Convolutional layer & GPUs

Convolutional layer

- The convolutional layer prepares the input data for the fully connected neurons (hidden layers)
- Procedures happening the convolutional layer:
 - Filtering
 - Pooling
 - Flatten & `

- Filters (kernel):
 - In charge to detect features
 - In images:
 - Can detect for example, lines, corners
 - Can also be specific: eyes, hair, etc.
 - Is a matrix of m * n. Size of the matrix depends on the application
 - Initialized randomly
 - Stride: how many "cells" the filter moves for a dot product
 - Operation:
 - A dot product operation is executed between the input data and the filter

- Pooling:
 - To reduce dimensionality
 - Eliminates noise from data
 - Max pooling: after the dot product of the filter and input is executed
 - A max pooling filter (of m*n) selects the max value and creates a new max pool.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	1	112	37
112	100	25	12			
Max-pool filter						

Flatten & Dense:

• Flatten: For the neurons to perform their own operations, the input data needs to be an appropriate format:

Flattening: "Converts" n-dimension into a "readable" vector (tensor)

• Dense:

- Method to create a fully connected neural network
- Specifies the number of neurons per layer and activation method

GPU ARCHITECTURE

Streaming Multiprocessor (SM)

Many CUDA Cores per SM

Architecture dependent

H100 SM has 128 cores

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

H100 PCIe has a total of 14,592 cores

PROCESSING FLOW

PROCESSING FLOW

5 WAYS TO ACCELERATE WITH GPUS

ARTIFICIAL INTELLIGENCE

- PyTorch
- MXNet
- TensorFlow

•••

CLIMATE & WEATHER

- Cosmos
 Gales
- WRF

•••

COMPUTATIONAL FINANCE

- O-Quant Options Pricing
- MUREX
- MISYS

•••

DATA SCIENCE & ANALYTICS

- Anaconda
- H20
- OmniSci

•••

FEDERAL DEFENSE & OTHER

- ArcGIS Pro
- EVNI
- SocetGXP
- Cyllance
- FaceControl

•••

LIFE SCIENCES

- Amber
- LAMMPS
- GROMACS
- NAMD
- Relion
- VASP

•••

MANUFACTURING, CAD, & CAE

- Ansys Fluent
- Abaqus SIMULIA
- AutoCAD
- CST Studio Suite

•••

MEDIA & ENTERTAINMENT

- DaVinci Resolve
- Premiere Pro CC
- Redshift Renderer

•••

MEDICAL IMAGING

- aidoc
 - PowerGrid
 - RadiAnt

•••

OIL & GAS

- Echelon
- RTM
- SPECFEM3D

•••

RETAIL

- Everseen
- · Deep North
- Third Eye Labs
- AWM
- Malong
- Clarifai
- Antuit

•••

SUPERCOMPUTING & HER

- · Chroma
- GTC
- MILC
- QUDAXGC

•••

ALGORITHMS GPU-accelerated Scikit-Learn

