本周简介

主要是一些补充证明题.

习题

- 1. 求极限 $\lim_{x\to\infty} \frac{x-\sin x}{x+\sin x}$.
- 2. 证明推广形式的 Lagrange 中值定理:

设
$$f(x)$$
在开区间 (a,b) 内连续可导, $\lim_{x\to a^+}f(x)=A$ 与 $\lim_{x\to b^-}f(x)=B$ 都存在 \Rightarrow $\exists \xi\in(a,b),\lim_{x\to b^-}f(x)-\lim_{x\to a^+}f(x)=f'(\xi)(a-b).$

- 3. 已知当 x>0 时,方程 $kx+\frac{1}{x^2}=1$ 有且仅有一个解,求 k 的取值范围
- 4. 设函数 f(x) 二阶可导,且 $\forall x \in \mathbb{R}$ 成立 $xf''(x) + 3x[f'(x)]^2 = 1 e^{-x}$.证明:
 - (1)若 f(x) 在 $x = c(c \neq 0)$ 处取极值, f(c) 必为极小值;
 - (2)若 f(x) 在 x=0 处取极值,问 f(0) 是极大值还是极小值?
- 5. 设函数 $f(x) \in C[0,c] \cap D(0,c)$, f'(x)在 (0,c) 内单调递减, f(0)=0 ,试证明 $f(a+b) \leq f(a)+f(b)$ $\qquad (0 \leq a \leq b \leq a+b \leq c.$
- 6. 求函数 $f(x)=xe^{\frac{1}{x^2}}$ 和 $g(x)=2x+\arctan\frac{x}{2}$ 的渐近线.