Analisi I

Andrea Bellu

2023/2024

Contents

1	Ass	iomi dei numeri reali	3
_	1.1	Assiomi relativi alle operazioni	3
	1.2	Assiomi relativi all'ordinamento	3
		1.2.1 Assioma di completezza	3
	1.3	Denso	4
		$1.3.1 \sqrt{2} \dots \dots$	4
2	Cor	nplementi ai numeri reali	4
	2.1	Massimo, Minimo, Estremo Superiore, Estremo Inferiore	4
		2.1.1 Il massimo e il minimo sono unici	4
		2.1.2 Osservazione	4
	2.2	Maggiorante e Minorante	5
	2.3	Teorema dell'esistenza dell'estremo superiore	5
		2.3.1 Estremo superiore	5
		2.3.2 Estremo inferiore	5
		2.3.3 Osservazione	5
	a		_
3		cessioni e Limiti	6
	3.1	Limiti	6
	3.2	Proposizione	6
	3.3	Successioni Limitate	7
	3.4	Teorema	7
	3.5	Operazioni con i limiti	7
	3.6	Forme infeterminate o di indecisione	8
	3.7	Teoremi di confronto	8
		3.7.1 Teorema della permanenza del segno	8
		3.7.2 Teorema dei carabinieri	8
		3.7.3 Teorema del limite del prodotto di una successione limitata per una infinitesima	9
	3.8	Alcuni limiti notevoli	9
	3.9	Limiti relativi alle funzioni trigonometriche	9
		Successione notevole importante	9
		Successioni Monotòne	
		Teorema sulle successioni monotone	
	3.13	Limiti Notevoli	
		3.13.1 Infiniti di ordine crescente	
		Criterio del rapporto per le successioni	
		Successioni estratte	
	3.16	Teorema di Bolzano-Weierstrass	11
1	Don	tizioni	11
4	rar	LIZIOII	11

5	Inte	grale definito	13
	5.1	Funzione non integrabile secondo Riemann	
	5.2	Proprietà	
		5.2.1 Additività integrale rispetto all'intervallo	
		5.2.2 Linearità dell'integrale	
		5.2.3 Confronto tra gli integrali	14
		5.2.4 Integrabilità delle funzioni continue	14
	5.3	Teorema della media	14
	5.4	Interpretazione geometrica del teorema della media	
	-	5.4.1 Dimostrazione del teorema della media	
	5.5	Integrabilità delle funzioni monotone	
	0.0	5.5.1 Osservazioni	
		0.0.1 OSSCI VAZIOIII	10
6	Inte	grali Indefiniti	17
		Funzione integrale	17
7		e Numeriche	17
	7.1	Somma parziale	
		7.1.1 Esempio 1	
		7.1.2 Esempio 2	
	7.2	Definizione di Serie Numerica Astratta	18
		7.2.1 Osservazione	18
	7.3	Condizione necessaria di convergenza di una serie	18
		7.3.1 Dimostrazione	
	7.4	Serie geometrica	
	• • •	7.4.1 Osservazione	
		7.4.2 Esercizio del compito (21/06/21)	
	7.5	La serie armonica	
	7.6	La serie armonica generalizzata (con esponente)	
		Serie a termini non negativi	
	7.7		
		7.7.1 Teorema sulle serie a termini non negativi	
	7.8	Criteri di convergenza per serie a termini non negativi	
		7.8.1 Criterio del rapporto:	
		7.8.2 Criterio della radice:	
		7.8.3 Criterio del confronto mediante i limiti	
		7.8.4 Esempi	22
	7.9	Serie alternate	23
	7.10	Criterio di convergenza per le serie alternate (Leibniz)	23
		7.10.1 Esempi	23
		7.10.2 Esercizio del compito 20 07 21	
	7.11	Convergenza Assoluta	
		Teorema	
		7.12.1 Esercizio del compito (predcedente)	
		7.12.2 Esercizi di compito a fine pdf (da fare)	
		7.12.2 Escretzi di compito a inic pai (da tare)	2-1
8	Equ	azioni differenziali	24
	8.1	Osservazione	25
	8.2	Ulteriore esempio di equazione differenziale del primo ordine	25
		8.2.1 Domanda	
	8.3	Esempio di equazione differenziale del secondo ordine: equazione del moto armonico	
	8.4	Equazioni differenziali lineari ordine n, di tipo normale	
	8.5		
	8.6	Rappresentazione dell'integrale generale di un'equazione differenziale lineare	
	8.7	Equazioni differenziali lineari del secondo ordine	
	8.8	Equazioni differenziali lineari omogenee a coefficienti costanti	
	8.9	Integrale generale delle equazioni lineari omogenee a coefficienti costanti	
		8.9.1 Esempio	
		8.9.2 Esempio 2	
	8.10	Esempio 3	27

8.11	Equazioni differnziali lineari non omogenee	27
	8.11.1 Esempio	28
	8.11.2 Esempio 2	28
	8.11.3 Osservazione	28
	3.11.4 Esempio	28

1 Assiomi dei numeri reali

- Assiomi relativi alle operazioni
- Assiomi relativi all'ordinamento
- Assioma di completezza

1.1 Assiomi relativi alle operazioni

Sono definite le operazioni di addizione e moltiplicazione tra coppie di numeri reali e valgono le proprietà:

- Proprietà associativa
- Proprietà commutativa
- Proprietà distributiva
- Esistenza degli elementi neutri
- Esisstenza degli opposti
- Esistenza degli inversi

1.2 Assiomi relativi all'ordinamento

E' definita la relazione di Minore o Uguale \leq .

- Dicotomia
- Proprietà Assimetrica
- Assioma di completezza

1.2.1 Assioma di completezza

$$\forall a \in A, \forall b \in A, a \leq b \implies \exists c \in A : a \leq c \leq b$$

Esempi:

Figure 1: Esempio 1

Esistono infiniti c.

Figure 2: Esempio 2

$$A = \{x \in \mathbb{R} : x \ge 1\} \quad B = \{x \in \mathbb{R} : x \ge 1\} \implies c = 1$$

Osservazione: Non tutti gli insiemi hanno il più grande o il più piccolo elemento. Ad esempio:

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} = \{\frac{1}{n} : n \in \mathbb{N}\}$$

Non ha un elemento più piccolo. (Invece c'è il più grande che è 1).

Figure 3: Esempio 3

1.3 Denso

Si dimostra che \mathbb{Q} è denso sulla retta reale (nel senso che fra due numeri razionali è sempre possibile trovare un terzo, anzi infiniti).

$$a = \frac{m_1}{n_1} \quad b = \frac{m_2}{n_2}$$

faccio la media $\frac{a+b}{2}=\frac{\frac{m_1}{n_1}+\frac{m_2}{n_2}}{\frac{m_1}{2}}=\frac{m_1n_2+m_2n_1}{2n_1n_2}\implies$ \in $\mathbb Q$

1.3.1 $\sqrt{2}$

 $\sqrt{2}$ non si può rappresentare come numero razionale.

Dimostrazione: Ragioniamo per assurdo, supponiamo che $\sqrt{2}$ sia un numero razionale, cioè $\sqrt{2} = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ posso supporre che m.n siano primi tra loro e che al più uno tra loro sia pari. Allora $2 = \frac{m^2}{n^2} \implies 2n^2 = m^2(\star) \implies m^2$ deve essere pari e quindi m è pari.

Posso esprimere m nella forma: m = 2k con k intero.

Ricavo che $\implies 2n^2 = m^2 = 4k^2$ semplifico per 2 e ottengo $n^2 = 2k^2$

Ripeto il ragionamento precedente $\implies n^2$ pari e quindi anche n pari. Ma allora sia m che n risultano pari, ASSURDO! Avevo supposto che fossero primi ed (al più) uno dei due pari. \clubsuit

Per capire meglio guarda esempi della Francy nella prima lezione.

2 Complementi ai numeri reali

2.1 Massimo, Minimo, Estremo Superiore, Estremo Inferiore

Def: M è il massimo di A
$$\begin{cases} M \in A \ \, (1) \\ M \geq a \ \, \forall a \in A \ \, (2) \end{cases}$$

Il massimo di un insieme di numeri reali A quindi, se esiste, è un numero M dell'insieme A, che è maggiore o uguale ad ogni altro elemento dell'insieme A.

Def: m è il minimo di A
$$\begin{cases} m \in A & (1) \\ m \le a & \forall a \in A & (2) \end{cases}$$

Il minimo di A analogamente, se esiste, è un numero m di A, che è minore o uguale ad ogni altro elemento di A.

2.1.1 Il massimo e il minimo sono unici

Il massimo e il minimo, se esistono, sono unici.

Dimostrazione: Siano M_1 e M_2 due massimi di A.

Ma allora per definizione di massimo,

(1)
$$M_1 > a$$
 (2) $M_2 > a$ $\forall a \in A$

Sempre per definizione, M_1, M_2 sono elementi di A.

Quindi da (1) se $a = M_2$, ottengo $M_1 \ge M_2$

Da (2) se $a = M_1$, ottengo $M_2 \ge M_1$

Segue che $M_1 = M_2$.

2.1.2 Osservazione

Un insieme finito ammette sempre massimo e minimo, ma consideriamo i seguenti insiemi:

- $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, il più grande elemento di A è 1, che è il massimo, il più piccolo non c'è.
- $B = \{1 \frac{1}{n} : n \in \mathbb{N}\} = \{\frac{n-1}{n} : n \in \mathbb{N}\}$, il più piccolo elemento di B è 0, che è il minimo, il più grande non c'è.

2.2 Maggiorante e Minorante

L si dice **maggiorante** per un insieme A se

$$L \ge a \quad \forall a \in A$$

l si dice **minorante** per un insieme A se

$$l < a \quad \forall a \in A$$

Non sempre un insieme A ammette maggioranti e minoranti.

L'insieme A si dice **limitato superiormente** se ammette un maggiorante.

L'insieme A si dice **limitato inferiormente** se ammette un minorante.

L'insieme A si dice **limitato** se è limitato superiormente ed inferiormente, in simboli:

$$l \le a \le L \quad \forall a \in A \implies \exists M : |a| \le M \quad \forall a \in A$$

2.3 Teorema dell'esistenza dell'estremo superiore

Sia A un insieme non vuoto di numeri reali e limitato superiormente. Allora esiste il minimo dell'insieme dei maggioranti di A.

$$A = \{a \in A\}$$
 $B = \{b \text{ maggiorante di } A\}$

Applichiamo l'assioma di completezza di due insiemi A e B, quindi esiste c numero reale tale che:

$$a < c < b \quad \forall a \in A \quad \forall b \in B$$

Dato che $c \ge a \quad \forall a \in A, c$ è un maggiorante di A, cioè $c \in B$.

Ma c è anche tale che $c \le b$ (minore o uguale a tutti gli elementi di B). $\implies c$ è un minimo.

Allora possiamo dare la seguente definizione:

2.3.1 Estremo superiore

Def: Sia A un insieme non vuoto di numeri reali e limitato superiormente. Diremo che $M \in \mathbb{R}$ è l'estremo superiore di A se M è il minimo dei maggioranti di A. In simboli:

$$M \text{ estremo superiore di } A \iff \begin{cases} M \geq a & \forall a \in A \ (\mathbf{1}) \ (\mathbf{M} \text{ è maggiorante}) \\ \forall \varepsilon > 0 & \exists a \in A : M - \varepsilon < a \ (\mathbf{2}) \ (\mathbf{M} \text{ è il minimo dei maggioranti}) \end{cases}$$

Analogamente:

2.3.2 Estremo inferiore

Def: Sia A un insieme non vuoto di numeri reali e limitato inferiormente. Diremo che m è l'estremo inferiore di A se m è il massimo dei minoranti di A. In simboli:

$$m$$
 estremo inferiore di $A \iff \begin{cases} m \leq a & \forall a \in A \ (1) \ (\text{m è minorante}) \\ \forall \varepsilon > 0 & \exists a \in A : m + \varepsilon > a \ (2) \ (\text{m è il massimo dei minoranti}) \end{cases}$

⇒ Quindi se un insieme è limitato superiormente allora esiste l'estremo superiore ed è un numero reale. Se un insieme è limitato inferiormente, allora esiste l'estremo inferiore ed è un numero reale. Altrimenti:

- L'estremo superiore è $+\infty$ se A non è limitato superiormente
- L'estremo inferiore è $-\infty$ se A non è limitato inferiormente

$$\begin{cases} \sup A = +\infty \iff \forall M \in \mathbb{R} & \exists a \in A : M < a \\ \inf A = -\infty \iff \forall m \in \mathbb{R} & \exists a \in A : m > a \end{cases}$$

Ongi insieme non vuoto di numeri reali ammette sia estremo superiore che inferiore (che sono finiti se l'insieme è limitato superiormente ed inferiormente).

2.3.3 Osservazione

Assioma di completezza (punto di partenza) \implies Esistenza dell'estremo superiore.

3 Successioni e Limiti

Una successione è una legge che ad ogni numero naturale n fa corrispondere uno ed un solo numero reale a_n . Una successione è una funzione di $\mathbb{N}in\mathbb{R}$.

- $\mathbb{N} \to \mathbb{R}$
- $1 \rightarrow a_1$
- $2 \rightarrow a_2$
- $3 \rightarrow a_3$
- $n \to a_n$

Simbolo: (a_n) oppure più semplicemente a_n

A noi interessa il comportamento della successione per n grande, più precisamente il **limite** della successione a_n , cioè un numero reale $(a \in \mathbb{R})$ che sia "vicino" ai termini della successione che hanno l'indice n "grande".

Consideriamo a_n con a limite della successione ($a \in \mathbb{R}$). $a \in \mathbb{R}$ il limite della successione se comunque si scelga un intervallo

Figure 4: Intorno

di numeri intorno ad a, diciamo $(a - \varepsilon, a + \varepsilon)$, $\varepsilon > 0$, allora esiste un indice ν , tale che $\forall n > \nu$ a_n sta nell'intervallo $(a - \varepsilon, a + \varepsilon)$, cioè $a - \varepsilon < a_n < a + \varepsilon$.

3.1 Limiti

Un numero reale a è il limite della succesione a_n (si dice che a_n tende o converge ad a) e si scrive:

$$\lim_{n \to +\infty} a_n = a \quad \text{o } a_n \to_{n \to +\infty} a$$

se, qualunque sia $\varepsilon > 0$, esiste un numero ν tale che:

$$|a_n - a| < \varepsilon \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$$

Osservazione: $a - \varepsilon < a_n < a + \varepsilon$ si può scrivere $-\varepsilon < a_n - a < \varepsilon$.

3.2 Proposizione

Se esiste il limite $a \in \mathbb{R}$ della successione a_n , allora è unico.

Dimostrazione: Ragioniamo per assurdo. Supponiamo che:

$$a_n \to a$$
 e $a_n \to b$ con $a \neq b$

Allora $\forall \varepsilon > 0$

$$\exists \nu_1 : |a_n - a| < \varepsilon \quad \forall n > \nu_1$$

$$\exists \nu_2 : |a_n - b| < \varepsilon \quad \forall n > \nu_2$$

Prendo $\varepsilon = \frac{|a-b|}{2} > 0$ e ponendo $\nu = \max\{\nu_1, \nu_2\}, (1)$ e (2) valgono contemporaneamente. Allora:

$$|a - b| = |(a - a_n) + (a_n - b)| < |a - a_n| + |a_n - b| < \varepsilon + \varepsilon = |a - b|$$

Ma allora |a-b| < |a-b|, ASSURDO! \clubsuit

Una succesisone a_n ha limite $+\infty$ (si dice anche che tende o diverge a $+\infty$)

$$\lim_{n \to +\infty} a_n = +\infty$$

se, qualunque sia $M > 0 \in \mathbb{R}$, esiste un numero ν tale che:

$$a_n > M \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \quad \exists \nu \in \mathbb{N} : a_n > M \quad \forall n > \nu$$

Analogamente si definisce il limite $-\infty$:

$$\lim_{n \to +\infty} a_n = -\infty \iff \forall M < 0 \quad \exists \nu \in \mathbb{N} : a_n < M \quad \forall n > \nu$$

Osservazione:

- Le successioni che ammettono limite finito si dicono convergenti
- Le successioni che ammettono limite infinito si dicono divergenti
- Le successioni convergenti o divergenti si dicono regolari
- Una successione che tende a zero si dice anche infinitesima
- Una successione divergente si dice anche infinita

3.3 Successioni Limitate

 a_n si dice **limitata** se $\exists M \in \mathbb{R}$:

$$|a_n| \leq M$$

Osservazione: In particolare $a_n = (-1)^n$ è un esempio di successione limitata che non ammette limite. Viceversa, ogni successione che ammette limite finito, è limitata. Vale il seguente:

3.4 Teorema

Ogni successione convergente è limitata.

Dimostrazione: Sia a_n una successione convergente e supponiamo che:

$$\lim_{n \to +\infty} a_n = a$$

Allora $\forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

Posso predere $\varepsilon = 1 \implies |a_n - a| < 1$, valuto $|a_n|$:

$$|a_n| = |(a_n - a) + a| \le |a_n - a| + |a| < 1 + |a| \quad \forall n > \nu$$

posso prendere $M = \max\{|a_1|, |a_2|, \cdots, |a_{\nu}|, 1 + |a|\}$.

3.5 Operazioni con i limiti

Supponiamo $\lim_{n\to+\infty} a_n = a$ e $\lim_{n\to+\infty} b_n = b$ con $a,b\in\mathbb{R}$. Allora:

- $\lim_{n\to+\infty}(a_n+b_n)=a+b$
- $\lim_{n\to+\infty} (a_n b_n) = a b$
- $\lim_{n\to+\infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to+\infty} \frac{a_n}{b_n} = \frac{a}{b}$ se $b\neq 0$

Si dimostra anche che:

•
$$a_n \to a \ b_n \to \pm \infty \implies a_n + b_n \to \pm \infty$$

- $a_n \to a \neq 0$ $b_n \to \pm \infty \implies a_n \cdot b_n \to \pm \infty$
- $a_n \to a \ b_n \to \pm \infty$ entrambe con lo stesso segno $\implies a_n + a_b \to \pm \infty$ e $a_n \cdot b_n \to + \infty$
- $a_n \to a \ b_n \to \pm \infty \implies \frac{a_n}{b_n} \to 0$
- $a_n \to \pm a \ b_n \to \pm 0 \implies \frac{a_n}{b_n} \to +\infty$

3.6 Forme infeterminate o di indecisione

- $\bullet \infty \infty$
- $0 \cdot \infty$

- ∞^0
- 1^{±∞}
- 0⁰

Dire che un limite è una forma indeterminata non significa dire che non esiste, ma che occorre togliere, se possibile, l'indeterminazione, mediante semplificazioni o trasformazioni.

3.7 Teoremi di confronto

Teorema della permanenza del segno

Se $\lim_{n\to+\infty} a_n = a > 0$, esiste un numero ν tale che $a_n > 0 \quad \forall n > \nu$.

Esempio: $a_n = \frac{n-12}{n}$, $\lim_{n \to +\infty} a_n = 1 > 0$, ma i primi termini della successione sono negativi. $a_n = 0$ per n = 12, quindi se prendo $\nu = 12$, e $n > \nu$ allora $a_n > 0$.

Dimostrazione: $\lim_{n\to+\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

a>0,quindi posso prendere $\varepsilon=\frac{a}{2}>0$ e:

$$|a_n-a|<\frac{a}{2} \quad \forall n>\nu \iff -\frac{a}{2}< a_n-a<\frac{a}{2} \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0 \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0$$

Corollario (viceversa)

Se $\lim_{n\to+\infty} a_n = a$ e $a_n \ge 0$ (vale anche $a_n > 0$), allora $a \ge 0$.

3.7.2 Teorema dei carabinieri

Si consideriamo tre successioni a_n, b_n, c_n con la proprietà che:

$$a_n \le c_n \le b_n$$

Se risulta che $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = a$, allora anche $\lim_{n\to+\infty} c_n = a$ (per ipotesi $a_n \to a$).

Dimostrazione:

$$\forall \varepsilon > 0 \ \exists \nu_1 : |a_n - a| < \varepsilon \ \forall n > \nu_1$$

$$\forall \varepsilon > 0 \ \exists \nu_2 : |b_n - a| < \varepsilon \ \forall n > \nu_2$$

Definisco $\nu_3 = \max\{\nu_1, \nu_2\}$ e per ipotesi $a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \implies |c_n - a| < \varepsilon \quad \forall n > \nu_3 \implies c_n \to a$ Osservazione: Valgono per i limiti infiniti:

$$a_n \le b_n \quad \forall n \in \mathbb{N} \begin{cases} a_n \to +\infty \implies b_n \to +\infty \\ b_n \to -\infty \implies a_n \to -\infty \end{cases}$$

Dal teorema dei Carabinieri, segue il seguente risultato molto importante per le applicazioni e gli esercizi:

3.7.3 Teorema del limite del prodotto di una successione limitata per una infinitesima

Se a_n è limitata e b_n è infinitesima, allora $a_n \cdot b_n \to 0$ Dimostrazione: Considero $|a_n \cdot b_n| \Longrightarrow$

$$|a_n \cdot b_n| = |a_n| \cdot |b_n| \le M \cdot |b_n|$$

Per la proprietà del valore assoluto $|x| \le r \iff -r \le x \le r$

$$-M|b_n| \le a_n \cdot b_n \le M|b_n|$$
 per ipotesi $b_n \to 0$

 \implies Per il Teorema dei Carabinieri $a_n \cdot b_n \to 0$.

3.8 Alcuni limiti notevoli

•
$$\lim_{n \to \infty} a^n = \begin{cases} +\infty & \text{se } a > 1 \\ 0 & \text{se } -1 < a < 11 \end{cases}$$
 se $a = 1$ non esiste se $a \le -1$

•
$$\lim_{n\to\infty} n^b = \begin{cases} +\infty & \text{se } b > 0\\ 1 & \text{se } b = 00 & \text{se } b < 0 \end{cases}$$

•
$$\lim_{n\to+\infty} \sqrt[n]{a} = \lim_{n\to+\infty} a^{\frac{1}{n}} = 1 \quad \forall a > 0$$

•
$$\lim_{n \to +\infty} \sqrt[n]{n^b} = \lim_{n \to +\infty} n^{\frac{b}{n}} = 1 \quad \forall b \in \mathbb{R}$$

3.9 Limiti relativi alle funzioni trigonometriche

•
$$a_n \to 0 \implies \sin a_n \to 0$$

•
$$a_n \to 0 \implies \cos a_n \to 1$$

Ad esempio, se $a_n = \frac{1}{n} \implies \sin \frac{1}{n} \to 0$ e $\cos \frac{1}{n} \to 1$.

•
$$a_n \to 0, a_n \neq 0 \quad \forall n \quad (1) \frac{\sin a_n}{a_n} \to 1$$

•
$$a_n \to 0, a_n \neq 0 \ \forall n \ (2) \frac{1 - \cos a_n}{a_n^2} \to \frac{1}{2}$$

Infatti
$$\frac{1 - \cos a_n}{a_n^2} = \frac{(1 - \cos a_n)(1 + \cos a_n)}{a_n^2(1 + \cos a_n)} = \frac{1 - \cos^2 a_n}{a_n^2(1 + \cos a_n)} = \frac{\sin^2 a_n}{a_n^2} \cdot \frac{1}{1 + \cos a_n} = \frac{1}{2}$$

3.10 Successione notevole importante

$$a_n = (1 + \frac{1}{n})^n \qquad 1^{+\infty}$$

Confrontiamola con altre successioni b_n, c_n :

$$b_n = (1 + \frac{1}{n})^3 = (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \to 1$$

$$c_n = (1 + \frac{1}{10})^n = (\frac{11}{10})^n = a^n \to +\infty \quad \text{con } a > 1$$

Quindi a_n è una forma indeterminata $1^{+\infty}$, che da una parte, vuole tendere ad 1, dall'altra a $+\infty$, arriverà quindi ad un 'punto di mezzo'. Si definisce e il numero di Nepero tale che:

$$e = \lim_{n \to +\infty} (1 + \frac{1}{n})^n$$

9

dove $e \simeq 2,718281828459...$

Si dim
sotra che la succesisone a_n è strettamente crescente e limitata.

3.11 Successioni Monotòne

- a_n strettamente crescente $\iff a_n < a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n strettamente decrescente $\iff a_n > a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n crescente $\iff a_n \le a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n decrescente $\iff a_n \ge a_{n+1} \quad \forall n \in \mathbb{N}$

Una successione si dice **monotona** se si verifica una delle quattro condizioni.

Una successione si dice **costante** se $a_n = a \quad \forall n \in \mathbb{N}$ con a numero reale. Le successioni costanti sono sia crescenti che decrescenti.

3.12 Teorema sulle successioni monotone

Ogni successione monotona ammette limite. In particolare, ogni successio monotona e limitata ammette limite finito.

Osservazione: Naturalmente non è che ogni successione convergente è monotona. Ad esempio $an = \frac{(-1)^n}{n}$ è convergente $(\to 0)$, ma non è monotona.

Dimostrazione: (1) Sia, ad esempio, a_n crescente e limtata.

Poniamo $l = \sup a_n$ (teorema di esistenza dell'estremo superiore: esiste il sup ed è finito perchè a_n è limitata).

Allora, per le proprietà dell'estremo superiore (data che è il minimo dei maggioranti)

$$\forall \varepsilon > 0 \quad \exists \nu : l - \varepsilon < a_{\nu} \quad (\star)$$

Ma a_n è monotona (crescente), quindi $\forall n > \nu \quad a_{\nu} \leq a_n$, da (\star)

$$l - \varepsilon < a_{\nu} \le a_n \le l < l + \varepsilon \quad \forall n > \nu$$

$$|a_n - l| < \varepsilon \quad \forall n > \nu$$

$$\implies \lim_{n \to +\infty} a_n = l$$

(2) Sia ora a_n crescente e non limitata. Fissiamo M>0, allora esiste ν tale che $a_{\nu}>M$. Dato che a_n è crescente $\forall n>\nu$

$$a_n \ge a_{\nu} > M$$

$$\implies \lim_{n \to +\infty} a_n = +\infty$$

Osservazione: Assioma di completezza \implies Esistenza dell'estremo superiore \implies Esistenza del limite delle successioni monotone

Osservazione: Si dimostra che $a_n = (1 + \frac{1}{n})^n$ è strettamente crescente e limitata. Quindi esiste, ed è un numero reale, il limite per $n \to +\infty$ di a_n , che è e.

3.13 Limiti Notevoli

- $\lim_{n \to +\infty} (1 + \frac{1}{n})^n = e$
- $\lim_{n \to +\infty} (1 + \frac{x}{n})^n = e^x \text{ con } x \in \mathbb{R}$

Più in generale:

- $\lim_{n\to+\infty} (1+\frac{x}{a_n})_n^a = e^x \text{ con } a_n \to +\infty, x \in \mathbb{R}$
- $\lim_{n\to+\infty} (1+\varepsilon n)^{\frac{1}{\varepsilon}} = e \operatorname{con} \varepsilon \to 0$
- $\lim_{n\to+\infty} (1+x\varepsilon n)^{\frac{1}{\varepsilon}} = e^x \text{ con } \varepsilon \to 0, x \in \mathbb{R}$

Osservazione: Abbiamo visto, nell'ambito dei limiti notevoli, la successione esponenziale a^n , con a > 1 e la successione potenza n^b , con b > 0.

Entrambe divergono a $+\infty$. Spesso tali successioni vengono confrontate con $\log n, n!$ e con n^n , che pure divergono a $+\infty$.

3.13.1 Infiniti di ordine crescente

 $\log n, n^b, a^n, n!, n^n,$ da cui:

•
$$\lim_{n \to +\infty} \frac{\log n}{n^b} = 0$$

•
$$\lim_{n\to+\infty} \frac{a^n}{n!} = 0$$

•
$$\lim_{n\to+\infty} \frac{n!}{n^n} = 0$$

•
$$\lim_{n\to+\infty} \frac{n^b}{a^n} = 0$$

3.14 Criterio del rapporto per le successioni

Sia a_n una successione a termini positivi.

Sia $\frac{a_n+1}{a_n} \to a$, se $a \in [0,1)$, allora la successione a_n converge a zero.

Se $a \in (1, +\infty)$, allora la successione a_n diverge $a + \infty$.

Osservazione: Il caso a=1 non è contemplato nell'enunciato.

3.15 Successioni estratte

Considero a_n successione di numeri reali e sia n_k una successione strettamente crescente di numeri naturali. La successione a_{nk}

$$k \in \mathbb{N} \to a_{n_k}$$

prende il nome di successione estratta da a_n di inidici n_k .

Osservazione: Si dimostra che se a_n converge ad a, allora ogni successione estratta a_{n_k} converge ad a.

Osservazione: Abbiamo dimostrato che ogni successione a_n convergente è limitata. Il viceversa non è vero, ma vale il seguente notevole risultato:

3.16 Teorema di Bolzano-Weierstrass

Sia a_n una successione limitata. Allora esiste almeno una sua estratta convergente.

4 Partizioni

Quindi per ogni partizione P, poniamo

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$

Figure 5: Inf

(In questo caso è un minimo) e poniamo

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$$

(In questo caso è un massimo)

Figure 6: Sup

Ad esempio:

In entrambe le figure sono rettangoli con la stessa base, ma con diversa altezza. Sono aree per difetto e per eccesso della regione che voglio stimare.

Definisco le SOMME INTEGRALI INFERIORI: Somma delle aree dei rettangoli inscritti.

$$S(p) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$

e le SOMME INTEGRALI SUPERIORI: Somma delle aree dei rettangoli circoscritti.

$$S(p) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$

4.1 Osservazione

Se f(x) è positiva, queste somme integrali sono la somma delle aree dei rettangoli inscritti e circoscritti (sono definite a prescindere dal segno)

Si dimostra che:

$$S(P) \le S(P)$$

e indicando con A l'insieme numerico descritto dalle somme integrali inferiori (P) al variare delle partizioni P dell'intervallo [a,b] e con B l'insieme delle corrispondenti somme superiori:

$$A = \{s(P)\} \quad B = \{S(P)\}$$

si dimostra che A e B sono insiemi SEPARATI, cioè $A \leq B$:

$$a \leq b \forall a \in A \quad \land \quad \forall b \in B$$

⇒ Dall'assioma di completezza segue che esiste almeno un numero reale c maggiore uguale a tutti gli elementi di A e minore o uguale a tutti gli elementi di B.

$$a \le c \le b$$

In generale questo elemento non è unico, e vale la seguente:

5 Integrale definito

Se l'elemento di separazione tra A e B è unico, allora si dice che f(x) è INTEGRABILE SECONDO RIEMANN in [a,b] e l'elemento si chiama con:

$$\int_{a}^{b} f(x)dx$$

e si chiama INTEGRALE DEFINITO di f
 in [a,b]. Quindi posto:

$$S(f) = \sup\{s(P) : P \ partizione \ di \ [a,b]\}$$

$$S(f) = inf\{S(P) : P \ partizione \ di \ [a, b]\}$$

se $s(f) = S(P) \rightarrow$ allora f(x) è integrabile secondo Riemann.

5.1 Funzione non integrabile secondo Riemann

Funzione di Dirichlet:

$$f(x): \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Figure 7: Funzione di Dirichlet

In ogni intervallo $[x_{k-1}, x_k]$ cadono sia punti razionali che irrazionali:

$$m_k = \inf\{f(x); x \in [x_{k-1}, x_k]\} = 0$$

$$M_k = \sup\{f(x); x \in [x_{k-1}, x_k]\} = 1$$

Allora: (somma integrali inferiori)

$$S(P) = \sum_{k=1}^{n} 0 \cdot (x_k - x_{k-1}) = 0$$

$$S(P) = \sum_{k=1}^{n} 1 \cdot (x_k - x_{k-1}) = (x_1 - x_0) + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_{n-1} - x_{n-2}) + (x_n - x_{n-1})$$

= $x_n - x_0 = b - a$

$$\rightarrow S(P) = 0 \ \forall \ P \land S(P) = b - a \ \forall P$$

Non è integrabile secondo Riemann. (lo sarà secondo LEBESGUE)

5.2 Proprietà

5.2.1 Additività integrale rispetto all'intervallo

Se a,b,c sono tre punti di un intervallo dove la funzione f(x) è integrabile, allora:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Figure 8: Grafico additività integrale

5.2.2 Linearità dell'integrale

Se f e g sono funzioni integrabili in [a, b], anche f + g è integrabile in [a, b]. Dato c numero reale, anche $c \cdot f$ è integrabile in [a, b].

$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
$$\int_{a}^{b} c \cdot f(x)dx = c \cdot \int_{a}^{b} f(x)dx$$

5.2.3 Confronto tra gli integrali

Se f e g sono funzioni integrabili in [a,b] e se $f(x) \leq g(x) \forall x \in [a,b]$, allora:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

5.2.4 Integrabilità delle funzioni continue

Sia f(x) una funzione continua in [a, b]. Allora f(c) è integrabile secondo Riemann in [a, b].

5.3 Teorema della media

Se f(x) è continua in [a, b], esiste un punto $x_0 \in [a, b]$ tale che:

$$\int_{a}^{b} f(x)dx = f(x_0) \cdot (b - a)$$

5.4 Interpretazione geometrica del teorema della media

f(x) continua in [a, b], ad esempio:

Voglio calcolare l'area del rettangolo A. Il teorema della media afferma che \exists un valore opportuno (cioè un valore non scelto a caso, ma in base alla particolare funzione considerata) $f(x_0)$, tale che:

Figure 9: Teorema della media

Per cui area A = area B, dove B è un rettangolo che ha per base l'intervallo [a, b] e per altezza $f(x_0)$.

5.4.1 Dimostrazione del teorema della media

f una funzione continua in [a, b] per ipotesi. Per il teorema di Weierstrass f(x) assume massimo e minimo in [a, b], cioè esisteno m e M tali che: (teo esistenza valori intermedi)

$$m \le f(x) \le M \forall x \in [a, b]$$

Consideriamo ora una partizione P di [a, b], la più semplice possibile, cioè:

$$P = \{x_0 = a, x_1 = b\}$$

Le relative somme integrali inferiori e superiori sono date quindi da:

$$s(P) = m(b - a)$$

Figure 10: Enter Caption

$$S(P) = M(b - a)$$

// grafico

L'integrale definito è, per definizione, l'elemento di separazione delle somme integrali inferiori e delle somme integrali superiori (qualunque sia la partizione P di [a, b]). Quindi:

$$s(P) \le \int_b^a f(x)dx \le S(P)$$

 $\to m(b-a) \le \int_b^a f(x) dx \le M(b-a)$

se e solo se

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M$$
$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = y_{0}$$

 y_0 è un numero compreso tra m ed M, minimo e massimo di f(x) \implies per il teorema di esistenza dei valori intermedi, $\exists x_0 \in [a,b] \ t.c.$

$$f(x_0) = y_0$$

$$\implies f(x_0) = \frac{1}{b-a} \int_a^b f(x) dx$$

$$\frac{1}{b-a} \int_a^b f(x) dx = y_0$$

$$\implies \int_a^b f(x) dx = (b-a)f(x_0)$$

5.5 Integrabilità delle funzioni monotone

Sia f(x) una funzione monotona in [a, b]. Allora f(x) è integrabile secondo Riemann in [a, b] (indipendente dalle discontinuità)

5.5.1 Osservazioni

In vista di andare a definire gli **INTEGRALI INDEFINITI**, concludiamo con alcune notazioni e definizioni. Abbiamo definito l'integrale definito come:

 $\int_{a}^{b} f(x)dx$

dove a e b sono gli estremi di integrazione, la funzione f si dice funzione **integranda**, la variabile x, si dice **variabile di integrazione**.

Figure 11: funzione a scalini

Notiamo che il risultato dell'integrazione non dipende da x, ma è un numero reale. Poniamo inoltre per definizione:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \quad (a > b)$$

$$\int_{a}^{a} f(x)dx = 0$$

6 Integrali Indefiniti

Mettiamo ora in evidenza, ma dei risultati più importati che lega le derivate con gli integrali. Preliminarmente definiamo la FUNZIONE INTEGRALE.

6.1 Funzione integrale

Data f una funzione continua in [a, b], definiamo:

$$F(x) = \int_{a}^{x} f()$$

qui "x" è impegnato.

$$\implies F(x) = \int_a^x f(t)dt$$

7 Serie Numeriche

Consideriamo una successione a_n di numeri reali. Vogliamo definire la "somma" di infiniti termini della successione, cioè: $a_1 + a_2 + a_3 + \cdots + a_n + \cdots$

Ora ad esempio, se consideriamo:

$$1+1+1+1+1+\dots+1+\dots$$
 Successione costante $a_n=1 \ \forall n$

Ovvio che il risultato è $+\infty$.

Ma se consideriamo:

$$1-1+1-1+1-1+\cdots+1-1+\cdots$$

Ovvio che il risultato è...?

Potrebbe essere:

$$(1-1) + (1-1) + (1-1) + \dots + (1-1) + \dots = 0 + 0 + 0 + \dots + 0 + \dots = 0$$

oppure:

$$1 + (-1+1) + (-1+1) + \cdots + (-1+1) + \cdots = 1 + 0 + 0 + \cdots + 0 + \cdots = 1$$

Quindi varia in base a come li accoppio.

Allora come si procede?

Si introduce la somma S_n dei primi termini della successione, detta Somma Parziale o Ridotta Ennesima.

7.1 Somma parziale

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$$

 $S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, \dots, S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$ Vediamo ora cosa succede se sommiamo facciamo tendere a infinito la somma parziale.

7.1.1 Esempio 1

 $a_k = 1 \ \forall k$

$$1+1+1+1+1+1+1...+1+...$$

$$S_1 = 1, S_2 = 2, S_3 = 3, \dots, S_n = n$$

$$\implies S_n \to \infty$$

7.1.2 Esempio 2

$$a_k = (-1)^{k+1}$$

$$1-1+1-1+1-1+1-1+\dots$$

$$S_1 = 1, S_2 = 0, S_3 = 1, S_4 = 0, S_5 = 1, S_6 = 0, \dots$$

 S_n oscilla fra 0 e 1 quindi: $\Longrightarrow \lim_{n\to\infty} S_n$ non esiste!

7.2 Definizione di Serie Numerica Astratta

Notazione: $\sum_{k=1}^{\infty} a_k$ Somma o Serie per k che va da 1 a $+\infty$ di a_k . Poniamo per definizione:

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

- Se il limite per $n \to \infty$ di S_n esiste ed è un numero finito, la serie è **Convergente**.
- Se il limite per $n \to \infty$ di S_n è $\pm \infty$, la serie è **Divergente**.
- Una serie convergente o divergente si dice Regolare.
- Se non esiste il limite per $n \to \infty$ di S_n , si dice che la serie è **Indeterminata**.

Il comportamtento della seria si chiama Carattere della serie. Il carattere di una seria è la sua proprietà di essere convergente, divergente o indeterminata.

7.2.1 Osservazione

La serie che abbiamo visto $\sum_{n=1}^{+\infty} (-1)^n$ è indeterminata.

$$S_1 = -1, S_2 = 0, S_3 = -1, S_4 = 0, \dots$$

Si noti che la successione associata a queste serie è $a_n = (-1)^n$ che non converge a zero. Questo è un motivo èer escludere a priori che la serie converga. Vale infatti il seguente:

7.3 Condizione necessaria di convergenza di una serie

Se la serie $\sum_{n=1}^{+\infty} a_n$ converge, allora la successione a_n tende a zero, per $n \to \infty$.

$$\sum_{n=1}^{+\infty} a_n \text{ converge } \Longrightarrow \lim_{n \to \infty} a_n = 0$$

L'implicazione inversa **non** è vera.

7.3.1 Dimostrazione

Sia S_n la successione delle somme parziali e sia $S \in \mathbb{R}$, la somma ($\Longrightarrow \lim_{n \to \infty} S_= S$) della serie. Abbiamo che:

$$(\star)$$
 $S_{n+1} = S_n + a_{n+1} \ \forall n \in \mathbb{N}$

Aggiungendo alla successione S_n il termine a_{n+1} , ottengo la successione S_{n+1} . (Per definizione di successione di somme parziali)

Allora da (\star) :

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} S_{n+1} - \lim_{n \to \infty} S_n = S - S = 0$$

$$\implies a_n \to 0$$

Osservazione: E' una condizione Necessaria, ma non sufficiente. Vediamo due esempi di serie modello:

7.4 Serie geometrica

 $\forall x \in \mathbb{R}$, consideriamo la serie:

$$\sum_{k=0}^{+\infty} x^k = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

che si chiama Serie geometrica di **ragione** x (argomento elevato alla k). Calcoliamo la somma parziale S_n :

$$S_n = 1 + x + x^2 + \dots + x^n$$

e $\lim_{n\to\infty} S_n = ?$.

Formula Risolutiva: $\forall x \neq 1$

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

7.4.1 Osservazione

La formual vale $\forall x \neq 1$, cioè:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} =$$

$$\lim_{n \to \infty} x^{n+1} = \left\{ \dots \right\}$$

е

Se invece x = 1,

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} 1 + 1 + 1 + \dots + 1 = +\infty$$

Riassumendo per la serie geometrica (di ragione x):

$$\sum_{k=0}^{+\infty} = \begin{cases} \infty & \text{se } x \geq 1 \text{ divergente} \\ \frac{1}{1-x} & \text{se } -1 < x < 1 \ (|x| < 1) \text{ convergente} \\ \text{indeterminata} & \text{se } x \leq -1 \end{cases}$$

7.4.2 Esercizio del compito (21/06/21)

Stabilire per quali $x \in \mathbb{R}$, la serie:

$$\sum_{n=2}^{+\infty} (x-4)^n$$

converge, e per tali valori di x, calcolare la somma della serie.

- ! L'unica serie che conosciamo di cui possiamo fare la somma è quella geometrica.
- ! Capisco che è geometrica perchè dipende da x-4

Risoluzione:

• è una serie geometrica di ragione x-4.

• la serie geometrica data converge per:

$$|x-4| < 1 \iff -1 < x - 4 < 1 \iff 3 < x < 5$$

 $\bullet\,$ la somma della serie è data da: $\frac{1}{1-x}$

$$\sum_{n=2}^{+\infty} (x-4)^n = \frac{1}{1-(x-4)} - 1 - (x-4) = \frac{x^2 - 8x + 16}{5-x}$$

$$-1 = I^{\circ}$$
 termine della serie $= (x-4)^{0} = 1$

7.5 La serie armonica

Data la somma:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{+\infty} \frac{1}{n}$$

Si dimostra che la serie armonica è divergente.

! Non si conosce la somma.

Osservazione E' un esempio di serie dove $a_n = \frac{1}{n} \to 0$, ma la serie $\sum_{n=1}^{+\infty} \frac{1}{n}$ è divergente.

7.6 La serie armonica generalizzata (con esponente)

Detta dalla somma:

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \frac{1}{5^p} + \dots + \frac{1}{n^p} =$$
$$= \sum_{n=1}^{+\infty} \frac{1}{n^p}$$

Si dimostra che la seria armonica generalizzata è:

- convergente per p > 1
- divergente per $p \le 1$

7.7 Serie a termini non negativi

Diremo che una serie $\sum_{k=1}^{+\infty} a_k$ è a termini non negativi se $\forall n \in \mathbb{N}$ risulta $a_n \geq 0$. Diremo che una serie è a termini positivi se $a_n > 0, \forall n$.

7.7.1 Teorema sulle serie a termini non negativi

Una serie a termini non negativi non può essere indeterminata. Può essere convergente o divergente poisitivamente. **Dimostrazione:** La successione delle somme parziali S_n di una seria a termini non negativi è **crescente** (per definizione di successione di somme parziali).

Infatti, poichè $a_{n+1} \ge 0, \forall n$, risulta:

$$S_{n+1} = S_n + a_{n+1} \ge 0 \ge S_n$$

⇒ Quindi per il teorema sulle successioni monotone, ovvero:

"Ogni successione monotona ammette limite. In particolare, ogni successione monotona e limitata ammette limite finito." $\implies S_n$ ammette limite (eventualmente a $+\infty$) e quindi la serie corrispondente può solo convergere o divergere, ma non essere indeterminata.

7.8 Criteri di convergenza per serie a termini non negativi

Alcuni **criteri** per stabilire il **carattere** di una serie: (non sempre si risce a calcolare esplicitamente la somma di una serie)

7.8.1 Criterio del rapporto:

Si utilizza solitamente per il fattoriale.

Data $\sum_{n=1}^{+\infty} a_n$ con $a_n > 0 \forall n$. Supponiamo che esista il limite:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

- Se $0 \le L \le 1$, la serie converge.
- Se $1 < L \ge +\infty$, la serie diverge.

Osservazione Nel caso: $0 \le L \le 1$ quindi per il criterio del rapporto $a_n \to 0$ e $\sum_{n=1}^{+\infty} a_n$ converge.

Esempi:

da fare

7.8.2 Criterio della radice:

Data $\sum_{n=1}^{+\infty} a_n$ con $a_n > 0 \forall n$. Supponiamo che esista il limite:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = L$$

- Se $0 \le L < 1$, la serie converge.
- Se $1 < L \le +\infty$, la serie diverge.

Esempi:

da fare

Esercizio appello

7.8.3 Criterio del confronto mediante i limiti

Date $\sum_{n=1}^{+\infty} a_n$ con $a_n \ge 0 \forall n$ e $\sum_{n=1}^{+\infty} b_n$ con $b_n > 0 \forall n$:

- Se $\lim_{n\to\infty} \frac{a_n}{b_n} = L \in (0, +\infty)$, allora le due serie hanno lo stesso grado, quindi carattere, cioè convergono o divergono.
- Se $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ e $\sum_{n=1}^{+\infty} b_n$ converge, allora $\sum_{n=1}^{+\infty} a_n$ converge.
- Se $\lim_{n\to\infty} \frac{a_n}{b_n} = +\infty$ e $\sum_{n=1}^{+\infty} b_n$ diverge, allora $\sum_{n=1}^{+\infty} a_n$ diverge.

7.8.4 Esempi

•
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^2}$$
 quindi $a_n = \frac{\ln n}{n^2}$ e considero $b_n = \frac{1}{n^p}$ con p? valuto $\lim_{n\to\infty} \frac{a_n}{b_n}$

$$-b_n = \frac{1}{n^2} \implies \lim_{n \to \infty} \frac{\ln n}{n^2} \cdot n^2 = \lim_{n \to \infty} \ln n = +\infty \text{ ma } \sum_{n=1}^{+\infty} \frac{1}{n^2}$$
è una serie convergente, quindi non riesco a concludere.

$$-b_n = \frac{1}{n^3} \implies \lim_{n \to \infty} \frac{\ln n}{n^2} \cdot n^3 = +\infty$$
, stesso problema di prima e non riesco a concludere.

$$-b_n = \frac{1}{\frac{3}{2}} \implies \lim_{n \to \infty} \frac{\ln n}{n^2} \cdot n^{\frac{3}{2}} = \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} \to 0, \text{ la serie } \sum_{n=1}^{+\infty} \frac{1}{\frac{3}{2}} \text{ converge e quindi concludo con il}$$

criterio del **confronto mediante limiti** e la serie data converge.

• Determinare il carattere della serie:

$$\sum_{n=1}^{+\infty} (\sqrt{6n^3 + 1} - \sqrt{6n^3})$$

$$a_n = \sqrt{6n^3 + 1} - \sqrt{6n^3} \cdot \frac{\sqrt{6n^3 + 1} + \sqrt{6n^3}}{\sqrt{6n^3 + 1} + \sqrt{6n^3}} = \frac{6n^3 + 1 - 6n^3}{\sqrt{6n^3 + 1} + \sqrt{6n^3}} = \frac{1}{\sqrt{6n^3 + 1} + \sqrt{6n^3}}$$

Utilizziamo il criterio del confronto mediante limiti e prendiamo $b_n = \frac{1}{\frac{3}{n}} \implies \frac{a_n}{b_n} \to \frac{1}{2\sqrt{6}} \text{ (per } n \to +\infty \text{) quindi}$

la serie data si comporta come la serie $\sum_{n=1}^{+\infty} \frac{1}{\frac{3}{n}}$

• Determinare il carattere della serie:

$$\sum_{n=1}^{+\infty} n^3 \left(1 - \cos\frac{1}{n^3}\right)$$

$$a_n = n^3 (1 - \cos \frac{1}{n^3}) = \frac{1 - \cos \frac{1}{n^3}}{\frac{1}{n^3}}$$

prendiamo $b_n=\frac{1}{n^3}$ e utilizziamo il criterio del confronto mediante limiti. Allora, cerchiamo di ricondurci al limite notevole $\frac{1-\cos\varepsilon_n}{\varepsilon_n^2}$

$$\frac{a_n}{b_n} = \frac{1 - \cos\frac{1}{n^3}}{\frac{1}{n^6}} \to \frac{1}{2}$$

• Stabilire, per $x \ge 0$, il carattere della serie:

$$\sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!}$$

Utilizziamo il criterio del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{x^n}{n!} \cdot \frac{(n-1)!}{x^{n-1}} = \frac{x^n(n-1)!}{(n-1)!nx^nx^{-1}} = \frac{x}{n} \to 0 \quad \forall x > 0 \implies \text{ la serie converge } \forall x > 0$$

• Stabilire, per x > 0 il carattere della serie:

$$\sum_{n=1}^{+\infty} x^n (\frac{n+1}{2n-1})^{2n}$$

utilizziamo il criterio della radice:

$$\sqrt[n]{a_n}x\left(\frac{n+1}{2n-1}\right)^2 \to \frac{x}{4} \ (n \to +\infty)$$

Quindi se 0 < x < 4, allora la serie converge. Se x > 4, allora la serie diverge a $+\infty$. Se x = 4:

$$\sum_{n=1}^{+\infty} 4^n \left(\frac{n+1}{2n-1} \right)^{2n} = \sum_{n=1}^{+\infty} \left(\frac{2n+2}{2n-1} \right)^{2n}$$

Osserviamo che:

$$\lim_{n \to +\infty} \left(\frac{2n+2}{2n-1} \right)^{2n} = 1^{\infty} = \lim_{n \to +\infty} \left[(1+\varepsilon_n)^{\frac{1}{\varepsilon_n}} \right]^{\varepsilon_n \cdot 2n} = \dots = e^3$$

 $a_n \not\to 0$ e poichè è una serie a termini positivi \implies diverge a $+\infty$.

• Stabilire per quali valori di α la serie converge:

$$\sum_{n=1}^{+\infty} n^{\alpha} \cdot \left(\sqrt{1 + \sin\frac{1}{n^2}} - 1\right)$$

Utilizziamo lo sviluppo (Taylor):

$$\sin \varepsilon_n = \varepsilon_n + o(\varepsilon_n), \ \varepsilon_n \to 0$$

Inoltre:

$$\sqrt{1+\varepsilon_n} = 1 + \frac{\varepsilon_n}{2} + o(\varepsilon_n), \quad \varepsilon_n \to 0$$

$$\implies \sin\frac{1}{n^2} = \frac{1}{n^2} + o(\frac{1}{n^2})$$

$$\sqrt{1+\sin\frac{1}{n^2}} = \left(1 + \sqrt{1+\frac{1}{n^2} + o(\frac{1}{n^2})}\right)^{\frac{1}{2}} = 1 + \frac{1}{2n^2} + o(\frac{1}{n^2})$$

$$\implies a_n = n^{\alpha}(\sqrt{1+\sin\frac{1}{n^2}} - 1) = n^{\alpha}\left(\frac{1}{2n^2} + o(\frac{1}{n^2})\right)$$

 a_n si comporta come $\frac{1}{2n^{2-\alpha}}$ e $\sum_{n=1}^{+\infty} \frac{1}{2n^{2-\alpha}}$ converge $\iff 2-\alpha>1 \iff \alpha<1$. Per il criterio del confronto mediante i limiti, la serie data converge $\iff \alpha<1$.

7.9 Serie alternate

Consideriamo serie del tipo:

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots = \sum_{n=1}^{+\infty} (-1)^{n+1} a_n, \quad \text{con } a_n > 0$$

Vale il seguente criterio:

7.10 Criterio di convergenza per le serie alternate (Leibniz)

Sia a_n una sucessione tale che:

- $a_n \ge 0$
- infinitesima $(a_n \to 0)$
- decrescente $(a_n \ge a_{n+1}) \forall n$

$$\implies \sum_{n=1}^{+\infty} (-1)^n \ a_n \ \text{converge}$$

7.10.1 Esempi

- $\bullet \ \sum_{n=1}^{+\infty} \frac{1}{2n+1}$
- $\bullet \ \sum_{n=1}^{+\infty} (-1)^n \frac{1}{\sqrt{n}}$

7.10.2Esercizio del compito 20 07 21

Determinare il carattere della serie:

$$\sum_{n=1}^{+\infty} (-1)^{n+1} \sin \frac{1}{n^3 + 5}$$

La serie converge per il criterio di Leibniz, infatti:

- $a_n \geq 0$
- $a_n \to 0$
- a_n decrescente, infatti $\frac{1}{n^3+5}$ è decrescente e la funzione $g(x)=\sin x$ è crescente per $x\in[0,\frac{\pi}{2}]$

Convergenza Assoluta

Una serie $\sum_{n=1}^{+\infty} a_n$ si dice **assolutamente convergente** se risulta convergente la serie dei valori assoluti $\sum_{n=1}^{+\infty} |a_n|$. In generale, una serie convergente non necessariamente è assolutamente convergente. Ad esempio: $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}$ è convergente per il criterio di Leibniz, ma

$$\sum_{n=1}^{+\infty} |(-1)^n \frac{1}{n}| = \sum_{n=1}^{+\infty} \frac{1}{n}$$

è la serie armonica che diverge.

7.12Teorema

Una serie assolutamente convergenete, è convergente.

7.12.1 Esercizio del compito (predcedente)

La serie $\sum_{n=1}^{+\infty} (-1)^{n+1} \sin \frac{1}{n^3+5}$ è anche assolutamente convergente. Infatti:

$$a_n = \sin\left(\frac{1}{n^3 + 5}\right) \cong \frac{1}{n^3} + o\left(\frac{1}{n^3}\right)$$

e la serie $\sum_{n=1}^{+\infty} \frac{1}{n^3}$ converge.

7.12.2 Esercizi di compito a fine pdf (da fare)

Equazioni differenziali 8

Sia

$$y'(x) = g(x) \quad \forall x \in [a, b]$$

dove g(x) è una funzione di una variabile reale, continua in un intervallo $[a,b] \in \mathbb{R}$.

Per il teorema fondamentale del calcolo integrale sappiamo trovare una primitiva G(x) di g(x) nell'intervallo [a,b], data da:

$$G(x) = \int_{x_0}^{x} g(t) dt$$

dove x_0 è un numero reale fissato in [a, b].

Quindi possiamo rappresentare ogni soluzione dell'equazione differenziale

$$y'(x) = g(x) \quad \forall x \in [a, b] \quad (\star)$$

Integrando entrambi i membri di (\star) tra x_0 e x otteniamo:

$$y(x) - y(x_0) = \int_{x_0}^x y'(t) dt = \int_{x_0}^x g(t) dt$$

e rappresentiamo la soluzione nella forma:

$$y(x) = y(x_0) + \int_{x_0}^x g(t) dt \quad x \in [a, b]$$

Questo è un esempio molto particolare di equazione differenziale, si dice che y(x) è soluzione del **problema di Cauchy**:

$$\begin{cases} y'(x) = g(x) \\ y(x_0) = y_0 \end{cases}$$

in quanto y(x) è soluzione ed inoltre soddisfa la **condizione iniziale** nel punto $x = x_0$:

$$x = x_0$$
 $y(x_0) = y_0 + \int_{x_0}^{x_0} g(t) dt = y_0$

8.1 Osservazione

L'equazione differenziale considerata si dice del **primo ordine**, poichè l'ordine massimo di derivazione che compare nell'equazione è il primo.

8.2 Ulteriore esempio di equazione differenziale del primo ordine

Sia

$$y'(x) = \lambda y(x) \quad \forall x \in \mathbb{R}$$

dove λ è un parametro reale fissato.

Dobbiamo trovare una soluzione di questa equazione differenziale, cioè una funzione y=y(x), derivabile in \mathbb{R} , tale che

$$y'(x) = \lambda y(x) \quad \forall x \in \mathbb{R}$$

Una soluzione è data da:

$$y(x) = ce^{\lambda x} \quad \forall x \in \mathbb{R}$$

dove c è una costante arbitrariamente fissata in \mathbb{R} .

Si verifica subito che è soluzione, infatti derivando si ottiene:

$$y'(x) = c\lambda e^{\lambda x} = \lambda y(x)$$

8.2.1 Domanda

Tutte le possibile soluzoni sono della forma $y(x) = ce^{\lambda x}$? Sì, ma non lo dimostriamo.

8.3 Esempio di equazione differenziale del secondo ordine: equazione del moto armonico

$$y''(x) + \omega^2 y = 0 \qquad \forall x \in \mathbb{R}$$

dove $\omega \neq 0$ è un parametro reale fissato.

Una famiglia di soluzioni è data da:

$$y(x) = c_1 \cos \omega x + c_2 \sin \omega x$$

con $c_1, c_2 \in \mathbb{R}$ costanti in \mathbb{R} .

Verifica:

$$y'(x) = -c_1 \omega \sin \omega x + c_2 \omega \cos \omega x$$
$$y''(x) = -c_1 \omega^2 \cos \omega x - c_2 \omega^2 \sin \omega x = -\omega^2 (c_1 \cos \omega x + c_2 \sin \omega x) = -\omega^2 y(x)$$
$$\implies y''(x) + \omega^2 y(x) = 0$$

Tutte le soluzioni dell'equazione differenziale del moto armonico sono nella forma $y(x) = c_1 \cos \omega x + c_2 \sin \omega x$? Sì, ma non lo dimostriamo.

8.4 Equazioni differenziali lineari ordine n, di tipo normale

$$y^{n} + a_{n-1}(x)y^{n-1} + \ldots + a_{1}(x)y' + a_{0}(x)y = g(x) \quad (1)$$

dove $a_0(x), a_1(x), \ldots, a_{n-1}(x)$ sono coefficienti e g(x) è il termine noto. (funzioni continue in un intervallo $[a, b] \in \mathbb{R}$). Se g(x) = 0 l'equazione (1) si dice **omogenea**.

$$y^{n} + a_{n-1}(x)y^{n-1} + \ldots + a_{1}(x)y' + a_{0}(x)y = 0 \quad (2)$$

8.5

Una soluzione dell'equazione differenziale (1) o (2) è una funzione y = y(x), derivabile n volte in [a,b], che soddisfa la condizione (1) o (2) $\forall x \in [a,b]$. Le soluzioni delle equazioni differenziali lineari sono dette anche **integrali** e l'insieme di tutte le soluzione è detto **integrale generale**.

8.6 Rappresentazione dell'integrale generale di un'equazione differenziale lineare

L'integrale generale di un'operazione differenziale **non omogenea** è dato dall'insieme delle soluzione dell'equazione omogenea, sommate ad una soluzione particolare dell'equazione non omogenea.

8.7 Equazioni differenziali lineari del secondo ordine

$$y''(x) + a(x)y'(x) + b(x)y = g(x)$$

con a(x), b(x), g(x) funzioni continue in un intervallo [a, b]. Consideriamo inizialmente l'equzione omogenea associata:

$$y''(x) + a(x)y'(x) + b(x)y = 0$$

Una soluzione è una funzione y = y(x), derivabile due volte in [a, b], che soddisfa l'equazione differenziale. Considereremo equazioni differenziali di questo tipo, a coefficienti costanti.

8.8 Equazioni differenziali lineari omogenee a coefficienti costanti

$$y''(x) + ay'(x) + by(x) = 0$$

con $a, b \in \mathbb{R}$ costanti.

Associamo l'equazione caratteristica

$$\lambda^2 + a\lambda + b = 0$$

equazione di secondo grado dove:

$$\lambda_1, \lambda_2 = \frac{-a \pm \sqrt{a^2 - 4b}}{2} \quad \Delta > 0$$
$$\lambda_1 = \lambda_2 = \frac{-a}{2} \quad \Delta = 0$$

E se il discriminante è negativo?

Ricordiamoci come si calcola la radice quadrata di un numero negativo:

$$\sqrt{\Delta} \cot \Delta < 0$$

$$\sqrt{\Delta} = \sqrt{-1(-\Delta)} = \pm i\sqrt{-\Delta}$$

e quindi le soluzioni complesse nel caso $\Delta < 0$ sono:

$$\lambda_1, \lambda_2 = \frac{-a \pm \sqrt{\Delta}}{2} = \frac{-a \pm i\sqrt{-\Delta}}{2}$$

cioè
$$\lambda_1, \lambda_2 = -\frac{a}{2} \pm i \frac{\sqrt{-\Delta}}{2}$$

$$\lambda_1 = \alpha - i\beta$$

$$\lambda_2 = \alpha + i\beta$$

$$\alpha = -\frac{a}{2}$$

$$\beta = \frac{\sqrt{-\Delta}}{2}$$

8.9 Integrale generale delle equazioni lineari omogenee a coefficienti costanti

$$y''(x) + ay'(x) + by(x) = 0$$

Tutte le soluzioni sono date da:

•
$$c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$
 $\Delta > 0$

$$\bullet (c_1 + c_2 x)e^{\lambda_1 x} \quad \Delta = 0$$

•
$$e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$
 $\Delta < 0$

Al variare delle costanti c_1, c_2 .

8.9.1 Esempio

Risolvere l'equazione differenziale omogenea:

$$y'' - 6y' + 5y = 0$$

L'equazione differenziale ha come equazione caratteristica, l'equazione di secondo grado:

$$\lambda^2 - 6\lambda + 5 = 0$$

$$\Delta = 36 - 20 = 16 > 0 \implies \lambda_1 = \frac{6-4}{2} = 1 \quad \lambda_2 = \frac{6+4}{2} = 5$$

⇒ L'integrale generale è dato da:

$$y(x) = c_1 e^x + c_2 e^{5x}$$

8.9.2 Esempio 2

Risolvere l'eqazione differenziale omogenea:

$$y'' - 2y' + 2y = 0$$

L'equazione caratteristica è data da:

$$\lambda^2 - 2\lambda + 2 = 0$$

$$\Delta = 4 - 8 = -4 < 0$$

Posso trovare i α e β , ma mi conviene utilizzare direttamente la formula del Δ :

$$\lambda_{1,2} = \frac{2 \pm i\sqrt{4}}{2} = 1 \pm i \implies \lambda_1 = 1 - i \quad \lambda_2 = 1 + i$$

L'integrale generale è dato da:

$$y(x) = e^x(c_1 \cos x + c_2 \sin x)$$

8.10 Esempio 3

Risolvere l'equazione differenziale omogenea:

$$y'' - 2y' + y = 0$$

L'equazione caratteristica è data da:

$$\lambda^2 - 2\lambda + 1 = 0$$

$$\Delta = 4 - 4 = 0 \implies \lambda_1 = \lambda_2 = 1$$

e l'integrale generale è dato da:

$$y(x) = (c_1 + c_2 x)e^x$$

8.11 Equazioni differnziali lineari non omogenee

$$y''(x) + ay'(x) + by(x) = g(x)$$

L'integrale generale delle soluzioni è dato da:

$$c_1y_1(x) + c_2y_2(x) + \bar{y}(x)$$

al variare delle costanti c_1 e c_2 . $y_1(x)$ e $y_2(x)$ sono due soluzioni dell'omogenee associata in [a, b], $\forall x \in [a, b]$, (che abbiamo visto nel caso di coefficienti costanti) e $\bar{y}(x)$ è una soluzione particolare dell'equazione non omogenea.

Ci sono casi particolari in cui è possibile ricavare una soluzione in modo diretto (nel caso di equazioni del secondo ordine a coefficienti costanti).

8.11.1 Esempio

Determinare l'integrale generale dell'equazione differenziale

$$y'' + 2y' + y = x^2 + 4x - 1 \quad (\star)$$

Come primo passo consideriamo l'omogenea associata e quindi, essendo a coefficienti costanti, consideriamo l'equazione caratteristica:

$$\lambda^2 + 2\lambda + 1 = 0$$

$$\Delta = 4 - 4 = 0 \implies \lambda_1 = \lambda_2 = -1$$

per cui l'integral generale dell'omogenea associata è dato da:

$$(c_1 + c_2 x)e^{-x}$$

al variare delle costanti c_1 e c_2 .

Ora ricerchiamo una soluzione particolare $\bar{y}(x)$ e poichè il termine noto dell'equazione differenziale è una equazione di secondo grado, la ricerchiamo nella forma:

$$\bar{y}(x) = ax^2 + bx + C$$

Sostituendo $\bar{y}(x)$ nell'equazione differenziale (\star) otteniamo:

$$\bar{y}'' + 2\bar{y}' + \bar{y} = x^2 + 4x - 1 \implies \bar{y}(x) = ax^2 + bx + c \quad \bar{y}' = 2ax + b \quad \bar{y}'' = 2a$$

$$2a + 4ax + 2b + ax^2 + bx + c = x^2 + 4x - 1 \implies ax^2 + (4a + b)x + 2a + 2b + c = x^2 + 4x - 1$$

Quindi occorre che:

$$\begin{cases} a=1\\ 4a+b=4\\ 2a+2b+c=-1 \end{cases}$$

da cui a = 1, b = 0, c = -3.

Quindi una soluzione particolare è:

$$\bar{y}(x) = x^2 - 3$$

Quindi l'integrale generale dell'equazione differenziale iniziale è dato da:

$$(c_1 + c_2 x)e^{-x} + x^2 - 3$$

8.11.2 Esempio 2

Risolvere l'equazione differenziale non omogenea:

$$y'' - 3y' + 2y = 2x^3 - x^2 + 1$$

⇒ l'integrale generale dell'omogenea associata è dato quindi da:

. . .

8.11.3 Osservazione

Abbiamo visto un metodo per trovare una soluzione, quando il termine noto è un polinomio. Ora vediamo un esempio, in cui:

$$g(x) = a\sin x + b\cos x$$

8.11.4 Esempio

Determinare l'integrale generale dell'equazione differenziale:

$$y'' + y' + 2y = 2\cos x$$

Consideriamo prima l'equazione caratteristica dell'omogenea associata:

$$\lambda^2 + \lambda + 2 = 0$$

$$\Delta = 1 - 8 = -7 < 0 \implies \lambda_1 = -\frac{1}{2} + i\frac{\sqrt{7}}{2} \quad \lambda_2 = -\frac{1}{2} - i\frac{\sqrt{7}}{2}$$

$$\alpha = -\frac{1}{2}$$
$$\beta = \frac{\sqrt{7}}{2}$$

 $\alpha=-\frac{1}{2}$ $\beta=\frac{\sqrt{7}}{2}$ L'integrale generale è dato da:

$$c_1 e^{-\frac{x}{2}} \cos \frac{\sqrt{7}}{2} x + c_2 e^{-\frac{x}{2}} \sin \frac{\sqrt{7}}{2} x$$