Linear Algebra(I)

Shuoqi Sun

Tepper School of Business, CMU

Plan

The following topics will be covered:

- Linear spaces, Norms and inner product;
- Span, basis and dimensions
- Affinity and hyperplane;
- Linear operators and linear functionals;
- Matrix algebra on \mathbb{R}^n .

Vector Spaces

Vector space (over a field F) is a set V, whose elements are called vectors, together with two binary operation rules that satisfy certain axioms:

- A rule, called vector addition, such that $\forall \alpha, \beta, \gamma \in V$:
 - $\alpha + \beta \in V$
 - $\alpha + \beta = \beta + \alpha$, $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - $\exists 0 \in V$ such that $\forall \alpha \in V$, $0 + \alpha = \alpha$
 - $\forall \alpha \in V$, $\exists (-\alpha) \in V$ such that $\alpha + (-\alpha) = 0$
- A rule, called scalar multiplication, such that $\forall c, c_1, c_2 \in F$ and $\forall \alpha \in V$:
 - $c \cdot \alpha \in V$
 - $\exists 1 \in F$ such that $\forall \alpha \in V$, $1 \cdot \alpha = \alpha$
 - $(c_1 \times c_2) \cdot \alpha = c_1 \cdot (c_2 \cdot \alpha), c \cdot (\alpha + \beta) = c \cdot \alpha + c \cdot \beta,$ $(c_1 + c_2) \cdot \alpha = c_1 \cdot \alpha + c_2 \cdot \alpha$

Vector spaces

- A real vector space is a space where the scalars are real numbers.
- A subset Y of the vector space X is called a **subspace** of X if $\forall x, y \in Y$ we have $x + y \in Y$ and $\forall \alpha \in \mathbb{R}$, $\alpha x \in Y$.

Normed vector spaces

- Let X be a real vector space. Norm $||\cdot||: X \to \mathbb{R}$ is a function such that $\forall x \in X, \ \forall \alpha \in \mathbb{R}$:
 - $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$
 - $\bullet ||\alpha x|| = |\alpha| ||x||$
 - $||x + y|| \le ||x|| + ||y||$
- A vector space is said to be a normed vector space if it admits a norm.
- Every normed space is also a metric space with the metric $d: X \times X \to \mathbb{R}$ where d(x,y) = ||x-y||, but the converse is not always true(counterexample?)
- A complete normed space is called a Banach Space.

Euclidean Spaces

- The vector space \mathbb{R}^n with the usual addition and multiplication allows for several norms:
 - $||(x_1,\ldots,x_n)||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \ p \in [1,\infty)$
 - $||(x_1,\ldots,x_n)||_{\infty} = \max\{|x_1|,\ldots,|x_n|\}$

Inner Product Spaces

- Let X be a real vector space. Inner product $<\cdot,\cdot>:X\times X\to\mathbb{R}$ is a function such that $\forall x,y,z\in X,\ \forall \alpha\in\mathbb{R}$:
 - $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
 - Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
 - Linearity: $< \alpha x, y >= \alpha < x, y >$ and < x + y, z > = < x, z > + < y, z >
- A vector space is said to be an inner product space if it admits an inner product.
- Every inner product space is also a normed space with the norm $||x|| = \sqrt{\langle x, x \rangle}$.
- A complete inner product space is called a Hilbert Space.
 - Every Hilbert space is a Banach space.

Euclidean Vector Spaces

 In Euclidean vector spaces, the usual inner product (dot product) is defined as:

$$< x, y > = x \cdot y = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$

In Euclidean vector spaces, the usual norm is defined as:

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

 All Euclidean spaces are Hilbert Spaces with the usual inner product.

Normed and Inner Product Spaces

• Cauchy Schwartz Inequality: Let X be an inner product space and $x, y \in X$. If x = 0 and y = 0 then the inequality holds trivially. Assume $x \neq 0$ or $y \neq 0$:

$$| < x, y > | \le ||x|| ||y||$$

 A normed vector space X is an inner product space if and only if for every x, y ∈ X:

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2$$

• I_p and L_p are Hilbert space if and only if p = 2.

Hierarchy of mathematical spaces

Linear Dependence

- Given a set of vectors $\{x_1,...,x_k\} \subset X$ and a set of scalars $\{\alpha_1,...,\alpha_k\}$, a **linear combination** of these vectors is $x = \sum_{i=1}^k \alpha_i x_i$.
- A set of vectors $\{x_1, ..., x_k\} \subset X$ is called **linearly dependent** if one of them can be written as a linear combination of the others.
 - There exist numbers c_1, c_2, \ldots, c_k , not all equal to zero, such that $\sum_{i=1}^k c_i x_i = 0$.
- A set of vectors {x₁, ..., x_k} ⊂ X is called **linearly** independent if none of them can be written as a linear
 combination of the others.

Span

• Take a set of vectors $V = \{x_1, ..., x_k\} \subset X$. **Span** of V is the set of all linear combinations of V:

$$\operatorname{span}(V) = \{x \in X | \exists \alpha_1, ..., \alpha_k \subset \mathbb{R}, x = \sum_{i=1}^k \alpha_i x_i \}$$

- Span of any set of vectors forms a vector subspace. (Proof?)
- The span of V is the smallest linear subspace that contains V.
- If every vector of a vector space X can be written as a linear combination of vectors in set V, we say that V spans X.

Basis and Dimension

- Assume a set of vectors span the subspace Y of the vector space X. If the set of vectors are linearly independent, then it is called a **basis** of the subspace of Y.
- Any basis of a vector space contains the same number of elements.
 - The number of elements of the basis of a vector space is called the dimension of the vector space.
- A basis for \mathbb{R}^3 is $\{(1,2,0),(0,1,2),(2,0,1)\}$. Therefore dimension of \mathbb{R}^3 is 3.

Orthogonal and Orthonormal Basis

- If the inner product of two vectors gives zero, these vectors are said to be orthogonal.
 - Elements of $\{(2,0,0),(0,2,0),(0,0,2)\}$ are orthogonal to each other.
- If the vectors of the basis of a vector space are orthogonal, we call it an orthogonal basis.
- If the vectors of the basis of a vector space are orthogonal and the norm of each is 1, we call it an orthonormal basis.
 - $\{(1,0,0),(0,1,0),(0,0,1)\}$ is an orthonormal basis of \mathbb{R}^3 .
- Any set of basis vectors can be converted into an orthonormal basis by the Gram-Schmidt process.

Orthogonal Complement

• Given a set of vectors S in the Hilbert space X, S^{\perp} denotes the **orthogonal complement** of S:

$$S^{\perp} = \{ x \in X | \forall s \in S, \langle x, s \rangle = 0 \}$$

- Orthogonal complement of any set is a linear subspace.
- Orthogonal complement of k linearly independent vectors in an n-dimensional vector space is of dimension n k.
- If S is a linear subspace, then $S \cap S^{\perp} = \{0\}$

Orthogonal projection

• Let S be a linear subspace of \mathbb{R}^n . Then $x \in V$ can be **uniquely** defined as

$$x = s_x + s_x^{\perp}$$

We call s_x the orthogonal decomposition of x onto S.

• s_x is the closest element in S to x in the sense that:

$$||s_x - x|| \le ||s - x|| \forall s \in S$$