

This Project of Digital Signal Possessing

About

ECG (Normal & LBBB)

Prof: Manal Mohsen Tantawi

TA: Manar Sultan

Level	Department	ID	Name	
3	Scientific Computing(SC)	2022170006	ابراهیم محد ابراهیم احمد محد	1
		2022170445	منه حسن مجد حسن	2
		2022170303	فاطمة ضياء الدين نبيل عبد السلام	3

1. Preprocessing

Preprocessing prepares the raw ECG signal for further analysis by reducing noise and standardizing the data. The steps are as follows:

Mean Removal

The mean of the ECG signal is subtracted from each data point to center the signal around zero. This step removes any DC offset in the data.

Bandpass Filtering

A Butterworth bandpass filter with a frequency range of 0.5 Hz to 40 Hz was applied. This step suppresses both low-frequency noise (e.g., baseline wander) and high-frequency noise (e.g., muscle artifacts).

Library Used: scipy.signal

The butter function was used to design the Butterworth filter, while the lfilter function was used to apply it.

Parameters:

Filter order: 4 (chosen to balance performance and computational efficiency).

Frequency range: 0.5 Hz to 40 Hz (optimal for retaining ECG signal components while removing noise).

Normalization

The ECG signal was normalized to a standard range to reduce amplitude variability and ensure consistency across different recordings.

Library Used: numpy

The numpy library was used for efficient numerical computation.

Parameters:

Min-max scaling was applied to bring the signal values within the range [0, 1]. This method was chosen for its simplicity and effectiveness in standardizing data.

2. Feature Extraction

Only the most relevant coefficients are used for classification.

• Wavelet Transform:

Decomposes signals into approximation and detail coefficients using the 'db4' wavelet.

• Statistical Features:

Mean, standard deviation, and energy of the coefficients are computed.

Decomposition Levels

The ECG signal was decomposed into **9 levels** using the db4 wavelet. Each level represents a specific frequency band:

Approximation Coefficients: Capture low-frequency trends in the signal.

Detail Coefficients: Represent higher-frequency variations, including noise and specific ECG features like QRS complexes.

Features Extracted

- **Energy coefficients** from different wavelet sub-bands.
- Peak and duration information for the P, QRS, and T waves.
- Variations in wavelet coefficients indicating specific LBBB patterns.

Visualization of Wavelet Decomposition

Below is a 9-level wavelet decomposition of an ECG signal using the Daubechies wavelet (db4). Each level captures specific frequency components of the signal

3. Classification

The classification step assigns a label to the processed ECG signal, determining whether it indicates Normal or LBBB.

Machine Learning Models

- **K-Nearest Neighbors (KNN)**: Classifies signals based on similarity with neighboring data points.
- **Decision Tree**: Uses a tree structure to split data based on feature thresholds.
- **Support Vector Machine (SVM)**: Constructs a hyperplane to separate the two classes (Normal and LBBB).
- **KNN**: Achieved an accuracy of ~93%.
- **Decision Tree**: Achieved an accuracy of ~ 94%.
- **SVM**: Achieved an accuracy of ~ 83%.

(KNN) K	Accuracy
3	0.9326599326599326
5	0.84848484848485
7	0.85353535353535