Data Analysis

Practice 6: Conv Neural Nets and RNNs

Dr. Nataliya K. Sakhnenko

Convolutional Layer

$A\ Convolution\ Layer$

Layer o (input layer) $f^{[i]} = 3$ $s^{[i]} = 1$ $p^{[i]} = 0$ 2 filters $4 \times 4 \times 2$

Sample complete network

https://indoml.com

CIFAR-10

CIFAR-10, CNN example

```
from tensorlow.keras import layers
from keras.datasets import cifar10
(train_features, train_labels), (test_features, test_labels) = cifar10.load_data()

print(train_features.shape)
print(test_features.shape)

(50000, 32, 32, 3)
(10000, 32, 32, 3)
```

```
train_features = train_features.astype('float32')/255
test_features = test_features.astype('float32')/255
num_classes = 10
train_labels = keras.utils .to_categorical(train_labels, num_classes)
test_labels = keras.utils .to_categorical(test_labels, num_classes)
```

CIFAR-10, Basic Model

```
alpha = 0.02
model = keras.Sequential()
model.add(layers.Conv2D(filters=16, kernel_size=(3, 3), padding="same",input_shape=(train_features.shape[1:])))
model.add(layers.LeakyReLU(alpha=alpha))
model.add(layers.MaxPooling2D(pool size=(2, 2), padding='same'))
... filters=32 # 2<sup>nd</sup> conv layer
... filters=64 # 3<sup>rd</sup> conv layer
model.add(layers. Flatten())
model.add(layers. Dense(256))
model.add(layers.LeakyReLU(alpha=alpha))
model.add(layers. Dense(10, activation="softmax"))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_features, train_labels, ..)
```

model.summary()

Layer (type)	Output Shape		Param #
conv2d (Conv2D)	(None, 32, 32,	, 16)	448
leaky_re_lu (LeakyReLU)	(None, 32, 32,	, 16)	0
max_pooling2d (MaxPooling2D)	(None, 16, 16,	, 16)	0
conv2d_1 (Conv2D)	(None, 16, 16,	, 32)	4640
leaky_re_lu_1 (LeakyReLU)	(None, 16, 16,	, 32)	0
max_pooling2d_1 (MaxPooling2	(None, 8, 8, 3	32)	0
conv2d_2 (Conv2D)	(None, 8, 8, 6	54)	18496
leaky_re_lu_2 (LeakyReLU)	(None, 8, 8, 6	54)	0
max_pooling2d_2 (MaxPooling2	(None, 4, 4, 6	54)	0
flatten (Flatten)	(None, 1024)		0
dense (Dense)	(None, 512)		524800
leaky_re_lu_3 (LeakyReLU)	(None, 512)	,	0
dense_1 (Dense)	(None, 10)		5130

accuracy ~0.7

Total params: 553,514
Trainable params: 553,514
Non-trainable params: 0

Model: "sequential"

accuracy ~0.9

(5conv layers, bachnorm, dropout and data augmentation)

https://appliedmachinelearning.blog/2018/03/24/achieving-90-accuracy-in-object-recognition-task-on-

cifar-10-dataset-with-keras-convolutional-neural-networks/

Data augmentation

keras.layers.experimental.preprocessing.RandomFlip() keras.layers.experimental.preprocessing.RandomRotation() keras. layers.experimental.preprocessing.RandomZoom()

Recurrent Neural Nets

Input and Output sequences

Seq to seq (top left), seq to vec (top right), vec to seq (bottom left), delayed seq to seq (bottom right)

LSTM (long Short-Term memory) cell

1997, S. Hochreiter and J. Schmidhuber

$$\begin{aligned} &\mathbf{i}_{(t)} = \sigma \left(\mathbf{W}_{xi}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hi}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{i} \right) \\ &\mathbf{f}_{(t)} = \sigma \left(\mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{f} \right) \\ &\mathbf{o}_{(t)} = \sigma \left(\mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{o} \right) \\ &\mathbf{g}_{(t)} = \tanh \left(\mathbf{W}_{xg}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{g} \right) \\ &\mathbf{c}_{(t)} = \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)} \\ &\mathbf{y}_{(t)} = \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh \left(\mathbf{c}_{(t)} \right) \end{aligned}$$

- W_{xi}, W_{xg}, W_{xg} are the weight matrices of each of the four layers for their connection to the input vector x_(t).
- W_{ht}, W_{hp}, and W_{hg} are the weight matrices of each of the four layers for their connection to the previous short-term state h_(t-1).
- b_p b_p b_o, and b_g are the bias terms for each of the four layers. Note that Tensor-Flow initializes b_f to a vector full of 1s instead of 0s. This prevents forgetting everything at the beginning of training.

Some LSTM parameters

keras.layers.LSTM(num_units, return_state = ..,
return sequences = ...)

•units: Positive integer, dimensionality of the output space

•return_sequences: Boolean, whether to return the last output in the output sequence, or the full sequence. Default: False.

•return_state: Boolean, whether to return the last state in addition to the output. Default: False.

Default: Last Hidden State (Hidden State of the last time step)

return_sequences=True: All Hidden States (Hidden State of ALL the time steps)

return_state=True : Last Hidden State+ Last Hidden State (again!) +
Last Cell State (Cell State of the last time step)

return_sequences=True + return_state=True: All Hidden States (Hidden State of ALL the time steps) + Last Hidden State + Last Cell State (Cell State of the last time step)

Using these 4 different sets of results/states, we can stack LSTM layers in various ways!

Generate synthetic time series

```
time_series_length = 1000
t = np.linspace(0, 30, time_series_length)
ts = t * np.sin(t) / 3 + 2 * np.sin(t*5) + 0.5 * np.random.standard_normal(size=time_series_length)
# normalize the dataset
ts_norm = (ts - np.mean(ts)) / np.std(ts)
```

Train/Test split

```
train_size = int(len(ts) * 0.9)
test_size = len(ts) - train_size
train, test = ts_norm[0:train_size],
ts_norm[train_size:len(ts)]
```



```
def create dataset(dataset, look back=1):
  dataX, dataY = [], []
  for i in range(len(dataset)-look_back-1):
    a = dataset[i:(i+look back)]
    dataX.append(a)
    dataY.append(dataset[i + look_back])
  return np.array(dataX), np.array(dataY)
n_{steps} = 10
n_inputs = 1
look_back = n_steps
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, n_steps, n_inputs]
trainX = np.reshape(trainX, (trainX.shape[0], n_steps, n_inputs))
testX = np.reshape(testX, (testX.shape[0], n_steps, n_inputs))
```

Layer (type)	Output Shape	Param #
lstm_4 (LSTM)	(None, 100)	40800
dense_4 (Dense)	(None, 1)	101

Total params: 40,901

Trainable params: 40,901 Non-trainable params: 0

```
model.fit(trainX, trainY, epochs=50, batch_size=20, verbose=1)
testY_pred = model.predict(testX)

plt.plot(testY, 'r', label = 'true')
plt.plot(testY_pred, 'b', label = 'predicted')
plt.legend()
```


Example: OCR

Captcha recognition

Optical Character Recognition (OCR)

wiki

document

Optical character recognition (OCR) is the conversion of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene-photo (for example the text on signs and billboards in a landscape photo) or from subtitle text superimposed on an image (for example: from a television broadcast).

OCR model for reading Captchas

Following https://keras.io/examples/vision/captcha_ocr/

Images, labels, characters

```
Number of images found: 1040

Number of labels found: 1040

Number of unique characters: 19

Characters present: {'d', 'w', 'y', '4', 'f', '6', 'g', 'e', '3', '5', 'p', 'x', '2', 'c', '7', 'n', 'b', '8', 'm'}
```

```
# Mapping characters to integers
char_to_num = layers.StringLookup(
    vocabulary=list(characters), mask_token=None
)

# Mapping integers back to original characters
num_to_char = layers.StringLookup(
    vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True
)
```

Keras Dataset object

- TensorFlow makes available the tf.data API to create efficient input pipelines for machine learning models. Its core class is tf.data.Dataset.
- ➤ A Dataset object is an iterator: you can use it in a for loop. It will typically return batches of input data and labels. You can pass a Dataset directly to the fit() method of a Keras model.
- ➤ The Dataset class handles many key features that would otherwise be cumbersome to implement yourself, a in particular asynchronous data prefetching (preprocessing the next batch of data while the previous one is being handled by the model, which keeps execution flowing without interruptions).
- ➤ The class also exposes a functional-style API for modifying datasets.

Keras Dataset object

```
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train dataset = (
    train_dataset.map(
        encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE
    .batch(batch size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
validation_dataset = tf.data.Dataset.from_tensor_slices((x_valid, y_valid))
validation_dataset = (
    validation dataset.map(
        encode single sample, num parallel calls=tf.data.AUTOTUNE
    .batch(batch size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
```

CTC Loss: Keras Custom Layers

```
class CTCLayer(layers.Layer):
    def init (self, name=None):
       super().__init__(name=name)
       self.loss fn = keras.backend.ctc batch cost
    def call(self, y true, y pred):
       # Compute the training-time loss value and add it
       # to the layer using `self.add loss()`.
        batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
       input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
       label length = tf.cast(tf.shape(y true)[1], dtype="int64")
       input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
       label length = label length * tf.ones(shape=(batch_len, 1), dtype="int64")
       loss = self.loss fn(y true, y pred, input length, label length)
       self.add loss(loss)
       # At test time, just return the computed predictions
       return y_pred
```

One of the central abstraction in Keras is the Layer class. A layer encapsulates both a state (the layer's "weights") and a transformation from inputs to outputs (a "call", the layer's forward pass).

Model

```
input img = layers.Input(
    shape=(img_width, img_height, 1), name="image", dtype="float32"
labels = layers.Input(name="label", shape=(None,), dtype="float32")
# First conv block
x = layers.Conv2D(
    32,
    (3, 3),
    activation="relu",
    kernel initializer="he normal",
    padding="same",
    name="Conv1",
)(input img)
x = layers.MaxPooling2D((2, 2), name="pool1")(x)
# Second conv block
x = layers.Conv2D(
    64,
    (3, 3),
    activation="relu",
    kernel initializer="he normal",
    padding="same",
    name="Conv2",
)(x)
x = layers.MaxPooling2D((2, 2), name="pool2")(x)
```

```
# We have used two max pool with pool size and strides 2.
# Hence, downsampled feature maps are 4x smaller. The number of
# filters in the last layer is 64. Reshape accordingly before
# passing the output to the RNN part of the model
new_shape = ((img_width // 4), (img_height // 4) * 64)
x = layers.Reshape(target_shape=new_shape, name="reshape")(x)
x = layers.Dense(64, activation="relu", name="dense1")(x)
x = layers.Dropout(0.2)(x)
# RNNs
x = layers.Bidirectional(layers.LSTM(128, return sequences=True, dropout=0.25))(x)
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x)
# Output layer
x = layers.Dense(
    len(char_to_num_get_vocabulary()) + 1, activation="softmax", name="dense2"
)(x)
# Add CTC layer for calculating CTC loss at each step
output = CTCLayer(name="ctc_loss")(labels, x)
# Define the model
model = keras.models.Model(
    inputs=[input img, labels], outputs=output, name="ocr model v1"
# Optimizer
opt = keras.optimizers.Adam()
# Compile the model and return
model.compile(optimizer=opt)
model.fit(...)
```

Layer (type)	Output Shape	Param #	
image (InputLayer)	[(None, 200, 50, 1)]] 0	
Conv1 (Conv2D)	(None, 200, 50, 32)	320	image[0][0]
pool1 (MaxPooling2D)	(None, 100, 25, 32)	0	Conv1[0][0]
Conv2 (Conv2D)	(None, 100, 25, 64)	18496	pool1[0][0]
pool2 (MaxPooling2D)	(None, 50, 12, 64)	0	Conv2[0][0]
reshape (Reshape)	(None, 50, 768)	0	pool2[0][0]
dense1 (Dense)	(None, 50, 64)	49216	reshape[0][0]
dropout (Dropout)	(None, 50, 64)	0	dense1[0][0]
bidirectional (Bidirectional)	(None, 50, 256)	197632	dropout[0][0]
bidirectional_1 (Bidirectional)	(None, 50, 128)	164352	bidirectional[0][0]
label (InputLayer)	[(None, None)]	0	
dense2 (Dense)	(None, 50, 20)	2580	bidirectional_1[0][0]
ctc_loss (CTCLayer)	(None, 50, 20)	0	label[0][0] dense2[0][0]

Total params: 432,596

Trainable params: 432,596

Non-trainable params: 0

Inference

```
prediction model = keras.models.Model(
   model.get_layer(name="image").input, model.get_layer(name="dense2").output
prediction model.summary()
# A utility function to decode the output of the network
def decode_batch_predictions(pred):
    input_len = np.ones(pred.shape[0]) * pred.shape[1]
   # Use greedy search. For complex tasks, you can use beam search
   results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
        :, :max_length
   # Iterate over the results and get back the text
   output_text = []
   for res in results:
       res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
       output_text.append(res)
   return output_text
# Let's check results on some validation samples
for batch in validation_dataset.take(1):
   batch_images = batch["image"]
   batch_labels = batch["label"]
   preds = prediction model.predict(batch_images)
   pred_texts = decode_batch_predictions(preds)
```

Automatic Speech Recognition using CTC

For details: https://keras.io/examples/audio/ctc_asr/

Appendix

Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is a way to get around not knowing the alignment between the input and the output. As we'll see, it's especially well suited to applications like speech and handwriting recognition.

Handwriting recognition: The input can be (x, y) coordinates of a pen stroke or pixels in an image.

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

