EPSRC National Centre for Energy Systems Integration Webinars

Al-driven Engineering Design for Energy System

Contact Information

Leo Chen (BSc, MSc, PhD, CEng, FIET, FIMechE, FRSA, FHEA, SMIEEE)

Senior Lecturer in Engineering Design

School of Engineering

Stephenson Building

Newcastle University

Newcastle upon Tyne, NE1 7RU, United Kingdom

- Email: leo.chen@newcastle.ac.uk
- https://www.ncl.ac.uk/engineering/staff/profile/leochen.html#background

Research Interests

 Artificial Intelligence and Cross-disciplinary Applications

- Industry 4.0, Digital Twin and Digital Manufacture
- Robotics and Autonomous Systems
- Data Analytics

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Computational Intelligence Aided Design (CIAD)

Use Case to ISO/IEC JTC 1/SC 42 Artificial intelligence Sub committee

CIAD Implementation Supported by HPC

CIAD for Digital Manufacturing

CIAD Framework for Energy Modelling

- Computational Intelligence Aided Design (CIAD)
- **Electricity Consumption Modelling**
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Electricity Consumption Modelling^[1]

$$\widehat{EC}(C_0, \Theta, \Omega) = C_0 + \theta_1 X_1^{\omega_1} + \theta_2 X_2^{\omega_2} + \theta_3 X_3^{\omega_3} + \theta_4 X_4^{\omega_4} + \theta_5 X_5^{\omega_5}$$

- $\Rightarrow \widehat{E}C$ is the estimation of annual national electricity consumption, GW h/year; C_0 is a design variable of data shifting;
- $\circ \Theta = [\theta_1, \theta_2, ..., \theta_i, ..., \theta_{n_1}]$ is a design variable of the coefficient vector of X_i , n_1 is the number of design variable;
- $\circ \Omega = [\omega_1, \omega_2, ..., \omega_i, ..., \omega_{n_1}]$ is a design variable of the exponent vector of X_i ;
- $\circ X_i = [X_1, X_2, X_3, X_4, X_5]$ is the vector of the impact factors, in which, X_1 is the GDP; X_2 is the electricity price; X_3 is the efficiency, which is the ratio of national output over electricity consumption; X_4 is the economic structure, which is the ratio of residential consumption over industrial production; X_5 is the CO₂ emission in billion of metric tons.

Definition of fitness function

$$\text{fitness} = \textit{Maximise}: \left\{ \textit{mmAP} \Big(- \textit{RMS} \Big(\widehat{\textit{EC}}(\textit{C}_0, \Theta, \Omega) - \textit{EC}_0 \Big) \Big) \right\}$$

in which,

- RMS root mean square
- mmAP in section 'Trend indices'

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Firefly Algorithm^[2]

Firefly Algorithm

SwarmFireFly - The Firefly Swarm Algorithm (FFSA).

https://www.mathworks.com/matlabcentral/file exchange/38931-swarmfirefly-the-firefly-swarmalgorithm-ffsa

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Trend Indices for Evolutionary Optimisation

• The index of **mmAP** is a **moving average** score of the **mean value** of vector fj

$$mmAP(f_j) = \frac{1}{p} \sum_{i=1}^{p} \left(\frac{1}{i} \sum_{j=1}^{i} MEAN(f_j) \right)$$

 The index of mmSTD is a moving average score of the STD value of vector fj

$$mmSTD(f_j) = \frac{1}{p} \sum_{i=1}^{p} \left(\frac{1}{i} \sum_{j=1}^{i} STD(f_j) \right)$$

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Simulation and Results

Initial parameters of the Swarmfirefly.

Max-Generations	100
Test number	100
Randomness	0.2
Randomness reduction	0.98
Population	50
Non-replaceable population	40
Replaceable population	10
Absorption coefficient	1
C_0	[-100, 100]
Θ	[-10, 10]
Ω	[0, 3]

Simulation and Results

EC approximation, years 1980 - 2009.

Error of EC approximation and prediction for years 1980 - 2012.

Error of EC approximation and prediction.

	Year	Error (%)
Approximation	1980-2009	5.9250 ± 13.9429
Prediction	2010	-7.7111 ± 5.45
Prediction	2011	-6.6781 ± 6.78
Prediction	2012	-5.6106 ± 5.49

- Computational Intelligence Aided Design (CIAD)
- Electricity Consumption Modelling
- Firefly Algorithm
- Trend Indices for Evolutionary Optimisation
- Simulation and Results
- Conclusions and Future Works

Conclusions

- 1. The proposed prediction model for the national electricity consumption has a good **agreement** with the actual consumption data.
- 2. Under current social-economic structure, EC has a **direct impact** on the environment due to the heavy dependency on the conventional generation technology.
- 3. Energy consumption may **not** be able to directly boost the GDP growth under current social-economic **condition** and industry infrastructure, though GDP growth always implies a higher demand for **electricity**.

Future Works

- To develope **new** types of CI **algorithms**, such as swarm bat algorithm, swarm fish algorithm, and multi-objective genetic algorithm, to optimise energy consumption
- To validate the models based on sustainable and renewable energy data.
- To achieve long-term energy savings and carbon reduction, more experimental research is expected to establish social, economic, and environmental coupled behaviours.

Reference

[1] Quantitative modelling of electricity consumption using computational intelligence aided design. *Journal of Cleaner Production*, 69, pp.143-152. (**IF=6.395**)

https://www.sciencedirect.com/science/article/abs/pii/S0959652614000717

[2] Computational Intelligence Assisted Design - In Industrial Revolution 4.0

https://www.routledge.com/Computational-Intelligence-Assisted-Design-In-Industrial-Revolution-40/Chen-Li/p/book/9780367781040

