INTERPOLASI

- Interpolasi
- Interpolasi Linier

Interpolasi

- ➤ Interpolasi merupakan suatu metode untuk mencari taksiran titik-titik tertentu diantara dua titik tertentu.
- > Bisa dimanfaatkan untuk penghalusan kurva atau penghalusan peta.
- keakuratannya bergantung pada berapa banyaknya titik yang diketahui, makin banyak titik yang diketahui, maka makin tinggi keakuratannya.

Gambaran Interpolasi

Diketahui data sebagai berikut:

Х	у
1,00	3,00
4,00	5,00
7,00	6,00
10,00	9,00

Untuk x=5, berapa nilai y?

Kurva dari data pengukuran

Kurva setelah interpolasi

Perbedaan Interpolasi dan Ekstrapolasi

Titik prediksi ada di dalam rentang yang diketahui

Titik prediksi ada di luar rentang yang diketahui

Macam-macam Interpolasi

- ☐ Interpolasi Linier
- ☐ Interpolasi Kuadratik
- ☐ Interpolasi Lagrange
- ☐ Interpolasi Newton Selisih Hingga
- □ Interpolasi Newton Selisih Bagi

Interpolasi Linier

- ➤ Menentukan titik titik di antara 2 buah titik berdekatan dengan menggunakan pendekatan fungsi garis lurus.
- ➤ Memerlukan 2 titik awalan

$$\begin{split} &\frac{BC}{AB} = \frac{DE}{AD} \\ &\text{atau} \quad \frac{f_1(\mathbf{x}) \cdot f(\mathbf{x}_0)}{(\mathbf{x} \cdot \mathbf{x}_0)} = \frac{f(\mathbf{x}_1) \cdot f(\mathbf{x}_0)}{(\mathbf{x}_1 \cdot \mathbf{x}_0)} \\ &\text{sehingga} \quad f_1(\mathbf{x}) = f(\mathbf{x}_0) + \frac{f(\mathbf{x}_1) \cdot f(\mathbf{x}_0)}{(\mathbf{x}_1 \cdot \mathbf{x}_0)}.(\mathbf{x} \cdot \mathbf{x}_0) \end{split}$$

Rumus Interpolasi Linier

Persamaan garis lurus yang melalui 2 titik P1(x1, y1) dan P2(x2,y2)

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Sehingga, titik Q dapat diperoleh dengan rumus

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

Algoritma Interpolasi Linier

- Tentukan dua titik P1 dan P2 dengan koordinatnya masing-masing (x1,y1) dan (x2,y2)
- (2) Tentukan nilai x dari titik yang akan dicari
- (3) Hitung nilai y dengan :

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

(4) Tampilkan nilai titik yang baru Q(x,y)

Contoh 1

Diketahui data sebagai berikut:

x	у
1,00	3,00
4,00	5,00
7,00	6,00
10,00	9,00

Untuk x=5, berapa nilai y? Ambil titik paling dekat Untuk x=5, maka diambil titik data (4,5) dan (7,6):

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$=5+\frac{6-5}{7-4}(5-4)=5,333$$

Latihan 1

•Jarak yang dibutuhkan sebuah kendaraan untuk berhenti adalah fungsi kecepatan. Data percobaan berikut ini menunjukkan hubungan antara kecepatan dan jarak yang dibutuhkan untuk menghentikan kendaraan.

Kecepatan (mil/jam)	10	I/II	30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

•Perkirakan jarak henti yang dibutuhkan bagi sebuah kendaraan yang melaju dengan kecepatan 45 mil/jam.

Jawab:

• maka untuk mencari nilai x=45:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

$$f_1(45) = 65 + \frac{90 - 65}{50 - 40}(45 - 40)$$

$$f_1(45) = 65 + \frac{25}{10}(5) = 65 + 12.5 = 77.5 \text{ feet}$$

Latihan 2

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using linear interpolation.

t	v(t)			
S	m/s			
0	0			
10	227.04			
15	362.78			
20	517.35			
22.5	602.97			
30	901.67			

Table: Velocity as a function of time

Figure: Velocity vs. time data for the rocket example

Linear Interpolation

$$t_0 = 15, v(t_0) = 362.78$$

$$t_1 = 20, v(t_1) = 517.35$$

$$v(t) = v(t_0) + \frac{v(t_1) - v(t_0)}{t_1 - t_0} (t - t_0)$$

$$= 362.78 + \frac{517.35 - 362.78}{20 - 15} (t - 15)$$

$$v(t) = 362.78 + 30.913(t - 15)$$
At $t = 16$,
$$v(16) = 362.78 + 30.913(16 - 15)$$

$$= 393.7 \text{ m/s}$$

