CALENDAR

- Every century is not leap year.
 - Ex: 100 years -> 5 odd day 200 → 3 odd day → 1 odd day 300
- · Every 4th century is leap year
 - Ex:- 400, 800, 1200, 1600, 2000 -.. > 0 odd day.
- Up to 1900 ⇒ 1 odd day
- 1 normal year ⇒ 1 odd day •1 leap year ⇒ 2 odd d.

							•	,	.,	
month		0	dd day			Weal	<	00	dd day	
Jan	+	>	3		·	Sun	_	→	0	_
feb	+	>	o norma	لانا 1,1		Mon	_	→	1	
Mar	+	>	3			Tyes	_	>	2	
Apg	+	>	2			Wed	_	\$	3	
May	+	→	3			Thur	_	ی	4	
JUNE	+	>	2			fri	_	,	5	
July	_	>	3			sat	_	,	e	
Bua	_	>	3		_ \.			l .		
Seb		_	2	$(\mathcal{Q}\cdot)$	2 00	1869	3.	do	xA2-j	
oct			3	\Rightarrow			0	odd	2ypb 1	
HON			2		1	600	→	(_
Dec						200	→	3	3	
THE		1	3	for	685		١		2 =34	
				Ye	1 5280	Not · yeq	ı —		51	
						-			_	

month up to sep. > 21

 $days \rightarrow 2$

7) 111 (15 105

CLOCK

- Hrs hand in 1 hr → 30 Angle 1 min → 1/2 Angle
- Min hand in 5 min → 30° Angle 1 min → 6 Angle
- coincide = $5x \times \frac{12}{11}$ * General formula
- Right angle = $(5x \pm 15) \times \frac{12}{11}$ $\left[5x \pm \left(\frac{3}{6}\right)\right] \times \frac{12}{11}$ +ve $\rightarrow 1^{s+}$ ans Put, $D \rightarrow 0$ (coin Put, D >0' (coinside)
- D → 90' (Right Ls) Opposite = (sx ± 30) x 12 D → 180 (opposite) If u>6 → Take -ve sign 2<6→ 11 +1e 1)
- Mirror image = 12- given
- (9) coincide, right Ls, opposite bln 4'o clock \$ 5'o clock.
- ⇒ Put X=4 then solve.

for Right angle

$$(5\times4 + 15) \times \frac{12}{11} = \frac{420}{11} = 38 \frac{2}{11} \Rightarrow 4:38 \frac{2}{11}$$
 Ans

$$(5\times4 - 15) \times \frac{12}{11} = \frac{60}{11} = 11)60(5 = 5\frac{5}{11} \Rightarrow 4:5\frac{5}{11}$$

BLOOD RELATION

A+ -> for male

$$A^- \rightarrow$$
 for female

Don't Tudge gender by name

Bhanja, Bhateja > Nephew

Bhanti, Bhatiti > Niece

Relation from mother side > Maternal

Relation from father side > Paternal

64 equal parts

3,64 = 4 ⇒ It means one side has 4 cube.

Total Blocks = 1xbxh

- 3 side painted = 8
- 2 side painted = 4[(1-2)+(b-2)+(h-2)]
- 1 side " = 2((1-2)(b-2) +(b-2)(h-2) +(h-2)(1-2)
- o side painted =(1-2)(b-2) (h-2)

DTCF

· When one no. is common on both the dices.

Open dice

(ii) standard dice: - opposite (i) General dice

surface sum 1 2 6 5 Should be 7.

CHESS BOARD

UXU Podid

- No. of squares = ≥n²
- No. of Rectangles = ∑n³
- No. of types of rectangles = ≥ ∩

"SUMIT KR"

NUMBER SYSTEM

* Number = app q co

a,b,c -> Prime No. P.9,8 -> Nat. No.

4500

• Total factor = (P+1)(q+1)(s+1)

Ex:- N= 9000 $N = 2^3 \times (3^3) \times (5^3)$ Total factor = (3+1) (2+1) (3+1)

2250 1125 375 odd factor = (2+1) (3+1) = 12 125 Even factor = TF-OF = 36 25 5 Prime factor & composite factor:-

1 → neither prime nor composite. prime factor -> not consider higher power.

Tf = cf+pf+1 ξ_{x} :- N= 9000 = 2^{3} x 3^{2} x 5^{2}

⇒ TF=48, PF=3 CF= 48-3-1=44

HCF & LCM

- Hcf of fraction = $\frac{Hcf}{LcM}$ of Denominator
- LCM of fraction = LCM of Numerator Hcf of denominator

 $\frac{\text{Ex:}}{2}, \frac{2}{3}, \frac{3}{2}$

 $\Rightarrow Hcf = \frac{Hcf of(1,2,3)}{Lcm of(2,3,7)} = \frac{1}{42}$

 $LCM = \frac{LCM \text{ of } (1,2,3)}{HCf \text{ of } (2,3,3)} = 6/1$

BASE SYSTEM

Ex: - 32+24 = 100 find Base. Ex: - 127 then, Base = 6 +24 Base=8

CYCLICITY

2 -> 2,4,8,6 $3 \rightarrow 3, 9, 7, 1$ 7→7,9,3,1 $8 \to 8, 4, 2, 6$

Ex:-(i) 3³²³ (ii) 14⁴⁹ \$\display 4\) 323(8 \display 2) 49 (24 unit digit = 3^3 >27 = 7 Am unit digit = 141

 $4 \rightarrow 4,6$ $9 \rightarrow 9, 1$

0,1,5,6 have no cyclicity.

FACTORIAL

 \overline{Ex} :- $\overline{100}$; find 'U,

⇒ 100! = [1×2×3× --..100]

 $\frac{100}{3} = 33$ N = 33 + 11 + 3 + 1 = 48 Ang $\frac{11}{3} = 3$ $\frac{3}{2} = 1$

Ex:- 11+21+ -- . 99! Unit digit =?

⇒ 1!=1, 2!=1x2=2, 3!=1x2x3=6 4!=1x2x3x4=24,5!=1x2x3x4x5=120

 \Rightarrow 1! +2! +3! +4! = 1+2+6+24 = 33

Ex: 100! end with how many zero.

⇒ 5×2 = 10 $\Rightarrow \frac{10}{50}$ $\Rightarrow n = 24$ i.e 24 zero

SET THEORY

[n(AnB) + n(Bnc) + n(Auc)] + [n(AnBnc)]

A (or) B A 'and' B AUB ANB

#

- Exactly 1 of games = 50+2+3
- Exactly 2 " " = 20+20+4
- · Atleast 2 " " = 20+20+y+10
- · Any of 3 games-■ n(Auguc)
- Atleast one of the 3 games

=100+2+4+3