

Applications of mOWL for Predicting Gene-Disease Associations

Machine Learning with Biomedical Ontologies SWAT4HCLS 2023 Conference, Basel, Feb 13-16

Introduction: **Problem**

Patients Clinical Phenotypes & Genomics Sequence Data

Prediction/Diagnosis

Introduction: **Problem**

- > Predicting gene-disease associations based on phenotypic similarity
- > Diagnosis of disease based on phenotypic similarity

Introduction: Phenotypic similarity

> Using the phenotypes of model organism genes and the diseases' phenotypes.

Ontologies to Knowledge Graph

Phenotypic characteristics for Genes

Using functional and phenotypic characteristics for genes in:

Human phenome	Mouse phenome	Functions of the gene products	Gene expression in individual cell types	Anatomical site of expression from the GTEx tissue expression
Human Phenotype Ontology (HPO)	Mammalian Phenotype Ontology (MP)	Gene Ontology (GO)	Celltype Ontology (CL)	Uber-anatomy ontology (UBERON)
4,315 genes & 169,281 associations	13,529 genes & 168,550 associations	17,786 genes & 208,630 associations	6,559 genes & 17,149 associations	20,538 genes & 585,765 associations

- Generate the representation from the ontology graph (using mOWL).
- Collect features for the gene and disease using different method.

Syntactic embeddings	Onto2vec	
Syntactic embeddings	OPA2Vec	
	DL2vec	
Graph-based embeddings	OWL2Vec*	

Fig1: Onto2Vec Workflow.

Fig2: DL2vec Workflow

Datasets: Ontology

- The phenotypes are described using different organism-specific phenotype ontologies.
- Unified Phenotype Ontology (uPheno)

 include human phenotypes from the
 Human Phenotype Ontology (HP), →
 relate mutant model organism
 phenotypes to human disease associated phenotypes.

Datasets: Genes and Diseases Phenotypes

Gene annotations:

Mouse/Human Orthology with Phenotype Annotations from HPO database (HMD_HumanPhenotype.rpt).

Disease annotations:

obtained from the HPO annotations for rare diseases document (phenotype.hpoa).

■ These annotations added to the Unified Phenotype Ontology (uPheno) to build the training ontology.

Methods: Generate Embeddings

- mOWL is designed to handle input in OWL format.
 - ➤ A mOWL dataset contains 3 ontologies: training, validation and testing.
- Preparee the annoations file (Genes -> Phenotypes , Diseasese -> Phenotypes)
- Use mOWL methods to build dataset given an ontology file and the annotations to be inserted to the ontology.
 - ➤ Per each row, the first element is the annotated entity and the rest of the elements are the annotating entities (which are the entities in the ontology).
- Use different methods to generate the representation given the annotated ontology file.

Evaluation: Calculating Phenotypic Similarity Approaches

Unsupervised Approach

> Cosine similarity

Hands-on

Hands On Tutorial

- 1. Prepare the dataset (Built-in / your own dataset)
- 2. Generate the embeddings using different methods
- 3. Prediction
- 4. Validation

Can we find the causative variants associated with the phenotypes?

- Prioritizing the causative variants.
 - ➤ Determining which variants identified using Whole-exome Sequencing (WES) or Whole-genome sequencing (WGS) are most likely to damage gene function and underlie the disease phenotype.

Phenotype-based prioritization of candidate genes

- Gene-Phenotype annotations
- Gene-Function annotations
- Gene-Celltype annotations
- Gene-Anatomical site of gene expression annotations

- Disease-Phenotypes annotations
- Prioritize the candidate genes

Resources

- Zhapa-Camacho, Fernando, Maxat Kulmanov, and Robert Hoehndorf. "mOWL: Python library for machine learning with biomedical ontologies." Bioinformatics 39.1 (2023): btac811.
- Chen, Jun, Azza Althagafi, and Robert Hoehndorf. "Predicting candidate genes from phenotypes, functions and anatomical site of expression." Bioinformatics 37.6 (2021): 853-860.
- Smaili, Fatima Zohra, Xin Gao, and Robert Hoehndorf. "OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction." Bioinformatics 35.12 (2019): 2133-2140.
- Smaili, Fatima Zohra, Xin Gao, and Robert Hoehndorf. "Onto2vec: joint vector-based representation of biological entities and their ontology-based annotations." Bioinformatics 34.13 (2018): i52-i60.
- Chen, Jiaoyan, et al. "Owl2vec*: Embedding of owl ontologies." Machine Learning 110.7 (2021): 1813-1845.

THANK YOU!

