Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

7 сентября 2023 г.

1 Аннотация

В работе измеряется удельное сопротивление нихромовой проволоки двумя способами: 1) путем анализа графика ВАХ проволоки, 2) путем вычисления по известной формуле $R=\rho \frac{l}{S}$, где R измерено посредством моста Уильсона (моста постоянного тока).

Цель работы: измерить удельное соединение нихромовой проволоки и вычислить систематические и случайные погрешности при использовании измерительных прибров.

Оборудование: линейка, штангенциркуль, микрометр, нихромовая проволока, амперметр, стрелочный вольтметр, источник ЭДС, мост Уильсона (мост постоянного тока), реостат, ключ, провода.

2 Теоретические сведения

Удельное сопротивление цилиндрической проволоки определяется по формуле: $\rho = \frac{R}{l}S$, а учитывая что $S = \pi \frac{d^2}{4}$,

$$\rho = \frac{R}{l} \frac{\pi d^2}{4}$$

Где R - сопротивление отрезка проволоки, l - его длина, d - диаметр.

По закону Ома для участка цепи:

$$R = \frac{U}{I}$$

Рис. 1: Используемая схема

U - напряжение на участке цепи, I - сила тока, R - сопротивление.

Таким образом, для определения сопротивления проволоки достаточно измерить силу тока и напряжение на нем. Это возможно с помощью схемы рис.1.

Вольтметр верно измеряет падение напряжения на проволоке, а амперметр измеряет сумму токов через проволоку и вольтметр. Поэтому можно записать систему:

$$\begin{cases} I_A = I + I_V \\ IR = U_V \\ I_V R_V = U_V \end{cases}$$
 (1)

 U_V - показания вольтметра, I_A - показания амперметра

Выразив токи I и I_V и подставив их в первое уравнение получим

$$R_1 = \frac{U_V}{I_A} = R \frac{R_V}{R + R_V}$$

3 Оборудование и экспериментальные погрешности

 $\mathit{Линейкa}$: $\Delta_{\text{лин}} = \pm 0.5$ мм (половина цены деления) $\mathit{Штангенциркуль}$: $\Delta_{\text{шт}} = \pm 0.05$ мм (половина цены деления) $\mathit{Микрометp}$: $\Delta_{\text{микм}} = \pm 0.01$ мм (маркировка производителя)

Амперметр: $\Delta_{A} =$ Вольтметр: $\Delta_{V} =$

4 Измерения и обработка данных

4.1 Измерение длины проволоки l

Значения l измерялись с помощью линейки, результаты приведены в Табл.

4.2 Измерение диаметра проволоки d

Проволока неоднородна, поэтому ее диаметр различен в разных местах. Мы можем измерить его в нескольких местах и усреднить полученные значения.

Измерения с помощью штангенциркуля показали одинаковый диаметр проволоки для N=12 измерений, $d_{
m mt}=0.4{
m mm}$.

Для измерения диаметра был также использован микрометр, который вы-

Таблица 1: Результат измерения d штангенциркулем

						-						
$N_{\overline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12
d_{iiit} , mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

явил отличия в диаметре проволоки в разных ее местах (см. Табл. 1).

Таблица 2: Результат измерения d микрометром

rastinga 2. respitat itsinepeliin a minipelierpen												
$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7	8	9	10	11	12
d_{mkm} , mkm	380	380	360	390	360	370	350	340	360	380	370	370

4.3 Вычисление сопротивления проволоки R

Измерить сопротивление отрезка проволоки R возможно двумя способами

4.3.1 Метод вычисления R путем анализа ${\bf BAX}$ проволоки

Для снятия ВАХ проволоки была собрана схема Рис. 1

BAX снималась для трех разных длин проволоки путем постепенного уменьшения напряжения источника. Результаты измерений приведены в Табл. 3

$$U_V({
m MB})=4U_V({
m дел}),$$
 т.к. 1 дел $=rac{600\ {
m MB}}{150\ {
m дел}}=4\ {
m MB}$

Νo	Uист, B	Uv, дел	Uv, мВ	Іа, мА
1	3.5	148	592	111.16
2	3.3	137	548	103.42
3	3.1	130	520	97.84
4	2.9	121	484	90.41
5	2.7	115	460	86.6
6	2.3	98	392	73.78
7	1.9	80	320	60.3
8	1.5	64	256	47.9
9	1.1	36	144	26.63
10	0.7	23	92	17.29
11	0.2	3	12	1.98

Таблица 3: ВАХ проволоки $l = (500.0 \pm 0.5)$ мм

No	Uист, В	Uv, дел	Uv, мВ	Іа, мА
1	3.5	150	600	184.86
2	3.3	143	572	176.44
3	3.1	136	544	167.57
4	2.9	124	496	152.78
5	2.7	118	472	145.04
6	2.3	100	400	123.58
7	1.9	84	336	103.16
8	1.5	67	268	82.66
9	1.1	48	192	59.25
10	0.7	21	84	25.31
11	0.2	2	8	1.79

Таблица 4: ВАХ проволоки $l = (300.0 \pm 0.5)$ мм

4.3.2 Метод прямого измерения R с помощью моста постоянного тока

Для измерения R использовался мост постоянного тока Р4833. Для трех l были подобраны такие положения рубильников, при котором стрелка прибора была минимально отклонена от нуля.

Для l=20 см $R=\Omega$;

для l=30 см $R=\Omega$;

для l=50 см $R=\Omega;$

№	Uист, В	Uv, дел	Uv, мВ	Іа, мА
1	3.5	149	596	271.1
2	3.3	139	556	256.15
3	3.1	130	520	241.29
4	2.9	123	492	227.4
5	2.7	112	448	208.09
6	2.3	98	392	181.76
7	1.9	80	320	147.89
8	1.5	64	256	118.08
9	1.1	47	188	87.3
10	0.7	16	64	29.91
11	0.2	6	24	10.65

Таблица 5: ВАХ проволоки $l = (200.0 \pm 0.5)$ мм