This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) EP 1 162 196 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 12.12.2001 Bulletin 2001/50

(21) Application number: 00987728.3

(22) Date of filing: 22.12.2000

(51) Int CI.7: **C07D 209/12**, C07D 235/18, C07D 235/30, C07D 401/04, C07D 401/10, C07D 401/12, C07D 401/14, C07D 403/12, C07D 405/04, C07D 405/12, C07D 409/04, C07D 409/12, C07D 409/14, C07D 413/04, C07D 413/12, C07D 471/04, C07D 487/04

(86) International application number: PCT/JP00/09181

(87) International publication number: WO 01/47883 (05.07.2001 Gazette 2001/27)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 27.12.1999 JP 36900899

(71) Applicant: Japan Tobacco Inc. Tokyo 105-8422 (JP)

(72) Inventors:

 HASHIMOTO, Hiromasa, Ctr. Pharm. Res. Inst. Japan Takatsuku-shi, Osaka 569-1125 (JP) MIZUTANI, Kenji, Ctr. Pharm. Res. Inst. of Japan Takatsuki-shi, Osaka 569-1125 (JP)

 YOSHIDA, Atsuhito, Ctr. Pharm. Res. Inst. Japan Takatsuki-shi, Osaka 569-1125 (JP)

(74) Representative:

von Kreisler, Alek, Dipt.-Chem. et al Patentanwälte von Kreisler-Selting-Werner Postfach 10 22 41 50462 Köln (DE)

(54) FUSED-RING COMPOUNDS AND USE THEREOF AS DRUGS

(57) The present invention provides a fused ring compound of the following formula [i]

wherein each symbol is as defined in the specification, a pharmaceutically acceptable salt thereof, and a therapeutic agent for hepatitis C, which contains this compound. The compound of the present invention shows an anti-hapatitis C virus (HCV) action based on the HCV polymerase inhibitory activity, and is useful as a therapeutic agent or prophylactic agent for hepatitis C.

Description

Technical Field

[0001] The present invention relates to a novel fused ring compound and a pharmaceutically acceptable salt thereof useful as a therapeutic agent for hepatitis C. The present invention also relates to a novel use of a certain fused ring compound or a pharmaceutically acceptable salt thereof as a therapeutic agent for hepatitis C. More particularly, the present invention relates to a therapeutic agent for hepatitis C, which contains a novel fused ring compound or a pharmaceutically acceptable salt thereof, which is effective for the prophylaxis or treatment of hepatitis C and which shows anti-hepatitis C virus (HCV) activity, particularly anti-HCV activity based on an RNA-dependent RNA polymerase inhibitory activity.

Background Art

35

- [0002] In 1989, a main causative virus of non-A non-B posttransfusion hepatitis was found and named hepatitis C virus (HCV). Since then, several types of hepatitis viruses have been found besides type A, type B and type C, wherein hepatitis caused by HCV is called hepatitis C.
 - [0003] The patients infected with HCV are considered to involve several percent of the world population, and the infection with HCV characteristically becomes chronic.
- [0004] HCV is an envelope RNA virus, wherein the genome is a single strand plus-strand RNA, and belongs to the 20 genus Hepacivirus of Flavivirus (from The International Committee on Taxonomy of Viruses, International Union of Microbiological Societies). Of the same hepatitis viruses, for example, hepatitis B virus (HBV), which is a DNA virus, is eliminated by the immune system and the infection with this virus ends in an acute infection except for neonates and infants having yet immature immunological competence. In contrast, HCV somehow avoids the immune system of the host due to an unknown mechanism. Once infected with this virus, even an adult having a mature immune system 25 frequently develops persistent infection.
 - [0005] When chronic hepatitis is associated with the persistent infection with HCV, it advances to cirrhosis or hepatic cancer in a high rate. Enucleation of tumor by operation does not help much, because the patient often develops recurrent hepatic cancer due to the sequela inflammation in non-cancerous parts.
- [0006] Thus, an effective therapeutic method of hepatitis C is desired. Apart from the symptomatic therapy to suppress inflammation with an anti-inflammatory agent, the development of a therapeutic agent that reduces HCV to a low level free from inflammation and that eradicates HCV has been strongly demanded.
 - [0007] At present, a treatment with interferon is the only effective method known for the eradication of HCV. However, interferon can eradicate the virus only in about one-third of the patient population. For the rest of the patients, it has no effect or provides only a temporary effect. Therefore, an anti-HCV drug to be used in the place of or concurrently with interferon is awaited in great expectation.
 - [0008] In recent years, Ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) has become commercially available as a therapeutic agent for hepatitis C, which is to be used concurrently with interferon. It enhances the efficacy of interferon but only to a low efficacy rate, and a different novel therapeutic agent for hepatitis C is desired.
- [0009] Also, an attempt has been made to potentiate the immunocompetence of the patient with an interferon agonist, 40 an interleukin-12 agonist and the like, thereby to eradicate the virus, but an effective pharmaceutical agent has not
 - [0010] In addition, the inhibition of HCV growth, wherein HCV-specific protein is targeted, has been drawing attention
- [0011] The gene of HCV encodes a protein such as serine protease, RNA helicase, RNA-dependent RNA polymerase and the like. These proteins function as a specific protein essential for the growth of HCV.
 - [0012] One of the specific proteins, RNA-dependent RNA polymerase (hereinafter to be also briefly referred to as an HCV polymerase), is an enzyme essential for the growth of the virus. The gene replication of HCV having a plusstrand RNA gene is considered to involve synthesis of a complementary minus-strand RNA by the use of the plusstrand RNA as a template, and, using the obtained minus-strand RNA as a template, amplifying the plus-strand RNA. The portion called NS5B of a protein precursor, that HCV codes for, has been found to show an RNA-dependent RNA polymerase activity (EMBO J., 15, 12-22, 1996), and is considered to play a central role in the HCV gene replication. [0013] Therefore, an HCV polymerase inhibitor can be a target in the development of an anti-HCV drug, and the development thereof is eagerly awaited. However, an effective HCV polymerase inhibitor has not been developed yet, like in other attempts to develop an anti-HCV drug based on other action mechanisms. As the situation stands, no pharmaceutical agent can treat hepatitis C satisfactorily.
 - [0014] The following discloses known compounds relatively similar to the compound of the present invention.
 - [0015] A known therapeutic agent for hepatitis C having a benzimidazole skeleton is disclosed in WO97/36866,

Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) and WO99/51619. [0016] WO97/36866 discloses the following compound D and the like, and HCV helicase inhibitory activity of the compounds.

[0017] Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) discloses the following compound E and the like, and WO99/51619 discloses the following compound F and the like, in both of which a possibility of these compounds being effective as an HCV inhibitor is mentioned.

[0018] However, these publications do not include the compound disclosed in the present specification, or a disclosure suggestive thereof.

10

15

20

25

30

40

45

50

[0019] A known anti-hepatitis virus agent having a benzimidazole skeleton is disclosed in Japanese Patent Application under PCT laid-open under kohyo No. 2000-503017 (WO97/25316) and Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 (WO96/7646).

[0020] WO97/25316 discloses the following compound A and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as hepatitis B virus and the like. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

[0021] Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 discloses the following compound B and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as herpesvirus and hepatitis B virus. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

[0022] The benzimidazole derivatives having an antiviral activity have been disclosed in JP-A-3-31264, US3644382 and US3778504. In addition, WO98/37072 discloses, as a production inhibitor of tumor necrosis factor (TNF) and cyclic AMP, a benzimidazole derivative for the use as an anti-human immunodeficiency virus (HIV) agent and an anti-inflammation agent. WO98/05327 discloses, as a reverse transcriptase inhibitor, a benzimidazole derivative for the use as an anti-HIV agent. J. Med. Chem. (13(4), 697-704, 1970) discloses, as a neuraminidase inhibitor, a benzimidazole derivative for the use as an anti-influenza virus agent.

[0023] However, none of these publications includes the compound of the present invention or a description regarding

or suggestive of an anti-HCV effect.

[0024] Known benzimidazole derivatives having a pharmaceutical use other than as an antiviral agent are disclosed in JP-A-8-501318 (US5824651) and JP-A-8-134073 (US5563243). These publications disclose the following compound C and the like as a catechol diether compound, and the use thereof as an anti-inflammation agent. However, neither of the publications includes the compound of the present invention, and as the action mechanism, the former discloses phosphodiesterase IV and the latter discloses TNF. These publications do not include a description regarding or suggestive of an anti-HCV effect.

[0025] Japanese Patent Application under PCT laid-open under kohyo No. 2000-159749 (EP882718) discloses the following compound G and the like, and the use thereof for the treatment of bronchitis, glomerulonephritis and the like. However, this publication does not include the compound of the present invention, but discloses only a phosphodiesterase IV inhibitory and hypoglycemic action. This publication does not include a description regarding or suggestive of an anti-HCV effect.

[0026] WO98/50029, WO98/50030 and WO98/50031 disclose benzimidazole derivatives as an antitumor agent having a protein isoprenyl transferase action. While this publication discloses a wide scope of the claims, at least it does not include a compound analogous to the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.

[0027] JP-A-8-109169 (EP694535) discloses the application of a tachykinin receptor antagonist to treat an inflammatory disease, and WO96/35713 discloses the application thereof as a growth hormone release promoter to treat a growth hormone-related disease such as osteoporosis and the like. However, none of these publications includes a description regarding or suggestive of an anti-HCV effect.

[0028] JP-A-53-14735 discloses a benzimidazole derivative as a brightener besides its pharmaceutical use, but this publication does not include the compound of the present invention.

Disclosure of the Invention

15

20

25

30

35

45

50

55

[0029] Based on the findings from the preceding studies, it has been elucidated that a pharmaceutical agent having an anti-HCV activity is effective for the prophylaxis and treatment of hepatitis C, and particularly an anti-HCV agent having an inhibitory activity on RNA-dependent RNA polymerase of HCV can be a prophylactic and therapeutic agent effective against hepatitis C and a prophylactic and therapeutic agent for the disease caused by hepatitis C.

[0030] Accordingly, the present invention provides a pharmaceutical agent having an anti-HCV activity, particularly a pharmaceutical agent having an RNA-dependent RNA polymerase inhibitory activity.

[0031] The present inventors have made an in-depth study of compounds having an anti-HCV activity, particularly RNA-dependent RNA polymerase inhibitory activity, and completed the present invention.

[0032] Thus, the present invention provides the following (1) to (43).

(1) A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:

wherein

5

10

15

20

25

30

35

40

45

50

55

a broken line is a single bond or a double bond,

G ¹	is C(-R1) or a nitrogen atom,
G ²	is C(-R2) or a nitrogen atom,
G ³	is C(-R ³) or a nitrogen atom,
G ⁴	is C(-R4) or a nitrogen atom,
05 06 08 1 00	and the state of t

G⁵, G⁶, G⁸ and G⁹ are each independently a carbon atom or a nitrogen atom,

G⁷ is C(-R⁷), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R⁸,

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom,

- (2) C₁₋₆ alkanoyi,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,
 - (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COOR^{a1}
 - wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl,

halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

- $-(CH_2)_r COOR^{b1}, -(CH_2)_r CONR^{b1}R^{b2}, -(CH_2)_r NR^{b1}R^{b2}, -(CH_2)_r NR^{b1} COR^{b2}, -(CH_2)_r NR^{b1} COR^{b2}, -(CH_2)_r NR^{b1}, -(CH_2)_r SO_2R^{b1}, -(CH_2)_r SO_2R^{b1} (CH_2)_r (CH$
- wherein R^{b1} and R^{b2} are each independently hydrogen atom or C₁₋₆ alkyl and r is 0 or an integer of 1 to 6, (8) -CONR^{a2}R^{a3}
 - wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),
 - (9) -C(=NRa4)NH₂
- wherein Ra4 is hydrogen atom or hydroxyl group,
 - (10) -NHRa5

wherein Ra5 is hydrogen atom, C₁₋₆ alkanoyl or C₁₋₆ alkylsulfonyl,

(11) -ORa6

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino

(13) -P(=O)(ORa31)2

wherein Ra31 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

 ${\sf R}^7$ and ${\sf R}^8$ are each hydrogen atom or optionally substituted ${\sf C}_{\sf 1-6}$ alkyl(as defined above), ring ${\sf Cy}$ is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,

(2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

5

10

15

20

30

35

40

45

wherein u and v are each independently an integer of 1 to 3,

ring A is

(1) C₆₋₁₄ aryl,

(2) C₃₋₈ cycloalkyl,

(3) C₃₋₈ cycloalkenyl or

(4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

R5 and R6 are each independently 25

(1) hydrogen atom,

(2) halogen atom,

(3) optionally substituted C₁₋₆ alkyl (as defined above) or

(4) -ORa8

wherein R^{aB} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and

X is

(1) hydrogen atom,

(2) halogen atom,

(3) cyano,

(4) nitro,

(5) amino, C₁₋₆ alkanoylamino.

(6) C₁₋₆ alkylsulfonyl,

(7) optionally substituted C₁₋₆ alkyl(as defined above),

(8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,

(9) -COORa9

wherein Ra9 is hydrogen atom or C₁₋₆ alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein R^{a11} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above)

or

(12)

55

wherein ring B is (1') C₆₋₁₄ aryl, 5 (2') C₃₋₈ cycloalkyl or (3') heterocyclic group (as defined above), each Z is independently 10 (1') a group selected from the following group D, (2') C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (3') C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (4') C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D 15 wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D: 20 (a) hydrogen atom, (b) halogen atom, (c) cyano, (d) nitro, (e) optionally substituted C₁₋₆ alkyl (as defined above), 25 (f) -(CH₂)_t-CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1") optionally substituted C₁₋₆ alkyl (as defined above), 30 (2") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, 35 (g) -(CH₂)_t-COORa19 wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂),-CONRa27Ra28 wherein Ra27 and Ra28 are each independently, 40 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 45 (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or 50 (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (i)-(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C₁₋₆ alkyl, (j) -(CH₂)_t-ORa20 55 wherein Ra20 is (1") hydrogen atom,

```
(2") optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                         (3") optionally substituted C<sub>2-6</sub> alkenyl (as defined above),
                         (4°) C<sub>2-6</sub> alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
                         (5") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
  5
                        (6") C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                        (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                        (8") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                        (9") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
                        (10") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group
 10
                   (k) -(CH<sub>2</sub>)<sub>t</sub>-O-(CH<sub>2</sub>)<sub>p</sub>-CORa21
                   wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected
                   from the above group B, and p is 0 or an integer of 1 to 6,
 15
                   (1) -(CH<sub>2</sub>)<sub>t</sub>-NRa22Ra23
                  wherein Ra22 and Ra23 are each independently
                       (1") hydrogen atom,
                       (2") optionally substituted C_{1-6} alkyl (as defined above),
20
                       (3") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                       (4") C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
                       (5") heterocycle C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                 (m) -(CH<sub>2</sub>),-NRa29CO-Ra24
                 wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined
25
                 above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic
                 group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                 (n) -(CH<sub>2</sub>)<sub>t</sub>-NHSO<sub>2</sub>-Ra25
                 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally sub-
                 stituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
30
                 by 1 to 5 substituent(s) selected from the above group B,
                 (o) -(CH2)1-S(O)g-Ra25
                 wherein Ra25 is as defined above, and q is 0, 1 or 2,
                        and
                 (p)-(CH<sub>2</sub>)<sub>t</sub>-SO<sub>2</sub>-NHRa26
                wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally
                substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
                by to 5 substituent(s) selected from the above group B,
                  w is an integer of 1 to 3, and
                  Y is
                (1') a single bond,
                (2') C<sub>1-6</sub> alkylene,
                (3') C2-6 alkenylene,
                (4') - (CH_2)_m - O - (CH_2)_n -
               (hereinafter m and n are each independently 0 or an integer of 1 to 6),
                (5') -CO-,
                (6') -CO2-(CH2)n-,
                (7°) -CONH-(CH<sub>2</sub>)<sub>n</sub>-NH-,
               (8') -NHCO<sub>2</sub>-,
               (9') -NHCONH-,
               (10') -O-(CH<sub>2</sub>)<sub>n</sub>-CO-,
               (11') -O-(CH<sub>2</sub>)<sub>n</sub>-O-,
               (12') -SO<sub>2</sub>-,
               (13') -(CH<sub>2</sub>)<sub>m</sub>-NRa12-(CH<sub>2</sub>)<sub>n</sub>-
                     wherein Ra12 is
```

35

40

45

50

- (1") hydrogen atom,
- (2") optionally substituted C₁₋₆ alkyl (as defined above),
- (3") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
- (5") -CORb5

wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

- (6") -COORb5 (Rb5 is as defined above) or
- (7") -SO₂Rb5 (Rb5 is as defined above),

(14") -NRa12CO- (Ra12 is as defined above),

(15') -CONRa13-(CH₂)_n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHRa14-

wherein $R^{a_{14}}$ is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O-(CH₂)_m-CR^{a₁₅}Ra¹⁶-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

20

25

30

15

5

10

- (1") hydrogen atom,
- (2") carboxyl,
- (3") C₁₋₆ alkyl,
- (4") -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

(5") -NHR^{b7}

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6")

 $-(CH_2)^{\frac{1}{n}}$ $(Z')^{\frac{1}{N}}$

35

40

45

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18')- $(CH_2)_n$ -NRa12-CHRa15- (Ra12 and Ra15 are each as defined above),
- (19') -NRa17SO₂-

wherein Ra17 is hydrogen atom or C₁₋₆ alkyl or

- (20') $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above).
- (2) The therapeutic agent of (1) above, wherein 1 to 4 of the G¹, G², G³, G⁴, G⁵, G⁶, G⁷, G⁸ and G⁹ is (are) a nitrogen atom.
- (3) The therapeutic agent of (2) above, wherein G2 is C(-R2) and G6 is a carbon atom.
- (4) The therapeutic agent of (2) or (3) above, wherein G5 is a nitrogen atom.
- (5) The therapeutic agent of (1) above, wherein, in formula [I], the moiety

50

55

G²-G¹, G⁸-G⁷, G⁶-G⁵

is a fused ring selected from

(6) The therapeutic agent of (5) above, wherein, in formula [I], the moiety

is a fused ring selected from

(7) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-1]

wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.

(8) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [1-2]

$$\begin{array}{c|c}
R^2 & & \\
\hline
R^3 & & \\
\hline
R^4 & & \\
\hline
Cy & & \\
\end{array}$$

$$\begin{array}{c|c}
R^6 & \\
\hline
R^6 & \\
\end{array}$$

$$\begin{bmatrix}
I-2
\end{bmatrix}$$

wherein each symbol is as defined in (1),

10

15

20

25

30

35

40

45

50

- or a pharmaceutically acceptable salt thereof as an active ingredient.
- (9) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & & & \\
R^3 & & & \\
\hline
 & & & \\
 & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(10) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-4]

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
 R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^6 & \\
\hline
 R^7 & Cy$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(11) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3} or -SO₂R^{a7} wherein R^{a1}, R^{a2}, R^{a3} and R^{a7} are as defined in (1).

(12) The therapeutic agent of any of (1) to (11) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cyclohexyl or tetrahydrothiopyranyl.

(13) The therapeutic agent of any of (1) to (12) above, wherein the ring A is C_{6-14} aryl.

(14) A fused ring compound of the following formula [II]

$$G^{z}$$
 G^{1}
 G^{3}
 G^{4}
 G^{5}
 G^{6}
 G^{6

wherein the moiety

5

10

15

20

25

30

35

40

45

50

55

is a fused ring selected from

wherein R^1 , R^2 , R^3 and R^4 are each independently,

(1) hydrogen atom,

(2) C₁₋₆ alkanoyl, (3) carboxyl, (4) cyano, (5) nitro, (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino, (7) -COORa1 wherein Ra1 is optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B, 10 group B; halogen atom, cyano, nitro, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-ORb1, -(CH2),-SRb1, -(CH2),-SO2Rb1 and -(CH2),-SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3 wherein Ra2 and Ra3 are each independently hydrogen atom, C₁₋₆ alkoxy or optionally substituted C₁₋₆ alkyl 15 (as defined above), (9) -C(=NR84)NH2 wherein Ra4 is hydrogen atom or hydroxyl group, (10) -NHRa5 20 wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl, (11) -ORa6 wherein Ra6 is hydrogen atom or optionally substituted C_{1.6} alkyl (as defined above), (12) -SO₂Ra7 wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino 25 (13) -P(=O) (ORa31)2 wherein Ra31 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and R7 is hydrogen atom or optionally substituted 30 C₁₋₆ alkyl (as defined above), ring Cy' is (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group 35 C; hydroxyl group, halogen atom, C₁₋₆ alkyl and C₁₋₆ alkoxy, or 40 45 wherein u and v are each independently an integer of 1 to 3, ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl, R5' and R6' are each independently 50 (1) hydrogen atom, (2) halogen atom, (3) optionally substituted C₁₋₆ alkyl (as defined above) or (4) hydroxyl group

13

55

ring B is

(1) C₆₋₁₄ aryl,

(2) C3-8 cycloalkyl or (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a 5 each Z is independently (1) a group selected from the following group D, (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or 10 (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D: 15 (a) hydrogen atom. (b) halogen atom, (c) cyano, (d) nitro, (e) optionally substituted C₁₋₆ alkyl (as defined above), 20 (f) -(CH₂),-COR²18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1') optionally substituted C₁₋₆ alkyl (as defined above), 25 (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom. 30 (g) -(CH₂)_t-COOR^{a19} wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂)_t-CONRa27Ra28 35 wherein Ra27 and Ra28 are each independently, (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 40 (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B. (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 45 wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or 50 (8") C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B. (i) -(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C1-6 alkyl, 55 (j) -(CH₂)₁-ORa20 wherein Ra20 is

14

(1') hydrogen atom.

(4') C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,

(2') optionally substituted C_{1-6} alkyl (as defined above), (3') optionally substituted C_{2-6} alkenyl (as defined above),

(5') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 5 (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (7) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (8') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 group B. (9') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or (10') C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 (k) - (CH₂)_t-O-(CH₂)_p-COR^{a21} wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6, (I) -(CH₂)_t-NR^{a22}R^{a23} wherein Ra22 and Ra23 are each independently 20 (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 25 (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (m) -(CH₂)_t-NR^{a29}CO-R^{a24} 30 wherein Ra29 is hydrogen atom, C₁₋₆ alkyl or C₁₋₆ alkanoyl, Ra24 is optionally substituted C₁₋₆ alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (n)-(CH₂)_t-NHSO₂-Ra25 35 wherein Ra25 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (o) -(CH₂)_t-S(O)_a-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, 40 and (p) -(CH₂)_t-SO₂-NHRa26 wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group option-45 ally substituted by 1 to 5 substituent(s) selected from the above group B, is an integer of 1 to 3, and is (1) a single bond, 50 (2) C₁₋₆ alkylene, (3) C₂₋₆ alkenylene, (4) -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), 55 (5) -CO-, (6) $-CO_2-(CH_2)_{n}$ -, (7) -CONH-(CH2)n-NH-, (8) -NHCO2-,

(9) -NHCONH-,
(10) -O-(CH₂)_n-CO-,
(11) -O-(CH₂)_n-CO-,
(11) -O-(CH₂)_n-O-,
(12) -SO₂-,
(13) -(CH₂)_m-NRa₁₂-(CH₂)_nwherein Ra₁₂ is

(1') hydrogen atom,
(2') optionally substituted C₁₋₆ alkyl (as defined above),
(3') C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
(4') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
(5') -CORb5
wherein Rb5 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
(6') -COORb5 is as defined above) or

(14) -NRa12CO- (Ra12 is as defined above),

(7') -SO₂R^{b5} (R^{b5} is as defined above),

(15) -CONRa13-(CH₂)_n-

wherein Ra13 is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16) -CONH-CHR^{a14}wherein R^{a14} is C_{B-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
(17) -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

- (1') hydrogen atom,
- (2') carboxyl,
- (3') C₁₋₆ alkyl,
- (4') -ORb6

wherein Rb6 is C₁₋₆ alkyl or C₆₋₁₄ aryl C₁₋₆ alkyl, or

(5') -NHRb7

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6')

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18) -(CH₂)_n-NRa12-CHRa15- (Ra12 and Ra15 are each as defined above),

(19) -NRa17SO2-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20) $-S(O)_e-(CH_2)_m-CR^{a15}R^{a16}-(CR_2)_n$ (e is 0, 1 or 2, R^{a15} and R^{a16} are each as defined above),

or a pharmaceutically acceptable salt thereof.

(15) The fused ring compound of (14) above, which is represented by the following formula [II-1]

16

55

50

5

10

15

20

25

30

35

40

$$\begin{array}{c|c}
R^2 & R^7 & R^{6} \\
R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^6 & Y & B \\
R^6 & Y & B
\end{array}$$

$$\begin{array}{c|c}
R^6 & Y & B \\
R^6 & Y & B
\end{array}$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

5

10

15

20

25

35

40

45

50

55

(16) The fused ring compound of (14) above, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & R^1 \\
R & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^{6} & Y & B \\
\hline
R^{6} & Y & B
\end{array}$$

$$\begin{array}{c|c}
R^{10} & 11-2 \\
\hline
R^{10} &$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(17) The fused ring compound of (14) above, which is represented by the following formula [II-3]

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(18) The fused ring compound of (14) above, which is represented by the following formula [II-4]

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

5

10

20

25

30

35

40

45

50

55

(19) The fused ring compound of any of (14) to (18) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1} or -SO₂R^{a7} wherein R^{a1} and R^{a7} are as defined in (14), or a pharmaceutically acceptable salt thereof.

(20) The fused ring compound of (19) above, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is as defined in (14), or a pharmaceutically acceptable salt thereof.

(21) The fused ring compound of (20) above, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.

(22) The fused ring compound of any of (14) to (21) above, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.

(23) The fused ring compound of (22) above, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.

(24) The fused ring compound of any of (14) to (23) above, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyridinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.

(25) The fused ring compound of (24) above, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.

(26) The fused ring compound of (25) above, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

(27) The fused ring compound of any of (14) to (26) above, wherein the Y is -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, -(CH₂)_m-NR^{a12}-(CH₂)_n-, -CONR^{a13}-(CH₂)_n-, -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- or -(CH₂)_n-NR^{a12}-CHR^{a15}- (wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.

(28) The fused ring compound of (27) above, wherein the Y is - $(CH_2)_m$ -O- $(CH_2)_n$ - or -O- $(CH_2)_m$ -CRa¹⁵Ra¹⁶. $(CH_2)_n$ - (wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.

(29) The fused ring compound of (28) above, wherein the Y is -(CH₂)_m-O-(CH₂)_n- wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(30) The fused ring compound of any of (14) to (29) above, wherein the R² is carboxyl, R¹, R³ and R⁴ are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

(31) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 1), 2-[4-(3-bromophenoxy)phonyl] 1, gralabasylbenzimidazole-5-carboxylate (Example 1),

2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2), ethyl 1-cyclohexyl-2-(4-bydronyberyl) acid (Example 2),

ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 3),

ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 4), ethyl 2-[4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 5),

2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 6),

ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 7), ethyl 2-[4-(2-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 8),

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 9),

ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate (Example 10), 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid (Example 11),

```
2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 12),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide (Example 13),
              2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (Example 14),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime (Example 15),
              ethyl 1-cyclohexyl-2-{4-{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxy-
 5
              late (Example 16),
              1-cyclohexyl-2-(4-((4-fluorophenyl)-2-methyl-5-thiazolyl)-methoxylphenyl)benzimidazole-5-carboxylic ac-
              id (Example 17),
              ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 18),
10
              ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example
              2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              20).
              ethyl 1-cyclopentyl-2- (4-nitrophenyl)benzimidazole-5-carboxylate (Example 21),
15
              ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 22),
              ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 23),
              2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 24),
              ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 25),
              2-{4-{3-(3-chlorophenyl)phenoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 26),
20
              ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 27),
              ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate (Example 28),
              ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylate (Example 29),
              1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylic acid (Example 30),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 31).
25
              ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5- carboxylate (Example 32).
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide (Example 33),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide (Example 34),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole (Example 35),
              5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 36),
30
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
              ride (Example 37).
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole (Example 38),
              5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride (Example 39).
              5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 40),
35
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole (Example 41),
              5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 42),
              2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 43),
              2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 44),
              2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 45),
              2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 46),
40
              1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 47),
              1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 48),
              1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride (Example 49),
              1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 50),
45
              1-cyclopentyl-2-{4-{(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid (Example
              51).
              1-cyclopentyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylic acid (Example 52),
             [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid (Example 53),
             2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 54),
50
             2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 55),
             2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid (Example 56),
             2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 57),
              1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid (Example 58),
             2-{4-(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 59).
55
             2-{4-{(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 60).
             2-{4-{(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
             trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol (Example 62),
```

```
trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane (Example 63),
                 2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole (Example 64),
                2-[1-benzyloxycarbonyl-4-piperidyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 65),
                2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 66),
                1-cyclopentyl-2-[4- (3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 67),
   5
                1-cyclopentyl-2-[4- (3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 68),
                1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5-carboxylic acid (Example 69),
                1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 70),
                 1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid (Example 71),
                trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane (Example 72),
  10
                2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole (Example 73),
                2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 74),
                2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
                75),
                2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 76),
  15
                1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid (Example 77),
                2-(1-benzyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 78),
                2-(1-benzoyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 79),
                1-cyclopentyl-2-[1-(p-toluenesulfonyl)-4-piperidyl]benzimidazole-5-carboxylic acid (Example 80),
               1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 81),
 20
                1-cyclohexyl-2-[4- (diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 82),
               1-cyclohexyl-2- [4- (3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 83),
               2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid (Example 84),
               1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 85),
               1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid (Example 86),
 25
               1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-carboxylic acid (Example 87),
               2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 88),
               2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazofe-5-carboxylic acid (Example 89),
               1-cyclohexyl-2-[4- (dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 90),
 30
               2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 91),
               2-(4-benzyl-1-piperazinyl)-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 92),
               1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 93),
               2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 94),
               2-(4-benzyloxypiperidino)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 95),
               1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 96),
 35
               1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 97),
               1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 98),
              2-(3-benzyloxy-5-isoxazolyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 99),
              2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 100),
              1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 101),
40
              2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid (Example 102),
              1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 103),
              2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 104),
              2-[4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 105),
              1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 106),
45
              1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 107),
              1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 108),
              1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 109),
              1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 110),
              1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 111),
50
              1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid
                                                                                                             (Example
              112),
              1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid
                                                                                                             (Example
              113),
              1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 114),
55
              1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 115),
             1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
              acid (Example 116),
```

```
1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid (Example
               117),
              2-{4-[bis(4-chlorophenyl) methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 118),
               1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 119),
 5
              1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 120),
              1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 121),
              2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid (Example 122),
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 123),
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 124).
 10
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 125),
              2-(4-benzyloxyphenyl)-1-(3-cyclohexenyl)benzimidazole-5-carboxylic acid (Example 126),
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane (Example 127),
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 128),
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 129),
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid
15
              (Example 130),
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl)benzimidazole-5-carboxylic
                                                                                                                   acid
              (Example 131),
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 132),
20
              2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 133),
              2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 134),
              1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 135),
              1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 136),
              1-cyclohexyl-6-methyl-2- [4- (3-phenylpropoxy) phenyl]benzimidazole-5-carboxylic acid (Example 137),
              2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 138),
25
              2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 139).
              2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 140),
              2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 141),
              2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
30
              2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
              1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic
                                                                                                                 acid
              (Example 144),
35
              2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
              ple 145).
              2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              146).
              2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
40
              ple 147),
              2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 149).
              2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
45
              150).
             2-{4- [3-chloro-6- (2-trifluoromethylphenyl) benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
              (Example 151),
             2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 152),
             2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 153),
50
             2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 154),
             2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
             ylic acid (Example 155),
             2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl]-1-cyclohexylbenzimidazole-5-carbox-
             ylic acid (Example 156),
55
             2-{4-[3-chloro-6- (3,4,5-trimethoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
             (Example 157),
             2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 158),
             2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 159),
```

1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride

	(Example 160),
	1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride
	(Example 161),
5	2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 162),
	1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 163),
	1 mideband 0.14.10.10 mid to 1.1.1 mid to 1.
10	1-cyclonexyl-2-{4-[3-(3-metnyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 164),
	2-{4-[{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochloride (Example 165),
	2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 166),
15	2-{4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy)phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 167),
	2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 168),
	2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 169),
20	2-{4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 170),
•	2-{4-[3-cnloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 171),
	2-[4-(4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 172),
25	2-[4-(2-promo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 173)
25	2-{4-[3-cnioro-6-[4-chiorophenyl]benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 174),
	2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 175),
20	2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
30	pie 176),
	1-cyclohexyl-2-[4-[3-(2-propynyloxy)phenoxy]phenoxy]phenzimidazole-5-carboxylic acid (Example 177),
	1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 178),
	2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 179),
35	2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 180), 2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 181),
	2-{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 181),
	182),
	2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-
	ample 183),
40	2-{4-{2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
	104),
	2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id (Example 185),
45	2-[2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid
43	(Example 186),
	1-cyclohexyl-2-{4- [3- (2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 187),
	2-{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 188),
50	2-{4-{3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 189),
	2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
	ple 190),
	1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-
	ple 191),
55	1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-
	pie 192),
	2-{4-{{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 193),

5

10

15

20

25

30

35

40

45

50

55

2-{4-{{(2S)-1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 194), 2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 195). 1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 197). 1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl]benzimidazole-5-carboxylic acid (Example 198), 1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl) -4-oxazolyl}-methoxylphenyl}benzimidazole-5-carboxylic acid (Example 199), 2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyi]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 200). 2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 201), 1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid (Example 202), 1-cyclohexyl-2-(4-[(2S)-1- (4-nitrophenyl) -2-pyrrolidinyl)-methoxy]phenyl]benzimidazole-5-carboxylic acid (Example 203), 1-cyclohexyl-2-{4-{{(2S) -1-phenyl-2-pyrrolidinyl}methoxy]-phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 204), 2-{4-{((2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}methoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 205), 2-{4-[(5-(4-chlorophenyl)-2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 206), 2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 207), 1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 209), 1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Ex-2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 212), 2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 213), 1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 214), 2-{4-[3- (4-chlorophenyl) phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 215), 1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 216), 1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolylyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 217), 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 218), 2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 219), 1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy}-phenyl}benzimidazole-5-carboxylic acid (Example 220). 1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic (Example 221), 1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 222), 2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 223), 2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 224), 2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 226). 2-{4-{3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 227),

2-{4-[2- (4-chlorophenyl) -5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

-2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-

2-{4-{((2S)-1-(4-dimethylcarbamoylphenyl)

5-carboxylic acid (Example 228),

(Example 229),

1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 230),

1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 231), 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-5 id (Example 232). 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 233). 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 234). 10 2-{4-{(3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 235), 2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 236), 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-15 ample 237). 2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 238), 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 239), 2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 20 240), methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 241), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochloride (Example 242). 25 ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 243), methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 244). methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-30 boxylate (Example 245). methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (Example 246). methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 247), 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 35 hydrochloride (Example 248), 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 249). 2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluor-40 oacetate (Example 250), 2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 251), 2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 252), 2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 253), 1-cyclohexyl-2-{4-[{4- (4-fluorophenyl) -2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-car-45 boxylic acid (Example 254). 1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 255), 1-cyclohexyl-2-{2-fluoro-4-{4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl]benzimidazole-5-carboxylic acid (Example 256). 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-sulfonic acid (Example 50 257), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-3-cyclohexylbenzimidazole-4-carboxylic acid (Example 258). 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic 55 acid dihydrochloride (Example 259), 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]-phenyl]benzimidazole-5-carboxylic acid dihydrochloride (Example 260), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-4-carboxylic acid (Exam-

2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-

2-{4-{{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-

ple 261),

55

chloride (Example 262),

5	ple 263),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxyl-
	ic acid (Example 264),
	2-{4-{2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id hydrochloride (Example 265),
10	1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-car-
	boxylic acid hydrochloride (Example 266),
	1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxy-
	lic acid hydrochloride (Example 267),
	2-{4-{2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
15	boxylic acid hydrochloride (Example 268),
	2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 269),
	2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id hydrochloride (Example 270),
20	2-{4-{3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy}-phenyl}-1-cyclohexylbenzimidazole-
	5-carboxylic acid hydrochloride (Example 271),
	2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihy-
	drochloride (Example 272),
	2-{4-{3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-
25	5-carboxylic acid (Example 273),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 274),
	2-{4-[2-(4-chlorophenyi)-5-methoxybenzyloxy]phenyi]-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 275),
30	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 276),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(I-oxo-4-tetrahydrothiopyranyl)benzimida-
	zole-5-carboxylic acid (Example 277),
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimi-
35	dazole-5-carboxylic acid (Example 278),
	2-{4-{2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 279),
	2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 280),
40	methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxy-
	late hydrochloride (Example 281),
	2-{4-{2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid di-
	hydrochloride (Example 282),
45	2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyi}-1-cyclohexylbenzimidazole-5-carboxyl-
45	ic acid hydrochloride (Example 283),
	2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 284),
	2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
60	boxylic acid hydrochloride (Example 285),
50	2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 286),
	2-{4-{2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-
	5-carboxylic acid hydrochloride (Example 287),
	2-{4- [2-(4-chlorophenyl)-5- (2-hydroxyethyl)carbamoylbenzyloxy] -2-fluorophenyl}-1-cyclohexylbenzimida-

2-{4-[2-(4-chlorophenyl]-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimi-

2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-

zole-5-carboxylic acid hydrochloride (Example 288),

dazole-5-carboxylic acid hydrochloride (Example 289),

2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-

boxylic acid hydrochloride (Example 290),

5-carboxylic acid hydrochloride (Example 291),

2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-5 zole-5-carboxylic acid hydrochloride (Example 292), 2-{4-[2-{4-(2-carboxyethyl) phenyl}-5-chlorobenzyloxy] phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 293), 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 294), 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic 10 hydrochloride (Example 295), 2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 296), 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-15 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 298), 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 299), 2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 300), 20 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 301), sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Exampie 302), 25 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidamethyl zole-5-carboxylate (Example 303), sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 304), 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 30 (Example 305), 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 306), 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 307). 2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 35 308), 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 309), 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy-40 drochloride (Example 310). 2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 311). 2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 312), 45 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 313), methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 314), 2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 315), 2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-50 boxylic acid hydrochloride (Example 316), $\hbox{2-\{4-[2-(4-chlorophenyl]-5-(cyclohexylmethylcarbamoyl)} benzyloxy]-2-fluorophenyl\}-1-cyclohexylbenzimida-cyclohexylbenzimi$ zole-5-carboxylic acid hydrochloride (Example 317), 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-55 zole-5-carboxylic acid dihydrochloride (Example 318), 2-{4-[2- (4-chlorophenyl) -5- (N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 319), methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-1H-indole-5-carboxylate (Exam-

ple 501),
2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-1H-indole-5-carboxylic acid (Example 502),
2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid (Example 503),

ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (Example 601), 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid (Example 602), and 2-[4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid (Example 701).

5

10

15

20

25

- (32) A pharmaceutical composition comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (33) A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of (1) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (34) An anti-hepatitis C virus agent comprising a fused ring compound of any of (1) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (35) A therapeutic agent for hepatitis C comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (36) A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
- (37) A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
- (38) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
- (39) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- (40) A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier
- (41) A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- (42) A commercial package comprising a pharmaceutical composition of (40) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
- 35 (43) A commercial package comprising a pharmaceutical composition of (41) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.
 - [0033] The definitions of respective substituents and moieties used in the present specification are as follows.
- 40 [0034] The halogen atom is a fluorine atom, chlorine atom or iodine atom, preferably fluorine atom, chlorine atom or bromine atom.
 - [0035] Particularly preferably, the halogen atom is fluorine atom at R^5 , R^5 , R^6 , R^6 , group A and group C, and fluorine atom or chlorine atom at X, Z, Z', group B and group D.
 - [0036] The C₁₋₆ alkyl is straight chain or branched chain alkyl having 1 to 6 carbon atoms, and is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl and the like.
 - [0037] Preferably, it is straight chain or branched chain alkyl having 1 to 4 carbon atoms, and is particularly preferably methyl at Ra7, Ra8, Ra9, Ra15, Ra16, Ra17, Ra29, Ra33, Rb6 and Rb7 and methyl or tert-butyl at Rb1, Rb2, group B and group C.
- [0038] The halogenated C₁₋₆ alkyl is the above-defined C₁₋₆ alkyl except that it is substituted by the above-defined halogen atom. Preferably, it is halogenated alkyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, chloromethyl, 1,2-dichloromethyl, 2,2-dichloromethyl, 2,2,2-trifluoroethyl and the like.
 - [0039] The halogenated C₁₋₆ alkyl is particularly preferably trifluoromethyl at group B.
 - [0040] The C₁₋₆ alkylene is straight chain alkylene having 1 to 6 carbon atoms, and is exemplified by methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene.
 - [0041] The C₁₋₆ alkylene is preferably methylene or ethylene at Y.
 - [0042] The C_{2-6} alkenylene is straight chain alkenylene having 2 to 6 carbon atoms, and is exemplified by vinylene, propenylene, 1-butenylene, 1,3-butadienylene and the like.

[0043] The C₂₋₆ alkenylene is preferably vinylene at Y.

20

30

- [0044] The C_{1-6} alkoxy is alkyloxy wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkoxy wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy and the like.
- [0045] The C₁₋₆ alkoxy is particularly preferably methoxy at Ra2, Ra3, group A and group C.
- [0046] The C_{1-6} alkanoyl is alkylcarbonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkanoyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetyl, propionyl, butyryl, isobutyryl, pivaloyl and the like.
- [0047] The C₁₋₆ alkanoyl is particularly preferably acetyl at R¹, R², R³, R⁴, R^{a5}, R^{a29}, R^{b7} and group B.
 - [0048] The C₁₋₆ alkoxycarbonyl is alkyloxycarbonyl wherein the alkoxy moiety thereof is the above-defined C₁₋₆ alkoxy. Preferably, it is alkoxycarbonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropyloxycarbonyl, butoxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl and the like.
- [0049] The C₁₋₆ alkoxycarbonyl is particularly preferably methoxycarbonyl or ethoxycarbonyl at Ra10 and group A. [0050] The C₁₋₆ alkylamino is alkylamino or dialkylamino wherein the alkyl moiety thereof is the above-defined C₁₋₆ alkyl. Preferably, it is alkylamino or dialkylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylamino, ethylamino, propylamino, butylamino, isobutylamino, tert-butylamino, pentylamino, hexylamino, dimethylamino, diethylamino, methylathylamino, N-isopropyl-N-isobutylamino and the like.
 - [0051] The C₁₋₆ alkylamino is particularly preferably methylamino at R^{a7}, and particularly preferably dimethylamino at R^{a21} and group A.
- [0052] The C₁₋₆ alkanoylamino is alkylcarbonylamino wherein the alkanoyl moiety thereof is the above-defined C₁₋₆ alkanoyl. Preferably, it is alkylcarbonylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetylamino, propionylamino, butyrylamino, isobutyrylamino, pivaloylamino and the like.
 - [0053] The C₁₋₆ alkanoylamino is particularly preferably acetylamino at X and Ra10.
- [0054] The C₁₋₆ alkylsulfonyl is alkylsulfonyl wherein the alkyl moiety thereof is the above-defined C₁₋₆ alkyl. Preferably, it is alkylsulfonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, pentylsulfonyl, hexylsulfonyl and the like.
 - [0055] The C₁₋₆ alkylsulfonyl is particularly preferably methylsulfonyl at X and R^{a5}.
 - [0056] The C_{6-14} aryl is aromatic hydrocarbon having 6 to 14 carbon atoms. Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl and the like.
- 35 [0057] The C₆₋₁₄ aryl is preferably phenyl or naphthyl, particularly preferably phenyl at the ring A, ring B and ring B'.
 - [0058] The C_{3-8} cycloalkyl is saturated cycloalkyl having 3 to 8, preferably 5 to 7, carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclohexyl, cyclohexyl, cyclohexyl, and cycloactyl.
 - [0059] The C₃₋₈ cycloalkyl is particularly preferably cyclohexyl at the ring A, ring A', ring B and ring B'.
- 40 [0060] The C₃₋₈ cycloalkenyl is cycloalkenyl having 3 to 8, preferably 5 to 7, carbon atoms and has at least 1, preferably 1 or 2, double bond(s). Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.
 - [0061] The C₃₋₈ cycloalkenyl is preferably cyclohexenyl at the ring A and ring A'.
- 45 [0062] The heterocyclic group has, as an atom constituting the ring, 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, besides a carbon atom, and includes saturated ring and unsaturated ring, monocyclic ring and fused ring having the number of ring atom constituting the ring of 3 to 14.
 - [0063] The heterocyclic group as a monocyclic ring includes, for example, pyridyl, pyrazinyl, pyridinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl and the like.
 - [0064] Examples of the heterocyclic group as a fused ring include quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzothiazolyl and the like.
- [0065] Preferably, it is a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl and the like.

[0066] The heterocyclic group is preferably pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl which is an aromatic group, and particularly preferably pyridyl at the ring A and ring A'.

[0067] The heterocyclic group is particularly preferably pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, which is an aromatic group, at the ring B and ring B'. More preferably it is pyridyl or thiazolyl, most preferably thiazolyl.

[0068] The C_{6-14} aryl C_{1-6} alkyl is arylalkyl wherein the alkyl moiety thereof is the above-defined C_{6-14} aryl. Preferably, it is arylalkyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyl, phenethyl, 3-phenyl-propyl, 2-phenylpropyl, 4-phenylbutyl and the like.

[0069] The C₆₋₁₄ aryl C₁₋₆ alkyl is particularly preferably benzyl at R^{a8} and R^{b6}.

25

[0070] The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is arylalkyloxycarbonyl wherein the C_{6-14} aryl C_{1-6} alkyl moiety thereof is the above-defined C_{6-14} aryl C_{1-6} alkyl. Preferably, it is arylalkyloxycarbonyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyloxycarbonyl, phenethyloxycarbonyl, 3-phenylpropyloxycarbonyl, 2-phenylpropyloxycarbonyl, 4-phenylbutyloxycarbonyl and the like. [0071] The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is particularly preferably benzyloxycarbonyl at R^{b7} .

[0072] The optionally substituted C_{1-6} alkyl is the above-defined C_{1-6} alkyl, preferably that wherein straight chain or branched chain alkyl having 1 to 4 carbon atoms is optionally substituted with 1 to 3 substituent(s), and includes unsubstituted alkyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{1-6} alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tertbutyl, pentyl, isopentyl, tert-pentyl, neopentyl, 1-ethylpropyl, hexyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 1-hydroxy-1-methylethyl, carboxylmethyl, 2-carboxylethyl, methoxymethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-dimethylaminoethyl and the like.

[0073] Preferably, the optionally substituted C₁₋₆ alkyl is methyl, 1-hydroxy-1-methylethyl, carboxylmethyl or 2-dimethylaminoethyl at R¹, R², R³ and R⁴, methyl or trifluoromethyl at R⁵, R⁵, R⁶ and R⁶, methyl at R⁷, R⁸, R^{a18}, R^{a24}, R^{a25}, R^{a31} and R^{b5}, methyl or ethyl at R^{a1} and R^{a19}, methyl, carboxylmethyl or 2-dimethylaminoethyl at R^{a2} and R^{a3}, methyl or carboxylmethyl at R^{a6}, methyl, ethyl, isopropyl, butyl or trifluoromethyl at X, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-ethylpropyl or carboxylmethyl at R^{a10}, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, 2-hydroxyethyl or carboxylmethyl at R^{a11}, methyl or 4-hydroxybutyl at R^{a12}, methyl, ethyl, isopropyl, butyl, 2-hydroxyethyl, 4-hydroxybutyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl or 2-dimethyl-aminoethyl at R^{a13}, methyl, propyl, butyl, isopentyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl or carboxylmethyl at R^{a20}, methyl or ethyl at R^{a22} and R^{a23}, methyl or tert-butyl at R^{a26}, methyl, ethyl, isopropyl, 2-hydroxyethyl, 2-carboxylethyl, methoxymethyl or ethoxycarbonylmethyl at Z, Z' and group D.

[0074] It is particularly preferably, trifluoromethyl at R⁵, R⁵', R⁶ and R⁶', methyl or tert-butyl at R²⁶, methyl, tert-butyl, trifluoromethyl or hydroxymethyl at Z, Z' and group D, and methyl at other substituents.

[0075] The optionally substituted C_{2-6} alkenyl is that wherein straight chain or branched chain alkenyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkenyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{2-6} alkenyl include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 1,3-butadienyl, 2-isopentenyl, 3-isohexenyl, 4-methyl-3-pentenyl, 2-carboxylethenyl and the like.

[0076] The optionally substituted C_{2-6} alkenyl is preferably 2-carboxylethenyl at X, and preferably 2-isopentenyl, 3-isohexenyl or 4-methyl-3-pentenyl at R^{a20} .

[0077] The optionally substituted C_{2-6} alkynyl is that wherein straight chain or branched chain alkynyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkynyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples thereof include ethynyl, 1-propynyl, 2-propynyl, 3-butynyl and the like.

[0078] The optionally substituted C₂₋₆ alkynyl is preferably 2-propynyl at Ra20.

[0079] The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C_{6-14} aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r-COOR^{b1}$, $-(CH_2)_r-CONR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-NR^{b1}R^{b2}$, $-(CH_2)_r-SO_2R^{b1}$, and $-(CH_2)_r-SO_2R^{b1}R^{b2}$ (wherein R^{b1} and R^{b2} are each independently hydrogen atom or the above-defined C_{1-6} alkyl and r is 0 or an integer of 1 to 6).

[0080] Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-nitrophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-carboxylphenyl, 4-carboxylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-acetylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methysulfonylphenyl, 3,4,5-trimethoxyphenyl, 4-methylthiophenyl, 4-methylsulfonylphenyl, 4-aminosulfonylphenyl, 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0081] The aryl moiety is preferably phenyl, the group B here is preferably the above-defined halogen atom, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl or -(CH_2)_r-ORb1. Examples of group B include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl and methoxy. Particularly preferably, it is fluorine atom or chlorine atom.

[0082] With regard to "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group B", it is preferably phenyl, 4-tert-butylphenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl at Ra12, Ra27 and Ra28, phenyl at Ra14, Ra22, Ra23, Ra26 and Rb5, phenyl or 3-fluorophenyl at Ra18, phenyl or 2,4-dichlorophenyl at Ra20, phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 3,5-dichlorophenyl, 3-nitro-4-methoxyphenyl or 4-nitro-3-methoxyphenyl at Ra24, and phenyl or 4-methylphenyl at Ra25.

[0083] It is particularly preferably phenyl at other substituents.

10

15

20

25

40

[0084] The C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C_{6-14} aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (p)).

[0085] Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, ethoxycarbonyl, methyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, propyloxy, isopropyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonyl, methylsul

[0086] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoyl-phenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methylsulfinyl-phenyl, 4-aminosulfonylphenyl and 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0087] At Z and Z', the aryl moiety is preferably phenyl, and group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}Ra²⁸, - (CH₂)_t-ORa²⁰, -(CH₂)_t-NRa²⁹CO-Ra²⁴, -(CH₂)_t-S(O)_q-Ra²⁵ or -(CH₂)_t-SO₂-NHRa²⁶.

[0088] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D preferably include phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-methylsulfinylphenyl and 4-aminosulfonylphenyl.

[0089] Particularly preferably, it is the above-defined halogen atom, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_tCOORa¹⁹, -(CH₂)_t-CONRa²⁷Ra²⁸, (CH₂)_t-ORa²⁰ or - (CH₂)_t-S (O)_q-Ra²⁵, which is specifically fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino. More preferably, it is fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino, most preferably fluorine atom or chlorine atom.

[0090] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r$ -COORb1, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -NRb1-CORb2, $-(CH_2)_r$ -NHSO2Rb1, $-(CH_2)_r$ -ORb1, $-(CH_2)_r$ -SO2Rb1 and $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 are each independently hydrogen atom or the above-defined $-(CH_2)_r$ -SO2NRb1Rb2 are each independe

[0091] Examples thereof include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropy-

ridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, 3-hydroxypyrrolidinyl, imidazolidinyl, piperidyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)-piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, 4-methylsulfonylpiperazinyl, morpholinyl, thiomorpholinyl, 1-oxothiomorpholin-4-yl, 1,1-dioxothiomorpholin-4-yl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl and the like.

[0092] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the group B here is preferably the above-defined halogen atom, the above-defined C₁₋₆ alkyl, the above-defined C₁₋₆ alkyl, the above-defined C₁₋₆ alkyl, -CONR^{b1}, -(CH₂)_r-CONR^{b1}, -(CH₂)_r-CONR^{b1}.

[0093] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-{methylsulfonyl}piperidin-4-yl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, tetrahydropyranyl, pyridyl and thiazolyl. Particularly preferably, it is piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino or 4-thiomorpholinyl at Ra18, tetrahydropyranyl or 4-hydroxypiperidino at Ra20, piperidino at Ra21, pyridyl at Ra24 and Ra25, pyridyl or thiazolyl at Ra26 and at Ra27 and Ra28, it is 1-(methylsulfonyl)piperidin-4-yl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, 4-methylsulfonylpiperazinyl, 1-oxothiomorpholin-4-yl or 1,1-dioxothiomorpholin-4-yl.

20

25

35

[0094] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0095] Examples of the group D here include the substituent(s) exemplified for C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0096] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyridinyl, pyridinyl, pyridinyl, 1,3,5-triazinyl, pyridyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolinyl, benzofuranyl, benzofuranyl, benzothiazolyl, benzothiazolyl, and the like.

[0097] In addition, the heterocyclic group may be substituted at the 3-, 4-, 5- or 6-position of 2-pyridyl, at the 2-, 4-, 5- or 6-position of 3-pyridyl, at the 2-, 3-, 5- or 6-position of 4-pyridinyl, at the 3-, 4- or 5-position of 2-thienyl, or at the 2-, 4- or 5-position of 3-thienyl, by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trif-luoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0098] At Z and Z', the heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolinyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl. The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}Ra²⁸, -(CH₂)_t-OR^{a20}, -(CH₂)_t-NRa²⁹CO-Ra²⁴, -(CH₂)_t-S(O)_q-Ra²⁵ or -(CH₂)_t-SO₂-NHRa²⁶.

[0099] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, 4-tetrahydropyranyl, 3-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl and 2-thienyl.

[0100] Particularly preferably, it is pyridyl, pyrimidinyl, tetrazolyl, thienyl or piperidyl.

[0101] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by the 1 to 5 substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, 4fluorocyclohexyl,

2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0102] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

[0103] At the ring Cy and ring Cy', the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is preferably cyclopentyl, cyclohexyl, 4-fluorocyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl or 4-methoxycyclohexyl, more preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

[0104] The C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituents are selected from the above group B.

[0105] Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, d-fluorocyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, d-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0106] Also exemplified are those wherein cyclopentyl or cyclohexyl is substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

15

35

[0107] At cycloalkyl moiety, it is preferably cyclopentyl or cyclohexyl. As the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, it is particularly preferably cyclohexyl or 4-hydroxycyclohexyl at R^{a27} and R^{a28}.

[0108] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0109] The group D here includes the substituents recited with regard to C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0110] Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0111] The group D may be, for example, cyclopentyl or cyclohexyl substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0112] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, and at Z and Z', it is particularly preferably cyclohexyl.

[0113] The optionally substituted C₃₋₈ cycloalkenyl is that wherein the above-defined C₃₋₈ cycloalkenyl is optionally substituted by substituted from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 4-methyl-2-cyclohexenyl, 4-methyl-3-cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

[0114] The optionally substituted C₃₋₈ cycloalkenyl is particularly preferably cyclohexenyl at the ring Cy.

[0115] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein

the above-defined C₆₋₁₄ aryl C₁₋₆ alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted arylalkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0116] Examples thereof include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-nitrobenzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-carboxylbenzyl, 4-carboxylbenzyl, 4-aminobenzyl, 4-dimethylsulfonylamino)benzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-methylsulfonylbenzyl, 4-aminosulfonylbenzyl, 3-nitro-4-methoxybenzyl and 4-nitro-3-methoxybenzyl.

[0117] The C₆₋₁₄ aryl C₁₋₆ alkyl moiety is preferably benzyl or phenethyl, particularly preferably benzyl. The group B is preferably the above-defined halogen atom, nitro, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl or -(CH₂)_r-OR^{b1}. Examples thereof include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethyloxy, particularly preferably fluorine atom or chlorine atom.

[0118] The specific C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B at Ra12 and Ra13 is preferably benzyl, phenethyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 3-trifluoromethylbenzyl, it is preferably benzyl at Ra1, Ra19, Ra27, Ra28, Ra31 and Rb5, it is preferably benzyl, phenethyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 4-trifluoromethylbenzyl at Ra20, and 4-chlorobenzyl, 3,5-dichlorobenzyl or 4-trifluoromethylbenzyl at Ra22 and Ra23.

[0119] It is particularly preferably benzyl at other substituents.

10

20

25

35

40

45

[0120] The C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C_{6-14} aryl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0121] Examples of group D include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl. [0122] Examples of C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4- (methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-(acetylamino)benzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-(methylsulfonylamino) benzyl, 4-methylsulfinylbenzyl, 4-aminosulfonylbenzyl, (3-nitro-4-methoxyphenyl)methyl and (4-nitro-3-methoxyphenyl)methyl.

[0123] At Z and Z', the C_{6-14} aryl C_{1-6} alkyl moiety is preferably benzyl or phenethyl, and the group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, - $(CH_2)_t$ - $COOR^{a19}$, - $(CH_2)_t$ - $COOR^{a29}$, - $(CH_2)_t$ - $(CH_2)_$

[0124] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is preferably benzyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-acetylaminobenzyl, 4-methylsulfinylbenzyl or 4-aminosulfonylbenzyl.

[0125] It is particularly preferably the above-defined halogen atom, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t$ -COOR^{a19}, $-(CH_2)_t$ -CONR^{a27}Ra²⁸, $-(CH_2)_t$ -OR^{a20} or $-(CH_2)_t$ -S(O)_q-Ra²⁵. Examples thereof include fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl and acetylamino. It is more preferably fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl or methylsulfonyl, most preferably fluorine atom or chlorine atom.

[0126] The heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocycle C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C_{1-6} alkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0127] Examples thereof include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2-isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl and the like.

[0128] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety thereof is preferably straight chain alkyl having 1 to 4 carbon atoms. The group B here is preferably the above-defined halogen atom, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl, the above-defined C₁₋₆ alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2} or -(CH₂)_r-OR^{b1}.

[0129] Examples of heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B preferably include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl) piperidin-4-ylmethyl, 1-(methylsulfonyl)-piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-ylmethyl

methyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl. Particularly preferably, it is 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl or 4-methylthiazol-2-ylmethyl at Ra22 and Ra23, and 4-pyridylmethyl or 4-methylthiazol-2-ylmethyl at Ra27 and Ra28.

[0130] The C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkylalkyl. The substituents are selected from the above group B.

[0131] Specific examples thereof include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclopentylmethyl, 2-(cyclopentyl)ethyl, 2-(cyclohexyl)ethyl, cycloheptylmethyl, 4-fluorocyclohexylmethyl, 2-methylcyclopentylmethyl, 3-methylcyclohexylmethyl, 4-methylcyclohexylmethyl, 4,4-dimethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 4-tert-butylcyclohexylmethyl, 4-hydroxycyclohexylmethyl, 4-methoxycyclohexylmethyl and 2,3,4,5,6-pentafluorocyclohexylmethyl.

[0132] Also exemplified are those wherein cyclopentylmethyl or cyclohexylmethyl is substituted by fluorine atom, chlorine atom, bromine atom, nito, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0133] At cycloalkyl moiety, it is preferably cyclopentylmethyl or cyclohexylmethyl, and at Ra20, Ra27 and Ra28, it is particularly preferably cyclohexylmethyl.

[0134] In formula [i], X is preferably

20

25

30

35

40

45

50

55

wherein each symbol is as defined above.

[0135] G¹, G², G³ and G⁴ are each preferably (C-R¹), (C-R²), (C-R³) and (C-R⁴), G⁵ is preferably a nitrogen atom, and G⁶, G⁶ and G⁶ are preferably a carbon atom. G⁶ is preferably C(-R⁶) or unsubstituted nitrogen atom, wherein R⁶ is preferably hydrogen atom.

[0136] A preferable combination is G² of (C-R²) and G⁶ of a carbon atom, particularly preferably G² of (C-R²), G⁶ of a carbon atom and G⁵ of a nitrogen atom, most preferably G² of (C-R²), G⁶ of a carbon atom, G⁵ of a nitrogen atom and G⁷ of unsubstituted nitrogen atom.

[0137] In formulas [I] and [II], 1 to 4 of G1 to G9 in the moiety

is(are) preferably a nitrogen atom, specifically preferably

particularly preferably

45
$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

50 more preferably

most preferably

5

10

15

20

25

30

40

 R^2 R^3 R^4

[0138] R¹ and R⁴ are preferably hydrogen atom. R² is preferably carboxyl, -COORa¹, -CONRa²Ra³ or -SO₂Ra² (each symbol is as defined above), particularly preferably carboxyl, -COORa¹ or -SO₂Ra², more preferably carboxyl or -COORa¹, most preferably carboxyl. R³ is preferably hydrogen atom or -ORa6 (Ra6 is as defined above), particularly preferably hydrogen atom.

[0139] The ring Cy and ring Cy are preferably cyclopentyl, cyclohexyl, cyclohexyl or tetrahydrothiopyranyl, particularly preferably cyclopentyl, cyclohexyl or cyclohexyl, more preferably cyclohexyl.

[0140] The ring A and ring A' are preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl or thienyl, particularly preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, more preferably phenyl or pyridyl, and most preferably phenyl.

[0141] The ring B and ring B' are preferably C₁₋₆ aryl or heterocyclic group, specifically preferably, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, particularly preferably phenyl, pyridyl, pyrimidinyl, 1,3,5-triazinyl or thiazolyl, more preferably, phenyl, pyridyl or thiazolyl, and most preferably phenyl or thiazolyl.

[0142] With regard to R⁵ and R⁶, one of them is preferably hydrogen atom and the other is halogen atom, particularly fluorine atom. Alternatively, the both arepreferably hydrogen atoms. When ring A is phenyl, R⁵ and R⁶ preferably are present at an ortho position from G⁶. The same applies to R⁵ and R⁶.

[0143] Y is preferably -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, - (CH₂)_m-NR^{a12}-(CH₂)_n-, -CONR^{a13}- (CH₂)_n-, -O-(CH₂)_m-CR^{a15}Ra¹⁶-(CH₂)_n- or -(CH₂)_n-NR^{a12}-CHR^{a15}- (each symbol is as defined above), more preferably, -(CH₂)_m-O-(CH₂)_n- or -O-(CH₂)_m-CR^{a15}Ra¹⁶- (CH₂)_n-, most preferably -O- (CH₂)_m-CR^{a15}Ra¹⁶- (CH₂)_n-.

[0144] The 1, m and n are preferably 0 or an integer of 1 to 4, particularly preferably 0, 1 or 2, at Y. In -(CH_2)_m-O-(CH_2)_n-, m=n=0 or m=0 and n=1 is more preferable, most preferably m=n=0. In -O-(CH_2)_m- $CR^{a15}R^{a16}$ -(CH_2)_n-, m=n=0, m=0 and n=1, m=1 and n=0 or m=1 and n=1 is more preferable, most preferably m=n=0.

When Y is -O- (CH₂)_m-CR^{a15}Ra¹⁶- (CH₂)_n-, Ra¹⁶ is preferably hydrogen atom, Ra¹⁵ is preferably

$$-(CH^{2})^{\frac{1}{\mu}}(Z,)^{M}$$

wherein the

55

$$(CH_2)_n$$

$$R^{a16}$$

$$(CH_2)_n$$

$$(CH_2)_n$$

5

10

25

35

45

50

55

moiety is preferably symmetric. The preferable mode of n, ring B, Z and w and the preferable mode of n', ring B', Z' and w' are the same.

[0146] When ring A is phenyl, X or Y is preferably present at the para-position relative to G⁶. When ring B and ring B' are phenyl, Z is preferably present at the ortho or meta-position relative to Y. It is preferable that the 3-position on phenyl have one substituent or the 2-position and the 5-position on phenyl each have one substituent.

[0147] When ring B is thiazolyl, Y is preferably substituted at the 5-position, and Z is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position. Similarly, when ring B' is thiazolyl, (CH₂)_{n'} is also preferably substituted at the 5-position and Z' is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position.

[0148] Z and Z' are preferably group D, "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D" or "heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D", particularly preferably group D or "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D".

[0149] More preferably, they are the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t$ -COORa¹⁹- $(CH_2)_t$ -CONRa²⁷Ra²⁸, $-(CH_2)_t$ -ORa²⁰, $(CH_2)_t$ -NRa²⁹CO-Ra²⁴, $-(CH_2)_t$ -S(O)_q-Ra²⁵ or $-(CH_2)_t$ -SO₂-NHRa²⁶, or C_{6-14} aryl or heterocyclic group optionally substituted by these.

With regard to Z and Z', the preferable mode of group D that directly substitutes each ring B and ring B' and the preferable mode of group D that substitutes C₆₋₁₄ aryl, C₃₋₈ cycloalkyl, C₆₋₁₄ aryl C₁₋₆ alkyl or heterocyclic group are the same, wherein they may be the same with or different from each other.

[0150] Specific examples of the substituent preferably include fluorine atom, chlorine atom, bromine atom, nitro. cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbarnoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylamino-carbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)-aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, trifluoromethyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl) phenyl, 4-(2-hydroxyethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 4-(methoxycarbonylmethyl) phenyl, 4-(ethoxycarbonylmethyl)phenyl, 4-acetylphenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-(methoxycarbonyl) phenyl, 4-(ethoxycarbonyl)-phenyl, 4-carbamoylphenyl, 4-(methylaminocarbonyl)phenyl, 4-(isopropylaminocarbonyl) phenyl, 4-(dimethylaminocarbonyl)phenyl, 4-(diethylaminocarbonyl)phenyl, 4-[(2-hydroxyethyl)-aminocarbonyl]phenyl, 4-[(carboxylmethyl)aminocarbonyl]phenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-ethoxyphenyl, 4-propyloxyphenyl, 4-isopropyloxyphenyl, 4-butyloxyphenyl, 4-isopentyloxyphenyl, 4-(2-isopentenyloxy)phenyl, 4-(3-isohexenyloxy)phenyl, 4-(4-methyl-3-pentenyloxy)phenyl, 4-(2-propynyloxy)phenyl, 4-(trifluoromethyloxy) phenyl, 4-(hydroxymethyloxy)phenyl, 4-(carboxylmethyloxy)phenyl, 4-((dimethylaminocarbonyl)methyloxy)phenyl, 4-aminophenyl, 4-(methylamino)phenyl, 4-(dimethylaminophenyl), 4-(diethylamino)-phenyl, 4-(acetylamino)phenyl, 4-(methylsulfonylamino)phenyl, 4-(methylthio)phenyl, 4- (methylsulfonyl)phenyl, 4- (methylsulfinyl)-phenyl, 4- (aminosulfonyl)phenyl, 4-(methylaminosulfonyl) phenyl, 4-(dimethylaminosulfonyl)phenyl, 4-(tert-butylaminosulfonyl)phenyl, cyclohexyl, benzyl, 4-chlorobenzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 2-chlorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-tert-butylbenzyloxy, 4-trifluoromethylbenzyloxy, phenethyloxy, 2-thienyl, 2-thiazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, piperidino, piperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 1-piperazinylcarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, phenoxy, 2,4-dichlorophenoxy, tet-

rahydropyranyloxy, 2-pyridylmethyloxy, 3-pyridylmethyloxy, 2-chloropyridin-4-ylmethyloxy, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyloxy, 1-(methylsulfonyl)-piperidin-4-ylmethyloxy, 2-methylthiazolin-4-yloxy, 2,4-dimethylthiazolin-5-yloxy, dimethylaminocarbonylmethyloxy, piperidinocarbonylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl) methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, benzoyl, 3-fluorobenzoyl, 4-chlorobenzylamino, 3,5-dichlorobenzylamino, 4-trifluoromethylbenzylamino, 2-pyridylmethylamino, benzoylamino, 4-chlorobenzoylamino, 4-trifluoromethylbenzoylamino, 3,5-dichlorobenzoylamino, 3-nitro-4-methoxybenzoylamino, 4-nitro-3-methoxybenzoylamino, 3-pyridylcarbonylamino, 4-methylphenylsulfonylamino, 2-thiazolylaminosulfonyl, 2-pyridylaminosulfonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)-aminocarbonyl or (cyclohexylmethyl)aminocarbonyl, 2-hydroxyethyloxy, 3-hydroxypropyloxy, 3-hydroxypyrrolidinylcarbonyl, 3-hydroxypiperidinocarbonyl, 3,4-dihydroxypiperidinocarbonyl, 4-methoxypiperidinocarbonyl, 4-carboxypiperidinocarbonyl, 4-(hydroxymethyl)piperidinocarbonyl, 2-oxopiperidinocarbonyl, 4-oxopiperidinocarbonyl, 2,2,6,6-tetramethylpiperidinocarbonyl, 2,2,6,6-tetramethyl-4-hydroxypiperidinocarbonyl, 1-oxothiomorpholin-4-ylcarbonyl, 1,1-dioxothiomorpholin-4-ylcarbonyl, 1-(methylsulfonyl)piperidin-4-ylaminocarbonyl, 4-methylsulfonylpiperazinylcarbonyl, N,N-bis(2-hydroxyethyl)-aminocarbonyl, phenylaminocarbonyl, cyclohexylaminocarbonyl, 4-hydroxycyclohexylaminocarbonyl, 4-methylthiazol-2-ylmethylaminocarbonyl, 2-(4-hydroxypiperidino)ethyloxy, 2-pyridylmethylaminocarbonyl, 3-pyridylmethylaminocarbonyl, N-methyl-N-(4-pyridylmethyl)aminocarbonyl, cyclohexylmethyloxy, 4-hydroxypiperidinocarbonylmethyloxy and 4-methylthiazol-2-ylmethyloxy.

[0151] Particularly preferable examples of the substituent include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxylethyl)aminocarbonyl, (carboxymethyl)-aminocarbonyl, methoxy, 2-isopentenyloxy, 2-propynyloxy, methylthio, methylamino, dimethylamino, acetylamino, methylsulfonylamino, methylsulfonyl, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxymethyl)phenyl, 4-(2-hydroxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carboxylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, benzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 4-chlorobenzyloxy, 2-thiazolyl, 3-pyridyl, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 2-chloropiperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, 5-tetrazolyl, 3-fluorobenzoyl, piperidinocarbonyl, 4-hydroxylpiperidinocarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl, and (cyclohexylmethyl)aminocarbonyl.

[0152] Most preferable substituents are fluorine atom, chlorine atom, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxy, methylamino, acetylamino, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl and 4-methylsulfonylphenyl.

[0153] The w is preferably 1 or 2, r and t are preferably 0, 1 or 2, particularly preferably 0 or 1, more preferably 0, p is preferably 1, and q is preferably 0 or 2.

[0154] The pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with a compound of the above-mentioned formula [I] or [II]. Such salt can be obtained by reacting the compound with an inorganic acid, such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like, or an organic acid, such as oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methylsulfonic acid, benzylsulfonic acid and the like, or an inorganic base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide and the like, or an organic base, such as methylamine, diethylamine, triethylamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, guanidine, choline, cinchonine and the like, with an amino acid, such as lysine, arginine, alanine and the like. The present invention encompasses water-retaining product, hydrate and solvate of each compound.

50 [0155] The compounds of the above-mentioned formula [I] or [II] have various isomers. For example, E compound and Z compound are present as geometric isomers, and when the compound has an asymmetric carbon, an enantiomer and a diastereomer are present due to the asymmetric carbon. A tautomer may be also present. The present invention encompasses all of these isomers and mixtures thereof.

[0156] The present invention also encompasses prodrug and metabolite of each compound.

35

[0157] A prodrug means a derivative of the compound of the present invention, which is capable of chemical or metabolic decomposition, which shows inherent efficacy by reverting to the original compound after administration to a body, and which includes salts and complexes without a covalent bond.

[0158] When the inventive compound is used as a pharmaceutical preparation, the inventive compound is generally

admixed with pharmaceutically acceptable carriers, excipients, diluents, binders, disintegrators, stabilizers, preservatives, buffers, emulsifiers, aromatics, coloring agents, sweeteners, thickeners, correctives, solubilizers, and other additives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and the like, and prepared into a dosage form of tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like, which can be administered systemically or topically and orally or parenterally.

[0159] While the dose varies depending on the age, body weight, general condition, treatment effect, administration route and the like, it is from 0.1 mg to 1 g for an adult per dose, which is given one to several times a day.

[0160] The prophylaxis of hepatitis C means, for example, administration of a pharmaceutical agent to an individual found to carry an HCV by a test and the like but without a symptom of hepatitis C, or to an individual who shows an improved disease state of hepatitis after a treatment of hepatitis C, but who still carries an HCV and is associated with a risk of recurrence of hepatitis.

[0161] Examples of the production method of the compound to be used for the practice of the present invention are given in the following. However, the production method of the compound of the present invention is not limited to these examples.

[0162] Even if no directly corresponding disclosure is found in the following Production Methods, the steps may be modified for efficient production of the compound, such as introduction of a protecting group into a functional group with deprotection in a subsequent step, and changing the order of Production Methods and steps.

[0163] The treatment after reaction in each step may be conventional ones, for which typical methods, such as isolation and purification, crystallization, recrystallization, silica gel chromatography, preparative HPLC and the like, can be appropriately selected and combined.

Production Method 1

[0164] In this Production Method, a benzimidazole compound is formed from a nitrobenzene compound.

Production Method 1-1

30 [0165]

5

10

15

20

25

35
$$R^{2}$$
 R^{1} NO_{2} $Step 1$ R^{2} NO_{2} $Step 2$ R^{2} NO_{2} R^{3} R^{4} NO_{2} R^{3} R^{4} R^{4} R^{4} R^{4} R^{5} $R^{$

wherein Hal is halogen atom, such as chlorine atom, bromine atom and the like, R^{c1} is halogen atom, such as chlorine atom, bromine atom and the like, or hydroxyl group, and other symbols are as defined above.

Step 1

[0166] A compound [1] obtained by a conventional method or a commercially available compound [1] is reacted with amine compound [2] in a solvent such as N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF), toluene and the like in the presence or absence of a base such as potassium carbonate, triethylamine, potassium t-butoxide and the like at room temperature or with heating to give compound [3].

Step 2

10

15

20

25

30

35

40

[0167] The compound [3] is hydrogenated in a solvent such as methanol, ethanol, THF, ethyl acetate, acetic acid, water and the like in the presence of a catalyst such as palladium carbon, palladium hydroxide, platinum oxide, Raney nickel and the like at room temperature or with heating to give compound [4]. In addition, compound [3] is reduced with a reducing agent such as zinc, iron, tin(II) chloride, sodium sulfite and the like, or reacted with hydrazine in the presence of iron(III) chloride to give compound [4].

Step 3

[0168] The compound [4] is condensed with carboxylic acid compound [5] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like using a condensing agent such as dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, diphenylphosphoryl azide and the like and, where necessary, adding N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like to give amide compound [6]. Alternatively, amide compound [6] can be obtained from compound [5] as follows. The carboxylic acid compound [5] is converted to an acid halide derived with thionyl chloride, oxalyl chloride and the like, or an active ester (e.g., mixed acid anhydride derived with ethyl chlorocarbonate and the like), which is then reacted in the presence of a base, such as triethylamine, potassium carbonate, pyridine and the like, or in an amine solvent, such as pyridine and the like, to give amide compound [6].

Step 4

[0169] The compound [6] is heated in a solvent such as ethanol, methanol, toluene, DMF, chloroform and the like or without a solvent in the presence of an acid such as acetic acid, formic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like, a halogenating agent such as zinc chloride, phosphorus oxychloride, thionyl chloride and the like or acid anhydride such as acetic anhydride and the like, to allow cyclization to give compound [I-2].

Production Method 1-2

[0170] This Production Method is an alternative method for producing compound [I-2].

55

$$\begin{array}{c|c}
R^2 & R^1 \\
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
R^6 & Cy
\end{array}$$

wherein each symbol is as defined above.

Step 1

⁵ [0171] The compound [3] obtained in the same manner as in Step 1 of Production Method 1-1 is subjected to amide condensation with compound [5] in the same manner as in Step 3 of Production Method 1-1 to give compound [7].

Step 2

10 [0172] The compound [7] is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [8].

Step 3

[0173] The compound [8] is subjected to cyclization in the same manner as in Step 4 of Production Method 1-1 to give compound [I-2].

Production Method 1-3

[0174]

20

50

55

15

wherein R^{c2} is alkyl such as methyl, ethyl and the like, and other symbols are as defined above.

[0175] The compound [4] is reacted with imidate compound [9] in a solvent such as methanol, ethanol, acetic acid, DMF, THF, chloroform and the like at room temperature or with heating to give compound [I-2].

[0176] In addition, compound [4] may be reacted with aldehyde compound [10] in a solvent such as acetic acid, formic acid, acetonitrile, DMF, nitrobenzene, toluene and the like in the presence or absence of an oxidizing agent such as benzofuroxan, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzbquinone, iodine, potassium ferricyanide and the like with heating to give compound [I-2].

[0177] Alternatively, compound [4] and carboxylic acid compound [11] may be heated to allow reaction in the presence of polyphosphoric acid, phosphoric acid, phosphorus oxychloride, hydrochloric acid and the like to give compound [1-2].

Production Method 2

[0178] In this Production Method, conversion of the substituents (R^1 , R^2 , R^3 , R^4) on the benzene ring of benzimidazole is shown. While a method of converting R^2 when R^1 , R^3 and R^4 are hydrogen atoms is shown, this Production Method is applicable irrespective of the position of substitution.

Production Method 2-1

[0179] Conversion of carboxylic acid ester moiety to amide

NHR°4 R°5

R°300C-E
N A

R

Step 1

$$R^{6}$$
 R^{6}
 R^{6}

wherein E is a single bond, - $(CH_2)_s$ -, -O- $(CH_2)_s$ - or -NH- $(CH_2)_s$ -(wherein s is an integer of 1 to 6), R^{c3} , R^{c4} and R^{c5} are C_{1-6} alkyl, and other symbols are as defined above.

Step 1

25

30

35

40

55

5

10

[0180] The compound [I-2-1] obtained in the same manner as in the above-mentioned Production Method is subjected to hydrolysis in a solvent such as methanol, ethanol, THF, dioxane and the like, or in a mixed solvent of these solvents and water under basic conditions with sodium hydroxide, potassium hydroxide, potassium carbonate, lithium hydroxide and the like or under acidic conditions with hydrochloric acid, sulfuric acid and the like to give compound [I-2-2].

Step 2

[0181] The compound [1-2-2] is reacted with compound [12] in the same manner as in Step 3 of Production Method 1-1 to give compound [1-2-3].

Production Method 2-2

[0182] Conversion of cyano group to substituted amidino group

NC NC A R⁵ NH₂OH H₂N
$$H_2$$
N H_2 N H

wherein each symbol is as defined above.

[0183] The compound [1-2-4] obtained in the same manner as in the above-mentioned Production Method is reacted with hydroxylamine in a solvent such as water, methanol, ethanol, THF, DMF and the like to give compound [1-2-5]. When a salt of hydroxylamine such as hydrochloride and the like is used, the reaction is carried out in the presence of a base such as sodium hydrogencarbonate, sodium hydroxide, triethylamine and the like.

Production Method 2-3

5

10

15

20

25

30

55

[0184] Conversion of sulfonic acid ester moiety to sulfonic acid

$$\begin{array}{c|ccccc}
R^{c60} & & & & & & & & & & & \\
\hline
0 & & & & & & & & & & & & & \\
\hline
0 & & & & & & & & & & & \\
\hline
Cy & & & & & & & & & & \\
\hline
[1-2-6] & & & & & & & & & & \\
\end{array}$$

wherein R^{c6} is C_{1-6} alkyl, and other symbols are as defined above.

[0185] The compound [I-2-6] obtained in the same manner as in the above-mentioned Production Method is reacted with iodide salt such as sodium iodide, lithium iodide and the like, bromide salt such as sodium bromide, trimethylammonium bromide and the like, amine such as pyridine, trimethylamine, triazole and the like, phosphine such as triphenylphosphine and the like in a solvent such as DMF, dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, water and the like with heating to give compound [I-2-7].

Production Method 3

[0186] This Production Method relates to convertion of the substituent(s) on phenyl group at the 2-position of benzimidazole. This Production Method can be used even when phenyl is a different ring.

Production Method 3-1

[0187] Conversion of hydroxyl group to ether

35

$$R^{2}$$
 R^{1}
 R^{3}
 R^{4}
 R^{6}
 R^{6}

wherein R^{c7} is optionally substituted alkyl corresponding to R^{a11}, G¹ is a single bond, *-(CH₂)_n-, *-(CH₂)_n-O-, *-(CH₂)_n-CO- or *-(CH₂)_m-CR^{a15}R^{a16})-(CH₂)_n-, wherein * show the side to be bonded to R^{c1}, and other symbols are as defined above.

[0188] When R^{c1} of compound [13] is halogen atom, compound [I-2-8] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [13] in a solvent such as DMF, DMSO, acetonitrile, ethanol, THF and the like in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, potassium

carbonate, sodium ethoxide, potassium t-butoxide and the like at room temperature or with heating to give compound [II-2-1].

[0189] When Rc1 of compound [13] is hydroxyl group, the hydroxyl group of compound [13] is converted to halogen atom with thionyl chloride, phosphorus tribromide, carbon tetrabromide-triphenylphosphine and the like and reacted with compound [1-2-8] by the aforementioned method to give compound [II-2-1]. In this case, compound [I-2-8] may be striphenylphosphine - diethyl azodicarboxylate and the like to give compound [II-2-1].

[0190] The compound [I-2-9] can be obtained in the same manner from compound [I-2-8] and compound [14].

Production Method 3-2

[0191] Conversion of nitro to substituted amino group

wherein R^{c8} is C_{1-6} alkyl, G^2 is *-(CH_2)_n- or *- CHR^{a15} , G^3 is - CO_2 -, *- CO_2 -, *- CO_3 -, and other symbols are 45 as defined above.

Step 1

[0192] The nitro compound [I-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 2 of Production Method 1-1 to give compound [I-2-11].

Step 2

55

[0193] The compound [I-2-11] is alkylated with compound [15] in the same manner as in Production Method 3-1 to give compound [II-2-2].

Step 3

10

15

20

25

30

35

40

45

[0194] When G³ of compound [16] is -CO-, -CO₂- or -CONH-, compound [1-2-11] is acylated with compound [16] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0195] When G³ of compound [16] is -SO₂-, sulfonylation is conducted using sulfonyl halide instead of acid halide used in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0196] The compound [I-2-11] is acylated with compound [17] in the same manner as above to give compound [I-2-12].

[0197] This Production Method is applied in the same manner as above to give disubstituted compounds (tertiary amine) of compound [II-2-2], compound [II-2-3] and compound [I-2-12].

Production Method 3-3

[0198] Conversion of carboxylic acid ester moiety to amide

[1-2-14]

R²

R⁴

Cy

R⁵

COOR^{c9}

Step 1

COOH

Step 2 R^{a13} [11-2-4] R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} [11-2-4] R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} [11-2-4] R^{a13} R^{a13} [11-2-4] R^{a13} [11-2-4]

wherein R^{c9} is C_{1-6} alkyl, G^4 is #-(CH_2) $_n$ -, #-(CH_2) $_n$ -NH- or #-CHR a14 -wherein # shows the side that is bounded to amine and other symbols are as defined above.

Step 1

[0199] The compound [1-2-13] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 1 of Production Method 2-1 to give compound [1-2-14].

Step 2

[0200] The compound [I-2-14] is reacted with compound [18] in the same manner as in Step 2 of Production Method 2-1 to give compound [II-2-4].

[0201] The compound [1-2-15] is obtained from compound [1-2-14] and compound [19] in the same manner as above.

Production Method 4

[0202] In this Production Method, additional substituent(s) is(are) introduced into ring B on phenyl group that substitutes the 2-position of benzimidazole. This Production Method is applicable even when phenyl is a different ring.

55 Production Method 4-1

[0203] Direct bonding of ring Z" to ring B

wherein R^{c11} is leaving group such as bromine atom, iodine atom, trifluoromethanesulfonyloxy and the like, R^{c12} is formyl, carboxyl or carboxylic acid ester such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl and the like, and other symbols are as defined above.

Step 1

30

35

40

45

[0208] Commercially available compound [22] or compound [22] obtained by a conventional method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [23].

Step 2

[0209] The compound [23] obtained in the same manner as in the above-mentioned Production Method is reduced according to a conventional method to give compound [24].

[0210] For example, compound [23] is reacted with in a solvent such as methanol, ethanol, THF and the like in the presence of a reducing agent such as lithium aluminum hydride, sodium borohydride and the like under cooling to heating to give compound [24].

Step 3

[0211] The compound [24] obtained in the same manner as in the above-mentioned Production Method is reacted in a solvent such as 1,4-dioxane, diethyl ether, THF, dichloromethane, chloroform, toluene and the like with a halogenating agent, such as phosphorus pentachloride, phosphorus tribromide, thionyl chloride and the like, in the presence of a tertiary amine such as pyridine and the like to give compound [25].

Step 4

[0212] The compound [24] or [25] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [I-2-8] in the same manner as in Production Method 3-1 to give compound [II-2-9].

wherein ring Z^* -M is aryl metal compound, ring Z^* moiety is optionally substituted C_{6-14} aryl or optionally substituted heterocyclic group corresponding to substituent Z, and the metal moiety contains boron, zinc, tin, magnesium and the like, such as phenylboronic acid, w^* is 0, 1 or 2, and other symbols are as defined above.

[0204] The compound [II-2-5] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)-palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a nickel catalyst such as nickel chloride, [1,3-bis(diphenylphosphino)-propane]nickel(II) chloride and the like, and a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like at room temperature or with heating, to give compound [II-2-6].

Production Method 4-2

10

15

20

25

30

35

40

45

50

55

[0205] Conversion of hydroxyl group to ether

wherein R^{c10} is -R^{a20} or -(CH₂)_p-COR^{a21} corresponding to substituent Z, and other symbols are as defined above. [0206] The compound [II-2-7] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [21] in the same manner as in Production Method 3-1 to give compound [II-2-8].

Production Method 4-3

[0207] Synthesis in advance of ring B part such as compound [13] in Production Method 3-1

Production Method 4-4

[0213]

5

(Z) w (Z') w' (Z') w'

wherein M' is a metal such as magnesium, lithium, zinc and the like, and other symbols are as defined above.

Step 1

25

30

35

40

[0214] Commercially available compound [41] or compound [41] obtained by a conventional method is converted to any inetial reagent by a conventional method to give compound [42].

[0215] For example, when M' is magnesium, magnesium is reacted with compound [41] in a solvent such as THF, diethyl ether, benzene, toluene and the like, preferably THF, from cooling to heating preferably at -100°C to 100°C to 100°C to

Step 2

[0216] The compound [42] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [43] to give compound [44].

[0217] The compound [42] is reacted in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C to give compound [44].

Step 3

[0218] The compound [44] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in Step 3 of Production Method 4-3 to give compound [45].

[0219] The compound [44] is reacted with thionyl chloride and pyridine preferably in toluene solvent to give compound [45].

[0220] When compound [45] is symmetric, namely, when the ring B-(Z)w molety and the ring B'-(Z')w' molety are the same, compound [42] is reacted with formate such as methyl formate, ethyl formate and the like, preferably ethyl formate, in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C, to give compound [45].

Production Method 4-5

[0221] Method including steps to introduce a protecting group into a functional group

55

wherein R^{c13} is carboxylic acid protecting group such as tert-butyl and the like, R^{c14} is carboxylic acid protecting group such as methyl and the like and other symbols are as defined above. **Step 1**

[0222] Commercially available compound [26] or compound [26] obtained by a conventional method is protected by a conventional method to give compound [27].

[0223] For example, when Rc13 is tert-butyl, compound [26] is converted to acid halide with thionyl chloride, oxalyl chloride and the like in a solvent such as THF, chloroform, dichloromethane, toluene and the like, and reacted with potassium tert-butoxide to give compound [27].

[0224] As used herein, R^{c13} may be a different protecting group as long as it is not removed during the Step 2 or Step 3 but removed in Step 4 without affecting -CO₂R^{c14}.

Step 2

30

35

40

[0225] The methyl group of compound [27] obtained in the same manner as in the above-mentioned Production Method is converted to bromomethyl with N-bromosuccinimide and N,N'-azobisisobutyronitrile and reacted with compound [I-2-16] in the same manner as in Production Method 3-1 to give compound [II-2-10].

Step 3

[0226] The compound [II-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted with anyl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-11].

Step 4

[0227] The R^{c13} of the compound [II-2-11] obtained in the same manner as in the above-mentioned Production Method is removed by a conventional method to give compound [II-2-12].

[0228]. The protecting group of carboxylic acid can be removed by a conventional deprotection method according to the protecting group. In this Step, the conditions free from reaction of R^{c14} are preferable. For example, when R^{c13} is

tert-butyl, compound [II-2-11] is treated with trifluoroacetic acid in a solvent such as dichloromethane, chloroform and the like to give compound [II-2-12].

Step 5

[0229] The compound [II-2-12] obtained in the same manner as in the above-mentioned Production Method is subjected to amide condensation with compound [28] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-13].

10 Step 6

5

20

[0230] The compound [II-2-13] obtained in the same manner as in the above-mentioned Production Method is deprotected in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-14].

[0231] As used herein, R^{c14} is preferably a protecting group that does not react during the Step 1 through Step 5 but removed in this Step.

[0232] For example, when Rc14 is methyl, compound [II-2-13] is reacted in an alcohol solvent such as methanol, ethanol, n-propanol, isopropanol and the like or a mixed solvent of alcohol solvent and water in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like from cooling to heating for deprotection, followed by acidifying the reaction solution to give compound [II-2-14].

Production Method 5

[0233] Formation of indole ring

wherein Rc15 is protecting group such as trimethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl and the like, and other symbols are as defined above.

Step 1

50

[0234] The compound [29] obtained in the same manner as in the above-mentioned Production Method or conventional method is reacted with compound [30] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like using a palladium catalyst such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a copper catalyst such as copper(I) iodide and the like or a mixture thereof, and in the presence of a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like to give compound [31].

Step 2

5

10

15

20

[0235] The compound [31] obtained in the same manner as in the above-mentioned Production Method is reacted in an alcohol solvent such as methanol, ethanol and the like or a mixed solvent of an alcohol solvent and a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like at room temperature or with heating for deprotection, and reacted with compound [32] obtained in the same manner as in Step 1 of Production Method 1-1 in the same manner as in Step 1 of Production Method 5 to give compound [33].

Step 3

[0236] The compound [33] obtained in the same manner as in the above-mentioned Production Method was subjected to cyclization in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a copper catalyst such as copper(I) iodide and the like or a palladium catalyst such as palladium(II) chloride and the like at room temperature or with heating to give compound [II-2-15].

Production Method 6

[0237] Formation of imidazo[1,2-a]pyridine ring

wherein Rc16 and Rc17 are each independently alkyl, such as methyl, ethyl and the like, and other symbols are as defined above.

Step 1

55 [0238] The compound [34] obtained by the above-mentioned Production Method or a conventional method is subjected to amide condensation with compound [35] in the same manner as in Step 3 of Production Method 1-1 to give compound [36].

Step 2

[0239] The compound [36] obtained by the above-mentioned Production Method is reacted with Grignard reagent [37] obtained by a conventional method to give compound [38].

[0240] Alternatively, an acid halide of compound [34] may be used instead of compound [36].

Step 3

[0241] The compound [38] obtained by the above-mentioned Production Method is subjected to halogenation by a conventional method to give compound [39].

[0242] For example, when Hal is a bromine atom, compound [38] is reacted with bromine under cooling or at room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, toluene and the like to give compound [39].

[0243] Alternatively, a halogenating agent such as hypohalite (e.g., hypochlorite and the like), N-bromosuccinimide and the like may be used instead of bromine for halogenation

Step 4

15

25

[0244] The compound [39] obtained by the above-mentioned Production Method is subjected to cyclization with compound [40] obtained by a conventional or known method (JP-A-8-48651) in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like in a solvent or without a solvent at room temperature or with heating to give compound [II-2-16].

[0245] The Production Methods shown in the above-mentioned Production Methods 2 to 4 can be used for the synthesis of compounds other than benzimidazole of the formulas [I] and [II], such as compounds [II-2-15] and [II-2-16]. The compounds of the formulas [I] and [II], and production methods thereof of the present invention are explained in detail in the following by way of Examples. It is needless to say that the present invention is not limited by these Examples.

30 Example 1

Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0247]

35

40

45

50

55

Step 1: Production of ethyl 4-chloro-3-nitrobenzoate

4-Chloro-3-nitrobenzoic acid (300 g) was dissolved in ethyl alcohol (1500 ml) and concentrated sulfuric acid (100 ml) was added with ice-cooling. The mixture was refluxed under heating for 7 hr. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (332 g, yield 97%).

 1 H-NMR (300MHz, CDCl₃) : 8.50(1H, d, J=2.1Hz), 8.16(1H, dd, J=8.4, 2.1Hz), 7.63(1H, d, J=8.4Hz), 4.43(2H, q, J=7.5Hz), 1.42(3H, t, J=7.5Hz)

Step 2: Production of ethyl 4-cyclohexylamino-3-nitrobenzoate

Ethyl 4-chloro-3-nitrobenzoate (330 g) obtained in the previous step was dissolved in acetonitrile (1500 ml), and cyclohexylamine (220 g) and triethylamine (195 g) were added. The mixture was refluxed under heating overnight. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (400 g, yield 94%).

¹H-NMR (300MHz, CDCl₃): 8.87(1H, d, J=2.1Hz), 8.35-8.45(1H, m), 8.02(1H, dd, J=9.1, 2.1Hz), 6.87(1H, d, J=9.1Hz), 4.35(2H, q, J=7.1Hz), 3.65-3.50(1H, m), 2.14-1.29(10H, m), 1.38(3H, t, J=7.1Hz)

Step 3: Production of ethyl 3-amino-4-cyclohexylaminobenzoate

Ethyl 4-cyclohexylamino-3-nitrobenzoate (400 g) obtained in the previous step was dissolved in ethyl acetate (1500 ml) and ethyl alcohol (500 ml), and 7.5% palladium carbon (50% wet, 40 g) was added. The mixture was hydrogenated for 7 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Disopropyl ether was added to the residue and the precipitated crystals were collected by filtration to give the title compound (289 g, yield 80%).

¹H-NMR (300MHz, CDCl₃): 7.57(1H, dd, J=8.4, 1.9Hz), 7.41(1H, d, J=1.9Hz), 6.59(1H, d, J=8.4Hz), 4.30(2H, q, J=7.1Hz), 3.40-3.30(1H, m), 2.18-2.02(2H, m), 1.88-1.15(8H, m), 1.35(3H, t, J=7.1Hz)

Step 4: Production of ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate

4-(3-Bromophenoxy)benzoic acid (74 g) was dissolved in chloroform (500 ml), and oxalyl chloride (33 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 4 hr at room temperature. The reaction mixture was concentrated under reduced pressure and dissolved in dichloromethane (150 ml). The resulting solution was added dropwise to a solution of ethyl 3-amino-4-cyclohexylaminobenzoate (66 g) obtained in the previous step in dichloromethane (500 ml) and triethylamine (71 ml), and the mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diethyl ether was added to the residue for crystallization and the crystals were collected by filtration to give the title compound (129 g, yield 95%).

 1 H-NMR (300MHz, CDCl₃): 8.00-7.78(4H, m), 7.66(1H, brs), 7.37-7.18(3H, m), 7.13-6.59(3H, m), 6.72(1H, d, J=8.7Hz), 4.50(1H, brs), 4.29(2H, q, J=7.2Hz), 3.36(1H, m), 2.12-1.96(2H, m), 1, 83-1.56(3H, m), 1.47-1.12(5H, m), 1.37(3H, t, J=7.2Hz)

Step 5: Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate (129 g) obtained in the previous step was suspended in acetic acid (600 ml) and the resulting suspension was refluxed under heating for 3 hr. The reaction mixture was concentrated under reduced pressure. Water was added to the residue and the precipitated crystals were collected by filtration to give the title compound (124 g, yield 99%).

 1 H-NMR (300MHz, CDCl₃): 8.51(1H, d, J=1.5Hz), 8.00(1H, dd, J=8.4, 1.5Hz), 7.67(1H, d, J=8.4Hz), 7.63(2H, d, J=8.7Hz), 7.35-7.21(3H, m), 7.17(2H, d, J=8.7Hz), 7.14(1H, m), 4.42(2H, q, J=7.2Hz), 4.38(1H, m), 2.43-2.22(2H, m), 2.07-1.87(4H, m), 1.80(1H, m), 1.42(3H, t, J=7.2Hz), 1.40-1.27(3H, m)

Example 2

5

10

15

20

25

30

35

40

50

Production of 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid

[0248] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.0 g) obtained in Example 1 was dissolved in tetrahydrofuran (10 ml) and ethyl alcohol (10 ml), and 4N sodium hydroxide (10 ml) was added. The mixture was refluxed under heating for 1 hr. The reaction mixture was concentrated under reduced pressure and water was added to the residue. The mixture was acidified with 6N hydrochloric acid and the precipitated crystals were collected by filtration to give the title compound (0.9 g, yield 96%).

melting point: 255-256°C

FAB-Ms: 491(MH+)

 1 H-NMR (300MHz, DMSO-d₆): (12.75(1H, brs), 8.24(1H, s) , 7.96(1H, d, J=8.7Hz), 7.86(1H, d, J=8.7Hz), 7.71(2H, d, J=8.6Hz), 7.47-7.34(3H, m), 7.24(2H, d, J=8.6Hz), 7.20(1H, m), 4.31(1H, m) , 2.38-2.18(2H, m), 2.02-1.79(4H, m), 1.65(1H, m), 1.44-1.20(3H, m)

Example 3

Production of ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate

[0249] Ethyl 3-amino-4-cyclohexylaminobenzoate (130 g) obtained in Example 1, Step 3, and methyl 4-hydroxybenzimidate hydrochloride (139 g) were added to methyl alcohol (1500 ml), and the mixture was refluxed under heating for 4 hr. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (131 g, yield 72%).

¹H-NMR (300MHz, CDCl₃): 10.02(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.6Hz), 7.83(1H, dd, J=8.6, 1.4Hz), 7.48(2H, d, J=8.6Hz), 6.95(2H, d, J=8.6Hz), 4.39-4.25(1H, m), 4.33(1H, q, J=7.0Hz), 2.35-2.18(2H, m), 1.98-1.79(4H, m), 1.70- 1.60(1H, m), 1.46-1.19(3H, m), 1.35(3H, t, J=7.0Hz)

Example 4

Production of ethyl 2-{4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0250] 2-Bromo-5-chlorobenzyl bromide prepared from 2-bromo-5-chlorotoluene (50 g), N-bromosuccinimide and N,N'-azobisisobutyronitrile, and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 3 were suspended in dimethylformamide (300 ml). Potassium carbonate (38 g) was added and the mixture was stirred for 1 hr at 80°C with heating. The reaction mixture was allowed to cool and then added to a mixed solvent of water-ethyl acetate. The precipitated crystals were collected by filtration to give the title compound (50 g, yield 64%).

1H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.70-7.57(5H, m), 7.20(1H, dd, J=8.4,

2.5Hz), 7.14(2H, d, J=8.7Hz), 5.17(2H, s), 4.46-4.30(1H, m), 4.41(2H, q, J=7.1Hz), 2.40-2.20(2H, m), 2.02-1.21(8H, m), 1.42(3H, t, J=7.1Hz)

Example 5

5

15

30

35

40

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0251] Ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (49 g) obtained in Example 4, 4-chlorophenylboronic acid (18 g) and tetrakis-(triphenylphosphine)palladium (10 g) were suspended in 1,2-dimethoxyethane (600 ml). Saturated aqueous sodium hydrogencarbonate solution (300 ml) was added and the mixture was refluxed under heating for 2 hr. Chloroform was added to the reaction mixture. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was punified by silica gel flash chromatography (developing solvent, chloroform:ethyl acetate = 97:3). Ethyl acetate and diisopropyi ether were added to the resulting oil for crystallization and the resulting crystals were collected by filtration to give the title compound (44 g, yield 85%).

1H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.6Hz), 7.70-7.60(2H, m), 7.55(2H, d, J=8.7Hz), 4.95(2H, s), 4.48-4.28(1H, m) , 4.40(2H, m) , 2.02-1.20(8H, m) , 1.41(3H, t, J = 7.1 Hz)

20 Example 6

Production of 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0252] Ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (43 g) obtained in Example 5 was treated in the same manner as in Example 2 to give the title compound (33 g, yield 76%). 25 melting point: 243-244°C

FAB-Ms: 571(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.32(1H, s), 8.28(1H, d, J=8.9Hz), 8.05(1H, d, J=8.8Hz), 7.76-7.72(3H, m), 7.58-7.46 (5H, m), 7.40(1H, d, J=8.3Hz), 7.24(2H, d, J=8.9Hz), 5.11(2H, s), 4.36(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m)

Example 7

Production of ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0253] Ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate obtained in Example 3 and 2-bromo-5-methoxybenzyl bromide were treated in the same manner as in Example 4 to give the title compound (59 g).

Example 8

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy}-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0254] Ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate obtained in Example 7 was treated in the same manner as in Example 5 to give the title compound (48 g, yield 77%). 1H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=8.7Hz), 7.37 (2H, d, J=8.6Hz), 7.31(2H, d, J=8.6Hz), 7.25(1H, d, J=8.4Hz), 7.19(1H, d, J=2.7Hz), 7.00(2H, d, J=8.7Hz), 6.97(1H, dd, J=8.4, 2.7Hz), 4.98(2H, s), 4.41(2H, q, J=7.1Hz), 4.42-4.29(1H, m), 3.88(3H, s), 2.40-2.20(2H, m), 2.01-1.88(4H, m), 1.83-1.73(1H, m), 1.42(3H, t, J=7.1Hz), 1.41-1.25(3H, m)

50 Example 9

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0255] Ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (52 g) obtained in Example 8 was treated in the same manner as in Example 2 to give the title compound (44 g, yield 89%). 55 melting point: 248-249°C

FAB-Ms: 568(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.20(1H, s) , 7.88(1H, d, J=8.7Hz), 7.85(1H, d, J=8.7Hz), 7.57(d, 2H, J=8.6Hz), 7.46

(2H, d, J=8.6Hz), 7.44(2H, d, J=8.6Hz), 7.29(1H, d, J=8.5Hz), 7.24(1H, d, J=2.6Hz), 7.11(2H, d, J=8.6Hz), 7.06(1H, dd, J=8.5, 2.6Hz), 5.04(2H, s), 4.26(1H, m), 3.83(3H, s), 2.38-2.29(2H, m)

Example 10

5

10

30

Production of ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate

[0256] Ethyl 3-amino-4-cyclohexylaminobenzoate (500 mg) obtained in Example 1, Step 3, was dissolved in methyl alcohol (6 ml) and trans-4-stilbenecarbaldehyde (397 mg) was added under ice-cooling. The mixture was stirred overnight at room temperature. The reaction mixture was ice-cooled and benzofuroxan (259 mg) dissolved in acetonitrile (2 ml) was added. The mixture was stirred for 7 hr at 50°C. The reaction mixture was ice-cooled. After 1N sodium hydroxide was added, ethyl acetate was added and the mixture was extracted. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 4:1) to give the title compound (540 mg, yield 63%).

 1 H-NMR (300MHz, DMSO-d₆): 8.28(1H, d, J=1.4Hz), 8.01(1H, d, J=8.7Hz), 7.90-7.80(3H, m), 7.75-7.65(4H, m), 7.50-7.25(5H, m), 4.35(2H, q, J=7.0Hz), 4.31(1H, m), 2.40-2.20(2H, m), 2.00-1.80(4H, m), 1.63(1H, m), 1.40-1.20(3H, m), 1.36(3H, t, J=7.0Hz)

20 Example 11

Production of 1-cyclohexyl-2-{4-{(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylic acid

[0257] Ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate (127 mg) obtained in Example 10 was treated in the same manner as in Example 2 to give the title compound (116 mg, yield 97%). melting point: not lower than 300°C

FAB-Ms: 423(MH+)

 1 H-NMR (300MHz, DMSO-d₆): 8.25(1H, s) , 7.96-7.29(13H, m) , 4.33(1H, brt), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 1.71-1.59(1H, m), 1.49-1.20(3H, m)

Example 12

Production of 2- (4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

35 [0258] In the same manner as in Examples 1 and 2, the title compound (700 mg) was obtained. FAB-Ms: 413(MH+)

 1 H-MMR (300MHz, CDCl₃): 8.60(1H, s), 8.04(1H, d, J=9.0Hz), 7.63(2H, d, J=8.4Hz), 7.51-7.32(6H, m), 7.14(2H, d, J=9.0Hz), 5.16(2H, s), 5.03-4.89(1H, m), 2.41-1.63(8H, m)

40 Example 13

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide

[0259] 2-(4-Benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (700 mg) obtained in Example 12 was dissolved in dimethylformamide (10 ml), and ammonium chloride (108 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (390 mg), 1-hydroxybenzotriazole (275 mg) and triethylamine (0.3 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl

acetate and diisopropyl ether were added to the residue for crystallization and the crystals were collected by filtration to give the title compound (571 mg, yield 81%).

melting point: 232-233°C

FAB-Ms: 412(MH+)

¹H-NMR (300MHz, CDCl₃): 8.23(1H, d, =1.5Hz), 7.86(1H, dd, J=8.5, 1.5Hz), 7.65-7.30(8H, m), 7.13(2H, d, J=8.8Hz),

55 5.16(2H, s), 4.93(1H, quint, J=8.8Hz), 2.40-1.60(8H, m)

Example 14

Production of 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole

[0260] In the same manner as in Example 1, the title compound (400 mg) was obtained. FAB-Ms: 394(MH+) ¹H-NMR (300MHz, CDCl₃): 8.11(1H, s), 7.68-7.30(9H, m), 7.13(2H, s) , 5.16(2H, s), 4.94(1H, quint, J=8.9Hz), 2.35-1.60 (8H, m)

Example 15

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime

[0261] 2-(4-Benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (400 mg) obtained in Example 14 was suspended in ethyl alcohol (3 ml) and water (1.5 ml), and hydroxylamine hydrochloride (141 mg) and sodium hydrogencarbonate (170 mg) were added. The mixture was refluxed under heating overnight. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (312 mg, yield 71%). melting point: 225-226°C

FAB-Ms: 456(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.20(1H, s), 7.50-7.31(9H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, 20 J=8.7Hz), 3.61(3H, s), 3.40(3H, s), 2.41-1.42(8H, m)

Example 16

Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate

[0262]

30 Step 1: Production of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole

Ethyl 4-(4-fluorophenyl)-2-methyl-5-thiazolecarboxylate (59 g) prepared by a known method (Chem. Pharm. Bull., 43(6), 947, 1995) was dissolved in tetrahydrofuran (700 ml). Lithium aluminum hydride (13 g) was added under ice-cooling and the mixture was stirred for 30 min. Water (13 ml), 15% sodium hydroxide (13 ml) and water (39 ml) were added successively to the reaction mixture, and the precipitated insoluble materials were filtered off. The filtrate was concentrated under reduced pressure to give the title compound (37 g, yield 71%). ¹H-NMR (300MHz, CDCl₃): 7.60(2H, dd, J=8.7, 6.6Hz), 7.11(2H, t, J=8.7Hz), 4.80(2H, s), 2.70(3H, s)

Step 2: Production of 5-chloromethyl-4-(4-fluorophenyl)-2-methylthiazole

4-(4-Fluorophenyl)-5-hydroxymethyl-2-methylthiazole (37 g) obtained in the previous step was dissolved in chloroform (500 ml), and thionyl chloride (24 ml) and pyridine (2 ml) were added. The mixture was stirred for 3 hr at room temperature. The reaction mixture was poured into ice-cold water. The mixture was extracted with chloroform, and washed with water and saturated brine. The organic layer was dried over sodium sulfate, and concentrated under reduced pressure to give the title compound (29 g, yield 76%).

 1 H-NMR (300MHz, CDCl₃): 7.67(2H, dd, J=8.8, 5.4Hz), 7.16(2H, t, J=8.7Hz), 4.79(2H, s) , 2.73(3H, s)

Step 3: Production of ethyl I-cyclohexyl-2-{4-[{4-(4-fluorophenyl) -2-methyl-5-thiazolyl}methoxy]phenyl]benzimidazole-5-carboxylate

5-Chloromethyl-4-(4-fluorophenyl)-2-methylthiazole (28 g) obtained in the previous step and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (36 g) obtained in Example 3 were treated in the same manner as in Example 4 to give the title compound (61 g, yield 100%). APCI-Ms: 570 (MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.25(1H, d, J=1.5Hz), 7.97(1H, d, J=8.7Hz), 7.86(1H, dd, J=8.6, 1.6Hz), 7.7.4(2H, 50 dd, J=8.8, 5.5Hz), 7.62(2H, d, J=8.7Hz), 7.33(2H, t, J=8.9Hz), 7.22(2H, t, J=8.9Hz), 5.41(2H, s), 4.34(2H, q, J=7.1Hz), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05-1.75(4H, m), 1.55-1.15(3H, m), 1.36(3H, t, J=7.1Hz)

55

35

40

Example 17

Production of 1-cyclohexyl-2-{4-{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid

[0263] Ethyl 1-cyclohexyl-2-{4-[4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 16 was treated in the same manner as in Example 2 to give the title compound (39g, yield 69%).

melting point: 196-198°C

10 FAB-Ms: 542(MH+)

¹H-NMR (300MHz, DMSO-d₆): 13.1(1H, brs), 8.34(1H, s) , 8.29(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.80-7.72(4H, m), 7.36-7.31(4H, m), 5.46(2H, s) , 4.38(1H, m), 2.72(3H, s), 2.45-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)

15 Example 18

Production of ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate

[0264] In the same manner as in Example 3, the title compound (50 g) was obtained.

Example 19

Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

25 [0265]

20

30

35

40

45

50

55

Step 1: Production of 3,3'-difluorobenzhydrol

To a stirred solution of magnesium strip (35.4 g) in THF (200 ml), iodine strip was added and the mixture was heated with stirring under nitrogen stream until most of color of iodine was disappeared. A solution of 3-fluorobromobenzene (250.0 g) in THF (1000 ml) was added dropwise over 2.5 hr while the temperature of the solution was maintained at 60°C. After the completion of the addition of the solution, the resulting mixture was refluxed for 1 hr with heating. The resulting Grignard solution was ice-cooled and a solution of ethyl formate (63.2 g) in THF (200 ml) was added dropwise over 1 hr. After a stirring of the reaction solution for an additional 30 min, saturated aqueous ammonium chloride solution (700 ml) was added dropwise with ice-cooling and water (300 ml) was added. The mixture was stirred for 10 min. The organic layer and water layer were separated. Water layer was extracted with ethyl acetate, and the combined organic layer was washed with 2N hydrochloric acid, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated off under reduced pressure to give the title compound (156.2 g, yield 99%). 1H-NMR (300MHz, CDCl₃): 7.31(2H, td, J=7.9, 5.8Hz), 7.15-7.80(4H, m), 6.97-6.94(2H, m), 5.82(1H, d, J=3.3Hz), 2.30(1H, d, J=3.3Hz)

Step 2: Production of 3,3'-difluorobenzhydryl chloride

To a solution of 3,3'-difluorobenzhydrol (150.0 g) obtained in the previous step in toluene (400 ml), pyridine (539 mg) was added at room temperature. To the solution, thionyl chloride (89.1 g) was added dropwise over 1 hr at room temperature and the resulting solution was stirred for an additional 2 hr. The solution was heated so that the temperature of the solution was at 40°C, and then stirred for an additional 1.5 hr. Thionyl chloride (8.1 g) was added again and the mixture was stirred for 30 min. To the reaction mixture, water was added. The organic layer was separated, and washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, the solvent was evaporated off under reduced pressure to give the title compound (158.2 g, yield 97%).

¹H-NMR (300MHz, CDCl₃): 7.32(2H, td, J=8.0, 5.9Hz), 7.18-7.10(4H, m), 7.01(2H, tdd, J=8.2, 2.5, 1.2Hz), 6.05 (1H, s)

Step 3: Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate (50 g) obtained In Example 18 and 3,3'-difluorobenzhydryl chloride (34 g) obtained in the previous step were treated in the same manner as in Example 4 to give the title compound (76 g, yield 99%).

FAB-Ms: 585(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.24(1H, d, J=1.4Hz), 7.98(1H, d, J=8.7Hz), 7.88(1H, d, J=8.7Hz), 7.56(1H, t,

J=8.6Hz), 7.50-7.40(6H, m), 6.82(1H, s), 4.34(2H, q, J=7.1Hz), 3.95(1H, m), 2.20-2.10(2H, m), 1.90-1.80(4H, m), 2.20-2.10(2H, m), 2.20-1.6(1H, m), 1.35(3H, t, J=7.2Hz), 1.30-1.20(3H, mz)

Example 20

5

20

30

50

Production of 2-[4-(bis[3-fluorophenyl]methoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid

[0266] Ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (75 g) obtained in Example 19 was treated in the same manner as in Example 2 to give the title compound (48 g, yield 62%). melting point: 242-243°C

FAB-Ms: 557(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.29(1H, s), 8.16(1H, d, J=8.8Hz), 7.99(1H, d, J=8.7Hz), 7.66(1H, t, J=8.7Hz), 7.51-7.40(6H, m), 7.30(1H, d, J=12.1Hz), 7.20-7.14(3H, m), 6.88(1H, s), 4.07(1H, m), 2.40-2.10(2H, m), 2.00-1.75 (4H, m), 1.70-1.55(1H, m),

15 1.50-1.15(3H, m)

Example 21

Production of ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate

[0267] In the same manner as in Example 1, the title compound (12 g) was obtained.

Example 22

Production of ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate 25

[0268] Ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (12 g) obtained in Example 21 was dissolved in tetrahydrofuran (200 ml) and ethyl alcohol (50 ml), 7.5% palladium carbon (50% wet, 1 g) was added. The mixture was hydrogenated for 1 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Tetrahydrofuran was added to the residue to allow crystallization and the crystals were collected by filtration to give the title compound (11 g, yield 98%). ¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.3Hz), 7.95(1H, dd, J=8.5, 1.3Hz), 7.50-7.40(3H, m), 6.79(2H, d, J=4.6Hz),

4.97(1H, quint, J=8.9Hz), 4.40(2H, q, J=7.1Hz), 3.74(2H, brs), 2.40-1.60(8H, m), 1.41(3H, t, J=7.1Hz)

Example 23

Production of ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate

[0269] Ethyl 1-cyclopentyl-2-(4-aminophenyl)benzimidazole-5-carboxylate (300 mg) obtained in Example 22 was dissolved in pyridine (3 ml) and chloroform (3 ml), and benzoyl chloride (127 mg) was added. The mixture was stirred 40 for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and water was added to the residue to allow crystallization. The crystals were collected by filtration to give the title compound (403 mg, yield

¹H-NMR (300MHz, CDCl₃): 8.58(1H, s), 8.00(1H, d, J=9.0Hz), 7.84(2H, d, J=7.5Hz), 7.60-7.40(6H, m), 7.14(2H, d, J=7.5Hz), 4.84(1H, quint, J=8.7Hz), 4.41(2H, q, J=7.5Hz), 2.20-1.30(8H, m), 1.41(3H, t, J=7.5Hz)

Example 24

Production of 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

[0270] Ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (200 mg) obtained in Example 23 was treated in the same manner as in Example 2 to give the title compound (131 mg, yield 70%). melting point: not lower than 300°C

FAB-Ms: 426(MH+)

¹H-NMR (300MHz, DMSO-d₆): 10.75(1H, s), 8.35(1H, s), 8.15and7.85(4H, ABq, J=8.9Hz), 8.10-7.98(4H, m), 7.70-7.55 (3H, m), 5.02(1H, quint, J=8.7Hz), 2.36-2.15(4H, m), 2.14-1.95(2H, m), 1.80-1.62 (2H, m)

Example 25

Production of ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

⁵ [0271] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (65 g) obtained in Example 1 and 3-chlorophenylboronic acid (23 g) were treated in the same manner as in Example 5 to give the title compound (59 g, yield 85%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3) : 8.51(1H, d, J=1.8Hz), 7.99(1H, dd, J=8.7, 1.8Hz), 7.71-7.55(4H, m), 7.51-7.43(2H, m), 7.43-7.27(4H, m), 7.19(1H, d, J=8.4Hz), 7.12(1H, m) , 4.41(2H, q, J=7.2Hz), 4.39(1H, m) , 2.42-2.22(2H, m) , 2.03-1.87 (4H, m) , 1.79(1H, m), 1.42(3H, t, J=7.2Hz), 1.39-1.29(3H, m)

Example 26

15

25

Production of 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0272] Ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (59 g) obtained in Example 25 was treated in the same manner as in Example 2 to give the title compound (43 g, yield 76%). melting point: 253-254°C

FAB-Ms: 523(MH+)

¹H-NMR (300MHz, DMSO-d₆): 12.82(1H, brs), 8.24(1H, d, J=1.3Hz), 7.98(1H, d, J=8.7Hz), 7.89(1H, dd, J=8.7, 1.3Hz), 7.78(1H, s), 7.72(2H, d, J=9.7Hz), 7.70(1H, m), 7.64-7.42(5H, m), 7.25(2H, d, J=8.7Hz), 7.20(1H, m), 4.33(1H, m), 2.39-2.17(2H, m), 2.00-1.76(4H, m), 1.65(1H, m), 1.50-1.22(3H, m)

Example 27

Production of ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0273] In the same manner as in Example 1, the title compound (87 g) was obtained.

30 Example 28

Production of ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)-phenyl]benzimidazole-5-carboxylate

[0274] Ethyl 2-[4- (3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (87 g) obtained in Example 27 was dissolved in methyl alcohol (250 ml) and tetrahydrofuran (250 ml), and potassium carbonate (31 g) was added. The mixture was stirred for 30 min at room temperature. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. Water was added to the residue and the mixture was neutralized with 2N hydrochloric acid. The precipitated crystals were collected by filtration to give the title compound (78 g, yield 97%).

1H-NMR (300MHz, DMSO-d₆): 9.71(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.68 (2H, d, J=8.6Hz), 7.24

(1H, t, J=8.1Hz), 7.18(2H, d, J=8.6Hz), 6.63(1H, d, J=8.1Hz), 6.57(1H, d, J=8.1Hz), 6.51(1H, s), 4.38-4.23(1H, m),

4.35(2H, q, J=6.9Hz), 2.36-2.18(2H, m), 1.99-1.78(4H, m), 1.71-1.59(1H, m), 1.45-1.20(3H, m), 1.36(3H, t, J=6.9Hz)

Example 29

Production of ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)-phenyloxy]phenyl]benzimidazole-5-carboxylate

[0275] Ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-benzimidazole-5-carboxylate (78 g) obtained in Example 28 was suspended in dimethylformamide (800 ml), and sodium hydride (60% oil, 14 g) was added under ice-cooling. The mixture was stirred for 1 hr at room temperature. After the reaction mixture was ice-cooled, 4-chloromethylpyridine hydrochloride (29 g) was added and the mixture was stirred for 30 min. The mixture was then stirred overnight at room temperature. Water was added to the reaction mixture and the precipitated crystals were collected by filtration. The resulting crystals were recrystallized from ethyl alcohol to give the title compound (77 g, yield 82%).

1H-NMR (300MHz, CDCl₃): 8.63(2H, d, J=6.0Hz), 8.51(1H, s), 7.99(1H, d, J=8.7Hz), 7.66(2H, d, J=8.7Hz), 7.62(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, m), 5.09(2H, s), 4.47-4.31(1H, m), 4.42(2H, q, J=7.0Hz), 2.42-2.22(2H, m), 2.04-1.71(5H, m), 1.45-1.25(3H, m), 1.42(3H, t, J=7.0Hz)

Example 30

Production of 1-cyclohexyl-2-{4-{3-(4-pyridylmethoxy)phenyloxy}-phenyl}benzimidazole-5-carboxylic acid

[0276] Ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 29 was treated in the same manner as in Example 2 to give the title compound (54 g, yield 75%).
melting point: 235-237°C

FAB-Ms: 520(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.58(2H, d, J=6.0Hz), 8.23(1H, s), 7.96 and 7.86(2H, ABq, J=8.7Hz), 7.68 and 7.17 (4H, A'B'q, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.39(1H, t, J=8.3Hz), 6.90(1H, d, J=8.1Hz), 6.84(1H, s), 6.75(1H, d, J=8.1Hz), 5.22(2H, s), 4.40-4.22(1H, m), 2.40-2.19(2H, m), 2.00-1.80(4H, m)

Example 241

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0277]

20

25

30

35

40

45

50

Step 1: Production of 2-bromo-5-methoxybenzaldehyde

3-Methoxybenzaldehyde (15 g) was dissolved in acetic acid (75 ml), and a solution of bromine (5.7 ml) dissolved in acetic acid (15 ml) was added dropwise. The mixture was stirred overnight at room temperature and water (150 ml) was added to the reaction mixture. The precipitated crystals were collected by filtration, washed with water and dried under reduced pressure to give the title compound (21 g, yield 88%).

¹H-NMR (300MHz, CDCl₃): 10.31(1H, s), 7.52(1H, d, J=8.8Hz), 7.41(1H, d, J=3.3Hz), 7.03(1H, dd, J=8.8, 3.3Hz), 3.48(3H, s)

Step 2: Production of 2-(4-chlorophenyl)-5-methoxybenzaldehyde

2-Bromo-5-methoxybenzaldehyde (10 g) obtained in the previous step was treated in the same method as in Example 5 to give the title compound (11 g, yield 96%).

¹H-NMR (300MHz, CDCl₃): 9.92(1H, s), 7.50(1H, d, J=2.6Hz), 7.48-7.14(6H, m), 3.90(3H, s)

Step 3: Production of 2-(4-chlorophenyl)-5-methoxybenzyl alcohol

2-(4-Chlorophenyl)-5-methoxybenzaldehyde (10 g) obtained in the previous step was dissolved in tetrahydrofuran (30 ml). The solution was added dropwise to a suspension of sodium borohydride (620 mg) in isopropyl alcohol (50 ml) and the mixture was stirred for 1 hr. The solvent was evaporated under reduced pressure and water was added to the residue. The precipitated crystals were collected by filtration and dried under reduced pressure. The resulting crystals were recrystallized from a mixture of methanol and water to give the title compound (9.2 g, yield 91%).

 1 H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.6Hz), 7.27(2H, d, J=8.6Hz), 7.17(1H, d, J=8.6Hz), 7.11(1H, d, J=2.6Hz), 6.89(1H, dd, J=8.6, 2.6Hz), 4.57(2H, s), 3.86(3H, s)

Step 4: Production of 2-(4-chlorophenyl)-5-methoxybenzyl chloride

2-(4-Chlorophenyl)-5-methoxybenzyl alcohol (20 g) obtained in the previous step was dissolved in ethyl acetate (100 ml) and pyridine (0.5 ml), and thionyl chloride (11 ml) was added dropwise. The mixture was stirred for 1 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Isopropyl alcohol was added to the residue to allow crystallization. The resulting crystals were collected by filtration and dried under reduced pressure to give the title compound (16 g, yield 74%).

¹H-NMR (300MHz, CDCl₃): 7.43-7.29 (4H, m) , 7.17(1H, d, J=8.6Hz), 7.05(1H, d, J=2.6Hz), 6.96-6.89(1H, m), 4.46(2H, s) , 3.86(3H, s) **Step 5**: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cy-clohexylbenzimidazole-5-carboxylate

2-(4-Chlorophenyl)-5-methoxybenzyl chloride (4.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (5.0 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (6.0 g, yield 72%).

 $^{1}\text{H-NMR} (300\text{MHz}, \text{CDCl}_3): 8.48(1\text{H}, \text{s}), 8.00-7.93(1\text{H}, \text{m}), 7.68-7.62(1\text{H}, \text{m}) \,, 7.54(2\text{H}, \text{d}, \text{J}=9.0\text{Hz}), 7.41-7.16(6\text{H}, \text{m}) \,, 7.04-6.93(3\text{H}, \text{m}), 4.97(2\text{H}, \text{s}), 4.36(1\text{H}, \text{m}), 3.94(3\text{H}, \text{s}), 3.87(3\text{H}, \text{s}), 2.39-2.21(2\text{H}, \text{m}) \,, 2.02-1.88(4\text{H}, \text{m}), 1.85-1.45(4\text{H}, \text{m})$

Example 242

5

10

15

20

25

30

35

40

45

50

55

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride

[0278] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (5.0 g) obtained in Example 241 was treated in the same manner as in Example 2 to give the title compound (5.1 g, yield 98%).

APCI-Ms: 568(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.30(1H, d, J=1.4Hz), 8.24(1H, d, J=8.7Hz), 8.03 (1H, d, J=8.7Hz), 7.72(2H, d, J=8.7Hz), 7.51-7.39(4H, m), 7.34-7.18(4H, m), 7.11-7.03(1H, m), 5.08 (2H, s), 4.35(1H, m), 3.83(3H, m), 2.40-2.18 (2H, m), 2.10-1.96(2H, m), 1.93-1.78(2Hm), 1.72-1.18(4H, m)

Example 243

Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0279]

Step 1: Production of methyl 3-hydroxypicolinate

3-Hydroxypicolinic acid (1.0 g) was suspended in methanol (10 ml) and concentrated sulfuric acid (1.0 ml) was added. The mixture was refluxed under heating for 5 hr. The reaction mixture was ice-cooled, neutralized with saturated aqueous sodium hydrogencarbonate, and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (711 mg, yield 64%).

¹H-NMR (300MHz, CDCl₃): 10.63(1H, s), 8.28(1H, dd, J=3.7, 1.8Hz), 7.47-7.35(2H, m), 4.06(3H, s)

Step 2: Production of methyl 3-(trifluoromethylsulfonyloxy)-pyridine-2-carboxylate

Methyl 3-hydroxypicolinate (710 mg) obtained in the previous step and triethylamine (0.77 ml) were dissolved in dichloromethane (7 ml), and trifluoromethanesulfonic anhydride (0.86 ml) was added under ice-cooling. The reaction mixture was allowed to warm to room temperature and the mixture was stirred for 2 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.2 g, yield 90%).

¹H-NMR (300MHz, CDCl₃): 8.80-8.73(1H, m), 7.75-7.70(1H, m) , 7.63(1H, dd, J=8.2, 4.5Hz), 4.05(3H, s)

Step 3: Production of methyl 3-(4-chlorophenyl)pyridine-2-carboxylate

Methyl 3-(trifluoromethylsulfonyloxy)pyridine-2-carboxylate (1.2 g) obtained in the previous step was treated in the same manner as in Example 5 to give the title compound (728 mg, yield 69%).

 1 H-NMR (300MHz, CDCl₃): 8.73-8.66(1H, m), 7.77-7.68 (1H, m), 7.49(1H, dd, J=7.8, 4.5Hz), 7.46-7.37(2H, m), 7.32-7.23(2H, m), 3.80(3H, s)

Step 4: Production of [3-(4-chlorophenyl)pyridin-2-yl]methanol

Methyl 3-(4-chlorophenyl)pyridine-2-carboxylate (720 mg) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was ice-cooled. Lithium aluminum hydride (160 mg) was added to the solution and the mixture was stirred for 1 hr. To the reaction mixture were added successively water (1.6 ml), 15% sodium hydroxide (1.6 ml) and water (4.8 ml). The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (208 mg, yield 32%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3): 8.60(1H, dd, J=4.8, 1.5Hz), 7.60-7.55(1H, m), 7.40-7.48(2H, m) , 7.29-7.36(1H, m), 7.27-7.20(3H, m), 4.63(2H, s)

Step 5: Production of ethyl 2-{4-{3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[3-(4-Chlorophenyl)pyridin-2-yl]methanol (200 mg) obtained in the previous step was dissolved in chloroform (3 ml), and thionyl chloride (0.13 ml) and pyridine (catalytic amount) were added. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (3 ml), and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (232 mg) obtained in the same manner as in Example 3 and potassium carbonate (250 mg) were added. The mixture was stirred for 3 hr with heating at 80°C. The reaction mixture was then allowed to cool. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography

(developing solvent, n-hexane:ethyl acetate = 1:2) to give the title compound (246 mg, yield 68%). 1 H-NMR (300MHz, CDCl₃): 8.71(1H, dd, J=4.7, 1.4Hz), 8.49(1H, d, J=2.1Hz), 7.96(1H, d, J=10.2Hz), 7.71-7.62 (2H, m), 7.53(2H, d, J=8.7Hz), 7.45-7.34(5H, m), 7.04(2H, d, J=8.7Hz), 5.14(2H, s), 4.48-4.29(3H, m), 2.38-2.19 (2H, m), 2.02-1.22(11H, m)

Example 244

Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0280]

5

10

15

20

25

30

35

45

Step 1: Production of tert-butyl 4-bromo-3-methylbenzoate

4-Bromo-3-methylbenzoic acid (25 g) was suspended in dichloromethane (200 ml), and oxalyl chloride (12 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in tetrahydrofuran (200 ml) and the solution was ice-cooled. To the solution was added dropwise a solution of potassium tert-butoxide dissolved in tetrahydrofuran (150 ml) and the mixture was stirred for 30 min. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (27 g, yield 85%).

¹H-NMR (300MHz, CDCl₃): 7.83(1H, d, J=2.2Hz), 7.67-7.53 (2H, m), 2.43(3H, s) , 1.58(9H, s)

Step 2: Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

tert-Butyl 4-bromo-3-methylbenzoate (7.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (6.3 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (8.8 g, yield 77%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3): 8.49(1H, d, J=1.5Hz), 8.21(1H, d, J=2.1Hz), 7.97(1H, d, J=10.2Hz), 7.82(1H, d, J=10.2Hz), 7.71-7.58(4H, m), 7.16(2H, d, J=8.7Hz), 5.23(2H, s), 4.38(1H, m), 3.95(3H, s), 2.40-2.23(2H, m), 2.04-1.90(4H, m), 1.84-1.73(1H, m), 1.59(9H, s), 1.44-1.27(3H, m)

Example 245

Production of methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0281] Methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (4.5 g) obtained in Example 244 was treated in the same manner as in Example 5 to give the title compound (3.6 g, yield 76%).

40 1H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.27 (1H, d, J=1.8Hz), 8.04(1H, dd, J=7.9, 1.5Hz), 7.96(1H, dd, J=7.0, 1.5Hz), 7.65(1H, d, J=8.6Hz), 7.55(2H, d, J=8.6Hz), 7.43-7.32(5H, m), 7.01(2H, d, J=8.6Hz), 4.99(2H, s), 4.43-4.29(1H, m), 3.95(3H, s), 2.41-2.21(2H, m), 2.02-1.89(4H, m), 1.82-1.73(1H, m), 1.62(9H, s), 1.46-1.28(3H, m)

Example 246

 $Production of methyl 2-\{4-[5-carboxy-2-(4-chlorophenyl]-benzyloxy] phenyl\}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride$

[0282] Methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-car-boxylate (3.5 g) obtained in Example 245 was dissolved in dichloromethane (35 ml), and trifluoroacetic acid (35 ml) was added. The mixture was stirred for 1 hr at room temperature and the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, and 4N hydrochloric acid-ethyl acetate was added. The precipitated crystals were collected by filtration and dried under reduced pressure to give the title compound (3.3 g, yield 97%).

⁵⁵ ¹H-NMR (300MHz, DMSO-d₆): 8.33(1H, d, J=1.5Hz), 8.29(1H, s) , 8.24(1H, d, J=1.8Hz), 8.09-8.00 (2H, m), 7.74(2H, d, J=8.6Hz), 7.61-7.44(5H, m) , 7.24(2H, d, J=8.6Hz), 5.19(2H, s) , 4.36(1H, m), 3.93(3H, s) , 2.37-1,21(10H, m)

Example 247

5

20

25

35

40

45

50

55

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0283] Methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (400 mg) obtained in Example 246 was suspended in dichloromethane (5 ml), and oxalyl chloride (0.08 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane (5 ml). The resulting solution was added dropwise to a mixed solution of 40% aqueous methylamine solution (5 ml) and tetrahydrofuran (5 ml) under ice-cooling. The reaction mixture was stirred for 1 hr and concentrated under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from ethyl acetate and diisopropyl ether. The crystals were collected by filtration and dried under reduced pressure to give the title compound (335 mg, yield 86%).

 1 H-NMR (300MHz, CDCl₃): 8.47(1H, s), 8.06(1H, d, J=1.8Hz), 7.96(1H, dd, J=8.6, 1.5Hz), 7.82(1H, dd, J=8.2, 2.2Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=9.0Hz), 7.44-7.31(5H, m), 6.99(2H, d, J=9.0Hz), 6.35-6.26(1H, m), 5.00(2H, s), 4.35(1H, m), 3.95(3H, s), 3.05(3H, d, J=4.8Hz), 2.40-1.24(10H, m)

Example 248

Production of 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride

[0284] Methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (150 mg) obtained in Example 247 and tetrahydrofuran (2 ml) were treated in the same manner as in Example 2 to give the title compound (141 mg, yield 90%).

APCI-Ms: 594(MH+)

¹H-NMR (300MHz, DMSO-d₆): 8.65-8.58(1H, m), 8.27(1H, d, J=1.5Hz), 8.21(1H, d, J=8.2Hz), 8.15(1H, d, J=1.5Hz), 8.05-7.90(2H, m), 7.70(2H, d, J=8.6Hz), 7.56-7.43(5H, m), 7.21(2H, d, J=8.6Hz), 5.14 (2H, s), 4.34(1H, m), 2.81(3H, d, J=4.5Hz), 2.39-1.19(10H, m)

[0285] In the same manner as in Examples 1-30 and 241-248, and optionally using other conventional methods, where necessary, the compounds of Examples 31-240, 249-327, 701 and 1001-1559 were obtained. The chemical structures and properties are shown in Table 1 to 177 and 185 to 212.

Example 501

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexyl-1H-indole-5-carboxylate

[0286]

Step 1: Production of methyl 3-bromo-4-cyclohexylaminobenzoate

3-Bromo-4-fluorobenzoic acid (2.0 g) was dissolved in methanol (20 ml) and concentrated sulfuric acid (2 ml) was added. The mixture was refluxed for 3 hr. The reaction mixture was poured into ice-cold water and extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in dimethyl sulfoxide (20 ml) and cyclohexylamine (10.3 ml) was added. The mixture was stirred overnight at 120°C. The reaction mixture was poured into 10% aqueous citric acid solution (100 ml) and extracted with ethyl acetate (100 ml). The organic layer was washed with water (50 ml) and saturated brine (50 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (2.6 g, yield 92%).

 1 H-NMR (300MHz, CDCl₃): 8.10(1H, d, J=1.9Hz), 7.83(1H, dd, J=1.9Hz, 8.6Hz), 6.59(1H, d, J=8.7Hz), 4.73(1H, brd, J=7.3Hz), 3.85(3H, s), 3.38(1H, m), 2.10-2.00(2H, m), 1.90-1.20(8H, m)

Step 2: Production of 4'-chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl

4-lodophenol (5.0 g) was dissolved in acetone (50 ml), and potassium carbonate (4.7 g) and 4'-chloro-2-chloromethyl-4-methoxybiphenyl (6.0 g) obtained in Example 241, Step 4 were added. The mixture was refluxed for

10 hr. The reaction mixture was concentrated and 4N aqueous sodium hydroxide solution (50 ml) was added. The precipitated crystals were collected by filtration, washed with water, and dried under reduced pressure to give the title compound (10.0 g, yield 98%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃) : 7.52(2H, d, J=8.9Hz), 7.35(2H, d, J=8.5Hz), 7.27-7.20(3H, m) , 7.12(1H, s) , 6.95(1H, d, J=8.5Hz), 6.62(2H, d, J=8.9Hz), 4.84(2H, s), 3.85(3H, s)

Step 3: Production of [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]trimethylsilane

4'-Chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl (7.0 g) obtained in the previous step was dissolved in acetonitrile (50 ml), and trimethylsilylacetylene (2.3 g), tetrakis-(triphenylphosphine)palladium complex (1.8 g), copper(I) iodide (0.6 g) and triethylamine (50 ml) were added. The mixture was stirred overnight at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (5.1 g, yield 79%). H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.9Hz), 7.34(2H, d, J=8.2Hz), 7.28-7.21(3H, m), 7.13(1H, s), 6.94(1H, d, J=8.2Hz), 6.75(2H, d, J=8.9Hz), 4.87(2H, s), 3.85(3H, s), 0.23(9H, s)

Step 4: Production of methyl 3-(4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate

[4-(4'-Chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-trimethylsilane (5.1 g) obtained in the previous step was dissolved in methanol (50 ml) and chloroform (50 ml), and potassium carbonate (2.5 g) was added. The mixture was stirred for 3 hr at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure to give white crystals (3.8 g). The white crystals (2.3 g) were dissolved in acetonitrile (10 ml), and methyl 3-bromo-4-cyclohexylaminobenzoate (1.0 g) obtained in Step 1, tetrakis(triphenylphosphine)palladium complex (0.4 g), copper(I) iodide (0.1 g) and triethylamine (10 ml) were added. The mixture was stirred overnight at 100°C and concentrated under reduced pressure. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.9 g, yield 49%). ¹H-NMR (300MHz, CDCi₃): 8.03(1H, s), 7.84(1H, d, J=8.7Hz), 7.42-7.22(7H, m), 7.15(1H, s), 6.95(1H, d, J=8.2Hz), 6.85(2H, d, J=8.8Hz), 6.59(1H, d, J=8.8Hz), 5.07(1H, brs), 4.91(2H, s), 3.86(3H, s), 3.85(3H, s), 3.42(1H, m), 2.15-2.00(2H, m), 1.80-1.20(8H, m) Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-car-

Methyl 3- [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate (0.5 g) obtained in the previous step was dissolved in N,N-dimethylformamide (5 ml), and copper(l) iodide (0.17 g) was added. The mixture was refluxed for 3 hr at 180°C. The insoluble materials were removed by filtration. Water (10 ml) was added and the mixture was extracted with ethyl acetate (30 ml). The organic layer was washed with water (10 ml) and saturated brine (10 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.27 g, yield 55%).

1H-NMR (300MHz, CDCl₃): 8.34(1H, s), 7.85(1H, d, J=8.8Hz), 7.62(1H, d, J=8.8Hz), 7.40-7.18(8H, m), 7.00-6.94 (3H, m), 6.48(1H, s), 4.95(2H, m), 4.18(1H, m), 3.93(3H, s), 3.88(3H, s), 2.45-2.25(2H, m), 1.95-1.20(8H, m)

45 Example 502

5

10

15

20

25

30

35

40

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-IH-indole-5-carboxylic acid

[0287] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate (0.27 g) obtained in Example 501 was treated in the same manner as in Example 2 to give the title compound (0.19 g, yield 71%).

 $^{1}\text{H-NMR} \ (300\text{MHz}, DMSO-d_6): 12.43(1\text{H}, brs), 8.20(1\text{H}, s) \ , 7.79(1\text{H}, d, J=9.3\text{Hz}), 7.72(1\text{H}, d, J=9.0\text{Hz}), 7.50-7.20(8\text{H}, m), 7.07-7.03(3\text{H}, m), 6.53(1\text{H}, s) \ , 5.01(2\text{H}, s) \ , 4.13(1\text{H}, m), 3.83(3\text{H}, m) \ , 2.35-2.25(2\text{H}, m) \ , 1.85-1.10(8\text{H}, m) \]$

necessary, the compound of Example 503 was obtained. The chemical structure and properties are shown in Table 207.

Example 601

Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1, 2-a]pyridine-7-carboxylate

5 [0289]

10

15

20

25

30

35

40

45

50

Step 1: Production of 4-benzyloxy-N-methoxy-N-methylbenzamide

4-Benzyloxybenzoic acid (5.0 g) and N,O-dimethylhydroxylamine hydrochloride (2.5 g) were suspended in dimethylformamide (50 ml), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.0 g), 1-hydroxybenzotriazole (3.5 g) and triethylamine (3.6 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (5.6 g, yield 94%).

 1 H-NMR (300MHz, CDCl₃): 7.22, 2H, d, J=8.8Hz), 7.28-7.46(5H, m), 6.97(2H, d, J=8.8Hz), 5.10(2H, s), 3.56(3H, s), 3.35(3H, s)

Step 2: Production of 1-(4-benzyloxyphenyl)-2-cyclohexylethanone

Magnesium (470 mg) was suspended in tetrahydrofuran (2 ml) and cyclohexylmethyl bromide (3.4 g) was added dropwise at room temperature. After the addition, the reaction mixture was stirred for 30 min at 60°C. The reaction mixture was allowed to cool and diluted with tetrahydrofuran (5 ml). Separately, 4-benzyloxy-N-methoxy-N-methylbenzamide (3.4 g) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was added dropwise to the reaction mixture at room temperature. The mixture was stirred for 2 hr and saturated aqueous ammonium chloride solution was added to the reaction mixture. The mixture was extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (3.8 g, yield 66%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl3) : 7.93(2H, d, J=8.8Hz), 7.28-7.46(5H, m), 7.00(2H, d, J=8.8Hz), 5.13(2H, s) , 2.76(2H, d, J=6.8Hz), 1.95(1H, m), 0.78-1.82(10H, m)

Step 3: Production of 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone

1-(4-Benzyloxyphenyl)-2-cyclohexylethanone (1.0 g) obtained in the previous step was dissolved in 1,4-dioxane (10 ml) and bromine (0.17 ml) was added. The mixture was stirred for 10 min at room temperature. Saturated aqueous sodium hydrogencarbonate was added to the reaction mixture and the mixture was extracted with diethylether. The organic layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (696 mg, yield 55%).

1H-NMR (300MHz, CDCl₂): 7.98(2H, d, J=8.9Hz), 7.28-7.48(5H, m), 7.02(2H, d, J=8.9Hz), 5.14(2H, s), 4.89(1H, s)

 1 H-NMR (300MHz, CDCl₃): 7.98(2H, d, J=8.9Hz), 7.28-7.48(5H, m), 7.02(2H, d, J=8.9Hz), 5.14(2H, s), 4.89(1H, d, J=9.3Hz), 0.86-3.30(11H, m)

Step 4: Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate

Ethyl 2-aminopyridine-4-carboxylate (214 mg) prepared according to JP-A-8-48651, 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone (500 mg) obtained in the previous step and potassium carbonate (356 mg) were stirred for 5 hr with heating at 140°C. The reaction mixture was allowed to cool and chloroform was added. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (95 mg, yield 16%).

APCI-MS: 455(MH+)

 1 H-NMR (300MHz, CDCl₃): 8.33(1H, s), 8.21(1H, d, J=7.5Hz), 7.55(2H, d, J=8.7Hz), 7.25-7.50(6H, m), 5.13(2H, s), 4.41(2H, q, J=7.1Hz), 3.25(1H, m), 1.41(3H, t, J=7.1Hz), 1.15-2.00(10H, m)

Example 602

Production of 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo [1,2-a]pyridine-7-carboxylic acid

[0290] Ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (95 mg) obtained in the previous step was treated in the same manner as in Example 2 to give the title compound (33 mg, 37%).

5 APCI-MS: 427(MH+)

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.67(1H, d, J=7.3Hz), 8.08(1H, s) , 7.25-7.58(8H, m), 7.13(2H, d, J=8.7Hz), 5.17(2H, s), 3.23(1H, m), 1.25-2.10(10H, m)

[0291] The compounds shown in Tables 213 to 218 can be further obtained in the same manner as in Examples 1

to 701 or by other conventional method employed as necessary.

Table 1

Example	No.	31	1H NMR(δ) ppm
	___________________		300MHz, CDC13 7. 81 (2H, d, J=6.6Hz), 7. 60 (2H, d, J=8.8Hz), 7. 51-7. 21 (8H, m), 7. 11 (2H, d, J=8.8Hz), 5. 15 (2H, s), 4. 93 (1H, quin t, J=8.8Hz), 2. 36-2. 32 (2H, m), 2. 09-2. 04 (3H, m), 1. 75-1. 68 (3H, m).
Purity	>90% (NMR)	
MS	369 (M+1)		·

Example No. 32	1H NMR(δ) ppm
	300MHz, CDC13 8. 51 (1H, d, J=1.5Hz), 7.98 (1H, d, J=8.4Hz), 7.61 (2H, d, J=8.7Hz), 7.56-7.10 (6H, m), 7.12 (2H, d, J=8.7Hz), 5.15 (2H, s), 4.94 (1H, quint, J=9.3Hz), 4.41 (2H, q, J=7.5Hz), 2.40-1.50 (8H, m), 1.41 (3H, t, J=7.5Hz)
Purity >90% (NMR)	
MS 441 (M+1)	

Example	No.	33 1H NMR(δ) ppm
, i		300MHz, CDC13 7.84(1H, s), 7.61(2H, d, J=9 .0Hz), 7.58-7.30(7H, m), 7. 12(2H, d, J=9.0Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7H z), 3.10(6H, brs), 2.40-1.5 0(8H, m)
Purity	>90% (NMR)	
MS	440 (M+1)	

Table 2

			-
5	Example No.	34 .	1H NMR(δ) ppm
10		- ⟨□⟩	300MHz, CDC13 8. 20 (1H, s), 7. 50-7. 31 (9H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 15 (2H, s), 4. 94 (1H, quint, J=8. 7Hz), 3. 61 (3H, s), 3. 40 (3H, s), 2. 41-1. 42 (8H, m)
15	0		
	Purity >90% (NMR)	
20	MS 456 (M+1)		1
2	Example No.	35	1H NMR(δ) ppm
25	H0 N		300MHz, CDC13 7.91(1H.s), 7.59(2H, d, J=8 .7Hz), 7.49-7.30(7H, m), 7. 11(2H, d, J=8.8Hz), 5.15(2H
30			, s), 4. 19(1H, quint, J=8.8H z), 2. 41-2. 22(2H, m), 2. 13- 1. 49(14H, m)
35	Purity >90% (NMR)		
	MS 427 (M+1)		
40			
	Example No.		1H NMR(δ) ppm
45		=\	300MHz, CDC13 8. 40 (1H, d, J=1. 4Hz), 7. 95 (1H, dd, J=8. 6, 1. 4Hz), 7. 61 (2H, d, J=8. 7Hz), 7. 57-7. 30 (6H, m), 7. 13 (2H, d, J=8. 7Hz)
50	5		, 5. 16 (2H, s), 4. 95 (1H, quin t, J=8. 8Hz), 2. 64 (3H, s), 2. 40-1. 54 (8H, m)
	Purity >90% (NMR)		

411 (M+1)

55

MS

Table 3

Example	No.	37	1H NMR(δ) ppm
2401			300MHz, DMSO-d6 10. 47(1H, brs,), 9. 15(1H, brs), 8. 40(1H, s), 8. 07(1H, d, J=9. 0Hz), 7. 93(1H, d, J=8. 7Hz), 7. 77(2H, d, J=8. 7Hz), 7. 55-7. 29(7H, m), 5. 26(2H, s), 4. 93(1H, quint, J=9. 0Hz), 3. 77-3. 63(2H, m), 3. 39-3. 23(2H, m), 2. 84(6H, d, J=4. 8Hz), 2. 32-1. 60(8H, m)
Purity	>90% (NMR)		
MS	483 (M+1)		

Example No.	38 1H NMR(δ) ppm
O _z N Oz N O	300MHz, CDC13 8. 69 (1H, s), 8. 19 (1H, d, J=9 .0Hz), 7. 62 (2H, d, J=8. 7Hz) , 7. 54 (1H, d, J=9. 0Hz), 7. 48 -7. 36 (5H, m), 7. 15 (2H, d, J= 8. 7Hz), 5. 17 (2H, s), 4. 98 (1 H, quint, J=9. 0Hz), 2. 27-2. 07 (6H, m), 1. 82-1. 78 (2H, m)
Purity >90% (NMI	2)
MS 414 (M+1)	·

Example	No.	39	1H NMR(δ) ppm
HC1			300MHz, DMSO-d6 7.84(1H, d, J=9.0Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.33(8H, m), 7.26(1H, d, J=9.0Hz), 5.27(2H, s), 4.92(1H, quint, J=9.3Hz), 2.19-1.70(8H, m).
Purity	>90% (NMR	2)	
MS	384 (M+1)		

Table 4

Example	No. 4	0 IH NMR(δ) ppm
		300MHz, CDC13 7. 72 (1H, s), 7. 60-7. 35 (10H, m), 7. 10 (2H, d, J=8. 7Hz), 5 .14 (2H, s), 4. 90 (1H, quint, J=8. 8Hz), 2. 29-2. 19 (2H, m) .2. 19 (3H, s), 2. 19-1. 74 (6H, m).
Purity	>90% (NMR)	
MS	426 (M+1)	

Example	No.	41	1H NMR(δ) ppm
S H			300MHz, CDC13 7. 66(1H, s), 7. 61(2H, d, J=8 .8Hz), 7. 50-7. 28(7H, m), 7. 12(2H, d, J=8.8Hz), 6. 86(1H, brs), 5. 15(2H, s), 4. 94(1H, quint, J=8.8Hz), 2. 97(3H, s), 2. 29-1. 76(8H, m).
Purity	>90% (1	NMR)	<u>.</u>
MS	462 (M+	1)	

Example	No.	42 IH NMR(δ) ppm
O S NH2		300MHz, DMS0 8. 11 (1H, s), 7. 81 (1H, d, J=8 . 4Hz), 7. 72 (1H, d, J=8. 4Hz) , 7. 65 (2H, d, J=8. 4Hz), 7. 51 (2H, m), 7. 43 (2H, m), 7. 37 (1 H, m), 7. 29 (2H, s), 7. 23 (2H, d, J=8. 4Hz), 5. 22 (2H, s), 4. 89 (1H, quintet, J=9. 2Hz), 2 . 2-2. 0 (6H, m), 1. 7 (2H, m).
Purity	>90% (NMR)	
MS	448 (M+)	

Table 5

5	Example No. 43	1H NMR(δ) ppm
10	HO I O O O O O O O O O O O O O O O O O O	300MHz, DMSO-d6 8. 33(1H, s), 8. 08(1H, d, J=9.0Hz), 7. 99(1H, d, J=9.0Hz), 7. 47-7. 41(4H, m), 7. 33(2H, d, J=8.4Hz), 5. 22(2H, s), 4. 96(1H, quint, J=9.0Hz), 2. 25-1.60(8H, m), 1. 30(9H, s)
	Purity >90% (NMR)	
20	MS 469 (M+1)]
	Example No. 44	1H NMR(δ) ppm
25		300MHz, DMSO-d6 12. 9(2H, brs), 8. 25(1H, s),
30	HO CH	8. 00 (2H, d, J=7. 8Hz), 7. 90 (1H, d, J=8. 4Hz), 7. 74 (1H, d, J=8. 7Hz), 7. 67 (2H, d, J=9. 0 Hz), 7. 62 (2H, d, J=8. 1Hz), 7. 24 (2H, d, J=8. 4Hz), 5. 32 (2 H, s), 4. 88 (1H, quint, J=9. 0 Hz, 2. 25-1. 60 (8H, m).
35	Purity >90% (NMR)	
	MS 457 (M+1)	
40	Example No. 45	1H NMR(δ) ppm
45 50	HO CI	300MHz, DMSO-d6 13. 4 (1H, brs), 8. 32 (1H, s), 8. 06 (1H, d, J=8. 7Hz), 7. 97 (1H, d, J=8. 7Hz), 7. 79 (2H, d, J=8. 8Hz), 7. 56-7. 48 (4H, m), 7. 33 (2H, d, J=8. 8Hz), 5. 27 (2H, s), 4. 95 (1H, quint, J=8. 9Hz), 2. 30-1. 60 (8H, m).
	Purity >90% (NMR) .	
		I

447 (M+1)

55

MS

Table 6

Example	No.	46	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 33(1H, s), 8. 07(1H, d, J=8 .7Hz), 7. 98(1H, d, J=8. 7Hz) , 7. 80(2H, d, J=8. 4Hz), 7. 34 (2H, d, 8. 4Hz), 7. 19(1H, d, J =3. 6Hz), 7. 09(1H, d, J=3. 6H z), 5. 41(2H, s), 4. 95(1H, qu int, J=8. 7Hz), 2. 30-1. 60(8 H, m).
Purity	>90% (NMR)		
MS	453 (M+1)		1

Example No. 47	1H NMR(δ) ppm
HO LO CO.	300MHz, DMSO-d6 8. 33 (1H, s), 8. 07 (1H, d, J=8 .4Hz), 7. 98 (1H, d, J=9. 0Hz) , 7. 82-7. 72 (6H, m), 7. 35 (2H , d, J=9. 0Hz), 5. 40 (2H, s), 4 .95 (1H, quint, J=8. 7Hz), 2. 35-1. 60 (8H, m).
Purity >90% (NMR)	
MS 481 (M+1)	

Example	No.	48 1H NMR(δ) ppm	
HO		300MHz, DMSO-d6 8. 23 (1H, s), 7. 88 (11 . 4Hz), 7. 70 (1H, d, J- , 7. 64 (2H, d, J-8. 4Hz), 7. 2 (2H, d, J-8. 4Hz), 7. 2 , J-8. 4Hz), 6. 98 (2H, 4Hz), 5. 13 (2H, s), 4. quint, J-8. 7Hz), 3. 7), 2. 35-1. 60 (8H, m).	=8.4Hz) 2),7,43 20(2H,d d,J=8. 88(1H.
Purity	>90% (NMR) .	
MS	443 (M+1)		

Table 7

Example	No. 49	1H NMR(δ) ppm
но	HCI	300MHz, DMSO-d6 8. 93 (2H, d, J=6.6Hz), 8. 35 (1H, s), 8. 06-8. 04 (3H, m), 7. 97 (1H, d, J=8.7Hz), 7. 83 (2H, d, J=8.7Hz), 7. 38 (2H, d, J=8.7Hz), 5. 61 (2H, s), 4. 94 (1 H, quint, J=8.7Hz), 2. 40-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	414 (M+1)	

Example	No.	50	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 33 (1H, s), 8. 08 (1H, d, J=8 .7Hz), 7. 99 (1H, d, J=9. 0Hz) ,7. 78 (2H, d, J=8. 4Hz), 7. 39 (2H, d, J=8. 1Hz), 7. 32 (2H, d ,J=8. 7Hz), 7. 23 (2H, d, J=7. 8Hz), 5. 22 (2H, s), 4. 96 (1H, quint, J=9. 0Hz), 2. 32 (3H, s),2. 30-1. 60 (8H, m).
Purity	>90% (NM	R)	
MS	427 (M+1)		

Example N	lo.	51	1H NMR(δ) ppm
но		N	300MHz, DMSO-d6 8. 31 (1H, s), 8. 03 (1H, d, J=9 . 0Hz), 7. 93 (1H, d, J=9. 0Hz) , 7. 77 (2H, d, J=8. 4Hz), 7. 31 (2H, d, J=8. 7Hz), 5. 07 (2H, s), 4. 94 (1H, quint, J=8. 7Hz) , 2. 45 (3H, s), 2. 26 (3H, s), 2 . 26-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	432 (M+1)		

Table 8

Example	No.	52	1H NMR(δ) ppm
но	DH OH		300MHz, DMSO-d6 12.7(1H, brs), 10.0(1H, s), 8.22(1H, s), 7.87(1H, d, J=8.6Hz), 7.69(1H, d, J=8.6Hz), 7.53(2H, d, J=8.6Hz), 6.96 (2H, d, J=8.6Hz), 4.89(1H, quint, J=9.0Hz), 2.30-1.60(8H, m).
Purity	>90% (NMR)		
MS	323 (M+1)		

Example No.	53 1H NMR(δ) ppm
HO THE	53
Purity >90% (NM)	2)
MS 470 (M+1)	

Example	No.	54	1H NMR(δ) ppm
но		CI	300MHz, DMSO-d6 8. 32(1H, s), 8. 05(1H, d, J=8 .7Hz), 7. 95(1H, d, J=8. 7Hz), 7. 80(2H, d, J=8. 4Hz), 7. 67 (1H, t, J=4. 5Hz), 7. 56(1H, t , J=4. 5Hz), 7. 45-7. 42(2H, m), 7. 35(2H, d, J=8. 4Hz), 5. 3 1(2H, s), 4. 96(1H, quint, J= 9. 0Hz), 2. 30-1. 60(8H, m).
Purity	>90% (NMR)	
MS	447 (M+1)		

Purity

MS

Table 9

Example No.	55	IH NMR(δ) ppm
HO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-C)	300MHz, DMSO-d6 12.78(1H, br s), 8.24(1H, s), 7.88and7.7 2(2H, ABq, J=8.6Hz), 7.66an d7.23(4H, A'B'q, J=8.6Hz), 7.58(1H, s), 7.48-7.42(3H, m), 5.24(1H, s), 4.88(1H, qu int, J=8.8Hz), 2.30-1.91(6 H, m), 1.78-1.60(2H, m)
Purity >90% (NMR	.)	
MS 447 (M+1)		
Example No.	56	1H NMR(δ) ppm
HO N		300MHz, DMS0 12.89(1H, broad), 8.18(1H, s), 7.87(1H, d, J=8.4Hz), 7.74(1H, d, J=9.2Hz), 7.67(2H, d, J=8.8Hz), 7.52(2H, m), 7.45(2H, m), 7.38(1H, m), 7.23(2H, d, J=8.8Hz), 5.22(2H, s), 4.94(1H, quintet, J=8.9Hz), 2.16(4H, m), 1.98(2H, m), 1.73(2H, m).

Example	No.	5	57 1H NMR(δ) ppm
но		H N S	300MHz, DMSO-d6 10. 99 (1H, s), 8. 26 (1H, s), .01-7. 86 (4H, m), 7. 69-7. 5 (5H, m), 7. 38 (2H, d, J=8. 7Hz), 4. 86 (1H, quint, J=8. 7Hz), 2. 12-1. 90 (6H, m), 1. 72-1 59 (2H, m)
Purity	>90%	(NMR)	
MS	462	(M+1)	

>90% (NMR)

413 (M+)

Table 10

Example	No.	58	1H NMR(δ) ppm
HO		CI CI	300MHz, DMSO-d6 12.78(1H.s), 10.69(1H,s), 8.26-7.72(9H,m), 4.92(1H, quint, J=9.0Hz), 2.34-1.70 (6H,m), 1.75-1.61(2H,m)
Purity	>90% (NMR)		
MS	494 (M+1)		·

Example	No.	59	1H.NMR(δ) ppm
но		cı	300MHz, DMSO-d6 10. 82 (1H, s), 8. 34 (1H, s), 8 . 14and7. 84 (4H, ABq, J=8. 4H z), 8. 06and7. 66 (4H, A' B' q, J=8. 6Hz), 8. 06-7. 98 (4H, m) , 5. 01 (1H, quint, J=9. 3Hz), 2. 35-2. 15 (4H, m), 2. 11-1. 9 6 (2H, m), 1. 80-1. 62 (2H, m)
Purity	>90% (NMR)	
MS	460 (M+1)		

Example	No.	60	1H NMR(δ) ppm
# · ·	*\(\rightarrow\)	*	300MHz, DMSO-d6 10.61(1H, s), 8.32(1H, s), 8 .12and7.81(4H, ABq, J=8.9H z), 8.03and7.93(2H, A'B'q, J=8.7Hz), 7.95and7.59(4H, A"B"q, J=8.4Hz), 4.99(1H, q uint, J=9.0Hz), 2.33-2.12(4H, m), 2.10-1.93(2H, m), 1. 80-1.63(2H, m), 1.34(9H, m)
Purity	>90%	(NMR)	
MS	482 (M+1)	

Table 11

Example	No.	61	1H NMR(δ) ppm
	├	\	300MHz, DMSO-d6 10.6(1H, s), 8.34(1H, s), 8. 13(2H, d, J=8.7Hz), 8.09-7. 98(4H, m), 7.82(2H, d, J=8.7 Hz), 7.50-7.35(5H, m), 7.20 -7.17(2H, d, J=9.0Hz), 5.24 (2H, s), 5.01(1H, quint, J=9.3Hz), 2.40-1.60(8H, m).
Purity	>90% (NMI	₹)	
MS	532 (M+1)		

Example	No.	62	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 32(1H, s), 8. 26(1H, d, J=8 .7Hz), 8. 04(1H, d, J=8. 7Hz) ,7. 77(2H, d, J=8. 4Hz), 7. 52 (2H, d, J=6. 9Hz), 7. 46-7. 39 (5H, m), 5. 28(2H, s), 4. 38(1 H, m), 3. 71(1H, m), 2. 60-2. 1 5(2H, m), 2. 04-1. 96(4H, m), 1. 30-1. 20(2H, m).
Purity	>90% (N	MR)	
MS	443 (m+1)	

Example	No.	63	1H NMR(δ) ppm
110		>	300MHz, DMSO-d6 8. 27 (1H, s), 8. 14 (1H, d, J=8 .7Hz), 7. 96 (1H, d, J=8. 4Hz) , 7. 71 (2H, d, J=9. 0Hz), 7. 51 (2H, d, J=6. 9Hz), 7. 46-7. 37 (3H, m), 7. 30 (2H, d, J=8. 4Hz), 5. 25 (3H, s), 4. 39 (1H, m), 3. 44 (1H, m), 3. 27 (3H, s), 2. 60-1. 95 (6H, m), 1. 25-1. 05 (2H, m).
Purity	約90% (NMR)		7
MS	457 (M+1)		7

Table 12

Example No.	64	1H NMR(δ) ppm
HD		300MHz, DMSO-d6 12. 25(1H, brs), 7. 70-7. 30(9H, m), 7. 20(2H, d, J=8. 7Hz), 7. 14(1H, d, J=8. 4Hz), 5. 20 (2H, s), 4. 84(1H, quint, J=6.0Hz), 3. 66(2H, s), 2. 30-1. 51(8H, m)
Purity >	90% (NMR)	
MS	427 (M+1)	

Example	No.	65	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 64(1H, brs), 8. 13(1H, s), 7. 80(1H, d, J=7. 2Hz), 7. 59 (1H, d, J=8. 7Hz), 7. 48-7. 30 (5H, m), 5. 11(2H, s), 5. 03(1 H, quint, J=8. 7Hz), 4. 20-4. 05(2H, m), 3. 45-3. 90(3H, m), 2. 15-1. 60(12H, m)
Purity	>90% (NMR)		
MS	448 (M+1)	·	

Example No. 66	1H NMR(δ) ppm
	300MHz, DMSO-d6 10.59(1H, s), 8.31(1H, s), 8 .10(2H, d, J=8.6Hz), 8.03(1 H, d, J=8.7Hz), 8.00-7.85(3 H, m), 7.80(2H, d, J=8.6Hz), 7.41(2H, d, J=8.2Hz), 4.98(1H, quint, J=8.8Hz), 2.71-1 .10(19H, m)
Purity >90% (NMR)	*
MS 508(M+1)	

. 20

Table 13

Example	No.	67	1H NMR(δ) ppm
но		CI CI	300MHz, DMSO-d6 12.81(1H, brs), 8.42(1H, s), 7.90(1H, d, J=8.5Hz), 7.80 -7.52(6H, m), 7.44(2H, d, J=8.6Hz), 5.25(2H, s), 4.88(1H, quimt, J=8.8Hz), 2.30-1.52(8H, m)
Purity	>90% (NMR)		
MS	481 (M+1)		

Example	No.	68	1H NMR(δ) ppm
HO		C1	300MHz, DMSO-d6 8. 31 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=8. 6Hz), 7. 96 (1H, d, J=8. 6Hz), 8. 86-8. 61 (4H, m) , 7. 51 (1H, d, J=6. 3Hz), 7. 33 (2H, d, J=8. 8Hz), 5. 28 (2H, s) , 4. 94 (1H, quint, J=8. 8Hz) , 2. 31-1. 60 (8H, m)
Purity	>90% (NMR)		
MS	481 (M+1)		·

Example No.	69	1H NMR(δ) ppm
		300MHz, DMSO-d6 9. 88(1H, s), 9. 42(1H, s), 8. 32(1H, s), 8. 09and8. 02(2H, ABq, J=9. 0Hz), 7. 81and7. 78 (4H, A'B'q, J=9. 2Hz), 7. 50(2H, d, J=7. 8Hz), 7. 31(2H, t, J=7. 8Hz), 7. 00(1H, t, J=7. 8 Hz), 5. 03(1H, quint, J=8. 7H z), 2. 34-2. 17(4H, m), 2. 13- 1. 96(2H, m), 1. 83-1. 64(2H,
Purity >90	% (NMR)	m)
MS 44	11 (M+1)	

Table 14

Example	No.	70 IH NMR(δ) ppm
но		300MHz, DMSO-d6 8. 27 (1H, d, J=1. 2Hz), 8. 04 1H, d, J=8. 7Hz), 7. 94 (1H, d J=8. 7Hz), 7. 72 (2H, d, J=8. Hz), 7. 60-7. 20 (12H, m) 6. 74 (1H, s), 4. 92 (1H, quint, J=6. 9Hz), 2. 30-1. 58 (8H, m)
Purity	>90% (NMR)	 .
MS	489 (M+1)	

Example No.		71	1H NMR(δ) ppm
HD			300MHz, DMSO-d6 8. 31 (1H, s), 8. 05 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 7Hz) , 7. 76 (2H, d, J=8. 6Hz), 7. 44 -7. 19 (7H. m), 4. 94 (1H, quin t, J=8. 8Hz), 4. 35 (2H, t, J=6 .7Hz), 3. 10 (2H, t, J=6. 7Hz) , 2. 32-1. 60 (8H, m)
Purity >90% (NMR)			
MS	MS 427 (M+1)		·

Example	No.	72	1H NMR(δ) ppm
₩ [*]			300MHz, DMSO-d6 8. 30 (1H, s), 8. 25 (1H, d, J=8 .7Hz), 8. 03 (1H, d, J=9. 0Hz) ,7. 75 (2H, d, J=8. 7Hz), 7. 51 (2H, d, J=7. 2Hz), 7. 46-7. 33 (5H, m), 5. 27 (2H, s), 4. 36 (1 H, m), 2. 50-2. 25 (2H, m), 2. 1 5-2. 00 (2H, m), 1. 95-1. 85 (2 H, m), 1. 35 (1H, m), 1. 20-1. 1 0 (2H, m), 0. 87 (9H, s).
Purity	>90% (NMR)		1.
MS	483 (M+1)		1

Table 15

Example N	o. 73	1H NMR(δ) ppm
но		300MHz, DMSO-d6 7. 59 (2H, d, J=8. 4Hz), 7. 52- 7. 35 (6H, m), 7. 20 (2H, d, J=8. 7Hz), 7. 14 (1H, d, J=2. 1Hz), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 5. 21 (2H, s), 4. 83 (1H, quin t, J=8. 7Hz), 4. 70 (2H, s), 2. 30-1. 90 (6H, m), 1. 75-1. 55 (2H, m).
Purity	>90% (NMR)	
MS	443 (M+1)	

Example	No.	74	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8.27(1H, s), 8.06and7.97(2 H, ABq, J=8.7Hz), 7.57and6. 86(4H, A'B'q, J=8.9Hz), 7.4 2-7.26(5H, m), 5.04(1H, quint, J=9.0Hz), 4.42(2H, s), 2.32-1.94(6H, m), 1.80-1.62 (2H, m)
Purity	>90% (NM	R)	
MS	412 (M+1)		

Example No.	7 5	1H NMR(δ) ppm
HO	N 0%ii	300MHz, DMSO-d6 12.80(1H, s), 8.26(1H, s), 7 .90(1H, d, J=9.2Hz), 7.76-7 .60(8H, m), 7.35(2H, d, J=8.4Hz), 4.84(1H, quint, J=8.8 Hz), 3.23(3H, s), 2.32-1.90 (6H, m), 1.78-1.61(2H, m)
Purity >90%	(NMR)	
MS 4760	M+1)	

Table 16

Example	No. 7	6 IH NMR(δ) ppm
но		300MHz, DMSO-d6 8. 29(1H, s), 8. 07and7. 49(2 H, ABq, J=8. 7Hz), 7. 66and7. 00(4H, A'B'q, J=7. 7Hz), 7. 3 9-7. 24(5H, m), 5. 05(1H, qui nt, J=8. 8Hz), 4. 76(2H, s), 3 .21(3H, s), 2. 35-1. 92(6H, m)), 1. 81-1. 62(2H, m)
Purity	>90% (NMR)	
MS .	426 (M+1)	

Example No. 77	1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 21 (1H, s), 7. 87 (1H, s), 7. 56and7. 43 (4H, ABq, J=8. 1Hz), 7. 34-7. 16 (5H, m), 4. 25 (1 h, brt, J=12. 5Hz), 3. 06-2. 9 2 (4H, m), 2. 41-2. 17 (2H, m), 1. 96-1. 77 (4H, m), 1. 72-1. 5 8 (1H, m), 1. 48-1. 15 (3H, m)
Purity >90% (NMR)	
MS 425 (M+1)	

Example No.	78	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 14(1H, s), 7. 79(1H, d, J=9 .0Hz), 7. 57(1H, d, J=8. 7Hz) ,7. 40-7. 20(5H, m), 4. 89(1H, quint, J=8. 7Hz), 3. 54(2H, s), 3. 19-2. 90(3H, m), 2. 23- 1. 69(14H, m)
Purity >90% (1	NMR)	
MS 404 (M+	1)	

Table 17

5	Example No.	79	1H NMR(δ) ppm
10	HO		300MHz, DMSO-d6 8. 15(1H, s), 7. 81(1H, d, J=8 .4Hz), 7. 59(1H, d, J=9. OHz) , 7. 50-7. 38(5H, m), 5. 05(1H, quint, J=9. OHz), 3. 85-2. 9 5(3H, m), 2. 20-1. 65(14H, m)
	Purity >9	0% (NMR)	
20	MS	418 (M+1)	
20	Example No.	. 80	1H NMR(δ) ppm
25	0		300MHz, DMSO-d6 8.17(1H, m), 7.84(1H, d, J=8

Example No.	80	1H NMR(δ) ppm
HO II C N		300MHz, DMSO-d6 8. 17(1H, m), 7. 84(1H, d, J=8 .4Hz), 7. 78-7. 62(3H, m), 7. 49(2H, d, J=8. 1Hz), 5. 05-4. 91(1H, m), 3. 80-3. 70(2H, m) ,3. 30-3. 12(1H, m), 2. 48-2. 31(5H, m), 2. 15-1. 60(12H, m)
Purity > 90% (NA	AR)	
MS 468 (M+1)		

Example	No.	81	1H NMR(δ) ppm
HO		-Ci	300MHz, DMSO-d6 12.75(1H, brs), 8.21(1H, d, J=1.4Hz), 7.49(1H, d, J=8.6 Hz), 7.85(1H, dd, J=8.6, 1.4 Hz), 7.70-7.55(5H, m), 7.23(2H, d, J=8.7Hz), 5.25(2H, s), 4.36-4.15(1H, m), 2.39-2.18(2H, m), 2.00-1.78(4H, m), 1.70-1.57(1H, m), 1.48-1.15(3H, m)
Purity	>90% (NMR	2)-	
MS	495 (M+1)		

Table 18

Example No.	82 1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300MHz, DMSO-d6 8. 27 (1H, s), 8. 22 (1H, d, J . 7Hz), 8. 02 (1H, d, J=8. 7Hz), 7. . 7. 69 (2H, d, J=8. 7Hz), 7. -7. 50 (4H, m), 7. 45-7. 25 (,m), 6. 75 (1H, s), 4. 21-4. (1H, m), 2. 39-2. 18 (2H, m) . 10-1. 78 (4H, m), 1. 70-1. (4H, m)
Purity >90% (NMR	
MS · 503 (M+1)	

Example	No.	83	1H NMR(δ) ppm
но			300MHz, DMSO-d6 13. 2(1H, brs), 8. 30(1H, s), 8. 23(1H, d, J=8. 8Hz), 8. 02(1H, d, J=8. 7Hz), 7. 74(2H, d, J=8. 6Hz), 7. 40-7. 33(5H, m), 5. 22(2H, s), 4. 36(1H, m), 2 . 50-1. 40(10H, m), 1. 31(18H, s).
Purity	>90% (NMR)	-	
MS	539 (M+1)		

Example	e No.	84	1H NMR(δ) ppm
ш			mixture of isomers(cis:trans=3:1) 300MHz, DMSO-d6 8. 30(1H, s), 8. 20-7. 95(2H, m), 7. 72(2H, d, J=8. 4Hz), 7. 52-7. 29(7H, m), 5. 25(2H, s), 4. 34, 3. 40(1H, m), 2. 50-2. 20(2H, m), 2. 05-1. 50(6H, m), 1. 14, 0. 90(3H, d, J=6. 9, 6. 3Hz), 1. 09(1H, m).
Purity	>90% (NMR))	
MS	441 (M+1)		1

Table 19

Example	No.	85	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 25 (1H, s), 8. 14-7. 83 (6H, m), 7. 77-7. 44 (5H, m), 7. 21 (2H, d, J=7. 8Hz), 4. 44 (2H, br t), 4. 31 (1H, brt), 3. 56 (2H, brt), 2. 20-2. 16 (2H, m), 2. 0 0-1. 74 (4H, m), 1. 70-1. 55 (1 H, m), 1. 45-1. 14 (3H, m)
Purity	>90% (NI	MR)	
MS	491 (M+1)		

Example No		36	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 8 .15(1H, d, J=7.6Hz), 8.02-7 .53(10H, m), 7.32(2H, d, J=8 .7Hz), 5.68(2H, s), 4.32(1H ,brt, J=12.2Hz), 2.41-2.20 (2H, m), 2.01-1.78(4H, m), 1 .71-1.56(1H, m), 1.50-1.16 (3H, m)
Purity ;	>90% (NMR)		
MS	477 (M+1)		

Example	No.	87	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.75(1H, brs), 8.16(1H, s), 7.91and7.82(2H, ABq, J=8.5Hz), 7.44and6.86(4H, A'B', q, J=8.6Hz), 7.39-7.26(10H, m), 4.82(2H, s), 4.35(1H, brt, J=12.2Hz), 2.35-2.16(2H, m), 1.97-1.75(4H, m), 1.69-1.56(1H, m), 1.45-1.16(3H, m)
Purity	>90% (NMR)		
MS	516 (M+1)		

Table 20

Example No.	88	1H NMR(δ) ppin
HO I N		300MHz, DMSO-d6 8.31(1H, s), 8.26and8.06(2 H, ABq, J=8.9Hz), 7.73and7. 22(4H, A'B'q, J=8.7Hz), 7.5 0-7.36(8H, m), 5.10(2H, s), 4.37(1H, brt, J=12.2Hz), 2. 38-2.28(2H, m), 2.10-1.80(4H, m), 1.70-1.56(1H, m), 1. 50-1.20(3H, m)
Purity >90%	(NMR)	
MS 503	(M+1)	7

Example No.	89	1H NMR(δ)	ppm
HOUNT			
Purity 91% (HPLC)		
MS 427 (M	(+1)		

Example No.	90	1H NMR(δ) ppm
HO I N		300MHz, DMSO-d6 8. 40-8. 20(2H, m), 8. 04(1H, d, J=8. 4Hz), 7. 65(2H, d, J=8. 4Hz), 7. 50-7. 10(12H, m), 5. 08(1H, m), 4. 33(1H, m), 3. 00(4H, m), 2. 50-1. 10(10H, m)
Purity >	90% (NMR)	
MS	531 (M+1)	

Table 21

Example	No.	91	1H NMR(δ) ppm
100			300MHz, DMSO-d6 8.31(1H, s), 8.27(1H, d, J=8 .7Hz), 8.08-8.03(3H, m), 7. 77-7.58(5H, m), 7.31(2H, d, J=8.7Hz), 5.81(2H, s), 4.40 (1H, m), 2.50-1.20(10H, m).
Purity	約90% (NMR))]
MS	455 (M+1)		·

Example No.	92	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 11.8(1H, brs), 8.07(1H, s), 7.89(1H, d, J=8.7Hz), 7.84(1H, d, J=8.4Hz), 7.69(2H, m), 7.48(3H, m), 4.42(2H, s), 4 .11(1H, m), 3.73(4H, m), 3.4 0(4H, m), 2.40-1.40(10H, m)
Purity >90%	(NMR)	
MS 419	(M+1)	

Example No. 93	1H NMR(δ) ppn
	300MHz, DMSO-d6 8. 32 (1H, s), 8. 28 (1H, d, J=8 .9Hz), 8. 05 (1H, d, J=8. 7Hz) ,7. 72 (2H, d, J=8. 7Hz), 7. 38 (4H, d, J=7. 2Hz), 7. 31 (4H, t ,J=7. 3Hz), 7. 21-7. 17 (4H, m), 4. 37 (1H, m), 4. 26 (1H, t, J =7. 9Hz), 4. 01 (2H, t, J=6. 2H z), 2. 57 (2H, m), 2. 50-2. 20 (2H, m), 2. 10-2. 00 (2H, m), 2.
Purity >90% (NMR)	00-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m).
MS 531 (M+1)	

Table 22

Example No.	94 1H NMR(δ) ppm	
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300MHz, DMSO-d6 8. 32(1H, s), 8. 27(1H, d, J=8, 7. 75-7. 70(3H, m), 7. d, J=8. 4Hz), 7. 55-7. 3 , m), 7. 22(2H, d, J=8. 71, 11(2H, s), 4. 36(1H, m), 0-2. 15(2H, m), 2. 15-1. H, m), 1. 95-1. 75(2H, m), 5-1. 55(1H, m), 1. 55-1.	7Hz) 56 (1H 35 (6H Hz), 5 , 2. 4 95 (2
Purity >90% (NMR)	H, m).	-, ,
MS 537 (M+1)		1

Example	No.	95	1H NMR(δ) ppm
но		>	300Hz, DMSO-d6 12.9(1H, brs), 8.02(1H, s), 7.82(2H, m), 7.40-7.25(5H, m), 4.58(2H, s), 4.09(1H, m), 3.71(1H, m), 3.49(2H, m), 3. 21(2H, m), 2.35-1.30(14H, m).
Purity	>90% (NMR)		
MS	434 (M+1)		

Example No.	96	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 31 (1H, d, J=1. 3Hz), 8. 27 (1H, d, J=8. 8Hz), 8. 05 (1H, d, J=8. 8Hz), 7. 76 (2H, d, J=8. 7 Hz), 7. 40-7. 25 (4H, m), 7. 06 -6. 90 (3H, m), 4. 53-4. 26 (5H, m), 2. 40-2. 18 (2H, m), 2. 12 -1. 56 (5H, m), 1. 50-1. 19 (3H, m)
Purity >90% (1	NMR)	
MS 457 (M+	1)	

Table 23

Example	No.	9	7 1H NMR(δ) ppm	
но		-•	300MHz, DMSO-d6 8. 32(1H, d, J=1. 3Hz), 1H, d, J=8. 8Hz), 8. 05(, J=8. 8, 1. 3Hz), 8. 42(J=8. 8Hz), 7. 37-7. 16(, 4. 48-4. 30(1H, m), 4. , t, J=6. 2Hz), 2. 83-2. , m), 2. 40-1. 50(9H, m) -1. 19(3H, m)	1H, dd 2H, d, 7H, m) 12 (2H 70 (2H
Purity	>90%	(NMR)	,	
MS	455	(M+1)		

Example No.	98	1H NMR(δ) ppm
	·	300MHz, DMSO-d6 8. 28(1H, d, J=1. 3Hz), 8. 21(1H, d, J=8. 8Hz), 8. 01(1H, d, J=10. 1Hz), 7. 70(2H, d, J=8. 7Hz), 7. 33-7. 12(7H, m), 4. 44-4. 28(1H, m), 4. 10(2H, t, J=6. 3Hz), 2. 62(2H, t, J=7. 4Hz), 2. 39-2. 15(2H, m), 2. 10-1. 18(14H, m)
Purity >90% (NMR)	·
MS 483 (M+1)		

Example No.	99 1H NMR(δ) ppm
HO I O N	300MHz, DMSO-d6 12.93(1H, brs), 8.30(1H, d, J=1.4Hz), 8.04(1H, d, J=8.7 Hz), 7.92(1H, dd, J=8.7, 1.4 Hz), 7.59-7.34(5H, m), 7.07(1H, s), 5.38(2H, s), 4.78-4.60(1H, m), 2.32-2.14(2H, m), 2.03-1.28(8H, m)
Purity >90% (NMR)	
MS 418 (M+1)	

Table 24

Example No.	100 1H NMR(δ) ppm
NaO	300MHz, DMSO-d6 8. 46 (1H, d, J=2. 1Hz), 8. 16 (1H, s), 8. 00 (1H, dd, J=8. 5, 2 . 1Hz), 7. 87 (1H, d, J=8. 5Hz), 7. 68 (1H, d, J=8. 5Hz), 7. 55 -7. 30 (5H, m), 7. 08 (1H, d, J= 8. 5Hz), 5. 45 (2H, s), 4. 25-4 .08 (1H, m), 2. 39-2. 18 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1 .55 (1H. m), 1. 45-1. 19 (3H, m
Purity >90% (NMR))
MS 427 (M+1)	

Example	No.	101	1H NMR(δ) ppm
10 L		H ^o cH ^o	300MHz, DMSO-d6 8. 33 (1H, s), 8. 31 (1H, d, J=6 . 9Hz), 8. 06 (1H, d, J=8. 4Hz) , 7. 76and7. 29 (4H, ABq, J=8. 9Hz), 6. 68 (2H, s), 4. 37 (1H, m), 4. 35 (2H, t, J=7. 0Hz), 3. 79 (6H, s), 3. 63 (3H, s), 3. 04 (2H, t, J=6. 9Hz), 2. 30 (2H, m), 2. 04 (2H, m), 1. 86 (2H, m), 1. 65 (1H, m), 1. 50-1. 15 (3H,
Purity	>90% (NM	IR)	m)
MS	531 (M+1)		

Example No.	102	IH.NMR(δ) ppm
HD N CH,	~~~	300MHz, DMSO-d6 12. 88 (1H, s), 8. 34 (1H, s), 7 . 86 (1H, d, J=8. 5Hz), 7. 73 (1 H, d, J=8. 5Hz), 7. 63and7. 23 (4H, ABq, J=8. 7Hz), 7. 52-7. 35 (5H, m), 5. 22 (2H, s), 4. 31 (1H, m), 2. 39 (2H, m), 1. 79 (2 H, m), 1. 53 (2H, m), 1. 31 (2H, m), 1. 11 (3H, s), 0. 95 (3H, s)
Purity >90% (N	MR)	
MS 455 (M+	1)	·

Table 25

Example	No.	103	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.79(1H, brs), 8.22(2H, s), 8.02-7.78(4H, m), 7.63-7.42(6H, m), 7.20-7.09(2H, m), 4.43(2H, s), 4.27(1H, brt, J=12.2Hz), 3.59(2H, s), 2.39-2.15(2H, m), 1.98-1.72(4H, m), 1.68-1.59(1H, m), 1.43-1.12(3H, m)
Purity	>90% (NMR)		
MS	491 (N+1)		

Example No. 104	l 1H NMR(δ) ppm
	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .94and7.86(2H, ABq, J=8.6H z), 7.64and7.05(4H, A'B'q, J=8.7Hz), 7.32-7.09(9H, m) ,5.13(2H, s), 4.28(1H, brt, J=12.2Hz), 2.36-2.19(2H, m)), 1.95-1.77(4H, m), 1.66-1 .56(1H, m), 1.46-1.10(3H, m)
Purity >90% (NMR)	
MS 519 (M+1)	

Example No.	105	1H NMR(δ) ppm
NO N		300MHz, DMSO-d6 8. 23(1H, s), 7. 94and7. 87(2 H, ABq, J=8. 6Hz), 7. 68and7. 17(4H, A'B'q, J=8. 7Hz), 7. 4 6-7. 33(6H, m), 6. 93and6. 75 (2H, A"B"q, J=8. 2Hz), 6. 82(1H, s), 5. 13(2H, s), 4. 30(1H, brt, J=12. 2Hz), 2. 39-2. 18 (2H, m), 1. 98-1. 77(4H, m), 1. 71-1. 59(1H, m), 1. 48-1. 20
Purity >90% (NMR)		(3H, m)
MS 519 (M+1)		

Table 26

Example No.	106 IH NMR(8) ppm
HO N N	300MHz, DMSO-d6 12.89(1H, brs), 9.73(1H, s, 8.24(1H, s), 8.03and7.91 2H, ABq, J=8.7Hz), 7.66and .04(4H, A'B'q, J=8.7Hz), 7 16-7.03(3H, m), 6.89(2H, t) J=9.2Hz), 4.33(1H, brt, J= 2.2Hz), 2.40-2.18(2H, m), .00-1.78(4H, m), 1.70-1.5 (1H, m), 1.50-1.20(3H, m)
Purity >90% (NMR)	1.20 (61, 11)
MS 429 (M+1)	

Example No.	107	1H NMR(δ)·ppm
HO N	>—o ——oH	300MHz, DMSO-d6 12. 98 (1H, brs), 9. 82 (1H, br s), 8. 27 (1H, s), 8. 09and7. 9 4 (2H, ABq, J=8. 7Hz), 7. 74an d7. 22 (4H, A'B'q, J=8. 7Hz), 7. 28-7. 22 (1H, m), 6. 67-6. 5 4 (3H, m), 4. 35 (1H, brt, J=12 . 2Hz), 2. 40-2. 20 (2H, m), 2. 05-1. 80 (4H, m), 1. 72-1. 59 (1H, m), 1. 50-1. 21 (3H, m)
Purity >90% (NMR)	
MS 429 (M-	+1)	1 1

Example No.	108	1H NMR(δ) ppm
HO N	-°	300MHz, DMSO-d6 8. 24 (1H, s), 8. 01and7. 90 (2 H, ABq, J=8. 7Hz), 7. 65and7. 03 (4H, A'B'q, J=8. 7Hz), 7. 3 2-7. 20 (3H, m), 7. 08-7. 03 (1 H, m), 4. 32 (1H, brt, J=12. 2H z), 3. 77 (3H, s), 2. 36-2. 20 (2H, m), 2. 00-1. 78 (4H, m), 1. 71-1. 59 (1H, m), 1. 44-1. 11 (3H, m)
Purity >90% (N	MR)	
MS 443 (M+1)	

Table 27

Example	No.	109	1H NMR(δ) ppm
HO		> _0′	300MHz, DMSO-d6 12. 75 (1H, s), 8. 24 (1H, s), 7 . 96and7. 87 (2H, ABq, J=9. 0H z), 7. 69and7. 19 (4H, A' B' q, J=8. 6Hz), 7. 37 (1H, t, J=7. 1 Hz), 6. 84-6. 70 (3H, m), 4. 31 (1H, brt, J=12. 2Hz), 3. 78 (3 H, s), 2. 39-2. 20 (2H, m), 1. 9 8-1. 78 (4H, m), 1. 76-1. 60 (1 H, m), 1. 48-1. 13 (3H, m)
Purity	>90% (NMR)	
MS	443 (M+1)		

Example No.	110	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 8. 31 (1H, s), 8. 26and8. 04 (2 H, ABq, J=8. 8Hz), 7. 75and7. 71 (4H, A'B'q, J=8. 8Hz), 7. 3 2-7. 03 (4H, m), 4. 34 (1H, brt, J=12. 2Hz), 3. 94 (2H, t, J=6. 3Hz), 2. 40-2. 19 (2H, m), 2. 11-1. 81 (4H, m), 1. 72-1. 16 (6H, m), 0. 71 (3H, t, J=7. 3Hz)
Purity >90% (NMR)		
MS 471 (M+1)		

Example No.	111	1H NMR(δ) ppm
180	 /	300MHz, DMSO-d6 8. 22(1H, s), 7. 91and7. 87(2 H, ABq, J=8. 7Hz), 7. 68and7. 18(4H, A'B'q, J=8. 7Hz), 7. 3 5(1H, t, J=8. 5Hz), 6. 80(1H, d, J=9. 0Hz), 6. 72-6. 68(2H, m), 4. 30(1H, brt, J=12. 2Hz), 3. 94(2H, t, J=6. 5Hz), 2. 39 -2. 18(2H, m), 1. 97-1. 58(7H, m), 1. 45-1. 20(3H, m), 0. 97
Purity >90% (N	IMR)	(3H, t, J=7. 4Hz)
MS 471 (M+	1)	

Table 28

Example No. 113 IH NMR(δ) ppm 300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7.95and7.86(2H, ABq, J=8.9Hz), 7.69and7.18(4H, A'B'q, J=8.9Hz), 7.35(1H, t, J=8.3 Hz), 6.81-6.69(3H, m), 5.41 (2H, brs), 4.54(2H, d, J=6.6 Hz), 4.31(1H, brt, J=12.2Hz), 2.41-2.18(2H, m), 1.98-1.76(4H, m), 1.73(3H, s), 1.7 (-1.58(1H, m), 1.68(3H, s), 1.45-1.17(3H, m)

Example No.

114

1H NMR(δ) ppm

300MHz, DMSO-d6
12.73(1H, s), 8.22(1H, s), 7
.94and7.85(2H, ABq, J=8.4H
2), 7.60and6.99(4H, A'B'q,
J=8.6Hz), 7.29-7.00(4H, m)
,4.29(1H, brt, J=12.2Hz), 3
.99(2H, t, J=6.3Hz), 2.41-2
.20(2H, m), 1.95-1.76(4H, m)
), 1.70-1.14(7H, m), 0.76(3
H, d, J=6.6Hz)

MS

499(M+1)

Table 29

Example No.	115	1H NMR(δ) ppm
HO I I I I I I I I I I I I I I I I I I I		300MHz, DMSO-d6 8. 23 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=7. 8Hz), 6. 82-6. 6 9 (3H, m), 4. 30 (1H, brt, J=12 . 2Hz), 4. 00 (2H, t, J=6. 9Hz) , 2. 38-2. 20 (2H, m), 1. 97-1. 54 (8H, m), 1. 47-1. 20 (3H, m) , 0. 93 (6H, d, J=6. 6Hz)
Purity >90% (NMR))	
MS 499 (M+1)]

Example No.	116	1H NMR(δ) ppm
	6	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25 (1H, d, J=8 . 9Hz), 8. 03 (1H, d, J=8. 8Hz), 7. 68 (2H, d, J=8. 8Hz), 7. 24 (2H, d, J=7. 2Hz), 7. 19-7. 10 (6H, m), 6. 94 (2H, t, J=7. 2Hz), 4. 34 (1H, m), 4. 19 (4H, brs), 3. 10 (4H, brs), 2. 40-2. 15 (2H, m), 2. 10-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55
Purity >90% (NMR)		(1H, m), 1.55-1.20 (3H, m).
MS 557 (M+1)		

Example No.	117	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.80(2H, d, J=8.2Hz), 7.72-7.67(3H, m), 7.59(2H, d, J=8.7Hz), 7.54 -7.51(2H, m), 7.42-7.41(1H, m), 7.11(2H, d, J=8.8Hz), 5 .09(2H, s), 4.27(1H, m), 2.4 0-2.15(2H, m), 2.00-1.75(4
Purity >9	0% (NMR)	H, m), 1.75-1.55 (1H, m), 1.5 5-1.15 (3H, m).
MS	571 (M+1)	

Table 30

Example No.	118	1H NMR(δ) ppm
HO NO	√ cı	300MHz, DMSO-d6 13.3(1H, brs), 8.30(1H, s), 8.25(1H, d, J=8.9Hz), 8.04(1H, d, J=8.7Hz), 7.72(2H, d, J=8.8Hz), 7.57(4H, d, J=8.6 Hz), 7.47(4H, d, J=8.6Hz), 7 .33(2H, d, J=8.9Hz), 6.84(1 H, s), 4.33(1H, m), 2.45-2.1 0(2H, m), 2.10-1.95(2H, m), 1.95-1.70(2H, m), 1.70-1.5
Purity >90% (NM	R)	5 (1H, m), 1.55-1.15 (3H, m).
MS 571 (M+1)		1

Example No.	119	1H NMR(δ) ppm
mi Cino	H,C0	300MHz, DMSO-d6 8.32-8.30(2H, m), 8.07-8.0 3(1H, m), 7.74and6.90(4H, A Bq, J=8.7Hz), 4.37(1H, m), 4 .31(2H, t, J-6.8Hz), 3.74(3 H, s), 3.04(2H, t, J=6.7Hz), 2.30(2H, m), 2.02(2H, m), 1. 86(2H, m), 1.63(1H, m), 1.55 -1.15(3H, m)
Purity >90% (N)	MR)	
MS 471 (M+1)		

Example No.	120	1H NMR(δ) ppm
но	-00-сн,	300MHz, DMSO-d6 8. 23(1H, s), 7. 99(1H, d, J=8 . 7Hz), 7. 88(1H, d, J=8. 4Hz) , 7. 61and7. 16(4H, ABq, J=8. 6Hz), 7. 30-7. 22(2H, m), 7. 0 1(2H, d, J=8. 1Hz), 6. 92(1H, t, J=7. 5Hz), 4. 28(1H, m), 4. 25(2H, t, J=7. 2Hz), 3. 83(3H, s), 3. 07(2H, t, J=7. 1Hz), 2 . 28(2H, m) 2. 00-1. 75(4H, m)
Purity >90%	(NMR)	1.70-1.55(1H, m), 1.50-1. 15(3H, m)
MS 471 ((M+1)	

Table 31

Example	No.	121	1H NMR(δ) ppm
но		-oo_cH	300MHz, DMSO-d6 12.85(1H, brs), 8.24(1H, s), 8.01(1H, d, J=8.7Hz), 7.90 (1H, d, J=8.6Hz), 7.62and, 7.17(4H, ABq, J=8.7Hz), 7.24 (1H, m), 6.94(2H, m), 6.82(1H, m), 4.32(2H, t, J=6.7Hz), 3.76(3H, s), 3.07(2H, t, J=6.7Hz), 2.29(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m)
Purity	>90%	(NMR)	, 1. 50-1. 15 (3H, m)
MS	471	(M+1)	

Example No.	122	1H NMR(δ) ppm	
HO I I I I I I I I I I I I I I I I I I I		300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.87(2H, m), 7.62(2H, d, J=8 .1Hz), 7.60-7.20(7H, m), 5. 23(2H, s), 4.46(1H, m), 2.50 -2.30(2H, m), 1.70-1.40(10 H, m).	
Purity >90% (NMR	2)	·	
MS . 441(M+1)			

Example	No.	123	IH NMR(δ) ppm
HO		- ◆>	300MHz, DMSO-d6 8. 24(1H, s), 7. 97(1H, d, J=9 .0Hz), 7. 87(1H, d, J=8. 4Hz) , 7. 65(2H, d, J=8. 7Hz), 7. 40 -7. 05(9H, m), 7. 03(2H, d, J= 8. 4Hz), 4. 31(1H, m), 4. 18(2 H, t, J=6. 6Hz), 2. 81(2H, t, J=6. 3Hz), 2. 40-2. 20(2H, m), 2. 00-1. 70(4H, m), 1. 70-1. 5 0(1H, m), 1. 50-1. 05(3H, m).
Purity	>90% (NMR))	
MS	533 (M+1)		

Table 32

Example No.	124	1H NMR(δ) ppm
HO I I I I I I I I I I I I I I I I I I I		300MHz, DMSO-d6 13.1(1H, brs), 8.29(1H, s), 8.17(1H, d, J=8.7Hz), 7.99 1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.40-7.20(8H, m), 6.84(1H, d, J=9.3Hz), 6.76.72(2H, m), 4.36(1H, m), 4.22(2H, t, J=6.8Hz), 3.04(2H, t, J=6.7Hz), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.9
Purity >90% (NMR)		5-1.75(2H, m), 1.75-1.55(1 H, m), 1.55-1.15(3H, m).
MS 533 (M+1)		.,, io (on, m).

Example No.	125 1H NMR(δ) ppm
HD 1	300MHz, DMSO-d6 8. 32 (1H, s), 8. 28 (1H, d, J=8 . 7Hz), 8. 05 (1H, d, J=9. 0Hz) , 7. 73 (2H, d, J=9. 0Hz), 7. 43 (4H, d, J=7. 2Hz), 7. 36-7. 20 (8H, m), 4. 74 (2H, d, J=7. 5Hz) , 4. 57 (1H, t, J=7. 5Hz), 4. 3 8 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 8 5 (2H, m), 1. 85-1. 55 (1H, m)
Purity >90% (NMR)	1. 55-1. 20 (3H, m).
MS 517 (M+1)	

Example	No.	126	1H NMR(8) ppm	
HO N			300MHz, DMSO-d6 8. 32(1H, s), 8. 14(1H, d, J=8 .7Hz), 8. 03(1H, d, J=8. 7Hz) , 7. 77(2H, d, J=9. 0Hz), 7. 52 -7. 31(7H, m), 5. 74(2H, m), 5 .26(2H, s), 4. 61(1H, m), 2. 9 6(1H, m), 2. 60-2. 10(5H, m).	
Purity	>90% (NM	R)		
MS	425 (M+1)			

Table 33

Example N	lo.	127	1H NMR(δ) ppm
# · · · ·)	300MHz, DMSO-d6 13. 2(1H, brs), 8. 33(1H, s), 8. 12(1H, d, J=8. 7Hz), 7. 96(1H, d, J=8. 8Hz), 7. 79(2H, d, J=8. 7Hz), 7. 52-7. 32(7H, m), 5. 26(2H, s), 4. 92(1H, d, J=49. 4Hz), 4. 57(1H, m), 2. 65-2. 35(2H, m), 2. 25-1. 50(6H, m).
Purity	>90% (NMR)		
MS	445 (M+1)		

Example	No.	128	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 85 (2 H, ABq, J=8. 6Hz), 7. 61and7. 06 (4H, A'B'q, J=8. 6Hz), 7. 3 6-6. 91 (9H, m), 4. 24 (1H, brt, J=12. 2Hz), 2. 35-2. 15 (2H, m), 1. 95-1. 75 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 14 (3H, m)
Purity	>90%	(NMR)	-
MS	505	(M+1)	

Example	No.	129	1H NMR(δ) ppm
HO L		\	300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 22 (4H, A'B'q, J=8. 6Hz), 7. 5 2-7. 39 (1H, m), 7. 47and7. 41 (2H, A"B"q, J=8. 1Hz), 6. 91 (1H, d, J=8. 0Hz), 6. 89 (1H, d, J=8. 2Hz), 6. 75 (1H, s), 4. 36 -4. 18 (1H, m), 2. 38-2. 17 (2H m), 1. 95-1. 76 (4H, m), 1. 70
Purity	>90% (NM	R)	-1.59(1H, m), 1.44-1.19(3H, m)
MS	505 (M+1)		

Table 34

Example N	٥.	130	1H NMR(δ) ppm
10° 10",		» «°————————————————————————————————————	300MHz, DMSO-d6 8. 27 (1H, s), 7. 69 (2H, d, J=8 .6Hz), 7. 49-7. 21 (11H, m), 5 .08and5. 03 (2H, ABq, J=12. 6 Hz), 5. 07-4. 99 (1H, m), 4. 26 (2H, d, J=6. 6Hz), 2. 40-2. 18 (2H, m), 2. 04-1. 77 (4H, m), 1 .70-1. 58 (1H, m), 1. 48-1. 15 (3H, m)
Purity	>90% (NM	R)	
MS	590 (M+1)		

Example No.	131	1H NMR(δ) ppm
)	300MHz, DMSO-d6 8. 29 (1H, s), 8. 11 (1H, d, J=9 .0Hz), 7. 96 (1H, d, J=8. 4Hz) ,7. 80 (2H, d, J=8. 1Hz), 7. 72 -7. 41 (7H, m), 7. 12 (1H, d, J= 12. 6Hz), 7. 01 (1H, d, J=8. 4H z), 5. 12 (2H, s), 4. 06 (1H, m) ,2. 35-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 75-1. 55 (1H, m) ,1. 60-1. 20 (3H, m).
Purity >90% (NMR)		·
MS · 589 (M+1)		•

Example	No.	132	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.8(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.66(2H, d, J=8.6Hz), 7.49-7.33(5H, m), 7.17-7.05(6H, m), 5.12(2H, s), 4.31(1H, m), 2.40-2.15 (2H, m), 2.05-1.20(8H, m).
Purity	>90%	(NMR)	-
MS	519 (M+1)	7

Table 35

Example No. 133 1H NMR(δ) ppm 10 15 Purity >90% (NMR) 20 MS 531 (M+1)

300MHz, DMSO-d6 8. 57(1H, s), 8. 01(1H, d, J=8 8. 57 (1n, s), 8. 01 (1n, a, j-o, 7Hz), 7. 66 (1H, d, J=8. 7Hz), 7. 51 (2H, d, J=8. 7Hz), 7. 31 (4H, d, J=8. 0Hz), 7. 16 (4H, d, J=8. 0Hz), 7. 09 (2H, d, J=8. 7Hz), 6. 26 (1H, s), 4. 37 (1H, m), 2. 41-2. 28 (2H, m), 2. 33 (6H s), 3. 36 (4H m), 1 6H, s), 2.03-1.84(4H, m), 1. 77 (1H, m), 1. 45-1. 20 (3H, m)

25

30

35

40

45

55

50

MS

Example No. 134 Purity >90% (NMR) MS 539 (N+1)

1H NMR(δ) ppm

1H NMR(δ) ppm

8. 59 (1H, d, J=1. 5Hz), 8. 02 (1H, dd, J=8. 7, 1. 5Hz), 7. 68 (1H, d, J=8. 7Hz), 7. 54 (2H, d, In, d, J-5. (112), 7. 54 (2n, d, J=8. 8Hz), 7. 39 (4H, dd, J=8. 7, 5. 3Hz), 7. 08 (4H, d, J=8. 7 Hz), 7. 05 (2H, d, J=8. 8Hz), 6. 29 (1H, s), 4. 36 (1H, m), 2. 4 3-2. 19 (2H, m), 2. 04-1. 85 (4 H, m), 1. 78 (1H, m), 1. 45-1. 2 3 (3H, m).

Example No. 135 Purity >90% (NMR)

485 (M+1)

300MHz, DMSO-d6 12. 34 (1H, brs), 7. 93 (1H, s), 7. 55 (1H, d, J=8. 6Hz), 7. 33 -7. 15 (6H, m), 7. 11 (2H, d, J=8. 6Hz), 4. 30-4. 20 (1H, m), 4 8. 6Hz), 4. 30-4. 20(1H, M), 4 .07(2H, t, J=6. 3Hz), 3. 93(3 H, s), 2. 78(2H, t, J=7. 4Hz), 2. 35-2. 19(2H, m), 2. 12-2. 0 0(2H, m), 1. 91-1. 79(4H, m), 1. 69-1. 60(1H, m), 1. 47-1. 2 0(3H, m)

Table 36

Example	No.	136	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 13 (1H, s), 7. 65 (2H, d, J=8 .7Hz), 7. 63 (1H, s), 7. 35-7. 12 (7H, m), 4. 35-4. 20 (1H, m) , 4. 10 (1H, t, J=6. 3Hz), 2. 78 (2H, t, J=7. 5Hz), 2. 33-1. 78 (8H, m), 1. 70-1. 16 (4H, m)
Purity	>90% (NN	AR)	
MS	471 (M+1)		

Example	No.	137	1H NMR(δ) ppm
H ₃ C		°	300MHz, DMSO-d6 8. 24(1H, s), 8. 11(1H, s), 7. 76(2H, d, J=9. 0Hz), 7. 37-7. 16(7H, m), 4. 43-4. 30(1H, m), 4. 13(2H, t, J=6. 3Hz), 2. 84 -2. 68(5H, m), 2. 42-2. 22(2H, m), 2. 18-1. 80(6H, m), 1. 70 -1. 20(4H, m)
Purity	>90% (NMR)	
MS	469 (M	+1)	

Example	e No.	138	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 73 (1H, brs), 8. 22 (1H, s) , 7. 76 (1H, d, J=8. 7Hz), 7. 85 (1H, d, J=8. 7Hz), 7. 54-7. 49 (4H, m), 7. 42-7. 21 (5H, m), 7 .11-7. 09 (3H, m), 6. 93 (1H, m)), 5. 17 (2H, s), 4. 29 (3H, m), 3. 11 (2H, m), 2. 40-2. 20 (2H, m), 1. 99-1. 23 (8H, m)
Purity	>90% (NM	R)	
MS	547 (M+1)		

Table 37

Example No.	139	ih nmr(δ) ppm
		300MHz, DMSO-d6 12.73 (1H, brs), 8.22 (1H, s), 7.93 (1H, d, J=8.7Hz), 7.73 (1H, m), 7.60-7.57 (2H, m), 7.47-6.90 (1H, m), 5.11 (2H, s), 4.33-4.28 (3H, m), 3.09-3.04 (2H, t, J=6.7Hz), 2.35-2.20 (2H, m), 1.95-1.10 (8H, m)
Purity >90%	(NMR)	
MS 547	(M+1)	

Example	No.	140	1H NMR(δ) ppm
HO		— ф	300MHz, DMSO-d6 12.83(2H, brs), 8.22(1H, s), 7.94(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.4Hz), 7.63-7.60 (2H, m), 7.26-7.03(6H, m), 4 .73(2H, s), 4.30(1H, m), 2.4 0-2.15(2H, m), 2.00-1.20(8 H, m)
Purity	>90% (N	MR)	
MS	487 (M+1)	•

Example	No.	14	1	1H NMR(δ) ppm
но			(300MHz, DMSO-d6 12.87(1H, brs), 8.24(1H, s), 7.97(1H, d, J=9.0Hz), 7.87 (1H, d, J=8.7Hz), 7.69and7. 19(4H, ABq, J=8.7Hz), 7.36(1H, t, J=8.7Hz), 6.80-6.72(3H, m), 4.71(2H, s), 4.32(1H, m), 2.29(2H, m), 1.95-1.25 (8H, m)
Purity	>90%	(NMR)		
MS	487	(M+1)		

Table 38

Example No.	142 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=8 . 7Hz), 8. 05 (1H, d, J=9. 0Hz) , 7. 76-7. 72 (3H, m), 7. 54 (1H , d, J=8. 4Hz), 7. 39-7. 22 (7H , m), 5. 11 (1H, s), 4. 36 (1H, m), 2. 35 (3H, s), 2. 35-2. 15 (2 H, m), 2. 15-1. 95 (2H, m), 1. 9 5-1. 75 (2H, m), 1. 75-1. 55 (1 H, m), 1. 55-1. 15 (3H, m)
Purity >90% (NMR)	
MS 551 (M+1)	

Example No.	143	IH NMR(δ) ppm
		300MHz, DMSO-d6 13.1(1H, brs), 8.30(1H, s), 8.24(1H, d, J=8.8Hz), 8.03(1H, d, J=8.7Hz), 7.74-7.71(3H, m), 7.52(1H, d, J=8.3Hz), 7.40-7.36(3H, m), 7.23(2H, d, J=8.8Hz), 7.01(2H, d, J=8.7Hz), 5.11(2H, s), 4.35(1H, m), 3.79(3H, s), 2.45-2.1 5(2H, m), 2.15-1.95(2H, m),
Purity >90% (NMR)		1.95-1.75(2H, m), 1.75-1.5 5(1H, m), 1.55-1.15(3H, m)
MS 567 (M+1)		(3H, m).

Example No.	144 1H NMR(δ) ppm
	300MHz, DMSO-d6 13.0(1H, brs), 8.31(1H, s), 8.23(1H, d, J=8.7Hz), 8.04(1H, d, J=8.7Hz), 7.80(2H, d, J=8.3Hz), 7.70-7.66(3H, m), 7.55-7.40(4H, m), 7.03-6. 95(2H, m), 5.08(2H, s), 4.03 (1H, m), 2.40-2.15(2H, m), 2.18(3H, s), 2.05-1.70(4H, m), 1.70-1.50(1H, m), 1.50-1
Purity >90% (NMR)	
MS 585 (M+1)	

Table 39

Example No.	145	1H NMR(δ) ppm
	et .	300MHz, DMSO-d6 8.31 (1H, s), 8.23 (1H, d, J=8 .8Hz), 8.02 (1H, d, J=8.7Hz) ,7.73-7.71 (3H, m), 7.54 (1H ,d, J=8.3Hz), 7.48 (2H, d, J= 8.4Hz), 7.41-7.37 (3H, m), 7 .22 (2H, d, J=8.7Hz), 5.13 (2 H, s), 4.34 (1H, m), 2.40-2.2 0 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.70-1.5
Purity >90% (NMR)		5(1H, m), 1.50-1.15(3H, m), 1.31(9H, s).
MS 593 (M+1)		

Example No. 14	16 1H NMR(δ) ppm
	10 (2H, s), 4. 07 (1H, m), 2. 35 -2. 10 (2H, m), 2. 00-1. 70 (4H
Purity >90% (NMR)	, m), 1.70-1.55(1H, m), 1.50 -1.15(3H, m).
MS 555 (M+1)	

Example No. 14	7 1H NMR(δ) ppm
HO CI CI CI	300MHz, CDC13 8. 61 (1H, s), 8. 04 (1H, d, J=8 . 7Hz), 7. 69 (1H, d, J=8. 7Hz) , 7. 66 (1H, d, J=2. 4Hz), 7. 59 (2H, d, J=8. 7Hz), 7. 42 (1H, d d, J=8. 0, 2. 4Hz), 7. 38 (1H, t , J=1. 8Hz), 7. 28 (2H, d, J=1. 8Hz), 7. 26 (1H, d, J=8. 0Hz), 7. 03 (2H, d, J=8. 7Hz), 4. 94 (2H, s), 4. 37 (1H, m), 2. 43-2.
Purity >90% (NMR)	21 (2H, m), 2, 17-1. 86 (4H, m) , 1, 79 (1H, m), 1. 43-1. 26 (3H
MS 605 (M+1)	, m).

Table 40

Example No.	148	1H NMR(δ) ppm
HO I N	F 	300MHz, DMSO-d6 8. 21 (s, 1H), 7. 89 (1H, d, J=8 . 7Hz), 7. 87 (1H, d, J=8. 7Hz) , 7. 63-7. 46 (5H, m), 7. 30-7. 12 (5H, m), 7. 08 (1H, d, J=11. 0Hz), 6. 81 (1H, s), 3. 92 (1H, m), 2. 15-2. 06 (2H, m), 1. 89- 172 (4H, m), 1. 61 (1H, m), 1. 4 2-1. 09 (3H, m).
Purity >	90% (NMR)	
MS	557 (M+1)	1

Example No.	149	1H NMR(δ) ppm
	>	300MHz, DMSO-d6 8. 24 (1H, d, J=1.5Hz), 7.96 (1H, d, J=9.0Hz), 7.88 (1H, dd , J=9.0, 1.5Hz), 7.58 (1H, d, J=8.7Hz), 7.50-7.30 (5H, m) , 7.22-7.00 (6H, m), 5.13 (2H , s), 3.98-3.80 (1H, s), 2.36 -1.10 (10H, m)
Purity >90% (NMR)		·
MS 553 (M+1)		

Example No.	150 IH NMR(δ) ppm
	300MHz, DMSO-d6 8. 23 (1H, s), 8. 95 (1H, d, J=8 . 4Hz), 7. 88 (1H, d, J=8. 7Hz) , 7. 66 (1H, d, J=8. 4Hz), 7. 52 -7. 28 (7H, m), 7. 23 (2H, d, J= 9. 3Hz), 7. 14 (2H, d, J=8. 7Hz)), 5. 14 (2H, s), 3. 90-3. 72 (1 H, m), 2. 20-1. 10 (10H, m)
Purity >90% (NM	R) .
MS 587 (M+1)	

Table 41

			·
5	Example No.	151	lH NMR(δ) ppm
10	HO I N	GF,	300MHz, DMSO-d6 8. 18 (1H, s), 7. 92-7. 78 (3H, m), 7. 78-7. 58 (3H, m), 7. 58-7. 44 (4H, m), 7. 29 (1H, d, J=8. 2Hz), 7. 01 (2H, d, J=8. 7Hz), 4. 88 (1H, d, J=11. 8Hz), 4. 80 (1H, d, J=11. 8Hz), 4. 22 (1H, m), 2. 37-2. 16 (2H, m), 1. 95-1. 75 (4H, m), 1. 64 (1H, m), 1. 48-1. 14 (3H, m).
	Purity >90% (NM	IR)	
20	MS 605 (M+1)		
			
	Example No.	152	1H NMR(δ) ppm
30	HO N O	NH ₂	300MHz, DMSO-d6 8. 21 (2H, m), 7. 99-7. 80 (2H, m), 7. 63-7. 08 (9H, m), 4. 20-3. 98 (4H, m), 2. 20-2. 15 (2H, m), 1. 95-1. 74 (4H, m), 1. 70-1. 54 (1H, m), 1. 44-1. 14 (3H, m)
35 -	Purity >90% (NM MS 456(M+1)	R)	•
40		4	
	Example No.	153	1H NMR(δ) ppm
45	HO NO O		300MHz, DMSO-d6 8. 20(1H, s), 8. 93and7. 83(2 H, ABq, J=8. 7Hz), 7. 86-7. 21 (11H, m), 7. 03(2H, d, J=8. 7Hz), 4. 20(1H, brt, J=12. 2Hz), 2. 32-2. 13(2H, m), 1. 92-1. 74(4H, m), 1. 69-1. 58(1H, m) 1. 45-1. 15(3H, m)
50			T. 40 T. 10 (211) III)
55	Purity > 90% (NM MS 489(M+1)	R)	
L			

Table 42

Example No.	154 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 23 (1H, s), 7. 94and7. 86 (2 H, ABq, J=8. 6Hz), 7. 72-7. 16 (13H, m), 5. 25 (2H, brs), 4. 5 5 (2H, d, J=6. 6Hz), 4. 31 (1H, brt, J=12. 2Hz), 2. 37-2. 18 (2H, m), 1. 98-1. 77 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 20 (3H, m)
Purity >90% (N	IR)
MS 489 (M+1)	

Example	No.	155	1H NMR(δ) ppm
но		^	300MHz, DMSO-d6 8. 21 (1H, s), 7. 85and7. 61 (2 H, ABq, J=8. 7Hz), 7. 61and6. 99 (4H, A'B' q, J=8. 7Hz), 7. 2 8-7. 18 (1H, m), 7. 25 (2H, d, J =7. 5Hz), 7. 07-6. 99 (1Hm), 4 . 30 (1H, brt, J=12. 2Hz), 3. 8 3 (2H, d, J=6. 0Hz), 3. 82-3. 7 2 (1H, m), 2. 68-2. 49 (2H, m), 2. 39-2. 21 (2H, m), 1. 95-1. 8
Purity -	>90% (NMR)		0 (4H, m), 1.79-1.60 (2H, m), 1.46-1.22 (5H, m), 1.30 (9H,
MS ·	626 (M+1)		s), 1.00-0.82(2H, m)

Example No.	156	1H NMR(δ) ppm
**************************************	C+%+	300MHz, DMSO-d6 8. 22 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 7Hz), 7. 68and7. 18 (4H, A'B'q, J=8. 7Hz), 7. 3 5 (1H, t, J=8. 5Hz), 6. 80 (1H, d, J=8. 3Hz), 6. 72-6. 70 (2H, m) 4. 30 (1H, brt, J=12. 2Hz), 3. 99 (2H, brd, J=12. 0Hz), 3. 85 (2H, d, J=6. 3Hz), 2. 82-2. 62 (2H, m), 2. 38-2. 20 (2H, m)
Purity >90% (NM	IR)	, 1. 99-1. 59 (8H, m), 1. 42-1. 03 (5H, m), 1. 39 (9H, s)
MS 626 (M+1)		

Table 43

Example No.	157	1H NMR(δ) ppm
H ₂ C ₁ O-CH ₃ O		300MHz, DMSO-d6 12. 78 (1H, brs), 8. 22 (1H, s) ,7. 96 (1H, d, J=8. 6Hz), 7. 86 (1H, d, J=8. 6Hz), 7. 75 (1H, d ,J=2. 2Hz), 7. 60 (2H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 3Hz), 7. 18 (2H, d, J=8. 4Hz), 6. 73 (2H, s), 5. 08 (2H, s), 4. 23 (1H ,m), 3. 68 (9H, s), 2. 37-2. 17
Purity >90% (NMR)		(2H, m), 1. 99-1. 79(4H, m), 1 .65(1H, s), 1. 49-1. 15(3H, m
MS 627 (M+1)]).

Example	No.	15	8	1H NMR(δ) ppm
но			>	300MHz, DMSO-d6 12.75(1H, brs), 8.22(1H, s), 7.93(2H, d, J=8.7Hz), 7.85 (2H, d, J=8.5Hz), 7.53-7.21 (10H, m), 6.94(2H, d, J=8.7Hz), 4.30-4.12(3H, m), 3.05(2H, m), 2.35-2.15(2H, m), 1.95-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.10(3H, m)
Purity	>90%	(NMR)		
MS	517	(M+1)		

Example	No.	159	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.77(1H, brs), 8.22(1H, s), 7.95(1H, d, 8.6Hz), 7.86(1 H, d, 8.6Hz), 7.80(1H, s), 7. 70-7.35(10H, m), 7.27(2H, d, J=8.7Hz), 5.30(2H, s), 4.2 8(1H, m), 2.35-2.15(2H, m), 1.95-1.75(4H, m), 1.70-1.5 5(1H, m), 1.50-1.15(3H, m)
Purity	>90% (NM	IR)	
MS	503 (M+1)		

5

Table 44

Example No.	160 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 8. 90(1H, brs), 8. 59(1h, br), 8. 33(1H, s), 8. 18and8.(2H, ABq, J=8. 5Hz), 7. 73ar 7. 10(4H, A'B'q, J=8. 5Hz), 32-7. 05(4H, m), 4. 35(1H, rt, J=12. 2Hz), 3. 86(2H, d, e6. 3Hz), 3. 25-3. 08(2H, m), 2. 85-2. 66(2H, m), 2. 40-2. 8(2H, m), 2. 07-1. 14(15H, m)
Purity >90% (NMR	
MS 526 (M+1)	

	161	1H NMR(δ) ppm 300MHz, DMSO-d6 9. 05 (1H, brs), 8. 76 (1h, brs), 8. 31 (1H, s), 8. 19and8. 00
	HC I	(2H, ABq, J=8, 3Hz), 7. 79and 7. 25 (4H, A'B'q, J=8, 3Hz), 7 . 39 (1H, brs), 6. 86-6. 74 (4H, m), 4. 37 (1H, brt, J=12. 2Hz), 3. 89 (2H, d, J=5. 0Hz), 3. 3 5-3. 18 (2H, m), 2. 98-2. 75 (2 H, m), 2. 38-2. 17 (2H, m), 2. 1
Purity >90% (NMR)	6-1. 15 (15H, m)
MS 526 (M-	+1)	

Example	No.	162	1H NMR(δ) ppm
но		NH O	300MHz, DMSO-d6 12. 87(1H, brs), 8. 58(1H, d, J=6. 0Hz), 8. 23(1H, s), 7. 99 and 7. 80(2H, ABq, J=8. 6Hz), 7. 61 and 7. 18(4H, A'B'q, J=8. 0Hz), 7. 45-7. 30(5H, m), 5. 29(1H, brs), 4. 26(1H, brt, J=12. 2Hz), 2. 37-2. 11(2H, m), 2. 00-1. 71(4H, m), 1. 92(3H, s), 1. 70-1. 52(1H, m), 1. 45
Purity	>90% (NM	R)	-1. 11 (3H, m)
MS	498 (M+1)		

Ta	ble 45	
Example No.	163	1H NMR(δ) ppm
HO NO	<i></i>	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 6Hz), 6. 80 (1H, d, J=7. 5Hz), 6. 72-6. 69 (2H, m), 5. 20 (1H, t, J=3. 7Hz), 4. 31 (1H, brt, J=12. 2Hz), 3. 95 (2H, t, J=6. 8Hz), 2. 49-2. 19 (4H, m), 1. 97-1. 76 (4H, m), 1
Purity >90% (NMR)		.68(3H, s), 1.67-1.54(1H, m), 1.61(3H, s), 1.45-1.20(3
MS 511 (M+1)		Н, ш)
Example No.	164	1H NMR(δ) ppm
HO NO	بر	300MHz, DMSO-d6 8. 20 (1H, s), 7. 87 (2H, s), 7. 68and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=7. 9Hz), 6. 8 1 (1H, d, J=9. 4Hz), 6. 72 (1Hs), 6. 71 (1H, d, J=6. 8Hz), 4. 8 0 (2H, s), 4. 29 (1H, brt, J=12 . 2Hz), 4. 10 (1H, t, J=6. 7Hz) , 2. 43 (1H, t, J=6. 7Hz), 2. 39 -2. 19 (2H, m), 1. 97-1. 78 (4H
Purity > 90% (NMR)		,m), 1.76(3H,s), 1.70-1.56 (1H,m), 1.43-1.19(3H,m)
MS 497 (N+1)		·
Example No.	165	1H NMR(δ) ppm
HO N O		300MHz, DMSO-d6 11. 21 (1H, brs), 8. 33 (1H, s), 8. 25 (1H, d, J=8. 6Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 78 (2H, d, J=8. 7Hz), 7. 70-7. 67 (2H, m

Example No.	165	1H NMR(δ) ppm
HO N N N N N N N N N N N N N N N N N N N		300MHz, DMSO-d6 11. 21 (1H, brs), 8. 33 (1H, s) ,8. 25 (1H, d, J=8. 6Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 78 (2H, d ,J=8. 7Hz), 7. 70-7. 67 (2H, m), 7. 55-7. 42 (3H, m), 7. 27 (2 H, d, J=8. 7Hz), 4. 73-4. 30 (5 H, m), 4. 20-3. 97 (1H, m), 3. 4 2-3. 10 (2H, m), 2. 45-1. 23 (1 4H, m)
Purity >90% (NM	IR)	
MS		

Table 46

Example No.	166 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 27 (1H, s), 8. 13 (1H, d, J= . 4Hz), 7. 97 (1H, d, J=9. 0Hz , 7. 73 (1H, d, J=1. 8Hz), 7. 6 (2H, d, J=8. 4Hz), 7. 54 (1H, d, J=8. 4, 2. 1Hz), 7. 41-7. 3 (5H, m), 7. 19 (2H, d, J=8. 4Hz)), 5. 10 (2H, s), 4. 32 (1H, m), 2. 50 (3H, s), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 75-
Purity >90% (NM	
MS 583 (M+1)	

Example No).	167	1H NMR(δ) ppm
HD.			300MHz, DMSO-d6 8. 25 (1H, s), 8. 09 (1H, d, J=8 . 4Hz), 8. 00 (2H, d, J=8. 4Hz) , 7. 94 (1H, d, J=8. 7Hz), 7. 80 (1H, d, J=2. 1Hz), 7. 73 (2H, d , J=8. 1Hz), 7. 65 (2H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 1, 2. 1Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 16 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 30 (1H, m), 3. 26 (3H
Purity	>90% (NMR)		, s), 2.40-1.15(2H, m), 2.05 -1.75(4H, m), 1.75-1.55(1H
MS	615 (M+1)		, m), 1.55-1.15(3H, m).

Example	No.	168	1H NMR(δ) ppm
но		, CI	300MHz, DMSO-d6 13.1 (1H, brs), 8.32 (1H, s), 8.28 (1H, d, J=8.8Hz), 8.05 (1H, d, J=8.7Hz), 7.80-7.75 (3H, m), 7.69 (1H, d, J=4.1Hz), 7.57 (2H, m), 7.34-7.29 (3H, m), 7.20-7.15 (1H, m), 5.24 (2H, s), 4.39 (1H, m), 2.45-2, 20 (2H, m), 2.20-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1
Purity	>90% (NMR)		.55(1H, m), 1.55-1.15(3H, m
MS	543 (M+1)		<i>'</i> .

Table 47

Example	No.	169	1H NMR(δ) ppm
110		CI CI	300MHz, DMSO-d6 8. 31 (1H, s), 8. 26 (1H, d, J=8 . 7Hz), 8. 05 (1H, d, J=8. 7Hz) , 7. 78-7. 71 (3H, m), 7. 59-7. 41 (6H, m), 7. 23 (2H, d, J=9. 0 Hz), 5. 11 (2H, s), 4. 35 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1 . 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1 . 15 (3H, m).
Purity	>90% (NMR)	
MS	571 (M+1)		

Example No.	170	1H NMR(δ) ppm .
HO I I	CI	300MHz, DMSO-d6 12.7(1H, brs), 8.66(1H, s), 8.61(1H, m), 8.21(1H, s), 7. 92-7.79(4H, m), 7.61-7.56(3H, m), 7.50-7.43(2H, m), 7. 10(2H, d, J=8.7Hz), 5.09(2H, s), 4.26(1H, m), 2.40-2.15 (2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15 (3H, m).
Purity > 90% (NM	IR)]
MS 538 (M+1)		

Example No. 1	71 1H NMR(δ) ppm
	300MHz, DMSO-d6 8.31(1H, s), 8.25(1H, d, J=8.7Hz), 8.04(1H, d, J=8.7Hz), 7.74-7.71(3H, m), 7.57-7.46(3H, m), 7.39(1H, d, J=8.1 Hz), 7.31-7.21(4H, m), 5.11(2H, s), 4.35(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m)
Purity >90% (NMR)).
MS 555 (M+1)	

Table 48

Example No.	172	1H NMR(δ) ppm
HO		300MHz, DMS0-d6 8. 24(1H, s), 7. 99(1H, d, J= .7Hz), 7. 88(1H, d, J=10.5H), 7. 70(1H, dd, J=11.4, 1.8 z), 7. 48-7. 32(6H, m), 7. 17 7. 09(5H, m), 5. 12(2H, s), 4. 30(1H, m), 2. 40-2. 15(2H, m), .2. 05-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 55-1. 20(3H, m)
Purity >90% (NA	AR)	1
MS 537 (M+1)		
Example No.	173	1H NMR(δ) ppm

Example No.	173 1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300MHz, DMSO-d6 8. 33(1H, s), 8. 29(1H, d, J=8 . 7Hz), 8. 06(1H, d, J=8. 7Hz) , 7. 82-7. 74(4H, m), 7. 45(1H, dd, J=8. 4, 3. 0Hz), 7. 39(2H, d, J=8. 7Hz), 5. 28(2H, s), 4. 40(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 75(2H, m), 1. 75-1. 55(1H, m), 1. 55-1. 15(3H, m).
Purity >90% (N	
MS 540 (M+1	

Example No.	174	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.80(1H, brs), 8.26(1H, s), 8.01(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.7Hz), 7.80-7.70 (1H, m), 7.60-7.36(7H, m), 7.18-6.91(2H, m), 5.09(2H, s), 4.11-3.90(1H, m), 2.32-1.18(14H, m)
Purity > 90% (N	NMR)	9
MS 590 (M+	1)	

Table 49

5	Example No. 1	75	1H NMR(δ) ppm
10	HO NO	> =a	300MHz, DMSO-d6 12. 75 (1H, s), 8. 21 (1H, s), 7 . 94and7. 85 (2H, ABq, J=8. 7H z), 7. 61and7. 00 (4H, A' B' q, J=8. 5Hz), 7. 31-6. 91 (2H, m) , 7. 25 (2H, d, J=7. 7Hz), 5. 41 (2H, brs), 4. 54 (2H, d, J=6. 6 Hz), 4. 35-4. 14 (2H, m), 2. 49 -2. 15 (3H, m), 1. 95-1. 55 (5H , m), 1. 50-1. 13 (5H, m), 1. 10
	Purity >90% (NMR)		-0.77 (2H, m)
20	MS 568 (M+1)		
		<u> </u>	
25	Example No. 1	76	1H NMR(8) ppm 300MHz, DMSO-d6 8.24(1H,s), 7.97and7.87(2
<i>30</i>		~	H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 1Hz), 6. 81 (1H, d, J=9. 2Hz), 6. 72 (1H, s), 6. 71 (1H, d, J=6. 5Hz), 4. 48-4. 20 (2H, m), 3. 95-3. 75 (3H, m), 3. 03 (1H, t, J=12. 3Hz), 2. 6 0-2. 40 (1H, m), 2. 39-2. 15 (2
<i>35</i>	Purity >90% (NMR)		H, m), 2.07-1.58(6H, m), 1.9 9(3H, s), 1.50-1.00(5H, m)
	MS 568 (M+1)		
40	Example No. 17	77	1H NMR(δ) ppm
45 50		==	300MHz, DMSO-d6 12. 76(1H, s), 8. 23(1H, s), 7 . 96and7. 86(2H, ABq, J=8. 6H z), 7. 69and7. 20(4H, A'B'q, J=8. 6Hz), 7. 39(1H, t, J=8. 2 Hz), 6. 86(1H, d, J=8. 3Hz), 6 . 81(1H, s), 6. 76(1h, d, J=8. 0Hz), 4. 83(2H, s), 4. 31(1H,
	D		brt, J=12. 2Hz), 2. 39-2. 19(2H, m), 1. 99-1. 79(4H, m), 1. 70-1. 58(1H, m), 1. 48-1. 20(
	Purity >90% (NMR)		3H, m)

467 (M+1)

MS

Table 50

Example	No.	178	1H NMR(δ) ppm
но		-C)	300MHz, DMSO-d6 12. 85(1H, s), 8. 75(1H, s), 8 .63(2H, d, J=3. 8Hz), 8. 25(1 H, s), 8. 04-8. 01(2H, m), 8. 0 2and7. 90(2H, ABq, J=8. 6Hz) ,7. 72and7. 20(4H, A'B'q, J= 8. 6Hz), 7. 57(2H, dd, J=7. 8, 5. 0Hz), 7. 40(1H, t, J=8. 2Hz) ,6. 93(1H, d, J=8. 2Hz), 6. 8 7(1H, s), 6. 77(1H, d, J=8. 2H
Purity	>90% (NMR)		z), 5. 23 (2H, s), 4. 33 (1H, br t, J=12. 2Hz), 2. 40-2. 18 (2H
MS	520 (M+1)		, m), 2.00-1.55(5H, m), 1.50

Example No.	179	1H NMR(δ) ppm	
HO 11 0		300MHz, DMSO-d6 8. 32 (1H, s), 8. 29 (1H, d, J=9 .0Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 61 (1H, d, J=8. 4Hz), 7. 58 -7. 32 (5H, m), 6. 98 (1H, d, J= 2. 1Hz), 6. 93 (1H, dd, J=8. 7, 2. 1Hz), 5. 27 (2H, s), 4. 16-4 .00 (1H, m), 3. 87 (3H, s), 2. 2 0-2. 12 (2H, m), 2. 02-1. 98 (4 H, m), 1. 70-1. 60 (1H, m), 1. 5	
Purity >90% (NMR)	2-1. 10 (3H, m)	
MS 457 (M+1)			

Example No	180	1H NMR(δ) ppm
но	Br °—	300MHz, DMSO-d6 8. 21 (1H, s), 7. 91 (1H, d, J=8 .6Hz), 7. 85 (1H, d, J=8. 6Hz) ,7. 63 (2H, d, J=8. 4Hz), 7. 60 (1H, d, J=9. 0Hz), 7. 25 (2H, d ,J=8. 4Hz), 7. 23 (1H, d, J=3. 0Hz), 6. 95 (1H, dd, J=9. 0, 3. 0Hz), 5. 19 (2H, s), 4. 30 (1H, m), 3. 78 (3H, s), 2. 40-2. 19 (2H, m), 2. 00-1. 87 (4H, m), 1.
Purity	>90% (NMR)	66 (1H, m), 1. 49-1. 18 (3H, m)
MS	536 (M+1)	1

Table 51

5	Example No. 181	1H NMR(δ) ppm
10	HO HO HO	300MHz, DMSO-d6 8. 19 (1H, s), 7. 95 (1H, d, J=8 .7Hz), 7. 86 (1H, d, J=8. 7Hz) ,7. 65 (4H, d, J=7. 4Hz), 7. 47 (2H, d, J=8. 7Hz), 7. 44-7. 27 (6H, m), 6. 99 (2H, d, J=8. 7Hz), 4. 20 (1H, m), 2. 34-2. 12 (2 H, m), 1. 98-1. 75 (4H, m), 1. 6 4 (1H, m), 1. 46-1. 13 (3H, m).
	Purity >90% (NMR)	
20	MS . 547 (M+1)	
	Example No. 182	1H NMR(δ) ppm
25		300MHz, DMSO-d6 8.55(1H, d, J=2.1Hz), 8.32(1H, m), 8.21(1H, s), 7.95(1H , d, J=8.4Hz), 7.86(1H, d, J= 7.8Hz), 7.68-7.56(7H, m), 7
30		14 (2H, d, J=8. 7Hz), 5. 21 (1 H, s), 4. 26 (1H, m), 2. 35-2. 1 5 (2H, m), 2. 00-1. 75 (4H, m), 1. 74-1. 55 (1H, m), 1. 50-1. 1 5 (3H, m)
35	Purity >90% (NMR)	
	MS 582 (M+) .	-
40		
	Example No. 183	1H NMR(δ) ppm
45	HO TO THE SECOND	300MHz, DMSO-d6 10. 16(1H, s), 8. 25(1H, s), 8 .07(1H, d, J=8. 7Hz), 7. 94-7 .87(2H, m), 7. 71-7. 62(3H, m), 7. 50-7. 42(4H, m), 7. 30(1

10. 16(1H, s), 8. 25(1H, s), 8. 07(1H, d, J=8. 7Hz), 7. 94-7. 87(2H, m), 7. 71-7. 62(3H, m), 7. 50-7. 42(4H, m), 7. 30(1H, d, J=8. 4Hz), 5. 06(2H, s), 4. 31(1H, m), 2. 35-2. 15(2H, m), 2. 05-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 50-1. 15(3H, m)

Purity > 90% (NMR)

MS 594(M+)

50

Table 52

Example No.		184	1H NMR(δ) ppm
HO. L		01	300MHz, DMSO-d6 13. 2 (2H, brs), 8. 30 (1H, s), 8. 26 (1H, d, J=8. 8Hz), 8. 04 (1H, d, J=8. 8Hz), 8. 00 (2H, d, J=8. 2Hz), 7. 79 (1H, s), 7. 73 (2H, d, J=8. 7Hz), 7. 61-7. 56 (3H, m), 7. 44 (1H, d, J=8. 3Hz), 7. 23 (2H, d, J=8. 8Hz), 5. 1 3 (2H, s), 4. 35 (1H, m), 2. 45-2. 15 (2H, m), 2. 15-1. 95 (2H,
Purity >	90% (NM	R)	m), 1.95-1.75(1H, m), 1.75- 1.15(3H, m).
MS	581 (M+1)		

Example	No.	185	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8. 30 (1H, m), 8. 24 (1H, d, J=9.0Hz), 8. 03 (1H, d, J=9.0Hz), 7. 79-7. 10 (9H, m), 5. 20-5. 07 (2H, m), 4. 43-4. 04 (4H, m), 3. 50-3. 36 (2H, m), 2. 40-1. 19 (14H, m)
Purity	>90% (NM	R)	
MS	554 (M+1)		

Example No.	186	1H NMR(δ) ppm
		(DMSO-d6) δ :8. 29 (1H, brs), 8. 10 (1H, d, J=8. 4Hz), 7. 97 (1H, d, J=8. 4Hz), 7. 79 (2H, d, J=8. 4Hz), 7. 74-7. 67 (1H, m), 7. 68 (2H, d, J=8. 4Hz), 7. 6 1 (1H, d, J=8. 4Hz), 7. 57-7. 5 0 (2H, m), 7. 46-7. 39 (1H, m), 7. 29 (1H, d, J=2. 4Hz), 7. 11 (1H, dd, J=2. 4, 8. 4Hz), 5. 12 (2H, s), 3. 99-3. 84 (1H, m), 2.
Purity >90% (N	MR)	35-1.72(6H, m), 1.68-1.55(1H, m), 1.42-1.10(3H, m)
MS 605 (M+1)	

		Table 5	3
5	Example No.	187	1H NMR(δ) ppm
. 10			300MHz, DMSO-d6 12. 76 (1H, s), 8. 57 (1H, d, J= 4. 4Hz), 8. 23 (1H, s), 7. 96an d7. 86 (2H, ABq, J=8. 2Hz), 7. 87-7. 82 (1H, m), 7. 68and7. 1 2 (4H, A'B'q, J=8. 6Hz), 7. 53 (2H, d, J=7. 8Hz), 7. 37 (1H, t , J=8. 3Hz), 7. 36-7. 33 (1H, m), 6. 90 (1H, d, J=8. 3Hz), 6. 8
	Purity >9	0% (NMR)	3(1H, s), 6. 74(1H, d, J=8. 0H z), 5. 20(2H, s), 4. 31(1H, br
20	MS	520 (M+1)	t, J=12. 2Hz), 2. 35-2. 19(2H , m), 1. 99-1. 57(5H, m), 1. 45
20			
	Example No.	188	1H NMR(δ) ppm
25	но		300MHz, DMSO-d6 12.77(1H, brs), 8.21(1H, d, J=1, 4Hz), 7.92(1H, d, J=8.7 Hz), 7.88(1H, dd, J=8.7, 1.4 Hz), 7.57(2H, d, J=8.7Hz), 7
30			.57-7.27(7H, m), 7.11(2H, d , J=8.7Hz), 5.07(2H, s), 4.2 6(1H, m), 2.36-2.16(2H, m), 1.98-1.75(4H, m), 1.64(1H, m), 1.49-1.17(3H, m).
35	Purity >9	0% (NMR)	

		Hz), 7. 88 (1H, dd, J=8. 7, 1. 4 Hz), 7. 57 (2H, d, J=8. 7Hz), 7 .57-7. 27 (7H, m), 7. 11 (2H, d , J=8. 7Hz), 5. 07 (2H, s), 4. 2 6 (1H, m), 2. 36-2. 16 (2H, m), 1. 98-1. 75 (4H, m), 1. 64 (1H, m), 1. 49-1. 17 (3H, m),
Purity	>90% (NMR)	
MS	555 (M+1)	

Example No.	189	1H NMR(δ) ppm
HOLOT	- 	300MHz, DMSO-d6 8. 32 (1H, s), 8. 30-8. 20 (2H, m), 8. 10-7. 98 (2H, m), 7. 74 (2H, d, J=9. 0Hz), 7. 60-7. 46 (5H, m), 7. 24 (2H, d, J=9. 0Hz), 5. 19 (2H, s), 4. 44-4. 30 (1H, m), 2. 40-2. 20 (2H, m), 2. 12-1. 78 (4H, m), 1. 72-1. 58 (4H, m)
Purity >90)% (NMR)	*
MS	581 (M+1)	7

Table 54

Example	No.	190	1H NMR(δ) ppm
но		NH ₂	300MHz, DMSO-d6 8. 36-7. 90 (5H, m), 7. 74 (2H, d, J=8. 6Hz), 7. 60-7. 40 (5H, m), 7. 25 (2H, d, J=8. 7Hz), 5. 14 (2H, s), 4. 45-4. 28 (1H, m), 2. 40-2. 15 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 20 (3H, m)
Purity	>90% (N)	AR)	
MS	580 (M+1)		1

Example No.	191	1H NMR(δ) ppm
ной СТ	-o o N CHª	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz), 7. 61(2H, d, J=8. 7Hz), 7. 25 -7. 00(6H, m), 4. 86(2H, s), 4 .30(1H, m), 2. 89(3H, s), 2. 8 0(3H, s), 2. 29(2H, m), 2. 00- 1. 75(4H, m), 1. 70-1. 55(1H, m), 1. 50-1. 15(3H, m)
Purity >90%	(NMR)	
MS 514	(M+1)	·

Example No.	192	1H NMR(δ) ppm
	<u>څ</u>	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz), 7. 61(2H, d, J=8. 7Hz), 7. 26 -7. 01(6H, m), 4. 84(2H, s), 4 .31(1H, m), 3. 36(4H, m), 2. 2 9(2H, m), 2. 00-1. 75(4H, m), 1. 75-1. 15(10H, m)
Purity >90% (N	MR)	
MS 554 (M+1)		•

Table 55

Example No.	193	1H NMR(δ) ppm
		300MHz, DMSO-d6 13.00(1H, brs), 8.29(1H, d, J=1.4Hz), 8.15(1H, d, J=8.8 Hz), 7.97(1H, dd, J=1.4Hz, 8 .8Hz), 7.89(2H, d, J=8.8Hz) , 7.80-7.60(5H, m) 7.25(2H, d, J=8.8Hz), 4.47-3.90(4H, m), 3.20-3.10(2H, m), 2.41- 1.22(14H, m)
Purity >90% (1	VMR)]
MS 560 (M+	1)	}

Example No.	•	194	1H NMR(δ) ppm
HOUNT			300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.5Hz), 7.87 (1H, d, J=8.5Hz), 7.70-7.17 (9H, m), 4.60-4.13(4H, m), 3.72-3.40(2H, m), 2.40-1.15 (14H, m)
Purity >	90% (NMR)		. •.
MS	524 (M+1)		

Example No.	195	1H NMR(δ) ppm
	\	300MHz, DMSO-d6 8. 25(1H, s), 8. 09-7. 92(5H, m), 7. 77(1H, s), 7. 65(2H, d, J=8. 4Hz), 7. 59-7. 51(3H, m), 7. 43(2H, d, J=8. 4Hz), 7. 17(2H, d, J=8. 7Hz), 5. 10(2H, s), 4. 30(1H, m), 2. 40-2. 15(2H, m), 2. 10-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 55-1. 10(3H, m).
Purity >90% (NM)	R)	
MS 580 (M+1)		

Table 56

Example No.	19	6 1H NMR(δ) ppm
HO I TO	N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.	300MHz, DMSO-d6 8. 22 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 4Hz) ,7. 69and7. 18 (4H, ABq, J=8. 7Hz), 7. 34 (1H, t, J=8. 0Hz), 6. 80-6. 69 (3H, m), 4. 83 (2H, s), 4. 31 (1H, m), 2. 98 (3H, s) ,2. 84 (3H, s), 2. 29 (2H, m), 2 .00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15 (3H, m)
Purity >	90% (NMR)	
MS	514 (M+1)	- 1

Example No.	197	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 23 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 7Hz) , 7. 69and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 80-6. 70 (3H, m), 4. 82 (2H, s), 4. 31 (1H, m), 3. 40 (4H, m), , 2. 29 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 15 (10H, m)
Purity > 90% (NM	R)	·
MS 554 (M+1)		

Example	No.	198	1H NMR(δ) ppm
****		N-8-04	300MHz, DMSO-d6 12. 75(1H, s), 8. 23(1H, d, J= 4. 4Hz), 7. 95and7. 86(2H, AB q, J=8. 6Hz), 7. 69and7. 19(4 H, A'B'q, J=8. 6Hz), 7. 36(1H , t, J=7. 8Hz), 6. 82(1H, d, J= 9. 3Hz), 6. 73(1H, s), 6. 71(1 H, d, J=7. 2Hz), 4. 30(1H, brt , J=12. 2Hz), 3. 89(2H, d, J=6 .0Hz), 3. 59(2H, d, J=11. 7Hz
Purity	>90% (NMR	2)), 2.85(3H, s), 2.73(2H, t, J =10.5Hz), 2.41-2.20(2H, m)
MS	604 (M+1)		, 1. 98-1. 59 (8H, m), 1. 46-1.

Table 57

Example No.	199	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 33 (1H, s), 8. 30 (1H, d, J=8 .9Hz), 8. 06 (1H, d, J=8. 7Hz) , 7. 79 (2H, d, J=8. 7Hz), 7. 70 (2H, d, J=8. 7Hz), 7. 61 (2H, d , J=8. 7Hz), 7. 39 (2H, d, J=8. 8Hz), 5. 28 (2H, s), 4. 39 (1H, m), 2. 50-2. 15 (2H, m), 2. 15- 1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-
Purity >90% (NMR)		1.15(3H, m).
MS 542 (M+1)		

Example No.	200	1H NMR(δ) ppm
	♂	(DMSO-d6) δ :8. 23 (1H, s), 7. 96 (1H, d, J=8. 6Hz), 7. 86 (1 H, d, J=8. 6Hz), 7. 69 (2H, d, J=8. 4Hz), 7. 52 (1H, s), 7. 50-7. 30 (4H, m), 7. 18 (2H, d, J=8. 4Hz), 6. 90 (1H, d, J=8. 3Hz), 6. 84 (1H, s), 6. 74 (1H, d, J=8. 3Hz), 5. 15 (2H, s), 4. 39-4. 21 (1H, m), 2. 39-2. 18 (2H, m), 1. 99-1. 80 (4H, m), 1. 71-1
Purity >90% (NMR)		. 59 (1H, m), 1. 50-1. 20 (3H, m)
MS 553 (M+1)		

Example	No.	201	1H NMR(δ) ppm
## ¹		- (-¯)}-a	(DMSO-d6) δ :8.26(1H, s),8 .06(1H, d, J=8.7Hz),7.92(1 H, d, J=8.7Hz),7.72(2H, d, J =8.7Hz),7.47(4H, s),7.38(1H, t, J=8.2Hz),7.20(2H, d, J=8.7Hz),6.90(1H, d, J=8.2 Hz),6.83(1H, s),6.74(1H, d, J=8.2 Hz),5.14(2H, s),2.4 0-2.19(2H, m),2.04-1.78(4 H, m),1.71-1.60(1H, m),1.5
Purity	>90% (NMR	.)	0-1. 21 (3H, m)
MS	553 (M+1)		

Table 58

Example No.	202 1H NMR(δ) ppm
HO L CO	(DMSO-d6) δ:12.81 (1H, b)), 8.24 (1H, s), 7.99 (1H, d, =8.7Hz), 7.87 (1H, d, J=8.7 z), 7.69 (2H, d, J=8.6Hz), 7.53-7.47 (2H, m), 7.38 (1H, t, J=8.2Hz), 7.26-7.16 (4H, m, 6.89 (1H, d, J=8.2Hz), 6.8 (1H, s), 6.73 (1H, d, J=8.2Hz), 5.11 (2H, s), 4.40-4.21 (H, m), 2.40-2.17 (2H, m), 2.
Purity >90% (NM	1-1 77/417 \ 4 74 4 75/
MS 537 (M+1)	

Example No.	203	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.74(1H, brs), 8.21(1H, s), 8.08(2H, d, J=9.0Hz), 7.93 (1H, d, J=8.7Hz), 7.85(2h, d, J=8.7Hz), 7.58(2H, d, J=8.7Hz), 7.13(2H, d, J=8.7Hz), 6.83(2H, d, J=9.0Hz), 4.50-4.08(4H, m), 3.68-3.30(2H, m), 2.40-1.23(14H, m)
Purity >90% (NM	R)	
MS 541 (M+1)		

Example No.	204	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 8. 39-8. 28(2H, m), 8. 08(1H, d, J=8. 8Hz), 7. 76(2H, d, J=8. 7Hz), 7. 29(2H, d, J=8. 7Hz), 7. 25-7. 13(2H. m), 6. 80-6. 60(3H, m), 4. 46-3. 98(4H, m), 3. 51-3. 42(1H, m), 3. 20-3. 04(1H, m), 2. 39-1. 20(14H, m)
Purity >90% (NMF	?)	
MS		1

Table 59

Ex	ample No.	205	1H NMR(δ) ppm
			300MHz, DMSO-d6 9. 59 (1H, brs), 8. 23 (1H, s), 8. 04 (1H, d, J=8. 4Hz), 7. 90 (1H, d, J=8. 4Hz), 7. 62 (2H, d, J=8. 7Hz), 7. 39 (2H, 2H, d, J=8. 7Hz), 7. 18 (2H, d, J=8. 7Hz), 6. 63 (2H, d, J=8. 7Hz), 3. 95 -3. 37 (4H, m), 3. 51-3. 40 (1H, m), 3. 17-3. 02 (1H. m), 2. 39 -1. 18 (17H, m)
Pu	rity >90%	(NMR)	
MS	553 ((M+1)	

Example No.	206	1H NMR(δ) ppm
		300MHz, DMSO-d6 13. 1 (1H, brs), 8. 33 (1H, s), 8. 29 (1H, d, J=8. 8Hz), 8. 06 (1H, d, J=8. 7Hz), 7. 77 (2H, d, J=8. 7Hz), 7. 59-7. 52 (4H, m), 7. 35 (2H, d, J=8. 8Hz), 5. 19 (2H, s), 4. 39 (1H, m), 2. 71 (3 H, s), 2. 45-2. 20 (2H, m), 2. 2 0-1. 95 (2H, m), 1. 95-1. 75 (2 H, m), 1. 75-1. 55 (1H, m), 1. 5
Purity >90% (NMR)		5-1.15(3H, m).
MS 558 (M+1)		

Example No.	207	1H NMR(δ) ppm
HO I C	F	300MHz, DMSO-d6 8. 29 (1H, s), 8. 26 (1H, d, J=8 .8Hz), 8. 04 (1H, d, J=8. 7Hz) .7. 73 (2H, d, J=8. 8Hz), 7. 50 -7. 41 (6H, m), 7. 36 (2H, d, J= 8. 8Hz), 7. 18-7. 13 (2H, m), 6 .84 (1H, s), 4. 33 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity > 90% (NM	ЛR)	H, m).
MS 539 (M+1)		

Table 60

Example No.	208	1H NMR(δ) ppm
	No.	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 07-8. 00 (3H, m), 7. 79-7. 70 (3H, m), 7. 51 (2H, d, J=8. 1Hz), 7. 40 (2H, d, J=8. 4 Hz), 7. 18 (2H, d, J=8. 7Hz), 4 .99 (2H, s), 4. 34 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
Purity >90% (N	MR)	Н, m).
MS 582 (M+1)	

Example No. 209	IH NMR(δ) ppm
HO I CON CONTRACTOR OF THE PARTY OF THE PART	300MHz, DMSO-d6 8. 24 (1H, d, J=4. 4Hz), 7. 98a nd7. 88 (2H, ABq, J=8. 6Hz), 7 .70and7. 19 (4H, A'B'q, J=8. 4Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 86 (1H, d, J=8. 1Hz), 6. 79 (1H, s), 6. 71 (1H, d, J=8. 1Hz), 4. 65-4. 53 (1H, m), 4. 31 (1H, brt, J=12. 2Hz), 3. 88-3. 78 (2H, m), 3. 48 (2H, t, J=9. 0Hz)
Purity >90% (NMR)), 2. 39-2. 19 (2H, m), 1. 02-1 .71 (6H, m), 1. 70-1. 50 (3H, m)
MS 513(M+1)), 1. 46-1. 19 (3H, m)

Example No.	210	1H NMR(δ) ppm
HO LO CO	gr.	300MHz, DMSO-d6 12. 75(1H, s), 8. 23(1H, s), 7 .96and7. 87(2H, ABq, J=8. 7H z), 7. 84-7. 66(6H, m), 7. 38(1H, t, J=8. 4Hz), 7. 18(2H, d, J=8. 4Hz), 6. 91(1H, d, J=9. 0 Hz), 6. 84(1H, s), 6. 74(1H, d ,J=8. 1Hz), 5. 26(2H, s), 4. 3 1(1H, brt, J=12. 2Hz), 2. 40- 2. 20(2H, m), 1. 99-1. 76(4H,
Purity >90% (NN	AR)	m), 1.69-1.58(1H, m), 1.45- 1.20(3H, m)
MS 587(M+1)		

Table 61

5	Example No.	211	1H NMR(δ) ppm
10		HCI	300MHz, DMSO-d6 8. 29 (1H, s), 8. 15and7. 47 (2 H, ABq, J=9. OHz), 7. 77and7. 24 (4H, ABq, J=8. 9Hz), 7. 39 (1H, t, J=7. 8Hz), 6. 84 (1H, d, J=9. 3Hz), 6. 76 (1H, s), 6. 75 (1H, d, J=9. 5Hz), 4. 36 (1H, b rt, J=12. 2Hz), 3. 89 (2H, d, J =6. OHz), 3. 42 (2H, d, J=10. 8 Hz), 3. 04-2. 88 (2H, m), 2. 78
	Purity >90% (N	MR)	-2. 60 (1H, m), 2. 71 (2H, d, J= 4. 8Hz), 2. 38-2. 20 (2H, m), 2
20	MS 540 (M+1)	.07-1.80(7H, m), 1.70-1.20
	Example No.	212	1H NMR(8) ppm 300MHz, DMSO-d6
30		\	8. 22(1H, s), 7. 93and7. 87(2 H, ABq, J=8. 6Hz), 7. 68and7. 17(4H, A'B'q, J=8. 7Hz), 7. 4 3-7. 33(5H, m), 6. 87(1H, d, J =8. 1Hz), 7. 18(2H, d, J=8. 4H z), 6. 91(1H, d, J=9. 0Hz), 6. 81(1H, s), 6. 72(1H, d, J=8. 0 Hz), 5. 08(2H, s), 4. 36(1H, b rt, J=12. 2Hz), 2. 37-2. 20(2
35	Purity >90% (N	MR)	H, m), 1.98-1.78(4H, m), 1.6 9-1.60(1H, m), 1.41-1.21(3
	MS 575 (M+1))	H, m), 1.28 (9H, s)
40	Example No.	213	1H NMR(δ) ppm
45 50			300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 4Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 7Hz), 7. 6 2-7. 36 (5H, m), 6. 90 (1H, d, J =8. 1Hz), 6. 84 (1H, s), 6. 76 (1H, d, J=8. 1Hz), 5. 19 (2H, s), 4. 31 (1H, brt, J=12. 2Hz), 2 .40-2. 19 (2H, m), 1. 99-1. 76 (4H, m), 1. 68-1. 55 (1H, m), 1
j	Purity $>90\%$ (N)	MR)	. 50-1. 18 (3H, m)

>90% (NMR) . 553 (M+1)

Purity

MS

5

Table 62

Example No	214	1H NMR(δ) ppm
HO I N		300MHz, DMSO-d6 8. 94 (1H, d, J=2. 1Hz), 8. 60 (1H, dd, J=4. 8, 1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 12 (1H, dt , J=8. 1, 2. 1Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 87 (1H, dd, J=8. 7 1. 5Hz), 7. 70 (1H, d, J=8. 7 Hz), 7. 67-7. 54 (3H, m), 7. 50 (1H, dd, J=8. 1, 4. 8Hz), 7. 25 (2H, d, J=8. 7Hz), 7. 21 (1H, m)
Purity >	90% (NMR)), 4. 31 (1H, m), 2. 38-2. 19 (2 H. m), 2. 00-1. 78 (4H, m), 1. 6
MS	490 (M+1)	5(1H, m), 1.48-1.22(3H, m).

Example No.	215 1H NMR(δ) ppm
HO.L.	300MHz, DMSO-d6 12.75(1H, brs), 8.23(1H, s) ,7.95(1H, d, J=8.7Hz), 7.86 (1H, d, J=8.7Hz), 7.73(2H, d, J=8.4Hz), 7.63-7.39(2H, m), 7.5 2(2H, d, J=8.4Hz), 7.24(2H, d, J=8.4Hz), 7.18(1H, m), 4.31(1H, m), 2.39-2.20(2H, m) ,2.00-1.76(4H, m), 1.65(1H
Purity > 90% (NMR)	, m), 1.49-1.18(3H, m).
MS 523 (M+1)	

Example 1	No. 21	6 1H NMR(δ) ppm
ной СТ		300MHz, DMSO-d6 12. 77(1H, s), 8. 23(1H, d, J= 1. 4Hz), 7. 95(1H, d, J=8. 6Hz), 7. 86(1H, dd, J=8. 6, 1. 4Hz), 7. 70(2H, d, J=8. 7Hz), 7. 6 4(2H, d, J=8. 8Hz), 7. 56-7. 4 8(2H, m), 7. 40(1H, s), 7. 23(2H, d, J=8. 7Hz), 7. 10(1H, m), 7. 03(2H, d, J=8. 8Hz), 4. 31 (1H, m), 3. 80(3H, s), 2. 48-2
Purity	>90% (NMR)	. 20 (2H, m), 2. 00-1. 88 (4H, m), 1. 66 (1H, m), 1. 50-1. 21 (3
MS	519 (M+1)	H, m).

Table 63

Exampl	e No.	217	1H NMR(δ) ppm
HO			(DMSO-d6) δ:12.80(1H, brs), 8.23(1H, s), 8.04(1H, d, J=8.6Hz), 7.96(3H, d, J=8.6Hz), 7.86(1H, d, J=8.7Hz), 7.63(2H, d, J=8.6Hz), 7.25(2H, d, J=8.6Hz), 5.50(2H, s), 4.36-4.21(1H, m), 3.27(3H, s), 2.74(3H, s), 2.40-2.19(2H, m), 1.99-1.79(4H, m), 1.71-1.60(1H, m), 1.49-1.19(3
Purity	>90% (NMF	2)] H, m)
MS	602 (M+1)		7

Example No.	218	1H NMR(δ) ppm
	Z N	300MHz, DMSO-d6 12.9(1H, brs), 8.25(1H, s), 8.04(1H, d, J=8.7Hz), 7.91(1H, d, J=8.6Hz), 7.72(2H, d, J=8.5Hz), 7.67(2H, d, J=8.7 Hz), 7.56(2H, d, J=8.5Hz), 7 .26(2H, d, J=8.7Hz), 5.45(2 H, s), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05- 1.80(4H, m), 1.75-1.55(1H,
Purity >90% (NM	R)	m), 1.55-1.15(3H, m).
MS 558 (M+1)		7

Example No.	219	1H NMR(δ) ppm
HO I NO S		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=9. 0Hz), 7. 84 (1H, dd , J=9. 0, 1. 5Hz), 7. 56 (2H, d, J=8. 7Hz), 7. 42-7. 30 (4H, m) , 7. 12 (2H, d, J=8. 7Hz), 4. 53 (1H, brs), 4. 36-4. 20 (1H, m) , 3. 55 (2H, brs), 3. 00-2. 90 (1H, m), 2. 70-2. 58 (1H, m), 2. 40-1. 10 (18H, m)
Purity >90% (N	MR)	
MS 544 (M+1)	

Table 64

Example	≥ No.	220	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 76 (1H, s), 8. 23 (1H, s), 7 96and7. 87 (2H, ABq, J=8. 9H z), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 55 (1H, s), 7. 37 (1H, t, J=8. 1Hz), 6. 91 (1H, d, J=7. 8Hz), 6. 85 (1H, s), 6. 7 4 (1H, d, J=7. 5Hz), 5. 13 (2H, s), 4. 31 (1H, brt, J=12. 2Hz) , 2. 65 (3H, s), 2. 41-2. 20 (2H
Purity	>90% (NMR)		, m), 2.00-1.74(4H, m), 1.70 -1.59(1H, m), 1.58-1.20(3H
MS	540 (M+1)		, m)

Example No.	221 1H NMR(δ) p	pm
	H, ABq, J=8. 6H 18(4H, A'B'q, 7(1H, t, J=8. 2 d, J=8. 2Hz), 6 75(1H, d, J=8. , s), 4. 32(1H,	1. 96and7. 86 (2 1. 2), 7. 69and7. J=8. 7Hz), 7. 3 Hz), 6. 87 (1H, 1. 82 (1H, s), 6. 0Hz), 5. 24 (2H brt, J=12. 2Hz 1. 2. 38-2, 20 (2
Purity >90% (NM	0(40 -) 1 70	-1.59(1H.m).
MS 554 (M+1)		

Table 65

Example No.	223	1H NMR(δ) ppm
HO!	چ م	300MHz, DMSO-d6 10.96(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.7 Hz), 7.84(1H, dd, J=8.7, 1.4 Hz), 7.76-7.40(7H, m), 7.18 (2H, d, J=8.0Hz), 4.24-4.16 (2H, m), 2.40-1.12(18H, m)
Purity >90%	(NMR)	
MS 544 (M+1)	

Example No. 224	1H NMR(δ) ppm
HO I CAN CONTRACTOR OF THE PARTY OF THE PART	(DMSO-d6) δ:8.22(1H, s), 8 .07(1H, d, J=8.4Hz), 7.92(1 H, d, J=8.4Hz), 7.54(2H, d, J =8.7Hz), 7.40(2H, d, J=8.4Hz), 7. 14(2H, d, J=8.7Hz), 4.61(2H, s), 4.48-4.32(1H, m), 3.82 (1H, brd, J=12.3Hz), 3.65-3 .47(2H, m), 3.10(brdd, J=8.4, 12.3Hz), 2.40-2.20(2H, m)
Purity >90% (NMR)), 2.09-1.76(6H, m), 1.71-1 .16(6H, m)
MS 544 (M+1)	

Example	No.	225	1H NMR(δ) ppm
но		NH.	(DMSO-d6) δ:12.83(1H, brs), 8.21(1H, s), 8.10(1H, brs), 7.01-7.91(2H, m), 7.89-7.82(2H, m), 7.75(1H, d, J=8.0Hz), 7.59(2H, d, J=8.7Hz), 7.53(4H, s), 7.46(1H, brs), 7.12(2H, d, J=8.7Hz), 7.23(2H, s), 4.35-4.17(1H, m), 2.38-2.20(2H, m), 1.99-1.79(4H, m), 1.71-1.59(1H, m), 1.
Purity	>90% (NM	IR)	48-1. 18 (3H, m)
MS	580 (M+1)		

Table 66

Exampl	e No.	226 1H NMR(δ) ppm
200	₹	300MHz, DMSO-d6 8. 33and8. 08 (2H, ABq, J=8. Hz), 8. 31 (1H, m), 7. 66and7. 26 (4H, A'B'q, J=9. 2Hz), 7. 42and7. 39 (4H, A"B"q, J=8. 7Hz), 4. 57 (2H, s), 4. 50 (1H, brt, J=12. 2Hz), 3. 85-3. 62 (3H, m), 3. 28-3. 16 (2H, m), 2. 42-2. 23 (2H, m), 2. 14-1. 81 (6H, m), 1. 72-1. 25 (6H, m)
Purity	>90% (NMI	2)
MS	544 (M+1)	

Example No.	227 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 43(1H, d, J=5.0Hz), 8. 23(1H, s), 7. 96and7. 86(2H, ABq, J=8.6Hz), 7. 69and7. 18(4H, A'B'q, J=8.6Hz), 7. 57(1H, s), 7. 47(1H, d, J=5.0Hz), 7. 40(2H, t, J=8.2Hz), 6. 91(1H, d, J=8.3Hz), 6. 85(1H, s), 6. 77(1H, d, J=7.9Hz), 5. 25(2H, s), 4. 31(1H, brt, J=12.2Hz)
Purity >90% (N	1. 10 (41, W), 1. 10-1. 01 (1H,
MS 554 (M+1	- 1 40 1 10/01

Example No.	228	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.80(1H, brs), 8.22(1H, s), 7.94(1H, d, J=8.6Hz), 7.87 (1H, d, J=8.6Hz), 7.60(2H, d, J=8.7Hz), 7.32(2H, d, J=8.7Hz), 6.70(2H, d, J=8.7Hz), 4.35-3.97(4H, m), 3.62-3.11(2H, m), 2.96(6H, s), 2.39-1.12(14H, m)
Purity >90% (NMR)		7
MS 567 (M+1)]

Table 67

Exampl	e No.	229	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8.25(1H, s), 8.20(1H, s), 8. 04(1H, dd, J=8.1, 1.8Hz), 7. 92(1H, d, J=8.1Hz), 7.84(1H, d, J=9.9Hz), 7.62-7.50(7H, m), 7.12(2H, d, J=8.7Hz), 5. 14(2H, s), 4.36(2H, q, J=6.9Hz), 4.30-4.20(1H, m), 2.3 8-2.18(2H, m), 1.98-1.18(8H, m), 1.35(3H, t, J=6.9Hz)
Purity	>90% (N	MR)	
MS	608 (M+1)	

Example No.	230	1H NMR(δ) ppm
но	}−o, 	300MHz, DMSO-d6 8. 35(1H, s), 8. 27(1H, d, J=8 .7Hz), 8. 05(1H, d, J=9. 0Hz) , 7. 87(2H, d, J=8. 7Hz), 7. 74 (1H, t, J=8. 1Hz), 7. 64(1H, d , J=7. 8Hz), 7. 59-7. 50(2H, m), 7. 36(2H, d, J=8. 7Hz), 4. 3 9(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 7 5(2H, m), 1. 75-1. 55(1H, m),
Purity about90% (NMR)	1.55-1.20 (3H, m).
MS 481 (M	+1)]

Example	No.	231	1H NMR(δ) ppm
но			300MHz DMSO-d6 12.78(1H, brs), 8.23(1H, d, J=1.5Hz), 7.96(1H, d, J=8.7 Hz), 7.87(1H, dd, J=8.7, 1.5 Hz), 7.75(2H, d, J=8.4Hz), 7.63(2H, d, J=8.4Hz), 7.52(2 H, d, J=8.4Hz), 7.24(2H, d, J=8.4Hz), 5.47(2H, s), 4.29(1H, m), 2.97(6H, brs), 2.72(3H, s), 2.39-2.16(2H, m), 2.
Purity a	Purity about 90% (NMR)		7 00-1: 78 (4H, m), 1. 71-1. 59 (1H, m), 1. 49-1. 17 (3H, m).
MS	595 (M+1)		

Table 68

Example No.	232 1H NMR(δ) ppm
	300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s) 7.96(1H, d, J=8.7Hz), 7.86 1H, d, J=8.6Hz), 7.70(1H, s) 7.59(2H, d, J=8.7Hz), 7.5 -7.50(5H, m), 7.42(1H, d, J 7.9Hz), 7.12(2H, d, J=8.7H), 5.11(2H, s), 4.27(1H, m) 3.01(3H, brs), 2.97(3H, brs)), 2.40-2.15(2H, m), 2.00-
Purity >90% (NMR)	1 75/411 \ 4 AP +
MS 608 (M+1)	3, 20, (0.1, 10)

45 °

Example No.	233	1H NMR(8) ppm
HO!		DMSO-d6 13. 20 (1H, brs), 8. 99 (1H, s), 8. 32 (1H, s), 8. 25 (1H, d, J=8. 8Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 79-7. 74 (4H, m), 7. 60 (2H, d, J=8. 7Hz), 5. 26 (2H, s), 4. 36 (1H, m), 2. 72 (3H, s), 2. 50-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1.
Purity >90% ()	NMR)	55 (1H, m), 1.55-1.15 (3H, m)
MS 553 (M+1-	HC1)	

Example No.	234	1H NMR(δ) ppm
2901	01 —0 — N	DMSO-d6 8. 77 (1H, d, J=3. 6Hz), 8. 36- 8. 26 (3H, m), 8. 08 (1H, d, J=8. 8Hz), 7. 79 (2H, d, J=8. 7Hz), 7. 72-7. 64 (3H, m), 7. 58 (2H, d, J=8. 7Hz), 5. 26 (2H, s), 4. 38 (1H, m), 2. 50-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 5
Purity >90% (NMR)	5-1. 15 (3H, m).
MS 538 (M+1-	-2HC1)]

Table 69

Example	No.	235	1H NMR(δ) ppm
HD.			300MHz, DMSO-d6 12.74(1H, brs), 8.67(1H, dd ,J=3.1, 1.6Hz), 8.21(1H, d, J=1.6Hz), 7.93(1H, dJ=8.6H z), 7.90-7.80(2H, m), 7.60- 7.50(7H, m), 7.09(2H, d, J=8 .7Hz), 5.16(2H, s), 4.26(1H ,m), 2.40-2.20(2H, m), 2.00 -1.60(5H, m), 1.50-1.20(3H ,m)
Purity	>90% (NMF	L)	
MS .	APCI-Ms 538 (M+	1)	

Example No.	236	1H NMR(δ) ppm
	CE-5007H	300MHz, DMSO-d-6 8. 40-7. 40(11H, m), 2. 95, 2. 81(3H, each d, J=4. 7Hz), 2. 40-2. 20(2H, m), 2. 10-1. 80(4H, m), 1. 70- 1. 60(1H, m), 1. 50-1. 20(3H, m)
Purity >90%	(NMR)	
MS APCI-Ms	555 (M+1)	

Example No.	237	1H NMR(δ) ppm
		300MHz, DMSO-d6 8.21(1H, s), 8.15(1H, d, J=9 .5Hz), 8.02(1H, s), 8.00-7. 80(3H, m), 7.70-7.50(6H, m) ,7.12(2H, d, J=8.7Hz), 5.16 (2H, s), 4.28(1H, m), 2.40-2 .20(2H, m), 2.00-1.80(4H, m), 1.65(1H, m), 1.50-1.20(3 H, m)
Purity >90% (N	MR)	
MS FAB-Ms 605	(M+1)	

Table 70

Example No.	238	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 12.80 (1H, brs), 8.54 (1H, s), 8.25 (1H, s), 7.98and7.88 (2H, Abq, J=8.6Hz), 7.76 (2H, d, J=8.6Hz), 7.53-7.31 (3H, m), 6.61 (1H, s), 5.46 (2H, s), 4.32 (1H, brt), 2.40-2.20 (2H, m), 2.02-1.79 (4H, m), 1.69-1.59 (1H, m), 1.48-1.19 (3H, m)
Purity >90% (NMR)		
MS APCI-Ms 521 (M+1)		

Example No. 2	39 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 12. 79 (1H, brs), 8. 60 (2H, d, J=1. 5Hz), 8. 53 (1H, s), 8. 25 (1H, s), 7. 98and7. 85 (2H, AB q, J=9. 4Hz), 7. 76 (2H, d, J=9. 0Hz), 7. 44 (4H, d, J=6. 5Hz), 6. 69 (1H, s), 5. 53 (2H, s), 4. 32 (1H, brt), 2. 40-2. 19 (2H, m), 2. 03-1. 82 (4H, m), 1. 72-1. 61 (1H, m),
Purity >90% (NMR)	1. 42-1. 22 (3H, m)
MS APCI-Ms 522 (M+1)	

Example No.	240 1H NMR(δ) ppm
HO N N	300MHz, DMSO-d6 8. 90(1H, s), 8. 32(1H, s), 8. 28(1H, s), 8. 25(1H, d, J=8. 3 Hz), 8. 05(1H, d, J=8. 8Hz), 7. 96(1H, s), 7. 93(1H, d, J=8. 4 Hz), 7. 68-7. 59(2H, m), 7. 54 (2H, d, J=8. 8Hz), 4. 37(1H, b rt), 2. 30(2H, m), 2. 00(2H, m), 1. 88(2H, m), 1. 67(1H, m),
Purity >90% (NM	
MS APCI-Ms 5250	-1)

Table 71

5	Ex. No.	Formula	MS
	1001	HJN L	364 (M+H)
10		H,c'	
15	1002	H ₂ N CH ₃	454 (M+H)
20			
25	1003	H ₂ N ² C C C C C C C C C C C C C C C C C C C	398 (M+H)
30	1004	H ₂ N —	357 (M+H)
35			
40	1005	H²N OH	322 (M+H)
45		\(\)	
50	1006	H ₂ N Ca	385 (M+H)
55		V	

Table 72

		TODIE 72	
5	Ex. No.	Formula	MS
10	1007	H ₂ N T	357 (M+H)
15	1008		416 (M+H)
20		HJN CH,	
25	1009	HAN THE	310 (M+H)
30	1010		390 (M+H)
35		H ₂ N C C C C C C C C C C C C C C C C C C C	
40	1011	NO₂、	395 (M+H)
45		HÁN THÝ	
T	1012	O II	366 (M+H)
<i>50</i>		HTM OH	

138

Table 73

5	Ex. No.	Formula	MS
10	1013	H ₂ N F	374 (M+H)
15	1014		382 (M+H)
20			
25	1015	нъм С	350 (M+H)
30	1016	n F	402 (M+H)
35	·	H.M. Bu	
40	1017	H ₂ N CH ₃	414 (M+H)
45	1018	9	340 (M+H)
50			
55			

Table 74

		rable /4	
5	Ex. No.	Formula	MS
10	1019	H ₂ C	350 (M+H)
15	1020	9	380 (M+H)
20		H²N OH	
25	1021	ОН	366 (M+H)
30		H ₂ N N	
35	1022	i a n a	378 (M+H)
-	Ī	HÎN CO	
40		Car,	·
45	1023	H ₂ N Br	402 (M+H)
50 L	Ł		

55

Table 75

5	Ex. No.	Formula	MS
	1024		518 (M+H)
10		H _I N C	
•			
15	1005	_ \'	
20	1025	H _M	408 (M+H)
25	1026	H ₁ N CH ₃	336 (M+H)
30		<u>\</u>	
35 .	1027	H ₂ N T	408 (M+H)
40	1028	о О — — ОН	366 (M+H)
45		н.м — Он	
50	1029	H ₂ CH ₃	362 (M+H)
55		U	

Table 76

		Table 76	
_	Ex. No.	Formula	MS
5	1030	9	473 (M+H)
10		HAN TO THE STATE OF THE STATE O	
15	1031	H _I N OH	338 (M+H)
20	1032	0	307 (M+H)
25		H _M	
30	1033	HUN CONTRACTOR	406 (M+H)
35			
40	1034	H ₂ N F _F	466 (M+H)
45	1035		412 (M+H)
50		H _I N C	
Ĺ		-	

Table 77

5	Ex. No.	Formula	MS
3	1036	° Б. Б. С.	412 (M+H)
10	·	H,N T	
15	1037	H ₂ N CH ₃	428 (M+H)
20			
25	1038	H _M C	466 (M+H)
30	1039		406 (M+H)
35	1040	HINTO	
40 45	1040	HIN NO.	417 (M+H)
	1041		440 (M+H)
<i>50</i>		H ₂ N F F	
55 L			

Table 78

		rable /8	
5	Ex. No.	Formula	MS
10	1042	H ₂ N C C C C C C C C C C C C C C C C C C C	417 (M+H)
15	1043	F F	440 (M+H)
20		HINTHAM	
25	1044	H ₂ M ²	312 (M+H)
<i>30</i> ·	1045		422 (14:11)
<i>35</i>		H ₂ N H ₃ C	423 (M+H)
40	1046	HÅN CHOCH	352 (M+H)
45			
<i>50</i>	1047	HÌN N	307 (M+H)
<i>55</i>	<u> </u>		

Table 79

5	Ex. No.	Formula	MS
10	1048	H ₂ N F F	374 (M+H)
15	1049	H ₂ N C	398 (M+H)
20			
25	1050	H ₂ N S CH ₃	326 (M+H)
30	1051		442 (M+H)
35		H ₂ N O O CH ₃	
40			
45	1052		518 (M+H)
50			

145

Table 80

		10016 00	_
5	Ex. No.	Formula	MS
	1053		442 (M+H)
10		H ₂ N CH ₃	
15	1054	1	376 (M+H)
20		H _I N OH	
25	1055	H ₂ N C	442 (M+H)
30	1056	н,с	
35	1030	нъм	352 (M+H)
10	1057	нъм — ОН	367 (M+H)
5		NO ₂	
o	1058	H ₂ N OH	367 (M+H)
5		<u> </u>	

Table 81

5	Ex. No.	Formula	MS
10	1059	H ₂ N CH ₃	364 (M+H)
15	1060	8	324 (M+H)
20		H ₂ N F	
	1061	0	352 (M+H)
<i>30</i>		н,с он	
	1062	O N S NO2	357 (M+H)
<i>35</i>		HAN THE STATE OF T	
40	1063	H ₂ N F F	360 (M+H)
45			
50	1064	H ₂ N NO ₂	351 (M+H)
55 .	<u>_</u>	_	<u>·</u>

Table 82

		10016 02	
5	Ex. No.	Formula	MS
	1065	. 0	351 (M+H)
10		H ₂ N NO ₂	,
15	1066	9	366 (M+H)
20		H ₂ N CH ₃	
	1067	1	367 (M+H)
25		H ₂ N OH OH	
30	1068	9	364 (M+H)
35		H ₂ N CH ₃	
40	1069	H ₂ N OH	350 (M+H)
45	1070	<u> </u>	
<i>50</i>	1070	H ₂ N — — — — — — — — — — — — — — — — — — —	306 (M+H)

Table 83

5	Ex. No.	Formula	MS
10	1071	HO H ₂ C	365 (M+H)
15	1072	CH ₃	455 (M+H)
20		но ньс снь	
25	1073		399 (M+H)
3 0	1074	но	250 (M+H)
35	1074		358 (M+H)
	1075		337 (M+H)
45	10.0	HO CH,	337 (11.11)
50	1076	HO NO ₂	386 (M+H)
55 .	L		

Table 84

5	Ex. No.	Formula	· MS
10	1077	но Туп	358 (M+H)
15	1078	i	417 (M+H)
20		HO H ₃ C CH ₃	
25	1079	HO NH	311 (M+H)
30	1080	<u> </u>	391 (M+H)
35		HO TO F	
40	1081	HO NO	396 (M+H)
45			
<i>50</i>	1082	но	367 (M+H)
Ĺ			

150

Table 85

5	Ex. No.	Formula	MS
10	1083	HO N F F	375 (M+H)
15	2004	·	
20	1084	но	351 (M+H)
25	1085	HO NO	383 (M+H)
30			٤
35	1086	HO Br	403 (M+H)
40	1087	HO	415 (M+H)
45		Br Carl	
50	1088	HO NO	341 (M+H)
55		<u> </u>	

Table 86

	Ex. No.		
_	Ex. NO.	Formula	MS
5	1089	ңс	351 (M+H)
10	×	но	
15	1090	HO OH	381 (M+H)
20	1007		
25	1091	но	367 (M+H)
30			
35	1092	HO CH,	379 (M+H)
40	1093	HO Br	403 (M+H)
45			

152

50

Table 87

			·
5	Ex. No.	Formula	MS
10	1094	HOLL	519 (M+H)
15			
20	1095	HO FF	409 (M+H)
	1096	но	337 (M+H)
30	1097) CH,	409 (M+H)
35	1037	HOLL	409 (M+N)
40	1098	но	367 (M+H)
45	1000		262 (16:11)
	1099	HO CH,	363 (M+H)
55		V	

Table 88

	Ex. No.	Formula	MS
5	1100		l
	1100	9	474 (M+H)
		HO N	
10	1		
	1		
15	1101	рн рн	339 (M+H)
		HO N	
		ОН	
20	1 1		
20			
	1102	9	308 (M+H)
25	1	HO N	
23	1 1].
		\rightarrow	
30			
30	1103	0	467 (M+H)
		HO NO	
35		F-F	
35			
	1104	9	413 (M+H)
40		HO N	
		\searrow	
45			
	1105		
) p—()—c+,	413 (M+H)
50		но	
•	*	\nearrow	
55			

Table 89

		,	
5	Ex. No.	Formula	MS
10	1106	но	429 (M+H)
15	1107	HO CONTRACTOR OF THE PARTY OF T	467 (M+H)
20	1108		
25		HO CONTRACTOR OF THE PARTY OF T	
35	1109	HO NO2	
40 45	1110	HO THE	441 (M+H)
	1111	HO NO ₂	418 (M+H)
50			

155

EP 1 162 196 A1

Table 90

		10016 30	
5	Ex. No.	Formula	MS
3	1112	O II	313 (M+H)
		HO	
10			
15	1113	l	308 (M+H)
,5		но	
		, N-9	
20			
	1114	O F-F	375 (M+H)
25		HO	
		U	
30	1115	9 /	399 (M+H)
		HO	
<i>35</i>			
-	1116		
	1116	N S CH	327 (M+H)
40		HO TINGS	
		\(\)	
45	1117		442 (141 0)
			443 (M+H)
50	j	HO NO O-CH,	
·			
15		\Diamond	
_			

156

50

Table 91

5	Ex. No.	Formula	MS
•			
	1118		519 (M+H)
	1	_	j
10	}	م_م	
		но	
	ĺ		
15		<u> </u>	
	1119		443 (M+H)
20		 >	,
		g	
		HO N	
		CH, CH,	·
25		<u> </u>	·
		\bigvee	
	1120	9	377 (M+H)
30		но , он	
		> °	
35			Í
	1121	g o-ch,	443 (M+H)
		HO	
40			ſ
		\rightarrow	
45	1122	, CH,	353 (M+H)
			ł
		НО	l l
50			
į			

Table 92

		10010 72	
5	Ex. No.	Formula	MS
10	1123	HO NO ₂	368 (M+H)
15	1124	HO NO ₂	368 (M+H)
20		НО	
25	1125	HO CH,	365 (M+H)
30	1126	9	325 (M+H)
35		HO TO	525 (A. II,
4 0 45	1127	но по	353 (M+H)
o	1128	HO NO2	358 (M+H)
. (<u> </u>	

Table 93

			
5	Ex. No.	Formula	MS
10	1129	HO N F F	361 (M+H)
15	1130	0	352 (M+H)
20		HO NO ₂	
	1131	O II	352 (M+H)
<i>25</i> <i>30</i>	,	HO	
	1132	l l	367 (M+H)
35		но	
40 45	1133	HO NO ₂	368 (M+H)
10			
50	1134	HO CH ₃	365 (M+H)
55 · L	 -		

Table 94

	C	Table 94	
5	Ex. No.	Formula	MS
	1135		351 (M+H)
10		но	
	1136		
15		HO	307 (M+H)
•			
20			
	1137		385 (M+H)
<i>25</i>		HO S CHI	
<i>30</i>	1138	ĵ ,	365 (M+H)
		HO	1
35			
	1139		467 (24)
40			467 (M+H)
		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
45			
	1140		
50	1110	HO N O	387 (M+H)
		in the part of	
		\Diamond	
55			

Table 95

_	Table 93			
5	Ex. No.	Formula	MS	
10	1141	но Сн,	322 (M+H)	
15	1142	Q	364 (M+H)	
20		HO CH,		
25	1143	О	323 (M+H)	
30		HOTH		
	1144	9	363 (M+H)	
35		HO H ₃ C CH ₃		
40	1145	но Ст.	484 (M+H)	
45				
50 · · · · · · · · · · · · · · · · · · ·	1146	HOLL	385 (M+H)	
<i>95</i> . L		——————————————————————————————————————		

Table 96

		Table 96	
5	Ex. No.	Formula	MS
10	1147	HO TO	427 (M+H)
15 20	1148	но СН,	420 (M+H)
25	1149	· ·	508 (M+H)
30		HOLL	
35	1150	HO N	458 (M+H)
40	1151		
45	1131	HO TO	458 (M+H)
50			

Table 97

		14010 77	
5	Ex. No.	Formula	MS
10	1152	HO TO	474 (M+H)
15		\bigcirc	
20	1153	HO NO	458 (M+H)
25			
30	1154	, F	508 (M+H)
35			
40	1155	,cH,	454 (M+H)
45		HOLL	

163

Table 98

5		Table 38	
3	Ex. No.	Formula	MS
	1156	ОМе	470 (M+H)
10			1
		. но	
15			
	1157		1000
20		H³C CH³	496 (M+H)
			1
		HO HO	
25			
		\rightarrow	1 1
<i>30</i>	1158		482 (M+H)
,			102 (1111)
		HO TO THE TOTAL PROPERTY OF THE TOTAL PROPER	
35			
		\bigcirc	
40	1159	9	448 (M+H)
40	.	HO TO NOTE OF STATE O	
45		\cup	
	1160	• /=	488 (M+H)
	,		
50			
55 55	<u></u>		

Table 99

		Table 39	
5	Ex. No.	Formula	MS
	1161		468 (M+H)
10		HO TO	
15	1160	\Diamond	
20	1162	HO CH, CH,	447 (M+H)
25	1163	V	466 (M+H)
30		но	100 (11. 11.)
35	1164	ОМе	526 (M+H)
40	-	HO NO	
45			
50	1165		420 (M+H)
Į.			

Table 100

_		Table 100	
5	Ex. No.	Formula	MS
10	1166	HO L N	490 (M+H)
15	4		1
	1167	у сн,	435 (M+H)
20	•	HO TO	
25	1168	HO CH,	436 (M+H)
<i>30</i>	1169	HO POCH,	436 (M+H)
35			
40	1170	HO TO TO TO THE TOTAL PARTY OF T	404 (M+H)
45	1171	O H ₃ C	406 (M+H)
		HO CH,	
<i>55</i>			

Table 101

	[]		1
5	Ex. No.	Formula	MS
10	1172	HO CH,	392 (M+H)
70			
15	1173	H ₃ C _C CH ₃ CH ₃	420 (M+H)
20	1174	<u> </u>	406 (M+H)
25		HOLL	
30	1175	CH,	420 (M+H)
35		HO TO	
40	1176		523 (M+H)
45	1177	5	
50	1177	HO CH,	406 (M+H)
55			

5		Table 102	
	Ex. No.	Formula	MS
10	1178	но	447 (M+H)
15	1179		
20	11/9	HO CON	433 (M+H)
25	1180 ·		
30			509 (M+H)
35			
40	1181		513 (M+H)
45		HO TIME	

Table 103

		Table 105	
5	Ex. No.	Formula	MS
	1182	~ _>	497 (M+H)
10		HD TO	
15	1183	<u> </u>	496 (M+H)
20	1100		490 (MTH)
25		HO CONTRACTOR OF THE PARTY OF T	
30	1184	HO LANGE OF THE PARTY OF THE PA	418 (M+H)
35	1185		508 (M+H)
40	·	но	
45	1186	QGH ₃	490 (M+H)
. ·		HO TO THE PARTY OF	
55			

Table 104

5	<u> </u>	10010 104	
0	Ex. No.	Formula	MS
	1187		441 (M+H)
10]	
		HO TO	
15			
	1188		455 (M+H)
			155 (1111)
20		HO TIME	
25	1189	9	455 (M+H)
		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30		· 🖒	
	1190	OMe	513 (M+H)
	1 . 1	й н > -	, , ,
<i>35</i>	1	HO TO THE STATE OF] [
		CH ₃	
40	1191	O Br	504 (M+H)
		HO N	
45			
	1192	5,5	494 (M+H)
		₽ / F	
50		HO NO	
		\sim 1	
55			

Table 105

5 Ex. No.	Formula Q /-CH,	MS
	0	
10 HO		512 (M+H)
15 1194 O		504 (M+H)
20		
25 HO HO		516 (M+H)
30	V	
35 HO HO	The Carl	497 (M+H)
40 HO HO	The ome	456 (M+H)
1198 Ω		509 (M+H)
50 HO HO		303 (M+H)

171

Table 106

5		-0516 100	
3	Ex. No.	Formula	MS
10	1199	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	483 (M+H)
15	1200		427 (M+H)
20	1201	<u> </u>	427 (M+H)
25		HO TO	
30	1202	но но	477 (M+H)
35	1203		·
40	i .		519 (M+H)
45			
50	1204	HO LINE ON THE STATE OF THE STA	440 (M+H)
, L			

172

50

Table 107

5	Ex. No.	Formula	MC
		r ormuta	MS
10	1205	HO LO	454 (M+H)
15	1206		205 (2011)
20		HO	325 (M+H)
	1207	ρ .	341 (M+H)
25		но	
30	1208		205 (24.11)
35		HO Br	385 (M+H)
40	1209	но Т	363 (M+H)
45		сн,	
50	1210	HOLL	332 (M+H)
55 L			

Table 108

5	Ex. No.		
		Formula	MS
	1211	e e	351 (M+H)
10		HO CH,	
15			[
	1212	HO N	335 (M+H)
20		сн	
25	1213	HO CH,	349 (M+H)
30		СН	
	1214	Q	321 (M+H)
35		но сн	
	1215		375 (M+H)
40		HO TO THE TOTAL PROPERTY OF THE PROPERTY OF TH	3/3(MTH)
45			
50	1216	HOLLY	367 (M+H)
		ОН	
55			

Table 109

			7
5	Ex. No.	Formula	MS
10	1217	HO 1 1 0 0 0 0	433 (M+H)
15	1218	HO LING	391 (M+H)
20	1219		337 (M+H)
25		HO CH,	
30	1220	•	385 (M+H)
35		HO N BY	
40	1221	HOLL	341 (M+H)
45			
	1222	HOLLY	332 (M+H)
55 55			

Table 110

E		Table 110	
5	Ex. No.	Formula	MS
	1223	0	395 (M+H)
10		HO CH,	
15	1224		225 (4: 11)
20		но	375 (M+H)
25	1225	но Сн,	351 (M+H)
30	1006		
35	1226	HO CH ₈	321 (M+H)
40	1227	HO LO	426 (M+H)
45			
· 50	1228	HO LO CO	460 (M+H)
į.			

50

Table 111

5	Ex. No.	Formula	MS
10	1229	но	442 (M+H)
20	1230	но Ст,	468 (M+H)
	1231	В	456 (M+H)
25		HO	
30	1232	HO A C	494 (M+H)
35	1233		451 (M+H)
40	1233	HO TO THE SOUND ON	ZOI (MTH)
45	1234	\(\frac{1}{3}\)	468 (M+H)
		но	
55		U	

Table 112

		10010 112	
5	Ex. No.	Formula	MS
10	1235	но Сн.	498 (M+H)
,,	1236		476 (M+H)
. 20		HO LANGE TO THE PARTY OF THE PA	,
25	1237		502 (M+H)
30	1238	но	
40		HO I NHI	505 (M+H)
45	1239 .	Q ₁	469 (M+H)
50		HO NH	

178

Table 113

5	Ex. No.	7	MS
3		Formula	
10	1240	HO ST	483 (M+H)
15	1241	но	408 (M+H)
20	1242		460 (M+H)
25	-		
30	1243	U	460 (2411)
35	-	HO CH,	468 (М+Н)
40	1244	HO P F F	494 (M+H)
45			
50	1245	HO CHI,	454 (M+H)
55			

Table 114

5		rapte 114	
3	Ex. No.	Formula	MS
	1246	ңс	468 (M+H)
10			
. 15		HO TO	
	1247		498 (M+H)
20		HO CH,	
25			
30	1248	HO H ₃ C CH ₃	482 (M+H)
35	1249	H ₃ C — CH ₃	468 (M+H)
40		HO TO TO	
45	1250	a a	160 (M+H)
50		но	
55 .			

Table 115

		10016 113	
5	Ex. No.	Formula	MS
	1251	ОН	442 (M+H)
10			
)	
		но т	
15			
	1252	9	468 (M+H)
20	Ī	CH,	
		, <u>}</u>	
25	,	HO N P	
30	1253		456 (M+H)
		О	,
35		HO TING	
40			
	1254		494 (M+H)
		° , , , , , , , , , , , , , , , , , , ,	
45			
		HO T	
50		<i>></i> · · · · · · · · · · · · · · · · · · ·	
~ [<u> </u>	

Table 116

_		Table 116	
5	Ex. No.	Formula	MS
10	1255	HO TO	451 (M+H)
15			
20	1256	CH ₃	468 (M+H)
25			
<i>30</i>	1257	O CH ₃	498 (M+H)
35		HO THE STATE OF TH	
40	1050		
4 5	1258		470 (M+H)
50		но	

182

Table 117

_		Table 117	
5	Ex. No.	Formula	MS
	1259		476 (M+H)
10		HO T N	
15			
20	1260		502 (M+H)
25		HO'TI	
30	1261	O NH ₂	505 (M+H)
35		HOLLY	
40	1262	NH ₂	469 (M+H)
45		HO THE STATE OF TH	
50			

Table 118

_		Table 118	
5	Ex. No.	Formula	MS
	1263		483 (M+H)
10		s d	
15		HO N	
20	1264	o	408 (M+H)
		н он	
25		HO	.
30	1265		160
		a	460 (M+H)
35		HO	
40	1266		160
		Jak,	468 (M+H)
45			
4.5			
		HO TIN	
50		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1
1			

Table 119

5	

Ex. No.	Formula	MS
1267	HO THE	494 (M+H)
1268	at,	454 (M+H)
1269	HO CH,	468 (M+H)
1270	HO CH,	498 (M+H)

Table 120

		14216 120	
5	Ex. No.	Formula	MS
	1271	н ,с	482 (M+H)
10		CH, CH,	
15		HO T	
20			
20	1272	O CH,	468 (M+H)
25		HO THE	
30			
	1273	aa	494 (м+н)
35		HO THE HOLD THE	
40	1274		
45	12/4	HO NOCH,	184 (M+H)
50			

Table 121

5			,
	Ex. No.	Formula	MS
10	1275	HO TO CH,	519 (M+H)
15			
20	1276	HO HO HO	427 (M+H)
25			-
30	1277	g Q—CH,	456 (M+H)
35		***************************************	
40	1278		516 (M+H)
45		HO	
50			

		Table 122	
5	Ex. No.	Formula	MS
	1279	ОСН	436 (M+H)
10		HOLLY	
15	1280		426 (M+H)
20		HO TO THE STATE OF	
25	1281		440 (M+H)
<i>30</i>		HO THE STATE OF TH	
35	1282		454 (M+H)
40		HOTT	
45	1283		468 (M+H)
50 ,			
55			

		Table 123	
5	Ex. No.	Formula	MS
	1284		482 (M+H)
10		HO I N	
15			
	1285	но	406 (M+H)
25			
30	1286	HO CH, CH,	420 (M+H)
35	1287	Q.	508 (M+H)
40		HO TO A	306 (12, 11,
45	1200		
50 <u>.</u>	1288	но	508 (M+H)
55			

Table 124

		Table 124	
5	Ex. No.	Formula	MS
10	1289		509 (M+H)
15		HOLLY	
20	1290		AFF (MAY)
25		но	455 (M+H)
30			
35	1291	HO N A	494 (M+H)
40			
45	1292	но	418 (M+H)
50			

Table 125

		1d51e 125	
5	Ex. No.	Formula	MS
10	1293	9	490 (M+H)
15		HO TO	
20	1294	но нь нь ст	496 (M+H)
25	·	\(\rightarrow\)	
30	1295		477 (M+H)
35	1296	J.	508 (M+H)
40			
45	1003		
50 .	1297		470 (M+H)

Table 126

5		Table 126	
	Ex. No.	Formula	MS
10	1298		435 (M+H)
15			
20	1299		488 (M+H)
25		HOLL	
30	1300		454 (M+H)
35		HO CH	
40	1301		04 (M+H)
45	·	но	
50			

5	

Tа	hl	_	1	2	7

Ex. No.	Formula	MS
1302	H ₃ C, HN O-CH ₃	513 (M+H)
1303		399 (M+H)
1304		530 (M+H)
1305	HO NAC	504 (M+H)
1306	HO HAGE	440 (M+H)

Ta	ъ т	_	3	2	0
_ A G.	~.	_	_	_	

1307 HO 1307 HO 1308 1308 1309 HO 1310 1310 1310 1311	5		rante 158	•
15 1308 1308 1309 1309 1309 1310 1310 1310 1311 1311		Ex. No.	Formula	MS
1308 508 (M+H) 508 (M+H)		1307)	494 (M+H)
25 1309 HO HO 1310 HO 1311 G 532 (M+H) TO TO TO TO TO TO TO TO TO T		7300		
35 1310 HO HO H	20	1308		508 (M+H)
35 1310 HO HO HO HO HO HO HO HO HO H	25			
45 1311 G 522 (M+H)				518 (M+H)
50 HO HO S 22 (M+H)	ř			532 (M+H)
50 HO TO	- T	1311	a, 5	22 (M+H)
55	50	H	1	
	55			

Table 129

5	Ex. No.	Formula	MS
10	1312	CH,	546 (M+H)
15		HO	
20	1313	НО	484 (M+H)
25		HO	
30	1314	HO TO STORY	517 (M+H)
35	*		
40	1315		488 (M+H)
45	1316	g	481 (M+H)
50		HOLLY	
55			

Table 130

			Table 130	
5	•	Ex. No.	Formula	MS
		1317	9	413 (M+H)
			HO 1	
10				
15		1318		423 (M+H)
			HOTTHOM	
20		_		
20		1319	8	6.0
			HO N / P	504 (M+H)
25				
30		1320	9	510 (M+H)
			HO TING	
35				
			ңс — сң ңс	
40	1	1321	HO N A	522 (M+H)
	1			
45				
43	-	7330	a	
		1322	HO N P	522 (M+H)
50				
		-÷-		
55			F-F	
	L			

Table 131

	L Tax		7 300
5	Ex. No.	Formula	MS
10	1323	HO THE COLA	484 (M+H)
	1324	HO TO TO TO THE TOTAL TO	449 (M+H)
20	1325	СН	502 (M+H)
25	1323	HO L N	302 (M+H)
30	1326	9	491 (M+H)
		HO TO THE STATE OF	
40	1327	H ₃ C CH ₃ CH ₃	496 (M+H)
45		HOLL	
50			

Table 132

		Table 132	
5	Ex. No.	Formula	MS
	1328	9	497 (M+H)
10		HOTO	
15	1329		470 (M+H)
20		HO THO	
<i>25</i>	1330	HO N S	530 (M+H)
30			·
	1331	₽ ^a	502 (M+H)
<i>35</i>			
40		HO	
	1332		
45			522 (M+H)
50			

Table 133

5	Ex. No.	Formula	MS
	1333		491 (M+H)
10		HO NO	
15	1334	•	536 (M+H)
20	•	HO THE COLUMN CO	
25	1335	HO CONTRACTOR	547 (M+H)
30	1226	j Ni	
35	1336	HOOH	484 (M+H)
40	1337	HO CONTRACTOR	484 (M+H)
45		h Ch,	
50 .	1338	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	498 (M+H)
55			

Table 134

		Table 134		
5	Ex. No.	Formula	MS	
	1339	HO NO	528 (M+H)	
10				
			7	
		ще		
15	1340	1	498 (M+H)	\dashv
		HOTEL		
20				
		нс	}	
	1341	9	514 (M+H)	\dashv
25		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
30) Series		1
		CH,		
35	1342	HO O	513 (M+H)	1
35		HO CONTRACTOR OF THE PARTY OF T		1
		H \No.		
10	1343		400 (14)	
		HO N S	488 (M+H)	
15				
	1344	8	502 (M+H)	
· ·		HO NO a		
5				
L			1	i

200

Table 135

	Ex. No.	Formula	7 7/2
5		Folindia	MS
10	1345	HO H	488 (M+H)
15	1346	g	502 (M+H)
20		HO TO	
	1347	Ŷ	499 (M+H)
. 25		HO HO NO2	
30	1348	· 8	480 (M+H)
35			
40	1349		522 (M+H)
50 55	1350	HO D Br	546 (M+H)
-			

Table 136

	Ex. No.	14010 150	
5		Formula	MS
10	1351	но	482 (M+H)
15	1352	HD 1 0H	484 (M+H)
20	1353	н,с сн,	
25	1 1		609 (м+н)
<i>30</i>	1354	CH,	
35	ŀ		532 (M+H)
40	1355	HO NH 4	80 (M+H)
45			
50	1356 H		66 (M+H)
55	· 		

Table 137

5	Ex. No.	Formula	MS
10	1357	HD I I I I I I I I I I I I I I I I I I I	602 (M+H)
15	1358		596 (M+H)
20			
25	1359		491 (M+H)
30	1360	9	491 (M+H)
35		HO THOUSE AND A STATE OF THE ST	
40	1361	HO LONG	491 (M+H)
45	1362		496 (M+H)
50 .		HO TO	220 (11.11)
55		CH,	

Table 138

	<u> </u>	rable 130	
5	Ex. No.	Formula	MS
	1363	l a "	512 (M+H)
10		HO CH,	
15	1364		494 (M+H)
20	1365	н,с	
25		HO NO	488 (M+H)
30	1366	HO TO THE MENT OF THE PARTY OF	481 (M+H)
35	1367	NH NH	
40	1	HO TO A CONTRACT OF THE PARTY O	524 (M+H)
45	1368		107
50			497 (M+H)

55

Table 139

5	Ex. No.	Formula	MS
	1369	HD N	472 (M+H)
10			
15	1370 .	HO TO	469 (M+H)
20	1071		470 (14)
25	1371	HO LANGE TO THE PARTY OF THE PA	470 (M+H)
30	1372	CH,	460 (2411)
35	13/2		469 (M+H)
40	1373		494 (M+H)
45			,
50 .	1374	но	458 (M+H)
55			

Table 140

	Ex. No.	Formula	1
5		Formula	MS
	1375	0	612 (M+H)
		HO N O Da	
	1		
10			
		a	
15	1376	9	554 (M+H)
		HO , , , , , , , ,	(,
	1 1		
20	1 1	CH ₃	
	1		į
	1377	Q	542 (M+H)
25	1 1	HO N / O	312 (M.II)
		0-CH ₃	\
	1 1	H _C CH ₃	
30	1		
	1.000		- 1
	1378		526 (M+H)
		но	
35	1		
			}
	1		İ
40		но	İ
	1379	9	96 (M+H)
		HO NO PO	
			Ì
45		H,C-()	}
		() GH, (_)	
i	1380	0 5	10 ()(1)
50		H	10 (M+H)
_		HO T	İ
- 1	1		
]
55		CH _s	
_			

Table 141

		14016 141	
5	Ex. No.	Formula	MS
10	1381	HO CH,	540 (M+H)
15 20	1382	HO CH,	525 (M+H)
25	1383		558 (M+H)
30		HO TO TO TO TO TO TO TO TO TO TO TO TO TO	
35	1384	HO THE	523 (M+H)
40	1385	<u>8</u> .	539 (M+H)
45		HO TO F	
50	·	0/	

Table 142

		Table 142	
5	Ex. No.	Formula	MS
10	1386	HO TO A CH,	533 (M+H)
15	1387	4,с- 0	
20		HO NO2	500 (M+H)
25	1388	Д	485 (M+H)
30 35	1389	HO THE HACE	
40		HO THE CONTRACT OF THE CONTRAC	523 (M+H)
45	1390	HO THE N	12 (M+H)
50			

Table 143

5	Ex. No.	Formula	MS
	1391		540 (M+H)
		HO THE	
10	·	h h h	
15	1392		527 (M+H)
		HO H H,C	
20			
	1393		525 (M+H)
25		HO TO THE	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
30	1394	HO N F	507 (M+H)
Į.			
35	j	" _" _	\$
1		~	
40	1395	1	491 (M+H)
	ļ		
45			
ŀ	1396		506 (M+H)
50		HO TYN	
-		j- j-	
55			

Table 144

		1able 144	
5	Ex. No.	Formula	MS
3	1397	Î	522 (M+H)
10		HO 1	
15	1398	HO CON	538 (M+H)
20			
25	1399	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	522 (M+H)
30	1400		530 (M+H)
35		HO	
40	1401	HO TO TO	600 (M+H)
45			
50 ·	1402	HO CH ₃	504 (M+H)
55			

Table 145

	Ex. No.	Formula	MS
5	1403	но по по по по по по по по по по по по по	534 (M+H)
10		H3C-0	
15	1404	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	475 (M+H)
20	1405	<u> </u>	472 (M+H)
25		HO TO TO TO TO TO TO TO TO TO TO TO TO TO	
30	1406	HOLLY	455 (M+H)
35			
40	1407	HO TO THE TOTAL PARTY OF THE TOT	469 (M+H)
45	1408	9 % #	547 (M+H)
50		HO NH	
55			

Table 146

		rable 146	
_	Ex. No.	Formula	MS
5	1409	9 %	529 (M+H)
10		HO NO) ₂
15	1410	9 >4	435 (M+H)
20 .		HO N-CH ₃	
25	1411	HO TO THE STATE OF	504 (M+H)
30	1412	R LH	469 (M+H)
35		HO THE THE THE THE THE THE THE THE THE THE	
40	1413	но	522 (M+H)
45			
50	1414		488 (M+H)
55			

Table 147

5	Ex. No.	Formula	MS
-	1415	° >—↓	502 (M+H)
10		HO TO	
15	1416		488 (M+H)
		HO	
20			
	1417		502 (M+H)
25			
<i>30</i>			
	1418	î	455 (M+H)
35		HO N	
40	1419		455 (M+H)
		HO THE	
45		\triangleright	
50	1420)	522 (M+H)
		HO CA	
55			
[

Table 148

	Ex. No.		
5		Formula	MS
	1421	9 0 1	469 (M+H)
10		но	
15	1422	<u>}</u>	536 (M+H)
20		HO C	
25	1423	HO H ₃ C CH ₃	510 (M+H)
30		\bigcup	
<i>3</i> 5	1424	но	494 (M+H)
40	1425	9 9	458 (M+H)
45		HO THO	

214

50

Table 149

5	Ex. No.	Formula	MS
3	1426	(α	612 (M+H)
10			
		HO TING	
15			
20	1427	OH	526 (M+H)
25		HOTOLOGIC	
<i>30</i> '			
	1428		480 (M+H)
35		HO THE CONTRACTOR	
		"	
40	1429		441 (M+H)
		HO CON	
45			
	1430		511 (M+H)
50		HO THE STATE OF TH	
55		CH ₃ CH ₃	

Table 150

		Table 150	
5	Ex. No.	Formula	MS
10	1431	но	530 (M+H)
15	1432	HO N N N	497 (M+H)
20	1433		
25 30	1433	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	441 (M+H)
35	1434	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	491 (M+H)
40	1435	ной	491 (M+H)
45	1436		
<i>50</i>	1430		491 (M+H)
55			

Table 151

5	Ex. No.	Formula	MS
10	1437	HO THE STATE OF TH	524 (M+H)
15	1438	но	508 (M+H)
25	1439	HO CI	474 (M+H)
30	1440	9 % 1 _	490 (M+H)
35	·	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	
40	1441	но Т	508 (M+H)
	1442	<u> </u>	474 (M+H)
<i>50</i>		HO NO NO NO NO NO NO NO NO NO NO NO NO NO	
55		<u> </u>	

Table 152

5		Table 152	
	Ex. No.	Formula	MS
10	1443	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	516 (M+H)
15	1444		
20	1444	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	600 (M+H)
25	1445		
<i>30</i>		HO SCH,	504 (M+H)
35	1446	но по по по по по по по по по по по по по	534 (M+H)
40	χ.	H ₂ C-O CI	
45	1447	но	475 (M+H)
50		a	

Table 153

02	Ex. No.	Formula	MS
5	1448		530 (M+H)
10			
		HO TIN	
15			
	1449	g g	440 (M+H)
20		HO	
25	1450		490 (M+H)
		HO TING	
30			
	1451	но	474 (M+H)
35			
40	1452	W	441 (M+H)
		HO THE STATE OF TH	
45 .			
	1453	1	508 (M+H)
50		HO TO	
-		" >-a	
55		α	

Table 154

5		Table 154	
	Ex. No.	Formula	MS
	1454	9	455 (M+H)
10		HOTH	
15	1455	9	522 (14) 11)
20		HO TO TO TO TO TO TO TO TO TO TO TO TO TO	522 (M+H)
	1,456	اً م	496 (M+H)
25		HO THOMAS A STATE OF THE STATE	
30		HC CH	
	1457		
35	1437	HO HO HO HO HO HO HO HO HO HO HO HO HO H	516 (M+H)
0	1458	8	126 (M+H)
5		HO TO TO	
,	1459	Ho CH ₃ CH ₃	82 (M+H)
, L			

Table 155

5	Ex. No.	Formula	MS
10	1460	HO CH,	486 (M+H)
15	1461	HO TO TO THE TOTAL	516 (M+H)
20	1462		427 (M+H)
. · · · · · · · · · · · · · · · · · · ·	1402		427 (MYA)
30	1463	HO CONTRACTOR	476 (M+H)
35			
40 45	1464	HO HO A	460 (M+H)
	1465	9	502 (M+H)
50		HO TO TO TO TO TO TO TO TO TO TO TO TO TO	

221

Table 156

	77 33-	Table 136	
5	Ex. No.	Formula	MS
	1466	, a	586 (M+H)
10		HO CO	
15			
20	1467		518 (M+H)
25	1468		530 (M+H)
30			
35	1469	HO C C C C C C C C C C C C C C C C C C C	598 (м+н)
40	1470	но	512 (M+H)
45			
50	1471	но	544 (M+H)
5	L		

222

Table 157

5		10016 107	
,	Ex. No.	Formula	MS
	1472	HO	440 (M+H)
15	1473	9	490 (M+H)
20		HO	
25	1474	HO C	474 (M+H)
30	1475		441 (M+H)
35		HOLL	
40	1476	HO CONTRACTOR OF THE CONTRACTO	508 (М+Н)
5 0	1477	HO I I I I I I I I I I I I I I I I I I I	455 (M+H)

55

Table 158

		Table 158	
5	Ex. No.	Formula	MS
	1478	1	522 (M+H)
		HO CI	
10			
	1479	· a	
15	14/9	HO CH ₃	496 (M+H)
		H ₃ C CH ₃	
20	1480	<u> </u>	516 (M+H)
25	·		
		HO	
3 0			
			
	1481		426 (M+H)
35			
		HO	
10			
	1482	\bigcup	
	1402	≻ СН, 1	482 (M+H)
5		СН, °СН, °	İ
1			
0		HO	
,			

Table 159

5		Table 159	
J	Ex. No.	Formula	MS
	1483	о-сн,	486 (M+H)
10			
)	
		HO N	
15			
20	1484		516 (M+H)
25		HO N	
30			
	1485		427 (M+H)
		 >	
35			
		HO TO	
40			
	1486		476 (M+H)
	1400		476 (MTD)
45			
		HO	
50			1
		\smile	

225

Table 160

		Table 100	
5	Ex. No.	Formula	MS
10	1487	HO N A	460 (M+H)
15			
20	1488	HO LINE OF THE PARTY OF THE PAR	502 (М+Н)
25			
30	1489		586 (м+н)
35		HO CI	
45	1490	HO N A TO TO TO TO TO TO TO TO TO TO TO TO TO	518 (M+H)
50			

Table 161

5		Table 101	
	Ex. No.	Formula	MS
10	1491		530 (M+H)
15		HO	-
20	1492	CI—	598 (M+H)
25		HO THE STATE OF	
30	1493		E10 (M: II)
35	1493	но	512 (M+H)
40		ОН	
45	1494		544 (M+H)
50		HO	
55			

Table 162

5	Ex. No.	Formula	MS
10	1495	HO CH,	580 (M+H)
15	1496	å » –	550 (M+H)
20		HO THE STATE OF TH	
25	1497	но	606 (M+H)
30		H ₃ C OH ₃	
35	1498	О-СН	580 (M+H)
40		HO	
15	1499		550 (M+H)
	·	HO CI	
=			

Table 163

,	0	

5

Ex. No.	Formula	MS -
1500	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	606 (M+H)
1501	HO CH ₃	630 (M+H)
1502	HO CONTRACTOR OF F	600 (M+H)
1503	HO CH, CH, CH, F	656 (M+H)

Table 164

			
5	Ex. No.	Formula	MS
	1504	о-сн,	630 (M+H)
10		HO PF	·
	1505	<u> </u>	600 (24.33)
20	1303	HO N OF	600 (M+H)
		The state of the s	
25			
30	1506	H ₃ C CH ₃ CH ₃	656 (M+H)
35 40			·
	1507	9	580 (M+H)
45		HO CH,	
50		a	

Table 165

Ex. No.	Formula	MS
1508	но	550 (M+H)
1509 ·	HO CH,	606 (M+H)
1510	HID CO-CH ₃	580 (M+H)
1511	mo Company	550 (M+H)
1512	HO CH.	546 (M+H) ·

Table 166

	()	Table 100	
5	Ex. No.	Formula	MS
	1513	l	516 (M+H)
		HO TIME	
10			
15	1514		572 (M+H)
		HO TING OH,	}
	-	N H,C CH,	
20			
	1515	0-сң,	546 (M+H)
25			
		HO TING	
30			
	1516		F16 (M. 17)
35			516 (M+H)
		HO TO	
40		<u> </u>	
	1517	н,с	572 (M+H)
45		CH,	3/2 (M+H)
50		HO TIN	
			1
55			

5

Table 167

	Ex. No.	Formula	MS
10	1518	HO CH	602 (M+H)
15		H,C CH,	
20	1519	HO TO	572 (M+H)
25		H,C CH ₃	· 🛊 ·
30	1520	HO CH,	628 (M+H)
35		н,с сн,	
40	1521	н,с-) сн, н,с	606 (M+H)
45	1321	HO C	
50		H,C CH,	

Table 168

		14510 100	
5	Ex. No.	Formula	MS
10	1522	но	573 (M+H)
15		H,C CH,	
20	1523	HO NO CO	606 (M+H)
25		H ₁ C CH ₃	
30	1524	0-сн,	602 (M+H)
35		HO H ₃ C CH ₃	
40	1525		572 (M+H)
45	,	H ₂ C CH ₃	
50			

Table 169

5		Table 109	
	Ex. No.	Formula	MS
10	1526	H ₃ C CH ₃ CH ₃	628 (M+H)
15		HO H ₃ C CH ₃	
20	1527	-CI	606 (M+H)
25 30	-	HO H,C CH,	
35	1528	HO H ₃ C CH ₃	606 (M+H)
40	1529		614 (M+H)
45	1323	HO CH,	
		\/ _F / _F	

235

Table 170

	Ex. No.	Formula	T
5		1 of mara	MS
10	1530	HO NO NO NO NO NO NO NO NO NO NO NO NO NO	584 (M+H)
15	1531		640 (M+H)
20		HO CH ₃	
25	1532	но	618 (M+H)
30			
35	1533	о — СН,	614 (M+H)
40		HO TO THE	
45	1534	5	84 (M+H)
50		но	

EP 1 162 196 A1

Table 171

	rable 1/1	
Ex. No.	Formula	MS
1535	H ₃ C CH ₃ CH ₃ CH ₃	640 (M+H)
1536	HIN HOLL HIN HIN HOLL HIN HOLD	627 (M+H)
1537	HO HIN	627 (M+H)

Table 172

	<u> </u>	T	
5	Ex. No.	Formula	MS
	1538	/=N	560 (M+H)
10		HN HN	
		HOTT	
15			
			[]
	1539	H ₂ CO, NO ₂	634 (M+H)
20			
			1
	·	HN	1
25		HO HO	İ
30	1540		
	1540	a a	593 (M+H)
35			
		HO HO HO	
40			İ
			ĺ
	1541		
45	1341		627 (M+H)
•	1		
50	н		
55			

Table 173

5			
	Ex. No.	Formula	MS
	1542	F	627 (M+H)
10			
15		HO TO THE STATE OF	
42			
20	1543	. ~	560 (M+H)
25		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30			
35	1544		634 (M+H)
40		HO TO	·
45	1545	o, 🔷 .	593 (M+H)
50		HO TO THE STATE OF	
		\bigcup	

55

Table 174

		14	
5	Ex. No.	Formula	MS
10	1546	HO THE STATE OF TH	627 (M+H)
20	1547	HO THO	627 (M+H)
25		F F	
30	1548	HO LINE WAY	560 (M+H)
35			
40	1549		534 (M+H) ·
45		HO NO ₂	

Table 175

5	Ex. No.	Formula	MS
	1550	ه چ	627 (M+H)
10			
15		HO	
20	1551		560 (M+H)
25		HO 1	
30	1552		532 (M+H)
35		HO HO HO	
40	1553	<i>(</i>)	565 (M+H)
45			
50		HOLON	
55		<u> </u>	

Table 176

5	Ex. No.	Formula	MS
	1554	. а	599 (M+H)
10			
15		HO	
20	1555	FF	599 (M+H)
25		HO TO THE STATE OF	
30			
35	1556	но	532 (M+H)
40			
			[
45	1557		532 (M+H)
50			
55 L			

Table 177

Ex. No.	Formula	MS
1558	HO HO HO	584 (M+H)
1559		570 (M+H)

[0292] The evaluation of the HCV polymerase inhibitory activity of the compound of the present invention is explained in the following. This polymerase is an enzyme coded for by the non-structural protein region called NS5B on the RNA gene of HCV (EMBO J., 15:12-22, 1996).

40 Experimental Example [I]

5

10

15

20

25

30

35

45

50

i) Preparation of enzyme (HCV polymerase)

[0293] Using, as a template, a cDNA clone corresponding to the full length RNA gene of HCV BK strain obtained from the blood of a patient with hepatitis C, a region encoding NS5B (591 amino acids; J Virol 1991 Mar, 65(3), 1105-13) was amplified by PCR. The objective gene was prepared by adding a 6 His tag {base pair encoding 6 continuous histidine (His)} to the 5' end thereof and transformed to Escherichia coli. The Escherichia coli capable of producing the objective protein was cultured. The obtained cells were suspended in a buffer solution containing a surfactant and crushed in a microfluidizer. The supernatant was obtained by centrifugation and applied to various column chromatographys {poly[U]-Sepharose, Sephacryl S-200, mono-S (Pharmacia)}, inclusive of metal chelate chromatography, to give a standard enzyme product.

ii) Synthesis of substrate RNA

[0294] Using a synthetic primer designed based on the sequence of HCV genomic 3' untranslated region, a DNA fragment (148 bp) containing polyU and 3'X sequence was entirely synthesized and cloned into plasmid pBluescript SK II(+) (Stratagene). The cDNA encoding full length NS5B, which was prepared in i) above, was digested with restriction enzyme KpnI to give a cDNA fragment containing the nucleotide sequence of from the restriction enzyme

cleavage site to the termination codon. This cDNA fragment was inserted into the upstream of 3' untranslated region of the DNA in pBluescript SK II(+) and ligated. The about 450 bp inserted DNA sequence was used as a template in the preparation of substrate RNA. This plasmid was cleaved immediately after the 3'X sequence, linearized and purified by phenol-chloroform treatment and ethanol precipitation to give DNA.

[0295] RNA was synthesized (37°C, 3 hr) by run-off method using this purified DNA as a template, a promoter of pBluescript SK II(+), MEGAscript RNA synthesis kit (Ambion) and T7 RNA polymerase. DNasel was added and the mixture was incubated for 1 hr. The template DNA was removed by decomposition to give a crude RNA product. This product was treated with phenol-chloroform and purified by ethanol precipitation to give the objective substrate RNA.

[0296] This RNA was applied to formaldehyde denaturation agarose gel electrophoresis to confirm the quality thereof and preserved at -80°C.

iii) Assay of enzyme (HCV polymerase) inhibitory activity

5

10

15

20

30

35

40

45

50

55

[0297] A test substance (compound of the present invention) and a reaction mixture (30 μ l) having the following composition were reacted at 25°C for 90 min.

[0298] 10% Trichloroacetic acid at 4°C and 1% sodium pyrophosphate solution (150 µl) were added to this reaction mixture to stop the reaction. The reaction mixture was left standing in ice for 15 min to insolubilize RNA. This RNA was trapped on a glass filter (Whatman GF/C and the like) upon filtration by suction. This filter was washed with a solution containing 1% trichloroacetic acid and 0.1% sodium pyrophosphate, washed with 90% ethanol and dried. A liquid scintillation cocktail (Packard) was added and the radioactivity of RNA synthesized by the enzyme reaction was measured on a liquid scintillation counter.

[0299] The HCV polymerase inhibitory activity (IC_{50}) of the compound of the present invention was calculated from the values of radioactivity of the enzyme reaction with and without the test substance.

[0300] The results are shown in Tables 178 - 184.

Reaction mixture: HCV polymerase (5 μg/ml) obtained in i), substrate RNA (10 μg/ml) obtained in ii), ATP (50 μM), GTP (50 μM), CTP (50 μM), UTP (2 μM), [5,6-3H]UTP (46 Ci/mmol (Amersham), 1.5 μCi) 20 mM Tris-HCl (pH 7.5), EDTA (1 mM), MgCl₂ (5 mM), NaCl (50 mM), DTT (1 mM), BSA (0.01%)

Table 178

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
2	0.079	67	0.26
6	0.034	68	0.28
9	0.019	70	0.19
11	0.53	71	0.62
12	0.60	77	0.51
17	0.047	81	0.18
20	0.042	82	0.097
26	0.033	83	0.52
30	0.052	85	0.17
43	0.58	86	0.13
44	0.95	87	0.80
45	0.40	88	0.092
46	0.47	89	0.34
47	0.54	90	0.20
48	0.44	91	0.53
49	0.94	93	0.16
50	0.54	94	0.084
51	1.0	96	0.25
54	0.56	97	0.16

Table 178 (continued)

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity tC ₅₀ [μΜ]
55	0.36	98	0.30

Table 179

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
10	99	0.53	120	0.16
	100	0.78	121	0.19
	101	0.14	122	0.51
15	103	0.17	123	0.10
	104	0.073	124	0.091
	105	0.076	125	0.12
	106	0.40	128	0.14
20	107	0.11	129	0.12
	108	0.21	130	0.16
	109	0.11	131	0.046
25	110	0.24	132	0.055
	111	0.14	133	0.12
	112	0.11	134	0.071
	113	0.071	139	· 0.26
30	114	0.56	140	0.11
	115	0.17	141	0.43
<i>3</i> 5	116	0.37	142	0.055
	117	0.075	143	0.053
	118	0.14	144	0.19
	119	0.13	145	0.088

40 Table 180

45

50

Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
146	0.043	167	0.033
147	0.31	168	0.078
148	0.038	169	0.15
149	0.15	170	0.048
150	0.24	171	0.050
151	0.20	172	0.10
153	0.19	173	0.14
154	0.076	174	0.030
155	0.53	175	0.29
156	0.23	176	0.053
157	0.16	177	0.077

Table 180 (continued)

Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
158	0.11	178	0.052
159	0.13	179	0.63
160	0.24	180	0.11
161	0.062	181	0.71
162	0.43	182	0.021
163	0.15	183	0.017
164	0.16	184	0.018
165	0.58	185	0.11
166	0.055	186	0.37

5

10

15

55

Table 181

		Table 181			
20	Ex. No. No.	. HCV polymerase inhibitory activity IC $_{50}$ [μ M]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	
	187	0.056	207	0.081	
	188	0.038	208	0.039	
25	189	0.017	209	0.12	
	190	0.020	210	0.31	
	191	0.43	211	0.059	
30	192	0.22	212	0.23	
	193	0.13	213	0.10	
	194	0.52	214	0.059	
05	195	0.023	215	0.078	
35	196	0.20	216	0.084	
	197	0.11	217	0.058	
	198	0.044	218	0.033	
40	199	0.11	219	0.13	
	200	0.10	220	0.073	
	201	0.14	221	0.058	
45	202	0.095	222	0.041	
43	203	0.063	223	0.21	
	204	0.16	225	0.014	
	205	0.077	227	0.045	
50	206	0.05	228	0.18	

Table 182

:	Ex. No.	x. No. HCV polymerase inhibitory activity IC ₅₀ [μΜ]		HCV polymerase inhibitory activity IC ₅₀ [μΜ]	
	229	0.022	257	0.074	
	230	0.17	259	0.10	

Table 182 (continued)

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
	231	0.073	260	0.27
5	232	0.015	262	0.013
	233	0.028	263	0.035
	234	0.022	264	<0.01
10	235	0.036	265	0.014
	236	0.075	266	0.018
	237	0.015	267.	0.014
	238	0.19	268	0.012
15	239	0.17	269	0.013
	240	0.055	270	0.012
	248	0.012	271	0.024
20	249	0.022	272	0.066
	250	0.018	273	0.041
	252	0.32	276	0.023
4-	253	0.65	279	0.017
25	254	0.038	280	0.016
	255	0.038	281	0.052
	256	0.079	282	0.019
30				

Table 183

	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
35	283	0.014	298	0.011
	284	0.014	299	0.018
	285	0.012	300	0.045
	286	0.014	301	0.017
40	287	0.012	303	0.10
	288	0.013	304	0.017
	289	<0.01	305	0.01
45	290	0.012	306	0.013
	291	0.016	307	0.022
	292	0.015	308	0.023
	293	0.034	311	0.16
50	294	0.032	312	0.023
	295	0.045	313	0.025
	296	0.034	314	0.097
55	297	0.022	315	0.028

Table 184

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
316	0.022	502	0.024
317	0.032	503	0.196
318	0.012	601	0.32
319	0.030	701	0.052

Table 185

Example No.	249	1H NMR(δ) ppm
	055-H	300MHz, DMSO-d6 8.02(1H, d, J=1.5Hz), 8.11(1H, d, J=1.8Hz), 7.96-7.81(3H, m), 7.67(1H, s), 7.61-7. 49(6H, m), 7.08(2H, d, J=8.6 Hz), 5.19(2H, s), 4.25(1H, m), 2.38-2.17(2H, m), 1.96-1 .78(4H, m), 1.70-1.56(1H, m), 1.46-1.16(3H, m), 1.11(9 H, s)
Purity >90% (N	MR)]
MS . 672 (M+1)	

Example No.	250	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 25 (1H, d, J=1. 5Hz), 8. 16- 8. 08 (2H, m), 7. 99-7. 88 (2H, m), 7. 66 (2H, d, J=8. 6Hz), 7. 60-7. 48 (5H, m), 7. 19 (2H, d, J=8. 6Hz), 5. 17 (2H, s), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2 .04-1. 79 (4H, m), 1. 72-1. 60 (1H, m), 1. 50-1. 18 (3H, m)
Purity >90% (NA	AR)	
MS 616 (M+1)		·

Example	No.	251	1H NMR(δ) ppm
но	HCI	\	300MHz, DMSO-d6 cis and trans mixture 8.13and8.11(total 1H, each s),7.90-7.74(2H, m),7.42- 7.22(5H, m),4.56and4.52(total 2H, each s),4.42(1H, brs),3.78-3.0 6(2H, m)2.33-1.33(18H, m)
Purity	>90% (NN	AR)	1.
MS	433 (M+1)		

Table 186

Example No.	252	1H NMR(δ) ppm
HO N S		300MHz, DMSO-d6 8. 20 (1H, d, J=1.5Hz), 7. 96 (1H, d, J=8.6Hz), 7. 84 (1H, dd , J=8.6, 1.5Hz), 7. 54 (2H, d, J=6.9Hz), 7. 48-7. 26 (8H, m) , 7. 09 (1H, t, J=7.3Hz), 5. 43 (2H, s), 4. 06 (1H, m), 2. 40-2 .20 (2H, m), 2. 01-1. 80 (4H, m), 1. 75-1. 64 (1H, m), 1. 51-1 .28 (3H, m)
Purity >90% (NA	(R)	
MS 509 (M+1)		

Example No.	253	1H NMR(δ) ppm
HO I I I	8	300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 85 (1H, dd , J=8. 4, 1. 5Hz), 7. 54-7. 47 (2H, m), 7. 40-7. 24 (6H, m), 7. 15 (1H, d, J=3. 6Hz), 7. 11-7. 05 (1H, m), 6. 81 (1H, d, J=3. 6 Hz), 5. 26 (2H, s), 4. 96 (1H, m), 2. 32-2. 13 (2H, m), 1. 95-1 . 72 (4H, m), 1. 68-1. 55 (1H, m)
Purity > 90% (NM	R)), 1. 43-1. 18 (3H, m)
MS 493 (M+1)		

Example	ЙО.	254 IH NMR(δ) ppm	
HO		300MHz, DMSO-d6 8. 25 (1H, s), 8. 02 (1H, d, J . 7Hz), 7. 90 (1H, dd, J=8. 4 . 4Hz), 7. 80-7. 71 (2H, m), 67 (2H, d, J=8. 7Hz), 7. 33 (, t, J=8. 7Hz), 7. 26 (2H, d, 8. 7Hz), 5. 46 (2H, s), 4. 78 H, s), 4. 31 (1H, m), 2. 39-2 9 (2H, m), 2. 03-1. 79 (4H, m 1. 71-1. 59 (1H, m), 1. 50-1	, 1 7. 2H J= (2 . 1
Purity	>90% (NM)	7/3H m)	
MS	558 (M+1)		

Table 187

Example No.	255	1H NMR(δ) ppm
MEI MEI		300MHz, DMSO-d6 8. 34(1H, s), 8. 32(1H, d, J=8 .8Hz), 8. 09-8. 03(3H, m), 7. 83(2H, d, J=8. 3Hz), 7. 79(2H, d, J=8. 8Hz), 7. 36(2H, d, J=8. 8Hz), 5. 54(2H, s), 4. 38(1H, m), 2. 74(3H, s), 2. 40-2. 18(2H, m), 2. 13-1. 96(2H, m), 1. 93-1. 78(2H, m), 1. 73-1. 57(1H, m), 1. 55-1. 15(3H, m)
Purity >909	6 (NMR)	
MS 56	8 (M+1)	i

Example No. 256	1H NMR(δ) ppm
	300MHz, DMSO-d6 12.67(1H, brs), 8.23(1H, s), 7.94and7.87(2H, ABq, J=8.6Hz), 7.79(1H, dd, J=8.7, 5.4Hz), 7.62-7.41(7H, m), 6.8 0(1H, dd, J=11.9, 2.3Hz), 6.69(1H, dd, J=8.1, 2.1Hz), 5.20(2H, s), 3.93(1H, brt, J=15.3Hz), 2.30-2.11(2H, brm), 1.88-1.74(4H, brm), 1.64-1
Purity >90% (NMR)	.58(1H, brm), 1.41-1.14(3H, brm)
MS 585 (M+1)	

Example No.	257 1H NMR(δ) ppm
	300MHz, DMSO-d6 8. 19 (1H, d, J=8. 7Hz), 7. 93 1H, s), 7. 83-7. 71 (3H, m), 7 50-7. 39 (4H, m), 7. 34-7. 10 4H, m), 7. 06 (1H, dd, J=8. 4, . 9Hz), 5. 09 (2H, s), 4. 34 (1 , m), 3. 82 (3H, s), 2. 39-2. 1 (2H, m), 2. 11-1. 98 (2H, m), . 94-1. 79 (2H, m), 1. 74-1. 5 (1H, m), 1. 52-1. 21 (3H, m)
Purity >90% (1	NMR)
MS 603 (M+	1)

Table 188

Example No.	258	1H NMR(δ) ppm
CI NOTO O		300MHz, DMSO-d6 7. 79 (1H, d, J=6. 7Hz), 7. 56 (1H, d, J=7. 5Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 42 (4H, s), 7. 32 -7. 23 (3H, m), 7. 09-7. 03 (3H, m), 5. 02 (2H, s), 4. 46 (1H, m), 3. 82 (3H, s), 1. 95-1. 83 (2H, m), 1. 75-1. 44 (5H, m), 1. 3 0-1. 10 (2H, m), 0. 89-0. 71 (1H, m)
Purity >90% (NMR)		7
MS 567 (M+1)		1

Example No.	259 1H NMR(δ) ppm	
2 HO)	300MHz, DMSO-d6 8. 93 (2H, d, J=6. 6Hz), 8. 1H, s), 8. 28 (1H, d, J=8. , 8. 10-8. 03 (3H, m), 7. 88. , d, J=8. 7Hz), 7. 33 (2H, c) 8. 7Hz), 7. 23 (1H, s), 7. 2 H, s), 6. 81 (1H, s), 5. 566 s), 4. 39 (1H, m), 2. 97, 2. 6H, s), 2. 40-2. 18 (2H, m) 16-1. 95 (2H, m), 1. 90-1.	(Hz) 5 (2H 1, J= 23 (1 (2H, 92 (, 2.
Purity >90% (NMR)	2H, m), 1.70-1.55(1H, m) 50-1.15(3H, m)	, 1.
MS 591 (M+1)		

Example No.	260	1H NMR(δ) ppm
2 HOI N		300MHz, DMSO-d6 8. 93 (2H, d, J=6. 3Hz), 8. 35 (1H, s), 8. 26 (1H, d, J=8. 7Hz), 8. 09-8. 02 (3H, m), 7. 86 (2H, d, J=8. 7Hz), 7. 50 (1H, s), 7. 35 (2H, d, J=8. 4Hz), 7. 24 (2H, d, J=7. 8Hz), 5. 60 (2H, s), 4. 39 (1H, m), 2. 50-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 75 (2H, m), 1. 70-1. 55 (1H,
Purity >9	0% (NMR)	m) 1. 50-1. 10 (3H, m)
MS	564 (M+1)	-

Table 189

5	Example No. 261	1H NMR(δ) ppm
10	300 CO CO CO CO CO CO CO CO CO CO CO CO CO	300MHz, DMSO-d6 8. 22 (1H, d, J=7.8Hz), 7.85 (1H, d, J=6.7Hz), 7.63 (2H, d, J=9.0H), 7.51-7.38 (5H, m), 7.29 (1H, d, J=8.3Hz), 7.23 (1H, d, J=3.0Hz), 7.06 (2H, d, J=9.0Hz), 7.06 (1H, dd, J=8.6,3.0Hz), 5.05 (2H, s), 4.41 -4.25 (1H, m), 3.83 (3H, s), 2.40-2.20 (2H, m), 2.03-1.78
	Purity >90% (NMR)	(4H, m), 1. 72-1. 57 (1H, m), 1 .50-1. 18 (3H, m)
20	MS 567 (M+1)	
	Example No. 262	1H NMR(δ) ppm

Example No.	262	1H NMR(δ) ppm
	HCI ONL	300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 26 (1H, d, J=9.0Hz), 8. 19 (1H, d, J=1.8Hz), 8. 13 (1H, brs), 8. 08-7.96 (2H, m), 7. 73 (2H, d, J=9.0Hz), 7. 57-7. 43 (6H, m) 7. 24 (2H, d, J=9.0Hz), 5. 14 (2H, s), 4. 36 (1H, m), 2. 38-2 .18 (2H, m), 2. 12-1. 97 (2H, m), 1. 93-1. 80 (2H, m), 1. 73-1
Purity >90%	(NMR)	. 58 (1H, m), 1. 52–1. 20 (3H, m
MS 580	Q(+1)	

MS	580 (M+1)		
Example	No.	263	1H NMR(δ) ppm 300MHz, DMSO-d6 12.85(1H, brs), 8.72(1H, d, J=4.8Hz), 8.22(1H, s), 8.14 (1H, d, J=6.3Hz), 8.03and7. 76(4H, ABq, J=8.6Hz), 7.93a nd7.85(2H, A'B'q, J=8.6Hz), 7.60and7.15(4H, A'B'q, J=8.7Hz), 7.55(1H, dd, J=6.3, 4.8Hz), 5.19(2H, s), 4.26(1H, brt, J=12.6Hz), 2.35-2.1
Purity	>90% (NMI	R)	8(2H, brm), 1.95-1.77(4H, b rm), 1.70-1.60(1H, brm), 1.
MS	548 (M+1)		7 45-1. 15 (3H, brm)

Table 190

Example No. 26	64 1H NMR(δ) ppm
100 CI	300MHz, DMSO-d6 8. 23(1H, d, J=1. OHz), 7. 92(1H, dd, J=8. 7, 1. OHz), 7. 87(1H, d, J=8. 7Hz), 7. 60(2H, d, J=8. 6Hz), 7. 47(2H, d, J=8. 7 Hz), 7. 44(2H, d, J=8. 7Hz), 7. 30(1H, d, J=8. 3Hz), 7. 23(1 H, d, J=2. 6Hz), 7. 11(2H, d, J=8. 7 12. 6Hz), 5. 04(2H, s), 4. 36(
Purity >90% (NMR)	1H, m), 3.83 (3H, s), 2.80-2. 70 (4H, m), 2.60-2.40 (2H, m)
MS 586, 588 (M+1)	, 2. 30-2. 20 (2H, m)

Example No.	265	1H NMR(δ) ppm
HCI O	-N	300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=9. 1Hz), 8. 03 (1H, dd , J=8. 7, 1. 5Hz), 7. 76-7. 96 (3H, m), 7. 55-7. 49 (5H, m), 7. 42 (1H, d, J=7. 6Hz), 7. 23 (2H , d, J=8. 7Hz), 5. 15 (2H, s), 4 . 35 (1H, m), 3. 01 (3H, s), 2. 9 7 (3H, s), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 94-1. 8
Purity >90% (NMR)		1 (2H, m), 1.72-1.30 (1H, m), 1.50-1.21 (3H, m)
MS 608 (M+1)		

OOD (M · 1		
Example No.	266	1H NMR(δ) ppm
m d d d d d d d d d d d d d d d d d d d	· · · · · · · · · · · · · · · · · · ·	300MHz, DMSO-d6 8. 27 (1H, d, J=1. 5Hz), 8. 20 (1H, d, J=9. 0Hz), 8. 00 (1H, dd, J=8. 6, 1. 5Hz), 7. 82 (2H, d, J=8. 2Hz), 7. 76-7. 65 (5H, m), 7. 56 (1H, dd, J=7. 9, 1. 8Hz), 7. 47 (1H, d, J=7. 5Hz), 7. 20 (2H, d, J=8. 6Hz), 5. 16 (2H, s), 4. 32 (1H, m), 3. 02 (3H, s), 2. 98 (3H, s), 2. 38-2. 19 (2H,
Purity >90% (N)	AR)	m), 2. 07-1. 95 (2H, m), 1. 93- 1. 80 (2H, m), 1. 72-1. 58 (1H,
MS 642 (M+1)		m), 1. 52-1. 18 (3H, m)

Table 191

Example No.	267	1H NMR(δ) ppm
	HOI	300MHz, DMSO-d6 8. 34 (2H, m), 8. 03 (1H, d, J=8 3Hz), 7. 77-7. 68 (3H, m), 7. 54-7. 40 (4H, m), 7. 33 (2H, d, J=8. 6Hz), 7. 24 (2H, d, J=9. 0 Hz), 5. 16 (2H, s), 4. 36 (1H, m), 3. 01 (3H, s), 2. 97 (3H, s), 2. 40-2. 20 (2H, m), 2. 11-1. 9 7 (2H, m), 1. 93-1. 81 (2H, m), 1. 71-1. 60 (1H, m), 1. 50-1. 2
Purity >909	6 (NMR)	1 (3H, m)
MS 62	O(M+1)	7 ·

Example	No.	268	1H NMR(δ) ppm
но	HOI F		300MHz, DMSO-d6 8. 67-8. 59 (1H, m), 8. 30 (1H, s), 8. 13-8. 20 (2H, m), 8. 02-7. 92 (2H, m), 7. 65 (1H, t, J=8.3Hz), 7. 56-7. 45 (5H, m), 7. 18 (1H, dd, J=12. 0, 2. 2Hz), 7. 05 (1H, dd, J=8. 6, 2. 2Hz), 5. 14 (2H, s), 4. 09 (1H, m), 2. 8. 2 (3H, d, J=4. 5Hz), 2. 34-2. 1. 2 (2H, m), 1. 99-1. 79 (4H, m),
Purity	>90% (NM)	R)	1.71-1.59(1H, m), 1.49-1.2 1(3H, m)
MS	612 (M+1)		

Example No.	269	1H NMR(δ) ppm
HCI F		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=9 . 0Hz), 7. 97 (1H, dd, J=8. 6, 1 . 5Hz), 7. 71 (1H, d, J=1. 8Hz) , 7. 63 (1H, t, J=8. 2Hz), 7. 56 -7. 41 (6H, m), 7. 17 (1H, dd, J =12. 0, 2. 2Hz), 7. 03 (1H, dd, J =8. 2, 1. 8Hz), 5. 14 (2H, s), 4. 15-4. 00 (1H, m), 3. 01 (3H, s), 2. 98 (3H, s), 2. 32-2. 13 (
Purity >90% (NMR)	2H, m) 1. 95-1. 79 (4H, m), 1. 7 2-1. 59 (1H, m), 1. 45-1. 21 (3
MS 626 (M	+1)	H, m)

Table 192

Example No.	270	1H NMR(δ) ppm
HO HOI F	NO.	300MHz, DMSO-d6 8. 24 (1H, d, J=1. 4Hz), 8. 19 (1H, d, J=1. 8Hz), 8. 11 (1H, br s), 8. 02-7. 85 (3H, m), 7. 60- 7. 44 (7H, m), 7. 10 (1H, dd, J= 12. 0, 2. 1Hz), 6. 98 (1H, dd, J= 8. 4, 2. 1Hz), 5. 11 (2H, s), 3. 98 (1H, m), 2. 30-2. 12 (2H, m), 1. 91-1. 73 (4H, m), 1. 71-1 58 (1H, m), 1. 45-1. 15 (3H, m)
Purity >90% (NMR))
MS 598 (M	+1)	1

Example	No.	271	1H NMR(δ) ppm
٠	HCI		300MHz, DMSO-d6 8.29(1H, d, J=1.5Hz), 8.24(1H, d, J=8.7Hz), 8.07-7.98(3H, m), 7.80-7.68(5H, m), 7. 56(1H, dd, J=8.0, 1.8Hz), 7. 47(1H, d, J=8.0Hz), 7.21(2H, d, J=8.4Hz), 5.18(2H, s), 4. 34(1H, m), 3.27(3H, s), 3.0 2(3H, s), 2.98(3H, s), 2.38- 2.18(2H, m), 2.10-1.95(2H,
Purity	>90% (NMR)	m), 1.93-1.79(2H, m), 1.72- 1.59(1H, m), 1.50-1.19(3H,
MS	652 (M	+1)	m)

Example No.	272	1H NMR(δ) ppm
HO CIH	HCI	300MHz, DMSO-d6 8. 97 (1H, d, J=1. 8Hz), 8. 85 (1H, d, J=4. 7Hz), 8. 46 (1H, d, J=8. 0Hz), 8. 39-8. 26 (2H, m), 8. 06 (1H, d, J=8. 7Hz), 7. 99 -7. 64 (6H, m), 7. 24 (2H, d, J=8. 7Hz), 5. 25 (2H, s), 4. 36 (1H, m), 3. 03 (3H, s), 2. 97 (3H, s), 2. 39-2. 19 (2H, m), 2. 14-1, 96 (2H, m), 1. 94-1. 78 (2H,
Purity >90%	(NMR)	m), 1.73-1.60(1H, m), 1.21- 1.55(3H, m)
MS 575 (I	W+1)	

Table 193

Example No.	273	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 30 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8. 7Hz) , 7. 77-7. 67 (3H, m). 7. 58-7. 48 (6H, m), 7. 22 (2H, d, J=8. 4 Hz), 5. 18 (2H, s), 4. 35 (1H, b rt, J=9. 8Hz), 3. 06-2. 88 (12 H, brm), 2. 38-2. 20 (2H, brm) , 2. 08-1. 96 (2H, brm), 1. 90- 1. 80 (2H, brm), 1. 70-1. 60 (1
Purity >90%	(NMR)	H, brm), 1. 49-1. 22 (3H, brm)
MS 645	(M+1)	7.

Example No.	274	1H NMR(δ) ppm
		300MHz, DMSO-d6 mixture of cis and trans 8. 35,8. 34 (1H, s),8. 15-8. 1 0 (2H, m), 7. 79-7. 70 (3H, m), 7. 49 (2H, d, J=8. 7Hz), 7. 44 (2H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 25-7. 19 (2H, m), 7. 07 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 75 (1H, m), 3. 83 (3 H, s), 3. 70-1. 90 (8H, m)
Purity about 80% (NM	AR)	
MS 601 (M+1)		

Example No.	275	1H NMR(δ) ppm
	<u>}</u>	300MHz, DMSO-d6 8. 33 (1H, s), 8. 13 (1H, d, J=7 .5Hz), 7. 93 (1H, d, J=8. 8Hz) , 7. 74 (2H, d, J=8. 7Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 44 (2H, d , J=8. 6Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 25-7. 15 (3H, m), 7. 0 7 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 98 (1H, m), 3. 83 (3H, s) , 3. 65-3. 45 (2H, m), 3. 30-3.
Purity >90% (N	MR)	10 (2H, m), 3. 00-2. 75 (2H, m), 2. 60-2. 30 (2H, m)
MS 617 (M+1)	

Table 194

5	Example No.	276	IH NMR(δ) ppm
10			300MHz, DMSO-d6 8. 25(1H, s), 7. 93and7. 87(2 H, ABq, J=9. 1Hz), 7. 55(1H, t , J=8. 6Hz), 7. 48and7. 42(4H , A'B'q, J=8. 6Hz), 7. 31(1H, d, J=8. 5Hz), 7. 24(1H, d, J=2 . 6Hz), 7. 09-6. 95(3H, m), 5.
15		,	05(2H, s), 4. 11(1H, brt, J=1 4. 0Hz), 3. 84(3H, s), 2. 83-2 . 67(4H, brm), 2. 50-2. 32(2H
	Purity >90% (NM	R)	, brm), 2. 21-2. 10 (2H, brm)
20	MS 603 (M+1)		
	Example No.	077	T
25	en en	277	1H NMR(δ) ppm 300MHz, DMSO-d6 cis and trans mixture
<i>30</i>		Ž,	8. 28and8. 24 (total 1H, each s), 7. 94-7. 87 (1H, m), 7. 60-7. 41 (5H, m), 7. 31 (1H, d, J=8.5Hz), 7. 23-7. 21 (1H, m), 7. 12-7. 05 (2H, m), 7. 00-6. 95 (1H, m), 5. 06and5. 05 (total 2H, each
35	Purity >90% (NM)	R)	s), 4. 47and4. 34(total 1H, each
	MS 619 (M+1)		brs), 3.83(3H, s), 3.12-1.7 6(8H, m)
40	Example No.	070	
		278	1H NMR(δ) ppm 300MHz, DMSO-d6
45	-6-5-3	>	12. 9 (1H, brs), 8. 27 (1H, s), 7. 97 and 7. 74 (2H, ABq, J=8. 6 Hz), 7. 58 (1H, t, J=8. 6Hz), 7. 49 and 7. 43 (4H, A'B'q, J=8. 5Hz), 7. 31 (1H, d, J=8. 5Hz).
50		<i>></i>	7. 22 (1H, d, J=2. 6Hz), 7. 13- 6. 92 (3H, m), 5. 05 (2H, s), 4. 67 (1H, brt, J=14. 2Hz), 3. 57
	Purity >90% (NMR	2)	-3. 40 (2H, brm), 3. 20-3. 05 (2H, brm), 2. 91-2. 70 (2H, brm), 2. 28-2. 11 (2H, brm)
55	MS 635 (M+1)		/, 2. 20°2. II (2П, UI Ш)

Table 195

Example	No.	279	1H NMR(δ) ppm
но	HCI CI		300MHz, DMSO-d6 8. 30(1H, s), 8. 23(1H, d, J=1 .7Hz), 8. 06-8. 00(2H, m), 7. 83(1H, dd, J=8. 0, 1. 8Hz), 7. 71(2H, d, J=8. 4Hz), 7. 64(11 ,d, J=8. 0Hz), 7. 59-7. 54(4Hz), 8. .25(2H, s), 4. 33(1H, m), 2. 66(3H, s), 2. 37- 2. 19(2H, m), 1. 93-1, 80(2H, m), 2. 64
Purity	>90% (NM	R)	m), 1.70-1.59(1H, m), 1.47- 1.21(3H, m)
MS	644 (M+1)		

Example N	10.	280	1H NMR(δ) ppm
HO. L	HCI CI	0 = 3	300MHz, DMSO-d6 8. 32-8. 23 (3H, m), 8. 08-8. 0 1 (2H, m), 7. 73 (2H, d, J=8. 6H z), 7. 65 (1H, d, J=8. 2Hz), 7. 59-7. 51 (4H, m), 7. 25 (2H, d, J=8. 6Hz), 5. 21 (2H, s), 4. 34 (1H, m), 3. 32 (3H, s), 2. 37-2 .19 (2H, m), 2. 10-1. 98 (2H, m), 1. 93-1. 80 (2H, m), 1. 71-1 .60 (1H, m), 1. 51-1. 21 (3H, m
Purity	>90% (NM	R))
MS	615 (M+1)		

Example No.	281	1H NMR(δ) ppm
HOI F	CH CH	300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 24 (1H, s), 8. 14 (1H, d, J=8. 6Hz), 8. 07-7. 95 (2H, m), 7. 63 (1H, t, J=8. 6Hz), 7. 57-7. 47 (5H, m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7. 03 (1H, dd, J=8. 6, 2. 2Hz), 5. 17 (2H, s), 4. 06 (1H, m), 3. 90 (3H, s), 2. 31-2. 11 (2H, m), 1. 97-1. 78 (4H, m), 1.
Purity >90% (1	VMR)	71-1.59 (1H, m), 1.43-1.22 (3H, m)
MS 315		

Table 196

Example	e No.	282	1H NMR(δ) ppm
но	HGI CI	OIH	300MHz, DMSO-d6 8. 36 (1H, s), 8. 35 (1H, d, J=9 . 3Hz), 8. 09 (1H, d, J=9. 3Hz) , 7. 78 (2H, d, J=8. 7Hz), 7. 48 -7. 25 (9H, m), 5. 09 (2H, s), 4 . 39 (1H, m), 3. 04 (6H, s), 2. 4 0-2. 15 (2H, m), 2. 10-1. 95 (2 H, m), 1. 90-1. 75 (2H, m), 1. 7 0-1. 55 (1H, m), 1. 50-1. 20 (3 H, m)
Purity	>90% (NI	AR)	,
MS	580 (M+1)		

Example 1	No.	283	1H NMR(δ) ppm
10 1	HGI CI		300MHz, DMSO-d6 10.03 (1H, s), 8.33 (1H, s), 8 .29 (1H, d, J=8.7Hz), 8.06 (1 H, d, J=9.0Hz), 7.74 (2H, d, J =9.0Hz), 7.51-7.42 (5H, m), 7.37-7.30 (2H, m), 7.22 (2H, d, J=8.7Hz), 5.10 (2H, s), 4. 37 (1H, m), 3.06 (3H, s), 2.40 -2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.80 (2H, m), 1.75
Purity	>90% (N	IMR)	-1.55 (1H, m), 1.50-1.20 (3H
MS	630 (M+1	1)	

Example No.	284 1H NMR(δ) ppm
HO HOI POI	300MHz, DMSO-d6 8. 30 (1H, s), 8. 14 (1H, d, J=8 . 7Hz), 7. 97 (1H, d, J=8. 7Hz) , 7. 96-7. 41 (8H, m), 7. 16 (1H , dd, J=12. 4, 2. 2Hz), 7. 03 (1 H, dd, J=8. 4, 2. 2Hz), 5. 15 (2 H, s), 4. 15 (1H, m), 3. 54-3. 1 6 (4H, m), 2. 33-2. 13 (2H, m), 1. 97-1. 79 (4H, m), 1. 70-1. 0 2 (9H, m)
Purity >90% (N)	(R)
MS 654 (M+1)	

Table 197

Example No.	285	IH NMR(δ) ppm
HCI FCI		300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 30 (1H, s), 8. 19-8. 12 (2H, m), 8. 02-7. 95 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 56-7. 43 (5H, m), 7. 18 (1H, dd, J=12. 0, 1. 8Hz), 7. 06 (1H, dd, J=8. 4, 2. 1Hz), 5. 13 (2H, s), 4. 22-4. 03 (2H, m), 2. 34-2. 13 (2H, m), 1. 99-1. 78 (4H, m), 1. 72-1. 57 (1
Purity >90% (N	MR)	H, m), 1.44-1.14(3H, m), 1.2 0, 1.18(6H, each s)
MS 640 (M+1))	

Example No.	286	1H NMR(δ) ppm
HCI. F		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, dd, J=8. 7, 1 .4Hz), 7. 69-7. 40 (8H, m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7 .02 (1H, dd, J=8. 4, 2. 2Hz), 5 .15 (2H, s), 4. 07 (1H, m), 3. 7 1-3. 23 (2H, m), 1. 98-1. 71 (4 H, m), 1. 71-1. 18 (10H, m)
Purity >90% (N)	MR)	
MS 666 (M+1))	

Example No.	287	1H NMR(δ) ppm
HO HCI CI		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 . 0Hz), 7. 97 (1H, d, J=8. 4Hz) , 7. 83 (1H, s), 7. 68-7. 41 (7H , m), 7. 17 (1H, d, J=12. 0Hz), 7. 03 (1H, d, J=8. 4Hz), 5. 15 (2H, s), 4. 07 (1H, m), 3. 58-3. 41 (4H, m), 2. 34-2. 13 (2H, m) , 1. 97-1. 77 (8H, m), 1. 71-1. 58 (1H, m), 1. 49-1. 18 (3H, m)
Purity >90% (N	MR)	·
MS 652(M+1)		

Table 198

Example No.	288	1H NMR(δ) ppm
HCI F	H N OH	300MHz, DMSO-d6 8. 62 (1N, m), 8. 31 (1H, s), 8. 22-8. 14 (2H, m), 8. 99 (2H, d, J=8. 7Hz), 7. 66 (1H, t, J=7. 7 Hz), 7. 58-7. 44 (5H, m), 7. 19 (1H, dd, J=8. 7, 2. 2Hz), 5. 14 (2H, s), 4. 11 (1H, m), 3. 67-3 .49 (2H, m), 3. 45-3. 30 (2H, m), 2. 37-2. 12 (2H, m), 2. 00-1 .76 (4H, m), 1. 70-1. 58 (1H, m)
Purity >90% (N)	MR)), 1.48-1.17(3H, m)
MS 642 (M+1)		

50 -

Example No.	289	1H NMR(δ) ppm
HOI. F		400MHz, DMSO-d6 8. 28 (1H, s), 8. 11 (1H, d, J=8 .9Hz), 7. 96 (1H, d, J=8.9Hz) , 7. 68 (1H, s), 7. 62 (1H, t, J= 8. 2Hz), 7. 55-7. 41 (6H, m), 7 .15 (1H, d, J=11. 7Hz), 7. 02 (1H, d, J=8. 4Hz), 5. 14 (2H, s) , 4. 12-3. 13 (6H, m), 2. 30-1. 19 (13H, m)
Purity >90% (NMR)	
MS 682 (M+	+1)	

Example No.	290	1H NMR(δ) ppm
HC)		400MHz, DMSO-d6 8. 29(1H, s), 8. 15(1H, d, J=8 .6Hz), 7. 98(1H, d, J=8.8Hz) , 7. 72(1H, s), 7. 64(1H, t, J= 8. 8Hz), 7. 57-7. 43(6H, m), 7 .18(1H, dd, J=12.1, 2.1Hz), 7. 03(1H, d, J=10.7Hz), 5. 12 (2H, s), 4. 15-4. 01(1H, m), 3 .75-3. 33(8H, m), 2. 31-2. 14 (2H, m), 1. 96-1. 78(4H, m), 1
Purity >90%	(NMR)	.70-1.58(1H, m), 1.47-1.21 (3H, m)
MS 668	(M+1)	

Table 199

5			
	Example	No.	291
10	10	101 F	<u>}</u>
15		6	
20	Purity	>90% (NMR)
20	MS	684 (M	-1)

25

30

35

40

45

50

55

400MHz, DMSO-d6 8. 29 (1H, s), 8. 14 (1H, d, J=8 .9Hz), 7. 97 (1H, d, J=8. 6Hz) , 7. 71 (1H, s), 7. 63 (1H, t, J= 8. 2Hz), 7. 56-7. 42 (6H, m), 7 . 17 (1H, d, J=12. 3H₂), 7. 03 (1H, d, J=10. 7Hz), 5. 14 (2H, s), 4. 07 (1H, m), 3. 96-3, 52 (4 H, m), 2.79-2.56(4H, m), 2.3 2-2.14(2H, m), 1.97-1.79(4 H, m), 1.71-1.58(1H, m), 1.51-1. 19 (3H, m)

1H NMR(δ) ppm

Example	No.	292
но но		⊸¢ _{oH}
Purity	>90% (NMR)	
MS	656 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6 9.07-8.99(1H, m), 8.30(1H, s), 8. 23-8. 12(2H, m), 8. 04-7. 95 (2H, m), 7. 65 (1H, t, J=8 . 2Hz), 7. 60-7. 45 (5H, m), 7. 19(1H, dd, J=12.0, 2.6Hz), 7.06(1H, dd, J=8.6, 2.2Hz), 5 16 (2H, s), 4. 18-4. 02 (1H, m), 3. 97 (2H, d, J=6. 0Hz), 2. 3 3-2. 14 (2H, m), 1. 99-1. 79 (4 H, m), 1. 72-1. 59 (1H, m), 1. 4 5-1. 19 (3H, m)

Example	No.	293
· ®		}
Purity	>90% (NM)	R)
MS	637 (M+1)	

300MHz, DMSO-d6:8. 21 (1H, s), 7. 94and7. 86 (2H, ABq, J=8 .6Hz), 7.72 (1H, d, J=2.4Hz) , 7. 59and7. 11 (4H, A' B' q, J= 8. 9Hz), 7. 53 (1H, dd, J=8. 4, 2. 4Hz), 7. 38 (1H, d, J=8. 4Hz), 7. 36and7. 32 (4H, A"B"q, J =8. 1Hz), 5. 07 (2H, s), 4. 27 (1H, brt, J=13. 8Hz), 2. 87 (2H, t, J=7. 8Hz), 2. 35-2. 20 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 68-1.59(1H, brm), 1.47-1.18(3 H, brm)

1H NMR(δ) ppm

Table 200

Example No.	294	1H NMR(δ) ppm
HO HOI	C _C I	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25and8. 03 (2 H, ABq, J=8. 9Hz), 7. 73 (1H, s), 7. 73 (2H, d, J=8. 6Hz), 7. 5 5 (1H, dd, J=8. 0, 2. 3Hz), 7. 4 0 (4H, s), 7. 39 (1H, d, J=8. 0Hz), 7. 23 (2H, d, J=8. 6Hz), 5. 11 (2H, s), 4. 55 (2H, s), 4. 36 (1H, brt, J=14. 8Hz), 2. 37-2 . 19 (2H, brm), 2. 09-1. 96 (2H
Purity > 90% (NM	MR)	, brm), 1.91-1.79(2H, brm), 1.71-1.59(1H, brm), 1.50-1
MS 567 (M+1)		. 20 (3H, brm)

Example No.	295	1H NMR(δ) ppm
Ho! Ho!	>	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25and8. 04(2 H, ABq, J=8. 7Hz), 7. 74 (1H, s), 7. 72 (2H, d, J=8. 7Hz), 7. 5 6(1H, d, J=8. 7Hz), 7. 48-7. 3 5(5H, m), 7. 22 (2H, d, J=8. 7Hz), 5. 11 (2H, s), 4. 46 (2H, s) ,4. 35 (1H, brt, J=14. 8Hz), 3 .31 (3H, s), 2. 37-2. 17 (2H, b rm), 2. 07-1. 95 (2H, brm), 1.
Purity >90% (NM	R)	92-1. 79 (2H, brm), 1. 73-1. 5 6 (1H, brm), 1. 52-1. 20 (3H, b
MS 581 (M+1)		rm)

Example No.	296	1H NMR(δ) ppm
	— OH	300MHz, DMSO-d6 8. 21 (1H, d, J=1.5Hz), 7.98(1H, d, J=1.2Hz), 7.97-7.91(2H, m), 7.84 (1H, dd, J=8.7,1.5Hz), 7.77 (1H, d, J=2.1Hz), 7.70 (1H, d, J=7.5Hz), 7.60 -7.54 (4H, m), 7.43 (1H, d, J=8.4Hz), 7.09 (2H, d, J=8.7Hz), 5.05 (2H, s), 4.25 (1H, brt, J=14.8Hz), 2.36-2.18 (2H,
Purity >90% (NM	R)	brm), 1.95-1.79(4H, hrm), 1 .71-1.6(1H, brm), 1.43-1.1
MS 581 (M+1)		8 (3H, brm)

Table 201

Example	No.	297	IH NMR(δ) ppm
HO			300MHz, DMSO-d6 12.7(1H, brs), 8. 7.94and7.85(2H, Hz), 7.60-7.55(3 and7.45(4H, A'B'), 7.12(2H, d, J=8 5(2H, s), 4.26(1H .0Hz), 2.54(3H, s 20(2H, brm), 1.97 brm), 1.71-1.59
Purity	>90% (NI	MR)	. 47-1. 20 (3H, bra
MS	583 (M+1)		

15

20

25

30

35

40

45

50

55

300MHz, DMSO-d6 12.7(1H, brs), 8.21(1H, s), 7.94and7.85(2H, ABq, J=8.6 7. 94and 7. 85 (2H, ABq, J=8. 6 Hz), 7. 60-7. 55 (3H, m), 7. 49 and 7. 45 (4H, A'B'q, J=8. 3Hz), 7. 12 (2H, d, J=8. 7Hz), 5. 0 5 (2H, s), 4. 26 (1H, brt, J=13. 0Hz), 2. 54 (3H, s), 2. 38-2. 20 (2H, brm), 1. 79-1. 80 (4H, brm), 1. 71-1. 59 (1H, brm), 1 47-1. 20 (3H, brm)

Example	No.	298
HO LL		S=0
Purity	>90% (NMI	?)
MS	599 (M+1)	

1H NMR(δ) ppm 300MHz. DMSO-d6 8. 22 (1H, s), 8. 01 (1H, s), 7. 95and7. 86 (2H, ABq, J=8. 6Hz), 7. 79 (1H, d, J=7. 8Hz), 7. 5 8(3H, t, J=7.5Hz), 7.53(4H, s), 7.13(2H, d, 8.7Hz), 5.15 (2H, s), 4.26(1H, brt, J=13.8Hz), 2.83(3H, s), 2.37-2.1 8 (2H, brm), 1. 95-1. 78 (4H, brm), 1. 70-1. 59 (1H, brm), 1. 47-1. 17 (3H, brm)

Example	No.	299
но	Hol Di	
Purity	>90% (NMR))
MS	562 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 43-8. 16 (3H, m), 8. 07-7. 9 4 (2H, m), 7. 72 (2H, d, J=8. 6H z), 7. 62-7. 49 (5H, m), 7. 23 (2H, d, J=8. 6Hz), 5. 16 (2H, s) , 4. 34 (1H, m), 2. 39-2. 20 (2H , m), 2. 10-1. 96 (2H, m), 1. 93 -1. 80 (2H, m), 1. 71-1. 58 (1H , m), 1. 49-1. 19 (3H, m)

Table 202

Example No.	300	1H NMR(δ) ppm
HO		300MHz, DMSO-d6:2. 77 (1H, b rs), 8. 83 (2H, d, J=1. 9Hz), 8 . 56 (2H, dd, J=4. 9, 1. 9Hz), 8 . 22 (1H, d, J=1. 5Hz), 7. 97 (2 H, dt, J=7. 9, 1. 9Hz), 7. 95 (1 H, d, J=8. 6Hz), 7. 87 (1H, dd, J=8. 6, 1. 5Hz), 7. 57 (1H, t, J=8. 7Hz), 7. 46 (2H, dd, J=7. 9, 4. 9Hz), 7. 26 (1H, dd, J=12. 0, 4. 9Hz), 7. 14 (1H, dd, J=8.
Purity >909	% (NMR)	8, 2. 3Hz), 6. 99(2H, s), 3. 94 (1H, brt), 2. 26-2. 09(2H, m)
MS 52	3 (M+1)	, 1.87-1.73 (4H, m), 1.67-1. 57(1H m) 1 42-1 12(3H m)

Example No.	301	1H NMR(δ) ppm
	- Q°	300MHz, DMSO-d6 8. 22(1H, s), 7. 95(1H, d, J=8 .7Hz), 7. 87(1H, dd, J=1. 5Hz ,9. 0Hz), 7. 62(4H, d, J=8. 4H z), 7. 55(1H, t, J=9. 0Hz), 7. 44(4H, d, J=8. 1Hz), 7. 20(1H ,dd, J=2. 1Hz, 12. 0Hz), 7. 11 (1H, dd, J=2. 1Hz, 8. 7Hz), 6. 86(1H, s), 3. 94(1H, m), 2. 96 ,2. 88(12H, s), 2. 35-2. 00(2
Purity >90% (NMR	.)	H, m), 1.95-1.70(4H, m), 1.6 5-1.50(1H, m), 1.45-1.10(3
MS 663 (M+1)		H, m)

Example No.	302 1H NMR(δ) ppm
Na o l	300MHz, DMSO-d6 8. 14(1H, s); 7. 88(1H, d, J=8 .4Hz), 7. 68(1H, d, J=8. 7Hz) ,7. 64-7. 55(3H, m), 7. 50(1H ,t, J=8. 7Hz), 7. 22-7. 17(3H ,m), 7. 11(1H, s), 7. 08-7. 00 (2H, m), 3. 90(1H, m), 2. 15-2 .00(2H, m), 1. 95-1. 50(5H, m), 1. 45-1. 00(3H, m)
Purity >90% (N	MR)
MS 532 (M+1)

Table 203

Example No.	303	1H NMR(δ) ppm
		300MHz, CDC13 8. 49 (1H, s), 7. 98 (1H, dd, J=18. 6, 1. 5Hz), 7. 71 (1H, d, J=18. 6Hz), 7. 55-7. 29 (7H, m), 6. 80 (1H, dd, J=8. 2, 2. 2Hz), 6. 69 (1H, dd, J=11. 2, 2. 2Hz), 4. 99 (2H, s), 4. 10-3. 92 (1H, m), 3. 95 (3H, s), 3. 15 (3H, s), 3. 06 (3H, s), 2. 31-2. 14 (2H, m), 2.
Purity >90% (NMR)		7 04-1.86(4H, m), 1.81-1.71(1H, m), 1.41-1.21(3H, m)
MS 640 (M+1)		

Example No.	304	lH NMR(δ) ppm
		300MHz, DMSO-d6 8. 21 (1H, s), 7. 94 (1H, d, J=8 .7Hz), 7. 84 (1H, d, J=9. 1Hz) ,7. 70 (1H, s), 7. 26-7. 39 (9H ,m), 7. 11 (2H, d, J=8. 4Hz), 5 .11 (2H, s), 4. 26 (1H, m), 3. 0 1 (3H, s), 2. 97 (3H, s), 2. 38- 2. 19 (2H, m), 1. 97-1. 78 (4H, m), 1. 72-1. 57 (1H, m), 1. 48- 1. 17 (3H, m)
Purity >90% (NM	R)	
MS 608 (M+1)]

Example No.	305	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 24 (2H. s), 8. 03 (1H, d, J=8 .0Hz), 7. 96 (1H, d, J=8. 8Hz) , 7. 87 (1H, d, J=9. 1Hz), 7. 60 -7. 46 (6H, m), 7. 09 (1H, dd, J =12. 0, 1. 8Hz), 6. 97 (1H, dd, J=8. 4, 1. 8Hz), 5. 16 (2H, s), 3. 97 (1H, m), 2. 31-2. 11 (2H, m), 1. 92-1. 73 (4H, m), 1. 70- 1. 57 (1H, m), 1. 46-1. 13 (3H,
Purity >90%	(NMR)	m)
MS 599 (M+1)	

Table 204

NMR(δ) ppm 00MHz, DMSO-d6 2.84(1H, brs), 8.21(1H, s) 3.98-7.84(5H, m), 7.58(2H, d, J=8.7Hz), 7.54(2H, d, J=8.7Hz), 7.34(1H, d, J=8.7Hz)
2. 84 (1H, brs), 8. 21 (1H, s) 7. 98–7. 84 (5H, m), 7. 58 (21 1. J=8. 7Hz), 7. 54 (2H, d. T=
, 7. 26 (1H, d, J=2. 4Hz), 7. -7. 06 (3H, m), 5. 06 (2H, s) . 26 (1H, brt, J=12. 7Hz), 3 4 (3H, s), 2. 36-2. 17 (2H, I), 1. 99-1. 80 (4H, brm), 1.
-1.59 (1H, brm), 1.47-1.1 3H, brm)

Example No.	301	7 IH NMR(δ) ppm
	HUN-O'CONTO	300MHz, DMSO-d6 8. 22(1H, s), 8. 04(1H, s), 7. 96(2H, d, J=8. 1Hz), 7. 87(2H , s), 7. 72(1H, d, J=1. 2Hz), 7 .59-7. 41(7H, m), 5. 12(2H, s), 4. 25(1H, brt, J=11. 8Hz), 3. 02(3H, brs), 2. 98(3H, brs), 2. 38-2. 15(2H, brm), 1. 93 -1. 76(4H, brm), 1. 71-1. 59(1H, brm), 1. 46-1. 16(3H, brm
Purity >9	0% (NMR))
MS	617 (M+1)	

Example No.	308	1H NMR(δ) ppm
HO TO THE TOTAL PARTY OF THE TOT		300MHz, DMSO-d6 8. 27 (1H, s), 8. 08 (1H, d, J=9 .0Hz), 7. 93 (1H, d, J=8. 7Hz) , 7. 65 (2H, d, J=8. 7Hz), 7. 46 (2H, d, J=8. 1Hz), 7. 42 (2H, d , J=8. 4Hz), 7. 30-7. 04 (5H, m), 5. 03 (2H, s), 4. 32 (1H, m), 2. 40-2. 10 (2H, m), 2. 05-1. 1 0 (8H, m)
Purity >909	% (NMR)	
MS 55	2 (M+1)	

Table 205

Example No.	309	iH NMR(δ) ppm
но 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CI	300MHz, DMSO-d6 8. 33(1H, s), 8. 15and7. 99(2 H, ABq, J=8. 9Hz), 7. 84and7. 59(4H, A'B'q, J=8. 3Hz), 7. 4 6(2H, d, J=8. 4Hz), 7. 22-7. 1 6(3H, m), 7. 01-6. 98(2H, m), 4. 27and4. 23(2H, A"B"q, J=1 2. 9Hz), 3. 78(3H, s), 2. 39-2 .21(2H, brm), 2. 07-1. 95(2H, brm), 1. 91-1. 80(2H, brm),
Purity >90% (NMR))	1.72-1.59 (1H, brm), 1.49-1 .17 (3H, brm)
MS		1

Example No.	310	1H NMR(δ) ppm
He:		300MHz, DMSO-d6 8. 33 (1H, s), 8. 09and7. 95 (2 H, ABq, J=8. 7Hz), 7. 87and7. 71 (4H, A'B'q, J=8. 0Hz), 7. 4 3 (2H, d, J=7. 8Hz), 7. 15 (1H, d, J=8. 7Hz), 7. 07-7. 02 (4H, m), 4. 66 (2H, s), 4. 23 (1H, br t, J=11. 8Hz), 3. 76 (3H, s), 2 . 38-2. 20 (2H, brm), 2. 04-1. 93 (2H, brm), 1. 89-1. 79 (2H,
Purity >90% (NM	R)	brm), 1.70-1.59(1H, brm), 1 .49-1.18(3H, brm)
MS 615 (M+1)		

Example No.	311	1H NMR(δ) ppm
HCI HCI S		300MHz, DMSO-d6 8. 30 (1H, s), 8. 21and8. 01 (2 H, ABq, J=8. 7Hz), 7. 65 (2H, d , J=8. 4Hz), 7. 52-7. 41 (6H, m), 7. 20 (1H, d, J=8. 4Hz), 7. 1 4 (1H, d, J=2. 7Hz), 6. 97 (1H, dd, J=8. 4, 2. 4Hz), 4. 31 (1H, brt, J=9. 8Hz), 4. 28 (2H, s), 3. 78 (3H, s), 2. 37-2. 20 (2H, brm), 2. 07-1. 95 (2H, brm), 1
Purity >90% (N)	MR)	.92-1.80(2H, brm), 1.71-1. 60(1H, brm), 1.50-1.19(3H,
MS 583 (M+1)		brm)

Table 206

Example No.	312	1H NMR(δ) ppm
	→₹ 0H	300MHz, DMSO-d6 8. 22(1H, s), 8. 12(1H, d, J=8 .4Hz), 8. 00-7. 84(5H, m), 7. 70(4H, d, J=8. 4Hz), 7. 56(1H ,t, J=8. 6Hz), 7. 23(1H, d, J= 12. 0Hz), 7. 13(1H, d, J=8. 6H z), 6. 97(1H, s), 3. 92(1H, m) ,2. 35-2. 00(2H, m), 1. 95-1. 70(4H, m), 1. 65-1. 55(1H, m) ,1. 50-1. 05(3H, m)
Purity >90% (NMR))	
MS . 609 (M+1)		

Example No.	313	1H NMR(δ) ppm
HD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		300MHz, DMSO-d6 8. 89 (1H, brs), 8. 63 (1H, brs), 8. 24 (1H, s), 8. 11 (1H, d, J=7. 8Hz), 7. 99 (1H, d, J=8. 8Hz), 7. 89 (1H, d, J=9. 9Hz), 7. 61-7. 55 (4H, m), 7. 43 (2H, t, J=7. 7Hz), 7. 34 (1H, t, J=7. 2Hz), 7. 24 (1H, d, J=12. 0Hz), 7. 14 (1H, d, J=8. 6Hz); 6. 95 (1H, s), 3. 96 (1H, m), 2. 35-2.
Purity > 90% (NMR)	05(2H, m), 2.00-1.50(5H, m) , 1.45-1.10(3H, m)
MS 522 (M	+1)	

Example No.	314	1H NMR(δ) ppm
		300MHz, CDC13 8. 48 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=1. 8Hz), 8. 98 (1H, d, J=8. 6Hz), 7. 82 (1H, d, J=7. 9 Hz), 7. 66 (1H, d, J=8. 6Hz), 7 .55-7. 24 (6H, m), 6. 78 (1H, d d, J=8. 6, 2. 6Hz), 6. 69 (1H, d d, J=11. 6Hz), 2. 2Hz), 6. 40- 6. 30 (1H, m), 4. 99 (2H, s), 4. 02 (1H, m), 3. 95 (3H, s), 3. 05
Purity >90% ((NMR)	(3H, d, J=4.8Hz), 2.32-2.13 (2H, m), 2.03-1.87(4H, m), 1
MS 626 (M	(+1)	. 81-1. 71 (1H, m), 1. 46-1. 23 (3H, m)

Table 207

Example	No.	503	1H NMR(δ) ppm
но	HO		300MHz, DMSO-d6 8.23(1H, s), 7.76(1H, d, J=8 .7Hz), 7.58(1H, d, J=8.8Hz) , 7.51-7.32(7H, m), 7.17(2H , d, J=8.7Hz), 6.55(1H, s), 5 18(2H, s), 4.75(1H, m), 2.3 5-2.12(2H, m), 2.10-1.85(4 H, m), 1.80-1.50(2H, m)
Purity	>90% (NM	R)	
MS	412 (M+1)		

Example No.	701	1H NMR(δ) ppm
	61	300MHz, DMSO-d6 8.96(1H, s), 8.50(1H, s), 7. 77(2H, d, J=8.7Hz), 7.50-7. 40(4H, m), 7.30(1H, d, J=8.4 Hz), 7.24(1H, d, J=2.4Hz), 7. 16(2H, d, J=8.4Hz), 7.06(1 H, dd, J=2.4Hz, 8.1Hz), 5.06 (2H, s), 4.31(1H, s), 3.83(3 H, s), 2.80-2.55(2H, m), 2.0 0-1.80(4H, m), 1.70-1.55(1
Purity >90%	(NMR)	H, m), 1.40-1.15 (3H, m)
MS 568 (M+1)	

Table 208

Example	No.	315	1H NMR(δ) ppm
Э	HCI N) CI	300MHz, DMSO-d6 8.84(2H, d, J=6.3Hz), 8.28(1H, s), 8.17end7.99(2H, ABq, J=8.7Hz), 7.87-7.85(3H, m), 7.70-7.50(3H, m), 7.52(1H, d, J=8.3Hz), 7.18(2H, d, J=8.7Hz), 5.22(2H, s)4.31(1H, br t, J=12.5Hz), 2.36-2.18(2H, m), 2.03-1.78(4H, m), 1.70-1.5 8(1H, m), 1.50-1.23(3H, m)
Purity	>90% (NMR)	
MS	538 (M+1)		

Example	No.	316	1H NMR(δ) ppm
· ic	Hol CI		300MHz, DMSO-d6 9.23(1H, t, J=6.3Hz), 8.29(1H, s), 8.25-8.22(2H, m), 8.03(2H, d, J=7.9Hz), 7.55-7.48(5H, m)? .34(4H, d, J=4.4Hz), 7.28-7.22 (3H, m), 5.15(2H, s), 4.52(2H, d, J=5.9Hz), 4.35(1H, br t, J=12.1Hz), 2.37-2.18(2H, m), 2.08-1.95(2H, m), 1.91-1.79(2H, m), 1. 72-1.59(1H, m), 1.47-1.19(3H,
Purity	>90% (1	NMR)	¬ m)
MS	670 (M+	1)	1 ·

Example	No.	317	1H NMR(δ) ppm
HO 1 (-	300MHz, DMSO-d6 8. 59 (1H, t, J=5. 5Hz), 8. 28 (1H, s), 8. 21 and 8. 01 (2H, ABq, J=8. 8 Hz), 8. 16 (1H, s), 7. 97 and 7. 46 (2H, A'B'q, J=8. 0Hz), 7. 71 and 7. 23 (4H, A'B'q, J=8. 7Hz), 7. 53 and 7. 49 (4H, A'B''q, J=9. 2Hz), 5. 14 (2H, s), 4. 34 (1H, br t, J=12. 8Hz), 3. 14 (2H, t, J=6. 3 Hz), 2. 38-2. 18 (2H, m), 2. 07-1. 78 (4H, m), 1. 78-1. 47 (7H, m), 1.
Purity	>90% (NMR)	47-1.07(6H, m), 1.03-0.83(2H, m)
MS	676 (M+1)		

Table 209

Example No.	318	1H NMR(δ) ppm
a HCI		300MHz, DMSO-d6 9. 63 (1H, t, J=4. 8Hz), 8. 86and7. 97(4H, ABq, J=6. 6Hz), 8. 30(1H, s), 8. 27(1H, s), 8. 23and8. 03(2H, A 'B'q, J=8. 8Hz), 8. 09and7. 54(2 H, A'B''q, J=8. 1Hz), 7. 73and7. 2 4(4H, A'B'''q, J=8. 8Hz), 7. 54a nd7. 52(4H, A'''B'''q, J=8. 8Hz), 5. 16(2H, s) 4. 78(2H, d, J=5. 6Hz), 4. 35 (1H, br t, J=11. 0Hz), 2. 39-2. 19(2H, m)
Purity >	90% (NMR)	, 2. 07-1. 96 (2H, m), 1. 91-1. 78 (2H, m), 1. 70-1. 57 (1H, m) 1. 50-1
MS	671 (M+1)	. 19 (3H, m)

Example	No.	319	1H NMR(δ) ppm
mo i	HCI CI		300MHz, DMSO-d6 8. 28 (1H, s), 8. 24and8. 03 (2H, A Bq, J=9. 0Hz), 7. 77 (1H, s), 7. 70 (2H, d, J=8. 4Hz), 7. 64-7. 10 (13 H, m), 5. 16 (2H, s), 4. 74and4. 57 (total 2H, each br s), 4. 34 (1H, br t, J=11. 7Hz), 2. 90 (3H, s), 2. 35 -2. 17 (2H, m), 2. 07-1. 93 (2H, m) , 1. 93-1. 78 (2H, m), 1. 71-1. 57 (1H, m), 1. 51-1. 19 (3H, m)
Purity	>90%	(NMR)	
MS	684	(M+1)	

Example	No.	320	1H NMR(δ) ppm
HD	2HQ		300MHz, DMSO-d6 8. 94and8. 06 (4H, ABq, J=6. 8Hz) , 8. 33 (1H, s), 8. 28and8. 05 (2H, A'B'q, J=8. 7Hz), 7. 80 (1H, s), 7 . 73and7. 22 (4H, A'B'q, J=8. 7Hz), 7. 63and7. 57 (2H, A'B''q, J=7. 9Hz), 5. 30 (2H, s), 4. 34 (1H, brut, J=12. 1Hz), 3. 04 (3H, s), 2. 97 (3H, s), 2. 38-2. 18 (2H, m), 2. 10 -1. 96 (2H, m), 1. 93-1. 80 (2H, m)
Purity	>90%	(NMR)	(1. 72-1.58 (1H, m), 1. 52-1.08 (3H, m)
MS	575	(M+1)	

5		T	able 21	0
,	Example No) .	321	1H NMR(δ) ppm
10	HO L	на		300MHz, DMSO-d6 11.19(1H, br s), 8.31(1H, s), 8.23and8.02(2 H, ABq, J=9.0Hz), 7.77(1H, s), 7 .72and7.23(4H, A'B'g, J=8.7Hz), 7.59and7.48(2H, A'B'g, J=7. 9Hz), 7.53and7.51(4H, A'B''g, J=7.
15	7		, —	J=9. OHz), 5. 16 (2H, s), 4. 72-2 .97 (8H, br m), 4. 34 (1H, br t, J=12. 1Hz), 2. 79 (3H, s), 2. 38 -2. 17 (2H, m), 2. 07-1. 93 (2H, m) 1. 93-1. 78 (2H, m), 1. 69-1. 58 (
	Purity	>90% (NMR	.)	1H, m), 1.50-1.10(3H, m)
20	MS	663 (M+1)		*
	Example No.	·	322	1H NMR(δ) ppm
30	HO N		~~~~	300MHz, DMSO-d6 9. 54 (1H, t, J=5. 7Hz), 8. 91 (1H, s), 8. 81 (1H, d, J=4. 9Hz), 8. 48 (1H, d, J=7. 9Hz), 8. 32 (1H, s), 8. 27 (1H, d, J=9. 0Hz), 8. 25 (1H, s), 8. 07-7. 97 (3H, m), 7. 74 and 7. 2 5 (4H, ABq, J=8. 9Hz), 7. 56-7. 49 (5H, m), 5. 16 (2H, s), 4. 69 (2H, d, J=5. 6Hz), 4. 36 (1H, br t, J=12. 4Hz), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 91-1. 78 (
35	Purity	>90% (NMR))	2H, m), 1.70-1.57(1H, m), 1.50- 1.17(3H, m)
	MS	671 (M+1)		
40				
	Example No.	·····	323	1H NMR(δ) ppm
45	HD 2HC		√N=\	300MHz, DMSO-d6 9. 52 (1H, t, J=6.0Hz), 8. 72 (1H, d, J=5.3Hz), 8. 30-8. 19 (4H, m), 8. 08 (1H, d, J=7.9Hz), 8. 02 (1H, d, J=7.6HZ), 7. 77-7. 64 (4H, m), 7. 57-7. 49 (5H, m), 7. 24 (2H, d, J=8.7Hz), 5. 16 (2H, s), 4. 77 (2H, d, J=5.6Hz), 4. 34 (1H, t, J=12.8 Hz), 2. 36-2. 19 (2H, m), 2. 07-1.
				95 (2H, m), 1.91-1.78 (2H, m), 1. 69-1.59 (1H, m), 1.45-1.20 (3H, m)
	Purity	ONWAL SOUR		

> 9 0 % (NMR) 671 (M+1)

Purity

MS

Table 211

Example No.	324	1H NMR(δ) ppm
HO TO THE REPORT OF THE PARTY O		300MHz, DMSO-d6 8. 36 (1H, d, J=7.9Hz), 8. 30 (1H, s), 8. 28and8. 05 (2H, ABq, J=8.8 Hz), 8. 16 (1H, s), 7. 79and7. 46 (2H, A'B'q, J=8. 3Hz), 7. 74and7. 25 (4H, A'B''q, J=8. 9Hz), 7. 52and7. 50 (4H, A''B'''q, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (1H, brt, J=12. 1Hz), 3. 80 (1H, brs), 2. 39-2. 18 (2H, m), 2. 10-1. 98 (2H, m), 1. 93-1. 57 (8H, m), 1. 4
Purity >90% (N	MR)	9-1.04 (8H, m)
MS 662 (M+1)	

Example No.	325	1H NMR(δ) ppm
	}. ₍ _	300MHz, DMSO-d6 8.86(1H, t, J=6.0Hz), 8.84and8 .00(4H, ABq, J=6.6Hz), 8.33(1H ,s), 8.27and8.04(2H, A'B'q, J= 9.0Hz), 8.12(1H, s), 7.92and7. 46(2H, A"B"q, J=7.9Hz), 7.74an d7.23(4H, A"B"'q, J=9.0Hz), 7 .53and7.49(4H, A""B""q, J=9.1 Hz), 5.13(2H, s), 4.36(1H, br t, J=12.8Hz), 3.70(2H, td, J=6. 8, 6.0Hz), 3.21(2H, t, J=6.8Hz)
Purity >90% (NMR) .	2. 38-2. 20 (2H, m), 2. 09-1. 95 (2H, m), 1. 91-1. 77 (2H, m), 1. 70-
MS 685 (M	+1)	1.59(1H, m), 1.49-1.20(3H, m)

Example No.	326	1H NMR(δ) ppm
ной		300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7. 90(1H, d, J=8.7Hz), 7.83(1H, d, J=8.7Hz), 7.60-7.50(5H, m), 7. 39(2H, d, J=7.8Hz), 7.23-7.10(3H, m), 7.05(1H, d, J=7.8Hz), 6. 85(1H, s), 3.94(1H, s), 2.97, 2. 88(6H, s), 2.30-2.10(2H, m), 1. 90-1.50(5H, m), 1.40-1.00(3H, m)
Purity >9	0% (NMR)	
MS	610 (M+1)	

Table 212

5	Table 21	2
A	Example No. 327	1H NMR(δ) ppm
10 15	но	300MHz, DMSO-d6 13. 20-12. 60 (2H, brs), 8. 23 (1H, s), 7. 98 (2H, d, J=6. 6Hz), 7. 95 (1H, d, J=8. 7Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 70-7. 50 (5H, m), 7. 27 -7. 20 (3H, m), 7. 08 (1H, d, J=7. 8 Hz), 6. 90 (1H, s), 3. 93 (1H, s), 2. 51-2. 05 (2H, m), 1. 90-1. 70 (4H, m), 1. 65-1. 55 (1H, m), 1. 40-1. 10 (3H, m)
20	Purity >90% (NMR)	
	MS 583 (N+1)	

Table 213

10	HO ₂ C N S 1 2 3 4 8 5		
15	Ex.No.	R	R'
	2001	-н	4-(-Me)
	2002	- H	3-(-CF ₃)
20	2003	· 5-(-F)	н
	2004	3- (-F)	2-(-F)
	2005	3-(-F)	3-(-F)
25	2006	3-(-F)	4-(-F)
	2007	4-(-F)	4-(-F)
	2008	5- (-F)	4-(-F)
30	2009	6-(-F)	4-(-F)
	2010	4-(-F)	4-(-C1)
	2011	5-(-F)	4-(-Me)
35	2012	5- (-F)	4-(-CF ₃)
	2013	5-(-F)	4-(-CO ₂ H)
	2014	5-(-F)	4-(-CO ₂ Me)
40	2015	5- (-F)	4- (Pr)
	2016	5-(-F)	4-(-CONH ₂)
45	2017	5-(-F)	4-{-CON(Me) ₂ }
	2018	5-(-F)	4-(-OMe)
	2019	5-(-F)	4-(-SMe)
50	2020	5-(-F)	4 - (-3-lie)
	2021	5-(-F)	4 - (-\$-ite)
55	2022	4-(-Cl)	-н

5	2023	4-(-Cl)	4-(-F)
	2024	4-(-Cl)	4-(-C1)
.1	2025	4-(-Cl)	4-(-Me)
10	2026	5-(-Cl)	4-(-CF ₃)
	2027	4-(-Cl)	4-(-CO ₂ H)
15	2028	5-(-Cl)	4-(-CO ₂ Me)
,3	2029	5-(-Cl)	4-(-1-1-)
	2030	4-(-C1)	4-(-CONH2)
20	2031	5-(-C1)	4-{-CON (Me) ₂ }
	2032	5-(-C1)	3-(-OMe)
	2033	4-(-C1)	4- (-SMe)
25	2034	5-(-C1)	4- (-s-Ma)
	2035	4-(-C1)	4- (-3-in)
30	2036	5-(-CN)	4-(-F)
	2037	4-(-CN)	4-(-C1)
	2038	5-(-NO ₂)	4-(-F)
35	2039	4-(-NO ₂)	4-(-C1)
	2040	5- (-Me)	4-(-CO ₂ H)
	2041	5-(-Me)	4-(-CO₂Me)
40	2042	5-(-Me)	4-(-1-(-))
	2043	5- (-CF ₃)	4-(-CO ₂ H)
45	2044	5- (-CF ₃)	4-(-CO ₂ Me)
	2045	5-(-CF ₃)	4- (-Î-\(\to\))
	2046	5-(-CO ₂ H)	4-(-F)
50	2047	4-(-CO ₂ H)	4-(-C1)
	2048	5- (-CO₂Me)	4-(-F)
•	2049	5- (-CO₂Me)	4-(-C1)
55	2050	5- (-Ac)	4-(-F)

EP 1 162 196 A1

	2051	5-(-Ac)	4-(-C1)
5	2052	5-(ÎN)	-н
	2053	5-(- <u>l</u> N\-)	4-(-F)
10	2054	5-(<u>L</u> NO)	4-(-Cl)
15	2055	5-(<u>l</u>)	4- (-CN)
73	2056	₅₋ (-li-\(\to\))	4-(-NO ₂)
20	2057	₅₋ (-li-,\bigcap)	4-(-Me)
	2058	₅₋ (()	4-(-CF ₃)
25	2059	₅₋ (- <u>1</u> -(-))	4-(-Ac)
i	2060	₅₋ (4-(-CO ₂ H)
30	2061	₅₋ (-l-(-))	4-(-CO ₂ Me)
	2062	₅₋ (- <u>1</u> -,\(\c))	4-(- - -
35	2063	5-(-1-(-))	4-(-CONH ₂)
	2064	₅₋ (- <u>l</u> ,(_))	4-{-CON (Me) ₂ }
40	2065	5-(-4	4-{-C (=NH) NH ₂ }
ļ	2066	5-(-1-(-))	4-(-0Me) .
45	2067	₅₋ (-L _N _)	4-(-c-c+N)
	2068	₅₋ (-l	4-(-NHMe)
50	2069	₅₋ (()	4-(-NHAc)
55	2070	5-(<u> </u>	4- (-N-3-40)

EP 1 162 196 A1

5	2071	₅₋ (<u>l</u> ,)	4-(-SMe)
	2072	5-(<u>l</u>)	4- (-S-No)
10	2073	₅₋ (<u></u>)	4- (
	2074	₅₋ (-l-\(\cappa\))	(-9-NH ₂)
15	2075	₅₋ (- ¹ -√)	{-\$-N(He); }
	2076	5-(-CONH ₂)	-н
20	2077	5-(-CONH ₂)	4-(-F)
	2078	5-(-CONH ₂)	2,3,4,5,6-penta-(-F)
	2079	5-(-CONH ₂)	2-(-C1)
25	2080	5-(-CONH ₂)	3-(-C1)
	2081	3-(-CONH ₂)	2-(-C1)
	2082	3- (-CONH ₂)	3-(-C1)
30	2083	3-(-CONH ₂)	4-(-C1)
	2084	4- (-CONH ₂)	2-(-C1)
	2085	4-(-CONH ₂)	3-(-C1)
35	2086	4-(-CONH ₂).	4-(-C1)
	2087	6-(-CONH ₂)	2-(-C1)
	2088	6-(-CONH ₂)	3-(-C1)
40	2089	6- (-CONH ₂)	4-(-C1)
	2090	5- (-CONH ₂)	3,5-di-(-Cl)
	2091	5- (-CONH ₂)	4-(-CN)
45	2092	5- (-CONH ₂)	4-(-NO ₂)
	2093	5-(-CONH ₂)	4-(-Me)
	2094	5-(-CONH ₂)	2,6-di-(-Me)
50	2095	5- (-CONH ₂)	4-(-CF ₃)
	2096	5-(-CONH ₂)	4-(-Ac)
	2097	5-(-CONH ₂)	4-(-CO ₂ H)
5	2098	5-(-CONH ₂)	4-(-CO ₂ Me)

EP 1 162 196 A1

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2099	5- (-CONH ₂)	4- (-1-N-)
5	2100	5- (-CONH ₂)	4-(-CONH ₂)
	2101	5- (-CONH ₂)	3,5-di-(-CONH ₂)
	2102	5- (-CONH ₂)	4-{-CON (Me) 2}
10	2103	5-(-CONH ₂)	4-(-C (=NH) NH ₂ }
	2104	5- (-CONH ₂)	4-(-OMe)
15	2105	5-(-CONH ₂)	3,4,5-tri-(-OMe)
,,,	2106	5-(-CONH ₂)	4-(-0-CH ₂ N)
	2107	5- (-CONH ₂)	4-(-NHMe)
20	2108	5- (-CONH ₂)	4- (-NHAC)
	2109	5- (-CONH ₂)	4- (-N-S-Ha)
25	2110	5- (-CONH ₂)	4-(-SMe)
	2111	5- (-CONH ₂)	4- (-s-no)
30	2112	5- (-CONH ₂)	4- (-\$-4e)
	2113	5- (-CONH ₂)	4 - (-8-NH ₂)
35	2114	5- (-CONH₂)	4- { -\$-N (Ne); }
	2115	5-{-CON(Me) ₂ }	-н
40	2116	5-{-CON (Me) ₂ }	4-(-F)
	2117	4-{-CON(Me) ₂ }	4-(-C1)
3	2118	5-{-CON (Me) ₂ }	4-(-CN)
45	2119	5-(-CON (Me) ₂)	4-(-NO ₂)
	2120	5-(-CON (Me) ₂)	4-(-Me)
50	2121	4-{-CON (Me) 2}	4-(-CF ₃)
50	2122	5-{-CON (Me) ₂ }	4-(-Ac)
	2123	5-{-CON (Me) 2}	4-(-CO ₂ H)
55	2124	5-(-CON (Me) ₂ }	4-(-CO ₂ Me)

EP 1 162 196 A1

5	2125	5-{-CON (Me) ₂ }	4- (()
	2126	5-{-CON (Me) ₂ }	3-(-CONH ₂)
	2127	4-{-CON (Me) ₂ }	4-{-CON (Me) 2}
10	2128	5-{-CON (Me) ₂ }	4-(-C(=NH)NH ₂ }
	2129	5-{-CON (Me) ₂ }	4-(-OMe)
15	2130	5-{-CON (Me) ₂ }	4-(-0-cr ₂ N)
	2131	5-{-CON (Me) ₂ }	4-(-NHMe)
	2132	5-{-CON (Me) ₂ }	4-(-NHAC)
20	2133	5-{-CON (Me) ₂ }	4- (-H-S-Me)
	2134	4-{-CON (Me) ₂ }	4-(-SMe)
25	2135	5-{-CON (Me) ₂ }	4 - (-s-He)
	2136	4-{-CON (Me) ₂ }	4- (-8-Hs)
<i>30</i>	2137	5-{-CON (Me) ₂ }	4 - (-\$-HH ₂)
	2138	5-{-CON (Me) ₂ }	4- {-\$-N(No) ₂ }
35	2139	5- (-OMe)	-н
	2140	5-(-0Me)	4-(-F)
	2141	3-(-OMe)	4-(-C1)
40	2142	4-(-OMe)	4-(-Cl)
	2143	5-(-OMe)	2-(-C1)
45	2144	5-(-OMe)	3-(-Cl)
45	2145	6-(-OMe)	4-(-Cl)
	2146	5-(-OMe)	4-(-CN)
50	2147	5-(-OMe)	4-(-NO ₂)
	2148	5-(-OMe)	4-(-Me)
	2149	5-(-OMe)	4-(-CF ₃)
55	2150	5-(-0Me)	4-(-Ac)

EP 1 162 196 A1

	2151	4-(-OMe)	4-(-CO ₂ H)
5	2152	4,5-di-(-OMe)	4-(-CO ₂ H)
	2153	5- (-OMe)	4-(-CO₂Me)
10	2154	5-(-OMe)	4- (<u>f</u>)
	2155	5-(-OMe)	4-(-CONH ₂)
	2156	5- (-OMe)	4-{-CON (Me) ₂ }
15	2157	5-(-OMe)	4-{-C (=NH) NH ₂ }
	2158	5-(-OMe)	4-(-OMe)
20	2159	5- (-OMe) .	4-(-0-CH_N)
20	2160	5- (-OMe)	4-(-NHMe)
	2161	5- (-OMe)	4-(-NHAC)
25	2162	5- (-OMe)	4- (-N-8-He)
	2163	5- (-OMe)	4-(-SMe)
30	2164	5- (~OMe)	4- (s-He)
	2165	5- (-OMe)	4 (-\$-io)
35	2166	5-(-OMe)	4- (-§-NH _x)
	2167	5-(-OMe)	4- {-\$-il (Mo) ₁ }
40	2168	5-(-NHMe)	4-(-F)
	2169	5-(-NHMe)	4-(-C1)
	2170	. 5-(-NHAc)	4-(-F)
45	2171	5-(-NHAc)	4-(-Cl)
	2172	5-(-NHAC)	4-(-Ac)
•	2173	5-(-NHAc)	4-(-CONH ₂)
50	2174	5-(-NHAc)	4-{-CON (Me) ₂ }
	2175	5- (-4-8-ma)	4-(-F)

5	2176	4- (-n-ş-u ₀)	4-(-Cl)
	2177	5- (-N-8-4a)	4-(-Me)
10	2178	5- (-N-S-He)	4-(-CF ₃)
	2179	5- (-N-3-He)	4-(-CO ₂ H)
15	2180	$5-\frac{\left(-\frac{9}{H}\frac{9}{6}-8a\right)}{5}$	4-(-CO₂Me)
20	2181	5- (-H-S-We)	4-()
20	2182	5- (-N-1-40)	4-(-SMe)
25	2183	5- (-N-S-Va)	4- (-\$-He)
	2184	5- (-N-3-ile)	4- (-\$-#e)
	2185	5-(-SMe)	4-(-F)
30	2186	4-(-SMe)	4-(-Cl)
	2187	5-(-SMe)	4-(-Me)
	2188	5- (-SMe)	4-(-CF ₃)
35	2189	5- (-SMe)	4-(-Ac)
	2190	5- (-SMe)	4-(-CONH ₂)
	2191	5-(-SMe)	4-{-CON (Me) 2}
40	2192	5- (-3-4.)	4-(-F)
4	2193	4- (-9-4.)	4-(-C1)
15	2194	5- (-\$-ii)	4-(-Me)
	2195	5- (-\$-#e)	4-(-CF ₃)
i o	2196	5- (-8-tto)	4-(-Ac)
	2197	5- (-\$-No)	4-(-CONH ₂)
5			

EP 1 162 196 A1

	2198	5- (-\$-µe)	4-{-CON (Me) 2}
5	2199	5- (-ş-u ₀)	4-(-F)
	2200	4- (-8-Ne)	4~(-Cl)
10	2201	5- (-8-No)	4-(-Me)
15	2202	5- (-g-2ha)	4-(-CF ₃)
	2203	5- (-9-Ha)	4-(-Ac)
20	2204	5- (-8-Ha)	4-(-CONH ₂)
	2205	5- (-8-#e)	4-{-CON (Me) 2}
25	2206	9 (4-(-F)
	2207	4- (-\$-NH ₃)	4-(-Cl)
30	2208	4— (— ў— мн _д)	2,4-di-(-Cl)
35	2209	7 (-8-мн _з) 5- 0	4~(-Me)
	2210	5- (3-(-CF ₃)
40	2211	5- (-รู๊-พห _ร)	4-(-CF ₃)
	2212	9-NH ₂) 5-	4-(-CONH ₂)
45	2213	5- (-รู-พน ู)	4-{-CON (Me) 2}
	2214 .	5- (-รู-พน _ร)	4-(-SMe)
50	2215	5- (-\$-NH ₂) 5- (-\$-NH ₂) 5- 0	$4-\begin{pmatrix} 0\\ -3-ite \end{pmatrix}$ $4-\begin{pmatrix} 0\\ -8-ite \end{pmatrix}$ $4-\begin{pmatrix} 0\\ -8-ite \end{pmatrix}$
	2216	5- (-\$-NH ₃)	4- (-\$-Be)
55			

5	2217	5- { (Na); }	4-(-F)
	2218	4- {-\$-N(He) ₂ }	4-(-C1)
10	2219	5- {-\$-N(Me) ₂ }	4-(-Me)
	2220	5 — { - 하 (Me) ; }	4-(-CF ₃)
15	2221	5- { N (Ho) 2 }	4-(-CONH ₂)
20	2222	$5-\left\{ -\overset{p}{\underset{b}{=}}N\left(Me\right)_{z}\right\}$	4-{-CON (Me) ₂ }
20	2223	$5 - \left\{ -\frac{9}{5} - N \left(M_{\odot} \right)_{2} \right\}$	4-(-SMe)
25	2224	$5-\left\{ -\stackrel{0}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{$	4- (-9-Ke)
	2225	$5-\left\{\begin{array}{c} 0\\ -\frac{5}{3}-N\left(\operatorname{He}\right)_{2} \end{array}\right\}$	4- (-\$-%)
	2226	5-(-0-(CH ₂) ₂ -OH)	4-(-C1)
30	2227	5-{-O-(CH ₂) ₃ -OH}	4-(-C1)
	2228	5- (-0^)	4-(-C1)
35	2229	5- (-0)	4-(-Cl)
	2230	5- (-0 N-iia)	4-(-Cl)
40	2231	5- (~~) OH	4-(-Cl)
45	2232	5- (-0-1) OH	4-(-Cl)
	2233	5- (NOOH)	4-(-Cl)
50	2234	5- (POH)	4-(-Cl)
55	2235	5- (N OH)	4-(-Cl)

EP 1 162 196 A1

5	2236	5- (NO OH)	4-(-C1)
	2237	5- (CO,H)	4-(-C1)
10	2238	5- (No Ho Ho)	4-(-Cl)
15	2239	O Me Ma OH	4-(-C1)
20	2240	5- (N OMA)	4-(-Cl)
	2241	5- ()	4-(-Cl)
25	2242	5-(1)	4-(-Cl)
30	2243	5- (NO NO)	4-(-Cl)
<i>3</i> 5	2244	5-(1000)	4-(~Cl)
10	2245	5-	4-(-Cl)
40	2246	5- (NOH)	4-(-C1)
45	2247	5-(10)	4- (~Cl)
50	2248	4-(ایال)	4-(-C1)
50	2249	5- (4-(-c1)

		·	
5	2250	5-	4-(-Cl)
10	2251	4-(11-11)	. 4-(-Cl)
	2252	4-(110)	4-(-Cl)
15	2253	5- (No ()	4-(-Cl)
20	2254	5-() () () () ()	4-(-C1)

Table 214

10	HO ₂ C N S S S S S S S S S S S S S S S S S S			
15	Ex. No.	R	R'	
	2255	-н	-н	
	2256	∸H	4- (-Me)	
20	2257		3-(-CF ₃)	
20	2258	5-(-F)	-н	
	2259	5-(-F)	4-(-F)	
25	2260	5-(-F)	4-(-C1)	
23.	2261	5-(-F)	4- (-Me)	
	2262	5- (- F)	4-(-CF ₃)	
30	2263	5-(-F)	4-(-CO ₂ H)	
	2264	5-(-F)	4-(-CO ₂ Me)	
	2265	5-(-F)	4-(- <u> </u> -	
35	2266	5-(-F)	4-(-CONH ₂)	
	2267	5-(-F)	4-{-CON (Me) ₂ }	
	2268	5- (-F)	4-(-OMe)	
40	2269	5-(-F)	4-(-SMe)	
	2270	5- (-F)	4- (-S-Ne)	
45	2271	5-(-F)	4- (-\$-lie)	
ſ	2272	4-(-Cl)	-н	
50	2273	5-(-C1)	4- (-F)	
	2274	4-(-C1)	4-(-C1)	
	2275	5-(-C1)	4-(-Me)	
55	2276	5-(-C1)	4-(-CF ₃)	

EP 1 162 196 A1

10 15	2277 2278 2279 2280 2281 2282 2283 2284 2285	5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1)	4-(-CO ₂ H) 4-(-CO ₂ Me) 4-(-CO ₂ Me) 4-(-CONH2) 4-(-CONH2) 4-(-CON (Me) ₂) 4-(-OMe) 4-(-SMe) 4-(-SMe)
10	2279 2280 2281 2282 2283 2284	5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1)	4-(-CONH2) 4-(-CON (Me) ₂) 4-(-OMe) 4-(-SMe)
15	2280 2281 2282 2283 2284	5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1) 5-(-C1)	4-(-CONH2) 4-(-CON (Me) ₂ } 4-(-OMe) 4-(-SMe)
15	2281 2282 2283 2284	5-(-C1) 5-(-C1) 5-(-C1)	4-(-CONH2) 4-(-CON (Me) ₂ } 4-(-OMe) 4-(-SMe)
	2282 2283 2284	5-(-C1) 5-(-C1) 5-(-C1)	4-(-OMe) 4-(-SMe)
	2283 2284	5-(-C1) (5-(-C1)	4-(-SMe)
	2284	5-(-Cl)	(!)
20			4 – (– s–Me)
20	2285	5-(-C1)	
			4- (-3-le)
	2286	5- (-CN)	4-(-F)
	2287	5- (-CN)	4-(-Cl)
25	2288	5- (-NO ₂)	4-(-F)
	2289	5-(-NO ₂)	4-(-C1)
30	2290	5- (-Me)	4-(-CO ₂ H)
30	2291	5- (-Me)	4-(-CO ₂ Me)
•	2292	5- (-Me)	4-(Li O)
35	2293	5- (-CF ₃)	4-(-CO ₂ H)
j	2294	5-(-CF ₃)	4-(-CO ₂ Me)
40	2295	5- (-CF ₃)	4- (<u> </u>
	2296	5- (-CO ₂ H)	4-(-F)
Ì	2297	4-(-CO ₂ H)	4-(-C1)
45	2298	5- (-CO ₂ Me)	4-(-F)
ļ	2299	5-(-CO ₂ Me)	4-(-Cl)
	2300	5- (-Ac)	4-(-F)
50	2301	5- (-Ac)	4-(-Cl)
	2302	5- (<u> </u>	-н
55	2303	5- () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () () (4-(-F)

EP 1 162 196 A1

5	2304	4-(-1	4-(-Cl)
	2305	₅₋ (4-(-CN)
10	2306	5-(-1-)	4-(-NO ₂)
	2307	5-(4-(-Me)
15	2308	5- (<u>-</u> - ()	4-(-CF ₃)
	2309	5- (<u>-</u> !(_))	4-(-Ac)
20	2310	₅₋ (()	4- (-CO ₂ H) .
	2311	₅₋ (L ()	4-(-CO ₂ Me)
25	2312	₅₋ (-l-\(\cappa\))	4- (-
	2313	₅₋ (<u>f</u>)	4-(-CONH ₂)
30	2314	₅₋ (<u>-</u> P)	4-(-CON (Me) ₂)
	2315	₅₋ (- <u>L</u> ,) .	4-{-C (=NH) NH ₂ }
35	2316	₅₋ (<u> </u>	4-(-OMe)
40	2317	_{5−} (- <u>L</u>)	4-(-0-cH ₁ -N-)
	2318	₅₋ (<u>l</u> ;)	4-(-NHMe)
45	2319	5-(-1-(-))	4-(-NHAc)
	2320	₅₋ (-P-(-))	4- (-H-S-He)
50	2321	5-(4-(-SMe)
	2322	5- ()	4- (-s-Ne)
			

EP 1 162 196 A1

5	2323	5-(-1	4- (-8-Ms)
	2324	5-(- <u> </u> N_)	4- (-s-nh,)
10	2325	5-(一〇)	4- {-3-N(Ma), }
	2326	5- (-CONH ₂)	-Н
15	2327	5- (-CONH ₂)	4-(-F)
	2328	4- (-CONH ₂)	4-(-Cl)
	2329	5- (-CONH ₂)	4-(-CN)
20 .	2330	5- (-CONH ₂)	4-(-NO ₂)
	2331	5-(-conh ₂)	4-(-Me)
	2332	5- (-CONH ₂)	4-(-CF ₃)
25	2333	5- (-CONH ₂)	4-(-Ac)
	2334	5- (-CONH ₂)	4-(-CO ₂ H)
	2335	5- (-CONH ₂)	4-(-CO₂Me)
30	2336	5-(-CONH ₂)	4-(-1-(-))
	2337	5-(-CONH ₂)	4-(-CONH ₂)
35	2338	5-(-CONH ₂)	4-{-CON (Me) 2}
	2339	5-(-CONH ₂)	4-(-C (=NH) NH ₂)
	2340	5- (-CONH ₂)	4-(-OMe)
40	2341	5-(-CONH ₂)	4-(-0-cH ₂ N)
	2342	5- (-CONH ₂)	4-(-NHMe)
15	2343	5-(-CONH ₂)	4-(-NHAC)
	2344	5-(-CONH ₂)	4- (-H-\$-No)
	2345	5- (-CONH ₂)	4-(-SMe)
o I	2346	5-(-CONH ₂)	4- (-\$-No)
5	2347	5-(-CONH ₂)	4- (-s-us) 4- (-s-us) 4- (-s-us)

EP 1 162 196 A1

5	2348	5-(-CONH ₂)	4- (-\$-NH ₂) 4- [-\$-N(Ne) ₂]
	2349	5-(-CONH ₂)	4- {-\$-N(Re), }
10	2350	5-{-CON (Me) ₂ }	-н
	2351	5-{-CON (Me) ₂ }	4-(-F)
45	2352	4-{-CON (Me) 2}	4-(-Cl)
15	2353	5-{-CON(Me) ₂ }	4-(-CN)
	2354	5-{-CON (Me) 2}	4-(-NO ₂)
20	2355	5-{-CON (Me) 2}	4-(-Me)
20	2356	5-{-CON (Me) 2}	4-(-CF ₃)
	2357	5-{-CON (Me) 2}	4- (-Ac)
25	2358	5-{-CON (Me) ₂ }	4-(-CO ₂ H)
	2359	5-{-CON (Me) 2}	4- (-CO ₂ Me)
	2360	5-{-CON (Me) 2}	4-(-1-)
30	2361	5-{-CON (Me) ₂ }	4-(-CONH ₂)
	2362	5-{-CON(Me) ₂ }	4-(-CON (Me) ₂)
	2363	5-{-CON (Me) 2}	4-{-C (=NH) NH ₂ }
35	2364	5-{-CON (Me) ₂ }	4-(-OMe)
	2365	5-(-CON(Me) ₂ }	4-(-0-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
40	2366	5-{-CON (Me) ₂ }	4-(-NHMe)
	2367	5-{-CON (Me) ₂ }	4-(-NHAc)
45	2368	5-{-CON (Me) 2}	4- (-N-3-Hs)
	2369	5-{-CON (Me) ₂ }	4-(-SMe)
50	2370	5-{-CON (Me) ₂ }	4 - (-s-u ₀)
	2371	5-{-CON (Me) ₂ }.	$ \begin{array}{c} $
55	2372	5-{-CON (Me) ₂ }	4- (-s-nh,)

EP 1 162 196 A1

		T	
5	2373	5-{-CON (Me) ₂ }	$4 - \left\{ -\frac{9}{5} - N(\text{Me})_2 \right\}$
	2374	5-(-OMe)	-н
10	2375	5-(-OMe)	4-(-F)
	2376	5-(-OMe)	4-(-C1)
	2377	5-(-OMe)	4-(-CN)
15	2378	5-(-OMe)	4-(-NO ₂)
	2379	5-(-OMe)	4-(-Me)
	2380	5-(-OMe)	4-(-CF ₃)
20	2381	5-(-OMe)	4-(-Ac)
	2382	5-(-OMe)	4-(-CO ₂ H)
	2383	5-(-OMe)	4-(-CO ₂ Me)
25	2384	5-(-OMe)	4-(-1-1-)
	2385	5-(-OMe)	4-(-CONH ₂)
30	2386	5-(-OMe)	4-{-CON (Me) 2}
30	2387	5-(-OMe)	4-{-C (=NH) NH ₂ }
	2388	5-(-OMe)	4-(-OMe)
35	2389	5-(-OMe)	4-(-0-CH2 N)
	2390	5-(-OMe)	4-(-NHMe)
	2391	5-(-OMe)	4-(-NHAC)
40	2392	5-(-OMe)	4- (-N-3-No)
	2393	5-(-OMe)	4-(-SMe)
45	2394	5-(-OMe)	4- (-3-40)
	2395	5-(-OMe)	$\left(\begin{array}{c} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} \right)$
50	2396	5-(-OMe)	4- (-\$-NH,) 4- (-\$-NH,)
.2	2397	5-(-OMe)	4- { N (No) }
<i>55</i>	2398	5- (-NHMe)	4-(-F)

EP 1 162 196 A1

2399 5-(-NHMe) 4-(-C1) 2400 5-(-NHAc) 4-(-F) 2401 5-(-NHAc) 4-(-C1) 2402 5-(-NHAc) 4-(-C0) 2403 5-(-NHAc) 4-(-C0NH ₂) 2404 5-(-NHAc) 4-(-CONH ₂) 2405 5-(-NHAc) 4-(-CON(Me) ₂) 2406 5-(-NHAc) 4-(-C1) 2407 5-(-NHAc) 4-(-C1) 2408 5-(-NHAc) 4-(-C1) 2408 5-(-NHAc) 4-(-C5) 2409 5-(-NHAc) 4-(-C5) 2410 5-(-NHAc) 4-(-C0 ₂ Me) 2411 5-(-NHAc) 4-(-C0 ₂ Me) 2412 5-(-NHAC) 4-(-SMe) 2413 5-(-NHAC) 4-(-SMe) 2414 5-(-NHAC) 4-(-SMe) 2415 5-(-SMe) 4-(-C1) 2416 5-(-SMe) 4-(-C1) 2417 5-(-SMe) 4-(-C1) 2418 5-(-SMe) 4-(-C5 ₃) 2419 5-(-SMe) 4-(-C0 ₃ Me) 2419 5-(-SMe) 4-(-C0 ₃ Me) 2420 5-(-SMe) 4-(-C0 ₃ Me) ₂ 2422 5-(-SMe) 4-(-C0 ₃ Me) ₂				
2401 5-(-NHAC) 4-(-CL) 2402 5-(-NHAC) 4-(-AC) 2403 5-(-NHAC) 4-(-CONH ₂) 2404 5-(-NHAC) 4-(-CON(Me) ₂) 2405 5-(-NHAC) 4-(-CON(Me) ₂) 2406 5-(-NHAC) 4-(-CN(Me) ₂) 2406 5-(-NHAC) 4-(-CN(Me) ₂) 2407 (-NHAC) 4-(-CI) 2408 5-(-NHAC) 4-(-CI) 2408 (-NHAC) 4-(-CI) 2409 (-NHAC) 4-(-CI) 2410 (-NHAC) 4-(-CO ₂ Me) 2410 (-NHAC) 4-(-CO ₂ Me) 2411 (-NHAC) 4-(-CO ₂ Me) 2412 (-NHAC) 4-(-CNHAC) 2413 (-NHAC) 4-(-SMe) 2414 (-NHAC) 4-(-SMe) 2415 5-(-SMe) 4-(-CI) 2416 5-(-SMe) 4-(-CI) 2417 5-(-SMe) 4-(-CI) 2418 5-(-SMe) 4-(-CI) 2419 5-(-SMe) 4-(-CO) 2420 5-(-SMe) 4-(-CO) 2421 5-(-SMe) 4-(-CO) 2422 (-S-NE) 4-(-CO) 2422 (-S-NE) 4-(-CO) 2422 (-S-NE) 4-(-CO) 2422 (-S-NE) 4-(-CO) 2420 5-(-SMe) 4-(-CO) 2420 5-(-SMe) 4-(-CO) 2420 5-(-SMe) 4-(-CO) 2420 [-S-NE) 4-(-CO) 2422 (-S-NE) 4-(-CO)		2399	5-(-NHMe)	4-(-C1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2400	5- (-NHAC)	4-(-F)
10		2401	5- (-NHAC)	4-(-Cl)
2404 $5-(-NHAC)$ $4-(-CON (Me)_2)$ 2405 $5-(-\frac{9}{110}-1e)$ $4-(-F)$ 2406 $5-(-\frac{9}{110}-1e)$ $4-(-C1)$ 2407 $5-(-\frac{9}{110}-1e)$ $4-(-C1)$ 2408 $5-(-\frac{9}{110}-1e)$ $4-(-CF_3)$ 25 2409 $5-(-\frac{9}{110}-1e)$ $4-(-CO_2H)$ 2410 $5-(-\frac{9}{110}-1e)$ $4-(-CO_2H)$ 2411 $5-(-\frac{9}{110}-1e)$ $4-(-CO_2Me)$ 2412 $5-(-\frac{9}{110}-1e)$ $4-(-SMe)$ 2413 $5-(-\frac{9}{110}-1e)$ $4-(-\frac{9}{110}-1e)$ 2414 $5-(-\frac{9}{110}-1e)$ $4-(-\frac{9}{110}-1e)$ 2415 $5-(-SMe)$ $4-(-C1)$ 2416 $5-(-SMe)$ $4-(-C1)$ 2417 $5-(-SMe)$ $4-(-C1)$ 2418 $5-(-SMe)$ $4-(-C1)$ 2419 $5-(-SMe)$ $4-(-CONH_2)$ 2420 $5-(-SMe)$ $4-(-CONH_2)$ 2421 $5-(-SMe)$ $4-(-CON(Me)_2)$ 2422 $5-(-SMe)$ $4-(-F)$		2402	5- (-NHAC)	4-(-Ac)
2405 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-F)}$ 2406 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-C1)}$ 2407 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-C1)}$ 2408 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-Me)}$ 2409 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-CO_2H)}$ 2410 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-CO_2H)}$ 2411 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-CO_2He)}$ 2412 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-SMe)}$ 2413 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-(-SMe)}$ 2414 $\frac{1}{5-\frac{1}{110}-160}$ $\frac{1}{4-\frac{1}{5}-160}$ 2415 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-F)}$ 2416 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-F)}$ 2417 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-CO_1He)}$ 2418 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-CO_1He)}$ 2419 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-CO_1He)}$ 2420 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-CO_1He)}$ 2421 $\frac{1}{5-(-SMe)}$ $\frac{1}{4-(-CO_1He)}$	10	2403	5-(-NHAC)	4-(-CONH ₂)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2404	5- (-NHAC)	4-(-CON (Me) ₂)
20 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	2405	5 (-#-\$-#e)	4-(-F)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2406		4-(-C1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	2407	5- (-N-8-16)	4-(-Me)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2408	(- 州 - 県- 山。) 5	4- (-CF ₃)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	2409	(一州-第一湖) 5- ガー D	4-(-CO ₂ H)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	2410	5- (-N-8-Ha)	4-(-CO ₂ Me)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	2411	5- (-N-8-16)	4- (<u>-</u>)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	2412	5 (N-N-N-N-)	4- (-SMe)
2415 5- (-SMe) 4- (-F) 2416 5- (-SMe) 4- (-C1) 2417 5- (-SMe) 4- (-Me) 2418 5- (-SMe) 4- (-CF ₃) 2419 5- (-SMe) 4- (-AC) 2420 5- (-SMe) 4- (-CONH ₂) 2421 5- (-SMe) 4- (-CON (Me) ₂) 2422 (-S-Ne) 4- (-F)		2413	5- (-N-8-14•)	4- (-g-No)
2416 5- (-SMe) 4- (-C1) 2417 5- (-SMe) 4- (-Me) 2418 5- (-SMe) 4- (-CF ₃) 2419 5- (-SMe) 4- (-AC) 2420 5- (-SMe) 4- (-CONH ₂) 2421 5- (-SMe) 4- (-CON (Me) ₂) 2422 (-S-Ne) 4- (-F)	40	2414		4- (-8-Me)
2417 5-(-SMe) 4-(-Me) 2418 5-(-SMe) 4-(-CF ₃) 2419 5-(-SMe) 4-(-Ac) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)		2415		4-(-F)
2418		2416		4-(-C1)
2419 5-(-SMe) 4-(-Ac) 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)	45	2417		
50 2420 5-(-SMe) 4-(-CONH ₂) 2421 5-(-SMe) 4-(-CON (Me) ₂) 2422 (-S-Ne) 4-(-F)		2418		
2421 5-(-SMe) 4-(-CON(Me) ₂) 2422 (-S-Ne) 4-(-F)		2419		<u> </u>
2422 ((-s-He) 4-(-F)	50	2420		
55 2422 (-S-He) 4-(-F)		2421		4-{-CON (Me) ₂ }
	55	2422	5- (-\$-¥¢)	4-(-F)

5	2423	5- (-s-Me)	4-(-Cl)
	2424	5— (—s—Me)	4-(-Me)
10	2425	5- (-s-Me)	4-(-CF ₃)
	2426	. (-\$- M e)	4-(-Ac)
15	2427	5- (\$- M ₀)	4-(-CONH ₂)
	2428	5- (-\$-iie)	4-{-CON (Me) ₂ }
20	2429	(4-(-F)
	2430	5- (-ş-u _o)	4-(-Cl)
25	2431	2- (-8-Ne)	4-(-Me)
	2432	$5-\begin{pmatrix} -rac{9}{8}-{ m He} \end{pmatrix}$	4-(-CF ₃)
30	2433	5- (-\$-Na)	4-(-Ac)
<i>35</i>	2434	5- (-\$-#e)	4-(-CONH ₂)
	2435	5- (-3-Re)	4-{-CON (Me) 2}
40	2436	5- (-8-NH ₂)	4-(-F)
	2437	5- (-s-nh ₂)	4-(-C1)
45	2438	5- (-8-NH ₂)	4-(-Me)
	2439	5- (4-(-CF ₃)
50	2440	5- (-\$-NH ₂) 5- (-\$-NH ₂) 5- (-\$-NH ₃) 5- (-\$-NH ₃) 5- (-\$-NH ₃)	4-(-CONH ₂)
	2441	5- (-\$-NH ₃)	4-{-CON(Me) ₂ }
55			

EP 1 162 196 A1

5	2442	5- (NH ₂)	4-(-SMe)
,	2443	5- (-\$-NH ₂)	4- (-s-He)
10	2444	5- (-\$-NH,)	4- (-ş-Me)
	2445	$5 - \left\{ \begin{array}{c} 0 \\ -3 - \text{N (Ma)}_x \end{array} \right\}$	4-(-F)
15	2446	$5 - \left\{ \begin{array}{c} 9 \\ -8 - \text{N (Re)}_2 \end{array} \right\}$	4-(-Cl)
	2447	{ —	4-(-Me)
20	2448	5- {-\$-H(Ma); }	4-(-CF ₃)
25	2449	5— { ——————————————————————————————————	4-(-CONH ₂)
25	2450	5- {-5-N (No), }	4-{-CON (Me) ₂ }
30	2451	5- {-\$-N(Ma), }	4-(-SMe)
	2452	5- {	4- (-S-Ne)
35	2453	5- {-\$-N(No); }	4- (-8-No)

Table 215

5		Table 215				
10		HO ₂ C N 2 3 4 5 6 R'				
	Ex.N	R	R'			
15	2454	2-(-F)	2-(-F)			
	2455	2-(-F)	3-(-F)			
	2456	2-(-F)	4-(-F)			
20	2457	3-(-Cl)	3-(-C1)			
	2458	3,5-di-(-Cl)	3,5-di-(-Cl)			
	2459	3-(-CN)	3-(-CN)			
25	2460	3-(-NO ₂)	3-(-NO ₂)			
	2461	3-(-Me)	3-(-Me)			
	2462	3-(-CF ₃)	3-(-CF ₃)			
<i>30</i>	2463	3-(-Ac)	3-(-Ac)			
	2464	3- (-CO ₂ H)	3-(-CO ₂ H)			
	2465	3- (-CO₂Me)	3-(-CO ₂ Me)			
35	2466	3-(-1)	3-(-1-(-))			
	2467	3-(-CONH ₂)	3-(-CONH ₂)			
40	2468	3-(-CONH ₂)	3-(-F)			
	2469	3-(-CONH ₂)	3-(-C1)			
	2470	3-{-CON (Me) 2}	3-{-CON (Me) ₂ }			
45	2471	3-{-CON (Me) 2}	3-(-F)			
	2472	3-{-CON (Me) 2}	3-(-C1)			
	2473	3-{-C (=NH) NH ₂ }	3-{-C (=NH) NH ₂ }			
50	2474	3-(-OMe)	3-(-OMe)			
	2475	3-(-D-CH ₂ -N)	3-(-0-cH ² -N\)			
55	2476	3-(-NHMe)	3-(-NHMe)			

	2477	3- (-NHAc)	3- (-NHAC)
5	2478	3- (-H-S-Wa)	3- (-H-8-me)
	2479	3-(-SMe)	3-(-SMe)
10	2480	3- (-s-Ha)	3- (-3-#•)
	2481	3- (-8-Me)	3- (-8-40)
15	2482	3- (-8-NH ₃)	3- (-8-NR ₂)
20	2483	$3-\left\{ -\stackrel{0}{\stackrel{\circ}{\stackrel{\circ}{\circ}}}-N\left(N\alpha\right),\ \right\}$	3- {
	2484	3-(-F)	4-(-F)
	2485	3-(-C1)	4-(-C1)
25	2486	4-(-CN)	4-(-CN)
	2487	4-(-NO ₂)	4-(-NO ₂)
	2488	3- (-Me)	4-(-Me)
30	2489	4- (-Me)	2,6-di-(-Me)
	2490	4-(-CF ₃)	4-(-CF ₃)
	2491	4-(-Ac)	4-(-Ac)
35	2492	4- (-CO ₂ H)	4-(-CO ₂ H)
	2493	4- (-CO ₂ Me)	4-(-CO ₂ Me)
	2494	4- (4- (-ln())
40	2495	4- (-CONH ₂)	4-(-CONH ₂)
	2496	4-(-CONH ₂)	4-(-F)
	2497	4-(-CONH ₂)	2,3,4,5,6-penta-(-F)
45	2498	4- (-CONH ₂)	4-(-C1)
	2499	4-{-CON (Me) ₂ }	4-{-CON (Me) 2}
50	2500	4-{-CON (Me) ₂ }	4-(-F)
50	2501	4-(-CON (Me) ₂)	4-(-Cl)
	2502	4-{-CON(Me) ₂ }	3,5-di-(-Cl)
55	2503	4-(-C (=NH) NH ₂ }	4-{-C (=NH) NH ₂ }

EP 1 162 196 A1

2504	4-(-OMe)	4-(-OMe)
2505	4-(-OMe)	3,4,5-tri-(-OMe)
2506	4-(-0-CH2-N)	4-(-0-cH-1-N)
2507	4-(-NHMe)	4-(-NHMe)
2508	4-(-NHAC)	4-(-NHAC)
2509	4- (-N-S-He)	4- (-N-S-Me)
2510	4-(-SMe)	4-(-SMe)
2511	$_{4-}^{\left(egin{array}{c} 0 & 0 \ -3-M_{\odot} \end{array} ight)}$	4- (-ŝ-He)
2512	4- (-8-Ne)	4- (-\$-40)
2513	4- (-\$-NH ₂)	4— (— ў-лн ₂)
2514	$4-\left\{egin{array}{c} \Omega \\ -\ddot{\ddot{s}} - \dot{N} \left(\dot{m}_{a} ight)_{z} \end{array} ight\}$	4- {-\$-1(No), }

Table 216

_	Table 210			
10		H0 ₂ C		
	Ex.N	R	R'	
15	2515	-н	-н	
	2516	. 2-(-F)	3-(-F)	
	2517	3-(-C1)	3-(-C1)	
20	2518	3- (-CN)	3-(-CN)	
	2519	3-(-NO ₂)	3- (-NO ₂)	
	2520	3-(-Me)	3-(-Me)	
25	2521	3-(-CF ₃)	3-(-CF ₃)	
	2522	3-(-Ac)	3- (-Ac)	
	2523	3- (-CO ₂ H)	3- (-CO₂H)	
30	2524	3-(-CO₂Me)	3- (-CO ₂ Me)	
	2525	3-(3-(-1-(-))	
35	2526	3- (-CONH ₂)	3- (-CONH ₂)	
	2527	3- (-CONH ₂)	3-(-F)	
	2528	3- (-CONH ₂)	3-(-C1)	
40	2529	3-(-CON (Me) ₂)	· 3-{-CON (Me) ₂ }	
	2530	3-{-CON (Me) ₂ }	3-(-F)	
	2531	3-{-CON (Me) ₂ }	3-(-C1)	
45	2532	3-{-C(=NH)NH ₂ }	3-{-C(=NH)NH ₂ }	
	2533	3-(-OMe)	3- (-0Me)	
50	2534	3-(-o-ch² N)	3-(-o-cH ² N)	
	2535	3-(-NHMe)	3- (-NHMe)	
	2536	3-(-NHAc)	3- (-NHAC)	
50	2534 2535	3-(-NHMe)	3- (-NHMe)	

301

EP 1 162 196 A1

5	2537	3- (-N-2-N-)	3- (-N-S-Na)
	2538	3-(-SMe)	3-(-SMe)
10	2539	3- (-2-We)	3- (-s-No)
	2540	3- (-3-Me)	3- (-3-40)
15	2541	3- (-= NH²)	3- (
	2542	3- {-\$-N(He) ₂ }	3- {-\$-H(He), }
20	2543	. 3-(-F)	4-(-F)
	2544	4-(-C1)	4-(-Cl)
	2545	4-(-cn)	4-(-CN)
25	2546	4-(-NO ₂)	4-(-NO ₂)
	2547	4-(-Me)	4-(-Me)
	2548	4-(-CF ₃)	4-(-CF ₃)
30	2549	4-(-Ac)	4-(-Ac)
	2550	3-(-CO ₂ H)	4-(-CO ₂ H)
	2551	4-(-CO ₂ Me)	4- (-CO ₂ Me)
35	2552	4-(-1-(-))	4-(<u>l</u> ,()
	2553	4 (-CONH ₂)	4-(-CONH ₂)
	2554	4-(-CONH ₂)	4-(-F)
40	2555	4-(-CONH ₂)	4-(-C1)
	2556	3-{-CON (Me) 2}	4-{-CON (Me) z}
	2557	3-{-CON (Me) 2}	4-(-F)
45	2558	4-{-CON (Me) 2}	4-(-C1)
	2559	4-{-C (=NH) NH ₂ }	4-(-C (=NH) NH ₂ }
420	2560	4-(-OMe)	4-(-OMe)
50	2561	4-(-0-cH ₂ N)	4-(-o-ci+1-1-)
	2562	4-(-NHMe)	4-(-NHMe)
55	2563	4-(-NHAC)	4- (-NHAC)

EP 1 162 196 A1

2564	$4-\begin{pmatrix} -N-S-Na \\ H & 0 \end{pmatrix}$	4 - (-N-S-Me)
2565	4-(-SMe)	4-(-SMe)
2566	4- (-s-No)	$_{4-}^{\left(\begin{array}{c} \rho \\ -s-ile \end{array} \right)}$
2567	4 - (-3-lie)	4 — (
2568	4- (4— (— 9— NH ₂)
2569	$4 - \left\{ \begin{array}{c} 0 \\ -\frac{9}{5} - N \left(\mathbb{H}_{0} \right)_{z} \end{array} \right\}$	4- { -9-N(Me), }

Table 217

5		Table 217		
	HO ₂ C N Py 1 8 8 R'			
10		<u> </u>	Py : pyridyl group	
	Ex.N	Py	R'.	
15	2570	3-Py	-н	
	2571	3-Py	3-(-F)	
	2572	3-Py	3-(-C1)	
20	2573	3-Py	3-(-Me)	
	2574	3-Py	3-(-CF ₃)	
	2575	3-P y	3-(-Ac)	
2 5	2576	3-Py	3- (-CO ₂ H)	
	2577	3-Py	3-(-CO ₂ Me)	
	2578	3-Ру	3-(- <u>F</u> x)	
30	2579	3-Py	3-(-CONH ₂)	
	2580	3-Py	3-{-CON (Me) ₂ }	
1	2581	3-Ру	4-(-F)	
35	2582	3-Py	4-(-Cl)	
	2583	Э-Ру	4-(-Me)	
40	2584	3-Py	4-(-CF ₃)	
40	2585	3-Py	4-(-Ac)	
45	2586	2-Ру	4-(-CO ₂ H)	
	2587	3-Py	4-(-CO ₂ Me)	
	2588	3-Ру	4-(-1	
	2589	4-Py	4-(-CONH ₂)	
50	2590	3-Py	4-{-CON (Me) 2}	

Table 218

5	HO ₂ C 2 3			
10		.	Py : pyridyl group	
	Ex.N	. Py	R'	
15	2591	3-P y	-н	
	2592	3-P y	3-(-F)	
	2593	3-P y	3-(-C1)	
20	2594	3-P y	3-(-Me)	
	2595	3-Py	3-(-CF ₃)	
	2596	3-PY	3- (-Ac)	
25	2597	3-Py	3-(-CO ₂ H)	
	2598	3-Py	3- (-CO₂Me)	
	2599	3-Py	3- (-1-1○)	
30	2600	3-Py	3-(-CONH ₂)	
•	2601	3-Py	3-{-CON (Me) 2}	
	2602	3-Ру	4-(-F)	
35	2603	3-PY	4-(-C1)	
	2604	3-Py	4-(-Me)	
	2605	3-Py	4-(-CF ₃)	
40	2606	3-Ру	4-(-Ac)	
	2607	3-Ру	4-(-CO ₂ H)	
	2608	3-Ру	4-(-CO ₂ Me)	
45	2609	3-Ру	4-(-1	
	2610	· 3-Ру	4- (-CONH ₂)	
50	2611	3-Py	4-{-CON (Me) ₂ }	

[0301] Formulation Example is given in the following. This example is merely for the purpose of exemplification and does not limit the invention.

Formulation Example

[0302]

5

10

15

compound of Example 1	10 g
lactose	50 g
corn starch	15 a
sodium carboxymethylcellulose	44 a
magnesium stearate	1 g
	lactose corn starch sodium carboxymethylcellulose

[0303] The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).

Industrial Applicability

[0304] As is evident from the above-mentioned results, the compound of the present invention shows a high inhibitory against HCV polymerase.

[0305] Therefore, the compound of the present invention can provide a pharmaceutical agent effective for the prophylaxis or treatment of hepatitis C, based on the anti-HCV effect afforded by the HCV polymerase inhibitory activity. When used concurrently with a different anti-HCV agent, such as interferon, and/or an anti-inflammatory agent and the like, it can provide a pharmaceutical agent more effective for the prophylaxis or treatment of hepatitis C. Its high with slight side effects, which can be used safely for humans.

[0306] This application is based on patent application No. 369008/1999 filed in Japan, the contents of which are hereby incorporated by reference.

Claims

30

35

40

45

50

55

A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [i] or a pharmaceutically acceptable salt thereof as an active ingredient:

wherein

a broken line is a single bond or a double bond,

G1	is C(-R1) or a nitrogen atom,
G ²	is C(-R ²) or a nitrogen atom,
G ³	is C(-R ³) or a nitrogen atom,
G ⁴	is C(-R ⁴) or a nitrogen atom,
G ⁵ , G ⁶ , G ⁸ and G ⁹	are each independently a carbon atom or a nitrogen atom.
G'	is C(-R7), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom,

- (2) C₁₋₆ alkanoyl,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,

5

10

15

20

25

30

35

40

45

50

55

(6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COOR^{a1}

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

-(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_r-NR^{b1}R^{b2}, - (CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-OR^{b1}, -(CH₂)_r-SO₂R^{b1} and -(CH₂)_r-SO₂NR^{b1}R^{b2}

wherein Rb1 and Rb2 are each independently hydrogen atom or C₁₋₈ alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

(9) -C(=NRa4)NH2

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHR^{a5}

wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,

(11) -ORa6

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein Ra7 is hydroxyl group, amino, C₁₋₆ alkyl or C₁₋₆ alkylamino

or

(13) -P(=O) (ORa31)2

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

 R^7 and R^8 are each hydrogen atom or optionally substituted C_{1-6} alkyl(as defined above),

ring Cy is

(1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy,

(2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or (3)

 $(\langle u \rangle)_{v} (\langle u \rangle)_{v} (\langle u \rangle)_{v}$

wherein u and v are each independently an integer of 1 to 3,

ring A is

- (1) C₆₋₁₄ aryl,
- (2) C₃₋₈ cycloalkyl,
- (3) C₃₋₈ cycloalkenyl or
- (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.

R5 and R6 are each independently

- (1) hydrogen atom.
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) -ORa8

wherein R^{a8} is hydrogen atom, C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, and

X is

10

15

20

25

30

35

40

45

50

55

5

- (1) hydrogen atom,
- (2) halogen atom,
- (3) cyano,
- (4) nitro,
- (5) amino, C₁₋₆ alkanoylamino,
- (6) C₁₋₆ alkylsulfonyl,
- (7) optionally substituted C₁₋₆ alkyl (as defined above),
- (8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
- (9) -COORa9

wherein Ra9 is hydrogen atom or C1-6 alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein R^{a11} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above) ог

(12)

wherein

ring B is

- (1') C₆₋₁₄ aryl,
- (2') C₃₋₈ cycloalkyl or
- (3') heterocyclic group (as defined above),

each Z is independently

- (1') a group selected from the following group D,
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
- (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group

wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,

(e) optionally substituted C₁₋₆ alkyl (as defined above), (f) -(CH2)1-CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is 5 (1") optionally substituted C₁₋₆ alkyl (as defined above), (2") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B 10 wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, (g) -(CH₂)_t-COORa19 wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 (h) -(CH₂)_t-CONRa27Ra28 wherein Ra27 and Ra28 are each independently, (1") hydrogen atom, 20 (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B. (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above 25 (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above wherein the heterocycle C₁₋₆ alkyl is C₁₋₆ alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group 30 B. or (8") C_{3-8} cycloalkyl $C_{1.6}$ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 35 (i) -(CH₂)_t-C(=NRa33)NH₂ wherein Ra33 is hydrogen atom or C1-6 alkyl, (j) -(CH₂)_t-OR^{a20} wherein Ra20 is 40 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") optionally substituted C2-6 alkenyl (as defined above), (4") C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (5") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 45 (6") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (8") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 50 group B, (9") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (10") C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 55 (k) -(CH₂)_t-O- (CH₂)_p-COR^{a21} wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,

(I) -(CH₂)_t-NRa22Ra23

wherein Ra22 and Ra23 are each independently

(1") hydrogen atom, 5 (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (5") heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 group B. (m) - (CH₂)_t-NR^{a29}CO-R^{a24} wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above 15 group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (n)-(CH₂)_t-NHSO₂-Rs25 wherein Ra25 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group option-20 ally substituted by 1 to 5 substituent(s) selected from the above group B, (o)-(CH₂)_t-S(O)_a-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, and (p) -(CH₂)_t-SO₂-NHRa26 wherein Ř^{a26} is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl option-25 ally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and 30 Y is (1') a single bond, (2') C₁₋₆ alkylene, (3') C2-6 alkenylene, 35 (4') -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5') -CO-, (6') -CO2-(CH2)n-, (7') -CONH-(CH2)n-NH-, 40 (8') -NHCO2-, (9') -NHCONH-, (10') -O-(CH₂)_n-CO-, (11') -O-(CH₂)_n-O-, (12') -SO_{2"}, 45 (13') -(CH₂)_m-NRa12-(CH₂)_nwherein Ra12 is (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), 50 (3") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (5") -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted $\mathsf{C}_{\mathsf{1-6}}$ alkyl (as defined above), $\mathsf{C}_{\mathsf{6-14}}$ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C_{6-14} aryl C_{1-6} alkyl optionally 55 substituted by 1 to 5 substituent(s) selected from the above group B, (6") -COORb5 (Rb5 is as defined above) or (7") -SO₂Rb5 (Rb5 is as defined above),

(14') -NRa12CO- (Ra12 is as defined above),

(15') -CONRa13-(CH₂)_n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHRa14-

wherein Ra14 is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O-(CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

(1") hydrogen atom,

(2") carboxyl,

(3") C₁₋₆ alkyl,

(4") -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

(5") -NHRb7

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6")

 $-(CH^{5})^{\frac{1}{n}}-(C, M)^{\frac{1}{n}}$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18') -(CH₂)_n-NR^{a12}-CHR^{a15}- (Ra¹² and Ra¹⁵ are each as defined above),

(19') -NRa17SO2-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20') -S(O)_e-(CH₂)_m-CRa¹⁵Ra¹⁶-(CH₂)_n- (e is 0, 1 or 2, Ra¹⁵ and Ra¹⁶ are each as defined above).

- 2. The therapeutic agent of claim 1, wherein 1 to 4 of the G¹, G², G³, G⁴, G⁵, G⁶, G⁷, G⁸ and G⁹ is (are) a nitrogen atom.
- 3. The therapeutic agent of claim 2, wherein G2 is C(-R2) and G6 is a carbon atom.
- 4. The therapeutic agent of claim 2 or claim 3, wherein G⁵ is a nitrogen atom.
- 5. The therapeutic agent of claim 1, wherein, in formula [I], the moiety

G²-G¹, G⁸-G⁷, G⁸-G⁵

is a fused ring selected from

55

50

5

10

15

20

25

30

35

40

5
$$R^2$$
 R^2
 R^2
 R^2
 R^3
 R^3
 R^3
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 $R^$

6. The therapeutic agent of claim 5, wherein, in formula [I], the moiety

55

is a fused ring selected from

7. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-1]

8. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-2]

$$\begin{array}{c|c}
R^2 & R^1 & R^7 \\
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^6 & \\
\hline
R^6 & \\
\hline
R^6 & \\
\hline
R^6 & \\
\hline
R^7 & R^6
\end{array}$$

35 wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

9.

9. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
 & N \\
\hline
 & R^5 \\
\hline
 & R^6
\end{array}$$
[1-3]

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

10. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-4]

- 30 wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
 - 11. The therapeutic agent of any of claims 1 to 10, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3} or -SO₂R^{a7} wherein R^{a1}, R^{a2}, R^{a3} and R^{a7} are as defined in claim 1.
 - 12. The therapeutic agent of any of claims 1 to 11, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl.
 - 13. The therapeutic agent of any of claims 1 to 12, wherein the ring A is C_{6-14} aryl.
 - 14. A fused ring compound of the following formula [ii]

$$G^{2} - G^{\frac{1}{2}} - G^{\frac{1$$

wherein the moiety

5

10

15

35

40

45

is a fused ring selected from

5

15

20

25

30

35

40

45

50

55

wherein R1, R2, R3 and R4 are each independently,

- (1) hydrogen atom,
- (2) C₁₋₆ alkanoyl,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,
- (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COORs1
- (7) -COOR^{a1} wherein R^{a1} is optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

-(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R^{b2}, -(CH₂)_rNR^{b1}R^{b2}, - (CH₂)_r-NR^{b1}-COR^{b2}, -(CH₂)_r-NHSO₂R^{b1}, -(CH₂)_r-OR^{b1}, -(CH₂)_r-SO₂RR^{b1} and -(CH₂)_r-SO₂NR^{b1}R^{b2}

wherein Rb1 and Rb2 are each independently hydrogen atom or C₁₋₆ alkyl and r is 0 or an integer of 1 to 6,

(8) -CONR⁸²R⁸³
wherein R⁸³ are each independently hydrogen stem. Concludes a continuous state of the substituted Concludes and R⁸³ are each independently hydrogen stem.

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

(9) -C(=NRa4)NH₂

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHRa5

wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,

(11) -ORa6

wherein R^{a6} is hydrogen atom or optionally substituted $C_{1\text{-}6}$ alky! (as defined above) ,

(12) -SO₂Ra7

wherein Ra7 is hydroxyl group, amino, C₁₋₆ alkyl or C₁₋₆ alkylamino

or

(13) -P(=O)(ORa31)₂

wherein Ra31 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

R⁷ is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above),

ring Cy' is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C,

group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy, or (2)

(\langle u \rangle)v

380

wherein u and v are each independently an integer of 1 to 3, ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl, R5' and R6' are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) hydroxyl group

ring B is

(1) C₆₋₁₄ aryl,

5

10

15

20

25

30

35

40

45

50

55

- (2) C₃₋₈ cycloalkyl or
- (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

each Z is independently

- (1) a group selected from the following group D,
- (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
- (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D:
 - (a) hydrogen atom,
 - (b) halogen atom,
 - (c) cyano,
 - (d) nitro,
 - (e) optionally substituted C₁₋₆ alkyl (as defined above),
 - (f) -(CH₂)₁-CORa18,

(hereinafter each t means independently 0 or an integer of 1 to 6), wherein $R^{a\,18}$ is

- (1') optionally substituted C_{1-6} alkyl (as defined above),
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3') heterocyclic group optionally substituted by 1 to 5 substituted by 1 t
- (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B

wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

5	(g) -(CH ₂) _t -COORa ¹⁹ wherein Ra ¹⁹ is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH ₂) _t -CONRa ²⁷ Ra ²⁸ wherein Ra ²⁷ and Ra ²⁸ are each independently,
	(d II) burden man see se
10	(1") hydrogen atom, (2") optionally substituted C_{1-6} alkyl (as defined above), (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	(5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above
15	group B, (6") heterocycle C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above
20	group B, or (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	(i) -(CH ₂),-C(=NR ^{a33})NH ₂
	wherein Ra33 is hydrogen atom or C ₁₋₆ alkyl,
25	(j) -(CH ₂) _t -OR ^{a20} wherein R ^{a20} is
	(1') hydrogen atom,
30	(2') optionally substituted C ₁₋₆ alkyl (as defined above),
30	(3') optionally substituted C_{2-6} alkenyl (as defined above), (4') C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group
	A,
35	(5') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above
	group B, (7') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above
	group B, (8) betomorphis C - alkal entire all a substituted by 1 to 5 autotitus (6) as leasted from the
	(8') heterocycle C ₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
40	(9') C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
	(10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
45	(k) -(CH ₂) _t -O-(CH ₂) _p -COR ^{a21}
	wherein Ra21 is C ₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent (s) selected from the above group B, and p is 0 or an integer of 1 to 6,
	(I) -(CH ₂) _t -NR ^{a22} R ^{a23} wherein R ^{a22} and R ^{a23} are each independently
50	•
	(1') hydrogen atom,
	(2') optionally substituted C ₁₋₆ alkyl (as defined above), (3') C ₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
	(4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above
55	group B or $(5')$ heterocycle C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the
	above group B,

wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected

(m) -(CH₂)_t-NR^{a29}CO-R^{a24}

from the above group B,

5

15

20

25

30

35

40

45

50

(n)-(CH₂)_t-NHSO₂-Ra25 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, 10 (o) -(CH₂)₁-S(O)_n-Ra25 wherein Ra25 is as defined above, and q is 0, 1 or 2, and (p) -(CH₂)_t-SO₂-NHR^{a26} wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and y is (1) a single bond, (2) C₁₋₆ alkylene, (3) C₂₋₆ alkenylene, (4) -(CH₂)_m-O-(CH₂)_n-, (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5) -CO-, (6) -CO₂-(CH₂)_n-, (7) -CONH-(CH2)n-NH-, (8) -NHCO2-, (9) -NHCONH-, (10) -O-(CH₂)_n-CO-, (11) -O-(CH₂)_n-O-, (12) -SO₂-, (13) -(CH₂)_m-NRa12-(CH₂)_nwherein Ra12 is (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (4') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (5') -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') -COORb5 (Rb5 is as defined above) or (7') -SO₂R^{b5} (R^{b5} is as defined above), (14) -NRa12CO- (Ra12 is as defined above), (15) -CONRa13-(CH₂)_nwherein Ra13 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (16) -CONH-CHRa14wherein Ra14 is C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17) -O- (CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

- (1') hydrogen atom,
- (2') carboxyl,
- (3') C₁₋₆ alkyl,
- (4') -ORb6

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or Ra15 is optionally

(6')

5

10

15

20

25

30

35

40

45

50

55

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18) -(CH₂)_n-NRa12-CHRa15- (Ra12 and Ra15 are each as defined above),
- (19) -NRa17SO2-

wherein Ra¹⁷ is hydrogen atom or C₁₋₆ alkyl or (20) -S(O)_e-(CH₂)_m-CRa¹⁵Ra¹⁶-(CH₂)_n- (e is 0, 1 or 2, Ra¹⁵ and Ra¹⁶ are each as defined above), or a pharmaceutically acceptable salt thereof.

15. The fused ring compound of claim 14, which is represented by the following formula [II-1]

$$\begin{array}{c|c}
R^2 & R^7 & R^{5'} \\
R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^5 & Y & B \\
R^6 & Y & B
\end{array}$$

$$\begin{array}{c|c}
R & (Z) & W & [11-1] \\
R & (Z) & W & [11-1] \\
\end{array}$$

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

16. The fused ring compound of claim 14, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & & \\
\hline
 & & \\
R^3 & & \\
\hline
 & & \\
R^4 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

wherein each symbol is as defined in claim 14,

or a pharmaceutically acceptable salt thereof.

5

10

15

25

30

35

45

17. The fused ring compound of claim 14, which is represented by the following formula [II-3]

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

20 18. The fused ring compound of claim 14, which is represented by the following formula [II-4]

$$R^2$$
 N
 N
 $R^{5'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

- 19. The fused ring compound of any of claims 14 to 18, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1} or -SO₂R^{a7} wherein R^{a1} and R^{a7} are as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- 20. The fused ring compound of claim 19, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR^{a1} wherein R^{a1} is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
 - 21. The fused ring compound of claim 20, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
 - 22. The fused ring compound of any of claims 14 to 21, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
- 23. The fused ring compound of claim 22, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
 - 24. The fused ring compound of any of claims 14 to 23, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- 25. The fused ring compound of claim 24, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
 - 26. The fused ring compound of claim 25, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

- 27. The fused ring compound of any of claims 14 to 26, wherein the Y is -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, -(CH₂)_m-NR^{a12}-(CH₂)_n- -CONR^{a13}-(CH₂)_n-, -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- or -(CH₂)_n-NR^{a12}-CHR^{a15}-(wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.
- 28. The fused ring compound of claim 27, wherein the Y is (CH₂)_m-O-(CH₂)_n- or -O-(CH₂)_m-CRa¹⁵Ra¹⁶-(CH₂)_n- (wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.

10

- 29. The fused ring compound of claim 28, wherein the Y is -(CH₂)_m-O-(CH₂)_n- wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- 30. The fused ring compound of any of claims 14 to 29, wherein the R² is carboxyl, R¹, R³ and R⁴ are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- 15 31. The fused ring compound of claim 14 or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

```
ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
20
              ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-{2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
25
              2-{4-{2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate,
              1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide,
                                                                                   2-(4-benzyloxyphenyl)-5-cyano-1-cy-
30
              clopentylbenzimidazole,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime,
              ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxy-
              1-cyclohexyl-2-{4-{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
35
              ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
              2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
40
              ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-{3-(3-chlorophenyl)phenoxy)phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate,
              ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylate,
45
              1-cyclohexyl-2-{4- [3- (4-pyridylmethoxy)phenyloxy]phenyl]-benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
              ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide,
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide,
50
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole,
              5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
             2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
             2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole,
55
             5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride,
```

5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonylaminobenzimidazole,

```
2-[4-(4-tert-butylbenzyloxy)phenyi]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-[4-(4-carboxybenzyloxy)phenyi]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-{4-[(2-chloro-5-thienyl)methoxylphenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
 5
               1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy) phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclopentyi-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride,
               1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-{4-{(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid,
               [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid,
 10
               2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid.
               2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
 15
               1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid,
               2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentyl-benzimidazole-5-carboxylic acid,
               2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid.
               2-{4-{(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
               trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol,
20
               trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane,
               2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole.
               2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
25
               1-cyclopentyl-2- [4- (phenylcarbamoylamino) phenyl] benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid,
               trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane,
               2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole,
30
               2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
               2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentyl-benzimidazole-5-carboxylic acid,
               2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid.
               1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
35
               1-cyclohexyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid,
               2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid.
               1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid.
40
               1-cyclohexyl-2-[4- (dibenzylamino)phenyl]benzimidazole-5-carboxylic acid,
              2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
              2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
45
              1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
              2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid.
50
              2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl]benzimidazole-5-carboxylic acid,
              2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
55
              2- [4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
5
              1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenylbenzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
              acid,
10
              1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl]benzimidazole-5-carboxylic acid,
              2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl]-benzimidazole-5-carboxylic acid,
15
              2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid,
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane,
20
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
25
              2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-[bls(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid.
              1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid,
30
              2-{4-{2-(e-benzyloxyphenyl)ethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{2-(3-benzyloxyphenyl)ethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
35
              1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
              2-{4-{2-(4-tert-butylphenyl)-5-chlorobenzyloxylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-f3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimIdazole-5-carboxylic acid.
40
              2-{4- [bis (4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{(2R)-2-amino-2-phenylethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
45
              2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
              2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
              ylic acid,
              2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl]-1-cyclohexylbenzimidazole-5-carbox-
50
              ylic acid,
              2-{4-{3-chloro-6- (3,4,5-trimethoxyphenyl) benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-{2-(2-biphenylyl)ethoxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(4-plperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
55
              1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
              2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3- (3-methyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
```

```
2-{4-{{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo-
                 2-[4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
   5
                 2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-(4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4- (4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
   10
                 2-[4-[3-chloro-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                 1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid,
  15
                 1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-{4-{3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
  20
                2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-{4-{{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic ac-
                2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-(2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
  25
                2-[4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
 30
               2-{4-{{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[{(2S) -1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
 35
               1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl]benzimidazole-5-carboxylic
               1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl)-4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
               id,
 40
               2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-[3-(4-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-[3-(4-fluorobenzyloxy)phenoxy]phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S) -1- (4-nitrophenyl) -2-pyπolidinyl]-methoxy]phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochlo-
45
               ride,
              2-{4-{{(2S)-1-(4-acetylaminophenyl)-2-рупоlidinyl}mthoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
              acid.
              2-{4-[{5- (4-chlorophenyl) -2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
              id,
              2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
50
              1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxylphenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-{(1-methyl-4-pipendyl)methoxy}phenoxy}-phenyl}benzimidazole-5-carboxylic acid,
              2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
55
              2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl]benzimidazole-5-carboxylic acid,
             2-{4-[3-(4-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                      1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-car-
                      boxylic acid,
                      2-{4-{4-(4-chlorophenyl) -2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
 5
                     iđ,
                     2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                      1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy}-phenyl}benzimidazole-5-carboxylic acid,
                      1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
                      1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
 10
                     2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
                     2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     2-{4-fa-carbamoyi-2-(4-chlorophenyl)benzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
                     2-{4-{4-chlorobenzyloxy)piperidino}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid.
                     2-{4-{3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
 15
                     2-{4-{{(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-
                     5-carboxylic acid,
                     2-{4-{2-(4-chlorophenyl)-5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid,
                     1-cyclohexyl-2-\{4-\{\{4-(4-dimethylcarbamoylphenyl\}-2-methyl-5-thiazolyl\}methoxy] phenyl\}benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazole-benzimidazo
20
                     5-carboxvlic acid.
                     2-(4-[2-(4-chlorophenyl])-5-dimethylcarbamoylbenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-carboxylic ac-
                     2-{4-{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
                     acid hydrochloride,
25
                     2-{4-{{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydro-
                     2-{4-{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     2-{4-{2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-
                     ic acid trifluoroacetate.
30
                     2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid.
                     1-cyclohexyl-2-{4-{4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid.
                     2-{4-{4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
                     2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
35
                     chloride.
                     ethyl 2-{4-{3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
                     methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
                     methyl 2-{4-{5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-
40
                     boxylate,
                     methyl 2-{4-{5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hy-
                     methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
                     ylate,
45
                     2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
                     hydrochloride,
                     2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl]-1-cyclohexylbenzimidazole-5-carboxylic
                     acid.
                     2-{4-{2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluor-
50
                     oacetate.
                     2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
                     2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                     2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole5-carboxylic acid,
                     1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carbox-
                     ylic acid,
55
                     1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl]benzimidazole-5-carboxylic
                     acid hydrochloride,
```

1-cyclohexyl-2-{2-fluoro-4-{4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexylbenzimidazole-5-sulfonic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride. 5 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxylphenyl]benzimidazole-5-carboxylic acid dihydrochloride, 2-{4-{2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 10 2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid. 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 15 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride. 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-20 boxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-{3-carbamoyl-6-(4-chlorophenyl)benzyloxy}-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 25 2-{4-{3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-{3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 30 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 35 hydrochloride, methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride. 2-{4-{2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 40 2-{4-{2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-45 boxylic acid hydrochloride. 2-{4-{2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 50 2-{4-{2-(4-chlorophenyl)-5-(2-hydroxyethyl)carbamoylbenzyloxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-55 boxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-

2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-

5-carboxylic acid hydrochloride.

	zole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(2-carboxyethyl)phenyl}-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
5	2-{4-{3-chloro-6-(4-methoxymethylphenyl)benzyloxy}phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
10	2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo-
	ride,
	2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyf}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyf}-1-cyclohexylbenzimidazole-5-carboxylic acid,
15	sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[2-(4-chlorophenyl) -5- (dimethylcarbamoyl) benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
	sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-zole-5-carboxylate,
20	2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
	2-{4-{5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
25	2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
	2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
10	2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-chloride,
	2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
15	2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-chloride,
	2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboylic acid hydrochloride,
0	2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-zole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-
	zole-5-carboxylic acid dihydrochloride, 2-{4-{2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimi-
5	dazole-5-carboxylic acid hydrochloride, methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate,
	2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl]-1-cyclohexyl-1H-indole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-3-cyclohexy-limidazo[1,2-a]pyridine-7-carboxylate,
o	2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid, and 2-(4-f2-(4-chlorophenyl)-5-methoxybenzyloxylohenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic
-	Znynztyronologijenymari letrozypenzyjozyjonenyh-a-cyclonexyl-3m-imioazol4.5-ninyhdina-6-carbayylid

32. A pharmaceutical composition comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

acid.

55

33. A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- 34. An anti-hepatitis C virus agent comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 35. A therapeutic agent for hepatitis C comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 36. A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
- 37. A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
 - 38. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
 - 39. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- 40. A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - 41. A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the formula [i] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 42. A commercial package comprising a pharmaceutical composition of claim 40 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
- 43. A commercial package comprising a pharmaceutical composition of claim 41 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.

328

1

15

5

35

40

45

50

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/09181

Int. 405/ 4178	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D209/12, 235/18, 235/30, 401/04, 401/10, 401/12, 401/14, 403/12, 405/04, 405/12, 409/04, 409/12, 409/14, C07D413/04, 413/12, 417/12, 471/04, 487/04, A61K31/407, 4178, 4184, 422, 427, 428, 433, 437, 4439, 454, 4709, A61K31/4725, 496, 498, 506, 53, 5377, 51, 55, A61P1/16, 31/20 According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELD	S SEARCHED				
Int. 405/ 4178 541,	12, 409/04, 409/12, 409/14, CO7E413/0 , 4184, 422, 427, 428, 433, 437, 4439, 55, A61P1/16, 31/20	01/04, 401/10, 401/12, 401/14 14, 413/12, 417/12, 471/04, 4 454, 4709, A61K31/4725, 496, 4	87/04, A61K31/407, 198, 506, 53, 5377,		
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
	ana base consulted during the international search (nar LUS, REGISTRY (STN)	ne of data base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
A	WO, 97/46237, Al (ELI LILLY AN	D COMPANY),	1-35, 38-43		
	11 December, 1997 (11.12.97),	100 3			
Ì	& CA, 2257296, A & AU, 9732 & EP, 906097, Al & CN, 1220				
		-511899, A			
А	EP, 507650, Al (SYNTHELABO S.A 07 October, 1992 (07.10.92),	.),	1-35, 38-43		
	& FR, 2674855, A & CA, 2064	924. A			
<u> </u>	& FR, 2674855, A & CA, 2064 & NO, 9201281, A & AU, 9213 & CN, 1065459, A & JP, 5-11	989, A			
1	& CN, 1065459, A & JP, 5-11	2563, A			
	& HU, 62573, A & US, 5280	030, A			
A	WO, 97/25316, A1 (GLAXO GROUP:	LMT.),	1-35, 38-43		
	17 July, 1997 (17.07.97),				
	& AU, 9714389, A & NO, 9803 & CZ, 9802127, A & EP, 8866	089, A 35, A1	•		
	& BR, 9706938, A & HU, 9900	580. A			
	& BR, 9706938, A & HU, 9900 & US, 5998398, A & CN, 1212	683, A			
1	& JP, 2000-503017, A& KR, 9907	740, A			
		ł	,		
Further	documents are listed in the continuation of Box C.	See patent family annex.			
	categories of cited documents: nt defining the general state of the art which is not	"I" later document published after the inter- priority date and not in conflict with the			
consider	red to be of particular relevance	understand the principle or theory under	stying the invention		
date	tocurrent but published on or after the international filing	"X" document of particular relevance; the considered novel or cannot be consider	laimed invention cannot be		
"L" docume	nt which may throw doubts on priority claim(s) or which is	stop when the document is taken alone			
special :	special reason (as specified) considered to involve an inventive step when the document is				
"O" docume	means combination being obvious to a person skilled in the art				
"P" document published prior to the international filing date but later "A" document member of the same patent family than the priority date elabased					
Date of the actual completion of the international search 20 February, 2001 (20.02.01) Date of mailing of the international search report 06 March, 2001 (06.03.01)					
20 F					
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer				
Facsimile No					
TOTALS A 210 (pagend shoot) (Tab. 1902)					

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/09181

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
·
1. 🔀 Claims Nos.: 36,37
because they relate to subject matter not required to be searched by this Authority, namely:
The inventions of claims 36 and 37 fall under the category of methods
for treatment of the human body by therapy.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
As all searchable claims could be searched without effort incliding an additional for this total and the
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely raid by the applicant Consequently, this internalised
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
must be Description To the safety of the safety
emark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.
rm PCT/ISA/210 (continuation of first sheet (1)) (July 1992)