Named Probability Distributions

Discrete Probability Distributions

pmf:
$$p(y)$$
 cdf: $F(y) = \sum_{z=-\infty}^{y} p(z)$
 $0 \le p(y) \le 1$; $\sum_{y=-\infty}^{\infty} p(y) = 1$
 $P(Y = y) = p(y)$; $P(a \le Y \le b) = \sum_{a}^{b} p(y)$

Binomial – $Y \sim \text{Binom}(n, p)$

$$p(y) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}, y \in [0, n], p \in [0, 1]$$

$$\mathbb{E}[Y] = np$$

$$\mathbb{V}[Y] = np(1-p)$$

$$m(t) = [pe^{t} + (1-p)]^{n}$$

Geometric – $Y \sim \text{Geom}(p)$

$$p(y) = (1 - p)^{y-1}p, y \in [1, \infty), p \in [0, 1]$$

$$\mathbb{E}[Y] = 1/p$$

$$\mathbb{V}[Y] = (1 - p)/p^{2}$$

$$m(t) = \frac{p}{1 - qe^{t}}$$

Hypergeometric – $Y \sim HG(N, K, n)$

$$\begin{array}{lll} p(y = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, & k \in \{\max(0, n + K - N), ..., \min(n, K)\}, K \leq N; n \leq N \\ \mathbb{E}[Y] = \frac{nK}{N} \\ \mathbb{V}[Y] = \frac{nK(N-K)(N-n)}{N^2(N-1)} \end{array}$$

Negative Binomial – $Y \sim \text{NBinom}(r, p)$

Poisson – $Y \sim Poi(\lambda)$

$$p(y) = \frac{\lambda^{y}}{y!}e^{-\lambda}, y \in [0, \infty);$$

$$\mathbb{E}[Y] = \mathbb{V}[Y] = \lambda$$

$$m(t) = e^{\lambda(e^{t} - 1)}$$

Continuous Probability Distributions

pdf:
$$f(y) = \frac{d}{dy}(y)$$
 cdf: $F(y) = \int_{-\infty}^{y} f(z) dz$
 $f(y) \ge 0$; $\int_{-\infty}^{\infty} f(y) dy = 1$; $P(Y = y) = 0$
 $P(a \le Y \le b) = \int_{a}^{b} f(y) dy = F(b) - F(a)$

Uniform – $Y \sim \text{Uniform}(a, b)$

$$f(y) = (b-a)^{-1}, y \in [a,b]$$

$$\mathbb{E}[Y] = (a+b)/2$$

$$\mathbb{V}[Y] = (b-a)^2/12$$

$$m(t) = (e^{bt} - e^{at})/[t(b-a)]$$

Normal –
$$Y \sim N(\mu, \sigma^2)$$

$$\begin{split} f(y) &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2} \ \ y \in (-\infty,\infty), \ \mu \in \mathbb{R}, \ \sigma \in \mathbb{R}^+ \\ \mathbb{E}[Y] &= \mu; \\ \mathbb{V}[Y] &= \sigma^2 \\ m(t) &= \exp(\mu t + t^2\sigma^2/2) \\ \text{If } Y \sim N(\mu,\sigma), \text{ then } Z = (Y-\mu)/\sigma; \ Z \sim \text{N}(0,1). \\ P(Y \leq y) &= \Phi\left(\frac{y-\mu}{\sigma}\right) = \Phi(z) \text{ (non-analytic function)} \end{split}$$

Exponential – $Y \sim \text{Exponential}(\lambda)$

$$f(y) = \lambda e^{-\lambda y}, y \in [0, \infty), \lambda \in \mathbb{R}^+$$

$$\mathbb{E}[Y] = 1/\lambda$$

$$\mathbb{V}[Y] = 1/\lambda^2$$

$$m(t) = \frac{\lambda}{\lambda - t} \text{ for } t < \lambda$$

 $\mathbb{E}[Y] = \alpha/(\alpha + \beta)$

 $V[Y] = \alpha \beta / [(\alpha + \beta)^2 (\alpha + \beta + 1)]$

Gamma – $Y \sim \text{Gamma}(\alpha, \beta)$ $f(y) = y^{\alpha-1}e^{-y/\beta}/[\beta^{\alpha}\Gamma(\alpha)], y \in [0, \infty), \alpha \in \mathbb{R}^+, \beta \in \mathbb{R}^+$

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy = (\alpha - 1) \Gamma(\alpha - 1)$$
If n is a positive integer, $\Gamma(n) = (n - 1)!$

$$\mathbb{E}[Y] = \alpha \beta$$

$$V[Y] = \alpha \beta^2$$

$$m(t) = (1 - \beta t)^{-\alpha}$$

$$\alpha = 1 \Rightarrow \text{exponential distribution}$$

$$\beta = 2, \alpha = \nu/2, \nu \in \mathbb{Z}^+ \Rightarrow \text{chi-square distribution}$$

$$\begin{aligned} \mathbf{Beta} - Y &\sim \mathrm{Beta}(\alpha, \beta) \\ f(y) &= y^{\alpha - 1} (1 - y)^{\beta - 1} / B(\alpha, \beta), \, y \in [0, 1], \, \alpha \in \mathbb{R}^+, \beta \in \mathbb{R}^+ \\ B(\alpha, \beta) &= \Gamma(\alpha) \Gamma(\beta) / \Gamma(\alpha + \beta) \end{aligned}$$

Properties of Estimators

Inequalities and Convergence

Cauchy-Schwarz: $|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}$

Jensen: $E(g(X)) \ge g(E(X))$ if g convex; $E(g(X)) \ge$

g(E(X)) if g concave.

Markov: $P(|W| > a) \le E(|W|)/a$ Chebyshev: $P(|W - \mu| \ge \epsilon) \le \sigma^2/\epsilon^2$ **Chernoff:** $P(W \ge a) \le E(e^{tW})/e^{ta}$ $X_n \to_d X$ if $\lim_{n\to\infty} F_n(x) = F(x)$ at all x

 $X_n \to_p X \text{ if } \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$

Fisher Information
$$I(\theta) = E\left[\left(\frac{\partial \ln f_y(y;\theta)}{\partial \theta}\right)^2\right] = -E\left[\left(\frac{\partial^2 \ln f_y(y;\theta)}{\partial \theta^2}\right)\right]$$

Cramer-Rao Lower Bound

 $Y_1, ..., Y_n \sim f_y, \{y : y \neq 0\}$ does not depend on $\theta, E(\hat{\theta}) = \theta$. $Var(\hat{\theta}) \ge \frac{1}{nI(\theta)}$

Consistency

 $\hat{\theta}_n$ is consistent if $\hat{\theta}_n \to_p \theta$.

Invariance: If $\hat{\theta}_n$ is consistent for θ , $g(\hat{\theta}_n)$ is consistent for $g(\theta)$

Sufficiency

 $T = h(X_1, ..., X_n)$ is sufficient for θ if $P(X_1, ..., X_n | T = t)$ does not depend on θ .

T is sufficient if and only if $L(\theta) = g[h(X_1,...,X_n);\theta]$. $b(X_1, ..., X_n)$

Rao-Blackwell: Let $\hat{\theta}$ be an estimator of θ with $E(\hat{\theta}^2)$ ∞ and let T be a sufficient statistic. If $\theta^* = E(\hat{\theta}|T=t)$, then $MSE(\theta^*, \theta) \leq MSE(\hat{\theta}, \theta)$. Strict inequality unless $\hat{\theta} = f(T)$.

Exponential Families

 $f(x;\theta) = \exp[\eta(\theta)T(x) - A(\theta) + B(x)]$ $= h(x) \exp[\eta(\theta)T(x) - A(\theta)]$ $= h(x)g(\theta) \exp[\eta(\theta)T(x)]$ $E(Y) = \frac{\partial}{\partial \eta} A(\eta)$ $V(Y) = \frac{\partial^2}{\partial n^2} A(\eta)$

Large-Sample Properties

WLLN: $\bar{X} \rightarrow_p \mu$

CLT: If $Y_i \sim f_y$, $E(Y) = \mu$, $V(Y) = \sigma^2$, then $\bar{Y} \sim$

 $N(\mu, \sigma^2/n)$ CLT: $\frac{\sum X_i - \mu}{\sigma/\sqrt{n}} \rightarrow_d Z$, where $Z \sim N(0, 1)$.

Delta Method: If $Y_n \approx N(\mu, \frac{\sigma^2}{n})$ then $g(Y_n) \approx$ $N(g(\mu), (g'(\mu))^2 \frac{\sigma^2}{n})$ $\hat{\theta}_{MLE} \dot{\sim} N(\theta, \frac{1}{nI(\theta)})$ for large n