N2 Dawid Włosek

Wykres fioletowy odnosi się do dyskretyzacji (2a), w przypadku której w okolicach h=10⁻⁸ błąd zaczyna rosnąć liniowo, zatem najbardziej optymalne będzie h z przedziału (10⁻⁹, 10⁻⁸). Minimalny błąd tej metody to w przybliżeniu 10⁻¹².

Przy dyskretyzacji (2b) (wykres zielony) mamy podobną sytuację, ale w tym przypadku błąd zaczyna rosnąć w okolicach $h=10^{-5}$, zatem najbardziej optymalne będzie h z przedziału (10^{-6} , 10^{-5}). Minimalny błąd tej metody to w przybliżeniu 10^{-15} .

Analogicznie dla dyskretyzacji (2c) najbardziej optymalne będzie h z przedziału (10^{-4} , 10^{-3}). Minimalny błąd tej metody to w przybliżeniu 10^{-16} .

Dla x=pi/2 wykresy dla kolejnych metod dyskretyzacji dosyć mocno różnią się od siebie, zatem zamieszczam oddzielny dla każdej z nich.

Dla dyskretyzacji (2a) minimalny błąd to 10^{-16} , a najbardziej optymalne h to h z przedziału (10^{-16} , 10^{-8}), ponieważ dla każdego h z tego przedziału otrzymamy minimalny błąd.

W przypadku tej dyskretyzacji minimalny błąd to znowu 10^{-16} , a najbardziej optymalne h to h z przedziału $(10^{-16}, 10^{-4})$.

Dla dyskretyzacji (2c) widzimy, że dla h z przedziału (10-16, 10-8) mamy minimalny błąd równy 10-16.