Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"

Факультет фотоники

Дисциплина: Основы фотоники

Лабораторная работа

«КВАНТОВЫЙ ВЫХОД И ВРЕМЯ ЗАТУХАНИЕ ЛЮМИНЕСЦЕНЦИИ ЭРБИЕВЫХ ЦЕНТРОВ В СТЕКЛЕ»

Работу выполнил:

К. А. Чекрыгин Группа: V33021

Преподаватель:

В. А. Асеев

 ${
m Caнкт-}\Pi{
m erepfypr}$ 2022

Содержание

1.	Цель работы	3
2.	Задачи, решаемые в лабораторной работе	3
3.	Объект исследования	3
4.	Рабочие формулы и исходные данные	4
5.	Оборудования и принадлежности	4
6.	Результаты эксперимента	4
7.	Графики	6
8.	Выводы и анализы результатов	8

1 Цель работы

Изучение явления затухания люминесценции, понятий квантового выхода и времени жизни на примере эрбиевых лазерных стёкол.

2 Задачи, решаемые в лабораторной работе

- 1. Изучение методик:
 - Измерения кинетики затухания люминесценции.
 - Расчета среднего времени жизни люминесценции
 - Расчета радиационного времени жизни по методу Фюхтенбауэра Ланденбурга
 - Определения квантового выхода люминесценции
- 2. Ознакомление с понятием о передачи возбуждений между локальными оптическими центрами, основными представлениями о механизмах ответственных за передачу
- 3. Изучить экспериментальные проявления передачи возбуждений (сенсибилизация, тушение)
- 4. Для концентрационного ряда эрбиевых стёкол:
 - Измерить на экспериментальной установке время затухания люминесценции
 - Провести расчет радиационного времени жизни
 - Расчета радиационного времени жизни по методу Фюхтенбауэра Ланденбурга
 - Определить квантовый выход люминесценции

3 Объект исследования

Лазерные стекла, активированные ионами эрбия

4 Рабочие формулы и исходные данные

$$\tau_{rad}^{-1} = 8 \cdot \pi \cdot c \cdot n^2 \cdot \tilde{\nu}^2 \cdot \frac{8}{7} \cdot \int \sigma_{abs}(\nu) d\nu \tag{1}$$

где c — скорость света, n — показатель преломления стекла, $\tilde{\nu}$ — средняя частота полосы, $\int \sigma_{abs}(\nu) d\nu$ — интегральное сечение поглощение основного резонансного перехода $^4I_{15/2}$ \to $^4I_{13/2}$

$$q = (\tau_{exp}/\tau_{rad}) \cdot 100\%, \tag{2}$$

где au_{exp} – экспериментально определенное время жизни люминесценции перехода $^4I_{15/2} \to ^4I_{13/2}, \, au_{rad}$ – радиационное время жизни люминесценции перехода $^4I_{15/2} \to ^4I_{13/2}.$

5 Оборудования и принадлежности

5.1 Схема установки

Рисунок 1 – Схема установки для определения кинетики затухания люминесценции. Цифрами на схеме обозначены: (1) – импульсный лазер; (2) – образец; (3) – короткофокусный объектив; (4) – монохроматор; (5) – InGaAs-приемник (6) –осциллограф

6 Результаты эксперимента

Построили зависимость нормированной интенсивности люминесценции от времени для каждого из образцов.[5] - [10] По площади графиков [5] - [10] мы определили время затухания

Таблица 1 – Основные величины СИ

Название	Команда	Символ
Ампер	12	затухания люминесценции, мсзатухания люминесценции,
Кандела	123	1123
Кельвин	123	123
Килограмм	123	123
Метр	123	123
Моль	123	123
Секунда	123	123

Таблица 2 – Результаты вычислений параметров исследуемых образцов

Номер серии	Номер образца	Экспериментальное время	Радиационное время	Квантовый выход
Помер серии		затухания люминесценции, мс затухания люминесценции, мс		люминесценции, %
	340	6,29		73,00
1	342	5,65	8,616	65,58
	343	1,78		20,66
	344	9,88		62,39
9	345	10,28	15,837	64,91
	346	9,62	10,031	60,74
	347	9,61		60,68

люминесценции для каждого из образцов.

Построили зависимость значений времени жизни люминесценции от концентрации ионов эрбия [3]

По формуле [1] мы определили значение радиационного времени жизни люминесценции. Используя параметры образцов и формулу [2] определили квантовый выход люминесценции для всех образцов. Исходные данные, которые использовались для расчетов приведены в таблице 3. Полученные значения занесены в таблицу 2.

По полученным результатам можно сказать, что при увеличении концентрации ионовактиваторов в стекле время затухания люминесценции сокращается. Однако неточность алгоритма Левенберга — Марквардта (некоторые переменные были заданы вручную, чтобы экспонатна стремилась к 0) привело к неточным измерениям времени жизни, так как явной зависимости времени затухания люминесценции от концентрации ионов-активаторов не наблюдается.

Построили зависимость квантового выхода люминесценции от концентрации ионов эрбия. [2]

Таблица 3 – Исходные данные для используемых образцов

Номер серии	Номер образца	Концентрация ионов эрбия, 1020 см-1	Показатель преломления	Интегральное сечение поглощения, 10–18 см
1	340 342	$0,50 \\ 0,15$	1 554	1 240
1	343	8,50	1,554	1,340
	344	0,26		
2	345	0,56	1,520	0,762
	346	1,12		
	347	1,12		

7 Графики

Оптимизируем функции с помощью алгоритма Левенберга — Марквардта[1]

Рисунок 2 – зависимость квантового выхода люминесценции от концентрации иона активатора

Рисунок 3 — Зависимость значений времени жизни люминесценции от концентрации ионов эрбия

Рисунок 5 – Зависимость изменения интенсивности люминесценции во времени для образца №1

Рисунок 7 – Зависимость изменения интенсивности люминесценции во времени для образца №3

Рисунок 6 – Зависимость изменения интенсивности люминесценции во времени для образца №2

Рисунок 8 – Зависимость изменения интенсивности люминесценции во времени для образца №4

Рисунок 9 – Зависимость изменения интенсивности люминесценции во времени для образца №5

Рисунок 10 – Зависимость изменения интенсивности люминесценции во времени для образца №6

Рисунок 11 – Зависимость изменения интенсивности люминесценции во времени для образца №7

8 Выводы и анализы результатов

В процессе выполнения лабораторной работы на основе методического пособия[2], были изучены явления затухания люминесценции, понятия квантового выхода и времени жизни люминесценции на примере эрбиевых лазерных стёкол. Были зарегистрированы кривые затухания люминесценции для двух серий образцов с определёнными показателями преломления для каждой из серий. Исследована зависимость кинетики затухания люминесценции от концентрации ионов-активаторов, рассчитаны радиационные времена затухания люминесценции для двух серий образцов, вычислен квантовый выход люминесценции.

В результате лабораторной работы было зарегистрировано, что образцам с более высокой концентрацией ионов-активаторов соответствуют менее длительные времена затухания. При относительно небольшой концентрации эта зависимость не наблюдается так ярко. Аналогичная зависимость квантового выхода люминесценции образцов от концентрации ионов эрбия.

Список литературы

- [1] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.

 *Quarterly of applied mathematics, 2(2):164–168, 1944.
- [2] Владимир Анатольевич Асеев, Анастасия Николаевна Бабкина, Леонид Юрьевич Миронов, and Рустам Какабаевич Нурыев. Методы и техника исследования оптических материалов. 2020.