时要清零全局中断标志并禁止 SPI 的所有中断。

在进行重新初始化比如改变波特率或帧结构时,必须确保没有数据传输。TXC 标志位可以用来检测发送器是否完成了所有传输,RXC 标志位可以用来检测接收缓冲器中是否还有数据未被读出。如果 TXC 标志位用作此用途,在每次发送数据之前(写 UDR 寄存器之前)必须清零 TXC 标志位。

初始化 SPI 以后,往 UDR 寄存器写入数据即可开始数据传输。由于发送器控制着传输时钟,发送和接收数据均是如此操作。当发送移位寄存器准备好发送新一帧数据的时候,发送器就会把写入到 UDR 寄存器的数据从发送缓冲器移到发送移位寄存器里并发送出去。为了保证输入缓冲器和发送数据同步,每发送一个字节的数据后都必须读取一次 UDR 寄存器。当发生数据溢出时,最近收到的数据将会丢失,而不是最早收到的数据。

发送标志位与中断

SPI 发送器有两个标志位: SPI 数据寄存器空标志 UDRE 和传输结束标志 TXC, 两个标志位都可以产生中断。

数据寄存器空标志 UDRE 用来表示发送缓冲器是否可以写入一个新的数据。该位在发送缓冲器空时被置"1",满时被置"0"。当 UDRE 位为"1"时,CPU 可以往数据寄存器 UDR 写入新的数据,反之则不能。

当 UCSRB 寄存器中的数据寄存器空中断使能位 UDRIE 为"1"时,只要 UDRE 被置位(且全局中断使能),就将产生 SPI 数据寄存器空中断请求。对寄存器 UDR 执行写操作将清零 UDRE。当采用中断方式传输数据时,在数据寄存器空中断服务程序中必须写入一个新的数据到 UDR 以清零 UDRE,或者是禁止数据寄存器空中断。否则一旦该中断服务程序结束,一个新的中断将再次产生。

当整个数据帧被移出发送移位寄存器,同时发送寄存器中又没有新的数据时,发送结束标志 TXC 将被置位。当 UCSRB 上的发送结束中断使能位 TXCIE (且全局中断使能) 置"1"时,随着 TXC 标志位被置位,SPI 发送结束中断将被执行。一旦进入中断服务程序,TXC 标志位即被自动清零。CPU 也可以对该位写"1"来清零。

禁止发送器

当 TXEN 清零后,只有等所有的数据都发送完成以后发送器才能够真正禁止,即发送移位寄存器与发送缓冲寄存器中都没有要传送的数据。发送器禁止以后,TxD 引脚恢复其通用IO 功能。

接收结束标志及中断

SPI 接收器有一个标志位:接收结束标志 RXC,用来表明接收缓冲器中是否有未被读出的数据。当接收缓冲器中有未被读出的数据时,此位为"1",反之为"0"。如果接收器被禁止,接收缓冲器会被刷新,RXC 也会被清零。置位 UCSRB 的接收结束中断使能位 RXCIE 后,只要 RXC 标志被置位(且全局中断被使能),就会产生 SPI 接收结束中断。使用中断方式进行数据接收时,数据接收结束中断服务程序必须从 UDR 读取数据来清零 RXC 标志,否则只要