(REVISION — 2015)

Cowwas

Reg	. No	
,		
Sign	nature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ENGINEERING MATHEMATICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Prove that $\cos^2 A \sin^2 A = 1 2 \sin^2 A$.
 - 2. If $\cos A = \frac{4}{5}$ and A is acute, find $\cos 3A$.
 - 3. Find the area of the triangle ABC, given b = 3cm, c = 2cm, $A = 30^{\circ}$.
 - 4. If $y = x \cos x$, Find $\frac{dy}{dx}$.
 - 5. Find the velocity and acceleration at time 't' of a particle moving according to $s = t^3 2t^2 + 1$.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Express 3 cosx + 4 sinx in the form R sin $(x + \alpha)$, where α is acute.
 - 2. Prove that $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$.
 - 3. Prove that $(a + b) \sin \frac{c}{2} = c \cos \frac{A-B}{2}$
 - 4. Differentiate cos x by the method of first principles.
 - 5. Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3axy$.
 - 6. Find the equation to the tangent and normal to the curve x^{2+} y^{2} = 25 at (3,-4).
 - 7. Prove that $\sin 120^{\circ} \cos 330^{\circ} + \cos 240^{\circ} \sin 330^{\circ} = 1$.

 $(5 \times 6 = 30)$

4

5

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT — I

III (a) Prove that
$$\frac{\cos\theta}{1+\sin\theta} + \frac{1+\sin\theta}{\cos\theta} = 2 \sec\theta$$
.

(b) If $\sin A = \frac{3}{5}$ and A is acute, find $\sin 2A$ and $\cos 2A$.

(c) Show that $\tan 75^\circ + \cot 75^\circ = 4$.

OR

IV (a) Prove that $\frac{\csc A}{\csc A - 1} + \frac{\csc A}{\csc A - 1} = 2 \sec^2 A$.

(b) If $\sin A = \frac{8}{17}$, $\sin B = \frac{3}{5}$; A, B are acute, find $\sin (A - B)$ and $\cos (A + B)$.

(c) From the top of a light house 90m high, the angles of depression of two boats on the sea level are 45° and 60° . Find the distance between the boats.

V (a) Prove that $\frac{\sin 2A + \sin 5A - \sin A}{\cos 2A + \cos 5A + \cos A} = \tan 2A$.

(b) Prove that $\cos 55^\circ + \cos 65^\circ + \cos 175^\circ = 0$.

(c) Solve ΔABC , given $a = 5$ cm, $b = 8$ cm and $C = 30^\circ$.

OR

VI (a) Prove that $\cos 3A + \cos 5A + \cos 9A + \cos 17A = 4 \cos 4A \cos 6A \cos 7A$.

(b) Prove that $\cos 3A + \cos 5A + \cos 9A + \cos 17A = 4 \cos 4A \cos 6A \cos 7A$.

(c) Solve ΔABC , given $a = 2$ cm, $b = 3$ cm and $c = 4$ cm.

UNIT — III

VII (a) Evaluate (i) $\lim x \to 0 \frac{\sin 2x \cos x}{x}$ (ii) $\lim x \to \infty \frac{2x^2 + x + 1}{x^2 - 2x + 1}$ (3 + 3 = 6)

(b) If $x = a \cos^3\theta$, $y = b \sin^3\theta$, find $\frac{dy}{dx}$.

(c) If $y = a \sin mx$, Prove that $\frac{d^2y}{dx^2} + m^2y = 0$.

Solve $\frac{ABC}{x^2}$ (ii) $\lim x \to 0 \frac{x^2 - 1}{x - 1}$ (4 + 2 = 6)

(b) If $y = \log (\sec x - \tan x)$, show that $\frac{dy}{dx} = -\sec x$.

(c) If $y = A \sin x + B \cos x$ (A, B are constants), Show that $\frac{d^2y}{dx^2} + y = 0$