Linear Regression Slope Calculation

We are given the data points (V, I).

Data Table

Voltage V (V)	Current I (A)
0	0.0
1	0.8
2	1.5
3	1.6
4	2.5
5	2.7
6	3.2
7	3.9
8	4.5
9	5.0
10	5.5

Regression Model

we know that current and voltage are realted linearly.

$$I = mV + c$$

where m is the slope (resistance (Ω) and c is the intercept. The least squares slope is given by

$$m = \frac{n\sum(VI) - (\sum V)(\sum I)}{n\sum(V^2) - (\sum V)^2}.$$

Step 1: Compute sums

$$\sum V = 55$$
, $\sum I = 31.2$, $\sum V^2 = 385$, $\sum (VI) = 214.6$.

Step 2: Apply formula

$$m = \frac{11(214.6) - (55)(31.2)}{11(385) - (55)^2}.$$

$$m = \frac{2360.6 - 1716}{4235 - 3025} = \frac{644.6}{1210}.$$

$$m \approx 0.533 \ \Omega$$

Thus, the slope of the best-fit line is approximately 0.53.