Exercice 1 : test d'indépendance.

La table 1 donne la répartition de 200 plantes en fonction de deux caractères : contamination et l'âge de la plante.

Table 1 : Age	non contaminée	contaminée	Total
Moins 3 mois	26	20	46
Entre 3 et 6 mois	61	63	124
Plus de 6 mois	8	22	30
Total	95	105	200

Table 2 : Age	non contaminée	contaminée	Total
Moins 3 mois	26	20	46
Plus de 3 mois	69	85	154
Total	95	105	200

1. En supposant l'hypothèse d'indépendance des deux caractères, déterminer la répartition théorique des 200 plantes selon les modalités des deux caractères. Peut-on conclure, au seuil de signification $\alpha = 5\%$, que ces deux caractères sont liés?

Dans la table 2, on a regroupé en deux classes (modalités) le caractère âge.

- 2. Même question que 1) sur la table 2.
 - Le test d'indépendance sur la table 2 (tableau 2×2) peut également être considéré comme un test de comparaison de proportions. Il s'agit en effet de savoir s'il existe une différence significative entre les proportions P_c et P_{nc} des plantes âgées de plus de 3 mois.
- 3. Formuler les hypothèses à tester. Que peut-on alors conclure au seuil $\alpha = 5\%$?

Réponse:

- 1. On rejette H_0 d'indépendance. La contamination de la plante est liée à son âge ($\alpha=5\%$)
- 2. On accepte l'hypothèse nulle H_0 . Les 2 caractères sont indépendants. ($\alpha = 5\%, \chi^2_{\rm cal} = 1,9498 < \chi^2_{\rm tab} = 3,841$)
- 3. On accepte l'hypothèse nulle H_0 . Il n'y a pas de différence significative entre les 2 proportions ($1,396 \in [-1,96;1,96]$).

Exercice 2 : test d'indépendance .

Le responsable des ressources humaines d'une entreprise a effectué un sondage auprès de 200 employés, choisis au hasard à partir du fichier de l'entreprise, pour connaître leur niveau de satisfaction vis-à-vis de leur travail. Les caractères satisfaction et catégorie salariale (en) de l'employé ont été réparties chacune selon trois modalités. On a construit le tableau de contingence suivant :

Satisfaction & Salaire	<= 2000]2000 - 3000	> 3000	Total des lignes
Elevé	13	19	25	57
Moyen	28	29	28	85
Faible	24	18	16	58
Total des colonnes	65	66	69	200

- 1. Etablir puis interpréter les tableaux des profils lignes (%) et des profils colonnes (%).
- 2. Le responsable veut vérifier si ces deux caractères sont indépendants ou si, au contraire, le fait d'appartenir à une catégorie salariale permet de déduire le niveau de satisfaction de l'employé vis-à-vis de son travail. Que peut-on conclure au seuil de signification $\alpha = 5\%$?

Réponse:

1.

2. Valeur = $\chi^2_{\text{calcul\'e}}$ = 5.4497; 4 d.d.l. ; $\chi^2_{5\%,4d.d.l.}$ = 9.4877, puisque $\chi^2_{\text{calcul\'e}}$ < $\chi^2_{5\%,4\text{ d.d.l.}}$, on ne peut rejeter H_0 , l'hypothèse selon laquelle le niveau de satisfaction est indépendant de la catégorie salariale est vraisemblable au seuil de signification $\alpha = 5\%$. Il semble que la catégorie salariale n'influe pas significativement sur le niveau de satisfaction vis-à-vis du travail.

Exercice 3 : Test de Wilcoxon-Mann-Withney & Test de Wilcoxon .

Les deux ensembles de nombres suivants représentent les résultats d'un échantillon de 12 hommes et d'un échantillon de 15 femmes auxquels on a fait subir un test de mesures de l'un de leur seuil de tolérance. les résultats obtenus sont les suivants :

Hommes	25	30	28	34	24	25	13	32	24	30	31	35			
Femmes	44	34	22	8	47	31	40	30	32	35	18	21	35	29	22

- 1. Rappeler les conditions d'application du test de Wilcoxon-Mann-Whitney.
- 2. Calculer $E(W) = n_1 (n_1 + n_2 + 1) / 2$ et $V(W) = n_1 n_2 (n_1 + n_2 + 1) / 12$.
- 3. Formuler les hypothèses à tester. Quelle est la valeur P de ce test? Doit-on rejeter l'hypothèse nulle H_0 au seuil de signification $\alpha = 5\%$?

Réponses:

- 1. Test de Wilcoxon : 2) E(W)=168; V(W)=420; W=152.5 3) $-1.96 < u_0=-0.756 < 1.96 \Rightarrow$ Non-Rejet de l'hypothèse nulle H_0 : seuils de tolérance identiques. ($\alpha=5\%$).
- 2. Test de Mann-Whitney : 2) $E(U_{HF}) = 90$; $V(U_{HF}) = 420$; $U_{HF} = 74.5$ 3) $-1.96 < u_0 = -0.756 < 1.96 \Rightarrow$ Non-Rejet de l'hypothèse nulle H_0 : seuils de tolérance identiques. ($\alpha = 5\%$).

Exercice 4: Test de Wilcoxon-Mann-Withney & Test de Wilcoxon .

Dans le cadre d'une expertise clinique de validation d'un médicament M, on administre à 10 malades, successivement à chacun et dans un ordre tiré au sort, le médicament M et une même dose d'un médicament de référence R. Les effets de ces deux substances sur chacun des 10 malades sont :

Médicament M	5	4	2	3	4	3	8	5	4	5
Médicament R	6	3	3	1	1	3	4	2	5	7

- 1. Comment appelle-t-on ce type de séries de mesures?
- 2. Formuler les hypothèses à tester et justifier le choix d'un test non paramétrique.
- 3. Peut-on conclure que les 2 médicaments ont des effets significativement différents ($\alpha = 5\%$)?

Réponses:

- 1. Echantillons appariés:
- 2. Test de Wilcoxon
- 3. $\min (T^+ = 32, T^- = 13) = 13 > T_{\alpha=5\%} = 6$ (cf.table) \Rightarrow Non-Rejet de l'hypothèse nulle H_0 : les 2 échantillons ont des distributions identiques.