

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny Arkusz pokazowy	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
Formy arkusza:	MMAP-P0-100, MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-660, MMAP-P0-700, MMAP-P0-Q00	
Data publikacji dokumentu:	18 marca 2022 r.	

Uwagi:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający, rozwiązując zadanie otwarte, popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

7ad	lanie	1	(0-1)
∠au	aiic	-	U-1

Laddino II (0 1)		
Wymagania egzaminacyjne 2023 i 2024¹		
Wymagania szczegółowe		
Zdający:		
I.1) wykonuje działania (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, pierwiastkowanie, logarytmowanie) w zbiorze liczb rzeczywistych;		
I.4) stosuje związek pierwiastkowania		
z potęgowaniem oraz prawa działań na potęgach i pierwiastkach.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

¹ Komunikat o wymaganiach egzaminacyjnych obowiązujących w roku 2023 i 2024, https://www.gov.pl/web/edukacja-i-nauka/wymagania-egzaminacyjne-obowiazujace-na-egzaminie-maturalnym-w-roku-2023-i-2024

Zadanie 2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz	I.9) stosuje związek logarytmowania z potęgowaniem, posługuje się wzorami na logarytm iloczynu, logarytm ilorazu i logarytm potęgi.
wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 3. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.2) zlicza obiekty, stosując reguły
2. Dobieranie i tworzenie modeli	mnożenia i dodawania [].
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 4. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	II.1) stosuje wzory skróconego mnożenia
1. Stosowanie obiektów matematycznych	na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 .
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 5. (0-2)

Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	IV.1) rozwiązuje układy równań liniowych	
1. Stosowanie obiektów matematycznych	z dwiema niewiadomymi, podaje	
i operowanie nimi, interpretowanie pojęć	interpretację geometryczną układów	
matematycznych.	oznaczonych, nieoznaczonych	
	i sprzecznych.	
	VIII.4) korzysta z własności kątów [].	

Zasady oceniania

2 pkt – wybranie dwóch poprawnych odpowiedzi: B i E.

1 pkt – wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna: B albo E.

0 pkt – odpowiedź całkowicie niepoprawna albo brak odpowiedzi.

Rozwiązanie

ΒE

Zadanie 6. (0-1)

Wymagania ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	V.2) oblicza wartość funkcji zadanej
rzeczywistych, także przy użyciu	wzorem algebraicznym.
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	
III. Wykorzystanie i interpretowanie	
reprezentacji.	
Stosowanie obiektów matematycznych	
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 7. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.6) rozwiązuje równania wymierne postaci
1. Stosowanie obiektów matematycznych	$\frac{V(x)}{W(x)} = 0$, gdzie wielomiany $V(x)$ i $W(x)$
i operowanie nimi, interpretowanie pojęć	
matematycznych.	są zapisane w postaci iloczynowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 8. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	I.6) posługuje się pojęciem przedziału
1. Stosowanie obiektów matematycznych	liczbowego, zaznacza przedziały na osi
i operowanie nimi, interpretowanie pojęć	liczbowej;
matematycznych.	I.7) stosuje interpretację geometryczną
	i algebraiczną wartości bezwzględnej,
	rozwiązuje równania i nierówności typu:
	$ x + 4 = 5, x - 2 < 3, x + 3 \ge 4.$

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 9. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia [].
odróżnianie dowodu od przykładu.	

Zasady oceniania

dla sposobów 1. i 2.

2 pkt – przeprowadzenie pełnego dowodu, tzn.:

przekształcenie wyrażenia $(2k+1)^2+2023\,$ do postaci $4\cdot m(k)\,$ oraz uzasadnienie, że $m(k)\,$ jest liczbą parzystą

LUB

przekształcenie wyrażenia $(2k+1)^2+2023$ do postaci sumy składników, z których każdy jest liczbą podzielną przez $\,8\,$ i uzasadnienie podzielności przez $\,8\,$ każdego składnika

LUB

uzasadnienie podzielności przez 8 wyrażeń $(4k-1)^2+2023$ oraz $(4k+1)^2+2023$, gdzie $k\in\mathbb{Z}$

LUB

zapisanie liczby n^2+2023 w postaci $n^2-1+8\cdot 253$ i uzasadnienie, że n^2-1 jest liczbą podzielną przez 8.

1 pkt – zapisanie liczby n w postaci n=2k+1, gdzie $k\in\mathbb{Z}$, i przekształcenie wyrażenia $(2k+1)^2+2023$ do $4k^2+4k+1+2023$ lub $(2k+1)^2-1+2024$

LUB

przeprowadzenie pełnego dowodu dla n postaci 4k-1 (lub 4k+1), gdzie $k\in\mathbb{Z}$ IUB

przeprowadzenie pełnego dowodu dla dwóch lub trzech przypadków spośród:

$$n=8k+1,\ n=8k+3,\ n=8k+5,\ n=8k+7$$
 (gdzie $k\in\mathbb{Z}$) LUB

zapisanie liczby $n^2 + 2023$ w postaci $n^2 - 1 + 8 \cdot 253$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający stosuje metodę indukcji i przeprowadzi dowód tylko dla liczb dodatnich/ujemnych, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Niech n będzie liczbą całkowitą nieparzystą. Wtedy n=2k+1 przy pewnym $k \in \mathbb{Z}$, więc $n^2+2023=(2k+1)^2+2023=4k^2+4k+1+2023=4k(k+1)+2024$.

Jeżeli k jest liczbą parzystą, to liczba 4k(k+1) jest podzielna przez 8 jako iloczyn liczby 4, liczby parzystej k i liczby całkowitej k+1.

Jeżeli k jest liczbą nieparzystą, to liczba 4k(k+1) jest podzielna przez 8 jako iloczyn liczby 4, liczby parzystej k+1 i liczby całkowitej k.

Liczba 2024 jest podzielna przez 8, gdyż $2024 = 8 \cdot 253$.

Zatem liczba 4k(k+1) + 2024 jest podzielna przez 8 jako suma liczb podzielnych przez 8. To kończy dowód.

Sposób 2.

Zauważmy, że $n^2 + 2023 = n^2 - 1 + 2024 = (n-1)(n+1) + 8 \cdot 506$.

Ponieważ n jest liczbą całkowitą nieparzystą, to n-1 i n+1 to dwie kolejne liczby parzyste. Zatem jedna z tych liczb jest podzielna przez 4. Stąd wynika, że iloczyn (n-1)(n+1) jest podzielny przez $2\cdot 4=8$. Suma dwóch liczb podzielnych przez 8 jest podzielna przez 8. To kończy dowód.

Zadanie 10.1. (0-1)

Westernie	Missanania anananihassa
Wymagania ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie informacjami przedstawionymi w tekście,	V.12) na podstawie wykresu funkcji $y = f(x)$ szkicuje wykresy funkcji
zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	y = f(x - a), y = f(x) + b [].
III. Wykorzystanie i interpretowanie reprezentacji.	
Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Γ

Zadanie 10.2. (0-1)

Zadanie 10.2. (0–1)	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	V.4) odczytuje z wykresu funkcji: dziedzinę, zbiór wartości, miejsca zerowe, przedziały monotoniczności, przedziały, w których funkcja przyjmuje wartości większe (nie mniejsze) lub mniejsze (nie większe) od danej liczby, największe i najmniejsze wartości funkcji (o ile istnieją) w danym przedziale domkniętym oraz argumenty, dla których wartości największe i najmniejsze
	są przez funkcję przyjmowane.

Zasady oceniania

1 pkt – rozwiązanie poprawne.

0 pkt – rozwiązanie niepoprawne lub niepełne albo brak rozwiązania.

Przykładowe pełne rozwiązanie

$$(-\infty, -1] \cup [3, +\infty)$$

Zadanie 10.3. (0-3)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.8) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci ogólnej, kanonicznej i iloczynowej (jeśli istnieje); V.9) wyznacza wzór funkcji kwadratowej na podstawie informacji o tej funkcji lub o jej wykresie.

Zasady oceniania

- 3 pkt poprawna metoda obliczenia (lub wyznaczenia) współczynnika a i zapisanie wzoru funkcji f w postaci kanonicznej: $f(x) = -2(x-1)^2 + 8$.
- 2 pkt zapisanie poprawnego równania z jedną niewiadomą a LUB zapisanie wzoru funkcji f w postaci $f(x)=-2(x-1)^2+8$ bez uzasadnienia, że a=-2.
- 1 pkt poprawne odczytanie z wykresu współrzędnych wierzchołka paraboli i zapisanie $f(x)=a(x-1)^2+8 \ \, (\text{lub zapisanie} \ \, f(x)=a(x-1)^2+8 \ \, \text{z arbitralnie przyjętym}$ współczynnikiem $a\neq -2$)

LUE

poprawne odczytanie z wykresu miejsc zerowych funkcji $\,f\,\,$ i zapisanie

$$f(x) = a(x+1)(x-3)$$

LUB

zapisanie wzoru funkcji f w postaci ogólnej $f(x) = ax^2 + bx + c$ i zapisanie trzech poprawnych równań z niewiadomymi a, b oraz c.

0 pkt – rozwiązanie niepoprawne lub niepełne albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający błędnie odczyta jedną współrzędną wierzchołka paraboli będącej wykresem funkcji *f* i konsekwentnie doprowadzi rozwiązanie do końca, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.
- 2. Jeżeli zdający błędnie odczyta jedną współrzędną wierzchołka lub innego punktu należącego do wykresu funkcji f i konsekwentnie do popełnionego błędu zapisze równanie z jedną niewiadomą a, i na tym zakończy, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Korzystamy ze wzoru na postać kanoniczną funkcji kwadratowej i zapisujemy $f(x) = a(x-p)^2 + q$.

Odczytujemy z wykresu funkcji f współrzędne wierzchołka paraboli: p=1 oraz q=8. Zatem $f(x)=a(x-1)^2+8$.

Z wykresu odczytujemy jedno z miejsc zerowych funkcji f, np. x=-1. Ponieważ f(-1)=0, więc

$$0 = a(-1 - 1)^2 + 8$$
$$a = -2$$

Wzór funkcji f w postaci kanonicznej: $f(x) = -2(x-1)^2 + 8$.

Zadanie 11. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	V.5) interpretuje współczynniki występujące we wzorze funkcji liniowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 12. (0-1)

12. (6-1)		
Wymagania ogólne	Wymagania szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.6) wyznacza wzór funkcji liniowej na	
informacjami przedstawionymi w tekście, zarówno matematycznym, jak	podstawie informacji o jej wykresie lub o jej własnościach;	
i popularnonaukowym, a także w formie	V.11) wykorzystuje własności funkcji	
wykresów, diagramów, tabel.	liniowej i kwadratowej do interpretacji	
III. Wykorzystanie i interpretowanie	zagadnień geometrycznych, fizycznych itp.,	
reprezentacji.	także osadzonych w kontekście praktycznym.	
2. Dobieranie i tworzenie modeli	ртактуситутт.	
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 13.1 (0-1)

Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel. III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	V.3) odczytuje i interpretuje wartości funkcji określonych za pomocą tabel, wykresów, wzorów itp., również w sytuacjach wielokrotnego użycia tego samego źródła informacji lub kilku źródeł jednocześnie; V.13) posługuje się funkcjami wykładniczą i logarytmiczną, w tym ich wykresami, do opisu i interpretacji zagadnień związanych z zastosowaniami praktycznymi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Δ

Zadanie 13.2 (0-3)

Wymagania ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel. III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	VI.5) stosuje wzór na <i>n</i> –ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu geometrycznego.	

Zasady oceniania

dla sposobów 1. i 2.

- 3 pkt poprawna metoda obliczenia masy leku tuż przed przyjęciem jedenastej dawki i poprawny wynik: 99,9 mg.
- 2 pkt poprawne zastosowanie wzoru na sumę początkowych kolejnych wyrazów ciągu

geometrycznego i zapisanie sumy w postaci
$$100 \cdot \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}}$$

LUB

wypisanie wszystkich mas leku pozostających w organizmie tuż przed przyjęciem jedenastej dawki (z kolejno przyjmowanych dawek) albo mas leku pozostałych z przyjęcia pierwszej dawki po kolejnych okresach czterodniowych i zastosowanie bezpośredniego zsumowania wyrazów, np.:

$$50 + 25 + 12,5 + 6,25 + 3,125 + 1,56 + 0,781 + 0,391 + 0,195 + 0,098$$
 LUB

poprawne obliczenie masy leku pozostającego w organizmie po 4, 8, 12 itd. dniach (tuż przed przyjęciem kolejnej dawki): 50 mg, 75 mg, 87,5 mg, itd.

LUB

poprawne obliczenie masy leku pozostającego w organizmie tuż po przyjęciu kolejnych dawek leku: 100 mg, 150 mg, 175 mg, 187,5 mg, itd.

1 pkt – poprawne wyznaczenie mas leku, jakie pozostały w organizmie z poszczególnych dawek na moment przed przyjęciem jedenastej dawki:

$$100 \cdot \left(\frac{1}{2}\right)^{10} \text{ mg, } 100 \cdot \left(\frac{1}{2}\right)^{9} \text{ mg, } 100 \cdot \left(\frac{1}{2}\right)^{8} \text{ mg, ..., } 100 \cdot \left(\frac{1}{2}\right)^{1} \text{ mg}$$
 LUB

obliczenie poszczególnych mas leku pozostających w organizmie przed przyjęciem jedenastej dawki: 50 mg (z dziesiątej dawki), 25 mg (z dziewiątej dawki), ..., 0,098 mg (z pierwszej dawki)

LUB

zapisanie sumy m(4) + m(8) + ... + m(40)

LUB

obliczenie mas leku pozostałych z przyjęcia pierwszej dawki po kolejnych okresach czterodniowych: 50 mg, 25 mg, ..., 0,098 mg.

0 pkt - rozwiązanie, w którym zastosowano niepoprawną metode, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający poprawnie określa masę leku w organizmie tuż po przyjęciu kolejnych dawek (lub tuż przed przyjęciem kolejnych dawek), lecz popełnia błąd przy ustaleniu liczby przyjętych dawek i konsekwentnie doprowadza rozwiązanie do końca, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.
- 2. Jeżeli zdający przy sumowaniu mas leku, jakie pozostały w organizmie z poszczególnych dawek na moment przed przyjęciem jedenastej dawki, określi pierwszy wyraz ciągu jako 100 i konsekwentnie doprowadza rozwiązanie do końca, to może otrzymać co najwyżej **2 punkty**.

Przykładowe pełne rozwiązania

Sposób 1.

Pacjent przyjmuje jedenastą dawkę leku po 40 dniach, licząc od momentu przyjęcia pierwszej dawki.

Tuż przed przyjęciem jedenastej dawki leku w organizmie pacjenta znajduje się:

 $100 \cdot \left(\frac{1}{2}\right)^{10}$ mg leku z pierwszej dawki,

 $100 \cdot \left(\frac{1}{2}\right)^9$ mg leku z drugiej dawki,

$$100 \cdot \left(\frac{1}{2}\right)^8$$
 mg leku z trzeciej dawki,

 $100 \cdot \left(\frac{1}{2}\right)^2$ mg leku z dziewiątej dawki,

 $100 \cdot \left(\frac{1}{2}\right)^1$ mg leku z dziesiątej dawki.

Łącznie w organizmie pacjenta znajduje się

$$100 \cdot \left(\frac{1}{2}\right)^{1} + 100 \cdot \left(\frac{1}{2}\right)^{2} + \dots + 100 \cdot \left(\frac{1}{2}\right)^{9} + 100 \cdot \left(\frac{1}{2}\right)^{10} = 100 \cdot \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}} = 100 \cdot \left(1 - \left(\frac{1}{2}\right)^{10}\right) \approx 99,9 \text{ mg leku.}$$

Sposób 2.

Obliczamy i zapisujemy w lewej tabeli łączną masę leku (w mg), który jest w organizmie pacjenta tuż po przyjęciu każdej kolejnej dawki 100 mg tego leku.

W prawej tabeli obliczamy i zapisujemy masę leku (w mg), który pozostaje w organizmie pacjenta tuż przed przyjęciem kolejnej dawki, z uwzględnieniem czasu półtrwania tego leku ($T=4\,$ doby) w organizmie pacjenta.

tuż po przyjęciu	
1. dawki	100
2. dawki	150
3. dawki	175
4. dawki	187,5
5. dawki	193,75
6. dawki	196,88
7. dawki	198,44
8. dawki	199,22
9. dawki	199,61
10. dawki	199,81

tuż przed przyjęciem		
50	2. dawki	
75	3. dawki	
87,5	4. dawki	
93,75	5. dawki	
96,88	6. dawki	
98,44	7. dawki	
99,22	8. dawki	
99,61	9. dawki	
99,81	10. dawki	
99,9	11. dawki	

Zatem tuż przed przyjęciem jedenastej dawki łączna masa tego leku w organizmie pacjenta jest równa 99,9 mg.

Zadanie 14. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.	I.8) wykorzystuje własności potęgowania i pierwiastkowania w sytuacjach praktycznych, w tym do obliczania procentów składanych z kapitalizacją roczną i zysków z lokat.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zad	anie	15.	(0-1)

Zauaille 13. (0-1)	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	VI.1) oblicza wyrazy ciągu określonego wzorem ogólnym; VI.3) sprawdza, czy dany ciąg jest arytmetyczny lub geometryczny.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 16. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	VII.3) stosuje twierdzenie cosinusów oraz wzór na pole trójkąta $P=\frac{1}{2}\cdot a\cdot b\cdot \sin \gamma$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PP

Zadanie 17. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.4) posługuje się równaniem okręgu
Stosowanie obiektów matematycznych	$(x-a)^2 + (y-b)^2 = r^2$.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 18. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.8) korzysta z cech podobieństwa
1. Stosowanie obiektów matematycznych	trójkątów.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – poprawna metoda rozwiązania oraz zapisanie wyniku: |OD| = 6.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Ponieważ $| \not \triangle OAB | = | \not \triangle OCD |$ (z założenia), $| \not \triangle AOB | = | \not \triangle COD |$ (jako miary kątów wierzchołkowych) oraz $| \not \triangle ABO | = | \not \triangle CDO |$ (z twierdzenia o sumie miar kątów w trójkącie), więc trójkąty ABO i ODC są podobne na mocy cechy kkk podobieństwa trójkątów. Zatem

$$\frac{|CO|}{|AO|} = \frac{|OD|}{|OB|}$$

$$\frac{10}{5} = \frac{|OD|}{3}$$

$$|OD| = 6$$

Długość boku *OD* trójkąta *ODC* jest równa 6.

Zadanie 19. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach (takich jak na przykład
	przechodzenie przez dwa dane punkty,
	znany współczynnik kierunkowy,
	równoległość lub prostopadłość do innej
	prostej, styczność do okręgu).

Zasady oceniania

- 2 pkt poprawne dokończenia dwóch zdań.
- 1 pkt poprawne dokończenie jednego zdania.
- 0 pkt odpowiedź całkowicie niepoprawna albo brak odpowiedzi.

Rozwiązanie

1. B 2. E

Zadanie 20. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.3) oblicza odległość dwóch punktów
1. Stosowanie obiektów matematycznych	w układzie współrzędnych.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

- 1 pkt odpowiedź poprawna.
- 0 pkt odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 21. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.4) oblicza kąty trójkąta i długości jego
1. Stosowanie obiektów matematycznych	boków przy odpowiednich danych [].
i operowanie nimi, interpretowanie pojęć	VIII.5) stosuje własności kątów wpisanych
matematycznych.	i środkowych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 22. (0-1)

Zadanie 22. (0–1)	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.2) korzysta z wzorów
Stosowanie obiektów matematycznych	$\sin^2 \alpha + \cos^2 \alpha = 1, \ \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}.$
i operowanie nimi, interpretowanie pojęć	$\cos \alpha$
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

7ad	anie	23	(0-1	ı١

-aaa		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów gwarantujących poprawność rozwiązania i skuteczność	VIII.9) wykorzystuje zależności między obwodami oraz między polami figur podobnych.	
w poszukiwaniu rozwiązań zagadnienia.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

A2

Zadanie 24. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.5) stosuje własności kątów wpisanych
Stosowanie obiektów matematycznych	i środkowych;
i operowanie nimi, interpretowanie pojęć	VIII.7) stosuje twierdzenia: Talesa,
matematycznych;	odwrotne do twierdzenia Talesa,
3. Tworzenie pomocniczych obiektów	o dwusiecznej kąta oraz o kącie między
matematycznych na podstawie istniejących,	styczną a cięciwą.
w celu przeprowadzenia argumentacji lub	
rozwiązania problemu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 25. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VIII.11) stosuje funkcje trygonometryczne do wyznaczania długości odcinków w figurach płaskich oraz obliczania pól figur.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 26. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.5) wykorzystuje zależność między
Stosowanie obiektów matematycznych	objętościami graniastosłupów oraz
i operowanie nimi, interpretowanie pojęć	ostrosłupów podobnych.
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 27. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.2) posługuje się pojęciem kąta między
Stosowanie obiektów matematycznych	prostą a płaszczyzną;
i operowanie nimi, interpretowanie pojęć	X.3) rozpoznaje w graniastosłupach
matematycznych.	i ostrosłupach kąty między odcinkami (np.
	krawędziami, krawędziami i przekątnymi),
	oblicza miary tych kątów.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 28. (0-3)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
2. Dostrzeganie regularności, podobieństw oraz analogii, formułowanie wniosków na ich podstawie i uzasadnianie ich poprawności.	XI.2) zlicza obiekty, stosując reguły mnożenia i dodawania []. XII.1) oblicza prawdopodobieństwo w modelu klasycznym.

Zasady oceniania

- 3 pkt poprawna metoda obliczenia prawdopodobieństwa zdarzenia A i podanie poprawnego wyniku: $P(A)=\frac{|A|}{|\Omega|}=\frac{10}{9000}$.
- 2 pkt obliczenie liczby wszystkich zdarzeń elementarnych i liczby wszystkich zdarzeń sprzyjających zdarzeniu A: $|\Omega| = 9000$, |A| = 10.
- 1 pkt obliczenie liczby wszystkich zdarzeń elementarnych: $|\Omega|=9999-999=9\,000$ *LUB*

wypisanie wszystkich zdarzeń elementarnych sprzyjających zdarzeniu $\it A$ i niezapisanie żadnego niewłaściwego:

LUB

obliczenie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=10.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający zapisze tylko $P(A) = \frac{10}{9000}$, to otrzymuje **1 punkt**.

Przykładowe pełne rozwiązanie

Ponieważ losy są ponumerowane kolejno od $1000\,$ do $9999,\,$ więc początkowa liczba wszystkich losów na tej loterii jest równa $9999-999=9000.\,$ Zatem $|\Omega|=9000.\,$

Niech A oznacza zdarzenie polegające na tym, że pierwszy wylosowany z pojemnika los był wygrywający. Wtedy

 $A = \{1011, 1101, 1110, 1002, 1020, 1200, 2001, 2010, 2100, 3000\}$, więc |A| = 10. Obliczamy prawdopodobieństwo zdarzenia A:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{9000} = \frac{1}{900}$$

Zadanie 29. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.4. Stosowanie i tworzenie strategii podczas rozwiązywania zadań, również w sytuacjach nietypowych.	Zdający: XIII. rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.

Zasady oceniania

- 4 pkt poprawna metoda obliczenia długości boków równoległoboku o największym polu, poprawne wyznaczenie dziedziny funkcji P, oraz podanie prawidłowych wyników: D = (0, 100), x = 50, b = 50 oraz P(50) = 1250.
- 3 pkt poprawne zapisanie wzoru na pole P równoległoboku w zależności od jednej zmiennej, wyznaczenie dziedziny D tej funkcji oraz prawidłowe obliczenie argumentu x_{opt} , dla którego funkcja pola osiąga wartość największą:

$$P(x) = x \cdot (100 - x) \cdot \frac{1}{2}, \ D = (0, 100), \ x_{opt} = 50.$$

poprawna metoda obliczenia długości boków równoległoboku o największym polu oraz podanie prawidłowych wyników bez wyznaczonej dziedziny: x=50, b=50 oraz P(50)=1250.

- 2 pkt poprawne zapisanie wzoru na pole równoległoboku w zależności od jednej zmiennej: $P(x) = x \cdot (100-x) \cdot \frac{1}{2} \, .$
- 1 pkt zapisanie wzoru na pole równoległoboku w zależności od długości dwóch sąsiednich boków równoległoboku, np.: $P=x\cdot b\cdot \sin 30^\circ$ LUB

zapisanie związku między długościami boków równoległoboku, np.: 2x + 2b = 200 LUB

zapisanie zakresu zmienności długości $\,x\,$ boku równoległoboku, np. $\,x>0\,$ i $\,x<100\,$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Oznaczmy przez x oraz b długości boków równoległoboku o obwodzie równym 200 i kącie ostrym o mierze 30° (zobacz rysunek).

Ponieważ 2x + 2b = 200 oraz x > 0 i b > 0, więc b = 100 - x i $x \in (0, 100)$. Wyznaczamy pole P równoległoboku jako funkcję jednej zmiennej x:

Arkusz pokazowy z egzaminu maturalnego z matematyki (poziom podstawowy)

$$P = x \cdot b \cdot \sin 30^{\circ}$$

$$P(x) = x \cdot (100 - x) \cdot \frac{1}{2}$$

$$P(x) = -\frac{1}{2}x^{2} + 50x$$

dla $x \in (0, 100)$.

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Z własności funkcji kwadratowej wynika, że funkcja P może osiągnąć wartość największą dla argumentu równego pierwszej współrzędnej wierzchołka paraboli, tj. dla $x=-\frac{50}{2\cdot\left(-\frac{1}{2}\right)}=50$. Ponieważ

 $50 \in (0,100)$, więc funkcja P osiąga wartość największą dla argumentu x=50. Wtedy b=100-x=100-50=50 oraz $P(50)=50\cdot(100-50)\cdot\frac{1}{2}=1250$.

Z rozważanych równoległoboków największe pole – równe 1250 – ma ten, który jest rombem o boku długości 50.

Zadanie 30.1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	XII.2) oblicza średnią arytmetyczną i średnią
informacjami przedstawionymi w tekście,	ważoną, znajduje medianę i dominantę.
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PΡ

Zadanie 30.2. (0-1)

Wymaganie szczegółowe	
Zdający:	
XII.2) oblicza średnią arytmetyczną i średnią	
ważoną, znajduje medianę i dominantę.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

В