Midterm: STAT 570

Philip Pham

November 11, 2018

1. Consider an situation in which we are interested in the risk of death in the first 5 years of life (the under-5 mortality mortality risk, or U5MR) in each of 2n areas in two consecutive time periods. Consider a hypothetical situation in which a malaria prevention intervention is randomized across the areas, immediately after the first time periods. Areas indexed by $i=1,\ldots,n$ are control areas, while areas $i=n+1,\ldots,2n$ receiving the intervention.

In each area and each time period alive/dead status of M_{it} children are recorded, call the number dead D_{it} for i = 1, ..., 2n, t = 0, 1. Let

$$Y_{it} = \log\left(\frac{D_{it}/M_{it}}{1 - D_{it}/M_{it}}\right),\tag{1}$$

denote the logit of the U5MR in area i in period t, i = 1, ..., n, t = 0, 1.

Suppose the true model is given by

$$Y_{it} = \beta_0 + \alpha_i + \beta_1 x_{it} + \epsilon_{it}, \tag{2}$$

where $\alpha_i \sim \mathcal{N}\left(0, \sigma_{\alpha}^2\right)$ are area-specific random effects and $\epsilon_{it} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$, represents measurement error, with α_i and ϵ_{it} independent, $i = 1, \ldots, 2n, t = 0, 1$. The covariate x_{it} is an indicator for the intervention so that $x_{i0} = 0$ for $i = 1, \ldots, 2n, x_{i1} = 0$ for $i = 1, \ldots, n$, and $x_{i1} = 1$ for $i = n + 1, \ldots, 2n$.

We will consider three models for the child mortality data:

Follow-up model: $Y_{i1} = \beta_0^{\dagger} + \beta_1^{\dagger} x_{i1} + \epsilon_{i1}^{\dagger}$, for $i = 1, \dots, 2n$.

Change model: $Z_i = Y_{i1} - Y_{i0} = \beta_0^* + \beta_1^* x_{i1} + \epsilon_i^*$, for i = 1, ..., 2n.

Analysis for Covariance (ANCOVA) model: $Y_{i1} = \beta_0^{\ddagger} + \gamma Y_{i0} + \beta_1^{\ddagger} x_{i1} + \epsilon_i^{\ddagger}$, for $i = 1, \dots, 2n$.

(a) Carefully interpret β_1^{\dagger} , β_1^{\star} and β_1^{\ddagger} in these models, and hence what each of $\mathbb{E}\left[\hat{\beta}_1^{\dagger}\right]$, $\mathbb{E}\left[\hat{\beta}_1^{\star}\right]$, and $\mathbb{E}\left[\hat{\beta}_1^{\dagger}\right]$ are unbiased estimators of.

Solution: Let's examine each case.

 β_1^{\dagger} : Let $Y_{:,1} = \begin{pmatrix} Y_{1,1} & \cdots & Y_{2n,1} \end{pmatrix}^{\mathsf{T}}$. Let $\beta = \begin{pmatrix} \beta_0 & \beta_1 \end{pmatrix}^{\mathsf{T}}$. Let X be the $2n \times 2$ matrix with 1s in the first column and $x_{1,1}, \ldots, x_{2n,1}$ in the second column. We can write $Y_{:,1} = X\beta + \alpha_i + \epsilon_{:,1}$.

We have that

$$\hat{\beta}^{\dagger} = (X^{\dagger}X)^{-1} X^{\dagger}Y_{:,1} = (X^{\dagger}X)^{-1} X^{\dagger} (X\beta + \alpha + \epsilon_{:,1})$$

$$= \beta + (X^{\dagger}X)^{-1} X^{\dagger} (\alpha + \epsilon_{:,1})$$

$$\sim \mathcal{N} \left(\beta, \left(\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right) (X^{\dagger}X)^{-1}\right), \tag{3}$$

so we'll obtain unbiased estimates of β with higher variance than if we had the correct model.

So, β_1^{\dagger} is the expected change in the logit of the U5MR after applying the treatment.

 β_1^* : We have that $Z_i = Y_{i1} - Y_{i0} = \beta_1 (x_{i1} - x_{i0}) + \epsilon_{i1} - \epsilon_{i0} = \beta_1 x_{i1} + (\epsilon_{i1} - \epsilon_{i0})$. Solving for $\hat{\beta}^*$, we find

$$\hat{\beta}^{\star} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} Z_{i} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} \left(X \begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix} + (\epsilon_{:,1} - \epsilon_{:,0}) \right)$$

$$= \begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix} + (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} (\epsilon_{:,1} - \epsilon_{:,0})$$

$$\sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \beta_{1} \end{pmatrix}, 2\sigma_{\epsilon}^{2} (X^{\mathsf{T}}X)^{-1} \right), \tag{4}$$

so $\hat{\beta}_1^{\star}$ is an unbiased estimate of β_1 .

Thus, β_1^{\star} is again the expected change in the logit of the U5MR after applying the treatment.

 β_1^{\ddagger} : Consider the different ways of writing Y_{i1} ,

$$Y_{i1} = \beta_0 + \alpha_i + \beta_1 x_{i1} + \epsilon_{i1}$$

$$= (\beta_0 + \alpha_i + \beta_1 x_{i0} + \epsilon_{i0}) + \beta_1 x_{i1} + \epsilon_{i1} - \epsilon_{i0}$$

$$= Y_{i0} + \beta_1 x_{i1} + (\epsilon_{i1} - \epsilon_{i0})$$

$$= \beta_0^{\ddagger} + \gamma Y_{i0} + \beta_1^{\ddagger} x_{i1} + \epsilon_i^{\ddagger}.$$

Define X^{\ddagger} to be the $2n \times 3$ matrix with the first two columns being X and third column being $Y_{:,0}$.

Then, we have that

$$\begin{pmatrix} \hat{\beta}_{0}^{\dagger} \\ \hat{\beta}_{1}^{\dagger} \\ \hat{\gamma} \end{pmatrix} = \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)^{-1} \left(X^{\ddagger} \right)^{\mathsf{T}} Y_{:,1}
= \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)^{-1} \left(X^{\ddagger} \right)^{\mathsf{T}} \left(X^{\ddagger} \begin{pmatrix} 0 \\ \beta_{1} \\ 1 \end{pmatrix} + \epsilon_{:,1} - \epsilon_{:,0} \right)
= \begin{pmatrix} 0 \\ \beta_{1} \\ 1 \end{pmatrix} + \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)^{-1} \left(X^{\ddagger} \right)^{\mathsf{T}} (\epsilon_{:,1} - \epsilon_{:,0})
\sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \beta_{1} \\ 1 \end{pmatrix}, 2\sigma_{\epsilon}^{2} \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right)^{-1} \right).$$
(5)

Again, $\hat{\beta}_1^{\ddagger}$ is an unbiased estimate of β_1 .

All in all, we have that the expected value of the estimates

$$\mathbb{E}\left[\hat{\beta}_{1}^{\dagger}\right] = \mathbb{E}\left[\hat{\beta}_{1}^{\star}\right] = \mathbb{E}\left[\hat{\beta}_{1}^{\dagger}\right] = \beta_{1},\tag{6}$$

so β_1^{\dagger} , β_1^{\star} , β_1^{\dagger} can all be interpreted as the expected change in U5MR after applying the treatment.

(b) Evaluate $\operatorname{var}\left(\hat{\beta}_{1}^{\dagger}\right)$, $\operatorname{var}\left(\hat{\beta}_{1}^{\star}\right)$, and $\operatorname{var}\left(\hat{\beta}_{1}^{\dagger}\right)$. Comment on the efficiency of the estimators arising from each of the three models.

Solution: While Equation 6 tells us that the expectation of our estimators is the same, the variances are different.

 $\hat{\beta}_1^{\dagger}$: We can compute the variance from Equation 3. First, we have that

$$X^{\mathsf{T}}X = \begin{pmatrix} 2n & \sum_{i=1}^{2n} x_{i1} \\ \sum_{i=1}^{2n} x_{i1} & \sum_{i=1}^{2n} x_{i1}^{2} \end{pmatrix} = \begin{pmatrix} 2n & n \\ n & n \end{pmatrix}$$

$$\implies (X^{\mathsf{T}}X)^{-1} = \frac{1}{n^{2}} \begin{pmatrix} n & -n \\ -n & 2n \end{pmatrix} = \frac{1}{n} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}. \tag{7}$$

Thus, we find that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\dagger}\right) = \frac{2}{n} \left(\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}\right). \tag{8}$$

 $\hat{\beta}_1^{\star}$: Using Equations 4 and 7, we compute that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\star}\right) = \frac{4}{n}\sigma_{\epsilon}^{2}.\tag{9}$$

 $\hat{\beta}_1^{\ddagger} \mathbf{:} \ \mathrm{We} \ \mathrm{use} \ \mathrm{Equation} \ 5$ to compute the variance. First, we note that

$$\operatorname{var}\left(\hat{\beta}_{1}^{\ddagger}\right) = 2\sigma_{\epsilon}^{2} \left(\left(X^{\ddagger}\right)^{\mathsf{T}} X^{\ddagger}\right)_{2,2}^{-1}$$

$$= 2\sigma_{\epsilon}^{2} \left(\frac{2n\sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=1}^{2n} Y_{i0}\right)^{2}}{\det\left(\left(X^{\ddagger}\right)^{\mathsf{T}} X^{\ddagger}\right)}\right), \tag{10}$$

where

$$\det\left(\left(X^{\ddagger}\right)^{\mathsf{T}}X^{\ddagger}\right) = n\left(2n\sum_{i=1}^{2n}Y_{i0}^{2} - \left(\sum_{i=1}^{2n}Y_{i0}\right)^{2}\right)$$

$$-n\det\left(\sum_{i=1}^{2n}\left(x_{i1} \quad x_{i1}Y_{i0}\right)\right)$$

$$-\left(\sum_{i=1}^{2n}x_{i1}Y_{i0}\right)\det\left(\sum_{i=1}^{2n}\left(1 \quad Y_{i0}\right)\right).$$

$$\left(11\right)$$

Note that $\det\left(\left(X^{\ddagger}\right)^{\mathsf{T}}X^{\ddagger}\right) \geq 0$ since $\left(X^{\ddagger}\right)^{\mathsf{T}}X^{\ddagger}$ is positive definite. The first term is positive since it is $4n^3$ times the MLE estimate for the variance of $Y_{:,0}$.

For the second term, note that

$$\det\left(\sum_{i=1}^{2n} \begin{pmatrix} x_{i1} & x_{i1}Y_{i0} \\ Y_{i0} & Y_{i0}^{2} \end{pmatrix}\right) = n \sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=n+1}^{2n} Y_{i0}\right) \left(\sum_{i=1}^{2n} Y_{i0}\right)$$

$$= \left(n \sum_{i=1}^{n} Y_{i0}^{2} - \left(\sum_{i=n+1}^{2n} Y_{i0}\right) \left(\sum_{i=1}^{n} Y_{i0}\right)\right)$$

$$+ \left(n \sum_{i=n+1}^{2n} Y_{i0}^{2} - \left(\sum_{i=n+1}^{2n} Y_{i0}\right)^{2}\right),$$

$$(12)$$

so the second term is $2n^3$ times an estimator for the variance of $Y_{:,0}$. For the third term, note that

$$\det\left(\sum_{i=1}^{2n} \begin{pmatrix} 1 & Y_{i0} \\ x_{i1} & x_{i1}Y_{i0} \end{pmatrix}\right) = 2n \sum_{i=1}^{2n} x_{i1}Y_{i0} - \left(\sum_{i=1}^{2n} x_{i1}\right) \left(\sum_{i=1}^{2n} Y_{i0}\right),$$

$$= 2n \sum_{i=n+1}^{2n} Y_{i0} - n \sum_{i=1}^{2n} Y_{i0}.$$
(13)

so the third term is $4n^2 \sum_{i=1}^{2n} x_{i1} Y_{i0}$ times the MLE estimate for the covariance of $x_{:,1}$ and $Y_{:,0}$, which should be 0 if the treatment is randomized. Therefore, the numerator of Equation 10 is

$$\lim_{n \to \infty} \frac{2n \sum_{i=1}^{2n} Y_{i0}^2 - \left(\sum_{i=1}^{2n} Y_{i0}\right)^2}{(2n)^2} = \operatorname{var}(Y_{:,0}),$$
(14)

and for the denominator, we use Equations 11, 12, 13 to obtain

$$\lim_{n \to \infty} \frac{\det\left(\left(X^{\ddagger}\right)^{\mathsf{T}} X^{\ddagger}\right)}{\left(2n\right)^{2}} = \frac{n}{2} \operatorname{var}\left(Y_{:,0}\right),\tag{15}$$

so $\lim_{n\to\infty} \operatorname{var}\left(\hat{\beta}_1^{\dagger}\right) = \frac{4}{n}\sigma_{\epsilon}^2$, which is the same as Equation 9.

Thus, we have that the follow-up model estimates β_1 most efficiently if $\sigma_{\alpha}^2 < \sigma_{\epsilon}^2$. In most cases, we'd expect that the measurement error is smaller than the random effect, that is, $\sigma_{\epsilon}^2 < \sigma_{\alpha}^2$, so the change model would estimate β_1 most efficiently in that case. Asymptotically, the ANCOVA model is just as efficient as the change model.

In practice, since we don't have an infinite number of samples of var $(\hat{\beta}_1^{\ddagger}) \geq \text{var}(\hat{\beta}_1^{\star})$. To see this, we show that

$$\frac{1}{n} \det \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right) \lneq \frac{1}{2} \left(2n \sum_{i=1}^{2n} Y_{i0}^2 - \left(\sum_{i=1}^{2n} Y_{i0} \right)^2 \right), \tag{16}$$

which would imply that var $(\hat{\beta}^{\ddagger}) \geq \frac{4}{n} \sigma_{\epsilon}^2$ in Equation 10.

From Equations 11, 12, 13, we have that

$$\frac{1}{n} \det \left(\left(X^{\ddagger} \right)^{\mathsf{T}} X^{\ddagger} \right) = n \sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=1}^{n} Y_{i0} \right)^{2} - \left(\sum_{i=1}^{n} Y_{i0} \right) \left(\sum_{i=n+1}^{2n} Y_{i0} \right)
- \left(\sum_{i=n+1}^{2n} Y_{i0} \right) \left(2 \sum_{i=n+1}^{2n} Y_{i0} - \sum_{i=1}^{2n} Y_{i0} \right)
= n \sum_{i=1}^{2n} Y_{i0}^{2} - \left(\sum_{i=1}^{n} Y_{i0} \right)^{2} - \left(\sum_{i=n+1}^{2n} Y_{i0} \right)^{2}.$$

Using this result and substituting, we'll have that Equation 16 is true if and only if

$$n\sum_{i=1}^{2n}Y_{i0}^2 - \left(\sum_{i=1}^nY_{i0}\right)^2 - \left(\sum_{i=n+1}^{2n}Y_{i0}\right)^2 \leq n\sum_{i=1}^{2n}Y_{i0}^2 - \frac{1}{2}\left(\sum_{i=1}^nY_{i0} + \sum_{i=n+1}^{2n}Y_{i0}\right)^2.$$

With some algebra, this becomes

$$0 \leq \left(\sum_{i=1}^{n} Y_{i0}\right)^{2} + \left(\sum_{i=n+1}^{2n} Y_{i0}\right)^{2} - 2\left(\sum_{i=1}^{n} Y_{i0}\right) \left(\sum_{i=n+1}^{2n} Y_{i0}\right)$$
$$= \left(\sum_{i=1}^{n} Y_{i0} - \sum_{i=n+1}^{2n} Y_{i0}\right)^{2},$$

which is almost surely true, so we have proved Equation 16, which shows that $\operatorname{var}\left(\hat{\beta}_{1}^{\ddagger}\right) \geq \frac{4}{n}\sigma_{\epsilon}^{2} = \operatorname{var}\left(\hat{\beta}_{1}^{\star}\right)$, so the ANCOVA model is less efficient than the change model in general.