APPENDIX A PROOF OF LEMMA 1

Proof. (Outline) According to the KKT conditions, i.e., Eq.(3-6), we can obtain three cases:

Case 1:
$$\alpha_i^* = 0, \xi_i^* = 0 \Rightarrow OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*)^2 \leq r^{*2};$$

Case 2: $0 < \alpha_i^* < \frac{1}{\nu|X|}, \xi_i^* = 0 \Rightarrow OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*)^2 = r^{*2};$
Case 3: $\alpha_i^* = \frac{1}{\nu|X|}, \xi_i^* \geq 0 \Rightarrow OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*)^2 \geq r^{*2}.$

In Case 1, we can observe that $OD(w_i^*,\phi, \pmb{x}_i,\pmb{c}^*)=r^*$ for $\alpha_i^*=0$. Similarly, in Case 3, it can be obtained that $OD(w_i^*,\phi,\pmb{x}_i,\pmb{c}^*)=r^*$ for $\alpha_i^*=\frac{1}{\nu|X|}$. Hence, it is constant.

cluded that α_i^* can take the values 0 and $\frac{1}{\nu|X|}$ when $OD(w_i^*, \phi, x_i, c^*) = r^*$ in Case 2:

$$\begin{split} &U = \left\{i: \alpha_i^* = 0, \; OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*) < r^*\right\}, \\ &R = \left\{i: \alpha_i^* \in \left[0, \frac{1}{\nu|X|}\right], \; OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*) = r^*\right\}, \\ &N = \left\{i: \alpha_i^* = \frac{1}{\nu|X|}, \; OD(w_i^*, \phi, \boldsymbol{x}_i, \boldsymbol{c}^*) > r^*\right\}. \end{split}$$

APPENDIX B PROOF OF LEMMA 3

Proof. Let $g(\alpha) = \alpha^{\top} Q \alpha - f^{\top} \alpha$ be the matrix form of the objective function in EAMOD(α)-problem. By Lemma 2, we have

$$\langle \nabla g(\boldsymbol{\alpha}_t), \boldsymbol{\alpha}_{t-1} + \boldsymbol{\beta} - \boldsymbol{\alpha}_t \rangle \ge 0,$$

 $\langle \nabla g(\boldsymbol{\alpha}_{t-1}), \boldsymbol{\alpha}_t - \boldsymbol{\alpha}_{t-1} \rangle \ge 0,$

expanding the above two inequalities, then

$$2\boldsymbol{\alpha}_{t}^{\top}\boldsymbol{Q}\boldsymbol{\alpha}_{t-1} + 2\boldsymbol{\alpha}_{t-1}^{\top}\boldsymbol{Q}\boldsymbol{\beta}$$
$$-2\boldsymbol{\alpha}_{t-1}^{\top}\boldsymbol{Q}\boldsymbol{\alpha}_{t} - \boldsymbol{f}^{\top}\boldsymbol{\alpha}_{t-1} - \boldsymbol{f}^{\top}\boldsymbol{\beta} + \boldsymbol{f}^{\top}\boldsymbol{\alpha}_{t} \ge 0, \quad (11)$$

$$2\boldsymbol{\alpha}_{t-1}^{\top}\boldsymbol{Q}\boldsymbol{\alpha}_{t} - 2\boldsymbol{\alpha}_{t-1}^{\top}\boldsymbol{Q}\boldsymbol{\alpha}_{t-1} + \boldsymbol{f}^{\top}\boldsymbol{\alpha}_{t-1} - \boldsymbol{f}^{\top}\boldsymbol{\alpha}_{t} \ge 0. \quad (12)$$

Adding Eq.(11) and Eq.(12), the inequality below holds

$$oldsymbol{lpha}_t^{ op} oldsymbol{Q} oldsymbol{lpha}_t - oldsymbol{lpha}_t^{ op} oldsymbol{Q} \left(2oldsymbol{lpha}_{t-1} + oldsymbol{eta}
ight) \leq - rac{oldsymbol{f}^{ op} oldsymbol{eta}}{2} - oldsymbol{lpha}_{t-1}^{ op} oldsymbol{Q} oldsymbol{lpha}_{t-1}.$$

Since $\boldsymbol{c} = \boldsymbol{\Psi}^{\intercal} \boldsymbol{\alpha}$, $\boldsymbol{\alpha}_t^{\intercal} \boldsymbol{Q} \boldsymbol{\alpha}_t = \boldsymbol{\alpha}_t^{\intercal} \boldsymbol{\Psi} \boldsymbol{\Psi}^{\intercal} \boldsymbol{\alpha}_t = \boldsymbol{c}_t^{\intercal} \boldsymbol{c}_t$ and $\boldsymbol{\alpha}_{t-1}^{\intercal} \boldsymbol{Q} \boldsymbol{\alpha}_{t-1} = \boldsymbol{\alpha}_{t-1}^{\intercal} \boldsymbol{\Psi} \boldsymbol{\Psi}^{\intercal} \boldsymbol{\alpha}_{t-1} = \boldsymbol{c}_{t-1}^{\intercal} \boldsymbol{c}_{t-1}$ will be obtained. Let $\boldsymbol{\theta}_{t-1} = \left(2\boldsymbol{c}_{t-1} + \boldsymbol{\beta}^{\intercal} \boldsymbol{\Psi}\right)/2$. And then, we have $\boldsymbol{\alpha}_t^{\intercal} \boldsymbol{Q} \left(2\boldsymbol{\alpha}_{t-1} + \boldsymbol{\beta}\right) = \boldsymbol{c}_t^{\intercal} \boldsymbol{\theta}_{t-1}$. Both sides of the inequality are simultaneously added by $\boldsymbol{\theta}_{t-1}^{\intercal} \boldsymbol{\theta}_{t-1}$, the inequality is transformed as

$$\boldsymbol{c}_t^{\top} \boldsymbol{c}_t - 2 \boldsymbol{c}_t^{\top} \boldsymbol{\theta}_{t-1} + \boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\theta}_{t-1} \leq -\frac{\boldsymbol{f}^{\top} \boldsymbol{\beta}}{2} + \boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\theta}_{t-1} - \boldsymbol{c}_{k-1}^{\top} \boldsymbol{c}_{k-1}.$$

Finally, we can get
$$dis(\mathbf{c}_t, \boldsymbol{\theta}_{t-1})^2 \leq \zeta^2$$
.

APPENDIX C PROOF OF THEOREM 1

Proof.

$$\begin{split} &OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{c}_t^*) \\ \leq &OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) + dis(\boldsymbol{c}_t^*, \boldsymbol{\theta}_{t-1}^*) \\ \leq &OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) + \zeta, \end{split}$$

and

$$OD(w_i^* \phi, \boldsymbol{x}_i, \boldsymbol{c}_t^*)$$

$$\geq OD(w_i^* \phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) - dis(\boldsymbol{c}_t^*, \boldsymbol{\theta}_{t-1}^*)$$

$$\geq OD(w_i^* \phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) - \zeta.$$

APPENDIX D PROOF OF THEOREM 2

Proof. (Outline) From the property of ν_t , we know that $|R \cup N| \ge \nu_t |X|$, which indicates the bound should separate at least $\lfloor \nu_t |X| \rfloor$ errors. Meanwhile, $|N| \le \nu_t |X|$, which means the hypersphere should separate at most $\lceil \nu_t |X| \rceil$ errors.

Based on the above analysis, r^* is bounded by the upper and lower boundaries outside the hypersphere. The radius r should fulfill $OD_{\lfloor \nu_t | X | \rfloor}^* \leq r^*$ and $OD_{\lceil \nu_t | X | \rceil}^* \geq r^*$. For each OD_i^* ($i \in [1, |X|]$), OD^{up} and OD^{low} satisfy $OD_i^{low} \leq OD_i^* \leq OD_i^{up}$. Therefore, r satisfies $r^{up} = OD_{\lceil \nu_t | X | \rceil}^{up} \geq r_*$ and $r^{low} = OD_{\lceil \nu_t | X | \rceil}^{low} \leq r^*$.

APPENDIX E PROOF OF THEOREM 3

Proof. (Outline) According to Lemma 1, for an instance x_i , $OD(w_i^*\phi, x_i, c_t^*) < r^* \Rightarrow \alpha_i^{t*} = 0$. Based on Theorems 1 and 2, we have

$$OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{c}_t^*) \leq OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) + \zeta.$$

Therefore, the inequality $OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{c}_t^*) \leq OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) + \zeta < r^{low} \leq r^*$ can be obtained. If $OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) + \zeta < r^{low}$, then $OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{c}_t^*) < r^*$. Similarly, we can get $OD(w_i^*\phi, \boldsymbol{x}_i, \boldsymbol{\theta}_{t-1}^*) - \zeta > r^{up}$.