Analog IC Design

Lab 10

Noise Simulation

PART 1: LPF AC Noise Analysis

Report output noise vs frequency. Annotate voltage noise density and bandwidth in the plot.

Compare the simulation results (noise density, bandwidth, and rms) with hand analysis.

Lab_10:test_Noise:1	Noise_Density	4.071 n
Lab_10:test_Noise:1	RMS_Noise	64.32u
Lab_10:test_Noise:1	BW	158.8M

Noise_Density =
$$\sqrt{\frac{R}{1k}} * 4 \frac{nV}{\sqrt{Hz}} = 4 \frac{nV}{\sqrt{Hz}}$$

RMS_Noise =
$$\sqrt{\frac{1p}{c}}$$
 * 64 $\mu V rms$ = 64 μV

$$BW = 1/2\pi RC = 159.15 MHz$$

	Analytically	simulation
Noise_Density	$4\frac{nV}{\sqrt{Hz}}$	$4.071rac{nV}{\sqrt{Hz}}$
RMS_Noise	64μV	64.32u
BW	159.15M	150.8M

Run parametric sweep for RPAR = 1k, 10k, 100k, 1000k. Plot output noise overlaid on the same plot. Using log-scale for y-axis. Comment on the results.

Parameters	: RPAR=1k		
1	Lab_10:test_Noise:1	Noise_Density	4.071 n
1	Lab_10:test_Noise:1	RMS_Noise	64.32u
1	Lab_10:test_Noise:1	BW	158.8M
Parameters	: RPAR=10k		
2	Lab_10:test_Noise:1	Noise_Density	12.87n
2	Lab_10:test_Noise:1	RMS_Noise	64.62u
2	Lab_10:test_Noise:1	BW	15.88M
Parameters	: RPAR=100k		
3	Lab_10:test_Noise:1	Noise_Density	40.71n
3	Lab_10:test_Noise:1	RMS_Noise	64.65u
3	Lab_10:test_Noise:1	BW	1.588M
Parameters	: RPAR=1M		
4	Lab_10:test_Noise:1	Noise_Density	128.7n
4	Lab_10:test_Noise:1	RMS_Noise	64.66u
4	Lab_10:test_Noise:1	BW	158.8k

The rms noise value doesn't change as it doesn't depend on R but rather depends on C.

- With R increasing to a factor of 10 we notice the output noise increases as well.
- And the BW decreases

PART 2: LPF Transient Noise Analysis

Report the noise output waveform. Annotate the min and max values.

Use the rms function in the calculator to calculate the rms noise. Compare it to the value calculated in Part 1.

Lab_10:test_Noise:1	/VOUT	<u>~</u>	
Lab_10:test_Noise:1	RMS	63.53u	

	PART1	PART2
RMS	64.32u	63.53u

Repeat the simulation with TSTEP = TAU/10. Does the calculated rms noise increase or decrease? Why?

Lab_10:test_Noise:1	/VOUT	<u>Ľ</u>
Lab_10:test_Noise:1	RMS	66.57u

It should have decreased as fmax = 1/TSTEP and increasing TSTEP means decreasing fmax which means smaller area under the curve, which is by definition the rms noise value, but we notice from simulation that the calculated rms noise increased which is opposite to expected, this might be caused by an accuracy error from spectre.

	Iteration	ave rageVOUT"))
1	1.000	4.853E-6
2	2.000	769.7E-9
3	3.000	11.08E-6
4	4.000	5.750E-6
5	5.000	10.32E-6
6	6.000	2.029E-6
7	7.000	374.9E-9
8	8.000	19.53E-6
9	9.000	2.865 E-6
10	10.00	1.024E-6
11	11.00	-996.7E-9
12	12.00	-8.248E-6
13	13.00	-21.58E-6
14	14.00	7.008 E-6
15	15.00	-11.86E-6
16	16.00	-7.257E-6
17	17.00	9.165 E-6
18	18.00	11.01 E-6
19	19.00	-8.242E-6
20	20.00	4.618E-6

Use the calculator to calculate the average rms noise. Compare the calculated value with the rms noise previously obtained in Part 1 and Part 2.

	PART1	PART2	PART3
RMS	64.32u	63.53u	66.57u

PART 3: 5T OTA AC Noise Analysis

Report output thermal noise vs frequency. Annotate noise density and bandwidth in the plot. Compare the simulation results with hand analysis.

Total_Noise	<u>~</u>
Thermal_Noise	<u>L</u>
RMS_Noise	146.4u
Thermal_Noise(V/SqHZ)	<u>L</u>
BW	9.997M
Thermal_Noise(V/SqHZ)_(dB)	<u>L</u>

$$V_{nTH}(f) = \sqrt{\frac{8Kt\gamma}{gm1,2} \left(1 + \frac{gm}{gm1.2}\right)} = 10.32 \frac{nV}{\sqrt{Hz}} \rightarrow \gamma = 0.85$$

 $BW = BWCL = (1 + LG) BWOL = \frac{1 + LG}{2\pi CL (ro, 2||ro3,4)} = 9.956M$

	Analytical	Simulation
Noise	10.32n	10.55n
BW	9.956M	9.99M

Calculate rms output noise (calculate the rms noise due to thermal noise only using Noise Summary)

Device	Param	Noise Contribution	% Of Total
/I0/M3	fn	4.9531e-09	37.27
/I0/M4	fn	4.88896e-09	36.79
/I0/M2	fn	8.4661e-10	6.37
/I0/M1	fn	8.34261e-10	6.28
/I0/M3	id	5.2054e-10	3.92
/I0/M4	id	5.12534e-10	3.86
/I0/M1	id	3.86906e-10	2.91
/I0/M2	id	3.30466e-10	2.49
/I0/M5	id	5.18228e-12	0.04
/I0/M5	fn	5.08103e-12	0.04
/I0/M6	id	3.45236e-12	0.03
/I0/M6	fn	1.25294e-12	0.01
Total Summ Total Inpu	arized Nois nt Referred	ary (in V^2) Sorted By Nois e = 1.32883e-08 Noise = 1.31047e-05 ry info is for noise data	se Contributors

Report total output noise (thermal + flicker) vs frequency. Estimate the Flicker noise corner.

Compare the simulation results (noise density, bandwidth, and rms) with hand analysis.

$$V_{nTH}(f) = \sqrt{\frac{2KT}{BCL} \left(1 + \frac{gm3,4}{gm1.2}\right)} = 12.76\text{nV}_{rms}$$

	Analytical	Simulation
Noise	10.32n	10.55n
BW	9.956M	9.99M
RMS	12.76n	13.288n

PART 4: 5T OTA Transient Noise Analysis

Plot input and output overlaid and make sure they match well (verify that the circuit behaves as a buffer).

I changed the CMIR = 0.9 to get a perfect match.

Average_out	1.243
RMS	1.243

Report the "noisy" output waveform (zoom-in to highlight the noise). Notice that output signal and noise are superimposed.

Change the transient noise options to run 20 simulation runs. Now Specter will run 20 runs of transient noise.

Report the rms noise vs iteration.

Use the calculator to calculate the average rms noise. Compare the calculated value with the rms noise.

Average_out	<u>Ľ</u>
Average	1.253
RMS	<u>Ľ</u>

	PART3	PART4
RMS	13.288n	1.253