

PAA5101: Optical Tracking Miniature Chip

General Description

The PAA5101 is a high performance and high accurate optical tracking chip using PixArt LASER/LED hybrid optical navigation technology. It integrates an optical chip with a LASER light source in a single miniature package. When working with an external infrared LED and a PixArt designed companion lens LSTO-217, the chip can track on a wide range of material surfaces from white glossy tiles to shag carpets. Besides, the sensor also provides a high DOF range to accommodate to uneven surfaces when tracking.

Key Features

- Reflowable SMT package with built-in VCSEL LASER light source in a single package
- LASER/LED hybrid optical navigation technology
- Compliance to IEC/EN 60825-1:2014 Eye Safety with Class 1 LASER power output level
- Tracking on glossy surfaces (metal, tiles) by LASER and rough surface (cloth, carpets) by LED with a lens
- Wide DOF range of tracking
- High accuracy of tracking
- Tracking speed is up to 45 ips on glossy metal surfaces
- Support 3-wire SPI interface
- Programmable resolution

Applications

- Devices that requires tracking on surfaces with wide DOF working range
- Devices that requires tracking on surfaces with wide range of material surfaces
- Devices that requires detecting the speed and distance of moving surfaces

Key Parameters

Parameter	Value			
Supply Voltage	VDD: 2.7 ~ 3.6V			
Control Interface	3-wire SPI			
Companion lens	LST0-217			
Light Source	Infrared 850nm LED Infrared 850nm LASER			
Max .Tracking Speed	45ips (LASER mode) 100ips (LED mode)			
Operating current (@ VDD = 3.3V)	Run mode : 10mA (LASER mode) 44mA (LED mode) Power down : 15uA			
Distance from chip top to tracking surface	5 cm (TBD)			
Package Size L x W x H	4.4 x 4.6 x 1.0 mm			

Ordering Information

Part Number		Package Type			
PAA5101		LGA 10-pin			

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

Contents

1.0	Introduction	3
1.1	Overview	
1.2	Signal Description	4
2.0	Mechanical Specifications	5
2.1	Package Mechanical Dimension	
2.2	PCB Layout Guides	7
3.0	Operating Specifications	8
3.1	Absolute Maximum Ratings	8
3.2	Recommended Operating Conditions	8
3.3	DC Characteristics	8
4.0	Design Reference	g
4.1	Reference Application Schematics	9
5.0	3-Wire SPI Serial Interface	10
5.1	Transmission Protocol	
5.2	SPI Timing	12
6.0	Read Motion Data	13
7.0	Software Control Functions	14
7.1	Software Power-Down	14
7.2	Software Reset	14
8.0	Registers	16
8.1	Registers Summary Register Functional Description	16
8.2	Register Functional Description	17
Docum	nent Revision History	23

1.0 Introduction

1.1 Overview

PAA5101 is a high performance CMOS-processed optical image chip with integrated digital image process circuits. It is based on PixArt LASER/LED hybrid optical navigation technology which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the speed, the direction and the magnitude of motion. The displacement X and Y information are available in registers. A host controller can read and translate the displacement X and Y information from the SPI serial interface.

Since LASER and LED are not allowed to turn on at the same time, the host controller should also keep reading the Image Quality registers to determine whether if LASER or LED should be chosen to illuminate the surfaces. In general, when LASER is chosen for illumination, the Image Quality value is high when tracking on tiles and is low when tracking on carpets. On the contrary, when LED is chosen for illumination, the Image Quality is high when tracking on carpets and is low when tracking on tiles.

Note: Throughout this document PAA5101 is referred to as the chip.

Figure 1. Chip Architecture Functional Block Diagram

1.2 Signal Description

Figure 2. Pinout Configuration

Table 1. Signal Pins Description

Pin No.	Signal Name	Туре	Description
1	LDP	PWR	Anode of the VCSEL LASER. This pin should be connected to VDD (2.7V - 3.6V) through a resistor (R_{LD}).
2	VDDA	PWR	Internal 1.8V regulator output
3	VDD	PWR	Power supply for I/O and LASER, voltage range : 2.7V ~ 3.6V
4	VSS	GND	Chip ground
5	NCS	IN	Chip select for 3-wire SPI interface (active low)
6	DEBUG1	IN	This pin is for debug purpose and is only for PixArt internal use. In normal operation, this pin should connect a 100k ohm resistor to GND.
7	SCLK	IN	Clock input for SPI interface
8	SDIO	I/O	Bi-directional I/O for SPI interface
9	LED_SHT	OUT	LED Shutter. The shutter control for the external LED light source
10	DEBUG2	NC	This pin is for debug purpose and is only for PixArt internal use. In normal operation, this pin should connect a 100k ohm resistor to GND.

2.0 Mechanical Specifications

2.1 Package Mechanical Dimension

Figure 3. Chip Package Outline Diagram

2.2 Lens Mechanical Dimension

Figure 4. Lens Mechanical Dimensions

2.3 PCB Layout Guides

Figure 5. PCB Layout Guides

3.0 Operating Specifications

3.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit	Notes
Cupply Voltage	VDD	VDD -0.3 3.9		V	I/O and LASER power
Supply Voltage	VDDA	-0.2	2.3	V	Core circuitry power
ESD	ESD _{HBM}		2	kV	Class 2 on all pins, as per human body model. JESD22-A114E with 15 sec zap interval.

Notes:

- 1. At room temperature.
- 2. Maximum Ratings are those values beyond which damage to the device may occur.
- 3. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.

3.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	T_{STG}	-40	-	85	°C	
Operating Temperature	T_A	-20	25	60	°C	
Power Supply Voltage	VDD	2.7	3.3	3.6	V	I/O and LASER power supply
Supply Noise (peak to peak)	V_{pp}		-	100	mV	Peak to peak voltage within 100KHz – 80MHz
SPI Clock Frequency	SCLK	-	-	2	MHz	
Tracking Spood	SP			45	IPS	on glossy metal surfaces
Tracking Speed	SP	-		100	1173	on white copy paper
Laser Drive Current (DC)	I _{LD}	5.0	7.0	8.0	mA	Configured via LD_SRC register

Note: PixArt does not guarantee the performance if the operating temperature is beyond the specified limit.

3.3 DC Characteristics

Table 4. DC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Dower Concumption	I _{VDDRN}	-		-	mA	VDD current @ run mode
Power Consumption	IVDDPD				mA	VDD current @power down
I/O Input High Voltage	V _{IH}	0.7* V _{DD}	-	-	V	
I/O Input Low Voltage	VIL	-	-	0.3* V _{DD}	V	
I/O Output High Voltage	V_{OH}	V _{DD} -0.4	-	-	V	@I _{OH} = 2mA
I/O Output Low Voltage	Vol	-	-	0.4	V	@I _{OL} = 2mA

Notes: All the parameters are tested under operating conditions: $V_{DD} = 3.3V$ (including LASER current), $T_A = 25^{\circ}C$

4.0 Design Reference

4.1 Reference Application Schematics

The chip only supports simplified 3-wire SPI slave mode, while some host controllers may only support standard 4-wire SPI master mode. In this case, users can connect the host controller to the chip using the method shown below to communicate with each other. Take note that the 3.3K ohm resistor (R1) is for reference only and the resistance may have to be modified according to different I/O capability as per the specification of the host controllers. The resistor R_{LD} and R_{LED} are to restrict the current flowing through the LASER and LED. In order not to overdrive the LASER and LED, please adopt the resistance specified on the table.

Figure 6. Reference Application Schematics

10

Version 0.2 | 03 Apr. 2018 SEE. FEEL. TOUCH.

78

65

2.8

2.7

5.0 3-Wire SPI Serial Interface

The chip supports 3-wire Serial Peripheral Interface (SPI). The host controller can use the SPI to write and read registers in the chip, and to read out the motion information. The host controller always initiates communication; the chip never initiates data transfers. NCS, SCLK and SDIO may be driven directly by the host controller. SDIO may also be driven by the chip when data is read out from chip registers.

- NCS: Chip select input (active low). NCS needs to be low to activate the SPI; otherwise, SDIO will be at high-Z state and SCLK will be ignored. NCS can also be used to reset the SPI in case a communicational error happens.
- SCLK: Clock input. It is always generated by the host controller.
- SDIO: Bi-directional input/output data

5.1 Transmission Protocol

The transmission protocol is a 3-wire link, half duplex protocol between the host controller and the chip. All data changes on SDIO are initiated by the falling edge on SCLK. The host controller always initiates communication; the chip never initiates data transfers. The transmission protocol consists of the following two operation modes.

- Write Operation
- Read Operation

Both of the two operation modes consist of two bytes. The first byte contains the address (seven bits) and has a bit-7 as its MSB to indicate data direction. The second byte contains the data.

Figure 7. Transmission Protocol

Figure 8. NCS vs SCLK Timing Requirement

5.1.1 Write Operation

A write operation, defined as data is going from the host controller to the chip, is always initiated by the host controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The communication is synchronized by SCLK. The host controller changes SDIO on the falling edges of SCLK and the chip reads SDIO on the rising edges of SCLK.

Figure 9. Write Operation

Figure 10. SDIO setup and hold time during write operation

5.1.2 Read Operation

A read operation is initiated by the host controller and consists of two bytes. The first byte contains the address specified by the host controller and has a "0" as its MSB to indicate data direction. The second byte contains the data which is outputted by the chip. The communication is synchronized by SCLK. SDIO is changed on the falling edges of SCLK and is read on every rising edge of SCLK. The host controller must release SDIO bus and handover the control of SDIO bus to the chip on the falling edge of last address bit.

Figure 11. Read Operation

Figure 12. SDIO delay and hold time during read operation

5.2 SPI Timing

Table 5. SPI Timing Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
SCLK frequency	F _{SCLK}	-	-	2	MHz	SPI max. operation frequency
SCLK High Time	t _{sclk-HI}	250	-	-	ns	SCLK min. high time
SCLK Low Time	t _{SCLK-LO}	250	-	-	ns	SCLK min. low time
NCS Enable Lead Time	t _{NCS-LEAD}	1	-	5	us	From NCS falling to first SCLK falling
NCS Enable Lag Time	t _{NCS-LAG}	1	-	-	us	From Last SCLK rising to NCS rising
NCS min. High Time	t _{NCS-HI}	2	-	-	us	From previous NCS rising to next NCS falling
SDIO Write Setup Time	t _{SETUP-WR}	250	ı		ns	SDIO data valid before SCLK rising
SDIO Write Hold Time	t _{HOLD-WR}	250	-	-	ns	SDIO data valid after SCLK rising
SDIO delay after SCLK	t _{DLY-RD}	-		50	ns	From SCLK falling to SDIO data valid, no load conditions
SCLK delay for Data Preparation	T _{PREP-RD}	250	-	-	ns	The min. time between the falling of 8 th SCLK and the rising of 9 th SCLK
SDIO Read Hold Time	t _{HOLD-RD}	250	-	-	ns	SDIO data valid after SCLK rising
SDIO Rise Time	t _{SDIO-R}	-	30	-	ns	@C _L = 30 pF
SDIO Fall Time	t _{SDIO-F}	-	30	-	ns	@C _L = 30 pF

6.0 Read Motion Data

Whenever the chip detects the occurrence of motion, the detected motion data (X-movement and Y-movement) is accumulated and stored in chip's internal buffer. The host controller can read out this motion data through register Delta_X (address 0x03 and 0x011) and Delta_Y(address 0x04 and 0x12). Before reading the motion data through these registers, be sure to read register Motion_Status (address 0x02) first to check if the MOTION bit (bit 7) is 1. If the MOTION bit is 1, the data in register Delta_X and Delta_Y is valid, otherwise it is invalid. By reading and checking register MOTION Status (address 0x02) periodically, the host controller can get the motion data in a simple way through the SPI interface. Be noticed that the 8ms shown in the flowchart below is just for reference. The delay time might depend on the capability of the host controller and the need for different applications.

Besides, in order to track on a wide range of surface material, the light source for illumination has to be switched between LASER and LED. The host controller should monitor the IQ value of the surface and if the IQ value is too low (lower than a predefined value, IQ_THD, stored in the host controller), the host controller has to switch the existing light source to another one and change other related register settings as well.

Note: the flowchart below just shows one of the methods to switch between LED mode and LASER mode. Different applications might need different methods to implement this switch function.

Figure 13. Read Motion Data with Polling Mode

Version 0.2 | 03 Apr. 2018

7.0 Software Control Functions

7.1 Software Power-Down

The chip can also be put into the lowest power state in power-down mode by setting PD_EnH bit (bit 3) in the Configuration register (address 0x06) through SPI interface. In power-down mode, all the chip register settings are retained and can be accessed through SPI interface as well. Reset PD_EnH bit will get the chip out of the power-down mode. To obtain correct motion data, it is recommended that the host controller should wait at least 3ms before reading the motion data after resetting the PD_EnH bit.

7.2 Software Reset

During power-up, the chip does not need an external power-on reset as there is an internal circuitry that performs power-on reset function in the chip. However the chip can also be reset by setting the RESET bit (bit 7) of Configuration register (address 0x06). Upon a software reset being executed, all the register values will be reset to the power-up default values and all the recommended register settings must be reloaded in order to keep the chip working correctly.

8.0 LASER Drive

8.1 LASER Drive Control

Under normal operating condition, the chip internally generates the drive current for the integrated LASER diode in pulsed mode. The LASER drive current source is configurable via LD_SRC register (address 0x51) with power-up default setting of LD_SRC[4:0] = 0x0E which is equivalent to ~17mA when in continuous mode; while the maximum drive current could be up to ~37mA when LD_SRC[4:0] = 0x1F. However, the software setting **MUST** limit any value beyond LD_SRC[3:0] = 0x06 that drive >8mA current as the LASER output may degrade in long run or could be damaged in the worst scenario. The recommended setting for common surface tracking application is LD_SRC[4:0] = 0x06 (~7.2mA drive current).

As shown in Section 4.1 Reference Schematics, an external current limiting resistor, Rext is mandatory to be included in any design application to limit the overcurrent condition during the system power-up stage as prevention on overdriving the LASER. The VDD power supplies for the chip should be well regulated and filtered to prevent spurious voltage conditions at all time.

8.2 LASER Power

The LASER eye safety limit of the sensor is at LASER output power within the $716\mu W$ when the LASER drive current is not exceeding 8mA in continuous mode. Since the LASER drive is always pulsed during any sensor operational modes, the average LASER power will never exceed the LASER eye safety limit. As the connection of LASER drive control pin to the LASER's Cathode pin is bonded internally in the module package, the risk of any external means for the LASER could be driven in continuous mode is relatively low. Thus, the system design of PAA5101 is claimed to be compliant to LASER Eye Safety Class 1 (IEC/EN 60825-1:2014).

The manufacturer of the end product is responsible to ensure the end system design is taking the following precaution steps:

- 1. The software setting of the LASER drive control register does not exceed the maximum allowable LASER drive current specification as listed in Table 3. Recommended Operating Conditions.
- 2. The external current limiting resistor, Rext, is well connecting in between LDP pin to VDD. Please refer to chapter 4.1.

Users must be aware and take steps to avoid being exposed to the LASER light at all times.

Precautions:

- 1. All users who will be working with an active (powered) sensor component should consider taking LASER eye safety training.
- 2. LASER eye safety responsibility resides at the system level, not at the component level, thus the system is responsible to ensure the user's eye safety by clearly instructing and labeling the potential danger to the unprotected eyes.
- 3. The LASER light is in the infrared spectrum of 850 nm. It is not intended to be viewed so users should not try to look at the sensor's aperture directly. Appropriate instrument for indirect viewing is recommended.

9.0 Registers

9.1 Registers Summary

Table 6. Registers List

Address	Register Name	Access	Reset	Brief Description
0x00	Product_ID1	R	0x31	Product Identifier [11:4]
0x01	Product_ID2	R	0x61	Upper 4 bits for Product Identifier, PID [3:0] Lower 4 bits for Product Version, VID [3:0]
0x02	Motion_Status	R	-	Motion Status information
0x03	Delta_XL	R	-	Low Byte of X-movement for 16-bit 2's complement data Delta_X[15:0] = {Delta_XH[7:0], Delta_XL[7:0]}
0x04	Delta_YL	R	-	Low Byte of Y-movement for 16-bit 2's complement data Delta_Y[15:0] = {Delta_YH[7:0], Delta_YL[7:0]}
0x06	Configuration	R/W	0x10	Software power down and reset
0x09	Write_Protect	R/W	0x00	Write Protect to avoid missed-writing registers
0x0D	RES_X	R/W	0x27	CPI resolution setting for X-direction
0x0E	RES_Y	R/W	0x2B	CPI resolution setting for Y-direction
0x11	Delta_XH	R	- ,	High Byte of X-movement for 16-bit 2's complement data Delta_X[15:0] = {Delta_XH[7:0], Delta_XL[7:0]}
0x12	Delta_YH	R		High Byte of Y-movement for 16-bit 2's complement data Delta_Y[15:0] = {Delta_YH[7:0], Delta_YL[7:0]}
0x15	Shutter	R	-	Shutter value[7:0]
0x17	Frame_Avg	R		Average brightness of a frame
0x51	LD_SRC	R/W	0x0E	Programmable current source for LASER
0x75	IQH	R	-	High byte of IQ (Image Quality) [15:8]
0x76	IQL	R	-	Low byte of IQ (Image Quality) [7:0]

9.2 Register Functional Description

Register Name	Product_ID	1								
Bank	0			Add	dress	0x00	0x00			
Access	Read-Only			Reset	t Value	0x31	0x31			
D:+ E: حاط	7	6	5	4	3	2	1	0		
Bit Field	PID[11:4]									
Description	change; it ca		o verify that			ly. The value ns link is funct		ter does not		

Register Name	Product_ID2										
Bank	0			Address 0x01							
Access	Read-Only			Reset Value 0x61							
Die Ciald	7	6	5	4	3	2	1	0			
Bit Field		PID	[3:0]	VID[3:0]							
Description	This value is a unique identification assigned to this chip only. The value in this register does not										
		roduct Ident Product Versi									

Register Name	Motion_St	atus							
Bank	0			Add	ress	0x02	0x02		
Access	Read-Only			Reset	Value	NA			
Bit Field	7	6	5	4	3	2	1	0	
bit rieid	MOTION	Reserved	DYOVF	DXOVF	Reserved	Reserved	Reserved	Reserved	
Description	Typically in the motion detection routine, the host controller will poll the chip for valid motion data by checking the MOTION bit. If the MOTION bit is set, the motion data in Delta_XL, Delta_YL, Delta_XH and Delta_YH registers are valid and available to be read. Be sure to read MOTION bit first before reading out Delta_XL, Delta_YL, Delta_XH and Delta_YH registers. DXOVF bit and DYOVF bit show whether if the motion report buffers have overflowed since last read out.								
Field	Reset	Description							
MOTION	0	0 = No mot 1 = Motion	ected since la ion detected, dat eady to be rea	:a in register [Delta_XL, Del	ta_XH, Delta __	_YL and Delta	a_YH is	
DYOVF	0	0 = No over 1 = Overflo	wed						
DXOVF	0	Internal bu 0 = No over 1 = Overflo		ement has ov	verflowed sin	ce last read c	out		

Register Name	Delta_XL							
Bank	0			Ado	dress	0x03		
Access	Read-Only			Reset	: Value	NA		
Bit Field	7	6	5	4	3	2	1	0
bit rielu				Delta_	X[7:0]			
Description	Delta_X[15:	0] = {Delta_	e of a 2's com _XH[7:0], Delta lid only if regi	a_XL[7:0]}		. (TION bit (bit

Register Name	Delta_YL									
Bank	0				Address 0x04					
Access	Read-Only				Rese	t Valu	ie	NA		
Bit Field	7	6	5		4		3	2	1	0
bit rieiu				V.	Delta_	Y[7:0)]			
Description	Delta_Y[15:	0] = {Delta_	e of a 2's com _YH[7:0], Delta lid only if regi	a_YL[[7:0]}					TION bit (bit

Register Name	Configurati	ion						
Bank	0			Add	lress	0x06		
Access	R/W			Reset	Value	0x10		
Bit Field	7	6	5	4	3	2	1	0
bit rieiu	RESET	Reserved	Reserved	Reserved	PD_EnH	Reserved	Reserved	Reserved
Description	Configurati	on register a	register allows users to change the configuration of the chip.					
Field	Reset	Description	escription					
RESET	0	0 = Norma	eset. This bit v al operation m ip reset (to re	iode		•	states)	
PD_EnH	0	0 = Norma	wn mode for land al operation down mode (•	·			

Register Name	Write_Prot	ect						
Bank	0			Add	ress	0x09		
Access	R/W	V Reset Value 0x00						
D:r ב: "ון	7	6	5	4	3	2	1	0
Bit Field				WP[7:0]			
Description	0x09 onwar 0x00 = Enak	ds. de (Default	is used to avoi c), registers aft ers after addres	er address Ox	09 are read o	only	gisters after	address

Register Name	RES_X							
Bank	0			Add	ress	0x0D		
Access	R/W			Reset				
Dit Field	7	6	5	4	3	2	1	0
Bit Field	Reserved				RES_X[6:0]			
Description	Estimated C Note: the re	PI resolution of	of X-direction non of X-direction of X-direction a step of RES_ e and distance	on = 50 * RES_ X (i.e. 50) migh	nt slightly ch		lifferent type	es of surface,

Register Name	RES_Y									
Bank	0		Address	0x0E						
Access	R/W		Reset Value	0x2B						
Dit Field	7 6	5	4 3	2	1	0				
Bit Field	Reserved		RES_Y[6:0)]						
	CPI resolution settin									
Description	Estimated CPI resolu									
Description	Note: the resolution	Note: the resolution of a step of RES_Y (i.e. 50) might slightly change across different types of surface,								
1	curvature of the surface and distances between chip and surface.									

Register Name	Delta_XH								
Bank	0		Add	ress	0x11	0x11			
Access	Read-Only		Reset	: Value	NA				
Bit Field	7 6	5	4	3	2	1	0		
bit Field			Delta_>	([15:8]					
Description	Delta_XH is the high by Delta_X[15:0] = {Delta_ Register Delta_XH is va 7) is 1.	_XH[7:0], Delta	a_XL[7:0]}				ΓΙΟΝ bit (bit		

Register Name	Delta_YH							
Bank	0			Add	Address 0x12			
Access	Read-Only			Reset	: Value	NA		
Bit Field	7	6	5	4	3	2	1	0
DIL FIEIU				Delta_\	/[15:8]			
Description	Delta_Y[15:	0] = {Delta_	rte of a 2's cor _YH[7:0], Delta alid only if regi	a_YL[7:0]}				TION bit (bit

Register Name	Shutter	Shutter						
Bank	0			Address 0x15				
Access	Read-Only			Reset Value	NA		_	
Bit Field	7	6	5	4 3	2	1	0	
bit rieid				Shutter[7:0]				
	Shutter regi	ster is an ir	ndex of LASER	shutter time. It is autor	matically adjust	ed by the ch	ip's internal	
Description	auto-exposure algorithm to keep the average pixel values within normal operating ranges. The h							
	the Shutter index is, the lower the surface reflectiveness is.							

Register Name	LD_SRC							
Bank	0			Add	Address 0x51			
Access	R/W			Reset	Value	0x0E		
Bit Field	7	6	5	4	3	2	1	0
bit rieiu	Reserved	Reserved	Reserved			LD_SRC[4:0]		
Description	To program	the current	source for LA	ASER	,			
Field	Reset	Description	• 1					
LD_SRC[4:0]	14	adjust the li Note that th Recommen LD_SRC[4:0 output may	ght intensity ne max. ratin ded Operatir] = 0x06 that degrade in lo up value of LI	e LASER drive to accommod g of operating g Conditions, may drive >8 ong run or county SRC is 14 ar	date for diffe g LASER drive the host co BmA current uld be dama	erent tracking e current is 8 ntroller MUS in the softw ged in the wo	surfaces. mA as showr T limit any value are setting asorst scenario.	in Table 3. Ilue beyond

Register Name	Frame_Avg								
Bank	0				ress	0x17			
Access	Read-Only			Reset	: Value	NA			
Bit Field	7	6	5	4	3	2	1	0	
BIL FIEIG	FA[7:0]						2 1 0		
Description			resents the avalue is, the br						

Register Name	LD_SRC									
Bank	0			Add	ress	0x51		_		
Access	R/W			Reset	Value	0x0E				
Bit Field	7	6	5	4	3	2	1	0		
bit rieiu	Reserved	Reserved	Reserved			_D_SRC[4:0]				
Description	To program	the current	e current source for LASER							
Field	Reset	Description								
LD_SRC[4:0]	14	adjust the li Note that th Recommend LD_SRC[4:0 output may	ght intensity ne max. ratin ded Operatir] = 0x06 that degrade in lo up value of LI	e LASER drive to accommoding of operating generating Conditions, may drive >8 cong run or coup SRC is 14 area.	date for diffe g LASER drive the host cor BmA current uld be damag	rent tracking e current is 8 ntroller MUS in the softwa ged in the wo	surfaces. mA as showr I limit any va are setting as orst scenario.	n in Table 3. Ilue beyond		

Register Name	IQH							
Bank	0			Address		0x75		
Access	Read-Only			Reset Value		NA		
Bit Field	7	6	5	4	3	2	1	0
	IQH[7:0]							
	IQH is the high byte of IQ (Image Quality).							
	IQ (Image Quality) is a measure of the number of valid features visible by the chip in the current frame. The theoretical max/min IQ value is 65,535/0. Since small changes in the current frame can result in changes in IQ value, variations in IQ when looking at a surface are expected. The higher the							
Description								
•							e higher the	
	IQ is, the easier for the chip to have a good tracking on the navigation surfaces.							

Register Name	IQL							
Bank	0			Address		0x76		
Access	Read-Only			Reset Value		NA		
Bit Field	7	6	5	4	3	2	1	0
	IQL[7:0]							
Description	IQL is the low byte of IQ (Image Quality).							

Document Revision History

Revision Number	Date	Description	
0.1	08 Dec. 2017	New creation, preliminary version.	
0.2	03 Apr. 2018	Modify typos and add the dimension of PCB layout guide.	