Introdução a Física

Por um longo período, as ciências formaram uma grande unidade conhecida como Filosofia Natural. A distinção entre a Física, a Química e as Ciências Biológicas começou a tornar-se mais evidente há cerca de dois séculos.

O astrônomo, pintura de Johannes Vermeer, 1668. Óleo sobre tela. 51,5 x 45,5 cm.

A Física (do grego *physiké*) pode ser considerada a base de todas as outras ciências e da tecnologia, pois estuda os componentes básicos de determinado fenômeno e as leis que governam suas interações.

O campo de estudo da **Física Clássica** é geralmente dividido em **cinco** grandes áreas:

Eletricidade e Magnetismo

As descargas elétricas atmosféricas são movimentações de cargas elétricas entre o solo e as nuvens. (Kansas, EUA), 2006

A **Física Moderna**, que teve início com as teorias elaboradas durante o século XX por Albert Einstein, Niels Bohr e Max Planck, abrange: a Relatividade, a Física da Matéria Condensada, a Física Nuclear e a Astrofísica, assim como o estudo das partículas elementares e da estrutura atômica.

Albert Einstein (1879-1955)

Niels Bohr (1885-1962)

Max Planck (1858-1947)

A Física está presente em todos os momentos de nossa vida e em tudo o que nos rodeia.

Procure identificar, na foto a seguir, elementos relacionados

com a Física.

Ponte Juscelino Kubitschek sobre o Lago Paranoá, Brasília, 2005

Notação científica

Quando usamos a notação científica para representar um número N qualquer, devemos escrevê-lo na forma:

 $N = m \cdot 10^n$, em que $1 \le m < 10$ e n é um número inteiro.

Ordem de grandeza

A ordem de grandeza de um número *N* é, por definição, a potência de 10, de expoente inteiro, que mais se aproxima desse número.

Ordem de grandeza

Para determinar a ordem de grandeza de um número N:

1. Devemos, inicialmente, escrever o número *N* na forma de notação científica:

$$N = m \cdot 10^n$$
, com $1 \le m < 10$, isto é, $10^0 \le m < 10^1$.

- **2.** A seguir, devemos comparar o valor de m com $10^{0.5} = \sqrt{10} \approx 3.16$.
- 3. A partir dessa comparação, teremos:

Se
$$m < 3,16$$
, então a ordem de grandeza de $N \in 10^n$;

Se
$$m > 3,16$$
, então a ordem de grandeza de $N \in 10^{n+1}$.

Principais prefixos do SI utilizados em Física

Prefixo	Símbolo	Fator pelo qual a unidade é multiplicada		
giga	G	$10^9 = 1.000.000.000$		
mega	М	$10^6 = 1.000.000$		
quilo	k	$10^3 = 1.000$		
hecto	h	$10^2 = 100$		
deca	da	10 ¹ = 10		
deci	d	$\mathbf{10^{-1}} = \frac{1}{10} = 0,1$		
centi	С	$\mathbf{10^{-2}} = \frac{1}{100} = 0,01$		
mili	m	$\mathbf{10^{-3}} = \frac{1}{1.000} = 0,001$		
micro	μ	$\mathbf{10^{-6}} = \frac{1}{1.000.000} = \mathbf{0,000\ 001}$		
nano	n	$\mathbf{10^{-9}} = \frac{1}{1.000.000.000} = \mathbf{0,000\ 000\ 001}$		
pico	р	$\mathbf{10^{-12}} = \frac{1}{1.000.000.000.000} = \mathbf{0,000\ 000\ 000\ 000}$		

Unidades fundamentais do Sistema Internacional – SI

COMPRIMENTO

metro m

MASSA

quilograma kg

TEMPO

segundo s

CORRENTE ELÉTRICA

ampère A

TEMPERATURA TERMODINÂMICA

kelvin K

QUANTIDADE DE MATÉRIA

mol mol

INTENSIDADE LUMINOSA

candela cd

Conversão de unidades

Só é possível converter unidades de medida que sejam da mesma grandeza física, ou seja, só podemos converter unidade de comprimento em unidade de comprimento, exemplo converter quilômetros em metros. Unidades de tempo em unidades de tempo, por exemplo horas em segundos.

QUILÔMETRO	HECTÔMETRO	DECÂMETRO	METRO	DECÍMETRO	CENTÍMETRO	MILÍMETRO
(KM)	(HM)	(DAM)	(M)	(DM)	(CM)	(MM)
1000 m	100 m	10 m	1m	0,1 m	0,01 m	0,001 m

Exemplo de tabela de conversão de unidades de comprimento.

Conversão de unidades de medida de Comprimento, Área e Volume

INSTITUTO FEDERAL Farroupilha

Conversão de unidades de medida de Volume, Massa e Tempo

		10000				F
kl	hl	dal	1	dcl	cl	ml
1000	100	10	1	0,1	0,01	0,001

			Massa			
kg	hg	dag	g	dcg	cg	mg
1000	100	10	1	0,1	0,01	0,001

	Tempo				
ano	década	século	milênio		
1	10	100	1000		

dia	semana	mês (média)	ano
1	7	30	365

segundo	minuto	hora	dia
1	60	3600	216000

Unidades de Medida (SI)					
Grandeza	SI	Unidade usual	Correspondência		
Massa	kg	g	1kg = 1000 g		
Comprimento	m	km	1km = 1000 m		
Área	m²	cm²	1m ² = 10 000 cm ²		
Volume	m³	L	1m³ = 1000 L		
Tempo	S	h	1h = 3600 s		
Quantidade de calor	J	cal	1 cal = 4,18 J		
Velocidade média	m/s	km/h	1m/s = 3,6 km/h		

Exemplos:

TRANSFORME:

- a- 2 Km em m
- b- 1,5 m em mm
- c- 5,8 Km em cm
- d- 0,4 m em mm
- e- 27 mm em cm
- f- 126 mm em m
- g- 12 m em Km

Converter em litros:

- $a 3.5 \, dm^3 =$
- $b 5 m^3 =$
- $c-2,6 \text{ dm}^3 =$
- $d-3,4 m^3 =$
- e- 28 cm3 =
- $f 4.3 \text{ m}^3 =$
- $g 13 \, dm^3 =$

