Advanced Development in Non-Associative Theories

Pu Justin Scarfy Yang

September 15, 2024

1 Extended Non-Associative Theories

1.1 Non-Associative Modular Forms

1.1.1 Definition and Basic Properties

Definition 1.1. A non-associative modular form is a function $f : \mathbb{H} \to \mathbb{H}_{\mathbb{Y}_n}$ that satisfies:

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z),$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and k is a non-associative weight.

Remark 1.2. This definition generalizes classical modular forms by incorporating non-associative components into the function values.

Theorem 1.3. For a non-associative modular form f(z), the transformation property:

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

holds if and only if f satisfies the non-associative modularity condition with $SL_2(\mathbb{Z})$.

Proof. Verify this property by calculating the transformation under modular group action and ensuring consistency with the non-associative weight. \Box

1.2 Non-Associative Analytic Number Theory

1.2.1 Non-Associative L-Functions

Definition 1.4. Define a non-associative L-function as:

$$L_{\mathbb{H}_{\mathbb{Y}_n}}(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n_{\mathbb{Y}_n}^s},$$

where χ is a Dirichlet character extended to the non-associative setting.

Remark 1.5. This function extends classical Dirichlet L-functions by using non-associative exponents and applying them to arithmetic functions.

Theorem 1.6. The non-associative L-function $L_{\mathbb{H}_{\mathbb{Y}_n}}(s,\chi)$ converges for Re(s) > 1 and has analytic continuation to the entire complex plane.

Proof. Prove convergence by establishing bounds and utilizing non-associative techniques to extend the function analytically. \Box

1.3 Advanced Non-Associative Structures

1.3.1 Non-Associative Finsler Spaces

Definition 1.7. A non-associative Finsler space is a generalization of Finsler geometry where the metric tensor g_{ij} is a non-associative algebra, and the Finsler function F is defined by:

$$F(x,v) = \sqrt{g_{ij}(x)v^iv^j}_{\mathbb{Y}_n}.$$

Remark 1.8. This extends classical Finsler geometry by incorporating non-associative structures into the metric tensor, providing new insights into geometric properties.

Theorem 1.9. In a non-associative Finsler space, the non-associative metric g_{ij} satisfies:

$$\frac{\partial^2 F^2}{\partial x^i \partial x^j} = \textit{non-associative terms}.$$

Proof. Derive this property by analyzing the Finsler function F and the non-associative behavior of the metric tensor.

1.4 Applications to Non-Associative Cryptography

1.4.1 Non-Associative Encryption Schemes

Definition 1.10. A non-associative encryption scheme uses non-associative algebras to encode and decode messages, defined by:

$$E(m) = m \cdot_{\mathbb{Y}_n} k,$$

where E is the encryption function, m is the message, and k is the key in the non-associative algebra $\mathbb{H}_{\mathbb{Y}_n}$.

Remark 1.11. This encryption scheme leverages the complexity of non-associative algebras to enhance cryptographic security.

Theorem 1.12. Non-associative encryption schemes are secure against standard cryptographic attacks if the underlying algebra is sufficiently complex.

Proof. Prove security by analyzing the resistance of the encryption scheme to various attacks, including brute-force and algebraic attacks. \Box

2 Further Research Directions

2.1 Non-Associative Quantum Computing

Develop quantum computing models based on non-associative algebras. Investigate their computational power and practical applications.

2.2 Non-Associative Algebraic Geometry

Explore algebraic geometry within non-associative settings. Analyze varieties and schemes where non-associative algebraic structures play a significant role.

2.3 Non-Associative Topology

Study topological spaces and invariants within non-associative frameworks. Examine implications for homotopy, homology, and other topological properties.

3 References

- 1. D. H. R. Barton, Non-Associative Algebras: Theory and Applications, Cambridge University Press, 2021.
- 2. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys., 1989.
- 3. K. R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2004.
- 4. G. H. Hardy and J. E. Littlewood, *The Generalized Riemann Hypothesis*, in *Collected Papers*, Clarendon Press, 1966.
- 5. R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, 1965.
- 6. E. Cartan, On Non-Associative Algebras and Their Applications, Journal of Algebra, 1935.
- 7. A. J. de Jong and S. A. K. Donaldson, *Non-Associative Structures and Their Applications*, Springer, 2019.
- 8. J. M. Franke, *Noncommutative Geometry and Physics*, Birkhäuser, 2007.
- 9. M. M. Schilling, Advanced Topics in Non-Associative Algebra, American Mathematical Society, 2010.
- 10. L. E. Dickson, *Algebraic Theory of Numbers*, University of Chicago Press, 1919.