CS 2022: DATA STRUCTURES & ALGORITHMS

Graphs (Minimum Spanning Trees)

Malaka Walpola

OUTLINE

- Depth First Search (DFS) & Edges
- Minimum Spanning Trees (MST)
- Steiner Minimum Trees
- MST Generation Algorithms
 - * General Algorithm
 - * Kruskal's Algorithm
 - * Prim's Algorithm

LEARNING OUTCOMES

- After successfully studying contents covered in this lecture, students should be able to,
 - explain the idea of minimum spanning trees and their applications
 - explain the operation of the Kruskal's and
 Prim's algorithms used for the MST generation

CLASSIFICATION OF EDGES

- Tree Edge
 - * In the depth-first forest
 - * Found by exploring (u, v)
- Back Edge
 - * (u, v), where u is a descendant of v (in the depth-first tree)

CLASSIFICATION OF EDGES

- Forward Edge
 - * (u, v), where v is a descendant of u, but not a tree edge
- Cross Edge
 - * Any other edge
 - * Can go between vertices in same depth-first tree or in different depth-first trees

DFS & EDGES

- DFS of an Undirected Graph
 - * Only tree and back edges
 - * No forward or cross edges
- Directed Acyclic Graph
 - * A directed graph
 - * No cyclic paths
 - * A directed graph is acyclic iff DFS yields no back edges

SPANNING TREES

- * Graph G = (V, E)
 - * Undirected & connected
- Spanning Tree
 - * A connected, acyclic subgraph with all vertices
 - * An acyclic subset of edges T⊆ E that connects all vertices
 - * Tree: acyclic
 - * Spanning: spans the graph

MINIMUM SPANNING TREES

- Consider a Weighted Graph
- Cost of a Spanning Tree
 - * Sum of edge weights in the spanning tree
- * A Minimum Spanning Tree (MST)
 - * A spanning tree with minimum weight

MINIMUM SPANNING TREES

- * Applications
 - * Communication networks
 - * Circuit design
 - * Layout of highway systems
- Motivation
 - * Minimize the connection cost

MST EXAMPLES

Note: A MST may not be unique

*Figure taken from [2]

STEINER MINIMUM TREES

- * Graph G = (V, E)
 - * Weighted, undirected & connected
- * Subset of Vertices $V' \subseteq V$, Called **Terminals**
- Steiner Minimum Trees (SMT)
 - * A connected acyclic subgraph of *G* that includes all *terminals*

SMT EXAMPLE

* MST is just a SMT with V' = V

GENERATING MST - IDEA

- * Graph G = (V, E)
- Maintain a Subset of Edges A
 - * Initially empty
 - * Add one edge at a time
 - * The edge should be **safe**
- * Keep Adding Until G'=(V, A) is MST

GENERATING MST

```
Generic-MST(G, w)

1. A \leftarrow \emptyset

2. while A does not form a spanning tree

3. find an edge (u, v) that is safe for A

4. A \leftarrow A \cup \{(u, v)\}

5. return A
```

SAFE EDGE

- * A Subset of Edges $A \subseteq E$
 - * A is a subset of edges in some MST
 - * It is possible to extend (*V*, *A*) into a MST
- * An Edge $(u,v) \in E$ -A is **Safe** if $A \cup \{(u,v)\}$ is a Subset of Edges in Some MST
 - * It is possible to extend $(V, A \cup \{(u,v)\})$ into a MST

SAFE EDGE

Definitions

- * A **cut** (*S, V-S*) is just a partition of the vertices into 2 *disjoint* subsets
- * An edge (*u*, *v*) **crosses** the cut if one endpoint is in *S* and the other is in *V-S*
- * Given a subset of edges A, we say that a cut **respects** A if no edge in A *crosses* the cut
- * An edge of *E* is a **light edge** crossing a cut, if among all edges crossing the cut, it has the minimum weight

FINDING A SAFE EDGE

- * Graph G = (V, E)
 - * Connected, undirected & weighted
- * A Subset of Edges $A \subseteq E$
 - * *A* is a subset of edges in some MST
- * Theorem
 - * A Cut (S, V-S) Which Respects A
 - * (u,v) a Light Edge Crossing This Cut
 - * The Edge (u,v) is Safe

MST GENERATION ALGORITHMS

- Two greedy algorithms for computing MSTs
 - * Kruskal's Algorithm
 - * Start with a forest with single vertex trees
 - * Adds edges in increasing order of weight
 - * Trees merge into a single tree
 - * Prim's Algorithm
 - * Start with a single vertex as the root node of the tree
 - * Adds one node at a time to the current tree
 - * The tree grows until it spans all the vertices

KRUSKAL'S ALGORITHM - IDEA

- Start With a Forest With Single Vertex Trees
- Adds Edges in Increasing Order of Weights
 - * If the next edge does not induce a cycle among the current set of edges, then it is added to A
 - * If it does, then this edge is passed over, and the next edge is considered
 - * How to detect cycles?

KRUSKAL'S ALGORITHM - IDEA

- Trees Merge Into a Single Tree
 - * Each tree is connected
 - * If a new edge is added to a tree it will induce a cycle
 - * However if we add an edge which connects two trees, there will be no cycles
 - * Thus, add such edges
 - * After adding the edge, the two trees merge into a single tree

KRUSKAL'S ALGORITHM

MST-Kruskal (G, w)

- 1. $A \leftarrow \emptyset$
- 2. For each vertex $v \in G.V$
- 3. MAKE-SET (v)
- 4. sort the edges of G.E in nondecreasing order of weight
- 5. for each edge $(u, v) \in G.E$, in order of nondecreasing weight
- 6. if FIND-SET $(u) \neq \text{FIND-SET}(v)$
- 7. $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION (u, v)
- 9. return A

KRUSKAL'S ALGORITHM - EXAMPLE

PRIM'S ALGORITHM - IDEA

- A Tree With a Single Vertex as the Root Node
- * Adds One Leave (and a Vertex) at a Time to the Current Tree
 - * At any time, the subset of edges A forms a single tree; S = vertices of A

PRIM'S ALGORITHM - IDEA

- * Consider the set of vertices S currently part of the tree, and its complement (V-S)
- * We have a cut of the graph
- * the current set of tree edges A is respected by this cut
- * Which edge should we add next? Light edge!
- The tree grows until it spans all the vertices in V

PRIM'S ALGORITHM

```
MST-Prim(G, w, r)
1. for each vertex u \in G.V
2. u.key = \infty
3. u. \pi = NIL
4. r.key = 0
5. Q = G.V
6. while Q \neq \emptyset
7. u = \text{EXTRACT-MIN}(Q)
8. for each v \in G.Adj[u]
9. if v \in Q and w(u, v) < v.key
10.
        v.\pi = u
11.
         v.key = w(u, v)
```

PRIM'S ALGORITHM - EXAMPLE

SELF STUDYING

- Reading Assignment
 - * Chapter 23
 - * 23.1: Growing a Minimum Spanning Tree
 - * 23.2: The Algorithms of Kruskal and Prim

REFERENCES

- [1] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd Ed. Cambridge, MA, MIT Press, 2009.
- [2] Lecture slides available at http://www.cs.unc.edu/~plaisted/comp550/24.ppt
- [3] Lecture slides available at http://www.cs.unc.edu/~plaisted/comp550/25.ppt