Cum se face, și mai ales cum nu se face, prezentarea proiectului de diplomă

Q&A 2019

1

Cuprins

- 1. Cele 10 păcate ale prezentărilor la diplomă
- 2. Exemple de slide-uri cu probleme și greșeli
- 3. Exemple pozitive, idei bune și sugestii

Cele 10 păcate ale prezentărilor proiectelor de diplomă

- 1. Prea mult text pe slides
- 2. Introducere teoretică prea lungă pe slides
- 3. Slides sau grafice greu de citit (font prea mic)
- 4. Neprezentarea inițială clară a scopului proiectului, nu se înțelege de către nespecialiști (și DA, o parte dintre membrii comisiei sînt *sigur* nespecialiști în domeniul restrîns al prezentării dvs.)
- 5. Contribuții insuficient evidențiate; ce a făcut concret studentul?
- 6. Nivel științific redus ("Electronica pt. tonți")
- 7. Vorbiți despre una, pe slide este altceva
- 8. Concluzii irelevante
- 9. Depășirea timpului maxim (10 minute!)
- 10. Indirect: nu știți să răspundeți la întrebări de pe slides

3

Disclaimers

1. Această prezentare conține mult text și încalcă regula nr. 1 "nu puneți prea mult text pe slides" !!!

De ce?

Spre deosebire de prezentările dvs la diplomă, această prezentare este ținută și oral, dar va fi pusă și pe site pt a fi citită de cei care nu au fost prezenți!

În cazul dvs, prezentarea la diplomă *este NUMAI pt susținerea* orală!

2. Prezentarea conține slide-uri și exprimări preluate *întocmai*, ca exemplu, din PPT-uri ale studenților ETTI.

Copyright (C): the respective owners.

Exemple de slide-uri cu probleme și modul de corectare al acestora

5

DESCRIEREA PROIECTULUI

- Proiectul constă în realizarea unui sistem electronic bazat pe o placă Arduino Uno care comandă 2 motoare de c.c. în scopul urmăririi unei linii negre pe fond alb
- Plăcuța Arduino este bazată pe microprocesorul ATMEGA328 care include 1K de RAM și 16K de Flash
- Motoarele de c.c. sunt comandate de un driver de motor dual L293D
- Senzorul de urmărire a liniei este format din 3 perechi LED IR-Fotodiodă
- prea mult text pe slide
- citiţi ceea ce vede deja şi comisia nu sînteţi un crainic TV care citeşte de pe prompter!
- textul ar trebui înlocuit cu o schemă (bloc) pe care puteți adăuga mici etichete explicative

SCURT ISTORIC

- Arduino este o familie de plăci de dezvoltare bazate pe microprocesoare Atmel AVR, lansate în anul 2003 în Ivrea, Italia
- Primele variante Arduino au folosit procesoarele AT Mega 168 și AT Mega 8
- Următoarele variante au inclus şi procesoare mai puternice cum este AT Mega 2560 şi AT Mega 1280
- 700000 plăci Arduino au fost vândute între 2003 și 2013 la nivel mondial
- Seria bazată pe procesoare AVR a fost numită Arduino UNO, urmată de seria Arduino DUE bazată pe procesoare de 32 biţi compatibile ARM: Atmel SAM 3X8E
- tot slide-ul este COMPLET inutil şi tb. scos!
- prezentarea la diplomă tb. să se axeze pe contribuțiile dvs!
- lăsați aceste info. în proiectul tipărit (eventual)

7

ARHITECTURA SISTEMULUI

- Creierul proiectului este format din microprocesorul AT Mega 328, alături de alte componente electronice
- elementele de acţionare sunt două servomotoare de c.c. de tip POLOLU

- de înlocuit cu o schemă bloc, cu text minimal opțional adăugat pe schemă
- "creierul proiectului și alte componente electronice" nu scrieți pt. ciclul "Electronica pt. tonți !"

PROBLEME ÎNTÂMPINATE

- Alimentarea circuitului s-a făcut inițial din sursa 78L05 puterea consumată de fiecare modul este prea mare, scăzând tensiunea sursei
- Lipsa rezistenței de *pull-up* duce la un comportament ciudat al butoanelor conectate la portul A al procesorului
- prea mult text
- candidaţi la titlul de inginer! Inginerii se exprimă cu cantităţi
 exacte; ce înseamnă "putere prea mare"? tb. date valori:
 100mA modulul X, 250mA modulul Y; la cît a scăzut tensiunea?
- "comportament ciudat" → "comportament aleator" ! învățați să vă exprimați tehnic.

9

Universitatea "Politehnica" din București
Facultatea de Electronică, Telecomunicații și Tehnologia
Informației

Nu uitați: candidați la titlul de inginer!

Sistem autonom de navigație

Proiect de diplomă

prezentat ca cerință parțială pentru obținerea titlului de Inginer în domeniul Inginerie Electronică și Telecomunicații programul de studii de licență Electronică Aplicată

- schema aceasta e desenată de student sau preluată ?
- faptul că D1 este "DIODE" în lb. engleză sugerează a doua variantă (trebuia scris tipul diodei cum ar fi 1N4148)
- comisia nu tb. să aibă impresia că v-a fost lene să desenați!
 (la facultatea ETTI, utilizarea unui program CAD pt. desenarea schemelor ar tb. să fie o operațiune de bază)

A:

Greșeli slide precedent:

- -prea mult conținut → dimensiunile elementelor prea mici! se putea separa conținutul în 2 slide-uri
- -cine este x1T ? nu se vede pe diagramă ! de ce nu se vede ?
- -nu includeți în figuri și caption-ul "fig. 7", "Tab.1"; era fig. 7 în lucrarea scrisă, nu aici.
- textul mic și axele graficului nu se pot citi!

13

Before and after: cosmetizarea unui slide a.î. schema să apară pe cea mai mare parte din ecran

De comparat următoarele 2 slide-uri!

Efortul de cosmetizare e minim, efectul e maxim!

- Alt exemplu de folosire ineficientă a spațiului
- Siglele și elementele de decor nu sînt obligatorii! (pot să apară pe *unele* slide-uri, dar nu neapărat pe *toate*)
- Imaginea poate fi mărită de aprox. 2 ori și va deveni lizibilă!

Acest slide/poză nu se poate rearanja, tb. redesenat complet!

Amestec de text de dimensiuni f. diferite

- dimensiunile tb. uniformizate!
- text sub 20pt. → neindicat pt. prezentări (acest text are 24pt.)

19

Teste efectuate și probleme software

- Utilizarea altor librării de procesare a imaginilor sau rețele neuronale, respectiv librăria deep neuronal network ce deja conține modelul EAST, efficient and accurate text detection
- Procesarea imaginilor prin librăriile OpenCV sau/Şi Pillow şi filtrele acestora.
- Rezultatele recunoașterii de caracterela filtrul median ce aplică o umbra la margini, filtrul enhance ce aplică marire a contrastului și luminozității au fost mai bune ca rată de succes folosing Pillow.
- Dvs înțelegeți ce a făcut autorul acestui slide? comisia nu.
- Slide-ul conține probleme foarte tehnice (modelul EAST, filtrul median pe imagini, etc) doar pomenite, fără detalii
- Poze şi grafice corespunzătoare acestor probleme se află în doc. tipărit DAR nu pe slides
- În special contribuțiile tehnice tb. să fie și pe slides!

Exemple de idei bune

21

- bine: contrast mare între culorile celor 3 f.u.
- ce e fiecare se poate explica oral
- rău: legenda (în special pe axa Y) ilizibilă
- dacă programul nu vă lasă să măriți fontul legendei, adăugați o legendă suplimentară sub forma unei cutii de text

- Transparency=0%
- Acoperă vechea etichetă prea mică

Contribuţii

- am construit prototipuri pentru modulul de recepţie şi robot
- · am construit un labirint
- am realizat o legătură radio între cele două dispozitive utilizând module radio pentru care am adaptat o bibliotecă software existentă
- am proiectat şi construit două circuite electronice trecând prin toate etapele
- am dezvoltat software pentru microcontrolerele celor două dispozitive
- · am dezvoltat o aplicaţie pentru calculator
- am implementat algoritmi şi metode pentru parcurgerea, maparea, rezolvarea unui labirint şi pentru localizarea robotului în acesta
- Contribuții enumerate temeinic
- Se poate expr. și impersonal ("construirea de prototipuri...")
- Slide-ul de contribuții poate fi printre primele slide-uri!

25

Contribuții

Evidențierea contribuțiilor – acest PCB a fost dezvoltat integral de către student, dar are aspect industrial. Nefiind pus explicit în "contribuții", cel puțin un membru al comisiei a crezut că este cumpărat – caz real (scrisul cu numele stud. nu se vede de la distantă).

Morala: "vindeți-vă marfa" cît mai bine!

_ /

Slide-ul de Concluzii

Cum se scrie, și cum *nu* se scrie slide-ul de concluzii ?

- Ultimul slide cel de contribuții poate fi printre primele.
 Contribuțiile se pot repeta și la concluzii.
- Concluzii tehnice!

Q: Promisiunile "viitoare" – ce utilitate au ?

A: Practic 0!

- este nerelevant ce n-ați făcut, dar ați fi putut să faceți
- nu crede nimeni că veți îmbunătăți, cu adevărat, proiectul, după ce absolviți facultatea
- nimeni nu va prelua spre extindere proiectul dvs; cei care vor dezvolta ceva asemănător o vor lua de la 0 (proiecte cu caracter didactic nimic rău în asta, principiul "learn by doing")

Concluzii (așa nu)

Robotul funcționează conform specificațiilor

Îmbunătățiri și dezvoltări viitoare:

- algoritmi noi
- lucrul în echipă de mai mulți roboți
- comunicație prin WiFi
- control distant prin intermediul unui PC
- recunoaștere de imagini
- utilizarea în intervenții la dezastre, pentru salvarea de vieți
- Concluzii fără sens sau total exagerate

29

Concluzii (așa da)

Îndeplinirea obiectivului propus, după rezolvarea problemelor apărute:

- alimentarea de 3,3V
- alegerea optimă a senzorilor de distanță dintre mai multe variante disponibile
- corecții pentru menținerea robotului în centrul celulelor
- corecții executare viraje

Îmbunătățiri:

- implementare algoritm SLAM
- metodă nouă de păstrare a poziției în centrul celulelor
- Concluzii tehnice
- Contribuții viitoare realiste (și nu prea extinse)

Nota pe răspunsurile la întrebări

Contribuția 2: Identificarea singularităților de observabilitate

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = -x_1 - x_3 - a\left(e^{\frac{x_2}{b}} - 1\right) + m \end{cases}$$

$$S_{O,3} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \middle| x_3 = -\frac{b^2}{a} e^{-\frac{b^2}{a}} e^{-\frac{b^2}{a}} \right\}$$

$$y = x_j \begin{cases} z_1 = x_3 \\ z_2 = \dot{z}_1 = \dot{x}_3 = -x_3 - x_1 - a\left(e^{\frac{x_2}{b}} - 1\right) \\ z_3 = \dot{z}_2 = \ddot{x}_3 = -\dot{x}_3 - \dot{x}_1 - \frac{a}{b}\dot{x}_2 e^{\frac{b^2}{b}} = x_1 + x_3 - x_2 + ae^{\frac{x_2}{b}} \left(1 - \frac{x_3}{b}\right) - a \end{cases}$$

$$O_3 : \begin{bmatrix} 0 & 0 & 1 \\ -1 & -\frac{a}{b}e^{\frac{x_2}{b}} & -1 \\ 1 & -1 + \frac{a}{a}e^{\frac{b}{b}} \left(1 - \frac{x_3}{a}\right) & 1 - \frac{a}{a}e^{\frac{b^2}{b}} \right\}$$

$$\Rightarrow \Delta x_3 = 1 + \frac{a}{t^2}x_3 e^{x_2/b}$$

- Q: Din ce credeți că veți fi întrebați mai ales?
- A: din ce ați scris pe slides! Ați înțeles bine tot ce ați scris?
- puteți fi întrebați din ceva ce dvs. considerați mai puțin relevant, dar apare pe un slide și corespunde specialității unui membru al comisiei

31

Sfaturi pt. prezentare

- Repetați prezentarea în fața prof. coordonator, dacă e posibil.
- Repetați prezentarea și în fața cuiva care nu se pricepe (prieten ne-student la ETTI), pt că s-ar putea să observe aspecte la care nu v-ați gîndit
- Repetați cu ceasul pt. că altfel este *imposibil* să vă încadrați în timp
- Aduceți un laser pointer (sau măcar un băț) pt. indicare nu vorbiti fără să indicati la ecranul de proiectie!
- Conducătorul știe deja ce ati făcut; nu prezentați pentru el, ci pentru comisie!
- Unii profesori vă vor depuncta explicit pt. greșeli la prezentare
- Alţi profesori vă vor depuncta pt. că nu au înţeles cît de mult aţi lucrat (vezi exemplul cu PCB cu aspect industrial), pt că nu aţi punctat suficient aceste lucruri
- Mai multe info. pe: http://ham.elcom.pub.ro/diploma/

Imediat după prezentare

- Veți demonstra funcționarea softului/hardului realizat
- Tipic: 10 min. prezentarea, max 5 min. demonstrația
- Variantă (mai ales pt teme software, matlab etc):
 - nu aveți demonstrație separată
 - includeți poze, capturi de ecran, eventual chiar filmări în timpul prezentării
 - declarați de la început această intenție și puteți lungi prezentarea la 15 minute.
- Pregătiți demonstrația cu grijă dinainte, să meargă!
- Mai des decît credeți: demonstrații eșuate!
 - macheta nu pornește
 - se rupe vreun fir (lipit impropriu)
 - altă problemă tehnică banală

33

0.84