1. 每一类指令的指令周期各含多少个时钟周期?

• R 类或者I类的计算: 4

• B类: 3

• I类的Load类: 5

• Store: 4

2. 分别分析R/I/S/B-type指令的多周期设计方案中每个周期所用到的功能部件

	IF	ID	EX	МЕМ	WB
R	PC, Imem, Mux, ALU	Mux, Regfile	ALU, Mux	Mux, Regfile	-
I	PC, Imem, Mux, ALU	Mux, Regfile	ALU, Mux, ImmGen	Mux, Regfile/Dmem	Mux, Regfile
S	PC, Imem, Mux, ALU	Mux, Regfile	ALU, Mux, ImmGen	Mux, Dmem	-
В	PC, Imem, Mux, ALU	Mux, Regfile, ImmGen, ALU	ALU, Mux	-	-

以上未列出控制信号与过程寄存器。

3. 调研不同FSM控制器实现方式的特点

Mealy:输出与输入相关,可以在一个时钟周期内发生改变,电路较小

Moore:输出与输入无关,速度快,仅与当前状态相关,输出的信号与时钟同步一步延迟

4. 调研水平微指令和垂直微指令的特点 (参考唐书第10章内容)

水平微指令:采用的是长格式,一条指令能够控制数据通路中多个功能部件并行操作。

垂直微指令:采用短格式,一条指令只能够控制一两种操作。

水平型指令和控制指令区别:

- 水平指令并行操作能力强,指令高效,快速灵活,垂直型指令则是较差
- 水平型指令执行的时间较短,二垂直型指令执行的时间长
- 由水平型指令解释指令的微程序,有微指令较长而微程序短的特点。垂直指令则是相反。
- 水平型指令用户难以掌握,而垂直微指令与指令比较相似,相对而言比较容易掌握。