Name of Student: Roll No:

TKM COLLEGE OF ENGINEERING, KOLLAM-5 Dept. of Electronics & Communication Engineering V Semester B.Tech Degree examination I Series test (Oct 2020)

Max. Marks: 50 EC 303 Applied Electro Magnetic Theory Time: 1.5Hrs

MODULE-I(Answer any two full questions)

No.	Question	Marks	CO	Blooms Level
1a.	Convert the point P (2,6,5) to 1. Cylindrical coordinate system 2. Spherical coordinate system	6		L2
1 b.	Convert the vector $\frac{1}{\rho}$ \mathbf{a}_{ρ} to rectangular coordinate system	6.5		
2 a. 2 b. 2c.	Explain Gauss law for Electrostatics. Derive poisson's and Laplace equations? Apply Gauss law to determine D at a point P due to,	3 3		L1 L1
	 point charge at the origin Infinite line charge 	6.5		L3
3	Apply laplace equation to calculate the potential variation between coaxial cylinders of radius a and b where $\mathbf{a} < \mathbf{b}$. Assume that the inner cylinder has potential V_1 and outer cylinder has potential $V_2=0$.	12.5		L3

MODULE-II (Answer any twofull questions)

5	Derive the boundary condition for electric field for a region separating a dielectric and dielectric	12.5	3	L2
4a 4b	List the Maxwell's equation in integral and differential form. Derive the Maxwell's from Faraday's law and Amper's Circuital Law	6.5	2	L1
6	Derive wave equation for lossy media. Derive the expression for electric and magnetic field components of wave propagating in lossy media.	12.5	3	L3