Fernando Revilla

Tiempo, aritmética y conjetura de Goldbach & Docencia matemática

Teorema de los círculos de Gershgorin

Publicado el enero 4, 2017 por Fernando Revilla

Demostramos el teorema de los círculos de Gershgorin y damos ejemplos de aplicación.

Enunciado

Sea $A=[a_{ij}]\in\mathbb{C}^{n imes n}$. Para cada $i=1,2,\ldots,n$ consideremos los círculos cerrados del plano complejo

$$D_i = D(a_{ii}, r_i) = \left\{z \in \mathbb{C}: |z - a_{ii}| \leq r_i
ight\} ext{con } r_i = \sum_{i
eq i} |a_{ij}| \,.$$

A tales círculos se les llama círculos de Gershgorin. Cada círculo D_i tiene su centro en el elemento a_{ii} de la diagonal principal y su radio es la suma de los módulos de los restantes elementos de la fila i.

- 1. Demostrar el teorema de los círculos de Gershgorin: Cada valor propio de A pertenece a algún círculo de Gershgorin.
- 2. Aplicar el teorema a la matriz $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$.
- 3. Idem para la matriz $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$.
- 4. Idem para la matriz $A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{C}^{n \times n}$.
- 5. Deducir un teorema parecido al de Gershgorin que involucre elementos de columnas.

Solución

1. Sea λ un valor propio de A y sea $0 \neq x = (x_j)$ un vector propio asociado a λ . Llamemos x_i a la coordenada de x de mayor módulo. Claramente $|x_i| > 0$ pues en otro caso sería x = 0. Se verifica $Ax = \lambda x$, es decir

$$egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} = \lambda egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$

o bien,

$$\sum_{j=1}^n a_{ij} x_j = \lambda x_i \quad orall i = 1, \dots, n.$$

De forma equivalente $\sum_{j \neq i} a_{ij} x_j = \lambda x_i - a_{ii} x_i$ y dividiendo ambos miembros entre x_i y tomando módulos

$$|\lambda \! - \! a_{ii}| = \left|rac{\sum_{j
eq i} a_{ij} x_j}{x_i}
ight| \leq \sum_{j
eq i} \left|rac{a_{ij} x_j}{x_i}
ight| \leq \sum_{j
eq i} |a_{ij}| = r_i.$$

Es decir, $\lambda \in D(a_{ii}, r_i)$.

2. Hallemos sus valores propios: $\chi(\lambda)=\lambda^2-3=0,\;\lambda=\pm\sqrt{3}.$ Los círculos de Gershgorin son $D_1=D(1,2),$

1 de 2 20/06/2019 1:39 a. m.

 $D_2=D(-1,1)$. Con un sencillo gráfico podemos verificar que $-\sqrt{3}\in D_2$ y que $\sqrt{3}\in D_1$. En éste caso, ocurre además que $-\sqrt{3}\notin D_1$ y $\sqrt{3}\notin D_2$.

- 3. Sus valores propios: $\chi(\lambda) = \lambda^2 + 1 = 0$, $\lambda = \pm i$. Los círculos de Gershgorin son $D_1 = D(1,1)$, $D_2 = D(-1,2)$. Con un sencillo gráfico podemos verificar que $-i \in D_2$, $i \in D_2$. Sin embargo, D_1 no contiene a ningún valor propio de A. Nótese que el teorema de Gershgorin asegura que todo valor propio pertenece a algún círculo, pero puede que algún círculo no contenga valores propios.
- 4. Sus valores propios son $\lambda_1, \lambda_2, \dots, \lambda_n$ y sus círculos de Gershgorin

$$D_1(\lambda_1,0) = {\lambda_1}, \ D_2(\lambda_2,0) = {\lambda_2}, \dots, \ D_n(\lambda_n,0) = {\lambda_2}$$

con lo cual, $\lambda_i \in D_i(\lambda_i, 0)$ para todo $i = 1, 2, \dots, n$.

5. Dado que toda matriz A y su traspuesta A^T tienen los mismos valores propios, el teorema de Greshgorin sigue siendo válido si consideramos los discos

$$D_i'=D(a_{ii},r_i')=\{z\in\mathbb{C}:|z-a_{ii}|\leq r_i'\} ext{ con }r_i'=\sum_{i
eq i}|a_{ji}|\,.$$

Es decir, cada círculo D'_i tiene su centro en el elemento a_{ii} de la diagonal principal y su radio es la suma de los módulos de los restantes elementos de la columna i.

Esta entrada fue publicada en Álgebra. Guarda el enlace permanente

Fernando Revilla

Funciona con WordPress.