Class 11: Introduction to Genome Informatics Lab

Audrey Nguyen

Section 1. Proportion og G/G in a population

 $Downloaded\ a\ CSV\ file\ from\ Ensemble < https://useast.ensembl.org/Homo_sapiens/Variation/Sample?db=coresions/sample.db=coresions/sample.db=coresions/sample.db=coresions/sample.db=coresions/sample.db=coresions/sample.db=coresions/sample.db=c$

Here we read this CSV file

```
mxl <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378 (1).csv")</pre>
  head(mxl)
  Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
                   NA19648 (F)
                                                       A|A ALL, AMR, MXL
2
                   NA19649 (M)
                                                       G|G ALL, AMR, MXL
3
                   NA19651 (F)
                                                       A|A ALL, AMR, MXL
4
                                                       G|G ALL, AMR, MXL
                   NA19652 (M)
5
                   NA19654 (F)
                                                       G|G ALL, AMR, MXL
                                                       A|G ALL, AMR, MXL
                   NA19655 (M)
 Mother
1
2
3
5
```

table(mxl\$Genotype..forward.strand.)

```
A|A A|G G|A G|G
22 21 12 9

table(mxl$Genotype..forward.strand.) / nrow(mxl) * 100

A|A A|G G|A G|G
34.3750 32.8125 18.7500 14.0625
```

Now let's look at a different population. I picked the GBR.

```
gbr <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")
head(gbr)</pre>
```

```
Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
1
                   HG00096 (M)
                                                       A|A ALL, EUR, GBR
2
                   HG00097 (F)
                                                       G|A ALL, EUR, GBR
3
                   HG00099 (F)
                                                       G|G ALL, EUR, GBR
                                                       A|A ALL, EUR, GBR
4
                   HG00100 (F)
                                                       A|A ALL, EUR, GBR
5
                   HG00101 (M)
6
                   HG00102 (F)
                                                       A|A ALL, EUR, GBR
 Mother
1
2
3
4
5
6
```

Find proportion of G|G

```
round(table(gbr$Genotype..forward.strand.) / nrow(gbr) * 100, 2)
A|A A|G G|A G|G
```

This variant that is associated with childhood astham is more frequent in the GBR population than the MKL population.

Let's now dig into this further.

25.27 18.68 26.37 29.67

Population Scale Analysis

Q13. Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes.

How many samples do we have?

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")</pre>
  head(expr)
   sample geno
1 HG00367 A/G 28.96038
2 NA20768 A/G 20.24449
3 HG00361 A/A 31.32628
4 HG00135 A/A 34.11169
5 NA18870 G/G 18.25141
6 NA11993 A/A 32.89721
  nrow(expr)
[1] 462
  table(expr$geno)
A/A A/G G/G
108 233 121
  library(ggplot2)
Let's make a boxplot.
  ggplot(expr) + aes(geno, exp, fill = geno) + geom_boxplot(notch = TRUE)
```


It looks like the SNP between the G and A affects expression levels. A/A median expression \sim 32 A/G median expression = 25 G/G median expression = 20 A/A has more expression than A/G and G/G, so it looks like the A allele is induces more expression.