

ALGÈBRE 1 – RAPPELS ET COMPLÉMENTS D'ALGÈBRE LINÉAIRE

I-	ESPACES VECTORIELS	2
	1. STRUCTURE D'ESPACE VECTORIEL	2
	2. PRODUIT CARTÉSIEN D'ESPACES VECTORIELS <i>new</i>	2
	3. COMBINAISONS LINÉAIRES	2
	4. FAMILLES GÉNÉRATRICES	2
	5. Familles libres et liées	2
	6. Bases	3
	7. Exemples fondamentaux	3
II-	Sous-espaces vectoriels	3
	1. DÉFINITION ET PREMIÈRES PROPRIÉTÉS	3
	2. Sommes et sommes directes <i>new</i>	3
III-	APPLICATIONS LINÉAIRES	4
	1. Définition	4
	2. NOYAU ET IMAGE	5
	3. Opérations sur les applications linéaires	5
	4. Projecteurs et symétries	5
	5. Hyperplans et formes linéaires	
TX 7	Twóony production	0
IV-	THÉORIE DE LA DIMENSION	6
	1. ESPACES VECTORIELS DE DIMENSION FINIE	
	2. Sous-espaces vectoriels d'un espace de dimension finie	-
	3. RANG D'UNE FAMILLE DE VECTEURS	
	4. APPLICATIONS LINÉAIRES EN DIMENSION FINIE	7
V-	MATRICES	8
	1. Définitions	8
	2. Structure linéaire	8
	3. Produit matriciel	9
	4. CHANGEMENT DE BASES ET MATRICES SEMBLABLES	9
	5. Trace d'une matrice carrée et d'un endomorphisme new	
	6. DÉCOUPAGE PAR BLOCS ET STABILITÉ <i>new</i>	10
VI-	POLYNÔMES D'ENDOMORPHISMES ET DE MATRICES new	11
	1. Définition	11
	2. POLYNÔME ANNULATEUR.	11
VII-	DÉTERMINANT	12
	1. DÉTERMINANT D'UNE FAMILLE DE VECTEURS DANS UNE BASE	
	2. DÉTERMINANT D'UN ENDOMORPHISME	13
	3. DÉTERMINANT D'UNE MATRICE CARRÉE	

III.	-Pc	DLYNÔMES DE LAGRANGE new	14
	5.	DÉTERMINANT DE VANDERMONDE	14
	4.	DÉVELOPPEMENT SELON UNE RANGÉE	14

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

I- ESPACES VECTORIELS

1. STRUCTURE D'ESPACE VECTORIEL

DÉFINITION 1 Espace vectoriel

Un \mathbb{K} -espace vectoriel est un triplet $(E, +, \cdot)$ où E est un ensemble et

- + une loi de composition interne sur E c'est-à-dire une application de E × E dans E, telle que (E, +) soit un groupe abélien :
 - (i) la loi + est associative : $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z);
 - (ii) la loi + est commutative : $\forall (x, y) \in E^2$, x + y = y + x;
 - (iii) la loi + possède un élément neutre, noté 0_E : $\forall x \in E, x + 0_E = x$;
 - (iv) tout élément x de E possède un symétrique, noté -x: $x + (-x) = 0_E$.
- · une loi de composition externe à coefficients dans \mathbb{K} , c'est-à-dire une application $K \times E \longrightarrow E$ $(\lambda, x) \mapsto \lambda \cdot x$ vérifiant : $\forall (\lambda, \mu) \in K^2, \forall (x, y) \in E^2$,
 - (*i*) $1 \cdot x = x$;
 - (ii) $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$;
 - (iii) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$;
 - (iv) $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$.

Les éléments du K-espace vectoriel E sont appelés les *vecteurs* et ceux de K sont appelés les scalaires.

Proposition 1

Soit (E, +, .) un \mathbb{K} -espace vectoriel, alors :

- $\forall \lambda \in \mathbb{K}, \forall x \in E, \quad \lambda.x = 0_E \iff \lambda = 0 \text{ ou } x = 0_E$
- $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall x \in E, (\lambda \mu).x = \lambda.x \mu.x$
- $\forall \lambda \in \mathbb{K}, \forall (x, y) \in \mathbb{E}^2, \quad \lambda.(x y) = \lambda.x \lambda.y$

2. Produit cartésien d'espaces vectoriels new

DÉFINITION 2 Espace produit

Soient $E_1, ..., E_n$ des \mathbb{K} -espaces vectoriels.

On définit une structure d'espace vectoriel sur $E = E_1 \times \cdots \times E_p$ par :

- $0_E = (0_{E_1}, \dots, 0_{E_n})$
- $(x_1, \ldots, x_n) + \lambda \cdot (y_1, \ldots, y_n) = (x_1 + \lambda \cdot y_1, \ldots, x_n + \lambda \cdot y_n)$

Les opérations se font composante par composante.

Les propriétés requises découlent directement de celles des espaces E_i composante par composante.

3. COMBINAISONS LINÉAIRES

DÉFINITION 3 Combinaison linéaire

Soit $(x_i)_{1 \le i \le n}$ une famille de *n* vecteurs de E. On appelle *combinaison linéaire* de la famille $(x_i)_{1 \le i \le n}$ tout vecteur de E s'écrivant sous la forme $\sum_{i=1}^{n} \lambda_i x_i$ où $(\lambda_i)_{1 \le i \le n} \in \mathbb{K}^n$.

4. FAMILLES GÉNÉRATRICES

DÉFINITION 4 Famille génératrice d'un espace

Une famille $(x_i)_{1 \le i \le n}$ de vecteurs de E est dite *famille génératrice de* E si tout vecteur de E s'écrit comme combinaison linéaire de $(x_i)_{1 \le i \le n}$.

5. FAMILLES LIBRES ET LIÉES

DÉFINITION 5 Famille libre – famille liée

Une famille $(x_i)_{1 \le i \le n}$ de vecteurs de E est appelée *famille liée* si et seulement si un des vecteurs de la famille s'écrit comme combinaison linéaire des autres vecteurs de la famille.

Une famille $(x_i)_{1 \le i \le n}$ de vecteurs de E est appelée *famille libre* si et seulement elle n'est pas liée.

PROPOSITION 2 Caractérisation pratique de la liberté

Une famille $(x_i)_{1 \le i \le n}$ de vecteurs de E est libre ssi pour tout $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$,

$$\sum_{i=1}^{n} \lambda_i x_i = 0_{\mathcal{E}} \implies \forall i \in [1, n], \ \lambda_i = 0$$

REMARQUES

- Toute famille contenant le vecteur nul est liée
- Une famille de **deux** vecteurs (x_1, x_2) est libre $\iff x_1$ et x_2 ne sont pas proportionnels.
 - Attention, c'est faux pour une famille de trois vecteurs ou plus.

🔁 Exemple

La famille $(P_0, ..., P_n)$ de polynômes de $\mathbb{K}[X]$ est dite de degrés échelonnés si deg (P_0) < $\cdots < \deg(P_n)$. Toute famille finie de polynômes non nuls à coefficients dans \mathbb{K} et de degrés échelonnés est libre.

6. BASES

DÉFINITION 6 Base

Une famille $(e_i)_{1 \le i \le n}$ de vecteurs de E est appelée *base* de E si et seulement si c'est une famille libre et génératrice de E.

PROPOSITION 3 Coordonnées

Soit $\mathcal{B} = (e_i)_{1 \le i \le n}$ une base de E. Tout vecteur de E se décompose de façon unique comme combinaison linéaire de \mathscr{B} :

$$\forall x \in E, \exists !(x_1, \dots, x_n) \in \mathbb{K}^n, \quad x = \sum_{i=1}^n x_i e_i$$

Cet unique *n*-uplet $(x_1, ..., x_n)$ s'appelle coordonnées de x dans la base \mathcal{B} .

7. Exemples fondamentaux

EXEMPLES

- Le plan \mathscr{P} et l'espace \mathscr{E} des vecteurs de la géométrie;
- \mathbb{K}^n , base canonique : $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$,..., $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \end{bmatrix}$;
- Polynômes: $\mathbb{K}[X]$, $\mathbb{K}_n[X]$, base canonique: $(1, X, ..., X^n)$;
- Fonctions : $\mathscr{F}(D,\mathbb{K})$ et, plus généralement $\mathscr{F}(D,E)$ où E est un \mathbb{K} -ev;
- Suites: K^N, ensemble des suites à valeurs dans K (scalaires) et, plus généralement E^N, ensemble des suites à valeurs dans E (vectorielles) où E est un K-ev;

II- SOUS-ESPACES VECTORIELS

1. DÉFINITION ET PREMIÈRES PROPRIÉTÉS

DÉFINITION 7 Sous-espace vectoriel

Soit E un K-ev. Un *sous-espace vectoriel* de E est une partie de E vérifiant

- $0_F \in F$;
- F est stable par combinaison linéaire : $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda x + \mu y \in F$.

La stabilité fait que les lois + et · induites sur F par restriction sont des lois de F, interne et externe à coefficients dans K, et qu'elles vérifient les axiomes de la définition 1, F est donc lui aussi un modèle de K-ev.

PROPOSITION 4 Intersection de sev

Toute intersection de sev de E est un sev de E.

REMARQUE

La réunion de sev n'est en général pas un sev.

On peut montrer que $F_1 \cup F_2$ est un sev $\iff F_1 \subset F_2$ ou $F_2 \subset F_1$.

PROPOSITION 5 Sous-espace engendré par une famille

Soit $\mathcal{F} = (x_i)_{1 \le i \le n}$ une famille finie de vecteurs de E.

L'ensemble des combinaisons linéaires de F est un sous-espace vectoriel, le plus petit (au sens de l'inclusion) qui contienne tous les e_i .

On l'appelle sous-espace vectoriel engendré par la famille F et on le note $\operatorname{Vect}((x_i)_{1 \le i \le n}).$

2. SOMMES ET SOMMES DIRECTES new

DÉFINITION 8 Somme de sev

Soient $(F_i)_{1 \le i \le p}$ des sous-espaces vectoriels de E.

On appelle *somme des* F_i l'ensemble $F = F_1 + F_2 + \dots + F_p = \sum_{i=1}^p F_i$ défini par $F = \left\{ \sum_{i=1}^p x_i / (x_1, \dots, x_p) \in F_1 \times \dots \times F_p \right\}$

$$F = \left\{ \sum_{i=1}^{p} x_i / (x_1, \dots, x_p) \in F_1 \times \dots \times F_p \right\}$$

La somme des F_i est l'ensemble des vecteurs de E qui se décomposent selon les F_i .

DÉFINITION 9 Somme directe

On dit que *la somme est directe* si et seulement si la décomposition est unique;

c'est-à-dire
$$\forall (x_1,...,x_p), (y_1,...,y_p) \in \prod_{i=1}^p F_i, \quad \sum_{i=1}^p x_i = \sum_{i=1}^p y_i \Longrightarrow \forall i \in [1,p], \ x_i = y_i.$$
On note alors $F = F_1 \oplus F_2 \oplus \cdots \oplus F_p = \bigoplus_{i=1}^p F_i.$

PROPOSITION 6

La somme (et la somme directe) de sous-espaces vectoriels est associative et commutative.

Proposition 7

 $\sum_{i=1}^{p} F_i$ est un sous-espace vectoriel de E.

C'est le plus petit sous-espace vectoriel incluant tous les F_i .

THÉORÈME 1 Caractérisation des sommes directes

La somme
$$\sum_{i=1}^{p} F_i$$
 est directe si et seulement si
$$\forall (x_i)_{1 \leq i \leq p} \in \prod_{i=1}^{p} F_i \;, \quad \sum_{i=1}^{p} x_i = 0_E \implies \forall i \in [\![1,p]\!], \; x_i = 0_E$$

qui traduit l'unicité de la décomposition du vecteur nul.

Cela s'exprime également par : φ : $\begin{vmatrix} F_1 \times \cdots \times F_p & \to & \sum\limits_{i=1}^p F_i \\ (x_1, \dots, x_p) & \mapsto & \sum\limits_{i=1}^p x_i \end{vmatrix}$ est un isomorphisme.

REMARQUE

Cas particulier où p = 2: sous-espaces supplémentaires

PROPOSITION 8 Sous-espaces supplémentaires

Les propriétés suivantes sont équivalentes :

(*i*)
$$E = F_1 \oplus F_2$$

(ii)
$$\forall x \in E$$
, $\exists !(x_1, x_2) \in F_1 \times F_2$, $x = x_1 + x_2$

(iii)
$$F_1 \cap F_2 = \{0_E\}$$
 et $E = F_1 + F_2$

EXEMPLES

- Espace vectoriel des fonctions paires et des fonctions impaires dans $E = \mathbb{R}^{\mathbb{R}}$
- Espaces vectoriels des matrices symétriques et des antisymétriques dans $\mathcal{M}_n(\mathbb{K})$
- 2 droites distinctes en dimension 2
- Un plan et une droite non incluse dans le plan dans l'espace de dimension 3
- Une droite et un sev de E qui n'inclut pas la droite
- $\mathbb{K}[X] = P_0\mathbb{K}[X] \oplus \mathbb{K}_n[X]$ si P_0 est un polynôme de degré n+1.

III- APPLICATIONS LINÉAIRES

1. DÉFINITION

DÉFINITION 10 Application linéaire

Une application linéaire d'un espace vectoriel E dans un espace vectoriel F est une application vérifant

$$\forall x, y \in E, \forall \lambda, \mu \in \mathbb{K}, \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Une telle application conserve les combinaisons linéaires.

Un *endomorphisme* est une application linéaire de E dans lui-même (E = F).

Un isomorphisme est une application linéaire bijective.

Un *automorphisme* est un endomorphisme bijectif (auto = endo + iso).

Une *forme linéaire* est une application linéaire de E dans K, le corps de base.

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F,

 $\mathscr{L}(E)$ l'ensemble des endomorphismes de E,

GL(E) l'ensemble des automorphismes de E.

REMARQUE

Si f est linéaire, alors $f(0_E) = 0_F$, c'est automatique!

🔁 Exemples

L'application nulle : $x \in E \mapsto 0_F$ est linéaire.

L'application identité est un endomorphisme de E (et même un automorphisme).

La dérivation est un endomorphisme de $\mathbb{K}[X]$, de $\mathscr{C}^{\infty}(I,\mathbb{K})$.

L'application évaluation en un point: $f \mapsto f(a)$ est linéaire.

PROPOSITION 9 Détermination par l'image d'une base

Une application linéaire de E dans F est entièrement déterminée par l'image d'une base de E.

Si $\mathscr{B} = (e_1, \dots, e_n)$ est une base de E et $x = \sum_{i=1}^n x_i e_i$, alors $f(x) = \sum_{i=1}^n x_i f(e_i)$.

PROPOSITION 10 Caractérisation de l'in-, sur-, bi-jectivité par l'image d'une base Soient E et F des espaces vectoriels. On suppose que E est de dimension finie. Soit $u \in \mathcal{L}(E,F)$. On a alors:

- u est injective \iff l'image d'une base de E par u est une famille libre de F;
- u est surjective \iff l'image d'une base de E par u est génératrice de F;
- u est bijective \iff l'image d'une base de E par u est une base de F.

2. NOYAU ET IMAGE

PROPOSITION 11 Noyau et image sont des sev

Soit $f \in \mathcal{L}(E,F)$. $\ker f = \{x \in E, f(x) = 0_F\} = f^{-1}\{0_F\}$ est un sev de E et $\operatorname{Im} f$ est un sev de F.

PROPOSITION 12 Injectivité et noyau

 $f \in \mathcal{L}(E,F)$ est injective $\iff \ker f = \{0_E\}.$

PROPOSITION 13 *L'image d'une famille génératrice engendre l'image* Soit $(e_i)_{1 \le i \le n}$ une famille génératrice de E. Soit $u \in \mathcal{L}(E, F)$. La famille $(u(e_i)_{1 \le i \le n})$ est alors une famille génératrice de Im u.

Autrement dit : l'image est engendrée par l'image d'une base.

PROPOSITION 14 *Image isomorphe à un supplémentaire du noyau* Toute application linéaire induit un isomorphisme d'un supplémentaire de son noyau sur son image.

3. OPÉRATIONS SUR LES APPLICATIONS LINÉAIRES

THÉORÈME 2 Structure linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels. $\mathscr{L}(E,F)$ est un espace vectoriel sur \mathbb{K} . Toute combinaison linéaire d'applications linéaires est linéaire.

THÉORÈME 3 Composition

Soient E, F, G trois \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ Alors $g \circ f \in \mathcal{L}(E,G)$. Toute composée d'applications linéaires est linéaire.

La composition est bilinéaire : $f \circ (g + \lambda h) = f \circ g + \lambda (f \circ h)$ et $(g + \lambda h) \circ f = g \circ f + \lambda (h \circ f)$

PROPOSITION 15 Isomorphisme réciproque

Si $f: E \to F$ est un isomorphisme alors $f^{-1}: F \to E$ est également un isomorphisme (f^{-1} est linéaire).

Cas où E = F: (GL(E), \circ) est un groupe (non abélien en général).

4. Projecteurs et symétries

DÉFINITION 11 Projecteurs et symétries

Soient F_1 et F_2 deux sev supplémentaires de E: $E = F_1 \oplus F_2$.

La projection sur F_1 parallèlement à F_2 est l'application p_1 : $\begin{vmatrix} E = F_1 \oplus F_2 & \to & E \\ x = x_1 + x_2 & \mapsto & x_1 \end{vmatrix}$

La symétrie par rapport à F_1 parallèlement à F_2 est l'application s_1 : $\begin{vmatrix} E \rightarrow E \\ x \mapsto x_1 - x_2 \end{vmatrix}$

\Rightarrow

PROPOSITION 16 Caractérisation algébrique

• p est un projecteur de $E \iff p \in \mathcal{L}(E)$ et $p \circ p = p$. Alors $\text{Im } p = \text{ker}(p - \text{Id}_E)$

 $E = \operatorname{Im} p \oplus \ker p , \qquad x = p(x) + (x - p(x))$

p est la projection sur Im p parallèlement à ker p

- s est une symétrie de E $\iff s \in \mathcal{L}(E)$ et $s \circ s = Id_E$. Alors $E = \ker(s - Id_E) \oplus \ker(s + Id_E)$, $x = \frac{1}{2}(x + s(x)) + \frac{1}{2}(x - s(x))$ s est la symétrie par rapport à $\ker(s - Id_E)$ parallèlement à $\ker(s + Id_E)$
- $p_1^2 = p_1$, $p_1 + p_2 = Id_E$, $p_1 \circ p_2 = p_2 \circ p_1 = 0$ $s_1^2 = Id_E$, $s_1 = p_1 - p_2$, $s_2(x) = -s_1(x)$ $s_1 + Id_E = 2p_1$

PROPOSITION 17 Famille de projecteurs associés à une somme directe

Soit $E = \bigoplus_{i=1}^{p} E_i$. On note p_i la projection sur E_i parallèlement à $\sum_{j \neq i} E_j$.

 $\forall (i,j) \in [1,p]^2$, $p_i \circ p_j = \delta_{ij} p_i$ et $\sum_{i=1}^p p_i = \mathrm{Id}_{\mathrm{E}}$

5. HYPERPLANS ET FORMES LINÉAIRES

DÉFINITION 12 Hyperplan

On appelle *hyperplan* le noyau d'une forme linéaire non nulle.

IV- THÉORIE DE LA DIMENSION

1. ESPACES VECTORIELS DE DIMENSION FINIE

DÉFINITION 13 Espace de dimension finie

L'espace vectoriel E est *de dimension finie* s'il admet une famille génératrice finie.

THÉORÈME 4 de la base incomplète

Soit E un espace de dimension finie.

- ullet Version faible : soit ${\mathscr L}$ une famille libre de E. On peut compléter ${\mathscr L}$ pour obtenir une base de E.
- Version forte : soit $\mathscr L$ une famille libre et $\mathscr G$ une famille génératrice de E. On peut compléter \mathcal{L} avec des vecteurs de \mathcal{G} pour obtenir une base de E.

THÉORÈME 5 de la dimension

Soit E de dimension finie. Alors toutes les bases de E ont le même cardinal.

Ce cardinal commun à toutes les bases s'appelle la dimension de E.

THÉORÈME 6 Cardinal des familles libres, génératrices

Soit E une espace de dimension finie n.

- Toute famille libre a au plus *n* vecteurs.
- Toute famille génératrice de E a au moins *n* vecteurs.

THÉORÈME 7 Caractérisation des bases en dimension finie

Soit E une espace de dimension finie n.

- \mathscr{F} est une base de $E \iff \mathscr{F}$ est libre et $Card\mathscr{F} = n$.
- \mathscr{F} est une base de E $\iff \mathscr{F}$ est génératrice de E et Card $\mathscr{F} = n$.

PROPOSITION 18 Base et dimension d'un produit en dimension finie Soient $E_1, ..., E_n$ des \mathbb{K} -espaces vectoriels de dimensions finies n_i munis de bases $\mathscr{B}_1,\ldots,\mathscr{B}_p$. Soit $\mathbf{E}=\prod_{i=1}^p\mathbf{E}_i$ leur produit. • La famille $\left((e_1^1,0,\ldots,0),(e_{n_1}^1,0,\ldots,0),\ldots,(0,\ldots,0,e_1^p),(0,\ldots,0,e_{n_p}^p)\right)$ est une base de \mathbf{E}

2. Sous-espaces vectoriels d'un espace de dimension finie

THÉORÈME 8

Soit E un espace de dimension finie et F un sev de E.

Alors F est de dimension finie et dim F ≤ dim E

De plus $F = E \iff \dim F = \dim E$.

PROPOSITION 19 Existence d'un supplémentaire

Soit E un espace de dimension finie.

Tout sev de E admet un supplémentaire.

Si $E = F_1 \oplus F_2$, alors dim $E = \dim F_1 + \dim F_2$.

PROPOSITION 20 Formule de GRASSMANN

Soit E un espace vectoriel et F₁, F₂ deux sev de E de dimension finie.

Alors $F_1 + F_2$ est de dimension finie et

 $\dim(F_1 + F_2) = \dim F_1 + \dim F_2 - \dim(F_1 \cap F_2)$

COROLLAIRE 1 Dimension d'une somme

Soit E un espace de dimension finie et $F_1, ..., F_n$ des sev de E.

$$\dim \sum_{i=1}^{p} F_i \leq \sum_{i=1}^{p'} \dim F_i$$

PROPOSITION 21 Base adaptée à une décomposition en somme directe

Soient $(F_i)_{1 \le i \le n}$ des sous espaces vectoriels de E; on suppose que chaque F_i est muni d'une base \mathcal{B}_i .

 $E = \bigoplus_{i=1}^{p} F_i \iff$ la réunion de tous les vecteurs des bases $(\mathscr{B}_i)_{1 \le i \le p}$ forme une base de

Une telle base de E est dite adaptée à la somme directe.

Décomposition en somme directe obtenue par partition d'une base.

Si $\mathscr{B} = (e_1, \dots, e_n)$ est une base de E et $p \in [1, n]$, les sous-espaces $\text{Vect}(e_1, \dots, e_p)$ et $Vect(e_{n+1},...,e_n)$ sont supplémentaires dans E.

Plus généralement, une partition de B fournit une décomposition de E en somme directe de sev.

PROPOSITION 22 Dimension d'une somme directe

$$\dim \bigoplus_{i=1}^{p} F_i = \sum_{i=1}^{p} \dim F_i$$

PROPOSITION 23 Caractérisation d'une somme directe par la dimension

Les sous-espaces F_1, \dots, F_n sont en somme directe si et seulement si

$$\dim \sum_{i=1}^{p} F_i = \sum_{i=1}^{p} \dim F_i$$

3. RANG D'UNE FAMILLE DE VECTEURS

DÉFINITION 14 Rang d'une famille de vecteurs

Soit E un espace vectoriel et $\mathscr{F} = (x_1, \dots x_p)$ une famille (finie) de vecteurs de E. Le rang de F est la dimension du sous-espace (de dim finie) engendré par F $rg\mathcal{F} = dim Vect(\mathcal{F})$

PROPOSITION 24 Liberté, génération et rang

Soit E un espace de dimension finie n et $\mathcal{F} = (x_1, \dots x_n)$ une famille (finie) de vecteurs de E.

- $\operatorname{rg} \mathscr{F} \leq \min(n, p)$
- rg 𝒯 = dim E ← 𝒯 est génératrice de E
- $rg\mathscr{F} = Card\mathscr{F} \iff \mathscr{F} \text{ est libre}$

4. APPLICATIONS LINÉAIRES EN DIMENSION FINIE

PROPOSITION 25

Soient E et F deux espaces de dimension finie.

il existe $u \in \mathcal{L}(E, F)$ injective \iff dim $E \leq$ dim Fil existe $u \in \mathcal{L}(E,F)$ surjective \iff dim $E \ge \dim F$ il existe $u \in \mathcal{L}(E, F)$ bijective \iff dim $E = \dim F$

THÉORÈME 9 Théorème du rang

Soit E un espace vectoriel de dimension finie et F un espace vectoriel quelconque. Soit $u \in \mathcal{L}(E, F)$. Alors Im u et ker u sont de dimension finie et $\dim E = \dim \ker u + \dim \operatorname{Im} u$

REMARQUE

 \bigcirc Cela ne signifie pas que ker u et Im u sont supplémentaires (cf exercices).

DÉFINITION 15 Rang d'une al

Soient E et F deux espaces vectoriel, E étant de dimension finie, et $f \in \mathcal{L}(E, F)$. Le *rang* de *f* est la dimension (finie) de son image

$$\operatorname{rg} f = \dim \operatorname{Im} f$$

PROPOSITION 26 Injectivité, surjectivité, bijectivité et rang

Soient E et F deux espaces de dimension finie, et $f \in \mathcal{L}(E,F)$.

f est injective \iff rg f = dim E f est surjective \iff rg $f = \dim F$ f est bijective \iff rg $f = \dim E = \dim F$

PROPOSITION 27 Automorphismes en dim finie

Soit $f \in \mathcal{L}(E)$ où E est un espace de dimension finie. Les propositions suivantes sont équivalentes :

- (i) f est inversible (= bijectif = automorphisme)
- (ii) $\operatorname{rg} f = n$
- (iii) f est injectif
- (iv) f est surjectif
- (v) f est inversible à droite
- (vi) f est inversible à gauche

REMARQUE

Ce résultat est faux en dimension infinie; considérer par exemple les endomorphismes de $\mathbb{R}[X]$ définis par $P \mapsto P'$ et $P \mapsto XP$.

PROPOSITION 28 Rang et composition

Soient E et F des espaces vectoriels de dimension finie. Soit $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Alors $rg(g \circ f) \leq max(rg f, rg g)$.

De plus si f est un isomorphisme, $rg(g \circ f) = rg g$ et si g est un isomorphisme, $rg(g \circ f) = rg g$ $\operatorname{rg} f$.

PROPOSITION 29 Hyperplans en dimension finie

Si E est de dimension finie, H est un hyperplan de E \iff dimH = dimE - 1.

THÉORÈME 10 Dimension de \mathcal{L} (E,F)

Si E et F sont des espaces de dimension finie, alors $\mathcal{L}(E,F)$ est de dimension finie et $\dim \mathcal{L}(E, F) = \dim E \times \dim F$

V- MATRICES

Dans cette section, tous les espaces vectoriels sont supposés de dimension finie.

1. DÉFINITIONS

DÉFINITION 16 *Matrice* (n, p)

Une *matrice de type* (n, p) est un tableau à n lignes et p colonnes

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$$

On note $\mathcal{M}_{np}(\mathbb{K})$ l'ensemble des matrices de type (n,p) et $\mathcal{M}_{n}(\mathbb{K})$ l'ensemble des matrices *carrées* de taille *n*.

DÉFINITION 17 Matrice d'une famille de vecteurs

Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E_n . Soit $\mathscr{F} = (x_1, \dots, x_n)$ une famille de vecteurs de E. La matrice de \mathcal{F} dans la base \mathcal{B} est la matrice de type (n,p) dont les colonnes sont constituées des coordonnées des vecteurs x_i de \mathscr{F} dans la base \mathscr{B} .

$$\mathcal{M}_{\mathcal{B}}(\mathcal{F}) = \begin{pmatrix} x_1 & x_2 & \dots & x_p \\ \downarrow & \downarrow & \dots & \downarrow \\ a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \xrightarrow{\boldsymbol{e}_1} \boldsymbol{e}_1$$

DÉFINITION 18 *Matrice d'une application linéaire*

Soit $\mathscr{B} = (e_1, \dots, e_p)$ une base de E_p et $\mathscr{C} = (e'_1, \dots, e'_p)$ une base de F_n . Soit $f \in \mathcal{L}(E_p, F_n)$.

La matrice de f dans les bases \mathcal{B} et \mathcal{C} est la matrice (de type (n,p)) de la famille $f(\mathcal{B}) = (f(e_1), \dots, f(e_p))$ dans la base \mathscr{C} .

$$\mathcal{M}_{\mathscr{CB}}(f) = \begin{pmatrix} f(e_1) & f(e_2) & \dots & f(e_p) \\ \downarrow & \downarrow & \dots & \downarrow \\ a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \xrightarrow{} e'_n$$

PROPOSITION 30

Les bases \mathscr{B} de E_p et \mathscr{C} de F_n étant fixées, l'application $\mathscr{L}(E_p,F_n) \to \mathscr{M}_{np}(\mathbb{K})$ est bijective.

DÉFINITION 19 Application linéaire canoniquement associée à une matrice

Soit $A \in \mathcal{M}_{np}(\mathbb{K})$. L'application linéaire canoniquement associée à A est l'application linéaire $f_A: \mathbb{K}^p \to \mathbb{K}^n$ dont la matrice dans les bases canoniques est A.

$$\forall X \in \mathbb{K}^p$$
, $f_A(X) = AX$

REMARQUE

Dans ce cas précis, les vecteurs de Kⁿ étant confondus avec leurs coordonnées dans la base canonique, les colonnes de A sont les vecteurs Ae_i où les e_i sont les vecteurs de la base canonique de \mathbb{K}^p .

En notant C_j les colonnes de A et $X = \sum_{i=1}^{p} x_j e_j$, $AX = \sum_{i=1}^{p} x_j C_j$.

PROPOSITION 31 Matrice et coordonnées

Soit $f \in \mathcal{L}(E_p, F_n)$ et A sa matrice dans les bases \mathcal{B} et \mathscr{C} : $A = \mathcal{M}_{\mathscr{CB}}(f)$. Soient $x \in E_n$, X ses coordonnées dans \mathscr{B} et $y \in F_n$, Y ses coordonnées dans \mathscr{C} .

$$y = f(x) \iff Y = AX$$

DÉFINITION 20 Rang d'une matrice

Soit $A \in \mathcal{M}_{nn}(\mathbb{K})$.

Le *rang* de A noté rg A est le rang de ses colonnes comme vecteurs de \mathbb{K}^n .

Si $A = \mathcal{M}_{\mathcal{B}}(\mathcal{F})$, alors $rgA = rg\mathcal{F}$.

Si A = $\mathcal{M}_{\mathscr{C}\mathscr{B}}(f)$, alors rgA = rg f.

2. STRUCTURE LINÉAIRE

DÉFINITION 21 Somme et produit externe

Soient $A = (a_{ij})$ et $B = (b_{ij}) \in \mathcal{M}_{nn}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. La matrice $C = A + \lambda B$ est la matrice de terme général

$$c_{ij} = a_{ij} + \lambda b_{ij}$$

DÉFINITION 22 Matrices élémentaires

Les matrices élémentaires de $\mathcal{M}_{np}(\mathbb{K})$ sont les matrices E_{ij} définies par : le terme (i,j)de E_{ij} vaut 1, tous les autres sont nuls.

THÉORÈME 11 Structure linéaire

Ces opérations munissent $\mathcal{M}_{np}(\mathbb{K})$ d'une structure d'espace vectoriel sur \mathbb{K} . Cet espace est de dimension finie $n \times p$ et les matrices élémentaires en forment une base appelée base canonique de $\mathcal{M}_{nn}(\mathbb{K})$.

PROPOSITION 32

Soit $\mathscr{B} = (e_1, ..., e_p)$ une base de E_p et $\mathscr{C} = (e'_1, ..., e'_n)$ une base de F_n . L'application $\mathscr{L}(E_p,F_n) \to \mathscr{M}_{np}(\mathbb{K})$ est un isomorphisme. $\mapsto \mathcal{M}_{\mathscr{C}\mathscr{B}}(f)$

3. PRODUIT MATRICIEL

DÉFINITION 23 Produit matriciel

Soient $A \in \mathcal{M}_{np}(\mathbb{K})$ et $B \in \mathcal{M}_{nq}(\mathbb{K})$. Le produit matriciel AB est la matrice $C \in \mathcal{M}_{nq}(\mathbb{K})$ dont le terme général est

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

PROPOSITION 33 Produit de matrices élémentaires

$$E_{ij} \cdot E_{kl} = \delta_{jk} E_{il}$$

PROPOSITION 34 Produit matriciel et composition

Si
$$\mathcal{M}_{\mathscr{C}\mathscr{B}}(f) = A$$
 et $\mathcal{M}_{\mathscr{D}\mathscr{C}}(g) = B$ alors $\mathcal{M}_{\mathscr{D}\mathscr{B}}(g \circ f) = BA$.
 $\mathcal{M}_{\mathscr{D}\mathscr{B}}(g \circ f) = \mathcal{M}_{\mathscr{D}\mathscr{C}}(g) \cdot \mathcal{M}_{\mathscr{C}\mathscr{B}}(f)$

PROPOSITION 35 Inversibilité

Soient E et F deux espaces de même dimension finie *n*. Soit $f \in \mathcal{L}(E,F)$ et $A = \mathcal{M}_{\mathscr{C}\mathscr{B}}(f) \ (\in \mathcal{M}_n(\mathbb{K})).$ f est un isomorphisme \iff A est inversible. Dans ce cas, $\mathcal{M}_{\mathscr{B}\mathscr{C}}(f^{-1}) = (\mathcal{M}_{\mathscr{C}\mathscr{B}}(f))^{-1}$

PROPOSITION 36 Inversibilité 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les propositions suivantes sont équivalentes :

- (i) A est inversible
- (ii) rgA = n
- (iii) A est inversible à droite
- (iv) A est inversible à gauche

EN PRATIQUE

Pour calculer A⁻¹, on peut utiliser la méthode du pivot ou mieux, inverser le système linéaire Y = PX.

4. CHANGEMENT DE BASES ET MATRICES SEMBLABLES

PROPOSITION 37 *Matrice de changement de base*

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E_n .

La famille $\mathscr{F} = (x_1, ..., x_n)$ est une base de $E \iff \mathscr{M}_{\mathscr{B}}(\mathscr{F})$ est inversible. Dans ce cas, $\mathcal{M}_{\mathcal{F}}(\mathcal{B}) = (\mathcal{M}_{\mathcal{B}}(\mathcal{F}))^{-1}$

PROPOSITION 38 Changement de base et coordonnées

Soient E de dim finie, \mathscr{B} et \mathscr{B}' deux bases de E et P la matrice de passage de \mathscr{B} à \mathscr{B}' . Soit $x \in E$, X et X' ses coordonnées dans \mathscr{B} et \mathscr{B}' respectivement. Alors

$$X = PX'$$

REMARQUE

Cette formule exprime les « anciennes » coordonnées en fonction des « nouvelles ». Si on veut les nouvelles en fonction des anciennes, il faudra inverser la matrice P.

PROPOSITION 39 Changement de base et matrices

Soient E et F de dim finie. \mathcal{B} et \mathcal{B}' deux bases de E. \mathcal{C} et \mathcal{C}' deux bases de F. P la matrice de passage de \mathscr{B} à \mathscr{B}' et Q la matrice de passage de \mathscr{C} à \mathscr{B}' . Soit $f \in \mathcal{L}(E,F)$, $A = \mathcal{M}_{\mathcal{C}_{\mathcal{B}}}(f)$ et $B = \mathcal{M}_{\mathcal{L}'\mathcal{B}'}(f)$. Alors

$$(\mathbf{L},\mathbf{I}),\mathbf{H} = \mathcal{H}(\mathbf{F},\mathbf{g},\mathbf{f}) \times \mathbf{D} = \mathcal{H}(\mathbf{F},\mathbf{g},\mathbf{f}).$$

$$B = Q^{-1}AP$$

Dans le cas d'un endomorphisme : E = F, $\mathscr{B} = \mathscr{C}$ et $\mathscr{B}' = \mathscr{C}'$, la formule devient

$$B = P^{-1}AP$$

DÉFINITION 24 Matrices semblables

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$. On dira que A et B sont *semblables* si et seulement s'il existe une matrice $P \in GL_n(\mathbb{K})$ telle que $A = P^{-1}BP$.

PROPOSITION 40 Propriétés

- L'application $A \mapsto P^{-1}AP$ définit un automorphisme de $\mathcal{M}_n(\mathbb{K})$.
- La relation de similitude est une relation d'équivalence.
- Deux matrices semblables représentent le même endomorphisme dans des bases différentes.
- Deux matrices semblables ont même rang (la réciproque est fausse).
- 5. Trace d'une matrice carrée et d'un endomorphisme new

DÉFINITION 25 Trace d'une matrice carrée

La *trace* d'une matrice carrée est la somme des termes de sa diagonale : $tr(A) = \sum_{i=1}^{n} a_{ii}$

PROPOSITION 41 Propriétés de la trace d'une matrice carrée

- La trace définit une forme linéaire non nulle sur $\mathcal{M}_n(\mathbb{K})$
- $\forall A \in \mathcal{M}_n(\mathbb{K})_n$, $\operatorname{tr}(A^{\top}) = \operatorname{tr} A$
- $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- Deux matrices semblables ont même trace (la réciproque est fausse)

REMARQUE

Cela ne signifie pas qu'on peut ré-écrire les facteurs d'un produit dans n'importe quel ordre. Avant d'appliquer cette formule, on s'astreindra à mettre des parenthèses pour n'avoir plus que deux facteurs : tr(ABC) = tr(A(BC)) = tr(BCA) mais $tr(ABC) \neq tr(BAC)$ en général.

DÉFINITION 26 Trace d'un endomorphisme

Soit $u \in \mathcal{L}$ (E). Soit \mathcal{B} une base de E. On note A la matrice de u dans la base \mathcal{B} . La trace de A ne dépend pas de la base de E choisie. On note alors tr $u = \operatorname{tr} A$.

PROPOSITION 42 Propriétés de la trace d'un endomorphisme

La trace est une forme linéaire sur $\mathcal{L}(E)$ qui vérifie $\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$.

6. DÉCOUPAGE PAR BLOCS ET STABILITÉ new

DÉFINITION 27 Matrice-blocs

Soit $M \in \mathcal{M}_{n_1+p_1,n_2+p_2}(\mathbb{K})$. On définit la matrice M à l'aide des 4 blocs $A \in \mathcal{M}_{n_1n_2}(\mathbb{K})$,

$$B \in \mathcal{M}_{n_1 p_2}(\mathbb{K}), C \in \mathcal{M}_{p_1 n_2}(\mathbb{K}) \text{ et } D \in \mathcal{M}_{p_1 p_2}(\mathbb{K}) \text{ de telle sorte que } M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

CAS PARTICULIERS:

- Une matrice est diagonale par blocs si les blocs diagonaux sont carrés et si les blocs situées en dehors de la diagonale sont tous nuls.
- Une matrice est triangulaire supérieure (respectivement inférieure) par blocs si et les blocs diagonaux sont carrés et si tous les blocs strictement en-dessous (resp audessus) de la diagonale sont nuls.

PROPOSITION 43 Calcul par blocs

- Les formules de calculs (somme, produit par un scalaire, produit matriciel) sur les matrices par blocs sont, *à condition que la taille des blocs soit compatible*, les mêmes que pour les matrices définies coefficients par coefficients.
- Transposition : $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{\top} = \begin{pmatrix} A^{\top} & C^{\top} \\ B^{\top} & D^{\top} \end{pmatrix}$

DÉFINITION 28 Sev stable par un endomorphisme

Un sous-espace vectoriel F de E est dit *stable* par un endomorphisme u de E si $u(F) \subset F$.

DÉFINITION 29 Endomorphisme induit

Soit F un sev de E stable par un endomorphisme u.

La restriction $u_{|F}$ de u à F définie par : $\forall x \in F$ $u_{|F}(x) = u(x)$ est un endomorphisme de F, appelé *endomorphisme induit* par u sur F.

PROPOSITION 44 Stabilité et matrice triangulaire par blocs

Soient E un espace vectoriel de dimension finie et F un sev stable par u.

Dans une base B adaptée à F, c'est-à-dire dont les premiers vecteurs forment une base de F, la matrice de u est triangulaire par blocs $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où A est la matrice (carrée) de u_1

dans la base de F formée par les premiers vecteurs de B.

Réciproquement, si \mathcal{B} est une base adaptée à F dans laquelle la matrice de u est de la forme précédente, alors F est stable par u.

REMARQUE

GÉNÉRALISATION: Soient F_1, F_2, \dots, F_n des sous-espaces vectoriels de E stables par utels que $F_1 \subset F_2 \subset ... \subset F_n = E$. On peut construire une base de E dans laquelle la matrice de *u* est triangulaire supérieure par blocs et réciproquement...

DÉFINITION 30 Trigonalisable

En particulier, si $p = \dim E$ et $\forall i \in [1, p]$, $\dim F_i = i$, il existe une base de E dans laquelle la matrice de *u* est triangulaire supérieure.

On dit alors que l'endomorphisme *u* est *trigonalisable*.

PROPOSITION 45 Stabilité et matrice triangulaire

Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.

On pose $F_i = \text{Vect}(e_1, e_2, \dots, e_i)$ pour tout $i \in [1, n]$.

Soit $u \in \mathcal{L}(E)$.

 $Mat(u,\mathcal{B})$ est triangulaire supérieure $\iff \forall i \in [1,n], F_i$ est stable par u

a) Matrices diagonales par blocs

PROPOSITION 46 Stabilité et matrices diagonales par blocs

Soit E un espace vectoriel de dimension finie tel que $E = F_1 \oplus F_2$ où F_1 et F_2 sont des sous-espaces vectoriels stables par u.

Dans une base \mathcal{B} adaptée à cette somme directe, la matrice de u est une matrice diagonale par blocs.

Réciproquement, si ${\mathcal B}$ est une base adaptée à la somme directe et dans laquelle la matrice de u est diagonale par blocs, alors F_i est stable par u pour tout $i \in \{1,2\}$.

REMARQUE

GÉNÉRALISATION: Soient F_1, F_2, \dots, F_p des sous-espaces vectoriels de E stables par utels que $E = \bigoplus_{1 \le i \le p} F_i$. On peut construire une base de E dans laquelle la matrice de u est diagonale par blocs et réciproquement...

VI- POLYNÔMES D'ENDOMORPHISMES ET DE MATRICES new

1. DÉFINITION

DÉFINITION 31 Polynômes d'endomorphismes et de matrices

Soient
$$P = \sum_{k=0}^{p} a_k . X^k \in \mathbb{K}[X]$$
 et $u \in \mathcal{L}(E)$.

On note P(u) l'endomorphisme de E défini par $P(u) = \sum_{k=0}^{p} a_k \cdot u^k$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. on note P(A) la matrice de $\mathcal{M}_n(\mathbb{K})$ définie par P(A) = $\sum_{k=0}^p a_k . A^k$.

PROPOSITION 47 Propriétés en vrac

- Soient P et Q des polynômes de $\mathbb{K}[X]$, λ un scalaire, $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$. $(P+Q)(u) = P(u) + Q(u), \quad (PQ)(u) = P(u) \circ Q(u) \quad \text{et} \quad (\lambda P)(u) = \lambda P(u).$ $(P + Q)(A) = P(A) + Q(A), (PQ)(A) = P(A) \circ Q(A)$ et $(\lambda P)(A) = \lambda P(A).$
- Soient $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$. Les applications $P \mapsto P(u)$ et $P \mapsto P(A)$ sont des morphismes d'algèbre c'est-à-dire linéaires et respectant les produits.
- Les endomorphismes P(u) et Q(u) commutent ainsi que les matrices P(A) et Q(A).
- $\ker P(u)$ et $\operatorname{Im} P(u)$ sont stables par u.
- Si A et B sont deux matrices semblables, P(A) et P(B) sont semblables pour tout polvnôme P.

2. POLYNÔME ANNULATEUR

DÉFINITION 32 Polynôme annulateur

Soit $u \in \mathcal{L}(E)$. Un polynôme P tel que P(u) = 0 est dit *polynôme annulateur de u* Soit $A \in \mathcal{M}_n(\mathbb{K})$. Un polynôme P tel que P(A) = 0 est dit *polynôme annulateur de* A.

On dira qu'on a qu'un annulateur est *minimal* s'il est de degré minimal.

EXEMPLE

Recherche de polynôme annulateur minimal lorsque :

(i)
$$A = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- (iii) u est un projecteur
- (iv) u est une symétrie

Application au calcul de l'inverse et des puissances.

- A (*u*) et inversible \iff il admet un annulateur $P = \sum_{k=0}^{p} a_k X^k$ tel que $P(0) \neq 0$ ($a_0 \neq 0$). On obtient alors $A^{-1} = -\frac{1}{a_0} \sum_{k=1}^{p} a_k A^{k-1}$ est un polynôme en A de degré p-1.
- Si l'on connaît un annulateur scindé $P = \prod_{i=1}^p (X \alpha_i)^{m_i}$, on écrit la division euclidienne de X^n par $P : X^n = PQ_n + R_n$ (*) et on calcule $R_n = \sum_{k=0}^{n-1} a_k X^k$ grâce aux substitutions $X := \alpha_i$ dans (*) (et ses dérivées successives en cas de racine multiple) en résolvant le système linéaire en les a_k obtenu.

On effectue enfin la substitution X := A pour obtenir $A^n = R_n(A) = \sum_{k=0}^{n-1} a_k A^k$.

VII- DÉTERMINANT

1. DÉTERMINANT D'UNE FAMILLE DE VECTEURS DANS UNE BASE

THÉORÈME 12 Déterminant d'une famille dans une base (dem HP)

Soit E de dimension n muni d'une base \mathcal{B} . Il existe une unique application $\varphi : \mathbb{E}^n \to \mathbb{K}$ vérifiant :

- φ est *n*-linéaire (linéaire en chacune de ses variables);
- φ est alternée : si deux vecteurs de la famille sont égaux, le déterminant est nul ;
- $\varphi(\mathcal{B}) = 1$

Cette application est appelée *déterminant dans la base* \mathcal{B} et notée $\det_{\mathcal{B}}$. De plus toute forme n-linéaire alternée sur E est proportionnelle à $\det_{\mathcal{B}}$.

THÉORÈME 13 Caractérisation des bases

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

La famille $(x_1,...,x_n)$ est une base de $E \iff \det_{\mathscr{B}}(x_1,...,x_n) \neq 0$

PROPOSITION 48 Déterminant et changement de base

| Soit \mathscr{B} et \mathscr{B}' deux bases de E. On a : $\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \cdot \det_{\mathscr{B}}$

PROPOSITION 49 Règles de calcul

- Si on intervertit deux vecteurs de la famille, son déterminant est changé en son opposé.
- S'il y a répétition dans la famille, son déterminant est nul
- On peut factoriser un scalaire dans chacun des facteurs :

 $\det_{\mathscr{B}}(\lambda_1 x_1, \dots, \lambda_n x_n) = \lambda_1 \dots \lambda_n \det_{\mathscr{B}}(x_1, \dots, x_n)$ En particulier $\det_{\mathscr{B}}(\lambda x_1, \dots, \lambda x_n) = \lambda^n \det_{\mathscr{B}}(x_1, \dots, x_n)$

- Le déterminant est inchangé si on ajoute à l'un des vecteurs de la famille une combinaison linéaire des **autres**.
- Si la famille est liée, son déterminant est nul.

2. DÉTERMINANT D'UN ENDOMORPHISME

THÉORÈME 14 Déterminant d'un endomorphisme

Soit E un espace de dimension n et f un endomorphisme de E.

Le scalaire $\det_{\mathscr{B}}(f(\mathscr{B})) = \det(\mathscr{M}_{\mathscr{B}}(f))$ est indépendant de la base \mathscr{B} choisie. On l'appelle *déterminant* de l'endomorphisme f.

On a la relation:

$$\det_{\mathscr{B}}(f(x_1),\ldots,f(x_n)) = \det f \cdot \det_{\mathscr{B}}(x_1,\ldots,x_n)$$

PROPOSITION 50 Propriétés

- $\det Id_E = 1$
- $\det(u \circ v) = \det u \cdot \det v$
- $u \in GL(E) \iff \det u \neq 0$ et dans ce cas, $\det(u^{-1}) = \frac{1}{\det u}$.
- $\det(\lambda u) = \lambda^n \det u$.

3. DÉTERMINANT D'UNE MATRICE CARRÉE

DÉFINITION 33 Déterminant d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le déterminant de A est celui de l'endomorphisme f_A canoniquement associé à A.

C'est aussi le déterminant de ses colonnes dans la base canonique de \mathbb{K}^n .

PROPOSITION 51 Règle de SARRUS

Pour une matrice de taille 2, $\begin{vmatrix} a & c \\ b & d \end{vmatrix} = ab - bc$

Pour une matrice de taille 3,

PROPOSITION 52 Règles de calcul

- Si on intervertit deux colonnes de A, son déterminant est changé en son opposé.
- S'il y a répétition dans les colonnes, son déterminant est nul
- Si l'on multiplie une colonne de A par un scalaire λ , son déterminant est multiplié par λ .

En particulier $det(\lambda A) = \lambda^n det A$

- Le déterminant de A est inchangé si on ajoute à l'une de ses colonnes une combinaison linéaire des autres.
- Si l'une des colonnes de A nulle ou combinaison linéaire des autres, son déterminant est nul.
- Deux matrices A et B équivalentes par colonnes (resp. par lignes) ont le même déterminant.
- Le déterminant est invariant par transposition : det(A^T) = det A.
 CONSÉQUENCE : on peut remplacer « colonne » par « ligne » dans tout ce qui précède.

PROPOSITION 53 Déterminant et produit

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \quad \det(AB) = \det A \cdot \det B$$

 $M \in \mathcal{M}_n(\mathbb{K})$ est inversible \iff det $M \neq 0$ Dans ce cas, det $(M^{-1}) = \frac{1}{\det M}$

PROPOSITION 54 Matrices semblables et déterminant

Deux matrices semblables ont même déterminant.

PROPOSITION 55 Déterminant d'une matrice triangulaire

Le déterminant d'une matrice triangulaire est égal au produit de ses termes diagonaux. Cela reste vrai *a fortiori* pour une matrice diagonale.

PROPOSITION 56 Déterminant d'une matrice triangulaire par blocs

Soit M une matrice de $\mathcal{M}_n(\mathbb{K})$ triangulaire par blocs : $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ où A et B sont des blocs carrés. On a alors

$$det M = det A \cdot det B$$

Ce résultats se généralise à une matrice triangulaire par blocs avec un nombre de blocs quelconque : son déterminant est égal au produit des déterminants de ses blocs diagonaux.

4. DÉVELOPPEMENT SELON UNE RANGÉE

DÉFINITION 34 Mineur principal, cofacteur

Le mineur principal de place (i,j) de la matrice $A \in \mathcal{M}_n(\mathbb{K})$ est le déterminant Δ_{ij} de la matrice de taille n-1 obtenue à partie de A en supprimant le i-ème ligne et la j-ème colonne.

Le cofacteur de place (i, j) est $A_{ij} = (-1)^{i+j} \Delta_{ij}$.

PROPOSITION 57 Développement suivant une rangée

Soit
$$A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$$
. On a $\forall j \in [1,n]$

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}$$
 (dvpt selon la colonne j)

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}$$
 (dvpt selon la ligne i)

5. DÉTERMINANT DE VANDERMONDE

PROPOSITION 58 Déterminant de Vandermonde

Étant donné des scalaires x_0 , x_1 ,..., x_n , on note $V(x_0, x_1, ..., x_n)$ le déterminant d'ordre n+1 défini par :

$$V(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ x_0^2 & x_1^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{vmatrix}.$$

On a:

$$V(x_0, x_1, ..., x_n) = \prod_{0 \le j < i \le n} (x_i - x_j).$$

On en déduit que :

 $V(x_0, x_1, ..., x_n) \neq 0 \iff \text{les } (x_i)_{0 \leq i \leq n} \text{ sont deux à deux distincts}$

NOTE À L'ATTENTION DES ÉLÈVES VENANT DE MPSI

L'expression du déterminant à l'aide du groupe symétrique et la notion de comatrice sont hors-programme en PSI.

VIII- POLYNÔMES DE LAGRANGE new

PROPOSITION 59 Polynôme de LAGRANGE

Soient (a_0, \dots, a_n) une famille de n+1 éléments de \mathbb{K} 2 à 2 distincts.

L'application $u: \mathbb{K}_n[X] \to \mathbb{K}^{n+1}$ est un isomorphisme $P \mapsto (P(a_0), \dots, P(a_n))$

Soit $i_0 \in [0, n]$. Il existe un unique polynôme L_{i_0} de degré inférieur ou égal à n tel que $\forall j \in [0, n]$, $L_{i_0}(a_j) = \delta_{i_0, j}$

On a

$$L_{i_0} = \frac{1}{\prod_{j \neq i_0} (a_{i_0} - a_j)} \prod_{j \neq i_0} (X - a_j)$$

 $(L_0, L_1, ..., L_n)$ est une base de $\mathbb{K}_n[X]$ et les coordonnées d'un polynôme P dans cette base sont $(P(a_0), ..., P(a_n))$:

$$P(X) = \sum_{i=0}^{n} P(a_i) L_i(X)$$