

Razonamientos o Argumentos

Docente: Anabel N. Ruiz

Razonamientos o Argumentación

 Si la lógica estudia los principios de la inferencia válida, entonces un cálculo lógico nos podrá decir que esquemas de inferencia son válidos y cuáles no.

Sistema de Leyes

Sistemas Axiomáticos

Sistema de Reglas

Sistemas de Deducción Natural

Forma Argumentativa

- Una forma argumentativa es una sucesión finita de formas enunciativas (premisas), de las cuales la última se considera como la conclusión de las anteriores.
- La notación es:

$$A_1, A_2, ..., A_n : A$$

Se lee "A₁, A₂, ..., A_n por lo tanto A"

 Para que una forma argumentativa sea válida debe representar un razonamiento correcto.

Ejemplo

- Si Alexia toma el autobús, entonces Alexia pierde su entrevista si el autobús llega tarde.
- Alexia no vuelve a su casa, si Alexia pierde su entrevista y Alexia se siente deprimida.
- Si Alexia no consigue el trabajo, entonces Alexia se siente deprimida y Alexia no vuelve a su casa.
- Por lo tanto, si Alexia toma el autobús entonces Alexia no consigue el trabajo si el autobús llega tarde.

- p: Alexia toma el autobús
- q: Alexia pierde su entrevista
- r: el autobús llega tarde
- s: Alexia vuelve a su casa
- t: Alexia se siente deprimida
- u: Alexia consigue el trabajo

A1:
$$p \rightarrow (r \rightarrow q)$$

A2:
$$(q \wedge t) \rightarrow (\neg s)$$

A3:
$$(\neg u) \rightarrow (t \land (\neg s))$$

A:
$$p \rightarrow (r \rightarrow (\neg u))$$

Ejemplo (cont.)

A ₁	A ₂	A ₃	Α
$p \rightarrow (r \rightarrow q)$	$(q \wedge t) \rightarrow (\neg s)$	$(\neg u) \rightarrow (t \land (\neg s))$	$p \rightarrow (r \rightarrow (\neg u))$
V V VVV	V F F V F V	FV V FF FV	V F V F F V

Así, la forma argumentativa es inválida.

Proposición: La forma

argumentativa A₁, A₂, ..., A_n ∴ A es válida si y solo si la forma enunciativa

 $(A_1 \land A_2 \land ... \land A_n) \rightarrow A$ es una tautología

$$\varphi \mid = A$$

que se lee:

"φ implica lógicamente a A""A se deduce de φ"Siendo φ (Phi) un conjunto de premisas

Reglas de la Negación

Eliminación del Negador

E- EN

Regla de la Doble Negación (DN)

$$\frac{\neg \neg A}{A}$$

Introducción del Negador

I - IN

Regla de Reducción al Absurdo (Abs.)

$$\frac{A}{B \land \neg B}$$

Reglas de la Conjunción

Eliminación del Conjuntor

E / EC

Regla de la Simplificación (Simp.)

$$\begin{array}{c|c}
A \land B \\
\hline
A \\
\hline
B
\end{array}$$

Introducción del Conjuntor

I / IC

Regla del Producto (Prod.)

A B A ∧ B

Reglas de la Disyunción

Eliminación del Disyuntor

E V ED

Regla de los Casos (Cas.)

Introducción del Disyuntor

I V ID

Regla de la Adición(Ad.)

Reglas del Condicional o Implicación

Eliminación del Implicador

 $\mathsf{E} \longrightarrow \mathsf{EI}$

Regla del Modus Ponendo Ponens (MP)

$$\begin{array}{c} A \longrightarrow B \\ A \\ \hline B \end{array}$$

Introducción del Implicador

 $I \longrightarrow II$

Teorema de la Deducción

Reglas del Bicondicional

Eliminación del Bicondicional

$$\mathsf{E} \longleftrightarrow \mathsf{EB}$$

$$\frac{A \longleftrightarrow B}{(A \longrightarrow B) \land B \longrightarrow A}$$

Introducción del Bicondicional

$$I \longleftrightarrow IB$$

$$A \longrightarrow B$$

$$B \longrightarrow A$$

$$A \longleftrightarrow B$$

Regla de Modus Tollendo Tollens (MT)

$$\begin{array}{c} X \longrightarrow Y \\ \hline \neg Y \\ \hline \hline \neg X \end{array}$$

Regla del Silogismo Disyuntivo (Sil Disy)

Regla de Transitividad Condicional (Trans C)

$$\begin{array}{c} X \longrightarrow Y \\ Y \longrightarrow Z \\ \hline X \longrightarrow Z \end{array}$$

Regla de Contraposición del Condicional (Cont C)

$$\begin{array}{c} X \longrightarrow Y \\ \hline \neg Y \longrightarrow \neg X \end{array}$$

Regla de Identidad (Id)

Regla de Conmutatividad de la Conjunción (Conm C)

Regla de Conmutatividad de la Disyunción (Conm D)

Regla de Asociatividad de la Conjunción (As C)

Regla de Asociatividad de la Disyunción (As D)

Regla de Ex contradictione quodlibet (ECQ)

Leyes de De Morgan (DM)

$$\begin{array}{ccc}
\neg(X \land Y) & \neg(X \lor Y) \\
\hline
\neg X \lor \neg Y & \neg X \land \neg Y
\end{array}$$

Método Directo

 Consiste en demostrar la verdad de una conclusión o tesis, dadas ciertas premisas o hipótesis que se suponen verdades.

p	q	$p \longrightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Procedimiento de Deducción Formal

- 1. Se determinan cuáles son las premisas.
- 2. Se determina cuál es la conclusión, y se la deja aparte, que es lo que se quiere demostrar.
- 3. Se aplican leyes lógicas o reglas de inferencia sobre las premisas de la cual se derivan nuevas líneas.
- 4. El proceso termina cuando se llega a una línea que contiene lo que se quiere demostrar (la tesis).

Ejemplo

Para demostrar la validez del siguiente argumento:

p, p
$$\rightarrow$$
q, \neg r \rightarrow \neg q, s \lor \neg r \Rightarrow s

Pasos	Razones
1) p	premisa 1
2) $p \rightarrow q$	premisa 2
3) $\neg r \rightarrow \neg q$	premisa 3
4) $s \vee \neg r$	premisa 4
5) <i>q</i>	1 y 2 MP (modus ponens)
6) ¬(¬ <i>r</i>)	3 y 5 MT (modus tollens)
7) r	6 DN (doble negación)
8) s	4 y 7 SD, (lo que se quería demostrar)

Ejemplo:

Comprobar por tablas de verdad si es o no válido el siguiente esquema argumentativo: $p \rightarrow q \vdash p \lor q \rightarrow q$

p	q	$p \longrightarrow q$	p ∨ q	$p \lor q \longrightarrow q$
1	1	1	1	1
1	0	0	1	0
0	1	1	1	1
0	0	1	0	1

El esquema es válido, ya que en las tres interpretaciones en que la premisa es V también es V la conclusión.

Métodos Indirectos – Contraposición o Contrarecíproco

- Las demostraciones están basadas en la equivalencia lógica del contrarecíproco, la cual dice que: p→q ⇔ ¬q → ¬p
- Es decir, se toma ¬q como válida y se debe deducir ¬p.
 Y a partir de allí, lo que se hace es construir una demostración directa de ¬q →¬p.
- Entonces demostrar que $p_1 \land p_2 \land ... \land p_n \Rightarrow q$ será equivalente a demostrar que $\neg q \Rightarrow \neg (p_1 \land p_2 \land ... \land p_n)$

Procedimiento de Deducción

- 1. Supones que la conclusión es falsa.
- 2. Analizar los valores de verdad de las proposiciones que componen las premisas. Se debe trabajar bajo la suposición de que las premisas son verdaderas; hasta que resulten todas verdaderas o hasta que una de ellas resulte forzosamente falsa. Si resultan todas las premisas verdaderas el razonamiento no es válido, mientras que, si alguna premisa es falsa, el razonamiento es válido.

Ejemplo:

- Si 1Gb es mejor que nada, se comprará una PC nueva. No se comprará una PC nueva. Luego, no es cierto que 1Gb sea mejor que nada.
- Las proposiciones serán:
 - -p: "1Gb es mejor que nada"
 - –q: "Se comprará una PC nueva"

 Expresado simbólicamente, el razonamiento, quedaría:

Métodos Indirectos - Reducción al Absurdo

$$\neg p \longrightarrow F$$

- Existe otra regla de inferencia que dice así:
- Es decir, si suponer $\neg p$ te lleva a una contradicción, entonces quien se cumple es p.
- La demostración de razonamientos con más de una premisa del tipo $\mathbf{p_1}$, $\mathbf{p_2}$, ..., $\mathbf{p_n} \Rightarrow \mathbf{q}$, para demostrar que es válido, se debe probar que suponer la coexistencia de las premisas y de la negación de la conclusión nos llevaría a una contradicción. Se debe mostrar que:

$$(p_1, p_2, ..., p_n) \land \neg q \Rightarrow F$$

Procedimiento de Deducción

- 1. Suponer que las premisas son verdaderas y que la conclusión es falsa.
- 2. Buscar que se produzca una contradicción.
- 3. Una vez ocurrida la contradicción se concluye que el razonamiento es válido, pues estaría probado que suponer que las premisas son verdadera y simultáneamente la conclusión es falsa es una contradicción.

Ejemplo: demostrar si el razonamiento es válido

$\neg p \longrightarrow q$
¬p
$\neg q \longrightarrow r$

Pasos	Razones		
1. ¬p → q	premisa 1		
2. ¬p <i>∨</i> r	premisa 2		
3. $\neg(\neg q \longrightarrow r)$	premisa 3 (se supone que la conclusión no		
	es verdadera)		
4. ¬q ∕1 ¬r	negación de la implicación 3 (Conjunto Ad.		
	de Conectivas $x \longrightarrow y \Leftrightarrow \neg (x \land \neg y))$		
5. ¬q	Simplificación conjuntiva en 4		
6. ¬r	Simplificación conjuntiva en 4		
7. p	MT con 1 y 5, y DN (doble negación)		
8. ¬p	SD con 2 y 6		
9. F	Combinación conjuntiva con 7 y 8		
10. $\neg q \longrightarrow r$	Queda probada la conclusión por el		
	Método de Contradicción		

Formalización de Argumentos

- 1. Reformular las proposiciones que den lugar a equivocaciones, cuando esto sea necesario.
- 2. Establecer convenciones simbólicas adoptadas entre proposiciones simples y letras proposicionales.
- 3. Determinar la estructura de conectivas de cada premisa y de la conclusión.
- 4. No obstante, en general debe tenerse en cuenta que:
 - a. Las estructuras del lenguaje natural son variadas y flexibles.
 - El lenguaje artificial tiene estructuras rígidas y no admite ambigüedad.

Ejemplo

 Juan es francés si nació el 23 de febrero. Si es bretón, entonces es más bien bajo. Ahora bien, nació el 23 de febrero o es bretón. Luego, es francés o es más bien bajo.

Convenciones simbólicas

p: Juan es francés

q: Nació el 23 de febrero

r: es bretón

s: es más bien bajo

Formalización

$$p \rightarrow q, r \rightarrow s, q \vee r$$

Ejemplo

- Si a es un número par y b es un número impar, entonces c es igual a a. Ahora bien, c no es igual a, a menos que sea mayor que b. Pero c no es mayor que b. Además, a es un número par. Luego, b no es un número impar
- Convenciones simbólicas

p: a es un número par

q: b es un número impar

r: c es igual a a

s: c es mayor que b

Formalización

$$(p \land q) \rightarrow r, \neg r \lor s, \neg s, p \vdash \neg q$$

Ejemplo CDN

$$p \longrightarrow (q \longrightarrow r), p \longrightarrow q, p \vdash r$$

1	$p \longrightarrow (q \longrightarrow r)$	Premisa
2	$p \longrightarrow q$	Premisa
3	р	Premisa
4	$q \longrightarrow r$	MP 1,3
5	q	MP 2,3
6	r	MP 4,5

 $\begin{array}{c} A \longrightarrow B \\ A \\ \hline B \end{array}$