

VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY

DS307 SOCIAL MEDIA ANALYSIS

Faculty of Information Science and Engineering University of Information Technology, VNU-HCM

This course's contents

Evaluation of IR

This course's contents

How good are the returned documents?

□ How fast does it index?

- ☐ How fast does it index?
 - e.g., number of bytes per hour

- ☐ How fast does it index?
 - e.g., number of bytes per hour
- ☐ How fast does it search?

- ☐ How fast does it index?
 - e.g., number of bytes per hour
- ☐ How fast does it search?
 - e.g., latency as a function of queries per second

- ☐ How fast does it index?
 - e.g., number of bytes per hour
- ☐ How fast does it search?
 - e.g., latency as a function of queries per second
- **□** What is the cost per query?

- ☐ How fast does it index?
 - e.g., number of bytes per hour
- ☐ How fast does it search?
 - e.g., latency as a function of queries per second
- **□** What is the cost per query?
 - in dollars

☐ All of the preceding criteria are **measurable**: we can quantify speed / size / money

- ☐ All of the preceding criteria are **measurable**: we can quantify speed / size / money
- ☐ However, the key measure for a search engine is **user happiness**.

- ☐ All of the preceding criteria are **measurable**: we can quantify speed / size / money
- ☐ However, the key measure for a search engine is **user happiness**.
- ☐ What is user happiness?

- All of the preceding criteria are **measurable**: we can quantify speed / size / money
- □ However, the key measure for a search engine is user happiness.
- ☐ What is user happiness?
- Factors include:

- All of the preceding criteria are **measurable**: we can quantify speed / size / money
- ☐ However, the key measure for a search engine is **user happiness**.
- ☐ What is user happiness?
- ☐ Factors include:
 - Speed of response
 - Size of index
 - Uncluttered UI
 - We can measure
 - ☐ Rate of return to this search engine
 - ☐ Whether something was bought
 - ☐ Whether ads were clicked
 - Most important: relevance

- All of the preceding criteria are **measurable**: we can quantify speed / size / money
- ☐ However, the key measure for a search engine is **user happiness**.
- ☐ What is user happiness?
- ☐ Factors include:
 - Speed of response
 - Size of index
 - Uncluttered UI
 - We can measure
 - ☐ Rate of return to this search engine
 - ☐ Whether something was bought
 - ☐ Whether ads were clicked
 - Most important: relevance

- All of the preceding criteria are **measurable**: we can quantify speed / size / money
- ☐ However, the key measure for a search engine is **user happiness**.
- ☐ What is user happiness?
- ☐ Factors include:
 - Speed of response
 - Size of index
 - Uncluttered UI
 - We can measure
 - Rate of return to this search engine
 - ☐ Whether something was bought
 - ☐ Whether ads were clicked
 - Most important: relevance
 - (actually, maybe even more important: it's free)

Most common definition of user happiness: Relevance

- ☐ User happiness is equated with the relevance of search results to the query.
- ☐ But how do you measure relevance?
- ☐ Standard methodology in information retrieval consists of three elements
 - Benchmark document collection
 - A benchmark suite of queries
 - An assessment of the relevance of each query-document pair

- Relevance to what? The query?
 - Information need i: "I am looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine."
- ☐ Translated into:
 - **Query q**: [red wine white wine heart attack]
- ☐ So what about the following document:
 - **Document d'**: At the heart of his speech was an attack on the wine industry lobby for downplaying the role of red and white wine in drunk driving.

☐ User happiness can only be measured by relevance to an information need, not by relevance to queries.

□ Sloppy terminology here and elsewhere in the literature: we talk about query—document relevance judgments even though we mean information-need—document relevance judgments.

☐ Precision (P) is the fraction of retrieved documents that are relevant:

$$Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant|retrieved)$$

☐ Recall (R) is the fraction of relevant documents that are retrieved:

$$Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)} = P(retrieved|relevant)$$

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

THE TRUTH

WHAT THE SYSTEM THINKS

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

WHAT THE
SYSTEM
THINKS

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

WHAT THE
SYSTEM
THINKS

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

$$P = TP/(TP + FP)$$

WHAT THE
SYSTEM
THINKS

	Relevant	Nonrelevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

$$P = TP/(TP + FP)$$

$$R = TP/(TP + FN)$$

Precision/Recall Trade-off

- ☐ You can increase recall by returning more docs.
- ☐ Recall is a non-decreasing function of the number of docs retrieved.
- ☐ A system that returns all docs has 100% recall!
- ☐ The converse is also true (usually): It's easy to get high precision for very low recall.

A combined measure: F

□ F allows us to trade off precision against recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{where} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

 $a \in [0,1]$ and thus $\beta 2 \in [0,\infty]$

Most frequently used: balanced F with $\beta = 1$ or $\alpha = 0.5$

This is the harmonic mean of P and R: $1/F = \frac{1}{2}(1/P + 1/R)$

Example for precision, recall and F1

	relevant	not relevant	
retrieved	20	40	60
not retrieved	60	1,000,000	1,000,060
	80	1,000,040	1,000,120

$$P = 20/(20+40)=1/3$$

$$R = 20/(20+60)=1/4$$

$$F1 = 2.\frac{1}{\frac{1}{3} + \frac{1}{4}} = 2/7$$

Accuracy

Why do we use complex measures like precision, recall, and F?

Accuracy

- ✓ Why do we use complex measures like precision, recall, and F?
- ✓ Why not something simple like accuracy?
- ✓ Accuracy is the fraction of decisions (relevant/nonrelevant) that are correct.
- ✓ In terms of the contingency table above, accuracy = (TP + TN)/(TP + FP + FN + TN).

Accuracy

- ✓ Why do we use complex measures like precision, recall, and F?
- ✓ Why not something simple like accuracy?
- ✓ Accuracy is the fraction of decisions (relevant/nonrelevant) that are correct.
- ✓ In terms of the contingency table above, accuracy = (TP + TN)/(TP + FP + FN + TN).

Though experiment

☐ Computing precision, recall and F1-score for this result set:

	relevant	not relevant
retrieved	18	2
not retrieved	82	1,000,000

☐ You then get 99.99% accuracy on most queries.

Rank-Based Measures

- □ Binary relevance
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- ☐ Set a rank threshold K
- Compute % relevant in top K
- ☐ Ignores documents ranked lower than K
- \square Ex:
 - Prec@3 of 2/3
 - Prec@4 of 2/4
 - Prec@5 of 3/5
- ☐ In similar fashion we have Recall@K

Mean Average Precision

- ☐ Consider rank position of each *relevant* doc
 - \blacksquare $K_1, K_2, \dots K_R$
- \square Compute Precision@K for each $K_1, K_2, ... K_R$
- \square Average precision = average of P@K

☐ Ex:

has AvgPrec of

$$\frac{1}{3} \cdot \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5}\right) \approx 0.76$$

☐ MAP is Average Precision across multiple queries/rankings

Average Precision

= the relevant documents

Ranking #1

Recall 0.17 0

 $0.17 \ 0.17 \ 0.33 \ 0.5 \ 0.67 \ 0.83 \ 0.83 \ 0.83 \ 0.83 \ 1.0$

Precision 1.0 0.5 0.67 0.75 0.8 0.83 0.71 0.63 0.56 0.6

Ranking #2

Recall

 $0.0 \ \ 0.17 \ \ 0.17 \ \ 0.17 \ \ 0.33 \ \ \ 0.5 \ \ \ 0.67 \ \ 0.67 \ \ 0.83 \ \ 1.0$

Precision 0.0 0.5 0.33 0.25 0.4 0.5 0.57 0.5 0.56 0.6

Ranking #1: (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78

Ranking #2: (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52

MAP

Q&A

Thank you!