CS683: Branch Predictors

Anurag Agrawal (130040044) Abhiram Singh (154050012)

Aim: To study and implement static and dynamic branch predictors using Simple-scalar.

Sim_outorder is a performance simulator that was used for the implementation of these branch predictors. The simulation was run on given benchmark programs to evaluate the performance of different predictors.

Branch Predictors Used:

- Static Predictors:
 - o Taken
 - o Not Taken
- In-built Dynamic Predictors:
 - o Bimodal (2-bit Counter)

o G-share (2-level Predictor with XOR)

o G-select (2-level Predictor with merge)

o Hybrid

• Dynamic Predictors (implemented by us):

- o Tri modal (3-bit Counter): Same Block Diagram as of bimodal predictor
- o N modal (N- bit Counter): Same Block Diagram as of bimodal predictor
- o 2-level Local:

Perceptron Model:

Block Diagram:

Memory Used by Different branch Predictors:

Predictors	Table1 Size	Table2 size	Table3 Size	History Register Shift Width
N modal	2048	0	0	0
G-select	1024	0	0	8
G-share	1024	0	0	8
Hybrid	2048(bimod)	1024(G-select/g-share)	1024(meta)	8
Local	32	1024	0	2
Perceptron	1024	0	0	16

Graphs:

Performance vs. Different Benchmark Programs:

Performance vs. Different Branch Predictors:

High accuracy is obtained with the perceptron predictor vs. different branch predictors except in case of **lswlr** benchmark program.

Note: Perceptron is not able to learn linearly inseparable functions.

Procedure:

- Need to update **bpred_create**, **bpred_lookup**, **bpred_update** and its associated functions in these three files: bpred.h, bpred.c, sim_outorder.c
- For the compilation, run the following commands:
 - o make clean
 - o make config-pisa
 - o make
- For the execution, run the following command:
 - o ./sim-outorder -bpred <type_name> tests/bin.liitle/<benchmark_program>

References:

- 1. Simple Scalar Simulator, http://www.simplescalar.com/
- 2. **Dynamic Branch Prediction with Perceptrons** by Daniel A. Jiminez and Calvin Lin, Department of Computer Sciences, University of Texas at Austin.
- 3. CS683 Course Material