Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicitie		
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1		
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} ==$	$0 \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3		
$\tau_1^{\#_1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3		
$\overline{\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta}} = =$	$0 \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	3		
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$			
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$			
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$			
$\tau_{2+}^{\#1\alpha\beta} - 2 \bar{\imath} k \sigma_{2+}^{\#1\alpha\beta} =$	$= 0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5		
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$			
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$			
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$			
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$			
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$			
	6 $i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -			
	$4 \bar{\imath} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$			
Total constraints/g	16			

					,			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i (6k^2 (2r_3 + r_5) + t_1)}{\sqrt{2} k (1 + 2k^2)^2 (2r_3 + r_5) t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2k^4)(2r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0 0 0		0	
	$_{1}^{\#1}+^{\alpha\beta}$	$_{1}^{#2}$ $+^{\alpha\beta}$	$^{"#1}_{1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} + \alpha$	$t_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$	

							3,				3			k^2	1
				$\sigma_{0^-}^{\#1}$	0 0	$\frac{1}{k^2 r_2 \cdot t_1}$	$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	$f_{0}^{#2}$	0	0 0		
	$\sigma_{2}^{\#1}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$		τ ^{#2} ο	0 0	0	$\omega_2^{\#1}_{+}_{lphaeta}$			0	$f_{0}^{\#1}$		0 0	0	
αβ .	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k^2}{(1+2k^2)^2}$	$\frac{c}{t_1}$ 0	τ [#] 1 0	0 0	0	ω_2^*	β $\frac{t_1}{2}$	β $\frac{ikt_1}{\sqrt{2}}$		$\omega_{0}^{\#1}$	6 k² r₃		0	
αβ	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2}$	$\frac{1}{t_1}$ 0	$\sigma_{0}^{\#1}$	0 0	0		$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{\#1} + \alpha^{\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$			f#+++ f#2+	ω_{0}^{*1}	I
βχ	0	0	$\frac{2}{t_1}$	Q#1 + + + 0	$\tau_{0}^{#1} + \tau_{0}^{#2} + \tau_{0}^{#2}$	$\sigma_{0}^{\#1}$ †		3	f	$\omega_2^{\#}$		$^{\#}\mathcal{S}_{0}$	f ₀ #	0 , #3	
_				0	1	0	α				—	. kt ₁		$\frac{t_1}{t_1}$	
	, 5						$f_{1}^{#2}$	0	0	0	<u>ikt1</u>	$\frac{1}{3}$ \vec{l} $\sqrt{2}$	0	$\frac{2k^2t_1}{3}$	
	$\omega_{,\theta}^{\theta}\partial^{\prime}f^{\alpha}_{\alpha}-2\partial_{\prime}f^{\theta}_{\theta}$ $\alpha_{\alpha}\partial_{\theta}f_{\prime}^{\theta}-6\partial_{\alpha}f_{\prime\theta}\partial^{\theta}f^{\alpha\prime}$	Ī		-	(χ		$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
	$\alpha^{2}-2\hat{c}$ $6\partial_{\alpha}f_{,}$	$^{1\theta}f^{\alpha\prime}+$		$\partial_{ heta}\omega_{eta}$	$\partial^{\theta}\omega^{\alpha\prime}$	3	χ							$\sqrt{2} kt_1$	
	$\frac{\partial}{\partial \sigma} - 4 \omega_{\alpha}^{\theta} \partial_{\sigma} f^{\alpha \prime} + 4 \omega_{\sigma}^{\theta} \partial^{\sigma} f^{\alpha} - 2 \partial_{\sigma} f^{\theta}$ $2 \partial_{\sigma} f^{\alpha \prime} \partial_{\theta} f_{\alpha}^{\theta} + 4 \partial^{\sigma} f^{\alpha} \partial_{\theta} f_{\sigma}^{\theta} - 6 \partial_{\alpha} f_{\sigma} \partial^{\theta}$	$3 \partial_{\alpha} f_{\theta_{I}} \partial^{\theta} f^{\alpha I} + 3 \partial_{I} f_{\alpha \theta} \partial^{\theta} f^{\alpha I} + 3 \partial_{\theta} f_{\alpha I} \partial^{\theta} f^{\alpha I} + 3 \partial_{\theta} f_{\alpha I} \partial^{\theta} f^{\alpha I} + 6 \omega_{\alpha \theta_{I}} (\omega^{\alpha I \theta} + 2 \partial^{\theta} f^{\alpha I})) +$	$\alpha\beta\theta$ +	$egin{array}{l} a + \partial_{lpha} \omega^{lpha \mu^{\prime\prime}} \partial_{eta} \omega^{eta^{\prime\prime}}, \ [\omega^{\prime}_{}, \beta^{}] \ \partial^{eta} \omega^{lpha eta^{\prime\prime}}, \ eta^{\prime\prime} \ \partial^{eta} \omega^{lpha eta^{\prime\prime}}) + \end{array}$	$(\partial_{\alpha}\omega^{\alpha})^{\prime} = \partial_{\theta}\omega^{\prime\prime} + \partial_{\theta}\omega^{\alpha\prime} = (\partial_{\alpha}\omega^{\alpha\prime\theta} - 2\partial^{\theta}\omega^{\alpha\prime})^{\prime\prime}$) 3	$\omega_{1^{-}}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	- LJ 8	0	_	
	$4 \omega_{\alpha}^{6}$	'+3 <i>δ</i> ' θ+2	α - $\partial_1\omega$	$_3\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{3}}}}}}}}$	$(\partial_{lpha}\omega^{lpha})$	<u>}</u>					t ₁	,		-13	
	$\omega_{i}^{\theta} - 4 \omega_{\alpha}^{\theta} \partial_{i} f^{\alpha i} + 4 \omega_{\alpha}^{\theta}$	$\partial^{\theta}f^{\alpha}$	$\beta_{eta}\omega_{1eta_{i}}$	$a + \partial_i \omega_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\alpha^{\alpha'} = 0$		α				+ 12)+	112		$i k t_1$	
	$\begin{array}{c} \theta \\ \alpha \\ \theta \end{array} \partial_{\rho}$	$\partial_{i}f_{\alpha\ell}$ $\omega_{\alpha\theta_{i}}$	$\alpha_{\beta}^{+} + 2\dot{\alpha}_{\beta}^{0}$	$(\omega_{\beta}^{}\theta)$ + $\partial_{\alpha}\omega$ + $2\partial_{\alpha}$	$(\alpha - \partial_{\theta} \omega_{K}^{K} \partial^{\theta} \omega^{\alpha})$	1,1,1	$\omega_1^{\#1}$	0	0	0	$k^2 (2 r_3 +$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\vec{I}$	
	-4ω	α' + 3 α' + 6	$\partial_{eta}\omega_{lpha \epsilon}$	$\alpha + \partial_{\alpha}$ $\beta \omega_{\beta}$	$\omega_{\theta} = \omega_{\theta} = \omega_{\theta}$	$\theta \gtrsim \chi$	8				k^2 ()				
+	3 ' "	$f_{\theta} = \frac{\partial}{\partial x} f_{\theta}$	$\partial_{\beta}\omega_{\alpha_{I}\theta}$ - $2\partial_{\beta}\omega_{\alpha_{B_{I}}}$ + $2\partial_{\beta}\omega_{I}$ $\partial_{\theta}\omega_{\alpha_{B_{I}}}$ - $2\partial_{\theta}\omega_{\alpha_{I}\beta}$) $\partial^{\theta}\omega^{\alpha_{B_{I}}}$ -	$\frac{\partial^{\prime}\omega^{ap}}{\partial t}$	ω^{α}_{α} ω^{α}_{α}	θ ' 33	$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\sigma_{\alpha \beta \chi}$	$\partial' f^{\alpha}$	$3\partial_{\alpha}f$ $3\partial_{\theta}f$	$\frac{1}{3} r_2 \left(4 \partial_{\beta} \omega_{\alpha l \theta} - 2 \partial_{\beta} \omega_{\alpha \theta l} + 2 \partial_{\beta} \omega_{l \theta \alpha} - \partial_{l} \omega_{\alpha \beta \theta} + \right.$ $\left. \partial_{\theta} \omega_{\alpha \beta l} - 2 \partial_{\theta} \omega_{\alpha l \beta} \right) \partial^{\theta} \omega^{\alpha \beta l} -$	$2 r_3 \left(\partial_eta \omega_{\mu}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$r_5 (\partial_i \omega_{\theta}^{\ \ \kappa} \partial^{\theta} \omega^{lpha_i})$		$\omega_{1}^{\#2}_{\alpha\beta} \ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega^{ap\chi}$	$\frac{1}{6}t_1 (2 \omega^{\alpha'})$		$\frac{1}{3}$ r_2 (4	2 <i>r</i> 3 (<i>0</i>	·5 (∂,α		3								
$\tau_{\alpha\beta}$ +	.,, •		,		_		$\omega_{1}^{\#1}{}_{\alpha\beta}$	+ 12)	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	
$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$							$\omega_1^{_{\pm}}$	$k^2 (2 r_3 + r_5) - \frac{t_1}{2}$	i	<u> </u>					
								$-\alpha\beta$ κ^2	-αβ	-αβ	$+_{\alpha}$	+α	+α	$+^{\alpha}$	
اا اا								$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$