Evaluating and improving streaming methods for large scale SVD problems

Andreas Stathopoulos Computer Science William & Mary

Jeremy M. Myers Sandia National Lab Toon Tran William & Mary

Low-rank Approximation of Streaming Matrices

- Traditional "batch" SVD solvers:
 - Dense & iterative solvers (e.g., LAPACK, Krylov, randomized SVD)
 - Require storage to full matrix
- ② Challenges:
 - Matrix seen in online fashion (streaming)
 - Matrix can be read (or generated) in sections once

Matrix Streaming

Matrix $A \in \mathbb{R}^{m \times n}$ streamed as:

$$A = A^{(1)} + A^{(2)} + A^{(3)} + \dots$$

Goal

incrementally approximate low-rank space of

$$A^{(1)} + A^{(2)} + \cdots + A^{(i)}, i = 1, 2, \dots$$

Sketch $B=\tilde{U}\tilde{\Sigma}\tilde{V}^T$ not exact singular space unless stream is stored Approach may depend on quality metric

- ∥A − B∥
- $\bullet \|A^TA B^TB\|$
- $\|A\tilde{V} \tilde{U}\tilde{\Sigma}\|$

Householder 25

Approaches we study

- Incremental SVD/Frequent Directions:
 - \bullet $A^{(i)}$ is a window of rows/columns streamed in some order
 - Use $B^{(i-1)}$ and $A^{(i)}$ to form $B^{(i+1)}, i = 0, 1, ...$
- Randomized Sketching:
 - A⁽ⁱ⁾ arbitrary pattern/order
 - Form LRA after all A is streamed or at any point

This talk:

- Large window iSVD using iterative solver and initial guesses
- Comparison with randomized sketching
 - complexity
 - execution time for large problems
 - accuracy of space
- iSVD optimizations for symmetric problems
 - Sampling-based accuracy evaluation
 - improving eigenvalue / eigenvector approximations

Tracks the rank-r largest singular values and right singular vectors

$$C \leftarrow \begin{bmatrix} \sum_{i=1}^{(i-1)} V^{(i-1)T} \\ A^{(i)} \end{bmatrix}$$
$$(U, \Sigma, V) \leftarrow \text{SVD}(C)$$
$$V^{(i)} \leftarrow V_{:,1:r},$$
$$\sum_{i=1}^{(i)} \leftarrow \sum_{1:r,1:r}$$

Frequent Directions = iSVD with soft thresholding truncation of Σ , Ghashami et al. (2015)

Householder 25

iSVD Using Iterative Methods

Extension 1

Compute $(U, \Sigma, V) \leftarrow \operatorname{svds}(C)$ using iterative solver

Rationale:

- Error bounds improve with large window size, Ghashami et al. (2015)
- reduces the likelihood of adversarial cases
- Larger windows minimizes overhead over batch method
- When no information drift, use initial guesses for left singular vectors:

$$\left[\begin{array}{c} I \\ A^{(i)} V_r^{(i-1)} (\Sigma_r^{(i)})^{-1} \end{array}\right]$$

7 / 25

Big-O Cost of iSVD

Let $A \in \mathbb{R}^{m \times n}$ be dense:

$$Cost = \mathcal{O}\left(\underbrace{tM + t^2m}_{\text{batch cost on } A} + \underbrace{\frac{tmr}{\ell}(n + \ell + t + r)}_{\text{sketching cost}}\right)$$

- t: average number of Matvecs per window
- M: cost of Matvec (O(mn) for dense, O(cm) for sparse)
- r: target rank
- ℓ : window size $(m/\ell = \# \text{windows})$

Householder 25

take away

Relative additional cost of iSVD over batch solver decreases as

- ① density of A increases
- 2 more iterations are needed
- 3 window size increases

Sketch $A \in \mathbb{R}^{m \times n}$ with left, right and core matrices (X, Y, Z):

$$X \leftarrow \eta X + \nu YA$$
$$Y \leftarrow \eta Y + \nu A\Omega^*$$
$$Z \leftarrow \eta Z + \nu \Phi A \Psi^*$$

 Y, Ω, Φ, Ψ : random maps

Rank $r \leq \text{range size}(X, Y) \leq \text{core size} \leq \min(m, n)$

At the end (or at any point) of streaming use (X, Y, Z) to compute LRA

Updates: expensive LRA: inexpensive

Cost of SketchySVD

With k = 4r, s = 8r, complexity:

$$\mathcal{O}(\underbrace{16r^2(m+n)}_{QR} + \underbrace{512r^3}_{LeastSq.} + \underbrace{64r^3}_{SVD} + \underbrace{\sum_{i=1}^{6} M_i}_{matrix multiplies})$$

 M_i depend on structure of A and choice of sketch maps Random Map $\Xi \in \mathbb{R}^{d \times n}$

- Gaussian:
 - Dense but efficient through GEMM
 - Requires storing $\mathcal{O}(2d(n+m))$ entries
- Sparse sign (count sketch):
 - ullet 4 nonzeros per column, each entry is ± 1
 - ullet SpMV requires $\mathcal{O}(r \cdot \mathsf{nnz})$ FLOPs but sparse memory access patterns

Comparison

Complexity

- $A \in \mathbb{R}^{n \times n}$ dense, 8 matvecs per singular value:
 - iSVD cost ≈ SketchySVD (Gaussian maps)
 - SketchySVD (sparse maps) $\approx r \times$ faster
- $A \in \mathbb{R}^{n \times n}$ sparse:
 - SketchySVD (sparse maps, 8 nnz/col) \approx 4 $r \times$ faster than iSVD

HPC experiments

- Implemented both methods based on Kokkos
- Window SVDs solved with PRIMME to relative residual 1E-4
- Compare time and accuracy against **PRIMME** on A (rel. res 1E-4)
- Normalized spectra $\sigma_1 = 1$

SuiteSparse Comparisons: SLS

SuiteSparse Comparisons: Queen_4147

SuiteSparse Comparisons: FLAN

1,564,794 symmetric 73 nnz/row, 1 connect. comp.

Sketchy $\frac{1}{30}\times$, SPD a bit better iSVD $5\times$, accurate

Initial guesses no help (drift)

SuiteSparse Comparisons: Agatha

Optimization roadmap

If low accuracy sufficient, iSVD with iterative method promising

Potential optimizations:

If we could monitor $R_t^{(i)} = ||A(I - V_t^{(i)}V_t^{(i)T})||$ (window i, iteration t) possible early stopping for:

- $oldsymbol{0}$ solver, if $R_t^{(i)}$ stagnates—oblivious to final LR accuracy
- ② iSVD, if at some window we met $R^{(i)}$ < userTol
 - advantage over iterative with on-the-fly Matvec

Optimization roadmap

If low accuracy sufficient, iSVD with iterative method promising

Potential optimizations:

If we could monitor $R_t^{(i)} = ||A(I - V_t^{(i)}V_t^{(i)T})||$ (window i, iteration t) possible early stopping for:

- **a** solver, if $R_t^{(i)}$ stagnates—oblivious to final LR accuracy
- ② iSVD, if at some window we met $R^{(i)} < userTol$
 - advantage over iterative with on-the-fly Matvec

A not available

Uniform sampling of rows of A

Extension 2

During streaming, build \bar{A} , a uniform sample of s rows of A

Reservoir Sampling (JSVitter 85):

- Pick the first s rows of A
- Streamed row i replaces a row in \bar{A} with probability s/i

At any row i, \bar{A} is a uniform sample of A(1:i,:)

Estimate residual norm:

$$\bar{R} = \frac{m}{s} \sum_{j \in S} \|\bar{A}_j - (\bar{A}_j V) V^T\|^2$$

19/25

Optimizations for symmetric (eigenproblems)

Motivation: Kernel, Distance, Covariance matrices Large scale data can be stored O(N) but not their covariance $O(N^2)$

Estimate eigenvalue residual norm:

$$\bar{R} = \frac{m}{s} \sum_{j \in S} \|\bar{A}_j V_t^{(i)} - V_t^{(i)}(j,:) \Sigma_t^{(i)}\|^2$$

at iteration t of window i

However, even if exact eigenspace V is captured, Σ may not correspond to Λ till last window.

Least-Squares Method

For symmetric:

Extension 3

For a given $V: \min_{\lambda} ||V_S \lambda - A_S V||_F^2$

Solution:
$$\lambda = v_S^+ A_S v = \frac{v_S^T A_S v}{v_S^T v_S}$$
 (Rayleigh quotient-like)

For nonsymmetric: $u_S = A_S v / \sigma$, and $\sigma' = u_S^+ A_S v$

Demix Method

For symmetric only:

Scenario: Accurate space may still mix eigenvectors

Extension 4

For a given
$$V$$
, $\min_{c,\Lambda} ||A_S V c - V_S c \Lambda||_F^2$

Solution: Let $V_S = QR$, $\min_{c,\Lambda} \|Q^T (A_S V c - R c \Lambda)\|_F^2$, by solving a **GEP**

Complexity: $O(r^3)$ for rank r

Kernel matrix (stock data). 100K. Slow decay, high rank

Kernel matrix (stock data). 100K. Fast decay, low rank

24 / 25

Conclusions and current work

- iSVD more expensive but much more accurate than SketchySVD
- Several extensions to improve iSVD

Next steps:

- Dynamic stopping for PRIMME eigensolver
- Early stopping of streaming
- Least squares (Ext 3) allows the use of Frequent Directions
- Better: a Randomized row order iSVD convergence analysis
- Sketch incrementally provides leverage scores to change streaming order