Microcontroladores

Arquitectura

w

Microcontroladores

	MI			
DISPOSITIVO	ROM	EPROM	RAM	PUERTOS E/S
8035	0	0	64	3×8
8048	1024 (1K)	0	64	3×8
8748	0	1024 (1K)	64	3×8
8039	0	0	128	3×8
8049	2048 (2K)	0	128	3×8
8749	0	2048 (2K)	128	3×8
8040	0	0	128	3×8
8050	4096 (4K)	0	256	3×8

Tabla 1.2 Familia de computadoras de un solo IC MCS-48.

Microcontroladores

Figura 1.13 Arquitectura interna de la familia MCS-48.

Microscophu

Microcontroladores

IC	RAM	ROM/EPROM EEPROM	Clock µs	I/O Ports	A/D	Timers
M68HC11A0	256	-	0.476	4×8 1×6	4/8	9
M68HC11A1	256	512 EEPROM	0.476	4×8 1×6	4/8	9
M68HC11A2		2048 EEPROM	0.476	4×8 1×6	4/8	9
M68HC11A8	256	8K ROM, 512 EEPROM	0.476	4×8 1×6	4/8	9 9 9
M68HC11E0	512	-	0.476	4×8 1×6	8	9
M68HC11E1	512	512 EEPROM	0.476	4×8 1×6	8	9
M68HC11E2	256	2048 (EE)	0.476	4×8 1×6	4/8	9
M68HC11E9	512	12K (ROM), 512 (EE)	0.476	4×8 1×6	8	9
M68HC11D3	192	4096 (ROM)	0.476	4×8 1×6	8	9
M68HC11F1	1024	512 (EÈPROM)	0.476	4×8 1×6	8	9 9 2 2 2 2
Intel 8021	64	1024 (ROM)	2.5	2×8 1×6	-	2
Intel 8022	64	2048 (ROM)	2.5	3×8	-	2
Intel 8035	64	-	2.5	3×8	-	2
Intel 8039	128	-	1.4	3×8	-	2
Intel 8041	64	1024 (ROM)	2.5	3×8	-	2
Intel 8048	64	1024 (ROM)	2.5	3×8	-	2
Intel 8049	128	2048 (ROM)	1.4	3×8	-	2
Intel 8748	64	1024 (EPROM)	2.5	3×8	-	2
Intel 8031	128	-	1	4×8	-	2
Intel 8051	128	4096 (ROM)	1	4×8	-	2
Intel 8751	128	4096 (EPROM)	1	4×8	-	2

Unidad de E/S en Microcontroladores

Figura 1.14 Espacio de E/S mapeado sobre el espacio de memoria.

Unidad de E/S en Microcontroladores

Figura 1.15 Espacios diferentes para sección E/S y memoria.

Temporizador

Figura 1.17 Temporizador de 3 bits (a) Diagrama esquemático (b) Diagrama de tiempo.

Comunicación Serie

Figura 1.18 Tipos de comunicación serie, (a) simplex b) haft-duplex y c) full-duplex.

Lenguaje de alto nivel para su uso en uC

- La posibilidad de definir nuevas estructuras de alto nivel para E/S.
- El Acceso directo a memoria y al hardware para lectura y escritura.
- La posibilidad de llamar rutinas creadas en lenguaje ensamblador.

Lenguaje de C en microcontroladores.

- 1. Maneja muchos tipo de organización de datos.
- 2. Tiene un conjunto de operadores muy completo y un moderno control de estructuras de alto nivel.
- 3. Maneja bibliotecas que facilitan el manejo de la entrada y salida de datos.
- 4. Es eficaz y compacto.
- 5. Tiene un alto grado de portabilidad.

Manejo de puertos y direcciones

```
/* definición del macro CTL_AD igual a 0x10ff
#define CTL AD 0x10ff
/* declaración del apuntador a byte DireccAD
                                              */
unsigned char *DireccAD
/* asigna dirección del A/D */
DireccAD =(unsigned char *) CTL_AD;
/* ejemplo de uso */
/* inicializa el convertidor para lectura */
*DireccAD = Palabra_de_Control;
/* espera conversión completa
                                          */
while(!(*DireccAD & EOC) );
```

Desarrollo de Programas

Ambiente del Desarrollo de programas para uC

Herramientas típicas del Desarrollo de programas para uC

Emulador – visión general

