

OEM-LF-HF-M1000-USB
Dual HID Mode

HID Modes Hardware Description

iDTRONIC GmbH Ludwig-Reichling-Straße 4 67059 Ludwigshafen Germany/Deutschland

Issue 0.3

– 28. May 2021 –

Phone: +49 621 6690094-0

Fax: +49 621 6690094-9 E-Mail: info@idtronic.de

idtronic.de

Web:

© Copyright iDTRONIC GmbH 2021 Printed in Germany

Subject to alteration without prior notice.

Page 2 of 13 OEM RFID Modules

Contents

1	HID N	Aodes	4	
	1.1	Important Notes	4	
	1.2	Configuration Software	4	
2	HID N	Node Configuration Command	5	
	2.1	Important Note	5	
	2.2	Telegram from PC to RFID Device	5	
	2.2.1	Overview of the Configuration Telegram (Table 1)	5	
	2.2.2	The Single HID Configuration Byte #6 (Table 2)	6	
	2.2.3	Additional Byte #1 (Table 3)	7	
	2.2.4	Additional Byte #2 (Table 4)	7	
	2.2.5	Additional Byte #3	8	
	2.3	Reply from RFID Device	8	
	2.3.1	In Case of Success	8	
	2.3.2	In Case of Error	8	
3	Exam	ples	9	
	3.1	Single HID Mode Examples	9	
	3.1.1	Shut OFF the HID Operation Mode	9	
	3.1.2	Factory Preset ISO14443A UID LSB	9	
	3.1.3	Read Data from Mifare RFID Tag	9	
	3.1.4	UID of ISO 15693 only:	10	
	3.2	Dual HID Mode Examples	10	
	3.2.1	LF Read UID LSB of Hitag1/S and Memory Page and UID of ISO14443A MSB	10	
	3.2.2	UID of LF read-only + UID of ISO15693	10	
4	Using hterm for Configuration1			
	4.1	Communication Parameters	12	
	4.2	Initial Setting of hterm	12	
5	Revis	ion History	13	

HID Modes Hardware Description

1 HID Modes

The firmware allows three operation modes:

Operation Mode	Description
Standard read/write mode	The RFID device does nothing on its own. It reacts to commands.
Single HID Mode	The RFID device automatically reads UID or data from a configured RFID tag type.
Dual HID Mode	The RFID device automatically reads UID or data from a configured LF RFID tag type and
	an HF RFID tag type.

1.1 Important Notes

You cannot use read/writeRFID commands when in HID mode.

1.2 Configuration Software

At the moment there is no easy-to-use configuration software for a PC.

You can use a terminal that is capable of handling hexadecimal data for manual configuration. This is described later in this document.

Page 4 of 13 OEM RFID Modules

2 HID Mode Configuration Command

This command configures the HID operation modes.

The first parameter after the command code switches the HID mode ON or OFF.

The other Bytes configure what data is read and how the data is converted.

When you switch off the HID mode, only the command byte, the first parameter byte and the checksum byte must be correct.

2.1 Important Note

You cannot use read/writeRFID commands when in HID mode.

2.2 Telegram from PC to RFID Device

The telegram for configuration of the HID Mode is 21 Bytes long.

The following tables describe each Byte in detail

2.2.1 Overview of the Configuration Telegram (Table 1)

Byte#	Value	Description	
1	AA	Start of Telegram	
2	00 Device Address, 0x00 = all devices react to this address		
3	10	Bytes of Payload to follow (Command + Parameters)	
4	FD	Command Code	
5	C0	Start/Stop HID mode, C0 (1100.0000) = ON, 3F (0011.1111) = OFF	
6 00 In Single HID mode: Select tag type and function, please see table below,		In Single HID mode: Select tag type and function, please see table below,	
0x30 selects Dual HID mode, only in this mode, the 3 Additional Byte		0x30 selects Dual HID mode, only in this mode, the 3 Additional Bytes are used.	
7	00	Memory Position, Blocks (Mifare) or Pages (Ultralight, ISO15693)	
8	FF	Access Key for Mifare Classic memory access	
9	FF	Access Key for Mifare Classic memory access	
10	FF	Access Key for Mifare Classic memory access	
_11	FF	Access Key for Mifare Classic memory access	
12	FF	Access Key for Mifare Classic memory access	
13	FF	Access Key for Mifare Classic memory access	
14	10 Data output format, 10 = HEX, 20 = ASCII		
15	60	Mifare Classic Access Key A/B selection, 60 = Key A, 61 = Key B	
16	00	Left MSB nibble: Data Position/Offset, Right LSB nibble: Data Length	
17	00	Additional Byte #1: only active in Dual HID mode	
18	00	Additional Byte #2: only active in Dual HID mode	
19	00	Additional Byte #3: only active in Dual HID mode	
20	5D	Block Check Character	
21	ВВ	End of Telegram	

RFID Device Page 5 of 13

2.2.2 The Single HID Configuration Byte #6 (Table 2)

Value	Description		
00	HF ISO 14443A LSB		
01	HF Ultralight Data		
02	HF Mifare Data		
03 HF Mifare Data + UID			
04 Read UID of HF ISO 15693			
05	HF 15693 UID + Data		
06	HF 14443A MSB		
07	HF 14443A LSB-DEC		
08	HF 14443A MSB-DEC		
09	HF Reserved for future use		
0A	HF Reserved for future use		
OB	HF Reserved for future use		
0C	HF Reserved for future use		
0D	HF Reserved for future use		
0E	HF Reserved for future use		
OF	HF Reserved for future use		
10	LF Read UID LSB of read-only tag type		
_11	LF Read UID MSB of read-only tag type		
12	LF Read UID LSB of Hitag1/S tag type		
_13	LF Read UID MSB of Hitag1/S tag type		
14	LF Read UID LSB-DEC of Hitag1/S tag type		
_15	LF Read UID MSB-DEC of Hitag1/S tag type		
16	LF Read UID LSB and Memory Page from Hitag1/S tag type		
_17	LF Read UID MSB and Memory Page from Hitag1/S tag type		
18	LF Read UID LSB-DEC and Memory Page from Hitag1/S tag type		
19	LF Read UID MSB-DEC and Memory Page from Hitag1/S tag type		
1A	LF Reserved for future use		
1B	LF Reserved for future use		
1C	LF Reserved for future use		
1D	LF Reserved for future use		
1E	LF Reserved for future use		
_1F	LF Read FDX-B information		
20	Legic Read UID		
21	Legic Read ISO 15693 UID		
22	Legic Read ISO 14443 A		
23	Legic Read ISO 14443 B		
24	Legic Read INSIDE Secure		
25	Legic Read SONY FeliCa subset		
30	Additional Bytes for Dual HID Mode valid		
40	UHF Read EPC (not implemented so far)		

Page 6 of 13 OEM RFID Modules

2.2.3 Additional Byte #1 (Table 3)

This Byte is only valid, when the single HID configuration Byte #6 has value of 0x30.

Value	Description		
00	HF ISO 14443A LSB		
01	HF Ultralight Data		
02	HF Mifare Data		
03	HF Mifare Data + UID		
04	Read UID of HF ISO 15693		
05	HF 15693 UID + Data		
06	HF 14443A MSB		
07	HF 14443A LSB-DEC		
08	HF 14443A MSB-DEC		
09	HF Reserved for future use		
0A	HF Reserved for future use		
OB	HF Reserved for future use		
0C	HF Reserved for future use		
0D	HF Reserved for future use		
OE	HF Reserved for future use		
OF	HF Reserved for future use		
20	Legic Read UID		
21	Legic Read ISO 15693 UID		
22	Legic Read ISO 14443 A		
23	Legic Read ISO 14443 B		
24	Legic Read INSIDE Secure		
25	Legic Read SONY FeliCa subset		

2.2.4 Additional Byte #2 (Table 4)

This Byte is only valid, when the single HID configuration Byte #6 has value of 0x30.

Value	Description		
10	LF Read UID LSB of read-only tag type		
11	LF Read UID MSB of read-only tag type		
12	LF Read UID LSB of Hitag1/S tag type		
13	LF Read UID MSB of Hitag1/S tag type		
14	LF Read UID LSB-DEC of Hitag1/S tag type		
15	LF Read UID MSB-DEC of Hitag1/S tag type		
16	LF Read UID LSB and Memory Page from Hitag1/S tag type		
17	LF Read UID MSB and Memory Page from Hitag1/S tag type		
18	LF Read UID LSB-DEC and Memory Page from Hitag1/S tag type		
19	LF Read UID MSB-DEC and Memory Page from Hitag1/S tag type		
1A	LF Reserved for future use		
1B	LF Reserved for future use		
1C	LF Reserved for future use		
1D	LF Reserved for future use		
1E	LF Reserved for future use		
1F	LF Read FDX-B information		

RFID Device Page 7 of 13

2.2.5 Additional Byte #3

This Byte is only valid, when the single HID configuration Byte #6 has value of 0x30.

This Byte gives the memory position (page number) of an LF RFID tag.

2.3 Reply from RFID Device

2.3.1 In Case of Success

AA 00 02 00 80 82 BB

The Bytes in Detail

```
AA = Start of Telegram

00 = Device Address

02 = Bytes of Payload

00 = Status, 00 = OK

80 = Status detail, 80 Setting successful

82 = BCC

BB = End of Telegram
```

2.3.2 In Case of Error

AA 00 02 01 81 82 BB

The Bytes in Detail

```
AA = Start of Telegram

00 = Device Address

02 = Bytes of Payload

01 = Status, 01 = Error

81 = Status detail, 81 Setting failed

82 = BCC

BB = End of Telegram
```

Page 8 of 13 OEM RFID Modules

RFID Device Examples

3 Examples

3.1 Single HID Mode Examples

3.1.1 Shut OFF the HID Operation Mode

The Bytes in Detail

```
AA = Start of Telegram
00 = Device Address
10 = Bytes of Payload (Command + Parameters)
FD = Command Code
3F = 3F (0011.1111) = Switch HID Operation Mode OFF
00 = ignored parameter
00 = ignored parameter
00 00 00 00 00 00 = ignored parameter
00 = ignored parameter
00 = ignored parameter
00 = ignored parameter
00 = Addtional Byte #1, ignored parameter
00 = Addtional Byte #2, ignored parameter
00 = Addtional Byte #3, ignored parameter
D2 = BCC
BB = End of Telegram
```

3.1.2 Factory Preset ISO14443A UID LSB

The Bytes in Detail

```
AA = Start of Telegram

00 = Device Address

0D = Bytes of Payload (Command + Parameters)

FD = Command Code

C0 = C0 = Switch HID Operation Mode ON

00 = 00: HF Mifare Data

00 = Memory Position, ignored parameter

FF FF FF FF FF FF FF = ignored parameter

10 = 10: HEX

60 = 60: Key A, ignored parameter

00 = Data Position and Length, ignored parameter

00 = Addtional Byte #1, ignored parameter

00 = Addtional Byte #2, ignored parameter

00 = Addtional Byte #3, ignored parameter

50 = BCC

BB = End of Telegram
```

3.1.3 Read Data from Mifare RFID Tag

AA 00 10 FD C0 02 09 4B FB 5A D0 7C 63 20 60 54 00 00 00 17 BB

The Bytes in Detail

```
AA = Start of Telegram
00 = Device Address
0D = Bytes of Payload (Command + Parameters)
FD = Command Code
C0 = C0 (1100.0000) = ON
02 = 02: HF Mifare Data
09 = Memory Position, Blocks (Mifare) or Pages (Ultralight, ISO15693)
4B FB 5A D0 7C 63 = Key A
20 = Convert to ASCII
```

RFID Device Page 9 of 13

Examples Hardware Description

```
60 = 60: Key A
54 = left MSB nibble: Data Position 5<sup>th</sup> Byte, right LSB nibble: Data Length 4 Bytes
60 = Addtional Byte #1, ignored parameter
60 = Addtional Byte #2, ignored parameter
60 = Addtional Byte #3, ignored parameter
60 = BCC
60 = BCC
61 = BCC
62 = BCC
63 = BCC
64 = BCC
65 = BCC
66 = BCC
67 = BCC
68 = End of Telegram
```

3.1.4 UID of ISO 15693 only:

AA 00 10 FD C0 04 00 00 00 00 00 00 10 00 00 00 00 39 BB

The Bytes in Detail

```
AA = Start of Telegram
00 = Device Address
OD = Bytes of Payload (Command + Parameters)
FD = Command Code
CO = CO = Switch HID Operation Mode ON
04 = 04: UID of HF ISO 15693
00 = Memory Position, ignored parameter
00 00 00 00 00 00 = ignored parameter
10 = 10: HEX
00 = ignored parameter
00 = ignored parameter
00 = Addtional Byte #1, ignored parameter
00 = Addtional Byte #2, ignored parameter
00 = Addtional Byte #3, ignored parameter
39 = BCC
BB = End of Telegram
```

3.2 Dual HID Mode Examples

3.2.1 LF Read UID LSB of Hitag1/S and Memory Page and UID of ISO14443A MSB

AA 00 10 FD C0 30 00 FF FF FF FF FF FF 10 60 00 06 16 10 6D BB

The Bytes in Detail

```
AA = Start of Telegram
00 = Device Address
10 = Bytes of Payload (Command + Parameters)
FD = Command Code
C0 = C0 = Switch HID Operation Mode ON
30 = 3 additional Bytes for HID Mode on Both Technologies
00 = Memory Position for HF RFID tag
FF FF FF FF FF = key for Mifare memory access
10 = Output in HEX values
60 = Use Key A
00 = left MSB nibble: Data Position, right LSB nibble: Data Length
06 = HF 14443A MSB (HF-RFID)
16 = Read UID LSB and Memory Page from Hitag1/s tag type (LF-RFID)
10 = Memory Position for LF RFID tag (LF-RFID)
6D = BCC
BB = End of Telegram
```

3.2.2 UID of LF read-only + UID of ISO15693

AA 00 10 FD C0 30 00 FF FF FF FF FF FF FF 10 60 00 04 10 00 79 BB

The Bytes in Detail

```
AA = Start of Telegram

00 = Device Address

10 = Bytes of Payload (Command + Parameters)

FD = Command Code
```

Page 10 of 13 OEM RFID Modules

RFID Device Examples

- C0 = C0 = Switch HID Operation Mode ON
- 30 = 3 additional Bytes for HID Mode on Both Technologies
- 00 = Memory Position for HF RFID tag
- FF FF FF FF FF = key for Mifare memory access
- 10 = Output in HEX values
- 60 = Use Key A
- 00 = left MSB nibble: Data Position, right LSB nibble: Data Length
- 04 = HF ISO 15693 UID
- 10 = LF Read UID LSB of read-only tag type
- 00 = Memory Position for LF RFID tag
- 79 = BCC
- BB = End of Telegram

RFID Device Page 11 of 13

Using hterm for Configuration Hardware Description

4 Using hterm for Configuration

You can download the terminal software "hterm" here for free:

https://der-hammer.info/pages/terminal.html

4.1 Communication Parameters

- 9600 Baud
- 8 Databits
- 1 Stopbit
- No Parity

4.2 Initial Setting of hterm

- 1. Click on button [R]. This will search all available COM ports
- 2. Select the desired COM port
- 3. Set the communication parameters
- 4. Click on [Connect] to open the COM port
- 5. Select data format Hex for the received data
- 6. Select data format Hex for the transmit data
- 7. Type in the command to be sent. Then confirm with [Enter]

Note

The button [ASend] is for automatically repeating the transmit data. We do not use this function here.

Page 12 of 13 OEM RFID Modules

RFID Device Revision History

5 Revision History

Version	Date	Notes
0.1	2021-01-21	Initial draft
0.2	2021-05-05	Missing Bytes in examples added, new examples added
0.3	2021-05-29	Details added, more examples added, deprecated information removed, configuration using
		HTerm included and adapted

RFID Device Page 13 of 13