Proposition Extraction

Formulation, Crowdsourcing and Prediction

Gabi Stanovsky

Introduction

What, How and Why

Propositions

- Statements for which a truth value can be assigned
 - Bob loves Alice
 - Bob gave a note to Alice
- A single predicate operating over arbitrary number of arguments
 - loves: (Bob, Alice)
 - gave: (Bob, a note, to Alice)
- Primary (atomic) unit of information conveyed in texts

Proposition Extraction

Barack Obama, the 44th U.S. president, was born in Hawaii

- Barack Obama is the 44th U.S. president
- Barack Obama was born in Hawaii
- The 44th U.S. president was born in Hawaii

Representations

AMR (b1 / **born-01** :ARG0 (p / person :name (n / name :op1 "Barack" :op2 "Obama") :ARG0-of (p / preside-01 :ARG1 (s / state :wiki "U.S.") :NUM (q / quant :value "44th") :LOC (s / state :wiki "Hawaii")

Open IE

(Barack Obama, is, the 44th U.S. president) (Barack Obama, was born, in Hawaii) (the 44th U.S. president, was born, in Hawaii)

Neo-Davidsonian

∃e born(e1) & Agent(e1, Barack Obama)) & LOC(e1, Hawaii) ∃e2 preside(e2) & Agent(e2, Barack Obama) & Theme(e2, **U.S.**) & Count(e2, **44th**)

Why?

Useful in a variety of applications

Summarization

Toward Abstractive Summarization Using Semantic Representations Liu et al., NAACL 2015

Knowledge Base Completion

Leveraging Linguistic Structure For Open Domain Information Extraction Angeli et al., ACL 2015

Question Answering

Using Semantic Roles to Improve Question Answering Shen and Lapata, EMNLP 2007

But...

"I train an end-to-end deep bi-LSTM directly over word embeddings"

And yet...

Structured knowledge can help neural architectures

Lexical Semantics

Improving Hypernymy Detection with an Integrated Path-based and Distributional Method Shwartz et al., ACL 2016

Semantic Role Labeling

Neural semantic role labeling with dependency path embeddings Roth and Lapata, ACL 2016

Machine Translation

Towards String-to-Tree Neural Machine Translation Aharoni and Goldberg, ACL 2017

My Research Questions

1. Foundations

What are the desired requirements from proposition extraction?

- Specifying and Annotating Reduced Argument Span Via QA-SRL, ACL 2016
- Getting More Out Of Syntax with PropS

2. Annotation

Can we scale annotations through crowdsourcing?

- Annotating and Predicting Non-Restrictive Noun Phrase Modifications, ACL 2016
- Creating a Large Benchmark for Open Information Extraction, EMNLP 2016

3. Applications

How can we effectively predict proposition structures?

- Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models, EACL 2017
- Porting an Open Information Extraction System from English to German, EMNLP 2016
- Open IE as an Intermediate Structure for Semantic Tasks, ACL 2015

Outline

Non-restrictive modification

- Crowdsourcing
- Prediction with CRF

Supervised Open Information Extraction

- Formalizing
- Automatic creation of large gold corpus
- Modeling with bi-LSTMs

Next steps

Non-Restrictive Modification

Argument Span

Obama, the 44th president, was <u>born</u> in Hawaii

- Arguments are typically perceived as answering role questions
 - Who was *born* somewhere?
 - Where was someone **born**?
- Implicit in most annotations
- QA-SRL annotates with explicit role questions

Argument Span: The Inclusive Approach

Arguments are full syntactic constituents

- PropBank
- FrameNet
- AMR

Argument Span: The Inclusive Approach

Arguments are full syntactic constituents

- PropBank
- FrameNet
- AMR

Can we go shorter?

Obama, the 44th president, was <u>born</u> in Hawaii

Who was <u>born</u> somewhere?

• More concise, yet sufficient answer

Motivation: Applications

Sentence Simplification

Barack Obama, the 44th president, thanked vice president Joe Biden and Hillary Clinton, the secretary of state

- Knowledge Base Completion Angeli et al. , ACL 2015
- Text Comprehension Stanovsky et al, ACL 2015

Different types of NP modifications (from Huddleston et.al)

- Restrictive modification
 - An integral part of the meaning of the containing clause
- Non-restrictive modification
 - Presents separate or additional information

→ Another type of reduction is **non-distributive coordination**

	Restrictive	Non-Restrictive
Relative Clause	She took the necklace that her mother gave her	The speaker thanked president Obama who just came back from Russia
Infinitives	People living near the site will have to be evacuated	Assistant Chief Constable Robin Searle, sitting across from the defendant, said that the police had suspected his involvement since 1997.
Appositives		Keeping the Japanese happy will be one of the most important tasks facing conservative leader Ernesto Ruffo
Prepositional modifiers	the kid from New York rose to fame	Franz Ferdinand from Austria was assassinated om Sarajevo
Postpositive adjectives	George Bush's younger brother lost the primary	Pierre Vinken, 61 years old, was elected vice president
Prenominal adjectives	The bad boys won again	The water rose a good 12 inches

Goals

- Create a large corpus annotated with non-restrictive NP modification
 - Consistent with gold dependency parses
 - Crowdsourceable with good agreement levels
- Automatic prediction of non-restrictive modifiers
 - Enabled by the new corpus

Previous work

- Rebanking CCGbank for Improved NP Interpretation (Honnibal, Curran and Bos, ACL '10)
 - Added automatic non-restrictive annotations to the CCGbank
 - Simple implementation
 - Non restrictive modification $\leftarrow \rightarrow$ The modifier is preceded by a comma
 - No intrinsic evaluation

Previous work

- Relative Clause Extraction for Syntactic Simplification (Dornescu et al., COLING '14)
 - Conflated argument span and non-restrictive annotation
 - Span agreement 54.9% F1
 - Restrictiveness agreement 0.51 kappa (moderate)
 - Develop rule based and ML baselines (CRF with chunking feat.)
 - Both performing around ~47% F1

Our Approach

Syntax-consistent QA based classification

- 1. Traverse from predicate to NP argument
- 2. Phrase an argument role question answered by the NP (what? who? to whom?)
- 3. Omitting the modifier still provides the same answer?

What did someone take?

X The necklace which her mother gave her

Who was thanked by someone?

V President Obama who just came back from Russia

Corpus

- CoNLL 2009 dependency corpus
 - We can borrow most role questions from QA-SRL
- Each NP is annotated on Mechanical Turk
 - Five annotators for 5c each
 - Consolidation by majority vote

Corpus Analysis

	#instances	%Non-Restrictive	Agreement (K)	
Prepositions	693	36%		61.65
Prepositive adjectival modifiers	677	41%		74.7
Appositions	342	73%		60.29
Non-Finite modifiers	279	68%		71.04
Prepositive verbal modifiers	150	69%		100
Relative Clauses	43	79%		100
Postpositive adjectival modifiers	7	100%		100
Total	2191	51.12%		73.79

Corpus Analysis

	#instances	%Non-Restrictive	Agreement (K)	
Prepositions	693	36%		61.65
Prepositive adjectival modifiers	677	41%		74.7
Appositions	342	73%		60.29
Non-Finite modifiers	279	68%	-	71.04
Prepositive verbal modifiers	150	69%		100
Relative Clauses	43	79%		100
Postpositive adjectival modifiers	7	100%		100
Total	2191	51.12%	•	73.79

→ Prepositions and appositions are harder to annotate

Corpus Analysis

	#instances	%Non-Restrictive	Agreement (K)	
Prepositions	693	36%		61.65
Prepositive adjectival modifiers	677	41%		74.7
Appositions	342	73%		60.29
Non-Finite modifiers	279	68%		71.04
Prepositive verbal modifiers	150	69%		100
Relative Clauses	43	79%		100
Postpositive adjectival modifiers	7	100%		100
Total	2191	51.12%		73.79

→ The corpus is fairly balanced between the two classes

Predicting non-restrictive modification

- CRF features:
 - Dependency relation
 - NER
 - Named entity modification tends to be non-restrictive
 - Word embeddings
 - Contextually similar words ←→ similar restrictiveness value
 - Linguistically motivated features
 - The word preceding the modifier (Huddleston)

Results

Modifier Type	#	Precision				Recall			F1			
		Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	Honnibal	Dornescu	Our		
Prepositional	135	.83	.67	.69	.1	.16	.41	.18	.26	.51		
Adjectival	111	.33	.38	.59	.06	.06	.21	.11	.11	.31		
Appositive	78	.77	.81	.82	.34	.93	.98	.47	.87	.89		
Non-Finite	55	.77	.63	.64	.29	.97	.97	.42	.76	.77		
Verbal	20	0	.75	.75	0	1	1	0	.86	.86		
Relative clause	13	1	.85	.85	.27	1	1	.43	.92	.92		
Total	412	.72	.72	.73	.19	.58	.68	.3	.64	.72		

Modifier Type	#	Precision			Recall			F1			
		Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	
Prepositional	135	.83	.67	.69	.1	.16	.41	.18	.26	.51	
Adjectival	111	.33	.38	.59	.06	.06	.21	.11	.11	.31	
Appositive	78	.77	.81	.82	.34	.93	.98	.47	.87	.89	
Non-Finite	55	.77	.63	.64	.29	.97	.97	.42	.76	.77	
Verbal	20	0	.75	.75	0	1	1	0	.86	.86	
Relative clause	13	1	.85	.85	.27	1	1	.43	.92	.92	
Total	412	.72	.72	.73	.19	.58	.68	.3	.64	.72	

Prepositions and adjectives are harder to predict

Modifier Type	#	Precision				Recall			F1			
		Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	Honnibal	Dornescu	Our		
Prepositional	135	.83	.67	.69	.1	.16	.41	.18	.26	.51		
Adjectival	111	.33	.38	.59	.06	.06	.21	.11	.11	.31		
Appositive	78	.77	.81	.82	.34	.93	.98	.47	.87	.89		
Non-Finite	55	.77	.63	.64	.29	.97	.97	.42	.76	.77		
Verbal	20	0	.75	.75	0	1	1	0	.86	.86		
Relative clause	13	1	.85	.85	.27	1	1	.43	.92	.92		
Total	412	.72	.72	.73	.19	.58	.68	.3	.64	.72		

Commas are good in precision but poor for recall

Modifier Type	#	Precision			Recall			F1			
		Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	
Prepositional	135	.83	.67	.69	.1	.16	.41	.18	.26	.51	
Adjectival	111	.33	.38	.59	.06	.06	.21	.11	.11	.31	
Appositive	78	.77	.81	.82	.34	.93	.98	.47	.87	.89	
Non-Finite	55	.77	.63	.64	.29	.97	.97	.42	.76	.77	
Verbal	20	0	.75	.75	0	1	1	0	.86	.86	
Relative clause	13	1	.85	.85	.27	1	1	.43	.92	.92	
Total	412	.72	.72	.73	.19	.58	.68	.3	.64	.72	

Dornescu et al. performs better on our dataset

Modifier Type	#	Precision				Recall			F1			
		Honnibal	Dornescu	Our	Honnibal	Dornescu	Our	Honnibal	Dornescu	Our		
Prepositional	135	.83	.67	.69	.1	.16	.41	.18	.26	.51		
Adjectival	111	.33	.38	.59	.06	.06	.21	.11	.11	.31		
Appositive	78	.77	.81	.82	.34	.93	.98	.47	.87	.89		
Non-Finite	55	.77	.63	.64	.29	.97	.97	.42	.76	.77		
Verbal	20	0	.75	.75	0	1	1	0	.86	.86		
Relative clause	13	1	.85	.85	.27	1	1	.43	.92	.92		
Total	412	.72	.72	.73	.19	.58	.68	.3	.64	.72		

Our system highly improves recall

To conclude this part...

- Large non-restrictive gold standard
 - Directly augmenting dependency trees
- Automatic classifier
 - Improves over state of the art results

Supervised Open Information Extraction

Supervised Open Information Extraction

Problem: No large benchmark for Open IE evaluation!

• Approach:

- Identify common extraction principles
- Extract a large Open IE corpus from QA-SRL
- Train a transducer Bi-LSTM

Open Information Extraction

- Extracts SVO tuples from texts
 - Barack Obama, the U.S president, was born in Hawaii
 → (Barack Obama, born in, Hawaii)
 - Obama and Bush were born in America
 → (Obama, born in, America), (Bush, born in, America)
- Useful for populating large databases
 - A scalable open variant of Information Extraction

Open IE: Many parsers developed

- TextRunner (Banko et al., NAACL 2007)
- WOE (Wu and Weld, ACL 2010)
- ReVerb (Fader et al., 2011)
- OLLIE (Mausam et al., EMNLP 2012)
- KrakeN (Akbik and Luser, ACL 2012)
- ClausIE (Del Corro and Gemulla, WWW 2013)
- Stanford Open Information Extraction (Angeli et al., ACL 2015)
- DEFIE (Bovi et al., TACL 2015)
- Open-IE 4 (Mausam et al., ongoing work)
- PropS-DE (Falke et al., EMNLP 2016)
- NestlE (Bhutani et al., EMNLP 2016)

Problem: Open IE evaluation

- Open IE task formulation has been lacking formal rigor
 - No common guidelines → No large corpus for evaluation
- Post-hoc evaluation:
 - Annotators judge a small sample of their output
- → Precision oriented metrics
- → Figures are **not comparable**
- → Experiments are hard to reproduce

Previous evaluations

System	#Sentences	Genre	Metric	#Annot.	Agreement
TextRunner	400	Web	% Correct	3	-
WOE	300	Web, Wiki, News	Precision / Recall	5	-
ReVerb	500	Web	Precision / AUC	2	86%, .68 k
KrakeN	500	Web	% Correct	2	87%
Ollie	300	News, Wiki, Biology	Precision/Yield AUC	2	96%
ClauseIE	300	Web, Wiki, News	Precision/Yield	2	57% / 68% / 63%

→ Hard to draw general conclusions!

Solution: Common Extraction Principles Large Open IE Benchmark Supervised Model

Common principles

1. Open lexicon

2. Soundness

"Cruz refused to endorse Trump"

ReVerb: (Cruz; endorse; Trump)

OLLIE: (Cruz; refused to endorse; Trump)

3. Minimal argument span

"Hillary **promised** better education, social plans and healthcare coverage" ClausIE: (Hillary, **promised**, better education), (Hillary, **promised**, better social plans), (Hillary, **promised**, better healthcare coverage)

Solution:

Common Extraction Principles

Large Open IE Benchmark

QA-SRL → Open IE

Supervised Model

Open IE vs. SRL vs. QA-SRL

QA-SRL isn't limited to a lexicon

	Open IE	Traditional SRL	QA-SRL
Open lexicon	V	X	V
Consistency	V	V	V
Reduced arguments	V	X	V

QA-SRL format solicits reduced arguments (Stanovsky et al., ACL 2016)

Converting QA-SRL to Open IE

- Intuition: generate all independent extractions
- Example:
 - "Barack Obama, the newly elected president, flew to Moscow on Tuesday"
 - QA-SRL:
 - Who flew somewhere? Barack Obama / the newly elected president
 - Where did someone fly?
 When did someone fly?
 on Tuesday
 - → OIE: (Barack Obama, **flew**, to Moscow, on Tuesday) (the newly elected president, **flew**, to Moscow, on Tuesday)
- → Cartesian product over all answer combinations
 - Special cases for nested predicates, modals, preposition and auxiliaries

Resulting Corpus

Corpus	WSJ	WIKI	All
#Sentences	1241	1959	3200
#Predicates	2020	5690	7710
#Questions	8112	10798	18910
#Extractions	4481	5878	10359

- Validated against an expert annotation of 100 sentences (95% F1)
- 13 times bigger than largest previous OIE corpus (ReVerb)

Solution:

Common Extraction Principles Large Open IE Benchmark Supervised Model

BIO Encoding

May, the British PM, plans for Brexit on which the UK has voted for last June

BIO Encoding

Multiple extractions by repeating labels

```
May<sub>A0-B</sub> the<sub>A0-B</sub> British<sub>A0-I</sub> PM<sub>A0-I</sub> plans<sub>P-B</sub> for<sub>P-I</sub> Brexit<sub>A1-B</sub> on which the UK has voted for last June

→ (May; plans for; Brexit)
```

→ (The British PM; plans for; Brexit)

```
the British PM, plans for Brexit, on which the A_{0-B} UK, has voted for; Brexit; last June) the UK; has voted for; Brexit; last June)
```

Argument label ≈ Argument role

End to End Model

POS and pretrained word embeddings

End to End Model

Predicate head concatenated to all word feats

End to End Model

Confidence = Π (word prob)

Evaluation

Analysis

System	# Extractions	Arg. per Prop.	Words per Arg
Gold	1730	2.45	26.91
ClausIE	2768	2.00	28.89
Open IE4	1793	3.07	22.75
PropS	1551	2.68	29.00
RnnOIE	1993	3.19	23.40

• RnnOIE overproduces and over-shortens arguments

Analysis

We generalize for unseen predicates

• 24% of predicates unseen in test

Conclusions

We've seen..

- Non-Restrictive modification
 - Crowdsourcing annotations
 - Modeling with CRF
 - Future work:
 - Distributive coordination
- Supervised Open IE
 - Automatically converted corpus
 - Transducer Bi-LSTMs
 - Future work:
 - Better confidence estimation
 - Model improvements

Future Work

- Layered structured representation
 - Integrating various levels of semantic annotations
- Crowdsourcing
 - Learning from partial annotations
- Multi-sentence
 - Collapsing co-referring nodes
- Multilingual

Thanks for Listening!