第四章 整数规划

Integer Programming 整数规划

All Integer Programming 全整数规划

Mixed Programming 混合整数规划

4.1 一般整数规划问题的特点及分枝定界法

一、引例

某厂拟用集装箱托运甲、乙两种货物,每箱的体积、重量、可获利润及托运时所受的限制如下表所示, 问如何托运能使总收益最大?

货物	体积(米³/箱)	重量(吨/箱)	利润(千元/箱)
甲	2	2	3
Z	3	1	2
托运限制	14 米3	9 吨	

建模:

解:设 托运甲货物x₁箱,乙货物x₂箱

Max
$$z=3 x_1 + 2 x_2$$

st. $\begin{cases} 2 x_1 + 3 x_2 \le 14 \\ 2 x_1 + x_2 \le 9 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$ 且为整数

--第4章 整数规划--

分枝定界法:

复习思考题

- 1. 为什么提出整数规划模型?
- 2. 对LP模型最优解圆整是否能够获得其对应整数规划模型最优解?
- 3. 分枝定界法的思路?
- 4. 分枝定界法中分枝处理的原则是什么?
- 5. 分枝定界法中是如何进行剪枝处理的?

4.2 0-1规划问题及模型

- 一、0-1规划问题的概念
 - 在整数规划问题中,若变量取值为0或者1,则为0-1 规划问题。

• 0-1变量通常用来表示逻辑性选择的决策。

二、0-1变量的应用

1、表示选择性决策

例1: 某油田在10个有油气构造处要选择若干个钻探 采油,设第j个构造开采时需投资a_j元,投产后预计年收 益为c_j元,若该油田投资的总限额为b元,问: 应选择哪 几个构造开采最为有利?

设
$$x_{j} = \begin{cases} 1 & --- & 选择开采第j 个构造 \\ 0 & --- 不选择开采第j 个构造 \end{cases}$$
 max $z = \sum_{\substack{j=1 \ 10}}^{10} z_{j} z_{j}$ ---- 年总收益
$$\begin{cases} \sum_{\substack{j=1 \ 10}}^{10} a_{j} x_{j} \leq b & --- 投资额限制 \\ x_{j} = 0 或1 \quad (j=1,2,---,10) \end{cases}$$

2. 表示选择性约束

例2: 上述例题中,如果在开采中需用电力,解决的方案或由电网 供电或由自备的柴油机发电。已知第j个构造开采时每天耗电量为dj度, 电网每天供电量限制为f度。当使用自备柴油机发电时,每度电平均耗 油0.3公斤,而柴油供应量限额为每天p公斤。试在模型中表示出该限制 条件。

M-----非常大的正数

采用电网供电:

3. 表示条件性约束

- 例3: 若在开采时还需满足下述条件:
 - (a) 若开采8号,则必须同时开采6号;
 - (b) 若开采5号,则不许开采3号;
 - (c) 2号和4号至少开采一个;
 - (d) 8号与7号必须同时开采;
- (e) 1号、4号、6号、9号开采时不能超过两个,试表示上述约束条件。

--第4章 整数规划--

$$x_8 \le x_6$$

(b)
$$\stackrel{\text{\psi}}{=} x_5 = 1$$

 $\stackrel{\text{\psi}}{=} x_5 = 0$

$$x_3 = 0, \quad x_3 \neq 1$$

$$x_3 = 0, \quad x_3 = 1$$

$$\therefore \quad \mathbf{x}_5 + \mathbf{x}_3 \le 1$$

- (c) $x_2 + x_4 \ge 1$
- (d) $x_8 = x_7$
- (e) $x_1 + x_4 + x_6 + x_9 \le 2$

4. 两组条件满足其中一组

$$x_1 \le 4 + (1-y_1) M$$

 $x_2 \ge 1 - (1-y_1) M$
 $x_1 > 4 - (1-y_2) M$
 $x_2 \le 3 + (1-y_2) M$
 $y_1 + y_2 = 1$
 $y_1, y_2 = 0$ 或 1

M——充分大正数

5. 分段函数线性表示

设有
$$f(x_j) = \begin{cases} K_j + c_j x_j & \exists x_j > 0 \\ 0 & \exists x_i = 0, \end{cases}$$
 将min 线性的

将min f(x_j)表示成 线性函数。

设
$$y_j = \begin{cases} 1 & \exists x_j > 0 \\ 0 & \exists x_j = 0 \end{cases}$$
 则

M—非常大的正常数

三、隐枚举法

步骤:

- ① 化标准形(隐枚举法): 1) 目标函数极小化; 2) 约束条件化成≥; 3) 使目标函数系数皆为非负, 若x_j系数为负值, 则令x_j=1-x_j'; 4) 使目标函数按变量系数由小→大顺序排列, 约束条件变量排列的顺序要与之对应。
- ② 令所有变量x_j=0, 计算边界目标函数值z, 检查是否满足所有约束条件, 若满足, 即为最优解; 否则, 分枝计算。
- ③ 分枝:按变量次序依次令各变量取"1"和"0"值,计算边界值,然后检查是否满足所有约束,若满足,转下步;否则继续分枝。
- ④ 剪枝: 在得到一个可行解后,分枝过程中要进行剪枝工作。
 - (a) 对可行解,保留边界值最小的一枝zmin,其余全剪掉;
 - (b) >z_{min}分枝, 剪掉;
 - (c) 能判断出为无可行解的分枝,剪掉;
 - (d) 非上述情况,继续分枝。

例:求解下述 0-1规划问题:

Max
$$z=8x_1+2x_2-4x_3-7x_4-5x_5$$

st.
$$\begin{cases} 3x_1+3x_2+x_3+2x_4+3x_5 \leq 4\\ 5x_1+3x_2-2x_3-x_4+x_5 \leq 4\\ x_i=0$$
 或1 $(j=1,2,3,4,5)$

① 化标准形:

1) 目标函数极小化: min z'=-8x₁-2x₂+4x₃+7x₄+5x₅

2) 约束条件>:
$$\begin{cases} -3x_1-3x_2-x_3-2x_4-3x_5 \ge -4 \\ -5x_1-3x_2+2x_3+x_4-x_5 \ge -4 \\ x_i=0或1 \quad (j=1,2,3,4,5) \end{cases}$$

3) 使目标函数系数皆为正: 令 $x_1=1-x_1'$, $x_2=1-x_2'$

min z'=-8+8 x₁' -2+2 x₂' +4x₃+7x₄+5x₅

st.
$$\begin{cases}
-3+3 x_1' -3+3 x_2' -x_3 -2x_4 -3x_5 \ge -4 \\
-5+5 x_1' -3+3 x_2' +2x_3 +x_4 -x_5 \ge -4 \\
x_1' , x_2' , x_j = 0 或1 (j=3,4,5)
\end{cases}$$

4) 变量按顺序排列:

复习思考题

- 1. 什么是0-1模型? 主要解决什么问题?
- 2. 隐枚举与枚举的区别是什么?
- 3. 隐枚举法求解对0-1规划的标准型是怎样规定的?
- 4. 隐枚举法求解0-1规划有哪些步骤?

4.3 分配问题及匈牙利算法(Assignment Problem)

一、问题的提出和数学模型

问:如何分配,能使所需的总时间最少?

工作	甲	Z	丙	丁
译英文	2	10	9	7
译日文	15	4	14	8
译德文	13	14	16	11
译俄文	4	15	13	9

建立模型:

Min
$$z = \sum_{i=1}^{4} \sum_{j=1}^{4} a_{ij} x_{ij}$$
 $(a_{ij} - -- \hat{X} \hat{X})$

译英文:
$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 1 \end{cases}$$
 甲: $\begin{cases} x_{11} + x_{21} + x_{31} + x_{41} = 1 \end{cases}$ 译使文: $\begin{cases} x_{21} + x_{22} + x_{23} + x_{24} = 1 \end{cases}$ 乙: $\begin{cases} x_{12} + x_{22} + x_{32} + x_{42} = 1 \end{cases}$ 天: $\begin{cases} x_{12} + x_{22} + x_{32} + x_{42} = 1 \end{cases}$ 下: $\begin{cases} x_{13} + x_{23} + x_{33} + x_{43} = 1 \end{cases}$ 子: $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34} + x_{44} = 1 \end{cases}$ 不是, $\begin{cases} x_{14} + x_{24} + x_{34}$

$$x_{ij} = 0$$
 或1 (i=1,2,3,4; j=1,2,3,4)

分配问题一般数学模型结构:

设有m项工作要交与m个人完成,其中第i项工作交与第j个人完成时所需花费的时间为 a_{ij} 。规定每项工作只能交与其中的一个人完成,而每个人只能完成其中的一项工作。问:如何分配,可使所需的总时间最少?

Min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} x_{ij}$$

st. $\sum_{j=1}^{m} x_{ij} = 1$ $(i=1,2,\dots,m)$
 $\sum_{i=1}^{m} x_{ij} = 1$ $(j=1,2,\dots,m)$
 $x_{ij} = 0$ $\exists i \in [1,2,\dots,m; j=1,2,\dots,m)$

二、匈牙利法:

基本思想:
$$\begin{bmatrix} 4 & (0) & 5 & 6 \\ 5 & 4 & (0) & 5 \\ 7 & 6 & 3 & (0) \\ (0) & 5 & 6 & 2 \end{bmatrix}$$

克尼格定理(konig): 如果从效率矩阵[a_{ij}]的每一行元素中分别减去(或加上)一个常数 u_i ,从每列中分别减去(或加上)一个常数 v_j ,得到一个新的效率矩阵[b_{ij}],其中 b_{ij} = a_{ij} - u_i - v_j ,则以[b_{ij}]为效率矩阵的最优解等价于以[a_{ii}]为效率矩阵的最优解.

证明:

以 $[a_{ij}]$ 为效率矩阵的目标函数值: $\mathbf{z}^{\text{o}} = \sum_{i=1}^{\text{iii}} \sum_{j=1}^{\text{iii}} \mathbf{a}_{ij} \mathbf{x}_{ij}$

以[b_{ij}]为效率矩阵的目标函数值: $\mathbf{z}' = \sum_{i=1}^{m} \sum_{j=1}^{m} b_{ij} \mathbf{x}_{ij}$

$$b_{ij} = a_{ij} - u_i - v_j$$

三、步骤

(1) 使每行、每列都出现0元素

方法:每行减该行最小元素; →每列减该列最小元素。

- (2) 寻找位于不同行不同列的0元素准则:
- A) 从第一行开始,若只有一个0,则记(0),同时作直线覆盖该列的元素。否则,转下行;
- B) 从第一列开始,若只有一个0,则记(0),同时作直线覆盖该行的元素。否则,转下列;
- C) 重复A)、B), 至再找不出这样的0元素, 转D)
- D)可能出现三种情况:
 - ① 每行均有(0)元素,则在有(0)位置构成最优解中 $x_{ij}=1$;
 - ② 多于两行和两列存在未被直线覆盖的0元素,即存在0元素的闭回路,则沿回路顶点每间隔一个0记(),同时作直线覆盖该行(或列)的元素;
 - ③ 所有0元素均有直线覆盖,但记(0)的个数<m个,转(3)。

(3) 迭代,寻找新的位于不同行不同列的0元素

- a) 从未被直线覆盖的元素中找出一个最小的元素amin;
- b) 对行,若无直线覆盖,则-a_{min};
- c) 对列, 若有直线覆盖, 则+a_{min};

(4) 转(2)。

特殊问题处理:

1. 人数与工作数不等的处理:

当人数>工作数时: 假想工作数, 使得与人数能够匹配, 对应的效率设定为0值。

当工作数>人数时: 假想人数, 使得与工作数能够匹配, 对应的效率设定为0值。

- 2. 若目标函数为求max z的处理: (如效益)
 - \therefore max $z=-\min(-z)=-\min(z')$
 - \therefore 等价于求解 min z'= $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(-a_{ij})x_{ij}$

--第4章 整数规划--

	甲	Z	丙	丁	戊、
A	4	3	5	6	7
В	3	6	4	5	6
C	4	7	5	2	4
D	8	9	6	5	3
E	0	0	0	0	0

复习思考题

- 1. 分配问题模型的特点有哪些?
- 2. 克尼格定理的内容是什么?
- 3. 匈牙利法的步骤有哪些?
- 4. 匈牙利法求解工作数与人数不等的分配问题时如何处理?

4.4 整数规划模型的应用

例1: 在未来四个月中,某制鞋厂必须按时完成下述合 同要求,第一个月300双,第二个月500双,第三个月100 双,第四个月100双。在一月初,工厂已有50双鞋(以前 的存货)和3名工人,每名工人的月薪为1500元,每月可 工作160小时(正常工作时间)。一名工人最多还可有20 小时的加班工作时间(规定),在加班工作时,每小时需 付25元的加班费用。制作一双鞋需耗费4个工时和5元的原 料费。在每月的开始,可以租用和解雇工人。每雇用一名 工人需支付1600元的费用,每解雇一名工人需支付2000元 的解雇费用。在每月末,要为留在仓库里未交货的每双鞋 支付30元的保管维护费用。一个月生产的产品可用于满足 多个月的需求。试用ILP方法确定最佳的生产计划和用工 政策。

问题分析:

需要解决的问题:

- ☆ 每月租进、解雇、使用的工人数
- ☆ 每月所需的加班时间
- ☆ 每月在正常时间、加班时间生产的鞋子的数量
- ☆ 每月开始和结束时库存鞋子的数量
- ☆ 费用明细:

雇工费、解雇费、用工费、加班费、原料费、库存费

用工过程图示:

生产过程图示:

建模思路:

- 毎月可用工人≥0可用工人数=月初数+租进数-解雇数=月末数
- 毎月库存鞋子≥0月末库存量=月初库存+正常生产+加班生产-交货量
- 加工能力限制正常生产≤正常能力;加班生产≤加班能力

目标函数=总费用

=月薪+雇用费+解雇费+加班费+原料费+库存费

例2:

某海军部队在三个征兵中心征招新兵。新兵必须送到三个海军训练基地中的一个进行训练,从每个征兵中心运送一个新兵至某一个训练基地的费用如表1所示(单位:元)。 表1

每年在中心1征招1000名士兵, 中心2征召600名,中心3征召700 名。基地1可训练1000名,基地2 可训练800名,基地3可训练700名。

to	Base1	Base2	Base3
Center1	240	200	300
Center2	300	400	220
Center3	300	400	250

新兵受训后,要送到海军部队。运送时可采用小船或大船两种工具,共有7条小船和3条大船可供使用。若使用小船,则每条船要花费5000元加上每海里2元的费用;使用大船要花费10000元加上每海里3元的费用。一条小船可运送200人,沿途最多可经过2个训练基地;一条大船可运送500人,最多可经过3个训练基地。可能的航线如表2中所示。现问,应怎样决策,能使发生的总费用最少?

需要解决的问题:

- (1) Center i→Base j运送的人数
- (2) Base j 实际训练人数
- (3) 第i航线运送第j基地人数
- (4) 第i航线使用小船数量
- (5) 第i航线使用大船数量
- (6) 征兵中心至训练基地运送费用
- (7) 训练基地至海军部队运送费用
- (8) 总费用

表2

航线	途径训练基地 航程	昆 (海里)
1	В—1—В	370
2	В—1—2—В	515
3	В—2—3—В	665
4	В—2—В	460
5	В—3—В	600
6	В—1—3—В	640
7	В—1—2—3—В	720

例3: 仓库位置问题

韩德公司有五个生产番茄酱的工厂,每个工厂的生产能力如表1 所示。生产出来的番茄酱可储存在三个成品库中,每个成品库的库存能力为500吨。从各工厂运送一吨产品到各成品库的费用如表2所示。由于某些因素,公司销售看淡,现只有四家客户,其需求量如表3所示。从各成品库运送成品到各客户的需求地的单位费用如表4所示。每个工厂和每个成品库运营的年固定费用如表5所示。公司想确定关闭那些工厂和仓库,会使总费用最低。

表1生产	能力	I			
工厂	1	2	3	4	5
能力(吨)	300	200	300	200	400
				W.	
表3 客户	常需才	ý			
客户	1	2	H	3	4
需求(吨)	200	30	0 1:	50	250

表2 工厂	一成品	库运费表	(元/吨)
INO	成品库	1成品库2	成品库3
1	800	1000	1200
2	700	500	700
3	800	600	500
4	500	600	700
5	700	600	500

--第4章 整数规划--

表4 成品库—客户运输费用 (元/吨)										
客户 成品库	1	2	3	4						
成品库1	40	80	90	50						
成品库2	70	40	60	80						
成品库3	80	30	50	60						

表5	表5 年运营固定费用								
工厂1	工厂2	工厂3	工厂4	工厂5	成品库1	成品库2	成品库3		
35000	45000	40000	42000	40000	40000	20000	60000		

建模思路

x_i——0-1变量,第i厂是否开; y_j——0-1变量,第j库是否开。

0-1规划与运输问题的混合模型。

费用:工厂——成品库运输费用+开工费;成品库——客户运输费用+成品库运营费。

例4:

市政对四个建设项目招标, 有三个建筑队投标,标底情况 如表示。由于建筑队1力量所 限,只能完成其中一个项目, 而2和3最多都可承担两项。试 确定,如何分配可使总费用最 少?

		È	单位:	万元
建筑图	1	2	3	4
1	50	46	42	40
2	51	48	44	
3		47	45	45

问题分析:

- (1) 可利用匈牙利方法求解分配问题解决
- (2) 要考虑不能做的项目和可以多做项目的处理方式。

☆ 如果要建立模型,该如何表示?

例5:

校篮球队教练要确定比赛的首发阵容。全队共有7名球员,根据技术水平,对每名运动员的控球(ball-handing)、投篮(shooting)、蓝板(rebounding)、防守(defense)的能力都评出等级分,1分最低,3分最高。各球员的位置(position)及各项能力的等级分值如表示。五名出场队员应满足下述要求: (1)至少有3名队员能打后卫,至少有2名队员能打前锋,至少有1名队员能打中锋; (2)平均控球、投篮、蓝板能力在1.8分以上; (3)2号队员或3号队员必须在首发阵容中。目标是首发阵容中防守能力最强。

运动员	 位置 (P)	 控球 (B)	投篮(S)	蓝板(R)	防守 (D)
1	Guard	3	3	= 1	3
2	Center	2	1	3	2
3	G/Forward	2	3	2	2
4	F/C	1	3	3	1
5	G/F	1	3	1	2
6	F/C	3	1	2	3
7	G/F	3	2	2	1

--第4章 整数规划--

设
$$\mathbf{x}_{j} = \left\{ \begin{array}{ccc} 1 & ----- 第j 号队员入选 \\ 0 & ----- 第j 号队员没入选 \end{array} \right.$$

若整数规划IP的松弛规划Lo的最优解不是整数解, 对Lo增加一个约束条件,得线性规划L1,此过程缩 小了松弛规划的可行解域, 在切去松弛规划的最优 解的同时,保留松弛规划的任一整数解,因此整数 规划IP的解均在L1中,若L1的最优解为整数解,则 得IP的最优解。若Li的最优解不是整数解,重复以 上步骤,由于可行解域在不断缩小,且保留IP所有 的整数解,总可以在有限次后得到IP的最优解.

- 由放松问题的可行域向整数规划的可行域逼近
- 方法—利用超平面切除
- 要求整数解保留

放松问题最优值向最优解逼近

· 目标得到的新的可行域的某个整数坐标的极点恰 好是问题的最优解

• Gomory 约束

$$\sum_{j \in \overline{N}} f(a'_{ij}) \ge f(b'_i)$$

非基变量下标集合

$$a'_{ij} = \begin{bmatrix} a'_{ij} \end{bmatrix} + f(a'_{ij})$$
$$b'_{ij} = \begin{bmatrix} b'_{ij} \end{bmatrix} + f(b'_{ij})$$

■ 符号[*]表示不超过"*"的最大整数, f(*)表示"*"的非负真分数。

对整数规划问题

$$IP:\max z=CX$$

$$s.t \begin{cases} AX = b \\ X \ge 0 \\ x_j$$
为整数

其松弛问题
$$L_0$$
 max $z = CX$ $s.t \begin{cases} AX = b \\ X \ge 0 \end{cases}$

设Lo的最优解X。不是整数解

不妨设

$$X_0 = (b_{10}, \dots b_{i0}, \dots b_{m0}, 0, \dots 0)'$$
其中 b_{i0} 是分数

即 $x_1, \dots x_i, \dots x_m$ 是基变量, x_{m+1}, \dots, x_n 是非基变量

L₀的最优单纯形表: 设 L_0 的最优解 $X_0 = (b_{10}, \cdots b_{i0}, \cdots b_{m0}, 0, \cdots 0)$

	\mathbf{x}_1		Xi	•••	X _m	X_{m+1}	• • •	X_{m+j}	• • •	X _n	解
检	0	• • •	0	•••	0	λ_1	•••	λ_{m+j}	• • •	$\lambda_{\rm n}$	z-z ₀
\mathbf{x}_1	1		0	•••	0	a_{1m+1}	•••	a _{1m+j}	•••	a _{ln}	b ₁₀
x _i	0	•	1	•••	0	a _{im+1}	•••	a _{im+j}	•••	a _{in}	b _{i0}
X _m	0	•	0	•••	1	a _{mm+1}	•••	a _{mm+j}	•••	a _{mn}	b _{m0}

b_{i0}所在行的方程为:

 $x_i + a_{im+1}x_{m+1} + \dots + a_{im+j}x_{m+j} + \dots + a_{in}x_n = b_{i0}$

--第4章 整数规划--

4.5 割平面法

对源方程:
$$x_i + a_{im+1}x_{m+1} + \cdots + a_{im+j}x_{m+j} + \cdots + a_{in}x_n = b_{i0}$$

$$\langle x_i + \sum_{j=1}^{n-m} a_{im+j} x_{m+j} = b_{i0} \qquad \begin{bmatrix} a_{im+j} \end{bmatrix} + f_{im+j} \\ 0 \le f_{im+j} < 1 \qquad \begin{bmatrix} b_{i0} \end{bmatrix} + f_{i0} \\ 0 < f_{i0} < 1$$

$$[a_{im+j}] + f_{im+j}$$
$$0 \le f_{im+j} < 1$$

$$\begin{bmatrix}
 b_{i0}
 \end{bmatrix} + f_{i0} \\
 0 < f_{i0} < 1$$

$$\langle x_i + \sum_{j=1}^{n-m} ([a_{im+j}] + f_{im+j}) x_{m+j} = [b_{i0}] + f_{i0}$$

$$\Leftrightarrow f_{i0} - \sum_{j=1}^{n-m} f_{im+j} x_{m+j} \le 0$$

对整数规划问题
$$IP: \max z = CX$$

$$s.t \begin{cases} AX = b \\ X \ge 0 \\ x_j$$
为整数

其松弛问题
$$L_0$$
 max $z = CX$ $s.t \begin{cases} AX = b \\ X \ge 0 \end{cases}$

线性规划
$$L_1: \max z = CX$$

$$\begin{cases} AX = b \\ \sum_{i=1}^{n-m} f_{im+j} x_{m+j} \ge f_{i0} \\ i X^i \ge 0 \end{cases}$$

$$L_0$$
的最优解 $X_0 = (b_{10}, \cdots b_{i0}, \cdots b_{m0}, 0, \cdots 0)'$ 其中 b_{i0} 是分数

Lo的最优单纯形表:

生行	· 成	$\begin{bmatrix} \mathbf{x}_1 \\ 0 \\ 1 \\ \vdots \end{bmatrix}$		x _i 0 0 :		x _m 0 0 :	x_{m+1} λ_1 a_{1m+1} \vdots	0 :	$f_{in+j}] + f_{in}$ $\leq f_{im+j} \cdot 1, 2, \dots n - 1$	< 1	X_n λ_n a_{1n} \vdots		$ \begin{cases} $
X	: « _m	: 0	•••	: 0	•••	1	: a _{mm+1}	•••	: a_{mm+j}	•••	:	: b _{m0}	非基变量

对应于生成行的割平面
$$: f_{i0} - \sum_{j=1}^{n-m} f_{im+j} x_{m+j} \le 0$$
,即 $\sum_{j=1}^{n-m} f_{im+j} x_{m+j} \ge f_{i0}$

• 求解整数线性规划

max
$$z = 3x_1 - x_2$$

$$\begin{cases} 3x_1 - 2x_2 \le 3 \\ 5x_1 + x_2 \ge 10 \end{cases}$$
s.t.
$$\begin{cases} 2x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \\ x_1, x_2 > \infty \end{cases}$$

第一步:解整数规划问题的松弛问题,见表 5-3, $x_1=13/7$, $x_2=9/7$;

--第4章 整数规划--

4.5 割平面法

	\mathbf{c}_{j}		3	-1	0	0	0
c_B	x_B	b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	X_4	X_5
3	\mathbf{x}_1	13/7	1	0	1/7	0	2/7
-1	\mathbf{X}_2	9/7	0	1	-2/7	0	3/7
0	X_4	31/7	0	0	-3/7	1	22/7
	c_{j} -z	j	0	0	-5/7	0	-3/7

●第二步:写出割平面方程,选择第一行产生割平面约束,

$$-\frac{1}{7}x_1 - \frac{2}{7}x_2 + x_6 = -\frac{6}{7}$$

--第4章 整数规划--

4.5 割平面法

	c_j		3	-1	0	0	0	0
c_{B}	X _{Bi}	b_i	\mathbf{x}_1	x ₂	X ₃	X ₄	X ₅	x ₆
3	\mathbf{x}_1	13/7	1	0	1/7	0	2/7	0
-1	\mathbf{x}_2	9/7	0	1	-2/7	0	3/7	0
0	X_4	31/7	0	0	-3/7	1	22/7	0
0	X ₆	-6/7	0	0	-1/7	0	[-2/7]	1
C,	z^{-Z_j}	-5/2	0	0	-5/7	0	-3/7	0
3	x ₂	1	1	0	0	0	0	1
-1	\mathbf{x}_1	5/4	0	1	0	-1/4	0	-5/4
0	\mathbf{x}_3	5/2	0	0	1	-1/2	0	-11/2
0	X_5	7/4	0	0	0	1/4	1	-3/4
C	$_{i}$ – Z_{j}		0	0	0	-1/4	0	-17/4

88	c_j			-1	0	0	0	0	0
c_{B}	x _{Bi}	b_i	\mathbf{x}_1	\mathbf{x}_2	X_3	X ₄	X ₅	x ₆	X ₇
3	\mathbf{x}_1	1	1	0	0	0	0	1	0
-1	x ₂	2	0	1	0	0	0	-1	-1
0	X ₃	4	0	0	1	0	0	-5	-2
0	X ₅	1	0	0	0	0	1	-1	1
0	X ₄	3	0	0	0	1	0	1	-4
\mathbf{c}_{j}	$-z_j$	-1	0	0	0	0	0	-4	-1

原整数规划问题的最优解为, $x_1=1$, $x_2=2$, max z=1

- 1. 用单纯刑法解整数问题IP的松弛问题L₀, 若L₀没有最优解,则IP没有最优解。停止若L₀有最优解X_{0。}
- (1)X₀ 是整数解,则X₀也是IP的最优解,停止
- (2)X₀不是整数解,转第二步
- 2. 求割平面方程

任选 X_0 的一个非整数分量 b_{i0} ,

由Lo的最优单纯型表中bio所在的行的数据,

得割平面:
$$\sum_{j=1}^{n-m} f_{im+1} x_{m+j} \ge f_{i0}$$
 即 $-\sum_{j=1}^{n-m} f_{im+1} x_{m+j} + s = -f_{i0}$

第三步: 将割平面加到L0得L1

第四步: 解L1

在L₀的最优单纯型表中增加一行一列,

得L1的单纯型表,

用对偶单纯刑法求解,

若其解是整数解,则该解也是原整数规

划的最优解

否则将该解记为X₀,返回第二步

本章知识。当

- 1. 整数规划模型的结构特点
- 2. 分枝定界法的使用
- 3. 0-1规划的建模
- 4. 隐枚举法的使用
- 5. 分配问题模型特点及匈牙利法求解
- 6. 工作数与人数不等的分配问题求解
- 7. 整数及0-1规划模型的实际应用