VC210 Recitation Class

Molecular Theory

Zhao Yiqing

2018.10.16

CONTENTS

Chapter 4

Molecular Theories

/01

Molecular Theories

Extended Lewis theory, only consider electrostatic repulsions.

- Bonding pair & nonbonding pair(lone pair)
- $> AX_nE_m$:
 - "A" represent a central atom
 - "X" represent a bonded electron region
 - "E" represent a lone pair electron region
- ➤ How to find VSEPR?
 - Draw the Lewis structure.
 - Get AX_nE_m
 - Find the most favorable electron region shape and molecular shape.

$$: \ddot{O}: \qquad |^{2^{-}}$$

$$: \ddot{O}: \qquad |^{2^{-}}$$

$$: \ddot{O} - \overset{|}{S} - \overset{|}{O}: \qquad |$$

$$AX_{3}E$$

196					
Number of Electron Domains	Electron- Domain Geometry	X Bonding Domains	E Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	180° Linear	ö=с=ё
3	Trigonal planar	3	0	120° Trigonal planar	:F: - -
		2	1	Bent	

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
4	Tetrahedral	4	0	109.5°	HH H
		3	1		H ^{Mr.N} H
		2	2	Trigonal pyramidal Bent	H ^{tur}

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
5		5	0	120° 90°	PCl ₅
	Trigonal bipyramidal			Trigonal bipyramidal	
		4	1	Seesaw	SF ₄
		3	2	T-shaped	CIF ₃
		2	3	Linear	XeF ₂

Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
Octahedral	6	0	90° Octahedral	SF ₆
	5	1	Square pyramidal	BrF ₅
	4	2		XeF ₄
	Domain Geometry	Domain Geometry Bonding Domains 6 Octahedral	Domain Bonding Domains 6 0 Octahedral 5 1	Geometry Domains Domains Geometry 6 0 0 Octahedral 5 1 Square pyramidal

- Chemical bond may be polarized
- Molecules may be polarized
- Symmetric dipole = Non-polar
- ➤ Asymmetric dipole = Polar
- > Two notations of dipole moments

Two notations of dipole moments

Elements with higher electronegativity is considered as the negative dipole.

- \triangleright σ -bond and π -bond
- head-to-head overlaps and side-by-side overlaps

- \triangleright A single bond is a σ -bond.
- \triangleright A double bond is a σ -bond plus a π -bond.
- \triangleright A triple bond is a σ -bond plus two π -bonds.

- ➤ Hybridization: k=m+n
 - sp: k = 2
 - $sp^2: k = 3$
 - $sp^3: k = 4$
 - $sp^3d: k = 5$
 - $sp^3d^2: k = 6$
 - m=number of lone pairs of central atom
 - n=number of atoms connected to central atom

- The number of MOs equals the number of AOs.
- > The MO wave functions can be classified as bonding, nonbonding and anti-bonding.
 - Bonding: $E_{MO} < E_{AO}$
 - Antibonding: $E_{MO} > E_{AO}$
 - Nonbonding: $E_{MO} \approx E_{AO}$

$$\psi_1 = \varphi_{1s}(A) + \varphi_{1s}(B), \qquad \psi_2^* = \varphi_{1s}(A) - \varphi_{1s}(B)$$

constructive interference bonding

$$\psi_2^* = \varphi_{1s}(A) - \varphi_{1s}(B)$$

deconstructive interference antibonding

- $\triangleright \sigma_{1s}$, σ_{1s}^* : bonding MO and antibonding MO.
- $\geq E(\sigma_{1s}) < E(\sigma_{1s}^*)$
- Number of electrons is unchanged.
- > HOMO & LUMO
- ➤ Elements with higher electronegativity have lower energy of AOs.

- \triangleright For s-orbitals, σ -bond is always formed.
- \triangleright For p-orbitals, we usually form 1 σ -bond and 2 π -bonds.

- \triangleright Bond order= $\frac{1}{2}(N_b N_{ab})$
 - N_b -- number of bonding electrons
 - N_{ab} -- number of antibonding electrons
- Bond order and bonds:
 - BO = 0, nonbond
 - BO = 1, single bond
 - BO = 2, double bond
 - BO = 3, triple bond

Complete this molecular orbital diagram for CN⁻ then determine the bond order. Note that the 1s orbital is not shown in this problem. To add arrows to the MO diagram, click on the blue boxes.

Bond order of CN-

- **Paramagnetic**: has unpaired electrons.
- > Diamagnetic: all electrons are paired.

B ₂ C ₂ N ₂ O ₂ F ₂	Ne ₂
$oldsymbol{\sigma_{2p}^{\star}}$	11
$m{\pi}^{\star}_{2p}$ $m{\pi}^{\star}_{2p}$ $m{1}$ $m{1}$ $m{1}$ $m{1}$	11 11
	11 11
σ_{2p} 1 1 1 1 1 σ_{2p} 1 1	11
σ_{2s}^{\star} 11 11 11 σ_{2s}^{\star} 11 11	11
σ_{2s} 11 11 11 σ_{2s} 11 11	11
Bond order 1 2 3 2 1	0
Bond enthalpy (kJ/mol) 290 620 941 495 155	
Bond length (□) 1.59 1.31 1.10 1.21 1.43	
Magnetic behavior Paramagnetic Diamagnetic Diamagnetic Paramagnetic Diamagnetic	☐ ∠4

```
MO diagram  \sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \pi 2p(y) = \pi 2p(z) < \sigma 2p(x) < \pi^* 2p(y) = \pi^* 2p(z) < \sigma^* 2p(x)  *** O2 & F2 :  \sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p(x) < \pi 2p(y) = \pi 2p(z) < \pi^* 2p(y) = \pi^* 2p(z) < \sigma^* 2p(x)
```

➤ Orbitals in Polyatomic Molecular:

- Conjugated double bonds: Each C atom is sp^2 hybridized, with one electron in each orbital.
- Each C atom has a p_z -orbital perpendicular to the plane defined by the hybrid orbitals, and it contains one electron.
- n p_z -orbitals form n πMOs .

Thanks.