

Reg.No	19BEC0358			
Student Name	ARPIT PATAWAT			
Course Code	ECE3002	Slot & Semester	L43+L44	
			WINTER 2021-22	
Course Name	VLSI system design			
Program Title	Lab Assignment 3			
Faculty	Dr. Ragunath G			

School of Electronics Engineering ,VIT, Vellore

1).
 Aim → to plot the voltage transfer characteristics of CMOS inverter
 Circuit Diagram → length = 180 nm, Width = 400nm(PMOS and NMOs)

Threshold voltage = 598.89mV (at PMOS width of 400nm)

Result →

Threshold voltage is expected to be half of VDD. Here I took VDD = 1.358 so expected threshold voltage is 0.679mV but due to value of width of PMOS it is less than expected (598mV approx.). Hence, I was able to visualize the DC characteristics of CMOS inverter.

2).

Aim → to plot the voltage transfer characteristics of CMOS inverter for different width of PMOS

Circuit Diagram → length = 180 nm, Width (NMOS) = 400nm

At 600nm width of PMOS ↑

S. No.	PMOS Width	Threshold Voltage of	
		the CMOS inverter	
1	400n	598.89mV	
2	600n	605.40mV	
3	800n	620.23mV	
4	1000n	634.61mV	
5	1200n	639.73mV	

Result →
As the width of PMOS starts increasing, the threshold voltage of inverter also increases.

3).

Aim → to plot the Pulse input inverter characteristics

Circuit Diagram → length = 180 nm, Width (NMOS) = 400nm, Width (PMOS) = 400n

Result → CMOS inverter output waveform is as expected (compliment of input)

4).Aim → to find rise time, fall time and propagation delay

 $Green-input\ wave,\ blue-output\ wave$

TPDF = 11.397ps

TPDR = 15.020ps

TPDF	11.397ps
TPDR	15.020ps
Propagation delay TPD	13.2085ps

Result \rightarrow TPD is average of TPDF and TPDR

3).Aim → to plot output power signal and observe peak and average power

Peak power = 335.32micro watt

Average power = 12.187micro watt

$Aim \rightarrow$ to design a 5-variable function

Circuit Diagram → length = 180 nm,

Here I took Y = ((A.B.C) + (D.E))' function

Truth Table →

A	В	С	D	Е	Y
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	0	1	1
0	1	0	1	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	0

Result → our final output waveform matches with truth table. Hence, we were successfully able to build circuit using CMOS design.

-----XXXXX------