Tema: Aproximación de Funciones por el método de Mínimos Cuadrados

Ejercicio 1

Dada la siguiente tabla, se pide encontrar la función que mejor representa los datos teniendo en cuenta las siguientes funciones de aproximación:

 $f_1(x) = c_1 x + c_2$ (aproximación lineal)

 $f_2(x) = c_1x^2 + c_2x + c_3$ (aproximación parabólica)

 $f_3(x) = c_1 e^x + c_2$ (aproximación exponencial)

 $f_4(x) = c_1.ln(x+1) + c_2.x$ (aproximación logarítmica, se elige ln(x+1) debido a que el ln x en x=0 no existe))

Con la mejor aproximación, se pide calcular f(4) y f(1,5).

Х	у
0	0
1	2
1	3
2	5
3	8
4,5	12
5	12,5

Solución

El diagrama de dispersión quedaría de la siguiente forma:

Para f1(x):

El sistema se formaría de la siguiente manera:

$\sum x^2$	Σx	c1	∑x.y
Σx	n	c2	Σγ

Armamos la tabla para encontrar los valores del sistema:

Х	у	x ²	Х	1 (n)	y.x	у
0	0	0	0	1	0	0
1	2	1	1	1	2	2
1	3	1	1	1	3	3
2	5	4	2	1	10	5
3	8	9	3	1	24	8
4,5	12	20,25	4,5	1	54	12
5	12,5	25	5	1	62,5	12,5
16,5	42,5	60,25	16,5	7	155,5	42,5

Quedando el sistema de la siguiente forma:

60,25	16,5	c1	155,5
16,5	7	c2	42,5

Cuya solución es:

 $c_1 = 2,5901$

 $c_2 = -0.0343$

Por lo tanto f1(x) = 2,5901x - 0,0343

Para f2(x):

El sistema se formaría de la siguiente manera:

$\sum x^4$	Σx³	$\sum x^2$	c1	$\sum x^2.y$
$\sum x^3$	$\sum x^2$	Σx	c2	∑x.y
$\sum x^2$	Σx	n	c3	Σγ

Armamos la tabla para encontrar los valores del sistema:

х	у	x ⁴	x³	x²	х	1 (n)	<i>y.x</i> ²	y.x	у
0	0	0	0	0	0	1	0	0	0
1	2	1	1	1	1	1	2	2	2
1	3	1	1	1	1	1	3	3	3
2	5	16	8	4	2	1	20	10	5
3	8	81	27	9	3	1	72	24	8
4,5	12	410,063	91,125	20,25	4,5	1	243	54	12
5	12,5	625	125	25	5	1	312,5	62,5	12,5
16,5	42,5	1134,063	253,125	60,25	16,5	7	652,5	155,5	42,5

Quedando el sistema de la siguiente forma:

1134,0625	253,125	60,25	c1	652,5
253,125	60,25	16,5	c2	155,5
60,25	16,5	7	с3	42,5

Cuya solución es:

 $c_1 = -0.0295$

 $c_2 = 2.7437$

 $c_3 = -0.1421$

Por lo tanto:

 $f2(x) = -0.0295x^2 + 2.7437x - 0.1421$

Para f3(x):

El sistema se formaría de la siguiente manera:

∑e²x	∑ e ^x	c1	∑ e ^x .y
∑ e ^x	n	c2	Σγ

Armamos la tabla para encontrar los valores del sistema:

х	у	e ^{2x}	e ^x	1 (n)	e ^x .y	у
0	0	1	1	1	0	0
1	2	7,389056	2,718282	1	5,436564	2
1	3	7,389056	2,718282	1	8,154845	3
2	5	54,59815	7,389056	1	36,94528	5
3	8	403,4288	20,08554	1	160,6843	8
4,5	12	8103,084	90,01713	1	1080,206	12
5	12,5	22026,47	148,4132	1	1855,164	12,5
16,5	42,5	30603,35	272,3414	7	3146,591	42,5

Quedando el sistema de la siguiente forma:

30603,35	272,3414		3146,59
		c1	
272,3414	7		42,5
		c2	

Cuya solución es:

 $c_1 = 0.0746$

 $c_2 = 3.168$

Por lo tanto $f3(x) = 0.0746e^x + 3.168$

Para f4(x):

El sistema se formaría de la siguiente manera:

$\sum (\ln (x+1))^2$	∑ ln (x+1).x	c1	∑ In (x+1).y
∑ ln (x+1).x	$\sum x^2$	c2	∑x.y

Armamos la tabla para encontrar los valores del sistema:

х	у	In ² (x+1)	In (x+1).x	x²	In (x+1).y	x.y
0	0	0	0	0	0	0
1	2	0,480453	0,6931472	1	1,3862944	2
1	3	0,480453	0,6931472	1	2,0794415	3
2	5	1,206949	2,1972246	4	5,4930614	10
3	8	1,921812	4,1588831	9	11,090355	24
4,5	12	2,906166	7,6713664	20,25	20,456977	54
5	12,5	3,210402	8,9587973	25	22,396993	62,5
16,5	42,5	10,20624	24,372566	60,25	62,903123	155,5

Quedando el sistema de la siguiente forma:

10,2062	24,3726		62,9031
		c1	
24,3726	60,25		155,5
		c2	

Cuya solución es:

 $c_1 = -0.0013$

 $c_2 = 2.5814$

Una vez realizadas las aproximaciones, es muy interesante visualizar cuál de ellas provoca menor error en la aproximación. Para ello se calcula S (desviación) para cada una de ellas:

х	у	f1(x)	S1	f2(x)	S2	f3(x)	S3	f4(x)	S4
0,00	0,00	-0,03	0,00	-0,14	0,02	3,24	10,51	0	0
1,00	2,00	2,56	0,31	2,57	0,33	3,37	1,88	2,58	0,33
1,00	3,00	2,56	0,20	2,57	0,18	3,37	0,14	2,58	0,18
2,00	5,00	5,15	0,02	5,23	0,05	3,72	1,64	5,15	0,02
3,00	8,00	7,74	0,07	7,82	0,03	4,67	11,11	7,74	0,06
4,50	12,00	11,62	0,14	11,61	0,15	9,88	4,48	11,60	0,16
5,00	12,50	12,92	0,17	12,84	0,11	14,24	3,03	12,89	0,15
			0,92		0,88		32,79		0,92

Como se verá, la función cuadrática es la que permite una mejor aproximación a los datos (notar que la función lineal – dado el carácter de los datos – es buena aproximación casi de tanta calidad como la cuadráticaⁱ).

El gráfico siguiente muestra cómo se aproxima cada una de las funciones a los datos originales:

Seleccionamos, por lo tanto, f2(x) para calcular los valores que se desea conocer:

 $f2(x) = -0.0295x^2 + 2.7437x - 0.1421$

Valuamos:

$$f(4) = 10,36$$

$$f(1,5) = 3,91$$

Y con ello concluimos el ejercicio.

¹ En general, los polinomios cumplen con esta condición. A medida que se aproxima con un polinomio de mayor grado, la calidad de la aproximación es mayor.

Ejercicio 2

A partir de la siguiente tabla de valores:

X	у
-3	4
-2,1	2
1	1,5
2	3
2,5	2,9
5,5	2,7
6,7	2,2
7,5	3,8
8,1	7,6

Se pide encontrar el valor de f(3) y f(10) con la mejor función que represente los datos. Utilizar para ello las siguientes funciones de aproximación:

$$f1(x) = c1.x^3 + c2.x$$

 $f2(x) = c1.sen(0.2x) + c2$

Luego de ello, se pide buscar una tercera función de aproximación que represente mejor a los datos.

Solución

Las funciones de aproximación son:

$$f1(x) = 0.0139.x^3 - 0.1274.x$$

 $f2(x) = 0.9156.sen(0.2x) + 2.8975$

Siendo la mejor aproximación a los datos f2(x) con una desviación de 23,55 contra 46,13 de f1(x). Por lo tanto, utilizamos f2(x) para calcular los valores solicitados:

$$f(3) = 3,4142$$

 $f(10) = 3,7301$

Ejercicio 3

Teniendo en cuenta la siguiente tabla de datos:

х	у
0,1	8,4
0,5	8,25
0,6	7,7
0,9	6,6
1,1	6,4
1,9	6,3
2,1	5,95
2,3	4,75
3,5	4,6

Se pide:

- 1) Realizar el diagrama de dispersión.
- 2) Encontrar las siguientes funciones de aproximación:
 - a. Una función lineal.
 - b. Un polinomio de grado mayor a uno.
 - c. Una función exponencial.
 - d. Una función logarítmica.
- 3) Con la mejor aproximación encontrar el valor para x = 2; x = 3 y x = 7.
- 4) Teniendo en cuenta el punto anterior: ¿Por qué el cálculo de x = 7 tiene mayor probabilidad de error que los demás?