Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Коммуникационная сложность

- У Аси есть слово X, а у Бори слово Y, где $X,Y \in \{0,1\}^k$. (Ася не знает Y, а Боря не знает X.)
- Задана функция f, определённая на $\{0,1\}^k \times \{0,1\}^k$.
- Ася и Боря хотят вычислить значение f(X,Y), переслав для этого друг другу минимум данных.
- $L_{\text{comm}}(f) \coloneqq$ число битов, которые в сумме Ася и Боря перешлют друг другу в худшем случае при использовании фиксированного алгоритма вычисления f.
- Пример: $L_{\text{comm}}(\mathbb{1}_{X=Y}) = k+1$. (Доказательство: пр-п Дирихле.)

Коды в качестве усилителей различия

Построим рандомизированный алгоритм вычисления $\mathbb{1}_{X=Y}$, при котором Ася и Боря пересылаю друг другу всего $O(\log k)$ битов.

Идея: используем код, исправляющий ошибки, в качестве «усилителя различия» слов.

Ася и Боря кодируют X и Y в одном и том же $[n,k,d]_q$ -коде (кодируя биты 0 и 1 различными элементами из \mathbb{F}_q), получая слова $X',Y'\in\mathbb{F}_q^n$.

Ася выбирает *случайную* позицию в X' и пересылает её номер (в двоичной записи объёмом $\lceil \log_2 n \rceil$) и её значение (объёмом $\lceil \log_2 q \rceil$).

Боря проверяет, совпадает ли принятое от Аси значение с соответствующим значением в Y', и затем результат сравнения он одним битом пересылает Асе.

Вероятность ошибки не превосходит (n-d)/n.

Коды в качестве усилителей различия

Пусть $\varepsilon \in (0,1)$.

Ася и Боря используют $\left[\frac{1}{\varepsilon}\cdot k, k, \frac{1-\varepsilon}{\varepsilon}\cdot k+1\right]_q$ -код Рида—Соломона, где $q\in\left[\frac{k}{\varepsilon},\frac{2k}{\varepsilon}\right]$.

Тогда вероятность ошибки будет не больше ε , а количество бит, которые Ася и Боря перешлют друг другу, равно $O(\log \frac{k}{\varepsilon})$.

О криптографии с открытым ключом на одном слайде

- Ася вывешивает в интернете алгоритм с открытыми исходниками, который преобразует сообщения X в $\phi(X)$.
- У Аси есть алгоритм, который знает только она, позволяющий по коду вида $\phi(X)$ эффективно восстановить сам X.
- Никто, кроме Аси (т.е. у кого нет секретного алгоритма декодирования) не должен уметь эффективно восстанавливать X по $\phi(X)$. Так что собеседник Аси Боря может выкладывать в открытый доступ сообщения, к которым сможет обращаться кто угодно, но расшифровать (за приемлемое время) Борины послания сможет только Ася.

Криптосхема МакЭлиса (R. McEliece '1978)

Ася выбирает (не раскрывая никому)

- произвольный [n,k,d]-код C, где $d \geq 2t+1$; этот код должен обладать эффективными алгоритмами построения порождающей матрицы $G \in \mathbb{F}_2^{k \times n}$ и декодирования с исправлением не более t ошибок.
- ullet случайную невырожденную матрицу S из $\mathbb{F}_2^{k imes k}$,
- *случайную* перестановочную матрицу P из $\mathbb{F}_2^{n \times n}$.

Затем Ася вычисляет матрицу $\hat{G} \coloneqq SGP \in \mathbb{F}_2^{k imes n}$ и выкладывает в открытый доступ алгоритм, который

• по сообщению $X \in \mathbb{F}_2^k$ вычисляет вектор $X \hat{G} \in \mathbb{F}_2^n$ и искажает его в t случайных битах.

Криптосхема МакЭлиса (R. McEliece '1978)

- [n,k,d]-код C , с порождающей матрицей $G\in \mathbb{F}_2^{k imes n}$
- случайная невырожденная матрица $S \in \mathbb{F}_2^{k \times k}$ (секрет Аси!),
- случайная перестановочная матрица $P \in \mathbb{F}_2^{n imes n}$ (секрет Аси!),
- $\hat{G} \coloneqq \mathit{SGP} \in \mathbb{F}_2^{k \times n}$ известная всем матрица,
- По сообщению $X \in \mathbb{F}_2^k$ вычисляется вектор $X \hat{G} \in \mathbb{F}_2^n$ и искажается в t случайных битах. Получается вектор \tilde{X} .

Ася может восстановить X, декодировав с исправлением ошибок вектор $\tilde{X}P^{-1}$ (ведь это искажённое слово кода C), и домножив результат на S^{-1} .

Криптосхема МакЭлиса (R. McEliece '1978)

- $G \in \mathbb{F}_2^{k \times n}$ порождающая матрица «хорошего» [n,k,d]-кода
- случайная невырожденная матрица $S \in \mathbb{F}_2^{k \times k}$ (секрет Аси!),
- *случайная* перестановочная матрица $P \in \mathbb{F}_2^{n \times n}$ (секрет Аси!),
- $X \to XSGP \to \tilde{X}$

Почему именно так:

- Предполагается, что задача NCP даже при известной порождающей матрице кода трудна для «почти всех» кодов. Значит, даже зная хороший алгоритм декодирования кода с матрицей G,
 - трудно декодировать код с матрицей GP.
- Домножение X на S перед кодированием призвано разрушить внутреннюю структуру X, чтобы трудно было «угадать» X.

\emph{l} -однородные множества

Множество наборов $U\subseteq\{0,1\}^n$ называется l-однородным, если для любых $i_1,\dots,i_l\in\{1,\dots,n\}$ и любых $t_1,\dots,t_l\in\{0,1\}$ выполнено $\frac{\left|\left\{(a_1,\dots,a_n)\in U\mid a_{i_1}=t_1,a_{i_2}=t_2,\dots,a_{i_l}=t_l\right\}\right|}{|U|}=2^{-l}$

То есть при случайном равномерном выборе набора $a \in U$ любые l бит в a будут равны фиксированным значениям с той же вероятностью, что и при случайном выборе из «полного» множества $\{0,1\}^n$.

\emph{l} -однородность и порождающая матрица

Лемма.

Пусть $C \subseteq \mathbb{F}_2^n$ — линейный [n,k,...]-код. Множество C является l-однородным т. и т.т., когда любые l столбцов порождающей матрицы кода линейно независимы.

Доказательство:

Пусть G_1 , ..., $G_n \in \mathbb{F}_2^k$ — столбцы порождающей матрицы G кода C.

Пусть, например, $G_1+G_2+\cdots+G_S=\mathbf{0}$, где $s\leq l$. Рассмотрим тогда любые t_1,\ldots,t_l , такие, что $t_1+\cdots+t_S=1$. Имеем

$$\frac{|\{(a_1, \dots, a_n) \in C \mid a_1 = t_1, \dots, a_l = t_l\}|}{|C|} = 0 \neq 2^{-l}$$

\emph{l} -однородность и порождающая матрица

 G_1 , ..., $G_n \in \mathbb{F}_2^k$ — столбцы порождающей матрицы G кода C.

Пусть теперь G_1, \ldots, G_l линейно независимы. Тогда ранг матрицы $(G_1|G_2|\ldots|G_l)$ равен l, и значит в G найдутся строки, — пусть это строки $g_1,\ldots,g_l\in\mathbb{F}_2^n$, — такие, что их начальные куски длины l линейно независимы.

Обозначим
$$C_{t_1,\dots,t_l} \coloneqq \{ {m c} \in {\cal C} \mid c_1 = t_1,\dots,c_l = t_l \}.$$

Для любых $t_1', \dots, t_l', t_1'', \dots, t_l''$ найдётся кодовое слово $m{a}$ (линейная комбинация строк $m{g}_1, \dots, m{g}_l$), для которого

$$a_1 = t_1' + t_1'', \dots, a_l = t_l' + t_l''.$$

Тогда
$$C_{t_1',\dots,t_l'} = C_{t_1'',\dots,t_l''} + \boldsymbol{a}$$
, отсюда $\left|C_{t_1',\dots,t_l'}\right| = \left|C_{t_1'',\dots,t_l''}\right|$.

\emph{l} -однородность и порождающая матрица

 $G_1,\ldots,G_n\in\mathbb{F}_2^k$ — столбцы порождающей матрицы G кода C.

$$C_{t_1,\dots,t_l} := \{ c \in C \mid c_1 = t_1, \dots, c_l = t_l \}.$$

Если G_1 , ..., G_l линейно независимы, то для любых t_1' , ..., t_l' , t_1'' , ..., t_l''

имеем
$$\left|C_{t'_{1},...,t'_{l}}\right| = \left|C_{t''_{1},...,t''_{l}}\right|$$
.

Отсюда $\left|C_{t_1,\dots,t_l}\right| = \frac{|C|}{2^l}$ для любых $t_1,\dots,t_l.$

Лемма доказана.

\emph{l} -однородность и кодовое расстояние

Лемма.

Пусть $C \subseteq \mathbb{F}_2^n$ — линейный [n,k,...]-код. Множество C является l-однородным т. и т.т., когда любые l столбцов порождающей матрицы кода линейно независимы.

Теорема.

Двоичный линейный код C является l-однородным множеством т. и т.т., когда $d(C^{\perp}) > l$.

Доказательство: применяем лемму, заметив, что порождающая матрица C является проверочной для C^{\perp} , и используем утверждение о связи кодового расстояния с проверочной матрицей линейного кода.

q-ичные l-однородные множества

Теорема.

Двоичный линейный код C образует l-однородное множество т. и т.т., когда $d(C^{\perp}) > l$.

Замечание.

Аналогично можно вести понятие q-ичного l-однородного множества и доказать похожую теорему: линейный код $C \subseteq \mathbb{F}_q^n$ образует l-однородное множество т. и т.т., когда $d(C^\perp) > l$.

\emph{l} -однородные множества на основе РМ-кодов

Интересны l-однородные множества малой (полиномиальной по n) мощности.

Для того, чтобы получить такое множество, нужно взять линейный код ${\it C}$ у которого

- d(C) > l
- dim C велико

и затем рассмотреть C^{\perp} .

Возьмём в качестве $\mathcal C$ код Рида-Маллера с параметрами

$$m \coloneqq \lceil \log_2 n \rceil$$
, $r \coloneqq m - 2$

Для такого C имеем $d(C) = 2^{m-r} = 4$.

Код C^{\perp} тоже является РМ-кодом, с параметром r'=m-r-1=1.

При этом $|C^{\perp}| = 2^{1+m} \le 4n$.

l-однородные множества на основе РМ-кодов

Доказанное утверждение:

Код Рида—Маллера с параметрами $m = \lceil \log_2 n \rceil$ и r = 1 образует 3-однородное множество наборов длины n, мощность которого линейна по n.

Задача $3_{≥\gamma}$ -SAT

Задача $3_{\geq \gamma}$ -SAT: для заданной 3-КНФ найти набор, на котором не менее чем γ -я доля всех скобок обращается в единицу. Обычная задача 3-SAT — это $3_{\geq 1}$ -SAT.

Теорема.

Задача 3_{≥7/8}-SAT полиномиально разрешима.

Полиномиальность 3_{≥7/8}-SAT

Теорема.

Задача $3_{\geq 7/8}$ -SAT полиномиально разрешима.

Доказательство:

Пусть 3-КНФ содержит n переменных и m скобок.

При случайном выборе набора из $\{0,1\}^n$ имеем $\Pr[\varphi$ иксированная скобка равна нулю $]=\frac{1}{8}$

Отсюда

 \mathbb{E} #скобок, равных нулю = $\frac{m}{8}$

Заметим, что $\Pr[\phi_{\rm ИКС}.\,c_{\rm K}.=0]=\frac{1}{8}$ и в том случае, когда берётся случайный набор из произвольного 3-однородного множества.

Полиномиальность 3_{≥7/8}-SAT

Получается, что в любом 3-однородном множестве найдётся набор, на котором $\leq \frac{m}{8}$ скобок равны нулю.

Получается простой алгоритм:

• Перебираем всевозможные наборы РМ-кода (с нужными параметрами) и подставляем их в 3-КНФ. Хотя бы один из наборов должен сгодиться.

Задача о разделении секрета

Задача:

Есть несколько человек и *секрет*. Нужно сообщить людям некоторую информацию, так, чтобы

- все вместе они могли бы восстановить секрет
- никакая компания из меньшего числа человек не могла бы восстановить секрет

Задача о разделении секрета

Пусть нужно разделить секрет между m людьми.

- Сопоставляем секрету элемент $s \in \mathbb{F}_q$.
- Берём q-ичный код C , такой, что $d(C^\perp) = m+1$.
- В порождающей матрице G кода C найдутся (m+1) линейно зависимых столбцов, пусть это первые (m+1) столбцов. Тогда найдутся такие $\alpha_1, \dots, \alpha_{m+1} \in \mathbb{F}_q \setminus \{0\}$, что в любом кодовом слове c первые (m+1) разрядов удовлетворяют соотношению $\alpha_1 c_1 + \dots + \alpha_{m+1} c_{m+1} = 0$.
 - Т.е. c_{m+1} всегда можно однозначно определить по c_1, \dots, c_m .

Задача о разделении секрета

Секрет $s \in \mathbb{F}_q$ разделяем между m людьми.

- Берём q-ичный код C, такой, что $d(C^{\perp}) = m+1$. Пусть в порождающей матрице G кода C первые (m+1) столбцов линейно зависимы.
- Выбираем *случайные* элементы t_1 , ..., t_{m-1} .
- Элемент t_m однозначно выбираем так, чтобы в коде ${\it C}$ нашлось слово вида

$$(t_1, \dots t_{m-1}, t_m, s, \dots)$$

Поскольку C является q-ичным m-однородным множеством, зная любые (m-1) из чисел t_1,\ldots,t_m , об s ничего нельзя сказать.

Как кодируются данные на CD

Параметры CD-ROM:

- Длина дорожки ≈ 5 км
- Ширина дорожки ≈ 6 мкм
- Высота углублений ≈ 1.2 мкм

Задача: обеспечить сохранность данных при наличии царапин/пыли/грязи.

Как кодируются данные на CD

Одна царапина может затрагивать много последовательных битов:

В этом случае говорят о наличии пакетов ошибок.

Как кодируются данные на CD

Одна царапина может затрагивать много последовательных битов.

Выход: кодировать данные *с перемежением* (*interleaving*), так, чтобы последовательные биты на дорожке не отвечали одному и тому же кодовому слову.

Добавляем помехоустойчивое кодирование Рида—Соломона и получаем технологию:

CIRC = Cross-interleaved Reed—Solomon Codes

- Каждый отсчёт одного канала звукозаписи занимает 16 бит
- Разбиваем 16 бит на две восьмёрки, и считаем каждую из них элементом \mathbb{F}_{256} . Пару элементов \mathbb{F}_{256} будем обозначать одной буквой.
- Запись на CD двухканальная (стерео), так что данные выглядят так:

$$L_1R_1L_2R_2L_3R_3 \dots$$

— где L_i , $R_i \in \mathbb{F}^2_{256}$.

Последовательность данных

$$L_1R_1L_2R_2L_3R_3 \dots$$

разбивается на кадры (фреймы):

$$L_1R_1 \dots L_6R_6 \mid L_7R_7 \dots L_{12}R_{12} \mid L_{13}R_{13} \dots$$

Затем в каждой паре последовательных фреймов перемежаем данные так (на примере первой пары фреймов):

$$L_1L_3L_5R_1R_3R_5L_8L_{10}L_{12}R_8R_{10}R_{12}L_7L_9L_{11}R_7R_9R_{11}L_2L_4L_6R_2R_4R_6$$

После перемежения фреймов получается последовательность:

$$L_1L_3L_5R_1R_3R_5L_8L_{10}L_{12}R_8R_{10}R_{12}L_7L_9L_{11}R_7R_9R_{11}L_2L_4L_6R_2R_4R_6\ \dots$$

Далее к каждым 24 последовательным байтам применяется систематический [28,24,5]₂₅₆-код Рида—Соломона.

Так, например, к последовательности

$$L_1L_3L_5R_1R_3R_5L_8L_{10}L_{12}R_8R_{10}R_{12}$$

добавятся 4 проверочных байта, которые вставляются в середину:

$$L_1L_3L_5R_1R_3R_5$$
P₁**P**₂ $L_8L_{10}L_{12}R_8R_{10}R_{12}$

Получается последовательность 28-байтных слов.

Каждый блок из 28 таких слов записывается в виде матрицы 28 × 136:

Здесь $c_{i,i}$ — это j-й байт i-го слова.

Затем каждый столбец этой матрицы кодируется с помощью $[32,28,5]_{256}$ -кода Рида—Соломона.

Получается последовательность 32-байтных слов, она и записывается на CD.