- I (Plano amostral geral) Seja $\mathcal{U}=\{1,2,3\}$ uma população finita de tamanho N=3 e $\mathbf{Y}=\{1,2,3\}$ o vetor da característica populacional renda bruta (mensal em salários mínimos) familiar. Suponha que o seguinte plano amostral é implementado $p(s_1)=p(\{1,2\})=\frac{1}{2}, p(s_2)=p(\{1,3\})=\frac{1}{4}$ e $p(s_3)=p(\{2,3\})=\frac{1}{4}$.
 - a) Determine as probabilidades de inclusão de primeira e segunda ordem. Determine se o plano amostral induzido pelo esquema de amostragem proposto é mensurável?
 - b) Forneça a distribuição de probabilidades do estimador de Horvitz-Thompson \hat{t}_{π} para o total populacional da renda bruta (mensal em salários mínimos) familiar.
 - c) Determine a variância do estimador de Horvitz-Thompson \hat{t}_{π} para o total populacional da renda bruta (mensal em salários mínimos) familiar sob este plano amostral.
- Plano amostral AASs) Uma amostra aleatória simples e sem substituição de 5 pessoas foi selecionada de uma população de 100 trabalhadores da empresa LInCaTech. Foram coletadas a informações sobre a Renda mensal em miles de reais (Renda) e o sexo do trabalhador. Com as informações da tabela 1 estime:
 - a) A renda média dos trabalhadores. Estabeleça um intervalo de 95% para a renda média.
 - b) A renda total dos trabalhadores. Estabeleça um intervalo de 95% para a renda total.

ID	Sexo	Renda	
I	Fem	I	
2	Mas	2	
3	Fem	3	
4	Fem	4	
5	Mas	5	

Tabela 1: Tabela de Informações dos empregados na amostra

- (Amostragem Bernoulli) Seja s uma amostra obtida de um plano amostral de tipo Bernoulli com probabilidades de inclusão $\pi_k = \pi$ para todo $k \in U$ (população). Seja n_s o tamanho de amostra da amostra s. Mostre que a probabilidade condicional de se obter s dado n_s é a mesma que a probabilidade obtida por uma amostragem aleatória simples sem substituição de tamanho fixado n_s de N (Tamanho da população).
- (Amostragem Sistemática) Suponha uma população de 7 elementos cujos valores para a característica de interesse sejam dados por $\mathbf{Y} = \{1, 3, 5, 7, 6, 4, 2\}$. Calcular a variância do estimador de Horvitz-Thompson para o total populacional em um plano amostral sistemático com a=2 grupos. Para esse caso específico, o plano amostral sistemático é mais eficiente do que o plano amostral aleatório simples sem reposição? Explique.
 - ► (Amostragem estratificada) A Tabela 2 contem as informações do gasto mensal em serviços públicos de uma amostra aleatória estratificada de 120 famílias na cidade de Salvador a qual foi geograficamente dividida em três estratos: Norte, Centro e Sul.

Estime o gasto total de toda a população e estabeleça um intervalo de confiança de 95% para o total populacional.

	Estratos		
Estatísticas	Norte (1)	Centro (2)	Sul (3)
$\overline{N_h}$	4000	6000	10000
W_h	0,3	0,2	0,5
n_h	40	36	44
\bar{y}_h	1,2	2,4	0,6
$ar{Y}_h$	9600	7200	6000
s_h^2	0,36	1,21	0,04
$\operatorname{\sf Var}(ar y_h)$	0,000993	0,004404	0,000226

Tabela 2: Informações do gasto familiar mensal em serviços públicos (em salários mínimos) a partir de uma amostra aleatória simples estratificada na cidade de Salvador.