Chapter 11: The Lebesuge Theory

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 11.1. If $f \geq 0$ and $\int_E f d\mu = 0$, prove that f(x) = 0 almost everywhere on E. (Hint: Let E_n be the subset of E on which $f(x) > \frac{1}{n}$. Write $A = \bigcup E_n$. Then $\mu(A) = 0$ if and only if $\mu(E_n) = 0$ for every n.)

Proof (Hint).

- (1) Define $A = \{x \in E : f(x) > 0\}$. So f(x) = 0 almost everywhere on E if and only if $\mu(A) = 0$.
- (2) Define

$$E_n = \left\{ x \in E : f(x) > \frac{1}{n} \right\}$$

for $n = 1, 2, 3, \ldots$ Note that $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$ and

$$A = \bigcup_{n=1}^{\infty} E_n.$$

Since μ is a measure,

$$\lim_{n \to \infty} \mu(E_n) = \mu(A)$$

(Theorem 11.3).

(3) (Reductio ad absurdum) If $\mu(A) > 0$, there is an integer N such that $\mu(E_n) \ge \frac{\mu(A)}{2}$ whenever $n \ge N$ (by (2)). In particular, take n = N to get

$$\int_{E} f d\mu \geq \int_{E_{N}} f d\mu \qquad \qquad (\mu \text{ is a measure and } E_{N} \subseteq E)$$

$$\geq \frac{1}{N} \cdot \mu(E_{N}) \qquad \qquad (\text{Remarks 11.23(b)})$$

$$\geq \frac{1}{N} \cdot \frac{\mu(A)}{2}$$

$$> 0,$$

contrary to the assumption that $\int_E f d\mu = 0$.

Note. Compare to Exercise 6.2.

Exercise 11.2
Proof.
(1)
(2)
Exercise 11.3
Proof.
(1)
(2)
Exercise 11.4
Proof.
(1)
(2)
Exercise 11.5
Proof.
(1)
(2)
Exercise 11.6
Proof.
(1)
(2)

Exercise 11.7
Proof.
(1)
(2)
Exercise 11.8
Proof.
(1)
(2)
Exercise 11.9
Exercise 11.9 Proof.
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 11.10
Proof. (1) (2) □ Exercise 11.10 Proof.
Proof. (1) (2) □ Exercise 11.10 Proof. (1)
Proof. (1) (2) □ Exercise 11.10 Proof. (1) (2)
Proof. (1) (2) □ Exercise 11.10 Proof. (1) (2)

(1)
(2)
Exercise 11.12
Proof.
(1)
(2)
Exercise 11.13
Proof.
(1)
(2)
Exercise 11.14
Proof.
(1)
(2)
Exercise 11.15
Proof.
(1)
(2)

□ Exercise 11.16. ...

Proof.
(1)
(2)
□
Exercise 11.17. ...

Proof.
(1)
(2)
□
Exercise 11.18. ...

Proof.
(1)
(2)