Comparison & non-comparison sort

Sorting algos can be classified into two main categories:

- 1) Comparison sorts
- 2) Non-comparison sorts

The most know comparison sorts:

- 1) bubble sort
- 4) quicksort
- 2) insertion sort

5) mergesort

3) selection sort

* The main characteristic of comparison sort is that they MUST compare pairs of elements to determine the sorted order.

Non-comparison sorts DO NOT make comparisons.

Examples are:

- 1) Counting sort
- 2) Radix sort
- 3) Bucket sort

Why are we studying different sorting types?

- * Because comparison sorts have a limit on their WORST CASE RUNNING TIME.
- They cannot be faster than N LOG N. This is not the case for non-comparison sorts.

Comparison Sort	Worst case running time	Best case running time		
Bubble	$\Theta(N^2)$	$\Theta(N)$		
Insertion	$\Theta(N^2)$	Θ(N)		
Selection	$\Theta(N^2)$	$\Theta(N^2)$		
Quicksort	$\Theta(N^2)$	Θ(NlgN)		
Mergesort	Θ(NlgN)	Θ(NlgN)		

5 most asymptotically optimal for large values of N.

Sorting algos that DO NOT make comparisons can beat the lower bound of N LOG N comparison sorts.

function Bubble Sort (Arr, N) 4 3 2 1 Swapped = true i (Arrai) > Arraiti N-11 Le Swag While (Swapped) do 0 4>3 = true 3 true Swapped = false 4>2 = true true for OficN-1 do 47) = true true if (Arr[i] > ArEi+1]) then fælse true 3 > 2 = truc Swap (Arr[i], Arr[if]) true 3>1 = true end if end for 2>1=true N=N-1 end while end function

Worst Case

```
T(N)
                  function BubbleSort(A,N)
                                         swapped=true
                                                                                                                                                                                                                                                                      C2(N+1)
                                        while (swapped) do
                                                                swapped=false
4
                                                                for 0 <= i < N-1 do
                                                                                                                                                                                                                                                                                                                                      \frac{1}{2} (N-1) = 1 (N-1) = C_5
                                                                                       if (A[i] > A[i+1]) then \rightarrow (A[i] > A[i+1])
                                                                                                                 swap(A[i],A[i+1])
                                                                                                                 swapped=true
                                                                                                                                                                                                                                                                                                T(N)= 4.+C2(N+1)+C3N+C4N(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+C5(N-1)+
                                                                                        end if
                                                                                                                                                                                                                                                                                                                                    + C6N + C7
                                                                    end for
                                                                                                                                                                                                                                                                                                                            = C/2 + C2N+C/2 + C2N + C4N2 - R4
                                                                   N=N-1 -
                                                                                                                                                                                                                                                                                                                         + C5. N2-N + C6N
                                         end while
                                                                                                                                                                                                                                                                      C7 = G+ (L4 + C5) N2 + (62-45) N
                                          return A
                  end function
```

 $T(N) = C_9 + (C_4 + C_5)_{N^2} + (C_2 - C_5 + C_6)_{N^2}$ T(N) is $O(N^2)$, $O(N^3)$,... is $\Omega(N^2)$, $\Omega(N)$, ...

Worst case time complexity

89

10

function InsertionSort(A,N) T(N) for 1 <= j <= N-1 do C_0(N) - ~u ins=A[j] C_1(N-1) C_2(N-1) i=j-1 while (i>=0 and ins<A[i]) $^{C_3(N+)}$ A[i+1]=A[i]C_4(N) i=i-1 C_5(N) end while C_6(N-1) A[i+1]=insend for end function

$$\frac{\cancel{\xi}(i)}{5} = \frac{n(n+1)}{2} - 1$$

$$5^{n}S = 2S + S - 1$$

$$1 = \frac{1}{2}$$

$$1 = \frac{n(n+1)}{2} - 1$$

$$1 = \frac{n(n+1)}{2} - 1$$

Given an array in reverse order [3, 2, 1]

	pass	j	ins	i	(i >= 0 && ins	s < A[i])	A[i+1] = A[i]	i = i - 1	Array			
Jt	1	1	2	0	0>=0 && 2 <	3 (True)	A[1]=3	-1	[3, 3, 1			
	line 9: since i = -1 we update A[i+1] ==> A[0] = ins ==> A[0]== 2											
	2	2	1	1	1>=0 && 1<3	3 (True)	A[2]=3	0	[2, 3, 3			
1)	0 -1		=0 && 1 · =0 (Fals	< 2 (True) e)	A[1]=2	-1	[2, 2, 3]				
	ine 9: since i = -1 we update A[i+1] ==> A[0] = 1								[1, 2, 3]			
	3 j is not <= N -1 anymore so we exit the for loop and end the function execution											

Expand (c(n-1))(c(n)+c): $n^2c^2-c^2$

Steps

$$(c(n-1))(c(n)+c)$$

$$= (c(n-1))((n)c+c)$$

Apply the distributive law: a(b+c) = ab + ac

$$a = (c(n-1)), b = c(n), c = c$$

$$=(c(n-1))c(n)+(c(n-1))c$$

$$=(n)c(c(n-1))+c(c(n-1))$$

Simplify
$$(n)c(c(n-1))+c(c(n-1))$$
: $n^2c^2-c^2$

$$=n^2c^2-c^2$$

Factor $n^2c^2-c^2$: $c^2(n+1)(n-1)$

Steps

$$n^2c^2-c^2$$

Factor out common term c^2

$$=c^2(n^2-1)$$

Show Steps

Factor
$$n^2 - 1$$
: $(n+1)(n-1)$

$$=c^{2}(n+1)(n-1)$$

Show Steps

÷

Show Steps