# Neural Network Accelerator using SystemVerilog

(Integration with Efabless Caravel chip)



Figure 1: Neural Network Architecture to be implemented

# Introduction

#### **XOR Problem**

The XOR problem refers to the inability of single-layer perceptrons to solve non-linearly separable functions, like XOR, highlighting the limitations of early neural networks. This issue contributed to skepticism about Al's potential, fueling the Al Winter in the 1970s. The XOR problem's resolution demonstrated the necessity of non-linear activation functions and multi-layer architectures, foundational for modern Al's success.

Figure 1 displays a simple neural network with 2-neuron hidden layer and sigmoid activation functions that solves the XOR Problem.

# **Mathematical Model**

Modeling architecture from Figure 1 mathematically will provide the formal foundation for the SystemVerilog implementation.

$$\mathbf{h} = \mathbf{W_h} \cdot \mathbf{x} + \mathbf{b_h}$$

$$\mathbf{h} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

$$\mathbf{h'} = \begin{bmatrix} \sigma(h_1) \\ \sigma(h_2) \end{bmatrix}$$

$$o = \mathbf{W_o} \cdot \mathbf{h'} + b_3$$

$$o = \begin{bmatrix} w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} \sigma(h_1) \\ \sigma(h_2) \end{bmatrix} + b_3$$

$$o = w_{31}\sigma(h_1) + w_{32}\sigma(h_2) + b_3$$

$$o' = \sigma(o)$$
(EQ 2)

Figure 2: Mathematical operations of NN in figure 1

#### **Goal Truth Table**

| А | В | O'    | Υ |
|---|---|-------|---|
| 1 | 1 | < 0.5 | 0 |
| 0 | 1 | > 0.5 | 1 |
| 1 | 0 | > 0.5 | 1 |
| 0 | 0 | <0.5  | 0 |

### Values to achieve the Truth Table

| var | value | var | value | var | value |
|-----|-------|-----|-------|-----|-------|
| w11 | 4     | w22 | -4    | b1  | -2    |
| w12 | 4     | w31 | 4     | b2  | 6     |
| w21 | -4    | w32 | 4     | b3  | -6    |

Verification: run a python script that uses those values NN.py inside the python folder.

# **Verilog Implementation**

### Testing & verification

To test the Verilog implementation, navigate to **repo/verilog/cocotb** and write command make. This will run a testbench with the aforementioned weights on the four test cases for A and B, and print the results which successfully match those obtained from the python script.

|     |          |      |            |     |            |            |     | -            |
|-----|----------|------|------------|-----|------------|------------|-----|--------------|
| I   | A Value  |      | B Value    |     | 1          | XOR Output |     | Output > 0.5 |
| 0x  | 0        | 1    | 0x0        | ı   | 0x3e437da  | <br>С      | 0   |              |
| 0x  | 0        | - İ  | 0x3f800000 | Ĺ   | 0x3f333334 | 4          | 1   | İ            |
| 0x  | 3f800000 | _ i_ | 0x0        | i   | 0x3f333334 | 4          | 1   | i            |
| 0 x | 3f800000 | - i  | 0x3f800000 | i i | 0x3e437da  | c          | 1 0 | 1            |

Figure 3: results from cocotb test for the NN module

#### Number format

The SystemVerilog NN module handles **IEEE 754 single-precision floating point** numbers. For example, the conversion of hexadecimal representation to decimal representation for numbers in figure 3 is as follows

| Hex        | Dec        |  |
|------------|------------|--|
| 0x3f800000 | 1.0        |  |
| 0x3e437dac | 0.19090909 |  |
| 0x3f333334 | 0.70000005 |  |

### Sigmoid Function

To make synthesizable SystemVerilog code and overcome the issue of the exponent in the Sigmoid Function  $\frac{1}{1+e^{-x}}$  I used the following approximation.



Figure 4: Sigmoid function approximation shown in solid red; sigmoid function shown in dotted purple.

To implement sigmoid\_approx module in SystemVerilog I utilized the following modules:

- add\_sub
- multiplier
- divider

### Floating Point Unit

I used <u>Lampro-Mellon/Caravel\_FPU</u> which is fully compliant with the IEEE-754 standard. Specifically I used the following modules

- add\_sub
- multiplier
- divider

## Matrix Multiplication

To utilize parallelism in hardware, I designed two custom matrix multiplication units to perform EQ 1 and EQ 2 from Figure 2.

- matrix\_multiply\_1x2\_2x1
- matrix\_multiply\_2x2\_2x1

### Top Module

Top Module is NN in NN.sv that uses implements the mathematical model in figure 2 utilizing the following set of modules

- add\_sub
- multiplier
- divider
- matrix\_multiply\_1x2\_2x1
- matrix\_multiply\_2x2\_2x1
- sigmoid\_approx

# **Caravel Chip Integration**

Integration of NN as Memory Mapped Peripheral

A NN has a specific address range in memory that the core writes data to and reads data from. NN is integrated with the core using the Wishbone interface. The core acts as a master while IP acts as a slave. Write instructions are used at the beginning to write values of weights, biases, and inputs into the IP using the write control signals, then the IP sets acknowledge ack indicating that operation is completed. The unit is controlled via a set of control and status registers (CSRs) that are explained later in this document.

NN range memory is illustrated in the following table

| CSR    | Access Type | offset |
|--------|-------------|--------|
| А      | Read/Write  | 0x00   |
| В      | Read/Write  | 0x04   |
| w11    | Read        | 0x08   |
| w12    | Read        | 0x0C   |
| w21    | Read        | 0x10   |
| w22    | Read        | 0x18   |
| w31    | Read        | 0x1C   |
| w32    | Read        | 0x20   |
| b1     | Read        | 0x24   |
| b2     | Read        | 0x28   |
| b3     | Read        | 0x2C   |
| Result | Read        | 0x30   |

Table 1

All the CSRs are located in the user design space with the <u>base address of 0x3000\_0000</u> + the offset described in table 1.

# Flow of instructions

To perform a forward pass the following steps are required: 1. Write each operand with a store instruction to the core. 2. Once the operation is completed it can be accessed by the core from result CSR with a load instruction