BEST AVAILABLE C

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number: **A2**

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

US 31 October 1996 (31.10.96)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FAN-NON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH. DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of Streptococcus pneumoniae, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	31	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL.	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation	•	
DE	Germany	IJ	Liectuenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-10

20

25

30

Streptococcus pneumoniae Polynucleotides and Sequences

1

FIELD OF THE INVENTION

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on S. pneumoniae many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after Haemophilus influenzae type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for H. influenzae type b, pneumococcal meningitis is likely to become increasingly prominent. S. pneumoniae is the most important etiologic agent of community-

15

20

25

30

35

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind Neisseria meningitidis.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., et al., J. Med. Microbiol. 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disacchiaride receptor on fibronectin. present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

15

20

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

WO 98/18931 PCT/US97/19588

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

10

15

20

25

30

35

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape: optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computerbased systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

15

20

25

30

presence of Streptococcus pneumoniae in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the Streptococcus pneumoniae genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

10

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

5

15

20

25

30

35

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

20

35

The present invention is based on the sequencing of fragments of the Streptococcus pneumoniae genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

5

15

20

25

30

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA. derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

10

15

20

25

30

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of Streptococcus pneumoniae differ somewhat. However, the nucleotide sequences of the genomes of all Streptococcus pneumoniae strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA 85:* 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

5

10

20

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

25

30

35

391, a representative fragment thereof. or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computerbased systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

20

25

30

35

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the Streptococcus pneumoniae genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

10

15

20

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

20

25

30

35

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment. Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

20

25

30

35

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene: and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

15

20

25

30

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

10

15

20

25

30

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

20

30

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEO ID NOS:1-391. a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391. with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

10

20

25

30

35

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press. Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

20

25

30

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK. pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

10

20

25

30

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

WO 98/18931 PCT/US97/19588

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides.—Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

5

10

15

20

25

30

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or

proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a

glycosylation pattern different from that expressed in mammalian cells.

10

15

20

25

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

25

30

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis, Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

10

15

20

25

30

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM I (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

10

15

20

25

30

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

20

25

30

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

polypeptide. Such identifications permit one_skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

15

25

30

35

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al.,

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* 6(A), Rhine *et al.*, Eds., Verlag Press. Weinheim, Germany (1984).

10

15

20

25

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

10

15

20

25

30

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, Methods of Enzymology 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

10

15

20

25

30

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

5

10

15

20

25

30

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

15

20

25

30

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

20

30

35

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents. reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

15

20

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus* pneumoniae genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

5

10

15

20

25

30

35

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression. CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

WO 98/18931 PCT/US97/19588

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

5

10

15

20

25

30

35

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in. among other sources. **REMINGTON'S** PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

15

20

25

30

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

5

10

15

20

25

30

35

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

15

20

25

30

35

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

5

10

15

20

25

30

35

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 µl aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 µl BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 µl TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

10

15

20

25

30

35

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 µl aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 µl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 µl aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

15

20

25

30

35

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two Streptococcus pneumoniue lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, Streptococcus pneumoniae DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One µl of fragments is used with 1 µl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

WO 98/18931 PCT/US97/19588

are plated directly without amplification from the packaging mixture (after dilution with 500 µl of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

Liquid lysates ($100 \,\mu l$) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

10

15

20

25

30

35

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

PCT/US97/19588

5

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 The Catalyst robot is a publicly available Automated DNA Sequencers. sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

30

35

20

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and basecalling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

20

10

15

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria-include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

5

10

15

20

25

30

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

WO 98/18931 PCT/US97/19588

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

10

15

20

25

3. Polyclonal Antibody Production by Immunization

5

10

15

20

25

30

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed. Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition. Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene)-using BglI and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

15

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

10

20

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

TABLE 1

ORF nt length	267	450	426	624	618	424	1359	916	8	2151	1131	1143	1332	177	240	249	453	594	624
HSP nt length	200	450	426	624	618	4.4	1359	918	648	2151	1069	1143	876	175	238	160	453	465	624
percent	9.5	96	80	86	6	66	66	66	66	66	66	66	66	2 89	93	95	66	96	66
match gene name	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	Streptococcus pneumoniae SSZ daktran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	S. pneumoniae dexB, capilA, B, C, D, E, F, G, H, I. J, K) genes. dTDP-rhamnose biosynthesis genes and allA gene	S.pneumoniae dexB, capi(A, B, C, D, E, F, C, H, I.J, K) genes. dTDP-rhamose blosynthesis genes and aliA gene	S. pneumonise dexB. cap1(A.B.C.D.E.F.G.H.1,J.K) genes, dTUP-rhamose biosynthesis genes and aliA gena	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neutaaindase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cus, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Straptococcus pneumoniae neuraminidase B (nanB) gene, complete cds. and neuraminidase (nanA) gene, partial cds	Straptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	Streptococtus pneumonise dasG, rpoD, cpoA genes and ORF3 and ORF5	Straptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thtB) genes, complete cds	S.pnaumoniae DMA for insertion sequence [S1]18 (1372 bp)	S.pneumonise DNA for insertion sequence [S1]81 (966 bp)	S.pneumoniae DMA for insertion sequence 151381 (966 bp)	S.pneumonise dexB. capl(A, B.C, D, E, P.G, H, I, J, K) genes, dTDP-thamnose biosynthesis genes and aliA gene	S.pneumoniae dexB, C biosynthesis genes
match	gb U41735	gb u04047	emb 283335 SP28	emb 283335 SP28		 9b U63526 	ab U43526	ab u43526	gb U43526	 gb U43526 	gb U43526	emb Y11463 SPDH	emb Y11463 SPDN	195/041735	emb 277726 SPIS	emb 277725 SPIS	emb 277725 SPIS	emb 28335 SP28	emb 283335 SP28
Stop (nt)	1003	5720	6167	9147	1 2671	12019	113375	114338	15151	117282	18397	1188	1 2529	111473	7364	1 7570	1 1985	197	7682
Start	437	6919	6592	9770	10489	13 11546	14 12017	113421	11039	115132	17267	9,	1 1198	111297	1 7125	1 7322	1 2533	120197	8305
ONF		5	9_	=_	==	12_	=	===	9	==	=	-	~			-	-	==	2_
Contig ONF	-	~	~		•	•	-	-	-		-	-	-	5	•	•	•		_

S. pnaumoniae - Coding regions containing known sequences

TABLE 1

Contig	ORF	Start	Stop	match	match gene name	percent	HSP nt length	ORF nt
	=	9054	9506	enb 283335 SP28	S.pneumoniae dexB. capila, B.C.D.E.F.G.H.I.J.Kl ganes. dTDP-rhamnose blosynthesis genes and alia gene	\$6	618	819
01	2	9304	8078	 06 L29323	Straptococcus pneumoniae methyl transferase (mtr) gene cluster, complete	6	513	1227
=	~	548	616	emb[279691 SOOR	S.pneumoniae yorf(A.B.C.D.E), [tal., pbpX and regR genes	- 66	316	372
-		892	1980	emb 279691 500R	S.pneumoniae yorf(A, B, C, D, E). ftsL, pbpX and regR genes	66	1089	1089
=	2	3040	2477	emb[279691 SOOR	S.pneumonise yorfla, B.C.D.El, ftst., pbpX and regR genes	66	259	438
-	9	3480	3347	emb 279691 SOOR	S.pneumonias yort(A, B, C, D, E), ftsL, pbpX and regR genes	- 66	234	234
		1090	4557	ROOS 169642 Que	S.pneumonise yorf(A, B.C.D.E). ftel., pbpX and regR genes	96	957	957
	8	90\$+	4886	emb 279691 5008	S.pneumoniae yorf(A, B, C, D, E). (tel., pbpX and regR genes	66	381	381
=	-	¥884	21143	emb X16367 SPPB	Straptococcus pneumoniae pbpX gene for penicillin binding protein 2X	- 66	2259	2259
=	0.	2617	8124	emb[x16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	96	70	993
2	-	52	1126	gb H31296	S. pneumoniae recP gene, complete cds	1 66	437	1074
=	2	18.37	2148	emb 283335 SP28	S.pneumoniae dexB. capija, B.C.D.E.F.G.H.I.J.Kl genes. dTDP-thamnose blosynthesis genes and alia gene		Ø.	312
-		2518	2108	00196H de	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	:	 5
<u></u>	<u></u>	8942	8511	61009239	Straptococcus pneumoniae type 19f capsular polyaaccharide biosynthesis operon, (cps19fABCOEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds	66	340	432
		3910	3458	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	86	453	453
-11	-	† 10 †	1873	emb 277727 SPIS	S. pneumonise DNA for insertion sequence [S13]8 (823 bp)	96	382	432
61	-	‡	529	emb x94909 SPIG	S. pneumoniae iga gene	1 25	368	1 689
19	~	554	757	[gb[L0732]	Streptococcus pneumoniae attachment site (attB), DNA sequence	- 66	167	204
1.9	_	946	1827	95 107752	Streptococcus pneumoniae attachment site (attB), DNA sequence	94	001	882
2		937	182	96[033315]	Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tNNA-Arg and tRNA-Gin genes	66	756	756
50	~	2271	1 6 -	dp (u33315	Streptococcus pneumoniae orfi gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, ENNA-Arg and ENNA-Gin genes	88	1343	7

S. pneumoniae - Coding regions containing known sequences

10	10 G	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF ot
02	-	3175	2684	90 00 6218	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	492	492
20	•	3332	4527	au AF000658	Streptococcus pneumonies R801 tRNA-Arg gene, partial sequence, and putative serine protesse (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DHA polymerase III (spdnan) genes, complete cds	66	1206	1206
2	<u>~</u>	4573	55	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protesse (sphrea), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	17.1	177
2	.	5532	6917	95 7 7 000 658	Streptococcus pneumoniae R&OI (RNA-Arg gene, partial sequence, and putative serine protease (spireal, SPSpoJ (spspoJ), inilator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1386	1386
02		\$669	8212	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphira), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnas) genes, complete cds	66	1218	12.8
02		9314	8471	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protesse (spintal, SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnas) genes, complete cds	80	258	258
02	•	8534	9670	qu Arooo658	Streptococcus pneumoniae R601 tRNA-Arg gene, partial sequence, and putative serine protease (sphire). SPSpoJ (spapoJ), initiator protein (spdnas) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	6	134	1137
22	114 111687	111687	12267	\$145 974442 qwe	S. pneumoniae DNA for insertion sequence ISI318 (1372 bp)	66	226	381
~~	52		112256	\$148 LZLLLZ qwe	٠.	97	353	453
22	;	11165	12662	emb 277726 SP1S	S. pneumoniae DNA for insertion sequence 151318 (1372 bp)	1 96	\$04	\$04
~	2	18398	18910	emb 286112 SP28	S. preumonies genes encoding galacturonosyl transferase and transposase and insertion sequence 151515	96	463	S13
2	≂_	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 151515	66	•	17.5
- 62	_	5624	4203	emb x52474 SPPL	S.pneumoniae ply gene for pneumolysin	99	1422	1422
~	-	6063	5629	4 4 4 4 4 4 4 4 4 4	S. pneumoniae pneumolysin gene, complete cds	96	197	435
92	-	\$500	2	emb x94909 SPIC	S.pneumoniae (ga gene	67	3467	5499
92	~	\$823	5584	95 047687	Streptococcus pneumonise ismunoglobulin Al protesse (192) yene, complete	- 66	151	340
92		69.18	\$68\$	95 047687	Straptococcus pneumoniae immunoglobulin Al protesso (igs) gene, complete	001	05	1194

.

Contig	ORF	Start	Stop (nt)	match	match gene name	percent	HSP nt	ORF DE
9		14498	14854	8245 283335 SE28	S.pneumoniae dexB. capi(A,B.C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose blosynthesis genes and aliA gene	66	338	357
56	6	14763	14924	82dS \$EE(82 qwa	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-thamose blosynthesis genes and allA gene	100	\$6	162
92	2_	14922	15173	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	9.7	242	352
88	-	08	\$0\$	emb 283335 SP28	S.pneumoniae dex8, capila, B.C.D.E.F.G.H.I.J.KI genes, dTDP-rhamnose blosynthesis genes and alia gene	66	426	426
28	~	503	952	ap n04041	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transpasse gene, complete cds	9.7	450	450
e -		.780	1298	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	96	181	519
=		207	152	95 1.08611	Streptococcus pneumoniae maltosefmaltodextrin uptake (malx) and two maltodextrin permease (malC and malD) genes, complete cds	66	1317	1317
	~	1477	2367	95 108611	Streptococcus pneumoniae maltose/maltodextrin uptake (malx) and two maltodextrin permesse (malC and malD) genes, complete cds	96	795	891
~	_:	2593	3430	gb L21856	ma I.R	96	446	928
*	-	2790	2647	9b L21856	Streptococcus pneumoniae malA gena, complete cds; malR gene, complete cds	96	137	144
7.	5	3418	4416	19512218561	Streptococcus pneumoniae maih gene, complete cds; malk gene, complete cds	96	666	999
=	6	7764	7507	95 U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinasa homolog (thrB) genes, complete cds	6	201	258
7.	91	10562	10257	emb x63602 SPBO	S. pneumonise ansA-Box	92	238	306
25		1176	1439	emb 283335 SP28	S.pneumonias dexB. capida, B.C.D.E.F.G.H.I.J.Ki genes, dTDP-rhamose biosynthesis genes and alia gene	87	248	264
٠ <u></u>	<u></u>	1450	1961	961009239	Streptococcus pneumonies type 19F cepsular polysaccheride biosynthesis operon, (cps19fABCDEFGHIJKLM/O) genes, complete cds, and aliA gene, partial cds	86	264	204
5	=	16172	15477	emb x85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps	- 6	969	969
s .	9 :	116961	16170	emp 28335 SP28	S.pneumoniae dexB. capt[A.B.C.D.E.F.G.H.I.J.K] genes, dTDP-rhamnose biosynthesis genes and alia gene	98	792	792
~	6 :	17620	116871	90 10092391	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHJKLANO) genes, complete cds, and alia gene, partial cds	6	750	750

S. pneumonitae - Coding regions containing known sequences

	ĭ							
Cont 19	19 ORF	Start (nt)	Stop (nt)		match gene name	percent	HSP nt	ORF nt
2	~	19061	17604	emb x85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14E, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14K, cps14L, casA genes	36	1458	1458
97	===	1896¢	18352	95 U40786	Streptococcus pneumonise surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORFI gene, partial cds	66	609	609
96	<u>~</u> _	19934	118966	96) 053509	Streptococcus pneumoniae aurface adhesin A precursor (pseA) gene, complete	66	696	696
2	-	1 2743	671	emp 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	66	2565	2,548
7.	-	2982	2824	emb 267739 SPPA	S.pneumoniae parC. parE and transposase genes and unknown	100	162	162
-	_	1 5034	1 3070	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	66	1965	5961
7	-	1.5134	5790	emb 267739 SPPA	S. pneumoniae parC, parE a	66	657	1 259
-	-	1 6171	5833	emb 267739 SPPA	S pneumoniae parc, parE and transposase genes and unknown orf	96	- 6(- 07.
2	5=	112969	113268	9b H28679	S.pneumoniae promoter region DNA	100	99	1 000
67	~ _	1256	2137	gb U41735	Streptococcus pneumoniae peptide methionine suifoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complate cds	66	882	882
~		2405	0722	95 041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homoiog (thrB) genes, complete cds	66	996	996
2	6	5253	7208	au H29686	S. pneumoniae mismatch repair (hexB) gene, complete cds	- 66	9561	1 3301
7	-		1037	emb 217307 SPRE	S. pneumoniae reck gene encoding Reck	- 66	1027	2501
7	~_	1328	2713	emb 234303 SPCI	Streptococcus pneumoniae cin operon encoding the cinA. recA. dinF. lytA genes, and downstream sequences	66	1386	1386
=	-	1 3083	4045	gb H13812	S.pneumonise autolysin llyta) gene, complete cds	- 66	1 196	1 196
=	-	1.3272	3096	gb M13812	S. pneumoniae autolysin (lyth) gene, complete cds	1 001	7.7.1	
=	5	1 3603	3860	gb M13812	S.pneumoniae autolysin (lyth) gene, complete cds	100	258	258
7	9 -	4755	5162	195 (136660)	Streptococcus pneumoniae ORF, complete cds	96	408	104
=	-	5270	5716	19511366601	Streptococcus pneumoniae ORF, complete cds	98	- 44	447
=	- :	6112	6918	195 1.36660	Streptococcus pneumoniae ORF, complete cds	96	431	807
=	6 !	6916	9117	85 136660	Streptococcus pneumoniee ORF, complete cds	1 001	204	204
=	2	7082	7660	195)136660	Streptococcus pneumonise ORF, complete cds	1 6	552	579
=	Ξ	7680	9767	ap r36660	Streptococcus pneumonies ONF, complete cds	86	91	300
=	=	6916	8717	smb 277727 SPIS	S. pneumoniae DNA for insertion sequence [5]318 (623 bp)	97	153	453
					《如子》是中华中年中华的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	****		

S. pneumoniae - Coding regions containing known sequences

ORF nt length percent | HSP nt ident | length 6 6 Ξ 9 5 9.6 S.pneumoniae Dpnll gene region encoding dpnM, dpnM, dpnB, complete cds Streptococcus pneumoniae pyruvale oxidase (spxB) gene, complete cds S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTUP-rhamnose Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion emb|z81335|SPz8 |S.pneumoniae dexB. capl(A, B,C,O,E,F,G,H,I,J,K| genes, dTDP-rhamnose emb|z8]])5|SP28 |S.pneumoniae dexB. cap1[A,B.C,D.E,F.G.H.],J.K] genes. dTDP-rhamnose S.pneumoniae Dpni gene region encoding dpnC and dpnD, complete cds S.pneumoniae Donl gene region encoding donC and donD, complete cds S.pneumonise mismatch repair protein (hex.A) gene, complete cds S.pneumoniae mismatch repair protein (hexA) gene, complete cds S.pneumoniae mismatch repair protein (hexA) gene, complete cds S.pnaumoniae mismatch repair protein (hexA) gene, complete cds S. pneumoniae exodeoxyribonuclesse (exoA) gene, complete cds S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds pneumoniae hyaluronidase gene, complete cds Streptococcus pneumoniae hyaluronidase gene, complete cds emb|277726|SPIS |S.pneumoniae DNA for insertion sequence ISI318 (1372 bp) emb|277725|SPIS |S.pneumoniae DNA for insertion sequence IS1381 (966 bp) 9133 |emb|277725|SPIS |S.pneumoniae DNA for insertion sequence IS1381 (966 bp) Straptococcus pneumoniae Exp7 gans, partial cds sequence 151202 transposase yene, complete cds emb|282001|SP28 |S.pneumoniae pcpA gene and open reading frames 9475 | emb|282001|SP28 |S.pneumoniae pcpA gene and open reading frames |emb|282001|SP28 |S.pneumoniae pcpA gene and upen reading frames |emb|216082|PNAL |Streptococcus pneumoniae aliB gene emb|284379|HS28 |S.pneumoniae dfr gene (isolate 92) blosynthesis genes and aliA gene biosynthesis genes and aliA gene biosynthesis genes and alia gene match gene name Streptococcus |emb|283335|SP28 match acession 195027 961 9b | U04047 | | 2611 | | 95 | H18729 | |62/81H|Q6| | ap | 138034 | |95|H18729| |65/81H|Q6| 95 120670 95 H14340 | 8 | 5197 | 4316 |qb|J04234| 95 120670 |ap|H14340| |6EC#14|76| 111 11864 | 9900 (ur) -ORF _ Ξ Ξ 'n œ ~ ÷ Cont ig 7.0 = = : ŧ = ; ŝ Ç : 2 # Ş š

ABLE 1

pneumoniae - Coding regions containing known sequences

Contig	ORF 1D	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt langth	ORF nt length
0,	=	8108	9874	gb L20562	Streptococcus pneumoniae Exp8 gene, partial cds	66	234	1767
7 7	22	27964	28341	emb x63602 SPBO	S.pneumoniae mash-Box	66	233	1 976
~	~	4607	1552	emb 226850 SPAT	S.pneumoniae (M222) genes for Alfase a subunit, AfPase b subunit and AfPase	- 6	102	1056
1 22	-	121	133	mmp x63602 SPBO	S. pneuson se mask-Box	1 6 1	193	1 339
=	-	3658	7.76	gb J04479	S.pneumoniae DNA polymerase I (polA) gene, complete cds	66	2682	2682
2		4 864	6713	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) ganes, complete cds	86	316	\$16
		\$622	1999	emb 283335 SP28	S. pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	56	624	624
-		3341	2523	emb 283335 SPZB	S. pneumoniae dexB, capill, B, C, D, E, F, G, H, I, J, Kl genes, dTDP-rhamnose biosynthesis genes and aliA gene	91	819	819
1.8	-	=		emb x77249 SPR6	S.pneumonise (R6) claR/claH genes	1 66 1	9119	1 988
1 82 1	~	1095	328	X77249 SPR6	S.pneumontee (R6) cleR/ClaH genes	1 66 1	17.	1 11/4
82 1	910 111016	11436	10816	186 0907211	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	1 6 1	621	621
92	= = = = = = = = = = = = = = = = = = = =	112402	11034	gb U93576	Streptococcus pneumoniae ribonucleasa Hil (rnh8) gene, complete cds	1 98 1	953	696
82	= = = = = = = = = = = = = = = = = = = =	12381	112704	96 093576	reptococcus pneu	001	51	324
- 69	-	3212	13550	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence 151318 (823 bp)	1 66 1	290	1 666
<u>-</u>		4662	6851	gb H36180	Streptococcus pneumoniae transposase. (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	2190	2190
<u></u>	=	6849	8213	dp H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	1365	1365
8	7	8236	0606	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	855	855
6	= :	9283	113017	gb L15190	Streptococcus pneumoniae SAICAR synthetase (purc) gene, complete cds	1 001	101	1 26.76
63	2 - 2	22147	23313	qb L36923	Streptococcus pneumoniae beta-N-acetylhaxosaminidase (strii) gene, complete	86	218	1167
B)	24	23268	23450	ab L36923	Streptococcus pneumoniae beta-H-acetylhexosaminidase (strH) gena. Complete	86	172	183
7	2 .	12527	23505	95 1,36923	Streptococcus pneumoniae beta-N-acetyllexosaminidase (atrH) gene, complete	66	3826	4023
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		• 1 5 5 5 7 7 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8	•	•	*

TABLE 1 S. pneumonise - Coding regions containing known sequences

Contig		Start	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt Jength
6	7 7 7	28472	11.7.72	00 136923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	416	702
8		4554	6173	emb 283335 SP28	S.pneumoniae dexB. capi(A, B,C,D,R,F,G,H,I,J,K) genes, dtOP-rhamnose biosynthesis genes and aliA gene	86	697	1620
- 87	9	1 5951	5316	SI45 \$21442 qme	S.pneumoniae DNA for insertion sequence [S138] (966 bp)	96	439	636
88		2957	3511	0019EH 00	Streptococcus pneumoniae transposase. (comA and comB) and SAICAR synthetase (purC) genes, complete cds	*	555	555
		3466	4269	dp H36180	Streptococcus pneumoniae transposase. (comA and comB) and SAICAR synthetase (purc) genes, complete cds	46	804	804
68	=_	9878	10093	gb H36180	Streptococcus pneumoniae transposase. (comA and comB) and SAICAR synthetase (purC) genes, complete cds	- 6	211	912
- B	3	10062	110412	emb 283335 SPZ8	S. pneumoniae dexB. capi(A.B.C.D.E.F.G.H.I.J.K) genes. dTDP-rhannose blosynthesis genes and alia gene	6	335	351
	0=	1 \$303	1 4941	emb x63602 SPB0	S. pneumoniae mash-Box	68	237	363
6		1708	1520	db U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homosecine kinase homolog (thrB) genes, complete cds	16	140	169
6		68	007	emb 283335 SP28	S.pneumoniae dexB. capila, B.C.D.E.F.G.H.I.J.Kl genes. dtDP-rhamnose biosynthesis genes and alia gene	6	593	612
66	~	(177)	275	emb x17137 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	966	666
66	2	2794	211.1	emb x171 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1083	1083
66	-	37.32	2788	emb xi7337 SPAH	locus conferring	100	945	945
66		5249	11714	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
66	9	1 7262	1 5277	emb(X17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	1986	1986
- -		7.16	1538	emb x54225 SPEU	S.pneumoniae spuA and endA genes for 7 kDa protain and membrane endonuclease	6.	146	1323
6	~_	1492	6171	emb x54225 SPEN	S.pneumoniae spuk a enda genes for 7 kDa protein and membrane endonuclease	66	228	228
ē		7691	1855	emb X54225 SPEH	S.pneumonise epuA and endA genes for 7 kDa protein and membrane endonuclease	001	162	162
		1001	2582	emb x54225 SPEH	S.pneumonise spuh and enda genes for 7 kDs protein and membrane endonuclease	001	682	883
103	_	\$556	2041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	100	396	916
104	~	1347	1556	2777	S pneumonise DNA for insertion sequence 151318 (823 bp)	83	206	210

TABLE

S. pneumoniae - Cuding regions containing known sequences

Cont ig	08. 0.	Start (nt)	Stop (nt)	satch acession	match gene neme	percent	HSP nt length	ORF nt length
105	· ·	5381	8038	SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	86	353	354
105	9	6809	5379	emp 267739 SPPA	. pai E	96	æ	111
107	•	2785	1880	emb X16022 SPPE	S. pneumoniae penA gene	96	72	906
103	<u>~</u>	2913	4988	emb X16022 SPPE	S. pneumonise penk gene	66	1692	2076
103	-	1867	5885	Gmb X13136 SPPE	Streptococcus pneumoniae pena gene for penicillin binding protein 2B lacking N-term. (penicillin resistent strain)	5	107	615
108	6	9068	87.18	657732	:	- 56	342	351
801	~	11308	10922	VddS 661292 qma	S. pneumoniae parC. parE and transposase genes and unknown orf	- 66	199	780
601	-	2768	2241	521.112	ā	96	61	\$28
109	-	2688	2855	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence (51318 (1372 bp)	96	148	168
601	<u>~</u>	2862	3269	emt. 27727 SPIS	S.pneumoniae DNA for insertion sequence 151318 (823 bp)	97	353	# 0#
109	•	5320	3584	95 H18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	1737
=	-	ē	_	gb H36180 	Streptococcus pneumoniae transposase, (comA and comB) and SATCAR synthetase (purC) genes, complete cds	8 	429	429
11	2	9786	8532	emb x99400 SPDA	S. pneumoniae dack gene and ORF	- 66	1257	1257
61	=	_ :	10985	emb x99400 SPDA	S. pneumonise dack gene and ORF	- 66	1116	1116
=		2530	2030	gb #36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	56	18	201
115	<u></u>	11303	10932	ab u04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	-6	37.2	372
:	-	897	3302	emp x72967 SPNA	S. pneumoniae nank gene	- 66	2402	2406
117	~	ונגנ	3831	[emb x72967 SPNA	S. pneumoniae nanA gene	- 66	237	\$85
=		4327	3899	gb H36180		00 01	429	429
2	~	1369	1941	95 072720	(dnak)		202	573
<u>-</u>		2412	4253	95 072720	(dhakk) gen	66	1842	1842
132		2066	5587	95 004047	Streptococcus pneumoniae SS2 dextran glucosidase gane and insertion sequence IS1202 transposase gane, complete cds	3	151	522
							•	

TABLE

S. pneumoniae - Coding regions containing known sequences

Cont ig	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Start	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
125		1811	189	 95 N36 180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) ganes, complete cds	92	66	1623
128	<u></u>	12496	11204	emb 281115 SP28	S.pneumoniae dexB. capila, B.C.D.E.F.G.H.I.J.Ki genes, dTDP-thamiose biosynthesis genes and alla gene	- 16	200	1293
7.	_	-	492	emb Y10818 SPY1	S.pneumonlae spsA gene	66	203	492
***	~	556	2692	gb AF019904	Straptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	98	689	2097
*		1160	637	emb Y10818 SPY1	S. pneumoniae spsk gene	86	324	324
-	-	1 3952	1 2882	gb AF019904	Straptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	96	215	1071
134		7992	9848	95[012567]	Streptococcus pneumoniae Pl) glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds. and glycerol uptake facilitator (glpF) and OAF) genes. complete cds	66	285	1857
***	<i>•</i>	9846	10622	95 012567	Streptococcus pneumoniae PI) glycerol-3-phosphate dehydrogenase (glpD) gene, portial cds, and glycerol uptake facilitator (glpF) and ORF) genes, complete cds	66	\$70	111
Ē	<u> </u>	10805	22111	96/012567	Streptococcus pneumoniae Pil glycerol-l-phosphate dehydrogenase (glpDl) gene, partial cds, and glycerol uptake facilitator (glpF) and ORFl genes, complete cds	001	318	318
137	2	0767	8	dp n09239	Straptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLM10) genes, complete cds, and aliA gene, partial cds	06	420	*24
2	=_	8590	87.2	82dS 5[[8]]96	S.pnaumoniae dexB, capi(A,B,C,D,E,F,Q,H,I,J,K) genes, dTDP-rhamose blosynthesis genes and aliA gene	96	174	186
761	5	8773	6967	emb 283335 SPZ8	S.pneumoniae dexB, capilA,B,C,D,E,F,G,H,I,J,K] genes, dTDP-thamnose biosynthesis genes and aliA gene	86	195	195
127	91	6226	1 9687	emb 277726 SP15		96	944	\$94
51	11	196	10051	emb 277727 SPIS	S.pneumonise DNA for insertion sequence (51318 (823 bp)	96	293	*
651	000	112998	112702	emb x63602 SPBO	S. pneumonise mash-Box	06	234	762
Ξ	-	7805	938	emb 249988 SPHH	Streptococcus pneumonias mask gene	66	338	1134
₹:	6 :	93.6	10972	emb 249988 SPHH	Streptococcus pneumoniae mask gene	1 66 1	2037	2037
= :	2:	11472	112467	HH45 886692 qwe	Streptococcus pneumoniae amsA gene	1001	91	966
~ :	~ :	257	18	dp H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	86	174	558
7		787	28	de H80215	Streptococcus pneumonies uvst02 protein gans, complete cds	100	142	171
142	-	980	3022	dp H80215	Streptococcus pneumoniae uvs402 protein gene, compiete cds	95	1997	2043
							+	

S. pneumoniae - Coding regions containing known sequences

TABLE 1

Contig	ORF	Start (nt)	Stop (nt)	match Acession	match gene name	percent	HSP ot length	ORF nt length
143	٠	1 3020	3595	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	1 001	153	576
145	-	-	219	emb 235135 SPAL	S. pneumonise alia gene for amia-like gene a	97	185	219
145	~	171	1994	gb L20556	Streptococcus pneumoniae plpA gene, partial cds	66	1811	1824
145	_	1 2287	7599	emb 247210 SPDE	S. pneumoniae dexB, caplA, caplB and caplC genes and orfs	66	1052	5113
5	-	9934	7766	gb H90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete	66	2169	2169
145	<u>~</u>	10488	9922	gb H90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete	66	512	\$67
146	-	.159	4	emb 282002 SP28	S. pneumonise pcp8 and pcpC genes	86	156	156
9 + 1	~	344	8	emp 282002 2ba	S. pneumoniae pcp8 and pcpC genes	86	255	255
9	•	111795		emb 282002 SP28	S. pneumoniae pcpB and pcpC genes	85	276	1002
	=_	10678	10202	emb 221702 SPUN	S.pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	86	***	-11
- 117	~	91611	10676	emb 221702 SPUN	S. pneumoniae ung gene and mutx genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	66	663	663
89	~_	6006	88 5	96 041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	06	180	195
156	-	1154	1402	emb[x63602 SPBO	S. pneumoniae mash-Box	76	185	249
159	2_	9048	8521	gb[H36180]	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (putC) genes, complete cds	86	\$26	528
091	-	-	147	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit. ATPase b subunit and ATPase C subunit	100	142	147
160	~	179	898	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	66	720	720
09-		906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase c subunit and ATPase c subunit	95	201	105
160		1373	1942	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase	68	306	570
191	-	-	984	emb x77249 SPR6	S.pneumoniae (Ré) ciaR/ciaH genes	66	986	186
191	_	0169	7497	emb x83917 SPGY	S. pneumonise artigyrs and gyrs gene encoding DNA gyrase 8 subunit	- 66	437	588
191	8	7443	9386	emb x83917 SPGY	S. pneumonise artigyr8 and gyr8 gene encoding DNA gyrase 8 subunit	86	1912	1944
163	-	2	2155	gb L20559	Streptococcus pneumoniae Exp5 gane, partial cds	96	327	2154

pneumonies - Coding regions containing known sequences

165 1 122 1618 gpl Jul 36 S pneumoniae mal X and mal H genes encoding membrane properties 1568 1502 1902 gpl Jul 36 S pneumoniae and X and mal H genes encoding membrane properties 1503 1309 4 emb Y11461 SPPM Streptococcus pneumoniae dnot. Ppol. Cpol. genes and 1503 1309 1309 emb Y11461 SPPM Streptococcus pneumoniae dnot. Ppol. Cpol. genes and 165 1300 1309 emb Y11461 SPPM Streptococcus pneumoniae dnot. Ppol. Cpol. genes and 165 1300 1309 emb Y11461 SPPM Streptococcus pneumoniae dnot. Ppol. Cpol. genes and 165 1309 1309 emb Y11461 SPPM Streptococcus pneumoniae dnot. Ppol. Cpol. genes and 1500 1309 1309 emb Y11461 Streptococcus pneumoniae ddot. Ppol. Cpol. genes and 1709	match match gene name to	percent HSP	HSP ot O	ORF nt length
1 178 4 emb Y11461 SPDN Streptococcus 1 178 4 emb Y11461 SPDN Streptococcus 1 1707 120 emb Y11461 SPDN Streptococcus 1 1007 120 emb Z71552 SPAD Streptococcus 1 1007 120 emb Z71552 SPAD Streptococcus 1 1 1 2259 gub L20558 Streptococcus 1 1 2259 gub L20558 Streptococccus 1 1 2259 gub L20558 Streptococccus 1 1 2259 gub L205713 SPDR Streptococccus 1 2254 608 emb Z07963 SOOR Streptococcus 2254 608 emb Z07963 SOOR Streptococcus 2254 608 emb Z07963 SOOR Streptococcus 2254 608 emb Z07063 Streptococcus 2254 608 emb Z070730 Streptococcus 2259 gub U072720 Streptococcus 2259 gub U072720 Streptococcus 2259 gub U072720 Streptococcus 2250 22	S.pneumonise malk and malk genes amylomaltase, complete cds, and	66	1587	1587
1 378 4 emb Y11461 SPDN Streptococcus 1 1240 1432 emb Y11461 SPDN Streptococcus 1 1077 128 emb 271552 SPAD Streptococcus 1 1077 128 emb 271552 SPAD Streptococcus 1 1 12259 gb L20558 Streptococcus 1 1 1 1 1 1 1 1 1	S.pneumonise malk and malk genes encoding membrane protein and amylomaltase, complete cds, and malk gene encoding phosphorylase	700	280	2295
2 1507 320 emb Y11463 SPDM Streptococcus 1 1077 328 emb Z71553 SPAD Streptococcus 2 1844 999 emb Z71553 SPAD Streptococcus 1 1 2259 gb L20558 Streptococcus 1 1 2259 gb D147625 SPAD Streptococcus 1 1 1 2259 gb D147625 SPAD Streptococcus 1 1 1 1 1 1 1 1 1	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	100	375	375
1 1240 1412 emb 271551 SPAD Streptococcus 1 1077 128 emb 271552 SPAD Streptococcus 1 1 1259 gb L20558 Streptococccus 1 1 1 1 1 1 1 1 1	SPDN Streptococcus pneumoniae dnaG, rpob,	-	1169	1188
1 1077 128 emb 271552 SPAD Streptococcus 1 1 12259 emb 271552 SPAD Streptococcus 1 1 12259 gD L20558 Streptococcus 1 1 1 1 1 1 1 1 1	SPDN Straptococcus pneumoniae dnaG, rpoD, cpoA genes	- 66	563	1 6081
2 1844 999 emb 271552 SPAD Streptococcus 1 1 2259 gb L20558 Streptococcus 1 1 2254 gmb Z67739 SPPA Spneumoniae 2 2254 Gb B2733135 SPPA Spneumoniae 2 2254 Gb B27320 Streptococcus 2 2259 gb U72720 Streptococcus 2 259 gb U72720 Streptococcus 2 2259 gb U72720 Streptococcus 2 2250	SPAD Streptococcus paramonise adcCBA	76	155	750
1 2714 1842 emb 271552 SPAD Strept ococcus 1 1 2259 gb L20558 Strept ococcus 1 1 2259 gb L20558 Strept ococcus 1 1 2259 gb U47625 SPES Strept ococcus 1 1 2259 gb U47625 SPES Strept ococcus 1 1843 3621 emb 247210 SPPA Strept ococcus 1 1843 3621 emb 247210 SPPA Strept ococcus 1 3 425 emb 267739 SPPA Strept ococcus 1 426 70 emb 267739 SPPA Strept ococcus 1 734 4 emb 267739 SPPA Strept ococcus 1 734 4 emb 279691 SOOR Strept ococcus 1 707 880 emb 279691 SOOR Strept ococcus 2 259 gb U72720 Strept ococcus 2 259 gb U72720 Strept ococcus 2 259 gb U72720 Strept ococcus 2 40 40 40 40 40 40 40	SPAD Streptococcus pneumoniae adcCBA	98	405	946
4 1399 2641 emb 271552 SPAD Streptococcus 1 1 2259 9D L20558 Streptococcus 1 1 2259 9D L20558 Streptococcus 6 2462 4981 9D U47625 Streptococcus 6 2462 24980 emb 247210 SPDE Streptococcus 6 2462 24980 emb 247210 SPDE Streptococcus 6 2462 6 6 6 6 6 6 6 6 6	SPAD Streptococcus	1 6	604	673
1 1 2259 9b L20558 Streptococcus 1 1 2259 9b L20558 Streptococcus 1 173 20 9b M36180 Streptococcus 1 173 20 9b M36180 Streptococcus 1 1843 3621 emb Z47310 SPPA Streptococcus 1 1843 3621 emb Z67739 SPPA Streptococcus 1 1845 emb Z67739 SPPA Streamoniae 1 426 70 emb Z67739 SPPA Streamoniae 2 1714 4 emb Z7739 SPPA Streamoniae 3 1707 880 emb Z77591 SOR Streptococcus 2 259 9b U72720 Streptococcus 3 2254 608 emb Z77691 SOOR Streptococcus 2 259 9b U72720 Streptococcus 3 400 U77720 Streptococcus 4 400 U77720 8 400	SPAD Streptococcus pneumoniae adcCBA	- 66	703	159
10 7138 7685 emb 277726 SPIS S. pneumoniae D Cds Gdb M36180 Streptococcus Cds Gdb M36180 Streptococcus Cds Streptococcus Streptoccus Streptococcus Streptoccus Strepto	Streptococcus pneumoniae Expé gene, partiel	66	282	2259
1 373 20 gb M36180 Streptococcus Gds Gd	6 SPIS S. pneumonies DNA for insertion sequence 151318	- 56	315	348
1 373 20 gb H36180 Streptococcus 1 143 3621 emb 247210 SPDE S.pneumoniae of 1843 3621 emb 247210 SPDE S.pneumoniae of 1 426 70 emb 267739 SPPA S.pneumoniae of 1 426 70 emb 283333 SPPA S.pneumoniae of 1 734 4 emb 283333 SPPA S.pneumoniae of 1 734 4 emb 279691 SOOR S.pneumoniae of 1 734 4 emb 279691 SOOR S.pneumoniae of 1 707 880 emb 279691 SOOR S.pneumoniae of 1 2 254 Gob emb 279691 SOOR S.pneumoniae of 1 2 259 gb U72720 Streptococcus 2 259 gb U72720 Streptococcus 2 2 2 2 2 2 2 2 2		9.	365	2520
4 1843 3621 emb 247210 SPDE S. pneumoniae daxB, cap3A, cap3B and cap3 3984 2980 emb 267739 SPPA S. pneumoniae parC, parE and transposase 1 3 425 emb 267739 SPPA S. pneumoniae parC, parE and transposase 1 426 70 emb 283135 SPPA S. pneumoniae daxB, cap1A, B, C, D, E, F, G, H, B, C, D, E, F, G, H, B, C, D, E, F, C, C, D, E, C, D, E, F, C, D, E,	Streptococcus pneumoniae (purC) genes, complete	6	353	756
5 3984 2980 emb 260739 SPPA S.pneumoniae parC. parE and transposase 1 3 425 emb 260739 SPPA S.pneumoniae parC. parE and transposase 1 426 70 emb 260333 SPPA S.pneumoniae genes and allA, B.C.D.E.F.G.H. 1 734 4 emb 279691 SOOR S.pneumoniae gyrA gene 1 734 4 emb 279691 SOOR S.pneumoniae gyrA gene 1 734 4 emb 279691 SOOR S.pneumoniae gyrA gene 1 734 4 emb 279691 SOOR S.pneumoniae gyrA gene 1 707 880 emb 279691 SOOR S.pneumoniae yorf[A,B,C.D.E], ftst., pbpX 1 707 880 emb 279691 SOOR S.pneumoniae yorf[A,B,C.D.E], ftst., pbpX 1 2 259 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 Streptococcus pneumoniae heat shock prot 2 600 385 gb U72730 6 6 6 6 6 6 6 6 6	SPDE S. pneumoniae dexB, caplA,	96	- 68	1779
1 3 425 emb 267139 SP6A S.pneumoniae parC, parE and transposase 1 426 70 emb 281135 SP28 S.pneumoniae daxB, cap1(A,B,C,D,E,F,G,H,B,C,B,E,B,C,B,E,E,B,E,B,E,B,E,E,B,E,B,E	SPPA S. pneumoniae parC, parE and transposase genes and unknown orf	100	573	1005
1 426 70 emb 283335 SP28 S.pneumoniae doxB. capilA, B.C.D. E.F. 3 3084 1855 emb X95718 SPCY S.pneumoniae gyrA gene 4 emb 279691 SOOR S.pneumoniae gyrA gene 5 2254 608 emb 279691 SOOR S.pneumoniae gyrf [A.B.C.D.E], ft.sL, 7 707 880 emb 279691 SOOR S.pneumoniae gyrf [A.B.C.D.E], ft.sL, 8 gb U72720 Streptococcus pneumoniae heat shock 9 259 gb U72720 Streptococcus pneumoniae heat shock 9 260 385 gb U72720 Streptococcus pneumoniae heat shock 9 260 385 gb U72720 Streptococcus pneumoniae heat shock 9 20 385 gb U72720 Streptococcus pneumoniae heat shock 9 20 385 gb U72720 Streptococcus pneumoniae heat shock 9 20 20 20 20 20 20 20	SPPA S.pneumoniae parC.	96	423	423
3 1084 1855 emb X95718 SOCK S.pneumoniae gyrA gene 1 714 4 emb Z79691 SOCR S.pneumoniae yorf [A.B.C.D.E], ftsL, 2 2254 608 emb Z79691 SOOR S.pneumoniae yorf [A.B.C.D.E], ftsL, 3 707 880 emb Z79691 SOOR S.pneumoniae yorf [A.B.C.D.E], ftsL, 1 2 259 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 Straptococcus pneumoniae heat shock 2 600 385 gb U72720 5 600	SP28 S.pneumoniae dexB.		338	157
1 714 4 emb 279691 SOOR S.pneumoniae yorflA.B.C.D.El. ftsL. 2254 608 emb 279691 SOOR S.pneumoniae yorflA.B.C.D.El. ftsL. 3 707 880 emb 279691 SOOR S.pneumoniae yorflA.B.C.D.El. ftsL. 3 259 gb U72720 Streptococcus pneumoniae heat shock 4 4 4 4 4 4 4 4 4	SPGY S.pneumoniae gyrA	66	181	1230
2 2254 608 emb 279691 SOOR S.pneumoniae yorf A.B.C.D.E], Ital., 3 707 880 emb 279691 SOOR S.pneumoniae yorf A.B.C.D.E], Ital., 1 2 259 gb U72720 Streptococcus pneumoniae heat shock 2 600 365	SOOR S.pneumoniae yorflA, B, C, D, E]. ftst.	1 96	- 65	1117
3 707 880 emb Z79691 SOOR S.pneumoniae yorflA.B.C.D.El, ftsL, 2 259 qb u72720 Streptococcus pneumoniae heat shock and baal (dna) gene, partial cds 2 600 385 qb u72720 Streptococcus pneumoniae heat shock 2 600 385 qb u72720 Streptococcus pneumoniae heat shock and bnaJ (dnaJ) gene, partial cds	SOOR S.pneumoniae yorfia.B.C.D.E], Ital.	9.6	315	1647
1 2 259 gb U72720 Streptococcus pneumoniae heat shock protein 70 and DnaJ (dnaJ) gene, partial cds 2 600 385 gb U72720 Streptococcus pneumoniae heat shock protein 70 and DnaJ (dnaJ) gene, partial cds	SOOR S.pneumoniae yort[A,B,C,D,E],	- B6	174	174
2 600 185 gb U72720 Streptococcus pneumonies heat shock and Dnei (dnei) gene, partial cds	StreptoCoccus pneumoniae heat shock and DnaJ (dnaJ) gene, partial cds		258	258
	Streptococcus pneumoniae heat and DneJ (dneJ) gene, partial		204	216

TABLE 1

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
69		1018	851		Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	168
681		1012	2154	85 U72720 	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds	66	1062	1143
161	6	1 7829	7524	[emb x63602 SPBO	S. pneusoniae masA-Box	- 86 -	234	306
			729	gb H36180	Streptococcus pneumoniae transposase, (comh and comb) and SAICAR synthetase (purc) genes, complete cds	16	728	729
661	~	1117	188	emb 28335 SP28	S.pneumoniae daxB, cap1[A, B, C, D, E, F, G, H, 1, J, K genes, MTDP-rhamnose biosynthesis genes and allA gene	96	211	237
661		1499	1762	emb 283335 SP28	S.pneumoniae dexB. cap1(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesis genes and alia gene	89	248	264
199	<u>~</u>	1781	2284	emb 283335 SP28	S.pneumoniae daxB. cap(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-thamnose biosynthasis genes and alia gene	806	204	504
1 203	_	1977	333	8p 150563	Streptococcus pneumontee Exist uene, pertiel cds	- 66	342	1641
1 204	_	1145	_	6b L36131	moniae explo gene, complete cds,	- 66	1143	1 6411
\$02		\$	2296	111,089,119	Streptococcus pneumoniae pneumocorcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
2.7		2455	2123	emb 283335 SP28	S.pneumoniae dexB. capil(A, B, i.), D, E, F, G, H, I, J, K) genes. dTDP-rhamose biosynthesis genes and alih yene	96	332	133
216		368	77	emb 283335 5P28	S.pneumoniae daxB. cap1(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamnose biosynthesis genes and alia yene	66	336	357
1 216		2650	1 2327	gb M28678	S.pneumoniae promoter sequence DIIA	96	98	324
222		417	-	emb 283335 SP28	S.pneumonise dexB. cap1[A, B, C, D, E, F, G, H, I, J, K genes. dfDP-thamnose bloosynthesis genes and aliA gene	***	414	=
1 227		\$266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene	- 66	1029	1029
239		~	804	gb H31296	S. pneumoniae recP gene, comiléte cds	- 56	184	804
347		1625	1807	dp H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	76	178	183
249		921	1364	emt 283335 SP28	S.pnaumoniae dex8, cap1(A,8,c.D,E.F.G.H.1,J.K genes, dTDP-rhamose biosynthesis genes and allA gene	7	G	707
25	-	362	-	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	360	360
253	\$	1238	2050	emb 283335 SPZB	S.pneumoniae dexB. cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	 S6	420	613

5. pneumonise - Coding regions containing known sequences

Contig	ORF.	Start (nt)	Stop (nt)	match	match gene name	percent	IISP nt length	ORF of length
253	;	2069	2572	emb 283335 SP28	S. pneumoniae dexB. capi(A, B, C, D, E, F, G, H, I, J, K) genes, dTDP-rhamnose biosynthesia genes and aliA gene	97	804	\$04
255	-	_	800	amb 282002 SP28	S. pneumonise pcpB and pcpC genes	16	531	1 864
385	~	198	1841	emb 282002 SP28	S. pneumoniae pcpB and pcpC genes	76	672	1044
255	-	2493	1969	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	92	435	525
257	~	985	077	r	s pneumontae	96	117	216
25,		1245	907	08191H]qb	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	339	939
267	~	495	1208	95 016156	Straptococcus preumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphotinase (sulD) genes, complete cds	\$6	46	714
267		1291	1227	95 1116156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	.6	755	987
69.	-	2261	1601	951910 95	Streptococcus pneumoniae dihydropteroate synthese (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	86	1341	1343
267		3561	4136	95 016156	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	66	576	576
267		191	6 4 6	195101010	Streptococcus pneumoniae dihydropteroata synthase (aulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	66	748	786
267		5544	2140	95 016156	Stroptococcus pneumoniae dihydropteroate synthase (aulA), dihydrofolate synthetase (sulB), quanosine triphosphate cyclohydrolase (aulE), aldolase-pyrophosphokinase (aulD) genus, complete cds	100	186	405
1 268	-	1.79.1	1990	emb x63602 SPBO	S.pneumonies assA-Box	68	194	198
1 112	-	562	104	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	1 6 1	1 091	459
291		25	524	ab u04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	96	450	450
	~	1001	525	emb 263335 SP28	mont	8	205	ico
		907	559	8245 \$£££82 qwe	S.pneumoniae dex8, cap1(A,B,C,D,E,P,G,H,I,J,K) genes, dTDP-rhamnose blosynthesis genes and allA gene	06	170	249
291		7 2	1099	95 113 6 180	Streptococcus pneumonise transposase, (comA and comB) and SAICAR synthatase (purC) genes, complete cds	589	264	276

TABLE 1

ORF nt	1671	1284	354	753	462	540	393	216	519	363	672	123	762
HSP nt	553	430	353	299	233	89	16	102	435	353	63	13	>5
percent	98	66	89	16	1 001	36	68		95	76	- 56	96	76
metch gene nome	S.pneumoniae gyrB gane and unknown orf	S.pneumonies dexB, caplb, caplB and caplC genes and orfs	S.pneumouriae parC, parE and transposasa ganes and unknown or f	S.pneumonise daxB. capilA, B.C.D.E.F.G.H.I.J.K genes, dTDP-rhamnose biosynthesis genes and allA gene	emb 282001 SP28 S. pneumoniae pcpA gene and open reading (rames	S.pneumoniee darB. capi(A, B.C, D.E, F.G. ii. 1. J. Kl genes, dTDP-rhamnose biosynthesis genes and alike gene	Streptococcus pneumoniee peptide methionine sulfoxide reductase (msrA) and homoserine kinese homolog (thrB) genes, complete cds	S. Determents (H222) genes for Affess a subunit, Affess b subunit and Affess C subunit	S. pneumoniae parc, parE and transposase genes and unknown orf	S. pneumoniae dexB. capila B. C. D. E. F. G. H. 1. J. Kl genes, dTDP-rhamose biosynthesis genes and alth gene	S.pneumoniae dexB. CapilA, B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhemnose biosynthesis genes and allA gene	Streptococcus pneumonise SSZ dextran glucosidasa gene and insartion sequence 1S1202 transposase gene, complete cda	S.pneuaoniae daxB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps141, cps14L, tasA genes
acession	VD42 041 267740 678	emb 247210 SPDE	emb 267739 SPPA	8245 SEEE82 mm	emb 282001 5P28	8248 566682 dma	95/11/195	emb 226850 SPAT	emb[267739 SPPA	emb 283335 SP28	8245 5(£82)qwə	ap n04047	emb x85787 SPCP
(ur)	1673	151	510	485	462	9	545	2	519	1960	~	728	=
10 10 (10)		1434	1 157	1237	-	603	183	308	-	1598	673	1168	347 IIII emb x85
5 2	=	_	_	~	_	_	-	_	-	-	-	~	
2	293	296	1 317	328	326	227	**	336	360	360	162	362	784
		-				•							:

S. pneumoniae - Coding regions containing known sequences

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	9 2 2 9	1942					
	7 9 9			translation elongation factor Tu - Streptococcus oralis	100	1001	183
	7 98	;		neomycin phosphotrensferese (Cloning vector p85L99)	100	100	204
	987	1138	F6066	translation elongation factor Tu - Streptococcus oralis	1 66	9.6	1137
		1394	91 1574495	hypothetical (Haemophilus influenzae)	86	96	606
	683	1003	1911310627	phosphoenolpyfuvate:sugar plivsphotransferase system MPr (Streptococcus mutans)	96	3	910
	061	2	91 347999	ATP-dependent protease protectivitic subunit (Streptococous salivarius)	96	- \$6	189
	-	1 807 191	91 92 6848	inosine monophosphate dehydr.genase (Streptococcus pyogenes)	96	76	807
	1,290	589	911987050	lacz gene product (unidentified cloning vector)	9.6	86	300
	5948	;	91 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	9.7	76	1419
	1044	1961	gi 347998		97	88	1 999
	1 6575	1 7486	sp P37214 ERA_S	GTP-BINDING PROTEIN ERA HOMOLOG.	96	16	912
-	156	2741	91 153615	phosphoenolpyruvate:sugar phosphotransferase system entyme [Streptococcus aslivarius]	96	8	1791
	: -	168	gi 581299	initiation factor (F-1 [Lactoraccus lactis]	96	89	169
1 128 14	10438	111154	[91]1276873	DeoD Streptococcus thermophilus	96	93	717
-	1362	1598	90991 15	lact polypeptide (AA 1-126) (Staphylococcus aureus)	96	90	237
218		834	19111743856	Intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	96	93	834
319 2	115	=	91 206225	hear_shock protein 82/neomcyn phusphotransferase fusion protein (hsp82-neo) unidentified cloning vector)	96	96	327
54 12	-	10967	gn1 PID d100972	Pyruvate formate-lyase (Streptococcus mutans)	95	- 68	2346
1 181	909	1289	lgi 149396	lacD [Lectococcus lactis]	98	68	989
46 3	3410	3045	191 1850606	YIXM (Streptococcus mutans)	94	96	366
01 68	-	1 7337	gi 703442	thymidine kinasa (Streptococcus gurdonii)	- 16	98	636
148	16431	, ;	-	UDP-glucose pyrophosphorylase (Streptococcus pyogenes)	*6	98	924
	4430	5848	(oi 153573	H+ ATPass (Enterococcus faecalis)	- 16	87	1419
- 2	-	1 3513		plasain receptor (Streptococcus pyogenes)	68	9.0	1086
- c-	1 787	6204	91 1103865	[formyl-tetrahydrofolate syntherase (Streptococcus mutans)	9.3	76	1674

BLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	TO CE	Start	Stop (nt)	match	match gene name		1 ident	length (nt)
65	=	4734	5120	191 40150	[Lit protein (AA 1-122) [Bacillus subtilis]	66	67	187
89	_	5	1297	91 47341	antitumor protein (Streptococcus pyogenes)	6	87	1245
90			588	gn1 PID d101166	ribosomal protein S7 (Bacillus subtilis)	6	80	297
127	1	695	1093	gi 142462	ribosomal protein Sil (Bacillus subtilis)	- G	98	399
160	2	1924	3462	1911173264	ATPase, alpha subunit (Streptococcus mutans)	. 6	85	1539
311	\$	13757	13047	gi 535273	aminopeptidase C Streptococcus thermophilus	6	82	111
292	_	91	564	91 149394	lach (Lactococcus lactis)	66	06	549
366		197		191 295259	tryptophan synthase beta subunit (Synechocystis ap.)	. 6	16	195
25		1 1392	9261	19111574496	hypothetical (Maemophilus influentee)	92	80	\$88
	12	120781	19927	191 310632	hydrophobic membrane protein (Streptococcus gordonii)	85	98	855
=	2	1 1265	1534	19:1149396	lacD (Lactococcus lactis)	26.	83	270
181	_	3662	090+	1911149410	ensyme III (Lactococcus lactis)	92	83	199
~	-	1 5631	1937	gn1 PID e294090	[fibronectin-binding protein-like protein A [Streptococcus gordonii]	16	88	1695
9	~	3054	1462	6	signal recognition particle Fih (Streptococcus autans)	16	•	1593
65	-	4442	4726	pir 517865 5178	ribosomal protein Si7 - Bacillus stearothermophilus	16	08	285
"	~	260	0061	10: 287871	groEL gene product [Lactococcus lactis]	16	92	1991
2	-	2	2056	91 871784	[Clp-like ATP-dependent protesse blading subunit [Bos taurus]	16	92	2055
66	:	110750	2726	91 153740	sucrose phosphorylase (Streptococcus mutans)	16	78	1479
9.6	_	111947	111072	191 153739	membrane protein (Streptococcus mutans)	16	78	9.0
127	\$	2065	2469	pir 507223 R5BS	ribosomal protein L17 - Bacillus stearothermophilus	16	38	405
132	9	9539	9390	gi 143065	hubst (Bacillus stearothermophilus)	16	68	150
137	8	4765	6153	gn1 P10 d100347	Na+ -ATPass beta subunit (Enterococcus hiras)	16	966	1389
<u>.</u>		61111	9734	191 1815634	glutamine synthetase type ! (Streptococcus agalactiae)	16	82	1386
102	7	1798	278	91 2208998	dextran glucosidase DexS Streptococcus suis	16	1 64	1521
222	~	673	1839	[gi 153741	ATP-binding protein (Streptococcus autans)	16	88	1167
282	~	6113	4400	91 1196921	unknown protein (Insertion sequence 15861)	16	116	288
77		9919	6570	6570 pir A36933 A369	diacylglycerol kinase homolog - Streptococcus autans	1 06	1 '	405
					◆1 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *		*********	

ABLE 2

13 1 14 15 15 15 15 15 15	Cont 19	ORF	Start int)	Stop (nt.)	metch	match gene neme	E 1 5 1	1 ident	Jength
17 17998 19777 18815 goil Pipp e277705 lactate oxiddse Streptococcus inlast 2 7777 18815 goil Pipp e272721 [Lips protein lactilius subbillis]	2	7	841	527		unknown protein (Insertion sequence [5861]	06	70	315
1 1977 18515 gni PiD e221211 Cipk protein Bacillus aubtilis 1 1 606 gi 115350 Li Bacillus subtilis 1 2 988 gi 15356 sapartace beta-semialdenyde denydrogenase (EC 1.2 material) 1 135 827 gi 103350 li Bacillus subtilis 1 135 827 gi 103830 ORF (Streptococcus quisialis 1 135 827 gi 103830 ORF (Streptococcus autorial) 1 136 1393 gi 149321 Cryptochan synthase that autorit (Lactococcus autorial) 1 137 138 gi 133331 Lyptuvite 2-0-phosphotransferase (Lactococcus autorial) 1 137 138 gi 133332 Cryptochan synthase at lactococcus autorial 1 137 138 gi 133332 Cryptochan synthates at lactococcus autorial 1 137 138 gi 133332 Cryptochan synthates at lactococcus autorial 1 137 138 gi 133332 Cryptochan synthates at lactococcus autorial 1 137 138 gi 133332 Cryptochan synthates at lactococcus autorial 1 137 138 gi 133332 Cryptochan synthates at lactococcus autorial 2 1531 Gil gi 133332 Crep peptide Streptococcus mutarial 3 1386 134 gi 133332 Crep peptide Streptococcus mutarial 4 810 1944 gi 133332 Crep peptide Streptococcus mutarial 5 1348 136 gi 133332 Crep peptide Streptococcus mutarial 8 1366 4225 gi gi 13330 Sil Bacillus stearothermophilus 8 1366 4225 gi gi gi gi gi gi gi gi gi g	8	127		119757	e27470S	lactate oxidese [Straptococcus iniae]	06	80	1152
1 1 606 9	SS	:	:	118515		Clpx protein (Bacillus subtilis)	06	75	1263
1 1 606 91 115352 aspartate beta-semialdehyde dehydrogenses (EC 1.2 material) 1 2 988 91 13552 aspartate beta-semialdehyde dehydrogenses (EC 1.2 material) 1315 827 91 407880 ORF (Streptococcus equisimilis) 1 1315 827 91 14012 GHP synthetase (Bacilius aubtilis) 1 28 1398 91 143012 GHP synthetase (Bacilius aubtilis) 1 28 1395 91 140838 ATP pyruate 2-O-Phosphotransferase (Lactococcus mutans) 1 28 1395 91 140838 ATP pyruate 2-O-Phosphotransferase (Lactococcus mutans) 1 28 1395 91 140838 ATP pyruate 2-O-Phosphotransferase (Lactococcus mutans) 1 27 283 91 1407333 asparagine synthetase A (asnA) (Hemophilus influs) 1 285 1343 91 1404445 Fibosomal protein Li9 - Bacilius stearothermophilus 1 1 1 1 1 1 1 1 1	98	~	יני	776	191 1710133	cap [Borrelia	06	20	192
1 2 988 99 193362	69	_	-	909	191 (116530)	L) (Sacillus subtilis)	1 06	75	909
1 1345 837	<u>:</u>	-	~	988	91 1153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) (Streptococcus mutans)	08	08	987
1 28 1395 91 1661179 high affinity branched chain amino acid transport material 1 28 1395 91 1661179 high affinity branched chain amino acid transport material 1 28 1395 91 139321 tryptophan synthase beta submit [Lactococcus lactococcus lactococcus 1 137 1362 91 139321 tryptophan synthase beta submit [Lactococcus lactococcus lactococcus mutana] 1 137 1362 91 137322 tarptococcus lactocis 1377 1362 91 137323 tarptococcus lactocis 1377 1362 91 137323 tarptococcus lactocis 1377 1362 91 137323 tarptococcus pneumoniae 14 13810 19447 91 135372 tarptococcus mutanas 1586 10669 91 191910 400932 H20-forming MADH Oxidase (Streptococcus mutanas 18 1316 91 143177 Tribosomal protein SS (Bacillus stearothermophilus) 1366 4225 89 1914577 RLL6_ 395 RIBOSOMAL PROTEIN L.16 1315 91 143177 Tribosomal protein SS (Bacillus stearothermophilus) 1360 1465 91 19119200671 1epA gene product (Bacillus subtilis) 1316 91 137324 91 14187 1400 1465 91 19119200671 1epA gene product (Bacillus subtilis) 1318 91 19110 91 151738 mambrane protein (Streptococcus mutana) 1318 91 19119200671 1epA gene product (Bacillus subtilis) 1318 1318 91 19110 91 191000000000000000000000	1 120	-	1345	827	ai 407880	ORFI (Streptococcus equisimilis)	06	75	519
4 4076 1282 gi 1661179 high affinity branched Chain amino acid transport material 1 28 1395 gi 108836 ATP:pyruvate 2-0-phosphotransferase (Lactococcus lact colors) 1 281 1662 gi 149321 tryptophon synthese beta subunit [Lactococcus lact colors] 1 17 181 416 gi 137333 apparagine synthesase A (assA) (Heemophilus influe colors) 1 1885 1343 gi 14934 putative (Lactococcus lactis) 1 1885 1343 gi 14934 putative (Lactococcus lactis) 1 1885 1343 gi 14934 putative (Lactococcus lactis) 1 1885 10342 gi 153792 recp peptide (Streptococcus pneumonlae) 1 18410 13947 gi 153792 recp peptide (Streptococcus mutans) 1 18410 13947 gi 153792 recp peptide (Streptococcus mutans) 1 1866 10669 gi 1165307 Si9 Bacillus aubillis) 1 1866 4225 sp Pi4577 Rile_ (SS RIBOSOMAL PROTEIN Li6. 1866 1966 gi 1165307 ribosomal protein SS (Bacillus stearothermophilus) 1 1860 1465 gi 1917 Rile_ (SS RIBOSOMAL PROTEIN Li6. 1867 gi 1917 Rile_ (SS RIBOSOMAL PROTEIN Li6. 1867 gi 1917 Rile_ (SS RIBOSOMAL PROTEIN Li6. 1867 1918 11919 gi 1577 Rile_ (SS RIBOSOMAL PROTEIN (Streptococcus mutans) 1 1867 gi 1917 Rile_ (SS RIBOSOMAL PROTEIN (Streptococcus mutans) 1 1867 gi 1917 Rile_ (SS RIBOSOMAL RIRE PROTEIN (Streptococcus mutans) 1 1867 gi 1917 Rile_ (SS RIBOSOMAL RIRE PROTEIN (Streptococcus mutans) 1 1867 gi 1917 Rile_ (SS RIBOSOMAL RIRE RIPOSOCCUS mutans) 1 1867 gi 1917 Rile_ (SS RIBOSOMAL RIPE RIPOSOCCUS mutans) 1 1867 1967	159	-	0694.	8298	gi 143012	GAP synthetase (Bacillus subtilis)	06	- 18	1 609
1 28 1395 94 1308858 1 2891 1662 94 149521 1 1 1 1 1 1 1 1 1	991	•	4076	3282	91 1661179		06	78	795
3 2891 1662 94 149521 2 1551 416 94 12131342 3 2285 3343 93 144434 9 8363 10342 94 153792 14 18410 19447 94 153792 15 2418 2786 94 19108857 5 2418 2786 94 1165307 6 1866 4225 99 14377 16.16. 9 6337 5315 94 1532204 10 12818 11919 94 153738 2 1552 1300 94 407881	183	-	82	1395	91 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	06	76	1368
2 1551 416 91 2131342 3 1285 3343 91 149434 8 7577 7362 pir pata pat	161	_	2891	1662	191 119521	tryptophan synthase beta subunit [Lactococcus lactis]	06	78	1 0021.
1 17 783	961	7	1551	436		(AF014460) CcpA (Streptococcus mutans)	06	76	1116
3 2285 1343 91 149434 9 8363 10342 91 153792 9 8363 10342 91 153792 9 8363 10342 91 153792 9 8363 10342 91 1363307 9 8318 8719 91 13437 RL16	305		3.2	1 783	191 1573551		06	08	1 474
8 7577 7362 pir A45434 A454 9 8363 10342 gg 153792 14 18410 19447 gg 136857 1 9686 10669 gg [1165307 8 3806 4225 ssp pi477 RL16 9 6337 5315 gg [153704 1 12816 11919 gg [153736 2 1552 1300 gd 407881 5 4512 2791 gg [163881 6 6337 5315 gg [153736 7 15816 11919 gg [153736 8 1552 1300 gd 407881 9 6337 2791 gg [153736 1 1 1 1 1 1 1 1 1	•	_	1 2285	330	91 149434	putative [Lactococcus lactis]	- 68	1 84	1059
9 8363 10342 91 153792 11 16861 10869 91 1708657 11 16866 10869 91 1708657 12 13 14347 12 13 13 14347 13 13 13 13 13 13 14347 13 13 13 13 13 13 13 1	99	8	757	7362	pir A45434 A454	- Bacillus	68	1 94	216
4	67		:	110342	91 153792	peptide	68	83	1980
11 9686 10669 gni PID d100932 H20-forming NADH Oxidase Streptococcus mutans 5 2418 2786 gi 1165307 S19 Bacillus subtilis 8 8186 4225 sp PP4577 RLI6_ 505 RIBOSOMAL PROTEIN LI6. 8186 4225 sp PP4577 RLI6_ 505 RIBOSOMAL PROTEIN LI6. 8186 1435 gi 143417 Fribosoma) protein S5 Bacillus stescothermophi 9 6337 5315 gi 1532204 prs Listeria monocytogenes 9 6337 5315 gi 1910 220671 lepA gene product Bacillus subtilis 10 12818 11919 gi 153738 mambrane protein Streptococcus mutans 2 1552 1300 gi 407881 stringent response-like protein Streptococcus 5 4512 2791 gni PiD e280490 unhnown Streptococcus pneumoniae	15	<u>-</u>	118410	119447	[91]308657	ATP: D-fructose 6-phosphate 1-phosphotransferase [Lectoccccus lactis]	68	-	1038
5 2418 2786 gi 1165307 S19 Bacillus subtilis 8 1806 4225 sp P14577 RL16 50S RIBOSOMAL PROTEIN L16. 18 6319 6719 gi 143417 ribosoma) protein S5 Bacillus stearothermophi 9 6317 5315 gi 532204 prs Listeria monocytogenes 1 3360 1465 gn P10 e200671 lepA gene product Bacillus subtilis 10 12818 11919 gi 153738 membrane protein Streptococcus mutans 2 3552 1300 gi 407881 stringent response-like protein Streptococcus 5 4512 2791 gn P10 e280490 unknown Streptococcus pneumoniae	57	=	9686	110669	;	Streptococcus	60	1 44	1 986
8 1806 4225 59 P14577 RL16_ 505 RIBOSOMAL PROTEIN L16. 9 6337 5315 91 143417 Fribosome) protein SS Bacillus stearothermophil 9 6337 5315 91 53204 prs Listerie monocytogenes 1 3360 1465 91 1970 P10 e200671 1epA gene product Rectilus subtilis 10 12818 11919 91 153738 membrane protein Streptococcus mutans 2 3552 1300 91 407881 Stringent response-like protein Streptococcus Streptococcus mutans	69	~	2418	2786	91(1165307	S19 (Bacillus subtilis)	68	18	369
18 6319 6719 671 143417	59	-	1806	4225	_	SOS RIBOSOMAL PROTEIN L16.	89	82	420
9 6337 5315 91 532204 prs Listerie monocytogenes 1 3360 1465 gni PID e200671 lepA gene product Becillus subtilis 10 12818 11919 91 153738	69	8.	9319	8719	01 143417	protein SS (Bacillus	- 68	1 94	501
1 1360 1465 gni Pin e200671 lepA gene product Becillus subtilis 10 12818 11919 gi 153738 membrane protein Streptococcus mutans 2 1552 1300 gi 407881 stringent response-like protein Streptococcus	22		6337	5315	91 532204	prs [Listerie monocytogenes]	68	1 0′	1023
10 12818 11919 gi 153738 membrane protein (Streptococcus mutans) 2 1552 1100 gi 407881 stringent response-like protein (Streptococcus 5 4512 2791 gnl PID e280490 unknown (Streptococcus pneumoniae)	9,		3360	1465	_:	lepA gene product (Becillus subtilis)	- 68	1 94	19601
2 1552 1300 91 407881 stringent response-11ke protein (Streptococcus 5 4512 2791 91 PID e280490 unhnown (Streptococcus pneumoniae)	:	-:	_:	91611	1911153738	membrane protein (Streptococcus mutans)	- 68	1 62	006
5 4512 2791 gn1 P1D e280490 unknown (Streptococcus	120	~ :		1300	1911407881	protein (Streptococcus	68	1.67	2253
************	122		4512	2791	280490	unknown (Streptococcus pneumoniae)	68	1.6	1722

FABLE 2

Contig	0 0	Start (nt)	Stop (nt)	natch	netch gene name	E is	1 ident	length (nt)
176	~	699	-	91 47394	5-oxoproly1-peptidase Streptococcus pyogenes	689	7.8	999
7.1	9	3050	3934	1911912423	putative (Lactococcus lactis)	68	12	588
181	8	4033	5751	91/149411	enzyme	69	0.8	1 6171
211	-	3149	2793	191 535273	aminopeptidase C (Streptococcus thermophilus)	68	69	357
1 361	-	5	636	01 1196922	unknown protein (Insertion sequence 15861)	68	100	1 804
70	-	11839	\$10538	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).	88	78	1305
38	_	1646	2623	91 2058544	putative ABC transporter subunit CoaYA Streptococcus gordonii	88	1.87	978
*	-	~ -	227	gn1 P10 d101320	YqqU (Bacillus subtilis)	88	99	225
52	7	119	1468	gn1 [P1D[e134943	Dutative reductase 1 Saccharomyces cerevisiae	8.8	75	858
59	2	5497	6909	pir A29102 R5BS	ribosomal protein L5 - Bacillus stearothermophilus	88	1.87	573
69	120	9030	9500	191 (2078381	ribosomal protein L15 (Staphylococcus aureus)	9.8	63	1 1/4
1.0	-	3636	1108	gn1 P10 d100781	lysyl-aninopeptidase (Lactococcus lactis)	88	08	2529
901	~=	12965	12054	40721	[AF01742]) putative heat shock protein HtpX (Streptococcus gordonii)	88	72	912
100	~		962	gn1 PID e339862	Dutative acylneuraminate lyase (Clostridium tertium)	888	75	144
=			10420	gi 402363	RNA polymerase beta-subunit (Bacillus subtilis)	980	74	3654
126	6	: :	12062	gn1 P1D e311468	unknown (Bacillus subtilis]	9.0	74	1035
: ;	_	:	18874	91 1573659	H. Influenzae predicted coding region H10659 (Haemophilus influenzae)	88	61	270
-	-	760	555	gn1 P1D 6274705	lactate oxidase (Streptococcus inlae)	88	1.87	162
148	-	2723	3493	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	88	89	1111
091		5853	6278	191 1773267	ATPase, epsilon subunit (Streptococcus mutans)	880	9	426
111	-	1770	2885	gi 149426	putative [Lactococcus lactis]	88	72	1116
117	•	4140	3613	[91[535273	aninopeptidase C (Streptococcus thermophilus)	88	1.4	528
231	-	580	957		homologous to E.coli ribosomal protein L27 (Becillus subtilis)	- 88	1 84	378
260	~	2367	2996	[01]1196922	unknown protein (Insertion sequence 15861)	60	69	612
291	9	2017	3375		adenylosuccinate synthetase (Bacillus subtilis)	88	75	1359
319	-	859	111	91 603578	serine/threonine kinase (Phytophthora capsici)	60	88	342
0.	5	4353	4514	191 153672	lactose repressor (Streptococcus mutans)	87	26	162
							•	•

Contig	IQ ORF	Start	Stop (nt)	match	match gene name	E	1 ident	length (nt)
6	-	110660	110929	196921	unknown protein (Insertion sequence 15861)	187	72	270
\$9	-	1140	3808	91 1165309	S3 [Bacillus subtilis]	87	7.3	699
\$9	=	6623	1 7039	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	٤٢	417
25		1 54.1	6625	191 1877422	galactokinase (Streptococcus mutans)	87	96	1215
00	~	1 703	1 2805	gn1 PtD d101166	elongation factor G (Bacillus subtilis)	87	96	2103
8	<u>-</u>	196	1 248	gi 1196921	unknown protein (insertion sequence 15861)	69	69	794
0 7 1	2	125033	123897	gn1 P1D e254999	phenylelany-tRNA synthetase bata subunit (Bacillus subtills)	87	74	1 7611
7.7	Ξ_	7 0 1	9216	91 2281305	glucase inhibited division protein homolog GidA (Lactococcus lactis	69	75	1926
1 220	~	2742	874	gn1 P1D e324358	product highly similar to alongation factor EF-G (Bacillus subtills)	87		1869
1 260	-	1 2096		191 1196921	unknown protein (Insertion sequence 15861)	9.7	21	294
323	-	۲2	089	g1 897795	10S ribosomal protein [Pediococcus acidilactici]	8)		624
157	-	154	570	gi 1044978	ribosomal protein S8 (Bacillus subtilia)	97	7.3	417
6	Ξ	110927	111445	11445 gi 1196922	unknown protein (Insertion sequence 15861)	98	69	519
65	=	1962	9224	191 951051	relaxase (Streptococcus pneumoniae)	98	89	1764
9	-	1 1553	1 2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	96	וענ	678
9	[2]	110957	111610	101 44074	adenylate kinase (Lactococcus lactis)	96	96	954
- 82	-	1 4374	4856	91/153745	mannitol-spacific enzyme III (Streptococcus mutans)	96	72	483
1 102	-	1 4270	4986	gn1 P1D +26+705	OMP decerboxylase [Lactococcus lactis]	98	76	71.7
901	9	1 7824	6880		aspartate transcarbamylase (Lactobacillus leichmennii)	98	89	596
107	-	-	1 273	gn1 P1D e339862	putative acylneuraminate lyase (Clostridium tertium)	98	12	273
=	_	110432	0179	gn1 P1D e228283	DNA-dependent RNA polymerasa (Streptococcus pyogenes)	90	08	1723
-	-	5704	1 4892	91 1661193	lipoprotein dia	98	1.2	813
134	_	6430	7980	191 (238637	glycerol kinase (Enterococcus faecalis)	96	1,1	1551
146	-	1 7473	6583	191 1591731	onste kinas	9.6	72	691
183	- :	565	2010	91 2160707	dipaptidase [Lactococcus lactis]	98	18	1416
2	_	~	1435	91 1857246	6-phosphogluconate dehydrogenase [Lectococcus lactis]	986	1 1/	1434
	•							

S. pneumonias - Putative coding regions of novel proteins similar to known proteins

161 5 5025 6284 91 64266 250 1 2 1480 91 64266 250 1 2 1480 91 15316 250 1 2 1480 91 15316 250		↓ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
1		occus saliverius)	98	99	1260
8 3659 6571 1 2 187 4 2644 3909 4 2475 3587 5 2797 3789 5 2797 3789 5 2495 6054 1 1417 2388 2 2666 3154 3 2666 3154 3 2666 3154 3 2666 3154 4 2409 7 2862 4767 7 2862 4767 8 3760 4386 5 3760 4386 6 2788 1873	1 translational	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (Streptococcus mutans)	99		1482
1		initiation factor 1f2 [Enterococcus faecium]	986	1 96	2913
4 2644 1909 1 1 1 1 1 1 1 1 1	551	asperagine synthetase A (asnA) [Heemophilus influenzae]	986	1 89	186
4 2475 1587 5 2797 1789 5 4915 6654 1417 2186 2 1417 2186 2 1154 2409 7 2962 4767 7 2962 4767 7 2962 4767 8 1760 4386 9 1760 4386 1 178 1873	909 cel1	division protein (Enterococcus fascalis)	88	1 67	1266
5 3577 3915 5 15 15 15 15 15 15	gi 2056545 putative ABC transporter subunit	sporter subunit ComyB (Streptococcus gordonii)	98	1 24	6111
5 2797 3789 15 14690 15 15 15 15 15 15 15 1	58546 ComYC (Streptococcus gordonii	cus gordonii)	88	80	939
5 4915 6034 115 14690 15793 1266 1154 2009 12793 1266 1269 1	10 dioili6 [Yqt3 [Bacillus subcilis]	bcilis]	98	72	993
15 14690 15793 1	9	mannitol-phosphate dehydrogenase (Streptococcus mutans)	88	89	1140
2 1417 2386 154 2 2 2 2 2 2 2 2 2	-	phosphoribosyl aminoimidezole synthetase (PUR-M) (Bacillus subtilis)	85	- 69	1104
3 2666 3134 2 2 312 692 312 692 31	gi 1184967 ScrR (Streptococcus mutans	us mutans!	9.5	69	972
2 312 692 1314 2409 17 2862 4767 18 18 18 18 18 18 18 1	99	ORF (19% protein) (Enterococcus tascalis)	98	67	6.00
1	gi 1044989 ribosomal protein	S1) [Bacillus subcilis]	88	7.2	381
7 2962 4767 1 2622 709 1 1 1 1 1 1 1 1 1	91 1685110 tetrahydrofolate	tetrahydrofolate dehydrogenass/cyclohydrolass (Straptococcus thermophilus)	85 +	יי	876
2 2622 709 5 3760 4386 2 728 1873 3 962 1355	d100347	Na ATPase alpha subunit (Enterococcus hirae)	85	74	1806
5 2760 4386 2 728 1873 3 962 1255	4102006	ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MEMINGITIDIS. (Bacillus subtilis)	88	70	1914
3 962 1255	9	putative 20-kDa protein (Lactococcus lactis)	90	69	627
3 962 1255	63116 ORF-5 (Straptococcus pneumoniae	cus pneumonise!	88	67	1146
	155	(APO08220) YLIA [Bacillus subtilis]	85	19	294
1 1 309 1931	3597 CTP synthetase [Bacillus subtilis]	acillus subtillis)	95	0,	1623
-	8979 GTP-binding protein	in (Bacillus subtilis)	ě	72	1323
5	e339862	putative acylneursminate lyasm [Clostridium tertium]	8	0,	933
1 1 63 2093	0753 DNA topoisomerase	1 (Bacillus subtillis)	8	69	2031
2593	48	(AF005098) RMaseH II (Lactococcus lactis)	8	89	108
117 11720	10 d100584 cell division protein	tein (Bacillus subtilis)	78	11	1968
	9163 alanine dehydrogenase	nase (Bacillus subtills)	789	89	940

FABLE 2

405 3213 1221 1263 333 129 891 ፤ 2004 1032 285 1242 348 999 **405** 621 300 1 ident 72 2 = 13 99 2 5 | 3 89 2 69 7.3 89 7 63 59 69 ais . 2 8 2 2 8 | 8 2 9 83 3 |gnl|PID|d100576 |single strand DNA binding protein (Bacillus subtilis) hypothetical nucleotide binding protein (Acholeplasma laidlawii) (AE000299) 0238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YEBC_ECOLI SW: P24237 (Escherichia colii (AEGOG245) {346; 79 pct identical to 336 amino acids of ADH_ZYMHO SW; | P20368 but has 10 additional N-ter residues (Escherichia coli) Influence predicted coding region HI0659 (Heemophilus influence) |carbamoyl-phosphate synthase |Lactobacillus plantarum| [immunoglobulin Al protesse [Streptococcus pneumonise] 6-phospho-beta-glucosidase [Escherichia colij ATP binding protein (Streptococcus gordonii) (AFO08220) SAM synthase (Bacillus subtills) ORF10, putative (Streptococcus pneumonlae) |ribosomal protein Li8 [Bacillus subtilis] (thrsv) (EC 6.1.1.3) (Bacillus subtilis) |comA protein (Streptococcus pneumoniae) ORF211; putative (Lactococcus lactis) ORF211; putative [Lactococcus lactis] |10 | 730 | 6792 |gn1|PID|d100296 |fructokinase |Streptococcus mutans| |SecY protein [Lactococcus lactis] tripaptidase [Lactococcus lactis] phnA protein (Escherichia coli) amylase (Streptococcus bovis) |12 |13860 |14144 |gn1|PID|d100583 |unknown (Bacillus subtilis) ORF_(1141 (Escherichia coli) orfx (Bacillus subtilis) [L22 [Bacillus subtilis] match gene name 1gn1 | P1D | e199387 acession 91 1044980 191 [229]164 61 1787753 match |Bi | 147194 |ai|882609 91 1788294 9111573659 1 3142 |91|1165308 6683 |91|1213494 161 310631 91 450849 1951053 |Ui | 806487 gi | 806487 991 495046 1911143766 191 | 520738 85988 (Bi) 496558 1911311707 91 | 537085 101 144073 3005 3867 5910 1 3575 3417 1 8207 1 2262 17528 1516 5300 2505 1308 20772 7116 110397 8457 644 | 6 | 2795 4690 1 3893 118539 6715 9777 7426 1 5650 | 4 | 2837 121 | 9507 1 4 | 5474 1572 122 |21551 3358 6 | 3304 1 6877 **=** 147 1.5 6.5108 119 |17932 • --65 117 Contig JORF • 07| • = <u>-</u> <u>-</u> -<u>-</u> = <u>-</u> 3 36 901 159 **e** 23 62 2 8 65 761 148 2 2 28 _ 5 55 Ş \$

S. pneumoniae - Putative coding regions of noval proteins similar to known proteins

Contig	980 1091	Start (nt)	Stop (nt)	BACCB	match gene name	I ofm	1 ident	length
69	1.5	115112	14771	gn1 PID e323522	Dutative root protein (Bac(1) as subrills)			(uc)
96	==	1 8963	1 9631	101147394		6		342
		-			A CANTACT Printers Ottober Dyogenes	63	2	1 699
			587	191 1183885	glutamine-binding subunit (Bacillus subtilis)	8	- 88	761
120	-	17170	5233	gi 310630	zinc metalloprotease Streptococcus gordonii]	1 83	72	1938
127	_	1 2998	1 4347	191 11500567	M. Jannaschil predicted coding region HJ1665 [Methanococcus jannaschil]	69	27	1350
1.137	-	7	440	91 472918	(v-type Na-ATPase (Enterococcus hirae)	83	09	438
160	-	3466	4356	91/1173265	ATPase, gamma subunit iStreptococcus mutans)	83	67	1 1 6 8
214	-	1 2278	2964	91 663279	transposase Streptococcus pneumoniae	69	72	687
326	_	2367	2020	91 142154	thioredoxin Symechococcus PCC6101)	83	88	348
100	-		1049	91 40046	phosphogiucose laomerasa A (AA 1-449) (Becillus stearothermophilus)	83	67	1047
1 303	~	1155	1831	91 209282	glutamy -tRNA synthetase (Bacillus subtilis)	83	67	77.
9	=	07621	114318	91 633147	ribose-phosphace pyrophosphokinase (Bacillus caldolyticus)	82	64	1 1801
,	-	299	96	91 143648	clbosomal protein L28 [Bacillus subtilis	82	1 69	204
•	_	1479	1090	91 382 18	unknown (Bacillus subtilis)	85	7 97	667
•	-	4213	5686		ribosomal protein S6 (Bacillus subtilis)	92	1 09	317
21	.9		3942		unknown (Becillus subtilis)	9.2	89	747
22	2	113422	114837	91 520754	putetive (Becillus subtilis)	82	69	1416
~ _	81	114897			uridine monophosphate kinase (Synechocystis sp.)	82	62	762
2	9=	11471	110641		ORF4 (Streptococcus mutans)	82	89	831
35	- 6	7400	6255	gi 1881543	UDP-N-acetylglucosamine-2-epimeiase (Streptococcus pneumoniae)	92	- 89	1146
•	2	1 8003	:	191 1173519	riboflavin synthase bata subunit (Actinobacillus pleuropneumoniae)	82	1 89	471
9	~~	23159	123437	1910092	outer membrane protein (Campylobacter jejuni)	82	61	279
25	=	113833	14765	91 1142521	deoxyribodipyrimidine photolysee [Bacillus subtilis]	82	61	933
09	-	4737	1849		(AB001610) uvrA (Deinococcus radiodurens)	62	99	2889
62	-	16.15	1457	91 2246749	(AF009622) thioredoxin reductase [Listeria monocytogenes]	82	63	675
7	=	16586	117518	gnt PtD e322063	ss-1, 4-galactosyltransferase (Streptococcus pneumoniae)	82	1 09	933
	= :	9222	7837	4100586	unknown (Bacillus subtilis)	82	65 +	1386

FABLE

Contig	200	Start (nt)	Stop (nt)	satch acession	match gane name	e in	Ident	length (nt)
74	-	-	1,776		alkaline amylopullulanase [Bacillus sp.]	83	99	3771
6	<u>.</u>	1 3696	1 3983	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	95	\$2	288
86	Ξ	97.01	:	91 (63583	5-enolpyruvylshikimate-l-phosphate synthase Lectococcus lactis	82	67	1363
60	=	8295	1 9752	191140025	homologous to E.coli 50K (Bacillus subtilis)	9.2	99	1458
511	6	110347	;	gn1 P1D d102090	(AB001927) phospho-beta-galactosidese i (Lactobacillus gasseri)	82	74	1536
811	-		1 1332	dan Pro d100579	seryl-tRMA synthetase [Bacillus subtills]	82	- 12	1332
		4657	6246	pir S06097 S060	type I site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain S - Citrobacter freundii	83	99	1590
1.33	9	4183	;	191 2313836	(AE000584) conserved hypothetical protein (Helicobacter pylori)	82	99	681
((1)	=	5481	:		(AB001341) NcrB (Escherichia colt)	82	60	1962
61	~	178	:	pir 508564 R3BS	ribosomal protein 59 · Bacillus stearothermophilus	82	70	399
545	~	1 258	845	91 146402	ScoA type I restriction-modification ensyme S subunit (Escherichia coli)	92	1 89	588
-	<u>-</u>	1 3400	3146	on PID d100576	ribosomal protein S18 (Bacillus subtilis)	63	99	255
<u>9</u>	_	7484	8413	100011 16	tryptophanyl-tRNA synthetase (Clostridius longisporus)	81	70	930
02	=		•	gn1 Pr0 d100583	transcription-repair coupling factor (Bacillus subtilis)	- -	63	1513
87	~	1232	1606	01 2058543	putative DNA binding protein (Streptococcus gordonii)	19	63	175
\$	~	1061	1271	91 460259	enolase (Bacillus subtilis)	10	67	- 1161
9	-	~	1 1267	181 431231	uracil permesse (Bacillus caldolyticus)	ã	19	1266
	-	1 2453	0 0 0 7	gn1 P10 d100453	Hannosepliosphate Isomerase (Streptococcus mutans)	91	70	1014
*	~	3 1106	336	911154752	transport protein (Agrobacterium tumefacians)	91	99	177
9	72		•	191 44073	Secy protein (Lactococcus lactis)	10	99	516
6	-	1 3874	1 2603	101 55686	serine hydroxymethyltransferase (Becillus subtilis)	81	69	1272
66	9		118929	91 2313526	(AE000557) H. Fylori predicted coding region HP0411 (Helicobacter pylori)		7.5	198
901	_	17 8373	;	gn1 P10 e199384	pyrR (Lactobacillus plantarum)	18	61	552
901	۰	5054	7.69	91 1469939	group B oligopeptidase PepB (Streptococcus agalactiae)	10	99	1824
	13	•	í	: <u></u>	spoilit protein . Bacillus subtilis	91	65	2365
128	-	1359	3634	1 3634 94 1685111	or(1091 (Streptococcus thermophlius)	6	69	276

2382

282 867 297 408

300

1092

612

384 1032

099 294 477 303 828 2670 1266 177 195 976 120 330 1921 321 - 19 1 ident 69 63 57 99 9 67 99 53 9 99 2 22 Ç 53 9 5.0 69 69 65 89 \$ 080 08 80 8 8 **6** 6 19 8 8 90 80 |gnt | PID | d102006 | (AB001468) FUNCTION UNKNOWN: (Bacillus subtilis) | phosphate transport system ATP-binding protein (Methanococcus jannaschii) EcoE type I restriction-modification enzyme R subunit [Escherichia coli] |cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus] H. Influenzae predicted coding region H10660 (Haemophilus influenzae) pneumoniae - Putative coding regions of novel proteins similar to known proteins [DNA/pantothenate metabolism flavoprotein [Streptococcus mutans] (AED00584) conserved hypothetical protein [Helicobacter pylori] (AF004225) Cux/CDP(1B1); Cux/CDP homeoprotein (Mus musculus) reverse transcriptase endonuclease (Drosophila virilis) mannitol transport protein (Bacillus stearothermophilus) tryptophan synthase alpha subunit (Lactococcus lactis) tryptophan synthase beta subunit (Lactococcus lactis) |gn1|P10|e305362 |unnamed protein product: (Streptococcus thermophllus) | 1933 |gn1|PID|e264499 |dihydroorotata dehydrogenase B |Lactococcus lactis| |ribosomal protein L23 - Bacillus stearothermophilus |pir|A02819|R5BS |ribosomal protein L24 - Bacillus stearothermophilus [peptide chain release factor 1 (Bacillus subtilis) |leucocin A translocator (Leuconostoc gelidum) tagatose 6-P kinasa (Streptococcus mutans) valy1-tRNA synthetase [Bacillus subtilis] [ORF9, putative [Streptococcus pneumoniae] |12 | 8718 | 7438 |gnl|PID|d101959 |hypothetical protein (Symechocystis sp.) |gnl|PID|e101154 |StySKI methylase (Salmonella enterica) ATP-binding subunit (Bacillus subtilis) polyketide synthase (Bacillus subtilis) GMP synthetase (Bacillus subtilis) |gn||PID|e234078 |hom [Lactococcus lactis] match gene name |pir|A02815|R58S acession 191 1573660 91 2198820 91 | 2239288 91 1216490 91 1591672 101 | 1183884 91 2313836 91 304896 91 466473 191 | 703126 91 | 452309 gi | 149522 187587 91 | 153675 |ai | 149521 |gi |951052 1 5779 |gi|853776 |gi|622991 91 | 528995 3211 5748 1 5 | 4363 | 3593 7837 9906 4744 17 | 3671 | 3288 24.38 9242 1008 1613 3 | 4248 | 1579 1266 1550 458 7486 10687 5503 £ 868 • 2440 9 9884 8455 6050 5174 1759 2290 \$ 4550 111 | 7109 3 | 1230 869 376 1 1 830 : 663 1 2 | 902 1 2 | 648 _ Contig ORF 10 | 10 9 = 2 _ ~ 151 170 7 ... 159 181 . 65 217 262 299 766 ~ 2 -9 23 28 22 2 99 3 \$3 69 9 82

TABLE 2

Cont ig	10	Start (nt)	Stop Int)	metch	metch gene hane	E .	1 Ident	length (nt)
106	5	6854	5751	gn1 P10 e199386	glutaminase of carbamoyl-phosphate synthase [tactobacillus planterum]	080	1 59	1104
109	~	1	1450	191140056	phop gene product (Bacillus subtilis)	08	59	711
134	_		1 1953	gn1 P10 d102254	30S ribosomal protein S16 (Bacillus subtilis)	08	1 69	294
128		5148	6428	28130	phosphopentomutase (Lactococcus lactis cremoria)	- 08 -	99	1281
133	6		111376	1811159109	NADP-dependent glutamate dehydrogenase [Glardia intestinells]	- 80	1 89	1290
140	=	:	19457	{gi 517210	putative transposase (Streptococcus pyogenes)	1 09 1	1 0/	243
158	~	2474	984	91 1877423	ctose-i-P-uridyl transferase (Streptococcus mutan	1 08 1	1 59	1491
	0.7		1728	91 397800	(cyclophilin C-associated protein (Nus musculus)	1 08 1	1 09	255
2	-	~	619	91 149395	[lacC [Lactococcus lactis]	08	99	619
=	_	2)	539	91 143467	ribosonal protein S4 (Bacillus subtilis)	08 1	70	513
129	~	1652	828	1911533080	RecF protein (Streptococcus pyogenes)	80	63	795
1.0	-	~	958	191 442360	CipC adenosine triphosphatase (Bacillus subtilis)	080	58	957
	_	4312	5580	91 149435	putative [Lactococcus lactis]	79	99	1269
~	-	1175	135	gi 1542975	AbcB [Thermosnaerobacterium thermosulfurigenes]	1 64	61 1	1041
7	=	9244	8201	gn1 P1D e253891	[UDP-glucose 4-apimerase [Bacillus subtilis]	1 64	62	1044
36	_	1342	2633	gn1 P1D e324218	ftsA (Enterocaccus hirae)	1 66	5.8	1392
86	2	1155	8378	191 405134	acetate kinase (Bacillus subtilis)	1 29 1	5.8	1224
25	· – i	1106	6229	91 1146234	dihydrodipicolinate reductase (bacillus subtilis)	1 64 1	56	783
65	- 61	1 1998	8915	91 2078380	ribosomel protein L30 (Stephylucoccus aureus)	61	1 89	255
69	-	3678	2128	gn1 PID e311452	unknown (Bacillus subtilis)	1 64 1	- +9	1551
69	-	1881		91 677850	hypothetical protein (Staphylococcus aureus)	1 64 1	29	603
72	0.1	8491	9783 gn1	gn1 P10 d101091	hypothetical protein (Symechocystis sp.)	1 64 1	62	1293
90	-	2906	1300	43342	polymerase III (Bacillus subtilis)	64	1 59	4395
20	=	13326	115689	9n1 P10 e255093	hypothetical protein (Bacillus subtilis)	1 62	9	2364
9.6	= :	12233	:	91 683582	prephenate dehydrogenase [Lactococcus lactis]	64	98	1116
~ ;	-	940	134	191 537286	[trlosephosphate laomerase [Lectococcus lactis]	60	65	795
96	-	1007	,,,,	C200014 010 1				

FABLE 2

Contig 10	- a	Start	Stop (nt)	accession	match gene name	e is	1 ident	length (nt)
	=	116315	114150	91 153736	a-galactosidase (Streptococcus mutans)	64	99	2166
107	_	1 5684	9049	91 460080	D-alanine: D-alanine ligase-related protein [Enterococcus faccalis]	67	8.8	123
=	-	6858	1 8303	91 466882	[pps], 81496_C2_189 [Mycobacterium leprae]	66	3	1446
151	=	13424	112213	191 450686	3-phosphoglycerate kinase (Thermotoga maritima)	66	09	1212
162	~	1158	1 3017	91 506700	CapD Staphylococcus aureus	62	.9	1860
1,1	-	2876	1 3052	[91 [912423	[putative [Lactorocorus lactis]	1 62	19	177
111	-	4198	1 4563	91 149429	putative [Lactococcus lactis]	92	19	366
187	_	1,2728	1 2907	gn1 P1D d102002	[ABO01488] FUNCTION UNKNOWN: [Bacillus subtills]	1 64	53	180
1.89		1 35.89	4350	gn1 PID e183449	putative ATP-binding protein of ABC-type [Bacillus subtilis]	62	19	762
181	-	4249	3449	91 149519	indoleglycerol phosphate synthase (Lactococcus lactia)	62	99	801
==	-	1 1805	רניגן	91 117404	mannose permease subunit II-M-Man (Escherichia coli)	- 64	57	933
212	_	1 3863	3621	gn1 PID e209004	glutaredoxin-like protein (Lactococcus lactis)	60	58	343
315	- :	1 987	115	91 2293242	(AFD08220) arginine succinate synthase [Bacillus subtills]	64	9	273
52	~	530	781	01 897795	130S ribosomal protein (Pediococcus acidilactici)	1 60 1	67	252
380	-	1 694	~	191 1184680	polynucleotide phosphorylese (Bacillus subtilis	64	19	(69)
384	~	1 655	239	gi 143328	phop protein (put.); putative [Bacillus subtilis]	64	59	417
•	-	1 2820	4091		[UDP-N-acetylglucosamine 1-carboxyvinyltrans(erase [Bacillus subtilis]	1 87	62	2721
	-	05	1 1786	01 149432	putative (Lactococcus lactis)	1 8/	1 69	1737
•	-	1351	124	[91/897793	1998 gane product (Pediococcus acidilactici)	1 80 1	1 65	228
2	-	1 7364	8314	gn1 P1D d100585	cysteine synthetase A (Bacillus subtilis)	1 28	63	951
20	2	1 9738	9738 10310	gn1 PID d100583	stage V sporulation (Bacillus subtilis)	1 96	58	573
02	9-	. :	117713	191 49105	hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	18.	59	648
~~	22	117388	118416	fant Projetorats	YqfE (Bacillus subtilis)	1 87	1 09	1029
~	127	•	20612	191 299163	alenine dehydrogenase (Bacillus subtilis)	1 84	29	360
=	8	1 7407	7105	191 41015	aspartate-tRNA ligase (Escherichia coli)	186	\$5	303
35	8	6257	5196	91 1657644	Cap8E Staphylococcus aureus	78	- 09	1062
					如中中中省省省省建筑市产生市场 医尿片球菌属 医甲氧异丙烷 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医二甲二二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二			

S. pneumoniae - Putative coding regions of novel proteins "Similar to known proteins

Contig	08.F	Start Int)	Stop (nt)	acession	match gene name	e is) ident	length (nt)
ç	=_	9287	8001	9111173518	GTP cyclohydrase 11/ 3, 4-dihydroxy-2-butanone-4-phosphate synthase (Actinobacillus pleuropneumonlae)	98	æ	1287
æ	<u> </u>	22422; [23183	23183	91 231 4330	(AE000623) glutamine ABC transporter. ATP-binding protein (gln0)	96	88	762
52	~	1 2 1 0 1	1430	911183887	integral membrane protein (Bacillus subtilis)	78	3	672
\$\$	Ξ	13605	112712	gn1 Pt0 d102026	(ABO02150) YbbP (Bacillus subtilis)	78	88	968
\$\$	Ξ.	:	115612	gn! PtD e313027	hypothetical protein (Bacillus subtilis)	92	š	1026
17	١.	119756 19598	19898	191 1179764	calcium channel alpha-1D subunit (Homo saplens)	7.8	52	159
74	=	115031 14018	14018	191 1573279	Holliday junction DNA helicase (ruvb) [Haemophilus influenzae]	78	57	1014
2.5	6	(299	1 7972	191 [1877423	galactose-1-P-uridy! transferase (Streptococcus mutans)	78	62	1350
80	2	12125	113906	19111573607	L-fucose isomerase (fuci) [Haemophilus influentae]	96	99	1782
95	-	242)	4117	91 153744	ORF X; putative (Streptococcus mutans)	78	99	1995
a	=	16926	18500	61 (143373	phosphoribosyl aminoimidazole carboxy formyl (ormyltransfersse/inosine monophosphete cyclohydrolese (PUR-H(J)) (Bacillus subtilis)	8 .	3	1575
8)	120	120212	120775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) Bacillus subtilis	78	9	\$ 995
35	~	591	878	gal PID d101190	ORF2 (Streptococcus mutans)	78	62	714
96	5	5863	6069	191 (2331287	(AF013188) release factor 2 (Bacillus subtilis)	78	63	1047
	_	1001	1 2741	91 580914	dna2x (Bacillus subtilis)	92	79	1671
127	-	66.1	1 2071	91 142463	RNA polymerase alpha-core-subunit (bacillus subtilis)	18	65	919
777	-	2782	L 49.1	191 1561763	[pullulanase [Bacteroides thetalotaomicron]	18	5.8	2286
511	-	2698	1 3537	91 1786036	(AE000269) NHJ-dependent NAD synthetase (Escherichia coll)	18	99	840
071	<u>۶</u>	26853	125423	191 1100077	phospho-beta-glucosidase Clostridium longisporum	78	3	1431
150	2	4690	4814	91 169464	amino peptidase Lectococcus lactis	78	7	177
152	- -	-	195	[gi 639915	NADH dehydrogenase subunit (Thunbergia alata)	78	3	195
162	-	4997	4110	gn1 P1D e323528	putative YhaP protein (Bacillus subtilis)	7.8	79	888
181	2	8651	1 7947	gi 149402	lactose repressor (lack, alt.) (Lactococcus lactis)	7.8	8,	205
200	-	1 3627	4958	gn1 P1D d100172	Invertase (Zymomones mobilis)	7.8	61	1332
503	2	3230	3015	191 1174237	Cyck (Psaudomonas fluorescens)	78	57	216

S. pneumonise - Putative coding regions of novel proteins similar to known proteins TABLE 2

1 1742 9 9 9 9 9 9 9 9 9	Contig	0 2	Stere	Stop	match	match gene name	e i	1 ident	length (nt)
1 10 10 10 10 10 10 10	210		6929	27.17	191 580902	gene product (Bacillus	1 84	7.5	384
1 9 1217 1915 1917 1915 1917 1915 1917 1915 1917	7		3610	2797		o-sisloglycoprotein endopeptidase; PJ6175 [Bacillus subtilis]	78	9	1014
1 19 211 210 2	717	=	6322	8163	[91 1377831		78	62	1842
1 116 1998 Qui 191904 December D	1 217	-		1 2717	191 488430	dehydrogenase 2	7.8	9	2709
1 172 5 [61] [177] [62]	222		2316	3098	10111573047	spore gerainstion and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	\$	783
1 272 773 gan projection to describe and protein Li Beccillus subtilis] 78 64 54 54 57 57 61 61 62 62 62 62 62 62	268	==	742		1911517210	putative transposase (Streptococcus pyogenes)	96	6.5	135
1 1157 1079 Gal 12892261 Comm Oner's Baccillus subtilia 784 584 585	1 276	-	223	153	100306	ribosomal protein Li (sacillus subtills)	187	65	188
1 177 794 Gado [Stephylococcus aureas] 79 59 59 59 59 59 59 59	1 312	-	1567	1079	91 289261	COME ORF2 [Bacillus subtilis]	1 8 1	24	489
1 177 3 G 1852 G 1862 G 1969 D D D D D D D	600	-	411	194	91 1916729	(Staphylococcus	16	53	678
13 11922 11018 Galil199833 Carboxyltransferase beta subunit [Symachococus PCC7942] 77 69 64 13 11922 11018 Galil199133 Carboxyltransferase beta subunit [Symachococus PCC7942] 77 69 14 16948 7350 Galil99133 Carboxyltransferase beta subunit [Symachococus PCC7942] 77 60 15 9761 9867 Galil99133 Treep (Bactilus subtilis) 77 64 16 11421 12131 Galil99133 Treep (Bactilus subtilis) 77 64 17 1866 Galil99143 Treep (Bactilus subtilis) 77 77 73 1866 4096 Galil99143 Treep (Bactilus subtilis) 77 77 73 1866 911709640 Vasa (Bactilus subtilis) 77 77 73 1866 911709640 Treep (Bactilus subtilis) 77 77 77 77 1866 911709640 Treep (Bactilus subtilis) 77 77 77 77 1867 7504 Galil99143 MMPP (Streptococcus subtilis) 77 77 77 77 1868 7509 7200 Galil99143 MMPP (Streptococcus subtilis) 77 78 1869 91191919133 MMPP (Streptococcus Januaria Bactilis) 77 78 1869 911919191339 MMPP (Streptococcus subtilis) 77 78 1860 911919191339 MMPP (Streptococcus subtilis) 77 78 1861 7509 7509 91113373 MMPP (Streptococcus subtilis) 77 78 1861 7509 7509 91113373 MMPP (Streptococcus subtilis) 77 78 1861 7509 91113373 MMPP (Streptococcus subtilis) 77 78 1861 7509 91113373 MMPP (Streptococcus subtilis) 77 78 1861 7509 91113373 77 78 78 78 1862 9113373	745	~	762	592	91 13842439	synthase (Bacillus	187	5.9	1 867
15 11922 11008	1 383	-	767	_	91 1184680	phosphorylese (Bacillus	9.	9	135
1 1688 7359	,	- 25	:				7.7	63	906
14 6946 7350 gi 520718 comA protein Streptococcus pneumonies 77 64 77 77 77 78 78 78 78 7		~	1698		91 149433	putative (Lactococcus lactis)		65	558
12 1961 8967 gp 1000451 TreP (Bacillus subtilis) 77 64 77 77	1 17	1	6948	7550	91 520730	comA protein Streptococcus pneumonise	"	9	603
14	000	=======================================	19761	1 8967	191 1000451	Trep (Bacillus subtilis)	7.1	;	195
3 1836 4096 gi 708640 YeaB Bacillus subtilis 2 607 1254 gi 40103 fribosomal protein LATA (Lectococcus lectis 77 63 77 64 3 607 1254 gi 40103 fribosomal protein L4 (Bacillus stearothermophilus 77 63 77 65 4 7509 7240 gi 47551 MRP (Streptococcus suis 77 64 5 6583 4026 gii 1590947 lamidophosphoribosyltransferase (Methanococcus janneschili) 77 60 77 60 4 1006 5444 gii 1590947 lamidophosphoribosyltransferase (Methanococcus janneschili) 77 66 78 79 79 79 79 79 79 79	36	===	i		91(157)766	phosphoglyceromutase (gpmA) Haemophilus influentae;	۱ دد	99	111
8 8377 8054 91 1890649 multidrug resistance protein LmrA (Lactococcus lactis) 77 51 51 52 52 52 52 52 53 54 54 54 55 54 55 55	1 85		3836	•	911708640	YeaB (Bacillus subtilis)	77	ss I	192
2 607 1254 gil 40103 Fibosomed protein L4 (Becillus stearothermophilus) 77 63 77 68 7509 7240 gil 47551 MRP (Streptococcus suial 77 68 77 69 77 69 77 69 77 60 77 77	5		1 8377	8054	91 1890649	multidrug resistance protein LarA (Lactococcus lactis)	7.	23	324
8 7509 7240 gi 47551	9	~	607		g1 40103	protein L4 (Bacillus stearothermophi	٠,	63	648
1 1083 118 gni PID e311493 unknown (Bacillus subtilis)	89		1 7509		91 47551	MRP (Streptococcus suis)	77	89	370
5 4583 4026 gm Pitje281578 hypothetical 12 2 kd protein [Becillus subtilis] 77 60 1 1 1 1 1 1 1 1 1	69	-	1083	118	gn1 P10 e311493	unknown (Bacillus subtilis)	۲۲	57	996
14 11104 14552 gi 1590947 paidophosphoribosyltransferase Methanococcus janneschii 77 56 4 1006 5444 gni PID e112895 (AJ000496) cyclic nucleotide-gated channel beta aubunit Rattus norvegicus 77 66		<u>-</u>	4583	4026	gn1 P10 e281578	12.2 kd protein	7.7	09	558
4 3006 5444 gnl PID e329895 (AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus] 77 66	3	:	:	114552	. ~	amidophosphoribosyltransferase [Methanococcus jannaschii]	7.	98	1449
	*	-	3006	5444	gn1 P1D e329895	channel beta subunit Rattus	1.4	99	2439
	96	=	8218	8880	91 551879	ORF 1 [Lactococcus lactis]	11	62	363
	6	=	: :	112799	1911153737	laugar-binding protein (Streptococcus mutans)	1,	61	1284

TABLE 2

879 726 744 1287 750 1350 189 708 2559 1503 987 201 279 1569 240 147 390 1296 768 1467 99 2 5.8 19 5 99 62 23 1 ident \$3 5.3 53 88 53 3 20 S 20 9 S 1 8 1 85 62 25 9, # # 11. 72 2 2 2 ---1.5 12 76 5 2 2 [transfer RNA-Gin synthetase [Bacillus stearothermophilus] | gal|PID|e325013 |hypothetical protein (Bacillus subtilis) 209284 [cysteinyl-tRNA synthetase [Bacillus subtlis] |putative transposase (Streptococcus pyogenes) |gn1|P10|a334776 |Y1bH protein |Bacillus subtilis| phosphate transport system ATP-binding protein [Methanococcus jamaschii] |gn1 | PID | d100964 | homologue of iron dicitrate transport ATP-binding protein FecE of E. coli |tRNA (guaning-N1)-methyltransferase (trmD) (Haemophilus influentae) tellurite resistance protein (tehB) (Haemophilus influenzas) dihydroorotate dehydrogenase A (Lactococcus lactis) | 1 | 2734 | 1166 |gn1|FID|d101824 |peptide-chain-release factor 3 (Synechocystls sp.) D-alanine permease (dagA) [Haemophilus influenzae] |asparaginyl-tRNA synthetase (Bacillus subtilis) | 5 | 4531 | 4385 |gnl|PID|e314495 |hypothetical protein [Clostridium perfringens] |gi|556258 |secA (Listeria monocytogenes) |gnl|PID|d100947 |Ribosomal Protein L10 (Bacillus subtilis) acyl carrier protein [Cryptomonas phi] LicD protein (Haemophilus influenzae) | 1683 |gn1|PID|e157887 |URFS (as 1-573) (Drosophila yakuba) (AF008220) YtqA (Bacillus subtilis) |gni | PID | d101328 | YqiZ (Bacillus subtilis) [gnt | PID | d101163 | Srb (Bacillus subtills) (Bacillus subtilis) match gene name match acession 9111591672 191 | 2293302 95857251 191 91 | 1574730 91 | 1573900 91 (1573162 |gi|1146247 |ai|149516 1911143004 91 148921 |gi|289284 91 | 517210 1911511015 191 | 455157 3133 101 118 | 19451 | 19263 1 2 | 1615 | 842 1207 1672 | 7257 | 8 | 4614 3639 6715 1 707 1373 9582 5293 7398 1 5177 1 3 | 1276 | 1276 123 |18474 |18235 1 509 799 9012 | 8 | 13520 11 110931 6412 1 1 3152 1 4 1 1796 | 4 | 5909 1 5. | 4388 4 | 2735 1 8 | 5377 1 2 1 1399 1981 9.6 7 7 1 1 2 | 231 2 | 630 1 1 202 <u>ء</u> Contig ORF 9 ~ <u>~</u> 198 126 139 140 140 = 213 130 : 163 250 Ξ 289 292 ^

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	0.0	Start (nt)	Stop (nt)	metch	match gene name	# E	Ident	length (nt)
~	2	1	128173	Jgn1 P1D e13389	translation initiation factor 1F3 , AA 1-172) [Bacillus stearothermophilus]	96	3	378
38	۰	. 3869	2682	19111773346	[Cap5G (Staphylococcus aureus]	76	19	1188
6	2 -	כוווז	21787	91 2314328	(AR000623) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylori]	96	52	675
25	112	12881	13786	91 142521	decayribodipyrimidine photolyase (Bacillus subtilis)	9,	58	906
\$\$. :	110571	ani PID 6283110	femb Staphylococcus auraus	16	61	951
5.		7824	6559	91 290561	o168 (Escherichia coli)	16		1266
62	~	2406	2095	gn1 PID +313024	hypothetical protein (Bacillus subtilis)	76	- 65	312
65	_	1 4223	4441 91	91 40148	L29 protein (AA 1-66) [Bacillus subtilis]	96	88	219
69	~	1326	1782	gn1 P1D e284233	anabolic ornithing carbamoyitransferase (Lactobacillus plantarum)	76	19	1044
69	8	7297	1 6005	gn1 P10 d101420	Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)	36	61	1293
τ.	~	7839	7267	gn1 P1D e243629	unknown (Mycobacterium tuberculosis)	96	53	573
*	- \$	8433	7039	gn1 PID d102048	C. thermocellum beta-glucosidase; P26208 1985) [Bacillus subtilis]	96	0.9	1395
80	s -	7643	7936	191 231 4030	(AE000599) conserved hypothetical protein (Hellcobacter pylori)	76	19	294
82	2	16019	96691	gi 1573900	D-alanine permease (dagA) [Hacmophilus influentae]	9,2	95	976
£	<u> </u>	18616	19884	91,[143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus aubtills]	76	09	1269
. B.6	-	13409	112231	91 143806	Arof (Bacillus subtilis)	76	88	1 6611
	_		1442	911153804	0	36	65	1440
63	•	•		gn1 P1D e323500	putative Gmk protein (Bacillus subtilis)	9/	95	645
6	-	1769	1539	01 11574820	1.4-alpha-glucan branching enzyme (glg8) [Haemophilus influenzae]	96	9	162
*	-	5	1 365	01/144313	6.0 kd ORF [Plasmid ColEl]	96	70	315
116	~	2151	1 1678	191 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	1 9/	- 65	174
123	•	3442		[gi 1314297	ClpC ATPase (Listeria monocytogenes)	96	59	2454
126	~	2156	2932	gn1 P10 d101328	Yqi2 (Bacillus subtlis)	76	19	1 711
128	2	6973	1977	944944	purine nucleoside phosphorylase (Bacillus subtilis)	76	09	825
Ē	Ξ_	9819	5812	91 1674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium [Mycoplasma pneumoniae]	92	42	375

FABLE 2

1116 1221 1371 1098 1074 227 1386 141 225 387 | 1 ident | 2 9 9 9 9 58 52 2 69 2 8 2 2 | 2 53 1 79 75 5 5 5 9,6 16 9 **e i a** 9 2 9, 16 96 75 . 5 2 2 2 2 enthranilace synthase beta subunit (Lactococcus lactis) D-glutamic acid adding enzyme (Enterococcum faecalis) dextran glucosidase DexS (Streptococcus suis) |phosphoribosyl anthranilate isomerase [Lactococcus lactis] |[Imbrial transcription regulation repressor (pilB) [Haemophilus influenzae] | sapartate aminotransferase (Bacillus sp.) |gnl|PiD|d100560 |formamidopyrimidine-DNA glycosylase (Streptococcus mutans) orf-X; hypothetical protein; Method: conceptual translation supplied D-glutamic acid adding enzyme (Enterococcus faecalis) (AF008220) putative thioredoxin (Bacillus subtills) transfer RNA-Tyr synthetase (Bacillus subtilis) polynucleotide phosphorylase (Bacillus subtilis) neuraminidase B (Streptococcus pneumoniae) transposase (Streptococcus pneumonise) | 1pa-52r gene product (Bacillus subtilis) ATP-binding protein (Escherichia coli) ORF 821 (as 1-821) [Bacillus subtilis] SCRFI methylase (Lactococcus lactis) enzyme scr-II (Streptococcus mutans) (AF008220) YtqA (Bacillus subtilis) lysis protein [Bacillus subtilis] ORF_f356 [Escherichia coli] author (Bacillus aubtills) unknown (Bacillus subtilis) |gn1|PID|d102050 |ydiH (Bacillus subtilis) |gn1|Pt0|dt01319 |YqgH |Bacillus subtillist |gnl|PID|d100959 |ycgQ |Bacillus subtilis| match gene name maten acession 191 1184680 191 (2293302 191 2119905 91 | 143795 96 | 5208998 91 | 1552775 2116311 | 19 gi | 2149905 191 1574293 91 | 1373157 099155|16| ££07£2 | 19 |gi | 2293211 91 | 663278 91 1142538 1911431272 91 | 149520 191 | 149493 | 4 | 1735 | 1448 |gi|413976 91 153803 19: (533105 91 40019 | 4 | 3641 | 3192 1 2 | 2583 | 3905 14 |14872 |12536 1 3 | 3629 | 2444 2909 1301 1 9 | 7484 | 8359 110 | 6470 | 5769 5228 225 | 3 | 2336 | 3411 2030 13 | 1914 | 3629 113 (12553 (11894 7940 11484 348 . 207 724 38 1 2 | 1927 | 557 165 5005 \$815 1 2827 | 01 356 | 2 | 842 | 200 3 1914 200 3 1914 201 1 431 10 - 1 1 1 734 112 | 8080 4266 \$ | 2362 1 8 |12599 111 | 9015 1 1 523 - 9 -Contig JORF s 161 347 9 - 3 139 • Ξ 170 233 180 • 22 9

LABLE 2

1320 306 3366 1194 966 1038 2052 1749 325 100 870 699 627 285 009 ננו 11, 825 933 909 940 (JE) I ident **\$**6 98 43 \$ S 20 9 57 57 2 5 25 28 3 5 3 8 3 55 58 22 F Sin 25 75 75 2 75 5 25 5 3 3 5 75 5 5 75 75 |C4-dicarboxylate transport protein |Haemophilus in[luenzes| CG Site No. 620; alternate gene names hs, hsp, hsr, rm; apparent frameshift 28.28 of identity to the Escherichia coli GTP-binding protein Era; putative repressor of class I heat shock gene expression HrcA (Streptococcus mutans) M. Jannaschii predicted coding region MJ1558 [Methanococcus Jannaschii] glutamine transport ATP-binding protein () (Nethanococcus jannaschii) (AF003141) strong similarity to the FABP/P2/CRBP/CRABP family methionyl-tRNA synthetase [Bacillus stearothermophilus] in GenBank Accession Number X06545 (Escherichia coli) adenine phosphoriboxyltransferase (Bacillus subtilis) |305 ribosomel subunit protein S14 (Escherichia coli) |pir|A00205|FECL |ferredoxin [4Pe-4S] - Clostridium thermaceticum orf2 gene product (Lactobacillus leichmannii) outer membrane protein (Campylobacter jejuni) repressor protein (Streptococcus pneumoniae) |gnl|PID|d101119 |ABC transporter subunit (Synechocystis sp.) nifS-like gene (Lactobacillus delbrueckii) |putative Plsx protein (Bacillus subtilis) [P-glycoprotein 5 (Entamoeba histolytica) transporters (Caenorhabditis elegans) hypothetical (Haemophilus influenzae) |gn1|PID|e266928 |unknown (Mycobacterium tuberculosis) gn1 PID e323510 | Ylov protein (Bacillus subtills) BatD [Rhodobacter capsulatus] |gn1|PID|d100582 |unknown |Bacillus subtills| |gnl|PID|e249656 |YneT |Bacillus subtilis| ol88 (Escherichia colil (Bacillus subtilis) match gene name |gn1 | PID | e323529 match acession 191 | 2145131 9111146219 91 | 1655715 91 1500451 91 | 2088739 19111574058 91 1930092 |gi|1256617 91 1574390 101 (159149) 91 | 460026 191(161)16 91 | 537192 91 | 666069 191 | 290561 101 606241 91143985 91 | 19989 9338 6878 | 7183 10687 15379 2472 6536 Stop (nt) 9919 29404 2975 5317 1186 3883 24066 111683 20759 7822 8699 1390 319 455 49 Ç 915 Start | 10001 3071 8499 122 |14510 33 (23398 99561 8448 6072 1810 6360 1938 9409 1795 2951 2614 8318 124 | 30399 181 910 320 362 169 ~ _ Contig | ORF <u>-</u> = -**9** <u>-</u> • • ~ -9 ø Ξ 2 ~ -~ -8 7 9 • 57 9, 5 9.8 2 36 8 3 3 \$ 7 19 8 9 3 ŝ 3 9 104 = ~ 2 -

LABLE 2

	:		********					
Cont ig	9 ORF	F Start (nt)	Stop		match gene neme	t sia	1 Jdent	length
2	-	9100	[767]	191 40467	Hads polypeptide, part of CfrA family (Citrobacter freundil)	75		1 907
158	-	986	_	gn1 PtD e253891	UDP-glucose 4-epimeres			0,00
272	-	1 5653	6174	(01)142978	glycerol dehydrogenase (Bacillus stearothermonhilus)			7 D D D D D D D D D D D D D D D D D D D
7.	-	1 7139	9730	gnt PtD e268456	unknown (Mycobacterium tuberculosis)	5	90	1 2211
2	-	192	6.	gn1 P1D e236469	C10C5.6 (Caenorhabditis elegans)		80	2857
185		3066	2014	91 1574806		75	95	163
161	-	1 5235	4213	gi 149518	phosphoribosyl anthranilate transferase (Lectococcus lactis)		- 19	
326	~	1. 1774	1181	191 231 4588	(AEG00642) conserved hypothetical protein [Hellicobacter pylori)	75	- 59	705
ā	- :	-	1.53	191 (4017)	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	75	5,	
ž .	- :	- 2	418	gi 2293259	[(AF008220) Ytq1 [Becillus subttlis]		9	
672	-	552	151	1911119198	unknown protein (Bacillus subtilis)	35	05	
291	-	1 3558	1 3827	100110011	ORF17 (AA 1-161) (Bacillus subtilis)	25.		966
25	~	711	629	1911410137	ORFX13 (Bacillus subtilis)		3	
•	- 50	116721	_ '	191 229 3323	(AF008220) Ytdl (Bacillus subtilis)	7.		
,	9	1 4682	6052	gi 1354213	PET112-like protein (Becillus subtilis)			
2	-	1341	1 2427	gn1 P10 d101319	Yqq1 (Bacillus aubtilis)	76		
~	-	5885	4800	191 1072381	glutamyl-aminopeptidass (Lectococcus lectis)			1 616
~	~	1 739	_:	91 (2314762	(AE000655) ABC transporter, permease protein (yees) (Helicobacter pylori)	7.		
25	-	~		gn1 P10 d100932	H20-forming NADH Oxidese Streptococcus autans)	74		
9.	=	111432	12964	91 537034	ORF_0488 [Escherichia coli]	74		
•	2	8924	6999	19111513069	P-type adenosine triphosphatase (Listeria monocytogenes)	76	; ;	1
\$\$	Ē.	; ;	11401	ani PID e283110	femb Staphylococcus aureus	7.		1 9577
19	~	1782	427	9125622 16	(AF008220) putative UDP-H-acetylmuramate-alanine ligase [Bacillus subtilis]	7		1 100
76	2	9414	8065	PID d101325		7.		9664
2	~	999	926	pir c33496 c334	hisC homolog . Bacillus subtills	74		261
98	6	8988	0000	[91]683585	prephenate dehydratese (Lactococcus lactis)	74	55	7 906
					· · · · · · · · · · · · · · · · · · ·			

S. pneumonise - Putative coding regions of novel proteins similar to known proteins TABLE 2

Contig		ORF Start ID (nt)	rt Stop	acession	match gene name	e is	* ident	length (nt)
103	- :	\$ 500\$	5 5652	191/143394	OMP-PRPP transferase (Bacillus subtills)	74	23	979
F01 -	- :	5 4364	1 3267	-:	YloN protein (Bacillus subtilis)	74	62	1098
801	-	7 6864	1 7592		[methyltransfersse (Lactococcus lactis]	74	98	729
-	- :	2 478	146	gn1 P1D d101320	[YqqZ [Bacillus subtilis]	74	- \$\$	666
= :	-	2 1380	616 0	pro	hypothetical protein [Bacillus subtilis]	7.4	09	162
- 13	-	9 6167	6787	gn1 PTD d100479	Na - ATPase subunit D (Enterococcus hirae)	7.4	53	621
-	- :	4 3008	1 3883	aul lub	high level kasgamycin resistence (Bacillus subtills)	74	55	876
	;	2 243	824	19111573373	methylaced DNA - protein-cysteine methyltransferase (dat1) (Haamophilus	74		582
97	- :	6 3515	1 4249	19:1410131	OREX7 [Bacillus subtlits]	74	48	1367
- 16	-	7 5446	. 5201	gi 413927	(1pa-3r gene product (Sacillus subtilis)	74	55	246
=	-	-	1818	gn P10 d102251	beta-galactosidase (Bacillus circulans	74	62	1818
571	- ;	1 1064	2392	1911466474	Cellobiose phosphotrensferase enzyme if ' [Sacillus steerothermophilus]	7.	20	1329
183		326		91 1573646	Mg(2.) transport Affase protein C (mytC) (SP:P22037) (Haemophilus	7.	89	324
188	-	2 1089	2018	91 1573008	ATP dependent translocator homolog (meba) [Haemophilus influenzae]	3.6	•	930
189	Ξ	1 6491	1234	91 1661199	. 03	1	99	1 989
210	-	2 520	1387	:	(AF008220 Ytmg [Bacillus subtills]	7.	09	1 892
192	-	1 836	192	[91 666983	putative ATP binding subunit (Bacillus subtilis)	74	\$5	645
763		1619	3655	91 663232	Stallarity with S. cerevisiae hypothetical 117.7 kD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	2	2037
265	-	2 844	1227	101 49272	Asparaginase (Bacillus licheniformis	74	79	384
1 368	-	7	942	94 603998	unknown Saccheromyces cerevisiae	7.	39	942
_	=	-:	111921	gn1 P1D d101324	Yqhx (Becilius subcilis)	1 12	57	1437
-1	2	0 5706	1 5449	[gn1]P1D e305362	unnamed protein product (Streptococcus thermophilus)	13	- 4	258
<u>-</u> :	-;	2 522	244	gn1 PtD d100576	single strand DNA binding protein (Sacillus subrilis)	73	- \$\$	279
77	-	6 5667	1 6194		YqfG (Bacillus subtilis)		- 88	528
*	52	5 10281	9790	gal PID d102151	(1AB001684) ORF42c (Chlorella vulgaria)	1, 1,	- 97	492
					◆ \		***********	•

TABLE 2

Contig	9 0 1	Start	Stop	metch &cession	match yene name	e in	Ident	length (nt)
Ç	=	9876	9226	191/11/19517	ribotlavin synthese alpha subunit (Actinobecillus pleuropneumonise)	13	\$2	651
22	7	1 3592	619	gn1 P10 d101887	cation-transporting ATPase PacL (Synechocystis sp.)	נג	09	2754
\$	=	117494	16586	gn1 PID #265580	unknown (Mycobacterium tubarculosis)	נג	52	606
9	9.	1 7213	1367	1911141419	ribosomal protein L6 (Bacillus stearothermophilus)	Cr.	1 09	888
99	_	1 3300	1 3659	gn1 PID 6269883	Lacy (Lactobacillus casai)	2.5	52	360
0,	0.1	1 8557	5733	5733 91 857631	envelope protein (Human immunodeficiency virus type 1)	23	09	177
1.	-	((1)	8262	gn1 P10 e322063	ss-1.4-galactosyltransfarase (Streptococcus pneumoniae)	23	45	2130
2	-	^ -	158	19:12293177	[AF008220] cransporter [Bacillus subtilis]	13	50	849
9,	_	1 7019	619	gn1 P10 d101325	Yqif (Bacillus subtilis)	t	99	825
94	=	60001	19533	19111573086	uridine kinese (uridine monophosphokinase) (udk) (Haemophilus influentee)	ני	75	144
9	-	1 8113	9372	19111317823	aminopeptidese (Bacillus subtilis)	נר	09	1260
1 97	~	1389	1668	gn1 P1D d101954	dihydroxyacid deliydratasa (Synachocystis sp.)	52	3	1722
86	_			gal Pio	114991 [First Mycobacterium tuberculosis]	27	25	1 800
801	=		10440	110440 91 388109	regulatory protein (Enterococcus faecalis)	23	75	687
128	9	1 3632	4222	91 1685111	orf1091 (Streptococcus thermophilus)	13	63	591
138	~	: :	394	91 147326	transport protein (Escherichia coli)	5	9	1182
140	2		11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	ני	25	636
1 162	<u>-</u>	1078	1669	gn1 P10 e323511	putative Theo protein (Bacillus subtilis)	5	000	1111
791	-	1 2323	2790	91 11592076	hypothetical protein (SP:P25768) [Methanococcus januaschii]	ני	52	468
164	-	4815	5546	gi 410137	ORFX13 [Bacillus subtilis]	٤٢	96	732
170	-	4394	5302	gn1 PID d100959	homologue of unidentified protein of E. coli (Becillus subtilis)	ני	9,	606
1 178	_	1 3893	4855	191 46242	nodulation protein B, 5'end (Rhizobium loti)	ני	95	696
204	•	9605	4278	gn1 P1D e214719	PicR protein (Bacillus thuringiensis)	7.3	7	819
612	~	B 12	2037	91 1565296	ribosomal protein Si homolog; sequence specific DNA-binding protein	ני	55	1206
1 231	~	94	287	91 40173	homolog of E.coll ribosomal protein L21 (Becillus subtilis)	67	9	304
1 237	-	!	505	2 505 91 1773151	adenine phosphoribosyltransferase [Escherichia colij	1 67	- 18	504
•								

ABLE 2

Contig	ORF ID	Start (nt)	Stop (nt.)	match ecession	match gene name	8 8	1 dent	length (nc)
1 269	-	~	169	gn1 P10 d101328	Yqix (Bacillus subtills)	73	36	069
289	~	2721	832 pi	pir A02771 R7HC	ribosomal protein L7/L12 - Micrococcus luteus	נר	99	- 100
3.	-	ž	484	=	(AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region [Recherichia coli]			12.
1 356	- -	222	-	91 (2149905	D-glutamic acid adding enzyme (Enterococcus fascalis)	73	05	319
,	<u>۰</u>	3165	1691	gn1 P1D d101833	amidase (Synechocystla sp.)	72	52	1527
,	<u> </u>	7195	1 7647	191 146976	nusB (Escherichia coli)	22	*	453
	-	13743	00111	gn1 PID 6289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratasa (Becillus subtilia)	72	65	***
7.	61	115637	16224	gn1 P10 d101929	ribosome relessing factor (Symechocystis sp.)	72	- 15	588
<u>ء</u>		: ;	111425	PIO d101190	ORF3 (Streptococcus mutans)	22	\$5	687
*		7147	5627	1911 196501	aspertyl-tRNA synthetase (Thermus thermophilus)	72	25	1521
8	2_	15372	16085	pir 1464108 14641	L'ribulose-phosphate (-spimerase (araD) homolog - Haemophilus influenzae (strein Rd KW20)	72	\$	11.
67	<u>~</u>	5094	6905	gn1 PID +254877	unknown (Mycobacterium tuberculosis)	26	95	1812
Q	9	4469	4636	191 153672	[lactose repressor (Streptococcus mutans)	20	88	168
9	~	1459	1253	91 (310380	Inhibin beta-A-subunit (Ovis aries)	22	33	207
8	53	21729	22424	91 2314329	[AEGOG623] glutamine ABC transporter, permesse protein (glnP) (Helicobacter pylori)	72	\$	969
05	·	4529	3288	91 1750108	YnbA (Bacillus subtilis!	72	75	1242
15		1044	2282	101 2293230	(AFG08220) YthJ [Bacillus subtilis]	22	Š	1239
52	2	13681	113938	91 142521	deoxyribodipyrimidine photolyase (Bacillus subtilis)	2.	ţ.	258
		1 8 4 1	35	91 (882518	ORF_0304; GTG start (Escherichia coli)	72	65	807
54	<u>~</u>	2832	3191	gn1 P1D e209886	mercuric resistance operon regulatory protein (Bacillus subtilis)	72	-	360
9,	9	6229	1,772	91 142450	ahrC protein (Bacillus subtilis)	126	53	429
7.9	<u>~</u>	\$905	4592	91 (2293279	(AFG08220) YccG (Bacillus subtilis)	72	9	124
- 87	-		12309	gn1 P1D e323502	putative PriA protein (Bacillus subrilis)	7.2	52	2418
16	-	3	662	101 500691	HYD1 gene product (Saccharomyces cerevisiae)	72	80	219
16		4516	4764	1911829615	skeletal muscle sodium channel alpha-subunit (Equus caballus)	72	38	249

FABLE 2

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e i e	1 Ident	length (nt)
95	~	2004	1717	gn1 PID e323527	Igni PID e 113527 (putative Asp2) protein (Bacillus subtilis)	72	0	288
601	-	1652	118	191 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	1335
126	-	^	2192	fani PID dioi831	tamine-binding periplasmic protein (72	9	2190
130		1735	2478	91 2415396	35	72	83	1 176
137		2585	1 2929	gi 472922	ě	72	9,	345
0\$1	0.	1096	6203	91 49224	URP 4 (Symechococcus sp.)	72	- 67	399
146	- 5	1906	1247	gn1 P1D e324945	hypothetical protein (Bacillus subtills]	72	45	099
143	~	2084	1083	gn1 P1D e325016	thetical protein (72	95	1 2001
110	5	6156	- 1	191 1472327	P-dependent acetoin dehydrogenase beta-subunit (Clostridium	72	36	1011
148	6	1865		101 974332	P) H-depand	72	- 75	1053
148	=	10256		gn1 P1D d101319	Vogw (Bactillus subtilis)	72	20	582
651	6	400\$	4949	91 1788770	(AE000130) 0463; 24 pct (dentical (44 gaps) to 318 residues from penicillin-binding protein 4°, PBPE_BACSU SW: P32959 (451 aa) (Escherichia coll)	22	7	6 6 5
172	2	7066	110620	1911761387	unknown (Saccharomyces cerevisias)	72	SS	114
970		2862	3602	91 1574175	hypothetical (Maemophilus influenzae)	127	0\$	741
267	-	-	67	191 290513	[470 (Escherichia coli)	72	1 84	447
- R	~	6699	240	gn1 P10 d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	72	45	360
290		1018	*	91 474195	This ORF is homologous to a 40.0 kd hypothetical protein in the hrrB]' region from E. coli, Accession Number X61000 [Mycoplasme-like organism]	72	35	1005
300	_	3	587	91 746399	transcription elongation factor (Escherichia coli)	72	80	525
316		9261	-	91 158127	protein kinase C (Drosophila melanogaster)	1 21	- 07	1323
342		227	_	101164	unknown (Bacillus subtills)	72	- 24	225
354	-	-	1005	gan Pro drozot8	C. thermocellum bete-glucosidese; P26208 (985) [Bacillus subtilis]	72	\$2	1 5001
9	2	8134	10467	gn1 P1D e264229	unknown (Mycobacterium tuberculosis)	17	57	2334
,	02	16231	15464	191118046	3-oxoacyl - (acyl-carrier protein) reductase (Cuphea lanceolata)	11.	52	1 894
- 15		1297	2 gn1	P1D[d100571	replicative DNA helicase (Secillus subtilis)	17	51	1296
15	-	\$65	1 3869	91 499384	orti89 (Bacilius subtilis)	11,	÷	267

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

length int)	903	240	\$04	2340	456	177	1548	228	1491	898	1 765	1869	807	666	1089	603	156	642	1956	915	663	477
1 ident	- 15	38	89	55	2.0	-	-	\$0	87	3	~	52	45	53	- 88	- 84	55	- 05	2	6		
6	112	1.	110	- 12	ت -	112	11.		1 12	נג	1,	- 11	- 11	1.	- 11	ונ	11	12	11	1,	17	1,
match gene name	YdgG Bacillus subcilis	stailar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	ORF_0158 (Escherichia coli)	dipeptidyl peptidase IV (Lactococcus lactia)	[AF015451] surface located protein [Lactobacillus rhamnosus]	dioi320 Yqgz Bacillus subcilis	rodD (gtaA) polypeptide (AA 1-673) (Bacillus subtilis)	ORF_oil; Geneplot suggests frameshift near start but none found Escherichia coli}	lysine decarboxylase (Sacillus subtilis)	similar to ret beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif [Peramecium burserla Chiorella virus 1]	PNI [Rattus norvegicus]	prolyl-tRNA synthetese (proS) [Haemophilus influenzae]	mannose persesse subunit II-M-Man [Escherichia coli]	ss-1,4-galactosyltransferasa (Streptococcus pneumoniae)	(AFO14460) PapO (Streptococcus autans)	LenA Listeria monocytogenes	mosA (Rhizobium meliloti)	glutamine transport ATP-binding protein GLNQ (Selmonella typhimurium)	nzae hypothetic	(AE000015) Mycoplesme pneumoniee, fructose-bisphosphate aidolese; similar to Swiss-Prot Accession Number P1343, from 8. subtilis (Mycoplesma pneumoniee)	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND MYCOPLASMA PHEUHONIAE. (Bacilius subtilis)
match acession		91 1773142	91 537036	91 149528	91 2343285	gn1 (P10 d101320	91 580920	91 606028	191 580835	91 624085	Gi 1906594	ננרנרפון ופן	6578 91 147404	gn1 PID e322063	91 2323341	12955 91 1519287	[91 310303	191 1649037	gn1 PID d102049	91 1673788	\$96001P101d11un	an1 P10 d102005
Stop (nt)	4218	240	13630	1	20585	592	92292	30360		12878	7033		6578	3604	•	12955	1979	1205	7063	227	4973	7845
Start	8120	-	72661	;	: _	205	24679	30567	5239	1 66 1	7269	10385	5772	4 602	3619	;	1029	\$64	90-06	=	5635	1369
:	9	-	02	!	2	~	9.	\$	9		Ξ		_		-	2	~	~	<u></u>		<u></u>	
Cont 19	82	52	96	15		9	12	=	27	2	2	3.	1	98	105	901	-	122	22	<u>•</u>	•	=

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

100	20	(10)	120	atch acession	metch gene neme	e s	1 ident	length (nt)
193	-	-	165	at 46912	ribosomal protein L13 (Staphylococcus carnoaus)	12	65	165
194	-	1 2205	1594	[91 535351	Cody [Bacillus subtilis]	122	52	612
199	_	1 1510	1319	91 2182574	(AE000090) YipE [Rhizobium sp. MGR234]	12	45	192
208		1 2616	13752	9111787378	(AE000213) hypothetical protein in purB 5' region [Escherichia coli]	111	57	1137
1 209	~	1 2022	1141	191141432	[tepC gene product [Escherichla coli]	1 12 1	9	882
012	-	1911	1 3071	191 149316	ORF2 gene product (Bacillus subtilis)	11.	1 45	1161
210		1069	1 3386	191 580900	ORF) gene product (Bacillus subtilis)	111	48	318
212	~	13561	1381	191,557567	Ilbonucleotide reductase RI subunit (Mycobacterium tuberculosis)	17	53 [2181
233	_	2003	2920	gn1 PtD d101320	YqqR (Bacillus subtilis)	1 12	80	918
75		3	1053	gn1 P10 d100964	homologue of aspectokinase 2 alpha and bata subunita LysC of B. subtilis [Bacillus subtilis]	1,	\$5	1041
251	~	1008	1874	1911755601	unknown (Bacillus subtilis)	1 12	1 94	867
1 282	~	906	1 712	19111353874	unknown (Rhodobacter capsulatus)	1 12	9.0	195
315	-	2137	1565	gn1 P1D d102245	(AB005554) yxbF (Bacillus subtilis)	112	34	573
938	-		683	91 1591045	hypothetical protein (SP:P31466) (Hethanococcus jannaschii)	- "	87	681
346	- :		164	[gi 1591234	hypothetical protein (SP:P42297) (Methanococcus januaschii)	1,0	36	162
374	- :	619	7	(gi 397526	clumping factor (Staphylococcus aureus)	111	23	618
ررز <u>ا</u>	-	688	~	91 397526	clumping factor (Staphylococcus aureus)	114	23	687
-	-	7419	6958	gn1 P1D e269486	Unknown (Bacillus subtilis)	1 00	42	462
•	0.7	:	•	gn1 P1D e255543	putative iron dependant repressor (Staphylococcus epidermidis)	100	99	681
-	=	111024	110254	gn1 P10 d100290	undefined open reading (tame (Bacillus stearothermophilus)	100	55	1111
	=	114213	91711	90101010101000	biotin carboxy) carrier protein of acetyl-CoA carboxylase (Synechocystis	0,	95	564
6	~	1057	287	gn1 P1D d100581	unknown (Bacillus subtilis)	1 02	52	1111
~	-	2610	1789	qn1 PID d101195	YycJ (Bacillus subtilis)	- 0,	52	822
77	~	1 2586	1846	91 2293447	(AF008930) ATPase (Bacillus subtilis)	100	- 75	741
22	==	10955	111512	gi 1165295	Ydr540cp Saccharomyces cerevisiae	20	20	558
00 -	9	4315	;	91 39478	ATP binding protein of transport ATPases [Bacillus firmus]	70	51 -	336
					• • • • • • • • • • • • • • • • • • •			

S. pnaumoniae - Putative coding regions of novel proteins bimilar to known proteins

Cont ig	108F	Start	Stop	match acession	match gane name	e is	* ident	length (nt)
<u>-</u>	-	076	£	191662792	d eubac	04	36	258
7	=	110639	9521	19111161219	homolgous to D-amino acid dehydrougnass enzyme (Pseudomonas aeruginosa)	0,	20	1119
38	9	1 3812	4312	91 2058547	ComyD Streptococcus gordonii	70	60	105
36	125		116477	191 537033	ORF_1356 (Escherichia coli]	0,	88	1 267
0	2	111054	9846	915(111)1816	ribotlavin-specific deaminase (Actinobacillus pleuropneusoniae)	70	52	1209
45	~	1 722	1984	91/1146183	putative (Bacillus subtilis)	0,	15	1233
\$	-	1 2373	1612	91 11591493	g protein Q [Hethanoc	70	89	762
\$	8	9197	8049	gn1 P1D d102036	subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)	0,	\$	1149
65	~	1 567	926	gn1 P10 d100302	neopullulanase Bacillus sp	0,	42	1 060
09	_	1 1874	795	gn1 P1D e276466	eminopeptidase P (Lectococcus lactis)	0,	8	1080
19	-	5553	2437	gn1 PID e275074	SNF (Bacillus cereus)	0,	1 15	1 (110
19	-	7914	6802	191 [1573037	Cystathionine gamma-synthase (math) (Haemophilus influenzae)	0,	52	- 6111
63	_	5372	7222	gn1 P10 d100974	unknown (Bacillus subtilis)	0,	- 24	1881
6.8	_	1 7126	6962	gi 1263014	emais.1 gene product (Streptococcus pyogenes)	70	37	165
22	=		11601	191 2313093	(AE000524) carboxynorspermidine decarboxylase (nspC) [Helicobacter pylori]	٥٢	96	831
22	=		8124	91 11877423	actose-1-P-uridyl transferase (Streptococcus mutan	0,	88	237
79	_	3424	1 2525	191 39881	ORF 311 (AA 1-311) (Bacillus subtills)	70	-	006
- 8	2	6966	1324	gn1 P1D e323506	putative Pkn2 protein (Bacillus subtilis)	0,	52	2046
96	Ξ	10640	111788	7	-guen	70	52	1149
7	~	574	1086	lgi 433630	A160 (Saccharomyces cerevisiae)	0,	65	513
123	5	1 2901	3461	gn1 P1D d100585	unknown (Bacillus subtilis)	70	45	561
125	-	1 4593	4282	gn1 P1D e276474	[capacitative calcium entry channel 1 (Bos taurus)	00	35	312
129	~	4500	3454		YqeT (Becillus subtilis)	70	47	1047
6		1 2608	1394	2933	(AFO08220) YCEP (Bacillus subtilis)	70	05	1215
561	-	420	662	gn1 PtD e265530	yorfE (Streptococcus pneumoniae)	70	47	243
133	-	438	932	gi 472919	v-type Ha-ATPase (Enterococcus hirae)	70	57	1 560
971	-	440	-	91 1147336	transmembrane protein (Escherichia coli)	70	42	438
	•		•	,	· · · · · · · · · · · · · · · · · · ·	•	•	•

TABLE 2

Cont 19 10	9 ORF	Stert (nt)	Stop (nt)	match	match gene name	sis -	1 ident	Jength (nt.)
0 7 1		18796	16364	91 976441	NS-methyltetrahydrofolate homocysteine methyltransferase [Saccharomyces]	70	83	2433
167	2	1 8263	6699	{gi 149535	D-alanine activating enzyme [Lactobacillus case;]	0,0	52	1569
204	-	1326	12747	[gn1 P1D d102049	E. coli hypothetical protein; P31805 (267) [Bacillus subtilis]	02	51	480
20,1	_	1 2627	2869	gn1 P1D a309213	racGAP [Dictyostellum discoideum]	07	45	243
282	-	1136	982	19111353874	unknown Rhodobacter capsulatus	1 02	\$0	255
9		117554	118453	[gn1 PtD e233879	hypothetical protein (Bacillus subtilis)	69	*	900
9	-22	118482	119471	80883		69	53	980
2	•	1. 4682	5824	91 (2209379	(AFG06720) ProJ (Becillus subtills)	69	68.7	1143
~	6		8651	qn1 PID d100580	unknown (Bacillus subtilia)	69	51	099
2	= :	1786	10767	gn1 P10 d100581	unknown (Bacillus subtilis)	69	215	697
2	~ :	1 \$857	5348	gn1 Pr0 d102012	(ABOD1488) FUNCTION UNKNOWN. (Bacillus subtilis)	- 69 -	82	510
36	2	1 7294	110116	gi 437916	isoleucyl-tRNA synthetase (Staphylococcus aureus)	- 69 -	- 68	2823
9.	-:		1090	191-1141900	alcohol dehydrogenase (EC 1.1.1.) [Alcaligenss eutrophus]	69	87	1089
\$	=	111333	111944	191 1573280	Holliday junction DNA helicase (ruva) (Hasmophilus influenzas)	69	3	612
•	51	111942	112517	191 [1573653	DNA-1-methyladenine glycosidase I (tagi) (Haemophilus influenzae)	69	05	576
\$	9	6947	5490	91 560887	starch (bacterial glycogen) synthase (Bacillus subtilis)	69	+ 4	1458
	7.	24932	124153	gn1 P1D e233870	hypothetical protein (Bacillus aubtilis)	69	36	780
5	9	6183	6521	91 396297	! -	69	05	339
•		7586	8338	91 396420	similar to Atcaligenes eutrophus pHG D-ribulose-5-phosphate 1 epimerase	69	64	753
\$	9	8262	1 7033	[91]1146238	poly(A) polymerase (Bacillus subtilis)	69	50	1230
8	_	954	2333	PID +313038	hypothetical protein (Bacillus aubtilis)	69	54	1380
3	2	1170	1419	1915	hypothetical protein (Symechocystis sp. 1	69	6.	249
3	-	7298	1 7762	91 293017	ORF3 (put.); putative [Lectococcus lectis]	69	+2	465
99	=	1 3657	1808	91 1151755	phospho-beta-D-galactosidase (EC 3.2.1.85) (Lactococcus lactis cremoria)	69	- 67	1425
99	<u>~</u>	1 5126	6829	1911433809	entyme II (Streptococcus mutens)	1 69 1	46	1704
=	-: -:	110017	10664	gn1 PID e322063	185-1, 4-gelectosyltrensferese (Streptococcus pneumoniae)	1 69 1	- 60	648

I ABLE						•		
Contig 10	10 10	Stert (nt.)	Stop	metch	match gane name	els .	1 Ident	length (nt)
-	12	127730	127966		DE-cadherin (Drosophila melanogaster)	69	30	237
۲۲	-	-	237	191 287870	groES gene product (Lactococcus lactis)	69	÷	237
.	-	3622	1017	4101 91/1573605	[fucose operon protein (fucU) [Haemophilus influenzee]	69	52	480
6	-	9	714	pir C33496 C334	hisC hosolog - Bacillus subtilis	69	97	675
6	9=	15742	16335	101 163372	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus subtilis]	69	97	294
- 65	7	1212	916	Q1 194097	IFN-response element binding factor 1 [Num musculus]	69	67	297
ē	<u>~</u> _	3678	4274	91 1574712	anagrobic ribonulgosida-triphosphate reductase activating protein (nrdG)	69	7	597
86	s	13247	4032	gn1 P1D d100262	Live protein (Salmonella typhimurium)	69	15	786
108	~	• 1	9505	gn1 P1D e257629	transcription factor (Lactococcus lactis)	69	67	972
126	_	1078	4568	[gn1]P1D d101329	on PID d101329 Yq5J Becilius subtilis	69	6+	1491
Ē	9	1211	1 2889	Just Pip dioi314	YqeR (Bacillus subtilis)	69	47	1233
136	~	5051	1 2299	gn1 P1D d100581	unknown (Bacillus subtilis)	69	47	795
577	~	1 1852	6763	gn1 PID e323525	YloQ protein (Bectilus subtilis)	69	20	912
6	<u>=</u> _	9336	10655	15151199	Homology with E.coli and P.aeruginosa lysk gene; product of unknown (unction; putative (Pseudosonas syringse)	69	25	1320
153	-	1816	3829	19111710373	BrnQ (Bacillus subtilis)	69	- **	619
169	-	8 69	2324	gn1 P10 d100582	[temperature sensitive cell division (Bacillus subtilis)	69	64	1476
180	-	998	_	101 488339	alpha-amylase (unidentified cloning vector)	69	20	999
717	-	1196	ī.	91 (1395209	ribonuclectide reductase R2-2 small subunit (Mycobacterium tuberculosis)	69	53	996
1 226	-	~	199	pir JQ2285 JQ22	nodulin-26 - soybean	69	=	9
î .	~	3249	4766	17291	v-type Na-ATPase (Enterococcus hirae)	69	95	1518
235	_	- :	1766	01 148945	methylase (Hasemophilus influenzae	69	÷	1107
5		- :	1917	gn1 P10 d100225	ORFS (Barley yellow dwarf virus)	69	69	1497
1251	-	2899	1967	91 (2289231	macrolide-efflux protein (Streptococcus agalactiae)	69	51	933
310	-	-	787	gn1 P1D e322442	gni PID e322442 peptide deformylase (Clostridium beljerinckii)	69	5.5	282
1 369	-	968	~	1911397526	clumping factor (Staphylococcus auraus)	69	23	867
: :		749	_	3 (91)397526	clumping factor (Staphylococcua aureus)	69	21	747

	Conti	Cont ig ORF	Start	Stop		metch gene name	l sin	1 Ident	length
2 60 72 91 118734	379	-	¥	280	p d100649				(ut)
2 1906 3040 gal PID dioi809 ABC transporter (SymcChocystis sp.) 2 1979 1311 pir(516974 R588 ribbosomal protein L9 - Bacillus startor and the sp. 3 1958 2600 gi 178704 residuas of an approx. 640 as pitutein column 4 1970 1311 pir(516974 R588 ribbosomal protein L9 - Bacillus startor and the sp. 5 1951 4505 gi 178704 residuas of an approx. 640 as pitutein column 7 1412 14505 gi 142700 P competence protein (trg start codon) 8 1718 4588 gi 173714 hypothetical Heamophilus influence 9 1719 4588 gi 173714 hypothetical Heamophilus influence 10 4535 7086 gi 882579 CC Site No. 2913 Exchetichis colimn 10 4535 7086 gi 882579 CC Site No. 2913 Exchetichis colimn 10 1514 5613 gi 170314 ABC transporter (Symethocystis applications 10 1514 5613 gi 14073 Sact Protein (Lactococcus lactis) 11 12295 24703 gi 14073 Sact Protein (Lactococcus lactis) 10 1514 1613 gi 141393 durpase (Bacteriophage rit) 11 1729 1729 gi 140984 H Jannaschii predicted coding region NJ 10 1514 1518 gi 13533 durpase (Bacteriophage rit) 10 1514 1586 gi 150309 ORF (Recodos) hypothetical Sign ND protein 8 7199 4154 gi 150374 H - Oxalocrotomete tautomerse (Franchocon 9 6755 5194 gi 1267158 (ABCOdos) hypothetical Sign ND protein 10 1515 5154 gi 150374 H - Oxalocrotomete tautomerse (Franchocon 10 1515 5154 gi 1267159 H - Oxalocrotomete tautomerse (Franchocon 10 1515 5154 gi 1267159 H - Oxalocrotomete tautomerse (Franchocon 10 1515 5154 gi 1267159 H - Oxalocrotomete tautomerse (Franchocon 10 1515 5154 gi 1267159 H - Oxalocrotomete tautomerse (Franchocon 11 8021 8222 gi 150715 H - Oxalocrotomete tautomerse (Franchocon 11 11 11 11 11 11 11	386		760		91 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region (Escherichia coli)	69	2 2	237
2 1958 2600	-	~	9002	3040	608101PJd				
6 733 3701 91 1287041 Ribosomal procein L9 - Bacillus staurou 6 733 3701 91 1287041 Rabious 40 osno; file 30 as orf is 31 14128 14505 91 12306 9 competence procein (tog start codon) 14128 14505 91 12300 9 competence procein (tog start codon) 12 24612 25397 91 12300 9 competence procein (tog start codon) 12 24612 25397 91 12302	~	-	1 3958	7 2600	19112182	histidina kinasa (Lactococcus lactis cramoria)	99	3	1035
10 1353 3701 91 1787041	22	~	1790	1111	pir S16	- Bacillus	89	5	1359
12 6479 6805 91 553165 acetylcholinesterace (Homo saplens) 14128 14505 91 142700 P competence protein (ttg start codon) 12 14612 25397 91 282562 ComE ORF3 (Bacillus aubtilis) 14548 4288 91 313188 OMF1 (Azothicobium canlinodens) 14548 4288 91 313184 OMF1 (Azothicobium canlinodens) 15 1511 4585 91 1573164 hypothetical (Haemophilus Influenzes) 16 1518 91 1573164 hypothetical (Haemophilus Influenzes) 16 15 7066 91 882579 CC Site No. 29739 Escherichia colli Escherichia colli Escherichia colli Escherichia colli 15 1766 91 882579 CC Site No. 29739 Escherichia colli 15 1756 1872 91 170131 Outer membrane integrity protein (tol.) 17 172295 24703 91 152049 Involved in protein export (Bacillus subtilis) 17 172295 24703 91 175249 Involved in protein export (Bacillus subtilis) 17 172295 24703 91 175249 Involved in protein export (Bacillus subtilis) 17 17491 15866 91 150209 ORF (Hycoplatina mycoides) 6 5119 4154 91 150209 ORF (Hycoplatina mycoides) 6 5119 4154 91 150209 ORF (Azalocrotonate tautomerse (Peaudomone 8 6755 5394 91 236338 (Azalocrotonate tautomerse (Peaudomone 8 6755 5394 91 236338 (Azalocrotonate tautomerse (Peaudomone 8 6755 5394 91 24018 1826110 1820110 1826110 1820	9_	·	1353	1078		(AEGOGIS4) 0530; This 510 as orf is 3) pet Identical (14 gaps) to 525 residues of an approx. 640 as protein YHES_HAEIN SW: P44808 [Escherichia colij	8 8	45	1653
13 14128 14505 gol 142700 P Competence protein (ttg start codon) 12 14612 25197 gol 1289262 Come ORF3 Bacillus subtilis 1 1458 4288 gol 1311386 ORF1 (Architoblus caulinodens) 1 1519 6040 gol 1790131 (Architoblus caulinodens) 10 6235 7066 gol 1882519 CC Site No. 29739 Escherichia coli 1 10 6235 7066 gol 1822519 CC Site No. 29739 Escherichia coli 1 1 1 1 1 1 1 1 1	17	2	6419		91[553165	acetylcholinesterase (Homo saplens)			
13 14612 25197 91 1289262 COME ONF] Bacillus aubtilis 1 14548 14288 91 1111388 ONFI (Azochizoblum caulinodana)	20	Ξ	114128	14505	191 142700		8	89	327
7 4348 4288	~	=	24612	125397	91 289262		0 4	9	378
5 1911 4585 91 1573041	2	_	4548	4288	191131388	ORF1 (Atorhizoblum caulinodens)	9	97	982
6 5219 6040 gi 1790131 [Eacherichia coli] [Eacherichia coli]	92	<u>- </u>	1 3911	1 4585	1041	hypothetical (Haemophilus influentaes)			197
10 6235 7086 91 882539 CG Site No. 29739 Escherichia colli 2 7069 5165 9n1 PID diologia ABC transporter Synechocystis sp. 3 6134 5613 91 1573153 Outer membrane integrity protein (tolA) Haemophilus influe 10 15342 16613 91 580866 1pa-12d gene product Bacillus subtilis 12 17560 18792 91 140733	•	<u></u>	\$219	6040	-	(ACOOO446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	89	4	822
5 7069 5163 gni PID d101914 ABC transporter Synechocystis ap. 1 6134 5613 gi 1573353 outer membrane integrity protein (tolA) [Haemophilus influe 10 15342 16613 gi 580866 Ipa-12d gene product Bacillus subtilis 12 17560 18792 gi 14073	7	2	6235		- 6	CG Site No. 29739 (Escherichia coll)			
1 1342 5613 91 1573153 Jouter membrane integrity protein (tolA) [Haemophilus influe 10 15342 16613 91 560866 Ipa-12d gene product [Bacillus subtilis] 17 172295 14703 91 14073 17001ved in protein export [Bacillus subtilis] 17 172295 14703 91 1762349 17001ved in protein export [Bacillus subtilis] 16 10208 9729 91 1762349 17001ved in protein export [Bacillus subtilis] 18 17198 16011 91 1762349	5.5	~	1 7069	5165	+16101p	ABC transporter (Synechocystis an	89	55	852
10 15342 16613 91 580866 1pa-12d gene product Bacillus subtilis 12295 12703 91 12295 12703 91 12295 12703 91 12295 12703 91 12295 12703 91 12295 12703 91 12295 91 12295 91 12295 91 12295 91 12295 91 12295 91 12295 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 12392 91 9292 91 12392 91 9292 91 12392 91 9292 91 12392 91 9292 91 91	-		1 6134	5613	153	outer membrane integrity protein (rola) (Hammahill	68	45	1905
17 12295 14107	7	92	-	16613	9	Da-12d gane product (Bacillia anhritta)	89	- 05	522
17 12295 14703 91 1762349 involved in protein export Bacillus subtilis 16 16208 9729 91 135337	1,	2	:	18792		Sect protein (Lactococcus lactis)	99	7	1272
16 10208 19729 91 133537	-	11	:	24703	64	olved in protein export	68	35 -	1233
12 17198 16011 g1 413943	2		110208	9729	-		1 89	- 05	2409
17 17491 15866 gi 150209 ORF 1 (Mycoplatina mycoides) 6 5139 4154 gi 1498824 M. Jannaschli predicted coding region NJ0062 (Methanococcus 11 8021 8242 gi 150974 4-0x4locrotonate tautomerase (Pzeudomonas putida) 8 6755 5394 gi 2367358 (AE000491) hypothetical 52.9 kD protein in alda-rpeF interge	96	8	:	11091		Da-19d gene product (Bacillus substitus)	89	51	480
6 5139 4354 gi 1499824 M. Jannaschii predicted coding region NJ0062 (Methanococcus 11 8021 8242 gi 150974 4-0xelocrotonate tautomerase (Pseudomonas putida) 8 6755 5394 gi 2367356 (AE000491) hypothetical 52.9 kD protein in ald8-rpeF interge	87	2	; -	15866			- 89	- 68	1186
11 8021 8242 91 155974 4-oxalocrotonate tautomerase (Pseudomonas putida) 8 6755 5394 91 2367358 (AE000493) hypothetical 52.9 kD protein in ald8-rpeF interge	89		5139	-			- 89	7	1626
8 6755 5394 Qi[2367358	68	==	8021			Month of the control region Money (Methanococcus)annaschil)	89	0.	786
	97		6755			Cationing (automatase (Pagudomonas putida)	89	\$	222
				:		Abunday) hypothetical 52.9 kD protein in aida-rpsF intergenic region	89	7	1362

S. pneumonise - Putative coding regions of novel proteins' similar to known proteins

Contig	1086	Start (nt)	Stop (nt)	Batch	match gene name	8	1 ident	length (nt)
88	-	1418	2308	(D)	[LivA protein [Salmonalla typhimurium]	89	07	168
66	=	116414	117280	191 455363	regulatory protein (Streptococcus mutans)	89	05	867
=======================================	2	1 5054	1693	gi 466474	cellobiose phosphotransferase enzyme II'' (Bacillus stearothermophilus)	89	=	1362
721	_	13394	1221	gn1 P1D d100702	cut14 protein Schizosaccharomyces pomba	89	1 95	174
125	~	1 2923	1922	1911450566	transmembrane protein (Bacillus subtilis)	89	50	1002
~ -	~	4858	2888	gn1 PID d101732	DNA ligase (Synachocystis sp.)	89	52	1971
9	_	17765	7580	191 1209711	unknown (Seccherosyces cecevisiae)	99	1 44	186
150	- :	539		191 402490	ADP-ribosylarginine hydrolase [Mus musculus]	89	59	537
164	-	5.8	1 867	gn1 PID 6255114	[Glutamate racemase [Bacillus subtilis]	89	6+	910
:	-	818	1835	gn1 PID e255117	hypothetical protein (Bacillus subtilis)	89	1 05	1017
67	-	3946	4104	pir 854545 8545	hypothetical protein - Lactococcus lactis subsp. lactis plasmid pSL2	89	- 0+	159
170	-	1 4247	1096	91 304146	spore cost protein [Bacillus subtilis]	89	52	150
12.	-	6002	1054		precursor (sa -20 to 381) Acinetobacter calcoaceticus	89	54	1053
198	_	1 2473	1871	gn1 PID e313075	hypothetical protein (Bacillus subtilis)	89	46	603
7.7	~	696	1 1802	91 1439528	EIIC-man [Lactobacillus curvatus]	99	45	834
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein; P43990 (182) [Bacillus subtilis]	68	- os	969
712		4955	5170	gn1 PID e326966	similar to B.vulgaris CMS-associated mitochondrial (reverse transcriptuse) [Arabidopsis thaliana]	89	36	216
218	-	1 3930	4745	191 2293198	(AF008220) YcgP (Bacillus subtilis)	89	38	816
220	9	1 4628	4338	gn1 P10 e325791	(AJ000005) orfl (Bacillus megaterium)	89	51	291
236	-	1 746	108	[Bi]410137	ORFX13 (Bacillus subtilis)	89	- 97	639
237	~	675	1451	[91]396348	homoserine transsuccinylase (Escherichia coli)	89	1 67	111
250	-	177	_ ;	[gi]310859	ORF2 (Synechococcus sp.)	68	50	459
254		517	155	91 1787 105	(AE000189) o648 was o669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBBA_MAEIN SW: P45247 [Escherichia coll]	9	=	363
	-	-	774	gn1 PID e261990	putative orf (Bacillus subtilis)	- 89	- 4	174
345			653	191(119513	[thymidylate synthase (EC 2.1.1.45) [Lactococcus lactis]	- 89	61	651

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig JORF	ORF 10	Start (nt)	Stop (nt)	march	match gene name	e in	* Ident	length (nt)
386	~	417	•	[91]1573353	outer membrane integrity protein (tola) (Heemophilus influenzee)	89	8.1	717
~	-	5722	4697	91 1592141	M. Jannaschil predicted coding region MJ1507 [Methanococcus Jannaschil]	67	26	1026
	•	5397	1654	19112293175	(AF008220) signal transduction regulator (Bacillus subtilis)	67	•	807
~	~	2301	574	19112313385	(AE000547) para-aminobenzoate synthetase (pabB) (Helicobacter pylori)	67	87	1728
•	61	; ;	16758	191 413931	ipa-7d gene product (Bacillus subtilis)	69		1 969
22		1094		91 1928962	ctase (Actinidia delic	69	51	804
67	0.	8335	9072	gi 468745	gtcR gene product (Bacillus brevis)	63	17	738
ñ	_	1379	585	gi (2425123	[AF019986) PksB [Dictyostellum discoldeum]	67	67	1981
	Ξ		10150	di 42029	ORF1 gane product [Escharichia coli]	67	47	1302
36		: :	;	91 1592142	ABC transporter, probable ATP-binding subunit [Nethanococcus jannaschii]	67	- F7	1 616
	_	_ :	5392	gn1 PID e214803	[7228].3 (Caenorhabditis elegans)	67	42	435
96		; ;	14512	181 537037	ORF_0216 [Escherichia coli]	67	52	738
\$	-	10428	1 9181	1911551710	branching enzyme (glqB) (EC 2.4.1.18) [Bacillus stearothermophilus]	67	15	1248
#	2		17514	91 413949	ipa-25d gene product (Bacillus subtilis)	67	05	931
05	~	1773	952	gn1 P10 d101330	YqjQ (Becillus subtilis)	63	55	822
83	_	-	^	16	[fimbrial transcription regulation repressor (pil8) [Haemophilus influentae]	69	9	429
	=	. ;	111946	gn PID e252990	ORF YDL037c (Saccharomyces cerevisiae)	67	51	795
19	_	9210	8329	gn1 PID e264711	ATP-binding cassette transporter A (Staphylococcus aureus)	67	05	882
7.	~	5614	6117	191 1197667	vitellogenin (Anolis pulchellus)	69	36	504
6	^	4489	4983	91 1142714	phosphoenolpyruvate:mannose phosphotransferase element	69	2	495
8)	_	2957	3214	91 1276746	Acyl carrier protein (Porphyre purpurea)	67	37	258
98	-	8140	_ :	191 1147744	PSR (Enterococcus hirae)	67	57	1332
6		986	1366	qn1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)	67	7	381
102		109	1413	91 682765	accB gene product [Escherichia coli]	67	36	813
901		1109	1987	gi 148921	LicD protein (Heemophilus influentee)	67	Ç	9.79
115	-	5982	9898	gi 895750	putative cellobiose phosphotranaferase enzyme III (Bacillus subtilis)	67	3	327

TABLE 2

Cont ig	<u>80.3</u>	Start	Stop (nt)	match	match gene name	e in	• ident	length (nt)
1115	-	8421	1 8077	gi 466473	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	67	51	345
127	=	8127	1 702 1	91 147326	transport protein (Escherichia coli)	67	\$	1107
1 136	-	2215	1 2859		unknown (Bacillus subtilis)	67	6.7	645
140	=======================================	1233.7	20906		phenylelanyl-tRNA synthetase [Synechocystis sp.]	67	Ç	2412
1 146	9	2894	1893	ai 2162994	histidine kinase [Lactococcus lactis cremoris]	67	7	1002
151		111476	11111		ORF129 [Becillus cereus]	67	69	360
91	2	7653	8646	91 (2281317	Orfs; similar to a Streptococcus pneumoniae putative membrane protein encoded by Genbank Accession Number X99400; Inactivation of the Orfs gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) (Lactococcus l	67	9	1194
163	-	1 3099	1 4505	(10101pla14)1u6	i	67	47	1407
1 167		1 6704	5454	91 1161933	Dita [Lectobacillus casei]	67	45	1251
691	-	2322	2879	len Pip dioi331	YqkG Becilius subtilis	67	7	558
171	Ξ	1 7656	8384	191 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	50	729
188		1930	1222	91 1542975	Abcb (Thermoanserobacterium thermosulfurigenes)	63	9	1794
1 189	9	1 3599	3.5	PID e3	Hypothetical protein (Bacillus subtilis)	67	52	654
205	-	1 1663	1 2211	Bi 606073	ORF_o169 (Escherichia coli)	67	4)	549
1 207	-	1 2896	3456	191 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	64	\$61
1 237	-	9807	13703	191 895750	putative cellobiose phosphotransferase enzyme 111 (Bacillus subcilis)	67	7	384
1 246	~	1 291	662	91 1842438	unknown (Bacillus subtilis)	67	3	372
1 252	-	~	745	91 2351768	PspA (Streptococcus pnsumoniae)	67	7	744
265	-	1134	181	91 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	67	7	678
295	-	-	275	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	\$	375
-	-	4838	5146	gn1 PID 4255179	unknown (Mycobacterium tuberculosis)	99	95	249
-	-	389	_	gn1 PID e269548	Unknown (Bacillus subtills)	99	48	187
-	120	119267	120805	91 39956		99	80	1539
-	-	1 2545	1 2718	91 1787564	(AE000228) phage shock protein C (Escherichia coli)	99	36	174
5	-	13197	112592	91 1574291	ription regulati	99	46	909

S. pneumoniae - Putative coding regions of novel pruteins similar to known proteins

Cont 19	086	Start	Stop	Batch	Batch gene neme	e in	. ident	Jength (nt)
6	-	2872	1451	6926	unknown (Mycobacterium tuberculosis)	99	Ç	1622
12	~	1469	1200	91 520407	orf2; GTG start codon [Bacillus thuringienals]	99	43	270
15	=	10979	7686	gi 2314738	(AE000653) translation elongation factor EF-Ts (taf) [Helicobacter pylori]	99	67	1083
91	~	1312	734		[AB005554] yxbF [Becillus subtilis]	99	35	579
77	-	1372	1881	91 1480916	signal paptidase type II (Lectococcus lactis)	99	38	1 084
22	-	5828	1 7096		gamma-glutamyl phosphate reductase (Streptococcus thermophilus)	99	51	1269
~ _	027	116194	117138		Vit. (Bacillus subtilis	99	05	945
00		530	976	91 2314379	AE000627; ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	9	9	5
22	-	199	984	91 312 44	ORF2 (Bacillus caldolyticus)	99	64	786
: 	<u>:</u> =	8352	22.	01 1367979	444 identity over 302 residues with hypothetical protein from Synechocystis sp, accession b66006.CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices (Bacillus subtil	99	7	1119
*	-	1 5658	4708	gnt PtD e250724	orf2 [Lactobacillus sake]	99	39	951
7	=	1 9792	1 9574	ai 1590997	H. Jannaschii predicted coding region MJ0272 (Methanococcus jannaschiii	99	4.8	219
35	- 92	115163	14501	91 1173352	CapSH (Staphylococcus aureus)	99	99	663
36	6	1 6173	9269	91 1518680	minicall-associated protein Diviva (Bacillus subtills)	99	35	904
9.	<u> </u>	10396	10824	bbs 155344	insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aa) [Homo sapiens]	9	7	429
-	-	28	6171	[gn1 P1D e325204	hypothetical protein (Bacillus subtilis)	99	05	1392
8	-	1 3810	4113	91 2182574	(AE000090) YepE Rhizoblum sp. MGR234)	99	0+	303
- 52	-	1 3595	1 2789	191 388565	major cell-binding factor (Campylobacter jajunil	99	52	807
*	-	1 2662	9 101	gn1 P10 d101831	glutamine-binding periplasmic protein (Synechocystis sp.)	99	43	1587
19	9.	<u>: -</u>	1 9183		mdr gene product (Stephylococcus aureus)	99	=	558
22.	=	110893	111993	91 (2313129	(AED00526) H. pylori predicted coding region HP0049 (Helicobacter pylori)	99	=	11011
	6-	13267	112476	91 1573941	hypothetical (Haemophilus influenzes)	99	7	192
25	-	- 3	998	 0 1574631	nicotinamide mononucleotide transporter (pnuC) (Heemophilus influentae)	99	97	967
25	-	1 5303	1 4275	gi 41312	put. E8G repressor protein (Escherichie coli)	99	0	1029

sections pripar avitation - estademand 2

Cont ig	ig long	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length (nt)
- 82	-	[6813	8123	1 =	1	99	53	1311
-	-	906	1219	pir c33496 c334	hisc homolog - Bacillus subtills	99	3	1315
96	2	1 9407	1 8925		mate kinase	99	7	69
8	0.1	1001	0909	91 2096719	putative fimbrial associated protein (Actinosyces nasslundil)	99	52	942
60	-	186	-	91 410118	(ORFX19 [Bacillus subtilis]	66	7	948
		3661	27.11	91 1787936	(AECOCO260) (238; This 798 as orf is 51 pct, identical (5 gaps) to 297 residues of an approx. 304 as protein YCSH_BACSU SW: R42972 (Escherichia coli)	9	\$	951
104	-	-	1 3049	91 1469784		99	89	1245
901	Ξ	113576	114253	gi 40027	[homologous to E.coli gids [Sacillus subtilis]	99	52	678
100	-	96	1 1864	91 144858	ORF A (Clostridium perfringens)	99	6.9	006
-	-	1 5718	1 6593	91 609332	DprA (Haemophilus influentes)	99	3	9.0
- 115	-	-	1 302	191 727367		99	26	300
72.	-	-	995	gn1 P10 d101328	YqiY (Bacillus subtilis)	99	90	564
126	-	11,759	111046		[ORF] [Bacillus subtilis]	99	89	714
128	Ξ	1 8201	1 8431	91 726288	growth associated protein GAP-43 (Xenopus lasvis)	99	7	231
<u>-</u>	-	1 4894	1 4508	91 486661		99	39	387
97	_	: -	1 2574	94 40056	phop gene product (Bacillus subtilis	99	36	663
2	5=	116318	15434	qi 1658189	[5,10-methylenetetrahydrofolate reductase [Erwinia carotovora]	99	87	685
146	==	:-	1 7636	gn1 P1D d101140	[transposase [Symechocystis sp.]	99	42	291
- 15	9	1 7137	6154	91 472326	[TPP-dependent acetoin dehydrogenase alpha-subunit [Clostridium magnum]	99	87	1 186
149	-	; -	:-	PID 101887	[pentose-5-phosphate-3-epimerase (Synachocystis sp.)	99	97	966
149	Ξ	: -	111575	191 (42371	pyruvate formate-lyase activating enzyme (AA 1-246) (Escherichia coli)	99	42	822
186	-	1 2578	1 2270	: =	ORF11 Enterococcus faecalis	99	7	309
707	~	! –	1 2597	gn1 PtD e321893	envelope glycoprotein gp160 (Human immunodeficiency virus type 1)	99	9#	258
1 210	-	1 3358	1 3678	91 49318	ORF4 gang product (Bacillus subtilis)	99	9	321
712	-	-	1 5355	[gi]4953B	[thrombin receptor (Cricetulus longicaudatus)	99	96	213
220	-	1 3875	1 3642	91 466648	alternate name ORFD of L23635 [Escherichie coll]	99	2	234

TABLE 2

							-	
122	- -	1 0001	961	gn1 P1D e247187	zinc (inger protein (Bacterlophege phigle)	99	\$	933
722	31 - 7	-	•	91 1176199	putative ABC transporter subunit (Staphylococcus epidermidis)	99	=	177
52		-	872	db5 A8000617_2	(AB000617) YcdH (Bacillus subtilis)	99	-	870
1 268 1	2 891	-	-	191 517210	putative transposase (Streptococcus pyogenes)	99	09	324
1 222	_	-	-	61 1499836	In protease (Methenococcus jenneschii)	99	- 0	642
s -	110 113909	;		91 1574292	hypothetical [Haemophilus influenzae]	65	*	732
9	11 110465	:	06111	91 142854	homologous to E. colf radC gene product and to unidentified protein from Staphylococcus aureus (Bacillus subtilis)	29	\$	726
_ ^ _	2 647	; - .	405	46 C641	hypothetical protein H10259 - Heemophilus influenzae (strain Rd KW20)	65	4 5	243
	3-	9 9729	6821	6821 gn1 Pro d101323	YqhU (Bacillus subtilis)	6.5	- 05	576
01	-	;	1397	1116911 161 1611	ORF-1 (Straptococcus pneumonies)	9	35	477
91	-	<u> </u>	2222	gnt P1D e325010	hypothetical protein [Bacillus subtilis]	6.5	- -	795
17	, ~ .	3615 3	7566		hypothetical protein (Staphylococcus sciuri)	65	0,	1654
	-			00002111	CpxA Actinobacillus pleuropneumoniae	65	4 2	609
3	91 7	1648 2	290	ai 1044826	F1485.1 Caenorhabditis elegans	65) BC	1359
8	: -	10062 10	-	91 11573390	hypothetical [Haemophilus influentae]	65	45	198
-	: -	:	116883	1611573191	hypothetical [Haemophilus influentae]	6.5	37	619
87	135 1190	19027 18	118533	gn P1D e264484	YCR020c, len:215 [Saccharomyces cerevistae]	9	38	495
; — ·	-	3856 5	\$334	91 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	65	32	1479
0\$	9	5337	4519	[91]171963	tRNA isopentenyl transferase (Saccharomyces cerevisiae)	6.5	7	819
- 25	-			01 1499745	M. jannaschii predicted coding region MJ0912 (Methanococcus jannaschii)	6.5	97	198
65	2	-			orf sets Streptococcus pyogenes	65	42	783
89	7	2500 3	3483	91 887824	ORF_0110 [Escherichia coli]	65	9.	984
69	7	-	101		unknown (Bacillus subtilis)	99	7	1095
69	99.	5 6209	5325	191 809660	decxyribose-phosphere aldolase (Bacillus subtilis)	6.5	- 55	705
1,	- 8	8536 9	9783	91 11573224	glycosyl transferase lgtC (GP:Ul4554_4) [Meemophilus influenzae]	65	7	1248
7.2	9 - 7	7664 8	8527	8527 gn1 PID e267589	Unknown, highly similar to several spermidine syntheses [Bacillus subtilis]	65	39	864

1677

1089

312

519

348

1014

969

150

1137

198

1476

879

294

282 732 657 653 1413

FABLE

1 Ident 7. Ç 38 ; 2 9 20 ÷ 9,0 6 Ç 7 20 Ç 8 Ç Ç 8 ? a sin 9 65 9 65 65 65 65 9 9 9 65 65 65 9 65 9 9 9 \$ 9 : 59 NAEDO0226) f249; This 249 aa orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 aa protein AGAR_ECOLI 5M: P42902 [Escherichia colii] EcoE type I restriction modification ensyme M subunit (Escherichia coli) ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii) gn] PID | d102008 | (ABOO1488) SIMICAR TO ORF14 OF ENTEROCOCCUS FAECALIS TRANSPOSON TH916. |gn1|PID|d101721 |DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). (Escherichia coli) (similar to purine nucleoside phosphorylase (deoD) (Escherichia coll) S. pneumoniae - Putative coding regions of novel proteins similar to known proteins [exodeoxyribonuclease, small subunit (xse8) [Haemophilus influenzae] (AE000532) conserved hypothetical protein [Helicobacter pylori] (ABDO1488) PROBABLE UDP-N-ACETYLMURAHOYLALANYL-D-GLUTAMYL-2, 6oligopeptide binding lipoprotein (Streptococcus pneumoniae) |gn1|PID|e257609 |augar-binding transport protein |Anaerocellum thermophilum| |gn1|Plu|di01125 |queuosine blosynthesis protein QueA (Synechocystis sp. | HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] dihydroliposmide acetyltransferase (Clostridium magnum) DNA-binding response regulator (Thermotoga maritima) |gnl|PID|e246063 |NM23/nucleaside diphosphete kinese (Xenopus leavis) DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis) |gnl|PID|d101880 |3-dehydroquinate synthase (Synechocystis sp.) membrane bound protein [Bacillus subtilis] [AE000090] Y4pE [Rhizobium sp. NGR234] ORF! gene product (Bacillus subtilis) membrane protein (Theileria parva) ORF2 (Clostridium perfringens) [unknown [Lactococcus lactis] (AE000226) f249, This 249 ORFX8 [Bacillus subtilis] |gn1|P1D|d101319 |YqgH (Bacillus subtilis) [Bacillus subtilis] match gene name gn1 | P1D | d102004 |gn1 |PID|e339500 5755751 181 91 1574276 91 (111) 168 191 | 1098510 191 2182574 191 (1552737 101 11592142 91 1787540 match 91 304897 191 | 310893 91 498839 91 472329 91 (410132 |gi | 151259 |gi | 143156 191 | 49315 4097 7875 2352 9101 7190 2859 4687 4837 2220 3900 1572 1007 7818 3914 1881 13407 2423 2736 3885 1931 1215 389 5 5773 4256 8099 2870 1627 66.15 8015 205 14495 3706 2425 6522 3821 1053 3212 1 3192 2951 4556 154 1625 730 63 160 Contig ORF ø • • 2 v _ • _ • ~ £ ~ -9 9, 96 š 123 2 12 156 169 86 83 63 9 25 148 91 176 = 133 : 195 196 204 200

ABLE 2

294 309 876 879 270 3147 1482 573 2631 1257 567 1 sim | 1 ident | length 58 | 52 | - st \$ 9 \$ 9 2 00 51 8 8 38 Ç • |pir|JC1151|JC11 |hypothetical 20 3K protein (Insertion sequence IS1131) - Agrobacterium | tumefaciens (strain PO22) plasmid Ti (AF008220) DNA-polymerase III alpha-chain (Bacillus subtilis) nicatinate-nucleatide pyrophosphorylese (Rhodospirillum rubrum) |gn1|P1D|d101111 |methionine aminopeptidese |Synechocystis sp.| |Ddel methylase (Desulfovibrio vulgaris| |epiD gene product (Stephylococcus epideraldis) gniletD|e321508 | YloS protein [Bacillus subtilis] gnl|PID|d102048 |K. aerogenes, histidine utilization repressor; P12380 (199) DNA binding |gn1|PID|d102036 |subunit of ADP-glucosa pyrophosphorylase (Bacillus stearothermophilus) putative cellobiose phosphotransferase enzyme II'' [Bacillus subtilis] alanyl-tRNA synthetase (alaS) (Haemophilus influenzae) | [melA] gene products {Bacillus stearothermophilus] mannuronan C-5-epimerase (Atotobacter vinelandii) | 2 | 4683 | 4976 |gn1|PID|e335792 |(AJ000005) glucose kinase (Bacillus megaterium) nifS-like gene (Lactobacillus delbrueckii) |DNA helicase II (Mycoplasma genitalium) |Ycr59c/Yig2 homolog (Bacillus subtilis) hypothetical (Haemophilus influenzae) |gnl|PID|e290934 |unknown (Mycobacterium tuberculosis) |gnl|PID|e265529 |Orf8 |Streptococcus pneumoniae| |comE ORF1 |Bacillus subtilis| |unknown [Bacillus subtilis] | 6 | 5356 | 4949 |gn1|PID|d101316 |Cdd |Bac111us subtilis| |clym [Plasmid pAD1] match gene name |an1|PID|d100581 1 4 | 1417 | 3686 | 91 | 1045935 91 1498753 113 |15251 |18397 |91|2293260 191 | 1574292 91 1762328 91 | 559861 91 46970 191 | 790694 130 [22503 [23374 |gi|289260 91 409286 91 43985 2 | 1510 | 1334 | 91|40795 1 4 | 1249 | 2689 66 | 1 | 3 | 1259 1483 1 7 1 6504 | 7145 9898 7 (14375 | 14199 1 3 | 1157 | 555 2 | 614 | 297 619 17 | 8068 | 6920 9091 | 9539 | 7606 006 9699 | 1251 | 6696 1 6 | 5924 | 6802 Contig ORF Stare | Stop 1D | 1D | (nt) | (nt) 1 569 309 1 2 | 301 3 0 0 5 56 = 7.5 29 69 284 304 2 35 3 ~ 8

S. pneumoniae - Putative coding regions of novel proteins Minilar to known proteins

Contig	ORF	Start	Stop (nt)	Betch	match gene name	E	, ident	length (nt)
7.	-	1 6948	1 5038	1011726480	[L-glutamine-D-fructose-6-phosphate amidotransferase (Bacillus subtilis)	9	05	1911
25		1283	1465	bbs 13379	TLS-CHOP=fusion protein(CHOP=C/EBP transcription factor, TLS-nuclear RNA-binding protein) human, myxold liposarcomás cells, Peptide Hutant, 462 as) (Homo sapiens)	9	55	183
	Ξ	14016	114231	ui 10175	methanol dehydrogenese alpha-10 subunit (Bacillus sp.)	9	35	216
-	~	121651	122090	stctotblass	Yq(A (Becillus subtilis)	9	7	240
69	==	110046	9300		putative Ptcl protein [Becillus subtilis]	99	\$	747
86	-	5032	5706	gn1 P1D e233880	hypothetical protein (Bacillus subtilis)	79	38	678
501	-	~ 1	1 1276	gi 16\$7503	similar to S. aureus mercury(II) reductase (Eacherichia coli)	9	45	1275
=======================================	-	1 5136	6410		Nifs (Synechocystis sp.)	9	20	1275
611	<u>-</u>	~ -	1297	gn1 P10 e320520	hypothetical protein (Natronobacterium pharaonis)	99	37	1296
21	12	1125	2156	Piol	ONF YDL244w (Saccharomycas cerevisiae)	9	0,	1032
71	-	1 2331	1 1780	gn1 P1D d101884	hypothetical protein (Synechocystis sp.)	99	80	552
1 129	-	3467	6075	4101314		99	52	759
100	-	152	-	91 1377841	unknown (Bacillus subtilis)	99	42	150
	Ξ_	7196	7549	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence (S1131) - Agrobacterlum tumefaciens (strain PO23) plasmid Ti	3	20	354
667	_	3226	1592	91 2293301	AF008220 Ytq8 Bacillus subtilis	64	*	576
1 146	===	6730	5648	91 1322245	mevalonate pyrophosphate decarboxylase Rattus norvegicus	64	45	1083
143	-	~ -	1018	(£07£19)	unknowm gane product (Lactobacillus laichmannii)	79	99	1017
871	Ξ	8430	878	191 2130630	(AF000430) dynamin-like protein (Momo sapiens)	64	28	354
951	-	G ()	1 3612	gn1 Prp d102050	transmembrane (Bacillus subtilis)	•	31	702
157	-	1 1299	1 2114	gn1 P10 d100892	homologous to Gin transport system permease proteins (Bacillus subtilis)	99	\$	816
162	9	5880	6362	(91 517204	ORFI, putative 42 kDa protein (Streptococcus pyogenes)	99	88	(8)
3	=_	1 9707	8769	gnl P10 d100964	homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum (Becillus aubtilis)	64	9	919
175	-	9060	1 4598	101 534045	anticerminator (Bacillus subtilis	79	39	693
189	===	1 6154	1 6507	191 581 307	response regulator (Lactobacillus plantarum	79	5	354
- F	-	1 3519	1 2863	oi 149520	[phosphoribosyl anthranilate isomerase [Lactococcus lactis]	79	97	657
	:				1996年,1997年,1997年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年 1998年,	1		

S. pneumoniae - Putative coding regions of novel proteins' Mimilar to known proteins

Contig	90	Start	Stop (nt)	satch acession	Betch gene name	e E	Ident	length (nt)
202		9,	1140	gn1 P1D e293806	O-acetylhomosarine sulfhydrylase (Laptospire meyeri)	9	.	1065
224		234	1571	91 1573393	collagenase (prtC) (Haemophilus influentae)	*	42	1336
1 231		291	647	91 40174	ORF x [Bacillus subtilis]	9	\$	357
253		900	1089	pir [JC1151 JC11	hypothetical 20.1K protein (insertion sequence [51]])) - Agrobacterium tumefeciens (strain PO22) plasmid Ti	3	20	186
365	<u>-</u>	920	~	91 1377832	unknown (Bacillus subtilis)	9	7	619
1 297	-	-	999	1280821 18	Collegense (Methanococcus janneschil)	9	8.4	1 099
328		163	7.	91 992651	Gintp [Saccharomyces cerevisiae]	3	13	243
\$	-	97.30	8608	91 556885	Unknown (Bacillus subtilis)	63	6.0	633
91	9	5178	4483	19111573101	hypothetical [Haemophilus influenzae]	63	0,	969
1 12	Ξ	9324	9902	91 806536	membrane protein (Sacilius acidopullulyticus)	63	7	579
51	=	R897	9187	91 722339	unknown (Acetobacter xylinum)	63	•	291
-	~	1601	309		Pind [Lectobecillus plantarum]	69	32	123
91	-	966	6975	19111377843	unknown (Becillus subtilis)	63	45	804
97	-	9780	9,00	1911142440	ATP-dependent nuclease (Bacillus subtilis)	63	99	2703
58	_	3468	4192	19111377829	unknown (Becillus subtilis)	63	35	705
• •	=	8830	7988	90110101011198	ORF8 (Enterococcus faecalls)	63	Ş	843
1 35		1187	876	gi 722339	unknown [Acetobacter xylinum]	63	19	312
87	-	12509	11691	19111573389	hypothetical (Haemophilus influenzael	63	\$	618
18 -	=	61721	12189	1911142450	ahrC protein (Bacillus subtilis)	63	35	531
- 55	-	i	2032	191 1708640	YeaB (Bacillus subtilis)	63	7	1044
\$\$	112	13669	14670	gn1 P10 e311502	thioredoxine reductase (Bacillus subtilis)	63	-	1002
99	2	9242	8919	sp P37686 YIAY_	HYPOTHETICAL 40.2 KD PROTEIN IN AUTA-SELB INTERGENIC REGION (F382).	63	0.	324
98	_	6554	5685	19111574382	lic-1 operon protein (licD) (Meesophilus influenzael	63	-	870
88	-	6085	5180	91 2098719	putative fimbrial-associated protein [Actinomyces naeslundii]	63	6	906
96	-	5858	6484	91 1052803	orflyyrb gene product (Streptococcus pneumonime)	63	3.9	627
001	-	240	1940	19117171	(ucosidase (Dictyostelium discoideum)	63	36	1071
				•				•

BLE 2

S. pneumonise - Putative coding regions of novel proteins similar to known proteins TABLE 2

Cont ig	ORE	Start int)	Stop (nt)	match	match gene name	a sin	1 ident	length (nt)
104	-	3063	5975	91 144985	phosphoenolpyruvate carboxylase [Corynabacterium glutamicum]	63	9	2703
106		9189	8554	1911533099	endonuclease III (Bacillus subtilis)	63	45	636
122	و	4104	4886	gn1 P10 d101119	transposase (Synechocystis sp.)	63	39	183
120	_	4517	\$203	gn1 Pt0 d101434	orf2 (Mathanobacterium thermoautotrophicum)	63	20	687
761	-	696	1547	91 172920	v-type No-Affase (Enterococcus hirse)	63	1 37	585
142	_	4100	4585	gn1 P10 e313025	hypothetical protein (Bacillus subtilis)	63	;	984
189	·	1741	2571	91 1787043	(AE000184) £271; This 271 as orf is 24 per identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 (Escherichia colli	63	6°	831
	2	8803	114406	gn1 P1D e324918	IgAl protesse Streptococcus sanguis	69	6.	\$604
721	_	7	367	91/173150	hypothetical 14.8kd protein (Escherichia coli)	63	34	345
9.1	~	(2)	716	91 722339	unknown (Acetobacter xylinum)	69	;	495
178	_	194	1012	gi 1591582	cobalamin blosynthesis protein N (Methanococcus jannaschii)	(9	36	219
195	_	72(1)	27.1	gn1 P1D e324217	[ftsQ (Enterococcus hirse]	63	33	1203
234	2	1739	1527	91/1591562	cobalamin biosynthesis protein M (Hethanococcus jannaschil)	63	36	213
249	_	10	1257	91/1000453	Trem [Becillus subtilis]	63	\$	771
263	-	127	13.67	91 396486	ORF8 (Bacillus subtilis)	63	7	1221
293	_	2804	3466	191/722339	unknown (Acetobacter xylinum)	63	7.6	663
111	-	906	98+	191 1877424	UDP-galactose 4-epimerase (Streptococcus mutana)	69	9	.420
324	_	~	986	191 1477741	histidine periplasmic binding protein P29 (Campylobacter jejuni)	63	36	555
365	-	219	-	Q1 2252843	(AFG13293) No definition line found (Arabidopsis thalians)	63	33	207
382	-	98	378	1911722339	unknown (Acetobacter xyllnum)	63	0,	162
385	_	1 364	158	91 (2252843	(APO13293) No definition line found (Arabidopsis thalians)	63	33	207
~	-	2495	288	gn1 PID 6325007	penicillin-binding protein [Becillus subtilis]	62	42	2208
	:	23374	14231	gn1 P1D e254993	hetical protei	62	35	858
9	91	14320	13193	gn1 PID e349614	nifS-like protein (Mycobacterium lepree)	62	76	1128
		• •	2627	gn1 P10 d101324	Yqhy (Bacillus subtills)	62	32	=
_	119	13466	114207	gn1 Pro d101804	beta ketoacyl-acyl carrier protein synthase [Synechocystis sp.	62	\$	1260
					· 中国国际的现在分词 人名马克尔 医中心中枢 医电流电压器 医中枢性 医电阻 医克克克氏 医医生物 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基			

S. pneumoniae - Putative coding regions of novel proteins bimilar to known proteins

Contig	0. 1.0	Stert (nt)	Stop (nt)	match	match gene name	e in	• Ident	length (nt)
^	- -	17155	16229	gn1 P1D e323514	putative Fabb protein (Bacillus subtilis)	62	46	927
,		19526	118519	191 1276434	beta-ketoacyl-ACP synthase III Cuphea wrightii	62	37	1008
77	_	5904	4702	91/1573768	A/G-specific adenine glycosylase (mutY) (Haemophilus influenzae)	62	Ç	1203
71	6	9032	6793	gi 1591587	pantothenate metabolism flavoprotein (Methanococcus jannaschii)	62	33	762
25	=_	9678	9328	pir/JC1151/JC11	hypothetical 20.3K protein (insertion sequence ISIIII) - Agrobacterium tumefaciens (strain P022) plasmid Ti	62	7	351
۲۱ ا	-	5609	2442	91 11591081	M. Janneschii predicted coding region NJ0174 (Methanocqueus janneschii)	62	F	168
	<u>~</u>	1053	2835	91 149570	role in the expression of lacterin F. park of the laf operon (Lactobacillus sp.)	62	7	219
22	0.	6627	9538		d100580 [similar to B. subtilis DnaH [Bacillus subtilis]	62	5,	912
00		86.5	2043	91 2314379	ATP-bin	62	\$	1179
<u>ء</u>	- S	2235	1636	gi 413976	ipa-52r gene product (Bacillus subtilis)	62	**	009
98	Ē.	\$689	6123	91 148231	0251 (Escherichia coli	62	7	435
0		14272	113328		d101904 hypothetical protein (Symechocyatis sp.)	62	2	945
42	_	~	11.	91 1146182	putetive (Bacillus subtilis)	62	=	309
:	~	1267	400\$	91 1786952	AEGO0176; 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI 5W: P54746 [Escherichis coli)	62	\$	2739
49		97.32	9304	91 662920	repressor protein [Enterococcus hirae]	62	32	429
ī,		5664	7161	gn1 Pr0 e301153	StySK[Bethylese [Selmonelle enterice]	62	-	1518
25	-	1612	2099	91 1183886	integral membrane protein [Bacillus subtilis]	62	=	693
\$	91	15702	14704	gn1 PID e313028	hypothetical protein (Bacillus subtilis)	62	0	666
- 59	9	3418	1984	_	unknown (Lactococcus lactis lactis)	62	77	567
63	S	4997	4809	191 149773	pilin gene inverting protein (PivML) (Moraxella lacunata)	62	28	1 681
70	-	10002	10739	91 992977	bplc gene product Bordetella pertussis	62	45	138
F	2	18790	20382	91 1280135	coded for by C. elegans cDNA cm2le6; coded for by C. elegans cDNA cm0le2; similar to mellbiose carrier protein (thiomethylgalactoside permease II) (Caenorhabditis elegans)	62	59	1593
12	128	; ;	132768	laralı	dioill2 YqeG (Bacillus subtilis)	62	35	552
14	_	11666	110383	91 [1552753	hypothetical (Escherichla coli)	62	38	1284

ABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	: -	Start	Stop	match	match gene name	e is	1 ident	length
<u> </u>	= :	(nt)	(nc)	acession		1 1 1 1 1 1	-	(311)
80	- -	9370	6096	gn1 P1D d102002	(ABGO1488) FUNCTION UNKNOWN. (Bacillus subtilis)	62	9	340
	=	8906	1 7041	191 882463	protein-M(pl)-phosphohistidine-suger phosphotrensferase [Escherichia coli]	62	- 2	2028
98	-	3005	1 3268	7	BraE (integral membrane protein) [Pseudomonas agruginose]	62	42	963
102		2823	1 3539		hypothetical protein (Bacillus subtilis)	62	74	717
6		2795	1242	gn1 P1D (d102049	H. influenzae hypothatical ABC transporter; P44608 (974) [Bacillus subtilis]	62	7	1554
=	~	1 2035	1 3462	91 581297	Nisp (Lectococcus lactis)	62	7	1428
- 112	-	1 2154	0807	01 1574379	lic-l operon protein (licA) [Heemophilus influenzee]	62	39	927
1113	9	4939	5649	91 1574381	lic-1 operan protein (licc) (Maemophilus influenzae)	62	1 96	111
72.	2_	1111	127	9111573024	anserobic ribonucleoside-triphosphate reductase (nrdD) (Haemophilus	62	\$	÷27
***	9	3162	1 2329	191 609076	leucyl aminopeptidase {Lactobacillus delbrueckii	62	0	934
126		111073	1 7516	gn1 P10 d101163	ORF4 (Bacillus aubtilis)	62	38	3558
621	9	1 4983	4540	pir S41509 S415	tinc finger protein EF6 - Chilo iridescent virus	62	87	777
2		4510	4103	91 1857245	unknown [Lactococcus lactis]	62	42	1 804
671	~	1923	1 2579	91 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschil)	62	-	657
641	_	5360	6055	gn1 P1D e323508	[YloS protein [Bacillus subtilis]	62	- 00	969
156	-	450	238	gn1 P1D e254644	membrane protein (Streptococcus pneumoniae)	62	0.	213
156	9	3606	2935	gn1 P10 d102050	[rensmembrane (Bacillus subtilis]	62	1 72	672
121	~	1779	1 2291	191 43941	EIII-B Sor PTS (Klebsielle pneumoniee)	62	35	513
2/1	~	1 385	52.	191 895750	putative cellobiose phosphotransferese enzyme III (Bacillus subtills)	62	96	339
ננו		2599	893	91 1591732	cobalt transport ATP-binding protein O (Methenococcus janneschil)	62	42	1001
671	~	1 492	1754	191 1574071	H. influenzae predicted coding region Hilold [Haemophilus influenzae]	62	1 96	1263
181	9	1 2856	13707	9111777435	Lacf (Lactobacillus casei)	62	42	852
185	~	1 2074	=======================================	91 2182397	(AEO00073) Y4(N (Rhizoblum sp. NGR234)	62	4	1964
200	~	1 1061	1984	911450566	transmembrane protein (Sacillus subtilis)	62	1 10	924
707	 	2583	3473	1911 (2219	P35 gene product (AA 1 - 314) [Escherichie coli]	62	=	891
017	-	1374	1565	1565 91 49315	ORF! gene product (Becillus subtills)	62	45	192

S. pneumoniae - Putative coding regions of novel proteins sibilar to known proteins

Contig	08. 10.	Start (nt)	Stop	satch	satch gene name	e is	1 ident	length (nt)
117	-	ſ	176	91 147402	mannose permesse subunit III-Man (Escherichia coli)	62	Ç	696
1 22)	~	1495	1034	gn1 P1D d101190	ORF2 (Streptococcus mutans)	62	;	162
228	-	34	606	191 \$30063	olycerol uptake facilitator (Streptocuccus pneumoniae)	62	-	926
502	~	06	610	91 12293259	(AF008220) Yeqi (Bacillus subtilis)	62	38	828
282	<u>.</u>	1765	1487	gn1 PID e276475	galactokinase (Arabidopsis thaliana)	62	33	279
27.5	-	-	159	91 1674231	(AE000012) Hycoplassa pneumonias, hypothetical protein homolog; similar to Swiss-Prot Accession Number P15155, from B. subtilis (Mycoplasma pneumoniae)	62	Ç	159
1 385	~	584	157	19111573353	outer membrane integrity protein (tolA) (Haemophilus influenzael	62		228
_	<u>6</u>	18550		1911606162	ORF_[129 [Escherichia coli]	61	=	120
		2725	3228	91 2114425	similar to Synechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 (Bacillus subtilis)	61	Ç	105
-	•	1326	3054	91 149569	lactacin F (Lactobacillus sp.)	19	3	672
÷		4061	4957	901010101010	xylose repressor (Symechocystis sp.)	61	38	897
3	=	8388	7234	gn1 Pr0 d101329	YqjM (Bacillus subtilis)	61	+ 5	1155
52	9	1974	6037		YqfK [Bacillus subtilis]	19	7	2064
28	<u>~</u>	7356	6565	ap P45169 POTC_	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERHEASE PROTEIN POTC.	61	34	192
67	-		692	91 537108	ORF_£254 [Escherichia coli]	19	9	069
99	6	8816	7890	10561 18	PPLZ12 gene product (AA 1-184) (Lupinus polyphyllusi	61	7	927
0,			12008	91 992976	bplF gene product (Bordetella pertussis)	19	÷	2721
2د ا	Ξ	9759	10202	gn1 P1D d101833	carboxynorspermidine decarboxylase (Synechocystis sp.)	19	36	\$
76	40	7881	7003	gn1 P1D d100305	farmesyl diphosphate synthese (Bacillus stearothermophilus)	61	\$	879
- 07	-	4914	1697	191 528991	unknown (Bacillus subtilis)	19	7	1218
	: :		1361	911789683	(AE000407) methionyl-tRNA formyltransferase [Escherichia colii]	19	:	156
16	~	131	2989	1911537080	ribonucieoside triphosphate reductase [Escherichia coli]	61	\$	1 6522
105	-	111.6	3499		hypothetical protein (Symechocystis sp.)	19	7	189
5.7	-	7968	6478	191 895747	putativa cel operon regulator (Bacillus subtilis)	61	36	1491
123		1814	8518	91 1209527	protein histidine kinsse (Enterococcus (secalis)	61	•	1330
							•	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

Contig	:	Start (nt)	Stop (nt)	acession	satch gene name	e i a	• ident	length (nt)
1.26	•	7525	6725	91 1787043	(AE000184) (271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SM: P09997 (Escherichia coli)	61	80	801
1 128	-	-	629		Yqiy (Bacillus subtilis)	19	-	639
61 1			1 5054	19111022726	unknown (Staphylococcus haemolyticus)	19	7	261
139	6		5913		beta-galactosidase (Thermoanaerobacter ethanolicus)	19	-	6720
	-	2552	~	91 520541	penicillin-binding proceins 1A and 18 (Bacillus subtilis)	19	42	2511
148	92	112125	111424	0i 1552743	tetrahydrodipicolinate N-succinyltransferase (Escherichia coli)	1.9	43	702
1 162	12	4112	3456		- Ta	61	30	657
22.1		727	1077	gn1 P1D d102048	B. subtilis, cellobiose phosphotransferase system, celA; P46318 (220)	19	‡	351
((1)	_	67	21.71		unknown (Becillus subtilis)	61	43.	672
1 202	~	1278	2585	9111045831	hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]	19	36	1308
727	_	1 2782		; —	regio	19	30	363
225	-	3395	3766	91 1552774	hypothetical (Eschetichia colii	61		372
548	~	217	802	91 1 1000453	TreR (Bacillus subtilis)	61	42	165
254	~	6.0		gn1 P1D d100417	ORF120 [Escherichia coli]	61	36	360
1 257	-	-	1350	gn1 P10 e255315	unknown [Mycobacterium tuberculosis]	19	-	348
293		1791	3657	pir Jensi Jen	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain P022) plasmid fi	19	\$	315
100	-	949	2	191 229 1209	(AFO16424) contains similarity to acyltransferases [Caenorhabditis elegans]	19	33	933
273	-		786	191 393396	Tb-192 membrane associated protein (Trypanosoma brucei subgroup)	61	38	780
-	~	24473	24955	(91 537093	ORP_0153b [Escherichie coli]	9	2,	483
•	-	1 4636	8739	191 2293258	(AFO08220) Yto! (Bacillus subtilis)	09	35	1104
•	- 2	91611	111187	191 293017	ORF3 (put.); putative [Lectococcus lactis]	09	7	750
-1	=	6009	9849	191 149569	lactacin F (Lactobacillus sp.)	09	33	225
8		6977	\$670	91 1788140	(AE000278) o481; This 481 as orf is 35 pct identical (19 gaps) to 309 residues of an approx. 656 as protein NOL1_HUMAN SW: P46087 (Escherichie colij	g g	\$	1308
2	=	15878	117167	20 (15 15676 17167 gn1 Pip d100584	lunknown (Becillus subtills)	0.9	;	1290

TABLE 2

Cont ig	ON C	Start (nt)	Stop (nt)	match	match gene neme	E is	* ident	length (nt)
~	-	-	2	gn1 P10 d102050	transaembrane [Bacillus subtilis]	09	36	243
32	2	9629	8964	191 2293275	(AF008220) Yead (Bacillus subtilis)	09	37	699
38	<u> </u>	8837	1 9697	[ai 40023	B. subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	09	35	861
=	-	0198	2944	1911171767	protein kinase 1 (Soccharomyces cerevisiae)	09	36	1 2667
=	-	-	1269		unknown (Schizosaccharomyces pombe)	09	-	1269
\$	===	11136	110368	1911397488	; 🕹	09	5	171
4	- 61	15766	114378		orfl (Lectobacillus helveticus)	09	1 60	1389
87	- - -	116727	11691	P1D 0102041	(AB002668) unnamed protein product [Haemophilus actinomycetemcomitans)	0.9	32	225
\$	==	- ~ [•	PID 0246537	ORP186 protein [Pseudomonas stutzeri]	09	- 10	997
29	~	919	1117	P1D 4100587	unknown (Bacillus subtilis)	09	42	240
8.9	-	0650	5203	61 1573563	H. influenzae predicted coding region H10594 (Haemophilus influenzae)	09	36	1614
0,	=_	5781	6182	dn1 P10 d102014	(ABGOLLES) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU).	09	33	402
0,	= =	6343	((18)	gn1 PID 6324970	hypothetical protein (Bacillus subtilis)	09	38	1 1611
11	<u> </u>	10711	114157	580866	ipa-12d gene product (Bacillus subtilis)	9		2457
7.		112509	111664 gn]		phosphatidate cytidylyltransferase (Synechocystis sp.)	9	- 65	846
76		4116	1367	gi 2352096	orf; similar to serine/threonine protein phosphatase (Fervidobacterium istandicum)	9	67	750
0		27.67	7665	91 1786420	(AEGOG131) (86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 [Escherichia col1]	9	og C	394
160	•	(,0)	4522	1911147402	mannose permesse subunit III-Man (Escherichie coli)	99	35	450
98	-	076	•	101 143177	putative (Bacillus subtilis)	09	36	786
26	-	-	192	gi 396348	homoserine transsuctinylase (Escherichia coli)	09	45	192
2	<u>-</u>	61901	9384	91 1788389	(AE000297) o464, This 464 as orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 as protein HTRC_NEIGO SW: P43505 (Escherichia colif	09	23	1236
*	5	5548	18131	fgn1 PtD e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit Rattus norvegicus	09	05	1574
-6		9615	4533	19111591396	transketolase' [Methanococcus jannaschil]	09	\$	864
707	~	1802	1 2833	gn1 P1D e320929	hypothetical protein (Mycobacterium tuberculosis)	09		153

posumonias - Putative coding regions of novel prote

Contio	;	;	Stop	match	match gene name	wie .	, ident	length (
2		(ac)	(2)	ACCESSION .			;	108
901	-	£776	9183	gn1 P1D e334782	VibN protein (Bacillus subtilis)	2		746
=	-	1979	1 6837	91 466875	initu, B1496_C1_157 (Mycobacterium leprae)	09	-	64
511	~	2755	1 524	gn1 P10 e328143	(AJ0003)2) Glucosidase II (Homo saplens)	09	32	2232
727	-	1 4763	1 5068		transposase (Synechocystis sp.)	09	39	306
123		1 4510	5283	19111777938	Pgm [Treponema pallidum]	9	38	174
907	-	1 3082	2672	gn1 P1D e325196	hypothetical protein (Bacillus subtilis)	9	36	117
661	-	177	-	PIO	ORF (Thermus thermophilus)	9	39	174
611	Ξ	114520	113009	191 537145	ORF_£437 Escherichia col1	9	ا ٥٥	1512
-	-	1 2592	1 1249	91 1209527	protein histidine kinase Enterococcus faecalis	9	37	1344
=	-	1 210	1049	[01]463181	ES ORF from bp 3842 to 4081; putative [Human papillomavirus type 33]	90	7	078
=	-	5368	6405	91 145362	tyrosine-sensitive DAHP synthase (arof) (Escherichia coli)	09	7	1038
7	9	1358	4049	4049 91 600711	putetive (Bacillus subtilis)	09	37	492
877		1 7742	1 8713	gn1 P1D e313022	hypothetical protein (Bacillus subtilis)	09	2.1	972
(51	-	1 3667	1 4278	91 2293322	(AF008220) branch-chain amino acid transporter (Bacillus subtilis)	09	42	612
- 158	-	1 1413	1 748	91 2104504	putative UDP-glucose dehydrogenase (Escherichia colii	09	0.0	999
138	-	9116	1 2472	gn1 Pr0 d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	٠٤	645
129		8,4	1386	gn1 P10 e308090	product highly similar to Bacillus anthracis Capa protein [Bacillus subtilis]	09		609
191	_	6009	8918	[gnt Pro d101313	Yqen Bacilius subtilis	09	38	420
0,1	-	1 4130	1 2688	0111574179	H. influenzae predicted coding region HI1244 (Masmophilus influenzae)	09	39	1443
<u> </u>	_	1 4717	1 2901	191 606076	ORF_0384 (Escherichia coli)	9	3	1185
181	=	1 2440	1 2135	91 1877427	repressor (Streptococcus pyogenes phage T12)	09	96	306
161	0.7	: -	8428	91 415664	catabolite control protein (Bacillus megaterium)	09	42	1017
200	<u>-</u>	139	1083	1083 91 438462	transmembrane protein (Bacillus subtilis)	9	37	945
102	-	1 3895	1928	91 475112	eniyme liabo (Pediococcus pentosaceus)	09	39	1968
- 214	===	016011	10439	191 1573407	hypothetical (Haemophilus influenzae)	09	39	492
218	-	2145		2363 91 608520	ayosin heavy chain kinase A (Dictyostelium discoideum)	09	16	219

S. pneumoniae - Putative coding regions of novel proteins shallar to known proteins

Contig	ORF	Start	Stop	match	match gene name	e is	• Ident	length (nt)
	1	24.8	;		hysluronidase (Streptococcus pneumoniae)	09	53	168
	-	****	:		Sor regulator (Klebsiella pneumoniae)	09	7	123
		-	288	 di 304897	EcoE type I restriction modification enzyme M subunit (Escherichia coli)	0.9	95	286
	·	808	4.5	1011671632	unknown (Staphylococcus aureus)	0.9	36	861
	-		68	1011131794	raa (Streptococcus gordonil)	09	32	888
	-		277	Dir (C3) 840 (S3) 8	orobable transposase Bacillus stearothermophilus	0.9	3.6	171
			1		N-sthvlammeline chlorohydrolese (Methanococcue jannaschii)	09	0	741
	-		-	1 1 1 1 1 1 1 1 1 1	(Ag000114) 0157 (Escherichia coli)	09	Ç	462
			308		xerC recombinese (Lectobecillus leichmennii)	9	42	306
		- 73	\$22		repressor protein (Bacteriophage Tuc2003)	09	32	450
	-	576	+	191 2293147	(AF006220) YEAM (Bacillus subtilis)	59	31	573
-	2	118140	17142	gn1 Pt0 e280724	unknown (Mycobacterium tuberculosis)	89	39	666
9	-	1413	-	91 133880	sialidase L Macrobdalla decora	89	7	1410
5		6463	5156	gi 580841	F1 (Becillus subtilis)	59	35	1308
		479	1 1393	191 142469	als operom regulatory protein [Bacillus subtilis]	89	34	915
2		2698	4614	gn1 P10 e280623	PCPA (Streptococcus pneumonles)	89	*	1917
00		208	558	gn1 P1D e233868	hypothetical protein (Bacillus subtilis)	88	37	351
0.	-	1 3678	2455	gn1 P1D e202290	unknown [Lectobecillus sake]	65	33	1224
- 35	2	112201	11071	gn1 Ptp e238664	hypothetical protein (Bacillus subtilis)	65	35	1131
35	=	113286	112182	191 1657647	Cap8H (Staphy)ococcus aureus)	89	39	1107
	=======================================	118076	17897	191 1500535	H. jannaschii predicted coding region HJ1635 (Methanococcus jannaschii)	59		180
86	=	1 6172	7117	gi 2293239	(AFO08220) Ytxk Bacillus subtilis	65	34	996
3	_	1952	1361	01 1684845	pinin (Canis tamiliaris)	65	0	1410
9	-	2678	1728	gn1 P1D d101329	YqjK (Becillus subtilis)	- 59	7	951
3		1 1870	2388	gn1 P1D e137594	xerC recombinate (Lectobacillus leichmannii)	59	;	519
		1 6812	1 5628		aminotransferase (Bacillus subtilis)	89	9	1185
	- : -			10111146190	2-kgc-]-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)	- 89	96	642
•	- :	2382	7067					

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	<u>.</u>	Start (nt)	Stop (nt)	match	match gene name	e is	• ident	length (nt)
69	==	1 6567	6688	• •••	chenate kinase	- 65	36	333
- 61	- 2	11383	110055	gn1 P10 e323504	putetive Fmu protein [Bacillus subtilis]	59	3	1329
	=	13927	15894	91 167 3731	(AE000010) Mycopiassa pneumonies, fructoss permess IIBC component; similar to Swiss-Prot Accession Number P20966, from E. coli (Mycopiasma pneumoniae)	59	\$	1968
511	-	1 8766	8521	101 11590886	M. Jannaschii predicted coding region HJ9110 [Methanococcus jannaschii]	- 65	38	246
=	~	1966	1526	gn1 P10 e209005	homologous to ORF2 in ordEF operons of E.coll and S.typhimurium [Lectococcus lactis]	65	Ţ	3
128	=	13438	13178	an1 PID e279632	unknown (Mycobacterium tuberculosis)	59	38	261
-	~	23903	23388	91 482922	protein with homology to pail repressor of B.subtilis (Lactobacillus)	65	0	516
=	===	9697	4106		(ABBOD1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Becillus subtilis)	65	32	189
149	0=	1 7213	1 8244	[91 710422	cmp-binding-factor 1 (Staphylococcus aureus)	59	0	1032
39		669	6013		ferric anguibactin-binding protein precusor Fate of V. anguillarum (Becillus subtilis)	59	;	981
91	2_	8836	7823	gn1 P10 d100964	homologue of ferric anguibactin transport system permerase protein FatC of V. anguillarum (Bacillus aubtilis)	65	S.	1014
127	~	104	1072	91 289759	coded for by C. elegans cDNA CE203 (GenBank; 214728); putative [Ceanorhabditis elegans]	65	9	672
177	_	3843	4200	91/2313445	(AE000551) H. pylori predicted coding region HP0342 (Helicobacter pylori)	89	38	360
180	-	1 2768	1 2508	569605 161	repressor protein (Bacteriophage Tuc2009)	59	00	261
*	<u></u>	3398	2820	91 606080	ORF 0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	65	8.	579
061	-	1120	11/1	191 1613768	histidine protein kinase (Streptocorcus pnaumoniae)	65	32	1410
161	~	1621	1 1019	gn1 P1D d100579	unknown (Bacillus subtilis)	65	0	603
961	_	5025	900	100	hypothetical protein (Becilius aubtilis)	65	38	006
220	~	4362	1958	gn1 P1D d101322	Yqht (Bacillus subtilis)	65	9	405
242		157	2367	91 1787045	(AE000184) (1908; This 308 as orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 as protein PFLC_ECOLI SW: P32675 (Escherichia coli)	65	\$	795
1 247	~	1154	1480	1480 91 40073	ORF107 (Bacillus subtilis)	88	39	327

S. pneumoniae - Putative coding regions of novel proteins stailar to known proteins

Contig	108F	F Start	Stop	natch	match gene name	e in	1 ident	length (nt.)
1 256	<u>-</u>	898	~	ara	hemolysin [Synechocystis sp.]	89	39	867
258		59	950	91 2246532	ORF 73, contains large complex repeat CR 73 [Kaposi's sarcoma-associated herpesvirus]	\$9	02	156
0/2	-	386	1126		Yfn8 (Bacillus subtilis)	59	Q.	741
192	-	552	166	91 666062	putative (Lactococcus lactis)	59	31	167
1 109	-	-	6.79	91 405879	yell (Escherichia coli)	59	36	477
7 363	-	~	1894	91 915208	gestric mucin (Sus scrota)	59	16	1893
	_	i	78	91 160671	S antigen pracursor (Plasmodium (alciparum)	59	-	342
-	_	_	10465	gn1 P1D d101812	Lum (Synechocystis sp.)	98	59	759
62 -	-	<u>:</u> –	1350		Na+ - ATPase subunit J [Enterococcus hirae]	88	39	1416
00	-	-	13651	91139478	ATP binding protein of transport ATPases (Bacillus firmus)	58	34	408
	-	2983	1 2210	ani projetion 164	unknown (Bacillus subtilis)	58	45	114
1 36	-	1 5316	6139	91 1518679	orf (Bacillus subtilis)	58	32	864
7	_	-	1766	19111788150	(AE000278) protesse II (Escherichia coli)	5.8	37	1956
9	-	: –	1225	gn1 P1D 4267329	Unknown (Bacillus subtilis)	88	42	1518
8	=	-	111066	a i	thiamin biosynthetic bifunctional enzyme (Symechocystis sp.)	88	-	657
3	<u>-</u>	.	_	gn1 P1D d101291	reductase (Pseudomonas aeruginosa)	58	35	1221
\$	~	-	- 623		(AE000545) cytochrome c biogenesis protein (ccdA) (Helicobacter pylori)	88	52	291
95	-	9859	5498	191 147329	(transport protein [Escherichia coli]	98	7	1089
69	_	-	1 3807	gn1 P10 e311492	unknown (Bacillus subtills)	58	41	1128
-	- 2	131357	ווננו	91 2408014	hypothetical protein (Schizosaccharomyces pombe)	88	33	921
72	-	-	7 5882	91 18694	nodulin-21 (AA 1-201) [Glycine max]	88	7	705
7.	-	1.4937	4230	191 229 3252	[AF008220] YimO [Bacillus subtills]	88	33	108
67	-	! —	3422	191 1217989	ORF3 (Streptococcus pneumonise)	88	7	6211
- 82	-	: -	1718	91 882711	exonuciesse V alpha-subunit [Escherichia coll]	88	38	2415
98	Ξ	116017	115337	91 47642	S-dehydroquinate hydrolyase (3-dehydroquinase) Salmonella typhi)	5.8	32	681
97	-	166	260	1911153794	rgg Streptococcus gordonii	5.8	32	372
	-							

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ORF	08.F	Start	Stop	astch acession	moteli gerre name	E 7	1 ident	length (nt)
108	~	358	1 2724	1911537020	vac8 gene product (Escherichia coli)	58	37	2367
	\$	1 4593	5240	191 1592142	ABC transporter, probable ATP-binding subunit (Nethanococcus jannaschil)	58	36	648
120		4421	5110	ont P10 d101320	gni pip dioi 120 Yqgx (Bacillus subtilis)	88	43	069
-	91	10101	[12673	91 662919	ORF U (Enterococcus hirse)	58	42	459
1 132	-	16174	1 4939	191 11800301	macrolide-efflux determinant (Streptococcus pneumoniae)	58	35	1236
-	-	111	890		Unknown (Bacillus subtilis)	58	36	780
091	=	9615	5986	1911473901	ORFI (Lactococcus lactis)	58	39	1251
191	9	6268	6849	PID DIO1034	DI-1 protein (Homo sepiens)	58	32	\$82
691	-	214	1 2		translation elongation factor-3 (Chlorella virus)	88	17	213
187	-	1 487	~	gi 475114	regulatory protein (Pediococcus pentosaccus)	58	38	1981
187	9	4384	1 4620	91 167475	dessication-related protein [Craterostigna plantagineum]	58	55	237
190	-	1464	1640	gn1 PtD e246727	competence pheromone Streptococcus gordonit	88	3.8	1 771
192	-	1 2012	1344		[cat GCP360 (Rattus rattus]	88	*	699
306	-	1 1292	969	gn1 P1D e202579	[product similar to Wrbh [Lectobacillus sake]	5.8	35	1 768
316	~	2333	1 555	gn1 Pt0 +325036	[hypothetical protein [Bacillus subtills]	58	33	6171
712	~	\$250	4321	91 466474	Cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]	\$8	38	930
213		\$636	2106	gn1 PID d102048	B. subtils callobiose phosphotransferase system celb; P46117 (998) censeembrane (Bacillus subtilis)	80	-	531
222	- -	~	1 6 -	7,7,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	cell division ATP-binding protein (ftsE) (Haemophilus influenzael	2.0	38	610
264	-	2	215	191 973330	Nath [Bacillus subtilis]	58	32	714
280		<u></u>	792	91 1786187	(AED00111) hypothetical 29.6 kD protein in thrC-talB intergenic region	88	a	235
1 306	-	1 845	-		YibL protein (Bacillus subtilis	58	47	843
1 360	-	1556	1092	sp P46351 YZGD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I S'REGION	88	32	1 465
163	- 2	1 2160	1 1867	1911160671	S antigen precursor (Plasmodium falciperum)	1 58	15	294
272	-	909 1	_	101 393394	[Tb-29] membrane associated protein [Trypanosoma brucei subgroup]	1 58	37	804
382		749	519	pir JC1151 JC11	hypotherical 20.3K procesin (Insertion sequence ISII31) - Agrobacterium typotherical strain PO22) plasmid fi	88	7	162
	. ;							

S. pneumonlae - Putative coding regions of novel proteins similar to known proteins

6 6	10 (nt)	3	acession	match gene name	E 10	• ident	(nt)
	:	152	gi 1499745	H. Jannaschii predicted coding region MJ0912 (Methanococcus janneschii)	\$2	38	939
01	1 7674	1 7507	91/1737169	homologue to SKP1 (Arabidopsis thallana)	57	30	168
=	~	1 412	gn1 P10 d100139	ORF [Acetobacter pasteurlanus]	57	42	411
7	2032	1388	91 2293213	(AF008220) YtpR (Bacillus subtilis)	57	37	645
20	-	6119	gn1 P1D e324949	hypothetical protein (Bacillus subtilis)	5.3	36	483
\$	5 5446	0905	91 1592204	[phosphoserine phosphatasa [Muthanococcus jannaschii]	57	3	387
69	, 6523	7632	ai 155369	PTS enzyme-11 fructose (Manthomonas campastris)	57	35	0111
25 6	6 4520	6850	gi 1574144	single-stranded-DNA-specific exonuclesse (rec3) (Macmophilus influenzae)	57	35	2331
\$ \$	6 2079	1795	91 1843580	replicase-associated polyprotein (oat blue dwarf virus)	57	46	285
9 (9	6 5312	4995	91 2182608	[AE000094] Y4rJ (Rhizobium sp. NGR234]	57	39	318
-	5 (13883	13059	gn1 P1D d100892	homologous to SwissPrat: YIDA, ECOLI hypothetical pratein (Bacillus subtilis)	57	0+	825
6	2 2561	1815	gn1 P10 d100965	homologue of NADPH-flavin oxidoreductase Frp of V. harvayi [Bacillus subtills]	53	*	747
85	9656	9763	91 1206045	short region of similarity to glycerophosphoryl diester phosphodiesterases [Caenorhabditis elegans]	57	SE	168
98	17621	1449	91 1787983	(AE000264) o288; 92 pct identical (1 gaps) to 232 residues of fragment YDIB_ECOLI SW: P28244 (22) aa) [Escherichia coli]	57	34	879
6 1	1 1695	(411)	91 1500003	mutator mutf protein (Mathanococcus jannaschii)	57	33	519
9 96	9 1 3026	4519	91 559882	threonine synthese (Arabidopsis thaliana)	rs	5	1494
-	: -	118212	911773349	Bira protein (Becillus subtilis)	52	-	1002
112 8	9 7448	1 7903	19111591393	M. jannaschii predicted coding region MJ0678 (Methanococcus jannaschii)	5.) oc	456
91	6 18627	18328	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium faltiparum	57	22	300
1 (2) 3	2	0111	pir F64149 F641	hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20)	5.7	38	768
123	4 2108	2884	gn1 P1D d102148	(ABU01684) suifate transport system permesse protein (Chlorella vulgaris)	57	96	177
-	_		91 1573082	initrogenase C (nifC) (Maemophilus influensee)	57	35	168
128	-	9790	191 153692	pneumolysin (Streptococcus pneumonise)	57	38	240
-	2139	1 1363	191142081	nagD gene product (AA 1-230) (Escherichia colii)	52	36	1 444

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ORF	10 E	Start (nt)	Stop (nt)	match	natch gene name	e is	1 ident	length (nt)
136		572	1221	bbs 148453	SpaA=endocarditis immunodominant antigen Streptococcus sobrinus, MUCOB 263, Peptide, 1566 aa] Streptococcus sobrinus	57	3	1008
0	125	28701- 26851	126851	91150576	[beta-glucoside permesse [Bacillus subtilis]	- 53	38	1851
7	9	6195	1 7438	oi 995560	unknown Schitosaccharomyces pombel	57	\$	1044
<u> </u>	-	122	1 2785		ORF [Acetobacter pasteurianus]	l 87	42	447
1 155	-	5454	1 4564	1911600431	glycosyl transerase [Erwinia amylovora]	۱ در	*	168
159	6	1 4877	1 5854	1911290509	o307 (Escherichia coli)	رد ا	35	978
1 167	=	9710	9249		ORF [Acetobacter pasteurienus]	- 57	42	462
121	9		400	191 147402	mannose permesse subunit III-Man (Escherichia coli)	- 57	59	7.7
178	-	0,117	1 1076	an1 Ptp d102004	IABOD14881 ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG. (Bacillus subtilis)	1 \$7	96	1095
061	-	145	1 1455	gi 149420	export/processing protein (Lactococcus lactis)	- 57	30	1311
961 1	-	1 298	- 95	1911522268	unidentified ORF22 Bacteriophage bil67	1 57	36	204
1 203	~	1 3195	1 2110	snt PtD e281915	orf c01003 (Sulfolobus solfataricus)	. 57	7	1086
205	<u>-</u>	•	1 507	gi 1439527	[EIIA-man [Lactobacillus curvatus]	53	28	468
717		553	1974	gn1 P10 d102049	H. influenses, ribosomal protein alanine acetyltransferass; P44105 (189)	52	\$	*
368		1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lectobacillus curvatus)	57	36	492
132	<u>-</u>	1 324	7	gn1 PID e275871	[T03F6.b [Caenorhabditis elegans]	57	33	291
386	-	1 226	7	196 1 160671	S antigen precursor (Plasmodium (alciparum)	1 57	5	225
	-	10486	7778	191 405857	yehu [Escherichia coli]	98	33	1710
	-	1 3674	1 3910	91 467199	pksC, L518_F1_2 [Mycobacterium leprae]	98	96	712
01	-	3442	1874	Ignt (PID d101907	sodium-coupled permesse (Synechocystis sp.)	95	36	1569
~ _	-	1 1860	133	191 231 3949	(AE000593) osmoprotection protein (proMX) (Helicobacter pylori)	96	33	1548
22	- 52	121968	22456	gn1 P1D d102001	[IABOO1488] PROBABLE ACETYLTRANSFERASE. [Bacilius subtilis]	98	1 37	489
1 27	- -	1361	_	1911215132	[ea59 (525) (Bacterlophage lambda)	95	00	1359
82	-	1 4667	4278	19111592090	DNA repair protein RAD2 [Methanococcus jannaschii]	- 56	39	390
2	-	-	386	gn1 PID d100139	ORF (Acetobacter pasteurianus)	95	-	384

BLE 2

S. pneumoniae • Putative coding regions of novel proteins Bimilar to known proteins

Contig	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stact (nt)	Stop (nt)	match	march gene name	eis 1	1. ident	tength (nt)
90		\$122	5397	pir P00053 P000	hypothetical protein (proC 3' region) - Pseudomones aeruginosa (strain PAO)	96	28	276
0	-	71137	4318	gi 1800301	macrolide-efflux determinant (Streptococcus pneumoniae)	\$6	27	1182
9	91	112511	13191	gn1 PID e217602	PlnU (Lactobacillus plantarum)	86	38	681
48	=	27.61	13023	91 143729	transcription activator (Bacillus subtilis)	36	1 50	157
۶۷ ا	-	1674	1 2594	gn1 PID d102036	membrane protein (Bacilius stearothermophilus)	95	25	921
88	_	1842	1459		ORF (Acetobacter pasteurianus)	95	- 1	384
68	_	5815	4940	191 85377	product similar to E coli PRFA2 protein (Becillus subtilis)	99	42	876
105	~	1360	2718		hypothetical protein (Symechocystis sp.)	1 95	1 (6	1359
112		1512	3194	191 537201	ORF_0145 (Escherichia coli)	96	- 16	1044
=	-	2754	2963	gn1 P1D d100340	ORF (Plum pox virus)	36	28	210
~~		1203	2054	91 1649035	high-effinity periplesmic glutamine binding protein (Salmonelle typhimurium)	95	00	852
134	-	1939	1694	gnt PID e248893	unknown (Mycobacterium tuberculosis)	26	27	246
125	-	4403	4107	gn1 P1D d100247	human non-muscle myosin heavy chain (Homo sapiens)	36	7 20	297
:	Ξ	6609	6405	91 2182397	(AE000073) YAEN (Rhizobium sp. NGR234)	95	35	204
104	5	4769	3849	gn1 Pt0 d101870	hypothetical protein (Synechocystis sp.)	26	39	921
761	9.	6814	7245	19111592011	sulfate permease (cysA) [Methanococcus jannaschii]	26	- *	432
142	_	8008	4582	Pir A47071 A470	orfl immediately 5' of nif5 - Bacillus subtilis	56	- 62	438
146		4676	1 3660	igni Pro dio1911	hypothetical protein (Synechocystis sp.)	95	32	1017
148		1906	2739	gn1 PID d101099	phosphate transport system permease protein PstA Synechocystis sp.	96	- 9¢	834
150	-	4449	2743	gn1 P1D e304628	probably site-specific recombinase of the resolvase family of enzymes	36	37	1707
2.1		~	508	91 1787791	(AE000249) f 117; This 317 as orf is 27 pct identical (16 gaps) to 301 residues of an upprox. 320 as protein YXXC_BACSU SW: P39140 [Escherichia coli)	38		207
2.	_	4979	5668	911396293	similar to Bacillus subtilis hypoth. 20 kDa protein, in tar 3' region (Escherichia coli)	\$6	0	069
186		2,572	1 3367	gi 1732200	PTS permease for mannose subunit IIPMan [Vibrio furnissii]	26	36	366
187	~	2402	1 819	pir S\$7904 S\$79	vir849 protein - Streptococcus pyogenes (strain CS101, serotype H49)	26 -	35	1584
					一场关系 医克里克氏 医多克氏氏 医克克氏 医克克氏 医克克氏 医多种 医甲基甲基氏 医皮肤 医皮肤 医克克克氏管 医甲基甲基氏 医二苯甲基氏 医三苯甲基氏 医三苯甲基氏 医二甲基氏 医二甲基氏 化二甲基乙基 医多克氏病 化二甲基乙基二甲基乙基二甲基乙基二甲基乙基二甲基乙基二甲基乙基二甲基乙基二甲基乙			•

LABLE 2

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	980 0	Start	Stop (nt.)	match acession	match gene name	e ia	1 ident	length (nt)
204	_	-		lgi 606376	ORF_o162 (Escherichia coli)	96	35	534
1 206	~	<u>:</u> –	1633	91 559861	clyH [Plasmid pADI]	95	38	1710
219	-	1 1689	1096	91 1146197	(putative (Bacillus subtilis)	96	27	1 165
92	~_	409	1485	pir c60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype £)	9 9	9	1077
67	-	1 2930	1 3268	91 1041785	rhoptry protein [Plesmodium yoelii]	>6	77	139
575	~	1 1543	1 2724	91 143089	lep protein (Bacillus subtilis)	95	7.5	1182
csc –	-	-	915	516 gn1 P10 e325000	hypothetical protein (Bacillus subtilis)	95	7	516
650			641	 0i 1786952 	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 sa hypothetical protein fragment YBGB_ECOLI SW: P54746 (Escherichia coll)	95	9	555
	_	1 4482	8617	191 1573353	outer membrane integrity protein (tola) (Haemophilus influentee)	95	38	285
926	-	~ -	808	gn1 P1D e325031	hypothetical protein (Bacillus subtilis)	95	23	\$00
9.	-	978	(11)	gu1 P1D d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	16	099
82	-	1 1824	1618	gn1 P1D e316518	STAT protein (Dictyostelium discoideum)	85	00	207
67	9	9600	5041	91 1088261	unknown protein (Anabaena sp.)	88	1 10	546
38	91	1 9695	110702	191 580905	B. subtilis genes rpml, rnph. 50kd, gidh and gidB (Bacilius subtilis)	88	31	1008
\$	_	1 5727	6182	91 1786951	(AE000176) heat-responsive regulatory protein (Escherichia coli)	55	29	456
-	-	1 2381	1 3241		YbbA (Bacillus subtilis)	\$5	42	861
- 52	-	1 9640	110866	91 153016	ORF 419 protein (Staphylococcus aureus)	\$\$	23	1227
3	-	1 1813	1 1349	[91]896042	Ospr Borrelia burgdorferil	. 55	000	165
09	-	4194	1 5756	1911199876	magnesium and cobalt transport protein [Methanococcus jannaschii]	55	1 38	963
12	6 -	: -	115408	9111857120	glycosyl transferase [Neisseria meningitidis]	\$\$	17	1233
25	-	: –	4229	gn1 P10 e209890	•	55	44	1041
801	0=	110488	0886	gn1 PtD e324997	hypothetical protein [Bacillus subtilis]	55	96	699
===	=======================================	[12273	7,00(1)	Jana Ing	unknown [Bacillus subtilis]	58	1 34	165
=	=	113007	113945	191 1573423	1-phosphofructokinese (fruk) Heemophilus influentee)	\$\$	1 60 1	939
92.1	<u></u>	6764	1 5907	191(1790131		\$\$		858

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	2593		11111111111111111			35	
9 0 0 0	2593	205	01425	Pr-peptidase (Bacillus licheniformis]	- 55		1818
9 0 0 9 9			1911142833	ORF2 (Bacillus subtilis)	55	37	984
0 0 0	9169	5633		homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtlits)	\$\$	36	1284
0 9 7	3854	:	91 472330	dihydrollpoamide dehydrogenase Clustridium magnum	\$\$	96	1719
; - : - : - :	10204	8921	gn1 P1D e73078	dihydroorotase Lactobacillus laichmannii	35	38	1284
: - : - :	1430	4119	91 290572	peripheral membrane protein U [Escherichia coli]	55	29	069
: - :			qi 695769	transposase (Xanthobacter autotrophicus)	\$5	37 (480
	112564	. —	11650 gn1 P1D d101329	YqjG (Bacillus subtilis)	55	32	915
156		. \$50	191 2314496	(AE000614) conserved hypothetical integral membrane protein (Helicobacter pylori)	SS	7	564
01 651	6625	5897	91 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins (Escherichia coli)	\$\$	58	729
164	1784	2332	gn1 P10 e255118	hypothetical protein (Bacillus subtilis)	5.5	1, ((646
164	1 2772	;	1	put. resolvase Inp I (AA 1 - 284) (Bacillus thuringlensis)	55	35	750
101 191	7428	7216	gn1 P1D e249407	unknown (Mycobacterium tuberculosis)	55	38 1	213
-	1 3860	;	191 535052	involved in protein secretion (Bacillus subtilis)	\$5	28	916
186	2880	2563	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found (Escherichia coli)	55	35	318
189 8	1 4311	5396	gn1 P1D e183450	hypothetical EcsB protein (Bacillus subtilis)	55	32	1086
192 5	1320		196504	vitellogenin convertase (Aedes aegypti)	55	38	192
195 2	2454	1384	91 1574693	transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae]	55		101
198	1 3013	2471	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	55	29	543
214 1	573	744	gn1 PID d101741	transposase (Synechocystis sp.)	\$5		372
219 2	1115	456	91 288301	ORF2 gene product (bacillus magaterium)	55	30	099
263 7	3742		91 18137	cgcr-4 product [Chlamydomonas reinhardtil]	55	89	300
285 1	~	629	18n1 Pro d100974	unknown (Becillus subtilis)	55	0	828
286 1	650	249	96844	ORF (18 kDa) (Vibrio cholerae)	55	î.	405
297 2	1 1229	1696	91 150848	prtC (Porphyromonas gingivalis)	\$	39	468

,

326 2 218 326 2 646 330 1 1340 364 3 2538 366 3 941 3 5 4604 9 111 2746		982 224 474 1546 105	gi 1574491 di 571500	hypothetical (Maemophilus influenzae) prohibitin (Seccharomyces cerevisiae)	55	35	765
			1011571500		***		423
					;	27	
		<u>.</u>	191 396397	soxS (Escherichia coli)	55	29	967
2 2 2 2		105	91 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	95	36	1 (66
5 1 2		•	91 160671	S antigen precursor (Plasmodium falciparum)	55	9	837
11		3624	91 (2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)	54	36	196
124		7246	91 1146245	putetive Bacillus subtilis	- 75	96	201
	-;-;=	117937	91 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	24	27	1725
1 40 8 50	;	4882	qi 39989	methionyl-tRMA synthetese (Bacilius steerothermophilus)	34	- sc	1981
-		7965	gnt P1D e148611	ABC transporter (Lactobacillus helveticus)	54	25 -	1614
11 01		112103	91 1762962	Fem (Staphylococcus simulans)	54	29	1260
57 1 3		215	191 558177	endo-1,4-beta-xylanasa (Cellulomonas (imi)	54	36	510
1 58 3 47	1749	9	gn1 P10 d101237	hypothetical (Bacillus subtilis)	54	29	\$04
1 71 7 10684	-:	:	91 510255	orf3 (Escherichia coli)	- 84	31 –	10201
1 71 20 27546	-:		gi 202543	serotonin receptor (Rattus norvegicus)	54	16	192
72 2 844	-:	1098	91 148613	arnB gene product [Plasmid F]	54	37	255
72 7 7438	-:	_ :	gi 1196496	recombinase [Moraxella bovis]	24	38	74
01	:	113465	91 1200342	ORF 3 gene product (Bradyrhizobium japonicum)	54	32	579
=	;	115995	91 2317798	maturase-related protein [Pseudomonas alcaligenes]	54	30	1 687
96 3 28	2877	2155	91 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	>4	34	123
89 5 44	- 507	1921	gi 147211	phnO protein (Escherichie coli)	75	7	513
-	-	464	91 2317798	maturase-related protein [Pseudomonas alcaligenes]	54	30	462
96 110 80	8058	8510	gn1 P10 d102015	(ABOO) 488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVINAL IN MACROPHAGE (Bacillus sublilis)	75	~~	453
97 6 4662	-;	1604	gi 1591394	transketolase'' (Methanococcus jannaschii)	3	- or	1059
1 106 11 10406	:	:	1011606286	ORF_o617 (Escharichia coli)	> > > > > > > > > > > > > > > > > > > >	32 -	16051
147	8663	7404	4101615	ORF_1D:031987; similar to (SwissProt Accession Number 937340) [Escherichia coli)	*	35	1260

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Concig	280	Start (nt)	Stop (nt)	metch	match gene name	e is	1 ident	length (nt)
171	-	2477	3223	19111439528	EllC-man (Lactobacillus curvatus)	- 75	36	747
174	~	2068	1787	1901 PID 4100518	motor protein [Homo sapiens]	24	35	282
1 88	-	926	1188	gn1 PID e250352	unknown (Mycobacterium tuberculosis)	75	31	663
198	~	3582	2884	Proles	hypothetical protein (Bacillus subtilis)	75	33	669
207	-	-	1991	gn1 P1D d101813	hypothetical protein (Synechocystis sp.)	- 54 -	7.7	1641
210	_	~	655	91 2293206	IAPO8220 YtmP (Bacillus subtilis)	- 54 -	29	959
1 225	~	996	2357	gn1 P1D e330194	RIIH6.1 (Caenorhabditis alegans)	- 54	39	1392
241	-	1681	347	Iblaral	01813 hypothetical protein Synechocystis sp.	54	36	1335
1 263	~	907	1195	bin di	transposase (Synechocystis sp.)	- 25	000	1 607
1 263	9	3450	1.62	151 160671	S antigen precursor [Plasmodium falciparum]	54	4	1 74
1 277		2517	1363	91 1196926	unknown protein (Streptococcus mutans)		00	1155
100	-	828	~	91 (2293198	(AF008220) YtoP (Bacillus subtilis)	1 54 1	28	825
125	-	<u>.</u>	768	191 (2182507	[AE000083] 741H [Rhizobium sp. NGR234]	54		750
332	~	869	590	91 1591815	ADP-ribosylglycohydrolase (draG) [Methanococcus jannaschil]	24	32	1000
588		240	479	g: 530878	Amino acid feature: N-glycosylation sites, aa 41. 43, 46. 48, 51. 53, 72. 74, 107 109, 128 130, 132 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 140; amino acid feature: globular protein domai	\$	6	240
-	52	1 20061	19493	gn1 PID e255111	hypothetical protein [Bacillus subtilis]	53	32	210
2		2497	2033	gn1 P10 d1 0 2 0 1 5	IABBOD1488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (84cillus subtilis)	83	75	165
62	=	9042	121011	191 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	53	1 10	1080
-	_	1479	1009	pir S10655 S106	hypothetical protein X - Pyrococcus woesel (fragment)	cs	7 6	471
90 1	9	4583	:	Pioles	16029 unknown (Mycobacterium tuberculosis)	53	30	552
38	=	8521	9898	91 580904	homologous to E coli rnph [Bacillus subtilis]	53	000	378
~ ~	-	7007	_ ;	19111377631	unknown (Bacillus subtilis)	- s	79	1680
54	117	117555	119564	1911666069	orf2 gene product (Lactobacillus leichmannii)	53	36	2010
***			681	91 1592266	restriction modification system S subunit (Methanococcus jannaschil)	- 63	32	189
								* 2 1 1 1 1 1 2 1 1

RIE 2

S. pneumonise - Putative coding regions of novel proteint similar to known proteins

Cont ig	I CR.	Start	Stop (nt)	match	match gene name	e is 1	1 ident	length (nt)
2	2	9431	8 4 8 7	9111788543	(AEC00310) (135; Residues 1-121 are 100 pct identical to YOJL_ECOLI SH: P33946 (122 as) and as 152-351 are 100 pct identical to YOJK_ECOLI SH: P33943 (Escherichia coli)	2	31	945
19	-	429	-	gn1 PtD e236467	B0024.12 Caenorhabditis elegans	53	1 33	426
1,	_	1 5772	-	191 393394	Tb-291 membrana associated protein (Trypanosoma brucei subgroup)	65	1 33	\$769
~	_	894	2840	gi 2293178	IAF008220) YtsD Bacillus subtliis	62	1 27	1947
	=	1 9793	1 9212	1911178556	putative cobalamin synthesis protein (Escherichia coli)	1 53	32	582
88	~	5217	4342	191 2098719	putative fimbrial -associated protein (Actinomyces naesiundii)	1 53	38	876
23	<u> </u>	2395	1688	[gi[563366	gluconste oxidoreductase (Gluconobacter oxydens)	- S3 -	- ce	108
96	-	1 6632	1762	gi 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	- cs	42	1611
108	-	1 7629	; ;	[gi 149581	maturation protein Lactobacillus paracasei	8 -	32	972
128	-	6412	6972	gn1 P1D e317237	unknown Mycobacterium tuberculosis	53	36	195
128	=	8429	9253	11070	pentraxin fusion protein (Xenopus laevis)	- 68 -		825
- 48	-		056	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactise (strain 14-360)	1 52	1 90	948
263	~	2162	3022	19111755150	nocturnin (Xenopus laevis	53	30	198
2	-	1 2304	2624	19: 11732200	PTS permease for mannose subunit (199an (Vibrio furnissii)	1 53	32	321
182	-2	3785	1001	gn1 P10 d100572	unknown (Bacillus subtilis)	53	35	735
209	-	2948	1915	191 1778505	(erric enterobactin transport protein [Escherichia coli]	1 53	28	1014
218	-	3884	2406	91 40162	murE gene product (Bacillus subtilis	l ss	34	1479
250	_	63	190	gn1 p10 e334776	VIbH protein (Becillus subtilis)	- 53	1 05	318
275	_	-	1611		YqeM (Bacillus subtilis)	- 68 -	35	1611
332	_	544	~	91 409286	baru (Bacillus subtilis)	53	31	543
~	~	1 2543	3445	PID 6233879	hypothetical protein [Bacillus subtilis]	52	39	903
-	152	22402	123376	01 38969	lacF gana product [Agrobacterium radiobacter]	52	36	576
•	2	8094	2356	gn1 PID e324915	19Al protesse (Streptococcus sanguis)	55	32	66.73
22	92	119961	20212	91 1152901	ORF 3 (Spirochaeta aurantia)	52	135	252
2	<u>=</u>	23140	24666	91 289262		52	32 -	1527
۲2	•	1 5397	108+	81 39573	P20 (AA 1-178) (Bacilius licheniformis)	52	35	597

TABLE 2

S pneumoniae - Putative coding regions of novel proteins Bimilar to known proteins

Contia	LORF	20.00			***************************************			
2	:	(10)	(at)	acession	motch gene none	e is	1 ident	length
2	2	8604	7357	191 508241	putative 0-antigen transporter (Escherichia coli)	52	27	1248
\$		1089	3662	gn1 P10 d102243	(AB005554) homologs are found in E. colf and H. Influentae; see SWISS_PROT ACC!: P42100 (Bacillus subtilis)	52	36	1140
87	=	110385	113726	gn1 P1D e205174	orf2 (Lactobacillus helveticus)	52	25	1 099
64	7	5323	575	91 2317740	(AF013987) nitrogen regulatory IIA protein (Vibrio cholerae)	52	- 61	1 507
	-	1 2773	4668	91 1500472	(M. Jannaschil predicted coding region MJIS77 (Methanococcus jannaschii)		36	1896
*	-	5250	4969	91 2182453	(AE000079) Y410 (Rhizobium sp. NGR234)	\$2	0.4	
99 -	9	8400	6955	91 43140	TrkG protein (Escherichia coli)	52	0.00	777
	\$2	130659	21616	gn1 P1D e314993	unknown (Mycobacterium tuberculosis)	52	23	789
\$r	~	1673	1035	gn1 P1D d102271	(ABOO1683) Fara (Streptomyces sp.)	52	27	619
=	<u>-</u>	1439	2893	ani PtD e311458	rhamnulose kinase (Bacillus subtilis)	52	32	1455
	-	4987	1 5781	191 111103	mannose permease subunit II-P-Han (Escherichia coli)	52		798
- F	===	20687	21853	91 143365	phosphoribosyl aminoimidezole cerboxylese II (PUR-K; ttg start codon)	\$2		1167
86	-	5785	4592	91 1276879	Eps? (Streptococcus thermophilus)	52	26	70.7
86	02	119390	117861	91 454844	ONF 3 [Schistosome menson:]	52	797	9651
96	Ξ	10540	6596	gi 288299	ORFI gene product (Bacillus megaterium)	52		288
===		~	2026	91 148309	Cytolysin B transport protein (Enterococcus faecalis)	52	27	2025
2	~ :	1457	2167	91 471234	orfl (Haemophilus influenzae)	52		1112
=		2931	2365	bbs 151233 	Mipe24 kda macrophage infectivity potentiator protein [Legionella pneumophila, Philadelphia-1, Peptide, 184 aal [Legionalla pneumophila]	25	- 6	567
122	6	5646	5951	191 8214	myosin heavy chain (Drosophila melanogaster)	52	36	1 900
757	=	6159	6374	gi 634025	dihydroliposmida acetyltransferase [Pelobacter Carbinolicus]	52 -	52	716
**	9	4880	6313	91 1153733	M protein trans-acting positive regulator (Streptococcus pyogenes)	25		7 7 7 7
115	_ 	1238	2716	gn1 PID e245024	unknown (Mycobacterium tuberculosis)	52	35	1479
3	_ : _ :	1691	2319	[gn1]PtD[d100573	unknown (Bacillus subtilis)	52]	32	1 019
191		2997	5624	9111146243	12.44 identity with Escherichia coli DNA-damage inducible protein;	52	36	2463
2	~	896	183	91 (1215693	putative orf; GT9_orf414 [Mycoplesma pneumoniae]	52	30	786

pneumoniae - Putative coding regions of novel proteins &

210 112						7 97	834
	0011	3567	gn1 P10 e313010	hypothetical protein (Bacillus subtilis)	25	•	
	8844	; ;	191 497647	DMA gyrase subunit B (Mycoplassa genitalium)	\$ 25	38	264
_	5264	5431	91 550697	envelope protein [Human immunodeficiency virus type 1]	82	36	168
	15	884	[41] 155273	hypothetical (Escherichia coli)	52	7	870
230 1	39	362	gn1 PID d100582	unknown (Bacillus subtilis)	\$2	3.8	324
287 1	178	~	. ~	proteass/peptidass (Mycobacterium leprae)	52	29	870
363 2	1305	-	91 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	52	32	1302
23 2	2048	2.11	gn1 PtD e254943	unknown (Mycobacterium tuberculosis)	15	30	876
29 3	742	1521		5 - methylthicadenosine phosphorylase (Sulfolobus solfataricus)	15	31	780
59	410	1597	9111877429	integrase (Streptococcus pyogenes phaye 712)	15	32	1188
40 26	19227	118946	10112314655	(AE000633) transcriptional regulator (tenA) (Helicobacter pylori)	25	- 6	282
	4276	: :	191 474177	D-1, 4-glucosidasa (Staphylococcus xylos	25	7	261
111	_ ;	112057	91 311070	pentraxin fusion protein (Xenopus lesvis)	51	- 10	3123
_	1195	1986	gn1 P10 d101316	Yqff [Bacillus subtilis]	51	<u>د</u>	792
01 86	1831	8538	91 41500	ORF 3 (AA 1-352); 38 kD (put. ftsx) (Escherichia coli)	15	38	1008
113 6	3908	5173	91 166882	ppsl; 81496_C2_189 (Mycobacterium leprae)	15	27	1266
134 1	326	57	91 2191168	(AF007270) contains similarity to myosin heavy chain Arabidopsis thaliana	15	32	270
129 10	7286	6816	- 36	orf14 (Bacteriophaga HP1)	3.	00	121
	4963	3983	91 1354935	probable copper-transporting atpase (Escherichia coli)	51	26	186
- 115			91 [2293256	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	15	36	1134
D	6003	1313	91 1633572	Herpesvirus saimiri ORF73 homolog (Kapusi's sarcoma-associated herpes-like	3	212	13.11
151 9	12092		PID e281580	hypothetical 40.7 kd protein (Bacillus subtilis)	15	*	543
9 651	2555	3208		CMP-N-acetylneuraminic acid synthetase (Escherichia coli)	51	36	654
1.1 1.1	1797	•	91(1773)66	probable copper-transporting atpase (Escherichia coli)	2.	28	1794
265 4	1622	1773	gn1 P10 e256400	anti-P.falciparum antigenic polypeptide (Saimiri sciureus)	12	18	459
2 17	643	11111	pir 532915 5329	pilD protein - Neisseria gonorrhoeae	15	7 (2	699

TABLE 2

S. pneumoniae - Putative coding regions of novel proceins sinilar to known proteins

Contig 10	108F 110	Start (nt)	Stop	match	Belch gene name	E18	1 ident	length (nt)
350	-	890	-	191 290509	0107 Escherichia coli)	1 15	30	989
363	-	1 1228	4485	191 1707247	[partial CDS (Caenorhabditis alegans]	51	23	3258
367	-	1701	-	191 393394	Tb-291 membrane associated protein [Trypanosoma bruce; subgroup]	51	32	1 8691
15	~	5174	4497	gn1 P1D e58151	P3 (Bacillus subtilis)	- 05	7.8	678
9.	-	3220	2882	Piole	hypothetical protein (Bacillus subtilis)	20	29	363
67	s -	2591	4159	19111552733	stmiler to voltage-gated chloride channel protein [Escherichia coli]	50	30	1569
\$2	-	1 2701	1997	91 887849	ORF (219 Escherichia coli)	05	27	1 502
S	_	211	417	PID 6236697	unknown (Saccharonyces cerevisiae)	1 05	33	207
66	-	3416	!	gn1 P1D d100974	unknown (Bacillus subtilis)	20	27	1 1671
ī,		4000	5181	91 1592027	[carbamoy]-phosphate synthase, pyrimidine-specific, large subunit [Hethanococous jannaschii]	05	27	1182
3	<u></u>	9717	8303	91 1591847	lype I restriction-modification enzyme. S subunit [Hethanococcus	05	28	1125
2		8740	9534	gi 114297	acetyl esterase (xynC) (Caldocellum saccharolyticum)	1 05	34	795
\$2	9:	16891	07.621	91 2108229	besic surface protein [Lactobacillus fermentum]	1 05	34	822
5,	_	16031		22	60S ribosomal protein L7B (Schizosaccharomyces pombe)	05	40	306
=	:		128383	gn1 P10 d101328	YqjA (Bacillus subtilis)	05	000	996
98	2	111155	10769	gn1 PID e324964	hypothetical protein (Bacillus subtilis)	20	24	367
e	~	1205	330	91 1066016	Similar to Escherichia coli pyrovate, water dikinase, Swiss-Prot Accession Number P23538 [Pyrococcus (uriosus)	0\$	7	876
96	~	1 1673	2959	gn1 P1D #322433	gamma-glutamylcysteine synthetase (Brassica juncea)	80	29	1287
8	~	218	1711	1911151110	leucine., isoleucine., and valine-binding protein [Pseudomonas aeruginosa]	05	30	954
103	-	1 3303	2785	91 154330	O-antigen ligase (Salmonella typhimurium)	- 05	31	519
115	5	6480	5980	91 895747	putative cel operon regulator (Bacillus subtilis)	05	36	501
129	Ξ	1 2559	1,305	91 1216475	skeletel muscle ryanodine receptor [Homo sapiens]	0,5	32	255
129	2	8192	7965	gi 152271	319-kDA protein (Rhizobium meliloti)	05	30	228
151	5	1, 634		91 40348	put. resolvase Inp I (AA 1 - 284) (Bacillus thuringiensis)	- 05	35	816
32		-	597	fgm1 PID d102015	(ABGOL188) SIMILAR TO NITROREDUCTASE. (Bacillus subtilis)	90	29	597

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

155		-	(nt) acession				
-	9865 5	! –	18	EpsG (Streptococcus thermophilus)	80	- 92	555
	7390	0 6323	191 1786983	(AE000179) 033: 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: P52697; 26 pct identical (7 gaps) to 167 residues of the 373 aa protein HLE_TRICU SW: P46057; SW: P52697 [Escherichia coli)	00	00	1068
-	96(4) 9	1608 9	11 qn1 pto d101313	You Bacillus subtilis	05	23	969
1 167	6 5232	2 3940	10 91 413926	ipa-3r gene product (Bacillus subtilis)	20	12	1293
-	2 807	130	[gn1 PID e304540	endolysin (Bacteriophage Bastilla)	20	35	678
101	5 3168	8 4025	191 606080	ORF 0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	S S	27	958
1 310 111	1 8151	1 8414	16	HRV 2 polyprotein (Human rhinovirus)	80	25	264
! –	1 1538	8 135	: -	TD-193 membrane associated protein (Trypanosoma brucei subgroup)	20	- IE	1404
01	1165 6	1 5090	0	ORF B [Clostridium perfringens]	6.	24	822
<u>-</u>	\$ 10754	9168	SB gi 142440	ATP-dependent nuclease [Bacillus subtilis]	6.9		987
-	7776 7	6198)8 gi 414170	trkA gene product (Hethandsarcina mazeii)	6	36	1380
: -	6 5364	-	18 gn1 P1D e285322	Reck protein (Mycobacterium smegmatis)	6	78	717
(1) 88	112689	-	13249 gnl PtD e255091	hypothetical protein (Becillus subtilis)	6.	20	195
-	9901 6	:	10	X gene product (Bacillus sphsericus)	6	26	336
-	5 4019	6 4948	18 91 1574380	lic-1 operon protein (licB) (Maemophilus influenzae)	67	27	930
621	7 6058	6 1 1949	19 gn1 P1D e267587	Unknown (Bacillus subtilis)	49	35	1110
! –	\$ 3875	5 4438	18 gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	6.7	25	564
-	2 1423	1953	53 gn1 P10 d101102	regulatory components of sensory transduction system (Symechocystis sp.)	49	59	531
-	5 2878	-	2 (gn1 P10 d101732	hypothetical protein (Symechocystis sp.)	49	25	1242
<u> </u>	5 3500	0 1 2940	10 91 490324	LORF X gene product [unidentified]	64	30	198
-	1 1057	2 2	di 333002	first methionine codon in the ECLF1 ORF (Saimirine herpesvirus 2)	6	52	9501
-	6 5352	-	57 91 2394472	(AF024499) contains similarity to homenbox domains (Caenorhabditis elegans)	64	23	1686
-	4 1129	: -	50 (91/531116	SIR4 protein (Saccharomyces cerevisiae)	6.7	52	222
: -	1 600	901	: '	ORF (18 KDa) (Vibrio cholerael	6.	32	465
() (2()	1 1435	15 887	7 [91]73354	phosphetidylinositol-4,5-diphosphete 3-kinase Dictyostelium discoldeum}	64	24	849

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	0 0 0	Start (nt)	Stop (nt)	Batch	match gene name	e i s	1 ident	length (nt)
165	-	1436	132	-i.e	Tb-291 membrane associated protein [Trypanosoma bruce: subgroup]	67	31	1305
1	_	4463	7,256	91 11 1 5 6 4 4	codes for a protein of unknown function (Escherichia coli)	87	7 92	1185
0	~	652	97.1	gn1 P1D e290649	ornithine decarboxylase (Nicotiana tabacum)	89	29	1125
67	-	11377	2384	91 1772652	[2-keto-3-deoxygluconata kinase [Haluferax alicantel]	9	30	1008
7	~	4269	1 787	191 2182678	(AE000101) Y4vJ (Rhizobium sp. NGR2)1)	89	22	399
5	~	1 1326		191 153672	Aectose repressor (Streptococcus mutans)	9.7	2	786
 	-	1 2981	3646	91 146042	[fuculose-1-phosphate aldolase (fucA) [tscherichia coll]	89	00	999
٠6	-	602	~	gi 153794	rgg (Streptococcus gordonii)	89	29	552
0=	_	-	7133	9111381114	prt8 gene product [Lactobacillus delbiueckii]	8.7	2	3132
=	-	1 2914	1 2147	gn P10 e183811	Acyl-ACP thiostersse (Brassica napus)	9	27	769
2	-	1 3494	1 2628	gn1 P1D e261988	putative ORF (Bacillus subtilis)	8	27	867
139	9	1 4231	4599	191 1049388	ZK470.1 gene product (Ceenorhabditis elegans)	87	23	369
139	-	1 5036	5995	191 1022725	unknown (Staphylococcus heemolyticus)	8	29	630
0	2_	11936	11007	gn1 P1D d102049	H. influenzas, ribosomal protein alanine acetyltransferase; P44105 [189]	4 60		930
97	6	0.95	4654	Bi 1591731	melvalonate kinase [Hethanococcus jannaschii]	8	7 7	1017
191	-	1280	2374	gn1 P1D d101578	Collagenase precursor (EC 3.4). (Escherichia coli)	0,	7 7	1095
7.7	Ξ	110581		gn1 P10 d101132	hypothetical protein (Synechocyatis sp.)	6	12	468
183	-	2930	2586	gi 40067	X gene product [Bacillus sphaericus]	87	1 10	345
210	115	110786	961111	6p P13940 LE29_	LATE EMBRYGGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	67	30	411
717	=	16231		191140389	non-toxic components (Clostridium botulinum)	8+	26	252
122	-	704	-	19111573364	H. influenzae predicted coding region H10392 (Haemophilus influenzae)	87	27	702
722	<u>~</u>	£ + + + + + + + + + + + + + + + + + + +	1928	191 1673693	(AE000005) Mycoplasme pneumonias, C09_orf718 Protein (Mycoplasma	48	06	3282
	~	480	1 758	an1 FID e236697	unknown Saccharomyces cerevisiae	1 84	110	279
163	<u> </u>	1874	2211		cgcr-4 product [Chlamydomonas reinhardtii]	87	1 04	183
389	-	\$05	~	91118137	cgcr-4 product (Chlamydomones reinhardtii)	87	- 87	\$04
12		20879	122258	20879 22256 gn1 PTD e264778	putative maltose-binding pootein (Streptomyces coelicolor)	42		1380
				•	**************************************			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

							• • • • • • • • • • • • • • • • • • • •	
Contig	P OI	Start	Stop (nt)	metch	match gene name	e ia	1 ident	length (nt)
•	-	4089	1 4658	[41]3957	P20 (AA 1-178) (Bacillus licheniformis)	47	23	570
21	-	13736	1760		unknown (Becilius subkilis)	47	25	1977
\$6	===	114516	13263	191(1771)181	Cap5L (Staphylocnecus aureus)	47	20	1254
- -	-	1 3547	1 4002	pir A37024 A370	132K antigen precursor - Mycobacterium tuberculosis	47	96	196
2	-	10154	1 9273	191 39848	U) (Bacillus subtilis)	4.	36	882
26	-	1.753	1 3276		PCPC (Streptococcus pneumoniee)	4.7	35	1524
2		\$ 589	5386	91 1786458	(AE000134) (120; This 120 as off is 76 pct identical (0 gaps) to 42 residues of an approx. 48 as protein Y127_HAEIN SW: P43949 (Escherichia coli)	Ç	22	504
01.	~	1232	1759	[gn1 P10 e266555	unknown (Mycobecterium tuberculosis)	47	23	528
0		1961	3542		homologue of hypothetical protein in a rappaycin synthesis gene cluster of Straptomyces hygroscopicus (Bacillus subtilis)	Ç	34	1410
151	-	1 6814	1 6200	19111522674	H. Jannaschij predicted coding region MJECL4) (Methanococcus jannaschiil)	4.7	72	615
		1 803	7711	lyn1 Ptp d101320	Yqg2 Bacillus subtilis	47	25	372
84.1	<u></u>	3267	2155	2155 91 2367190	(AE000190) oll4; sequence change joins ORFs ygjR & ygjS from earlier version (YGJR_ECOLI SW: P42600) [Escherichia coli]	-	30	
2.2	: -	- 2	1549	(gni P1D e254973	autolysin sensor kinase (Becillus subtilis)	47	32	1548
2001	~	1 880	- 644	191 1835755	zinc finger protein Png-1 (Hus musculus)	47	22	237
*	==	;	112638	pir \$43609 \$436	rofA protein - Streptococcus pyogenes	46	34	1545
	-		1018	gn1 P1D e223891	xylose repressor (Anserocellus thermophilus)	46	22	1017
*		4553	2860	gn1 P10 d101652	ORF 10:014715; similar to [SwissProt Accession Number P45272] [Escherichia coli]	9	23	1308
777	-	1127		91 2209215	(AF004)25) putative oligosaccharids repeat unit transporter Streptococcus pneumoniae	9	24	1125
122	=	1 7308	1 7982	191 1054776	hrit gene product (Homo sapiens)	9.	34	675
127	=	9616	81125	gi 1469286	afuk gene product (Actinobacillus pleuropneumonise)	46	28	1074
102	-	1 7093	1 6197	(91)153794	rgg Streptococcus gordonit	9	36	897
0	-	8220	1333	•	[pullulanase (Thermoanaerobacterium thermosulfurigenes)	46	ī .	1 488
140	-	1 9205	1 8315	•	leucine rich protein (Streptococcus equieiailis)	46	72	891
				, , , , , , , , , , , , , , , , , , ,				

LABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ITD	Start	Stop (nt)	match	metch gene name	e is	* ident	length
162	-	-	1125	[91]1143209	ORF7: Method: conceptual translation supplied by author (Shigella sonnei)	46	25	1125
199	-	-	585	91 1947171	[AF000299] No definition line found (Caenorhabditis elegans)	1 46	28	585
123	_	1971	1477	SP P02562 HYSS_	HYOSIN HEAVY CHAIN, SKELETAL MUSCLL (FRAGMENTS).	1 90	27	1 567
232	~	1 760	1608		yc(18 gene product (Cyanophore parudoxa)	1 97	28	849
292		687	220	91 11673744	(AE000011) Mycoplasma preumoniae, cytidine deaminaes; similar to GenBank Accession Number C53312, from H. Litum (Mycoplasma pneumoniae)	9	29	468
°	6 0	5843	6472	91 1788049	(AE000270) 0335; This 235 as orf it 29 per identical (10 gaps) to 198 residues of an approx. 216 as protein YTRB_BACSU SW: P06568 [Escherichia coli]	\$\$	34	630
Œ.	9	1981	3868	101722339	unknown Acetobacter xylinum	45	29	409
9		107	~	91 1699079	coded for by C. elegens CDNA ykinki.j; coded for by C. elegens CDNA yki48910.5; coded for by C. elegens CDNA yki5295.5; coded for by C. elegens CDNA yk58910.5; coded for by C. elegens CDNA yk58910.5; coded for by C. elegens CDNA yk58910.5; coded for by C. elegens CDNA yk114.5; coded for by C. elegens CDNA cm20910; coded	\$	9	906
~ _	91-	14371	14874	191 1321900	[NADH dehydrogenase (ubiquinone) (Artemia franciscane)	45	25	\$04
66		9316	1961	91 152192	mutation causes a succinculucan minus phenotype; Exco is atransmembrane protein; third gene of the excyfo operon;; putative (Rhizobium meliloti)	\$	28	1218
- 23	2_	7046	9099	bhs 153689	HICB-tron utilization procein (Haemophilus influentae, type b, DL42, HTHI TN106, Peptide, 506 as] (Haemophilus influentae)	45	7	=
201		1981	2619	91 472921	v-type Na-ATPase (Enterococcus hirae)	45	- 66	1 6501
1 209	_	174	364	91 (304141	5	45	28	- 170
***	-	604	~	91 1480457	latex allergen (Neves brasiliensis)	45	- 16	603
	=	119782	120288	gi 433942	ORF (Lactococcus)actis)	7	7 92	507
1 87	-	1 7030	6452	191 (537207	ORF_£277 Escherichia coli	7	7 92	579
166	\$	4909	4037	gn1 P1D e308082	membrane transport protein (Bacillus subtilis)	7	25	873
247		818	۲۶	gn1 P10 d100718	ORF! (Bacillus ap.)	7	30	744
7 7		1 1885	. :	gi 2351768	PspA (Streptococcus pneumoniee)	£	7.	1992
36	=	15467	18256	gi 1045739	M. genitalium predicted coding region MG064 [Mycoplasma genitalium]	-	76	2790
25	51	114656	117343	191 520541	[penicillin-binding protains 1A and 1B [Bacillus subtilis]	- 0	27	2688
63	<u>~</u>	969	1352	191 536934	yjcA gene product [Escherichia coli]	÷	7 62	657
1.09	~	2416	338	gi 396400	similar to eukaryotic Na+/H+ exchangers (Escherichia coli)	Ç	24	2079

TABLE 2

S. pneumoniae - Putative coding regions of novel protains similar to known proteins

	Start (nt)	Contig ORF Start Stop 10 10 (nt) (nt)	natch	match gene name	e i s	1 ident	length (nt)
296 1 3 809	808		1911413972	ipe-e8r gene product (Bacillus subtilis)	Ç	24	807
367 1 47 427	7		91 2115652	[AP016669] No definition line found [Caenorhabditis elegans]	\$	30	381
185 4 4221 3127 91 2182	<u> </u>	27	91 2182399	(AE000073) Y4fP [Rhizobium sp. NGR234]	;	25	1095
340 1 582		0,	gnt PtD e218681	70 qni PID e218681 CDP-diacylglycerol synthetese (Arabidopsis thaliana)	7	20	513
1 6 4205 1914 91 1256	: _	914	91 1256742	R27-2 protein [Trypanosoma cruzi]	5	27	2292
2 2 3		2	943 (91/21783	LMN glutenin (AA 1-356) (Triticum sestivum)	7	7	945
3 4489 2861 91 4202		2861	91 42023	sember of ATP-dependent transport femily, very similar to mdr proteins and hemolysin 8, export protein (Escherichia coli)	Ç	89	1629
	<u></u>	1438	gi 1633572	Herpsevirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like	•	21	1344
2979	<u>.</u>	3860		3 2979 3860 gn1 PID d101908 hypothetical protein (Synechocystis sp.)	39	92	882
3814	<u>.</u>	4647	gn1 P1D d101961	5 1814 4647 gn1 PID d101961 hypothetical protein Symechocystis sp. 1	39	19	834
\$603	: 드 .	0724	26 6 14035 10724 91 142439	ATP-dependent nuclease (Bacillus subtilis)	38	20	3312
_	<u>.</u> —	4916	4916 91 632549	NF-180 (Petromyzon marinus)	36	23	4914
	:						

	1 1428 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2009 49666 1574 1574 1579
;;_;_;_;_;_;_;_;_;_;_;_;_;_;_;_;_;	1182 1182 125046 12504 125046 12504 125046 12504 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 125046 12	994 4 9 4 9 4 9 4 9 4 9 4 9 9 4 9 9 9 9
	1182 5382 25046 25046 125625 1519 1519 1515 1515 1515 1515 1515 1515 1515 1515 1516 151	1514 15196 1689 1689 17286 18190 18190 18190
	5382 125626 125625 1519 1519 1517 1597 1597	100 100 100 100 100 100 100 100 100 100
	155046 155046 155046 155046 155046 155046 155046 155046 155046 155046 155046 155046	25.396
	155625 1519 11215 113215 115977 115977	100100000000000000000000000000000000000
	1519 112875 113215 115977 19955	0010101010101010101010101010101010101010
[-	113215	12841
	115977	15390
	15977	15390 19419 19419
!-:-:-:-:-:	9955	9419
	110161	9910
	3915	1 4280
	6024	5704
= = =	6069	6298
Ξ	9111	6888
	1 7968	1672
-	1140	-
_	6771	1456
~	1913	3
<u>-</u> .	-	243
S	5675	13087
_	324	*
-	1481	1050
6	1 4890	1 4465
	14544	15893

. pneumoniae - Putative couling regions of novel proteins not similar to known proteins

Stop (nt)	2589	4482	17362	19982	18764	16218	2727	6032	6653	\$18	2641	4223	4956	1797	3850	1597	5072	6169	5518	6207	6263	2344	5538	4668	1740	8641
Start (nt)	1359	4802	1 66011	19467	25540	26388 2	26382 2	6655	7132	36	3009	4819	4789	3017	4272	5028	5746	9888	5039	5698	6511	2664	5203	5327	6024	9360
08. 0	_	5	12	125	2	38	36	_		_	~	-	<u>-</u>	٠		<u>.</u>	=	_		6	•	9			91	21
Cont ig 10	12	21	77	22	2	22	22	23	2	≈	25	~			88	92	28	53	29	53	õ	ī.	32		*	7

S. pneumonise - Putative coding regions of novel protains not sthiller to known proteins

;	-	:	;	-	-	. –	-	: –		-	-	: –	-	-	•	. –		-	. –	·	. –	. —		•	. –	:	<u>:</u> –
Stop (nt)	9	5	9670	1041	10893	11388	14595	4577	\$001	5711	11376	3143	~	8732	1106	6831	3665	3468	7081	3582	4229	8922	12494	15764	18351	21776	-
Start (nt)			11073	334	. ~		27151	4269	4480	551	10732	175	172	9884	9996	4831	3204	3875	6074	3196	4579	6323	13042	16342	1.7671	1979	209
ORF 10	18	=	77	7	7	3	15	_	-	0.7	-	-	-	-	-	-	-	-	_	2		=	91	202	74	9	-
Cont ig	34	35	35	36	36	36	36	9	38	38	38		7	1	÷	7	\$. 9	9	60	67	89	87	87	- 84	1 89	67
	. – .		_		• —	-		•		•	-	•	•	. —	•	• -	•	•			•	• —			-	•	•-

듶
5
ă
£
ŝ
10 K
2
3
Similar t
يد
not
proteins r
9
ĕ
-
5
of novel
ū
0
Š
egions
9
ě
₹
coding
* ×
-
Š
2
٠
pneumoniae
ē
000
ě
۵
Ġ

·	- 	• -	.				_				.			. — .	_		<u>. –</u>	·	· — ·	· — ·	. —	. —	· —	-		. — .	
Stop		1598	12883	5187	5459	6210	17506	10123	12141	1387	1939	2130	2501	2335	Ş	2736	3063	5549	\$929	1539	21.12	3176	~	3143	9495	1182	980
Start		3239	12146	5588	6013	9009	17685	10515	11947	938	1496	1624	2100	1541	~	2416	2734	47.	\$459	5741	2395	3316	2272	1180	9082	55	1165
ORF	-	2	=	_		6	91	6	7	_	-	_	-	9	-	-	~		6	•	_	<u></u>	-	~	8	_	~
Contig	0\$	18	25	ň	2.0	35	\$4	\$\$	\$\$	95	98	\$2	57	88	59	65	88	29	89	9	19	61	99	99	99	69	69

ABLE 3

idlar to known proteins
Ξ
_
ĕ
_
steins
9
5
ä
=
100
ö
500
Ę
region
ē
Ŧ
ĕ
*
::
3
3
1
•
=
pinenmon

::-	-;-	-	. – .	; —	-	; –	-	. –	; –	-	; –	: –	-	- -	<u>.</u> –	. –	-	-	. –	· –		• –	• –			
	2 1 2	550	190	: ::	556		1216	1582	57.1	2	. 9	95	2	9210	: =	۱ ۳		. 5	: 9	2 2	1092	2875	17114	\$000	6001	1006
12518	4215	526	2			8458		1214	1369		9462				2	-	و ر	187	683		: =	90	57.6	5326	6459	7224
90		6	51	91	61	6		_	; —	-	; -	; — ·	; —	: -	. –	-		; —		-	: —	•	61	-	-	6
Cont 19 10	70	٥,	_	_ !	_	_		_								-			-	8	9	96	96	87	87	97
		•	•			• •			• —						<u> </u>		-		-				- :			-

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

		. <u></u> <u> </u>		•	. — .	.			. <u> </u>	. <u></u> .			. — :				•	. —		• — ·		
Stop (nt)	17670	17928	1840	2878	6016	1621	6868	2395		3141	1691	4573	~	2379	3712	182	632	1143	1420	6753	18692	19541	1980	299	67.5	6735
Start (nt.)	17930	18275	1619	11172	6252	2634	ווננ	668	011	2959	3170	4253	391	2648	4533	-	\$ 06	1403	1250	7043	18522	19717	†60 †	89	1824	6142
10		61	~	-	_	_	-	~	_	_	-	•	-	•	-	-	~	_	-	5	2	=	~	-	•	2
Cont ig	67	1 00	1 00		88	2	68	0.6	06	16	16	16	93	93	6		96	96	96	6	66	66	100	61	103	104

2
•
ĕ
ă
E
ğ
ž
ditibiler to known proteins
Ħ
š
Ŧ
76
not
l proteins n
Ξ
i
č
ē
ó
-
ö
2
9
Putative coding regions of novel p
ò
4
õ
9
-
3
Z
9
=
ğ
5
pneumon i a
0
-

																											•
	363		268	3788	909	10438	2121	1357	2333	6199	7416	069	3368	2	724	9509	6277	7621	756	\$673	11209	0711	3830	-	14521	14532	14875
Start (nt)	_	32	~	3417	3809	10854	2873	2274	2698	5850	6301	346	2544	689	1011	6454	6540	7809	1433	5972	11838	625	2913	325	14027	14840	15363
1	-	-			-	=======================================	- -	~	-	2	122		-	-	7	-	- 6	127	-	- 01	Ξ	~	-	~	===	=	=
	106	106	108	==	111	115	116	118	122	122	122	124	128	129	129	129	129	129	131	121	134	135	136	133	139	139	139
:	١	: —	! —	! —	: —	: —	! —	÷ –	: —	! —	÷-	-	: —	: –	: –	: –	÷ —	: –	: —	-	÷ —	÷	·	-	-	-	• — •

S. pneumonies - Putative coding regions of novel proteins not similar to known proteins

		· • - • -
100	2	4945
		5535
		7
Opering 140	2	165

· pneumonise - Putative coding regions of novel proteins not similar to known proteins

•	• —	•	•		•																						
Stop (nt)	6395	3205	6243	6362	6962	3066	7476	1948	7692	835	1789	246	1466	4925	5177	5347	6703	3724	2473	1102	3005	2320	4219	1634	1557	4363	4821
Start (nt)	6075	2828	6485		1303	8790	7150	2298	2913	659	893	1487	2200	4686	4923	1115	7396	3452	1853	2112	2617	2126	4683	4846	2940	3686	183
ORF	6	<u>~</u>	-	•	-	=	-	- 5	-	7	-			6	01	=	=			~		7	- -	•	-	-	5
Contig	167	169	5	170	170	170	2	22	173	75	2	76	2	5	2	5	5	2	8	2	183	183	185	185	187	188	188
	:		-		. — .	! _ ·		: —	: _ :	: — ·	! — ·	: — ·	-	-		: —	: —	-			- :		: — .	! — :	: _	! — ·	<u> </u>

ABLE 3

proteins
k nown
3
simflar.
30
proteins
of novel
ö
regions o
coding
Putative
•
preumonies
Ś

1 8 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		10001	5331	2127	6231	1849	6644	\$855	3276	760		=	8	2 2
1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ivoi i	=	-;-;-					' ; • ;	,	, ~ ; *		įžį	5	3 3
		2861	6800		- : - :	2	7 6	5993	1914	2038	370	9029	0439	2065
40 9 5	6 -	=		•			-	- + + -	-;-	- † -	- -	2	= :	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	691	192	92	194	95	196	198	200	204	209	210	210	210	7

pneumonise - Putative coding regions of novel proteins not biaflar to known proteins

	• —	•	•	. — .				•																			
Stop (nt)	194	1432	1972	3821		900	1964	\$10	1312	1838	312	6.5	3	270	362	1222	792	1616	2123	1.1	1900	2973	342	1022	1681	186	2295
Start		914	1430	1639		:		-	1519	2116	25	310	999				2789			653	2244	1569	1	177	1124	657	1684
ORF	~	~	_	9	_	-		_	<u>. </u>	_		~		-						-	-	- 2	-	. ~	~	-	-
Cont 19 ID	21.7	218	216	218	219	230	223	227	,	234		335		346	872	248	254	258	. ~		263	263	366	366	270	27.2	275
•	. – .		• — •			-			. — .	-	: —	. —	:	· ·	· —	-	: —	: —	: —	-	,	:	! :	. —	! — .	: — :	

50
Proc
F OCT
ŝ
not simpler to known proteins
s not
proteins
of novel
regions of novel
coding
Putative
,
pneumoniae
ģ

				· - -	 —				_	<u> </u>		.	. — .	-	-	. – :	-	. –	. – :	: - :
Stop (nt)	904	191	1134	826	-	-	1658	2925	609	700	843	530	350	1889	1818	584	דרר	661	607	549	515	83	~	205	107	199	198
Start (nt)	~	7.	1463	6111	540	189	1589	2539	21		670	197	688	249	2087	1048	cir	477	912	-	~	465	. ~	-	895	750	-
ORF ID	-	-	-	~	-	-	S	~	-	· ~	-	-	_	~	~	~	~		~	-	_	~	_	_	-	~	-
Cont ig	278	282	282	287	288	289	162		294	•	296	302	309	310	316	317	316	319	327	333		666		7	345	346	349
·	-	·	: —	: —	· —	:	: —	-	: —	· -	· –	. —	-	• –	• —	-	•	• —	•	•	•	•	•	• –	• -	•	•

ABLE 3

S. pneusonias - Putative coding regions of novel proteins not libilar to known proteins

Stop (nt.)	3	973	84.9	929	1365	1004	510	693	-	30
Start (nt.)	18	7	636	916	1639	345	683	109	150	592
08.0 10	~	-	~	~	~	-	~	-	-	~
Contig 10	350	355	358	960	364	378	379	1961	385	1 385

148

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 309-8504
 - (B) TELEFAX: (301) 309-8512

150

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5625 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

60	TCACAACTAC	AACTTGACTA	TTACGTAACA	CTAAAGGAAC	CCAGCTACAG	CCAAGCAAAA
120	AAGTAATGTA	TCAGTAGTTA	CTCACTTTAA	TTGACGTAAA	GGTATCAAAG	TCAAGGTGTT
180	GTTGTATAGT	CGACGGGCAT	TTTTGATGTA	TCTCAACTTT	AGACGCTATG	AAAAAGTTGA
240	ACTTAAACGT	AGAAGTCGGT	ATAGTAGCTC	TCAATCTACT	TATTCTAGTT	AGATGTGTAC
300	TTATTACCTT	CGTGTTTGGA	GGACTGGTTT	TGAAAAACGT	AACCAGTCCT	GCTATATCAA
360	ACGGTGGTGT	GAACGGACGT	GCCGTATGCC	TAGTTGAACC	CGTTAAAAGT	GAACGACATG
420	AATCTGGAAT	TAGTGGAATG	TTTCGAAATC	CCCTACTCGA	AGAGATTATC	GAGAGGGGCT
480	ACGTCGCCTT	AACCACGTCA	AATCTCTTCA	ACTCTTCGAA	GCTTTCTAAT	AGTCCATCGA
540	AGTGTTTTGA	ACCTCAAAAC	TCTATCCACA	CTTCGTCAGT	TGGTTACTGA	GCCGTGCGTA
600	CTGCGGCTAG	TTTGAGCAAC	AAAACAGTGT	CTACAACCTC	TCAGTTCCAT	GCTGACTACG
660	TTGGTTTAAA	TTGTTAGAAG	GTATAACACA	TTTTCATTGA	TGCTCTTTGG	TTTCCTÄGTT
720	TTAAGGTTGG	TATCCCATAG	CGATATATTA	CATTTACCTT	AGTITGTTCA	TTTCCTAATC
780	TTGACAAAGA	GTTTCTTTAG	AAAACTTAGT	ATGGAGCCGT	GATTATAGTC	TCATACAGAT
840	TAGATGAAAA	GAAATAAATA	AGGATATTTT	TAACTGTAAT	AAAATATTTG	TGCCATGAAA
900	TACGTTCAAT	TATCTTTATT	TGCTATTCTT	TAAATGGTAC	ATTCTATACG	TATCACCGAT
960	TCATTAATGT	TTGCTACCTA	TGAAGCAATG	TTGATAGCAG	GTTTCGGCAA	TGTTTCAATA
1020	GCTCACTAAA	TAATTTATTA	TGAAGAAGAA	CTCAACCTTT	CTAGATAAAT	TTTAGAGTTA
1080	AGCAACCTTT	TGCATTATAC	AAAAATGTCT	AAGCAGTAAG	GGAAAAGTAA	TTGAGGGTAA
1140	ATCTGTAGAT	TGGATGATTT	TGATTAAGAG	GAATAAAATT	TGGATGGATT	TGGGAATGAG
1200	GTAGAAGCCT	GTTATAATCA	TAAGAATTAG	TGAAGTAGTC	CAGTTAGTCT	TATTATTGGA
1260	GTACGAAACA	ATCTAAAATA	AGTAGACTGA	GTTTATGTAT	GAGGAGGTTA	TGCTAATAAT
1320	CTCATCTTAT	TCGATTTGTT	ACTTTCCCAA	AATTAATTTT	CATTTATAGA	ATTGCTAAAA
1380	TAATCAATTG	ATGATAAAAT	CTTCATCAGA	GGTATCGAAT	TATATATTAT	TTCAATCCGC
1440	ATTTATACGA	CTATTGAAAA	TTTTATATCA	TATGAAAGCT	ACAAACAGAA	ATATCTGATT

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	150
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	156
AAATTTATTG	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	1620
AAGAGGTGGT	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	2280
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
TGGAACGGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2880
PAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
rgaggatatt	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
STTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
ביייים איניים איניים	CATTCCCCAT	CTCNTCCCCC	COMMONCO		****	

TCTTTGATTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCTCT	3240
ACATCATCAT	GAGTTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	3300
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCGTTTGTT	GCGACCAGTG	CATTTTGCGG	3360
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	agtggttgat	TTTTATCAGC	GTTGGCCTTC	3420
CATTTTTAAG	TGTCATTGTC	TTGATGAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	3480
TAGGATTAAC	TGTCATTTAT	CTTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTTCT	3540
ттаататттс	CTTTGGATTT	TCAGCCTTTG	TGTTTAAAAA	TCTTTGGGGT	TCCAACCTAC	3600
TTAAGACTTC	CATAGTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTTCCAA	3660
AGGTTGTTTC	AGATATTCTC	TCCTTTTTGC	CTTTTTCATC	CTTGATTTAT	ACTCCAGTTA	3720
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTCA	GGCACTCCTT	TTGCAGTTCT	3780
TCTGGCTCTT	AGTGATGGTG	GGATTGTCTC	AGTTAATTTG	GAAACGGGTC	CAGTCCTTTA	3840
TCACCATTCA	AGGAGGTTAG	TATGAAAAA	TATCAACGAA	TGCATCTGAT	TTTTATCAGA	3900
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTTG	TGGTTGGTGT	CTTGGGAGTC	3960
TTTCTGACTC	AAGGCTTGAA	TCTCTTGTTT	CTCAATGTCA	TCTTTCAACA	TATTCCATTC	4020
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTTCCTT	GATTCCCAAG	4080
GGAATGGACC	ATCTCTTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAAA	4140
GGGGAGTTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTTCACAT	CCTAGTTGAA	4200
ACCTTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGTG	GTATTTTATT	GGGAACAACA	4260
GTGACCAGCA	TTGTTTGGAC	TCTTCCAAAA	TTCCTGCTTT	TCCTAGTTTG	TATTCCTTTT	4320
GCGACCTTGA	TTTATACTTC	TCTTAAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	4390
CAGTCAGGCG	CCATGATTTA	CATCTTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	4440
TCTATTTACA	ATTCTCTTCT	TCGTTGGTTG	ATTAGCTTTA	TCGTGCCTTT	CGCCTTTACA	4500
GCCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	4560
TTGATGTTGA	TTTCTCTGGT	TTTCTTTGTT	ATTTCCCTTA	AACTTTGGGA	TAAGGGCTTA	4620
GATTCCTACG	AAAGTGCGGG	TTCGTAAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAAC	4680
TTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTTGAA	GGATTTGCCA	GAATGGTTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	4800
AAGGAACCAC	GACACTGCAA	GTTTGGACCG	CCTATCAGGA	GAGTGATTTG	ACTAGATTTG	4860
TAAGCTTATO	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGGC	GTAAAAAAGC	4920
TTATCAAGGT	· AGAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTG	AAGCTCGTAA	4980

153

AAAAGTTGCT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACAAATGAC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTTC	CTCAACTATG	5100
GAATCCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGATA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTTTGATGG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA	5460
CTCTTCGAAA	ATCTCTTCAA	ACCACGTCAA	CCTCCCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAACCTCAAA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7571 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

• • • • • • •

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCTCCAGCT TTCCTTGCGA GTTGGCCATG TTGTGTCTTT AAGAAGTCTA AAAATATCTC 60 CAATAAAACG CATCGCTCTC TCCTATCTCG TTTCTCTGTG TGTAGTGTAC TTGCCACAAT 120 GCTTACAAAA TTTATTTACT TCTAGTCGTG TAGGCTTGAG GTTTCCGCTG ATCTTGATTG 180 AATAGTTTCT CGAACCACAA ACCGCACAAG CTAGGCTTGC TTTTTTTAGT GCCATAACGC 240 CTCCATCTTA TCCATTATAA CAAGAAAGCT AGGCTTTGAC AAGCATCTTA GCGAAATAGA 300 TTGACTATCG AATCCCATAT TGTTTGAGCC TTTTCCTTAA TCTTCGCATC TGAGATAGCC 360 CGGCTAGCCT CATCTACTAG ACTTTGCGCA CGCCCTCGAA TATCAGACAA ATTATCATCT 420 GTCTGGCTAT TATCATTGGT TTGTACTTGT CTTTTTGTAT TGGCTGGTGC AATTCCATTT 480 TGCTTATAAG CATTTTCAAC CGTAAAGGTA CTTCCTGGCG TATAAGGTAA AATGGTATTG 540 GCAATGTTTC TAAAGACATG AGCTGCACCG TTTGAAGTAG AGCCAGCTAG ATAGTGGTTT 600 TCATCAGTGG TCGGAAAGCC AAGCCAGTGG CTAATCACTA CATCCGGAGT ATAACCAATT 660 ACCCACTGGT CACTTGTGTA CTCCGGATTG AAAACTGCTT CAGTTGTTCC AGTTTTCCCT 720

GCCATGACAT	AGTCTGCAGG	CGATGAACTA	ATACCGGTAC	CGTTGGTGAA	AGTCCCCAAC	78
					TGAATTTTTA	
						84
					AGCTTCAGGC	90
					GTTGGTTTCA	960
					GAGTCCGAAT	102
TTTTCGCCTG	CCTCAAAAGC	CTTGTCGACA	CCCAAATCAT	TAACAGTGGC	AACAGCAGGT	1086
AGATTAAGCG	ATTCTGCCAA	GGCTTGATAC	ATAGGAACTT	CTCGACTCGT	TTTGATCCCT	1140
GCATAGTTAT	CAACCTTATA	GCTGTCATAC	TGCATGGTAT	GGTTATCCAA	CTGCTTATTC	1200
AAAGCCCAGC	TTGCTTCAAC	TGCTGGCGTA	TAAACAACTA	AAGGCTTAAT	TGTAGAACCA	1260
GGACTACGCT	TTGATTGGGT	TGCATAGTTG	AAATTCCGGA	ATCCAGTTTT	ATCATTGTCA	1320
GCAACTTGAC	CGACAACTCC	ACGAACTCCC	CCTGTTTTCG	GTTCGAGGGC	TACACTTCCT	1380
GATTGAGCAA	ACGTTCCATC	CTCTGCCCTC	GGAAATAGCG	ATGTGTTTTC	ATAAACAATC	1440
TGCATATTTG	CTTGGTAGTT	TTGGTCCAGC	TCTGTGTAAA	TGCGGTAGCC	ATTATTGACA	1500
ATCTCTTCCT	CTGTTAGATT	ATACTTGGAA	ACAGCTTCAT	TAACCACCGC	ATCAAAATAA	1560
GAGGGGTAAC	GGTAATCTGA	GATTTTTCCT	TCATACTTAT	CGTGCAATTG	CGAAGTCATA	1620
TCAACTTCAG	CAGCTTTGGT	TTCTTGGTTT	TTATCAATAT	ATCCTGCTGC	AACCATATTC	1680
TGCAAGACAG	TATCGCGCCG	ATTAGTAGAA	TCTTCTACGG	AATTCAAGGG	ATTATACAGT	1740
TCCGGCCCCT	TGAGCATCCC	TGCCAGAGTC	GCAGCTTGAT	CCAGACTCAC	TTCTGATGCA	1800
GAAACTCCAA	AGTATTTCTT	ACTCGCATCT	TCTACACCCC	ACACACCATT	TCCAAAATAA	1860
GCGTTGTTAA	GGTACATGGT	TAGAATTTGC	TCCTTACTAT	ATTTTTTGCT	TAATTCTAAG	1920
GCAAGGAAAA	ATTCTTTCGC	TTTTCTCTCA	ACAGTTTGAT	CCTGCGATAA	ATAGGCGTTT	1980
TTAGCCAGCT	GTTGGGTAAT	GGTAGAGCCA	CCACCTGAAC	GTCCAGCAGT	GACAATAGCC	2040
				AAGAACGGTC		2100
				CAACATAGGT		2160
				TAAGAGTCCG		2220
				CAAACAAATA		
						2280
				TTAGATGATA		2340
				CACTACGAGA		2400
				TAAAAAGAGA		2460
CAAATAATT	TATCTATOT	САТСССТТТА	ተተተጥ አጥር አጥር	TTCATCATAC	CAACACAACA	3530

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CHAMMANAGC	BABGBABCCA	CTACCTTCAA	CAACCATTTC	TACACCCTCA	4260

STAGCCCAGT CGATTTGTTC TGGATCACGT TCAGCAGAAA CTTTGATGAA TTTACCGTTA	4320
ACTICAAATC CACCITCITT AACTICAACA GTACCGTCGA AACGACCITG AGTIGIGICG	4380
PATTTCAACA AGTGTGCAAG CATAACTGGA TCTGTAAGGT CGTTGATGCG TGTAACTTCA	4440
ACACCTTCTA CGTTTTGGAT ACGACGGAAA GCAAGACGAC CGATACGTCC GAAACCGTTA	4500
ATACCAACTT TAACTACCAT TAGTGATTTC CTCCTTATGA AAATCATGAA ATTTTTATTG	4560
TGAAAAGAGT AACTTGAATC ACTACAAATC ACCTTTCAAC AAACCTATTA TACAACTATT	4620
TGAGTIGAAT TGCAAGTATG GCCATTGTTT TTCTATGTTA GTTTCTTTTT AAGACTGTAA	4680
ACCAAGGAAT CCCTTACTAT TCATAGCATA ACGATTCTAT AGGATCCATT TTACTAATCT	4740
TACGCGCCGG GAAGTAGGCT GAGACATAAC CAAGTAATAG AGCGAAAACT AGAGTTCCTA	4800
AAACAGATAA AAGATTTAAT TTAAAAACCT TAGTGATGGA TGGGTAAAAG TGACTTACAA	4860
TCGCATTCGC CAAACTTCCC ACCCCTTGTG CAACCAAAAA TGCCAGCAGC AAGGCGATGC	4920
CTACAATCCA GATAGCCTCG TAAATAAAAA TTCCTTTGAC ATCACGATTC TGATAACCAA	4980
CTGCTTTCAT GACACCTATT TCCTTGGAAC GTTGCATGAT ATTGATGTAA ATAATGATAC	5040
CAATCATAAC CGCTGCTACC ACAATAGCTT GTGATGAAAG CACAATCAAT AATCCCTGAA	5100
TAACACGAAT AAAGGTAATC ACAATATCAA GAACTCTCTG TTGAGAAAGC ACAGTATACT	5160
TCTTATTTTT CTGTAATTCT TCTGTTACTA CTTTTGTCTG TGATGGATCT TTGAGTTCCA	5220
AGATAAAATA AGATACAGCT TTCGTAAATC CAGCCTCTTT CAAAATCGTT TCCATTTGAT	5280
GAGACAGCAT GAAACTGTTG CTGTCCTCCA TGTCATCTTC ATCATTGATT ACACGTACAA	5340
TCTTCGTTTG AAATTGAGCA ATCTTACTAG TTTCGGCAGC ACTTTCTACA ATGCTGGCTG	5400
AGACTGATTT GCCAATAAGA TCATTAGCTG TCAAATTTTT TCCTGTCTGT TCATTCCAAT	5460
TTTTTAGTAA ACTGCTTGGA ATCGTTAATC CCTGTTCATT TGTATCAGTA TAGAGGGATC	5520
CAGCCAACAC TTTGTCCGTC TCATTATTAC TAACAGAGAT ACTTGTATCA TCATAAAGAC	5580
TCACTACTTG AGCATAAGAA GGCATCGTTT GACTCAGATC CATTTCTTGC CCATCTATAG	5640
TAATATTTGA CATGTTCATC CCAAAAGGAC TCTCCAAATA TTTAATAGCT TCTTTCCCAA	570
CTGTATCCGT GATATATAGT CAATTGAAAC AAGAGCAGGA TAAAAAAGCC TCGTAAAAGG	576
TATTGCAACT TGGTAATACC TTTTTGAGGT GCTTTTTGAT ATGAGCCCAT GTTTTCTCAA	582
TAGGATTGTA CTCAGGCGAG TAGGGGAGGAA GAGGTAAAAG TTTATGCCCA AACTCTTCGC	588
ATAAAAGTTC TAGCTTCCCC ATTCTATGGA ATCTTACATT ATCCATAATA ATAACCGATG	594
GTGTGTTTAA TGTTGGTAAG AGAAAATTCT GAAACCAAGC TTCAAAAAAG TCGCTCGTCA	600
TOSTOTOTO GTAAGTCATT GGAGCGATTA ATTCACCATT TGTTAGACCT GCAACCAAAG	606

MATCCTCTG ATATCTTCTT CCAGATACTT TGCCTCTTAT TAATTGACCT	TTTAATGAGC	6120
ACCATATTC TCGATAAAAA TAAGTATCGA ATCCTGTTTC GTCAATCTAA	ACAGGTGCTA	6180
GTGCTTTAA ACTATTAAAA TTCTTAAGAA ATAAGGCTAC TTTTTCTGGC	TCTTGTTCAT	6240
AGTAGGTGTG GTTCTTTTTT CGAGTGTAGC CCATAGCTTT GAGCGTATAC	TGGATGGTAG	6300
TTGGATGACA GCCAAATTCA GAAGCTATTT CAGTCAAATA AGCGTCTGGA	TTGTCAGTAA	6360
SATAGTTTTT AAGTCTATCT CTATCAACCT TTCTTGGTTT TATTCCTTT	ACTTGGTGGT	6420
TTAGCTCTCC TGTTTTCTCT TTTAGCTTTA ACCAGCCATA AATGGTATT	CGTGAGATTT	6480
GGAAAACGTG TGATGCTTCT GTTATACTAC CTGTTCGCTC ACAATAAGA	3 AGAACTTTTT	6540
TACGAAAATC TATTGAATAT GCCATAAAAA GATTATACCA CATTGTGTA	TATTTTTGGT	6600
TCATTTTACT ATATTTGAAG AGGCGTTTAA ACTATCTGAC ATAAAACTC	G TTCTAGAGGA	6660
AAGACATCCT TTAAAAAGTT AGTTTATTTT ACAACTTAGA CATCAAGGT.	A GGTTAACCCC	6720
TTCATGGAAA AATCAAGACT CTTAGCACTA TGGGTTAAAC TACCACTGG	A GACGTAATCA	6780
ATCGCTAAAC CACGAAAACG GCTAATAGTG GTCATATCAA TATTTCCAG	A ACATTCAATC	6840
CGAGAACGTC CTGCAATTAG GGTAATGGCC TGTTCAATCT GTTCCAATG	A CATATTATCC	6900
AACATGATAA TATCAGCACC CGCCGCCGCA GCTTCTTCGG CAGCAGCAA	G GCTTTCCACT	6960
TCCACCTCGA CCATTTTCAC AAAAGGGGCA TAGGCACGCG CTTGAGCAA	T TGCCTTTTGA	7020
ACACTACCTA CTGCCGCAAT GTGATTGTCT TTTAGCAGGA TAGCATCTG	A TAAATTAAAG	7080
CGATGATTAT AGCCACCGCC AACTCTCACG GCATATTTCT CAAAAAGAC	G TAAATTAGGA	7140
GTAGTTTTTC GAGTATCAAA TACCTTAATG CAATCATCGC CTAAGGCTT	C TACATAAGCA	7200
GCTGTCATCG AAGCAATCCC TGATAAATGT TGTAAAAAAT TCAAGGCAA	C GCGTTCACAT	7260
GTTAAGAGAC TTCTCACCGA GCCTATGATT TCTAAAACCA AATCGCCAC	T AGTCAAACGA	7320
TCCCCATCCT TAAATTGATG AGGATTCTGG AAGGTCACCT CGGCATCA	A TAGGGTAAAA	7380
ACCCTTTGAA AAACGGTTAG CCCCGCTAAA ACACCAGCTT CCTTGGCAA		7440
TTGGCTTGGC CATGATGATC AAAAATGGCA TTGGTACTGT AATCTTCGC		7500
TCTCGCAAGG CTGCTTTCAA TGTATCATCT ATTTGAAAAG GGGTTAAAT	C AGTTGAAATG	7560
ATTGACATCA C		7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

60	TGTCGTTTTT	CTAAAAGTCG	TCAGGCGTAT	TTCAGGAAAA	GCTTAAATTC	TTTGCTAGTG
120	CTGTGTTCCA	GAAAACGTGT	CCTACAACTA	TCCTGCTCCC	TATAAAGACT	GTTTCATCTA
180	ATCTGGTGTA	GCGGTAGCGT	TTGCTGTGGA	TTCGATTGAT	GATTAAATAG	GCAAGAAGCT
240	TGTCAACTCA	GATCATCTTT	AATCCAGTAA	AACAGCATCA	ACGCTGAAAT	TAAGCACCAA
300	AACAATAGCC	TTTCAGAACG	TGACTTTTGT	AGACTCAGCT	TTTTAATAAT	AATAAATCTT
360	TTGTCCATTT	CTTTCCCCGC	TCAACAATTG	GACTGCTTCT	GTCCTCGTTT	GTTACTTCAT
420	TTTAGTTACA	TTGTAATTAT	ACCTCTCTTG	CATTTTTTAT	CTGCTAGTTT	GCTGCAATAA
480	ATCAAAATAT	CTTAATTATT	AATAGTCTTG	AATCAATGTC	CACTCTTAAT	GAAATTGTGA
540	CAACAAATTT	TCTTCTTTGT	TGAAAAAAA	ATGATTCTAG	AAAACTAACC	TTCTACCAAG
600	GTCTGTTTTT	GATCTAAGTT	CATAGCAAGA	CTATAATAAT	TTTAAACATG	ACTTTCTTGT
660	ATCTGGTCAT	CTCCCCTACT	CTATTCCCAT	TGCGTAGATT	GTGATTATCA	TTAAAACGAG
720	ACCCCCTTAC	GTTGTTTCTG	GTTCTTACTA	TTTATGAGTT	TATTGGCCAC	ATTATTCTTT
780	TCTTGATTGT	CCTCTGGTAA	CTTCTTTACA	ACAATCTTCT	CTCTATATAA	ACTCAAGGGA
840	GTAACGGACT	TGGTTAGTTG	CTCACTTTGA	GTTTCCGTTT	TATAGCTACC	ATCGTTACTC
900	TGCTAATCTA	CTAATTTACT	TGAGTTTATA	TAACCTTTGG	TTTACTATCA	GCTCTTTTAC
960	TTCTACAAAA	ATCAAGCATA	TGGTATTAGC	GCATGGATTC	GCTCTGGTCG	TGAAACAGTT
1020	GCTATAATAA	TCACAATCAT	TTGAAAAATC	CACAAAATCC	AAAAAACTTT	AATGAAAAAC
1080	CTGGAAACGC	TGCGTGGTTG	TACTAGAGAG	AGTCCCTTTC	CAAGTCACTT	TCCATAGAGA
1140	ACGGTGGCCA	AAAACATAAA	GTTTTTTATG	CTACTCTTGA	TAAACTGATA	ATAGGAAGTC
1200	GTGGAACCAC	ATAAATGAAG	TTTGAGGTAC	GTCCCTCTCT	GATCAGAGGT	CGTTAGAGCC
1260	ATGGAGTTGC	GATACTAATT	TTTTTATTAG	ATGTCGCATT	CCTTTCGAGG	GTTGCGACGT
1320	GAAGTTAAGC	TCACGAACTG	GACAAGCTTA	TGGGCAATCC	GGAGCGCAGT	AAGAATTAGT
1380	GATATTGGAA	TTTATCTAAT	ACCTCTTGGC	GTAGAAGAAG	CAAGTGGACG	ATCATGATTC
1440	CCCTACACAC	TGATGAAACA	GACGCTACTA	ACAAAGCAAG	ACTGGTGATG	ATTTCCAACG
1500	CGTTTGGATA	ACTTTCTCAA	GGCTATTAGA	AATATCTGGT	ACTTTCAGAA	TGGAACAAAA
1560	TTGAACGTTA	AGAAAAGCAA	TCTCTGATAA	GAAAACTTCC	GACGGAAATG	TAGACATTCT
1620	АТААТАААА	AAACTATGAA	CAATGCTTAG	GATAAAAAAT	GTAGTCTGCT	GGACTTGGAA

AGGAGAACAT CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	1680
GCGTAACAAC TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
CTGGTAAATT CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
TCGAAATTGT GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
ACTTGTTCGC CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CCATCGAAGA TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
ACCTTCCTCG TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
GTGAAGAAGT GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATGACCCT	TACAAGTTGG	2100
AATTGATTGA AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
ATGTAGACCT CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATGT AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
TCTACGGTAC AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AAGCTAAGGA ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AAGAAGTGGG ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
TGGAACGCTA CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
CACTTGCTTC TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
TGTTCCCAAC CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
CGCACCACAT CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
TCGCTGAAAT CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
GTGTACGTGA AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AAGAATTCCA ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
ACTACCGCTT CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
ATGAGATGTG GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
ACTACTTTGA AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AAACTGCCCT TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
AACGCTTCGA CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
ACCGTGGGGT TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GGGCCTTCCC AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
AACACGTGGA CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

			100			
			TCAAGATCCG			3420
			AAATGGAAGA			3480
			CAGTTGATAA			3540
CTGATATCGC	CAACAAATCA	CGCGTTGAGA	AATAAGAGTC	TAGCATAAAA	GCCTCCAATC	3600
TGGAGGCTTT	TTCTCATCTA	TTTTTACTCA	AGGACTAAGT	TCACTTGAGC	AAACTGAATC	3660
CGCACTGTCG	TTCCTTTTCC	GACCTCAGAC	TCGATACGAA	TCTGGTGCCC	CAGTTCTTCA	3720
GAAATTTTCT	TAGATAGATA	AAGGCCAAGT	CCAGAGGACT	GCTGGGTCAA	ACGGCCATTG	3780
TATCCTGAAA	AGCCACGTTC	AAATACTCGG	AGGACATCAC	TGTTTTTTAT	CCCGATTCCC	3840
GTATCTTTGA	TACAAAGCTC	TTGGTCATCC	ATATAAATCT	CCAGACCACC	TTCCTTGGTG	3900
TACTTGAGAC	TGTTTGAGAT	GATTTGCTCA	ATAACCACTA	GCAGCCACTT	TTTATCCGTC	3960
ACGATTTCTT	TATCAAGGTC	ATGTAGATTG	ACATTTAAGC	CTTTTTGAAT	AAAGAAAAGA	4020
GCATATTTAC	GAATTATTTC	CTTGACCAAG	TCCTCAATTT	GAACCTGCTT	TAAGACCAAA	4080
TCATCATGGA	AACTTTCTAA	ACGCAGGTAC	TGTAAAACTA	GGTTGGTATA	GGAGTCGATT	4140
TTGAAAATTT	CCTGTTCTAG	CTGCTGCTTC	AGTTGGCGGT	CGACCACTIC	TGCAACTAAG	4200
AGTTGACTG	CTGCAATGG	GGTCTTTATC	TGATGGACCC	ACAAGGTATA	GTAATCCAGC	4260
AAATCCGTC	GTTTTCTTT	TGCTTTTGAC	CTCTGCTGAT	AGAGTTCCAT	CTCACGCGCT	4320
TCTAATTTT	r ctgctaaag	TATTTCCAN	GGAGACTTGG	CTTCCCTCTC	TCCATAGAGA	4380
AGTTCCTGG	GATAGACCT	G CGTTTCCAC	AATATGTCCC	AAGTGAAAA	TAATATGGTT	4440
ACAAAGCAA	C ACAAGAAGA	A AAAGTAGAG	S AAGTAAATTO	CTAGACTGG	CAAATAAAAC	4500
TGAAAGAGT	A AGACAAGAA	A TGCCAAAGA	A AGCAGATAGA	TAAAAAGAC	ACTACGGGAG	4560
CGCAGATAG	G CTAGAAAAA	A TTGTTTCCA	A TCAAGCATGO	TTCAATCCG	P ACCCTATTCC	4620
TTTCTTGGT	C TCGATAAAT	C CTACCAATC	C CTGCTCCTCC	C AACTTTTTA	GCAAACGAGC	4680
CACATTGAC	a gagagggta	T TATCATCAA	T GAAAAAGTC	A CTGTTCCAA	A GTTCCCGCAT	4740
CAGGTCGTC	A CGTGCTACG	A TGTTGCCTG	C ATGCTCAAA	T AACACGCGT	A AAATCTGGAA	480
TTCATTCTT	G GTCAAATTC	A AGACTTGCC	C TTGATAATG	T AAATCCATG	G ATTTGGTATT	486
GAGGATAAC	A CCAGCATAT	T CCAGCAAAC	T CTCATCACG	C CCAAACTCA	T AGGAACGACG	492
CAACAAGCC	C TGAACCTTA	G CTAAAAGAA	C CTGCTGGTC	A AAAGGCTTG	G TCACAAAGTC	498
ATCCGCCCC	C ATATTGATT	G CCATGACAA	T ATCCATAGO	C TGGTCTCTC	G AAGAAAGAAA	504
CATGATAGO	T ACCTTGGAA	A TCTTGCGGA	T TTCCTGACA	C CAGTGATAA	C CATTAAACAA	510
			C ACCORCCGA	C TCAACAAAT	A GACTCAAAAC	516

.....

ITCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
IGTTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
AAAATAAAT	GAAAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA	ACACAAGCGC	TTCAAAAATT	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC	TAAGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
CTCACCAAA1	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
CTTCCTTAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAA	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	CAAAACAAAA	GACCTAGAAT	6540
ACATACTTTC	: ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	ATAAAAATCA	6600
AAGAGCATTO	G AGAGATAATG	GGGCTTGGAA	CCTCCCTCTC	GCTTCAACAA	AATGACCCCA	6666
TTATAGATT/	AAAAGATGCC	ACTTAGAAAA	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	672
ATATAAAAA	CTAACTGAAC	ATTCTCGTAT	CCATTTTAT	AAAAAAGGTA	GGATAGATAA	678
AAATAACTTO	G AAATGAGGGA	TAATAAAA	AATACTGGAT	TCCACAAACT	TCTATTATCC	684
mmcca a a a a a		CCCTTATE	1 TOTO CON TO 1	CCACATACAT	THE PROPERTY OF THE PARTY OF TH	690

			162			
TTTAATAGCT	ACATTTTATC	ATAATTATCC	AAAGAAAAA	GAGGGCATTT	ATCCCTCTTA	696
ATCCTTCATC	TGACTCTCTG	CATCGGCCAC	GACTTTTTCT	AGACTGGTTT	GACCAAGTTC	702
TGCCTCCATA	GTCAACTGAA	TTCTCTCCAA	TTTTTGATCC	AAAACATCAT	GAATATGAGC	708
TCCTACAGGG	CAATTTGGAT	TCGGATTGTC	ATGGAAACTG	AAGAGTTGAC	CTGTCTTACC	714
AAGACATTCG	ACCGCCTGAT	АААСАТСТАА	AAGACTAATA	TCCTTAAGGT	CCTTGACAAT	720
CTCTGTTCCG	CCCGTTCCAC	GCGCTACTGA	AATCAGCTCT	GCCTTCTTCA	ACTGGGACAA	7260
GATCTTTCTG	ATAATGACAG	GATTGACCCC	GACACTAGCA	GCCAGAAAAT	CACTGGTCAC	7320
CTTGCTTTCC	TTCCCCTCGA	GGGCAATGAT	TATCAGCATA	TGAGTCGÇAA	TGGTAAATCT	7380
ACTTGGAATT	TGCATCCTCT	TCTCCTTTTT	ACGAGGCTAC	CCTGCCTCTA	CTCTTCTTTT	7440
гстаттатта	TACCCTTTTT	AGTTGTAATG	TCAATCGTTA	CCACTTTTCA	ACCAGTCGTC	7500
PAACTCCCGA	TCGCAGCCCT	CTTTCTGAGC	CAATTCTCTC	AAAAATTCCT	GATGATGAGT	7560
ATGGTGGATC	CCATTGACCA	GACTTTCATA	GTAAACCTCA	AAATAGGGAA	GTCTCAGGTC	7620
TTTAGCCAGC	TGCAATTCAG	CTGCTACATC	GTAGTCTACC	CGTCGGAAGT	CCATATCTAC	7680
CAGGCCTTTG	TCATCAAACT	CCAAAATCAT	ATACTGGGCC	CGCAAGTCCT	TCCGTAGCTG	7740
AGCGTCCAAA	AAGAAAGGTT	GGCCAATCGA	ACCCGGATTG	ACAATCAATT	GCCCACCAGT	7800
CCCGTAACGA	AGCAACTGCT	GGTGAATATG	TCCATAAACA	GCAATATCAC	AGGGAGGATG	7860
AGTCACCAAG	CGGTCAAACT	CCTCTTGTTT	GCCAGTATGA	ATCAACTCTC	GCCCCCAGTT	7920
CTTATCAGGC	AGATGATGGC	TAATTCCCAC	CGTCAAATCC	CCAAACTGAC	GATGAATTTG	7980
AAGAGGTTGA	TTGTGGAGCA	CTTCAATTTC	TTCTAGGGAA	ATTTCCTCTA	AAACATACTG	8040
GCACTGGCGC	AAGAGATAGC	GTTGACTGGG	GCGAGTACTG	TCCAATTCCT	TACGGACACC	8100
ATGCCAAAGA	CTGTCTTCCC	AGTTTCCCAA	AACTCTAGCC	GTAATCGGTA	GTTGATCCAA	8160
CAAGTCCAAA	ATCCTTCTAC	GCCCTGTCCC	TGGCATGAGA	ATATCTCCCA	AAAGCCAGTA	8220
PTCATCCACT	CCTATCTGCC	GAGCATCTGC	CAAAACAGCC	TCCAAGGCGG	TGGTATTTCC	8280
TGAATATCT	GAAAGAAGAG	CTATTTTCGT	CATATCCATC	TCCTCGTTTT	TTCTCTTGCA	3340
TAAGTATAA	CATAAAAAGT	CACAGCTAGA	GAAATCTAGC	TTTTTTTGAT	ATACTAGATA	8400
NAGATATTAG	ACAAGAGGAA	ACGAATGACC	CCAAACAAAG	AAGACTATCT	AAAATGTATT	8460
PATGAAATTG	GCATAGACCT	GCATAAGATT	ACCAACAAGG	AAATTGCGGC	TCGCATGCAA	8520
TCTCTCCCC	CTGCCGTAAC	TGAAATGATC	AAACGAATGA	AAAGTGAAAA	TCTCATCCTA	8580
AGGACAAGG	AATGTGGCTA	TCTACTGACT	GACCTCGGTC	TCAAACTGGT	CTCTGAGCTC	8640
TATCGTAAGC	ACCGCTTGAT	TGAAGTTTTT	CTAGTTCATC	ATTTAGACTA	TACAAGTGAC	8700

٠. . .

CAGATTCACG	AGGAAGCTGA	GGTCTTGGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTTCT	CAAGTCCCCT	ACCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGGCGTT	GACAATCTTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA	TAGCCTTGTA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG	GGAGTGAAAC	AGTCTGGGAG	ACTGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAAACAT	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCCAAG	ACATAATCTT	TGGAAGCCGA	GAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCGAA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC	AGTCATAGAA	ATTTTTCAA	TTAACTTTTG	AGCAATYTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAATTCT	AGAAGGCATA	CCAGTCGTTT	10260
CAAGATAAGG	AATTTTAGAA	GGTTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATTT	GTGATAAAAT	10440

164 GTAATTGTTC CATATGATTC TTTCTAATGA GTTGTTTTGT CGCTTTTCAT TATAGGTCAT 10500 10560 ATGGGACTTT TTTTCTACAA TAAAATAGGC TCCATAATAT CTATAGTGGA TTTACCCACT ACAAATATTA TAGAACCGTA AAAATAGAAG GAGATAGCAG GTTTTCAAGC CTGCTATCTT 10620 10680 TTTTTGATGA CATTCAGGCT GATACGAAAT CATAAGAGGT CTGAAACTAC TTTCAGAGTA GTCTGTTCTA TAAAATATAG TAGATTGAAA TAAGATGTGA ACAACTCTAT CAGGAAAGTC 10740 AAATTAATTT ATAGAATTAT TTTAGCAGTC AAGGTGTACT GTTATAGATT CAATATATTA 10800 TATGACTATT AACCTTGTCT TCTCCTAAAA TTGACTTTCT TGTTTTCTTA TCTTGTCCAC 10860 10920 TCGAAACAAG TATTGTAAGA ATTTGATTAT TTTTGAAAGT ACTTTTAATA TACTTGATAT AGTTAAAAAA GATTTGAAAC TAAATTCCAA ATTAGAAAAA GACTTGAAAT ACTAAAAAAA 10980 AAAAAGTATA CTCTAATTGA AAACGGTAAC AAAACTAATT TAGAGAATGA AATATAGAGT 11040 ATTTCTCTCT TAAAAGTTTT TGGTGAAACG AGATGTAGAA AGGAGATTTA GCCAAAGAGT 11100 CTATTAGTGC TAGAATAATA GATTAGAAT ATTTTAGAAA AACGAAGTGA GCAGCTTATA 11160 AATTCAAGTC CCCAAATAGA TTCATACTAG TATCTTTTGC AAAAAATAAA GGGCGACTTC 11220 CTTCATGAAT ATCAATTTCA TCTATAAGGA AGGTAGCTAA TTGAACTAAC TTATTTATTC 11280 TETTTGTCGC TAGAAAAATC AGACCTCCTT GTGAAGATTG AGGAGATACT TAATGAAAAT 11340 CAAAGAAGAA ACTAGCAAGC TAGTAGCAGA TTGCCCAAAA CACCGCTTTG AGGTTGTAGA 11400 TAAGACTGAC CTATATAATC CAAGGTGAAG CGACTGTGGT TTGAAGAGAT TTTCAAAGAG 11460 11520 TATAGGCTAG AGAGTAGTGT TTTTATGTCC TTCTAGTAGA AAATGCTAGA CAGAAGAATG 11580 GGGAACTTGG ATAGGAAAAA TAGATTGAGA AAGGAGGTTA GAAGAGATGA TTATTACAAA AATTAGCCGT TTAGGAACTT ATGTGGGAGT AAATCCACAT TTTGCAACAT TAATAGATTT 11640 TCTAGAAAAA ACAGGACTAG AAAATTTAAC AGAAGGTTCG ATTGCTATCG ATGGTAATCG 11700 ATTGTTTGGG AATTGCTTTA CTTATCTAGC AGATGGTCAA GCAGGGGCTT TCTTTGAAAC 11760 CCACCAAAAA TATTTGGATA TTCATTTAGT TTTGGAAAAC GAAGAAGCCA TGGCTGTTAC 11820 ATCGCCGGAA AATGTAAGCG TTACCCAAGA ATATGATGAA GAGAAAGATA TTGAATTATA 11880 CACAGGGAAA GTGGAACAGT TGGTTCATTT GAGAGCTGGC GAATGCCTCA TCACTTTTCC 11940 AGAAGATTTA CATCAACCCA AGGTTCGTAT AAATGATGAA CCTGTGAAAA AAGTTGTCTT 12000 TAAAGTTGCG ATTTCTTAAT GTAGAAAGAG AAGAACGATG AAAAAAATGA GAAAGTTTTT 12060 ATGTCTAGCT GGAATTGCGC TAGCGGCTGT TGCCTTGGTA GCTTGTTCAG GAAAAAAAAGA 12120 AGCTACAACT AGTACTGAAC CACCAACAGA ATTATCTGGT GAGATTACAA TGTGGCACTC 12180 CTTTACTCAA GGACCCCGTT TAGAAAGTAT TCAAAAATCA GCAGATGCTT TCATGCAAAA 12240

1.

GCATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACITCT	ATACTAAATG	12300
GACTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AATGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
ACAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TGTTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TAATATTGAG	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AGCTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12660
CTTGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CTTGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
CTCACCTCAA	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
AAAAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TCAATTGATT	GATTCGATTG	ATGCTTATCC	TATTCCAAAA	ATCAAAGAGT	CTGATAAAGA	12960
CCAAGGAATT	GAAACCTCAA	ACATTCCAAT	GGTTGTTTGG	AAAAATTCAA	AACATCCAGA	13020
AGTTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TTCAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AGAAAATGAA	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AAAAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CCAACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AGCAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AAAGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AGGGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TATGATTATC	GTAGGATTAC	TCTTTGTTTA	TCCGTTTTTC	TCGAGTATTT	TTTATAGCTT	13560
TACCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TGTGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13680
CTCATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CCACTTCAAG	AAATTATATA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGT	13800
TATTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	СТААТСТААТ	13860
CGTAAAATTA	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CCTATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

166 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 CATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCCTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 14820 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880

TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 15180 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA GGAAAAAAT GAATAAAAGA GCTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATCA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540 ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA 15600 AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA 15660

CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT

CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC

15720

ATTACCTCGC	AAAAGGAAGT	ATTGATGAAA	TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC	AACTATTCCC	TTGTCAAATC	CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC	TAACTATTTT	AGAATACCGA	CACTATATAC	attaagtagt	GGAAGAGTTC	15960
TATCAAGTAT	TGATGCACGT	TATGGTGGGA	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA	TAGTGATGAT	AATGGGAAAA	CGTGGAGTGA	GCCAATTTTT	GCTATGAAGT	16080
PTAATGACTA	TGAGGAGCAG	TTAGTTTACT	GGCCACGAGA	TAATAAATTA	AAGAATAGTC	16140
AAATTAGTGG	AAGTGCTTCA	TTCATAGATT	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT	ACTAGCTGAT	GTTATGCCTG	CGGGTATTGG	TAATAATAAA	GCAAATAAAG	16260
CCGACTCAGG	TTTTAAAGAA	ATAAATGGTC	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT	CCGTTATACA	GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	ACAACTAATA	16380
AACCTACAAA	TTATACTATA	AATGATAAGT	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA	ATATTCGGTT	GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC	TATGAATGTT	TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT	GACAACTAGT	CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	16620
CTCCGTTCTT	AGGAGAAAAA	CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG	TAACAGATTG	ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA	TAGTGGTCAA	ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	TTTAAAAATG	16800
CAACAGCAGA	AGCACAAATG	GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG	TAAGATAGCT	TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT	TGATGGAATC	CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAAT	16980
ACTCTCAATT	AATTGATGGA	AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG	AGGCCAATTA	GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA	CTATGATATT	GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA	TCATCACATA	GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT	AAGCAATGTA	GTTCAGTATA	TAGATTTGGA	AATTAATGAT	TTAACAAAAT	17280
AAAGGAGAAA	AACATGGTTA	AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT	17340
GGCTCGCTAC	ATGCAAAAGA	ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG	ATTGCAGAAG	AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTACCCAT	CAACTACATT	CTCTTATCCT	CCCAACTCCA	AATAATCTTC	ATAAGGAACC	17520

168 GGTTATTAAG GCTGCACAGC ATGGTAAAAA TGTTTTCTGT GAAAAACCAA TTGCGCTTTC 17580 TTATCAAGAT TGTCGCGAGA TGGTAGATGC GTGTAAAGAA AACAATGTAA CCTTTATGGC 17640 AGGACATATT ATGAATTTCT TTAATGGTGT TCATCATGCA AAAGAACTCA TTAATCAAGG 17700 AGTTATCGGA GACGTTCTAT ATTGTCATAC AGCTCGTAAT GGTTGGGAAG AACAACAACC 17760 GTCAGTATCA TGGAAAAAA TTCGTGAAAA ATCAGGTGGT CACTTGTATC ACCACATCCA 17820 TGAATTGGAT TGCGTTCAAT TCCTTATGGG GGGCATGCCT GAAACTGTAA CCATGACAGG 17880 TGGAAATGTG GCCCATGAAG GTGAACATTT CGGTGATGAA GATGATATGA TTTTTGTCAA 17940 TATGGAATTT TCTAATAAGC GTTTTGCCTT GTTAGAATGG GGTTCAGCTT ATCGTTGGGG 18000 TGAACATTAT GTCTTAATCC AAGGAAGCAA AGGTGCCATC CGCTTAGACT TATTCAACTG 18060 TAAAGGAACT CTTAAGCTAG ATGGGCAAGA AAGCTATTTC TTGATTCACG AATCGCAAGA 18120 AGAAGATGAT GATCGGACTC GTATCTATCA TAGTACAGAG ATGGATGGAG CAATTGCTTA 18180 TGGTAAACCA GGTAAACGTA CTCCATTATG GCTATCATCT GTCATTGATA AAGAAATGCG 18240 CTATCTGCAT GAGATTATGG AAGGAGCTCC AGTATCAGAA GAATTTGCAA AACTTTTGAC 18300 AGGTGAAGCT GCCCTAGAAG CAATTGCTAC TGCAGATGCT TGTACCCAGT CTATGTTTGA 18360 AGATCGCAAA GTAAAATTGT CAGAAATTGT AAAATAAATT TTGGTATTCT CCTATTTATA 18420 GGTCGACTTG CTCCTCTGAA AGTACTTTTA GAGGAGCTGT TTGACTTTGC TAGTTTTTGA 18480 AACTGAAATC TATTATACTA CAAACTATTG AAAGCGTTTT AATTTTAAGG TATAATAATC 18540 TCATAGAAAT AAAGAAAAGG AGGAAAGAGG ATGCCACAGA TTAGCAAAGA AGCCTTGATT 19600 GAGCARATCA AAGATGGAAT CATCGTTTCT TGTCAGGCTC TTCCTCATGA ACCGCTTTAT 18660 ACAGAAGCGG GAGGGGTGAT TCCCTTGCTG GTCAAAGCGG CTGAGCAAGG TGGAGCAGTC 18720 GGTATCCGAG CAAACAGTGT TCGCGATATC AAGGAAATTA AGGAAGTCAC TAAACTTCCA 18780 18840 ATCATTGGGA TTATCAAACG TGATTATCCA CCTCAGGAAC CCTTCATCAC GGCTACTATG AAAGAAGTTG ATGAATTGGC AGAACTGGAC ATCGAGGTGA TTGCTCTGGA TTGTACCAAG 18900 CGTGAACGCT ACGATGGTTT GGAAATTCAA GAGTTCATTC GTCAGGTTAA GGAGAAATAT 18960 CCTAATCAGC TTTTGATGGC TGATACTAGT ATCTTCGAAG AAGGGCTAGC AGCTGTAGAA 19020 GCAGGAATTG ACTITGTCGG AACAACCTTA TCAGGCTACA CATCCTACAG TCCAAAAGTA 19080 GACGGTCCAG ATTTTGAATT GATTAAGAAA CTCTGTGATG CTGGTGTAGA TGTCATTGCA 19140 GAAGGAAAAA TTCATACACC AGAACAAGCC AAACAAATCC TTGAATATGG AGTGCGAGGC 19200 ATCGTTGTTG CTGGCGCCAT TACTAGACCA AAAGAGATTA CAGAACGCTT CGTTGCTAGT 19260 CTTAAATAAG ATGTGAGGGG GAGTTTTATG TTTAAAGTTT TACAAAAAGT TGGAAAAGCT 19320

TT	PATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	1938
CTT	PTCAAACC	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	1944
AT?	ATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	1950
TGT	rgtgggat	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	1956
GTA	ACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	1962
GA/	AGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TA7	TTTGCACA	ACCGATATAA	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TC	ACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GT1	TATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GG7	CCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CAI	CATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGA	CAAACAG	TGGTTGGAGC	TCAAAAAATA	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCT	rggattat	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GG1	TTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAAA	20160
TAC	CCCGCCTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
AT1	rgaattta	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGT	GTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGT	CTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACCCTAAGAC	GAATTGGGTT	20400
CTI	CAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTT	TAGATGGTTC	20460
ATT	PACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
rci	GAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATT	ATCAGAG	CCTTGGGTGG	ATCAAATAAT	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
rta	CGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
GCA	GTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
CT A	TATAAAA	ATAGTATTAA	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATA	AAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
AAG	AACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAA	ATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
רידיר	TGGCGGA	ACTABAGATO	CTCCCAAATC	ACCITICATOR	COTOCONARA	CACAAATCAC	21060

				170			
77	GGTGGGCA	TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATGA	21120
A.A	AATCAATC	ATCGAAGCGT	TTGAAAAAGC	AAACCCAGAT	ATAAAAGTGA	AATTGGAAAC	21180
CA	TCGACTTC	AAGTCAGGTC	CTGAAAAAAT	CACAACAGCC	ATCGAAGCAG	GAACAGCTCC	21240
AC	ACGTACTC	TTTGATGCAC	CAGGACGTAT	CATCCAATAC	GGTAAAAACG	GTAAATTGGC	21300
TG	AGTTGAAT	GACCTCTTCA	CAGATGAATT	TGTTAAAGAT	GTCAACAATG	AAAACATCGT	21360
AC	AAGCAAGT	AAAGCTGGAG	ACAAGGCTTA	TATGTATCCG	ATTAGTTCTG	CCCCATTCTA	21420
CA	TGGCAATG	AACAAGAAAA	TGTTAGAAGA	TGCTGGAGTA	GCAAACCTTG	TAAAAGAAGG	21480
TI	GGACAACT	GATGATTTTG	Aaaaagtatt	GAAAGCACTT	AAAGACAAGG	GTTACACACC	21540
AC	GTTCATTG	TTCAGTTCTG	GTCAAGGGGG	AGACCAAGGA	ACACGTGCCT	TTATCTCTAA	21600
CC	TTTATAGE	GGTTCTGTAA	CAGATGAAAA	AGTTAGCAAA	TATACAACTG	ATGATCCTAA	21660
ΑT	TCGTCAAA	GGTCTTGAAA	AAGCAACTAG	CTGGATTAAA	GACAATTTGA	TCAATAATGG	21720
TI	CACAATTT	GACGGTGGGG	CAGATATCCA	AAACTTTGCC	AACGGTCAAA	CATCTTACAC	21780
AA	TCCTTTGG	GCACCAGCTC	AAAATGGTAT	CCAAGCTAAA	CTTTTAGAAG	CAAGTAAGGT	21840
AG	AAGTGGTA	GAAGTACCAT	TCCCATCAGA	CGAAGGTAAG	CCAGCTCTTG	AGTACCTTGT	21900
AA	ACGGGTTT	GCAGTATTCA	ACAATAAAGA	CGACAAGAAA	GTCGCTGCAT	CTAAGAAATT	21960
CA	TCCAGTTT	ATCGCAGATG	ACAAGGAGTG	GGGACCTAAA	GACGTAGTTC	GTACAGGTGC	22020
TT	TCCCAGTC	CGTACTTCAT	TTGGAAAACT	TTATGAAGAC	AAACGCATGG	AAACAATCAG	22080
CG	GCTGGACT	CAATACTACT	CACCATACTA	CAACACTATT	GATGGATTTG	CTGAAATGAG	22140
AA	CACTTTGG	TTCCCAATGT	TGCAATCTGT	ATCAAATGGT	GACGAAAAAC	CAGCAGATGC	22200
тт	TGAAAGCC	TTCACTGAAA	AAGCGAACGA	AACAATCAAA	AAAGCTATGA	AACAATAGTC	22260
CT	TAGTTATT	CTATAAAAAG	TAGTTTTTTA	AAGAACCTAA	GAGTGTATAC	CCCCTTTTCC	22320
CT	CTACACAG	ATAGTGTAAG	AAAAGGGGCC	TTTTGTTTAA	AATGTAAGAA	ACTGTCACGA	22380
AA	TTAAAATG	AAGTTCTTAC	ATAAGCGAAT	CATAAAAAAT	TTCATTTTGA	TTTTAAAACA	22440
GT	TCAAGAAA	GTCAAAAAAT	TATTCTATTT	GAAAGAGAGG	TGCCGACTGT	GAAAGTCAAT	22500
AA	AATCCGTA	TGCGGGAAAC	AGTGATTTCC	TACGCTTTCC	TAGCACCAGT	ATTATTCTTC	22560
TT	TGTCATCT	TTGTGTTGGC	TCCGATGGTG	ATGGGCTTCA	TTACAAGTTT	CTTTAACTAC	22620
тс	AATGACTA	AATTTGAGTT	TGTAGGCTTG	GATAACTATA	TCCGTATGTT	TAAAGATCCT	22680
GT	CTTTACAA	AATCTCTGAT	TAACACAGTT	ATTTTGGTTA	TTGGATCTGT	ACCAGTTGTT	22740
CT	TCTATTCT	CACTCTTTGT	AGCATCTCAG	ACCTATCATC	AAAATGTCAT	TGCCAGATCC	22800
TT	CTACCGTT	TCGTCTTCTT	CCTTCCTGTT	GTAACGGGTA	GTGTTGCCGT	GACAGTTGTT	22860

GGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
TCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
ттаттстст	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
ATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCA'TCACA	23160
CAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
ACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
AATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
CAGAAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	CCTCTTGTTG	23460
ACTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
CATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAAAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
CGTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
TGGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTC	TGGTGAGATT	23940
CGTACCTTCT	GGAGTGTAG	CTTCCCGATT	GTGAAACCAG	GGTTTGCAG	CCTTGCAATC	24000
TTTACCTTCA	TCAATACTTC	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTTGA	CCATCTCACT	TGGGGTTGCC	ACCATGCAGG	CTGAAATGG	AACCAACTAT	24120
GGTTTGATTA	TGGCAGGAG	TGCCCTTGCT	GCTGTTCCA	A TCGTCACAG	CTTCCTAGTC	24180
TTCCAAAAAT	CCTTCACAC	GGGTATTAC	T ATGGGAGCGG	TCAAAGGAT	ATACTCTGCG	24240
AAAATCTCTT	CAAACTACG	r CAGCTTCAC	TTGCCATAC	TAAGTATTG	CTGCGGTTAG	24300
CTTCCTAGT1	TGTTCTTCA	A TTTTCATTG	A GTATAGGAA	A ATCAATCTA	r caagatacag	24360
AAGTATATT	TATAGATTT	A GAGAATATA	G AGGTTATAA	G TGTCTACAA	A ATGGAGGGTA	24420
TGCAGTTACT	TTATGAAGT	r TTGTCAGAC	A CTTATAAAC	T TAAGAATGC	TTTAGTTAAC	24480
TATCAGAAAG	GAAGGAAAG	A GTATGATTT	T TGACGATTT	G AAAAACATC	A CCTTTTACAA	24540
BCCCB TTCB	, CCTS STOTES	G ACAAGGCTA	T CGACTATCT	C TACCAACAT	C GTAAGGATTC	24600

172 24660 TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA 24720 24780 TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT 24840 AGCATTCGAC GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT ACCCACTCTT GTTGGGTTAT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA 24900 TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA 24960 GGATGAATTG TTTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA 25020 GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATC CTGCAAGAGC 25080 TAGTTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT 25140 TGTGAATGCA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT 25200 TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT 25260 25320 ACTGACCAAG ATTTCTGGAT GGATTTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG TAATTTTGCC AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG 25380 TCGTATAAAC TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTAT TGAATATGTT 25440 AGCTTGGACA GTGCTTGCAA TGATAATTCG TGGAGGGCTA GATGGATTTG ATAGGCATAC 25500 TTGGAGTACT ATTTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA 25560 AAATAGAAAA AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT 25620 TTACTGACAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA 25680 AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTTCTCA TGCGTTTTAG 25740 TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTTT GTCGTCTCTT GTTTACCCAT 25800 CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCGAAG TTAAGAAGAG 25860 CAGACGGGTG CCTGTTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG 25920 25980 TCTTCAGCTG GGTTTAATGG AGTTAGGAAT TGTGTTTCTT ACCCTTTCAG ATCTCTATCT TTTCTGGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT 26040 GATTTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCTATC GCGGCACGTT ATGACCTATC 26100 TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACTTTC CTTGGTTCTT 26160 CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT 26220 ACTOTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTTGGA CTATTGGTCT TTATCCAGAC 26280 TGGATTGATG GAGAAAATTT TCGCAAAATA CCAATAGGAG CTTTATTTCT GAAACTACTT 26340 26385 TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG

.

173

(2) INFORMATION FOR SEQ ID NO: 4:

· ·

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2716 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA TTGCCCTAGG CATTAAGTAA ACATATAAAA GCATGTGAGA GACTGTTGGA	60
AAAGCGAGGA AATTTCCCCT CTTTTCCTCT AGTCTCTCCT TTCTTTTGCT GATTTTATTC	120
AAAGAAAATG ATATAATAGT AGTTATGGAG AAAAAGAAAT TACGCATCAA TATGTTGAGT	180
TCAAGTGAGA AAGTAGCAGG ACAGGGAGTT TCAGGTGCTT ACCGTGAATT AGTTCGTCTT	240
CTTCACCGTG CTGCCAAGGA CCAATTGATT GTTACAGAAA ATCTTCCAAT CGAGGCAGAT	300
GTGACTCACT TTCATACGAT TGATTTTCCC TATTATTTAT CAACCTTCCA AAAGAAACGC	360
TCAGGGAGAA AGATTGGCTA TGTGCATTTC TTGCCAGCTA CACTTGAGGG AAGTTTGAAA	420
ATTCCATTTT TCTTAAAGGG AATTGTGAAA CGCTATGTAT TTTCTTTTTA CAACCGGATG	480
GAGCACTTGG TTGTGGTCAA TCCTATGTTT ATTGAGGATT TGGTAGCAGC TGGTATTCCA	540
CGTGAAAAAG TGACCTATAT TCCTAACTTT GTCAACAAGG AAAAATGGCA TCCTCTACCA	600
CAAGAAGAG TAGTCAGACT GCGCACAGAT CTTGGTCTTA GTGACAATCA GTTTATCGTA	660
GTAGGTGCTG GGCAAGTTCA GAAACGTAAA GGGATTGATG ACTTTATCCG TCTGGCTGAG	720
GAATTGCCTC AGATTACCTT TATCTGGGCT GGTGGCTTCT CTTTTGGTGG TATGACAGAT	780
GGTTATGAAC ACTATAAGAA AATTATGGAA AATCCCCCTA AAAATTTGAT TTTTCCAGGC	840
ATTGTATCGC CAGAGCGGAT GCGCGAATTG TATGCTCTAG CGGATCTTTT CTTGTTGCCT	900
AGTTACAATG AGCTCTTTCC TATGACTATT TTAGAAGCTG CGAGTTGTGA GGCTCCTATT	960
ATGTTGCGTG ATTTAGATCT CTATAAGGTG ATTTTGGAGG GAAATTATCG GGCGACAGCG	1020
GGTAGAGAAG AGATGAAAGA GGCTATTTTG GAATATCAAG CAAATCCTGC TGTCTTAAAA	1080
GATCTCAAAG AAAAGGCTAA GAATATTTCC AGAGAGTATT CTGAAGAGCA TCTGTTACAA	1140
ATCTGGTTGG ACTTTTATGA GAAACAAGCC GCTTTAGGGA GAAAGTAAAA AGTGAGGTAA	1200
TCTATGCGAA TTGGTTTATT TACAGATACC TATTTTCCTC AGGTTTCTGG TGTTGCGACC	1260
AGTATTCGAA CCTTGAAAAC AGAACTTGAA AAGCAGGGAC ATGCTGTTTT TATCTTTACG	1320
ACGACAGATA AGGATGTCAA TCGCTACGAA GATTGGCAAA TTATCCGCAT TCCAAGTGTT	1380

PCT/US97/19588 WO 98/18931

			174			
CCTTTCTTTG (TTTTAAGGA	TCGTCGCTTT	GCCTACCGAG	GTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
TTGGGGATTT (GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
TATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
TATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
TACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
TTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTT	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTC	GCTAAAGATC	ATACGGTCAC	TCAGCGTATC	2400
TTTAAGACAG	TTTTGTATCT	TCAGCAACAG	GTGGTTGCT	TACCTGTAN	AGGATCTAGA	2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTO	ATCAGTATG	A GAGACTATTO	GAAAGACCAT	2520
GAAGAATAGA	AAGAGGAACA	GCTATGAAA	A AAACAATTAJ	A TGAGAAGCG	TCGTGATAAA	2580
AAGATTGCGG	GTGTTTGTGC	TGGGGTGGC	CATTATCTG	G ATATGGATC	GACTATCGTT	2640
					C TTACATTATT	2700
TTATGGATTA						2716

(2) INFORMATION FOR SEQ ID NO: 5:

.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

rgttaacagt c	TATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
AATTAGTAAG G	TTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
CTCCTCAGAA A	CTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
GGGAAGTAGT T	тааааатса	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
CGGGCATCCT G	ACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA G	CACCTAAGG	ACAATCCAAT	СААААСАААА	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA A	ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA G	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC C	CATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCATA	600
CAAGCCTCTC A	ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
CAAGACTTTC 1	PCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
GATTCCAAGT (CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
TATAGAGGTT	PCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
GCTCAAATGC (GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG	ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
GACTTCTATC	rctccagatt	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
ACAATCCTGA	CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
AAAATAACGA (CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
TGCCTTTTGA '	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
GCCAACTCCA '	TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
AATCCGTCGT	CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTO	CACGCGGTTG	1380
AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCC	TTATGGAACC	1440
ACAAGGAAAG	AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGC#	ACTGACTCTT	1500
GATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
GTGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
CATATTTTCA	GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TTGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTC	ACTCGCGATC	1740
ATTTTGCTCA	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

176

1860

ATAGGCATTG TAGCCCGCCT CCTGCTCTAC CACCATACGA TTGTAGATGG CAAAAGGATT

GGCATTTAAC TTTTGCTTAA GTTGGACGGT GTAGTTGACC TGATAGGTAT CTCCCTGCCG 1920 TAAATGATGG TGAATTTGGG CAATGGCCTT TTCATAGTCT GCTGCAGACG TTACTTCCTG 1980 CCAATTTGAG GGCAAATCAA TATCCTCATA AGTCAGAGGA ATAGGGGAAG TTTCTACGAT 2040 ATCATGAACA GTAAAGTAAA GCAGGTACTC TCCCAGTAGG GGATCCTTGT GAACTGCTAA 2100 TTTTTCCTCA AAAGCAGGTG CAGCCTCGTA GCTGACATAC CCCACCACAT AATAACCTTG 2160 CTCTTGGTAG CTTTCCACTT GTGCCAGCAA ATCTGCCACT TCTTCTACAT TTCTCGTTTT 2220 CAACTCTTTA ATAGGCTGGG TAAAGGTATA TCTCTCCCCC AAAGTCCTAA AATCAATCAC 2280 TGTTTTCTA TGCATACCTT AAGTATAGCA TAAAATAAGA AAACCCTCAT CCGCAAAGCA 2340 GATGAGAGAT TTCAATTATT TAAAGATTGA AGTTTTAAAG CTATTTGTTT GTTGAAGAAG 2400 TTTCTTATAA ACAGCTTCTT TTAATTTAAC TGTATTATTC ATAGATACTG TTTTATTACC 2460 GTTTGCTTCT TGTTTAAGAG TTTCGGCATC TTTTTTAACA GCTTCTTTAA ACAATGTCAG 2520 TAAATCATCG TATGATGAAA CGGAAGAACC ATTTACTTCG AATGTTGTTA ATCCTTTCGT 2580 TGCTTTATCT TTAACTTCTT TGAAGTAAGC TTTTTTAAAT TCTTCAATAG TATTAAATGT 2640 ATTGTTAGAT ATTTTCTTGA TAATATATTC ATCACTTAGA ACAGACTCAC CATCTGTTTT 2700 AGATTGTTGT TTATATTTAT TTGAAGCATA ACCTAAGAAC CCATTTTCGT ATCCGTAGTA 2760 ACCCCATAAT CTAAAAGCAT TATGTTTGAA TGAAACAGCT CCAGGAGCAC CTTTACTAGT 2820 ATTACCTCCG TAGATACCGG TCATCATTCT AACACCTACA TAAGGTGATT GATCGTTATA 2880 GCTAATTGCT TCGGGTTTAT AGATACCATT ACCTGGATTG CGATTAGTCA TTAATTGTTG 2940 ATCAACTAAA TCATTAACAG ATTGAATATT TAATTCATTT TTCTCTTCTT GACTTAGATT 3000 TCGAATTTTA TCCCATTGAT TTAATTTATT GTTATCACGG TATTCTCTAT CTATTTTTTT 3060 GAACCATGCA CTATTTAAAT CTTTATTTTG TTGAGAAATC ACAGATTCAG CCTCAATTTC 3120 ATCAAGAAGA GTTAAAGTGT CATTATAACC CTTCATATAT CTATTAATAT CTTCTCGTGT 3180 TTTTAGAGTT TTTGGATCTG TAATATACCA CTGATTCCCA TCATTTTTGC GTTTAAATAC 3240 CATATTAATA CCTAAAGAAC CAAACTCATC AAATCCACTA CCAGTAACAG GAGTTTGTAG 3300 CATACCCTGA GCATATGCTT CAGCATCAGT ACCTTCACGG TGTCCAAAGC CACCTAAGTA 3360 AATCGCACGG TCGTTGACGT GTGTTGTTTC ATGTGTGTAA ACTGAAATAC CGTATTCACC 3420 AACCATTTCT AAATGAACAT ATTTTACATC AGTTCTAATA TCATCAGAGT TAGGATATAT 3480 AGCAGCATAA GCTCCTGTTC CATTATAATT ATAATACTTA TCCATAGGAC CAAAGAATTC 3540 TCTAAGAGGA GTATATACTT TGTCGGTATT ATAGCGGCCA TATTTTTCAA CCCATCCACC 3600

PCT/US97/19588

(

GGAGCGTTA TAACCTTCCC AAATAGGAAT AACAGCATCT CTTAGTAGTC GTTGTTTAAC	3660
TTATCAGAC GCTAGACGAT ACCAGAAATC ATAATAGTTT CTATAACCAT CTGCAGCTTT	3720
TTAACGATA TCTTTAATAT CTTCTAATGA TTTTTTACCT AATCGCTCTG CACTACCAAA	3780
GCAATTGCA TTATAATTTG AAATTAAATA AAGATGTGCT TTATCAATAT TCAGTAGTGG	3840
AGTATAGTA TTTCTAAGGT GACTTCGTTT TAAATTATCG AATGCACGAT GTTTAGAATT	3900
TTTAATTTCT TCGACCTCAG AAGCGCGTTC TGCGATGTAG ACATGGTCTT CTGTAGCATC	3960
NATAAACCAA TCGTTCATAT TGTCTATATT TGTGAACAAT TGTCTATTAT AATTTAAAAA	4020
IGCATCTAAA TTACCTGATT TAGTATATTT AGCCAATACT TGACCGAATG CGTCGAATGT	4080
ACGTGAACCT TTAATGTTGT TCTCTTTAGA ACCGATTTCA ATTAATCTGT CTAATACGCT	4140
AACTTTTTCA CCATAGAAAT CTGGTTTGAA TAGCATTAAT TCTTTAATAT TAACATCACC	4200
AAATTTAACT CCATAGTAAC GATTTAGGTA AGTTAAACCT AGTAATAAAG CTGCTTTGTT	4260
TTTCTCGACT TTATCACGAA TCATTTGACG AGCAGCTGGA GAATCATTTA GTTGATGTTC	4320
TTCGTTTTGA ACTAATTTTG TGATTAGGTT TGTTAAGTTT TCTTTAACAT CTGTGAAGCT	4380
TTCTTCTAAA TATAAATCTT TGATTGCATT AACTCTATAG TCACCTAATC GATTTAGATG	4440
CTGATACATC GTTTGAGACT GAAGCTCTAC TGATTCTAAA ATAGATTTTA TATCATTAAC	4500
AAGAGTAGTG TTATCTTTTT GAACGATATT AGGTGTATAT TTAATTCCTA AGTCAGTTAT	4560
AGTATATTCT TTTACATTAC TTAAACCTTC ACTGCTAGAA GACAAGTTAA AGTAATCTTT	4620
TGTACCGTCC GCATAGTGAA CAATAATTTT ATTAGCTTCA TCTAGGTTTG TGATAAACTC	4680
ATTGTTGTTC ATCGCCGTAA CAGAAAGAAC TTCTTTAGTA TTTAGATGGT GTTCTTTATT	4740
TAATTTATTA CCTTGATATA CAATATAATC TTTATTGTAG AATGGTATTA ATTTTTCAAG	4800
ATTITITATAG GCTTGGTTAT ATTCAGCGTT ATAATCTTGA ATACTAGAAT AGGCTTTTTC	4860
TTCATTAAGT TTTGCAAGAG GAGATAGATC ACTTTCTAAT TTATCAGCAG TAATATTGAA	4920
AGTAGTAACT TTAGCATCAG CTTGTTCTTT AGTTAATTTA GTAAATGTTT TAGATTTCCT	4980
AAATGATCTA TTACCTGACG AATATCCCTC TACCGCATAT AAATCTTTTA TATGAGCACT	5040
AGCATAATCA GAATCATCAA CGTCGTTAGA GCCGAATAAC TCCTCTCCAC GGATAATCTT	5100
AGCATAGCTG ACAGAATTAC TTACCGTACC TACAGGCCAA GTCTTACTTG CTATTGCTCC	5160
AACTTCTACT GGATTTGAAA CATCTATTTT ACCTTTTACA ACCGACTCAG TTAGGAGAGC	5220
TTTTGTACCA ATAAGATGGT CTAGAGTTAA TCCATAATCT ACTTTAGGAA CTAACAAGCT	528
CCCCCCCCTT TTCTTTCCTG TAATAGTAGC ATCAACATAT GCTTTTCTAA CAATTCCTCT	534

178

ATAGTTTGTA CCTGCAATTC CCCCTGTATG AGAGCCATTT CCACTTGTAG AGTGTAGTTT 5400 GCCAAAGAAA GCAACATTTT CAATACGAGT TCCATCATTC ATATTATTTA CAAATCCAGC 5460 AACATTATTA CGACCTGAAA GTGTGCCTGT AATTTTGACA TTTGTAATAA CTGAAGAACC 5520 TTTCATAGTA TTGGCTAATG ATGCAATATT ATCTTGACCA GAACGTTCTA TCTCTACATT 5580 TTCAAAATTC ACATTATTTA TCGTTGCGTT TGTTATCACA TTAAATAATG GATGTTCCAA 5640 TTCAGTAATA GCAAATTGTT TTCCTTCAGA ACTTAAAAGT TTTCCTGTGA ATTCTTTAGT 5700 GATATATGAT TTTCCATTAG GAACAACATT TCTAGCGCTC ATTGATTGTC CCAGACGATA 5760 TTCTTTTGAA GGATCGTTTT GAATAGCTTC CACTAATTCT TTGAAATTAT AATATACATT 5820 ATCTTCGTGG ACTTTAGGTT TTTCAATATA GTGAACGTAT TCTTCTTCAA ATTTATTATC 5880 AGCAGTTCTA GAGACTAAAT TGTCTGCGAT TGCTGTAACT TTATATACAC GTGTTCCGTT 5940 AACCGTAGTT TCTTCTATAT TTTTAACAGC TAGTAATGTA GTTTTCTGAT TATTTGAAGT 6000 TATTTTTAAA TAATAATTGC TCTTATCATC AGGAATAGTT GTTATCAGTG ATTCATTAGT 6060 TTCTTTTCCA TTTTCGTATT TGATTAAATC TGTACGTTTA ATATTTTTAA GCTCAACTTT 6120 TTTAAGATCT AATTGAATAT TTTGATTTTC TAGAGTTTCA GTTTCTTCAC CGTTACCTCT 6180 GTCGTAAATC ATAGTTGTAG ATAGGGTGTA TTCTTTGTAG TACTCTAGGT TCTTAAATGC 6240 AGCGCTTATA GTTTCTGTTG TTACCTTGTC ATCTGTAAGG ACTACAGTAT TAATAACTTC 6300 6360 AGTATACTTA GCAACAGCTT CACGTTCCAA TATTTTCTTA TCGGTACTAG TCAATGTTAA 6420 TATTGGCTTT TCAGATAATT CAACCAATTT TTCAATAGTT GCAGTTAATT TTTCAACAGC 6480 TTCGTTAACT TCACTTTGTT TAGCATCTGT ATTAGCTGCA ACTTTTTCAG CCTTTGTAAC 6540 TTCAGTTTGG AGGTTTTGCC AACTTCTATC ACTGTAATGT TCTTTTACCT TTGTTTTTGC 6600 ATCTGCAATC GTATTGTTTA ATTCAGTTTT ATCAACGTTT AGAGCGTCAA TAGCCGTTTT 6660 AAGTTTATTT GTCTCGCTAT TTACCTCAGG CTGTTTTACA GGCTCTGAAG CATAGACACC 6720 TTTTGCAGTT TCTAAAACAG GTCCAAGAGC ATTGTAACTT GCTGTAGAAT AATCAGTAGG 5780 AGAAACTGAA CTAGCTTTAT CAATTTGATT ATTTAACTCA CTTTTATCAA CTGGTTCTTT 6840 AGTACCAATA CCCTTTATTT TATCTTCTGG TTTCGGTGTT TCCTCTACAG CCTTCTCTTC 6900 TTCAGGAACT TCTGGTTGCT TTTCTGGCTC AACTGGTGCC GTTGGTGCCT GTTCGTCTTC 6960 TCTTGGCGCG ACTGGTTCAC CTGCTTGTTC AACTTTTGGT TCCTCTGTTG GTTCTGTTTG 7020 TTTTTCTACA GCAGGCGTTT CAACTTTTGG TTGTTCAATA GATTGATTAA CAGTCTCCTC 7080 TTTTGGTTCT ACAGTTTCTT CAGCCTTGGT ATCTGGAGTT GACTCTTCTT GTTTCGGTGT 7140

TTCCTCTACA	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGCTGAGG	ТТТСТТСТАА	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAACTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTTTCCCC	TOTAL A ATCA	አጥርማጥርአጥልጥ	CCTS STOCCC	TOCABANTO	ACTITICACCC	9990

			100			
GTTGATCGAC	ATTTTGAAGA	CCAACTCCCC	CACGTTTGAG	T TGAC TTGA	CTACTATCAC	894
CAGCATCTTG	GAAGCCAACG	CCATCATCCT	CAATACGGAT	GACCAATCCC	GAATCCTGTT	900
rctggacaga	aagtttaata	TGGCCCTGAC	CTTCCTTTTC	CTTAATGCCA	TGGTAAAGAG	9060
CATTTTCTAC	AAGGGGTTGT	AGGACCAGCT	TGGGTAAGAC	TAAATTATCA	AAGGCAACAT	9120
ITTCATTAAT	TTCGTATTCC	AGCTTATCTC	CATAGCGTTG	TTTCTGGATA	AAGAGATACT	9180
GGCGGACATG	ATTGATTTCG	TCAGAGAGAC	AAATCAAGTC	CTTGCCTTGA	TTGAGCGCCA	9240
AGCGGAAATA	GGTTGCCAAG	GACTTGGTCA	CCTGCACCAC	TCGCTGACTA	TCATGAAATT	9300
CAGCCATCCA	GATGATGGTG	TCCAAAGTGT	TATAGAGGAA	ATGTGGATTA	ATCTGGCTCG	9360
AAAGGGCTTG	AAGTTGGTAC	TGACGGGTCG	TTTCTTCCTG	GCTACGAATA	GCTACCATCA	9420
ACTGATCAAT	CTGATCCAAC	ATAGCATTAA	ATTGGCGAGT	TACTTCTCTC	AGTTCATAGG	9480
CACCAACTTC	CTTGGCACGA	AGATTTTGAG	CACCAGAAGC	AATTTCCAAC	ATGGTTTCTC	9541
TCAAATCCTT	CAAAGGAGCA	ATCCAGCGTT	TAAGACTGAA	CCACACTAAG	CAGAGACAGA	960
CAAGAAGAGA	TGTGACACTG	GCCCCAAGCA	AGGTCCACAA	GAGCTGACTC	CGAACCTGGT	9660
CTAACTTTTC	CAATGATGAC	ACGCCAAGCA	CCGTCCAATC	AGTTCCTGCA	ATCTTCTCTT	972
GACTGACGTA	GGATTTGTGA	CCAGGAGTAT	AACCCTGACC	TGTATCGATG	TAGGGTTTCA	978
TAGCCTCCAT	TTTGCTAGAC	GAACTATAAA	CTGTGTGTTG	AGGATGGTAG	ACAAATTCAT	984
GGTTTTCATT	GATAATGAAG	GCAAAGCCCT	GCTGCCCCAA	CTGGAGTTGA	TTGAGATAGG	990
CTTCCAGAGT	TTCATAAGAA	ATATCCAAAC	GAAGCACACC	AAGATTGGCT	CCCTTTGCAT	996
CAACAAGTTC	TTGAGTGACA	GAAATGACCC	ACTGACTATC	TGATTTACGA	GCTGGAGTCA	1002
AAACAGGCAT	AGCTCCCTGA	TGAATGGCCT	TTTGGTACCA	ATCCTCAGCC	ATCATATCAG	1008
AGGAAGTTTT	CATCTGCACA	CTGTCATCTG	TAGAAATGAC	CTGACCAGAT	TTGGTCACCA	1014
GCACAACAGT	TTTCAAGTCC	TTATCTGACT	TCAAGATGGT	CAAAAACAAA	TCTCGGATTC	1020
CCTCGACCTT	GTCTTGACTG	GGATTCTCAG	CATAGGCCAG	AACATCCGTC	TGCTGGGTCA	1026
AACCAGTCGA	GGTGGTTTCT	AGTTTTTTGA	TATAAGACTG	AATAAAGTGG	CTAGTCTGGC	1032
TGATGGTCGT	TTGGCTGTTG	CCCTCAATGG	TGGCCTCAAT	GGCTGAAGAA	CTTGATTGAT	1038
AGTAGAAAGT	TCCAACCAGA	GCTAGGAGAA	TGAGAAAGAC	CAGAAAGATG	GAAATAACCA	1044
ттстаастаа	AAGAGAAGAA	CGCTTCATCG	GTCTTCTCCC	TTCTTAAACT	GACGAGGTGT	1050
CACACCTGCA	ATCTGCTTAA	AACGTTGGGT	AAAATAGTTC	ATATCTTCAA	AACCAACCTT	1056
CTCTGCGATC	TCATAAATCT	TCAGATCTGT	AGTTAAAAGC	AAGAGCTTGG	CTTGTTTAAC	1062
» commoneomo	*********	CCTCAAAACC	CAACCCCAAC	ው የ የነው ነው ነ	TCAAGGAACT	1068

AGATAGGTC GGACTAAAAC CTAAGTCACT GGCTAAAGAC TTTAAACTAA ATTGGCTATC	10740
GCCAGATGA GACTGGATTT TCTGGGCCAT GTTTCCTTCA AACCTATTAG TCAATAAATC	10800
TGTAACTGC TCTTCTTTCT CTTCCTTGTC TAGTTTTTGT TTGATTTTCC CCAACATTTC	10860
TCAATATCC TGACGAGAAA AGGGTTTGAG CAGGTAGTCG TCCACACCTA GTTTGACAGC	10920
GACAAGGCA TAATCAAAAT CATCGTAACC TGTTAAAAAG ACCAAATGAA CCTGAGGATA	10980
SGTTTCTCGT ACCAGACTGG CCAACTGGAT GCCATTTAGA TGAGGCATGT TGATATCGGT	11040
PAAAATGATA TCTGGCACCT GCTTTTGGAT CAATTCCCAA GCCTGCCTTC CATTTTCAGC	11100
TTGACCGATG ATTTCCATAT CGTAGGCTGC TACATTGACC AGTTTAGTCA AACCTTGTCT	11160
TACCAGATAT TCATCTTCTA CGATTAAGAT TGTGTAGGTC ATGCTCTGCT CCTTTACCAC	11220
TTACTAGTAT CAGTATAGCA AAATTCTCCT CTAACTGCTT AGGAAAGACC TCTTATACTC	11280
NATAAAAATC AAAAAGTAAA CTAGGAAGAT AGCCACAGGT TTCTCAAAGT ACCGCTTTGA	11340
CGTTGTAAAT AAAACTGACG AAGTCGACTC AAAGTATAGC TTTGAGGTTG TAGATAAAAC	11400
TGACGAAGTC GATAACCCTA CATACGGTAA GGCGACGCTG ACGTGGTTTG AAGAGATTTT	11460
CGAAGAGTAT TAATCAACAT AATCTAGTAA ATAAGCGTAC CTTTTTCTTC CATTTGGTCT	11520
TTGGGAATAA AGCCGATAGA GAGGCTATTG ATACAGTAAC GTAAGCCGCC CTTGTCCTGT	11580
GGACCATCCG TAAAGACATG CCCAAGGTGA GAATCTCCTA CTCGGCTCCG CACTTCCATA	11640
CGCGTCATAT TGTAGGACTT ATCTTCCTTG TAGGTGACAA CATCTGGACT GATGGGTTGG	11700
GTAAAACTAG GCCAGCCACA ACCAGACTCA AATTTGTCTT TTGATGAAAA GAGAGGTTCC	11760
CCAGTTGCTA TATCCACATA GATACCGGAT TCAAATTTAT CCCAGTAACG GTTTGAGAAA	11820
GCTCGTTCTG TTTGATTTTC CTGGGTAACT GCATACTCCT CAGGTGACAG GGTCTTTTTC	11880
AATTCCTCAT CACTTGGTTT TGGATATTTG CTGGCATCAA TGACAGGATA GGCCGCCTGA	11940
TTAACATTGA TATGGCAGTA GCCATTTGGA TTTTTCTTGA GATAGTCTTG ATGGTAATCC	12000
TCAGCCACCA CAAAATTCTT CAAGTTTTCC TTTTCAACTG CTAGAGGTTG ATCGTATTTC	12060
TTAGCCACCT CATCAAAGAC TTGGTTAATC ACTTCCAAAT CCTTGTCATC TGTGTAATAA	12120
ACACCAGTAC GGTACTGGGT CCCCACATCA TTTCCTTGTT TATTTTTGCT GGTTGGATTG	12180
ATAATGCGGA AATAGTGAAG CAGGATTTCC TTGAGAGAAA TTTGCTTGGC ATCATAGGTG	12240
ACATGGACGG TTTCTGCATG ACCTGTTTGG TTAATCAATT CGTACTTGGT TGTTTCTCCT	12300
CTACCATTTG CATAGCCTGA AACGGCATCC GTCACCCCGG GAACACGTGA GAAATATTCC	12360
TCCACTCCCC AGAAACAACC TCCAGCTAGA TAAATTTCGT GCAAGTCTGC GTCTTTACTA	12420

PCT/US97/19588 WO 98/18931

			182			
ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
SCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
TTCCTTCAAA	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	TTCAAATAAT	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	CAATAAAAAT	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
АААТАТАААТ	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	TAATAAACTA	GTAACTGAGA	13740
TTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 20199 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

183

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

1.

60 CCCAGCAGAA AAATGGCATT TGGAGATAAT GGAAATCGTA AAAAAACTAT GTTTGAGAAA ATAACCTTGT TTATCGTGAT TATCATGCTA GTAGCAAGTT TATTGGGAAT TTTTGCAACT 120 GCAATTGGTG CCCTCAGTAA TCTATAAAAT AGATTCAAGA AAATTTAGTG ACTGGGATTT 180 CCCAGCCCTT TTTTAAAGTG AGAAGAAATA ATGAGTATGT TTTTAGATAC AGCTAAGATT 240 AAGGTCAAGG CTGGTAATGG TGGCGATGGT ATGGTTGCCT TTCGTCGTGA AAAATATGTC 300 CCTAATGGAG GCCCTTGGGG TGGTGATGGT GGTCGTGGAG GCAATGTGGT CTTCGTTGTA 360 GACGAAGGAC TACGTACCTT GATGGATTTC CGCTACAATC GTCATTTCAA GGCTGATTCT 420 GGTGAAAAAG GGATGACCAA AGGGATGCAT GGTCGTGGTG CTGAGGACCT TAGAGTTCGA 480 GTACCACAAG GTACGACTGT TCGTGATGCG GAGACTGGCA AGGTTTTAAC AGATTTGATT 540 GAACATGGGC AAGAATTTAT CGTTGCCCAC GGTGGTCGTG GTGGACGTGG AAATATTCGT 600 TTCGCGACAC CAAAAAATCC TGCACCGGAA ATCTCTGAAA ATGGAGAACC AGGTCAGGAA 660 CGTGAGTTAC AATTGGAACT AAAAATCTTG GCAGATGTCG GTTTAGTAGG ATTCCCATCT 720 GTAGGGAAGT CAACACTTTT AAGTGTTATT ACCTCAGCTA AGCCTAAAAT TGGTGCCTAC 780 CACTITACCA CTATTCTACC AAATTTAGGT ATGGTTCGCA CCCAATCAGG TGAATCCTTT 840 GCAGTAGCCG ACTTGCCAGG TTTGATTGAA GGGGCTAGTC AAGGTGTTGG TTTGGGAACT 900 CAGTTCCTCC GTCACATCGA GCGTACACGT GTTATCCTTC ACATCATTGA TATGTCAGCT 960 AGCGAGGGCC GTGATCCATA TGAGGACTAC CTAGCTATCA ATAAAGAGCT GGAGTCTTAC 1020 AATCTTCGCC TCATGGAGCG TCCACAGATT ATTGTAGCTA ATAAGATGGA CATGCCTGAG 1080 AGTCAGGAAA ATCTTGAAGA CTTTAAGAAA AAATTGGCTG AAAATTATGA TGAATTTGAA 1140 GAGTTACCAG CTATCTTCCC AATTTCTGGA TTGACCAAGC AAGGTCTGGC AACACTTTTA 1200 GATGCTACAG CTGAATTGTT AGACAAGACA CCAGAATTTT TGCTCTACGA CGAGTCCGAT 1260 ATGGAAGAAG AAGCTTACTA TGGATTTGAC GAAGAAGAAA AAGCCTTTGA AATTAGTCGT 1320 GATGACGATG CGACATGGGT ACTITCTGGT GAAAAACTCA TGAAACTCTT TAATATGACC 1380 AACTTTGATC GTGATGAATC TGTCATGAAA TTTGCCCGTC AGCTTCGTGG TATGGGGGTT 1440 GATGAAGCCC TTCGTGCGCG TGGAGCTAAA GATGGGGATT TGGTCCGCAT TGGTAAATTT 1500 GAGTTTGAAT TTGTAGACTA GGAGACTGGT ATGGGAGATA AACCGATATC TTTCCGAGAT 1560 GCGGATGGTA ATTTTGTTTC CGCCGCAGAC GTTTGGAATG AAAAGAAATT GGAAGAACTA 1620

WO 98/18931

			184			
TTTAATCGTC	TCAATCCAAA	TCGTGCCTTG	AGATTGGCAC	GAACTAAAAA	GGAAAATCCA	1680
TCTCAGTAAA	GAAGCTAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTGGTACGAC	1740
AGGCATGTAT	AGCAAACTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAA	TATAGTAAAA	1800
TGAAATGAGA	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTTCTAAC	AATGTTTTAT	1860
AAGCAGAGAT	GTACTATTCT	AGTTTCAATC	AACTATATTG	TTATAAATTG	ATTTGAATTT	1920
СААААТТААА	TTGTTTGATT	CTTATTTCAA	TTTGTTATAG	TATATCTGAT	GTCAAAGTTC	1980
TCGGCGAGTC	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	2040
CTGGGGATAG	ACCGTTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	2100
CGAAATCGTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAACTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATTCGT	ACTAAGATTT	TCTATTTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACGAGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAGAAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAAACGC	2400
TTCTGTGAAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATACTTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGGG	ATAAAAAAGG	2520
GGCAATAGCG	ATTCGAGAAA	GATTATACTO	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTGTCG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
GTTTTGAGCA	ACCTGCGGCT	AGTTTCCTAG	TTTGATCTTT	GATTTTCATT	GAGTATTAGT	2700
AATTCAGTTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	AATTGAAAAG	GATGGAAAAA	2760
AGGATAAATT	TATGATATAC	TTTATTTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACTTAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAAATCA	2880
CTATTAGTGG	TGCTAAAAAT	AGTGTCGTTC	CCTTAATTCC	AGCTATTATO	TTGGCTGATG	2940
ATGTGGTGAC	TTTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
TGGAATTGAT	GGGAGCTACT	GTTAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
GTGTTCAAAA	TATTCCAATG	CCTTATGGT	AAATTAACAG	TCTTCGTGCA	TCTTACTATT	3120
TTTATGGGAG	CCTCTTAGGC	CGTTTTGGTC	AAGCGACAG1	TGGTCTACCC	GGAGGATGTG	3180

ATCTTGGTCC TCGTCCGATT GACTTACACC TTAAGGCGTT TGAAGCTATG GGTGCCACTG

CTAGCTACGA GGGAGATAAC ATGAAGTTAT CTGCTAAAGA TACAGGACTT CATGGTGCAA

GTATTTACAT GGATACGGTT AGTGTGGGAG CAACGATTAA TACGATGATT GCTGCGGTTA

AAGCAAATGG TCGTACTATT ATTGAAAATG CAGCCCGTGA ACCTGAGATT ATTGATGTAG

3240

3300

3360

CTACTCTCTT	GAATAATATG	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	3480
TTGATGGTGT	TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACATA	TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	3600
TTTACGAACA	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
TATCTGAAGA	CAGCATTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTTA	CCCAGGCTTT	GCAACTGATT	TGCAACAACC	GCTTACCCCT	CTTTTACTAA	3780
GAGCGAATGG	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
TTGAACTAGC	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
GTGGACGTGA	TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
TAGTCATTGC	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
TACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	4080
TTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	4140
TTTTTGAAAC	GGATCGCTTG	TATTTGCGTC	CTTTCTTTTT	TAGTGATAGT	CAGGACTTCC	4200
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	AATTTATTTT	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
TTTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
TCAAAAAAGA	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
TGACAGAGGT	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	TTAAAACAAT	4500
TATTTATCAT	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TTAGTTTGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
TTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
GTTAGTGATG	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4860
ACGTTTGCTG	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
GAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	AACAAAATAT	CTTGTCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
GAAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
CTCCCCA NEC	******	macana mana	1011001100	1 ma 1 m 1 accord	m1000m0000	-1

186 ACCATGATCA ATAAAGCCTT GTCAAATGTC CAAATCAAGA CTGATATTCT GACAGTTGAG 5220 AAACTTTATC GCCCTAGTCA TGAGTATGGT TTTCTGAGAG AGACAGATAC AGTTAAAGAT 5280 TATTTGGACT TGGTTCGTAA GAATCGTAGC AGCCGTTTCC CTGTTATCAA TCAACATCAG 5340 GTCGTTGTTG GTGTTGTAAC CATGAGAGAC GCTGGTGATA AATCACCAAG CACGACAATT 5400 GATAAGGTTA TGTCTCGTAG TCTATTTTTG GTTGGATTAT CGACAAATAT TGCCAATGTG 5460 AGTCAACGGA TGATCGCAGA AGACTTTGAA ATGGTACCAG TTGTTCGAAG CAATCAAACT 5520 TTGCTTGGCG TTGTGACGCG ACGAGATGTC ATGGAGAAGA TGAGCCGTTC CCAAGTTTCG 5580 GCTCTACCAA CTTTTTCTGA GCAGATTGGA CAAAAGCTCT CTTATCACCA TGATGAAGTA 5640 GTCATTACAG TGGAACCCTT TATGCTAGAA AAAAATGGAG TTTTGGCTAA TGGTGTATTG 5700 GCAGAAATTC TGACCCACAT GACCCGATTT AGTTGTTAAT AGTGGTCGCA ATCTCATTAT 5760 CGAGCAGATG CTGATCTACT TTTTGCAGGC TGTTCAGATA GATGATATAT TGCGCATTCA 5820 GGCACGGATT ATTCATCATA CGAGACGGTC AGCTATAATT GATTACGATA TTTATCATGG 5880 TCACCAGATT GTTTCAAAAG CAAATGTGAC TGTTAAAATT AATTAGAAAC TAGGAGAAAA 5940 GATGATAACA TTAAAATCAG CTCGTGAAAT CGAAGCTATG GACAAGGCTG GTGATTTTCT 6000 AGCAAGTATT CATATAGGCT TACGTGATTT GATTAAGCCA GGCGTAGATA TGTGGGAAGT 6060 TGAAGAATAT GTCCGCCGTC GTTGTAAAGA AGAAAATTTC CTTCCACTTC AGATTGGGGT 6120 TGACGGTGCC ATGATGGACT ATCCTTATGC TACCTGTTGC TCTCTTAACG ATGAAGTGGC 6180 TCACGCTTTC CCTCGTCATT ATATCTTGAA AGATGGTGAT TTGCTCAAAG TTGATATGGT 6240 TTTGGGAGGT CCCATTGCTA AATCTGACCT AAATGTCTCA AAATTAAACT TCAACAATGT 6300 TGAACAAATG AAAAAATACA CTCAGAGCTA TTCTGGTGGT TTAGCAGACT CATGTTGGGC 5360 TTATGCTGTT GGTACACCGT CCGAAGAAGT CAAAAACTTG ATGGATGTAA CCAAAGAAGC 6420 TATGTACAAG GGTATTGAGC AAGCTGTTGT TGGAAATCGT ATCGGTGATA TCGGTGCGGC 6480 TATTCAAGAA TACGCTGAAA GTCGTGGTTA CGGTGTAGTG CGTGATTTGG TTGGTCATGG 6540 TGTTGGCCCA ACTATGCACG AAGAACCAAT GGTTCCTAAC TATGGTATTG CAGGTCGTGG 6600 ACTCCGTCTT CGTGAAGGAA TGGTCTTAAC CATTGAACCA ATGATCAATA CAGGCGATTG 6660 GGAAATTGAT ACAGATATGA AAACTGGTTG GGCGCATAAG ACCATTGACG GTGGATTGTC 6720 ATGTCAGTAT GAACACCAAT TTGTCATTAC GAAAGATGGA CCTGTTATCT TGACTAGCCA 6780 AGGTGAAGAA GGAACTTATT AATAAAAAGT GAAAAGACTA CTGGAAGTTT ATTTTGATAA 6840 AAAATCCAGT AGATCTTTTC ATAATAAAAC GCATTGTATC AAGTGTTAGG GGCTGATATC 6900 ATGCGTTTTT CTGCTTTTAA GATTTTTTCC AACTCTGTTT GTAAGCGCAT CATAACAAAG 6960

G	GTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	7020
λ	TTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	7080
A	AAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	7140
T	ATTATACTT	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
A	ACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
A	GATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
C	TAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
T	TATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
A	TGGGTTGAA	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
Т	GAGGACACG	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	ААААААСААТ	7560
T	AGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
G	TCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	atgaagttgt	7680
τ	CAAAATGAG	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
A	AGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	7800
c	CCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
A	GAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
G	TAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
1	CTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
A	GTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
A	CTCCCCTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
A	GTAAGGAAG	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
C	TGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
G	TTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
1	TGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
A	ATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
C	GTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
c	AGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
Ç	BAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
Т	ATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

			188			
CAAAAAGAAC	TTCGTCAGTC	TGAATCCGTT	GACTTTGATG	ATTTGATTAT	GCTGACCTTG	876
CGTCTCTTTG	ATCAAAATCC	TGATGTTTTG	ACCTACTACC	AGCAAAAATT	CCAATACATC	882
CACGTTGATG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTTGGCT	888
rcccgtttta	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCTATCTA	CGGTTGGCGT	8940
GTGCTGATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
TTGTTGGAGG	AAAATTACCG	CTCAACCAAA	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAATA	AAAATCGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
ATCGTTTACT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GATGAACTTA	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCCAGT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	CCAAATTCTA	CAGCCGTAAG	GAAATTCGCG	ATATTATTGC	TTATCTCAAC	9360
CTTATTGCTA	atttgagtga	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9666
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GTGACCTTGA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	990
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	996
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	1002
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	1008
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	1014
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	1020
GCTCTTCAAG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	1026
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	1032
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	1038
GCTAGGCAGG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	1044
GTGGCTCCAA	TTGAGAAAAA	AATCTAATTT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	1050

	_		assassas a	marrences ac	ACAAACCCTG	10560
	TGTACAGTAT					
	GAGTTGAAGC					10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	TCAATACTCA	AAATCAAATÇ	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	TTTAATCTAA	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	: AAAAAGAAG1	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCC	TACTCATGAC	AGCCTCAATC	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTT	GTGCTAAGTC	CTTGATGCT	TGGTGGTGG	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAG	A TTTCTTGGAG	AACGGTATC	r ggttctgtt	CCAAGCGTTC	AGTTGTGTAC	11460
TCAACAGAA	G AATCCTGCC	A ATGGTCTTC	G ATATCTTGGT	ACAAAGTTC	ACCCATGGCA	11520
ACGTTAAAG	A GTTGGGTAC	C ACGGCAGAC	A GAGAAAATG	GCTTTTTCTC	TTTAATAGCT	11580
TCCTTGATG	A GGGCCAGTT	C GAAGATATC	T CTTTGAAGG	GATAGTCAT	CACTATCAATG	11640
GTTTTGGGT	T CGCCATAAA	A TTTTGGATC	G ACATTTTGC	CACCTGTCA	A GATGAGCTTG	11700
TCAATCAAA	C TGATATAGT	G GCAGGCCAT	T TOTTGATCA	CAATCGGTA	G GATGATGGGA	11760
ATCCCTCCA	G CATCTTAA	C GCCTTCAAC	A AAGCCTTTT	G CTGCGTAGC	T CATCATGATG	11820
TCATCATCT	G GATGAGTTT	T TTCGTTTCC	T GTAATCCCA	A TAACTGGTT	T TTTCATAAAA	11880
TGATTTTCG	C TTTCTAATC	C TCTTTTCGC	A TGAAGTAGA	G GAGGGTTTG	G AGTTCACTTG	11940
TCAAATCGA	C ATACTGAAC	G ACCACGTCT	T TTGGTAAAT	G CAGATGGAC	T GGTGAAAAAC	12000
					T GACTTGACGC	12060
					CTTGATCTGAG	12120
					A TGGTCGTCTA	12180
					G TGGAGAAGGG	12240

190 CATGGCCCAT ATTTCCAATA CCAACCAGCA TGACATTGGT AATAGAGTTG TCATTGAGCA 12300 AATCGGCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT 12360 CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA 12420 TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12480 AGAGAGAGA TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12540 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12600 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG 12660 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA 12720 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12780 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12840 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12900 TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12960 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13020 GAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13080 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13140 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTTCA AATGCCATAT GGCTAACCTC 13200 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13260 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13320 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13380 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 13440 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13500 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13560 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13620 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13680 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13740 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13800 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13860 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13920 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13980 GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TTTAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14820
GGGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
TTGCTGTAAC	TGGCTCACGA	GGACAAGCAA	TGCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAG	GTTGATACTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAC	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTAA	ACATCATAAC	15120
CACGGACAC	r TTCTTCGATA	TTTACTTGG#	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
GTTTTCCAA	G TGGGACACCA	ACAGCTTGGG	CAATTTTTTG	TGCAATCTCT	TGGTTAGAGT	15240
TGAGTGCGA	A AAGTTTCATC	TTTTTTCTAT	CTGACATTAT	AGACCGTCCT	CTGTAAACTT	15300
TATAAATCC	r agttatatti	ACCTTACATA	A TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
TTCTATTTT	A CCAAAAAAT	GAGATTATT	CAGCTATTT	TCATACTTT	GACAAATCGA	15420
ACCAATTTT	G AAGGAGCTT	TTGATAGGA	A ATCTGATTT	TCTCTAAAAA	TTGTCGAAAA	15480
TCCTGTTTG	C CTTGCTCATO	ATTTTCCAC	TCAAGCTCC	ATTCGTAATC	TGTTATATCA	15540
AAGTATCGG	C TCTGATCCAC	TGCCATGAG	A CCAATAGCTO	TTTTCATTT	ATAGCGAAGC	15600
GTTGTTAGA	C AACCAAGAA	CTGCCAGTT	C TTACTTTGG	TACCATGTT	r cgccaattca	15660
TCCAGTACT	A GCCCTTGAGG	AAGTTCTTC	C TTACTCAGAT	AGTTCTCAG	ATCTTTTAGT	15720
TGCAATTTT	T GGTTGTATT	CATGTTTCC.	A ACACTCTGC	GGACTTTGAG	G TGTCAACTCA	15780

			192			
GCCCAGTCTT	CAAAGGTTCG	AATGCGCATA	GCGACTTTCT	TTTCTCJCAG	TTCAAAATCA	1584
GCCTCTCGA	TGTAGTAATT	TGTTTGAAGA	ACAGGAGTGA	CACCTGTGAA	CTGGTCTTTT	1590
AGACGATTGT	ATTCATCTTT	TTTCAATAGT	GTTTTCAATT	CAATTTCTAA	ATGTTTCATT	1596
ITTCTTACCT	TTTTTTATCG	TTGAAAGCGG	ATTTATGGTA	TAATAAGCAT	TGTATTTATT	16020
GTATATGAAT	CTGGAGAAAA	AATCAAAGAT	ATTTTTGACG	GATAATATGA	GAACAAGGGA	16080
GAATATATGA	CCTTAGAATG	GGAAGAATTT	CTAGATCCTT	ACATTCAAGC	TGTTGGTGAG	16140
TTAAAGATTA	AACTTCGTGG	TATTCGTAAG	CAATATCGTA	AGCAAAATAA	GCATTCTCCA	16200
at t gagtttg	TGACCGGTCG	AGTCAAGCCA	ATTGAGAGCA	TCAAAGAAAA	AATGGCTCGT	16260
CGTGGCATTA	CTTATGCGAC	CTTGGAACAC	GATTTGCAGG	ATATTGCTGG	CTTACGTGTG	16320
ATGGTTCAGT	TTGTAGATGA	CGTCAAGGAA	GTAGTGGATA	TTTTGCACAA	GCGTCAGGAT	16380
ATGCGAATCA	TACAGGAGCG	AGATTACATT	ACTCATAGAA	AAGCATCAGG	CTATCGTTCC	16440
TATCATGTGG	TAGTAGAATA	TACGGTTGAT	ACCATCAATG	GAGCTAAGAC	TATTTTGGCA	16500
GAAATTCAAA	TTCGTACTTT	GGCCATGAAT	TTCTGGGCAA	CGATAGAACA	TTCTCTCAAC	16560
TACAAGTACC	AAGGGGATTT	CCCAGATGAG	ATTAAGAAGC	GACTGGAAAT	TACAGCTAGA	16620
ATCGCCCATC	AGTTGGATGA	AGAAATGGGT	GAAATTCGTG	ATGATATCCA	AGAAGCCCAG	16680
GCACTTTTTG	ATCCTTTGAG	TAGAAAATTA	AATGACGGTG	TAGGAAACAG	TGACGATACA	16740
GATGAAGAAT	ACAGGTAAAC	GAATTGATCT	GATAGCCAAT	AGAAAACCGC	AGAGTCAAAG	16800
GGTTTTGTAT	GAATTGCGAG	ATCGTTTGAA	GAGAAATCAG	TTTATACTCA	ATGATACCAA	16860
TCCGGATATT	GTCATTTCCA	TTGGCGGGGA	TGGTATGCTC	TTGTCGGCCT	TTCATAAGTA	16920
CGAAAATCAG	CTTGACAAGG	TCCGCTTTAT	CGGTCTTCAT	ACTGGACATT	TGGGCTTCTA	16980
TACAGATTAT	CCTCATTTTG	AGTTGGACAA	GCTAGTGACT	AATTTGCAGC	TAGATACTGG	17040
GGCAAGGGTT	TCTTACCCTG	TTCTGAATGT	GAAGGTCTTT	CTTGAAAATG	GTGAAGTTAA	17100
GATTTTCAGA	GCACTCAACG	AAGCCAGCAT	CCGCAGGTCT	GATCGAACCA	TGGTGGCAGA	17160
PATTGTAATA	AATGGTGTTC	CCTTTGAACG	TTTTCGTGGA	GACGGGCTAA	CAGTTTCGAC	17220
ACCGACTGGT	AGTACTGCCT	ATAACAAGTC	TCTTGGCGGT	GCTGTTTTAC	ACCCTACCAT	17280
rgaagetttg	CAATTAACGG	AAATTGCCAG	CCTTAATAAT	CGTGTCTATC	GAACACTGGG	17340
CTCTTCCATT	ATTGTGCCTA	AGAAGGATAA	GATTGAACTT	ATTCCAACAA	GAAACGATTA	17400
TCATACTATT	TCGGTTGACA	ATAGCGTTTA	TTCTTTCCGT	AATATTGAGC	GTATTGAGTA	17460
TCAAATCGAC	CATCATAAGA	TTCACTTTGT	CGCGACTCCT	AGCCATACCA	GTTTCTGGAA	17520
CCGTGTTAAG	GACGCCTTTA	TCGGCGAGGT	GGATGAATGA	GGTTTGAATT	TATCGCAGAT	17580

GAACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
тссаттатта	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATO	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	A ACAGAAGTGA	TTCCTGTTT	CCTTGGAAAT	CCTGAAAAAA	TTAAAATTTA	18660
TCTTGAAATT	r gaaggaatca	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGA	A ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAA	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGA'	r ggaatggtgt	CAGGAGCGAT	TCACTCAACA	GCTTCAACAC	TTCGCCCAGC	18900
TCTACAAAT	C ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCC	TCCTCATGGT	18960
TCGTGGTAC	G GAACGTTACC	: TATTTGGAGA	CTGTGCCATT	AACATCAATO	CAGATGCAGA	19020
AGCCTTGGC	r gaaattgcca	TCAACTCAG	AATCACAGCT	AAGATGTTT	GCATCGAACC	19080
TAAAATTGC	C ATGTTGAGCT	ATTCTACTA	A AGGTTCAGGG	TTTGGTGAA	GCGTTGATAA	19140
GGTCGTTGA	A GCAACTAAA	TTGCTCACG	CTTGCGTCCT	GACCTTGAA	TCGATGGTGA	19200
GTTGCAATT	T GATGCAGCC	TTGTTCCTG/	A AACTGCAGCT	CTGAAAGCT	CTGGAAGTAC	19260
GGTAGCTGG	T CAAGCAAATO	TCTTCATCT	r CCCAGGTATO	GAGGCAGGA	A ATATTGGTTA	19320

			194			
CAAGATGGCT	GAACGCCTGG	GTGGCTTTGC	GGCTGTAGGA	CCTGTTTTGC	AAGGTTTAAA	19380
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440
CATCACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	AACTAAATTA	19560
CTGATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680
ATGAAAAGAG	AATTTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAGAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800
TGAAGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860
TGGTCGCTTC	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTTCTT	19920
TATCTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAAGTGAAAA	AGCAAGAGTT	20040
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	TTTAAAATCT	20100
CTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160
GGCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199
(2) INFORMA	ATION FOR SE	Q ID NO: 7:	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19702 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

**...

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ACCCGATGTA	TCAGCGGATA	TTTACTCTAT	TTTTCAAACG	ATGTTATACC	CACAATAAAA	60
GAAAAAAGAC	CCTAAGGTCT	CCTTTGCTTT	TATTATTAAA	CGCGTTCAAC	TTTACCTGAT	120
TTCAAAGCAC	GAGCTGAAGC	CCAAACTTTT	TTAGGTTTAC	CATCGATAAG	AACAGTAACT	180
TTTTGAAGGT	TTGGTTTTAC	GGCACGTTTT	GTTTGGTTCA	TCGCGTGTGA	ACGGTTGTTT	240
CCTGATACAG	TCTTACGACC	TGTAAAGTAA	CATACTTTAG	CCATTGTGTT	TTCCTCCTAT	300
TAGATCTAAT	ATAGCGGATG	TGCTAGCACC	ACATACCGTA	CTATGTTATC	ACATTTTCTT	360
GTTTTTTGCA	AGGGAATTGG	AAGATTTTTT	ATTTGTGTCT	TAAATCAGGT	CTTGCGTGAC	420
ATTTCTGCTC	TCCACATGCC	ATCGTTGATT	AACAGAACAC	CAGAATTAAA	ATTATGTGTA	480
TAAAAATCAT	CTCTAACTGC	AGCTAAGGGT	ATAGCCGTCA	AGTCCAAATC	CCACAGCTCA	540

WO 98/18931

TCTATCGATT	TTCTTACAAC	AATATCTGAA	TCCAAATACA	GTACACGAGA	CTCGCTTACA	600
TACTTTGGAA	TAAAATACCT	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AACCTTTCAG	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GTCTTTTTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	ATCATTAAAA	ACATAAAACT	780
TAAGATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CATTATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
TTTATTCCCA	TCATATTATT	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
TATTTTCGCC	TATTCGTTCG	TAAAACCATA	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGGTTTACAA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
TAGTTAGTGA	GGCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
TTTAGTTCCA	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
TGTCCGCAAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GGTCTTTGGC	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
TCCAACGAAC	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCATGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTGTTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
TGTGGAAGGA	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	1560
TAAAGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CCTGATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
TCTCACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
GACGGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
TACGGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CCTTGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAAACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
AAAAGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
CATTTAAAAC	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
TGTCCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TATAGAGGTO	: ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
AGCTAGCAAT	GCCCAAGATT	TCTTCCAATT	CTTGCAAGAG	ATCCAAAGGC	TCACGACCGT	2280

196

CACGGTCCAG CTTGTTCATA AAGGTAAAGA CTGGAATGCC ACGATGTTTC ACAACCTCAA 2340 ACAATTTCTT GGTTTGAGCC TCGATCCCCT TGGCAGAGTC CACGACCATG ACCGCAGCAT 2400 CCACCGCCAT CAAGGTACGA TAGGTATCTT CTGAGAAGTC CTCGTGCCCT GGCGTGTCTA 2460 AGATATTCAC GCGCTTGCCG TCGTAGTCAA ATTGCATAAC AGATGAAGTA ACAGAAATCC 2520 CACGTTGCTT CTCGATATCC ATCCAGTCAG ATTTAGCAAA AGTCCCTGTT TTCTTCCCTT 2580 TTACCGTACC AGCCTCACGA ATCTCACCCC CAAAGTAGAG TAACTGCTCA GTGATGGTTG 2640 TTTTCCCCGC GTCCGGGTGG GAGATAATGG CAAAGGTACG ACGTTTCTTA ATTTCTTCTT 2700 GAATATTCAT AAGTTCTCTT TCTTTGATTC TCTATTTTTC TTGTTTCAAT AGCTGAGAAT 2760 GATTTTTACA TTGGATTTTA CCATTCCTTT CAACACTCCA TTATATCGGA TTTTAGCATT 2820 **የተተተተርልልተ፣ ተርካልተተተናተ፣ ተተርልርተተናርር ርርጥርርርተላል፣ ተተልተልርሪልልል ልተልተርርርተልልል** 2880 ATAGAACAGA CTAAAAATCA TCATTTCACG AAAGGATGCA AGATGAAAAT TACGCAAGAA 2940 GAGGTAACAC ACGTTGCCAA TCTTTCAAAA TTAAGATTCT CTGAAGAAGA AACTGCTGCC 3000 TTTGCGACCA CCTTGTCTAA GATTGTTGAC ATGGTTGAAT TGCTGGGCGA AGTTGACACA 3060 ACTGGTGTCG CACCTACTAC GACTATGGCT GACCGCAAGA CTGTACTCCG CCCTGATGTG 3120 GCCGAAGAAG GAATAGACCG TGATCGCTTG TTTAAAAAACG TACCTGAAAA AGACAACTAC 3180 TATATCAAGG TGCCAGCTAT CCTAGACAAT GGAGGAGATG CCTAATGACT TTTAACAATA 3240 AAACTATTGA AGAGTTGCAC AATCTCCTTG TCTCTAAGGA AATTTCTGCA ACAGAATTGA 3300 CCCAAGCAAC ACTTGAAAAT ATCAAGTCTC GTGAGGAAGC CCTCAATTCA TTTGTCACCA 3360 TCGCTGAGGA GCAAGCTCTT GTTCAAGCTA AAGCCATTGA TGAAGCTGGA ATTGATGCTG 3420 ACAATGTCCT TTCAGGAATT CCACTTGCTG TTAAGGATAA CATCTCTACA GACGGTATTC 3480 TCACAACTGC TGCCTCAAAA ATGCTCTACA ACTATGAGCC AATCTTTGAT GCGACAGCTG 3540 TTGCCAATGC AAAAACCAAG GGCATGATTG TCGTTGGAAA GACCAACATG GACGAATTTG 3600 CTATGGGTGG TTCAGGTGAA ACTTCACACT ACGGAGCAAC TAAAAACGCT TGGAACCACA 3660 GCAAGGTTCC TGGTGGGTCA TCAAGTGGTT CTGCCGCAGC TGTAGCCTCA GGACAAGTTC 3720 GCTTGTCACT TGGTTCTGAT ACTGGTGGTT CCATCCGCCA ACCTGCTGCC TTCAACGGAA 3780 TCGTTGGTCT CAAACCAACC TACGGAACAG TTTCACGTTT CGGTCTCATT GCCTTTGGTA 3840 GCTCATTAGA CCAGATTGGA CCTTTTGCTC CTACTGTTAA GGAAAATGCC CTCTTGCTCA 3900 ACGCTATTGC CAGCGAAGAT GCTAAAGACT CTACTTCTGC TCCTGTCCGC ATCGCCGACT 3960 TTACTTCAAA AATCGGCCAA GACATCAAGG GTATGAAAAT CGCTTTGCCT AAGGAATACC 4020 TAGGCGAAGG AATTGATCCA GAGGTTAAGG AAACAATCTT AAACGCGGCC AAACACTTTG 4080

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	CTCTAAATAC	GGTGTTGCCG	4140
TTTATTACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCEGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTCAAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
TAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
TGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAAȚCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATÀCGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
TCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
TCCAAAAGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
TCAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
TGATGCCAAA	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	CTGGAACAAA	TCGAATTGAC	ACCAGAAAAC	TTGGTTGAAA	TGATTGCCAT	5820

198	
CATCGAAGAC GGTACTATTT CATCTAAGAT TGCCAAGAAA GTCTTTGTCC ATCTAGCTAA	5880
AAATGGCGGT GGCGCGCGTG AATACGTGGA AAAAGCAGGT ATGGTTCAAA TTTCAGATCC	5940
AGCTATCTTG ATCCCAATCA TCCACCAAGT CTTTGCCGAT AACGAAGCTG CTGTTGCCGA	6000
CTTCAAGTCA GGCAAACGTA ACGCCGACAA GGCLTTACAG GATTCCTTAT GAAGGCAACC	6060
AAAGGCCAAG CCAACCCACA AGTTGCCCTT AAACTACTTG CACAGGAATT GGCGAAGTTG	6120
AAAGAAAACT AGACAGAACA AAACCAGCCC TAAGGTTGGT TTTTTCTTCT CTACCAACTC	6180
CCAATAACTA TTTTGGCTTT ATTTCCAGAG TATTTTATGG TAAAATGAAG AGTAATAATA	6240
TTTATTAAAG AGGTAAAAAC ATGATTGAAG CAAGTACCTT AAAAGCTGGT ATGACCTTTG	6300
AAACAGCTGA CGGCAAATTG ATTCGCGTTT TGGAAGCTAG TCACCACAAA CCAGGTAAAG	6360
GAAACACGAT CATGCGTATG AAATTGCGTG ATGTCCGTAC TGGTTCTACA TTTGACACAA	6420
GCTACCGTCC AGAGGAAAAA TTTGAACAAG CTATTATCGA GACTGTCCCA GCTCAATACT	6480
TGTACAAAAT GGATGACACA GCATACTTCA TGAATACAGA AACTTATGAC CAATACGAAA	6540
TCCCTGTAGT CAATGTTGAA AACGAATTGC TTTACATCCT TGAAAACTCT GATGTGAAAA	6600
TCCAATTCTA CGGAACTGAA GTGATCGGTG TCACCGTTCC TACTACTGTT GAGTTGACAG	6660
TTGCTGAAAC TCAACCATCT ATCAAAGGTG CTACTGTTAC AGGTTCTGGT AAACCAGCAA	6720
CGATGGAAAC TGGACTTGTC GTAAACGTTC CAGACTTCAT CGAAGCAGGA CAAAAACTCG	6780
TTATCAACAC TGCAGAAGGA ACTTACGTTT CTCGTGCCTA ATCTCTAGAA AGAGGTCATT	6840
CTATGGGAAT TGAAGAACAA CTTGGCGAAA TCGTTATCGC CCCACGTGTA CTTGAAAAAA	6900
TCATTGCTAT CGCTACTGCA AAGGTAGAGG GTGTTCACTC TTTTTCAAAC AGATCAGTGT	6960
CTGATACCCT TTCAAAACTT TCACTCGGCC GTGGCATTTA TCTTAAAAAC GTGGACGAAG	7020
AACTCACAGC AGATATCTAT CTCTACCTTG AGTACGGAGT AAAAGTTCCT AAGGTAGCGG	7080
TTGCTATCCA GAAAGCTGTC AAAGATGCCG TCCGTAATAT GGCTGATGTA GAACTCGCTG	7140
CTATCAATAT TCACGTTGCA GGTATCGTCC CAGATAAAAC ACCAAAACCA GAATTGAAAG	7200
ATCTATTTGA CGAGGACTTC CTCAATGACT AGTCCACTAT TAGAATCTAG ACGCCAACTC	7260
CGTAAATGCG CTTTTCAAGC TCTCATGAGC CTTGAGTTCG GTACGGATGT CGAAACTGCT	7320
TGTCGTTTCG CCTATACTCA TGATCGTGAA GATACGGATG TACAACTTCC AGCCTTTTTG	7380
ATAGACCTCG TTTCTGGTGT TCAAGCTAAA AAGGAAGAAC TAGATAAGCA AATCACTCAG	7440
CATTTAAAAG CAGGTTGGAC CATTGAACGC TTAACGCTCG TGGAGAGAAA CCTCCTTCGC	7500
TTGGGAGTCT TTGAAATCAC TTCATTTGAC ACTCCTCAGC TGGTTGCTGT TAATGAAGCT	7560
ATCGAGCTTG CAAAGGACTT CTCCGATCAA AAATCTGCCC GTTTTATCAA TGGACTGCTC	7620

AGCCAGTTTC	TAACAGAAGA	ACAATAAGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAAAAA	7680
GCTAAGCTCG	: AGAAAGGACA	AATTTCGTCC	TTTCTTTTT	GATGTTCAAA	GCGATAAAAA	7740
TCCGTTTTTT	GAAGTTTTCA	AAGTTTCGAA	AACCAAAGGC	ATTGCGCTTG	ATAAGTTTGA	7800
TGAGATTATT	GGTCGCTTCC	AGTTTGGCAT	TAGAATAGTG	TAGTTGAAGG	GCGTTGACAA	7860
TCTTTTCTTT	ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTG	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTGTC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGCTG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
CTAAAATCTC	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTACG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTTCG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGTAC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACTGT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGCTA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAAAG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATTGTTA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACATA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAACA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTCAATCAAC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	8700
GACGATAGAA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGCTTT	8820
TTGAAAGTCA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGGCG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	8940
AGGGTCTTTA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
	TTTGTCGCTT					9060
	AATATCTATA					9120
	TGTTTGATAG					9180
	GATATAATTG					9240
	ATGGCAGAGA					9300
CAAAAAAGAA	ACCAATCAGA	CTATAATATA	ATAAACTAAT	TGGATCTCTG	TGAGATAGTA	9360

			200			
TCAAATGGCT	AATCCCAAAG	ATGATAGCAG	ATAGGATAAC	ATCCAAATAG	TACTTGGACT	9420
AGGGAAAGAA	GGTATTCATA	AAATACCCTC	TATCAAGAGT	CTCCTCAAAA	ACAGGACCGA	9480
TGATTACAGG	CAGGACAAAA	GATAAGATAG	TCGATAAAAA	GGTTGGTTGT	CCATTTGAAA	9540
AAAGCACGGT	AAAATACTCA	TCATGAATAT	TCCTATGATT	AATCAAATGA	GCATAGCGTG	9600
CCCAAAAATT	ACCGAGAATC	TGATAAACCA	CATAAGTTGC	AAATAAGTAG	AAGACAAATG	9660
ACCAGTTCCA	GCTCTTTTTC	TCAAAGATAA	AGAGCATCTT	TTTCTTTTTT	AACCTCCAAA	9720
TTAATAGAAG	GAAACTTCCC	ACTAATCCCA	TTGTTAAAAT	AAGAGAATAG	ACATCAGCTC	9780
CTAACCCTAA	AATGATCGTC	ACATACAATC	CAATTGTTTG	TGGTAAATAG	GTAGATAGTA	9840
AAATAATAAG	CAAAAATATT	CCAAATTGTC	TTAGTTTTTT	TGTGTTTCTC	ATCGTACTTT	9900
TTTGAAAGAT	TACCCTGCTC	GGAAGCCGTA	CTTCCAAGCA	TCTATATAAG	AATTAAGTGC	9960
CCCTTGCCTC	ATATAGGGAG	CAAATTCTCT	ATAATATAAC	CATCTACTAT	ATCCATCTTC	10020
CCAAACAGCA	AGACCACCTG	AAGTTTGCTC	CAAGTCCTCA	GTTGAAAGAA	CTGTAAATGT	10080
ATTTGTACCT	GTCATTGCAA	GTACCTTCTT	AAAATAGATT	GTTGTAGGCT	CACATTTATA	10140
GTATATTTCT	TTTTTTGTCT	ATTTTATAGC	CCATCTCCTC	AACTGGCAAT	TTTTCGACCT	10200
GAATTACATT	TTTCCATAAA	AAATGAGACC	TTTCTAGTCT	CATTTAGTCA	TTCTTAGTAT	10260
TTTCTAAATC	GTTGATAGCG	TTCTTCCAGC	AACTCTTCTA	GCGGTTTTTG	TGAAAGTCTA	10320
GCCAGCTCCG	TTTGGAGTTC	TTTTTTGACA	CTCTTAATCA	GTTCTTTACT	AGAAAGTCCT	10380
ATTTCAGAAA	TCACCTTATC	CACCACGTCC	ATTTCTAACA	GTTCATGCGA	AGTGATTTTC	10440
ATCAGTTCTG	CTGCTTCCAT	AGCGCGAGTA	CCCTCCTTCC	ATAAAATGGA	AGCAAAGCCT	10500
TCTGGACTGA	GAATGGCATA	GATAGAATTT	TCCAGCATCC	AGACACGGTC	CGCGACAGCT	10560
AGAGCCAGAG	CCCCGCCTGA	ACCACCTTCA	CCGATAATAA	TGGCGATAAT	AGGAACTTTC	10620
AGGTCACTCA	TTTCCATGAG	ATTGCGAGCG	ATAGCTTCCC	CTTGACCACG	TTCTTCCGCT	10680
CCGACACCAG	GATAAGCACC	TGCTGTATTG	ATAAAGGTCA	CAACTGGACG	GCCAAATTTC	10740
TCAGCCTGTT	TCATCAACCG	CAGTGCCTTT	CGGTAGCCTT	CTGGATGTGG	TTGGCCAAAA	10800
TTCCGTTTGA	GGTTGTCTTG	CAAACTCTTG	CCTTTTTGGA	TACCAACCAC	TGTTACAGCT	10860
TGGTCTCCAA	GCCAACCAAT	ACCACCAACA	ACTGCACCAT	CATCACGAAA	AGAACGGTCA	10920
CCATGTAATT	GGATAAATTC	ATCAAAAATG	CCTGTCGCAA	AGTCCAAGGT	TGTCAAGCGA	10980
CTCTGCTCAC	GCGCTTCTCT	GACTATTTT	GCAATATTCA	TCTAGGACTO	CCTCCATGCA	11040
ATCTGACTAC	GCTAGCAATC	GTATCTGGTA	AGTCTCTTCT	TTTGACAATA	GCATCCACAA	11100
ACCCATCTTC	TAATAGGAAT	TOTGCCTTT	GGAAATCCTC	AGGCAAGCTT	TCACGAACCG	11160

201

TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
TTTCCCTAAC	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCCTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

....

		20	02		
CAGGCACACC TGCT	TTAATC ATCTG	GCAC GCGCA	TTGAT CTTATC	CCC ATCATAT	CCA 12960
TAACATGACC AGAT	GGACCG ATAAA	TTGA TACCT	ACTTC TTCACA	CATG GTCGCAA	ATT 13020
TGGAATTTTC ACTG	AGAAAT CCAAAA	CCAG GGTGA	ATAGC TTCTGC	CTCA GTCAAGA	CTG 13080
CAGCTGATAG AACT	GCATTA ATATTO	SAGAT AAGAC	TCTGT TGCCTT	GCCA GGACCAA	TAC 13140
AAACTGCTTC ATCT	GCCAAA AGCGTI	ATGAA GAGCT	TCCTT ATCAGC.	AGTT GAATAAA	CCG 13200
CTACCGTCGC AATC	CCCAAT TCACG	rGCCG CACGG	ATAAT ACGAAC	CGCA ATTTCAC	CAC 13260
GATTGGCAAT TAAA	ATTTTT CGAAA	CATGG AGAAC	CTCCT TAGTTC	CCAA TTGCAAA	AGT 13320
AAGGGTACCA CTGG	CTGCAA GCTTG	CATC CACTT	CAGCC TTTGCT	TCAA CCACAGC	TAT 13380
GGTGCCACGA CGTT	TTACAA AAGTC	CTGT CATAA	CCAAT TGGTCG	CCTG GTACAAC	TTG 13440
CTTCTTGAAC TTAA	CCTTGT CCATA	CCAGC GTAAA	AGACC AGTTTT	CCTT TATTTTC	AGG 13500
TTTTGATAAC TCCA	ACACAC CGGCA	GTTTG CGCCA	AGGCT TCCATA	ATCA CAACACC	TGG 13560
CATAACTGGG TATT	GAGGAA AGTGG	CCGTT AAAGA	AAGGC TCGTTG	ATGG TCACATT	TTT 13620
GATAGCAACA ATGG	TATCCT CGCTC	ACTTC CAAGA	CACGG TCCACT	AGAA GCATAGG	ATA 13680
ACGGTGGGGA AGAG	CTTCTT TGATT	CCTTG AATAT	CGATC ATTTGA	TACG TACCAAT	CCT 13740
TTACCAAACT CAAC	CATTTC TTCGT	TAGAG ACGAG	AATTT CCGTTA	CCAC ACCATCO	TTA 13800
GGAGCTGGGA TTTC	CATTCAT GACTT	TCATG GCTTC	GATAA TTACCA	ATGT TTGACCT	TTT 13860
TTGACACTAT CACC	CAACTGT AACGA	AGGCA GGTTT	ATCTG GTCCAG	CAGC CAAGTAA	ACC 13920
ACTCCAACAA GTGC	SACTCTC TACAA	GATTT CCCTC	AGTAG CCACAC	TTGC TTCAGCT	GGA 13980
GCTGGAACTT CTTC	CTGCTAC AGTCT	CTGCT GGAGO	AGATG TAGGAC	CTAC TGGACTO	CGT 14040
GTTGCTAGAA CGG	GTGCTGG AGCGA	CTTGA GTTGC	AACTT CAGGC	CAGG TCTTGCT	TCA 14100
TTCTTGCTAA ACTO	GCAACTC ATCCG	TCCCA TTTT	TAAAA DAATAT	CTCT CAAACTT	GAC 14160
TGGTCAAATT GAGT	rcatcaa gtctt	TAATA TCGT	TAAAT TCATAO	TTAT CTATTC	rccc 14220
AACGTTTGAA AGC	AAGAACT GCATT	GTGGC CTCC	AAAACC AAAAGI	CATATA GAAATAC	CGT 14280
ATGGAATTTC TTT	CTCCAAG CCTTG	TCCAT AAAC	GACATT AGCTTO	GATA TAATCT	SATA 14340
CTTCACTTGT CCC	AGCTGTC ATTGG	TACAA AGTT	ATGACG CATAGO	TTCG ATGGTG	ACGA 14400
TAGCTTCTAC TGC	ACCCGCA GCCCC	CAGCA AATG	rcctgt aaaag	ACTTG GTTGAT	GATA 14460
CAGGTACTTC CTT	ACCAAGA ACAGO	TACGA TAGC	ACCACT TTCTC	CTTTT TCATTG	GCAG 14520
GAGTTGACGT TCC	GTGAGCA TTGAG	ATAGG CTAC	TTGCTC TGGAG	AAATC TCAGCT	rctt 14580
CCAAGGCTAG TTT	GATGGCC TTGAT	AGCTC CCTG	ACCTTC TGGAT	GTGGA GAAGTC	ATGT 14640
GGTAGGCATC ACA	AGTATTT CCGTA	ACCAA CCAC	TTCAGC CAGGA	TAGTA GCTCCA	CGTT 14700

				 ,		
TTTCAGCGTG	TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGATC	CTTATCAAAT	GGGATCGAAG	CACGAGTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGGC	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCAC	ATCTTGGAAA	ССАААСТТАА	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAGA	GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTTT	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAC	GATAACACCA	AAACGATCCC	TATTAAGAGC	CTCTACATCA	AGATTGGCAT	15180
GATTTACAGC	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTC	ACTATGATCA	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCCA	AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCG	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACATA	CTTAAGCCAC	15480
CATCAATGGC	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	TGCTAAAAAT	ACTGTCAAAT	15540
CTGCAACCTG	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATC	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

			204			
TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTC	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTACC	ATCTTGCCAG	AGTCAGCAGG	AGCCGCTTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCGTA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAACT	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTTGT	17340
TCAAAGATTT	CTAAATCAGG	ATCTTCTTGC	TTAAAGGCAT	CTTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	TTTAAAATT	TTCTCCTTGT	AGTTTGGATG	GGCATTCGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCCT	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTCGCACCAA	GGTCATGGTT	GTTAATTTAC	CGATATGCCC	CCCAGCTTCC	17700
ATTCCTTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTTCCA	TGCGTTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCCTG	CTCCTGTTGI	GACAACTTTA	ACACCTTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCCAA	AGGGTTTATO	AGTCAATGAT	1794
TTGATTTTAT	CAATATTGGC	: CTTGACAACT	TCTTTCGGGG	CATTTCCCCC	ACCGATAATT	1800
CCTAATCCTC	CAGCCTTGG	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	1806
CCTCCTTGGA	AAATAGGATA	ATCAATCTTC	AATAATTCTC	TAATACGCG1	TTTCATAGTG	1812
CCTCCAACCT	TCCTTGCTT	CCTAATAGT	CGATTTCACC	ATAATTTGAC	AGTCAAACTA	1818
			- (40)	ייים מייים מייים מייים	شراهلة الملحات الم	1824

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	CTTTTTCAAA	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
ттатссаала	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG				19702

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6211 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

206

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAAAATTTCC TCTCTTCTCT	TGAAAAATTT	TGAAAAAATG	GTATGATAGT	AACAAGTTAT	60
TTTTAAGAGG AAAGAAAGGG	GAATAATGGA	GAAAATCAGT	TTAGAATCTC	CTAAGACGGG	120
GTCGGACCTA GTTTTGGAAA	CACTTCGTGA	TTTAGGAGTT	GATACCATCT	TTGGTTATCC	180
TGGTGGTGCG GTTTTGCCTT	TTTATGATGC	GATATATAAT	TTTAAAGGCA	TTCGCCACAT	240
TCTAGGGCGC CATGAGCAAG	GTTGTTTGCA	TGAAGCTGAA	GGTTATGCCA	AATCAACTGG	300
AAAGTTGGGT GTTGCCGTCG	TCACTAGTGG	ACCAGGAGCA	ACAAATGCCA	TTACAGGGAT	360
TGCGGATGCC ATGAGCGATA	GCGTTCCCCT	TTTGGTCTTT	ACAGGTCAGG	TGGCGCGAGC	420
AGGGATTGGG AAGGATGCCT	TTCAGGAGGC	AGACATCGTG	GGAATTACCA	TGCCAATCAC	480
TAAGTACAAT TACCAAGTTC	GTGAGACAGC	TGATATTCCG	CGTATCATTA.	CGGAAGCTGT	540
CCATATCGCA ACTACAGGCC	GTCCAGGGCC	AGTTGTAATT	GACCTACCAA	AAGACATATC	600
TGCTTTAGAA ACAGACTTCA	TTTATTCACC	AGAAGTGAAT	TTACCAAGTT	ATCAGCCGAC	660
TCTTGAGCCG AATGATATGC	AAATCAAGAA	AATCTTGAAG	CAATTGTCCA	AGGCTAAAAA	720
GCCAGTCTTG TTAGCTGGTG	GTGGAATTAG	TTATGCTGAG	GCTGCTACGG	AACTAAATGA	780
ATTTGCAGAA CGCTATCAAA	TTCCAGTGGT	AACCAGTCTT	TTGGGACAAG	GAACGATTGC	840
AACGAGTCAC CCACTCTTTC	TTGGAATGGG	AGGCATGCAC	GGGTCATTCG	CAGCAAATAT	900
TGCTATGACG GAAGCGGACT	TTATGATTAG	TATTGGTTCT	CGTTTCGATG	ACCGTTTGAC	960
GGGGAATCCT AAGACTTTCG	CTAAGAATGC	TAAGGTTGCC	CACATTGATA	TTGACCCAGC	1020
TGAGATTGGC AAGATTATCA	GTGCAGACAT	TCCTGTAGTT	GGAGATGCTA	AGAAGGCCTT	1080
GCAAATGTTG CTAGCAGAAC	CAACAGTTCA	CAACAACACT	GAAAAGTGGA	TTGAGAAAGT	1140
CACTAAAGAC AAGAATCGTG	TTCGTTCTTA	TGATAAGAAA	GAGCGTGTGG	TTCAACCGCA	1200
AGCAGTTATT GAACGAATTG	GTGAATTGAC	GAATGGAGAT	GCCATTGTGG	TAACAGACCT	1260
TGGTCAACAC CAAATGTGGA	CAGCTCAGTA	TTATCCCTAC	CAAAATGAAC	GTCAGTTAGT	1320
GACTTCAGGT GGTTTGGGAA	CAATGGGCTT	TGGAATTCCA	GCAGCAATCG	GTGCTAAAAT	1380
TGCTAACCCA GATAAGGAAG	TAGTCTTGTT	TGTTGGGGAT	GGTGGTTTCC	AAATGACCAA	1440
CCAGGAGTTG GCTATTTTGA	ATATTTACAA	GGTGCCAATC	AAGGTGGTTA	TGCTGAACAA	1500
TCATTCACTT GGAATGGTTC	GCCAGTGGCA	GGAATCCTTC	TATGAAGGCA	GAACATCAGA	1560
GTCGGTCTTT GATACCCTTC	CTGATTTCCA	ATTGATGGCG	CAGGCTTATG	GTATTAAAAA	1620
CTATAAGTTT GACAATCCTG	AGACCTTGGC	TCAAGACCTT	GAAGTCATCA	CTGAGGATGT	1680

TCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
TGGTAAGAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1860
TTAATATTGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
TTATTATTGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
agattgatgt	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	ATTAAAAATC	CAACTTAAAT	TTATTAAACC	2280
AGCCTAAAAG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
GCCTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360
				marma ama a	mccamca s car	2420

			208			
TGTATAATGT	AATTACACCG	TCGGTAATAG	TGCTAGCAGA	CCAAAATAAA	GCAGATTGGT	3480
CGTATGATGA	AAATGCTGTA	ATTAACATTT	ATGATGATGC	TAATTTTGAA	GATGGTAGGT	3540
TGCATATGAA	CTTTGAACAA	TTCTTCAAAT	TGGCACAAAT	AGCTAGAGAA	GAAGGTCTTG	3600
AAATTCATTC	TCCGTTTGAG	AGAGCTGGTG	CGACTAAATC	TGCTCGTTAT	ATAGCGAAAT	3660
GGATTTTGAG	ааатааааа	CATTAACAAA	TATAGTTGGT	AAATCATTAG	GACCTAAATC	3720
AGCTGTTAGA	TTCGGAGAAG	CTTTATCCTA	TATTGAAGGT	CCTCTTCGCA	GAATAAATGA	3780
GACGATAGAT	GGCGGTTTAT	ATCAAATAGA	GCAAATTATT	GCATCTGGAT	TGAAAGAATC	3840
GGGTTTAAAT	GACTGGACTG	CGAAAACTTT	AGCTTCAGCT	ATTCGTGGGA	TATTAGATGT	3900
ACTTATTTAG	GGGTTGAAAT	CATATGAATA	TTACCAATTT	GTTTTCTATC	AAGACAGGAT	3960
GTGATGAAAC	TGATAGGCAA	CTGCAAAAAC	TATTTTTCA	GTTGGATTTA	CAATTGGGAG	4020
AATTGACAGA	TCAACTAAGA	AAATTAGATT	CTAATTTTGT	TCCTCGTAGT	CAATTTGTAG	4080
ACACGTTGGA	TTTGAATGAT	GTAGAATATA	AAGAAATTTT	AAACTATTTT	ATCTTCCATC	4140
GTAATGATAG	TGAAGAAAGT	TTGGTAGAAT	GGTTATATGA	TTGGATTTCC	ACAAATCGTT	4200
ATGAACTTCC	TAAAGAGTTT	TCGATTCGTA	TGGCTCATAA	ATACCATGAA	AGTGTTACTG	4260
AAGTTTTCGG	AGATGAATAA	CTAAAAAACA	GTCATTAGTG	ACTGTTTTTT	ATAGAAAAAG	4320
AGGTTTTATA	TGTTAAGTTC	AAAAGATATA	ATCAAGGCTC	ACAAGGTCTT	GAACGGTGTG	4380
GTTGTGAATA	CTCCACTGGA	TTACGATCAT	TATTTATCGG	AGAAGTATGG	TGCTAAGATT	4440
TATTTGAAAA	AAGAAAATGC	CCAGCGTGTT	CGCTCCTTTA	AAATTCGTGG	TGCCTATTAT	4500
GCCATTTCCC	AGCTCAGCAA	GGAAGAACGT	GAACGTGGGG	TAGTCTGCGC	TTCTGCGGGA	4560
AATCATGCGC	AGGGAGTAGC	CTATACTTGT	AATGAAATGA	AAATTCCTGC	TACTATCTTT	4620
ATGCCCATTA	CTACGCCACA	ACAAAAGATT	GGTCAGGTTC	GCTTTTTTGG	TGGGGATTTT	4686
GTAACTATTA	AACTAGTTGG	AGATACCTTT	GATGCCTCAG	CCAAAGCAGC	TCAAGAATTT	4746
ACAGTCTCTG	AAAATCGTAC	CTTTATTGAT	CCTTTTGATG	ATGCTCATGT	TCAAGCAGGT	480
CAAGGAACAG	TTGCTTATGA	GATTTTAGAA	GAAGCTCGAA	AAGAATCGAT	TGATTTTGAT	486
GCTGTCTTGG	TTCCTGTTGG	TECTECCECT	CTCATTGCCG	GGGTTTCTAC	CTATATCAAG	492
GAAACAAGTC	CAGAGATTGA	GGTTATCGGA	GTAGAGGCGA	ATGGAGCGCG	TTCCATGAAA	498
GCTGCCTTTG	AGGCTGGAGG	TCCAGTAAAA	CTCAAGGAAA	TTGATAAATT	TGCTGATGGG	504
ATTGCTGTGC	AAAAGGTAGG	TCAGTTGACC	TATGAAGCAA	CTCGTCAACA	TATTAAAACT	510
TTGGTAGGTG	TCGATGAGGG	ATTGATTTCT	GAAACCTTGA	TTGACCTTTA	CTCTAAGCAA	516
CCCATACTCC	CACAACCTCC	TOCACOCCO	ACTATCCCCT	CTTTAGAGGT	TTTAGCTGAA	522

PCT/US97/19588 WO 98/18931

209

TA	TATTAAGG	GGAAAACCAT	TTGTTGTATC	ATTTCTGGAG	GAAATAATGA	TATCAACCGT	5280
ΑT	GCCAGAAA	TGGAAGAGCG	TGCCTTGATT	TATGATGGTA	TCAAACATTA	CTTTGTGGTC	5340
AA	TTTCCCAC	AACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGCCAAAT	5400
GΑ	TGATATCA	CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
ΑT	TGGGATCG	CTTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
тт	TGATCCAG	СТТАТАТТАА	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
GG	ACTAATAA	AAAAATATCA	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
AC	ACTGTCTT	TAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
CA	AAACAGTG	TTTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
ΑG	TATAAGGT	ATGATTTGAT	TTCTTTTTGT	TGACAAATAT	АСТАТАТТАА	AAAGATATAT	5820
AA	GTAATTAA	CTGAGCTTAT	CTGTCTTGTC	ATCTCTATTA	AGGATGGTTT	AGATAATCGG	5880
GT	GTCTGCTT	CTAGGCTAGC	ACCTCAATAT	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
GG	AATACCTA	TCTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
A.A	GCTTGGA	TTTCTAAAGG	TTAGAACTAT	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
CI	ATCTTACG	GAAATAGAGA	AGCATTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
GC	ТААТААТА	CAGTATTTT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	CAAAACCTAT	6180
ΑΊ	PATTATCGG	ATTTAAAAAG	GAAGTAAGAA	A			6211

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 7939 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC	CACGATTCTT	CAAAATAACT	GAGTATATTT	CTATCTTGAT	TTTCAGATAT	60
AAATTCTTCC	TTCTGTGGCC	TCTTCTTACG	CTTGAGAAGA	GCTTCTCCGA	CATGGCTTCT	120
TCCTTACTGA	GCAAAACCTT	GAGCATAGAT	AAGTTTGACT	GGCAAGCGTG	CTCTTGTATA	180
TTTGGCTCCC	TTCCCACTAT	TGTGGATAGC	GAGGCGTCTT	CTCATATCAG	TCGTATAGCC	240
TATATAGTAG	GATCCATCAC	GACACTCCAG	AACGTACATA	TAAGCCTTAT	GATCCATAAT	300
AAATCTCTTC	GATTTCGGGC	GTATAAGAGC	CATCATCATT	GTGGACAATC	AAAGGAGGTA	360

210 AGACCTTAAA GCCACTTGTT GAGCCATCCT TGATCGCCTC AATCAAAAGC ATATTGGCTT 420 CCTTTCTCT TTTTGGATAA ACAAACTGCA GGCGCTTAGG GGCTAGATTA TGTCGTTTTA 480 ACGTATCCAA AATATCCAGA AGTCGATCAG GACGATGAAC CATGGCCAAA CGCCCATTAG 540 ACTTGAGAAT ACTCTGGGCA CTACGACAGA TTTCTTCCAA ATTAGTCGTG ATTTCGTGTC 600 GAGCCAAGAG ATAATGTTCA CTCTCGTTCA GATTAGAATA AGGATTCACC TTGAAATAGG 660 GTGGATTACA CAAAATCATA TCCACCTTAC TCCCCTGAAT GTGAGCAGGC ATATTTTTCA 720 AATCATCGCA GATGACCTGC ATTTGCTCCT CTAATCCATT CAAACGGACA GAGCGTTCAG 780 CCATATCCGC CAAACGCTCC TGAATCTCAA CAGACAATAT CTGTGCTTGA GTACGAGTGC 840 TAGCAAAAAG CCCCACTGCT CCATTCCCAG CACAGAAATC CACAATCAAC CCCTTCTTAG 900 GAAAACGTGG AAATCGTGAT AAGAGAACAC TATCCACCGA ATAGCTAAAA ACCTCTCTAT 960 TTTGAATGAT TTTGATATCT GTCGAAAAGA GCTGGTTAAT GCGCTCTCCT GATTTTAATA 1020 ATTGTTCTTC TTCCATGGTC CTATTATAGC AAATTCATAT TAACATTACA AAAAATATAA 1080 AACTCTAAAC TACTTCTTCT TTTTTAAATG GTGCAGGGCT TCTCCAGTCC AGATTGGTAG 1140 CATTCGTCGA AAGGGAGCAA AGCCGTAGTT AAAGCGGTCG CTTGAAAAGC GTCTCCGTCT 1200 AGGAAACTGG TACTTTTCTT CCTCCAAAGT GCGGATAGAA AGACTGGCTT TCCCTGTAAA 1260 TTCATCTAAA TCCACTACCT GAACTTGAAC CTCTTCATCG ACTTTCAAGG TTTCATGAAT 1320 ATTTTCAATA AATCCTGTCC GAATCTCTGA AATGTGAATC AGCCCCGTAT CACCCGTCTC 1380 TAACTCAACA AAGGCACCGT AGGGCTGAAT CCCTGTAATA CGCCCCTTTA GCTTATCACC 1440 GATTTCATC TTAGTCCTCG ATTTCAATAG TTTCAATTAC AACATCTTCA ACTGGCTTGT 1500 CCATAGCTCC TGTCTCAACA GCAGCAATGG CATCCAAGAC AGCGTAAGAT GCTTCATCAG 1560 CTAACTGACC AAAAACCGTG TGACGGCGGT CTAGGTGAGG TGTCCCACCT TGATTGGCAT 1620 AGATTTCTGC AATCGGTTCT GGCCAACCAC CACGAGTAAT TTCTTTCTTA GAATAAGGTA 1680 GGTGTTGGTT TTGCACGATA AAGAACTGGC TGCCGTTGGT ATTTGGACCA GCATTTGCUA 1740 TGGAAAGAGC ACCACGGATA TTGTAAAGCT CTTCTGAGAA TTCATCCTCA AAAGATTCGC 1800 CGTAGATTGA CTCGCCACCC ATACCAGTTC CAGTTGGGTC TCCACCTTGG ATCATAAAGT 1860 CCTTGATAAT ACGGTGGAAA ATGACACCAT CATAGTAGCC ATCTTTTGAA AGAGATACAA 1920 AGTTAGCCAC TGTTTTAGGA GCATGTTCAG GGAAAAGCTT GATACGTAAG TCTCCGTGAT 1980 TGGTCTTAAT AGTCGCAAGA GGACCTTCTA CTGTTTCAAT GTCTACTTGT GGAAAATGCA 2040 ATTCTTTTC TACCATACCA AATACTTCTA AGGCAGCAAA AATGCCATCT TCTTCTAATG 2100 TTTTTGTAAT ATAATCTGCT TTTTCTTTGA TTTTATCATG AGAAATTCCC ATGGCAACGC 2160

TGATTCCAGC ATAATCAAAG AGTTCCAAGT CGTTGAGACC ATCTCCAAAA ACCATGACCT	2220
TCTCTGGTTT CAAGCCAAGG TGTTCCACAA CCTTTTCCAC CCCCGTCGCT TTGGAGCCTG	2280
AAATCGGCAC AATATCAGAC GAATGTTGAT GCCAACGAAC CATGCGAAGT TTGTCTGAGA	2340
GACTGTCAGG CAAGTGCAAG TCATCTCCCT TATCTTCAAA AGTCCACATC TGATAGATAT	2400
CTTCTTTTC ATGGAAATCG GGATCTACAT CTAAGTCGGG ATAAATTGGA TTGATAGCTT	2460
CACTCATCAT ATCGGTGCGA GTCGACAACT TGGCATCATG ACTCCCAACC AAGCCATACT	2520
CAATTCCTTC TTGCTTAGCC CAAGAGATAT ACTCCTCAAC ATCTGACTTT TCAATCTGAT	2580
GCTGATAAAT GACCTGACCT TTTTTATCTT CGATATAAGC CCCATTCAAA GTTACAAAAA	2640
AGTCAGGCTT GAGATCACGA ATCTCTGGAA CAACACCAAA AATGCCACGT CCAGAGGCGA	2700
TTCCTGTTAA AATTCCTTTT TCACGCAACT GTTTAAAAAC AGTGGGAATT GTAGTTGGAA	2760
TAAACCCTGT CTTTGAATTC CGCAATGTAT CATCAATATC AAAAAAGACA ATCTTGATCT	2820
TCTTTGCCTT GTATCTTAAT TTCGCGTCCA TCTCACTACC TCTTTCAATC TAACTCTTTC	2880
CATTATATCA TAAAGTAGGC AAATCCCCTA TTTTCAAAAA GTTTATCATT TTTATTTTAA	2940
TTTCTTGGAT GAGAAAAGAG ACATATTTAT GAAAAAGCTC CATCGTGCTT TTAATGTGTT	3000
CTCTTGTTTT CAAACTCGTA AAAAGGGAGC CACTGATCCT AACTCGCTCT CTCATTTCAA	3060
AGCTTGTGAA AAAAGACCCG TTGGGGTCTT AATTCGCTTT CTTGTTTTCA AGCTCATGAA	3120
AAAGAGACCC AACTGGGTCT TTTCTTTAAT CTTCGTTTAC GAAAGGCATC AAAGCCATTA	3180
CGCGAGCGCG TTTGATAGCT GTTGTTACTT TACGTTGGTT TTTAGCTGAA GTTCCTGTTA	3240
CACGACGAGG AAGGATTTTC CCACGTTCTG AAACGAAACG	3300
TGTAATCAAC ATATTCAATT TTGTTTGCTG CGATGTAATC AACTTTTTTA CGGCGTTTGA	3360
ATCCGCCACG ACGTTGTTGA GCCATGTTTT TTCTCCTTTA TAAGTTTAGT TGTCCATTAG	3420
AATGGTAAAT CATCATCTGA AATATCCAAT GGGTTTGTTG CTCCAAATGG ATTTTCATTA	3480
CGTGAAAAGT CTGGTACTGA ATTTGTAGGT GCTGAATAGT TTGCAGTTGG TGCAGAGTAA	3540
GCTCCACCTG TGTGACCCTC ACGCACACTA CGGCTTTCCA ACATTTGGAA ATTCTCAGCC	3600
ACGACCTCTG TCACGTAGAC ACGTTGTCCT TGCTGGTTAT CGTAACTACG AGTCTGGATA	3660
CGACCTGTCA CCCCGATAAG TGAGCCTTTT TTAGCCCAGT TAGCAAGATT TTCAGCCTGT	372
TGGCGCCACA TAACGACATT GATAAAATCA GCCTCACGTT CACCATTTTG ACTCTTAAAT	378
GTACGGTTTA CTGCAAGAGT AAAAGTCGCA ACTGCTACAT TTGATGGGGT ATAACGCAAC	384
TOLOGODORO CTCTONTACO CCCTACAACT ACAACATTGT TAATCATAGT TTACCTTCTT	390

ACGCGTCAAT	TTTGACGATC	ATGTGACGAA	GAATGTCAGC	GTTGATTTTT	GAAAGACGGT	3960
CAAACTCTTT	AAGAGCTGCA	TCGTCATTTG	CTTCAACGTT	AACGATGTGG	TAAAGTCCTT	4020
CACGGAAATC	TTGGATTTCG	TATGCAAGAC	GACGTTTTTC	CCAAGTTTTT	GATTCAACAA	4080
CAGTTGCACC	GTTGTCAGTC	AAAATAGAGT	CAAAACGTGC	TACCAAAGCG	TTTTTAGCTT	4140
CTTCTTCAAT	GTTTGGACGA	ATGATATAAA	GAATTTCGTA	TTTAGCCATT	GATATGTTCC	4200
rccttttggt	CTAATGACCC	CAAGACTTTG	CAAGGGGTAA	GTGAGGTTCG	CTCACAATAA	4260
ACTATTATAC	TAGAAAAAAT	TTTTTTACGC	AAGTAAAAAC	ACTAGAATTC	GAAAAAACGC	4320
CACATGGGCG	TTTTCCTGTT	CTTATGGTTT	GATACGGTGC	AACATACGTG	GGAATGGAAT	4380
AGCTTCACGG	ATATGTTTTG	TTCCTGCTGC	GAAGGTTACC	ATACGTTCGA	TACCGATACC	4440
AAATCCTCCG	TGTGGAACTG	TACCGTATTT	ACGAAGGTCA	AGGTAGAATT	CATATTCTGT	4500
ACGATCCATG	CCAAGTTCAT	CCATCTTAGC	GACAAGGGCA	TCGTAATCTT	CCTCACGCAT	4560
AGACCCACCG	ATAATTTCTC	CATAGCCTTC	TGGAGCAAGC	AAGTCTGCAC	AAAGCACGCG	4620
CTCTGGATTT	CCAGGAACTG	GTTTCATGTA	GAAGGCCTTG	ATGGCTGCTG	GATAGTTCAT	4680
GACAAATGTT	GGCACACCAA	AGTGGTTTGA	AATCCAAGTT	TCGTGTGGTG	ACCCAAAGTC	4740
ATCACCATGC	TCAAGATGCT	CGTAGTCAGC	ATCTTCATCA	TTTTCATGCT	CTTGCAAGAG	4800
GTCAATGGCT	TGATCGTAAG	TGATACGTTT	GAATGGCTCT	GCAATGTAGC	GTTTCAAGAG	4860
ITCTGTATCA	CGTTCCAAGG	TTTCCAAGGC	TTGAGGCGCG	CGGTCAAGAA	CACCTTGTAG	4920
AAGAGCTTTC	ACATAAGCTT	CTTGCAAGTC	AAGCGACTCA	TCATGTGTCA	AGTATGAGTA	4980
CTCAGCATCC	ATCATCCAGA	ACTCAGTCAA	GTGACGGCGT	GTTTTTGATT	TTTCAGCACG	5040
GAAAACTGGA	CCAAAGTCAA	AGACACGACC	AAGAGCCATA	GCCCCTGCTT	CTAGGTAAAG	5100
CTGACCTGAT	TGGCTCAAGT	AGGCTGGCGT	TCCGAAGTAG	TCAGTTTCAA	AGAGTTCTGT	5160
AGAATCTTCT	GCCGCATTTC	CTGAAAGAAT	TGGGCTGTCA	AACTTCATAA	AACCGTTCTT	5220
GTCAAAGAAC	TCATAAGTTG	CATAGATAAT	AGCGTTACGG	ATTTGCAACA	CAGCTACTTG	5280
CTTACGAGAG	CGTAGCCACA	AGTGACGGTT	ATCCATCAAA	AAGTCTGTTC	CGTGTTCTTT	5340
rggtgtgatt	GGGTAGTCTT	GAGATTCACC	GATCACTTCG	ATGTCTGTGA	TGTCCAACTC	5400
ATAGCCAAAT	TTAGAACGTT	CGTCCTCTTT	GACAATACCT	GTCACATAAA	CAGACGTTTC	5460
PTGGCTCAAG	CGTTTGATAA	CATCAAACTT	CTCAAGTCCC	ACTTCTTCAC	CAAATTTTTC	5520
GACAAAGTTT	GGTTTAAAAG	CCACACCTTG	AAAGAAGGCT	GTTCCATCAC	GCAATTGTAA	5580
GAAAGCGATT	TTTCCTTTTC	CTGATTTGTT	GGCAACCCAA	GCGCCAATCG	TCACTTCCTG	5640
ACCAACATAG	TCTTTACGT	CAATAATCGT	TACACGTTTT	GTCATTATTT	لمائدانالمالالمال	5700

213

TTTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5980
ATGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA	АААСТААТТА	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	CTATAAAATC	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CCAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
CTTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CCACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
TAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
TGAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
TGGGATTAGA	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
ACTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGCGTTGGG	ATGATGACTT	6900
CATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CCGCCGCCTT	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
GAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	CAAAATATCT	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CCAAAGTCAC	ACTITCTTCC	АТТТСТАААА	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
GTTGACCAAT	GCTCCTGTTT	CAAAATCTAC	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CCAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
TTCCTTAGAA	ACCGTTTCTG	CTTTTTCTTG	TGAAACACCC	TGATTTAGCT	GATAAACGTA	7440

1.

			214			
AATCTTATGG	TCATCTTTAC	CAATCAGGAC	AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680
TAGACCATAC	TGCCACAGTA	GATTATTTT	TGCTTTGTTT	TGTCTTTTTT	TCACTCGTCT	7740
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860
ттстсссттс	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920
atgattagag	TTTGCCGGG					7939

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9897 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA	60
TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT	120
GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA	180
ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA	240
CATGAGTACT TGTTTGTTCT TTTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC	300
GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA	360
ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA	420
ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT	480
GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA	540
ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT	600
TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT	660
AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC	720
TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT	780
TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC	840
AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTTATT	900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
ATAACTATTT	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
TAACTCTTTA	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTT	TTCATTTTAT	TTTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	тсаататсаа	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTTTTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	CAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTTA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	AAACTATTGA	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTGTGAACAA	CATCTTATTA	AGTTTCTTAA	TATTTTGTGT	TGTAGTAAAA	CGTTGAACCA	2640

216 AATCTTGAGA TGAAGCATAG GAAGACAAGA TTGTAAAGCC TGAACCCATC ACAATTAAAA 2700 AGATGGAGTT TGAAAGCAAG TTAGGATCGA AAAGTTTTTC ATTTGCAGCA AGGAATTTCC 2760 CGTTTGCTAA TGTTTCTGCT ACTGCACCAA AGCCACCTTT AATATTAGCA ATCAGTACAA 2820 ATAAAGCTAA AACGACACCA CTAATCAGAA TCACACCTTG AATAAAGTCT GTCCATAATA 2880 CGGATTTTAG ACCACCAGTA TAAGAATAAA CAATTGCAAC TACACCCATC AAAATAATCA 2940 AAATATTGAT GTCAATTCCT GTCAATACTG ATAAACCAGC TGATGGGAGG TACATAATGA 3000 TAGACATACG TCCCAATTGA TAAATAATAA ACAAGAGTGC TGAAATAATA CGAAGTGCTT 3060 TAGAATTAAA ACGTTTATCC AAGTAATCAT ATGCCGTATC GATGTCTATC CGTGCAAAGA 3120 TAGGTAAGAT AAAACGAATT GTCAGTGGAA TAGCTACTAC CATCCCTAAT TGAGCAAACC 3180 ATAAAATCCA GCTACCTGCA TAAGAGCTAC CAGCGAGTCC CAAGAAGGAA ATCGGACTGA 3240 GCATTGTGGC AAAAATGGAT ACCGAAGTAA CATACCAAGG AACCGAACCA TCTCCTTTAA 3300 AGAACTCTTT TCCTTTCATC TCTTTTTTAG AGAAATAGAT ACCTGCAACC AACACCGCAA 3360 GTAAATAAAC AATCAAGATA ATTAAGTCAA TTATTGTAAA TCCTGTTGTG CCCATAACAT 3420 ATCTCCATAT TGATTTTATT TATTATAAAA ATTCTTTTCG TGCTTGTTGA ATAAGTTCTG 3480 CTGCTTGTTT TGCAACTTCC AAGTCACCTT CTGCCAATGC TTCTAAAGGT TGACGAACAG 3540 AACCTAAATC AAGTTTTCA TTTAGACGCA AAACTTCTTT TGCTACAGCA TACATATTTG 3600 CCTTACCTGA TATCATCTTA TAGATAACTT CATTGATAGC ATATTGAAGT TTTTTAGCTG 3660 TATCTAAATC TCGTTCTTGA ATCAAACTTT CCAATTTCAA GAACAAATCT GGCATAACGC 3720 CATAAGTACC ACCAATACCA GCTTCTGCTC CCATCAAGCG ACCACCAAGA TATTGTTCAT 3780 CTGGACCATT GAATACAATG TAATCTTCTC CACCTGCAGC TACAAACATT TGAATATCTT 3840 GTACAGGCAT AGAAGAATTT TTAACTCCAA TCACACGAGG ATTTTGACGC ATTGTTGCAT 3900 ACAAACTACC AGTCAACGCA ACCCCTGCCA ATTGTGGAAT ATTATAGATA ATAAAATCTG 3960 TATTTGACGC AGCTTCACTC ATTGCATTCC AATATGCTGC GATTGAATAC TCTGGCAATT 4020 TGAAATAAAT AGGTGGGATA GCTGCAATAG CATCGACTCC AACACTTTCT GAATGTTTTG 4080 CCAATTCGAT ACTATCTTTC GTGTTATTAC ATGCAATATG GTTGATAACT GTTAATTTAC 4140 CTTTAGCAAC TTCCATAACA GCTTCAATAA TTTGTTTACG ATCTTCTACA CTTTGGTAAA 4200 TACATTCACC TGAAGAACCA TTTACATAGA TACCTTTTAC ACCTTTGTCA ATGAAATATT 4260 GTACCAGAGA TTTTACACGA TCTTGGCTAA TTTCACCATT TTCATCATAG CAAGCATAAA 4320 ATGCAGGGAT AACGCCTTTG TATTTAGTTA AATCTTTCAT CAGATTTCTC CTTTATATTG 4380 TTTTTTATTT GATGACATTA ATAAATCGCT GAGCAATTTC TTTTGGACGT GTAATCGCTC

CACCAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTTT	TTTTAATTGT	TCTGGATAAT	4500
GAATTTTTCt	TCGCCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTCA	TTAGTTCAAA	4560
ATCAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
ATCAACGCCT	GATTTAAATG	CATAGAGACC	TTCATCTAAA	TTACTTACAT	CCGCCATCAG	4680
CAATTGATTC	GGATATTTT	CTTTTATTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
ATATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATCTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AATTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
TGCGCGAATG	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
AAATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
TTGAACTTGG	CTTATAAATT	TTTCTTTAGT	CCAAATTTGG	CTCATTTAT	TATTCCTCCT	5100
TATGGATAAT	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
ATAAGCAGTC	TGTAATTAAA	AGTATTGGAA	ACTGAGGTGA	TATGCGATTG	CCATACGAGA	5220
GATGATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
TTCTTGTAGT	CATTAAAACT	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GTACAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
GTAAGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
GCATAAATCT	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
ATACACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCGTGTAAGT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCT	GTTGCCTCTG	5640
TATATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
TAAAACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
GGTATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
TAGCAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
GTTCTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
TAACACTTTT	TTTTTTTTC	AATATTTTTC	ATAAATTAGA	AACTAGTTTC	CAATTTCTTT	6000
CGTTTCATAA	CAGAACAACA	AACATAAAAA	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
TATATGTATT	GTAAGAACGT	TTATCACTAA	TAATATGTTC	ATATTAAAAT	ATTTTAGTAA	6120
TATTTTATTT	TGGTTTTATT	ATTTCTTTTC	GGAATTTCTA	TATAATATTT	TATTTCTAAA	6180

			218			
AAAATTGAAA	AAATATTTCT	AGTTTCTTTA	TTTTATATAG	GTAAT YTATT	TTATTTCTAA	6240
attaaaagag	AATCCCATAA	AAACTACAGA	TTTATGAGAT	AAATCAGGTC	ACCTATTTTA	6300
AAAAAGCAGC	AAACTATAAA	CTAAAAAGTT	CCACACCAAA	TGTAACCCCA	TACTTCCCCA	6360
TAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTGAAACGT	ACAGACACCA	6420
AGCTAGAATG	GTTCCTGGAT	GATGTACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
AATATCTAAT	TTTCTAACCA	AGTTCCATAA	AATTTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
TAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	CTAAAACATA	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTTTCATAT	TGACCTTGAC	6720
CACTTGTTTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
CTGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTTCAAT	AAGTATAGAG	ATACCAATAG	6840
GACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAATC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
TAGTGAAACT	CTCCCGCAAA	CATTTTTCTG	GTTAACTCAA	TCCAGCTGAT	ATTTCTTTCA	7080
GCCAAAATAA	TGGACAAGTT	CTCCCAAAAT	CGTTCAGCCA	TATTICTTCT	CCTTTAGTTA	7140
GATAAATAAT	GTGTTTGyGC	CATGTAAATC	AATTGTTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAG	ACTTGGATAA	ACCCGCTTAT	TTGAAACCAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTAAAATT	ATCTCAACGA	AATCCGTTAA	TCTTAGATTG	7320
TCACGGTTCT	TAAATCGTAA	TAAATTGGGA	GATAAAAACT	CAAAACAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATTT	GTCCTTTGTC	ATTTCAGAAA	CTGAATGACA	AGATACCTCA	7440
ATGCCATAGT	TTTGGAAGAA	GTCTAAAAGA	AGTTGATTTC	TTTGGCTATT	TTTACTTAGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
TAAGGAATCT	AACAACTTTG	AGAAGTTAAT	CGATTTCTTG	TCTTCATCAT	AAGCTTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTCTT1	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	768
AACAAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTC1	TTATATCCTG	774
ACTTTCAAGG	AATTCCATAA	CGTTTTGAAG	ATAGGATTCA	TAAAATAGTO	GGTAATTATG	780
TTTTTTATGO	TAATCATCT	AAAATGTTAG	CTCAAACTCA	CATGGATAAT	TGGGCATCAA	786
AAATATTTGT	TCATCCAGCT	GTTTGATTTC	TGCATCATGT	AATTCTGTT	CTAATTCATC	792
3 C 3 3 T CT 5 CT	, , , , , , , , , , , , , , , , , , ,	• ጥልጥጥጥልልጥር ር		TTCCTCTAT	TCTTTTAATT	798

TCTTTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	804
GACTATTAAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAACACCAGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	TCCAACTCTA	CCACGACGAT	8280
ACTGAGAACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
TTTTCGTTGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
TTTTATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
GACCTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
TGTCTAATCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
GAACTAAGGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATTCAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
TGAAAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
CTCTGTTTTT	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	8880
CCAACTCATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GGCCTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
TTTCAAAGAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
ATGCTTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTTTAAATT	9120
CGTCATCTGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATAAGA	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTCCAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	TAAATCTAAA	ACCCAAATCA	9300
TTCATACCTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
TCCTCCTCAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
TTCCTCAAAA	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
CTTTAATGCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGACTT	TTCTAATCCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACAATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660

agaaaaagat	AGAGATTGTA	GGCGATACAG	220 CTCATCATCA	TACGAACTCG	TTTTTGATTA	9780
AGGTTGAACT	ATCCGTTTTA	TCGCCAAAAA	ATCCCTCCTT	CATCTCCTTG	ATGAAATTCT	9840
CGGCTTGACC	ACGTCCACGA	TAAAGCTGAA	ACTGGTCTTG	GCTTGTTCCG	GTACCGA	9897
(2) INFORM	ATION FOR SI	EQ ID NO: 1	1:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8148 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CCGTGGAACA AGCCAAGACC AGTTTCAGCT TTATCGTGGA CGTGGTCAAG CCGAGAATTT 60 CATCAAGGAG ATGAAGGAGG GATTTTTTGG CGATAAAACG GATAGTTCAA CCTTAATCAA 120 AAACGAAGTT CGTATGATGA TGAGCTGTAT CGCCTACAAT CTCTATCTTT TTCTCAAACA 180 TCTAGCTGGA GGTGACTTCC AAACTTTAAC AATCAAACGC TTCCGCCATC TTTTTCTTCA 240 CGTGGTAGGA AAATGTGTTC GAACAGGACG CAAGCAGCTC CTCAAATTGT CTAGTCTCTA 300 TGCCTATTCC GAATTGTTTT CAGCACTTTA TTCTAGGATT AGAAAAGTCA ACCTGAATCT 360 TCCTGTTCCT TATGAACCAC CTAGAAGAAA AGCGTCGTTA ATGATGCATT AAAGAACAGT 420 CGAGATGAAA AAATCGTGTG ACGAACCAAG GGAGGAGTCT GCCCTTTTGA GGAAATCTAG 480 CGAGGAAAAA CGATACTGGA ACAGCAGAAA GTAAAACTGA CCTCATGAGG AGGAAGAAAG 540 TGGCTCATGA GGTCAGGGGT TTTGTAAGTT ACATCTAGTT GAGAGAGGTA TGAATGATTT 600 GGGTAAATAC AATGAGCTTG AAAGAAGTAG CAAACTCACC AAGCGCCAAT TCTTTGAGAA 660 TCAGATGCTG GATTATACCA TCATTGCGCA TGAGAGTTTT GAAATCATCC GTCATTCTGT 720 CTACCAGACA GATGATCGTG AAGTGGAAAA TGCTCTGGCT TTTGAAGTGA AAAATGATGA 780 AACAGACAAG CTGATTCTGT TATTAAGCGA GGATATTGGT GTAGGTGAAA AATTGTGCCT 840 CGTTGACGGA ACAAAAATGC GTGGAAAATG TTTAGTATAT GATAAAATAA ATGAGAGAAT 900 GATTCGCTTG CAGTGCTAGA AATAGGCATT TTGAATAGTG AATATGTTAT AATAAGTATT 960 AGTAGGAGGT GTTTTAGATT GGAGAAGAAA CTGACCATAA AAGACATTGC GGAAATGGCT 1020 CAGACCTCGA AAACAACCGT GTCATTTTAC CTAAACGGGA AATATGAAAA AATGTCCCAA 1080 GAGACACGTG AAAAGATTGA AAAAGTTATT CATGAAACAA ATTACAAACC GAGCATTGTT 1140 GCGCGTAGCT TAAACTCCAA ACGAACAAAA TTAATCGGTG TTTTGATTGG TGATATTACC 1200 AACAGTTTCT CAAACCAAAT TGTTAAGGGA ATTGAGGATA TCGCCAGCCA GAATGGCTAC 1260

.....

CAGGTAA'	TGA	TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTC	TCT	TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
rctcgta'	TCA	TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGA	CTA	GCTGGGTTAA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
rgtatcg.	AAA	AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGA	ТТG	AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTC	TAA	CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAA	TCG	ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GGCCCTACCT	1740
CTAGTCT	TTA	CCGTTATCAA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACA	ATA	CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTG	AGG	AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	1920
CAAGAAG	AAA	GGCAACAAGT	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
AATGAAG	GAA	AATGACTTGC	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTG	GGA	TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	TAAATCAACT	2100
GTTTTTG	ATC	TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGT	TAC	GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGA	TAT	GAGGAGAAAG	AAGAGGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTC	AAG	TCCTTTATTG	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAAT	'AGC	TCCTGAAGTA	AGGGCGAAGA	AAAGGAAAAT	ACTGATAAAA	ACATGAATGA	2400
TCAGTAG	TCT	AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATAC	GAA	GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGC	TCCCAGTATA	2520
GTTTTAA	AAA	TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
agggtat	CAA	TGACTGGAAT	TATAAAAAAT	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAG	GAT	AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTI	TTC	TTACTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
GAAAATA	GAA	CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAATA	2820
GTCCTGA	CCT	TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	ATAAAAAACA	TCCATAGACC	2880
AAAGAAC	:AAA	CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
САТАТСТ	T.C.T	TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

			222			
AGCGATGAGG	GCAATCACTA	AAATCAGAGG	AGGATAGATT	AGAGCCACTT	CTTGAGGGTA	3060
TTTATAGGCC	AGAAGGAGTG	GAATAAGATT	TCCGAAAATC	ATCAGATAAA	AGAGGATGAT	3120
AAAGACTTGG	TTCCCAATAC	TATCGGCCTC	ACGCCGTTTG	TATTCGTCAA	GGGGACCAGA	3180
AATACCGTAT	GTGCGTTTGA	TCAGTTTTTC	AGTGAAGGTT	TCTTTTTTCA	TGAGTTTGCT	3240
CCTTTTTTAA	AAATCTTCCT	CCCAAAAGAG	ACTGTTGAGG	TCAGTTTGGA	GGCTGCGGGC	3300
GAGATTGAGA	CAGAGTTCCA	AGGTTGGATT	GTACTTGTCG	TTTTCAATCA	TATTGATAGT	3360
CTGTCTCGAG	ACACCGATAT	CCTTGGCGAG	TTCGAGCTGG	GAAATACCCA	ATTCCTTGCG	3420
AAATTCTTTC	ACACGATTCA	TCTGTTCTCC	TTTCTGATTT	ATGTCGTATA	TATTTGACTA	3480
TATTATAGTC	TTTTAAACAT	AAAGTGTCAA	GTATTTTTGA	CATATTTTTT	GAAGAAATAG	3540
TAGTCTCCTT	GTCCTATTTG	TCTGACAAGT	GCAAGCTGGT	CGGATTTGTG	GTAAAATAGA	3600
TAAGATATGA	CAAAAGAATT	TCATCATGTA	ACGGTCTTAC	TCCACGAAAC	GATTGATATG	3660
CTTGACGTAA	AGCCTGATGG	TATCTACGTT	GATGCGACTT	TGGGCGGAGC	AGGACATAGC	3720
GAGTATTTAT	TAAGTAAATT	aagtgaaaa	GGCCATCTCT	ATGCCTTTGA	CCAGGATCAG	3780
AATGCCATTG	ACAATGCGCA	AAAACGCTTG	GCACCTTACA	TTGAGAAGGG	AATGGTGACC	3840
TTTATCAAGG	ACAACTTCCG	TCATTTACAG	GCATGTTTGC	GCGAAGCTGG	TGTTCAGGAA	3900
ATTGATGGAA	TTTGTTATGA	CTTGGGAGTG	TCTAGTCCTC	AATTAGACCA	GCGTGAGCGT	3960
GGTTTTTCTT	ATAAAAAGGA	TGCGCCACTG	GACATGCGGA	TGAATCAGGA	TGCTAGCCTG	4020
ACAGCCTATG	AAGTGGTGAA	CAATTATGAC	TATCATGACT	TGGTTCGTAT	TTTCTTCAAG	4080
TATGGAGAGG	ACAAATTCTC	TAAACAGATT	GCGCGTAAGA	TTGAGCAAGC	GCGTGAAGTG	4140
AAGCCGATTG	AGACAACGAC	TGAGTTAGCA	GAGATTATCA	AGTTGGTCAA	ACCTGCCAAG	4200
GAACTCAAGA	AGAAGGGGCA	TCCTGCTAAG	CAGATTTTCC	AGGCTATTCG	AATTGAAGTC	4260
AATGATGAAC	TGGGAGCGGC	AGATGAGTCC	ATCCAGCAGG	CTATGGATAT	GTTGGCTCTG	4320
GATGGTAGAA	TTTCAGTGAT	TACCTTTCAT	TCCTTAGAAG	ACCGCTTGAC	CAAGCAATTG	4380
TTCAAGGAAG	CTTCAACAGT	TGAAGTTCCA	AAAGGCTTGC	CTTTCATCCC	AGATGATCTC	4440
AAGCCCAAGA	TGGAATTGGT	GTCCCGTAAG	CCAATCTTGC	CAAGTGCGGA	AGAGTTAGAA	4500
GCCAATAACC	GCTCGCACTC	AGCCAAGTTG	CGCGTGGTCA	GAAAAATTCA	CAAGTAAGAG	4560
GGAAAAAGAT	GGCAGAAAA	ATGGAAAAA	CAGGTCAAAT	ACTACAGATG	CAACTTAAAC	4620
GGTTTTCGCG	TGTGGAAAAA	GCTTTTTACT	TTTCCATTGC	TGTAACCACT	CTTATTGTAG	4680
CCATTAGTAT	TATTTTTATG	CAGACCAAGC	TCTTGCAAGT	GCAGAATGAT	TTGACAAAAA	4740
MC L L MC CCC L	CAMACACCAA	****	8.8TTCC8.CC8	TCCCS SCCS S	CACCTCAATC	4800

AACTATTACG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
ATGAAAATAT	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
CGACCAAAAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
TATTATCTGT	CTTTGTTTTT	GCCATTTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
GCACTCGCTT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
CAGTTCCTGC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
СААССТССТА	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
TTCTTTACGT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
ACATGGAAGA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
TTGGAGCAAA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
AAGCTGCAGA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
GACAATTTGC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
AGAGCTTGCT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
ACGGCATTAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
TTTCCCAACG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
CCTTTATGGA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
CGACTTTGGT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
ATGCAGATAC	: AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
GTAACTATGA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
ATACCTTTCC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
TTCGAGATTC	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
GTTTTGCAC	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
CCTGGCTTG	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
ATGAGTATG	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCA	AGCTCATTTG	6240
GACAAGGGA	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
ACGGTGTCAT	r GCTGGAGCCT	TTATTTAAA	GTGCCATTTA	TGATCCAAA?	GATCAAACTG	6360
CTCGGAAAT	TCAAAAAGAA	ATTGTGGGA	ATCCTGTTTC	TAAAGATGC	GCTAGTCTAA	6420
CTCGGACTA	A CATGGTTTT	GTAGGGACG	ATCCGGTTT	TGGAACCAT	G TATAACCACA	6480
GCACAGGCA	A GCCAACTGT?	ACTGTTCCT	GGCAAAATGT	AGCCCTCAA	TCTGGTACGG	6540

CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	224 ATCTAGTCGG	GTTAACCGAC	тататтттст	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	TTAAAAAAAT	TACATTAACT	TTAGGAGACT	7140
AATATGTTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
TTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
ATTAGTTTGT	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTTCTGTTA	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG		8148

⁽²⁾ INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

		-	-			
60	CATAGAATTG	CTTTTAAGTT	TACTTTACCG	TTCCTGTAAA	TTAATATCCG	TACTCCACCC
120	TTTGACCAGC	TTTTTAGGAG	TTCCATCCAA	CAAGCATCTT	TGCTTGTCTT	AACTTTTAAA
180	TATAAGCTTC	TCTGCGATTT	TATAGATTTA	GGGTGATTAG	AACCTTGCTG	ТТТАААТААА
240	GATACGGAGG	CCTGTTTCCT	TCTGGCTTCT	TCGGCTCATC	TAGTGATATA	ATCAATAAAA
300	GCTCAAAACC	CTAGATAGGC	ACTTTCCTCG	ATTTCATTTC	ACGACATCAA	ATTTCCTATC
360	CTTCTTGGAC	GATTCTTCTA	ATGGGTTTTA	AGTCTTTGAT	TTCTTTTTCC	TATCATTCTA
420	CTGAATAAGG	TTTTGTTTAG	TTGAGATTGC	AACTCAATTG	TCCGCAAACA	TTCTAGCTCA
480	TCGCAATTTC	GAGATAATAG	GACATTGTAA	CCATCTGAAA	TTCAATCCAT	ACTACTTTTT
540	CCTCAAAAGT	AGATAATAGT	AGTCTTAGCT	GTTGATTTCC	TCTAATGTTG	TTTCTTTTGC
600	AACCATACGA	TGATACTCAT	AGAATCTCCT	CCAAAAGGAG	TTCTCACGCG	TGCCAAAAGA
660	CCTCACGACT	TCATCTGAAA	AAATGTGACT	CAAGTTTATA	GCATCTTTTA	AGCATGATAA
720	TTTCCTCACC	GATAATGGAA	AACTCGCTCA	CAACAAAACC	AGTTTTCTAT	AATCCGTTGC
780	CCTCTAACCA	CCACAAGTTA	AGGTGCTTCA	TTACCATATA	TCATATCTCG	AGTTACGGTA
840	CATATCCATT	TTCGATTCTA	CGAGCCTAAT	CAAGACTTAA	ACATACTCCT	TCGTAAGTCC
900	TCCGATCTTT	CTTATTTTTG	CACTTCTGCC	TTGGTGTAAA	ACCAACCACG	TTGCTTTGCG
960	TTCCAGTAAC	TTGGCAAAGT	CTGAATCAAG	CAGATCTGGG	TTGGATTTTT	TTGTTCATAT
1020	CATAAGAATG	CCTAACAATT	AAATCCCTTT	CACTTGGAGC	TTGATGCGAT	CTTACTTGGA
1080	TTAATAAGTC	AAAAGAATTT	TCGATCTTTT	TCTTTGTCGT	ACAATTGATT	CGTAnGCCAA
1140	ACCTCTCTTA	GTCATCAGCA	AATATCTATT	TTTCTTCACT	TTAGCCAAAC	AGCCGATTCT
1200	AAAAGTAATT	TTTACTTGAA	AGAATGAAAA	CATATTTTAA	CCTATTATAT	TATTGTAAGC
1260	ATCATCTACA	CGACTAATTC	AGAGTAGCAA	ACCAACTTCT	CTCTCCGATG	CAATAAATAT
1320	GCGATTACCA	ATTGACCAAC	CTATAGCGCC	ATTACCAATT	TAACTCGATA	ATTTGTACGA
1380	ATAGTTTGTA	TGGTTTGTAA	TCCAAAACAT	TCTTGGGTCT	TTCCGTGTCG	ACCAAAGCCT
1440	TCTTGTTGGA	TGATAAAACG	TTCAATTGCT	GTCCAATTTT	GCGTATAACG	ATTAGCTTCT
1500	CTTCCCAAGT	TGCATCATTT	GCCTAAATCA	CATCCTTCAA	ACAAATTATT	ACTAATTTAT
1560	AATCTGCCAC	TGATAGGCTA	TAAATACTCT	CCAAGTCTTC	ACTCCTTTTT	AATGGGTTCA

			226			
ACGAGCATCG	TATTCATCTT	CTAGGGCTTC	AAGAGTTTTG	GTGCGAATAA	GTTCCGAAAG	1620
GGAAACTCCT	TCAAACTTAG	CCATTGCTTT	CATAAATGTT	TTATCAGCTT	CAGAAACTTT	1680
raatgtaata	GTAGTCATCT	TTTGTGCTCC	CTTTTTTAAT	GGTAACACCA	TTGTATTACT	1740
PTTTAGGTGT	TCAGTCAATA	TAAAAAGAAC	ACCTTCTCAG	CGTTCTTTCT	ATATCTCTGT	1800
CAATGGTGTT	GCGGTATCTG	GTGAGGTATC	ATAAACCTTA	AAGTCTACTC	CGACTCCCAG	1860
ATCAGCTTGA	GCCAGCTGAT	TGACCATGGT	CATATGAGCC	AGTTCCTTGA	TATTGTTTTC	1920
CTTAGATAAA	TGCCCAAGGT	AAATCTTCTT	AGTACGATTT	CCTAGCGTCC	GAATCATAGC	1980
TTCAGCACCG	TCCTCGTTAG	AAAGGTGACC	AAGGTCAGAT	AGGATTCGTT	GTTTGAGTCG	2040
CCAAGCGTAA	GAACCTGATC	GCAAAATCTC	TACATCATGG	TTGGCCTCGA	TAAGATAACC	2100
ATCCGCATTT	TCGACAATGC	CCGCCATACG	GTCACTGACA	TAACCTGTAT	CTGTCAAGAG	2160
GACAAAACTC	TTATCATCCT	TCATAAAGCG	ATAGAACTGC	GGTGCGACTG	CATCATGGCT	2220
TACACCAAAA	CTCTCGATGT	CGATATCTCC	AAAGGTTTTG	GTTTTACCCA	TTTCAAAAAT	2280
ATGCTTTTGC	GAAGAATCCA	CCTTGCCAAG	ATATTTACTA	TTTTCCATAG	CTTGCCAGGT	2340
CTTTTCATTG	GCATAAAGAT	CCATACCATA	CTTGCGAGCC	AAAACGCCTA	CTCCATGGAT	2400
ATGATCTGAA	TGCTCATGGG	TAATCAAGAT	GGCATCCAGG	TCTTCTGGCT	TACGGTTAAT	2460
TTCAGCTAGC	AGACTGGTAA	TTTTCTTGCC	AGACAAGCCT	GCATCTACTA	AAAGCTTCTT	2520
TTTTGAGGTT	TCCAGATAAA	AAGAATTTCC	ACTGGAACCC	GACGCTAAAA	TACTGTATTT	2586
AAAGCCTATT	TCACTCATTC	TAGTCTTCTA	CTTCATCCTC	CCATACTTCT	TCTTTCACTG	2640
CATCCTTATC	ATAAGGGAGT	ACAATGGTAA	AGGTTGAACC	CTTGCCGTAT	TCACTCTTGG	270
CCCAAATAAA	GCCCTTATGT	TGTTTGATAA	TTTCTTTAGC	GATAGACAGT	CCTAGACCTG	276
TACCACCTTG	TGCACGACTT	CTAGCACGAT	CCACACGATA	GAAACGGTCA	AAGATACGTG	282
GTAAATCCTG	CTTAGGAATC	CCCAAACCGT	GGTCAGAAAT	GGATAAAATC	ATCTGGTCTT	288
CAGTTGTCTT	CATTCTGACA	GTGATTTAC	CCCCATCTGG	CGAATACTTA	ATAGCATTAT	294
TTAAAATT	GTCGACAACC	TGCGTCATCT	TATCTGTATC	AATTTCCATC	CAGATAGAAT	300
TGATGGGATA	ATCTCTCACC	AACTCATATT	TTTTCTCCTT	TTCCTGTCCT	TTCATCTTGT	306
CAAAACGATT	GAGGATAAAG	GTAATAAAAG	CAGTGAAGTT	AATCAGTTCC	ACATCTAGGT	312
GACTGGTAGC	ATTATCAATA	CGTGAAAGAT	GGAGGAGATC	CGTCACCATG	CGCATCATAC	318
GGTTGGTCTC	ATCAAGAGAA	ACCTTGATAA	AGTCTGGTGC	TACAGTTTCA	CACAAAGCCC	324
CCTCATCCAA	GGCTTCAAGA	TAGGATTTTA	CGCTAGTCAG	AGGAGTCCGT	AACTCATGGC	330
TAACATTGGA	AACAAAGAGT	CTTCGTTCGC	GTTCTTCCTT	CTCCTGCTCC	GTCGTATCAT	336

GCAAAA	CAGC	CACCAAACCT	GAAATAAAGC	CAGACTCTCG	ACGTATCAAG	GCAAAGCGAA	342
CTCGAA	GGTT	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	349
GGGTAA	TCAA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	354
TATTCA	GAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	3600
TAATCT	GACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	CATATAAAAC	AGAATACTAT	3666
TTAGCCT	rctī	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	3720
CATTCAJ	TTA	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
AATAAT	CTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
CACGTC	TTAT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
TAAAGA1	AAA1	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
TAATACO	CTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
TTCTCAC	GCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
CCCAGA	ACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
rgatac <i>i</i>	AAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
ACGTAGO	CGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	TTTACTATCT	4260
SCTTCCT	CGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
rgcaact	CAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
ATAACCT	TAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
TACGAA	TGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
TAATAT	CTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
ACAACTT	CCL	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
ГСАТСТА	CAA	TTAGTATTTT	TTTCATATGT	TCACCTTTTT	CTCTACTATT	ATACCAAAAA	4680
VATAGTO	AGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
TGCCAG	ATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CAGCGA	ACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
PACATGO	CAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
TCAACA	TCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
CTTTCT	TCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	5040
TCTATA	AAG (GGGAAATGCC	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTTCAAG	5100

TAAAAATTGT	CCTTGAGAAT	TTTTCACAAC	TAAGGCTTTA	AGATAAATAG	GAACCGGCTT	5160
TTTCTTAGGA	GATTTAATTG	GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	5220
GTCCTTGACT	GGGCTTTCTT	CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	5280
GTCCATCAAG	GCTTGATTAA	AATCACCCGG	ACGATCCGGA	TTAATCAAGA	TCTCCATCAT	5340
TGCCTGAAAA	ATTTTTCGAT	TACTTGGAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	5400
CGCCAAGACC	CGCATGACAT	TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	5460
GGAAATGGCT	CCTGCTGTGT	AAGGTCCAAT	CCCTTTCAAG	CTGGAAATTC	CTTCATAGGT	5520
ATTTGGAAAT	TGGCCACCAA	AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	5580
AACTCGAGAA	TAATAGCCCA	AGCCCTCCCA	AGCTTTCAGT	AAACTCTCCT	CAGGCGCAGT	5640
TGCCAGACTT	TCGACAGTTG	GAAACCAGTC	CAAAAATCTT	TCGTAGTAAG	GGATAACTGT	5700
ATCCACCCTG	GTCTGCTGAA	GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTTACT	5760
TCTCCTCCAA	GGCAAATCTC	TTTTGTTTTC	ATCATACCAA	GCGAGAAGTT	TCTCACGGAA	5820
AGAAATGACT	TTCTCCTCCG	GCCACATGAC	GATACCGTAT	TCTTTCAAAT	CTAACATATC	5880
TCTAGTATAA	CACAGAAGGT	TTCACCTGTC	TTTGTATCTG	ΑΤΤΑΤΑΑΤΑ	TTTTCAATAG	5940
ATAGTATATA	ACTITICTAT	CTACTTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	6000
CTAGCCGCAG	GTTGCTCAAA	ACACTGTTTT	GAGGTTGTGG	ATAGAACTGA	CAGAGTCAGT	6060
ATCATATACT	ACGGCAAGGT	GAAGCTGACG	TAGTTTGAAG	AGATTTTCGA	AGAGTATAAA	6120
TCTTATTGAT	GAACTGCTTG	CAGTCTGAGA	AAAAATGAGC	TTGGATATTA	TTTCCAAACT	6180
CACTTAAAGT	CAATTTCAAT	CCACTAGAAC	AAGCCTAGTA	CAGTTCCATC	GCTTTCAACA	6240
TCCATGTTGA	GAGCTGCTGG	ACGTTTTGGA	AGACCTGGCA	TGGTCATAAC	ATCACCAGTT	6300
AAGGCAACGA	TGAAGCCTGC	ACCTAATTTT	GGTACCAATT	CACGAATGGT	AATTTCAAAG	6360
TTTTCTGGTG	CTCCAAGCGC	ATTTGGATTG	TCTGAGAAAC	TGTATTGAGT	TTTAGCCATA	6420
CAGATTGGCA	ATTTGTCCCA	ACCGTTTTGA	ACGATTTGAG	CAATTTGTGT	TTGAGCTTTC	6480
TTCTCAAAGT	TCACTTTGCT	ACCACGATAG	ATTTCAGTGA	CAATTTTTTC	AATCTTTTCT	6540
TGGACAGAAA	GGTCATTATC	ATACAAACGT	TTATAGTTAG	CTGGATTTTC	AGCAATTGTC	6600
TTAACAACTG	TTTCGGCAAG	TGCTACTCCA	CCTTCTGCTC	CATCAGCCCA	GACACTAGCC	6660
AATTCAACTG	GTACATCGAT	TGAGGCACAG	AGTTCTTTTA	AGGCTGCAAT	TTCAGCTTCT	6720
GTATCAGATA	CAAATTCGTT	AATAGCTACA	ACTGCTGGAA	TACCGAACTT	ACGGATATTT	6780
TCAACGTGGC	GTTTCAAGTT	AGCAAAACCT	GCACGAACTG	CCTCTACATT	TTCTTCAGTC	6840
A C A C C C TI C TOTAL	#ACCCACACC	3.CC3.000C3.000	TOTAL ACCCC AC	C	CACAAMAACA	6000

					CTCAGCACCA	696
AGGTCCGCAC	CAAAACCAGC	TTCAGTAACA	GTGTAATCAG	CCAAGTGAAG	GGCTGTTGTC	702
GTCGCCAAAA	CAGAGTTACA	GCCATGAGCG	ATATTGGCAA	ATGGACCACC	GTGTACAAAG	708
GCAGGTGTAC	CGTAAATTGT	CTGAACCAAG	TTTGGCTTAA	TAGCATCCTT	CAAAATCAAA	714
GCCAAGGCAC	CCTCAACCTG	CAAATCACCT	* ACAGAAACAG	GCGTACGGTC	ATAGCGATAA	720
CCAATAACGA	TATTCGCCAA	ACGACGTTTC	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	7260
ATTGCCATGA	TTTCTGAAGC	AACTGTAATA	TCAAAACCAT	CCTCACGTGG	AATACCGTTT	7320
AGAGGACCAC	CAAGACCAAC	AGTCACATGG	CGGAGCGTAC	GGTCGTTCAA	GTCCACAACG	7380
CGTTTCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAATCAAGG	CAGAAAGGGC	ATTGTTGGCA	GTTGTAATAG	CATGCATATC	TCCAGTAAAG	7500
TGGAGGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGC	AGCACCACCC	7560
TTGATCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCTTGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTGGGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
					GTCATAAGAA	7800
					TGCGATTTCA	7860
					ATATCACAAA	7920
ACAAGATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
	СТТТСТТААА					8040
					GTACAATAGT	8100
GCTATGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CCTCCCCTCT	8160
	ATTCTACAGG					8220
	TTTGTTTAAT					8280
	GAGAAATTAC					8340
	AGGTCTTGAT					8400
	AGGAAGTTCA					8460
	AGATTTCTTC					8520
	CCCTAGTCAA					8580
CTGGTTGATG	TTACCGAAGA	TCATCTGGTT	GACATTGCAC	GAAAAAGTCT	TATCAAGAAT	8640

PCT/US97/19588 WO 98/18931

			230			
CAAGCAGATT	TAATCATCGC	GAATGACCTG	ACTCAAATTT	C <u>AGCA</u> ÇATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
TGGCTGTAAC	GGGTTCAATC	GCCTCTTATA	AGTCGGCAGA	TTTAGTCAGT	TCTCTAAAAA	8880
AACAAGGCCA	TCAAGTCACT	GTCTTAATGA	CTCAGGCTGC	TACAGAGTTT	ATCCAACCTT	8940
TGACACTACA	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	TTTATTTATC	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAGC	TCCTGCTATG	AATACAAAAA	9180
TGTATGACCA	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAG	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTTTTT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
TTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	GTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
TGACGGTTAA	CACGATTACG	ATTCTACCGA	CAAGCTACCT	CTTCTCTCCC	TTCGTACCAA	9600
ACGGAAACAT	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	CTTCCTATTT	GGAAATGTTT	9780
атаатссааа	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
TGGTCATTTC	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	TTGAAAAAAT	9900
AAAAACAGG						9909

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 120 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA

PCT/US97/19588

231

TAAAGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
СТТТАСАААА	СААСТТСАТА	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
таттстттса	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGAAGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
TCACCCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAGTGTTCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATTGAAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGGCGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTACGAACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGTGGCGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCAGAACTC	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAC	TCGAAGTGAC	1080
TCCAGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTCTCAA	GCAACT		1126

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGCAACAA A	AAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAGCCAA G	ACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GGCATATCCG T	GATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CGCAATATAT T	AATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAAGCTAA T	TTTTTDAAAT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GGCATTTGGC C	САТАТТСТС	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

			232			
AAATCACCAA	GGATGCAGTC	AAAAATGCTT	TTAAAGAACC	TCGTAAGATC	GATATGGACT	420
TGGTCGATGC	CCAACAAGCT	CGTCGGATCT	TGGATCGCTT	GGTAGGGTAT	TCGATTTCGC	480
CTATTTTGTG	GAAGAAGGTC	AAGAAGGGCT	TGTCAGCAGG	TCGCGTTCAG	TCCATTGCCC	540
TTAAACTCAT	CATTGACCGT	GAAAATGAAA	TCAATGCCTT	CCAGCCAGAA	GAATACTGGA	600
CAGTTGATGC	TGTCTTTAAA	AAGGGAACCA	AACAATTTCA	TGCTTCCTTC	TATGGAGTAG	660
atggtaaaaa	GATGAAACTG	ACCAGCAATA	ACGAAGTCAA	GGAAGTCTTG	TCTCGTCTGA	720
CGAGTAAAGA	CTTTTCAGTA	GATCAGGTGG	ATAAGAAAGA	GCGCAAGCGC	AATGCTCCTT	780
TACCCTATAC	CACTTCATCT	ATGCAGATGG	ATGCTGCCAA	TAAAATCAAT	TTCCGTACTC	840
GAAAAACCAT	GATGGTTGCC	CAACAGCTCT	ATGAAGGAAT	TAATATCGGT	TCTGGTGTTC	900
aaggtttgat	TACCTATATG	CGTACCGATT	CGACTCGTAT	CAGTCCTGTA	GCGCAAAATG	960
AGGCGGCAAG	CTTCATTACG	GATCGTTTTG	GTAGCAAGTA	TTCTAAGCAC	GGTAGCAAGG	1020
TCAAAAACGC	ATCAGGTGCT	CAGGATGCCC	ATGAGGCTAT	TCGTCCGTCA	AGTGTCTTTA	1080
ATACACCAGA	AAGCATCGCT	AAGTATCTGG	ACAAGGATCA	GCTTAAGCTA	TATACCCTTA	1140
TCTGGAATCG	TTTTGTGGCT	AGCCAGATGA	CAGCGGCCGT	TTTTGATACC	ATGGCTGTTA	1200
AATTGTCTCA	AAAAGGGGTT	CAATTTGCTG	CCAATGGTAG	TCAGGTTAAG	TTTGATGGTT	1260
ATCTTGCCAT	TTATAATGAT	TCTGACAAGA	ATAAGATGTT	ACCGGACATG	CTTGTTGGAG	1320
atgtggtcaa	ACAGGTCAAT	AGCAAACCAG	AGCAACATTT	CACCCAACCG	CCTGCCCGTT	1380
ATTCTGAAGC	AACACTGATT	AAAACCTTAG	AGGAAAATGG	GGTTGGACGT	CCATCAACCT	1440
ACGCGCCAAC	CATTGAAACC	ATTCAGAAAC	GTTATTATGT	TCGCCTGGCA	GCCAAACGTT	1500
TTGAACCGAC	AGAGTTGGGA	GAAATTGTCA	ATAAGCTCAT	CGTTGAATAT	TTCCCAGATA	1560
TCGTAAACGT	GACCTTCACA	GCTGAAATGG	AAGGTAAACT	GGATGATGTC	CAAGTTGGAA	1620
AAGAGCAGTG	GCGACGGGTC	ATTGATGCCT	TTTACAAACC	ATTCTCTAAA	GAAGTTGCCA	1680
AGGCTGAAGA	AGAAATGGAA	AAAATCCAGA	TTAAGGATGA	ACCAGCTGGA	TTTGACTGTG	1740
aagtgtgtgg	CAGTCCAATG	GTCATTAAAC	TTGGTCGTTT	TGGTAAATTC	TACGCTTGTA	1800
GCAATTTCCC	AGATTGCCGT	CATACCCAAG	CAATCGTGAA	AGAGATTGGT	GTTGAGTGTC	1860
CAAGCTGTCA	TCAGGGACAA	ATTATTGAGC	GAAAAACCAA	GCGTAATCGC	CTATTCTATG	1920
GTTGCAATCG	CTATCCAGAA	TGTGAATTTA	CCTCTTGGGA	CAAGCCTGTT	GGTCGTGACT	1980
GTCCAAAATG	TGGCAACTTC	CTCATGGAGA	AAAAAGTCCG	TGGTGGTGGC	AAGCAGGTTG	2040
TTTGTAGCAA	AGGCGACTAC	GAGGAAGAAA	AGATGGCTCT	TTGTCAACTG	TAGTGGGTTG	2100
AAGTCAGCTA	AGCTCGAGAA	AGGACAAATT	TTGTCCTTTC	TTTTTTGATA	TTCAGAGCGA	2160

233

TAAAAATCCG TTTTTTGAAG TTTTCAAAGT TCCGAAAACC AAAGGCATTG CGCTTGATAA 2220
GTTTGATGAG ATTATTGGTC GCTTCCAATT TGGCGTTAGA ATAGTGTAGT TGAAGGGCGT 2280
TGACGATTTT CTCTTTGTCC TTTAGAAAGG TTTTAAAGAC AGTCTGAAAA AGAGGATGAA 2340
CCTGCTTTAG ATTGTCCTCA ATGAGTCCGA AAAATTTCTC CGGTTCCTTA TTCTGAAAGT 2400
GAAACAGCAA GAGTTGATAG AGCTGATAGT GATGTTTCAA GTCTTGTGAA TAGCTCAAAA 2460
GCTTGTTTAA AATCTCTTTA TTGGTTAAAT GCATACGAAA AGTAGGGCGA TAAAAATGTT 2520

(2) INFORMATION FOR SEQ ID NO: 15:

. . .

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10993 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC 240 GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 ANTAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATOTO TGTAATOCGA ATACOTGGCG TATOATOGAT ATAGATACTG GCGTTAGOTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 720 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

234 TATTCTGTAA ATCACCTTGA TTATCAAGGA TAGTACGAAC CGTTGTTGCA TCTATGGCAT	1080
CACCACGATC GGATAAATCG ACCATGGCTT GGAAAATCAA ACGATGGGCA TACTTAAAAA	1140
AGTCCCGAGA CTCAATGTAT TCTCGCACAA AAACAAGTTT ACTCTCATCA ATAAAGATAG	1200
CCCCTAAAAC GGATTGCTCA GCTAAGATAT CTTGAGGTTG TACTCGTAAC TCTTCTACTT	1260
CTGCCATCAG ACTTCCCTTC CTTTTACAAT CTTGTCAAGA AGGTGTAAAC TTATCCTTCT	1320
TTCACACGAA GATTGATTAC ACTTGTGATA TCTTGATAGA TTTTCACTGG CACATCAATC	1380
AAACCAACCG CTCGAATCGG AGCTTGTACT TGAATATGAC GTTTATCAAT CTTAATTCCA	1440
AATTGCTTTT GCAATTCTTC TGCAATCTTC TTATTGGTAA TAGAACCAAA GGTACGACCA	1500
TCTGGACCAA CTTTTTCAAC AAATTCTACA ACAGTTTCTT CTGCTTCAAG TTGTGCTTTA	1560
ATTGCTTTTC CTTCTGCAAT CATCTCAGCG TGAGCTTTTT CTTCCGATTT TTGTTTACCA	1620
CGAAGTTCAC CTACAGCTTG AGCAGTCGCT TCTTTGGCTA GATTCTTTTT GATAAGAAAG	1680
TTTTGCGCAT ACCCTGTTGG TACTTCCTTA ATTTCGCCTT TTTTACCTTT TCCTTTAACA	1740
TCTGCTAAAA AGATTACTTT CATTCTTCTT TCTCCTTTTC CTTCATTTCA TTTAATACAA	1800
TTTCTGTCAG TTTTTCACCT GCTTCTGACA AGGTTACATC TTTAATTTGA GCTGCTGCCA	1860
AATTAAAGTG GCCTCCACCG CCTAACTCTT CCATAATCCG TTGTACATTC AGTTTACTAC	1920
GACTTCGAGC TGAGATAGAG ATAAATCCTT GTGTATTCTT CGCAAGAACA AAACTCGCTT	1980
CAATACCTGA CATGGCTAAC ATGGCATCTG CTGCCTTACT AATAACAACT GTATCATAGC	2040
ATTTCATGTC CTTAGCCTCT GCTATTAGTA CATCTGAACC TAATTTACGC CCCTGTAAAA	2100
TAAGTTCATT GACCTCACGA TATTCTTCAA AATCTGTCGC AGCGATTTCC TGGATAGCAA	2160
TACTATCACT TCCGCGCGTT CTGAGATAGC TAGCAACATC AAATGTCCGA CTAGTTACTC	2220
GCGAGGTGAA ATTTTTAGTA TCCAACATCA TACCAGCCAT CAAGACACTT GCTTGCATAC	2280
GACTCAAACG ATTTTTCTTA GAATTCTGGA ACTGAATCAA TTCCGTTACC AACTCACTGG	2340
CACTACTTGC ACCACTTTCG ATATAAGTAA TAACCGCATT ATCTGGAAAA TCCTGATCCC	2400
TTCTATGGTG GTCAATAACA ATGGTTTGGG TAAATAAATC ATAAAATTCT TTTGATAATG	2460
TTAAGGCTGT CTTTGAATGG TCTACAAGAA TCAACAAAGA ACGATTGGTC ACCATCCCCA	2520
TTGCATCCTT AACAGACAAC AACTTCGTAA CTCCTTCTTT TTCTATGAAT GAAACAGCTC	2580
GTTCAATATC TGGAGACATT TGTTCTTCAT CATAAAGAGC ATAGCTATTT TCAATCACAT	2640
TGCTGGCGAA CAACTGCATA CCTACAGCAG AGCCCAAAGC ATCCATGTCT AAATTTTTGT	2700
GACCGACTAC AAAAACCTGA TCTACACTCC GAATCTTATC TGAAATAGCT GTCATCATAG	2760
CGCGCGTACG AGTCCGTGTA CGCTTGATTG AAGCAGCAGA CCCACCACCA AAATAAACTG	2820

.

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	288
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	294
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	- 3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	TCTAAATCAA	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	CTTAAATAAA	AAAACATAGC	3600
СТССТАСААА	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
TTTTTTAKAA	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATTTG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTTT	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATCTTT	тасатестта	CCACCACCTT	CTTCCD ACAC	ጥጥጥጥጥ አልር አ	4550

236 4620 CGATTTATAG TTGCTCCTGT AGTATAGATA TCATCTATAA GTAGGATTTT TTTAGGAATA GTGACTCCAC TTTTAATAAA GAAAGGAAGT TCTGTCCCCA AGCGCTCTGA ACGATTTTTA 4680 GAAGAACTGG CTCTCTCTC TCTTTTCTCT AATAAATCCA GATACTCAAA GCCTGCTGCC 4740 TCTACCAAGC CCTCAACCTG ATTAAATCCT CTATTAGCAT ATCTATCAGG ACTTAGGGGA 4800 ATTACAACAA ATTGATACTC TTTGTACTTT TTCAACTCCT CACTTAAAAA TGAAGCGAAA 4860 ACTITICITA ACAGGAAGTO TOCATCAAAC TTATACCGAC TGAAAAAATC CTTCATAGCT 4920 4980 TGATTGTAAG TAAAAATCGC TCTATGACTG ACTTCAACTC CCTCTTTACA CCAAAGTTGA CAATCTTGAC ACTTTGTTGA CAACTCTGTT TTCATACAAT TTGGACAGTT CTCTTCCCCA 5040 ATTCTTTCAA AAGTAGAATC ACAGTCTGAA CAAAGACAAG AGTCATCATT CCTCAGAAGT 5100 AAGAGACTAC TAAAAGTTAA AACAGTCTTC ATAGTCTGCC CACATAACAA GCACTTCATA 5160 GACCAGCCTC CTTATTCATC ATCTGAATTT CCTTAATCGC CTTCTTGATT GAAGCATTTA 5220 ACCONTRATE GAAGAAAAGC AAATCTCCTG TCGGTCTATC CATGCTTCGT CCAACTCGTC 5280 CACCAATCTG AATCAAACTA GACTTGGTAA ACAAACGATG ATTGGCCTCT ACTACGAAAA 5340 5400 CATCCACACA AGGGAAGGTA ACTCCGCGCT CCAAGATTGT CGTACTGATA AGTATTGTCA GTTCTCCATC TCGAAAAGCT TGTACTTGCT CTAATCGATC CTCTGTTACA GAAGATACAA 5460 AGCCAATTIT CTCATTTGGA AATTGCTCCT GTAAGATTTC TGCTAACTGC TCCCCTTTCT 5520 5580 TARTTTCTGA AGCAAAAATG AGTAACGGAT AAGCTGTCTT TCTCTGCTTC TCAATATAGG ACTITAACTI TGGTGACAAA CGATTCTTGT CTAAGTAGCG ATTAAAATCC GATAACCAAA 5640 5700 TTGGTTTTGG AATAATCAAC GGATTTCCAT GAAACCGTCT CGGTAAATTC AGTCTTTTTA GTTCTCCTAA ACGGACCTTT TTATCTAACT CATTGGTCGA AGTCGCTGTT AAAAAGATTC 5760 TCAATCCATT CTCCTTTACA CTATTCTTGA CAGCGTGGTA AAGCATGGGA TTATCAACAT 5820 AAGGAAAAGC ATCTACTTCA TCCACTATCA GCAAATCAAA AGCTTGATAA AACTTCAATA 5880 ACTGATGGGT TGTTGCAACA ACTAGTGGTG TTCGAAAATA AGGTTCCGAT TCTCCATGTA 5940 GCAAAGCTAT CCCGCAAGAA AAATCCTGTT GCAGGCGCTT GTACAGCTCC AAACAAACAT 6000 CTATGCGAGG ACTAGCCAAA CACACTGCAC CACCCGCATT GATCACTTTA GCCACTACTT 6060 6120 GATAAATCAT TTCTGTCTTT CCAGCTCCTG TTACCGCATG AACTAAGGTT GGCTTTTGCT 6180 TGTCTACTAC TTGAAGCAAT CCCTCTGACA CCTTCTCTTG AAAAGGAGTT AATTGGCCGC 6240 GCCATTTGAG AACATCTTGC TTTGGAAAAT CCTCCTGCGG AAAATAGTAT AAAGTTTGAT CACTTCTGAC TCGCTTCATC AGCAAGCACT CTCGACAATA GTAAGCACCG ATGGGCAAAT 6300 ACCATTCTTC TAGAATAGTA CTATTACAGC GTTGACAGAA AAGTTTCCCC TTCTCCTTTC 6360

TCATTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
ATAAACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
TTTAGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
AAGTCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AAGAAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ACTGCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
AGCCTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
ATGTCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
TTCGTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
AAGAACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
TCCTTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
TGATTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATGGAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
TGTAAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
ATAAAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
CGTTTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
CTTTGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
AAGAGGTATT	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
TGTTAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
ATTTAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
ACAAGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TATTGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
AACTATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
TCCTGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
TGATGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
AACAGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
AGTAGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	AAAATTCTAA	7980
CATTCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
TCCTCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

238 8160 CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 8400 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC **B640** CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG 8700 TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATITCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTITAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC 9540 CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

239

TTATTCAAGG	CTGCTGCCAT	TGTAGCTGCA	ACTTCAGCTT	CGAAGTCGTT	TGCAGCTTTC	9960
TCGATACCTT	CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
TTTTTTGCAA	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	TACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT	AATTCTCCTA	TATTTTTTGA	AAATAGGAGA	GCGCGGCTAA	10980
GCCCGCCTC	CGG					10993

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8411 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG GTTTGGCACC TCGATGTCGG CTCGTCGCAT CCTGGGGCTG TAGTCGGTCC 60 CAAGGGTTGG GCTGTTCGCC CATTAAAGCG GCACGCGAGC TGGGTTCAGA ACGTCGTGAG 120 ACAGTTCGGT CCCTATCCGT CGCGGGCGTA GGAAATTTGA GAGGATCTGC TCCTAGTACG 180 AGAGGACCAG AGTGGACTTA CCGCTGGTGT ACCAGTTGTC TTGCCAAAGG CATCGCTGGG 240

			240			
IAGCTATGTA	GGGAAGGGAT	AAACGCTGAA	AGCATCTAAG	TGTGAAACCC	ACCTCAAGAT	300
GAGATTTCCC	ATGATTATAT	ATCAGTAAGA	GCCCTGAGAG	ATGATCAGGT	AGATAGGTTA	360
GAAGTGGAAG	TGTGGCGACA	CATGTAGCGG	ACTAATACTA	ATAGCTCGAG	GACTTATCCA	420
AAGTAACTGA	GAATATGAAA	GCGAACGGTT	TTCTTAAATT	GAATAGATAT	TCAATTTTGA	480
GTAGGTATTA	CTCAGAGTTA	AGTGACGATA	GCCTAGGAGA	TACACCTGTA	CCCATGCCGA	540
ACACAGAAGT	TAAGCCCTAG	AACGCCGGAA	GTAGTTGGGG	GTTGCCCCCT	GTGAGATAGG	600
GAAGTCGCTT	AGCTTTAATC	CGCCATAGCT	CAGTTGGTAG	TAGCGCATGA	CTGTTAATCA	660
TGATGTCGTA	GGTTCGAGTC	CTACTGGCGG	AGTAATEGAT	AAAAGGGaAC	ACAGCTGTGT	720
TCCTCTTTTT	GTATCAATTT	GTATCACCAA	GCATTTTCAT	AAGGAAGTCT	GTTATTTCTT	780
GAGAACTTTC	TTTTTTCCA	TGTGCAATCC	AAGTTTGGCA	GACACCAAAA	AGTGCATGAG	840
TTAGATAGAT	GCTACTATAT	TCTAATTCAG	TGGTATTTAG	ATTCAGTTGC	ATAAATCGCT	900
TTTGTAAATC	TGTACTAAGC	ATGATATGAA	GTTTATTTCG	TAAGAAATTT	TGGATTTCTT	960
TAGTCCCATT	TTCAGAAAGA	AGGGCAGCCA	GAAGTGGTTC	TGACTCTAGA	TATTCAAAAA	1020
CTTCTAAAAT	AGCGTCTCTT	TTGTGATGAG	CATGTTTTTG	AAAAATATAT	TCAAATGTAT	1086
GGAATAGCTT	GCTTTGATAG	TGCTCAATCA	TATCATACTT	ATCCTTATAG	TGAGTATAGA	1140
AGCTGGAACG	ACTAATTCCG	GCTTTTTCTA	CTAATTTGAC	AGTAGAAATT	TTATCAAATG	1200
GCTGTTCCAT	CAGTAATTGT	ACCATAGCAT	TTTCAATAGT	TCGCTTTGTT	TTTAAGCGTT	1260
TGTTACTTTC	TTGCATATTT	CCTCCTTGTA	AACAAATTAG	ACTATATGTC	TAAAAATAGA	1320
TITTTTATCT	TGTAATTTAG	ΛΤΤΤΤΤΤΑΑΤ	GTATAATCTA	TTATATCAAA	ATTTTAGACA	1380
Atatgttaa	AAAAGGAGAA	ACTAAGTTTA	AAGAATSGAA	AGCAATTTAA	AAAAAACCAA	1440
CCTTTATTAT	TGTCATGATC	GGGATTTCTC	TTATTCCAGA	TCTGTACAAT	ATCATATTTT	1500
TGTCATCAAT	GTGGGATCCA	TATGGGCAAT	TGTCTGACTT	ACCTGTGGCA	GTTGTAAATA	1560
atgataaaga	GGCTTCCTAT	AATGGTAATA	CTATGGCAAT	AGGAAAAGAC	ATGGTGTCCA	1620
atttaaaaga	AAATAAAACC	TTGGATTTTC	ATTTTGTAGA	TGAAGAGGAA	GGAAAGAAGG	1686
GATTGGAAGA	TGGCGATTAC	TATATGGTAG	TGACTTTACC	AAGTGATTTA	TCTGAAAAAA	174
CAACTACATT	ATCCAATATT	CAATCGACAG	CAGCTTATCA	ATCATTGACA	AGTGAGCAAC	180
AAACTGAGAT	AAGTGATTCT	GTATCTCAAA	ATTCAACTGA	TAGTATTCAA	TCGGCTCAGT	186
CAATTGTAGC	TTTAGTACAA	GATTTACAGG	GAAGTTTAGA	AAACTTACAA	AATCAATCTT	192
CTAATCTTTC	GACTTTAAAA	AATCAATCTA	ATCAAGTATC	ACCTATTACT	TCTACTTCTT	198
TC3T3CC3TT	COCA ACOCCA	mma a cacaca	# ************	かこかずるごするこ こ	A A DOTA COTOC	204

CTGCCAGTCA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
AATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	aataaattgg	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	CTTTCAAAAA	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	CAACAAATAT	2580
GATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
TCAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	2880
TGCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TTCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
СТАТТТАСТА	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
AATCGACCGA	TTAACTGGTC	GATTTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ATTCCAAATA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3190
• • • • • • • • • • • • • • • • • • • •			2000	2	· CORACTT	3240
TGAGCTTGTT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TTAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
ACATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TTATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
TCAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TTAGTATTTT	CTATTTTTTC	TGTTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

			444			
ACGTTAGCAA	GTTGATTTAA	AAATGAGGCC	TGATTATCCA	AGGTATOTTC	ATTGAACTTG	3840
ACATCATTGT	AAACAGATTG	ACTCGCAACT	GCAATCGGAA	GAGAGTATTG	ATTTTCATAT	3900
AGGGTAAGAT	TATCTTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT	3960
GAGATATTGT	ACTGGATACC	AAATAAACTA	TCAGCCAAAA	TACTATTATT	TGCATATCGG	4020
AGATTGAGAT	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA	4080
CGATTTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTTCAT	ACTGTCATTT	4140
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TGTTGAGAAA	4200
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACTTCGAG	AAGCAAATCC	CCATTCCTTA	4260
GCAATTCCGT	CCATTTGAGA	TGAAGCATTT	AAACTCATTT	CAACCAGTAT	AAATAAAGAG	4320
ATTAGAATGG	CAAATAGATT	CACAGATATA	AACTTTTTGA	TAACTGCAAG	GAGTAAAAGA	4380
GAATAGACAA	CCAAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA	4440
TGCGATTTTA	GATAGATGGT	AGCTAAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA	4500
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTTAAGACTT	CTGCTGCTGT	GTAAATTAAC	4560
AAGGTAGAGA	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCTTGC	4620
CAAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATTA	GAAATGCAAA	GAATATTACA	4680
TATATGAGTT	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	AAAATAAAAT	GGTCAAAATA	4740
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTITICITICIT	GTCAAAGGAA	4800
CCAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAGCTAC	TTTCAGTTTG	AAACTTTGTA	4860
ACTTCAGTCA	ATTTTTCCCC	ATGTGTCTGT	AAATCAAATA	GAGTGGGAAG	AGTCATAATC	4920
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATGAAAT	CAAGAACAGA	TGATTTTCGA	4980
GTCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAGAAAA	TAAGAAACAA	TACTGTCATA	5040
TATCCAAAAT	AATAATTTTG	AATAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT	5100
TTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTTATAATTA	AAGGAATCAA	GATAAAAACA	5160
TCTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA	5220
GATAAGGCTA	GTTTTAAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	ACTAAAAAAG	5280
GTTGACAGAC	CAATCAATCC	AAATTTTAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA	5340
TTCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT	5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTTCCA	5460
TGTAGGATAT	TTCGTAAGGC	TACATCAAAA	ATAACGTATT	GATGAAAGCC	ATCTCCTAAT	5520
AGAGGAGAGT	TOTOGOTATT	ССАСТАСАТА	CTTTGAGATA	GATATACTCC	AGACATAATC	5580

ACTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
TTACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
TTAGTCTTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
GTAGGTTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
CAATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
TACAAGGACA	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCCTGACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AAGAATTGAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
TAATGCAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
TGTCAAGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
ACTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
TTTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
CTTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
GTGAGTACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAAGTCAATC	AAGAAJ:	J THACCANGT	AATGGAPTGG	ATT. ILIUAC	COTTAGTAGG	5730
CTCGTCCAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
TTTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
GTTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TCCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
TCCTTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
AGCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GGCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
ACCAAGAGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
TGATTTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
ATTGACATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

**...*

			244			
CAATGTTTTT	CTCCTATATG	TGTAATATAT		AGAAAATACA	GAAATATTCA	7380
AATTTTTATT	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	CATTAAAAAA	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTTAA	CAGGAGACCG	7560
TCCAACAGGA	AAATTGCATA	TTGGACATTA	TCTTGGAAGT	CTCAAAAATC	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
TCATGCCAAA	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GGTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
TGGGACAGAT	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
TGCATATAAC	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
TTATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G					8411

(2) INFORMATION FOR SEQ ID NO: 17:

*

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9064 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGCCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TATTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CATGGAATTT	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AGCAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATCTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATCCCTGAAA	ACCAACCCTT	300

TTGTTTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
TGCTTAAAGA	AAGCATGTTG	CAGTAATCCT	CTATAAATCA	ATTCTTCCAT	CAGTGGAACC	600
AGAAAGAACA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATACAGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCGGAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA	AGATATTTTG	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
TAGTTTTGGA	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA	TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
TCACCTTGTC	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTTT	TTTAAGGCTA	1080
ACCTGACTAC	TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAAAATCA	ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	TTATCAAAAA	GATGAGCAAA	1200
AGAATTTGAA	ACCATAAGGT	TTTTCCAAAA	ATAAATTTAA	AGCGATTTCG	AATATCTACT	1260
TCCTTGATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGTAAAAA	TGTCCCTAAA	1380
AGAATATCCA	ACACACTACT	CAAGAAAATA	АСАААААТА	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC	ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAĄAAGGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACCTCTAT	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
TTGGTTCTAG	GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GGTTAAGTCT	CTAAAAAAAT	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ATATCATTGT	TTTTTAAAAT	TTTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040

TTGTTAAAAA	ATTTAAAAAG	TAAGCATTAA	AAACATACTT	тсстстттат	ATTGTATTGA	2100
TACCAACTTG	TTTGTAGACT	TTTCATCCTG	CTATCACATA	TCATTTTGAC	AGGCGAAACA	2160
ATATTAAAGA	AACTCCCCTG	TAAATTAAGC	TAGCAAATAC	AGGGGAGAAA	TTTATTTTTT	2220
AGAGAGTACT	ATCCGTATCC	TTTTTGGAAG	ATTTTGAAAA	TATTTTTCTA	ATTAAGTCAT	2280
CCATATAAGG	ACCAAATATA	CCAACTACTA	AACCAATAAT	AAAACTTTTA	AAATCCATAA	2340
TTACCACCAA	CATATTGCTG	CATAGGCTAC	ACCTCCAAGT	ATAGCTCCAC	CTGCAGCACC	2400
AGTTACACCT	ATTCCTATAG	CAAATGGTCC	CAATAGAAAT	GTCAAACCGT	TGTTGCACAC	2460
CCATCAATTG	CGCCATATGC	AACCCCTGCT	GCACAACTAA	TTTTTCTTCC	CCAATCAATA	2520
TCTCCACCTT	CAACGCAAGC	AAGCATTTCA	TTATCCATAA	CTGCAAATTG	TGACATCATT	2580
TTTGTATCCA	TATAGTGTAT	CACTTTTCAG	TTACGGAACA	AGTTTAATAT	AAAAATTATC	2640
AAAAAAACAT	AGGCAATAAA	GAGAAAAATT	AATTTATCAT	AGATTAGAAA	TAATATGACA	2700
AAACAATTCA	ATGATGTTAA	TTCAATAGTC	TTTTGTTTTT	TATCGGAGAT	ACTTATGGAT	2760
AGATAAATAA	GATAGGTTTG	AAAAGCGAAG	AGAATAATAA	AGAATATAGC	CTTCATAAAA	2820
TTTAGCTTTC	ATTTTTATGA	TGTAGCGGTA	TAGGCTAAAT	ATCCACAAAC	CACTGCTCCT	2880
CCAATTCCTC	CTATTGCAGC	GCCCCATGGT	CCTAGAAGTC	TCCCATATTT	CACTCCACCC	2940
GCTGCACAAC	CTAAAGCAGC	AACTACAGCT	GCTCCTCCGG	AATTACCTCC	ATAAACCTCA	3000
CTCAGCATTG	TTTCATTTAT	ATTACAATAA	GTATTCATAC	AAGTCTCCTT	TTATTAAAAT	3060
CCACCCGTTG	CCCCTGTTAC	TCCTGCCCAA	AGATCCACAC	CAAATTTAGC	TCCTATGTAT	3120
CCACATGCTC	CCATAAATGG	TGCTCCAACA	CCACTCGCAG	CACAAATAGC	TGTCCCTAGC	3180
CCCCAGCCAC	CAAAAGCAGC	ACCACCACCT	TCTAAGACAT	TAGTTTGCCA	ATTATTCTTG	3240
CCTCCTTCAA	TACTAGATAA	CATAGTTATA	TCCATTTCAT	GAAATTGTTC	CATAATTTT	3300
GTATCCATGA	CAAATACTCT	TTTTTATTTT	TAATTTTTGT	CTTGTTGTAA	CTTTGACAAG	3360
TTTAGTATAT	CATCGTTTTT	TTTTTAAAAT	CATCCAGATT	TTGAATAGTC	ATCGAAACGT	3420
CTTGAATTGC	AAAAATTACA	TTAGACTTCC	TGCAAAACTA	GAATCCTAGT	TCATGATTGA	3480
TAATACCAGC	ACTCAAATTC	ATTCGTAATC	CGAAGCGTTT	ACGATGACTT	CGATAGGTTG	3540
TTGAAAACAT	TTTAAACGTT	TTTACTTTGG	CAAAGATGTT	CTCAACCTTG	СТТСТСТССТ	3600
TAGATAGCGC	ATGGTTACAG	GCTTTATCTT	CAACTGTTAG	CGGTTTGAGT	TTGCTGGATT	3660
TACGTGAAGT	TTGTGCTTGA	GGATATATCT	TCATGAGCCC	TTGATAACCA	CTGTCAGCCA	3720
AGATTTTACC	AGCTTGTCCG	ATATTTCTGC	GACTCATTTT	GAACAACTTC	ATATCATGAC	3780
AATAGTTCAC	AGTGATATCC	AAAGAAACAA	TTCTCCCTTG	ACTTGTGACA	ATCGCTTGAG	3840

TCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	3900
TTGATTTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3960
GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	4020
TTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
TATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
TGAACACCAA	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
ATAGAACTAT	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
TTCTAACAAT	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
TTTTCTTTTA	TACTTCATTA	AGCTCTACTT	TTTATAATAC	TTCAAGCCCC	ACATGAGCAG	4500
AAGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
TCCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TTCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	ТТААТААСТА	CTAAAAGAAA	4740
TTGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGGCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
AGTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
ACATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
ATGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CCTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
TAAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
rgtagact tt	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
CTCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
CCGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
CAAATATACC	AACTACTAAA	CCAATAATAA	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
TGTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
PTGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

248 TGCTTTGGCA AAATCTCCCC AATTGCATCC GCCACCTTCA ACGCAAGCAA GCATTTCAGT 5640 ATCCATAACA GAAAATTGTG ACATCATTTT TGTATCCATG ACAAATACTC CTTTTTTAAA 5700 AAACTAAAAT AAATCAGAAT AGAATCCTCA TAATTTTACT ATAAGTCTTA CCAACTTAGT 5760 CCCAATTTAT CACCAACCAT ACCTCCTAAG CATGTTAATC CACCCCCAAT TGCACCAATG 5820 TGTGCTCCAA CAAATGCACC AGCAAGTCCA GCTACTCCTA AAGTGGCCAA ACCTGCTCCA 5880 GTTCCACCAG TTATAATTCC CGTAGTGACT CCTGTAATCA GTGCATTTTG ACAATCAGTG 5940 GAGCTATACC CCCCTTCAAC TTTCGCAAGC ATTTCAGTAT CCATAACCTC TAACTGTGAC 6000 AACATTTTTG TATTCATGAT GAATACCTCC TTTTTATTTT CAATTTGTTA CCAAAGTCTT 6060 AAATTCAATA AACAAATAGA TTTTTTATAG TATCTTTTTG ATTTTCTTAA AAAAGTATAT 6120 ACGTCTACTA TCTTCTTAAA GGTAGCAGTA CCTATTTTTT AGTCTAAGAT TTCAATAATC 6180 TTGAGTATCT AAAATATCTT AATTTCGTTA TTCTCCTTGC AATAAAAGT TTTACTATAC 6240 TATTTATTAA CTTGCAGAAA GCAAAAAATA TTAGTAAATA ATAGTTTATA GTTAAGTTTT 6300 TTATTCCTAC CAATCCATCA ACTAAGTAAA GCATCAACGA TTACATAAAC GATTGATAAT 6360 ATAATTAAAA TTTTGCTAAC TATCTTATTC TCATCATTCT TAGATAACTT TGATATTTTG 6420 TAAGTAAGTA AATAAGACAG TAAATTAATA GCGATAATAA TACTATATTT AAGAATCATA 6480 ATCTTACAAA GAGGACATAA TTCCTGAACC TACACAAATA AGTGTTGCTG CTCCCCCAGT TATCGGACCA GTCGCAGCAG CTAATAGTAC TGCTCCAATA CAACCACCGA TTGCAGATCC 6600 TAAATTGCCT CTTCCTCCAC TAACTATTTC GAGTTCTTCA TTATCCATAA CAGAAAATTG 6660 TTCCATCATT TTTGTATTCA TGACAAATAC TCCTTTTTTC TTTTTTTATT TTTGTCTTGT 6720 TGTAACTTTG ATAAGTTTAG TATATCATCG TTTTTTAAAA TTTTTCATCC AGATCTTGAA 6780 TTGTCATCGA AACGTCTTGA ATTAGCTTTT TTATTTCAAG CCACCTCTAA ATGTTTAAAA 6840 ስተመቀር ተለከተው ተለከተው የተመቀር ተለከተው የተመቀር ነው። የተመቀር ተለከተው የተመቀር ነው። የተመ 6900 ATAAAATATG AACTTAGTTT TATGACATAA TAGACCTATC CACTATATGA AAGGAATTGC 6960 CAATGACTTC TTATAAACGT ACATTTGTTC CTCAAATAGA TGCGAGAGAC TGTGGTGTCG 7020 CTGCCTTAGC CTCGATTGCT AAATTCTATG GTTCAGATTT TTCTCTAGCT CACTTGAGAG 7080 AACTTGCAAA GACCAATAAA GAAGGGACGA CTGCTCTTGG CATTGTAAAA GCCGCTGATG 7140 AAATGGGCTT TGAAACAAGA CCTGTTCAAG CAGATAAAAC GCTCTTTGAC ATGAGTGATG 7200 TCCCCTATCC ATTTATCGTT CACGTTAACA AAGAAGGAAA ACTCCAACAT TACTATGTTG 7260 TCTATCAAAC AAAGAAAGAC TATCTGATTA TTGGTGATCC TGACCCTTCT GTAAAAATCA 7320 CTAAAATGTC AAAAGAACGC TTTTTCTATG AATGGACTGG AGTAGCTATT TTTCTAGCTA 7380

CCAAACCCAG	CTATCAACCC	CATAAAGATA	AAAAGAATGG	TCTACTAAGC	AAGCTTCCTT	7440
CCTCTGATTT	тсааасаааа	ATCTCTCATT	GCTTACATTG	TTCTCTCAAG	CTTATTGGTC	7500
ACTATTATCA	ATATAGGTGG	TTCTTACTAT	CTCCAAGGAA	TCTTGGATGA	ATACATTCCA	7560
AATCAGATGA	AATCAACTTT	AGGAATCATC	TCAGTTGGTC	TGGTTATCAC	CTATATCCTC	7620
CAACAAGTCA	TGAGCTTCTC	CAGAGATTAT	CTCCTAACCG	TTCTGAGTCA	GAGATTAAGT	7680
attgatgtga	TTTTATCCTA	TATTCGCCAT	ATTTTTGAAC	TTCCCATGTC	TTTCTTTGCG	7740
ACACGTCGTA	CAGGAGAAAT	CATTTCACGA	TTCACAGATG	СТААСТСТАТ	TATAGATGCC	7800
TTGGCTTCTA	CCATTCTTTC	TCTTTTTCTG	GATGTTTCTA	TTCTGATTCT	TGTAGGAGGC	7860
GTCTTACTGG	CACAAAACCC	TAATCTCTTC	CTTCTTTCTC	TTATTTCCAT	TCCTATATAC	7920
ATGTTCATCA	TCTTTTCTTT	TATGAAACCT	TTCGAAAAAA	TGAACCATGA	TGTCATGCAA	7980
AGTAATTCTA	TGGTTAGCTC	TGCCATTATC	GAAGATATCA	ACGGGATTGA	AACTATAAAG	8040
TCGCTCACGA	GTGAAGAAAA	TCGCTATCAA	AATATAGACA	GCGAATTTGT	AGATTATTTG	8100
GAAAAATCCT	TTAAGCTCAG	TAAATATTCT	ATTTTACAAA	CGAGTTTAAA	GCAGGGAACA	8160
AAATTAGTTC	TGAATATCCT	TATCCTATGG	TTTGGCGCTC	AATTAGTCAT	GTCAAGTAAA	8220
ATTTCTATCG	GTCAGCTGAT	TACCTTTAAC	ACACTTTTTT	CTTACTTTAC	AACTCCTATG	8280
GAAAATATTA	TCAACCTCCA	AACCAAACTC	CAATCTGCGA	AGGTCGCTAA	TAACCGTTTG	8340
AACGAAGTCT	ATCTAGTCGA	ATCTGAATTT	CAAGTTCAAG	AAAACCCTGT	TCATTCACAT	8400
TTTTTGATGG	GCGATATTGA	ATTTGATGAC	СТТТСТТАТА	AGTATGGTTT	TGGATGAGAT	8460
ACCTTAACAG	ATATTAATCT	CACGATTAAA	CAAGGAGATA	AGGTTAGCCT	AGTTGGAGTT	8520
agtggttc t g	GTAAAACAAC	TTTAGCCAAA	ATGATTGTCA	ATTTCTTTGA	ACCCTACAAA	8580
GGGCATATTT	CCATCAATCA	TCAGGATATT	AAAAACATTG	ATAAAAAAGT	CTTGCGCCGT	8640
CATATTAATT	ACCTACCCCA	ACAAGCCTAT	ATCTTTAATG	GCTCTATTTT	GGAAAACTT*	8700
ACCTTGGGCG	GTAATCATAT	GATTAGTCAA	GAAGATATTC	TAAAAGCTTG	TGAAGTAGCT	8760
GAAATCCGTC	AAGACATTGA	AAGAATGCCT	ATGGGCTATC	AAACTCAGCT	CTCTGATGGA	8820
GCTGGTCTAT	CAGGAGGACA	GAAGCAACGA	ATCGCTCTCG	CTCGTGCTCT	TTTAACTAAA	8880
TCTCCTGTTT	TAATACTAGA	TGAAGCTACT	AGCGGTCTTG	ATGTCTTGAC	TGAGAAAAAG	8940
GTTATAGATA	ATCTTATGTC	TCTAACTGAT	AAAACCATTC	TCTTTGTAGC	CCATCGTCTC	9000
AGTATAGCCG	AACGAACCAA	CCGTGTCATT	GTTCTTGACC	AGGGGAAAAT	CATTGAAGTT	9060
GGTA						9064

250

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7780 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

,	CTCCATTTTT	TTGATTTCAT	AAATAAACAA	CCTCTCTGTT	AATTTTGTAT	AATTATAACG	60
	ATATCCAAGT	TACTTGTCAA	GTGTTTTTTA	AATTTTTATC	TCAAAAATAT	TTTTTCGTTC	120
	AAAAAAAGGA	GCCATCAGTT	GATTTCAAGC	TCCCTTTTAT	ACAGAATTAA	ACTATTTAT	180
	AGTTCGACAA	TCTTACCTGT	TTCAAAGTAG	ACAACCCATT	CACAGATATT	TTTAGCATAG	240
•	TCACCGATAC	GCTCCAAGTA	GGAAATAACT	TGGAAATAAT	CACGACCCGT	AACAATGGCT	300
•	TCTGGATTTT	TCTTAATCTC	TTCAGTCGCA	AGGTCACGGA	TAGTTTCAAA	ATAGTGGTTA	360
	ATTTGCTCAT	CCATGGAGGC	CACCCGGTAT	GCGTCGTCAA	CAGAACCATT	AAGATAAAGA	420
	TCAAGTGCTG	CTTCCACAAC	GCTTTTAACT	TCACGTCCCA	TTTTTTTAAT	TTCTTCCTCT	480
	ACAGCTGG AA	TGCGCTCTTC	CCCCTTCATA	CGGATGGTTG	CCTGGGCAAT	GGCTACAGCG	540
	TGATCCCCCA	TACGCTCCAC	ATCTGATACA	GCCTTAAGGA	CAGTCAAGAC	TGTACGCAAA	600
	TCTTGÄGAGA	CTGGTTGTTG	GAGTGCGATC	ATTTCAAATG	ATTTCTTTTC	CAGTTTCACT	660
	TCGTATTCAT	TTACTTCTGC	ATCATCTTCG	ATGACCTCTT	TTGCCAGGTC	ACGGTCATGC	720
	GTGACAAAAG	CACGTACCGT	ACGATTGATT	TGTGAGAGCA	CTTCTTGTCC	CATAGCGTAG	780
	AACTGGTTAT	GTAATTTCTC	TAAATCTTCT	TCAAATTGAG	ATCGTAACAT	CTTTCATCTC	840
	CTTATCCAAA	TTTTCCTGTA	ATATAGTCTT	CCGTTTCCTT	GTGTTGGGGA	TCAAGGAACA	900
	TCTGCTTGGT	ATCATTAAAT	TCAATCAAAT	CTCCATCTAG	GAAAAATCCT	GTCTTATCAG	960
	AGATACGTGA	AGCTTGCTGC	ATGGAACGGG	TTACCAGAAG	CATGGTGTAC	TTGTCTTTTA	1020
	GACCATACAA	GGTTTCCTCA	ATTTTACCAG	CTGAAATCGG	ATCCAAAGCC	GAAGTTGGCT	1080
	CATCCAAGAG	GATGATTTTA	GGACTAGTTG	CCAAGACACG	GGCCACGCAG	ACACGCTGCT	1140
	GTTGACCACC	TGACAATCCA	ATAGCTGAAT	CATATAGACG	ATCCTTGACC	TCATCCCAGA	1200
	TAGAGGCACC	TTGCAAGGCT	TTTTCTACGG	CTTCATCCAG	AACCTGCTTA	TCCTTAATTC	1260
	CATTGATACG	AAGCCCGTAG	ACAACATTCT	CATAGATAGT	CATAGGGAAA	GGATTAGGTT	1320
	GTTGGAAAAC	CATTCCGATT	TCCTTACGTA	ATTCAACCGT	ATCTGTACGC	GGACTGTAGA	1380
	TGTTGTGACC	ATTGTACACC	ACGGATCCAG	TTGTGGTCAC	CTCTGGATTG	AGATCTCCCA	1440

PGCGGTTGAG	AGACTTGAGG	AGGGTTGACT	TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
PAATTTCCTT	AGGTTGGAAA	GATAGGGAAA	CACTATTCAA	AGCCTTCTTT	TTATTATAAT	1560
AACGGACAG	GTCTGATACC	TGTAAAATCG	CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
AGTGACCAGA	TACATAGTCA	TTGGTGGACT	GTAGCTTGGC	attttggaaa	ATAGTTGCAG	1680
CTTGTCATA	CTCAATCAAA	TCACCCAAGT	AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
CAGCCTGCTG	CATATTATGC	GTTACAATGA	TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
TGGTCTCTTC	TAGTTGCATG	GTCGCAATCG	GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
AGAGGATATC	TGGCTTAACA	GAGATGGCAC	GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
CTGATAAGGT	CAAGGCTGAC	TTGTGGAGAT	CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
GACGAAGGGA	GGTTTCTACG	ATTTCATCTA	GGACTTGCTT	ATCCTTAACT	CCAGCACGTT	2040
CATGCGCAAA	GGTAATATTA	CGGTAAATTG	ACTTAGCAAA	TGGATTGGGA	CGTTGAAAAA	2100
CCATTCCAAT	GTGTTTACGC	ATTTCATAAA	CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
CACGATAGAG	AATCTGCCCA	GTTACTTTAG	CAATATCAAT	AGTATCATTC	ATGCGATTGA	2220
GACTGCGTAA	GTAGGTAGAT	TTCCCCGATC	CCGACGGGCC	AATCAAAGCT	GTAATTTTAT	2280
TTCTTTCAAA	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
CATCCTTAGT	AGAAAGGGCT	ACTTTTTCTT	CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
agttatatgt	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CCGAACTTAC	GAGCTCCAAA	GTTAAAAATC	AGGATAAAGA	TCAGGAGCAC	AGCGGCAGAA	2520
CCTGCTGATA	CAATGGTTCC	ATCTGGAATA	GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
ACAGCCAAGG	TTTCTGCTTG	ACGGAAGATA	GAGATGGGGC	TAGTCACACT	GAGGATATTC	2640
CAGTTAGACC	AGTCAAGAGC	TGGCGCCGAT	TGECCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
TCGCCAAAGA	TACGACCAGA	TGCCAAGACG	ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GGAATAACAA	CATGAACCAC	TGTCTCCCAG	CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
CGTTGGGTAT	GGTGAACGTG	TTTCAAACTA	TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
TTAAAGACTG	TCAAGGCCAA	GGCACCTGAA	ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
ACAAAGATCA	AGTAACCAAA	GAGACCCACC	ACCACTGATG	GTAAAGAGGA	CAAAATTTCA	3000
ATACAAGTCC	GCACAAAGTT	GGTAACAGGA	CCTTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CCAGCTCCCA	TAGAAAGAGG	TACAGAAATA	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
		000100100	CCTTC> > > > C	C1C11C1CC	TCCACTCAAC	210

			252			
AAAGACCAAG	AGATATGGGG	CAAGCCCCGA	ACCAAGATAT	AGAGAATCAA	GGAAGCCAAG	3240
ATTGTCACAA	TGATGCTAGC	AATCGTATAG	AGGACAGCTG	TTGCAAGTTT	ATCTAATTTC	3300
TTAGCGCGCA	TAATTTTTCT	TTCCTCTTTC	TTTCGTAATC	AATTTAATCA	CACTGTTAAA	3360
AACTAAGCTC	ATCAAGAGCA	GTACCAAGGC	CAGTGACCAG	AGAACATTAT	TATTTACAGT	3420
TCCCATGACA	GTGTTCCCAA	TTCCCATAGT	TAATATAGAA	GTTAAAGTTG	CAGCTGGTGT	3480
GGTCAAGGAA	GTTGGGATAA	CAGCTGAGTT	TCCGACAACC	ATCTGGATAG	CTAGAGCCTC	3540
ACCAAAGGCA	CGCGCCATCC	CAAAGACCAC	TGCAGTGAAA	ATACCAGAAC	GGGCCGCCTT	3600
CAAGATCACA	CGCCAGATAG	TCTGCCAGCG	AGTGGCTCCC	ATAGCGAAAC	TGGCTTCACG	3660
ATAATAACGA	GGAACCGCAC	GCAAGCTATC	CGTTGTCATA	AAGGTTACGG	TCGGCAAAAT	3720
CATGACAAAG	AGGACGGAAA	TCCCTGACAA	AATCCCAAAA	CCAGTCCCAC	CAAAGACACT	3780
GCGAACAAAG	GGAACGACGA	CTTGCAAGCC	AATAAATCCG	TACACTACTG	AAGGAATCCC	3840
AACCAGGAGT	TCAATAGCTG	GTTGCAAAAT	CTTCGCCCCT	TTTGGTGATA	CTTCGGTCAT	3900
AAAAACTGCT	GCACCAATAG	CAAAGGGTGT	TGCGATAAGG	GCTGAGAGAA	TGGTAACGAT	3960
AAAGGAACCC	AAAATCATAG	GAAGGGCACC	AAATTCTTTA	CTAGAAGGAT	TCCAAGTTCC	4020
TCCCAAAAGA	AAGTCAAAGA	TATTCACACC	ATTGACAAAG	AAGGTCGACA	AGCCTTTTTG	4080
CGCTACGAAA	ACCAAAATCA	TGGCCACAAG	GATGACTATC	AAAGAAAGAC	AGGCAAAGGT	4140
CAAACCTTTT	CCTAATTTCT	CCAGACGAGA	ATTCTTTGAT	GGAAGCAACA	TTTTCTTAGC	4200
TAATTCTTCT	TGATTCATTA	TTGTCTCCCT	TCCAACACTG	TCACAGTTCC	GGCAGCATCT	4260
TTTTCAACCT	TCATTTCCTT	AATCGGAATA	TACTTCAATC	CTTTGACAAT	CCCTTCTTGG	4320
GTCTCATCCG	AGAGAACAAA	ATTGAGAAAT	TCTGCAGCCA	ACTCATTGGG	CTGCCCCAAT	4380
GTATACATAT	GCTCATAAGA	CCACAAGGGC	CAATTATTGC	TACTTATATT	TTCTGGACTT	4440
AAGTCATAGC	CATTCAACTT	CATGCTTTTG	ACCGAATCAT	CTATATAGGT	AAGAGATAAA	4500
TAAGAGATAG	CTCCTGGACT	TTTTGATACG	ATTGATTTTA	CCGCTCCATT	TGAATCCTGC	4560
TCCTGACTTT	GCATGGCAGA	CTGACCTTCC	ATAATGACAG	TATCAAAGGT	AGCACGAGAG	4620
CCAGAGCCGG	CTGCCCGATT	GATAACAGAG	ATGGGTAAGT	CCTTACCACC	AACCTCTTTC	4680
CAATTGGTTA	CCTCACCTAT	GAAGATTTGA	CGAAGTTGCT	CTGTCGTTAG	GTTATCAACA	4740
TCAACCTCCT	TATTGACAAT	CAGAGCCAAG	CCAGCTACCG	CGACCTTGTG	GTCAACAAGA	4800
GCAGAAGCAT	CAATTCCGTC	TTTTTCCTCA	GCAAATACAT	CTGAGTTTCC	TATATCAACT	4860
GCCCCAGACT	GAACCTGGGA	CAAGCCTGTA	CCAGAACCTC	CCCCTTGGAC	ATTGACCGTT	4920
TTTCCAACAT	GGATCGTGCC	AAATTCATCT	GCCGCTACTT	CAACCAAGGG	TTGCAAGGCA	4980

* * *

GTTGAGCCAA	CAGCCGTTAT	GGATTCTCCA	CGATCAATCC	AGCTAGCACA	GCCTACTAAA	5040
CAAGCCGTCA	GCCAAAAAGC	GATAAGAGAC	AGAGCAAGCT	TTTTTCTTTT	TTTCACTGTT	5100
TTTCTCCTCG	AAAATAATTA	TGAATACTGT	GAATTTTTTA	AGTAGTTCTT	TATGAGTTGA	5160
CGCATGAATT	CTTACCAAAT	TTCTGCGCAA	TTGATTATTT	ATATAATATA	GGCTATATTA	5220
CTCTTTCCTA	ACCTCCTTTT	TTCATATGTG	GATAAAATCT	CTTGTCTATC	CCTTCCCCCA	5280
TTGTCACCCA	TTATAGTCAT	TTCGTGTCTC	TTTTTCCCCT	TTTTAATGCA	AGGGAAATTA	5340
CTCTCCTTAG	ATGATAATCC	AAAAGCTAGA	AAGGTATCTC	AAACCTCTCT	ACTCTCCCAG	5400
ACTAGTTTAC	AACTAAAAGG	AAAAGATTCT	ATTTTATGAG	AAATCTAGTT	TACAAGCGGT	5460
AAGAACGCTA	ATAACTAAAC	TTCTTGTACT	CTTTGAAAAT	CTCTTCAAAC	CAGTGTTTTG	5520
AGCTATCTAT	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAG	ТААААСТАСА	5580
TGTAATGGCA	ATCAAGATAT	CAAGAATCAT	CCTACTAAAA	AAATCCATAC	TTTCACTATA	5640
ACATAGAATA	AGATATTTGA	CTAGCATTTT	CATTTGAATC	TGAGGCCTTT	TGGAAAATAA	5700
TTTTTCAAAA	CATTTCCAGT	AACCTTTGCA	AAGCCCAAGC	CATTGCCTTT	AACCAAAACT	5760
TGGTACCAAC	CATTTGGCAG	ACTTTCTGCC	AGCTGAACGG	TTTCTCCAGC	CGCATACTTG	5820
ACAAACGCTT	CTTGGCCAAT	TTCAACCGAC	TGTTCGACCT	GACTCGGTTT	CAAGGCTAAA	5880
CCAAGAGCGA	AACTGGGCTC	AAAGCGTTTC	TTCTTAAAAG	TACCCAGATG	CAGTCCATTG	5940
CGAGCAATCT	TGAGCTTCCA	TAAATCTGGC	AAAAGTTCTG	GCAAGAGATA	AAGCTGGTCT	6000
CCAAAAATCT	GCAAGATACC	CGGTAGATTG	ACCTTCAAAT	GGTTTTGGGC	AAATTCCTGC	6060
CACAAGGCAA	CTTGTTCACG	GCTGAGGTTA	CTCTTACTTG	CCTTAAATTT	AGGAGCTGGA	6120
TTGTTACCCT	TAAACTGTAG	ATGGGCAACA	AACTGACCCT	CTCCCTTAAA	CTGATGAGGA	6180
TACATCCGAG	CCGTTTCTGG	CAGGTCAATA	CCAGCTACCA	TTCCATTGAT	ATGCTCTACT	6240
GGCAACAAGT	CAAAATCATA	CTCTTCCAGC	AACCAATTGA	CAATCTCTTC	GTTTTCCTCG	6300
GGTGCCCAGG	TACAGGTCGA	ATAAACCAGA	TGACCACCTT	CAGCTAACAT	GGTCACTGCA	6360
TCCTCCAGAA	TTTCTCTTTG	CAAGCTAGCA	CATTGACTCG	GATAATCTAA	GCTCCAATAG	6420
TCCATAGCAT	CAGGTTGCTT	ACGAAACATT	CCTTCACCAG	AGCAAGGGGC	ATCAAGAACG	6480
ATTAAGTCAA	AATAGCCTTT	AAAGACCTTG	ACCAAGCGGT	CGGCAGATTC	ATTGGTCACC	6540
ACGACATTTG	TCGCTCCAAA	ACGCTCCATG	TTTTCAACCA	AAATCTTAGC	CCGTTTGCTT	6600
GAAATTTCAT	TGGAAnCAAG	TAGCCCCTCC	CCTGCTAGAT	AGGCTGCCAG	TTGAGTTGAT	6660

			254				
TGAGCCACCA	TTTGAGCAGC	AGGTTCTTGC	GAATAAACTA	AACCTGTAGC	ATGCTCAGGC	6780	
GATTTCCCTG	AAACCTTCCC	ATAGTGGCCC	CAAGGGGTTT	GAGTAATGGC	ATCAGAAAAG	6840	
GAAAGTTGCT	CTTCTTTTAA	GGGATTGACC	CGAAAGGCCG	AAACCGCTTC	CTCCTCAAAA	6900	
GAGGCAAGAA	AATCTCTTGC	CTCATCTCCT	AGTATCTCTT	TATATTTTC	AACAAATCCT	6960	
TCTGGAAATT	GCATTTAAGT	TCTTTTCCTT	TCGTAAATAT	AGGACTGAAT	TTCCTCCTGC	7020	
ATCTCAAGAG	GCACCATCAT	GACCGGCTGT	CTGGTTTGAA	AATCAGGAGC	TTCACCAAAA	7080	
AGGGTCACAA	CCCGATAGCC	CAGACTTTCC	CCTAAAATAC	TAGCTGCGGC	ATAATCCCAT	7140	
GGTTGCAGAT	aagtgagata	GGTCAACAAA	CGCCCTGACA	AAATCTTGGC	AAAACTAATG	7200	
GCCGCACTTC	CATAGACACG	AACACCAAGA	ACCGCTCGGC	TCAAATCAGC	CAGCCCCCAT	7260	
TCATTGGTTT	CCAGCATACC	ACTATTCCCT	GCAATGAGAA	AATCTCCAAG	TGGTTTAGTT	7320	
TTAAAAGGAG	CTAGGGACCT	ATCATTTAGA	CAAACTGGAA	ATTCCCCACC	ACCGTGGTAA	7380	
CAATCCCCTT	TGACCACATC	ATAAATCAGA	CCAAACTGTC	CCTGACCATT	TTCAAAATAA	7440	
GCCATCATAA	CAGCAAAATC	TTCCTGCTGG	GCTACAAAAT	TATTGGTACC	ATCAATGGGA	7500	
TCAATGACCC	AAACCTTGCC	CTCTTGAACC	GAGGCTCGCA	GACAACCTTC	TTCAGCACAA	7560	
ATCTTATCCT	CAGGATAACG	GGACAAAATC	TCACCAACCA	AGAGTTCCTG	AACTTCTTTG	7620	
TCCAGTCTGG	TCACCAAATC	TGTTGGAGAG	GACTTGGTTT	CAACACGCAA	GTCTTCCTGC	7680	
ATATGGTCAA	GAATGTACTG	ACCTGCTTTC	TTAACAAGCT	CTTTAGCAAA	TTCAAATTTA	7740	
CTTTCCAAGA	GAAATCTTTC	сттссссттт	TTCTTTGGGG			7780	
(2) INFORMA	TION FOR SE	Q ID NO: 19):				
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4820 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

*....

GTAATGATAT	AGGAACACCA	GGTGACCTGA	TGGGACGTCG	TAAGCCTATG	AACTACTAGC	60
TGCTAAAGGC	TTTAAAGATG	GTATGGTACC	ATATATCTCA	AACCAATACG	AAGAAGAAGC	120
CAAACAAAAG	GGCAAGACAA	TCAATCTCTA	CGGTAAAACA	AGAGGTTTGG	TTACAGATGA	180
CTTGGTTTTG	GAAAAGGTAT	TTAATAACCA	ATATCATACT	TGGAGTGAGT	TTAAGAAAGC	240
TATGTATCAA	GAACGACAAG	ATCAGTTTGA	TAGATTGAAC	AAAGTTACTT	TTAATGATAC	300
AACACAGCCT	TGGCAAACAT	TTGCCAAGAA	AACTACAAGC	AGTGTAGATG	AATTACAGAA	360

ATTAATGGAC	GTTGCTGTTC	GTAAGGATGC	AGAACACAAT	TACTACCATT	GGAATAACTA	426
CAATCCAGAC	ATAGATAGTG	AAGTCCACAA	GCTCAAGAGA	GCAATCTTTA	AAGCCTATCT	486
TGACCAAACA	AATGATTTTA	GAAGTTCAAT	TTTTGAGAAT	AAAAAATAGT	GTCTACTATT	540
AGGAAATAAA	GTTTAAAAAG	GTGATGAAGA	ACAAACCAAG	ATTCAAGCAG	GAATTCCTAC	600
TGATAATGAA	GTAAGTTATG	ATCTTATTTA	TCAGCAGGAA	ACTCTTCCTG	CAACAGGTTC	660
ATCAACTTCT	GAGCTTACAG	CTTTAGGCCT	ATTAGCTGTT	GGTAGTTTAG	TTCTTTTGGT	720
TCATAATATG	ACGGGAACAG	TTTTTTGCTC	CCTCTGAAAA	GTCATCATTT	GATGGCTTTT	780
TTCTATATAG	GGTAAAAGAT	AGGGTAAAAG	GCTATCATCG	GACAAAATAA	AGAAGGCATG	840
ATATAATATA	AAGTAGATTT	CTATGTCATA	AAACAAGAAC	TGTTTGGACA	TCATTCATTT	900
GAAAACTCTC	TATGTTCAAA	CAATAGTAAA	ATAAAATAGG	GGATCTAAAT	CCTTGCTATG	960
AAAGGAAAAA	ACTCAATGGC	TACTATTCAA	TGGTTTCCTG	GTCACATGTC	TAAAGCTCGT	1020
CGACAGGTGC	AGGAGAATTT	AAAATTTGTT	GATTTTGTGA	CGATTTTAGT	AGATGCACGC	1080
TTGCCTCTAT	CTAGTCAAAA	TCCTATGTTG	ACCAAGATTG	TTGGTGATAA	ACCAAAACTC	1140
TTGATTTTAA	ACAAGGCCGA	CTTGGCTGAT	CCAGCAATGA	CCAAGGAATG	GCGTCAGTAT	1200
TTTGAATCAC	AAGGAATCCA	GACGCTAGCT	ATCAACTCCA	AAGAGCAAGT	GACTGTAAAA	1260
GTTGTAACAG	ATGCGGCCAA	GAAGCTCATG	GCTGATAAGA	TTGCTCGCCA	GAAAGAACGT	1320
GGGATTCAGA	TTGAAACCTT	GCGTACTATG	ATTATCGGGA	TTCCAAACGC	TGGTAAATCA	1380
ACTCTGATGA	ACCGTTTGGC	TGGTAAAAAG	ATTGCTGTTG	TTGGAAACAA	GCCAGGGGTC	1440
ACAAAAGGTC	AACAATGGCT	TAAAACCAAT	AAAGACCTGG	AAATCTTGGA	TACACCGGGG	1500
ATTCTCTGGC	CTAAGTTTGA	GGATGAAACT	GTTGCACTTA	AGTTGGCATT	GACTGGAGCT	1560
ATCAAAGACC	AGTTGCTTCC	TATGGATGAG	GTTACCATTT	TTGGTATCAA	TTATTTCAAA	1620
GAACATTATC	CAGAAAAGCT	GGCTGAACGC	TTCAAACAAA	TGAAAATTGA	AGAAGAAGCG	1680
CCTGTGATTA	TTATGGATAT	GACCCGCGCC	CTCGGTTTCC	GTGATGACTA	TGACCGTTTT	1740
TACAGTCTCT	TCGTGAAGGA	AGTCCGTGAT	GGCAAACTCG	GTAACTATAC	CTTAGATACA	1800
TTGGAAGACC	TCGATGGCAA	CGATTAAAGA	AATCAAAGAA	TTCCTTGTGA	CAGTCAAGGA	1860
GTTAGAAAGC	CCTATTTTTT	TAGAGCTTGA	AAAGGATAAT	CGCTCAGGAG	TTCAAAAGGA	1920
AATCAGCAAG	CGTAAAAGAG	CCATTCAAGC	TGAATTAGAT	GAAAATTTGC	GCTTGGAATC	1980
CATGCTTTCT	TATGAAAAAG	AACTTTATAA	GCAAGGATTG	ACCTTAATTG	CAGGTATTGA	2040
TGAGGTTGGT	CCTCCTCCTC	THECHECHEE	小な中をなかりない	CCCCCCTTA	ምምም ስምርም እ እ	2100

			430			
AAATTGTAAG	ATTAAAGGTC	TCAACGACAG	CAAGAAAATT	CCTAAAAAGA	AACATCTGGA	2160
GATTTTCCAA	GCCGTTCAAG	ACCAAGCCTT	GTCGATTGGA	ATTGGTATCA	TAGATAATCA	2220
GGTCATCGAC	CAAGTCAACA	TCTATGAAGC	AACCAAACTA	GCCATGCAAG	AAGCAATCTC	2280
CCAGCTCAGC	CCTCAACCAG	AGCACCTTTT	GATTGATGCC	ATGAAACTGG	ACTTGCCCAT	2340
TTCACAAACC	TCCATTATCA	AAGGAGATGC	CAACTCCCTC	TCTATCGCAG	CAGCATCTAT	2400
AGTAGCCAAG	GTAACACGTG	ATGAATTGCT	GAAAGAATAC	GATCAGCAGT	TCCCTGGCTA	2460
TGATTTCGCT	ACTAATGCAG	GATATGGCAC	AGCTAAACAT	CTGGAAGGCC	TCACAAAACT	2520
AGGAGTTACC	CCAATTCACC	GAACCAGCTT	TGAACCCGTT	AAATCACTGG	TTTTAGGTAA	2580
AAAAGAAAGT	TAATTGAAAG	GAAATAACAT	GGAGGAACAG	TCGGAAATAG	TCCGTTCTAA	2640
GAAAGAATTC	GCCTTTGCAT	CCAGCACTAT	ACTATCCCAA	GTTGGTCGAG	GAATCATTGT	2700
CGGCCTCATC	GTTGGAATTA	TCGTCGGATC	CTTTCGTTTC	TTAATTGAAA	AGGGCTTCCA	2760
CCTGATACAA	GGAGTTTATC	AAGATCAAGG	GTACTTAGTG	CGCAATCTTT	TTGTACTGGT	2820
TTTGTTTTAT	ATACTCATCT	GTTGGCTCAG	TGCCAAACTA	ACACGGTCAG	AAAAAGATAT	2880
TAAAGGCTCA	GGAATTCCTC	AAGTCGAAGC	CGAACTGAAA	GGCCTCATGT	CCCTCAACTG	2940
GTGGGGCATT	CTTTGGAAAA	AATATGTGCT	AGGTATTCTT	GCTATTGCCA	GTGGACTCAT	3000
GCTGGGTCGA	GAGGGACCCA	GCATTCAACT	TGGAGCAGTT	GGTGGTAAAG	GAATTGCCAA	3060
GTGGCTCAAA	TCCAGTCCAG	TAGAGGAACG	TTCCTTGATT	GCCAGTGGAG	CTGCAGCAGG	3120
TTTAGCCGCA	GCCTTTAATG	CTCCTATTGC	AGCACTTCTC	TTTGTTGTAG	AAGAAGTCTA	3180
TCACCATTTT	TCGCGCTTTT	TCTGGGTCTC	AACTCTAGCA	GCCAGCATCG	TAGCAAACTT	3240
TGTGTCTCTA	CTCATGTTCG	GTTTGACACC	AGTATTGGAT	ATGCCAGATA	ACATTCCTCC	3300
CATGACCCTA	GATCAGTATT	GGATATATCT	CGTCATGGGA	ATTTTCCTTG	GATTTTCAGG	3360
TTTTCTCTAT	GAGAAAGCTG	TATTAAACGT	TGGAAGAGTT	TATGACTTGA	TTGGTCAAAA	3420
AATCCATTTG	GATAGGGCTT	ATTATCCCAT	CTTGGCTTTT	ATCCTTATCA	TACCAGTCGG	3486
AATCTTCTTA	CCTCAAATCA	TTGGTGGCGG	AAATCAGCTT	GTCCTTTCTT	TAACTGAACA	3540
AAATTTTAGT	TTCCAAGTTT	TATTAGCTTA	CTTTTTAATC	CGCTTTATTT	GGAGTATGAT	360
TAGCTATGGA	AGTGGACTGC	CAGGAGGAAT	TTTCCTCCCC	ATTTAGCTO	TTGGTTCTTT	366
GCTTGGTGCC	TTAGTTGGTG	TTATCTGTGT	CAATCTTGGA	CTTGTCAGTC	AAGAGCAATT	372
CCCTATATTT	GTCATTCTAG	GAATGAGTGG	CTATTTTGGA	GCCATATCAA	AAGCTCCCTT	378
AACCGCTATG	ATCCTCGTAA	CTGAGATGGT	AGGAGATATT	CGCAACCTTA	TGCCACTTGG	384
memmemes em		አጥአ ጥ ተልጥሶልፕ	CCATTCCTC	AAAGGTACGC	CAGTCTATGA	390

257

AGCCATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGAAATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAACGTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAGAATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAAAGATTTG	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TGATTTATTT	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTTAC	TGATGAGGAA	4260
TTTTACATAT	AAATAATTGA	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
AAAGTATAAA	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	TTAAAATCAT	4380
GAAAAAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GGACAATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
ATCTATTATA	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
TATTAACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGTCTAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	AAACTATAAT	4680
TTTCTTGAAA	AATATACAAG	TCTATGCTAT	ACTACTAGTA	тасттастта	TGGAGAAAAT	4740
ACATGAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	AAAACAACTC	ATGCCCTGGT	4800
AAGTTCTGGA	ATACTACCAA					4820

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21338 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTC	TCTAAAATAT	CTTTTAATTT	TCTAATTTT	AATCTTGAAA	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	TTACCAATAA	420

			258		•	
TGCGCAATTT	ATGAGATACC	CCTGTTGTTT		AATATCATGG	TAAGGAATTT	48
TTAAATCATT	TCCCTTGTAA	TTGTAGTCGA	AATAATCTAC	AACATCTTCA	TTTTCAAGTA	54
ACATACTCTT	CGTGTAGAAG	ATATTTTGCT	CAATTCTCTT	CTTAAACATC	TCATCATTGA	60
TATCCTTATC	AACAAAATCT	AGGGCTGATA	CCTGGTATTT	ATAGGTTAGA	GTCGCAAACT	66
CTGATCGACT	agtgataaag	ACGATAATAG	CGTAAGGATT	GTAATGACGA	ATGAGCTGAG	72
CCACTTCAAA	TCCCTTTTTC	TCAATTCCAT	GAATATCGAT	ATCTAGGAAA	TAAAGCTGAT	78
TTACTTCATC	ATTTTCAATG	TATTCTTCAA	ATTCACGGAC	TTTTCCCGTT	GTCTTGTATG	84
ATATTGGAAT	ATTCGATTCT	TTCGAAATTT	CATCCAATAT	TCTCTCTAGT	CTCACTTGAT	90
GTTCAATAAC	ATCTTCTAAA	ATTAAAACTT	TCATTCAAAT	TCCCTCTTAA	ATCTAATGAT	96
TTGTCTAAAT	GTACTGCCTT	CCATCTCTGT	TTCTAAAATA	ATATTGTTGT	ACTTATCTAG	102
TAGTTCTTTC	ACATTATTTA	ATCCGACTCC	GCGATTTCTT	CCCTTAGTGG	AGAATCCTAA	108
GGCAAATAGA	TCTCCTGAAG	GAGTCATCGT	CATTTTACAT	GAATTCTGAA	TCACAATAAC	114
TGTTTCAGTT	TCCATCTTAA	TAACTGCTAC	TTCCATCTGC	TTTTTATAGC	TATCAGCCGA	120
TCCTTCGACA	GCATTATTCA	ATAAAACGCT	CATGATACGA	ACCAAATCCA	ATAGTTCAAT	126
TGGAAGCTTG	GTAATCGTAT	CTTTTACTTC	CAGTGTAAAC	TCTACACCAT	TATTTCGAGC	132
ATAGACAATT	GACTGAGCAA	CCAAACTTCG	TAAAGCTGAG	TCTTCTATGT	TGTTCAAATC	138
aaagtaagtg	TACTTATCTG	AACGCAATTT	ATGATTTGCT	TTGACTAAAA	CTTCATTGTA	144
AATTCTGTCA	ATTTCCTGTA	AATTACCACT	GTCAATTGCC	ATCTGCATGC	TGACAAGCAT	150
TCCAGCATAA	TCATGTCGAA	AACCACGGAT	TTCATTATAC	AGACCAACAA	TTTCATCTGT	156
GTAATTCTGT	AAATGTTTCT	GTTCAAATTT	CTTCTGCTTC	AAAGCAATCT	CTTTCTCCAT	162
TTGAACTTTA	TGAGAATTCA	TTGCAAAGAA	GGTCAAAAGG	AGAGAGATAA	AGACAATAGA	168
TGACAAAATA	CTTCCAAAAC	TATTCAAATG	TTTAATCGTA	CTTACCATAT	CTGAAACGAA	174
AGATACAATA	TGTAGCAATA	GTAAAGCAAA	AAATACTTTT	TTCAAGAAAG	GATAAAGGTA	180
GTCCTTGTCA	AAATAGGCTA	GTTCCAAATG	GAAATAGTAA	ATGATTTTA	ATGTAACAAA	186
ATAGGTTAAC	ACCGTCACAA	CGAAAAAGAA	TGGGAAATGA	TATTGTAAAA	CAAAATTATC	192
TCCTGTTATA	GAGGAGAAAA	TTACGGACAG	A AAGTTATGA	GTGCTCTCAT	ATAAAAGAGA	198
TAGTAGTAAA	CTTAGGAATA	GTCCTCTATC	CCTCTCATAC	TGTTTCATCC	ATCGAAAATA	204
GGAATATAAG	CCCAAAGGAA	ATAAAAATCT	TTCAATCCCT	ATTTTATCTA	AATATAGAAG	210
ATAAAAGGAA	AATTCAAGTA	CTATTTCAGT	TAGTAATGTA	TAAGCACCAA	AAACGTATAA	216
TTCTTTTCTA	TTTATTCGAC	CTTTACAAAT	TAAACGGTAA	CTGTGACTAA	TAATTAAAAA	222

ATGAACAATA	ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	CTTTCTCCTT	ATTTCATTAC	2280
TTTTTTCGTA	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGTA	AGTCTTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
АТААТАААТ	CTCCTAAAAT	GTTTTTTCTT	GTAAGCTAAC	TTACAAAAAC	CATTATACAA	2460
AATGGAATTT	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
PTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
TTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
TAATACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	CTCATTAACT	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	ССААТААТАА	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
PTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	ATTTCTAAAA	3000
CTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
PTCTCTATTT	TTTCACATCT	TATTCACAAA	ATAAAAAATA	GATTTCAATT	AAGAAAATCA	3240
CAATTTCAAA	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
CTAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
ACATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
CCTTGGGTA	GTTTTTCAAT	AACTCAACTA	ACTCAAAAAA	CTACTCTAAA	CAACTCTAAC	3480
NACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
AACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
GTATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
STTATTTATA	aaaagaatga	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC	3780
GGAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
STAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
CCCCCTMAPC	ביים בייריייייי	TCCAAATACT	GTCACTCAAG	CTATCCTATC	ር እርጥርጥር እ አጥ	3060

			200			
AGAAATGTAT	CCTTAAAATC	GGAAGATGGA	CAAGCTATTT	CTACAAAAGC	CATCCAAACT	402
GATACTGCTA	TTAACCCAGG	TAACTCTGGC	GGCCCACTGA	TCAATATTCA	AGGGCAGGTT	4080
ATCGGAATTA	CCTCAAGTAA	AATTGCTACA	AATGGAGGAA	CATCTGTAGA	AGGTCTTGGT	4140
TCGCAATTC	CTCCAAATGA	TGCTATCAAT	ATTATTGAAC	AGTTAGAAAA	AAACGGAAAA	4200
STGACGCGTC	CAGCTTTGGG	AATCCAGATG	GTTAATTTAT	CTAATGTGAG	TACAAGCGAC	4260
ATCAGAAGAC	TCAATATTCC	AAGTAATGTT	ACATCTGGTG	TAATTGTTCG	TTCGGTACAA	4320
AGTAATATGC	CTGCCAATGG	TCACCTTGAA	AAATACGATG	TAATTACAAA	AGTAGATGAC	4380
AAAGAGATTG	CTTCATCAAC	AGACTTACAA	AGTGCTCTTT	ACAACCATTC	TATCGGAGAC	4440
ACCATTAAGA	TAACCTACTA	TCGTAACGGG	AAAGAAGAAA	CTACCTCTAT	CAAACTTAAC	4500
AGAGTTCAG	GTGATTTAGA	ATCTTAATTG	ACATCTATGT	AAAGAAAGCT	TTACATAAGA	4560
GAAAAGATGT	GTTAGTGTAG	AATCATGGAA	AAATTTGAAA	TGATTTCTAT	CACAGATATA	4620
CAAAAAAATC	CCTATCAACC	CCGAAAAGAA	TTTGATAGAG	AAAAACTAGA	TGAACTAGCA	4680
CAGTCTATCA	AAGAAAATGG	GGTCATTCAA	CCGATTATTG	TTCGTCAATC	TCCTGTTATT	4740
GTTATGAAA	TCcTTGCAGG	AGAGAGACGC	TATCGGGCTT	CACTTTTAGC	TGGTCTACGG	4800
CTATCCCAG	CTGTTGTTAA	ACAGATTTCA	GACCAAGAGA	TGATGGTCCA	GTCCATTATT	4860
GAAAATTTAC	AGAGAGAAAA	TTTAAACCCA	ATAGAAGAAG	CACGCGCCTA	TGAATCTCTC	4920
GTAGAGAAAG	GATTCACCCA	TGCTGAAATT	GCAGATAAGA	TGGGCAAGTC	TCGTCCATAT	4980
ATCAGCAACT	CCATTCGTTT	ACTITCCTTG	CCAGAACAGA	TTCTTTCAGA	AGTAGAAAAT	5040
GCAAACTAT	CACAAGCCCA	TGCGCGTTCC	CTAGTTGGGT	TAAATAACGA	ACAACAAGAC	5100
PATTTCTTTC	AACGGATTAT	AGAAGAAGAT	ATTTCTGTAA	GGAAATTAGA	AGCTCTTCTG	5160
ACAGAGAAAA	AACAAAAGAA	ACAGCAAAAA	ACTAATCATT	TCATACAAAA	TGAAGAAAAA	5220
CAGTTAAGAA	AACTACTCGG	ATTAGATGTA	GAAATTAAAC	TATCTAAAAA	AGACAGTGGA	5280
WAATCATTA	TTTCTTTTTC	AAATCAAGAA	GAATATAGTA	GAATTATCAA	CAGCCTGAAA	5340
TAAGGCTGTT	CTTTTATTTT	TTTATCTCAC	AAGGTTATCC	ACTATGTTTT	TCGATAAAAA	5400
CTTAATAAA	TCAATAATTT	CTTCTTTTAT	CCCCAACCTG	TGGATAAAGT	TTGGTAACAT	5460
GTGGATTAT	TTTTCACAGC	TTGTGGAAAA	TTCTTGCTAT	CTATGGTAAA	ATATCTCTAG	5520
TATTAAACTT	TTAAATAGTA	AAGGAGGAGA	AAGGATTGAA	AGAAAAACAA	TTTTGGAATC	5580
TATATTAGA	ATTTGCACAA	GAAAGACTGA	CTCGATCCAT	GTATGATTTC	TATGCTATTC	5640
AGCTGAACT	CATCAAGGTA	GAGGAAAATG	TTGCCACTAT	ATTTCTACCT	CGCTCTGAAA	5700
GGAAATGGT	CTGGGAAAAA	CAACTAAAAG	עבאבה ע הבע ע הע	АСТАССТССТ	יייייים או איייייייייייייייייייייייייייי	5760

.....

TGACGCTGA	AATAACTCCC	CACTATATTT	TCACCAAACC	TCAAGATACG	ACTAGCTCAC	582
ag ttgaa ga	AGCTACAAAT	TTAACTCTTT	ATAACTATAG	TCCAAAGTTA	GTATCTATTC	5886
TTATTCAGA	TACGGGATTA	AAAGAAAAGT	ATACCTTTGA	TAACTTTATT	CAAGGGGATG	5940
AAATGTTT G	GGCTGTATCA	GCCGCTTTAG	CTGTCTCTGA	AGATTTGGCT	CTGACCTATA	6000
CCCTCTTTT	TATCTATGGA	GGACCAGGCC	TTGGTAAGAC	TCACTTATTA	AACGCTATTG	6060
Aaatgaa at	TCTAAAAAAT	ATTCCTAATG	CGCGTGTTAA	ATATATCCCT	GCCGAAAGCT	6120
TATTAATGA	CTTTCTTGAT	CACCTAAGAC	TTGGGGAAAT	GGAAAAGTTT	AAAAAGACCT	6180
TCGTAGTCT	TGATCTTTTG	TTAATCGATG	ATATCCAGTC	ACTCAGCGGA	AAAAAAGTCG	6240
CAACTCAGGA	AGAATTTTTC	AATACCTTTA	ACGCCCTTCA	TGACAAGCAA	AAACAGATTG	6300
CCTAACGAG	TGATCGTAGT	CCAAAACATC	TAGAAGGGCT	CGAGGAGAGG	CTTGTCACGC	6360
STTTTAGTTG	GGGATTGACA	CAAACTATCA	CCCCCCTGA	CTTTGAAACA	CGTATTGCCA	6420
TTTACAAAG	TAAGACGGAA	CATTTAGGCT	ACAATTTCCA	AAGTGATACT	CTAGAATACC	6480
PAGCTGGGCA	ATTTGATTCA	AATGTTCGAG	ATCTTGAGGG	AGCCATCAAC	GACATCACTT	6540
TAATTGCCAG	AGTAAAAAA	ATCAAGGATA	TCACTATTGA	TATTGCTGCA	GAAGCCATTA	6600
GAGCCCGCAA	ACAAGATGTT	AGCCAAATGC	TCGTCATCCC	aattgataaa	ATCCARACTG	6660
AGTTGGTAA	CTTTTATGGT	GTTAGTATCA	AAGAAATGAA	GGGAAGTAGA	CGCCTTCAAA	6720
TATTGTTTT	GGCCCGTCAA	GTAGCCATGT	ATTTATCTAG	AGAACTAACA	GATAATAGTC	6780
TCCAAAAAT	TGGGAAGGAA	TTTCCGCGAA	AAGATCATAC	CACAGTCATT	CATGCCCATG	6840
Саааатааа	ATCTTTGATT	GATCAAGACG	ATAATTTACG	TTTAGAAATT	GAATCAATCA	6900
VAAAGAAAA T	CAAATAATTT	GTGGATAACT	TTTAGTTTTT	TATCTTTTTT	ATCCACATTT	6960
TTAAACAAG	CTAAAAAACT	TGATATGACT	TGTTTAAAGG	CTGTTTTCCA	CAGATTTCAC	7020
GACTCTATT	ATTACTATTA	TCTTTCTAAT	ACTAAAAATA	AATAAAGGAG	AATCCATGAT	7080
CATTTTTCA	AAAATAAAA	ATTTATTTCT	ACAAGCATTA	AATACTACTA	AGAGAGCTAT	7140
AGTTCTAAA	AATGCCATTC	CTATTTTATC	AACAGTAAAA	ATTGACGTGA	CCAATGAAGG	7200
ATTACTTTA	ATTGGTTCAA	ATGGTCAAAT	TTCAATTGAA	TTTATTTAA	CTCAAAAAA	7260
GAAGATGCT	GGTTTGTTAA	TTACTTCTTT	AGGTTCGATC	CTTCTTGAAG	CTTCTTTCTT	7320
ATCAATGTA	GTATCTAGTT	TACCTGATGT	AACTCTTGAT	TTTAAAGAAA	TTGAACAAAA	7380
CAAATTGTT	TTAACCAGTG	GCAAATCAGA	AATTACCCTA	AAAGGAAAAG	ATAGCGAACA	7440
TATCCACCA	3MCC33C533	mmmcacca a c	C 3 Cott C Cottorer s	B.00 B.00000 A.S.S.	CAAAAMMACM	7500

262 CAAGAAAATT ATTAATGAAA CAGCCTTTGC TGCAAGTACA CAAGAGAGTC GTCCGATTTT 7560 AACAGGTGTC CACTTCGTAT TGAGTCAACA CAAAGAGTTA AAAACAGTTG CAACAGACTC 7620 TCATCGCCTA AGCCAGAAAA AATTGACTCT TGAAAAAAAT AGTGATGATT TTGATGTCGT 7680 AATTCCTAGC CGTTCTCTAC GCGAATTTTC AGCGGTATTT ACAGATGATA TCGAAACTGT 7740 AGAGATTTTC TTTGCCAATA ACCAAATCCT CTTTAGAAGC GAAĀĀTATTA GCTTCTATAC 7800 TCGTCTCTA GAAGGAAACT ATCCTGATAC AGATCGCTTG ATTCCAACAG ACTTTAACAC 7860 TACTATTACT TTTAATGTGG TAAACTTACG CCAGTCAATG GAGCGTGCCC GTCTTTTATC 7920 AAGTGCGACT CAAAATGGTA CTGTGAAACT TGAAATTAAG GATGGGGTTG TTAGCGCCCA 7980 TGTTCACTCT CCAGAAGTTG GTAAAGTAAA CGAAGAAATC GATACTGATC AGGTTACTGG 8040 TGAAGATTTG ACCATTAGTT TCAACCCAAC TTACTTGATT GATTCTCTTA AAGCTTTAAA 8100 TAGCGAAAAG GTGACTATTA GCTTTATCTC AGCTGTTCGT CCATTTACTC TTGTGCCAGC 8160 AGATACTGAC GAAGACTTCA TGCAGCTCAT TACACCAGTT CGTACAAATT AAGTGAAAGA 8220 GGTTGAGCCT GGCTCGCCTC TTTTATGATA TAATCGAAAA AGAAAAGGAG AGTAGTATGT 8290 ATCAAGTTGG AAATTTTGTT GAGATGAAAA AATCACACGC TTGTACAATC AAGTCGACTG 8340 GTAAAAAGGC TAATCGTTGG GAAATTACAC GTGTAGGAGC AGATATCAAA ATAAAATGTA 8400 GTAATTGTGA GCATGTTGTC ATGATGGGGC GATATGATTT TGAGCGAAAA ATGAATAAAA 8460 TTATTGACTG AGAACCCTTA GTTAGAGGGT TAGCACTTTA TCCCTTTTTG TGTTATAATA 8520 TTAGGGATTG AAATGAAAAC GGAGAATGAG AAATATGGCT TTGACAGCAG GTATCGTTGG 8580 TTTGCCAAAC GTTGGTAAAT CAACACTATT TAATGCAATT ACAAAAGCAG GAGCAGAGGC 8640 AGCAAACTAC CCATTTGCGA CGATTGATCC AAATGTTGGA ATGGTGGAAG TTCCAGATGA 8700 ACGCCTACAA AAACTAACTG AAATGATAAC TCCTAAAAAG ACAGTTCCCA CAACATTTGA 8760 ATTTACAGAT ATTGCAGGGA TTGTAAAAGG AGCTTCAAAA GGAGAGGGGC TAGGGAATAA 8820 ATTCTTGGCC AATATTCGTG AAGTAGATGC GATTGTTCAC GTAGTTCGTG CTTTTGATGA 8880 TGAAAATGTA ATGCGCGAGC AAGGACGTGA AGACGCCTTT GTAGATCCAC TTGCAGATAT 8940 TGATACCATT AATCTGGAAT TGATTCTTGC TGACTTAGAA TCAGTGAACA AACGATATGC 9000 GCGTGTAGAA AAGATGGCAC GTACGCAAAA AGATAAAGAA TCAGTAGCAG AATTCAATGT 9060 TCTTCAAAAG ATTAAACCAG TCCTAGAAGA CGGGAAATCA GCTCGTACCA TTGAATTTAC 9120 AGATGAGGAA CAAAAGGTTG TCAAAGGTCT TTTCCTTTTG ACGACTAAAC CAGTTCTTTA 9180 TGTAGCTAAT GTGGACGAGG ATGTGGTTTC AGAACCTGAC TCTATCGACT ATGTCAAACA 9240 AATTCGTGAA TTTGCAGCGA CAGAAAATGC TGAAGTAGTC GTTATTTCTG CGCGTGCTGA 9300

263

9360	CCATTGGTTT	TTTCTTGAAG	TAAAAAAGAG	ATGATGAAGA	TCTGAATTGA	GGAAGAAATT
9420	GATTGGGAAC	CACTTGCTTG	TGCAGCTTAC	AGTTGACGCG	GGTGTAGATA	GACAGAATCA
9480	GTATGAAGGC	TTCAAACGTG	CGCTTGGACT	AAGAAGTTCG	GCTGGTGAAA	TTACTTCACA
9540	GTGCAGTAAC	GGCTTTATTC	CTTTGAAAAA	TCCACTCAGA	GCTGGTATTA	TCCTCAAGCA
9600	AAGCTGGACG	GCCGTAAAAG	ATCTGAAAAG	TGAAATACGG	GAAGATCTAG	CATGTCATAT
9660	AATTCCGCTT	GATATCATGG	TCAAGATGGC	AATATATCGT	GAAGGAAAAG	CTTGCGTGAA
9720	AACCCTTTTG	AAAAAATTCC	TTAGGTTGGA	ATGGTGTCAA	AAATTAATAA	TAATGTCTAA
9780	CCAGGGGATA	CTTGGGAAAT	TACTTGTAGG	ATGACCAAAT	GGAAAAATAA	GCTTTTGAAA
9840	GCGAAGAAAC	TGATCAACTA	TTATGTTGAT	AATGTTGGTT	AACAAAACAC	AATATTTTGA
9900	TTTTTCCTAA	CCTAGCATCC	TTCAAGCTGA	GATAAGATAT	TTTTACACAC	AGAATGTCAC
9960	GGAAAAGCAG	GAATGAAAGT	CGACCTTTAT	GTTAAACCAA	AATTTATCTG	ATGGAGAAAA
10020	ATTTACGATG	TTTACTTATC	ATATTGACGA	TATGGTTTGG	ATTAACTTAC	TTCATGCTTT
10080	GGTGGTCATA	AGGCTCAGCA	TAAGAGCAAA	AAAATTCGTT	GGAAGTTGGG	ATCTTGACAT
10140	GTTAAGATTG	CTTTAACCGT	GAACTCAGGT	CAACATATAG	GTCTATTATT	ATGGTATCAA
10200	AAGTTTGACA	TGTTTTGAGT	TTGTTCATCA	GGTATGTCAG	ACCTAAAAAT	GAATTGGAAG
10260	GTAAACTACT	TGACGATTCT	TTGACAAAGT	TTACAGTCTG	TATCGGTATT	GGGATGATTA
10320	ATGGTGACCT	TAACGGATAA	TGCAGAGGTA	GAGAAAACAA	GAAAAATTTT	ATTTACAAGA
10380	TTAACAGATA	GCATCAAAAT	TTAAAAAATG	AATGATCAGA	ATTCTCAGAA	TATTAGATTT
10440	ATTGCAAGCA	GGCTCTTGCA	CATCTACTAA	GGTTTATCAA	ACTAATACTT	AGAAAAGACA
10500	GCAGAAGGAC	TTATGGAGAA	TGACGTCAAC	ATTGTGTTAT	AGAAGATAGG	GTTTAGAAAA
10560	TTGGTAGATG	CTATCCATTT	AGGAACTCGT	.ATCTTGGGTG	TCTTATTTCT	TTGTTAGTGA
10620	CGGGTTGAAG	AATTATTTCA	CACAGGAAAA	TTGATGTCTT	GGTGGAGTTT	ATGCTCCTAT
10680	ATCGCAGCAA	AGTTTGTAAT	AAGGGATTTT	TCATCTAAGA	TTTGACTGAT	CCTTGCGTTT
10740	ATCTCAGTTG	TATTGTAAAA	TCAAAGATAG	CCCAATGCAT	TTTACCGTCT	GTCGATTGAT
10800	TATCGAAAAG	GGAAAATGGC	ATCAGTTAAA	GCGTTTATCC	TGATCAACAC	GTGAAGAATA
10860	GATATTTTTG	AGATATTTTA	GTCTTCGAGG	GGCGAATTTA	ACAAACTCAG	TTACTCAAGT
10920	GATGGTATCA	TGATGAAATT	AGTTTTTTGG	TGTCGAATTG	GTTAGAACCT	AAATATCCCA
10980	ACTATCTTTC	GACAGAACTC	aagaaaataa	CAATTATCGA	AGTAGAAACA	GGTCATTTGA
11040	GCTTTAGAAA	AGGACAGTCA	ATTATCAACG	AGAGAAAAGG	TATGCTTTTG	CAGCTAGTGA

4....

AACAAATTTC	AAAAACTTTA	TCACCTATTT	264 TGAAATCATA	CCTAGAAGAA	ATTCTTTCAA	11100
GTTTTCACCA	AAAACAAAGT	CATGCAGACT	CTCGGAAGTT	TTTATCTTTG	TCCTATGATA	11160
AGACATGGAC	TGTCTTTGAT	TATATTGAAA	AAGATACTCC	AATATTCTTT	GATGATTATC	11220
AAAAATTGAT	GAATCAGTAT	GAAGTCTTTG	AAAGAGACTT	AGCGCAGTAC	TTTACAGAAG	11280
AATTACAGAA	TAGTAAAGCA	TTTTCTGATA	TGCAGTATTT	TTCTGATATT	GAACAAATCT	11340
ATAAAAAACA	AAGTCCAGTG	ACCTTTTTCT	CTAATCTTCA	AAAGGGTTTA	GGAAATCTCA	11400
AATTTGACAA	AATTTATCAA	TTCAATCAAT	ATCCTATGCA	GGAATTTTTC	AATCAGTTTT	11460
CTTTTCTAAA	AGAAGAAATT	GAACGATATA	AAAAAATGGA	TTACACCATT	ATTCTGCAGT	11520
CTAGCAATTC	AATGGGAAGT	AAAACATTGG	AGGATATGTT	AGAGGAATAT	CAGATTAAAT	11580
TGGATTCTAG	AGATAAGACA	AATATCTGTA	AAGAATCTGT	AAACTTAATA	GAGGGTAATC	11640
TCAGACATGG	TTTTCATTT	GTAGATGAAA	AGATTTTATT	GATAACTGAA	CATGAGATTT	11700
TTCAAAAGAA	ATTAAAGCGT	CGTTTTCGAA	GACAACATGT	TTCAAATGCA	GAGAGATTAA	11760
AAGATTACAA	TGAACTTGAA	AAAGGGGACT	ATGTTGTCCA	TCATATCCAT	GGGATTGGTC	11820
AATATCTAGG	AATTGAAACC	ATTGAAATCA	AGGGAATTCA	TCGCGATTAT	GTCAGTGTCC	11880
AATACCAAAA	TGGTGATCAA	ATTTCTATCC	CCGTGGAACA	GATTCATCTA	CTGTCCAAAT	11940
ATATTTCAAG	TGATGGTAAA	GCTCCAAAAC	TCAATAAATT	AAATGACGGT	CATTTTAAAA	12000
AGGCCAAGCA	AAAGGTTAAG	AACCAGGTAG	AGGATATAGC	TGATGATTTA	ATCAAACTCT	12060
ACTCTGAACG	TAGTCAGTTG	AAGGGTTTTG	CTTTCTCAGC	TGATGATGAT	GATCAAGATG	12120
CCTTTGATGA	TGCTTTCCCT	TATGTTGAAA	CGGATGATCA	ACTTCGTAGT	ATTGAGGAAA	12180
TCAAGAGGGA	TATGCAGGCT	TCTCAGCCAA	TGGATCGACT	TTTAGTTGGG	GATGTTGGTT	12240
TTGGAAAGAC	TGAAGTTGCT	ATGCGTGCAG	CCTTTAAAGC	AGTCAATGAT	CACAAACAGG	12300
TTGTCATTCT	AGTTCCGACG	ACGGTTTTAG	CGCAACAGCA	CTATACGAAT	TTTAAGGAAC	12360
GATTCCAAAA	TTTTGCAGTT	AATATTGATG	TGTTGAGTCG	CTTTAGAAGT	AAAAAAGAGC	12420
AGACTGCAAC	ACTTGAAAAA	TTGAAAAAC	GTCAAGTCGA	TATTTTGATT	GGAACACATC	12480
GTGTTTTGTC	AAAAGATGTT	GTGTTTGCTC	ATTTGGGCTT	GATGATTATT	GATGAGGAAC	12540
AGCGATTTGG	TGTCAAGCAT	AAGGAAACTI	TGAAAGAACT	GANGANACA	GTGGATGTCC	12600
TAACCTTGAC	CGCTACGCCA	ATCCCTCGT/	CCCTCCATAT	GTCTATGCT	GGAATCAGAG	12660
ATTTATCTGT	TATTGAAACT	CCGCCGACTA	ATCGCTATCC	TGTTCAGACO	TATGTTTTGG	12720
AAAAGAATGA	A TAGTGTCATT	CGTGATGCTC	TCTTGCGTGA	AATGGAGCG1	GGAGGTCAAG	12780
TTTATTATC	TTACAACAA	GTTGACACA	TTGTTCAGA	GGTTTCAGA	TTACAGGAGT	12840

TGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	12900
ATACTCTATT	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	12960
AGACAGGGGT	GGACATTCCA	AATGCTAATA	CTTTATTTAT	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
CTTATCTCAT	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
TTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	TTTCATTGAT	TCTGTTGGTT	13260
TTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
ATACTTATAT	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCAATTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
GCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
ATGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	CTATAAAATA	GATAAAAATG	GTACAATAAT	13860
AAATTGAGGT	AATAAGGATG	AGATTAGATA	AATATTTAAA	AGTATCGCGA	ATTATCAAGC	13920
GTCGTACAGT	CGCAAAGGAA	GTAGCAGATA	AAGGTAGAAT	CAAGGTTAAT	GGAATCTTGG	13980
CCAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
TGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	CTAAAAATAT	TGTACAATTG	14160
AATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
AAGTTGAAAG	ATGAAGATTA	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

266 14640 TTATTTTGTT GCTACCAAGT TTTTTGACCA TTTCAAAAGT CGTTAGCACA GAAAAAGAAG 14700 TCGTCTATAC TTCGAAAGAA ATTTATTACC TTTCACAATC TGACTTTGGT ATTTATTTTA 14760 GAGAAAAATT AAGTTCTCCC ATGGTTTATG GAGAGGTTCC TGTTTATGCG AATGAAGATT 14820 TAGTAGTGGA ATCTGGGAAA TTGACTCCCA AAACAAGTTT TCAAATAACC GAGTGGCGCT 14880 TAAATAAACA AGGAATTCCA GTATTTAAGC TATCAAATCA TCAATTTATA GCTGCGGACA 14940 AACGATTTTT ATATGATCAA TCAGAGGTAA CTCCAACAAT AAAAAAAGTA TGGTTAGAAT 15000 CTGACTTTAA ACTGTACAAT AGTCCTTATG ATTTAAAAGA AGTGAAATCA TCCTTATCAG 15060 CTTATTCGCA AGTATCAATC GACAAGACCA TGTTTGTAGA AGGAAGAGAA TTTCTACATA 15120 TTGATCAGGC TGGATGGGTA GCTAAAGAAT CAACTTCTGA AGAAGATAAT CGGATGAGTA 15180 AAGTTCAAGA AATGTTATCT GAAAAATATC AGAAAGATTC TTTCTCTATT TATGTTAAGC 15240 AACTGACTAC TGGAAAAGAA GCTGGTATCA ATCAAGATGA AAAGATGTAT GCAGCCAGCG 15300 TTTTGAAACT CTCTTATCTC TATTATACGC AAGAAAAAT AAATGAGGGT CTTTATCAGT 15360 TAGATACGAC TGTAAAATAC GTATCTGCAG TCAATGATTT TCCAGGTTCT TATAAACCAG 15420 AGGGAAGTGG TAGTCTTCCT AAAAAAGAAG ATAATAAAGA ATATTCTTTA AAGGATTTAA 15480 TTACGAAAGT ATCAAAAGAA TCTGATAATG TAGCTCATAA TCTATTGGGA TATTACATTT 15540 CAAACCAATC TGATGCCACA TTCAAATCCA AGATGTCTGC CATTATGGGA GATGATTGGG 15600 ATCCAAAAGA AAAATTGATT TCTTCTAAGA TGGCCGGGAA GTTTATGGAA GCTATTTATA 15660 ATCAAAATGG ATTTGTGCTA GAGTCTTTGA CTAAAACAGA TTTTGATAGT CAGCGAATTG 15720 CCAAAGGTGT TTCTGTTAAA GTAGCTCATA AAATTGGAGA TGCGGATGAA TTTAAGCATG 15780 ATACGGGTGT TGTCTATGCA GATTCTCCAT TTATTCTTTC TATTTTCACT AAGAATTCTG 15840 ATTATGATAC GATTTCTAAG ATAGCCAAGG ATGTTTATGA GGTTCTAAAA TGAGGGAACC 15900 AGATTTTTTA AATCATTTC TCAAGAAGGG ATATTTCAAA AAGCATGCTA AGGCGGTTCT 15960 AGCTCTTTCT GGTGGATTAG ATTCCATGTT TCTATTTAAG GTATTGTCTA CTTATCAAAA 16020 AGAGTTAGAG ATTGAATTGA TTCTAGCTCA TGTGAATCAT AAGCAGAGAA TTGAATCAGA 16080 TTGGGAAGAA AAGGAATTAA GGAAGTTGGC TGCTGAAGCA GAGCTTCCTA TTTATATCAG 16140 CAATTTTCA GGAGAATTTT CAGAAGCGCG TGCACGAAAT TTTCGTTATG ATTTTTTCA 16200 AGAGGTCATG AAAAAGACAG GTGCGACAGC TTTAGTCACT GCCCACCATG CTGATGATCA 16260 GGTGGAAACG ATTTTTATGC GCTTGATTCG AGGAACTCGC TTGCGCTATC TATCAGGAAT 16320 TAAGGAGAAG CAAGTAGTCG GAGAGATAGA AATCATTCGT CCCTTCTTGC ATTTTCAGAA 16380

AAAAGACTTT CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ልጥ ር ልጥጥል ጥጥጥ	16440
TCGAAATCGT ATTCGAAATT					16500
GGATGCAATC TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
TAGAAAAAA CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TGCTCTTATT ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA AAAACGAAAA	ATGATATAAT	GAACACTGTA	CTTTATATAG	AAAAAATAGA	17160
TAGGTAAAAA ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	TAATTAAAA	17760
TCCTTTTCTA TGGTTATTAT	TTATCTTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG	17940
TGTCTATAAA AATCCTAAAA	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

			200			
TGGTATATGG	ATTAATCTAC	TCGTATCCAT	TGTGCCATTT	GGAATTCTAT	TCTTCTTCCT	1818
ATTCTCTATG	ATGGGAAATA	TGGGAGGAGG	CAATGGCCGT	AATCCAATGA	GTTTTGGACG	1824
TAGTAAGGCT	AAAGCAGCAA	ATAAAGAAGA	TATTAAAGTA	AGATTTTCAG	ATGTTGCTGG	1830
AGCTGAGGAA	GAAAAACAAG	AACTAGTTGA	AGTTGTTGAG	TTCTTAAAAG	ATCCAAAACG	1836
ATTCACAAAA	CTTGGAGCCC	GTATTCCAGC	AGGTGTTCTT	TTGGAGGGAC	CTCCGGGGAC	1842
AGGTAAAACT	TTGCTTGCTA	AGGCAGTCGC	TGGAGAAGCA	GGTGTTCCAT	TCTTTAGTAT	1848
CTCAGGTTCT	GACTTTGTAG	AAATGTTTGT	CGGAGTTGGA	GCTAGTCGTG	TTCGCTCTCT	1854
TTTTGAGGAT	GCCAAAAAAG	CAGCACCAGC	TATCATCTTT	ATCGATGAAA	TTGATGCTGT	1860
TGGACGTCAA	CGTGGAGTCG	GTCTCGGCGG	AGGTAATGAC	GAACGTGAAC	AAACCTTGAA	1866
CCAACTTTTG	ATTGAGATGG	ATGGTTTTGA	GGGAAATGAA	GGGATTATCG	TCATCGCTGC	1872
GACAAACCGT	TCAGATGTAC	TTGACCCTGC	CCTTTTGCGT	CCAGGACGTT	TTGATAGAAA	1878
AGTATTGGTT	GGTCGTCCTG	ATGTTAAAGG	TCGTGAAGCA	ATCTTGAAAG	TTCACGCTAA	18840
GAATAAGCCT	TTAGCAGAAG	ATGTTGATTT	GAAATTAGTG	GCTCAACAAA	CTCCAGGCTT	18900
TGTTGGTGCT	GATTTAGAGA	ATGTCTTGAA	TGAAGCAGCT	TTAGTTGCTG	CTCGTCGCAA	18960
TAAATCGATA	ATTGATGCTT	CAGATATTGA	TGAAGCAGAA	GATAGAGTTA	TTGCTGGACC	19020
ТТСТААСААА	GATAAGACAG	TTTCACAAAA	AGAACGAGAA	TTGGTTGCTT	ACCATGAGGC	19080
AGGACATACC	ATTGTTGGTC	TAGTCTTGTC	GAATGCTCGC	GTTGTCCATA	AGGTTACAAT	19140
TGTACCACGC	GGCCGTGCAG	GCGGATACAT	GATTGCACTT	CCTAAAGAGG	ATCAAATGCT	19200
TCTATCTAAA	GAAGATATGA	AAGAGCAATT	GGCTGGCTTA	ATGGGTGGAC	GTGTAGCTGA	19260
AGAAATTATC	TTTAATGTCC	AAACCACAGG	AGCTTCAAAC	GACTTTGAAC	AAGCGACACA	19320
AATGGCACGT	GCAATGGTTA	CAGAGTACGG	TATGAGTGAA	AAACTTGGCC	CAGTACAATA	19380
TGAAGGAAAC	CATGCTATGC	TTGGTGCACA	GAGTCCTCAA	AAATCAATTT	CAGAACAAAC	19440
AGCTTATGAA	ATTGATGAAG	AGGTTCGTTC	ATTATTAAAT	GAGGCACGAA	ATAAAGCTGC	19500
TGAAATTATT	CAGTCAAATC	GTGAAACTCA	CAAGTTAATT	GCAGAAGCAT	TATTGAAATA	19560
CGAAACATTG	GATAGTACAC	AAATTAAAGC	TCTTTACGAA	ACAGGAAAGA	TGCCTGAAGC	19620
AGTAGAAGAG	GAATCTCATG	CACTATCCTA	TGATGAAGTA	AAGTCAAAAA	TGAATGACGA	19680
		TGGAGCCTCT				19740
ACAGAATGGA	GAAAATGGAA	CAAATGTGTT	TTCTAATCTG	TTAGACTGTA	TCTAGAAAGG	19800
GGAAAATTAT	GATTAAAGAA	TTGTATGAAG	AAGTCCAAGG	GACTGTGTAT	AAGTGTAGAA	19860
ATGAATATTA	CCTTCATTTA	TGGGAATTGT	CGGATTGGGA	GCAAGAAGGC	ልጥርርጥርጥርርጥ	19920

TACAT	GAATT	GATTAGTAGA	GAAGAAGGAC	TGGTAGACGA	TATTCCACGT	TTAAGGAAAT	19980
ATTTC	N AGAC	CAAGTTTCGA	AATCGAATTT	TAGACTATAT	CCGTAAACAG	GAAAGTCAGA	20040
AGCGT	AGATA	CGATAAAGAA	CCCTATGAAG	AAGTGGGTGA	GATCAGTCAT	CGTATAAGTG	20100
AGGGGG	GTCT	CTGGCTAGAT	GATTATTATC	TCTTTCATGA	AACACTAAGA	GATTATAGAA	20160
ACAAA	ZAAAG	TAAAGAGAAA	CAAGAAGAAC	TAGAACGCGT	CTTAAGCAAT	GAACGATTTC	20220
GAGGGG	GTCA	AAGAGTATTA	AGAGACTTAC	GCATTGTGTT	TAAGGAGTTT	ACTATCCGTA	20280
CCCAC	ATDAT	AGTCATGCAA	AAAAAATGAA	AAAAATTAGA	AAAAGTAGTT	GACAAAGTTT	20340
GAAAAG	GCTG	TATAATAGTA	AGAGTTGAAA	ATAACAACTC	AGGTCCGTTG	GTCAAGGGGT	20400
TAAGAG	CACCG	CCTTTTCACG	GCGGTAACAC	GGGTTCGAAT	CCCGTACGGA	CTATGGTATG	20460
TTGCGT	CAGG	ACCACTTGAT	GAAAAAAAGT	TTAAAAAAAC	TTAAAAATCT	TCAAAAAAGT	20520
GTTGAG	AAGC	GAAAGCAGTT	GTGATATACT	AATATAGTTG	TCGCTTGAGA	GAAGCAAGTG	20580
ACAAAG	ACCT	TTGAAAACTG	AACAAGACGA	ACCAATGTGC	AGGGCGCTAC	AACGTAAGTT	20640
GTAGTA	CTGA	ACAATGAAAA	AAACAATAAA	TCTGTCAGTG	ACAGAAATGA	GTAAGAACTC	20700
AAACTT	TTTA	ATGAGAGTTT	GATCCTGGCT	CAGGACGAAC	GCTGGCGGCG	TGCCTAATAC	20760
ATGCA	GTAG	AACGCTGAAG	GAGGAGCTTG	CTTCTCTGGA	TGAGTTGCGA	ACGCCTGACT	20820
AACGCC	TAGG	TAACCTGCCT	GGTAGCGGGG	CATAACTATT	GGAAACGATA	GCTAATACCG	20880
CATAAC	AGTA	GATGTTGCAT	GACATTTGCT	TAAAAGGTGC	ACTTGCATCA	CTACCAGATG	20940
GACCTO	CCTT	GTATTAGCTA	GTTGGTGGGG	TAACGGCTCA	CCAAGGCGAC	GATACATAGC	21000
CGACCT	'GAGA	GGGTGATCGG	CCACACTGGG	ACTGAGACAC	GGCCCAGACT	CCTACGGGAG	21060
GCAGCA	GTAG	GGAATCTTCG	GCAATGGACG	GAAGTCTGAC	CGAGCAACGC	CGCGTGAGTG	21120
AAGAAG	GTTT	TCGGATCGTA	AAGCTCTGTT	GTAAGAGAAG	AACGAGTGTG	AGAGTGGAAA	21180
GTTCAC	ACTG	TGACGGTATC	TTACCAGAAA	GGGACGGCTA	ACTACGTGCC	AGCAGCCGCG	21240
GTAATA	CGTA	GGTCCCGAGC	GTTGTCCGGA	TTTATTGGGC	GTAAAGCGAG	CGCAGGCGGT	21300
TAGATA	AGTC	TGAAGTTAAA	GGCTGTGGCT	TAACCATA			21338

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

(XI)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	21:		
TGTTTTTAAA	GAGCCGTGTC	TGGATAGACT	TTCGGACGCA	ACGCTCTATT	AGATAATGAA	60
CTGCCTATAC	ACAAGATTTC	TAACCTTAGI	CGACATGAGO	TGAAACCTCT	TATTTGTTAA	120
GTAGTTCACA	AAATATTATA	CACCTATTT	ATGAATAGTC	AACTGTCTTT	ACAGTAAAAT	180
TTTAGAAAAT	CATGAAAATT	TICTCTTTCT	TTCCATTTTA	AGTGACATTO	AGTCATTCTC	240
ACATCAAAAA	AGCCCAGACG	AAATTGTCTG	AGCATTCTTT	TATCTAGTCG	TTTAAGGAAG	300
TTGAGTTCAG	TATGTTTAAA	GTCTCTGTCC	CATCATTTCT	TCAACAAACC	TTGTTCTTGG	360
AGAAACTCCT	TGGCTACTTG	CTTTGCTGAC	TTGCCTTCAA	CACCGACTTG	GTAGTTGAGC	420
TGGCTCATCT	GGCTTTCTGT	AATCTTACCA	GCCAATGTAT	TAAGAACTCT	TTCCAACTCT	480
GGGTGTTTCT	TGAGAAGAGC	TTCTTTCATG	AGTGGAGCCC	CTTGATAAGG	TGGGAAGAGT	540
TGCTTGTCAT	CTTCCAAGAC	CTGTAAATCA	TAACGCTCCA	ATTCCGCATC	AGTCGAATAG	600
GCATCCGTGA	TTTGAATATC	CCCTGACTGA	ATAGCCTGAT	AGCGAAGGGC	TGGCTCAATG	660
GTCGCTACAT	TGAGATTGAG	ACCATACATT	GATTGCAAGC	CCTTATTTCC	ATCTTCACGG	720
TCGTTAAACT	CGAGTGTAAA	ACCTGCCTTC	AACTGCCCTT	CCACTTTTTT	CAAGTCTGAA	780
ATGGTCTTCA	AGCCATATTC	TTGAGCAATC	TTTTTCGGAA	CAGCTACAGC	ATAGGTGTTT	840
TGATAAGACA	TGGGTTTGAG	ATAGGCTAGA	TGATCCTGCT	TAGCAATGCC	ATCACGCGCC	900
ACCTGATAAA	CCTGTTCTGG	TTCATGACTC	ACCTTGGGTG	ATGGTTGAAG	CAAACTTTCA	960
GTCACCGTAC	CAGTAAATTC	AGGATAGATG	TCAATATCGC	CTTTTTTCAG	AGCTTCATAA	1020
AGGAAGCTTG	TCTTCCCAAA	ATTCGGTTTA	ACAGTCGCAG	TCATGCTGGT	ATTTTCTTCA	1080
ATCAGCAACT	TATACATATT	GGCCAAAATT	TCTGGTTCTG	GACCTATTTT	CCCAGCAATA	1140
ACCAAGTTTT	CCTTCTCTTT	TTGAACCAAA	AGAGCTGGAC	TATAAGACAG	ACCCAGTAAT	1200
AAAGCCACCA	AGGCAAAACC	TGAGAAAATC	GTCCGTAATT	TTGCTTTTTC	CATCACTTTT	1260
AGTAGGAAGT	TAAAGGCAAT	GGCTAGCACT	GCAGAAGAAA	GTGCCCCAAT	CAAAATCAAA	1320
CTGGCATTAT	TACGGTCAAT	TCCCAAAAGA	ATAAAGGAAC	CTAGTCCCCC	TGCACCAATC	1380
AAGGCCGCCA	AGGTTGCCGT	ACCGATAATC	AAAACAGCTG	CCGTCCGAAT	CCCAGACATG	1440
ATAACAGGCA	TGGCGAGTGG	AATTTCAAAT	TTCTTGAGAC	GTTCCCATCT	GGTCATCCCA	1500
AAGGCAATCC	CAGCCTCTTG	CAGGTTCGGA	TCAATTCCCT	TCAGCCCAGT	GATAGTATTT	1560
TGCAAAATAG	GGAAAATCGC	ATAAATCACT	AGAGCTGTCA	AAGCCGGCAA	GGTCCCAATT	1620
CCCATCAAAG	GGATAAAGAG	CCCCAACAAG	GCCAGAGACG	GGATGGTCTG	GAAAATACCT	1680
GCAATCTGCA	AGACCCAGTC	GGCCAGCTTC	TCATGATAGC	GAAGAAAAAC	AGCCAAGGGA	1740

٠...

ATCGCAAGCA	AAATAGCTAG	TAACAAGGTC	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
SCTGTCAACC	AATCACTAAA	ACGATCCTGA	AAAGTTGCAA	TTAAATTAGT	CATGAACACT	1860
ACCTCCAAAC	AAGTCTGCTA	CAAAGTCTGT	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
CGCTACCTGG	CGAATTTCTC	CATCCTGCAA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
TTCATCCGTA	TCATGGGTTA	CAAAAATCGT	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
TGTCAGAACC	TGCAACTGTT	TTCTCGAAAT	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
GAGGAAAATC	TTGGGCTGAC	CAATCATAGC	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
ACCAGATAAT	TCACTAGGTA	AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
CAAAAGCTCT	TCTGTTTTCT	TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
GAGAGCAATA	TTTTCCGCAA	CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
ACCAGTAGAA	AGACGAAGTT	CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
AATATTTCCA	TCAGTTGGTT	CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
TGACCCAGAA	GGCCCTACTA	AAACCATAAA	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
TCTCAAGACA	TCCTTTTCTG	TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
TCCTCAATTT	AAAACTTCCC	TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
TTATCCCAAT	GCTCCACAAT	TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGCCATAA	2700
GCAACGCCAT	CAATCTGAGT	CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
TGGAAAACAA	AGTCAAAAGT	GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
CCTTGTCCAA	TATCATGATT	ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
TCTAGCTCCC	CATTTTGGAA	AATTTCTGTC	AAGAAACGGG	SANCCACCTT	ششناغ يشششان	3940
GCTTTCTTAT	CCAAATCCTT	GATTTCAAAA	TCTCCAAAAA	TTTGATCTAG	TTGGTCATTT	3000
TCAGGTGTTC	GATAGTAGTC	AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
TCACGGAAAG	TATCCGTCGT	CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
TGAACAAAGA	CCAGATTGCC	ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
TGACGCTCAA	AGAAATCTGC	AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
GTCGAATGTT	GGATATAGGT	ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG	3300
TCTTGAATGG	CATGGATGTA	TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	CATATTCTAA	3360
ACCTCATTTC	CCTTCTCTTT	CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
					1000101001	3400

TGCCCCACTT	CTTTCTGGGA	CTTGCCTAAC	TCCGTTAAAA	CTAAATACTT	CTTACGCTTG	3540
TCTTTTCCAC	ACGGACTAAC	AATTACAAGC	TTTTGTTCCT	CTAGCTTTTT	TATCATAGTC	3600
GTCAGCGTAT	TATTCGCAAG	TCCAGTCGCA	AGCGCGATAT	CTGTCGCAGT	TGCGCAGCCA	3660
GTTTCACTAT	TCCATAAAAC	CGCTAAAATC	TTGCCCTGTT	CACCCCTATA	AAGAGCCTCA	3720
GGATCTTGAC	TCAGTAACTT	TTGAAAAATC	CGCCCATTCA	ACAAACGAAT	ATGATGGGCT	3780
AGCAAATGAC	CATCTTTCAT	AACACCTCCA	ATTTATTTCG	ATATCGAAAT	GAATAAAACA	3840
ATTGTAACAC	TCATCGTTCT	AACTGTCAAC	TATTTCGATT	TAGAAATAAT	TTTTGATAAT	3900
TATCCACACC	ACCATACTCC	GGCTCAACTA	ACTTTTAACG	AGAGTTTCTA	AACTCCTTCG	3960
TCCTCCAGTC	TACAAAAGCC	TTCCATTCGT	ACTATCCTAT	ATTTTATGAG	GGGACACATT	4020
TTTCCTATCA	GACCATTTAT	TTTAAAGATA	GAAGTAAATC	ATAATTGCTT	CCATCTGTTC	4080
TTTTATAGTA	TATTGAAGTT	AGACTAGAGC	ACTGTATCTT	CTAAAACATT	GATAGAAAGC	4140
GATTTGAATT	TCCCAATCAA	TTTGTTCGTA	TTTATAGCAT	TTCGAAACTG	GAATAGGACA	4200
CCATGACTGC	TAAAAGATTT	CTATAAATTC	ATTTAATTTC	CTCAATCAAT	TTGTTCATAT	4260
CTTATTTCAT	TCCGCTATAA	TTTCACCTTA	CCCTATCTTT	TTCGTAGCAC	CCTTCAAACA	4320
GCCTATCCCC	TACCGTTTGA	CGATTCCTCA	CTTCGCTCCA	CTTCCATTAC	AGAAGTTTCT	4380
TCACTACTAT	GGGCTCGGCT	GACTTCTCAT	GATTCCTTGT	TACTACTATT	TGAACGCTCA	4440
CGAGATAGAT	CTTACAAAAA	ATGCTTTGAT	CCACAATGGA	ATCAAAGCAT	TTTAAAGAGT	4500
TCCTCATACA	TAAGCGCAGA	AGTCGCAGTT	CCTCTGTACT	TGGCTTCTTC	TCTTTTGACA	4560
AAGCGAGCCA	AGTTGAGCAA	CTCAGGTGCT	GGATGTTTGG	GATTTAGGAG	CAATTCACGA	4620
TTGACCAGGC	CTGAGAGACG	AACTGCCTGC	AATTGCTCAT	TTGTAGTAGG	CAGTTTTTTA	4680
GTAGTCTCTA	GGAGAGCAGC	AACTAAATCT	TCACTCAAAT	CATGTCGAGC	ATGATTGTAA	4740
AGATCTTTTA	TAAGGCTTTC	TAGGTTTGGT	TCTACCATCC	CTACCACCTC	CCTTATGGTT	4800
Taataatgtt	TAATCAAATC	AACCGTTGAA	CGATCCAATT	TCTTCACCAA	GGCTTGTAAG	4860
AAAGCTTGCG	CTTCTAGGAA	GTCATCCATT	GCATAGAGGG	TTTGGTGAGA	ATGGATATAA	4920
CGAGCGCAGA	CACCGATAGT	TGTTGATGGG	ACACCACCAT	TTTTCAGATG	AGCTGCACCT	4980
GCATCTGTTC	CGCCTTTACC	ACAGTAGTAT	TGGTACTTGA	TACCAGCTTC	TTCAGCCGTT	5040
GTCAAAAGGA	AATCCTTCAT	CCCTGGGAGA	AGCAAGTGAC	CTGGATCATA	GAAACGAATC	5100
AAGGTTCCAT	CTCCAATCTT	GCCTTGACCA	CCGTAGACAT	CACCTGCTGG	TGAGCAATCA	5160
ACTGCGAGGA	AGACTTCTGG	GTCAAACTTG	GTTGTAGAGG	TATGAGCGCC	ACGCAGACCA	5220
الملاك الملاك المالية	CGACGTTAGA	ACCCAGATAG	AGTTCATTCC	CCACTUTUTUTUC	ACCCCATAAA	5280

273

GCTTCAGCTA	GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
TTTTTTTATA	CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGATGCCAA	AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAATGGCTG	GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAATCACAG	GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCATGGGGT	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGACCATAA	AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTTCTGAAT	GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
TGCGGTGTCA	ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAAGTTCTG	TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
TTTCATCCAT	TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	TTTCTAAGTT	5940
AGTATCTTAG	TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
TCTAGTAAAC	ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	аласаалала	ACAATACACC	6060
ATCAAAGTTG	TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
TTCTTTAAAT	ATATAGTTGG	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
TAGAAATTAA	TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAAAACTAG	AAAAGGAAAA	AATCATGACC	AGG			6273

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28171 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACAACCTTTT	TCAAAAACTC	ACCTTGGTAC	GGAGATGTTT	TGCTTTCTGC	TATTATTTTC	60
GGTTATATTC	ATATCAATTT	TGCTTTAACT	CCTCTTGCTT	TTTTCATTTA	TGCTAGTGGA	120
GGTCTTATTT	TAGCTCTATT	GTATCGCATG	ACTAAAAATC	TCTACTATCC	AATACTAGTT	180
CATATTCTCA	TTAATATCAC	TGCCTTCTGG	GATGTGTGGT	TGCTCCTATT	TTCAGGAAGT	240
TAGCTTACTA	AAATAATGTC	GGAACTTTCC	GGCATTTTCT	TTTTTCACAA	ATAGTCAACG	300
TTTTTCTTTT	CGATATTGTA	GTGGTGTGTA	TCCAGTTATT	TTTTTGAATT	GATTTTGAAA	360

			274			
ATAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
TTTCCTTTTT	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
GAAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
TGAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	600
GGAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
TCGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	ATATTTTTCA	720
AAATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
TGACTTCTTG	CCACCAACTA	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
CCGTATTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
GATTGGGATT	ATCTACCTCA	ACAATCAAAA	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
ATTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	САТАТТТАТС	TCCGTGAGGG	1020
TCATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
TCGTTTCACT	CAAGAGAAAG	ACGAGTACCT	ттаттаттса	GAGAACTTTG	TCGATACCAG	1140
CGCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
GACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
AGTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	TATGTTAAAC	GTGAAGAAGT	1320
GGAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
GAGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
GATCAGTTGG	TCAAATCCTA	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
ATCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	TTCTATCTTA	1560
CAAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
TATTTACATA	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
GCGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
CACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
GTGATTATTT	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
TGGTGGTCTG	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
GAATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
CACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
TGTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGG	CTGTCGTTAA	2100
CAAACCTCAG	GGAATGGTTG	TGCACCCGAG	TGCTGGTCAT	ACCAGTGGAA	CCCTAGTAAA	2160

TGCCCTCAT	IG TATCATATI	TA AGGACTTGTC	GGGTATCAAT	GGGGTTCTGC	GTCCAGGGAT	2220
TGTTCACCO	GT ATTGATAAG	G ATACGTCAGG	TCTTCTCATG	ATTGCTAAAA	ACGATGATGC	2280
GCATCTAG	CA CTTGCCCAA	G AACTCAAGGA	TAAAAAGTCT	CTCCGCAAAT	ATTGGGCGAT	2340
TGTTCATG	GA AATCTACCI	A ATGATCGTGG	TGTAATTGAA	GCGCCGATTG	GCCGGAGTGA	2400
AAAAGACCO	ST AAGAAACAG	G CTGTAACTGC	TAAAGGGAAG	CCTGCAGTGA	CGCGTTTTCA	2460
CGTCTTGG!	VA CGCTTTGGC	G ATTATAGCTT	AGTAGAGTTG	CAACTGGAGA	CAGGGCGCAC	2520
TCATCAAA1	C CGTGTCCAC	A TGGCTTATAT	CGGCCATCCA	GTCGCTGGTG	ATGAGGTCTA	2580
TGGTCCTC	C AAGACTTTG	A AAGGACATGG	ACAATTTCTT	CATGCCAAGA	CTTTAGGTTT	2640
TACTCATC	G AGAACAGGT	'A AGACCTTGGA	ATTTAAAGCA	GATATCCCAG	AGATTTTTAA	2700
GGAAACCTT	G GAGAGATTG	A GAAAGTAAGA	ATGAAAAAGA	AATTAACTAG	TTTAGCACTT	2760
GTAGGCGC7	T TTTTAGGTT	T GTCATGGTAT	GGGAATGTTC	AGGCTCAAGA	AAGTTCAGGA	2820
AATAAAATC	C ACTTTATCA	A TGTTCAAGAA	GGTGGCAGTG	ATGCGATTAT	TCTTGAAAGC	2880
AATGGACA1	TTTGCCATGG	T GGATACAGGA	GAAGATTATG	ATTTCCCAGA	TGGAAGTGAT	2940
TCTCGCTAT	C CATGGAGAG	A AGGAATTGAA	ACGTCTTATA	AGCATGTTCT	AACAGACCGT	3000
GTCTTTCGT	C GTTTGAAGG	A ATTGGGTGTC	CAAAAACTTG	ATTTATTT	GGTGACCCAT	3060
ACCCACAGI	G ATCATATTG	G AAATGTTGAT	GAATTACTGT	CTACCTATCC	AGTTGACCGA	3120
GTCTATCT1	`A AGAAATATA	G TGATAGTCGT	ATTACTAATT	CTGAACGTCT	ATGGGATAAT	3180
CTGTATGGC	T ATGATAAGG	T TTTACAGACT	GCTGCAGAAA	AAGGTGTTTC	AGTTATTCAA	3240
AATATCACA	C AAGGGGATG	C TCATTTTCAG	TTTGGGGACA	TGGATATTCA	GCTCTATAAT	3300
PATGAAAAT	S AAACTGATT	S ATCGGGTGAA	TTAAAGAAAA	TTTGGGATGA	CAATTCCAAT	3360
rccttgat1	'A GCGTGGTGA	A AGTCAATGGC	AAGAAAATTT	ACCTTGGGGG	CGATTTAGAT	3420
AATGTTCA 1	GAGCAGAAG	A CAAGTATGGT	CCTCTCATTG	GAAAAGTTGA	TTTGATGAAG	3480
TTAATCAT	C ACCATGATA	C CAACAAATCA	AATACCAAGG	ATTTCATTAA	AAATTTGAGT	3540
CCGAGTTTG	A TTGTTCAAA	C TTCGGATAGT	CTACCTTGGA	AAAATGGTGT	TGATAGTGAG	3600
TATGTTAAT	T GGCTCAAAG	A ACGAGGAATT	GAGAGAATCA	ACGCAGCCAG	CAAAGACTAT	3660
GATGCAACA	G TTTTTGATA	T TCGAAAAGAC	GGTTTTGTCA	ATATTTCAAC	ATCCTACAAG	3720
CCGATTCCA	A GTTTTCAAG	C TGGTTGGCAT	AAGAGTGCAT	ATGGGAACTG	GTGGTATCAA	3780
CCCCTGAT	T CTACAGGAG	A GTATGCTGTC	GGTTGGAATG	AAATCGAAGG	TGAATGGTAT	3840
ר ב מייייים ארי	C AAACCCCTA	יי רייייניייאראני	A ATC A ATCC *	3	CAAMCAMMOO	3000

276 TTCTATTTGA CAGACTCTGG TGCTTCTGCT AAAAATTGGA AGAAAATCGC TGGAATCTGG 3960 TATTATTTTA ACAAAGAAAA CCAGATGGAA ATTGGTTGGA TTCAAGATAA AGAGCAGTGG 4020 TATTATTTGG ATGTTGATGG TTCTATGAAG ACAGGATGGC TTCAATATAT GGGGCAATGG 4080 TATTACTTTG CTCCATCAGG GGAAATGAAA ATGGGCTGGG TAAAAGATAA AGAAACCTGG 4140 TACTATATGG ATTCTACTGG TGTCATGAAG ACAGGTGAGA TAGAAGTTGC TGGTCAACAT 4200 TATTATCTGG AAGATTCAGG AGCTATGAAG CAAGGCTGGC ATAAAAAGGC AAATGATTGG 4260 TATTTCTACA AGACAGACGG TTCACGAGCT GTGGGTTGGA TCAAGGACAA GGATAAATGG 4320 TACTTCTTGA AAGAAAATGG TCAATTACTT GTGAACGGTA AGACACCAGA AGGTTATACT 4380 GTGGATTCAA GTGGTGCCTG GTTAGTGGAT GTTTCGATCG AGAAATCTGC TACAATTAAA 4440 ACTACAAGTC ATTCAGAAAT AAAAGAATCC AAAGAAGTAG TGAAAAAGGA TCTTGAAAAT 4500 AAAGAAACGA GTCAACATGA AAGTGTTACA AATTTTTCAA CTAGTCAAGA TTTGACATCC 4560 TCAACTTCAC AAAGCTCTGA AACGAGTGTA AACAAATCGG AATCAGAACA GTAGTAGAAA 4620 AGAAGGTTTT AGGGCCTTCT TTTTCCTATC AACTCTTTTC TATTTCCTGT TATTCATGTT 4680 ATAATGGATA AATATGAATA ATCGGAGTGA GACTATGAAA TACAAACGGA TTGTCTTTAA 4740 GGTGGGTACT TCTTCTCTGA CAAATGAGGA TGGAAGTTTA TCACGTAGTA AGGTAAAGGA 4800 TATTACCCAG CAGTTGGCTA TGCTGCACGA GGCTGGTCAT GAGTTGATTT TGGTGTCTTC 4860 AGGTGCCATT GCGGCTGGTT TTGGAGCCTT AGGATTTAAA AAGCGTCCGA CTAAGATTGC 4920 TGATAAACAG GCTTCAGCAG CGGTAGGGCA GGGGCTTTTG TTGGAAGAAT ATACAACCAA 4980 TCTTCTCTTG CGTCAAATCG TTTCTGCACA AATCTTGCTG ACCCAAGATG ACTTTGTGGA 5040 TAAGCGTCGT TATAAAAATG CCCATCAGGC TTTGTCGGTT TTGCTCAACC GTGGGGCAAT 5100 TCCTATCATC AATGAGAATG ATAGTGTCGT TATTGATGAG CTCAAGGTTG GGGACAATGA 5160 CACTCTAAGT GCTCAAGTAG CGGCGATGGT CCAAGCAGAC CTTTTAGTTT TCTTGACAGA 5220 TGTGGACGGT CTCTATACTG GAAATCCTAA TTCAGATCCA AGAGCCAAAC GCTTGGAGAG 5280 AATCGAGACC ATCAATCGTG AGATTATTGA TATGGCTGGT GGAGCTGGTT CGTCAAACGG 5340 AACTGGGGGT ATGTTAACCA AAATCAAGGC TGCAACTATC GCGACGGAAT CAGGAGTTCC 5400 TGTTTATATC TGCTCATCCT TGAAATCAGA TTCCATGATT GAGGCGGCAG AGGAGACCGA 5460 GGATGGTTCT TACTITGTTG CTCAAGAGAA GGGGCTTCGT ACCCAGAAAC AATGGCTTGC 5520 CTTCTATGCT CAGAGTCAAG GTTCTATTTG GGTTGATAAA GGGGCTGCGG AAGCTCTCTC 5580 TCAATATGGA AAGAGTCTTC TCTTATCTGG TATCGTTGAA GCAGAAGGAG TCTTTTCTTA 5640 CGGTGATATC GTGACAGTAT TTGACAAGGA AAGTGGAAAA TCACTTGGAA AAGGACGCGT 5700

GCAATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GATTTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
TTAGAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATCGATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTTAGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGGGAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GATGGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AACAAGTCAG	CTTGAAAATG	GTTTGGTTAT	САСАААААА	CGTGTAGCTA	TGGGTGTCAT	6180
CGGTATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAGTGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	TATCAAACAA	CCCATGCCAT	6300
TGTCACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GGTGGAGGAT	ACTAGCCGTG	AAAGTAGTTA	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CCTTCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACCTGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGACAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CATGGAGGTT	CTGCTGGTTC	ATGAAAACAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGTGTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAAAGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
TTTAGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
TGAATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATACTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGATGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACCC	7020
GCGTGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
GCAGATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
CTTGGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
TCAAGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA	7260
AATGTTTGCA	GAAGCAGATG	TGATTTTTCT	AGGAGTTAAG	CCTGCTCAGT	TTTCTGAACT	7320
GCTTTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
ACCORC NOTICE	ACCOMMACN N N	******	TOTAL TOTAL	ACTICA ACACC	C N N TOTAL TOTAL CO.	744

			278			
PATGATGCCT	AATACCCCTG	CTTCTATCGG	GCAAGGAGTG	ATTAGTTATG	CCTTGTCTCC	7500
PAATTGCAGG	GCTGAGGACA	GTGAGCTCTT	TTATCAGCTT	TTAGCCAAGG	CTGGTCTCTT	7560
GTTGAACTA	GGAGAAAGTT	TAATCGATGC	AGCGACAGGT	CTTGCAGGTT	GTGGACCAGC	7620
CTTTGTCTAT	CTTTTTATCG	AGGCCTTGGC	AGATGCAGGT	GTTCAGACAG	GATTACCACG	7680
AGAAATAGCA	TTGAAAATGG	CAGCACAAAC	TGTGGTAGGA	GCTGGGCAAT	TGGTCCTTGA	7740
AAGTCAGCAA	CATCCTGGAG	TATTGAAAGA	CCAAGTCTGT	AGCCCAGGCG	GTTCGACTAT	7800
CGCTGGTGTA	GCAAGCCTAG	AAGCGCATGC	TTTCCGAGGA	ACAGTCATGG	ATGCAGTTCA	7860
rcaagcctac	AAACGAACAC	AAGAACTAGG	TAAATAAGAG	GTAGTTTTGA	CTGCCTCTTT	7920
FATGGTGGCT	GAAATGAGAA	GACACAAAAA	GATTGTCACA	AACCCCTATT	TTTTTGATAG	7980
AATAGA AGTA	GTAAAAAAGA	AATGAGTTAG	ACATGTCAAA	AGGATTTTTA	GTCTCTCTTG	8040
AGGGACCAGA	GGGAGCAGGC	AAGACCAGTG	TTTTAGAGGC	TCTGCTACCA	ATTTTAGAGG	8100
NAAAA GGAGT	AGAGGTGTTG	ACGACCCGTG	AACCTGGCGG	AGTCTTGATT	GGGGAGAAGA	8160
TCGGGAAGT	GATTTTGGAT	CCAAGTCATA	CTCAGATGGA	TGCTAAAACA	GAGCTACTTC	8220
CTATATTGC	CAGTCGCAGA	CAGCATTTGG	TGGAAAAAGT	TCTTCCAGCC	CTTGAAGCTG	8280
CCAACTTGGT	CATCATGGAT	CGTTTTATCG	ATAGTTCTGT	TGCCTATCAG	GGATTTGGTC	8340
GTGGCTTAGA	TATTGAAGCC	ATTGACTGGC	TCAATCAGTT	TGCGACAGAT	GGCCTCAAAC	8400
CCGATTTGAC	ACTCTATTTT	GACATCGAGG	TGGAAGAAGG	GCTGGCTCGT	ATTGCTGCTA	8460
ATAGTGACCG	CGAGGTTAAT	CGTTTGGATT	TGGAAGGGTT	GGACTTGCAT	AAAAAAGTTC	8520
GTCAAGGCTA	CCTTTCTCTT	CTGGATAAAG	AGGGAAATCG	CATTGTCAAG	ATTGATGCTA	8580
STCTCCCTTT	GGAGCAAGTT	GTGGAAACTA	CCAAGGCTGT	CTTGTTTGAC	GGAATGGGCT	8640
rggccaaatg	AAACAAGATC	AACTAAAGGC	TTGGCAACCA	GCTCAGTTTG	ACCGTTTTGT	8700
CCGTATCTTA	GAACAAGACC	AGCTCAATCA	CGCCTATCTC	TTTTCAGGTT	TCTTTGAAAG	8760
CTTGGAAATG	GCGCAATTTT	TAGCTAAGAG	CCTCTTTTGT	ACGGATAAAG	TTGGCGTCTT	8820
ACCATGTGAG	AAATGCCGAA	GTTGCAAGCT	GATTGAACAG	GGAGAATTTC	CCGATGTCAC	8880
TTGATTAAA	CCAGTTAATC	AGGTCATTAA	GACGGAACGC	ATTCGAGAAT	TGGTGGGTCA	8940
STTTTCTCAA	GCAGGGATTG	AAAGCCAGCA	ACAGGTCTTT	ATCATCGAGC	AAGCGGATAA	9000
ATGCATCCC	AACGCAGCCA	ATTCTCTGCT	CAAGGTCATC	GAAGAACCCC	AGAGTGAAGT	9060
PTATATTTC	TTCTTGACTA	GCGATGAGGA	AAAGATGTTA	CCGACAATCC	GAAGTCGGAC	9120
CAGATCTTC	CACTTTAAAA	AGCAAGAAGA	AAAACTTATC	TTACTCTTAG	AACAAATGGG	9180
CTTGTTAAG	AAAAAAGCGA	CTCTTTTAGC	TAAGTTTAGT	CAATCGCGAG	CTGAAGCAGA	9240

AAA	GTTGGCT	· AATCAGGCAA	GTTTTTGGAC	CTTGGTCGAT	GAAAGTGAA	GCCTGCTGAC	930
TTG	GTTAGTA	GCTAAGAAAA	AAGAAAGTTA	TCTACAGGTT	GCCAAATTAC	CCAACTTGGC	936
AGA	TGATAAG	GAAAAACAGG	ATCAGGTTTT	' ACGGATTCTT	GAAGTTCTCT	GTGGGCAGGA	9420
CCT	CTTGCAG	GTAAGAGTAA	GAGTGATTCT	ACAAGATTTA	CTAGAAGCTA	GAAAAATGTG	9480
GCA	AGCTAAT	GTCAGCTTTC	AAAATGCCAT	GGAATATCTG	GTCTTGAAAG	AAATATAAAC	9540
TCA	Aaaatga	ATGATAAAGA	AAGGAAAGGG	CTGTTTTATG	GACAAAAAA	AATTATTTGA	9600
CGC	GCTGGAT	GATTTTTCCC	AACAATTATT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAA	AAATCTC	AAGAGCCTGG	TAGAGGAAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCG	AGAACGC	TTGGGTGAGG	TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAG	TGTCCGT	CGCATTTACC	GTGATGGATT	TCACGTATGT	AATGATTTT	ATGGACAACG	9840
TCG.	AGAGCAG	GACGAGGAAT	GTATGTTTTG	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAG	АТТСААА	AAAGTTTTAA	GGGGCAGTCT	CCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCG.	ATTGGCA	ATCTAGATGA	TATGACTTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGG.	ATTGCTG	CTGAGGATAC	GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACC.	AAGCAGA	TCAGTTTTCA	TGAGCACAAT	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTC	TTGAAAG	CAGGGCAAAG	TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GAC	CCTGGTC	ATGATTTAGT	TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCA	GGTGCCT	CTGCAGGAAT	TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATC'	TTTTACG	GTTTTTTACC	GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAA	SATTATO	CTGAAACACA	GATTTTTTAT	GAATCACCTC	ATCGTGTAGC	AGACACGTTG	10440
GAA	aatatgt	TAGAAGTCTA	CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATC1	PATGAAG	AATACCAACG	AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CAC	CTCAAGG	GCGAATGTCT	TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
SACC	GAGGAAG	ACTTGTTCGT	AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAC	SCTATCA	AGGAAGTCGC	TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
PACC	CACGACT	GGGAAGAAAA	ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
rgT1	TAACTT	AATTAGTGAT	GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
TTA	VAGTTTT	TTATTAAGCC	CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
TTA	GAAGGT	ATAAATAGAA	AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

GAAGGTGAT	TTTTTGCGAA	CATACGAAAA	TAAAGAAGAA	CTAAL\GCTG	AGATAGAGAA	11040
ACATTTGAG	AAATATATTT	TAGAATTTGA	TAATATTCCA	GAAAATTTAA	AAGATAAGAG	11100
GCTGATGAA	GTTGACAGAA	CTCCAGCAGA	AAACCTTGCT	TATCAGGTTG	GTTGGACCAA	11160
TTGGTTCTT	AAATGGGAAG	AAGATGAAAG	AAAGGGGCTT	CAAGTAAAAA	CACCATCGGA	11220
AAATTTAAA:	TGGAATCAAC	TTGGTGAATT	ATATCAGTGG	TTCACAGATA	CCTACGCTCA	11280
TTATCTCTG	CAAGAGTTGA	AAGCAAAATT	AAATGAAAAT	ATTAATTCTA	TCTCTGCAAT	11340
SATTGATTCG	TTGAGTGAGG	AAGAATTATT	TGAACCGCAT	ATGAGAAAGT	GGGCTGATGA	11400
GCGACTAAA	ACAGCGACTT	GGGAAGTGTA	TAAGTTTATT	CATGTAAATA	CGGTTGCACC	11460
TTTGGAACT	TTCAGAACTA	AAATCAGAAA	ATGGAAGAAG	ATAGTATTAT	AAATTATATT	11520
TTAACTTTA	AAAAATTTCA	TAAAAATGGT	TACCAAAGGC	GATAGAAGAA	AAACTATCGT	11580
TTTTTCTTT	GCAAATTTTT	AAGAAGGGAG	GTGATCTTGC	ATGGACTTTG	AATATTTTTA	11640
PAACAGAGAA	GCGGAAAGAT	TTAACTTCTT	AAAAGTACCG	GAGATATTAG	TTGATAGAGA	11700
GAATTTCGG	GGCTTATCAG	CAGAAGCAAT	TATCCTTTAT	TCCATACTTC	TTAAACAGAC	11760
AGGAATGTCA	TTTAAGAATA	ACTGGATAGA	CAAGGAAGGC	AGAGTATTTA	TCTATTTTAC	11820
TGTCGAAGAA	ATTATGAAAA	GAAGAAATAT	CTCAAAGCCA	ACTGCCATAA	AAACATTAGA	11880
rgagcttgat	GTAAAAAAGG	AATAGGACTG	ATCGAAAGAG	TAAGGCTTGG	ACTTGGTAAG	11940
CGAACATCA	TTTATGTTAA	AGACTTTATG	AGTATATTTC	AGGTAAAAGA	AAATGACTTA	12000
CAGAAGTCAA	AAAACTTAAC	TTCAGAAGTA	AAAGATTTTA	ACCTCAGAAG	TAAAGAAAAT	12060
GAACTTCAAG	AGGTTAAGAA	CCTTGACTCT	AACTATATAG	AGAATAATAA	GAGTAAGTAT	12120
AGTAAGAGAG	AATATAGTTT	TGGTGAAAAC	GGACTTGGAA	CATTTCAAAA	TGTGTTTTTA	12180
CTGCTGAAG	ATATATCGGA	TTTACAAATC	ATAATGAACT	CACAGCTTGA	GAATTACATT	12240
AGACTTCCTG	CAAAACTAGA	ATCCTAGTTC	ATGATTGATA	ATGCCAGCAA	TCAAATTCAT	12300
rcgtaatccg	AAGCGTTTAC	GATGATTTCG	ATAGATTGTT	GAAAACATTT	TAAACGTTTT	12360
TACTTTGGCA	AAGATGTTCT	CAATCTTGCT	TCTCTCCTTG	GATAGCGCAT	GGTTACAGGC	12420
PTTATCTTCA	GCTGTTAGCG	GCTTGAGTTT	GCTGGATTTA	CGTGGAGTTT	GTACTTGAGG	12480
АТАТАТСТТС	ATGAGCCCTT	GATAACCACT	GTCAGACAAG	ATTTTACCAG	CTTGTCCGAT	12540
ATTTCTGCGA	CTCATTTTGA	ACAACTTCAT	ATCACGACAA	TAGTTCACAG	CGATATCCAA	12600
AGAAACAATT	CTCCCTTGAC	TTGTGACAAT	CGCTTGAGCC	TTCATAGCGT	GAAATTTCTT	12660
PTTACCAGAA	TGATTCGCTA	ATTCTTTTTT	TAGGGCGATT	GATTTTTACT	TCCGTCGCAT	12720
ጉል ልጥር ልጥ የ ል ር	CCTCTCCTCA	CAACTGAGAG	GACTTCTTCA	AATCCTAACA	CCACTTTGAA	12780

CAAGAGTTAC	TTCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	ATACCAAAAT	12840
CAGCCGCAAT	TTGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
GGTCTTCTAG	GCTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
ттттаатас	AGCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
ATCGTGCATC	AGTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
TGTTTCGCAG	GAAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
TTGTGAGCGT	GGTGCTATTT	TTTCAGGTAA	AATAAAATAT	CACGAAGATT	CACAGTTTAA	13200
AGGAGATCAC	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
AATAACAGTC	CCTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
TTCTTAACTG	GAATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTAAAC	AGGGAAGTTT	13380
GCCTTCTTCC	CTTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
CAAACAGCCC	AGTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
TCGTGTCTCA	ATCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
ACCAAATCGC	AGAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
CACCCCAGCA	TAAAACAGAC	AATTTTGCTG	AGTTGGTTTG	TTCCAATTCT	TTGCGTGGGG	13680
ATGCTTTGAC	AAATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
TCTTGGAATC	TGCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
ATGGTTTCTC	TCAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
GTGATGAAAT	TACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
TARCTSATGO	CTTGGCTGAA	AAGATTCATG	CTCTTNATGA	CONTECTORT	######################################	13980
ACGATGCGGC	AGCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
AATCACGTTA	TGATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGA AT	14100
TTATGGATTT	CCATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
aagaaaagta	CTTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
CTATGCTTTA	TGGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
CTCGTGATGG	AGAATTTAAA	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG	14340
CTGGTAGCCT	CTACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
GTGTCTTCCA	AATGATTCCG	GGTCTTGAAA	ATGCGGAGTT	TGTCCGTTAT	GGTGTGATGC	14460
ATCGCAATTC	TTACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

			202			
AACCAAATCT	CTTCTTTGCT	GGTCAAATGA		AGGCTATGTT	GAGTCGGCGG	1458
CTTCAGGCTT	AGTTGCGGGA	ATTAACGCAG	CTCGTCTCTT	CAAGGAAGAA	AGCGAGGCTA	1464
TTTTCCCCGA	GACGACAGCG	ATTGGAAGCT	TAGCTCATTA	CATTACCCAT	GCCGACAGCA	1470
AACATTTCCA	ACCAATGAAT	GTCAATTITG	GGATCATCAA	GGAGTTGGAA	GGCGAGCGTA	1476
TCCGTGATAA	GAAGGCTCGT	TATGAAAAA	TTGCAGAGCG	TGCCCTTGCC	GACTTAGAGG	14820
AATT TTTGAC	TGTCTAATTT	TTTTGAAAGA	ATTGCTCATG	АТАСТАТААА	AATCTTAGAA	14880
ATTGTGATAA	AATAGGTAGG	ATGAAAGAAG	GAGAGTGAAA	ATGGCGAATC	CCAAGTATAA	14940
ACGTATTTTA	ATCAAGTTAT	CAGGTGAAGC	CCTTGCCGGT	GAACGTGGCG	TAGGGATTGA	15000
TATCCAAACA	GTTCAAACAA	TCGCAAAAGA	GATTCAAGAA	GTTCATAGCT	TAGGTATCGA	15066
AATTGCCCTT	GTTATCGGTG	GAGGAAATCT	CTGGCGTGGA	GAACCTGCAG	CAGAAGCAGG	15120
TATGGACCGT	GTTCAGGCAG	ATTACACAGG	AATGCTTGGG	ACTGTTATGA	ATGCTCTTGT	15180
GATGGCAGAT	TCATTGCAAC	AAGTTGGGGT	TGATACGCGT	GTACAAACAG	CTATTGCCAT	15240
GCAACAAGTG	GCAGAGCCTT	ATGTCCGTGG	ACGTGCCCTT	CGTCACCTTG	AAAAAGGCCG	15300
TATCGTTATC	TTTGGTGCTG	GAATTGGTTC	ACCTTACTTC	TCGACAGATA	CAACAGCGGC	15360
CCTTCGTGCA	GCTGAAATCG	AAGCAGATGC	CATCCTCATG	GCTAAAAATG	GTGTCGATGG	15420
TGTTTACAAT	GCCGATCCTA	AGAAAGATAA	GACAGCTGTT	AAGTTTGAAG	AATTGACCCA	15480
CCGTGACGTT	ATCAATAAAG	GTCTTCGTAT	CATGGACTCA	ACAGCTTCAA	CCCTCTCAAT	15540
GGACAACGAC	ATTGACTTGG	TTGTATTCAA	CATGAACCAA	CCAGGCAACA	TCAAACGTGT	15600
CGTATTTGGT	GAAAATATCG	GAACAACAGT	TTCAAATAAT	ATCGAAGAAA	AGGAATAAGA	15660
AAGAATATGG	CTAACGCAAT	TATTGAAAAA	GCTAAAGAGA	GAATGACCCA	GTCTCACCAA	15720
TCACTTGCTC	GTGAATTTGG	TGGTATCCGT	GCTGGTCGTG	CCAATGCAAG	CTTGCTTGAC	15780
CGTGTACATG	TAGAATACTA	TGGAGTCGAA	ACTCCTCTTA	ACCAAATCGC	TTCAATTACG	15840
ATTCCAGAAG	CGCGTGTTTT	GTTGGTAACA	CCATTTGACA	AGTCTTCATT	GAAAGACATC	15900
GAACGTGCCT	TGAACGCTTC	TGATATTGGT	ATCACACCGG	CTAATGACGG	TTCTGTGATT	15960
CGCTTGGTTA	TCCCAGCTCT	TACAGAAGAA	ACTCGTCGTG	ACCTTGCTAA	AGAAGTGAAG	16020
AAGGTCGGCG	AAAATGCTAA	AGTGGCTGTC	CGCAATATCC	GTCGCGATGC	TATGGACGAA	16080
GCTAAGAAAC	GAGAAAAAGC	AAAAGAAATC	ACTGAAGACG	AATTGAAGAC	TCTTGAAAAA	16140
GACATTCAAA	AAGTAACAGA	CGATGCTGTT	AAACACATCG	ACGACATGAC	TGCTAACAAA	16200
GAGAAAGAAC	TTTTGGAAGT	СТАААААТАА	ACAGAAAAAC	TCAGTTGGCA	TTGCTGGCTG	16260
ACTTTTATTC	GAAAGAAGGA	AATATGAATA	CAAATCTTGC	AAGTTTTATC	GTTGGACTGA	16320

TCATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16330
CTAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	16440
TGAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
GGGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GGCCTTCCTG	16560
ACAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
AGGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
TGGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
AAAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
AAAATAATAT	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
AAGTATTAGA	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
TCAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
AAAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
CCTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
AAATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
TTACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
AGACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
TCGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
GCAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
CCTCTGCTAT	AATAAAAAGA	aataaagga	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CAATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TCCAATGAAC	17520
GCCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
TCCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TGGTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TGGTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ATAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TCAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG	17880
CAGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GTCCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TGGATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

284 CGACTCGTCT CATGGAGCGT GAAATTATCG AAATTGCGCC CCTTGCCTAT ATGCGTGGCC 18120 GGACCTTGGA TGATGCCTTT GTCATTCTCG ATGAGGCGCA AAACACGACC ATCATGCAGA 18180 TGAAGATGTT CTTGACGCGT TTAGGTTTTC ATTCTAAGAT GATTGTCAAT GGAGATATTA 18240 GTCAGATTGA CCTGCCACGT AATGTCAAGT CCGGTTTGAT TGATGCTCAA GAGAAACTCA 18300 AGAACATCCA TCAGATTGAC TTTGTTCATT TTTCAGCCAA GGATGTGGTT CGCCATCCTG 18360 TTGTCGCTCA GATTATCCGA GCCTATGAAT ATTCTACTGA AGTTGCACAC GACTGATTTT 18420 GAGGAAGTTC GCCTGCAAAA GAATAGACTT GTTCGGTAAC TGTAAAAAGT GTTATACTAT 18480 TTTTATGGAA ACAGTATACG ACAAAGCACA AAAACTTAAC TCAAAAAACT TCAAACTATT 18540 GATTGGTGTC AAAAAGGAAA CCTTTCAACT CATGCTAGAA CACCTGAATT CAGCCTATCA 18600 GATTCAGCAC CGAAAAGGTG GACGTCCACG TAGTCTGCCC ATGGAAGACC AGCTCATTAT 18660 GACCCTCCGT TACTTGCGAT ATTATCCCAC TCAGCGTCTG CTGGCCTTTG ATTTTGGCGT 18720 CGGTGTAGCT ACGGTAAATG CCATCATCAC TTGGGTGGAG GATACACTTC GTGCGTCAGG 18780 TAGCTTTGAT TTGGACCATT TAGAAGCCCC GAGTGCTGCT GTGGCTATTG ACGTGACCGA 18840 AAGTCCGATT CAGCGTCCAA ACAAAACCAA AGCAAAAATT ATTCTGGTAA AAAGAAACGA 18900 CACACCTTAA AAACTCAAAT TATGCTGGAT TTGACGACAC ATAAAGTCTG TCAAATGGCC 18960 TTTTCTGACG GACATACGCA TGATTTTACT CTCTTCAAAG AAAGTATTGG ACAAAGTTTG 19020 CCTGAAACGA CGCTTGCCTT TGTTGACCTA GGTTATTTAG GCATCTTGAA ATTTCATGAG 19080 AATACTTTCA TTCCTGCTAA AAATTCCAAA AATCGCCGCC TGAGTGAGGA TGATAAGCAG 19140 TTAAATAAAG AGATGTCAGC GATACGAATT GAAATTGAAC ATTTTAACGC TAAATTCAAG 19200 ACCTTCCAAA TCATGTCAGT CCCTTATCGT AACCGCAGAA AACGTTTCGA GTTACGGGCG 19260 GAATTAATTT GTGCCATCAT CAATTATGAA GTGAACTAGA TTCCGAACAA GTCTAATATA 19320 CTTTTGAGAG AGGAAAATCC AGTTGTATAG GCTAAAGGTT TTATCCAAAG GTCTGAGACA 19380 ACGATTAGGC ACGATGGAAA GAACTTTTAT GTGGCTGATG ACGATCAGTG CATCTTCCTG 19440 TGTCATAATC ACAGGGCACA AGAAAGTAGG AATTTGAAAA GATGATTGAC CAACTATCTA 19500 AGTATTACAG TTGTAGGATA CTAACTGAAA AGGATATTCC AAGTATTTTA TCTTTATATG 19560 AAAGTAATCC TCTGTATTTT CAGCATTGTC CACCAGAGCC AAATTTTGCA ACTGTAAAAG 19620 AGGACATGCT TTGTCTACCT GAAGGTAAAG CTAAGGCTGA TAAGTTTTTT GTTGGATTTT 19680 GGAATGGATC TGACCTTGTG GCTGTTATGG ATTTTGTCTA TGCATATCCT GATGAGGAGA 19740 CTGTTTTAT TGGTTGTTT ATGGTTGATC AAGCCTATCA GAGAAAAGGG ATTGGTAGTC 19800 ATATTGTGAC AGAAGCACTA GCTTATTTTG CTAAGAACTT TCGAAAGGCA CGTTTGGCTT 19860

ATGTTAAGGG AAATCCGCAA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
GATGCGAGGT TAAGCAAGAA	CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
AGAAATGGCA TCAAGTAAGA	ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
TGATGTGACT TACCGTTCCA	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
TGGCGGCATT TATGACGATC	GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
TGACCAATCT TCTTTTGAGT	TTCCATACAA	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
ACTTGATAAT AAGATGTTTC	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
GCCCAAACCT AAAAAGAAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
CTGTCTTTGC ACGGGTAAAA	TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
TCCTTTGGTT TATATAATTG	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
TTATTCAATT TAGAGTTTCT	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
AGTATACAGT ACAATAAACC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
ACTTGCGAAG TCACCCTTTT	CTTTTCAAAA	TTTATACTAA	ATCATTGATA	TCAGTGTAGT	20640
CACGATTAAG TCCTTGAGCA	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
CTTGACGCAA GCCTTCATCT	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
CGATATAAGG AAGAGTGACA	TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
GGATATTGGC AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGCT	TCATCGTGCG	20880
TTGTCACACG GTCAGCTGTT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
AGAGCCTGGA CGCATTTGTT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
AGGGATGAGA ATGGCTCCAA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATCTTGAA	21060
TGAATTAGAC ATAAGAGTTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
CTTGGAACTA ATATCTAAAA	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
ATGTGTACCG ACGACACCAC	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGTAC	21240
ACCACCAAGT AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
AACAGCCATA CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
GTCACGAACA GTTTCAGTTG	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC	21420
GGCCATGTGC AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
TAAAGATTCT TTTACTTTCA	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
AATCTCAGCT CCTTGCTTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286

TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21660 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTTTCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 AAAGTATTGG AATCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGG 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGCT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGG 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040 GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

GCGGATTCTG TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	тстаттатаа	ACTCCAGTCC	23520
GAGGAGGAGA AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	TTAATTACCA	AGCCTATCTG	23640
AAGACTCAGG GAATTTACCA	GACTCTCAAT	АТСААААСАА	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG GCATGCAGGT	AGGTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA AGGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
ATTAAAGGAT TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCAGAATCT	TATAAGAAAA	24720
TCAAAAAATG GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC	24960
GTAGTATGAT AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

288 ACTATCCAGA CTTGAAAGTA AATGTTTTGA AAGCTAGCCA ACATGGCAAT AAAAAATCAT 25200 CAAGTCCAGC CTTTCTAGAA AAACTCAAAC CAGAGCTTAC TCTTATCTCA GTTGGAAAGA 25260 GCAATCGAAT GAAACTCCCC CATCAGGAAA CATTGACACG ACTGGAAGGT ATCAATAGCA 25320 AAGTTTATCG AACTGACCAG CAAGGAGCTA TACGTTTTAA GGGGTTGGAT AGTTGGAAAA 25380 TCGAAAGTGT TCGATAGGAA GGATAAATGT TGTAGATTAG TGAAATAAAC TAAAAATTTG 25440 TTGCATAATA ATGATAAAAA TGGTATAATG AAAACGTATT CAATATTGAG GATATAAAAT 25500 CATTAAAAAT CAGCAAAAGT TGTTTTATTA GTTAGTTTAT AATCTATTGG TCTTCTTCAG 25560 TCCAGTGTAT CTGCTGTGAC AGTCACTAAA AGTTACAAGT ATGATTGGAA TACGGTTTGG 25620 GAATATAGTA CCAACTATCA CGACCATCAG TATGCTTGGA TTCCGTCATG GTCTCGTTAT 25680 GACAGCTATT CTGAGTATAA AGTTGGCGGA GGCTGGAACT ACGCTCGTTA TGAGGTCATA 25740 25800 AACTATTACA GCGGAGGCTA TTAATTCTTA AAGAGTGAGA AAAAGGAGGG CTAGATATGT TGCAGCTTAC TCATGTGACC TTAAAAACGC GACAAGTCAT CTTGCAAGAT GTGGATTTCA 25860 CCTTTAAAAA GGGTAGGGTT TATGGTCTTC TTGCTATCAA TGGCTCTGGA AAGACGACCC 25920 TGTTCCGTGC CATTAGCAAT TTAATTCCCA TAAGTAGTGG AAATATCGCA GCCCCTCCTT 25980 CTTTATTTTA TTATGAGAGT ATTGAATGGC TGGATGGAAA CTTAAGTGGG ATGGACTACC 26040 TTCGTCTTAT CAAAACATC TGGAAGTCAG GTCTGAACTT GAGGGATGAA ATCGCCTATT 26100 GGGAAATGTC TGACTATATC AGTCTTCCCA TTCGCAAGTA TTCCTTAGGC ATGAAGCAAC 26160 GCTTGGTGAT TGCCATGTAT TTCCTCAGTC AGGCCAAATG CTGGCTCATG GATGAGATTA 26220 CAAATGGCTT AGATGAGTAT TATCGACAGA AGTTTTTTGA TAGGCTAGCA CAAATCGATA 26280 GACAAGAACA GCTGGTTCTT TTAAGTTCCC ACTATAAGGA AGAGTTGGTT GATGTCTGCG 26340 ATAGAGTAGT AACCATTCAT CAGGGGCAGA TAGAAGAGGT TTAGTTTATG AAAGATGTTA 26400 GTCTATTTTT ATTGAAAAA GTTTTCAAAA GCCGCTTAAA CTGGATTGTC TTAGCTTTAT 26460 TTGTATCTGT ACTCGGTGTT ACCTTTTATT TAAATAGTCA GACTGCAAAC TCACACAGCT 26520 TGGAGAGCAG GTTGGAAAGT CGCATTGCAG CCAACGAGAG GGCTATCAAT GAAAATGAAG 26580 AGAAACTCTC CCAAATGTCT GATACCAGCT CGGAGGAATA CCAGTTTGCT AAAAATAATT 26640 TAGACGTGCA AAAAAATCTT TTGACGCGAA AGACAGAAAT TCTGACTTTA TTAAAAGAAG 26700 GGCGCTGGAA AGAAGCCTAC TATTTGCAGT GGCAAGATGA AGAGAAGAAT TATGAATTTG 26760 TATCAAATGA CCCGACTGCT AGCCCTGGCT TAAAAATGGG GGTTGACCGC GAACGGAAGA 26820 TTTACCAAGC CCTGTATCCC TTGAACATAA AAGCACATAC TTTGGAGTTT CCGACCCACG 26880 GGATTGATCA GATTGTCTGG ATTTTAGAGG TTATCATCCC AAGTTTGTTT GTGGTTGCTA 26940

289

TTATTTTTAT	GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATATCC	TGTTTCAAAA	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACTGT	GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	27120
GTGGTTTTGG	ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGGAA	AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
TCGTCATTGT	GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
TCTTTCTTTC	ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGGAT	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTACC	TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
TTCCTTGCCT	GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
CACAGAAAAA	AGAATTTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACAT	AGAGAGGGAA	TCAACTTGAT	TCTCTCTTTT	TGATTCGAAA	ACCAAACCAA	27660
AATACAAACA	CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATATA	AAAGTTGAGA	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
CCCTGCCCCT	ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTTACAAGTC	CGCTATTGTT	TTTCTCTAAT	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTAT	TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAGC	TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTAG	TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GGTAAGTTCA	AATTTGAGT \	CCAGAAGAAG	CAPAAAAGAAC	AACGTANANA	ACAMAGEGTT	29140
GTTACTGTGA	AAGAAGTTCG	TCTAAGTCCG	G			28171

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT TTTGCAATCA AGGCTAAGTA GACAGCAGCA AATTTCATAT TGTATAATTT 60 CTGACTCATA CTTCTCTCTT TCTATGTGTA CTAGTATAAA TAAGAAAAAG AAGGCCGTCA 120

290

AGCCTTCTTT TGATTTATTC TTCTGCTTCA TCTTCTGTAA ATTGACTATT GTACAAGTCA 180 GCGTAGAAGC CACCTTGCGC CATCAGTTCC TCATAGTTGC CTTGCTCGAT GATATTTCCA 240 TCTTTCATGA CCAAGATCAA GTCTGCATTT CGGATGGTTG ACAAGCGGTG GGCAATGACA 300 AAGGATGTGC GTCCTTCCAT CAAACGGTCC ATGGCTTTTT GGATCAATTC CTCTGTCCGT 360 GTGTCAACAG AAGAAGTCGC CTCATCCAAA ATCAAAAGCG GTGCATCCTT AAGAAGGGCA 420 CGAGCAATAG TCAATAGTTG TTTTTGTCTT ACAGACAAGG TCACGGTGTC ATCCAAGATG GTATCATAGC CATCTGGCAA GGTCATAATA AAGTGGTGAA TTCCCACAGC CTTACTAGCT 540 TCCATCATTC GTTCATCACT AATCCCTATT TGATTATAGA TGAGATTGTC TCGAATAGTT 600 CCTTCAAAGA GCCAGGTATC CTGCAAGACC ATTGAAAAGG CATCATGCAC TTCTGAACGC 660 GTCATAGCCT TGGTATCCAC ACCATCAATG CGAATACTTC CCTTATCAAT CTCATAGAAT 720 TTCATCAAAA GATTGACAAT GGTTGTCTTA CCAGCCCCAG TCGGCCCAAC AATGGCAACC 780 TTTTGACCAG CATGAGCTGT CGCAGAGAAG TCATAGTCTT GAACATTGAC ACCGTCCACC 840 AGAATTTCTC CTGCTGACAC GTCGTAGAAA CGTGGAATCA GATTGACCAG AGTTGATTTA 900 CCAGAACCTG TTGACCCAAT AAAGGCCACT GTTTGACCAG TTTCTGCTTT AAAGCTAACA 960 TGTTCAATAA CTGCCTCCGA ATTTGCCGCA TAGCGGAAGG TCACATCCTT AAACTCGACC 1020 TGACCTTTGA AGTTTTCATC AGTCAGCTGC ACTTGAACAG CGTTTTGGAT AGAAGAATGC 1080 AAATCTAAAA CTTGATTAAT CCGCTTAGCA GAGACCATAG TTCGGGGAAG AACGATGAAG 1140 AGTGCTCCCA TGAGAAGGAA GCCCATGACA ACCTACATGG CATAAGACAT GAAAACAATC 1200 ATGTCACTAA AGAGAGGCAG ACGCGCTATC GGAGCAGCGT CGTTAATCAC ATAGGCCCCA 1260 ATCCAGTAAA TCGCCACACT CAAACCACTT GAAATCCCCA TCATGATAGG ATTCAAAATA 1320 GCCATAAGAC GGTTGACAAA CAAATTCAAA CGGGTCAATT CATCATTTAC TGCTGCAAAT 1380 TTTTCATTTT GATAATCCTC TGCATTGTAG GCACGAACGA CACGAATACC TGTTAAACTC 1440 TCACGAGTGA TACTGTTCAG TTTATCTGTC AGCCCCTGAA TCAAGGACTG TTTTGGAAAG 1500 GCTAGCGTCA TCAAAACGGT CGTCATCAGG ACGTTGATAA TCACTGCCAC AAGTACGGCC 1560 CAGAGCCAGT ATTCTGAATG ACCTAAAATC TTCCCAATAG CCCAGATAGC CATAATTGAA 1620 CCACGCGTTA CCACTTGCAA GCCCATAGTA ATCAACATTT GAACTTGAGT AATGTCATTG 1680 GTAGTACGCG TCAAGAGGCT AGGAATTGAA AATTTCTTAA TCTCTGTCTG CGAGTAATCC 1740 AAAACTCGGT TAAAAATATC ACTTCTCAGC CTACTAGTAT AAGAAGCCGC CACTCGGGAT 1800 GCAAAAAATC CAACTGCAAC TACGGACAAG AAGGCAAGAA AGGACATTCC CATCATCATG 1860 CTTGCCGACT GCCACACTC ATCTAAATTA GTTTCTTGAC TACCTAGCAA ATCCGTAATT 1920

TTCGAGATAT	' AGGTCGGCAC	TTCCAACTCT	AGATAGACCG	AAAAGCAAGT	AAAGAGAATG	1980
GCTAGTAAAA	TCATCCCCCA	TTCTTTTCTA	CTAATTCTTT	TGGCTAATTT	CTTTATTCTC	2040
TCCTCCTATT	CCCTTGATAT	TTTGCCTGTA	GTTGACCGAG	AACCTTCTCA	AAAATCAGTA	2100
ATTCATCTTC	ATCAATGTCT	TCCATCAACT	GCTTGTCTAT	GCGTTCAAAA	AAAGCCTTAA	2160
CCTGTTGCAT	CTGAGAACGT	GCTTTGTCCG	TCAGACGAAC	AAACTTAGCC	CGCTTATCAA	2220
CAGGACTCGC	CTCCAATTCC	ACCAAACCAT	TTTGCACTAT	ACGCTTAACC	AGATTACTAG	2280
CAACAGGCTT	GGTAATATTG	AGTTCCTGCT	CGATATCTTT	AATCAAGACC	AAGTCTTGGT	2340
TTTTCTCGCG	ATTATCCAAA	AAACGCACAA	CCTGACCTTG	CGGCCCACCC	ATAAATTCAA	2400
TGCCGCAACG	TTTGGCTTCC	TTTTGCACCA	TCAGGTGAAT	TTGATGACCA	AAACGCTTAA	2460
AGACTAACAT	CGGTTTATCC	ATAATCTCCC	CCTTCTAAAT	AAAAATAGTT	CTCTGGAGAA	2520
TTAATTAAT	TCTATGAGAA	CTATTTTCTT	GATTAAAAA	ATCCCAAGTG	ATTTTCTCAC	2580
TTAGGATCAT	GTTCTATAGG	ттаааттааа	ACCCATCTAC	GTTCGTATAA	ATCTTTTGGA	2640
CGTCTTCGTC	GTCTTCAAGA	ACGCTGTAAA	GTTTTTCAAA	GGTTTCAAGG	TCTTCGCCTG	2700
ACAATTCCAC	TTCTGACTGA	GGAATCATTT	CCAATTCAGT	CACTTGGAAT	TCTTCAATAC	2760
CAGACTCACG	GAGGGCAACG	ATAGCCTTGT	GAAGGTCAGT	TGGCGCTGTG	TAAACTGTGA	2820
TTGTACCTTC	TIGIGCTICI	ACGTCATCCA	CATCCACATC	CGCTTCGAGC	AATTGCTCAA	2880
AGACTGCGTC	CGCATCTTCA	CCTCCAAATA	CAATAACACC	TTTGTTGTCA	AAGAGGTAAG	2940
AAACAGAACC	TGAAGCGCCC	ATGTTTCCGC	CGTTTTTACC	AAAGGCTGCA	CGGACATTGG	3000
CTGCTGTACG	GTTGACGTTA	GAAGTCAAAG	TATCCACAAT	TAGCATAGAG	CCATTTGGCC	3060
CAAAACCTTC	GTAACGTCCT	TCTGTAAACG	TTTCGTCTGT	GTTTCCTTTG	GCTTTATCAA	3120
TCGCTTTATC	GATAATGTGT	TTTGGCACTT	GGGCTTGTTT	AGCACGGTCG	ATAACGAATT	3180
TCAAAGCTGA	GTTTGATTCT	GGATCTGGAT	CACCTTTTTT	AGCTGCTACA	TAGATTTCTA	3240
CACCAAATTT	TGCATATACT	TTAGAGTTAG	CTCCATCTTT	AGCCGTTTTC	TTGGCTACGA	3300
PATTGGCCCA	TTTACGTCCC	ATTAGGAATC	TCCTTTTTTC	ACATTTTAAT	CTTTCTTATT	3360
ATAACACAAG	TTTTTTTGAT	TTTCACTAGA	GGAAATGGAT	TTTATTAGCA	AATCAAGCTA	3420
GGATAGCACT	TTACCTGCTA	AGATGGTCTT	GCCTTTCTAT	CTTTATCAAC	AGGCACTCAT	3480
CACATTCAA	AAAACAAACT	AGACCATTAT	CTGCAAATAG	AAAGTTTCAG	CCAAGTTTGA	3540
CAAAGTCAGC	TCAAATTACT	GTTTGAAGTT	TGTAGATATA	AGCGACAAAA	ACAATCATAC	3600
TGCACCTTTT	GTTGACAGTC	TACTCCAGAC	ATATCATAGT	TCAAGTAAAT	ACTTTGAAAT	3660

			292			
TCAACAGTTC	TTATAGGCGC	TATTGTATTC	TAAGAAATCA	AT AGAA JAGT	TTCTAAGCAA	3720
ACCTCTAATA	СТСААТАААА	ATCAAAGAGC	AAACTAGAAA	GCTAGCCTCA	GGTTGCTCAA	3780
AACACTGTTT	TGAGGTTGCG	GATGGGGCTG	ACATGGTTTG	AAGAGATTTT	CGAAGAGTAT	3840
AATTTACGTG	TTCCCAAGAT	GGAGAAGTTA	GACTAGTACA	CTGGCACTTC	TAAAACATTG	3900
CTAGCAATTG	ATTTGTTCAT	ATTTAATTTC	ATTTTTTCCA	TAAATGGGTA	TTAGATATAA	3960
ACAGCAAAAT	ATTTCCGATA	CGTGTCGTTC	TTGAATTTCC	AATCATCTAA	AACAAGTAAA	4020
GGATAATCAA	TCCCCTGTAT	ATCAAGGAAT	TGGCTACCCT	TTTTACTTTT	TTACACATTC	4080
TGTTTGATAG	ATTCATTTTA	ACATCACGAG	CATACTCCAA	TGGAAATCGC	TAGGCAAGAG	4140
ATAAACTTTC	AGATATCCGC	AGAGAGATCA	TCGCCTCTTT	TTGTCGCAAG	CATTCTCCTC	4200
TCCTAGTCAT	TTTCTACCTT	ATCTTCTACC	TGAGGATAGA	GAGTTGTTCC	CCAAATAGAA	4260
ATCGTCCGCT	TACGCACTAG	TGGCAAATCG	GTTTTTTCAT	AAACCGTACG	CCACCATTCC	4320
CAGGCAAGCC	CGGTACACTC	TCTAATTTTG	ACAGAGAGAT	TACGAACATT	CCCTTTTAAA	4380
GGAATACTAG	TGGTAAAGTG	AGCCGTTAAA	TCCTGCCCAT	TTCTGTCCCA	AGCCTTAGGA	4440
GTCAAGACTT	CCTTACCTTG	ATGATCATAG	GATAATTCAT	TCCAAGTAAT	ATAATATTGG	4500
GCAACATAGG	CACCACTATG	ATCCAGCAGT	AAATCTCCGT	TTCTGTAAGC	TGTAACCTTA	4560
GTCTCAACAT	AGTCTGTACT	ATTTTGAAAG	GTCGCAACTA	CATTGTCACG	TAAAAAAGAA	4620
GTTGTATAGG	AAATCGGCAA	GCCTGGATGA	TCTGCTGTAA	AGCGACTGCC	TTCTTGAATC	4680
AAGTCCTCTA	CCATATCCAC	CTTGCCTGTT	ACAACTCGGG	CACCCGAACT	TGGGTCGCCC	4740
CCTAAAATAA	CCGCCTTCAC	TTCTGTATTG	TCCAAAATCT	GTTTCCACTC	TGTCTGAGGA	4800
SCTACCTTGA	CTCCTTTTAT	CAAAGCTTCA	AAAGCAGCCT	CTACTTCATC	ACTCTTACTC	4860
GTGGTTTCCA	ACTTGAGATA	GACTTGGCGC	CCATAAGCAA	CACTCGAAAT	ATAGACCAAA	4920
GACGCTCTG	CAGAAATTCC	TCTCTGTTTT	AAATCCTCTA	CCGTTACAGT	ATCTTGAAAC	4980
ACATCTCCTG	GATTTTTAAC	AGCATCTACG	CTGACTGTAT	AATAAATCTG	СТТААААТТА	5040
CAATCTGAA	TCTGCTTTTC	GCCTGAATGG	ACAGAGTTAA	AATCAATATC	AAGAGAATTC	5100
CTGTCTTTT	CAAAGTCAGA	ACCAAACTTG	ACCTTGAGTT	GTTCCATGCT	GTGAGCCGTG	5160
TTTTTCAT	ACTGCATTCT	AGCTGGGACA	TTATTGACCT	GACCATAATC	TTGATGCCAC	5220
TAGCCAACA	AATCGTTTAC	CGCTCCGCGA	ACACTTGAAT	TGCTGGGGTC	TTCCACTTGG	5280
GAAAGCTAT	CGCTACTTGC	CAAACCAGGC	AAATCAATAC	TATAAGTCAT	CGGAGCACGA	5340
CGACCGCAA	GAAGAGTGGG	ATTATTCTCT	AACAAGGTCT	CATCCACTAC	GAGAAGTGCT	5400
CAGGATAGA	CCCCACTCTC	CTTCCTACCT	CTTACACAAA	TRATE A CONTICUE	» mmmcmcc» c	5460

• . . • •

AAGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	5520
ATGAAACGAT	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTTT	ATCGTAATTC	5580
ATAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
rggattgagt	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
ATCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CGCCGTCTGG	CTAAATAAGA	5760
AGTCGGAATG	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
rgtaaaagga	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GGTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTTT	TAGTCATGCT	5940
GTTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
AGGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
CTAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
GAGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	CTTGTCTCTT	CAATACAAAA	TGCTTGTCGC	6180
CAATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
GTCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	TGATAAAAAT	6300
CAAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
CTTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTA	6420
GAAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
PTCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT	6540
AGTAAAAGAA	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
PTAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
PAATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TCCTGCATA	TTTCTCCGTT	TGGCATTGAT	AGAGGAATTT	TTCTTTCTCC	AGGAGTTGCG	6840
AGTTTTTTG	GTAAGAAATC	CAATTTTCCT	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
ACAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
GAATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
PATAGCGCCT	acgatgttga	ACGCTTTTCT	TTAAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
CTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
TO BOOK						7147

PCT/US97/19588 WO 98/18931

294

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 755 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CCGCATGGGA	TTGGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
GCGCCTGCCT	TTACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
CGCGCTTTGG	AGCCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
AACACGGTGC	TGGTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
CTCATTTAGG	AAAATACAAG	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
TTAGTACAAC	AGGACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
TTCTGGCAAG	AGGAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
GAACTGTCCT	TCTATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
GACAAGCCTT	GAGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
СТСТТТТТТА	TTTATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AGATAATCAA	AATGATAATA	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ATCCATAAGC	GATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
TTECCCAACA	AGGGAAtCAA	GGTCACAGTC	GTCAC			755

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3010 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT ATCTCAATCA ACGGTCTTCA CATGGTTTCA ACTGGTTTGA CTCTTGAAAA 60 AGCGAAAGCT GCTGGTTACA ACGCAACTGA AACAGGCTTT AACGATCTTC AAAAACCAGA 120 ATTCATGAAA CATGACAACC ATGAAGTAGC AATTAAGATT GTCTTTGACA AAGATAGCCG 180 TGAAATTCTT GGTGCCCAAA TGGTTTCACA TGATATTGCA ATTAGCATGG GAATCCACAT 240 GTTCTCACTT GCTATCCAAG AGCATGTGAC AATTGATAAA TTGGCATTGA CAGACCTCTT 300

36	TTACGGCTGA	ATGGCTGCCC	CTACATCACA	AACCATACAA	CACTTCAACA	CTTCTTGCCA
420	TTAGCTAATT	CAGATAGTTT	AAGTTAAGGT	ATCTGGCCTT	TGAATGAGCT	AAATTAAAA
48	CTTAAAATGA	TCTGTTCTGA	TGTGCTTCAT	TTTTTTATCT	CAATTATAGT	TGTCCCCATA
540	CGTTATGAAC	GACTGAAAAT	TAAAACAAAT	atgatgagga	ACCAATACAA	AAAGGTAGCT
600	CAGAATCCTG	TATGGATGTG	GTGGTGTTAT	ATGCTCAAGG	CTTGGCACAG	TAAATAAAA
660	GAACGAATTC	GATGGCCTTG	CGGCAGCTGT	GCTGCTGGTG	TATCGCAGAA	AACAGGCTCG
720	ATGATTAAGG	CGACCCAAAG	CCCGCATGAG	GGAGGAGTTT	TCGTGCAGCT	CGGCTGATAT
780	CATTTTGTTG	CAGAATCGGG	TGGCTAAGGT	ATTCCAGTAA	AGCGGTTAGT	AAATCCAAGA
840	GTTCTATCTC	CGAGAGTGAA	ATTATATCGA	ATTGAAATTG	TTTAGAGGCT	AAGCTCAGAT
900	GTCTGTGGTG	AGTTCCTTTT	AAGAATTCCA	GTGGACAAGA	CCGTTTCCAT	CAGCTGATGA
960	ATTCGTACCA	TGCTTCCATG	TCGCTGAAGG	TTGCGTCGTA	CGGTGAAGCC	CTAAGGATTT
1020	ATGATGAATC	TCATATGCGT	AAGCTGTTCG	GATATCGTCC	AGGGACAGGG	AAGGAGAACC
1080	GCCAAGGATT	TTATGTTGCT	AGGACGAGCT	AACTTACGTG	CCGCATTCAA	AGGAAATTCG
1140	CCAGTTGTAA	TGGAAAATTG	TTCATGAACA	GTCCAATATG	TGTAGAATTG	TGCAAGTCCC
1200	CAATTAGGGG	GTTAATGATG	CAGATGCTGC	GCAACGCCAG	TGGAGGTGTT	ATTTCGCTGC
1260	AAACGAGCGA	AGATCCTGTT	TCAAGTCAGG	TCAGGTATTT	CTTTGTCGGT	CAGAGGGGGT
1320	CAAATCTCTG	AATCCTAGCT	GTAATCCTCA	ACTAACTTCC	TAAGGCTGTG	GTGCCATTGT
1380	CTCATGGCTG	AATCCAAATT	ATGAAAATGA	GTTGGTATTA	AGAAGCCATG	AAGATTTAGG
1440	GCAGAACATG	AGGGGCCTTT	TGGCCTTGCA	ATCGGAATAT	ATAGATGAAA	AACGAGGAAA
1500	GATGATTTTC	CAGAAATCTA	GTGTAGAACT	GGTGTCGAGA	AGATCAATTA	CAAAAGTGCT
1560	ACAACCATGG	TGGTGAGTCT	TTTTGCCTGG	TCGGGTTTGA	GAGTGACTTG	AGCAAGATCA
1620	CTATCTGGCT	AGAAGCCATT	TTCCCATCCG	AACATGCTAC	ACGTGACCAG	GCAAGCTCTT
1680	ACTTCTCAGA	TAAGGAAATC	TTTTGCTGGC	GCGGGCTTAA	TGGGACCTGT	TACCAGTGTT
1740	GGGCGCCAAT	TAATGCTTAT	TGGTCGAGCG	ATGGATATGG	TCTAGGAACT	AAGAGAGTCA
1800	ATGACCTTTA	CAAGATTCCA	AGGGAGTTGG	GCAGAATGTA	CTACACGGAA	TAGGAAGTTT
1860	ACAGTGAACA	AATTTTAGCA	AGGGTGTAGA	AGTGTTGGTG	GATTATCAGT	TCCGTGGTCC
1920	CCAGAATTGA	TTCTTTTCAT	TGTTGGTAAG	GAAAAAAATA	TGCAGCCCAA	ATCAAATTGT
1980	AGTTGAGATT	TAAAGAAAAA	TCAATATGTG	CAGTACTTTA	GCGCTTGCAC	CTGATGATGT
2040	GCGGACGCAG	GTATTGAAGT	CAATAGCGAT	ATGTAATAAA	ACTTTTTTAC	GAATTTCTCA

PCT/US97/19588 WO 98/18931

			296			
CTAGGATAAA	GAGATGCCAA	ATCATGTGGA	AATAAGGTTT	TTTCTTGGCA	TAAAATCCAG	2100
CTCCAACTGT	ATAACAGAGT	CCGCCAGTTA	CCATGAGACT	CCAGAAAACG	GGTGTCGTTT	2160
GACTGATAAT	GGCAGGAATG	ATAGCCAGAA	CCAACCAGCC	CATAATCAGG	TAAAGAGCAA	2220
GGCTAAATTT	CTCATTGACC	TTTTTAGCAA	AGATTTTATA	GAGAATACCA	AAGATGGTCG	2280
TTCCCCATTG	GATGACAATA	ATCAGATAGC	CAAACCAGTT	ATTCATCAAG	GTCAAGACAA	2340
CGGGCGTGTA	TGAGCCGGCA	ATGGCAACGT	AAATCATAGA	ATGGTCAATG	ATTCGCAAAA	2400
CATATTTGTG	GGTCGAACCA	TAGGCCATAG	AGTGATAAAT	GGTGGATGAT	AGGAACATGA	2460
GAAAGAGACT	GATGACGAAA	ATGGAAACGC	CGATAGAGGA	TAAAAATCCG	TGTGCTTCAT	2520
AACTATAGAT	GGATGAAATA	GGCAGCAAGA	TAAGCATGAT	GACTGCACCC	ACAGCATGGG	2580
TCACGCTATT	AGCAATCTCC	TCTCCAAAAC	TGAGTTGTTT	GCTGAGTTTA	AGACTAGTGT	2640
TCATTGGATT	ACCTCCTCTT	GAGTATGATC	GATTAAGTCT	AGAGTTTGAT	GATAGAGTTT	2700
AACGGTTTGG	CAGCTGGTTT	GGATAATAGG	GTTAGCTGGG	TCAATTCCTT	GGTTCATGTA	2760
GTCCACAAAA	GCATCGTAGA	GTTGGTCTGA	ACTTGCTTGA	GTTTGTAGAG	TATTAAGTGT	2820
CTGGGCTATT	TCTTGAATAG	AAAATACAGA	CTTGAGGGTT	GTGATAGCAA	TCAAACGGGC	2880
AATCTGTTGG	CGTTGGTATT	TTTTTTTGTC	AGGCTTTGTC	AGGTAACCAT	TTTTCACATA	2940
ATTGTTGACC	ATAGATGCTG	TTAGGCCCTT	GTCTTTATTA	GGAGAGATAG	GGGCGCAGAC	3000
CTGATTGACA						3010

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 15213 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATCGG	TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCCCT	AGACGAAAGA	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCTTC	TACTGTTAGA	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGATG	GTACTCATTT	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGAAT	TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATATTG	CTTCAAATCA	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGACT	TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

480	TCTGGTCCCA	AGCAAAGAAC	ATAATCCTTT	GGTGCTTGTA	TGGATGGTCT	TCGCATCATC
540	TGTGTCATCT	ATCTGAGTCA	AAATGTCCTG	CCTCCAAGAT	TCGACCATAT	AGCCACTTCT
600	TAATAAACTG	ATAACCCATA	CCAACATTCG	CCATCCTTAT	AGTAATAGCT	CATGCGTATA
660	ACAGGTCCAA	TTTATTTCCA	TATGCCCAAC	CCGTGTTGAT	AGCATAAGCA	CATCACCTGT
720	GCTTTCCCTA	CACTTCTGTA	CAAAATCTGC	TTTGGATTAT	CATTGCAGGA	agaaatgttg
780	TAAAGTTTTT	AATATTTCTA	CGTAAAGCAA	TTATAAGCAT	ATCGCCAAAT	CGGTATTATC
840	TGACGTTTGG	GTGATCTCGC	AATAATCGTA	ATACGATACC	GTCGTCTAAA	CACGTGCATT
900	TTATGGTCAC	CTTGCCCGCT	CATTGAGAGC	TCAACAAAAT	CGCATTTTCT	CTGTTTCACG
960	ATGACAAATA	CATGGTCGAG	CTAGACTAGA	GCTCCAAATC	GCGATCATAA	TACTGCGGTA
1020	CATGTGGCAC	GCGGTATTTC	AGACCATATT	AGGAGAGGCA	TGGCAAGGTC	CGGATCTCTC
1080	TGCTTCGTTT	AGCTAACCCT	ACTTGGTGCC	CCGATAGAAT	АТСАТАААСА	TCGTGATACG
1140	GATTTAAACC	CTTAGTCTCT	CAATGTAAGC	TTTTCTTCGA	GATAGTGGAT	TCACCTCTTC
1200	GTGCTAAACA	ATGTTCCAGC	CTTTTCGGTA	GGTAAAAAGA	GCTTGTATTT	AGTCATTATT
1260	TTATTCTTAG	AGTATCGACA	TGATACCATA	CTGGCAAGAC	TCCATGTTGA	AATCTGTCGT
1320	GGTGAAGCAT	AGTATCTAAT	ACTCAATCAG	GATTTACCCA	GTTAAAGCCA	CTAGAAGATT
1380	ACCTGACCAT	TTTGACATTC	GAACTAGGTC	AAATGGTACA	AAAGAAGTCC	TCCCCTTACC
1440	TCCTTGTTGC	TAGCAAGGCT	TCAAGCCAAG	TCCAGATAGG	ATACCACCGT	AGCTAAAGTT
1500	AGTCCAGCAT	AGCACTAGCC	TGACGGGGTT	TAACCTTCAG	ATCTACAAGA	GTTTGATTTT
1560	GCGAACTGGT	TTTTGTTTTG	CCAGTTGTTG	AAACTGTCTT	GAGTTTTTTC	CCGCTGACAA
1620	TTTCTGATGG	ACCCAGCGTC	TTGGAGAAAT	TGCTTGACGT	GAGCTCAGTT	CTTCTAGATA
1680	ATAGAGGTTT	TTGCTTGATG	CAGGTAAGAC	TTTTGTAAGT	ATAGTCAACC	CTTCTGAATO
1740	CTATATTCTG	ATTGCCCAGA	GAAGTCCAGT	GGCGTATAGA	GAATTGGTTT	GGTCATACAG
1800	TCATCCTTGT	CTCAGATAAA	GATCCAGCTT	TGGTATTTGA	GAAATCATTC	CTAATTTGGC
1860	ATGACTTGGT	AATGTCTGTG	TGTTAGAAAC	GCAGTCTGTT	GAGTTTGTTT	AGTGAAGCAA
1920	TTCTCATTGA	TAAAAGACTG	CTTTTTGATA	GACAAGAGTT	CATGACTGCT	TGTCCTTCAT
1980	TTTTCAATGT	AGGTAGCAAT	TGTTGTAGAA	ATGGTTGCCT	GTATTTGACG	CCAGGTTTCC
2040	TCACTGTCTT	CTTAGAAAAA	AATAGGCCAC	TTAGCTTGAT	CAAGTTGCGC	TTTTATAAGT
2100	ATTTCTGCTT	GAGAGGATTO	TTGGTAAAAT	GCTCCACTO	TGTTGAAAGT	TTTTGCCACT
2160	GATTCCTTGC	TTCTTCAAAC	TTGTTCCTCT	GCATCTAGCA	AATTTGAGAA	TTTTCCTTC

			290		•	
GACGACCTC A	ATCCTTGACC	AAGGTGACAT	TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
GTCCTTTAC C	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTTCCG	TTGGTTACAT	2280
PAACATCGCT (GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCACAAATT (GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA (GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC 1	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
GTAAAGCCTT (GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTTCATAAGT (GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG (CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
GCTTAATTTT '	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	TTTTCAAACA	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
TCAGGCTGGC	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
TACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
AATTATCTTT	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
TATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAT	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
TTTCTTGTTT	AATTTCTTCG	TTTCCATTTC	AATTGGATGT	GTTTGATTC	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCT	GTTCTGTTTC	TCCATTCTC1	GATGTTGTAT	3480
TACCTGAATT	TTCTGGTTTT	GTTGCAGTT	CGTTTTTTC	TGGTTGATT	GATTCTTCAA	3540
CTGGTGGTTT	TGAATCACTA	GGTTTATTG	ATACTTCTCC	AGTATTTTC	TTAGCTATTT	3600
TCCCAGAGTT	TGTTTGTGTT	TCTTCTGCA	GTTGAACTG	TTTTTCTGT	TCTTGATTTG	3660
AGGTACCTTC	TACTGTGCCT	TCATTTGGA	TTACTGGAAC	TTCTTCTAC	A GTTTTTTCTG	3720
AATTTTCATT	TTTAGAGTC	TTATGTTCT	G GTTTATTTG/	TICTCCAAC	F GAGGTTGTCG	3780
AATCACTAGG	ATTACTGGAC	ACTTCCCCA	G TATTTTTGCT	AGATGTATC	r ggtgatactt	3840
TCTCTGAATT	CGTTGTTGAT	TCTTCTGCA	G GTTGAACTG	ATTTTCTGC	r TCTTGAATTG	390
AGGTTCCTTC	TGTAGTACCT	r TCATTTGGA	T TTACTGGTG	TTCTTCTGT	r GGTTTTACTG	396

GAACTTCTTC	AGTTTTTTCT	GGACCTTGTT	CTTTGGTCTT	CTCAACCGGA	GTTTCAGGTT	4020
TTACTTGCTC	AATATTACCC	TTATATTCTG	GAAGCGGTGC	TACCTGCTCT	GGTTCACCTT	4080
TATCACTTAC	CACAGTATCT	GGCGACTCTG	GTTGAACCTC	AGTCTCACCT	TTGTCGGTCA	4140
CAACTGCTTC	GGGTAATGTA	GGTTGAACTT	CTGGTTCGCC	TTTGTCACTT	ACTACAGCTT	4200
CGGGCAACTC	AGGCTGAATT	GCGGGTTCAA	CAATAGCTCC	AGACTGTACG	TCCTTATGTT	4260
CTACACCAGT	CTCAGGTTGT	TCCTTTATAA	CTTGAGTTTT	TTTAGTACCT	TTTTCGACTA	4320
TTCTTGGACT	AGGCGCAGTC	GTTGAAGTTG	AAACAATTTC	TCGCGAAACT	TCTTCCTTGT	4380
TTACAGAGAA	TATTCTGACG	ATTTCAACTT	TCTTACCTAA	TTTACCTTCT	TGTTTTACTC	4440
TTACAGTTCC	TTCAGCTAAA	TCAGGATTTT	CTTGAATTTC	TTCTTGAAAA	TCTATTTTTG	4500
TCTCCATAGT	TTCCTCACGA	TATAAGAGTT	CAGGTTTGTT	CAATTGACCT	GATAAAACTT	4560
CATCCTGTGG	ATTTAATGTA	TTTACCCCAG	TCTTTTCTTT	TGGAGAAATC	TTCTCCTCTT	4620
TCTTCGTTTC	TAGATTCTTA	TGTTCGGCTA	ATTGTTCTTG	AGAATCTGAA	GATTGTTTCT	4680
CTTCTTTTCT	TGGATTGATT	AATTCAGTAG	AGAAAGGTTT	TTCAACTACT	TGAACTTCTG	4740
TCGGCTTAGT	TGAAGAAACA	GCTCTTTGTT	CCTGAATAGC	TTGTACTGTT	GATGGATGGT	4800
CTACAAAATT	CGGTGTAACA	TTATAATCCA	CCTTTTGTTG	TTTTGTAGGA	GTGGCAACTG	4860
AACTCTTTTG	ATTACTTACT	TCAGACTCAG	AAGTCGTTTT	TCCCTCTTTG	ATATATCCAA	4920
TATAAGTGTA	ACCTGAAATC	TCTTTAGGAA	GAGGTAATTT	TTCTCCAGAG	GTCAATTCAT	4980
AGTCCGTATT	GTAATTTAGC	AAAAGATGAT	TTTCTAAAGC	ATGGACTGAA	ACTAAGACAC	5040
CATTTCCTAT	CCCTGCAACC	AATACTAAAT	GTAATACCGT	TTTATTCTTA	ACCTITITCT	5100
TGGAAACAGC	AAAAATTAAA	ATTCCCATAG	CAGCTAAGCT	AGCACCAGCA	ACTAGGGCTT	5160
GCCTCTCATT	CTTGCTTCCA	GTATTTGGCA	ATTCCGCCAG	TTGATTTTGA	GAATTTAACT	5220
TATAAACAAG	ATAATAAGTT	TCATCATCAT	TCTCCACGTA	TGTCGGAATA	TCATAGACAA	5280
GCTGCTTCTT	TTCTTCTGAT	GATAGCTCTG	AATCTGCCAC	ATATTTATAG	TGAACTCCCG	5340
CAGTTTCTTG	AGCATCCACA	GATGAACTAG	CTAATACAGA	CATAAAAAAT	AAACTTGAAA	5400
TCGTTGCAGA	TACAAGTCCT	ACTGATAATT	TTCTAAATGA	AAAACGCTCT	TGTTTTTCAC	5460
CAAAATACTT	TTCCATTATT	CCTCCTTGAA	ATAAAATTTA	TATATGTTAC	AAAGACCTTT	5520
ATTATATTAG	TGTATTATCT	ATTATCTATA	GAAAAGGCAG	TATACCTTAA	TTATACTCTT	5580
AATTTACAAA	AAAGTCTTAA	AATTGAGATG	CGCTTTCATA	CTTTGTTTTA	TATTATTTGG	5640
AGGTACAATA	ACACCTACCA	TGAAATTTAC	ACGGTAGGTG	TTACTCATAT	CACTAATCGT	5700

			300			
TCTAAAAATG	GTTTGAGGCA	GTTGAGGAGA	ATTCCTTCTA	TCCAGCTTCC	TTGTGCTGAT	5760
GAGCGATGGT	CTTCCTGCAG	GCTTTTTTTT	AGAAAATCTC	GGACTTGTTC	TGGTGCGATT	5820
TCAAATTCAA	AGGCTTTCAT	TTTATAGAAA	AAGTCGATGA	GATGATCTGA	CAGGTATTCA	5880
GTTGAAAAGG	GTACTTCACC	ACTTTTTCTA	TATTCTAATA	AGAGTCTAGA	AAATCGAGCT	5940
TTTTCTTCAG	GAAGCTCACG	AAAATAGGAA	TTGAGGATCC	AAGTCTGCTT	CTGTTTTCTT	6000
TCAATTGGAT	CCTGACTGGC	AATTCGTTGG	TCTTTTTCCA	GCTCTTTTTG	GTATTGTTTG	6060
GCCTTGATAG	CTCGTTCTGC	TCTATTTTA	CCAAAAAGAA	TTTTTTCCCA	CTTGCGTTCT	6120
TCTTGAGTCA	GGGTCTCTGT	AAAGCCAAAG	TAATCTTGAT	AAGCACGCTC	TGCGGGTCCC	6180
ATGGCTAGAA	CCAGATTGTC	TGCATATTGC	TTGGCGATTT	TATCCCTCTT	CTTGCGTTCT	. 6240
TTCTCTGCCT	GGATACGGAG	TTCTTGTTCG	TAGTCAATTT	TCTCCTTGCC	TAGCTTGACA	6300
AGGTAGAGTT	GGTCATCCGA	TTTCCCAAGT	AAAAAGGGTT	TGATACACTT	TTCAAGGACT	6360
TCTTCCATCC	GAGCCTTTTT	CTTTGGTTCC	GCCTTGGTCC	AACTTCCTCC	CTGAAAGACT	6420
TCTAGGAAAA	GCTGGTAGTC	TCTCTCAGGC	GCAAATTGAT	TGCCACGATT	GGGTTTGAAA	6480
ACACCTTTTT	CCCAGAGCCA	TTTTAGAAGT	CGCTCGTCAA	AGTTACTTTT	ATTGACCTTG	6540
ATTTTTTCCT	TTTTCTGAGC	TTTTCTGGTT	AGATTTTCAA	CCTTTCTGAG	CAGTTTTTCT	6600
TCCTCTTCCA	ATTGCTGGTC	AAGGGACAAT	CGATGAAAAT	GACGAACACA	GTCGCTACCA	6660
ATTGGAAAGA	GGCGTTGGCC	TGTGACACCG	TTAAAGAGTT	CATAAGCGTA	TTTGATGGCA	6720
TTTCCACAGA	CACAATTGCT	ACGGCCGATA	CCGTTAAAAA	TAAAGGAAAC	TTCATTCCAT	6780
TCCTTGGTAG	CTTGTTCCCA	AGTATCCGCT	TTCGAAGCCT	GTAAAACTGC	ATCGTGCAGG	6840
GATTTTCTAA	CTGGAAGTGT	CATGAGGTCT	CCTTTCTAAT	ACTCAATAAA	AATCAAAGAG	6900
CAAACTAGAA	AGCTAGCCGC	AATCAGCTCA	AAACACTGTT	TTGAGGTTGT	AGATAGAACT	6960
GACGAAGTCA	GCtCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACGA	AGTCAGTAAC	7020
CATATATACA	GCAAGGCGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCAAAGA	GTATAAGTTA	7080
TACTTTTACA	ACTTGAACCT	CGTCTTTACC	GAGTAAAATC	AAGTATTTT	CAATATTTTC	7140
AATCGAATAG	GCTCGTGATA	AAGCCTCTTC	GTATAGAGCT	AACTGACCAC	GATAGCGGTC	7200
TACGAGTTGA	CTTGGTTCAT	CATAGCGGTC	TGTCTTGTAG	TCGAACAGAA	CAATTTTGTT	7260
TTCGTAAAGC	AGATAGCCAT	CAAGGATACC	ACGGACAACA	AAGTCTTCCT	GACTCTTTTG	7320
GTCTCGTTTG	AGCATGGAGA	AAGGTTGCTC	GCGATAAAGA	TGGTCGGTAT	TAGCAAGAAT	7380
TTCCTGACCG	AGTACTGTGT	CAAAGAAAGC	AAGAATTTTA	TCAAGATTGA	TCTTGTCTCT	7440
GACAGCTTGG	CTAGTTTGAA	CTTGTTTGAG	TGTTTCTGTT	AGGCTAGCAA	GGGTTAGTTG	7500

CTGGCTGAGG TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
TACCTTTTCT TTGGTTGAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7620
ACCTTGACCA GCAATCTCGA	CACCTTCCAT	ATCCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
TTGACTTGGG GTTTGAACAC					7740
TTCCACCTCC TTCAGCATT					7800
TTGGGAGCTA TCTTGGAGAG					7860
CTGATCTTCG CCAATAAAA					7920
GATAGCCCAA AGCCAATCTT					7980
CCCATTTTTG GCTGCTGGG					8040
AAGATAGAGC TTTTTCTCAG				•	8100
ATAGCTTGCT AGCTGTAAT					8160
TTTGATGGTT TTAGGATAG	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATIT	8220
GACACCAAGA CCATTCTGAG					8280
ATCTTGATCC ATATTGAGG					8340
GGTCATGAGC TCTACTGCA	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
GGCTTCTAAG ACTTGGTCA					8460
TTCAAATTGA TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
CGGCAAAGCC CCAACATAG	CATAATAAA	ACGGTCCTTG	TAXATCTTCC	AAATCAAGTC	8580
ATAGAGAGAG TGGGTTTTG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
TAGTTTTTCA GCTAGAGCT	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
ATTGACCAGT TTCTCATAG	GATTTTCGTC		TOTOCTTTCT	GAAGGGACAA	8760
ACGTGCTAGC TCATCCTCA	CAAAACCAAA	CATTGGAGAC	TTCATAAGGG	CAACCAAGGC	8820
GTAGTCTTGC AGGGGATTG	r GAATGACACG	AAGAGTGTCT	AGCATGACTT	GCACTTCTAG	8880
GGATTGGAGA TAATTGTTT	r GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
GGCGAGGAGA ATCTGGTCA	r TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
GGCAACACCT TTTTCTTGA	r gaagtttcag	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	9060
TGTTAGTTTC GTTTCTGTT	r GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
GAGAAATGCT GCCTTGTTG	r CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
GTGCTTGTTA TCATAGTTG	A TTTCGCCGAC	CTCTTGGTCC	ATGAGACGTT	CAAAGACATC	9240

			302			
ATTGGTTGCT	GACAGCACTT	CTGAACTACT	ACGGAAATTT	TCCTTGAGGA	TAATGAGCCT	9300
GCCTTCTTGG	GGATTTTGCG	CATAGCGTTG	GAATTTCTCA	TTGAAAATCT	GCGGGTCTGC	9360
CTGACGGAAA	CGATAGATGG	ATTGCTTGAT	ATCTCCCACC	ATAAAGCGAT	TGTGGCCATT	9420
AGACAACAAT	TCCAGCATCC	GTTCTTGAAT	atggttggta	TCCTGATACT	CATCGACCAT	9480
GACTTCATGG	AAGCGCTCCT	GATAAGACTC	ACGAACTTGT	GGGAAATTCT	CTAAAATCTC	9540
aatggtgtaa	TGGCTGATAT	CAGCGAATTC	GAAGGCATTT	TCCTGTCGTT	TTCTCTGACG	9600
ATAAGCCTCT	ACAAAATCGC	TCATGAAAGA	TTGGAAGGTT	TTAGCTAGTT	TCCAAGTGTC	9660
TCCATGATAA	CGTTCTTGAT	AGTCGAGAAT	CGCTATCTGG	TCTGATAATT	GTCCTAGTTT	9720
AGCAAACTGG	GTCTTTCTCT	CTTCGTTGTA	GGCATCAGCC	AGGGGCTTCA	AATCAGCCTA	9780
CGGCTGGCAT	TAGTCAGAGC	TCGACCGTTT	TTCTCCTTAG	AGATGGCGAC	AACACGCGCA	9840
AGCACTGCCT	GATAAGCCTG	ACTATCGGAC	TCCTGATTTA	GGGAGCCAAT	TTCATCCAGA	9900
ATTAACTGAA	CATTTTCTAA	ATAGGCAGCC	TTTGCAAACT	CCTTGGCATC	GTTATCCAGA	9960
TGGTAACGGA	AAAAGCTTTC	CAAATCCCAA	AGGGCTTGTT	TGATTTGCTC	GGTCAGTTTT	10020
TCTTTTTCAC	TGGTAAAATC	AGCTTTCTCA	AATCCTTTGA	GGAAAGATTC	ACTCAGCCAC	10080
TTTTGAGGAT	TACTGGTGGA	TTGGAGGAAG	TCATAGATTT	TATAGACCTG	CTGGCGCAGA	10140
CCCCGTTCGT	CCTTGCCACG	CCCAGCAAAG	TTTTTCAGCA	AATGACTAAA	GGTCTCTTTC	10200
TGTTTACCTT	GGTAATGCGC	TTCAAAGACC	TCATGAAAGA	CTTCGTTTTC	GAGAATAAGT	10260
TGCTCGCTTT	GCTTTTGTAA	AATACGGAAA	TTAGGTGCAA	TATCAAGCAG	ATAACCATGT	10320
TTGCCAAGGA	ATTTTTGTGT	GAAAGAATCC	ATGGTTCCAA	TGGCAGCGTT	GGGTAGGTCT	10380
GCCAACTGGC	GACCCAAGTG	TTGTTTGAGG	TCGACATCAT	CTGTTTCTTG	GATTTTCTTC	10440
CTGATTTTT	TCTCTAAACG	TTCTTTAAGT	TCAGTTGCAG	CCTTGACGGT	AAAGGTTGAG	10500
ATAAAGAGTT	GAGAAATTTC	GACACCACGC	GCCAATTGGT	CCAGAATGCG	CTCTGCCATG	10560
ACAAAGGTCT	TTCCAGAACC	AGCCGATGCT	GAGACCAGGA	TATTCTGGGC	AGAAGTGTAG	10620
ATAGCTTCGA	TTTGCTCGGC	AGTTTTCTTC	TGTTCCTTGC	TCGAATTTGC	TTCTGCTTCT	10680
TGCAGTTTTT	GAATCTCCTC	CTCACTTAAA	AAGGGAATAA	GCTTCATCGA	TTCAACTCCT	10740
CTCTTATTTT	TTCAAGCCAA	GCTTGCTTGA	GTTTTTCTCC	GACCAGACGC	TTGCCATCAG	10800
CTAGGTCCAA	CTTTTCTAGG	AAACGGGCTT	GGCCCAGATG	GTAATTGGCT	TCAAAGCCTG	10860
TAATAGCCTG	ATGTTGCTGG	ACGTATGGGG	CAATGCTTCT	GCCATTTTCA	GTATAAGGAT	10920
TGATGGCGAA	CCGGCCTGCT	AAAATCTTCT	CAGCAGCTTT	CTTGTAAAGA	TAGGCATTGT	10980
AGTCCAGTAG	GAGCTGAAAT	TCCTCATCTG	TCAGTTGATT	AGCCTTGTTT	TTGTTATAAA	11040

ATTCGCCTAA ATAACTGCTT TCTTTTCCA AGAAGAGCCC TTGGTATTTC ATAGATTTGC	11100
TGGCTTCTAC CACTGCTCCT GCCAGACTTT TTACCGCCAT CAGAGATTGG ACAGGTTCAG	11160
CCATTTCCAA GTACATGGCG CCGAAAAAGT TCTGCTCCCC TTCTCTTTTT AGGGCAGCAA	11220
GATAGGTTGG TAACTGAGAA TTGAGCCCAT TAAAGAAATG AGGAAACTGG AACTGAGTCA	11280
GACTGGATTT GTAGTCTACT ACTCCTATCG CTCCATTAGC TTTCAAACGG TCAATCCGGT	11340
CCACCTTGCC TCGTACAAAG ACACTGCGTC CATTGTCTAA TTGAATAAAG GCTTGGTCTT	11400
TTCCACCAAA ATTTGCTTCT TCTTTGATGG TTTCGATGGC TGGATTGTGT CGGAGAATAT	11460
GTCCAGTTGT CCGTGCAACA TCAAGCAAAA CTTCCTTGGT AAACTGGGCT TCCAAACTTT	11520
CTTGATAAAT AGCTTCAAAT TCGCGTTCTT GACTGGTTTC TTGAATAGCT TGTTCTAGAC	11580
GTTGGTCAAA GGAATCTTCA TTAGGCAACT GTAAGGCGCG TTCAAAGATA CGATGCAAGA	11640
AATTCCCGTG ACTACGGGCA TCAGGATGCA AACGTAATTC CTCCTGCAAG CCTAAAACGT	11700
AGCGTAGGAA ATAACTGTAT TCATTGCGAT AAAACTCTGT CAAACCCGAC GTAGACAGGT	11760
AAAACTCCTG TTTGGCAGGA TAGAGAGCTT GCAAGGTGTC CTTGGCTAAG GTCTTGCTGC	11820
TTGGACTGGT TGGGATAGCT GGATTTTCCA GACCTTGCTG ATCTAGTTTT TTACCTATGA	11880
CACGCGACAG AACCTTGACA AAAGTCAAAT CTTGCTCAGT ATCGCTCATC TCACCCTGCT	11940
GGTGATAGGC AACCAGACTA GACAAAAGAC TGTGATAGGA CCCCATATCC TCCTTAGACA	12000
GTCCTTTGTG ATTCATCCTC TTCTCTCTCC GCCTAAATCC AAAATGGATC AACTCTTGAA	12060
GATAGGCAGA TTCCTTACTT TCACTTTCGT TAAAAAGGCT TGGAGCCGAC AAGAACAACT	12120
GCTTACGAGC AGAATTGACC AAGGAAAGCA TAGTGTAGCG ATTTTTCTTG AGATTTTCAC	12180
TOCTGGCAAT CAGTAATTGA ACGCCTTCTT COGTCGCTTG GTTTAGGTTT TGCCTTTCTT	12240
CATCTGTCAG AAGACTGGTG TTTTGAGAAA TTTTTGGTAA ATTGTCCTGA GTTAGTCCAA	12300
TAGCATAGAC AAAGTCAGCA GTCAATGGTG CAATCAAATC GTAACTCTGC ACCAGAACAG	12360
TGTCCACTGT TGCTGGAATG GTACGGTATT GGGACAAACT CATTCCAGAA TGGAGCAAGG	12420
CTAGGAAGTC TTCCAGACTA ACCTGTGAAC CAGCAAAAAC AGTCGCAAAT TGTTCTAAAA	12480
CATGGCAGAA AGCCTTCCAA ACTTCGGCTT GTCTTTCCTG TTCTACAGCT TCCAAAGTGG	12540
TTGTCAAATC TTGTAACTGC TTGGTCACAG CTCCTTCTTT TAGAAAGACA CTCCATTTTT	12600
GTAGGAGTTT TTCAGCCTTT TGTTTTCGGC TGGCAAAGAG GGTTTCAAGA GGTGCTAAAA	12660
TTCTCAGGCG GAGGACATTC AAACGCTCAA GATTAAATTT TCCATGGTGG GATTTGGTGA	12720
AGGTTTGCTG AAAGGCTGGC AAGCCATTGA TACCAAGATA GCGGATATAT TGCTCAAAAG	12780

304 CATCAATATC AGACTGACTG AGGTCAGTAT ACAAATCAGT TCTAAGAAGA TTAATCAAAT 12840 CCTCCTGACG AAAACGGTAA CGTTTTAAAG CTAAAATAGA CTCGACAAAC TGAGTCAAGG 12900 GATGATGAGC CATGGCTTCG CTTCTACCAA GATAAAAAGG AATCTGATAC TGGTCAAAAA 12960 TGGTTTTGAG AGATAACTGG TAAGAAGCTA CATCCCCCAA GAGAATACGA AAATGCTTGT 13020 AGCTCAGGTC TGAGTTCTCA TGTAATTTCT GACGAATACT ACGGGCTACT AGCTCCAACT 13080 CCTCCTTTTG CGTCAAACAA GACCAGATTT GTAAATTTTC ACGGTCTTTC TCATCGACAT 13140 CCAAAGCGAG TTCTGAAAAG TCATAAGAAG ACTCCAACAA ACGAGAGGCC TTGTCAAAAC 13200 TATCCATCTT CTCATGAGTT TGAGAACAGT CCTGAGCAGG CGTTTGGTAT TTAGAAGCCA 13260 GATGATGGAG AAATTTTACG CTGGCTTGGT AGAGATTGCC CTCGCTAAAA GGACTGGTAT 13320 AGGETTTETT ACTAGEATAA GECCEGATAA CAATETEAAC ACETTTGEEG TGAAGTAAGT 13380 CCACAACCCG CTCTTCCTCA GCAGAAAAAC GAGTAAAGCC GTCAATGACC AAGGCGATTT 13440 GATTAAAATC ACTACTTACC TTGTCATTCT CAATAGCCTC AATCAAATGG GACAACTGAC 13500 TTTCCTGGGC TAACTGACCT TGATTAAGAT AGGCTGTTAC TTTCTCAAAA ATCAAGAGTA 13560 AATCCGCCCT CTTATCCTCA TCTGTTAAAT TCTCCAAGTC CAAAAAACTC ATCTGAGATT 13620 TGGTCATCTC ATGGTAAAGC TCAATTAACT GCTGGATCAA TTGAGGATCC TGCTTAATAG 13680 CGCCATAAAC ACGCAAGTCC TTGGGATCGA GTTCGGCAAG GCATTTGTAA AAGGCCAACC 13740 CAAGACCGAT ATCATCAAGA GTAGTTTTAG CTGGTAAATC ATTCAAGACC AGATAGCGAG 13800 CCATTTGAGC AAAGCGCGTG ACGGTAATCG AAAAAGAAGC CTGCTGGGAC AAGTATTCCA 13860 GCACGCGCG TTCCTTTCA AAAGAAAGAG AGTTGGGGGC AATGTAGAAG ACCCGCTTGC 13920 CAGCTGCAAC TAGCTCTTCT GCCTCTCTTG TTAGAATTTC TGTCAAAGAA GTCCGAATAT 13980 CAGTATAAAG TAATTTCATC TCAGCCTCGT TGGAATTTTT CATCACCCTA TATTATACCA 14040 TGATTAGCCT CGTAAATCTG TTAAAATATT TAGGCCATCC TTTCTTTCT TCATCATCTG 14100 CTAAATCTTA AATACTTAGC TTTACTTGTA TTAGATAGAA TAAGTCTGGC TACTGAAAAT 14160 CACATAATAA AAAAGCCTCG GTAACAAGGC TTTGAGTTTT ATGATTGTTT CTTAGGTACG 14220 GAATACACTT CAATGTGTTG TCCCAGTATC TTAATGTCGA CTGGTAGATT GTCTGATTTA 14280 TCGCCATCAA CATCGGACTC TAATTCGATA TCAGAAGAAG TTTTAATATT ACGTGCCTTT 14340 ATATATTCAA TATTCTTGAT AGAATGATTG AACTATAGTA AATTGAAACT ATAATAGTAC 14400 ACCGTGGATG CTAAAATATT TCTAGAAATT AATTTGATTT CCCTAATCAA GCTATTCGTA 14460 TCTTATTTCA ATCTACTATA ATAAAATGAA CCAAAAATAG TACACAATGT GGTATAATCT 14520 TCTTATGGCA TATTCAATAG ATTTTCGTAA AAAAGTTCTC TCTTATTGTG AGCGAACAGG 14580

305

TAGTATAACA	GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAAGCTAAAA	GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
agttgataga	GATAGACTTA	AAAACTATCT	TACTGACAAŤ	CCAGATGCTT	ATTTGACTGA	14760
AATAGCTTCT	GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTACACTCGA	AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTCTTAAGAA	TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCGATACTTA	TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAGTATCTGG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAATCGCTCC	AATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGAAGTTTCT	CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
ATAGGGGGG	GGGGGGAGGG	GGGGGGAGGG	AGA			15213

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6004 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	TCAATTTTAT	AATATCATCA	60
AGATTTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
TTCATTAAAT	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	CCAAAAATAA	180
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
ATAACAAACT	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	CATAAATCAT	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	CAATATTTTC	AATAACATCT	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGGCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
AACTCTTTAA	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	ATCTATTAAT	600
ATTAATGAAT	TTGATTGCGC	ATTTACTATA	TCATTTACTA	ACAAAATAAT	TCTAGCCTCA	660
CCTGTTCCTG	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

306

GAAGCTTTTA TATCATCACC TTTTGAATAC AACTTATGTG TTAAAATTTG AATGTCTGTA 780 TAAGATTCAT CCATTATTTC ACTAATAATT TCACAAACTT TATCATCAAC TTTAACATTA 840 TCTATAACCA TTTCCTTTTT ATAACGCGTA TAGCTACTTG TATTATTCTT TAAAATATCA 900 GCAACTGGCT TAGATCGTAA TCTTATAAAA TCTTGTTTAC TACGTTGAGT AGAAATTTTT 960 TTAAAATTAT AGTGATAGAA AAATAAATCA AAAGCAGAAA CATATTCTTT ACAATCACAA 1020 AAGACAACAT TTTTTTCAAT GCCATCCCAT CTGTCTGTCG AAGAACTTCC AATATATTTA 1080 TTTTTGGGTA ATCTTTCCAT CTCATATTGT TTTTGAGGAG CATATGGTTC CCAATAATCT 1140 AATCCTTTT TTGTTCCAGA ACGGCCTTTA AGAACTTCTA CATTTCTAGA AGCTTTAATG 1200 TTATAATATG AATAGATTAA ACATTGTTTC CCATCCACTT CATCTATTTG ATCAACATTT 1260 GTACTAAACC AATATTCAGA CACACTTTTA TTGGCTGGAG AACCATATAA AGCTTGTAAA 1320 ATTGAAGTTT TATTTACTCC ATATCTATTA CAGACACCTC AGGATTATTT AACTTATAAG 1380 TTTTAACAGC TACGGAATCA ATTTCAACAG CAACTTGAAC ATCTATGCCT GATTTTTTAA 1440 GGCCACTTGT AGTGCCACCT GCACCGTTAA ATAAATCAAT AGCAACAATT TTCCCCATAG 1500 TATTCTCCTA AAGTTTCTCC TTTTTATTAT AACATTATCA AATGTAAAAC CCAACCCGAT 1560 AGGGTTAGGT TTTTAACATC ATTTCACCAA CTTCTTCATC TCATCAATAC GTGCGACGGT 1620 CGCGTCATAT TTAGCTTGGT AGTCAGCTTG TTTGTCGCAT TCTTTTTGGA CGACTTCTGG 1680 TTTGGCGTTG GCTACGAAGC GTTCGTTAGA GAGTTTCTTA CCAACCATGT CCAGTTCTTT 1740 TTGCCATTTA GCAAGTTCCT TGTCGAGACG GGCCAGTTCT TCTTCAACAT TGAGGAGATC 1800 GGCCAGTGGC AGGTAGATTT CTGCTCCTGT GATGACACTT GACATAGCCA GTTCAGGTGC 1860 AGGGATGGTT GATGCGATTT CCAAGTGTTC TGGATTTGTA AAGCGTTTGA TATAGTTGAC 1920 ATTGCTGTTA AAGAAGGCTT CCAAGTCGCT ATCGCTTGTC TTAACAAGGA TGGTGATAGG 1980 CTTGCTTGGT GCTACATTTA CTTCCGCACG CGCATTCCGA ACAGCACGAA TCAAGTCTTT 2040 GAGACTTTCC ACACCAGTGT GAGCCGCAAG GTCTTCAAAG GCTAGATTAA CAGTTGGGTA 2100 TGCAGCTGTC ACGATAGAAC CTTCTGAGAT TTGTCCAAAG ATTTCCTCTG TCACGAATGG 2160 CATGATTGGG TGAAGGAGAC GAAGGATCTT CTCCAGCGTA TAGAGGAGAA CAGATCGAGT 2220 AATGACCTTA TCGTCTTCAT TGTCGCTGTA TAGAACTTCC TTGGTCAACT CAACATACCA 2280 GTTGGCAAAT TCTTCCCAGA TGAAGTTGTA AAGGATATGA CCAGCCACAC CAAACTCGAA 2340 CTTATCAAAG TTTTCAGTAA CTTTTGCAAT GGTTTCGTTG AGATTGTGGA GAATCCAGCG 2400 GTCCGTCACA TTACCAGCCT CACCTGTTGC AACTTTTGTG ACATTGTCAT GCGCCACATC 2460 CAGCGTCAAA CCTTCATTGT TCATGAGGAT ATAGCGAGAA ATGTTCCAAA TTTTGTTAAT 2520

AAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGAA	AGGAACCAAC	GAAGGGCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
STCAATCCCG	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GGTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGGCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGAGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAACCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGAGTTGTA	GCAACTTCAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TGCGTCCCAG	TTGATGATAA	ACTCACCACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
aggettgaaa	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
		CDCD010101010	AMAMAMAMA A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TO COURT & DOOR	4260

			308			
TATTTTGAAT	TTGCTTAGCA	GCTTCTTCTG	CAGACAAATT	CGTATTATTT	ATTTTAAAGT	4320
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	4380
AAATTTCTCT	TTCAGATACC	TCAATATGTC	GTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	4440
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	4500
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	4560
TTGAAAAATC	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	4620
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	4680
TCTCTAGTGC	AAAATCAATG	GCTTGATGGT	TATAAAATAG	GGTAGCATCC	GTCAGTCGAG	4740
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	4800
TCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
TTGAGCATCT	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
TCGTTGACTT	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4980
TTTAAAAGCT	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
TGGCAGCTCA	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAAT FT	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
rcgcaagca t	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
CTCTCCCCC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	AAAATAAAA	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	CTTCATAACA	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
GGGG						6004

309

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5857 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TGTAGAATTC ACGACAATGC TTCGTTGATT TCTGGGTTGA TTTCGTCGCG TTCTGGCAAG 60 CGAGTCAATG AACCAAAAAT AGTACACAAT GTGGTATAAT CCTTTTATGG CATATTCAAT 120 AGATTTTCGT AAAAAAGTTC TCTCTTATTG TGAGCGAACA GGTAGTATAA CAGAAGCATC 180 ACACGTTTTC CAAATCTCAC GTAATACCAT TTATGGCTGG TTAAAGCTAA AAGAGAAAAAC 240 AGGAGAGCTA AACCACCAAG TAAAAGGAAC AAAACCAAGA AAAGTTGATA GAGATAGACT 300 TAAAAACTAT CTTACTGACA ATCCAGATGC TTATTTGACT GAAATAGCTT CTGACTTTGG 360 CTGTCATCCA ACTACCATCC ACTATGCGCT CAAAGCTATG GGCTACACTC GAAAAAAGAA 420 CCACACCTAC TATGAACAAG ACCCAGAAAA AGTAGCCTTA TTTCTTAAGA ATTTTAATAG 480 TTTAAAGCAC CTAACACCTG TTTAGATTGA CGAAACAGGA TTCGATACTT ATTTTTATCG 540 AGAATATGGT CGCTCATTAA AAGGTCAGTT AATAAGAGGC AAAGTATCTG GAAGAAGATA 600 TCAGAGGATT TCTTTGGTTG CAGGTCTAAC AAATGGTGAG TTAATCGCTC CAATGACTTA 660 CGAAGAGACG ATGACGAGCG ACTTTTTTGA AGCTTGGTTT CAGAAGTTTC TCTTACCAAC 720 780 ATTAACCACA CCATCGGTTA TTATTATGGA TAATGCAAGA TTCCATAGAA TGGGGAAGCT AGAACTCTTG TGTGAAGAGT TTGGGTATAA ACTTTTACCT CTTCCTCCCT ACTCACCTGA 840 GTACAATCCT ATTGAGAAAA CATGGGCTCA TATCAAAAAG CACCTCAAAA AGGTATTACC 900 AAGTTGCAAT ACCTTTTATG AGGCTTTTTT GTCTTGTTCT TGTTTCAATT GACTATATAA 960 ATTGTCTAAG CGAAACAACC GATAAGAATT GGCACAAAAG CGACCGTATT TTTGTTACCA 1020 ATACAGGAAA AACAGTTCAT AGTTCTATCT TGAGCAAGTC TCTCCAGCGA GCAAACGAAC 1080 GCCTTAAAAA ACCAATTCCC AAACATCTGT CCCCTCACAT CTTCAGACAC ACCACTATTA 1140 GCATCTTATC AGAAAATAAA ATTCCTTTAA AAACAATCAC GGACAGGGTT GGTCATCCCG 1200 ACTCTGAAGT CACTACTTCC ATCTACACCC ACGTCACAAA GAACATGAAA GATGAAGCAA 1260 TCAATGTACT GGATAAAGTT ATGAAAAAGA TTTTTTAAAA AGTTTTGTCC CTTTTTTGCC 1320 1380 CTCTAAATAC AAAAATAGCC CTTCGGATAA AATCCGAGGG GCTAGAAACG TTGTTAAATC

AACGGC	CGAA	CTTTTGAATT	TCATGGTTCG	GGATAAAATA	GTTCACTGAA	CTATTTTATT	1440
)AATTT1	GGTT	ATCATAATAT	CAAATAGTTC	AATTAAATAC	GCTAAATTAC	TAATATACTT	1500
PTTACC	TTTT	TCATTCTAAA	atgtaaagta	CAAACAATTA	CAATATACTA	GAGGGGGAGT	1560
AAAAA	GGTA	TTAAATCGAT	GAGTTCAGCA	GGCAAGAAAA	TAGCACCTTT	ACGGGTGCTA	1620
rtttt:	TTA	AACGCCACGT	TAACTTTTGA	TTGATGAATT	TTATTGTTTG	GCACTTCTTT	1680
CATTTC	ACGG	TAAACATCGA	TGAAATTCTT	TCCAACATTA	TTTTTGGAGT	TAACTGCATT	1740
TATTTT.	rgta	TTAATAACTT	TTTTAGTATC	GAAAGAATGG	TTTAAGAAAT	CCATAACTAA	1800
CTCTCC	TTTC	TCATCCTGTA	ATCAAGATTT	TTATCAATGT	CAAAATAGTA	TTTTCTATCA	1860
ATCCAA	ATTG	GTCCTTCTCC	TTTAGAAATA	GCAAGTACAT	CTACCGGACC	TCCTACTGTT	1920
TCAAGA	GTGT	TGACAATTTT	TCTCTTAAAT	GAAGTTAATT	CAATAAATGT	TTTAGCTGTA	1980
CTCGCC	ATTT	CATTAAGTGG	TTGCATTCCA	ATAAGGTCTA	TTATAGGATT	TATATAATAT	2040
rtttgc	rgta	TAGATGATAT	ATTTTCAAAT	ATATTCTCAA	TTTCATCACC	CAATCCATTT	2100
TTCTCC	ATAA	CTGATGATAC	TTGCTCTGCG	ATATATACAT	TTAAGTTAGG	ATCTATACCA	2160
TTCATA	ATCG	TCTCAACCAT	CTCTGACTGT	GCAAAAGGGA	TTATATGACA	AGTTTTATGA	2220
TGATTT	ATCA	CACTTTCATT	AATAACTTTC	CAAATTAATC	GTTTAGAAAA	AATTCCATAT	2280
AATTCA	ATTT	GTCTTATAGA	TGGAAATATC	TCGTCTGTAC	CATAACCTGC	TATAACTAAT	2340
CCAGTT	ATGT	TTGTTGAGTC	ATATCCAATG	AAAATCGCTT	TATATAAAGA	TTTAGCAATA	2400
ACTTCA	ACCT	CATCATCAGT	ATGAGGAAAG	GATTTAAAAA	CATCGTCTAC	AATGCTTTTT	2460
ATTAAC	TCTA	ACTCAGCTTC	AAAAAATTCA	AAATTACTTT	CAGCTTCTAC	TTTTGAAATT	2520
TCTAAA	CTAA	AATTAGTTAT	AGCATTTAAT	AAAATTTTAT	TAAAATCATC	TAGAGTGATG	2580
GTTTCA	CCAT	TAGAAACTCT	TAAATCAGCT	GTTTCTTGCG	CTTCATAGGC	AATGCTGTCC	2640
AAAATA(CTTC	TTGTACTTCT	GACAATATAA	TTTCTTAATA	AATCCTCAAC	TTGTAGATGT	2700
TTAAAG	GAAA	TTAAAAATTC	TATTAGCTTT	TCAACGTATT	GGGCAGTATT	ATCTAATAAA	2760
rctgtg(CCAA	TAGCCTGCTT	AAACTCATTT	AAAATTACCT	CCCACGGAAT	TTCCATAAAC	2820
GAAGCG1	rtcc	CATATATCAT	GATCCCCACG	GAATGTTCTT	TTGATAAAGT	GAATAATTTT	2880
cecece	CTAT	TAAAAACTTT	TGAATTTTTC	CCGTCTGATA	AGGTTACAGC	GCTATCAGAA	2940
GCCAAT	ACAA	CACCATTTTT	ATTTAATATT	CCAATTTCTG	CTGTCAAAAT	ATCACCTAAA	3000
CTTTCT	AAAC	CTGCTCATGC	TCTAATGGTA	CAACAGCTAA	GGTCTTACCA	AGACTTGCCA	3060
ACACTT	MAA	TACTGTATCA	AGTTGTGGGC	TTGTCTTTCC	TGTTTCCATT	CTAGCGATAA	3120
CTGGCT	GACT	AACACCGCTC	ATCTCCTCTA	GTTTCTTCTG	ACTAATACCC	TTTTCATTTC	3180

TAGCCTCGAT	AAGCTCACTC	ATGATAGCCA	CGCGCATATC	ACTTTCCAAA	ATTTCCTCTT	3240
TGCTGAATAA	TTCAGCTCTT	ACATCTTTCC	AGTTACTACC	AATAGCATTA	TTTTTCATTG	3300
TCTAAACCTC	TTTCTTTTAA	ATCTGCAAGT	TCACGTTTAG	CTTGCTCAAT	CTCTCTTTTG	3360
GGTG TTT TCT	GTGTCCTTTT	CATAAAATGA	TGCAGTAAAA	CAAAACTACC	ATCCATCCAA	3420
GCAACAAATA	AAATTCTATC	TCTAAGTGGT	CTCAGCTCCC	AAATTTCAGC	ATCTAAATGC	3480
ттаатататс	GTTCGCCTGC	GCGTGTTCCA	TGTTGGCTTA	ACAACTCAAT	АТААТСАТТА	3540
ATTTTATTAA	GCTTAATTCT	GCTATCTTTC	CCTTTTTTAC	TGGTAAGCTC	TCGCATATAA	3600
TCAAAAACAG	GCTCATTGCC	GTTTTTATCC	TTGTAAAAAT	AGATATTATG	CACTATTAAC	3660
ACCTCTTCCT	AATAACAATT	ATAACCTAAA	AGTTATTGTT	TGTAAATACT	TTTAAGTTAT	3720
таааатаааа	AGCACCTAGT	TTCCTAGATG	CTAGCACAAT	GACACGGATT	CGCACCGTGG	3780
CTACCTCTAT	CAAGGTGTAC	TCCTTCTATA	CTATCCCTTG	TGCTTTAGAA	TATTATACCA	3840
CACAATCAAC	TAGATACCTA	CCATCTCATG	ATATACCCCC	ATTTTGGGCA	AGGGTACAAC	3900
GCTAAAATAC	AAATCAGAAT	AGATATTAAA	CCACTTATTT	AACTTATCAT	AAGCTGGTGA	3960
TTGACTGATA	AATAATATCC	GCTGACAAGC	TCCGATAACA	TTCATGTGAT	TGTACACATA	4020
AACCTCTTTT	ACAGCCTCTA	AAATGTCAGC	CTCACTTGTT	TGTACCCTAA	TATCTGTTAT	4080
CTGCTTGATA	GTTGCGTATT	TTTGATAAGC	TAGCATATCT	TGATTTTTAG	CAGCATCAAA	4140
CATTTTACGC	TCAAGGACAC	TATACTTAGG	TTGTTCTTTA	TCTCGCATGA	AATACCACTT	4200
GAGCCATAAA	ATCTTTTCTC	GGTGTATTAC	AGAAATACGC	TCAATTTTCT	TCTTTGTCAT	4260
TGCTACCTCC	TAAATCATCA	ATTTAACAAT	TCTAACCACT	CACTTTTAGA	AATAGTTGCA	4320
TAGATCTTGT	TCGATGTATG	ATACAAAGGT	TCTAAATCTT	TTTCCACCCT	AATATAGTTC	4380
ATCTTATCCT	CATGAGTAGG	Aaagtatagt	ATTTCCGTTT	CATCCTCGTT	TAGGATACGA	4440
TTGCACCAAT	CATCAATAAT	AACTGGCACT	TCCCACTCAC	GCCATTTTTT	AAGGTTTTCT	4500
AAAAGTTCAT	TATCACTAAA	TAGCTCGCCA	TCTATTTGGA	AAAATTCCCC	TAAGTCATTG	4560
TTTCCTTCAA	CAATAATAAA	CTCTGGCATA	TTTCTATTAC	TTAATAACTC	CTTGAGTTCT	4620
TGTAACTCTT	TGATTTCCTT	TAGATACTTC	CTCAATTTCC	AACCTCAATT	CTTCAATCTG	4680
CCTTACTACT	CCAAAAATTT	CATGGGTCTT	ATAAGATTGT	TCAAGTATAG	CCTTTGCTGC	4740
TTGAGTTCTT	ATAAACGGGT	TGACCTTACT	GTCCATCATA	ATATCATTGA	GTACAGAAAC	4800
AGCGTTAGAT	GATGCTAAAT	AAAGCATTTG	AGTTGTTTTA	TCCATCATCT	CATCTTGCTT	4860
ምል ተርርጥር እ አጥ	СФСФФФФФТ	CCCCTCC AC	መተመጥ አ ር አጥ እር	THE ATTLE ACCORD	mmcccccmcx	4020

PCT/US97/19588 WO 98/18931

			312			
TACCCCTGCT	TTTTGACATG	CTTTGTCTAT	CGTTGGCTCG	GTAAGCATGG	CATCTATGAA	4980
TTTAATTTGC	TTGGACGTAA	GGTTATCATT	TTCATTTCCT	GCCATCTATT	ACCTCCTCAT	5040
TATCAAAATA	AAGGGTTGCC	CCTTTATTTC	CCTATGCTAG	ATAATTCTGC	AATTCTGCAT	5100
CCATTGCCTC	TGAATTGCCC	TCAACAATCA	TTTCATGCTG	TACTAAATCA	ATCTTATCTC	5160
CGTTAATAAG	TAAACCACCG	TGGAAATAAT	CAATTTTTCT	ATCAAGGAAA	TGTACTAGCT	5220
TTTCAAGGCG	TTGCTGTTGG	CTGAATTGCT	CCATGTCAAT	TTCGATATAA	GCAAGGGTAG	5280
TATCATTATC	CATAATATCT	TCTAATTTTC	TAAGAGCTAG	AGGTTTATTT	TTATATTTTT	5340
CTAGGTATTC	TCTCATTTCT	GCCACTGTTA	ATTTGATACT	AGATAATAAA	CTTAGTTCAG	5400
CTGCATCATC	TGCTGTAATA	GGCTCTTCTT	TTGATTCATG	GTTTGCTAGT	TCAGCATTTT	5460
TCTCTTTTTC	TAGTTGCTGA	TACAATAGCT	GAGCAGTATT	TTGGGAATAG	TTTTCGCCCT	5520
CTTTTTTATA	TTTTAAAAGT	TCTTGCTCTG	CATACACTTT	CCCGATAATC	ACTTCCTTAT	5580
AAACTAATTG	CCCATCTTGA	GCTTTTAGCT	TAATACTCCC	ATGCTCTGGA	ATTTCAATAT	5640
ACTTAATTAT	ACCATTTTTT	GAGTATAAAA	CAAAGCCTTT	CTCCATCATT	TTAATAATT	5700
TATCATCCTT	GTTTTCAGTC	ATGCTTTTCT	CCTTTATTTC	ATTTTATTAT	AATCTGAATA	5760
CCCCTAGTCT	ATTTATTTCA	CTAGGTTTTT	AGGGTTCGTA	TGCTAAAATA	CTACCCTTTT	5820
TGTGTACCTT	ATGGCTGACT	TTTCAAATTG	GTTAGTT			5857
(2) INFORM	ATION FOR S	EQ ID NO: 2	9:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10254 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

.....

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AAAATGATAG CAGGAGAGTT	TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GCTTCTCGCC AAAAACAGGC	CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ATCATCAAGA CTTGGTTTGC	CTCAACCGGG	AAAAATCTTT	ACATCAACAC	TCGCTTGATG	180
GTGGACTACG GTGTCAACAT	CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ATGCTGGATA TCTGTCCCAT	TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAG	300
TTTTTGACAC CCCTCCATCC	ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AAGCCTATCA ÇAATCGGAGA	TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GTGACACTGG GAAATAATGT	CGTTGCAGGA	GCAGGGGCAG	TAATTACCAA	ATCTTTTGGC	480

313

GACAACGTTG	TCCTAGCTGG	CAATCCTGCG	CGCGTGATTA	AGGAAATACC	TGTTAAATAG	540
AAGTAAAAG	GAACAGCTGG	GGTTGTTTCT	TTTTTGTAGG	TTTCATCATT	TTTTACCCAG	600
TTCACATTTA	CCTACTCTAT	CTCTTAGCAA	GTCTGTTTCA	TTAAGCAAGT	TCAAAGCATC	660
TCGTAAGTGG	GATGTTTTTC	TCCTCAGTTC	ATCAGCTTCC	TCCTTGACAC	TCGGTCAGAT	720
TTTGATACAA	TAGTACAAAA	TTAGAGGAGG	CAGGCTATGA	TTCAGAAACA	TGCGATTCCT	780
ATTTTAGAGT	TTGATGACAA	TCCTCAGGCG	GTTATCATGC	CCAATCACGA	GGGGCTGGAC	840
TTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATTGA	CCGCTATGCG	900
agggaagtag	GGGCGAACTG	TGTTGGCGAA	TTTGTTTCTG	CCACCAAGAC	CTATCCAGTT	960
TATGTCGTGA	ACTACAAGGA	CGAGGAGGTC	TGTCTGGCTC	AGGCTCCTGT	TGGCTCCGCT	1020
CCAGCAGCCC	AGTTTATGGA	TTGGTTGATT	GGCTATGGTG	TGGAGCAGAT	TATCTCTACT	1080
GGGACCTGTG	GTGTCCTAGC	TGATATAGAG	GAAAATGCCT	TTCTAGTCCC	TGTTCGCGCT	1140
CTGCGAGATG	AAGGAGCCAG	TTACCACTAT	GTGGCACCTT	GTCGTTATAT	GGAAATGCAG	1200
CCAGAGGCTA	TTGCTGCTAT	TGAGGAAGTT	TTGGAAGACA	GAGGGATTCC	TTATGAAGAA	1260
GTCATGACCT	GGACGACAGA	CGGTTTTTAC	CGAGAAACGG	CTGAAAAGGT	GGCTTATCGT	1320
AAGGAAGAAG	GCTGTGCTGT	TGTGGAGATG	GAGTGTTCTG	CTCTTGCGGC	AGTAGCTCAA	1380
TTGCGTGGGG	TTCTCTGGGG	TGAATTGTTG	TTCACAGCAG	ATTCTCTAGC	GGACTTGGAC	1440
CAGTACGACA	GTCGTGACTG	GGGCTCGGAA	GCTTTTAATA	AGGCGCTAGA	ACTGAGTTTA	1500
GCAAGTGTTC	ACCACCTTTA	GTTGTACTGG	CAAAGGATTT	GTTTTATCAT	AAAATGTCTA	1560
GCTCATACTT	TTCAAAAATA	TGTTTAAACG	AGGTCACCTT	CCTCTTGTCC	TAGGCATGTT	. 1620
GAGGTTGGGA	AAAATCTTTA	AAATCAGAAA	AACGTATCAT	ATCAGGTGAT	GAAAACTTTG	1680
ACACTATGCG	TTTTATGTCG	ATAAGATTTA	GACTGAGATG	AAATGATACT	CTTCGAAAAT	1740
CTCTTCAAAC	CAGGTCAGCT	TCACCTTGCC	GTACGTATAT	GTTACTGACT	TCGTCAGTCT	180
TATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTTCTATT	TGCAACCTCA	186
AAACAGTGTT	TTGAGCAACC	TGTGACTAGC	TTTCTAATCG	ATGCCTTGGT	TTTCATTGCC	192
TATAATCAAA	AAGAGAAATT	TTCTCCTGAA	AAGCATATAG	AGTAGCTGGC	GTTAAAAGCT	198
CCTGTCTTGC	TTTTTTGACC	TATAGTCACA	TCTATCAAGT	ATTGTTCTTG	CCTAAGCTAT	204
CAATAAAAAG	GTGGCATTTT	TTAGGCTTGG	TGTTAGTAGA	TTTTGCCTTA	TCCTATCTAA	210
GTCATTTCGA	ACTTTTTATG	GTACAATGGA	AACATGTTAT	TCAAATTATC	TAAGGAAAAA	216
						222

*

314

GTCATTTAC TAGGCTCTCT TCTTTTGAGC TTGCCCTTTG TCCAAGTTGA AAGCTCACGA 2280 GCGACTTATT TTGATCATCT TTTCACTCCT GTCTCTGCAG TCTGTGTGAC GGGTCTCTCA 2340 ACCCTTCCAG TAGCTCACAC CTATAATATC TGGGGTCAAA TAATCTGTTT GCTCTTGATT 2400 CAGATCGGTG GTCTAGGGCT CATGACCTTT ATTGGGGTTT TCTATATCCA GAGCAAGCAA 2460 AAGCTTAGTC TTCGTAGCCG TGCAACTATT CAGGATAGTT TTAGTTATGG AGAAACTCGA 2520 TCTTTGAGAA AGTTTGTCTA TTCTATTTTT CTCACGACCT TTTTGGTTGA GAGCTTGGGA 2580 GCTATTTTGC TTAGTTTTCG CCTTATTCCT CAACTTGGCT GGGGACGTGG TCTTTTTAGT 2640 TCCATTTTC TAGCGATCTC AGCCTTCTGT AATGCCGGTT TTGATAATTT AGGGAGCACC 2700 AGTTTATTTG CTTTTCAGAC CGATTTACTG GTCAATCTGG TGATTGCAGG CTTGATTATT 2760 ACAGGCGGCC TTGGTTTTAT GGTCTGGTTT GATTTGGCTG GTCATGTAGG AAGAAAGAAA 2820 AAAGGACGTC TGCACTTTCA TACGAAGCTT GTACTATTAT TGACTATAGG TTTGTTGTTA 2880 TTTGGAACAG CAACTACTCT CTTTCTTGAG TGGAACAATG CTGGAACGAT TGGCAATCTC 2940 CCTGTTGCCG ATAAGGTTTT AGTTAGCTTT TTTCAAACAG TGACGATGCG AACAGCTGGC 3000 TTTTCTACGA TAGATTATAC TCAGGCTCAT CCTGTGACTC TTTTGATTTA TATCTTACAG 3060 ATGTTTCTAG GTGGGGCACC TGGAGGAACA GCTGGGGGAC TCAAGATTAC GACATTTTTT 3120 GTCCTCTTGG TCTTTGCACG AAGTGAGCTT CTAGGCTTGC CTCATGCCAA TGTTGCGAGA 3180 CGAACGATCG CGCCGCGAAC GGTTCAAAAA TCCTTTAGTG TCTTTATTAT CTTTTTGATG 3240 AGCTTCTTGA TAGGATTGAT TCTGCTAGGG ATAACAGCCA AAGGCAATCC TCCCTTTATC 3300 CACCTCGTAT TTGAAACCAT TTCAGCTCTT AGTACAGTTG GTGTAACGGC AAATCTGACT 3360 CCTGACCTTG GGAAATTGGC TCTCAGTGTT ATCATGCCAC TTATGTTTAT GGGACGAATT 3420 GGTCCCTTGA CCTTGTTTGT TAGCTTGGCA GATTACCATC CAGAAAAGAA AGATATGATT 3480 CACTATATGA AAGCAGATAT TAGTATTGGT TAAGAAAGGA AAGAGCATGT CAGATCGTAC 3540 GATTGGAATT TTGGGCTTGG GAATTTTTGG GAGCAGTGTC CTAGCTGCCC TAGCCAAGCA 3600 GGATATGAAT ATTATCGCTA TTGATGACCA CGCAGAGCGC ATCAATCAGT TTGAGCCAGT 3660 TTTGGCGCGT GGAGTGATTG GTGACATCAC AGATGAAGAA TTATTGAGAT CAGCAGGGAT 3720 TGATACCTGC GATACCGTTG TAGTCGCGAC AGGTGAAAAT CTGGAGTCGA GTCTGCTTGC 3780 GGTTATGCAC TGTAAGAGTT TGGGGGTACC GACTGTTATT GCTAAGGTCA AAAGTCAGAC 3840 CGCTAAGAAA GTGCTAGAAA AGATTGGAGC TGACTCGGTT ATCTCGCCAG AGTATGAAAT 3900 GGGGCAGTCT CTAGCACAGA CCATTCTTTT CCATAATAGT GTTGATGTCT TTCAGTTGGA 3960 TAAAAATGTG TCTATCGTGG AGATGAAAAT TCCTCAGTCT TGGGCAGGTC AAAGTCTGAG 4020

TAAATTAGA	CTCCGTGGCA	AATACAATCT	GAATATTTTG	GGTTTCCGAG	AGCAGGAAAA	4080
TTCCCCATT	GATGTTGAAT	TTGGACCAGA	TGACCTCTTG	AAAGCAGATA	CCTATATTTT	4140
GGCAGTCATO	AACAACCAGT	ATTTGGATAC	CCTAGTAGCA	TTGAATTCGT	AAAGAGGGAT	4200
GACCCCTCTT	TTTTGATGCC	TAAGATGGCA	AATAGAGACA	GAAGCCCCTT	GTCTTCTAGT	4260
AAAAGTTCTT	CAAAGGCTGG	ACTTTATGGT	AAAATAGAAA	GAAGTGACAA	GAGAGAGTAA	4320
TACTCAATG	AAATCAAAGA	TCAAACTAGG	AAACTAGCTA	CGGGCTGCTC	AAAACACTGT	4380
TTTGAGGTTG	CAGATAGAAC	TGACGAAGTC	AGTAACATCT	ATACGGCAAG	GCGACGTTGA	4440
CGCGGTTTGA	AGAGATTTTC	GAAGAGTATA	AGAAAAAATC	AGTCCCCTAA	AGGAGTAGAT	4500
TATGAAGTTA	TTGTCTATCG	CAATTTCTAG	CTATAATGCA	GCAGCCTATC	TTCATTACTG	4560
TGTGGAGTCG	CTAGTGATTG	GTGGTGAGCA	AGTTGGGATT	TTGATTATCA	ATGACGGGTC	4620
TCAGGATCAG	ACTCAGGAAA	TCGCTGAGTG	TTTAGCTAGC	AAGTATCCTA	ATATCGTTAG	4680
AGCCATCTAT	CAGGAAAATA	AATGCCATGG	CGGTGCGGTC	AATCGTGGCT	TGGTAGAGGC	4740
TTCTGGGCGC	TATTTTAAAG	TAGTTGACAG	TGATGACTGG	GTGGATCCTC	GTGCCTACTT	4800
GAAAATTCTT	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GACCAATTTT	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
AGTCTTGCCT	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
GTATACCATG	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
ACTGCCTGAA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAAGACCATG	TACTATCTGC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
GTCTGTCAAT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
CTTGATAGAC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
GAATCATATT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GGAGCATCTG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
CTTTCAGGCT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
TCGCAAACTG	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	CTTTATGGAT	TTAATTAATA	5520
TAAGTGTTTT	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	CTTTTTAATT	5580
TCAGGAGATT	ATACTAGAGT	CATCAAATAA	AGAAAGACTC	TAAGGAGAAT	CCTATGAAAT	5640
TCAATCCAAA	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
CAGTTGTTGT	GGCTAGTGGC	TTCTTTCTCC	TAGTTCCTCA	CCC3 ACTTCT	CTI & CCTCCCCC	5360

			310			
ATGGGCTCAA	TCCAACCCCA	GGTCAAGTCT	TACCTGAAGA	GACATCGGGA	ACGAAAGAGG	5826
GTGACTTATC	AGAAAAACCA	GGAGACACCG	TTCTCACTCA	AGCGAAACCT	GAGGGCGTTA	5880
CTGGAAATAC	GAATTCACTT	CCGACACCTA	CAGAAAGAAC	TGAAGTGAGC	GAGGAAACAA	5940
GCCCTTCTAG	TCTGGATACA	CTTTTTGAAA	AAGATGAAGA	AGCTCAAAAA	AATCCAGAGC	6000
TAACAGATGT	CTTAAAAGAA	ACTGTAGATA	CAGCTGATGT	GGATGGGACA	CAAGCAAGTC	6060
CAGCAGAAAC	TACTCCTGAA	CAAGTAAAAG	GTGGAGTGAA	AGAAAATACA	AAAGACAGCA	6120
TCGATGTTCC	TGCTGCTTAT	CTTGAAAAAG	CTGAAGGGAA	AGGTCCTTTC	ACTGCCGGTG	6180
TAAACCAAGT	AATTCCTTAT	GAACTATTCG	CTGGTGATGG	TATGTTAACT	CGTCTATTAC	6240
TAAAAGCTTC	GGATAATGCT	CCTTGGTCTG	ACAATGGTAC	TGCTAAAAAT	CCTGCTTTAC	6300
CTCCTCTTGA	AGGATTAACA	AAAGGGAAAT	ACTTCTATGA	AGTAGACTTA	AATGGCAATA	6360
CTGTTGGTAA	ACAAGGTCAA	GCTTTAATTG	ATCAACTTCG	CGCTAATGGT	ACTCAAACTT	6420
ATAAAGCTAC	TGTTAAAGTT	TACGGAAATA	AAGACGGTAA	AGCTGACTTG	ACTAATCTAG	6480
TTGCTACTAA	AAATGTAGAC	ATCAACATCA	ATGGATTAGT	TGCTAAAGAA	ACAGTTCAAA	6540
AAGCCGTTGC	AGACAACGTT	AAAGACAGTA	TCGATGTTCC	AGCAGCCTAC	CTAGAAAAAG	6600
CCAAGGGTGA	AGGTCCATTC	ACAGCAGGTG	TCAACCATGT	GATTCCATAC	GAACTCTTCG	6660
CAGGTGATGG	CATGTTGACT	CGTCTCTTGC	TCAAGGCATC	TGACAAGGCA	CCATGGTCAG	6720
ATAACGGCGA	CGCTAAAAAC	CCAGCCCTAT	CTCCACTAGG	CGAAAACGTG	AAGACCAAAG	6780
GTCAATACTT	CTATCAAGTA	GCCTTGGACG	GAAATGTAGC	TGGCAAAGAA	AAACAAGCGC	6840
TCATTGACCA	GTTCCGAGCA	AAYGGTACTC	AAACTTACAG	CGCTACAGTC	AATGTCTATG	6900
GTAACAAAGA	CGGTAAACCA	GACTTGGACA	ACATCGTAGC	AACTAAAAA	GTCACTATTA	6960
ACATAAACGG	TTTAATTTCT	AAAGAAACAG	TTCAAAAAGC	CGTTGCAGAC	AACGTTAAAG	7020
ACAGTATCGA	TGTTCCAGCA	GCCTACCTAG	AAAAAGCCAA	GGGTGAAGGT	CCATTCACAG	7080
CAGGTGTCAA	CCATGTGATT	CCATACGAAC	TCTTCGCAGG	TGATGGTATG	TTGACTCGTC	7140
TCTTGCTCAA	GGCATCTGAC	AAGGCACCAT	GGTCAGATAA	CGGTGACGCT	AAAAACCCAG	7200
CCCTATCTCC	ACTAGGTGAA	AACGTGAAGA	CCAAAGGTCA	ATACTTCTAT	CAATTAGCCT	7260
TGGACGGAAA	TGTAGCTGGC	AAAGAAAAAC	AAGCGCTCAT	TGACCAGTTC	CGAGCAAACG	7320
GTACTCAAAC	TTACAGCGCT	ACAGTCAATG	TCTATGGTAA	CAAAGACGGT	AAACCAGACT	7380
TGGACAACAT	CGTAGCAACT	AAAAAAGTCA	CTATTAACAT	AAACGGTTTA	ATTTCTAAAG	7440
AAACAGTTCA	AAAAGCCGTT	GCAGACAACG	TTAAGGACAG	TATCGATGTT	CCAGCAGCCT	7500
ACCTAGAAAA	GGCCAAGGGT	GAAGGTCCAT	TCACAGCAGG	TGTCAACCAT	GTGATTCCAT	7560

ACGAACTCTT	CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC	AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA	AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC	GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA	TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT	TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC	TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC	TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC	TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA	GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG	TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG	ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8280
TTCTTTCAAT	AGCAGATTAA	AATCATCGTA	AAACAATAAA	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC	TGTTTTTATC	AAAGGAGAGA	CAGATGGGAA	AGACAATTTT	ACTCGTTGAC	8400
GACGAGGTAG	AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC	ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG	ATGTCATGAT	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
TACTTATCAC	CAGAGCAGCC	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC	TGAGCTTGGG	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC	GTGTCCACAA	TATTTTGCGC	CGCCTTCATC	GTGGGGGGA	AACAGAGCTG	8760
ATTTCCCTTG	GCAATCTAAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT	TAACTGTTAA	ATCATTTGAA	TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT	CCAAGACAGA	CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT	TGAATGTGCA	TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	ATATAGTAGT	9000
GACCAAACTC	CCACTATTAA	GACAGTTTGG	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT	GAAACTAAAA	AGTTATATT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA	9120
CCATTTTGGT	TCTTTTTGG	GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG	GATGACCATC	GTTGCCAGCC	TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT	CTTTACGTCG	TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGG	GTAGCGGCCA	9300

PCT/US97/19588 WO 98/18931

			318			
AGGATTTTCC	TTCAAATTTG	GAGGTTCAAG	GTCCTGTAGA	ATTTCAGCAA	TTAGGGCAAA	9360
CTTTTAATGA	GATGTCCCAT	GATTTGCAGG	TAAGCTTTGA	TTCCTTGGAA	GAAAGCGAAC	9420
GAGAAAAGGG	CTTGATGATT	GCCCAGTTGT	CGCATGATAT	TAAGACTCCT	ATCACTTCGA	9480
TCCAAGCGAC	GGTAGAAGGG	ATTTTGGATG	GGATTATCAA	GGAGTCGGAG	CAAGCTCATT	9540
ATCTAGCAAC	CATTGGACGC	CAGACGGAGA	GGCTCAATAA	ACTGGTTGAG	GAGTTGAATT	9600
TTTTGACCCT	AAACACAGCT	AGAAATCAGG	TGGAAACTAC	CAGTAAAGAC	AGTATTTTTC	9660
TGGACAAGCT	CTTAATTGAG	TGCATGAGTG	AATTTCAGTT	TTTGATTGAG	CAGGAGAGAA	9720
GAGATGTCCA	CTTGCAGGTA	ATCCCAGAGT	CTGCCCGGAT	TGAGGGAGAT	TATGCTAAGC	9780
TTTCTCGTAT	CTTGGTGAAT	CTGGTCGATA	ACGCTTTTAA	ATATTCTGCT	CCAGGAACCA	9840
AGCTGGAAGT	GGTGGCTAAG	CTGGAGAAGG	ACCAGCTTTC	AATCAGTGTG	ACCGATGAAG	9900
GGCAGGGTAT	TGCCCCAGAG	GATTTGGAAA	ATATTTTCAA	ACGCCTTTAT	CGTGTCGAAA	9960
CTTCGCGTAA	CATGAAGACA	GGTGGTCATG	GATTAGGACT	TGCGATTGCG	CGTGAATTGG	10020
CCCATCAATT	GGGTGGGGAA	ATCACAGTCA	GCAGCCAGTA	CGGTCTAGGA	AGTACCTTTA	10080
CCCTCGTTCT	CAACCTCTCT	GGTAGTGAAA	ATAAAGCCTA	AAACCCCTTT	ACAAATCCAG	10140
CTATTCATGG	TAGAATAGAT	TTTGTGTGAA	ATATCAGCAG	GAAAGCATGA	AGCTCGTCAA	10200
CAGGTGTCTT	ATGACAAGTA	ACCTTGGCTG	TTTAGGCGAA	GGGCATCTGC	ACGG	10254
(2) INFORM	ATION FOR S	EQ ID NO: 3	0:			

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 9769 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CCGGCGACTA	TCGATAACAC	TTGACTTGGT	AGCCCCACAT	TTTGGACAAC	GCATCCTTTC	60
CCTCCTTATC	GTTTTCTTTT	CATTATACCA	TTTTTTAAGC	GATTCCCAAA	ACAATTCTTC	120
TTTTTGCTTG	ACAAGTTTTT	TGTTTTGTTG	TATTATTTAA	TTAAGACAAC	AAGGTAAAAG	180
AAAGGAGACT	AAGATGTCCT	GGACATTTGA	CAACAAAAA	CCCATCTATT	TACAGATTAT	240
GGAGAAAATC	AAGCTTCAGA	TTGTTTCCCA	TACACTGGAA	CCCAATCAAC	AACTTCCAAC	300
CGTGAGGAGC	TAGCTAGCGA	GGCTGGTGTC	AATCCCAATA	CCATCCAAAG	AGCCTTATCA	360
GACCTTGAAC	GAGAAGGATT	TGTCTACAGC	AAGCGAACAA	CTGGACGATT	TGTGACTAAG	420
GATAAGGAGC	TAATCGCCCA	GTCACGCAAA	CAATTATCAG	AAGAAGAATT	GGAACACTTC	480

540	AGTCAGTGAT	TACCAGGCGT	AAAGAAGAAC	TGGCTATGAA	TGACCCATTT	GTTTCCTCCA
600	CCAAATCATA	GAAAATGTAT	ACTAGTATTT	CTATGTCATT	GAGTTTAAGC	PATATTAAAG
660	AAATTGTCGG	CCAGCTGGAA	TCTTGACATT	AAAATGTTTC	CCAGCCCTTG	TGGAGCAACA
720	ATGGCCTCTT	AAACTAATTA	AACCCTGATT	CAGGAAAAAC	CCAAACGGCT	CCTTCTTGGG
780	CAACCAAGGC	CCAAGCCCAG	CGACATGGAC	TCCTCATCAA	CAAGGACGTG	ACAACCAGAT
840	TCAAAGAAGC	CAAATGAAGG	TCTCAATGAG	ATACGACCTA	TATTTGCCTG	CGTTGTAGCT
900	CCATCATCTA	TTGAACGCGC	TTGTCAGATC	TCTATAAAGA	TTCAAGACCT	CCTAACCTAC
960	AGGAAACAAA	AACTATCAAA	CGTCTCAAGA	TGAAAATAGT	TGGGCATTGA	CTTGCAGACC
1020	TTTGGACGAA	GTCTCTATGT	CGTGATGCTC	GGTTATGAGC	AACTGATTTT	GAAAAGGTTC
1080	TATCAACAAC	TCAATACCAT	GCTTATATCC	AGCAGCCCGT	GGGTGGATCC	CCCATTGGTG
1140	CGAGCCAATC	TTTCTGATAT	ACCCACTTGA	TTTGATTTCT	CTTCTACCGT	TACTCACCAA
1200	TGTAGATGAT	GTCAAGGAAA	AAAGTCGTCC	AAAAGACGGA	TTGTCTTCCT	TTGGATGAAA
1260	AAGGCCTAAG	GTCAGAATTT	CAACTCTTCC	ATCCATTGAC	AGTCAGGTGA	ATTCGCTACG
1320	TGTTAACAAG	AATTTAAAA	GTTCGCTACG	TTGGAATTTA	TATTTATGTT	CAAAGGAGAT
1380	AATACAGACA	CCCTCATCGG	GTCCTTTCTG	AGCCGTGCTA	CCCTCTACGC	TGGTATTTAG
1440	TTTTCTAGCT	CTATGCTACT	AGTCAGGCTA	TTACCAAGAA	AAAATCTACC	CAAGGCTTTA
1500	GATTATTAAA	CCATTTTCTT	GGGATTTCAA	GCTTACACTT	GTGGCTTGAT	ACAGTCTTTG
1560	CCCACTTTCT	CTTTGACCTT	GGCTATCTGA	CGACCGACAA	GTAGTGTCTA	CGCTTCAAAG
1620	GATTAGCACC	TCTGGTCATT	GGTGCCTTTA	CAAACTAATC	TCATCACAGC	GAACACCATA
1680	ATGGATTCCT	CAGCTCCAGA	CTGGCTTTAA	TGTTATTATT	CTCTAAGTGC	GCTGTATTGG
1740	TACAGGTATA	AGATCTTTCT	CATCTCCCTC	TGTAGAAACA	TGATTACATT	CTTTCTTATG
1800	TTCCATTGGA	ACCTGGCTAT	CTCTGCATCT	TTCAGGAATC	TAAATACTAT	TCCTTCCTAC
1860	TATCCAAATC	TCTACATTGG	GCTGTTGCAG	TACAGCACTC	ATGAATACCG	CAGCTTTTCA
1920	CAATTCACTG	ATTTCTATGT	CTTAGTTCTA	TTTCTTCAAT	TTATTGAACT	GTCATTGGAT
1980	AGAACTCATA	CCATTGTTGA	GCAGGTATAG	CTATATGGGA	ATGACCATTT	GTAGGACTCA
2040	TAATTTGCTT	GAAATAAGGT	TACATCTTGA	CGGAACCTAC	TCTTTTATCT	TTCATAGCTA
2100	AGGCAAAAAG	AAAAGAGACC	CTCATAGAAC	ATGTAACATA	TTACCTAGAT	TAAATAATT
2160	CCCAAAAGTT	TGTACTGCcC	GTGTTGAATA	ATAGTATCAG	TAGAAAACGC	TCTTTAAAAT
2220	WINCOCTAMENTO.	ССТРОСТВАТ	TTCATAGGA	TTCCCCCCAC	WOWEN A COUNTY	y C y malananana

			320			
TGTGAGCTGA	CTTATTTCCT	TTCACTATAT	CGCAAAATGA	AATAAGAACG	GAACGATGGG	2280
ATTTTGGAAT	TCAAATCAAT	TTATAAGAAT	GTTTTAGAAG	TAATĀTTATC	CTATTCCAGA	2340
TTCAGTTCAC	TATACAATTG	AGTTTTCAAG	CAACCTGTTT	ACATAATGTG	TACATAATTA	2400
GGTTCGTGAT	TCCACCCTTT	TCACCTTTAA	AAACCTCGCT	TTCGCAAGGC	TCTTCTATTT	2460
ATAAGATAAG	GCACGTTTAA	AGGTTTTCCA	AATCCCTAAA	TCATCCGTTT	GAAGAACGAG	2520
ACTAGCATAC	ATGCGTCCGA	TAAATCCTGT	TGCTACCACC	GCAAAAATCA	CTGTAATAGC	2580
AAGTGAAATC	CATGCTTCTG	CTCCCCCCCC	ATAGTCATTA	ATCGTTCGAA	ACGGCATAAA	2640
GAAGGTCGAA	ATAAAGGGAA	TATAAGAACC	AATCTTCAAG	AGGAGATTGT	CACCAGCTGC	2700
ACCTAGAGCT	GTCACTCCAA	AAAAACCACC	CATAATCAAA	ATCATCAAAG	GCGACAAGGC	2760
TTTCCCTGAG	TCCTCAGGAC	GAGAAACCAT	AGATCCTAGG	AAGGCTGCCA	AGACTACGTA	2820
CATGAAAAGA	CTGATCAAAA	TAAAGAGCAA	GGTATTCAGT	GAGATAGCAT	CTCCCAAGTG	2880
ATCCAAAATA	CCAGACTGAG	CCAAGAATGG	CAAATCTTTA	AAGAGCAAAA	CGGCAGCCAG	2940
ACCACCTACA	ACATAGATCC	CAATATGCGT	TAAAATCACT	AGAAACAGAG	CCATCATCCG	3000
CGCATAGAAA	TAGTGACTTG	CCCTTATGCT	AGAAAAAACG	ACTTCCATAA	TTTTGGTGCC	3060
TTTTTCACTG	GCAACTTCCT	GAGCTGTTAC	ACCCGCATAG	GTAATCAGAA	TCATATAAAG	3120
AAAGAATCCT	AAGGCACCTG	CTGCAATTGT	TTGAATAAAC	TTTTTATTTT	CCTTGGCTTC	3180
ATCAATCTTT	TCTGTGAATT	GAATTGTCTG	CGCTAAGCGT	TTTTCCTGCT	CTTGAGACAA	3240
GGAAGCAGTT	GAACGATTAA	GCTGATTTTG	CAGTTCATTG	AGTGTACCTG	таасстсааа	3300
TTTAATTCCA	TTTTCAAGCG	ATGTTTCGCC	ATGATAAACT	GCCTTTAGAA	CACTATCTTC	3360
TTGATCAATG	GTCAAATAAC	CTTTTAATTT	TTCTTCTTTA	ATTGCTTCTT	TGGCACTTGC	3420
TTCGTCTTTA	TAGTCGAAGT	TAACACCATT	TACATTCTTC	AGTCCTTCTG	CTACAGATGG	3480
CACTGTTGTC	ACTACTGCCA	CTTTATTATT	TTTAGCCATA	GAAGAACCTT	GGAGATGCCC	3540
AATTCCTACA	GAGATTCCTA	AAAAGAGGAA	CGGCGAAATC	ACCATAAAGA	AGAAACTCCA	3600
TGACTCGACA	TGTCGAAGAT	AGGTTTCCTT	GATTACAACC	CACATATTTC	TCATACTTCC	3660
ACTCCTGATT	CTAGTTTAAA	GATTTCATCG	ATAGTTGGCG	CTTGTTGGTC	AAATGTTGCG	3720
ATATATTGAC	CTTGAGTCAA	GATTGAGAAG	AGTTCCCTTC	CAGCGCTCTC	ATCCTCCAAA	3780
ATCAATTTCC	AACTGCCTTG	TTTGGTCAAG	CTCACCTGTT	TGACATGAGG	AAGATTTTCC	3840
AATTCTTCCT	TGCTTCGTTC	ACTTGAAACA	AAGAGACGCG	TTTTCCCGTA	TTGATTGCGG	3900
ACATCCTGAA	CTGGTCCGTG	CAAGACCACA	CGGCCATCTC	GGATCATCAG	AATATCGTCA	3960
CAAAGTTCCT	CAACATTGGT	CATGACATGG	TCAGAAAAGA	ТААТССТТСТ	CCCCCCCC	4020

ITTCCTGAAA	AATGACTTGT	TTGAGCAATT	CTGTATTAAC	TGGGTCCAAT	CCACTAAAAG	4080
CTCATCCAA	GATAATCAGG	TCTGGTTCAT	GAATCAGAGT	AATAATGAGC	TGAATCTTCT	4140
GCTGATTTCC	TTTTGACAGA	CTCTTGATTT	TATCTGTCAG	CTTTCCTTTC	ACTTCCAACC	4200
PCTTCATCCA	TTGAGGGAGT	TTTTCTTTGA	CTTCTTTGGC	ATCCATGCCT	TTTAGAGTCG	4260
CCAAGTAGCG	AACTTGTTCA	AGAACTGTCA	ATTTAGGCAT	GAGATGCGTT	CTTCAGGCAG	4320
ATAACCAATC	CGAGCATAGG	TCTCCTGACG	AATATCCTGA	CCATCCAGAC	CGATTTCTCC	4380
CTGATATTCT	AGGAATTTCA	AAATACTATG	GAAAATCGTT	GTTTTTCCAG	CACCATTTTT	4440
TCCGACTAGT	CCCAAAATAC	GACCTGGTCG	CGCTTGAAAG	TCAATACCAA	ACAAAACTTG	4500
CTTGGATCCA	AAACTTTTCT	CTAGACTTCT	TACTTCTAGC	ATCTTTCACC	TCCGAAATTT	4560
CTTGCACTCA	TTATACTCCT	TTTTGATAGC	CTTTACAATG	TTTTTTGTCC	ATTTTTAGAA	4620
GACTATTGCT	GTGTAAAATA	TGGCCTGGAG	CACTTTTATA	CTCAATGAAA	ATCAAAGAGC	4680
AAACTAGGAA	GCTAGCCGTA	GACTGCTCAA	AGTACAGCTT	TGAGGTTGCA	GATAAAACTG	4740
ACGAAGTCgA	CTCAAAACAC	TGTTTTGAGG	TTGTGGATAG	AACTGACGAA	kCrTAaCTAT	4800
ATCTACGGCA	AGGCGAAcTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	TAGTGATAAA	4860
TCCATTATAC	AGCAGCAAAC	TTAATTTATA	CCTTCCGCTC	CTCAACTGTC	TATTTTAAT	4920
CCTGAATTGT	TATTTGAGTA	ACTCCTTTTT	CCTCGTAAAG	TITTCTTCCT	CTAAAACTTC	4980
TGGAAAAAGG	CTAATAGTTT	CAGACAACAT	TTTTATAAGA	AACAAGTTCA	TCTGTCATTT	5040
CAAGAAGGAG	TAATCCTTTA	TCTACTAATG	GACGGAACAG	AATTCAACCG	CTTGTCCGAT	5100
ATGTTTTCTA	AGGATTATAT	agtaaaatga	AATAAGAACA	GGACAAATTG	ATCAGGACAG	5160
TCAAATTGAT	TTCTAACAAT	GTTTTAGAAG	TAGATGTATA	CTATTCTAGT	TTCAATCTGC	5220
TATATCTATT	ATGCACACCC	CTATAGGATC	TAATGAAAAT	CACAACAGGC	TCATTCATAG	5280
ATGGTTACCT	AAGCCTAAGG	GAACTAAGAA	AACGACTACC	AAGGAAGTCG	CATTCATCGA	5340
AAAGTAGATT	AACAACTATC	CTAAAAAATG	CTTGAACTAC	AAGTCCCCCA	GAGAAGACTT	5400
CTGGATGACT	AACTTGAACT	TGAAATTTAG	CAATAATTAA	TTCACTATCT	AACTATATTT	5460
AGTAATTATT	TCAGAACTGA	TTAATATTAA	AATTAACTAA	CAATTCAAAG	GATTCATACT	5520
AGCCATAAAT	TACGTCCATC	AGAGAGAGAC	TCTTACTACT	TTTAGATTTT	AGTCTTTCTA	5580
GCTTCAGAAT	ACATCTAAAC	TTTAGGGAAA	ATGACTATTC	GAAAGCGCGA	ATGCCTCAAA	5640
ATTATCTCAG	ATAAGCTATT	CGAAACTTAG	AATGCTTTTA	AATTTATGGA	ATTGCGATTA	5700
TTCGAAACCT	AGAATGCATA	TAACCTTTAG	TTGACAGACC	TATTCTAAGT	CTCGAAGGGC	5760

ATTTACTTT CTATTCCTTA TCAAAAAAGA CTCATTCCCC CTTTCTCCTC CAAAATATGG	5820
ATAGTAGAA ATATACTATC TATGAGGAGT TTACATGTCA CAGGATAAAC AAATGAAAGC	5880
GTTTCTCCC CTTCTGCAGC GAGTTATCAA TATCTCATCG ATTGTCGGTG GGGTTGGGAG	5940
TTGATTTTC TGTATTTGGG CTTATCAGGC TGGGATTTTA CAATCCAAGG AAACCCTCTC	6000
GCCTTTATC CAGCAGGCAG GCATCTGGGG TCCACCTCTC TTTATCTTTT TACAGATTTT	6060
CAGACTGTC GTCCCTATCA TTCCAGGGGC CTTGACCTCG GTGGCTGGGG TCTTTATCTA	6120
GGGCACATC ATCGGGACTA TCTACAACTA TATCGGCATC GTGATTGGCT GTGCCATTAT	6180
TTTTATCTA GTGCGCCTAT ACGGAGCTGC CTTTGTCCAG TCTGTCGTCA GCAAGCGCAC	6240
TACGACAAG TACATCGACT GGCTAGATAA GGGCAATCGT TTTGACCGCT TCTTTATTTT	6300
ATGATGATT TEGECCEATTA GCCCAGCTGA CTTTCTCTGT ATGCTGGCTG CCCTGACCAA	6360
SATGAGETTE AAGEGETACA TGACCATEAT CATTETGACE AAACCETTTA CECTEGTGGT	6420
TATACCTAC GGTCTGACCT ATATTATTGA CTTTTTCTGG CAAATGCTTT GACACGTAAA	6480
NAATCCGTTT GGTTTCCCAA GTGGATTTTT AAAGCGTAGA TTAACTATAG CTTGATACTA	6540
NATATACTTT GGTATGGAAA TCATGCATAT TTTTCGATAG TGAGGCGAGG ACTTACCTAG	6600
CCTTTCCGCC GTGATAGAAA CACCTGAAAT CTAATGGTTT CAGGTATTCG GAAACTTTGA	6660
SCCTAGTGTC TCAAAGTTTA GGTATGGAAT TTTGAAGAAA GTCGCTACCG TCCGTAATCA	6720
CTTAAGGAAA GGCTCAAAAA TATTGTTTTC AACCACAAAA TCCGTTTGGT TTCCCAAGCG	6780
GATTTTGTGC TTTATTTTGA AACTTCTTTT GCAAGAACAA AGTTCCCAAG TGTGGCAGAA	6840
CCATTTCCTG CGACTGCTGG CGTCACGATA TAGTCACGCA CATCTGGTAC TGGTAGGTAA	6900
CCATTAAGAA GAGATGTAAA TTTCTCACGG ACACGGTCCA GCATATGTTG TTGAGCCATG	6960
ACCCCTCCAC CAAAGACAAT CACGTCTGGG CGGAAAGTCA CTGTCGCATT AACCGCAGCT	7020
TGAGCGATAT AGTAGGCTTG AACATCCCAA ACAGGGTTGT TGAGTTCAAT AGTTTCCCCA	7080
CGTACACCTG TACGAGCTTC CAAACTTGGA CCAGCTGCAT AACCTTCTAG ACATCCCTTA	7140
TGGAAAGGAC AAACACCCTT AAACTCTTTT TCAATATCCA TTGGGTGTCT AGCAACATAA	7200
TAATGACCCA TTTCAGGGTG ACCCACACCA CCGATAAACT CACCACGTTG GATGACGCCT	7260
GCACCGATAC CTGTACCGAT TGTGTAGTAA ACCAAGTTTT CGATACGACC ACCAGCATTG	7320
TTACGGGCAA CCATTTCACC GTAAGCAGAG CTGTTTACGT CTGTTGTGAA GTACATTGGC	7380
ACCTTTAGGG CGCGACGAAG GGCACCAAGC AAGTCTACAT TTGCCCAGTT TGGTTTTGGA	7440
GTCGTCGTGA TAAAGCCATA AGTTTTTGAG TTTTTGTCAA TATCAATCGG CCCAAATGAA	7500
CCAACTGCAA GACCAGCAAG GTTATCGAAT TTTGAGAAGA ACTCAATGGT TTTATCGATT	7560

.

GTTTCGATTG	GAGTTGTTGT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGACAGCAC	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	TTCCATATAA	TTTTGTCATG	7680
ATAAACCTCT	TGTTTTTATT	TTCTTTATTA	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTTAGAT	TTTCCTCTGT	AAATCTTACT	АТСТААТААА	AACGAACAAA	CATGTCATTT	7800
GTTCGTTTTC	ACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAACTGAA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
AACCATTGTT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACATCGCCA	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAGATACA	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAAAAGCG	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGCCTTGG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
GTCATTGACA	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
TTGAAGAGCT	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
TGCAGTTGCG	TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGGC	8400
AAATGATACA	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
TGTACCAGGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
TCCACCACCG	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	CGTTTACGGA	AGCGCAAGTT	8580
CACCCCGAAG	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
AAGTGTTTTC	AGTTTTGGAT	TTTTTGTTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTGTCATA	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
TTGCACTTCA	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCCACCAATC	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AAGGATGTAG	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGACCAAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
CGGACAGCTT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CCTTGCAAAC	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCCCTCTTAC	TTCACCACCT	9120
TGAGCAACTG	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CCAACGGCAG	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
ATGATGAAGG	CTGTATCTGT	CAAGATTTGT	GTGTAAGTTG	CAAAGTCACC	TGGAAGTGGC	9300

324 ATTTCAAGAG CGTTGAAAAG ACCACGCACA CCCATGAAGA GACCTGTCGC TACGATAACT 9360 GGGATGATTG GAACGAAAAC ATCACCAAAA GTACGGATAG CACGTTGGAA CCAGTTCCCT 9420 TGTTTAGCAA CTTCTGCTTT CATGTCATCC TTAGATGATG TTGGTAATCC AAGTACAACA 9480 ACTTCATCGT ACATTTTGTT AACTGTACCT GTACCAAAGA TAATTTGGTA TTGCCCTGAG 9540 TTAAAGAAAG CACCTTGAAC TTTTTCCAAG TTCTCAATCA CTTCTTTATT GATTTTCTCT 9600 TCATCTTTGA CCATGACACG TAGACGAGTC GCACAGTGGG CAACACTATT GACATTTTCA 9660 CGTCCGCCCA AGGCATCGAT GACTTTTTTT GCAATTTCCT GATTGTTCAT TTGCAAAAAT 9720 CTCCTTATAT AACATTTTGT TCTTGTTTGA AAGCGATTTT ATTCGCCGG 9769

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3149 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG CTAATTCATA GTTCTATTGT ATCACTTGGT CAGAAATAAT CAAGAAAAAA 60 GTCTGACTTT CTCAAGATAA AAAGCCTGAG ACCAACTCAG ACTTTTTAAT TCTTAAAATG 120 GCAATTCTTC CTCTTCCAAG ACCAAATCTG CCAAATCTTG GCCTGCATTA TTTTCACGCA 180 TAGCACGTTG GGCACGACTT TCCAAGAGTT GGAATCCTGT GACAAGTACT TCGGTCACGT 240 300 AGTTCATTG GCCATTTTC TCAAAGCGAC GGGTACGCAA TTCTCCATCA ACGGAAATGA GACTACCTTT GGTTGCGTAC TTGCCAAAGT TTCTGCTAGT CTGCCCCATA GGACCATATT 360 GACAAAATCA GCTTCACGTT CACCGTTTTG GTCTTTGTAA CGACGGTTCA CAGCGATAGT 420 TGCTCGCGCT ACCGACTTGT CATTGTTGGT TTTGTGCAAT TCTGGTGTAG ACGTTAAACG 480 TCCAATCAAG ATAACTTTAT TATACATATT TTCTTCCTCC TACTTATCTA TTCGTAGG&A 540 ATCAAAAAA GTTACAGAAA TTTGTAACTT TTCGAGAAAA TTTTTTATTT TTTATGAACC 600 ATGAAACCTG TCGCCTGTTG ATTGGCCATA ATGGTCATAT CTGTAATCTG AACACGACGA 660 GGTTGACTAG TCACATAGAC TACTGTATCT GCAATATCCT GAGCTTGCAA AGCTTCTATT 720 CCTTGGTAAA CGGACGCAGC TCGTTCTTTA TCACCATGAA AACGCACTGT AGAAAAATCT 780 CTTTCGACAA TTCCAGGCTG AATGGTCGTC ACCTTGATAT CCGTTGCGAT GGTATCAATT 840 CGCAGTCCAT CTGAAAAGGT CTTAACTGCC GCCTTGGTGG CTGAGTAAAC AGCTGCACCA 900 GCATAGGCAT AAATTCCTGC GGTTGACCCC ATATTGATAA TATGACCTTG ATTGGCTTTT 960

ACC APPROCESS	GCAAGAAACA	CCC3 CTC3 CT	CCCATCAAAC	CONTRACTOR AND	CCTATICCTAC	1020
ATGGTCAGCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	1080
GCGTTATTGA	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	1140
TTTACCATTG	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	1200
GTTTCTGCAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
ACATCCTCAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CCTGTAATCA	CAACATTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAACTTCTTA	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
CTGATAATTC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
TGCACATCAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TTGGCATCAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
CTCCTGCAAC	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GGTCACTATC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
TATCATTAAC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
CTTGCTCATC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	TTCAAATAAA	CTTGAAACTT	1860
CGAAAATATT	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
CTTTGCGCTC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CACCGACATG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
CTGCTAAAAA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
TTTCCTTGTC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CCAAATCCAT	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
CAATCTCTGG	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
TGAAGACCTT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
GTATCATAAG	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
ACGGCCATCC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
AACATAAAGG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
CTCTTCCTGA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTTCGTAG	CAAGAGCAAG	2580
GCTTCCGATA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
CATTTTAACA	CAAAAAAGGC	TTCAGGACAA	ATGAGGAAGC	AGCAGAAAAG	CAAGTAAAAA	2700

			326			
GCCTCTTCCT	TTAAGGAAAA	GGACTTCTTA		AAATCAAAGA	CCAAACTAGG	2760
AAGCTAGCCG	CAGGCTGCTC	AAAGCACTGC	TTTGAGGTTG	TAGATAGAAC	TGACGAgTCa	2820
CTCAAAACAC	TGTTTTGAGG	TTGTGGATGA	AGCTGACGTG	GTTTGAAGAG	ATTTTCGAAG	2880
AGTATTATTC	TTATTGCCAG	GCACCTAAGT	TGCCAACGTA	GTAACTATCA	GGTGTGTAGG	2940
TATTGCGAGC	ATCTTACCTG	ATGAAGCCAG	ATAATACTAC	TTGCCATTGT	CTTTGACCCA	3000
ATCATTCGCA	ATCATGGAAC	CAGAAGAACT	TACATAATAC	CATTCTCCCT	TGTCATAAAC	3060
CCAAGTACTG	ACTTTCATGG	TTCCTGAGCA	ATTAAAGGCA	AAAAAACTGT	CCAATAACAT	3120
TCGTTTTTTA	AAAGCATTTG	ACACTACAT				3149
(2) INFORM	ATION FOR S	EQ ID NO: 3	2:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10240 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

60 CCAAAAATTC AACCTTTAAG GGGAGTCCAG AGAGACTCAC AAGGTGTCAG ATAAAAGAAT GGTGCAATTT TCTAGAGGAG ACTTTTTGAG TGTGCTCTCT TGTGTTGTAC GATTTTAACT 120 GAGGCCTTGC ACTAGCAAGG TCTTTTCTTT ATCTGGTCCC CTTAAAATTT AAGGAGGAAA 180 AGTTATGAAT CCCACATGTA AGAAGCGTTT GGGTGTCATT CGGTTGGAAA CCATGAAGGT 240 CGTTGCACAA GAGGAAATCG CGCCACAATC TTTGAATTAG TCCTAGAAGG AGAAATGGTT 300 GAAGCCATGC GAGCAGGCCA ATTTCTTCAT CTGCGTGTAC CGGACGATGC CCATCTCTTA 360 CGTCGTCCTA TTTCAATTTC GTCTATTGAC AAGGCAAACA AGCAGTGTCA CCTCATTTAT 420 CGGATTGACG GAGCTGGGAC TGCAATTTTT TCAACCTTAA GTCAGGGAGA CACTCTTGAT 480 GTGATGGGGC CTCAGGGAAA TGGTTTTGAC TTGTCTGACC TTGATGAGCA GAATCAGGTT 540 CTCCTTGTTG GTGGTGGGAT TGGTGTTCCA CCCTTGCTTG AGGTGGCCAA GGAATTGCAT 600 660 GAACGTGGAG TGAAAGTAGT GACAGTCCTC GGTTTTGCTA ATAAGGATGC TGTTATTTTG AAAACGGAAT TGGCTCAGTA TGGTCAGGTC TTTGTAACGA CAGATGATGG TTCTTATGGC 720 ATCAAGGGAA ATGTTTCCGT TGTTATCAAT GATTTAGACA GTCAGTTTGA TGCTGTTTAC 780 TCGTGTGGGG CTCCAGGAAT GATGAAGTAT ATCAATCAAA CCTTTGATGA TCACCCAAGA 840 GCCTATTTAT CTCTGGAATC TCGTATGGCT TGTGGGATGG GAGCTTGCTA TGCCTGTGTT 900 CTAAAAGTAC CAGAAAACGA GACGGTCAGC CAACGCGTCT GTGAAGATGG TCCTGTTTTC 960

CGCACAGGAA	CAGTTGTATT	ATAAGGAGAA	AATTATGACT	ACAAATCGA	TACAAGTTTC	102
TCTACCTGGT	TTGGATTTGA	AAAATCCGAT	TATTCCAGCA	TCAGGCTGT	TTGGCTTTGG	108
ACAAGAGTAT	GCCAAGTACT	ATGATTTAGA	CCTTTTAGGT	TCTATTATG	TCAAGGCGAC	114
AACCCTTGAA	CCACGTTTTG	GGAATCCAAC	TCCAAGAGTG	GCAGAGACG	CTGCTGGTAT	120
GCTCAATGCA	ATTGGCTTGC	AAAATCCTGG	TTTAGAGGTT	GTTTTGGCTC	AAAAGCTACC	1260
TTGGCTGGAA	AGAGAATATC	CAAATCTTCC	TATTATTGCC	AATGTAGCTC	GTTTTTCAAA	1320
ACAAGAGTAT	GCAGCTGTTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATATT	TCTTGTCCCA	ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
PCCAGATTTG	GCTTATGATG	TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
rgtcaaatta	ACCCCGAGTG	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGAGCAAGT	GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
FAGAAAACCA	ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAAA	CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGAT	TCGGCTGAAG	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1800
AGTTGGAACA	GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	1860
AAA GTCATG	GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
TCTCTGAGG	TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TAGGAGAAT	TTTGGTACAA	TAAAATAAAT	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
TAAGATTTA	TTTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
GTGATGGTA	CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
agtgggttt	TTGATACTCA	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
CTGAAAATG	AATGGCTAAA	GCAAGGTGAC	GACTATTTT	ACCTCAAATC	TGGTGGCTAT	2280
TGGCCAAAT	CAGAATGGGT	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
AGATGAAAA	GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
TAGAAGACT	GGGTCTATGA	TTCTCAATAC	GATGCTTCGT	TTTATATCAA	AGCAGATGGA	2460
AGCACGCAG	AGAAAGAATG	GCTCCAAATT	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
TACAGCAAG	GTTGGCTTTT	TGACAAACAA	TACCAATCTT	GGTTTTACAT	CAAAGAAAAT	2640
GAAACTATG	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	ልሮሞልሞሞልሞዋል	TCT	2200

328	
GGTGGYTACA TGGCAGCCAA TGAATGGATT TGGGATAAGG AATCTTGGTT TTATCTCAAA	2760
TYTGATGGGA AAATYGCTGA AAAAGAATGG GTCTACGATT CTCATAGTCA AGCTTGGTAC	2820
TACTTCAAAT CCGGTGGTTA CATGACAGCC AATGAATGGA TTTGGGATAA GGAATCTTGG	2880
TTTTACCTCA AATCTGATGG GAAAATAGCT GAAAAAGAAT GGGTCTACGA TTCTCATAGT	2940
CAAGCTTGGT ACTACTTCAA ATCTGGTGGC TACATGGCGA AAAATGAGAC AGTAGATGGT	3000
TATCAGCTTG GAAGCGATGG TAAATGGCTT GGAGGAAAAA CTACAAATGA AAATGCTGCT	3060
TACTATCAAG TAGTGCCTGT TACAGCCAAT GTTTATGATT CAGATGGTGA AAAGCTTTCC	3120
TATATATCGC AAGGTAGTGT CGTATGGCTA GATAAGGATA GAAAAAGTGA TGACAAGCGC	3180
TTGGCTATTA CTATTTCTGG TTTGTCAGGC TATATGAAAA CAGAAGATTT ACAAGCGCTA	3240
GATGCTAGTA AGGACTTTAT CCCTTATTAT GAGAGTGATG GCCACCGTTT TTATCACTAT	3300
GTGGCTCAGA ATGCTAGTAT CCCAGTAGCT TCTCATCTTT CTGATATGGA AGTAGGCAAG	3360
AAATATTATT CGGCAGATGG CCTGCATTTT GATGGTTTTA AGCTTGAGAA TCCCTTCCTT	3420
TTCAAAGATT TAACAGAGGC TACAAACTAC AGTGCTGAAG AATTGGATAA GGTATTTAGT	3480
TTGCTAAACA TTAACAATAG CCTTTTGGAG AACAAGGGCG CTACTTTTAA GGAAGCCGAA	3540
GAACATTACC ATATCAATGC TCTTTATCTC CTTGCCCATA GTGCCCTAGA AAGTAACTGG	3600
GGAAGAAGTA AAATTGCCAA AGATAAGAAT AATTTCTTTG GCATTACAGC CTATGATACG	3660
ACCCCTTACC TTTCTGCTAA GACATTTGAT GATGTGGATA AGGGAATTTT AGGTGCAACC	3720
AAGTGGATTA AGGAAAATTA TATCGATAGG GGAAGAACTT TCCTTGGAAA CAAGGCTTCT	3780
GGTATGAATG TGGAATATGC TTCAGACCCT TATTGGGGCG AAAAAATTGC TAGTGTGATG	3840
ATGAAAATCA ATGAGAAGCT AGGTGGCAAA GATTAGTACT ATAAGTGAAT ATGATTTGAG	3900
TGAATAGTAA GTTAAAAATC CTGATTTCAA GTAAAATCAG GATTTTTTCA TGGATGCAAT	3960
TTTTTTGGAG TCTGGTGTGA CGCGGAGGGT CTTTTGTCCT GTGTAAGTGA CAAAGCCGGG	4020
TTTTCCACCA GTTGGTTTAT TGAGTTTTTT GACTTCAATC ATATCTACCT GCACCAGATT	4080
CGACAGGCGC CCTTGAGAGA AGTAGGCAGC TAACTCTGCT GCGTCTGTCT TGACTGCATC	4140
AGATGGGTCA AGATTTCCTG AGATGACAAC ATGGCTTCCA GGAATGTCCT TAGCATGGAA	4200
CCAAAGTTCC TCCTTGCGGG CCATTTTAAA GGTCAATTCC TCATTTTGAA GATTGTTTCG	4260
TCCGACATAG ATGATGGTTT TGCCATCGCT TGCTAGATAT TGTTCTAGTT TTTTGCGTTT	4320
CTGGATTTC TCCCGTTGTC TTCTGCGGAT AAAACCTGTT TGAATCAATT CTTCACGGAT	4380
TTCAGCGATT TCTTCCAGTC CAGCTTGGTT GAGGACGGTT TCTACACTTT CCAGATAGAG	4440
AATAGTGGCT TTGGTTTCTT CAATCAAATC AGTCAAGTAT TTGACAGCTT CTTTGAGTTT	4500

CTGATACCGT	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	4560
AATCATGATA	GCTTGCTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGGTGG	AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
TGTCGCCAGT	AACTCTTTTT	CCTGTTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
TTCAACACGA	CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAGTAG	GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGAACT	GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGGAAA	GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	TCCAATTCAT	TTGCCGTATC	4980
GCGTCCCAGA	CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCAAAG	AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATATAG	GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
TTTGATAACT	TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATAATT	TCGATAATCA	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
AACTGTAATT	TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAATAC	TTTCTCAAAA	CCATGATAAA	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGGGTC	AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	GGCGATGGCT	5460
TTGGCGATTG	CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGACCA	TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAAATCC	5580
GTCAAATGAC	ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
AATAAAATCA	TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ATATTGAAAT	GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
AAATTTTGGA	ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
TTGTGACCAA	TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGTCAT	CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
TGCTTGAAAA	TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
TGTTCATCTC	TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC	6060
GTGAGATGGG	CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
CTCCGGAAGA	AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
TCACAAGACA	ATAAACGAAA	ATGGAAAAAT	CGTGACTTGA	TATCCAGTTT	AGAATTTGCT	6240

			330			
					CGCAGTGACG	6300
					ATGGCTCTTT	6360
CTCCTATTG	A GTATTTTCT	CGTAGTAGC	TTTGAGATTA	TCAACTCTGC	TATTGAAAAT	6420
GTGGTGGAT	T TGGCCAGTC	CTATCACTT	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	6480
GCGGCCGGC	G CGGTATTAGT	GGTTTCTCT	TTCGCAGCCT	* TAACAGGCGC	ATTGATTTTT	6540
CTCCCACGA	TCTGGGATT	ATTATTTA	ACAGTAAGAG	GAAATTATGA	CTTTTAAATC	6600
AGGCTTTGT	GCCATTTTAC	GACGTCCCA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	6660
TATGGGGCAA	AAGATTGCC#	TCATGAGTG/	CAAGGCGCAG	ACAACGCGCA	ATAAAATCAT	6720
GGGAATTTAG	ACGACTGATA	AGGAGCAAA1	TGTCTTTATC	GACACACCAG	GGATTCACAA	6780
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCC	TTCGCGAAGT	6840
GGACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	6900
TATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	6960
GGTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	7020
GGAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	7080
GAGTGAAAAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	7140
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
GATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GGTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
TAAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
GCTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
ATGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
CGTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
CTACCCCAAG	ATGATTAAGA	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
TATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
GATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
CAAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
TCGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
TAAAAAATTA	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CCTTGCCAAG	TCCAAAAAGC	CTATCAAATC	CCATCTCCTA	GACCAGACCT	TCCTACCTCC	9040

ACTTGGCAA '	P ATCTATGTGG	ATGAGGTTCT	CTGGCGAGCT	CAGGTTCATC	CAGCTAGACC	8100
TTCCCAGAC	TTGACAGCAG	AAGAAGCGAC	TGCCATTCAT	GACCAGACCA	TTGCTGTTTT	8160
GGGCCAGGC	r gttgaaaaag	GTGGCTCCAC	CATTCGGACT	TATACCAATG	CCTTTGGGGA	8220
AGATGGAAG	ATGCAGGACT	TTCATCAGGT	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
CTGTGGTAC	C ATCATTGAGA	AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
CTGTCAAAG	G AGGGACTGAT	GGGAAAAATC	ATCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
AAGTCAACT	G TGACAAATTT	TCTÁAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
GTCGTCCAC	C AACTACAGAA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGGCAAGAA	A TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
TTTTCAAAT	CTGATGAACG	AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
GAACTGGCT	A CTTTGAGAGA	ACAGTTGGCT	CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
CCCCTACTT	r ttgagcagga	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
GACCGAGAT	G CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
GAGTCTCGT	TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8880
CTTGATAAT	A ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GGTAGGCAA	G ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
TTTTCTGAC	A GGAGCCAGTA	TTTCTTTGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
TCTAGGTGT	A GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTCTCTCCC	9120
TATTTCCGC	GCGCTCTTTT	CTCCTATTTG	GGGTATŢĊTT	GCTGACAAAT	ACGGCCGAAA	9180
ACCCATGATO	G ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCCAAATAT	TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
TCCTAATGC	A ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
AGGTACTTTC	TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
PATCGCAGAJ	TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
AGCTGCTATT	TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GGCTATTCC	ACAAAGGAAT	TATTTACCTC	GCTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
CTTTTTAACC	AGTTTTGTCA	TCCAATTTTC	AGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TATGTACGO	GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
~ 3 ~ ~ 3 ~ ~ ~ ~ ~ ~ ~		TO A THE A CITE O	NCC NCMC NMC	CCC1 1 CCC1 C	COCACAACC	0700

			332	CMC) MC) MC M	> momoomomo	9840
GGGCAATCAT	CGTCTCTTGG	TTGTCGCCCA	GTTTATTCA	GICATCATCT	ATCTCCTCTG	3040
TGCCAATGCC	TCTAGCCCCC	TTCAACTAGG	ACTCTATCGT	TTCCTCTTTG	GATTGGGAAC	9900
CGGTGCCTTG	ATTCCCGGGG	TTAATGCCCT	ACTCAGCAAA	ATGACTCCCA	AAGCCGGCAT	9960
TTCGAGGGTC	TTTGCCTTCA	ATCAGGTATT	CTTTTATCTG	GGAGGTGTTG	TTGGTCCCAT	10020
GGCAGGTTCT	GCAGTAGCAG	GTCAATTTGG	CTACCATGCT	GTCTTTTATG	CGACAAGCCT	10080
TTGTGTTGCC	TTTAGTTGTC	TCTTTAACCT	GATTCAATTT	CGAACATTAT	TAAAAGTAAA	10140
GGAAATCTAG	TGCGAGTAAA	AATCAATCTC	AAATGCTCCT	CTTGTGGCAG	TATCAATTAC	10200
CTAACCAGTA	AAAATTCAAA	AACCCATCCA	GACAGATTGA			10240

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13206 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCTTTATCG TGGACGTGGT CAAGCCGAGA ATTTCATCAA GGAGATGAAG GAGGGATTTT 60 TTGGCGATAA AACGGATAGT TCAACCTTAA TCAAAAACGA AGTTCGTATG ATGATGAGCT 120 GTATCGCCTA CAATCTCTAT CTTTTTCTCA AACATCTAGC TGGAGGTGAC TTCCAAACTT 180 TAACAATCAA ACGCTTCCGC CATCTTTTTC TTCACGTGGT GGGAAAATGT GTTCGAACAG 240 GACGCAAGCA GCTCCTCAAA TTGTCTAGTC TCTATGCCTA TTCCGAATTG TTTTCAGCAC 300 TTTATTCTAG GATTAGAAAA GTCAACCTGA ATCTTCCTGT TCCTTATGAA CCACCTAGAA 360 GAAAAGCGTC GTTAATGATG CATTAAAGAA CAGTCGAGAT GAAAAAATCG TGTGACGCAC 420 CAAGGGAGGA GTCTGCCCTT TTGAGGAAAT CTAGCGAGGA AAAACGATAC TGGAACAGCA 480 GAAAGTAAAA CTGACCTCAT GAGGAGGAAG AAAGTGGCTC ATGAGGTCAG GGGTTTTG:'A 540 AGTTACATCT AGTTGAGAGA GGTATGAATG ATTTGGGATT AATCATTTCT TGTTTTAAAT 600 CAGGAGAATA GTAACGATTT TTTCCTTTTT TGACGAACTC TATTCCGTAA CGATCAATCA 660 ATTTAATCAT GTACCTAATA TTAGAATTGT TTATCCCAAA TTTATTTGAA AGCTTCTCTA 720 AGCTATATCC TTGTTTTCTA AGTTCATAGA TCTGAACTTT ATCATCATAA GTTAGTTTCA 780 TAATAAAAAC ACCCCAAAAG TTAGATTTTT TCTGTCTAAC TTTTGGGGGG CAGTTCATTC 840 AACACCTGAT ACTATGCGTT TTTCTTATTT GAAATACTTT TTACTCAACC TCTTTATACT 900 CAATGAAAAT CAAAGTGCAA ACTAGAAAGC TAGCCTCAGG CTGCTCAAAA CAGTGTTTTG 960

GGTTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
TTGATACTT	TGACTAAGAA	TAAATCCTAC	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
GGTAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
CCTCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	TTCCTTTAAA	1200
CCTGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
CCTGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
ACCAAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
rgttgggatt	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCCGTTAATA	GGGATACAAG	1440
GCGATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
CAATAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCAAAAGT	TTATCACCTT	1560
PAACCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GGATAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
TGTCCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
TTTCTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	ATAATAATTC	1800
TGCTTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
GCAGAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
CACAGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
AGGGAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
TTGAAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGTCAA	2100
ACAAGTC A CT	GCTACAAACC	CATGCAAGCC	GTTC:\AGGT:\	TAGGTAGCCA	AATCAGCTGA	2160
CAGTCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
AACGAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
CCTTCTTCTC	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
GAAGAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
AGGTCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	246
TATCCTCTAC	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT	2520
TTTTGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	258
GACGGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	264
~~~~~~~~~	1000011001	***			* *********	270

			334			
CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC	GGAGTTTCTC	CTCATCCATC	TGATAAGGCA	2760
GTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	TTATTTAATC	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
TAAAACAAAT	ATTGTATGGG	TATAAAAATC	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GTCAGTTTCC	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	TCAAATTAAT	TTCTAGAAAT	3180
ATTTTAGCAG	CTACAGCGTA	CTATTCCAAA	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
TCATTGAGTA	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
attgtgagtt	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
TGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	aaagatagaa	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
AACTACAACT	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	390
GAGCAGATAA	AGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	396
ACCAAAGGCC	AACAACTGAC	CGACGGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	402
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	408
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	CTCTTCCAAA	414
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	420
GCCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTTCT	AAGAAACCAT	TTAGCAGTAA	426
CATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	432
ACCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GCCACTCGAA	ATGGAAAAGG	AGGTAATCAA	438
AACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	TTCTAAAAAT	TGTTTCATGA	AATCTCTTTC	444
<b>ጥልጥልተተተ</b> ተተተ	THE PARTY AND THE	ACHTHITICA	TAGTTATCAA	ATAAGCAAGA	AAAGAAGAAG	450

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	456
AATGAAAATC	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	462
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	468
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	474
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTGTTCA	CATTCAAAAA	GAAGTAAGGG	480
AAAGGATTAT	CCTTGGCATT	TGGAATATTG	AGTTTTAGAA	CCAAGCCATT	AAAAAGAGCA	486
AACATCATAT	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	492
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	498
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	504
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	510
TGCCAATTTT	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	516
AAGAGGTTGG	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
TCAAGATAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5286
TTATAGTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
TTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
TTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATCAAAA	TTTCTCGAAC	AGCAACTATT .	5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
TTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
TTCAAACCAG	TTGTATCAAG	GTAGACAGCA	TCCTCTGCTT	GTTTGAGAGG	AGAAGTCTCA	5880
GATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
CAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
CTAGGAAAA	TTTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
NTGACAATCC	CGCCTTGCTG	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
rgaggaattg	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6180
TAATATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTCAACC	TCCAAACCTC	6240

336 ATTGGATGCT GGTCCAACAA GGCTAGAAGG GCTTCGACTT CTTCAACTCC TAATTGGTTC 6300 TTAAGAGCCA TATAGGTCGC TGCACGATAC ATAGCTCCTG TATCAAGGTA GGTGAATCCA 6360 AAATCCTTAG CAATAATCTT TGCGACCGTA CTCTTACCGC TGGAAGCAGG ACCATCAATA 6420 6480 CAAACCAAGA TCCTGTAGCC ATGTGCCCAG GATTCAAGGC CTCTAACTGA GCAATGGAGA 6540 TTCCTGCACG AGCGGCAATA GCTGCTTCCC CTTCTCCTGC GAGAACTTTA ATCGTTCCTT 6600 CAGGATTAGC AGCTTCTTCT GAACTACTAG AAGTAGATTC TGGCTCTGAA CTCTGCTCAG 6660 GCTGAGAACT ACTTGAAGAT GAGATTTGTA CTACACTGGC ATCAGAATCA TGAAAGCCTT 6720 TTAAGGCTGC TGTGCGATTA CTCCCCCCG ATGATAGATA GATGAGAACG ATGACCATCA 6780 CCACCACAAT TACAAAGAAA ATACTAGCTA GGATCGTCAA AATACGATTA GCCATCCTAT 6840 CAGCCCCTCC GTGGTTTCGA TGCCGACGCT CTGCTCTTGA TCTTCTTGA TCATAGATAT 6900 CTTCTTGCCA CGGTTCTTTT GCCATACCTT ACTCCTTGTT TTTTTTTACT TTTCTTATTA 6960 CAATATAAAT ATGAACATGA AAATCACACT TATACCTGAA CGATGTATCG CCTGTGGGCT 7020 TTGCCAAACT TATTCTGATT TATTTGATTA CCACGATAAT GGAATCGTGC GTTTTTACGA 7080 TGACCCTGAC CAACTGGAAA AAGAAATTTC TCCTAGTCAG GATATCTTAG AGGCTGTTAA 7140 AAATTGCCCA ACTCGCGCCC TGATTGGAAA CCAGGAAGCC TAAATCAATG GCGATAATCC 7200 ACTCCCTCTA GTTTAGCACA TTTCCATGTA AAATTATAGT CTTTTCACTT TATTTTTTC 7260 7320 TAAATAAATC TTACTGATAT ACTTGCCGAG AATCCCAA'TG GTCAAGAGTT GAATGCCTCC 7380 AAGAAAGAGA ATAACAGCCA TCAGAGAGGT CCAACCAGAT GTCGGATTGC CCAAAATGAG 7440 GGTCCGAACC ACAACAAAAA AGGTCATCAG CAGAGAAAGA AAACAAGATA GGAGACCAGC 7500 TACAAAGGCT ATAATCAAGG GAAAATCTGA AAAATTAATA ATCCCTTCAA TGGAGTAGAA 7560 AAAGAGTTGC CTAAAACTCC AACTTGTCTT GCCAGCCTGC CTTTCGACAT TTGGATAGTC 7620 CAAATAGTAG GTTTTGAAAC CCACCCAGGC GAAGAGCCCC TTTGAAAAAC GATTGGACTC 7680 GGTCAAGCTT AAAATGGCAT CGACTACAGA CCTTCTCATC ATACGAAAAT CACGGACACC 7740 CGACGGCAGA GCTACTGGGC TGATTTTTG CATGAGGCGA TAAAAGAGAA CAGCACAGAA 7800 ACTGCGAAAG AAGGGTTCTC CCTCCCGACT AGTTCTCCGT GTCCCAACGC AGTCCAAGTC 7860 TACATTTTTG TCTAATACAT TTTTCATCTC AAACAACATA CTAGGAGGAT CTTGGAGGTC 7920 TGCATCCATC ACCACCACA AATCTCCTGT CGCATATTGC AAGCCTGCAT AAAGGGCTGC 7980 TTCTTTGCCA AAATTTCGAG AGAAAGAAAT ATAATGGACT GCCGGATTTT GCTCCCGATA 8040

GGCCTTTAAG	AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
TTCTGTTTCC	AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8160
CTCTTCGTTT	AAACAAGGGA	CGATGATTGA	AATCATCATC	TTAGTCTTCA	AATCCATTTG	8220
GATGCTTGCT	TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGAG	TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GGCGACGTTC	TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
TAATTTCAAG	AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGAT	TTTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAAC	ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTTCC	AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTCC	CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCCA	TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
TAGTACGACC	GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCCC	GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CCATGGCTTT	CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
TACGTGTTGA	TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CCTGCTTGAA	AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
TCTCAACTCC	TGTGATTCCT	TCAACAACTT	CTAAACTCTT	ACGATTGCTA	TTGACAAGAT	9120
TATCCACCAC	AACAACTTGA	TGACCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	9180
TAAAACCGGC	ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	9240
ATTATTTTTT	CTTATTTTAC	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
TGATAAAATT	TCAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
TCGCCTTGCC	ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
GTTTTGAGCT	GACTTCGTCA	GTTCTATCCA	CAACCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
CGGCTAGTTT	CCTAGTTTGT	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
TGACATAGTT	TTCAATTGGG	TAATTTAGAG	GCTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
GTTGGGCTAG	ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
TGGCTGCATA	GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
TGTAGGCACG	GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

			338			
GAGTCAAGGT	GCCTCCTCC	ATTTGTTGGA	GCAAGGTTTC	ATCTACCGTC	AAATCAAATC	9840
CCATGTCATT	TTCGTGGGTA	GCGCCTAAGG	ATAATTTCCC	ACCTGCAAAG	GGAATCAAAT	9900
CCCACTCCC	TTCTGGCATG	ACAACAGGGT	AATCTTCCAT	GTCTTGGGCA	AGCTGATAAT	9960
CTCGTAGTTC	TCCTTTTTGA	GGACGGACAT	CCACTTCATA	ACCTAAAGGC	TCTAACATGT	10020
CCCCCAACC	AGCTCCCGTC	GCCAAAATAA	CCTGCTCAAA	CTCCTCTTCA	CCAATCTGGT	10080
AGCCTGATG	TAACGGTGTC	AGAGTCACTT	TTTCTTTGAC	CAGCTTGACA	TGACTGACTT	10140
CCAGCAAAC	AGTCACTAAA	AGTTGGCCAT	CTACTCTCGC	TCCACCAGAA	GCATAGAGCA	10200
GGCGGTCAA	TCCCTGCAAA	CCAGGGAATA	ATTCATTAGC	TGAGGCTTGG	TTCAGAATGG	10260
CTAATTGCCC	TATCAAGGGA	GATTCTTCTC	TGCGCTGGAG	GGCCAGTTGA	TAAAGTTCTT	10320
CCAAATTGG	A TTCATCCTTT	TTCAAGAGAA	AGACTCCCGA	ACGCTGGTAA	AAGTCGATTT	10380
CTTGTCCTG	<b>ТТТСТСТАА</b> А	TCAGCTAATA	AATCCACATA	AAAATCAGCC	CCCAAGCGCG	10440
CCATCTTGT	A CCAGGCTTTA	TTACGGCGTT	TGGAAAACCA	AGGACTGATA	ATTCCTGCTG	10500
CGGCCTTGC	r ggcttgacct	TGCTCATGGT	CAAAAACGGT	CACCTCTAGG	TCACTTTCTC	10560
TCGAGAGGT	A GTAGGCAGCT	GTTGCTCCCA	CAATTCCTGC	TCCAATAATG	GCAACTTTTT	10620
TCATTGTCT	r cactttctaa	CTAGATATGA	TGGAAAGGAT	TGGTTGATGC	CTGACTAGGC	10680
AAGATATCA	A TAGACCACCC	CTTATCTTCC	TTCCATTGAC	TAAGAAGTGC	TGCGATTTTT	10740
TCTACAAAA	A TCACTTCGAT	ATAGTGACCT	GGGTCCAATG	CAAGCAACCC	ATCAGATAGC	10800
ATATCCTGA	G CAGTATGGTA	GTAGATATCA	CCAGTGATAT	AGACATCTGC	CCCCTTTGCC	10860
AAAGCATCC	T TATAGAAAGA	CTGCCCGCTT	CCACCACAAA	TTGCTACTCT	TGAAATAGGC	10920
TTCTGCAAA	T CATCCTCTTG	ATAATGCACC	ATTCGAAGGC	TATCTAGGTC	AAAGACTTGC	10980
TTGACCTGT	T GGGCCAATTC	CCAAAATGTC	TGAGGCTGAA	TATTCCCAAT	ACGTCCAATT	11040
CCACGTTCT	G GACCTGTTTC	CTGCAGATAA	GTCGTCTCCT	CGATTCCTAG	CATCTGACAA	11100
AACCAGTCA	T TGAGCCCATT	TTCAACGATA	TCAATATTGG	TATGGCTGAC	ATAAACTGCG	11160
ATATCATGC	T TAATCAGGTC	GATGTAAATC	TGATTTTGCG	GACGGCTGGC	AAGCAAGTCC	11220
TTGATAGGA	C GAAAGATAGG	CGCGTGCTTG	ACGATAATCA	AGTCCACACC	CTTTTCAATG	11280
GCCTCTGCC	A CTGTCTCTTC	ACGAATATCG	AGGGCAACCA	TGACCCTTTG	GATACCCTTG	11340
TCTAAAGTG	C CAATTTGCAG	ACCACGGCTG	TCTCCCTCCA	TAGAAAATTO	CTGAGGGCAA	11400
AAGGCTTCA	T AAGCTTGGAT	CACTTCACTI	GCTAACATGG	AGCACCTCCT	TGATAGCTTG	11460
AATCTTATC	T ACTAGAACTT	GACGTTCTTC	CAGATTTTT	TCTGGGATTT	GTCCGAGGGC	11520
GAACTCTAG	C TTCTCAGCTT	CTTTTTGCCA	TTTTTGGACA	AATACTGGAC	TGACTTCTTT	11580

GGACAAGAAG GGACCAAAGC GAACATCACT GGCTGATAGC TTCATTTGTC CTGCTTCCAC	11640
CACCAAAATC TCATAAAACT TTCCAGCTTC TTCTAAGATG CTTTCTGCTA CAATCTGGAA	11700
TCCATGATCC TGTAGCCAGA TACGCAAGTC GTCTTCACGA TTATTGGGCT GGAGGATCAA	11760
ACGCTCTACA TTAGCTAACT TCCCCAAACC TTCTTCTAAA ATCCTAGCAA TCAAACGACC	11820
ACCCATGCCA GCAATGGTAA TGACAGACAC TTGGTCAGTC TCTTCAAAAG CTGCCAAGCC	11980
ATTGGCTAAA CGGACTTGGA TTTTCTCCTT TAGGCCGTGA GCCTCAACAT TTTTAACCGC	11940
AGACTGATAG GGACCTTCCA CCACCTCACC TGCAATAGCG CTTTTGATTT GGCCTCTCTC	12000
AACCAACTCG ATAGGCAGAT AAGCATGGTC ACTTCCCACA TCTAGTAAAA TAGCCCCCTG	12060
TGACACAAAG GAAGCTACCA ATTCTAATCT CTTTGAAATC ATCTTCTCTC ACTTTCCAAA	12120
ACTOTATTAC CTCTTATTAT ACCACATTTC AATOTTCAAC TTCCCAGTAA TATAAGCACC	12180
TCTGGCGAAA GAAGTTTCAA TGTCCTAAAG TAATAAGTGA ATCCAATTGA AAGATTTTAA	12240
ACAATTTGCA AAAATGTCAA AAAATAAAAA ATAAACAGTT TATTCAGAAA ATTCTTGACA	12300
TATAAAAACA CATGGTAGAA TATAATTAGA AAGTTAGAAA AAATAAAAGT TTGACTAAAA	12360
TTTGTATTTG AAGGTGGTGT TCAGATAAGA AATTTAGTCA GACGAACCAC GAATTTGCTC	12420
TATGCTTTCT GGAATTTATC ATAACAGGAG GATACAGTCA TGGAACAAAC ATTGTTTGAA	12480
TTAGAACTAC TTCCAGAGGA AGATATCATT GTCACAGGTC TCCCTAAGTA TTGTTCTTTT	12540
ACTTGTTTAA TTACAGGTCG CTAGTTATAT TTTATATAAA ATAAGTAGCT TTACTTACGG	12600
AATAGGCTAG TGCTGTGTCT CTAGCCTATT TTAATAATTA GGAGTTTGTT ATGGATTTAT	12660
TAGAGAAAGA ATGTTTAAAA TGTGATAAAA ATTTCCAACA GGGTGATATT TGGAATTACT	12720
ATTATTTATC AGATAAGATG CCTGCACAAG GGTGGAAAAT ACACATAAGC TCCCAAATAA	12780
AAGACGCTGT AAATATTTTT AAGATTGTGT ATAAACTATC CCAACTAAAT AATTGTAGCT	12840
TTAAAGTTGT TAAAAATTTA GAGGAATTAA AAAAAATTAA TTCCCCTAGG GAAATGAGCC	12900
CTACTGCTAA CAAATTTATA ACTCTATATC CTAAGTCAGA ATCTGAAGCT AAGAGTATGA	12960
TTTGTAATCT TACGAATAGA CTGTCAGAAT TTAAGGCTCC AAAAATACTA TCTGACTATC	13020
AATGTGGAAT GCATTCTCCA GTTCATTATA GATATGGGGC TTTTTTAAAA AAACAAGCTT	13080
ATGATGAAAA AAATAAAAAA GTCATCTATT TATTGCTAGA TGAAAAAAGG AAGAACTATG	13140
TAGAAGATAA GAGACAAAAT TTCCCTAGTC TTCCTAGCTG GAAAATGGAT TTATTTTCAG	13200
AAGAAG	13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

340

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13104 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CCGGATCCAG	CGAAAAATAT	GCTCTTTGAT	GCTGTAAGTG	GTCAAAAAGA	TGCTAAAACA	60
GCTGCTAACG	ATGCTGTAAC	ATTGATCAAA	GAAACAATCA	AACAAAAATT	TGGTGAATAA	120
AAAATTTGTT	CAAGGGGGGT	GGAAATCAAA	TCCCCCTTTG	AATTTATCAA	TAGAGACACA	180
AATAATTTAG	CTTTCTTATA	AAAAAGTAGT	ATCCTATGAA	AGGAGTTAAT	ATGGAAAAGC	240
AACAACCTAG	TAAAGCAGCC	CTGCTGTCTA	TCATTCCTGG	GTTAGGACAG	ATTTACAATA	300
AACAAAAAGC	CAAAGGTTTT	ATCTTCCTTG	GTGTAACCAT	CGTATTTGTC	CTTTACTTCC	360
TAGCACTTGC	AACCCCTGAA	TTGAGCAACC	TCATCACTCT	TGGTGACAAA	CCAGGTCGTG	420
ATAATTCCCT	CTTTATGCTG	ATTCGTGGTG	CCTTCCATCT	AATCTTTGTA	ATCGTTTATG	480
TACTCTTTTA	TTTCTCAAAT	ATCAAAGATG	CACATACGAT	TGCAAAACGC	ATTAACAATG	540
GAATTCCAGT	TCCACGCACA	CTCAAAGACA	TGATCAAAGG	GATTTATGAA	AATGGCTTCC	600
CTTACCTCTT	GATCATTCCA	TCTTATGTTG	CCATGACCTT	CGCGATTATC	TTCCCAGTTA	660
TCGTAACCTT	GATGATCGCC	TTTACCAACT	ACGACTTCCA	ACACTTGCCA	CCAAACAAGT	720
TGTTGGACTG	GGTTGGTTTG	ACCAACTTTA	CAAACATTTG	GAGCTTGAGT	ACCTTCCGTT	780
CTGCCTTTGG	TICTCTICTT	TCTTGGACTA	TCATTTGGGC	TTTGGCAGCT	TCTACTTTAC	840
AAATCGTAAT	TGGTATCTTC	ACAGCTATCA	TTGCCAACCA	ACCATTTATC	AAAGGAAAAC	900
GTATCTTTGG	TGTTATTTTC	CTTCTTCCTT	GGGCTGTCCC	AGCCTTCATC	ACTATCTTGA	960
CATTCTCAAA	CATGTTTAAC	GATAGTGTCG	GTGCTATCAA	CACTCAAGTA	TTGCCAATCT	1020
TGGCTAAATT	CCTTCCTTTC	CTTGATGGAG	CTCTTATTCC	TTGGAAAACA	GACCCAACIT	1080
GGACTAAGAT	TGCCTTGATT	ATGATGCAAG	GTTGGCTCGG	ATTCCCATAC	ATCTACGTTC	1140
TGACCTTGGG	TATCTTGCAA	TCTATTCCTA	ACGACCTTTA	CGAAGCAGCT	TATATTGACG	1200
GTGCCAACGC	TTGGCAAAAA	TTCCGCAACA	TCACTTTCCC	AATGATTTTG	GCTGTTGCGG	1260
CACCTACTTT	GATTAGCCAA	TACACCTTCA	ACTTTAACAA	CTTCTCTATC	ATGTACCTCT	1320
TCAATGGTGG	AGGACCTGGT	AGTGTCGGAG	GTGGAGCTGG	TTCAACCGAT	ATCTTGATCT	1380
CATGGATCTA	CCGTTTGACA	ACAGGTACAT	CTCCTCAATA	CTCAATGGCG	GCAGCTGTTA	1440
CCTTGATTAT	CTCTATCATT	GTCATCTCAA	TCTCTATGAT	CGCATTCAAG	AAACTACACG	1500

CATTTGATAT	GGAGGACGTC	TAAGATGAAT	AACTCAATTA	AACTCAAACG	TAGACTGACT	1560
CAAAGCCTTA	CTTACCTTTA	CCTGATTGGT	CTATCAATTG	TAATTATCTA	TCCACTGTTG	1620
ATTACCATTA	TGTCAGCCTT	TAAAGCAGGT	AACGTCTCAG	CCTTTAAACT	AGATACTAAT	1680
ATCGACCTCA	ATTTTGATAA	CTTTAAAGGC	CTCTTCACTG	AAACCTTGTA	CGGTACTTGG	1740
TACCTCAACA	CTTTGATTAT	CCCCTTAATT	ACCATGGCTG	TTCAAACAAG	TATCATCGTA	1800
CTTGCTGGTT	ATGCTTACAG	CCGTTACAAC	TTCTTGGCTC	GTAAACAAAG	TTTGGTCTTC	1860
TTCTTGATCA	TCCAAATGGT	GCCAACTATG	GCCGCTTTGA	CAGCCTTCTT	CGTTATGGCG	1920
CTTATGTTGA	ACGCCCTTAA	CCACAACTGG	TTCCTCATCT	TCCTCTACGT	TGGTGGTGGT	1980
ATCCCGATGA	ATGCTTGGCT	CATGAAAGGC	TACTTCGATA	CAGTGCCAAT	GTCTTTAGAC	2040
GAATCTGCAA	AACTAGACGG	TGCAGGACAC	TTCCGCCGCT	TCTGGCAAAT	TGTTCTACCA	2100
CTTGTTCGCC	CAATGGTTGC	CGTACAAGCT	CTCTGGGCCT	TCATGGGACC	TTTCGGGGAC	2160
TACATCCTCT	CTAGTTTCTT	GCTTCGTGAG	AAAGAATACT	TTACTGTTGC	CGTAGGTCTC	2220
CAAACCTTCG	TTAACAATGC	GAAAAACTTG	AAGATTGCCT	ACTTCTCAGC	AGGTGCTATC	2280
CTCATCGCCC	TTCCAATCTG	TATTCTCTTC	TTCTTCCTAC	AAAAGAACTT	TGTTTCAGGA	2340
CTTACAAGTG	GTGGCGACAA	GGGATAATTT	ATCCCCGCCA	CCCTTTTTCA	TTTTATACTC	2400
TTCGAAAATC	TCTTCAAACC	ACGTCAGCTT	TATCTCCAAC	CTCAAAGTTG	TGCTTTGAGC	2460
AACCTGTGGC	TAGTTTGCAC	TTTGATTTTC	ATTGATTATT	AGCAATTGTC	ACTGTAAATA	2520
ATATCCTTGT	AGCAAGCAAT	TTTTCTCCTA	GACTTGAAAT	AAAGCGCATT	ТСТСТАТАТА	2580
ATAATACTCA	TATAGAAAAC	ACCTTTTAGA	AAGATACCTA	TGCTTCCATA	TCCATTTTCC	2640
TATTTTTCAA	GTATTTGGGG	GGTTCGTAAG	CCCCTGTCCA	AACGTTTCGA	GCTCAACTGG	2700
TTTCAACTTC	TCTTTACCAG	TATCTTCCTT	ATCAGCTTGT	CTATGGTACC	CATTGCTATC	2760
CAAAACAGCT	CCCAGGAGAC	CTATCCGCTA	GAAACTTTTA	TCGATAATGT	CTATGAACCT	2820
CTGACAGATA	AGGTTGTCCA	GGATCTCTCT	GAACATGCTA	CAATTGTCGA	TGGCACATTA	2880
acttatactg	GAACAGCTAG	TCAAGCCCCT	TCTGTTGTGA	TTGGTCCAAG	TCAAATCAAG	2940
GAATTACCTA	AGGACTTGCA	ACTGCATTTC	GATACAAATG	AGCTAGTCAT	CAGCAAGGAA	3000
AGCAAGGAAC	TGACCCGCAT	CTCTTACCGA	GCCATTCAGA	CTGAGAGTTT	CAAAAGCAAA	3060
GACAGCTTGA	CCCAAGCAAT	TTCTAAAGAC	TGGTACCAAC	AAAATCGTGT	CTATATCAGC	3120
CTCTTCCTAG	TTCTCGGTGC	GAGCTTCCTC	TTTGGTTTGA	ATTTCTTTAT	CGTCTCTCTT	3180
GGAGCTAGCT	TTCTCCTTTA	TATCACCAAA	AGATCACGCC	TCTTTTCATT	TAATACCTTT	3240

3300 AAAGAGTGCT ACCATTTTAT CTTGAACTGT TTAGGATTGC CGACTCC DAT TACACTTATT TTGGGATTAT TTGGCCAAAA TATGACAACC CTGATTACTG TACAAAATAT TCTTTTTGTT 3360 CTGTATCTGG TCACTATCTT TTATAAAACA CATTTCCGTG ATCCAAATTA CCATAAATAG 3420 GAGATTTTA TGCCCGTTAC GATTAAAGAC GTGGCCAAGG CTGCTGGTGT TTCGCCTTCA 3480 ACCGTAACCC GTGTTATTCA AAATAAATCA ACCATTAGCG ACGAAACAAA AAAACGTGTT 3540 3600 CGCAAAGCTA TGAAGGAACT CAACTACCAC CCAAACCTCA ACGCTCGTAG CTTGGTAAGC 3660 AGCTATACTC AGGTTATCGG ATTAGTTCTT CCTGATGACT CAGACGCCTT CTACCAGAAT CCTTTCTTTC CATCGGTTCT ACGTGGCATC TCTCAAGTCG CATCTGAAAA CCACTATGCC 3720 ATTCAGATAG CAACAGGGAA AGATGAGAAG GAGCGTCTCA ACGCTATTTC ACAAATGGTC 3780 TACGGCAAGC GTGTAGATGG GCTAATTTTT CTCTATGCCC AAGAAGAAGA CCCTCTCGTA 3840 AAACTCGTCG CAGAAGAACA GTTCCCCTTC CTTATCTTAG GTAAATCTCT ATCTCCTTTC 3900 ATCCCACTTG TCGACAACGA CAATGTTCAA GCTGGTTTTG ATGCGACTGA ATATTTCATC 3960 AAAAAAGGCT GCAAACGCAT TGCCTTTATC GGAGGAAGTA AAAAGCTCTT CGTGACCAAA 4020 GACCGTTTAA CAGGCTATGA ACAGGCGCTT AAACATTACA AACTTACCAC TGACAACAAT 4080 CGCATCTACT TTGCCGACGA GTTTCTGGAA GAAAAGGGCT ATAAATTTAG CAAGCGATTA 4140 TTCAAGCACG ATCCACAAAT TGATGCTATC ATCACAACCG ATAGCCTCCT AGCTGAAGGT 4200 GTTTGTAACT ATATTGCCAA ACACCAGCTG GATGTCCCTG TTCTCAGCTT TGACTCGGTT 4260 AATCCCAAGC TCAACTTGGC AGCCTATGTC GATATCAATA GTTTAGAGCT TGGTCGTGTT 4320 TCCCTTGAAA CTATTCTCCA GATTATTAAT GATAATAAAA ACAATAAACA AATTTGTTAC 4380 CGTCAATTGA TCGCCCACAA AATTATCGAA AAATAAGAGA CTGGGCAAAA AGTCGTTAAA 4440 AGCAAAAACG CATACTATCA GGTATTGAAA AAACTTGATA CTATGCGTTT TATTGTGGGA 4500 AGATTTACTT CCTTTTCTAC TGAAATTGAG TCTTTTCCCA AGATCTTTTT ATACTCAATG 4560 AAAATCAAAG TGCAAACTAG GAAGCTAGCC GCAGGTTGCT CAAAACACTG TTTTGAGGTT 4620 GTAGATGAAA CTGACGAAGT CAGTAACCAT ACCTACGGCA AGGTGAAGCT GACGTGGTTT 4680 GAAGAGATTT TCGAAGAGTA TTAATCACTA ATTATCTATC TCAACAAATC TTCCTAGAAT 4740 4800 ATGAACATTT TCCGAGACAG AGACAAAGGA GCTTGGATCC ACTTGTGTCA TAATCTGTTT AAATTCATTA AACTCTGCAC GTGTAATGAC AGTGATTAAA ACTGCCTTTC TCTCGTGATT 4860 ATAGGTTCCT TCTGCATCGT GGATCATGGT TGCTCCGCGG TGCAATTTTT TATGGATTTT 4920 TTCAATTACC TTCTCTGGAT GATTTGTCAC AATCATGGCC TGCATACGCT TTTGCTTAGT 4980 AAAGACTGCG TCTGTCACAC GGCTAGAGAC AAAGATGGTA ATCATAGAAT AAAGAGCGTA 5040

ITTCCAACCA	AAGGTCAAAC	CTGCTATCAG	CATGATAGTT	CCATTTACCA	AGAAAGAAAT	510
ACTACCGACA	TTCTTACCCG	TTTTCTTACG	AATAGTCAGG	CTGACGATAT	CCGTCCCACC	5160
actggagata	TTGTTTCGAA	GAGCAAAACC	AATCCCCAAA	CCCATAACAA	CACCCCCAAA	5220
AAGGGAATTG	ATAATGGGAT	CCTCTGTCAA	GGTTGCCACA	GGGACAAACT	GGATAAAGAA	5280
GGAACTCATA	GATACCGTGA	TAAAGGTAAA	GACGGTGAAC	TTATGGCCAA	TCTGATACCA-	5340
AGCTAAGACC	ATCAAAGGGA	AGTTAATGGC	GTAGAAGCTT	AGCGAAATCG	GAATATGAAA	5400
ACCAAACCAG	TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTG	CACCACTCGA	5460
ATACACATGC	CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAAA	AACCATAGAC	5520
CAGAGAGGCC	GAAATCTTCT	CATCATACTT	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5580
<b>AATTTTTAT</b> C	TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC	TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG	TGTCATTGGG	TCAGTTGCCT	TGTTGTTCTT	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC	TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG	GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA	GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC	ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA	ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
CCTCCCCCCT	CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA	GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6180
GAAGGGCACC	CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC	AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC	GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC	TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
TGTGACCAC	AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GACCACTTC	TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC	CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC	CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA	GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
רישיטיטישיט	ACCCANACAT	THE RESERVE	COTACTAACC	CTC	CCATTCATCA	6200

344 AGAGCTGTTT CGTGATTTGT GGACTTTGAG GAAGAGCGTA AAAATGCCCC TTATTAACAC 6840 GAGACGGCAC TAAATAATCA CGCGCCCCTT CAGGCGTTGA CTTAGAAAGG AATGGTGTCT 6900 CCACGTCGAT AAACTCCAAC TCATCCAAGT AGTTGCGGAT AGAGTGGGTC ACCTTGGCAC 6960 GAAGTTTAAG ATTTTCCAAC ATTTCTGGAC GACGAAGGTC AAGGTAACGG TAACGCAAAC 7020 GTGTATCGTC ATTTGCCTCA ATGCCATCCT TAATCTCAAA TGGTGTTGTC TTAGCTGTGT 7080 TAAGCACAAT AAGAGCTGTC ACGTTTAACT CAACCGCACC AGTTGGCAAC TTATCATTGG 7140 CTTGTCACGC GCAGCGACCT GACCAGTCAC CTCAATAACA AATTCGCTAC GAAGGCTTTC 7200 AGCTGTTGCC ATAACCTCTG CAGATACTTT TTCAGGGTTG ATAACCAACT GCATGATTCC 7260 TTCACGGTCA CGAAGATCGA TAAAGATCAA ACCACCAAGG TCACGACGAC GGCCAACCCA 7320 TCCTTTCAAG GTTATTTCTT GTCCGATGTG TTCCTCACGA ACACGACCAG CATACATACT 7380 ACGITICATI ATTICICIC TCTTTTATIC TGTTACTATI TTACCATAAA AGCGCAGCTC 7440 TTCATGAAAA TCATCAGAAA AGTTTGCCAG TCTTTAAAAG TCAGGTGAAA GCCCTAAAAA 7500 TTAGCGCTAA TACTCTTCGA AAATCTCTTC AAACCACGTC AGCGTCGCCT TACCGTATGT 7560 ATGGTTACTG ACTTCGTCAG TITCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC 7620 GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA CCTGCGGCTA GCTTCCTAGT 7680 TIGCTCTTTG ATTTCATTG AGTATAATAC AAAAATCCGA TGAACTTCAC CGGACTCTTT 7740 TATTTTGAAT TTTTGCCTGC TTTACGCTTT TCAGCGATTT CGGCTGCCTT TCGAGGCAAG 7800 ACAATTTCCG TTATGTAAGC CGTCCCAAAA CGCAGTACAC CTGCAATAGG AGCAAAGACA 7860 ACTGCTAGAT AGTTATAGAA GAAATCGCCT TTGAAGGCAT AAGCTAGCGC TCCAATGATG 7920 AAAAATAGAA CGACTGCCTG AATCACTGCT AATAAAATTA CTCGTTTCAT GTGACCTCCT 7980 GACTCTATTA TAGCATGAGA ATCATCAAAA AGCCGACTAA ATTATTCAAA GCGTGAAGAG 8040 AAATACTGTA GACCAGACCT TTTCTGCTAA TGTAAGCCAA ACCCAAACTA AAACCAAGGC 8100 TAAAATAGAC AAAAAATTGT TGCACATCAC CTGGAAAATG AATCAAGGCA AATAGAAGAC 8160 TAGATACCAG AAGAAAAATC AGGGTTCGTT TACTATTGTC CTGCTTAGGA AAGAGATAGC 3220 GTGCTAACAT CCCTCTAAAA ACAATCTCTT CCGTCAAAGG AGCAAAAATA ACCACAGCAA 8280 AGAATGAGAA AAGTGGTTGA GACAAGGTCA AGTCTGTCGC TATTTGCTGA TTTACTGAAG 8340 GATCATCTGG CAAGAAGAAT TGAACGACCA GAGATAAGAA CCAAACCAAG ACAGGAAGCC 8400 AAATAAATCG ATTAAAGCCG CTCTTCTCAA TATGAACAGG AGCCTTCTGA TACCATTTGT 8460 AAATGCCGTA CACATATACT CCAGCCAAGG CCACATAGAG TAGAGTAACA GCATAGGGTG 8520 AAGCGCCTAA AGCAAGCGAC GCAGTCGCGA GCCCCTGAAT AAAGCCATAG ATAAATAAAA 8580

8640	GATAACTCCT	TAATTTCATA	GGTTTTTAAG	ATCCAGCCAA	GGCTAGAAGA	AGGATAGAAG
8700	CATGGATGGC	TTGATATAAA	CTGCATCACA	CCATAGGTAA	TAACGTTTTA	TTATTTGAAA
8760	TGATAATAAG	AAGAAAGAAA	CTCTCCTGTC	GTAACTGAAT	AAGAAAGCTA	TCCTACAAGC
8820	GAAAACTCTG	AATAAAATTC	GTGTAATTGG	AGACATATTG	AAGGCTGGTA	AAAAATATAT
8880	AGACATCCTT	ATATAGTTCA	ATAAGAATTT	CCCCTTCATC	GCCTGACGCT	TTCCAAATTA
8940	TAAAAAGAGA	GCAATGGTTT	ACGAACAATC	AATCAAACTG	AAAAATTCCA	TGGTGTAGCG
9000	TTTGAGGGTT	AGGAAAAATG	TAAGAAAGAA	CCACAAAGAG	ACTAAGAATA	TTTTTGAGCG
9060	TCGCTACACC	GCCAATGGAA	AATAAAAATA	CACTTAATGA	ATAATCACCT	TGTATGCAAT
9120	CATAATAGGT	TACATTTGCA	AAGATTCCGA	TTCCAAACTC	AAAGCAATGG	TGTAATATTA
9180	TGCTTTTCTT	TGAAATTTTC	ATACAAAGAA	TTTCCTCTTG	TCGTCATCCA	TTCATTCAGA
9240	TAGCTGATAT	AGTAAACAAA	GAAACCTATC	ACATACTAAT	AAAGTCAAAA	TAAGAAATTG
9300	GTGCCTTAAA	GATTCGACAC	AATTTCGTGG	CATCTAAAAT	AAGGCTTTTA	CCATGGCATC
9360	TAACAATCTA	ACATCAAAAA	AAGACAATAG	AGAACCCCCC	AACATGCCCA	CATCCCTACA
9420	TTCTTTTCAA	ATTTTTGGAT	CACTTGCTAG	TCTCCTTTTT	TCATATTCAT	CGTTTCTTTT
9480	CTTTGATAGG	AAATTGGTCG	AGACCCAAAC	AGAGCAAAGT	TACTGGGATG	TCCATTCAAT
9540	AAAGCTATGA	GCTGACTAAT	GTAGAAATAC	ATCCCAATCA	GCTTAGGTCC	GATTAAACCA
9600	AACGAAATAC	TCCTCCTCCA	TCATCACTCG	TTATACTTGT	ATAAATCACT	CCACTACATA
9660	TGGATGGGGT	GCAATGATAA	TATTTTCAGG	AAATTTGAGA	GTTTCGTTGA	CGATTCGACT
9720	GTTTGGCTAG	ACCCCTGCCA	CTGTCTGGAA	GGCTAATGGT	CGTTCTAGTA	GTACTCATCC
9780	TTAGTTGCAT	AGACGATTTT	AAGCTCTTTT	CGCGAGCTCG	TTGAGACCAT	GTCGGTTTGA
9840	GTTGCAACTT	TCCTCAATAC	GGTTTGGATA	CAAATTCAAC	TACTCTCCGT	GTTACACACC
9900	CATCAACATC	ACCCATTCCT	TCGTAGCTTT	TATCTACACG	TTTCCCGTAT	GAATTTTTCT
9960	CCTTTCCAAT	ATAATTGGTT	CACTCCCGTT	GCCCAATATA	CAGTTATCTG	CACAACTTCC
10020	CAAGTCTTTT	TCTTTTCGCT	GTTTCCTTTC	ACATTTCTGC	AATAATCTCG	CATTTCTTGT
10080	AAATCATAAA	GAATAAAAGA	AGAATTATTA	TGATTTTTT	TCTAGTTTCT	GATTTTATTC
10140	TTAACTTGAA	TTCCTATTTC	TCCTTTCTGC	ACATTATAAC	CCTAGTACCC	TAGTATAAAT
10200	TTATGATTTT	GTCAAAAAAA	AAGTATAGTT	TCTTTTTGAC	CATATCTTTT	TTCATTGTAA
10260	СТАТСАТТАА	ACCACTTTAT	TAGGTTCCTG	AGGTCAGGAG	CAAAAGAAAA	TGTCATTTTG
10320	ATGGTTACTG	TGCCGTAGGT	AGCTTCACCT	AAACCACGTC	AAATCTCTTC	TACTCTTCTA

PCT/US97/19588 WO 98/18931

		346			
ACTTCGTCAG TTTCATCTAC	AACCTCAAAA		AGCTGACTTC	GTCAGTTCTA	10380
TCCACAACCT CAAAACCATG	TTTTGAGCTG	ACTTCGTCAG	TTCTATCCAC	AACCTCAAAA	10440
CCATGTTTTG AGCTGACTTC	GTCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	10500
CCTGCGGCTA GCTTCCTAGT	TTGCTCTTTG	ATTTTTATTG	AGTATAAAAT	CCTAGTTTTT	10560
CAAAGATTTC TGAGAAGTTT	TGGCTGATTG	TCTCAAGTGA	CACTTGCACT	TCTTCTCGGG	10620
TTTGGTTGTT CTTGACCGTC	ACTTGTCCGC	TTTCGACTTC	GCTCTCTCCT	AGGGTGATGA	10680
GGGTCTTAGC CGCAAAGACA	TCGGCTGACT	TGAACTGAGC	TTTTAGTTTA	CGGTTGAGGT	10740
AATCACGCTC TGCTTTGAAA	CCTTGTTGGC	GAAGAGCCTG	TACCAATTCC	AAGGCCTTGA	10800
TATTTGCCCC TTCGCCCAAG	ACTGCGATAT	AGACATCTAG	GCCGTTTTCG	ATAGGGAGGG	10860
TCACACCTTG CTTTTCAAGG	ATGAGAAGCA	GGCGCTCTAC	ACCAAGTCCA	AAACCAAATC	10920
CAGCAGTTTC AGGGCCTCCA	AAGTAAGCAA	CCAAACCATC	GTAGCGACCA	CCCGCACAGA	10980
CGGTCAGGTC ATTGCCCTCA	ATCTCTGTGA	TAAACTCGAA	AATGGTGTGG	TTGTAGTAGT	11040
CCAGACCACG CACCATATTG	GTATCGATGA	TGTAATCTAC	TCCAAGATTT	TCCAACATCT	11100
GACGCACAGC ATCAAAATGA	GCTTGGCTTT	CTTCATCAAG	AAAGTCCAAG	ATAGACGGCG	11160
CATTCTCTAC TGCCACCTTG	TCTTCTTTTT	CCTTAGAGTC	CAAGACACGA	AGAGGATTTT	11220
CCTCCAAGCG ACGTTGGCTA	TCCTTAGACA	AGGTCTCCTT	GAGCGGTGTC	AAATAGTCAA	11280
TCAAGGCTTG GCGGTAGGCT	GCACGGCTCT	CAGGATTTCC	aagagtgttg	AGGTGCAATT	11340
TGACACCTTG AATACCGATT	TCCTTCAAAA	AATGGGCTGC	CATAGCGATT	GTTTCCACAT	11400
CGGTAGCTGG ATTGCTAGAG	CCAAAACACT	CAACACCAAT	CTGGTGGAAT	TGGCGCAAGC	11460
GCCCTGCCTG TGGACGCTCA	TAACGGAACA	TAGGTCCCAT	GTAGTAGAAC	TTGCTTGGCT	11520
TTTGCACTTC TGGGGCGAAA	AGTTTATTTT	CCACATAGGA	ACGGACAACG	GGTGCAGTTC	11580
CTTCTGGACG GAGGGTAATA	TGACGGTCAC	CCTTGTCATA	AAAATCGTAC	ATTTCCTTGG	11640
TTACGATATC CGTTGTATCT	CCGACAGAGC	GACTGATAAC	CTCGTAATGC	TCAAAAATAG	11700
GCGTGCGCAC TTCTGCATAG	TTGTAGCGTT	TGAAAATCTC	ACGGGCAAAG	CCCTCAACGT	11760
ACTGCCACTT AGCAGACTCA	GCAGGTAAAA	TATCCTGCGT	TCCTTTTGGT	TTTTGTAATT	11820
TCATAGGGAA TCCTCTTTAA	ACTTAATAGT	CTTATTTTAC	CATAAATAGA	GGGATTAAAA	11880
CAGTAAGAAA AAAATTAGGA	TTTAGATATC	ATTTTTGAGA	TTAAGAATTG	TCAAAAAAAT	11940
AGCTAGCAAG GAAAGACCAA	CAAATAGCAT	CCAAGTCAAC	TGTATATTCC	ATACGGCTAC	12000
TAGTGAAAAA CAAGCTGTTC	CCACAGGTAT	GGATAAGGTA	AACAATAGAC	CTAAAAAATT	12060
ACTAGTACGA GCTAGAACCT	CTGGAGCTAG	ATTTTTCATG	AGCATGGCAC	TAATCTTTGG	12120

PCT/US97/19588 WO 98/18931

347

TTGAACTTTA	CCAGACACAT	ACAGAGTAAA	GAAGAGAAAT	AGCAAACCAA	GCACGACTTG	12180
attgaataaa	TTAGCCAAAC	CAACTAGACT	AAGTCCTACG	GTCTCCCACA	TCATCAATCT	12240
AGGCAAGGAC	TGCTTCCCAA	AATAATCATT	GCCCGTAAGG	CTACTGATGA	TGACTGATAC	12300
TAAAACACAG	AATTGATTGA	TAAATAGTGC	CTCTGTATAA	GAAAAATTCA	AGAGAGAATG	12360
GCTCAAAAAG	AAGATATTAT	AAATTCCACC	CAAAGCGCCA	CCCAAGGAAT	TAATAAGCAA	12420
GACAGCAAAG	AGCATAAAAC	CAAAGTTTTT	CTGTCCACTT	TTAAGAAAAA	CGAGACGTAA	12480
ATTTCGGTAA	ATTGTTAGGA	ACTGGTCTTT	GATAGAAAGC	TTCTCATTTT	TTAAGTTTTC	12540
ACCATCAGCA	GATGACATTG	ACAGGCTCAA	TTTGCTTTTT	CCTAAAAAGA	GGATAGTGGC	12600
TGATACTAGG	AAAAAGCAGG	CATTGATTCC	CGCAACGAGA	GAAAAATTGT	TGACCGATAG	12660
AGCTAAGAGC	CAGACTCCGA	AAGCTTGACC	ACCAATAGCT	GAAATATAGG	TGATGAACTG	12720
TGAAAAAGAA	TAAGCCTCCA	TCAGATCATC	TTCAGCTACT	TTTTCCTTAA	TAAGAGGCAT	12780
ACGCAGGCCA	CCTGCAAAAT	CACTGATGAT	ATCACTAATG	ACATTGATCA	AACACAGGCT	12840
AGAAAAGGCA	AAGAGACTAG	CTTGCTGAAC	AACTAGGGCT	GCTAGAAAAA	ATAGAACCGC	12900
CTGAAACAAA	CCGCTATAGA	CCATCCATTT	GACCTTGTCC	CTCGTGTAAT	CTGCCCGAAT	12960
CCCTGCAAAA	ACTGTAAAGA	GGGTCGGAAG	AATCATGACA	ATATTCGCCA	TAGCAACAGC	13020
AAAAGATGCT	TGTGACAAGG	TCGATGCATA	GACGATAAAG	ACCAGGTTGA	AAATCGAAAC	13080
ACCAAAAGCA	TTGAAGAAGC	GTGG				13104

### (2) INFORMATION FOR SEQ ID NO: 35:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19250 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	тттстссттт	AAAACTTTCT	CTCCATTATA	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTTCAAAC	120
AACATCTTTG	CAAAAAATAT	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	CTATCATTCA	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	ATTCTAAAAA	GAGAAATGAT	300
ATTCTTCTTA	AAATTCGTAT	TGGCAAGCTT	GAAGTAAGTT	TTTTTCAATC	TCTCAATCTC	360

			348			
GAAATGATAG	AACAGCTTTT	GGATAAGGTG		ACAATTCATC	TATCTAGCCT	420
AGGGCAGGTC	TATCTCGTGT	GTGGGAAAAC	TGATATGAGA	CAAGGAATCG	ATTCACTGGC	480
TTATCTCGTT	AAAACCCACT	TTGAATTGGA	TCCTTTCTCC	GGTCAAATCT	TTCTCTTTTG	540
TGGTGGACGT	AAAGACCGCT	TTAAAGTCCT	TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	600
ATATAAACGC	TTTGAGAACG	GCAGACTGAC	TTGGCCCAGT	ACAGAAAAGG	ATGTCAAAGC	660
TCTCGCACCT	GAACAAGTAG	ATTGGCTGAT	GAAAGGCTTT	TCTATCACTC	САААААТАТА	720
GTAGATTGAA	ACTAGAATAG	TACACCTCTG	CTTCTAAAAC	attgttagaa	ATCGATTTTA	780
CTGTCCTGAT	CGATTTGTCC	TGTTATTATT	TCATTTTACT	ATAAATCCAT	CAGAAAGTCG	840
TGATTTCTAT	TGAAATGAGG	ACTTTCTTTT	TATACTCATC	TGCTTTCAAA	AAGCACTCTA	900
GTCCATCTCC	GATTAACGAT	GGACTTTATC	ACCTCCTTCT	CCAGTCCTTG	TATAACATCT	960
TGAAGTTGAT	TCATGACATC	TTCCAAAGTT	CGAAAGGCTT	TATTCTTAAA	TCCACGTTTA	1020
CGAATCTCTT	TCCACACTTG	TTCAATGGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAT	1080
GCAAAGCCAA	TATTAGTCGG	AATCTTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	1140
ATAACGAGTA	AAAGATAATC	ATCTGGATAA	GCTTGTGAAA	GCTCCTATTC	CTAAAGCCCC	1200
TTTATAACCT	CTTGCGAGAG	AGACTATTGA	CTCAGCCCTT	ACTTCATGCG	GATGAAACCT	1260
CCTATCGGGT	TCTAGAGAGT	GATAGCCATC	TGACCTACTA	TTGGACTTTT	TTGTCAGGTA	1320
AAGCAGAGAA	ACAAGGGATT	ACGCTTTACC	ACCATGATCA	GTGTCGAAGT	GGTTCAGTAG	1380
TACAAGAATT	CCTAGGAGAT	TATTCTGGCT	ATGTTCATTG	TGATATGTTG	CGGCAGTAAC	1440
TTAGGACTTT	AGTCCTCTAG	TTCTGCCTAT	GCGATAGCAG	TCCAAGGTTT	AGGAGTAAGG	1500
CGACGCTAAG	CTTGGTAAAC	TGCGAACAGC	TAGAAGCTTA	TCGTCAACTG	GAAGAAGCTG	1560
CACTTGTTGG	ATGTTGGGCG	CATGTGAGAA	GGAAGTTTTT	TGAAGTGCCC	CCCAAGCAAG	1620
CAGATAAATC	ATCCTTAGGA	GCTAAAGGTT	TAGCCTATTG	TGATCAGTTA	TTTTCCTTGG	1680
AAAGAGACTG	GGAGGCTTTG	CCAGCTGATG	AACGGCTACA	GAAACGTCAA	GAACATCTCC	1740
AACCCCTACT	GGAAGACTTC	TTTGCTTGGT	GCCGTCGTCA	GTCAGTTTTA	TCGGGTTCAA	1800
AACTAGGAAG	GGCAATTGAA	TACAGCCTCA	AGTATGAAGA	AACCTTTAAG	ACCATTTTAA	1860
AAGACGGACA	TCTGGTCCTT	TCCAATAATC	TAGCTGAACG	CGCCATTAAA	TCATTGGTTA	1920
TGGGACGGAG	TAAAAGAGTC	CAGTGGACTC	TTTTAGCCTA	AGCTCAGTTT	AAAAAAACGA	1980
GGGTGGTTAT	TTTTAAAAAA	GCGAGGGTGG	TTATTTTCTC	AAAGTTTTGA	AGGAGCTAAA	2040

GCAAGAGCTA TTATTATGAG TTTGTTGGAA ACAGCTAAAC GTCATCAATT ATAGTGCGTT

2100

AATCGATTTG	TTCATATCTT	ATTACAATCC	ATTATAAATA	GCGAGAAATA	TCTATCCTAT	2220
CTTCTAGAAT	GTCTTCCAAA	CGAGGAAACT	CTCGTAAACA	AAGAGGTTTT	AGAGGCCTAT	2280
TTACCGTGGA	CTAAAGTTGT	ACAAGAAAAG	TGCAAATAAG	AAATCTCCAG	ATTAGGAACT	2340
ATATATGAGT	TCTCTAGTCT	GGAGATTTTT	CAATAGACTT	CGTTATTGGG	CGGTTACTTT	2400
CGAAACTTTG	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACGAAATTTG	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CCTTTATTCT	ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCTCGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AGAATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
ATTTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	CAACTTTAGT	AGAGACATTT	2760
TCCTCAACAT	AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GTTTCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TCTAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TGACTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GCATTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
TTATCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAGATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
TTTTTATCTG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
TTCAATCCCA	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACTTCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AAATACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGACGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
AAAATTGGAA	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
ААААТСААТА	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	ATTAATAATA	3600
TTCCCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
AACCCTAAAT	TATCAAAGAA	AATACCATT	' AAATTGTAAT	CATAGTTTTC	TCCAGTATGT	3720
GCCAAAATAA	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
TCTGGACGTC	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTI	AAAGTGAATA	3840
TCACTATAAT	CTGTCTTAA1	TTTCATTTAT	TTCTCCACTT	GTTCAAAAAA	AGTATCTGGA	3900

			350			
rgtctaggat	CAAATGACTC	ATTAGCCCAC	ATGACAGTAA	TTAGATTTTC	TGTATCAGAA	3960
AGATTAATAA	TATTATGTGC	ATAGCCCGGT	ATCATATGTA	TTGCTTCAAT	CTTATCGCCC	4020
GACACTTCAA	AGTTCAGAAT	AGGATACTCT	TGACCGTTTT	CATCCAGCCC	TATCCTACGC	4080
CTTGTATTA	AAGCACGACC	AGAAACAACC	ATGAAAAATT	CCCACTTAGA	ATGATGCCAA	4140
TGTTGCCCTT	TGGTAATGCC	AGGTTTAGAA	ATATTAACAG	AAAATTGACC	CGTATTTTCT	4200
GTTTTTAATA	ATTCCGTAAA	ACTACCTCGT	TCATCTATAT	TCATTTTTAG	AGGAAACTTA	4260
AACTTATCTA	CTGGTAAATA	AGATAGGTAG	GTAGAATACA	ATTTCTTTTT	AAACGATCCC	4320
TGAGGAATTT	CAGGCATAAC	TAAACTATCA	GGCTGTTTTT	TAAATGTTTC	TAATAGAGAG	4380
ACAATCTCTC	CTAAGGTTGC	ACGATGAGTC	GTTGGTACGT	AGCAGTAGTT	TCCTGATGGG	4440
CTAGGTAAGA	TTTGTAATCC	ATCTAGATTA	CAACGATGAG	GATTTCCTTC	CAATGCAGTT	4500
AGACACTCTT	GTATCAAATC	ATCAATATAC	AGCAACTCCA	ATTCTACACT	TGGATCATTT	4560
ACTTGAATAG	GTAAATCGTG	AGCTAGATTA	TAACAGAAAG	TTGCTACAGC	AGAATTGTAG	4620
TTAGGACGGC	ACCACTTCCC	ATAAAGATTC	GGGAAACGGT	AAACTAAGAC	AGGTGCTCCC	4680
GTTTTCTTTC	CATATTCAAA	GAAGAGTTCT	TCCCCTGCTA	GCTTAGATTG	TCCATATATA	4740
GAGTTTGAAA	ATCGGCCTTC	TAAACTAGCT	TGAGTAGAAC	TTGAGAGTAG	AACAGGACAA	4800
GTGTTTTCAT	ACTTTTCTAA	AATCTCCAAT	AATCTACTTG	AAAAACCGTA	ATTTCCCTCC	4860
ATGAATTCAT	CAGGATTCTG	TGGACGATTG	ACACCAGCTA	AATGGAATAC	GAAATCGGCC	4920
TTCTTACAAT	ATTCATCTAA	TAAAATCGGA	TCTGTATCAC	GATCATACTG	AAAAATCTCT	4980
CCAATCTCTA	AATTAGGACG	AGTCCTATCT	CGTCCATCTT	TCAAAGCTTC	CAGAGTACAG	5040
ATAAGATTTT	TTCCTACAAA	TCCTTTCGCT	CCTGTGATTA	AAATATTTT	AATCATGCCC	5100
CCTCCTTATT	TTATATGCTG	TTTTAATAGT	TAACTCTCTC	GACAATACAT	GATACATTAT	5160
ATATCCTTGA	TAATTTTAAT	GTATCTTAAA	AGATTTTACA	TCTCTTCGTC	TGCTACCATA	5220
TCACGAATTG	CTGTCTGTAT	TTCATCTAAT	TCTAGCAACT	TTCTTTTAAC	TTGCTCTACA	5280
TCCATCAAAT	CGGTATTATT	ACTATTGAAT	TCTGTCAACA	AATTTCTATT	CGTACTACCA	5340
TCTTTGAAAT	ACTTATCATA	GTTAAGATTA	CGATTATCAC	TAGGAACTCT	ATAAAAATCA	5400
CCCAAATCAA	TTGCATTTGC	GCACTCTTCG	TTAGTTAATA	GTGTTTCATA	CCTTTTTTCT	5460
CCGTGTCTAA	TACCTATAAT	CTTAATATCT	TGTTCTGAGG	CAAAAATTTC	TGATACAGCC	5520
TTAGCCAACA	CTTCAATCGT	ACATGCTGGT	GCTTTCTGAA	CTAGTATATC	TCCAGATTTC	5586
CCTTCTTCAA	ATGCAAATAA	AACCAAGTCT	ACTGCTTCTT	CCAATGTCAT	CACAAAACGT	564
GTCATGCTAG	GTTCAGTAAT	TGTAAGAGCA	TTTCCTTGCT	TAATTTGCTC	AATCCAAAGA	570

GGAACGACAG	ATCCACGGCT	ACACAGAACA	TTCCCATAGC	GAGTCACACA	TATCTTTGTA	5760
TGCTCAGGAT	TTACCGTCCT	GGACTTAGCA	ACAGCAATCT	TTTCCATCAT	AGCCTTGGAT	5820
GTTCCCATAG	CATTGACAGG	ATAAGCCGCC	TTATCTGTAG	AAAGACAGAT	AACTTGCTTT	5880
ACACCAGCTT	CGATAGCCGC	AGTGAGGACA	TTCTCCGTTC	CCAAAATGTT	AGTTTTTACC	5940
GCTTCTACAG	GGAAAAATTC	ACAAGAAGGT	ACTTGTTTAA	GAGCAGCAGC	GTGAAAAACA	6000
TAATCCACAC	CATGCATAGC	ATTTTTTACC	GAAGCTAAGT	CACGCACATC	TCCAAGGTAA	6060
AAACGGATTT	TCCCAGCCAC	TTCTGGTACT	TTTACCTGAA	ACTCATGACG	CATATCATCT	6120
TGTTTCTTTT	CATCTCGCGA	AAATATACGA	ATCTCTGAGA	CATCTGTTTC	TAAAAAACGC	6180
TTGAGAACCG	CATTCCCAAA	TGAACCTGTC	CCTCCTGTAA	TTAGGAGAGT	TTTTCCTGTA	6240
aattgtgaca	TATATTACAC	TTCTCCTTCT	AGTATGTCTG	CAATTTTCTT	ACAAGCCGTT	6300
CCATCTCCAT	ATGGATTTGA	AGCTTGACTC	ATTGCTTGAT	AAACTGAATC	ATTTTCTAAT	6360
AATTCTTTAA	AATGCCTATA	AATATTATTT	TCATCAGCAC	CTACAAGTTT	CAAAGTCCCT	6420
GCTTCAATTC	CCTCTGGACG	TTCAGTTGTA	TCTCTCATAA	CCAAAACAGG	TTTTCCTAAA	6480
CTTGGAGCCT	CTTCCTGAAT	ACCACCACTA	TCTGTTAAAA	TTAAATAACT	TCTTGATAAA	6540
aaattgtgaa	AATCTAATAC	TTCTAAAGGT	TCGATCATCT	TGATACGTTC	ACAGCCACTT	6600
AGTTCTTCCT	CAGCAATTTG	GCGAACACGA	GGATTCATAT	GGATAGGATA	AATAGCCTTG	6660
ACATCTGAAT	ATTCTTCAAT	AATCCTTCTA	ATTGCTCTAA	ACATATGTCT	CATCGGTTCA	6720
CCAAGATTTT	CACGACGATG	AGCTGTAATT	AGAATAAACC	TGCTTTCTCC	TATCCATTCT	6780
AACTCAGGAT	GCGTATAGTC	CTCTTGAATT	GTAGTTTGTA	AAGCATCAAT	CGCCGTATTA	6840
CCTGTCACAA	ATATGCTCTC	TGGAGTTTTT	CCTTCTCTTA	AAAGATTATO	TTTTGAAAGT	6900
TGTGTTGGTG	ТААААТСАТА	CTGAGCCAAA	ACCCCAACTG	CTTGACGATT	AAACTCTTCA	6960
GGATATGGTG	AATAGATATC	GTAAGTGCGC	AAACCAGCTT	CAACATGACC	AATTGGAATC	7020
TGTAAATAAA	AGGCCGCCAG	TGAACTAGCG	AAGGTCGTAC	TTGTATCCCC	ATGAACTAAC	7080
ACCAAATCAG	GTTTTTCTGA	CTCTAAAATA	GCCTTCATTC	CTTCCAAAAT	GCCAATGGTC	7140
ACATCAAATA	AAGTTTGTTT	ATCTTTCATA	ATAGACAAAT	CAAAATCGGG	AATAATCCCA	7200
AATGTGTCCA	AGACCTGATC	CAACATTTGA	CGCTGTTGGC	CCGTAACGCA	AACTAATGTT	7260
TCAATATTCT	TACGTGTTCT	TAACTCTTTC	ACCAAAGGAC	ACATCTTGAT	GGCTTCTGGA	7320
CGAGTTCCA	ATACTACAAC	TACTTTTTT	ATATATTAC	TTACTCCTAA	CAAATAATGA	7380
ACGGTTCTTA	AAATAAATTA	GATAACGGCT	AATCCATAAC	ACCACCTCAC	ACATACTTGA	744

AGARATAGET AATGTTACTA AACTAAAATT ATCACACAGA ATAAATATTE CHATCACTAGA ATCACATAGA ATCACACAGA ATCACACAGA ATACACACAGA ATACACACACACACACACACACACACACACACACACAC	300 360 360 368 368 360 360 360 360 360 360 360 360 360 360
TECTAAGACA ATCGAAGCTA ATATACHTCT CATTOTACT TOTTCACTT ATATACTACA ATCATAGA ATCATAGA ATCATAGA ATATACATAGA ATATACATATA ATCATATAGA ATATACATAGA ATATACAGA ATATACATAGA ATATACAGA ATATACATAGA ATATACAGA ATATACATAGA ATATACAGA ATATACAGA ATATACATAGA ATATACAGA ATAT	520 580 740 800 860 920 980 040 100
ATTOCACATA AAACCAAAT TCGAAACCA ACTAGTCCT CCAAATATAG AAAGAATTCG AATTACAGAA TATCCAAACTCC AAAGATAATA GGAATAAACA TAATCCGATT AATTCCTTCA ACCGATTGTA TATCTTTAGT ACGTATCATA TGCGGATATA AACTATTCGC AATTACCTCTTA ACCGATTGTA TATCTTTAGT ACGTATCATA TGCGGATATA AACTATTCGC AATTACCTCTTA ACCGATTGTA TATCTTTAGT ACGTATCATA TGCGGATATA AACTATTCGC AATTACCTCTTGA CTTTGTAAAT AAAAACCCGA AATGACTGTC GTAAAGACGC CAAAAATAGT AAGATTACAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTTAA CCCAAACAGA AACGAAACAGA AATGAATAATA TAATTCCATA ATAATGAAGG AATCTATTAAG AAACTACTGC AAGCAACTAAA TTCCCAAATA AATGTCAAAA TGGAAATCAT AAGGAATCAT AAAATAGAAG AATCATCTTT AAATCAAAAA AAAGTCAAAA AAAGTCAAAA AAAGTCAAAA AAAGTCAAAA AAAGTCAAAA AAAGTCAAAA AAAGTCAAAA AAAAAAAAAA	580 740 800 860 920 980 040 100
ANTITIGAAAAG AATAAAACTA TCAAAACTCC AAAGATAATA GGAATAAACA TAATCCGATT  AATACTCTTA ACCGATTGTA TATCTTTAGT ACGTATCATA TGCGGATATA AACTATTCGC  TATAGGATTA TACAATGATT TTGCTGCTGA AAGCAGTTGC ATTGCTATCC CCCAAAAGGC  TATCTCTTGA CTTTGTAAAT AAAAACCCGA AATGACTGTC GTAAAGACGC CAAAAATAGT  AGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTTAA CCCAAACAGA  CAGATAAGAA AATGATAATT TAATTCCATA ATAATGAAGG AATCATATAG AAACTACTGC  AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT  TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC  AGCTAACAATA TAAAAAACTG AAAAAAGAAT ATTCTCTCC ATTATTGGGA TTTGCCACAT  CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC  TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGA TTTACAATAT TTTTTTGTAGC  AATAACCATT CCATACGCGT CTAGCGAAG CACCCTTGTC AAAATACGGGA GTGTTAATAA  AGGAAATAGT AAATTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAAATGA  AAGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAAATGA  AAGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAAATGA  AAGTTCAACAA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  TTCTCCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	740 860 920 980 040 160 220
AATACTCTTA ACCGATTGTA TATCTTTAGT ACGTATCATA TGCGGATATA AACTATTCGC TATAGGATTA TACAATGATT TTGCTGCTGA AAGCAGTTGC ATTGCTATCC CCCAAAAGGC TATCTCTTGA CTTTGTAAAT AAAAACCCGA AATGACTGTC GTAAAGACGC CAAAAATAGT AGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTTAA CCCAAACAGA CAGATAAGAA AATGATAATT TAATTCCATA ATAATGAAGG AATCTATAAG AAACTACTGC AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT BCCAACTACC TTACCAATCT TGAGGGAGT AGTACAAGA TATTTTTCAA CTAGAGTATC CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTTGTAGC BCTAACAAA AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	920 980 980 980 980 980 980 980 980 980 98
TATAGGATTA TACAATGATT TTGCTGCTGA AAGCAGTTGC ATTGCTATCC CCCAAAAGGC  TATCTCTTGA CTTTGTAAAT AAAAACCCGA AATGACTGTC GTAAAGACGC CAAAAATAGT  AGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTTAA CCCAAACAGA  CAGATAAGAA AATGATAATT TAATTCCATA ATAATGAAGG AATCTATAAG AAACTACTGC  AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT  TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC  AGCAACTACA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT  TCCAACTATC CTTCCAATCT TTGAGGGAGT AGATAAAAAT ATTTTTCAA CTAGAGTATC  TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGA TTTACAATAT TTTTTCTAGC  AAATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AAATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	920 980 040 160 220
AGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTAA CCCAAACAGA 75 AGGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTAA CCCAAACAGA 75 AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT 8 AGCAACTAAA AATGTCAAAA TTGTAATGAT AGGTTTAGAA ATAAATAGAAG AATCATCTTT 8 AGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT 8 AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGA TTTGCCACAT 8 CCAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTCAA CTAGAGTATC 8 ACCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC 8 AATAACCAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 8 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 8 AAGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTT TTATAAATGA 8 AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	920 980 040 100 160
AGTTGCAAAA TTGGATAAAA AATAAATAGA GGATTCCTTT AAATCTTTAA CCCAAACAGA CAGATAAGAA AATGATAATT TAATTCCATA ATAATGAAGG AATCTATAAG AAACTACTGC  86 AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AAATCATCTTT TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC 87 AGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT 88 AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT 89 CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC 80 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC 80 TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 80 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 81 AAGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA 82 AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 83 AATTCTATCA ACTTTCACGA TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	980 040 100 160 220
CAGATAAGAA AATGATAATT TAATTCCATA ATAATGAAGG AATCTATAAG AAACTACTGC  AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT  TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC  TGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT  AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGA TTTGCCACAT  CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC  TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC  AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  AAGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	040 100 160 220
AGCAACTAAA TTCCCAATTC CTTCCAATAT AGGAATCCAT AAAATAGAAG AATCATCTTT  TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC 8 TGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT 8 AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT 8 CCAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC 8 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTCTAGC 8 TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 8 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 8 AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA 8 AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	100 160 220
TACTACAATA AATGTCAAAA TTGTAATGAT AGTTTTAGAA ATAATATAAG GAATTGCAAC  8 TGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT  8 AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT  CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTCAA CTAGAGTATC  8 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTCTAGC  8 AGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA  AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  8 AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	160 220
TGCATGCATC TTTTCAATTC CACGAAATAA AAAGTCAAAG ATAAAAATAT TGGTCACTGT  AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCTC ATTATTGGGA TTTGCCACAT  CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC  8 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC  8 TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA  AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	220
AGCTAACAAA TAAAAAACTG AAAAAAGAAT ATTCTCTCT ATTATTGGGA TTTGCCACAT  CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTTCAA CTAGAGTATC  8 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTCTAGC  RGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA  AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	
CAATATGGTG TAAATTAGAA TCGAAATGAT AGATAAAAAT ATTTTTCAA CTAGAGTATC 8 TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC 8 TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 8 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 8 AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA 8 AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	
TCCAACTATC CTTCCAATCT TTGAGGGAGT AGTACAAGCA TTTACAATAT TTTTTGTAGC 8 TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 8 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 8 AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA 8 AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	280
TGATATCATG AAACCAAAAT CAATCACCAG TTGAACATAA GCTATTAACG CTTTAACATA 8 AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA 8 AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC 8 TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	340
AATAACCATT CCATACGCGT CTAGCGAAAG CACCCTTGTC AAATACGGGA GTGTTAATAA  AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTTT TTATAAATGA  AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	400
AGGAAATAGT AATTTAACAA TATTCAGAAT ATAGAGAGAA CTTGTATTT TTATAAATGA AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	460
AATTCTATCA ACTTTCACGA ACTAGTCCTT CCAAAAAAAG ATCTAAATAG TCCAAACTAC  TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	520
TTCTCGCTTT CAACACCAAT TCTGAAGGTA TTGTTATCGG TTTTAGATGA AAAGTTTCAA	1580
<u>-</u>	64
CTTTCTTAC AATACTATTA ACACTTGAAT CAAATAAAGA TTCACAACGT TGTAACTCTC	370
direction residents	376
CAATTGCTCC ATAATAACGT GCTGTTTTTT CTGGATGGCA TGCAATGGCA ATCACAGATI	382
TATTAAAACA TGTTGCCACT ACCCCAACAT GTAATTTACA AGTTAAAACC ACATCTACCA	388
TTTTCAACAA TGATGTCATT TCTGCAGGAG AATGATACTT GAATTGAAAA CAATCCTCAG	894
TTCTAACTAA TTTTCTAAAT TCCTGATAAT AAGCATCTTC ATAAGGTAGA ATGGAATCCG	900
AAGTTACTAC AACATAATAG TTAGGATTGT TTTCTAGAAA AAGACTAATT GATTCCGCAA	906
ATTITICAAG AGCTTTTTTG GAATGATTAT AGTGAACAAG AATTATCTTC TTATCTTTAG	912
CTTCTCTTTT CAATTGACAC AGCTGCTCTG TTTTTTCTTC TCTTAATTTA CTTGAAATAA	918
TTAAATCAAA GGTTTCATGC ACTGGAGCCG AAGGCGACAA ATGCTTCAAA GAATCAAATG	924

. . . . . . . . .

ATTCTCGATC	ACGAACTGTA	ATAAATTGAG	CATGATTAAT	AATTCTCTTT	ATACCATAAT	9300
TCATCAAAGA	ATCGTTATTA	GGCCCTGCAC	CAATACCTAA	тастсстата	GGCTTTTTAA	9360
AATATGAAGC	CCAAATTCCC	AAAGGTAAAA	ATCGTTTAAA	TTGGATTAAA	TTATCACGAA	9420
AACGTGCATT	ATGCCCTTCC	CCAAAATATC	CTCCCGGGAT	ATACAAAATA	GCATCTGCTT	9480
GTTTTTTAGT	AAAACTTTGT	TTTTGGCGAT	ATTCTTTCAA	GTACATTTGA	AAGAAATCTG	9540
ATGGATTATA	AAAAGAAACT	TCATATCCTT	TAGATTCTAA	TAAATCATAG	ACAATCTCAC	9600
CGTAAAGATA	ATCACCGTAA	TTACTTGAAC	CATAATCCGT	TGCACCATGT	AACATAATTT	9660
TTTTCACCAC	TATTTTTCA	ACCTCCTAAA	AATAAATATC	ATAATCAAAC	TATACATAAT	9720
AGGACGATAA	ACATCTATTG	AACTACTTCT	CACTAAAAGC	AATAGTTGAG	AAATTACCGA	9780
AAAATAAATA	ACTTTTGAGA	TTTTACTTGT	TTGAAAAGCT	CTGAAATTTA	ATCGCCATCC	9840
ACTAAATATT	CCCAAAACAA	AACTCCAAAA	AACACCACCA	TAGTAACCAA	AGTTCCAAAA	9900
TAATTCTTCC	ACAAAAGAAG	AGCCTACAGG	TAACCCCAAA	AATTTATTAA	TAACAACCGT	9960
CGCTGATGCT	TTATCAAAAA	AATCACCAAC	TAACCATCCA	ATAGGAAAAA	TTGATAGGAT	10020
AGTGCGTAGA	AATGTCATCC	CATATTCATA	TGGAATGCTA	CTAGGCACAA	CAGTTACAGC	10080
AGAAGCTACT	GTTAGGCTGG	TCAGTCCCGA	CTCTGAAAAT	ACTTCCCCTA	GTATATTCTT	10140
TACAAAATCT	AATGAAGAAA	AGGAATCAAA	TAAGTATATA	CCTATAGTAT	TCAAGTCGAA	10200
ACGGTGCCCC	CTAATAACAA	CTAATACATT	TAATAGAAAT	ACAGTTACTA	TTAAAAATAC	10260
AAGTACTCTT	TTCTTCGAAA	AAGTAATCCC	TAAAGATTGT	GTGTATACTA	AAACCAACGC	10320
CAAGATTGAA	AACACCTGGA	TTTTACGACT	TCCTGTTAGG	ATCATTATCA	AAATTAGGTA	10380
AAACAACATT	ACCCAAAAAA	TAGTACGCTT	TATAACTCGG	GACAGCTTAT	CTGAATAAAA	10440
CAAGGAGAAC	ACACCAGGAA	GCATAAGTAC	TCCTAAATCA	TCTATTATTC	CTGAACTAGC	10500
TGCCTCTGAA	TATGCTGAAT	AGCTATTCGC	CGCTCTAACT	GCTAGTACTG	TTTTAGAATC	10560
AGTTATTACC	CTAGAAATAA	AGCCCACTCC	TGTTAAAATC	CTACCCGCAT	TGTACAAAAT	10620
TTTCTCTTCA	TTTTCCTGAT	AATTTTGTAC	TTCTGAATGA	TAATGTACCT	TTCCATCACT	10680
талалаата	AAATAGCCTA	CAGAATAACA	AAACAAAATC	CAAATTATAA	AAATATATGA	10740
atgaaataat	TCTTCATTAT	TATAGAAGTT	ACTAGGGCTC	CACAGCAGAG	TTGTTTGAAA	10800
CCCCATATAC	TCATTGAAAA	TTAATCCAAA	САТАААААА	TAAGATAAAA	TCAGATACCA	10860
TACAGAAAA	TCATATATAC	TAACTTTTTG	ТАЛЛАТАЛА	CCAGTAATTT	GAAAAATAAT	10920
TAGAAAGCAA	ACCCATATAA	ATATAGACGG	AACATAATTA	GATATAAGAA	AACCATTATT	10980

354 11040 CCAATTATCG AGAGTCCAGA ACAAGTAACA GAAAGCAAAT ATAALACTTA ATGTCACTAG TGTCACTCTA CAAATATACT TTGTCTGCAT CTATATCTCC TTTATTACAC ACATTTCTTG 11100 11160 ATAACGATTC AATAATTTAC TAGCTTGATA ACAAATATCA TAGAGTCCAT CTGTCATACT GTTATTTATT TCAAAACGAT TGCATTCCTC AGATGTTAAA GACAGTACTT TATCTTTCCA 11220 11280 TAGCAACACA GACTCTTCGT TGATAGGTAA GTAACTAATG TTTTTGGTCA CATCTACTTC TTGCGTCACT GTATCTGACG ATAAAATTTG TAATCCCGAT GCCTGAGCCT CTACTAGAGA 11340 AACAGGCAAC CCCTCATATT TAGACGGAAG CAAAAAAACA TCCATCGCAG ATAATAAATC 11400 AGAAATATCA GTCCTTCTCC CTAAAAATAG CACATATGGG GTCAGATTTA GTTCTAAAGC 11460 TITCTGTTTT AATTTCTGCT CATCCTCACC ATTACCAACT AGGAGTAAAA TAACATTTGG 11520 TTTGATTAAA ATGAGTTCTT TTAAAACGTT AAATAAATAA CTTTGGTTTT TTTGATCTGA 11580 TAGGCGAGCT ATATTTCCTA ATACGAACTT ATTTGACACA TCTAATTCTC TACGACATTT 11640 TTCTCTAACA TCTGACAAAA ATTGATACTT TTTCAAATCA ATTGCATTAA AAATAATTTC 11700 AATTITTCCG TCTTTATACG CTTTCTCTCC ATATAACCAC TTAGCCGAAT CTTCCCCACA 11760 TGCAAACCAA TGAGTTGCTA AGATTTTTAC CAAAATTGTT ACTAATTTAC GCAATACTTT 11820 TTGAAAACTG TTTTCTGTTA CATAAGCCAT ATGACTATGA ATAATTCTAA TTTTACAACC 11880 AATTATTTTA GATAAGATCA GACCAATTGC AGATTTATAG CCATGGCAAT GAACTATATC 11940 ATANTOTOCT TTCTTATTA TTCTAGCAAG AGAGAGAAAC TGATGTAGAG GCTTTTTCCT 12000 TAATAGAGGC ACATGATAAA CCTTTGCACC CAATTCTTTC ATTTTATCCT CTAAAAATCC 12060 TIGITCITTI CCAGGCACAA TAAAATCAAA TIGAATTITI TITCIATCAA TGTGAGAATA 12120 12180 ATAGTTGAAT AGAAAACTTT CTACTCCACC ACTATCTAGT GTTGTAAATA GATGTAATAC 12240 TPTAATCATT CTTCTTCCTT AAGCTTAAGA TTCGCTTCTC TAATTCTATT TCTGTTTTTT GTTTTTCTAA ACTAATTCTG TCCATGAAGT TATCACAATT CTTAATTAGC TGTTTCCTGT 12300 CAAGGTTTTG AATATACAAA GCCAAACAAT CTTTTTCCGA TTCATCCTTC ATAGGTAAAA 12360 CGAAACCAAA ACCATTCTCT ATTGACACTT TTTCCATATA AGTATCTTCA CAAACTAAAA 12420 TAGGTTTATA CAACAATGCA GCAAAGTAGA GTTTATTAGA CAAAGCATAG TCTAGTAAGG 12480 GAGTGTGATT CCCGTATAAA TTCAAAACAA CATCTGTATT CTTATAAAAA GACATGGTAT 12540 CTTTAGGCTG GAATGTGTCC ACCAAGTTAA CATTGCTGAT ATTTTTTTCT TGACAAAATT 12600 CCCTTAATTC TCCTGCATTA GTACCTATAA AATTCAACTG AAATCGACTG TCATTTGCAA 12660 AAAAATCGAT TATTTTTTA TTTTGTTCTT GAAAACGAAT TAAACCAATG TAGGAAAGTT 12720 12780 GAATTGGAAA CGTACTATTA TTTTTTAACT GCTTTACCTC GTTTAATTCT ATCATATTGG

GTAGGTTATG	GGTAGTAAAA	TACTCTCCCA	TTGGTAAAAA	AAATTTATAG	CCGTCTGAAG	12840
AAACGATATT	CATTAAAGAA	TTTTTCACCA	ATTGTTTCTG	AACCAAACGA	TAAACCAAAA	12900
ATTTTTCATA	ACTGTAATCA	CGAATATCAT	AAATATATCT	ATTTTTAAAT	GAAAAGAGAA	12960
GAAAATCTAC	TAAAATGAAA	GACACAATAC	TATGTAACGG	CAATATCATA	TCATAATCAT	13020
TTTCTTTTAG	CTTCTTTTTA	ATTTCTTTTC	TGAATTTTAC	ATAACCTAAT	ATCTTACTTA	13080
ATTTTCCTTT	ACCAGAAAAA	GAAATACGAT	AGTAGTTTTG	TTTTGTAATA	ATCTCGTTAA	13140
TATTCTTATC	CCAATATATA	ACATCGTAAC	TAATAGACAG	TTTCTTCAAT	AATTCTTTAT	13200
AAAAATTGAA	GTAAGGAGTT	AGATATATAT	TATCAGATAG	TATAAACAGT	ACTCTCATTA	13260
AATTATTCTT	TCTTACTTTC	ССТСТСТААА	CATGTCTCCA	GTTCGAGCAT	AAACTGCTCT	13320
TTTGAAAAGT	GATTTTCATA	GTAACAACGA	GCTTTCTTTC	CTAACTCTCT	TTGTCTCTTA	13380
ATAGATAACA	TACTAAATTT	ACAAATATTT	TTTGCCAATT	GTTTTACATC	TCGTTCGGGA	13440
CTAACATATC	CACAATTTGC	TTCTTCTACA	ATTATTTTAG	CATCTCCTGA	AATTGCACCT	13500
ataattggtt	TGCCTGCCGC	CATATAAGAk	TGTACCTTCC	CAGGTATAGT	ACGAGAAACT	13560
ATCGAGTCTC	CTATTAAAGA	AACTAACATA	GCATCTGATT	TTTTATAGAA	GGATGGCATT	13620
TCCTCCAAAG	AACGTCTTCC	ATAGAAGGAA	ATATTCTTTA	ACTCCAATTC	ATGAGCTAAT	13680
GCTTTCATGC	TTAACAATTC	CGTACCATCT	CCAACAAAAT	GAAAATGAAT	TTTCTTGGGT	13740
AAATTGGTAT	TCTTCTCTAT	CAAACTGGCA	GCTTTCAAAA	TAGTTTCCAA	ATTTTGTGCT	13800
TTGCCAATAT	TACCAGCAAA	AGTTAGGTCA	ACACTTTCTT	TATTAACTAT	AGATTCATCA	13860
GGGATAAAAA	GATCTTCTGC	ATATTGTGGC	AAATATGTAA	TCTTTTCTTC	GGATATGTCA	13920
AATTGCTTCA	CAAAATAATT	TTTAAATGAT	CGACTAGTGA	CAAATATATA	ATCACTAGCT	13980
CGGTAAACTT	TTTTTGAGAT	AAATTTAAAC	AGCTTGAAAA	TCAAGCCATC	TTGTTTCACT	14040
CCACCTACGG	TTAAACTATC	TGGCCAAACA	TCCATACAAT	ATAGAAACAT	CGGTTTCTTA	14100
TATTTTTTT	TATAAGCCAT	ACCAGCCCAT	GCCATCATAA	CTGGAGACAA	TTGGTTAACG	14160
AATACACAGT	CAAAATTCGA	TCCATCTTTC	GTTTTATACC	TCCCCAATAA	AACTCCTAAA	14220
GTAGAACTAA	TTGCAAAGCT	AAAATAATTC	AACAATCGAA	ATACAACACT	ттттттста	14280
GGGATTGTAT	AAGAACGATA	TATCGTAACA	CCTTCTATAA	TCTCACGTCT	TTTTTTTTA	14340
TGACGATAAT	CTGCATATAT	CTTCCCTTCA	GGGTAATTAG	GAATCCCAGC	CAAAACAGAG	14400
ACTTCATGCC	CTTTTCGAAC	TAAATCTTCA	CAAATATCTG	ACAACCTGAA	TGGTTCTGGC	14460
TTATAATGTT	GGCAAACAAA	TAGTATTTTC	ATTGTCCAAT	TTAACTTTCT	TTCTTACCAC	14520

356 TACCCTCTAC AATACCTTTT CGTTTCAGTA CGTAAGGTAT TGTCTTAACT ATACATCTAA 14580 TATCCATTAT CAAAGACAGA TGTTTAACAT AGTAGCCATC TAACTCCGTC TTCATCTCAA 14640 CAGACAAAGT ATCACGCCCG TTAATTTGTG CCCATCCAGT TAACCCTGGC AAGATATCAT 14700 TTGCTCCATA CTTATCTCTC TCTGCAATCA AATCTAGTTC ATTTATACCC GCTGGTCTAG 14760 GACCTACAAT ACTCATATTA CCAACAAGAA TATTAAACAA TTGTGGTAGT TCATCCAAAG 14820 ATGTTTTTCG CAAGAAAGCC CCTACTTTG TAATCYATTG CTCTGGATTA TATAAGTTTC 14880 GAGGCGCCAC ATTTTTAGGT GCATCTATTT TCATAGACCT AAATTTCAAA ATATAGAAGT 14940 ATTCTTTATG AATACCAAAG CGTTTTTGCT TAAATATAAC CGGACCTTCT GAATCAAGTT 15000 TAATCGCAAT TGCAATTATC ATAAAAACCG GACACAATAT TATTATCCCT ATTAAAGATA 15060 ATAATATATC ACCTAATCGT TTTATTATAC CGTACATAAA CAACCTCCAA CTATAAATTC 15120 TATTTCCATT TTTCATTCTA TTTCCATTG ACAAATTAAA TCAGGCAGTA CATGCAACTA 15180 CAGAAACTCA ATATATTT GGTCACTCAA TGATTTTCAG AAATATAATT CTTTTATCCT 15240 CTACGTCAGA TAAAACTTTT CTCCATCTAA ACAAAATTTA TTTGTTTCAG TAATATATGA 15300 GTTCTCAATA ATGAATTAGA AGGTCCAGTT CAATTATTCT TCCAAATAGA CCGAATATTA 15360 TTTGAAGACA TATCGGTTTC TGAAATTGCA ATCAGTACAT AAGCTAATAA ACTGATAAGT 15420 ATGCTCTGTA AGAATGCCAG AGTTATATTG TAGTCCCCTT CCATACTATA TTCATTTAT 15480 TTTTTACCAT AATTTCCATA GGAACCGTAA ACTCCATACT TATTAACCGA GATATCCAAT 15540 TTATTTAAAA CAACTCCTAG GAACAGTTTC CCTGTTTGTT TTAATTGTTG TTTCGCTTTT 15600 TGGATATCAC GTTTATTCGC CTCACCTGTT GCTGTTACCA AGATGGACGC ATCACACTTT 15660 TGAGTGATAA TTGCCGCATC AATAACAATT CCAATAGGCG GTGTATCAAT AATGATATAA 15720 TCAAAATATT TACGCAATGT TTCAATCATA TCATTAAAAT TTTTACTTTG TAACAAGGCT 15780 GTAGGGTTTG GTGATACAGA TCCCGATTGA ACTACAAATA AATTTTCAAT ATTTGTATCA 15840 CATAAACCGT GAGATAAATC AGCTGTCCCA GATAAAAATT CTGTTAGCCC TGTAATTI IT 15900 TCACGAGATT TAAAAACTCC TAACATAACT GAATTTCGAG TATCGCCATC GATCAAAAGA 15960 GTTTTATAGC CTGCACGCGC AAACGACCAT GCTATATTTA TGGAAGTAGT TGTTTTTCCT 16020 TCCCCAGGCT TAACAGAAGT AACGGAAATT ACTTTTAGTT TATCTCCGCT CAACTGTATA 16080 TTTGTACACA AGGCATTGTA ATATTCTTCT GCCTTCTTAA TGAACTCCAG TTTTTTTTGT 16140 GCTATTTCTA ATGTCGGCAT CCTTCTCTCC TATTTCAACT TACCCAAGTT TGGCACAACT 16200 CCCAAAAGTG TCATCTGCAA TGTATTTTCG ATATCTTCCG GACGTTTCAC ACGAGTATCC 16260

AAAAGTTCAA GATGAAGAAC TATAACACTA GTTCCAATCA CCCCTGCCAA AAAACCAATT

AGTGTATTGC GTTTAATATT TGGCGAAGAC GGGGATATCG CCGGCCTTGC CTCCTCCAGT	16380
GTTGTCACGT CAGAAACACG AGTAATACTG ATAATTTTTT GAGCAGCTAC TTCTCCAAA	16440
GAGTTAGCGA TACGGCTTGC CTCTTCAGGA ACTCGATCAT TAACTGAAAT AGAGACAATA	16500
CGGGTATCAA CTGGTACTGT CACTTTAATT TTATTAGCCA AACCTTTTGG CGTCAAATCT	16560
AGTTTCANAT CAGAAACAAC TTCCTCCANA ACATCCTGCG NAAGGATAAT CTCACGGTAG	16620
TCTTTTACCA GATAAGTTCC TGCCTGCAAA TCCTGATTTG TCAACCCCGG CTTGTCTCCT	16680
TGATTGCGAT TCACTACGTA AATTCGCGTG GTACTCGTAT ATTCTGGCTT AACAATAAAA	16740
GTGCTATATG CAAAAGCCCC CGCACCTGTC ACAAGTGCCA CTATTAAAAT CATTAGCTTG	16800
CGTTTCCACA AGCTTTTAAC TAATTGAAAT ACATCGATTT CTATCGTATT TTGTTCTTTC	16860
ATCATTTCTC CTAAATTAGT TGATCCATTA CAATTTTTCG AGGATTGTCT ATAAAAAGTT	16920
CCTGAGCCTT CGCTTCTCCG TATTTTTGGG TAACAAGGTC ATATGCTTCT GCCATATGAG	16980
GAGGTCTACC GTCTAGATTG TGCATATCAC TTGCAATGAC ATGAACCAAA TCCTGCTCTA	17040
AAAAATACTG AGCTCTTTTT TTCATGAATT TATAACGTTC GCCAAAAAGT TTGGGTTTGA	17100
GGACATGTGA ACTATTTACT TGCGTGTAAC AGCCCATATC GATCAGTTCT CGAACGCGTT	17160
TTTCATTATT TTCAAGAGCA TCATAGCGCT CAATGTGGGC AATGACTGGA GTAATTCCCA	17220
ACATCAAGAT CTTGCTCAAG GCGCTATGAA TATCGCGATA AGGAGTGTTC ATACTAAACT	17280
ACATCAAGAT CTTGCTCAAG GCGCTATGAA TATCGCGATA AGGAGTGTC HINDETCOAGCTTATCCA	17340
	17400
GAACATCTGG TGTGTAATAA ATTTCAGCCC CGTAAGCAAT GACCAAGTCA CTCGCCACTT	17460
CCTTAGCTAT TTCCCGAACC TGAAGAAAGT TTTCTGCTAT CTTCTCTCC GGAGTTTCAA	17520
ACATGCCCTT GCGACGGTGA GAGGTAGAAA CAATGGTTCG CACCCCCTGT CTGTAGGATT	17580
CTGCCAAGAG AGCCTTGCTT TCCTCTTTG ACTTGGGACC GTCATCTACA TCAAAAACGA	17640
TATGCGAATG GATGTCTATC ATTTCATCTA CCCTCCATCA CATCCTGTAT AGCTGCTTTA	
ACTACAGCTA AACTACTATC ATCTATTTCC ATCACATAGA GGTTACTGTC TGGCATTGCA	17700
TAAGAAGGAA GATCCATCCG ACCTGTCCCT TTTAAATCTT GAGAATTTAC TTTATAATTC	17760
CCTCCACTTT CTAACTGAGC ATTGACCAAA TTTATCATGG TCTCAAGTGG CATATTTGTT	17820
TGGATAGAAT CTTGCAAGCT ATTAATGATC GTACTATAAT TTTTCAGCAC TTCGGTTGAC	17880
GTTAATTTTT GAAGGATAGC CACAATCACC TTTTGTTGAT GGCGCCCGCG GTCACGATCG	17940
CCATCTGCTA GGGAGTAGCG CTCACGAACA AAACCGAGAG CCTGTTCTGA ATCAAGATGA	18000
ACATTGCCTG CAGGGTAATA CTTTCCATTC GTATGGGCAG TAAATTCTTG ATCATTATAA	18060

			358			
ACATCAATTC	CACCCAACAA	ATCAATCAAT	TTCAAAAACG	AAGTGAAGTT	CAATCGCACA	18120
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180
TAAATGCCCG	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300
AGGATGTTGA	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	TTGTACTTAA	AGATTAAGAA	CAATAAAAA	18960
CAAACTAACA	ATAAATAAAT	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080
ттататсаст	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140
ATCTTAGTAG	ACTTCCCGCG	AAACAAAAAT	ATAGTAAAAT	GAAATAAGAA	CAGAACAAAT	19200
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250
(2) INFORM	NATION FOR S	EQ ID NO: 3	6:			

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 21706 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

60	GAGCAAACAG	TCCAACTACA	ACCAATCGTT	TGTTTTTGAT	GACTGCTAGC	AAAGTTGAAA
120	AAATCAAGAA	AATTCCAAGA	CTTGATGGAC	ATGTAAGCTT	TTCTTTTTGG	TATACAAAGT
180	AAAACGCATT	ACTTATCTGA	CAACTGCCGA	TGCCATTGAC	TTCAATTTTT	ATTGCTGACC
240	GCAATATCTT	GTCATAGGGG	GTTTATCAAG	TCTTTGGCAG	AAATAGAGCT	ACCAAGGAGC

GACTAAGA	AG	ATGATTATCG	TATTTCTAAA	TCCATTTTTA	ACAACTAGCA	TGGTATAATA	300
ATATGCAG	GA	aaattttgaa	TTATGAGGAA	GACTAGATGA	ATTTATGGGA	TATTTTCTTT	360
ACGACTCA	CC	CAACCGAGCC	GCCCAAATTT	GACCTTTTTT	GGTATGTTAG	CCTATTTACG	420
CTCTTAGC	CT	TAACCTTTTA	TACAGCCCAT	CGCTATCGTG	AAAAGAAGGT	TTACCAACGA	480
TTTTTCCA	AA	TCTTGCAGAC	TGTTCAGTTA	ATCCTTCTTT	ATGGTTGGTA	CTGGGTCAAT	540
CATATGCC	AC	TGTCAGAAAG	CCTACCCTTT	TACCATTGCC	GTATGGCTAT	GTTTGTGGTA	600
CTCTTGCT	TC	CTGGTCAATC	CAAATATAAA	CAATACTTTG	CATTATTGGG	AACATTTGGG	660
ACATTAGO	AG	CCTTTGTTTA	TCCAGTGCCA	GATGCTTACC	CTTTTCCACA	TATCACCATT	720
CTATCCTT	TA	TCTTTGGTCA	TTTAGCACTC	TTGGGGAACT	CTCTAGTTTA	TCTATTGAGA	780
CAGTATAA	TG	CGCGATTGCT	GGATGTGAAG	GGAATTTTTC	TCATGACCTT	TGCCCTAAAT	840
GCCTTGAT	TT	TTGTGGTCAA	TTTGGTGACA	GGTGGCGATT	ACGGATTTTT	GACAAAACCG	900
CCATTGGT	TG	GGGATCACGG	TCTAGTAGCT	AATTATTTAC	TTGTTTCAAT	TGTGCTGGTA	960
GCTACTAT	CA	GTTTGACTAA	GAAAATCTTA	GAATTCTTTT	TAGCTCAAGA	AGCAGAAAAA	1020
ATGATTGC	:AA	AGGAAGCTTA	ACACAGAGCT	TTCTTTTTTG	CTCTTAGAGA	GTTTTTACAA	1080
GCAGCTTA	ATA	AAATAAGAAT	TTCTGAATAG	ACAAACTCAA	AAAATGGCTG	GGAAATTTAG	1140
GAAAAAAG	CA	AGCACGATTA	AATTTTTTGT	GTTATAATAT	TTTGTGAATA	GCTATGCCTA	1200
TGTTTAGC	TA	TGGAATAATA	CGAAGTGCGA	AACTTGGAAG	ATAGAGAGGA	AGCGATGTAA	1260
TGGCTAGA	GA	AGGCTTTTTT	ACAGGTCTAG	ATATTGGAAC	AAGCTCTGTC	AAGGTGCTTG	1320
TGGCCGAG	CA	GAGAAATGGT	GAATTAAATG	TAATTGGCGT	GAGTAATGCC	AAAAGTAAAG	1380
GTGTAAAG	GA	TGGAATTATT	GTTGATATTG	ATGCAGCAGC	AACTGCTATC	AAGTCAGCCA	1440
TTTCCCAA	GC	GGAAGAAAAG	GCAGGCATTT	CGATTAAATC	AGTGAATGTC	GGCTTGCCTG	1500
GTAATCTT	TT	GCAGGTAGAA	CCAACTCAGG	GGATGATTCC	AGTAACATCT	GATACTAAGG	1560
AAATTACG	GA	TCAAGATGTT	GAAAATGTTG	TCAAATCAGC	TTTGACAAAG	AGTATGACAC	1620
CTGACCGT	'GA	AGTCATTACC	TTTATTCCTG	AAGAATTTAT	TGTGGATGGT	TTCCAAGGGA	1680
TTCGTGAC	:cc	ACGTGGCATG	ATGGGGGTTC	GCCTTGAAAT	GCCTCCTTTC	CTTTATACAG	1740
GACCTCGT	'AC	TATCTTGCAC	AATTTGCGTA	AGACGGTTGA	GCGTGCAGGT	GTTCAGGTTG	1800
AAAATGTT	`AT	CATTTCACCA	CTAGCAATGG	TTCAGTCTGT	TTTGAACGAA	GGGGAACGTG	1860
AATTTGGT	·GC	TACAGTGATT	GATATGGGGG	CAGGTCAAAC	GACTGTCGCT	ACAATCCGTA	1920
ATCAAGAA	CTP	CCACTTCACA	СВТВТТСТСС	AAGAACCTCC	ACATTATCTA	ACTABACATA	1986

360 TCTCCAAGGT TTTGAAAACC TCTCGCAAAT TAGCGGAAGG CTTGAAACTG AATTACGGGG 2040 AAGCCTATCC GCCTCTTGCA AGCAAAGAAA CCTTCCAAGT AGAGGTTATT GGAGAAGTAG 2100 AAGCAGTCGA AGTGACGGAA GCCTACTTGT CAGAAATTAT TTCTGCACGA ATCAAGCACA 2160 TCCTTGAACA AATCAAGCAA GAATTAGATA GAAGGCGTCT ATTGGACCTC CCTGGTGGTA 2220 TTGTCTTAAT CGGTGGGAAT GCCATTTTAC CAGGTATGGT TGAGCTTGCT CAGGAAGTCT 2280 TTGGCGTCCG TGTCAAGCTT TATGTTCCAA ATCAAGTTGG TATCCGTAAT CCAGCCTTTG 2340 CGCATGTGAT TAGTTTATCA GAATTTGCGG GTCAATTAAC AGAAGTTAAT CTTTTGGCTC 2400 AGGGAGCGAT AAAAGGTGAG AATGACTTAA GTCATCAGCC AATTAGTTTT GGTGGGATGC 2460 TGCAAAAAC AGCTCAGTTT GTACAATCAA CGCCTGTTCA ACCAGCTCCT GCTCCAGAAG 2520 TAGAGCCGGT GGCGCCTACA GAACCAATGG CGGATTTCCA ACAAGCTTCA CAAAATAAAC 2580 CGAAATTAGC AGATCGTTTC CGTGGATTGA TCGGAAGCAT GTTTGACGAA TAAAGAGGAA 2640 AAATAAATTA TGACATTTTC ATTTGATACA GCTGCTGCTC AAGGGGCAGT GATTAAAGTA 2700 ATTGGTGTCG GTGGAGGTGG TGGCAATGCC ATCAACCGTA TGGTCGACGA AGGTGTTACA 2760 GGCGTAGAAT TTATCGCAGC AAACACAGAT GTACAAGCAT TGAGTAGTAC AAAAGCTGAG 2820 ACTGTTATTC AGTTGGGACC TAAATTGACT CGTGGTTTGG GTGCAGGAGG TCAACCTGAG 2880 GTTGGTCGTA AAGCCGCTGA AGAAAGCGAA GAAACACTGA CGGAAGCTAT TAGTGGTGCC 2940 GATATGGTCT TCATCACTGC TGGTATGGGA GGAGGCTCTG GAACTGGAGC TGCTCCTGTT 3000 ATTGCTCGTA TCGCCAAAGA TTTAGGTGCG CTTACAGTTG GTGTTGTAAC ACGTCCCTTT 3060 GGTTTTGAAG GAAGTAAGCG TGGACAATTT GCTGTAGAAG GAATCAATCA ACTTCGTGAG 3120 CATGTAGACA CTCTATTGAT TATCTCAAAC AACAATTTGC TTGAAATTGT TGATAAGAAA 3180 ACACCGCTTT TGGAGGCTCT TAGCGAAGCG GATAACGTTC TTCGTCAAGG TGTTCAAGGG 3240 ATTACCGATT TGATTACCAA TCCAGGATTG ATTAACCTTG ACTTTGCCGA TGTGAAAACG 3300 GTAATGGCAA ACAAAGGGAA TGCTCTTATG GGTATTGGTA TCGGTAGTGG AGAAGAACGT 3360 GTGGTAGAAG CGGCACGTAA GGCAATCTAT TCACCACTTC TTGAAACAAC TATTGACGGT 3420 GCTGAGGATG TTATCGTCAA CGTTACTGGT GGTCTTGACT TAACCTTGAT TGAGGCAGAA 3480 GAGGCTTCAC AAATTGTGAA CCAGGCAGCA GGTCAAGGAG TGAACATCTG GCTCGGTACT 3540 TCAATTGATG AAAGTATGCG TGATGAAATT CGTGTAACAG TTGTTGCAAC GGGTGTTCGT 3600 CAAGACCGCG TAGAAAAGGT TGTGGCTCCA CAAGCTAGAT CTGCTACTAA CTACCGTGAG 3660 ACAGTGAAAC CAGCTCATTC ACATGGCTTT GATCGTCATT TTGATATGGC AGAAACAGTT 3720

GAATTGCCAA AACAAATCC ACGTCGTTTG GAACCAACTC AGGCATCTGC TTTTGGTGAT

TGGGATCTTC	CCCGTGAATC	GATTGTTCGT	ACAACAGATT	CAGTCGTTTC	TCCAGTCGAG	384
CGCTTTGAAG	CCCCAATTTC	ACAAGATGAA	GATGAATTGG	ATACACCTCC	ATTTTTCAAA	390
AATCGTTAAG	TAAATGAATG	TAAAAGAAAA	TACAGAACTT	GTTTTTCGAG	AAGTTGCAGA	396
GGCTAGTCTG	AGTGCTCATC	GAGAGAGTGG	TTCGGTCTCT	GTCATTGCAG	TTACCAAGTA	402
TCTAGATGTA	CCGACAGCGG	AAGCCTTGCT	TCCGCTAGGT	GTCCATCATA	TCGGTGAAAA	408
TCGTGTAGAT	AAGTTTCTGG	AAAAATATGA	AGCTTTAAAA	GATCGAGATG	TGACTTGGCA	414
TTTGATTGGT	ACCTTGCAAA	GACGTAAGGT	GAAAGATGTC	ATTCAATACG	TTGATTATTT	420
CCATGCATTG	GACTCAGTAA	AGCTAGCAGG	GGAAATTCAA	AAAAGAAGTG	ACCGAGTCAT	426
CAAGTGTTTC	CTTCAAGTAA	ATATTTCTAA	AGAAGAAAGC	AAACACGGTT	TTTCGAGAGA	432
GGAACTGCTG	GAAATCTTGC	CAGAGTTAGC	CAGACTAGAT	AAGATTGAAT	ATGTTGGTTT	438
AATGACGATG	GCACCTTTTG	AGGCTAGCAG	TGAGCAGTTG	AAAGAGATTT	TCAAGGCGGC	444
CCAAGATTTA	CAAAGAGAAA	TTCAAGAGAA	ACAAATTCCA	AATATGCCTA	TGACCGAGTT	450
AAGTATGGGA	ATGAGTCGTG	ATTATAAAGA	AGCGATTCAA	TTCGGTTCCA	CTTTTGTTCG	456
TATAGGTACA	TCATTTTTTA	AGTAGGAGAG	AACCATGTCT	TTAAAAGATA	GATTCGATAG	462
ATTTATAGAT	TATTTTACGG	AGGATGAGGA	TTCAAGTCTC	CCTTATGAAA	AAAGAGATGA	4686
GCCTGTGTTT	ACTTCAGTAA	ATTCTTCACA	GGAACCGGCT	CTCCCAATGA	ATCAACCTTC	4746
ACAGTCGGCT	GGCACAAAAG	AGAACAATAT	CACCAGACTT	CATGCAAGAC	AACAGGAATT	4800
GGCAAATCAG	AGTCAGCGTG	CAACGGATAA	GGTCATTATA	GATGTTCGTT	ATCCTAGAAA	4860
ATATGAGGAT	GCAACAGAAA	TTGTTGATTT	ATTGGCAGGA	AACGAAAGTA	TCTTGATTGA	4920
TTTTCAGTAT	ATGACAGAGG	TGCAGGCTCG	TCGTTSTTTG	GACTATTTGG	ATGGAGCTTG	4980
TCATGTTTTA	GCTGGAAATT	TGAAAAAGGT	AGCTTCTACC	ATGTATTTGT	TGACACCAGT	5040
GAACGTTATT	GTAAATGTTG	AAGATATCCG	TTTACCAGAT	GAAGATCAAC	AGGGTGAGTT	5100
CGGTTTTGAT	ATGAAGCGAA	ATAGAGTACG	ATAATGATTT	TTTTAATTCG	TATGATTTAT	5160
AATGCAGTGG	ATATTTACTC	CCTGATTTTG	GTAGCCTTCG	CTGTCATGTC	TTGGTTTCCA	5220
GGTGCCTACG	AATCCAGTTT	AGGTCGTTGG	ATTGTAGCGT	TGGTGAAACC	AGTGCTTGCT	5280
CCCTTGCAAC	GCCTGCCTTT	ACAGATAGCG	GGTCTTGATT	TATCTGTTTG	GGTTGCGATT	5340
GTTTTGGTTC	GATTTTTAGG	AGAAAACCTA	GTGCGTTTTC	TGGCGATGAT	AGGATGAATA	5400
AAGGGATTTA	TCAGCATTTC	TCCATAGAAG	ATCGTCCATT	TCTTGACAAG	GGAATGGAAT	5460
CCATABACAA	CCTACAACAT	ACCORDINACIONO.	CONTRACTOR	mccmmma.mc	1100000100	5536

GGAGAAGCT	ATTAAAGATT	TTGGCCAAAA	CCTATGGTCT	TGCTTGTAGC	AGTAGTGGGG	5580
ATTCGTCTC	GAGTGAGTAT	GTTCGAGTTT	TATTATACCC	AGATTATTTC	CAACCAGAGT	5640
TTCAGATTI	TGAAATATCT	CTCCAGGAAA	TTGTGTATTC	CAATAAATTT	GAACATTTAA	5700
GCATGCTA	A GATTTTAGGG	ACAGTCATCA	ATCAATTAGG	GATTGAACGG	AAACTTTTTG	5760
GAGATATCCT	r agtagatgaa	GAACGGGCGC	AGATTATGAT	TAATCAGCAG	TTTCTTCTTC	5820
TCTTTCAAG	A TGGACTAAAG	AAAATTGGTC	GTATACCTGT	TTCGCTGGAG	GAACGTCCTT	5880
rcaccgagai	A AATAGATAAG	CTAGAACAGT	ATCGAGAACT	GGATTTATCT	GTGTCTAGTT	5940
TCGATTAG:	A TGTTCTTTA	TCAAATGTTT	TGAAACTATC	TAGGAATCAA	GCAAACCAGT	6000
TGATTGAAA	A GAAACTTGTC	CAAGTAAATT	ATCATGTGGT	AGACAAATCA	GATTACACTG	6060
TTCAAGTTG	G AGACTTGATT	AGTGTGAGAA	AATTTGGTCG	CTTGAGATTA	CTTCAAGATA	6120
AGGGACAAA	C GAAAAAAGAG	AAGAAAAAA	TAACCGTCCA	GTTATTATTA	AGTAAGTGAG	6180
GAATAGAAT	G CCAATTACAT	CATTAGAAAT	AAAGGACAAG	ACTTTTGGAA	CTCGATTCAG	6240
aggttttga'	T CCAGAAGAAG	TCGATGAATT	TTTAGATATT	GTGGTTCGTG	ATTACGAAGA	6300
TCTTGTGCG	T GCGAATCATC	ATAAAAATTT	GCGTATTAAG	AGTTTAGAAG	AGCGTTTGTC	6360
TTACTTTGA	T GAAATAAAAG	ATTCATTGAG	CCAGTCTGTA	TTGATTGCTC	AGGATACAGC	6420
TGAGAGAGT	G AAACAGGCGC	CGCATGAACG	TTCAAACAAT	ATCATTCATC	AAGCAGAGCA	6480
AGATGCGCA	A CGCTTGTTGC	AAGAAGCTAA	ATATAAGGCA	AACGAGATTC	TTCGTCAAGC	6540
AACTGATAA	T GCTAAGAAA	TCGCTGTTG	AACAGAAGAA	TTGAAGAACA	AGAGCCGTGT	6600
CTTCCACCA	A CGTCTCAAA	r ctacaattg	GAGTCAGTTG	GCTATTGTTC	AATCTTCAGA	6660
TTGGGAAGA	T ATTCTCCGT	CAACAGCTAC	TTATCTTCAA	ACCAGTGATO	AAGCCTTTAA	6720
AGAAGTGGT	T AGCGAAGTA	C TTGGAGAAC	GATTCCAGCT	CCAATTGAAC	AAGAACCAAT	6780
TGATATGAC	A CGTCAGTTC	r ctcaagcag	A AATGGCAGAA	TTACAAGCT	CTATTGAGGT	6846
AGCCGATAA	A GAATTGTCT	G AATTTGAAG	TCAGATTAAA	CAGGAAGTG	AAGCTCCAAC	6900
TCCTGTAGI	G AGTCCTCAA	G TTGAAGAAG	A GCCTCTGCTC	ATCCAGTTGC	CCCAATGTAT	696
GAAGAACCA	G AAGTAGCTC	C AATGCATCC	ATAGGTCCA	CACCAGCTAG	AGAAACTGTT	702
GATTCAATA	AC CGGGATTTG	A AGCACCGCA	A GAATCTGTT	CAATTTAT	A AGAAATATTC	708
TGAGAACA	AT ATCTTATCC	T TATATTTCC	A GCGAGCAGG	A GATGGTGTG	A GTCCTGTAAT	714
CCCTATTG	AT AAGATTATC	C TCTCAAAAA	C TCAAGTCTG	A AGCTAGTAA	G ATTTGACGTT	720
TCCCACGT	ra cgggataag	A GGGAGAAAG	A CTAAATCTT	TTCCGAATA	A AGGTGGTACC	726
	~ = = = = = = = = = = = = = = = = = = =	C NACTOCOTO	ጥ ጥጥጥልልጥጥጥ	TTATTATT.	A TAAAGGAGAT	732

363

ACCATGA	AAAC	TCAAAGACAC	CCTTAATCTT	GGGAAAACTG	AATTCCCAAT	GCGTGCAGGC	7380
CTTCCT	ACCA	AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGTCAAG	GAAT	TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT	7500
AACGGAJ	AATA	TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
TCTAAGT	rcta	TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CCAATC	GAGC	AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
TACTTG	AAAC	TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
AAACGT	TTGG	GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
GAAGCA	CTC	AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
GCTAAG	CCAG	TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
TACCAT	GACT	TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
GTTCTA	GATA	CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
TCTCGT	GGTT	TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
GCTCGT	aagt	TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
GCTGAT	GTTC	AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CACCCA	TGGG	ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
TCTGGT	ACAG	GTATTGTCCA	TACAGCCCCT	GCTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
ATTGCT	AATA	ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
GCTGGT	CCTG	AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
CALCUL	AACC	TCCTTCTTGC	CC.NAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
ACTAAG	AAAC	CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	TTCTAAATTC	8580
CGTCAA	GAAA	TCTTGGACGA	AATTGAAAAA	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
CGTCTT	TACA	ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GGTGTT	CCAC	TTCCTATCTT	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
ATTGAA	CACG	TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
GCCAAA	GACC	TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	-8880
AAAGAA	ACTG	ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
GTAAAC	CGTC	CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
CGTGGT	TGGT	TTAACTCATC	ACTTATCACA	TCTGTTGCCA	ACCATGGCGT	AGCACCTTAC	9060

· . . . . ·

364

AAACAAATCT TGTCACAAGG TTTTGCCCTT GATGGTAAAG GTGAGAAGAT GTCTAAATCT 9120 9180 CTTGGAAATA CTATTGCTCC AAGCGATGTT GAAAAACAAT TCGGTGCTGA AATCTTGCGT CTCTGGGTAA CAAGTGTTGA CTCAAGCAAT GACGTGCGTA TCTCTATGGA TATCTTGAGC 9240 CAAGTTTCTG AAACTTACCG TAAGATTCGT AACACTCTTC GTTTCTTGAT TGCCAATACA 9300 TCTGACTTTA ACCCAGCTCA AGATACAGTC GCTTACGATG AGCTTCGTTC AGTTGATAAG 9360 TACATGACGA TTCGCTTTAA CCAGCTTGTC AAGACCATTC GTGATGCCTA TGCAGACTTT 9420 GAATTCTTGA CGATCTACAA GGCCTTGGTG AACTTTATCA ACGTTGACTT GTCAGCCTTC 9480 TACCTTGATT TTGCCAAAGA TGTTGTTTAC ATTGAAGGTG CCAAATCACT GGAACGCCGT 9540 CARATGCAGA CTGTCTTCTA TGACATTCTT GTCAAAATCA CCAAACTCTT GACACCAATC 9600 CTTCCTCACA CTGCGGAAGA AATCTGGTCA TATCTTGAGT TTGAAACAGA AGACTTCGTC 9660 CAATTGTCAG AATTACCAGA AGTTCAAACT TTTGCTAACC AAGAAGAAAT CTTGGATACA 9720 TGGGCAGCCT TCATGGACTT TCGTGGACAA GCACAAAAAG CCTTGGAAGA AGCTCGTAAT 9780 GCAAAAGTTA TCGGTAAATC ACTTGAAGCA CACTTGACAG TTTATCCAAA TGAAGTTGTG 9840 AAAACTCTAC TCGAAGCAGT AAACAGCAAT GTAGCACAAC TTTTGATCGT GTCTGAGTTG 9900 ACCATCGCAG AAGGACCAGC TCCGGAAGCT GCCCTTAGCT TCGAAGATGT AGCCTTCACA 9960 GTTGAACGTG CTACTGGTGA AGTATGTGAC CGTTGCCGTC GTATCGACCC AACAACAGCA 10020 GAACGCAGCT ACCAGGCAGT TATCTGTGAC CACTGTGCAA GCATCGTAGA AGAAAACTTT 10080 GCGGAAGCAG TCGCAGAAGG ATTTGAAGAG AAATAAGATT GAAAAGTCTA GGCAAAATTC 10140 AATTTGAGAA GAAAAGACAA CTAATTTTAT AGTCTATTAA ACGCATTGTA TCACGTTTTT 10200 GAATACCTGA TATGATGCGT TTTTTATTTA TTTTAAAAAT TTGCGAGGTA TGACTTTTTA 10260 TACTCAACAA GAATCAAAGA GAAACTTAGC AAGCTAACAG TAGTAAGATA AAATAGGAAT 10320 TTGATATTAG GGATAAGATT GGTAAATAGT GTAATATTTT TACAACAATA AATTTATATA 10380 GTTATTTCTG GTTTCTGAAA AGTATTATAT TTTATTTCAT ATTATACAAA TTTTTATTTT 10440 ATAATATCAG AACATACTTT TTTTAAAAGC AAATATGATA CAATTTTATT TGAAAAAAAT 10500 AAAAAAGGAG ATTTTATTAT AAAATTAAAA AGACTTGCTT TAATTAGTGG TATCGTCGGT 10560 CTTGTGGGAG GAATTTTACT TCTTATTGGT CCTTTTGTCT TGTTGGGAAT AGCGGTAAAC 10620 ACAGCTGCTA CAACTCTTAA TGGAGGAGCT ACTGCAGGGG CTTTTTCAGG TGTAGCCTTA 10680 CTCTTGAATG CCTTGAAGAT TGCAAATCTT GTTCTTGGTA TCATTGCTAT TGTTTACTAT 10740 AAAGGAGATA AGCGTGTAGG TGCAGCTCCG TCTGTACTAA TGATTGTTTC TGGTGGAGTT 10800 AGTCTCATTC TATTCCGTTC TTAGGATGGG TTGGGGGGGAT TTTTGCTATT ATCGGAGGAT 10860

CTCTATTCCT	TTCAACATTG	AAGAAATTCA	AATCAGAAGA	ATAAAAGGTA	TTTTAGCATG	10920
AAAAGAACAA	AAAAGTTTAT	CGGTATAGGA	GTAGCTCTAT	TATCTCTTTC	TCTTCTAGTT	10980
GCATGTGGAA	CATAAAGTTC	AAAGAATACT	TCAACAAGTA	ATGATGAGAA	GACAGTAGCA	11040
ACATCCAATA	GTTCAAAAGA	AACAATCACT	TTCGATACAC	CGGTTGTAAC	AGACGATGCG	11100
ATTGAATCAA	TACGCACTTA	TGCAGATTAT	ATAGATCTTT	ATAAAAATAT	TTTTGATGAT	11160
TATTTTACTA	AAGCTGAGGA	AGGTTTCAAA	GGCATAGCTA	TGGAAAATAA	TGACTCGTTT	11220
ACTAAACTAA	AAGAGTCAAC	TCAAAAATTA	TTCGATGCGC	AGAAAAAAAG	GTTAAATAAT	11280
GAAGATAGAA	TAGAAACAAC	CAAAAACAAT	GTGATTGCCA	AACATTGTCA	AACAGTCCTT	11340
TCCTTTTTGG	TTTTGACTAG	CTTTTTTGTG	AAAATTGTG	TAAAATAGAA	TAGATAAACG	11400
AGGGGAAACC	TCGGAAAATT	TAAAGGAGAA	TCCATCTAAT	GGTAAAATTG	GTTTTTGCTC	11460
GCCACGGTGA	GTCTGAATGG	AACAAAGCTA	ACCTTTTCAC	TGGTTGGGCT	GATGTTGATT	11520
TGTCTGAAAA	AGGTACACAA	CAAGCGATTG	ACGCTGGTAA	ATTGATCAAA	GAAGCTGGTA	11580
TCGAATTTGA	CCAAGCTTAC	ACTTCAGTAT	TGAAACGTGC	TATCAAAACA	ACTAACTTGG	11640
CTCTTGAAGC	TTCTGACCAA	TTGTGGGTTC	CAGTTGAAAA	ATCATGGCGC	TTGAACGAAC	11700
GTCACTACGG	TGGTTTGACT	GGTAAAAACA	AAGCTGAAGC	TGCTGAACAA	TTTGGTGATG	11760
AGCAAGTTCA	CATCTGGCGT	CGTTCATACG	ATGTATTGCC	TCCAAACATG	GACCGTGATG	11820
ATGAGCACTC	AGCTCACACA	GACCGTCGTT	ACGCTTCACT	TGACGACTCA	GTTATCCCAG	11880
ATGCTGAAAA	CTTGAAAGTG	ACTTTGGAAC	GTGCTCTTCC	ATTCTGGGAA	GATAAAATCG	11940
CTCCAGCTCT	TAAAGATGGT	AAAAACGTAT	TCGTAGGAGC	TCACGGTAAC	TCAATCCGTG	12000
CCCTTGTAAA	ACACATCAAA	GGTTTGTCAG	ATGACGAGAT	CATGGACGTG	GAAATCCCTA	12060
ACTTCCCACC	ATTGGTATTC	GAATTCGACG	AAAAATTGAA	CGTCGTTTCT	GAATACTACC	12120
TTGGAAAATA	AAAAATTGTA	AGTCTAGAAT	TGATTTCTAG	GCTTTTTATG	TTAGTATGGA	12180
AGTATGATAA	GGAATAAAAA	ACAAGATTAT	GTACTGGCCT	ACAAGCAACC	AGCTTCAACC	12240
ACTTACATGG	GTTGGGAAGA	AGAAGCTTTA	CCGATAGGCA	ATGGTTCTTT	AGGAGCAAAA	12300
GTATTTGGCC	TTATAGGGGC	TGAACGGATT	CAATTTAATG	AAAAAAGTCT	CTGGTCTGGA	12360
GGTCCACTTC	CTGATAGTTC	AGATTATCAG	GGTGGAAATC	TTCAGGATCA	GTATGTTTTT	12420
TTAGCTGAGA	TTCGGCAGGC	TTTGGAGAAG	AGAGATTACA	ATCTGGCTAA	GGAACTGGCT	12480
GAGCAGCACC	TAATTGGGCC	AAAAACGAGT	CAATATGGGA	CCTATCTGTC	TTTTGGGGAT	12540
ATTCACATTG	AGTTCAGCCA	GCAAGGTACG	ACTTTGTCTC	AGGTGACGGA	CTATCAGAGA	12600

			366			
CAGCTGAATA	TTAGTAAGGC	ACTTGCGACG	ACTTCTTATG	TCTATAAGGG	AACGCGATTT	12660
GAACGTAAAG	CTTTTGCGAG	TTTTCCAGAT	GATCTCTTGG	TTCAATGTTT	TACTAAGGAA	12720
GGGTTGGAAA	CTCTAGATTT	TACTATAGAA	CTATCCTTGA	CCTGTGATTT	GGCTTCTGAT	12780
GGAAAGTATG	AGCAGGAAAA	ATCTGATTAC	AAGGAGTGTA	AGTTGGATAT	TACTGATTCT	12840
CATATCTTGA	TGAAGGGAAG	AGTTAAGGAT	AATGATCTGC	GGTTTGCTAG	TTATCTAGCT	12900
TGGGAAACGG	ATGGAGATAT	TAGAGTTTGG	TCAGATAGGG	TTCAGATATC	AGGAGCCAGT	12960
TATGCCAATC	TCTTCTTGGC	CGCTAAGACG	GATTTTGCCC	AAAATCCTGC	TAGCAATTAT	13020
CGCAAGAAAC	TAGATTTAGA	GCAACAGGTG	ATAGACTTGG	TGGACACAGC	TAAAGAAAAG	13080
GGCTATACCC	AATTGAAATC	AAGGCATATC	GAGGACTACC	AAGCCTTATT	CCAGCGTGTT	13140
CAATTGGATT	TGGAAGCTGA	TGTTGACGCA	TCCACTACAG	ATGATTTGTT	TATTAAAAAA	13200
AAGCCACAAG	AAGGGCAGGC	TTTGGAGGAG	CTGTTCTTCC	AGTATGGACG	GTATTTATTG	13260
ATTAGTTCGT	CCAGAGACTG	CCCAGATGCT	CTACCAGCTA	ACCTACAGGG	AGTCTGGAAT	13320
GCGGTCGACA	ATCCTCCTTG	GAATTCGGAC	TATCACTTAA	ATGTCAATCT	GCAGCTGAAT	13380
TATTGGCCAG	CCTATGTTAC	CAATCTCCTA	GAGACGGTCT	TTCCAGTCAT	CAACTATGTA	13440
GATGATTTGC	GTGTCTATGG	TCGTCTAGCG	GCTGTAAAGT	ATGCAGGAAT	CGTCTCTCAG	13500
AAAGGTGAGG	AGAATGGTTG	GTTGGTTCAT	ACTCAAGCGA	CTCCCTTTGG	TTGGACGGCA	13560
CCTGGTTGGG	ATTACTATTG	GGGTTGGTCA	CCAGCTGCCA	ATGCGTGGAT	GATGCAAACC	13620
GTTTATGAAG	CCTATTTATT	TTATAGGGAC	CAAGACTATC	TCAGGGAGAA	AATTTATCCC	13680
ATGTTGAGGG	AAACGGTTCG	TTTTTGGAAT	GCCTTTTTAC	ATAAGGATCA	GCAGGCGCAG	13740
CGTTGGGTGT	CTTCTCCGTC	TTATTCCCCA	GAACATGGGC	CGATTTCGAT	TGGCAATACC	13800
TATGACCAAT	CTCTGATTTG	GCAGTTATTT	CATGATTTTA	TTCAGGCTGC	TCAGGAATTG	13860
GGACTGGATG	AGGACTTGTT	GACTGAGGTT	AAGGAGAAGT	CTGATTTACT	AAATCCTTTG	13920
CAAATCACTC	AATCTGGTCG	AATCAGGGAG	TGGTATGAGG	AGGAAGAGCA	GTATTTTCAA	13980
aatgagaaag	TGGAGGCCCA	GCATCGGCAC	GCTTCCCATC	TAGTGGGACT	CTATCCTGGC	14040
AATCTCTTTA	GCTACAAGGG	ACAAGAGTAT	ATTGAAGCGG	CGCGTGCTAG	CCTCAATGAT	14100
CGTGGAGATG	GCGGCACAGG	CTGGTCCAAG	GCTAATAAGA	TCAATCTCTG	GGCGCGTTTG	14160
GGAGATGGCA	ATCGAGCCCA	TAAATTATTG	GCAGAGCAGT	TAAAGACATC	CACCTTGCAA	14220
AATCTTTGGT	GTAGCCATCC	TCCTTTTCAG	ATAGATGGTA	ATTTTGGTGC	TACTAGTGGC	14280
ATGGCAGAAA	TGTTACTCCA	GTCTCATGCA	GCTTATCTGG	TACCTCTAGC	TGCCCTACCT	14340
GATGCTTGGT	CAACAGGTTC	TGTTTCAGGC	TTAATGGCAC	GTGGACATTT	TGAAGTGAGC	14400

ATGAGCTGGG	AAGATAAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATCA	AGAAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	ATCCTAAAAT	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTC	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	AGGATATTGA	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCGCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	TTAGTTTTAA	AGAAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
TATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

368 TCAATTTGAT CAGAAAGTCT ACAATATAGC TCGTTTGAAA TATCAAGATT TAGCGGGTTT	16200
AAATGEETTT TEATCAGETT ATGAAGAAAA ATECAAGCAA CATCAAGAAG AGETTGAACA	16260
AATTTTATCA GATAATGGCA AGGTACGTCT GCAACTTTTG AAAAAAGAAG GACAAGAGTC	16320
TCTAGACAAG GGGCAAGAGA CCCTTGACAA GGCTCAGACT AATTTGCAGG AAGGCAAGCG	16380
TCGTTTAGCA GCTGCTCAAG CTCGTATACA GGCTCAAGAA AGTCAACTAG CCTTGTTTCC	16440
TCAAGTTCAG AGAGAGCAGG CTAGTGCTCA ACTTACCCAA GCCAAGCAGG AATTGGGCAA	16500
GGAAGAGGAC AAACTAAAGC AAGCTGAACA AAATCTAGCC CAAGAAAAGG AAAAATTAGA	16560
AAAACATCAG CAAGTCTTGG ATGATTTGGC GGAGCCAAGG TATCAGGTTT ATAATCGTCA	16620
GACCATGCCA GGTGGTCAGG GCTATCTTAT GTATAGCAAT GCTTCATCCA GTATTCGAGC	16680
AGTGGGCAAT ATCTTTCCTG TGGTACTTTA TGCCGTAGCA GCCATGGTGA CCTTTACGAC	16740
CATGACTCGC TTTGTAGACG AAGAGCGAAC TCATGCAGGG ATTTTTAAGG CCTTGGGTTA	16800
TCGTAGTAAG GATATTATCG CCAAGTTTCT CCTTTATGGA CTAGTAGCTG GGACTGTCGG	16860
AACGGCTCTA GGTAGTATAC TTGGTCATTA TTTGCTAGCC AGTGTAATTT CAAGTGTCAT	16920
TACAAAAGGC ATGGTGGTGG GAGAAACTCA GATTCAGTTC TATTGGACCT ATAGCTTACT	16980
AGCTTTTGTC TTGAGCTTGT TGGCGAGTGT GTTACCAGCC TATCTGGTGG CTTGGAGGGA	17040
ACTTCATGAC GAAGCAGCCC AGCTTCTACT TCCTAAACCT CCTGTCAAAG GAGCTAAAAT	17100
CTTATTGGAG CGTATCGGTT TTATCTGGCG TCGTCTCAGT TTTACTCATA AGGTAACAGC	17160
CCGCAACATC TTTCGTTATA AGCAGAGAAT GTTGATGACA ATCTTTGGTG TGGCAGGTTC	17220
TGTAGCTCTG CTCTTTGCAG GTTTGGGAAT CCAATCTTCT GTAGCAGGAG TTCCGTCTAA	17280
ACAGTITCAA CAAATCCAAC AGTATCAGAT GCTTGTCTCT GAAAATCCTA GTGCGACCAA	17340
TCAGGACAAG GTAGAGCTAG CAGAAGTGTT GAAAGGGCAG GAGATACTAG CCTACCAGAA	17400
AATCTATTCT AAAGCGCTAT ACAAGGATTT CAAAGGCAAA GCTGGTCTTC AAAACATTAC	17460
TCTTATGATG ATAGAGAAGG AAGATTTGAC TCCCTTTATC CATCTTCAAC ATCATCAGCA	17520
GGAGCTGACA TTAAAAGATG GCATCGTTAT TACAGCTAAA CTCGCCCAGC TGGCAGGTGT	7580
CAAGGTTGGG CAGACTTTAG AAATTGAAGG TAAGGAACTA AAGGTCGTTG CTATTACTGA	17640
GAACTACGTT GGTCACTTTA TTTATATGAG TCAGGCTAGC TATGAGCAAC TTTACGGACA	17700
GCTACCCCAA GCCAACACTT ATCTGGTCTC ATTAAGGGAT ACCAGTGCAA CTAGTATCGA	17760
AAGTCAGGCG GGCTTGCTTA TGAATCAATC TGCGGTGTCC AGCGTTGTCC AAAATGCTTC	17820
AGCCATTCGA CTCTTCGACT CTATCGCTAG CTCACTCAAT CAGACCATGA CCATCTTGGT	17880
CATCGTATCG GTTCTATTAG CTATTGTCAT CCTTTACAAT CTGACCAATA TCAACGTAGC	17940

TGAGAGAATC	CGTGAACTCT	CCACTATCAA	GGTTCTTGGT	TTTCATAATA	ATGAAGTCAC	18000
CCTCTACATT	TACCGTGAGA	CGATTGTÇCT	GTCCCTTGTG	GGAATCGTAC	TTGGTCTGAT	18060
AGCTGGTTTC	TATTTACACC	AATTTTTGAT	TCAAATGATT	TCGCCTGCGA	CTATTCTCTT	18120
TTATCCGCAG	GTAGGCTGGG	AAGTCTATGT	AATCCCAGTG	GCAGCAGTAA	GCATCATTTT	18180
GACCTTGCTT	GGTTTCTTCG	TCAATTATTA	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	18240
GAAATCTGTA	GAGTAAGGTA	GTTATTTTTA	GCTGATTGAA	СТТСТАТТТА	CTAATATTCA	18300
AAAATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	18360
TTTAGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	18420
AACGTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	18480
TTCGTTGATC	AAGAGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	18540
AATGGCATTG	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	18600
TGAAACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	18660
TTGAGTTGAG	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	18720
ATCAAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	18780
CTTGTCGCCG	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	18840
CATAGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	18900
ATTTGACCGG	AAATATGGGC	ATAGAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	18960
TAGGTTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
TAGCTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGGATGTTTC	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	19140
AAGAGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GTTCCTTCTT	CITCAGTATI	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAGAAGTATT	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
TTAAATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTATA	TTCTTTGAGA	19380
TTTTTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TTAGCAAAA	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
TCATTTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
TTTTCAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGGTTGATAG	CGTTATAGAA	AATCAAATTA	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19680

370 AGTGGTTCGT ATTCGTGTGG GTCTTGCCCA ATCGGAACGA TACTATGAAG GTCAATTTTG	19740
TCACCAGCAA TATTTTTAGT AATATCAGCG ATGATTGAGT TTGTAGCAAC AACTTTTAGT	19800
TTTTGACCAG AAGTTGTATC TTTTTTCCG CTAGCACATG CTACAAGAAT GATTGCAGAA	19860
AGAAAGAGA CGAGTAATGT ACCTAATTTT TTCATTAGAT CCTCCAATTT ATTAGGGCTT	19920
TGCCCCTTAT TTTAACAAAT GTTTATTTTT CAGTTTCAAA TATCGTTGTT TGGGAGCGAT	19980
AAAGAAGCTA ATGAGAAAGA AACTAGCAGC TGTAAGCACG ATACTAGAAC CTGCCGCAAC	20040
ATTAAAACTA TAGCCAATAA AGAGTCCCAA AACTGAAGCA GTAGCTCCGA AGGTTGAGGA	20100
AAGGAAAATC ATACTTTTCA GACTATTAGC ATACAGATAA GCAGTTGCAG CTGGGGTAAT	20160
CAGCATGGCT ACAATCAGGA TAGTTCCGAC ACTTTGCATG GCTGTCACAG ACACGAGAGT	20220
CAGGAGTACC ATGAGAAGGT AGTGATAGAA ATTGACAGGC ATTCCCATGG CTTTAGCCAA	20280
GAGTTCATCA AAGGAAGTTA TCAAGAGTTG CTTGAAGAAA ATCCAGATTA ACAAGAGGAT	20340
AGCTGCCCCC ACACCCATAG TAATAAACAT ATCCGTATCT TGGACGGCCA GGATATTACC	20400
AAAAAGGATA TGGAAAAGGT CAGTTGAACT TTTAGCGACA CCAATCAAGA TGATACCGAG	20460
GGCTAAGAAA GAAGAAAAGG TAATGCCGAT GGCGGTATCG CTTTTGATAA TCGAGTTTCC	20520
TTTGATGTAG GTAATGATGA TGGCAGCTAG CAATCCAAAG ACAATGGCTC CGATAAAGAA	20580
GTCAAGGCCC AAGATGAAGG ATAGGGCTAC ACCTGGTAAG ACAGCATGTG AAATGGCATC	20640
TCCCATGAGT GACATCCCGC GTAGAATAAT GAAACATCCC ACAGCTCCAG CTACAATCCC	20700
GACGACAATA GCTGTTATCA AGGCATTTTG TAGGAAATGG AATTTTTGCA ATCCATCGAT	20760
AAATTCTGCA ATCATAGGTC ACCTCCATTG AAAAAGAGTT GATTACCGTA AGCTTCTTTT	20820
AGATTGGTTT CGGTAAAAGT TTCTTTTGTT GGACCAAAGG CAATCACTTC TCGATTGACA	20880
AGTAAGACTT GATCGAAGTA GTGGGGAATC TTGCTGAGGT CGTGGTGAAC GATGAGAACC	20940
GTCTTCCCAG CTTTTTCAA ATCTCTCAGC GTATTCATGA TGATTTCCTC ACTGACAGAG	21000
TCAATCCCAG CAAAGGGTTC ATCCAAGAGG ATATAGTCGG CTTCCTGCAC CAAACATCTG	21060
GCAATCAAGA CCCGCTGGAA TTGACCTCCA GACAGTTGAC TAATTTGACG TTCAGCGTAG	21120
TCAGCTAGGC CGACGATTTC AAGGGCCTCT TGCACTTTCT TCCAATGTTT AGCCTTTAAA	21180
CTTCGAAAGA GAGGAATAGA GGGAAATAGT CCTAACGAGA CGCATTCCTT GACCTTGATG	21240
GGAAAGTTGT AGTCGATATT GATTTTTTGT TCGACATAGG CAATTCGGTG TAAGGATTTT	21300
TTAACTTCCT TGTCATCGAG AAATGCCTGA CCTTGATGTG GGATAATTCC CAACATACCT	21360
TTTAATAGTG TTGATTTCCC AGCGCCGTTT GGACCAATGA TGCCGGTAAT TGTTGGTCCA	21420
TGGAGCACTA GTGAAATATC CTTAAGTGCC AACGTTTCTT TGTAGGAGAC ACTGAGGTTT	21480

•

371

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAATT 21540
AAGTCAAGTT AATTTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21660
CTTTCAGGAT AAATTTCTAA ATTATAAAAC GCATAGTATC AAGTGTAAAA AACTTGGAAT 21706
TATGCGTTTT ATCATGGAAA GATTTTTTAT AATAGCTAAA AAATAA 21706

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

GATCCCCAGG AAAAACCGAG GTTTTCCCAA TCAATCGTTA CTGTCATATT CCACTCCTTA 60 TTCTAAAAAC CTATTTCTTA TATTCTACAC TATTTTTCTA AAATAGCAAG TATATTTTGT 120 AATTTTCAGA AAATTTCTCC AATAAAAACC AACTCTTAGA ACTGATTCTT CATTTCACTT 180 ATTTATCTTC AGTAACTACT TCCTGAAGAT AAGCGTCAAA AACTTCTTCA TCTGAAATCG 240 TGTCAGAAAT GAAGCTTCCA TTGCTAGTGC GTTCTGACAA GTTCAAGTCT TGCAATCGGC 300 TTTCATAGAT TGTTCCTTTA TTGGATTGGA CAAGCAGAGT TTGGTCGTTC ACATCCACTT 360 CCGTACTGAA GAAATCGCCA ACAAATCCTT GCTCTGCAAC TGCTCCTGCC AAGAAGACAC 420 GATGCGGTTT GTTTTTCAAC TCACGCAAGA CTTGTAATCC TCGTTTGGCA CGGCTGGTTG 480 CTAGAATTTC CTCAATGGAA ACACGTTTCA AGCTTCCACG CTGGGTCAAG AGGTAGAAGG 540 ACGAAGTATT ACAGATAAAG CCAGATTGGA GGACATCATC TTCTTTCAAA TTCATAGCCT 600 TGACACCTGC TGCCTTAGCA CCGACAACCG GAACCTCTTC GATATTGAAA CGCAGGGCAT 660 AACCATTTTG ACTAACCAAG ACAACATCAT CTAGTTTAAT CGGAGCCACT GCTACAATCT 720 GATCTGTATC GTCTTTGAGC TTAGCATACT TGACAGACTT AGATCTATAG GTCCGCCATG 780 GAGTGAATTC TTTTCGCTCT ACCCGTTTGA TTTGACCAAG GCGAGTCACT GCAAAGTAGG 840 TTGTCGCATC GTCAAACTGA TCCAGTACTT CCACATAAAG GATTTCTTCA TTCGTTTCAA 900 AGTTTGTGAT GGTTTGGCTC AGATGCTCTC CGATGTCCTT CCAACGAATA TCTGCCAACT 960 CATGGATTGG TCTGTAGATG ACATTTCCAA GACTTGTGAA CATCAAGAGG TGCTGGGTTG 1020 TCTTGGCAGA TTGAACAAAA ATCAAACGGT CATCATCACG CTTGCCAATT TCTTCCAAGG 1080 TGGAAGCCGC AAAGGAACGT GGACTGGTAC GCTTGATGTA ACCTGCCTTG GTCACGCTGA 1140

			372			
GTAGGTATC	TTCCTCAGCG	ATAAGACTAG	CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	1200
TTCTAAAGA	ACTCAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	1260
CATGAGATT	GTACATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	1320
CACGAAGCTC	TGCTTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	1380
STTGCAAAGT	TACGATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT	1440
TTTCCTTGGC	GTCCGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	TCATCCAAAA	1500
CGAAATCAC	ACGAATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	TTTTCTTTGT	1560
CAAAGCGTGA	ACGCGCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	1620
GAACAATCCC	AACCTGACGA	CGTGTGAAAT	TGTCAATCGC	CACCATATTA	AAGTTGTAGT	1680
<b>rgatttgt</b> ag	GTCGGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	1740
TCTTAAGTTC	GATAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	1800
rcccagctac	CTTGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	1860
TGATTTCATA	AGGAATCTCA	ATAATAACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
TTTCAGTCTT	GGAACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	1980
CATCACGACC	CTGAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	2040
GTTTATCAAT	CTTTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
CTAAATTATG	GGGAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	2160
CCAAGAGGTT	TGGAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	2220
TCCATGCAAA	AGGAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ACAAACGTGC	CTCAGTATAA	CGCATAGCCC	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
TACCGTGCAT	TTCAACTAGA	ATCTCACGA	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
CATCATAGAT	AGAAGAATCO	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
TGGCCGACT1	ACGGTAGCTC	TTGTCAAAA	TATTGCTATO	CTTATTCAT	GAATAAAGAA	252
TACGGCGCTG	AACCGGCTTC	AACCCATCAC	GAATATCTG	CAAAGCCCGG	TCTTGAATAA	.258
TGTACTTGG	GTAGCGACCA	AAGCGCTCTC	CCATGATGT	CTCCAGGGAG	ATGTTTTGAA	264
TGTTAGACAT	AAGATACAA	GCCCATAAA	A TACCAAGTG	AAATAGAAA	TTCTTGAAGT	270
AAGCAAACTO	ACAAGAGAA	TTATCTTTT	r cacacagta	CTAGGGCGT	TTCAACTCCT	276
TTCAAAGAAT	r gtagagtag	TTTTTATGC	A GTAAAAGAT/	TTTTACGGG	ATTCCTCCCG	282
TGTTCAGTT	A CGATAAGTA	CCAAACTAT	CTGTTTGTA	TTTTCAATA	r gaaaatctgg	288
TTTTCCAAA	A TTAGTCTTAG	TTTGTGTCT	r AGCCGCTCC	TTAAGCGCC	r ctttgagata	294

AGCACTCATA	GCAGATTCTT	CATTAATAAT	CCTGCAATTT	TTTCAAACCA	AGATTTTCAA	3000
ACTGCTTTTT	CACATAGTCA	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	3060
TTTCTTTCAT	TAAAACACTG	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	3120
TTTACGGCGT	GGTTCTACCT	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	CGGCGCGCGC	3180
TAAATCTTCA	ATTGTGACAC	GGATGAGGGT	ACGTGTTTCT	GGGTTCATGG	TTGTTTCCCA	3240
GAGCTGGTCC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	3300
GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	3360
CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	3420
CTCGACTAGC	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	3480
ACCGTCGGTA	TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	3540
GAAGTCTGCT	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	3600
GAGGATATCC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	3660
AGCCTGGAAC	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCCTCAAC	3720
TAGATAGAGT	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3780
CAAGCCCTTA	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
TGCTTCACGA	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
ATTTTCCATA	AGGAAAAAGG	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
TAGGGGGCTT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
TAAGATAGAA	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4080
TTTTTCCTTG	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
CTTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
AATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
TTCCCCTTCA	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
TAAAGACAAG	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
ATTGTACTTG	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
GCCTGTTTTA	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
ATTTTCGAAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTTCAACTT	CTAACCAGCT	4620
3033300000	mma a ca a coc	****	<b>ም</b> ርርርጥር እ እርጥ	CCACCTCATC	TOTAL TRACEC	4690

**...*

			374			
ACCTTGACCG	AATTTCCCTC	CGGCATGAAG	AATGGTAAAG	ATAACCTCAA	CAGTTGGAAT	4740
rcccatagcg	TGCATACCTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	4800
STCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	ATCCAATATA	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ataattgtta	ATATTGATTT	CCTTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
TATTCTACA	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
STTTYATTAA	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
STATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
TTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	5460
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
CCATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
CATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTGGTTT	TATCCTGAGT	5640
VACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	TATCAAAAAT	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
ACCTAACCC	ATCAAGATCC	TAAAAAATAA	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
PAGACAAATA	ATTTATCCAA	AGGATTTAGT	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
PTTTACCTTA	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
PTGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	TTAAAATGCC	6000
<b>AAGAAAGAT</b>	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
<b>LATTCCCTTA</b>	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120
ACTATGGAGA	ATCGTATTCT	CGTAGTGCTT	CTCTGTGAAT	GCCTGTTCCA	A	6171

# (2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18475 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

375

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

60	TTAAACCAGG	TATACTTATG	TATGAAAGCC	AGGAGTGCTT	AAAAAAACGG	TATTACAAAT
120	ACCCTATTCT	AAGCCAACAG	AGTTATTCGC	TAGACAAACC	TTTGTTGATG	ACTTGCTTCT
180	GGGATGTTCC	ATTATCAAAG	AGACCTCCAT	TTTGTGGAAC	AAAACCACTA	GCGTATTGTA
240	AAGAAGTTGG	GGGATTGTTG	CGAAGGGATT	TTCTTGGCCA	AGTGGTACCA	TACTTGCCAA
300	TCTGTGCCTG	ATTTCTTGCG	CAAGGTCTTG	AAAAAGGTGA	TCCAACTTCA	GGAAGGAGTT
360	AAGGGGGCTG	TGTGAAGACG	TTATGCTCAC	AAAAAGGAAT	TACTACTGTA	TGGTAAATGC
420	CTCATGCAGA	CTACGTGTCC	GCCTGAATAT	ATGGTATGCA	CACTTGATTG	GATTTTCGGT
480	TGCTGTCAGA	GCTTTGGTTA	GTCAGATGAA	CAGAAGACTT	TACCATACTC	TAATACTCTT
540	CTGGTTGCAG	AAAGTAGAAC	CTTAAAAGGG	AAATTGGTGT	ACTGGATATG	CATTCTGCCT
600	CCCAATTCTA	CTTTTAACAG	ATTGGCTGCT	GTCCAGTTGG	ATTGGTTCAG	CGTAGCCATT
660	CTGCCCTATC	CGCTTGGAAA	AGACGATAAC	TGGTAGACCT	AAATTGATTA	TTCACCAGCT
720	aagaaattta	AAAGCCATTA	AGACCCTGAA	TTAATTCTTC	ACTCATAAGG	ATTCGGTGCG
780	TTCCTGCAAC	GCTGTTGGTA	CGCTATCGAA	GTGTGGATGT	GATGGTCGTG	TGATTTGACA
840	GTGGTGTGCA	GTTGCCAACT	AGACGGAACG	TTATCGGTGT	TGTCAAAAGA	ATTTGATTTC
900	ATGTAACAAC	CGCAACATCA	ACTTTGGATT	ATTTAGATAA	GTTGAATTCG	TGGTAAACCA
960	GTCATAAGAT	GCACTTGAAA	ATTGTTGAAA	CGACTCCACA	тстасалата	TGGTTTGGTA
1020	AAGCCTACGA	GAAATTGAAA	CAAACTCAGT	CTCACTATTT	AAATTGGTAA	TGAACCGGAA
1080	ACGATATCTC	ATTATCGAAA	CATTAAGGTC	ACCACCATGC	AAGGCAGCAG	AGTCTTCAGT
1140	GTCATCCATC	TAGAAATTCA	CATAAGTAAA	TATTTTTGTA	GTAGTAAAA	AGAAGCCTAA
1200	CTTGTCTGGC	TATTTCTTTC	GAAATGAGCA	AAAAAATTAA	ATTTTTTATC	AGATGGCTGG
1260	TTATAGAAAT	ATGTATCGTG	ATGAATGAAT	GTACAAAGGA	ATAATATACG	GGAATTGGTT
1320	TTGTAGCAAG	GAAGAAGATA	AGAAGGTTGG	GGTGGTTCTT	TTTGAACCGT	GTACGGAGAT
1380	GGTTTAGATT	AAAACTTGCT	CAAATACTAC	ATGATGCTCT	GACCAGTATT	TAGAAAATTT
1440	TTTGGGACCC	ATGACCATTT	AAGCGACTTG	ATAAAAGTAG	TCGCCTCTTT	GGAACAAGAA
1500	ATTCTTTGGC	CAACAATACC	TGAGTATTTA	ATGAATGTGA	CGCTGGTGTG	GGAAGACCAA
1560	ATGAAAAACA	CGCTCAGGCT	CGAAAAACTA	TTATCCCAGA	GATGAGCAGG	TCTTTTGCAG
1620	AAGTAACTTT	AAATAGAGAA	TATGAAATTA	GTTCTTGCCG	GAAAGGAATC	AACCAGTCAG
1680	AGGAGGTAAG	AGTATAGGTG	CTTTGCGAAT	TTTTCTAACT	CTTTTTTAT	TTTGGAGTTG

			376			
TATGGTTCAA	GAAATTGCAC	AAGAAATCAT	TCGTTCAGCT	CGGAAAAAAG	GGACGCAGGA	1740
TATCTATTTT	GTCCCTAAGT	TAGACGCCTA	TGAGCTTCAT	ATGAGGGTAG	GAGACGAGCG	1800
CTGTAAAATT	GGTAGCTATG	ATTTTGAAAA	GTTTGCAGCC	GTTATCAGTC	ACTTTAAGTT	1860
TGTGGCGGGT	ATGAATGTGG	GAGAAAAAAG	ACGTAGTCAA	CTGGGTTCCT	GTGATTATGC	1920
CTATGACCAT	AAGATAGCGT	CTCTACGTTT	ATCTACTGTA	GGCGATTATC	GGGGGCATGA	1980
GAGTTTGGTT	ATCCGTTTGT	TGCACGATGA	GGAGCAGGAC	CTGCATTTTT	GGTTTCAGGA	2040
TATTGAAGAA	TTAGGCAAGC	AGTACAGGCA	ACGGGGACTC	TATCTTTTTG	CTGGTCCGGT	2100
TGGGAGTGGT	AAGACGACCT	TGATGCATGA	ATTGTCCAAG	TCACTCTTTA	AAGGACAGCA	2160
AGTTATGTCC	ATCGAAGATC	CTGTCGAAAT	CAAGCAGGAC	GACATGCTTC	AGTTGCAGTT	2220
GAACGAAGCA	ATCGGCCTAA	CCTATGAAAA	TCTAATCAAA	CTTTCCTTGC	GTCATCGACC	2280
AGATCTCTTG	ATTATCGGAG	AAATTCGTGA	CAGCGAGACG	GCGCGTGCAG	TGGTCAGAGC	2340
TAGTTTGACA	GGTGCGACAG	TCTTTTCAAC	CATTCACGCC	AAGAGTATCC	GAGGTGTTTA	2400
TGAGCGTCTG	CTGGAGTTGG	GTGTGAGTGA	AGAAGAATTG	GCAGTTGTTC	TGCAAGGAGT	2460
CTGCTACCAG	AGATTAATCG	GGGGAGGAGG	AATCGTTGAC	TTTGCAAGCA	GAGATTATCA	2520
AGAACACCAA	GCAGCCAAGT	GGAATGAGCA	AATTGACCAG	CTTCTTAAAG	ATGGACATAT	2580
CACAAGTCTT	CAGGCTGAGA	CGGAAAAAAT	TAGCTACAGC	TAAGCAAAAA	AATATCATCA	2640
CCCTATTTAA	CAATCTCTTT	TCTAGCGGTT	TTCATCTGGT	GGAGACTATC	TCCTTTTTAG	2700
ATAGGAGTGC	TTTGTTGGAC	AAGCAGTGTG	TGACCCAGAT	CCGTGTGGGC	TTGTCTCAGG	2760
GGAAATCATT	CTCAGAAATG	ATGGAAAGTT	TGGGATGTTC	AAGTGCTATT	GTCACTCAGT	2820
TATCCCTAGC	TGAAGTTCAT	GGCAATCTCC	ACCTGAGTTT	GGGAAAGATA	GAAGAATATC	2880
TGGACAATCT	GGCTAAGGTC	AAGAAAAAT	TGATTGAAGT	AGCGACCTAT	CCCTTGATTT	2940
TGCTGGGTTT	TCTTCTCTTA	ATTATGCTGG	GGCTACGGAA	TTACCTGCTC	CCACAACTGG	3000
ATAGTAGCAA	TATTGCCACC	CAAATTATCG	GTAATCTGCC	CCAAATTTTT	CTAGGCATGG	3060
TAGGGCTTGT	TTCCGTGCTT	GCCCTTTTAG	CACTCACTTT	TTATAAAAGA	AGTTCTAAGA	3120
TGAGTGTCTT	TTCTATCTTA	GCACGCCTTC	CCTTTATTGG	AATCTTTGTG	CAGACCTACT	3180
TGACAGCCTA	TTATGCACGT	GAATGGGGGA	ATATGATTTC	ACAGGGAATG	GAGTTGACGC	3240
AGATTTTTCA	AATGATGCAG	GAACAÁGGTT	CCCAGCTCTT	TAAAGAAGTC	GGTCAAGATC	3300
TGGCTCAAAC	CCTGAAAAAT	GGCCGTGAAT	TTTCTCAGAC	GATAGGAACC	TATCCTTTCT	3360
TTAGGAAGGA	ATTGAGTCTC	ATCATAGAGT	ATGGGGAAGT	TAAGTCCAAG	CTGGGTAGTG	3420
AGTTGGAAAT	CTATGCTGAA	AAAACTTGGG	AAGCCTTTTT	TACCCGAGTC	AACCGCACCA	3480

TGAATTTGGT	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCGTT	TTACTTTATG	3540
CGGCAATGCT	CATGCCCATG	TATCAAAATA	TGGAGGTAAA	TTTTTAAAAT	GAAAAAAATG	3600
ATGACATTCT	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
TTGCTGATTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCAATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
TATAGCTTAG	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGAAC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCAATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
TATCCTTGCC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
GATTTTCTTT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
TCAGCAAAAG	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
GCCAGTCCCT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	4200
GGGCAATTCG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
ATTATATCTA	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	ACAAAAAATT	AGGGCAGTGA	4320
TTTTACTGGA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
GACAAATTCA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGGTAGCTAA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TTCAGGTATT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
CAATCAAAGA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
GTCATCAGTG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
CGCTACCAGC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
GAATTAGACC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GGCAAGGACA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GGTCGAGGTT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
CAACTGGTTC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
GTGGAAAAAG	AAAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
CTTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
TTTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
CCAACAAACT	CCCCAACACT	<b>ጥጥጥጥ</b> እ አጥርጥ	ACCTCACCTA	ACCORDOCADA	ACAACAAAAC	6720

			3/6			E222
	ACGAGGGTTC					5280
	GAAGAGAAAA					5340
agtggagaag	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	GAGAATTCAT	AGTCAATTCA	5400
ACTATAATGC	GTTGAATCCA	GAATAGTCCA	CTGTAGTTTC	TAGAAAATTG	CTGGAAATGG	5460
ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	TTACTATACT	TTGTGCTAAA	5520
TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	TTTCGATTCC	CCTAAAAATA	5580
TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	GATTGATCTT	CTATCAGACA	5640
AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	CTTGCCCCTA	ACCCCTAGCC	5700
AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	AAATGTTGGA	GCAAGCTCGT	5760
TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	TGGAGCAAGA	TTTACCGAAA	5820
AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	GGGTTCTTCA	TCATATGCCT	5880
GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	AGGAAGATGG	GAAACTCATC	5940
ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	TTGATTTAGC	TGAACTGGAA	6000
AACAAGCTAA	TTGAGCATGG	TTTTTCATCT	GTGCATAGTC	AGATTCTCTA	TAGTGCTGAA	6060
GACCTGTTTC	AAGGAAATCA	CTCAGAATTO	TTTTTAATAG	TAGCCCAAAA	ATCACTCGCC	6120
TAGTCAGGGA	GTGATTTTTC	TATAAGGAT	GAAAAAAGAA	GGGAAATTT	GTAAGATAGG	6180
AATATGGATT	TTGAAAAAAT	TGAACAAGC	TATACCTATT	TACTAGAGA	TGTCCAAGTC	6240
ATCCAAAGTC	ATTTGGCGAC	CAACTTTTA	r GACGCCTTGC	TGGAGCAAAA	TAGCATCTAT	6300
CTGGATGGT	AAACTGAGC1	AAACCAGGT	AAGGAGAACA	ATCAAACCCT	TAAGCGTTTA	6360
GCACTACGC	A AAGAAGAAT	GCTCAAGAC	TACCAGTTT	TCTTGATGA	GGCTGGGCAA	642
ACAGAACCC	r TGCAGGCCA	TCACCAGTT	T ACACCGGATO	CTATTGCTT	GCTTTTGGTG	648
TTTATTGTG	S AAGAGTTGTT	TAAAGAGGA	G GAAATTACT/	TCCTCGAAA	r GGGTTCTGGG	654
ATGGGAATT	C TAGGCGCTA	r TTTCTTGAC	C TCGCTTACT	A AAAAGGTGG	A TTACTTGGGA	660
ATGGAAGTG	G ATGATTTGC	r gattgatct	G GCAGCTAGC	A TGGCAGATG	PTTTGGTTTG	666
CAGGCTGGC	T TTGTCCAAG	G AGATGCCGT	T CGCCCACAA	A TGCTCAAAG	A AAGCGATGTG	672
GTCATCAGT	G ACTTGCCTG	T CGGCTATTA	T CCTGATGAT	G CCGTTGCGT	C GCGCCATCAA	678
GTTGCTTCT	A GCCAAGAAC	A TACTTACGC	C CATCACTTG	C TCATGGAAC	A AGGGCTTAAG	684
TACCTCAAG	T CAGACGGAT	A CGCTATTT	T CTAGCTCCG	a gtgatttgt	T GACCAGTCCT	690
CAAAGTGAT	T TGTTAAAAG	A ATGGCTGAA	A GAAGAGGCG	A GTCTGGTTG	C TATGATTAGT	696
CTGCCTGAA	A ATCTCTTTG	C TAATGCCAA	A CAATCTAAG	A CTATTTTA	T CTTACAGAAG	702

aaaaatgaaa	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	708
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	AATATAAAAT:	714
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	ACAAAAACAA	720
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	726
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	732
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	AAATCATATA	CAAGCCGTTA	738
AAATTTTATT	GGATGACTTG	ATTCGTTTCG	ATATTATCAA	GGCTTATGAC	GAGATTACAG	744
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	750
GAGATGTTTT	AGAAAAAGTT	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	756
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	762
TTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	768
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	774
TAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	TTAATTACCT	780
GTCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	786
CTATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	792
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATCA	7986
GTCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	804
GCGATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	810
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CCATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	822
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	828
GAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
TAGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
TACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
TTGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT	8520
TGAGTTTTGA	AGAAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	8580
GAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	864
CGTTTTCGAG	TAGGTCTATC	AGTTAGCAAA	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	870
ADDA ACCORC	CCAMMOCCCCA	mnmmnmcc.c	*******		1011010000	226

380 GACTITGITG TCATTGCTCG AAAAGGAGTC GAAACCTTGG GATACCIAGA GATGGAGAAA	8820
AATCTACTCC ATGTATTAAA ATTATCAAAG ATTTACCGGG AAGGAAATGG GAGTGAAAAA	8880
GAAACTAAAG TTGACTAGTT TGCTAGGACT GTCTCTGTTA ATCATGACAG CCTGTGCGAC	8940
TAATGGGGTA ACTAGCGATA TTACAGCCGA ATCGGCTGAT TTTTGGAGTA AATTGGTTTA	9000
CTTCTTTGCG GAAATCATTC GCTTTTTATC GTTTGATATT AGTATCGGAG TGGGGATTAT	9060
TCTCTTTACG GTCTTGATTC GTACAGTCCT CTTGCCAGTC TTTCAGGTGC AAATGGTGGC	9120
TTCTAGGAAA ATGCAGGAAG CTCAGCCACG CATTAAGGCG CTTCGAGAAC AATATCCAGG	9180
TCGAGATATG GAAAGCAGAA CCAAACTAGA GCAGGAAATG CGTAAAGTAT TTAAAGAAAT	9240
GGGTGTCAGA CAGTCAGACT CTCTTTGGCC GATTTTGATT CAGATGCCGG TTATTTTGGC	9300 .
CCTGTTCCAA GCCCTATCAA GAGTTGACTT TTTAAAGACA GGTCATTTCT TATGGATTAA	9360
CCTTGGTAGT GTGGATACAA CCCTTGTTCT TCCGATTTTA GCAGCAGTAT TCACCTTTTT	9420
AAGTACTTGG TTGTCCAACA AAGCTTTGTC TGAGCGAAAT GGCGCTACGA CTGCGATGAT	9480
GTATGGGATT CCAGTCTTGA TTTTTATCTT TGCAGTTTAT GCGCCAGGTG GAGTCGCCCT	9540
ATACTGGACA GTGTCTAATG CTTATCAAGT CTTGCAAACC TATTTCTTGA ATAATCCATT	9600
CAAGATTATC GCAGAGCGCG AGGCCGTAGT ACAGGCACAA AAAGATTTGG AAAATAGAAA	9660
AAGAAAAGCC AAGAAAAAGG CTCAGAAAAC GAAATAAATA AGGAGGAATC TGGTAGTGGT	9720
AGTATTTACA GGTTCAACTG TTGAAGAAGC AATCCAGAAA GGATTGAAAG AATTAGATAT	9780
TCCAAGAATG AAGGCTCATA TCAAAGTCAT TTCTAGGGAG AAAAAAGGCT TTCTTGGTCT	9840
ATTTGGTAAA AAACCAGCCC AAGTGGATAT TGAAGCGATT AGTGAAACGA CTGTTGTCAA	9900
AGCAAATCAA CAGGTAGTAA AAGGCGTTCC GAAAAAAATC AATGATTTGA ACGAGCCTGT	9960
GAAGACGGTT AGTGAAGAAA CCGTTGACCT TGGTCATGTG GTTGATGCTA TTAAAAAAAT	10020
AGAGGAAGAA GGTCAAGGTA TTTCTGATGA AGTCAAGGCT GAAATCTTAA AACATGAAAG	10080
ACATGCCAGC ACTATCTTAG AAGAAACTGG TCACATTGAG ATTTTAAATG AACTTCAAAT	10140
CGAGGAAGCG ATGAGGGAAG AAGCAGGCGC TGATGACCTT GAAACTGAGC AAGACCAAGC	10200
TGAAAGTCAA GAACTAGAAG ACTTGGGCTT GAAAGTTGAA ACGAACTTTG ATATTGAACA	10260
AGTAGCTACG GAAGTAATGG CTTATGTTCA AACGATTATT GATGACATGG ATGTTGAGGC	10320
TACACTTTCA AATGATTATA ACCGTCGTAG CATCAATCTA CAAATTGACA CCAACGAACC	10380
AGGTCGTATT ATCGGCTACC ATGGTAAAGT CTTGAAGGCC TTGCAACTGT TGGCTCAAAA	10440
TTATCTTTAC AACCGCTATT CCAGAACCTT CTACGTTACA ATCAATGTCA ATGATTATGT	10500
CGAACACCGT GCAGAAGTCT TGCAGACCTA TGCGCAAAAA TTGGCGACTC GTGTTTTGGA	10560

٠. . . . .

AGAAGGGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTATTTCA	CCTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
TGTTGTTGTA	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGTTAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAATCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGAGGCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCAACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
TGGGTTTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGACATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCAAACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCTAACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTTACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTATGACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
AAAATTCTTC	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	CATCATAAAT	11400
CATACAGTCC	AAGAGTGAAC	AGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATTATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTGTTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGGTGTTG	ATAGGATATG	CACTITTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
TGTTAAAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTCGTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11760
CCCTTACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
TGGAACTGCA	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
TCGAAAGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
TGCAACAGTA	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAGCGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GGCAACTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCTGGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
TCTTAAATTA	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
GATGCTCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

AGAAGTCATC ACTTCAGGAA CTCTATTCAA TCCTGCTAAA CAAGATTTCT TTATGTACAT 12360 12420 TATCCAAACA GCCTTTACCT TCTCAGTTTA CTTGTTCGTT TTGATGCAAG GTGTCCGAAT GTTCGTATCT GACTTGACAA ACGCCTTCCA AGGTATTTCA AACAAATTGT TGCCAGGTTC 12480 ATTCCCAGCG GTTGACGTTG CAGCTTCTTA TGGATTTGGT TCTCCAAATG CTGTCTTGTC 12540 AGGATTTACC TTTGGTTTGA TTGGTCAATT GATTACAATT GTTTTGCTCA TCGTCTTTAA 12600 AAATCCGATT CTTATTATTA CAGGATTTGT ACCAGTGTTC TTTGACAATG CAGCCATTGC 12660 GGTCTACGCT GATAAACGCG GCGGATGGAA AGCGGCTGTT ATCCTTTCCT TTATATCAGG 12720 TGTCCTTCAA GTTGCTCTAG GAGCTCTTTG TGTGGCCCTT CTCGATTTGG CATCTTATGG 12780 TGGCTACCAT GGAAATATCG ACTTTGAATT CCCATGGCTT GGATTTGGAT ATATCTTCAA 12840 ATACCTTGGT ATTGTTGGTT ATGTACTTGT GTGTCTCTTC TTGCTTGTTA TTCCTCAACT 12900 12960 TCAATTTGCC AAAGCAAAAG ATAAAGAGAA ATATTACAAC GGTGAAGTTC AAGAAGAAGC TTAGTATCTA GAAAAGGAGA AATAAAATGG TTAAAGTATT AGCAGCGTGC GGAAATGGAA 13020 TGGGTTCATC AATGGTTATC AAGATGAAGG TTGAAAATGC TCTCCGTAAG CTTAATCAAA 13080 CAGATTTTAC AGTCAATTCA TGCAGTGTCG GTGAAGCTAA AGGTTTAGCA GTAGGATATG 13140 ACATCGTAAT CGCTTCTCTT CATTTGATTC AAGAATTGGA AGGGCGAACT AATGGGAAGT 13200 TAATTGGGCT TGATAACTTG ATGGATGATA AAGAAATCAC CGAAAAACTC AGTCAAGCAC 13260 TACAGTAAAA GGTTGGAGGG GGCTGGACAG AAACTGAGAG TTATCGTTTC TGTCCTTCTC 13320 CCTCTTTAAA TAAAGGAGGC AGATATGAAT TTAAAACAAG CTTTAATTGA CAATGACTCG 13380 ATCCGACTAG GTTTAGAGGC TAACAATTGG AAAGAAGCAG TCAAGGTAGC AGTAGATCCC 13440 TTAATTGAAA GTGGGGCAAT TTTGCCAGAG TATTACGATG CTATCATTGA ATCGACTGAA 13500 GAGTATGGGC CTTACTATAT CTTGATGCCA GGTATGGCTA TGCCCCACGC TAGACCTGAA 13560 GCAGGTGTGC AAAGTGATGC CTTTTCATTG ATTACCTTAC AAAATCCTGT TGTATTTTCA 13620 13680 GATGGGAAAG AGGTATCTGT TTTGTTGGCA CTAGCAGCAA CAAGTTCAAA AATTCACACA AGTGTAGCCA TTCCACAAAT TATTGCCCTA TTTGAATTAG AAGATTCTAT TGCACGTTTA 13740 CAGGCTTGCC AGACTAAAGA AGATGTCTTG GCTATGATTG AAGAATCTAA GGATAGCCCT 13800 TATCTCGAAG GATTGGATTT GGAAAGTTAG AAAGAGGAAT AAAGAAATGA CAAAAAGAAT 13860 ACCTAATTTA CAAGTTGCAT TAGACCATTC AGACTTGCAA GGAGCGATTA AAGCAGCTGT 13920 TTCTGTTGGT CAGGAACTAG ATATTATCGA AGCTGGAACT GTTTGCTTGC TTCAAGTTGG 13980 AAGTGAACTG GCTGAAGTCT TGCGTAGCCT TTTCCCAGAT AAGATTATTG TGGCAGACAC 14040 AAAATGTGCT GATGCTGGTG GAACAGTTGC TAAAAATAAT GCGGTTCGTG GAGCAGACTG 14100

** . . . . *

GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
GACTGAACGA	GGAGAACGAG	GCGAAATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
TGCTCTTCTT	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
AAATTTTGCC	AAGGAGTTAG	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAAT	GTATCGAATT	14820
AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
AAAGTCACCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGCCCA	15180
GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGTCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
GACCATCTTC	CGACCTCCCA	ACTCATGTGC	AATTATATAA	GACTTGGTCA	GAAATTGGTA	15660
GTGTGGTTC	CACCCATTCG	ACAGAAGCTO	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
CTTTCTACGO	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
TGACCAAGG	CGAAGTAGAA	GTGGCCTATC	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

AGTTTGAACA TCGCGGACTT AACCCGGTTG AAGTACCAGG AATTGTTGTA CGCAATCACG 15900 GTCCATTCAC CTGGGGCAAA AATCCAGAGA ATGCTGTTTA TCACTCTGTC GTACTAGAGG 15960 AAGTATCAAA GATGAATCGC TTTACAGAAC AAATCAATCC AAGAGTTGGA CCTGCTCCCC 16020 AGTACATACT AGAAAAACAC TACCAACGTA AACATGGACC AAATGCTTAT TATGGTCAAA 16080 AGTAAGAACG ATGAAGGAGG AGAAAAAGAT AAATTTAGCT CCTCTTTTTA CATTTGATTT 16140 TTATTGAGAG TAAAGTTGGA GTTGAAGTAA TTTTAAAAGA TTTTTTAGAA ATAGCGCTTG 16200 ATATATATAT GGTAAAATAA AAAGAATTGC TGTGATATCA ATAGATTTGG GGGATTTTTT 16260 AATATGGTAC TGGATAAGGC AAGTTGTGAT TTGCTTCAAT ATTTGATGGA TCAAGAAACG 16320 TCCAAAACGA TTATGGCGAT TTCGAAAGAT TTGAAAGAGT CAAGAAGGAA AATTTATTAT 16380 CACATTGACA AAATCAATGC TGCTCTGGGT GACGAGGCGC TTCACATCAT TAGTATTCCA 16440 CGAATTGGTA TTCACTTAAC GGAAGAGCAG AGAGATGCTT GTTGTAAACT ATTATCGGAA 16500 GTAGATTCGT ACGATTATAT CATGAGTGCG CATGAACGTA TGATGATAAT GTTACTATGG 16560 ATAGGTATTT CTAAAGAACG TATTACGATT GAAAAATTGA TAGAGTTAAC AGAGGTATCT 16620 AGGAATACTG TTCTCAATGA TTTGAATAGT ATTCGTTATC AACTAACTTT GGAACAATAT 16680 CAGGTGATCT TGCAAGTGAG CAAGTCACAG GGATACAACC TTCATGCCCA CCCTCTTAAT 16740 AAAATTCAGT ATCTTCAATC GCTTCTATAT CATATTTTTA TGGAAGAAAA TGCCACTTTT 16800 GTATCTATTT TAGAAGATAA GATGAAAGAG AGGTTAGATG ATGAGTGTTT GCTTTCTGTT 16860 GAAATGAACC AATTTTTTAA GGAACAGGTT CCTTTAGTTG AACAAGATTT AGGGAAGAAA 16920 ATAAACCATC ATGAAATAAC TTTTATGTTG CAGGTTCTAC CTTATTTGCT GTTAAGCTGT 16980 CATAATGTTG AACAGTATCA AGAAAGACAT CAGGATATAG AGAAAGAATT TTCTTTGATA 17040 AGAAAAAGAA TAGAGTATCA GGTGTCTAAG AAATTAGGAG AACGGTTGTT TCAAAAAGTTT 17100 GAAATTTCTT TGTCAGGACT TGAAGTTTCT CTTGTAGCTG TTCTCCTCCT CTCCTATCGT 17160 AAAGATTTGG ATATTCATGC AGAAAGTGAT GATTTTCGGC AATTAAAACT TGCTTTAGAA 17220 GAATTTATCT GGTATTTTGA ATCACAAATC CGAATGGAGA TTGAGAACAA GGATGATTTG 17280 TTACGAAATT TGATGATCCA CTGTAAAGCC TTGTTATTTA GAAAGACTTA CGGTATTTTT 17340 17400 TCTAAAAATC CTCTAACAAA ACAAATTCGA TCCAAGTATG GAGAATTATT TTTAGTCACT AGAAAATCTG CGGAAATTTT AGAAGGAGCA TGGTTTATTC GGCTAACAGA CGATGATATT 17460 GCCTATTTGA CGATTCATAT TGGAGGATTT TTAAAATATA CACCATCATC TCAAAAAAAA 17520 ATGAAAAAG TTTATCTCGT TTGTGATGAA GGTGTTGCGG TTTCGAGACT TTTGCTGAAA 17580 CAATGCAAAC TTTATTTTCC AAATGAGCAA ATTGACACTG TATTTACAAC AGAACAATTT 17640

385

CTAGACTATC TTAAACACAA TATATTTCGT AATAAGAGCA AAAGTTTCAG TGAAAATCTT 17826 TCTAGTCTTA TTTCGTCTTA TATTGTAGAC AGCAAGTTGG CTAGTAAGTT CCAAGAAGAG 17886 GTTCAAACAC TTATAAATCA AGAAATAGTA GTTCAAGCTT TTTTGGAAGC TATTTGAAGG 17946 ACAGTCCAAT GATGAACACA AACCTGTGTK TTTCSTGGTC TTTTETAGTG TTTTGAAGGG 18006 TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC 18066 AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG 18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACCTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATCGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18360 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	AAGAGTGTGG	AAGATATTGC	ACAAGTTGAT	GTAGTGATTA	CTACTAATGA	TGATTTGGAT	17700
TCTAGTCTTA TTTCGTCTTA TATTGTAGAC AGCAAGTTGG CTAGTAAGTT CCAAGAAGAG 17880 GTTCAAACAC TTATAAATCA AGAAATAGTA GTTCAAGCTT TTTTGGAAGG TATTTGAAGG 17940 ACAGTCCAAT GATGAACACA AACCTGTGTK TTTCSTGGTC TTTTLTAGTG TTTTGAAGGG 18000 TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC 18060 AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG 18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18360 TTTCCTTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	AGCAGATTTC	CGATTTTAAG	GGTTAATCCT	ATCCTTGAAG	CAGAAGATAT	TTTGAAAATG	17760
GTTCAAACAC TTATAAATCA AGAAATAGTA GTTCAAGCTT TTTTGGAAGA TATTTGAAGG 17940 ACAGTCCAAT GATGAACACA AACCTGTGTK TTTCSTGGTC TTTTLTAGTG TTTTGAAGGG 18000 TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC 18060 AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG 18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18360 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	CTAGACTATC	TTAAACACAA	TATATTTCGT	AATAAGAGCA	AAAGTTTCAG	TGAAAATCTT	17820
ACAGTCCAAT GATGAACACA AACCTGTGTK TTTCSTGGTC TTTTCTAGTG TTTTGAAGGG 18000 TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC 18060 AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG 18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18420 TTTCCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	TCTAGTCTTA	TTTCGTCTTA	TATTGTAGAC	AGCAAGTTGG	CTAGTAAGTT	CCAAGAAGAG	17880
TGGKATACTA ATCTCAAAGA TAACAATTAT ATCCAAAGGA GGCAACATAT GCCAAACGTC  AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG  18120  AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC  AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA  AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT  18300  ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA  18420	GTTCAAACAC	TTATAAATCA	AGAAATAGTA	GTTCAAGCTT	TTTTGGAAGr	TATTTGAAGG	17940
AAAGAAATTA CAAGAGAGTC ATGGATTTTA GCCACTTTCC CAGAGTGGGG AACATGGTTG  18120 AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC  18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA  18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT  18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA  18420	ACAGTCCAAT	GATGAACACA	AACCTGTGTk	TTTCsTGGTC	TTTTtTAGTG	TTTTGAAGGG	18000
AACGAAGAAA TCGAAGAAGA AGTCGTACCT GAAGGCAACT TTGCCATGTG GTGGCTAGGC 18180 AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA 18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT 18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18420 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	TGGKATACTA	ATCTCAAAGA	TAACAATTAT	ATCCAAAGGA	GGCAACATAT	GCCAAACGTC	18060
AACTGTGGTA CTTGGATTAA GACACCAGCT GGTGCTAACG TTGTCATGGA CCTTTGGTCA  18240 AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT  18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA  18420	aaagaaatta	CAAGAGAGTC	ATGGATTTTA	GCCACTTTCC	CAGAGTGGGG	AACATGGTTG	18120
AACCGTGGAA AATCAACCAA AAAAGTGAAA GATATGGTTC GTGGGCACCA AATGGCAAAT  18300 ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA  18420 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC  18420	AACGAAGAAA	TCGAAGAAGA	AGTCGTACCT	GAAGGCAACT	TTGCCATGTG	GTGGCTAGGC	18180
ATGGCAGGTG TTCGTAAGCT GCAACCAAAC TTGCGTGTTC AGCCAATGGT TATCGATCCA 18360 TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	AACTGTGGTA	CTTGGATTAA	GACACCAGCT	GGTGCTAACG	TTGTCATGGA	CCTTTGGTCA	18240
TTTGCTATCA ACGAACTAGA CTATTACTTA GTTTCACACT TCCACAGTGA TCATATCGAC 18420	AACCGTGGAA	AATCAACCAA	AAAAGTGAAA	GATATGGTTC	GTGGGCACCA	AATGGCAAAT	18300
	ATGGCAGGTG	TTCGTAAGCT	GCAACCAAAC	TTGCGTGTTC	AGCCAATGGT	TATCGATCCA	18360
CCATACACAG CTGCAGCAAT TCTCAATAAT CCTAAGTTAG AGCATGTTAA GTTGG 18475	TTTGCTATCA	ACGAACTAGA	CTATTACTTA	GTTTCACACT	TCCACAGTGA	TCATATCGAC	18420
	CCATACACAG	CTGCAGCAAT	TCTCAATAAT	CCTAAGTTAG	AGCATGTTAA	GTTGG	18475

### (2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 7186 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG GTACCGTTGC	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA	60
ATCAATCAAT CAGCACATTC	AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAAATC GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG ACCAGGATAT	TACTATCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTGCT	240
AAAACCTTTA TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA AAATTACGCG	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	480
ACCAAGATGG TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

386 GGATTTGCAG AAAGCGATCC GACGAATGAC GTAGATGGGA TTGATGCAGC CTACAAGATG 600 GTTATTTTGA GCCAATTTGC CTTTGGCATG AAGATTGCCT TTGATGATGT AGCCCACAAG 660 GGAATCCGCA ATATCACACC AGAAGACGTA GCTGTAGCTC AAGAGCTTGG TTACGTAGTG 720 AAATTGGTTG GTTCTATTGA GGAAACTTCT TCAGGTATTG CTGCAGAAGT GACTCCAACC TTCCTACCTA AAGCGCACCC ACTTGCTAGT GTGAATGGCG TAATGAACGC TGTCTTTGTA 840 GAATCTATCG GTATTGGTGA GTCTATGTAC TACGGACCAG GTGCGGGTCA AAAACCAACT 900 GCAACAAGTG TTGTAGCTGA TATTGTCCGT ATCGTTCGTC GTTTGAATGA TGGTACTATT 960 GGCAAAGACT TCAACGAATA TAGCCGTGAC TTGGTCTTGG CAAATCCTGA AGATGTCAAA 1020 GCAAACTACT ATTTCTCAAT CTTGGCTCTA GACTCAAAAG GTCAGGTCTT GAAGTTGGCT 1080 GAAATCTTCA ATGCTCAAGA TATTTCCTTT AAGCAAATCC TTCAAGATGG CAAAGAGGGT 1140 GACAAGGCGC GTGTCGTTAT CATCACACAC AAGATTAATA AAGCCCAGCT TGAAAATGTC 1200 TCAGCTGAAT TGAAGAAGGT TTCAGAATTC GACCTCTTGA ATACCTTCAA GGTGCTAGGA 1260 GAATAAGATG AAGATTATTG TACCTGCAAC CAGTGCCAAT ATCGGGCCAG GTTTTGACTC 1320 GGTCGGTGTA GCTGTAACCA AGTATCTTCA AATTGAGGTC TGCGAAGAAC GAGATGAGTG 1380 GCTGATTGAA CACCAGATTG GCAAATGGAT TCCACATGAC GAGCGTAATC TCTTGCTCAA 1440 AATCGCTTTG CAAATTGTAC CAGACTTGCA ACCAAGACGC TTGAAAATGA CCAGTGATGT 1500 CCCTTTGGCG CGCGGTTTGG GTTCTTCCAG CTCGGTTATC GTTGCTGGGA TTGAACTAGC 1560 CAACCAACTG GGTCAACTCA ACTTATCAGA CCATGAAAAA TTGCAGTTAG CGACCAAGAT 1620 TGAAGGGCAT CCTGACAATG TGGCTCCAGC CATTTATGGT AATCTCGTTA TTGCAAGTTC 1680 TGTTGAAGGG CAAGTCTCTG CTATCGTAGC AGACTTTCCA GAGTGTGATT TTCTAGCTTA 1740 CATTCCAAAC TATGAATTAC GTACTCGCGA CAGCCGTAGT GTCTTGCCTA AAAAATTGTC 1800 TTATAAGGAA GCTGTTGCTG CAAGTTCTAT CGCCAATGTA GCGGTTGCTG CCTTGTTGGC 1860 AGGAGACATG GTGACCGCTG GGCAAGCAAT CGAGGGAGAC CTCTTCCATG AGCGCTATCG 1920 TCAGGACTTG GTAAGAGAAT TTGCGATGAT TAAGCAAGTG ACCAAAGAAA ATGGGGCCTA 1980 TGCAACCTAC CTTTCTGGTG CTGGGCCGAC AGTTATGGTT CTGGCTTCTC ATGACAAGAT 2040 GCCAACAATT AAGGCAGAAT TGGAAAAGCA ACCTTTCAAA GGAAAACTGC ATGACTTGAG 2100 AGTTGATACC CAAGGTGTCC GTGTAGAAGC AAAATAAAGA ATAGAAGATA GGATGGGGAA 2160 ACTCTTGACC AGAGGGGTTC ATATCCTTTT TGTGAAAAGA AGTTTATACT CAATGAAAAT 2220 CAAAGAGCAA ACTAGGAAGC TAGCCGCAGG CTGCTCAAAA CAGTGTTTTG AGGTTGCAGA 2280 TAGAACTGAC GAAGTCAGCT CAAGACACTG TTTTGAGGTT GCAGATAGAA CTGACGAAGT 2340

PCT/US97/19588

CAGTAACCAT ACTACGGTAA GGTGACGCTG ACGTGGTTTG AAGAGATTTT CGAAGAGTAT	2400
TAGTTAAAAA CGTGATAAAG GAGAAATAAA GATGGCAGAA ATTTATCTAG CAGGTGGTTG	2460
TTTTTGGGGC CTAGAGGAAT ATTTTTCACG CATTTCTGGA GTGCTAGAAA CCAGTGTTGG	2520
CTACGCTAAT GGTCAAGTCG AAACGACCAA TTACCAGTTG CTCAAGGAAA CAGACCATGC	2580
AGAAACGGTC CAAGTGATTT ACGATGAGAA GGAAGTGTCA CTCAGAGAGA TTTTACTTTA	2640
TTATTTCCGA GTTATCGATC CTCTATCTAT CAATCAACAA GGGAATGACC GTGGTCGCCA	2700
ATATCGAACT GGGATTTATT ATCAGGATGA AGCAGATTTG CCAGCTATCT ACACAGTGGT	2760
GCAGGAGCAG GAACGCATGC TGGGTCGAAA GATTGCAGTA GAAGTGGAGC AATTACGCCA	2820
CTACATTCTG GCTGAAGACT ACCACCAAGA CTATCTCAGG AAGAATCCTT CAGGTTACTG	2880
TCATATCGAT GTGACCGATG CTGATAAGCC ATTGATTGAT GCAGCAAACT ATGAAAAGCC	2940
TAGTCAAGAG GTGTTGAAGG CCAGTCTATC TGAAGAGTCT TATCGTGTCA CACAAGAAGC	3000
TGCTACAGAG GCTCCATTTA CCAATGCCTA TGACCAAACC TTTGAAGAGG GGATTTATGT	3060
AGATATTACG ACAGGTGAGC CACTCTTTTT TGCCAAGGAT AAGTTTGCTT CAGGTTGTGG	3120
TTGGCCAAGT TTTAGCCGTC CGATTTCCAA AGAGTTGATT CATTATTACA AGGATCTGAG	3180
CCATGGAATG GAGCGAATTG AAGTTCGTTC TCGTTCAGGC AGTGCTCACT TGGGTCATGT	3240
TTTCACAGAT GGACCGCGGG AGTTAGGCGG CCTCCGTTAC TGTATCAATT CTGCTTCTTT	3300
ACGCTTTGTG GCCAAGGATG AGATGGAAAA AGCAGGATAT GGCTATCTAT TGCCTTACTT	3360
AAACAAATAA AACAGAGAGT GGGGCTTCCC ACTTTCTTCA TTTCTAGAAT ATGAATAGAA	3420
GGGATTTATG AAACACCTAT TATCTTACTT CAAACCCTAC ATCAAGGAAT CAATTTTAGC	3480
CCCCTTGTTC AAGCTGTTAG AAGCTGTTTT TGAGCTCTTG GTTCCCATGG TGATTGCTGG	3540
GATTGTTGAC CAATCTTTAC CTCAGGGAGA TCAAGGTCAT CTCTGGATGC AGATTGGCCT	3600
GCTCCTTATC TTTGCAGTAA TTGGCGTTTT AGTGGCCTTG ATAGCTCAAT TTTACTCAGC	3660
AAAGGCAGCA GTAGGTTCTG CTAAGGAATT GACAAACGAT CTTTATCGTC ATATTCTTTC	3720
CTTGCCCAAG GACAGCAGAG ACCGTCTGAC AACTTCTAGT TTGGTCACTC GCTTGACTTC	3780
GGATACCTAC CAGATTCAGA CTGGTATCAA TCAATTCCTG CGTCTCTTTT TACGAGCGCC	3840
CATTATCGTT TTTGGTGCCA TTTTTATGGC TTATCGAATC TCAGCTGAGT TGACTTTCTG	3900
GTTCTTAGTC TTGGTTGCCA TTTTGACCAT TGTCATTGTA GGGTTATCTC GATTGGTCAA	3960
TCCTTTCTAC AGTAGTCTCA GAAAGAAAAC GGACCAACTG GTTCAGGAAA CGCGCCAGCA	4020
ATTGCAAGGG ATGCGGGTTA TTCGTGCTTT TGGTCAAGAA AAACGAGAGT TACAGATTTT	4080

CAAACCCTT AACCAAGTTT ATGCTAGATT ACAAGAAAAG ACAGGTTTCT GGTCTAGTTT	4140
TTAACACCT CTGACCTATC TGATTGTCAA TGGAACTCTT CTCGTTATTA TCTGGCAAGG	4200
TATATTTCA ATTCAAGGAG GAGTGCTCAG TCAAGGTGCT CTCATTGCTC TTATCAATTA	4260
CTCTTACAG ATTTTGGTGG AATTGGTCAA GCTAGCCATG TTGATCAATT CCCTCAACCA	4320
STCCTATATC TCAGTCAAGC GAATCGAGGA AGTCTTTGTT GAGGCTCCAG AGGATATCCA	4380
TTCAGAGTTA GAACAAAAGC AAGCTACCAG AGATAAGGTT TTACAAGTCC AAGAATTGAC	4440
TTTACCTAT CCTGATGCGG CCCAGCCTTC TCTGAGATAC ATTTCCTTTG ATATGACTCA	4500
AGGACAAATT CTAGGTATCA TCGGGGGAAC TGGTTCTGGT AAATCAAGCT TGGTGCAACT	4560
CTTACTTGGA CTTTATCCAG TAGACAAGGG GAACATTGAC CTTTATCAAA ATGGACGTAG	4620
POCTOTTANT TTGGAGCAGT GGCGGTCTTG GATTGCCTAT GTACCTCANA AGGTCGAACT	4680
CTTTAAAGGA ACCATTCGTT CCAACTTGAC TCTAGGTTTC AATCAAGAAG TATCTGACCA	4740
GGAACTCTGG CAGGCCTTGG AGATTGCGCA AGCTAAGGAT TTTGTCAGTG AAAAGGAAGG	4800
ACTITIGGAT GUTCTAGTTG AGGUAGGGGG GUGAAATTTU TUAGGTGGAU AAAAACAAAG	4860
ATTGTCTATC GCCCGAGCAG TCTTGCGCCA GGCTCCGTTT CTCATCCTAG ATGATGCAAC	4920
CTCGGCACTG GATACCATTA CAGAGTCCAA GCTCTTGAAA GCTATTAGAG AAAATTTTCC	4980
AAACACGAGC TTAATTTTGA TCTCTCAACG AACCTCAACT TTACAGATGG CGGACCAGAT	5040
TCTCCTCTTG GAAAAAGGTG AGTTGCTAGC TGTTGGCAAG CACGATGACT TGATGAAATC	5100
CAGCCAAGTC TATTGTGAAA TCAATGCATC CCAACATGGA AAGGAGGACT AGAATGAAAC	5160
GACAAACTGT AAACCAGACG CTCAAACGTT TAGCCGTAGA TTTAGCAAGC CATCCTTTCC	5220
TCCTTTTCCT AGCCTTTCTA GGAACTATTG CCCAAGTTGG CTTATCAATT TACCTACCTA	5280
TTCTGATTGG GCAGGTCATT GACCAAGTCC TAGTGGCTGG TTCATCACCA GTTTTTTGGC	5340
AGATTTTTCT CCAGATGCTC TTGGTGGTAA TAGGAAATAC TCTGGTACAA TGGGCCAATC	5400
CTCTCCTCTA TAATCGTCTA ATCTTCTCTT ATACCAGAGA TTTACGGGAG CGAATCATCC	5460
ATAAGCTCCA TCGTTTACCG ATTGCCTTTG TAGATAGGCA AGGTAGTGGA GAGATGGTTA	5520
GTCGTGTAAC CACGGACATC GAACAGTTGG CAGCTGGCTT GACCATGATT TTTAACCAAT	5586
TTTTCATTGG TGTTTTGATG ATTTTGGTCA GTATTCTAGC CATGCTCCAA ATTCATCTCC	564
TCATGACTCT CTTAGTCTTG CTGTTGACGC CACTGTCCAT GGTGATTTCA CGCTTTATTG	570
CCAAGAAATC CTATCATCTC TTCCAGAAGC AAACAGAGAC GAGGGGAATT CAGACTCAGT	576
TGATTGAAGA ATCGCTTAGT CAGCAGACTA TAATCCAGTC CTTCAATGCT CAAACAGAAT	582
TRANSCALAGE ATTOCCTORE CONCATOR ACTACTORGE CTATTCTCAG TCAGCCATCT	588

389

TTTATTCTTC	AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	5940
TAGCTGGAGT	AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
TGACTTTTTT	GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
TAGCTGAGTT	GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
CTGAAGTGGC	TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
TTTCCTTTAA	ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
CTATCGATAT	TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAACTCTTAT	CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
ATGGGCAATC	CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
TTCAAGAAAC	CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AAGCCAGTCG	AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
AACAGTTGCC	ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCCAAGCTCA	GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
TAGACGAGGC	AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
CAAAACTCAT	GAAGGCCCCC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
ATGCGGATTT	AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
AACTCATGGA	TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
AATAAGCCAT	TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
TGTTACAATA	GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
AGGAAGCTAG	CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
GTCAGTTCAA	AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
TGTTTTGAGG	TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186

(2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14273 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTTGT GATAAAGTTT

390 TGATGAAAT ATTTGTTGAA GAGGTAGTTC CGCACGTTTT TCTGCCATAT GAATCTGACT	120
PACTICITAT TITACCAGCI ACGGCAAATG TGATTGGCAA AATTGCTAAT GGTATTGCTG	180
ATGATTTAGT TACAGCAACT GTTTTAAACT TTAATAAAAA AATAATTTTT TGTCCCAATA	240
TGAACTCTAC TATGTGGGAC AATCACATAG TTCAAAGAAA TGTATCAATT CTAAAGGAGT	300
TGGGACATAT ATTTTTATTT GAGTCTAAAA AAACATATGA GGTAGGATTG CGTAAAGCAA	360
PAGATTCAAC ATGTTCAATG TTACAACCAC AGTCGTTAGT AAAAGAACTT ATCAAATTAG	420
AAAATATTGT CCTTGAAGAG GGACATTAAA AACTACTGAG AATATTAATG AGGGGAAAAA	480
ATGGAAAATT CATCAATCGA TGTAGATATG CTGTTGGAAG AATTGACACA AGAAGCAATG	540
STEGTTGTTG CTGTTGATAA GGACTGTTAA TTTAAACTTA TGGCAATATA TGAAAGGTTA	600
CTGGATGTTT TAAATTATGC AGGCAGTAGC CTTTTATTAT ATACAAATGG ATAAAGTAAG	660
GATAATACAA TGATTAATAA AAAAATACAA CAAGTTGTTT TGGAATCATT ACAGAATTTT	720
TTGAATGGGA ACTTCATTTC GCCTTGTGTA GTCTATGATT TTGGCTTGCT GGAAACTGTA	780
CTTGATGAAT TTAAAAATCA AATTCCTGTA ACATTCAATT ACCAACTTTT TTATGCCGTT	840
AAAGCAAATT CAAATGAGAA GATACTTGAA TTCTTAGTAG ATAAAATTGA TGGAGTTGAT	900
GTGGCGTCAT TATCTGAATT AGATGTGGCT AAAAAATTTT TCCCACCAAC TCAAATTTCT	960
GTTAATGGTC CCGCATTTTC TTATGAAACT TTATATAATC TGATTAAAAA ACAATATAAA	1020
GTTGATATTA ACTTTTTGGA ACATCTTCAA CAATTTTCCC CAAAAGAATC TGTTGGAATA	1080
AGAGTAACGG AGCCAGATGA ACTTAATAAT CGTATGAGTC GATTTGGAAT AAATATTTGC	1140
AGTGATAATT GGACTAGTAA TTTACAAAAT CCTTTAATTA CACGACTGCA TTTTCATTTT	1200
GGAGAAAAAG ATGATAAATT TATTGTTAAG TTAGATAAAA TATTATTTAA GTTACAAGAA	1260
ATTAATAAAC TTAGAGAGGT TAGAGAAATA AATCTTGGAG GCGGTTTTAT GAAATTATTT	1320
ATGGAAAATC GTTTGAAAGA ATTTTTTCTA TCACTTATGG AAATCTATAA AAAGTACGAT	1380
ATTGATAGTA CTGTGACTAC AATAATAGAA CCAGGTAGTG CAATTACTTC ATTTTCTGCC	1440
TATATGATTA CTAGCCCAGT TAATGTTAGT GAGGTGAATG AGCAGCAGGT TATCACGTTA	1500
GACACATCAA TATACACCAA TACATTATGG TTTGTTCCGC ATATTATTAC AACGTTAAAT	1560
TCAAGTAGTA AAGAGCGTTA TAGTACTATT CTCTATGGTA ATACCTGTTA TGAACATGAC	162
AAGTATAAAA TGAAAGTTTC GCTTCCAAGG TTAACTCAAA ATAGCAGTAT AGTGTTTTTT	
CCTGTAGGAG CTTATATAAA AAGCAATCAT TCAAATTTAC ATCGTAATGA TTTTATGCGG	174
GAGGTATATT TGTGGACAAA AAACTTGACA TATTAGATAA AGTTAAGGAA TATTTAGGAA	180
ATAAAACTAC TCAAATTCTG GATAATCAAT ATAAAGAATT TTTGAAACTT AATGATATAA	186

.....

GGCGAGCGT	T TGGTATTTCA	GAAAAAGTAT	TAAACAATTC	TTTTAATTTT	ACGAGTAAAG	1920
AATTTAATG.	ተለልተተልልተተት ል	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
AGGAATGGA	G AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	CCTATAATTA	2040
CAGATGATT	T TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GATATTTAT	C GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTTTAACAG	C TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
TCTTCAAGA	a gaagattgat	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTTAT	2280
TAAATAATC	T TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
aagataaat	T TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAACTGATT	T CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
TTATTTAG	А ТАТТТСАТАТ	CAAGGTTCTA	ATTTTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
TTAAATTTG	C GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
GATTAGAAT	T GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
TGAAAAATT	T TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCCTCTATG	A ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTGATTTAG	T TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAAATTCTG	A TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
TAGGTGAAG	g taaaaaagaa	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
AGCTTGGAA	T CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
ATTTTGGAA	T TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG	3060
GGTTAAGTT	A TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	TATTTAAAAA	3120
CTACTGATG	A GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	CTAATAATTA	GATTGATTGT	3180
TAACTTAGC	A GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
TTCGAGCAT	G TTCTTAGGAA	TATTTATTGC	AGTAAATTAT	CTACCGGATT	TGTTACTAAT	3300
CTTTT <b>TT</b> GG	A CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GGTTCAATT	A GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GATAATGAG	T CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATAAGTTACG	TGATAGAAGA	3480
TGTGTTGAT	T CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
ጥል <i>ጥ</i> ምምርርጥል	т вавстаттас	ል <b>ጥ</b> ተሞልምጥጥ	<b>ተልልተተ</b> ሮል <b>ተተ</b> ና	GCATCATTTT	TACACCTCCC	3600

AGTAGGATTT	ATTTTATTGG	TTAAGATAGA	TATAGGCATA	TTTTC.\CTTG	CTCTATTTAT	3660
ATTGTTGTTG	TTAAAATTTA	GAACTAGCAA	TGCGAATATA	GAAAACTTCT	CTTTCAAATA	3720
TTACAAGAGA	GAAGTGTTGC	AAGGTACAAA	GTTTATTTTA	аатаатааат	TATTATTTAA	3780
AACCAGTATT	TCTTTAACGC	TTATAAACTT	TTTTTATTCA	TTTCAGACAG	TAGTTGTACC	3840
GATTTTTTCT	ATTCGATATT	TTGATGGTCC	GATTTTTAT	GGTATTTTTT	TAACTATTGC	3900
TGGTTTGGGT	GGTATATTGG	GAAATATGCT	AGCGCCAATC	GTAATAAAAT	ATTTAAAATC	3960
GAATCAAATT	GTTGGTGTAT	TTCTTTTTTT	GAACGGCTCA	AGTTGGTTAG	TAGCAATTGT	4020
TATAAAAGAC	TATACTTTAT	CACTTATTTT	ATTTTTCGTT	TGTTTTATGT	CTAAAGGAGT	4080
CTTCAATATT	ATTTTTAATT	CGTTGTACCA	ACAAATACCT	CCACATCAAC	TTCTTGGTAG	4140
GGTAAATACT	ACCATTGATT	CTATTATTTC	TTTTGGAATG	CCAATTGGTA	GTTTAGTTGC	4200
AGGAACGCTT	ATTGATTTGA	ATATTGAATT	AGTGTTAATT	GCTATTAGCA	TACCTTATTT	4260
TTTGTTTTCT	TATATTTTTT	ATACGGATAA	TGGATTGAAA	GAATTTAGTA	TATATTAGAA	4320
ATGTTTATGT	TCATTCAAAA	GCATAATGAC	TATAACTGAA	AAAGAAAAGT	GATATCTTTA	4380
AGGTTGTTCT	TCTTGGTGGT	GAGATTCGTG	AGACAACCCA	AGCTTTTGTC	GGAAAGATTA	4440
CCAATGCTTT	GATGGATAGG	ATGTACTTTA	GCAAGATGTT	TTTAGTGGTA	ACGGTATCGT	4500
GGATGGACGT	GTAATAACCT	CTTCTTTCGA	GGAGTATTTT	ACTAAAAAAC	TAGCCTTGGA	4560
GCGTTCCCCA	GAAACGGACT	TACTCATTGA	CTCTTCAAAG	ATTTGGGGAG	AAGATTTTGC	4620
TTCATCTGTT	CCTTGAAAAA	AGTCACAGCA	GTCATCACAG	ACGATAGTAC	TGAACAAAAC	4680
TATGAAGAGT	TAGAAATTTA	TACGCAGGTG	ATTGTATAAA	GGATCTGGAA	ATAGATAAGA	4740
agttgattag	TATTGACCTA	GGTGGTACAA	ATATTAAGAT	TACTGTTCTT	TCAAATGACG	4800
GTGAGATTGA	AACTTTGTGG	AGTATTACAA	CAGATACAAG	TGAGAAAGGT	TCTCAAATTA	4860
TATCGGACAT	CATCAGTTCT	ATTAAAAATA	AATTGACCGA	ACGGAATATT	CCTGATAGCG	4920
ACCTTCTTGG	AATCGGTATG	GGAAGTTGCT	CATCATACTT	TCCTTGTAAA	TCATAGGGGC	4980
TATAAACTCT	CCGTCTACTT	GTCCTGCAAC	AATTGAAGTC	TGCTCAAAAC	GCCGTCCGCT	5040
AATCTTTTCA	TAGACTTTCT	CCCTTTTAGG	AGCCTAGCTT	TCTAGTTTGT	TCTTTGATTT	5100
TTATTGAGTA	TACCACTATT	TTACTCCCTC	TGGCAAGGGA	CTTTGTCTAT	GTGGAGGGAT	5160
TGGGCTCCTA	TGTGGTGGAG	CTTTTCTGTT	CTTTCTGAAA	TATGGTATAA	TAGCACTAAT	5220
CAATTTCTAG	GAAAATAGAT	ACAGAAAGGG	GCTGAAAGAT	GTCTCATATT	ATTGAATTGC	5280
CAGAGATGCT	GGCAAACCAA	ATCGCGGCTG	GAGAGGTCAT	TGAACGTCCT	GCCAGTGTGG	5340
TCAAAGAGTT	GGTAGAAAAT	GCCATTGACG	CGGGCTCTAG	TCAGATTATC	ATTGAGATTG	5400

**...*

393

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATCA	CGGATAACGG	TCATGGAATT	GCCCACGATG	5460
AGGTGGAGTT	GGCCCTGCGT	CGCCATGCGA	CCAGTAAGAT	AAAAAATCAA	GCAGATCTCT	5520
TTCGGATTCG	GACGCTTGGT	TTTCGTGGTG	AAGCCTTGCC	TTCTATTGCG	TCTGTTAGTG	5580
TCTTGACTCT	GTTAACGGCG	GTGGATGGTG	CTAGTCATGG	AACCAAGTTA	GTCGCGCGTG	5640
GGGGTGAAGT	TGAGGAAGTC	ATCCCAGCGA	CTAGTCCTGT	GGGAACCAAG	GTTTGTGTGG-	5700
AGGATCTCTT	TTTCAACACG	CCTGCCCGTC	TCAAGTATAT	GAAGAGCCAG	CAAGCGGAGT	5760
TGTCTCATAT	CATTGATATT	GTCAACCGTC	TGGGCTTGGC	CCATCCTGAG	ATTTCTTTTA	5820
GCTTGATTAG	TGATGGCAAG	GAAATGACGC	GGACAGCAGG	GACTGGTCAA	TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GCTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
TTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
GCATTGGCAA	TGTTGACCAA	AGCCAGCAGC	AACTCCTAGT	GCCCTATATC	TTTGAATTTC	6780
CTGCGGATGA	TGCCCTGCGT	CTCAAGGAAA	GAATGCCTCT	CTTAGAGGAA	GTGGGCGTCT	6840
TTCTAGCAGA	GTACGGAGAA	AATCAATTTA	TTCTACGTGA	ACATCCTATT	TGGATGGCAG	6900
AAGAAGAGAT	TGAATCAGGC	ATCTATGAGA	TGTGCGACAT	GCTCCTTTTG	ACCAAGGAAG	6960
TTTCTATCAA	GAAATACCGA	GCAGAGCTGG	CTATCATGAT	GTCTTGCAAG	CGATCTATCA	7020
AGGCCAATCA	TCGTATTGAT	GATCATTCAG	CTAGACAACT	CCTCTATCAG	CTTTCTCAAT	7080
GTGACAATCC	CTATAACTGT	CCTCACGGAC	GTCCTGTTTT	GGTGCATTTT	ACCAAGTCGG	7140

**...

			394			
atatggaaaa	GATGTTCCGA	CGTATTCAGG		CAGTCTCCGT	GAGTTGGGGA	7200
AAAATTAAAA	GTATAAAAAA	GTCTGGGAAA	AATTTTCAAA	ATCAAAAAA	CGCATAAAAT	7260
CAGGTGTTCA	AAAACCTTGA	TTTTATGCGT	TTTATCATGG	AAATAGTTAC	TTCATTTTTT	7320
CCTAATTCTT	TTCGAAACTC	TTTTTAAACG	ACGTCAGTTT	TATCAGTAAT	CTCAAAACAG	7380
rgttttgagc	TAATTTTGCC	AGTTTTGTCT	GTAACATCGA	AGTTGTGTTT	TACCACTCTG	7440
CGACTGGTTT	CCTAGTTTGC	TCTATGATTT	TCACAGAGCA	TTAAATTGCG	ATTTTGCCAA	7500
STITCTTTAT	TCGTCTAAAA	GTAGAGTCTG	TTCTATGCGT	CTAATGTACG	AATCAGGTTG	7560
ACCATTTCAA	TAGCTCCTTG	TGCACACTCA	GAACCCTTAT	TTCCTGCTTT	AGTACCAGCT	7620
CGTTCTATGG	CTTGTTCAAT	TGTATCTGTC	GTTAGCACAC	CAAACATAAC	AGGAATTTCG	7680
CTATTTAAAC	TGATTTGGGC	GATTCCCTTA	GATACCTCGC	TACATACATA	ATCATAATGA	7740
CTTGTATTCC	CTCTAATGAC	AGCTCCCAAG	CAGATAATTG	CATCATATTT	TTTACTTTTT	7800
CCATTTTTG	ATGCAATCAG	TGGTATTTCA	AAAGCTCCTG	GAACCCAGGC	TACCTCTATA	7860
rctttctcgt	TTACATTCTC	TCTTTTGAGA	TTATCTAGTG	CTCCAGATAA	TAATTTTGAA	7920
STTATAAATT	CATTAAATCT	CGCTACAACA	ATACCTATTT	TAATATTGTT	TGCTACTAAA	7980
TACCTTCAT	AAGTGTTCAT	TTATTTTTCC	TCCATATTTA	AAATGTGACC	CATTCGATTT	8040
TCTTTGTTT	CTAAATAAAA	ACTATCGTAA	GGATTGGCTT	CTATTTCGAT	TGATATTCTA	8100
CTGGAAATGG	TAATTCCATA	TTTTTCTAAC	TGTTCAACCT	TGTCAGGATT	ATTTGTCAGT	8160
AAATGAAGTG	ACTGAAGTCC	CAGATCTTTA	AGCATTTTTG	CTCCAATATG	ATATTCTCTT	8220
AAATCACCTT	CAAAGCCTAA	TGCAAGATTG	GCATCAAGCG	TATCCATGCC	TTGATCTTGT	B280
AAATGATAGG	CTTTTAATTT	ATTGATAAGT	CCAATTCCTC	GTCCCTCCTG	TCGCAAGTAA	3340
AGTAAGACAC	CCGAACCATT	CTCAACAATC	ATTTTCATAG	CCTTATCGAA	TTGCTGTCCA	8400
CAATCGCAAC	GTAAAGAGCC	TAAAACATCT	CCTGTTAAAC	ATTCGGAGTG	GACCCGACAT	8460
AATACATTGG	CTTCATCCTC	TATATTTCCC	ATAATAAGAG	CAAGATGATG	TTCCCCATTT	8520
AGTTTATCTA	TATAGCTAAT	TGCTTTGAAA	TTACCGTATC	TAGTAGGCAT	ATTGACAGTT	8580
GAAACTCGTT	CTACCAGCTG	ATCATATACT	TTTCTATATT	CTTGTAATTC	TTTGATGGTA	8640
ATTAGTGGAA	TGTTGTGTTT	TTTCGAGAAC	TGAATTAAAT	CATCTGTTCT	CATCATTTTG	8700
CCATCATGAT	TCATTATTTC	ACAACATAGG	CCACACTCTT	TTAGTCCAGC	TAATTTTAAT	8760
AAATCAACAG	TTGCTTCTGT	GTGTCCATTT	CTTTCTAGGA	CACCACCTTT	TTTTGCAATT	8820
AAAGGAAACA	TGTGTCCTGG	CCTGCGAAAA	TCAGAGGGTG	TTATATCTTC	AGCTACACAC	8880
ATACGTGCGG	TCAGTCCTCT	TTCCTCGGCA	GAAATACCTG	TGGTCGTTTC	TTTATAATCA	8940

ATTGAAACTG	TAAAAGCAGT	CTTATGATTA	TCTGTATTGT	TTTCAACCAT	AGGTGAAAGC	9000
ATTAATTGAT	TAGCTAAACT	TTCGCTCATA	GGCATACAAA	TTAATCCTTT	GGCATAAGTA	9060
GCCATAAAAT	TAACATTTTC	TGTTGTAGCT	GCTTGTGCAG	AACAAATTAA	GTCTCCTTCA	9120
TTTTCTCTAT	CCTTGTCGTC	TATAACAAGA	ACAAGTCGTC	CCTTCTGCAA	TGCTTCTAAT	9180
GCTTCTTGTA	TTTTTCGATA	TTCCATTGAC	TGATTATCCT	TTCTGCTAAA	ATCCATTTTG	9240
ATATAATAGT	TCCTTAGATA	TTTCTGATTT	TGGAGAGTTA	TCCATCAGTT	TTTGCAGATA	9300
TTTACCTAAG	ATATCATTTT	CAAGATTTAC	TGTACTCCCG	ACTTGTTTAC	TCTTAAGAAT	9360
GGTTTGTTCC	AAGGTATGAG	GGATAACAGA	TACTGAAAAG	TTTACTTTGG	AGACTTTAGC	9420
GACAGTCAGA	CTAATGCCGT	CAATTGTAAT	AGATCCTTTT	TCAACTATTA	AATCTAAAAT	9480
TTCTTTTTGT	GTGTTGATTT	GATACCATAC	AGCATTATCA	TCTTTTTTA	TTGACGAGAT	9540
TTTTCCTGTA	CCATCAATGT	GTCCTGTAAC	GACGTGACCC	CCAAGTCGAC	CGTTGACAGA	9600
TAAGGCTCTT	TCTAGATTCA	CCTCACTTCC	ATGTTTTAAT	AGAGTAAGAG	CTGTTCGACT	9660
CCATGTTTCA	TTCATTACAT	CAACTGTAAA	GGATTGATGA	TTGAAATGAG	TAACTGTAAG	9720
ACAGATACCA	TTTACTGCTA	TACTATCGCC	TAAATGGATA	TCCGTTAATA	TTTTTGAGGC	9780
TTTAATTGAT	AGTTTACAAT	TACGAGAGTC	TTTCTGTATT	CTTTCAACTT	TTCCGATTTC	9840
TTCAATTATT	CCTGTGAACA	TGGATAAATC	ACTTCACTTT	CTATGAGATA	GTCATTTCCT	9900
ATTTGAGAAA	ATGCATAAGG	TTTCAATCTA	ATAGCGTCAT	TTGGCAAAGA	AATACCTTCA	9960
CCTCCGACAG	GAAACTTGGC	ACTACCTCCA	AAAACTTTTG	GTGCAATATA	TATTTTCAGC	10020
TCATCAACAA	TTTGTTGTTC	CAAAGCACTC	CAATTCATTA	GACTGCCCCC	TTCTAGAACT	10080
AGGCTATCAA	TCTGCATGTT	TCCTAGATGT	TGCATTAAAC	TCGATAAGTC	TATATGATTG	10140
CCTTTTTTCT	TTATGGAAAG	TATTTCACAG	CCATGATTTT	GATATAGCTT	CATTITATTT	10200
TTGTCTTCAG	AGGAAGTGGC	AATGTAAGTT	TTAATATCAT	TTGCTGTTTT	TACGATTTTA	10260
GAGGTAAGAG	GAGTTCGTAA	ATGTGTATCG	CATATGATAC	GGATAGGATT	TTTCCCTTCC	10320
TCCAATCTAC	ATGTCAGCAA	AGGATCGTCT	TGAATAACAG	TATTGACTCC	CACCATAATT	10380
GCACTAACAT	GGTGTCGTAA	CTGATGCACA	TGCTTTCTTG	сттсттсттс	AGTAATCCAT	10440
TTGGATTGAT	TIGITITAGT	GGCTATTTTT	CCATCCATTG	ACATTGCATA	TTTCATAAAA	10500
ACATAGGGTA	CATGCTGGGT	AATATACTTT	СТААААСТТТ	TTATTAAGTT	AAGACACTCA	10560
TTTTCTAAAA	TTCCAACAGT	AACTTGAAGA	TTATTTTCCT	CAAGTATCTT	TACTCCTTTT	10620
CCAGATACAA	TAGGATTACA	GTCTAGGCTT	CCAATGACTA	CTCTTGTAAT	ACCACTATCG	10680

			396			
ATTATAGCAT	CTATACAGGG	AGGTGTTTTC	CCGAAGTGAC	AACAGGGTTC	AAGTGTTACA	1074
TAAAGCGTCG	CTCCGACAGG	GGATTCTCTA	CAGTTTTTAA	GAGCATTTCT	CŢCAGCATGT	1080
GGGCCACCAA	AAAACTCATG	ATAACCTTGT	CCGATAATGT	GATTATCTTT	TACAATAACT	1086
GCGCCGACCA	TAGGATTGGG	ATTGACGTAA	CCAGCCCCTT	TTTGTGCCAG	TTTTATTGCT	1092
AATTTCATAT	ATTTTGAATC	GCTCATCTCG	CTACCTCCAA	AAAAATATAC	CTTGAATAGG	1098
GGACTACTCA	AGGCATACAA	AAGAAAACTT	ATGCGATTAA	CAAAAATGCT	CTGAAATGAC	1104
AAGTAATCAT	TTCAGAGCAC	GCAAAAAGCA	CAAATATACT	TTTATCTTCT	TTCATCCAGA	1110
CTATACTGTC	GGCTTTGGAA	TTTCACCAAA	TCATGCCTTT	CGGCTCGTGG	GCTATACCAC	1116
CGGTAGGGAA	TTTCACCCTG	CCCTGAAGAT	AGTTATTCAA	TTACAGATGA	TTATAGTACT	1122
TAATTTTGAA	TATGTCAACA	GATAAATACC	GATTGTTTTT	GATATACTGT	ATTTGTGATA	1128
ATCGATTCTC	GCTCCTCGGA	TAAAGAAAAT	· ATGATATACT	AGATAAACGA	AATAAGAGAG	1134
AAGGAATACT	ATGTACGCAT	ATTTAAAAGG	AATCATTACC	AAAATTACTG	CCAAATACAT	1140
TGTTCTTGAA	ACCAATGGTA	TTGGTTATAT	CCTGCATGTG	GCCAATCCTT	ATGCCTATTC	1146
AGGTCAGGTT	AATCAGGAGG	CTCAGATTTA	TGTGCATCAG	GTTGTGCGTG	AGGACGCCCA	1152
TTTGCTTTAT	GGATTTCGCT	CAGAGGATGA	GAAAAAGCTC	TTTCTTAGTC	TGATTTCGGT	11586
CTCTGGGATT	GGTCCTGTAT	CAGCTCTTGC	TATTATCGCT	GCTGATGACA	ATGCTGGCTT	11640
GGTTCAAGCC	ATTGAAACCA	AGAACATCAC	CTACTTGACC	AAGTTCCCTA	AAATTGGCAA	11700
GAAAACAGCC	CAGCAGATGG	TGCTGGACTT	GGAACGCAAG	GTAGTAGTTG	CAGGAGATGA	11760
CCTTCCTGCC	AAGGTCGCAG	TGCAAGCAAG	TGCTGAAAAC	CAAGAATTGG	AAGAAGCTAT	11820
GGAAGCCATG	TTGGCTCTGG	GCTACAAGGC	AACAGAGCTC	AAGAAAATCA	AGAAATTCTT	11880
TGAAGGAACG	ACAGATACAG	CTGAGAACTA	TATCAAGTCG	GCCCTTAAAA	TGTTGGTCAA	11940
ATAGGAGCAG	AGAATGACAA	AACGTTGTTC	GTGGGTCAAG	ATGACCAACC	CGCTCTACAT	12000
CGCCTATCAT	GATGAGGAGT	GGGGCCAGCC	CCTCCATGAT	GACCAAGTAT	TGTTTGAG1T	12060
CTTGTGTATG	GAAACCTATC	AGGCAGGCCT	GTCTTGGGAA	ACGGTACTCA	ACAAACGCCA	:2120
AGCTTTCCGA	GAAGTCTTTC	ATAGCTATCA	AATTCACTCA	GTCGCAGAGA	TGACTGACAC	12180
rgaattggaa	GCCATGCTGG	AGAATCCAGC	TATCATTCGA	AATAGAGCCA	AGCTTTTTGC	12240
PACACGCGCT	AACGCCCAAG	CCTTTCTACA	GTTACAGGCA	GAGTACGGCT	CTTTTGATGC	12300
TATCTTTGG	TCTTTTGTTG	AGGGGAAAAC	TGTCGTTAAC	GATGTTCCTG	ATTATCGCCA	12360
AGCGCCAGCT	AAAACACCCT	TATCTGAGAA	ATTAGCCAAA	GATCTCAAAA	AACGAGGCTT	12420
CAAGTTCACA	GGCCCAGTCG	CCGTATTGTC	TTTTCTACAG	GCTGCAGGGC	TAGTTGATGA	12480

CCACGAGAAT	GATTGTGAGT	GGAAAGGTCT	TAAATGATG1	CTAACAAAAA	TAAGGAAATT	12540
CTGATTTTT	G CGATTCTCTA	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	12600
TCTTTAATGO	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	12660
TCCTTCTTGT	TCAAGGATAG	ATTGATCCAA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	12720
AAATTCTTC1	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	12780
GAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	12840
TCTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	12900
ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	12960
CGGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	13020
CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	13080
TTTTCTATTA	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	13140
TTAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	13200
AGGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	13260
TACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAAGCTG	AGAAACTTTT	13320
CCCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	13380
GGACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	13440
TCGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	13500
CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
AAGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
AGAGGATTTT	CCCTTCCCAG	TCTGACAAGT	CAGGGAAANG	TOTOTATTT	TGGCACAGTT	13580
CCGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
CGAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
GACTGACACG	AGGTGTTCCC	AGGCCCTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
CGTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
GGCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
AAAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
CAAGAAAAAT	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
GCAAGCGATA	GCTATCGTCT	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
AAAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

398
CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT 14273

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear

(A) LENGTH: 9828 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GTGAAGTGCG GCAAAAGGTG CAAGTGATGA GCTCAGGTTC TTTAGCTCTT GACATTGCCC 60 TTGGCTCAGG TGGTTATCCT AAGGGACGTA TCATCGAAAT CTATGGCCCA GAGTCATCTG 120 GTAAGACAAC GGTTGCCCTT CATGCAGTTG CACAAGCGCA AAAAGAAGGT GGGATTGCTG 180 CCTTTATCGA TGCGGAACAT GCCCTTGATC CAGCTTATGC TGCGGCCCTT GGTGTCAATA 240 TTGACGAATT GCTCTTGTCT CAACCAGACT CAGGAGAGCA AGGTCTTGAG ATTGCGGGAA 300 AATTGATTGA CTCAGGTGCA GTTGATCTTG TCGTAGTCGA CTCAGTTGCT GCCCTTGTTC 360 420 CTCGTGCGGA AATTGATGGA GATATCGGAG ATAGCCATGT TGGTTTGCAG GCTCGTATGA TGAGCCAGGC CATGCGTAAA CTTGGCGCCT CTATCAATAA AACCAAAACA ATTGCCATTT 480 TTATCAACCA ATTGCGTGAA AAAGTTGGAG TGATGTTTGG AAATCCAGAA ACAACACCGG 540 CCGGACGTGC TTTGAAATTC TATGCTTCAG TCCGCTTGGA TGTTCGTGGT AATACACAAA 600 TTAAGGGAAC TGGTGACCAA AAAGAAACCA ATGTCGGTAA AGAAACTAAG ATTAAGGTTG 660 TAAAAAATAA GGTAGCTCCA CCGTTTAAGG AAGCCGTAGT TGAAATTATG TACGGAGAAG 720 GAATTTCTAA GACTGGTGAG CTTTTGAAGA TTGCAAGCGA TTTGGATATT ATCAAAAAAG 780 CAGGGGCTTG GTATTCTTAC AAAGATGAAA AAATTGGGCA AGGTTCTGAG AATGCTAAGA 840 AATACTTGGC AGAGCACCCA GAAATCTTTG ATGAAATTGA TAAGCAAGTC CGTTCTAAAT 900 TTGGCTTGAT TGATGGAGAA GAAGTTTCAG AACAAGATAC TGAAAACAAA AAAGATGAGC 960 1020 CAAAGAAAGA AGAAGCAGTG AATGAAGAAG TTCCGCTTGA CTTAGGCGAT GAACTTGAAA TCGAAATTGA AGAATAAGCT GTTAAAGCAG TGGAGAAATC CGCTACTTTT TCGATTTTTG 1080 1140 ATTCAAGTTT TTAGATTATA TATAGTAGCT TGAAATAAGA TATGAACAAC TCTATTAGGA 1200 AAGTCAAATT AATTTCTAGA AATGTTTTAG CAGCTACAGC GTACTATTCC AAACTCAACC AACTATAATA GATCGAAACT AGAATAGTAC ATATCTACTT CTAAAACATT GTTAAAAATC 1260 GATTIGACTI TCCTTATTIC ATTCCGCTAT ATATAGTTIG CIGTTTCTTG TCGCTCCTCT 1320 GGAAAGCTGA TATAATAGCT TTATGAATAA AAAACGAACA GTGGACCTGA TACATGGTCC 1380

CATTCTTCCC	TCGCTCTTAA	GCTTCACCTT	TCCAATTTTG	СТАТСАААТА	TTTTTCAACA	1440
GCTCTATAAC	ACTGCTGATG	TCTTGATTGT	TGGACGATTT	CTTGGTCAAG	AATCCTTGGC	1500
rgcagtagga	GCGACGACAG	CGATTTTTGA	CCTGATTGTA	GGTTTTACAC	TTGGTGTTGG	1560
CAATGGCATG	GGGATTGTCA	TTGCTCGTTA	TTATGGGGCT	CGGAATTTCA	CTAAAATCAA	1620
GAAGCAGTA	GCAGCCACCT	GGATTTTAGG	тсстсттттс	AGCATTCTAG	TTATGTTGCT	1680
GGCTTTCTT	GGCTTGTATC	CTCTCTTGCA	ATACTTAGAT	ACTCCTGCAG	AAATTCTTCC	1740
rcaatcttat	CAATATATTT	CTATGATTGT	GACCTGTGTA	GGTGTCAGCT	TTGCTTATAA	1800
PCTTTTTGCA	GGCTTGTTGC	GGTCTATTGG	TGACAGTCTA	GCAGCCCTGG	GATTTCTGAT	1960
TTTCTCTGCC	TTGGTTAATG	TGGTTCTGGA	TCTCTATTTT	ATTACGCAAT	TGCATCTGGG	1920
AGTTCAATCC	GCAGGACTTG	CTACCATTAT	TTCGCAAGGT	TTATCAGCGG	TTCTCTGCTT	1980
PTATTATATT	CGTAAAAGTG	TGCCAGAACT	CTTGCCACAG	TTTAAACATT	TCAAATGGGA	2040
CAAAAGCTTG	TACGCGGATC	TCTTGGAGCA	AGCTTTGGCT	ATGGGCTTGA	TGAGTTCAAT	2100
<b>TGTATCTATC</b>	GGCAGTGTGA	TTTTACAGTT	TTCTGTTAAT	ACATTTGGTG	CAGTGATTAT	2160
TAGTGCCCAG	ACGGCAGCTC	GACGCATTAT	GACCTTTGCC	CTTCTTCCTA	TGACCGCTAT	2220
TTCTGCATCA	ATGACGACCT	TTGCTTCTCA	GAATCTAGGA	GCTAAGCGAC	CTGACCGTAT	2280
TGTTCAAGGT	CTTCGAATCG	GCAGTCGTTT	AAGTATATCC	TGGGCAGTTT	TTGTTTGTAT	2340
TTTCCTCTTT	TTTGCCAGTC	CAGCTTTGGT	TTCCTTCTTG	GCTAGTTCGA	CAGATGGTTA	2400
CTTGATAGAA	AATGGAAGTC	TCTATCTGCA	AATCAGTTCA	ACCTTTTATC	CCATTTTGAG	2460
CCTCTTGTTG	ATTTATCGCA	ATTGCTTGCA	GGGCTTGGGG	CAAAAGATCC	TTCCTCTAGT	2520
TTCTAGCTTT	ATTGAACTAA	TCGGAAAAAT	CCTTTTTGTG	GTTTTSATTA	TTCCTTGGGC	2580
aggatataag	GGTGTTATCC	TTTGTGAACC	TCTTATCTGG	GTTGCCATGA	CAGTTCAACT	2640
GTACTTCTCA	TTATTCCGTC	ATCCCTTGAT	AAAAGAAGGC	AAGGCAATCT	TGGCAACCAA	2700
AGTGCAATCC	TAGTTGGATT	TACTGAATAA	AATCCATTTC	CTCTAGTGAA	AATCGAAAAA	2760
ACTTGTGTTC	TCTTCTTTAG	TTTGGTGTTG	AAAATAGTTT	AACAGACTTT	TGACTTCTTT	2820
TATATGATAT	AATAAAGTAT	AGTATTTATG	AAAAGGACAT	ATAGAGACTG	TAAAAATATA	2880
CTTTTGAAAA	TCTTTTTAGT	CTGGGGTGTT	ATTGTAGATA	GAATGCAGAC	CTTGTCAGTC	2940
CTATTTACAG	TGTCAAAATA	GTGCGTTTTG	AAGTTCTATC	TACAAGCCTA	ATCGTGACTA	3000
AGATTGTCTT	CTTTGTAAGG	TAGAAATAAA	GGAGTTTCTG	GTTCTGGATT	GTAAAAAATG	3060
AGTTGTTTTA	ATTGATAAGG	AGTAGAATAT	GGAAATTAAT	GTGAGTAAAT	TAAGAACAGA	3120

TTTGCCTCAA	GTCGGCGTGC	AACCATATAG	GCAAGTACAC	GCACACTCAA	CTGGGAATCC	3180
GCATTCAACC	GTACAGAATG	AAGCGGATTA	TCACTGGCGG	AAAGACCCAG	AATTAGGTTT	3240
TTTCTCGCAC	ATTGTTGGGA	ACGGTTGCAT	CATGCAGGTA	GGACCTGTTG	ATAATGGTGC	3300
CTGGGACGTT	GGGGGGGTT	GGAATGCTGA	GACCTATGCA	GCGGTTGAAC	TGATTGAAAG	3360
CCATTCAACC	AAAGAAGAGT	TCATGACGGA	CTACCGCCTT	TATATCGAAC	TCTTACGCAA	3420
TCTAGCAGAT	GAAGCAGGTT	TGCCGAAAAC	GCTTGATACA	GGGAGTTTAG	CTGGAATTAA	3480
AACGCACGAG	TATTGCACGA	ATAACCAACC	AAACAACCAC	TCAGACCACG	TTGACCCTTA	3540
TCCATATCTT	GCTAAATGGG	GCATTAGCCG	TGAGCAGTTT	AAGCATGATA	TTGAGAACGG	3600
CTTGACGATT	GAAACAGGCT	GGCAGAAGAA	TGACACTGGC	TACTGGTACG	TACATTCAGA	3660
CGGCTCTTAT	CCAAAAGACA	AGTTTGAGAA	AATCAATGGC	ACTTGGTACT	ACTTTGACAG	3720
TTCAGGCTAT	ATGCTTGCAG	ACCGCTGGAG	GAAGCACACA	GACGGCAACT	GGTACTGGTT	3780
CGACAACTCA	GGCGAAATGG	CTACAGGCTG	GAAGAAAATC	GCTGATAAGT	GGTACTATTT	3840
CAACGAAGAA	GGTGCCATGA	AGACAGGCTG	GGTCAAGTAC	AAGGACACTT	GGTACTACTT	3900
AGACGCTAAA	GAAGGCGCCA	TGGTATCAAA	TGCCTTTATC	CAGTCAGCGG	ACGGAACAGG .	3960
CTGGTACTAC	CTCAAACCAG	ACGGAACACT	GGCAGACAAG	CCAGAATTCA	CAGTAGAGCC	4020
AGATGGCTTG	ATTACAGTAA	AATAATAATG	GAATGTCTTT	CAAATCAGAA	CAGCGCATAT	4080
TATTAGGTCT	TGAAAAAGCT	TAATAGTATG	CGTTTTCTTG	TGGAGATATT	TCCTTCAATT	4140
TTGCTACTAT	ATTAAACAAA	AATCAAAAAG	CAAACTAGAA	AGTTATGCTC	AAATAAAATC	4200
TAAATTTGAC	AATGTAAACC	GAGTCGGATA	GCTTTAAGTA	CTGTTTTGAG	GTTGAAGATA	4260
CGATTTTTGA	TAGGAACTCA	TCAATTTTAG	ATTTTTAAGC	AGCATCAATA	AATTGCTTCC	4320
TTCTTTTGTC	TTTTTTAATA	AAAAATTTAT	ATTATGACma	GAGTGTGCTA	TTCTTTTTAT	4380
GAGAGGTGTA	TGAATATGAT	AAATGTATGT	GATAAATGTA	TGTGATGTTG	GAAAAAGAAT	4440
AAAAGAACTT	AGAATATCTT	CAAATCTTAC	TCAAGATAAG	ATTGCTGAGT	ATTTGTCT:T	4500
GAATCAAAGC	ATGATTGCCA	AAATGGAAAA	AGGTGAAAGG	AATATCACGA	ATGGATTTAA	4560
GTAATAAAGC	TTCAAATCTT	AGAAAAAAGT	TGGGAGCTGA	TGGTGAATCG	CCGATAGATA	4620
TTTTAAATT	GGTACAAAAG	ATAGAAAATT	TGACGCTGGT	ATTTTATGGA	CTCGGAAAGA	4680
ATATTAGCGG	AGTCTGTTAT	AAAGGAACTC	AGTTCAGTCT	CATTGCAGTC	AATTCAGACA	4740
TGCCATTAGG	AAGGTAAAGA	TTTTCTTTAG	CACATGGACT	GTATCATCTT	TATTATGATG	4800
AGGTGAAGAA	GAGTTCAGTC	AGTCTTATCT	TGATTGGTGA	AGGAGATGAA	ACTGAAAGAA	4860
AAGCGGATCA	GTTTGCTTCT	TATTTTTAA	TTTTCCCATC	TTCACTGTAT	AGGATGGTTG	4920

. .

AGGAAATCAG	AGAAAATGCC	AATAGAACTC	ATCTTGAAGT	AGAAGATATT	ATAAAATTGG	4980
GTCAGTTTTA	TGGTATCAGT	CATAAAGCTA	TGTTATATAG	ATTGAGGAAT	GATGGATACC	5040
TTGATGCAGA	AGAAATTAAA	AATATGGATA	TTAGTGTTAT	AGAGACAGCT	TCAAGATTAG	5100
GCTATGATAC	AAGTTTATAT	CGTCCTTTGT	CAGAAAGTAA	AAAAGAAATG	GCATTAGGAT	5160
AATATATTAA	TTCAACTGAA	CAACTTTTAG	AAAATAACAG	AATTTCGCAA	GGGAAGTATG	5220
AGGAACTGTT	ACTAGATGCT	TTCAGATATG	ATATTGTATA	TGGGCTAGAT	GAAGAGGGG	5280
GAGTTGTCGT	TTGACTAGTC	GTGTATTTAT	TGATGCAGAT	TGTATTTCAG	TATTTTTATG	5340
GGTTGGCACT	GAACATCTTT	TAGAAAAGCT	CTATTTGGGT	AAAATTGTTA	TTCCACAAGA	5400
GGTGTATGAT	GAAATCAATA	TACCTACAAT	TCCCCATTTA	AAATCTAGGA	TAGATCAGTT	5460
GGTAGCTAAG	GGTTCAGCTG	AGATTGTGAG	CATAGACATT	GGAACTGAAG	AATACGCATT	5520
ATATAGAGAT	TTAACAAGAA	ATCATGATAG	TAACAAGATT	ATTGGTAAGG	GAGAAGGGC	5580
ATCTATTTCC	TTAGCGAAAA	AGCATAATGG	GATATTAGGA	AGTAATAACC	TAAGAGATGT	5640
TAAATCATAT	GTAGAAGAAT	TTTCTTTAGA	ATATATGACA	ACAGGAGATA	TACTGATTGA	5700
AGCGTTTAAA	GCGTAATTTA	TTACTGAATA	AGAGGGCAAT	CATATCTGGA	ATAATATGCT	5760
TAAAAAGAGA	AGGAAAATTG	GTGCAAATTC	ATTTTCAGAC	TATCTTCGTG	GAAGTATTCA	5820
TCAAAATAGA	САААААТААА	TTTGGATAAA	TCGAACTCAC	TATTCAGGAG	GCATATGAGC	5880
AATTCGAAAA	AGAAAAGTGT	CAAATTGAGC	CTATAGGAGT	AGAAGTGAAA	TAGTAAGTCC	5940
TGCATAGTGG	ATGAGAGAAA	AGTTCTCCTT	GAAGTTTTCC	TGAACTATCA	GTCGCATGTC	6000
AAACGATATG	TAGGGTAATG	TGAGAGGGGA	TAGCGAGTAG	TTTTTGGTTA	TTTTATCAAA	6060
AVACTTATAT	TTTATTATAC	CGAATGATAA	AATATAATAA	AAATGATAGA	ATAAGGAAAA	6120
AACATGAATG	TCAAAAAGAT	AATGTCAATT	TTTCAATCCT	TTTATGTTGA	TGTCAGTATT	6180
GAGGAACTGA	CTTTGACTTT	ACCAATCAGT	TTTGTAAAAA	GCTTTGAGTA	TACTCAAATG	6240
ACTTTTCATA	AGGAATCATT	TTTATTGATT	AAAGAAAAGA	GAAGGGGGAG	TTTGAGTTCA	6300
TTGTTACTC	AGGCTCGCAC	TATGGGTGAA	AAAGCCAATA	TGGATGTTGT	TTTGGTGTTT	6360
CGAAGTTAT	CAGACAGTGA	AAAAAAGCAA	TTACTTCAAG	CTAGAGTTCC	GTTTGTAGAC	6420
TTTAAGGGAA	ACCTCTTCTT	CCCTCCATTG	GGACTAGTAC	TCAATGCGAA	TGATACTGAA	6480
STCCCTAAGG	AATTAACACC	TAGCGAACAA	TTAACGTGGA	TTGCCTTTTT	ATTGACAAAA	6540
GCTCAAAAAG	TAGTAGATGT	TGATTTGCTT	TCACAAGTCA	CTGGACTTCC	AAACTCAACA	6600
سات منه فريسية	COMPONE NECES CO.	THE RESERVE	mm.m.m.m.co.co.			

. . . . .

			402			
TACACATATA	CGGTGTCAAA	GAAAGAATTA		CCGTGTCATG	ТТАТТТААТ	6720
CCCATCAAAA	AACGGATTTT	ATTGCCAGAT	GGCGATATAA	AGCAGATAAA	ATCTGTTTCT	6780
AACCTTCTAT	ATGGTGGTGC	TTATGCTTTG	TCGCATTCAA	CTTTTTTAGC	TGAAACGGAT	6840
GAAAATATTA	GCTATGTCAT	ATGGCAGAGA	AAATTCAATC	AGTTATCCTT	GCCACTTTCT	6900
CAGCATGTTT	TAAAATGAAA	GATGCTAGAG	ATATGGAAAT	ATCGTCCTTT	TGTATCTGAG	6960
TTTTGGAATG	ATTTTAAAAA	TAATCATGAT	AAACAATTTG	TAGATCCGAT	TTCTCTTTAT	7020
TTGACCTTAA	AAGATGATGA	TGACCCACGT	ATAGAGGAAG	AGAGTGAAGC	ACTAGAAAAT	7080
ATGATATTAC	AGTATCTGGG	AGAAGATGAT	GCCAGCTAAT	ACGAAAGTTA	TTTTTCAAGA	7140
AATGTTTGCG	GATTTTCAGA	ACTATTATGT	TCTGATTGGG	GGAACTGCTA	CCTCTATCGT	7200
ATTGGATTCG	CAAGGATTTA	AAAGTCGCAC	AACAAAAGAT	TATGATATGG	TCATCATTGA	7260
TGAAGTAAAA	AATAAGGAAT	TTTATACTAC	CTTGAATCAT	TTTTTAGAAT	TGGGAGAGTA	7320
TCAAGGAAGT	CAGAAAGATG	AGAAAGCGCA	GCTTTTTCGA	TTTACAACAA	CTAATCCTGA	7380
GTTTCCTTCT	ATGATTGAAC	TATTTAGTAT	CTTACCAGAA	TATCCATTAA	AGAAGGACGG	7440
TCGAGAAATT	CCCTTACATT	TTGACCAAGA	TGCTAGTTTA	TCAGCCTTAT	TATTGGATGA	7500
AGATTATTAT	AATATATTGG	TGCATGAAAA	AGAAACCATT	CAGGGGTATT	CGGTATTGAG	7560
TAATTGTGGT	TTATACTCTT	CGAAAATCTC	TTCAAACCAC	GTCAGCTTCC	ATCTACAACC	7620
TCAAAACAGT	GTTTTGAGCA	GCCTGCAGCT	AGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	7680
GAGTATTAAT	TATTTTTAAG	GCTAAAGCT"	GGCTGGATAT	GAGGGAGCGC	TCTGCCACAG	7740
GTGCTCAAGG	TTTAAGTAAG	TCCATTAAAA	AGCATTTGAA	TGACCTTACC	CGTTTGACAG	7800
CTTCCTTGCT	AGGAGATGAA	AAGTTATCGG	CTATAACATC	AAGTAGTGCG	GTAAAAGCAG	7860
ACATGCACCG	CTTTGTGATA	GAATTAGAGO	CTGTGAAGTC	AACTATTCTT	CAAAATAATG	7920
ACATTTCATT	GGATCAAAAT	GAAATTTTT	: AAATTCTGAA	AAATTTTCTC	GATGGTTAAA	7980
ATAATTGTAG	CGAGATGGCT	ATATTGAATT	CGTCTATATC	TGGAAACTAG	AAAAAACTTC	8040
AATTTCAGGA	GAAAATGAAG	TCAATCTTC	CACAATCAAA	CGTATAGTAI	CAAGGTTTTT	8100
CAAGACCTGA	TATTATGCGT	TTTTTGCTT	TCAAAACTT	TTGCCCAGT	TTCGTTTTTA	8160
TCCTCTAGTC	ACTTGATTTC	TTTCAGGTGG	TTTTTTAGT	TAGTAGAAT	AAACGAGAAC	8220
AGGACAAATT	GATCAGGACA	GTCAAATCG	A TTTCTAACA/	TGTTTTAGAJ	GCAGAAGTGT	8280
ACTATTCTAC	TTTCAATCT	CTATAGTTA	A ATCTGCGGT	AAGTCTACT	GTGAATCTAT	8340
GATTGTAAT?	CTCTTCCAN	ATCTCATCA	A CCACGTCAG	CTTGCCTTG	AGTCTGTATC	840
TTACTGACCA	A AGCTAGTGAT	GGATTTAGA	A TAGGTGATT	r GGAGCGTCC	T ATTAGCTAGG	846

AAATGCTGCT	CATAGTCCTT	TGCTGAGGCT	AGGGTGTTTC	AACATTCAAC	ACTCAACTGG	8520
TTGATCTAGT	TGATAGGAAG	GGAGTTACTA	TAAAATACTC	AGGCTTCCAT	CATATTTTTT	8580
GAAACGATTG	TGTAATCAAA	ATGTACCAAT	ATTGTAGTAT	TGGTACAGAA	GATGTTGTGA	8640
ATGGATAAAT	ATATCATAAC	TGCTATCTCA	AAAAGATTTC	ATATGTCTGT	GCATATATAA	8700
TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	CATGATTGAT	AATACCAGCA	ATCAAATTCA	8760
TTCGTAATCC	AAAGCGTTTA	CGATGATTTC	GATAGGTTGT	TGAAAACATT	TTAAACGTTT	8820
CTACTTTGGC	AAAGATGTTC	TCAACCTTGC	TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	8880
CTTTATCTTC	AGCTGTTAGC	GGCTTGAGTT	TGCTGGATTT	ACGTGGAGTT	TGTGCTTGAG	8940
GACATATCTT	CATGAGCCCT	TGATAACCAC	TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	9000
TATTTCTGCA	ACTCATTTTG	AACAACTTCA	TATCATGACA	ATAGTTCACA	GTGATATCCA	9060
AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	9120
TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	9180
TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	9240
ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	CGGATTAAGT	TGCTTTCGTG	<b>ЛАТАССААА</b> А	9300
TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	9360
TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	9420
CGCTGAACAC	CAACAAGACG	CTTAAATCGT	GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	9480
TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	GGTGTCAATG	TTTTTTTCAT	CTATCCCGAG	9540
AATTATTTTC	CCGCCATTTG	TATTTGCAAA	TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	9600
AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	ATCAACCCCT	TCAAATTTTA	AGTCCATATT	9660
TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	9720
GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	AATTTCTTTT	ттаасссаст	TTAATTGCTT	9780
TTTTAACACG	GGTTAAAAAA	GAAATTAAAG	TGGGTTAATT	TTTCTTGA		9828

# (2) INFORMATION FOR SEQ ID NO: 42:

4. . . . . .

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3369 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

			404			
CCGCGAAAGA	TATTTTTGAA	CAAGAGTTTG	GACGTGAGGT	CEGTGFOTAT	AATAAAGTAG	60
AAGTTGACGA	GTTTTTAGAC	GATGTCATCA	AGGACTATGA	AACCTATGCT	GCCTTGGTCA	120
AGTCACTTCG	TCAGGAAATT	GCGGATTTGA	AGGAAGAATT	AACTCGTAAA	CCGAAACCTT	180
CACCAGTTCA	AGCAGAACCC	CTTGAAGCGG	CAATTACAAG	TTCTATGACG	AATTTTGATA	240
TTTTGAAACG	CCTGAATAGA	TTGGAAAAAG	AAGTTTTTGG	TAAACAAATT	TTAGATAACT	300
CAGATTTTTA	AGTAGTTATT	TGAGATGTGC	AATTTTTGGA	TAATCGCGTG	AGGAGAATTG	360
TTTCTCATGA	GGAAAGTCCA	TGCTAGCACA	GGCTGTGATG	CCTGTAGTGT	TTGTGCTAGG	420
CGAAACCATA	AGCCTAGGGA	CGAGAAATCG	TTACGGCAGT	TGAAATGGCT	AAGTCCTTGG	480
ATAGGCCAGA	GTAGGCTTGA	AAGTGCCACA	GTGACGGAGT	CTTTCTGGAA	ACAGAGAGAG	540
TGGAACGCGG	TAAACCCCTC	AAGCTAGCAA	CCCAAATTTT	GGTCGGGGCA	TGGAGTACGC	600
GGAAACGAAC	GTAGTATTCT	GACTGCTATC	AGCTAGAGCT	GTTAGTGGTA	GACAGATGAT	. 660
TATCGAAGGA	AGTGGTCCTA	GTCACTTCTG	GAACAAAACA	TGGCTTATAG	AAAATTGCAT	720
ATAGGTTGGG	GCTGAGAAAT	TTTCTCAACC	TCATTTTTTA	AAGTGGACAT	ATAGAAAGGT	780
CTTGCAAGAC	TGTAACATGA	AAAAAGAATT	TAATTTAATT	GCAACTGTGG	CAGCAGGGCT	840
TGAGGCTGTC	GTTGGTCGTG	AAGTGCGAGA	GTTGGGCTAC	GATTGTCAGG	TTGAAAATGG	900
ACGTGTTCGT	TTTCAAGGAG	ACGTGAGAGC	TATTATCGAA	ACCAACCTTT	GGCTTCGGGC	960
AGCAGATCGT	ATCAAAATTA	TCGTAGGAAC	GTTCCCAGCT	AAGACTTTTG	AAGAGCTATT	1020
TCAGGGAGTT	TTCGCTTTGG	ATTGGGAAAA	TTATTTACCA	CTTGGAGCTC	GGTTCCCGAT	1080
TTCAAAAGCT	AAATGTGTTA	AGTCCAAACT	TCACAATGAG	CCCAGTGTTC	AGGCTATTTC	1140
TAAGAAAGCT	GTTGTCAAGA	AATTGCAGAA	ACACTATGCT	CGCCCAGAAG	GGGTTCCTCT	1200
GATGGAGAAT	GGCCCAGAGT	TTAAGATTGA	GGTCTCTATT	CTCAAAGATG	TGGCAACTGT	1260
CATGATTGAT	ACGACCGGGT	CTAGCCTCTT	TAAACGTGGT	TATCGTACCG	AAAAAGGTGG	1320
CGCTCCTATC	AAGGAAAATA	TGGCAGCAGC	CATTTTACAA	CTTTCTAACT	GGTATCCAGA	1380
CAAGCCTTTG	ATTGATCCGA	CCTGTGGTTC	GGGGACTTTC	TGTATTGAGG	CAGTTATGAT	1440
TGCTAGAAAG	ATGGCGCCAG	GTCTTCGTCG	CTCTTTTGCA	TTTGAGGAAT	GGAACTGGAT	1500
CAGCGATCGC	TTGATTCAAG	AAGTGCGCAC	AGAAGCGGCT	AAAAAAGTAG	ACCGTGAGCT	1560
TGAGCTGGAT	ATCATGGGCT	GTGATATTGA	TGCTCGCATG	GTGGAAATTG	CTAAGGCCAA	1620
TGCTCAGGTA	GCTGGTGTTG	CAGGAGACAT	TACTTTTAAG	CAGATGCGCG	TGCAGGATTT	1680
ACGTTCCGAT	AAAATCAATG	GAGTAATCAT	TTCCAATCCG	CCTTATGGTG	AACGTTTGTC	1740
1.C.1.DC.1.DCC.1	CCCCMCACCA	አርርሞርሞክሞርር	TCACATGGGG	СААСТАТТС	CACCCCTCAA	1800

AACTTGGAGC	AAATTTATCC	TGACTAGTGA	TGAAGCTTTT	GAAAGCAAGT	ATGGTAGCCA	1860
AGCAGATAAG	AAGCGTAAGT	TATACAACGG	AACCTTGAAA	GTGGATCTAT	ATCAATATTT	1920
TGGTCAGCGT	GTCAAACGGC	AAGAGGTAAA	ATAGAAAGGG	ATACTCATGA	GTAAAAAAAG	1980
ACGAAATCGT	CATAAAAAAG	AAGGTCAAGA	ACCGCAATTT	GATTTTGATG	AAGCAAAAGA	2040
GCTAACAGTT	GGTCAAGCTA	TTCGTAAAAA	TGAAGAAGTG	GAATCAGGAG	TCTTGCCTGA	2100
GGATTCCATT	TTGGACAAGT	ATGTTAAGCA	ACACAGAGAT	GAAATTGAGG	CGGATAAGTT	2160
TGCGACTCGT	CAATACAAAA	AAGAGGAGTT	CGTTGAAACT	CAGAGTCTGG	ATGATTTAAT	2220
TCAAGAGATG	CGTGAGGCTG	TAGAGAAGTC	AGAAGCTTCT	TCGGAGGAAG	TTCCATCTTC	2280
TGAAGACATC	TTACTACCCT	TGCCTCTGGA	CGATGAGGAG	CAAGGCTTGG	ATCCTCTATT	2340
GCTAGATGAT	GAAAATCCAA	CAGAAATGAC	TGAAGAAGTG	GAAGAGGAGC	AAAACCTTTC	2400
TCGTCTGGAT	CAAGAGGACT	CAGAAAAGAA	AAGTAAAAA	GGCTTTATTT	TGACCGTTTT	2460
GGCGCTTGTA	TCAGTAATTA	TTTGTGTCAG	TGCTTATTAT	GTCTACCGTC	AAGTGGCTCG	2520
TTCGACTAAG	GAAATTGAAA	CTTCTCAATC	AACTACAGCC	AATCAATCGG	ATGTGGATGA	2580
TTTTAATACA	CTTTATGACG	CCTTTTACAC	AGATAGCAAT	AAAACGGCTT	TGAAAAATAG	2640
CCAGTTTGAT	AAACTGAGTC	AACTCAAGAC	TTTACTTGAT	AAGCTGGAAG	GTAGTCGTGA	2700
ACATACGCTT	GCCAAATCTA	AATATGATAG	TCTAGCAACG	CAAATCAAGG	CTATTCAAGA	2760
TGTCAATGCT	CAATTTGAGA	AACCAGCTAT	TGTGGATGGT	GTGTTGGATA	CCAATGCCAA	2820
AGCCAAATCG	GATGCTAAAT	TTACGGATAT	TAAAACTGGA	AATACGGAGC	TTGATAAAGT	2880
GCTAGATAAG	GCTATCAGTC	TTGGTAAGAG	CCAGCAAACA	AGTACTTCTA	GCTCAAGTTC	2940
AAGTCAAACT	AGCAGCTCAA	GTTCAAGTCA	AGCAAGTTCA	AATACGACTA	GTGAGCCAAA	3000
ACCAAGTAGT	TCAAATGAGA	CTAGAAGTAG	TCGCAGTGAA	GTCAATATGG	GTCTCTCGAG	3060
TGCAGGGGTT	GCTGTTCAAA	GAAGTGCCAG	TCGTGTTGCC	TATAATCAGT	CTGCTATTGA	3120
TGATAGTAAT	AACTCTGCCT	GGGATTTTGC	GGATGGTGTC	TTGGAACAAA	TTCTAGCGAC	3180
TTCACGTTCA	CGTGGCTATA	TCACTGGAGA	CCAATATATC	CTTGAACGTG	TCAATATCGT	3240
TAACGGCAAT	GGTTATTACA	ACCTCTACAA	GCCAGATGGA	ACCTATCTCT	TTACCCTTAA	3300
CTGTAAGACA	GGCTACTTTG	TCGGAAATGG	CGCTGGTCAT	GCGGATGACT	TAGATTACTA	3360
AGCAGTCGG						3369

(2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9713 base pairs

406

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

			-		_	
60	GTTACCGCAA	AAGCACTCCA	TCCCAACTAA	TTAACAATTT	TTTAAATGAA	AAGTTTACAA
120	TCAACTTGAA	ATCTGTTTCG	CATCAACTTC	AATCGCATTC	GAATGTACTA	CGTTTGTACT
180	TATTTAAATT	TAGCTCCTCC	CTGCCATAGC	AATACTTCTG	TTGAAGATTT	CAGATACTAA
240	ATGCAAGCAA	CACCAGTAAA	ATACTCTCTC	CCACCCTCAT	AGTACTTTAT	TTTGGGATTA
300	TAAGAAATAA	TACAAATTTT	AGCGAAAACT	TATTTTATAT	TAGATTTAAC	TGATACAAAA
360	АТАААТАААА	AAATATTAAA	TTTTAGTAAT	AAATAGGAAC	CTTAAAGATA	TTTTTGCATT
420	тстлттаааа	ATTCATATCA	ACCCCAAAAG	GGAAGTATTA	TATAAAATTT	TAATAGATAC
480	AATGCAATTA	GTTAAGTAAA	TAATTTTAAT	ATTAAAGCCA	AGAGTAGTAT	TATCCTCTAA
540	ATCTGGTAAT	AATCTTAACC	CACCAACTTT	AATATAGCCT	AAATGTCAAA	ATGAAGTAAC
600	GATGACAAAA	TTCTTGATGC	TCTCAATCCT	AATTGCTGAA	TAAAATTTCA	TAGAAGTTCC
660	TAGACAATAA	TGCTCCTACA	TCAAAATTGG	GCAAGTACTA	AATAATATT	ATGCAATTGA
720	TTCTGAGAAA	AGATAGTATA	CTTGAAATTG	TCACTGTCAT	TAGCTCTAAA	ATGCTACTTT
780	ATAGATTTTA	TGCAGCACTG	CTCCTGTAAT	AGTAATATAG	ACTAGAAATT	TCATTTGAAA
840	TTATTTCTAA	GAACATAAAA	TCGAAACAAT	AAATTCCACT	ACAATATAGT	TATAAGACTT
900	AATTGATAAA	AAAAGGAGAT	ATGACTGTAT	TTGATAAAAC	AGAAAGTAGT	ATATAATTAT
960	AAAATTGTGC	GCCTTCGCT	ATATTATCTG	ACAATATTGA	ATCTAAGATT	TAATCACAAT
1020	GCCAATAGCA	ACTAAAACCA	ACCAGATAAC	AAAGAAAGCA	AATTTGTTGC	TATCTTGGAA
1080	TTTCTAATCT	ACTCTTCCTA	TTATTTTAGA	AGAACATGCC	TACTATTGAA	GTATTCTTTT
1140	ACTACTGTAA	TGAAATCAAC	AGGCTAAAAA	CCACTTAGAA	ATAAAAGCAA	TCTTGAACGT
1200	TCCCCGAAAA	TAATATATTT	GGATATCAGG	GTTTGAAATT	AACAGCACTC	TGATACATCC
1260	TATGCAATAA	AGAGCATAGA	TAACAAATAT	TAATTTGACG	аааатаатаа	AGTATTGTAA
1320	AGTTGAAGGC	AAGAAATGAT	GTCCCCCCAC	ATAAAAATCT	CGAGGAAATG	AACTAATAAT
1380	ACCAACATAT	AAAAATTTCA	AATCATCTCT	AGAAGTTCGT	CAACACCTCC	GACTTGCTCC
1440	GGAAACATAA	GAATACTATC	TTACTCCTCC	AAGAATAATG	AGAGAGCACA	TTATTATGTT
1500	ACATTAATTA	ATTATTCTCA	ATACTTGCGA	AGTCCGACAA	AGGATCTGGA	AAATTGGTTT
1560	GAAACGCCTA	AATTACTGGT	TCGAAACAAA	ATAACTAAAC	AGCCAATCCC	CCCCATTAAC

ACCATTGTTT	CTTATTATGT	AAAAATTGAT	AGTAAACTAA	TCTGAGCATC	TCTATTCCTC	1620
CGTAGTTGAT	TGTACCTCTA	AGATTTTATA	CAACTCTTCC	CCGCTAGGTC	TATGAAGTTC	1680
TTTGAAAATT	TTTCCATCTT	TCAATATTAA	TGCACGATCA	GTTTTCGAGG	CCAATTCTAT	1740
ATCGTGCGTT	ACCATAATTA	CACACTTACC	CGCCCCTACT	AACTCTCTCA	ATAATTCAAA	1800
AATTACTTCA	CGAGAAACGC	TGTCTAAAGC	CCCAGTTGGC	TCATCAGCAA	ATATTATATC	1860
ACTATCAGCA	ATAACCGCTC	TAGCTATAGC	AACCTTCTGT	TGTTCTCCAC	CAGACAGAGT	1920
TCCAACAAAA	TCGTTTAAGC	CAGCATTAAA	CTTCATTCTT	TTGAGTAAGT	TTTCTACATT	1980
TTTAATAGTT	AATTTTTTT	GTGATAATCG	CAAAGGAAGT	GCTATATTTT	CTATTACCGG	2040
CAGGGAAGGT	ATTAAATTGT	ATGCTTGAAA	TATAAAAGAT	ACTTCGTTAC	GTCTTATACT	2100
TGACAATTTT	GCATTTCTGA	TTTTATAGGG	GTTGATTCCA	TTTAAAATTA	CTTCCCCACT	2160
TGTTGGTTCA	AGCAAACTAG	AAATACATTT	TAATAAAGTT	GACTTTCCAG	AACCACTAAT	2220
TCCTAGAATA	CTTATAAATT	CTCCTCTCGA	AGCAGAAAGA	GAAACATTTT	TCAGCACTTG	2280
CAACGTTTTA	TTATTTCCTA	GTAAAAATTG	ATGATACAGC	ССТТТСАСТТ	ТТААТАТАТА	2340
ATCTTTATCC	ATATTCTTGC	CTCCAATCAC	TTAATTTTGA	AAAGTGTTCC	ATTTTCCAAT	2400
TTATATATAT	CAGTGTATCT	CTTGTCATTT	AAGTCATAAT	GATGTGAAAC	TTCAATAAAT	2460
GAAATACCTA	AATTGAACAG	AATATCATGT	ATGGAATTTG	AATTATCATT	ATCTAAATTA	2520
GCTGATATTT	CGTCAAATAA	GTACACTTTA	TTATTTCTAA	TCAGAGCTCT	AGCTAAAGCT	2580
ATTTTTTGTT	TTTGACCTCC	AGACAAATTA	CTACCATTTT	CACCACATTG	ATAATTTAGT	2640
ATATCTATCT	TTTCTAATTC	TTCATATAGA	TTTACCTTTT	TTAACACCTC	AATTATCTGA	2700
TCATCTGAAA	AATATTCATT	TTGAAATAAA	GTTACGTTCT	CACGAATAGT	AGTGTCAAAA	2760
ATATATGGTG	TCTGATCAAC	TGTTGGTATT	GAATCTGAAC	TCTTTTTCCC	ATGTGATAAC	2820
AAATTTACAT	AACCTTTTTG	TGGCTTTAAA	GAACCATTAA	TTAAATTTAA	AATCGTTGTT	2880
PTCCCACTAC	CAGAAGTTCC	TGTTAATAAT	ACCCTAAATG	GTGACTTAAA	TGAGAAGTCA	2940
ATACTTAATT	TATTTTCTGG	TGTAATAGAA	TATACAACAT	CTTTCATGTG	TATCTCATCT	3000
attgatgaag	TATACAGTCC	GTTATTATCA	TGTTCAGCGT	СТАТААААТТ	CTTCTCTCCA	3060
TTAAGTATT	TTAAAAACGG	TTTCCTTAAA	TCTTTGGTTG	TATTTATCTT	ATTTAATGAA	3120
<b>FAGGCAATTG</b>	ATTGTATCGG	CCCTAAAACT	TTATCGTTTG	СТААБААААТ	ACCTATCAGT	3180
<b>PCACTAAAA</b> G	AAAGGCTTTT	ATGATAAATT	ACAAAATAAC	ATCCTACAAC	CAAGGGAACT	3240
AGAAAGCAAA	AACCTGAAAT	TAGTACTGCA	ACCAATTTTG	AAAGAACCTC	TGATCGTTTC	3300

			408			3360
AAATTAAAAG	TAGAATCTTC	TAGTTTATCC	AACTTTTTAT	CCGACAAACT	AATTATTTCT	3360
TTAGTAACAG	AATAAGATTT	TAATGTCTTA	AAACCATTAA	AAATTTCTTT	TATTATGTGA	3420
GTATACTCTG	CATTGCTGTT	AGAGTACTCA	TTAGCTGAAT	TAGACAACAT	CTTCTTCATA	3480
AAGACAGGTA	CTATAATCGG	CAATGCTGAT	AATACAATAA	ATATTATTGA	nACTAGGAAG	3540
тттааатааа	GCATAAAACT	TAGAGAGACG	ATGAACAACA	ATATTGAAGA	AATTATTTCA	3600
AAAATTTGTC	TAAAATAGTT	TTCTTCGATT	AATCTCAAAT	CATTTGACAA	AACTGAAATA	3660
ATAGATGAGT	AATCTTTAAC	CATTTCAGAA	GAAAGATACT	GTTCTCTAAA	ATATCCTTGT	3720
TTAATTTTTA	CATTTATATC	TTTAGTTATT	GATGCTTCCG	TTACTTCTAA	ATAGTAATTT	3780
GATATATAGA	TTGCTGACCA	ACCCAGAATA	CTTATAGCAC	CAAATCTTAG	AACGTCAGAA	3840
AATGAGGAAG	TCTGATTTAA	ACTACCTGCA	TATACAATAA	TTCCTGAGAG	CAAGACACCA	3900
TTAAACGAAG	ATAGAAATAT	TAAAATCCCC	ATTAATATAA	GTTTAGTCTT	TTTTATAAAT	3960
TTTAAATAAT	TCATAAGTTA	TTCCTTCCCA	CTTCTTCAAA	GAAATAATTT	AAAGTATCAA	4020
TCATTAAGAG	AACATCTGAT	GGAGTAAAAC	CTCCATGACC	AGCTGCTTTG	TTTAAATACA	4080
ACAAACTTTT	AACTCCAATA	GAATTTAATT	TCTTTGACCA	CTCTATCACT	TCGTTATTAT	4140
TAATATATGG	GTCTTTCTCA	CCCAAAATAT	TAACTATAAC	AGTATTTGAG	TCTCGTGCCT	4200
TTTCAATATT	TTGCATAGGC	GAATATGACT	TTATATAAGC	CTTTACTTCA	GGGTCTCTAA	4260
TATCTCCCCA	CTCTGCTATT	TCGGTCTTAG	AAAGAGGATC	ATTTGGATTC	TGAAGTGTAT	4320
CATAAGGATT	TATAAATGGC	GAAAATAAGA	GAATGCTTTG	CAATAAATTT	TTTTCCTCGT	4380
TCAACACCGC	ACCAGCAATT	ATTCCACCTG	CACTAGAAGT	TATTAAACCT	AATCGCTTAC	4440
TGTCAATTAC	ATCATTTTCC	CTTAAATAAT	TTACTCCCTC	AATAAAATCT	CTGATAGAAT	4500
TCCATTTGTT	TAACGCCTTT	CCTGAGCGAT	ACCATTCACC	ACCCAAATAG	CCTCCACCTC	4560
TTACATGAAC	TATAGCATAA	ATAAAACCTG	CATCTATTAT	AGATAACATA	ATTTCATCTA	4620
AATCAGAATT	ATCATTCTTA	CCATAAGCCC	CATAGACACT	TAGAATACAT	TTTTTTCTTC	4680
TTGGGAGCTC	ATCCGTATCT	TCACTTTTCC	AAAATAAAGA	AATCGGTATG	CTTACATCAT	4740
AACTGTCTTT	TTTAGTCCAA	ATCACCTTAG	AAAAATATTT	AGTATTATTC	GATTTTATGA	4800
TGGGTCTTTC	AAATTCAGTT	TTTAATGTAT	TTTCTATTAA	ATCAAAACTA	AGTATTTTTT	4860
CGTAAAAAGT	TCTCCTCTCT	AAAAACAGAA	GAACACGATC	agaaaatgaa	TTTTCATAAA	4920
GTGTTGTCTT	TTCATCAAAT	GTTATCTTAT	TAACACTCAA	CTCCCTCAAA	CTATTATTTT	4980
TAAATGTAGC	AAGATAAAAG	ACGGAATTCG	CTGCGTTTGA	ACAGTCTAAA	AGGATATAAC	5040
GTCCTATACA	GTGAACTCTT	CTAGCCCTAT	CTTGATATGG	TATAGTAATA	GAAACTCTGT	5100

CTCCCGAAGA	AGTTTCCCTT	AGAATTAGTT	GATCTTTCTT	TTCTTCAGTT	GAAGAGAGCC	5160
CAAGAAAGTA	CTGTGCTTTT	TCTGTACTAA	ATAGAGCGAT	ATCTCTAGGT	GTTGGGGCTA	5220
CCGTTTCTGT	GTAAGAGTGT	CTAACAAAAC	CCGTCCGGTC	GAAACTGTAT	AGAAAATCC	5280
TGCCTTTCTG	AAAGTCTACT	GACTTTACAA	AACAATTATT	GCTATCAATG	TGGACTATTT	5340
TTAATCGAAA	AGAGCATTCG	TTTTCTTCAA	ACAGTTCCTC	TTCTGTAAAG	CTATCAAAAG	5400
atttatagaa	TAACTTACTT	GGCCTCCCGT	ACTCTTTGGA	GCGAGTATAC	ATAACACCGA	5460
ATTTACCCAA	ATAGAACGAA	CTTTCTACTG	AAATATCTTC	AATGATAAAT	AACTCTTCCA	5520
TAGTATATTT	TTTTATTCCA	ATTAAATTAG	TCGTACGCAG	TGAGGATACA	ACCAAAACTA	5580
TATAACTCTC	ATCAGATGAA	ATCCTAACAT	CCTGTAAGAT	ACTATCATCT	GGCAAAGTAT	5640
ATTTTTCCAC	ATCAAAGACA	ATTTTAAGTG	AATTTGAATT	GTCTAAACTG	GAAGAACTAA	5700
CCTTAGGAAT	CCAGTCATTA	TCTTCGACAT	ACCATTCCTT	TATTACACCA	GTATTGGGTA	5760
TACTCCAATT	ATCAAATTGG	TACCAATATC	GCCCTCTCCT	AAATATCAAA	GAATTCCATT	5820
TTTTTAATTC	CTGAAATGAT	GAAGAGATAG	ACCTCTTATA	GTGTGTTTTT	TCCTGTATTG	5880
TATTTAAAAA	TATTTCATTA	CTCTGATTCA	CAAGTATGAC	CCCTTAATAA	TGGTATCTAA	5940
ATATTATATT	TGAGGAAGAA	TCGTCAATTT	ATTATCCATT	ATTGATACCA	ATCCAATTGC	6000
AACACCCGCA	AATCCCGAAG	CAATATCTGT	TGTTATCTTT	AAACCATTAT	CTCCCGCAAT	6060
AACAAATCCT	TCTTCAATTA	CACACAAATA	TCTATAAAGT	TGTTCAATTA	ATTTCTTTTG	6120
TCCTGAAAAG	TTATCATCGA	TATCACTATA	TATATTATTA	GCAACTTCAA	GACCACAAAA	6180
TCCGTTAAAT	AAACCTGGTA	ATACACAAAA	AACTACATCA	GTTGCCCTCT	CTAAAGAAGT	6240
TTTTATACAT	AAGTATTTGC	TTGACAAGAT	TTCTTTATTT	CTATTAATAA	GTAAAAGCAG	6300
GCCAGCACTT	CCAGTTGCTA	GATATGGTAG	TAATCTATGA	CCTTGGCTGT	ACTGCAATGA	6360
ATTATTACTA	TCTACTTTAT	AAGCAACTAA	TTCTTTATCT	ACAGCCAATT	CTAGACCATT	6420
TTTATAGATA	CTTTCACCAG	TTAATTTATA	AGCTTCACCG	AAGAGCCAAG	CTACCCCTGC	6480
GTGACCATAT	AGTAATCCAC	CAAAATTCTC	ATAAGGATCG	TTACTCTGAA	CATCACTAGC	6540
GCCAACTTTA	CAAAAAGTTT	CTGGATTTTC	TTTAATATTT	AAAGTATATT	CTCTAAGCCT	6600
AATTAGTATT	TCTTCTCCTA	GTTTATTATC	AATTCCCCCT	TTACTAAGAA	AATACAGTCC	6660
AACCAGTAAA	ATTCCAGCCT	GCCCACTATA	TAAATTTTTA	TTTTGTGAAT	TCTCAAATAT	6720
СТСТАТАААА	TGAGTTGTAA	AAAGTTCAAC	TGCCCGATCT	ATCTCCCCAA	ATTCATAAAT	6780
CACCCACAM	CON CON NORM	#1001#C311		\ CCC\ CC\ CT	mamma	

. . . . . .

			4110			
TTTACTGCC	тсаттаатаа	CCTGTGTTCG	AATCTCATAA	TAGTCATCAA	ACTTGAAATT	6900
TTTACTTTC	TTAGCTAGTT	GTTGATAACT	CCAAAGGATA	GCTAAATCTG	AAAACGCAAT	6960
CCTTGATTA	AAATTCAGAC	CATAATAATG	AACTGGGAAG	AATCTTGATT	GAAATTCTTT	7020
CGCCACTGT	CCATAAGTTA	GCGTAAACCC	TCTCAATAAT	AATAATATT	AATCTTGTAT	7080
TCTTGCTCA	CTCTCGATAG	TTCTAATCTC	ATGCATGGGT	TTTAAAACTT	TTTTCCTGGA	7140
ATATTCTCA	ATCTGTGGAC	ATTTAGAATC	TAGATATGAC	AATAAACTTT	CTACATAATC	7200
TATATGTTCT	CTTGTATAAC	CCAAAGACTC	AAATAGTTTT	тттссттста	TCCTGGTTTG	7260
ACTTACATAG	TTGTATGTCA	AATCCGATGT	AGTTACTAGT	GGCATGTATA	AATAATGAGC	7320
PATTTGTCTA	ATACCATACC	AATCTATCTC	ACTGGGAAGT	GTTTCTCGCC	ATGCTCTAAA	7380
ACCAGGGGCT	GCAACTTTAT	GTACAACTTT	TTCATCATTT	GAAAAGACAG	CCTGTTCCCA	7440
STCTATTATA	CTAATCTCAT	CTTCATCCTT	AACCAAGATA	TTTCCTAAAT	GTAAATCTTG	7500
ATGATATACA	TTTTCAGAAT	GAAACTTATT	CGTTAAATCG	ATGAGTTTTT	CTACTATCTT	7560
rgaaactctc	AATAGATAAT	CTTTGGTCTT	ATCAACAACT	TCATATAAAG	GAAAATTATT	7620
GGTAACCCAT	CTATTTAGTG	GAACGCCCTT	CATATGTTCA	ATTCCTAAGA	AGGTGTGCTC	7680
CCAGATCTTA	CCGTGCCAGT	ATATTTTAGG	CGTCTCACTC	CATTCATTTA	GAATTTTTAG	7740
TGCTTTGCAC	TCCGAAGCTA	ATTTCTCTGA	AGAATAAGTA	CCATCAAATC	CTAGACCTGT	7800
ATACGGTCTA	GCCTCTTTTA	AAATTATTTT	TTTCCCATCT	TCTTTTAGCC	TAGCATTATA	7860
TATCCCACCA	CTGTTTGAAA	ATCTAATTGC	ATTATCTATA	ATAAAGGGAA	AGTCTCCCTG	7920
TTTTTATCT	TTCTTGTCAA	GCCATTTATT	CAAAAAGTCA	GGGGGCACTA	TACCTTTTGG	7980
AATTTTAAAT	ACTGGTAAAC	GTTCATCTTT	AACAACTTCA	TCGCCAACAA	TTAATTCATC	8040
AATAGCAACC	TTCTTTTCAT	CATCCCTTGA	CGGCCTAAAC	ACACCATACC	TCAGATATAT	810
TGGTGCTTCA	TCCCAACGTT	TATCGCTTAA	AATATATGGC	CCATTATATT	GCTTTAAGGC-	816
ACTTTCTAAC	CTTTGCAAAA	CCGACTCTAA	TTCATTTTGA	TTTGGATAAC	ATGTAATAAA	822
TTTACCAGAA	AATCCTCGAC	TAACCAATTT	CCCGTTTCGC	ATGATAAATT	TGTCTTCTGT	828
ACTAAGATGT	TTAAATGGAA	TTCGCATTTC	ATGGCAAATT	TTTGCTACAT	CTTGTAACAA	834
TTCATGTGAA	CTGTTATACT	CTGAACTAAT	GTGTATTTTC	CACCCTTGTC	TTTCAACAAA	840
TTTTCCAATA	GGGTATTGAT	AAACCCACTC	ATCATTATTC	ATTACTTCGT	GCCAATTAAA	846
AGGCAGACTT	ACTTGGTACT	TTATGCTAGT	ATCTGTACTA	TAATCATTAT	TAGTGAAAAA	852
GAAAGGATGC	TCCAAATTGA	AATTATAATC	CATAACAAAA	TCTCCAAGAA	ATTTTATCAA	858
ACTTAATATA	TCTATAGCTA	GACAGACTTA	TTTAAATAA	AAGGGAGAAT	CCTTTGGATT	864

. . .

PCT/US97/19588 WO 98/18931

411

CTCCCCATAT	AAGCACTAAC	ATTCCAACGT	GCACATATTG	GAACGACATC	CATAACTCCA	8700
GAGAATCTCT	AAAGTTTACA	ATTTAAATGA	ATTAACAATT	TTCCCAACTA	AAAGCACTCC	8760
AGTTACCGCA	ACGATTTGTA	CTGAATGTAC	TAAATCGCAT	TCCATCAACT	TCATCTGTTT	8820
CGTCAACTTG	AACAGATACT	AATTGAAGAT	TTAATACTTC	TTCTGCCATA	GCTAGCTCCT	8886
CCTATTTAAA	TTTTTGGGAT	TAAGTACTTT	ATCCACCCTC	ATTATACTCT	CTCCACCAGT	8940
AAAATGCAAG	CAATTATACA	ATGTTGTCAC	ATAGAAAATA	ATGTTTCCGT	AACTTTTCAA	9000
AGTAACTTCC	ATCTCTCTCC	CAAAACTGGA	AGTTAGTTTT	AGAAGTTACC	TAAAAATCAG	9060
GTCACCTATT	TTAAAAAAAGC	AGCAAACTAT	AAACTAGTAG	GTTCCACACC	AAATGTAGTC	9120
CCATACTGCC	CCATAAGTCA	GATTTATAGC	GCACCATACC	TAAAAACATC	CCAAGTGAAA	9180
CATACAAACA	CCAAGCTAGA	ATGGTTCCTG	TATGATGTGC	TAAGGCAAAT	AAAACACTTG	9240
TCAAAGCAAC	TCTGATATCT	AATTTTCTGA	CCAAATTCCA	TAAAATTTCT	CGATACAGAA	9300
ATTCTTCAAC	CATACTCGCA	TTGATTAAGA	ACAATAAAAA	TGAAAACCAA	GGAATTTGAT	9360
GTTGAAGGCC	AATTAAGTTT	GCTTGATTCG	TGCTTCCTTG	AGCATGAATC	AGACTAAAAC	9420
ATAGACTTAT	AATCAGTAGG	CTAACAAATT	CAACACCAAG	CCATTTCATC	CTAGATTTCA	9480
TATTGACCTT	ATGCGCTTGT	TTGCGTTGGC	CATACATCCA	TAAAAAAGAA	ATGAGTGACG	9540
AACCATAGAG	AATCTGTAGT	ATAGTTMACT	CACCGATACA	AAGAAATTTC	AATAAGTATA	9600
GAGTTACCAA	TASGACATTT	ACTTGTTGGA	ATATATAAAC	TGGAATTATT	CTTTTCATAG	9660
TTACCTCCGA	AATAAATCTT	CATAATCTAA	ATCTAATACC	TGCACAATCC	TTT	971

# (2) INFORMATION FOR SEQ ID NO: 44:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8657 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

AAAGAAATTG	TCAGAGAGTG	GCTAGATGAA	GTAGCAGAGC	GGGCTAAGGA	CTATCCAGAG	60
TGGGTGGATG	TTTTCGAGCG	TTGCTACACC	GATACCTTGG	ACAATACGGT	TGAAATCTTA	120
GAAGATGGTT	CAACTTTTGT	CTTGACTGGG	GATATTCCTG	CCATGTGGCT	TCGAGATTCG	180
ACAGCCCAAC	TCAGACCCTA	CCTTCATGTA	GCTAAAAGAG	ATGCCCTCCT	GCGTCAGACC	240
ATTGCAGGTT	TGGTCAAACG	TCAGATGACC	TTGGTACTCA	AGGATCCCTA	TGCTAACTCC	300

THE A REAL PROPERTY.	ACCACAACTG	CABACCCCAC	CACGAGACTG	ACCACACAGA	CCTTAACGGC	360
TGGATCTGGG	AGCGCAAGTA	TGAGGTGGAT	TCGCTTTGCT	ATCCTTTGCA	GTTGGCTTAT	420
CTCCTCTGGA	AAGAGACTGG	CGAGACTAGT	CAGTTTGATG	AGATTTTTGT	CGCAGCGACT	480
AAGGAAATTC	TCCATCTGTG	GACGGTGGAA	CAAGACCACA	AGAACTCTCC	TTATCGTTTT	540
GTCCGAGATA	CGGACCGTAA	GGAAGACACC	TTGGTAAATG	ATGGCTTTGG	ACCTGACTTT	600
GCAGTGACAG	GTATGACTTG	GTCAGCTTTT	CGTCCGAGTG	ATGACTGTTG	CCAGTATAGT	660
TACTTGATTC	CGTCAAATAT	GTTTGCTGTA	GTAGTCTTGG	GTTATGTGCA	AGAAATCTTC	720
GCAGCATTAA	ACCTAGCTGA	TAGCCAGAGT	GTTATTGCTG	ATGCCAAGCG	TCTTCAGGAT	780
GAAATCCAAG	AAGGAATCAA	AAACTACGCT	TACACCACCA	ACAGCAAGGG	CGAAAAGATT	846
TACGCTTTTG	AAGTGGATGG	CCTAGGAAAT	GCCAGCATCA	TGGATGATCC	AAATGTACCA	900
AGTCTACTAG	CTGCGCCCTA	TCTGGGCTAC	TGTTCGGTCG	ATGATGAAGT	GTATCAAGCT	960
ACTCGTCGTA	CCATTTTGAG	CTCTGAAAAT	CCATACTTCT	ACCAAGGAGA	ATACGCAAGC	102
GGTCTCGGCA	GTTCTCATAC	CTTCTATCGC	TATATCTGGC	CAATCGCCCT	TTCTATCCAA	108
GGCTTGACAA	CAAGAGATAA	GGCAGAGAAA	AAATTCTTGC	TGGATCAGCT	GGTTGCCTGC	114
GATGGTGGTA	CAGGTGTCAT	GCACGAAAGC	TTTCATGTAG	ATGATCCGAC	CCTCTACTCT	120
CGTGAATGGT	TCTCCTGGGC	TAACATGATG	TTCTGTGAGT	TGGTCTTGGA	TTACTTGGAT	126
ATTCGCTAAG	GGGCTCGCTT	TAGCTCAACC	GATTCTTATC	AGAATCACAA	GTTTACATTT	132
AAAACGTTAA	AATTTAAATT	TAGAATGAGG	ΤΤΤΤΛΟΤΤΟΛ	TGGAAAATGT	TGTTGTACAT	138
ATTATCTCAC	ATAGTCACTG	GGATCGTGAG	TGGTACTTGC	CTTTTGAAAG	CCATCGTATG	144
CAGTTGCTGG	AATTGTTTGA	CAATCTCTTT	GATCTCTTTG	AAAATGACCC	TGAGTTCAAG	150
AGTTTCCACT	TGGATGGACA	AACTATTGTC	CTTGATGACT	ACTTACAAAT	TCGCCCTGAA	156
AATCGCGACA	AGGTCCAACG	CTACATTGAC	GAGGGCAAAC	TTAAAATTGG	TCCCTTTTAC	162
ATCTTGCAGG	ATGACTACTT	GATCTCCAGT	GAAGCCAATG	TCCGCAATAC	CTTGATTGGT	168
CAACAAGAAG	CTGCCAAATG	GGGTAAATCA	ACCCAGATTG	GCTACTTTCC	AGATACCTTT	174
GGAAATATGG	GACAAGCGCC	TCAAATTCTT	CAAAAATCAG	GCATTCACGT	GGCGGCCTTT	180
GGTCGTGGTG	TGAAGCCGAT	TGGATTTGAC	: AACCAAGTCC	TTGAAGATGA	GCAGTTTACG	186
TCTCAGTTTT	CAGAAATGTA	CTGGCAGGGT	GTGGATGGTA	GTCGTGTTTT	AGGTATTCTC	192
TTTGCCAACT	GGTACAGTAA	CGGGAATGA	ATTCCAGTTG	ACAAAGATGA	GCCTTGACC	198
TTCTGGAAAC	: AAAAATTGTC	AGATGTGCGT	GCCTACGCTT	CGACCAACCA	ATGGTTGATG	204
					TCGTGTGGCA	210

AATGAACTCT	TCCCGGATGT	AATCTTTGTT	CATAGTTCTT	TTGATGAATA	TGTTCAAGCT	2160
GTAGAAGGTG	CGCTTCCTGA	ACACTTATCA	ACTGTTACAG	GCGAGTTGAC	CAGTCAGGAA	2220
ACAGATGGCT	GGTACACACT	TGCCAACACT	TCTTCATCCC	GCATTTACCT	AAAACAAGCC	2280
TTCCAAGAAA	ATAGCAACCT	CCTAGAGCAA	GTGGTAGAAC	CCTTGACTAT	TATCACTGGT	2340
GGACACAACC	ACAAGGACCA	GTTGACCTAT	GCTTGGAAAA	CACTTTTGCA	GAATGCGCCA	2400
CATGATAGTA	TCTGTGGCTG	TAGCGTGGAC	GAAGTTCACC	GCGAGATGGA	AACGCGTTTT	2460
GCCAAGGTCA	ACCAAGTAGG	AAACTTTGTT	AAAAGTAACT	TGCTCAACGA	GTGGAAGGGT	2520
AAAATTGCTA	CGGATAAGGC	TCAAAGTGAC	TATCTCTTTA	CTGTCATTAA	CACAGGCTTG	2580
CATGATAAGG	TCGATACTGT	CAGCACAGTG	ATTGATGTGG	CGACTTGTGA	TTTCAAGGAA	2640
TTGCACCCAA	CAGAAGGCTA	CAAAAAGATG	GCTGCTCTTA	TCTTGCCAAG	TTACCGTGTG	2700
GAGGACTTGG	ATGGTCGTCC	TGTAGAGGCT	ACAATCGAAG	ACCTCGGAGC	TAATTTTGAG	2760
TATAATTTAC	CAAAAGACAA	GTTCCGCCAA	GCTCGTATTG	CTCGTCAAGT	GCGCGTGACC	2820
ATTCCAGTTC	ACCTAGCGCC	GCTTTCTTGG	ACAACCTTCC	AATTGCTGGA	AGGAAAACAA	2880
GAACACCGTG	AGGGTATTTA	CCAAAACGGA	GTGATTGATA	CACCATTCGT	AACGGTGAGT	2940
GTGGATGACA	ACATCACAGT	CTATGACAAG	ACAACTCACG	AAGCCTATGA	AGACTTTATC	3000
CGCTTTGAAG	ACCGTGGGGA	CATCGGAAAC	GAGTATATCT	ATTTCCAACC	AAAAGGAACA	3060
GAGCCAATCT	TTGCAGAGCT	TAAGGCCAC	GAGGTCTTGG	AAAACACAGC	TTGCTATGCT	3120
AAAATCTTGC	TCAAACATGA	ATTGACCGTG	CCTGTCAGTG	CGGATGAAAA	GCTAGAAGAA	3180
GAGCAACAAG	GTATCATCGA	GTTTATGAAG	CGTGAGGCTG	GACGGTCAGA	AGAATTGACA	3240
AACATTCCTC	TGGAAACTGA	GTTGACTGTC	TTCGTTGACA	ATCCACAAAT	CCGCTTCAAG	3300
ACTCGCTTTA	CTAACACTGC	CAAGGATCAC	CGTATCCGTC	TCTTGGTCAA	GACTCATAAC	3360
ACGCGTCCAA	GCAATGATTC	TGAAAGTATC	TATGAGGTGG	TGACACGACC	AAACAAACCA	3420
GCTGCTTCAT	GGGAAAACCC	TGAAAATCCT	CAACACCAAC	AAGCTTTTGT	CAGTCTGTAT	3480
GACGATGAAA	AAGGGGTGAC	TGTATCCAAC	AAGGGATTGA	ATGAATACGA	AATCCTTGGG	3540
GATAACACCA	TTGCCGTGAC	CATTTTGCGT	GCATCAGGTG	AGCTAGGTGA	CTGGGGCTAC	3600
TTCCCAACGC	CAGAAGCACA	ATGCTTGCGG	GAGTTTGAAG	TCGAGTTTGC	ACTTGAATGC	3660
CACCAAGCCC	AAGAACGCTT	CTCAGCCTAT	CGTCGTGCCA	AAGCCTTGCA	GACACCGTTT	3720
ACCAGCCTTC	AGCTTGCTAG	ACAGGAAGGA	AGCGTGGTTG	CGACTGGTAG	CCTCTTGAGC	3780
CATTCTGTTC	TCAGCATACC	GCAAGTTTGT	CCAACAGCCT	TTAAGGTAGC	TGAAAATGAA	3840

• • • • • •

GAAGGCTATG TGCTTCGTTA CTACAATATG TGTAGTGAAA ATGTACGTGT GCCAGAAAGT 3900 CAACATCTCT TCCTTGACCT ACTTGAACGA CCATACCCAG TTCATTCAGG ACTATTGGCT 3960 CCACAAGAGA TTCGTACAGA ATTCATCAAA AAAGAAGAAA TTTAATTTCA AAAAGTAAAC 4020 ATCAAAAGAA AGGAGGGCG AAAAAGTAAG AACTAACTGC TGATTCGCCC CTTTTATGGT 4080 AAAAACAATG ACCATTGCAA CGATTGATAT CGGAGGGACT GGGATTAAGT TTGCCAGTCT 4140 GACTCCTGAT GGGAAAATAC TGGATAAGAC AAGTATTTCA ACGCCTGAAA ACTTGGAGGA 4200 TTTACTAGCG TGGCTAGATC AACGCTTGTC AGAACAGGAT TACAGTGGGA TTGCTATGAG 4260 CGTTCCAGGT GCAGTCAATC AAGAGACAGG TGTGATTGAT GGCTTCAGTG CGGTGCCCTA 4320 CATCCATGGC TTTTCTTGGT ATGAGGCGCT TAGCTCTTAT CAGCTACCTG TCCATTTAGA 4380 AAATGATGCC AACTGCGTTG GACTCAGTGA ACTACTAGCT CATCCAGAGC TTGAAAATGC 4440 AGCCTGTGTC GTGATTGGGA CAGGGATTGG CGGAGCCATG ATTATCAATG GTAGACTTCA 4500 TCGAGGTCGC CACGGTCTGG GTGGAGAATT TGGCTACATG ACAACCCTTG CCCCTGCTGA 4560 AAAACTTAAT AACTGGTCGC AACTAGCATC AACTGGGAAT ATGGTACGAT ACGTGATTGA 4620 AAAATCTGGT CATACTGATT GGGACGGTCG CAAGATTTAC CAAGAGGCCG CAGCTGGTAA 4680 TATCCTTTGT CAAGAAGCCA TTGAGCGCAT GAACCGCAAT CTGGCGCAAG GCTTGCTCAA 4740 TATCCAGTAT CTGATCGATC CAGGTGTCAT CAGTCTGGGT GGCTCTATCA GTCAAAATCC 4800 AGATTTTATC CAAGGTGTCA AGAAGGCTGT TGAAGACTTT GTCGATGCCT ACGAAGAATA 4860 CACGGTCGCA CCAGTTATCC AGGCCTGCAC CTATCACGCA GATGCCAATC TCTACGGTGC 4920 TCTTGTCAAC TGGCTACAGG AGGAAAAGCA ATGGTAAGAT TTACAGGACT TAGTCTCAAA 4980 CAAACGCAAG CTATTGAGGT TTTAAAAGGT CACATTTCTC TACCAGATGT GGAAGTGGCT 5040 GTCACTCAGT CTGACCAAGC ATCTATCTCT ATCGAGGGTG AGGAAGGTCA CTATCAATTG 5100 ACCTACCGCA AACCTCACCA ACTTTATCGT GCCTTGTCCT TGTTGGTAAC AGTTCTAGCA 5160 GAAGCTGATA AAGTAGAGAT TGAGGAACAA GCAGCTTACG AAGATTTGGC TTACATGGTT 5220 GACTGTTCTC GAAATGCGGT GCTGAATGTG GCTTCTGCCA AGCAGATGAT TGAGATATTG 5280 GCTCTCATGG GCTACTCAAC CTTTGAGCTT TACATGGAAG ACACTTACCA GATTGAAGGG 5340 CAGCCTTACT TTGGCTATTT CCGTGGAGCT TATTCAGCAG AGGAGTTGCA GGAAATCGAA 5400 GCCTATGCCC AACAGTTTGA CGTGACCTTT GTACCATGCA TCCAGACCTT GGCCCACTTG 5460 TCGGCCTTTG TCAAATGGGG TGTCAAGGAA GTGCAGGAGC TCCGTGATGT AGAGGACATT 5520 CTTCTCATTG GCGAAGAAAA GGTTTATGAC TTGATTGATG GCATGTTTGC CACGTTGTCT 5580 AAACTGAAGA CTCGCAAGGT CAATATCGGG ATGGACGAAG CCCACTTGGT TGGTTTGGGA 5640

CGCTACCTGA	TTCTGAACGG	TCTTCTCGAT	CGTAGTCTCC	TCATGTGCCA	ACACTTGGAG	570
CGCGTGCTGG	ATATTGCTGA	CAAATATGGT	TTCCACTGCC	AGATGTGGAG	TGATATGTTC	576
TTCAAACTCA	TGTCAGCGGA	TGGCCAGTAC	GACCGTGATG	TGGAAATTCC	AGÁGGAAACT	582
CGTGTCTACC	TAGACCGTCT	CAAAGACCGT	GTGACTCTGG	TTTACTGGGA	TTATTATCAG	588
GATAGCGAGG	AAAAATACAA	CCGTAATTTC	CGCAATCATC	ACAAGATTAG	CCATGACCTT	594
GCATTTGCAG	GGGGAGCTTG	GAAGTGGATT	GGCTTTACAC	CTCACAACCA	TTTTAGCCGT	600
CTAGTGGCTA	TCGAGGCTAA	TAAAGCCTGC	CGTGCCAATC	AGATTAAAGA	AGTCATCGTA	606
ACGGGTTGGG	GAGACAATGG	TGGTGAAACT	GCCCAGTTCT	CTATCCTACC	AAGCTTGCAA	612
ATCTGGGCAG	AACTCAGCTA	TCGCAATGAC	CTAGATGGTT	TGTCTGCGCA	CTTCAAGACC	618
AATACTGGTC	TAACGGTTGA	GGATTTTATG	CAGATTGACC	TTGCCAACCT	CTTACCAGAC	6240
CTACCAGGCA	ATCTCAGCGG	TATCAATCCC	AACCGCTATG	TTTTTTATCA	GGATATTCTT	6300
TGTCCGATTC	TTGATCAACA	CATGACACCT	GAACAGGACA	AACCGCACTT	CGCTCAGGCT	6360
GCTGAGACGC	TTGCTAACAT	TAAAGAAAAA	GCTGGAAACT	ATGCCTATCT	CTTTGAAACT	6420
CAGGCCCAGT	TGAATGCTAT	TTTAAGTAGC	AAAGTAGATG	TGGGACGACG	CATTCGTCAG	6480
GCCTACCAAG	CGGATGATAA	AGAAAGTTTA	CAACAAATCG	CCAGACAAGA	ATTACCAGAA	6540
CTTAGAAGCC	AAATTGAAGA	CTTCCATGCC	CTCTTTAGCC	ACCAATGGCT	GAAAGAAAAC	6600
AAGGTCTTTG	GTTTGGATAC	AGTTGACATC	CGTATGGGCG	GACTCTTGCA	ACGCATCAAA	6660
CGAGCAGAAA	GCCGTATCGA	GGTTTATCTG	GCTGGTCAGC	TTGACCGCAT	CGACGAGCTG	6720
Gaagttgaaa	TCCTACCATT	TACTGACTTC	TACGCAGACA	AGGATTTCGC	AGCAACTACA	6780
GCCAACCAGT	GGCATACCAT	TGCGACAGCG	TCGACGATTT	ATACGACTTA	ATATTCTTCG	6840
AAAATCTCTT	CAAACCACGT	CAGCTTCCAT	CTGCAACCTC	AAAACAGTGT	TTTGAGCAAC	6900
CTGCAGCTAG	CTTCCTAGTT	TGCTCTTTGA	TTTTCATTGA	GTATAAAAAC	AAGAACACCT	6960
FGCTTGGCGC	AGGGTGTTTC	GCGTGAAACA	GAAGAATTAT	CTGGTTTCAA	ATGCTACAGT	7020
FAGACAAACT	TATGATAAAA	TAGCAGAAAG	TGAATGTTTC	CTAAGAGCAA	TTGGAGGTAT	7080
<b>FATGCTACAC</b>	TTAAAATTAG	TAAAACAAGA	AATAGAAGCT	GAAAAGCCAG	CATCTGTAGA	7140
AGCTTGGATC	ATTTCCGTCA	AAAAATTTAAAA	AGGTTGCTAC	CGACATATAT	AGATTCCAAA	7200
AACAAAAACG	TTAGCGGAAC	TAGCAGATGT	GATTTTATGG	AGTTTTGATT	TTGCAAATGA	7260
rcatgeteae	GCATTTTTCA	TGGATAATGT	TGAGTGGAGT	CATGCAGATT	CTTACTTTCG	7320
מיייי איייי איייי אייי	A CONC A CC A DC	MMC1101100	MM10101011			

			416			
AAGTGTCAAA	CAAAAATTTA	AGTTTATTTT	CGACTTCGGT	GATGA:TGGC	GTTTTGAATG	7440
CCAAGTGCTG	AGAGAAATCG	AGACAGAGGA	CGAAGAAGCT	TATCTCGTAC	GTTCGGTTGG	7500
AACGTCGCCA	GAACAATATC	CAGATTATGA	TGGTTTTGAC	TATGAAGAAT	GGTAAAATTG	7560
AAATCAGTCT	GTGTAGGCTT	AGTATTTCAA	TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	7620
CATGATTGAT	AATACCAGCA	ATCAAATTCA	TTCGTAATCC	GAAGCGTTTA	CGATGATTTC	7680
GATAGGTTGT	TGAAAACATT	TTAAACGTTT	TTACTTTGGC	AAAGATGTTC	TCAACCTTGC	7740
TICTCTCCTT	AGATAGCGCA	TGGTTATAGG	CTTTATCTTC	AGCTGTTAGT	GGCTTGAGTT	7800
TGCTGGATTT	ACGTGAAGTT	TGTGCTTGAG	GACATATCTT	CATGAGCCCT	TGATAACCAC	7860
TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	TATTTCTGCA	ACTCATTTTG	AACAACTTCA	7920
TATCATGACA	ATAGTTCACA	GTGATATCCA	AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	7980
TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	8040
TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	8100
GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	8160
CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	8220
TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	8280
AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	CGCTGAACAC	CAACAAGACG	CTTAAATCGT	8340
GTATCAGTTA	ATTGTTTACT	TGCTTCATAA	TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	8400
GGTGTCAATG	TTTTTTTCAT	CTATCCCGAG	AATTATTTTC	CCGCCATTTG	TATTTGCAAA	8460
TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	9520
ATCAACCCCT	TCAAATTTTA	AGTCCATATT	TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	8580
GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	8640
AATTTCTTTT	TTAACCC					8657
(2) INFORMA	TION FOR SE	Q ID NO: 45	:			
{; {;	QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	11384 base cleic acid NESS: doubl	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

TCTATTTTGG GTATAGACTT ACCTATAAAG AAAAATATCT ATACACTGCC TTACTAGCTA

TACTGAACGA GTCAACAAAA ACGATATATA TTGATGATAT AAATACAGCA AGATTTTTTA

60

ACTTCTTTGG	CAATGATATT	CCTAATTCGT	СТТТАААААА	AATTGACTAT	ATCGCACCTT	180
CAGAAATTGT	TTCATTTAGT	ACGTACGTTC	GACAACGTTC	TAAAGTAATT	CCTAAAATTT	240
TGGAACATAT	ATTAÄAATCA	AGTTTTTTAT	TAGAGAATAT	AGATGTTTCT	GGTTACACTG	300
TAAATATTTT	AGAAGATCAA	TTAACAAAAC	ATAGAACAAT	CAAAATTAGT	AAAAACTAAC	360
TGGTTGATCT	CATGTATAAA	TACCTAACAA	AACCACGCGC	CTTGCCTGCT	GATGGAAAGA	420
AAGGTACAAA	TACATGAATA	TCAAAGAAAA	AATCAAAAAG	AATGGCCAAA	GAGTTTATTA	480
TGCTAGTGTT	TATCTAGGCG	TTGACCAACT	AACGGGCAAA	AAAGCCCGTA	CAACTGTTAC	540
AGCAACCACT	AAAAAGGGCG	TTAAAGTAAA	AGCGCGTGAT	GCGATCAATA	CTTTTGCTGC	600
TAATGGCTAT	ACAGTTAAAG	ACAAGCCGAC	AATTACAACA	TATAATGAGC	TTGTAAAAGT	660
TTGGTGGGAT	AGTTACAAGA	ATACAGTTAA	GCCAAATACT	CGCCAATCCA	TGGAGGGATT	720
GGTTAGAGTG	CATTTATTGC	CTGTATTTGG	CGATTACAAG	CTATCTAAAC	TTACTACGCC	780
TATTCTTCAA	CAGCAAGTAA	ACAAATGGGC	TGACAAGGCA	AATAAAGGCG	AAAAAGGGGC	840
ATTTGCTAAC	TACTCTTTGC	TCCATAACAT	GAATAAGCGT	ATTTTGAAAT	ATGGCGTAGC	900
TATCCAGGTA	ATACAATACA	ACCCAGCTAA	TGATGTCATC	GTTCCACGCA	AACAGCAAAA	960
AGAAAAGGCT	GCTGTCAAAT	ACTTAGACAA	CAAAGAATTA	AAACAGTTTC	TTGATTATTT	1020
AGATGCTCTG	GATCAATCAA	ATTATGAGAA	CTTATTTGAT	GTTGTTCTGT	ATAAGACTTT	1080
ATTGGCCACT	GGTTGCCGTA	TTAGTGAGGC	TCTGGCTCTT	GAATGGTCTG	ATATTGACCT	1140
AGAAAGCGGT	GTTATCAGCA	TCAATAAGAC	ACTAAACCGC	TATCAGGAAA	TAAACTCACC	1200
TAAATCAAGC	GCTGGTTATC	GTGATATACC	AATAGACAAA	GCCACATTAC	TTTTACTGAA	1260
ACAATACAAA	AACCGTCAAC	AAATTCAGTC	TTGGAAATTA	GCCCGATCTC	AAACAGTTGT	1320
ATTCTCTGTA	TTTACGGAGA	AATATGCTTA	TGCTTGTAAC	TTACGCAAAC	GCCTAAATAA	1380
GCATTTTGAT	GCTGCTGGAG	TAACTAACGT	ATCATTTCAT	GGTTTCCGC	ATACACATAC	144
TACTATGATO	CTCTATGCTC	AGGTTAGCCC	GAAAGATGTT	CAGTATAGA1	TAGGCCACTC	150
TAATTTAAT	ATCACTGAAA	ATACTTACTO	GCATACTAAC	CAAGAGAATC	CAAAAAAAAGC	156
CGTCTCAAAT	TATGAAACAG	CTATCAACA	A TTTATAAAA	ATAAGGGTG	CCCATTTCCG	162
GGCTACCCTC	TTACTATACC	: AAAAATTAGI	AGGGGTAGTA	AAAAGGGTAT	AATATTAAAT	168
AAAGCACTA	GGGAAAGCGC	CCCAAAGTG	TTATTTCAA	GCTTTATA	CCTATAATCA	174
CATAAAGAGA	TTATTTTT	AGGTTGTAG	A ATGATTTCA	TCCACGATA	T TCAGCTACTT	180
CACCAACTOR	- CTCTTCCAT	CCARCCAATT	r CCTTGTATT	P AGCGATGCG	TCTGTACGTG	186

AAAGTGAACC AGTCTTGATT TGTCCTGCGT TAGTTGCAAC TGCAATATCA GCGATTGTTG 1920 AATCTTCAGT TTCACCTGAA CGGTGTGATA CAACAGCAGT GTAACCAGCT TCTTTAGCCA 1980 TTTCGATAGC TTCAAAAGTT TCAGTAAGAG TACCGATTTG GTTAACTTTG ATAAGGATTG 2040 AGTTAGCAGC ACCTTCTTGG ATACCACGTG CAAGGTAGTC AGTGTTTGTT ACGAAGAAGT 2100 CGTCACCAAC AAGTTGTACT TTCTTACCAA GACGTTCAGT AAGAGCTTTC CAACCATCCC 2160 AGTCGTTTTC ATCCATACCA TCTTCAATAG TGATGATTGG GTATTTGTTA ACCAATTCTT 2220 CAAGGTAGTC GATTTGTTCT GCAGATGTAC GAACAGCAGC ACCTTCACCT TCAAATTTAG 2280 TGTAGTCGTA AACTTTACGT TCTTTATCGT AGAATTCTGA TGAAGCACAG TCAAATCCGA 2340 TAAATACGTC TTTACCTGGT ACATATCCAG CAGCTTCAAT CGCAGCAAGG ATAGTTTCAA 2400 CACCATCTTC AGTTCCTTCG AAACGAGGAG CGAATCCACC TTCGTCACCT ACGGCAGTTT 2460 CCAAACCACG TGATTTAAGG ATTTTCTTAA GAGCGTGGAA GATTTCAGCA CCGTAACGAA 2520 GGGCTTCTTT AAATGTTGGC GCACCAACTG GCAAGATCAT GAACTCTTGG AAAGCGATTG 2580 GAGCGTCAGA GTGAGAACCA CCGTTGATGA TGTTCATCAT TGGAGTTGGA AGAACTTTAG 2640 TGTTGAATCC ACCAAGATAG CTGTAAAGTG GGATTTCAAG GTAGTCAGCA GCAGCACGAG 2700 CTACAGCGAT AGACACACCG AGGATTGCAT TCGCACCCAA TTTACCTTTG TTAGGAGTAC 2760 CGTCAAGTGC GATCATAGCA CGGTCAATAG CTTGTTGATC ACGTACATCG TAGCCAATGA 2820 TAGCTTCAGC AATGATGTTG TTTACGTTGT CAACAGCTTT TTGTGTACCA AGACCACCGT 2880 AACGAGATTT GTCACCGTCG CGAAGTTCAA CTGCTTCGTG TTCACCAGTA GAAGCTCCTG 2940 ATGGAACCAT ACCACGTCCG AAAGCACCTG ATTCAGTGTA AACTTCTACT TCAAGTGTTG 3000 GGTTACCGCG TGAGTCTAGG ACTTCGCGAG CGTAAACATC AGTAATAATT GACATTTTTT 3060 ACTCTCCTTA TGAGTTAAAT TTTTTACACC TCTATAATAC CTTAAAACCC CTCCTTTTTC 3120 AAGAAAAAC GTTATCTTTG TGCAACTTTT CCTTAACTTT ATAAAGTAAT CGCTTTCTTT 3180 TGTCTGTTTT ATTCTAACTT TTATGATATA CTGTTTTCAT GACAGATTTA TCAAAACAAT 3240 TACTTGAAAA AGCTCATGGT GGGTTAAAAA TAAATCCGGA TGAGCAAAGA CGCTATCTTG 3300 GTACTTTTGA GGAAAGAGTT CTTGGATATG TAGATATTGA CACAGCAAAT AGCCCTCAGT 3360 TAGAAAAAGG CTTTTTATTT ATTTTAGAAA ACCTTCAGGA AAAAGCAGAG CCACTATTTG 3420 TGAAGATTTC ACCAACTATC GAATTTGATA AGCAAGTTTT CTACTTAAAA GAAGCAAAAG 3480 AAACTGATAG TCAAGCCACC ATAGTATCTG AAGAGCATAT TACTTCTCCT TTTGGCCTGG 3540 TTATTCATAG CAATGCACCA GTTCAAGTAG AAGAAAAAGA CCTTCGACTT GCTTTTCCAA 3600 AACTTTGGGA AGTTAAAAAG GAAGAACCAG CCAAAACATC CTTATGGAAG AAATGGTTTA 3660

GCTAAATCTT	GCACATATTT	AATAAGTGCC	CAATATTGGC	AGCCGTGCGC	TCCAGATAGA	3720
AACTGGCATT	TTTCAAACTA	TCTTCTAAAG	GTTCACTTTT	CTCCAAAATA	GAAAAGACAG	3780
CTTGGATATT	TTCAAATGGT	AGGGGAGGTA	AATCTTCAGC	AAGACTACCG	CAAATAGCAA	3840
TAACAGGAAC	TCCAACAGGG	GTTCTTTTTG	CAACACCTAT	AGGCGCTTTC	CCAGCAAAGC	3900
TTTGACTATC	AAGTCTTCCT	TCTCCAACAA	CAACCAAGTC	AGCATCTGAA	ACTTTCTTAT	3960
CAAAGTTGAT	TAAGTCCAAG	CAGGTATCAA	TTCCAGACAC	GATACTTGCC	TGAGCAAAGG	4020
CACACAAACC	ACCAGCAAGG	CCTCCACCTG	CTCCTGCTCC	TTTAATTTCT	AATGTTGCAG	4080
GTGAGAATTT	TTCATAAAAA	TCTTGGATCG	CCTGATCTAC	GACTGCAAAC	ATAGTCGGAT	4140
GTAGACCTTT	TTGATTGCCA	AAAGTGTAAG	TCGCACCTTG	ATGACCACAT	AAGGGACTCA	4200
CGACATCTGC	TAAAATATGA	ATTTGAACAC	CTTCAGGAAT	TTTATAGCAA	TTTTCTGTTG	4260
AAACAGAAGC	TAAGTTTAAT	AAGGATTGAC	CGGAAGCAGG	CAAGACATTT	CCATCCCTAT	4320
CATAAAATTG	ATAACCTAAA	CCAGCAGCAA	TCCCCAGTCC	TCCATCATTA	CTGGCCGTGC	4380
CACCAACACC	GATATAAATA	TCTTTAATCC	CTTTAGAGAT	GAGATGAAGA	ATCAACTCTC	4440
CAATACCACA	AGTTTGGATT	TGAAGTGGAT	TTCGTTTCTC	TAGCGGAATT	TTTCCAAGAC	4500
CAACCAAGTC	AGCTACTTCA	AATAGTGCCA	GTTCCCCTTT	TTGAAAATAG	CGCATGGCTT	4560
CTTTTTGTCC	AAAAGGGTCT	GTCACTTGGA	TCCATTTTTC	TTTTAGGTCA	AGAGAATGTC	4620
GGATAGCATC	TACAGTACCT	TCTCCCCCAT	CACCAACAGG	GCAGAGGAGA	CATTCTACAT	4680
CTGCTATCGA	TTGTTGGAAG	CCTCTTTTTA	TTGCTTCAGC	TACCTGTTGA	GCTGTCAAGC	4740
TTTCCTTAAA	CGAATCCGGT	GCAATTACAA	TCTTCATATT	TTCCCTCATT	CTAAACAGTC	4800
AATCAAAGGG	AGAACTTCTA	AAAAATCCCT	CTTGTCAACA	TGATGTGGTA	TTTCTTTTTT	4860
GAGCACTTCT	TTGGCACAAA	AGGCGATTCC	TAACTTCGCC	GACTTCAACA	TTAATAGATT	4920
ATTAACCCCA	TCACCGATTG	CCACCGTTCT	TTCTTTAGAA	AGTTTTAGTT	TCTTTCTCCA	4980
TTTTTCCAGA	GTCTCTTTTT	TGACCTGGGG	ACTTATAATT	TGTCCAACTA	ATTTTCCTGT	5040
TAAAAGACCT	TCTTTGACTT	CAAGCTAGTT	GGCAGTGAAA	TAGGCAATAC	CAAGGGATTT	5100
TGCTAATCTC	TCCAACTATT	GGTGTAAATC	CACCAGACAC	CAGACCAACT	AGGATGCCAT	5160
TCTTTTGGAG	AATAGAGATG	AACTCTGGGA	CATTTAGCGA	TAGATGAATT	GAGTTGAAGA	5220
CGTTATCAAA	GACCAAAATA	GGAAGACCTT	CCAACAAGGA	CACTCTTTTT	CTTAAACTGC	5280
TTTCAAAGAC	CAACTCTCCT	CGCATTGCTC	GACTTGTAAT	CTGCGAAATT	TCCGCCTCAT	5340
CACCTCCCTC	TOTO COMB & A	******	comcomo con · c	01mm1100==		

			420			
CCAAAACACA	CAAGCCTTTT	ACTTGAGACA	TCAGTTCTCC	TCTCTAAACA	GCCTAAAAAT	546
CGTATGAAGT	CATCATACGA	TTTTATCTAT	TAATTAACTA	AACTATGGTA	CAAGTCAAGG	552
TATGACTTGC	AGGCTGTATC	CCATGAGAAG	TCACTCTCCA	TAGCTTGTTT	TTGTAGGTTT	5586
TCCAAATGT	CTGGATGGTT	TCTATACAAG	TCCAATGCTG	TTTGGAAAGT	CCAATTTAAC	5640
CAATAAGGAG	ATAGATTGTC	AAAGCTAAAG	CCAGTACCGC	TTCCTTCGAT	TGGATTGAAA	5700
GCGCGAACTG	TATCTCGCAA	GCCTCCAACT	TCATGGACCA	ATGGCAAGGT	TCCATAACGC	5760
ATAGCCATCA	TTTGAGACAA	GCCACACGGT	TCAAAACGAC	TTGGCATGAG	GAAGAGGTCA	5820
CAAGCAGCGT	AGATTTCCTG	AGCAAGTTTG	ACATCAAAAG	TGATATTTGT	TGATAGCTTG	5880
<b>ICTGGGTAAA</b>	TCTGAGCAAA	CCATGAGAAA	GCTCCTTCAA	AGGCTGGATC	GÇCAGTTCCC	5940
<b>AAAAGAACAA</b>	TCTGAACATC	TTCTTGCAAG	ATATGGTGAA	GACTTTCGAC	CACCACATCA	6000
AAACCTTTTT	GACGTGTCAA	ACGAGAAACA	ATTCCCACCA	GTGGAACGTC	TGCTCTAACA	6060
GCAAGCCAA	CTCTTTCTTG	CAATTTTGCC	TTATTTTTGG	CTTTCCCAGA	CAAATCTTCC	6120
rgattgaaat	GATAGTCTAA	AAGAGCATCC	GTCTGAGGAT	TATAAAGATC	AGCATCAATC	6180
CCATTCACGA	TACCAGATAC	TTTACCAGAC	TCCATTTTAA	GAATCTGATC	CAAATTACAT	6240
CCAAACTGAC	TAGTCATAAT	TTCATGAGCA	TAGCTAGGTG	AAACGGTTGA	AACACGGTTC	6300
GCATAGAGAA	TACCTGCCTT	CATCCAGTTC	AGACAGTTGT	TCCATCGAAG	GGTGCCATCA	6360
GCGTAACGTT	CAAAGCCAAC	TCCAAACAAA	TCACCCAACA	TTCCTTCTGA	AAATTGTCCT	6420
TGGAATTCTA	AATTATGAAT	GGTTAAAACT	GTTTCAATGT	CCTCATAGGC	TTGAATCCAA	6480
CGCTATTTTT	CCTTCAACAA	GAAAGGAATC	ATAGCTGTAT	GGTAGTCATG	AACATGGAGA	6540
AGATCAGGAA	TAAAGTCAAT	CCTTTCCATA	GCCTCAATGG	CAGCCAGTTG	GAAAAAGGCA	6600
AAGCGTTCTC	CGTCATCAAA	ATCACCGTAA	ACATGACCAC	GGAAGAAATA	ATATTGATTG	6660
rcaataaagt	AGAAGGTTAC	ACCATTTAAT	ACTGTTTTCT	TAATTCCACA	ATACTGTCTG	6720
CGCCAACCAA	CGCTCACCTC	AAAATGAAGC	ACATCTTCAA	TCTGATTTCC	AAATTTAGCC	6780
<b>PCTACCATAT</b>	CATAGTAGGG	TAAAATCACT	GCAACTTCGT	GCCCAGCTTT	TACCAGTGAT	6840
FTTGGAAGAG	CGCCAATGAC	GTCTCCCAAA	CCACCTGTTT	TTGAAAAGGG	TGCACCCTCT	6900
GCTGCTACAA	ATAAAATTT	CATGAATGAA	TATCCTCTGT	TACTTTAGCA	CCTTTCTTAA	6960
CACAACTGG	ATGTTCTGCA	GTTCCTCGAA	TCACAACACC	ATGCTCAACT	TCAACCCCTT	7020
rgtccaagat	AGCATATTCG	ACCTGAGCCC	CTTCTCCAAT	AACAACACGA	GGGAAGAGCA	7080
GCTATCTTT	AACCAAGCTA	TCCTTATGGA	CATGAATATT	ACGTGATAGA	ACAGAATTAG	7140
TACTTGACC	TTCAATAATA	CTACCAGAGG	CAAACTGAGA	AGTGCTTACC	TTAGATGTAT	7200

TAGCATAGTA	AGTTGGCTCT	TCGTTTTTGA	CCTTTGTATA	AATCTTTTGG	TTTGGTGAGA	7260
AAAGAGAATA	GAATTTTTGT	GATTCAAGCA	TATCGATATT	CGCTTGATAA	TAAGATTTAA	7320
CAGAGTGAAT	ATTGGCTAGA	TAGCCCGTGT	ACTCGTAGGC	GAAAGCTCCC	TCTTTTACAG	7386
CCAAATCCCG	TAAAACATAG	CGCAATTTCT	CTGGATGTTC	TTTTTTAGCT	TCTTCTTCCA	7440
AGTGTTCAAT	CAACCAAGGT	GTATCAACGA	CAAAGATATC	TGTAGACATA	TTGAACGTTT	7500
CAGCTGTTGA	CTTGCTATCA	AAGAGTTTAT	GAGAAAGAAC	ATGGTCTGTT	TCATCTACAT	7560
CCAAGATTGC	ATTTACTTCT	GAAATATCTT	TCTTAGCTAG	TTTTTTATAA	ACTACAGTGA	7620
TAGGCTCTTT	TGTTGTACTA	TGTAGGTGGA	AAACTTGGTT	CAAATCAATG	TTAATAAGAA	7680
CATCGCAGTI	GAGGGCAACC	GTTTGGTTTG	AGCCAGAACG	TTTCAAATAA	GTAAGAAGCT	7740
GTTGGTAGTA	TTCTTTTCCA	ACTGTACTAC	TTTCTACACG	GGTATTGTAA	ATTCCTAGAT	7800
agtaatggc1	AAGAAGGGTT	GATAAGCCCC	ACTCGCGTCC	TGAACGAATA	TGGTCAAATA	7860
CTGAGCTGAT	ATTATCCTGC	TGGAAAATAC	CAAAGACACT	ACGAACACCT	GCATTAGCAA	7920
GGCTTGAAAG	TGGGAAGTCA	ATCAAACGAT	ATTTCCCACC	AAATGGCAAA	CTTGCTACTG	7980
GACGGTGGTC	CGTCAATGTC	GACATATTGT	GAAAACCAAC	TGTATTTCCT	AAAATGGCAG	8040
AATATTTATO	AATCTTCATC	TGTTGCTACC	CCCACTACTT	CATTATATCC	TACAACTTGT	8100
ACTTCATCTO	TTCCATCAAT	TTCGACACCG	TCAGAAATAA	TCGCACCTTC	ACCAATAATG	8160
GCACGTTTA	TCTTAGCTCC	TTGACCAATG	ATAGCTCCAC	TCATGATAAC	TGAATCAAGG	8220
ACTTCCGCTC	CTTCGCGAAC	TTGCGCGCCT	GTTGAAAGGA	TAGAATCTTT	AACAGTTCCA	8286
TCAACGAAAC	ATCCGTCTAC	AACTAATGAG	TCTTCCACAT	GAGCATTTGC	CCCGAGGAAG	8340
тттсстсстс	AAATCAAGTT	TCTTGAGTAA	ATCTTCCATT	GACGGTTACG	ACTATCCAAG	8400
GCATTTTCTC	GAGAAATATA	CTCCATGTTC	GCTTCCCAAA	GTGACTCAAT	AGTACCAACA	846
TCTTTCCAA1	P AACCACTAAA	TTCGTAAGCA	TAAACACTTT	CACCTGACTC	AAGGTAATTT	852
GGAATGACA1	AAACCAAA	GTCTGACATG	CCAACCTTGC	TCTTTTCAGC	AGCGACTAAC	858
ATATTACGA	GGCGTTGCCA	ATCAAAAATG	TAGATTCCCA	TAGAAGCTTT	TGTAGATTTA	864
GGTTGAGCTC	GTTTTTCTTC	AAATTCAACA	ATACGATTGT	TAGCATCTGT	GTTCATGATA	870
CCAAAACGGG	TTGCTTCTTT	AAGAGGGACG	TCTAAAACTG	CTACTGTCAA	GCTGGCATTA	876
TTATCCTTAT	r gagactggag	CATATCATCA	TAGTCCATTT	TGTAGATGTG	ATCCCCAGAC	882
AAAATCAAGA	A CATACTCAGG	ATTGACACTG	TCGATATAGT	CGATATTTTG	GTAAATAGCG	888
TC 3 CT 3 CT C		ACC 3.000000000	THE ACTUATION OF A CO	AATABCCTOC	AACAATACAC	204

			422			
ACACCTGAAT	TAATACCGTC	TAGTCCCCAG	CTTGAACCAT	TCCCAATATG	GTTGTTGAGA	9000
GCAAGTGGTT	GATACTGTGT	AACGACCCCA	ACATTGTGAA	TCCCTGAGTT	GGCACAGTTT	9060
GATAGGGCAA	AGTCAATGAT	ACGGTAGCGC	CCACCAAATT	GCACAGCTGG	TTTTGCGATG	9120
CTTTGAGTGA	GTTTACCGAG	ACGAGTTCCT	TGCCCACCAG	CAAGAATCAA	AGCTAACATT	9180
TCATTTTTCA	TTTTCTACTC	CTTTTTGGTT	TTTATTTGTG	ACGGTTTTAG	TAGATTTCAA	9240
GCGACGTTTG	ATTTTCCATA	CACTTGCTCC	CATAGCCGGT	AGGGTAAAGG	TTAAGGTCTG	9300
CTCATAATCT	TTCCATAGTC	CTTCTTGCGT	TTGAACAGTT	TGATTATGTT	CTTTCCAAAC	9360
GCCTCCCCAC	TCTTCCAACT	CAGTATTCCA	TACTTCTTCG	TAAATTCCTG	CAACGGGTAG	9420
TCCGATTGTA	AAATCTTTCC	GCTCAACAGG	TACCATATTA	AAGATACAGA	CTAACATTTC	9480
TCCCTTTTTA	CCCTTACGAA	TAAAGGAAAG	AACACTCTGG	TCTCGATTAT	CCGCATCAAT	9540
GATTTCAATA	CCATCATAGC	TGGTATCAAT	TTCCCACAGA	CAGCGATGAT	CTTTGTAAAA	9600
CTGGTTTAGC	TGAGAAGCGA	AATACTTCAT	CTTAGCATTC	ATTGGGTCTT	CTAGGTTAGA	9660
CCATTCCAAC	TGTTCTTCAG	ATTTCCATTC	TAGGAATTGA	CCGTATTCGC	TACCCATGAA	9720
GAGCAATTTC	TTACCAGGGT	GACAAATTTG	GTACGTATAG	AGATTGCGCA	AGCCTGCGAA	9780
TTGATTGTAA	CGATCTCCCC	ACATCTTATG	CATCATACTC	TTCTTGCCAT	GAACCACTTC	9840
ATCGTGCGAG	AATGGCAAGA	GATAATTCTC	CTTGAAAACA	TACATAAAGC	TGAAAGTCAC	9900
CAGGTTAAAG	TCATATTTAC	GATAGATCGG	ATCTTCTTCG	TAGAAACGGA	GGATATCATT	9960
CATCCAGCCC	ATGTTCCATT	TGTAGTCAAA	TCCTAGACCA	CCAATCTCTT	TCATTCCCGT	10020
AATCTTGATC	GCAGACGAAC	TTTCTTCTGC	AATCATCATC	ACATCTGGAT	ATTCTAACTT	10080
AATAACCTCA	TTCAAGCGCT	GAAGGAAATA	ATAACCTTCA	TAGTTGAGAT	TTCCGCCATC	10140
TTTATTAGGT	GTCCATGGAG	CATCATCATA	GTCCAAATAG	AGCATGTTGC	TAACAGCATC	10200
CACACGAATA	CCATCCAAAT	GATAGACATC	AATCCAATGC	TTAATGCAAG	AAATTAAGAA	1026
GGACTGGACT	TCATTTTTTC	CAAGGTCAAA	ATTAAGGGCA	CCCCAACCAT	GGTTATGAGC	1032
CTTATTATGG	TCTTGGTATT	CAAAAGTCGG	TGTCCCATCA	TAATAGGCTA	AGGCATCATC	1038
GTTGATGGTA	AAGTGACTGG	TACCCAGTCC	ACAATAACCC	CAATATTATG	GGTATGACAC	1044
TCCTCGACAA	AATCTTGAAA	CTCCTCTGGT	CGGCCATAAG	CATGCTCTAA	AGCGAAGTAA	1050
CCCATAAGCT	GATACCCCCA	ACTCAAGCCC	AAAGGATGGG	ACATCAAGGG	CATAAACTCA	1056
ATATGAGTAT	AGTTCATTTC	AACGAGATAA	GGAATGAGTT	CATCCTTGAG	CTGGGCAAAA	1062
CTATAAGGAC	TGCCATCAGA	ATTTCTTTTC	CATGATCCAG	CGTGAACTTC	ATAAATATTG	1068
ACAGGACGCT	CTTCAAAGCC	CCAACGTTTT	CTTCGTGCCA	GCCAAAGTCC	ATCCTTCCAT	1074

423

TTCTTCTCAG GAAGCTCTGT	TACGATTGCC	CCTGTTCCTG	GACGAGCCTC	ATACCTGACA	10800
GCAAAAGGGT CAATCTTCAT	CAGTTGATGA	CCATTTTGAC	GTGTGACATG	ATATTTGTAA	10860
ATATGCCCTT CTTGAGCCAT	ATTGGTAAAG	ACTTCCCAGA	CCCCAAAATC	ATTTCTTACC	10920
ATTGGAATCT GATTTTCAAT	CCAGTTGGTA	AAATCACCAA	CCAAGTGAAC	AGCCTGAGCA	10980
TTAGGTGCCC AAACACGGAA	GGTATAGCCA	TGCTCTCCAT	TTAGTTCTTC	CCTATGTGCT	11040
CCTAGATAAT GTTGGAGATA	AAAATTTTCA	CCCGTCATAA	AGGTTTTTAA	TGCTTCTCTA	11100
TTATCCATAT ACTCCCCTTC	TCCTGTAAGC	GTTTTCTATG	TTTTTATTAT	ACTACCTTTT	11160
TAGAGAAGAT TCAAGTAAAT	тастатастт	CTTTAATTAT	TTTGAAAATC	TACAACAAGT	11220
TCACTTACTC GTTCAATTGT	· AAATCAATAT	TTTTTCAAAA	AATTGCGAAA	ACGCCTTTCT	11280
TTTTCTACTA TAGTGAAATC	AAATAAAACA	TGCGCAAATC	GATTAAGGAA	TTTAATCTAA	11340
TTTCTAACAA TGTCTTAGAA	ATCAAAGTGT	ACTATTTAA	CTCC		11384

#### (2) INFORMATION FOR SEQ ID NO: 46:

•....

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7577 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

TGTTGATTTG	TTACTAGACG	TTGACCAACG	TCCTTCGGCT	GGAAAAGGAA	TTCTCCTTAG	60
TTTCCAACAC	GTTTTCGCCA	TGTTTGGTGC	GACCATCTTG	GTACCATTCA	TTTTGGGAAT	120
GCCTGTATCT	GTTGCCCTTT	TTGCTTCAGG	TGTTGGAACA	CTCATCTACA	TGATTGCTAC	180
TGGTTTTAAA	GTTCCAGTTT	ATCTAGGTTC	TTCATTTGCC	TTTATCACAG	CTATGTCACT	240
GGCTATGAAA	GAAATGGGGG	GGGATGTATC	TGCTGCCCAA	ACAGGGGTTA	TCTTGACTGG	300
TTTGGTCTAT	GTCCTTGTTG	CTACCAGCAT	CCGATTTGTA	GGAACAAAAT	GGATTGATAA	360
ACTCTTGCCA	CCAATCATTA	TCGGTCCTAT	GATCATCGTT	ATCGGTCTTG	GACTTGCAGG	420
TTCAGCTGTT	ACCAATGCAG	GTCTTGTAGC	AGACGGAAAT	TGGAAAAATG	CTCTGGTAGC	480
CGTTGTTACT	TTCCTAATTG	CTGCCTTTAT	CAATACAAAA	GGAAAAGGCT	TCCTACGAAT	540
CATTCCATTC	CTCTTTGCCA	TTATCGGTGG	TTACCTTTTC	GCACTAACTC	TTGGCTTGGT	600
TGACTTTACA	CCAGTTCTTA	AAGCCAACTG	GTTCGAAATT	CCTGGTTTCT	ACTTGCCATT	660
TAGCACAGGT	GGTGCCTTTA	AAGAGTACAA	TCTTTACTTT	GGTCCAGAAG	CCATCGCTAT	720

			424			
CTTGCCAATC	GCTATCGTAA	CAATTTCTGA	ACATATCGGA	GACCATACTG	TTTTGGGTCA	780
AATCTGTGGT	CGTCAATTCT	TAAAAGAACC	AGGTCTTCAC	CGTACTCTTC	TTGGTGACGG	840
TATCGCAACT	TCTGTTTCTG	CCTTCCTTGG	TGGACCAGCC	AATACAACTT	ACGGAGAAAA	900
TACAGGGGTT	ATCGGTATGA	CTCGTATCGC	TTCTGTCTCA	GTTATCCGTA	ACGCTGCCTT	960
CATCGCGATT	GCCCTCAGCT	TCCTTGGTAA	ATTCACTGCC	TTGATTTCAA	CTATTCCAAA	1020
CGCTGTACTT	GGTGGTATGT	CAATCCTTCT	CTATGGGGTT	ATCGCCAGCA	ATGGTTTGAA	1080
AGTCTTGATT	AAAGAACGTG	TTGATTTCGC	TCAAATGCGA	AACCTCATCA	TCGCAAGTGC	1140
TATGTTGGTT	CTTGGACTTG	GAGGAGCTAT	CCTTAAACTT	GGTCCAGTTA	CACTTTCAGG	1200
TACTGCCCTT	TCAGCCATGA	CAGGAATCAT	CTTGAACTTG	ATCTTGCCAT	ACGAAAATAA	1260
AGACTAAGAG	TCTAAATACA	CCTAATCCAC	TCAGACAGCT	GAGTGGATTT	TTCGTATACC	1320
ATAATAAAAG	TGTCTTAACA	AAATTATTAA	AATCAAAAAA	CGTATAATAT	CAGATATTCT	1380
AAAACCTTGA	TACTGTACGT	TTTATCATAG	AAATTTTTAC	TTTATTTTCT	CATCAAATGA	1440
GATTTGCATC	AATCTCTTGT	CTTACTTGCG	TTTCTTCTTC	GCTTTCTTCA	TTTTGTTAGC	1500
CATACGTTTC	ATGGACTGTT	TCATGGCAAA	TTCACCAATT	TTACCTTTCA	AACCGCCACC	1560
AAACATCTGG	CTCATATCTG	GCATTCCTGC	TCCTCCGAGA	GCTGATAAGT	CAGGCATACC	1620
GCCTTGTCCC	ATCATTCCTT	CAAGGGCAGA	CATATCCATT	CCTCCCATAT	TTGGCATATT	1680
TTTAGGAAGG	TTATTTGGAT	TAATCCCCAT	TTGCTTCATC	ATTTTATTCA	TATCCCCAGA	1740
CATAACACCC	TGCATGAGCT	GTTTAGCCTG	GTTAAAGTCC	TTGATGAATT	TATTGACTTC	1800
GACGAATGTA	TTTCCAGAAC	CAGCAGCAAT	ACGACGGCGA	CGGCTTGGAT	TTAACAAATC	1860
TGGGTTTTCA	CGCTCTTCAG	GTGTCATCGA	AGACACAATG	GCACGTTTAC	GAGCAATCTG	1920
GCGTTCATCC	ACCTTCATGT	TTTGAAGGGC	TGGATTGTTG	GCCATACCTG	GAATCATCTT	1980
GAGCAAGTCT	TCCATCGGCC	CCATATTTTG	CACCTGATCT	AATTGATCGA	TGAAATCATT	2040
AAAATCAAAG	GTGTTTTCGC	GCATCTTCTC	AGCCATTTCA	AGGGCTTTTT	GTTCATCG'I'A	2100
TTCCTGAGAA	GCTTTCTCAA	TCAAAGTGAG	CATATCCCCC	ATACCAAGGA	TACGGCTAGA.	2160
CATGCGGTCT	GCGTGGAAGG	TTTCAATGTC	CGTAATCTTT	TCACCTGTAC	CAGTGAACTT	2220
GATTGGTTTT	CCAGTAATGT	GACGAACAGA	CAGAGCAGCA	CCACCACGAG	TATCGCCATC	2280
AATCTTGGTA	AGGATGACCC	CAGTCACTTC	CAACTGAGCA	TTAAACTCAC	GCGCAACATT	2340
GGCTGCTTCC	TGACCAATCA	TAGCATCAAC	GACAAGCAAG	ATTTCATTTG	GTTGAGCCAA	2400
TGCTTTCACA	TCACGAAGCT	CATTCATGAG	GAGCTCATCA	ATCTGCAAAC	GACCCGCAGT	2460
ATCAATCAAG	ACATAGTCGT	TATGATTAGT	TTGGGCTTGC	TCCAAACCTT	GACGTACAAT	2520

*****

CTCAACAGCT	GGTACTTCTG	TTCCAAGTGC	AAAGACAGGC	ACATCAATCT	GTTGTCCCAA	2580
GGTCTTAAGC	TGGTCAATGG	CAGCTGGACG	ATAAATATCC	GCCGCAATCA	TCAAAGGACG	2640
AGCATTTTCT	TCTTTCTTGA	GTTTGTTGGC	CAATTTACCA	GCAAAGGTTG	TTTTACCAGC	2700
CCCTTGTAAA	CCAACCATCA	TGATGATGGT	TGGAATCTTA	GGTGACTTGA	TAATTTCTGC	2760
CGTATCAGAA	CCTAAAACGG	CTGTCAATTC	CTCATCAACG	ATTTTAATAA	TCTGTTGCGC	2820
AGGATTAAGT	GTATCAATGA	CCTCATGCCC	GACTGCACGC	TCACGAACTT	TCTTGATAAA	2880
GTCCTTTACA	ACAGGCAAGG	CAACGTCGGC	CTCGAGCAAG	GCCAAGCGAA	TTTCTTTGGT	2940
TGCCTCTTGG	ACATCAGATT	CAGAGATTTT	TCCTTTTTTA	CGTAGATITI	TAAAGACGTT	3000
CTGCAAACGT	TCTGTTAAAC	TTTCAAATGC	CATTTTTCTT	CCTCTTATTC	TCTATTATCA	3060
ATGCTTGTTA	AAATTTCTAT	CTGCTCCTGC	AGAAAGTCAT	CCTTGGGATA	GCGCTCCAAA	3120
ATCTGATCAA	AAATCTGACT	GCGGACAATA	TAGTCCGAGT	ACATGTGCAA	TTTCATCTCA	3180
TAATCTTCCA	GAATCTTTTC	TGTTCGCTTG	ATATTGTCAT	AGACAGCCTG	ACGACTGACA	3240
CCGAACTCCT	CGGCAATTTC	AGCAAGGCTG	TAATCATCAG	CGTAGTAGAG	CTCGATATAA	3300
TTCATTTGCT	TATCTGTCAA	AAGCGCCGCA	TAAAATTCAA	AGAGCGCATT	CATACGATTG	3360
GTTTTTTCGA	TTTCCATAAC	TTTTATTATA	CCAAAAATTA	GCCTAATCTA	CCACACTAGG	3420
AAGCCGATCC	AAGAAGATAG	ATAGCTAAAT	TTGAAAAAGA	CATGAGCCTA	GCCCCAAGTA	3480
ATTTCCAATT	GATAGCTGGC	AAAGGGATGT	CCCTCTTGAT	TTTGTAGTTG	ATAATCTAGT	3540
TCAATCTTTT	GCCTATCAAC	TTGATAATGG	CTCGTTTGGA	TGATAAACTC	CTGCATGCCC	3600
ATAGGTGTAG	GAATATAGGC	TAAACTATCG	CTATCCTTTA	GAAAGCGCAT	AATGGTCTTG	3660
GGATTAGAAA	ATCGGCTCAT	CACAAGTTCT	TGACCATGAA	ATTTAATCAC	TACTTTTTCC	3720
TTTTCCTCAT	TATAGAAAAG	CAGGTAGCTA	TAATCTCCTT	TTTCATGCAC	TTCCACATCA	3780
TAAAGCTGGT	CAATCACTTC	CAACTGCTCA	TCAAACTGAA	TCGTATTTCG	CATCCGAATC	3840
TTCACATCAG	GCCCTCTTTC	TTGTCTCTTG	TCCTACTATT	TTACCAAAAA	GAGCAGGATT	3900
TTGCTATAAT	GGTCATATGA	ACGAAAAAGT	ATTCCGTGAC	CCTGTTCACA	ACTACATCCA	3960
TGTCAATAAT	CAAATCATCT	ATGACTTGAT	TAATACAAAA	GAATTTCAGC	GTTTGCGCCG	4020
GATCAAACAA	CTGGGAACTT	CCAGTTATAC	CTTCCACGGT	GGAGAACACA	GTCGCTTCTC	4080
TCACTGTCTA	GGAGTCTATG	AAATTGCACG	ACGCATCACA	GAGATTTTCG	AAGAAAATA	4140
TCCTGAGGAA	TGGAATCCTG	CCGAGTCTCT	CTTGACCATG	ACCGCTGCTC	TCCTACACGA	4200
רריייונונונרייי	CCTCCCTACT	CCCATACTOR	ጥር እ እረ እጠርጣር	TOTOC S TO S C S C	1001001100	4250

426 CATTACTCAG GAGATTATTC AAAATCCTGA GACAGAGATT CACCAAGTCC TGCTACAAGT 4320 GGCACCTGAT TTCCCAGAAA AGGTGGCCAG TGTCATTGAC CATACCTATC CTAATAAGCA 4380 GGTCGTGCAG CTCATTTCTA GTCAGATTGA CGCAGATCGC ATGGACTATC TCTTGCGCGA 4440 CTCCTATTTT ACAGGAGCAT CCTATGGGGA ATTTGACCTG ACTCGAATCC TCCGAGTCAT 4500 TCGTCCTATC GAAAATGGTA TCGCCTTTCA GCGCAATGGC ATGCACGCCA TCGAAGACTA 4560 CGTCCTCAGT CGCTACCAGA TGTACATGCA GGTTTATTTC CACCCCGCAA CACGCGCCAT 4620 GGAAGTTCTC CTACAGAATC TTCTCAAACG CGCCAAGGAA CTCTATCCTG AGGACAAGGA 4680 TTTCTTTGCC CGAACTTCTC CACACCTCCT GCCTTTCTTC GAAAAAAATG TGACCTTGAC 4740 TGACTATCTG GCTCTGGATG ATGGCGTGAT GAATACCTAC TTCCAGCTTT GGATGACCAG 4800 TCCTGACAAG ATTCTTGCAG ATTTATCGCA TCGCTTTGTC AACCGCAAGG TCTTTAAATC 4860 CATTACCTTT TCACAAGAGG ACCAAGATCA ACTTACTAGC ATGAGAAAAT TGGTTGAGGA 4920 TATCGGCTTT GATCCCGACT ACTACACTGC CATTCATAAG AACTTTGACC TCCCTTATGA 4980 TATCTATCGT CCCGAATCTG AAAACCCACG GACACAGATT GAGATTTTAC AAAAAAATGG 5040 AGAACTGGCC GAACTCTCTA GCCTGTCTCC TATCGTCCAA TCCCTTGCTG GCAGTCGCCA 5100 CGGAGATAAT CGCTTTTATT TTCCAAAAGA AATGTTGGAC CAAAACAGCA TCTTTGCAAG 5160 CATTACCCAG CAATTTTTAC ACTTGATTGA GAACGATCAT TTTACCCCAA ATAAAAACTA 5220 GAAGAGGAAA TTTATGAGTA TTAAACTAAT TGCCGTTGAT ATCGACGGAA CCCTTGTCAA 5280 CAGCCAAAAG GAAATCACTC CTGAAGTTTT TTCTGCCATC CAAGATGCCA AAGAAGCTGG 5340 TGTCAAAGTC GTGATTGCAA CTGGCCGCCC TATCGCAGGC GTTGCCAAAC TTCTAGACGA 5400 CTTGCAGTTG AGAGACGAGG GGGACTATGT GGTAACCTTC AACGGTGCCC TTGTCCAAGA 5460 AACTGCTACA GGACATGAGA TTATCAGCGA ATCCTTGACT TATGAGGATT ATCTAGATAT 5520 GGAATTCCTC AGTCGCAAGC TCGGTGTCCA CATGCATGCC ATTACCAAGG ACGGTATCTA 5580 TACTGCAAAT CGCAATATCG GAAAATACAC TGTACACGAA TCAACCCTCG TCAGCATGCC 5640 TATCTTCTAC CGTACCCCTG AAGAAATGGC TGGCAAAGAA ATTGTTAAAT GTATGTTAT 5700 CGATGAACCA GAAATTCTCG ATGCTGCGAT TGAAAAAATT CCAGCAGAAT TTTACGAGCG 5760 CTACTCCATC AACAAATCTG CTCCTTTCTA CCTCGAACTC CTTAAAAAGA ATGTAGACAA 5820 GGGTTCAGCC ATTACTCACT TGGCTGAAAA ACTCGGATTG ACCAAAGATG AAACCATGGC 5880 AATCGGTGAT GAAGAAAATG ACCGTGCCAT GCTGGAAGTC GTTGGAAACC CCGTTGTCAT 5940 GGAAAATGGA AATCCAGAAA TCAAAAAAAT CGCCAAATAC ATCACCAAAA CAAATGACGA 6000 ATCCGGCGTT GCCCATGCCA TCCGAACATG GGTACTGTAA AAGTATCATT TTTCAATAAG 6060

AATTGATTAG	CAATAAAATC	CAATGAATTT	TTTTAGCAAA	CTATTTAATT	TAAAACAAAA	6120
TAATCATAAT	AGAGACACAA	ATTCTGATTG	TAACAATTTT	TACCTAAACG	AATTAGAATG	6180
TGGCCTTACT	CCTGGGCAAC	TCATACTCAT	AGATTGGACT	CAAAAAACAG	GGAGAAATTA	6240
TAATTTCCCA	AGATATTTTA	AATACTCTCT	TCAAATTGAC	CCTGAATCTA	CACACAATCA	6300
ATTATACAAA	TTAGGATACT	TCACTAAAAA	TAAGACTTTA	TCATATCTTA	CAGTAGTAGA	6360
аттаааааст	ATATTATCTA	AACATAATTT	AGCTACTTCT	GGAAAAAAAG	CAGAATTAAT	6420
TACAAGAATA	ATTAATAATG	TTAACATTGA	CAATTTAGAT	ATTCCGTTCG	AATTTAAACT	6480
AACAAAAGAA	GCACAAAATC	TTATTATCGA	ACATAGTGAC	TATATCAAAG	CATACTATGA	6540
TAAAGACATA	ACTATGGAAG	ATTATTGTAA	AGAAAAAAAC	AATATCTCTT	TTAAAGCAAC	6600
TTTTGGTGAT	ATAAAATGGA	GTCTCTTAAA	TAAACAAGCT	CATAGGAATA	CTGTATCAGG	6660
AGATTTTGGA	TGCTTATCTA	ACACACGAAA	GGCTCAGGGA	AGACATTTGG	AACAAGAAGG	6720
AAATTATAA	CATGCTTTAA	TATATTACAT	AGAATCTTTG	ATAATTACTA	TTTCAGGATT	6780
AGAAAACAAT	TTTTCAGCCA	CTGATTATCC	AGTATATTAT	CCCGATTCGA	TACCTGACTA	6840
CTCACTAAAA	CATATTCAAA	CATTAATGGA	ATCATTATCT	GATGACGATT	ATGATTTTGC	6900
TTTTGATGAA	GCATTATTTC	GCTTCTCAAT	TTTGAATGCA	AATCATTTTT	TATCTAAGGA	6960
AGATATTGAC	TATTTAAGAG	TTAATTTACC	TCGTTCCACT	GCTGAAGAAA	TAAACAATTA	7020
CTTAAAGAAA	TATGAATGTT	ATAGTCCTTT	AAATAATTTA	GAACTTGACG	ATTTTGAATA	7080
AATTGACTAT	ACAAACATTT	ATATACTCGA	TATAGTCTCA	ATTTTATCTG	ATGATTGCCC	7140
AAATTTTTCA	ATAATAAAAC	GCATAATATT	ATGGAGACAA	TCCCCTATAT	TATGCGTTCT	7200
TTTAATATCA	AAGACTTTTT	GACAAACTTC	TTTGATATCT	AATTACATGC	CCCCTGCAGG	7260
AATCGAACCT	GCAACTACTC	CTTAGGAGGG	AGTTGTTATA	TCCATTGAAC	TAAGGGAGCT	7320
AGATAAAAAC	TCTGCTAAAT	GAGCAGAGTT	TTTTAGTCGA	ATTAACGACG	GATTTCTTTG	7380
ATACGAGCTG	CTTTACCTTG	AAGAGCACGC	AAGTAGTACA	ATTTCGCACG	ACGTACTTTA	7440
CCGTAACGAA	CAACTTCGAT	TTTTTCAACA	CGTGGAGTGT	GGATTGGGAA	GATACGCTCA	7500
ACACCTACAC	CGTTAGAGAT	TTTACGAACT	GTGTAGTTTT	CTGAGATTCC	AGCACCTTTA	7560
CGTGCGATAA	CAACACG					7577

# (2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 4945 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

428

# (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

						(,,,,,,
60	GAAACTGCAG	CTTGGCTGAA	CTGGTCCAGC	GTTTTATTTG	GATTGGTGCT	CCTCGCTGAT
120	CATTCGACCA	AGAGAGTGAG	TTGTTTCAGG	AATACAGAGC	TAGCGGAnCT	TTCCTGAAAA
180	GAAAAGGCAG	AAACAAGCTA	ATGCTAGAGA	GAAGGGGAAC	TAAGCAGAAT	ATGAAGCTGA
240	GCAACTACTG	CAATGAAGCT	CGCCAGCAAG	GAAACTGCTT	GATAGCATCT	AAGGAGTAGC
300	GTGGTTGCAG	AGCAAGTGAG	CAGAGGAAAA	GCAGCTAAAC	AGCAGCTAGC	AAACTGCAGA
360	AAGCCCGAAG	AACAGAAGCA	CTGACAAGGA	AAACCTAAGT	TGCAGAAGCA	AAACACCATC
420	GAAAAAGAAG	TAATAAGACT	CAGCAGAAGC	TCTAAACCAG	AGGGGATGAG	CAACTAACCA
480	ATCAAATTTA	ACCAAAGGAA	AAACATTAAA	AATACAGAAA	TGTCCCTAAA	TCCAGCCAGA
540	GCTATTAACC	TGAAGATGAT	CAGGTGCTCG	AAATGGGAAC	AGAATTGTTA	ATTCTTGGGA
600	AAAGCTAGCA	AGTCAATGAA	CAGGTCATTT	TCACGTCGGA	TGTCCTCGCT	GCGGATCTGT
660	CATGCTTCTG	AGCAAAAGAC	CCAATTCTAA	TTATCAAACA	AGTTCAAGCC	AGGAAGCAAA
720	GATTCAATGG	GCAATATCTA	TTGACTATTG	GCCTATGCTT	AGAGTTCAAG	TTGGTGGAGA
780	CGTAACGGGG	TGCAGGTCAC	ACGTTATTGA	CCAACTCCTG	AGGTCTCGTA	TCTTCTGGGA
840	CAAGAAAGAT	TATTGCAGAT	GGTCTAATAG	TTCTTCAACT	CGGTACACTC	TTCCTGTATA
900	AAATTGGTAG	AATTGCCCGT	GTAGCTTCCC	GACGCAGATG	TTTGAAGCAA	TTGCTGAAGC
960	ACTGGAGATT	CCAAGAAACA	ATTTCATCAA	TATGATGGCT	GTATTATGGC	ACATGGCCAA
1020	GAATATGCTG	CTATAGCAAG	AGTTTATGCT	AAGATGCGCC	TCTTGGAGAA	TGGTTAAACC
1080	AACTATGGAC	CATGACCTAT	GGTACGATGC	AAGTATTCTT	CCATCCAATC	CTAAGGTAAA
1140	GAAGGAGATA	CATGCAACCA	ACTACCAATT	GGAGAATACA	AGATGGTTTG	GTTATCATCA
1200	AATGATTACA	TAAGGCTAAA	TTAACTGGGA	TTTGCTAACT	AGATAACTTC	AGGTTCCGGC
1260	GGTTTGGAAT	TGTATTTGCA	ATCCTTATGA	ATTGGTCGTA	TGCCAACTGG	CTATTGCAAC
1320	GACGAAAATG	TGACATTTTA	TTAAGTGGAA	AAGACAAAGG	TGGTTCCTAC	TGCAACAGGG
1380	TTAGGAAAAA	CATTACAAGT	CCCCAGATAC	GGTTTATTTG	CCTTTCTCTT	GGAAATTGCG
1440	GGAGACCCTA	AGGTTATCAA	TCTTCTTTAC	AATGAAGATA	TTATCATAAA	CTGGTGAAGA
1500	GCGGACCGTA	TAACCTAGTT	ATGGTATTGC	AAAGATTGGT	ACCAGGTGAC	CTGGCCAAAA
1560	AAAAAATGGT	AGGTCATGGT	CTTTTAATAC	TTTACTACTT	AGGTAATACT	CGCCAGCGGT
1620	TCAGGTGTTC	TCGTTCAGTA	AGTGGAATTA	AAGGATTCTG	TAAGGTTTCT	TCGTAGATGG

TTCCAACATG	GCGCTGGTGG	CAGACTTCAA	CAGGGGAAAA	ACTTCGTGCA	GAATATGATT	168
TTACAGATGO	CTATAATGGC	GGAAATTCCC	TTAAATTCTC	TGGTGATGTA	GCCGGTAAGA	174
CAGATCAGGA	TGTGAGACTT	TATTCTACTA	AGTTAGAAGT	AACTGAGAAG	ACCAAACTTC	180
GTGTTGCCCA	CAAGGGAGGA	AAAGGTTCTA	AAGTTTATAT	GGCATTCTCT	ACAACTCCAG	186
ACTACAAATT	CGATGATGCA	GATGCATGGA	AAGAGCTAAC	CCTTTCTGAC	AACTGGACAA	1920
atgaagaatt	TGATCTTAGC	TCACTAGCGG	GTAAAACCAT	CTATGCAGTC	AAACTATTTT	1980
TCGAGCATGA	AGGTGCTGTA	AAAGATTATC	AGTTTAACCT	AGGACAATTA	ACTATCTCGG	2040
ACAATCACCA	AGAGCCACAA	TCGCCGACAA	GCTTTTCTGT	AGTGAAACAA	TCTCTTAAAA	2100
ATGCCCAAGA	AGCGGAAGCA	GTTGTGCAAT	TTAAAGGCAA	CAAGGATGCA	GATTTCTATG	2160
AAGTTTATGA	AAAAGATGGA	GACAGCTGGA	AATTACTAAC	TGGCTCATCT	TCTACAACTA	2220
TTTATCTACC	AAAAGTTAGC	CGCTCAGCAA	GTGCTCAGGG	TACAACTCAA	GAACTGAAGG	2280
TTGTAGCAGT	CGGTAAAAAT	GGAGTTCGTT	CAGAAGCTGC	AACCACAACC	TTTGATTGGG	2340
GTATGACTGT	AAAAGATACC	AGCCTACCAA	AACCACTAGC	TGAAAATATC	GTTCCAGGTG	2400
CAACAGTTAT	TGATAGTACT	TTCCCTAAGA	CTGAAGGTGG	AGAAGGTATT	GAAGGTATGT	2460
TGAACGGTAC	CATTACTAGC	TTGTCAGATA	AATGGTCTTC	AGCTCAGTTG	ACTGGTAGTG	2520
TGGATATTCG	TTTGACCAAG	CCACGTACCG	TTGTTAGATG	GGTCATGGAT	CATGCAGGAG	2580
CTGGTGGTGA	GTCTGTTAAC	GATGGCTTGA	TGAACACTAA	AGACTTTGAC	CTTTATTATA	2640
AAGATGCAGA	TGGTGAGTGG	AAGCTAGCTA	AGGAAGTCCG	TGGTAACAAA	GCACACGTGA	2700
CAGATATCAC	TCTTGATAAA	CCAATCACTG	CTCAAGACTG	GCGCTTGAAT	GTTGTCACTT	2760
CTGACAATGG	AACTCCATGG	AAGGCTATTC	GTATCTATAA	CTGGAAAATG	TATGAAAAGC	2820
<b>PTGATACTGA</b>	GAGTGTCAAT	ATTCCGATGG	CCAAGGCTGC	AGCCCGTTCT	CTAGGCAATA	2880
<b>NCAAGGTACA</b>	AGTTGGCTTT	GCAGATGTAC	CGGCTGGAGC	AACTATTACC	GTTTATGATA	2940
ATCCAAATTC	TCAAACTCCG	CTCGCAACCT	TGAAGAGCGA	AGTTGGAGGA	GACCTAGCAA	3000
STGCACCATT	GGATTTGACA	AATCAATCTG	GTCTTCTTTA	TTATCGTACC	CAGTTGCCAG	3060
GCAAGGAAAT	TAGTAATGTC	CTAGCAGTTT	CCGTTCCAAA	AGATGACAGA	AGAATCAAGT	3120
CAGTCAGCCT	AGAAACAGGA	CCTAAGAAAA	CAAGCTACGC	CGAAGGGGAG	GATTTGGACC	3180
TTAGAGGTGG	TGTTCTTCGA	GTTCAGTATG	AAGGAGGAAC	TGAGGACGAA	CTCATTCGCC	3240
PAACTCACGC	AGGTGTATCA	GTATCAGGTT	TTGATACGCA	TCATAAGGGA	GAACAGAATC	3300
TACTCTCCA	ATATTTGGGA	CAACCGGTAA	<b>ልጥር</b> ር ምል ልጥጥም	GTCAGTGACT	CTCACTCCC	3360

			430			
AAGACGAAGC	AAGTCCGAAA	ACTATTTTGG	GAATTGAAGT	A <del>AGTE</del> ≒GGAA	CCGAAAAAAG	3420
ATTACCTAGT	TGGTGATAGC	TTAGACTTGT	CTGAAGGACG	CTTTGCAGTG	GCTTATAGCA	3480
ATGACACCAT	GGAAGAACAT	TCCTTTACTG	ATGAGGGAGT	TGAAATTTCT	GGTTACGATG	3540
CTCAAAAGAC	TGGTCGTCAA	ACCTTGACGC	TTCATTACCA	AGGCCATGAA	GTTAGCTTTG	3600
ATGTTTTGGT	АТСТССАААА	GCAGCATTGA	ACGATGAGTA	CCTCAAACAA	AAATTAGCAG	3660
AAGTTGAAGC	TGCTAAGAAC	AAGGTGGTCT	ATAACTTTGC	TTCATCAGAA	GTAAAAGAAG	3720
CCTTCTTGAA	AGCAATTGAA	GCGGCCGAAC	AAGTGTTGAA	AGACCATGAA	ACTAGCACCC	3780
AAGATCAAGT	CAATGACCGA	CTTAATAAAT	TGACAGAAGC	TCATAAAGCT	CTGAATGGTC	3840
AAGAGAAATT	TACGGAAGAA	AAGACAGAGC	TTGATCGCTT	AACAGGTGAG	GTTCAAGAAC	3900
TCTTGGCTGC	CAAACCAAAC	CATCCTTCAG	GTTCTGCCCT	AGCTCCGCTT	CTTGAGAAAA	3960
ACAAGGCCTT	GGTTGAAAAA	GTAGATTTGA	GTCCAGAAGA	GCTTACAACA	GCGAAACAGA	4020
GTCTAAAAGA	TCTGGTTGCT	TTATTGAAAG	AAGACAAGCC	AGCAGTCTTT	TCTGATAGTA	4080
AAACAGGTGT	TGAAGTACAC	ТТСТСАААТА	AAGAGAAGAC	TGTCATCAAG	GGTTTGAAAG	4140
TAGAGCGTGT	TCAAGCAAGT	GCTGAAGAGA	AGAAATACTT	TGCTGGAGAA	GATGCTCATG	4200
TCTTTGAAAT	AGAAGGTTTG	GATGAAAAAG	GTCAAGATGT	TGATCTCTCT	TATGCTTCTA	4260
TTGTGAAAAT	CCCAATTGAA	AAAGATAAGA	AAGTTAAGAA	AGTATTTTTC	TTACCTGAAG	4320
GCAAAGAGGC	AGTAGAATTG	GCTTTTGAAC	AAACGGATAG	TCATGTTATC	TTTACAGCAC	4380
CTCACTTTAC	TCATTATGCC	TTTGTTTATG	AATCTGCTGA	AAAACCACAA	CCTGCTAAAC	4440
CAGCACCACA	AAACACAGTC	CTTCCAAAAC	CTACTTATCA	ACCGACTTCT	GATCAACAAA	4500
AGGCTCCTAA	ATTGGAAGTT	CAAGAGGAAA	AGGTTGCCTT	TCATCGTCAA	GAGCATGAAA	4560
ATACTGAGAT	GCTAGTTGGG	GAACAACGAG	TCATCATACA	GGGACGAGAT	GGACTGTTAA	4620
GACATGTCTT	TGAAGTTGAT	GAAAACGGTC	AGCGTCGTCT	TCGTTCAACA	GAAGTCATCC	4680
AAGAAGCGAT	TCCAGAAATT	GTTGAAATTG	GAACAAAAGT	AAAAACAGTA	CCAGCAGTAG	4740
TAGCTACACA	GGAAAAACCA	GCTCAAAATA	CAGCAGTTAA	ATCAGAAGAA	GCAAGCAAAC	4800
AATTGCCAAA	TACAGGAACA	GCTGATGCTA	ATGAAGCCCT	AATAGCAGGC	TTAGCCAGCC	486
TTGGTCTTGC	TAGTTTAGCC	TTGACCTTGA	GACGGAAAAG	AGAAGATAAA	GATTAAATAT	492
CGAAAAATCT	TGTGAAATCT	TTCCG				494

#### (2) INFORMATION FOR SEQ ID NO: 48:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25002 base pairs
(B) TYPE: nucleic acid

431

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GACAACTCAA	GTAGCTTTTT	CTTATTTTGA	AAAAGGAGAT	CAGAGTTTAA	CTATGTCAGA	60
AAAATCACAA	TGGGGGTCGA	AACTTGGTTT	TATTCTAGCA	TCTGCTGGCT	GGCCATCGGG	120
CTTGGTTCCG	TTTGGAAGTT	TCCCTACATG	ACTGCTGCTA	ATGGCGGTGG	AGGCTTTTTA	180
CTAATCTTTC	TCATTTCCAC	TATTTTAATC	GGTTTCCCTC	TCCTGCTGGC	TGAGTTTGCC	240
CTTGGCCGTA	GTGCTGGCGT	TTCCGCTATC	AAAACCTTTG	GAAAACTGGG	CAAGAATAAC	300
AAGTACAACT	TTATCGGTTG	GATTGGCGCC	TTTGCCCTCT	TTATCCTCTT	ATCTTTTTAC	360
AGTGTTATCG	GAGGATGGAT	TCTAGTCTAT	CTAGGTATTG	AGTTTGGGAA	ATTGTTCCAA	420
CTTGGTGGAA	CGGGTGATTA	TGCTCAGTTA	TTTACTTCAA	TCATTTCAAA	TCCAGCCATT	480
GCCCTAGGAG	CTCAAGCGGC	CTTTATCCTA	TTGAATATCT	TCATTGTATC	ACGTGGGGTT	540
CAAAAAGGGA	TTGAAAGAGC	TTCGAAAGTC	ATGATGCCCC	TGCTCTTTAT	CGTCTTTGTT	600
TTTATCATCG	GTCGCTCTCT	CAGTTTGCCA	AATGCCATGG	AAGGGGTTCT	TTACTTCCTC	660
AAACCAGACT	TTTCAAAACT	GACTAGCACT	GGTCTCCTCT	ATGCTCTGGG	ACAATCTTTC	720
TTTGCCCTCT	CACTAGGGGT	TACAGTCATG	TTGACCTATG	CTTCTTACTT	AGACAAGAAA	780
ACCAATCTAG	TCCAGTCAGG	AATCTCCATC	GTAGCCATGA	ATATCTCGAT	ATCCATCATG	840
GCAGGTCTAG	CCATTTTCCA	AGCTCGATCC	CCCTTCAATA	TCCAGTCTGA	AGGGGGACCC	900
AGCCTGCTCT	TTATCGTCTT	GCCTCAACTC	TTTGACAAGA	TGCCTTTTGG	AACCATTTTC	960
TACGTCCTCT	TCCTCTTGCT	CTTCCTTTTT	GCGACAGTCA	CTTTTTCTGT	CGTGATGCTG	1020
GAAATCAATG	TAGACAATAT	CACCAACCAG	GATAACAGCA	AACGTGCCAA	ATGGAGTGTT	1080
ATTTTAGGAA	TTTTGACCTT	TGTCTTTGGC	ATTCCTTCAG	CCCTATCTTA	CGGTGTCATG	1140
GCGGATGTTC	ACATTTTTGG	TAAGACCTTC	TTTGACGCTA	TGGACTTCTT	GGTTTCCAAT	1200
CTCCTCATGC	CATTTGGAGC	TCTCTACCTT	TCACTTTTTA	CAGGCTATAT	CTTTAAAAAG	1260
GCTCTTGCAA	TGGAGGAACT	CCATCTCGAT	GAAAGAGCAT	GGAAACAAGG	ACTGTTCCAA	1320
CTCTCCCTCT	TCCTTCTTCG	TTTCTTCGTT	TCGTCATTCC	AATCATCATC	ATTGTGGTCT	1380
TCATTGCCCA	atttatgtaa	TCAAAAAGGA	CTTGAGTAGT	GAACTCAGGC	CCTTTCTTTT	1440
TATGGATGGC	TAACAATCAA	TTCCAAACCT	TGCCCTTCCA	GAGTCCAAGC	TTCAACATCA	1500
CTTGGTAGGA	TAAAGTGGCT	GCCTTTTTGA	ATTGGATAAT	TTTTCCCGTC	AACAGTTAGC	1560

TGACCTTGAC	CAGCCAAGAC	ACTCAATAAG	432 CTGTAGTCAG	CTGTCTTTTC	AAAGTCAACT	162
TTTCCAGTAA	TTTCCCACTT	GTAAACTGCG	AAGAAATCAT	TAGATACAAG	GAGAGTGGAA	1686
CGCAAATCAT	CTGCTTTAAC	AGTTACAGGA	CGGCTATTTG	CTGGCTCACC	AATGTTCAAG	1740
ACATCGATGG	ATTTTTCAAG	ATGAAGTTCA	CGCAAGTTGC	CTTTGTCATC	CTTGCGGTCA	1800
AAGTCATAGA	CGCGATAGGT	GGTATCGCTA	GACTGCTGGG	TTTCAAGGAT	TAAGATACCC	1860
GCCCCGATAG	CGTGCATAGT	CCCGCTTGGT	ACATAGAAGA	AATCTCCAGC	CTTAACAGGG	1920
ACTTTGGTCA	ACAAGTCATC	CCAGTTCTTG	TCCTCGATTT	GCTGGCGGAG	TTCTTCTTTT	1980
GACTTGGCAT	TGTGACCGTA	GATAATCTCT	GAACCTTCAT	CCGCTGCGAT	AATGTACCAG	2040
CATTCTGTTT	TTCCGAGTTC	.GCCTTCATGC	TCGAGTCCAT	AAGCATCGTC	TGGGTGAACT	2100
TGGACACTGA	GCCAGTCGTT	GGCATCGAGG	ATCTTGGTCA	AAAGTGGAAA	TACAGGTTCT	2160
GGACGATTGC	CAAATAATTC	ACGGTGTTCC	GCATACAAAG	TAGCAAGATC	TGTTCCCTCG	2220
TAACGACCAT	TGGCAACTTT	AGAGACTCCA	TTTGGATGGG	CTGAGATGGC	CCAATATTCT	2280
CCGATTTTTT	CACTTGGGAT	GTCGTAGCCA	AACTCATCAC	GTAGCTTGGC	TCCACCCCAG	2340
ATTTTTTCTT	GCATAACTGA	TTGTAAAAAT	AATGGTTCTG	ACATGTCGAT	CTCCTGTCTG	2400
ATTTTTCTCC	CCTCATTATA	GCAAAAAAAG	AGTTCGAATT	GAACTCTTTT	TTACATCTTA	2460
TAAAGCAGGG	AGAAGATTTT	ATAAAAATAG	TAAACAAATG	TGCTCTACCC	GATGCTTGCA	2520
CCATTGCTAT	AAATGACATC	CTTGTACCAA	TAGAAGGACT	TCTTCTTGCT	ACCTTTGAGA	2580
GCTCCGTTTC	CTACATTATC	TCGATCTACA	TAGATAAAGC	CATAGCGCTT	ATTCATTTCC	2646
CCTGTGCCAG	CTGAAACCGG	ATCGATACAG	CCCCAAGTCG	TATAACCAAG	CAAGTCAACC	2700
CCGTCTTGGT	AAATGGCATC	TCGCATGGCC	TTGATGTGCG	CCTCTAAGTA	AGTAATCCGA	276
TAGTCATCTG	CTACATAACC	ATTCTCATCC	GGTGTATCCA	TAGCACCGAG	TCCATTTTCT	282
ACGATAATAC	TAAACTAAAA	TCAAAAAGCA	TTATATAATA	GTGATATGAA	ATCAACTAAA	288
GAAGAAATCC	AAACCATCAA	AACACTTTTA	AAAGACTCTC	GTACAGCTAA	ATATCATAA	294
CGCCTTCAAA	TCGTTCTATA	GTAAAATGAA	ATAAGAACAG	TACAAATCGA	TCAGGACAGT	300
CAAATCGATT	TCTAACAATG	TTTTAGAAGT	AGGGGTGTAC	TATTCTAGTT	TCAATCTACT	306
ATATTTCGTC	TGATGGGCAA	ATCTTATAAA	GAGATTATAG	AACTTTTATA	GTAGTTTGAA	312
ATAAGATGTG	AACAACTCTA	TCAGGAAAGT	CAAATTAATT	TATAGAAATA	TTTTAGCAGC	318
CAAGGTGTAC	TGTTATAGAT	TCAATACACT	ATAGACTGTA	ATCAAACAAC	GATTTGGCGA	324
AATGTAAAAA	AATATGAGGA	GTTCGGACTC	GACTCTCTCC	TTCAAGAAAC	ACGTGGTGGT	330
CCTAACCATC	САТАТАТСАС	ACTTGAGGAA	GAGAAAGCCT	TTCTTCCCCG	CCATTTGAAG	336

GCTACAGAGG	CAGGAGAATT	TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	3420
TTAGGTCGTT	CCTACACACG	TGATGCCTTC	TATCAACTGT	TGAAGCGCCA	TGGTTGGCGA	3480
AATATTACGC	CACGTCCAGA	ACATCCTAAG	AAAGCAGACG	CTCAAACCAT	TGTTGCGTCT	3540
AAAAATAAAA	TCTCAATCCA	AGAAGGCAAG	AAAGCGTTTT	AAATATAGTA	GACGTTTTCG	3600
TAAGGTTTGC	TTGATGTACC	AAGCTGAAGC	TGGTTTCGGT	AGAATCAGTA	AACTGGGATC	3660
TTGTTGGGCT	CCAATAGGAG	TAGGTCCACA	TATCCATAGT	CACTATATAC	GAGAATTTCG	3720
CTATTGTTAT	GGAGCTGTTG	ATGCCTATAC	AGGCGAATCA	TTTTTCTTAA	TAGCTGGTAG	3780
ATGTAATACT	GAGTGGATGA	ACGCCTTTTT	AGAAGAGCTT	TCACAAGCTT	ATCCTTTTAC	3840
TCGTTATGGA	CAATGCTATA	TGGCATAAAT	CAAGTACCTT	AAAGATTCCG	ACTAATATTG	3900
GTTTTGCATT	TATTCCTCCA	TACACACCAG	AGATGAACCC	CATTGAACAA	GTGTGGAAAG	3960
AGATTCGTAA	ACGTGGATTT	AAGAATAAAG	CCTTTCGAAT	TTTGGAAGAT	GTCATGAATC	4020
AACTCCAAGA	TGTCATACAA	GGATTGGAGA	AGGAGGTGAT	AAAGTCCATC	GTTAATCGGA	4080
GATGGACTAG	AATGCTTTTT	GAAAGCAGAT	GAGTATTATA	TGCAATTTCT	TTATATAAAA	4140
AGACCGGATT	GCTCCGATCT	TTCAATAGTT	CATATTCTCA	ATTTCTATTT	TAAAAATAGC	4200
TAAGGTTAAG	GTCAAATGAC	TACGCGACCT	ATTTCATACG	ATAAAAATCA	AGCACTAGAC	4260
CAGCAGGTCC	TTGAACTAAT	AAGGACTCTG	TTCCCCAATC	GGTTACAGTT	GGTCCGTGTA	4320
AAACCTTTAT	ACCAAGCTCG	TTCAACCGTT	TGTAGTTCTG	GTCTACATCC	TCAACCTCGA	4380
TATGAATAA1	GATTCCTGAC	TGAAAGTTTT	CCAAAGGAAC	CAAATGATTT	TGTGACAACA	4440
TAAGGCAGTC	ACTACCAATC	GTAAACTGAG	CAAAACCATC	ATTAGCATAA	TCTGCCTTTT	4500
TATCCAAGAT	ATGCTCCAAG	TCAGCACAGA	CTTGGGGAAC	ATTTGAAACG	ATAATATCTA	4560
ATTGATTTA	ATTCATTTAC	TCTCCTCCAT	AAAAAGACCG	GATTGCTCCG	ATCTTTTAAA	4620
GTTCTGCTCT	T ATGAAAATCA	AAGAATAAAG	TCTACAAGTT	TCATATTTGA	TTTTCGGCGA	4680
GAGGAATTA	TTAATTGCGC	GTGATTGCA	1 TCCTTCTTCT	' TCCAAGAAGA	GACGGAATGG	4740
TACGAGTTCT	TCTGCTTCGT	ATTTTTCCTT	GAAGGCTTTG	ATAGCTTCTT	CTGAGTGAAG	4800
TTTTGGATC	AATTCAAGTA	CTTCTACTG	AAGTGGACGG	TGTTGAGTGA	TGCGAGCATC	4860
GATGACAAC	GTTTTACCTT	CTTTGTTCA	TTTAACAGCT	TCTGCAACAA	CTGCATCGAT	4920
GTCTTCGAT	CGGTCAACTG	TGAATCCAAG	AGCTCCTTGA	GCTTCCGCAA	TTTTAGCGTA	4980
GTCAGCGTT	r gtgaagtcta	CACCAAACA	GTGTTTGTTT	GTATCTTCGT	ATTTGTTCTT	5040
GATGAAGCC	G TACTCAGCAT	TTGAGAAGAG	AAGGTTGATA	ACTGGAAGGT	CGTATTGAAC	5100

GTTTGTGATA ACGTCTGGGT AGCACATG	434 TT GAATGCTCCG TCACCCATGA TGTTCCATAC	5160
TTGGCGATCT GGATTGTCTT TCTTAGCA	GC GATACCACCA GGAAGGGCAA TACCCATTGT	5220
CGCAAAGAGT GGAGATGTAC GCCACATG	TT CTTAGGTGTC ATGTGAAGGT GACGAGTAGA	5280
TGTTTGAGTA GTGTTACCTA CGTCGATT	GA GTAGATAGCG TCTTGATCAG CATGTTTGTT	5340
GATTGCATTG TAAACTTGAT ACAATTGC	AA TTCACCCTCA GTTTTACCTT CGAGTTTGTT	5400
CATGTAATCA CGCCAGTTTT GGTTGTTC	TT AACGTTTGCA CGCCACCATG GAGTTGATTC	5460
AACTGGGTTT ACTTTGTCAA GGATAGCT	TT AGCTGCTTGA CCAGCATCAC CAAGGATTGA	5520
AGCGTCAAGG GCATGACGTT TACCAAGT	TT GTAAGGGTCG ATATCGACTT GGATGAATTT	5580
TTCAGTGTTC TTGAATGCTT CGTAAACT	TC AGCAAATGGG AAGTTTGAAC CAAGGAAAAG	5640
AACTGTGTCT GCTTCAAAGA CCACTTCG	TT GGCTGGTTTC CAACCAACAC GGTAAGCAGA	5700
ACCTGTCAAA CCTTCATAGT TCCATTCG	AA AGCTTCAAAG TTTTTACCAG TTGTGATGAT	5760
TGGTGCTTTG ATTTTACGTG ACAATTCA	GT AATCACTTCA CCAGCTTTAA CACCACCAAA	5820
TCCAGCATAG ATAACTGGGC GTTCAGCA	TT GTTCAAGATT TCAACAGCTT TGTCGATTTC	5880
AACTTCGTTC AAAGCAGGAG CGATGAAT	GA GCGTTCGTAT GAACCTGAAC CGTAGTATGA	5940
GTTTTCATCG ATTTCTTGGA AACCGAAG	TT TACTGGAATT TCAACAACAG CTGGACCTTT	6000
TTTAGAAACT GCAGCACGGC AGGCTTCG	TC AATTACTTTT GGCAATTGCT CAGCGTAAGC	6060
TACACGTTTG TTGTAAACAG CGATACCG	TT GTACATTGGG TTTTGGTTAA GCTCTTGGAA	6120
AGCATCCATG TTCAATTCGT TAACTGGA	CG TGATCCAAGG ATCGCTAGGA ATGGAGTGTT	6180
ATCCATAGCT GCATCGTAAA CACCGTTA	AT CAAGTGAGTC GCACCTGGAC CACCTGAACC	6240
AACTGCAACC CCGATTGAGC CGCCGAAT	TT AGCTTGCATA ACCGCTGCAA GAGCACCTGT	6300
CTCTTCGTGG CGAACTTGTA AGAAACGG	AT ATCTTTGTCT TCAGCCAAAG CGTCCATCAA	6360
TGAGCTGAGT GTTCCTGATG GGATACCG	TA GATTGTATCT ACGCCCCATG TTTTCAATAC	6420
GTTAAGCATT GCTGCAGATG CAGTAATT	TT CCCTTGAGTC ATAATGATAA CTCTCCTTCA	6480
ATTTTTTAA ACTTGGAGAA TACGATTA	CA TAGAATTGGA AACGTTCTCC AAATTTTTAC	6540
TATTCCACTG TATCATATTT ATGCTGAC	TT TTCTAAAAAT CTGCTCAAAA CTCTCTATTC	6600
TCTATTCTAA TACAGTTTTG AAAGTTCT	GT CATTTCTGTT TTATAACAAA GAAATCTAGT	6660
CATTACTTTT AGTCTATTTT ACTAAAAT	TT AACAGAAGGG AACTGGTCAG AACAGATACA	6720
GAACTAAAGG CCATGGCTAG ACCTGCCA	AT TCTGGGTTGA GAGCCAGTCC AACACCTGAA	6780
AAGACTCCTG CTGCAATCGG AATTCCGA	CA ACATTGTAGA TAAAAGCCCA GAAAAGATTG	6840
AGTAGAATTC GATGAAAGGT TTTCTTAC	TC ATATCAAAGG CACGAACCAC TCCTAAAAGA	6900

7	TTATTGGTTG	TCAACACCAA	ATCTGCTGAC	TCGATGGCGA	TATCTGTTCC	AGCTCCCATA	6960
(	GCAATCCCCA	CATCTGCTAC	ACTAAGGGCA	GGAGCGTCAT	TGATACCGTC	CCCAACAAAG	7020
(	CTACTTTCC	CTGACTGTTG	CAGTTTATGG	ATTTCATGGG	СТТТТСТТС	TGGCAAGACG	7080
C	CTGCAATGA	CCTCTTCAAT	TCCGATTTGA	TCTGCAATAG	CACGCGCCAC	ACCAGCATTG	7140
7	CTCCTGTCA	GCATGACTGT	TCGGAGACCA	CGTTTTTTTA	GCTGACTGAT	GGCTAGCTTA	7200
(	CATTTTCCT	TAGGAATATC	TTGCAAAGCA	AGCAAGCCTT	TGATTTCATT	GTCAACAGCT	7260
,	<b>VAGAACACAA</b>	CTGTCTTAGC	TTCTTTTTCT	AGTTCTTCTA	GTTTATCTTG	ATAAGTATTA	7320
C	AOOTATAAA	TGCCATCCAG	CATTTTAGCA	TTTCCAAGTA	AAACTTGTTT	TCCATTGATT	7380
C	GCCCTGAAA	CACCTTTCCC	GTGCAAGGAC	TGAAAATTTT	CAACAGTTTG	AAACTCAAGT	7440
C	CAGCTTCAC	TCGCTCGCTT	AACGATAGCC	TCAGCCAGTG	GGTGTTGAGA	AGCATCTTCC	7500
P	AGGAGGCTG	CCAACCCAAA	CACTTCTACT	TCGTCGCCGA	TGACATCTGT	TACCACAGGT	7560
1	TCCCTTCCG	TCAAAGTCCC	GGTCTTATCA	AAGACAAGGG	TTTGAACTTT	CTGGATTTCC	7620
7	GTAAGACAG	TTCCATTTTT	GAGGAGAACC	CCCATCTTGG	CACTACGTCC	TGTCCCCACC	7680
A	TAAGGGCTG	TCGGTGTTGC	AAGTCCCAAG	GCACAAGGAC	AGGCGATAAT	CAAAACCGCC	7740
P	CTCCGTAGA	GAAGAGAGGA	CACAAAGCTA	GCTCCAAGCA	CAACCACACT	ATCCCTGAGC	7800
P	AGACGAACC	AAACCCAAAA	GGTCATGATT	CCTAAAATGA	CAACTACTGG	GACAAAAATC	7860
C	CTGAAATCT	TATCCGTCAA	GTCCTGAATC	GGCGCACGAC	TTGTCTGAGC	TTTCTTCACA	7920
A	AATCCACAA	TCTGAGCCAA	AACAGTCTCT	GAGCCAACTT	TTTCTGCTCT	AAAGACAAGC	7980
G	TTCCACTAT	GATTGATGGT	TGAGCCAATG	ACAGTATCTC	CAACTGTCTT	GTCCACAGGC	8040
A	GACTCTCAC	CTGTCACCAT	GGATTCGTCA	ATACTAGAGA	CACCTTCTAC	TACGACACCA	8100
τ	CAACAGCAA	TCTTTTCACC	GGGACGCACT	CGAATCAGGT	CGCCTACCTT	GACTTGTTCC	8160
A	AAGGAACTT	GGACATAACT	ATCATCACTC	AAGACTTCTG	CGGTTTTAGC	TTGCAAGTCC	8220
A	GTAATTTCT	CCACAGCTTG	GGACGTATTT	TTTCTCATTT	TTTCCTCAAA	AACTGCTCCC	8280
A	AAAGAACGA	AAAAGAGGAT	AAATCCAGCA	CTTTCGAAGT	AAACAGGGAG	ACCAGCAAAG	8340
A	GAGCAACTA	GGCTATAGAA	ATAAGCCACT	AGAGTTCCCA	GCGCAACCAA	GGTATCCATG	8400
T	TGGCATTGT	GCTTTTTAAA	ACTGGCCCAA	GCACTCTGGA	TATATGGCTT	ACCTGCAACT	8460
A	ACATAATAG	GCGTTGTTGC	TAGAAAGGTT	CCCCAATGCA	TGACTTGATG	ACTAATGCTA	8520
С	CTGTCAACA	TCCCAATCAT	GAGAATCACA	AGAGGCACAG	TAAAGATACT	AGTAATCCAA	8580
A	AACGTTGCA	GGAGAGATAG	AGATTTTCGA	GTCTTCTCAA	CGACTGTATA	GCTTCCCTTT	8640

TGCATCTTCA	TGCCACAAGA	AAATTCATGT		CTTGAGGCGT	AAAACGAATG	8700
ACTTTCTCCT	CATCTACGCC	GATTGGTTCC	AAGATACCTT	CTTCTTCAAA	CAGAATTTCC	8760
TTATAACAGT	TTGAAGGAGT	AGCACGATGA	AAGGTAATCT	CAGCTGGAAT	TCCCTTTTGA	8820
AGCTGGATAT	GGGCTGGATG	ATAGCCTTTT	TCAGCTCGGA	TACGGATTTT	TTGAATGCCA	888
TTTTCTAAGC	TTGCTTTCAC	AATTTCTGTC	ATAGTCTCCA	CCTACTCTAC	AATCATCTTG	8940
CCGTGCATCA	TGTTCATACC	ACAAGCAAAG	CCAAACTCTC	CAGCCTGTTC	AGGCGTGATT	9000
TCCACTACAT	ACTCTTCCCC	CATTGGCAGG	TTCGCATGTA	CACCAAAATC	TGGAAAAACA	9060
ATTTGATCCA	GACATGGTGA	AGGATCCTTG	CGGTCAAAGA	CAATGCGTGC	TGGCACTGAT	9120
TTCTTGAGGA	CAATCAACTC	AGGAGTATAG	CCTCCCATGA	CTTCCACTCG	AATCTCTTGG	9180
TATCCGTTTT	TTTGCTGGGC	TTTTTGTCCA	GATTTTTCAG	GCTTTTTGAA	AAACCAAAAC	9240
AAGATAAACG	CGATAAGGGC	AATACAAATA	ATGGTTACAA	TACTATTTAA	CATGACGTCT	9300
CCTTTACATA	CAATTACATC	TTACTTCTGT	TACAGCACTT	GATTTCTTCT	CTGAAATCAC	9360
AGCTTCCAAG	TCTTCCAAGT	CAGTCTGAGT	AAATTCACAT	TCTACAATCA	AGTCAGCCAA	9420
CAAATTCCTA	ATCCTACGGG	AACAAACCTT	GTCTTTGATA	TCTTGGACAA	GTAAATCCCG	9480
ACTTTGGTCT	AGAGTTAAAA	GGGCTGAATA	AACAAAGGAC	TTGCCTTCTT	TTTTCCGAGT	9540
CAAACACTCT	TTATCAACCA	GACGAGCCAA	AAGTGTCTGA	ACCGTGGACT	TGGACCAGTC	9600
AAACCGCTCT	GCCAAAACCC	TAATCAAATC	TGTACTGGTC	TGCTCCCCCT	GCATCCAAAT	9666
AATCTTCATG	ACCTGCCATT	CTGCATCTGA	AATCTGCATT	ACCATACCTC	CAAAATCTAC	9720
ATTTGTCAAT	TACACTCATC	AGTATACTCT	TAAAATCTAC	ATTTGTCAAT	TATAGAAATA	9780
ATATTTTCTT	CGAAAAATAG	AATTTTAATC	ATTTGAAAAA	CGATTTGCAG	TCAAATATTA	984
CTATATAAAC	AATAAAAATA	TGCTATACTA	AAGAAAAAAG	AAAACAACCA	CTAGGGGTGC	990
GTAAAGCTGA	GATTAACGAC	TGTTAGATCC	CTCTGACTCA	ATCTAGGTAA	TGCTAGCTGA	996
TGGAAGTGGA	AATGATAATG	GGGACTAGCA	GTCTTCTATT	GCCTTTCTAA	AACAGACTAG	1002
CTTGTTCTTA	AGAATACAAA	CTTCAGTTGG	TTGGGAGGTT	TTAGATGACT	TATTTACCCG	1008
TTGCTTTGAC	CATTGCAGGG	ACTGACCCTA	GTGGTGGTGC	TGGCATTATG	GCAGATTTAA	1014
AGTCATTCCA	AGCGAGAGAT	GTCTATGGAA	TGGCTGTTGT	AACCAGTCTT	GTCGCTCAAA	1020
ATACCAGAGG	TGTTCAGCTA	ATCGAGCACG	TTTCTCCTCA	AATGTTGAAA	GCCCAATTGG	1026
AGAGTGTCTT	TTCTGATATT	CCACCTCAGG	CTGTAAAAAC	TGGAATGTTG	GCTACTACTG	1032
AAATCATGGA	AATCATCCAA	CCCTATCTTA	AAAAACTGGA	TTGTCCCTAT	GTCCTTGATC	1038
CTCTTATCCT	ምርር ምስር ስልርም	CCACATGCCT	TGATTGACTC	AAATGCTAGA	GACTATCTCA	1044

AAACAAACT	T 30730070	221122				
					A GCAGAAGAGA	10500
	T TTCAATCCAT					10560
AAGAATTTG	G TCCTCAGTCT	GTGGTTATCA	AAGGCGGACA	TCTCAAAGGT	GGTGCTAAAG	10620
ATTTCCTCT	T TACCAAGAAT	GAACAATTTG	TCTGGGAAAC	CCCACGAATT	CAAACCTGTC	10680
ACACCCATG	G TACTGGATGT	ACCTTTGCTG	CAGTGATTAC	TGCTGAACTA	GCCAAGGGCA	10740
AGAGTCTTT	A CCAGGCAGTT	GATAAGGCCA	AGGCCTTTAT	CACAAAAGCT	ATTCAAGATG	10800
CCCCTCAAC	r cggtcatggt	TCTGGTCCAG	TCAACCATAC	AACTTTT'AAA	GATTAAGAAA	10860
AAAAACTCT	C TAGTTCCCAC	TTTAAGGGAA	TTAGAGAGTT	TTTATACTCT	TCGAAAATCT	10920
CTTCAAACT	A CGTCAGCTTC	CATCTGCAGC	CTCAAAACAC	TGTTTTGAGC	TGACTTCGTC	10980
AGTCTTATC'	г алалсстсал	GGCAGTACTT	TGAGCAACCT	GCGACTAGCT	TTCTAGTTTA	11040
CTCTTTGAT	TTCATTGAGT	ATTAATTAGG	AAAGAATGTT	ATGCAACTTT	TTTAAAAAGG	11100
	TGCCTCAATA					11160
	GCCCATAAGC					11220
	AACCGTTTGG					11280
	GGTGGTTGGG					11340
	AGCTCTTTTA					11400
	AGCTACCGAA					11460
	ACAAACATCC					11520
	GACTTGTTTT					11580
	TATGGTAACC					11540
	TTGATAGCGA					_
	TGATGGTATC					11700
	AACGAAATTC		•			11760
	AAGAGACTGC					11820
						11880
	TTAAGGCTCC .					11940
	CCAGTACAGC					12000
	ACATACCAGG					12060
	GATCTTTAGC A					12120
AGACTTCGAA	TTTCTGACAT (	STTTCCTTTA .	AGGACCGTAG	GTCTATAGTC	TAAAAGGTCT	12180

			438			
TTAACTAAGC	TCTTACGAAT	GGATGAAGTC	GTTACGCCAA	CCGCATCTAC	TACCATCGGG	12240
AGAGAAGATT	GGTTTGCATA	CGAAGCTGCC	ATGCGGATTG	CTTTTTCCTT	CTCAGCTGAC	12300
AAATGCCCCA	AATTGATGAA	GAGAGCCTGA	CTTTGCTTAG	TAAAATCAAG	AACTTCACGG	12360
GAATCATCTG	CCATGACAGG	TTTGCATCCC	AGAGCCAAAA	TCCCATTTGC	CAGCATCTCA	12420
CAAGAAATCT	CATTGGTAAT	GCAGTGAATG	AGGGAACTAG	AGCCTATAGG	AAAGGGATTT	12480
GTAAATTCCT	GCATCAGTCT	ATCCTTTCAC	TAAAGAAATA	TCCCTGCACT	TTTTTAAAGA	12540
ATTCCTGCTT	GATTAAAAAT	CGAAAGGCAA	TAAAGGAAAT	CGCTGTACCA	ATCAAGGTTG	12600
CTCCGAAAAA	TCGAGGCGTG	TAGATAAACC	AGCTAAGCTT	AGCAGCTGAT	CCTGTAAAGA	12660
GTACCATAAC	AGGATAGGAA	ACAATGGAAC	CAATAATACC	TGTTCCCAAA	ATCTCTCCTA	12720
GAGCAGAATA	GTGAAATTTT	CGACCGTACT	TATAAAAGAG	ACCTGCTAGA	AGGGCTCCAA	12780
AAGTCGCTCC	TGTGAGAGCT	AAAGGCGGAA	TCCCTTGAGT	CGTCATACGG	ATAAAGGCTG	12840
TGACTGTAGC	CATAGCCAAG	GCATAAACAG	GTCCCATCAT	GATTCCTGCT	AGAATATTGA	12900
CTACACTGGA	CATCGGTGCC	ATTCCCTCAA	TTCGAAAGAT	AGGTGTAAGG	ACTACATCAA	12960
GGGCAATCAT	CATAGATAAA	ATGGTTAATT	TGTGAACTTG	TAATTGGTGC	TTTCTCATGC	13020
TTCTATTCTT	CTCCTTTTTC	TAAAGACTGT	AAATCGCTCT	TCCATGTCTG	GTGTTGGTAG	13080
GCCATTTCCC	AAAACTTGGC	TTCCATATGA	ACACTGATGT	GGAAGGCATC	TAGCATTTTT	13140
TGCTTGTCTG	TCTCGTCACT	TTCTCGATAG	AGCTGATTGA	CCAGTGCTCC	CTCCTCTCTG	13200
ATCTGTTGCT	CTAACTCATC	CGTAATATAA	GTTTCAATCC	ATTGTTGATA	GAGAGGATTT	13260
GGTGATGGTT	TAAGATTAAG	TGATTTGCCT	ATATCATCGT	ATAACCAAGG	ACAAGGAAGC	13320
AAGCTTGCAA	AAGCGATGGC	TAAGTTCGGT	TCTGCAAATT	GCCTATAAAT	ATGAGAAATG	13380
TAATGATAAC	AGGTTGGAGC	GATTGGATGT	TGCTCCATTT	CCTGGTCGCT	GATTTCCAAT	13440
TCCTTGAAAA	ATTGTTGGCG	AATAAATAAC	TCACCCTCCA	CTAAACCCTG	AGCATTTTGT	13500
TTCAAGAGTC	TTTTCATCTC	TTGGTTTGAA	GTCTTATCAG	CCAAAAGATG	ATAGATTTCT	13560
GAGAAAGCCT	TCAGATAGTA	GGCATCCTGA	ATCAGGTAAT	AGCGGAAAAT	GGCAGGTTCT	13620
AAATTCCCCT	CTTGTAATTG	TAAAATAAAG	GGATGATGAA	AGGAAGCCTG	CCAAGCTTTC	13680
TTGGATAATT	CCATCGCAAT	ATCTGTAAAT	TCCATAATAA	CTCCTTTATA	AAAATAGACT	13740
GGTTTGAAGC	AATAAAAAGA	AAAGCAGGTA	GATTAATTTT	GTTTTTTAG	GAATATAAAA	13800
AGTCCGATAG	CTATTCTTCA	ACTGTGCATG	TTCGTCATAT	CCGTGAGCAG	ATAGAGCTCT	13860
CAGGTAAAGA	TGGCGCCACC	TAAAGACTGT	CATCAGAACC	TTACTGTAAA	TCAAGGGCGA	13920
CCAAAAATGT	AGTTCTTGAC	CACGTAATAG	GCAAGCTTCT	TTGAGGGACT	TGATTTCTTG	13980

CTGAATGAGA	GGAAAAGAAT	TGAATACCAC	AATCAAGGCA	TAGGACCAAG	AGCGTGATAG	14040
CCCCTTTTGA	GCCAAGTACA	AGAGAAGCTC	TTTTAGTGAA	ACAGAGGAAA	CAAAGACAAG	14100
GCCGATACAA	ACTGTCACAA	AGGCCCTCGT	TCCAAGCATG	ACTGCCTGTG	AAGCATCTCC	14160
GTGTAACTGA	ACTGCCCAGT	AGTTGGCAAA	AGATGGTAAA	ATGGCAAGTA	TGATCATCCA	14220
AGCTAACATT	TTAAATCGAC	GGTAATAGAG	CATAAAGAGA	ATACAAAATG	CGACTACCGA	14280
AAGAGTCAGA	GCAATCGAAG	GAATGAAAGA	TGTTTCCAAG	GATAAAATCA	GCAAGAAGAG	14340
ACTGATAATC	GGTGTCTGGG	TTGCTACTTT	GACCATACTA	TCTCACCTCC	CCTTGGGTAT	14400
TGCTACTCTG	AGATGTAAGT	GGTTTGGTAA	TGGTCACTTC	TTTCACATGC	CGAAGACCCT	14460
GACTAGTCAT	CTCAATCCAA	TAATCAACCA	CAGAAATCAA	AGGGTCTAAA	CGATGACTAA	14520
TGAGCAGAAA	ACTTCTTCCT	TGATTCCTCT	CCTCCACAAT	CCACTTGCAA	AAATAATGGC	14580
AGGCTCTATC	ATCCAAACCT	GCAAAAGGTT	CATCTAGCAA	GATCACGGAA	GCCTTACTGG	14640
TCAAGATGGT	CAGGAGCTGA	AGAATTTTTT	GCTGACCACC	ACTTAATTGA	TAGGGACTCT	14700
TATCGACTGC	CTGCTCCAAA	TCAAAATATC	GTAAAGCTTG	AAAAATCCGC	TGATTTCTTT	14760
CAGAATCAGG	TCCATCTAAT	TGAAGCTCCT	CTCGCAGACT	GACTCGGATA	AACTGCTTCT	14820
CAGCTTCCTG	AACAACACCA	GTCAGATCAC	GATACAAACT	CTTTTTCTTT	TTCAGGACCG	14880
AACCCTTCCA	AGTAATGCTC	CCCTTATACT	TTTGAAATTG	AAGAATAGAC	CGAAAGAGGG	14940
TTGATTTCCC	GACACCATTG	TCACCCAGGA	TACAGGAAAT	CCCTTGATAG	AATGTGAAAT	15000
CAGCAATTGA	AAAGAGGGGG	CGATTACCAA	GCTCACCAGT	CACACGGTTC	ATATGGAATA	15060
CTTCCGGGCT	AGAAGCAACT	TCCTTTGAAG	CAACCTGTGT	CATCTCATAG	GAAGGGATTT	15120
GAAACACTTC	CCTTAGTTTT	CCGTCTCTTA	GCTCCACCAT	ATGGTCGATA	TAGGCTTTAT	15180
AGTCAGATAA	ATCATGGTCG	CACAAAATAA	CTGTCTTCCC	ATCATAGACC	AACTCTTTTA	15240
GAATCTCCAA	TATCTCGATT	CTGCTCTTGC	GGTCAATGGA	AGCGAAGGGC	TCATCCAAGA	15300
GATAGACCCT	AGGATTCATG	GCAAAGAGGA	CAGCCAGCGC	TGCTTTTTGC	TTTTCCCCAC	15360
CTGATAAGTG	ATGGATGAGA	CGGTGCAAGA	TGTCCTTGCA	ACGACATTGC	TGGACAACCT	15420
CTGCTATTTT	AGAATCAATT	TCCTGAAGGT	GATAGCCGAT	ATTTTCCATG	GTAAAAACCA	15480
ACTCCTCAAA	CAAGCTCTCC	ATGGTAAATT	GATGATTAGG	ATTTTGCAAG	AGAATACCAA	15540
CCGTCTGGAC	ACGTTCGACG	ATAGAAAGCT	GACTGACCTC	GCTCCCATCT	ATCAGGACTT	15600
GACCGCTATA	GGGAAGAGAA	CTAACTTGGG	CAATCATTTG	AAAGAGGCTG	GATTTTCCAG	15660
ACCCACTACT	CCCAACTAAC	AAGGTAAAGG	CTTGCGCATG	AAAAGTAAAA	TCAAACGGCT	15720

CAGAGAAGAT	TGGGGACTGA	ATCGCTCGTA	GTTCCAGACC	CATCTATGCT	TTTCCTCCAG	15780
TTGCAAACTG	ATGATAGAGT	TTGACAATGG	CACGAACCAA	GATGGTACAG	AAGAAATAAA	15840
CAGAAATAAA	ACGTACCACA	AGCAAGGAAA	GGACAAACGG	AAGGGAAAAG	GCGTAGTAAC	15900
CTAACTTAAT	GTATTCATAG	ACAAAGCTAA	CAAGCGTAAT	CCCAATACTA	TTAGCAGTTA	15960
GAGAGAGCCA	ACTTTCATAG	CGATTCTTAG	TTACGATAAA	ACCAAATTCA	CTTCCCAAAC	16020
CTTGAACAAA	GCCAGACAAA	AGAGCTCCTA	GACCAAATTG	GCTACCATAA	AGGACTTCAG	16080
CAAGCGCAGC	TAGCACTTCT	CCAATCGTTG	CACTTCCGAC	TCTCGGAACA	AAGATGGCAG	16140
CAATGGGCGC	AGCCATACAC	CAGAGACCGA	AGAGGATTTC	ATTGGCAAAG	GCCTGCAAAC	16200
CAAGAGGTGT	TAAGAGTAGA	CTGAGAATAT	TATACACATA	TCCTGAACCA	ACGAAAACCC	16260
CACCAAAAAA	GATAGACAAG	AAAGCAAGCA	AGATAACATC	TTTTAACTGC	CATTTTTCA .	16320
ACATAAAAAA	CTCCTTTTTT	TAAAGAAAAG	TGAGGCACTC	AAGAAGACCG	ACCTAAATAC	16380
TTTGTATAGC	AGACTGAATT	TAGAACAGTA	CACAAGAACA	CTAAAATATT	TCTAGAAATT	16440
AATTTGAATT	TTCTAATTGA	TTTGTTCGCA	TCTTATTTCA	ATCTACTATA	TCATCTTCAT	16500
CCAGTTTCGT	AAAAGAAAA	ACTCTAATTA	CAGATACAAA	TTAGAGTTCA	GCTTACAAGA	16560
TTAGACAGTT	CTTTTCGACA	TACGAAAAA	ACATTTCACA	TTTCCCTTCG	CCAGTCTTAA	16620
CTGTATCAGG	TTCAATGGGT	ATCATCTCAG	CCTAAAGCAC	CCCAAATGTC	TTTATTATTT	16680
AATTATGTGA	TTATTATAAC	ACACATTTTA	TACTAGTTCA	AGAAATTGAA	CTGGAAATAC	16740
AGCCTTGCAC	TCACAAAGAC	AGCAGATCT1	TCTTTTGCAA	AAAACAAATG	ACCTGTTTGA	16800
TGAATTAGCC	ATTCAAGCTG	AATCTGGACA	TAGCTTTTA	AAAAAGGAAA	ATCCTACTTA	16860
CTTAGAATCO	AAGGATAGAT	ATCTATTGTT	CACTCATTTC	CCGAACAGTT	TTTTCTATAT	16920
TTTTTGCAT	CGATATTGCC	GAAATGATT	AAACGCCATC	CATATTGGTC	TTTATAATGT	16980
CTTTAATATC	TTTCGTCTG	ATCCCACCA	TTGCAACTAA	AGGCATTTG1	GGCAATAGTT	17040
TTCTCATCA	TTCAAGACCT	TCATAACCT	TAGTACCACC	AGCATCATCO	TTTGACTGCG	1710
TACCAAATAG	AGGCCCAACA	CCTACATAA	CTACATATTC	AACTTTTGAT	TGTTGAAATT	1716
CTTCTTCGT	TCTTATAGA	AGACCAATT	TTTTATCTCC	CATCAATTT	CTAATTTCAT	1722
CAACACCAA	r ATCATCTTG	A CCTACATGT	A CGCCATCGGC	GTCAATTTC	ATTGCTAAAT	1728
CTATATCGT	ATTAACGAT	A AATGGAACA	r TGTATTTTT	CAAAGTTC	TTAATTTGGA	1734
TAGCTAGCT	AAGTTTTTC	r AAGCCTTCT	A AAGCACCCTO	ACCTTTTTC	r cgaaattgaa	1740
ATAAGGTTA	r ACCACCTTT	r aaggettee	r caacgactg	TATAGATT	r TTTCCTTGGC	1746
AAGTAGTCG'	r TCCACAAAT	A AAATATAGT	T TTAGTAATT	TTTATGAAA	CATCTTACTTC	1752

441

ACTCTTTTGA	ATTCCTTTAC	ATCTTCATCT	GTAATCTCGT	ATAAGGCATT	TATAAATTCA	17580
ACTTTAAATG	TCCCAGGAAG	ATGTCCATTT	GGACGTTTTT	CTGCTATTTC	TCCAGCGATA	17640
TTGTAAACCA	ACACTGCTGT	TTTTAATGAT	TTCAATTCTT	GACCTTTTTC	TAGTCCGATA	17700
AAGCTTGCTA	CTACAGCTCC	TAATAAGCAT	CCTGTCCCAA	TGACTTTCGG	CATCATAGCA	17760
CTACCATTAT	GAATCATTAC	CACTTCTCCA	TTAACAGCAA	TGGCATCCAC	TTCACCTGTT	17820
ACTACTATTG	GAATATTGAA	CTTCTCATTT	GCTGCTAGAG	CAATTTCGTC	AATATTATCT	17880
ACGCCCGCAC	TATCTACTCC	TTTAGATGCC	ACATCTATTC	CTACTAAAGA	GGCAATCTCG	17940
CCAGCATTTC	CTCTAATCGC	TGCTAGTTTA	TAATTGTTGA	TTAGATCATC	TGCTACTTTT	18000
TTTCTATATT	CTCCTGCTCC	ACAGGCTACA	GGATCTAAAA	CTGCTGGGAC	ATTATATTTC	18060
TCTGCAATTT	TCAGAGCAGC	TTGGTATAAT	TTCCAATTTT	CATCTGTCAA	TGTTCCTATG	18120
TTTATTAATA	AACCACCAGC	ATACTTTAAC	AAATCCTCTA	AATCTGCTGG	AAACTCACTC	18180
ATGGCTGGTG	AGGCGCCCAG	TGCTACTAAT	CCATTTGCTG	TGAAATTTTT	TACTACATCA	18240
TTGGTTATAC	AAATGACCAA	TGGTGCTTTT	TCTTTTAATA	ATTTTAAACT	TGTCATATTG	18300
AAATCCTTCC	TTTTCACTTT	ATACGATCTA	CTAATTTCGA	TTTATCTTTA	GTTGAGAATT	18360
TTTTTCATTT	ACATTGAATG	ATTTATACTC	AATGAAAATC	AAAGAGCAAA	CTAGGAGGCT	18420
AACCGCAGGT	TGCTCAAAAC	ACTGTTTTGA	GGTTGTGGAT	AGAACTGACG	TGGTTTGAAG	18480
AGATTTTCGA	AGAGTCTTAC	CTCATCAAAT	TTGTAAATAT	CATGAGCCTT	CTCTAGACAT	18540
CGTAACCAAT	<b>ЛТСАЛААЛА</b>	GCTAATTCTA	AAGCGACTGC	TTGATTCCAG	CGTTCCTGAA	18600
GTTCTGTCAA	ATCTTCTCGA	TTTTTACCGA	CACGATTGAG	TTCGTCAACC	AGAAATTGAA	18660
CCCACTCTGC	AAAGAAAGGA	CCTCTGTGGA	GATTGATCCA	TTCCGAATGA	ATATAGACTT	18720
CAGGTAAAGC	CAAATCTTTA	GAACCCCAGT	CTAAATAGAG	ACCTTCTGCA	ATGACCAGCA	18780
TGACCAAAAG	ATGGGCATAG	TCTGATGAAG	CCACCGCCGA	ATACATTAGA	TCCTGAAAGG	18840
CTTTTGTTAC	AGGGTGCAAA	GTCACTTCTA	GATAGTCATT	CTCTGCTACT	TTTAACTCTT	18900
TAAAAGCCTT	TTGGAAATAA	CCATCTTCAT	CTGCTTCAAG	AAAGCCTAGT	TGCTTGGCAA	18960
AACGAAGCTT	GGATTCAAGT	TTATCTGCGT	GACTACGCAG	GCACCCAGCA	TGGATAAGAA	19020
GGCATCAAAG	AAGTGATAAT	CTTGAATCAG	ATAGTCCTTT	AAGACCTTAT	TCTCAATTGT	19080
CCCCGCAAAA	AGTTCCTTAA	CAAAACGATG	ATTGATTGCA	GCCTGCCAAT	CCTTCTGACT	19140
GCTTTTTAAT	AATTCTCCAA	CAGTCAAACC	TGGCTGAAAT	GCATAGTCTT	GTGTTTCCAT	19200
ATTTACTTCT	CCTCTCTTTA	CTTGTTAGTA	ATTAATAAAA	CACCAAGAAA	TATCAAGCAA	19260

• • • • • •

AATCGTAATT CCACTTGATC CTTTTAAAGC ACATCGAGAG CATT CAGA GAGCTAACTA 19320 AACAAGCCTA TCCAGTTTAT ATAAACAAAA AACTCCAATT ACAATCAAGA ATTAGAGTTG 19380 ACTTACAAGA TTAGACCGTT CATTTCACCA TACGAAAAAA CTGTTCACAT TTCCCTTCGC 19440 CAGTOTTAAC TGTATCAGGT TCAATGGGTA TTATCTCAGC CTAAAGCACC CCAAATGTCT 19500 19560 CTATTATTTA ACTACTGAAC CAGTATAGCA AAAAATGAAA GCCCTAGCAA GATATTTGAC 19620 CGAAAAATAT CTTTATATAT AATATATTGA AACTAGAATA GTACACCTCT ACTTATAAAA CATTGTTAGA AATCGATTTG ACTGTCCTGA TTGATTTGTC CTATTCTTAT TTCATTTTAC 19680 TATAGTTTTC GATAGCAATT TATTCTTCCA ATACACGAAG AAAAACCTCC ACATTCAGTG 19740 GAGGCAATCT GTTTTATCAA TACAATTTTA AGTCACGAGG GTCAACTGGG AAGGTTGGGT 19800 TGTATGGATT GTGACGGAGC TTGAAGTGTT TGACATCTTC AATGGTCTGA GTTCCAGACA 19860 ATTGCATAAC TGTCTTCAAT TCCGCATTCA AGTGTTCAAA GACTTGACGC ACACCGACAC 19920 TACCACCGAG AGCCAAGCCA TAGATGACAG GGCGTCCAAT AGCAACCAAG TCTGCTCCTG 19980 ATGCCAAGGC TTTAAAGACG TGTTGACCAC GACGAACACC AGAGTCAAAG ACAATCGGCA 20040 20100 CACGTCTATC AACTGCTTCT GCCACTTCTT GAAGCGAGTC AAAGGCAGCT GGTCCACCGT CGATTTGACG ACCACCGTGG TTGGTTACCC AGATACCAGA AGCTCCTGCA GCAAGCGAAC 20160 20220 GTTCAACGTC CTCACGGCAT TGTGGTCCCT TGACATACAC AGGAAGACCA GAGTATTCAG CGATAAATTC TACATCGCGT GGAGACAAGC GTTGTTTAGC TGATTTGTAA ACAAAGTCCA 20280 TTGATTTACC AGCACCTTCT GGCAGGTATT CTTCAACAAT CGGCATGCCA ACTGGGAAGA 20340 CAAAACCATT ACGCTTATCC ACTTCACGAT TCCCCCCTAC AGTAGCATCT GCCGTCAAGA 20400 CANTEGETTT ATAACETTCA GEETTCACAE GGTCCATGAT GTGGCGGTTG ATACCGTCAT 20460 CCTTACTAAA GTAAAATTGA AACCAATGAG GTGTCCCTTG GAGGGCTTCA GAAATCTCTG 20520 GAAGGTCAAC AGTAGAGTAA GAACTGGTTG TATAAAGAGA ACCAAACTCA TGCACACCAC 20580 GCGCAGTCGC CACTTCCCCC TGTTCATTTG CCAATTTATG AGCCGCAACA GGTGCCATAA 20640 TGATTGGAGA AGATAGTTTT TCACCTGCAA ATTCAATCTC TGTACTTGGA TTTTCTACAT 20700 TGCAAAGTGT ATGAGGAACG ATGAGCTTGT GGTTAAAGGC ACGGATATTC TCTCTTAAAG 20760 TGAAAGTATC TTCCGCCCCA CTAGCGATAT AGCCAAATGC TGCTTTAGGA ATAACTTGTT 20820 20880 GCGCCATTGG CTCCAAATCA TAGGTATTGA TGAALTCTAC ATGACCTTCT GCATTGCTTG TTTTGTATGA CATAAAATGT CCTCCTTAAT AAGTAAGCGT TTACTTTGTG TATTACAAAA 20940

ATATCTTAAC TCTTTTTCAA AACTTTTAAA ATATTTTGTT TGGAAATTTC AGAAATTTTA
TGTCTATGAT AAAAATCCTT ATAACGGCAA TAAAAAATAG ATATTATCCA AAGAAGATTT

21000

PAAGTGCTAC	AATAACTGTA	TTATTTCTAG	ATGGGAGGTT	CTATTTTTGG	ATTGATCCAT	21120
rgttgaacaa	TATCTACCAC	TATATCAAAA	GGCATTCTTT	CTGACCTTGC	ATATTGCAGT	21180
PTGGGGAATT	TTGGGATCCT	TTCTGCTCGG	TTTAATCGTT	AGTATCATCC	GACATTATCG	21240
AATCCTTGTT	TTGGCGCAAG	TAGCGACAGC	CTACATTGAA	TTGTCACGTA	ATACGCCCCT	21300
PTTGATTCAA	CTCTTCTTTC	TCTACTTCGG	TCTTCCCCGA	ATCGGGATTG	TCCTATCTTC	21360
AGAAGTCTGT	GCAACGCTTG	GGCTTGTCTT	TTTAGGAGGC	TCCTATATGG	CAGAATCTTT	21420
CCGAAGTGGG	CTGGAAGCCA	TCAGTCAAAC	CCAGCAGGAG	ATTGGCCTCG	CTATTGGTCT	21480
GACACCTCTA	CAGGTCTTTT	ACTATGTGGT	TCTTCCGCAA	GCAACAGCGG	TGGCACTCCC	21540
CTCCTTTAGT	GCCAATGTCA	TTTTCCTTAT	CAAGGAAACC	TCTGTTTTCT	CAGCAGTGGC	21600
TTTGGCCGAC	CTCATGTACG	TCGCCAAGGA	TTTGATTGGT	CTCTACTATG	AGACAGACAT	21660
TGCGCTAGCT	ATGTTGGTAG	TTGCTTATCT	AATCATGCTG	CTACCCATCT	CACTGGTCTT	21720
TAGCTGGATA	GAAAGGAGGC	TCCGCCATGC	AGGATTCGGG	AATCCAAGTA	CTCTTTCAAG	21780
GAAATAATCT	CCTGAGAATC	TTACAGGGAT	TGGGCGTTAC	GATTGGGATA	TCCATCCTGT	21840
CTGTCCTCTT	ATCCATGATG	TTCAGAACAG	TCATGGGAAT	CATCATGACC	TCCCATTCTA	21900
GAATCATACG	ATTTTTAACA	CGATTGTATC	TGGAATTTAT	CCGTATCATG	CCCCAGCTGG	21960
TGCTACTCTT	CATCGTTTAC	TTTGGCTTGG	CTCGAAACTT	TAATATCAAT	ATCTCAGGTG	22020
AGACTTCAGC	TATTATCGTT	TTTACCCTCT	GGGGAACAGC	TGAAATGGGA	GACTTGGTAC	22080
GTGGAGCTAT	CACTTCTCTC	CCTAAACATC	AGTTTGAAAG	TGGACAGGCA	CTCGGCTTGA	22140
CTAATGTTCA	ACTTTACTAC	CACATCATCA	TCCCACAAGT	CTTAAGAAGA	CTGCTACCGC	22200
AGGCTATCAA	TCTTGTCACT	CGGATGATTA	AAACCACTTC	ATTAGTTGTT	TTGATTGGGG	22260
TTGTGGAAGT	GACCAAAGTT	GGACAACAAA	TCATCGATAG	CAATCGCCTG	ACCATCCCAA	22320
CTGCTTCATT	TTGGATTTAT	GGAACCATTC	TAATCTTATA	TTTCGCAGTT	TGCTACCCTA	22380
TTTCCAAACT	ATCCACTCAC	TTAGAAAAAC	ATTGGAGAAA	CTAAATGTCT	GAAACTATCT	22440
TAGAAATCAA	GGAACTAAAA	AAATCCTTCG	GAGACAATCC	CATCCTCCAA	GGACTTTCTC	22500
TAGAAATCAA	AAAAGGGGAA	GTTGTTGTCA	TCCTAGGGCC	ATCTGGTTGT	GGGAAAAGTA	22560
CCCTCCTTCG	TTGCCTCAAC	GGCTTAGAAA	GTATTCAAGG	TGGAGATATT	CTTCTGGATG	22620
GTCAGTCTAT	CGTTGAAAAT	AAAAAAGATT	TTCACCTAGT	TCGCCAAAAG	ATTGGCATGG	22680
TCTTTCAAAG	TTATGAACTC	TTTCCCCATC	TGGATGTCTT	ACAAAACCTC	ATCCTAGGCC	22740
CT1 TC1 1 1 CC	max x cax x ca	CACAACAAAC	1 3 CT 3 3 CC C 3	3 C 3 3 C C TOTO	CAATTACTAC	22800

ACCUTUTUGE	TTTGCTGGAT	AAACAACATA	GCTTTGCCCG	TCAATTATCT	GGTGGACAGA	22860
	TGCAATTGTC					22920
						22980
	TTCGCTGGAT					
	AGGCCGTACC					23040
	GATTATCTTC					23100
CCTTCTTTAC	CAATCCGCAA	ACCAAACGAG	CCCAGGAATT	TTTAAACGTC	TTTGACTTTA	23160
GCCAATTCGG	CTCATATCTA	TAAAGGAGAT	TCTTATGAAA	CTATTCAAAC	CACTCTTAAC	23220
TGTTTTAGCA	CTTGCCTTTG	CCCTTATCTT	TATCACTGCT	TGTAGCTCAG	GTGGAAACGC	23280
TGGTTCATCC	TCTGGAAAAA	CAACTGCCAA	AGCTCGCACT	ATCGATGAAA	TCAAAAAAAAG	23340
CGGTGAACTG	CGAATCGCCG	TGTTTGGAGA	TAAAAAACCG	TTTGGCTACG	TTGACAATGA	23400
TGGTTCTTAC	CAAGGCTACG	CTACGATATT	GAACTAGGGA	ACCAACTAGC	TCAAGACCTT	23460
GGTGTCAAGG	TTAAATACAT	TTCAGTCGAT	GCTGCCAACC	GTGCGGAATA	CTTGATTTCA	23520
AACAAGGTAG	ATATTACTCT	TGCTAACTTT	ACAGTAACTG	ACGAACGTAA	GAAACAAGTT	23580
GATTTTGCCC	TTCCATATAT	GAAAGTTTCT	CTGGGTGTCG	TATCACCTAA	GACTGGTCTC	23640
ATTACAGACG	TCAAACAACT	TGAAGGTAAA	ACCTTAATTG	TCACAAAAGG	AACGACTGCT	23700
GAGACTTATT	TTGAAAAGAA	TCATCCAGAA	ATCAAACTCC	AAAAATACGA	CCAATACAGT	23760
GACTCTTACC	AAGCTCTTCT	TGACGGACGT	GGAGATGCCT	TTTCAACTGA	CAATACGGAA	23820
GTTCTAGCTT	GGGCGCTTGA	AAATAAAGGA	TTTGAAGTAG	GAATTACTTC	CCTCGGTGAT	23880
CCCGATACCA	TTGCGGCAGC	AGTTCAAAAA	GGCAACCAAG	AATTGCTAGA	CTTCATCAAT	23940
AAAGATATTG	AAAAATTAGG	CAAGGAAAAC	TTCTTCCACA	AGGCCTATGA	AAAGACACTT	24000
CACCCAACCT	ACGGTGACGC	TGCTAAAGCA	GATGACCTGG	TTGTTGAAGG	TGGAAAAGTT	24060
GATTAGTCAT	TAACTCTTAA	AAGGAACTGG	ATTTTAAGCT	CCAATCCCTT	TTTAAGATTT	24120
TACCTATAAC	ATCCTGAGTC	TATCTAAGAT	GTTCAATCTG	AACACAGTGT	ACATACTTTA	24180
TCTTCTATTG	CATATACTTT	ATCACATAAG	ATACGAATAT	CCTCTTCACT	ATGACTAGCA	24240
					CATATTTTCT	24300
					GGGATTCTCC	24360
					TTTAACTTTC	24420
						24480
					CTGATTACCA	
					ATAATTTATA	24540
AAACCACCTT	ርጥጥር እስጥር እ እ	ACCTCCCAAA	TTACCTCCAA	الماليات المتعادد	ACCAACAATA	24600

445

TTTTCCCCAT TGATTAACAC TTCTCCATAA GACGGACTAT ATAAACCAGC TATTAATTTA 24660

AACAATACAC TTTTCCCTGA GCCATTCGCA CCAGTAATTC CTATAATTTC CCCCTGTTTA 24720

CAACTAAAGT TAAGGTTTTG AAAAACACAT GTCTTTTTTA ATTTCAACTC AATATTTTTT 24780

AATGTAATTA TTTCATTCAT TCTATAAACC TCCTCTTTTG ACGAGTGAAA TAGAAAATGC 24840

TTTGAAAAAG AAAGACTAAA AATAGCAACT GAAGAAATAA ATCTCGTCCT ATATCTCCAT 24900

TCCCTCGATT CAAAATATAA AATAGATAAT TAGTTCGATT TCCTACAAAT AGACCACCAA 24960

ACACAATCAT GAGTAAAAAG AAACTAACGC AAGCAAAGTT CG 25002

### (2) INFORMATION FOR SEQ ID NO: 49:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11443 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

CAGGTACGGT GAGGCGCAAC TAAAATATAA TTTTCATCTT GATTAGGAAT TTTATCAGTA 60 TTATGATAGT GAGCATTGCC ATTGATGGAC CATAAGAGCA ATACAACTAA TCCACGCAAA 120 TAAGTATAAA ACATGCGATC TCCTTCGATT GTTTTCTTGT TATTATTATA CCTTATCAAA GGAGGGCTGG CAAACTTTTC CCTTGACTAG ATACATATTT AGGATGAAAT TAGAATTCTG 240 TTAAAAAAA TGATATAATA GAATTTATGG ATAAAAATAA GATTATGGGA TTAACCCAAA 300 GAGAAGTCAA GGAAAGACAG GCTGAGGGTT TGGTCAATGA CTTTACCGCA TCAGCCAGTA 360 CCAGCACTTG GCAAATCGTT AAACGAAATG TCTTTACCCT TTTTAACGCT TTGAACTTTG 420 CCATTGCTTT GGCTCTTGCC TTTGTGCAGG CTTGGAGCAA TCTGGTCTTC TTTGCTGTTA 480 TCTGCTTTAA CGCTTTTTCT GGGATTGTGA CCGAGCTACG AGCCAAACAC ATGGTGGACA 540 AGCTCAATCT CATGACCAAG GAAAAGGTCA AAACCATCCG TGATGGTCAG GAAGTTGCTC 600 TTAATCCTGA AGAATTAGTG CTAGGAGATG TCATTCGTTT GTCTGCAGGA GAGCAGATTC 660 CTAGTGATGC CTTGGTTTTG GAAGGCTTTG CGGAAGTCAA TGAAGCCATG TTAACGGGAG 720 AAAGTGATTT GGTGCAAAAG GAAGTTGACG GCTTACTTTT GTCAGGAAGT TTCCTAGCCA 780 GTGGGTCAGT TTTATCTCAA GTTCACCATG TCGGTGCAGA CAACTATGCT GCCAAACTCA 840 TGCTTGAGGC TAAGACCGTT AAACCCATCA ACTCCCGTAT CATGAAATCG CTGGACAAGT 900 TGGCTGGTTT TACTGGGAAG ATTATCATTC CCTTTGGTCT GGCTCTCTTG CTGGAAGCCT 960

			440			
rgcttttaaa	AGGCCTGCCT	CTCAAGTCAT	CCGTTGTAAA	CTCGTCGACA	GCTCTTTTGG	1020
GAATGTTGCC	TAAGGGAATT	GCCCTTTTGA	CCATTACTTC	GCTCTTGACT	GCAGTGATTA	1080
AGTTGGGCTT	GAAAAAGGTC	TTGGTGCAGG	AGATGTACTC	TGTTGAGACC	TTGGCGCGCG	1140
TGGATATGCT	CTGTCTGGAC	AAGACGGGTA	CCATCACCCA	AGGAAAGATG	CAGGTGGAGG	1200
CTGTTCTTCC	GTTGACGGAA	ACGTATGGTG	AAGAGGCTAT	TGCCAGCATC	TTGACTAGCT	1260
ACATGGCCCA	TAGTGAGGAT	AAGAATCCAA	CTGCCCAAGC	CATTCGCCAG	CGTTTTGTGG	1320
GAGATGTTGC	TTATCCTATG	ATTTCCAATC	TTCCCTTCTC	GAGCGACCGC	AAGTGGGGGG	1380
CTATGGAGTT	AGAAGGCTTG	GGGACAGTTT	TCTTAGGGGC	ACCTGAGATG	TTGCTTGATT	1440
CTGAAGTCCC	AGAAGCTAGG	GAGGCCTTGG	AGAGAGGATC	ACGTGTCTTG	GTCTTAGCTC	1500
TCAGTCAGGA	GAAATTAGAC	CATCACAAAC	CACAGAAACC	ATCTGATATT	CAGGCTCTAG	1560
CCTTGCTGGA	AATCTTGGAC	CCCATTCGAG	AGGGAGCAGC	AGAGACGCTG	GACTATCTCC	1620
GTTCTCAGGA	GGTGGGACTC	AAGATTATCT	CTGGTGACAA	TCCAGTTACG	GTGTCCAGCA	1680
TTGCCCAGAA	GGCTGGTTTT	GCGGACTATC	ACAGCTATGT	AGATTGCTCA	AAAATCACCG	1740
ATGAGGAATT	GATGGCCATG	GCGGAGGAGA	CAGCTATTTT	CGGACGTGTT	TCCCCTCATC	1800
AAAAGAAACT	CATCATCCAA	ACGTTGAAAA	AAGCGGGACA	TACAACGGCT	ATGACAGGGG	1860
ACGGGGTTAA	TGATATCTTG	GCCCTTCGTG	AGGCGGATTG	TTCTATCGTG	ATGGCGGAGG	1920
GGGATCCAGC	AACCCGTCAG	ATTGCCAATC	TGGTTCTCTT	GAACTCAGAC	TTTAATGATG	1980
TTCCTGAGAT	TCTCTTCGAG	GGTCGTCGCG	TGGTCAATAA	CATTGCCCAC	ATCGCCCCGA	2040
TTTTCTTGAT	AAAGACCATC	TATTCCTTCC	TGTTAGCAGT	CATCTGTATT	GCCAGTGCTT	2100
TACTAGGTCG	GTCAGAGTGG	ATTTTGATTT	TCCCCTTCAT	TCCGATCCAG	ATTACCATGA	2160
TTGACCAGTT	TGTGGAAGGT	TTCCCACCAT	TCGTTCTGAC	TTTTGAGCGA	AATATCAAAC	2220
CTGTTGAGCA	GAATTTCCTC	AGAAAATCCA	TGCTTCGTGC	CCTACCAAGC	GCTCTCATGG	2280
TCGTCTTCAG	CGTCCTGTTT	GTGAAAATGT	TTGGCGCGAG	TCAAGGTTGG	TCTGAGTTAG	2340
AAATCTCAAC	TCTACTCTAT	TATCTCTTGG	GGTCAATTGG	TTTCTTATCC	GTATTTAGAG	2400
CCTGCATGCC	ATTTACCCTA	TGGCGTGTCC	TCTTGATTGT	TTGGTCAGTA	GGAGGTTTCC	2460
TAGCCACAGC	TCTCTTCCCA	AGAATTCAAA	AACTGCTTGA	AATTTCAACC	TTAACAGAAC	252
AAACGTTGCC	TGTTTATGGT	GTCATGATGT	TGGTCTTTAC	CGTGATTTTC	ATCCTGACCA	258
GTCGTTACCA	AGCGAAAAA	TAAATCAAAA	CCACCAGTGT	GAACTGGTGG	TTTGTTCTGC	264
GGCTATAAGC	CGCTTCTACC	GGCCAGGGCC	AAAGGCCCAC	CGAAATAGCT	TCCTCGCGCA	270
CCACTTTCCC	GAGCAGGTGC	TAAAGCACCT	TAGTTACTTC	CTCTTATTTA	TTTCGCCAGT	276

AAACGGATCT	ACTGACTCGA	ATAACGTGAG	CTGGTCTGCT	ACTCTGTCTT	CTTGTAATTG	2820
ATTCTGAATA	TATTCAGCTA	TCACTTTCTG	ATTACGGCCT	ACCGTATCTA	CATAATAGCC	2880
TCTACACCAA	AACTTGCGAT	TGCCATATTT	GTATTTTAAA	TTCGCATGCT	TATCAAAAAT	2940
CATCAAACTG	CTCTTGCCCT	TTAAATAGCC	CATAAAGGAC	GAAACACTAA	GTTTCGGAGG	3000
AATACTGATA	AGCATGTGAA	TATGGTCTGA	ACAAGCATTC	GCTTCATGGA	TTATTACACC	3060
CTTACGCTCA	CATAAGTCAC	GTATGATTCT	TCCGATACTA	GCTTTGTATC	TGCCATAAAT	3120
GATTTGACGA	CGATATTTGG	GTGCAAAAAC	AATATGATAT	TTACAATTCC	ATGTGGTATG	3180
TGATAAACTT	TGATTATCCT	CTCTCATGAG	GTACCTCCTG	TATGATATGT	TGTAGTGGCG	3240
GAGAAACCAC	TTCTATCTTA	TCATTTTAGG	AGGTTCTTTT	TGTTACCACG	CTAAAAGCTC	3300
TATGGAACCA	CTAGCATAGC	TAGTGGTTTT	CGGGAGACAA	CAAGAAAGAC	TGCAATCTGT	3360
GGATTGCAGT	TTTTTATACG	ATGGATCTAT	CGTAGATCTG	ATGTGCAAGG	CCTACGTGCC	3420
GATCATCTAT	CGGTGAACCC	AAGAGCGACC	CTCAAGCCTG	CTTGGATTGA	CGTAATAGAT	3480
TCAAATATCT	GTAGTTAGAC	TATTTGAAGT	TTGATGTAAG	AAAGAGAAAG	CGACAGATTG	3540
AAGTAATTT	AACTCTCTTC	TATTGCTAGA	ACAAATGGTC	GGATAGGTTG	GTAGTTTGAA	3600
AATGAAGATG	CTATCTATTG	TTAAATGGAA	CATAGTGTTA	TTTATTAGAA	AATCGTTTGG	3660
TTTATTTCTT	ATCAAATACG	AAAAGCAACT	TAAATATTTC	AACTAAAATA	GATGTTATGA	3720
AGAAAAGGTA	AAATGATTTT	GGCATAGTGA	GGTTCTGTTC	TATTTGATAT	CATATTTTTG	3780
аталаласа	AAATGTCCAT	TGCAAAGGAC	AAAATGCGAA	GTATATTATT	TTTTGAAAGC	3840
GATATAATGO	ATTCATAAAG	GAGGTGTATC	GTGTCTAGAA	AACAAGAACA	AATGGAAACG	3900
TTGTTGCTC	TTTTGCGAGA	TAGTAAGGAT	TATATATCTG	CTAAAGTATT	GGGAGAAAA	3960
TTAAATTGCT	CTGATAAAAC	GGTTTATCGC	CTTGTCAAGG	GAATCAACAA	AGATTGTCCG	4020
GTAGAAGCA	TCATTTATC	TGAAAAAGG	AGAGGTTTCA	AATTAAATCO	AAGAAGTTCC	4080
CTCGTGGAC	G TTGATGGGAA	TTTTACAGAC	GCTTTTGATC	CTGAAGTAAG	GCGTGAAAAA	4140
TTACTAGAA	GTCTCTTGTT	GACTGCTCCT	AAGCCACATT	CTATTTATG	TTTAGGAGAG	4200
GAATTCTAC	TAAGCGAGT	AGTAGTACT	AAAGATCGTC	AGATATTAC	AGAGAGTCTA	4260
GCAATTTAT	G GGTTAGATT	DADATAAA	A CAACGAAAGO	TTTTTATTG	TGGGGATGAG	4320
GCTCAAATT	C GTTCAGCCA	TCTAAATCT	CTGCCAATG1	TTAATCAGTT	r ggatttagag	4380
CAAATTACA	C AGAATAAGG	TCAGCCTCT	r gacggagaac	TTGCTCACT	TTGTTTGGGA	4440
TTACTGATT	A CACTTGAGA	G AGAATTGGG	GTAAACATTO	CCTATCCAT	TAATATAAAT	4500

TTTTCTCTC ACCTGTATAT TTTTATCAGT AGGAATCGTC GTAGTACTAG TATTCATGTT	4560
TAGCACCTT CAAAACCTAC TATTGTTGAT GAGAAAATTT ACAGTGTCTG TCAAAAAATT	4620
TTCAAGAAA TTGAACAATA TTTTAGGATG AAGGTTGATG CAGTTGAGAT TGACTATCTT	4680
ATCAATACG TTGTATCTTC GAGATTGCAA AAACCATTTT CTTCCGGGAA GCTTCCTTTT	4740
CTCAGCGAG TTTTAGATGT CACTCATTAC TATTTTAGCC GTATGTGTAT GGACAATAGA	4800
SAGATTGAAA CGACAGATCC TGACTTTGTT GACTTGGCGA GTCATATCAG TCCCTTACTG	4860
AGGAGATTAG ATAATAGAGT ACAGATTAAG AATAGTCTTT TATCACAAAT TCTTTTAACC	4920
PATCCTAATC TGGTTAAAGA GTTAACAACT ATTTCTAAAG AAGTGAGTCT AGTATTTGGT	4980
PTTGCTTCCT TGAGTCTGGA CGAGATTGGT TTTCTAGTCT TATATTTTGC ACGGTTTCAA	5040
GAAAAGCGAG CACGTCCTCT AAAAACAGTA GTGATGTGTA CATCAGGTGT CGGAACTTCA	5100
GAGCTTTTAC GAGCACGATT AGAAAAGCAA TTTTCTGAAT TGGATATTAT TGATGTAGTT	5160
GCTTATCATC AATTAGATGA GCTGATAAAT CTATATCCAG ATTTAGATTT CATTGTGACG	5220
ACGGTAGCTT TGCAGGAACC AGCAAGTGTC CCGTTTGTCC TAGTTAGTGT TTTTCTAACC	5280
GAGGGTGATA AACAACGTCT TCAAGCAAAA ATTCAGGAGA TAAACTATGA ATAATCTTTC	5340
GCTTGTCCTT ATGGATATAT CTGTTCAAAA TCGTCAAGAA GCCTACAAAG AATTAGCAAA	5400
TCAAATCAGC CTTCTTGTTT CTGAAGATAC AGAAAAAATA GAAGAGCTTC TATATTACCG	5460
TGAGAGACAG GGAAGTATAG AGGTTGCTAA AGGTGTTCTT CTACCACATT GTGAAGGAAA	5520
CITICAACAT CATGICTIAG IGATTACIAG ATTAAAATCA CCTATCAGAG AATGGTCGAA	5580
GGATATCCAG TGTGTTGACC TTATTATCGG TTTGGCCATT GCAGTATCAC AGGACAAGTC	5640
ATGTATTAAA ACATTGATGA GAAGACTAGC AGATGAATCA TTCATAAATC AATTAAAACA	5700
GTTAACAAAA GAAGAATTAC GGGAGATAAT ATATGGAAAT CAAAGATATT CTTAATGTGA	5760
GTCTGATCCA GACGGATTTA CAGATGCAGA GCAAAGAAGA GGTTTTTGAG GCATTAGCTC	5820
AACTATTGGT TGAGACGGGT TATGTGTCTG ATAGAGACCA ATTTATCGAA GGTCTTTATC	5886
AGAGAGAGGC AGAAGGACAG ACCGGTATTG GGAATTATAT TGCTATTCCC CATAGCAAGA	5940
GTTCTGCTGT GGAGAAGGCG GGGGTAGTCA TAGCTATAAA TCACAATGAG ATTCCTTGGG	600
AGACCATTGA TGGGAAAGGG GTCAAAGTAA TTGTACTCTT TGCAGTTGGT GATGATACAG	606
AAGCTGCTAG GGAGCATTTG AAGACCTTAT CACTCTTTGC TCGAAAACTT GGTAATGACG	612
AAGTTGTTGC CAAATTAGTT CGGGCTCAGA CATCTGATGA TGTGATTGCA GCTTTTTGTT	618
AATAAGAAAA AATTTTGGAG GGTATCCGTA TGAAAATTGT TGGTGTTGCA GCTTGTACTG	624
TEGGAATTGE CCACACTTAT ATTGCACAGG AAAAATTAGA GAATGCCGCA AAGGTAGCTG	630

GACATGTGAT	TCATGTTGAG	ACTCAGGGGA	CAATAGGGGT	AGAAAATGAA	TTGAGTCAAG	636
AGCAGATTGA	TGCAGCGGAT	GTAGTTATTT	TAGCAGTTGA	TGTTAAGATT	TCTGGTATGG	642
AACGCTTTGA	GGGTAAAAAG	ATTATCAAGG	TTCCAACAGA	AGTGGCAGTC	AAATCTCCCA	648
ATAAACTGAT	TGCTAAAGCT	GTTGAGATTG	TTACGAAATA	ACTGAAAATA	TTTAAGGAGA	654
AAATATATGT	TGAAACACTT	AAACTTAAAA	GGTCACTTAT	TGACAGCCAT	TTCCTATATG	660
ATTCCAATTG	TTTGTGGTGC	AGGATTCTTA	GTTGCCATTG	GTTTAGCAAT	GGGGGTGGT	6666
GTTCCTGACG	CTCTTGTAGC	AGGAAAATTC	ACTATCTGGG	ATGCTTTAGC	AACTATGGGT	672
GGTAAAGCCC	TTGGTCTCTT	GCCAGTTGTT	ATTGCTACAG	GTTTGTCTTA	CTCGATTGCT	6780
GGTAAGCCAG	GGATTGCACC	AGGTTTTGTT	GTTGGTCTAA	TTGCCAATTC	TGTTGGTTCA	6840
GGGTTTATCG	GTGGTATCTT	GGGAGGTTAT	ATAGCTGGTT	TCTTGGTTCA	AGCGATTATT	690
AAAAAGGTCA	AAGTACCAAA	CTGGATTAAA	GGTTTAATGC	CAACCTTGAT	TATTCCTTTT	6960
GTAGCCTCTT	TGGTAAGTAG	TTTGATTATG	ATTTATATTA	TTGGAGCGCC	TATCGCAGCC	7020
TTTACCAACT	GGTTGACGAG	CTTATTACAA	AGCTTGGGAA	GTGCTTCAAA	TGGTTTGATG	7080
GGGGCAGTTA	TTGGAATTCT	CAGTGCTGTT	GACTTTGGTG	GCCCACTTAA	TAAAACAGTC	7140
TATGCGTTTG	TGTTGACTTT	ACAGGCTGAA	GGTGTGAAAG	AACCATTGAC	TGCTTTACAA	7200
TTGGTGAATA	CTGCTACACC	AGTTGGATTT	GGATTGGCCT	ATTTTATCGC	GAAATTACTC	7260
AAAAAAAAA	TCTATACTCA	AGAGGAAATC	GAAACATTGA	AATCGGCTGT	TCCTATGGGG	7320
ATTGTCAATA	TTGTTGAAGG	TGTAATTCCG	ATTGTTATGA	ATAACTTGGT	TCCAGGTCTC	7380
ATTGCAACAG	GTATCGGTGG	TGCTGTTGGT	GGTGCTGTTT	CTTTGACAAT	GGGTGCTGAT	7440
TCTGCTGTGC	CATTTGGTGG	AGTGCTTATG	TTACCAACCA	TGACTCGTCC	AGTAGCTGGT	7500
ATTTGTGCCT	TGTTAGCTAA	CATTGTAGTC	ACAGGACTTG	TCTACGCGAT	TTTGAAAAA	7560
CCAATAAAAC	ATGCAGAACC	AGTTATGACT	GTTGAAGAAG	AGATTGATTT	GTCAGATATT	7620
GAAATTTTGT	AAGAGGGTAA	CGATGTCAAG	AATTGAATTT	TCACCATCTT	TGATGACCAT	7680
GGATTTGGAC	AAATTCAAAG	AGCAGATTAC	TTTTTTGAAT	GATAAAGTAG	CATCTTATCA	7740
TATCGATATT	ATGGATGGCC	ATTTTGTTCC	CAATATTACC	TTGTCTCCTT	GGTTCATTCA	7800
AGAAGTTCAA	AAAATTAGTG	ACACACCTTT	ATCAGTTCAT	CTGATGGTCA	CAGACCCAAC	7860
CTTTTGGGTA	GATCAAGTTC	TCGATTTACA	ATGTGAGTAT	ATTTGTATTC	ATGCTGAAGT	7920
TCTGAATGGT	CTTGCTTTTC	GTTTGATTGA	TAAAATTCAT	GATGCAGGTC	TAAAGGCTGG	7980
مست کیٹکلیٹکٹ	AATCCTCAAA	CACCACTATAC	TACAATCTOT	CCCTT N C N TITTLE	PLANTA CARONC P	0040

450	
CAAAGCAACT ATTATGACTG TAGATCCAGG TTTTGCAGGA CAACGCTTTT TGGAGTCTA	
CTTGTATAAA ATCCAAGAAC TCCGTCAGCT TAGAGTTCAG AATGGTTATC ACTACATCA	т 8160
TGAGATGGAT GGTTCTTCGA GTCGTAAGAC TTTCAAACAA ATTGATGTGG CAGGACCAG	A 8220
TATTTATGTT ATAGGTCGCA GTGGATTATT TGGTTTGGAT GACGATATTG CCAAAGCCT	G 8280
GGATATCTGT TCTAGAGATT ACGAAGAAAT GACCGGAAAA ACAATGCCAA TCAAATAAT	G 8340
GTTTGAGAAG AAATTTATTA GTTAGGAGGA ATATATGTCA CTACAATCAG TTAACGCCA	т 8400
TCGTTTTCTT GGCGTAGATG CTATTAACAA ATCTAATTCT GGTCACCCGG GAATTGTCA	T 8460
GGGTGCTGCG CCAATGGCTT ATAGCCTATT TACAAAGCAC CTTAGAATTA CACCTGAGC	A 8520
GCCAAACTGG ATTAACCGAG ATCGCTTTAT CTTGTCTGCG GGTCATGGAT CAATGCTAC	T 8580
GTATGCTCTC TTGCATTTAA CAGGGTATAA GGATGTATCC ATGGACGAGA TTAAAAATT	T 8640
CCGGCAATGG GGATCTAAGA CACCTGGTCA TCCTGAAGTG ACGCATACGT CTGGTGTGC	a 8700
TGCGACATCT GGTCCGCTTG GTCAGGGGAT TTCTACTGCC GTTGGTTTCG CCCAAGCAG	8760
GCGTTTTTTA GCTGCTAAGT ACAACAAAGA TGGTTTCCCT ATTTTTGACC ATTATACTT	A 8820
TGTTATCGCT GGAGACGGTG ACTTCATGGA AGGAGTGTCT GCGGAGGCGG CTTCTTATC	C 8880
AGGTCATCAA GCTTTAGATA AGCTTATCGT CCTCTACGAC TCCAACGACA TCTGCTTGC	SA 8940
TGGTGAGACC AAAGATACTT TCTCTGAAAA TGTTCGCGTC CGTTACGATG CTTATGGTT	rG 9000
GCATACAGTT CTGGTAGAAG ATGGAACAGA TTTAGCAGCA ATTTCTACAG CAATTGAG	AC 9060
GGCCAAGTTT TCTGGTAAAC CGAGTTTGAT TGAAGTGAAA ACGGTAATTG GTTACGGC	rc 9120
ACCCAATAAA AGTGGTACAA ATGCTGTTCA TGGTGCACCA CTAGGAGCAG AAGAAACAG	GG 9180
AGCAACTCGT AAGTTTTTGG GATGGGATTA CGATCCATTT GAAGTACCAG AGGAAGTA	ra 9240
TTCTGATTTC AAGACAAATG TAGCGGATCG TGGTCAGGAG GCATACGATG CTTGGGCT.	AG 9300
TTTGGTGTCT GATTACAAGG TTGCTTATCC CGAAGTTGCT AGTGAGATTG ACGCTATT	GT 9360
AGCTGGAAAA TCCCCTGTAA CCATTACTGA AAAAGACTTC CCTGTCTATG AGAATGGC	TT 9420
CTCTCAAGCA ACTCGTAATT CGTCCCAAGA TGCTATTAAT ACAGCAGCAG TTTTACCA	AC 9480
CTTCTTAGGT GGATCGGCAG ACTTAGCTCA CTCTAACATG ACCTACATCA AGGCAGAT	GG 9540
CTTACAAGAT AAATATAATC CATTAAACCG CAATATTCAG TTTGGGGTAC GTGAATTT	GC 9600
CATGGGAACA ATCCTCAATG GAATGGCTCT TCATGGTGGT TTACGAGTTT ATGGCGGA	AC 9660
CTTCTTTGTT TTCTCTGACT ACGTCAAAGC TGCTATTCGG CTATCAGCCA TTCAGGAG	TT 9720
GCCTGTAACT TATGTCTTTA CCCATGATTC AATTGCCGTT GGTGAAGATG GTCCAACT	CA 9780
	rcc 9846

. .

AGCGGATGCC CGTGAAACTC	AAGCGGCTTG	GCATCATGCC	TTGACCAGTA	CCACCACTCC	9900
AACTGTCATT GTCTTAACCC	GTCAAAACTT	GGTAGTTGAA	GAAGGGACAG	ACTTTGGTAA	9960
GGTCGCTAAA GGAGCCTACG	TCGTGTATGA	TACCCCGGGA	TTTGATACTA	TTATCATTGC	10020
TACAGGATCT GAGGTCAATC	TAGCTATCAA	AGCTGCTAAG	Gaattggttt	TACAAGGTGG	10080
TAAAGTACGT GTGGTATCTA	TGCCCTCAAC	CGAACTATTT	GATGCTCAAG	ATGCTACCTA	10140
CAAGGAAGAC ATTTTACCAT	CTAAGACTCG	TCGTCGTGTG	GCCATTGAAA	TGGCAGCGAC	10200
CCAAAGTTGG TACAAGTATG	TTGGTTTGGA	TGGCGCGGTC	ATCGGTATTG	ACATCTTCGG	10260
TGCGTCTGCC CCAGCTCAGA	CTGTGATTGA	TAATTATGGA	TTTACGGTAG	AGAATATCGT	10320
TGCTCAAGTT AAGTCCCTAT	AGAAACCAAT	TACAATGAAG	ATACAGCTGT	TGTCAGACTA	10380
GCAGATGTAG TGATAGACAC	TAATCAGATG	ATTGGTTATT	TAAAAACTGT	AATGAAAATG	10440
TAATAATTTA TCTACGAAAG	TTATAGTAGA	TAGTATACAC	AATAGAGTAT	ACCCTGAAAC	10500
GGTTGCGAAG TACGCTAATC	ACTTTGCTAC	TGATCTAGAT	AGTTTCTTTA	ATCAATAAAC	10560
ACAGCATCCA CAGATTGACT	TAGGATATTG	TAAGTTTTTT	GAAAGCTAGA	GAGAAGGTCT	10620
CTAAAATTAA AAAACGCATA	GTATAGGA <b>T</b> G	TTGAAATGAT	GAACTGCACC	CCAAAAGTTA	10680
GACAGAAAAA AATCTAACTT	TTGGGGTGTT	TTTATTATGA	AATTAACTTA	TGATGATAAA	10740
GTTCAGTTCT ATGAACTTAG	AAAACAAGGA	TATATCTTAG	AGAAGCTTTC	TTTAAATAAA	10800
GGGATAAATA ATTCTAATCT	TAGGTACATG	ATTAAATTGA	TTGATCGTTA	CGGAATAGAG	10860
TTCGTCAAAA AAGGGAAAAA	TCGTTACTAT	TCTCCTGATT	TAAAACAAGA	AATGATTCAT	10920
AAAGTCTGAC ATGAAGGCTG	GACTAAAGAT	AGAGTTTCTC	TTGAATACGG	TCTCCCAAGT	10980
CGTACGATAC TTCTTAACTG	GCTAGCACAA	TACAGGAAAA	ACGGGTATAC	TATTGTTGAG	11040
AAAACAAAAG GGAGAGTACC	TGAGAGCGGA	GAATGCCATC	CTAAAAAAGT	TAAGAGAACT	11100
CCGATTGAAG GAGGAAAAAG	AGAAATAAGA	AAGACAGAAA	TTGTTCAAGA	ATTAATGACT	11160
GAGTTTTCGT TAGATCTTCT	TCTAAAAGCC	ATTAAACTAG	CTCGTTGGAC	CTACTACTAT	11220
CACTTGAAAC AGCTAGATAA	ACCAGATAAG	GACCAAGAGC	TTAAAGCTGA	AATTCAATCC	11280
ATCTTTATCG AACACAAGGG	AGATTATGCT	TATCGCCGGG	TTCATTTAGA	ACTAAGAAAT	11340
CGTGCTTATC TGGTAAATCA	TAAAAGAGTT	CAAGGCTTGA	TGAAAGTACT	CAATTTACAA	11400
GCTAGAATGC GACAGDAACG	AAAATATTCT	TCTCATAAAG	GAG		11443

⁽²⁾ INFORMATION FOR SEQ ID NO: 50:

. . . . . .

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5338 base pairs

452

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

٠, . . . .

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

(M2, 0220002 020001112000 022 12 100 000	
CCAATTACAT TATATTATCA AAATCGTCGA AACTGGCTCC ATGAATGAGG CAGCCAAGCA	60
ACTCTTTATC ACTCAGCCAA GTCTCTCCAA TGCAGTGCGA GATTTGGAAA ATGAAATGGG	120
CATTGAGATC TTTATCCGCA ATCCCAAGGG AATCACCTTG ACCCGTGATG GCATGGAGTT	180
TCTCTCTTAT GCCCGTCAGG TTGTCGAGCA GACCCAGCTT CTGGAGGAAC GCTATAAAAA	240
TCCTGTCGCC CACCGCGAAC TCTTTAGCGT TTCGTCTCAA CACTATGCCT TTGTGGTCAA	300
TGCCTTTGTC TCTTTGCTCA AGAAAAGCGA TATGGAGAAA TACGAACTCT TCCTTCGTGA	360
AACTCGGACT TGGGAGATTA TCGACGACGT CAAGAACTTC CGCAGTGAGG TCGGGGTCCT	420
CTTCTTAAAC AGTTACAACC GTGATGTTTT AACCAAGATG CTGGATGACA ATCACCTGCT	480
AGCCCACCAT CTCTTCACAG CGCAACCGCA TATCTTTGTC AGCAAGACCA ACCCTCTGGC	540
AAAGAAAGAC AAGGTGAAAC TGTCTGATTT GGAGAATTTC CCTTACCTCA GCTATGACCA	600
AGGGACGCAC AACTCCTTCT ACTTTTCAGA AGAGATTCTT TCTCAAGAAC ACCACAAGAA	660
ATCCATTGTG GTCAGTGACC GTGCCACCCT CTTTAATCTC TTGATTGGTT TGGATGGTTA	720
TACCATTGCG ACAGGGATTT TGAACAGCAA CCTAAACGGA GACAATATCG TTTCTATCCC	780
ACTGGATATT GATGACCCGA TCGAGCTGGT CTATATCCAG CATGAGAAAA CCAGCCTATC	940
TAAGATGGGC GAACGCTTTA TAGACTATCT CCTAGAAGAA GTTCAGTTTG ATAGTTGAGA	900
AATGATAAGA ACCAATATGT AGGCTAGCAA CAACCTGCAC ATTGGTTCTT TTTACTTATA	960
ATTAAAAGTT TCCCCTGCCA ACTTATCAGC TAGCTTGGGA AAGAGAGTAT AAAACTTATG	1020
GGCTAGGTTC AACAAAATCG GGAGATTGAG TTCTCGTTTG TTTTTTCCTA TAATCTTGAC	1080
AATCTTTTTA GCCACTGCAT CTGGTTCTAG CAGGAAGCGA TCAACCGATT TAAGATAAGT	1140
TCCATCTGGG TCGGCTTGGT CGAAAAATCC TGTACGGATT GGTCCTGGAT TGACTGTTGT	1200
CACATAGACT CCATAGGGCA TAAGTTCGAG TCGCAGAGCA TTTGAAAAAC CAATAGCCGC	1260
ANACTTGGTC GCTGAGTAAA GACTAGACTT GCCAGTAGCT ATTAGACCTG CCATGCTGAC	1320
GATGTTGATG ATATGCCCTT TGCTGCTTTC CTTCATACGA GCCGCAAGGT GACGAGACAG	1380
ATTCATCAGG GCAAAGGTAT TGACCTCAAA CATCTGGTGA ATATCTTTAT CAGCAATCTG	1440
GTCAAATCCC TCAAAAATCC CGTAACCAGC GTTGTTAATC AAGACATCAA TCTTGCCATA	1500
GCGGAGATAA AGATCAGTTA CCAGAGCTTC TAGGGCTGAA TCGTCGGTAA TATCAATTTC	1560

AATCAATTCT	GCATGGGAAT	AATTTCCGTA	GAGTTGGGCT	AATTTTTCCT	TATTTCTACC	1620
AAGCAAGATG	AGTTGGTCAT	TGGGCAGGAG	TTTGACCATT	TCTTGAGCTA	GACCACCGCT	1680
AGCTCCGGTA	ATGAGAATAG	TAGGCATACT	TATCCTTTCT	GTGACTGCTA	GATTTCCACT	1740
TCTTCCAAGT	CTTTGACCAC	ATGGACATTT	TCAAAAATTG	TGGCAGCGTC	TTTCTTGAGT	1800
TTGCTAATAT	CTTTTGAGAG	GAAACGGGCA	CTGATATGGT	TGAGTAGGAG	GCGTTTGGCA	1860
CCTGCTTCTA	CCGCTACTTG	TGCAGCTTGC	ATATTAGTTG	AGTGACCATG	GTTACGAGCA	1920
ATTTTTTCAT	CACCCTTGCC	ATAAGTGGAC	TCATGAACTA	GGACATCTGC	ATTGACAGCC	1980
AGACGCACAC	TGGCACCCGT	TTTTCGAGTG	тстссталал	TAGTGATAAT	CTTACCTGGA	2040
CGTGGCGCTG	AGATATAGTC	TGCTGCCTTG	ATTTCAGTTC	CGTCTTCCAA	AACAAGATCC	2100
TGGCCGTTTT	TGATTTTACC	AAAAAGCGGG	CCGAACGGAA	CACCAGCAGC	CTTGAGTTTT	2160
TCAGCATCCA	GCGTCCCTTC	TAGATCCTTT	TGCATGACAC	GATAGCCAAC	ACAGAAAATA	2220
GTGTGGTCCA	GCTCCTCTGC	ATACACAGTG	AATTTATCGG	TTTCAAGAAT	TTTACCCAGA	2280
GAATCTTGGT	CAAACTCATG	GAAATGAATG	CGGTAGGGCA	GACGAGAACC	TGACACACGA	2340
AGGCTGGTTA	AGACAAATGA	CTTGATTCCT	TGAGGTCCGT	AGATTTCCAA	ATCTGTCTGC	2400
TCTTCATTGG	CCTGAAAGGC	ACGGCTAGAA	AGGAAACCTG	GCAAACCAAA	AATGTGGTCT	2460
CCATGCAGAT	GGGTAATAAA	GATTTTGCTG	ACCTTACGTG	GTCGAATTGT	GGTTTCCAGA	2520
ATGCGATTT <b>T</b>	GCGTACCTTC	TCCACAGTCA	AAGAGCCAAA	CTTCGTTAAT	CTCATCCAAA	2580
AGTTTCAGGG	CGAGACTTGA	AACGTTGCGG	GCTTTAGAGG	GCTGACCAGC	CCCCGTTCCT	2640
aaaaattgaa	TATCCATTCG	ATACTTTCTA	ATTAATCAAT	ATATAACATG	GCTGTGCGGT	2700
TTTCCGATCG	GAAATAGCGT	TTGCCAGAAA	AAGCAGCAGC	TTCTTGCAAT	AAATCCTCTT	2760
GGCTGTAGCC	TTTGAGACGT	TTTCGACCAT	CAGCCAATCT	TTCCAAATCA	GTCAAAGCTG	2820
TGAGACTTTC	TAGGCTGATA	ACTTCCTCGT	CCTCGACAGG	CTTCATGTAA	ATCTTACCAG	2880
ACTCTTCAAA	GACTAATTGA	TGGGGGAAAA	TTTGCGCAAT	TTCAAAGAGC	AAGTCATCCG	2940
AGATTTTCTC	CTCATTTTCA	AAGAAAATCC	GACCAAGGCC	GTCACTCTCA	TAACAAAAC	3000
CAAAGGATTT	ACCAGACAGA	TTAAGCCGAA	TAAAAGGCTT	ATTTTCTAGG	GTGAAACTTG	3060
CTCAGTATT	GTAAAGATTC	AGTTCCTGAC	TGAGTTCTGC	AAAATAATCC	GTCGCAGCCT	3120
CAGGACTCTT	TTTCTGATAG	AGTTCTGCAA	AGTAGGCATT	AACAACACTT	GGCGGAGGTG	3180
TAATAAGTGT	TAACTGCTCC	TGATCTGTTT	TACCAGCTAG	AAGCTGATCC	AGATAGACCT	3240
TGTCCAGACT	TGTATAACCT	CCATACTTTA	GAGCCAAAGT	TTTAATATCA	GTCATAAAAT	3300

TCTTCTAACC	TCCATTTATT	TTTCTCGGAA	ATGTAGCCTG	TAATCI, TTC	GCCGTCTTCC	3360
TGATAATCAC	GTTCTTCCAG	AATTGCAACA	CTCTCTAAAT	CATGAATCTT	GTAGGACTTT	3420
GAAAAAGGCA	CTCGCAGGGT	AAATGCTTCA	AAAATTTCCT	TAATCTTATC	TAGCAATAAT	3480
GCTTGCAAGT	TTTCACGACT	GTCCTCAGAC	TTGGCAGAAA	TGAGGCTATA	TGGCGTTTGG	3540
GTAGGCGTGA	AATCCTCCAC	CAAATCCGCT	TTATTATAAA	GCGTCAAGTG	AGGAATATCT	3600
TCCATGTCCA	GGTCTTTCAT	GATGGAGAGA	ACCGTTTTTT	CATGCTCCTC	GTGGTAAGGA	3660
TTGCTAGCAT	CGATAACATG	AACCAGAAGG	TCCACATGCT	TGCTTTCTTC	CAAGGTTGAC	3720
TTGAAACTGG	ACACCAACTC	TGTCGGCAAA	TCTTGGATAA	AGCCAACGGT	ATCTGTCAAA	3780
GTTACTTGGA	GATTGCCTCC	CAGATGAATA	CTCTTGGTTG	TCGCATCCAG	AGTCGCAAAG	3840
AGCTCATCTG	CTTCATACTG	GGTCTTACTG	GTCAAGATGT	TCATGATAGT	TGATTTCCCA	3900
GCATTAGTAT	AACCAATCAA	ACCAATCTTA	AAAGTGCTAG	ACTCCAAACG	TTTTTCTCTG .	3960
ACAGTCGCAC	GATTTTTCTC	AACCACCTTG	AGCTGGCGCT	CGATATCCGT	GATTTGATTG	4020
CGAACGCTAC	GACGGTTCAG	CTCCAGCTGG	CTTTCACCAG	GACCACGGGA	ACCAATTCCC	4080
CCTgCCTGAC	GGCTGAGCAT	AATCCCCTGA	CCAACCAAGC	GAGGCAAAAG	GTATTTGAGT	4140
TGGGCTAGGT	GGACTTGGAG	CTTCCCTTCA	TGGCTTCGAG	CCCGCATGGC	AAAGATATCC	4200
AAAATCAACT	GCATACGGTC	AATGACCTTA	ACACCGAGAA	CTTCCTCTAG	ATTGACATTC	4260
TGCCTTGGGG	TCAGACGATT	GTTGACGATG	ACAGTAGTGA	TTTCTTCTGC	ATCCACCATA	4320
AGCGCAATCT	CTTCCAACTT	ACCAGAGCCG	ACGAAGGTCT	TGGAATCATA	TTTTTCACGT	4380
TTTTGTCTGT	AGCTATCTAC	AACGACTGCC	CCTGCCGTTT	TCGCTAAACT	AGCCAATTCT	4440
TCCATGGAGA	GGTCAAAACT	GTCCATACCC	TGCAATTCCA	CACCAATCAG	CAGGACTCGC	450
TCCTCTTTTT	TCTCCGTTTC	AATCATCTAA	AAACTCCTCT	ATCTGGCTTA	AAATGCGGTC	456
TTGTACACCA	GATTCTCCAA	TCTGATAAAA	GGTGACCTGC	ATGCGATTAC	GGAACCAGGT	462
CAGCTGACGC	TTGGCAAAAC	GACGAGTCGC	CTGTTTAAGA	CTCTCACTAG	CTTCCTCCAA	468
GGTCTGCTCT	CCACGGAAAT	AAGGAAAGAG	TTCCTTATAG	CCAATTCCTT	TAGCAGCCTG	474
TACATTAGGG	GAATGGTCAA	ACAGCCACTT	GGCCTCATCC	AAAAGCCCAG	CCTCAAACAT	480
CAAATCCACT	CGGTGGTTGA	TACGCTCATA	AAGTTGACTA	CGTTCATCAT	CCAAGCAGAT	486
AATCAGCGGT	TCATACAAGG	TCTCTTGATT	TTCCAAATCC	TGACCAAAAT	GGGCAATTTC	492
TAAGGCACGC	ATAGCACGAC	GACGATTAAA	CTGGGGAATC	TCAAGGCCTC	CTTGATCCAC	498
CAAATGGGCT	AATTCCTCAT	CTGAATATGO	CTCCAAACTA	GCTCGATAAC	CTAAAATCTC	504
CTCATCACC	. בייריירררב	- СТАССТССТА	ACCTTCTAGO	AAGCTCTGG	TATAAAGTCC	510

455

(2) THEORY THE CO. I.E. C.							
TCGATAGACT	TGCTGGCTAT	CTCCACTAAC	CACTTCGCCA	TTAAAACGCT	TTGCGGGG	5338	
ATGATGAGGA	ACAGCTGCCT	GCTCTTCTGG	ACTAGCCTTG	GCCGTCCCAA	TATCAAGTCC	5280	
AGCTTCTGAA	ACAAAATCAA	AAGCCGAGTA	AGACTCGGTT	ATCTCTCTAA	CATCGATTAA	5220	
AGTCCCACCG	GCGATAATGG	CTAGCTTGCC	ACGGTTGTGA	ATACCCTCAA	TAGTCATCTT	5160	

## (2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19446 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

CGGAAACCCA TCTAGTCTCC ATCGTTTGGG AGACCAAGCA ACACGAATCT TAGATGCTTG	60
TCGCCAACAG ATTGCAGATT TAATCGGTAA GAAAAGCGAT GAAATCTTCT TTACCTCGGG	G 120
TGGAACAGAA GGGGATAACT GGCTTATCAA GGGTGTGGCC TTTGAAAAAG CTCAGTTTG	180
CAAGCACATC ATTGTTTCAG CCATTGAACA TCCAGCAGTC AAAGAGTCAG CCCTCTGGT	240
GAAAAGTCAA GGATTTGAAG TGGATTTTGC TCCAGTTGAT AAGAAAGGCT TGGTCGATG	300
TGAGGCGTTA CAGGTTTGAT ACGGCATGAT ACAATCCTCG TTTCCATCAT GGCTGTGAAG	360
AATGAAATCG GCTCTATCCA ACCTATTGAG GCTATTTCAG AATTCTTGGC AGACAAGCCG	420
ACTATTTCCT TCCACGTTGA TGCGGTTCAG GCGCTTGCCA AAATTCCGAC TGAAAAGTAT	480
CTGACAGAAC GGGTGGATTG CGCGACTTTC TCTAGTCACA AGTTCCACGG GGTTCGAGGT	540
GTTGGCTTTG TCTATATCAA ATCTGGCAAG AAGATTACAC CTCTTCTTAC AGGTGGTGGC	600
CAGGAGCGAG ATTATCGTTC GACAACTGAA AATGTGGCAG GGATTGCAGC GACAGCCAAC	660
GCCCTCCGTT TGTCTATGGA AAAGCTAGAT ATCTTTAGGA GCAAGACTGG GCAGATGAAG	720
GCAGTGATTC GCCAAGCTCT TCTGAACTAT CCGGATATTT TTGTCTTTTC AGATGAGGAA	780
AACTTTGCAC CTCATATTCT GACTTTTGGA ATCAAAGGTG TTCGAGGTGA AGTCATCGTT	840
CACGCCTTTG AAGACTATGA TATTTTCATC TCAACAACCT CAGCTTGTTC ATCTAAGGCA	900
GGAAAACCAG CCGGTACCTT GATTGCCATG GGAGTGGACA AAGATAAGGC CAAGTCAGCT	960
GTGCGTCTTA GCCTAGACTT GGAAAATGAT ATGAGTCAGG TCGAGCAGTT TTTGACCAAC	1020
TTAAAATTGA TTTACAATCA AACTAGAAAA GTAAGATAGG AGCATTCATG CAGTATTCAG	1080
AAATTATGAT TCGCTACGGA GAGTTGTCAA CCAAGGGTAA AAACCGTATG CGTTTCATCA	1140

456 ATAAACTTCG TAATAATATT TCGGACGTTT TGTCTATCTA TACCCAAGTT AAGGTAACAG 1200 CAGATCGCGA CCGTGCCCAC GCTTACCTCA ATGGAGCTGA TTACACAGCA GTTGCAGAAT 1260 CTCTCAAACA AGTTTTTGGA ATTCAAAACT TTTCTCCTGT TTATAAGGTT GAAAAATCTG 1320 TAGAAGTTTT GAAGTCTTCT GTCCAAGAGA TTATGCGGGA CATCTACAAG GAAGGTATGA 1380 CCTTTAAGAT TTCTAGCAAG CGTAGCGACC ACAACTTTGA ACTTGATAGT CGTGAACTCA 1440 ACCAAACACT TGGAGGGGCT GTATTCGAAG CCATTCCAAA TGTGCAAGTT CAAATGAAAA 1500 GTCCTGACAT CAATCTTCAG GTGGAGATTC GTGAAGAAGC AGCCTATCTT TCTTATGAAA 1560 CCATTCGTGG GGCTGGTGT TTGCCAGTTG GAACTTCAGG TAAAGGGATG CTCATGTTGT 1620 CAGGAGGGAT TGACTCACCT GTAGCAGGTT ATCTTGCTCT TAAGCGTGGG GTGGATATCG 1680 AGGCAGTTCA CTTTGCTAGT CCACCATATA CTAGTCCTGG TGCCCTCAAG AAAGCGCAGG 1740 ACTTGACCCG TAAATTGACC AAGTTTGGCG GAAATATCCA GTTTATAGAG GTGCCTTTCA 1800 CAGAGATTCA AGAGGAAATC AAAGCCAAAG CGCCAGAAGC TTATTTGATG ACTCTAACTC 1860 GTCGCTTTAT GATGCGGATT ACTGACCGTA TTCGTGAGGT ACGAAATGGT TTGGTTATCA 1920 TCAATGGGGA AAGTCTAGGT CAAGTAGCCA GCCAAACCCT TGAAAGTATG AAGGCTATCA 1980 ATGCTGTTAC CAACACTCCC ATCATTCGTC CTGTGGTTAC CATGGACAAG TTGGAAATCA 2040 TTGACATCGC CCAGGAAATC GATACCTTTG ACATTTCAAT CCAACCGTTT GAAGACTGTT 2100 GTACCATTTT TGCACCAGAT CGTCCAAAAA CAAATCCTAA AATTAAGAAT GCGGAGCAGT 2160 ACGAAGCGCG TATGGATGTT GAAGGCTTGG TTGAGCGAGC AGTGGCTGGA ATCATGATTA 2220 CTGAAATCAC ACCTCAAGCC GAAAAAGATG AAGTTGATGA CTTGATTGAC AATCTGCTCT 2280 AATTCAGAAA ATCCAAAAGA ATAGCGAAAA TCAGTAAAAA AAGTTAGTTT TTTCTCTAAA 2340 AACAGGTAAA AAACTAACTT TTTTTATTTT TATGATATAA TGATATAAAA TTTTGAATAT 2400 AGAGAGTTTT CTGACAATGA ATCAATCCTA CTTTTATCTA AAAATGAAAG AACACAAACT 2460 CAAGGTTCCT TATACAGGTA AGGAGCGCCG TGTACGTATT CTTCTTCCTA AAGATTATGA 2520 GAAAGATACA GACCGTTCCT ATCCTGTTGT ATACTTTCAT GACGGCAAA ATGTTTTTAA 2580 TAGCAAAGAG TCTTTCATTG GACATTCATG GAAGATTATC CCAGCTATCA AACGAAATCC 2640 GGATATCAGT CGCATGATTG TCGTTGCTAT TGACAATGAT GGTATGGGGC GGATGAATGA 2700 GTATGCGGCT TGGAAGTTCC AAGAATCTCC TATCCCAGGG CAGCAGTTTG GTGGTAAGGG 2760 TGTGGAGTAT GCTGAGTTTG TCATGGAGGT GGTCAAGCCT TTTATCGATG AGACCTATCG 2820 TACAAAAGCA GACTGCCAGC ATACGGCTAT GATTGGTTCC TCACTAGGAG GCAATATTAC 2880 CCAGTTTATC GGTTTGGAAT ACCAAGACCA AATTGGTTGC TTGGGCGTTT TTTCATCTGC 2940

AAACTGGCTC CACCA	AAGAAG CCTTTAACC	G CTATTTCGAG	TGCCAGAAAC	TATCGCCTGA	3000
CCAGCGCATC TTCAT	TCTATG TAGGAACAG	A AGAAGCAGAT	GATACAGACA	AGACCTTGAT	3060
GGATGGCAAT ATCAA	AACAAG CCTATATCG	A CTCGTCGCTT	TGCTATTACC	ATGATTTGAT	3120
AGCAGGGGGA GTACA	ATCTGG ATAATCTTG	T GCTAAAAGTT	CAGTCTGGTG	CCATCCATAG	3180
TGAAATCCCT TGGTC	CAGAAA ATCTACCAG	A TTGTCTGAGA	TTTTTTGCAG	AAAAATGGTA	3240
AGTTAAGAAA GGAAA	AAAACG AAATGCATA	T TGAACATCTT	AGCCACTGGA	GTGGTCATCT	3300
TAACCGTGAA ATGTA	ACCTTA ACCGTTATG	G ACATGGTGGG	ATTCCAGTTG	TGGTCTTTGC	3360
TTCATCAGGT GGTAG	STCACA ACGAATACT	A TGATTTTGGC	ATGATTGATG	CCTGTGCTTC	3420
CTTTATCGAG GAAGG	SCCTTG TCCAGTTCT	T TACCCTATCT	AGTTTGGATA	GTGAGAGCTG	3480
GTTGGCTACT TGGAA	AAAATG CTCATGACC	A AGCGGAAATG	CACCGTGCCT	ACGAACGTTA	3540
TGTGATTGAG GAGGO	CCATTC TTTTATCAA	G CACAAGACAG	GTTGGTTTGA	TGGCATGATG	3600
ACGACAGGTT GCTCT	PATGGG AGCCTATCA	T GCACTCAATT	TCTTCCTCCA	GCATCCAGAT	3660
GTCTTTACCA AAGTC	GATTGC TCTCAGTGG	T GTTTACGACG	CACGITICIT	TGTCGGTGAT	3720
TACTACAACG ATGAT	IGCTAT TTACCAAAA	C TCGCCAGTAG	ATTATATTTG	GAACCAAAAC	3780
GACGGCTGGT TTATT	IGACCG TTACCGTCA	G GCAGAGATTG	TGCTGTGTAC	GGGGCTTGGA	3840
GCCTGGGAAC AAGAT	GGTTT GCCATCCTT	T TACAAGCTCA	AAGAAGCCTT	TGACAAGAAA	3900
CAAATTCCAG CCTGG	GTTTGC TGAATGGGG	A CATGATGTCG	CCCATGACTG	GGAATGGTGG	3960
CGTAAACAAA TGCCT	PTATTT CCTCGGTAA	T CTCTATTTAT	AAAAGGAGTT	ACCTATGAAT	4020
TACCTTGTTA TTTCT	CCCTA CTATCCACA	A AACTTTCAAC	AGTTTACCAT	CGAACTAGCT	4080
AATAAAGGCA TCACA	AGTCTT GGGAATTGG	T CAAGAGTCTT	ACGAGCAATT	GGATGAGCCC	4140
TTGCGCAATA GCTTG	GACCGA GTATTTCG	T GTTGATAATC	TTGAGAACAT	AGATGAAGTC	4200
AAACGTGCAG TTGCT	TTTTCT CTTTTATAA	A CATGGTCCAA	TTGGCCGCAT	CGAGTCTCAC	4260
AATGAATACT GGCTT	TGAGCT AGACGCAAC	A CTCAGAGAAC	AATTCAATGT	TTTTGGTGCC	4320
AAACCAGAGG ATCTC	CAAAAA GACGAAATA	T AAGTCTGAAA	TGAAGAAACT	TTTCAAAAAA	4380
GCAGGTGTTC CTGTC	GTACC TGGAGCTGT	T ATCAAGACGG	AAGCAGATGT	TGATCAAGCA	4440
GTGAAAGAAA TCGGT	TCTTCC AATGATTGC	C AAACCTGATA	ATGGAGTGGG	AGCAGCCGCA	4500
ACCTTTAAAC TTGAC	GACAGA AGACGATAT	C AATCACTTCA	AGCAAGAATG	GGACCATTCA	4560
ACCCTTTATT TCTTI	IGAAAA ATTTGTCAC	T TCCAGCGAAA	TCTGTACCTT	TGACGGGCTC	4620
GTGGACAAGG ATGGA	AAAGAT TGTCTTCTC	A ACAACCTTTG	ACTACGCCTA	TACACCGCTT	4680

458 GACCTCATGA TTTATAAGAT GGACAATTCT TATTATGTGC TCAAGGATAT GGATCCTAAA 4740 CTGCGCAAGT ATGGGGAAGC AATTGTCAAA GAATTTGGTA TGAAAGAACG GTTTTTCCAT 4800 ATTGAGTTCT TCCGTGAGGG GGACGATTAT ATTACCATCG AGTACAATAA CCGCCCTGCA 4860 GGTGGTTTTA CCATTGATGT TTATAACTTT GCTCATTCCT TGGACCTTTA TCGTGGCTAT 4920 GCAGCTATTG TCGCAGGAGA GGAGTTCCCG GCGTCAGACT TTGAAACTCA GTATTGTTTG 4980 GCTACTTCTC GCCGTGCAAA TGCTCACTAT GTTTATTCAG AAGAGGATTT GCTTGCCAAA 5040 TATAGCCAGC AGTTCAAGGT TAAAAAAGTC ATGCCAGCTG CCTTCGCGGA ACTTCAAGGA 5100 GATTACCTGT ATATGCTGAC CACTCCGAGT CGACAAGAAA TGGAGCAGAT GATTGCAGAT 5160 TTCGGACAAC GTCAAGAATA AGAACTATCG GATTAAGGAA ATTAACTCCC TTAATCCTTT 5220 TGTTTTGTCT GATAAAAAAT AAGAGCATCC CAACAAGGTA GCTATCATAA AACTTGTTCG 5280 ATAACTATTT GAAGCAGGAT TAGGTGGTCA GAAATTAAAT TTTAATATTT CAATTGAGTC 5340 ATAGTATTGT GTTTGCGTAT CCTTAAATCA GCTAAAAGGA TCCATGACGA CACCTATACG 5400 ATATAGTTTT CAAGATACCA AACAAGTCTA TTAATATTCA ATGAAAATCA AAGAGCAAAC 5460 TAGGAAGCTA GCCGCAGGTT TCTCAAAACA CTGTTTTGAG GTTGTGGATA GAACTGACAG 5520 AGTCAGTATC ATATACTACG GCAAGGTGAA GCTGACGTGG TTTGAAGAGA TTTTCGAAGA 5580 GTATAAAATA TTCAGGTGAC GCATAGATAT AGTTAATTGA AGCTTTGTTT GAAATCTGAT 5640 AAAATAATGA TATTACTAAG TTTTAAAAAC TAAAGAAAAG GGAAGATATG ATTACAGGCG 5700 AATTAAAAAA TAAAATCGAT CAGCTGTGGG AAATTCTTTG GACAGAAGGA AACGCAAATC 5760 CTTTAACAAA TATTGAACAG TTGACTTATC TCTTATTTAT GAAAGATTTG GATAGTGTCG 5820 AGCTTGGACG TGAAAGTGAT GCTGAATTTC TAGGGATTCC TTATGAGGGA GTTTTTCCAA 5880 AAGATAAACC TGAATACCGT TGGTCAACTT TTAAAAATAT AGGAGATGCT CAGGAAGTTT 5940 ATCGTTTAAT GACTCAGGAG ATTTTTCCGT TTATTAAAAA TCTCAAGGGG GATACAGATG 6000 ATACAGCCTT TTCACGATAT ATGCGAGAAG CTATTTTTCA AATAAATAAA CCTGCTACGC 6060 TTCAAAAGGC AATTTCTATC TTAGATGTTT TTCCAACTAG GGGATTAGAT GTAGATTTTG 6120 ATAATGACAA ACAAAGTATT ACTGATATCG GAGATATCTA TGAATATCTG TTATCAAAAT 6180 TGTCGACCGC AGGTAAAAAT GGACAGTTCC GTACACCTCG TCACATCATC GATATGATGG 6240 TTGAGTTGAT GCAACCGACT ATCAAAGATA TCATCTCAGA TCCCGCTATG GGTTCTGCTG 6300 GCTTCTTAGT ATCTGCTAGC CGTTACTTAA AGCGTAAGAA AGATGAATGG GAAACCAATA 6360 CAGATAATAT CAATCATTTT CATAATCAGA TGTTTCATGG AAATGATACG GATACGACTA 6420 TGTTGAGACT TGGGGCGATG AACATGATGC TACATGGAGT AGAAAATCCA CAAATCAGTT 64B0

ACCTTGACTC	GCTGTCTCAA	GATAATGAAG	AAGCCGATAA	ATATACTTTG	GTTTTAGCAA	6540
ATCCTCCTTT	TAAGGGCTCA	CTTGACTACA	ATTCAACCTC	TAATGACCTT	CTTGCAACCG	6600
PAAAAACCAA	AAAAACAGAA	TTACTCTTTC	TTTCTCTTTT	CTTGCGAACT	TTAAAACCAG	6660
GTGGACGAGC	AGCAGTTATC	GTACCTGATG	GTGTCCTTTT	TGGTTCGTCT	AAAGCTCATA	6720
AAGGAATTCG	TCAGGAAATT	GTAGAGAATC	ATAAGCTTGA	TGCTGTAATC	TCAATGCCTA	6780
CTGGTGTGTT	CAAGCCTTAT	GCTGGAGTTT	CAACTGCCAT	TCTCATCTTT	ACAAAAACTG	6840
CTAATGGTGG	TACTGACAAA	GTCTGGTTTT	ACGATATGAA	AGCGGATGGT	TTAAGTTTGG	6900
ATGATAAGCG	ACAACCGATT	AGCGACAATG	ATATTCCAGA	TATTATCGAA	CGCTTTCATC	6960
ATCTTGAAAA	AGAAGCAGAA	CGTCAGAGAA	CGGATCAATC	TTTCTTTGTT	CCAGTTGCTG	7020
<b>AGATAAA</b> GGA	AAATGATTAT	GATTTGTCTA	TCAATAAATA	TAAAGAGATT	GAGTATGAAA	7080
<b>AAGTTGAGTA</b>	TGAACCAACA	GAAGTCATAT	TAAAGAAAAT	CAATGATTTA	GAAAAAGAAA	7140
TCAAGCTGG	CTTGGCTGAA	TTGGAAAAAT	TACTCAAGTA	GGGAGGTGGC	TGTATGAAAA	7200
AAGTGAAGTT	GGGGGAAGTC	TTATCTCTAA	AAAAAGGCAA	GAAAGCCACT	GTACTTGCTG	7260
<b>AACAAACAA</b> C	TCTAAGCCAA	CGTTATATTC	AAATAGATGA	TTTAAGAAAT	TTAATAATA	7320
DADTTAAAAT	TGAAAGTTTA	AATATGACTG	AAGCACTCCC	AGATGATATT	CTGATAGCAT	7380
GGATGGAGC	TAATGCAGGA	ACAGTTGGTT	ATGGATTATC	GGGAGCTGTT	GGTAGTACAA	7440
TACGGTCTT	AAAAAAGAAT	GAGCGATACA	AAGAAAAAAT	TATATCAGAT	TACTTGGGAG	7500
<b>ICTTTTTGGA</b>	AAGTAAATCG	CAGTATTTAC	GAGATCATTC	AACAGGTGCA	ACAATTCCTC	7560
<b>ЧТТАААСАА</b>	GAATATATTA	CTTGATTTAC	AATTAGAATT	GCTAGGTATC	GAAGAACAAG	7620
AGAACATTAT	CTGTATTCTT	AATACGATTA	AAAGGCTTAT	TACTAAAAGA	AAATTTCAGT	7630
PAGATGAACT	AAACTTGCTC	GTCAAATCCC	GATTTAACGA	GATGTTTGGG	GAAAATAAAA	7740
<b>FATTTGAAA</b> G	CATTGATAAC	TTATTTGATA	TTATAGATGG	TGATAGGGGC	AAAAATTATC	7800
CTAAATCAGA	TGAGTTGTTT	AGTGAGGAGT	ACTGTTTATT	TTTAAATACA	AAGAATGTTA	7860
CTAAAAACGG	ATTTTCATTC	GATACAAAGC	AATTTATCAC	TAAAACAAAG	GATAAATTAC	7920
TTCGAAAAGG	CAAACTTGAG	CGTTATGATA	TAGTCTTGAC	AACAAGAGGT	ACTGTTGGAA	7980
NTGTAGCGTA	CTACGATGAA	TTAATAAAAT	ATAAACATTT	ACGTATAAAT	TCAGGTATGG	8040
<b>FAATATTACG</b>	TCCCAAGACA	CCAAATCTAA	ATCAGAAATT	TATTATCCAT	GTTTTAAGGA	8100
ATAATAATTA	TAGTCGAGTG	ATATCAGGAA	GTGCTCAGCC	TCAGTTACCA	ATTACAAAAT	8160
T444447	<b>ACTITION</b>	ריירררר בי	TACCCCTCCA	AAATCACTTC	CCACACTTTC	8220

460 TAGTCCAGGT CGACAAATCA CAATTTGCTT GTGAGATAGC TATAAAAGTG TGGAGAAATA 8280 GCTTGAAATT TAGTATAATA TAGCTAAACT ATTTGTTTAA AGTGAGAAAA AAATGGGAAA 8340 8400 TTTTAGCTTT CTTTTAAAAA ATGACGAATA TGAATCTTTT TCAAAACCTT GCATTGAAGC TGAGAATATG ATTGCTACAT CAACTGTGGC TACTGCCTTT ATGGCGCGTC GTGCTTTAGA 8460 GCAGGCTGTC CATTGGATAT ATAGTCACGA TTCATATTTA GAAGCTCCCT ATCGTGCTAC 8520 TCTATCTTCT TTAGTATGGG ATGATGATTT TAGGGATATC GTAGATTCTG AACTCCACAA 8580 GCAGATAGTT CTGTTGATTC GGTGGGGAAA CCATGCTGCT CATGGTGGTG AAATTAAGGA 8640 ACGAGAAGCG ATTTTAGCTT TGCATCATTT GTATCAGTTT GTTAATTTTA TCGATTATTG 8700 TTACAGCAAT GAGTTTGTGG AGCGTTATTT TGATGAGAAG TGCTTACCAC TTTCAGCAAA 8760 CATCAAATAC CGAGAAACTC CACAATCTAT GATAAAGTTA CAAGACAGTT TACCAGAACT 8820 GCCTGATTTT CATGAACAGA TGGCTGCTCA GTCCGTAGAA GTTCAAGAGA CTTATACTGA 8880 AAAACGTGAG ACTGCAGCGC AACGGCAAGA TGTGCCTTTC CATATTGATC AATTATCTGA 8940 GGCAGAGACA AGAAAGCTCT TTATTGATAT CGATCTCCGT TTAGCAGGAT GGATATTTGA 9000 AGAAAACTGT CGTGTTGAGA TAGCCGTTGA TGGTCTCAAG CACGGTTCAG GAATTGGTTA 9060 CTGTGACTAT GTACTTTATG GTAAAAATGG GAAAATTTTA GCGATTGTGG AGGCTAAAAA 9120 AGCCTCTGTC AATCCAGAAG TAGGGGAAGT ACAGGTCAAA GAATATGCTG AAGCTTTGGA 9180 GAAACATATC GGCTATCAGC CAATTTGCTT TATTACAAAT GGGTTGAAGC ACTATATACT 9240 TGATGGTCCG AACCGCCGCC AGATTGCAGG CTTTTACTCT CAAGAAGAAT TGCAATTAGT 9300 GATGGATAGA CGTCATCTTC AAAAACCGCT TGAGGATATT TCTAGTAAAA TTAGGGACGA 9360 TATTTCCGGG CGTCACTACC AAAAACATGC CATTGCAAGC GTTTGTGAAG CTTTCTCTGA 9420 TCATCGTAGA CAGGCACTTT TGGTTATGGC AACTGGGGCG GGGAAAACTC GTACAGCAGT 9480 TTCTCTAGTT GATATCTTAT CACGTCATAA CTGGGTAAAA AACGTTCTCT TCTTAGCCGA 9540 TAGAACTTCC TTGGTTAAGC AAGCATATGA TTCGTTTAGA AAATTACTCC CAGATCTTTC 9600 CGTTTGTAAC TTCTTAGAAG ATAAAGAAGG AGCTCAATCA AGTCGCATGG TCTTTTCAAC 9660 TTATCCGACC ATGATTGGAG CGATTAGTGG TCAAGAAGAA GTAAATCAAC GCCCTTTCAC 9720 TGTTGGGCAT TTTGACCTTA TCATAATTGA CGAATCTCAC CGTTCTATTT ATCAGAAATA 9780 CAAGTCCATT TTTGATTATT TTGATGCAAG AATTGTAGGC TTAACAGCTA CTCCGCGTCA 9840 AGATTTAGAT AAAAACACCT ATGGATTCTT TAATTTGGAG AATGGGGTTC CAACATATGC 9900

ATATGATTTG GAAGAGGCTG TTAAAGACGG ATATTTAGTA GCCTATCATT CTATCGAAAC

CAAACTGAAA CTACCTACGG ATGGTCTACA TTATGATGAT TTGTCCGAAG AAGAAAAGGA

9960

ACATTTTGAT	AGCAAATTTG	AAGACAATAG	CTGTGAAAAA	GATATTGATG	GGAGTGTATT	10080
TAATTCCTTT	ATTTTCAATA	AAAGTACAGT	AGAAATTGTT	TTAAATGAAC	TCATGACAAG	10140
AGGAATTCAG	ACAGCCTCGG	GTGATGAAAT	TOGTAAAACT	ATTATTTTT	CTAAAAATCA	10200
TGATCATGCG	GAATATATCA	GAGGTATTTT	TAACAACCGC	TATCCTGAAA	AAGGGAGCGA	10260
CTATGCTCAG	GTGATTGATT	ATAGTATTAA	GCATTATCAG	ACCTTGATTG	ATGATTTTAA	10320
AATTAAGGAG	AAGTATCCTC	AAATTGCGAT	TTCTGTCGAT	ATGTTAGATA	CAGGTATTGA	10380
TGTACCAGAG	GTTGTTAATT	TAGTCTTCTT	CAAGAAAGTA	CGCTCTAAAA	CTAAGTTTTG	10440
GCAGATGATT	GGTCGAGGAA	CCCGTCTATG	TAAAGATTTA	TTTGGACCTG	AGCAGGATAA	10500
GGAAAACTTC	TTGGTATTTG	ATTATGGGGA	CAATTTTGAT	TATTTTCGTG	CAGATCCAAG	10560
AGATGGAGAG	GGTCGTCACA	TTGTTTCGCT	GACTCAGCGT	TTATTTAATA	TCAAAGTGGA	10620
CTTGATTCGA	GAACTTCAGG	GACTCCAATA	CCAAGAAGAT	CAGTTTGCGA	GAGCATACCG	10680
TCAGCAGCTT	GTCTCGGAAC	TTCAAGGTCG	TATAGAGAGC	TTAAATGAGT	TGGACTTCAG	10740
GGTTCGTATG	GTTTTAGATA	CAGTTTATAG	CTATAGGAAA	TTGGAAAGTT	GGCAGAATCT	10800
AACTGCTGTT	ACAAGTGAAA	CCATTCAAAA	AAATCTCTCT	CCGCTTTTAT	TTGATGAAGA	10860
TAAAGAAGAT	GAGATGGCGA	GGAGATTTGA	TTTGTGGTTG	CTTCATATTC	AGTTGGGGCA	10920
ACTGACAGCT	AAATCTTCCA	CTGTTCATAT	TTCCCAAGTG	ATGAAGACGG	CTAGAGCTCT	10980
TTCTGCTATT	GGCAATATCC	CGCAGGTTTT	TGAGCAGCCT	GAAATTATCA	GGAAAGTACA	11040
GGAGCCTGAA	TTTTGGAAAG	AAGTTAACTT	GTCTGATTTG	GAAAAAATTC	GTCTTGCTAT	11100
TCGAGATTTA	TTACAGTTTT	TGGATAAAAC	AGACCGTAAA	CCCTACTATG	TTAACTTTGA	11160
AGATCGTATA	CTCTCCACTG	TTCACGAGAC	CACAGCATTT	TTGCAGGTCA	ACGATCTTCG	11220
GTCTTACAAT	GAAAAAGTTG	AGCATTATTT	GAAAACTCAT	CTGGATGAGG	AGTCCATTTC	11280
TAAGCTATAC	CATAATAAAA	AGTTGACATC	TGATGATATG	CTTGCACTTG	AAAAATTGCT	11340
TTGGGAAAAA	TTAGGTAGTA	AAGCAGACTA	CCAAAGTCAT	TATGAAAATA	AGGCAATTCC	11400
GAGATTGGTT	CGTGAGATTA	TTGGCTTAGA	TAGAGAGTCT	GCCAATCGTA	TTTTTCTAA	11460
ATTTTTGTCG	GATGAGAATC	TTAATGCCAG	GCAGATTTCA	TTTGTAAAAT	TGATTGTAGA	11520
CTACATTGTA	GAAAATGGTT	TTTTAGAGAC	GAAAGTGTTA	ACGCAAGAGC	CGTTTAAATC	11580
TTATGGTTCT	GTTCAACTAC	TCTTCCAACA	CCAACTACCA	GTACTTCGTA	ATATTGTTCA	11640
AATCATTGAA	CTTATCAATA	ATCGAGCTGG	AGAAGCGGCT	таааттстаа	AGTGATTGCC	11700
ATGCTGAGAC	TCATTTAAAA	TTAAAAAGAG	TAGAAATTTA	TGCTATATAT	GAGAAGTTTT	11760

ATTAGGA AGA	ATGTCATCGT	ተተተ <b></b> ርርጥልGAA	462 TACAGTATCA	GTTGTTAAGT	GGTTGATAAA	11820
	GATACTTGTA					11880
	AAGAAATAGA					11940
						12000
	TCAATGAAAA					12060
	GAGGTTGCAG					
					TTGATACTAT .	12120
	ATGTTAAAGA					12180
	ATTCTTCAAA					12240
TTTTGAGCAG	TATCTGCATC	TTCACAGATG	ATAAGACAGA	CATCATTACC	ACAAAGGGTA	12300
GCGATAGCGT	CAGGGAAGCT	CAAAGTATCA	ATGATAGAAC	CAAAGGATTG	AGCCAGTCCA	12360
GGAAGGGTTT	TTAGTAGGAC	TTGGTGTTGA	ACTGGGCGCA	TCCAGACAAG	GGCGTCTTCC	12420
ATGTAGAGTT	CGAGACGTTT	TTCCCATTTT	GAGATGGAAC	CATTGTTAAG	AACATAATAA	12480
GCGCTATCTT	CTTCGCGGAC	TTTTGATAGG	TTCATATTTT	TGATGTCGCG	TGAGAGGGTT	12540
GCCTGGGTTA	CTTGAATGTC	GTTCTCAGCA	AGAAGGGCTT	GCAACTCAGC	CTGTGTATGA	12600
ATCTTGTTTT	TTGTGATAAG	AGCGCGTATA	AGTTGGTGGC	GGTGTTCTGA	TTTATTCATA	12660
ATAATGTAAG	TCCTTTTAGC	AAGGTAAGGT	AAGCATGGAC	TGAGCGAGGT	CGACAGTCAA	12720
GTGGTAGTCT	GTATTGTCAC	GGATGGTGAT	TTCAAAGTCA	GTAGTATAGA	GGACTAAACG	12780
GAGAGTGTCT	ССТТСТТТТА	GCTTGTAAAT	AGTTGGCTGC	AGTTCAAATT	GAACGTCCAT	12840
CCATTCATCT	GCAGTAATAT	CCTCTACTAA	CAGTAAATCA	TTTCTATTTT	GTAAATTAAG	12900
GTAACCTTTT	GTCACGACTC	GTTGTGCCTC	TGGTCTAAAT	GGCAATTCAC	AGAGATTITC	12960
CAACATGTG	TAGCGACCGT	TGTCAATGGT	TCTAGCACTT	AAAATAGCTG	GATA <b>AGGTT</b> G	13020
TAGGTATTT	TTTTGCCCAA	ATTCTAGCAG	TTGGGCAGAT	AAGAGCCCCT	TGTTTGTACT	13080
					TAGTCACAGG	13140
					AGGTTTGGTA	13200
					CTIGCTCTTC	13260
					GTGATAACCA	13320
					CTGTTTCCTG	13380
					A TTGATTGCCA	13440
					A TATGAGTAGG	13500
					r GAGAACCATG	13560
AAGAGCATG	G AACATCTGG1	r AAACATGAAG	TGGTTTGAC	A TICCAMICC	GADAACCAIG	13300

AGTAAAGACA	ACCTCTGCCT	TTACTTTATG	GGCATTGAGC	AGATAATTGC	GGTCATGCCA	13620
AAACTGATTG	TAGTCCCCAG	TTTTTCGGTC	TAGCTGAGCT	TTCACTTTTT	CTAAGTCAGC	13680
TTGGTGAGCT	TCATTGCCAC	GGATATAGTC	GCCAGCTAAG	AGATTACGAG	AATAGGTTAA	13740
CTCAGCAAGG	GAGTCAAAGT	CCTCACCTGG	ATAACCACCT	GGGCTAGTCA	CCAGACCGTT	13800
TTCACGGTAG	TAGTTGTACC	ATGATGAAAT	TCCTGCCTCG	GCAATGATAA	CTTCTAAACC	13860
ATCGACTCCT	GTAGTCGCAA	GACCATTGGA	CATGGTACCT	AGATAGGAAA	GTCCTGTTGT	13920
AGCAACTTTT	CCGTTTGACC	AATCAGCCTT	GACTTGACGC	TGGCGCGTGT	GATCAGTAAA	13980
GGCACGGCAA	CGACCGTTAA	GCCAATCGAT	GACATTTTTA	TAAGCCTCGA	TTTGCTGGTA	14040
GTCTCCATTA	GTCATGAAAC	CTGTCGAGTC	TTTGGTACCA	ACACCTGAGA	CATAGAGATT	14100
GGCAAAGCCT	CTCGGAAGGA	AGTAGTCGTT	TAGTGTATAG	CTAGAGTTGA	TGTGAGTTAG	14160
CTTTTCCTCA	GCCTCTGCTA	TAAGCTCAGC	TTTACCTTGG	GGTTGGACGA	GATTTAGTTG	14220
AGGTTTCTCT	AGCTCAATCT	TGTGAGGAAG	CTTAACCTCA	AGCTCGCCCT	CCATCTTGTA	14280
GAGAGCCTTG	TCACTAGCCT	TGTCATTGGT	TCCCTGATGA	TAAGGGCTGG	CTGTCATGAT	14340
GGCAGGGATT	TTTCCATCAA	AACGAGGGCG	AATAATGCTA	ACCTTTACTA	GGTCTGATAG	14400
CCCTTTTTGG	TCAGTATCGA	CACGAGACTC	AACGTAAACG	ACTTCACGAA	TGACATCCTG	14460
GTTAGAAAAA	GTAGCCAAAC	TCTTGCCGTT	AAAGTAGTGG	TAGTCATTAT	CCTCCGGAAT	14520
AAGACCATCA	CTAACAAGTT	CGTCGATAAG	AGTATTTCCT	TTTTTGGTGC	GAGTATTGAG	14580
TAACTGATAG	AGATTTTCAA	TCAAGTCACC	ATATATAATG	GGAAATCCAG	TTTCTTTACG	14640
AAAAACGTCA	CTATCTTCGA	AGTCAACCAA	ATAAGAAAAG	CCTAAAAGTT	GAAAAGCAAC	14700
AGTATAAAAA	ATATCTCCTG	TCAGTTCATC	TTCTGATTGA	AAAAATGTCA	GCAGGTCTGT	14760
TTTTTTATCA	GCTGCTAGGA	TAGAAAGTGG	GTAGTTGGTG	TCTTGATAAG	TGAAAAAGAA	14820
ACGACGTAAA	AAGGTTTCAA	GTGAGTCTTT	GTGATTGGCT	GTATTTTGTA	AATCAAAGCC	14880
ACATTTTTT	AGTTCAGATA	AGACATTTTC	TTTTGGAAAA	TTGATATAAC	TATATTGATT	14940
AAAACGCATA	GAACCTCCAT	ATAGAATGAC	AGTTAAGGTT	ATTATATCAA	AAAAAAAGCA	15000
Gaaagggaat	TGTTAACTTC	AAAAGGAAAT	AATCCAATAA	AAATGAATAA	AGTACTAAAT	15060
<b>CAATATAGA</b>	GAACAGAGTA	ACAATAAGAA	TAAATAGATA	GGGTATAAAA	GTTCTAGGAG	15120
attatatta	TATGCTTTCT	ATTTTTATAT	ACAATATAGT	ATAAATATAA	AAATGATGAC	15180
AAAAATACAA	ATGAATAGAA	AATAAATTAG	TAAGCTGATG	AAATTTTTCT	CAAGAGAAGC	15240
CATTTATAGG	TGAAAATGGT	ATAATATAGT	GAGAAGGATA	GAGGAGAAGT	GTAAATTGAT	15300

464 CGCACAACTA GATACAAAAA CAGTCTATAG TTTTATGGAA AGCGTCATTT CGATCGAAAA 15360 GTATGTGAGA GCAGCTAAAG AATACGGCTA CACTCATTTG GCTATGATGG ATATTGACAA 15420 TCTTTATGGC GCTTTCGACT TTCTAGAGAT TACAAAAAA TACGGCATTC ATCCTTTGCT 15480 AGGGCTTGAA ATGACAGTGT TTGTAGATGA TCAGGGAGTG AATTTGCGCT TTTTAGCTCT 15540 ATCTAGTGTG GGCTATCAGC AGTTGATGAA GCTTTCGACA GCCAAGATGC AGGGGGAGAA 15600 AACTTGGTCA GTCCTGTCCC AGTACCTGGA GGATATCGCG GTCATTGTGC CTTATTTTGA 15660 TAGAGTTGAG TCGTTAGAAC TAGGCTGTGA TTACTATATA GGGGTTTATC CAGAAACACT 15720 AGCAAGCGAA TTTCATCATC CTATCTTACC TCTTTATCGG GTCAACGCTT TTGAAAGCAG 15780 GGATAGAGAA GTTCTTCAAG TTTTAACAGC GATTAAAGAA AATCTACCGC TCAGAGAAGT 15840 TCCCTTGCGT TCGAGACAAG ATGTCTTTAT ATCAGCAAGT TCTTTAGAGA AACTATTCCA 15900 AGAGCGTTTT CCGCAAGCTT TGGACAATTT AGAAAAGCTT ATTTCAGGCA TTTCTTACGA 15960 CTTGGATACT AGTCTGAAAC TGCCTCGTTT TAATCCAGCT AGACCAGCAG TAGAGGAGTT 16020 GAGAGAGCGT GCTGAACTGG GGCTTGTTCA GAAGGGGTTG ACTAGTAAAG AATATCAAGA 16080 TAGACTAGAC CAAGAATTGT CTGTTATTCA TGATATGGGC TTTGATGATT ATTTCTTGGT 16140 TGTTTGGGAT TTGTTGCGTT TTGGACAATC GAATGGCTAT TATATGGGAA TGGGAAGGGG 16200 TTCTGCAGTA GGCAGTTTCG TTTCTTATGC CTTAGACATC ACGGGGATTG ACCCAGTAGA 16260 GAAAAATCTG ATTTTTGAAC GCTTTCTTAA TCGTGAACGC TATACCATGC CTGATATTGA 16320 16380 TATTGATATC CCAGATATTT ATCGTCCAGA TTTTATCAGA TATGTTGGTA ATAAATATGG TAGTAAACAT GCGGCACAAA TCGTTACTTT TTCAACCTTT GGAGCCAAGC AAGCTCTTCG 16440 AGATGTCTTG AAACGCTTTG GTGTGCCAGA GTATGAATTA TCTGCAATTA CTAAGAAAAT 16500 CAGTTTTCGT GACAATCTTA AGTCGGCCTA TGAGGGAAAT CTCCAGTTTC GTCAGCAAAT 16560 CAATAGTAAG TTAGAATACC AAAAAGCTTT TGAGATTGCT TGCAAGATAG AGGGCTATCC 16620 AAGGCAAACC TCTGTCCATG CGGCTGGTGT TGTAATTAGT GACCAAGATT TAACCAACTA 16680 CATTCCTCTA AAGTATGGTG ATGAAATTCC ACTGACTCAG TATGATGCTC ATGGAGTTGA 16740 GGCTAGCGGA CTTTTGAAGA TGGACTTTCT GGGACTACGA AATTTGACCT TTGTCCAGAA 16800 GATGCAAGAG TTGCTTGCTG AAACAGAAGG TATTCATCTG AAAATTGAAG AAATCGATTT 16860 AGAAGACAAA GAAACGTTAG CTTTATTTGC CTCTGGTAAT ACAAAAGGTA TCTTTCAATT 16920 TGAGCAACCA GGTGCCATTC GTCTGCTTAA GCGTGTGCAA CCAGTCTGTT TTGAAGATGT 16980 CGTCGCGACT ACTTCTCTAA ATCGACCGGG TGCTAGTGAC TATATCAATA ATTTTGTGGC 17040 AAGAAAGCAT GGGCAGGAAG AAGTGACTGT TCTGGATCCA GTACTGGAGG ATATTTTGGC 17100

TCCAACCTAC	GGCATAATGC	TCTATCAGGA	GCAGGTTATG	CAGGTTGCCC	AGCGACTTGC	17160
CGGATTTAGT	CTTGGGAAAG	CCGATATTTT	CCCTCGGGCT	ATGGGGAAAA	AGGATGCCTC	17220
TGCCATGCAT	GAGATGAGGG	CTTCCTTTAT	TCAAGGTTCA	TTAGAAGCTG	GTCATACTGT	17280
GGAAAAAGCA	GAGCAGGTCT	TTGATGTTAT	GGAGAAGTTT	GCAGGTTATG	GTTTTAACAG	17340
GTCACACGCC	TATGCCTACT	CAGCCTTGGC	CTTCCAGTTG	GCTTATTTCA	AAACGCATTA	17400
TCCAGCCATT	TTTTATCAGG	TCATGTTAAA	TTCTTCCAAC	AGTGATTACT	TAATAGATGC	17460
ACTTGAAGCA	GGTTTTGAAG	TAGCCTCTCT	ATCCATCAAC	ACCATTCCCT	ATCACGATAA	17520
AATTGCCAAC	AAGGCCATCT	ATCTAGGTTT	GAAATCCATT	AAAGGAGTCA	GTAATGATTT	17580
AGCTCTCTGG	ATTATTGAAA	ATAGACCTTA	TTCTAACATT	GAAGATTTTA	TAGCTAAATT	17640
ACCTGAGAAT	TATCTGAAAC	TTCCTCTGCT	AGAACCTTTG	GTAAAAGTTG	GTCTTTTCGA	17700
TTCATTTGAA	AAAAATCGTC	AAAAAGTATT	TAATAACTTA	GCTAATCTAT	TTGAATTTGT	17760
GAAAGAGTTG	GGAAGTTTGT	TTGGAGATGC	TATTTATAGT	TGGCAGGAAT	CGGAAGATTG	17820
GACGGAACAA	GAAAAATTTT	ATATGGAACA	AGAGCTTTTA	GGGATAGGTG	TCAGCAAACA	17880
TCCACTACAA	GCTATTGCAA	GTAAGGCTAT	TTACCCGATT	ACCCCAATCG	GAAATTTGTC	17940
AGAAAATAGC	TATGCTATTA	TCTTGGTTGA	AGTTCAGAAA	ATAAAAGTGA	TTCGTACCAA	18000
AAAGGGTGAA	AATATGGCCT	TCTTACAGGC	AGATGATAGT	AAGAAAAAAT	TGGATGTCAC	18060
TCTCTTTTCA	GACTTATATC	GTCAGGTTGG	ACAGGAAATA	AAAGAGGGAG	ССТТСТАСТА	18120
TGTAAAAGGA	AAAATACAAT	CACGTGATGG	CCGTCTGCAA	ATGATTGCAC	AAGAAATAAG	18180
AGAAGCAGTT	GCTGAACGCT	TTTGGATACA	GGTGAAAAAT	CATGAATCGG	ATCAAGAAAT	18240
TTCACGCATT	TTAGAACAAT	TTAAAGGCCC	AATCCCAGTC	ATCATCCGGT	ATGAAGAGGA	18300
ACAGAAAACC	ATCGTTTCTC	CCCATCATTT	TGTAGCTAAA	TCCAATGAAT	TAGAGGAGAA	18360
ATTGAATGAA	ATCGTTATGA	AAACGATTTA	TCGCTAAAAA	TACGGAAAAT	AGAAGAATTT	18420
TCAACGTAAA	TGTGGTATAA	TCAGTAAGAA	TGTTAAAAGA	AAAAGGAGCA	TAACCAATAT	1.8480
GAAACGTATT	GCTGTTTTGA	CTAGTGGTGG	AGACGCCCCT	GGTATGAACG	CTGCCATCCG	18540
TGCAGTTGTT	CGTCAAGCAA	TTTCAGAAGG	aatggaagtt	TTTGGTATCT	ATGACGGATA	18600
TGCTGGTATG	GTTGCCGGTG	AAATTCATCC	CCTAGATGCA	GCTTCAGTAG	GGGACATCAT	18660
TTCTCGTGGT	GGTACTTTCC	TTCACTCAGC	TCGTTACCCA	GAGTTCGCTC	AACTTGAAGG	18720
GCAACTTAAA	GGGATTGAGC	AATTGAAAAA	ACACGGAATT	GAAGGTGTAG	TTGTTATCGG	18780
TGGTGACGGA	TCTTACCACG	GCGCTATGCG	TTTGACTGAA	CATGGCTTCC	CAGCTATTGG	18840

466 TCTTCCAGGT ACAATCGATA ACGATATCGT TGGTACTGAC TTTAC: TCG GTTTTGACAC 18900 AGCGGTTACT ACTGCCATGG ACGCTATCGA TAAGATTCGT GATACATCAT CAAGTCACCG 18960 TCGTACTTTT GTAATCGAAG TTATGGGACG TAACGCTGGT GATATCGCTC TTTGGGCTGG 19020 TATTGCAACT GGTGCTGATG AAATCATCAT CCCTGAAGCA GGCTTCAAGA TGGAAGATAT 19080 CGTAGCAAGC ATCAAAGCTG GTTATGAATG TGGTAAAAAA CACAATATTA TCGTCTTAGC 19140 TGAAGGTGTG ATGTCAGCGG CTGAATTTGG TCAAAAACTT AAAGAAGCTG GAGATACAAG 19200 19260 CGACCTTCGT GTAACAGAAC TTGGACATAT TCAACGTGGT GGTTCTCCAA CTGCGCGTGA CCGTGTTTTG GCGTCACGTA TGGGTGCACA TGCTGTTAAA CTTCTTAAAG AAGGTATCGG 19320 TGGTGTTGCG GTTGGTATTC GTAACGAAAA AATGGTTGAA AATCCAATTC TTGGTACTGC 19380 AGAAGAAGGG GCATTGTTTA GCCTTACTGC AGAAGGTAAG ATTGTGGTTA ACAACCCAGC 19440 19446 TACAAA

### (2) INFORMATION FOR SEQ ID NO: 52:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 16593 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

60 TCGTAAATAT GCTCTGTTTT TGGATTTTGT TTCTTAATCT GTTTGGCAAG TGCCTTCATC ATAGAAATAG GACCACACAT ATAGACGGTT GCATGTTCGG GCACTTCTTT TTGTTCAAAA 120 TTAAGATAGC CGTCTTTCGT ACTGTCGATT AGATGGAGTT CAAAATTAGG ATTTTTCTGA 180 GCATAGTTAC GGAGTAAATC TAGGTAGACT GCATTTTCAT CTCCACGGAA GCTATAGTAG 240 AAGTGAACCT GTTTATCTAA AATAGGATGT TCACGGATGT AAGAGATGAA GGGCGTGATC 300 CCAATACCTC CAGCAATCCA AACCTGATTT TCTCGTCCTT CTTCTATGAT CATGTGTCCG 360 TAAGCTCTGT CTAGGGTTAC TTTGCTGCCG GCTTGAAGAT TATCATAGAT ATTCTTGGTA 420 TGGTCGCCTG AAGTTTTAAC AGTAAAGTAA AGAGTTTGAC CATGACCTCC TGAGATAGAA 480 540 AAGGGATGCG GAGCACTTTC AAAGCCTTCT TGGAAAATCT TTAGAAAGGC AAATTGTCCT GATTGATAGT TGAAAGGTCT GCTAAGATGG ATTTGAATTT CTCTAGTATC GTGATTTAAG 600 660 CCTTTGAGAT GGGTAATTTT CCCTAGATAG GGGAAGGAAA TCTTTTGATA TAGAAAAATG ATATAAAAAC CAGCTAGTAA GCCTAAAAGG GCATAGCTAC CAACAAGAAA ACTTAGAAGA 720 TTAAATGTAA GGAGACGATT GCCCATTATC ATGTAGATGT GAAAGAGTCC TAAAATATAG 780

GCTAGGTAAA	CCAGGCGGTG	AATCCATCGC	CAAGCTTCGT	ATTGGATGTA	TTTGCCTAAA	840
TAGGCGACAA	GGATGATGCT	GGCAAAGATA	TAGATGGCAA	GATTGCCAAA	CTGAGCAGCT	900
AAGCGAGAGC	CCCACAAACC	GCCCATACTA	AAGTTATGAA	AGATTAGTAG	GATGATTGAG	960
AGAAAGGCTG	TGAATTTGTG	GACGGTGTAG	ACCTTCTCCA	AACTGTGAAA	CCAGCTTTCT	1020
AGTAGTGGGA	GACGAGTGGC	TAGGATAAAA	GTCAGAGATA	GGCTTGTTAA	AGCTAGTCCT	1080
GGAATCATGA	ATTGGGGAGA	AGTGTTCATC	CAAGTCAAAA	GAGTCAAGAT	AAAACTAGCT	1140
ATGATAAAGA	GTAGTCCTTT	GACTGATTTC	ATAGAAAATT	CCATTTCATT	TAGATTTCGA	1200
TTTGTTGTAA	ATAAATTTGT	TACATTTTAT	CATAGAAAAT	GTATGGTGTC	AAATTGAGGT	1260
CTATAAATAT	CTACTCTCAT	CAAAAAACTC	TCCAATTGAA	CTGGAGAGTG	GCTGTTTATA	1320
CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	GCTAGCCGCA	AGTTGCTCAA	AACACTGTTT	1380
TGAGGTTGCA	GATAGAGCTG	ACCTGGTTTG	AAGAGATTTT	CGAAGAGTGT	TATTCTGCAG	1440
CTTGTTGCCA	ACGTTTGGCT	AGCATATGAG	ACAGGCTAGA	AATTGCTAGG	TTAAAGCTGA	1500
AGTAGATGAG	GGCAATCAGG	<b>ATGTAAAGAC</b>	TGAAGACCTG	CTCTGGTTCG	AAATAACGGC	1560
CCATGAGAAT	TTGGCTGGCT	CCAAAGAGTT	CTTGTAGGGC	GATAACAGAG	TAGAGGAGAC	1620
TOGTATCCTT	AATCACGGTA	ACAAACTGAG	AAATGATGGC	TGGTAGCATT	TTGCGGATGG	1680
CTTGTGGGAG	AATGATGTAG	TAGAGGATTT	GGGCTGAGGT	GAAGCCTTGT	GACATTCCTG	1740
CTTCGTACTG	TCCCTTGTCT	ACGGCATTGA	GACCGCCTCG	AATAATCTCA	GCCAAGGCTG	1800
CTGATGTAAA	GAGAGTAAAG	GCTGTAATAC	CTGCTGGTGT	GGATTTCATT	TTGAACACCA	1860
AAAAGATAGT	AAAAATCCAG	AGAAGGTTGG	GAACGTTGCG	CACAAACTCG	ATATAAATAC	1920
TGGAAATAAT	GCGTAAGACA	GCATTTTTGC	CATTTCTCGT	GACAGCTAGC	ACCGTACCGA	1980
TGATAGTAGA	GAGGATGATG	GCAATCAGAG	AAATATAGAG	GGTCAAGCCA	AATCCTTTAA	2040
AGATAAAGAC	TAGGTTATCT	GGGGTTAAAA	CTTCTAAAAT	AGATTCCATA	GTAACCTCCT	2100
AAAGTGAATA	GGCTTTTTTG	TTGGCTTGCT	CCATCTTGCG	ACCAAACTGG	GCAACAGGGA	2160
AGCATAGAGC	AAAGTAGAGA	AGAGCAGCAC	CTAAAAAGGC	TGGTATATAG	TTTCCGTTGA	2220
GAGCCGACCA	AGACTTAGTC	ACAAACATCA	AGTCTACTCC	AGAGATGATA	GCTACAGTAG	2280
AGGTGTTCTT	GATGAGGTTA	ACAATTTGGT	TGGTCAATGG	AGGGAGAATG	ATGCGGAAGG	2340
CCTGAGGCAA	GATAATCAAG	CGCATGGCAC	TGATATAGGT	AAAACCTTGC	GACAAGGCGG	2400
CCTCCATCTG	ACCACTAGGA	ATAGACTGAA	TCCCTGAACG	AATAACCTCA	GCGATATAAG	2460
CGCCGTGATA	GAGTCCCACG	CAGAGAACGG	CTGTCCAATA	AATTGGAATC	ATGATGATAT	2520

468 GGTCACTGAT AAGAGGTAGG CCATAAAAAA CAATAACAAA CTGCACCAAG AGGGGAGTAT 2580 TTTGGTAAAA TTCAACAAAG ATGCGAGCTA AAATGCGTAA AATTGGACGT TTACTGGTTG 2640 ACATGGCACC AAAGAAGATG CCCAAAACCA TAGCGAGGAT AAAGGAACCA ACCGCTAGGG 2700 CAAGGGTGAA GAGGAAACCA TTGAAAAATT GTCCAAAATC CTGAAAATAG GCTGTCCAAG 2760 ATGATAAATC TGTCATGGGG TGTCCTCCTT AATCTGCAGT ATGGCTAGAT GGTTTGAGCT 2820 TGTAACGGTC ATAAAGTTTC TGCAAACTAC CATCCTTGCT CCATTTAGTA ACCAAGTTAT 2880 CAAGATAGTC GTTGAGCTCT GTATTTGATT TCTTGGTAAC AATACCGTAG TCAGATGGCT 2940 TGAAACTATC ATCTAGTAGT GCTGTCCGTT TACTAGTGTA GCCAGATAGA ATAGAGCGGT 3000 CAACGGAAAA GGTATCGATA CGATGAGCGT GCAGGGAAGT AATCAATTCT GGGTAGGAAC 3060 CAAGTTCGAC GAATTTAAAC TTCAGACCTT TCTTTTTACC CAGTTCAGTA ATCAGGCGTT 3120 GGGTGATAGA ACCTTGGGCG ACTCCGATGG TTTTGCCGTT TAGGTCCTCA ATCTTTTTGA 3180 TTTTGGCAGA TTTATTGACC AAAAATCCAG AAGCGTCTGT GTAGTAGGGA CTGGTAAAGT 3240 TGTAGAGTTT TTTGCGTTCG TCCGTGATGG TAAAGGTCGC GATATCCATA TCGACCTGTT 3300 CATTGTCTAG AAGGGGCCG CGGGTTTGTG CTGTAACCGG CACATAGCGA ATCTTGACCT 3360 TGAGTTCATC AGCTACCATC TTGGCCAAGT CGGTTTCGAT ACCAGAATAA GTACCGGTCT 3420 TGGGATCTTT GTAACCAAAA TTGGGAACGT CTTGTTTGAC ACCGACAACC AGTTCGCCTC 3480 TTTTTGAAT GTCTGCGATA CTTGTATCAG CCTGGACTGG TTTGGCAGCA GCAAGGCCGA 3540 AAAGGCTAAT CAATAATGCT GATAAAAAGA ATTTTTTTTC ATAGGCGCCT CCTTATTTGA 3600 CTTTGTCACT TTCGTGGTTG ATAATTTTGC TGAGGAATTG TTGGGCACGA GGTTCGCTTG 3660 GATTGTCAAA AAAGTTATCG ACATCTGTCG TATCTACTAA AACTTCTCCG TCGGCCATAA 3720 AGATAATGCG GTCCGCAACC TCTCGAGCAA AGCCCATTTC GTGGGTAACG ATGATCATGT 3780 TCATCCCATC ATGCGCCAGT TTCTGCATAA CTGCTAGAAC ATCTCCGATA GTCTCAGGAT 3840 CAAGAGCAGA TGTTGGTTCA TCAAAGAGGA GGAGTTCCGG ATGCATAGCA AGACCACGAG 3900 CGATGGCGAT CCGCTGTTTT TGTCCACCAG ATAGCATGGC GGGATAGGAA TCTTTCTTGT 3960 CCCACATATT TACAAATTCC AGATATTTTT GGGCGGTTTT TTCAGCTTCT TTTTTATCAA 4020 TTCCTAGAAC TTCAATGGGT GCAAGCGTTA CGTTTTCTAA CACAGCTTTG TGTGGATAAA 4080 GGTTAAAATG TTGAAAAACC ATGCCGACTT CCTTGCGAAG AGGTACCAAA TCTTTCTGGC 4140 TGGCACCAGC AACTTGGTGC CCATTGACTA GGAGACTTCC TTTGTCAACA GTCTCTAAAC 4200 CATTGATCGT ACGGATAAGA GTGGACTTCC CAGAGCCAGA AGGTCCAAGC AGGACAACAA 4260 CTTGTCCTTT TTCAAAACGG AGATTGATGT TGCGGAATGC GTGGTAGTCT CCGTAATATT 4320

TTTCGACGTT	TTTAAATTCT	ACTAAAGCCA	TGAGAGATCT	CTATTGTGTT	ATATTTTATA	438
ACACGGTTCT	ACAATAAAAG	AATGTTCTTG	TCAAATCATA	TCTGAAAAAA	TTCACTATAG	444
TGAAATAAGA	ACAGGAAAAA	TCGATCGGGA	CAGTCAAATC	GATTTCTAAC	AATATTTTAG	450
AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	TACTATAAAA	TGTTATAAAA	AAGCAATCTG	456
GATAGAGAAA	ACGTCTAAAT	CATGTTATAA	TGAAGCAATA	GAATTCTTAG	AAAGAGTGGA	462
TGTCTTTTTG	ATAACACCTA	CTTATGAATG	GCAGTTTGCC	CTGCAGGTAG	AAGATGCGGA	468
TTTTACAAAG	ATAGCCAAGA	AGGCTGGACT	GGGTCCTGAG	GTGGCTCGGT	TATTGTTTGA	474
GAGAGGGATT	CAGAACCAAG	AAAGTCTGAA	GAAGTTTTTA	GAACCTTCCT	TGGAGGACTT	480
ACATGATGCT	TATCTGCTCC	ATGATATGGA	CAAGGCAGTG	GAGCGGATTC	GTCAGGCTAT	486
TGAAGAAGGG	GAAAATATTC	TTGTTTATGG	AGACTATGAT	GCGGATGGCA	TGACTTCGGC	492
TTCTATTGTG	AAGGAAAGTT	TGGAACAACT	TGGTGCTGAG	TGCCGAGTTT	ACCTGCCAAA	498
TCGTTTTACC	GATGGCTATG	GCCCTAATGC	TAGTGTTTAT	AAATACTTTA	TCGAGCAAGA	504
AGGGATTTCC	TTGATTGTGA	CGGTGGACAA	TGGGGTTGCT	GGTCATGAGG	CTATTGCATT	510
GGCTCAGTCT	ATGGGAGTAG	ATGTCATTGT	GACAGACCAT	CATTCCATGC	CTGAAACCCT	5160
GCCAGATGCT	TATGCTATTG	TCCATCCTGA	ACATCCAGAT	GCGGATTATC	CTTTTAAATA	5220
TTTGGCTGGT	TGTGGAGTTG	CTTTCAAGTT	GGCTTGTGCC	CTGTTAGAAG	AAGTGCAAGT	5280
GGAATTGCTT	GATTTGGTCG	CTATTGGAAC	TATTGCAGAT	ATGGTGAGTC	TGACGGATGA	5340
AAATCGTATC	TTAGTTCAAT	ATGGTCTGGA	AATGTTGGGT	CATACCCAGC	GCATTGGTCT	5400
GCAAGAAATG	CTGGACATGG	CTGGGATTGC	TGCCAACGAA	GTAACAGAAG	AAACGGTTGG	5460
TTTCCAGATT	GCTCCTCGTT	TGAATGCCTT	GGGTCGCTTG	GATGATCCCA	ATCCTGCCAT	5520
TGATTTGTTG	ACTGGATTTG	ATGATGAGGA	AGCGCATGAG	ATTGCCCTTA	TGATTCACCA	5580
GAAAAACGAA	GAGCGCAAGG	AAATCGTTCA	GTCTATCTAT	GAAGAAGCCA	AGACCATCGT	5640
GGATCCTGAG	AAGAAGGTTC	AGGTCTTGGC	CAAGGAAGGC	TGGAATCCTG	GGGTTCTAGG	5700
AATCGTGGCT	GGTCGTTTAT	TGGAAGAATT	GGGACAGACA	GTCATTGTTC	TTAATATAGA	5760
AGACGGTCGT	GCCAAGGGCA	GTGCTCGTAG	TGTGGAAGCG	GTCGATATTT	TTGAAGCTCT	5820
GGATCCCCAT	CGAGACCTCT	TCATCGCCTT	TGGAGGTCAT	GCAGGTGCAG	CGGGTATGAC	5880
CCTCGAAGTT	GAGCAACTCT	CAGATTTATC	TCAGGTTTTG	GAAGATTATG	TTCGTGAAAA	5940
AGGTGCAGAT	GCTGGTGGCA	AGAATAAGTT	AAACCTAGAT	GAAGAGTTGG	ATTTGGAGGC	6000
3 CTTD 3 C CTTTC	C1110000000	1 1 1 COMMON C 1	1000001000			

				470			
AA	ACCTATT	TTTTATATCA	AGAATTTTCA	GGTCGAAAGT	GCTCGTACTA	TGGGGGCAGG	6120
AA1	TGCCCAT	CTAAAGCTGA	AAATTTCCAA	GGGTGAGGCG	AGTTTTGAAG	TGGTAGCCTT	6180
rgg	TCAAGGC	AGATGGGCGA	CAGAGTTTTC	TCAAACCAAG	AATCTAGAGT	TAGCGGTTAA	6240
TT	GTCTGTC	AACCAATGGA	ATGGCCAAAC	TGCCCTCCAG	TTGATGATGG	TGGATGCGCG	6300
AGT	GGAAGGT	GTTCAACTTT	TTAACATTCG	TGGAAAAAAT	GCAGTCTTGC	CAGAAGGTGT	6360
rcc	AGTCTTG	GATTTTCCTG	GAGAACTGCC	AAATCTTGCG	GCTAGTGAAG	CTGTTGTCGT	6420
<b>AA</b>	AAACATT	CCAGAGGATA	TTACTCAGCT	GAAGACCATT	TTTCAGGAAC	AGCATTTCTC	6480
rgc	TGTCTAT	TTCAAAAATG	ATATTGACAA	GGCTTATTAT	CTGACAGGTT	ATGGGACTAG	6540
AGA	TCACTTT	GCCAAATTGT	ACAAGACTAT	TTACCAGTTC	CCAGAGTTTG	ATATTCGCTA	6600
CAA	GCTGAAA	GATTTGGCTG	CATATCTTAA	TATTCAACAA	ATCTTGCTGG	TCAAGATGAT	6660
ГСA	lagtattt	GAAGAACTAG	GCTTTGTGAC	GATAAAAGAT	GGTGTGATGA	CAGTCAATAA	6720
AG#	GCCCCA	AAGCGGGAGA	TAGGAGAAAG	TCAAATTTAC	CAAAATCTCA	AACAAACCGT	6780
TA#	VAGACCAA	GAAATGATGG	CGCTGGGTAC	GGTGCAAGAA	ATTTATGATT	TTTTGATGGA	6840
<b>AA</b> A	<b>AAGAGTAG</b>	AAGTTAGGAA	AGAGTTGGGA	AATCAACTCT	TTTTTGAAAA	CAGACCTTCA	6900
TT	TGAAAAT	CATCAAAAA	ATOGTATAAT	GGTAGGAAAA	GATTCGGCTG	AAAGTATCAG	6960
AAC	TTTTAGA	ATAAGAGGGT	AGAATTGCCC	TATAATCAAG	ATAAACTAAG	ATTTTGGAGG	7020
AA	<b>Aaatgagt</b>	AATATCAGTT	TAACAACACT	TGGTGGTGTG	CGTGAGAATG	GAAAAAATAT	7080
GT/	ACATTGCT	GAAATTGGAG	AGTCCATTT	TGTTTTGAAT	GTAGGGTTAA	AATATCCTGA	7140
AA	ATGAACAA	TTAGGGGTCG	ATGTGGTGAT	TCCAAACATG	GATTACCTTT	TTGAAAATAG	7200
CG	ACCGTATT	GCTGGGGTTT	TCTTGACCCA	CGGGCATGCG	GATGCCATTG	GTGCTCTACC	7260
GT	ATCTCTTG	GCAGAGGCTA	AAGTTCCTGT	ATTTGGGTCT	GAGTTGACCA	TTGAGTTGGC	7320
AA.	AGCTCTTT	GTCAAAGGAA	ATGATGCCGT	TAAGAAATTT	AATGATTTCC	ATGTCATTGA	7380
TG	AGAATACG	GAGATTGATT	TTGGTGGGAC	ACTCCTTTCC	TTCTTCCCTA	CGACTTACTC	7440
CG	PTCCAGAG	AGTCTGGGAA	TTGTCTTGAA	GACATCGGAA	GGAAGCATCG	TTTATACAGG	7500
TG	ACTTCAAA	TTTGACCAAA	CGGCTAGTGA	ATCTTATGCA	ACTGATTTTG	CTCGTTTGGC	7560
AG	agattggt	CGTGACGCC	TCCTGGCTCT	CCTCAGTGAT	TCGGCCAATG	CAGACAGCAA	7620
TA'	TTCAGGTG	GCTAGTGAAA	GTGAAGTTAG	GGATGAAATT	ACCCAAACTA	TTGCTGACTG	7680
GG.	AAGGTCGT	ATCATCGTTG	CAGCTGTTTC	CAGTAATCTT	TCTCGTATTC	AGCAGATTTT	7740
TG.	ACGCTGCG	GATAAAACAG	GTCGACGTA1	CGTCTTGACA	GGATTTGATA	TTGAAAATAT	7800
~~	mcccc h c h			CTCTTTACCC	. አልርርልልልምምር	TTTTCATTAA	7860

GCCTAAAGAT ATGTCTCGCT TTGAAGACCA TGAGTTGATT ATTCTTGAGA CAGGTCGTAT	7920
GGGTGAGCCT ATCAATGGAC TTCGTAAGAT GTCGATTGGT CGCCATCGTT ATGTAGAAAT	7980
CAAGGATGGG GACCTAGTCT ATATTGCTAC GGCTCCGTCT ATTGCTAAAG AAGCCTTTGT	8040
TGCGCGTGTG GAAAATATGA TTTATCAGGC AGGTGGGGTT GTCAAATTGA TTACCCAAAG	8100
TTTACATGTA TCAGGGCACG GAAATGTGCG TGATTTGCAG CTGATGATCA ATCTTTTGCA	8160
ACCTAAGTAC CTCTTCCCTG TCCAAGGGGA GTATCGTGAG TTGGATGCTC ACGCTAAGGC	8220
TGCCATGGCA GTTGGGATGT TGCCAGAACG CATCTTCATT CCTAAAAAGG GGACGACCAT	8280
GGCTTACGAG AATGGAGACT TTGTTCCAGC TGGATCGGTT TCAGCAGGAG ATATCTTGAT	8340
TGATGGGAAT GCCATTGGTG ATGTTGGAAA TGTTGTTCTT CGTGACCGTA AGGTCTTGTC	8400
AGAGGATGGA ATTTTCATCG TGGCTATTAC AGTCAACCGT CGTGAGAAGA AAATTGTGGC	8460
TAGGGCTCGT GTTCACACGC GTGGATTTGT TTATCTCAAG AAGAGTCGCG ATATTCTCCG	8520
TGAAAGTTCA GAATTGATTA ACCAAACGGT AGAAGAGTAT CTTCAAGGAG ATGACTTTGA	8580
CTGGGCAGAT CTCAAAGGTA AGGTTCGTGA CAATCTGACC AAGTACCTCT TTGATCAAAC	8640
CAAGCSTCGC CCAGCCATTT TACCAGTAGT CATGGAAGCA AAATAATCGT TGAAATAAAC	8700
AGAGAGAAAG TCGAGTTTCG GCTTTTTCTT ATAGAAAAAT AGAAGGAGAA AATCATGGCA	8760
GTGATGAAAA TCGAGTATTA CTCACAAGTA TTGGATATGG AGTGGGGGGT GAATGTCCTC	8820
TACCCTGATG CCAATCGAGT GGAAGAACCA GAGTGTGAAG ATATTCCCGT CTTGTACCTT	8880
TTGCACGGGA TGTCTGGAAA TCATAATAGT TGGCTTAAGC GGACCAATGT AGAACGCTTG	8940
CTTCGAGGAA CTAATCTCAT CGTTGTTATG CCCAATACCA GCAATGGTTG GTACACCGAT	9000
ACCCAGTATG GTTTTGACTA CTACACGGCT CTAGCAGAGG AATTGCCACA GGTTCTGAAA	9060
CGCTTCTTCC CTAATATGAC GAGCAAGCGT GAAAAGACCT TTATCGCTGG TCTTTCTATG	9120
GGAGGCTACG GCTGCTTCAA ACTGGCTCTT ACGACAAATC GTTTTTCTCA TGCAGCTAGT	9180
TTTTCAGGTG CCCTCAGCTT TCAAAACTTT TCTCCTGAAA GTCAAAATCT GGGAAGTCCA	924
GCCTACTGGA GAGGTGTTTT TGGAGAGATT AGAGACTGGA CAACTAGTCC CTATTCTCTT	930
GAAAGTCTGG CTAAAAAATC GGATAAAAAG ACCAAACTTT GGGCGTGGTG TGGCGAACAG	936
GATTTCTTGT ACGAAGCCAA TAATCTCGCA GTGAAAAATC TCAAAAAACT AGGTTTTGAT	942
GTGACCTATA GCCATAGCGC TGGAACTCAC GAGTGGTACT ACTGGGAAAA ACAATTGGAA	948
GTTTTTTTAA CAACCCTACC AATTGATTTC AAATTAGAAG AGAGACTGAC TTAGTTTGAA	954
CTTCAGCATA GGGGGAGTAG AACTAAAATA AAATATGTTT TCACTAGACT TTTCAAACGm	960

			472			25.55
		AATACTGGAG				9660
ATTGGCATTC	CCACATTAGA	ATATGATCAG	TTTGTCAAAG	AACATGAATT	AGCCAATGTA	9720
TACAAAGTA	GTGCTTGGGA	GGAAGTTAAG	TCTAATTGGC	AACATGAGAA	GTTTGGTGTT	9780
PACAGGGAAG	AAAAATTACT	GGCGACAGCT	AGTATTTTGA	TTAGAACTCT	TCCGCTAGGC	9840
PATAAAATGT	TTTACATCCC	AAGAGGACCT	ATATTGGATT	ATGGGGATAA	AGAACTCTTG	9900
AATTTTGCCA	TTCAGTCTAT	TAAGTCCTAT	GCTCGCAGTA	AGAGAGCGGT	TTTTGTGACT	9960
TTTGACCCAA	GTATTTGCCT	ATCTCAAAGT	TTAATCAATC	AGGAAAAGAC	AGAATTTCCT	10020
GAAAATCTGG	CTATTATTGA	TAGTTTGCAA	CAAATGGGAG	TAAGGTGGTC	AGGAAAAACG	10080
GAGGAAATGG	GAGACACCAT	TCAACCTCGT	ATTCAGGCGA	AAATATACAA	GGAAAATTTT	10140
GAAGAAGATA	AACTTTCCAA	GTCAACAAAA	CAGGCTATTC	GAACAGCACG	AAACAAAGGG	10200
CTTGAGATTC	aatatggtgg	ACTGGAACTA	TTAGATTCAT	TTTCGGAGTT	GATGAAAAAA	10260
ACTGAGAAGC	GAAAAGAGAT	TCATTTGAGG	AATGAAGCCT	ATTATAAAAA	ATTGTTAGAT	10320
AATTTTAAGG	ACAAGGCCTA	TATCACCTTG	GCCACCTTGG	ATGTTTCTAA	ACGTTCGCAA	10380
GAGTTAGAAG	AACAGTTAGC	GAAAAATAGA	GCCTTGGAAG	AGACCTTTAC	TGAGTCGACT	10440
CGAACTTCAA	AAGTAGAAGC	GCAGAAGAAG	GAAAAAGAAC	GTTTGTTAGA	GGAATTGACC	10500
TTCTTGCAGG	AATATATAGA	TGTAGGTCAA	GCGAGAGTTC	CTTTAGCGGC	TACTTTGAGT	10560
TTGGAATTTG	GTACTACCTC	TGTCAATATA	TATGCTGGTA	TGGATGATGA	TTTTAAACGT	10620
TACAATGCAC	CAATTTTAAC	TTGGTATGAA	ACGGCTCGCT	ATGCCTTTGA	ACGAGGTATG	10680
ATCTGGCAAA	ATTTAGGTGG	TGTTGAAAAC	TCTCTCAATG	GTGGACTTTA	TCATTTTAAG	10740
Gaaaaattta	ATCCAACGAT	TGAAGAATAC	TTGGGTGAAT	TTACAATGCC	CACTCATCCT	10800
CTCTATCCTC	TGTTAAGACT	TGCTCTTGAT	TTCCGTAAAA	CATTAAGAAA	AAAACATAGA	10860
aagtaagtat	ATGGCACTAA	CAACACTCAC	GAAAGAAGAG	TTTCAGACTT	ATTCTGATCA	10920
GGTTTCTTCT	CGTTCCTTTA	TGCAATCTGT	CCAGATGGGG	GATTTGCTAG	AAAAAAGAGG	10980
GGCTCGAATT	GTTTATCTTG	CTTTGAAACA	AGAAGGAGAA	ATTCAAGTTG	CAGCTCTGGT	11040
TTATAGCCTG	CCCATGCTGG	GTGGTCTGCA	TATGGAACTC	AATTCGGGGC	CGATTTATAC	11100
CCAACAAGAT	GCTCTTCCAG	TTTTTTATGC	AGAGTTAAAA	GAATATGCCA	AGCAAAATGG	11160
TGTATTAGAG	TTGCTTGTAA	AACCCTATGA	AACTTATCAA	ACTTTTGATA	GCCAAGGTAA	11220
TCCAATAGAT	GCTGAGAAAA	AAAGTATTAT	TCAAGATTTG	ACTGATTTAG	GTTATCAATT	11280
TGATGGCTTA	ACAACAGGTT	ACCCAGGTGG	AGAACCAGAT	TGGTTATACT	ATAAAGATTT	11340
ል <b>እርጥ</b> ር እ አጥጥ ኦ	DCTCS & D ACA	ርጥምጥርርጥጥክ እ	ልልርጥጥጥንርር	AAAAGGGTA	AACCCTTCCT	11400

**...

GAAAAAGGCT	GAAACCTTTG	GCATTCGGTT	GAAAAAGTTA	AAACGTGAAG	AACTATCGAT	11460
TTTTAAGAAT	ATAACAAAAG	AAACCTCTGA	ACGTAGAGAA	TATAGTGATA	AAAGTTTAGA	11520
ATATTATGAG	CATTTTATG	ATACTTTTGG	AGAACAAGCG	GAGTTTCTCA	TAGCAAGCTT	11580
AAATTTTTCC	GACTATATGA	GCAAATTGCA	AGGTGAACAA	AGTAAACTAG	AAGAAAACTT	11640
GGACAAGTTG	CGACTTGATT	TGAGTAAAA	TCCTCATTCT	GAGAAAAAAC	AAAATCAACT	11700
GAGAGAATAT	TCTAGTCAAT	TTGAAACGTT	TGAAGTTCGA	AAAGCAGAAG	CGCGAGACTT	11760
GATTGAAAAA	TATGGAGAAG	AAGATATTGT	TTTAGCTGGG	AGTTTATTTG	TTTATATGCC	11820
TCAGGAAACG	ACTTATCTCT	TTAGTGGTTC	CTACACTGAG	TTTAATAAGT	TCTATGCCCC	11880
TGCACTGCTT	CAAAAATATG	TTATGTTGGA	AAGCATAAAA	CGTGGAATAC	СТАЛАТАСЛА	11940
CTTCCTAGGC	ATTCAAGGGA	TTTTTGATGG	AAGTGATGGT	GTTTTGCGTT	TTAAACAGAA	12000
TTTTAATGGC	TATATTGTAC	GCAAAGCAGG	TACTTTCCGT	TACCATCCAT	CGCCTTTAAA	12060
ATACAAAGCT	ATCCAGTTAC	TCAAAAAAAT	AGTAGGACGT	TAAGATGAAA	AAGTCAGTAT	12120
TTAGATTTCT	TTTAGCTTCT	TTTAGTAAAA	TAATTCTTAT	TTGCTAGAAA	GGTGGAGAGA	12180
CATGCGCTGG	CTTTTTCGTT	TGATAGGGGC	TTTCTTTTCT	TTTGTGTGGC	GTTTGTTTTG	12240
GCGTCTGGTT	TGGATAGTTG	TGCTCTTATG	TGTGCTTGCT	TTCGGACTTC	TCTGGTATCT	12300
GAACGGAGAT	TTTCAAGGAG	CGCTAAAGCA	AGCAGAACGG	TCAGTAAAAA	TTGGTCAACA	12360
AAGTATTGAC	CAATGGGAGA	AAACAGGGCA	ACTGCCTAAG	TTAAGCCAGA	CAGATAGTCA	12420
CCAGCATTCT	GAAGGAAGGT	GGGCACAGGC	CTCTGCTCGT	ATTTACCTGG	ATCCGCAGAT	12480
GGATTCACGC	TTTCAAGAGG	CTTATTTAGA	AGCAATCCAG	AACTGGAATC	AAACTGGTGC	12540
TTTTAACTTT	GAACTCGTGA	CTGAGTCTAG	TAAGGCGGAT	ATTACGGCTA	CGGAGATGAA	12600
CGACGGAGGC	ACTCCTGTGG	CAGGAGAGGC	GGAAAGTCAA	ACTAATCTCT	TAACAGGGCA	12660
ATTCTTGTCC	GTAACGGTGC	GGTTGAATCA	TTATTATTTG	TCCAATCCAT	ACTATGGCTA	12720
CTCCTATGAA	CGCCTTGTCC	ATACGGCAGA	ACATGAGTTA	GGTCATGCGA	TTGGCTTGGA	12780
CCATACAGAT	GAGAAGTCTG	TCATGCAACC	AGCAGGTTCC	TTTTATGGTA	TCCAGGAAGA	12840
GGATGTTGCA	AACCTCCGAA	AAATATATGA	GACTAGTGAG	TAGGGTACTA	TCTTTCCCTA	12900
CTTTTTTTGC	TATAATGGAA	CTATGAACAA	CTTGATTAAA	TCAAAACTAG	AGCTCTTGCC	12960
GACCAGCCCT	GGTTGCTACA	TTCATAAGGA	TAAAAATGGC	ACCATTATCT	ATGTAGGAAA	13020
GGCTAAAAAT	CTGCGTAATC	GAGTACGGTC	CTATTTTCGT	GGAAGTCATG	ATACCAAGAC	13080
AGAGGCTCTG	GTGTCTGAAA	TTGTGGATTT	TGAATTTATT	GTTACGGAGT	CTAATATTGA	13140

474 13200 GGCACTTCTC CTAGAAATCA ACCTGATCAA GGAAAACAAG CCCAAGTACA ATATCATGCT 13260 CAAGGATGAC AAGTCCTATC CTTTCATCAA AATCACCAAT GAGCGCTATC CACGCTTGAT TATCACTCGT CAGGTCAAAA AGGACGGAGG TCTTTATTTT GGACCCTATC CCGATGTGGG 13320 GGCAGCCAAT GAAATCAAGC GGTTGCTGGA TCGGATATTC CCTTTTCGTA AGTGTACCAA 13380 13440 CCCGCCCTCT AAGGTCTGTT TTTATTACCA TATCGGCCAG TGTATGGCCC ACACCATCTG TAAGAAGGAT GAGGCTTATT TCAAGTCTAT GGCCCAGGAG GTGTCTGATT TTCTGAAAGG 13500 TCAGGATGAC AAAATCATCG ATGATCTCAA GAGTAAAATG GCAGTAGCAG CACAAAGTAT 13560 GGAGTTTGAA CGTGCGGCGG AATACCGTGA CCTGATTCAG GCTATTGGAA CGCTTCGAAC 13620 CAAGCAACGG GTCATGGCGA AAGATTTGCA AAATCGCGAT GTCTTTGGCT ACTATGTGGA 13680 TAAGGGCTGG ATGTGTGTGC AGGTTTTCTT TGTCCGTCAG GLAAGCTCAT CGAGCGCGAT 13740 GTCAATCTCT TCCCCTACTT CAATGATCCA GATGAGGATT TTTTGACCTA TGTAGGACAA 13800 TTCTATCAAG AAAAATCTCA TCTAGTTCCC AATGAGGTAC TGATTCCGCA GATATTGACG 13860 AAGAAGCTGT CAAGGCTTTG GTGGATTCCA AGATTCTTAA GCCTCAACGT GGAGAGAAAA 13920 AACAACTGGT CAATCTAGCC ATAAAAAATG CTCGTGTTAG TCTAGAGCAG AAGTTCAATC 13980 TGCTAGAAAA ATCTGTCGAA AAGACTCAAG GAGCTATTGA AAATCTAGGG CGTTTGCTCC 14040 AAATCCCGAC CCCAGTACGT ATCGAGTCCT TCGATAACTC TAATATCATG GGAACTAGCC 14100 CTGTTTCGGC TATGGTGGTC TTTGTCAACG GTAAACCGAG TAAGAAGGAT TACCGTAAGT 14160 ACAAGATAAA AACGGTTGTT GGACCAGACG ACTATGCCAG CATGAGAGAG GTCATTCGCA 14220 GACGCTATGG TCGAGTACAG CGTGAGGCTT TGACTCCTCC AGATTTGATT GTGATTGATG 14280 GGGGGCAAGG TCAAGTCAAT ATCGCTAAGC AGGTTATCCA AGAGGAACTG GGCTTGGATA 14340 TTCCAATTGC TGGGCTGCAA AAGAATGATA AGCACCAAAC CCATGAATTG CTCTTTGGAG 14400 ATCCGCTTGA GGTGGTGGAT TTGTCTCGCA ATTCTCAGGA ATTTTTCCTC CTCCAACGCA 14460 TCCAAGATGA GGTGCACCGC TTTGCTATCA CTTTCCACCG CCAACTGCGC TCCAAAAATT 14520 CTTTCTCATC TCAATTGGAT GGGATTGACG GTCTGGGACC TAAACGCAAG CAGAATCTTA 14580 TGAAGCATTT CAAGTCTTTG ACCAAAATCA AGGAAGCCAG TGTGGATGAG ATTGTCGAAG 14640 TTGGGGTACC TAGAGTCGTT GCAGAGGCTG TGCAAAGAAA GTTGAACCCG CAGGGAGAAG 14700 CCTTGCCTCA AGTAGCAGAA GAAAGAGTAG ATTACCAAAC GGAAGGAAAC CACAATGAAC 14760 CATAAAATCG CAATTTTATC AGATGTTCAT GGCAATGCGA CGGCGCTAGA AGCAGTGATT 14820 GCAGATGCTA AAAATCAAGG GGCCAGTGAA TATTGGCTTC TGGGAGATAT TTTTCTTCCT 14880 GGTCCAGGCG CAAATGACTT AGTCGCCCTG CTAAAGGACC TTCCTATCAC AGCAAGTGTT 14940

CGAGGCAATT GGGATGATCG TGTCCTTGAG GCTTTAGATG GGCAATATGG CTTAGAAGAC	15000
CCACAGGAAG TTCAGCTCTT GCGTATGACA CAGTATTTGA TGGAGCGAAT GGATCCTGCA	15060
ACGATTGTCT GGCTACGAAG CTTGCCTTTG CTGGAAAAGA AAGAAATTGA CGGATTGCGC	15120
TTTTCTATCT CTCATAATTT ACCTGACAAA AACTATGGTG GTGACTTGCT AGTTGAGAAT	15180
GATACAGAGA AATTTGACCA ACTGCTAGAT GCGGAAACGG ACGTGGCAGT TTATGGTCAT	15240
GTTCACAAGC AGTTGCTTCG TTATGGAAGT CAAGGGCAAC AAATCATCAA TCCAGGGTCG	15300
ATTGGCATGC CCTATTTTAA TTGGGAGGCG TTAAAAAATC ACCGTTCCCA GTATGCCGTG	15360
ATAGAAGTTG AAGATGGGGA ATTACTCAAT ATCCAATTTC GTAAAGTTGC TTATGATTAC	15420
GAAGCTGAGT TAGAATTGGC CAAGTCCAAG GGGCTTCCCT TTATCGAAAT GTATGAAGAA	15480
CTGCGTCGTG ACGATAACTA TCAGGGGCAC AATCTGGAAT TATTAGCCAG CTTAATAGAA	15540
AAGCATGGGT ATGTAGAGGA TGTGAAGAAT TTTTTTGATT TTTTGTAAGA GTTTCCTAAA	15600
ATAGCCAATG CAAACTAAAA AAGCGATTTG CTGGTCCAAT CGCTTTTAGT ATATCTTATA	15660
CTCAATGAAA ATCAAAGAGC AAACTAGGAA GCTAGCCGTA GGTTGCTCAA AGCACAGCTT	15720
TGAGGTTGCA GATAAAGCTG ACGTGGTTTG AAGAGATTTT CGAAGAGTGT TATTGTAACT	15780
GAGATTGATC TGGGAGGTAA GAACCACCTA GATAGGTATT GCTGAGTTTT TCAAGGGTTC	15840
CGTCTTGATA GAGTTCTTTG AGCGCTTTAT CAAATTGCTC TTTAAACTCT TTTTGGTCGC	15900
TTGAGAAAAT GATATAATTG CTGGGGCTAT CTGCAGAAGG TAAATCAACG ACTGAGAGGT	15960
CTAAACCACG GTCCTTGATA ATCTTTTGAA CGGATACCTT GTCAAAAACT AGGAAATCAA	16020
ACTCTCCGTT AGCAAGGTCT AGGATTCGTT TACCAATATC CTCACCAGAA AAATTAATTG	16080
TAGCGGGATT ATCAGTGTGT TTCTGATTCC AGTTATTGAT GAATTGAGCG TTAGAAGTTC	16140
CGGTATCCTC TTGTGTTGTT TTACCAGCGA TCTGGTCAAG AGAAGTCAAA GGATTTTTCT	16200
TGTTGCTGAC AAGGACGAGG GGATTGTTGG AAATTGGAAG CGAGTAAAGG TATTTTTCAG	16260
CACGCTCTTT TGTGTAACTC AAGTTATTGG CCGCAGCCTG ATAGTGACCA GAATCAAGTC	16320
CTGGGAAGAT GCTCTCCCAG GCGGTTCTTT GGAATTGAAT CTCGTAGTCG CTGAGTTTTT	16380
CATCTACTGC CTTTAAAACT TCGATATCAA AGCCTGTCAG ATTGCCCTTG TCTTCGTAGT	16440
CAAATGGTGG CACGTCGCCA GCTGTAGCAA GGACGATTGT CTTTTGAGCG CTAGTCTCTT	16500
TGGGTGTAGC TTGATTCTCA CAGGCAACCA AAAATGGTAG GATAGCTAGT AATAGGCTAA	16560
ATTTTTCAT ACTGTCTCCA TTCAAATGTA AAG	16593
(2) INFORMATION FOR SEQ ID NO: 53:	

476

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3510 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

GGGATATCCT TATATCCTTG TTCCTGGAAC CATTGTGGGA ATTGCTCAAC AGTTTTTTCA 60 CCTTGAATTC CTGGTGCAAT GACAGTAAGA ATTTCGAAAT CACGATCTGG TTTCGCCGCT 120 AGTTCCATCA ACTCTGGCAT ACTTTTCTTG CATGGACCAC ACCATGAAGC CCAAAACTTC 180 240 AATGTGAAGT CTGGAGCATC TTTTCCAACA GCAATTTGTT GTACAGTCGT TTGTTGTTTT 300 GGCTGTTGTG CTGCTTGAGT CTTTTTAGTT TCTTCCTCAC CACAGGCCAT CAATACAACT 360 420 AATGACAAGA GACTTAAGCC AGCAAACATT ACTTTTTTCA TTTGTCCTCC TTTATTCAAA 480 AATTCCAGCT AGAACATTTA CTTGTCCTAA TAGTAACAAA ATTCCCATTA AAACAATGAG GAAACCACCA ATTTTCTTTA GTAGCATCAT ATGACGCTTG ATTTTACTAA AATATGGCAT 540 GACTAGACCT GAAGCTAGTG CCAATACCAA GAAAGGAAGG GCCATGCCAG AGTGTAAATG 600 AGAGTATAAA TCGCTCCTTG CCAAGCGCCA TTGCCTCCAG AAGCCGCAAG TGCTAAAACA 660 GAACTTAAAA CTGGACCAAT ACAAGGTGTC CAACCAAAGC TAAAGGTAAT ACCAAGTAAA 720 AAAGCTGACC AATAACGATT AGAATCTGAT TTTTTAAAGG TAAAACTTTT TTGAACTTCT 780 AATTTCTTCA AATGAAAAAT TTCCATCTGG TGAAGACCCA AAATGATAAT AATAGCTCCC 840 ATGCCATATC.GAAACCAATT TGCATAGAGA ATATGACCAA AGTAACCAGC ACCAAAGCCT 900 AGAATAAAGA AAATGAGAGA GATACCAGCG ATAAAGCAAA GTGTTCGAAT CAAGCCTGAC 960 CAGAGAACCT TTCTCCCAAA CAAAGAAAAG CTTTTTGCAC TTTCTTGATC ATCCAATAAA 1020 ATCCCAGCAT AGACTGGCAG AAGAGGAAAA ATACAAGGAG AAAAAAAGGA TAAAACACCT 1080 GCTAGAAAAA CAGAGATTAA AAATACTATC GTTTCCAATA AAGAACCAAC TTTCTTAATA 1140 ATTCTAATCC TATTTTACTA TATTCAATTT TATTTGTAAG CTTTCTGCTA CGCAAAATCG 1200 TATCGGGCAC TATTGGACCA ATCTTTCTT TTGCTAGTCA AGGCGGATCT TATCCCCCAA 1260 AATAGCCAAA AAGCAACGAC AAGGATTACT CATCGCTGCT TTTGTGAACG AAAATGTCTT 1320 TTAGGTCTGA CATTTCATAA ATCATGTTTT ACTTGAGTTT GTCAAGGATT GCTTTAAGCT 1380 CCTCTACTAG TTTAGTTTCT GTCTCTGCTG AGCCATTTTC TTCTTTCACG AAATCAAGGG 1440 TTTCTTGGAG AAGGTTTTGG GCTTTGGCAA GGACTTTTTT ATCCGCTTTT TCTGCATCTA 1500

CTGTCCTAG AACCTTGATC AATTCCGTGC TTAATTGCTG GATT: CGAC TCTTTCTTAC	1560
GCGAATCAG CCAGAAGGCA ATCACGCCTA GGAGGGCAAG TAGACTGACC ACAATCACTC	1620
ETGCCGGAAC TGAGTTTGTT TCAGTCATCT TATCTGAATC CTTACTATCT TCCGTTCCTT	1680
STTTTGCATC CTTCTTGTCC TGTGCAGGCT TGCTGTCGCT AGCATTTGCT TTCACATCTT	1740
TGAGAGAGTC CAAGGCAGCC CAGCCTTCAC AGACTCTACT GCAGTATGCA GACCTTACTC	1800
TGTCAAGGCA CTATCTTCCG GAGCTTTTTG AGCATCTAGG AGGACAGCCT TGGTTGCATC	1860
GATTTTCGGA TCAGATACTG TTGCCAAAGC TTTCAAGCGT TGGTCTAACT CTTGACTCAA	1920
GGCACGAAGT TCAGACTTGT CAACTTGCTC TTGAGCTTGT GTGCTCGTTG AGCTAGCCGA	1980
AGCGCTTGCT ACCACTCTAG GATCTTGAGT CGGAGCTGAG CTTGGAGCTG GGACAGGGCT	2040
TGCAGGTTGA CTAGGAACAG TTATGGTATA TTGAAACTAG AATAGTACAT ATGGACTTCT	2100
AAAACATTGT TAGAATTCGA TTTTACTGTC CTGATCGATT TGTCCTATTC TTATTTCATT	2160
TTACTATAAT AACCGATGGT GTGGTTAATG TTGGTAAGAG AAACTTCTGA AACCAAGCTT	2220
CAAAAAAGTC GCTCGTCATC GTCTCTTCGT AAGTCATTGG AGCGATTAAT TCACCATTTG	2280
TTAGACCTGC AACCAAAGAA ATCCTCTGAT ATCTTCTTCC AGATACTTTG CCTCTTATTA	2340
ACTGACCTTT TAATGAGCGA CCATATTCTC GATAAAAATA AGTATCGAAT CCTGTTTCGT	2400
CAATCTAAAC AGGTGCTAGG TGCTTTAAAC TATTAAAATT CTTAAGAAAT AAGGCTACTT	2460
TTTCTGGGTC TTGTTCATAG TAGGTGTGGT TCTTTTTTTC GAGTGTAGCC CATAGCTTTG	2520
AGCGCATAGT GGATGGTAGT TGGATGACAG CCAAAKTCAG AAGCTATTTC AGTCAAATAA	2580
GCXTCTGGAT TGTCAGTAAG ATAGTTTTTA AGTCTATCTC TATCAACTTT TCTTGGTTTT	2640
GTTCCTTTTA CTTGGTGGTT TAGCTCTCCT GTTTTCTCTT TTAGCTTTAA CCAGCCATAA	2700
ATGGTATTAC GTGAGATTTG GAAAACGTGT GATGCTTCTG TTATACTACC TATTCGCTCA	2760
CAATAAGAGA GAACTTTTTT ACGAAAATCT ATTGAATATG CCATAAGAAG ATTATACCAC	2820
ATTGTGTACT ATTTTGGTT CATTTCACTA TAACACAAAA TAGATTATTA TTACATAACA	2880
AAAAAGAGGT CTAAACCTCT TAACTCAATT ACTCCGCCAG TAGGACTCGA ACCTACGACA	2940
TCATGATTAA CAGTCATGCG CTACTACCAA CTGAGCTATG GCGGATTAAA GCTAAGCGAC	3000
TTCCCTATCT CACAGGGGC AACCCCCAAC TACTTCCGGC GTTCTAGGGC TTAACTTCTG	3060
TGTTCGGCAT GGGTACAGGT GTATCTCCTA GGCTATCGTC ACTTAACTCT GAGTAATACC	3120
TACTCAAAAT TGAATATCTA TTCAATTTAA GAAAACCGTT CGCTTTCATA TTCTCAGTTA	3180
CTTTGGATAA GTCCTCGAGC TATTAGTATT AGTCCGCTAC ATGTGTCGCC ACACTTCCAC	3240

TTCTAACCTA	TCTACCTGAT	CATCTCTCAG	478 GGCTCTTACT	GATATATAAT	CATGGGAAAT	3300
CTCATCTTGA	CGTGGkTtCA	CACTTAGATG	CTTTCAGCGT	TTATCCCTTC	CCTACATAGC	3360
TACCCAGCGA	TGCCTTTGGC	AAGACAACTG	GTACACCAGC	GGTAAGTCCA	CTCTGGTCCT	3420
CTCGTACTAG	GAGCAGATCC	TCTCAAATTT	CCTACGCCCG	CGACGGATAG	GGACCGAACT	3480
GTCTCACGAC	GTTCTGAACC	CAGCTCGCGT				3510
(2) INFORMA	TION FOR SE	O ID NO: 54	1.			

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20986 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CGGAGAAAAA	CATGGCTAAG	TCAAACTTTG	AAAAAGTAGA	ATCAGTTGTT	GGCTGGGTTC	60
GTGATAAGAA	AATCACAGGC	TACCGTATCT	СТАААБАЛАС	GAATGCGCGT	GAAATGTCTA	120
TCATTGCTCT	GGCGCAGGGT	CGTGCAAAAG	TAAAAAATAT	TTCATTTGAA	ACAGCCCTAG	180
GCCTAATTGA	TTTCTATGAA	AAAAATTATG	AAAAATTTGA	AGATTAATCT	TTGGATAACG	240
GCGGATTCTT	GACCTTCAAG	TAGTAGAGAT	AGAGAATCTG	CCTTTTCATT	TTGAGGACAG	300
CAAAAAGACT	GCACGGTTGA	TGCAGCCTTT	TCTTTTTATT	TGAGATAGCG	TTGAAGGAAC	360
TCTTTTGTTC	GGTCTTCTTT	AGGATTGGTG	AAGAGGTCTT	CTGGTTTACC	TTCTTCAGCG	420
ATCACGCCCT	TATCCATAAA	GATAACACGG	TGAGAGACAT	CACGGGCAAA	TTCCATTTCA	480
TGGGTTACGA	CAATCATGGT	CAAGCCTTCC	TGAGCCAGGT	CCTGCATGAT	TTTGAGGACT	540
TCTCCAACCA	TTTCTGGATC	GAGAGCTGAT	GTTGGTTCAT	CAAAGAGAAT	AGCGTCCGGA	600
TTCATGGAGA	GGGCACGAGC	GATGGCCACA	CGTTGTTTTT	GACCACCTGA	GAGTTGTTTT	660
GGTTTGGCTT	GCCAGTAGCG	TTCTCCCATG	CCGACCTTTT	CCAGGTTTTC	TTTGGCAATC	720
TTTTCAGCTT	CTGTGCGTTC	GCGTTTTAGG	ACAGTTGTCT	GAGCGACGAT	TGTGTTTTCA	780
AGAACATTGA	GATTTTCAAA	GAGGTTAAAG	GATTGGAAAA	CCATCCCCAA	CTTTTCACGG	840
TATTGCGTGA	GGTCATAGCC	TTTTTCGAGG	ACGTTTTGTC	CATGATAAAG	GATTTGTCCA	900
TCAGTTGGTG	TTTCAAGTAG	GTTAATGGAG	CGTAGGAAGG	TCGATTTTCC	GCTTCCAGAG	960
CTTCCGATGA	TAGAGATGAC	CTCTCCCTTG	TGGACAGTGA	GTGAAATGTC	TTTTAGCACT	1020
TCGTTTTGTC	CATAGGATTT	TTTGAGGTGT	TTAATTTCAA	GGATTGCTTG	TGTCATTATT	1080
TCAAATCCTC	CGTTTGCATT	TGGTTAGCAC	CTGTAGTGTA	GGTATCCATG	TCCATTCTGC	1140

GCTCGATAAA	GCGTAGGATA	CGTGTTACGG	TGAAGGTGAG	GACAAAGTAA	ATCACGGCGA	1200
TGATTGTAAA	TGTCTGGAAG	TATTGATAGG	TTTGTGTTGC	CACGGTATTT	CCTGAGAAAT	1260
AAAGTTCGAC	AACAGAGATA	ACGTTCAATA	CAGATGTATC	TTTGATATTG	ATGACAAATT	1320
CATTACCAGT	TGCAGGTAGG	ATGTTACGGA	CTACCTGAGG	TAGGACAATC	TTACGCATGG	1380
TCTGGTTATG	GGTCATACCA	AGAGCAGTCG	CAGCTTCAAA	TTGTCCCTTG	TCAACTGCTA	1440
GGATACCACC	ACGGACGATT	TCAGTCATGT	AGGCACCGGT	ATTGATTGAA	ACGATGAAGA	1500
TAGCAGCCAG	TGTACGGTCA	AGGTTGATCC	CGAAAGCTTG	GGCAGTTCCA	TAGTAGATAA	1560
CCATCGATTG	AACAATCATT	GGCGTACCAC	GGAAAATTTC	AATGTAGACA	TTGAGAACCC	1620
AGCCGACTAG	TTTTTGTAGG	CCGTAAATGA	CTTTGTTTTC	AGAGAGAGGA	GCAGTACGGA	1680
AGACACCAAT	GGCAAGTCCA	ATAATGAGAC	CTATGATGGT	TCCGACGATA	GAGATTAAAA	1740
GAGTGATACC	AGCACCACGC	AAGAGTTGTT	GCCAGTTTTC	AGAAAGAATT	TTAGCAACTT	1800
GGCTAAAGAA	ACTACTGCTA	GTCTCTTCAG	TTGTTGTAGC	TTCGGCAGGT	TGTTCCTTGA	1860
TCATACGATC	CATCAAGGCA	ACTTGGTCAT	CTTTTGAAAT	GGTTTCAATG	CTGGCATTGA	1920
TTTGGCTAAT	ACGATTGTCA	TTTTTACGAA	GCCCGATAGC	GATAGCTGTA	TCTTCTTCCC	1980
CAGTTTTGAA	ACCAGGTTCT	ACTTGAATCA	TCTTGAACTT	AGAGTTCGCA	GCTTCAGCAG	2040
TCAGTGCTTC	TGGACGTTCA	GAAACATAAG	CATCAATGAC	ACCAGCCTCA	AGAGCTTGTC	2100
GCATTTGAGC	GAAGTCTCCC	ATGGCTGTTT	CTTTTTTAGC	ACCTGGGATT	TGTGCAATCA	2160
AGTTATAAAG	GTAGACCCCT	TCTTGAGAAG	TGATTTTTGC	ACCGTTAAAG	TCATCCAAAG	2220
ATTTAGCACT	TGCGTAGGCA	GAATCTTTTT	TGACAAGCAA	AACTGGTTCG	CTAGTATAGT	2280
AACTGCTCGA	AAAGGCAATT	TCTTGTTTGC	GTTCTGCAGT	TGGACTCATA	CCTGCGATAA	2340
TCATGTCAAT	CTTACCAGAA	GTAAGGGCAG	GGACTAGACC	TTCCCACTTG	GTTTTAACAA	2400
CCAAAGGTTC	TTTACCTAAG	TCCTTAGCGA	TTTTCTTGGC	GATTTGAACA	TCGTATCCGT	2460
TGGCATACTG	ATTGGTCCCA	TCGATTTTGA	CAGCTCCGTT	GCTATCATCA	TCCTGGGTCC	2520
AGTTAAAGGG	AGCATATGCT	GCTTCCATAC	CGATGCGTAA	ATATTCATCO	GCTTGAGCAA	2580
CATTGACAAG	TCCTAGCATC	AGCAAGAGAC	TTGTGAAAAT	AGATAAGTAY	ATGTGGCTCA	2640
TGATTTCTCC	TATTCTGATC	TATTAAAAAA	TAACTGTCTC	CTATTTATO	GAAAAATGCG	270
TAATTTTTCA	ACATAAGTAA	GTCTTTACTT	ACGAAAAAA	GCTATAATG	TAAGAAAGAT	276
AAAAAGGGGG	CTTAGTTGAT	GAAAAAAACT	TITTICTIAC	TGGTGTTAGG	CTTGTTTTGC	282
			***********	A C	ACCCCATTTC	288

			480			
TATATTCATG	CAGACAATAC	GGCAGAGTTT	AGACAGAAGA	TAGTTTACCA	GTTTGAGGAG	294
GACTTTAAGG	GCCAAATCGT	GGGACTTGGA	CGTGCTGGTA	AGATGCCTAG	CGGGTTTGAC	300
ATTGACCCTC	ATCCAAAGAT	TCAGGCCGCG	AAAAACGGTG	CAGAACTAGC	AGATGTGACT	306
AGCGAAGTAA	CAGAAGAAGC	GGATGGTTAT	ACTGTGAGAG	TCTATAATCC	AGGTCAGGAG	312
GGCGACATAG	TTGAAGTTGA	CCTCGTCTGG	AACTTAAAAA	ATTTACTTTT	CCTTTATGAT	318
GATATCGCTG	AATTAAATTG	GCAACCTCTG	ACAGATAGTT	CAGAGTCTAT	TGAAAAGTTT	324
GAATTTCATG	TAAGGGGAGA	CAAGGGGGCT	GAAAAACTCT	TTTTCCATAC	AGGGAAACTT	3300
TTTAGAGAGG	GAACGATTGA	AAAGAGTAAC	CTTGATTATA	CTATCCGTTT	AGACAATCTT	3360
CCGGCTAAGC	GTGGAGTTGA	GTTGCATGCC	TATTGGCCTC	GGACCGATTT	TGCTAGCGCT	3420
AGGGATCAGG	GATTGAAAGG	GAATCGTTTA	GAAGAGTTTA	ATAAGATAGA	AGACTCGATT	3480
GTTAGAGAAA	AAGATCAGAG	TAAACAACTC	GTTACTTGGG	TCCTCCCTTC	GATCCTTTCC	3540
ATCTCCTTGT	TATTGAGTGT	CTGCTTCTAT	TTTATTTATA	GAAGAAAGAC	CACTCCTTCA	3600
GTCAAATATG	CCAAAAATCA	TCGTCTCTAT	GAACCACCAA	TGGAATTAGA	GCCTATGGTT	3660
TTATCAGAAG	CAGTCTACTC	GACCTCCTTG	GAGGAAGTGA	GTCCCTTGGT	CAAGGGAGCT	3720
GGAAAATTCA	CCTTTGATCA	ACTTATTCAA	GCTACCTTGC	TAGATGTGAT	AGACCGTGGG	3780
AATGTCTCTA	TCATTTCAGA	AGGAGATGCA	GTTGGTTTGA	GGCTAGTAAA	AGAAGATGGT	3840
TTGTCAAGCT	TTGAGAAAGA	CTGCCTAAAT	CTAGCTTTTT	CAGGTAAAAA	AGAAGAAACT	3900
CTTTCCAATT	TGTTTGCGGA	TTACAAGGTA	TCTGATAGTC	TTTATCGTAG	AGCCAAAGTT	3960
TCTGATGAAA	AACGGATTCA	AGCAAGAGGG	CTTCAACTCA	AATCTTCTTT	TGAAGAGGTA	4020
TTGAACCAGA	TGCAAGAAGG	AGTGAGAAAA	CGAGTTTCCT	TCTGGGGGCT	CCCAGATTAT	4080
TATCGTCCTT	TAACTGGTGG	GGAAAAGGCC	TTGCAAGTGG	GTATGGGTGC	CTTGACTATC	4140
CTGCCCCTAT	TTATCGGATT	TGGTTTGTTC	TTGTACAGTT	TAGACGTTCA	TGGCTATCTT	4200
TACCTCCCTT	TGCCAATACT	TGGTTTTCTA	GGGTTAGTTT	TGTCTGTTTT	CTATTATTGG	4260
AAGCTTCGAC	TAGATAATCG	TGATGGTGTT	CTAAATGAAG	CGGGAGCTGA	GGTCTACTAT	4320
CTCTGGACCA	GTTTTGAAAA	TATGTTGCGT	GAGATTGCAC	GATTGGATCA	GGCTGAACTG	4380
Gaaagtattg	TGGTCTGGAA	TCGCCTCTTG	GTCTATGCGA	CCTTATTTGG	CTATGCGGAC	4440
AAGGTTAGTC	atttgatgaa	GGTTCATCAG	ATTCAAGTGG	AAAATCCAGA	TATCAATCTC	4500
PATGTAGCTT	ATGGCTGGCA	CAGTACGTTT	TATCATTCAA	CAGCACAAAT	GAGCCATTAT	4560
CTAGTGTCG	CAAATACAGC	AAGCACCTAC	TCTGTATCTT	CTGGAAGTGG	AAGTTCTGGT	4620
GTGGCTTCT	CTGGAGGCGG	AGGTGGCGGC	AGTATCGGTG	CCTTTTAAAG	AGAGCTACCA	4680

TAGACTGAAA	AAGTATGATA	TAATGGAAGA	TAGAAAAAAG	ACAAACTATA	AGAAAAGTCA	4740
ATAGTTTTAT	СТАААСТАТТ	TCTTATTTCA	ATTTGATGAT	TTGGCGATGA	TTTTAGAGCA	4800
CGGCAAAAAG	CCCTTGAAAA	AGTCCATTTT	TTCAAAGGTA	ATCCTGTGTT	AATTTCAGAA	4860
ATTACATCAC	TTTTTGTTCG	TCAAATGGCA	GCTCTTTTTT	AGGATATAAA	ACAGGGTTCG	4920
GATAAGTTTT	TTTGCAAGGT	GGATGATGCC	TACATTGTAA	TGTTTTCCTT	ATTCTAACTT	4980
AGTCTTAAGA	TAGGCCTTAG	AAGCAGGTGA	AAAGCGAGGG	CATGCTTTGG	CAGCTTGTAT	5040
GAGTGCCCAC	CGCAGATGAG	GGGAACCCCG	TTTGACCATT	CTTCCAGCTA	AATCAATCTG	5100
ACCTGACTGA	TAAATAGAAG	AATCCAGTCC	AGCGAAAGCT	TGTAATTGAG	CAGGATTATC	5160
AAAGGCATGA	ATATTTCGAA	TCTCGGCTAA	AATGACCGCC	CTAAACGATC	CCCAATCCCA	5220
GTAACCGTCG	TGATGACCGA	GTTGAACTCA	GCCATCGAGT	CATTGATACA	TGTTTCCGCC	5280
TTGTCAATGA	GCCTCTTGTA	ATGCTTGATG	ATTTCGAATT	CACGAGCAGG	AGATGTTGTT	5340
CCGATAGAAC	GAGGTGCGAC	TGAGAGGATA	TCCTGAATTT	TAGAAGCGGT	CAATCGCTTA	5400
ATTTCTATCA	GCTTATCAAA	TCCTGCCTCA	ATCCTTTTCT	GAGGATTAGG	GTAGCGTGTC	5460
AAGAGTTGGT	AGGTATATTC	TGAATGCTTT	CCAACGATTT	TATCCAACTC	AGGAAAGATG	5520
ATATCAAGAC	AACGAGTGTA	TTGTACTTTC	CAATCAGACT	GTTTTTCTTG	AGACGATGAA	5580
TATGTCTAGC	CAGTATTTT	AGGTCTACTT	GCCGATTATC	GTGTTGAAAT	TGTTCACGAT	5640
TGGGGTCAGA	AAGAAGTTTA	AGAGCGATGC	CATGAGCGTC	TTTCTTATCC	GTTTTAGTCT	5700
TGCGAAGTGA	TAATGATTTG	GCAAATTCCT	TGATGAGCAA	AGGATTGTAG	GTGTAAACTT	5760
TATATCCTTG	TTCATGCAGG	AAGTTCAGTA	GATTAAAGGC	ATAATGTCCA	GTATCTTCAA	\$820
GAGCGATGAG	ACAGTCTTGG	TTGATCTGTC	GAATAGACAG	ATCTAAGAGT	TCAAAACCAG	5880
СТТТАТТАТТ	TGAAAAAGTG	AGTGGTTTAA	GAACAGTTTT	TCCTGGAACA	TTCAAGGCTG	5940
TAACATCGTG	TTTATTTTA	GCGATATCAA	TGCCTACATA	AAGCATGGGA	GTACCTCCAG	6000
ATATAGTATT	TCAAGTCTAC	TTGGTTATCO	ACGAATTTT	TGCCTTGTTA	CCTTAGACGA	6060
GATCAAACGT	CTATGCGTTA	TCAAACTCA1	TACCAATTGA	AACAAAAGCT	GTGGTTAGAG	6120
CCTTTCGGAA	ATCGTCAAGO	GATTGGAGGA	A AATGAACTAA	TCCATAGTGG	CTTATTCCAA	6180
GTATACCACT	TGGGCTTTGG	CAGTAGCTA	CTGCGCTAAA	TATAATATAC	GGAGTAATCT	6240
ATGTATCTTA	TTGAAATTTI	AAAATCTATO	TTCTTCGGAA	TTGTTGAAGG	AATTACGGAA	6300
TGGTTGCCGA	TTTCCAGTAC	AGGTCACTT	S ATTTTAGCAC	AGGAATTCA1	CCAATACCAA	6360
AATCAAAATC	AAGCCTTTAT	GTCCATGTT	AATGTCGTGA	TTCAGCTTGC	G TGCTATTTTA	6420

GCAGTTATG	TGATTTATTT	TAACAAGCTC	AATCCTTTTA	AACCGACCAA	GGACAAACAG	6480
GAAGTTCGT	A AGACTTGGAG	ACTATGGTTG	AAGGTCTTGA	TTGCTACTTT	ACCTTTACTT	6540
GGTGTCTTT	AATTTGATGA	TTGGTTTGAT	ACCCACTTCC	ATAACATGGT	TTCAGTTGCT	6600
CTCATGTTG	TTATCTACGG	GGTTGCCTTC	ATCTATTTGG	AAAAGCGCAA	TAAAGCGCGT	6660
GCTATCGAG	CAAGTGTAAC	AGAGTTGGAC	AAGCTTCCTT	ATACGACCGC	TTTCTATATC	6720
GGACTCTTC	: AAGTTCTTGC	TCTTTTACCA	GGGACTAGCC	GTTCAGGTGC	AACGATTGTC	6780
GGTGGTTTG	TAAATGGAAC	CAGTCGTTCA	GTTGTGACAG	AATTTACCTT	CTATCTTGGG	6840
ATTCCTGTT	TGTTTGGAGC	TAGTGCCTTA	AAGATTTTCA	AATTTGTGAA	AGCCGGAGAA	6900
CTCTTGAGC	TTGGGCAATT	GTTTTTGCTC	TTGGTCGCGA	TGGGAGTAGC	TTTTGCGGTC	6960
AGCATGGTG	CTATTCGCTT	CTTGACCAGC	TATGTGAAAA	AACACGACTT	CACCCTTTTT	7020
GGTAAATAC	GTATCGTGCT	TGGTAGTGTT	TTGCTACTTT	ACAGTTTTGT	CCGTTTATTT	7080
GTATAAGAA	AACCTTGAAG	GGGCAACTCT	TCAAGGTTTT	ATACTCTTCG	AAAATCTCTT	7140
CAAACCGCG	CAGCTTTATC	TGCAACCTCA	AAACAGTGTT	TTGAGCAGCn	CTGCGGCTAG	7200
CCTCCTAGT	TGCTCTTTGA	PTTTCATTGA	GCTTTAAAAT	CCAGTCATGG	TAATCCCCAA	7260
TAGGCGGAC	CCTCTTTCTT	TCTTGCTTAA	TTCTTCATAG	AGTTGCAGGG	CTATTTGGCT	7320
TATCTGACT	GCATCTTGTG	TTTTTTGAGC	AAGACTTTTT	CGTTTGGTAA	GAGTTGAAAA	7380
GTCCTCGTA	G CGGATTTTCA	AAATGACAAT	TTTTCCAGCT	TTTTCTTGTT	GATGTAGATT	7440
GAGAGCGAC	TTTTCTGATA	GAAGAGTCAG	CTCTTTTTTG	ATATCTTCCT	CAGCAAGGAG	7500
AATCTTCCC	S TAGGTTTTCT	CCTTGCCGAT	TGATTTACGG	ATGCGATTGG	ATTTGACTGG	7560
AGAGTTGTG	A ATGCCACGAG	CCTTTCGATA	CAGATCATAG	CCTAGTCTAC	CAAAACGGTC	7620
TATTAGGGT	r acctcaggaa	CTTCAAGTAA	ATCAGCACCA	GTAAAAACGC	CCATTTGATG	7680
AAGACGTTC	ACTGTCTTTT	TTCCTACTCC	ATGAAATTTG	GAAATATCCA	TTTGTTTGAG	7740
AAAATCCTC	A GCCTGTTCAG	GTAGAATCAC	TGTCAAACCA	TGTGGTTTTT	GATAATCACT	7800
CGCCATTTT	GCTAAGAATT	TGTTGTAAGA	AACGCCTGCG	GAAGCAGTTA	GATGGAGTTC	7860
TTGCCAGAT	TCTTTTTGAA	TGAGGCGAGC	AATTTTGACC	GCTGACTTGA	TACCGAGTTT	7920
ATTTTCTGT	CACATCCAAAT	AGGCTTCGTC	AATGCTCATG	GGTTCAATCA	AATCTGTATA	7980
GCGCTTAAA	A ATAGCTCGAA	TCTGGAGTCC	CACAGACTTG	TATTTCTCAT	AATTCCCTGA	8040
GATAAAGAC	A GCCTGGGGAC	AACGTTCATA	AGCTTCCTTG	GAACTCATGG	CAGAATGGAC	8100
ACCAAAAGC	r cttgcctcat	AACTACAGGT	AGAAACGACT	CCCCGTCCAC	CTGTTTGCCG	8160
AGGGTCGCT	בייים ביים ביים	САССТТТТСС	TOTAL	GGATTATCCC	TGATTTCCAC	8220

GCAGCAAAA AAGGCATCCA TGTCAATATG GATGATTTTT CTTGACAAAT CATTTAACAA	8280
AGGAAAAATC AACATGCCTA GCACCTTTTT ATACTCTTCG AAAATCTCTT CAAACCACGT	8340
CAGCTCTATM TGCAACCTCA AAACAGTGTT TTGAGCAATC TGCGGCTAGC TTCCTAGTTT	8400
SCTITTCGAT TTCCATTGAG TGTTACTGCT TATTYTCTTT TATTATACCC TTTTTTCTGA	8460
AAAAAAGAAA AAAGGACTTT ATTTTTTCAA AAATATAATA CAGTTTGAAA TAAAATATAG	8520
ACTGTTTTAG AAAAGAAAGT GTAAAAATAG GGAATTTTCA CTTGTTGAAA TCGGTTACTA	8580
TATGGTATAC TTGTCTTATG AATGTAACAG ATGACTGTTA CTAGAAAAAA GAGGACATTA	8640
ATATGGTTGT TAAGACAGTT GTTGAAGCAC AAGATATTTT TGACAAAGCT TGGGAAGGCT	8700
TCAAAGGCGT AGATTGGAAA GAAAAAGCAA GTGTATCACG ATTTGTACAA GCTAACTACA	8760
CACCTTATGA TGGAGACGAA AGCTTCCTTG CAGGACCAAC AGAGCGTTCA CTTCACATCA	8820
AGAAAATTGT AGAAGAAACT AAAGCACACT ACGAAGAAAC TCGTTTCCCA ATGGACACTC	8880
GTCCAACATC TATCGCTGAT ATCCCTGCTG GATTTATCGA CAAAGAAAAT GAAGTTATCT	8940
TCGGTATCCA AAACGATGAA CTCTTCAAAT TGAACTTCAT GCCAAAAGGT GGTATCCGTA	9000
TGGCTGAAAC TACTTTGAAA GAAAATGGAT ACGAACCAGA CCCAGCTGTT CACGAAATCT	9060
TCACTAAATA TGTAACAACA GTTAACGACG GTATTTTCCG TGCCTACACT TCAAATATTC	9120
GTCGCGCTCG TCACGCACAC ACTGTAACTG GTCTTCCAGA TGCATACTCA CGCGGACGTA	9180
TCATCGGTGT TTACGCACGT CTTGCTCTTT ACGGTGCAGA CTACTTGATG CAAGAAAAAG	9240
TARATGACTG GAATGCAATC AAAGAAATCG ATGAAGAAAC AATCCGTCTT CGTGAAGAAG	9300
TAAACCTTCA ATACCAAGCA TTGCAACAAG TTGTTCGCCT GGGTGACCTT TACGGGGTTG	9360
ATGTTCGCAA ACCAGCGATG AACGTGAAAG AAGCAATCCA ATGGGTTAAC ATTGCTTTCA	9420
TEGETETETE CEGTETEATT AACGGTGETE CTACATETET AGGTCGTGTA CCAATEGTAT	9480
TGGACATCTT TGCAGAACGT GACCTTGCTC GTGGTACATT TACTGAATCA GAAATCCAAG	9540
AATTCGTTGA TGATTTCGTT ATGAAACTTC GTACAGTTAA ATTTGCTCGT ACAAAAGCTT	960
ATGACCAATT GTACTCAGGT GACCCAACCT TTATCACAAC TTCTATGGCT GGTATGGGTA	966
ACGACGGTCG TCACCGTGTT ACTAAGATGG ACTACCGTTT CTTGAACACT CTTGACAACA	972
TCGGTAACTC ACCAGAACCA AACTTGACAG TTCTTTGGAC TGACAAATTG CCATACAACT	978
TCCGTCGCTA CTGTATGCAC ATGAGCCACA AACACTCTTC TATCCAATAC GAAGGTGTAA	984
CAACAATGGC TAAAGACGGA TATGGTGAAA TGAGCTGTAT CTCATGCTGT GTGTCTCCAC	990
TTGATCCAGA AAATGAAGAA CAACGCCACA ACATCCAGTA CTTCGGTGCT CGTGTAAACG	996

484 TTCTTAAAGC CCTTCTTACT GGTTTGAATG GTGGTTACGA CGATGTTCAC AAAGACTACA 10020 AAGTATTIGA TATCGAACCA ATCCGTGACG AAGTTCTTGA ATTTGAATCA GTTAAAGCGA 10080 ACTITIGAAAA ATCTCTTGAC TGGTTGACTG ACACTTACGT AGATGCCTTG AACATCATCC 10140 ACTACATGAC TGATAGGTAC AACTACGAAG CTGTTCAAAT GGCCTTCTTG CCAACTAAAC 10200 AACGTGCCAA CATGGGATTC GGTATCTGTG GATTTGCTAA CACTGTTGAT ACATTGTCAG 10260 CTATCAAATA CGCTACAGTT AAACCAATCC GTGACGAAGA TGGCTACATC TACGATTACG 10320 AAACAATCGG TGACTACCCA CGCTGGGGTG AAGATGACCC ACGTTCAAAC GAATTGGCAG 10380 AATGGTTGAT CGAAGCTTAC ACAACTCGTC TACGTAGCCA CAAACTATAC AAAGACGCAG 10440 AAGCTACAGT ATCACTTTTG ACAATCACAT CTAACGTTGC TTACTCTAAA CAAACTGGTA 10500 ACTCACCAGT TCACAAAGGT GTATACCTCA ACGAAGATGG TTCTGTGAAC TTGTCTAAAC 10560 TTGAATTCTT CTCACCAGGT GCTAACCCAT CTAACAAAGC TAAAGGTGGT TGGTTGCAAA 10620 ACTTGAACTC ACTTTCTAGC CTTGACTTTA GTTATGCAGC TGACGGTATC TCATTGACTA 10680 CACAAGTATC ACCTCGCGCT CTTGGTAAGA CTCGTGATGA ACAAGTTGAT AACTTGGTAA 10740 CAATTCTTGA TGGTTACTTC GAAAACGGTG GACAACACGT TAACTTGAAC GTTATGGACT 10800 TGAACGATGT TTACGAAAAA ATCATGTCAG GCGAAGACGT TATCGTACGT ATCTCTGGAT 10860 ACTGTGTAAA CACTAAATAC CTCACTCCAG AACAAAAAAC TGAATTGACA CAACGTGTCT 10920 TCCACGAAGT TCTTTCAATG GATGACGCCT TGGATGCATT GAGCTAATCA AGTTCTTGAA 10980 TAATAAAAAG GAACCCTCGG TCAAACGACT GAGGGTTTTG TGCTTGGGAT AGTATGAGCA 11040 ATTCCTTCGG CGCAATATGC AATGTTTTTG GGCTCTTTGT CAACTGTAGT GGGTTGAAAA 11100 AAAGCTAAGC TTGAGAAAGG ACAAATTTCG TCCTTTCTTT TTTGATGTTC AGGGCGATAA 11160 AAATCCGTTT TTTGAAGTTT TCAAAGTTCC GAAAACCAAA GGCATTGCGC TTGATGTCTT 11220 TGATGAGTTT GTTAGTGGCC TCAAGTTTAG CGTTAGAATA AGGCAATTCA ATGGCGTTAG 11280 TGATGTAGTT TTTATAGCAA ATAAATGTGC TCAAAGTGGT TTTAAAGGTG CGGTTGAGAT 11340 GAGGTAACGT GTCTTGAATT AAGCCCCAAA ACTGGTCAGT ATTCTTCTCT TGTAGATGAA 11400 ATAGGAGTAG TTGATACAGG TCATAGTAAT CTTTAAGTTC AGGTACTAGA GTAAAGATTT 11460 TCTTCAGACA CTCCCTAGGA GTTAAGGTCT CTCTGAAAGT TCTAGCATAG AAAGGCTTAA 11520 GAGAGAGTTT CCGACTATCT TTTAGGATAA ATTTCCAGTA ATATTTAAGA GCTCTGTATT 11580 CCAGAGATTT ATCATCAAAT TGCTTCATGA TGTTGATTCT AGTCTGATTA AGAGCCCTGC 11640 TCATGTGTTG GACAATGTGG AAACGATCGA GAACAATTTT AGCATTGGGA AATAATTTCT 11700 TAATGAGAGG GATATAACTT CCAGACATAT CAACAGTGAC GACTTTAACT TTTTTCTAG 11760

CTTCTTTCGA	GTACTTGAAG	AAATGATTTC	GGATGGTTGT	TTGACGTCTG	TTATCAAGAA	11820
TGGTCATGAT	TTTCTTAGTG	TTGAAATCCT	GAGCAATGAA	AGCCAATTTC	CCCTTCTGGT	11880
AGGAGAATTC	ATCCCAGGAG	AGGATTTCAG	GCAAAGTGGT	GTAATCCTCT	TGGAAATGAA	11940
ATTGCTTGAG	CTTACGATAG	ACGGTAGAGG	TAGAGGTAGA	GGTAGAGATG	GCTAATTTAG	12000
AAGCGATATG	TGTAAGAGCC	TCTCTGTTGA	GTAGGAGTTG	GGCAATTTTC	TGTCTCACCA	12060
TTTCCGAGAT	TTGGCAATTT	TTCTGAACGA	GAGTTGTTTC	AGCTACAGTG	ACTTTCCGAC	12120
AGGACTTGCA	TTGAAATCGT	СТСТТТТТСА	AATGAATGAG	GCTAGGGAAA	CCACCAATCT	12180
CGATAAAAGG	GATTTTAGAA	GGCTTTTGGA	AGTCGTATTT	GATTTGTTTT	CCTTTACAGT	12240
GTTTACATTT	AGGTGGGTGA	TAATCAAGTG	TAGCGAAGAC	TTCGATATGG	GTATCGTGCT	12300
GAATGGCTTT	ATTTAAGGTG	ATGTTTTTGT	CTTTTATTCC	GATGAGTAAT	GTGGTATGAT	12360
TGATGTGTTC	CATAAGATAC	TTTCTAATGA	GTTGTTTAGG	CGCTTTTCAT	TATAAGTCTT	12420
ATGGGACTTT	TTTGATACTC	AAAAAGCCCT	ATAATCTCCA	CAGTGGGATT	TACCCACTAC	12480
AGAAATTATA	GAGCCAGAAA	AAACACTTTT	GTTCACTAGC	AGAAACTAGA	GAGCAGAAGT	12540
GTTTTTCTGT	TCAGATTTAC	CCAAAACTGG	GAAATATGGG	GATAAGAATA	GAGATGGCTT	12600
AGGAAGCCCC	TTTTTGTGTG	TAGACAGTAC	GATGAACTTA	TAACAAATAG	TGAGCCTTTT	12660
TAGCAATCAT	TGCGACCCGT	TTGTCAAAAG	CCTCTTTTCG	GATATCTACA	ATTGTCTGAT	12720
AGATGAGACG	CTGTTGGCTA	ACATGCAAAT	CTAAGGCAAT	CGTCAAAAAG	TGATGTTTCC	12780
CTTTGGGATA	CTGCTTTTTA	ACGTAAGGCA	GGTATTCTTT	CGTTGTAATA	ATAATCAATG	12840
GCTCTGTCAA	ATGCTCCTCT	GAAGGAGGAG	GACTAATTAG	AATATTGTAT	CCTGTAACAG	12900
AGGCAACTTT	GTCAGTAAAA	TTCCGTAAAA	TAATGGACTT	TATTAAGTTT	ACATCTGCTT	12960
GATTATTTAA	AATGATAAAA	ATCGGGATAG	CAGGTAGTGA	GGAAAAGATG	GTTTCTGTCA	13020
AGTAGAGTGA	GAAAAGGTAC	AGCCGATGCT	GGTCGATAAC	TCCTTCAATC	TTCTGCTCAG	13080
TCATCCACTC	TTGAACAATT	GCTTTCGAAA	TATGATACAG	TGGCTTGTCG	CTTTCAATCC	13140
CATAATGTTC	GTAATAATTA	TAATAGGGAA	CTAGATTTTG	TAAACCAAAC	AAAAACGTTC	13200
PETTAAGAA	AGTCAGTGCT	GTTAAAAAAG	AAAGAGAATT	CGAAATGTCA	TTTCCTAAGA	13260
TATTCTTGAA	CTTGGATAGT	AGATGCTTTC	CTCTTGTATG	CTGAAGAATC	AGTTGAATAG	13320
PATGAGTCTT	TTTTTCTTGA	TTCCATTTGT	CCTTGGAAAA	CGAAGAATTA	GCAGAACAAT	13380
AAACCAAAAA	GATATAATCC	AGTTCTTCCT	GAGTAAAAGT	CATGTTGGCA	TGTGGCTCTA	13440
AGTAAGTTTG	GCAATGTTCC .	ATCAAAATCG	GATACATAAA	GAGGTTTTTT	AATTTTTCAA	13500

ACTCTTTGGA	CTCAGGGAAC	TCAAGTGGAA	486 ATTCCCGACG	TTTCCAAGTG	AGTGCCACTA	13560
GTATGCTAAA	ATGAACATAC	TCGTCAGGTG	TGATTTCTAA	CAGTTCATGA	CTGAGTTGAG	13620
AATTAGACTG	САСААТСАТА	TGTGTGACCC	AATCCATACT	TCCATCATTC	AAATCATAAA	13680
TCTCAATACC	AAAATGAAAC	TGGAGGAGTG	СААТТААААА	ACGAATGCGA	TATTCAGGAC	13740
CAACTACTTG	ATTTTTCACA	AGGTCCAAAC	CTACTGAACG	TAGTAACAAG	CCACACTTTT	13800
GTCGTACGCG	GTAGCCTGTT	GCGATGGAAA	TATACTCTTT	TTGTGTAAAT	TCGTTAAAGC	13860
TTTGATTACC	TTGTAGTAGA	AAGAAGCGGA	GTATTTTTAA	<b>AATAGTTGAT</b>	TGGTTATAAA	13920
GCTGATGGAA	GTAATAATTC	GTTTGATGAG	AATGGTGTTC	CATTAATTGA	ACTTGTTGCG	13980
TATCTAAATT	AAATGTCAAC	TCTTCCTCGA	ATGTTTCTTG	TAATTCCTGC	AAAATGCTTA	14040
GGAGACTTTT	AGATTGTAAT	GAAGTTAAAG	TAGACAGTTC	ATCTAGTTCA	ATAGACCGAA	14100
TATCCAATAA	TATATTTAAA	ATGGTAATTT	TATCTGTAAT	TCTTTTTTCA	ATGTATTTGT	14160
TTAGCATAGT	TACCGAATCT	TAGTTGCATA	TAGATAATTT	TAATTATTAT	AATACAAAAG	14220
AAACTAATTG	TCTTGTCAAA	AAGGTTGTGG	AATTTCCGAC	TTTATTGATA	AAACAGCATG	14280
TAATAAAAGG	CATTTTAAAG	ATAGTAATGA	GTATTGGTGG	AGTTTTATCG	CTTATTTTTT	14340
TTATTAGAAA	ATATTTTTTT	ATCAAATATT	GTCGTTCTAT	AAAAAAATAT	GTGATAAAAA	14400
TATCTATTGT	GATGGAAGTT	GTTTTAATTT	ATACTAGGAT	AGTTAATAGT	AATACTATAC	14460
TATACTATAT	TGTATACAAG	TGTGTCATTG	CCAGGTTGAG	AAGATAGCTA	TAACGCACTT	14520
TTATACGCTT	TTGCTACGTT	TGTTAGTGAA	CGGATTAACT	CAGTGAGATA	AATTTTATCA	14580
GAACATAAGT	AATCCGTTTC	TTCGTGTATA	CAGATTGAAA	GTACCTATGA	ATCATAGAAG	14640
GATTAACTTG	TTCTATGAAT	AATGCTTAAC	AGGGAGACAC	ACATGAAAAA	AGTAAGAAAG	14700
ATATTTCAGA	AGGCAGTTGC	AGGACTGTGC	TGTATATCTC	AGTTGACAGC	TTTTTCTTCG	14760
ATAGTTGCTT	TAGCAGAAAC	GCCTGAAACC	AGTCCAGCGA	TAGGAAAAGT	AGTGATTAAG	14820
GAGACAGGCG	AAGGAGGAGC	GCTTCTAGGA	GATGCCGTCT	TTGAGTTGAA	AAACAATACG	14880
GATGGCACAA	CTGTTTCGCA	AAGGACAGAG	GCGCAAACAG	GAGAAGCGAT	ATTTTCAAAC	14940
ATAAAACCTG	GGACATACAC	CTTGACAGAA	GCCCAACCTC	CAGTTGGTTA	TAAACCCTCT	15000
ACTAAACAAT	GGACTGTTGA	AGTTGAGAAG	AATGGTCGGA	CGACTGTCCA	AGGTGAACAG	15060
GTAGAAAATC	GAGAAGAGGC	TCTATCTGAC	CAGTATCCAC	AAACAGGGAC	TTATCCAGAT	15120
GTTCAAACAC	CTTATCAGAT	TATTAAGGTA	GATGGTTCGG	AAAAAAACGG	ACAGCACAAG	15180
CCTTGAATC	CGAATCCATA	TGAACGTGTG	ATTCCAGAAG	GTACACTTTC	AAAGAGAATT	15240
FATCAAGTGA	ATAATTTGGA	TGATAACCAA	TATGGAATCG	AATTGACGGT	TAGTGGGAAA	15300

ACAGTGTATG	AACAAAAAGA	TAAGTCTGTG	CCGCTGGATG	TCGTTATCTT	GCTCGATAAC	15360
TCAAATAGTA	TGAGTAACAT	TCGAAACAAG	AATGCTCGAC	GTGCGGAAAG	AGCTGGTGAG	15420
GCGACACGTT	CTCTTATTGA	TAAAATTACA	TCTGATTCAG	AAAATAGGGT	AGCGCTTGTG	15480
ACTTATGCTT	CCACTATCTT	TGATGGGACC	GAGTTTACAG	TAGAAAAAGG	GGTAGCAGAT	15540
AAAAACGGAA	AGCGATTGAA	TGATTCTCTT	TTTTGGAATT	ATGATCAGAC	GAGTTTTACA	15600
ACCAATACCA	AAGATTATAG	TTATTTAAAG	CTGACTAATG	ATAAGAATGA	CATTGTAGAA	15660
TTAAAAAATA	AGGTACCTAC	CGAGGCAGAA	GACCATGATG	GAAATAGATT	GATGTACCAA	15720
TTCGGTGCCA	CTTTTACTCA	GAAAGCTTTG	ATGAAGGCAG	ATGAGATTTT	GACACAACAA	15780
GCGAGACAAA	ATAGTCAAAA	AGTCATTTTC	CATATTACGG	ATGGTGTCCC	AACTATGTCG	15840
TATCCGATTA	ATTTTAATCA	TGCTACGTTT	GCTCCATCAT	ATCAAAATCA	ACTAAATGCA	15900
TTTTTTAGTA	AATCTCCTAA	TAAAGATGGA	ATACTATTAA	GTGATTTTAT	TACGCAAGCA	15960
ACTAGTGGAC	AACATACAAT	TGTACGCGGA	GATGGGCAAA	GTTACCAGAT	GTTTACAGAT	16020
AAGACAGTTT	ATGAAAAAGG	TGCTCCTGCA	GCTTTCCCAG	TTAAACCTGA	AAAATATTCT	16080
GAAATGAAG	CGGCTGGTTA	TGCAGTTATA	GGCGATCCAA	TTAATGGTGG	ATATATTTGG	16140
CTTAATTGG	A GAGAGAGTAT	TCTGGCTTAT	CCGTTTAATT	CTAATACTGC	TAAAATTACC	16200
AATCATGGT	G ACCCTACAAG	ATGGTACTAT	AACGGGAATA	TTGCTCCTGA	TGGGTATGAT	16260
GTCTTTACGG	G TAGGTATTGC	TATTAACGGA	GATCCTGGTA	CGGATGAAGC	AACGGCTACT	16320
AGTTTTATG	C AAAGTATTTC	TAGTAAACCT	GAAAACTATA	CCAATGTTAC	TGACACGACA	16380
AAAATATTG	G AACAGTTGA	TCGTTATTTC	CACACCATCO	TAACTGAAAA	GAAATCAATT	16440
GAGAATGGT.	A CGATTACAG	TCCGATGGG1	GAGTTAATT	ATTTGCAATT	GGGCACAGAT	16500
GGAAGATTT	G ATCCAGCAG	TTACACTTT	A ACTGCAAACO	ATGGTAGTC	CTTGGAGAAT	16560
GGACAAGCT	G TAGGTGGTC	ACAAAATGA	CCTCCTTTC	TAAAAAATG	AAAAGTGCTC	16620
TATGATACG	A CTGAGAAAA	GATTCGTGT	A ACAGGTCTG	r ACCTTGGAA	GGATGAAAAA	16680
GTTACGTTG	A CCTACAATG	r TCGTTTGAA	CATGAGTTT	TAAGCAATA	ATTTTATGAT	16740
ACCAATGGT	C GAACAACCT	r acateetaa	G GAAGTAGAA	C AGAACACAG	CCCCGACTTC	16800
CCGATTCCT	A AGATTCGTG	A TGTGCGGAA	G TATCCAGAA	A TCACAATTT	CAAAAGAGAAA	16860
AAACTTGGT	G ACATTGAGT	T TATTAAGGT	C AATAAAAAT	G ATAAAAAAC	C ACTGAGAGGT	16920
GCGGTCTTT	a gtetteaaa	A ACAACATCC	G GATTATCCA	G ATATTTATG	G AGCTATTGAT	16980
CAAAATGGC	A CTTATCAAA	A TGTGAGAAC	a ggtgaagat	G GTAAGTTGA	C CTTTAAAAAT	17040

			488			
CTGTCAGATG	GGAAATATCG	ATTATTTGAA	AATTCTGAAC	CAGCTGGTTA	TAAACCCGTT	1710
CAAAATAAGC	CTATCGTTGC	CTTCCAAATA	GTAAATGGAG	AAGTCAGAGA	TGTGACTTCA	1716
ATCGTTCCAC	AAGATATACC	AGCGGGTTAC	GAGTTTACGA	ATGATAAGCA	CTATATTACC	1722
AATGAACCTA	TTCCTCCAAA	GAGAGAATAT	CCTCGAACTG	GTGGTATCGG	AATGTTGCCA	1728
PTCTATCTGA	TAGGTTGCAT	GATGATGGGA	GGAGTTCTAT	TATACACACG	GAAACATCCG	17340
TAAAGTGTAG	AAATGATAAT	ATCTATGTTC	TGAACGATAC	TTTTAAGAAG	TAGCACTCAA	17400
GAAGAGATTT	AAGTTTACTT	GGTGAAACCT	GTTTTATTCG	TAAGTAAACT	ATCATTGAAA	17460
GGGGAGATGT	TTTCGAAAAC	TTGCACAGAA	AAAGGATTAT	TATTGTCATG	TGTAATTCAT	17520
TACATTGCTC	ACAGTTGATT	TTAAGAGATA	TGAATAAGGA	GAAATCATGA	AATCAATCAA	17580
CAAATTTTTA	ACAATGCTTG	CTGCCTTATT	ACTGACAGCG	AGTAGCCTGT	TTTCAGCTGC	17640
AACAGTTTTT	GCGGCTGGGA	CGACAACAAC	ATCTGTTACC	GTTCATAAAC	TATTGGCAAC	17700
agatggggat	ATGGATAAAA	TTGCAAATGA	GTTAGAAACA	GGTAACTATG	CTGGTAATAA	17760
AGTGGGTGTT	CTACCTGCAA	ATGCAAAAGA	AATTGCCGGT	GTTATGTTCG	TTTGGACAAA	17820
TACTAATAAT	GAAATTATTG	ATGAAAATGG	CCAAACTCTA	GGAGTGAATA	TTGATCCACA	17880
AACATTTAAA	CTCTCAGGGG	CAATGCCGGC	AACTGCAATG	AAAAAATTAA	CAGAAGCTGA	17940
AGGAGCTAAA	TTTAACACGG	CAAATTTACC	AGCTGCTAAG	TATAAAATTT	ATGAAATTCA	18000
CAGTTTATCA	ACTTATGTCG	GTGAAGATGG	AGCAACCTTA	ACAGGTTCTA	AAGCAGTTCC	18060
AATTGAAATT	GAATTACCAT	TGAACGATGT	TGTGGATGCG	CATGTGTATC	CAAAAAATAC	18120
AGAAGCAAAG	CCAAAAATTG	ATAAAGATTT	CAAAGGTAAA	GCAAATCCAG	ATACACCACG	18186
TGTAGATAAA	GATACACCTG	TGAACCACCA	AGTTGGAGAT	GTTGTAGAGT	ACGAAATTGT	18240
TACAAAAATT	CCAGCACTTG	CTAATTATGC	AACAGCAAAC	TGGAGCGATA	GAATGACTGA	18300
AGGTTTGGCA	TTCAACAAAG	GTACAGTGAA	ACTAACTGTT	GATGATGTTG	CACTTGAAGC	18360
AGGTGATTAT	GCTCTAACAG	AAGTAGCAAC	TGGTTTTGAT	TTGAAATTAA	CAGATGCTGG	1842
TTTAGCTAAA	GTGAATGACC	AAAACGCTGA	AAAAACTGTG	AAAATCACTT	ATTCGGCAAC	1848
ATTGAATGAC	AAAGCAATTG	TAGAAGTACC	AGAATCTAAT	GATGTAACAT	TTAACTATGG	1854
TAATAATCCA	GATCACGGGA	ATACTCCAAA	GCCGAATAAG	CCAAATGAAA	ACGGCGATTT	1860
GACATTGACC	AAGACATGGG	TTGATGCTAC	AGGTGCACCA	ATTCCGGCTG	GAGCTGAAGC	1866
AACGTTCGAT	TTGGTTAATG	CTCAGACTGG	TAAAGTTGTA	CAAACTGTAA	CTTTGACAAC	1872
AGACAAAAAT	ACAGTTACTG	TTAACGGATT	GGATAAAAAT	ACAGAATATA	AATTCGTTGA	1878
ACGTAGTATA	AAAGGGTATT	CAGCAGATTA	TCAAGAAATC	ACTACAGCTG	CACAAATTCC	1884

TGTCAAGAAC TGGAAAGACG AAAATCCAAA ACCACTTGAT CCAACAGAGC CAAAAGTTGT	18900
TACATATGGT AAAAAGTTTG TCAAAGTTAA TGATAAAGAT AATCGTTTAG CTGGGGCAGA	18960
ATTTGTAATT GCAAATGCTG ATAATGCTGG TCAATATTTA GCACGTAAAG CAGATAAAGT	19020
GAGTCAAGAA GAGAAGCAGT TGGTTGTTAC AACAAAGGAT GCTTTAGATA GAGCAGTTGC	19080
TGCTTATAAC GCTCTTACTG CACAACAACA AACTCAGCAA GAAAAAGAGA AAGTTGACAA	19140
AGCTCAAGCT GCTTATAATG CTGCTGTGAT TGCTGCCAAC AATGCATTTG AATGGGTGGC	19200
AGATAAGGAC AATGAAAATG TTGTGAAATT AGTTTCTGAT GCACAAGGTC GCTTTGAAAT	19260
TACAGGCCTT CTTGCAGGTA CATATTACTT AGAAGAAACA AAACAGCCTG CTGGTTATGC	19320
ATTACTAACT AGCCGTCAGA AATTTGAAGT CACTGCAACT TCTTATTCAG CGACTGGACA	19380
AGGCATTGAG TATACTGCTG GTTCAGGTAA AGATGACGCT ACAAAAGTAG TCAACAAAAA	19440
AATCACTATC CCACAAACGG GTGGTATTGG TACAATTATC TTTGCTGTAG CGGGGGCTGC	19500
GATTATGGGT ATTGCAGTGT ACGCATATGT TAAAAACAAC AAAGATGAGG ATCAACTTGC	19560
TTAAGTAAGA GAGAAAGGAG CCATTGATGA CAATGCAGAA AATGCAGAAA ATGATTAGTC	19620
GTATCTTCTT TGTTATGGCT CTGTGTTTTT CTCTTGTATG GGGTGCACAT GCAGTCCAAG	19680
CGCAAGAAGA TCACACGTTG GTCTTGCAAT TGGAGAACTA TCAGGAGGTG GTTAGTCAAT	19740
TGCCATCTCG TGATGGTCAT CGGTTGCAAG TATGGAAGTT GGATGATTCG TATTCCTATG	19800
ATGATCGGGT GCAAATTGTA AGAGACTTGC ATTCGTGGGA TGAGAATAAA CTTTCTTCTT	19860
TCAAAAAGAC TTCGTTTGAG ATGACCTTCC TTGAGAATCA GATTGAAGTA TCTCATATTC	19920
CAAATGGTCT TTACTATGTT CGCTCTATTA TCCAGACGGA TGCGGTTTCT TATCCAGCTG	19980
AATTTCTTTT TGAAATGACA GATCAAACGG TAGAGCCTTT GGTCATTGTA GCGAAAAAAA	20040
CAGATACAAT GACAACAAAG GTGAAGCTGA TAAAGGTGGA TCAAGACCAC AATCGCTTGG	20100
AGGGTGTCGG CTTTAAATTG GTATCAGTAG CAAGAGATGT TTCTGAAAAA GAGGTTCCCT	20160
TGATTGGAGA ATACCGTTAC AGTTCTTCTG GTCAAGTAGG GAGAACTCTC TATACTGATA	20220
AAAATGGAGA GATTTTTGTG ACAAATCTTC CTCTTGGGAA CTATCGTTTC AAGGAGGTGG	20280
AGCCACTGGC AGGCTATGCT GTTACGACGC TGGATACGGA TGTCCAGCTG GTAGATCATC	20340
AGCTGGTGAC GATTACGGTT GTCAATCAGA AATTACCACG TGGCAATGTT GACTTTATGA	20400
AGGTGGATGG TCGGACCAAT ACCTCTCTTC AAGGGGCAAT GTTCAAAGTC ATGAAAGAAG	20460
AAAGCGGACA CTATACTCCT GTTCTTCAAA ATGGTAAGGA AGTAGTTGTA ACATCAGGGA	20520
AAGATGGTCG TTTCCGAGTG GAAGGTCTAG AGTATGGGAC ATACTATTTA TGGGAGCTCC	20580

AAGCTCCAAC	TGGTTATGTT	CAATTAACAT	490 CGCCTGTTTC	CTTTACAATC	GGGAAAGATA	20640
CTCGTAAGGA	ACTGGTAACA	GTGGTTAAAA	ATAACAAGCG	ACCACGGATT	GATGTGCCAG	20700
ATACAGGGGA	AGAAACCCTT	GTATATCTTG	ATGCTTGTTG	CCATTTTGTT	GTTTGGTAGT	20760
GGTTATTGTC	TTACGAAAAA	ACCAAATAAC	TGATATTCAA	TGTACATCAT	TATGAATAGG	20820
ATAGCAGGCT	GAAGGGAAGA	CCAGAGTACT	CTGAGGTGAT	GTTAATCAGG	AATCATGGTG	20880
ATGTGGCATG	AATCATCAAT	AACGGATATG	AGGCTGGGCA	GATTGTGCCA	GCCTCATTGT	20940
GGGTTATTGT	TTGTAAAACG	ATAGGACTGG	TCTGGTAATC	ATTTTA		20986

# (2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21040 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

CCCAGCAAAA AGCCATCCGA AGATGACTTT TTTGCTATTT AATTTCTGTA TAAGTTACTT	60
CCAAGCCACG CTTAACAGCT GGACGATTGG CAATTTTTTC TGCCCATTTT ACTAGATTTT	120
GATAACTTGA GGCATCCAAG AATTTTGCAG AACCTTGGTA AAGATTTCCT TGAACTAACT	180
GTCCATACCA AGACCAGATA GCAATATCTG CAATCGTATA GTCATTGCCT GCAATATAAG	240
GTTTCTGAGC CAATTCCTTA TCCAATAAAT CCAACTGGCG TTTCACTTCC ATCGTAAAAC	300
GGTTAATAGG ATATTCCAAT TTTTCAGGAG CATAATTGAA GAAATGTCCA AATCCCCCAC	360
CTAGAAAAGG TGCTGCACCT GCTTGCCAGA ATAGCCAATT CAAAACTTCT ACCTTTTCCA	420
CAGGATTACT TGGTAAAAAG GCTCCAAATT TCTCAGCAAG GTAAAGAAGA ATATGAGCAG	480
ACTCAAAGAC TCTTACGTTT TCAGTACCTG ACTGGTCCAA TAAGGCTGGA ATCTTGGAAT	540
TTGGATTGAG CTTCACAAAG TCTGATCCGA ATTGATCCCC ATCCATGATA GCAATCTTAT	600
ACAAGTCGTA AGCCGCTTCC TTAAAACCAG CTTCTAGTAA TTCTTCCAAT AAGATAGTAA	660
CCTTCACACC ATTTGGTGTT CCCAGTGAAT AAAGCTGAAA AGCTTGTTCT CCTTTTGGCA	720
AGTTTTGTTC GAAACGGGCA CCTGCTGTTG GTCTGTTTAG CCCCGTAAAA GCTCCTTGAT	780
TACTAGCTTC ATCCTGCCAT ACGGTCGGTA ATTGATATGC TGACATCCGA AACCTCCCTT	840
AAATCGCATT CTTGTCAAAA CCGAGTTTGC GTTGAATAAA CTTAACGATT TCGACGATGA	900
TAATCATTGA GAAGCTTCCA GCCATAACAA TTCCCCATTG TGACAAGTCT AGTTTGGTTA	960
CGTGGAAGAT TCCTTCAAGC GGTTCTACAA CGATTGTTGC CATGAGAAGG ATAAAGGATA	1020

CCAAGATGGA	CCAGTTAAAG	GTCTTAGACT	TGAATGGGCC	AACTGTCAAG	ATGGATTGGT	1080
AGACAGACTT	GACATTGTAG	GCATGGAAGA	GCTGAATCAA	ACCAAGGGTT	GCAAAGGCCA	1140
TCGTTAGGGC	ATCTGCATGA	ATAGCATGAT	TGTCACCCAC	ATGAACTGGG	TAAGCAATCG	1200
CAAGGCCATA	AACACTCATA	ACAAGAGCTG	CTTGGAGTAC	ACCTTGATAA	ATGATAGAAC	1260
TCAAAACACC	ACCTGAGAAG	AAGCTTGCCT	TGCGTCCACG	TGGTTTATGA	TTCATGACAC	1320
CAGGTTCCGC	AGGTTCAACA	CCAAGAGCGA	TAGCTGGGAA	GGTATCCGTT	ACCAAGTTGA	1380
TCCACAAAAG	ATGAACCGGC	TGTAAGACAT	CCCAACCAAA	CAAGGTTGAT	AGGAAGATGG	1440
TTAATACTTC	AGCAGTATTA	GCAGAAAGTA	GGTACTGAAT	AGTCTTTTGA	ATGTTTGAGA	1500
AGACCTTACG	TCCTTCTTCC	ACTGCGACGA	TAATAGTCGC	AAAGTTATCA	TCTGCAAGAA	1560
TCATATCAGA	AGCCCCCTTA	GAAACCTCTG	TACCAGTGAT	TCCCATACCG	ATACCGATAT	1620
CGGCTGTTTT	CAGAGCTGGC	GCGTCATTGA	CACCGTCACC	TGTCATGGCA	ACGACTTTAC	1680
CTTGTTTTTG	CCAAGCCTTG	ACGATACGAA	CCTTGTGTTC	TGGAGACACA	CGGGCATAAA	1740
CAGAGTATTG	ACCAACGACT	TTTTCAAATT	CTTCATCTGA	CAGTTCATTG	AGTTCAGCAC	1800
CAGTTAAAAC	GTGACCTTCT	GTATCGTTTG	CGTCAATGAT	TCCCAAACGT	TTGGCAATGG	1860
CTTCCGCTGT	CTCTTGGTGG	TCACCTGTAA	TCATAATTGG	ACGGATTCCC	GCTTCCTTAG	1920
CCACACGAAC	AGCCTCAGCG	GCTTCAGGAC	GTTCAGGGTC	AATCATCCCA	ATCAAACCAG	1980
<b>TAAAAATTAA</b>	ATCATTTTCA	AGCTCTTCAG	AAGTGAGATT	TTCTGGAATA	CTATCGATAA	2040
TCTTATAAGC	ACCTGCAAGG	ACACGCAAGG	CTTGATGAGC	CATTTCAGAA	TTGTTTGTAC	2100
CAATGAGATT	TGTAACCTTC	TCATCAATCG	GAGCAATATC	CCCAGCCTTA	TCACGAAGAA	2160
GACAACGTTT	TAAGAGTTGG	TCTGGCGCAC	CCTTGACTGC	TACAAGGAAA	CGACCATCTG	2220
GCAATGGGTG	AACTGTTGAC	ATGAGCTTAC	GGTCAGAGTC	AAATGGCAAT	TCAGCTACAC	2280
GAGGATATTT	CTCTAAGAAA	CCTTTGACAT	CATAGCCCTT	GTCCAAGGCA	TATTGGATAA	2340
AGGCTGTTTC	GGTTGGGTCA	CCAATCAAGT	TACCTTCCAC	ATCGATTTTC	GTATCATTGG	2400
CCAAGACAAC	TGAACGAAGT	AGTGGCATTT	CAAGACCTAG	TTCAATATCA	TCAGCTGAGT	2460
CATGTAGAAC	CGCATCGTAG	AAGACTTTTT	CGACTGTCAT	CTTGTTCATA	GTCAGCGTAC	2520
CAGTCTTATO	AGAAGCGATG	ATTTCAGTTG	AACCAAGTGT	TTCAACTGCT	GGCAACTTAC	2580
GAACGATGG	ATGTCGTTTG	GCCAAAACTT	GAGTACCAAG	AGAAAGAACG	ATGGTAACGA	2640
TAGCAGGAAG	TCCTTCTGGA	ATGGCTGCAA	CGGCAAGGGC	AACAGAAGTO	AACAACTCAC	2700
CAAGTGGATT	TTTCCCTTGA	ATGAAGACAC	CCACTACAAA	AGTAACAAGG	GCAATGACCA	2760

492

AGATAGCATA GGTCAAGACC TTAGAAAGGT TGTTCAAATT TTGTTTGAGT GGTGTATCAG 2820 TCTCATCCGC ATCTTGAAGC ATACCAGCAA TATGACCAAC TTCAGTGTAC ATACCTGTAT 2880 TGACAACAAC ACCCATCCCA CGACCATAGG TTACGTTTGA GTTTTGGAAG GCCATGTTGA 2940 CACGGTCACC AATACCAGCA TCTGTCGCAA GCTCGACTGA CAAGTCTTTT TCGACTGGTA 3000 CAGATTCACC TGTCAAGGCT GCTTCTTCAA TTTTAAGAGA GTTGGCTTCT ATCAAACGTA 3060 GGTCCGCTGG TACCACGTCA CCTGCTTCAA GGGCAACGAT ATCGCCTGGT ACCAATTCTT 3120 TAGAGTCAAT CTCTGCCATG TGTCCATCAC GAAGAACGCG GGCAACTGGA CTAGACATGG 3180 ATTTGAGGGC TTCAATAGCT TCTTCAGCTT TTCCTTCTTG GTAAACACCA AAGGCAGCGT 3240 TGATGATAAC CACAGCTAGG ATGATAATGG CATCTGCGAT ATCTTCCCCA CCAGAAGTCA 3300 CGACTGACAA GATTGCTGCC GCAACTAGGA TGATAATCAT CAAATCCTTA AATTGCTCGA 3360 TGAATTTGAC CAAGATTGAT CGTTTCTCGC CTTCTTCGAG TTCATTGTGC CCAAATTCGG 3420 CAAGGCGCTT TTCCGCCTCA CTTGATGACA AACCTTGCTC GGTCGCATCC ACAGCCTGCA 3480 AGACCTCTTC AGGGCTCTGA GTATAAAACG CTTGGCGTTT TTGTTCTTTT GACATGTGTC 3540 TCCTCCTTGA CATTGTGTGC AAAACAGACT CTCTTTCTGT CATAGCTTTT CACGACAAAC 3600 AAAAAGAAAC CTGTTAATCA TAACAAGTCT CGCTGTTTAA GATAGGGCCG GAAAGCATAC 3660 TTTTCAGCAT AAAATTCGGA ATGACGACAC TATCACAGGT TTCTGCCAGC TACTCCCTTG 3720 AGTAGTACCA TTATACCAAA TTTTGGGGAG TTTTCAAAGA GTAAAAACTG CCTTATTTGA 3780 ATTTTTCCTT GAAAACCAGT ATAATGGTAG AATGCTATGT GACTAGAAAG GAAGTTGAAT 3840 GAAGCAATCT ATCTCAAATC TCAAGTTAGC TGAGCGTGGA GCCATTATCA GTATTTCGAC 3900 CTATTTGATC TTGTCTGCAG CCAAATTAGC AGCTGGTCAT CTCCLTCATT CATCCAGTTT 3960 GGTGGCCGAT GGTTTTAATA ACGTATCGGA CATCATTGGA AATGTGGCCC TCTTAATCGG 4020 GATTCGGATG GCGCGCCACC TGCAGACCGT GACCACCGTT TTGGTCATTG GAAGATTGAA 4080 GATTTGGCAA GCTTGATCAC TTCTATCATC ATGTTCTATG TCGGTTTCGA TGTTCTAAGA 4140 GATACCATTC AAAAGATTCT CAGTCGGGAA GAAACGGTCA TTGATCCTCT TGGTGCAACT 4200 CTAGGAATCA TTTCTGCAGC GATTATGTTT GTGGTCTATC TCTACAATAC TCGCCTCAGT 4260 AAGAAATCCA ACTCCAATGC GCTGAAGGCA GCTGCTAAGG ACAATCTTTC TGACGCTGTT 4320 ACCTCACTTG GAACCGCCAT TGCCATCCTA GCTAGTAGTT TCAATTATCC GATTGTGGAT 4380 AAACTGGTTG CTATCATCAT CACTTTCTTT ATCTTGAAGA CTGCCTATGA TATCTTCATC 4440 GAGTCTTCCT TTAGTCTTTC AGATGGCTTT GACGACCGCC TGCTCGAGGA CTACCAAAAG 4500 GCTATCATGG AAATTCCCAA AATCAGCAAG GTCAAATCGC AAAGAGGTCG CACCTACGGT 4560

AGCAACATCT	ACCTGGATAT	TACACTAGAG	ATGAATCCTG	ACTTGTCTGT	TTTTGAAAGC	4620
CATGAAATCG	CGGATCAGGT	CGAGTCTATG	CTGGAGGAGC	GTTTTGGCGT	CTTTGATACC	4680
GATGTCCATA	TCGAACCAGC	ACCTATCCCT	GAGGATGAAA	TTTTAGACAA	TGTCTATAAA	4740
AAATTGCTTA	TGCGTGAACA	ATTGATTGAC	CAAGGAAACC	AACTAGAAGA	ACTCTTGACT	4800
GATGATTTTG	TCTATATTCG	CCAAGATGGA	GAGCAGATGG	ATAAAGAGGC	TTATAAGACC	4860
AAAAAAGAGT	TAAATTCTGC	TATCAAGGAC	ATTCAAATTA	CTTCCATCAG	TCAAAAAACC	4920
AAACTCATCT	GCTATGAGTT	AGATGGTATC	ATCCATACCA	GTATCTGGCG	TCGCCACGAA	4980
ACCTGGCAAA	ATATCTTTCA	TCAAGAAACC	AAAAAAGAAT	AGAGAAATCC	TTTCATGAGA	5040
CGGGATTTTT	CTATTCTTTT	ATACTCAATA	AAAATCAAAG	TGCAAATTAG	GAAGCCGGTC	5100
ACAGGCTGTA	CTTGAGTCGG	CAATGTGAAG	CCGACATAGT	TTGCACTTTG	ATTTTCGAAT	5160
AGTCTTAACT	ATCAAATTCA	CTGAGATACT	CATAGCGTTC	GTATTTTCA	AGGAGTGCTT	5220
CATTTTTCTC	ATCCAATTCT	TTTTGGAGAG	TAGCCAGCTT	ACCAAAGTCA	GAGCCGTTAG	5280
CCTGCATTTC	CTCTTCAATA	GCAGCGATAC	GTTTTTCCAA	GGTTTCAATA	TCACCTTCAA	5340
TACTTGCCCA	CTCCTGCTTT	TCTTGGTAGG	TCATGCGTTT	CTTGTCTTCT	CGAACCTTGA	5400
CCACTTTTTC	CTTTTCGGCC	TTTTGCACTT	GATTGGCCAT	ATCTGTTTCA	AAAGCTTTTT	5460
CATCAAGATA	GTCGGTGTAA	TGACCAAAGA	AAGGACGAAT	CTTGCCATCC	TCAAAAGCGA	5520
GAATCTTGGT	CGCTACCTTA	TCCAAGAAAT	AGCGGTCGTC	ACTGACTGTT	AAAACGGGAC	5580
CTGCAAAACC	TTGCAAGAAA	TTCTCTAAGA	CTGTCAAAGT	TGCAATATCT	AGGTCATTGG	5640
TTGGCTCGTC	TAAAAGAAGA	ACATTTGGTT	TTTCCAAAAG	CAGTTTGAGG	AGATAAAGAC	5700
GTTTTTTCTC	ACCCCCTGAC	AATTTCTCAA	TCAAAGTCCC	ATGCGTCGAA	CSTSGGAAGA	5760
GGAATTGCTC	CAGCAACTCA	GCGATGGAAG	TCGTAGAACC	ACCACTGGTC	TTGACCTCCT	5820
CTGCCACTTC	CTGCAGGTAA	TTGATCACAC	GCTTGCTTTC	ATCCAAACCC	TCAATTTGTT	5880
GAGAGAAATA	GGCGATGCGA	ACAGTTTCCC	CAATCACAAC	TTGTCCTGCT	GTCGGCTCAA	5940
GACTTCCTGC	AATCAGGTTA	AGTAGGGTTG	ATTTTCCAAC	ACCATTGTCC	CCAACAATTC	6000
CAATACGGTC	TTTAGCCTGA	ACTAAGAGAT	TAAAATTTTG	CAAAATGGGC	TTATTTTCAT	6060
AGGCAAAGGA	AACATCCTGA	AACTCGATGA	CTTTCTTCCC	AATCCGACTG	GTTTCAAAGT	6120
TCATAGTCAA	GTCTGTCTCA	GCACTACTGC	CTGAAACTTC	CTTTTTCAGA	TCATGGAAAC	6180
GATTGATACG	AGCTTGTTGC	TTGGTCGCAC	GCGCCTGCGG	TTGTCTGCGC	ATCCAGGCCA	6240
ATTCTTGTTT	GTAGAGTTGT	TCTTTTTTGT	GAAGAAGAGC	CGCGTCGCGC	TCATCCTGTT	6300

CCGCCTTTAG	GCGAACATAG	TCCTGGTAAT		CTCGGTCAAG	CCTGCACGAT	6360
CCAACTCGAA	AATCCGTGTT	GACAAAGCGT	CTAAGAAATA	ACGATCGTGA	GTGATAAAAA	6420
GGACGGTCTT	CTTAGAATTT	TTCAAAAAGA	GGGTCAGCCA	CTCAATAATC	GCAATATCCA	6480
GATGGTTGGT	CGGCTCATCC	AAAAGCAAGA	GGTCGTGGTT	GCCAAGTAAG	ACTTGTGCCA	6540
ACTGTACCCG	TCTTCTCAGA	CCACCTGACA	ATTCCCCAAC	AGGAGTAGAT	AAGTCTTGAA	6600
TGCCCAATTT	GCTAAGAACG	GTCTTGACCT	GACTTTCGAT	TTCCCAAGCT	TGGAGAGAGT	6660
CCATCTCTGC	CATGACACGT	TCCAAACGCG	CCTGCTTGTC	CTCACTATAG	TCGAGCATAA	6720
TCAATTCATA	CTCACGAATG	AGCTGGATTT	CCTTGAGTTC	ACTAGATAGA	ACCGTATCCA	6780
AAACTGTCTT	TCTATCATCA	AAATCAGGAT	CCTGAGTCAA	GTAACCAATC	TGGTAATCAT	6840
TTTTAGCTGA	AAAAGGACTG	ACATCCCCAT	CAAATCCAGA	AACACCAGAA	AGGACGTCCA	6900
AAAGGGTGGT	CTTGCCAGTC	CCATTGACAC	CGATTAAACC	AATTCTGTCT	AAGTCATGGA	6960
TAATAAAGGA	AATATCCCTA	AAAACGGTCT	TGTCACCAAC	GGATTTACTT	AGTTTTTCAA	7020
CGATAAAATC	ACTCATTTTT	TCTCCCTCAG	GTAAGCATGG	ATGGCTTCAC	GATTATTCTC	7080
CAATTCTCCA	TCGACAATGG	CAAACTCAAT	CTCTGTTAAA	ATCTCTCCCA	AGTCTGGGCC	7140
TGGCTGATAG	CCATATTCCT	TGATCAAAAT	ACCGCCATTA	ATCTGAATCT	CTTTCTTGTC	7200
ATGGATAGTC	AAGCTTTGGT	ATTTTTCTGT	GATGGCTTGT	GGGTTGACTT	CTTTTCCTTG	7260
AGCTTGACGA	AGATTTTCAG	CCTGTAAAAG	CAAATCTATG	TCAAAGCGAT	AACAATCTCG	7320
CTTGCTCAAT	TCTCCATTTT	CACGCAGAGC	CAAAATAATC	AGCAAATCCT	GAACTTGCTT	7380
GGCAAACTGG	CGTGAGGTCT	TCCAAGATTT	CAAAAATGAC	TGCGCATTTT	CAATCTCCAA	7440
AGCCCATAGT	AAAGCCGCCC	AGGCTTGTTC	AGAGGATTCA	AAAGTAAAAT	CAGTCTCCAA	7500
ATCAAACAGT	CTGTTGAGCT	TGTCCTGGCT	AGATGCCATA	TCAGGGAGAT	AGTCATAAGC	756
TTGACTCTCA	ATCATGGAAG	CCAAGCCCCT	TCTCCAAAAT	GGAGCCAGCA	AGAGTTTATC	7620
AAACTCGACG	AAGGTACGCT	CTACAGAAAT	TTTCTCCAAA	AGCGGCGTCA	AGGTCTTCAT	7680
AGCTTTAAAT	GTTTCTGGCT	CAAGTGCAAA	ACCAAGACTA	GCCTGAAAAC	GGAAACCACG	774
CATAATCCGT	AAAGCATCTT	CGTTGAAACG	CTCACTAGCC	ACTCCAACTG	CTCGCAAGAC	780
TTGCTTTTCC	AAATCTTCTA	AACCATGGAA	CAAGTCAACG	ATTTCTCCTG	TCTCATCCAA	786
GGCAAAGGCG	TTGACTGTGA	AATCACGGCG	TTTGAGGTCT	TCTTCTAGCG	ATCGTACAAA	792
GGAAACCGCA	CTGGGTCTGC	GATAGTCCAC	ATAGACATCC	TCTGTCCGAA	AGGTTGTTAC	798
CTCATACTCC	TCATCCCCAT	CTAAGACCAA	GACGGTTCCA	TGCTCGATTC	CGATATCGGC	804
TOTTCCCCCA	AAAATCTCCT	<b>よくことないかしないかい</b>	TGGATAAGAA	GACGTCGCAA	TATCCACATC	810

GTGC	GATAGGG	CTATGGAGAA	GGGCATCTCG	AACAGAGCCC	CCAACAAAAT	AAGCCTCAAA	8160
GCC1	rccttct	TTAATTTTTT	CTAATACTGG	TAAAGCCTTC	TGAAATTCAG	AAGGCATTTG	8220
CGTI	ГААТСТС	ATAATAAGTG	TTCTAATCCA	TAGACAAGCT	CATGACGCTT	GACAACTTCT	8280
TTA	ATTCCCA	AATTGACTCC	TGTCATGAAG	GAGATGCGAT	CATAGGAGTC	ATGACGGAGG	8340
GTC	AACCCTT	CTCCCTGATT	GCCAAAGATG	ACTTCCTGAT	GAGCTACCAA	GCCTGGCAAA	8400
CGA	ACTGAGT	GGATGCGCAT	ACCATCAAAG	TCAGCACCAC	GAGCACCAGC	AATCAGCTCT	8460
TCC	<b>ICATCTG</b>	CTGCACCTTG	CTGAATTGAC	TCTCGAACCT	CTGCCATCAA	CTCAGCTGTT	8520
TTA	ATGGCTG	TTCCACTCGG	AGCATCCTTT	TTCTTGTCAT	GATGGAGCTC	AATAATCTCC	8580
ACA1	TTTGGGA	AATATTTGGC	AGCCTGCGTC	GCAAATTGCA	TGAGTAAGAC	AGCACCCAAG	8640
GCA	AAGTTAG	GGGCAATCAG	GCCACCCAAG	TCTTGGGCAC	GAGAAAATTC	TTTTAGCTCT	8700
GCA	ATTTCTT	CACTCGTGAA	ACCAGTCGTT	CCAACTACTG	GAGCAAAGCC	ATTTTCAAGA	8760
GCA	AAACGTG	TATTTTCGTA	GGCAACAGCT	GGAGTAGTAA	AATCTACCCA	GACATCCGCT	8820
TCA	AAACCAG	CTAAATCAGC	CTTATCCTTG	AAAACAGGAA	TACCCTGCCA	TTCTGACTCA	8880
GAC	TCAAAAG	GATCCAAAAC	TGCCACCAAG	TCCAAGTCTG	GATCAGTCAA	TACCATCTGA	8940
CAA	GCAGCCT	GGCCCATCTT	TCCCTTAAAA	CCGGCAATAA	TTACTCGAAT	ACTCATCTCT	9000
ACT	CCTGTCT	AAGATACAAA	GTCCGTAAGA	ACACAAAGTG	AAAATAGGAA	TTCCAATCAA	9060
GAA	GTGTCTA	CTTCTTGGAA	GAACTATCTT	TTTCACACAG	GGTTCCAGGC	GTGTTCAATT	9120
ATC	AAGATAC	AAAGGACCTT	AGCTGCCTCT	GAAAAATAGG	GAATGGCACT	GACTTTCCAC	9180
G <b>AA</b>	AGGCAAG	ACAGGCATCT	TTTTTCAAGA	GGCAGGTAGT	CCGTGTTCAA	TTTCTAAGAT	9240
ACA	AGGCATC	TTAACTAGCC	TAGAAGCGCC	AACTAAATCA	CTGGAATATA	ACCCAGAGCA	9300
ATA	CTTCCTG	CTCCTAGGTG	CGTTCCAATG	ACACTACCAA	ATGTAGCAAG	TGAAACATCC	9360
GAA	CCCAAGC	CAAAATCAAG	CAAGTGCTGA	CGCAATTCTT	CAGCCTTTTC	AGGAGCATTC	9420
CCA'	TGAATGA	CAATGACCCG	GTATTGACCT	GAAGCCGTTG	TTTCCTTGAT	AATTTCAATT	9480
AAG	CGCTTGG	TGGCCTTCTT	TTCAGTACGA	ACTITITCGT	AAACTTCAAT	CACACCTTGA	9540
TCG'	TAAAAT	AAAGGATTGG	CTTAATGCTA	AGCAAATTGC	CCAAAATGGC	AGCCCCATTT	9600
GAA	AGGCGTC	CACCTTTTAC	CAAATGATCC	AAGTCATCTA	CCATGATAAA	GGCTGACGTA	9660
CGG	CTGATTT	GAATGGCTAG	CTTATCCTGA	ATGCTGGCAA	AATCATCGCC	CTGATCACGC	9720
CAA'	TTAAAGA	CGCTTTCAAC	CATGATGCCT	AGGGGAGCAC	TTGTAATCAA	AGTGTCTGGG	9780
AAA	CCAATCC	TTAAGCCCTC	ATAGTCATCG	ACCATATACT	GGATATTTTG	GTAAAAACCT	9840

		496			
GAAATTCCAG AAGATAGGA					9900
GTTAAGATCT CATCTAACTT	GGCAATACT	r GGTTGACTGC	TCTTAGGCAA	TTCAGAAGCC	9960
TGAGCCATTT TTTGGTAAA	TTCCTCAGC	A GACAGATTGA	TGCCTTCGAC	ATATTCCTCA	10020
CCATCAATAT TGACAGGAAT	ATCCAAGAC	AACAAGTCTT	CTCTTTGCAA	GATCTCTGCA	10080
CTGAGATAAG CAGAGGAATC	TGTGAAAAC	GCTAATTTCA	TATTAGAACT	CCAAATTAAT	10140
TCCTGGTAAG TCTAATGCAA	TTTCAGTCAC	TTCGTAAGTC	AAACGATTGA	GCATGTTCAA	10200
ACATGGACGA GCCAAGGTTT	CCACCTCTTC	TTGGTTCAAT	TCACTTGGTT	CATTGACAAT	10260
ACGGCCATCG ATATGGTTTA	CTTGTGAGAT	TGTTCCACTA	ATGACAAACT	TATCAAATAC	10320
AATCATAAAG CTCAAGATGA	CAATCAAGGA	AGTCACTTGA	TTTTCTTGGT	CATGTTGGAG	10380
CAATTGGAAA TTCACATCCA	CCTTGGTTTC	AGGAGCTCCA	TTTTCATTTT	CCCATTCAAA	10440
ATTACGCGCA TCAAAATGAT	ACTGACTAAC	AAATTCTTGT	TCACGTTTAA	GATTCATGTC	10500
TTTCTCCATC GGCTACAATA	TTATAAGCTA	TTGTACCATA	ATTTTTTATT	TTCATCTAGT	10560
TTTCTAGGAT TTAGTCAATC	CCAATTTCAG	CACGAACTAC	ATCTGTGATG	GTATCAACAT	10620
AGTAGTTTAC TTCTTCTGTT	GTAGGCGCTT	CTGCCATAAC	ACGCAAGAGG	GGTTCTGTTC	10680
CACTTGGACG AACAAGGATA	CGGCCGTTCC	CCGCCATTTC	TTCTTCCATC	TTCTCGATGA	10740
TGGCCTTGAT AGCTGGCACT	TCCATGGCCT	TTTCCTTCAT	GACGTTTTCC	ACTCGGATAT	10800
TAACTAATTT TTGTGGATAA	ATCGTTACTT	CTGCCGCCAA	CTCTGATAAG	CTCTTACCAG	10860
TTTCCTTCAT GATTTTAGTC	AATTGAACTG	CTGATAATTG	ACCATCACCT	GTGGTATTGT	10920
AATCCATCAA GATAACGTGA	CCAGACTGTT	CACCACCAAG	GTTGTAGCCT	GATTTTCTCA	10980
TTTCTTCAAC AACGTAGCGG	TCACCAACTG	CAGTAACTGC	CTTGTTAATA	CCTTCGCGAT	11040
TCAAGGCCTT GTGGAAACCA	AGGTTAGACA	TAACAGTTGT	CACAATTGTA	TTTTGAGCCA	11100
ATTGTCCTTT TTCAGAAAGG	TATTTTCCGA	TGATGTACAT	AATCTTGTCA	CCATCAACGA	11160
TGTCACCATT CTCATCAACA	GCAATCAAGC	GGTCACTGTC	TCCATCAAAG	GCCAAACCAA	11220
TAGCTGACCC ACTTTCTTTG	ACCACTTCTT	GAAGGGCTTC	TGGATGTGTT	GAACCAACAT	11280
TAAGGTTGAT GTTAAGACCG	TCTGGTGTTT	CCCCGATAAC	CGTCAATTGG	GCACCAAGGT	11340
CTGCAAAGAT TTGACGGGCA	CTGGTAGAAG	CTGCTCCATT	AGCTGTATCC	AAGGCAACCT	11400
TCATTCCATC AAGAGGAGTT	CCAGTTGAAA	CAAGGTATCC	TTCATACTTA	CGCArGCtTC	11460
TGGATAATCT ACCAAAATTC	CTAAGCCTTC	TGCACTTGGA	CGAGGAAGAG	тстсттсстс	11520
AGCATCTAGC AAGGCTTCAA	TTTCTGCTTC	TTTTTCATCA	TCTAGTTTGA	AGCCATCACC	11580
GCCAAAGAAC TTGATTCCGT	TATCAAGGGC	TGGGTTGTGG	CTAGCAGAAA	TCATGACACC	11640

GGCACTTGCT	CCTTCAGTTT	CAACCAAGTA	AGCTACTGCT	GGTGTTGCAA	GGACACCAAG	11700
TTTGTATACG	TGAATCCCTA	CTGAAAgGAG	ACCTGCCACC	AAGGCCGATT	CCAACATTTC	11760
CCCTGAAATA	CGTGTGTCAC	GTCCTACAAA	GACTTTCGGC	GCTTCCGTTT	CATGTTGACT	11820
AAGAACATAG	CCTCCAAAAC	GTCCTAGTTT	AAAGGCTAAT	TCTGGTGTTA	GTTCTAGGTT	11880
AGCTTCTCCA	CGGACTCCAT	CAGTCCCAAA	ATATTTACCC	ATTGTTATAA	AATCCTTTTC	11940
TATTTTTAT	TCGTTTTTGA	ACTAGTTGCT	TTCGTTGACG	AAGATGTCTC	CGATGAACTG	12000
CTTGTACTTG	AATTTGATGT	GCTTGAACTT	GGTGCTACTG	GTTTTGTAGT	CACCTTCATT	12060
ATTGTATCAA	ACGGAGTGAT	AACTGCCGGT	AAGACAACAC	CATTGCGGTC	GATTGCCTGC	12120
AAAGGTACTG	AACCACTGTA	ATTACCTGTT	ATACGTTCGC	TAGTTGGCAA	AACAGCGATA	12180
ATCTTATCAA	TTCTATCCAA	TGTCTCTTGG	TCACTCGTAA	TAGACACTTC	TTTATCTGAC	12240
ACCATGACAT	TTTCAATTTG	TACCCGACTA	TCAATTTGAC	TAGGGTCAAT	CTCTGGTACA	12300
ATCTTTACCT	TATCCTTCTG	AGCCTTCTTA	CCAATCTTGA	CTGTAATTTT	TTGCGGAGTC	12360
GCCACAGCGG	TCAGCCCATT	GGGTAAATCT	TCAATGCTCA	AAGGAACTTC	AATCGTTCCA	12420
ACACCGGCAT	CTGTTAGGTC	AGCAGTAACC	TTGAATTTAC	GTGTACTTTC	TTGCATTTCA	12480
CTAGCTAGCG	ATAGGCGATT	TGCACCAGTC	AAGACCACTG	ATACTTCTGA	AGCAAAACCG	12540
CTAATAAAAT	ACTTATCACT	ATTATAGCGT	ATGTCAATAG	GGACATTTGT	TACTGTATTA	12600
GTATAGGTTT	CCGTTTTTAC	CTGCCTAGCA	CTGGTACTGT	TTTGAAAATT	CGTCGCCGTA	12660
GCATAGACAA	ATAAGACACA	AGCAAAAAAG	AGTGAGGATA	TGATATATAA	ACTATTTTTT	12720
TTCATGTTTC	CATCCTCCTA	GCAATCGTTC	TTTAAAACTA	AGACCCACTT	CCTCTTTTGG	12780
AAGTAAGATT	TCACGTAATT	CTGTTTCAAA	TTCATCAAGT	GTTAGGTTGT	GCTTAAACCT	12840
TCCATTATAG	GTTATCGAAA	TTCCTCCCGT	TTCCTCTGAT	ACGACAAAAG	TCAAGGCATC	12900
TGAGACTTCT	GATAAACCGA	TAGCCGCCCG	GTGTCTGGTC	CCAAATTCCT	TGGAAATCCC	12960
TGTGTTTTT	GTCAAGGGCA	GATAGGCAGA	CGTCACAGCG	ATACGTTCTT	CTTTGATAAT	13020
CACCGCACCA	TCATGTAGGG	GAGTGTTGGG	AATAAAAATG	TTAATGAGAA	GTTCTGCAGA	13080
AATCTTAGCA	TCCAAGGGAA	TTCCTGTCGA	AATATACTCC	TGCAAGGTAC	GTACACGCTG	13140
AATAGCAACC	AAGGCCCCGA	TTTTACGAGG	ACTCATGTAT	TCAACAGACT	TAACAAAGGC	13200
ACGAATCATC	TGTTCCTCAG	CACTAATAGG	GGCATTGGAA	AAGAAATCTG	TCGCTCTTCC	13260
CAAACGTTCC	AAACCAGTCC	GAATCTCTGG	AGAGAAGATA	ACAACCGCCG	CAATAACCCC	13320
ATAAGTAATA	ATTTGATTGA	TTAACCAAGA	AATCGTAGTC	AAACCAATCA	TATTTGCAAG	13380

			498			
GATTTGAGCT	AAAATAAACA	CCAAAACTCC		ATCATAATCT	TGGTTCCTGC	13440
AATAGCTTTT	GTAAAATGGT	ATAAAATATA	AGCAACAATC	AAAATATCAA	TCAGATTGAT	13500
AGCTATCGTC	CATGGACTTG	CAAACAAACT	GGTCCAATAT	TGCAGATTGG	ATAATTGTTG	13560
AAAATTCATC	CCTGATATCC	TCCCTATCAA	AACACTTTCG	TCCTATTATA	CCATTTTCTG	13620
GCATTTTTTT	CCCTATCCTA	GTCCATTTTA	CATTGAACAA	A <del>AA</del> TATGATA	AAATAAACTG	13680
ACTAAAAAAA	ACAAAGGAGA	AACTATGTCT	CAACTCTATG	ATATTACCAT	TGTGGGTGGT	13740
GGTCCTGTCG	GGCTTTTTGC	AGCCTTTTAT	GCCCACCTAC	GCCAAGCCAA	GGTTCAAATC	13800
ATCGACTCTC	TTCCCCAGCT	AGGTGGACAA	CCTGCTATTC	TCTACCCTGA	AAAGGAAATC	13860
CTAGACGTAC	CAGGCTTCCC	AAACCTGACT	GGAGAAGAGT	TGACTAACCG	CTTGATTGAA	13920
CAGCTAAATG	GATTTGATAC	CCCTATTCAT	CTCAATGAAA	CGGTTCTTGA	GATTGACAAA	13980
CAAGAAGAAT	TTGCCATCAC	AACTTCTAAA	GGAAGTCACC	TGACTAAAAC	AGTTATCATC	14040
GCTATGGGTG	GCGGTGCCTT	CAAACCACGT	CCGCTGGAAC	TTGAAGGGGT	TGAGGGCTAT	14100
GAAAATATCC	ACTACCACGT	TTCTAACATT	CAGCAATACG	CTGGTAAGAA	AGTGACGATT	14160
CTTGGTGGGG	GAGACTCGGC	TGTGGATTGG	GCTTTGGCTT	TTGAAAAAAT	CGCACCAACT	14220
ACCCTTGTTC	ACCGCAGAGA	TAATTTCCGT	GCCTTGGAAC	ACAGTGTTCA	AGCCTTGCAA	14280
GAATCATCTG	TAACCATCAA	GACACCATTC	GCCCCTAGCC	AACTCCTTGG	AAATGGAAAA	14340
ACACTTGATA	AACTTGAAAT	CACAAAAGTC	AAATCTGATG	AAACTGAAAC	CATTGACCTA	14400
GACCACCTCT	TTGTCAACTA	TGGTTTCAAA	TCTTCTGTCG	GTAACCTTAA	AAACTGGGGG	14460
CTCGACCTCA	ACCGTCACAA	GATTATCGTC	AACAGCAAAC	AGGAATCCAG	CCAAGCAGGT	14520
АТСТАТССТА	TCGGTGACTG	CTGCTACTAT	GACGGAAAAA	TTGATCTGAT	TGCGACAGGC	14580
CTCGGAGAAG	CTCCAACTGC	TGTCAACAAC	GCTATCAACT	ACATTGACCC	TGAACAAAA	14640
GTACAACCAA	AACACTCTAC	TAGTTTATAA	AAAAGAACCA	CGAGTCACAT	AGGATTCGTG	14700
GTTTTATAA1	TCATCCGCTA	TCTTATTGAT	TTTTCTGAGT	CTGTGATTGA	CACCACTTTT	14760
GGTCAGAGGG	GTGCTGAGAC	TATCTGCTAA	CTGCTGGATA	GAGTAGTCTG	GGTGCTGAAT	14820
CCTCAGTTGC	GCCACTTCCT	GCAAATCTAC	TGGCAAATTT	TCTAAGCCCA	TGATATCTTT	14880
GATTTTACTO	ATATTGTTAA	TGGTCTTCAT	GCTGGCAGAA	ACTGTCCGAG	CGATATTAGC	14946
TGTCTCGGCA	TTATTAGCCC	GATTGAGGTC	GTTACGGGTT	TCTCGCAAAA	TCTTAACCCG	15000
CTCAAAATCA	TCACGTGCCT	GCATGGCTCC	TATTACTATC	AAGAAGTCCA	TAATGTCTTC	1506
TGCTCGCTGG	AGATAGGTCA	CAGCCCCCTT	CTTGCGCTCA	AGCACCTTGG	CATCCAGTAA	1512

AAACTGTTGG AGAAGGGAGG CAATTCCTTG CGCGTGGTCC AGATAAACAG AACTGATTTC

CAACTGGTAC TTGCCTGACT CAGGGTCACG AATGCTCCCA TTTGCCAAGA AAGCGCCACA	15240
GAGATAGGCA CGACCTGCTT CCTCATCCGA TAAAATCGCC TCATCAATAC CTGTTTCCAG	15300
GCCAAAGAAA GAGTCTGCCA AGTGCAAATC ACTTAACAAA TCCTGCACCT TTTCATCTGT	15360
AAAAACGGTA TAGACGCGAT TCTTGCGAAG ATTGCTCCGT TGGTGGTGAC GAATTTCAGA	15420
TTTGATTTCA TAGAGATGGA GAAAGGACTC ATAGAGGTGA CGGGCCAGTT TGGCATTTTC	15480
TGTCACAACT GACAAAGTCA AGCCCGAAGT CGAGAGACCG ATGCTACCAG ACATTTTGAT	15540
AATGGCAGAT AATTCATGCC AGCTCAGATG GTGTTGGCCC AGGATTTCTT CTTTTACTGC	15600
TACTGTGAAA CTCATTTTT CACCTGTATA ATGCGCATCA ACTCGTCCAC AATCAAATCT	15660
CCATCGTGGA AGGCACCGCC ATTTTCCAGA CGAAGGAAGT TAGATGAAAT CACGCGCGAA	15720
ACTTGCTTAC AAAGACCTAC AAAATCGTGT TCCACTTGCA CTAAGTATTC ATCAAAACGG	15780
TTGGAATTCA TGTATTCCTG AGGCACTTTT TCAATATTCA CCAAGACAGT GTCGATAAAA	15840
GGGCGACCAA GGTGACGATG CAAGACTTCC ACGTGGTCGC TATCTGTAAA GTGTTCCGTC	15900
TCCCCACGTT GGGTCATGAT ATTGCAGACA TAGGCAATTT CTGCCTTGGT TTCCAAAAGA	15960
GCCCGCCCAA TTTCCTTAAT CACGATATTG GGCAAAATAG AGGTAAAGAG GGAACCTGGC	16020
CCTAGGACAA TCATGTCACT TTCAAGGATG GTCTGCACTA CTCGACGGCT GGCCAGAGGC	16080
GTATCATCGT TTAGGGCATT GGTCACATAG ACATTGTCAA TTATGCCTCG ATGGTCTACA	16140
ATATGACTCT CTCCAGCCAC TTCTGTCCCA TCCTGAAAGA CTGCATGAAG GGTCAAAGGA	16200
TGGTCACTGG AAGGATAAAT TTTCCCTGTT GTATGGAAAA ATTTGCTCAA TAACTGCATG	16260
GCATTATAGG TTGAACCCTG CATTTCTGAC AAGCCAGCAA TGATGAGATT TCCCAATGGA	16320
TGGCCAGCAA AGGCTCCGGC ATCCTCAGAG AACCGATACT GAAAGACCTT CTCATAAAAC	16390
TTAGGCATAT CCGACATGGC CACAAGGACA TTACGAAGAT CACCTGGCGG TGTCAACTGT	
TGCATATTTT TTCGGAGTTC ACCTGAAGAA CCACCATCAT CTGCCACCGT CACGATAGCT	
GCGATTTCCA CATCTTTTC CCGCAGACTT TTTAGAATGA CGGGACTTCC AGTCCCTCCA	
CCAATCACCG TTATCTTTGG TTTTCTCATG AACGGTTTAC CGTTTCCTTT CTGCGGTCTT	
TGTCGCGATG CCCTTCATTA ACAGACCAAT TCTTGGATAA GTCCTGCGCC AAGCGTTTAG	
CARATGECAC ACTACGGTGT TGTCCACCCG TACATCCCAT GGCAATGGTC AAAACGGACT	
TACCTTCCTT TTGGTAACTT GGCAGAATCG GCTCAATCAA GGCCAATAAA TGTTGATAAA	
AGTOTTOTGA CTCAGGATGG TTCATGACAT AATCATAAAC AGGTTCATCC ACACCCGTTT	
GGTTTCTCAG TTCTGGTAAA TAATAGGGAT TTGGCAAGAA ACGGACATCA AAGACCAAGT	16920

CCCCATCAAT	CCCCAmmeda	@1 CD@1 1 1 @C	500			
	CGGGATTCCA					16980
	TTGGTCTGAA			-		17040
GTTCAGTCGT	ATCCACCACA	TTTTGGCTCA	TATTTTTCAA	AGGTGCCAAG	AGTTCACGTT	17100
CCAACTTGAT	TCCATCTAAA	ATACGACCGT	CTGCTGCTAG	TGGGTGACTC	CGTCTGGTTT	17160
CCTTGTAACG	AGCGACCAAT	TCCTTATCAG	CCGCATCCAA	AAAGAGGATT	TTGAAATCCA	17220
AACCATCTTG	ATTTTCCAAC	TCATCCAAAA	CAGCTTGAAT	CTCTGAAAAG	AAAGAACGGC	17280
TACGCATATC	CACTACCAAG	GCCAACTTAG	GATTGTCTTC	CTTAATTTCA	ACCAGCTGCA	17340
AAAACTTAGG	CAAGAGAGCT	GGCGGCATAT	TATCAATGGT	GAAATAACCT	AGATCCTCGA	17400
AGGACTGAAT	GGCTACAGTT	TTCCCTGCGC	CACTCATCCC	TGTCACAATC	ACCAAGTGAA	17460
GTTGTTTCTT	TGTCATCTTT	TTCTCCTTAT	ATCAAAAGAA	GTTTGGCAAC	ACCAAACTTC	17520
AACTAGCTTA	TCCAATCTCT	GCGATGACTT	CAATTTCGAC	TTTTACATCA	CGAGGAAGAC	17580
GAGCTACCTC	CACAGCTGAA	CGAGCTGGGA	ATTCCTCTTT	GAAGGCCGTT	TGGTAAACCT	17640
CATTAAAAGG	AACAAAGTCG	TTCATATCGC	TCAAGAAGCA	AGTTGTTTTG	ACAACATGGT	17700
CAAAGTCTGT	TCCTGCTTCT	GCCAAAATAG	CACCGATGTT	TTTCAAGACT	TGCTCTGTCT	17760
GTTCTTGGAT	ATTCTCTCCT	ACAATTTCCC	CAGTTTCAGG	GGATAGGGGA	ACTTGACCGC	17820
TAGCAAACAA	AAGGTTGCCA	ACGATTTTTC	CTTGAACATA	GGGTCCGATA	GCCTTTGGGG	17880
CCTTATCTGT	ATGAATTCTT	TTTGCCATTT	TCTTTTCCTC	ACAATTTTTC	TAAGATTGCA	17940
TCCCAAGCCT	CATCCATCCC	TGCCTTACTG	ACAGATGAAA	AGAGGATGAA	ATCGTCACTC	18000
GGGTCAAAGT	TTAATTTCTT	TTTGATTGCT	GATTCATGCT	TGTTCCATTT	ACCACGAGGA	18060
ATCTTGTCCG	CCTTGGTCGC	CACAATGATG	ACTGGAATCT	CATAATACTT	GAGAAATTCG	18120
TACATCTGCA	CATCATCTGC	TGACGGGTCA	TGACGAAGGT	CAACTAGACT	GACAACCGCA	18180
CGGAGATTTT	CCCGAGTCGT	TAAGTACTCC	TCAATCATGC	ACCCCCACTT	TTCACGTTCC	18240
TTTTTAGAAA	CACGAGCATA	GCCATAACCA	GGCACATCCA	CAAAGCGCAT	CTTGTCATCA	18300
ATGTTAAAAA	AGTTCAGGAG	CTGGGTTTTA	CCAGGTTTTC	CTGATGTACG	GGCGAGATTC	18360
TTACGGTTCA	ACATAGTGTT	GATAAAGCTG	GATTTACCAA	CATTTGAACG	CCCTGCTAGG	18420
GCAATCTCTG	GCAGTTCATC	CTGCGGATAG	TGGGACTTAT	TAGCTGCACT	GAGCAAGATT	18480
TCAGCATTGT	GTGTATTAAG	TTCCATAGTC	ACCTCTAGGC	TGTTTCTAGG	ATCGGTTTAT	18540
CCGTTCCATC	TACAGTTTCT	TTAGTGATGC	GAACCAATTT	CACATTTTCC	TGACTCGGCA	18600
CCTCAAACAT	GACATCTAGC	ATGGTTTCTT	CGATGATGGA	GCGAAGTCCA	CGCGCCCCTG	18660
TCTTCCGTTC	GATTGCTTTA	TTAGCAATCT	CTTGAAGGGC	TTCGTCGTCA	AATTCCAACT	18720

CAACATCATC	ATAAGAAAGC	AAGGTTTGGT	ATTGTTTCAC	CAAGGCATTT	CTTGGCTCTT	18780
TCAAGATGCG	AACCAAGTCA	TCAACGGTCA	ATTGCTCAAG	AGCCGCAAAA	ACAGGCAAGC	18840
GTCCAATCAA	CTCAGGGATA	ATACCAAATT	TTTGAATGTC	TTCAGCGATG	ATTTCTTGCA	18900
TGTATGAGCT	GTTTTCGTCA	ATCGCCTTAT	TATTTTGACC	AAATCCGATG	ACTTTTTCAC	18960
CCAGACGTTG	TTTGACAATT	TCTTCAATAC	CATCAAAAGC	ACCACCCACG	ATGAAGAGGA	19020
TATTTTTGT	ATCCACTTGA	ATCATCTCTT	GTTGTGGATG	TTTGCGTCCA	CCTTGAGGCG	19080
GTACGCTAGC	AACAGTTCCC	TCAATAATCT	TGAGAAGGCC	TTGTTGCACC	CCTTCACCAG	19140
AAACATCACG	TGTGATAGAC	ACATTCTCAC	TCTTCTTGGC	AATCTTGTCA	ATTTCATCCA	19200
CATAGATAAT	GCCACGCTCT	GCACGTTCGA	TGTTAAAGTC	AGCAACCTGC	AAGAGTTTGA	19260
GGAGGATATT	TTCCACATCC	TCACCCACAT	AACCAGCCTC	CGTCAGAGCT	GTCGCATCCG	19320
CAATAGCAAA	AGGTACATTC	AAGCTCTTAG	CCAAGGTCTG	GGCAAGGAAA	GTTTTCCCTG	19380
AACCAGTTGG	GCCAATCATC	AAAATGTTTG	ACTTCTGCAA	ATCCACATCT	TCTGACTCTT	19440
CGCGTGTATC	GTGGAAATTG	ATGCGTTTGT	AGTGGTTATA	AACCGCCACT	GCCAAGGCAC	19500
GCTTGGCACG	ATCTTGACCA	ATTACATAGT	GGTTCAAGAT	ATGGAGGAGT	TCAATTGGTT	19560
TTGGCACCTC	AGACAAGTCT	GCCAAGACTT	CCTCAACCAA	TTCTTCTCGA	ATGATTTCCT	19620
GAGCTAACTC	CACGCATTCA	TTACAAATAA	AAGCATTGTT	GCCAGCAATT	ATTTTTTGTA	19680
сттсттсттс	GTTTTTGCCA	CAAAATGAGC	AATAAACCAT	CATATCATTT	TTTCTATTTG	19740
TAGACATGAT	TTCCTTCCAT	TCTATACTGT	CATTCTATCT	AAAATAAGGT	CATGTAAAAA	19800
GCATGAATAC	TATTGACCAG	ATTGGTAAAG	GCATTTAACC	AAAGGAGGAT	AGAAAGCCCG	19860
TAACGCTTTT	TACGAAAAGC	TTGTGCTCCT	GCCAGAAAGC	AGATGAAACA	CAGAAAAGCC	19920
GTGAATAGAC	CAAATAAACT	CCGTTCCATT	AGACTTCCTT	TCTCTTGCGG	TATTGGATGG	19980
TAAAATCATA	AGGATTCTTC	TCATCTTTGG	CGTAAAATTT	GCTTGAAACT	GTCTCAAAAA	20040
GAGACAAGTO	: AAGTTCTTCA	GGGAAATAGG	TATCTCCTTC	CACCCGAGCA	TGAATGTGAG	20100
TGACAATCAC	TTCATCAAGG	TAAGGTTCAA	AAGCCTGAAA	AATTTGCTTC	CCACCGATAA	20160
TGTAGAGATI	CTTTTCTTGA	GCCTGATACC	AGTCAAGAAC	AGACTGGACG	TCCTGAAAAG	20220
TAGCAACCCC	ATCTATCTT	TCTTCCGGAT	TACGCGTCAA	AATCAAGGTT	TCCCGTTTTG	20280
GAAGCAAGCC	ACGCCCCATC	CCATCAAAGG	TCACACGCCC	CATCAAGATA	GCATGATTCA	20340
GAGTTGTTTC	TTTAAAGTGC	TGCAATTCTG	CTGGCAAATG	CCAAGGCAGA	CGATTTTCCT	20400
TACCAATCAC	ACCCTCTTCA	TCCTGGGCCC	AAATAGCTAC	GATTTTCTTA	GTCATGCTTC	20460

PCT/US97/19588 WO 98/18931

			502			
CATCCTTTTC	ACTGATAGTA	CTATTTTATC	AAAAAACTCA	AAAAAAGACT	GGTTTGGAAT	20520
AGCTTACAAA	ATAGAAAAAA	TCTGTAAGAA	ATTTCCTACA	GATTTATCTA	TGTTTCCTTA	20580
TTTCTTACAA	ACCAGGTGCT	TGTCCAAGTT	CGGCTGCAAG	CATCCAAATT	GTTTTATCTG	20640
TTTCAGTTTT	AGCGCCTGCA	AAGATACCGT	TTGTCACATC	GTCACCTTCT	TCATCAGTGA	20700
CATCCAAACC	TTTTTGGAAA	AGTTCTGACA	AGTAACGGTA	GATAACAAGA	ACACGTTCCA	20760
AGCTTTCTTC	AACATTACGG	TATTCACCAG	СТТСТТСТТС	GATTTCACTA	TTTTGAAGGA	20820
ACTCTGTCAA	TGTAGAGAAT	GGGCTTCCAC	CGAGTGTAAT	CAAGCGTTCA	CTGATTTCAT	20880
CCAATTGACC	GTCAAGAGCT	TCCATGTACT	CATCCATTT	TGGATGCCAT	ACAAGGAAAC	20940
CACGACCATG	CATATACCAG	TGCACTTGGT	GCAAAGCAAC	GTGAGCTACA	TACAAATCAG	21000
CAACAGCTTG	GTTCAAGACT	TCCTTTGTTT	TTGCCAATGC			21040

# (2) INFORMATION FOR SEQ ID NO: 56:

. . . . . . .

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2387 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

60	TGAACTAAAC	TTCAGTTAGA	AAAAGAAAAT	GCTTATTACT	CGATTAAAAG	ATTCTTAATA
120	TGAAAGCATT	ATAAAATATT	TTTGGGGAAA	TAACGAGATG	AATCCCGATT	TTGCTCGTCA
180	ATCAGATGAG	ATTATCCTAA	AGGGGCAAAA	AGATGGTGAT	TTGATATTAT	GATAACTTAT
240	AAACGGATTT	ATGTTACTAA	AATACAAAGA	TTTATTTTTA	AGGAGTACTG	TTGTTTAGTG
300	AAAAGGCAAA	AATTACTTCG	ACAAAGGATA	TATCACTAAA	CAAAGCAATT	TCATTCGATA
360	AGCGTACTAC	TTGGAAATGT	AGAGGTACTG	CTTGACAACA	ATGATATAGT	CTTGAGCGTT
420	ATTACGTCCC	GTATGGTAAT	ATAAATTCAG	ACATTTACGT	TAAAATATAA	GATGAATTAA
480	TAATTATAGT	TAAGGAATAA	ATCCATGTTT	GAAATTTATT	ATCTAAATCA	AAGACACCAA
540	AAAAATACTT	СААААТТААА	TTACCAATTA	TCAGCCTCAG	CAGGAAGTGC	CGAGTGATAT
600	CCAGGTCGAC	ACTTTGTAGT	GAGTTCGCAG	CCTCCAAAAT	CCCCACTAGC	CTCCCCCTCC
660	GAAATCTCTG	AAACTTTGAA	GAAGAACTTG	AAAATCTCTG	TGGCAATCCA	AAATCACAAT
720	TTGTTATAAT	CGGTAATGAT	ATTGTAATTA	ATATTCTGCC	ATTTTGGCTG	ATGCAGGAGT
780	TCAATCACCA	ACAAGGAAAT	AAACAAGAAA	ATGGTAGTAA	AGGAAATCAG	ACTTCAAAGG
840	AAATTGTTAC	ATACGAAGCG	GTGGTGTTAA	AATATTCCAA	AAGTGAATTT	TTACGATTCC

CAAGTGGTGA	GATTATCTTT	ACTCCTGAAG	AATTGGGGCA	GCAGGTTTCT	TATGTATCTG	900
ATGATGCCTT	TGACTTAAAT	TTAGATAAAA	TATTTGACGA	ATACGACGAT	GTTTTCAAAG	960
CTTTGGTGGA	AAAATGACAA	TCTATTTGAC	AGAAAAGCAA	attgaaaaa	TAAATGCTTT	1020
AGCAATTCAA	CGGTATTCTC	CAAATGAGAA	AATTCAAACA	GTTAGTCCTT	CTGCCTTAAA	1080
TATGATTGTG	AACTTACCAG	AACAATTTGT	CTTTGGGAAG	CCTCTTTATC	CAACAATTTT	1140
TGATAAAGCA	ACGATACTAT	TTGTCCÄATT	GATAAAGAAG	CATGTTTTTG	CTAATGCTAA	1200
TAAAAGAACT	GCTTTCTTCG	TTTTGGTCAA	ATTTTTACAA	TTAAACGGCT	ATCGTTTTTC	1260
TGTAACGGTA	GAAGAAGCAG	TAAAAATGTG	TGTAACCATC	GCAGTAGAAG	CTTTAACTGA	1320
TGAAAAAATG	ACAAGCTACT	CCAAATGGAT	TTCTGAACAT	TCTGTTAGAG	AAAAGGTCAA	1380
AAAGTAACCT	AGTATGCTGG	ATTTGAATGA	GCACAAGAAA	ATAAATGAAC	AGACAATATT	1440
AGAATTCTGT	AATGCAGAAA	CTGATATTGT	CTCTTTTTAT	TGATGAATAA	GAAAGTGAGA	1500
AATTATGGAA	TCAAAAGTTA	CAATTATCAT	GCAAGAAATG	TTACCTCTTT	TAAATAATGA	1560
АСААТТАСТА	GCGTTGAGAG	AGAGTTTAGA	ACATCATCTA	GTAGACGGAA	AAAAGCAGCA	1620
GAAGTATTCG	AATAATAACC	TGTTGCAACT	ATTTATTACC	GCCAAGCAGG	TAGAGGGCTG	1680
TAGCTCAAAA	ACAATTCGTT	ATTATCAGAG	GACGATTGAA	AACTTGTTTA	ATGCTATTAA	1740
AGAGTCTGTG	ACACAACTCA	CAACAGATGA	TTTAAGGAGT	TATTTAGCAA	ATTACCAGTC	1800
TGAAAAGGAT	TGTAGTAAGG	CAAATTTAGA	CAATATTAGG	CGTATATTGT	CTTCTTTTTT	1860
TGCTTGGCTT	GAGCAAGAGG	ATATATCATT	AAAATTCCCA	TTCGACGGAT	ACAGAAAATT	1920
AAGACTGAGC	AAAATGTGAA	GGAAACTTAT	ACTGATGAAC	ATTTGGAAAT	TATGCGTGAT	1980
AACTGTGAAA	ATTTGAGAGA	TTTGGCAATA	ATAGACCTAC	TAGCATCGAC	AGGTATGCGT	2040
GTAGGGGAGG	TTGTACAGTT	GAATCGTTCA	GATATTGATT	TTGAAAACAG	AGAGTGTGTT	2100
GTCTTTGGTA	AAGGAAAGAA	GGAGAGACCA	CTATATTTTG	ACGCTCGTAC	GAAAATTCAT	2160
TTAAGAAATT	ATCTTAACGA	CAGAAAAGAT	AGTCACCCTG	CTCTTTTTGT	AACGCTAGTT	2220
GGAAAAGTCC	AGAGGCTTGG	AATTGCTGGT	GTAGAGATTC	GCTTAAGAAA	GTTAGGAGAC	2280
AAACTCGGCA	TACAAAAGGT	TCACCCACAT	AAGTTCAGAA	GAACTTTAGC	GACTAAGGCA	2340
ATTGATAAAG	GTATGCCTAT	CGAACAAGTC	CAAAAACTGC	TAGGTCA		2387

#### (2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10669 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

504

#### (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

ATATTAAAGC	GACTTTCTGT	GCGCTAGGGA	AAAATGTTCC	TGGGAATGAG	GACTTGGTGA	60
AGAGGATAAA	ATCTGAAGGT	CATGTTGTTG	GAAACCATAG	CTGGAGCCAT	CCGATTCTCT	120
CGCAACTCTC	TCTTGATGAA	GCTAAAAAGC	AGATTACTGA	TACTGAGGAT	GTGCTAACTA	180
AAGTGCTGGG	TTCTAGTTCT	AAACTCATGC	GTCCACCTTA	TGGTGCTATT	ACAGATGATA	240
TTCGCAATAG	CTTGGATTTG	AGCTTTATCA	TGTGGGATGT	GGATAGTCTG	GACTGGAAGA	300
GTAAAAATGA	AGCATCTATT	TTGACAGAAA	TTCAGTATCA	AGTAGCTAAT	GGCTCTATCG	360
TTTTGATGCA	TGATATTCAC	AGTCCGACAG	TCAATGCCTT	GCCAAGGGTC	ATTGAGTATT	420
TGAAAAATCA	AGGTTATACC	TTTGTGACCA	TACCAGAGAT	GCTCAATACT	CGCCTAAAAG	480
CTCATGAGCT	GTACTATAGT	CGTGATGAAT	AAGCAAGAAA	AAATAGGTCT	GTTAGATATT	540
TGACAGACTT	ATTTTTACA	GAATATAGTA	CTACTTAAAA	AATGTTTTAT	GCTATAATTG	600
atgaataaaa	TAGAAGGAGA	AGCATATGAA	TACCTATCAA	TTAAATAATG	GAGTAGAAAT	660
TCCAGTATTG	GGATTTGGAA	CTTTTAAGGC	TAAGGATGGA	GAAGAAGCCT	ATCGTGCAGT	720
GTTAGAAGCC	TTGAAGGCTG	GTTATCGTCA	TATTGATACG	GCGGCGATTT	ATCAGAATGA	780
AGAAAGTGTT	GGTCAAGCAA	TCAAAGATAG	CGGAGTTCCA	CGTGAAGAAA	TGTTCGTAAC	840
TACCAAGCTT	TGGAATAGTC	AGCAAACCTA	TGAGCAAACT	CGTCAAGCTT	TGGAAAAATC	900
TATAGAAAAA	CTGGGCTTGG	ATTATTTGGA	TTTGTATTTG	ATTCATTGGC	CGAACCCAAA	960
ACCGCTCAGA	GAAAATGACG	CATGGAAAAC	TCGCAATGCG	GAAGTTTCGA	GAGCGATGGA	1020
AGACCTCTAT	CAAGAAGGGA	AAATCCGTGC	TATCGGCGTT	AGCAATTTTC	TTCCCCATCA	1080
TTTGGATGCC	TTGCTTGAAA	CTGCAACTAT	CGTTCCTGCG	GTCAATCAAG	TTCGCTTGGC	1140
GCCAGGTGTG	TATCAAGATC	AAGTCGTAGC	TTACTGTCGT	GAAAAGGGAA	TTTTATTGGA	1200
AGCTTGGGGG	CCTTTTGGAC	AAGGAGAACT	GTTTGATAGC	AAGCAAGTCC	AAGAAATAGC	1260
AGCAAATCAC	GGAAAATCGG	TTGCTCAGAT	AGCCTTGGCC	TGGAGCTTGG	CAGAAGGATT	1320
TTTACCACTT	CCAAAATCTG	TCACAACCTC	TCGTATTCAA	GCTAATCTTG	ATTGCTTTGG	1380
AATTGAACTG	AGTCATGAGG	AGAGAGAAAC	CTTAAAAACG	ATTGCTGTTC	AATCGGGTGC	1440
TCCACGAGTT	GATGATGTGG	ATTTCTAGAA	AATCATAAAA	AGAATTGTAC	ATTATTCTAA	1500
TTTTTGATAT	AATAGTCAGC	AGGAAAGAAA	GTCTTATGGC	GTTCTTCAAG	CGACCTTGGG	1560
ATAGTGGGAG	CCAAGTAGGG	CAAAATAAAG	GGCTGGCGCT	TTCTGTAGTA	TTTTCAAAAA	1620

CAATGAAGTA	ATAAATTAGG	GTGGAACCGC	GTTTCTGACG	CCCCTAGGTT	AAATCAACCT	1680
AGGATTGTCA	GATGTGGTTC	TTTTGCTTAT	TCAGTCTATT	GTGTGAAAGA	AAGGAGAGCC	1740
GTGGACAACC	TTTATCTTGT	AAAAGACGAT	AGTCAACTAG	CTACATTTCG	TGATTTTGTA	1800
GTAAGAAATA	CTGAAAAGTT	GAAAGATTAT	CAATCTTTTT	TAAAGAATGA	ACTTGCAGTC	1860
TGTGATTTAC	CGCAAGCTGT	TATTTGGTCA	GATTTTAATG	CTGCTACACA	GATTATTAGG .	1920
GAAAGTGCTG	TTCCAACCTA	TACAAATAAT	AGACGAGTCG	TTATGACGCC	TGATTTAGCT	1980
GTTTGGAAAG	AATTGTATTT	GTATCAGTTG	ATGGACTACG	AGTGTTCTGA	GCAAACTCAA	2040
GCAATAGAAA	GTCACTATCA	TTCTTTATCT	GAAAATTTCC	TCTTACAGAT	TGTAGGACAT	2100
GAGTTAGCTC	ATTGGTCGGA	CATTTTTAG	ATGATTTTGA	TGGTTATGAC	TCTTATATCT	2160
GGTTCGAAGA	GGGGATGGTT	GAATATATTA	GTCGCAAGTA	TTTCTTGACA	GAAGAGGAAT	2220
TTCAAGCGGA	AAAAATTTGT	AATCAATCTC	TCGTAGAACT	TTTTCAGAAG	AAGTATAGTT	2280
GGCATTCATT	GAATGATTTT	GGTTCTTCGA	CTTATGATAA	GAACTATGCA	AGTATTTTT	2340
ATGAATACTG	GCGCAGCTTT	TTGACAGTAG	ATAAGTTGGT	AGAAAATTTA	GGTAGTGTAC	2400
AAGCGGTCTT	AGATTCTTAT	CATTTATGGG	CAAATACAGA	AAAAACTTTT	CCCTTGTTAG	2460
ATTGGTTTGT	TCAGCAGAAA	TTAATTGAAA	AAGAAATATA	AAAACTAAAG	GAGTAAACAA	2520
TGTCTAAGAA	ATTAACATTT	CACTGCATCA	GTGGCAGAGA	CCTCCTTACA	GTCGGGCTGC	2580
TCCACGCTCA	GCACTAGAGT	GCCTGAGCTA	GACGCAGTAC	TAACTCGTCT	TGCCTCGTAT	2640
GATCGACGAG	GCAGACTCGT	GTCGCAAGTA	ATTATTTTTT	ATTAAGGAGT	ATTCAATGTC	2700
TAAGAAATTA	ACATTTCACT	GCGTCAGTGG	CAGAAACCTC	CTTACAGTCG	GACTGCCCTA	2760
CGCTCAGCAC	TAGAGTGCCT	GAGCTAGACG	CAGTACTAAC	TCGTCTTGCC	TCGTATAATC	2820
GACGAGGCAG	ACTCGTGTCG	CAAGAAATTA	TTTTTTATTA	AGGAGTATTC	AATGTCTAAG	2880
AAATTAACAT	TTCAAGAAAT	TATTTTGACT	TTGCAACAAT	TTTGGAATGA	CCAAGATTGT	2940
ATGCTTATGC	AGGCTTATGA	TAATGAAAAA	GGTGCGGGGA	CAATGAGTCC	TTACACTTTC	3000
CTTCGTGCTA	TCGGACCTGA	GCCATGGAAT	GCAGCTTATG	TAGAGCCATC	ACGTCGTCCT	3060
GCTGACGGTC	GTTATGGGGA	AAACCCTAAC	CGTCTCTACC	AACACCACCA	ATTCCAGGTG	3120
GTCATGAAGC	CTTCTCCATC	AAATATCCAA	GAACTTTACC	TTGAGTCTTT	GGAAAAATTG	3180
GGAATCAATC	CTTTGGAGCA	CGATATTCGT	TTTGTTGAGG	ACAACTGGGA	AAACCCATCA	3240
ACTGGTTCAG	CTGGTCTTGG	TTGGGAAGTT	TGGCTTGACG	GAATGGAAAT	CACTCAGTTC	3300
ACTTATTTCC	AACAAGTCGG	TGGATTGGCA	ACTGGCCCTG	TGACTGCGGA	AGTTACCTAT	3360

506

GGTTTGGAGC GCTTGGCTTC TTACATTCAA GAAGTAGACT CTGTCTATGA TATCGAGTGG 3420 GCTGATGGTG TAAAATACGG AGAAATCTTT ATCCAGCCTG AGTATGAGCA CTCAAAATAT 3480 TCATTTGAAA TTTCGGACCA AGAAATGTTG CTTGAAAACT TTGATAAGTT TGAAAAAGAA 3540 GCTGGTCGTG CATTAGAAGA AGGCTTGGTA CACCCTGCCT ATGACTATGT TCTCAAATGT 3600 TCACATACCT TTAATCTGCT TGACGCGCGT GGTGCCGTAT CTGTAACAGA GCGTGCAGGC 3660 TATATCGCTC GTATCCGTAA CTTGGCCCGT GTCGTAGCCA AAACCTTTGT CGCAGAACGC 3720 AAACGCCTAG GCTACCCACT TTTGGATGAA GAAACAAGAG CTAAACTCCT AGCAGAAGAC 3780 -GCAGAATAAA GAGAGTGACA AATTACGAAA ATGGGCGAAC AGAGTGAGCC CTGAGCCAGT 3840 TGCCGCAGTG ATGAAGGTAT CCTTAGTGAA ACTAAGGATA CTAGGCAAAA TTGGAGACTT 3900 TTGGCTCCAA TTTTAGCAAT GAAACAACGA AGTTGGTTGC TTGCGTGCCA ATCACATAAG 3960 GCAAACTGGA AAATAAAAAG ATACTTTTCG GAGAAAAAAC ATGACAAAAA ACTTATTAGT 4020 AGAACTCGGT CTTGAAGAAT TACCAGCCTA TGTTGTTACG CCAAGTGAAA AACAACTAGG 4080 CGAAAAAATG GCAGCCTTCC TCAAGGGAAA ACGCCTGTCT TTTGAAGCCA TTCAAACTTT 4140 CTCAACACCA CGTCGTTTGG CTGTTCGTGT AACTGGTCTT GCAGACAAAC AGTCTGATTT 4200 AACAGAAGAT TTCAAGGGTC CAGCAAAGAA AATTGCCTTA GATAGTGATG GAAACTTCAC 4260 CAAAGCAGCT CAAGGATTTG TCCGTGGGAA AGGTTTGACT GTTGAAGATA TCGAATTCCG 4320 TGAAATCAAG GGTGAAGAAT ATGTCTATGT CACTAAGGAA GAAATTGGTC AAGCAGTTGA 4380 AGCCATTGTT CCAGGCATTG TGGATGTCTT GAAGTCACTG ACTTTCCCTG TCAGCATGCA 4440 CTGGGCGGGA AATAGCTTTG AATACATCCG CCCTGTTCAC ACTTTAACTG TTCTCTTGGA 450C TGAGCAAGAG TTTGACTTGG ATTTCCTTGA TATCAAGGGA AGTCGTGTGA GTCGTGGCCA 4560 TCGTTTTTTG GGACAAGAAA CCAAGATTCA GTCAGCATTG AGCTATGAAG AAGACCTTCG 4620 TAAGCAGTTT GTAATCGCAG ATCCATGTGA ACGTGAGCAA ATGATTGTTG ACCAAATCAA 4680 GGAAATTGAG GCAAAACATG GTGTACGTAT CGAAATTGAT GCGGATTTGC TGAATGAAGT 4740 CTTGAATTTG GTTGAATACC CAACTGCCTT CATGGGAAGT TTTGATGCTA AATACCTTGA 4800 AGTTCCAGAA GAAGTCTTGG TGACTTCTAT GAAGGAACAC CAGCGTTACT TTGTTGTTCG 4860 TGATCAAGAT GGAAAACTCT TGCCAAACTT CATTTCTGTT CGTAACGGAA ACGCAGAGCG 4920 TTTGAAAAAT GTCATCAAAG GAAATGAAAA AGTCTTGGTA GCCCGCTTGG AAGACGGAGA 4980 ATTCTTCTGG CGTGAAGACC AAAAATTGGT GATTTCAGAT CTTGTTGAAA AATTAAACAA 5040 TGTCACCTTC CATGAGAAGA TTGGTTCTCT TCGTGAACAC ATGATTCGTA CGGGTCAAAT 5100 CACTGTACTT TTGGCAGAAA AAGCTAGTTT GTCAGTGGAT GAAACAGTTG ACCTTGCTCG 5160

GCAGCAGCC ATTTACAAGT TIGACTTGTT GACAGGTATG GTTGGTGAAT TIGACGAACT	5220
CAAGGAATT ATGGGTGAAA AATACACCCT TCTTGCTGGT GAAACTCCAG CGGTGGCAGC	5280
GCTATTCGT GAACACTACA TGCCTACATC AGCTGAAGGA GAACTTCCAG AGAGCAAGGT	5340
GGCGCAGTT CTAGCCATTG CAGACAAATT GGATACGATT TTGAGTTTCT TCTCAGTAGG	5400
ATTGATTCCA TCAGGTTCTA ATGACCCTTA TGCCCTTCGT CGTGCAACTC AAGGTGTGGT	5460
CCTATCTTG GATGCCTTTG GTTGGCACAT TGCTATGGAT GAGCTGATTG ATAGCCTTTA	5520
TGCATTGAAA TTTGACAGTT TGACTTATGA AAATAAAGCA GAGGTTATGG ACTTTATCAA	5580
GGCTCGTGTT GATAAGATGA TGGGCTCTAC TCCAAAAGAT ATCAAGGAAG CAGTTCTTGC	5640
AGGTTCAAAC TTTGTTGTGG CAGATATGTT GGAAGCAGCA AGTGCTCTCG TAGAAGTAAG	5700
CAAGGAAGAA GATTTTAAAC CATCTGTTGA ATCACTTTCT CGTGCCTTTA ACCTGGCCGA	5760
GAAGGCAGAA GGGGTTGCTA CGGTTGATTC AGCACTATTT GAGAATGACC AAGAAAAAGC	5820
TTTGGCAGAA GCAGTAGAAA CACTCATTTT ATCAGGACCT GCAAGTCAGC AATTGAAACA	5880
ACTITITIGGG CTTAGCCCAG TCATTGATGC TTTCTTTGAA AATACTATGG TAATGGCTGA	5940
AGATCAGGCT GTCCGTCAAA ATCGTTTGGC AATCTTGTCA CAACTAACCA AGAAAGCAGC	6000
TAAGTTTGCT TGTTTTAACC AAATTAACAC TAAATAAAAT TTGATAAACG GACTTTATCT	6060
TATTACAAAG GAGAAGAAAT GGATCCGAAA AAAATTGCTC GTATCAATGA GCTTGCTAAA	6120
AAGAAAAAA CAGAAGGCTT AACACCAGAA GAAAAAGTGG AACAAGCCAA ACTACGTGAG	6180
GAGTACATCG AAGGTTATCG CCGCGCTGTT CGTCACCACA TTGAAGGAAT CAAAATTGTG	6240
GACGAAGAAG GAAACGATGT TACACCAGAA AAACTACGCC AAGTACAACG TGAAAAAGGA	6300
TTACATGGCC GTAGTCTTGA TGATCCAAAT TCATAATAAT ACTCTTCGAA AATCAAATTC	6360
AAACCACGTC AGCTTCACCT TGCCGTACTT AAGTACAGCC TGCGGCTAGC TTCCTAGTTT	6420
GCTCTTTGAT TTTCATTGAG TATATGTATT CTTTCTTTTA ACAAAGATAG ATGAAACGAT	6480
AACAAAGAGA CTAGCAGTTT GTGTTTGCTA GTCTTTTTTC GCTAAAAAAG GAACCATAAT	6540
CGTTCCTAAA AACTATCATT AGTAACTTGC ACCGGCTGTA GCGTCTGCGT CACCACCGTG	6600
GCCTCCAGCA TCCCCTGAAT CAGAAGCGCC AGAAGTAGCA TCGGCGTCTC CATGACCTCC	6660
GGCAGCAGGA GCAAATGGTC CGCTACCACC CACCAAACGT TGACCAGTCT CTTTTAGGTA	6720
CCAGTCAAGC CATGGTTGGA AGTTAAAGAC GATTTCATTG ATACCAGCGT ATGATCCATC	6780
AGGATAGTAC ATTGCTTGGT AGTTGTGAGT GTTGATAACA CCTGCAGGAG AACCTGGAAC	6840
GATCGTACGG ACGTATTCTT GGTTTCCGTT GCGAAGTGTT CCGATAACCC ACTCTACGTT	6900

TT	CATACGT	GCTGGTGGAA	GAGAACCATG	AACAGTCGAC	ATACGGCTAC	CTGATTGAGG	6960
rgg	TACACGT	TTAGCGAACA	TAGTGTCTGG	ATCTTGGTGA	GCGTTGTTGT	AGTAGAGGAA	7020
rtc	GTTGTTG	TCGTCAGCGT	ATGTCAATTC	AAATGGCATA	GCTTTCAAGA	ACATATCAAT	7080
MG	GTTAACT	GTTAGGATAC	CGTGGTCCAA	TTTGACATAG	GTATCACCAG	AAACAGCACC	7140
AGT	GAATGCT	GCAACTTTTT	CTACCCATTC	TGGATCGTCA	GGGTCAACTT	CTGTGATGGT	7200
TGT	AGCGATT	GCTTTTCCAC	AATCCAAGTC	TTCTGATTCG	ATTGGTTTTG	GTTTTTTCAA	7260
ттт	CGAAACG	ACTCCTACGT	ATTTAACAAA	GTTATCTAAG	CAAGTTTCAA	GGAATTTAAC	7320
AGT	GCCTTCG	TTGGTGATAT	TTCCGTTGTT	ATCAAAAGCT	TCCTTAGCTT	TACCAAGAAG	7380
GAA	TTCGTTA	CCTGGAAGCG	TGTAGGCATT	AACACCTGGA	GCATCAAGGA	TTTTACGAAG	7440
GTG	AACTTGA	GCACGTGATG	TTCCTTGGTC	ATAGTATGAT	GCACCCACAA	TCATAACAGG	7500
CTT	GTTTTCA	AATGGATGAA	CTTCGTATGA	AAGCCATTCA	AGTACAGATT	TGAGTGAAGC	7560
TGA	GATAGTG	TGGTTATGCT	CAGGAGTAGC	AATGATAACA	CCATCTGCAC	GAGTAATTTT	7620
GTT	'ATATAAA	TAACGTAATT	GGAAACTTTC	ATCCCATTTT	TCATCTTGGT	TAAACATTGG	7680
AAC	TTCGTCA	ATTTCAAGAA	CTTCTAATTC	AAATTTGAGT	TTGAAGTAGC	GACGGATAAA	7740
TTC	CAAGAGC	TTACGGTTAT	ATGATTGATC	GTAGTTTGAT	CCAACAAGTC	CAACAAATTT	7800
CAT	TCTTTTT	GGTCTCCTAT	CTTACAAATT	TTCCCAGTCA	AAGTCTTCAG	CATCTTTGCG	7860
AAG	TAATTCT	TGTGCATTAC	GTAATTTTTC	TGTGATTTTT	ACAAAGATAC	GGAAGTCATC	7920
AAA	GATGGCA	TCCAATTTCT	TGATAACATC	AAGGTCAACC	AAGTCGCCAC	TTGGGTTAAA	7980
TGC	TTGAAGA	GAGTGTGAGA	GCAAGAATTC	ATCTGGAAGA	ACATTTGCCT	TGATTTCAGG	9040
AGC	CATTCAAG	ATTTGACGAA	GTTGCAATTG	GGCACGAGAT	GAACCAAGCG	TACCGTAAGA	8100
AGC	CACCTGTA	ATCATGATTG	GTTTGTTCAA	AAGTGGGTAA	ATACCATAAG	ACAACCAAGC	8160
AAC	GAGCGCTC	ATCAAAACAG	CTGGAATAGA	GTGATCATAC	TCAGGAGTAC	CGATAATAAC	8220
GCC	CATCTGCC	TCTTCGATTT	TAGCAGCAAT	TTCCAATATT	TCAGCAGGTA	CTTGCTTGTC	8280
AGC	TGGTTTG	TTGAAGACAG	GAATGGCCTT	GATTTCAACA	AGTTCAATTT	CAGCTTTGTC	8340
AGT	TAAAGTGT	TTTTGCATGT	ATTGAAGCAA	TTGACGGTTT	GTAGAACGTT	TTGAATTTGT	9400
TCC	CAACAATA	GCAATAAGTT	TTAACATGAG	ATTTCCTTTC	TCTTTTTACA	TAATACAATT	8460
TT	<b>AAAATT</b> CC	ATTGAAACAG	TTGTCTCTAT	AGAGTAGGAA	TTCCTGAAGA	ACAGCTTAGG	8520
TCC	CCTTCTT	TATCGATGAG	GATGACTTCC	ATGCCCTCCA	AACTTTCGAC	TTGCCAGAGG	8580
AT	AGAAGCAG	GTCTTTCTCC	AAAGAGTCGA	GTCGTCCAGA	TTTCGCCATC	GACTGATTTA	8640
The s	AGAGATGA	TTCTTAGACT	CGCTAGTTCC	GTTTCAACAG	GATATCCTGT	TTGACTGTCA	870

WO 98/18931

AAAATGTGAT	GGTAATCTTG	TCCATCGACG	GTCAGGTGAC	GTTCATAAAT	GCCTGAAGTC	8760
ACGACAGATT	TATTGACAAC	AGGGATGGTC	ATTAAATGAT	TTCCCCTAGG	ATTGGCTGGG	8820
TCTTGAATCC	CGATTTGCCA	TGGGTTATCC	CCTCTTGCCT	GATTTTTTCC	AATGGTCAGG	8880
ATATTCCCTC	CCAGATTGAT	CAAGGCAGAA	GTCACCCCCT	CTTTCCTAAG	AAATTGGGCA	8940
ACCTTATCCG	CACTGTATCC	TTTGGCTAAA	CAACCTAGAT	CGATCTTCAT	TCCTTTCTGT	9000
TTTAAAAACA	CAGTAGAAGT	AGAAGAATCT	AACTCGATAC	CATGAGGATT	GATTAGAGGC	9060
AGCACCGATT	CAATTTCTTG	AGGCTGGGCG	ACCTTGGCAT	CTGAAAAACC	GATACGCCAG	9120
GTTTGAATTA	AGGGACCAAT	GCTGATATTG	AGGTGGCTAG	AGAGCGCTAG	GCTATGCTCT	9180
AACCCAAGTG	AAATCAGCTC	AAACAGGTCT	GGATGAACCG	TGACGGGGC	TATTCCTGCT	9240
TGATAATTGA	TTTCCATCAA	CTCAGATTCT	TGACTATTGG	CGTTGAAGCG	GTATTCAAGT	9300
TCTTTGAGCA	AGTCAAAGGA	TTTTTGGAGA	AAGATATCGG	CTTGCTCATC	CACTAATGAA	9360
ATAGTGATAG	TAGTCCCCAT	TAGCCGTTCA	GAATGTGAAC	GAAGAGTCAA	GCTACCAACT	9420
CCTTTCTCTT	ATAGAAAATA	AGTTGTAATA	TCAAATAATC	ATCTAAATTG	AAGCCCTTAC	9480
ATTTCATTTT	CATGTTATTA	TAATACCATA	AAGTTAGAAT	TTTCACAAAC	AAAATTTGGA	9540
AAAAGTCAAG	AAATATGCTC	ATAAAATTCA	TCAGGCTTGA	AAACAGGATA	AATGGGGAAT	9600
TATTTTGAT	AAAAAATGCT	GAAATAATAG	TACCCCCCTT	GTAAACGCTA	ACGGTAAATG	9660
GTATACTAGT	AAGGTAAATT	TAGAATGAAG	GCAGGAAATT	TTTATGAGTA	AAATCGTTGT	9720
AGTCGCTGCT	AACCACGCTG	GTACAGCATG	TATCAATACC	ATGTTGGATA	ATTTTGGAAA	9780
TGAGAACGAA	ATTGTTGTAT	TTGACCAAAA	CTCTAACATC	TCTTTCCTAG	GATGTGGAAT	9840
GGCTCTTTGG	ATTGGTGAAC	AAATTGACGG	TGCTGAAGGC	TTGTTCTATT	CTGATAAAGA	9900
AAAATTGGAA	GCTAAAGGTG	CTAAAGTTTA	CATGAACTCA	CCTGTTCTTT	CAATCGACTA	9960
TGATAACAAA	GTAGTTACAG	CGGAAGTTGA	AGGAAAAGAG	CACAAAGAAT	CATACGAAPA	10020
ATTGATTTTC	GCTACAGGCT	CTACACCAAT	CTTGCCACCA	ATCGAAGGTG	TTGAAATTGT	10080
TAAAGGAAAC	CGCGAATTTA	AAGCAACTCT	TGAAAACGTA	CAATTCGTGA	AATTGTACCA	10140
AAATGCTGAA	GAAGTTATCA	ATAAACTTTC	TGACAAGAGC	CAACACCTCG	ACCGTATCGC	10200
CGTTGTTGGT	GGTGGTTACA	TCGGTGTTGA	ACTTGCTGAA	GCCTTTGAAC	GTCTTGGAAA	10260
AGAAGTTGTC	CTTGTTGATA	TCGTTGATAC	TGTCTTGAAC	GGTTACTATG	ACAAAGACTT	10320
CACACAAATG	ATGGCGAAGA	ACTTGGAAGA	TCACAACATC	CGCTTGGCTC	TAGGTCAAAC	10380
TGTTAAAGCA	ATCGAAGGTG	ACGGTAAAGT	TGAACGCTTG	ATTACTGACA	AAGAAAGCTT	10440

TGACGTGGAT ATGGTTATCC TTGCAGTTGG TTTCCGTCCA AACACAGCCC TTGCAGGTGG 10500
TAAGATCGAA CTCTTCCGCA ACGGTGCCTT CCTTGTAGAC AAGAAACAAG AAACATCTAT 10560
CCCAGACGTT TACGCTGTTG GTGACTGTGC GACTGTTTAT GACAATGCTC GTAAAGATAC 10620
AAGCTATATC GCTCTTGCTT CAAATGCTGT GCGCACTGGT AACGTTGGT 10669

#### (2) INFORMATION FOR SEQ ID NO: 58:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7542 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double

* . . . . *

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

CGCGCTAATA GATACTTTAT GATAGAATAA AGAACAAGAT TGACAAGTAA GAGGAAACAT 60 TATGCAAAAT CAAACACTCA TGCAATACTT TGAATGGTAT CTGCCCCACG ACGGTCAACA 120 CTGGACGCGT CTGGCTGAAA ATGCTCCACA CCTAGCTCAT CTGGGGATCA GTCACGTCTG 180 GATGCCACCA GCCTTCAAGG CAACCAACGA AAAAGATGTC GGCTATGGGG TCTATGACTT 240 ATTTGACTTA GGAGAGTTCA ACCAAAAAGG GACTGTCCGC ACCAAGTATG GTTTCAAAGA 300 AGACTATCTT CAAGCCATTC AAGCCCTTAA AGCACAGGGA ATTCAACCTA TGGCCGATGT 360 AGTTCTCAAC CACAAGGCTG CTGCCGATCA CAGGGAAGCC TTTCAGGTTA TCGAAGTTGA 420 TCCTGTAGAC CGTACAGTTG AACTTGGAGA ACCCTTCACC ATCAATGGCT GGACTAGTTT 480 TACCTTCGAT GCTCGCCAAG ATACCTATAA TGGCTTCCAC TGGCATTGGT ACCACTTCAC 540 CGGTACAGAC TACGATGCCA AACGCAGTAA ATCTGGGATT TATCTGATCC AAGGGGACAA 600 CAAGGGCTGG GCCAACGAGG AATTGGTCGA TAACGAAAAC GGAAACTACG ACTACCTCAT 660 GTATGCCGAC CTAGACTTTA AACATCCTGA AGTCATCCAA AACATCTATG ACTGGGCTGA 720 TTGGTTCATG GAAACGACTG GTGTAGCTGG TTTCCGTTTG GATGCCGTTA AGCATATTGA 780 CTCTTTCTTT ATGCGCAACT TCATCCGCGA TATGAAGGAA AAATACGGTG ACGATTTCTA 840 TGTTTTTGGT GAATTTTGGA ACCCAGACAA GGAAGCCAAT CTGGACTATC TCGAAAAAAC 900 GGAAGAACAC TITGACCTTG TCGATGTTCG TCTCCACCAG AATCTCTTTG AAGCCAGTCA 960 AGCTGGCGCA AACTATGACC TTCGTGGCAT TTTCACAGAT AGCCTGGTTG AACTCAAGCC 1020 TGACAAGGCT GTGACTTTTG TCGACAACCA CGATACCCAA CGAGGACAAG CCCTTGAGTC 1080 TACCGTTGAA GAATGGTTCA AGCCAGCAGC CTATGCCCTC ATTTTGTTAC GCCAAGACGG 1140 CCTTCCATGT GTCTTTTACG GAGACTACTA TGGGATTTCA GGGCAGTATG CTCAAGAAGA 1200

TTTCAAAGAA	ATCCTTGACC	GCCTCCTAGC	CATCCGAAAA	GATTTGGCCT	ATGGAGAACA	1260
AAATGACTAC	TTTGACCATG	CTAACTGTAT	CGGTTGGGTA	CGTTCAGGTG	CTGAAAATCA	1320
ATCCCCAATC	GCAGTCCTTA	TCTCAAATGA	CCAAGAAAAC	AGCAAGTCAA	TGTTTGTCGG	1380
TCAAGAATGG	ACTAATCAAA	CCTTTGTAGA	TTTACTTGGT	AACCACCAAG	GTCAAGTTAC	1440
aattgatgag	GAAGGTTATG	GACAATTCCC	TGTCTCAGCT	AGATCCGTAA	GTGTCTGGGC	1500
AGTCAATACC	ATCTAATAGC	TCATAATAAC	CAAGCTAGGT	CCAAGCGGAT	TTGGCTTTTT	1560
TGTATTCACA	AAAAGACCTA	CCCAAATGGA	TAGATCTTTA	CTTGATTACA	ATTTACCTGC	1620
TACTGCATCC	AACAATTCTT	GGATCTTAGG	TTGGTTGCTT	CCTCCTGCCA	TGGCCATATC	1680
TGGTTTACCA	CCACCACGTC	CATCGATGAT	TGGTGCTAAT	TCTTTGACAA	GGTTTCCTGC	1740
ATGAAGGTCT	TTTGTCTTGC	TTGCTACAAG	GACATTGACT	TTGTCACCGA	TAGCGGCAAC	1800
TAGGACAAGA	AGATCAGAGT	AGTCTTTTTG	TTTCCAGTTA	TCTGCAAAAG	TACGAAGGGC	1860
ACCGGCATCG	GATACAGACA	CTTGACTAGC	AATGTAACGA	TGACCGTTGA	CTTCCTTAAC	1920
ATCTTTGAAG	ATATCGCCTG	CGGCTGCAGC	TGCGGCTTTT	TCTTTCAACT	CAGCATTTTC	1980
TTTTTGAAGT	TGACGAAGTT	GTTCTTGAAG	TCCTTCTACC	TTGTGAGGTA	CTTCCTTGAC	2040
TTGAGGTGCT	TTCAAGGTTG	CTGCGATAGC	TTTAAGAGCA	TCCTCTTGTT	CACGATAGGC	2100
TTCAAAGGCT	TCCTTACCAG	TCACTGCCAA	GATACGGCGA	GTTCCTGAAC	CGATTCCTTC	2160
TTCTTTGACA	ATTTTGAAGA	GACCAATCTC	AGAACTGTTG	TCAACATGAG	TACCACCACA	2220
AAGTTCAATA	GAGTAGTCAC	CGATAGTCAC	GACACGAACT	TCCTTGCCGT	ATTTCTCACC	2280
AAAGAGGGCC	ATAGCTCCCA	TTTCTTTAGC	AGTGTCAATA	TCCGTTTCAA	CTGTCTTCAC	2340
TTCAAGTGCT	TCCCAAATTT	TCTCGTTAAC	TTGCTGTTCA	ATCGCACGAA	GTTCCTCAGC	2400
AGTTACTGCT	TGGAAGTGGG	TAAAGTCAAA	GCGAAGGAAT	TCAACTTCGT	TAAGAGATCC	2460
TGCCTGTGTT	GCGTGGTTTC	CAAGGATATT	GTGAAGGGCA	GCGTGAAGCA	AATGAGTCGC	2520
AGTGTGGTTT	TTCATGACAC	GGTGACGGCG	ATTGCTATCA	ATTGCCAAGG	TATATTCTTG	2580
GTTCAAGGCA	AGCGGTGCAA	GGACTTCAAC	TGTATGAAGG	GCTTGACCAT	TTGGGGCTTT	2640
CTGAACATTG	GTCACAGTAG	CCACAACCTT	ACCTGACTCA	TCCAAGATTT	GTCCGTAGTC	2700
AGCTACCTGT	CCACCCATT	CAGCATAAAA	TGACGTTTCC	GCAAAGATAA	GAGAGGCAGT	2760
TCCTTCTGAA	ACAGCTCCTA	CTTCTGCATT	GTCAGCAACG	ATAGCTACCA	ATTTAGAAGA	2820
CAATTGGCTA	GCATTGTAGT	TGAAGACACT	TTCTACAGTG	ATGTTTTGAA	GAGTTTCATT	2880
						2040

. . . . . .

			*			
CATGGCTGCT	TCAAAACCTT	CACGGTCTAC	512 AGTCATACCA	GCTTCTTCAG	CGATTTCTTC	3000
AGTCAATTCA	ACTGGGAACC	CATAAGTATC	ATAGAGTTTG	AAGACATCTG	AACCAGCGAT	3060
AACAGATTGA	CCTTTTTCTT	TCAAGTCTGC	TACAATGCCT	TGGGCAAAGT	GTTGACCTGA	3120
GTGAAGGGTA	CGGGCAAATG	ATTCTTCTTC	GCTCTTAACG	ATTTTCTCAA	TAAAGTCACG	3180
TTTCTCAAGC	ACTTCTGGGT	AGTAGCTTTC	CATGATTTT	CCAACAGTTG	GAACCAATTT	3240
GTAAAGGAAA	GGCTCGTTGA	TACCCAATTT	TTGACCATGC	ATAGAAGCAC	GACGGAGAAG	3300
ACGACGAAGA	ACATAACCAC	GACCTTCATT	TCCTGGAAGG	GCACCATCAC	CGATAGCAAA	3360
TGAAAGAGAA	CGAATGTGGT	CTGCGATAAC	CTTGAAGCTC	ATGTTGTCGC	CATCTTGGTC	3420
ATAAACCTTA	CCAGACAATT	TCTCGACTTC	ACGGATAATC	GGCATGAAGA	GGTCCGTTTC	3480
AAAGTTGGTC	TTAGCCCCTT	GGATAACGGC	CACCAAACGC	TCCAAACCAG	CGCCCGTATC	3540
AATGTTCTTA	TGTGGCAATT	CCTTGTATTC	GCTACGAGGA	ACAGCAGGGT	CTGCGTTAAA	3600
TTGTGACAAA	ACGATGTTCC	AGATTTCAAT	ATAACGGTCG	TTTTCAATAT	CTTCTGCAAG	3660
CAGGCGAAGA	CCGATATTTT	CTGGGTCAAA	GGCTTCCCCA	CGGTCAAAGA	AGATTTCTGT	3720
ATCTGGTCCA	GAAGGTCCCG	CACCGATTTC	CCAGAAGTTG	TCCTCAATTG	GAATCAAGTG	3780
ACTTGGATCC	ACTCCCACTT	CAATCCAGCG	GTTGTAAGAA	TCTTTATCGT	CTGGATAGTA	3840
GGTCATGTAA	AGTTTTTCAG	CAGGGAAATC	AAACCATTCA	GGGCTTGTCA	AAAGCTCATA	3900
AGCCCAAGTG	ATAGCTTCGT	CACGGAAGTA	ATCCCCGATA	GAGAAGTTCC	CCAGCATTTC	3960
AAACATGGTA	TGGTGACGCG	CGGTCTTCCC	TACGTTTTCG	ATGTCGTTGG	TACGGATAGC	4020
CTTTTGGGCA	TTGGTAATAC	GTGGATTTTC	AGGGATAATG	GTCCCGTCAA	AGTATTTCTT	4080
AAGGGTTGCT	ACCCCAGAGT	TGATCCACAA	AAGAGTTGGG	TCATTTACAG	GAACCAAACT	4140
TACTGATGGT	TCTACTGAGT	GACCTTTGGT	CGCCCAGAAA	TCAAGCCACA	TTTGGCGTAC	4200
TTGTGCACTA	GATAGTTGTT	TCATATTGTC	TCCTTATTCA	CTTGTTTAAT	GTGATTGGCT	4260
TTCCAGCATT	TCCACATAGT	CAATCGCGAC	ACAGAGGGAA	ATGACTAGGT	CTGCATAAGC	4320
GTCTTCAAGA	ACCGTTACGG	TATAGGTAGA	AGTCAGATGG	AAGAGTTCCT	TCTTAATTTC	4380
CGCAATCAAC	TGATCGCGAT	CATCCAGCAA	TTTGAAATTC	AAATCCCAGA	TATTGCCCTC	4440
GATACGAAGA	CCTAGATTAT	CAAACTCATA	CTTATCTCGC	CAGAAGGTCA	ACTTCTTACG	4500
AATGACAAAA	CTCGAGCCAT	CCCGAAGCTG	AATTTCAAAA	CGAGGAAGCA	AGGTCAAGAT	4560
TTCTTTACTA	ATCTCACTGA	CTTGTTCACC	AGCCGCATCA	TAGATGGTAA	AGGTTTTAGG	4620
AATCTTAAAA	AATGATCCCT	CCACCTGATA	GGCAATTTCT	CCCCTGTCAT	CCTTGATAGC	4680
GAAGCGTTCG	CCTCCAAGAC	GAAACTTTTG	TTTGACAAGA	AATGTTTTCA	TCAACACCTC	4740

AAAAATCAA	AAGACAAGCT	CATATCACGA	AGGGCGAAAA	ACCGCGGTAC	CACCTTCATT	4800
AATGAACTT	GTCATTCTCT	TGTTCTTATG	CAATTGTATG	ATTGAGTAGC	ATGACTTCCT	4860
AGCTTAGATG	GCTCGCAGCA	CCGCCATTTC	TCTGGACTAA	GACAAGTGAA	AATCAATTCT	4920
AACTTTCTT	ATTATAACGT	TTTTTTAAGC	TTGCGTCAAC	TGGAAATGAT	CTCCGTTGAA	4980
TAGACCAAT	TCCCTACATC	TCTGATTACT	TTTTCAGGAT	ATATTTTTC	TTACTGCCAT	5040
TTTCTTTT	ATCCCAAATT	TTCATATTAC	TAAACACAGC	TACTAGAATA	TTTCCAAATA	5100
PAAAGGTGCC	TATCACCCAA	TATATGGACT	CACTTGTTAG	GTATTGTCGA	TCCAAGCCAT	5160
CTTTAAATG	GAATAGTATA	GCAGTTTGGT	TAACAATCAT	AAAGGTTGGC	CAGAAACTTT	5220
TTTGAAAAA	AGTAGACATT	TTCATTATTT	GTTGCCGCTT	TCTGTAAGGT	TAATACTCAA	5280
PAAAAATCAA	AAAGCAAACT	AGGAAGCTAG	CCTCAAGCTG	TACTTGAGTA	CGGCAAGGCA	5340
CGCTGACGT	GGTTTGAAGA	GTATAGGCTT	AGTATACTAC	TAGGCAAGCA	AATAAACAAA	5400
PAAACAACTA	GAATAGAAAA	AGATAGGGCT	CTAAAAACTG	ACTTCTATTC	CTTAAAAACG	5460
ACCAGCTTG	ACTGATTCGT	CTTCTTACGT	TTATCTCCTA	CTTCCGATAC	ATTTTAAACT	5520
STAGGAAGAG	GTCGCTATAT	TTCCCTGTCC	ATTTATGGTC	AAATTTCTCA	TAAACTTCTA	5580
GTGTTTCAT	GGTTTCAACA	TCGGGATAGA	AGGCCTTATC	TTCCTTTGTT	TCCTCTGGGA	5640
CAATTCCTT	CGCTGGTAGG	TTTGGTGTTG	AATAGCCGAC	ATACTCCGCA	TTTTGGAGAG	5700
ATTTTCAGG	TTTCAACATA	AAGTTGATAA	AGGCATAGGC	TGAGTTTTGG	TTTTTAACTG	5760
TTTGGGAAT	GACCATATTG	TCAAACCAAA	GATTGCTGGC	CTCTGTCGGT	ACCACATAAC	5820
STAGATTTTC	ATTTTTTCT	AACATTTGGC	TGGCTTCACC	AGAGAAGGTC	ACGCCGATTG	5880
AACATTATT	CTSAATCATA	TAGCCCTTCA	TCTCGTCCGC	AACGATAGCC	TTGATATTTG	5940
SAGTCAGTTT	GTAGAGCTTA	TCCACTGTCT	CTTCCAACTG	CTGCAGATCC	TTGGAGTTGA	6000
GCTGTAGCC	GAGGGAATTG	AGTCCTAGTC	CCAGCACCTC	ACGCGCCCCA	TCAAAGAGCA	6060
GATAGAATT	CTTATACTCC	GGCTTCCAAA	GGTCATCCCA	ATGCTCAGGC	GCTTCATCTA	6120
CATGGTTTC	GTTGTAGACA	ATTCCTAAGG	TTCCCCAGAA	GTAAGGGATG	GAGAATTTAT	6180
ACCTGGGTC	AAAGGACTGG	TTGAGAAACT	CTGGTCCGAT	ATTTTCGATT	CCTTCAATTT	6240
TGAATAATC	AAGCGGAACC	AAGAGGTCTT	CGTCCTTCAT	CTTGTTAATC	ATGTATTCAC	6300
TGGAATGGC	AATATCGTAG	GTCGTTCCAC	CCTGCTTTAT	CTTAGTGTAC	ATGGCTTCGT	6360
GGAGTCAAA	AGTCTCGTAC	TGAACTTGAA	TTCCTGTTTC	TTCTGTAAAC	TGAGTCAAGA	6420
TTTC 1 CC 1 TC	CAMAMACTOM	CCCC & COMPAN	**********	mmmma.co.	*****	

PCT/US97/19588 WO 98/18931

			514			
<b>TGATTTTACT</b>	ATCTAAATGA	GTCGCAATTC	CCCACAAGAC	AAGGATAATC	GCTGCAATTC	6540
CTGCTAAAAA	TGAATAGATT	TTTTTCATGC	TTGCTCCTCC	TTCTCACGAG	AGATAAAGTA	6600
<b>АТААССТАСА</b>	ACTAGGATAA	TACTAAAGAG	AAAGACTAGA	GCAGACAGGG	CATTGATTTC	6660
TAAGGAAATC	CCCTTGCGAG	CACGAGAGTA	AATCTCGACT	GATAGGGTTG	AAAAGCCATT	6720
TCCTGTTACA	AAGAAGGTCA	CGGCAAAGTC	ATCTAACGAA	TAGGTGAAGG	CCATGAAATA	6780
ACCAGTAATG	ATAGACGGAG	TCAGGTAAGG	AAGCATGATT	TCCTTGAACA	TCTGAAATTG	6840
ACTAGCTCCC	AAGTCATAGG	CCGCATGAAT	CATGTCGCCA	TTCATTTCCT	TGAGTCGAGG	6900
CAAGACCATC	AAGACCACGA	TAGGAATGGA	GAAGGCCACG	TGACTAGATA	GAACGGTCAA	6960
AAAGCCAAGT	GAAAACTTGA	GTTGGGTAAA	GAGAATCAAG	AAGCTAGCAC	CAATCATAAC	7020
GTCAGGCGCA	ACCATGAGGA	TATTATTGAG	TGATAGAAAG	GCTTCTTGGT	ATTTCTTACG	7080
AGACTGGTAG	ATGTAAATGG	CACCAAAAGT	CCCGATAATG	GTCGCTATCA	AGGCTGATAG	7140
GAAGGCCAAG	AAAAATGTCT	GAGCCAAAAT	CAGCATGAGT	CTCCCATCTC	CAAACATGGT	7200
TTCAAAGTGA	GTCCAGCTAA	AACCTGTAAA	GCTATTCATA	TCATCACCAG	CATTAAAGGC	7260
ATAGCCAATC	AAGTAAAAGA	TAGGCAGGTA	GAGGACCAGA	AAGACCAGTO	CCAGATAAAG	7320
GTTGGCAAAT	TTTTTCATCG	TTCTCTCCTT	TCCTTAGTCA	CCCACATGGT	GATGAACATG	7380
GTCAGGATGA	GAATCACACC	GATGGTTGAA	CCCATACCAT	AGTTGTCATT	GGTTAGAAAA	7440
TTCTGCTCAA	TAGCCGTCCC	CAAGGTGATA	ACCCCTTCCC	ACCAATCAAA	CGGGTCAGCA	7500
TGAAGAGACT	CAAACTTGGG	ATAAAGACCG	ACTGAACCCC	GG		7542
(2) INFORM	ATION FOR S	EQ ID NO: 5	9:			

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 9223 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

* . . . . . .

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

AAAACCAAAT	TCCGGTATTT	TAACCTATGC	TGTAAATACC	ATGAAGTCTG	TCATGACAGA	60
TCAGGTCTAT	AACATTAAGG	TTGAGACAGA	AAATGGAAAT	TATCTTGGTG	AAGCTAGCCA	120
TGTTTTGGTC	CTTTTGACAA	ATTACTTCGC	TGATAAGAAA	ATCTTTGAAG	AAAACAAGGA	180
CGGCTATGCC	AACATTTTGA	TTCTGAAAGA	TGCCTCTATA	TTCTCCAAAT	TATCCGTCAT	240
TCCTGATTTA	TTAAAAGGGG	ATGTTGTCGC	AAATGATAAT	ATCGAGTATA	TCAAAGCGCG	300
TAATATTAAA	ATCTCTTCAG	ATAGTGAATT	GGAGTCAGAT	GTTGACGGAG	ATAAATCAGA	360

TAACCTACCT	GTAGAAATCA	AAGTCCTAGC	TCAGCGAGTA	GAAGTATTTT	CAAAACCGAA	42
AGAGGATTAG	TATATAGAGA	AAGCCTTTTT	TAAGGCTTTT	TGTATACTTT	AAAAGATAGT	480
TCCTTTAACA	ACGGACATTC	CTTGCAAATA	GTTTTACAAA	AATAGTATAC	TGGATTCATT	540
GAGTTTGAAA	ACGTTTGCGT	AAAATTTGAA	TGAATACTTT	AGGAGACAAA	TTGATGGAAT	600
TGAGTGCTAT	TTACCATAGG	CCTGAGTCGG	AGTATGACTA	TCTTTATAAG	GATAAGAAAC	660
rccatattcg	AATTCGAACT	AAGAAAGGGG	ACATTGAAAG	CATCAACTTG	CACTATGGGG	720
ACCCTTTTAT	CTTTATGGAG	GAGTTTTATC	AGGATACAAA	AGAAATGGTC	AAGATAACTT	780
CTGGTACCTT	ATTTGACCAT	TGGCAGGTTG	AAGTGTCAGT	TGACTTTGCA	CGTATCCAGT	840
ATCTCTTTGA	GCTCAGAGAT	ACAGAAGGTC	AAAATATTTT	GTATGGCGAT	AAAGGGTGTG	900
rggaaaattc	TCTAGAAAAT	CTTCATGCAA	TTGGGAATCG	ATTTAAGTTG	CCTTAGCTTC	960
atgagattga	TGCCTGCAAG	gTTCCTGACT	GGGTTTCAAA	TACGGTATGG	TATCAGATAT	1020
PTCCTGAAAG	ATTTGCCAAT	GGCAATGCTC	TATTAAACCC	AGAAGGGACT	TTAGACTGGG	1080
ATTCATCTGT	CACACCTAAG	AGCGATGATT	TCTTTGGTGG	TGATTTACAG	GGGATTATTG	1140
ATCATATGAA	TTACTTGCAA	GACTTGGGTA	TTACTGGACT	ATATCTTTGT	CCCATCTTTG	1200
AATCTACAAG	CAATCACAAG	TACAATACGA	CAGATTACTT	TGAAATTGAC	CGTCATTTTG	1260
GAGACAAGGA	GACCTTTCGG	GAACTGGTGG	ATCAAGCGCA	TCATCGTGGC	ATGAAAGTCA	1320
rgctggatgc	GGTATTTAAT	CATATTGGTT	CGCAATCTCT	TCAATGGAAA	AATGTCGTCA	1380
AAAATGGTGA	ACAGTCTGCT	TATAAGGATT	GGTTCCATAT	TCAACAATTC	CCAGTGACAA	1440
TGAAAAGCT	AGTTAATAAG	AGAGACTTAC	CCTATCATGT	TTTTGGTTTC	GAGGACTATA	1500
CCCTAAGCT	AAATACAGCC	AATCCAGAGG	TCAAGAATTA	TCTTTTAAAG	GTTGCGACTT	1550
attggattg <b>a</b>	AGAGTTTAAT	ATCGATGCTT	GGCGTTTGGA	TGTGGCTAAT	GAGATTGACC	1620
ATCAGTTCTG	GAAGGATTTT	CGTAAGGCAG	TTTTAGCTAA	AAATCCTGAT	CTTTATATCC	1680
PAGGAGAAGT	CTGGCATACA	TCTCAGCCTT	GGCTAAATGG	AGATGAGTTC	CATGCCGTCA	1740
GAATTATCC	TTTATCTGAT	AGTATCAAGG	ACTATTTCTT	ACGAGGAATT	AAGAAGACAG	1800
CCAGTTCAT	CGATGAAATC	AATGGAGAGT	CTATGTATTA	CAAGCAGCAG	ATTTCAGAGG	1860
CATGTTTAA	TCTCTTGGAT	TCACATGATA	CAGAGCGAAT	CCTGTGGACG	GCCAATGAAG	1920
TGTTCAACT	GGTTAAATCA	GCCTTAGCCT	TTCTCTTTTT	ACAAAAAGGA	ACACCGTGCA	1980
TTATTACGG	AACCGAGCTA	GCCTTGACTG	GAGGACCAGA	TCCAGATTGT	CGTCGTTGTA	2040
YGCCTTGGGA	ACCTCTATCA	ACTOACAATO	ልምልምድድምድ እ <b>አ</b>	COMPANIES AC	ACCCMC AMM A	2100

AAATTCGGAA ATACGCGTCA GTAATCATTT CGCATGGCAA GTATAGCCTT CAAGAAATCA 2160 ACTCTGATCT AGTAGCTCTG GAATGGAAAT ACGAAGGACG GATCCTCAAA GCAATATTCA 2220 ACCAATCAAC AGAAGATTAT CTTTTAGAGA AAGAAGCAGT AGCACTAGCA AGCAATTGCC 2280 AAGAATTGGA TAATCAGCTT GTCATCTCTC CAGATGGATT TATGATTTTC TAAAAACTAG 2340 TTGATGAAGA TTATGGTACA TTTCATACCT TATATAGTAT AATAAGGCTA GTTACTAAAC 2400 TTGTAAAGGA GAACTTAAAT GAATTGTAGA GGACATGAAA CAAGACAAAG AATTGTTAGA 2460 GATTTTGAAG TTCAGCCTAA AGCACATATT AAGCTGTTAG CAAATCAACA AAAACATAGT 2520 2580 GATGCAGGAG CAACTATTGA AGATGAATAT TATGTATTTA TCGCTGAGAG TAAAATTGAT GGCAAGAAGG AAGTTATTCA GTGTTGCATG GGTGCGGCAA GGGATTTTTT AGAACTAATT 2640 AATCACAAAG GGCTACCTCT TTTTAATCCG CTTGTAGGTG ATTCTCATGT AAATAATAGA 2700 CAAGAATATG ACAATACAGG GAGTGGAAAT TTATAACCTG AAAAGTGGAA TGAAACTGCA 2760 AAGCAGCTTT ATAATGCTAT AATGTGGTTG ATTATTTTAT GGAATGCTAA GCCGGATACA 2820 CCTTTATTTA ATTTTAAAGA CGAAGTAATT AAGTATAAAA CATATGAGCC TTTTGAAAGC 2880 AGTATAAAAA GAGTAAATAC TACTATAAAG AATGGTAGTA AAGGGAAAAC TCTGACTGAG 2940 ATGATTAATG GCTACAGAGC GGATAACGAT ATTAGAGATG AAATTTGTAA CTTTAATATT 3000 CTGAAAAATA AAATTCGTGA TATGAAAAAC CAACAAGGAA ATACAATGGA ATCTTACTTT 3060 TAGTTATTGT TGAATTTTGG GTATTCTATA AAATATCCTA ATTGAGATTT AAATAGTAGA 3120 CTATACAATA TAGTTAAAAT ATCAGTAAAA ACAACACTTT ATTGAGGTAT TGGATACGCT 3180 3240 TTGCTAATAG CCTAATAATC ACATGTGGAG TGTTGCTACA ACGAAAAAGG TGATAATCCT 3300 TGATTTCAAG CTATTTTATA AGCATTTTGT CTTTGTAGAT AAAGGCAATT TTGACAATAA AAATCCTAAA AGGTGAATCG TTATAGATGT ATTTGTAGAT ATCGTTTGCG CATCGAAAAA 3360 ATTAATACAA GAATAAATAT TTATAGCTCT TTAGGTGACT TTTATAGAAG TAAAGTTTAC 3420 GATAGAAAAA CAAGAAATAA CGCACCATTT TTGGTGCGTT ATGCTTTTTT ATGCTATAAT 3480 GGATTTATAA AAATAAAGGA GTTTGCTATG ATTGGAAAGA ACATAAAATC CTTGCGTAAA 3540 ACACATGACT TAACACAACT CGAATTTGCA CGGATTGTAG GTATTTCACG AAATAGTCTG 3600 AGTECTTATG AAAATGGAAC GAGTTCAGTE TCTACCGAAT TAATAGACAT CATTTGTCAG 3660 AAGTTTAATG TATCTTATGT CGATATTGTA GGAGAAGATA AAATGCTCAA TCCTGTTGAA 3720 GATTATGAAT TGACTTTAAA AATTGAAATT GTGAAAGAAA GAGGTGCTAA TCTATTATCT 3780 CGACTCTATC GTTATCAAGA TAGTCAGGGA ATTAGCATTG ATGATGAGTC TAATCCTTGG 3840 ATTTTAATGA GTGATGATCT ATCTGATTTG ATTCATACGA ATATCTATCT AGTAGAAACT 3900

TTTGATGAAA	TAGAGAGATA	TAGTGGCTAT	TTGGATGGAA	TTGAACGTAT	GTTAGAGATA	3960
TCTGAAAAAC	GGATGGTGGC	CTAATGGAAA	TCCAAGATTA	TACTGATAGT	GAATTCAAAC	4020
ATGCTTTAGC	AAGGAATCTT	CGTTCACTGA	CAAGAGGAAA	AAAGTCCAGT	AAGCAACCTA	4080
TAGCGATTTT	GCTTGGAGGG	CAAAGTGGTG	CCGGTAAGAC	TACAATTCAT	CGTATTAAAC	4140
AGAAAGAATT	TCAAGGAAAT	ATTGTTATCA	TAGATGGTGA	TAGTTTTCGT	TCTCAGCATC	4200
CACACTATTT	AGAACTGCAG	CAAGAATATG	GCAAAGACAG	TGTAGAATAT	ACCAAAGATT	4260
TTGCAGGAAA	AATGGTAGAG	TCTTTAGTAA	CAAAATTGAG	TAGTTTGAGA	TACAATCTTT	4320
TGATAGAGGG	AACTTTACGA	ACAGTTGATG	TTCCAAAGAA	AACAGCACAA	CTCTTGAAAA	4380
ATAAGGGATA	TGAAGTACAA	TTGGCCTTAA	TTGCGACAAA	GCCTGAATTG	TCGTATCTAA	4440
GTACTCTTAT	CCGTTATGAA	GAACTGTACA	TTATCAATCC	AAATCAAGCA	CGCGCAACTC	4500
CAAAAGAACA	TCATGATTTC	ATTGTAAATC	ATCTAGTTGA	TAACACACGA	AAATTGGAAG	4560
AACTAGCTAT	CTTTGAAAGA	ATTCAAATTT	ACCAACGAGA	TAGAAGTTGT	GTATATGATT	4620
CAAAAGAAAA	TACAACTTCA	GCAGCAGATG	TTCTTCAAGA	GTTACTCTTT	GGGGAGTGGA	4680
GTCAGGTAGA	CAAGGAGATG	TTGCAGGTGG	GGGAAAAGAG	ACTTAATGAA	TTACTTGAAA	4740
AATAAACAAT	TGATATTTTT	AGGAGAATAG	AAATGAGAGG	GTTTAATAAC	AAGATAAAGT	4800
CTGTTTATCA	AGAACTAACA	AATTCCAAAG	AGAAATTCGG	TAGCTTTCAC	AAGACTTTAA	4860
TTCATTTGCA	TACACCTGTT	TCTTATGATT	ACAAGCTATT	TTCTAATTGG	ACTGCAACGA	4920
AATATAGAAA	AATTACTGAA	GATGAACTAT	ATGATATATT	TTTTGAAAAT	AAGAAAATAA	4980
aagttgataa	GACAATTTTT	TTTAGTAATT	TTGATAAGGT	TGTTTTTTCT	AGTTCAAAAG	5040
AATATATTAG	TTTTCTTATG	TTAGCAGAGG	CAATCATAAA	AAATGGAATA	GAAATAGTTG	5100
TAGTAACTGA	TCATAATACT	ACCAAAGGTA	TTAAAAAGTT	ACAAATGGCA	GTCTCAATCA	5160
TAATGAAAAA	TTATCCGATT	TATGATATAC	ATCCTCATAT	TTTACATGGA	GTAGAAATTA	5220
GTGCAGCAGA	TAAATTGCAT	ATTGTATGTA	TATATGATTA	TGAACAAGAA	TCATGGGTTA	5280
ATCAATGGTT	AAGTGAAAAT	ATTATAAGTG	AGAAAGATGG	AAGTTATCAA	CATTCACTGA	5340
CTATAATGAA	GGATTTCAAT	AATCAAAAA	TAGTTAACTA	TATTGCTCAT	TTCAATAGTT	5400
ATGACATTTT	GAAAAAAGGT	TCTCACTTAT	CAGGTGCATA	TAAACGAAAA	ATTTTTCTA	5460
AAGAAAATAC	ACGATTTTGG	AGTTTAATAT	TAACTCGAAA	GAATCTTCGC	AACAACTTGA	5520
TATTCTCTAT	AAAGAAGTTG	GTGTATTAAG	TTTGGGACAA	AAAGTTGTAG	CCATGCTTGA	5580
د نجل لا بادياملململيد	ССАТАФАСФС	ATT ATTOTA A	ACACTTCACA	CC MARCHANIA	THE ATENCE	SEAC

5700

518 TGAAGACAAT CTAGACAATC GTTATATTTA CAGGCATTTA GTTCAGCAGT TTAGAGATGT

GAAAGCTCAA CGTCAAATTA TTTTAGCAAC ACATAATGCT ACAATTGTAA CAAATTCTAT 5760 GACAGATCAA GTTGTTATTA TGGAGTCAGA TGGAGTTAAC GGATGGATTG AATCACAGGG 5820 ATATGTTAGT GAAAAATATA TAAAAAATCA TATCATCAAT CAATTAGAGG GAGGAAAAGA 5880 TTCCTTCAAG CATAAAATGT CTATATATGA GACGGCTTTA TCAGAGTAGA GTCAGAAAAA 5940 GTAGGTTAGA AATTTAGCCT ACTTTTTCT TTGTCCGACA GGCATAGTGT ACATCTGAGG 6000 TCCAAGTCCT CTGTGGATAT TTGCTGCAGA TGAAACCAAT AGCGACTCCT AAGCCTGAAT 6060 6120 ATCGTGAGGT AGGGGGGATA GGAAGGAATT AGCGAAATCA AGGTTCTACA AACAGAATCG TGACTTGAAG CCATATATAG CGGATGAGGA ACTCTAAAAT CCAAATAGGT GTCGTAACCT 6180 ATATACGTAA ATTACGAGAG TAAACTAGGA AAGATGTACG GCTTATTCCG TGAGCGTTTA 6240 GGACGTAGTA CAACGAATCA TGGGAGTCAG CTGAACACAT AGTATTGAAG AAATTTCTGT 6300 AATGGAAATG GAGCGAAGAA GTGAACAATT AAATGAATAC CTCTCTAATT AAATTTGTCA 6360 ATTCTAATTC CTGGTATGAA AAGACAGTGA CCTGAAAATG TAAACGATGG GAGCTGATCA 6420 TAAATATAGG ACGCTACATG CAGTGGTGTT AGAGATTAGT CCTTACTTGA TTTGTGATAA 6480 CTTCCCCAAA TTTCTTCTGC TATACTTTTC TCAACTTTTA AAAATCCAAC TAAGAATTTT 6540 ACCTGGGGGT TTGGGGGCGG AGCACTAAGT TATCTTATCG TTAGCTGTCA AAACTGGTAG 6600 CTTTTGATAG GCTCGCGATA TGATTTTTGG GATATTGTGG ACACAATATC TGAGCTCGCA 6660 AAGCCTTACA AGAATGAAAA TCAGTTGTTG GAAAAGTGTA CTGACATTGT ATGGTAGCTC 6720 ACATTGTCAG TACAAGTATT TTGGAAAGGA AGTAGCAGTA TGAAACGAGA TGTGCGTGAT 6780 ATTCGGAAAC AATTTCGTTT AACAGAAGCA GAAGAAAAGC AAATTCTAGC TTTGATGAGA 6840 6900 GAGCGGGGAG AGACTAATTT CTCTGATTTT CTTCGTAAAA GTTTACTTTC CTCTGATTTA CAAAAACAGA TGGAGACATG GTTTGCCCTC TGGCAATCCC AAAAACTAGA ACAAATCAGT 6960 CGTGACGTTC ATGAAGTTTT AATCTTGGCA CAGTCAGAAC GTCAAGTCAC CCAAGAGCAT 7020 GTATCTATTC TCTTAACGTG CGTGCAGGAA TTGATTCAAG AGGTTGCAAA CACCATACCC 7080 CTCAGTAAAG AATTTCGTGA GAAGTACATG AGGTAAGCAC ATGGAACATC GTTACCGAAC 7140 CAATCTCAAG AAACTGTTTT TGTCTGATAG TGAGTTGAAC CAACTAAATA TAAATATCGA 7200 TCAAAGTGGT TGTAAATCCT TTTCTGAATA TGCGAGACGA ACTCTACTCG ATCCTGGTAT 7260 GAATTTTATC ACGATTGACA CAAACGGTTA CCAAGATTTA GTGTTTGAGT TAAAGAGGAT 7320 7380 TGGCAATAAT ATCAACCAGA TTGCTCGAAG TGTTAATCAA TCTCAGTTAA TTTCTGGTGA AGAATTGCAG GAGTTGAAAA AAGGAATTGG TGAATTGATA AAAGAAGTTG ATAAGGAATT 7440

TAATCTGCAA	GCGCAGAAGC	TAAAGGAGTT	CCATGGTCAT	CACTAAACAC	TTTGCCATTC	7500
ACGGAAAGAG	TTACCGCAGA	AAGCTTATCA	AGTACATTCT	CAATCCTGAG	AAAACCAATA	7560
ATCTTGCCTT	GGTGTCGGAC	TATGGCATGA	AGAATTTTCT	GGACTTTCCT	AGCTATGAGG	7620
AAATGGTGCA	GATGTATCAT	GAAAATTTCA	TCAGCAACGA	TACGCTTTAC	GATTTTCGCC	7680
ACGACAGGAT	GGAAGAAAAT	CAACGAAAAA	TACACGCTCA	CCACATCATT	CAGTCTTTCT	7740
CGCCAGAGGA	TCATATCACT	CCTGAACAAA	TCAATCGGAT	AGGTTATGAG	ACTGTGAAGG	7800
AATTAACTGG	TGGCAAATTT	CGTTTTATCG	TTGCGACCCA	TGTTGATAAA	GACCACCTGC	7860
ACAATCACAT	CATTATCAAT	TCAGTAGATA	GCAATTCTGA	CAAAAAGCTC	AAGTGGGACT	7920
ACAAGGTGGA	GCGAAATCTT	CGCATGATTT	CTGACCGTTT	TTCTAAAATC	GCAGGTGCTA	7980
AAATCATTGA	GAACCGCTAT	TCTCACCAGC	GGTATGAAGT	CTATCGTAAG	ACTAATCACA	8040
AGTATGAACT	CAAGCAGCGA	CTCTATTTTT	TGATGGAACA	TTCTAGGGAC	TTTGAGGATT	8100
TCAAAAAGAA	TGCTCCGCTA	CTACATGTGG	AGATGGATTT	CCGTCACAAG	CATGCCACCT	8160
TTTTTATTAC	GGACTCAACT	ATGAAACAGG	TGGTGCGTGG	CAAGCAACTC	AATCGCAAGC	8220
AGCCTTACAC	AGAAGAATTT	TTTAAGAACT	ACTTTGCCAA	AAGAGAAATA	GAAAGTCTCA	8280
TGGAATTTTT	ATTGCTGAAA	GTTGAGAATA	TGGATGATTT	ACTTCAGAAA	GCAAAACTTT	8340
TTGGACTAAC	TATCAATCCT	AAACAAAAGC	ATGTTTCTTT	TCAATTTGCA	GGAGTGGAGG	8400
TAAAGGAGAC	AGAGCTAGAC	CAGAAAAATC	TTTATGATGT	AGAGTTTTTC	CAAGATTATT	8460
TTAAAAATAG	AAAAGATTGG	CAAGCTCCAG	AAACTGAGGA	TTTCGTTCAA	CTTTATCAAG	9520
AAGAAAAGTT	ATCCAAAGAA	AAAGAACTTC	CAAGCGATGA	GAAGTTCTGG	GAGTCCTATC	9580
AAGAGTTCAA	GAGTAACAGA	GATGCCGTTC	ATGAATTTGA	GGTGGAGTTG	TCACTCAATC	8640
aaattgaaaa	AGTAGTGGAT	GATGGAATTT	ACGTCAAGGT	CAAGTTTGGT	ATTCGTCAGG	8700
AGGGACTTAT	CTTTGTGCCG	AACATGCAGC	TTGATATGGA	AGAGGATAAG	GTGAAGGTTT	8760
TCATCAGGGA	AACCAGCTCC	TACTATGTCT	ACCACAAAGA	CGCTGCCGAG	AAAAATTGTT	8820
ATATGAAAGG	TCGAACCTTA	ATTAGACAGT	TCAGCTATGA	AAATCAAACC	ATTCCATTAC	8880
GCAGAAAAGC	GACAGTCGAT	ATGATTAAAG	AGAAGATTGC	GGAAGTGGAT	GCTTTGATTG	8940
AACTGGAAGT	AGAAAATCAA	TCTTATGTCA	CGATTAAAGA	TGAGTTAGTG	CATGAACTAG	9000
CAGCGTCTGA	ATTGAGAATC	AATGAGTTGC	AAGAACGAAT	GTCAACCTTG	AATCAAGTAG	9060
CAGAATATCT	ACTGGCTTCA	GTTGAAAGTA	AGCAAGAAAT	GAAATTAAAT	CTTTCAAAAC	9120
TGAATATAAC	TGAGAATATC	AGTGCTAATA	TTGTTGAGAA	AAAATTGAAG	AGCCTGGGGA	9180

PCT/US97/19588 WO 98/18931

520 ATCAACTGGA ATTGGAAAGG GGCAGGTATG AAAACATGGT AGT

9223

#### (2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6827 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

TCTGCTGGCT ACCATCATCT	GACTTGGGCA	AGACCAAAGT	CTTAGTTACA	ACTGTATTCT	60
TCTCAGCATT TTCAATAACT	GGCAATGCCG	ACTGAAGCGT	ATCTTTTTCT	GȚTTTTGTAG	120
CTGGTCCAGT TTCTTTTTT	TGTCCGCAAC	CAACCAGGAC	AAAAAGGAAA	GCTAGACTAA	180
CAAGAACTAT TTTTTCATT	тстттсттст	TTCTTTTTGA	AATTAAAATA	GAATAAGACT	240
GGGAAGTGCT CCCAGCCTTC	ATGTTTATAG	AGCTGCACGC	AAACGTGCTT	CTGCATTTTC	300
TACATTACGG ACAGAGCGTC	GTAGGAAGGC	ACGAATATCG	TCTTCCTTGT	AGCCAACTTG	360
CAGGCGTTTT TCATCTACA	GGATTGGGCT	CTTTAAAATT	CTCGGTGTTT	CCATAATCAG	420
ATTGAGAACT TCATTGACAC	TCAAATCTTC	AATATCCACT	CCAAGGGCTT	TGGCATAGCG	480
ATTTTAGAC GAAACGATGO	TGGCTATTCC	GTTATCTGTT	TTGGTTAGAA	TATCCAGTAA	540
TTCTTCTCTC GTAATTCCTT	CTTTACCAAG	GTTTTGTTCT	TTATAACTTA	ACTGGTGGGC	600
ATTGAGCCAG GTTTTTGCTT	TTTTACAGCT	AGTACAACTT	GAGACTGTAT	AAATTTTAAT	660
CATGTACCTA CCCCTTTCGC	TACATGTTAC	TATCAGTTTA	GTCTATTATA	CCATAAAAAA	720
CATCCGACTT GCGACCTATT	TTTAATTTT	TTTGACTTTT	TTCGTCATTT	TCGTACTTTT	780
TTCTTGACAA ACAACTAAA	GACTATCAAC	TCTTTTGGAG	CTAGGGTCAA	TAATTCACAA	840
CCTGTCTCTG TAATCAGGAT	ATCATCCTCG	ATACGAACGC	CATATTTGCC	TTCGATATAG	900
ATACCTGGTT CATCGGTCA	GGCCATACCT	GTCTTAATAG	TTTCTGTAGA	AGTCTGACTA	960
AAGTAGGGTT CCTCATGGAT	ATCCAGACCA	ATACCGTGGC	CAATGCCGTG	AGTAAAGTAG	1020
TCACCATAAC CTGCCTCAAT	GATAATATCA	CGAGGGATTT	TGTCAAAGTC	ACGGAAACCT	1080
AAGCCTGCCT TAGCTTGGTC	AATCAAGGCT	TGGTTAGCTT	TTAGAACCGT	ATTGTAAATC	1140
TCTGCCTGCT CATCGCTAAG	ATGCCCTAGA	TAGATAGTCC	GGGTCATATC	ACTGACATAG	1200
TGGTCATAGA GACAGCCGA	GTCCATGGTG	ATGGCTTCTC	CCAACTCCAC	TGGTTTGTGC	1260
ATTGGATGGG CATGGGGTTT	r agaagaattg	ATACCGCTAG	CTAGGATCGT	ATCAAAAGAT	1320
AAGCCAGATG CTCCCAACTY	ACGCATGCGG	AAATCAAGGA	AGTTGGCAAT	CTCAATTTCA	1380

· · . . . · ·

GTTTT	TCCTG	GTTTGATAAA	GTCAAGCGCA	TCGCGGAAAG	CTTGGTCTGA	GATAGAACAA	144
CCTT	GCGAA	TCGCTGCAAT	CTCTGCCTCA	TCCTTAATCA	TACGAAGACC	TTCCACAAAC	150
rgagt	TTGTG	GAAGCAAGTT	CAAACCTGCA	AAAGCTGCCT	GCATACGGTG	GTAATAAGAC	156
ACTGA	AATCT	CATCTTCAAA	ACCGATACGA	GTCAAGCCCA	TGTCCTTAAC	AATTCCTGCA	162
ATGAC	AGCCA	ATTCATCACG	ATCAGCCACA	ATCTCAAAAC	CACTGGTTTC	TTGCTTAGCT	168
GCGAT	GATAT	AGCGAGAGTC	TGTCACTAAG	ACCTGACGGT	CACGACTGAT	AAAGACTGTT	174
CCCTT	TGAGC	CCCAAAAACC	AGTCAAATAA	TAGACGTTTT	TAAGATTGTT	GATGATGATA	180
CCATC	TAGTT	CTTTTTCTTG	CATTTTAGCT	AGAAATGCTT	GTACGCGTTT	ATTCATGATG	186
TAACT	TTCCT	TTCAAATAGT	GTCCTGTATA	GCTGGCTTCG	TTGGCAGCTA	CTTCTTCTGG	192
AGTTC	CTGTT	ACGATGATGG	TTCCACCACC	GACACCGCCC	TCAGGTCCCA	AGTCAATGAT	198
ATGGT	CTGCC	GTCTTGATAA	CATCCAGATT	GTGCTCGATG	ACGAGGACTG	TATTGCCATC	204
GTCTA	CAAAG	CGAGCTAAAA	CCTTGAGCAG	GCGAGCAATG	TCCTCTGTAT	GAAGCCCTGT	210
CGTCG	GCTCA	TCCAGAATGT	AGAAAGATTT	TCCTGTCGAT	CCTTTGTGGA	GTTCGCTAGC	216
TAACT	TCATA	CCTTCGCCTT	CTCCCCCAGA	AAGGGTGGTA	GCTGGCTGTC	CCAAGGTCAC	222
ATAGO	CTAGC	CCTACATCCT	TGATGGTCTG	GAGTTTGCCT	TGAATTTTCG	GAATGTGTTG	228
GAAAA	ATTCT	ACCGCATCGT	TGACCGTCAT	ATCCAAGACC	TGCGAAATAT	TCTTTTCCTT	234
GTAGT	GAACT	TCTAGGGTTT	CACTGTTATA	GCGGGTTCCG	TGGCAAACTT	CACAAGCCAC	240
ATAAA	CATCT	GGCAAGAAGT	GCATCTCAAT	CTTGATAATC	CCGTCACCTG	AGCAAGCTTC	246
ACAGO	GACCT	CCCTTGACGT	TGAAACTGAA	GCGCCCCTTC	TTGTAGCCTC	GAATCTTGGC	252
TTCAT	TTGTC	TGAGCAAAAA	GGTCACGTAT	ATCCTCAAAA	ACTOCTGTAT	AGGTAGCTGG	258
GTTAG	ACCTC	GCCTCCCTC	CGATAGGGCT	CTGGTCAATA	TCAATCAAAC	GGTCGACATG	264
CTCAA	TCCCT	GTAATAGTCT	TAAACTTACC	AGGTTTGTCT	GAATTACGGT	TGAGCTTCTG	270
GGCAA	TGGCT	TTTTTGAGAA	TGCTGTTGAT	TAGAGTCGAT	TTCCCTGAAC	CCGACACACC	276
TGTCA	CTGCG	ATAAATTTTC	CTAGTGGAAA	GCGAGCCGTG	ACATTTTGCA	AGTTGTTCTC	282
ACGCG	CTCCT	ATCACTTCAA	TAAAACGACC	ATTTCCGACA	CGGCGCTCTT	CTGGTACTGG	288
gatga	CACGT	TTGCCTGACA	AGTACTGACC	TGTGATAGAC	TTGCTGTTGC	GAGCCACTTG	294
CTTAG	GTGTA	CCTGCTGCAA	CAATCTCACC	ACCAAAAACA	CCGGCACCAG	GACCAACGTC	300
AATCA	GATAA	TCAGCCTCAC	GCATGGTATC	TTCGTCGTGT	TCCACCACGA	TAAGAGTATT	306
GCCCA	AGTCA	CGCATCTTTT	TCAGACTGGC	AATCAGGCGA	TCATTGTCCC	TCTGGTGAAG	312

			522			
ACCGATTGAC	GGCTCGTCTA	GGATATAGAG	GACACCTGAT	AGCTTGGAAC	CAATCTGGGT	3180
TGCCAAACGA	ATGCGCTGAC	TTTCCCCACC	TGAAAGGGTT	CCTGCTGAAC	GTGACAGGGT	3240
TAGATAGTTA	AGACCCACAT	TATTAAGGAA	GGTCAAACGA	TCCTTGATTT	CCTTGAGAAT	3300
GGGACGAGCA	ATGA:IGGCTT	CATTTTCAGA	CAAAGTTAAC	TGGCTCACCA	AGTCCAAGTG	3360
GTCAGCGATA	GACAGGTCTG	AGATTTCTCC	AATATGTGGC	CCTTGCTGGC	CGCCCACACG	3420
GACAGACAAG	GCCTGGTCAT	TGAGACGATA	GCCTTGACAG	CTTCCGCAGG	TCAGCTCATT	3480
CATGTAGAGA	CGCATCTGAG	TGCGAGTGTA	ATCGCTATTG	GTTTCATGGT	AACGACGTTT	3540
GATATTATTG	ATAACTCCCT	CAAACGGAAT	GTCGATATCG	CGCACGCCAC	CAAATTCATT	3600
CTCATAGTGG	AAATGGAATT	CCTTACCATC	TGACCCATAG	AGAATCAAGT	TCTTATCTTC	3660
TTCTGACAGG	TCCTCAAAAG	GCTTATCCAT	AGCCACTCCA	AAGACTTTCA	TGGCCTGCTC	3720
TAACATGTTT	GGATAGTAGT	TGGATGAGAT	AGGATTCCAA	GGTGCTAGCG	CTCCCTCACG	3780
TAAGGTTTTG	CTAGCATCTG	GCACTACCAA	ATCAGTATCC	ACCTCCAGCT	TGATGCCCAA	3840
GCCGTCACAC	TCACTACAAG	AGCCAAAAGG	AGCATTGAAA	GAAAAGAGAC	GAGGCTCTAA	3900
CTCTGGGACA	GTAAAACCAC	AAACTGGACA	GGCATAATGC	TCAGAGAACA	ACAACTCCGA	3960
GTCGTCCATG	GTGTCGATAA	TGACATAACC	TTCTGCAATA	CGAAGGCAG	CCTCAATGGA	4020
ATCAAAGAGA	CGACTACGAA	TGCCCTCCTT	GATAACAATA	CGGTCAACCA	CGACATCGAT	4080
ATTGTGTTGC	TTGCTCTTAG	ACAACTCTGG	CACTTCGGTC	ACATCATAGA	CTTCCCCATC	4140
CACACGGACA	CGAACATACC	CGTCTTTCTG	AACCTTCTCG	ATAACACTCT	TATGTTGGCC	4200
TTTTTTCTTG	CGGATGACAG	GAGCCAAGAT	CTGCAAGCGC	TGGCGTTCAG	GTAACTCCAA	4260
AACCTTATCA	ACGATTTGCT	CCACAGAAGA	AGCATTGATA	GCTCCATGTC	CGTTGATACA	4320
GTAAGGCGTC	CCCACACGTG	CGTAGAGGAG	ACGCAGATAG	TCATTGATTT	CAGTCGTCGT	4380
TCCCACCGTC	GAGCGAGGAT	TTTTACTAGT	CGTTTTCTGG	TCGATGGAAA	TAGCTGGGCT	4440
GAGACCATCA	ATGGCATCTA	CATCTGGTTT	TTCCATATTT	CCCAAGAACT	GACGAGCGTA	4500
GGCGGACAAA	CTCTCTACAT	AGCGACGTTG	TCCCTCCGCA	TAGAGAGTAT	CAAAAGCCAG	4560
ACTGGACTTC	CCTGAACCTG	ACAAGCCAGT	CACGACAACC	AACTTGTCTC	GCGGAATCTC	4620
CACATCAATA	TTTTTTAAAT	TATGGGCACG	CGCCCCATGA	ATGACAATTT	TATCTTGCAT	4680
CTTTGTTCTT	TCTAGTCCAT	TATTGCTTAC	CATTATACCA	AAAAAAGTGA	GATTCTATTA	4740
CCCAAAAGGC	CGATTTTGTA	GTATAATAGT	ACAGTGTGAA	AAAATCTGAA	AAATGAGAAA	4800
GGATAAGGGA	TATGAAACAA	GTTTTTCTCT	CTACAACAAC	TGAATTTAAA	GAGATCGATA	4860
רכרייינאאיי	CCCTACTTCC	ATCAATCTCC	TCAATCCCAC	TCABARTCAA	TCACTCCAAA	4926

TCGCCAACAC	CTTCGATATT	GATATTGCTG	ACCTTCGAGC	ACCGCTCGAT	GCGGAAGAAA	4980
TGTCTCGTAT	TACCATTGAA	GACGAGTATA	CCCTGATTAT	CGTAGACGTG	CCGGTCACGG	5040
AGGAAAGAAA	TAACCGCACC	TACTACGTAA	CCATCCCGCT	TGGTATTATC	ATCACTGAGG	5100
AAACCATTAT	CACTACGTGT	TTGGAACCAC	TACCTGTCCT	TGATGTCTTT	ATCAACCGTC	5160
GATTGCGTAA	TTTCTATACC	TTCATGCGTT	CACGTTTTAT	CTTTCAAATT	CTTTATCGCA	5220
ATGCAGAGCT	TTACCTAACA	GCCCTTCGTT	CAATCGACCG	CAAGAGTGAA	CAAATCGAAA	5280
GTCAACTGCA	TCAATCAACT	CGTAATGAAG	AATTGATTGA	GCTCATGGAA	TTGGAAAAA	5340
CTATCGTCTA	TTTCAAGGCC	TCCCTCAAAA	CAAATGAGCG	CGTGATTAAG	AAATTGACCA	5400
GTTCAACCAG	CAATATCAAG	AAATACCTTG	AGGACGAAGA	CCTGCTTGAA	GACACCCTGA	5460
TTGAAACCCA	ACAGGCCATC	GAGATGGCAG	ATATTTATGG	AAACGTCTTG	CATTCTATGA	5520
CAGAGACCTT	TGCCTCTATC	ATTTCTAACA	ACCAGAACAA	CATCATGAAA	ACCTTGGCCC	5580
TTGTGACCAT	CGTCATGTCC	ATCCCAACCA	TGGTCTTTTC	TGCCTACGGG	ATGAACTTTA	5640
AGGATAATGA	AATCCCCCTA	AACGGAGAGC	CAAATGCCTT	CTGGTTAATC	GTCTTTATCG	5700
CCTTTGCTAT	GAGTGTCTCG	CTCACTCTCT	ATCTCATCCA	TAAAAAATGG	TTCTAAGAGG	5760
AGTTCCTATG	TCTCAAATTG	ATCTACAAAA	ATLAACTAAG	AAAAACCAAG	AGTTTGTCCA	5820
CATTGCTACC	CAACAATTCA	TCAAAGATGG	GAAAACAGAC	GCTGAAATCC	AGACTATTTT	5880
TGAGGAAGTC	ATTCCCCAAA	TCCTTGAGGA	GCAATCTAAA	GGTACAACTG	CCCGTTCCCT	5940
ATACGGCGCA	CCAACTCATT	GGGCTCATAG	CTTCACTGTC	AAAGAGCAGT	ACGAAAAAGA	6000
GCATCCAAAA	GAAAATGATG	ACCCAAAACT	GATGATTATG	GACTCAGCTC	TTTTCATCAC	6060
TAGCCTCTTT	GCCCTTGTCA	GCGCCCTCAC	AACCTTCTTT	GCGGCAGACC	AAGCTTTCGG	6120
CTATGGATTG	ATTACTCTTC	TATTAGTTGG	ACTGGTTGGT	GGATTTGCCT	TCTACTTGAT	6180
GTACTACTTT	GTTTACCAAT	ACTATGGACC	AGATATGGAT	CGCAGTCAAC	GTCCACCTTT	6240
CTGGAAATCT	GTACTAGTTA	TCCTAGCTTC	TATGTTCCTT	TGGTTGCTTG	TCTTCTTTGC	6300
AACAAGCTTC	CTACCAGCTA	GCCTTAACCC	AGTACTGGAT	CCATTGCCAC	TAGCTATTAT	6360
TGGAGCAGCC	CTCCTAGCCC	TTCGCTTCTA	TCTCAAGAAA	CGCTTGAATA	TCCGTAGTGC	6420
AAGTGCAGGA	CCAACACGCT	ATCAAGAATA	AGAAAACGAT	AAAAGCAACT	GCAGGTGCGG	6480
TTGCTTTTTC	ACTTACTTTT	TTGAGTTATA	TTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	6540
GCTAGCTGCA	GGTTGCTCAA	AGCACAGCTT	TGAGGTTGCA	GATAAAACTG	ACGTGGTTTG	6600
AACACAT******	CCAACACTAT	TAAAACTATT	CONTINUE A A A OF	CCCACATACC	<del>ጥጥጥር ጥር ጥጥ</del> እ.ጥ	6660

ATTTTGTGAT	AAAATAGGCT	CAATCTATTT	524 CTAGGAGGAT	GAGATATGGT	TTCTACTATT	672
GGTATTGTTA	GTTTATCTAG	TGGCATTATC	GGAGAGGATT	TTGTCAAACA	CGAAGTGGAC	67B
TTGGGTATCC	AACGTCTCAA	GGATCTGGGA	CTCAATCCCA	TCTTTTT		682
					•	

## (2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11864 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

CTGGCTAGTT GCATAGAGCA AAGTTGCTTC TTCATCAACA AAACCGTTCA T	TTCAAAATA	60
GGAAAGCAGC TCATCAGGAC TCTCCAAACG AATCCCTTTG TAATCCAGCT C	AACTGCCAC	120
CTCTTTCAAG GCTGCAAGAA GAAGTGTTCC CAGGCCCTGT CTCTGATGGT C	AAACTCGAT	180
GACTAAAGAA TGTACTTTTA GACATTGCGG ATTGTCTGAC TGGGGACTTG A	ТААААТАТА	240
GCCTAAAAGT TGATTTTCAT CCCTAGCTAG AAGAAAGGTA TCCGCACACT T	ACGGATACT	300
TTCTTCTAAA ATATGGGAAA GTTGCTGCTT TTCAGCTGGA AAAGACGAGG T	CTGAAGTGC	360
CCCTATCTCA GGCAAATCAG ACTTGCTTGC CTGAATGATC TTAATTGGAA T	TTCCATGGG	420
AACATCCTAT TGAACATTGC TTGTCAAGTT AGACAAGAGA CGCTCAAATG A	GTATTCATA	480
GGTTTGGATG TCTCCTGCTC CCATAAAGAC GTAAACAGCA TTGTCATGGT C	TAGGAGTGG	540
AGAAACATTT TCAACAGTAA TCACTTGGTG TTTTTTTGTTG ATTTTGTTGG C	TAGGTCTTC	600
TACCTTAACG TCACCATGAT CTACTTCACG AGCCGAGCCA TAAATTTGCG C	TAGATAAAC	660
AGCATCTGCT TGGTTTAAAG CATCGGCAAA GTCGTCCAAC AAGGCAATGG 1	TTCTTGTAAA	720
GGTATGCGGT TGAAAGACTG CTACAATTTC CTTGCTTGGG TATTTCTGAC C	GAGCCGCATC	780
CAAGGTCGCA ATAATTTCTG TTGGATGGTG GGCAAAGTCA TCGATAATCA	CTGTATCATT	840
GACAATTTC TCAGTGAAAC GACGTTTAAC ACCGGCAAAT GTTTTCAAGT	GCTCACGCAC	900
CAAGTTCAAA TCAAATCCTG CTGTGTAAAG AAGACCAATA ACGGCTGTCG	CATTCATGAT	960
ATTGTGACGA CCAAAGGTTG GAATGTGGAA TTGCCCCAAG TTTTGTCCAC	GGAAATGAAC	1020
GGTGAAGGTT GAACCAGTTA TTGAACGAAG AAGATCACTA GCTACAAAGT	CATTGCCTTC	1080
AGCTTCAAAA CCATAATAAT AAATTGGTGC ATCAGACGTA ATCTTACGCA	ATTCAGCATC	1140
TTCACCATAG ACAAAAAGAC CCTTGGTGAT TTGTTTGGCA TAGTCGTTAA	AGGCATTAAA	1200
AACATCCTCG AGACTTGTGA AATAATCTGG ATGGTCAAAG TCAATGTTGG	TGATAATAGA	1260

GTATTCTGGG	TGGTAAGGCA	TGAAGTGACG	CTCATATTCG	TCAGATTCAA	AGACAAAATA	1320
TTTGGCATTG	GCCGAACCAC	GACCTGTCCC	ATCTCCAATC	AAGAAGCTGG	TATCTGTAAT	1380
GTGAGACAAG	ACATGAGACA	ACATACCTGT	CGTTGAAGTT	TTTCCATGTG	CTCCTGCTAC	1440
TCCCATGCTA	ACAAAGTCAC	GCATAAAGCT	ACCTAGAAAC	TCATGGTAAC	GTTTGTAGCT	1500
GATACCATTT	TGGTCCGCAT	AGGCAATTTC	GACGTTGTTA	TCTGGACGAA	AGGCATTTCC	1560
AGCGATAATT	TCCATATCAC	CGTCTAGATT	TTTTTCATCA	AAAGGAAGAA	TGGTAATTCC	1620
TGCCTGCTCA	AGACCGCGTT	GGGTAAAGTA	GTACTTTTCA	ACATCTGATC	CCTGAACCTT	1680
GTGCCCCATC	TGGTGCAACA	TCAAGGCCAA	GCACTCATC	CCTGATCCCT	TAATTCCGAT	1740
AAAATGATAT	GTCTTTGACA	TGTTTTCTCC	CCTATTCTGT	CATTCTGGTC	AGATTCAACT	1800
CTTGGGCAAC	CCGACGTTCT	TGTTCTGTTT	GTTTACTTTT	TTTATTGTAG	ATTTGGCTCT	1860
TCTTTAGAAA	atcataattg	TTTTTCTTTG	GAGCAGGTGC	TGACACTTCT	TCATTCTTGG	1920
TAGGGATAGA	ATGAACTTCT	TCCGCCAAGA	TATAATGAGA	CTGGGTCAAT	TTTTGGCTAT	1980
ATTTGACAAA	TTCACCAGGA	TTTTCCTTTT	GGAAAGGAGC	TGTCGGTTGA	TTGCCCTGTC	2040
TAACTAGACT	GGGCTGAGAA	TGACGTCTCG	CAAGGCTGAA	ATCCTGAGTT	AGGTAGTTAG	2100
CAGAGCGTTT	CTTTTTCAAG	TCCGCACGCG	CTTCTTCACG	CGCCACCTCC	GCATAGCTCT	2160
TTCCTTCTTT	TTTAACCCCT	AAAGGAGCCT	TTTTAGGTTT	TTCGACTTGC	TTTTCAATCG	2220
GTTTTACTGG	TTTTTCTTCA	GCAATAGGAG	CCCATTCTAA	ATAATTTTTA	TCTCGATACT	2280
CACCCTTGAT	ATTACTGATC	AGATCAGACT	CATCATAGAG	ATTCATGACT	GGCATTTCAG	2340
TCAACATGAC	CTCGTCATCT	GACACCAATG	GAAATCGTTC	TTGTTTCATT	TTCTATTTCC	2400
TTTCAACACT	TCATTATAGC	GTATTGTCTT	GATTTTTCAA	CTCCTCCCTT	CAGAAATTCC	2460
CAAAATTTCT	CTAATTTCTG	CTAGGGTCAG	ACTACCACGT	GACTCTGTGC	CGTCCAATAC	2520
TTGTGACACC	AGATGTTTCT	TTTGTTCTTG	GAGTTCCTGA	ATTTTTTCTT	CAATGGTTCC	2580
CTTGGTCACC	AAGCGATAGA	CCTCAACCGT	TTCTTCCTGA	CCCATCCGAT	GGGCACGGCC	2640
AATGGCTTGC	GCTTCCACCG	CAGGATTCCA	CCAAAGGTCA	ACCAAGATCA	CTGTATCTGC	2700
ACCTGTCAGG	TTCAGACCGA	CCCCACCAGC	CTTGAGGGAA	ATCAGAAAGG	CATCTCTTTC	2760
TCCTTGGTTA	AAGGCCTTGG	TCATGTCTTG	TCTTTCCTTG	GCTGGGGTTG	AACCCGTAAT	2820
TTTAAAGGAA	GTCAGGCCCA	AGTCTGGCAG	TTCTTGTTCA	ATTTTTTCCA	ACATTCCCTT	2880
GAACTGAGAG	AAAATCAAGA	CACGGTGTCC	GCCGTCTGCC	ACCTGTACCA	GTAGGTCTCG	2940
GAGACTATCT	AGTTTGCCGC	TGGCTCCCTG	ATAATCTTCC	ATAAACAGGG	CAGGAGTGTC	3000

526 ACATATTIGA CGCAAGCGCA TCAAACCAGA TAAAATTICC ACACGACTIC GCTGAAATTC 3060 CTGTTCTGAC ACTTGAGCCA GATGGTCTCG CATCTGTTGT AACTGGGCAA GGTAAATAGC 3120 CTTTTGCTGG TCTTCCAGTT CATTTTATA AACCACCTCA ATCAAGTCTG GCAATTCAGT 3180 CAGAACTTCT TCTTTCTTGC GTCGCATCAC GAAAGGCTTG ATAAACTGAG CCACTCGCTC 3240 TGCTGGCAAT TTCATAAATT CTTTCTTGCT TGGCAAAAGT CCAGGCATGA CGATTTGGAA 3300 AATAGACCAC AACTCACCCA GATGGTTTTC AATCGGAGTT CCTGACAAGG CAAAGACCGA 3360 CGGCACCACA AATTGTCTCA AGGTCTGGGC AATCTTGGTC TGGGCATTTT TCATGACCTG 3420 AGCCTCATCT AAGAAAAGGA AGTCAAAGGC CATCCCTTGA TAAAACTCAC TGTCCTGACG 3480 GAAGGTGGCA TAGCTAGTCA CATAGATTTG ATGGCTCTCG GCAAGAATCT CCTCACGACT 3540 TGCTTTCAAA CCATGAACAA CAGTCACATC CAACTGTGGA GCAAATTTCT GAAACTCATC 3600 TGCCCAGTTG TAAATCAAAC CCGACGGAGC GAGAATCAAA ACCCGACTTT CTTTTGTCAC 3660 TTGACTAGTC AAAAAAGCAA TGGTCTGAAG GGTTTTCCCA AGTCCCATAT CATCAGCCAA 3720 AATCCCACCA AAACCATAAT GATGGAGCAT CTGCAACCAG CCAATTCCCT TTTCCTGATA 3780 ATCTCGCAAG TCAGCCTTGA CCTGAGTTGC TTGCAAAGGA AAGTCCTCTG GATGCGTCAA 3840 ATCCTGGGCC AGATTCTGGA ATTCTTGTGA AAAAGAAACA CGGTCTCGCC CTTCAAAGAG 3900 ATGAGCTAAA CTGTAGGCCA AGGATTTCCG AGCCTGCAAG CTCCCATCTT TTAATTCAAA 3960 TTGCCCCAGT TCCTGTAGAT TTTGGCGAAT TTTCTTGGTT TCTTCATCGA AAAAGTAAAC 4020 TTGATTAGAC GAATCAATAT AAAAATCCTG ATTGGCAACC AAGGCCTGCA TGGCTTGGTC 4080 GATTTCCTCC TGGACAATAT TTTGAAAATC AAACTGGATT TCCAAGAGAC CTCCCTTGGA 4140 GGCAATCTGC ACCTGAGGAC TCGCTAGGCT ATAAAGCTCT TCTAGTTTAT CTGATAGGTC 4200 AACATGCCCG AGTTTTTCAA AGACTGGAAT GATATCATGA AAAAAATGAT AGACAGACTC 4260 CGCTTTTAAG GCCTGACGCC AAGATTGAAA ATCGGCCTCA AAGCCCGCAG CCAAACAGAC 4320 TTGGAAAATT CTTTCTTCA AGTCTGCGTC ACTTGAAAAG GGTAATTCTT CTAGCTCTTG 4380 TCGGCTAGAT ACCTGTCTAT TTCCATAATC AAACTGAATT TCTAAACGAA TCCGATTATC 4440 TTCTTCCCTG TCAAAGTAAA AAGAGGCCC AAAAGTTTTG ATTTGTAGAC GTTCTGGAGC 4500 TGAAACGGTG CCCATCTGGA TAAAAAGAGT CAGACAGGAG GCCAATTTGT CTCGATCACT 4560 GCTATCAAAT TGCAGGTATT TCTTTCCTTG TTGACCCACA GGTAACGCTT TAATTTCCTT 4620 GAGAAGACGC ATCTGCTGGT CTGTTAAAAA ATAAACCTGA CCTTTATGGA AAAGTACTGC 4680 TCCCTGATAA AAGACATTGA CCCTAGGACT CTCACTGATT TCCATTTCAA AATAATCCGA 4740 GTATTCTGTT ACTGTAAAGG CAAATAGATT GGCATCAGCA TGCATATCCT GAAAAAGCAG 4800

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
ズ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.