Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

90	Minutes	18	Exercices	15	Pages	44	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation - Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
44.0-42.0	41.5-37.5	37.0-33.0	32.5-29.0	28.5-24.5	24.0-20.0	19.5-15.5	15.0-11.0	10.5-7.0	6.5-2.5	2.0-0.0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2023.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession d'installatrice-électricienne CFC / Installateur-électricien CFC

Editeur:

CSFO, département procédures de qualification, Berne

3

1

1. Système électrochimique N° d'objectif d'évaluation 5.3.7b

A une source de tension, on mesure une tension $U_1 = 3.5$ V pour un courant $I_1 = 10$ A et une tension $U_2 = 1.5$ V pour un courant $I_2 = 30$ A.

a) Dessiner la droite de charge.

b) Quels sont les valeurs de la tension à vide et du courant de court-circuit ?

$$U_0 = 4.5 \text{ V}$$
 (Valeur du tableau)

0,5

Icc = 45 A (Valeur du tableau)

0,5

c) Calculer la résistance interne.

1

$$\mathbf{R_i} = \frac{\mathbf{U_0}}{\mathbf{I_K}} = \frac{\mathbf{4.5 V}}{\mathbf{45 A}} = \underline{\mathbf{0.1 \Omega}}$$

2. Transformateur N° d'objectif d'évaluation 5.1.6b

Un transformateur de 10 VA est connecté au réseau 230 V. A pleine charge, on mesure au secondaire un courant de 1,5 A.

En négligeant les pertes du transformateur, calculer :

a) Le courant au primaire.

1

2

Solution:

$$I_1 = \frac{S}{U_1} = \frac{10 \text{ VA}}{230 \text{ V}} = \underline{0.0435 \text{ A}} = \underline{43.5 \text{ mA}}$$

b) La tension au secondaire.

1

Solution:

3. Technique d'éclairage N° d'objectif d'évaluation 3.5.8b

2

Un terrain de football d'une longueur de 105 m et d'une largeur de 68 m est éclairé par six spots LED.

Chaque spot émet un flux lumineux de 142'800 lm.

Calculer l'éclairement moyen en lx. Les pertes d'éclairage sont négligées.

Solution:

$$\Phi_{\text{Ntot}} = N \cdot \Phi_{\text{N}} = 6 \cdot 142'800 \text{lm} = 856'800 \text{lm}$$

0,5

$$A = l \cdot b = 105m \cdot 68m = \underline{7140 \ m^2}$$

0,5

$$E_{m} = \frac{\Phi_{\text{Ntot}}}{A} = \frac{856/800 \, lm}{7140 \, m^2} = \underline{\frac{120 \, lx}{1140 \, m^2}}$$

1

2

0,5

0,5

0,5

0,5

2

4. Transformateur N° d'objectif d'évaluation 5.1.6b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux
L'huile dans les transformateurs triphasés est utilisée pour la lubrification des pièces mécaniques.		
Le noyau des transformateurs est composé de feuilles individuelles, car cela est moins cher à fabriquer.		
Un transformateur produit des pertes fer et des pertes cuivre (enroulements).	\boxtimes	
Le rapport de transformation d'un transformateur dépend du nombre de spires des enroulements primaire et secondaire.	\boxtimes	

5. Loi d'Ohm N° d'objectif d'évaluation 3.2.3b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux	
Si la résistance reste la même et que la puissance quadruple, la tension doit donc avoir doublée.	\boxtimes		0,5
Si la tension et la résistance ont diminué de moitié, alors le courant diminue de moitié.			0,5
A une première résistance, on raccorde en parallèle une deuxième résistance identique à la première. La puissance devient donc 4 fois plus grande. (U reste constante)		\boxtimes	0,5
Le raccordement d'un circuit en parallèle avec un autre permet de réduire la tension de moitié. Cela réduit également de moitié la puissance.		\boxtimes	0,5

3

0,5

0,5

0,5

0,5

0,5

0,5

6. Couplage mixte N° d'objectif d'évaluation 5.3.1b

Calculer:

a) La tension partielle U2.

Solution:

$$\mathbf{U}_2 = \mathbf{R}_2 \cdot \mathbf{I}_2 = \mathbf{300} \ \boldsymbol{\Omega} \cdot \mathbf{0}, \mathbf{6} \ \mathbf{A} = \underline{\underline{\mathbf{180} \ \mathbf{V}}}$$

b) La puissance partielle P₁.

Solution:

$$I_1 = I_3 - I_2 = 1,8 A - 0,6 A = 1,2 A$$

$$P_1 = U_2 \cdot I_1 = 180 \text{ V} \cdot 1, 2 \text{ A} = \underline{216 \text{ W}}$$

c) La résistance R₄.

Solution:

$$U_3 = R_3 \cdot I_3 = 30 \ \Omega \cdot 1, 8 \ A = \underline{54 \ V}$$

$$U = U_3 + U_2 = 54 V + 180 V = 234 V$$

$$R_4 = \frac{U}{I_4} = \frac{234 \text{ V}}{0.5 \text{ A}} = \underline{468 \Omega}$$

7. Champ magnétique N° d'objectif d'évaluation 3.2.5b

L'illustration montre un aimant permanent et une bobine en coupe.

a) Dessiner les lignes de champ magnétique résultantes et leur direction dans la bobine.

Bobine:

b) Indiquer les pôles magnétiques de la bobine.

0,5

2

Aimant permanent:

Points : Lignes de champ tracées correctement 0,5 Direction des lignes de champ correcte 0,5 Pôles 0,5

c) Qu'arrive-t-il à l'aimant permanent mobile si celui-ci se trouve à une courte distance de la bobine ?

0,5

2

0,5

0,5

0,5

0,5

Solution:

L'aimant permanent est attiré par la bobine.

8. Champ électrique N° d'objectif d'évaluation 3.2.5b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux
Les lignes de champ électrique sortent du pôle Nord et entrent dans le pôle Sud.		
Les lignes de champ électrique sortent du pôle positif et entrent dans le pôle négatif.	\boxtimes	
Deux charges électriques positives exercent une force d'attraction l'une sur l'autre.		\boxtimes
La tension est la cause d'un champ électrique.	\boxtimes	

3

 I_{L1}

0,5

I_{L2} 0,5

I_{L3} 0,5

I_N 0,5

9. Système triphasé N° d'objectif d'évaluation 5.3.4b

Trois appareils de mesure affichent les courants chaque conducteur de ligne d'un réseau 3 x 400 V / 230 V / 50 Hz.

Déterminer graphiquement le courant dans le conducteur neutre. Echelle 1 A = 1 cm

Le courant dans le conducteur de neutre est de :

 $I_N = 1,21 \text{ A (Tolérance: 1,11 A - 1,31 A)}$

Note pour les experts:

La solution n'est pas à l'échelle

1

3

10. Puissances et facteur de puissance N° d'objectif d'évaluation 5.3.2b

a) Calculer la puissance réactive du moteur.

Solution:

$$S = U \cdot I = 230 V \cdot 4, 5 A = 1035 VA$$

0,5

1

$$Q = \sqrt{S^2 - P^2} = \sqrt{(1035 \text{ VA})^2 - (639, 2 \text{ W})^2} = \underline{814 \text{ var}}$$

b) Calculer le $\cos \varphi$ du moteur.

Solution:

c) Le facteur de puissance doit être amélioré à 0,94 avec un système de compensation parallèle. Quelle sera alors l'intensité du courant dans la ligne d'alimentation ?

Solution:

$$S_2 = \frac{P}{\cos \rho_2} = \frac{639.2 \text{ W}}{0.94} = \underline{680 \text{ VA}}$$
 0.5

$$I_2 = \frac{S_2}{U} = \frac{680 \text{ VA}}{230 \text{ V}} = \underline{\underbrace{2,96A}}_{0,5}$$

3

11. Puissance active, apparente et réactive N° d'objectif d'évaluation 5.3.2b

Un courant de 8,7 A est mesuré dans la ligne d'alimentation dont la tension est de 230 V.

L'écran d'un appareil de mesure affiche les courbes suivantes :

a) Calculer la puissance active à l'aide des résultats de mesure et du graphique.

$$P = U \cdot I \cdot \cos \varphi = 230 \text{ V} \cdot 8,7 \text{ A} \cdot 0.5 = 1000,5 \text{ W} = 1 \text{ kW}$$

1

b) Calculer la puissance réactive.

$$S = U \cdot I = 230 V \cdot 8,7 A = 2001 VA = 2k VA$$

0,5

$$Q = \sqrt{S^2 - P^2} = \sqrt{(2 \text{ kVA})^2 - (1 \text{ kW})^2} = 1732.05 \text{ var} = 1,732 \text{ kvar}$$

1

c) La charge connectée est-elle inductive ou capacitive ?

0,5

☐ Capacitive ☐ Inductive

3

1,5

1,5

12. Résistance en AC N° d'objectif d'évaluation 3.2.7b

Le testeur d'installation affiche les valeurs suivantes :

Valeurs affichées:

 $\begin{array}{ll} I_{\text{K}}\text{:} & 1647 \text{ A} \\ Z_{\text{s}}\text{:} & 0,140 \Omega \\ R_{\text{s}}\text{:} & 0,125 \Omega \\ L_{\text{s}}\text{:} & 0,2 \text{ mH} \end{array}$

 a) A partir de ces valeurs, calculer la réactance X_L de la ligne. (Fréquence du réseau européen = 50 Hz)

$$X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{ Hz} \cdot 0,0002 \text{ H} = 0,063 \Omega = 63 \text{ m}\Omega$$

ou

$$X_L = \sqrt{(Z_S^2 - R_S^2)} = \sqrt{(0.14 \Omega)^2 - (0.125 \Omega)^2} = \underline{0.063 \Omega = 63 m\Omega}$$

b) Dessiner le triangle des résistances (sans être à l'échelle). Indiquer sur chacun des côtés du triangle : le nom et le symbole de sa grandeur, sa valeur et son unité.

Impédance Z = 0,14 Ohm

Résistance R = 0,125 Ohm

3

1

13. Chute de tension N° d'objectif d'évaluation 3.2.4b

a) Calculer le courant efficace dans le récepteur.

$$R_L = \frac{\rho \cdot l_L \cdot 2}{A} = \frac{0.0175 \,\Omega mm^2 \cdot 75 \,m \cdot 2}{m \cdot 1.5 \,mm^2} = \underline{1.75 \,\Omega}$$

$$R_{foehn} = \frac{U_N}{I_N} = \frac{230 \, V}{10 \, A} = \underline{23 \, \Omega}$$

$$I = \frac{U_N}{R_{foehnt} + R_L} = \frac{230 \, V}{23 \, \Omega + 1,75 \, \Omega} = 9,293 \, A = \underline{9,29 \, A}$$

b) Quelle est la tension aux bornes du foehn?

$$U_{foehn} = R_{Lfoehn} \cdot I = 23 \Omega \cdot 9,29A = \underline{214 V}$$

Note pour les experts: D'autres solutions sont possibles

2

14. Système numérique N° d'objectif d'évaluation 3.1.1b

Compléter la table de vérité du circuit logique ci-dessous.

Circuit logique:

Table de vérité :

I ₁	l ₂	l ₃	I 4	Q
1	1	0	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1

0,5

0,5

0,5

0,5

2

15. Alimentation de secours N° d'objectif d'évaluation 5.2.7

Selon les indications figurant sur le schéma de l'onduleur ci-dessous, nommer les modules 1 à 4.

Module 1: Filtre 0,5

Module 2: **Redresseur** 0,5

Module 3: **Onduleur** 0,5

Module 4: Stockage d'énergie ou accumulateurs 0,5

2

1

2

16. Système triphasé N° d'objectif d'évaluation 5.3.4b

On connecte quatre consommateurs ohmiques sur notre réseau standard 3 x 400 / 230 V. Calculer les courants dans chaque ligne d'alimentation (I_{L1}, I_{L2}, I_{L3}):

$$I_{L1} = \frac{U_{L1}}{R_1} + I_4 = \frac{230 \, V}{64 \, \Omega} + 2A = \underline{5,59 \, A}$$

$$I_{L2} = \frac{P_{R2}}{U_{L2}} + I_4 = \frac{150 W}{230 V} + 2 A = \underline{2.65 A}$$

$$I_{L3} = U_{L3} \cdot G_3 + I_4 = 230 \, V \cdot 0,033 \, S + 2 \, A = 9,59 \, A$$

17. Système triphasé N° d'objectif d'évaluation 5.3.4b

On connecte un nouveau consommateur R₅ sur une installation existante.

Cocher l'affirmation correcte dans le tableau ci-dessous.

Affirmations pour un système triphasé	Augmente	Ne change pas	Diminue
Le courant dans le conducteur L ₁			
Le courant dans le conducteur L ₂	\boxtimes		
Le courant dans le conducteur L ₃		\boxtimes	
Le courant dans le neutre		\boxtimes	

0,5

0,5

0,5

Points par page:

0,5

3

1

1

1

18. Moteur triphasé N° d'objectif d'évaluation 5.3.4a

Une pompe à eau potable fournit 50 litres d'eau par seconde à un réservoir situé 60 m plus haut.

a) Calculer la puissance absorbée par le moteur.

$$P_{utile\ P} = \frac{m \cdot g \cdot h}{t} = \frac{50 \, kg \cdot 9.8 \, 1\frac{N}{kg} \cdot 60m}{1 \, s} = \underline{29430 \, W} = \underline{29.43 \, kW}$$

$$P_{Abs\ M} = \frac{P_{abP}}{\eta_{RL} \cdot \eta_{P} \cdot \eta_{M}} = \frac{29.43 \, kW}{0.9 \cdot 0.8 \cdot 0.9} = \underline{45,42 \, kW} = \underline{45,4 \, kW}$$

b) Calculer le courant absorbé par le moteur triphasé (Réseau 3 x 400 V).

$$I = \frac{P_{Abs M}}{\sqrt{3} \cdot U \cdot cos \varphi} = \frac{45,42 \ kW}{\sqrt{3} \cdot 400 \ V \cdot 0,82} = \frac{79,9 \ A}{\sqrt{3}}$$