Name- Anshak Gufta histority soll no: - 20/6648 TOTORIAL-1 What do you understand by symptotic rotation, define different soyn static April Asymptotic scotation many touronde

infinity: They are used to tall the

complecity of an algorithm.

Having Infut size pary longe.

It is priority analysis.

Different tuylor of complations are: Sout << i << endl; g(n) = O(g(n)), if g(n) < c(g(n)) + n > n. + c > 0of (ne) is uffor bound

3	Big Onega (s.)
4	$f(n) = \int g(n) \text{if } f(n) = (fg(n) + fn \ge n_0)$ $f(n) \text{some constant } (>0)$ $f(n) \text{is tight lower bound of } g(n) + f(n) = f(n) + f(n) + f(n)$ $f(n) = f(n) = f(n) + f(n) + f(n)$
	Some constant 00
	Scan M. I for) - Con 2 has I lead of g (n)
	$0 \le \alpha(n) \le \alpha(n)$
	$0 \le g(n) \le g(n)$
	$0 \leq (-g(n) \leq g(n))$
	$C \le 6 + 1 + 1$ on futting $n = 90, l = 1$ $n = 1$
	C=6 6=6+1+=6+0 Tous
	c>0 and $n>no$ $(n=1)$
	$g(n) = O(n^2)$
1	C - M - O - (-)
9	Small anga (uu)
	$g(n) = u(g(n)) \text{ if } g(n) > C(g(n)) \neq n > n \text{ of } g(n)$ $g(n) \text{ is the lower Bound of } g(n)$
	(n)
14.	$\sim \sim $
(3)	Rota (O)
	&(n) = O(g(n)), if ((g(n)) < k(n) < (g(n))
	f(n) = O(g(n)), if $G(g(n)) = f(n) = G(g(n))f(n) = monc(n), n_2) and some constant G(g(n)).$
*	

	Page
02	for (i=1 to n) (i=i*2)
	for (i=/ to n) (i= i * 2)
Arg 2	i would have 1,2,4,8,16,n
	it say those some K torner It is a 6 P with a=1, 2=02
	$k^{th} toem = tr = pa^{k-1}$
	$n = 1 (2)^{K-1}$
	=2K-1
	taking log, on B/s
	taking log, on 6/5 log n = log, (2 ^{t-1})
	$\log_2 n = (R - 1) \log_2 2$
	$\log n = (k-1) = k = 1 + \log_{1} n$ $T(n) = O(k) = O(1 + \log_{1} n) = O(\log_{1} n)$
	(n) = (1) = (14 seg n) - (10g n)
03	T(n) = C3T(n-1) if $n>0$, otherwise
	7(n) = 37(n-1) - 0
	By Bachward substitution $T(n) = 3T(n-1)$
	T(n-1) = 3T(n-1-1)
	T(n-1) = 3T(n-2) - (2)
	Lut O in O
	$7(n) = 3[37(n-2)] \Rightarrow 7(n) = 97(n-2) - 3$
	T(n-2)=3T(n-3) $T(n-2)=3T(n-3)$
	Continue for k timos
	$T(n) = 3^{k}T(n-k)$
	Mosume $n-k=0 \Rightarrow n=k$
	$T(n) = 3^k T(b)$
	$T(n) = 3^{k}$
	T(n) = O(3n)

04	T(n) = £27 (n-1) -1 if n >0, ottowise / 3
Andry 4	T(n) = 2T(n-1) - 1 - 0
1147	By using backwood substitution
	7(n) = 2(27(n-2)-1)-1 7(n) = 27(n-1)-1 7(n-1) = 27(n-2)-1 7(n-1) = 27(n-2)-1
	$\frac{1}{7(n-2)=2}\frac{7(n-2)=2}{7(n-3)-1}$
	2° [2T(n-3)-1]-2-1
	$2^{3}T(n-3)-4-2-1$
	Continue for K times
	$T(n) = 2^{kT} (n-k) - 2^{k-1} - 2^{k-2} - 1$
	$n-k=0$ $\Rightarrow n=k$
	$\frac{2^{n}T(0)-2^{n-1}-2^{n-2}1}{2^{n}-2^{n-1}-2^{n-2}1}$
	$\frac{2^{n}-2^$
	GP K towns
	$\alpha = 2^{n-1}, \alpha = 2^{n-1} = 1$
	2
	Sun of G-P
	Sum of G-P $a(1-g^{n-1}) = 2^{n-1}(1-(12)^{n-1}/1/2)$
	[-2 1/2
	$n \leftarrow n$
	$= 2^{n} (1 - 2(12))$ $= 2^{n} - 2$ $= 2^{n} - 2$
	$= 2^{n}(2^{n}-2) = 2$
	T(m) = O(1)

	Page
05	What should be to complocity of
	int $i=1, \alpha=1$
	maile $(x \leq n)$?
	i+t
	$S = S + i$; $\frac{4}{5}$ $\frac{10}{5}$ $\frac{5}{n}$ $\frac{15}{k \text{ times}}$
	pointly (H)
4 6	5 = 1, 3, 6, 10, 15 n
7.492	Set Say Ktorns K(K+1) = n
	K(K+1) = h
	2
	$k=2n$ $k=\sqrt{n}$ $\partial \sqrt{n}$
	tx-1 would be contant
	N N 1 -400 XXX
06	Time com Abritar of
	Time complocity of Word function (int n) {
	unt i) court =0
	for (i=1; i*i=n; i+t)
	Count +t;
	3 march and and
100	$1^{2}, 2^{2}, 3^{2}, n$
77/30	lot sow K torns
	let say K towns $t_{K} = K^{2}$
	$n = k^2 \Rightarrow k = \sqrt{n}$
	$n = k^2 \Rightarrow k = \sqrt{n}$ $7(n) = 0 (\sqrt{n})$
0.7	I'm can positul d
91	Time composity of Void Gunction (int n) E
	int in K. Count =0
	$\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n} - \frac{1}{n} \right) = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} + \frac{1}{n} $
	for (int $i = n/2$; $i = n$; $i = i+2$) for $(K=1; K==n; K=+2)$ Count $(K=1; K=+2)$
	Louis Hi

Aro 7	$i = \frac{n}{2}$) $\frac{n}{2} + 1$) $\frac{n}{2} + 2 n$
	$= \frac{n}{2} \xrightarrow{n+2} \xrightarrow{n+4} n$
	given of form = $n - 10*2 + n + 1*2 + n + 1*2 + n$
	V = V + V = V + V = V = V = V = V = V =
	$\frac{n+k^*2}{2} \qquad (k=0, h2, n)$
	Total torner = K+1
	$\frac{\pm k+1}{n+(k+1)^{*}2} = n \Rightarrow 2n = n+(k+1)^{*}2$
	n-2=2k
	$k = \frac{n}{2} - 1$
	i j K
	n/2 logn time (logn)
	n+2 log n time (log n)
	n log n timer (log n)2
	$-(n-1)(n-1)^2$
	$= \binom{n-1}{2} \left(\log n \right)^2$
	n log²n = log²n
	2 0
	$T(n) = 0 \left(n \log^2 n \right)$
08	Time complexity of
0.0	function (int n) E
	if $(n = = 1)$ roturn;
	$ \frac{if}{for} (n = = 1) \text{sotupn}; $ $ for (i = 1 \text{ to n}) \text{?} $ $ for (j = 1 \text{ to n}) $
	log(i=1 do n)

	3
	3
	large 14(((S))):
	facints ((5)); function (n-3);
	gunction (1-3)
408	Function call mould be 2, R-3, R-6, R-9
Alore	let saye K tooms
	AP, $a=n$, $d=-3$
	an = a + (n-1)d
	l = n + (k - 1)(-3)
	1=n-3k+3
	3K=n+2
	k = n + 2
	2
	Function Raise secresive call n+2 times.
	Time composity for two for look.
	$\left(\begin{array}{c}2\end{array}\right)$
	$T(n) = O(n^3)$
09	Time complocity of 190id function (int n) {
	$\log \left(j = 1 ; q \in n; j = j + 1 \right)$
	for $(j=1; g(=n; j=j+1))$ print $((s));$
	3
	3
An	9 i (Outor look)
76/0,	9 i (Outor look) when $i=1 \rightarrow j=1,2,3n=n$

	$\frac{1}{j=n} \frac{1}{2} \frac{1}{3} + \frac{1}{3} + \cdots$
	$\frac{1}{j=n} \left(\frac{1+1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right)$
	O(n log n)
0-10	For the function, no Kac Con what is the supply solve function. Assume that KZI and C>1 one constants.
0 10	noum latir adationalil blu the bundion.
	Assume that KZI and C>1 once constants.
	Find out the value of C and no for
	uhich addion hold.
Anglo	As given nk and cn solution blu nk and (n is nk=0(cn)
	solotion July no and (" is n'=0(c")
	2 1/ 5 22 1/ 21 -4 +4 22
	no n' = a cn + nz no for a constant a >0
	Goe n=1
	$(=)$ $ ^{k} < a2^{l}$
	mo=1 and $C=2$
+	the property of the second support