Álgebra Matricial

Prof. Wagner Hugo Bonat

Vetores e escalares

Vetores e escalares

- ▶ Um vetor é uma lista de *n* números escritos em linha ou coluna.
- ▶ Notação

$$\mathbf{a} = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}$$
 ou $\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

- ▶ Vetor linha e vetor coluna.
- ▶ Um elemento do vetor é chamado de a_i , sendo i a sua posição.

- ► O tamanho de um vetor é o seu número de elementos.
- ► O módulo de um vetor é o seu comprimento

$$|\mathbf{a}| = \sqrt{a_1^2 + \dots + a_n^2}.$$

Vetor unitário é aquele que tem tamanho1. Vetor padronizado

$$\hat{a} = \frac{a}{|a|}.$$

▶ Dois vetores são iguais se tem o mesmo tamanho e os seus elementos em posições equivalentes são iguais.

Operações com vetores

Operações com vetores

- 1. Soma a + b = $(a_i + b_i) = (a_1 + b_1, \dots, a_n + b_n)$.
- 2. Subtração a b = $(a_i b_i) = (a_1 b_1, \dots, a_n b_n)$.
- 3. Multiplicação por escalar $\alpha \mathbf{a} = (\alpha a_1, \dots, \alpha a_n)$.
- 4. Transposta de um vetor:

$$\mathbf{a} = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \qquad \mathbf{a}^\top = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

5. Produto interno ou escalar entre dois vetores resulta em um escalar

$$\mathbf{a} \cdot \mathbf{b} = (a_1 b_1 + a_2 b_2 + \dots + a_n b_n).$$

▶ Condições: os vetores devem ser do mesmo tipo e tamanho.

Vetores ortogonais

- \blacktriangleright Dois vetores são **ortogonais** entre si se o ângulo θ entre eles é de 90°.
- ▶ Implicações: $cos(\theta) = 0$ e $a^{T}b = 0$.
- \blacktriangleright O co-seno do ângulo θ entre os vetores é dado por:

$$\cos(\theta) = \frac{\mathbf{a}^{\top}\mathbf{b}}{\sqrt{\mathbf{a}^{\top}\mathbf{a}}\sqrt{\mathbf{b}^{\top}\mathbf{b}}}.$$

Operações com vetores em R

▶ Declarando vetores

```
a <- c(4,5,6)
b <- c(1,2,3)
```

► Sendo a e b compatíveis

```
#### Soma
a + b
## [1] 5 7 9
#### Substração
a - b
## [1] 3 3 3
```

► Multiplicação por escalar

```
alpha = 10
alpha*a
## [1] 40 50 60
```

▶ Produto de Hadamard

```
a*b
## [1] 4 10 18
▶ Produto vetorial
a%*%b
## [.1]
```

[1,] 32

► Co-seno do ângulo entre dois vetores

```
cos \leftarrow t(a)%*%b/(sqrt(t(a)%*%a)*sqrt(t(b)%*%b))
```

▶ Lei da reciclagem

```
a <- c(4,5,6,5,6,7)
b <- c(1,2,3)
a + b
## [1] 5 7 9 6 8 10
```

Matrizes

Matriz

- ▶ Uma matriz é um arranjo retangular ou quadrado de números ou variáveis.
- ▶ Uma matriz $(n \times m)$ tem n linhas e m colunas:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \ddots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nm} \end{pmatrix}.$$

- ▶ O primeiro subscrito representa linha e o segundo representa coluna.
- A dimensão de uma matriz é o seu número de linhas e colunas.
- ▶ Duas matrizes são iguais se tem a mesma dimensão e se os elementos das correspondentes posições são iguais.

Matriz transposta

► A operação de transposição rearranja uma ► Computacionalmente matriz de forma que suas linhas são transformadas em colunas e vice-versa.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^{\top} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}.$$

▶ Note que $(A^{\top})^{\top} = A$.

- ▶ Declarando matrizes

```
a \leftarrow c(1,2,3,4,5,6)
   A \leftarrow matrix(a, nrow = 3, ncol = 2)
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
```

- ▶ O *default* preenche por colunas.
- ► Transposta de uma matriz

```
t(A)
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
```

► Multiplicação matriz por escalar.

$$\alpha \mathbf{A} = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1m} \\ \alpha a_{21} & \alpha a_{22} & \ddots & \alpha a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{n1} & \dots & \dots & \alpha a_{nm} \end{pmatrix} \cdot \begin{array}{c} \mathbf{A} \xleftarrow{-} \mathsf{matrix}(\mathsf{c}(1,2)) \\ \mathsf{alpha} \xleftarrow{-} \mathsf{10} \\ \mathsf{alpha} *\mathsf{A} \\ \# & [,1] & [,2] \\ \# & [1,] & 10 & 40 \\ \# & [2,] & 20 & 50 \\ \end{bmatrix}$$

► Computacionalmente

- Duas matrizes podem ser somadas ou subtraídas somente se tiverem o mesmo tamanho.
- 1. Soma $c_{ij} = a_{ij} + b_{ij}$.
- 2. Subtração $c_{ij} = a_{ij} b_{ij}$.
- ► Exemplo

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} + \begin{pmatrix} 10 & 20 \\ 30 & 40 \\ 50 & 60 \end{pmatrix} = \begin{pmatrix} 11 & 22 \\ 33 & 44 \\ 55 & 66 \end{pmatrix} \cdot \begin{pmatrix} ## [3,] & 11 & 44 \\ ## [2,] & 22 & 55 \\ ## [3,] & 33 & 66 \end{pmatrix}$$

► Soma de duas matrizes

► Condição para multiplicar matrizes

$$\underset{m\times n}{\mathsf{C}} = \underset{m\times qq\times n}{\mathsf{A}} \overset{\mathsf{B}}{\mathsf{B}}.$$

▶ Cada elemento $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$.

$$\begin{pmatrix} 2 & -1 \\ 8 & 3 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} 4 & 9 & 1 & -3 \\ -5 & 2 & 4 & 6 \end{pmatrix} =$$

$$\begin{pmatrix} ((2\cdot4)+(-1\cdot-5)) & ((2\cdot9)+(-1\cdot2)) & ((2\cdot1)+(-1\cdot4)) & ((2\cdot-3)+(-1\cdot6)) \\ ((8\cdot4)+(3\cdot-5)) & ((8\cdot9)+(3\cdot2)) & ((8\cdot1)+(3\cdot4)) & ((8\cdot-3)+(3\cdot6)) \\ ((6\cdot4)+(7\cdot-5)) & ((6\cdot9)+(7\cdot2)) & ((6\cdot1)+(7\cdot4)) & ((6\cdot-3)+(7\cdot6)) \end{pmatrix} =$$

$$\begin{pmatrix} 13 & 16 & -2 & -12 \\ 17 & 78 & 20 & -6 \\ -11 & 68 & 34 & 24 \end{pmatrix}.$$

- ► Computacionalmente.
- ► Matrizes compatíveis

► Matrizes não compatíveis

B %*% A

Error in B %*% A: argumentos não compatíveis

Produto de Hadamard

▶ Produto simples ou de Hadamard

► Computacionalmente

```
\mathbf{A}\odot\mathbf{B} = \begin{pmatrix} a_{11}b_{11} & a_{12}b_{12} & \cdots & a_{1m}b_{1m} \\ a_{21}b_{21} & a_{22}b_{22} & \cdots & a_{2m}b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}b_{n1} & a_{n2}b_{n2} & \cdots & a_{nm}b_{nm} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Propriedades envolvendo operações com matrizes

- ▶ Sendo A, B, C e D compatíveis temos,
 - 1. A + B = B + A.
 - 2. (A + B) + C = A + (B + C).
 - 3. $\alpha(A + B) = \alpha A + \alpha B$.
 - 4. $(\alpha + \beta)A = \alpha A + \beta A$.
 - 5. $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
 - 6. $A(B \pm C) = AB \pm AC$.
 - 7. $(A \pm B)C = AC \pm BC$.
 - 8. (A-B)(C-D) = AC-BC-AD+BD.

- ► Propriedades envolvendo transposta e multiplicação
 - 1. Se A é $n \times m$ e B é $m \times n$, então

$$(AB)^\top = B^\top A^\top.$$

2. Se A, B e C são compatíveis

$$(ABC)^\top = C^\top B^\top A^\top.$$

Matrizes de formas especiais

Matrizes de formas especiais

► Matriz quadrada

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}.$$

- $ightharpoonup a_{ii}$ são os elementos da diagonal.
- ▶ a_{ij} para $i \neq j \rightarrow$ fora da diagonal.
- ▶ a_{ij} para $j > i \rightarrow$ acima da diagonal.
- ▶ a_{ij} para i > j → abaixo da diagonal.

▶ Matriz diagonal

$$\mathbf{D} = \begin{pmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{pmatrix}.$$

Matriz identidade

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Matrizes de formas especiais

► Triangular superior

$$\mathbf{U} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}.$$

► Triangular inferior

$$\mathbf{L} = \begin{pmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}.$$

Matriz nula

Matriz quadrada simétrica

$$\mathbf{A} = \begin{pmatrix} 1 & 0.8 & 0.6 & 0.4 \\ 0.8 & 1 & 0.2 & 0.4 \\ 0.6 & 0.2 & 1 & 0.1 \\ 0.4 & 0.4 & 0.1 & 1 \end{pmatrix}.$$

Combinações lineares

lackbox Um conjunto de vetores a_1,a_2,\ldots,a_n é dito ser **linearmente dependente** se puderem ser encontrados escalares c_1,c_2,\ldots,c_n e estes escalares não sejam todos iguais a 0 de tal forma que

$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_n \mathbf{a}_n = 0.$$

- Caso contrário é dito ser linearmente independente.
- ▶ Notação matricial

$$Ac = 0.$$

 \blacktriangleright As colunas de A são linearmente independentes se Ac =0 implicar que c =0.

Rank e inversa de uma matriz

Rank ou posto de uma matriz

- $lackbox{ O rank ou posto}$ de qualquer matriz quadrada ou retangular A é definido como rank(A) = número de colunas ou linhas linearmente independentes em A.
- ▶ Sendo A uma matriz retangular $n \times m$ o maior rank possível para A é o min(n,m).
- ▶ O rank da matrix nula é 0.
- ightharpoonup Se o rank da matriz é o min(n,m) dizemos que a matriz tem rank completo.

Matriz não singular e matriz inversa

- ▶ Uma matriz quadrada de posto completo é chamada de não singular.
- ▶ Sendo A quadrada de posto completo a matriz inversa de A é única tal que

$$AA^{-1} = I$$
.

- ightharpoonup Não quadrada (posto incompleto) ightharpoonup não terá inversa e é dita ser **singular**.
- ▶ Note que $(A^{-1})^{-1} = A$.

Matriz inversa

► Computacionalmente

```
A <- matrix(c(4, 2, 7, 6), 2, 2)
A_inv <- solve(A)
A_inv

## [,1] [,2]
## [1,] 0.6 -0.7
## [2,] -0.2 0.4
```

▶ Verificando

```
A%*%A_inv

## [,1] [,2]

## [1,] 1 0

## [2,] 0 1
```

- ► Propriedades envolvendo inversas
 - 1. Se A é não singular, então A^{\top} é não singular e sua inversa é dada por

$$(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}.$$

 Se A e B são matrizes não singulares de mesmo tamanho, então o produto AB é não singular e

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Inversa generalizada

▶ A inversa generalizada de uma matriz A ▶ Verificando $n \times p$ é qualquer matriz A que satisfaça

$$AA^{-}A = A$$
.

- Não é única exceto quando A é não-singular (inversa usual).
- ▶ Exemplo,

$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}.$$

 \rightarrow a⁻ = (1, 0, 0, 0)

```
a \leftarrow matrix(c(1, 2, 3, 4), 4, 1)
 a_{invg} \leftarrow matrix(c(1,0,0,0), 1, 4)
 a%*%a_invg%*%a
        [,1]
## [1,] 1
## [2,] 2
## [3.] 3
## [4.] 4
```

► Moore-Penrose *generalized* inverse

```
#### Matriz singular (col 3 = col 2 + col 1)
A \leftarrow matrix(c(2, 1, 3, 2, 0,
            2, 3, 1, 4), 3, 3)
library(MASS)
A_ginv <- ginv(A)
A%*%A_ginv%*%A ## Verificando
```

Matrizes positivas definidas

Formas quadráticas

- ▶ Soma de quadrados são importantes em ciência de dados.
- ▶ Considere uma matriz A simétrica e y um vetor, o produto

$$\mathbf{y}^{\top}\mathbf{A}\mathbf{y} = \sum_{i} a_{ij}y_{i}^{2} + \sum_{i \neq j} a_{ij}y_{i}y_{j},$$

é chamado de forma quadrática.

- \blacktriangleright Sendo y de dimensão $n\times 1,$ $\mathbf{y}^{\intercal}\mathbf{I}\mathbf{y}=y_1^2+y_2^2+\dots,y_n^2.$
- ightharpoonup Consequentemente, $y^{\top}y$ é a soma de quadrados dos elementos do vetor y.
- ▶ A raiz quadrada da soma de quadrados é o comprimento de y.

Matriz positiva definida

- ▶ Sendo A uma matriz simétrica com a propriedade $y^TAy > 0$ para todos os possíveis y exceto para quando y = 0, então a forma quadrática y^TAy é chamada **positiva definida**, e A é dita ser uma **matriz positiva definida**.
- ► Exemplo

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}.$$

A forma quadrática associada é dada por

$$\mathbf{y}^{\top}\mathbf{A}\mathbf{y} = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 2y_1^2 - 2y_1y_2 + 3y_2^2,$$

que é claramente positiva, desde que y_1 e y_2 sejam diferentes de zero.

Propriedades de matrizes positivas definidas

- 1. Se A é positiva definida, então todos os valores da diagonal de A são positivos.
- 2. Se A é positiva semi-definida, então os elementos da diagonal de A são maiores ou iguais a zero.
- Sendo P uma matriz não-singular e A uma matriz positiva definida, o produto P[⊤]AP é
 positiva definida.
- 4. Sendo P uma matriz não-singular e A uma matriz positiva semi-definida, o produto $P^{\top}AP$ é positiva semi-definida.
- 5. Uma matriz positiva definida é não-singular.

Determinante e traço de uma matriz

Determinante de uma matriz

▶ O determinante de uma matriz A é o escalar

$$|\mathbf{A}| = \sum_j (-1)^k a_{1j_1} a_{2j_2}, \dots, a_{nj_n},$$

onde a soma é realizada para todas as n! permutações de grau n, e k é o número de mudanças necessárias para que os segundos subscritos sejam colocados na ordem $1,2,\ldots,n$.

► Considere a matriz

$$A = \begin{pmatrix} 3 & -2 \\ -2 & 4 \end{pmatrix}.$$

$$|\mathbf{A}| = (-1)^0 a_{11} a_{22} + (-1)^1 a_{12} a_{21} = 1 \cdot (3 \cdot 4) - (-2 \cdot -2) = 12 - 4 = 8.$$

Determinante de uma matriz

► Computacionalmente.

```
A <- matrix(c(3,-2,-2,4),2,2)
determinant(A, logarithm = FALSE)$modulus
## [1] 8
## attr(,"logarithm")
## [1] FALSE</pre>
```

▶ Determinante em escala log.

```
determinant(A, logarithm = TRUE)$modulus
## [1] 2.079442
## attr(,"logarithm")
## [1] TRUE
```

- ► Alguns aspectos interessantes sobre determinantes são:
 - 1. Se A é singular, |A| = 0.
 - 2. Se A é não singular, $|A| \neq 0$.
 - 3. Se A é positiva definida, |A| > 0.
 - 4. $|A^{\top}| = |A|$.
 - 5. Se A é não singular, $|A^{-1}| = \frac{1}{|A|}$.

Traço de uma matriz

- ▶ O traço de uma matriz A $n \times n$ é um escalar definido como a soma dos elementos da diagonal, $tr(A) = \sum_{i=1}^{n} a_{ii}$.
- ▶ Propriedades
 - 1. Se A e B são $n \times n$, então

$$tr(A+B)=tr(A)+tr(B). \\$$

2. Se A é $n \times p$ e B e $p \times n$, então

$$tr(AB) = tr(BA).$$

► Computacionalmente

[1] 7

A <- matrix(c(3,-2,-2,4),2,2) sum(diag(A))

Cálculo vetorial e matricial

Cálculo vetorial

- ▶ Seja $y=f(\mathbf{x})$ uma função das variáveis x_1,x_2,\ldots,x_p e $\frac{\partial y}{\partial x_1},\frac{\partial y}{\partial x_2},\ldots,\frac{\partial y}{\partial x_p}$ as respectivas derivadas parciais.
- ► Assim,

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_p} \end{pmatrix}.$$

Cálculo vetorial

- \blacktriangleright Sendo $\mathbf{a}^\top=(a_1,a_2,\dots,a_p)$ um vetor de constantes e A uma matriz simétrica de constantes.
- 1. Seja $y = \mathbf{a}^{\mathsf{T}} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{a}$. Então,

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^{\top} \mathbf{a})}{\partial \mathbf{x}} = \mathbf{a}.$$

2. Seja $y = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$. Então,

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = 2 \mathbf{A} \mathbf{x}.$$

Cálculo Matricial

 $lackbox{f Se }y=f({f X})$ onde ${f X}$ é uma matriz p imes p. As derivadas parciais de y em relação a cada x_{ij} são organizadas em uma matriz.

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \dots & \frac{\partial y}{\partial x_{1p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{p1}} & \dots & \frac{\partial y}{\partial x_{pp}} \end{pmatrix}.$$

Cálculo Matricial

- ▶ Algumas derivadas importantes envolvendo matrizes são apresentadas abaixo.
- 1. Seja $y={\rm tr}({\rm XA})$ sendo X $p\times p$ e definida positiva e A $p\times p$ constantes. Então,

$$\frac{\partial y}{\partial \mathbf{X}} = \frac{\partial \mathrm{tr}(\mathbf{X}\mathbf{A})}{\partial \mathbf{X}} = \mathbf{A} + \mathbf{A}^{\top} - \mathrm{diag}(\mathbf{A}).$$

2. Sendo A não singular com derivadas $\frac{\partial A}{\partial x}$. Então,

$$\frac{\partial \mathbf{A}^{-1}}{\partial x} = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \mathbf{A}^{-1}.$$

3. Sendo A $n \times n$ positiva definida. Então,

$$\frac{\partial \log |\mathbf{A}|}{\partial x} = \operatorname{tr}\left(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x}\right).$$

Regressão linear múltipla

Regressão linear múltipla: especificação usual

► Regressão linear simples

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

► Regressão linear múltipla

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i.$$

► Modelo para cada observação

$$\begin{aligned} y_1 &= \beta_0 + \beta_1 x_{11} + \beta_2 x_{12} + \dots \beta_p x_{1p} + \epsilon_1 \\ y_2 &= \beta_0 + \beta_1 x_{21} + \beta_2 x_{22} + \dots \beta_p x_{2p} + \epsilon_2 \\ &\vdots \\ y_n &= \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots \beta_p x_{np} + \epsilon_n \end{aligned}$$

Regressão linear múltipla: especificação matricial

▶ Notação matricial

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$\xrightarrow[n \times p]{}$$

► Notação mais compacta

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p} \mathbf{\beta}_{p\times 1} + \mathbf{\epsilon}_{n\times 1}.$$

Regressão linear múltipla: estimação (treinamento)

lackbox Objetivo: encontrar o vetor $\hat{\beta}$, tal que

$$SQ(\beta) = (\mathbf{y} - \mathbf{X}\beta)^\top (\mathbf{y} - \mathbf{X}\beta),$$

seja a menor possível.

Regressão linear múltipla: estimação

1. Passo 1: encontrar o vetor gradiente. Derivando em β , temos

$$\begin{split} \frac{\partial SQ(\beta)}{\partial \beta} &= \frac{\partial}{\partial \beta} (\mathbf{y} - \mathbf{X}\beta)^\top (\mathbf{y} - \mathbf{X}\beta) \\ &= \frac{\partial}{\partial \beta} \left((\mathbf{y} - \mathbf{X}\beta)^\top \right) (\mathbf{y} - \mathbf{X}\beta) + (\mathbf{y} - \mathbf{X}\beta)^\top \frac{\partial}{\partial \beta} (\mathbf{y} - \mathbf{X}\beta) \\ &= -\mathbf{X}^\top (\mathbf{y} - \mathbf{X}\beta) + (\mathbf{y} - \mathbf{X}\beta)^\top (-\mathbf{X}) \\ &= -2\mathbf{X}^\top (\mathbf{y} - \mathbf{X}\beta). \end{split}$$

Regressão linear múltipla: estimação

2. Passo 2: resolver o sistema de equações lineares

$$\begin{aligned} \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) &= 0 \\ \mathbf{X}^{\top}\mathbf{y} - \mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}} &= 0 \\ \mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}} &= \mathbf{X}^{\top}\mathbf{y} \\ \hat{\boldsymbol{\beta}} &= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \end{aligned}$$

Regressão linear múltipla: exemplo

Regressão linear múltipla: exemplo

- ► Conjunto de dados Boston disponível no pacote MASS.
- ► Cinco primeiras covariáveis disponíveis:
 - rim: taxa de crimes per capita.
 - ▶ zn: proporção de terrenos residenciais zoneados para lotes com mais de 25.000 pés quadrados.
 - ▶ indus: proporção de acres de negócios não varejistas por cidade.
 - ▶ chas: variável dummy de Charles River (1 se a área limita o rio; 0 caso contrário).
 - ▶ nox: concentração de óxido de nitrogênio (parte por 10 milhões).
- ▶ Variável resposta: med∨ valor mediano das casas ocupadas em \$1000.

Regressão linear múltipla: implementação computacional

► Carregando a base de dados

```
require(MASS)
## Carregando pacotes exigidos: MASS
 data(Boston)
 head(Boston[, c(1:5,14)])
##
       crim zn indus chas
                            nox medv
  1 0.00632 18
                        0 0.538 24.0
                2.31
  2 0.02731
             0 7.07
                        0 0.469 21.6
  3 0.02729 0 7.07
                        0 0.469 34.7
                     0 0.458 33.4
  4 0 03237 0
                2.18
## 5 0 06905 0
                2.18
                     0 0 458 36 2
## 6 0 02985 0
                2.18
                        0 0.458 28.7
```

► Matriz de delineamento (X).

X <- model.matrix(~ crim + zn + indus +

```
chas + nox, data = Boston)
 head(X)
##
     (Intercept) crim zn indus chas
                                        nox
## 1
                0.00632 18
                            2.31
                                    0 0 538
                           7.07
## 2
              1 0 02731 0
                                    0 0 469
## 3
              1 0 02729 0
                           7.07
                                    0 0 469
              1 0.03237 0
                           2.18
                                    0 0.458
## 4
              1 0.06905 0
                           2.18
## 5
                                    0 0.458
## 6
              1 0.02985
                         0 2.18
                                    0 0.458
```

Variável resposta

```
y <- Boston$medv
```

Regressão linear múltipla: implementação computacional

Estimadores de mínimos quadrados:

$$\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

► Computacionalmente: versão ingênua

► Computacionalmente: versão eficiente

round(solve(t(X)%*%X, t(X)%*%V), 2)

▶ Função nativa do R

Matrizes esparsas

Matrizes esparsas (tópico adicional)

- ▶ Matrizes aparecem em todos os tipos de aplicação em ciência de dados.
- ▶ Modelos estatísticos, *machine learning*, análise de texto, análise de *cluster*, etc.
- ▶ Muitas vezes as matrizes usadas têm uma grande quantidade de zeros.
- Quando uma matriz tem uma quantidade considerável de zeros, dizemos que ela é esparsa, caso contrário dizemos que a matriz é densa.
- ▶ Todas as propriedades que vimos para matrizes em geral valem para matrizes esparsas.
- ▶ O R tem um conjunto de métodos altamente eficiente por meio do pacote Matrix.
- ▶ Saber que uma matriz é esparsa é útil pois permite:
 - ▶ Planejar formas de armazenar a matriz em memória.
 - ► Economizar cálculos em algoritmos numéricos (multiplicação, inversa, determinante, decomposições, etc).

Matrizes esparsas

▶ Comparando a quantidade de memória utilizada.

```
library('Matrix')
m1 <- matrix(0, nrow = 1000, ncol = 1000)
m2 <- Matrix(0, nrow = 1000, ncol = 1000, sparse = TRUE)
object.size(m1)
## 8000216 bytes

object.size(m2)
## 9240 bytes</pre>
```

Comparando o tempo computacional

► Matriz esparsa

```
y <- rnorm(1000)
X <- Matrix(NA, ncol = 100, nrow = 1000)
for(i in 1:1000) {X[i,] <- rbinom(100, size = 1, p = 0.1)}
X <- Matrix(X, sparse = TRUE)
system.time(replicate(100, solve(t(X)%*%X, t(X)%*%y)))

## usuário sistema decorrido
## 0.223 0.000 0.224</pre>
```

▶ Matriz densa

```
y <- rnorm(1000)
X <- matrix(NA, ncol = 100, nrow = 1000)
for(i in 1:1000) {X[i,] <- rbinom(100, size = 1, p = 0.1)}
system.time(replicate(100, solve(t(X)%*%X, t(X)%*%y)))
## usuário sistema decorrido
## 0.819 0.004 0.823</pre>
```

Diferentes formas de implementar as operações matriciais

▶ Criando a base de dados para a comparação

```
library(Matrix)
n <- 10000; p <- 500
x <- matrix(rbinom(n*p, 1, 0.01), nrow=n, ncol=p)
X <- Matrix(x)
object.size(x)

## 20000216 bytes

object.size(X)

## 600432 bytes</pre>
```

Diferentes formas de implementar as operações matriciais

▶ Diferentes implementações

```
v <- rnorm(n)</pre>
 system.time(solve(t(x)%*%x, t(x)%*%y))
##
     usuário
               sistema decorrido
##
       2.053
                 0.040
                           2.094
 system.time(solve(crossprod(x), crossprod(x, y)))
##
     usuário
              sistema decorrido
##
       1.731
                 0.016
                           1.748
 system.time(solve(t(X)%*%X, t(X)%*%y))
##
     usuário
              sistema decorrido
##
       0.071
                 0.000
                           0.072
 system.time(solve(crossprod(X). crossprod(X.v)))
              sistema decorrido
##
     usuário
       0.029
                 0.000
                           0.050
```

##

Pacote adicional glmnet

▶ Implementação eficiente do modelo de regressão linear múltipla.

```
library(glmnet)
## Loaded glmnet 4.1-6
 system.time(b \leftarrow coef(lm(v\simx)))
    usuário sistema decorrido
##
##
      2.389 0.044 2.434
 system.time(g1 <-glmnet(x, y, nlambda=1, lambda=0, standardize=FALSE))
##
    usuário sistema decorrido
##
      0.065 0.020 0.086
 system.time(g2 <- glmnet(X, y, nlambda=1, lambda=0, standardize=FALSE))</pre>
##
    usuário sistema decorrido
##
      0.006 0.000 0.006
```

Sistemas lineares

Sistemas lineares

► Sistema com duas equações:

$$\begin{array}{rcl} f_1(x_1, x_2) & = & 0 \\ f_2(x_1, x_2) & = & 0. \end{array}$$

- lacktriangle Solução numérica consiste em encontrar \hat{x}_1 e \hat{x}_2 que satisfaça o sistema de equações.
- ightharpoonup Sistema com n equações

$$\begin{array}{rcl} f_1(x_1,\ldots,x_n) & = & 0 \\ & & \vdots \\ f_n(x_1,\ldots,x_n) & = & 0. \end{array}$$

▶ Genericamente, tem-se

$$f(x) = 0.$$

▶ Equações podem ser lineares ou não-lineares.

Sistemas de equações lineares

- ▶ Cada equação é linear na incógnita.
- ► Solução analítica em geral é possível.
- ► Exemplo:

$$7x_1 + 3x_2 = 45$$
$$4x_1 + 5x_2 = 29.$$

- $\blacktriangleright\,$ Solução analítica: $\hat{x}_1=6$ e $\hat{x}_2=1.$
- ► Resolver (tedioso!!).
- ► Três possíveis casos:
 - 1. Uma única solução (sistema não singular).
 - 2. Infinitas soluções (sistema singular).
 - 3. Nenhuma solução (sistema impossível).

Sistemas de equações lineares

▶ Representação matricial do sistema de equações lineares:

$$\mathbf{A} = \begin{bmatrix} 7 & 3 \\ 4 & 5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 45 \\ 29 \end{bmatrix}.$$

▶ De forma geral, tem-se

$$Ax = b$$
.

Operações com linhas

- ▶ Sem qualquer alteração na relação linear, é possível
- 1. Trocar a posição de linhas:

$$4x_1 + 5x_2 = 29$$
$$7x_1 + 3x_2 = 45.$$

2. Multiplicar qualquer linha por uma constante, aqui $4x_1 + 5x_2$ por $\frac{1}{4}$, obtendo

$$x_1 + \frac{5}{4}x_2 = \frac{29}{4} \tag{1}$$

$$7x_1 + 3x_2 = 45. (2)$$

Operações com linhas

3. Subtrair um múltiplo de uma linha de uma outra, aqui 7*Eq.(1) menos Eq. (2), obtendo

$$x_1 + \frac{5}{4}x_2 = \frac{29}{4}$$
$$0x_1 + (\frac{35}{4} - 3)x_2 = \frac{203}{4} - 45.$$

► Fazendo as contas, tem-se

$$0x_1 + \frac{23}{4}x_2 = \frac{23}{4}.$$

Solução de sistemas lineares

 \blacktriangleright Forma geral de um sistema com n equações lineares:

$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & = & b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & = & b_2 \\ & & \vdots & & \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n & = & b_n \end{array}$$

▶ Matricialmente, tem-se

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

► Métodos diretos e métodos iterativos.

- O sistema de equações é manipulado até se transformar em um sistema equivalente de fácil resolução.
- ► Triangular superior:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

► Substituição regressiva

$$x_n = \frac{b_n}{a_{nn}} \quad x_i = \frac{b_i - \sum_{j=i+1}^{j=n} a_{ij} x_j}{a_{ii}}, \quad i = n-1, n-2, \dots, 1.$$

► Triangular inferior:

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

► Substituição progressiva

$$x_1 = \frac{b_1}{a_{11}} \quad x_i = \frac{b_i - \sum_{j=i}^{j=i-1} a_{ij} x_j}{a_{ii}}, \quad i = 2, 3, \dots, n.$$

▶ Diagonal:

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

Eliminação de Gauss

Métodos diretos: Eliminação de Gauss

▶ Método de Eliminação de Gauss consiste em manipular o sistema original usando operações de linha até obter um sistema triangular superior.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{23} & a_{33} & a_{34} \\ a_{41} & a_{24} & a_{34} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a'_{33} & a'_{34} \\ 0 & 0 & 0 & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ b'_4 \end{bmatrix}$$

- Usar eliminação regressiva no novo sistema para obter a solução.
- ▶ Resolva o seguinte sistema usando Eliminação de Gauss.

$$\begin{bmatrix} 3 & 2 & 6 \\ 2 & 4 & 3 \\ 5 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 23 \\ 33 \end{bmatrix}$$

Métodos diretos: Eliminação de Gauss

▶ Passo 1: encontrar o pivô e eliminar os elementos abaixo dele usando operações de linha.

$$\begin{bmatrix} [3] & 2 & 6 \\ 2 - \frac{2}{3}3 & 4 - \frac{2}{3}2 & 3 - \frac{2}{3}6 \\ 5 - \frac{5}{3}3 & 3 - \frac{5}{3}2 & 4 - \frac{5}{3}6 \end{bmatrix} \begin{bmatrix} 24 \\ 23 - \frac{2}{3}24 \\ 33 - \frac{5}{3}24 \end{bmatrix} \longrightarrow \begin{bmatrix} [3] & 2 & 6 \\ 0 & \frac{8}{3} & -1 \\ 0 & -\frac{1}{3} & -6 \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -7 \end{bmatrix}$$

▶ Passo 2: encontrar o segundo pivô e eliminar os elementos abaixo dele usando operações de linha.

$$\begin{bmatrix} 3 & 2 & 6 \\ 0 & [\frac{8}{3}] & -1 \\ 0 & -\frac{1}{3} - \left(-\frac{3}{24}\right)\left(\frac{8}{3}\right) & -6 - \left(-\frac{3}{24}\right)(-1) \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -7 - \left(-\frac{3}{24}\right)(7) \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 2 & 6 \\ 0 & [\frac{8}{3}] & -1 \\ 0 & 0 & -\frac{147}{24} \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -\frac{147}{24} \end{bmatrix}$$

▶ Passo 3: substituição regressiva.

Métodos diretos: Eliminação de Gauss

- ▶ Usando a fórmula de substituição regressiva temos:
 - $ightharpoonup x_3 = rac{b_3}{a_{33}} = 1.$
- \blacktriangleright A extensão do procedimento para um sistema com n equações é trivial.
 - 1. Transforme o sistema em triangular superior usando operações linhas.
 - 2. Resolva o novo sistema usando substituição regressiva.
- ▶ Potenciais problemas do método de eliminação de Gauss:
 - ▶ O elemento pivô é zero.
 - ▶ O elemento pivô é pequeno em relação aos demais termos.

Eliminação de Gauss com pivotação

Eliminação de Gauss com pivotação

▶ Considere o sistema

$$\begin{array}{rcl} 0x_1 + 2x_2 + 3x_2 & = & 46 \\ 4x_1 - 3x_2 + 2x_3 & = & 16 \\ 2x_1 + 4x_2 - 3x_3 & = & 12 \end{array}$$

- ▶ Neste caso o pivô é zero e o procedimento não pode começar.
- ▶ Pivotação trocar a ordem das linhas.
 - 1. Evitar pivôs zero.
 - 2. Diminuir o número de operações necessárias para triangular o sistema.

$$\begin{array}{rcl} 4x_1 - 3x_2 + 2x_3 & = & 16 \\ 2x_1 + 4x_2 - 3x_3 & = & 12 \\ 0x_1 + 2x_2 + 3x_2 & = & 46 \end{array}$$

Eliminação de Gauss com pivotação

- ▶ Se durante o procedimento uma equação pivô tiver um elemento nulo e o sistema tiver solução, uma equação com um elemento pivô diferente de zero sempre existirá.
- ► Cálculos numéricos são menos propensos a erros e apresentam menores erros de arredondamento se o elemento pivô for grande em valor absoluto.
- ▶ É usual ordenar as linhas para que o maior valor seja o primeiro pivô.

Passo 1: obtendo uma matriz triangular superior.

```
gauss <- function(A, b) {</pre>
 Ae <- cbind(A, b) ## Sistema aumentado
  rownames(Ae) <- paste0("x", 1:length(b))</pre>
  n row <- nrow(Ae)</pre>
  n_col <- ncol(Ae)</pre>
  SOL <- matrix(NA, n_row, n_col) ## Matriz para receber os resultados
  SOL[1,] <- Ae[1,]
  pivo <- matrix(0, n_col, n_row)</pre>
  for(i in 1:c(n row-1)) {
    for(i in c(i+1):c(n row)) {
      pivo[i,j] \leftarrow Ae[i,j]/SOL[j,j]
      SOL[i,] <- Ae[i,] - pivo[i,i]*SOL[i,]
      Ae[i,] <- SOL[i,]
 return(SOL)
```

Eliminação de Gauss sem pivotação

▶ Passo 2: substituição regressiva

```
sub_reg <- function(SOL) {</pre>
  n_row <- nrow(SOL)</pre>
  n_col <- ncol(SOL)
  A <- SOL[1:n_row,1:n_row]
  b <- SOL[,n_col]
  n <- length(b)</pre>
  x \leftarrow c()
  x[n] \leftarrow b[n]/A[n,n]
  for(i in (n-1):1) {
    x[i] \leftarrow (b[i] - sum(A[i,c(i+1):n]*x[c(i+1):n]))/A[i,i]
  return(x)
```

Eliminação de Gauss sem pivotação

▶ Resolva o sistema:

$$\begin{bmatrix} 3 & 2 & 6 \\ 2 & 4 & 3 \\ 5 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 23 \\ 33 \end{bmatrix}.$$

```
A <- matrix(c(3,2,5,2,4,3,6,3,4),3,3)
b <- c(24,23,33)
S <- gauss(A, b) ## Passo 1: Triangularização
sol = sub_reg(SOL = S) ## Passo 2: Substituição regressiva
sol</pre>
```

[1] 4 3 1

A%*%sol ## Verificando a solução

```
## [,1]
## [1,] 24
## [2,] 23
## [3,] 33
```

Eliminação de Gauss com pivotação

► Resolva o seguinte sistema usando Eliminação de Gauss com pivotação.

$$\begin{array}{rcl} 0x_1 + 2x_2 + 3x_2 & = & 46 \\ 4x_1 - 3x_2 + 2x_3 & = & 16 \\ 2x_1 + 4x_2 - 3x_3 & = & 12 \end{array}$$

```
## Entrando com o sistema original
A <- matrix(c(0,4,2,2,-3,4,3,2,-3), 3,3)
b <- c(46,16,12)
## Pivoteamento</pre>
```

```
## Proceamento
A_order <- A[order(A[,1], decreasing = TRUE),]
b_order <- b[order(A[,1], decreasing = TRUE)]</pre>
```

```
#### Triangulação
 S <- gauss(A_order, b_order)</pre>
## [,1] [,2] [,3] [,4]
## [1,] 4 -3.0 2.000000 16.00000
## [2,] 0 5.5 -4.000000 4.00000
## [3.] 0 0.0 4.454545 44.54545
 #### Substituição regressiva
 sol \leftarrow sub_reg(SOL = S)
 sol
## [1] 5 8 10
 #### Solução
 A_order%*%sol
       [,1]
## [1.] 16
## [2.] 12
## ГЗ. Т
         46
```

Eliminação de Gauss-Jordan

Métodos diretos: Eliminação de Gauss-Jordan

O sistema original é manipulado até obter um sistema equivalente na forma diagonal.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{23} & a_{33} & a_{34} \\ a_{41} & a_{24} & a_{34} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1' \\ b_2' \\ b_3' \\ b_4' \end{bmatrix}$$

- ► Algoritmo Gauss-Jordan
 - 1. Normalize a equação pivô com a divisão de todos os seus termos pelo coeficiente pivô.
 - 2. Elimine os elementos fora da diagonal principal em TODAS as demais equações usando operaçõs de linha.
- ▶ O método de Gauss-Jordan pode ser combinado com pivotação igual ao método de eliminação de Gauss.

Métodos iterativos

Métodos iterativos

Nos métodos iterativos, as equações são colocadas em uma forma explícita onde cada incógnita é escrita em termos das demais, i.e.

$$\begin{array}{ll} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 & x_1 = [b_1 - (a_{12}x_2 + a_{13}x_3)]/a_{11} \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \rightarrow x_2 = [b_2 - (a_{21}x_1 + a_{23}x_3)]/a_{22}. \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 & x_3 = [b_3 - (a_{31}x_1 + a_{32}x_2)]/a_{33} \end{array}$$

- Dado um valor inicial para as incógnitas estas serão atualizadas até a convergência.
- ► Atualização: Método de Jacobi

$$x_i = \frac{1}{a_{ii}} \left[b_i - \left(\sum_{j=1; j \neq i}^{j=n} a_{ij} x_j \right) \right] \quad i = 1, \dots, n.$$

Métodos iterativos

▶ Atualização: Método de Gauss-Seidel

$$x_1^{k+1} = \frac{1}{a_{11}} \left[b_1 - \sum_{j=2}^{j=n} a_{1j} x_j^{(k)} \right],$$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \left(\sum_{j=1}^{j=i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{j=n} a_{ij} x_j^{(k)} \right) \right] \quad i = 2, 3, \dots, n-1 \quad \mathrm{e}$$

$$x_n^{(k+1)} = \frac{1}{a_{nn}} \left[b_n - \sum_{j=1}^{j=n-1} a_{nj} x_j^{(k+1)} \right].$$

Método iterativo de Jacobi

► Implementação computacional

```
jacobi <- function(A, b, inicial, max_iter = 10, tol = 1e-04) {</pre>
  n <- length(b)
  x_temp <- matrix(NA, ncol = n, nrow = max_iter)</pre>
  x_{temp[1,]} \leftarrow inicial
  x \leftarrow x_{temp[1,]}
  for(j in 2:max_iter) { #### Equação de atualização
    for(i in 1:n) {
      x_{temp[j,i]} \leftarrow (b[i] - sum(A[i,1:n][-i]*x[-i]))/A[i,i]
    x \leftarrow x_{temp[j,]}
    if(sum(abs(x_temp[j,] - x_temp[c(j-1),])) < tol) break #### Critério de parada</pre>
 return(list("Solucao" = x, "Iteracoes" = x_temp))
```

Método iterativo de Jacobi

▶ Resolva o seguinte sistema de equações lineares usando o método de Jacobi.

$$\begin{array}{rcl} 9x_1 - 2x_2 + 3x_3 + 2x_4 & = & 54.5 \\ 2x_1 + 8x_2 - 2x_3 + 3x_4 & = & -14 \\ -3x_1 + 2x_2 + 11x_3 - 4x_4 & = & 12.5 \\ -2x_1 + 3x_2 + 2x_3 - 10x_4 & = & -21 \end{array}$$

► Computacionalmente

```
A \leftarrow matrix(c(9,2,-3,-2,-2,8,2,
                3,3,-2,11,2,2,3,-4,10),4,4)
 b \leftarrow c(54.5, -14, 12.5, -21)
 ss \leftarrow iacobi(A = A, b = b,
               inicial = c(0.0.0.0).
               max_iter = 15
 ## Solução aproximada
 ss$Solucao
## [1] 4.999502 -1.999771 2.500056 -1.000174
 ## Solução exata
 solve(A, b)
## [1] 5.0 -2.0 2.5 -1.0
```

Métodos iterativo de Jacobi e Gauss-Seidel

- ► Em R o pacote Rlinsolve fornece implementações eficientes dos métodos de Jacobi e Gauss-Seidel.
- ► Rlinsolve inclui suporte para matrizes esparsas via Matrix.
- ▶ Rlinsolve é implementado em C++ usando o pacote Rcpp.

```
A \leftarrow matrix(c(9,2,-3,-2,-2,8,2,3,3,-2,11,
               2,2,3,-4,10),4,4)
 b \leftarrow c(54.5, -14, 12.5, -21)
 ## pacote extra
 require(Rlinsolve)
 lsolve.jacobi(A, b)$x ## Método de jacobi
##
              [.1]
## [1,] 4.9999708
## [3.] 2.5000163
## [4.] -0.9999483
 lsolve.gs(A, b)$x ## Método de Gauss-Seidell
             Γ.17
## [1.] 4.999955
## [2.] -2.000071
## [3.] 2.500018
## [4,] -0.999968
```

Decomposição LU

Decomposição LU

▶ Nos métodos de eliminação de Gauss e Gauss-Jordan resolvemos sistemas do tipo

$$Ax = b$$
.

► Sendo dois sistemas

$$Ax = b_1$$
, e $Ax = b_2$.

- ▶ Cálculos do primeiro não ajudam a resolver o segundo.
- ightharpoonup IDEAL! Operações realizadas em A fossem dissociadas das operações em b.

Decomposição LU

► Suponha que precisamos resolver vários sistemas do tipo

$$Ax = b$$
.

para diferentes b's.

▶ Opção 1 - calcular a inversa A⁻¹, assim a solução

$$x = \mathsf{A}^{-1}b.$$

▶ Cálculo da inversa é computacionalmente ineficiente.

Decomposição LU: algoritmo

▶ Decomponha (fatore) a matriz A em um produto de duas matrizes

$$A = LU$$
,

onde L é triangular inferior e U é triangular superior.

▶ Baseado na decomposição o sistema tem a forma:

$$LUx = b. (3)$$

- ightharpoonup Defina Ux = y.
- ▶ Substituindo em 3 tem-se

$$Ly = b. (4)$$

- ► Solução é obtida em dois passos
 - ▶ Resolva Eq.(4) para obter y usando substituição progressiva.
 - ightharpoonup Resolva Eq.(3) para obter x usando substituição regressiva.

Obtendo as matrizes L e U

- Método de eliminação de Gauss e método de Crout.
- ▶ Dentro do processo de eliminação de Gauss as matrizes L e U são obtidas como um subproduto, i.e.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{41} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ m_{21} & 1 & & & \\ m_{31} & m_{32} & 1 & & \\ m_{41} & m_{42} & m_{43} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a'_{33} & a'_{34} \\ 0 & 0 & 0 & a'_{44} \end{bmatrix}.$$

lacktriangle Os elementos $m'_{ij}s$ são os multiplicadores que multiplicam a equação pivô.

Obtendo as matrizes L e U

▶ Relembre o exemplo de eliminação de Gauss.

$$\begin{bmatrix} [3] & 2 & 6 \\ 2 - \frac{2}{3}3 & 4 - \frac{2}{3}2 & 3 - \frac{2}{3}6 \\ 5 - \frac{5}{3}3 & 3 - \frac{5}{3}2 & 4 - \frac{5}{3}6 \end{bmatrix} \begin{bmatrix} 24 \\ 23 - \frac{2}{3}24 \\ 33 - \frac{5}{3}24 \end{bmatrix} \rightarrow \begin{bmatrix} [3] & 2 & 6 \\ 0 & \frac{8}{3} & -1 \\ 0 & -\frac{1}{3} & -6 \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 & 6 \\ 0 & [\frac{8}{3}] & -1 \\ 0 & -\frac{1}{3} - \left(-\frac{3}{24}\right)\left(\frac{8}{3}\right) & -6 - \left(-\frac{3}{24}\right)(-1) \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -7 - \left(-\frac{3}{24}\right)(7) \end{bmatrix} \\ \rightarrow \begin{bmatrix} 3 & 2 & 6 \\ 0 & [\frac{8}{3}] & -1 \\ 0 & 0 & -\frac{147}{24} \end{bmatrix} \begin{bmatrix} 24 \\ 7 \\ -\frac{147}{24} \end{bmatrix}$$

▶ Neste caso, tem-se

$$L = \begin{bmatrix} 1 \\ \frac{2}{3} & 1 \\ \frac{5}{3} & -\frac{3}{24} & 1 \end{bmatrix} \quad e \quad U = \begin{bmatrix} 3 & 2 & 6 \\ 0 & \frac{8}{3} & -1 \\ 0 & 0 & -\frac{147}{24} \end{bmatrix}.$$

Decomposição LU com pivotação

Decomposição LU com pivotação

- ▶ O método de eliminação de Gauss foi realizado sem pivotação.
- ► Como discutido a pivotação pode ser necessária.
- ▶ Quando realizada a pivotação as mudanças feitas devem ser armazenadas, tal que

$$PA = LU$$
.

- ▶ P é uma matriz de permutação.
- ▶ Se as matrizes LU forem usadas para resolver o sistema

$$\mathbf{A}x = b,$$

então a ordem das linhas de b deve ser alterada de forma consistente com a pivotação, i.e. Pb.

Implementação: Decomposição LU

▶ Podemos facilmente modificar a função gauss() para obter a decomposição LU.

```
mv_lu <- function(A) {</pre>
  n_row <- nrow(A)</pre>
  n_col <- ncol(A)</pre>
  SOL <- matrix(NA, n_row, n_col) ## Matriz para receber os resultados
  SOL\Gamma1.7 \leftarrow A\Gamma1.7
  pivo <- matrix(0, n_col, n_row)
  for(j in 1:c(n_row-1)) {
    for(i in c(j+1):c(n_row)) {
      pivo[i,i] <- A[i,i]/SOL[i,i]</pre>
      SOL[i,] \leftarrow A[i,] - pivo[i,i]*SOL[i,]
      AΓi. ] <- SOLΓi. ]
  diag(pivo) <- 1
  return(list("L" = pivo. "U" = SOL)) }
```

Aplicação: Decomposição LU

► Fazendo a decomposição.

```
LU <- my_lu(A) ## Decomposição
 LU
## $1
##
             [,1]
                  [,2] [,3] [,4]
        1.0000000 0.0000000 0.000000
        0.2222222 1.0000000 0.000000
## [3,] -0.3333333 0.1578947 1.000000
## [4.] -0.2222222 0.3026316 0.279661
##
## $U
##
       [.1]
                    [.2] [.3]
                                       [,4]
## [1.]
          9 -2.000000e+00 3.000000 2.000000
## [2.]
       0 8.44444e+00 -2.666667 2.555556
## [3,] 0 0.000000e+00 12.421053 -3.736842
## [4,]
          0 -4.440892e-16 0.000000 10.716102
```

```
LU$L %*% LU$U ## Verificando a solução

## [,1] [,2] [,3] [,4]

## [1,] 9 -2 3 2

## [2,] 2 8 -2 3

## [3,] -3 2 11 -4

## [4,] -2 3 2 10
```

Aplicação: Decomposição LU

► Resolvendo o sistema de equações.

```
## Passo 1: Substituição progressiva
 v = forwardsolve(LU$L, b)
 ## Passo 2: Substituição regressiva
 x = backsolve(LU$U, v)
 Х
## [1] 5.0 -2.0 2.5 -1.0
 A%*%x ## Verificando a solução
   [,1]
## [1.] 54.5
## [2.] -14.0
## [3.] 12.5
## [4,] -21.0
```

► Função lu() do Matrix fornece a decomposição LU.

```
require(Matrix)
## Calcula mas não retorna
LU_M <- lu(A)
## Captura as matrizes L U e P
LU_M <- expand(LU_M)
## Substituição progressiva.
y <- forwardsolve(LU_M$L, LU_M$P%*%b)
## Substituição regressiva
x = backsolve(LU_M$U, y)
x
## [1] 5.0 -2.0 2.5 -1.0</pre>
```

Obtendo a inversa

Obtendo a inversa via decomposição LU

- ▶ O método LU é especialmente adequado para o cálculo da inversa.
- ▶ Lembre-se que a inversa de A é tal que

$$AA^{-1} = I.$$

▶ O procedimento de cálculo da inversa é essencialmente o mesmo da solução de um sistema de equações lineares, porém com mais incognitas.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

▶ Três sistemas de equações diferentes, em cada sistema, uma coluna da matriz X é a incognita.

Implementação: inversa via decomposição LU

► Função para resolver o sistema usando decomposição LU.

```
solve_lu <- function(LU, b) {
  y <- forwardsolve(LU_M$L, LU_M$P%*%b)
  x = backsolve(LU_M$U, y)
  return(x)
}</pre>
```

► Resolvendo vários sistemas

```
my_solve <- function(LU, B) {
    n_col <- ncol(B)
    n_row <- nrow(B)
    inv <- matrix(NA, n_col, n_row)
    for(i in 1:n_col) {
        inv[,i] <- solve_lu(LU, B[,i])
    }
    return(inv)
}</pre>
```

Aplicação: inversa via decomposição LU

► Calcule a inversa de

$$A = \begin{bmatrix} 3 & 2 & 6 \\ 2 & 4 & 3 \\ 5 & 3 & 4 \end{bmatrix}$$

```
A <- matrix(c(3,2,5,2,4,3,6,3,4),3,3)
I <- Diagonal(3, 1)
## Decomposição LU
LU <- my_lu(A)
## Obtendo a inversa
inv_A <- my_solve(LU = LU, B = I)
inv_A
## Verificando o resultado
A%*%inv_A
```

Cálculo da inversa via método de Gauss-Jordan

▶ Procedimento Gauss-Jordan:

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{32} & 0 & 1 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & a'_{11} & a'_{21} & a'_{31} \\ 0 & 1 & 0 & a'_{21} & a'_{22} & a'_{32} \\ 0 & 0 & 1 & a'_{31} & a'_{32} & a'_{33} \end{bmatrix}.$$

- ▶ Função solve() usa a decomposição LU com pivotação.
- ▶ R básico é construído sobre a biblioteca lapack escrita em C.
- ▶ Veja documentação em http://www.netlib.org/lapack/lug/node38.html.

Autovalores e autovetores

Autovalores e autovetores

- ▶ Redução de dimensionalidade é fundamental em ciência de dados.
- ► Análise de componentes principais (PCA)
- ► Análise fatorial (AF).
- ▶ Decompor grandes e complicados relacionamentos multivariados em simples componentes não relacionados.
- ▶ Vamos discutir apenas os aspectos matemáticos.

Intuição

lacktriangle Podemos decompor um vetor v em duas informações separadas: direção d e tamanho λ , i.e

$$\lambda = ||v|| = \sqrt{\sum_j \nu_j^2}, \quad \mathrm{e} \quad d = \frac{v}{\lambda}.$$

- ▶ É mais fácil interpretar o tamanho de um vetor enquanto ignorando a sua direção e vice-versa.
- ▶ Esta ideia pode ser estendida para matrizes.
- ▶ Uma matriz nada mais é do que um conjunto de vetores.
- ▶ IDEIA decompor a informação de uma matriz em outros componentes de mais fácil interpretação/representação matemática.

Autovalores e Autovetores

▶ Autovalores e autovetores são definidos por uma simples igualdade

$$Av = \lambda v. (5)$$

- \blacktriangleright Os vetores v's que satisfazem Eq. (5) são os autovetores.
- \blacktriangleright Os valores λ 's que satisfazem Eq. (5) são os autovalores.
- ▶ Vamos considerar o caso em que A é simétrica.
- ▶ A ideia pode ser estendida para matrizes não simétricas.

Autovalores e Autovetores

lacktriangle Se A é uma matriz simétrica $n \times n$, então existem exatamente n pares (λ_j, v_j) que satisfazem a equação:

$$Av = \lambda v$$
.

- ▶ Se A tem autovalores $\lambda_1, \dots, \lambda_n$, então:
- $\blacktriangleright \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i.$
- $ightharpoonup \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i.$
- ▶ A é positiva definida, se e somente se todos $\lambda_j > 0$.
- ▶ A é semi-positiva definida, se e somente se todos $\lambda_j \geq 0$.
- ▶ A ideia do PCA é decompor/fatorar a matriz A em componentes mais simples de interpretar.

Decomposição em autovalores e autovetores

▶ Teorema: qualquer matriz simétrica A pode ser fatorada em

$$A = Q\Lambda Q^{\top},$$

onde Λ é diagonal contendo os autovalores de A e as colunas de Q contêm os autovetores ortonormais.

- ▶ Vetores ortonormais: são mutuamente ortogonais e de comprimento unitário.
- ▶ Teorema: se A tem autovetores Q e autovalores λ_j . Então A⁻¹ tem autovetores Q e autovalores λ_j^{-1} .
- lacksquare Implicação: se $\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$ então $\mathbf{A}^{-1} = \mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{\top}$.

Diagonalização

- ► Autovalores são utéis porque eles permitem lidar com matrizes da mesma forma que lidamos com números.
- lacktriangle Todos os cálculos são feitos na matriz diagonal Λ .
- ▶ Este processo é chamado de diagonalização.
- ▶ Um dos resultados mais poderosos em Álgebra Linear é que qualquer matriz pode ser diagonalizada.
- ▶ O processo de diagonalização é chamado de Decomposição em valores singulares.

Decomposição em valores singulares (SVD)

Decomposição em valores singulares (SVD)

▶ Teorema: qualquer matriz A pode ser decomposta em,

$$A = UDV^{\top}$$
,

onde D é diagonal com entradas não negativas e U e V são ortogonais, i.e. $U^{T}U = V^{T}V = I$.

- ▶ Matrizes não quadradas não tem autovalores.
- ▶ Os elementos de D são chamados de valores singulares.
- \blacktriangleright Os valores singulares são os autovalores de $A^{\top}A$.

Dimensão da SVD

- ▶ Se A é $n \times n$, então U, D e V são $n \times n$.
- ▶ Se A é $n \times p$, sendo n > p, então U é $n \times p$, D e V são $p \times p$.
- ▶ Se A é $n \times p$, sendo n < p, então V^{\top} é $n \times p$, D e U são $n \times n$.
- ightharpoonup D será sempre quadrada com dimensão igual ao mínimo entre p e n.

Decomposição em autovalores e autovetores em R

► Função eigen() fornece a decomposição ► Verificando a solução

```
A \leftarrow matrix(c(1,0.8, 0.3, 0.8, 1,
               0.2, 0.3, 0.2, 1), 3, 3)
 isSymmetric.matrix(A)
## [1] TRUE
 out <- eigen(A)
 Q <- out$vectors ## Autovetores
 D <- diag(out$values) ## Autovalores
 0
             [,1] [,2] [,3]
## [1.] -0.6712373 -0.1815663 0.71866142
## [2,] -0.6507744 -0.3198152 -0.68862977
## [3,] -0.3548708 0.9299204 -0.09651322
```

```
[,1] [,2] [,3]
## [1,] 1.934216 0.0000000 0.0000000
## [2,] 0.000000 0.8726419 0.0000000
## [3,] 0.000000 0.0000000 0.1931419
 Q%*%D%*%t(Q) ## Verificando
       [,1] [,2] [,3]
## [1,] 1.0 0.8 0.3
## [2,] 0.8 1.0 0.2
## [3,] 0.3 0.2 1.0
```

Decomposição em valores singulares em R

▶ Função svd() fornece a decomposição

```
svd(A)
## $d
## [1] 1.9342162 0.8726419 0.1931419
##
## $u
            [,1] [,2] [,3]
## [1,] -0.6712373  0.1815663  0.71866142
## [2.] -0.6507744 0.3198152 -0.68862977
## [3,] -0.3548708 -0.9299204 -0.09651322
##
## $v
##
             [,1] [,2] [,3]
## [1,] -0.6712373 0.1815663 0.71866142
## [2,] -0.6507744 0.3198152 -0.68862977
## [3.] -0.3548708 -0.9299204 -0.09651322
```

▶ Relembrando: regressão linear múltipla

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{p1} \\ 1 & x_{12} & \dots & x_{p1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \dots & x_{pn} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

$$\underset{p \times 1}{\beta_p}$$

▶ Usando uma notação mais compacta,

$$\mathbf{y}_{n\times 1} = \underset{n\times p}{\mathbf{X}} \beta.$$

► Minimiza a perda quadrática:

$$\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

- ▶ Se p > n o sistema é singular (múltiplas soluções)!
- ► Como podemos ajustar o modelo?
- ► Introduzir uma penalidade pela complexidade.
- ► Soma de quadrados penalizada

$$PSQ(\beta) = \sum_{i=1}^n (y_i - x_i^\top \beta)^2 + \lambda \sum_{j=1}^p \beta_j^2.$$

► Matricialmente, tem-se

$$PSQ(\beta) = (y - X\beta)^{\top}(y - X\beta) + \lambda \beta^{\top}\beta.$$

- ► IMPORTANTE!!
 - ▶ y centrado (média zero).
 - X padronizada por coluna (média zero e variância um).

- ▶ Objetivo: minizar a soma de quadrados penalizada.
- ▶ Derivada

$$\begin{split} \frac{\partial PQS(\beta)}{\partial \beta} &= \frac{\partial}{\partial \beta} \left[(y - \mathbf{X}\beta)^{\top} (y - \mathbf{X}\beta) + \lambda \beta^{\top} \beta \right] \\ &= \left[\frac{\partial}{\partial \beta} (y - \mathbf{X}\beta)^{\top} \right] (y - \mathbf{X}\beta) + (y - \mathbf{X}\beta)^{\top} \left[\frac{\partial}{\partial \beta} (y - \mathbf{X}\beta) \right] + \\ \lambda \left\{ \left[\frac{\partial \beta^{\top}}{\partial \beta} \right] \beta + \beta^{\top} \left[\frac{\partial \beta}{\partial \beta} \right] \right\} \\ &= -2\mathbf{X}^{\top} (y - \mathbf{X}\beta) + 2\lambda \beta \\ &= -\mathbf{X}^{\top} (y - \mathbf{X}\beta) + \lambda \beta. \end{split}$$

Aplicação: regressão ridge

▶ Resolvendo o sistema linear, tem-se

$$\begin{split} -\mathbf{X}^\top (y - \mathbf{X} \hat{\boldsymbol{\beta}}) + \lambda \mathbf{I} \hat{\boldsymbol{\beta}} &= 0 \\ -\mathbf{X}^\top y + \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} + \lambda \mathbf{I} \hat{\boldsymbol{\beta}} &= 0 \\ \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} + \lambda \mathbf{I} \hat{\boldsymbol{\beta}} &= \mathbf{X}^\top y \\ (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}) \, \hat{\boldsymbol{\beta}} &= \mathbf{X}^\top y \\ \hat{\boldsymbol{\beta}} &= \left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \mathbf{X}^\top y. \end{split}$$

- ightharpoonup Solução depende de λ .
- ightharpoonup A inclusão de λ faz o sistema ser não singular.
- lacktriangle Na verdade quando fixamos λ selecionamos uma solução em particular.

Aplicação: regressão ridge

lacktriangle Calcular $\hat{\beta}$ envolve a inversão de uma matriz $p \times p$ potencialmente grande.

$$\hat{\beta} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}y.$$

▶ Usando a decomposição SVD, tem-se

$$X = UDV^{\top}.$$

▶ É possível mostrar que,

$$\hat{\beta} = \operatorname{Vdiag}\left(\frac{d_j}{d_j^2 + \lambda}\right) \operatorname{U}^\top y.$$

Implementação computacional: regressão ridge

Implementação: regressão ridge

▶ Simulando o conjunto de dados (n = 100, p = 200).

```
set.seed(123)
X <- matrix(NA, ncol = 200, nrow = 100)
X[,1] <- 1 ## Intercepto
for(i in 2:200) {
    X[,i] <- rnorm(100, mean = 0, sd = 1)
    X[,i] <- (X[,i] - mean(X[,i]))/var(X[,i])
}
## Parâmetros
beta <- rbinom(200, size = 1, p = 0.1)*rnorm(200, mean = 10)
mu <- X%*%beta
## Observações
y <- rnorm(100, mean = mu, sd = 10)</pre>
```

Implementando o modelo.

► Modelo passo-a-passo

```
y_c <- y - mean(y)
X_svd <- svd(X) ## Decomposição svd
lambda = 0.5 ## Penalização
DD <- Diagonal(100, X_svd$d/(X_svd$d^2 + lambda))
DD[1] <- 0 ## Não penalizar o intercepto
beta_hat = as.numeric(X_svd$v%*%DD%*%t(X_svd$u)%*%v_c)</pre>
```

► Ajustados versus verdadeiros.

```
plot(beta ~ beta_hat, xlab = expression(hat(beta)), ylab = expression(beta))
```


- ► Regressão com penalização ridge, bem como, outras penalizações são eficientemente implementadas em R via pacote glmnet.
- ▶ IMPORTANTE! A penalização no glmnet é ligeiramente diferente, por isso os $\hat{\beta}$'s não são idênticos a nossa implementação naive.
- ightharpoonup O glmnet oferece opções para selecionar λ via validação cruzada.

```
require(glmnet)
beta_glm <- cv.glmnet(X[,-1], v_c, nlambda = 100)</pre>
```

► Validação cruzada.

plot(beta_glm)

► Ajustados (glmnet) versus verdadeiros.

```
plot(beta ~ as.numeric(coef(beta_glm)), xlab = expression(hat(beta)), ylab = expression(beta))
```


Comentários

Comentários

- ► Solução de sistemas lineares:
 - ▶ Métodos diretos: Eliminação de Gauss e Gauss-Jordan.
 - ▶ Métodos iterativos: Jacobi e Gauss-Seidel.
 - ▶ Inversa de matrizes.
- ▶ Decomposição ou fatorização
 - ▶ LU resolve sistema lineares pode ser usada para obter inversas.
 - ► Autovalores e autovetores.
 - ▶ Valores singulares.
 - Existem muitas outras fatorizações: QR, Cholesky, Cholesky modificadas, etc.