定理7.6.1 树定义的等价条件

设 $G = \langle V, E, \Psi \rangle$ 是n阶无向图,则以下条件等价:

- i) G是连通的和非循环的。(树的定义)
- ii) G 无自圈, 且当 v, v'∈ V时, 皆有唯一的一条从 v 至 v'的基本路径。
- iii) G 是**连**通的,且当 v, v'∈ V时,e \notin E, Ψ' = {<e, {v, v'}>} 时, G+{e}_{Ψ'}有唯一的一条回路。
- iv) G 是连通的,且当e ∈E时, G-e 是非连通的。
- v) G是连通的 且n(E)= n 1。
- vi) G是非循环的且有n(E)= n-1。

定理 7.6.2 阶大于 1 的树至少有两个端点。

森林

树是非循环的连通无向图,如果去掉对连通性的要求,就得到森林的概念。

定义7.6.2 每个分支都是树的无向图称为森林。

定理 7.6.3 如果森林 F 有 n 个结点,m 条边和 k 个分支,则m=n-k。

证明: n 个顶点的树有 n-1 条边,设每个分支有 n_i 个顶点,则: n_1 + n_2 +...+ n_k = n。 森林一共有 $(n_1$ -1)+ $(n_2$ -1)+...+ $(n_k$ -1) = n-k = m条边 因此 m=n-k。

生成树(Spanning Tree)、生成森林

定义7.6.3

- 如果树T是无向图G的生成子图,则称T 为G 的生成树。
- 如果森林F是无向图G的生成子图,则称F为G的生成森林。

定理 7.6.4

- 每个无向图都有生成森林。
- 无向图G有生成树当且仅当G是连通的。

生成树(Spanning Tree)示例

连通图的生成树构造方法

1、避圈法:

添加 e_1 , ..., e_i , 在添加的每一步均保证: e_{i+1} 不与 $\{e_1, ..., e_i\}$ 的任何子集构成回路。

2、破圈法:

在 G₀(即G)中去掉 e₁得到G₁, 在 G₁中去掉 e₂得到G₂, 在 G₂中去掉 e₃得到G₃, ...

其中 e_i 为 G_{i-1} 中某条回路中的边,直到没有回路,即把G中的所有回路均挑破!!!

定理:设无向图G连通,则G至少有一个生成树。

该定理的证明过程实际上是求生成树的算法:

输入:连通无向图G

输出: 生成树 T_G

- (1) $i\leftarrow 1$, $G_0\leftarrow G$;
- (2) 若 G_i 无圈,则 $T_G \leftarrow Gi$ 并终止;否则转(3);
- (3) 找出 G_i 中任何一圈 α_i ,并从 α_i 中去掉任何一边 x_i , $G_{i+1} \leftarrow G_i$ - x_i ;
- (4) i←i+1,转(2)

"破圈法":逐次破掉图G中所有的圈,并保证每破一圈时都得到G的一个连通生成子图,因而最后得到的TG保证是G的生成树。

用破圈法求图G的生成树

最小生成树-Minimum Spanning Tree (MST)

定义7.6.4 (i)设〈G,W〉是加权图, $G'\subseteq G$ 。G'中所有边的加权长度之和 称为 G'的加权长度。

(ii) 设 G 是连通无向图,〈G,W〉是加权图,G的所有生成树中加权长度最小者称为〈G,W〉的最小生成树。

贪心法求解最小生成树常用的有两种算法:

- (1) Prim's MST algorithm (prim算法).
- (2) Kruskal's MST algorithm(kruskal算法).
 Prim算法是基于点的,而Kruskal算法是基于边的。

最小生成树求法(避圈法、破圈法)

- 按"避圈法"求最小生成树:
- 设G是有m条边的n阶连通无向图,
- 1° 把 G 的m条边按加权长度递增的顺序排成 $e_1, e_2, ..., e_m$;
- 2° $T \leftarrow \emptyset$;
- 3° $j \leftarrow 1$, $i \leftarrow 1$;
 - (i记录正在扫描的边的下标; j记录T中边数是否已达n-1)
- 4° 若 j = n 则算法结束。
- 5° 若 G 的以 TU $\{e_i\}$ 为边集合的子图没有回路,则 T \leftarrow TU $\{e_i\}$ 且 $j \leftarrow j+1$;
- 6° i ← i+1, 转向 4°
- 算法结束时, T 即为所求的最小生成树的边集。

最小生树算法--Prim算法

- ■用于连通无向图,贪心算法
 - 1. 维护Tree结构
 - 2. 初始E={} V={v} //任取节点v
 - 3. 循环n-1次
 - •选择一条边(v1, v2), 满足
 - $v1 \in V$, $v2 \notin V$,
 - (v1, v2)权值最小
 - $E=E \cup (v1, v2)$
 - V=V U {v2}

Prim算法:示例

Kruskal算法

- •贪心算法
 - > 将边按从小到大排序
 - ▶按顺序选择每条边,只要与已选择边不构成圈,就选择。
 - >终止条件
 - ·已经选择了n-1条边;
 - •如果处理所有边,仍然不够n-1条,则说明图不 连通

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example

枝、弦

定义 7.6.5 设 T 是连通无向图 G 的生成树,称 T 的边为<mark>枝</mark>,而 G 的不属于 T 的边称为 $\dot{\mathbf{x}}$ 。

问题:连通图 G 的边 e 是枝还是弦?

- 与给定的生成树 T 密切相关。
- 对于 G 的某个生成树 T, e 是枝, 而对于 G 的另一个生成树 T₁, e 却可能是弦。
- 但是,对于 G 的任何生成树,枝的数目和 弦的数目 都是固定的。

定理7.6.5 设 G 是有 m 条边的 n 阶连通无向图,则对于 G 的任何生成树 T,都有 n-1 个枝和 m-n+1 个弦。

圈秩、余圈秩

定义 7.6.6 若 n 阶无向图 G 有 m 条边和 k 个分支,则 G 的余圈秩 r=n-k,圈秩 $\mu=m-n+k$ 。

■ 如果 G 是连通图 (k = 1),则 G 的余圈秩 r 是枝的数目, 圈秩 μ是弦的数目。

基本回路(圈)

- 由定理7.6.1知,如果在生成树中增加一条弦,则恰 产生一个回路。
- 定义7.6.7 (基本回路)设 T 是连通无向图 G 的生成树, G 的只包含一条弦的回路称为基本回路。
- 基本回路的概念与生成树相关联
 - 某回路对这个生成树是基本回路,而对另一个生成树却未必是基本回路。

定理 7.6.6 设 T 是连通无向图 G 的任意生成树。

- i) 基本回路的数目等于 G 的圈秩μ;
- ii) 对于G的任意回路 C,总可以找到若干个基本回路 C_1 , C_2 ,…, C_k ,使 C 与 $C_1 \oplus C_2 \oplus ... \oplus C_k$ 的差别仅在于孤立点。

证明: i) 显然。

ii) 设 C 是 G 的任意回路且C 包含 k 条弦,显然 k>0,设这 k 条弦是 e_1 , e_2 , ..., e_k , C_i 是包含 e_i 的基本回路 (i=1, i=1, i=1, ..., i=1)。

令 $C' = C_1 \oplus C_2 \oplus ... \oplus C_k$, 则 C' 包含的弦也是

 e_1 , e_2 , ..., e_k °

因此, $C \oplus C'$ 中的边都是枝,则 $C \oplus C'$ 是非循环的。下面证明 $C \oplus C'$ 是零图。

若 $C \oplus C'$ 不是零图,必有一分支是阶大于 1 的树,根据定理7.6.2, $C \oplus C'$ 有端点。

另,因为 C 和 C' 都是欧拉图,所以 $C \oplus C'$ 是欧拉图。这与 $C \oplus C'$ 有端点矛盾,故 $C \oplus C'$ 必为零图,即C 与 C'的差别仅在于孤立点。

有向树

定义7.6.8 一个结点的入度为 0, 其余结点的入度均为 1

的弱连通有向图 称为有向树。其中,

- i) 入度为 0 的结点称为根,
- ii) 出度为 0 的结点称为叶,
- iii) 出度大于 0 的结点称为分支结点,
- iv) 从根至任意结点的距离称为该结点的级,
- v) 所有结点的级的最大值称为有向树的高度。

定理7.6.7 设 v_0 是有向图 D 的结点。 D 是以 v_0 为 根 的有向树当且仅当从 v_0 至 D 的任意结点恰有一条路径。

证明: (必要性) 设 $D = \langle V, E, \Psi \rangle$ 是有向树, v_0 是D的根。因为 D是弱连通的,任取 $v' \in V$,则存在从 v_0 至 v'的半路径 P,

设 P为 $v_0 e_1 v_1 ... v_{p-1} e_p v_p$, 其中 $v_p = v'$ 。

因为 $d_D^-(v_0) = 0$,所以 e_1 是正向边,因为 $d_D^-(v_1) = 1$, 所以 。 也見 正向边

所以 e2 也是 正向边。

由归纳法可以证明: 每个 e_i (1 $\leq i \leq p$) 均是正向边。故 P 为有向路径。

$$v_0 \qquad v_1 \qquad v_1 \qquad v'$$

若从 v_0 至v'有两条路径 P_1 和 P_2 ,则 P_1 和 P_2 至少有一个公共点 的入 度大于1,与 D 是有向树矛盾。

定理7.6.7 设 v_0 是有向图 D 的结点。 D 是以 v_0 为 根 的有向树当且仅当从 v_0 至 D 的任意结点恰有一条路径。

证明: (充分性) 若 $d_D^-(v_0) > 0$,则存在边e以 v_0 为终点(D弱连通),设 v_1 是e的起点,P是从 v_0 至 v_1 的路径,则在D中存在两条不同的从 v_0 至 v_0 的 路径 Pv_1 ev $_0$ 和 Pv_1 ev $_0$ P v_1 ev $_0$,与已知条件矛盾,所以 $d_D^-(v_0) = 0$ 。

若 $d_D^-(v) > 1$,其中 v 是D的结点,则存在两条边 e_1 和 e_2 以v为终点。设 e_1 和 e_2 的起点分别是 v_1 和 v_2 ,从 v_0 至 v_1 和从 v_0 至 v_2 的路径分别是 P_1 和 P_2 ,则 P_1 e $_1$ v和 P_2 e $_2$ v是两条不同的从 v_0 至v的路径,与已知条件矛盾。所以,D是有向树,且 v_0 是D的根。

有向树的归纳定义

定义7.6.9 有向树归纳定义如下:

- i) 平凡图是有向树, 其结点称为该有向数的根。
- ii) 设 $m \in I_+, D_1, D_2, ..., D_m$ 分别是以 $r_1, r_2, ..., r_m$ 为根的有向树,并且两两不相交, r_0 不是 $\bigcup_{i=1}^m D_i$ 的结点, $e_1, e_2, ..., e_m$ 不是 $\bigcup_{i=1}^m D_i$ 中的边,并且

 $\Psi: \{e_1, e_2, ..., e_m\} \rightarrow \{r_0, r_1, ..., r_m\}^2$

定义为 $\Psi(e_i) = \langle r_0, r_i \rangle (i=1, 2, ..., m)$ 。

若 G=< $\{r_0, r_1, ..., r_m\}$, $\{e_1, e_2, ..., e_m\}$, Ψ >,则

 $\mathbf{D}=\mathbf{G}\cup\bigcup_{i=1}^{m}\mathbf{D}_{i}$ 是有向树, \mathbf{r}_{0} 是 \mathbf{D} 的根,并且称 \mathbf{D}_{1} , \mathbf{D}_{2} ,...,

 D_{m} 是D的子树。

有向森林

定义7.6.10 每个弱分支都是有向树的有向图, 称为有向森林。

m元有向树

定义7.6.11 设 m∈N, D 为有向树。

- i)如果D的所有结点出度的最大值为m,则称D为m元有向树。
- ii)如果对于m元有向树 D 的每个结点v, 皆有 $d_D^+(v) = m$ 或
- $d_{D}^{+}(v) = 0$,则称D为完全m元有向树。
- 完全二元有向树也称二叉树。

用途:字母和符号识别程序 {+, -, *, /}

00 01 10 11

统计字母出现的频繁程度

两个问题?

- •编码问题
 - ➤假设ABCD四个字母:如何编码?
 - ▶出现频率是0.5,0.3,0.05,0.15,如何编码?

主题1:叶加权二叉树,Huffman编码

- 树的存储计算
 - □ 二叉树具有特点和良好性质;
 - □对于不同类型树,是否能统一存储和计算?

主题2:森林-树-二叉树的转化

叶加权二叉树

定义7.6.12 (i) 设 V 是二叉树 D 的叶的集合, W: V \rightarrow R₊,则称〈D,W〉为叶加权二叉树。

(ii) 对于 D 的任意叶 v, 称 W(v) 为 v 的权,

称 $\Sigma_{v \in V}$ (W (v)·L(v)) 称为〈D, W〉的叶加权路径长度,

其中 L(v)为v的级。

- 用叶表示字母或符号,
- 用分支结点表示判断,
- 用权表示字母或符号出现的概率,则叶加权路径长度就表示算法的平均执行时间。

右图的叶加权路径长度为: 0.5·1+o.3·2+0.05·3+0.15·3

最优二叉树

定义7.6.13 设〈D,W〉是叶加权二叉树。

如果对任一叶加权二叉树〈D', W'〉, 只要对于任意正实数r, D 和 D'中权等于 r 的叶的数目相同, 就有〈D, W〉的叶加权路径长度不大于〈D', W'〉的叶加权路径长度, 则称〈D, W〉为最优的。

图7.6.5 用叶加权二叉树研究算法

最优二叉树求取

* 我们把求某问题的最佳算法归结为求最优二叉树。 []

最优二叉树求取算法:(举例说明) <u>9</u> *23 23* <u>52</u>

- · 将求 n 个叶的最优二叉树归结为求 n-1 个叶的最优二叉树。
- 所有分支结点中的数值之和就是叶加权路径长度

有序树、有序森林

定义7.6.14

- (i) 为每一级上的结点规定了次序的有向树称为有序树。
- (ii) 如果有向森林F的每个弱分支都是有序树,并且也为 F的每个弱分支规定了次序,则称F为有序森林。
- 在画有序树时,总是把根画在上部,并规定同一级 上结点的次序是从左至右。
- 在画有序森林时,弱分支的次序也是从左至右。

例:可以用有序树表示算术表达式,其中叶表示参加运算的数或变量,分支结点表示运算符。

如代数式 $((v_1*v_2) + (-v_3)) + v_4/(v_5 - v_6)$ 可表示为图G的有序数。

 $v_1*v_2 + v_3*(v_4 + v_5/v_6)$ 可表示为图G'的有序树。

定位有序树

- G与G'是相同的有序树,因为同一级上结点的次序相同。
- 如果考虑结点之间的相对位置,G与G'不相同
- G与G'是不同的定位有序树

定位有序树

定义7.6.15 为每个分支结点的儿子规定了位置的有序树称为定位有序树。

例:在定位二元有序树中,可用字符表{0,1}上的字符唯一地表示每个结点表示二进制编码情况。

- 1) 用空子府串 ϵ 表示根;
- 2) 设用 β 表示某分支结点,则用 β 0表示它的左 儿子,用 β 1表示它的右儿子。

这样,每个结点都有了唯一的编码表示,并且不同结点的编码表示不同。

定位二元有序树全体叶的编码表示的集合称为它的前缀编码

例: 在计算机通信中要传输A, B, C, D, E, F, G, H八个字母, 他们出现频率为A:30%, B:20%, C:15%, D:10%, E:10%, F:6%, G:5%, H:4%。给出一个最佳编码, 使得通讯中出现的二进制数字尽可能少。分析:

■ 用较短(长)的序列去表示出现频率高(低)的字母,

问题转化为:

- 求出叶的权分别为0.04, 0.05, 0.06, 0.1, 0.1, 0.15, 0.20, 0.3的最优 二叉树,然后用这样的二叉树产生前缀编码传输上述给定的字母。
- Huffman编码
 - 1) 给定字母集C={c1, c2,..., cn}及频率f(c1),..., f(cn);
 - 2) 设有n个叶结点,分别以f(c1),..., f(cn)为权;
 - 3) 在所有入度为0的结点,选出两个权最小的结点v,v',添加一个新的分支节点u,使得u以v和v'为儿子结点,且 f(u)=f(v)+f(v');
 - 4) 重复3)直至只有一个入度为0的结点。

Huffman 算法

■ 建立Huffman树的主要运算是插入和删除最小频度字符,所以用最小堆。

算法HUFFMAN

输入: n个字符的集合 $C=\{c_1,c_2,...,c_n\}$ 及频率 $\{f(c_1),f(c_2),...,f(c_n)\}$ 。

输出: C的Huffman树 (V, T)。

- 1.根据频度将所有字符插入最小堆H
- 2. V←C; T={}
- 3.for j←1 to n-1
- 4. $c \leftarrow DELETEMIN(H)$
- 5. $c' \leftarrow DELETEMIN(H)$
- 6. $f(v) \leftarrow f(c) + f(c')$ //新节点v
- 7. INSERT (H, v)
- 8. $V = V \cup \{v\}$
- 9. $T = T \cup \{(v, c), (v, c')\} // c, c'为T 中 v$ 的孩子

10.end for

例:在计算机通信中要传输A,B,C,D,E,F,G,H八个字母,他们出现频率为A:30%,B:20%,C:15%,D:10%,E:10%,F:6%,G:5%,H:4%。给出一个最佳编码,使得通讯中出现的二进制数字尽可能少。问题转化为:

■ 求出叶的权分别为0.04, 0.05, 0.06, 0.1, 0.1, 0.15, 0.20, 0.3 的最优二叉树, 然后用这样的二叉树产生前缀编码传输上述给定的字母。

A: 01, B: 11, C: 001, D:100, E:101,

F: 0001, G: 00000, H:00001

有序树

■借用家族树的名称来称呼有序树的结点。

称 v_1 是 v_2 和 v_3 的父亲, v_2 是 v_1 的长子, v_2 是 v_3 的哥哥, v_6 是 v_5 的弟弟等等。

- 可以用定位二元有序树 表示有序森林。
- 有序森林和定位二元有序树之间建立一一对应关系。
 - 称位于左边的有序树之根为位于右边的有序树之根的哥哥

有序森林和定位有二元有序树之间的自然对应关系:

规定: F与T有相同的结点。

有序森林 F	定位二有序树 T
v ₁ 是v ₂ 的长子	v_1 是 v_2 的左儿子
v ₁ 是v ₂ 的大弟	v ₁ 是v ₂ 的右儿子

亲弟弟,不包括堂兄弟

定位有序树

有序森林和定位二元有序树之间可以建立一一对应关系。

一、判断题

(每小题 2 分, 共 20 分)

- $(\sqrt{\ })$ 1. 若 $(A \oplus B) \cup C = \emptyset$, 则 A = B。
- (√) 2. 若 A ⊆ C 且 B ⊆ C, 则 A ∪ B ⊆ C。
- (\times) 3. 若集合 A, B, C 和 D 满足 A×B \subseteq C×D, 则 A \subseteq C 且 B \subseteq D。
- (x) 4. 设集合 A 上的二元关系 R_1 和 R_2 为传递的,则 R_1 o R_2 也是传递的。
- (x) 5. 若 R 是集合 A 上的二元关系,则 rst (R) 是 A 上的等价关系。
- (×) 6. 设 ≤ 为{a,b}*中字符串的字典序,则<{a,b}*, ≤> 是良序结构。
 注:所谓字典序是指: a ≤ b, a ≤ aa, abb ≤ baa。
- ($\sqrt{}$) 7. 设 R 为实数集,则 $R \times R$ 与 R 等势。
- (√) 8. 设 f 是从 A 到 A 的满射且 f o f = f ,则 f = I_A 。
- (√) 9. 若无向图 G 中任意结点 v 的度数 $d_G(v) \ge 2$,则 G 中必存在回路。
- (√) 10. n 阶二叉树有 (n+1)/2 个叶结点。

二、设 $A = \{a, b, c, d\}$ 上的二元关系 R_1 和 R_2 定义如下:

(20分)

$$R_1 = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle \}$$

 $R_2 = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle \}$

- 1) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性和传递性这五种性质)。
- 2) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。

- 三、设#(A) ≥ 2, ρ (A) 为 A 的幂集, ⊆ 为子集关系。 (15 分)
- 1) **证明**: <**ρ**(A), ⊆> 是偏序结构;

证明: 分别证明 \subseteq 是 ρ (A)上的自反、反对称、传递的二元关系。 (5分)

- a) 对任意 $B \in \rho$ (A): $B \subseteq B$, 即 \subseteq 是自反的;
- b) 对任意 B, C $\in \rho$ (A),若 $B \subseteq C$ 且 $C \subseteq B$,则 B = C,即 \subseteq 是反对称的;
- c) 对任意 B, C, D $\in \rho$ (A), 若 $B \subseteq C \perp C \subseteq D$, 则 $B \subseteq D$, 即 $\subseteq \mathcal{B}$ 传递的。 因此, $<\rho$ (A), $\subseteq >$ 是偏序结构。
- 2) **说明**: <**ρ**(A), ⊆> 不是全序结构; (5分)

因为#(A) ≥ 2,设 b, c 为 A 中的不同元素,则{b},{c}∈ ρ (A),且{b}⊆ {c}, {c}⊆ {b} 均不成立,故< ρ (A),⊆ > 不是全序结构。

- 3) 任给 B, C $\in \rho$ (A), 求出集合 {B, C} 的最小上界与最大下界,并**加以证明**。(5 分) **证明**: 任给 B, C $\in \rho$ (A): $B \cup C \setminus B \cap C$ 分别为 {B, C} 的**上确界**和**下确界**。
- a) 若 D 为{B, C} 的上界,即 $B \subseteq D$, $C \subseteq D$,则 $B \cup C \subseteq D$;且 $B \cup C$ 本身为 {B, C} 的上界(因 $B \subseteq B \cup C$, $C \subseteq B \cup C$),故 $B \cup C$ 为{B, C}的最小上界,即: $B \cup C$ 为{B, C}的上确界。
- b) 若 E为{B, C} 的下界,即 $E \subseteq B$, $E \subseteq C$,则 $E \subseteq B \cap C$;且 $B \cap C$ 本身为{B, C}的下界(因 $B \cap C \subseteq B$, $B \cap C \subseteq C$),故 $B \cap C$ 为{B, C}的最大下界,即: $B \cap C$ 为{B, C}的下确界。

四、试求叶的权分别为 2, 5, 10, 17, 26, 37, 50, 65 的**最优叶加权二叉树**及其**叶加权路径长度**。 (12 分)

五、设 $f: X \rightarrow Y$ 为全函数。证明; f 为右可逆的,当且仅当 f 为满射。(12 分)证明:

- \Rightarrow)若 f 为**右可逆的**,则有 g: Y \rightarrow X 使 fog= I_Y ,从而由书上定理(**左满右单**)可知: f 为 满射。
 - ←)另一方面,设f为满射。
- i) 当 $X = \emptyset$ 时, 因 f 为满射, 则 $Y = ran f = \emptyset$, 定理显然成立。
- ii) 当 $X \neq \emptyset$ 时,因 f 为全函数,则 $Y \neq \emptyset$ 。对每个 y ∈ Y, 令

$$S_y = \{ x \mid x \in X \perp f(x) = y \}$$

则 $\{S_y \mid y \in Y\}$ 就是 X 的一个划分。对每个 $y \in Y$,都任意取定 S_y 中唯一的一个元素 x_y ,显然 $f(x_y) = y$ 。 并令:

$$g = \{ \langle y, \mathbf{x}_{y} \rangle \mid y \in Y \}$$

则 g 显然是一个从 Y 到 X 的全函数,且 $fog=I_Y$ 。 这表明 g 是 f 的一个右逆,即 f 为**右可逆的**。 六、设 n 阶**连通无向图** G 为**非循环的**,直接用**归纳法**证明: G 有 n-1 条边。 (9分)

证明: 施归纳于 n:

当 n = 1 时,由 G 非循环可知:G 没有自圈,即 G 有 0 条边,故命题为真。

假设对任意 k≥1, 当 n =k 时命题为真。

当 n = k+1 时:因 G 为**连通的**,故任意结点 v 的度数 $d_G(v) \ge 1$ 。

若 G 中任意结点 v 的度数 $d_G(v) \ge 2$,则 G 中必存在回路,这与 G 为**非循环**的条件**矛盾!** 因此,G 中必有**结点** v_1 的度数 $d_G(v_1)=1$ 。

显然,k 阶无向图 $G - v_1$ 连通且非循环,由**归纳假设** $G - v_1$ 有 k - 1 条边。设与 v_1 相邻的结点为 v_2 , v_1 与 v_2 的连接边为 e,G 可由 $G - v_1$ 添加结点 v_1 与连接边 e 得到,所以 e 有 e 条边,即 e e 是 时命题亦为真。

综上所述, 命题为真。

七、设 R 为集合 A 上的二元关系,证明 $\mathbf{t}(\mathbf{R}) = \mathbf{R}^+$ 。

(12分)

其中, $\mathbf{t}(\mathbf{R})$ 为 \mathbf{R} 的**传递闭包**, $\mathbf{R}^+ = \bigcup_{i=1}^{\infty} \mathbf{R}^i$ 。

证明:

(-) 先证 $t(R) \subseteq R^+$:

若<x,y>,<y,z>∈R⁺,则必有n,m∈I+使 <x,y>∈Rⁿ且<y,z>∈R^m,因此 <x,z>∈R^{n+m},所以<x,z>∈R⁺。即R⁺是**传递的**。

由 $R \subseteq R^+$ 以及**传递闭包**的定义可知: $t(R) \subseteq R^+$ 。

七、设 R 为集合 A 上的二元关系,证明 $\mathbf{t}(\mathbf{R}) = \mathbf{R}^+$ 。

(12分)

其中, $\mathbf{t}(\mathbf{R})$ 为 \mathbf{R} 的传递闭包, $\mathbf{R}^+ = \bigcup_{i=1}^{\infty} \mathbf{R}^i$ 。

(二) **再证** $R^+ \subseteq t(R)$, 为此只需证明:

对每个 $\mathbf{n} \in \mathbf{I}_+$, 皆有 $R^n \subseteq t(R)$ 。

这可用归纳法证明如下:

- 1) 根据闭包的定义可知, $R \subseteq t(R)$,即当 n=1 时命题为真;
- 2) 对任意的 $k \in I_+$,假定当 n = k 时命题为真,即 $R^k \subseteq t(R)$ 。 任取<x,z> \in R^{k+1} ,因为 $R^{k+1} = R \circ R^k$,所以有 $y \in A$ 使得 <x,y> \in R 且<y,z> \in R^k 。由 $R \subseteq t(R)$ 且 $R^k \subseteq t(R)$ 可知:<x,y> \in t(R) 且<y,z> \in t(R) 。

而 t(R) 又是传递的,故 < x, $z > \in t(R)$ 。

这表明 $R^{k+1} \subseteq t(R)$, 即当 n=k+1 时命题也真。

因此,**对每个 n** \in **L**₊,**皆有** $R^n \subseteq t(R)$ 。故有 $R^+ \subseteq t(R)$ 。

因此,必有 $t(R) = R^+$ 。