

SPHERIC Beijing International Workshop

17-20 October 2017

Particle Trajectory Calculation in SPH

SHEN Jiayuan

Tianjin University

2017.10.20

Outline

- > Background
- > Governing equation
- > Numerical method
- > Experimental results
- > Error analysis
- > Summary

Background

The oil spill, sewage effluent, sediment flow and air haze

Governing equation

Particle trajectory equation

$$\frac{d\overrightarrow{x_i}}{dt} = \overrightarrow{v_i} \left(t, \overrightarrow{x_i} \right)$$

 $\overline{x_i}$: *i* particle coordinate

 $\overrightarrow{v_i}$: local velocity (depend on the particle position)

Numerical method

Euler Method:

$$\vec{x}_{i}^{n+1} = \vec{x}_{i}^{n} + \Delta t \vec{v}_{i} \left(t^{n}, \vec{x}_{i}^{n} \right)$$

Modified Euler:

predictor step:
$$\vec{x}_{i}^{n+1,p} = \vec{x}_{i}^{n} + \Delta t \vec{v}_{i}^{n}$$
 where: $\vec{v}_{i}^{n} := \vec{v}_{i} \left(t^{n}, \vec{x}_{i}^{n} \right)$ corrector step: $\vec{x}_{i}^{n+1} = \vec{x}_{i}^{n} + \Delta t \frac{\vec{v}_{i}^{n} + \vec{v}_{i}^{n+1,p}}{2}$

Numerical method

Second-Order Runge-Kutta (RK2):

$$\vec{x}_i^{n+1} = \vec{x}_i^n + k_2$$

$$k_2 = \Delta t \vec{v}_i \left(t^n + \frac{\Delta t}{2}, \vec{x}_i^n + \frac{k_1}{2} \right)$$

$$k_1 = \Delta t \vec{v}_i \left(t^n, \vec{x}_i^n \right)$$

Fourth-Order Runge-Kutta (RK4):

$$\vec{x}_{i}^{n+1} = \vec{x}_{i}^{n} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$k_{1} = \Delta t \vec{v}_{i} (t^{n}, \vec{x}_{i}^{n})$$

$$k_{2} = \Delta t \vec{v}_{i} (t^{n} + \frac{\Delta t}{2}, \vec{x}_{i}^{n} + \frac{k_{1}}{2})$$

$$k_{3} = \Delta t \vec{v}_{i} (t^{n} + \frac{\Delta t}{2}, \vec{x}_{i}^{n} + \frac{k_{2}}{2})$$

$$k_{4} = \Delta t \vec{v}_{i} (t^{n} + \Delta t, \vec{x}_{i}^{n} + k_{3})$$

Numerical method

Velocity Verlet:

$$\vec{x}_i^{n+1} = \vec{x}_i^n + \vec{v}_i \Delta t + \frac{1}{2} \vec{a}_i^n \Delta t^2$$

$$\overrightarrow{v}_{i}^{n+1} = \overrightarrow{v}_{i}^{n} + \frac{1}{2} \Delta t \left(\overrightarrow{a}_{i}^{n+1} + \overrightarrow{a}_{i}^{n} \right)$$

Leap Frog:

$$\overset{\rightarrow n+1/2}{v_i} = \overset{\rightarrow n-1/2}{v_i} + \overset{\rightarrow n}{a_i} \Delta t$$

$$\overset{\rightarrow}{x_i}^{n+1} = \overset{\rightarrow}{x_i}^n + \overset{\rightarrow}{v_i}^{n+1/2} \Delta t$$

$$\vec{v}_i^n = \frac{1}{2} \left(\vec{v}_i^{n+1/2} + \vec{v}_i^{n-1/2} \right)$$

i particle acceleration: $\vec{a}_i = d\vec{x}_i / dt$

Experimental results

Example

Flow field:

Exact solution:

$$x(t) = \exp(at)[x_0 \cos bt - y_0 \sin bt]$$
$$y(t) = \exp(at)[x_0 \sin bt + y_0 \cos bt]$$

Initial particle coordinates: $x_0 = 1000$ $y_0 = 0$ a = 0 time interval 60 s total run time is 4000π b = 0.001

Experimental results

N=100 particles varianceMeasure dispersionParticle cluster

Experimental results

The six time stepping schemes for particle trajectory

Error analysis

1. Theoretical error

analysis: Taylor series expansion:

$$f(t_{i+1}) = f(t_i) + \Delta t \cdot f'(t_i) + \frac{\Delta t^2}{2} f''(t_i) + \frac{\Delta t^3}{6} f'''(t_i) + \cdots$$

E.g. Euler forward time stepping, neglecting second and higher-order derivative terms:

$$f'(t_i) = \frac{f(t_{i+1}) - f(t_i)}{\Delta t}$$

In
$$f'(t_i) = \frac{f(t_{i+1}) - f(t_i)}{\Delta t} - \frac{\Delta t}{2} f''(t_i) - \frac{\Delta t^2}{6} f'''(t_i) + \cdots$$
 fact:

Truncation
$$TE = -\frac{\Delta t}{2} f''(t_i) - \frac{\Delta t^2}{6} f'''(t_i) + \cdots$$
 error:

Error analysis

2. Numerical error analysis:

error = average
$$\sqrt{\sum_{t} \left(\frac{\left(x_{num}^{t} - x_{exact}^{t} \right)^{2}}{\left(x_{exact}^{t} \right)^{2}} + \frac{\left(y_{num}^{t} - y_{exact}^{t} \right)^{2}}{\left(y_{exact}^{t} \right)^{2}} \right)}$$

 (x_{num}^t, y_{num}^t) : the coordinates obtained numerically at t time step

 $(x_{exact}^t, y_{exact}^t)$: the exact coordinates at t time step

Error Analysis

2.1 Euler error values for different time steps

Δt	0.5	1	20	30	60
(h) Error					
Error	1.9866×10 ⁻⁵	3.9563×10^{-5}	7.0257×10^{-4}		
Euler			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0011	0.0019

2.2 RK4 and Velocity Verlet error values for different time steps

(h) Error	30	60	90	120	150
RK4	ļ.	4 4.1892×10 ⁻⁴	0.0017	0.0048	0.0125
Veloci Verle	ty	4 4.1338×10 ⁻⁴	0.0012	0.0021	0.0032

Error analysis

Euler forward, RK4 and velocity Verlet error values in different time steps, and draw corresponding convergence rate curves

Summary

- Euler, modified Euler and RK2 may not predict accurate particle trajectories, introduce varying degrees of artificial dispersion
- ➤ RK4, velocity Verlet and leap frog can accurately calculate the particle trajectories without artificial dispersion
- Through error analysis and convergence rate experiments, we found that convergence rate can be different from accuracy for the same method

THANKS