R06946003 湯忠憲 ADL HW1-TIMIT Sequence Labeling Model description

RNN

• Preprocessing:

由於 RNN 需要給定三個維度,(batch size, frame size, feature size),而其中,frame size 也是固定的,所以需要切固定數量的 frame 給單一 sample。這裡我用 200 個 frame 當一個 sample,同一音檔有可能會用到兩至三個 sample (即超過 200 個 frame,相關統計可見圖一) ,因此,在同一音檔, sample 跟 sample 之間有用 overlap 的方式讓 RNN 學到連續的特徵。特徵的部分則是將 mfcc 跟 fbank concatenate 起來變成 108 維的 feature。最後 input shape 就是(batch size, 200,108)。Batch size 的部分經實驗後發 128 表現比較穩定。

圖一、音檔 frame 個數統計

• Model structure:

圖二是我的初始版的 RNN 架構,用兩層 LSTM 接 2 層 fully connected layer, 最後輸出 49 維的 array (48 phone + 1 zero padding class), optimizer 用 Adam。 經過 100 個 epochs 後, kaggle 上的 Levenshtein distance 約為 12.3551。

```
model = Sequential()
model.add(LSTM(input_shape = (200,108),units=64,return_sequences= True))
model.add(LSTM(units=128,return_sequences= True))
model.add(Dense(512,activation="relu"))
model.add(Dense(49, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

圖二、RNN 程式架構

CNN+RNN

• Preprocessing:

CNN+RNN 的架構則是根據助教投影片的說明建構的(如圖三)。因此原本一個 frame 是用 1*108 維度的特徵來表示,現在則是 3*108 的一個二維陣列來表示。所以 inpute shape 變成 (batch size, feature size, feature size, number of lookup frame)。CNN 掃的方向則是與時域垂直,因為時域的在之後的 RNN 終能被學到。

圖三、CNN+RNN 模型 (助教 PPT)

• Model structure:

模型中 CNN 跟 RNN 是 Jointly train,因此我用 Keras 中,TimeDistributed 的 function 讓每一個進到 RNN 中的 sample 的 frame 都個別經過 CNN,以符合圖三中的架構。CNN 層則是用 1D 的 Convolution layer,因為我們只在單一方向掃 feature。之後則是接兩層 RNN 和兩層 fully-connected layers,optimizer 用的一樣是 Adam。

```
model = Sequential()
model.add(TimeDistributed(Conv1D( filters=16, kernel_size=6),input_shape =(200,108,3)))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(units=64,return_sequences= True))
model.add(LSTM(units=128,return_sequences= True))
model.add(Dense(512,activation="relu"))
model.add(Dense(49, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

圖四、CNN+RNN 程式架構

經過多次實驗,包含調整 filter 數量、kernel_size 等等,發現這樣的作法對 kaggle 上的表現沒有太大的幫助,Levenshtein distance 約為 12.4871。

How to improve your performance

為了讓 performance 更好,我主要嘗試了五項 techniques 提升效果:

1. Bidirectional LSTM:

雙向 LSTM 可以從兩個方向看 frame data,可以學到更堅實的前後關係,概念則如圖四。

圖五、 $Bidirectional\ RNN$ (https://github.com/huseinzol05/Generate-Music-Bidirectional-RNN)

其 output 得維度會是單項 RNN 的兩倍。

2. Dropout:

Dropout 在這裡也可以發揮不錯的效果,該方法可以讓每個 neuron 更強一點,最後再用 ensemble 的方式,平均 neuron 的 output。這樣可以防止模型 overfitting。此外,將 Dropout rate 調的 aggressive 一點,例如 0.5、0.3,可以有效提升表現。

3. 增加CNN 看到的frame 數量:

原本使用 3*108 的二維陣列給 CNN,試著增加前後 frame 的個數可以讓 CNN 一次看到更多資訊,同時調整 filter 和 kernel size。

4. BatchNormalization:

在 activation 前後增加 BatchNormalization 層。

5. 設計Decoder:

透過觀察和統計 label 出現分佈(如圖五),可以發現全部的 phone 都會至少重複三次,因此 prediction 在 decode 後如果只有單獨一個或者兩個 phone 連在一起,都將他 decoder 程後面的 label (等同直接砍掉)。實際實驗後發現即使是三連音砍掉都還能提升效果。

圖六、label list

Experimental results and settings

Model	Basic RNN	Basic CNN	RNN+Dropout	CNN+Bi- Lstm+Dropout	Bi-Lstm + Dropout
Levenshtein distance	12.3551	12.3551	11.16098	8.5539	7.904895

表一、各模型表現

Compare and analyze the results between RNN and CNN

實作兩種模型,並且多次修改模型層數後發現兩個模型得到的效果類似,(兩種的 RNN 均用 LSTM 的情況下)。有可能是 LSTM 在本次 dataset 上已經能有很強的表現,將 CNN 的效果稀釋了。若將 LSTM 換程 simpleRNN 的話可以發現兩個模型中, CNN+RNN 會有較好的效果。

此外,若將CNN+RNN的模型中加上aggressive的Dropout和使用Biderictional LSTM 後,Levenshtein distance可以降低到8.5539(平均),這也是我在 kaggle 上最後成績。

模型程式碼如下圖:

圖七、CNN+Bi-Lstm+Dropout

• Compare and analyze the results with other models

除了上述模型之外,寫 report 的過程中意外發現不加任何 CNN 層也可以取得不錯的效果。用 4 層 LSTM 各帶 0.5 的 Dropout rate 可以拿到約 7.904895 (平均)的 Levenshtein distanc。而 BatchNormalization 在這個模型中沒有特別的效果。

```
model = Sequential()
model.add(Bidirectional(LSTM(units=256,return_sequences= True),input_shape = (200,108)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(units=128,return_sequences= True),input_shape = (200,108)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(units =64, return_sequences= True)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(units =32, return_sequences= True)))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dense(512))
model.add(Dense(49, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

圖八、Bi-Lstm + Dropout