Summer-2020 UM-SJTU JI Ve311 Final

Instructor: Dr. Chang-Ching Tu

Due: August 05, 2020 (Wednesday) in class

Note:

(1) Please write your answer on A4- or Letter-size papers.

(2) One A4- or Letter-size double-sided paper of notes is allowed.

[Small-Signal Equivalent Circuit, 30%] Assume M₁ and M₃ operate in the forward-active region and M₂ and M₄ operate in the saturation region. *Take Early Effect, Channel-Length Modulation and Body Effect into consideration.* Derive the analytical expressions of R_{in1} [5%], R_{out1} [5%], R_{in2} [5%], R_{out2} [5%] and G_{m2} [5%].

- 2. [Common-Source with Diode-Connected Load, 30%] Assume $\lambda = \gamma = 0$.
 - A. [15%] $(W_{drawn}/L_{drawn})_1 = 100 \,\mu\text{m}/2.18 \,\mu\text{m}$ and $(W_{drawn}/L_{drawn})_2 = 1 \,\mu\text{m}/5.16 \,\mu\text{m}$. Draw the waveform of V_{out} .
 - B. [15%] For circuit B, $(W_{drawn}/L_{drawn})_1 = (W_{drawn}/L_{drawn})_3 = 50 \,\mu\text{m}/2.18 \,\mu\text{m}$ and $(W_{drawn}/L_{drawn})_2 = 1 \,\mu\text{m}/5.16 \,\mu\text{m}$. Draw the waveform of V_{out} .

- 3. [Small-Signal Analysis, 21%] Assume all transistors operate in saturation. All answers in analytical expressions.
 - A. [7%] ($\lambda = 0$ and $\gamma = 0$) V_A , V_B and V_C are DC biasing voltages. Derive the voltage gain, $A_{\upsilon} = \frac{\upsilon_{out}}{\upsilon_{in}}$.
 - B. [3% and 4%] ($\lambda \neq 0$ and $\gamma \neq 0$) I_{SS} is ideal current source. Derive the voltage gains, $A_{\upsilon 1} = \frac{\upsilon_{out1}}{\upsilon_{in}}$ and $A_{\upsilon 2} = \frac{\upsilon_{out2}}{\upsilon_{in}}$.
 - C. [7%] ($\lambda = 0$ and $\gamma = 0$) V_a , V_b and V_c are DC biasing voltages. Derive the voltage gain, $A_\upsilon = \frac{\upsilon_{out}}{\upsilon_{in}}$.

4. [Diode-Connected Load, 9%, and Current Source Load, 10%] Assume $\lambda \neq 0$ and $\gamma \neq 0$. The size of M_1 is $W_{drawn}/L_{drawn} = 20 \ \mu m/2.16 \ \mu m$. Plot I_X versus V_X increasing from 0 V to 3 V.

NMOS Model				
L	EVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
N	SUB = 9e+14	LD = 0.08e-6	UO = 350	LAMBDA = 0.1
T	OX = 9e-9	PB = 0.9	CJ = 0.56e-3	CJSW = 0.35e-11
М	IJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e-8
PMOS Model				
L	EVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
N	SUB = 5e+14	LD = 0.09e-6	UO = 100	LAMBDA = 0.2
T	OX = 9e-9	PB = 0.9	CJ = 0.94e-3	CJSW = 0.32e-11
М	IJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8

VTO: threshold voltage with zero V_{SB} (unit: V) GAMMA: body effect coefficient (unit: V^{1/2})

PHI: $2\Phi_F$ (unit: V)

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²) CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

Vacuum permittivity (ϵ_o) = 8.85 × 10⁻¹² (F / m) Silicon oxide dielectric constant (ϵ_r) = 3.9

In case you cannot upload your pdf file to Canvas, please email it or send WeChat photo to TA immediately. Thanks.

liuzuheng@sjtu.edu.cn

