Algoritmul FORD-FULKERSON de determinare a unui flux maxim

+ a unei tăieturi minime

Amintim:

- s-t lanţ f-nesaturat
 - arc direct
 - arc invers
 - capacitate reziduală arc, lanţ
- Operația de revizuire a fluxului de-a lungul unui s-t lanț f-nesaturat
- Tăietură în rețea
 - capacitatea unei tăieturi

capacități reziduale

$$i(P) = min{6, 2, 3, 2, 4} = 2$$

Fluxul este maxim – în mulțimea de arce evidențiată toate arcele au flux=capacitate și nu putem construi drumuri de la s la t care nu conțin arce din această mulțime (tăietură)

Algoritm generic de determinare a unui flux maxim – algoritmul FORD – FULKERSON

- Fie $f \equiv 0$ fluxul vid (f(e) = 0, $\forall e \in E$)
- Cât timp există un s-t lanţ f-nesaturat P în G
 - · determină un astfel de lanţ P
 - revizuieşte fluxul f de-a lungul lanţului P
- returnează f

Algoritmul FORD-FULKERSON Complexitate

- Algoritmul se termină?
- De ce este necesară ipoteza că fluxul are valori întregi?
- Care este numărul maxim de etape?
 - Cum determinăm un lanţ f-nesaturat?
 - Criteriul după care construim lanţul f-nesaturat influenţează numărul de etape (iteraţii cât timp)?

Criteriul după care construim lanțul f-nesaturat influențează numărul de etape

Criteriul după care construim lanțul f-nesaturat influențează numărul de etape

Pasul 1: [s, 1, 2, t] - i(P)=1

Pasul 2: [s, 2, 1, t] - i(P)=1

Pasul 3: [s, 1, 2, t] - i(P) = 1

Pasul 4: [s, 2, 1, t] - i(P) = 1

. . .

Algoritm FORD - FULKERSON

Complexitate

Algoritm FORD - FULKERSON

Complexitate O(mL), unde

$$L = \sum_{su \in E} c(su)$$

Algoritmul FORD-FULKERSON Corectitudine

Fluxul determinat de algoritm are valoare maximă, sau putem determina un flux de valoare mai mare prin alte metode?

Trebuie să arătăm că

 \nexists s-t lant f-nesaturat \Rightarrow f flux maxim

- Vom demonstra că
 - $val(f) \le c(K)$ pentru orice f flux, K tăietură

•

- Vom demonstra că
 - $val(f) \le c(K)$ pentru orice f flux, K tăietură
 - ∄ s-t lanţ f-nesaturat ⇒ ∃ K cu val(f) = c(K) ⇒
 ⇒ f flux maxim

Implementarea algoritmului FORD-FULKERSON

Cum determinăm un lanţ f-nesaturat?

Spre exemplu prin parcurgerea grafului pornind din vârful s şi considerând doar arce cu capacitatea reziduală pozitivă (în raport cu lanţurile construite prin parcurgere, memorate cu vectorul tata)

= s-t drum în graful reziudal

Spre exemplu prin parcurgerea grafului pornind din vârful s şi considerând doar arce cu capacitatea reziduală pozitivă (în raport cu lanţurile construite prin parcurgere, memorate cu vectorul tata)

- Parcurgerea BF ⇒
 determinăm s-t lanţuri f-nesaturate de lungime minimă
- ⇒ **Algoritmul EDMONDS-KARP** = Ford-Fulkerson în care lanțul P ales la un pas are lungime minimă

Spre exemplu prin parcurgerea grafului pornind din vârful s şi considerând doar arce cu capacitatea reziduală pozitivă (în raport cu lanţurile construite prin parcurgere, memorate cu vectorul tata)

Alte criterii de construcţie lanţ ⇒ alţi algoritmi

Implementarea algoritmului FORD-FULKERSON

Algoritmul EDMONDS-KARP

Schema:

```
initializeaza_flux_nul()
cat timp (construieste_s-t_lant_nesat_BF()=true) executa
    revizuieste_flux_lant()
afiseaza_flux()
```

construieste_s-t_lant_nesat_BF() - construieste un s-t lanţ nesaturat prin parcurgerea BF din s (a grafului rezidual)

 sunt considerate în parcurgere doar arce pe care se poate modifica fluxul, adică având capacitate reziduală pozitivă

construieste_s-t_lant_nesat_BF() - construieste un s-t lanţ nesaturat prin parcurgerea BF din s

Returnează **false** dacă un astfel de lanţ nu există (şi **true** dacă l-a putut construi)

```
revizuieste_flux_lant()
```

- fie P s-t lanţul găsit în construieste_s-t_lant_nesat_BF()
- calculăm i(P)
- pentru fiecare arc e al lanțului P

•

•

revizuieste_flux_lant()

- fie P s-t lanţul găsit în construieste_s-t_lant_nesat_BF()
- calculăm i(P)
- pentru fiecare arc e al lanțului P
 - creștem cu i(P) fluxul pe e dacă este arc direct
 - scădem cu i(P) fluxul pe e dacă este arc invers

Exemplu Algoritmul EDMONDS-KARP

initializeaza_flux_nul

construieste_s-t_lant_nesat_BF

S

Capacitatea reziduală

revizuieste_flux_lant

construieste_s-t_lant_nesat_BF

S

revizuieste_flux_lant

Revizuire flux

construieste_s-t_lant_nesat_BF

S

revizuieste_flux_lant

construieste_s-t_lant_nesat_BF

S

t nu este accesibil din $s \Rightarrow STOP$

0

t nu este accesibil din $s \Rightarrow STOP$

• f este flux maxim

t nu este accesibil din $s \Rightarrow STOP$

- f este flux maxim
- tăietura determinată de vârfurile accesibile din s la ultimul pas prin lanțuri f-nesaturate este tăietură minimă (= din vârfurile vizitate la ultimul pas)

(vom demonstra !!!

Tăietură minimă

Sugestii de implementare Algoritmul EDMONDS-KARP

Implementare

- Memorăm lanţurile (arborele BF) folosind vector tata
- Convenţie pentru arcele inverse (i,j) ţinem minte tatăl cu semnul minus

```
tata[j] = -i
```

construieste_s-t_lant_nesat_BF()

```
construieste_s-t_lant_nesat_BF()
  pentru(v∈V) executa tata[v] ←0; viz[v] ←0
```

```
construieste_s-t_lant_nesat_BF()

pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0

coada C \leftarrow \emptyset

adauga(s, C)

viz[s] \leftarrow 1
```

```
construieste_s-t_lant_nesat_BF()

pentru(v\inV) executa tata[v] \leftarrow0; viz[v] \leftarrow0

coada C \leftarrow \varnothing

adauga(s, C)

viz[s]\leftarrow 1

cat timp C \neq \varnothing executa

i \leftarrow extrage(C)
```

```
construieste_s-t_lant_nesat_BF()
  pentru(v∈V) executa tata[v] ←0; viz[v] ←0
  coada C ← Ø
  adauga(s, C)
  viz[s]← 1
  cat timp C ≠ Ø executa
   i ← extrage(C)
    pentru (ij ∈ E) executa arc direct
       dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
      pentru (ij ∈ E) executa arc direct
            dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
               adauga (j, C)
               viz[j] \leftarrow 1; tata[j] \leftarrow i
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
      pentru (ij ∈ E) executa arc direct
           dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
               adauga (j, C)
               viz[j] \leftarrow 1; tata[j] \leftarrow i
               daca (j=t) atunci STOP și returnează true(1)
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
      pentru (ij ∈ E) executa arc direct
           dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
              adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow i
              daca (j=t) atunci STOP și returnează true(1)
      pentru (ji ∈ E) executa arc invers
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
      pentru (ij ∈ E) executa arc direct
           dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
              adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow i
              daca (j=t) atunci STOP și returnează true(1)
     pentru (ji ∈ E) executa arc invers
           daca (viz[j]=0 și f(ji)>0) atunci
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
      pentru (ij ∈ E) executa arc direct
           dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
              adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow i
               daca (j=t) atunci STOP și returnează true(1)
      pentru (ji ∈ E) executa arc invers
           daca (viz[j]=0 și f(ji)>0) atunci
               adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow -i
```

```
construieste s-t lant nesat BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  coada C \leftarrow \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
      i \leftarrow extrage(C)
     pentru (ij ∈ E) executa arc direct
          dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
              adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow i
              daca (j=t) atunci STOP și returnează true(1)
     pentru (ji ∈ E) executa arc invers
          daca (viz[j]=0 și f(ji)>0) atunci
              adauga (j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow -i
              daca (j=t) atunci STOP și returnează true(1)
  returnează false(0)
```

Algoritmul Edmonds-Karp

- Complexitate
 - Algoritm generic Ford Fulkerson O(mC)
 - Edmonds Karp O(nm²)