Polynômes annulateurs

Exercice 1 ★★

CCP PSI 2015

L'endomorphisme

$$\varphi: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \longmapsto & \begin{pmatrix} d & a \\ b & c \end{pmatrix} \right.$$

est-il diagonalisable?

Exercice 2 ★★

CCP MP 2018

Soient x un nombre réel et E_x l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 + M + xI_n = 0$.

- **1.** Si $x \neq 0$, montrer qu'une matrice $M \in E_x$ est inversible et exprimer son inverse. Quelles sont les matrices inversibles appartenant à E_0 ?
- **2.** Pour quelles valeurs de x tous les éléments de E_x sont ils diagonalisables dans $\mathcal{M}_n(\mathbb{R})$?
- 3. Déterminer l'ensemble T des traces des éléments de E_{-2} . Quel est son cardinal?

Exercice 3 ★★

CCINP (ou CCP) MP 2021

On considère $f: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M} + 2\mathrm{M}^\top \end{array} \right.$

- 1. Montrer que f est un endomorphisme.
- **2.** Donner les valeurs propres et les sous-espaces propres de f.
- **3.** L'endomorphisme f est-il diagonalisable?
- **4.** Calculer tr(f) et det(f).

Exercice 4

CCP MP 2022

Soit $(A, B) \in \mathcal{M}_p(\mathbb{C})^2$ ainsi que λ et μ deux complexes distincts et non nuls tels que

$$I_p = A + B$$

$$M = \lambda A + \mu B$$

$$M^2 = \lambda^2 A + \mu^2 B$$

- **1.** Montrer que M est inversible et calculer son inverse.
- **2.** Exprimer A en fonction de M et I_p .
- **3.** Montrer que A et B sont des matrices de projecteurs.
- **4.** M est-elle diagonalisable? Déterminer son spectre.

Exercice 5 ***

Soient u et v deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel de dimension finie E tels que $u \circ v = v \circ u$. Montrer que u et v diagonalisent dans une base commune.

Exercice 6 ★

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que si A est diagonalisable, alors A^T l'est aussi.

Exercice 7 ★★★★

Banque Mines-Ponts MP 2022

Soit E un espace vectoriel de dimension n. Un endomorphisme f de E est dit *cyclique* s'il existe $x_0 \in E$ tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.

- 1. On supose dans cette qustion que n=3 et on considère un endomorphisme g de E dont la matrice dans une base de E est $G=\begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}$. Montrer que g est cyclique et diagonalisable.
- **2.** Un endomorphisme f cyclique est-il toujours diagonalisable?
- **3.** Soit f un endomorphisme diagonalisable de valeurs propres distinctes deux à deux. Est-il cyclique?
- **4.** Soit f un endomorphisme diagonalisable et cyclique. Ses valeurs propres sont-elles distinctes deux à deux?

Exercice 8 ***

Soient u et v deux endomorphismes trigonalisables d'un \mathbb{K} -espace vectoriel E de dimension finie tels que $u \circ v = v \circ u$. Montrer que u et v trigonalisent dans une base commune.

Exercice 9 ***

Mines-Ponts MP 2015

On note $GL_2(\mathbb{Z})$ l'ensemble des matrices $\mathcal{M}_2(\mathbb{Z})$ inversible et dont l'inverse appartient aussi à $\mathcal{M}_2(\mathbb{Z})$.

- **1.** Montrer que $(GL_2(\mathbb{Z}), \times)$ est un groupe.
- 2. Soit G un sous-groupe fini de $GL_2(\mathbb{Z})$. Montrer que pour toute matrice $M\in G$, $M^{12}=I_2$.

Exercice 10 ★★

CCINP (ou CCP) MP 2019

Soit $n \ge 2$ entier. On considère $\mathcal{M}_n(\mathbb{R})$ telle que $A^2 = I_n$ et $A \ne \pm I_n$.

- **1.** Montrer que $tr(A) \equiv n[2]$.
- 2. Montrer que $|\operatorname{tr}(A)| \le n 2$.

Exercice 11

Centrale-Supélec MP 2022

Soit $n \in \mathbb{N}^*$. On note

$$GL_n(\mathbb{Z}) = \{ M \in GL_n(\mathbb{R}), (M, M^{-1}) \in \mathcal{M}_n(\mathbb{Z})^2 \}$$

- **1.** Soit $M \in \mathcal{M}_n(\mathbb{Z})$. Montrer que $M \in GL_n(\mathbb{Z})$ si et seulement si $|\det M| = 1$. Montrer que $GL_n(\mathbb{Z})$ est un sous-groupe de $GL_n(\mathbb{R})$.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $d \in \mathbb{N}$ tels que $M^d = I_n$. On pose $A = \frac{1}{3}(M I_n)$. Étudier la convergence de la suite $(A^k)_{k \in \mathbb{N}}$.
- **3.** Montrer qu'il existe un entier K_n majorant le cardinal des sous-groupes finis de $GL_n(\mathbb{Z})$.

Exercice 12 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ M & \longmapsto & M + \operatorname{tr}(M)I_n \end{array} \right.$$

Déterminer les valeurs propres de *u*, ainsi que les espaces propres associés.

Exercice 13

X MP 2010

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $A\overline{A} = I_n$ si et seulement si il existe $S \in GL_n(\mathbb{C})$ tel que $A = S\overline{S}^{-1}$.

Exercice 14 ***

Soient u et v deux endomorphismes trigonalisables d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension finie tels que $u \circ v = v \circ u$. Montrer que u et v trigonalisent dans une base commune.

Exercice 15

1. Déterminer toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que

$$A^2 - 3A + 2I_2 = 0$$

2. Déterminer toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que

$$A^3 - 8A^2 + 21A - 18I_2 = 0$$

Exercice 16 ★

TPE MP 2010

Déterminer les $n \in \mathbb{N}^*$ pour les quels il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^3 - M^2 - M - 2I_n = 0$ et tr(M) = 0.

Exercice 17 ★★

Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^5 = M^2$ et tr(M) = n.

Exercice 18

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie et $P \in \mathbb{K}[X]$ un polynôme unitaire annulateur de u. La décomposition de P en facteurs irréductibles

unitaires s'écrit $P = \prod_{i=1}^{r} P_i$. Pour $i \in [1, r]$, on pose $N_i = \text{Ker } P_i(u)$.

Soit F un sous-espace vectoriel de E stable par u. Montrer que $F = \bigoplus_{i=1}^{r} F \cap N_i$.

Exercice 19

TPE-EIVP PSI 2017

Soient A, B, C dans $\mathcal{M}_n(\mathbb{R})$ telles que C = A + B, C^2 = 2A + 3B, C^3 = 5A + 6B. A et B sont-elles diagonalisables?

Exercice 20 ★★★

Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ tel que P(f) = 0, P(0) = 0 et $P'(0) \neq 0$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Exercice 21 ★★

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que rg(A) est pair.

Exercice 22 ***

Montrer que pour tout $P \in \mathbb{C}_{n-1}[X]$,

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} P(X+k) = 0$$

Exercice 23 ★★ E3A MP 2019

Soient n un entier supérieur ou égal à 2, $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$ et $\mathbb{E}_n=\mathcal{M}_n(\mathbb{K})$. La matrice identité de \mathbb{E}_n sera notée \mathbb{I}_n .

Pour $A \in E_n$ et $j \in [[1, n]]$, on note A_j la j-ème colonne de la matrice A.

Soit u l'application qui à toute matrice A de E_n associe la matrice B dont les colonnes B_j sont

$$\forall j \in [[1, n]], \ B_j = S - A_j = \sum_{k=1, k \neq j}^n A_k \text{ où } S = \sum_{k=1}^n A_k$$

1. Dans cette question, n = 2 et E_2 est muni de la base $\mathcal{B} = (K_1, K_2, K_3, K_4)$ où

$$K_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad K_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad K_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad K_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- **a.** Vérifier que u est un endomorphisme de E_2 .
- **b.** Déterminer la matrice de u dans la base \mathcal{B} . Démontrer que u est un automorphisme de E_2 .
- **c.** Reconnaître la nature géométrique de l'automorphisme *u* en précisant ses éléments caractéristiques.
- **2.** Exprimer det(u(A)) en fonction dedet(A) dans les case n = 2 et n = 3.

On revient au cas général et on admettra que u est un endomorphisme de E_n .

3. Montrer à l'aide d'opérations sur les colonnes et en utilisant S que l'on a

$$\det(u(A)) = (-1)^{n-1}(n-1)\det(A)$$

- **4. a.** Déterminer un polynôme annulateur de degré 2 de l'endomorphisme *u*.
 - **b.** En déduire les éléments propres de l'endomorphisme *u*. Est-il diagonalisable ?
- 5. Soinet J_n la matrice de E_n dont tous les coefficients sont égaux à 1 et $U_n = J_n I_n$.
 - **a.** Déterminer les colonnes du produit matriciel AU_n à l'aide de celles de A.
 - **b.** Retrouver alors le résultat de la question **4.a**.

Exercice 24

Mines Télécom MP 2022

Soit A =
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

- **1.** A est-elle diagonalisable ? Donner ses valeurs propres complexes et déterminer une matrice D diagonable semblable à A.
- **2.** Soit $M \in \mathcal{M}_3(\mathbb{R})$ non nulle telle que $M^3 + M = 0$. Montrer que M est semblable à D.
- **3.** A et M sont-elles semblables dans $\mathcal{M}_3(\mathbb{C})$? $\mathcal{M}_3(\mathbb{R})$?

Polynôme minimal

Exercice 25

CCINP (ou CCP) MP 2021

Soit n un entier supérieur ou égal à 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^n = I_n$ et telle que la famille $(I_n, A, A^2, ..., A^{n-1})$ soit libre. Montrer que tr(A) = 0.

Exercice 26 ENS MP 2011

- 1. Soit A une matrice inversible réelle. Exprimer le polynôme minimal de A⁻¹ en fonction de celui de A.
- 2. Soit A une matrice orthogonale réelle telle que 1 et −1 ne soient pas racines de son polynôme minimal. Montrer que A et A⁻¹ ont même polynôme minimal. Montrer que le degré de ce polynôme minimal est pair.

Exercice 27

Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$ tels que $f \circ g - g \circ f = f$.

- **1.** Montrer que $f^n \circ g g \circ f^n = nf^n$ pour tout $n \in \mathbb{N}$.
- **2.** En déduire que $P(f) \circ g g \circ P(f) = f \circ P'(f)$ pour tout $P \in \mathbb{K}[X]$.
- 3. Montrer que f est nilpotent.

Exercice 28 ★★

CCINP (ou CCP) PSI 2021

Soit A =
$$\begin{pmatrix} 1 & 2 & \cdots & n \\ 2 & & & \\ \vdots & & (0) & & \\ n & & & \end{pmatrix}$$
 où $n \ge 3$.

- 1. Quel est le rang de A? la dimension du noyau de A?
- 2. La matrice A est-elle diagonalisable?
- 3. Quelle est la multiplicité de la valeur propre 0?
- **4.** Montrer qu'il existe $\lambda \in]1, +\infty[$ tel que $Sp(A) = \{0, \lambda, 1 \lambda\}.$
- **5.** Déterminer un polynôme annulateur de A de degré 3.

Exercice 29 ★★

On considère un entier $n \ge 2$. Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M} + \mathrm{tr}(\mathrm{M})\mathrm{I}_n \end{array} \right.$$

- 1. Déterminer un polynôme annulateur de u de degré 2.
- **2.** *u* est-il diagonalisable?
- 3. Déterminer le polynôme minimal et le polynôme caractéristique de u.

Exercice 30 ★★

CCINP (ou CCP) PSI 2021

Soient
$$A \in \mathcal{M}_n(\mathbb{R})$$
 et $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$

- 1. Donner le rang de B en fonction du rang de A.
- **2.** Montrer que, pour tout $P \in \mathbb{R}[X]$,

$$P(B) = \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$$

3. On suppose que A est diagonalisable. Montrer que B l'est aussi, et donner ses valeurs propres.

Exercice 31 ★★

Matrice compagnon

$$\text{Soient } (a_0, \dots, a_{n-1}) \in \mathbb{K}^n \text{ et } \mathbf{A} = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

- 1. Montrer que $\chi_A = X^n + \sum_{k=0}^{n-1} a_k X^k$.
- **2.** Montrer que $\pi_A = \chi_A$.
- **3.** Déterminer les sous-espaces propres de A^T .

Exercice 32

Endomorphismes cycliques

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

- **1. a.** Pour $x \in E$, on note $I_{u,x} = \{P \in \mathbb{K}[X], P(u)(x) = 0_E\}$. Montrer que pour tout $x \in E$, $I_{u,x}$ est un idéal de $\mathbb{K}[x]$. On note $\pi_{u,x}$ son unique générateur unitaire. Justifier que $\pi_{u,x}$ divise π_u .
 - **b.** Pour $x \in E$, on note $E_{u,x} = \{P(u)(x), P \in \mathbb{K}[X]\}$. Montrer que pour tout $x \in E$, $E_{u,x}$ est un sous-espace vectoriel de E et que $(u^k(x))_{0 \le k \le \deg \pi_{u,x}-1}$ en est une base. En déduire la dimension de $E_{u,x}$.
 - **c.** Montrer que $E_{u,x}$ est stable par u et que $\pi_{u_{|E_{u,x}}} = \pi_{u,x}$.
- **2.** Soient x_1, \ldots, x_p tels que les polynômes $\pi_{u, x_1}, \ldots, \pi_{u, x_p}$ soient deux à deux premiers entre eux. On pose $x = \sum_{i=1}^p x_i$ et $P = \prod_{i=1}^p \pi_{u, x_i}$.
 - **a.** Montrer que $\pi_{u,x}$ divise P.
 - **b.** Montrer que les sous-espaces vectoriels E_{x_1}, \dots, E_{x_n} sont en somme directe.
 - **c.** En déduire que $\pi_{u,x} = P$ et $E_{u,x} = \bigoplus_{i=1}^p E_{u,x_i}$.
- 3. En considérant la décomposition en facteurs irréductibles de π_u , montrer à l'aide de la question précédente qu'il existe $x \in E$ tel que $\pi_{u,x} = \pi_u$.
- **4.** Montrer que les conditions suivantes sont équivalentes.
 - (i) $\pi_u = \chi_u$.
 - (ii) Il existe $x \in E$ tel que $E_{u,x} = E$.
 - (iii) Il existe une base de E dans laquelle la matrice de u est de la forme

$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

On dit dans ce cas que u est un endomorphisme cyclique.

Exercice 33 ★

Soient un entier $n \ge 2$ et $U \in \mathcal{M}_n(\mathbb{K})$ dont tous les coefficients valent 1.

- 1. Déterminer le polynôme minimal de U.
- 2. Réduire U.

Exercice 34 ★★

CCINP (ou CCP) PSI 2021

On définit :
$$\forall m \in \mathbb{R}$$
, $A_m = \begin{pmatrix} -m-1 & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$. Déterminer le polynome minimal de

 A_m .

Exercice 35 ★★★

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A admet le même polynôme minimal considérée comme une matrice de $\mathcal{M}_n(\mathbb{R})$ et comme une matrice de $\mathcal{M}_n(\mathbb{C})$.

Exercice 36 ★★

CCINP (ou CCP) MP 2021

On considère un entier $n \ge 2$. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^n = I_n$ et telle que la famille $(I_n, A, A^2, \dots, A^{n-1})$ soit libre. Montrer que tr(A) = 0.

Exercice 37

CCINP (ou CCP) MP 2021

Soient E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. Énoncer le lemme de décomposition des noyaux appliqué à f dans le cas de deux polynômes premiers entre eux.
- **2.** On suppose que le polynôme minimal de f est donné par $\mu_f = (X^2 + 1)(X^2 + 4)$. A l'aide de la question précédente, montrer qu'il existe deux vecteurs non nuls de E, x et y, tels que : $f^2(x) = -x$ et $f^2(y) = -4y$.
- **3.** On suppose que E est de dimension 4. Montrer que (x, f(x), y, f(y)) est une base de E. Donner alors la matrice de f dans cette base.

Exercice 38 **

CCINP MP 2023

Soient un entier $n \ge 3$, E un \mathbb{R} -espace vectoriel de base $\mathcal{B} = (e_1, \dots, e_n)$ et $f \in \mathcal{L}(E)$. On suppose qu'il existe $(a_1, \dots, a_n) \in (\mathbb{R}^*)^n$ tel que

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_n \\ 0 & 0 & \cdots & 0 & a_{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_2 \\ a_n & a_{n-1} & \cdots & a_2 & a_1 \end{pmatrix}$$

- **1.** Quel est le rang de f?
- **2.** Justifier que le polynôme caractéristique de f peut s'écrire $\chi_f = X^{n-2}P$ où P est un polynôme unitaire de degré 2.
- **3.** Calculer $f(e_i)$ pour tout $i \in [1, n]$ ainsi que $f^2(e_n)$.
- **4.** Déterminer χ_f .
- **5.** L'endomorphisme f est-il diagonalisable? Quel est son polynôme minimal?

Exercice 39 ★★

Soit $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K})$. On suppose que AB est inversible et diagonalisable. Montrer que BA est diagonalisable.

Exponentielles

Exercice 40

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $exp(A)^T = exp(A^T)$.
- **2.** On suppose A symétrique dans cette question. Montrer que exp(A) est également symétrique.
- 3. Montrer que det(exp(A)) > 0.
- **4.** On suppose A antisymétrique dans cette question. Montrer que $\exp(A) \in SO_n(\mathbb{R})$.

Exercice 41 ★

Soit
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
. Calculer $exp(A)$ de deux manières.

Exercice 42 ★

Soit A =
$$\begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$
. Calculer exp(A) de deux manières.

Exercice 43 ★★

Soit $u \in \mathcal{L}(E)$ nilpotent où E est un espace vectoriel de dimension finie. Montrer que $\operatorname{Ker}(\exp(u) - \operatorname{Id}_E) = \operatorname{Ker}(u)$ et $\operatorname{Im}(\exp(u) - \operatorname{Id}_E) = \operatorname{Im}(u)$.