Quantum Computing

Jim Royer

CIS 428/628: Introduction to Cryptography

September 5, 2021

Crypto (CIS 428/628)

Quantum Computing

September 5, 2021

1/1

References

- A Physics-Free Introduction to the Quantum Computation Model by Stephen A. Fenner. https://arxiv.org/abs/cs/0304008
 (...more importantly, it is complex analysis free)
- *The Talk* by Scott Aaronson and Zach Weinersmith, http:

//www.smbc-comics.com/comic/the-talk-3

(There is tons of misleading hype about quantum computing. This is a good, double-entendre-filled, dehyping.)

 Quantum Computing Since Democritus by Scott Aaronson https://www.scottaaronson.com/democritus/

(This connects quantum computing to the wider intellectual world while being rather goofy.)

Crypto (CIS 428/628)

Quantum Computing

September 5, 2021

0 /4

Quantum Computing and Cryptography

- Given RSA with key size k, it can be broken by a computer with quantum register size $\approx k$.
- Similarly with discrete-log-based cryptosystems.
- There are latticed-based cryptosystems that quantum computers seemingly cannot do better than classical computers in breaking.
- We will cover enough about quantum computing give you a *glimpse* of what is behind all the fuss.
- This is based on *A Physics-Free Introduction to the Quantum Computation Model* by Stephen A. Fenner. https://arxiv.org/abs/cs/0304008.

\star Assuming that you can build a quantum computer of that size.

Classical Boolean Circuits, I

We view them as naming maps $\{0,1\}^n \to \{0,1\}^n$

Consider We can describe this by either of:

• $b \leftarrow a \land b$; $a \leftarrow \neg a$; $b \leftarrow b \lor c$

 $|x,y,z\rangle = state\ vector$

 $\bullet |a,b,c\rangle \mapsto |a,a \wedge b,c\rangle \mapsto |\neg a,a \wedge b,c\rangle \mapsto |\neg a,(a \wedge b) \vee c,c\rangle$

Crypto (CIS 428/628) Quantum Computing September 5, 2021 3 / 1

Crypto (CIS 428/628)

Quantum Computing

September 5, 2021

Classical Boolean Circuits, II

Uniform Computation

Input/Output Conventions

• The first *k* registers are input

0 < k < n

• The first ℓ registers are output

 $0 \le \ell \le n$

• Each non-input register is assigned 0 or 1

• A *circuit family*, C, is a sequence of circuits C_0 , C_1 , C_2 , ... \ni for each i, C_i has i-inputs and 1-output.

• $L(C) =_{def} \{ w \mid |w| = n \& C_n(w) = 1 \}$, the language defined by C.

• A circuit family is *ptime uniform* \iff \exists a poly-time alg $D \ni$ for all i. $D(\underbrace{1 \dots 1}) = a$ description of C_i .

FACT: P = the languages accepted by ptime uniform circuit families.

Crypto (CIS 428/628) Quantum Computing

Crypto (CIS 428/628) Quantum Computing

September 5, 2021

Reversible Circuits, I

Reversible circuits have inverses.

The controlled not gate (CNOT)

$$a \longrightarrow a$$
 $b \longrightarrow a \oplus b$

Toffoli Gate where $\odot(x, y, z) = z \oplus (x \land y)$

Reversible circuits do not collapse states. (Why?)

Reversible Circuits, II

CNOT Gate input | output 0 0 0 0

input			output		
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

Toffoli Gate

0 and 1 are the *interesting* bits.

Quantum Computing September 5, 2021 Crypto (CIS 428/628) Quantum Computing Crypto (CIS 428/628)

Probabilistic Circuits, I

input	output		
0	0:p	1:(1-p)	
1	0:q	1:(1-q)	

 $|\vec{v}\rangle$: 2ⁿ basis vectors

 \mathcal{H} : a 2ⁿ-dim. real vector space (\mathcal{H} for Hilbert space)

$$|x_{1..i-1}, 0, x_{i+1..n}\rangle \mapsto p \cdot |x_{1..i-1}, 0, x_{i+1..n}\rangle + (1-p) \cdot |x_{1..i-1}, 1, x_{i+1..n}\rangle |x_{1..i-1}, 1, x_{i+1..n}\rangle \mapsto q \cdot |x_{1..i-1}, 0, x_{i+1..n}\rangle + (1-q) \cdot |x_{1..i-1}, 1, x_{i+1..n}\rangle$$

Crypto (CIS 428/628)

Quantum Computing

September 5, 2021

1 9/

Probabilistic Circuits, II

Consider the subspace spanned by $|0\rangle$ and $|1\rangle$.

The gate p,q always maps the line segment from (1,0) to (0,1) to itself.

We can also represent the p,q gate by the matrix:

$$\left[\begin{array}{cc} p & q \\ 1-p & 1-q \end{array}\right]$$

This is a *stochastic matrix*: all entries ≥ 0 , all columns sum to 1.

Crypto (CIS 428/628)

Quantum Computing

September 5, 202

September 5, 2021

40 /

Probabilistic Circuits: Gates as Linear Maps

The irreversible AND gate is:

			$a \wedge b$	a b	00	01	10	11
0	0	0	0	00	1	1	0	0
0	1	0	0	01	0	0	0	0
1	0	1	0	10	0	0	1	0
1	1	1	1	11	0	0	0 1 0	1

- ► All entries are 0–1
- ▶ One 1 in each col
- ▶ ∴ Stochastic

Reversible gates are permutation matrices!

(*Why*?)

Definition

A *probabilistic circuit* is a circuit built from Boolean & p,q gates, where

- The input state is a basis state.
- The output state is of the form: $\sum_{x \in \{0,1\}^n} p_x |x\rangle =$

(i) each
$$p_x \ge 0$$
 and (ii) $\sum |p_x| = 1$.

 p_x = the probability that the output will be $|x\rangle$.

"Majority Coin Flips" Circuit

 $\frac{1}{2}, \frac{1}{2}$ = flip of a fair coin

Quantum Computing

 Crypto (CIS 428/628)
 Quantum Computing
 September 5, 2021
 11 / 1
 Crypto (CIS 428/628)

A Complexity-Theoretic Aside

- $\vec{C} = C_0, C_1, C_2, \dots$: a ptime uniform probablistic circuit family
- (R, A) is an acceptance criterion when $R, A \subset [0, 1]$ with $R \cap A = \emptyset$. (*R* for reject, *A* for accept)
- \vec{C} computes L with acceptance criterion (R, A) when for each *n* and each $x \in \{0,1\}^n$:

$$x \in L \implies Prob[C_n(x) = 1] \in A$$

 $x \notin L \implies Prob[C_n(x) = 1] \in R$

	Class	Acceptance Criterio	n
_	Р	({0},{1})	
	NP	$(\{0\},(0,1])$	
	RP	$(\{0\},(\frac{1}{2},1])$	
	BPP	([0,q],[1-q,1])	where $0 < q < \frac{1}{2}$
	PP	$([0,\frac{1}{2}],(\frac{1}{2},1])$	_

Crypto (CIS 428/628)

Quantum Computing

Quantum Circuits (á la Fenner), I

- states = vectors in \mathcal{H} gates = matrices
- Now allow nonegative entries in matrices. (But all real numbers)
- Now require: $||Mv||_2 = ||v||_2$ for all v.
- Note: $\|\vec{a}\|_2 =_{\text{def}} \sqrt{a_1^2 + \dots + a_n^2}$
- This forces the matrices to be *orthonormal*, i.e., its columns form an orthogonal basis of \mathcal{H} .
- Registers are now called *qubits* (quantum bits) instead of bits.
- The *Hadamard gate*, -H, has the matrix: $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ See the next slide $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$. Note: $H^2 = I$.
- Fact: { *H*, Toffoli gates } are a *universal* collection of quantum gates.
- The p,q gates now correspond to *measurements*.

Crypto (CIS 428/628)

Quantum Computing

September 5, 2021

Hadamard Gate Geometrically

aa

Transpose around the x-axis:

$$(x,y)\mapsto (x,-y)$$

2 Then do a $+45^\circ$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle).$$
 $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$

Quantum Circuits (á la Fenner), II

QCF (Quantum Coin Flip)

This is a variation on Hadamard gate.

$$QCF = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Quantum Computing

Note that $(QCF)^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ = the not gate.

So, QCF = \sqrt{NOT} , the square root of not.

Quantum I/O

Input: basis states

Note: $\sum a_x^2 = 1$ Output: $\sum_{x \in \{0,1\}^n} a_x |x\rangle$

 a_x^2 = the probability associated with $|x\rangle$

 a_x = the probability amplitude for $|x\rangle$

Another Complexity-Theoretic Aside

If we use quantum circuits, then

Class	Description	Acceptance Criterion
EQP	Exact quantum polynomial time	({0},{1})
$C_{\neq}P$	Co-Exact-Counting Polynomial-Time	$(\{0\},(0,1])$
RQP	One-sided Error Extension of EQP	$(\{0\},(\frac{1}{2},1])$
BQP	Bounded-Error Quantum Polynomial-Time	$([0,\frac{1}{n}),(\frac{n-1}{n},1])$
PP	Probabilistic Polynomial-Time	$[0,\frac{1}{2}],(\frac{1}{2},1])$

See: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Crypto (CIS 428/628)

"Traditional" Quantum Circuits

- In place of vector spaces over \mathbb{R} , we use v.s.'s over \mathbb{C} .
- In place of orthonormal matrices, we use unitary matrices.
- See §6 of Fenner for details. • Etc., etc.
- Past this point, we shall be even sketchier than before.
- ...so, we won't digress into complex linear algebra.

September 5, 2021

Crypto (CIS 428/628)

2021-09-05

Quantum Computing

September 5, 2021

Towards Shor's Algorithm:

Suppose we want to factor *N* (assuming *N* isn't prime).

- then we can factor *N*. (Why?)
- If we can find an a and an even r with:

 - $a^r \cong 1 \pmod{N}$, and
 - $a^{r/2} \ncong \pm 1 \pmod{N}$,

then we can factor N.

(*Why*?)

Quantum Computing -Shor's Algorithms

Towards Shor's Algorithm: Number Theory Facts, I

- Suppose 1 < x < N 1 and $x^2 \cong 1 \pmod{N}$. Then $N|(x^2-1)$, i.e, N|(x-1)(x+1). Since 1 < x < N - 1, neither x - 1 = 0 nor x + 1 = n. So gcd(N, x - 1) > 1 or gcd(N, x + 1) > 1.
- **b** Use (a).

Crypto (CIS 428/628)

Towards Shor's Algorithm:

Heuristic Procedure for Factoring

```
Input N. Pick a \in \{2, \ldots, N-2\}. If \gcd(a,N) > 1, return \gcd(a,N). (* It is a (nontrivial) factor *) (* So, \gcd(a,N) = 1 *) Find the smallest r > 0 with a^r \cong 1 \pmod{N}. (* Expensive classically *) If r is odd or a^{r/2} \cong -1 \pmod{N}, then: return FAILURE else: use the trick of the previous page to compute a factor of N return this factor.
```

- *FACT*: If $N = p_1^{k_1} \dots p_s^{k_s}$ where p_1, \dots, p_s are distinct primes and s > 1, then Prob[the procedure succeeds on $N] \ge 1 \frac{1}{2^{s-1}} \ge \frac{1}{2}$.
- So repeating the procedure on *N* not too many times will find us a factor (with high probability).
- *BUT* the best know *classical* methods for finding *r* are exponential time.

Crypto (CIS 428/628)

Quantum Computin

September 5, 202

20 /

Peter Shor's Clever Idea (One of Many)

Heuristic Procedure for Factoring

```
Input N.

Pick a \in \{2, \ldots, N-2\}.

If \gcd(a, N) > 1, return \gcd(a, N).

Find the smallest r > 0 with a^r \cong 1 \pmod{N}. (* PROBLEM *)

If r is odd or a^{r/2} \cong -1 \pmod{N}, then: return FAILURE else: compute a factor of N and return it
```

Use QC to find *r*. That is:

- Consider $1, a^1, a^2, a^3, \dots \pmod{n}$.
- If $a^r \equiv 1 \pmod{n}$, then the sequence repeats every r times.
- \therefore Finding the period of the sequence, finds r.
- In signal processing, *Fourier transforms* are used to find periods.

Crypto (CIS 428/628)

Quantum Computing

Sontombor 5, 2021

21 / 1

Quantum Fourier Transform

QFT(
$$|x\rangle$$
) = def $\frac{1}{\sqrt{2^m}} \sum_{c \in \{0,1\}^m} e^{\frac{2\pi i x c}{2^m}} |c\rangle$

- This can be realized as a quantum circuit.
- We'll come back to the properties of this thing shortly.

Shor's Factoring Algorithm, I

```
|0...0,0...0\rangle \quad m+n \text{ long}
\downarrow
\frac{1}{\sqrt{2}} (|00...0,0...0\rangle + |10...0,0...0\rangle)
\downarrow
\vdots
\downarrow
\frac{1}{\sqrt{2^m}} \sum_{c \in \{0,1\}^m} |c,\vec{0}\rangle \quad \text{superimposition of } 2^m \text{ states}
\downarrow
\frac{1}{\sqrt{2^m}} \sum_{c \in \{0,1\}^m} |c,a^c \mod n...\rangle
\downarrow
QFT(-) \qquad \text{Now what???}
```

Quantum Computing

Crypto (CIS 428/628) Quantum Computing September 5, 2021 22 / 1 Crypto (CIS 428/628)

September 5, 2021

Shor's Factoring Algorithm, II

- When you measure $\sum_i a_i |x_i\rangle$ you get state $|x_i\rangle$ with probability a_i^2 .
- Thanks to QFT, states near the period have pretty high probability.
- ... Measure, test, and refine.

 See: Shor's Quantum Factoring Algorithm by Samuel J. Lomonaco,

 https://arxiv.org/abs/quant-ph/0010034
- A similar trick (using QFT) can compute discrete logs.

Quantum Algorithms Beyond Shor's

Grover's Algorithm

- Suppose that $C: \{0,1\}^n \to \{0,1\}$ is such that C(s) = 1 for only one $s \in \{0,1\}^n$.
- Classically, finding this s takes $\Theta(2^m)$ time.
- Using QFT trickery, one can do this in $\Theta(\sqrt{2^m})$ time.
- This is the best known quantum algorithm besides Shor's.
- For other quantum algorithms, see:

```
https://en.wikipedia.org/wiki/Quantum_algorithm
```

- The take away is that quantum computers *are* magic bullets, but only for some fairly special problems.
- As factoring and discrete-log are among these special problems, Cryptography must respond, *e.g.*, *lattice-based cryptosystems*.

Crypto (CIS 428/628) Quantum Computing September 5, 2021 24 / 1 Crypto (CIS 428/628) Quantum Computing September 5, 2021 25