

Aula 17 de abril de 2023

Superfícies Sólidas

- 1) Adsorção física: Langmuir e BET
 - 2) Adsorção química
 - 3) Catálise heterogénea

$$\frac{V}{V_{\text{mono}}} = \frac{cz}{(1-z)[1+(c-1)z]}$$
 com z

$$\frac{V}{V_{\text{mono}}} = \frac{cz}{(1-z)[1+(c-1)z]} \qquad \text{com} \qquad z = \frac{p}{p^*} \qquad \text{e} \qquad c \approx \exp\left[\frac{\Delta_{\text{ads}}H_1 - \Delta_{\text{cond}}H}{RT}\right]$$

 V_{mon} is the volume corresponding to monolayer coverage

 p^* is the vapour pressure above a layer of adsorbate that is more than one molecule thick and which resembles a pure bulk liquid

Para c muito elevado

$$\frac{V}{V_{mono}} = \frac{cz}{(1-z)[1+(c-1)z]} = \frac{cz}{1+(c-2)z-(c-1)z^2} \approx \frac{cz}{1+cz}$$

BET isotherm rise indefinitely as the pressure is increased because there is no limit to the amount of material that may condense when multilayer coverage may occur

Problem

Com base nos dados da tabela de volumes de $\rm N_2$ adsorvido em óxido de titânio ($\rm TiO_2$) a 75 K. Confirme que os valores se ajustam a uma isotérmica de BET na gama de pressões estudada, e determine $\rm V_{mon}~$ e c.

p/kPa	0.160	1.87	6.11	11.67	17.02	21.92	27.29	
V/mm ³	601	720	822	935	1046	1146	1254	

A 75 K, $p^* = 76.0$ kPa.

$$\frac{z}{(1-z)V} = \frac{1}{cV_{\text{mon}}} + \frac{(c-1)z}{cV_{\text{mon}}}$$

p/kPa 0,160 1,87 6,11 11,67 17,02 21,92 27,29
$$10^3z$$
 2,11 24,6 80,4 154 224 288 359 $10^4z/(1-z)(V/mm^3)$ 0,035 0,350 1,06 1,95 2,76 3,53 4,47

$$b = 0,0398$$
 ou seja

$$\frac{1}{c V_{mon}}$$
 = 3,98 x 10⁻⁶ mm⁻³

$$m = 1,23 \times 10^{-2}$$
 ou seja

$$\frac{c-1}{c V_{mon}}$$
 = 1,23 x 10⁻² x 10³ x 10⁻⁶ mm⁻³

Resolvendo vem:

$$c = 310 \text{ e V}_{mon} = 811 \text{ mm}^3$$
.

A 1,00 atm e 273 K, 811 mm³ corresponde to 3,6 $\times 10^{-5}$ mol, ou 2,2 $\times 10^{19}$ átomos.

Como cada átomo ocupa uma área de cerca de 0,16 nm², a área superficial da amostra é cerca de 3,5 m².

Recapitulando

Isotérmica de adsorção de Langmuir

e

Catálise heterogénea

Activation energies of catalysed reactions

Reaction	Catalyst	$E_{\rm a}/({\rm kJ~mol^{-1}})$
$2 \text{ HI} \rightarrow \text{H}_2 + \text{I}_2$	None	184
	Au	105
	Pt	59
$2 \text{ NH}_3 \rightarrow$	None	350
$N_2 + 3 H_2$	W	162

Catálise heterogénea

Catalyst	Function	Examples	
Metals	Hydrogenation Dehydrogenation	Fe, Ni, Pt, Ag	
Semiconducting oxides and sulfides	Oxidation Desulfurization	NiO, ZnO, MgO, Bi ₂ O ₃ /MoO ₃ , MoS ₂	
Insulating oxides	Dehydration	Al ₂ O ₃ , SiO ₂ , MgO	
Acids	Polymerization Isomerization Cracking Alkylation	H ₃ PO ₄ , H ₂ SO ₄ , SiO ₃ /Al ₂ O ₃ , zeolites	

Shape-selective catalysts

- have a pore size that can distinguish shapes and sizes at a molecular scale
- have high internal specific surface areas, in the range of $100-500 \; m^2 \; g^{-1}$

Zeolites

 $\{[M^{n+}]_{x/n}.[H_2O]_m\}\{[AlO_2]_x[SiO_2]y\}^{x-}$

Adsorção química – catálise heterogénea

$$\theta = \frac{Kp_A}{1 + Kp_A}$$

A adsorção química modifica as moléculas de reagentes e pode torná-las mais reativas

Problema

A reação de decomposição da amónia 2 NH $_3 \rightarrow 3$ H $_2 +$ N $_2$ - catalisada heterogeneamente numa superfície de tungsténio, foi seguida a 856 °C por medida da pressão ao longo do tempo. Para uma pressão inicial de 27 kPa de amónia, registaram-se 34,5 kPa de pressão total no recipiente ao fim de 500 s e 42 kPa passados 1000 s.

a) Calcule a ordem da reacção e explique o resultado com base na isotérmica de adsorção de Langmuir

$$\theta = K p / (1 + K p).$$

b) Preveja a ordem da reação para pressões iniciais muito menores que 27 kPa.

Resolução:

A pressão parcial de reagente varia linearmente com o tempo

$$2 \text{ NH}_3 \rightarrow 3 \text{ H}_2 + \text{N}_2$$

 $p_{\text{NH}3} = p_0 - 2 p_{\text{N}2} e p_{\text{H}2} = 3 p_{\text{N}2}$
 $p_{\text{total}} = p_{\text{NH}3} + p_{\text{H}2} + p_{\text{N}2} = p_0 + 2 p_{\text{N}2}$

A pressão do reagente varia linearmente com o tempo, a velocidade da reação é constante, não depende da concentração do reagente – ORDEM ZERO

$$v = k\theta_{A} = \frac{kK_{A}p_{A}}{1 + K_{A}p_{A}}$$

A pressão é suficientemente alta para que $K_{\Delta} . p_{\Delta} >> 1 \rightarrow \theta_{\Delta} = constante$

b) Quando KA .pA << 1 \rightarrow v = $k K p_A$ A velocidade é proporcional à pressão do reagente - 1º ORDEM

Catálise heterogénea

- i) difusão das moléculas de reagente ou reagentes do seio da solução até à superfície do catalisador;
- *ii)* adsorção do reagente ou reagentes à superfície do catalisador;
- iii) reação à superfície;
- *iv)* dessorção do produto ou produtos da reação;
- v) difusão do produto ou produtos da reação até ao seio da solução.

Hipótese

Para quantificar a cinética de reações catalisadas por superficies sólidas, admite-se que:

• A velocidade da reação é proporcional à fração de área superficial ocupada pela molécula adsorvida/ativada A

$$v = k \; \theta_A = \frac{k \; K_A p_A}{1 + K_A p_A}.$$

$$A_{ads} \rightarrow Produtos$$

$$v = k\theta_A = \frac{kK_A p_A}{1 + K_A p_A}$$

Casos especiais (1)

Isotérmica de adsorção de Langmuir com adsorção competitiva 2 gases adsorvem simultaneamente

$$v_{ads1} = k_{ads1} p_1 (1-\theta_1-\theta_2) = v_{des1} = k_{des1} \theta_1$$

$$v_{ads2} = k_{ads2} p_2 (1-\theta_1-\theta_2) = v_{des2} = k_{des2} \theta_2$$

$$\theta_{1} = \frac{K_{1} p_{1}(1-\theta_{2})}{1+K_{1} p_{1}}$$

$$\theta_{2} = \frac{K_{2} p_{2}(1-\theta_{1})}{1+K_{2} p_{2}}$$

$$\theta_{2} = \frac{K_{2} p_{2}(1-\theta_{1})}{1+K_{2} p_{2}}$$

$$\theta_{3} = \frac{K_{1} p_{1}}{1+K_{1} p_{1}+K_{2} p_{2}}$$

Catálise heterogénea – reações unimoleculares com inibição pelo produto

O produto adsorve competitivamente

Exemplo: Decomposição da amónia em platina

$$v = k pNH_3/pH_2$$

Explicação: H_2 adsorve fortemente em Pt ($K_{H2} >> K_{NH3}$)

$$v = k' \theta_{NH3} = k' K_{NH3} p_{NH3} / (1 + K_{NH3} p_{NH3} + K_{H2} p_{H2})$$

$$se K_{H2} >> K_{NH3} e K_{H2} p_{H2} >> 1$$

$$v = (k' K_{NH3} / K_{H2}) (p_{NH3} / p_{H2})$$

2) Mecanismo de Langmuir-Rideal ou de Eley-Rideal

Um reagente é adsorvido, o outro permanece na fase fluida

O gás B reage com a substância adsorvida A

$$A_{ads} + B \rightarrow Produtos$$

$$v = k\theta_A p_B = \frac{kK_A p_A p_B}{1 + K_A p_A}$$

Catálise heterogénea – reações bimoleculares 3) Mecanismo de Langmuir-Hinshelwood

velocidade da reacção

2 reagentes adsorvidos

$$v = k\theta_{A}\theta_{B} = \frac{kK_{A}p_{A}K_{B}p_{B}}{(1 + K_{A}p_{A} + K_{B}p_{B})^{2}}$$

A velocidade da reação depende da relação entre as constantes de adsorção K_A e K_B

a)
$$p_B << p_A e K_A p_A >> 1 + K_B p_B$$

$$v = k \theta_A \theta_B = \frac{k K_A p_A K_B p_B}{(1 + K_A p_A + K_B p_B)^2}$$

 $v = (k K_B / K_A p_A) p_B = k' p_B (p_A, sendo grande, praticamente não varia durante a reação)$

c)
$$K_B p_B >> 1 + K_A p_A$$

v= $(k K_A p_A / K_B) (1 / p_B)$

Problema

• A reação de hidrogenação do etileno numa superfície de cobre é uma reacção bimolecular à superfície (mecanismo de Hinshelwood), em que o etileno é muito mais fortemente adsorvido do que o hidrogénio. Em que condições pode a equação da velocidade da reação ser:

$$v = k \frac{K_{H2}}{K_{C2H4}} \frac{p_{H2}}{p_{C2H4}}$$

Resolução

- Em catálise heterogénea, diz-se que uma reação bimolecular segue o mecanismo de Hinshelwood se as duas espécies reagirem depois de adsorvidas à superfície do catalisador.
- A velocidade da reação é proporcional às áreas ocupadas pelos dois reagentes

$$v = k\theta_{A}\theta_{B} = \frac{kK_{A}p_{A}K_{B}p_{B}}{(1 + K_{A}p_{A} + K_{B}p_{B})^{2}}$$

Se o etileno for muito mais fortemente adsorvido que o hidrogénio $K_{C2H4}P_{C2H4} >> K_{H2}P_{H2}$ e a equação de velocidades fica

$$v = kK_{C2H4}K_{H2} \frac{p_{C2H4}p_{H2}}{(1 + K_{C2H4}p_{C2H4})^2} = a \frac{p_{C2H4}p_{H2}}{(1 + b p_{C2H4})^2}$$

$$v = k \frac{K_{H2}}{K_{C2H4}} \frac{p_{H2}}{p_{C2H4}}$$

Para pressões altas de etileno, pode ainda verificar-se $K_{C2H4}P_{C2H4}>> 1$ e ficará

$$v = k \frac{K_{H2}}{K_{C2H4}} \frac{p_{H2}}{p_{C2H4}}$$

Casos especiais (2) Isotérmica de adsorção de Langmuir Adsorção com dissociação

$$A_2$$
 (gas) \leftrightarrow 2 A (superf)

$$v_{ads} = k_{ads} p_{A2} (1-\theta_A)^2 = v_{des} = k_{des} \theta_A^2$$

$$\theta = \frac{\sqrt{Kp_{A_2}}}{1 + \sqrt{Kp_{A_2}}}$$

Expoentes semi-inteiros são indicativos de adsorção com dissociação:

$$H_2 \rightarrow 2 \text{ H ou } O_2 \rightarrow 20$$