Named Entity Recognition

课程知识结构

本章讨论的问题

本章主要内容

- 信息抽取 Information Extraction
- 命名实体识别 Named Entity Recognition

一、信息抽取

■传统的信息检索实际上"文档检索",其结果是 "文档"的集合,并非信息

Google	中国科学技术大学计算机学院的院长是谁
	<mark>网页</mark> 图片 地图 更多▼ 搜索工具
	拔到约 212,000 条结果 (用时 0.56 秒) 中国科学技术大学 百度百科 baike.baidu.com/view/4522.htm ▼ 中国科学技术大学,简称"中国科大",隶属于中国科学院,中国科学技术大学是中国 个大学为清华大学、北京大学、中国科学技术大学、上海交通大学、华中科技大学)。 中国科学技术大学创建于北京,首任校长由时任中国科学院院长郭沫若兼任。 学校简介 - 历史沿革 - 学校领导 - 师资力里 中国科学技术大学计算机科学与技术学院 百度百科 baike.baidu.com/view/2390434.htm ▼ 学院简介中国科学技术大学于1958年建校时就设置了计算机专业,老一辈计算机科学家夏培肃 获计算机科学与技术一级学科博士学位授予权,并建立博士后流动站,该学科是
	中国科学院博士 院长. 李国杰. 西区电子三楼628 室. 执行院长. 陈华平. 西区电子三楼627 室 2013 Baidu 使用百度前必读 百科协议 百度百科合作平台 南方科技大学 百度百科 baike. baidu.com/view/1215910.htm ▼ 南方科技大学是一所创新型大学,目标是迅速建成国际化高水平研究型大学,建成中国重大科学 中国科学院院士、中国科技大学原校长朱清时教授出任创校校长。 任信息管

一、信息抽取

- ■大多数情况下用户想要的是"信息"
 - 中国科学技术大学计算机学院院长,李向阳

1、信息抽取含义

- 从语料中抽取指定的事件、事实等信息,形成结构化的数据
 - 从语料中抽取用户感兴趣的事件、实体和关系
 - 被抽取的信息以结构化的形式描述
 - 为情报分析、检测、比价购物、自动文摘、文本分类等各种应用提供服务

Web时代的企业 ——"数据富翁", "信息穷人"

2、信息抽取应用

■企业竞争情报

CoMiner	Entity Domain
Commer	Sony Search
Competitors	Results 1 - 5 of about 15 for Sony.
Microsoft II	
Game, XBOX, Software, I PCWorld.com - Microsoft Eyes Deal	E3 Conference, PlayStation <more digital="" do="" in="" music="" push<="" sony="" td="" with=""></more>
Bill Gates hints at possible partne	rship with giant electronics company.
URL: http://www.pcworld.com/news/s	article/O,aid,119193,00.asp <more evidences=""></more>
(1)	
Samsung II	2
Mobile Phone, Cell Phon	e, Accessory, Camcorders, LCD <mc< td=""></mc<>
Samsung, Sony join forces on LCDs	s CNET News.com
3, 3,	Os The consumer electronics giants form a 50-50 liquid crystal displays for flat-panel
URL: http://news.com.com/Samsung	L+Sony+join+forces+on+LCDs/2100-1041 3-5171753.
Apple II	
Music, Storage, Compute	er, IPOD, Technology <more domains=""></more>
Apple, Sony sued over DRM in Fran	ce CNET News.com
	ance Let the consumers choose, French consum ompanies' DRM are expected to be heard
URL: http://news.com.com/Apple +S	nny+sued+over+DRM+in+France/2100-1027 3-55754

雷蒙德:BP集团副总裁、BP中国首席执行官及总裁 孙振耀:惠普全球副总裁兼中国惠普公司总裁

陈永正:微软中国有限公司总裁(原摩托罗拉中国区总裁)

庞德明: 通用电气(中国)有限公司中国区总裁

关志华:巴斯夫中华区总裁

周伟焜:IBM大中华区董事长兼首席执行总裁

林正刚:思科系统(中国)网络技术有限公司中国区总裁

路易普:ABB公司中国区总裁

陈永正:微软公司副总裁、微软大中华区首席执行官

何庆源:诺基亚(中国)投资有限公司总裁

小泽秀树:佳能中国区总裁兼佳能亚洲营销集团总裁

高瑞彬:摩托罗拉(中国)电子有限公司总裁

罗宏斐:宝洁(中国)有限公司总裁

朱华熙:百事(中国)投资有限公司总裁

职位关系抽取

竞争对手发现

2、信息抽取应用

■其它领域的应用

- 灾害预防部门从自然灾害的新闻报道中抽取出灾害的 类型、时间、地点、人员伤亡、经济损失等情况
- 从病人的医疗记录中抽取出症状、诊断记录和检验结果
- 税务分析不同企业交税记录、发现异常模式和趋势

3、信息抽取与文本理解

- ■信息抽取需要一定程度的理解
 - 只关心有限的感兴趣的事实信息
 - 不关心文本意义的细微差别
 - 不关心作者的写作意图等深层理解问题

■ 信息抽取只能算一种浅层的文本理解

■ 信息抽取可以看作信息检索的进一步深化

4、信息抽取 vs. 信息检索

■密切相关但又存在差异

• 功能不同

◆ 检索:从文档集合中找文档子集

◆ 抽取:从文本中获取用户感兴趣的事实信息

• 处理技术不同

◆ 检索: 通常利用统计与关键词等技术

◆ 抽取:借助于自然语言处理技术

• 使用领域不同

◆ 检索:通常领域无关

◈ 抽取:通常领域相关

- **MUC会议** Message Understanding Conference
 - 美国国防高级研究计划委员会(DARPA)资助
 - 评测信息抽取系统
 - 87-98进行了7次,MUC-1, ..., MUC-7
- MUC-7定义了5类信息抽取任务,分别进行评测
 - 命名实体NE
 - 模板元素TE
 - 共指关系CR
 - 模板关系TR
 - 背景模板ST

- 1、命名实体 NE (实体抽取)
 - 最主要的任务
 - 命名实体是文本中基本的信息元素,是正确理解文本的基础
 - 狭义: 指现实世界中具体或抽象的实体
 - ◆ 如 人、组织、地点等
 - ◆ "中国科学技术大学/Org 校长 包信和/Person"
 - 广义: 还可以包含日期和时间、数量表达式等
 - 具体含义由应用来确定

- 2、模板元素TE (属性抽取)
 - 模板元素又称为实体的属性
 - 通过槽(Slots)描述了命名实体的基本信息
 - 为命名实体建立各种属性槽从而更加清楚地描述命名 实体
 - 槽Slots: 名称、类别、描述符、种类等

■ 3、共指关系 CR (实体间的共指关系)

- 不同的命名实体表达了相同的含义,这些实体之间的 关系就是共指,也称为等价概念
- 共指任务在于抽取关于共指表达的信息
- 包括那些已在命名实体和模板元素任务中作了标记的 对于某个命名实体的所有表述

- 4、模板关系TR (关系抽取)

 - 实体之间的各种关系,又称为事实
 - ◆ 雇佣关系(employee_of)、生产关系(product_of) ...
 - ◆ 如: post_of(校长,包信和), employee_of(中国科学技术大学,包信和)

- 场景模板 ST (事件抽取)

 - 又称事件,是指实体发生的事件
 - 例如
 - ◆ 会议(Time<...>, Spot<...>, Convener<...>, **Topic<...>)**
 - 新闻事件 5W1H
 - Who, When, Where, What, Why, How

6、信息抽取示例

■ 人民日报1998-01-07

19980107-06-016-001意大利总理普罗迪 4 日说 ,欧洲国家将采取行动,共同对付库尔德难民涌 入问题。普罗迪 4 日晚召开了由意外长、内政和 国防部长参加的紧急会议,商讨应付库尔德难民 问题的对策。会前,普罗迪说,"在经过最初的 混乱后,欧洲国家的行动已经大大加强",今后 几天内将在此问题上进行系统合作。

6、信息抽取示例

■ NE实体抽取结果示例

■ TR关系抽取结果示例

6、信息抽取示例

■ ST事件抽取示例

```
<EventTemplateInstatnces>
```

<ConferenceInfo>

<Time> 4 日晚 (1998-01)</Time>

<Spot>意大利</Spot>

<Converner>普罗迪</Converner>

<Title>由意外长、内政和国防部长参加的紧急会议

</Title>

</ConferenceInfo>

</EventTemplateInstatnces>

会议时间 Time	4 日晚 (1998-01)		
会议地点 Spot	意大利		
7.4	姓名/团体名称 Name	普罗迪	
召集人 Convener	机构、职位 Org/Post	意大利总理	
会议名/标题 Conf-Title	由意外长、内政和国防部长参加的紧急会议		

7、信息抽取的应用架构

7、信息抽取的应用架构

8、信息抽取的内容

■实体

• 即命名实体,指文本中的基本构成块,如人、机构等

■属性

• 实体的特征,如人的年龄、机构的类型等

■关系

实体之间存在的联系,也称事实(fact),如公司和 地址之间的位置关系、公司与人之间的雇佣关系

■事件

实体的行为或实体参与的活动,如恐怖袭击(911) 、刘翔退赛、公司收购等

9、信息抽取的关键

■8字方针"抽取实体,确定关系"

属性(Attributes)识别: \approx 80%

关系(Relations)识别: \approx 70%

事件(Events)识别: \approx 60%

二、命名实体识别

NER

- 识别出文本中的人名、地名等专有名称和有意义的时间、日期等数量短语并加以归类
- 信息抽取中的核心任务

■发展历史

- 1991, Lisa F. Rau, Extracting Company Names from Text, 7th IEEE Conf. Artificial Intelligence Applications
- 1996,成为MUC-6的信息抽取评测子任务
- 后来也成为多个会议的评测任务
 - ◆ IEER'99、CoNLL'02-03、LREC等

1、NER的抽取内容

- 一般按照MUC-7的定义(3大类7小类)
 - 实体类
 - ◆ 人名、地名、机构名
 - 时间类
 - ◆ 日期、时间
 - 数值类
 - ◆ 货币、百分比
- 哪些不是命名实体?
 - 人造物:如Wall Street Journal、MTV
 - 重复指代的普通名词:如飞机、公司等
 - 人的团体名称以及以人命名的法律、奖项等:如共和国、诺贝尔奖等
 - 从名词派生出来的形容词:如Chinese、American等
 - 非时间、日期、货币、百分比的数字

ACE (Automatic Content Extraction)定义中的NER任务:

人名(Person)、机构名(Organization)、地名(Location)、设备名(Facility)、武器名(Weapon)、交通工具名(Vehicle)和地理政治实体(Geo-Political Entity)

2、NER的难点

- 命名实体类型多样
 - e.g. John Smith, Mr Smith, John.
- 不断有新的命名实体涌现
 - 如新的人名、地名等,难以建立大而全的姓氏库、名字库、地址库等数据库
- 命名实体的歧义
 - John Smith (company vs. person)
 - May (person vs. month)
 - Washington (person vs. location)
 - 1945 (date vs. time)
- 命名实体构成结构复杂
 - 别名、缩略词等问题,没有严格的规律可以遵循;人名中也存在比较 长的少数民族人名或翻译过来的外国人名,没有统一的构词规范
 - 如USTC、Univ. Sci. & Techno. China

3、NER的性能评价

■ 正确率P

- Option 1
 - Correct answer / total answer
- Option 2
 - ◆ [Correct + (1/2) partial correct] / total answer
 - E.g., "Sebastian /person Karpe"

■ 召回率R

- Correct answer / total correct answer
- [Correct + (1/2) partial correct] / total correct and partial correct answer
- F值
 - 2PR / (P+R)

3、NER的一般方法

- **Baseline: list lookup**
- ■基于规则的方法
- ■基于统计的方法
- ■混合方法

List Lookup

- 预先构建一个命名实体词典(gazetteer)
- ■出现在词典中的词汇即识别为命名实体
- ■词典的构建
 - Person/Organizations: 可以利用黄页、电话簿等
 - Locations: 可利用现有的一些lists
 - ◆ US GEOnet Names Server (GNS) data 3.9 million locations with 5.37 million names
 - UN site: http://unstats.un.org/unsd/citydata
 - World Gazetteer, http://www.world-gazetteer.com

List Lookup

■优点

方法简单、快速,与具体语境无关,容易部署和更新 (只需更新词典)

■缺点

- 大部分情况下很难枚举所有的命名实体名
- 构建和维护词典的代价较大
- 难以有效处理实体歧义

基于规则的方法

- 采用手工构造规则模板,选用特征包括统计信息、标点符号、关键字、指示词和方向词、位置词(如尾字)、中心词等方法,以模式和字符串相匹配为主要手段
- 多数参加MUC-7(1997)会议评测的系统,都采用了 此方法
- 例如

[ORGANIZATION]'s headquarter in [LOCATION]
e.g. We visited Microsoft /org's headquarter in Seattle /loc.

For location extraction:

Capital Word + {City, Forest, Center}
e.g. Salt Lake City
Capital Word + {Street, Boulevard, Avenue, Crescent, Road}
e.g. Portobello Street

基于规则的方法

■优点

• 当提取的规则能较精确地反映语言现象时,性能较好

■缺点

- 规则往往依赖于具体语言、领域和文本风格
 - ◆ 例如考虑规则: "A [/LOC] 公司" / ORG
- 代价太大,系统建设周期长、移植性差而且需要建立 不同领域知识库

- 采用机器学习方法,利用人工标注的语料进行训练后进行命名实体识别
- ■目前主流的NER方法
 - CoNLL'03上参与评测的16个系统全部采用了基于统 计的方法

- 以机构名识别为例,常见的内部特征包括
 - 单词特征、核心词特征、词性特征、语义特征等

标注	类型	示例
F	机构特征词	北京搜狐畅游时代网络技术有限公司
R	机构名中的人名	法国 马蒂尼埃 集团
NR	其它人名	<i>俞昊然</i> 创立了"计蒜客"
S	机构名中的地名	北京市文化局相关领导表示
NS	其它地名	在前不久的中国游戏行业年会上
0	常见机构名	中国人民银行
Е	机构名中的其它词	侵犯 腾讯 公司相关游戏著作权一案
L	机构名之间的连接词	中国移动和中国联通慢慢掌控了很多版权
Р	职位名	友达 董事长 李焜耀
Z	其它词	

■用于机构名识别的上下文特征示例

标注	类型	示例
M	修饰词	国内知名厂商 长虹
С	中心词	华为 市场份额
W	谓语动词	诺基亚终于 发布 了其第一款TD产品
N	主谓之间的词	诺基亚 终于 发布了其第一款TD产品
K	谓宾之间的词	中国联通联合了中国电信
J	介词	在 央视广告招标中
В	机构名上文的前一个词	瑞典 <i>正是</i> 爱立信的总部所在地。
А	机构名下文的后一个词	北京市文化局相关领导表示

- ■常用的方法包括
 - 隐马尔可夫模型(Hidden Markov Model, HMM)
 - 最大熵 (Maximum Entropy, ME)
 - 支持向量机 (Support Vector Machine, SVM)
 - 条件随机场 (Conditional Random Field, CRF)

- HMM是从可观察的输出中确定马尔可夫过程的隐含状态的统计模型
 - 马尔可夫过程是一个随机过程, 但它的未来状态仅依赖于现在状态及所有过去状态

b — 输出概率 (output probabilities)

- 通过在样本数据集上训练得到HMM模型
 - 基于自定义的特征集
- 一个HMM模型包含两组状态集合和三组概率集合 (pi,A,B):
 - 隐藏状态:一个系统的(真实)状态,可以由一个马尔科夫过程进行 描述(例如,天气)。
 - 观测状态:在这个过程中'可视'的状态(例如,海藻的湿度)。
 - 初始向量Pi:在初始时间t=0时,隐藏状态的初始概率。
 - 转移矩阵A: 包含了一个隐藏状态到另一个隐藏状态的概率
 - 混淆矩阵B:包含了给定隐马尔科夫模型的某一个特殊的隐藏状态,观察到的某个观察状态的概率。
- 然后应用到测试数据集中,得到最大转换概率的隐含状态序列

- 隐马尔可夫模型常用来解决三类问题:
 - 评估问题: 给定模型, 求某个观察值序列的概率。
 - 解码问题: 给定模型和观察值序列,求可能性最大的 状态序列。
 - 学习问题: 给定一个观察值序列,调整模型参数,使 观察值序列出现的概率最大。
- 信息检索与信息抽取领域中常用HMM模型来解 决解码问题,如词性标注、命名实体识别等。

■基于HMM的机构名识别

→ 观察值序列标注序列→ 状态序列

 词序列:
 中国 通信
 设备
 商
 华为
 在
 北欧
 两
 次
 斩
 获
 大
 单

 标注序列:
 M
 M
 M
 E
 A
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z</t

■ 预处理

```
人名 --→ 〈PER〉, 地名 --→ 〈LOC〉
常用机构名--→ 〈ORG〉, 职位名--→ 〈POS〉
```

人名、地名识别: ICTCLAS 常用机构名: 企业黄页词典 职位名: 自定义算法抽取

■ 人工标注

示例1	消息/Z 称/B 央/E 视/E 新/C 媒体/C 业务/C 3/A 年/Z 要/Z 占/Z 总收入/Z 25%/Z 以上/Z
示例2	<loc>/S 搜狐/E 畅游/E 时代/E 网络/E 技术/E 有限公司/F <pos>/C <per>/C 告诉/A 记者/Z</per></pos></loc>
示例3	<loc>/M 通信/M 设备/M 商/M 华为/E 将/N 持续/N 推动/W LTE/A 产业/Z 发展/Z</loc>
示例4	华为/E 再/N 获/W <loc>/A 大/Z 单/Z ,/B 在/J 爱立信/E 老巢/C 击败/A 对手/Z</loc>

■ 模型训练

构造M个隐含状态之间的转移概率矩阵(M*M),以及隐含状态和观测状态之间的混淆矩阵(M*N),可使用第三方工具包

■ 实体识别

使用Viterbi算法得到最大转移概率的隐含状态序列,提取语料中特定 标注(例如E/F/O等)的词序列作为机构名输出

- 对特征选取的要求较高,需要从文本中选择对 NER有影响的特征来构建特征向量
- 通常做法是对训练语料所包含的语言信息进行统 计和分析,从中挖掘出特征
- 对语料的依赖也较大,目前缺少通用的大规模语 料
- ■大部分需要人工标注

混合方法

- Gazetteer、规则与统计方法的混合
- 实践中往往采用混合的方法
- 例如,网页中的地名抽取
 - 基本地理名称
 - World Gazetteer, http://www.world-gazetteer.com
 - 隐式地名识别
 - ◆ 统计模型: CRF
 - 首要地名抽取
 - ◆ 规则

4、NER开源工具

■ 英文NER

- Stanford Named Entity Recognizer (NER)
- http://www-nlp.stanford.edu/software/CRF-NER.shtml
- CRF-based NER
- 中文NER
 - ICTCLAS http://ictclas.org/
 - HMM-based
 - LTP 哈工大
 - SVM-based

本章小结

- ■信息抽取概述
 - 命名实体识别、属性识别、关系抽取、事件抽取
- ■命名实体识别
 - 信息抽取中最主要的任务,也是关系抽取和事件抽取 的基础
 - 基本方法
 - List lookup
 - ◆ 基于规则的方法
 - ◆ 基于统计的方法: HMM、CRF、ME、SVM
 - ◆ 混合方法

Relations Extraction