introdução aos sistemas dinâmicos

caos

1.

Considere o sistema dinâmico discreto $\mathcal{S}:[0,1] \rightarrow [0,1]$ definido por

$$S(x) = \begin{cases} 2x & 0 \le x < 1/2 \\ 2x - 1 & 1/2 \le x \le 1 \end{cases}$$

- 1.1 Mostre que todos os pontos fixos e pontos periódicos de ${\cal S}$ são repulsivos.
- Mostre que o conjunto Per(S) dos pontos periódicos de S é um conjunto denso no intervalo [0,1].
- 1.3 Conclua que o sistema dinâmico S tem caos em todo o intervalo [0,1].

2.

Chama-se aplicação tenda ao sistema dinâmico discreto $\mathcal{T}:[0,1] \to [0,1]$ definido por

$$\mathcal{T}(x) = \begin{cases} 2x & \text{se } 0 \le x < 1/2; \\ 2 - 2x & \text{se } 1/2 \le x \le 1. \end{cases}$$

- 2.1 Mostre que todos os pontos fixos e pontos periódicos de ${\mathcal T}$ são repulsivos.
- Mostre que o conjunto $Per(\mathcal{T})$ dos pontos periódicos de \mathcal{T} é um conjunto denso no intervalo [0,1].
- 2.3 Conclua que o sistema dinâmico \mathcal{T} tem caos em todo o intervalo [0,1].

3.

Considere o sistema dinâmico discreto $f: \mathbb{R} \to \mathbb{R}$ definido por

$$f(x) = \begin{cases} 3x & \text{se } x < 1/2; \\ 3 - 3x & \text{se } x \ge 1/2. \end{cases}$$

Seja $\mathcal C$ o conjunto dos pontos cuja órbita por f permanece no intervalo [0,1].

- Caracterize os pontos de C.
- 3.2 Mostre que todos os pontos fixos e pontos periódicos de f são repulsivos.
- 3.3 Mostre que o conjunto Per(f) dos pontos periódicos de f é um conjunto denso em C.
- 3.4 Conclua que o sistema dinâmico f tem caos em \mathcal{C} .