Teoremas

Divergencia y rotacional de un campo vectorial

Sea un campo vectorial $\bar{f}:D\subset\mathbb{R}^3\to\mathbb{R}^3$ / $\bar{f}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))$ con $\bar{f}\in C^1(D)$

Se define la divergencia del campo $ar{f}$ como:

$$div\bar{f} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Es un campo escalar.

Si recordamos el operador nabla $\nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})$

$$div\bar{f} = \nabla \cdot \bar{f}$$

Si \bar{f} representa un campo de velocidades de un fluido entonces si $div\bar{f}>0$ el gas se está expandiendo. Si $div\bar{f}<0$ el gas se esta comprimiendo. Y si $div\bar{f}=0$ el campo vectorial se llama solenoidal.

El rotor o rotacional del campo vectorial \bar{f} se define:

$$rot\bar{f} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

Si introducimos el operador nabla $\nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})$

$$rot\bar{f} = \nabla \times \bar{f}$$

Si $rot \bar{f} = \bar{0}$ el campo se llama irrotacional. Si \bar{f} representa un campo de velocidades de un fluido entonces $rot \bar{f} = \bar{0}$ en un punto P significa fisicamente que el fluido no tiene rotaciones en dicho punto P.

Propiedades

1 de 6 9/11/2021 2:56 p. m.

Si $\bar{f} \in C^2$ entonces:

$$div(rot\bar{f}) = 0$$

$$\nabla \cdot (\nabla \times \bar{f}) = 0$$

Sea $f:D\subset\mathbb{R}^3\to\mathbb{R}$ un campo escalar. Si $f\in C^2(D)$ entonces el rotor de un gradiente es el vector nulo:

$$\nabla \times (\nabla f) = \bar{0}$$

Por ultimo el laplaciano de f se define:

$$\nabla^2 f = \nabla \cdot \nabla f$$

Si $\nabla^2 f = 0$ el campo escalar es armónico.

Teorema de la divergencia

Sea $H\subset\mathbb{R}^3$ un macizo con superficie frontera S, orientada con el campo de normales hacia el exterior. Si $\bar{f}:D\subset\mathbb{R}^3\to\mathbb{R}^3$ es de clase $C^1(D)$ tal que $D\subset H\cup S$ entonces :

$$\iint_{S} \bar{f} \cdot \bar{n} \cdot \bar{dr} = \iiint_{H} div \bar{f} dv$$

Ej:

Sea
$$\bar{f}(x, y, z) = (xy, y^2 + e^{xz^2}, \sin(xy))$$
 y
$$H = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1 - x^2, 0 \le y \le 2 - z \right\} \text{ calcular:}$$

$$\iint_S \bar{f} \cdot \bar{n} \cdot \bar{d}r$$

Notemos que $\bar{f} \in C^2$

Empezamos calculando la divergencia de $ar{f}$:

$$div\bar{f} = y + 2y = 3y$$

Hallamos el limite de x:

Graficamos $z \le 1 - x^2$

La integral queda:

$$\iint_{S} \bar{f} \cdot \bar{n} \cdot \bar{d}r = \iiint_{H} 3y dv$$

$$\int_{-1}^{1} dx \int_{0}^{1-x^{2}} dz \int_{0}^{2-z} 3y dy = \frac{184}{35}$$

Dejamos la resolución de la integral a cargo del lector.

Teorema de Green

Sea un campo vectorial $\bar{f}(x,y)=(P(x,y),Q(x,y))$ con $\bar{f}:D_{\bar{f}}\subset\mathbb{R}^2\to\mathbb{R}^2$, $\bar{f}\in C^1$, $D_{\bar{f}}\subset R\cup C$ siendo C la curva cerrada, simple y suave frontera de R. Entonces:

$$\oint_C \bar{f} \cdot \bar{ds} = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Ej:

Sea
$$R = \{(x, y) \in \mathbb{R}^2 : |y| \le x , x^2 + y^2 \le 2x \}$$
 y $\bar{f}(x, y) = (xe^{\sin x} - y, x + y \ln^4[y^2 + 1])$

Calcular la circulación de $ar{f}$ a lo largo de C donde C es la curva frontera de R

Operamos la segunda ecuación de R y graficamos:

$$x^{2} + y^{2} \le 2x$$

$$x^{2} - 2x + y^{2} \le 0$$

$$x^{2} - 2x + 1 + y^{2} \le 1$$

$$(x - 1)^{2} + y^{2} \le 1$$

Sabemos que $C = C_1 \cup C_2 \cup C_3$

Sin aplicar el teorema de Green la integral queda así:

$$\oint_C \bar{f} \cdot d\bar{s} = \int_{C_1} \bar{f} \cdot d\bar{s} + \int_{C_2} \bar{f} \cdot d\bar{s} + \int_{C_3} \bar{f} \cdot d\bar{s}$$

Y deberíamos parametrizar cada una de las curvas, pero si aplicamos el teorema de Green podemos simplificar el ejercicio:

Sabemos que $\bar{f} \in C^1$ por ser suma, producto y composición de funciones C^1 entonces podemos reescribir la integral:

$$\oint_C \bar{f} \cdot \bar{ds} = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_R 2 \cdot dx dy$$

Luego:

$$2\iint_{R} dx dy = 2\left[\frac{2\cdot 1}{2} + \frac{\pi}{2}\right] = 2 + \pi$$

Sabemos que $\iint_R dxdy$ representa el area de la región R y esta está compuesta por un triangulo y medio circulo. $a(t)=\frac{b\cdot h}{2}$ y $a(c)=\frac{\pi\cdot r^2}{2}$ mirando el grafico podemos identificar facilmente todos los parametros necesarios para calcular las areas.

Generalización del teorema de Green

4 de 6 9/11/2021 2:56 p. m.

TeoremasDeIntegrales - Jupyter Notebook

Si $Q_x - P_y = k$ entonces:

$$\oint_C \bar{f} \cdot \bar{ds} = k \iint_R dx dy$$

donde la segundra integral representa el area de R

Dada una curva C cerrada simple en \mathbb{R}^2 y además un conjunto de curvas c_i donde $c_i \cap c_j = \emptyset$ con $i \neq j$

Entonces:

$$\oint_C \bar{f} \cdot d\bar{s} - \sum_{i=1}^k \oint_{C_i} \bar{f} \cdot d\bar{s} = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Es decir, el area encerrada por la curva C menos la sumatoria de las areas encerradas por las curvas c_i es igual a la región R.

Ej:

Dado
$$ar f:\mathbb R^2-\{ar A\} o\mathbb R^2$$
 / $ar f=(P,Q)$ suponga matriz jacobiana continua con $Q_x'-P_y'=6$

Calcule $\oint_{C_1} \bar{f} \cdot \bar{ds}$ sabiendo que $\oint_{C_2} \bar{f} \cdot \bar{ds} = 12$, C_1 es una circunferencia de radio 8 , C_2 es un cuadrado de lado 5.

Primero graficamos:

La matriz jacobiana continua significa que $ar{f} \in C^1(\mathbb{R}^2 - \{\bar{A}\})$

Por la generalización del teorema de Green sabemos que:

$$\oint_{C_1} \bar{f} \cdot d\bar{s} - \oint_{C_2} \bar{f} \cdot d\bar{s} = \iint_R (Q_x - P_y) dx dy$$

$$\oint_{C_1} \bar{f} \cdot d\bar{s} - 12 = 6 \iint_R dx dy$$

$$\oint_{C_1} \bar{f} \cdot d\bar{s} = 6a(R) + 12$$

$$a(R) = area(circulo) - area(cuadrado)$$

$$a(r) = 64\pi - 25$$

$$\oint_{C_1} \bar{f} \cdot d\bar{s} = 64\pi - 25 + 12$$

$$\oint_{C_1} \bar{f} \cdot d\bar{s} = 384\pi - 138$$

Teorema del rotor o de stokes

Sea S una superficie abierta, simple y orientada con curva de borde C y suave orientada según S y sea $\bar{f}:D\subset\mathbb{R}^3\to\mathbb{R}^3$ / $f\in C^1(D)$, $D\subset S\cup C$ entonces:

$$\oint_C \bar{f} \cdot \bar{ds} = \iint_S rot \bar{f} \cdot \bar{n} \ dr$$

6 de 6