NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3288

ON THE ANALYSIS OF LINEAR AND NONLINEAR DYNAMICAL SYSTEMS

FROM TRANSIENT-RESPONSE DATA

By Marvin Shinbrot

Ames Aeronautical Laboratory Moffett Field, Calif.

Washington

December 1954

LIBRARY COPY

DEC 3 1954

FOR PEFERENCE

LIBRARY, HACA

NOT TO BE TAKEN FROM THIS ROOM

NATIONAL ADVISORY COMMITTEE FOR AERONAUTIUS

TECHNICAL NOTE 3288

ON THE ANALYSIS OF LINEAR AND NONLINEAR DYNAMICAL SYSTEMS

FROM TRANSIENT-RESPONSE DATA

By Marvin Shinbrot

SUMMARY

A general theory of the so-called "equations-of-motion" methods for the analysis of linear dynamical systems is developed first. It is then shown that when viewed from this general point of vantage, all of these linear methods can be extended in a straightforward manner to apply to the analysis of nonlinear systems. In addition, through use of this theory, a new method is derived. It is essentially a variation of the well-known "Fourier transform" method for the analysis of linear systems but possesses certain advantages over previous methods. Application and effectiveness of this method are demonstrated by three examples, two of which are nonlinear - one highly so - and the third being of the fourth order.

INTRODUCTION

It has often been suggested (e.g., in ref. 1) that nonlinearities which are ignored in the classical theory of the equations of motion of an aircraft may be responsible for certain unusual phenomena which have been observed in flights of modern high-speed airplanes and missiles. Consequently, it seems desirable to develop methods for the analysis of such nonlinear systems - methods which allow the calculation from measured transient-response data of the nonlinear stability characteristics as well as the classical linear stability derivatives of the aircraft. Several such methods are described in reference 2, the principal one consisting of a generalization of the so-called "derivative method" which was originally devised for use with linear systems (cf. ref. 3). However, the methods described in reference 2 leave something to be desired from both points of view of accuracy of the results and lengthiness of the calculations. In addition, application of these methods requires, in all but the simplest cases, the previous evaluation by some means of those stability characteristics which are linear. In view of these shortcomings, an attempt has been made in the present study to find simpler, more accurate, and more general procedures. The problem is attacked by first examining several well-known methods for the analysis of simple linear systems and then modifying them as necessary to allow their application to more general systems.

2 NACA IN 3288

Many methods for the analysis of linear systems have been proposed in the past (see, e.g., refs. 3 and 4). In reference 5, these methods have been classified under two main heads: "equations-of-motion" methods and "response-curve-fitting" methods, the former title including the derivative method and what have been called the Laplace transform and the Fourier transform methods (ref. 3), and the latter consisting of such methods as Prony's (refs. 3 and 6) and the techniques of reference 4. Since the response-curve-fitting methods involve the explicit solution of the equations of motion in terms of the physical parameters of the system at hand, they do not seem suitable for use with nonlinear systems. Hence, we shall be concerned solely with the equations-of-motion methods.

Each of these methods has been considered in the literature as an independent entity; apparently, no attempt has ever been made to subsume all of them under a single general theory. For the purposes of the present study, such a theory would be desirable since it seems reasonable to expect first that when viewed from a more general point of view, a generalization of the methods to nonlinear systems might appear; and second that once such a theory is known, it might be possible to develop new methods, superior in certain respects to the old ones from which the theory sprang.

In accordance with this plan, the paper begins with a short presentation of the three best known of the equations-of-motion methods. These methods are examined from a new point of view which is then shown to lead to the general theory for linear systems. The further extension to non-linear systems is considered next. Based on the general theory, development of a new method for data analysis follows. Finally, some examples of the application of this recommended method are given.

SYMBOLS

a angle of attack, radians $\dot{\alpha} \qquad \frac{d\alpha}{dt} \\
b \qquad \frac{L_{\alpha}}{mV} - \frac{M_{q}}{L_{y}} - \frac{M_{\alpha}^{2}}{L_{y}} \\
C_{0} \qquad \frac{M_{\delta}}{L_{y}} + \frac{L_{\delta}}{mV} \frac{M_{q}}{L_{y}} \\
C_{1} \qquad - \frac{L_{\delta}}{mV} \\
\delta \qquad \text{elevator deflection, radians} \\
I_{y} \qquad \text{pitching moment of inertia, slug-ft}^{2}$

$$k \qquad \qquad - \; \frac{M_{CL}}{I_{\mathbf{y}}} \; - \; \frac{L_{CL}}{mV} \; \frac{M_{\mathbf{Q}}}{I_{\mathbf{y}}}$$

L linear lift force, lb

 Γ^{α} $\frac{9\alpha}{9\Gamma}$

 Γ^{ϱ} $\frac{9\varrho}{9\Gamma}$

 $L(\alpha)$ nonlinear lift force, lb

m mass of aircraft, slugs

M linear pitching moment, ft-lb

 $\mathbf{M}^{\mathrm{Cr}} \qquad \frac{9^{\mathrm{Cr}}}{9^{\mathrm{M}}}$

 M_{α}^{α} $\frac{\partial \alpha}{\partial M}$

 $M_{\delta} \frac{\partial S}{\partial S}$

 $M^{\overline{d}}$ $\frac{9^{\overline{d}}}{9^{\overline{M}}}$

M(α) nonlinear pitching moment, ft-lb

q pitching velocity, radians/sec

t time, sec

V velocity of aircraft, ft/sec

Other symbols will be defined as they are introduced.

ANALYSIS

Some Equations-of-Motion Methods for Linear Systems

In the presentation of the general theory of equations-of-motion methods, it is desirable to have some examples of these methods set down for examination. The three best known of these methods are briefly described below; for a more detailed discussion of them, see reference 3.

As a concrete example, let us consider an airplane operating under conditions where the stability characteristics are effectively linear, so that, as in reference 3, the equations of its longitudinal motion can be written

$$-\alpha I_{CC} - \dot{\alpha}mV + qmV = \delta I_{\delta}$$
$$-\alpha M_{CC} - \dot{\alpha}M_{\dot{C}} - qM_{\dot{C}} + \dot{q}I_{\dot{Y}} = \delta M_{\delta}$$

It will be convenient to eliminate q and so to write these equations as

$$\ddot{\alpha}(t) + b\dot{\alpha}(t) + k\alpha(t) = C_0\delta(t) + C_1\dot{\delta}(t)$$
 (1)

where dots denote differentiation with respect to time t. It is assumed that time histories of $\alpha(t)$ and $\delta(t)$ are available from flight records and that one wishes to calculate the constants b, k, C_0 , and C_1 . For simplicity, it will further be assumed that the constant b is positive and that $\delta(t)$ is a pulse, so that $\delta(t)$ is zero for t sufficiently large. These restrictions will be removed farther on.

The derivative method. In order to apply the derivative method, it is necessary first to differentiate the given records to obtain the derivatives $\alpha(t)$, $\alpha(t)$, and $\delta(t)$. Then, for fixed t, equation (1) may be considered as an equation for the constants b, k, C_0 , and C_1 . By letting t vary, a set of such equations can be obtained, which can in turn be solved by least squares (see reference 6, page 210, where, however, the integral rather than the sum of the squares of the errors has been minimized) for the desired constants. By this procedure, the following equations are obtained:

$$b\int_{0}^{\infty} \dot{\alpha}^{2} dt + k \int_{0}^{\infty} \dot{\alpha} dt - C_{0} \int_{0}^{\infty} \dot{\alpha} \delta dt - C_{1} \int_{0}^{\infty} \dot{\alpha} \dot{\delta} dt = -\int_{0}^{\infty} \dot{\alpha} \dot{\alpha} dt$$

$$b\int_{0}^{\infty} \alpha \dot{\alpha} dt + k \int_{0}^{\infty} \alpha^{2} dt - C_{0} \int_{0}^{\infty} \alpha \delta dt - C_{1} \int_{0}^{\infty} \alpha \dot{\delta} dt = -\int_{0}^{\infty} \alpha \dot{\alpha} dt$$

$$-b\int_{0}^{\infty} \delta \dot{\alpha} dt - k \int_{0}^{\infty} \delta \alpha dt + C_{0} \int_{0}^{\infty} \delta \delta dt + C_{1} \int_{0}^{\infty} \delta \dot{\delta} dt = -\int_{0}^{\infty} \delta \dot{\alpha} dt$$

$$-b\int_{0}^{\infty} \dot{\delta} \dot{\alpha} dt - k \int_{0}^{\infty} \dot{\delta} \alpha dt + C_{0} \int_{0}^{\infty} \dot{\delta} \delta dt + C_{1} \int_{0}^{\infty} \dot{\delta}^{2} dt = -\int_{0}^{\infty} \dot{\delta} \dot{\alpha} dt$$

Equations (2) can be solved for the desired parameters b, k, Co, and C1.

NACA TN 3288 5

The Laplace transform method. Letting A(p) and $\Delta(p)$ denote the Laplace transforms of $\alpha(t)$ and $\delta(t)$, respectively, so that

$$A(p) = \int_{0}^{\infty} e^{-pt} \alpha(t) dt$$

$$\Delta(p) = \int_{0}^{\infty} e^{-pt} \delta(t) dt$$
(3)

it follows that if $\alpha(t)$ and $\delta(t)$ are related by equation (1), then

$$(p^2 + bp + k) A(p) = (C_1p + C_0) \Delta(p)$$
 (4)

(ref. 7). In writing down equation (4), it has been assumed for simplicity that $\alpha(0) = \dot{\alpha}(0) = \delta(0) = 0$; this restriction is inessential and will be removed later on. For any value of p, equation (4) is an equation in b, k, Co, and C₁. After finding the Laplace transforms of $\alpha(t)$ and $\delta(t)$ for several such values of p, say for $p = p_1, p_2, \ldots, p_N$, the corresponding equations (4) can be set up and solved by least squares to obtain

$$b \sum_{p_{1} \geq A^{2}(p_{1}) + k} p_{1}A^{2}(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq$$

where all sums are over the range 1, . . ., N of the index i. These equations then can be solved for the desired constants.

The Fourier transform method. - The Fourier transform method proceeds in much the same way as did the Laplace transform method.

Defining

$$A(i\omega) = \int_{0}^{\infty} e^{-i\omega t} \alpha(t) dt$$

$$\Delta(i\omega) = \int_{0}^{\infty} e^{-i\omega t} \delta(t) dt$$
(6)

 $(i^2 = -1)$, it follows that if $\alpha(0) = \dot{\alpha}(0) = \delta(0)$, then

$$[(i\omega)^2 + i\omega b + k] A(i\omega) = [C_O + i\omega C_1] \Delta(i\omega)$$
 (7)

This equation can be written as two real equations by setting

$$A(i\omega) = C(\omega) - iS(\omega)$$

$$\Delta(i\omega) = \Gamma(\omega) - i \Sigma(\omega)$$
(8)

Putting equations (6) and (8) together, we see this means that

$$C(\omega) = \int_{0}^{\infty} \alpha(t) \cos \omega t dt \qquad S(\omega) = \int_{0}^{\infty} \alpha(t) \sin \omega t dt - \frac{1}{2} \int_{0}^{\infty} \delta(t) \cos \omega t dt \qquad \Sigma(\omega) = \int_{0}^{\infty} \delta(t) \sin \omega t dt - \frac{1}{2} \int_{0}^{\infty} \delta(t) \sin \omega t dt$$

Breaking equation (7) into its real and imaginary parts gives

$$\omega \ S(\omega)b + C(\omega)k - \Gamma(\omega)C_O - \omega \ \Sigma(\omega) \ C_1 = \omega^2C(\omega)$$

$$\omega \ C(\omega)b - S(\omega)k + \Sigma \ (\omega)C_O - \omega \ \Gamma(\omega)C_1 = -\omega^2S(\omega)$$

After $C(\omega)$, $S(\omega)$, $\Gamma(\omega)$, and $\Sigma(\omega)$ have been evaluated for several values of ω , substitution into these equations yields a number of equations for b, k, C_0 , and C_1 which can be solved by least squares. These equations, corresponding to (2) and (5), are exceedingly complicated and will not be reproduced here.

NACA TN 3288 7

The Common Feature of These Methods and the First Generalization

Each of these methods is usually derived as in the preceding section, through use of a certain specialized concept. Thus, the derivative method is based on the fact that for fixed t, equation (1) is linear in b, k, Co, and C1, so that a set of simultaneous linear equations for these parameters can be obtained by varying t. The Laplace and Fourier transform methods stem from the theory of these operators. Thus, if $\alpha(t)$ and $\delta(t)$ are related by the linear differential equation (1), their Laplace transforms are related by equation (4). However, equation (4) is linear in the parameters, and so by writing this equation for several values of p, one can solve the resulting equations by least squares for the desired constants. These derivations tend to obscure the common idea which can be shown to lie behind all the methods. This difficulty can be overcome if these particular derivations are forgotten and if attention is fixed entirely on the formal processes whereby the final least squares equations are obtained. With this in mind, let us reconsider the three methods.

The derivative method. - Equations (2) for the derivative method are formally obtained by

- (1) Multiplying equation (1) by the four functions $\dot{\alpha}(t)$, $\dot{\alpha}(t)$, $\dot{\delta}(t)$, and $\dot{\delta}(t)$ one at a time and
- (2) Integrating the results from zero to infinity.

We should forget for the moment the interpretation of this procedure as the solution of equation (1) by least squares, and simply keep the process of multiplication and integration in mind.

The Laplace transform method. - A similar process can be described for the Laplace transform method. Choosing $N(\geq 4)$ positive numbers p_i ,

- (1) Equation (1) can be multiplied by the functions e^{-p_it} , $i = 1, \ldots, N$, and
- (2) The results can be integrated from zero to infinity.

If the resulting equations are solved by least squares, precisely equations (5) for the determination of the parameters by the Laplace transform method are obtained, provided that in step (2) any integrals which arise involving derivatives of $\alpha(t)$ and $\delta(t)$ are integrated by parts to eliminate these derivatives.

It should be noted that although there appears to be one more step here than there was in applying the derivative method - notably an additional least squares following step (2) - this addition is more apparent than real, since it is necessary to apply a least squares process here merely because N (which is generally greater than four) equations are obtained for the four parameters, while in the derivative method exactly

8 NACA IN 3288

four such equations were obtained. Thus, the least squares step could be eliminated by choosing N=4 (of course, such a choice is not really practical), or, alternatively, such a step could be added to the derivative method by solving the equations resulting from step (2) in that method by least squares instead of in the ordinary way. Of course, such a step would only be made to make the two methods so far described formally more similar; in practice, it would not be performed.

The Fourier transform method .- Finally,

(1) If equation (1) is multiplied by $\cos \omega t$ and $\sin \omega t$ for several values of ω , and

(2) If the results are integrated from zero to infinity (as in the Laplace transform method, integrating by parts to eliminate explicit dependence on the derivatives of α and δ),

one obtains a set of equations identical with those obtained from the Fourier transform method.

The general method for linear systems. The general development of equations-of-motion methods is now manifest. One takes the equations of motion for the physical system under consideration - for definiteness, say equation (1) - and

- (1) Multiplies them by N arbitrary (but sufficiently smooth) functions $y_{\mathbf{v}}(t)$.
- (2) The resulting equations are then integrated between two definite limits, say, zero and T.

In the three methods described above, $T=\infty$, but this is not essential. In order to avoid some complications initially, we shall continue to integrate over this infinite interval; this restriction will subsequently be removed, however, and T will be allowed to have finite values. In the case of equation (1), the process just described leads to N equations of the form

$$b \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\alpha}(t) dt + k \int_{0}^{\infty} y_{\mathbf{V}}(t) \alpha(t) dt - C_{0} \int_{0}^{\infty} y_{\mathbf{V}}(t) \delta(t) dt -$$

$$C_{1} \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\delta}(t) dt = - \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\alpha}(t) dt, \quad \mathbf{V} = 1, \dots, N \quad (9)$$

It is possible that the functions $y_{\mathbf{v}}(t)$ depend on $\alpha(t)$ or $\delta(t)$ as, for example, in the derivative method; in such cases, equations (9) can be considered as N equations which are to be solved by least squares for the desired parameters. Of course, this process requires the calculation of the derivatives $\dot{\alpha}(t)$, $\dot{\alpha}(t)$, and $\dot{\delta}(t)$. On the other hand, if the functions $y_{\mathbf{v}}(t)$ are explicitly independent of α and δ , as is the case

in the Laplace and Fourier transform methods, the following formulas, obtained by integrating by parts, are used:

$$\begin{split} &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\dot{\alpha}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\alpha(0) - \int_{0}^{\infty} \dot{y}_{\boldsymbol{\nu}}(t)\alpha(t)\mathrm{d}t \\ &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\ddot{\alpha}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\dot{\alpha}(0) + \dot{y}_{\boldsymbol{\nu}}(0)\alpha(0) + \int_{0}^{\infty} \ddot{y}_{\boldsymbol{\nu}}(t)\alpha(t)\mathrm{d}t \\ &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\dot{\delta}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\delta(0) - \int_{0}^{\infty} \dot{y}_{\boldsymbol{\nu}}(t)\delta(t)\mathrm{d}t \end{split}$$

Substitution into equation (9) gives

$$-b\left[y_{\mathbf{v}}(0)\alpha(0) + \int_{0}^{\infty} \dot{y}_{\mathbf{v}}(t)\alpha(t)dt\right] + k \int_{0}^{\infty} y_{\mathbf{v}}(t)\alpha(t)dt - C_{0} \int_{0}^{\infty} y_{\mathbf{v}}(t)\delta(t)dt + C_{1} \left[y_{\mathbf{v}}(0)\delta(0) + \int_{0}^{\infty} \dot{y}_{\mathbf{v}}(t)\delta(t)dt\right] = y_{\mathbf{v}}(0)\dot{\alpha}(0) - \dot{y}_{\mathbf{v}}(0)\alpha(0) - \int_{0}^{\infty} \ddot{y}_{\mathbf{v}}(t)\alpha(t)dt, \quad \mathbf{v} = 1, 2, \dots, N \quad (10)$$

Equations (10) are N equations in b, k, C₀, and C₁. If $N \ge 4$, they may be solved by least squares for these parameters.

The choice of the functions $y_{\nu}(t)$ defines which equations-of-motion method is being used. For this reason, these functions will be referred to as the "method functions."

Generalization to Nonlinear Systems

In this section, all considerations will refer to the equations of longitudinal motion of an aircraft. It will be seen that the method actually is applicable to a far wider class of equations - in particular to the equations of lateral motion of an aircraft, including, if it is so desired, cross-coupling terms. The special analysis presented here can be extended to other problems, the only real restriction being that for practical reasons too many parameters cannot be handled at once.

The following equations, which involve assumptions of constant airspeed, smallness of certain quantities, etc., are often used to describe the motions of an aircraft which has linear stability characteristics:

$$-\alpha I_{\alpha} - \dot{\alpha} m V + q m V = \delta I_{\delta}$$

$$-\alpha M_{\alpha} - \dot{\alpha} M_{\alpha}^{*} - q M_{q} + \dot{q} I_{y} = \delta M_{\delta}$$

If, on the other hand, it is assumed that the lift and moment functions are nonlinear in α , these equations become

$$-L(\alpha) - \dot{\alpha}mV + qmV = \delta L_{\delta}$$

$$-M(\alpha) - \dot{\alpha}M_{\alpha}^{\bullet} - qM_{q} + \dot{q}I_{y} = \delta M_{\delta}$$
(11)

We shall assume that over the range of interest, approximations of the following form are valid:

$$L(\alpha) = L_{1}\alpha + L_{2}\alpha^{2} + \dots + L_{l}\alpha^{l}$$

$$M(\alpha) = M_{1}\alpha + M_{2}\alpha^{2} + \dots + M_{n}\alpha^{n}$$
(12)

where the coefficients L_i , M_i are constant. Only the first three terms of this series will be retained in the present-analysis since this three-term approximation usually balances very well the opposing requirements of simplicity and adequate representation of the aerodynamic parameters. If more terms are found to be necessary in a particular problem they can, of course, be added. It should be noted that this three-term approximation is still fairly general, even retaining the possibility of asymmetry in the nonlinearities.

By use of the approximations (12) with l=n=3, equations (11) can be written

$$-\frac{L_{1}}{mV}\alpha - \frac{L_{2}}{mV}\alpha^{2} - \frac{L_{3}}{mV}\alpha^{3} - \dot{\alpha} + q = \frac{L_{\delta}}{mV}\delta$$

$$-\frac{M_{1}}{I_{y}}\alpha - \frac{M_{2}}{I_{y}}\alpha^{2} - \frac{M_{3}}{I_{y}}\alpha^{3} - \frac{M_{\alpha}^{\star}}{I_{y}}\dot{\alpha} - \frac{M_{q}}{I_{y}}q + \dot{q} = \frac{M_{\delta}}{I_{y}}\delta$$

$$(13)$$

Ė

The generalization of the methods of the preceding section to such non-linear systems proceeds in the obvious way. First, multiply each of equations (13) by N method functions $y_{\mathbf{v}}(t)$ which have been selected as suitable. This operation is followed by integration of the resulting 2N equations. If records of the derivatives \dot{q} and $\dot{\alpha}$ are not available, one then eliminates the terms involving these derivatives by integration by parts. The result is N equations in L_1, L_2, L_3 , and L_6 and N equations in M_1, M_2, M_3, M_3, M_3 , and M_6 . If $N \geq 5$, these two sets of equations can be solved by least squares for the parameters.

Of course, the pitching velocity q can be eliminated from equations (11) to yield the single equation

NACA IN 3288

$$\ddot{\alpha} - \left[\begin{array}{c} \frac{M_{C}^{*}}{I_{y}} + \frac{M_{Q}}{I_{y}} - \frac{L^{*}(\alpha)}{mV} \end{array} \right] \ \dot{\alpha} \ - \frac{M(\alpha)}{I_{y}} - \frac{M_{Q}}{I_{y}} \ \frac{L(\alpha)}{mV} = \left(\frac{M_{S}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{I_{S}}{mV} \right) \delta \ - \frac{I_{S}}{mV} \ \dot{\delta}$$

where

$$L^{\dagger}(\alpha) = \frac{d}{d\alpha} L(\alpha)$$

With the approximations (12), this leads to the following generalization of equation (1):

$$\ddot{a} + (b_0 + b_1 \alpha + b_2 \alpha^2)\dot{a} + (k_0 + k_1 \alpha + k_2 \alpha^2)\alpha = C_0 \delta + C_1 \delta$$
 (14)

where

$$b_{0} = -\left(\frac{M_{0}^{2}}{I_{y}} + \frac{M_{Q}}{I_{y}} - \frac{L_{1}}{mV}\right) \qquad k_{0} = -\left(\frac{M_{1}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{1}}{mV}\right)$$

$$b_{1} = \frac{2L_{2}}{mV} \qquad k_{1} = -\left(\frac{M_{2}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{2}}{mV}\right)$$

$$b_{2} = \frac{3L_{3}}{mV} \qquad k_{2} = -\left(\frac{M_{3}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{3}}{mV}\right)$$

$$(15)$$

By applying the method described to equation (14), the constants b_0 , b_1 , b_2 , k_0 , k_1 , k_2 can be calculated.

Solution for the parameters in equations of the general form of equation (14) is of interest to workers in many fields. In addition, the evaluation, from these parameters, of the stability constants occurring on the right sides of equations (15) is of considerable interest to aeronautical engineers, and so this problem will be considered in further detail. One cannot, in general, isolate the constants L_i and M_i to obtain, from values of the b_i and the k_i , the nonlinear functions $L(\alpha)$ and $M(\alpha)$. For this reason, it is ordinarily best to apply the method directly to equations (13) rather than to equation (14), provided that records of both q(t) and $\alpha(t)$ are available.

On the other hand, there is one case of interest when equation (14) can be used directly and measurements of q(t) are not needed. It sometimes happens that while the pitching moment $M(\alpha)$ is nonlinear, the lift $L(\alpha)$ can still be successfully approximated by a linear function. In this case, we have the approximations

$$L(\alpha) = L_{\alpha}\alpha$$

$$M(\alpha) = M_{1}\alpha + M_{2}\alpha^{2} + M_{3}\alpha^{3}$$
(16)

and so equation (14) becomes

$$\ddot{a} + b\dot{a} + (k_0 + k_1 \alpha + k_2 \alpha^2)\alpha = C_0 \delta + C_1 \dot{\delta}$$
 (17)

where

$$k_{O} = -\left(\frac{M_{1}}{I_{y}} + \frac{M_{q}}{I_{y}} \frac{I_{cc}}{mV}\right)$$

$$k_{1} = -\frac{M_{2}}{I_{y}}$$

$$k_{2} = -\frac{M_{3}}{I_{y}}$$
(18)

Thus in this case, M(α) can, except for the term $\frac{M_{\rm q}}{I_{\rm y}}\frac{L_{\alpha}}{{\rm mV}}$ occurring in the expression for k_O, be obtained from an analysis of equation (17). At high speeds, however, this term is small and its effect on the curve of M(α) versus α can be neglected. Thus, the expression for k_O in formulas (18) can be replaced by the expression

$$k_{O} = -\frac{M_{1}}{I_{y}} \tag{19}$$

and in this case, the nonlinear moment $M(\alpha)$ is completely determined by the knowledge of k_0 , k_1 , k_2 , and, of course, I_V .

Choice of the Method Functions

Up to this point in the general discussion, the method functions $y_{\nu}(t)$ have been to a very great extent arbitrary, having to satisfy only certain weak smoothness conditions. In this section, the possiblity of developing new and perhaps improved methods for data analysis by means of a particular choice of the method functions will be explored.

Previous experience, consisting in part of unpublished analyses performed at Ames Aeronautical Laboratory, have indicated that the Fourier transform method generally results in greater accuracy than either the

derivative or the Laplace transform methods. For this reason, the method to be discussed will be a variation of the Fourier transform method.

Let us consider first some evident shortcomings in the Fourier transform method. These defects will offer definite goals to be held in mind in the development of a new method. First, there is a weakness in the Fourier transform method in that all integrations proceed over the interval from zero to infinity (cf. eq. (10)). This causes difficulties in any example in which $\alpha(t)$ and $\delta(t)$ do not approach zero so rapidly that their integrals exist. Thus, referring, for example, to equation (1), if b is not positive or if $\delta(t)$ does not approach zero quickly enough, the method cannot be applied straightforwardly. Furthermore, even if b > 0 and $\delta(t) \rightarrow 0$ in such a way that $\int_{-\infty}^{\infty} \alpha(t) dt$ exists, the experimental record often is not long enough for this integral to be accurately calculable when the system is so lightly damped (b small) that sizable oscillations persist even to the end of the run. One device which is sometimes used to overcome this difficulty is equivalent to a change in the method functions. Instead of the functions sin wt and cos ωt , the functions $e^{-\beta t}$ sin ωt and $e^{-\beta t}$ cos ωt , with some fixed constant β , are used. However, this leads to the same objection that was voiced in footnote 1 for the derivative and Laplace transform methods, notably that the method functions approach zero. Other tricks for dealing with such deficiencies in the Fourier transform method can be evolved, but, rather than develop new devices for each special case. it appears wiser to construct a generally applicable method in which these difficulties never arise - that is, one in which the integration proceeds only over a finite interval.

The second defect which we shall consider becomes clear from an inspection of equation (10), with the functions $y_V(t)$ of the form $\sin \omega t$ and $\cos \omega t$ for certain values of ω . Referring to equation (10), it is easily seen that one point, namely the point t=0, is weighted very heavily because of the occurrence of the quantities $\alpha(0)$, $\dot{\alpha}(0)$, and $\delta(0)$. It should be noted that not only are the values of $\alpha(t)$ and $\delta(t)$ at one point relied on to this great extent, but that even the relatively inaccurate value of the derivative of $\alpha(t)$ at that point is weighted. Thus, advantages in accuracy might be expected to accrue if these terms were eliminated.

Since the method for overcoming this second deficiency in the Fourier transform method will also be used in treating the first, the problem of eliminating dependence on the initial values will be discussed now. To this end, consider equation (10). We begin with the Fourier transform

¹It would seem that no rational explanation for this conclusion has heretofore been offered. However, the theory described herein appears to afford such an explanation. A long and rather tedious analysis based on this theory has indicated that the failure of both the derivative and the Laplace transform methods is due in large part to the fact that the associated method functions approach zero very rapidly as time progresses.

method, that is, with method functions $y_{\nu}(t)$ of the forms $\sin \omega t$ and $\cos \omega t$. Noting that most-of the terms which depend on the initial values at $t\equiv 0$ are multiplied by $y_{\nu}(0)$, it is seen that a choice of method functions such that $y_{\nu}(0)$ is zero for all $\nu=1,2,\ldots,N$ represents a step in the right direction. Such a choice is easy to make, since it is only necessary to eliminate those method functions which have the form $\cos \omega t$; then, we may write

$$y_{V}(t) = \sin \omega_{V}t, \quad V = 1, 2, ..., N$$
 (20)

This does not entirely eliminate the dependence on the initial conditions, however, as the term $\dot{y}_{\mathbf{V}}(0)\alpha(0)$ remains in equation (10). If this term can also be removed, the second weakness in the Fourier transform method will have been entirely corrected. This will clearly be the case if $\dot{y}_{\mathbf{V}}(0)$ as well as $y_{\mathbf{V}}(0)$ is zero for all $\nu=1,\ldots,N$. A possible choice of the method functions for which this is so, a choice which still retains the advantages of the favored Fourier transform method, is the following:

$$y_{\nu}(t) = \sin^2 \omega_{\nu} t = \frac{1 - \cos 2\omega_{\nu} t}{2}, \quad \nu = 1, ..., N$$
 (21a)

With this choice of the method functions, equation (10) becomes

$$- b \int_{0}^{\infty} \alpha(t) \dot{y}_{V}(t) dt + k \int_{0}^{\infty} \alpha(t) y_{V}(t) dt - C_{0} \int_{0}^{\infty} \delta(t) y_{V}(t) dt + C_{1} \int_{0}^{\infty} \delta(t) \dot{y}_{V}(t) dt = - \int_{0}^{\infty} \alpha(t) \dot{y}_{V}(t) dt$$
(22)

The method functions (21a) would be used for systems satisfying differential equations, like (1), which involve derivatives of the second order. More generally, and for the same reasons, if the highest order derivative occurring in any of the equations of motion of a system is the nth, the following method functions are suggested:

$$y_{\nu}(t) = \sin^n \omega_{\nu}t, \quad \nu = 1, \dots, N$$
 (21b)

Thus, in the case of the two-degrees-of-freedom system described by equations (13), there is no point in using formula (21a); the simpler method functions (20) may as well be used.

As for the first of the weaknesses in the Fourier transform method, that which is due to integration over an infinite interval, it would

NACA TN 3288 15

appear at first glance to be easily disposed of by merely choosing some finite, positive number T and integrating over the interval from zero to T. This, however, introduces another difficulty. Suppose $y_V(t)$ is given by equation (21a), so that $y_V(0) = \dot{y}_V(0) = 0$. Returning to the derivation of equation (10), it may be seen that if one integrates only over the interval $0 \le t \le T$, all the good which has been achieved by eliminating dependence on the point t = 0 is obviated by certain terms which arise - terms of the form $y_V(T)\alpha(T)$, $y_V(T)\alpha(T)$, and $y_V(T)\delta(T)$. Thus, the heavy dependence on the initial conditions is replaced by a dependence on the final conditions. Of course, the same approach as was used for eliminating the initial conditions can be used again - that is, the method functions can be chosen in such a way that $y_V(T) = \dot{y}_V(T) = 0$. One possibility, naturally, is to choose the frequencies ω_V such that

$$\sin \omega_{\mathbf{v}} T = 0, \quad \mathbf{v} = 1, \dots, N$$

Thus, we can set

$$\omega_{\mathbf{V}} = \frac{\mathbf{V}\pi}{\mathbf{m}}, \quad \mathbf{V} = 1, \dots, N$$

This choice of the frequencies (corresponding to the method functions given by equation (21b)) leads to an elegant method which gives satisfactory results in certain cases. On the other hand, the difference $\left(\frac{\pi}{T}\right)$ between two successive frequencies is too large to define the "frequency response" (to use loosely the terminology of the Fourier transform) of some examples adequately. For this reason, we should like to be able to choose the frequencies as follows:

$$\omega_{\mathcal{V}} = \frac{\nu \pi}{2T}, \qquad \nu = 1, \dots, N \tag{23}$$

Of course, this means that for frequencies having an odd subscript, $y_{V}(T)$ will be different from zero. To overcome this difficulty, the following choice of the method functions can be made: If the highest derivative occurring in the equations of motion is the nth, define the method functions by the formulas

$$y_{2\mu}(t) = \sin^{n} \omega_{2\mu} t$$

$$y_{2\mu+1}(t) = \begin{cases} \sin^{n} \omega_{2\mu+1} t, & 0 \le t \le \frac{2\mu}{2\mu+1} T \\ 0, & \frac{2\mu}{2\mu+1} T < t \le T \end{cases}$$
(24)

where the frequencies ω_{V} are given by equation (23) and T is the length of the run. What has been done in choosing these method functions is the following: Those method functions which are such that $y_{V}(T)$ is zero (i.e., those method functions which have even subscripts), have been left unaltered in the form given by equation (21b). The remaining method functions have had the last quarter cycle, during which they would normally have varied from 0 to ± 1 , chopped off, so that they are identically zero over part of the interval $0 \le t \le T$. The claim is not made that this is the best of all possible choices for the method functions. There is certainly no reason for such an assertion, particularly in view of the fact that a certain amount of the data is not used by each of the odd-numbered method functions. However, this amount is small after all and no datum is completely discarded, since the even-numbered method functions use all the data. That these method functions do seem to be adequate is indicated by the results obtained in the examples given below.

Before-proceeding to the examples, one further change, imposed in the interest of simplicity in the computations, will be made in the method functions. For the odd-numbered method functions, certain complications arise in the computations due to the fact that the point $(2\mu/2\mu+1)T$ at which the function is cut-off may not coincide-with a point at which the data are tabulated. For this reason, values of even-numbered frequencies will be chosen in accordance with equation (23). The odd-numbered frequencies, on the other hand, will be changed (by as little as possible, to be sure) in such a way that the following condition is satisfied. Let the data be tabulated at the points $t = t_0, t_1, \ldots, t_K$, where $t_{k+1} - t_k = \text{constant}$. The odd-numbered frequencies are then assumed to be chosen such that

$\sin \omega_{2u+1} t_{\alpha} = 0$

where $t_{\rm C}$ is that one of the two tabulation instants closest to the time $(2\mu/2\mu+1)T$ having an even subscript. The reason for this last condition is merely that it is convenient for a numerical integration procedure (such as the one in the Appendix) to have an even number of intervals (t_k, t_{k+1}) ; thus, Simpson's rule, for example, calls for an even number of intervals in its application.

For many of the experiments performed on airplanes and missiles, the run is 2 seconds long and the time between tabulated points is 0.05 second, so that the tabulation times t_{α} are at 0, 0.05, 0.10, . . ., 2.00 seconds. For these values of T and Δt , the rule given above for the frequencies ω_{α} is climaxed by the following table:

ν	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ων	KIN	10π 13	π	54	<u>ა</u> [ა	<u>30π</u> 17	2π	<u>20π</u> 9	<u>5π</u> 2	<u>25л</u> 9	3π	10π 3	<u>7π</u> 2	70л 19	4π

NACA IN 3288

The frequency ω_1 has been omitted from the table since, according to the rule for the determination of the method functions, $y_1(t) \equiv 0$ (see eq. (24), ff.) and offers no information. A 2-second interval will be taken as standard in this report, and all computations will be based on such an interval. If one has a data run T seconds in length, it can of course be brought into this standard form by a preliminary substitution of the form

$$t = \frac{T}{2} \tau$$

and we always assume such a transformation has been made.

Thus, finally, the method may be summarized as follows: Select N frequencies in accordance with the rule given in the preceding paragraph. (The number N is chosen, as in the Fourier transform method, large enough to cover the frequency range of interest in the particular problem; usually, N = 16 is adequate.) Multiply the equations of motion by the method functions (24) and integrate the resulting equations from zero to T, where T denotes the length of the data run. Eliminating all explicit dependence of these equations on derivatives of the data by successive integrations by parts results in N linear simultaneous equations for the parameters. The coefficients in these equations are all integrals involving the recorded data; after these have been evaluated by some means, the equations can be solved by least squares for the desired parameters.

EXAMPLES

Three example problems will be solved in order to demonstrate the effectiveness of the proposed analysis method and to illustrate associated computing techniques. An effort was made to select examples representative of problems which often occur in aircraft-response flight testing and which have not been handled adequately by other known analysis methods. These examples have been simplified in some respects, not because of fundamental limitations of the method, but in order to avoid obscuring the essentials of the method and of the related computing techniques.

Although limited use was made of automatic digital computing machinery in the following analyses, it did not appear worthwhile to mechanize complete calculation procedures for these isolated illustrative examples. However, the method appears to be well suited to such mechanization.

²See, for example, the Appendix, where a technique well suited for the type of integrations needed for this method is described.

Example I

The first example concerns the longitudinal response of a hypothetical missile for which it is assumed that the lift varies linearly with angle of attack, although the pitching moment does not. The velocity of the missile is assumed to be sufficiently high for the expression (18) for $k_{\rm O}$ to be simplified to

$$k_0 = -\frac{M_1}{I_y}$$

so that equation (17) can be used to determine the lift and moment characteristics from a transient response. A pulse response of a system described by equation (17) was obtained from a Reeves Electronic Analogue Computer and it was decided to consider this response as given data to be analyzed. The moment of inertia of the missile was chosen to be 100 slugfeet. The nonlinear moment curve $M(\alpha)$ versus α which was used to obtain the data is shown as the solid curve in figure 1. The linear stability derivatives were chosen in such a way that the damping parameter is given by

$$b = 2 \tag{25}$$

In order to simplify the presentation, it was decided that free oscillations alone would be analyzed to determine only the constants occurring on the left-hand side of equation (17). Thus, for the data which will be analyzed, $\delta(t)=0$, and equation (17) becomes

$$\ddot{a} + b\dot{a} + (k_0 + k_1 a + k_2 a^2)a = 0$$
 (26)

A plot of the a(t) "data" is given in figure 2, and this information is listed in table I.

Since equation (26) is of the second order, we shall choose, according to the rule given earlier, the method functions (24) with n=2; since the run is 2 seconds long and the time interval between data points is 0.05 second, the frequencies ω_{V} are chosen as in the table on page 16.

Integrating factors $\Gamma_n(y_v)$ corresponding to each function $y_v(t)$ and its first two derivatives are tabulated in columns 6 through 50 of table I. (As discussed in the Appendix, the $\Gamma_n(y_v)$ are numbers chosen such that for any integrable function x(t), the sum

$$\sum_n \ x(t_n) \Gamma_n(y_{\boldsymbol{\nu}})$$

is an approximation to the integral of $x(t)y_{\psi}(t)$.) Accordingly, the sums displayed beneath table I are the integrals needed for the reduction of the data, divided by the factor $\Delta t = 0.05$. Since this factor occurs homogeneously throughout the equations from which the parameters are to be found (i.e., the generalization of eqs. (22) to the nonlinear eq. at hand), it can be divided out of these equations, and the sums can be used directly without first multiplying them by Δt .

NACA TN 3288

In accordance with the method as it has been described, the equations which are to be solved by least squares have the form

$$\frac{1}{0.05} \left[-b \int_{0}^{2} \alpha(t) \dot{y}_{\nu}(t) dt + k_{0} \int_{0}^{2} \alpha(t) y_{\nu}(t) dt + k_{1} \int_{0}^{2} \alpha^{2}(t) y_{\nu}(t) dt + k_{2} \int_{0}^{2} \alpha^{3}(t) y_{\nu}(t) dt \right] = -\frac{1}{0.05} \int_{0}^{2} \alpha(t) \ddot{y}_{\nu}(t) dt$$

The sums below table I are needed for the evaluation of the coefficients of b, k_0 , k_1 , and k_2 in the above equation. These sums are again listed in table II, and the coefficients in the last equation are set down as columns 4, 5, 6, 7, and 9 of table II. The sums displayed beneath table II are needed for the final least squares step of the solution. Using these sums, it can be seen that the following equations are to be solved for the parameters:

$$24.1669 \text{ b} - 1.05270 \text{ k}_0 - 0.336760 \text{ k}_1 - 0.0140294 \text{ k}_2 = -7.01790$$
 $-1.05270 \text{ b} + 0.885340 \text{ k}_0 + 0.144127 \text{ k}_1 + 0.00906192 \text{ k}_2 = 45.5226$
 $-0.336760 \text{ b} + 0.144127 \text{ k}_0 + 0.0374138 \text{ k}_1 + 0.00189656 \text{ k}_2 = 7.00244$
 $-0.0140294 \text{ b} + 0.00906192 \text{ k}_0 + 0.00189656 \text{ k}_1 + 0.000108975 \text{ k}_2 = 0.459829$

$$(27)$$

It may seem odd to some that four significant figures have been used in table II for the values of the integrals and six significant figures for the coefficients in equations (27), while the test data are not given to more than three significant figures. The reason for carrying more significant figures in the computations than there are in the data is to avoid eventual loss of accuracy due to round-off errors and other errors of a similar type. This procedure of carrying a few more (fictitious) figures than the data supply is usually necessary in order to retain even the basic information which is in the data.

Solving equations (27) gives

$$b = 1.95$$

$$k_0 = 50.4$$

$$k_1 = -30.5$$

$$k_2 = 806$$
(28)

The only parameter whose numerical value is given and which can be immediately checked is the damping parameter. Comparing the values of b given in equations (25) and (28), we see that it has been found with an error of 2.5 percent. The constants k_0 , k_1 , k_2 cannot be checked directly; however, the calculated pitching-moment curve

$$M(\alpha) = -I_y(k_0\alpha + k_1\alpha^2 + k_2\alpha^3)$$
$$= -5040 \alpha + 3050 \alpha^2 - 80600 \alpha^3$$

can be plotted and compared with the true curve from which we started. This has been done in figure 1 from which it can be seen that the error at the least accurate point is less than 3 percent.

It should be noted that the values of $\Gamma_n(y_{\boldsymbol{\nu}})$ given in table I can be used to solve any problem of the type considered here which depends on a second-order differential equation or on a system of such equations. If the data run is 2 seconds long, it is only necessary to insert the data in table I in place of the data used in this example and proceed as we have just done. As mentioned earlier, if the data run is more or less than 2 seconds long, it is only necessary to make a preliminary transformation of the time scale so that in the new time scale the data run is 2 seconds long, a process illustrated in example II.

Example II

The first example served to illustrate the application of the method to an equation of the form (14), corresponding in the missile pitch-response problem to the case where only $\alpha(t)$ and $\delta(t)$ are measured. A problem involving equations, like (13), of the first order, corresponding to the case where q(t) is available in addition to $\alpha(t)$ and $\delta(t)$, will be illustrated now.

NACA TN 3288 21

As in example I, the lift force will be assumed linear and the pitching moment nonlinear. The following parametric values were assumed:

$$m = 2$$
 $I_{CC} = 1000$ $V = 750$ $M_{CC}^* = -200$ $M_{QC} = -500$ (29)

The nonlinear $M(\alpha)$ is plotted as the solid curve in figure 3. It should be noted that in contrast to the first example, the pitching moment is unstable at $\alpha=0$ and highly nonlinear.

The "test data" were manufactured by determining a pulse response of this missile on the REAC. Again, the control characteristics of the system will not be considered, so that only free oscillations are shown in figure 4.

Merely to have a standard length of run, a 2-second interval was always selected for the calculation of the integrating factors $\Gamma_n(y_{\boldsymbol{\nu}})$ (see the Appendix for the definition of these quantities). To illustrate the computation procedure for data runs of different lengths, a 1-second run will be considered in the present example.

In order to use the integrating factors displayed in table III, it is necessary to make a preliminary transformation of the form

$$t = \frac{\tau}{2}$$

This transformation has the following effect on equations (13):

$$-\frac{L_{I}}{mV}\alpha - \frac{L_{2}}{mV}\alpha^{2} - \frac{L_{3}}{mV}\alpha^{3} - 2\frac{d\alpha}{d\tau} + q = \frac{L_{\delta}}{mV}\delta$$

$$-\frac{M_{I}}{I_{y}}\alpha - \frac{M_{2}}{I_{y}}\alpha^{2} - \frac{M_{3}}{I_{y}}\alpha^{3} - 2\frac{M_{\alpha}}{I_{y}}\frac{d\alpha}{d\tau} - \frac{M_{q}}{I_{y}}q + 2\frac{dq}{d\tau} = \frac{M_{\delta}}{I_{y}}\delta$$
(30)

Recalling that for the problem under discussion, $L_1 = L_{C}$, $L_2 = L_{3} = 0$, $\delta(t) = 0$, it can be seen from equations (30) that the equations to be solved by least squares for the parameters have the forms

$$-\frac{L_{\infty}}{mV}\int_{0}^{2}\alpha(\tau)y_{\nu}(\tau)d\tau+2\int_{0}^{2}\alpha(\tau)\frac{dy_{\nu}(\tau)}{d\tau}d\tau+\int_{0}^{2}q(\tau)y_{\nu}(\tau)d\tau=0$$

and

$$-\frac{M_{1}}{I_{y}}\int_{0}^{z}\alpha(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau - \frac{M_{2}}{I_{y}}\int_{0}^{z}\alpha^{2}(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau - \frac{M_{3}}{I_{y}}\int_{0}^{z}\alpha^{3}(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau +$$

$$2 \frac{M_{\alpha}^{2}}{I_{y}} \int_{0}^{2} \alpha(\tau) \frac{dy_{\gamma}(\tau)}{d\tau} d\tau - \frac{M_{q}}{I_{y}} \int_{0}^{2} q(\tau)y_{\gamma}(\tau)d\tau - 2 \int_{Q}^{2} q(\tau) \frac{dy_{\gamma}(\tau)}{d\tau} d\tau = 0$$

The "data" of figure 4 are presented as functions of τ in table III. The sums, which when multiplied by $\Delta \tau = 0.05$ approximate the integrals in the last two equations, are given below table III. These sums have been listed in the appropriate places in table IV. With circled numbers referring to columns in table IV, it can be seen that the above two equations are equivalent to the following:

$$-\frac{L\alpha}{mV} \bigcirc + 2 \bigcirc + 2 \bigcirc = 0$$

$$-\frac{M_1}{I_y} \circlearrowleft -\frac{M_2}{I_y} \circlearrowleft -\frac{M_3}{I_y} \circlearrowleft +2\frac{M_0}{I_y} \circledcirc -\frac{M_q}{I_y} \oslash -2 \circlearrowleft =0$$

Hence,

$$I_{CL} = mV \frac{\Sigma \Im \times B + \Sigma \boxtimes \times \Im}{\Sigma \Im^2}$$

or

$$L_{\alpha} = 1033$$

using the given values of m and V (eqs. (29)), while the equations for the moment parameters are

When the sums displayed below table TV are inserted in the appropriate places, the resulting equations can be solved to yield

$$\frac{M_1}{I_y} = 521$$

$$\frac{M_2}{I_y} = -42.3$$

$$\frac{M_3}{I_y} = -197,000$$

$$2 \frac{M_0}{I_y} = 38.66$$

$$\frac{M_2}{I_y} = -26.7$$

Hence, using the value of I_{y} given in equations (29),

$$M_1 = 5.21 \times 10^4$$
 $M_{\alpha} = 1930$ $M_{q} = -2670$ $M_{g} = -1.97 \times 10^7$ (31)

To begin our discussion of these values, consider L_{α} . A comparison of the values given for L_{α} by equations (29) and (31) shows that L_{α} has been found within 3.2 percent. The nonlinear pitching moment

$$M(\alpha) = (5.21 \times 10^4)\alpha - (4.23 \times 10^3)\alpha^2 - (1.97 \times 10^7)\alpha^3$$

has been superposed as the dotted curve on the true moment curve in figure 3. As can be seen, the agreement for this strongly nonlinear problem is excellent. Finally, the errors in the calculated values of the parameters $M_{C\!c}$ and $M_{C\!c}$ are enormous, but the reason for this is well known and easily explained. Consider equations (13) which describe the motion. Eliminating q from these equations results in equation (14); since the lift is linear, $b_1 = b_2 = 0$. The constant bo, on which M_q and Mo have their principal effect, is easily interpreted physically as a measure of the damping in the system. The other gross aspects of the response are relatively little affected by either Mq or Ma. However, the important quantity in bo is not Mq or Ma alone, but is their sum, $M_{\rm Q}$ + $M_{\rm C}$. In other words, relatively large changes in $M_{\rm Q}$ and $M_{\rm C}$ are possible without causing any great change in the motion, just so long as their sum remains constant. Thus, one may not expect to find Mq and Ma accurately from an experiment such as this - only their sum may be relied upon. This is verified in the present example, since equations (29) give the sum

$$M_{Q} + M_{C} = -700$$

NACA TN 3288 25

while equations (31) give

$$M_{Q} + M_{CC} = -740$$

These two values differ by only 5.7 percent.

It should be noted that the assumption, which has been made in this and the preceding example, of the linearity of the lift is not necessary. If it is suspected that the lift is linear but if no definite verification of this is available, a nonlinear form such as (12) can be assumed for the lift, and the coefficients L_1, L_2, L_3, \ldots , can be calculated. If the lift is indeed linear, it should turn out that L_2, L_3, \ldots , are small. Some limited experience has shown that this method does work but that the errors in the calculated parameters are somewhat larger than when the correct form is assumed. The reason for this is not known, but it appears that it may be associated with a tendency of the extraneous parameters L_2 and L_3 to fit the lift curve to that corresponding to the original data, errors and all, at the expense of the smoothing operation which is necessary with this type of data and which is performed by the least squares process when the correct form is assumed.

Example III

We turn, finally, to a system described by a differential equation whose order is higher than the second. Since the higher order systems whose occurrence is most common appear to be those of the fourth order, we shall be concerned with such a system. In order to simplify the presentation, a linear system will be considered; there are no conceptual difficulties in the generalization to the nonlinear case. In addition, it will be assumed for simplicity that free oscillations are available for analysis. Thus, the system to be analyzed is assumed to be described by an equation of the form

$$\frac{d^4x}{dt^4} + a_3 \frac{d^3x}{dt^3} + a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0x = 0$$
 (32)

A solution of this equation was calculated over the interval from 0 to 2 seconds, for the following values of the coefficients a:

$$a_0 = 2544.9$$
 $a_1 = 219.32$ $a_2 = 132.87$ $a_3 = 2.000$

The result, representing the free oscillations in response to some disturbance, is tabulated in table V and presented graphically as the solid curve in figure 5. The sums needed for the solution of the problem are displayed below table V and again in table VI. The least-squares equations for the parameters are

24.2035
$$a_0 - 16.7225$$
 $a_1 - 1098.19$ $a_2 + 1603.19$ $a_3 = -81036.4$

$$-16.7225 a_0 + 855.538$$
 $a_1 + 664.495$ $a_2 - 82282.3$ $a_3 = 85777.1$

$$-1098.19$$
 $a_0 + 664.495$ $a_1 + 77898.7$ $a_2 - 94741.8$ $a_3 = 7533580$

$$1603.19$$
 $a_0 - 82282.3$ $a_1 - 94741.8$ $a_2 + 8523670$ $a_3 = -10567800$

Solving these equations gives

$$a_0 = 3098.7$$
 $a_1 = 374.93$ $a_2 = 141.29$ $a_3 = 3.367$

It can be seen that these numbers are correct only to within orders of magnitude. On the other hand, it is not these coefficients which have direct physical significance; rather, it is the damping and frequency of each of the components making up the oscillation which are important. In order to find these numbers, the following equation was set up

$$\lambda^4 + 3.367 \lambda^3 + 141.29 \lambda^2 + 374.93 \lambda + 3098.7 = 0$$

and solved to find the roots:

$$\lambda = \begin{cases} -0.046 \pm 10.7 \text{ i} \\ -1.64 \pm 4.96 \text{ i} \end{cases}$$

The true roots are obtained by solving the equation

$$\lambda^4 + 2.000 \lambda^3 + 132.87 \lambda^2 + 219.32 \lambda + 2544.9 = 0$$

This gives

$$\lambda = \begin{cases} \pm 10.5 i \\ -1.00 \pm 4.71 i \end{cases}$$

Thus, the frequencies of the oscillation have been found quite accurately, as has the damping parameter of the undamped component. The only large effect of the errors in the coefficients a_0 , a_1 , a_2 , and a_3 is in the damping of one of the components. The apparent ill-conditioning of the problem with respect to this parameter is not too surprising, for after all, either the true or calculated value of this damping is large enough that the corresponding component of the motion is masked by the undamped component over a good part of the run. This may be seen best, perhaps, from figure 5 in which the solution of equation (32), using both the true and calculated values of the parameters, has been plotted. It can be seen that the two curves do not differ by very much, indicating that the fit could not be much improved.

CONCLUDING REMARKS

A general theory of the so-called "equations-of-motion" methods for the analysis of dynamical systems has been presented. It has been shown that, when looked at from a new point of view, all such methods can be generalized so as to apply to linear and nonlinear systems alike. Using this theory, it has also been shown how new methods can be developed in order to satisfy the requirements of particular problems.

One new method has been described in detail. In certain cases, it reduces to one which is very similar to the well-known Fourier transform method (ref. 3) but in all cases has certain advantages over this latter method and over other methods heretofore used. Its superiority is based on two facts. First, there is the heavy dependence on the initial conditions which occurs when using most of the previously known equations-of-motion methods; this dependence is entirely eliminated in the new method. This superiority manifests itself particularly when systems of higher order than the second are considered. If, for definiteness, a fourth-order system is considered, before the Fourier transform method (for example) can be applied, it is necessary to evaluate the test data and their first three time derivatives at the initial point. Accurate evaluation of all these derivatives is practically impossible, however, with the type of data obtained from most aerodynamic experiments.

The second fact upon which the superiority of the proposed method rests is that most of the equations-of-motion methods used to this time demand an infinitely long record for their rigorous application. For some years now, questions about the errors introduced into an analysis

of a system by the finite length of records available have been asked, but answers have not been offered. The second principal advantage of the method described herein is that such questions are side-stepped completely: There is no error at all from this source, since it is assumed from the start that only a finite record is available. Because of this feature, the method avoids a further limitation of the Fourier transform method (apparently the most accurate of all well-known methods of this type), which cannot be applied at all to some systems (e.g., unstable ones) without time-consuming and sometimes ineffective special devices, since the Fourier integrals of the data simply do not exist.

The single exception to these remarks is the derivative method (refs. 2 and 3). The derivative method does not weight the initial comditions and does not depend on an infinite-interval for its application. In addition, the derivative method has in the past been considered as the only well-known method which applies to nonlinear as well as linear systems. (Other methods are described in references 2 and 10, but the derivative method appears to be the only one with such general applicability as we are discussing here.) There are, however, a number of very serious objections to the derivative method. First of all, there is the inordinate amount of time and labor which must be expended in its application, principally because of the necessity for calculating time derivatives of the data. Second, and most important, is the question of accuracy. The accurate calculation of the derivatives needed for the method is most-difficult, and this calculation is a large source of error. Besides, even if the derivatives could be computed with the requisite accuracy, the derivative method appears often to lead to badly conditioned equations, as pointed out in reference 2; because of this, many problems have been found for which the derivative method has been shown to lead to extremely large errors. The method proposed herein is subject to none of these weaknesses. The time required for its application is far less than that needed for the derivative method; in addition, it appears to be well suited to machine computation. Naturally, derivatives need not be calculated, and the method shares the properties of the Fourier transform method which cause it to lead to fairly wellconditioned equations.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., July 14, 1954

APPENDIX

NUMERICAL EVALUATION OF INTEGRALS OF THE FORM
$$\int_{a}^{b} x(t)y(t)dt$$

In 1928, Filon (ref. 8 - see also ref. 9, pp. 67-72) published a generalization of Simpson's rule for evaluation of integrals of the form

$$\int_{a}^{b} x(t) \sin \omega t dt$$

$$\int_{a}^{b} x(t) \cos \omega t dt$$

where x(t) represents numerical data. Filon's method, in contrast to Simpson's, has the distinction of giving results whose errors are independent of the frequency ω , depending only on how closely x(t) can be fitted to a sequence of parabolas. This method will be generalized to apply to integrals of the form

$$\int_{a}^{b} x(t)y(t)dt$$

where y(t) is known exactly (for application to the method described in the body of this report, y(t) is one of the method functions), while x(t) is given tabularly.

Suppose the interval (a,b) is divided into 2h equal parts by points $t_0=a < t_1 < \ldots < t_{2h}=b$, where t_{n+1} - $t_n=\Delta t$ = constant. Then, a formula of the form

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}(t)\mathbf{y}(t)dt \approx \Delta t \sum_{n=0}^{2\mathbf{h}} \Gamma_{n}(\mathbf{y})\mathbf{x}(t_{n})$$
 (33)

will be sought, where the Γ_n are constants which depend only on the function y. These constants will be determined by the condition that the formula (33) will give the integral exactly in the cases where x(t) is a constant, a linear function or a quadratic function of t. Suppose first that the interval (a,b) is divided into two parts only by points t_0 , t_1 , and t_2 ; since formula (33) is to be exact if x(t) = 1, $(t - t_1)$, or $(t - t_1)^2$, we have

$$\Gamma_{O}(y) + \Gamma_{1}(y) + \Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} y(t)dt$$

$$- (\Delta t)\Gamma_{O}(y) + (\Delta t)\Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} (t - t_{1})y(t)dt$$

$$(\Delta t)^{2}\Gamma_{O}(y) + (\Delta t)^{2}\Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} (t - t_{1})^{2}y(t)dt$$

Equations (34) can be solved for Γ_0 , Γ_1 , Γ_2 to obtain

$$\Gamma_{0}(y) = \frac{1}{2(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt - \frac{1}{2(\Delta t)^{2}} \int_{t_{0}}^{t_{2}} (t - t_{1}) y(t) dt$$

$$\Gamma_{1}(y) = \frac{1}{\Delta t} \int_{t_{0}}^{t_{2}} y(t) dt - \frac{1}{(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt$$

$$\Gamma_{2}(y) = \frac{1}{2(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt + \frac{1}{2(\Delta t)^{2}} \int_{t_{0}}^{t_{2}} (t - t_{1}) y(t) dt$$

$$(35)$$

Now, if (a,b) is divided into 2h(>2) parts, the integral is written as follows:

$$\int_{a}^{b} x(t)y(t)dt = \int_{t_{0}}^{t_{2}} x(t)y(t)dt + \int_{t_{2}}^{t_{4}} x(t)y(t)dt + \dots + \int_{t_{2h-2}}^{t_{2h}} x(t)y(t)dt$$
(36)

ì

and equations (35) can be used to evaluate each of the integrals on the right-hand side. Calling

$$J_{\rho}(y) = \frac{1}{\Delta t} \int_{t_{\rho-1}}^{t_{\rho+1}} y(t)dt$$

$$K_{\rho}(y) = \frac{1}{2(\Delta t)^2} \int_{t_{\rho-1}}^{t_{\rho+1}} (t - t_{\rho})y(t)dt$$

$$L_{\rho}(y) = \frac{1}{2(\Delta t)^3} \int_{t_{\rho-1}}^{t_{\rho+1}} (t - t_{\rho})^2 y(t) dt$$

we obtain from (33), (35) and (36) that

$$\int_{a}^{b} x(t)y(t)dt \approx \Delta t \sum_{n=0}^{2h} r_{n}(y)x(t_{n})$$

where

$$\Gamma_{O}(y) = L_{1}(y) - K_{1}(y)$$

$$\Gamma_{2\rho-1}(y) = J_{2\rho-1}(y) - 2L_{2\rho-1}(y), \ \rho = 1, 2, \dots, h$$

$$\Gamma_{2\rho}(y) = L_{2\rho-1}(y) + K_{2\rho-1}(y) + L_{2\rho+1}(y) - K_{2\rho+1}(y),$$

$$\rho = 1, 2, \dots, h - 1$$

$$\Gamma_{2h}(y) = L_{2h-1}(y) + K_{2h-1}(y)$$
(37)

It should be noted that if y(t) is identically unity,

$$J_{\rho}(1) = 2$$

$$K_0(1) = 0$$

$$L_p(1) = 1/3$$

where the relations $t_{\rho-1}=t_{\rho}-\Delta t$, $t_{\rho+1}=t_{\rho}+\Delta t$ have been used repeatedly. Hence, from equations (37),

$$\Gamma_{o}(1) = 1/3$$

$$\Gamma_{2\rho-1}(1) = 4/3, \ \rho = 1, 2, \dots, h$$

$$\Gamma_{2\rho}(1) = 2/3, \ \rho = 1, 2, \dots, h-1$$

$$\Gamma_{2h}(1) = 1/3$$

which exactly describes Simpson's rule.

Equations (37), with y(t) being chosen equal to the method functions, were used to calculate the numbers displayed in tables I, III, and V.

REFERENCES

- 1. Oswald, Telford W.: The Effect of Nonlinear Aerodynamic Characteristics on the Dynamic Response to a Sudden Change in Angle of Attack. Jour. Aero. Sci., vol. 19, no. 5, May 1952, pp. 302-316.
- Briggs, Benjamin R., and Jones, Arthur L.: Techniques for Calculating Parameters of Nonlinear Dynamic Systems From Response Data. NACA TN 2977, 1953.
- 3. Greenberg, Harry: A Survey of Methods for Determining Stability Parameters of an Airplane from Dynamic Flight Measurements.

 NACA TN 2340, 1951.
- 4. Shinbrot, Marvin: A Description and a Comparison of Certain Nonlinear Curve-Fitting Techniques, With Applications to the Analysis of Transient-Response Data. NACA TN 2622, 1952.
- Milliken, William F., Jr.: Dynamic Stability and Control Research. (Presented at Third International Joint Conference of R.A.S. -I.A.S., Brighton, England, Sept. 3-14, 1951). Cornell Aero. Lab., Inc., CAL-39. (Also issued in Anglo-Amer. Aero. Conf. Rep., 1952, pp. 447-524.)
- 6. Whittaker, Sir Edmund, and Robinson, G.: The Calculus of Observations; a Treatise on Numerical Mathematics. Fourth ed., Blackie and Son., Ltd., London, 1944.
- 7. Churchill, Ruel V.: Modern Operational Mathematics in Engineering.
 McGraw-Hill Book Co., Inc., 1944.
- 8. Filon, L. N. G.: On a Quadrature Formula for Trigonometric Integrals. Proc. Roy. Soc. Edinburgh, vol. XLIX, 1928-9, pp. 38-47.
- 9. Tranter, C. J.: Integral Transforms in Mathematical Physics. John Wiley and Sons, Inc., 1951.
- 10. Klotter, K.: The Attenuation of Damped Free Vibrations and the Derivation of the Damping Law from Recorded Data. Stanford Univ., Div. of Eng. Mech., Contract N6-onr-251. Tech. Rept. 23, Nov. 1, 1953.

TABLE 1.- CALCULATIONS OF THE INTEGRALS WEEDED FOR EXAMPLE I

∀ C♥~~_	Ž.													æed	ere ere	thich the n	or man to	eff seto	O Dem		I		
300€ 088≷0 SE₹E00.	, £69 1 *-	6160.	ያ[፲፯. 6፲፻ቶ0. 603500.	£066°~	4605.	E94E00° टि94E00°	0609*-	89 20° T.	5505, 37440, 635500,	6η ξ⊊ °τ	тт67.	ST81 69540. 207000.	टिक् रद्व ⁻ र	τζτς•	\$00000 \$6150 948t	45T8.	т960°	ελεεο. ελεεο. εξοσοο	· = Ö ;				
######################################	2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0 2007.0	0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0	######################################	40000000000000000000000000000000000000	\$100.0	600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 600.0- 60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 9200-0 92	6400.0- 6400.0- 6400.0- 6400.0- 6514. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6616. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714. 6714	2619. 0 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3112. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1. 3 4660.1	#T00*- 9804*- #666*- 1890*T- 8549*- 1890*T- 8549*- 1890*T- 8549*T	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	######################################	00000000000000000000000000000000000000	00000000000000000000000000000000000000	6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 6699.1- 669	2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0	2025. I 6123.	#60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6000, #6	70500.0 64/110.00510.0 64/110.00510.0 6200.1 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0 6200.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$3.500.000.000.000.000.000.000.000.000.00	10 54 56 70 9 9 9 11 4 11 11 11 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10
$L^{\mu}(\lambda^{2})$	L Taling	1 Lu(1)	$L^{\mathbf{u}}(1^{\perp})$	T Lu(L°)	$\frac{1}{2}$, $\Gamma_{\mu}(\dot{\tau}_{e})$	ra(ve)	la Ta (13.)	$\frac{1}{\mu_{s}} \Gamma_{n}(\dot{y}_{s})$	$\Gamma_{\Omega}(\mathbb{Y}_5)$	$\frac{1}{1} \Gamma_{\Pi}(\tilde{Y}_{k})$	$\frac{1}{\omega_4} \; \mathrm{T}_n(\dot{\mathbf{y}}_4)$	$\Gamma_n(y_4)$	Les fa (Fa)	$\frac{1}{\lambda_{\mathbf{G}}} \Gamma_{\mathbf{n}}(\dot{y}_{\mathbf{G}})$	$\Gamma_n(y_a)$	$\frac{\sigma^2 g}{T} L^{p}(\lambda^2)$	$(\mathbf{s}_i)_{\mathbf{n}^{T}} \mathbf{s}_{\mathbf{s}^{G}}$	L ^D (λ ^S)	8 _{th} to	Sab	uю	u ₄	α
Sp	53	æ	SJ	50	6τ	9T	Lτ	9T	Sτ	ήT	13	टा	π	Óτ	6	8	۲	9	8	1	٤	5	τ

TABLE 1.- CALCUIATIONS OF THE INTEGRALS NEEDED FOR EXAMPLE I - Continued

- NACA									r				laccana.			90ηE00°	r		ъ×
	864500.			46740. 178500.	1		461£00°			4₹ξ60. 912ξ00.			79480. 708800.			77990.			Öx
τ 6τ ο'-	80SS. 504763	6560	⊊πο•-	₹₹81.	S84T*-	⊆9το *−	7EEs.	2 €ητ*-	8900,-	#861.	o€ss	o£10'-	8525.	9642	0	8455.	ፒኒፒካ ~		ŏ×
7640	8750	0	0	0	4151.	8 <u>\$</u> 0	7590	0	o o	0	81∏,1 9₹57.	7920	.2237 0171	0	0	0	2.0734 2.1736	0104	0 1 4
-1.0504	058₹.	0	0	0	£2€4,1 1884	7203 9659	4054	0	0	0	0	SET	EEEE.	ŏ	o o	ŏ	OT44°	7870	86
448£	1.2489	O.	ě l	ő	671E.S-	991E	7,2461	. 0	Q	0	8t77.t-	6₹88	960T'T	0	0	0	0527	-1.2187	35 7.E
X047.	SEZ4.	ETTT.	9E40*-	2920	-1.2255	SEA4.	7656.	178₹.1 6747.	7546	.2699 -, 0202	4074.1-	6₹88. 0	9601.1	οξ <i>ε</i> Δ. 6446,1	1410	τητο"- 1091	659₹.s- 64₹1.1-	 φ6ῖη*-	ζέ
EEB.	7950 864s.	7 261.1	1899	29.2₹. ₹80£.	7.2255	7,2186	0750. 7333.	36₹S	£9£7	\$86£.	0	æεγ. o≖ep.	3333	1172s.	0217	307s.	94ST'T-	ት 6ፒተ *	48
4042 4481.1-	7950 -	-2.3855	6681	1.2630	S-3179	9975	5780.	-2.1382	£119	1.2012	8177.1	6₹88.	1.2237	-1.2695	η660°T-	0486	0567	7.2187	ξĒ
154	T819	STLL -	т899°	393€°	1694	. T203	.2163	OSON T-	12557	9h89°	4074, I	0	£4£0	-1,3588	ET45	0£73.	OT41	S€₹7. 787∂.	35
ZEE.	6161.1	T.1927	1.0329	3685	-1.4325	6 6 86	8450.1	E448	1091°1	8778	δt77.1	₹£7 6₹88	EEEE. TESS.	. 7230 8 5 8£ . 3-	2η ξη *	τε93°τ	2754.£	. O	30
2ξξζ. 38ΤΤ.	EEEE.	1.587 1.1927	-1.0329	€88£. 49€0	8417.1-	6696	8450.1 0SL7.	2.4315 2.4315	4212.	η9ητ° 88≤ο°	9T.77.19	6₹88	960T°T	604th.	1.2502	4956	2.0734	SECT	58
77 15d	9810	CTLL-	1899	292		EOST.	2163	ψ⊆ψT'T	9084	orto.	4074.1-	0	600T.	TTOTT	L ተ9 ተ *	#990°	יויויס ОТ	7873	28
יזיזפוין	682T.	-2,3855	0	1.2630	2.3179 .4681	3978.	ST80.	0	-1.2345	1999	atm.1-	6 6 88.	960T.L	5.5389	0	49%0°	0267 647.1-1	-, 4194 7815.1-	25
-,2404	EEOT.	STILL -	1899,	392£.	7.225₹	S.44	7333.	4541.1- 6164.9-	4412.	1619°.	9.777.18 0	9588. 9357.	TESS. EEEE.	<i>ይ</i> ያት ነ	-1.2502 -1.2502	1996	659% 5-	O	SZ
λ <u>εξ</u> 8.	1.0835	1.1927	τ'0356	49₹0 ₹89£	-1,2255 0	3€44°-	1953.	3747	4410	S05%.	4074.1	0	E480	7230	1929	THE.	946T T-	46 14	54
አሳይፒ . የሳይፒ .	₹480. T££S.	1361.1 1,5429	6 z £0 1-	₹89€.	671E - S-	3375.	T'5#2T	5448'	το9τ·τ	9664°	8177.1	6 7 88	75.59.	-2.38 3 8	⊘ ηΕη ' −	1,2631	0567	1.S187	83
629	740T.	ETTT	T899'-	392€.	T894'~	TZO3	4054	0904°T	12557	6LTO:-	0	₹£7	EEEE.	-1.3588	1.0994	048e. 0£73.	45TO.S	9827. 7872.	SS
-7.050	6466	-2.3855	0	1.2630	1.4325	<i>6</i> ₹86.	3085	5'1395 5296	£8£7 £7£8	τ <i>2</i> £τ° +89σ°	4074.1- 8177.1-	6₹88	960T. I	ττςς. -1.2695	OSIT.	307S.	1,4272	0	50
0	4527.	\$TLL	T899*	₹88£. saæ.	8416.1 8284.1	6 ⊆9 6•-	280€,	τ78₹.1-	1646 -	1093°T	8777.1-	6₹88.	9601.1	6446°T	0918.	189t	2.0734	SECT	6τ
eese, γο≷ο.τ	ይቱይ6• ሪቱ	7.1927 T.1927	7:03S6	4260	T894 -	EOST	40€4.	2564°T-	0	TTOT.	ī. o	s₹£T,	EEEE.	09 111 °T	0	SS20	OTTY	7875	81
448g	₹480°	1.1927	62€0'T~	₹89€.	671E.S-	9918 -	1,2461	1787.1-	Te46.	₩£90°T	A.TTLE	6₹88.	TESS.	6446°T	0918	307S.	026 <u>7</u> 2,7920	7812.1-	17 16
00ηL°~	ग्डाउर	STLL	π899*~	398€	-1.2255	æήt.	7689.	8.1388 2796	ET13. E3ET.	,1321	1.4771.E	6€88 0	78 \$9. Ε4ξο	-7.2695 -2.2695	4660.1-	2486.	-2,5629	dord .	Sτ
eε8	7.0835	- 1112 - 1172	±000°	29.82. 1.≈630	7.2295	2,44,52 1,2186	7999	o⊊o+°T	1559	6LT0*-	.; 0	SET	EEEE.	-1.3588	E745	οετ3.	916T'T-	46T4 *	ήT
ሳዕቲኛ' የ ካ ያፒ'ፒ	68₹7. εεογ.	TSQT.1	t899°	₹89€.	2.3179	9975	9780.	<u>⊆</u> ग्रंग8⁺	T09T'T-	9654°	8LTT.1-	9 7 88.−	960T°T	8686.5	SAE4.	1.2631	0527	1.2187	13
LSH*	9810.	τ એ₅5	0	49€0	1894.	7203	£3153.	9 ړդړ	4 249°-	202¢	4074.£-	((20)	600T.	0EST	1.2502 1.2502	1955.	ου τη 10 1741 στη 10	SE₹7. 1873.	रा भ
- 2325	भाषा.	7.1927	62£0,1~	sas₹. ₹8à£.	5254'T- 84TS'T-	eĕ8e	0SL7. 84SO.1	\$T\$4.9-	14123	7619. 7619.	ο 6117.1.	9₹87. 9₹88.	960T T	<u>የ</u> 770ደ.ደ	7434	1990	T. 4272	0	or
35.2 3817	6161.1	₹585. S- ₹171. -	τ8 9 9	1,2630	8412 1-	6€8¢.	1,0248	0	1.2345	1999	9T.7.Ť	6₹88.	78555.	2.5389	Q	6tEO"	2.0734	SECT -	6
Tet.	T849	\$117		2926	T997*	EOST.	£915.	ψ₫ψͳ°ͳ	908 ⁴ °	OT40.	tOLy T	0	E4E0	LLOT'T	L11911 -	179≨0*	ዕደሪፓ -	7812.1-	ļ8
τ 1 9τ°τ	CATE.	1.1927	1899.	₹89€.	2.3179	33766	s780.	ST84° 8	4415	494Γ. 88%0.	ο Τίλτα	9287	EEEE.	0527 9044.	1,2502 -1,2502	1956.	946T T	7815 I-	Q Q
.570y	79£0	7527.1 7527.1	-7.0329	₹88€.	7°5522 0	2815.1- 2€44	7999.	ጀብዛ8 ፅጉ47.	4748	8778.	פְּנגוּזי.נ-	9586	960T°T	868£.S-	SAE4	1.2631	629€.5-	0	ś
0047 0658	8642.	ZEDI I	1899'-	292	-1.8255	2€ ήτι*−	7689.	ο⊊οη°τ−	1003	9489	4074.1-	0	600L	88₹£.1-	£743.	0ET3.	946T'T-	η6Τη	4
148C -	7.2489	-2.3925	0	1,2630	671E.S-	3766	1.2461	-2.1362	ELT9"	7,2012	8tTT.1-	e₹88.	960T.T	-1.2695	1,0994	6486.	0527	7879. 7815.1	2
46 2 9°	2620	STLL	1899.	₹8 3 €.	τ89η*- \$ 2 €η*τ	6286. Eost.	280£. 4024,	7.5871 2.2596	7846. E9ET.	289E.	37.77.18 0	9888. SEFT.	TESS. EEEE.	11,9449	0918,	4081.	2.0734	5877.	T
ή0⊊0°Ι L6ή0°0	87 s 0.0- £99£.	ZTTT.0 TSQT.1	9€#0°0 9€#0°0	3830.0- ₹83€	AYET O	8SE0.0	7SS0.0-	9747.0	6,0265	soso.o-	SET.0	7910.0	TLTO-0-	ogst.o	Τητο ο	Tato.o-	9££7.0	4010.0	0
Lu(Y	Ľ ^p (¾³*)	$\frac{1}{2} \operatorname{T}_{\pi}(\overline{y}_{19})$	T L ^p (Å ^{TG})		$\frac{n^{75}}{1}$ $L^{p}(\lambda^{75})$	$\frac{1}{1} r_n(\dot{y}_{12})$	r _n (y ₁₂)	T L"(L")	$\frac{\tau}{\tau} L^{\mu}(\lambda^{\tau\tau})$	$L^{\Gamma}(\lambda^{TT})$	$\frac{\sigma^{ros}}{\tau} L^{u}(\dot{\lambda}^{ro})$	(or,i)u orm	L ^u (A ^{ro})	$\frac{1}{\mu_{\rm S}} \Gamma_{\rm A}(\ddot{\mathbf{y}}_{\rm g})$	L Lu(ýe)	$L^{p}(\lambda^{0})$	in In (in in i	$\frac{1}{L_n} \; \Gamma_n(\dot{y}_{_{\Theta}})$	<u> </u>
£#	- P	Τŧ	O4	68	8£	1,5	9£	GE .	ŧξ	33	æ.	ΤĒ	30	55	58	73	56	52	

32

NACA TN 3288 - 36

TABLE I. - CALCULATIONS OF THE INTEGRALS NEEDED FOR EXAMPLE I - Concluded

	44	45	46	47	48	49	50
1	$\frac{1}{\omega_{14}^2}\Gamma_{\!\scriptscriptstyle 1}(\ddot{y}_{14})$	r _n (y ₁₅)	$\frac{1}{\omega_{15}} \Gamma_{n}(\dot{y}_{15})$	$\frac{1}{\omega_{15}^2} \Gamma_n(\ddot{y}_{15})$	r _n (y ₁₅)	$\frac{1}{\omega_{16}}\; r_n(\dot{y}_{16})$	$\frac{1}{\omega_{16}^2} \Gamma_{n}(\ddot{y}_{16}$
0123456789011234156789012222567890123456	0.7780 1.07059146 -2.32884809 1.6673 1.4799 .3689 -1.2589 -2.1009 0 2.1009 1.2589 -1.4799 -1.6673 -1.4799 -1.6705 -1.57561 -1.0705 -1.57561 -1.0705 -1.5761 -1.0705 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.0	-0.0295 .4331 .5991 1.2167 .3657 .1552 .237 .8094 .7204 .9847 .0931 .2370 1.1256 .6785 .4910 .2728 .4910 .2729 .4910 .4910 .2729 .4910 .4910 .4910 .2729 .4910 .49	0.0568 1.0651 -5774 -3776 -7822 -5536 -4821 1.1275 -1292 -9737 -6570 -1914 -7608 -7144 -3735 -1.1591 -2548 -8557 -7187 0 -7187 -6570 -7187 -6570 -7187	0.7848 .9344 -1.0631 -2.20011296 2.0457 1.23875710 -1.5483 -1.2723 .8585 2.2944 .3853 -1.8356 -1.3805 -1.3805 -1.57546305 1.5754 1.4846 1.5754 1.4856 .1921 -1.3805 -1.8356 -1.2723 -1.54835710 1.2387 2.2944 8585 -1.2723 -1.54835710 1.2387 2.04571296 -2.2001 -1.0631	-0.0321 .4914 .6549 1.1255 .2105 .2105 .2105 .2105 .2105 .54914 .54914 .1255 .2105	0.0703 1.0788 .467366677561 0 7561 .6667467366677561 0 7561 .6667467310788 0 1.0788 .467310788 0 1.0788 .467310788 0 1.0788 .467310788 0 1.0788 .46737561 0 7561 .666745737561 0 7561 .66677561 0 7561 .7561	0.7951 .7010 -1.2864 -1.8354 .4914 -1.8354 -1.2864 .7010 -1.2864 -1.8354 -1.8354 -1.8354 -1.2864 -1.2864 -1.28
37 38 39 40	-2.3288 9146 1.0705 .7780	.4331 0295 0	-1.0651 0568 0	.9344 .7848 0 0	1.1255 .6549 .4914 0321	.6667 4673 -1.0788 0703	-1,8354 -1,2864 .7010 .7951
000	=0970 =	.1961 .04680 .002096	0186	0747	.2141 .04688 .001861	0124	0702

NACA

TABLE II.- SUMS NEEDED FOR THE EVALUATION OF THE PARAMETERS OF EXAMPLE I BY LEAST SQUARES

<u> </u>			26130600. 3526.74- 36368100. 44500.7- 376801000.	Z (Q × (Q) = Z			09L9EE* =		3 3 3 3 3
25.1.5 648.8 648.7- 648.7- 6471.51- 6471.51- 6471.51- 678.61- 7769.11- 678.61- 7769.11- 678.61- 7769.11- 678.61- 7769.11- 678.61- 7769.11-	\$278.0 \$270 \$270 \$270 \$270 \$270 \$270	\$20000.0- \$00000. \$00000. \$00000. \$00000. \$00500. \$04500. \$04500. \$04500. \$04500. \$04500.	\$8940.	2150.0- 2150.0- 2781 2444. 205. 205. 2461. 2631. 2631. 2631. 2752. 2753. 2763. 2763. 2763.	0.171.0 8542. 8542. 8542. 8542. 0 2510. 0 2510. 0 2510. 0 2510. 0 3671	1960.0 1202. 8950.1 1167. 1200. 1500. 0 1500. 0 1500 0 1500 0 1500 1610 8300 1610 1610	2.4674 2.4600 5.4697 5.6628 5.24.559 5.25.269 5.25.369 5.26.369 5.	25.05 25	51 51 51 51 51 51 51 51 51 51 51 51 51 5
® × @	T Or S ay	T O asyngt	T C ashage	T C annat	© × ①	Toyes of to the	_e ∧ _m	Λm	٨
6	8	L	9	<u> </u>	ή	ε	ट	τ	

TABLE III - CALCULATION OF THE INTEGRALS WEEDED FOR EXAMPLE II

DAN -										dera appear	ten the num	dy at manico	enotes the	α O				
	380900. STE8100		.007.00		4ξ07±0. 6₹ξ6000		9τ⊆6τ00°- ₩60100°-		£86800,-		67#S£0. 487₹000.		₹39₹0. 9₹₹1500.	- O × Ø				
€9⊊τ•	9604⊆•-	8 641 0°	2347t3	50560.~	- 203%	87045	- 62799	st865	9τ68⊊'-	61145 -	TTGTE.	91219	99906°	- O × ®	3			
94T9*8-	4116.5-	4567.8-	£209*~	0540.8-	£787.	s768.a-	ट्युष्ट्रं प	S7S8.₹-	8170.S	06TT.4-	9099.5	9969.6-	2.8046 ·	- O × ©	3			
7955.	4100	0	0	o7£6	9000	0	0	0≷88.	5000	0	0	TEEE	0	744.000.	₹3900, ∂₹7900,	ξΩξ0.	40.	00°2
1,2556	4666	0	0	-1°5893	₹60€.	0	0	TETE.I	180S	0	0	₩82€°T-	SHOT.	0₹\$£000. 60€£000.	∞7,000	00₹0.	ot. 60.	ו ספי
164G*		0	0	5009	0905.	0	0	1789.	0705	0		72951-	1116.	THITTOOO'	æ85000.	₹8#0.	80.	68.1 06.1
0977.	T890'T-	0	0	-1.0083	1138.	0.	0	1581.1 13851	8£65	. 0		8469	.2063	3011000.	405200.	0840.	ξο.	08.τ
у5тоо	202E.1-	0	0	T96€°-	ο₹sz.τ Σι4ξ.	0	0	2046°	8046	0	ا ا	L15311	660€.	3711000.	104500.	0610	ão∙-	ZI.I
- stoc	2046	£8££	6000	#50T	7533.	ő	ő	8666.	0542	Õ	اة ا	Lη65 · -	.3030	72€1000·	.002601	ot€o.	€0	07.1
09TT	1880.1-	-1.2726	159E.	.1040	619E.1	ŏ	ő	8503.	τζ8τ.1-	ŏ	اه ا	-1.1362	2969*	684T000°	608300	0530.	50	69.1
646°-	4668	E272	59€€.	.2063	0149	645€.	£000	o7os.	TLE9'-	0	o	004€*-	529E .	TESTOOO"	299200	¿650.	40.	09°1
7.555 7.545	0904	4166. -	8179.	8526	90€T°T	7.30E.1	- 259T	LBOS.	TETE.1-	Ō	0	-T.0132	վ ⊆98.	ζή ήτοοο.	ð₹7500.	₹2€0.	ξτ.	₹Ç•1
679	0	9106	1509.	9947*	9974.	6206	2571	0	6699 -	0	0	0274	ost4.	E151000.	.002450	₹640.	TI.	05.1
~T'S⊋⊋¢	090π*	T\$#3"-	J.3006	30ET*T	8269	thot't	67£7	£805.~	LΣτε·t-	0	0	4 598°-	T.0132	₹000,0000	SOI 500.	€940.	ήľ.	St.1
L64G*-	0,904°	\$290°	8573.	OT49*	.2063	0⊊Lt°	0₹74	- 2010	T756	0	0	5382	98£1.1 604€.	TT60000	₹20500.	0940.	40.	٥ή٠٦
J977	T990°T	0874.	1.2338	612£°T	O#OT°	67£7.	tr\$OT°T∽	8£03	T\$81°T-	0	0	5969	1,1362	₹0000000	501,500.	≤940°	70	⊆€ *1
~ '570	\$345.	UTO4.	004€.	1699	₩SOT"-	.2571	-,6206	8696	054€	E486	T000°	- 3030	7462	o₹stooo.	000€500	0050.	ζτ	3o
0	1.3202	6660 T	4797.	1.2250	470€	т643г	-1.3027	5046	€046	-1.3217	€091.	6606 -	1.2311	499T000°	649500.	0720.	££	20
,210	5949.	0189	• इक्क्र	3 €† €	T96E*-	0	8t75,-	0542	8696	2649°-	009T	2063	7.2957 6348	s₹81000.	₹50500°.	0 <u>2</u> 50	£8.	ζτ··
1927	T890°T	T.3175	rær.	π98.	-1,0063	±6€2	-1.3027	τέατ·τ-	8509	6445.£~ 056€	3107	3777	86₹9.	4991000°	000pd01	0640	œ.	01
1.5±55. 1.255	ή66E°	∞399.	६भठा -	660£.	€009*-	1762	9029	TETE-I-	0705	1260°τ~	89₹7.	ήηοτ°~ ⊆ηοτ°-	482E.1	8970000.	308100.	SS40.	2s.	₹0
979. r	0804.	τοος. τοος.	868₹	3005	0479 -1.2693	0274 9757	₩₩0Τ°ͳ~ 0%᠘ ካ °~	6699*~	-*50g7 .	₹00₹	मृह्भूम ः	31/01 0	₹799.	6470000.	ካተቱT00"	0850.	π.	00.1
7555.⊥ 2073	0001-	6969°	9451.1-	≤60€ -	£682:T-		9787	TELE.I-	.2061	6588	9966	⊊hot.	#8€£°T	T/20000	S84100.	₹8€0.	60'-	₹6.
646.	4666	s₹8£.	6059	0908	₹009°-	+1°10իր -′9509	-,2571	T753	0703.	867E -	£02€.	ηήΟΤ.	6659.	⊈80000 ,	δξ ξτοο.	0440	οξ	06.
75/7.	τ890.1-	Cabr	TEZE'T-	1138	-1,0083	7:50E.1-	-,2591	TS9T*T~	8£03.	1819	6871.1	tite.	1.2957	TESTOOO.	598500,	CECO.	Ott *~	₹8.
,2100	S945	a₹8ι	6049*-	Z≤η≤•-	T968 -	8173	0	5420	8£6£.	2371	2₹29.	.2063	8469.	00055000.	996500,	0£90	ΣE	08.
0.0	202€°τ~	₹969 -	6421.1-	ο≷25.1-	+120G·-	750ξ·1-	.2591	€046°-	€046°	98££	7.2927	6609	1.231L	T##2000*	909£00°	₹290.	œ.	ζŢ. 08.
-,2100	S949'-	T005 -	666t -	1€99	+°JO⊋t	-,6206	LTZS.	8£6£	0542°	9080	7599.	ogog.	746ë.	99£1000°	9,0006	STSO.	59.	or.
642 1917	T890'T-	148C.C-	868⋶	6T2E'T-	ONOT"	ήήOΤ°Τ-	67£7.	8£03	1,1851	0	T.3314	5365 5369	T.1362	3840000.	SEETOO.	59€0.	09.	59.
646 -	4665	₹99 1481.1-	E421	OT49*-	£80S.	06የ4	OFT4.	o70s	TZE9"	9080	7.8927 7.8937		004€	\$210000.	es₹000.	0830.	CE.	₹. 09. ₹9.
XCZ*T→	0804	SLTE T-	issi.	90£T°T-	8569	erer	τήΟξ°Τ	±805	TELE. L	981E.	7.59S.1	4698.	1.0132	₹5000000	S81000.	₹€₹0 .	Öξ.	95
619	0	OTE9	4442	9924	39F4.	25T1	9059,	0	6699	.2371	æ39.	0274.	0274.	5000000.	400000,	0500	85.	ζ4. 0ζ.
619 619	0904	6550°T-	4167.	8269	3051,1	5€3.	1.30£.1	.2081	T.3137	867E. 7813.	6871.1	oo⊬≷. S££0.£	£38£.	7.000000 -	##T0000	osto	64.	OF.
ιοής. · ·	466€	8704	0016	2083	0149	0	8176.	ocos. o7os.	τ7εδι.ι 17εδ.	6988. 8075.	9966	1,1362 1,1362	2969.	LES0000,-	ST8000.	6020	08.	ζ£.
9Ш -	1890,1	0874	8673. 8555.1	4€01. 4€01.	6τæ: τ	τ7∂ς. .2692	6028. Σ90ε.1	8565. 8503.	os4₹.	₹00₹.	3300	7487.	0505.	TESTOOO'-	\$38500.	0535	4 τ.τ	oξ.
ots	33502 7°3505	154S. 4990	3006.1	4702	0≷SS.1 1₹99,	erer.	ηή0Τ°Τ	ζοή6.	€04€.	7760.1	£9€7.	1.2311	660₹.	0E6#000	T#2900°	0670,~	79	SS.
отг.	5949	Stof.	7700	196£	S242.	0274.	0₹74.	054₹.	8£6£	0566	TOLE.	8453.	.2063	S_04000	974€00°	0470	EO'T-	os.
9π.	1890 T	#1.60°	8776	£900.1	L138.	##OT*T	6127.	τέρτιτ	8509.	7.2449	TZZT	7.2957	TITE.	£660000 ·-	125100	0650	29°τ−	Śτ.
Θ4 ζ.	466€	£272. 4168.	3362	₹009.	0908.	9059	LTZS.	TLE9.	oyos.	₹5,49	009τ	£6 2 93	t/tOT.	0	T000000°	отоо.	女人*T-	oτ.
1.255	0804.	T'5,159	.3621	1,2893	€60€.	T30£1T	. 2 2 97	T.3137	.2081	T.3217	⊊09T	1.3284	€tot•	οξετοσο.	00≥500.	00%0	42.5-	₹0.
955.0	ήτοο ο	€8€€.0	6000.0	orge.o	9000.0	625E.0	5000.0	0,3350	5000.0	£4EE.0	1000,0	TEEE.0	0	0000т00°0	0.000000	0001.0	00-τ-	- 0
$\frac{1}{2} r_n \left(\frac{d}{d} \right)$	$\Gamma_n(y_8)$	(120) U 47	$\Gamma_n(y_7)$	1 Ta (1	L ^p (L ^e)	$\frac{1}{\omega_{p}} \Gamma_{n} \left(\frac{d\nabla_{n}}{d\tau} \right)$	$L^D(\lambda^2)$	$\frac{1}{\omega_{\bullet}} \Gamma_{n} \left(\frac{d \nabla_{\bullet}}{d \nabla_{\bullet}} \right)$	$\mathbf{L}^{\overline{\mathbf{J}}}(\lambda^{\mathfrak{q}})$	$\frac{1}{\omega_{\rm S}}\Gamma_{\rm B}\left(\frac{{\rm d} y_{\rm S}}{{\rm d} \tau}\right)$	$\mathbf{L}^{\overline{\mu}}(\lambda^{\mathbf{g}})$	$\frac{1}{4} I_{\Omega} \left(\frac{dV_{\Omega}}{dT} \right)$	$L^{\mathrm{II}}(\Lambda^{\mathrm{S}})$	e ^u n	S _{IAD}	πρ	пр	u _L
SO	6T	gt	Ζτ	gt	ςτ	γt	£1	75	π	OT	6	8	1	9	5	+7	ε	ठ

TABLE III.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE II - Concluded

5775 - 5045 - 5045 - 7950 1	1815.1- 1875 5877 4010	9€₹E. - 0	0	812E ·-				7	9129 9-	₹£6₹°9-	+800*9-	8 <u>5</u> 79.T-	£\$96*†-	954 6. 8-		•0×
######################################	#010.0 #010.0	\$610.T- \$61	200.0 200.0	825.0 825.0 825.1 826.4 9201.1 9201.1 9201.1 9201.1 9201.1 9201.1 9201.1 9201.1 9201.1 9201.1	2692. I 2693. C 264. C 265. C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$195.1 \$1	\$400.0 \$400.0 \$400.0 \$415 \$4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$600.0 \$600.0	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0 \$200.0	\$1.55.4 \$1.55.	6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0	० म २ १ म ५ ५ ५ ६ १ ७ ५ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १
$\frac{\eta^{2}}{\eta} L^{0} \left(\frac{q_{\perp}}{q_{\lambda}^{2} \sigma} \right)$	$L^{II}(\lambda^{TG})$	$\frac{1}{\sqrt{2}} r_0 \left(\frac{d\nabla_1 \pi}{d\tau} \right)$	r _n (y _{1,5})	T In (The	L ^D (A ^{T4})	$\frac{1}{1} \operatorname{T}_n \left(\frac{d \operatorname{Mn}}{d \operatorname{Mn}} \right)$	L ^D (A ^{TG})	$\frac{1}{12} \Gamma_{\alpha} \left(\frac{dy_{12}}{d\tau} \right)$	L ^D (A ^{TS})	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L ^D (A ^{JJ})	$\frac{t_{0}}{1} T_{n} \left(\frac{dV_{10}}{dT_{0}} \right)$	L ⁿ (V ₁₀)	$\frac{1}{1} T_n \left(\frac{d \nabla_\theta}{d T} \right)$	L ^π (χ ⁸)	ū

86	३८६	Nш	ADAM

NACA.		00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700, 00871700,	Image: Control of the control of th			·	44158.4 60.821- 60.821- 60.821- 60.821- 60.821- 60.821- 7481090-		3 3 3 3 3 3
\$969.72- \$161.85- \$161.8	77950.1- 98262.1- 98264.2 98262.2 98764.2 98764.2 98769.2 1.3627.2 98769.2 1.3627.2 1.	9989.8- 998.8- 9879.8- 9879.7- 9879.7- 9879.7- 9879.7- 9879.7- 9878.8- 941	67276.0- 61142 87042 87042 88040. 88041. 60041. 50218. 75018. 75018. 18872. 18852.	377.200.0 487.200.0 587.200.0 586.200.0 586.200.0 686.200.0 686.200.0 686.200.0 686.200.0 785.200.0 785.200.0	259950.0 586800 686800 480700 480710. 480710. 688400. 882510. 681150. 681150.	82806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0 \$2806.0	2,8046 8170.5 8170.5 8170.5 8170.5 6203 6203 6276.4- 6269.7- 8376.6-	8077.1 845.2 845.2 845.0 8454.0 8454.6 788.3 648.7 828.8 944.8 924.8 924.8 924.8	9T 5T
Ø×0	9 × 0	$Tb \frac{\sqrt{\sqrt{b}}}{Tb} p \int_{0}^{S} T\Delta \frac{I}{\sqrt{\omega}}$	$\frac{1}{L} \Delta T \int_{0}^{R} \alpha \frac{dT}{dT} dT$	To Sayydt	T Os asyvat	⊥ ∫ αγγατ	$\frac{1}{\sqrt{1}} \int_{0}^{2} \frac{dy}{\sqrt{1}}$	A _(t)	٨
6	8	L	9	5	ħ	3	5	τ	

TABLE IV. - SUMS NEEDED FOR THE EVALUATION OF THE PARAMETERS OF EXAMPLE II BY LEAST SQUARES

and the control of th

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III

~ NACA ~~													ppear.	numbers a	tn which the	triming softmin	Denotes t	O	
£667	0777.1-	₹8£8	67E - 9E-	Sμ.060	16τς·9	-3.2009	-2°7376	T00° 693	₹9° ₹	0657.2-	⊆ 416⁺2−	388I.	905.80£	τ96•οτ-	890°TT-	81₹9	TS40.1	O × 0 3	
6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0- 6840.0	2100.0- 2100.0- 2100.0- 2100.0- 2100.0- 220.1 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 22	600.0- 600.0- 600.0- 600.0- 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600	4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8 4699.8	8686 4 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 6089 7 - 608	11840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 6500.0- 650	\$200.0- \$100. \$200.0- \$100. \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$200.0- \$2	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0- \$150.0	8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0- 8100.0-	000.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	3.6000000000000000000000000000000000000	2010 2010 2010 2010 2010 2010 2010 2010	2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000 - 1911. 2000	\$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0 0045.0	S
$\frac{\eta^2}{T} L^{y}(\tilde{\lambda}^2)$	$\frac{1}{2} \Gamma_n(y_n)$	$\Gamma_n(y_5)$	$\frac{1}{\omega_{\mathbf{c}^{*}}} \Gamma_{\mathbf{n}} \left(\mathbf{y}_{\mathbf{c}}^{(*)} \right)$	T LD(A*)	$\frac{1}{\sqrt{N}} \Gamma_{n}(\ddot{y}_{4})$	T L"(\$*)	r _n (y ₄)	L Par (1)		-	-			1 Ta (Ÿz)		Lu(yz)	_	υ _x	at a
รร	SO	6т	78	' L τ	9t	⊊τ	Ψī	£τ	टा	π	70	6	8	L	9	5	ή	E	ا ا

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

ካሪካ ካ	786.#-	60TT*T-	T.OT24	£ <u>₽</u> £4.−	-24°007	2€ †6*9 -	OT4E.T	2,0668	S0£8,s-	OSS.4S-	₹78.81	3€ 06.≷	S£88.£-	+9/T °Z-	†00°9T	718.St =	. 0
00016	405≷	ςτ8ο.−	T490.	7500	0	0	0	0	0	804£.6	0 1/4 2°−	o£30	6110.	ET00*-	0	0	ᅄ
2.923 9.866	4003 -	T.3724	-,2138	7500	ŏ	ŏ	ŏ	ŏ	l ŏ l	0929°ET	06TG G-	ττ68.	0660*-	3800.	0	0	68
5.003	9LT9.€-	ησω L	9516	£660	0	ő	ő	ŏ	ا ة ا	TSGL OT-	-3°£T22	1,2845	-,2016	19to	0	0	38
-26.197 -22.346	-1.0239	1.727.t	05th T2€6 T-	£683. £030	ő	ő	ő	ŏ	ŏ	-38.7183	2.1391	2.7259	9660°T-	LESS.	0	0	128
761.9S-	10.2067	τ°0η3η	LOSS L	1693	. 0	ŏ	ő	ő	ا مّا	₹168.71-	6.2033	£967.	0£88	708s.	0	٥	35 36 37 88
084°ST 64€°94	83sT.T	0949°T-	6797 -	1 69⊆•	•	-	ď	0		3978. T	69E4*ET	Thab.I-	ETES.T-	ot96'	ñ	0	32
6η⊊°9η	0	₹£8.4~	. 0	1.2825	0	0		_	1c	OTEO L	66Th.4	4946.5-	27E4	89€9	ň	ō	146
791.85- 194.81	89sT.T-	0949°T-	219T.	469₹	10€9.6	STT2.	0₹70	T9T0*	£500	St.8918	(030.C-	7£68.4-	£29£.	1.2888	ő	ŏ	33 33
791.397	-10.2087	ηξη0°τ	T-55ST	5833	T789.7	3507.₹-	⊊6ητ°τ	0η Σ Τ*~	0910	768£ . 74	-3.6285	17608 1/-		509€	39.03g	zŁ4τ.−	æ
o+22.346	1.0239	1,727.4	ος ηη *	66₹0.	7367. TI-	-2.4530	899⊈°1	η άτε -	मण्६०.	11.9841	-1·362#	LT64*T-	£837.	Cools	OG TO O	7770.6-	τε
5 383	9.13.₹	1.3724	°5138	č₹so.	0150.05-	€878.9	2.0743	+1566 T-	TST4"	848T.8T-	-12.534s	,2486	8489.1	₹907.	-3.8825 18.6458	₹046, £-	30
29.733	۵ ا	6291.~	0	4700	-3.4286	8.2431	SSS4	99€6•-	5 564.	-24.2370	7777 s-	BASE I	1169°,	EGGT.	7089 E-	3.000	
2.923	9LT9.E-	T'3124	213g	₹520.	0€94°LE	8.2086	8641.4-	££38	1.2111	93.55€	3.2396	S 6165	6899	STIT.	-23.3571 -32.3688	2.2356	56
O#E - 525-	45.00.1-	T.T2TA	05try -	£650.	0787.85	-2.T693	4758.5-	LOTS.	6989	S 66 S	00€T°4	CCC9.	0840	9T00°-	-23, 271	2.7453	28 28
761.35- 345.55-	10.2087	1°0#3#	TZEG T-	££83.	19TT'TT	ગ્રદ્8∙ડા-	62ਗ ਦ	19 ≤ † T	E166.	26.7833	2.1966	.5219	LGTO	6000.	-24.3300	τ626*ττ	7.5
701.30	89ST.T	0949°T-	6767	ή69⊊•	£159.61-	€066.€-	₹686.	#288	12635.	7¢'35¢9	SE07.9-	უ⊆60°	0800.	9£00°-	3.88≥5	7.8230	50 52
084° ठा 64€ • 94	. 0	ZTE8.4-	0	1.2825	8758.45-	-, 0192	2.7081	8559. 4988.	τρ6τ*	£975.7-	9616°-	THYB T	TSLE	0650.	68₹0.8€	0760.6	52
ויע ביוים		area d.	₹197.	η69€	#200°T=	4.3092	0768.	₹ 98 0,	5000	642E,15-	8616	74₹9.£	61E+ -	τ990*	TT0.65	0	5# 53
-56.197 19.190	892T.T-	0949'T-	19707	£58₹.	8759,45 -1.8624	2.4496	9Σ4ξ.	1850.	TTOO.	9454.25-	8.1642	6606°T	-1.4762	τίζη·	98.0589	0760.6-	S3
10t.9s	780S.01-	τ ΕτΟ Τ		COCO*	2571.E1	6181.E-	9191'	T800	£900	5425,4-	6600.8	£84£	- 9220	8454.	₹368.₹	0558.7-	ड्ड
-55° 3 ₁ 16	1,0239	7.7274	O≨ή∜	£6 6 0°	TSES'9T-	95.56.4-	2,2021	6494	SOTO.	32.2153	70.2549	93.T.E-	6480.1-	₹071.1	-24.3300	T686.LI-	57
5.923	∂ 7 <u>İ</u> 29.€	jele.t	8213.	cc 50.	1929 91	7,6592		9629	श्चर.	29 7925	0 20 01	-2.9037	0100 1	6169	-23.5271	-2.7453	50
££7.6£	. 0	- 1629	0	4700	7850.65-		7£62.£		3669.	32.2153	-10.2549	20₹7.8-	5480°T	COLT'T	888E.SE-	2.2356	6T
5 + 353	9/τ9.ሮ⊷	T'315#	-°5738	č₹50.	-18.0769	12,1397	42924	-1.6267		30 0163	6600.8-	E846	05220	84154	₹588.6-	3.9405	OT
945.5S-	6€20°T~	1.7274	0544	66₹0.	15.9033	5500.T	-1.8920	46TL	8566	-4.2242		6606.1		TTZ4.	8849.81	1770. č	17
- 56 . 197	1802.01	ηξηΟ°Τ	-1. 552t	.5833	9886.74	Ō	₹856.4-		1.2935	9754.75- -22.4549	-8.1642	0000 L	3924°T		19.0364	0	07
08म् "टा	7.7268	0949°T~	C161	469€.	ξξ06.21	-7.0626	-1.8920	46T.L	8566.	-57 3570	8616	£4€9°1	61.54	1990	18 036ls	-5-סדודו	9T
6th 9th	0	CTER +-	0	1.2825 l	6970,81-	795.1397	4595'	T.6267	6669.	E37E.T-	9090'9	τήη8°τ η≤60°	TSLE.	0650.	8€49.8I	2046.E-	
15° 400	-7.7268	0919°T-	S161.	ή69⊆°	-16,5351 -25.0267	36€9°T-	1.16617	9639	शररा.	22.9952 26.7833 24.3246	2.703g	15.60	0800	2€00. −	53.88≥5	2010 8-	YI.
791.52- 25.38- 25.38- 26.38-	-10.2087	τ ξη0°Τ	T-SSST	EEBZ.	τςες, 51-	9526*†	2,2021	6€94°	90TO.	26.7833	9961.S-	6775s.	Teto.	6000.	888£.SE-	-2.2356	13
O#6 , 55-	7.0239	T-7274	05th	£660°	2571.E1	3.1819	9191.	£800.−	£300	2,9952	O0£1.4-	6559.	0840 -	9του'-	-23.5271	2.7453	टा
C26.3	9,6176	T'315#	ST38	€ €30°	24.9378	96th.S-	974E.	τς 20 • −	Troo.	-27.6 5 66	-3.2396	8,6165	6899'-	Sytt.	-24.3300	1666.11	π
EET. QL	0	6391	0	4700	-1,8624	260E #-	0768.	₹980	0012	-24.2370	ב דודון	84t€°t	₩69°-	EGGT.	₹568.5	0.598.7	JO
2.983	9279'6	1.3724	2138	₹₹20.	4298, 45-	3610.	2.7081	8556	τ96τ.	SHOT OT-	अहर्त द्वा	98µs.	8459°T-	₹807.	38.0529	0760.6	6
O+C. 33-	6550.1-	4727.t	UCP#	€6€0.	έλζ9.6τ-	5066.₹	₹6£6°	4988	.5635	T186'TT	4295.7 5457.SI	716₹ .1-	£897	209¢.	29.0177	. 0	8
-26.197 946.52	10.2087	τεηο·τ	-1,5521 1557.1-	ξξ8ξ.	7911,11	S₹₹8.SΩ	-2.1279	L9Sh.t-	ετ66	1486.11 7 6 85.74	3.8285	7568.4-	E59E	1,2868	65₹0.8€	0760.6-	4
OUL YO	8927.7 7405.01	0949'T-	6161 -	#69₹.	287.8s	2.7693	47£8.S~	2701	6989,	\$37£.7 81.68.4s	66T4°4-	դ9դ <u>₹</u> ∙2−	T 23T3	89⊊9•	24.3300 3.8885	0E58.7-	9
084° ετ 64⊊° 94		€1£8.4-	×107 -	1.2825 1033	0₹94.7£	9802.8-	86ητ·η-	E£38.	1.2114	2975.7	69En ET-	T#18:T-	ETEG T	0196	-54.3300	τ626*ττ-	6
ויע בויים	0	ALES A.	₹16T.	4695	3854.E-	-8.2431	SSS#	9966	GG€4	CTEB. TI-	-6.2033	£967	og88.	7085.	-53°25.17	EZ4T. S-	1 4
28 4°8€	8927.7-	09tg'T-	ALOL	££8₹.	01₹0.8£~	7878.2-	2.0743	4€6€.1	TST4	-38.7183	-2.1391	S.7259	9660 1	.2531	₹588.8- 888£.9€-	2.2326	1 5
-55 3HC	-10.20S7	ηξηΟ' Ι	1.5521		1985 11-	2,4530	8995.1	#6TE	14E0.	TZCT.01-	3.545	3.2845	2016	7910.	-3.6625	3.9405	s
94F, SS-	£20.1	1,7274	ο⊊ηψ.	£660.	1965 LL"		CONTIT				06TG-2	1166.	0660.	3800,	0C#0.01	2770.2	l t l
998.6 592.3	3,6176	J.ST24	8213	₹₹20.	10₹0.7	3.7026	S6tT'T	OHET.	0910,	9,3406	0.2440	0630	6110	£100	9.0182 87.645	O,1472	0
	#05€,0	₹180.0~	7450.0-	TE00.0-		٥,3772	0₹70.0-	1810.0-	ES00.0-					١ ،			_
m ² μ (λ ⁸	$\frac{\tau}{\omega_{B}} T_{B}(\ddot{y}_{g})$	La(ÿa)	(av)al as	L ⁿ (Je)	$\frac{1}{L} \Gamma_{\Omega} \left(y_{\gamma}^{(4)} \right)$	$\frac{1}{\sqrt{\gamma}} \Gamma_n(\vec{y}_7)$	$\frac{1}{1} \Gamma_{n}(\ddot{y}_{\tau})$	(¬į,)"T 🛣	$\mathbf{L}^{\overline{\mu}(\mathbf{A}^{\underline{\lambda}})}$	$\frac{1}{1} \Gamma_{\mathbf{n}} \left(\mathbf{y_{c}}(\mathbf{t}) \right)$	$\frac{1}{1} \Gamma_{\mu}(\vec{y}_{e})$	T LP(3°)	$\frac{1}{\omega_{\mathbf{G}}} \Gamma_{\mathbf{n}}(\dot{\mathbf{y}}_{\mathbf{G}})$	$L^{D}(\lambda^{G})$	(4) Pa Pa (4)	T LU(À)	ū
88	7.5	9E	32		33	35	τε	30	56	88	LZ	56	52	5¢	53	55	 -

TABLE V. - CALCUIATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

ZYWG																
(ο⊆η*	969°-	480	<u>a</u> ₹0,	8485.	8τή ο.	9106	906.	T9T*T~	£66T	6269*	ካፒ99'-	£6t*-	911.	£99n°	₹TEO.	1966 = 0
.0₹ . -	8410	0	0	0	0	0	TO:0583	7217.4L 9788	η≤./0. −	⊊€7 99∂€ ∂040.	т900'-	0	0	0	0	4750. CE 47500 35 0 75 0 85 0 04
.056	.2869 ₹30£.	0	0	0	0	0	S859.₹S- 5780.7-	2.9409	1159.1 9177.1	2457	7841. 0780.	0	0	6	0	0 88
₹₹6 ₹₹6	1371.1	ő	۵	ŏ	ŏ	ŏ	£780.7	T008.LL	8177.1-	6TQ4'T-	0646	ŏ	ō	ō	ø	0 78
tsg.	oyac.	6688.6	660T°T~	4720	€640°	9110	31.8200	0	9160.E-	0	0£46.	£966.6	5.3302 -,6743	0₹67.1 1366.1 7360	9τεο.	3560. 4€ 4750. €€ 4600 8€
T'STR	₹58€.	ζ2ξ1.11-	1168.E-	7.9236	9878 9884	.0622	E780.7	T008.LL-	SITT.I-	6104°1	0546	agt1.t-	-5,3302	1995-1	6915 -	350. 4E
890.	8₹50	-23.1685	TTAI.?	T-2533	89£0,1-	1,0951 4092.	5780.7- 5856.8s-	7217.4 7217.4	8177.1 1159.1	969E	0770.	-12.37564	5579. LL	099Z 1	TTTZ-	3947, EE
LOτ'-	τετο.	25.3541 24.0563	1291.6 5291.6-	#8£6.s-	8350 1-	£879.	20.0565	4614 f	707t	009E	£910'-	25.1812	ETET C	656₹. s- 687£	390₹	8888, SE SQ47, SE
TSH.I-	8SS8.	-20.3745	9539.6-	1040.	TLA'T	5813.	5/50.7-	7.STJ.*+-	81TT.1	669E*-	0170.	36.2836	S946.7-	T150-4-	8487.	37 T 5009
0	msj.	8078.€£-	6196.3	10†9°.	5993	8210	SBE6.25- E780.7-	2.9409 7217.4-	11.6211	969E -	TBAL.	77.0%, #E- 6.9963 36.883.86	£₹80.8-	6980	61/16	HOSE, OE
T'rs		η Ο Τη *6τ	1597.1 2.9875	Coto.	1940	6 € 00°	£780.7	TOO8.LI	BITT.I-	6T04'T-	0£46°	159% #E-	-2.0160	5.4910	9€90°T	29 .2616
184°T	65₹0. 8558.	£801	T024.4~	8 <u>⊆</u> 98 6789 £	5#80,-	6810	31.8200	0	9160-8-	0	6017.	24.7515 27.40	E784.4	67S8.	£890,	9100. TS 4600 8S
LOT.	LETO.	64€0.6 9900.1£-	τ9€6°4	6789.1	-1.2345	9875.	£780.T	2.9409 -11.8001	8tT.1-	6104°T	0£46.	24.7515	0	6758. ≤1₹€.	T0001-	26 - 0094 26 - 0094
198 815.1- 880 701.	8520	6460.6	780₹.£- 8.2646	-7'55¥0 -7'55¥0	£08€	7125.1 8633.	5780.7- S8£6.₹S-	7217.4 201/0, 9-	11.6211	969£ . S₹£7 .	0180.	3€#0.	2, 0160 5784 4-	0164.3	T890°- 9€90°T-	25 - 2616 26 - 20094
150.f-	078₹. ₹₹8£.	9968. 9- 8≤38. 8£	17807.8-	4770	0966	338£.	20.05	2612 1	707.1 8177.1	0092	£910 -	E966.4E-	€₹80.8	5980	6476	24 .3804
PO.	1.1721	E0E1.7s-	129°C .	2.3890	7848.	1961,	E180.1-	TSIT.#-	3.777.£		0150	36.2838	5945.T	TLSO*#-	8487	183 17.8009
36.	1085	9ETT*†T	424£.	TITI.	0500	5450	5750.7-	2008,111 2.9409	11.6211	969E -	784I.	22.1812	29ηΕ' L STET' S-	-2.5929	5005	8999 32
76. 76. 749.	490τ.	6.9503	T##2"4-	£69T'T	116t	0950	£780.7	T008.LI	StTT.t-	6 t 04°t-	0646.	827E.SI-	2€6.11-	387£	TILL	St. LS
0	7650	-25.245T	£547.	7'1126 7'1126	986€	€060	31.8200	0	9160.8-	0	68tT.	-25,2264	5.33œ -,649	0€92.τ	EATE.	4780. Q1 9260. OS
) CC	€90T	0496	Loth tt	-1.2505	ο βεεμ.τ-	17578.	5780.7	7217.4 6046.2- 11.8001	8177.1-	6tov°t	0£46°	9817.1- 9599.91 9817.1-		τ99 ⊆ °τ	0 867S.	8010 81
49 -	6983.	9T4L*TE	0	-3.2053		1010.	Clossia Clossia	1211.4	8177.1 11.62.1	969€ . 9₹87.	784Ω. 07₹0	9000°0L	2025.₹- 0	TOOC T	2789	4750. TI
198.	078₹. £SY£.£	7845.25- 9640	7974-T1-	1,7726	7791. 8884 . I	7090. 1718. 4457.	20.05 5780.1-	2012 1	7071	0056	£910	#085.29-	0449*	0€97.1 139€.1	E+125	9560, 9t
T.215	₹₹8£•	£076.9	Third't	£69T'T	116T	0980	E750.7-	72LT.4-	8177.£	669ۥ-	0170.	8₹7£.\$£- 485£.₹\$-	ο μ1 9.	98/.τ·-	LTLS T-	36nl Ct
390.	8č.so	9£TT*†T	69TT'E-	LTLT	0500.	9450	ರಚ€6.₹3-	2.9409	1.6211	SET	784£.	Stot.CS	5.1313	-2 5929	S906	8999° 4T
124.1- 184	tEto.	-27.1303	1791.8 4545	2.3290	0966 7846	т96т	£780.T	T008, LL	8177.1-	6104°T~	οξη6*	36.2838	-7.3462	TLG0.4-	8487.	13 1.2009
84	6950	6688.6-	£75£.8	4770.	0966 -	386€.	31,8200	0	8177.1- 8177.1-	0	6817.	£966'6-	€€80.8~	0164, g €980,	9€90°T	11 .2616 12 .3804
-1.42	77'S7'. 8ss8.	9.658 8598.8€	3.5046 3.507	9046'4-	oπ8. το8ε.~	1,221,T	S8£6.₹S- E786.T	6046.S-	8177.1-	6το _τ •τ ≈ε.	Optyo !	αγου γε~	4,4873 -2.0160	6150.	1890.	4600'- OT
T°#S	8598;	9900°TE-	1869.4-	1,9379 1,9379 1,9379	1.2345	987E.	E100.1-	7317.4	81TT.1	669£	0780.	2177. #5 8740. 1787. #E- 6892. 9-	0	972E 6728	0	9T00 6
87	6250	£801	t, it201	8€36.	S#80	6810	20.0565	0	70₹£	. 0	65£0	g€+0.	£184.4~	67.58	1890 T-	†600°− 8
ot.	τετο'	4014. QT	T054.4	8587.£ ₹0£8. 8₹86.	T840	6600	55.935- 5780.7-	2.9409	8177.L	₽₹£7 998£	oyeo.	7282.4E- 5240.	S'0790	S.4910	9€90 Т-	9T92 L
90	8₹90	4014, 61 8078, 21- 2475, 02-	2786.9-	7°255e	2574,1- 2965	BSIO.	-25.9382	2°6409	1199'र	S₹57	184ፒ°	E966•6− I	8,0853	£17₹0.4- ₹\$80.	6476	408E. 8
26 112.1- 180	CC8E	-20.3745	6889.6	48 69. S-	STL4 T-	£819.	£780.7	T008.LL	8177.1-	6του τ-	OE TO	96.88.96	5151.6- 5345.7	6266.3-	\$487	8999° ₹
98	078₹.	52 32#1 54 0293	5.1625	-3.1072 -2.6384	44Ω₹,-	£878.	5780.7 0098,18	TOTOSTTE	8177.1- 8160.8-	6το η 'τ	6817.	575.51- 25.1812	2446 TT-	3871	TITE.I	5647. E
79.	1272.1 1.1721	-23.1685	1741.6-	T.2533	9578.	1052,	25.9362	6016.5-	1123.1	325)	78#I.	#055.65-	O##9*-	0297.1	E412.	81°0989
KK.	590T	2857.LI-	3.8511	1.9236	9894	\$550.	£780.7-	1217.4	8177.1	669E+	07₹0.	S817.1-	5.3308	1996°T	91£0.0-	4750. 1
950 0- 950 0-	O+TO*O-	6699.6	71,799.€ 1.1099	4770.0- 4720.0-	2640.0-	91100-	10.0283 -7.0673	1217.4 6046.5- 7217.4 6048.11-	4277.4 1.7718	9040.0− 969£.	τ900°0~	9.9963 98.T, 1. 40.52, ₹5-	€476.0	7.5661 2.5661	9150.0-	4800 D-0
C)ul Elw	L ^B (A ^{TS})	T Lucky (4)	TT ITT	LICYLL)	(LL'V)II ILL	L ^E (A ^{TT})	mro La(v)	wios In(Tio)	Tu(Flo	στο Ln(ylo)	L ^u (A ^{TO})	La (*) & Ta (*)	reg Lu(Yg)	(%) u ₁ z (%)	T L'(AB)	Lu(Je)
"	10			<u> </u>		-	., .		- L	-						65 7

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

6тто•-	ाडाः	6669*-	66T'	£75	8090	4688 °	S007	⊆ †0°~	120.	9261.	£6£0.	æ18	Β η ξ •	9τ⊊•-	36≨0 - ≈	'0 ×
0	0	0	4569.8	6199°T-	7666.1 8540.	o730.	9€ao	0	0	0	0	0	z⊈#9°6	-7.2905	8450	ОĦ
0	0	0]	£641.61-	τητ6*-		TOET -	EHLT.	0	0	0	0	0	τ187.41-	9₹50.€-	9866 T	68
1910.	0690	1750	4518.E-	इटार.८	209h	T616	€0ζ+,	0	0	0	0	0	96E9.81-	4909.9	TEIB.	8€
90%6°T	8167	2035	33.3717	8169.5-	43£8.E-	390€.	1,1762	0	0	0	0	(0	38.9831	7.8131	6667. E-	75
457E.E-	8856	£521.1 ₹80₹.	-17.1120	7277 9-	660Y.	τ9≤6*	.2959	£640.6	η6η⊊°τ~ ⊈6£9°τ~	0000	T490*	€050.~	0906.9S~ 2057.91	0808.7-	TSTL'T-	9£
4275 E-	9048, 8₹03,	666T.	1699.9-	S 9990	2062. £766.£	₩30°-	SE80.	T660*9T~	S752.7	0£10 1₹50.s	5966 527∂	8641.	4156.9	₩η ∠8 *ή- 9ή-8*ή	<i>6</i> ςεγ. 8τεθ. 1	35
1.2332	.2426. (8)	£6£0	13°1121 9162°25-	8664.5-	1.8724	-1.0423	8ξ£. 6₹40	1861.8E 18610 6−	27:00 T	6τ£0°η-	9900 -	1.2005	66E4.4I	3008.2-	<u>6₹8</u> .	33
6988,	£041	0850	2905.SI 3153 30-	7.4237 2.7036	EETT.1-	0708	LEGE.	2640.e-	srse.r-	OETO -	⊊966°	CC6E·	73807	1εηβ' -	6647.1	sc
3₹£7.	S40ξ.1-	ττ9⊈·	23.2711	896s.1-	τοξο•Ε-	0₹₹8. 070å	1.0833	1660.81-	96€9°T	7₹ 5 0.3	\$270.	864T	8928. E-	15.9121	₹998 -	35 TE
-2.8821	1£42	T204	5697.59-	-3.1122	3074.1	LBTT.	1861.	1660 BT	٥ مخمة	0950	٥	6010 -	6004 TE	. 0	-3.0992	30
CC19 -	8£TE*T	8087	U+OF.0	0≷79.S	TTTT.I	יצובי.	6350	1660'81-	46€9·τ−	2.025Ţ	SST0	864T	-3.3266	1216.01-		1 56
7.4250	33.62	0.02	2.2353 6.4640	1767-E-	₹±08.	LLot"-	£8£0	≤640 6-	575Q.T	0£T0	£966·-	3955	-22.3807	7548.	664 7.1	SB
3668	8070	chto.	22.5808	91.19.9	THET. I	-7.2866	296η*	36.1981	0	ST\$0°+-	0	7.2005	66E4 4T	S.8006	eces.	SI
1,6256	0€6⊆ -	T940'	24.9553 -22.5808	£6Th*4	7699. S-	9992°T-	E469°	5640.6-	STS2.T-	o£10	£966°	3925	†π Σ6 ° δ	-4.2465	ecer.	98
-2.2003	4470 I-	7186°:	0626°02-	T869.6-	£7673	7.2289	8916.	1660°91~	€689°T	1750.3	6722	86 ητ°	0608.65-	4478.4	1.8318	52
-5.1518	7899	EE+9	-50.9290	1164	9029°T	6£ 5 6	+6€0°	τ660.8τ	0	09201	Ø	6040	35.7355	0808.T	TETL'T-	57
€189°T	6160°T	409E	804L 4T	#9TZ*T	.8553	£S20.	8110.	τ660°8τ-	€6€9°T-	7₹50.S	2966 3276	864⊺	1£86.5£	τέτ9:4-	666T.E-	33
SLITE.	£8£0.	9150 -	≤626°01-	3.0766	T69E.T	867s	T/00'-	5€40-6-	ST56.T	-°0730		CCGE	8€63.81-	4909.9-	TELB.	55
1969 T	τ876.− εξ84.−	6960	8585.01-	9LTE-6	टापा -	-1.3702	₹607.	1861.8E	0	⊆τ⊆0* η-	0	1.2005	TT8T. AL-	3, co. ₹	9866°T	ST
9488	£879	eTHE.	29.7336	0	7850.E-	0	EOET.	6640 6-	21.59.T-	o£to -	£966°	3955	79.2903	0	6690 -	50
TI18. E-	16.0	T'TLET	868€ ot-	971E.9-	टापा -	20TE.1	₹607.	τ660 - 9τ-	€6£9.£	1650.9	serta.	864T	TL91.41-	2₹50.£-	9866°T	6T
35/92	τ876.	₹860.	≤636°0T-	9970.ε	169E*T	£s30 867s.	8LTO. ⊥700.~	1660°81	6€9°τ-	7550.S 0860	0	6040 -	£86.5€ £86.8±	4909.9 τξτ8.ζ	9997.E- TELB.	81
817E.	£8€0	9T50*-	9041°41 0626°03−	#9TZ*T-	3073.1	\$630	4660.	6640.6-	2792.7	0£to	₹866 SST8	9641.	CCET. SI	0808 7-	TSTL'T-	91
1.6575	6760.1-	109€	1699.9	1859.6	£16673	-1.2289.	8916.	1861.9E	0	₹₹0.4-	3500	1.2005	090€.9S-	1476.4	3158.1	話
-2 1218	7899	EE+0.	S# 6223	ε6tη·η-	7699.5-	£9€4.	£η69°	₹640.9-	's192.T-	o£to	⊊966°	366E.	5.931¢	₹ 5465	6487.	171
-2.2003	דינביד	718e.	8082,555	9TT9-9-	THET'T	7,2866	2864°	τ660 - 8τ-	€6€9°T	2.025T	SSTO.	964T	66E4*4T	9008 8-	6%£8.	13
1.6256	0866	1920	2.2353	τς9Ĺ·ξ	6408°	ίμοτ.	£980 -	T660 '8T	0	0980	.0	6010	7086.SS-	7E48	66nL.T	या
S688.	8070.	Stro.	0494.9	-2.9750	TTTT.I	CC13	0329	T660°8T-	66€9°τ−	2.0257	9278	864T	8925.6-	रटां6.0र	€998*-	$ \pi $
1,4250	S486	0	5657.52-	3:1185	901+°T	LBTT	TBGT'	₹640.6-	7.9272	o£10	€966	3995.	6904 TE	0	-3.0992	OT
6679 -	9ETE • T -	8087.	23.2711	88≳s.⊺	TOE0 . E-	ogg8 -	1.0833	T96T*9E	0	STSO 4-	0	1.2005	-3.3268	T8T6*0T-	€998	6
1568.S-	7845.	40ST.	490€. 21	TESA. T-	-1.7133	0708.	TE66	S640.6-	STSQ.T-	o£to	966	566E.	708E.SS-	TE48.	664L'T	8
δε <u>τ</u> .	1,30h2	1196	-25.5316	2.TO36	4578,1	1.0423	3738	1660.81-	€6£9°T	2.0057	SSTD.	8641	66En * 4T	9008.5	6658.	1 7 1
₹568.	EOnt'	6850	73.1157	8664.S	9065.	#25. . 0243	9940	1660,81	0	0990.	0	60to*~	426,3 2.931μ	\$9\\Z`\\-	84ξ8, £	9
1.2332	2426	₹6£0.	1699.9-	0696.5-	6807. ET33.1	τ9⊊6°-	£80.	τ660'8τ~ \$640'6-	sγse.γ ₹9£6.1-	0130 2.0251	5969 5279	864t.	3257 ST 0005 99-	0808.7 4478.4	TCTT.I-	# #
1752TF	8₹0∂ \$048	1.1233	7.478.58	8169.5	42£8.£-	330E	S271.1	1891, 85	ereo r	STSO'4-	0	L.2005	32.9831	TETA G-	666T.E-	=
1946	8889.	80€.	4St8.6-	8.03.6	208#,-	1676.	£0 ⊊4 *	₹640.6-	s792.7-	oEto	≤966·``	556E.	8559-81-	1909.9~	TETS.	š
מויקה	81.67.	2035	E641.61-	τητ6.	1666°T	TOET.	£4γ£.	1660.81-	€6€9•T	17550.S	2578.	86hT	1787.41-	1 5 55 E	9866.£	ίτΙ
7970.0 7970.1	0690-0-	£750.6~	49₹9.8	6299•τ	8940.0	0750.0-	è£90.0-	₹640.6	\$6€9°T †6†\$°T	οετο-ο	T#90 °0-	₹050.0-	9C#9.6	1,2905	8450.0-	0
)n' serw	(\$7 £) L ST()	$\mathbf{L}^{\mathbf{D}(\lambda^{\mathcal{T}^2})}$	T Lu(AT* (4))	" In (VI.4)	$\frac{\tau}{\sigma^{f \cdot \xi}} L^{p}(\dot{\lambda}^{J \cdot \xi})$	$\frac{1}{\omega_{1,4}} \Gamma_{n}(\dot{y}_{1,4})$	$L^{\mu}(\lambda^{T^{*}})$	T Lu(Are (+))	$\frac{\pi^{T\Theta}}{T}$ $L^{n}(\tilde{\lambda}^{T\Theta})$	Lack) mark in (in a section)	(st.)" union	$L^p(\lambda^{rg})$	$\frac{\mathbf{R}^{TS_{\phi}}}{T} \mathbf{L}^{\mathbf{p}} \left(\lambda^{TS}(\mathbf{v}) \right)$	$\frac{n^{TS}Q}{\Gamma}L^{D}(\tilde{\lambda}^{TS})$	$\frac{1}{1}$ $L^{D}(\lambda^{TS})$	п
T/	OT 7	69	89	L9	99	€9	119	£9	89	τ9	09	6⊊	8€	LC	9∕₌	τ

TABLE V. - CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Concluded

1	72	73	74	75	76	77	78
n	$\frac{1}{\omega_{15}} \Gamma_n(\ddot{y}_{15})$	$\frac{1}{\omega_{15}^4} r_n \! \left(y_{15} \left(4 \right) \right)$	Γ _n (y ₁₆)	$\frac{1}{\omega_{16}} \Gamma_n(\dot{y}_{16})$	$\frac{1}{\omega_{16}} \Gamma_n(\ddot{y}_{16})$	$\frac{1}{\omega_{16}^{6}} \; \Gamma_{n}(\widetilde{y}_{16})$	$\frac{1}{\omega_{16}^4} \Gamma_n \left(y_{16}^{(4)} \right)$
0123456789011234545458282828282828	1.7865 .1117 -7.9314 5.1605 4.0571 -2.7607 3.5401 -7.3382 -2.3484 9.3367 -2.5377 1.1638 -3585 -8.6181 -6.2166 3.6582 -2.4454 -2.4454 -3.6582 -2.4454 -3.6582 -	8.1426 -19.8366 2.3892 27.5582 -21.7377 4.8180 -5843 -18.6211 27.5345 -4.4593 -12.4980 13.3047 -21.3858 13.1777 17.8633 -24.2143 11.8676 -8.2646 -12.7600 33.0746 -12.7600 -8.2646 11.8676 -24.2143 17.8633 13.1777 -21.3858 13.1777 -21.3858 13.1777 -21.3858 13.3047 -12.4980 -4.4593 27.5345 -18.6211 -5843	-0.0335 .2580 .59654 .0621 .0621 .9844 .5965 .2580 -0581 .0521 .0581 .05	-0.0693 .8847 .7734 9808 5670 0.5670 .9808 7734 8847 0.8847 .7734 9808 7734 8847 0.8847 .7734 9808 7734 9808 7734 9808 7734 9808 7734 9808	0.1514 1.7696 -1.6842 -2.2435 1.5329 -9478 1.5329 -2.2435 -1.6842 1.7696 -1.6842 1.7696 -3027 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696	1.9516 -1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 0 -1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 0 -1.2097 -6.7667 7.69170022 0 .0022	7.1188 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 13.8720 11.5107 -19.9014 14.2374 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 13.8720 11.5107 -19.9014 14.2374 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 13.8720 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 12.0568 -18.6294 12.0568 -18.6294 12.0508
33 34 35 36 37 38 39 40	2.7607 -4.0571 -5.1605 7.9314 1117 -1.7865 0	4.8180 -21.7377 27.5582 2.3892 -19.8366 8.1426 0	.9844 .0621 .0154 .0621 .9844 .5965 .2580	9808 5670 0 .5670 .9808 7734 8847	-2.2435 1.5329 .9478 1.5329 -2.2435 -1.6842 1.7696 .1514	7.6917 0023 0 .0022 -7.6917 6.7667 1.2097 -1.9516	-18.6294 12.0588 -18.6294 13.8720 11.5107 -19.9014 7.1188
0	=055	.169	709	.2724	0128	114	.235

NACA

- TOWN				\$25.58556- 201.711788 351.86877 \$7.14746 7.3175557- 8.633557-						E9464*499- TT8E5*548 04E*9E0T8 4E6T*E09T- 788T*860T- 404052L*9T	= (1) × (2) × (2) × (3) × (4) × (5) × (5) × (6)	(8) 2 (8) 3 (8) 3 (8) 3 (9) 3 (9) 3
### 1998 ###	7 8945.4 1 8945.4 1 8945.4 11 935.2 11 935.2 11 935.2 12 9869.1 13 131.1 13 131.1 14 865.2 15 13 13 13 13 13 13 13 13 13 13 13 13 13	850.1- 850.7- 860.7- 860.01- 860.01- 860.01 860.01 840.01	803.601 663.001 675.66- 600.45- 600	246.01- 246.01- 246.6- 250. 181.1- 250. 181.1- 250. 181.1- 250. 181.1- 260.1- 1411	8780.11- 00ET.2- 60ET.2- 60ET.2- 074E.7 60LL.1- 60ET.2- 848S. 848S. 848S. 848S 850 850	8123.0- 8428.5- 902.5- 9027.1- 838.5- 4507.1 8140. 8140. 6260. 1024. 8140. 4273.	9151.5- 9858 9958.5- 7959 14971.5- 1997 1997	280.9 280.9 290.46 200.46	6689°0991 T468°688T	2.4794.5 9.8696 9.8696 10.9686 10.9	4994 21 9466 01 9466 01 9476 6 9924 8 9746 9 9744 9 9744 9 9747 8 9951 7	9T 17T 17T 17T 17T 17T 17T 17T 17T 17T 17
6 × 6 8 ×	© 0 × 0	9 × 0	T T T T	T of Ω xyv(α)gt	τρ √χ ος πχνατ	¹ Δt γ S	T O xange	*^m	^B v ^{ttl}	2 ^ m	Λ ₀₀	٨
ध्य हा	ττ	OT	6	8	L L	9	ς	ή	ε	5	τ	\perp

TABLE VI. - SUMS NEEDED FOR EVALUATION OF THE PARMETERS OF EXAMPLE III BY LEAST SQUARES

NACA TN 3288

Figure 1.- The nonlinear pitching-moment curve for example I.

Figure 2.- "Test data" for example I.

NACA TN 3288 . 49

Figure 3.- The nonlinear pitching-moment curve for example II.

Figure 4.- "Test data" for example II.

Figure 5.- "Test data" for example III.