A preencher pelo aluno (não escrevas o	o teu nome):	idade	sexo: F M
A preencher pelo GAVE:	n.º convencio	nal da escola	

2003

Prova de Aferição de

Matemática

3.º Ciclo do Ensino Básico

Observações	Observações						
(a preencher pelo aplicador)	(a preencher pelo aplicador)	(a preencher pelo classificador)					
A NP							
B PA							
C							
D							
E							
F							
G							

Instruções Gerais sobre a Prova

- A prova deve ser realizada a tinta azul ou preta. Podes usar calculadora.
- Todas as respostas devem ser dadas no enunciado da prova.
- Há questões em que apenas tens espaço para escrever as respostas.
 Noutras questões encontras espaços em branco, que podes utilizar para explicar a resposta e/ou para apresentar cálculos ou esquemas de apoio ao teu raciocínio, o que será considerado, mesmo que a resposta não esteja totalmente correcta.
- Em algumas questões, terás de colocar X no quadrado correspondente à resposta correcta. Se puseres X no quadrado errado, risca-o e coloca-o no lugar certo.
- Em separado, receberás um formulário que te poderá ajudar na resolução de algumas questões.

A prova consta de duas partes.

Tens 50 minutos para responder a cada parte.

No fim da Primeira Parte há um intervalo.

Parte A

- O dado da figura tem a forma de um octaedro regular. As suas 8 faces triangulares estão numeradas de 1 a 8 e têm igual probabilidade de saírem, quando se lança o dado.
- **1.1.** Qual é a probabilidade de se obter um número divisor de 8, quando se lança o dado uma vez?

	Resposta::
1.2.	Lançou-se o dado 8 vezes, e das 8 vezes saiu um número ímpar. O dado vai ser lançado de novo. Assinala com X a afirmação correcta.
	É mais provável que saia agora um número par.
	É tão provável que saia um número par como um ímpar.
	É mais provável que continue a sair um número ímpar.
	Não pode sair outra vez um número ímpar.

2. A Teresa e a Carla compraram uma tenda de campismo. A tenda tem a forma de um prisma triangular, cuja base é um triângulo equilátero. Nas instruções de montagem vinha o esquema representado em baixo.

2.1. A entrada da tenda tem de altura (b), aproximadamente, 1,6 m.
 Determina o volume da tenda, em m³.

Apresenta todos os cálculos que efectuares e indica o resultado aproximado às décimas.

Volume da tenda: _____ m³.

2.2. Para montar esta tenda são precisos os 7 ferros que estão assinalados com as letras de a a g, no esquema de montagem.Indica dois ferros que, depois da tenda montada, figuem:

2.2.1. Paralelos

2.2.2. Perpendiculares _____

3. O Paulo e a Teresa são dois irmãos gémeos de 20 anos de idade. Os seguintes gráficos permitem comparar a evolução dos pesos de ambos, ao longo dos seus anos de vida.

3.1. Com que idades o Paulo e a Teresa pesavam o mesmo?

3.2. Observa o gráfico e assinala com **X** a afirmação correcta sobre o aumento de peso da Teresa, entre os 5 e os 10 anos de idade.

	A Teresa aumentou mais do que 10 kg e menos do que 15	kg.
--	---	-----

A Teresa aumentou exactamente 15 kg.

A Teresa aumentou exactamente 20 kg.

3.3.	Para avaliar se uma pessoa é obesa (com excesso de peso), calcula-se o seu índice de massa corporal , que é dado pela seguinte fórmula:
	Índice de massa corporal = $\frac{P}{a^2}$
	Onde P é o peso (massa), em quilogramas; a é a altura, em metros.
	Segundo a Organização Mundial de Saúde, consideram-se de peso normal as pessoas em que o índice de massa corporal está no intervalo [20, 25].
3.3.1.	O Paulo, aos 20 anos, mede 1,82 metros. Tendo em conta a informação anterior e os dados fornecidos pelo gráfico, verifica se o Paulo pode ser considerado uma pessoa de peso normal. Explica a tua resposta.
	Resposta:
3.3.2.	Um amigo do Paulo tem 1,70 m de altura. Indica entre que valores se deve situar o seu peso, para que ele seja considerado uma pessoa de peso normal. Apresenta todos os cálculos que efectuares.

PA-M 7

Resposta:

4. Observa a seguinte sequência de figuras, onde estão empilhados azulejos brancos e cinzentos, segundo uma determinada regra.

- **4.1.** Indica, a seguir, o número de azulejos de cada cor necessários para construir a figura número 5.
- **4.1.1.** Número de azulejos brancos:
- **4.1.2.** Número de azulejos cinzentos:
- **4.2.** Na sequência a cima representada, existirá alguma figura com um **total** de 66 azulejos? Explica a tua resposta.

Resposta:

4.3. Tendo em conta o número de cada figura (1, 2, 3, ..., n, ...), escreve uma fórmula que permita calcular o número de azulejos cinzentos utilizados em cada uma das figuras.

Resposta:

Quem chega a Lisboa, entrando pelo Tejo, encontra uma torre "torta", mas elegante, que alberga o Centro de Coordenação e Controlo de Tráfego Marítimo.

A torre tem a forma de um prisma quadrangular oblíquo. A sua altura é de **36 m**, e a torre está inclinada a sul, segundo um ângulo de cerca de **75º**. Se o sol incidisse a pique sobre a torre, esta projectaria uma sombra rectangular, em que um dos lados mediria, aproximadamente, **9,6 m**, como está representado na figura.

Semanário Expresso, 8/9/2001

Qual é a medida do comprimento – h – da torre?
 Apresenta todos os cálculos que efectuares e indica o resultado aproximado às unidades.

Resposta:	m

5.2. A face [ABCD] da torre tem a forma de um paralelogramo. Indica a amplitude do ângulo $\,\alpha.\,$

Amplitude do ângulo α : ______°.

Não avances na prova até o professor dizer.

Se acabaste antes do tempo previsto, deves aproveitar para rever a tua prova.

Parte B

6. As pirâmides de idades que se seguem mostram a distribuição da população portuguesa por grupo etário, nos anos de 1981, 1991 e 2001. A última pirâmide apresenta uma previsão para o ano 2011.

6.1.	Uma pessoa que tenha nascido em 1995 em que grupo etário se encontrará em 2011?
	Resposta:
6.2.	Em 2001, a população portuguesa era de cerca de 10 066 000 habitantes. Que percentagem da população pertencia ao grupo etário 10 – 19? Apresenta todos os cálculos que efectuares.
	Resposta:
6.3.	Se a distribuição da população portuguesa continuar a evoluir de forma semelhante, qual será o grupo etário com maior população em 2021? Explica a tua resposta. Resposta:
	;

7. Indica dois números que, multiplicados um pelo outro, dêem o resultado de 7⁵.

Resposta:

8. O triângulo [PQR] é uma redução do triângulo **equilátero** [ABC], de razão 0,5.

Sabendo que $\overline{QR} = 5$, calcula o **perímetro** do triângulo [ABC]. Apresenta todos os cálculos que efectuares.

Perímetro do triângulo [ABC]:

9. Explica por que razão é que a seguinte afirmação é verdadeira.

A soma de dois números inteiros positivos consecutivos é sempre um número ímpar.

10. Em Portugal, para medir a temperatura, utilizam-se termómetros graduados em graus Celsius (°C), mas, por exemplo, em Inglaterra, utiliza-se a graduação em graus Fahrenheit (°F).
Uma fórmula que relaciona os graus Celsius e os graus Fahrenheit é a seguinte:

$$F = \frac{9}{5}C + 32$$

10.1. Utilizando a fórmula anterior, calcula, em graus Fahrenheit, a temperatura correspondente a 0 °C e 40 °C, preenchendo correctamente os rectângulos da figura.

10.2. Calcula, em graus Celsius, o valor da temperatura correspondente a 212 °F.

Apresenta todos os cálculos que efectuares.

Resposta: _____°C.

- 11. Numa competição de natação sincronizada, cada exercício é avaliado por dois grupos de cinco juízes: um grupo avalia o Mérito Técnico e outro grupo a Impressão Artística. A nota final do exercício é calculada de acordo com as seguintes etapas:
 - **1.** Das cinco notas atribuídas por cada grupo de juízes, eliminam-se a nota mais baixa e a nota mais alta de cada grupo.
 - **2.** Calcula-se a média das restantes três notas atribuídas por cada grupo de juízes.
 - 3. Utilizando as médias obtidas na etapa 2,
 - multiplica-se por 6 a média das notas atribuídas pelos juízes do Mérito Técnico;
 - multiplica-se por 4 a média das notas atribuídas pelos juízes da Impressão Artística.
 - **4.** A nota final do exercício é obtida pela soma dos valores obtidos na etapa 3.

Um concorrente obteve as seguintes notas num certo exercício:

Mérito Técnico	8,0	8,4	8,5	8,6	7,6
Impressão Artística	8,6	8,3	8,3	8,1	8,7

Calcula a nota final deste exercício, conforme as etapas descritas. Indica, em cada etapa, as decisões que tomares e apresenta os cálculos que efectuares.

Resposta:	
•	

12.	O Vale Seco de McMurdo é uma das regiões da Antárctida.
	Tail Cood de Memaras e arma das regions da 7 mais dadar

12.1. A tabela seguinte apresenta as temperaturas médias mensais, em °C, relativas ao ano de 1983, no Vale Seco de McMurdo.

Meses	Janeiro	Fevereiro	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro	Dezembro
Temperaturas médias (° C)		- 12,4	- 20,2	- 18,7	- 20,5	- 20,9	- 24,0	-17,5	- 19,4	- 18,8	- 10,8	- 3,8

Indica o mês em que a temperatura média foi mais baixa.

Resposta:	
resposia.	

12.2. No Vale Seco de McMurdo, a temperatura média anual desce, por década, 0,7 °C, contrariando a tendência global do planeta.

Nesta região, na década de 1980/1989, a temperatura média foi de $-17.4~^{\circ}\text{C}$.

Qual será a previsão da temperatura média anual para a década de 2000/2009?

Resposta: _____°C.

13. O padrão do azulejo a seguir representado foi inspirado num desenho de uma tábua babilónica de argila, do segundo milénio a.C.

Assinala com ${\bf X}$ o friso que ${\bf n\~ao}$ pode ${\bf ser}$ construído com 3 desses azulejos.

☐ Friso A

Friso B

Friso C

Friso D

