תורת הקבוצות – תרגיל בית מס' 11 – פתרון חלקי

1. נסמן ב- F את הקבוצה של כל התת-קבוצות הבלתי תלויות של F . את הקבוצה $\{x\}$ בלתי תלויה.

. $A \leq B \iff A \subseteq B$ סדורה חלקית לפי ההכלה: F

נוכיח שעבור F מתקיים התנאי של הלמה של צורן.

. F-שרשרת ב $\{A_i\}_{i\in I}$ תהי

 $\bigcup_{i\in I}A_i$ נסתכל ב-

ברור ש- $A_i\}_{i\in I}$ לכל $A_i\}_{i\in I}$, כלומר היא חסם מלעיל של , jכל לכל $A_j\leq \bigcup_{i\in I}A_i$ ברור ש- $A_i\leq \bigcup_{i\in I}A_i$ להוכיח ש- $A_i\in I$, כלומר ש- $A_i\in I$ קבוצה בלתי תלויה.

 $x,y \in \bigcup_{i \in I} A_i$ יהיו

 $y \in A_k$ -ו $x \in A_j$ כך שי $j,k \in I$ זה אומר: קיימים

שבל הגבלת הכלליות ש- $A_k \subseteq A_j$ או $A_j \subseteq A_k$ או הכלליות ש- $A_i\}_{i \in I}$ אבל הגבלת הכלליות ש- A_k איבר של A_k היא לויה. לכן $A_i \subseteq A_k$ או ניתנים להשוואה, ולכן $A_i \subseteq A_i$ קבוצה בלתי תלויה. $A_i \subseteq A_i$

הוכחנו שעבור F מתקיים התנאי של הלמה של צורן. לכן ל- F יש איבר מקסימלי – כלומר, ב- X יש קבוצה בלתי תלויה מקסימלית. נסמן אותה ב- X

נוכיח ש- B מקיימת את התנאי שכל איבר של $X \backslash B$ ניתן להשוואה עם איבר אחד לפחות של B .

 $B \cup \{x\}$ אם א אינו ניתן להשוואה עם אף איבר של x, אז גם $x \in X \setminus B$ יהי תלויה, וזאת סתירה לכך ש- B קבוצה בלתי תלויה, מקסימליות.

.2

אט בורן שעבור התנאי של הלמה של צורן. (א

. F -שרשרת ב $\{A_i\}_{i\in I}$ תהי

 $\bigcup_{i\in I}A_i$ נסתכל ב-

, $\{A_i\}_{i\in I}$ לכל של היא חסם מלעיל היא , $j\in I$ לכל לכל $A_j\leq \bigcup_{i\in I}A_i$ היא היא היא $x+y\notin \bigcup_{i\in I}A_i$ אז א $x,y\in \bigcup_{i\in I}A_i$ וצריך להוכיח ש

. $z\in \bigcup_{i\in I}A_i$ ש- נסמן: z=x+y . נסמן: $x,y\in \bigcup_{i\in I}A_i$ יהיו $x,y\in \bigcup_{i\in I}A_i$ זה אומר: קיימים $j,k,m\in I$ כך ש- $j,k,m\in I$

ר- $A_m \subseteq A_j$ או $A_j \subseteq A_m$ ו- $A_k \subseteq A_j$ או $A_j \subseteq A_k$ או $A_j \subseteq A_k$ או $A_m \subseteq A_k$ או $A_m \subseteq A_k$ או $A_k \subseteq A_m$

- $A_i \subseteq A_k \subseteq A_m$:נובע: $A_k \subseteq A_m$ רו $A_i \subseteq A_m$ רו $A_i \subseteq A_m$
- $A_i \subseteq A_m \subseteq A_k$: נובע: $A_m \subseteq A_k$ רי $A_i \subseteq A_m$ רי $A_i \subseteq A_k$
- $A_i = A_k = A_m$: נובע: $A_k \subseteq A_m$ רי $A_m \subseteq A_i$ רי $A_i \subseteq A_k$
- $A_m \subseteq A_i \subseteq A_k$: נובע: $A_m \subseteq A_i \cap A_m \subseteq A_i$ ר- $A_i \subseteq A_k$
- $A_k \subseteq A_j \subseteq A_m$: נובע: $A_k \subseteq A_m$ רו $A_j \subseteq A_m$ רו $A_k \subseteq A_j$
- $A_j = A_k = A_m$: נובע: $A_m \subseteq A_k$ רי $A_j \subseteq A_m$ רי $A_k \subseteq A_j$
- $A_k \subseteq A_m \subseteq A_j$: נובע: $A_k \subseteq A_m$ רו $A_m \subseteq A_j$ רו $A_k \subseteq A_j$
- $A_m \subseteq A_k \subseteq A_i$:נובע: $A_m \subseteq A_k$ -ו $A_m \subseteq A_i$ ובע:

. $n{=}\{j,k,m\}{\subseteq}I$ כאשר $x,y,z{\in}A_n$ שרשרת, כלומר $\{A_j,\ A_k,\ A_m\}$ כאשר בכל מקרה $z{=}x{+}y$ -אבל

לכן $\bigcup_{i\in I}A_i$ ובכך הוכחנו שעבור F מתקיים התנאי של הלמה של צורן. לכן $\bigcup_{i\in I}A_i$ יש איבר מקסימלי.

- ב) נניח להיות (כל הסכומים מגדיר אברי T' להיות קבוצה שמכילה בל אברי להיות (כל הסכומים וניח וכל ההפרשים של שני אברי T וכל ההפרשים של שני אברי T וכל ההפרשים של שני אברי $z\in\mathbb{R}\setminus T'$ בסתירה לכך ש- מריכה לכך שוני ב- לכן האברי ב- לכן היים ב- לכ
- ג) הפתרון דומה לפתרון של הסעיף הקודם: בהנחה ש- $T \models \alpha < \aleph'$ מקבלים ($\alpha \cdot \alpha = \alpha = \alpha$ עם אותה המסקנה. $|T'| = \alpha$
 - $x,y\in T$ ולכל , $z\in \mathbb{R}\setminus T$, F איבר מקסימלי של , $z\in \mathbb{R}\setminus T$, F איבר מקסימלי היברים . $x+y\neq z$ ולכל $x+y\neq z$ מתקיים $x+y\neq z$ וואת תהיה סתירה למקסימליות של $x+y\neq z$ כך של $x+y\neq z$ וואת תהיה סתירה למקסימליות של

נניח שב- $a \neq b$ ו- $a \neq b$ כך ש- $a \neq b$ ייתכנו . c = a + b יש טלושה איברים a,b,c כך ש- $a \neq b$ ייתכנו . מקרים הבאים:

- $: a,b,c{\in}T$ זה לא ייתכן כי $T{\in}F$
- : c=z -ו $a,b\in T$ a,b=z וכאן $x+y\neq z$ מתקיים $x,y\in T$ מתקיים כי הנחנו שלכל
 - :b=z ו- $a,c\in T$.(c-a=z (וכאן x-y=z מתקיים x,y=z מתקיים כי הנחנו שלכל

: a=z -1 b,c∈T •

זה לא ייתכן בדומה למקרה הקודם.

 $: b=c=z -1 a \in T \bullet$

z=c-a ולכן שוב a=0 זה לא ייתכן: אז

 $: a=c=z - 1 b \in T \bullet$

זה לא ייתכן בדומה למקרה הקודם.

 $\Leftarrow c=a+b$ -ו $a\neq b$ כך ש- a,b,c כך שלושה איברים $T\cup\{z\}$ -ב מכאן: ב- $T\cup\{z\}\in F$ סתירה לכך ש- $T\cup\{z\}\in F$

3. נא לראות פתרון של המבחן מהסמסטר הקודם (אביב 2001/02).

.4 כיוון 1:

נתון: פונקציה $f: A \rightarrow B$ היא על.

 $.f \circ g = \mathrm{Id}_B$ כך ש- $g : B \rightarrow A$ נוכיח: קיימת פונקציה

 $A_b=f^1[\{b\}]:$ לכל $b\in B$ נגדיר: $A_b=\{a\in A: f(a)=b\}:$ לכל $b\in B$ נגדיר: $b\in B$ (כי $a\in A: f(a)=b$) (כי $a\in B$ נשים לב: לכל $a\in A: f(a)=b$) (כי $a\in B: f(a)=b$) נשים לב:

נסמן: A . $A=\{A_b\}_{b\in B}$ נסמן: $\phi\colon A\to \bigcup_{b\in B}A_b=A$ היא משפחה לא ריקה של קבוצות לה $\phi\colon A\to \bigcup_{b\in B}A_b=A$ אקסיומת הבחירה קיימת בה פונקצית בחירה, כלומר $\phi(A_b)\in A_b$ מתקיים $\phi(A_b)\in A_b$

. $g(b) = \varphi(A_b)$ נגדיר $b \in B$ באופן הבא: לכל $g: B \longrightarrow A$ נגדיר $b \in B$ באופן יחיד לכל g(b) מוגדר באופן יחיד לכל g(b)

f(g(b))=b מתקיים $b\in B$ נוכיח שי $f\circ g=\mathrm{Id}_B$ יש נוכיח יש נוכיח יש

. g(b)= $\phi(A_b)$, g לפי הגדרת

.g(b)פי הגדרת ϕ זה אומר לפי

f(g(b))=b לפי הגדרת A_b זה אומר

:2 כיוון

 $.f \circ g = \mathrm{Id}_B$ כך ש- $g : B \longrightarrow A$ נתון: קיימת פונקציה

. נוכיח: פונקציה $f:A{
ightarrow}B$ היא על

. f(a)=b שעבורו $a\in A$ כך שלא קיים $b\in B$ בניח של: על: על: על: נניח ש

 $f \circ g = \operatorname{Id}_B$ אז לא ייתכן f(g(b)) = b בסתירה לכך א

. ${\rm Im}(f){\subseteq}{\rm Im}(g)$ שתי פונקציות כך ש- g: $A{\to}C$ ו- f: $B{\to}C$ הריינה . $g{\circ}h{=}f$ כך ש- h: $B{\to}A$ כך ש- h: $g{\circ}h$

 $A_b=f^1[\{f(b)\}]:$ לכל $b\in B$ נגדיר: $A_b=\{a\in A: g(a)=f(b)\}:$ לכל $b\in B$ נעים לב: לכל $A_b=A: g(a)=f(b)\}$ (כי $A_b\neq\emptyset$, $b\in B$ נשים לב: לכל $A_b=A: f(b)$ (כי $A_b\neq\emptyset$, $A_b\neq\emptyset$, $A_b\neq\emptyset$)

. $h(b) = \varphi(A_b)$ נגדיר $b \in B$ באופן הבא: לכל $h: B \longrightarrow A$ נגדיר $b \in B$ באופן יחיד לכל h(b) היא פונקציה כי בהגדרה כזאת בהגדר מוגדר באופן יחיד לכל

g(h(b))=f(b) מתקיים $b\in B$ נוכיח שלכל יש להוכיח שלכל $g\circ h=f$ נוכיח ש

 $h(b)=\varphi(A_b)$, h לפי הגדרת $h(b)\in A_b$ אומר ϕ זה אומר g(h(b))=f(b) לפי הגדרת f(b) זה אומר

- .4) איב) : ניתן לבחור את האמצע של הקטע. (ה.4) א $A\in P(\mathbb{Q})\backslash\{\varnothing\}$ ג) תהי
- ב-A נבחר קבוצת המספרים עם מכנה מינימלי.

A אם בקבוצה הזאת איבר אחד – הוא יהיה הנציג של

אם בקבוצה הזאת יותר מאיבר אחד – נבחר בה קבוצת המספרים עם מונה מינימלי בערך מוחלט.

 ${\cal A}$ אם בקבוצה הזאת איבר אחד – הוא יהיה הנציג של

אם לא – זה אומר שיש בה שני איברים נגדיים. אז נבחר את החיובי להיות הנציג של A