UE 803 - Data Science for NLP

Lecture 16: Generating Text with RNNs

Claire Gardent - CNRS / LORIA

Outline

- Language Modeling
 - What is it?
 - What are LM useful for ?
 - Evaluating a LM
- Training LMs and generating with them
 - Pre-neural Language Models
 - RNN-based LMs
- Conditional Generation
 - the encoder-decoder framework
 - the attention mechanism

Language Modeling

Language Modeling

How probable is that text for a given language?

A language model assigns a probability to a text

$$P(W) = P(w_1, w_2, w_3, \ldots, w_n)$$
 \Leftrightarrow $P(w_1, \ldots, w_n) = P(w_1) imes P(w_2 \mid w_1) imes \ldots imes P(w_n \mid w_1...w_{n-1})$ \Leftrightarrow $P(w_1, \ldots, w_n) = \prod_i P(w_i | w_1, w_2, \ldots, i_{i-1})$

Language Modeling

Language Modeling can predict what word comes next.

Given a sequence of words $x_1 ldots x_n$, a Language Model (LM) can compute the probability distribution of the next word x_{n+1}

$$P(x_{n+1} \mid x_1 \dots x_n)$$

Language Models are everywhere

What is LM useful for?

Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:

- Predictive typing
- Speech recognition
- Handwriting recognition
- Spelling/grammar correction
- Authorship identification
- Machine translation
- Summarization
- Dialogue
- etc.

Estimating word sequence probabilities

To create a language model we need to estimate the *conditional probability* of each word in all possible contexts

$$P(w_1,...,w_n) = P(w_1) \times P(w_2 \mid w_1) \times ... \times P(w_n \mid w_1...w_{n-1})$$

The conditional probability of a word can be estimated on a large corpus as follows

$$P(w_n \mid w_1, \dots, w_{n-1}) = \frac{count(w_1, w_2, w_3...w_n)}{count(w_1, w_2, w_3...w_{n-1})}$$

But this is not doable because there are too many possible sequences in natural language. So we simplify and *approximate conditional probabilities* by reducing the context (*Markow Assumption*)

Approximating the joint probability of a sequence

$$P(w_1,\ldots,w_n) = \prod_i P(w_i|w_1,\ldots,i_{i-1})$$

is approximated to

$$P(w_1,\ldots,w_n) = \prod_i P(w_i|w_{i-k},\ldots,i_{i-1})$$

That is, we approximate each factor as

$$P(w_n \mid w_1, \dots, w_{n-1}) \approx P(w_n \mid w_{i-k}, \dots, w_{n-1})$$

Bigram Language Model

A Bigram Language Model computes conditional probabilities of sequences of two words.

Example

$$P(| < s >) = \frac{2}{3} = .67$$
 $P(Sam | < /s >) = \frac{1}{3} = .33$ $P(am | |) = \frac{2}{3} = .67$ $P(< s > | Sam) = \frac{1}{2} = .5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | |) = \frac{1}{3} = .33$

Evaluating a LM, the Shanon game:

How well can we predict the next word?

```
When I eat pizza, I wipe off the ... \begin{cases} & \textit{mushrooms} & 0.1 \\ & \textit{pepperoni} & 0.1 \\ & \textit{anchovies} & 0.01 \\ & \dots & \\ & \textit{and} & 1e-100 \end{cases}
```

A better language model is one which assigns a higher probability to the word that actually occurs

Evaluating a LM, Perplexity

- We train (estime word sequence probabilities) the LM on a large corpus
- We test it on an unseen test set
- The best language model is one that best predicts an unseen test set, that assigns a high probability to the sentences in the test corpus.

Perplexity is the inverse probability of the test set, normalized by the number of words in the test set

$$PP(W) = \sqrt[N]{rac{1}{P(w_1, w_2, \ldots, w_N)}}$$

Minimizing perplexity is the same as maximizing the probability over the test set

Perplexity and Cross-Entropy Loss

The standard evaluation metric for Language Models is perplexity.

$$\text{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\text{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T}$$
 Normalized by number of words

This is equal to the exponential of the cross-entropy loss

$$= \prod_{t=1}^{T} \left(\frac{1}{\hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}} \right)^{1/T} = \exp \left(\frac{1}{T} \sum_{t=1}^{T} -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)} \right) = \exp(J(\theta))$$

Pre-Neural Language Models

Pre-Neural LM Learning

- An n-gram is a sequence of n consecutive words.
 - unigrams: "the", "students", "opened", "their"
 - bigrams: "the students", "students opened", "opened their"
 - trigrams: "the students opened", "students opened their"
 - 4-grams: "the students opened their"
- Collect statistics about the frequency of different n-grams
- Use these to compute conditional probabilities

Neural Language Models

Recurrent Network for Language Modeling

- $\hat{y_t}$: distribution over vocabulary, specify a probability for each word in the vocabulary
- can be used to learn the conditional probability of words

Output distribution

$$\hat{y_t} = softmax(W_{hy}^ op h_t)$$

A Simple RNN Language Model

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

output distribution

$$\hat{m{y}}^{(t)} = \operatorname{softmax}\left(m{U}m{h}^{(t)} + m{b}_2\right) \in \mathbb{R}^{|V|}$$

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $m{h}^{(0)}$ is the initial hidden state

$h^{(0)}$ W_h W_h W_h W_e W_e

word embeddings

$$\boldsymbol{e}^{(t)} = \boldsymbol{E}\boldsymbol{x}^{(t)}$$

words / one-hot vectors

$$oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

Training

A neural LM is learned by running an RNN over large quantities of text

At each time step

- the RNN outputs a *probability distribution over the corpus vocabulary* i.e., it tells us which words are most likely given the preceding context
- The prediction is compared over the expected word (the word that actually occurs at that time step in the text)
- The difference between expectation and prediction is computed using Cross Entropy loss (difference between two distributions)
- The RNN weights are adjusted accordingly (using Stochastic Gradient Descent)

Generating with RNN

Generating text with a RNN Language Model

- An RNN Language Model can be used to generate text by repeated sampling.
- The sampled output is next step's input.

Input-Constrained Text Generation

The Encoder-Decoder Framework

Generating text from an input

- Language Models generate text independently of any input
- Text can also be generated from some input
- This is the research domain of *Natural Language Generation* (NLG)
 - Data-to-Text NLG: Generating text from KB, DB, numerical data etc
 - *MR-to-Text*: Generating text from Meaning Representations
 - Text-to-Text: Generating text from Text (summarisation, simplification, paraphrasing)

Generating text from Meaning Representations

Generating text from Dependency Trees

Surface Realization Challenge 2011 and 2018

- Shallow and deep approaches
- Universal dependency trees

Bills on immigration were submitted by Senator Brownback, a Republican of Kansas.

Generating text from Abstract Meaning Representations

SemEval Shared Task 2017: AMR Generation and Parsing

> A boy wants to visit New York City. A boy wanted to visit New York City.

Generating text from Data

Generating text from Knowledge Bases

The WebNLG Challenge 2017

(John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)

"John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot."

Generating text from text

Generating text from Text

Neural Natural Language Generation

Neural approaches to NLG use the so-called *encoder-decoder* framework

Encoder

- Builds a *representation* for the input
- Converts the input to a real valued vector
- Commonly used encoders:
 - Recurrent: RNN, LSTM, GRU
 - Convolutional
 - Graph
 - Tranformer

Decoder

- A Recurrent network
- Generates text one word at a time
- Conditioned on input

Encoder-Decoder Model using a Recurrent Encoder

- The encoder processes each input token *sequentially* (one after the other)
- The input representation is generally taken to be the *vector resulting from processing the last token in the input*
- This input representation is a *real-valued vector* "representing" the whole input

The different types of input to NLG (text, data, MRs) can be encoded using a recurrent network

Data or meaning representations need to be linearised first

Encoding the Input using an RNN

- x_i are vectors representing the input tokens (words, data or MR tokens)
- At each step, the encoder produces a new vector s_t (state) which represents the content of the preceding string of tokens
- The last state represents the meaning of the whole input
- ullet U and V are the *parameters* learned during training
- tanh is a non linear function

Decoding Words using an RNN

- y_t is the word predicted at time t
- st is the network state at time t
- Each new state is computed taking into account the previous state s_{t-1} and the last predicted word y_{t-1} .
- The softmax function turns a vectors of scores into a probability distribution
- At each time step t, the output/predicted token y_t is sampled from this probability distribution

 $p(Fine | \le >, How are you doing?)$

Conditional Generation

 $p(\text{and}|\leq s \geq \text{Fine},; \text{How are you doing?})$

Attention

Standard RNN Decoding

- The input is compressed into a *fixed-length vector*
- Performance decreases with the length of the input [Sutskever et al. 2014]]

Decoding with Attention

Input

- the previous state s_{t-1}
- the previously generated token y_{t-1} and
- a context vector *ct*

Context vector

- depends on the previous state and therefore *changes at each step*
- indicates which part of the input is most relevant to the decoding step

RNN with Attention

 α can be viewed as a probability distribution over the source words

The next predicted token is sampled from the new *target vocabulary distribution* $softmax(Ws_t)$

A *score* is computed between each encoder hidden state and the current decoder state

$$lpha_{t,j} = v^ op tanh(W_h h_j + W_s s_t + b)$$

Context Vector, the weighted sum of the encoder states

$$c_t = \sum lpha_{t,j}.h_j$$

The *new state* is computed taking into account this context vector.

$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

Lab Session

Generate a film title

- Modify the sequence tagging RNN from last session so that it can be used to generate character sequences
- Write a function which given the **<Start>** symbol and some initial hidden state, generates a film title one character at a time

Useful Links

- Lecture Slides from Stanford NLP Course: Language Modeling. Source for many of the slides in this lecture (for the language modeling part)
 - The video of the class
- A practical guide to Neural NLG. Up to date notes on neural NLG.
- Lecture Slides from Stanford NLP Course: Natural Language Generation