Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

"Neural Machine Trranslation By Jointly Learning To Align Translate"

Introduction

- We extended the basic encoder-decoder
 by letting a model (soft-)search for a set of input words,
 or their annotations computed by an encoder,
 when generating each target word.
- This frees the model from having to encode
 a whole source sentence into a fixed-length vector,
 and also lets the model focus only on
 information relevant to the generation of the next target word.

Motivation (RNN Encoder - Decoder)

- The encoder read the input sentence (a sequence of vectors) into a fixed vector c.
- -c is a vector generated from a the sequence of the hidden states.
- The decoder is often trained to predict the next word $y_{t'}$, given the context vector c and all the previously predicted words $\{y_1, \dots, y_{t'-1}\}$.

Motivation (RNN Encoder - Decoder)

- A potential issue with this encoder-decoder approach is that a neural network needs to be able to comporess all the necessary information of a source sentence into a fixed-length vector.
- This may make it difficult for the neural network to cope with long sentences, especially those that are longer than the sentences in the training corpus.

Outline

Decoder

- : General Description
- Decoder decides parts fo the source sentence to pay attention to

Encoder

- : Bidirectional RNN for annotating Sequences
- The annotation h_j contains the summaries of both the preceding words and the following words.

Learning to Align and Translate

Encoder (BiRNN)

- : Bidirectional RNN for Annotating Sequences.
- A BiRNN consists of forward \overrightarrow{f} and backward \overleftarrow{f} RNN.
- We obtain an annotation for each word x_j by concatenating the forward hidden state $\overrightarrow{h_j}$ and the backward one $\overleftarrow{h_j}$, i.e., $h_j = [\overrightarrow{h_j^T}; \overleftarrow{h_j^T}]^T$.
- In this way, the annotation h_j contains the summaries of both the preceding words and following words.
- Due to the endency of RNNs to better represent recent inputs, the annotation h_j will be focused on the words w_j aroud.

Learning to Align and Translate

Decoder

- : General Description
- Each conditional probability :

$$p(y_t|\{y_1,\cdots,y_{t-1}\},c)=g(y_{t-1},s_t,c)$$

- RNN hidden state for time i

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

- The probability is conditioned on a distinct context vector c_i for each target word y_i

Learning to Align and Translate

Decoder

- : General Description
- The context vector c_i depends on a sequence of annotations (h_1, \dots, h_{T_x}) to which an encoder maps the input sentence.
- The context vector c_i computed as a weighted sum of these annotations h_i .

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

 We can understand the approach of taking a weighted sum of all the annotations as computing an expected annotation, where the expectation is over possible alignments.

Learning to Align and Translate

Decoder

- : General Description
- The weight α_{ij} of each annotation h_i is computed by

$$\alpha_{ij} = \frac{\exp(e_{ik})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

- Alignment model which scores how well the inputs around position *j* and the output at posion *i* match.

$$e_{ij} = a(s_{i-1}, h_j)$$

- We parametrize the alignment model α as feedforward neural network which is jointly trained with all the other componetns of the proposed system.

Learning to Align and Translate

Decoder

- : General Description
- We parametrize the alignment model α as feedforward neural network which is jointly trained with all the other componetns of the proposed system.
- This gradient can be used to train the alignment model as well as the whole translation model jointly.

Learning to Align and Translate

Decoder

- : General Description
- RNN hidden state for time i

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

- The context vector c_i

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

- The weight α_{ij} of each annotation h_j

$$\alpha_{ij} = \frac{\exp(e_{ik})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

- Alignment model scores

$$e_{ij} = a(s_{i-1}, h_j)$$

Learning to Align and Translate

Decoder

- : General Description
- The probability α_{ij} , or its associated energy e_{ij} , reflects the importance of the annotation h_i with respect to the previous hidden state s_{i-1} in deciding the next state s_i and generating y_i .
- Intuitively, this implements a mechanism of attention.
- The decoder decides parts of the source sentence to pay attention to.
- We relieve the encoder from the burden of having to encode all information in the source sentence into a fixed length vector.

Results: Quantitative Results

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

- The proposed RNNsearch outperforms the convetional RNNencdec.
- The performance of the RNNsearch is as high as that of the conventional phrase-based translation system (Moses), when only the sentences consisting of known words are considered.
- We conjectured that this limitation may make the basic encoder-decoder approach to underperform with long sentences.

Results: Quantitative Results

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

- We see that the performance of RNNencdec dramatically drops as the length of the sentences increases.
- On the other hand, RNNsearch are more robust to the length of the sentences.

Results: Qualitative Analysis

- The proposed approache probides an intuitive way to inspect the (soft-)alignment between the words in a generated translation and those in a source sentence by visualizing the annotation weights α_{ij} .
- From this we see which positions in the source sentence were considered more important when generating the target word.

Conclusion

