GURU NANAK COLLEGE (AUTONOMOUS)

Chennai - 600 042.

BACHELOR OF COMPUTER SCIENCE [DEPARTMENT OF COMPUTER SCIENCE]

2021 - 2022

Name	:			
Reg. No	:			
Year	:	III	Semester:	VI
Subject Code	:	19UCSC314		
Subject	:	PYTHON PROGRAMM	MING	

GURU NANAK COLLEGE (AUTONOMOUS)

Chennai - 600 042.

BACHELOR OF COMPUTER SCIENCE [DEPARTMENT OF COMPUTER SCIENCE]

2021 - 2022

Name	:			
Reg. No	:			
Year	:	III	Semester:	VI
			beinester.	V1
Subject Code	:	19UCSC314		
Subject	:	PYTHON PROGRAMM	IING	

GURU NANAK COLLEGE (AUTONOMOUS)

Chennai – 600 042.

DEPARTMENT OF COMPUTER SCIENCE BONAFIDE CERTIFICATE

NAME : REG. NO : CLASS :	
This is to certify that this is the bo	nafide record of the practical work
done in	at Guru
Nanak College Computer Lab, during	the Year 2021 - 2022.
Staff-In-Charge	Head of the Department
Submitted for the	_
B.Sc., Computer Science Practical Exam	nination held on
at Guru Nanak College, Chennai - 42.	

External Examiner

Internal Examiner

INDEX

S.NO	DATE	CONTENT	PAGE NO	SIGN
1.		Temperature Conversion		
2.		Student Mark Sheet		
3.		Sum of the elements		
4.		Sum of positive and negative numbers using array		
5.		Sum and Difference of two matrices		
6.		Quadrative Equation		
7.		String Palindrome		
8.		Vowels Counting using Dictionary		
9.		Pangram finding		
10.		Area of shapes using user defined function		
11.		Fibonacci Series		
12.		Sum of the following series for n terms: $1 - 2/2! + 3/3!$ n/n!		
13.		Python program using Object Oriented Programming Concept		
14.		Illustration of List		
15.		Exception handling		

Temperature Conversion

```
print("1.Fahrenheit to Celsius" '\n' "2.Celsius to Fahrenheit"
    '\n') c=int(input("Enter your choice" '\n'))
if c==1:
    f=float(input("Enter the temperature in Fahrenheit"
         '\n')) c=((f-32)*5)/9
    print("Celsius=",c)
elif c==2:
    c=float(input("Enter the temperature in Celsius" '\n'))
    f=(c*9/5)+32
    print("Fahrenheit=",f)
```

```
1.Fahrenheit to Celsius
2.Celsius to Fahrenheit

Enter your choice
1
Enter the temperature in Fahrenheit
75
Celsius= 23.8888888888888
```

Student Mark Details

```
print("Enter the marks")
mark1=int(input("Mark1: "))
mark2=int(input("Mark2: "))
mark3=int(input("Mark3: "))
total=mark1+mark2+mark3
print("Total = ",total)
perc=total/3
print ("Percentage = ",perc) if
(perc>=90 and perc<=100):
   print("Grade is : A") elif
(perc>=70 and perc<90):
   print("Grade is : B")
elif (perc>=50 and perc<70):
   print("Grade is : C")
elif (perc>=35 and perc<50):
   print("Grade is : D")
elif (perc>=20 and perc<35):
   print("Grade is : E")
elif (perc>=0 and perc<20):
   print("Grade is : F")
```

Enter the marks
Mark1: 75
Mark2: 80
Mark3: 85
Total = 240
Percentage = 80.0
Grade is : B

Sum of the elements

```
start=int(input("Enter the starting value"))
end=int(input("Enter the ending value"))
sum=0
if(start>0 and end>0):
    for num in range(start,end):
        sum+=num
    print("Sum = ",sum)
else:
    print("The starting and ending value must be positive numbers")
```

```
Enter the starting value 5
Enter the ending value10
Sum = 35
```

Sum of positive and negative numbers using array

```
num=[]
posum=0
negsum=0
positive=[ ]
negative=[]
i=0
n=int(input("Enter the limit:"))
while(i<n):
    a=int(input("Enter the number :"))
     num.append(a)
    i=i+1 for i
in num:
    if (i>0):
       positive.append(i)
       posum+=i
    else:
       negative.append(i)
       negsum+=i
print("The given list is :",num)
print("The list of positive numbers :",positive)
print("The list of negative numbers :",negative)
print("The sum of positive numbers :",posum)
print("The sum of negative numbers :",negsum)
```

```
Enter the limit:5
Enter the number :10
Enter the number :-20
Enter the number :30
Enter the number :-40
Enter the number :50
The given list is : [10, -20, 30, -40, 50]
The list of positive numbers : [10, 30, 50]
The list of negative numbers : [-20, -40]
The sum of positive numbers : 90
The sum of negative numbers : -60
```

Sum and Difference of two matrices

```
r=int(input("Enter the no. of rows:"))
c=int(input("Enter the no. of columns:"))
mat1=[]
print("Enter the elements for 1st Matrix:")
for i in range(r):
    mat1.append([ ])
    for j in range(c):
         num=int(input())
         mat1[i].append(num)
print("Matrix 1 is : ")
for i in range(r):
    for j in range(c):
         print(mat1[i][j],end=""")
     print()
mat2=[]
print("Enter the elements for 2nd Matrix :")
for i in range(r):
    mat2.append([ ])
    for j in range(c):
         num=int(input())
         mat2[i].append(num)
print("Matrix 2 is : ")
for i in range(r):
    for j in range(c):
         print(mat2[i][j],end=""")
     print()
mat3=[]
for i in range(r):
    mat3.append([ ])
    for j in range(c):
          sum=0
          sum=(mat1[i][j] + mat2[i][j])
          mat3[i].append(sum)
print("\nAddition Result of Two given Matrix is :")
for i in range(r):
    for j in range(c):
         print(mat3[i][j],end=""")
     print()
```

Enter the no of rows : 2 Enter the no of columns : 2 Enter Elements for First Matrix: 10 20 30 40 matrix 1 is : 10 20 30 40 Enter Elements for Second Matrix: 60 70 80 matrix 2 is : 50 60 70 80 Addition Result of Two Given Matrix is: 60 80 100 120 Multiplication Result of Two Given Matrix is: 500 1200 2100 3200

Quadrative Equeation

```
import math
print("Program to calculate quadratic equation")
a=int(input("Enter a:"))
b=int(input("Enter b:"))
c=int(input("Enter c:"))
if a==0:
  print("Value of ",a,"should not be zero")
  print("\n Aborting!!!")
else:
  delta=b*b-4*a*c if
  delta>0:
     root1=(-b+math.sqrt(delta))/(2*a)
     root2=(-b-math.sqrt(delta))/(2*a)
     print("Roots are Real & Unequal")
     print("Root1=",root1,"Root2=",root2)
  elif delta==0:
     root1 = -b/(2*a)
     print("Roots are Real & Equal")
     print("Root1=",root1,"Root2=",root1)
  else:
     print("Roots are Complex & Imaginary")
```

Program to calculate quadratic equation
Enter a:10
Enter b:20
Enter c:3
Roots are Real & Unequal
Root1= -0.16333997346592444
Root2= -1.8366600265340758

String Palindrome

```
def reverse(ch):
    a=ch[::-1]
    if(a==ch):
        print(ch," is a
    palindrome") else:
        print(ch," is not a
    palindrome") str=input("Enter the
    string: ") reverse(str)
```

===== RESTART: C:/Users/LAB/AppData/Local/Programs/Pyt Enter the string: malayalam

malayalam is a palindrome

Vowels Counting- Dictionary.

```
line=input()
vowel="aeiou
" vow=[]
count=0
space=0
for i in line:
  line=line.lower(
  ) if i in vowel:
      vow.append(i
      ) count+=1
  if i==' ':
      space+=
      1
per=count/5
dic={"No. of letters":len(line)-
    space, "No. of
     Vowels":count,
    "Percentage":per*100
print(dic)
```

```
Computer science {'No. of letters': 15, 'No. of Vowels': 6, 'Percentage': 120.0}
```

Pangram finding

```
import string
def ispangram(str):
    alphabet="abcdefghijklmnopqrstuvwxyz"
    for char in alphabet:
        if char not in str.lower():
            return False
        return True
    string=input("Enter the string")
    if(ispangram(string)==True):
        print("Yes")
else:
        print("No")
```

Output: Enter the string the quick brown fox jumps over the lazy dog Yes

Area of shapes using user defined function

```
def
   rectangle(l,b):
   area=l*b
   print("area=",area,"cm²)
 def square(a):
   area=a*a
   print("area=",area,"cm²)
 def circle(r): area=3.14*r*r
   print("area=",area,"cm2")
 def triangle(b,h):
   area=0.5*b*h
   print("area=",area,"cm2")
ch=int(input("1.rectangle\n2.square\n3.circle\n4.triangle\nenter your choice:"))
if(ch==1):
   l=float(input("enter length:"))
   b=float(input("enter
   breadth:")) rectangle(l,b)
 elif(ch==2):
   a=float(input("Enter the side length:"))
   square(a)
 elif(ch==3):
   r=float(input("Enter the radius of circle:"))
   circle(r)
 elif(ch==4):
   b=float(input("enter breadth:"))
   h=float(input("enter height:"))
   triangle(b,h)
 else:
   print("Invalid choice.Choose from 1-4")
```

1.rectangle
2.square
3.circle
4.triangle
enter your choice:1
enter length:40
enter breadth:20
area= 800.0 cm²

Fibonacci Series

```
nterm=int(input("Enter how many terms "))
n1,n2=0,1
count=0
if nterm<=0:
  print("Enter the positive number")
elif nterm==1:
  print("Fibonacci sequence upto ", nterm)
  print(n1)
else:
  print("Fibonacci Series")
  while count<nterm:
    print(n1)
    nth=n1+n2
    n1=n2
    n2=nth
    count+=1
```

```
Enter how many terms 5
Fibonacci Series
0
1
2
3
```

Sum of the following series for n terms: $1 - 2/2! + 3/3! - \cdots - n/n!$

```
Coding:
n=int(input("Enter the value of n: "))
for i in range(n + 1):
    fact=1
    for j in range(1,i+1):
        fact*=j
        term=(i / fact)
sum=1-term
print("Sum=",sum)
```

Output: Enter the value of n: 3 Sum= 0.5

Python program using Object Oriented Programming Concept

class MyTime:

```
def __init__(self, hrs=0, mins=0, secs=0):
     """ Create a MyTime object initialized to hrs, mins, secs """
     self.hours = hrs
     self.minutes = mins
     self.seconds = secs
  def __str__(self):
     timeString = ""
     if self.hours < 10:
       timeString += "0"
    timeString += str(self.hours) + ":"
     if self.minutes < 10:
       timeString += "0"
     timeString += str(self.minutes) + ":"
    if self.seconds < 10:
       timeString += "0"
     timeString += str(self.seconds)
     return timeString
def add_time(t1, t2):
  h = t1.hours + t2.hours
  m = t1.minutes + t2.minutes
  s = t1.seconds + t2.seconds
  sumTime = MyTime(h, m, s)
  return sumTime
currentTime = MyTime(9, 14, 30)
breadTime = MyTime(3, 35, 0)
doneTime = add_time(currentTime, breadTime)
print(doneTime)
```

Output:	
12:49:30	

Illustration of List

```
fruits=[]
colour=[]
numbers=[1,2,3,4,5,6,7,8,9]
n=int(input("Enter the list count: "))
for i in range(0,n):
   name=input("Enter the fruit name: ")
   fruits.append(name)
print(fruits)
for i in range(0,n):
   name=input("Enter the colour name: ")
   colour.append(name)
print(colour)
print("List concatenation")
print(fruits+colour)
print("List repetition")
print(fruits*3)
print("List membership operator")
print('apple' in fruits)
print('banana' not in fruits)
print(fruits[0])
print(fruits[2:3])
print(fruits[-1::])
```

```
Enter the list count: 3
Enter the fruit name: apple
Enter the fruit name: orange
Enter the fruit name: banana
['apple', 'orange', 'banana']
Enter the colour name: red
Enter the colour name: green
Enter the colour name: blue
['red', 'green', 'blue']
List concatenation
['apple', 'orange', 'banana', 'red', 'green', 'blue']
List repititon
['apple', 'orange', 'banana', 'apple', 'orange', 'banana', 'apple', 'orange', 'banana']
List membership operator
True
False
apple
['banana']
['banana']
```

Illustration of Exception handling

```
try:
  print("try block")
  x=int(input("Enter a number: "))
  y=int(input("Enter another number: "))
  z=x/y
except ZeroDivisionError:
  print("except ZeroDivisionError block")
  print("Division by 0 not accepted")
else:
  print("else block")
  print("Division = ",z)
finally:
  print("finally block")
  x=0
  y=0
print("Out of try,except,else and finallyblocks.")
```

```
try block
Enter a number: 4
Enter another number: 2
else block
Division = 2.0
finally block
Out of try, except, else and finallyblocks.
```