## Topic 4 (Pt 2):

Texts Pre-processing & String
Matching: Stemming,
Lemmatization, Segmentation &
Edit Distance



## Stemming

- A process of stripping off affixes to find basic morphological structure or reducing a word to its stem or root or base form
- Different variants of a term can be conflated to a single representative form – thus reduces the dictionary size (i.e., the no. of distinct terms)
- Can be implemented as an FST using a series of rules. Example:
  - relational □ relate
  - motoring □ motor

#### Root vs Stem vs Base

 Root, stem and base are all terms used in the literature to designate that part of a word that remains when all affixes have been removed

#### root

• a structure/form which is not further analysable when all inflectional and derivational affixes have been removed. E.g. un-touch-able, ktb(Arabic)

#### • stem

• concerned only when dealing with inflectional morphology. E.g. untouchable-s, box-es

#### base

 any structure/form/morpheme to which affixes of any kind can be added, thus either a root or a stem can be considered as a 'base'

# Porter Algorithm (Porter, 1980)

- A simple and efficient algorithm for stemming or stripping off affixes
- No lexicon (i.e., dictionary) is needed a lexicon-free FST stemmer
- Based on a series of cascaded/nested rewrite rules such as the following:
- 1) ATIONAL  $\square$  ATE (e.g., relational  $\square$  relate)
- 2) ING  $\square \epsilon$  if stem contains a vowel (e.g., motoring  $\square$  motor $\epsilon$  or motor)

# Porter Algorithm (Porter, 1980)

- More cascaded rewrite rules :
  - 3) ING  $\square$  *stem* + *e* if stem is a **short word** (depends on definition)
    - $making \square make (mak + e)$
    - mutating 

      mutate (mutat + e)
      - If Rule 2) is applied instead of 3), then mutating □ mutat (error)

#### Rules in Porter Stemmer



- A simple and efficient algorithm for stemming or stripping off affixes
- No lexicon (i.e., dictionary) is needed - a lexicon-free FST stemmer
- Based on a series of cascaded rewrite rules

## Stemming with NLTK

Create a Porter stemmer

```
import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
words = ['grasses', 'flies', 'mules', 'denied',
    'matched', 'agreed', 'motoring', 'making',
    'traditional', 'rational', 'colonial', 'reference',
    'itemization', 'duration']
stems = [stemmer.stem(w) for w in words]
print(stems)
```

## Errors in Stemming I

#### Commission

• Erroneously include affix when it should not have been: false positive

#### Omission

• Erroneously exclude affix when it should not have been: false negative

| Commission errors                                                                                                                             | Omission errors                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| doing -> doe (do) generalization -> generic (general) numerical -> numerous (numeric) policy -> police (policy) European -> European (Europe) | organization -> organ (organize) matrices -> matric (matrice) noisy -> noisi (noise) urgency -> urgenc (urgent) |

## Commission and Omission Errors with Porter Stemmer

 Which words are stemmed with commission and omission errors?

```
>>> sent = "Stemming is easier than morphological analysis, says the sushi
loving computer scientist"
>>> stem = [''.join(stemmer.stem(stems)) for stems in sent.split()]
>>> print(stem)
['Stem', 'is', 'easier', 'than', 'morpholog', 'analysis,', 'say', 'the', '
sushi', 'love', 'comput', 'scientist']
>>> plurals = ['caresses', 'flies', 'dies', 'mules', 'denied', 'died', '
agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 'siezing',
itemization', 'sensational', 'traditional', 'reference', 'colonizer', 'pl
otted'1
>>> singles = [stemmer.stem(plural) for plural in plurals]
>>> print(singles)
['caress', 'fli', 'die', 'mule', 'deni', 'die', 'agre', 'own', 'humbl',
'size', 'meet', 'state', 'siez', 'item', 'sensat', 'tradit', 'refer', '
colon', 'plot']
```

## Commission and Omission Errors with Porter Stemmer

 Which words are stemmed with commission or omission errors?

```
>>> sent = "Stemming is easier than morphological analysis, says the sushi
loving computer scientist"
>>> stem = [''.join(stemmer.stem(stems)) for stems in sent.split()]
>>> print(stem)
['Stem', 'is', 'easier', 'than', 'morpholog' 'analysis,', 'say', 'the', '
sushi', 'love', ('comput') 'scientist']
>>> plurals = ['caresses', 'flies', 'dies', 'mules', 'denied', 'died', '
agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 'seizing', '
itemization', 'sensational', 'traditional', 'reference', 'colonizer', 'pl
otted'1
>>> singles = [stemmer.stem(plural) for plural in plurals]
>>> print(singles)
                                         'die', ('agre'), 'own', ('humb'
['caress', 'fli, 'die', 'mule', 'deni']
'size', 'meet', 'state', (seiz
colon' 'plot'
>>> print(' '.join(singles))
caress fli die mule deni die agre own humbl size meet state siez item s
ensat tradit refer colon plot
```

## Errors in Stemming II

#### Understemming

• Two separate words that should be stemmed to the same root, but are not: false negative

#### Overstemming

 Two separate words that are stemmed to the same root, but should not have been: false positive

| Understemming errors                                    | Overstemming errors                                               |
|---------------------------------------------------------|-------------------------------------------------------------------|
| dividing, divided -> divide division, divisor -> divise | dividing, divided -> divide divine, divination -> divide (divine) |
| alumnus -> alumnu<br>alumnae -> alumna                  | university -> univers (university) universal, universe -> univers |
| adheres -> adhere<br>adhesion -> adhes                  | numerous -> numer (number) numerical -> numer (numeric)           |

#### Lemmatization

- A *lemma* is the canonical or dictionary form of a set of related words.
  - pay is the lemma for paying, paid and pays
- •A *lemma* usually, but <u>not necessarily</u> resembles the words it is related to:
  - be is the lemma of is, was and am
- •Unlike *stemming, lemmatisation* not only tries to group related words together, but also group words by their *word sense* or *meaning*.

## Lemmatization (cnt...)

- The same word may represent two different meanings. Example:
  - wake means "to wake up" or "a funeral"
- Lemmatization requires the understanding of context, thus is a more complicated and expensive process as compared to stemming

### Lemmatization with NLTK

```
>>> from nltk.stem import WordNetLemmatizer
>>> wordnet_lemmatizer = WordNetLemmatizer()
>>> wordnet_lemmatizer.lemmatize("pays")
'pay'
```

## Word Segmentation

- The process of segmenting/tokenizing text into words
- Common languages like English using Latin alphabet easily separate words by spaces:
   Mr John said that ...
- What about words ending with special characters?
   cents. said, positive." crazy? google.com
- Segmenting purely on white spaces is not enough, has to address errors by treating punctuations (i.e., stop words) as word boundary.

## Word Segmentation

 Languages with special characters such as Chinese, Japanese and Thai cannot be easily separated. Example:

• English sentence : Enter the room

• Chinese sentence: 进入房间 (Jìnrù fángjiān)

- Segmentation may also involve tokenizing multiple expressions
  - Example : houseboat -> house boat

## Sentence Segmentation

- A crucial step in text processing,
   segmenting/tokenizing text (i.e., paragraphs)
   into individual sentences.
- Usually based on punctuations commonly used to mark sentence boundaries (i.e., . ? , !)
- The function of the (.) however is ambiguous as it can serve various purposes

RM56.56 Mr. Co.m.p.h

- A tokenization algorithm based on machine learning can be used for segmentation
- Minimal approach through regular expression

# Example: Chinese Word Segmentation

- Chinese words are composed of characters known as *hanzi*
- Each character represents a single morpheme and is pronounceable as a single syllable
- An average Chinese word is about 2.4 characters long
- A greedy search algorithm known as maximum matching are commonly used to segment Chinese words with the help of a list of dictionary containing all possible Chinese words

# Chinese Word Segmentation (cont...)

#### **Algorithm:**

- 1. Start at beginning of string
- 2. Repeat
  - Advance pointer past each character in word
  - Advance one character at a time
- 3. Until word match is found

#### Analogy of algorithm (according to English dictionary)

- English phrase (with spaces removed):
  - the table down there thetabledownthere
- Maximum word match: 1) theta 2) bled 3) own 4) there
- Final output: theta bled own here (there are also other possibilities)

### String Matching: Measuring distance between words

- How similar are two strings?
  - Spelling correction:
    - If user typed "giraffe", which of the following is the closest?
      - graf
      - graft
      - gaffe
      - giraff
  - Computational Biology:
    - Align two Sequences of nucleotides
       AGGCTATCACCTGACCTCCAGGCCGATGCCC
       TAGCTATCACGACCGCGGTCGATTTGCCCGAC

TAG -CTATCAC- - GACCGC--GGT-CGATTTGCCCGAC

## Spelling Error Detection

- Detection and correction of spelling errors is an integral part of modern word processors and search engines
- Three different spelling problems:
  - Non-word error detection: spelling errors resulting in non-words (e.g., giraffe □ graffe)
    - Can use FST
  - Isolated word error detection: looking at individual error correction
  - Context-dependent error correction: using context to detect errors

## Spelling Error Detection

- Correcting spelling error requires searching through all possible words, and pick the most likely source
- Choose among potential sources using a distance metric between the source and the surface error
- Can apply probabilistic and non-probabilistic methods to find the closest spelling
- Example of non-probabilistic method is Minimum Edit Distance

#### Minimum Edit Distance

- Deciding which of two words is closer to some third word in spelling is a special case of the general problem of string distance.
- The distance between two strings is a measure of how alike two strings are to each other
- The minimum edit distance between two strings is the minimum number of editing operations needed to transform one string into another
  - insertion
  - deletion
  - substitution

## Minimum Edit Distance (cont...)

- Useful in NLP applications like machine translation, information extraction, speech recognition
- Example: two strings and their alignment:





1 + 2 + 2 + 1 + 2

- If each operation has a cost of 1
  - Distance between these = 5
- If substitutions cost is 2 (Levenshtein)
  - Distance between them = 8

## Minimum Edit Distance (cont...)

```
intention
substitute n by e 
substitute t by x 
insert u 
e x e n t i o n
e x e n t i o n
e x e n t i o n
e x e n t i o n
e x e n u t i o n
e x e c u t i o n
```

## Finding Minimum Edit Distance (cont...)

- Searching for a path (sequence of edits) from the start string to the final string:
  - Initial state: the word we're transforming
  - Operators: insert, delete, substitute
  - Goal state: the word we're trying to get to
  - Path cost: what we want to minimize, the number of edits
- But search space is huge!!!



## Definition of Minimum Edit Distance (Levenshtein Algorithm)

- Given two strings, X of length m and Y of length n
- We define D(i,j) as:
  - The edit distance between X[ 1..i ] and Y[ 1..j ]
    - i.e., the first i characters of X and the first j characters of Y
  - The edit distance between X and Y is thus D(n,m)
- Example:
  - X = i m p o s s i b l e (m = 10)
  - Y = r e s p o n s i b l e (n = 11)

## Dynamic Programming for Minimum Edit Distance

- Dynamic programming applies a table-driven method (tabular computation) of D(n,m)
- Solve problems by combining solutions to sub-problems
- Bottom-up
  - Compute D(i,j) for small i, j
  - Compute larger D(i, j) based on previously computed smaller values
  - Compute D(i,j) for all i(0 < i < m) and j(0 < j < n)

### Minimum Edit Distance Algorithm

function MIN-EDIT-DIST (target, source) returns min-dist m <- LENGTH(target)</pre> n <- LENGTH(source)</pre> Create a distance matrix dist[m+1,n+1] Initialize 0th row and col to be distance from empty string dist[0,0] = 0for each column i from 1 to m do  $dist[i,0] \leftarrow dist[i-1,0] + ins-cost(target[i])$ for each row j from 1 to n  $dist[0,j] \leftarrow dist[0,j-1] + del-cost(source[j])$ for each column i from 1 to m do for each row j from 1 to n do  $dist[i,j] \leftarrow MIN(dist[i-1,j] + ins-cost(target_{i-1}),$  $dist[i-1, j-1] + subst-cost(source_{i-1})$  $target_{i-1})$ , dist[i, j-1] +del-cost(source;-1))

return dist[m,n]

### Minimum Edit Distance Algorithm

```
Initialization
```

```
D(i,0) = i
D(0,j) = j
```

#### Recurrence Relation:

```
 \begin{array}{l} = 1...r \\ = \text{ach } j = 1...N \\ D(i,j) = \min \left\{ \begin{array}{l} D(i-1,j) + 1 \\ D(i,j-1) + 1 \end{array} \right\} \\ D(i-1,j-1) + 2; \left\{ \begin{array}{l} \text{if } X(i) \neq Y(j) \\ \text{if } X(i) = Y(j) \end{array} \right. \\ \end{array} 
For each i = 1...M
                                                                                                         insert/delete (cost = 1)
                    For each j = 1...N
```

#### Termination:

D(N,M) is distance

substitution (cost = 2)

## Example 1: Levenshtein Algorithm

Levenshtein distance between "brake" and "break" ( m = n )

|   | # | В | R | Ε | Α | K |
|---|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 | 5 |
| В | 1 | 0 | 1 | 2 | 3 | 4 |
| R | 2 | 1 | 0 | 1 | 2 | 3 |
| Α | 3 | 2 | 1 | 2 | 1 | 2 |
| K | 4 | 3 | 2 | 3 | 2 | 3 |
| E | 5 | 4 | 3 | 2 | 3 | 2 |

## Example 2: Levenshtein Algorithm

Levenshtein distance between "HONDA" and "HYUNDAI" ( m < n )

|   | # | Н | Υ | U | N | D | Α | I |
|---|---|---|---|---|---|---|---|---|
| # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Н | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 0 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| N | 3 | 2 | 3 | 4 | 3 | 4 | 5 | 6 |
| D | 4 | 3 | 4 | 5 | 4 | 3 | 4 | 5 |
| Α | 5 | 4 | 5 | 6 | 5 | 4 | 3 | 4 |

## Example 3: Levenshtein Algorithm

Levenshtein distance between "intention" and "execution" (m = n)

| n | 9 | 8 | 9 | 10 | 11 | 12 | 11 | 10 | 9  | 8  |
|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 8 | 7 | 8 | 9  | 10 | 11 | 10 | 9  | 8  | 9  |
| i | 7 | 6 | 7 | 8  | 9  | 10 | 9  | 8  | 9  | 10 |
| t | 6 | 5 | 6 | 7  | 8  | 9  | 8  | 9  | 10 | 11 |
| n | 5 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 10 |
| e | 4 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 9  |
| t | 3 | 4 | 5 | 6  | 7  | 8  | 7  | 8  | 9  | 8  |
| n | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 7  | 8  | 7  |
| i | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 6  | 7  | 8  |
| # | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|   | # | e | X | e  | С  | u  | t  | i  | 0  | n  |

### Local Alignment Problem

•Given two strings:

$$x = x_1 \dots x_M$$
,  
 $y = y_1 \dots y_N$ 

 Find substrings x', y' whose similarity (optimal local alignment value) is maximum

```
x = aaaaccccggggtta
y = ttcccgggaaccaacc
```

## Local Alignment Example (Smith-Waterman)

$$X = ATCAT$$

Y = ATTATC

#### Let:

m = 1(1 point for match)

d = 1(--1 point for del/ins/sub)

|   |   | Α | Т | Т | Α | Т | С |
|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Α | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| T | 0 | 0 | 2 | 1 | 0 | 2 | 0 |
| C | 0 | 0 | 1 | 1 | 0 | 1 | 3 |
| Α | 0 | 1 | 0 | 0 | 2 | 1 | 2 |
| Т | 0 | 0 | 2 | 0 | 1 | 3 | 2 |

## Local Alignment Example

X = ATCAT

Y = ATTATC

|   |    | Α          | Т | Т   | Α  | T | C  |
|---|----|------------|---|-----|----|---|----|
|   | 0_ | 0          | 0 | 0 _ | 0  | 0 | 0  |
| A | 0  | <b>1</b> _ | 0 | 0   | 1  | 0 | 0  |
| T | 0  | 0          | 2 | 1   | 0  |   | _0 |
| C | 0  | 0          | 1 | 1   | 0  | 1 | 3  |
| A | 0  | 1          | 0 | 0   | 2_ | 1 | 2  |
| T | 0  | 0          | 2 | 0   | 1  | 3 | 2  |

## Local Alignment Example

X = ATCAT

Y = ATTATC

|   |    | Α  |                  | Т | Α          | Т  |   |
|---|----|----|------------------|---|------------|----|---|
|   | 0_ | 0  | 0<br>0<br>2<br>1 | 0 | 0          | 0  | 0 |
| A | 0  | 1_ | 0                | 0 | <b>1</b>   | 0  | 0 |
| T | 0  | 0  | 2                | 1 | 0          | 2、 | 0 |
| C | 0  | 0  | 1                | 1 | 0          | 1  | 3 |
| A | 0  | 1  | 0                | 0 | <b>Z</b> _ | T  | Z |
| T | 0  | 0  | 2                | 0 | 1          | 3  | 2 |

## Edit Distance Exercise 6 (Levenshtein)

- 1) Using the distance.py, compute the distance between the following words:
  - stemming vs stamping
  - imputation vs importation
  - stability vs solidity
- 2) For each of the word pairs above, show your manual calculation of the operations costs for changing from one word to another using the Levenshtein algorithm

<sup>\*</sup> Work in pairs