```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.tsaplots import plot_acf
from pylab import rcParams
from math import sqrt
from sklearn.metrics import mean_squared_error
```

```
In [2]: airlines_data = pd.read_excel("Airlines+Data.xlsx")
airlines_data
```

Out[2]:

		Month	Passengers
	0	1995-01-01	112
	1	1995-02-01	118
	2	1995-03-01	132
	3	1995-04-01	129
	4	1995-05-01	121
!	91	2002-08-01	405
!	92	2002-09-01	355
	93	2002-10-01	306
	94	2002-11-01	271
	95	2002-12-01	306

96 rows × 2 columns

In [3]: airlines_data['Passengers'].plot(figsize=(16,7));

The data has a trend and is not stationary.

```
In [4]: airlines_data = airlines_data.set_index('Month')
    airlines_data['SMA_2'] = airlines_data['Passengers'].rolling(2, min airlines_data['SMA_4'] = airlines_data['Passengers'].rolling(4, min airlines_data['SMA_6'] = airlines_data['Passengers'].rolling(6, min airlines_data['SMA_6'] = airlines_data['SMA_6'] = airlines_data['Passengers'].rolling(6, min airlines_data['SMA_6'] = airlin
```



```
In [6]: airlines_data['CMA'] = airlines_data['Passengers'].expanding().mean
    airlines_data[['Passengers', 'CMA']].plot( linewidth=3, figsize=(12
    plt.xticks(fontsize=14)
    plt.yticks(fontsize=14)
    plt.legend(labels =['Passengers', 'CMA'], fontsize=14)
    plt.title('The yearly Passengers travelling', fontsize=20)
    plt.xlabel('Year', fontsize=16)
    plt.ylabel('Population', fontsize=16);
```



```
In [7]: | = airlines_data['Passengers'].ewm(alpha=0.1,adjust=False).mean()
| = airlines_data['Passengers'].ewm(alpha=0.3,adjust=False).mean()
```

```
In [8]: colors = ['#B4EEB4', '#00BFFF', '#FF3030']
    airlines_data[['Passengers', 'Ema_0.1', 'Ema_0.3']].plot(color=colo
    plt.xticks(fontsize=14)
    plt.yticks(fontsize=14)
    plt.legend(labels=['No. of passengers', 'EMA - alpha=0.1', 'EMA - a
    plt.title('The yearly Passengers travelling.', fontsize=20)
    plt.xlabel('Year', fontsize=16)
    plt.ylabel('Passengers', fontsize=16)
```

Out[8]: Text(0, 0.5, 'Passengers')


```
In [9]: plot_acf(airlines_data['Passengers'])
    plt.show()
    plot_acf(airlines_data['Passengers'], lags=30)
    plt.show()
```



```
In [10]: from statsmodels.tsa.seasonal import seasonal_decompose
ts_mul = seasonal_decompose(airlines_data.Passengers,model="multipl
fig = ts_mul.plot()
plt.show();
```


Building Arima Model

```
In [11]: X = airlines_data['Passengers']
size = int(len(X)*0.75)
size
```

Out[11]: 72

In [12]: train , test = X.iloc[0:size],X.iloc[size:len(X)]

In [13]: from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train, order=(5,1,0)).fit(disp=0)

> /opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/arima_m odel.py:472: FutureWarning:

> statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.A RIMA have

> been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (not e the .

between arima and model) and

statsmodels.tsa.SARIMAX. These will be removed after the 0.12 rele ase.

statsmodels.tsa.arima.model.ARIMA makes use of the statespace fram ework and

is both well tested and maintained.

To silence this warning and continue using ARMA and ARIMA until th ev are

removed, use:

import warnings

warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARM Α',

FutureWarning)

warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARI MA',

FutureWarning)

warnings.warn(ARIMA_DEPRECATION_WARN, FutureWarning)

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/base/ts a model.py:524: ValueWarning: No frequency information was provide d, so inferred frequency MS will be used.

warnings.warn('No frequency information was'

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/base/ts a model.py:524: ValueWarning: No frequency information was provide d, so inferred frequency MS will be used.

warnings.warn('No frequency information was'

In [14]: print(model.summary())

ARIMA Model Results

Dep. Variable: **D.**Passengers No. Observations:

71

ARIMA(5, 1, 0) Model: Log Likelihood

-304.792

S.D. of innovations Method: css-mle

17.647

Thu, 05 Jan 2023 Date: AIC

623.584

23:41:41 BIC Time:

639.423 Sample: 02-01-1995 HQIC 629.883 - 12-01-2000

=======================================							
[0.025 0.975]	coef 	std err 	Z	P> z			
const -0.987 4.743	 1.8781	1.462	1.285	0.199			
ar.L1.D.Passengers -0.089 0.377	0.1440	0.119	1.213	0.225			
ar.L2.D.Passengers -0.431 0.036	-0.1976	0.119	-1.659	0.097			
ar.L3.D.Passengers -0.370 0.100	-0.1353	0.120	-1.129	0.259			
ar.L4.D.Passengers	-0.2453	0.120	-2.047	0.041			
-0.480 -0.010 ar.L5.D.Passengers	-0.0263	0.124	-0.213	0.831			
-0.268 0.216		Roots					

Frequency	Real	Imaginary	Modulus
AR.1	0.8020	-0 . 9654j	1.2551
-0.1397			
AR.2	0.8020	+0 . 9654j	1.2551
0.1397			
AR.3	-1.0374	-1 . 2843j	1.6509
-0.3581			
AR.4	-1.0374	+1 . 2843j	1.6509
0.3581		_	
AR.5	-8.8496	-0 . 0000j	8.8496

-0.5000 -----

In [15]: history = [x for x in train]
history[-1]

Out[15]: 229

```
In [16]: history = [x \text{ for } x \text{ in train}]
         predictions = list()
         for i in range(len(test)):
             yhat = history[-1]
             predictions.append(yhat)
         # observation
             obs = test[i]
             history_append(obs)
             print('>Predicted=%.3f, Expected=%.3f' % (yhat, obs))
         # report performance
         rmse = sqrt(mean squared error(test, predictions))
         print('RMSE: %.3f' % rmse)
         >Predicted=229.000, Expected=242.000
         >Predicted=242.000, Expected=233.000
         >Predicted=233.000, Expected=267.000
         >Predicted=267.000, Expected=269.000
         >Predicted=269.000, Expected=270.000
         >Predicted=270.000, Expected=315.000
         >Predicted=315.000, Expected=364.000
         >Predicted=364.000, Expected=347.000
         >Predicted=347.000, Expected=312.000
         >Predicted=312.000, Expected=274.000
         >Predicted=274.000, Expected=237.000
         >Predicted=237.000, Expected=278.000
         >Predicted=278.000, Expected=284.000
         >Predicted=284.000, Expected=277.000
         >Predicted=277.000, Expected=317.000
         >Predicted=317.000, Expected=313.000
         >Predicted=313.000, Expected=318.000
         >Predicted=318.000, Expected=374.000
         >Predicted=374.000, Expected=413.000
         >Predicted=413.000, Expected=405.000
         >Predicted=405.000, Expected=355.000
         >Predicted=355.000, Expected=306.000
         >Predicted=306.000, Expected=271.000
         >Predicted=271.000, Expected=306.000
```

Building and comparing multiple models

```
In [17]: final_df = pd.read_excel("Airlines+Data.xlsx")
    final_df['Date'] = pd.to_datetime(final_df.Month,format="%b-%y")
    final_df['month'] = final_df.Date.dt.strftime("%b") #month extracti
    final_df['year'] = final_df.Date.dt.strftime("%y")
```

RMSE: 32.687

```
In [18]: plt.figure(figsize=(10,7))
   plt.subplot(211)
   sns.boxplot(x="month",y="Passengers",data=final_df,palette='nipy_sp
   plt.subplot(212)
   sns.boxplot(x="year",y="Passengers",data=final_df,palette='plasma')
```


In [19]: final_df = pd.get_dummies(final_df, columns = ['month'])

```
In [20]: from typing_extensions import final
t= np.arange(1,97)
final_df['t']= t
final_df['t_square']= (t *t)
log_Passengers=np.log(final_df['Passengers'])
final_df['log_Passengers'] =log_Passengers
final_df
```

Out [20]:

	Month	Passengers	Date	year	month_Apr	month_Aug	month_Dec	month_Feb	mor
0	1995- 01-01	112	1995- 01-01	95	0	0	0	0	
1	1995- 02-01	118	1995- 02-01	95	0	0	0	1	
2	1995- 03-01	132	1995- 03-01	95	0	0	0	0	
3	1995- 04-01	129	1995- 04-01	95	1	0	0	0	
4	1995- 05-01	121	1995- 05-01	95	0	0	0	0	
91	2002- 08-01	405	2002- 08-01	02	0	1	0	0	
92	2002- 09-01	355	2002- 09-01	02	0	0	0	0	
93	2002- 10-01	306	2002- 10-01	02	0	0	0	0	
94	2002- 11-01	271	2002- 11-01	02	0	0	0	0	
95	2002- 12-01	306	2002- 12-01	02	0	0	1	0	

96 rows × 19 columns

```
In [21]: Train, Test = np.split(final_df, [int(.75 *len(final_df))])
```

```
In [22]: #Linear Model
import statsmodels.formula.api as smf

linear_model = smf.ols('Passengers~t',data=Train).fit()
pred_linear = pd.Series(linear_model.predict(pd.DataFrame(Test['t'
rmse_linear = np.sqrt(np.mean((np.array(Test['Passengers'])-np.arra
rmse_linear
```

Out[22]: 51.6677929956463

```
In [23]: #Exponential
         Exp = smf.ols('log Passengers~t',data=Train).fit()
         pred Exp = pd.Series(Exp.predict(pd.DataFrame(Test['t'])))
         rmse_Exp = np.sqrt(np.mean((np.array(Test['log_Passengers'])-np.arr
         rmse Exp
Out[23]: 297.3698089836234
In [24]: #Ouadratic
         Quad = smf.ols('Passengers~t+t_square',data=Train).fit()
         pred_Quad = pd.Series(Quad.predict(Test[["t","t_square"]]))
         rmse_Quad = np.sqrt(np.mean((np.array(Test['Passengers'])-np.array(
         rmse_Quad
Out [24]: 51.990736401554834
In [25]: #Additive seasonality
         add_sea = smf.ols('Passengers~month_Jan+month_Feb+month_Mar+month_A
         pred_add_sea = pd.Series(add_sea.predict(Test[['month_Jan','month_F
         rmse_add_sea = np.sqrt(np.mean((np.array(Test['Passengers'])-np.arr
         rmse add sea
Out[25]: 127.26451565320338
In [26]: #Additive Seasonality Quadratic
         add_sea_Quad = smf.ols('Passengers~t+t_square+month_Jan+month_Feb+m
         pred_add_sea_quad = pd.Series(add_sea_Quad.predict(Test[['t','t_squ
         rmse_add_sea_quad = np.sqrt(np.mean((np.array(Test['Passengers'])-n
         rmse_add_sea_quad
Out [26]: 35.24160848593321
In [27]: ##Multiplicative Seasonality
         Mul sea = smf.ols('log Passengers~month Jan+month Feb+month Mar+mon
         pred_Mult_sea = pd.Series(Mul_sea.predict(Test[['month_Jan','month_
         rmse_Mult_sea = np.sqrt(np.mean((np.array(Test['log_Passengers'])-n
         rmse_Mult_sea
```

Out[27]: 173,46096019630764

In [28]: #Multiplicative Additive Seasonality

Mul_Add_sea = smf.ols('log_Passengers~t+month_Jan+month_Feb+month_M
pred_Mult_add_sea = pd.Series(Mul_Add_sea.predict(Test[['t','month_
rmse_Mult_add_sea = np.sqrt(np.mean((np.array(Test['log_Passengers'
rmse_Mult_add_sea

Out [28]: 303,3646933542646

In [29]: #Compare the results

data = {"MODEL":pd.Series(["rmse_linear","rmse_Exp","rmse_Quad","rm
table_rmse=pd.DataFrame(data)
table_rmse.sort_values(['RMSE_Values'])

Out[29]:

	MODEL	RMSE_Values
4	rmse_add_sea_quad	35.241608
0	rmse_linear	51.667793
2	rmse_Quad	51.990736
3	rmse_add_sea	127.264516
5	rmse_Mult_sea	173.460960
1	rmse_Exp	297.369809
6	rmse_Mult_add_sea	303.364693

```
In [30]: model_final = smf.ols('Passengers~t+t_square+month_Jan+month_Feb+mo
         pred_new = pd.Series(model_final.predict(Test))
         pred_new
Out[30]: 72
                242.330988
         73
                244.902987
         74
                271.141653
         75
                263.713651
         76
                262.785650
         77
                283.357649
         78
                304.429648
         79
                306.334980
         80
                282.906979
         81
                259.978978
         82
                239.050977
         83
                260.622976
         84
                267.321927
         85
                269.914497
         86
                296.173733
         87
                288.766303
         88
                287.858873
                308.451443
         89
         90
                329.544013
         91
                331.469917
         92
                308.062487
         93
                285.155057
         94
                264.247627
         95
                285.840197
         dtype: float64
In [31]: predict_data= pd.DataFrame()
         predict_data["forecasted_passengers"] = pd.Series(pred_new)
```

```
http://localhost:8888/notebooks/For%20AIR.ipynb
```

In [32]: visualize = pd.concat([Train,predict_data])
 visualize

Out[32]:

	Month	Passengers	Date	year	month_Apr	month_Aug	month_Dec	month_Feb	mor
0	1995- 01-01	112.0	1995- 01-01	95	0.0	0.0	0.0	0.0	
1	1995- 02-01	118.0	1995- 02-01	95	0.0	0.0	0.0	1.0	
2	1995- 03-01	132.0	1995- 03-01	95	0.0	0.0	0.0	0.0	
3	1995- 04-01	129.0	1995- 04-01	95	1.0	0.0	0.0	0.0	
4	1995- 05-01	121.0	1995- 05-01	95	0.0	0.0	0.0	0.0	
91	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
92	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
93	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
94	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
95	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	

96 rows × 20 columns

In [33]: visualize[['Passengers','forecasted_passengers']].reset_index(drop=

In []: