UNIVERSITY OF TWENTE.

Portwings Internal Meeting Challenges and outlook for the numerics

Andrea Brugnoli

Department of Robotics and Mechatronics, University of Twente

What numerics for the portwings project?

Methods should preserve the continuous structure at the discrete level. Which structure?

- Cohomology: $V^0(\mathbb{R}) \xrightarrow{\nabla} V^1(\mathbb{R}^3) \xrightarrow{\nabla \times} V^2(\mathbb{R}^3) \xrightarrow{\nabla \cdot} V^3(\mathbb{R})$;
- **2** Variational structure $\delta \int I = 0$, (I Lagrangian density);
- **3** Hamiltonian structure $\dot{\mathcal{F}} = \{F, H\}, \{\cdot, \cdot\}$ Poisson brackets.
- 4 ...

Recent developments:

- splitting of topological and metric operators (Bauer and Behrens 2018);
- ► Lie group structure and underlying variational formulation (Gawlik and Gay-Balmaz 2020);
- connection with algebraic topology, i.e. de Rham complex and more general Hilbert complexes, e.g. elasticity (Bochev and Hyman 2006; Arnold, Falk, and Winther 2006; Palha et al. 2014);

Principle behind split discretization

- Fluid equation written in covariant form (exterior calculus);
- ▶ Split Hamiltonian form $\dot{\mathcal{F}} = \{\mathcal{F}, \mathcal{H}\}.$
 - ▶ Topological braket depending on d (exterior derivative) or ι_{ν} (interior product).
 - ► Metric dependent \mathcal{H} , since it depends on *

Linear shallow water waves in Hamiltonian form

- ▶ $\mathcal{H} = \frac{1}{2} \int_{\Omega} \left\{ \bar{h} \|\mathbf{u}\|^2 + gh^2 \right\} d\Omega$, with $\frac{\delta \mathcal{H}}{\delta \mathbf{u}} = \bar{h}\mathbf{u}$, $\frac{\delta \mathcal{H}}{\delta h} = gh$, where g gravity acc. and \bar{h} equilibrium fluid height.
- $\blacktriangleright \ \{\mathcal{F},\mathcal{G}\} = -(\tfrac{\delta\mathcal{F}}{\delta u}, \nabla \tfrac{\delta\mathcal{G}}{\delta h}) (\tfrac{\delta\mathcal{F}}{\delta h}, \nabla \cdot \tfrac{\delta\mathcal{G}}{\delta u}).$

$$\begin{split} \mathcal{F} &= \int \mathbf{u} \; \mathrm{d}\Omega : \; \dot{\mathcal{F}} = -(\frac{\delta \mathcal{F}}{\delta \mathbf{u}}, \nabla \frac{\delta \mathcal{H}}{\delta h}) \to \partial_t \mathbf{u} = -g \nabla h. \\ \mathcal{F} &= \int h \; \mathrm{d}\Omega : \; \dot{\mathcal{F}} = -(\frac{\delta \mathcal{F}}{\delta h}, \nabla \cdot \frac{\delta \mathcal{H}}{\delta \mathbf{u}}) \to \partial_t h = -\bar{h} \nabla \cdot \mathbf{u}. \end{split}$$

Split and weak (or mixed) form

De Rham complex: $V^0(\mathbb{R}) \xrightarrow{\nabla} V^1(\mathbb{R}^3) \xrightarrow{\nabla \times} V^2(\mathbb{R}^3) \xrightarrow{\nabla \cdot} V^3(\mathbb{R})$.

Split form

$$egin{aligned} h \in V^0 & \stackrel{
abla}{\longrightarrow} V^1
ightarrow u \\ ilde{h} = & i h \ \downarrow u = & u \ i u = & u \ i \ i \ h \in V^3 & \stackrel{
abla}{\longleftarrow} V^2
ightarrow u
ightarrow u$$

- ► Assume full * in metric eqs.
- ▶ Both ∇ , ∇ · are imposed strongly.
- ► Both diff. eqs exact

Weak form (Mixed FE)

$$h \in V^{3} \xrightarrow{\hat{\nabla}} V^{2} \ni \mathbf{u}$$

$$\tilde{h} = h \downarrow \qquad \qquad \downarrow \tilde{\mathbf{u}} = \mathbf{u}$$

$$\tilde{h} \in V^{3} \xleftarrow{\nabla \cdot} V^{2} \ni \tilde{\mathbf{u}}$$

- Assume $\tilde{*} = \text{Id}$, i.e. $\tilde{\mathbf{u}} = \mathbf{u}$. $\tilde{h} = h$.
- ightharpoonup Weak gradient $\hat{\nabla}$.
- ► Moment Eq. weak

Application of mixed finite elements

Infinite-dimensional pH system

PDE with boundary control:

$$\frac{\partial \boldsymbol{\alpha}}{\partial t}(\boldsymbol{x},t) = \mathcal{J}\delta_{\boldsymbol{\alpha}}H.$$

Boundary conditions:

$$\mathbf{u}_{\partial} = \mathcal{B}_{\partial} \delta_{\alpha} H, \quad \mathbf{y}_{\partial} = \mathcal{C}_{\partial} \delta_{\alpha} H.$$

Power balance (Stokes Theorem):

$$\dot{H} = \int_{\partial \Omega} \mathbf{u}_{\partial} \cdot \mathbf{y}_{\partial} \, \mathrm{d}S.$$

Structure-preserving discretization

Tools available

```
FEniCS: https://fenicsproject.org/.
Fluid Structure Interaction in Fenics: Bergersen et al. 2020.
Mesh morphing in FEniCS: https://bitbucket.org/Epoxid/femorph/src/c7317791c8f00d70fe16d593344cb164a53cad9b/?at=dokken%2Frestructuring
PyDec: https://github.com/hirani/pydec
Learning Python for scientific computing https:
//faculty.math.illinois.edu/~hirani/cbmg/index.html
```