Pearson Edexcel Level 3 GCE

Wednesday 17 June 2020

Afternoon (Time: 1 hour 30 minutes)

Paper Reference **9FM0/3D**

Further Mathematics

Advanced

Paper 3D: Decision Mathematics 1

You must have:

Mathematical Formulae and Statistical Tables (Green), calculator, Decision Mathematics Answer Book (enclosed)

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Write your answers for this paper in the Decision Mathematics answer book provided.
- **Fill in the boxes** at the top of the answer book with your name, centre number and candidate number.
- Do not return the question paper with the answer book.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the answer book provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. The table below shows the lengths, in km, of the roads in a network connecting seven towns, A, B, C, D, E, F and G.

	A	В	С	D	Е	F	G
A	_	24	_	22	35	_	_
В	24	_	25	27	_	_	_
С	_	25	_	33	31	36	26
D	22	27	33	_	_	42	_
Е	35	_	31			37	29
F	_	_	36	42	37	_	40
G	_	_	26	_	29	40	_

(a) By adding the arcs from vertex D along with their weights, complete the drawing of the network on Diagram 1 in the answer book.

(2)

(b) Use Kruskal's algorithm to find a minimum spanning tree for the network. You should list the arcs in the order that you consider them. In each case, state whether you are adding the arc to your minimum spanning tree.

(3)

(c) State the weight of the minimum spanning tree.

(1)

(Total for Question 1 is 6 marks)

	A	В	C	D	Е	F	G
A	_	24	_	22	35	_	_
В	24	_	25	27	_	_	_
С	_	25	_	33	31	36	26
D	22	27	33	_	_	42	_
Е	35	_	31	_	_	37	29
F	_	_	36	42	37	_	40
G	_	_	26	_	29	40	_

D'	1
Diagram	
Diagraiii	

(Total for Question 1 is 6 marks)	Question 1 continued
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
(Total for Question 1 is 6 marks)	
	(Total for Question 1 is 6 marks)

The network in Figure 1 shows the activities that need to be undertaken to complete a project. Each activity is represented by an arc and the duration, in hours, of the corresponding activity is shown in brackets.

(a) Explain why each of the dummy activities is required.

(2)

(b) Complete the table in the answer book to show the immediately preceding activities for each activity.

(2)

- (c) (i) Complete Diagram 1 in the answer book to show the early event times and the late event times.
 - (ii) State the minimum completion time for the project.
 - (iii) State the critical activities.

(6)

Each activity requires one worker. Each worker is able to do any of the activities. Once an activity is started it must be completed without interruption.

(d) On Grid 1 in the answer book, draw a resource histogram to show the number of workers required at each time when each activity begins at its earliest possible start time.

(3)

(e) Determine whether or not the project can be completed in the minimum possible time using fewer workers than the number indicated by the resource histogram in (d). You must justify your answer with reference to the resource histogram and the completed Diagram 1.

(2)

(Total for Question 2 is 15 marks)

2. (a)			

(b)

Activity	Immediately preceding activities
A	
В	
С	
D	

Activity	Immediately preceding activities
Е	
F	
G	
Н	

Activity	Immediately preceding activities
I	
J	
K	
L	

umber of workers	6 - 5 -		ļ						-				7-			T -	- 7				-7				- - -				T		
	4-	 	ļ									¦	-		 	-			-											ļ	-
	3 - 2 -	ļ	†	i		·			-; - -	- j-		i		;		†-	- i		<u> </u>	- -	-;			- i	- † - - ‡ -			 	†		1
	1 -	ļ	ļ	ļ					-			ļ 	-			ļ-			ļ.,				 - 	ļ.,				 	ļ 		-
	\bar{o}	 	1	+	+	+			+	+		 	+	1		+	1/		+	+	1	- 1	-	+	+	-	0.0	1	+	+	+
		-	1 /	2	3	4	5)	6	7	Č	8	9	1	U.	11	1.	2 J	13	14	1,) 1	0	1 /	18	1	9 2	20 .		22 2 time	
													~																	noui	
													G	ric	l 1																

Figure 2

Direct roads between five villages, A, B, C, D and E, are shown in Figure 2. The weight on each arc is the time, in minutes, it takes to travel along the corresponding road. The road from D to C is one-way as indicated by the arrow on the corresponding arc.

Floyd's algorithm is to be used to find the complete network of shortest times between the five villages.

(a) Set up initial time and route matrices.

(2)

The matrices after two iterations of Floyd's algorithm are shown below.

Time matrix

	A	В	C	D	E
A	_	8	4	7	18
В	8	_	3	15	10
C	4	3	_	11	6
D	7	15	1	_	1
E	18	10	6	1	_

Route matrix

	A	В	C	D	E
A	A	В	С	D	В
В	A	В	C	A	Е
C	Α	В	С	A	Е
D	A	A	C	D	Е
E	В	В	С	D	Е

(b) Perform the next two iterations of Floyd's algorithm that follow from the tables above. You should show the time and route matrices after each iteration.

(4)

The final time matrix after completion of Floyd's algorithm is shown below.

Final time matrix

	A	В	C	D	E
A	_	7	4	7	8
В	7	_	3	10	9
C	4	3	_	7	6
D	5	4	1	_	1
E	6	5	2	1	_

(c) (i)	Use the nearest neighbour algorithm, starting at A, to find a Hamiltonian cycle in the complete network of shortest times.
(ii)	Find the time taken for this cycle.
(iii)	Interpret the cycle in terms of the actual villages visited. (3)
	(Total for Question 3 is 9 marks)

3. (a)

Initial time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Initial route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

(b)

Time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

If you make an error there are spare copies of these matrices on Page 9.

	- 1
<	
×144×	
XXXXX	
ARE	
<u>\$</u>	
××	
$\times = \times$	
ш	
$\otimes _{\boxtimes } \otimes $	
5	
$\otimes \boxminus \otimes$	
$\times \bigcirc \times$	
$\times \odot \times$	
×ax.	
DO N	

$\times\!\!\times\!\!\times\!\!\times$	
ARE	
\times	
$\times\!\!\times\!\!\times\!\!\times$	
WRITE IN THIS	
$\times \times \times \times$	
$\otimes \boxplus \otimes$	
× 72××	
\times	
<u> </u>	
DON	

XXXXX	

XXXXXX	
d.	
\times	
Œ	
NO.	
00 00 00	
	- 11
XX 8 8 XX	- 10
\times	
FWRIT	
OT WRIT	
IOT WRIT	
NOT WRIT	
D NOT WRIT	
D NOT WRIT	
O NOT WRIT	

Question 3 continued

Question 3 continued

Question 3 continued

Only use these matrices if you have made an error in your working.

(a) Spare copy of initial time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Spare copy of initial route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

(b) Spare copy of time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Spare copy of route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Spare copy of time matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

Spare copy of route matrix

	A	В	C	D	E
A					
В					
C					
D					
E					

(Total for Question 3 is 9 marks)

Figure 3 shows the constraints of a linear programming problem in x and y, where R is the feasible region.

(a) Write down the inequalities that define R.

(2)

The objective is to maximise P, where P = 3x + y

(b) Obtain the exact value of P at each of the three vertices of R and hence find the optimal vertex, V.

(4)

The objective is changed to maximise Q, where Q = 3x + ay. Given that a is a constant and the optimal vertex is still V,

(c) find the range of possible values of a.

(4)

(Total for Question 4 is 10 marks)

	€		
	Ň		
	-		
	7	je.	
1.3	9	\sim	
	×		
	_		
		X	
. 2	m 2		
\sim			
v i	82	V	
	Zán.	ю.	
vi	w/	Z.	
43		23	
	38	~	
		\simeq	
\times'		20	
	ar.	$ \sim $	
XI	-	-	
$\langle \rangle$		$\langle \rangle$	
\wedge	Δ.	4	
		96	
	r.		
	C.	ⅎ	
2	Ç	g	
8	١	2	
8	١	3	
8	è	3	
	è	9	
2	Š	9 3 X	

Question 4 continued	

Question 4 continued

Question 4 continued	
(Tot	al for Question 4 is 10 marks)
(100	Zeroni i ao zo marino)

		23	17	19	X	24	8	18	10	21	
When the the following the following the second sec		_	cking al	lgorithr	n is ap	plied to	the nu	ımbers	in the l	ist it resul	lts in
Bin 1:	23	17	8								
Bin 2:	19	x	10								
Bin 3:	24	18									
Bin 4:	21										
(a) Explain	n why	13 < <i>x</i>	< 21								(3)
he left-han bass the lis											mplete
		23	19	17	24	X	18	10	21	8	
					_						
(b) Using to your an		ormations an inc			the sn	nallest	interva	l that m	ust con	tain x, giv	ving
					the sn	mallest	interva	l that m	ust con	tain x, giv	ving (2)
	nswer a	s an ine	equality sing bir	y. 1 packi	ng algo	orithm i					
your ar	nswer a first-fit results	s an ine	equality sing bir	y. 1 packi	ng algo	orithm i					
your an When the t numbers it	first-fit results	decreases in the	equality sing bir	y. 1 packi	ng algo	orithm i					
your and when the following the second with th	first-fit results 24 21	decreases in the	equality sing bir followi	y. 1 packi	ng algo	orithm i					
your and when the standard with the standard wit	first-fit results 24 21	decrease in the 23	equality sing bir followi 10	y. 1 packi	ng algo	orithm i					
your an When the the numbers it Bin 1: Bin 2: Bin 3:	first-fit results 24 21 18	decrease in the 23	equality sing bir followi 10 x	y. 1 packin ng allo	ng algo	orithm i	is appli	ed to th			
your an When the the numbers it Bin 1: Bin 2: Bin 3: Bin 4:	first-fit results 24 21 18 8 only o	decrease in the 23 19 17	sing bir following the second	y. n packin ng allo	ng algocation.	orithm i	is appli	ed to th	e nine		(2)
your an When the flumbers it Bin 1: Bin 2: Bin 3: Bin 4: Given that	first-fit results 24 21 18 8 only o	decrease in the 23 19 17	sing bir following the second	y. n packin ng allo	ng algocation.	orithm i	is appli n intego	ed to the	e nine	distinct	

5.	23	17	19	x	24	8	18	10	21

Question 5 continued	
(Total for Ques	stion 5 is 7 marks)

Figure 4

[The total weight of the network is 320 + x + y]

(a) State, with justification, whether the graph in Figure 4 is Eulerian, semi-Eulerian or neither. (2)

The weights on the arcs in Figure 4 represent distances. The weight on arc EF is x where 12 < x < 26 and the weight on arc DG is y where 0 < y < 10

An inspection route of minimum length that traverses each arc at least once is found. The inspection route starts and finishes at A and has a length of 409

It is also given that the length of the shortest route from F to G via A is 140

(b) Using appropriate algorithms, find the value of x and the value of y.

(9)

(Total for Question 6 is 11 marks)

Question 6 continued	
	(Total for Question 6 is 11 marks)

7. A maximisation linear programming problem in x, y and z is to be solved using the two-stage simplex method.

The partially completed initial tableau is shown below.

Basic variable	х	у	z	<i>S</i> ₁	S_2	S ₃	a_1	a_2	Value
S_{1}	1	2	3	1	0	0	0	0	45
a_1	3	2	0	0	-1	0	1	0	9
a_2	-1	0	4	0	0	-1	0	1	4
P	-2	-1	-3	0	0	0	0	0	0
A									

(a) Using the information in the above tableau, formulate the linear programming problem. State the objective and list the constraints as inequalities.

(4)

(b) Complete the bottom row of Table 1 in the answer book. You should make your method and working clear.

(2)

The following tableau is obtained after two iterations of the first stage of the two-stage simplex method.

Basic variable	х	у	z	<i>S</i> ₁	S_2	S ₃	$a_{_1}$	a_2	Value
S_{1}	0	$\frac{5}{6}$	0	1	$\frac{7}{12}$	$\frac{3}{4}$	$-\frac{7}{12}$	$-\frac{3}{4}$	147 4
X	1	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	3
Z.	0	$\frac{1}{6}$	1	0	$-\frac{1}{12}$	$-\frac{1}{4}$	<u>1</u>	$\frac{1}{4}$	$\frac{7}{4}$
P	0	$\frac{5}{6}$	0	0	$-\frac{11}{12}$	$-\frac{3}{4}$	11 12	$\frac{3}{4}$	<u>45</u> 4
A	0	0	0	0	0	0	1	1	0

(c) (i) Explain how the above tableau shows that a basic feasible solution has been found for the original linear programming problem.

(ii) Write down the basic feasible solution for the second stage.

(3)

(d) Taking the most negative number in the profit row to indicate the pivot column, perform one complete iteration of the second stage of the two-stage simplex method, to obtain a new tableau, *T*. Make your method clear by stating the row operations you use.

(5)

- (e) (i) Explain, using T, whether or not an optimal solution to the original linear programming problem has been found.
 - (ii) Write down the value of the objective function.
 - (iii) State the values of the basic variables.

(3)

(Total for Question 7 is 17 marks)

TOTAL FOR PAPER IS 75 MARKS

7.

Basic variable	х	у	z	<i>S</i> ₁	S_2	S ₃	a_1	a_2	Value
S_1	1	2	3	1	0	0	0	0	45
a_1	3	2	0	0	-1	0	1	0	9
a_2	-1	0	4	0	0	-1	0	1	4
P	-2	-1	-3	0	0	0	0	0	0
A									

Table 1

stion 7	continued								
	b.v.	х	у	z	S ₁	S_2	S ₃	Value	
	S_1	0	<u>5</u>	0	1	$\frac{7}{12}$	3 4	$\frac{147}{4}$	
	x	1	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	0	3	
	z	0	<u>1</u> 6	1	0	$-\frac{1}{12}$	$-\frac{1}{4}$	$\frac{7}{4}$	
	P	0	$\frac{5}{6}$	0	0	$-\frac{11}{12}$	$-\frac{3}{4}$	$\frac{45}{4}$	
	b.v.	х	у	z	S_1	S_2	S_3	Value	Row O
	P								
				S	Spare cop	\mathbf{y}			
	b.v.	х	у	z	<i>S</i> ₁	S_2	<i>S</i> ₃	Value	Row O
	P								

Question 7 continued
(Total for Question 7 is 17 marks)
(Total for Question / is 17 marks)
TOTAL FOR PAPER IS 75 MARKS