Data-Driven Performance Guarantees for Classical and Learned Optimizers

IOS Talk 2024 Rajiv Sambharya

Collaborators

Bartolomeo Stellato

Tracking a reference trajectory with a quadcopter

Success!

(If given enough time)

Current state, ____ reference trajectory

Model predictive control

optimize over a smaller horizon (T steps), implement first control, repeat

Failure: not enough time to solve

Model predictive controller

minimize
$$\sum_{t=1}^T \|x_t - x_t^{\mathrm{ref}}\|_2^2$$
 subject to $x_{t+1} = Ax_t + Bu_t$ $x_t \in \mathcal{X}, \quad u_t \in \mathcal{U}$ $x_0 = x_{\mathrm{init}}$

Control inputs

Challenge: we need faster methods for optimization

Empirically

Guarantees

Claim: real-world optimization is parametric

minimize $f_{\theta}(z)$ subject to $g_{\theta}(z) \leq 0$

Optimal solution $\rightarrow z^*(\theta)$

Robotics and control

Energy

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Parametric setting \(\square{1} \)

Faster optimization methods

A running example: Robust Kalman filtering

Robust Kalman filtering

Second-order cone program

$$\theta = \{y_t\}_{t=0}^{T-1} \longrightarrow$$

Noisy trajectory

minimize
$$\sum_{t=0}^{T-1} \| \boldsymbol{w}_t \|_2^2 + \mu \psi_\rho(\boldsymbol{v}_t)$$
 subject to
$$\boldsymbol{x}_{t+1} = A \boldsymbol{x}_t + B \boldsymbol{w}_t \quad \forall t$$

$$\boldsymbol{y}_t = C \boldsymbol{x}_t + \boldsymbol{v}_t \quad \forall t$$

 $= \{x_t^{\star}, w_t^{\star}, v_t^{\star}\}_{t=0}^{T-1}$

Recovered trajectory

Dynamics matrices: A, B

Observation matrix: C

Huber loss: ψ_{ρ}

Worst-case bounds can be very loose

Example: robust Kalman filtering

Second-order cone program

minimize
$$\sum_{t=0}^{T-1} \|w_t\|_2^2 + \mu \psi_\rho(v_t)$$
 subject to
$$x_{t+1} = Ax_t + Bw_t \quad \forall t$$

$$y_t = Cx_t + v_t \quad \forall t$$

SCS empirical average performance over 1000 parametric problems

Worst-case bound

In practice: linear convergence over the parametric family

Worst-case analysis: sublinear convergence

Worst-case bounds do not consider the parametric structure

Our goal: fill this gap with data-driven methods

Our recipe for guarantees for classical optimizers

Step 1 Run k steps for N parametric problems

Step 2 Evaluate the empirical risk

Step 3
Bound the risk
(Next slide)

$$\frac{1}{N} \sum_{i=1}^{N} e(\theta_i)$$

 $risk = \mathbf{E}_{\theta \sim \mathcal{X}} e(\theta) \leq bound$

Statistical learning theory can bound the risk

algorithm steps tolerance
$$e(\theta) = \mathbf{1}(\ell^k(\theta) > \epsilon)$$
 Any metric (e.g., fixed-point residual)

Sample convergence bound: with probability $1 - \delta$ [Langford et. al 2001]

$$\mathbf{E}_{\theta \sim \mathcal{X}} e(\theta) \leq \mathrm{KL}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} e(\theta_i) \bigg| \frac{\log(2/\delta)}{N} \right)$$

$$\mathbf{P}(\ell^k(\theta) > \epsilon) = \mathrm{risk} \leq \mathrm{KL}^{-1} \text{ (empirical risk | regularizer)}$$

"With probability $1-\delta$, 90% of the time the fixed-point residual is below $\epsilon=0.01$ after k=20 steps"

Robust Kalman filtering guarantees

With 1000 samples, we provide strong probabilistic guarantees on the 99th quantile

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Parametric setting \(\square{2} \)

Uses machine learning to accelerate the optimizer

The learning to optimize paradigm

Goal: solve the parametric minimize $f_{\theta}(z)$ optimization problem fast subject to $g_{\theta}(z) \leq 0$

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Parametric setting

Faster optimization methods

Goal: endow learned optimizers with generalization guarantees

PAC-Bayes guarantees for learned optimizers

algorithm steps tolerance
$$e_w(\theta) = \mathbf{1}(\ell_w^{\pmb{k}}(\theta) > \epsilon)$$
 learnable weights

McAllester bound: given posterior and prior distributions [McAllester et. al 2003] P and P_0 , with probability $1-\delta$

$$\mathbf{E}_{\theta \sim \mathcal{X}} \mathbf{E}_{w \sim P} e_w(\theta) \leq \left| \mathrm{KL}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{E}_{w \sim P} e_w(\theta_i) \middle| \frac{1}{N} \left(\mathrm{KL}(\mathrm{P} \parallel \mathrm{P}_0) + \log(\mathrm{N}/\delta) \right) \right) \right|$$

$$\mathsf{risk} \leq \left| \mathrm{KL}^{-1} \left(\mathsf{empirical risk} \mid \mathsf{regularizer} \right) \right|$$

Learned algorithms for sparse coding

Noisy measurements $\theta = b$

Sparse coding

Recover sparse z^* from $b = Dz^* + \sigma$

Ground truth sparse signal z^*

D: dictionary, σ : noise

Standard technique

minimize
$$||Dz - b||_2^2 + \lambda ||z||_1$$

ISTA (iterative shrinkage thresholding algorithm)
(Classical optimizer)

$$z^{j+1} = \text{soft threshold}_{\frac{\lambda}{L}} \left(z^j - \frac{1}{L} D^T (Dz^j - b) \right)$$

Learned ISTA

(Learned optimizer)

$$z^{j+1} = \operatorname{soft\ threshold}_{\psi^j} \left(W_1^j z^j + W_2^j b \right)$$

+ variants [Gregor and LeCun 2010, Liu et. al 2019]

Learned ISTA results for sparse coding

Conclusions

Real-world optimization is parametric

Data-driven methods can provide guarantees for classical and learned optimizers

Classical optimizers: apply a sample convergence bound

Learned optimizers: minimize the generalization bound directly

Data-Driven Performance Guarantees for Classical and Learned Optimizers

To be on Arxiv soon!

rajivs@princeton.edu

rajivsambharya.github.io