

Tutorial 2: Distributed Query Processing

Alex Polak

E-mail: a.polak@uq.edu.au

+ Q1 Distributed Query Processing

- At the global level, distributed query processing consists of three main steps:
 - 1. Query Decomposition
 - Data Localization
 - 3. Global Optimization
- Discuss these three steps, focusing on the input, output, objectives for each step.

+ Q1 Layers of Query Processing

+ Distributed Query Processor

- From high level query
 - Relational Calculus: $\{t|F(t)\}$
 - $\{t \mid EMPLOYEE(t) \text{ and } t.SALARY > 10000\}$
 - SQL Query:
 - SELECT ... FROM ... WHERE ...
- To a sequence of database operators on fragments
 - Relational Algebra
 - Selection $\sigma_F(R)$ F is a formula: SALARY > 10000
 - Projection $\Pi_{A,B}(R)$ A, B are two attributes of R
 - Union $R \cup S$
 - Difference R S
 - Cartesian Product $R \times S$

Relational Algebra Operation Complexity

Operation	Complexity
Selection Project (without duplicate elimination)	O(n)
Project (with duplicate elimination) Group by	$O(n \log n)$
Join Semi-Join Division Set Operators	$O(n \log n)$
Cartesian Product	$O(n^2)$

Find a value from a tree takes $O(\log n)$ time

- Optimization Principle
 - Reduce number of operations
 - Reduce size *n*

+ Q1 Layers of Query Processing

+ Q1-1 Query Decomposition

Input: User query on global data expressed in relational calculus.

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO AND ASG.PNO= "P1"

AND (DUR=12 OR DUR=24)

Output: An algebraic query on global relations

 $\sigma_{PNO=P1 \land (DUR=12 \lor DUR=24)}$

 Π_{ENAME}

- Nothing to do with the distribution of data
 - Same for centralized and distributed system

+ Q1-1 Query Decomposition

Objective:

- Same as centralized DBMS
 - Semantically correct
 - Redundant work is avoided
 - Better query performance

Steps

- Normalization
- 2. Analysis
- Redundancy Removal
- 4. Rewrite

Normalization

- Transform the WHERE clause to normal form
- Conjunctive normal form
 - $(p_{11} \lor p_{12} \lor ... \lor p_{1n}) \land ... \land (p_{11} \lor p_{12} \lor ... \lor p_{1n})$
 - EMP.ENO = ASG.ENO \(\Lambda \) ASG.PNO = "P1" \(\Lambda \) (DUR=12 \(\mathbb{V} \) DUR=24)
- Disjunctive normal form
 - $(p_{11} \land p_{12} \land ... \land p_{1n}) \lor ... \lor (p_{11} \land p_{12} \land ... \land p_{1n})$
 - (EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ DUR=12) ∨
 - (EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ DUR=24)
 - Replicated join and select
- One form can be converted to another through transformation rules.

2. Analysis

- Remove impossible or unnecessary normalized queries
- Type Incorrect
 - Attribute or relation name not defined in global schema
 - Operation applied on wrong type
 - Birthdate > 20
- 2. Semantically Incorrect

```
SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR \geq 36
AND TITLE = "Programmer"
```


Elimination of Redundancy

```
SELECT TITLE
FROM
         EMP
        (NOT (TITLE = "Programmer")
WHERE
AND (TITLE = "Programmer"
         TITLE = "Elect. Eng.")
OR
         NOT (TITLE = "Elect. Eng."))
AND
         ENAME = "J. Doe"
OR
                                             (\neg p_1 \land (p_1 \lor p_2) \land \neg p_2) \lor p_3
p_1: TITLE = "Programmer"
                                             = (\neg p_1 \land ((p_1 \land \neg p_2) \lor (p_2 \land \neg p_2)) \lor p_3
 p_2: TITLE="Elect.Eng"
                                             = (\neg p_1 \land p_1 \land \neg p_2) \lor (\neg p_1 \land p_2 \land \neg p_2)) \lor p_3
 p_3: ENAME="J. Doe"
                                             = (false \land \neg p_2) \lor (\neg p_1 \land false)) \lor p_3
                                             = false \lor false \lor p_3
SELECT TITLE
                                             = p_3
FROM
            \mathsf{EMP}
WHERE ENAME = "J. Doe"
```


4. Rewriting

- Rewrite to relational algebra
- Operation Tree

SELECT ENAME

FROM PROJ, ASG, EMP

WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO

AND ENAME != "J. Doe"

AND PROJ.PNAME = "CAD/CAM"

AND (DUR = 12 OR DUR = 24)

Rewriting

- Separate the unary operations
 - Simplify query expression
- Group unary operation on same relation together
- Commute binary with unary
 - Selection/Projection first
- Reorder binary operations

+ Q1 Layers of Query Processing

+ Q1-2 Data Localization

- Consider the distribution of data
 - Fragments
- Input: Relational algebra query from data decomposition
- Output: An algebraic query expressed on physical fragments
- Objective:
 - Consider the data distribution
 - Localize the query's data using data distribution information in the fragment schema

+ Q1-2 Data Localization

- Localized Query
 - Replace the leaves of the operator tree with subtrees corresponding to the localization programs
 - Not efficient
- Reduction Query
 - Push unary operation down
 - Reduce with selection
 - Reduce with Join

+ Q1 Layers of Query Processing

+ Q1-3 Global Optimization

- Input: Reduced Queries on fragments
- Output:
 - Query execution plan minimizes the objective cost function
 - Communication operations

+ Q1-3 Global Optimization

Component

- Search Space / Solution Space
 - Set of alternative execution plans
- Cost Model/Function
 - I/O cost + CPU cost + Communication cost
 - Join order
 - Semi-Join
- Search Strategy/Algorithm
 - Dynamic programming, Greedy, Randomized

Objective:

- Find the best (not necessarily optimal) global execution schedule/query plan
- Minimize a cost function

(b) bushy join tree

+ Q2 Localization

■ PROJ2 = $\sigma_{PNO>"P2"}$ PROJ

- 1	٧л	\mathbf{L}
-1	VI	
	=1	-M

LIVII			
ENO	ENAME	TITLE	
E1	J. Doe	Elect. Eng	
E2	M. Smith	Syst. Anal.	
E3	A. Lee	Mech. Eng.	
E4	J. Miller	Programmer	
E5	B. Casey	Syst. Anal.	
E6	L. Chu	Elect. Eng.	
E7	R. Davis	Mech. Eng.	
E8	J. Jones	Syst. Anal.	

ASG			
ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PROJ

PNO	PNAME	BUDGET
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

PAY

TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

Transform the following query into a reduced query on fragments:

- SELECT ENO, PNAME SEP
- FROM PROJ, ASG SEP
- WHERE

PROJ.PNO = ASG.PNO AND PNO = "P4"

EMP			
ENO	ENAME	TITLE	
E1	J. Doe	Elect. Eng	
E2	M. Smith	Syst. Anal.	
E3	A. Lee	Mech. Eng.	
E4	J. Miller	Programmer	
E5	B. Casey	Syst. Anal.	
E6	L. Chu	Elect. Eng.	
E7	R. Davis	Mech. Eng.	
E8	J. Jones	Syst. Anal.	

ASG			
ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PROJ

PNO	PNAME	BUDGET
P1 P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

PAY		
TITLE	SAL	
Elect. Eng.	40000	
Syst. Anal.	34000	
Mech. Eng.	27000	
Programmer	24000	

+ Q2-1 Localized Query

- Localized query
 - SELECT ENO, PNAME SEP
 - FROM PROJ1 U PROJ2, ASG1 U ASG2 U ASG3
 - WHERE

+ Q2-1 Reduced Query

- Reduce with selection
 - SELECT ENO, PNAME SEP
 - FROM PROJ, ASG
 - WHERE

$$(PROJ1 = \sigma_{PNO \leq "P2"} PROJ) \land (PNO = "P4") = \Phi$$

 $PROJ2 = \sigma_{PNO > "P2"} PROJ$

 $ASG = \sigma_{PNO>"P3"} ASG^{[1]}$

PROJ1, ASG PROJ2, ASG

+ Q2-1 Reduced Query

- SELECT ENO, PNAME SEP
- FROM PROJ2, ASG[SEP]
- WHERE

AND
$$PNO = "P4"$$

reduced

optimized

+ Q2.2 Localization

■ PROJ2 =
$$\sigma_{PNO>"P2"}$$
 PROJ

■ ASG1 =	σ _{PNO≤"P2"} A	4SG
----------	-------------------------	-----

■ ASG2 = $\sigma_{\text{"P2"} < \text{PNO} \leq \text{"P3"}}$ ASG

■ ASG3 = $\sigma_{PNO>"P3"}$ ASG

EMP		
ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.

<u>A</u>	SG			
E	NO	PNO	RESP	DUR
Г	E1	P1	Manager	12
	E2	P1	Analyst	24
1	E2	P2	Analyst	6
1	E3	P3	Consultant	10
1	E3	P4	Engineer	48
1	E4	P2	Programmer	18
1	E5	P2	Manager	24
1	E6	P4	Manager	48
1	E7	P3	Engineer	36
L	E8	P3	Manager	40

D	\neg	- 1
	\sim	J

PNO	PNAME	BUDGET
P1 P2	Instrumentation Database Develop.	150000 135000
P3	CAD/CAM	250000
P4	Maintenance	310000

J. Jones Syst. Anal.

679	PAY	
	TITLE	SAL
	Elect. Eng.	40000
	Syst. Anal.	34000
	Mech. Eng.	27000
	Programmer	24000

- Transform the following query into a reduced query on fragments, and determine whether it is better than the localized query:
 - SELECT RESP, BUDGET
 - FROM ASG, PROJ
 - WHERE

ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"

- Localized query: [step]
 - SELECT RESP, BUDGET
 - FROM PROJ1 U PROJ2, ASG1 U ASG2 U ASG3
 - WHERE

- Reduce with join: [stp]
 - SELECT RESP, BUDGET
 - FROM PROJ, ASG SEP
 - WHERE

ASG.PNO = PROJ.PNO

AND PNAME = "CAD/CAM"

PROJ1, ASG1 PROJ1, ASG2 PROJ1, ASG3 PROJ2, ASG1 PROJ2, ASG2 PROJ2, ASG3

+ Q2-2 Reduced Query


```
 \begin{aligned} &(\mathsf{PROJ1} = \sigma_{\mathsf{PNO} \leq "\mathsf{P2}"} \; \mathsf{PROJ}) \; \wedge \; (\mathsf{ASG1} = \sigma_{\mathsf{PNO} \leq "\mathsf{P2}"} \; \mathsf{ASG}) \\ &(\mathsf{PROJ2} = \sigma_{\mathsf{PNO} > "\mathsf{P2}"} \; \mathsf{PROJ}) \; \wedge \; (\mathsf{ASG2} = \sigma_{"\mathsf{P2}"} < \mathsf{PNO} \leq "\mathsf{P3}" \; \mathsf{ASG}) \\ &(\mathsf{PROJ2} = \sigma_{\mathsf{PNO} > "\mathsf{P2}"} \; \mathsf{PROJ}) \; \wedge \; (\mathsf{ASG3} = \sigma_{\mathsf{PNO} > "\mathsf{P3}"} \; \mathsf{ASG}) \end{aligned}
```

+ Q2-2 Reduced Query

- Better?
 - Centralized Computation & Network is slow
 - Same Communication
 - Parallel Computation
 - Compute in parallel
 - Eliminate unnecessary work

+ Q3 Semi-Join

- Join
 - R and S on the same server
 - From disk to memory
 - Communication Cost: 0

R,S

- - Same join result
 - Send data over network
 - d memory

2

- - Send R

R(A,B)

Α	В
1	4
1	5
2	4
2	6
3	7

D	C	U
4	5	0
4	7	8
5	0	1
5	2	1

S(B,C,D)

Α	В	С	D
1	4	5	0
1	4	7	8
1	5	0	1
1	5	2	1
2	4	5	0
·			0

4

 $R \bowtie S$

Site 1

R

8

Site 2

R and	S on	airrerent	servers
_		_	

■ Network is much slower than	disk and

								• INCRESSED & CACASI CACALLILICATO	- INGIWOIN COST COITHIAN	INCINCIA COSI GOTILIDA	INCIWOR COSLOCITICAL	 NEIWOIK COSI OOMINAI 	 Network Cost dominate 	 Network Cost dominate 	 Network Cost dominate 	 Network Cost dominate 	 Network Cost dominate 	 Network Cost dominate 	Network Cost dominate	Network Cost dominate
								- NGIWOIN COSL GOITHIAI	INCLINOIN COSE GOTTILIAN	INCIMOIN COST ACHILIAG	INCLINOIR COST GOTTILIAR	NELWORK COSL GOTHINAL	Network Cost dominate	Network Cost dominate	Network Cost dominate	 Network Cost dominate 	Network Cost dominate	Network Cost dominate	Network Cost dominate	Network Cost dominate
								- NGIWOIN COSI GOITHIAI	- NEWOIK COSt dollillati	INCLINION COST MOTHINAGE		 Network Cost dominate 	Network Cost dominate	Network Cost dominate	Network Cost dominate	 Network Cost dominate 				

- 11000001111111	u
Site 1 to Site 2:	

00		
Cost:	10	

Cost: 12

D
0
8
1

+ Q3

- Network Transfer cost dominates the total cost
- How to reduce the data size sent over network?
- For R
 - Only {(1,4) (1,5) (2,4)} is useful
 - But Site 1 does not know it
- The common attribute B acts as a filter
 - If Site 1 knows S.B has {4,5}
 - No need to send {(2,6)(3,7)} to Site 2
 - Site 2 to Site 1
 - **4,5**
 - Cost: 2
 - Site 1 to Site 2
 - **(**1,4) (1,5) (2,4)}
 - Cost: 6

Site 2

+ Q3-1

- 1. $R \propto S$
 - $\blacksquare = \Pi_{R(A,B)}(R \bowtie S)$
 - Select the values of S.B.
 - **4**,5
 - 2. Send S.B from Site 2 to Site 1
 - 3. Join $R \bowtie S.B$
 - Only keeps the left table's attributes

R				
Α	В			
1	4			
1	5			
2	4			
2	6			
3	7			

,		3		
В	С	D		
4	5	0		
4	7	8		
5	0	1		
5	2	1		
П _B (S)				

4

+ Q3-2

- 2. $S \propto R$
 - $\blacksquare = \Pi_{B,C,D}(S\bowtie R)$
 - Select the values of R.B
 - **4**,5,6,7
 - Send R.B from Site 1 to Site 2
 - Join S ⋈ R.B

R				
Α	В			
1	4			
1	5			
2	4			
2	6			
3	7			
П _В (R)				

	S		
В	С	D	
4	5	0	
4	7	8	
5	0	1	
5	2	1	

В	С	D
4	5	0
4	7	8
5	0	1
5	2	1

	THE UNIVERSITY
	OF QUEENSLAND
AC TA	AUSTRALIA

+ Q3-3 Semi-Join for Distributed DB

- Assume R is at site 1 and S is at site 2, and a query R ⋈ S has been issues at site 2.
 - 1. Give steps for a query processing strategy using semi-join,
 - Check if the semi-join is a beneficial option in this case (ignore local processing cost).
- Issue at Site 2
 - Site 2 is responsible to return the query result
 - Join Computation should be on Site 2
 - Otherwise, send results from Site 1 to Site 2
 - Additional useless cost
- Use semi-join to reduce the network cost

Computation on Site 1

+ Q3-3

Steps:

Site 2 sends t1 = $\Pi_B(S)$ to Site 1;

2

4

- 2. Site 1 sends $t2 = R \propto t1$ to Site 2;
- 3. Site 2 returns $t2 \bowtie S$ to the user.

		В	С	D	
		4	5	0	
R ∝ S.B	M	4	7	8	
		5	0	1	
		5	2	1	

Site 2

	Α	В	С	D
	1	4	5	0
	1	4	7	8
	1	5	0	1
•	1	5	2	1
	2	4	5	0
	2	4	7	8