РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 7

Дисциплина: Интеллектуальный анализ данных

Студент: Гебриал Ибрам Есам Зекри

Группа: НПИбд-01-18

Москва 2021

вариант 27

Libras Movement Data Set

Название файла: movement libras.data

Ссылка: http://archive.ics.uci.edu/ml/datasets/Libras+Movement

(http://archive.ics.uci.edu/ml/datasets/Libras+Movement)

Класс: class (столбец No 91)

- 1. Считайте заданный набор данных из репозитария UCI.
- 2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения признака. Если какие-либо числовые признаки в наборе были распознаны неверно, то преобразуйте их в числовые. Преобразуйте категориальные признаки в числовые при помощи кодирования меток (label encoding).
- 3. Используя метод отбора на основе важности признаков класса ExtraTreesClassifier, определите и оставьте в наборе наиболее важные признаки (не менее 5 и не более 10).
- 4. Разбейте набор данных на обучающую и тестовую выборки.
- 5. Создайте и обучите классификатор на основе деревьев решений с глубиной дерева не более 5, определите точность классификации и визуализируйте границу принятия решений и построенное дерево решений. При визуализации границы принятия решений используйте два признака с наиболее высокой оценкой важности (не нужно удалять из набора все признаки кроме двух).

- 6. Постройте на основе классификатора деревьев решений ансамблевые классификаторы:
- · BaggingClassifier,
- · RandomForestClassifier,
- · AdaBoostClassifier,

а также классификатор:

· GradientBoostingClassifier,

подберите параметры классификаторов, чтобы добиться большей точности классификации, и постройте границы принятия решений классификаторов с визуализацией точек набора данных и легендой для меток классов.

7. Определите лучший ансамблевый классификатор, дающий наиболее высокую точность классификации.

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
```

1. Считайте заданный набор данных из репозитария UCI.

In [2]:

```
url = \
"http://archive.ics.uci.edu/ml/machine-learning-databases/libras/movement_libras.data"
# считываем данные в объект DataFrame
my_data = pd.read_csv( url,sep="," ,header=None )
my_data = pd.read_csv( url,sep="," ,header=None,prefix="V" )
print("\n*** Начало данных:\n", my_data.head()) #начальные данные
print("\n*** Конец данных:\n", my_data.tail()) #конечные данные
summary = my_data.describe()
                                                     #сводка данных
print("\n*** Сводка данных:\n", summary)
*** Начало данных:
          V0
                             V2
                                       ٧3
                                                 V4
                                                           V5
                                                                     ۷6
                                                                               V7
                   ۷1
0
   0.79691
             0.38194
                       0.79691
                                 0.37731
                                           0.79884
                                                    0.37731
                                                              0.79497
                                                                         0.37731
   0.67892
1
             0.27315
                       0.68085
                                 0.27315
                                           0.68085
                                                     0.27315
                                                              0.68085
                                                                        0.27315
2
   0.72147
             0.23611
                       0.72340
                                 0.23611
                                           0.72340
                                                     0.23611
                                                               0.72340
                                                                         0.23611
3
   0.56480
             0.32407
                       0.56286
                                 0.32407
                                           0.56093
                                                     0.32407
                                                               0.55899
                                                                         0.32407
                                                              0.67311
   0.67118
             0.38426
                       0.67118
                                 0.38657
                                           0.67311
                                                     0.38657
                                                                         0.38426
         V8
                  V9
                                 V81
                                           V82
                                                     V83
                                                              V84
                                                                         V85
0
   0.77563
             0.35417
                            0.51389
                                      0.39845
                                                0.42593
                                                          0.47389
                                                                    0.36111
1
   0.67892
             0.26852
                            0.57407
                                      0.17795
                                                0.63657
                                                          0.17215
                                                                    0.67361
                                                                    0.25231
2
   0.72340
             0.23611
                            0.30556
                                      0.59768
                                                0.25926
                                                          0.67118
                       . . .
                                                0.42361
3
   0.55899
             0.32407
                            0.49074
                                      0.26306
                                                          0.33269
                                                                    0.34722
   0.67311
             0.37963
                            0.76389
                                      0.44101
                                                0.64120
                                                          0.45068
4
                                                                    0.54167
                       . . .
                                           V90
       V86
                 V87
                           V88
                                     V89
   0.55899
             0.31250
                       0.63830
                                 0.29398
                                             1
0
1
   0.17021
             0.69213
                       0.17215
                                 0.69213
                                             1
2
   0.73501
             0.26620
                       0.78143
                                 0.27778
                                             1
3
             0.28009
                       0.49130
   0.41006
                                 0.24306
                                             1
   0.47776
             0.44213
                       0.53191
                                 0.34259
[5 rows x 91 columns]
*** Конец данных:
                                                             V5
                                                                       ۷6
                                                                                 ۷7
                      ٧1
                                V2
                                          V3
                                                    ٧4
            V0
\
355
               0.79167
                                   0.78704
                                             0.65957
                                                       0.78935
                                                                 0.65957
     0.65957
                         0.65764
                                                                           0.78704
356
     0.64023
               0.71991
                         0.64217
                                   0.71759
                                             0.64217
                                                       0.71759
                                                                 0.64217
                                                                           0.71759
357
     0.61122
               0.75926
                         0.61122
                                   0.75694
                                             0.61315
                                                       0.75694
                                                                 0.61122
                                                                           0.75694
               0.79167
                         0.65764
                                             0.65957
358
     0.65957
                                   0.78704
                                                       0.78935
                                                                 0.65957
                                                                           0.78704
359
     0.64023
               0.71991
                         0.64217
                                   0.71759
                                             0.64217
                                                       0.71759
                                                                 0.64217
                                                                           0.71759
           ٧8
                     V9
                                   V81
                                             V82
                                                       V83
                                                                 V84
                                                                           V85
                         . . .
355
     0.65764
               0.78241
                               0.55093
                                        0.57253
                                                  0.53935
                                                            0.56286
                                                                      0.53241
     0.64217
               0.71991
                                                  0.50231
                                                            0.54352
356
                              0.50463
                                        0.55513
                                                                      0.49769
357
     0.61122
               0.75926
                               0.54167
                                         0.48549
                                                  0.53472
                                                            0.47195
                                                                      0.52546
358
     0.65764
               0.78241
                              0.55093
                                        0.57253
                                                  0.53935
                                                            0.56286
                                                                      0.53241
                         . . .
359
     0.64217
                                        0.55513
                                                  0.50231
               0.71991
                              0.50463
                                                            0.54352
                                                                      0.49769
                             V88
                                             V90
          V86
                    V87
                                       V89
     0.55126
               0.52546
355
                         0.54159
                                   0.52083
                                              15
356
     0.53191
               0.49537
                         0.52031
                                   0.49306
                                              15
                                              15
     0.45841
               0.52083
                         0.44487
357
                                   0.51620
358
     0.55126
               0.52546
                         0.54159
                                   0.52083
                                              15
               0.49537
359
     0.53191
                         0.52031
                                   0.49306
                                              15
```

[5 rows x 91 columns]

*** CB	одка данных: V0		. V2	. V3	V4	
V5 \ count 0	360.000000	360.000000	360.000000	360.000000	360.000000	360.00000
mean 2	0.566613	0.555967	0.566377	0.555478	0.565640	0.55455
std 6	0.198916	0.187485	0.198306	0.187320	0.197863	0.18706
min 0	0.090909	0.148150	0.085106	0.148150	0.085106	0.14815
25% 0	0.444875	0.407410	0.440043	0.409720	0.438588	0.40741
50% 5	0.585105	0.581020	0.585105	0.582175	0.582205	0.58217
75% 0	0.720023	0.724540 0.886570	0.721952 0.930370	0.720488 0.888890	0.720505	0.72222
max 0	0.932300	0.886370	0.930370	0.000090	0.932300	0.88426
	V6	V7	V8	V9	• • •	V81 \
count	360.000000	360.000000	360.000000	360.000000	360.00	0000
mean	0.564867	0.552855	0.563094	0.548579	0.47	4814
std	0.195968	0.186777	0.192667	0.185901	0.17	2685
min	0.088975	0.145830	0.092843	0.145830	0.07	6389
25%	0.437140	0.409720	0.435688	0.409720	0.35	4170
50%	0.579305	0.564815	0.572535	0.556715	0.48	6110
75%	0.720023	0.718170	0.714215	0.719910	0.59	7800
max	0.932300	0.881940	0.932300	0.875000	0.83	1020
7 \	V82	V83	V84	V85	V86	V8
7 \ count 0	360.000000	360.000000	360.000000	360.000000	360.000000	360.00000
count 0 mean 0	360.000000 0.487229	360.000000 0.469181	360.000000 0.488287	360.000000 0.464905	360.000000 0.490259	360.00000 0.46376
count 0 mean 0 std 4	360.000000 0.487229 0.209880	360.000000 0.469181 0.174674	360.000000 0.488287 0.213416	360.000000 0.464905 0.178629	360.000000 0.490259 0.218753	360.00000 0.46376 0.18438
count 0 mean 0 std 4 min 9	360.000000 0.487229 0.209880 0.059961	360.000000 0.469181 0.174674 0.050926	360.000000 0.488287 0.213416 0.029014	360.000000 0.464905 0.178629 0.030093	360.000000 0.490259 0.218753 0.011605	360.00000 0.46376 0.18438 0.00925
count 0 mean 0 std 4 min 9 25% 3	360.000000 0.487229 0.209880 0.059961 0.327370	360.000000 0.469181 0.174674 0.050926 0.346642	360.000000 0.488287 0.213416 0.029014 0.329785	360.000000 0.464905 0.178629 0.030093 0.342590	360.000000 0.490259 0.218753 0.011605 0.319630	360.00000 0.46376 0.18438 0.00925 0.33275
count 0 mean 0 std 4 min 9 25% 3 50% 0	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264
count 0 mean 0 std 4 min 9 25% 3 50% 0 75%	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75%	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.0000000	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0 count mean	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.000000 0.492376	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000 0.463767	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720 V90 360.000000 8.000000	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0 count mean std	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.000000 0.492376 0.225507	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000 0.463767 0.190831	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720 V90 360.000000 8.000000 4.326507	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0 count mean std min 25%	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.000000 0.492376 0.225507 0.005803	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000 0.463767 0.190831 0.006944 0.328122	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720 V90 360.000000 8.000000 4.326507 1.0000000 4.0000000	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0 count mean std min 25% 50%	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.000000 0.492376 0.225507 0.005803 0.313350 0.487430	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000 0.463767 0.190831 0.006944 0.328122 0.488430	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720 V90 360.000000 8.000000 4.326507 1.000000 4.000000 8.000000 8.0000000 8.0000000 9.0000000000	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880
count 0 mean 0 std 4 min 9 25% 3 50% 0 75% 0 max 0 count mean std min 25%	360.000000 0.487229 0.209880 0.059961 0.327370 0.481620 0.654737 0.970990 V88 360.000000 0.492376 0.225507 0.005803 0.313350	360.000000 0.469181 0.174674 0.050926 0.346642 0.483800 0.594910 0.819440 V89 360.000000 0.463767 0.190831 0.006944 0.328122	360.000000 0.488287 0.213416 0.029014 0.329785 0.474855 0.656675 0.978720 V90 360.000000 8.000000 4.326507 1.0000000 4.0000000	360.000000 0.464905 0.178629 0.030093 0.342590 0.483800 0.592590	360.000000 0.490259 0.218753 0.011605 0.319630 0.479690 0.667310	360.00000 0.46376 0.18438 0.00925 0.33275 0.48264 0.60880

```
[8 rows x 91 columns]
```

In [3]:

```
target=my_data['V90']
target
```

Out[3]:

```
1
0
1
         1
2
3
         1
4
355
        15
356
        15
357
        15
358
        15
359
        15
```

Name: V90, Length: 360, dtype: int64

In [4]:

```
print('Типы признаков:')
for col in my_data.columns:
    print('\t%s: %s' % (col, my_data[col].dtypes))
```

Типы признаков:

V0: float64 V1: float64 V2: float64 V3: float64 V4: float64 V5: float64 V6: float64 V7: float64 V8: float64 V9: float64 V10: float64 V11: float64 V12: float64 V13: float64 V14: float64 V15: float64 V16: float64 V17: float64 V18: float64 V19: float64 V20: float64 V21: float64 V22: float64 V23: float64 V24: float64 V25: float64 V26: float64 V27: float64 V28: float64 V29: float64 V30: float64 V31: float64 V32: float64 V33: float64 V34: float64 V35: float64 V36: float64 V37: float64 V38: float64 V39: float64 V40: float64 V41: float64 V42: float64 V43: float64 V44: float64 V45: float64 V46: float64 V47: float64 V48: float64

V49: float64 V50: float64 V51: float64 V52: float64 V53: float64

- V54: float64
- V55: float64
- V56: float64
- V57: float64
- V58: float64
- V59: float64
- V55. 110aco4
- V60: float64
- V61: float64
- V62: float64
- V63: float64
- V64: float64
- V65: float64
- V66: float64
- V67: float64
- V68: float64
- V69: float64
- V70: float64
- V71: float64
- V/1. 110000
- V72: float64
- V73: float64
- V74: float64
- V75: float64
- V76: float64
- V77: float64
- V78: float64
- V79: float64
- V80: float64
- V81: float64
- V82: float64
- VOZ. 1100C04
- V83: float64
- V84: float64
- V85: float64
- V86: float64
- V87: float64
- V88: float64
- V89: float64
- V90: int64

In [5]:

my_data.info()

<clas< th=""><th>ss 'panda</th><th>as.core.frame.Dat</th><th>taFrame'></th></clas<>	ss 'panda	as.core.frame.Dat	taFrame'>
Range	eIndex: 3	360 entries, 0 to	o 359
Data	columns	(total 91 column	ns):
#	Column	Non-Null Count	Dtype
0	VØ	360 non-null	float64
1	V1	360 non-null	float64
2	V2	360 non-null	float64
3	V3	360 non-null	float64
4	V4	360 non-null	float64
5	V5	360 non-null	float64
6	V6	360 non-null	float64
7	V7	360 non-null	float64
8	V8	360 non-null	float64
9	V9	360 non-null	float64
10	V10	360 non-null	float64
11	V11	360 non-null	float64
12	V12	360 non-null	float64
13	V13	360 non-null	float64
14	V14	360 non-null	float64
15	V15	360 non-null	float64
16	V16	360 non-null	float64
17	V10 V17	360 non-null	float64
18	V17 V18	360 non-null	float64
19	V18 V19	360 non-null	float64
20	V19 V20	360 non-null	float64
21	V20 V21		
22		360 non-null	float64
	V22	360 non-null	float64
23	V23	360 non-null	float64
24	V24	360 non-null	float64
25	V25	360 non-null	float64
26	V26	360 non-null	float64
27	V27	360 non-null	float64
28	V28	360 non-null	float64
29	V29	360 non-null	float64
30	V30	360 non-null	float64
31	V31	360 non-null	float64
32	V32	360 non-null	float64
33	V33	360 non-null	float64
34	V34	360 non-null	float64
35	V35	360 non-null	float64
36	V36	360 non-null	float64
37	V37	360 non-null	float64
38	V38	360 non-null	float64
39	V39	360 non-null	float64
40	V40	360 non-null	float64
41	V41	360 non-null	float64
42	V42	360 non-null	float64
43	V43	360 non-null	float64
44	V44	360 non-null	float64
45	V45	360 non-null	float64
46	V46	360 non-null	float64
47	V47	360 non-null	float64
48	V48	360 non-null	float64
49	V49	360 non-null	float64
50	V50	360 non-null	float64
51	V51	360 non-null	float64
		-	-

12/21,	8:19 PM		
52	V52	360 non-null	float64
53	V53	360 non-null	float64
54	V54	360 non-null	float64
55	V55	360 non-null	float64
56	V56	360 non-null	float64
57	V57	360 non-null	float64
58	V58	360 non-null	float64
59	V59	360 non-null	float64
60	V60	360 non-null	float64
61	V61	360 non-null	float64
62	V62	360 non-null	float64
63	V63	360 non-null	float64
64	V64	360 non-null	float64
65	V65	360 non-null	float64
66	V66	360 non-null	float64
67	V67	360 non-null	float64
68	V68	360 non-null	float64
69	V69	360 non-null	float64
70	V70	360 non-null	float64
71	V71	360 non-null	float64
72	V72	360 non-null	float64
73	V73	360 non-null	float64
74	V74	360 non-null	float64
75 76	V75	360 non-null	float64
76 77	V76	360 non-null	float64
77	V77	360 non-null	float64
78	V78	360 non-null	float64
79	V79	360 non-null	float64
80	V80	360 non-null	float64
81	V81	360 non-null	float64
82 83	V82 V83	360 non-null 360 non-null	float64 float64
84	vos V84	360 non-null 360 non-null	float64
85	V8 4 V85	360 non-null	float64
86	V85 V86	360 non-null	float64
87	V80 V87	360 non-null	float64
88	V87 V88	360 non-null	float64
89	V89	360 non-null	float64
90	V99	360 non-null	int64
	•	500 HOH HULL	1110-

dtypes: float64(90), int64(1)

memory usage: 256.1 KB

^{2.} Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения признака. Если какие-либо числовые признаки в наборе были распознаны неверно, то преобразуйте их в числовые. Преобразуйте категориальные признаки в числовые при помощи кодирования меток (label encoding).

In [6]:

```
my_data = my_data.replace('?',np.NaN) # заменить '?' на np.NaN
print('Число отсутствующих значений:')
for col in my_data.columns:
    print('\t%s: %d' % (col,my_data[col].isna().sum()))
```

Число отсутствующих значений:

V0: 0 V1: 0 V2: 0 V3: 0 V4: 0 V5: 0 V6: 0 V7: 0 V8: 0 V9: 0 V10: 0 V11: 0 V12: 0 V13: 0 V14: 0 V15: 0 V16: 0 V17: 0 V18: 0 V19: 0

> V21: 0 V22: 0 V23: 0 V24: 0

V20: 0

V25: 0 V26: 0 V27: 0 V28: 0

V29: 0 V30: 0 V31: 0

V32: 0 V33: 0 V34: 0 V35: 0

V36: 0 V37: 0 V38: 0 V39: 0

V40: 0 V41: 0 V42: 0

V43: 0 V44: 0 V45: 0

V46: 0 V47: 0 V48: 0

V49: 0 V50: 0 V51: 0

V52: 0

V53: 0 V54: 0 V55: 0 V56: 0 V57: 0 V58: 0 V59: 0 V60: 0 V61: 0 V62: 0 V63: 0 V64: 0 V65: 0 V66: 0 V67: 0 V68: 0 V69: 0 V70: 0 V71: 0 V72: 0 V73: 0 V74: 0 V75: 0 V76: 0 V77: 0 V78: 0 V79: 0 V80: 0 V81: 0 V82: 0 V83: 0 V84: 0 V85: 0 V86: 0 V87: 0

У меня нет пропущенных значений

V88: 0 V89: 0 V90: 0

3. Используя метод отбора на основе важности признаков класса ExtraTreesClassifier, определите и оставьте в наборе наиболее важные признаки (не менее 5 и не более 10).

```
In [7]:
```

```
X = my_data.iloc[:,0:90]
y = my_data.iloc[:,90]
```

In [185]:

```
from sklearn.ensemble import ExtraTreesClassifier

model = ExtraTreesClassifier()
model.fit(X, y)
print(model.feature_importances_)
```

```
[0.01232529 0.01421506 0.01209921 0.01458313 0.01396792 0.01557335
0.01286131 0.01649086 0.01236763 0.01301637 0.01165911 0.01674067
0.00979739 0.01342967 0.01114642 0.01384471 0.01113389 0.0100665
0.01209096 0.01132851 0.00970177 0.01349746 0.00907703 0.01362698
0.00983933 0.01308182 0.01051528 0.01693804 0.01056985 0.01822205
0.01065283 0.01579777 0.00894554 0.01352832 0.00797936 0.01222627
0.00897789 0.00960286 0.00770807 0.0082838 0.00850099 0.00971499
0.00666836 0.01062984 0.00822377 0.01162302 0.01079042 0.01283443
0.01026535 0.01244996 0.01150068 0.01515896 0.00937937 0.01365255
0.00955286 0.01355495 0.00817605 0.01310228 0.00716193 0.01237905
0.00797832 0.00937687 0.00749798 0.00962183 0.00722038 0.00747029
0.00884966 0.00878663 0.00867862 0.01117984 0.00784063 0.01071599
0.00730053 0.010727
                    0.00894212 0.01113664 0.00876445 0.01355357
0.01414831 0.01404466]
```

[5, 7, 11, 27, 29, 31, 51]

In [8]:

```
mydata= my_data[['V5', 'V7', 'V11', 'V27', 'V29', 'V31','V51']]
mydata
```

Out[8]:

	V5	V 7	V11	V27	V29	V31	V51
0	0.37731	0.37731	0.32639	0.82639	0.81944	0.72685	0.37963
1	0.27315	0.27315	0.25694	0.48611	0.58796	0.66667	0.25926
2	0.23611	0.23611	0.23380	0.71528	0.76389	0.76620	0.30787
3	0.32407	0.32407	0.31019	0.67824	0.75694	0.75000	0.28472
4	0.38657	0.38426	0.36574	0.80556	0.70370	0.59259	0.38657
355	0.78935	0.78704	0.78704	0.78009	0.78009	0.78472	0.76157
356	0.71759	0.71759	0.71991	0.71759	0.71759	0.71528	0.66204
357	0.75694	0.75694	0.75926	0.75926	0.75926	0.75926	0.73611
358	0.78935	0.78704	0.78704	0.78009	0.78009	0.78472	0.76157
359	0.71759	0.71759	0.71991	0.71759	0.71759	0.71528	0.66204

360 rows × 7 columns

In [10]:

```
mydata.head()
```

Out[10]:

	V5	V7	V11	V27	V29	V31	V51
0	0.37731	0.37731	0.32639	0.82639	0.81944	0.72685	0.37963
1	0.27315	0.27315	0.25694	0.48611	0.58796	0.66667	0.25926
2	0.23611	0.23611	0.23380	0.71528	0.76389	0.76620	0.30787
3	0.32407	0.32407	0.31019	0.67824	0.75694	0.75000	0.28472
4	0.38657	0.38426	0.36574	0.80556	0.70370	0.59259	0.38657

In [9]:

```
y=target
y
```

Out[9]:

```
1
1
         1
2
         1
3
         1
         1
        . .
355
        15
356
        15
357
        15
358
        15
359
        15
Name: V90, Length: 360, dtype: int64
```

Name. 150, Lengen. 500, deype. 11104

4. Разбейте набор данных на обучающую и тестовую выборки

In [11]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(mydata, y,test_size=0.3 )
```

5. Создайте и обучите классификатор на основе деревьев решений с глубиной дерева не более 5, определите точность классификации и визуализируйте границу принятия решений и построенное дерево решений. При визуализации границы принятия решений используйте два признака с наиболее высокой оценкой важности (не нужно удалять из набора все признаки кроме двух).

In [69]:

```
from sklearn.tree import DecisionTreeClassifier

dt_clf = DecisionTreeClassifier(max_depth=5)

dt_clf.fit(X_train, y_train)

dt_clf.score(X_test, y_test)
```

Out[69]:

0.37037037037037035

In [13]:

```
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

plt.figure(figsize=(15,9))
plot_tree(dt_clf,filled=True);
```


In [197]:

```
from sklearn.ensemble import ExtraTreesClassifier

model = ExtraTreesClassifier()
model.fit(mydata, y)
print(model.feature_importances_)
```

[0.14161841 0.13789941 0.13148628 0.14243452 0.13503119 0.14206245 0.16946774]

In [25]:

```
mydata2= mydata[['V27','V51']].to_numpy()
mydata2
y = target.to_numpy()
```

```
In [26]:
```

```
X_train2, X_test2, y_train2, y_test2 = train_test_split(mydata2, y,test_size=0.3 )
```

In [66]:

```
from sklearn.tree import DecisionTreeClassifier
dt_clf2 = DecisionTreeClassifier(max_depth=5)
dt_clf2.fit(X_train2, y_train2)
dt_clf2.score(X_test2, y_test2)
```

Out[66]:

0.32407407407407407

In [67]:

In [68]:

```
plt.figure(figsize=(12,10))
plt.title('Граница принятия решений', fontsize = 15)
plt.xlabel('V27', fontsize = 15)
plt.ylabel('V51', fontsize = 15)
plot_decision_boundary(dt_clf2, axis=[0, 1, 0, 1])
plt.scatter(mydata2[y==1,0], mydata2[y==1,1], label = 'класс 1')
plt.scatter(mydata2[y==2,0], mydata2[y==2,1], label = '\kappanacc 2')
plt.scatter(mydata2[y==3,0], mydata2[y==3,1], label = 'класс 3')
plt.scatter(mydata2[y==4,0], mydata2[y==4,1], label = '\kappanacc 4')
plt.scatter(mydata2[y==5,0], mydata2[y==5,1], label = '\kappanacc 5')
plt.scatter(mydata2[y==6,0], mydata2[y==6,1], label = 'класс 6')
plt.scatter(mydata2[y==7,0], mydata2[y==7,1], label = '\kappanacc 7')
plt.scatter(mydata2[y==8,0], mydata2[y==8,1], label = 'класс 8')
plt.scatter(mydata2[y==9,0], mydata2[y==9,1], label = 'класс 9')
plt.scatter(mydata2[y==10,0], mydata2[y==10,1], label = '\kappanacc 10')
plt.scatter(mydata2[y==11,0], mydata2[y==11,1], label = 'класс 11')
plt.scatter(mydata2[y==12,0], mydata2[y==12,1], label = 'κπαcc 12')
plt.scatter(mydata2[y==13,0], mydata2[y==13,1], label = 'κπαcc 13')
plt.scatter(mydata2[y==14,0], mydata2[y==14,1], label = '\kappanacc 14')
plt.scatter(mydata2[y==15,0], mydata2[y==15,1], label = '\kappa \Lambda acc 15')
plt.legend();
```


6. Постройте на основе классификатора деревьев решений ансамблевые классификаторы:

- · BaggingClassifier,
- · RandomForestClassifier,
- · AdaBoostClassifier,

а также классификатор:

· GradientBoostingClassifier,

подберите параметры классификаторов, чтобы добиться большей точности классификации, и постройте границы принятия решений классификаторов с визуализацией точек набора данных и легендой для меток классов.

BaggingClassifier

```
In [44]:
```

```
X = mydata.to_numpy()
y = target.to_numpy()
X2 = mydata2
y2 = target.to_numpy()
```

In [45]:

Out[45]:

0.5638888888888889

In [46]:

In [62]:

```
plt.figure(figsize=(12,10))
plt.title('Граница принятия решений BaggingClassifier', fontsize = 15)
plt.xlabel('V27', fontsize = 15)
plt.ylabel('V51', fontsize = 15)
plot_decision_boundary(bagging_clf2, axis=[0, 1, 0, 1])
plt.scatter(X2[y==1,0], X2[y2==1,1], label = 'класс 1')
plt.scatter(X2[y==2,0], X2[y2==2,1], label = 'класс 2')
plt.scatter(X2[y==3,0], X2[y2==3,1], label = 'класс 3')
plt.scatter(X2[y=4,0], X2[y2=4,1], label = '\kappanacc 4')
plt.scatter(X2[y==5,0], X2[y2==5,1], label = 'класс 5')
plt.scatter(X2[y==6,0], X2[y2==6,1], label = 'класс 6')
plt.scatter(X2[y==7,0], X2[y2==7,1], label = 'класс 7')
plt.scatter(X2[y==8,0], X2[y2==8,1], label = 'класс 8')
plt.scatter(X2[y==9,0], X2[y2==9,1], label = 'класс 9')
plt.scatter(X2[y==10,0], X2[y2==10,1], label = 'класс 10')
plt.scatter(X2[y==11,0], X2[y2==11,1], label = 'класс 11')
plt.scatter(X2[y==12,0], X2[y2==12,1], label = 'класс 12')
plt.scatter(X2[y==13,0], X2[y2==13,1], label = 'класс 13')
plt.scatter(X2[y==14,0], X2[y2==14,1], label = 'класс 14')
plt.scatter(X2[y==15,0], X2[y2==15,1], label = 'класс 15')
plt.legend();
```


RandomForestClassifier

```
In [48]:
```

Out[48]:

0.6

In [49]:

In [63]:

```
plt.figure(figsize=(12,10))
plt.title('Граница принятия решений RandomForestClassifier', fontsize = 15)
plt.xlabel('V27', fontsize = 15)
plt.ylabel('V51', fontsize = 15)
plot_decision_boundary(rf_clf2, axis=[0, 1, 0, 1])
plt.scatter(X2[y==1,0], X2[y2==1,1], label = 'класс 1')
plt.scatter(X2[y==2,0], X2[y2==2,1], label = '\kappaласс 2')
plt.scatter(X2[y==3,0], X2[y2==3,1], label = 'класс 3')
plt.scatter(X2[y=4,0], X2[y2=4,1], label = '\kappanacc 4')
plt.scatter(X2[y==5,0], X2[y2==5,1], label = 'класс 5')
plt.scatter(X2[y==6,0], X2[y2==6,1], label = 'класс 6')
plt.scatter(X2[y==7,0], X2[y2==7,1], label = 'класс 7')
plt.scatter(X2[y==8,0], X2[y2==8,1], label = 'класс 8')
plt.scatter(X2[y==9,0], X2[y2==9,1], label = 'класс 9')
plt.scatter(X2[y==10,0], X2[y2==10,1], label = 'класс 10')
plt.scatter(X2[y==11,0], X2[y2==11,1], label = 'класс 11')
plt.scatter(X2[y==12,0], X2[y2==12,1], label = 'класс 12')
plt.scatter(X2[y==13,0], X2[y2==13,1], label = 'класс 13')
plt.scatter(X2[y==14,0], X2[y2==14,1], label = 'класс 14')
plt.scatter(X2[y==15,0], X2[y2==15,1], label = 'класс 15')
plt.legend();
```


AdaBoostClassifier

In [51]:

```
from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
    DecisionTreeClassifier(max_depth=2), n_estimators=500)

ada_clf.fit(X, y)
ada_clf.score(X, y)
```

Out[51]:

0.35277777777778

In [52]:

```
ada_clf2 = AdaBoostClassifier(
    DecisionTreeClassifier(max_depth=2), n_estimators=500)
ada_clf2.fit(X2, y2);
```

In [64]:

```
plt.figure(figsize=(12,10))
plt.title('Граница принятия решений AdaBoostClassifier', fontsize = 15)
plt.xlabel('V27', fontsize = 15)
plt.ylabel('V51', fontsize = 15)
plot_decision_boundary(ada_clf2, axis=[0, 1, 0, 1])
plt.scatter(X2[y==1,0], X2[y2==1,1], label = 'класс 1')
plt.scatter(X2[y==2,0], X2[y2==2,1], label = '\kappaласс 2')
plt.scatter(X2[y==3,0], X2[y2==3,1], label = 'класс 3')
plt.scatter(X2[y=4,0], X2[y2=4,1], label = '\kappanacc 4')
plt.scatter(X2[y==5,0], X2[y2==5,1], label = 'класс 5')
plt.scatter(X2[y==6,0], X2[y2==6,1], label = 'класс 6')
plt.scatter(X2[y==7,0], X2[y2==7,1], label = 'класс 7')
plt.scatter(X2[y==8,0], X2[y2==8,1], label = 'класс 8')
plt.scatter(X2[y==9,0], X2[y2==9,1], label = 'класс 9')
plt.scatter(X2[y==10,0], X2[y2==10,1], label = 'класс 10')
plt.scatter(X2[y==11,0], X2[y2==11,1], label = 'класс 11')
plt.scatter(X2[y==12,0], X2[y2==12,1], label = 'класс 12')
plt.scatter(X2[y==13,0], X2[y2==13,1], label = 'класс 13')
plt.scatter(X2[y==14,0], X2[y2==14,1], label = 'класс 14')
plt.scatter(X2[y==15,0], X2[y2==15,1], label = 'класс 15')
plt.legend();
```


GradientBoostingClassifier

```
In [54]:
```

```
from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier(max_depth=2, n_estimators=30)
gb_clf.fit(X, y)
gb_clf.score(X, y)

Out[54]:
0.9

In [55]:
gb_clf2 = GradientBoostingClassifier(max_depth=2, n_estimators=30)
gb_clf2.fit(X2, y2);
```

In [65]:

```
plt.figure(figsize=(12,10))
plt.title('Граница принятия решений GradientBoostingClassifier', fontsize = 15)
plt.xlabel('V27', fontsize = 15)
plt.ylabel('V51', fontsize = 15)
plot_decision_boundary(gb_clf2, axis=[0, 1, 0, 1])
plt.scatter(X2[y==1,0], X2[y2==1,1], label = 'класс 1')
plt.scatter(X2[y==2,0], X2[y2==2,1], label = '\kappanacc 2')
plt.scatter(X2[y==3,0], X2[y2==3,1], label = 'класс 3')
plt.scatter(X2[y=4,0], X2[y2=4,1], label = '\kappanacc 4')
plt.scatter(X2[y==5,0], X2[y2==5,1], label = 'класс 5')
plt.scatter(X2[y==6,0], X2[y2==6,1], label = 'класс 6')
plt.scatter(X2[y==7,0], X2[y2==7,1], label = 'класс 7')
plt.scatter(X2[y==8,0], X2[y2==8,1], label = '\kappanacc 8')
plt.scatter(X2[y==9,0], X2[y2==9,1], label = 'класс 9')
plt.scatter(X2[y==10,0], X2[y2==10,1], label = 'класс 10')
plt.scatter(X2[y==11,0], X2[y2==11,1], label = 'класс 11')
plt.scatter(X2[y==12,0], X2[y2==12,1], label = 'класс 12')
plt.scatter(X2[y==13,0], X2[y2==13,1], label = 'класс 13')
plt.scatter(X2[y==14,0], X2[y2==14,1], label = 'класс 14')
plt.scatter(X2[y==15,0], X2[y2==15,1], label = 'класс 15')
plt.legend();
```


7. Определите лучший ансамблевый классификатор, дающий наиболее высокую точность классификации.

лучший ансамблевый классификатор- GradientBoostingClassifier¶