Performance of Random Space-Time Precoded Integer Forcing over Compound MIMO Channels

Elad Domanovitz and Uri Erez

Tel Aviv University

ICSEE 2016, November 18th

Introduction

The Single-User Multiple-Input Multiple-Output (MIMO)
 Gaussian channel has been the focus of extensive research

$$\mathbf{y}_c = \mathbf{H}_c \mathbf{x}_c + \mathbf{z}_c,$$

- ullet $\mathbf{x}_c \in \mathbb{C}^{N_t}$ is the channel input vector
- $\mathbf{y}_c \in \mathbb{C}^{N_r}$ is the channel output vector
- \mathbf{H}_c is an $N_r \times N_t$ complex channel matrix
 - \rightarrow Fixed over entire block length
- $\mathbf{z}_c \sim \mathcal{CSCN}(0, \mathbf{I})$
- Power constraint: $\mathbb{E}(\mathbf{x_c}^H \mathbf{x_c}) \leq N_t \cdot \mathsf{SNR}$

Introduction

 The MIMO Gaussian broadcast channel has also been widely studied for well over a decade now:

$$\mathbf{y}_c^i = \mathbf{H}_c^i \mathbf{x}_c + \mathbf{z}_c^i$$

- Private (only) Messages vs. Common (only) Messages
 - Capacity is known for both scenarios √
 - Practical schemes?
 - Private Message √ (DPC: Tomlinson...)
 - Common Message?
 - \implies Single user: SVD or QR+SIC
 - \implies Two users: Solved using joint triangularization (Khina '12)
 - \implies Moderate # of users: Extensions exist, not optimal (Khina '12)
 - ⇒ Infinite # of users (knowing only WI-MI): Approximate joint triangularization is not very good ⇒ **Topic of this talk**

Objective

- Can we find a scheme that is:
 - Practical
 - Linear complexity in the block length
 - Uses off-the-shelf SISO codes
 - Has good provable performance guarantees
 - Universal: Is good for all channels with same WI-MI (compound channel setting), i.e., $\mathbf{H}_c \in \mathbb{H}(\mathcal{C}_{\mathrm{WI}})$
- Universal ⇒ needs to deal with DoF mismatch

Candidate Scheme for OL-MIMO Broadcast: Integer Forcing

• Equalization scheme introduced by Zhan '10, et. al.

Idea: Decode linear combination of messages ⇒ Invert

Integer-Forcing Equalization: Basic Idea

Consider the (SU) channel

$$\mathbf{H} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

 At high SNR linear receiver front-end inverts the channel (ZF) thus resulting in noise amplification

$$\mathbf{H}^{-1} = \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} \implies \sigma_1^2 = 2, \ \sigma_2^2 = 5$$

- Can we avoid noise amplification?
- IF idea: If all streams are coded with same linear code ⇒
 Integer × Codeword + Integer × Codeword = Codeword
- However, normal channels do not consist only of integers
- Integer Forcing (IF) equalization equalize the channel to he "nearest" integers-only matrix

Candidate Scheme for OL-MIMO Broadcast: Integer Forcing

- What is already known?
- Ordentlich '15, et. al. (single-user Open-Loop):
 - Rx side Integer forcing equalization
 - Tx side **Specific space-time** linear precoding
 - √ A linear Non-Vanishing Determinant (NVD) precoder achieves the mutual information up to a constant gap for any channel
 - Guaranteed gap to capacity is quite large ⇒ doesn't provide satisfactory performance guarantees at moderate rates
- Domanovitz '16, et. al. (single-user Open-Loop):
 - Rx side Integer forcing equalization
 - Tx side Random unitary space-only linear precoding
 - √ Universal bound for scheme outage
- Random unitary space-time linear precoding ?

Bad Channels for IF/Linear Equalization

Figure: PDF of 2×2 Rayleigh channels normalized to WI=8 bits

$$ullet$$
 Worst channel $oldsymbol{\mathsf{H}}_{\mathrm{worst}} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$: one stream \longrightarrow

Combating Bad Channels via Random Precoding

- What can we do against nature?
- Apply random precoding

Figure: PDF of Random Unitary Precoding to Hworst

- No precoding can salvage linear eq. when channel is singular
- IF copes well with channel being singular

Combating Bad Channels via Random Precoding

- What can we do against nature?
- Apply random precoding

Figure: PDF of Random Unitary Precoding to H_{worst}

 Precoding over a time-extended channel ⇒ "tail" of the PDF decays faster ⇒ improve the WC outage probability.

Compound MIMO Channel Model

- \mathbf{H}_c is part of the compound channel $\mathbb{H}(C_{\mathrm{WI}})$
- Mutual information of the compound channel is maximized by a Gaussian input with covariance matrix Q:

$$C = \max_{\mathbf{Q}: \mathsf{Tr} \, \mathbf{Q} \leq N_t \mathsf{SNR}} \mathsf{log} \, \mathsf{det} \left(\mathbf{I}_{N_r \times N_r} + \mathbf{H}_c \mathbf{Q} \mathbf{H}_c^T \right)$$

- We set SNR = 1 \Longrightarrow $\mathbf{H}_c = \mathbf{H}_c \sqrt{\mathsf{SNR}}$, taking $Q = I_{N_t \times N_t} \Longrightarrow C_{\mathrm{WI}} = \log \det \left(\mathbf{I}_{N_r \times N_r} + \mathbf{H}_c \mathbf{H}_c^T \right)$
- Define:

$$\mathbb{H}(\mathit{C}_{\mathrm{WI}}) = \left\{ \mathbf{H}_{\mathit{c}} \in \mathbb{C}^{\mathit{N}_{\mathit{r}} \times \mathit{N}_{\mathit{t}}} : \mathsf{log} \det \left(\mathit{I} + \mathbf{H}_{\mathit{c}}^{\mathit{T}} \mathbf{H}_{\mathit{c}} \right) = \mathit{C}_{\mathrm{WI}} \right\}$$

Compound MIMO Channel Model

- PDF figures → for most precoding matrices good performance, however there is a tail (outage)...
- In contrast to Rayleigh channel all channels in the compound class has same mutual information
 Define (scheme outage) probability which is taken w.r.t. random precoding ensemble, not w.r.t. to channel statistics
- Instead of constant gap, our target is to bound the worst-case scheme outage. For example, in case of space-only random precoding

$$P_{ ext{out}}^{ ext{WC}}\left(\mathcal{C}_{ ext{WI}}, R
ight) = \sup_{\mathbf{H}_c \in \mathbb{H}\left(\mathcal{C}_{ ext{WI}}
ight)} P\left(R_{ ext{IF}}\left(\mathbf{H}_c \cdot \mathbf{P}_c
ight) < R
ight)$$

• When P_c is drawn from CUE \Longrightarrow channels with equal eigenvalues have equal outage probability

- A block of T channel uses is processed jointly so that the $N_r \times N_t$ physical MIMO channel is transformed into an aggregate $N_r T \times N_t T$ MIMO channel
- The equivalent channel is

$$\bar{\boldsymbol{y}}_c = \mathcal{H}_c \bar{\boldsymbol{x}}_c + \bar{\boldsymbol{z}}_c$$

where $ar{\pmb{x}}_c \in \mathbb{C}^{N_t T}$, $ar{\pmb{y}}_c, ar{\pmb{z}}_c \in \mathbb{C}^{N_r T}$ and

$$\mathcal{H}_c = \mathbf{I}_{T \times T} \otimes \mathbf{H}_c = \begin{bmatrix} \mathbf{H}_c & 0 & \cdots & 0 \\ 0 & \mathbf{H}_c & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \mathbf{H}_c \end{bmatrix}$$

- In our framework, two levels of precoding are applied.
 - P_c is applied to the physical channel (similar to space-only precoding)
 - \bullet $\mathbf{P}_{st,c}$ is applied to the time-extended channel
- The equivalent channel is

$$\bar{\boldsymbol{y}}_{c}^{P}=\mathcal{H}_{c}^{P}\boldsymbol{\mathsf{P}}_{st,c}\boldsymbol{\bar{x}}_{c}+\boldsymbol{\bar{z}}_{c}$$

where

$$\mathcal{H}_{c}^{P} = \mathbf{I}_{T \times T} \otimes \mathbf{H}_{c} \mathbf{P}_{c} = \begin{bmatrix} \mathbf{H}_{c} \mathbf{P}_{c} & 0 & \cdots & 0 \\ 0 & \mathbf{H}_{c} \mathbf{P}_{c} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \mathbf{H}_{c} \mathbf{P}_{c} \end{bmatrix}$$

We assume that both precoding matrices are unitary

• WI-MI of this channel (normalized per channel use)

$$\frac{1}{T}\log\det\left(\mathbf{I}+(\mathcal{H}_{c}^{P}\mathbf{P}_{st,c})(\mathcal{H}_{c}^{P}\mathbf{P}_{st,c})^{H}\right)=\mathcal{C}_{\mathrm{WI}}(\mathbf{H}).$$

WC scheme outage is defined as

$$P_{\text{out}}^{\text{WC}}(C_{\text{WI}}, R) = \sup_{\mathbf{H}_c \in \mathbb{H}(C_{\text{WI}})} P\left(\frac{1}{T} R_{\text{IF}}(\mathcal{H}_c^P \cdot \mathbf{P}_{st,c}) < R\right),$$

• ε -outage capacity $R(\mathbf{P}_{st,c};\varepsilon)$ is defined as the rate for which

$$P_{\mathrm{out}}^{\mathrm{WC}}\left(C_{\mathrm{WI}}, R_{\mathrm{IF}}(\mathbf{P}_{st,c}; \varepsilon)\right) = \varepsilon.$$

• The transmission efficiency is defined as

$$\eta_{\varepsilon}(C_{WI}, \mathbf{P}_{st,c}) = \frac{R_{\mathrm{IF}}(\mathbf{P}_{st,c}; \varepsilon)}{C_{WI}}.$$

- Candidate precoding schemes
 - Orthogonal space-time block code (IF becomes superfluous)
 - Algebraic space-time block codes
 - \bullet 2 \times 2 Golden
 - 4 × 4 Perfect code, punctured perfect code, MIDO
 - Random space-time block code
 - $P_{st,c}$ is drawn from the CUE (hence P_c is redundant)

Space-Time Precoding: 2 Tx Antennas

A Closer Look at Random vs. Algebraic Space-Time Rotation

Upper Bound via ML

- ML decoder where each stream is coded using an independent Gaussian codebook
- Let \mathbf{H}_S denote the submatrix of $\mathcal{H}_c^P \mathbf{P}_{st,c}$ formed by taking the columns with indices in $S \subseteq 1, 2, ..., N_t T$

$$R_{\text{JOINT,ST}} = \frac{1}{T} \min_{S \subseteq 1, 2, \dots, N_t T} \frac{N_t T}{|S|} \log \det \left(\mathbf{I}_S + \mathbf{H}_S \mathbf{H}_S^H \right)$$

Figure: Approximate WC PDF (Monte carlo simulation) of joint ML

Space-Time Precoding: 2 Tx Antennas

$$R_{\mathrm{JOINT,ST}} = \frac{1}{T} \min_{S \subseteq 1,2,\dots,N_{t}T} \frac{N_{t}T}{|S|} \log \det \left(\mathbf{I}_{S} + \mathbf{H}_{S}\mathbf{H}_{S}^{H}\right)$$

$$\mathcal{H}_c^P \mathbf{P}_{st,c} = \mathbf{U} \mathbf{D} \mathbf{V}^H$$

$$\begin{bmatrix} D1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & D1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & D2 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & D2 \end{bmatrix}$$

$$R_{\mathrm{JOINT,ST}} = \frac{1}{T} \min_{S \subseteq 1,2,\dots,N_{t}T} \frac{N_{t}T}{|S|} \log \det \left(\mathbf{I}_{S} + \mathbf{H}_{S}\mathbf{H}_{S}^{H}\right)$$

$$\mathcal{H}_{c}^{P}\mathbf{P}_{st,c}=\mathbf{UDV}^{H}$$

$$\begin{bmatrix} D1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & D1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & D2 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & D2 \end{bmatrix}$$

```
\begin{bmatrix} D1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & D1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & D2 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & D2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1,1} & \mathbf{V}_{1,2} & \cdots & \mathbf{V}_{1,N_{t}T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{V}_{\frac{N_{t}T}{2},1} & \mathbf{V}_{\frac{N_{t}T}{2},2} & \cdots & \mathbf{V}_{\frac{N_{t}T}{2},N_{t}T} \\ \mathbf{V}_{\frac{N_{t}T}{2}+1,1} & \mathbf{V}_{\frac{N_{t}T}{2}+1,2} & \cdots & \mathbf{V}_{\frac{N_{t}T}{2}+1,N_{t}T} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{V}_{N_{t}T,1} & \mathbf{V}_{N_{t}T,2} & \cdots & \mathbf{V}_{N_{t}T,N_{t}T} \end{bmatrix}
```

- When $D1 \neq D2$ columns are not orthogonal...
- Sketch of theorem (lower bound on ML performance)
 - Each sub-matrix is a part of a unitary matrix
 - The eigenvalues of this sub-matrix (taken from square unitary matrix) has a Jacobi distribution
 - We use a bound on the determinant of the sum of positive definite matrices
 - We use union bound to overcome dependence between two sub matrices
 - For a given S, we use union bound to cover all options to select S columns
 - \bullet We go over all options for S and take the minimum
- The outcome is a closed form expression that can be calculated numerically

Space-Time Precoding: 4 Tx Antennas

