Nick Gill

Instrucciones: Puede usar cualquier proposición de las lecciones, inclusive los ejercicios. Si necesita una proposición de las lecciones para una demostración, escriba la declaración de la proposición explicitamente.

(1) Sea A la matriz real siguiente,

$$A := \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

- (a) Calcular los valores propios de A.
- (b) Obtener tres vectores propios linealmente independientes de A.
- (c) Encontrar una matriz P tal que $P^{-1}AP$ sea diagonal; calcular el producto $P^{-1}AP$ para verificar que la matriz resultante es diagonal.

Answer.

(a) El polinomio característico de A es

$$f_A := \det(\lambda I - A) = \lambda(\lambda - 1)\lambda - 3),$$

entonces los tres valores propios de A son 0, 1 y 3.

(b) (i) Para calcular un vector propio asociado a 0, debemos calcular el núcleo de la matriz

$$0I - A = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

Usando operaciones de fila, podemos verificar que el núcleo contiene el vector $w_0 = (1, 1, 1)$.

- (ii) Similarmente, para calcular un vector propio asociado a 1, debemos calcular el núcleo de la matriz 1I A. Podemos verificar que el núcleo contiene $w_1 = (-1, 0, 1)$.
- (iii) Finalmente, para calcular un vector propio asociado a 3, necesitamos calcular el núcleo de la matriz 3I A. Podemos verificar que el núcleo contiene $w_3 = (1, -2, 1)$.

Ya que los vectores propios de arriba son asociados a valores propios distintos, son linealmente independentes.

(c) Podemos tomar la matriz P con columnas w_0 , w_1 and w_3 . Entonces,

$$P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}.$$

La inversa de P es

$$P^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

Al final, tenemos el producto

$$P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

(2) Supóngase que V es un espacio vectorial finitodimensional sobre un cuerpo \mathbb{F} , y $T:V\to V$ es una transformación lineal con polinomio característico f. Supóngase que c es una raíz de f, de multiplicidad m. Si W es el espacio propio de T asociado a c, demostrar que $\dim(W) \leq m$.

Answer. Escriba $d := \dim(W)$ y sea \mathcal{B}_W una base ordenada de W. Podemos extender \mathcal{B}_W para obtener una base $\mathcal{B} = \{v_1, \dots, v_n\}$ de V. Sea A la matriz de T con respecto a \mathcal{B} . La columna i-ésima de A es el vector $T(v_i)$ (escrito con respecto a sB). Por definición $T(v_i) = cv_i$ cuando i < d. Entonces A tiene la forma

$$A = \begin{bmatrix} c & 0 & \cdots & 0 & * & \cdots & * \\ 0 & c & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \vdots & \vdots \\ \vdots & & \ddots & c & \vdots & \vdots & \vdots \\ \vdots & & & 0 & \vdots & \vdots & \vdots \\ \vdots & & & & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & * & \cdots & * \end{bmatrix}$$

El polinomio característico f_T de T es igual a $\det(\lambda I - A)$. Ahora podemos calcular directamente que

$$f_T = (\lambda - c)^d \cdot g(\lambda)$$

donde $g(\lambda) = \det(B)$ y B es igual a la matrix $(n-d) \times (n-d)$ en la esquina inferior derecha de A. Entonces la multiplicidad del valor propio c es mayor o igual a d y hemos terminado.

(3) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ el operador lineal cuya matriz con respecto a la base estándar es la matriz siguiente,

$$B := \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 1 & 3 \end{bmatrix}.$$

- (a) Calcular el polinomio característico de T.
- (b) Calcular el polinomio minimal de T y demostrar que T es triangulable pero no es diagonalizable.
- (c) Encontrar una base \mathcal{B} de \mathbb{R}^3 tal que la matriz de T sea triangular.
- (d) Encontrar una matriz invertible P tal que $P^{-1}BP$ sea triangular.

Answer.

(a) El polinomio característico de T es

$$f_T = \det(\lambda I - B) = (\lambda - 1)(\lambda - 2)^2.$$

(b) El polinomio minimal de T tiene las mismas raíces de f_T ; entonces

$$p_T = (\lambda - 1)^{d_1} (\lambda - 2)^{d_2}$$

donde d_1 y d_2 son enteros positivos. Podemos verificar que el operador

$$(T-I)\circ (T-2I)\circ (T-2I)$$

es nulo (ya que el producto de matrices $(B-I)(B-2I)^2$ es nulo). Además el operador

$$(T-I)\circ (T-2I)$$

no es nulo. Concluimos que $p_T = f_T$.

Ya que f_T es un producto de factores lineales, un teorema de las lecciones implica que T es triangulable. Sin embargo, p_T no es un producto de factores lineales distintos; por lo tanto, otro teorema de las lecciones implica que T no es diagonalizable.

- (c) Podemos calcular los vectores propios de T. Por el método de pregunta 1, obtenimos que
 - (i) (1,0,0) es un vector propio asociado a 1;
 - (ii) (1, -1, 1) es un vector propio asociado a 2.

Entonces podemos definir $\mathcal{B} = \{(1,0,0), (1,-1,1), (0,0,1)\}$ (necesitamos, solamente, que el tercer vector sea linealmente independiente de los otros – hay muchas otras posibilidades). En esto caso, obsérvese que

$$T(0,0,1) = (3,-1,3) = 2(1,0,0) + 1(1,-1,1) + 2(0,0,1).$$

Entonces tenemos

$$(T)_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

(d) Podemos tomar la matriz P como la matriz cuyas columnas son los vectores de la base \mathcal{B} . Es decir,

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Podemos vericar que $P^{-1}BP = (T)_{\mathcal{B}}$, la matriz triangular de arriba.

- (4) Sea V un espacio vectorial de dimensión $n < \infty$ sobre un cuerpo \mathbb{F} , y sea $T \in \mathcal{L}(V)$. Demostrar que T es triangulable si y sólo si hay subespacios W_1, \ldots, W_{n-1} tales que
 - (a) W_1, \ldots, W_{n-1} son invariantes bajo T;
 - (b) $\dim(W_i) = i \text{ para todo } i = 1, ..., n-1;$
 - (c) $W_1 < W_2 < \dots < W_{n-1}$.

Answer. Suponga que T es triangulable y sea $\mathcal{B} := \{v_1, \ldots, v_n\}$ una base tal que la matriz $(T)_{\mathcal{B}}$ es triangular superior. Para $i = 1, \ldots, n-1$, defínase

$$W_i := \langle v_1, \dots, v_i \rangle.$$

Está claro que los subespacios tienen las tres propiedades.

Para la inversa, suponga que W_1, \ldots, W_{n-1} tienen las tres propiedades. Sea v_1 un vector no trivial de W_1 . Para $i=2,\ldots,n-1$, sea v_i un vector de $W_i \setminus W_{i-1}$. Finalmente, sea v_n un vector de $V \setminus W_{n-1}$. Sea $\mathcal{B} = \{v_1, \ldots, v_n\}$ y obsérvese que \mathcal{B} es una base de V. Además, está claro que la matriz $(T)_{\mathcal{B}}$ es triangular superior.

(5) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ el operador lineal tal que la matriz siguiente es la matriz de T con respecto a la base estándar:

$$B := \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Escriba $V = \mathbb{R}^3$, y sean U y W los subespacios de \mathbb{R}^3 definidos como sigue:

$$U := \langle (-3, 1, 0), (-7, 1, 1) \rangle$$
$$W := \langle (1, 0, 0) \rangle$$

- (a) Demostrar que U y W son invariantes bajo T.
- (b) Demostrar que $V = U \oplus W$.
- (c) Sea $E:V\to W$ la proyección de V sobre W paralelamente a U. Encontrar la matriz de E con respecto a la base estándar.
- (d) Encontrar una base \mathcal{B} de \mathbb{R}^3 tal que $(T)_{\mathcal{B}}$ esté en forma bloque, con dos bloques.

Answer.

(a) Obsérvese que

$$B \cdot \begin{bmatrix} -3\\1\\0 \end{bmatrix} = \begin{bmatrix} -3\\1\\0 \end{bmatrix};$$

$$B \cdot \begin{bmatrix} -7\\1\\1 \end{bmatrix} = \begin{bmatrix} -10\\2\\1 \end{bmatrix} = \begin{bmatrix} -7\\1\\1 \end{bmatrix} + \begin{bmatrix} -3\\1\\0 \end{bmatrix}.$$

Entonces T envía la base de U en U, y entonces (por linealidad) U es invariante bajo T. De manera similar,

$$B \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2 \cdot \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

y otra vez, W es invariante bajo T.

(b) $\dim(U) + \dim(W) = \dim(V)$. Entonces, por un teorema visto en clase, es suficiente demostrar que $U \cap W = \{0\}$. Suponga que hay $v \in U \cap W$. Entonces

$$v = a(-3, 1, 0) + b(-7, 1, 1) = c(1, 0, 0)$$

para algún $a,b,c\in\mathbb{F}$. Entonces (a,b,c) es una solución del sistema homogéneo Ax=0 donde

$$A = \begin{bmatrix} -3 & -7 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Por la aplicación de operaciones elementales de fila, se puede verificar que el rango de A es igual a 3, y entonces (a,b,c)=(0,0,0). Por lo tanto, concluimos que $U\cap W=\{0\}$ como quisimos.

(c) Escriba \mathcal{E} para la base estándar, y define una base

$$\mathcal{B} := \{(1,0,0), (-3,1,0), (-7,1,1)\},\$$

una unión de bases de W y U. Está claro que

$$(E)_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Ahora sea

$$P := \begin{bmatrix} 1 & -3 & -7 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

la matriz con columnas iguales a los elementos de \mathcal{B} . P es la matriz de cambio de base, de \mathcal{E} en \mathcal{B} . Entonces, para hacer el cambio al revés, podemos usar P^{-1} . Concluimos que

$$(E)_{\mathcal{E}} = PAP^{-1} = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Se puede verificar que la imagen de E es W, el núcleo es U, y E es una proyección.

(d) Podemos usar la base \mathcal{B} de la respuesta (c):

$$\mathcal{B} := \{(1,0,0), (-3,1,0), (-7,1,1)\}$$

Similarmente, usando cálculos de la respuesta (a):

$$B \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix};$$

$$B \cdot \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix};$$

$$B \cdot \begin{bmatrix} -7 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -10 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -7 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}.$$

Concluimos que

$$(T)_{\mathcal{B}} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(6) Sea V un espacio vectorial sobre un cuerpo \mathbb{F} , sea T un operador lineal sobre V y sea $v \in V$. Define el T-anulador de v:

$$S(T, v) := \{ f \in \mathbb{F}[x] \mid f(T)(v) = 0 \}.$$

(a) Demostrar que S(T, v) es un ideal de $\mathbb{F}[x]$.

Para las preguntas siguientes, supóngase que la dimensión de V es finita.

- (b) Demostrar que S(T, v) no es trivial.
- (c) Define $p_{T,v}$ el único polinomio mónico de grado minimal en S(T,v). Demostrar que $p_{T,v}$ es bien-definido.
- (d) Demostrar que el polinomio $p_{T,v}$ divide p_T , el polinomio minimal de T.

Answer.

(a) Supóngase que $f, g \in S(T, v), a, b \in \mathbb{F}$. Entonces

$$(af + bg)(T)(v) = (af(T) + bg(T))(v) = af(T)(v) + bg(T)(v) = a0 + b0 = 0.$$

Entonces $af + bg \in S(T, v)$ y concluimos que S(T, v) es un subespacio de $\mathbb{F}[x]$. Ahora supóngase que $f \in S(T, v)$ y $g \in \mathbb{F}[x]$. Entonces

$$(gf)(T)(v) = g(T)(f(T)(v)) = g(T)(0) = 0.$$

Entonces $gf \in S(T, v)$ y concluimos que S(T, v) es un ideal de $\mathbb{F}[x]$.

- (b) El espacio $\mathcal{L}(V)$ tiene dimensión n^2 donde $n := \dim(V)$. Entonces los operadores $1, T, T^2, T^3, \ldots, T^{n^2}$ son linealmente dependientes. Es decir, exista un polinomio noncero $f \in \mathbb{F}[x]$ de grado menor o igual a n^2 y con f(T) = 0. Entonces $f \in S(T, v)$.
- (c) Todo ideal de $\mathbb{F}[x]$ es principal, entonces exista un polinomio $f \in S(T, v)$ tal que S(T, v) = f. Podemos reemplazar f por un multiplo, si necesario, tal que f es mónico. Por definición para todo polinomio $g \in S(T, v)$, hay un polinomio h tal que g = fh. Concluimos que todo polinomio in S(T, v) tiene grado major o igual al grado de f. Si g es mónico entonces h es mónico. Si el grado de g es igual al grado de f, entonces g es g es f. Entonces g es el único polinomio mónico de grado minimal en g es g es
- (d) $p_{T,v}$ divide p_T si y sólo si $p_T \in S(T,v)$. Entonces necesitamos verificar que $p_T(T)(v) = 0$. Pero, por definición $p_T(T) = 0$ y, a fortiori, $p_T(T)(v) = 0$ hemos terminado.