DEVOIR À LA MAISON N°: CORRIGÉ

Problème 1 — Équation fonctionnelle

Partie I -

- 1. D'après l'énoncé, f(0) = f(0+0) = f(0) + f(0) donc f(0) = 0. Puisque f est strictement monotone, elle est injective donc $f(1) \neq f(0) = 0$.
- **2.** Pour tout $(x, y) \in \mathbb{R}^2$,

$$g(x + y) = \frac{1}{c}f(x + y) = \frac{1}{c}f(x) + \frac{1}{c}f(y) = g(x) + g(y)$$

On en déduit que pour tout $(x, y) \in \mathbb{R}^2$

$$q(x) = q(x - y + y) = q(x - y) + q(y)$$

et donc que g(x - y) = g(x) - g(y).

- 3. On sait que $g(0) = \frac{1}{c}f(0) = 0$ et que $g(n+1) = g(n) + g(1) = g(n) + \frac{1}{c}f(1) = g(n) + 1$. La suite de terme général g(n) est donc arithmétique de raison 1 et de premier terme g(0) = 0. On en déduit que g(n) = n pour tout $n \in \mathbb{N}$.
- **4.** Pour tout $x \in \mathbb{R}$

$$g(x) + g(-x) = g(x - x) = g(0) = 0$$

donc g est impaire.

- 5. Soit $r \in \mathbb{Q}$. La suite de terme général g(nr) est arithmétique de premier terme g(0) = 0 et de raison g(r). On en déduit que g(nr) = ng(r) pour tout $n \in \mathbb{N}$. Puisque $r \in \mathbb{Q}$, il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $r = \frac{p}{q}$. D'une part, g(qr) = qg(r) et d'autre part, g(qr) = g(p) = p puisque $p \in \mathbb{Z}$. Ainsi qg(r) = p puis $g(r) = \frac{p}{q} = r$.
- 6. D'après l'énoncé, f est strictement monotone.
 - Si f est strictement croissante c = f(1) > f(0) = 0 donc $g = \frac{1}{c}f$ est strictement croissante.
 - Si f est strictement décroissante c = f(1) < f(0) = 0 donc $g = \frac{1}{c}f$ est strictement croissante.
- 7. Supposons $g(x) \neq x$. Alors il existe un rationnel r strictement compris entre x et g(x).
 - Si x < r < g(x), alors par stricte croissance de g, g(x) < g(r) = r, d'où une contradiction.
 - Si g(x) < r < x, alors par stricte croissance de g, g(x) > g(r) = r, d'où une contradiction à nouveau.
- 8. On a montré que $g = \operatorname{Id}_{\mathbb{R}} \operatorname{donc} f = cg = c \operatorname{Id}_{\mathbb{R}}$.

Partie II -

- 1. f est injective car strictement monotone.
- 2. D'après l'énoncé, $f(f(0)) = f(0 + f(0)) = f(0) + 0^n = f(0)$. Or f est injective donc f(0) = 0.
- **3.** Pour tout $y \in \mathbb{R}$,

$$f(f(y)) = f(0 + f(y)) = f(0) + y^n = y^n$$

4. a. Soit $(x,y) \in \mathbb{R}^2$. Puisque n = 1, $f(f(y)) = y^n = y$

$$f(x+y) = f(x+f(f(y))) = f(x) + f(y)$$

b. La partie précédente montre qu'en posant $c=f(1), \ f=c \operatorname{Id}_{\mathbb{R}}.$ De plus, $1=f(f(1))=f(c)=c^2$ donc $c=\pm 1.$ Ainsi $f=\pm \operatorname{Id}_{\mathbb{R}}.$

On vérifie aisément que, réciproquement, si $f = Id_{\mathbb{R}}$ ou $f = -Id_{\mathbb{R}}$, on a bien

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+f(y)) = f(x) + y$$

Dans le cas où n=1, les applications recherchées sont donc exactement $\mathrm{Id}_{\mathbb{R}}$ et $-\mathrm{Id}_{\mathbb{R}}$.

- 5. a. Supposons $\mathfrak n$ pair. Alors $f(f(1)) = 1^{\mathfrak n} = 1$ et $f(f(-1)) = (-1)^{\mathfrak n} = 1$ donc $f \circ f(1) = f \circ f(-1)$. Or f est injective donc $f \circ f$ l'est également. On en déduit une contradiction.
 - **b.** Puisque $\mathfrak n$ est impair, le théorème de la bijection montre que l'application $\left\{ \begin{array}{ccc} \mathbb R & \longrightarrow & \mathbb R \\ \mathfrak y & \longmapsto & \mathfrak y^{\mathfrak n} \end{array} \right.$ est bijective. Or cette application n'est autre que $\mathfrak f \circ \mathfrak f.$

Soit $(x,y) \in \mathbb{R}^2$ tel que f(x) = f(y). Alors f(f(x)) = f(f(y)) puis x = y par injectivité de $f \circ f$. Ainsi f est injective.

Soit $y \in \mathbb{R}$. Alors il existe $x \in \mathbb{R}$ tel que y = f(f(x)) par surjectivité de $f \circ f$. Ainsi $y \in \text{Im } f$ et f est surjective.

c. Puisque f est bijective, on peut considérer la bijection réciproque f^{-1} de \mathbb{R} . Soit $(x,y) \in \mathbb{R}^2$. Alors

$$f(x + y) = f(x + f(f^{-1}(y))) = f(x) + f^{-1}(y)^n$$

 ${\rm Or}\ f^{-1}(y)^n=f(f(f^{-1}(y)))=f(y)\ {\rm donc}\ f(x+y)=f(x)+f(y).$

- **d.** D'après la partie précédente, $f = c \operatorname{Id}_{\mathbb{R}}$ en posant c = f(1). On a donc $f(f(y)) = c^2y$ pour tout $y \in \mathbb{R}$. Or on sait également que $f(f(y)) = y^n$ pour tout $y \in \mathbb{R}$. On en déduit par exemple que $c^2 = y^{n-1}$ pour tout $y \neq 0$ ce qui est absurde puisque n > 1.
- e. Dans le cas où n > 1, il n'existe aucune application f de $\mathbb R$ dans $\mathbb R$ strictement monotone telle que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+f(y)) = f(x) + y^n$$