Manejo de Bases de Datos

Hector Florez

Agenda

- Bases de Datos Relacionales
- 2. Diseño de Bases de Datos
- 3. Bases de Datos y Aplicaciones
- 4. Almacenamiento de datos, transacciones y bases de datos NoSQL

Bases de Datos Relacionales

Base de datos:

- Colección de datos almacenados en archivos que contiene información relevante de un negocio.
- Permite manejar grandes cantidades de información.
- Sistema manejador de bases de datos (DBMS):
 - Colección de programas que permite acceder a los datos almacenados en una base de datos.
- Aplicaciones transaccionales Aplicaciones de bases de datos -Sistemas de información.
 - Aplicaciones en contextos como: comercio, banca, academico, etc.

- Propósitos de las base de datos:
 - Mantener la información organizada
 - Asegurar las siguientes características:
 - Consistencia
 - Facilidad de acceso
 - Aislamiento
 - Integridad
 - Atomicidad
 - Concurrencia
 - Seguridad

- Niveles de abstracción de datos
 - Nivel Físico
 - Describe cómo los datos están almacenados
 - Nivel Lógico
 - Describe qué datos están almacenados y qué relaciones existen entre los datos
 - Nivel de visualización
 - Describe las formas de presentar los datos al usuario

Modelos

- Modelo Entidad Relación
 - Usa objetos denominados entidades y relaciones
 - Una entidad es la representación de un concepto de la realidad
- Modelo Relacional
 - Usa tablas para representar entidades y relaciones
 - Cada tabla tiene múltiples columnas con único nombre
 - Es el modelo más utilizado

- Lenguajes
 - Data Manipulation Language (DML)
 - Permite acceder y manipular datos en una forma organizada
 - Los tipos de acceso son:
 - Creación.
 - Consulta.
 - Actualización
 - Eliminación
 - Data Definition Language (DDL)
 - Especifica la estructura y métodos de acceso de la base de datos

- Bases de datos relacionales
 - Basado en el modelo relacional
 - Se compone de tablas (Ej: Instructor, Department)

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

- Bases de datos relacionales
 - o DML

select instructor.name
from instructor
where instructor.dept_name = 'History';

- Bases de datos relacionales
 - o DDL

```
create table department
(dept_name char (20),
building char (15),
budget numeric (12,2));
```

Modelo Entidad Relación

- Normalización
 - Proceso de diseño
 - Objetivo
 - Generar relaciones que permiten almacenar información sin redundancia innecesaria
 - Facilitar la consulta de información

Modelo Relacional

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

Modelo Relacional

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

Modelo Relacional

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Modelo Relacional

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

- Modelo Relacional
 - Caso de Estudio: Universidad

Bases de Datos Relacionales

Lenguajes Formales de Consulta

Algebra Relacional

- Es un lenguaje de consulta
- Permite realizar operaciones que toma entidades y relaciones y produce una nueva relación

Operaciones

Select

```
\sigma_{dept\_name} = "Physics" (instructor)
\sigma_{salary>90000} \ (instructor)
\sigma_{dept\_name} = "Physics" \land salary \gt 90000 (instructor)
\sigma_{dept\_name} = building (department)
```

Operaciones

Project

$$\Pi_{ID, name, salary}(instructor)$$

Composition

$$\Pi_{name} \left(\sigma_{dept_name = \text{"Physics"}} \left(instructor \right) \right)$$

Union

$$\Pi_{course_id}$$
 ($\sigma_{semester = \text{``Fall''} \land year = 2009}$ ($section$)) \cup Π_{course_id} ($\sigma_{semester = \text{``Spring''} \land year = 2010}$ ($section$))

Operaciones

Set-Difference

$$\Pi_{course_id}$$
 ($\sigma_{semester} = \text{``Fall''} \land year = 2009 (section)$) - Π_{course_id} ($\sigma_{semester} = \text{``Spring''} \land year = 2010 (section)$)

Cartesian-Product

$$\sigma_{dept_name = \text{``Physics''}}(instructor \times teaches)$$

Set-Intersection

$$\Pi_{course_id}$$
 ($\sigma_{semester = \text{``Fall''} \land year = 2009}$ ($section$)) \cap Π_{course_id} ($\sigma_{semester = \text{``Spring''} \land year = 2010}$ ($section$))

Operaciones

Natural-Join

 $\Pi_{name, course_id}$ (instructor \bowtie teaches)

- Full Outer join
- Left Outer join
- Right Outer join

SELECT <fields>
FROM TableA A
FULL OUTER JOIN TableB B
ONA.key = B.key

SELECT <fields>
FROM TablaA A
FULL OUTER JOIN TableB B
ON A.key = B.key
WHERE A.key IS NULL
OR B.key IS NULL

- Operaciones
 - Aggregate Functions
 - Sum

$$\mathcal{G}_{\mathbf{sum}(salary)}(instructor)$$

Count-distinct

Average

 $\mathcal{G}_{average(salary)}(instructor)$