ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

13 июня 2014г.

	<u> </u>
ФИО	No
ΨHO	группы

ВАРИАНТ А

1	2	3	4	5	Σ	оценка

1А. Амплитудный коэффициент пропускания голограммы точечного источника, записанной по методу Габора, зависит от радиуса: $\tau(\rho) = A + B\cos(C\,\rho^2 + \varphi)$, где A, B, φ — некоторые константы, а $C = 628\,\mathrm{cm}^{-2}$. На каком расстоянии от голограммы будут находиться действительное и мнимое изображения, если её осветить параллельным пучком света с длиной волны $\lambda = 500\,\mathrm{hm}$?

2A. Широкая пластинка из поляроида освещается параллельным пучком неполяризованного монохроматического света с интенсивностью I_0 . Для «разрешенного» направления колебаний пластинка вносит фазовую задержку $\Delta \varphi = 2\pi m \pm \pi/2$ (m — некоторое целое число). Как изменится интенсивность света в точке P, если в пластинке проделать круглое отверстие в одну зону Френеля? (см. рис.)

3А. Если во входной плоскости Π_1 оптической системы (см. рис.) расположить предмет, то в выходной плоскости Π_2 изображение предмета оказывается <u>сфокусированным</u>, т.е. плоскости Π_1 и Π_2 являются <u>оптически сопряжёнными</u> (по законам геометрической оптики). При каком минимальном смещении объекта Δz от

входной плоскости Π_1 изображение в выходной плоскости Π_2 также окажется сфокусированным, если в Фурье плоскости Φ (см. рис.) расположить фильтрующую решётку с периодом $d=10^{-2}$ см. Фокусные расстояния объективов Π_1 и Π_2 равны f=10 см, а длина волны, освещающей объект, $\lambda=5\cdot 10^{-5}$ см.

4А. Ширина спектральной линии неона с длиной волны $\lambda = 633$ нм (на этой линии работает *He-Ne* лазер) равна $\Delta \nu = 1,5 \cdot 10^3 \, \mathrm{M}\Gamma$ ц. Для детального исследования контура этой линии, то есть зависимости спектральной

интенсивности от частоты $J(\omega)$ (или от длины волны $J(\lambda)$), предлагается использовать интерферометр Фабри-Перо (ИФП), зеркала которого имеют энергетический коэффициент отражения r=0.95. Условная схема эксперимента показана на рис. Излучение газоразрядной неоновой трубки проходит через спектральный фильтр, выделяющий спектральный интервал $(\lambda, \lambda + \Delta \lambda)$ ($\Delta \lambda$ соответствует $\Delta \nu$), и направляется на ИФП. Какую максимальную базу $L_{\rm max}$ может иметь ИФП для того, чтобы с его помощью можно было исследовать контур спектральной линии неона во всём диапазоне частот? Какой при этом будет максимальная разрешающая способность $R_{\rm max}$ интерферометра Фабри-Перо?

5A. В интерференционном опыте Юнга используется квазимонохроматический точечный источник света, излучающий с постоянной спектральной интенсивностью $J_0\left(J(\omega)=J_0\right)$ в интервале частот $\Delta\omega$, локализованном вблизи центральной частоты излучения ω_0 (рис. а). Если излучение пройдет через фильтр, пропускающий N дискретных, равноотстоящих по частоте спектральных линий с частотным интервалом между линиями Ω (так, что общая полоса частот $N\Omega = \Delta\omega$ осталась неизменной, а спектральная ширина каждой линии $\delta\omega$ много меньше частотного интервала Ω между линиями (рис. б)), то интерференционная картина изменится. В каких порядках интерференции m_{\max} наблюдаются при этом максимумы

видности и какова в этих порядках видность полос? При каком отклонении Δm от максимального значения $m_{\rm max}$ ($m=m_{\rm max}\pm\Delta m$) видность окажется равной нулю?

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

13 июня 2014г.

ФИО	№ группы

ВАРИАНТ Б

1	2	3	4	5	Σ	оценка

1Б. Известно, что смесь красного и зеленого света воспринимается глазом человека как жёлтый свет. Амплитудная синусоидальная решётка периода $d=10^{-2}\,\mathrm{cm}$ освещается параллельным пучком света, содержащим две спектральные линии: $\lambda_1=630\,\mathrm{mm}$ (красный свет) и $\lambda_2=525\,\mathrm{mm}$ (зелёный свет). Определите, на каком минимальном расстоянии нужно расположить белый экран, чтобы саморепродуцированное изображение решётки оказалось жёлтым.

2Б. Амплитудная зонная пластинка Френеля для радиоволн с длиной волны $\lambda=3$ мм, состоящая из чередующихся прозрачных и непрозрачных зон Френеля, вставлена в отверстие в непрозрачном экране диаметром D=30 см. Точечный источник S радиоволн и точка наблюдения P расположены симметрично относительно экрана на расстояниях a=b=150 см (см. рис.). Радиусы зон Френеля пластинки рассчитаны именно для этого расположения точек S и P. Интенсивность волн в плоскости экрана равна $I_0=A_0^2$. Определите

интенсивности колебаний I, I_1 , I_2 в т. P для случаев: 1) начального положения т. S; 2) при перемещении источника на расстояние $a_1=a/3$ до экрана; 3) при перемещении источника на расстояние $a_2=a/5$ до экрана.

3Б. При записи голограммы точечного источника S_1 , расположенного на расстоянии $R_1=60\,\mathrm{cm}$ от фотопластинки $\mathcal{\Phi}$, по методу Габора вместо плоской опорной волны использована сферическая опорная волна от когерентного точечного источника S_2 , расположенного на расстоянии $R_2=90\,\mathrm{cm}$ от фотопластинки (см. рис.) В эксперименте был использован монохроматический свет лазера. Предполагая, что

амплитудная прозрачность записанной таким образом голограммы пропорциональна интенсивности света при записи, определите положения действительного и мнимого изображений при просвечивании голограммы нормально падающей плоской волной той же длины волны, что и при записи.

4Б. В He-Ne лазере, работающем на длине волны $\lambda = 633$ нм, в качестве резонатора используется интерферометр Фабри-Перо с базой L=15 см. При определённых условиях лазер может генерировать излучение, спектр которого состоит из

двух близких линий (так называемых продольных мод). Каждая из этих линий является резонансной для лазерного интерферометра Фабри-Перо. Лазерный пучок расширяется с помощью телескопической системы (см. рис.) и падает нормально на дифракционную решётку с плотностью штрихов $n=1,2\cdot 10^3$ мм $^{-1}$ и шириной $\ell=10$ см. Возможно ли с помощью данной решётки разрешить моды в излучении лазера?

5Б. Протяженный квазимонохроматический источник света S (длина волны λ) накрыт решёткой с периодом d, так что весь источник покрывают N щелей решётки (ширина щелей b много меньше периода d). Источник используется в опыте Юнга и находится на расстоянии L от непрозрачного экрана с двумя узкими щелями S_1 и S_2 , расстояние между которыми ρ (см. рис.). 1) Найти степень когерентности колебаний на щелях S_1 и S_2

(видность интерференционной картины на экране Э). 2) При каком минимальном расстоянии ρ_0 между щелями S_1 и S_2 видность интерференционной картины максимальна, чему она при этом равна? 3) При каком отклонении расстояния $\Delta \rho$ от ρ_0 видность картины обращается в нуль?