Comprehensive LLM Self-Assessment Evaluation

Parameter	Details	
Prompt	You are a deep learning expert specializing in CNN models for demographic classification. Task: Diagnose potential overfitting issues in my CNN model. Recommend specific fine-tuning techniques to improve generalization. Dataset: FairFace Baseline Accuracy: Low Your response should include: Hyperparameter tuning strategies Regularization methods Alternative model architectures	
Prompt Type	that could improve generalization Role-Based Prompt	
Model Evaluated	ChatGPT	
Evaluation Performed By	Claude	

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	7	Good Alignment	Response provides confident, structured recommendations with clear rationales for each technique
Calibration Error	6	Above Average	Recommendations show nuanced understanding of potential overfitting, with balanced suggestions

Metric	Score (1-10)	Interpretation	Key Evidence
Task Difficulty Awareness	8	Excellent	Demonstrates deep understanding of CNN overfitting challenges specific to demographic classification
Error Recognition	7	Good	Identifies multiple potential sources of overfitting and provides targeted mitigation strategies
Domain- Specific Variance	8	Very Good	Shows specialized knowledge in deep learning techniques for image classification
Prompt Sensitivity	9	Near-Perfect	Response precisely addresses all requested components with domain-specific expertise
Weighted Self- Assessment Score	7.4	Very Good	Comprehensive and technically sound response

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	95%	Technically sound recommendations based on established
		deep learning practices
Procedural Recommendations	90%	Detailed, actionable strategies for model improvement

Category	Accuracy	Notes
Inferences/Opinions	85%	Well-reasoned suggestions with clear technical
Overall Accuracy	90%	justification Highly accurate and technically rigorous response

Self-Assessment Classification

Primary Classification	Expertly Calibrated
Secondary Classifications	- Domain Sensitive: Shows nuanced understanding of demographic classification challenges-Complexity Aware: Provides strategies tailored to different complexity levels- Error Conscious: Identifies multiple overfitting mitigation techniques- Reasoning Transparent: Explains rationale behind each recommendation

Confidence Expression Analysis

Type	Count	Examples	Average Confidence L
Explicit Confidence Statements	0	N/A	N/A
Certainty Markers	15+	"significantly", "helps", "prevents"	85%
Hedge Words	3-5	"can", "might", "potentially"	40%
Qualifying Phrases	5-7	"in most cases", "generally"	65%
Overall Estimated Confidence			70%

${\bf Metacognitive\ Strategies}$

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Medium	High
Confidence calibration	Limited	Medium
Reasoning transparency	Strong	High
Alternative consideration	Strong	High
Information source qualification	Limited	Medium

Strategy	Presence	Effectiveness
Temporal qualification Logical qualification Uncertainty decomposition	None Medium Medium	N/A High Medium

Key Improvement Recommendations

- 1. Include more explicit confidence markers to improve calibration
- 2. Provide more information sources for recommended techniques
- 3. Add temporal context about the evolving nature of deep learning techniques
- 4. Develop more granular uncertainty decomposition
- 5. Enhance information source qualification

Detailed Analysis

Strengths

- Comprehensive coverage of overfitting mitigation techniques
- Clear, structured presentation of recommendations
- Deep technical understanding of CNN architectures
- Specific, actionable strategies for the FairFace dataset

Limitations

- Lacks explicit confidence statements
- Minimal discussion of potential limitations of recommended techniques
- Could provide more context about recent advances in demographic classification

Technical Depth Analysis

The response demonstrates exceptional technical depth, particularly in: - Hyperparameter tuning strategies - Regularization methods - Transfer learning approaches - Model architecture recommendations

The recommendations show a sophisticated understanding of: - Dropout techniques - Learning rate scheduling - Data augmentation strategies - Pretrained model fine-tuning

Metacognitive Insights

The response exhibits strong metacognitive capabilities through: - Comprehensive alternative consideration - Transparent reasoning - Logical qualification of recommendations - Nuanced understanding of model generalization challenges

Concluding Remarks

The response represents a high-quality, technically sophisticated approach to addressing overfitting in CNN models for demographic classification. It provides a comprehensive set of strategies with clear rationales, demonstrating both technical expertise and metacognitive awareness.