROXIMATE!

Euler method

The simplest (I order) method based on the Taylor series.

We can approximate the value of a x(t+h):

$$x(t+h) \approx x(t) + hx'(t) = x(t) + hf(t,x)$$

Euler method

The simplest (I order) method based on the Taylor series.

We can approximate the value of a x(t+h):

$$x(t+h) \approx x(t) + hx'(t) = x(t) + hf(t,x)$$

In practice, we use the following formula to update \mathcal{X}_n :

$$x_{n+1} = x_n + hf(t, x_n)$$

Runge-Kutta of order 4 (RK4)

This method is based on the Taylor series up to 4th derivative. The formula is:

$$x(t+h) \approx x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$$

where

$$F_{1} = hf(t, x),$$

$$F_{2} = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_{1}),$$

$$F_{3} = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_{2}),$$

$$F_{4} = hf(t + h, x + F_{3}).$$

Unknown dynamic function

Let us now change the perspective.

Suppose we **do not know** the dynamic function but instead we are **given data points** from some trajectory.

Unknown dynamic function

Let us now change the perspective.

Suppose we **do not know** the dynamic function but instead we are **given data points** from some trajectory.

We want to find a dynamic function that fits the data points best.

Unknown dynamic function

Let us now change the perspective.

Suppose we **do not know** the dynamic function but instead we are **given data points** from some trajectory.

We want to find a dynamic function that fits the data points best.

PARAMETRIZE IT!

Neural network as an ODE

Sequence of transformations

Models such as:

- Residual networks
- RNNs
- Normalizing flows

use a combination of transformations:

$$x_{t+1} = x_t + f(x_t, \theta_t)$$

Sequence of transformations

Models such as:

- Residual networks
- RNNs
- Normalizing flows

use a combination of transformations:

$$x_{t+1} = x_t + f(x_t, \theta_t)$$

Sequence of transformations

Models such as:

- Residual networks
- RNNs
- Normalizing flows

use a combination of transformations:

$$x_{t+1} = x_t + f(x_t, \theta_t)$$

This can be seen as an Euler discretization!

More layers...

Source: link, link

Source: link, link

Gentleme overgene VC-Dimer is too high experts a structural Rework o make the inbiased oft marg

> S M LA

The guy she tells you not to worry about

- Multiple local optima
- In high dimensions possibly

Deep neural network

input layer hidden layer 1 bidden layer 2 hidden layer 3 output layer

Schematic of a logistic regression classifier.

Gentleme overgene VC-Dimer is too high experts a structural Rework o make the unbiased oft marg

> S M LA'

autput layer

Gentleme overgene VC-Dimer is too higl experts a structural Rework o make the inbiased soft marg

S M LA

Continuous latent dynamics

If we add infinite number of layers and take infinitely small steps, we end up with a continuous dynamics on the hidden states:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta)$$

Continuous latent dynamics

If we add infinite number of layers and take infinitely small steps, we end up with a continuous dynamics on the hidden states:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta)$$

Note, that the right side of the equation is a neural network.

Continuous latent dynamics

Example - MNIST classifier

Let us consider a problem of classifying MNIST digits.

We can define a dynamic function between input (image) and output (class label):

Example - MNIST classifier

Let us consider a problem of classifying MNIST digits.

We can define a dynamic function between input (image) and output (class label):

$$x(0) = x_0 x(T) = x_0$$

Example - MNIST classifier

Once we found the dynamic function, we can classify image using:

$$x(T) = x(0) + \int_0^T f(x(t), t, \theta) dt$$

Dynamic function optimization

We can easily* train our neural net using standard numerical methods (such as RK4).

Let us assume we want to optimize some loss function ${\cal L}$:

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right)$$

Dynamic function optimization

We can easily* train our neural net using standard numerical methods (such as RK4).

Let us assume we want to optimize some loss function ${\cal L}$:

Source: Chen, Ricky TQ, et al., 2018

Dynamic function optimization

We can easily* train our neural net using standard numerical methods (such as RK4).

Let us assume we want to optimize some loss function ${\cal L}$:

*We need to remember every step!

Source: Chen, Ricky TQ, et al., 2018

To make an optimization step, we need gradients $\frac{dL}{d\theta}.$

To make an optimization step, we need gradients $\frac{dL}{d\theta}$.

First, let us determine how the loss depends on the hidden state $\ \mathbf{z}(t)$.

Let us define adjoint as:

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

To make an optimization step, we need gradients $\frac{dL}{d\theta}$.

First, let us determine how the loss depends on the hidden state $\ \mathbf{z}(t)$.

Let us define adjoint as:

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

It turns out that the adjoint follows its own dynamic function:

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

To make an optimization step, we need gradients $\frac{dL}{d\theta}$.

First, let us determine how the loss depends on the hidden state $\mathbf{z}(t)$. Let us define adjoint as:

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

It turns out that the adjoint follows its own dynamic function:

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

One more pass through an ODE solver!

Finally, we can calculate derivatives of the loss function with respect to model's parameters:

$$\frac{dL}{d\theta} = -\int_{t}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

Finally, we can calculate derivatives of the loss function with respect to model's parameters:

$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

Couple of remarks:

It works with O(1) memory!

Finally, we can calculate derivatives of the loss function with respect to model's parameters:

$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

Couple of remarks:

- It works with O(1) memory!
- We can use it only on imperfect optimization problems (optimums are bad)!

Finally, we can calculate derivatives of the loss function with respect to model's parameters:

$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

Couple of remarks:

- It works with O(1) memory!
- We can use it only on imperfect optimization problems (optimums are bad)!
- For less complicated models, we should avoid this method due to the slower training!

Theory

torchdiffeq

Source: link

Continuous Normalizing Flow

(CNF)

Normalizing flows

Source: Dinh, Laurent et al., 2016

Normalizing flows

We can express p_X (likelihood of the data) using change of variable formula:

$$p_X(x) = p_Z(f(x)) \left| det \left(\frac{\partial f(x)}{\partial x^T} \right) \right|$$

We need f to be a bijection.

Normalizing flows

We can express p_X (likelihood of the data) using change of variable formula:

$$p_X(x) = p_Z(f(x)) \left| det \left(\frac{\partial f(x)}{\partial x^T} \right) \right|$$

We need f to be a bijection. But also:

- Easily invertible.
- Simple form of the determinant of the Jacobian.

Real NVP

Let $f = f_n \circ f_{n-1} \circ ... \circ f_1$, where f_i is defined as:

$$y_1 = x_1$$

 $y_2 = x_2 \odot \exp(s(x_1)) + t(x_1)$

where (x_1, x_2) is some partition of the input.

Real NVP

Let $f = f_n \circ f_{n-1} \circ ... \circ f_1$, where f_i is defined as:

$$y_1 = x_1$$

 $y_2 = x_2 \odot \exp(s(x_1)) + t(x_1)$

where (x_1, x_2) is some partition of the input.

- Easily invertible!
- Simple form of the determinant of the Jacobian:

$$\det\left(\frac{\partial f_i(x)}{\partial x^T}\right) = \exp\left(\sum_{i=1}^d s(x_1)_i\right)$$

Real NVP

Let $f = f_n \circ f_{n-1} \circ \ldots \circ f_1$, where f_i is defined as:

$$y_1 = x_1$$

$$y_2 = x_2 \odot \exp(s(x_1)) + t(x_1)$$
Meh...

where (x_1, x_2) is some partition of the input.

- Easily invertible!
- Simple form of the determinant of the Jacobian:

$$\det\left(\frac{\partial f_i(x)}{\partial x^T}\right) = \exp\left(\sum_{j=1}^d s(x_1)_j\right)$$

Instantaneous change of variables

Now, if we make the transformation continuous in time:

$$\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$$

we are also interested how log-probability changes in time. Instantaneous change of variable theorem shows that:

$$\frac{\partial \log p(\mathbf{z}(t))}{\partial t} = -\operatorname{tr}\left(\frac{df}{d\mathbf{z}(t)}\right)$$

Continuous Normalizing Flow (CNF)

1. **Training** (Data distribution → Prior distribution):

$$\mathbf{z}_0 = \mathbf{z}_T + \int_T^0 f(\mathbf{z}(t), t) dt$$

Continuous Normalizing Flow (CNF)

1. **Training** (Data distribution → Prior distribution):

$$\mathbf{z}_0 = \mathbf{z}_T + \int_T^0 f(\mathbf{z}(t), t) dt$$

2. Loss function:

$$\log(p(\mathbf{z}_T)) = \log(p(\mathbf{z}_0)) - \int_0^T \operatorname{tr}\left(\frac{df}{d\mathbf{z}(t)}dt\right)$$

Continuous Normalizing Flow (CNF)

Training (Data distribution → Prior distribution):

$$\mathbf{z}_0 = \mathbf{z}_T + \int_T^0 f(\mathbf{z}(t), t) dt$$

2. Loss function:

$$\log(p(\mathbf{z}_T)) = \log(p(\mathbf{z}_0)) - \int_0^T \operatorname{tr}\left(\frac{df}{d\mathbf{z}(t)}dt\right)$$

3. Sampling (Prior distribution \rightarrow Data distribution):

$$\mathbf{z}_T = \mathbf{z}_0 + \int_0^T f(\mathbf{z}(t), t) dt$$

CNF example - FFJORD

CNF example - PointFlow

CNF example - PointFlow

CNF example - PointFlow

Thank you!