Transmisor

Documento que indica todo lo necesario para usar el transmisor IEEE_8021513_TX.

Funcionalidades probadas

• Máximo tamaño transmisible por trama: mínimo (TODO probar).

Clocks

- clk_ext: [100 MHz]. Clock del procesador ZYNQ (puede tomar otro valor).
- clk_tx: [125 MHz]. Clock del transmisor. Sincrónico con la salida del transmisor.
- clk_fifo_s: [100 MHz]. Clock para cargar datos a la FIFO (puede tomar otro valor).
- clk_fifo_m: [15.625 MHz]. Clock para sacar datos de la FIFO. Sincrónico con la entrada del transmisor.

Entradas

- IPCORE_CLK: [clk]. Señal de clock de 125 MHz.
- IPCORE_RESETN: [bool]. Señal de reset ACTIVE LOW ('0' para resetear).
- new_frame_in: [bool]. Indica que hay un nuevo mensaje a transmitir.
- [reg0, reg1, reg2, reg3]: [uint32_t]. Registros de configuración.
- data_in: [uint8_t]. Datos a transmitir. Se espera que sean recibidos de una interfaz AXI4 Stream de 8bits.
- valid_in: [bool]. Momento en que los datos recibidos son válidos (señal de AXI4 Stream).
- last_frame: Señal TLAST de AXI4 Stream. Indica que es el último elemento de este paquete de transmisión.

Registros

Al recibir la señal "new_frame_in", se van a leer los registros de 32bits (reg0, reg1, reg2 y reg3) durante solamente un ciclo de clock, por lo que los registros pueden cambiar de valor durante la transmisión de un mensaje. Los registros quedan definidos como sigue:

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14
0x00	х	х	х	Х	х	х	х	х	p23	p22	p21	p20	p19	p18	p17	p16	p15	p14
0x04	х	х	х	Х	х	х	х	х	х	х	х	Х	х	х	х	х	m15	m14
0x08	х	х	х	Х	х	concat2	concat1	concat0	х	х	х	Х	х	гер2	гер1	гер0	х	х
0×0c			mimon?	mimon1	mimon0	mimor?	mimoc1	mimoc0	· ·	· ·	· ·	· ·		cn2	cn1	coO	· ·	

- p[23:0]: psduSize. Tamaño en bytes del mensaje a transmitir.
- m[15:0]: messageDuration. En vez de usarse para indicar el tiempo que demora la transmisión, este parámetro se usa para indicar la cantidad de bytes "extra" agregados en la transmisión, para que sea múltiplo de "payloadBitsPerBlock0 = 120".

Por ejemplo: si su mensaje es de 100 bytes, entonces (psduSize = 100; messageDuration = 20).

Si su mensaje es de 300 bytes, entonces (psduSize = 300; messageDuration = 60).

Si bien el mensaje "real" tiene un tamaño fijo, el mensaje escrito en la FIFO de entrada debe ser un múltiplo de 120 bytes.

- block[1:0]: blockSize. Siempre "00".
- rate[2:0]: fecRate. Siempre "001".
- rep[2:0]: repetitionNumber. Siempre "001".
- concat[2:0]: fecConcatenationFactor. Siempre "000".
- si[3:0]: scramblerInitialization. Cualquier valor (testeado con "1111").
- bat[4:0]: batId. Siempre "00010".
- cp[2:0]: cyclicPrefixId. Cualquier valor menos "000". (testeado con "001").
- mimos[2:0]: explicitMimoPilotSymbolCombSpacing. Cualquier valor (se puede usar para cualquier cosa).
- mimon[2:0]: explicitMimoPilotSymbolNumber. Cualquier valor (se puede usar para cualquier cosa).

Outputs

- data_out: [fi(1,14,13)]. Valores de salida, para el DAC.
- valid_out: [bool]. Indica que el valor de salida es válido.
- ready: [bool]. Señal del AXI4-Stream. Indica que está listo para leer de la FIFO los dayos del payload.

Modo de uso

- 1. Escribir en la FIFO el mensaje a transmitir. Si bien el mensaje puede ser de "x" bytes (incluyendo 0 bytes), tenga en cuenta que lo que se escriba en la FIFO debe ser un múltiplo de 120 bytes (completar con '0' de ser necesario).
- 2. Setear los registros reg0, reg1, re2 y reg3.
- 3. Levantar la señal new_frame_in duante un ciclo de clock de "clk_fifo_s". A partir de este punto, los registros pueden ser modificados sin problemas.
- 4. Esperar mientras se procesan el preambulo y encabezado.
- 5. Se va a levantar la señal de ready y va a empezar a leer la FIFO la cantidad de bytes indicada por los registros.
- 6. Esperar mientras se forma el símbolo OFDM.
- 7. Se envía a la salida una señal continua de 125MHz lista para conectarse al DAC. Se indica su validez con la señal valid_out.
- 8. No se puede levantar otra señal de new_frame_in hasta el falling_edge de la señal valid_out.

Block Design

Clocking Wizard (6.0)

utput Clock		Output Freq (MHz)		Phase (degrees)		Duty Cycle (%)	
	Port Name	Requested		Requested	Actual	Requested	1
clk_out1	clk_tx 🛞	125.000	125.00000	0.000	0.000	50.000	9 5
clk_out2	clk_fifo_m 🛞	15.625	15.62500	0.000	0.000	50.000	9
clk_out3	clk_fifo_s 🛞	100.000	100.00000	0.000	0.000	50.000	9
clk_out4	clk_out4	100.000	N/A	0.000	N/A	50.000	
clk_out5	clk_out5	100.000	N/A	0.000	N/A	50.000	
clk_out6	clk_out6	100.000	N/A	0.000	N/A	50.000	
clk_out7	clk_out7	100.000	N/A	0.000	N/A	50.000	
clk_out1	1		Automatic Contr	•	Single-ended		
clk out2	1		Automatic Contr	rol Off-Chip	Differential		
_			 User-Controlled 	On-Chip			
clk_out3	1		<u> </u>				
clk_out3	1		O User-Controlled	Off-Chip			
clk_out3				Off-Chip			

Resets separados para la FIFO y para el IP-Core.

Simulación

Critical warnings: 0.

Sintesis

Critical warnings: 0.

Resource	Utilization	Available	Utilization %
LUT	12149	17600	69.03
FF	15515	35200	44.08
BRAM	13.50	60	22.50
DSP	51	80	63.75
10	160	100	160.00
ММСМ	1	2	50.00

Para el timing, no cumple el tiempo de hold de la FIFO. Esto debería revisarse una vez que se haga la implementación. En el peor de los casos, la frecuencia de clock del esclavo de la FIFO debería de disminuirse.

Design Timing Summary

etup		Hold		Pulse Width			
Worst Negative Slack (WNS):	2.387 ns	Worst Hold Slack (WHS):	-0.085 ns	Worst Pulse Width Slack (WPWS):	2.750 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	-0.085 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	1	Number of Failing Endpoints:	0		
Total Number of Endpoints:	47871	Total Number of Endpoints:	47829	Total Number of Endpoints:	16845		

Implementacion

Error: ""

Historial de versiones

v1.1

Se agrega especificación del tamaño de "120 bytes" múltiplo del mensaje.

v1.0

Creación inicial del documento