

Power Schottky Rectifier

 $I_{FAV} = 16 A$ $V_{RRM} = 45 V$ $V_{F} = 0.57 V$

V _{RSM}	V _{RRM}	Туре	
V	V		
45	45	DSS 16-0045A	DSS 16-0045AS

A = Anode, C = Cathode, TAB = Cathode

Symbol	Conditions	Maximum Ratings	
I _{FRMS}	T _c = 160°C; rectangular, d = 0.5	35 16	A A
I _{FSM}	$T_{VJ} = 45$ °C; $t_p = 10$ ms (50 Hz), sine	280	Α
E _{AS}	I_{AS} = 15 A; L = 180 μ H; T_{VJ} = 25°C; non repetitive	32	mJ
I _{AR}	V _A =1.5 • V _{RRM} typ.; f=10 kHz; repetitive	1.5	Α
(dv/dt) _{cr}		1000	V/μs
T _{VJ} T _{VJM} T _{stg}		55+175 175 55+150	°C °C °C
P _{tot}	T _C = 25°C	105	W
M _d	mounting torque	0.40.6	Nm
Weight	typical	2	g

Symbol	Conditions	Characteristic Values		
		typ.	max.	
I _R ①	$T_{VJ} = 25$ °C $V_R = V_{RRM}$ $T_{VJ} = 125$ °C $V_R = V_{RRM}$		0.5 5	mA mA
V _F	$I_F = 15 \text{ A};$ $T_{VJ} = 125^{\circ}\text{C}$ $I_F = 15 \text{ A};$ $T_{VJ} = 25^{\circ}\text{C}$ $I_F = 30 \text{ A};$ $T_{VJ} = 125^{\circ}\text{C}$		0.57 0.67 0.69	V V V
R_{thJC} R_{thCH}		0.5	1.4	K/W K/W

Features

- International standard package
- Very low V_F
- Extremely low switching losses
- Low I_{RM}-values
- Epoxy meets UL 94V-0

Applications

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Advantages

- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses

Dimensions see outlines.pdf

Pulse test: ① Pulse Width = 5 ms, Duty Cycle < $2.0\,\%$ Data according to IEC 60747 and per diode unless otherwise specified

IXYS reserves the right to change limits, Conditions and dimensions.

Fig. 1 Maximum forward voltage drop characteristics

Fig. 2 Typ. value of reverse current I_R versus reverse voltage V_R

Fig. 3 Typ. junction capacitance C_T versus reverse voltage V_R

Fig. 4 Average forward current $I_{F(AV)}$ versus case temperature T_{C}

Fig. 5 Forward power loss characteristics

Fig. 6 Transient thermal impedance junction to case at various duty cycles

Note: All curves are per diode