# 上一节课回顾

• 人工智能、机器学习和深度学习



人工智能 学科组成



## 机器学习



按方法 划分

# 机器学习流程



监督学习的流程

# 神经网络



#### 深度学习及应用

一番外篇之数字图像处理

#### 1. 数字图像 (digital image)

- •相机或摄像机输出的是什么?
  - 图像/视频:空间中某物体表面点反射或发射的不同波长光的 强度
  - 物体表面不同材质对不同波长的光有不同的反射率



#### □ 黑白图像(二值图像)

是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为二值图像。二值图像的像素值为0、1。



# 黑白图像 ——



#### □灰度图像

灰度图像是指各像素信息由一个量化的灰度级来描述的图像,没有彩色信息。

灰度取值范围为(0~255), "0"表示纯黑色, "255"表示纯白色,中间的数字表示黑白之间的 过渡色。



|   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 130 | 146 | 133 | 95  | 71  | 71  | 62  | 78  |
| 1 | 130 | 146 | 133 | 92  | 62  | 71  | 62  | 71  |
| 2 | 139 | 146 | 146 | 120 | 62  | 55  | 55  | 55  |
| 3 | 139 | 139 | 139 | 146 | 117 | 112 | 117 | 110 |
| 4 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 |
| 5 | 146 | 142 | 139 | 139 | 139 | 143 | 125 | 139 |
| 6 | 156 | 159 | 159 | 159 | 159 | 146 | 159 | 159 |
| 7 | 168 | 159 | 156 | 159 | 159 | 159 | 139 | 159 |







# 灰度图像 ——



#### □彩色图像

彩色图像是指每个像素由R(red)、G(green)、 B(blue)分量构成的图像,其中R、G、B是由不同的 灰度级来描述的





$$R = \begin{vmatrix} 255 & 240 & 240 \\ 255 & 0 & 80 \\ 255 & 0 & 0 \end{vmatrix}$$

$$G = \begin{vmatrix} 0 & 160 & 80 \\ 255 & 255 & 160 \\ 0 & 255 & 0 \end{vmatrix}$$

$$R = \begin{bmatrix} 255 & 240 & 240 \\ 255 & 0 & 80 \\ 255 & 0 & 0 \end{bmatrix} \qquad G = \begin{bmatrix} 0 & 160 & 80 \\ 255 & 255 & 160 \\ 0 & 255 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 80 & 160 \\ 0 & 0 & 240 \\ 255 & 255 & 255 \end{bmatrix}$$

# 彩色图像





#### 2. 数字图像采样 (image sampling)

a. 图像按比例缩小(下采样):

最简单的是减小一半,这样只需取原图的偶(奇)数行和偶(奇)数列构成新的图像。



# 图像的减半缩小效果







#### b. 按比例放大图像 (上采样)

如果需要将原图像放大k倍,则将一个像素值添在新图像的k\*k的子块中。



# 图像的成倍放大效果







# 3. 数字图像操作(数据扩充 data augmentation)

水平镜像的变换结果







#### 图像的垂直镜像



## https://github.com/aleju/imgaug







k=1

## 4. 数字图像滤波 (image filtering)



给定一幅图像,尺寸为 $M \times M$ 

同时给定一个模板(mask, filter), 尺寸为 $m \times n$ 

滤波结果由以下公式计算:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$
where  $a = (m-1)/2$ ,  $b = (n-1)/2$ 

$$x = 0, 1, 2, \dots, M-1, \quad y = 0, 1, 2, \dots, N-1,$$

- 给定3×3 mask , 其系数为: w<sub>1</sub>, w<sub>2</sub>, ···, w<sub>9</sub>
- Mask覆盖的图像区域中的像素值为: z<sub>1</sub>, z<sub>2</sub>, •••, z<sub>9</sub>



• z值为滤波操作后的结果值,将其赋值到原图的z5 位置中

#### Identity function (leaves image alone)







# Mean (averages neighborhood)







# Shift left by one pixel







## Sharpen (identity minus mean filter)





