

EFFICIENT MULTI-RESOLUTION FUSION FOR REMOTE SENSING DATA WITH LABEL UNCERTAINTY

Hersh Vakharia and Xiaoxiao Du University of Michigan

Multi-Resolution Sensor Fusion Challenges

- Optical sensors operate on various spatial, spectral, or temporal resolutions
- It is not always feasible to convert data to same resolution
- Standard supervised learning methods require accurate labels, which can be difficult to obtain

The MIMRF¹ Framework Multiple Instance Multi-Resolution Fusion

Multiple Instance Learning (MIL)²

 Data is stored in "bags" labeled positive or negative depending on if it contains a target

Fuzzy Measures (FM)

 Represents interactions of all subsets of fusion sources as a "weight"

Choquet Integral (CI)³

 Aggregation tool that uses fuzzy measure "weights" for complex, nonlinear fusion

MIL Bags; Red=Negative, Green=Positive

Fuzzy Measure Structure for 3 sources (s₁, s₂, s₃)

Genetic Algorithm

- Training data is given as labeled "bags" of data
- Fitness function encourages CI of points in negative bags to be 0 and positive bags to be 1
- Large and small-scale mutations of FMs computed to find FM with high fitness

MIMRF-BFM Improving Efficiency with Binary Fuzzy Measures

Fuzzy Measures (FM)

- Maps 2^S -> [0, 1] for set of sources, S
- Training is computationally intense, with no guarantee of convergence

Binary Fuzzy Measures (BFM)

- Maps 2^s -> {0, 1} for set of sources, S
- Drastically reduces search space, genetic algorithm converges much faster
- Binary values make the FM more readable

MUULF Gulfport Dataset⁵ - Building Detection

(a) Hyperspectral imagery; (b) Ground truth for building detection; (c) Bag-level label map, where red superpixels are positive and blue are negative; (d) 3-D LiDAR point cloud

MIMRF-BFM Results

Experimental Analysis

Fusion Method	AUC↑ / RMSE↓ / PSNR↑		
Tusion Michiga	Train 1 Test 2	Train 2 Test 1	
ACE	0.906/0.362/8.839	0.952/0.346/9.214	
LiDAR1	0.888/0.267/11.497	0.880/0.272/11.319	
LiDAR2	0.850/0.273/11.243	0.839/0.280/11.053	
Min	0.877/0.255/12.262	$\bar{0.867}/\bar{0.261}/\bar{11.673}$	
Max	0.916/0.434/7.333	0.932/0.422/7.501	
Mean	0.941/0.310/10.492	0.953/0.302/10.400	
SVM	0.892/0.415/7.637	0.958/0.285/7.637	
mi-SVM	0.951/ <u>0.226</u> /12.379	0.972/ <u>0.203/13.863</u>	
KNN	0.954/0.237/ <u>12.437</u>	0.952/0.243/12.279	
MICI Noisyor	0.943/0.377/8.621	0.946/0.326/9.030	
MIMRF	0.976 /0.310/10.314	0.989 /0.254/10.635	
MIMRF-BFM	<u>0.974</u> / 0.131 / 17.661	<u>0.973</u> / 0.128 / 17.859	

Table 1. Comparison metrics between various fusion techniques; AUC = Area Under ROC curve; RMSE = Root Mean Squared Error from GT; PSNR = Peak Signal to Noise Ratio from GT

Fusion Method	Computation Time (s)			
	#6	#8	#10	#12
MIMRF	149.5(148.0)	772.1(442.1)	>5 hrs.	>5 hrs.
MIMRF-BFM	17.6(1.1)	92.1(5.1)	120.3(5.0)	772.4(15.9)

Table 2. Computation time for learning fuzzy measures for MIMRF and MIMRF-BFM when scaling number of sources to 6, 8, 10, and 12. Computation was capped at 5 hrs.

Discussion & Conclusion

- MIMRF-BFM is an effective extension of MIMRF that significantly improves efficiency by decreasing fuzzy measure search space
- MIMRF-BFM excels at eliminating background noise, as shown by low RMSE and PSNR
- BFMs provide clear and explainable representation corresponding to the combination and (non-linear) interactions of sensor input sources
- This framework can be extended to other sensor modalities

References & Acknowledgement

- [1] X. Du and A. Zare, "Multiresolution multimodal sensor fusion for remote sensing data with label uncertainty," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2755–2769, 2020.
- [2] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, "Solving the multiple instance problem with axis-parallel rectangles," Artif. Intell., vol. 89, no. 1–2, pp. 31–71, 1997.
- [3] G. Choquet, "Theory of capacities," in Annales de l'institut Fourier, 1954, vol. 5, pp. 131–295.
- [4] X. Du, A. Zare, and D. T. Anderson, "Multiple instance Choquet integral with binary fuzzy measures for remote sensing classifier fusion with imprecise labels," in IEEE Symp. Comput. Intell., 2019, pp. 1154–1162.
- [5] A. Zare et al., GatorSense/MUUFLGulfport: Release 01 (Version v0.1) [Data set]. GitHub, 2018. doi: https://doi.org/10.5281/zenodo.1186326.

This material is based upon work supported by the National Science Foundation under Grant IIS-2153171-CRII: III: Explainable Multi-Source Data Integration with Uncertainty.