

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 239/42, 403/12, 285/08, 401/12, 417/12, 413/12, 401/14, A01N 43/54, 43/82

(11) International Publication Number:

WO 99/31072

(43) International Publication Date:

24 June 1999 (24.06.99)

(21) International Application Number:

PCT/US98/26013

A1

(22) International Filing Date:

8 December 1998 (08.12.98)

(30) Priority Data:

60/069,994

18 December 1997 (18.12.97) US

- (71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): LEE, Kevin, Chun [US/US]; 1321 Cherokee Lane, Bel Air, MD 21015 (US).
- (74) Agent: BIRCH, Linda, D.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLOHEXYLAMINE ARTHROPODICIDES AND FUNGICIDES

$$Y - \underbrace{ \stackrel{(R^4)_m}{}}_{R^5} \qquad (1)$$

$$R^2$$
 Z Z Z Z Z Z Z

(57) Abstract

Compounds of Formula (I), and their agriculturally suitable salts, are disclosed which are useful as arthropodicides and fungicides wherein G is selected from the group consisting of (G-1) and (G-2); Y is a direct bond or C_1-C_4 alkylene optionally substituted with C_1-C_4 alkyl; X is O, NR^7 or $S(O)_p$; each Z is independently selected from N and CR^3 ; each Z^1 is independently selected from O, S and NR^8 ; and R^1-R^8 , m and p are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling arthropods which involves contacting the arthropods or their environment with an effective amount of a compound of Formula (I). Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling plant diseases caused by fungal plant pathogens which involves applying an effective amount of a compound of Formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				LS	Lesotho	SI	Slovenia
AL	Albania	ES	Spain		Lithuania	SK	Slovakia
AM	Armenia	FI	Finland	LT			
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

TITLE

CYCLOHEXYLAMINE ARTHROPODICIDES AND FUNGICIDES BACKGROUND OF THE INVENTION

This invention relates to certain cyclohexylamine arthropodicides and fungicides, agriculturally suitable salts and compositions, and methods of their use as arthropodicides and fungicides.

The control of arthropod pests is extremely important in achieving high crop efficiency. Arthropod damage to growing and stored agronomic crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of arthropod pests in forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and animal health is also important. The control of plant diseases caused by fungal plant pathogens is also extremely important in achieving high crop efficiency. Plant disease damage to ornamental, vegetable, field, cereal, and fruit crops can cause significant reduction in productivity and thereby result in increased costs to the consumers. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

WO 96/06086 discloses compounds of Formula i and their composition and method of use as pest control agents

20 wherein

25

R¹ is halogen, C₂-C₅ acyloxy, OH, C₁-C₄ alkoxy or C₁-C₄ alkylthio; and R² is C₁-C₈ alkyl, phenyl, pyrimidinylamino, C₁-C₆ alkoxy, COOR³, amino or NHCOR⁴.

The cyclohexylamines of the present invention are not disclosed in this publication.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, agriculturally suitable salts thereof, agricultural compositions containing them and their use as arthropodicides and fungicides,

$$\begin{array}{c}
(R^4)_m \\
N \\
R^5
\end{array}$$

5 wherein:

10

15

20

25

G is selected from the group consisting of

Y is a direct bond or C_1 - C_4 alkylene optionally substituted with C_1 - C_4 alkyl; X is O, NR⁷ or S(O)_p;

each Z is independently selected from N and CR3;

each Z¹ is independently selected from O, S and NR⁸;

each R^1 is independently selected from the group consisting of H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and R^9 S(O)_p;

each R² is independently selected from the group consisting of H, CF₃, C₁ alkyl optionally substituted with one or two R¹⁰ substituents, C₂-C₄ alkyl, R¹⁰CH₂CH₂-, (R¹⁰)₂CHCH₂-, R¹⁰CH₂CH(R¹⁰)-, CH₃C(R¹⁰)₂-, C₃-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, C₂-C₄ alkylcarbonyl, C₂-C₄ haloalkylcarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, cyano, nitro, thiocyanato, C₂-C₄ alkoxycarbonyl, C₂-C₄ haloalkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₄ dialkylamino and R¹¹S(O)_p;

each R³ is independently selected from the group consisting of H, C₁-C₄ alkyl optionally substituted with one or two R¹⁰, CF₃, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, C₂-C₄ alkylcarbonyl, C₂-C₄ haloalkylcarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, cyano, nitro, thiocyanato,

10

15

20

25

30

35

- C_2 - C_4 alkoxycarbonyl, C_2 - C_4 haloalkoxycarbonyl, C_1 - C_4 alkylamino, C_2 - C_4 dialkylamino and $R^{11}S(O)_p$; or
- R² and R³ with the carbon atoms to which they are attached are taken together to form a:
 - (1) 5- or 6-membered unsaturated carbocyclic ring optionally substituted with R¹²; or
 - (2) 5- or 6-membered unsaturated heterocyclic ring optionally substituted with R¹² containing at least one of the atoms selected from O, N and S in the ring; or
- R² and R³ with the carbon atoms to which they are attached are taken together to form a:
 - (1) 5-, 6- or 7-membered saturated carbocyclic ring optionally substituted with a C_1 - C_4 alkyl group; or
- (2) 5-, 6- or 7-membered saturated heterocyclic ring optionally substituted with a C₁-C₄ alkyl group containing one or two O and/or S(O)_p atoms in the ring; each R⁴ is independently selected from the group consisting of C₁-C₄ alkyl and C₁-C₄ alkoxy;
- R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, (R¹⁵)(R¹⁶)P(O), phenyl or benzoyl each optionally substituted with one, two or three R¹⁷ substituents, naphthalenyl or a 5- or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R¹⁷ substituents;
- R⁶ is G, H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, R¹⁴S(O)_p, (R¹⁵)(R¹⁶)P(O), phenyl optionally substituted with one, two or three R¹⁷ substituents, naphthalenyl or a 5- or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R¹⁷ substituents; or
- R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a:
 - (1) 5- or 6-membered unsaturated heterocyclic ring optionally containing an additional heteroatom selected from N, O and S in the ring and optionally

10

15

20

25

30

35

- containing one or two ring members C(=O), the ring optionally substituted with one or two R¹⁸ substituents;
- (2) 5-, 6- or 7-membered saturated heterocyclic ring optionally containing an additional heteroatom selected from N, O and S(O)_p in the ring and optionally containing one or two ring members C(=O), the ring optionally substituted with one or two R¹⁸ substituents; or
- (3) 9-, 10- or 11-membered fused bicyclic ring system optionally containing an additional heteroatom selected from N, O and S(O)_p in the ring and optionally containing one or two ring members C(=O), the ring optionally substituted with one or two R¹⁸ substituents;
- R⁷ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl, C₂-C₄ alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl; each R⁸ is independently selected from the group H, C₁-C₄ alkyl and C₃-C₆ cycloalkyl; each R⁹ is independently selected from the group C₁-C₄ alkyl and C₁-C₄ haloalkyl; each R¹⁰ is independently selected from the group consisting of halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, hydroxy, cyano, nitro, thiocyanato and R⁹S(O)_p;
- each R^{11} is independently selected from the group C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; each R^{12} is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylsulfinyl and C_1 - C_4 alkylsulfonyl;
- each R¹³ is independently selected from the group consisting of halogen, hydroxy, cyano, nitro, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, aminocarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, R⁹S(O)_p and phenyl optionally substituted with one, two or three R¹⁷ substituents;
- each R^{14} is independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and phenyl optionally substituted with one, two or three R^{17} substituents;
- each R^{15} and each R^{16} are independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4
- each R¹⁷ is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylsulfinyl and C₁-C₄ alkylsulfonyl;
- each R¹⁸ is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy,

5

 $R^{14}S(O)_p$, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl and phenyl, phenylmethyl or pyridinyl each optionally substituted with one, two or three R^{17} substituents;

m is 0, 1 or 2; and

5

10

15

20

25

30

35

each p is independently selected from 0, 1 and 2.

In the above recitations, the term "alkyl", used either alone or in compound words such as "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, *n*-propyl, *i*-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl or hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl or hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkylene" denotes a straight-chain or branched alkanediyl. Examples of "alkylene" include CH₂, CH₂CH₂, CH(CH₃), CH₂CH₂CH₂, CH₂CH(CH₃) and the different butylene isomers. "Alkoxy" includes, for example, methoxy, ethoxy, *n*-propyloxy, isopropyloxy and the different butoxy, pentoxy or hexyloxy isomers. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH₂O, CH₃C≡CCH₂O and CH₃C≡CCH₂CH₂O. "Cyanoalkoxy" denotes cyano substitution on alkoxy. Examples of "cyanoalkoxy" include NCCH₂O and NCCH₂CH₂O.

"Alkylamino" denotes an amino group substituted with one alkyl group. Examples of "alkylamino" include CH_3NH , CH_3CH_2NH , $CH_3CH_2CH_2NH$, $(CH_3)_2CHNH$ and the different butylamino isomers. "Dialkylamino", and the like, are defined analogously to the above examples. Examples of "dialkylamino" include $(CH_3)_2N$ and $(CH_3)(CH_3CH_2)N$. "Dialkylaminocarbonyl" denotes dialkylamino substitution on carbonyl. Examples of "dialkylaminocarbonyl" include $(CH_3)_2NC(=O)$, $(CH_3CH_2)_2NC(=O)$ and $(CH_3)(CH_2CH_2)NC(=O)$. "Alkylaminocarbonyl", "aminocarbonyl" and the like, are defined analogously to the above examples. "Phenylmethoxycarbonyl" denotes phenylmethoxy substitution on carbonyl [i.e., $C_6H_5CH_2OC(=O)$]. "Phenylcarbonyl" is defined analogously to the above examples.

"Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. "Cycloalkylalkoxy" denotes cycloalkyl substitution on alkoxy. Examples of "cycloalkylalkoxy" include cyclopropyl-CH₂O and cyclohexyl-CH₂O. "Cycloalkylcarbonyl" denotes cycloalkyl substitution on carbonyl. Examples of "cycloalkylcarbonyl" include cyclopropyl-C(=O) and cyclohexyl-C(=O).

Examples of G-1 heterocycles include optionally substituted 4-pyrimidinyl; 5,6,7,8-tetrahydro-4-quinazolinyl; 4-quinazolinyl; thieno[3,2-d]pyrimidin-4-yl; and thieno[2,3-d]pyrimidin-4-yl. Examples of G-2 heterocycles include optionally substituted 5-

6

isothiazolyl; 1,2,4-thiadiazol-5-yl; 5-isoxazolyl; 1*H*-pyrazol-5-yl; 1,2,4-oxadiazol-5-yl; and 1*H*-1,2,4-triazol-5-yl.

The term "unsaturated carbocyclic ring" includes fully aromatic carbocycles (where aromatic indicates that the Hückel rule is satisfied). The term "saturated carbocyclic ring" denotes fully saturated carbocycles. The term "unsaturated heterocyclic ring" includes fully aromatic heterocycles (where aromatic indicates that the Hückel rule is satisfied). The term "saturated heterocyclic ring" denotes fully saturated heterocycles.

5

10

15

20

25

30

35

Examples of R⁵ and/or R⁶ as a "5- or 6-membered unsaturated heterocyclic ring" include optionally substituted 2-pyridinyl, 3-pyridinyl, 4-pyridinyl and 2-thienyl.

An example of " R^5 and R^6 with the nitrogen atom at which they are attached taken together to for a 5- or 6-membered unsaturated heterocyclic ring optionally containing an additional heteroatom selected from N, O and S in the ring and optionally containing one or two ring members C(=O)" includes optionally substituted 2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl.

Examples of "R⁵ and R⁶ with the nitrogen atom at which they are attached taken together to for a 5-, 6- or 7-membered saturated heterocyclic ring(s) optionally containing an additional heteroatom selected from N, O and S(O)_p in the ring and optionally containing one or two ring members C(=O)" include optionally substituted 1-piperidinyl, 4-morpholinyl, 1-piperazinyl and 2,5-dioxo-1-pyrrolidinyl.

Examples of " R^5 and R^6 with the nitrogen atom at which they are attached taken together to for a 9-, 10- or 11-membered fused bicyclic ring system optionally containing an additional heteroatom selected from N, O and $S(O)_p$ in the ring and optionally containing one or two ring members C(=O)" include optionally substituted 1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl and octahydro-1,3-dioxo-2*H*-isoindol-2-yl.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", "halocycloalkyl", "haloalkylcarbonyl" "haloalkoxycarbonyl" and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH=CHCH₂. Examples of "haloalkynyl" include HC=CCHCl, CF₃C=C, CCl₃C=C and FCH₂C=CCH₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and HCF₂CH₂CH₂C(=O). Examples of "haloalkylcarbonyl" include CF₃C(=O), CCl₃CH₂C(=O) and HCF₂CH₂CH₂C(=O). Examples of "haloalkoxycarbonyl" include CF₃OC(=O), CCl₃CH₂OC(=O) and HCF₂CH₂CH₂OC(=O). "Haloalkenyloxy" denotes haloalkenyl substitution on alkoxy.

Examples of "haloalkenyloxy" include CF₂=CF(CH₂)₂O and CF₂=CFCH₂O.

"Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl isomers.

5

10

15

20

25

30

35

The total number of carbon atoms in a substituent group is indicated by the " C_i - C_j " prefix where i and j are numbers from 1 to 8. For example, C_2 alkylcarbonyl designates $C(O)CH_3$ and C_4 alkylcarbonyl designates $C(O)CH_2CH_2CH_3$ and $C(O)CH(CH_3)_2$. Examples of "alkoxycarbonyl" include $CH_3OC(=O)$, $CH_3CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, $CH_3CH_2CH_2OC(=O)$, and the different butoxy-, pentoxycarbonyl, etc. isomers.

When a group contains a substituent which can be hydrogen, for example R² or R⁷, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a group is optionally substituted with a substituent, for example with R¹⁷, then, when the group is not substituted with that substituent, it is recognized that this is equivalent to said group having a hydrogen substituent.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers (e.g., cis and trans cyclohexane isomers). For 1,4-disubstituted cyclohexanes, the cis isomer is preferred. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include quaternary salts formed with alkyl halides (e.g., iodomethane, iodoethane or 1-chlorododecane). The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia or triethylamine) or inorganic bases (e.g., hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or phenol.

Preferred compounds for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, and agriculturally suitable salts thereof, wherein G is G-1; Y is a direct bond; 5 $X \text{ is } NR^7$: \mathbb{R}^1 is H or \mathbb{C}_1 - \mathbb{C}_4 alkyl; R² is C₁-C₄ alkyl, CF₃, C₃-C₆ cycloalkyl, R¹⁰CH₂CH₂-, (R¹⁰)₂CHCH₂-, R¹⁰CH₂CH(R¹⁰)-, CH₃C(R¹⁰)₂-, or C₁ alkyl optionally substituted with C₁-C₄ alkoxy; 10 R^3 is C_1 - C_4 alkyl, CF_3 , C_1 alkyl optionally substituted with C_1 - C_4 alkoxy, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, cyano, nitro, thiocyanato or R¹¹S(O)_p; and m is 0. Preferred 2. Compounds of Preferred 1 above, and agriculturally suitable salts thereof, 15 wherein R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ 20 alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, or (R¹⁵)(R¹⁶)P(O); R⁶ is G, H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ 25 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl, R¹⁴S(O)_p, (R¹⁵)(R¹⁶)P(O), phenyl optionally substituted with one, two or three R¹⁷ substituents, naphthalenyl or a 5or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R¹⁷ substituents; or 30 R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro-2,5-dioxo-1*H*-pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl; ring each optionally substituted with R¹⁸. Preferred 3. Compounds of Preferred 2 above, and agriculturally suitable salts thereof, 35 wherein R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C3-C6 alkenyl, C3-C6 haloalkenyl, C3-C6 alkynyl, C1-C6

alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy,

	•
	C ₄ -C ₆ cycloalkylalkoxy, C ₂ -C ₆ -cyanoalkoxy, phenylmethoxy, C ₂ -C ₆
	alkylcarbonyl, C ₃ -C ₆ cycloalkylcarbonyl, phenylmethoxycarbonyl,
	formyl, C ₂ -C ₆ haloalkylcarbonyl, C ₂ -C ₆ alkoxycarbonyl, C ₂ -C ₆
	haloalkoxycarbonyl, C ₂ -C ₆ alkylaminocarbonyl, C ₃ -C ₈
5	dialkylaminocarbonyl, hydroxy, R ¹⁴ S(O) _p , or (R ¹⁵)(R ¹⁶)P(O);
	R ⁶ is G, H, C ₁ -C ₆ alkyl, C ₁ -C ₆ haloalkyl, C ₂ -C ₆ alkylcarbonyl, C ₂ -C ₆
	alkoxycarbonyl, C ₂ -C ₆ alkylaminocarbonyl, C ₃ -C ₈
	dialkylaminocarbonyl, phenyl optionally substituted with one, two or
	three R ¹⁷ substituents, or pyridinyl optionally substituted with one or
10	two R ¹⁷ substituents; or
	R ⁵ and R ⁶ with the nitrogen atom to which they are attached are taken
	together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro
	2,5-dioxo-1 <i>H</i> -pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2 <i>H</i> -isoindol-2-yl;
	ring each optionally substituted with R ¹⁸ .
15	Preferred 4. Compounds of Preferred 2 above, and agriculturally suitable salts thereof,
	wherein
	R ⁵ is H, C ₁ -C ₆ alkyl optionally substituted with R ¹³ , C ₁ -C ₆ haloalkyl, C ₃ -C ₆
	cycloalkyl, C ₃ -C ₆ alkenyl, C ₃ -C ₆ haloalkenyl, C ₃ -C ₆ alkynyl, C ₁ -C ₆
	alkoxy, C ₁ -C ₆ haloalkoxy, C ₃ -C ₆ alkynyloxy, C ₃ -C ₆ haloalkenyloxy,
20	C ₄ -C ₆ cycloalkylalkoxy, C ₂ -C ₆ -cyanoalkoxy, phenylmethoxy, C ₂ -C ₆
	alkylcarbonyl, C3-C6 cycloalkylcarbonyl, phenylmethoxycarbonyl,
	formyl, C ₂ -C ₆ haloalkylcarbonyl, C ₂ -C ₆ alkoxycarbonyl, C ₂ -C ₆
	haloalkoxycarbonyl, C ₂ -C ₆ alkylaminocarbonyl, C ₃ -C ₈
	dialkylaminocarbonyl, hydroxy, R ¹⁴ S(O) _p , or (R ¹⁵)(R ¹⁶)P(O);
25	R^6 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6
	alkoxycarbonyl, C ₂ -C ₆ alkylaminocarbonyl, C ₃ -C ₈
	dialkylaminocarbonyl, phenyl optionally substituted with one, two or
	three R ¹⁷ substituents, or pyridinyl optionally substituted with one or
	two R ¹⁷ substituents; or
30	R ⁵ and R ⁶ with the nitrogen atom to which they are attached are taken
	together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro
	2,5-dioxo-1 <i>H</i> -pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2 <i>H</i> -isoindol-2-yl;
	ring each optionally substituted with R ¹⁸ .
•	Preferred 5. Compounds of Formula I above, and agriculturally suitable salts thereof,
35	wherein
	G is G-2;

Y is a direct bond;

X is NR⁷;

10

 Z^1 is S:

5

10

15

20

25

30

35

 R^2 is C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl or C_1 alkyl optionally substituted with C_1 - C_4 alkoxy;

 R^3 is C_1 - C_4 alkyl, CF_3 , C_1 alkyl optionally substituted with C_1 - C_4 alkoxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, halogen, hydroxy, cyano, nitro, thiocyanato or $R^{11}S(O)_p$; and m is 0.

This invention also relates to arthropodicidal compositions comprising arthropodicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling arthropods comprising contacting the arthropods or their environment with an arthropodicidally effective amount of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

This invention also relates to fungicidal compositions comprising fungicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed or seedling, a fungicidally effective amount of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-17. The definitions of G, G-1, G-2, Y, X, Z, Z¹, m, p and R¹-R²² in the compounds of Formulae I and 1-23 below are as defined above (including the Summary of the Invention) or below (including the Schemes). Compounds of Formulae Ia-Ib are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ib are as defined above for Formula I.

Compounds of Formula I can be prepared by reaction of a heterocycle of Formula 1 with a compound of Formula 2 in the presence of an acid acceptor or a base. Typical bases can be triethylamine, pyridine, sodium hydride or potassium carbonate. The reaction can be carried out in the presence of a solvent such as toluene, tetrahydrofuran, acetonitrile, N,N-dimethylformamide or isopropanol. The reaction can be conducted in the temperature range of 0 °C to the reflux temperature of the solvent. Scheme 1 depicts this transformation.

11

Scheme 1

E = F, Cl, Br, I, SO_2Me , SO_2Ar , $X = NR^7$, O, S OSO_2Me , OSO_2CF_3 , OSO_2Ar (e.g., $OSO_2(4-CH_3-Ph)$)

5

10

15

Alternatively, compounds of Formula I can be prepared by reaction of a heterocycle of Formula 3 with a compound of Formula 4 in the presence of a base. Typical bases can include sodium hydride, potassium *tert*-butoxide or potassium carbonate. Typical solvents for the reaction include ether, tetrahydrofuran, acetonitrile or *N*,*N*-dimethylformamide. The reaction can be conducted in the temperature range of 0 °C to the reflux temperature of the particular solvent. Scheme 2 depicts this transformation.

Scheme 2

$$R^3$$
 R^4
 R^5
 R^5
 R^5
 R^6
 R^6

Alternatively, compounds of Formula I can be prepared by reaction of a heterocycle of Formula 3 (X = NR⁷) with a ketone of Formula 5 in the presence of a reducing agent. One skilled in the art will recognize said transformations as reductive aminations. A typical example of a reductive amination is described by Bagley et al. (*J. Med. Chem.* 1989, 32, 663-671). The desired reductions can be performed with hydride agents such as sodium borohydride, sodium cyanoborohydride or sodium triacetoxyborohydride, or by catalytic hydrogenation (Hudlicky, M., *Reductions in Organic Chemistry*; Academic: New York, 1984). The reaction is typically conducted in methanol, ethanol, ether, tetrahydrofuran, dichloromethane, 1,2-dichloroethane or toluene in the presence of an additive such as hydrochloric or acetic acid. Scheme 3 depicts this transformation.

12

Scheme 3

$$3(X = NR^7)$$
 + $O = (R^4)_m$ R^6 $I(X-Y=NR^7)$

Alternatively, compounds of Formula I can be prepared by reaction of a heterocycle of Formula 3 with an alcohol of Formula 2 (X = O) in the presence of a phosphine and an azodicarboxylate. One skilled in the art will recognize said reactions as Mitsunobu reactions (Hughes, D. L. *Org. Prep. Proc. Int.* 1996, 28, 127-164). Typical phosphines can include triphenylphosphine, tributylphosphine or trimethylphosphite. Typical azodicarboxylates can include diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD). The reaction is typically conducted in ether, tetrahydrofuran, benzene or toluene. Scheme 4 depicts this transformation.

5

Scheme 4

$$3(X=NR^7, O, S) + 2(X=O) \longrightarrow I(X=NR^7, O, S)$$

Alternatively, compounds of Formula I can be prepared by reaction of an amine of 10 Formula 6 with a compound of Formula 7 in the presence of a base. Typical bases can be triethylamine, pyridine, potassium carbonate or sodium bicarbonate. This reaction can be repeated with compounds of Formula 8 in the presence of another base to provide compounds of Formula I (R⁶ is other than H). Typical bases for the second reaction can include triethylamine, potassium carbonate, sodium hydride or potassium tert-butoxide. 15 Typical solvents for these reactions can be dichloromethane, ether, tetrahydrofuran, toluene, acetonitrile or N,N-dimethylformamide. The reaction can be conducted in the temperature range of 0 °C to the reflux temperature of the solvent. When R⁶ is a phenyl group, the reaction can be carried out in the presence of either a palladium or a copper catalyst. Such reactions are well known to one skilled in the art. For example, conversion of aryl bromides into arylamines in the presence of a palladium catalyst is described by Buchwald et al. 20 (Angew. Chem. Int. Ed. Engl. 1995, 34, 1348-1350). Compounds of Formulae 7 and 8 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. Scheme 5 depicts this transformation.

Alternatively, compounds of Formula I can be prepared by reductive amination of an amine of Formula 6 with a carbonyl compound of Formula 9. The reaction can be carried out in a manner analogous to Scheme 3 reactions to provide compounds of Formula I (R⁶ is H). The carbonyl compounds of Formula 9 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. Scheme 6 depicts this transformation.

5

10

Scheme 6

$$X-Y$$
 R^{19}
 R^{20}
 R^{19}
 R^{20}
 R^{6}
 R^{6}
 R^{19}
 R^{20}

$$R^{19} = H$$
, Me, Et $R^{20} = H$, Me, Et, Ph

Alternatively, compounds of Formula I can be prepared by reductive amination of a ketone of Formula 10 with an amine of Formula 11. The reaction can be carried out in a manner analogous to Scheme 3 reactions. The reaction also can be carried out in a stepwise manner. Such alternative procedures are well known to one skilled in the art. The amines of Formula 11 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. Scheme 7 depicts this transformation.

Scheme 7

Alternatively, compounds of Formula I can be prepared by displacement of a leaving group in a compound of Formula 12 by an amine of Formula 11 in the presence of a base.

14

The reaction can be carried out in a manner analogous to Scheme 5 reactions. Scheme 8 depicts this transformation.

Scheme 8

$$X-Y$$
 L
 $+$
 R^{5}
 R^{6}
 R^{6}

Alternatively, compounds of Formula I can be prepared by reaction of an alcohol of Formula 13 with an activated amide of Formula 14 under Mitsunobu conditions. Mitsunobu reactions were already described in detail in Scheme 4. The amides of Formula 14 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. Scheme 9 depicts this transformation.

5

10

15

20

Scheme 9

Alternatively, compounds of Formula Ia can be prepared by reaction of a heterocycle of

Formula 1 with a diaminocyclohexane of Formula 15 in the presence of an acid acceptor or a base. The reaction is generally carried out with two or more equivalents of a heterocycle of Formula 1 in the presence of an excess amount of a base. Typical bases can be triethylamine, *N*,*N*-diisopropylethylamine, pyridine or potassium carbonate. The reaction can be carried out in the presence of a solvent such as toluene, tetrahydrofuran, acetonitrile, *N*,*N*-dimethylformamide or isopropanol. Typical reaction temperature can range from 0 °C to the reflux temperature of the particular solvent. The product can be derivatized further by reaction with compounds of Formula 7 in the presence of a base to provide compounds of Formula Ib (R⁵ is other than H). Typical bases for this can include sodium hydride, *N*,*N*-diisopropylethylamine, potassium *tert*-butoxide or potassium carbonate. Typical solvents can be ether, tetrahydrofuran, toluene, acetonitrile or *N*,*N*-dimethylformamide. The reaction can be conducted in the temperature range of 0 °C to the reflux temperature of the solvent. The diaminocyclohexanes of Formula 15 can be obtained from commercial sources

10

15

20

or prepared by conventional methods well known to one skilled in the art. An example of such preparation of diaminocyclohexanes is described by Johnston et al. (*J. Med. Chem.* 1977, 20, 279-290). Scheme 10 depicts this transformation.

Scheme 10

$$(R^4)_{m}$$
 NH_2

base

 $G-1-N$
 H
 $G-1$
 R^5-L
 $G-1-N$
 $G-1$
 R^5
 $G-1$
 R^5
 $G-1$
 R^5
 $G-1$
 R^5
 $G-1$
 R^5
 $G-1$
 $G-1$

Heterocycles of Formulae 1 and 3 can be prepared by a variety of literature methods or can be obtained from commercial sources. For example, pyrimidines of Formulae 1 and 3 can be prepared by procedures taught in U.S. Patent 4,977,264 and Foster et al. (*Org. Synth.* 1955, 35, 80-82), respectively. One skilled in the art will recognize that heterocycles of Formulae 1 and 3 can be interconverted by well-known chemistry. For example, heterocycles of Formula 1 (E = Cl, Br) can be converted into heterocycles of Formula 3 (X = NH) can be converted into heterocycles of Formula 1 (E = Cl, Br) by a Sandmeyer reaction (March, J. *Advanced Organic Chemistry*; 3rd ed.; John Wiley & Sons: New York, 1985; pp 647-648).

Compounds of Formula 2 can be prepared by reductive amination of a ketone of Formula 5 with an amine of Formula 16. The reaction can be carried out in a manner analogous to Scheme 3 reactions. Scheme 11 depicts this transformation.

Scheme 11

$$5 + H_2NR^7 \longrightarrow 2 (X-Y=NR^7)$$

Alternatively, compounds of Formula 2 ($X = NR^7$) can be prepared by reaction of a compound of Formula 4 with an amine of Formula 16 in the presence of a base. The reaction can be carried out in a manner analogous to Scheme 5 reactions. Compounds of Formula 2 (X = S) can be prepared by reaction of a compound of Formula 4 with a sulfur nucleophile of Formula 17 in the presence of a base. A typical sulfur nucleophile of Formula 17 can be thiourea, sodium hydrosulfide, sodium sulfide, potassium thioacetate, potassium thiocyanate, sodium thiophosphate or potassium O-ethyl xanthate. The utility of these reagents is well

known in literature. For example, the use of sodium thiophosphate is described by Bieniarz et al. (*Tetrahedron Lett.* **1993**, *34*, 939-942). The reaction of a compound of Formula 4 with sulfur nucleophile of Formula 17 may subsequently require a hydrolysis step in preparing compounds of Formula 2 (X = S). Scheme 12 depicts this transformation.

Scheme 12

$$\begin{array}{ccc}
 & \text{H}_2\text{NR}^7 \\
 & & \text{16} \\
 & & \text{or}
\end{array}$$
4 + base $\frac{16}{\text{or}}$ 2 (X = NR⁷, S)

H₂NC(S)NH₂, NaSH, Na₂S, AcSK KSCN, Na₃P(S)O₃, KSC(S)OEt

17

Alternatively, compounds of Formula 2 can be prepared from ketones of Formula 5 by a sequence of homologation reactions that are well known to one skilled in the art. For example, a ketone of Formula 5 is first converted into unsaturated ester of Formula 19 with a phosphonate of Formula 18 under Horner-Emmons olefination conditions (March, J. Advanced Organic Chemistry; 3rd Ed.; John Wiley & Sons; New York, (1985); p 848).

Compounds of Formula 19 then can be converted into compounds of Formula 2 (X-Y = OCH₂CHR²¹) via catalytic hydrogenation followed by reduction. Phosphonates of Formula 18 can be obtained from commercial sources. Scheme 13 depicts this transformation.

Scheme 13

Scheme 13

Scheme 13

$$R^{21}$$
 R^{21}
 R

Alternatively, compounds of Formula 2 can be prepared from aminocyclohexanols of
Formula 20 by a sequence of reactions with compounds of Formulae 7 and 8 in the presence
of a base. The reaction can be carried out in a manner analogous to Scheme 5 reactions.
Compounds of Formula 2 can be also prepared from cyclohexanediols of Formula 21 by
Mitsunobu reaction with activated amide of Formula 14 in the presence of a phosphine and

10

15

20

an azodicarboxylate. The reaction can be carried out in a manner analogous to Scheme 9 reactions. Compounds of Formulae 20 and 21 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. Scheme 14 depicts this transformation.

Scheme 14

HO

(i)
$$R^5$$
—L

Mitsunobu
reaction
HO

NH2

(i) R^6 —L

NH(R^5) R^6

20

8

14

21

L = F, Cl, Br, I, OSO₂Me,
OSO₂CF₃, OSO₂Ar

Compounds of Formula 4 can be prepared from alcohols of Formula 2 (X = O) by a variety of literature methods. Such conversions of alcohols are well known to one skilled in the art (Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; 2nd ed.; Plenum: New York, 1983; Part B, pp 95-101).

Compounds of Formula 5 can be prepared by oxidation of alcohols of Formula 2 (X-Y = O). One skilled in the art will recognize that ketones of Formula 5 and alcohols of Formula 2 (X-Y = O) can be interconverted by a variety of reduction and oxidation methods (March, J. *Advanced Organic Chemistry*; 3rd ed.; John Wiley & Sons: New York, 1985; pp 809-814, 1057-1060).

Compounds of Formula 6 can be prepared by reductive amination of compounds of Formula 10 with ammonia in the presence of a reducing agent. The reaction can be carried out in a manner analogous to Scheme 7 reactions.

Alternatively, compounds of Formula 6 can be prepared by reaction of one or less equivalent of a heterocycle of Formula 1 with diaminocyclohexane of Formula 15 with or without a base. The reaction can be carried out in a manner analogous to Scheme 10 reactions. Scheme 15 depicts this transformation.

Scheme 15

$$1 + H_2N \xrightarrow{(R^4)_{m}} base$$

$$0 \text{ or } cor$$

$$15$$

Compounds of Formula 10 can be prepared by oxidation of alcohols of Formula 13. One skilled in the art will recognize that ketones of Formula 10 and alcohols of Formula 13 can be interconverted by a variety of reduction and oxidation methods (March, J. *Advanced Organic Chemistry*; 3rd ed.; John Wiley & Sons: New York, 1985; pp 809-814, 1057-1060).

18

Compounds of Formula 12 can be prepared from alcohols of Formula 13 by a variety of literature methods. Such conversions of alcohols are well known to one skilled in the art (Carey, F. A.; Sundberg, R. J. *Advanced Organic Chemistry*; 2nd ed.; Plenum: New York, 1983; Part B, pp 95-101).

Compounds of Formula 13 can be prepared by reaction of a heterocycle of Formula 1 with a compound of Formula 22 in the presence of a base. The reaction can be carried out in a manner analogous to Scheme 1 reactions. Scheme 16 depicts this transformation.

5

10

15

20

Scheme 16

$$1 + HX-Y \xrightarrow{(R^4)_m} OH \xrightarrow{base} 13 (X = NR^7, O, S)$$

$$22$$

$$X = NR^7, O, S$$

Compounds of Formula 22 can be obtained from commercial sources or prepared by conventional methods well known to one skilled in the art. For example, compounds of Formula 22 ($X-Y = OCH_2CHR^{21}$) can be prepared from cyclohexanediols of Formula 21 by oxidation followed by a sequence of reactions described in detail in Scheme 13. Scheme 17 depicts this transformation.

Scheme 17

Compounds of Formula I (G = G-2) can be prepared in a manner exactly analogous to reactions described in Schemes 1-17 for Formula I (G = G-1) compounds.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection and deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W. *Protective Groups in Organic Synthesis*; John Wiley & Sons: New York, 1981). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it can be necessary to perform additional routine synthetic steps not described in

19

detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it can be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. The title compound in each example is indicated by the abbreviation "Ex." followed by a number showing in which example the compound is prepared. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, s = singl

The following examples illustrate the invention:

5

10

15

20

25

30

EXAMPLE 1

cis-N,N'-Bis(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine

To a magnetically-stirred solution of 0.50 g (4.38 mmol) of 1,4-cyclohexanediamine (ca. cis/trans = 80/20) in 30 mL of acetonitrile were sequentially added 1.8 mL (13.14 mmol) of triethylamine and a solution of 1.63 g (9.20 mmol) of 4,5-dichloro-6-ethylpyrimidine in 10 mL of acetonitrile dropwise under nitrogen. The resultant clear solution was heated at reflux for 72 h. The mixture was cooled and diluted with ethyl acetate and water. The layers were separated and the aqueous layer was extracted with ethyl acetate (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 10%, 40%, then 60% ethyl acetate/hexane to afford 1.10 g (64%) of the title compound (Ex. 1) as a white solid, melting at 119-121 °C. ¹H NMR (CDCl₃): δ 8.43 (s, 2H), 5.43 (d, 2H), 4.22 (m, 2H), 2.80 (q, 4H), 1.96 (m, 4H), 1.76 (m, 4H), 1.27 (t, 6H).

20

EXAMPLE 2

(a) cis-N'-(5-Chloro-6-ethyl-4-pyrimidinyl)-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N-methyl-1,4-cyclohexanediamine, (b) cis-N,N'-bis(5-chloro-6-ethyl-4-pyrimidinyl)-N,N'-dimethyl-1,4-cyclohexanediamine and (c) cis-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'-[5-chloro-6-(1-methylethyl)-4-pyrimidinyl]-N,N'-dimethyl-1,4-cyclohexanediamine

5

10

15

20

25

35

To a magnetically-stirred suspension of 0.28 g (7.06 mmol) of sodium hydride (60 wt% dispersion in mineral oil) in 20 mL of N,N-dimethylformamide was added a solution of 0.93 g (2.35 mmol) of cis-N,N'-bis(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine in 10 mL of N.N-dimethylformamide dropwise under nitrogen. The resultant mixture was heated and stirred at 85-90 °C for 40 min and a solution of 0.44 mL (7.06 mmol) of iodomethane in 10 mL of N,N-dimethylformamide was added dropwise. The resultant clear vellow solution was stirred at the same temperature overnight. The mixture was cooled and poured onto a diethyl ether-water solution. The layers were separated and the aqueous layer was extracted with diethyl ether (2x). The combined organic layers were washed with water and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 20%, 30%, 40%, 50%, then 100% ethyl acetate/hexane to afford 0.07 g (6%) of cis-N-(5chloro-6-ethyl-4-pyrimidinyl)-N'-[5-chloro-6-(1-methylethyl)-4-pyrimidinyl]-N,N'-dimethyl-1,4-cyclohexanediamine (Ex. 2c) as a white solid, melting at 95-97 °C, ¹H NMR (CDCl₃): δ 8.57 (s, 1H), 8.52 (s, 1H), 4.07 (m, 2H), 3.54 (m, 1H), 2.96 (s, 3H), 2.94 (s, 3H), 2.88 (q, 2H), 2.06 (m, 4H), 1.61 (m, 4H), 1.30 (t, 3H), 1.26 (d, 6H), 0.21 g (21%) of cis-N,N-bis(5chloro-6-ethyl-4-pyrimidinyl)-N,N'-dimethyl-1,4-cyclohexanediamine (Ex. 2b) as a white solid, melting at 86-87 °C, ¹H NMR (CDCl₃): δ 8.53 (s, 2H), 4.07 (m, 2H), 2.96 (s, 6H), 2.89 (q, 4H), 2.05 (m, 4H), 1.61 (m, 4H), 1.30 (t, 6H), and 0.16 g (16%) of cis-N'-(5-chloro-6-ethyl-4-pyrimidinyl)-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N-methyl-1,4cyclohexanediamine (Ex. 2a) as a white solid, melting at 68-70 °C, ¹H NMR (CDCl₃): δ 8.45 (s, 1H), 8.43 (s, 1H), 5.58 (br d, 1H), 4.33 (m, 1H), 4.18 (m, 1H), 3.03 (s, 3H), 2.86 (q, 2H), 2.81 (q, 2H), 2.10 (m, 2H), 1.81 (m, 6H), 1.29 (t, 3H), 1.28 (t, 3H).

EXAMPLE 3

30 <u>cis-N,N'-Bis(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine dihydrochloride</u>

To a magnetically-stirred solution of 0.72 g (1.82 mmol) of cis-N,N'-bis(5-chloro-6-

To a magnetically-stirred solution of 0.72 g (1.82 mmol) of cis-N,N-bis(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine in 20 mL of dichloromethane was added 5 mL of 1 M HCl solution in methanol. The resultant mixture was stirred at room temperature overnight and concentrated at reduced pressure. The solid residue was washed with dichloromethane and diethyl ether, and dried to afford 0.51 g (60%) of the title compound (Ex. 3) as a white solid, melting at 239-242 °C, 1 H NMR (DMSO- d_6): δ 8.67 (s, 2H), 7.73 (br s, 2H), 4.27 (m, 2H), 2.82 (q, 4H), 1.95 (m, 4H), 1.71 (m, 4H), 1.22 (t, 6H).

21

EXAMPLE 4

cis-N-(5-Chloro-6-ethyl-4-pyrimidinyl)-N'-(4-quinazolinyl)-1,4-cyclohexanediamine

5

10

15

20

25

30

35

To a magnetically-stirred solution of 0.50 g (4.38 mmol) of 1,4-cyclohexanediamine (ca. cis/trans = 80/20) in 30 mL of acetonitrile were sequentially added 1.8 mL (13.14 mmol) of triethylamine and a solution of 0.78 g (4.38 mmol) of 4,5-dichloro-6-ethylpyrimidine in 10 mL of acetonitrile dropwise under nitrogen. The clear solution was heated at reflux for 1 h. The resultant mixture was cooled to 40 °C and a slurry of 0.72 g (4.38 mmol) of 4-chloroquinazoline in 10 mL of acetonitrile was added. The resultant mixture was heated at reflux overnight. The mixture was cooled and diluted with ethyl acetate and water. The layers were separated and the aqueous layer was saturated with sodium chloride and extracted with ethyl acetate (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The solid residue was purified by silica gel flash column chromatography eluting with ethyl acetate to afford 0.24 g (14%) of the title compound (Ex. 4) as a white solid, melting at 188-191 °C. ¹H NMR (CDCl₃): δ 8.68 (s, 1H), 8.44 (s, 1H), 7.86 (d, 1H), 7.75 (m, 2H), 7.49(ddd, 1H), 5.69 (br d, 1H), 5.46 (br d, 1H), 4.47 (m, 1H), 4.28 (m, 1H), 2.80 (q, 2H), 2.05 (m, 4H), 1.84 (m, 4H), 1.28 (t, 3H).

EXAMPLE 5

Step A: trans-4-[(5-chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanol

To a magnetically-stirred solution of 1.00 g (8.68 mmol) of *trans*-4-aminocyclohexanol in 40 mL of acetonitrile were sequentially added 1.8 mL (13.02 mmol) of triethylamine and a solution of 1.69 g (9.55 mmol) of 4,5-dichloro-6-ethylpyrimidine in 10 mL of acetonitrile dropwise under nitrogen. The pale yellow solution was heated at reflux overnight. The resultant clear orange mixture was cooled and diluted with ethyl acetate and water. The layers were separated and the aqueous layer was saturated with NaCl and extracted with ethyl acetate (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 50%, then 100% ethyl acetate/hexane to afford 1.87 g (84%) of *trans*-4-[(5-chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanol as a white solid, melting at 138-139 °C, 1 H NMR (CDCl₃): δ 8.41 (s, 1H), 5.16 (br d, 1H), 3.99 (m, 1H), 3.69 (m, 1H), 2.78 (q, 2H), 2.15 (m, 2H), 2.04 (m, 2H), 1.50 (m, 2H), 1.48 (d, 1H), 1.32 (m, 2H), 1.26 (t, 3H).

Step B: 4-[(5-chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanone

To a magnetically-stirred solution of 2.00 g (7.82 mmol) of *trans*-4-[(5-chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanol in 60 mL of dichloromethane was added 2.02 g (9.38 mmol) of pyridinium chlorochromate in one portion. The resultant black mixture was stirred at room temperature overnight. The mixture was diluted with ethyl acetate and filtered through a short pad of silica gel. The black solid that remained behind was dissolved

22

in 1 N aqueous NaOH solution and extracted with ethyl acetate (3x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with ethyl acetate to afford 1.58 g (80%) of 4-[(5-chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanone as a white solid, melting at 115-116 °C, ¹H NMR (CDCl₃): δ 8.45 (s, 1H), 5.29 (d, 1H), 4.49 (m, 1H), 2.80 (q, 2H), 2.63-2.34 (m, 6H), 1.81 (m, 2H), 1.27 (t, 3H).

5

10

15

20

25

30

35

Step C: (a) cis-N-(5-Chloro-6-ethyl-4-pyrimidinyl)-N'-phenyl-1,4-cyclohexanediamine and (b) trans-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'-phenyl-1,4-cyclohexanediamine

To a magnetically-stirred solution of 1.00 g (3.94 mmol) of 4-[(5-chloro-6-ethyl-4pyrimidinyl)aminolcyclohexanone in 50 mL of 1,2-dichloroethane were sequentially added 0.37 g (3.94 mmol) of aniline, 1.67 g (7.88 mmol) of sodium triacetoxyborohydride and 0.24 g (3.94 mmol) of glacial acetic acid under nitrogen. The resultant cloudy white mixture was stirred at room temperature overnight. The mixture was diluted with diethyl ether and washed with 1 N aqueous NaOH solution. The aqueous wash was extracted with diethyl ether (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 20%, then 50% ethyl acetate/hexane to afford 0.60 g (46%) of cis-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'-phenyl-1,4cyclohexanediamine (Ex. 5a) as a white solid, melting at 88-93 °C, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 7.18 (dd, 2H), 6.69 (t, 1H), 6.62 (d, 2H), 5.40 (br d, 1H), 4.19 (m, 1H), 3.71 (br s, 1H), 3.54 (m, 1H), 2.79 (q, 2H), 1.89 (m, 4H), 1.73 (m, 4H), 1.27 (t, 3H) and 0.57 g (44%) of trans-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'-phenyl-1,4-cyclohexanediamine (Ex. 5b) as a white solid, melting at 137-139 °C, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 7.17 (dd, 2H), 6.68 (t, 1H), 6.60 (d, 2H), 5.21 (d, 1H), 4.03 (m, 1H), 3.51 (s, 1H), 3.31 (m, 1H), 2.79 (q, 2H), 2.21 (m, 4H), 1.37 (m, 4H), 1.26 (t, 3H).

EXAMPLE 6

cis-N'-(5-Chloro-6-ethyl-4-pyrimidinyl)-N-phenyl-N-2-propynyl-1,4-cyclohexanediamine

To a magnetically-stirred solution of 0.40 g (1.21 mmol) of *cis-N*-(5-chloro-6-ethyl-4-pyrimidinyl)-*N*'-phenyl-1,4-cyclohexanediamine in 10 mL of toluene were sequentially added 0.31 mL (1.81 mmol) of *N*,*N*-diisopropylethylamine and 0.13 mL (1.45 mmol) of 80 wt% propargyl bromide solution in toluene dropwise under nitrogen. The clear red solution was heated at reflux overnight. The resultant mixture was cooled and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 8%, then 100% acetone/dichloromethane to afford 0.32 g (72%) of the title compound (Ex. 6) as an orange viscous oil, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 7.28 (m, 2H),

23

6.99 (m, 2H), 6.86 (t, 1H), 5.57 (d, 1H), 4.31 (m, 1H), 3.99 (d, 2H), 3.70 (m, 1H), 2.80 (q, 2H), 2.22 (t, 1H), 2.04 (m, 2H), 1.94-1.68 (m, 6H), 1.27 (t, 3H).

EXAMPLE 7

(a) cis-N'-(5-Chloro-6-ethyl-4-pyrimidinyl)-N,N-dimethyl-1,4-cyclohexanediamine and (b) trans-N'-(5-chloro-6-ethyl-4-pyrimidinyl)-N,N-dimethyl-1,4-cyclohexanediamine

5

10

15

20

25

30

35

To a magnetically-stirred solution of 3.00 g (11.82 mmol) of 4-[(5-chloro-6-ethyl-4pyrimidinyl)amino]cyclohexanone in 120 mL of toluene were sequentially added 0.11 g (0.59 mmol) of p-toluenesulfonic acid monohydrate and 5 mL of water containing 0.96 g (11.82 mmol) of dimethylamine hydrochloride. The clear mixture was stirred at reflux for 4 h with the water removed azeotropically through a Dean-Stark trap. The mixture was cooled to room temperature and to this were sequentially added 3.76 g (23.64 mmol) of sodium triacetoxyborohydride and 0.68 mL (11.82 mmol) of glacial acetic acid. The resultant cloudy white mixture was stirred at room temperature overnight. The mixture was quenched with 6 mL of 1 M aqueous NaHCO₃ solution and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 10%, 12%, then 15% methanol/dichloromethane to afford 0.58 g (17%) of cis-N²-(5-chloro-6-ethyl-4pyrimidinyl)-N,N-dimethyl-1,4-cyclohexanediamine (Ex. 7a) as a yellow solid, melting at 62-66 °C, ¹H NMR (CDCl₂): δ 8.40 (s, 1H), 5.48 (d, 1H), 4.22 (m, 1H), 2.78 (q, 2H), 2.32 (s, 6H), 2.16 (m, 1H), 1.95-1.60 (m, 8H), 1.26 (t, 3H) and 0.87 g (26%) of trans-N'-(5chloro-6-ethyl-4-pyrimidinyl)-N,N-dimethyl-1,4-cyclohexanediamine (Ex. 7b) as a yellow viscous oil, ¹H NMR (CDCl₃): δ 8.40 (s, 1H), 5.19 (d, 1H), 3.94 (m, 1H), 2.78 (q, 2H), 2.38 (m, 1H), 2.36 (s, 6H), 2.21 (m, 2H), 2.01 (m, 2H), 1.47 (m, 2H), 1.28 (m, 2H), 1.26 (t, 3H).

EXAMPLE 8

cis-4-[(5-Chloro-6-ethyl-4-pyrimidinyl)amino]-N,N,N-trimethylcyclohexanaminium iodide

To a magnetically-stirred solution of 0.30 g (1.06 mmol) of *cis-N'*-(5-chloro-6-ethyl-4-pyrimidinyl)-N,N-dimethyl-1,4-cyclohexanediamine in 10 mL of dichloromethane was added 0.72 mL (11.6 mmol) of iodomethane dropwise under nitrogen. The clear tan solution was stirred at room temperature overnight and concentrated at reduced pressure. The solid residue was oven-dried to afford 0.45 g (100%) of the title compound (Ex. 8) as a white solid, melting at 217-221 °C, 1 H NMR (DMSO- d_{6}): δ 8.38 (s, 1H), 6.44 (d, 1H), 4.21 (m, 1H), 3.35 (m, 1H), 3.03 (s, 3H), 2.72 (q, 2H), 2.13 (m, 2H), 1.98 (m, 2H), 1.78 (m, 2H), 1.67 (m, 2H), 1.18 (t, 3H).

EXAMPLE 9

Step A: cis-N-(5-Chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine

To a magnetically-stirred solution of 6.45 g (56.5 mmol) of 1,4-cyclohexanediamine (ca. cis/trans = 90/10) in 80 mL of acetonitrile was added a solution of 2.00 g (11.3 mmol) of 4,5-dichloro-6-ethylpyrimidine in 20 mL of acetonitrile dropwise under nitrogen. The resultant mixture was stirred at room temperature for 72 h. The cloudy white mixture was

15

20

25

30

35

concentrated to a volume of approximately 20 mL and diluted with diethyl ether and water. The layers were saturated with NaCl and were separated, and the aqueous layer was extracted with diethyl ether (2x). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated at reduced pressure. The oil residue was oven-dried to afford 2.94 g (100%) of *cis-N*-(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine as a tan solid, melting at 76-79 °C, ¹H NMR (CDCl₃): δ 8.41 (s, 1H), 5.46 (d, 1H), 4.19 (m, 1H), 2.98 (m, 1H), 2.78 (q, 2H), 1.92-1.68 (m, 6H), 1.45 (m, 2H), 1.27 (m, 2H), 1.26 (t, 3H). Azeotropic distillation of the aqueous layer in toluene gave 3.11 g (61% recovery) of 1,4-cyclohexanediamine as an orange oil.

10 <u>Step B:</u> <u>cis-N-(5-Chloro-6-ethyl-4-pyrimidinyl)-N'-[5-methoxy-6-(methoxymethyl)-4-pyrimidinyl]-1,4-cyclohexanediamine</u>

To a magnetically-stirred solution of 0.30 g (1.18 mmol) of *cis-N*-(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine in 10 mL of toluene were sequentially added 0.31 mL (1.77 mmol) of *N*,*N*-diisopropylethylamine and 0.24 g (1.30 mmol) of 4-chloro-5-methoxy-6-(methoxymethyl)pyrimidine under nitrogen. The clear solution was heated at reflux overnight. The resultant mixture was cooled and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 50%, 100% ethyl acetate/hexane, then 5% methanol/dichloromethane to afford 0.11 g (23%) of the title compound (Ex. 9) as a tan solid, which starts to melt at 104 °C, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 8.38 (s, 1H), 5.41 (d, 1H), 5.31 (d, 1H), 4.47 (s, 2H), 4.20 (m, 2H), 3.83 (s, 3H), 3.49 (s, 3H), 2.80 (q, 2H), 1.95 (m, 4H), 1.75 (m, 4H), 1.27 (t, 3H).

EXAMPLE 10

cis-2-[4-[(5-Chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexyl]-1H-isoindole-1,3(2H)dione

To a magnetically-stirred solution of 0.60 g (2.36 mmol) of *cis-N*-(5-chloro-6-ethyl-4-pyrimidinyl)-1,4-cyclohexanediamine in 20 mL of tetrahydrofuran was added a solution of 0.35 g (2.36 mmol) of phthalic anhydride in 10 mL of tetrahydrofuran dropwise under nitrogen. The clear yellow solution was heated at reflux for 2 h. The resultant mixture was cooled and concentrated. The solid residue was dissolved in 5 mL of *N*,*N*-dimethylformamide and approximately 1 g of polyphosphoric acid was added. The resultant mixture was heated at 80 °C for 2 h and poured onto a mixture of diethyl ether and 1 *M* aqueous NaHCO₃ solution. The layers were separated and the aqueous layer was extracted with diethyl ether (2x). The combined organic layers were washed with water and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 40%, 70%, then 100% ethyl acetate/hexane to afford 0.20 g (22%) of the title compound (Ex. 10) as a white solid, melting at 157-160 °C, ¹H NMR (CDCl₃): δ 8.43 (s, 1H), 7.84 (m, 2H), 7.72 (m, 2H), 5.88 (d, 1H), 4.47 (m, 1H), 4.25 (tt, 1H), 2.82 (q, 2H), 2.47 (m, 2H), 2.09 (m, 2H), 1.83-1.66 (m, 4H), 1.29 (t, 3H).

PCT/US98/26013 WO 99/31072

25

EXAMPLE 11

Step A: 4-[(5-Chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexanone O-methyloxime

5

10

15

20

25

30

35

To a magnetically-stirred solution of 1.00 g (3.94 mmol) of 4-[(5-chloro-6-ethyl-4pyrimidinyl)amino]cyclohexanone in 10 mL of pyridine was added 0.40 g (4.73 mmol) of methoxyamine hydrochloride in one portion. The clear yellow mixture was stirred at room temperature overnight. The resultant mixture was diluted with dichloromethane and washed with water. The aqueous wash was extracted with dichloromethane (2x). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 50% ethyl acetate/hexane to afford 0.99 g (89%) of 4-[(5chloro-6-ethyl-4-pyrimidinyl)aminolcyclohexanone O-methyloxime as a white solid, melting at 105-106 °C, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 5.25 (d, 1H), 4.24 (m, 1H), 3.84 (s, 3H), 3.18 (m, 1H), 2.79 (q, 2H), 2.47 (m, 1H), 2.36-2.00 (m, 4H), 1.51 (m, 2H), 1.26 (t, 3H). Step B: (a) cis-N-(5-Chloro-6-ethyl-4-pyrimidinyl)-N'-methoxy-1,4-

cyclohexanediamine and (b) trans-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'methoxy-1,4-cyclohexanediamine

To a cooled (0 °C), magnetically-stirred solution of 0.28 g (1.06 mmol) of 4-[(5chloro-6-ethyl-4-pyrimidinyl)aminolcyclohexanone O-methyloxime in 5 mL of ethanol were sequentially added dropwise 0.44 mL (3.53 mmol) of borane-pyridine complex and 4 mL of 10% aqueous HCl solution. The clear mixture was allowed to warm to room temperature and stirred for 10 min. The resultant mixture was quenched with 1 M aqueous NaHCO3 solution and diluted with ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 55%, 70%, then 100% ethyl acetate/hexane to afford 0.11 g (36%) of cis-N-(5-chloro-6-ethyl-4-pyrimidinyl)-N'-methoxy-1,4-cyclohexanediamine (Ex. 11a) as a clear oil, ¹H NMR (CDCl₃): δ 8.41 (s, 1H), 5.47 (br s, 1H), 5.42 (br d, 1H), 4.18 (m, 1H), 3.58 (s, 3H), 3.07 (m, 1H), 2.78 (q, 2H), 1.87-1.55 (m, 8H), 1.26 (t, 3H) and 0.15 g (50%) of trans-N-(5-chloro-6-ethyl-4pyrimidinyl)-N'-methoxy-1,4-cyclohexanediamine (Ex. 11b) as a white solid, melting at 87-88 °C, ¹H NMR (CDCl₃): δ 8.41 (s, 1H), 5.43 (br s, 1H), 5.18 (br d, 1H), 3.98 (m, 1H), 3.55 (s, 3H), 2.90 (m, 1H), 2.78 (q, 2H), 2.18 (m, 2H), 2.00 (m, 2H), 1.31 (m, 4H), 1.26 (t, 3H).

EXAMPLE 12

cis-N-[4-[(5-Chloro-6-ethyl-4-pyrimidinyl)amino]cyclohexyl]-N-methoxyacetamide

To a magnetically-stirred solution of 0.50 g (1.75 mmol) of cis-N-(5-chloro-6-ethyl-4pyrimidinyl)-N'-methoxy-1,4-cyclohexanediamine in 20 mL of dichloromethane were sequentially added 0.17 mL (1.75 mmol) of acetic anhydride, 0.21 g (1.75 mmol) of 4-(dimethylamino)pyridine and 0.24 mL (1.75 mmol) of triethylamine under nitrogen. The

clear mixture was stirred at room temperature for 72 h. The resultant mixture was diluted with diethyl ether and water. The layers were separated and the aqueous layer was extracted with diethyl ether (2x). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica gel flash column chromatography eluting with 15%, 17.5%, then 20% acetone/hexane to afford 0.45 g (79%) of the title compound (Ex. 12) as a clear viscous oil, ¹H NMR (CDCl₃): δ 8.42 (s, 1H), 5.61 (d, 1H), 4.33 (m, 1H), 4.28 (m, 1H), 3.79 (s, 3H), 2.80 (q, 2H), 2.16 (s, 3H), 2.06 (m, 2H), 1.97-1.68 (m, 6H), 1.27 (t, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 26 can be prepared. The following abbreviations are used in the Tables which follow: t = tertiary, s = secondary, n = normal, i = iso, c = cyclo, Me = methyl, Et = ethyl, Pr = propyl, Bu = butyl, Pen = pentyl, t-Am = 1,1-dimethylpropyl, Hex = hexyl, Ph = phenyl, Bn = phenylmethyl, OMe = methoxy, OEt = ethoxy, CN = cyano, SMe = methylthio,

5

10

$$Q-2 = MeO$$
 $MeOCH_2$
 N

$$Q-3 =$$
 Cl
 N
 $MeOCH_2$
 N

Q-4 =

Tables 1 to 3

R5

N

R6

TABLE 1

COLUMN	ĺ
•	

		•	1	2	3
1	$G = Q-1; R^6 = Me;$	$R^5 =$	Me	Et	<i>n</i> -Pr
2	$G = Q-1; R^6 = Me;$	$R^5 =$	<i>i-</i> Pr	c-Pr	<i>n-</i> Bu
3	$G = Q-1; R^6 = Me;$	$R^5 =$	<i>i-</i> Bu	t-Bu	n-Hex
4	$G = Q-1; R^6 = Me;$	$R^5 =$	c-Hex	Bn	CH ₂ CH=CH ₂
5	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ CCl=CH ₂	СН ₂ С≡СН	CH ₂ -c-Pr
6	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
7	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
8	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
9	$G = Q-1; R^6 = Me;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
10	$G = Q-1; R^6 = Me;$	$R^5 =$	ОН	OMe	OEt
11	$G = Q-1; R^6 = Me;$	$\mathbb{R}^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
12	$G = Q-1; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
13	$G = Q-1; R^6 = Me;$	R ⁵ =	СОМе	COEt	COCF ₃
14	$G = Q-1; R^6 = Me;$	$R^5 =$	CO-i-Pr	CO-c-Pr	COPh
15	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
16	$G = Q-1; R^6 = Me;$	R ⁵ =	CO ₂ Bn	CONHMe	SO ₂ Ph
17	$G = Q-1; R^6 = Ph;$	R ⁵ =	Me	Et	n-Pr
18	$G = Q-1; R^6 = Ph;$	$R^5 =$	<i>i-</i> Pr	c-Pr	<i>n-</i> Bu
19	$G = Q-1; R^6 = Ph;$	$R^5 =$	<i>i-</i> Bu	<i>t-</i> Bu	n-Hex

20	$G = Q-1; R^6 = Ph;$	R ⁵ =	c-Pen	Bn	CH ₂ CH=CH ₂
21	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
22	$G = Q-1$; $R^6 = Ph$;	R ⁵ =	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
23	$G = Q-1; R^6 = Ph;$	R ⁵ =	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
24	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
25	$G = Q-1; R^6 = Ph;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	$(CH_2)_2CF=CF_2$
26	$G = Q^{-1}$; $R^{6} = Ph$;	$R^5 =$	OH	OMe	OEt
27	$G = Q-1; R^6 = Ph;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
28	$G = Q-1; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CHO
29	$G = Q^{-1}$; $R^{6} = Ph$;	$R^5 =$	COMe	COEt	COCF ₃
30	$G = Q_{-1}; R^6 = Ph;$	$R^5 =$	CO-i-Pr	CO-c-Pr	COPh
31	$G = Q-1$; $R^6 = Ph$;	$R^5 =$	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
32	$G = Q_{-1}$; $R^6 = Ph$;	$R^5 =$	CO ₂ Bn	CONHMe	SO ₂ Ph
33	$G = Q-2$; $R^6 = Me$;	$R^5 =$	Me	Et	<i>n</i> -Pr
34	$G = Q-2$; $R^6 = Me$;	$R^5 =$	<i>i</i> -Pr	c-Pr	<i>n-</i> 11 <i>n-</i> Bu
35	$G = Q-2$; $R^6 = Me$;	$R^5 =$	i-Fi i-Bu	t-Bu	n-Bu n-Hex
36	$G = Q-2$; $R^6 = Me$;	$R^5 =$	c-Hex	<i>l-B</i> u Bn	CH ₂ CH=CH ₂
37	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
38	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CH ₂ CCI-CH ₂	CH ₂ CONH ₂	CH ₂ CONHMe
39	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
40	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
41	$G = Q-2$; $R^6 = Me$;	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
42	$G = Q-2$; $R^6 = Me$;	$R^5 =$	OH	OMe	OEt
43	$G = Q-2$; $R^6 = Me$;	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
44	$G = Q-2$; $R^6 = Me$;	$R^5 =$	OCH ₂ CN	_	CHO
45	$G = Q-2$; $R^6 = Me$;	$R^5 =$	COMe	O(CH ₂) ₂ CF=CF ₂ COEt	COCF ₃
46	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CO-i-Pr	CO-c-Pr	COPh
47	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
48	$G = Q-2$; $R^6 = Me$;	$R^5 =$	CO ₂ Bn	CONHMe	SO ₂ Ph
49	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	Ме	Et	n-Pr
50	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
51	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	<i>i</i> -Bu	<i>t-</i> Bu	n-Hex
52	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
53	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
54	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
55	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	CH ₂ CONMe ₂	CH ₂ CONH ₂ CH ₂ OMe	CH ₂ OBn
56	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	CH ₂ CONMe ₂ CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
57	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
58	$G = Q-2$; $R^6 = Ph$;	$R^5 =$	OH	OMe	OEt
59	$G = Q-2; R^6 = Ph;$ $G = Q-2; R^6 = Ph;$	R ⁵ =			1
29	$G - Q - 2$; $K^{\circ} = Pn$;	K- =	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr

60	$G = Q-2; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
61	$G = Q-2; R^6 = Ph;$	R ⁵ =	COMe	COEt	COCF ₃
62	$G = Q-2; R^6 = Ph;$	R ⁵ =	CO-i-Pr	CO-c-Pr	COPh
63	$G = Q-2; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
64	$G = Q-2; R^6 = Ph;$	$R^5 =$	CO ₂ Bn	CONHMe	SO ₂ Ph
65	$G = Q-3; R^6 = Me;$	$R^5 =$	Me	Et	n-Pr
66	$G = Q-3; R^6 = Me;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
67	$G = Q-3; R^6 = Me;$	$R^{5} =$	<i>i</i> -Bu	t-Bu	n-Hex
68	$G = Q-3; R^6 = Me;$	$R^5 =$	c-Hex	Bn	CH ₂ CH=CH ₂
69	$G = Q-3; R^6 = Me;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
70	$G = Q-3; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
71	$G = Q-3; R^6 = Me;$	R ⁵ =	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
72	$G = Q-3; R^6 = Me;$	$R^{5} =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
73	$G = Q-3; R^6 = Me;$	R ⁵ =	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
74	$G = Q-3; R^6 = Me;$	R ⁵ =	ОН	OMe	OEt
75	$G = Q-3; R^6 = Me;$	R ⁵ =	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
76	$G = Q-3; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CHO
77	$G = Q-3; R^6 = Me;$	R ⁵ =	COMe	COEt	COCF ₃
78	$G = Q-3; R^6 = Me;$	$R^5 =$	CO- <i>i</i> -Pr	CO-c-Pr	COPh
79	$G = Q-3; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
80	$G = Q-3; R^6 = Me;$	$R^5 =$	CO ₂ Bn	CONHMe	SO ₂ Ph
81	$G = Q-3; R^6 = Ph;$	R ⁵ =	Me	Et	n-Pr
82	$G = Q-3; R^6 = Ph;$	R ⁵ =	<i>i-</i> Pr	c-Pr	<i>n-</i> Bu
83	$G = Q-3; R^6 = Ph;$	$R^5 =$	<i>i-</i> Bu	t-Bu	n-Hex
84	$G = Q-3; R^6 = Ph;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
85	$G = Q-3; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CCI=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
86	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
87	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
88	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
89	$G = Q-3; R^6 = Ph;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
90	$G = Q-3; R^6 = Ph;$	$R^5 =$	ОН	OMe	OEt
91	$G = Q-3; R^6 = Ph;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
92	$G = Q-3; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СНО
93	$G = Q-3; R^6 = Ph;$	$R^5 =$	COMe	COEt	COCF ₃
94	$G = Q-3; R^6 = Ph;$	$R^5 =$	CO-i-Pr	CO-c-Pr	COPh
95	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	CO ₂ Me	CO ₂ Et
96	$G = Q-3; R^6 = Ph;$	$R^5 =$	CO ₂ Bn	CONHMe	SO ₂ Ph

31 <u>TABLE 2</u>

<u>2</u>	
	COLUMN
	2

			1	2	3
1	$G = Q-1; R^6 = COMe;$	$R^5 =$	Et	<i>i-</i> Pr	c-Pr
2	$G = Q-1; R^6 = COMe;$	$\mathbb{R}^5 =$	c-Hex	Bn	CH ₂ C≡CH
3	$G = Q-1; R^6 = COMe;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
4	$G = Q-1; R^6 = COMe;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
5	$G = Q-1; R^6 = COMe;$	$R^5 =$	OH	ОМе	OBn
6	$G = Q-1; R^6 = COMe;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
7	$G = Q-1$; $R^6 = CO-t-Bu$;	$R^5 =$	Me	Et	<i>i-</i> Pr
8	$G = Q-1$; $R^6 = CO-t-Bu$;	$R^5 =$	c-Pr	n-Bu	c-Hex
9	$G = Q-1; R^6 = CO-t-Bu;$	$R^5 =$	Bn	Ph	СН ₂ С≡СН
10	$G = Q-1$; $R^6 = CO-t-Bu$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
11	$G = Q-1; R^6 = CO-t-Bu;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
12	$G = Q-1$; $R^6 = CO-t-Bu$;	$R^5 =$	ОН	OMe	OBn
13	$G = Q-1; R^6 = CO-t-Bu;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
14	$G = Q-1$; $R^6 = CO_2Me$;	$R^5 =$	Et	<i>i-</i> Pr	c-Pr
15	$G = Q-1; R^6 = CO_2Me;$	$R^5 =$	c-Hex	Bn	СН ₂ С≡СН
16	$G = Q-1; R^6 = CO_2Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
17	$G = Q-1; R^6 = CO_2Me;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
18	$G = Q-1; R^6 = CO_2Me;$	$R^5 =$	ОН	OMe	OBn
19	$G = Q-1; R^6 = CO_2Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
20	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	Me	Et	<i>i-</i> Pr
21	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	c-Pr	<i>n-</i> Bu	c-Hex
22	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	Bn	Ph	СН ₂ С≡СН
23	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
24	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
25	$G = Q-1; R^6 = CO_2-t-Bu;$	$R^5 =$	OH	OMe	OBn
26	$G = Q-1$; $R^6 = CO_2-t-Bu$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
27	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	Me	Et	<i>i-</i> Pr
28	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	c-Pr	n-Bu	c-Hex
29	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
30	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
31	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
· 32	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	ОН	OMe	OBn
33	$G = Q-1; R^6 = CONMe_2;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	CH ₂ CO ₂ Me
34	$G = Q-1; R^6 = SO_2Me;$	$R^5 =$	Me	Et	<i>i-</i> Pr
35	$G = Q-1; R^6 = SO_2Me;$	$R^5 =$	c-Pr	n-Bu	c-Hex
36	$G = Q-1; R^6 = SO_2Me;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
37	$G = Q-1; R^6 = SO_2Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe

38	$G = Q-1; R^6 = SO_2Me;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
39	$G = Q-1$; $R^6 = SO_2Me$;	$R^5 =$	OH	OMe	OBn
40	$G = Q-1$; $R^6 = SO_2Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
41	$G = Q-1$; $R^6 = SO_2CF_3$;	$R^5 =$	Me	Et	i-Pr
42	$G = Q-1$; $R^6 = SO_2CF_3$;	$R^5 =$	<i>c</i> -Pr	n-Bu	c-Hex
43	$G = Q-1$; $R^6 = SO_2CF_3$;	$R^5 =$	Bn	Ph	СН ₂ С≡СН
44	$G = Q-1$; $R^6 = SO_2CF_3$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
45	$G = Q-1; R^6 = SO_2CF_3;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
46	$G = Q-1$; $R^6 = SO_2CF_3$;	$R^5 =$	OH	OMe	OBn
47	$G = Q-1; R^6 = SO_2CF_3;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
48	$G = Q-1$; $R^6 = P(O)(OMe)_2$;	$R^5 =$	Me	Et	<i>i-</i> Pr
49	$G = Q-1; R^6 = P(O)(OMe)_2;$	$R^5 =$	c-Pr	n-Bu	c-Hex
50	$G = Q-1; R^6 = P(O)(OMe)_2;$	$R^5 =$	Bn	Ph	СН2С≡СН
51	$G = Q-1; R^6 = P(O)(OMe)_2;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
52	$G = Q-1; R^6 = P(O)(OMe)_2;$	$\mathbb{R}^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
53	$G = Q-1; R^6 = P(O)(OMe)_2;$	$R^5 =$	ОН	OMe	OBn
54	$G = Q-1; R^6 = P(O)(OMe)_2;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
55	$G = Q-1; R^6 = P(O)(OMe)Me;$	$R^5 =$	Me	Et	<i>i-</i> Pr
56	$G = Q-1; R^6 = P(O)(OMe)Me;$	$R^5 =$	c-Pr	n-Bu	c-Hex
57	$G = Q-1; R^6 = P(O)(OMe)Me;$	$\mathbb{R}^5 =$	Bn	Ph	СН ₂ С≡СН
58	$G = Q-1; R^6 = P(O)(OMe)Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	СН ₂ ОМе
59	$G = Q-1; R^6 = P(O)(OMe)Me;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
60	$G = Q-1; R^6 = P(O)(OMe)Me;$	$\mathbb{R}^5 =$	OH	OMe	OBn
61	$G = Q-1; R^6 = P(O)(OMe)Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	CH ₂ CO ₂ Me
62	$G = Q-2; R^6 = COMe;$	$R^5 =$	Et	i-Pr	<i>c</i> -Pr
63	$G = Q-2; R^6 = COMe;$	$R^5 =$	c-Hex	Bn	СН ₂ С≡СН
64	$G = Q-2; R^6 = COMe;$	R ⁵ =	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
65	$G = Q-2; R^6 = COMe;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
66	$G = Q-2; R^6 = COMe;$	$R^5 =$	ОН	OMe	OBn
67	$G = Q-2; R^6 = COMe;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
68	$G = Q-2; R^6 = CO-t-Bu;$	$\mathbb{R}^5 =$	Me	Et	<i>i-</i> Pr
69	$G = Q-2; R^6 = CO-t-Bu;$	$R^5 =$	c-Pr	n-Bu	$c ext{-Hex}$
70	$G = Q-2; R^6 = CO-t-Bu;$	$R^5 =$	Bn	Ph	СН ₂ С≡СН
71	$G = Q-2; R^6 = CO-t-Bu;$	R ⁵ =	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
· 72	$G = Q-2; R^6 = CO-t-Bu;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
73	$G = Q-2; R^6 = CO-t-Bu;$	$R^5 =$	ОН	OMe	OBn
74	$G = Q-2$; $R^6 = CO-t-Bu$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
75	$G = Q-2; R^6 = CO_2Me;$	$R^5 =$	Et	<i>i-</i> Pr	c-Pr
76	$G = Q-2; R^6 = CO_2Me;$	$R^5 =$	c-Hex	Bn	CH ₂ C≡CH
77	$G = Q-2; R^6 = CO_2Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe

78	$G = Q-2; R^6 = CO_2Me;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
79	$G = Q-2$; $R^6 = CO_2Me$;	$R^5 =$	OH	OMe	OBn
80	$G = Q-2$; $R^6 = CO_2Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
81	$G = Q-2$; $R^6 = CO_2-t-Bu$;	$R^5 =$	Me	Et	<i>i-</i> Pr
82	$G = Q-2$; $R^6 = CO_2-t-Bu$;	$R^5 =$	c-Pr	n-Bu	c-Hex
83	$G = Q-2$; $R^6 = CO_2-t$ -Bu;	$R^5 =$	Bn	n Bu Ph	CH ₂ C≡CH
84	$G = Q-2$; $R^6 = CO_2-t-Bu$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
85	$G = Q-2$; $R^6 = CO_2-t$ -Bu;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
86	$G = Q-2$; $R^6 = CO_2-t-Bu$;	$R^5 =$	OH	OMe	OBn
87	$G = Q-2$; $R^6 = CO_2$ - <i>t</i> -Bu;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
88	$G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$	Me	Et	i-Pr
89	$G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$	c-Pr	n-Bu	c-Hex
90	$G = Q-2$; $R^6 = CONMe_2$; $G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$	E-F1 Bn	<i>n-B</i> u Ph	CH ₂ C≡CH
	$G = Q-2$; $R^6 = CONMe_2$; $G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$			CH ₂ C≡CH CH ₂ OMe
91 92	$G = Q-2$; $R^6 = CONMe_2$; $G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$ $R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	ļ l
	_	$R^5 =$ $R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
93	$G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$ $R^5 =$	OH	OMe	OBn
94	$G = Q-2$; $R^6 = CONMe_2$;	$R^5 =$ $R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
95	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$ $R^5 =$	Me	Et	<i>i-</i> Pr
96	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$ $R^5 =$	c-Pr	n-Bu	c-Hex
97	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$	Bn	Ph	CH ₂ C≡CH
98	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$ $R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
99	$G = Q-2$; $R^6 = SO_2Me$;		CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
100	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$	ОН	OMe	OBn
101	$G = Q-2$; $R^6 = SO_2Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
102	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	Me	Et	i-Pr
103	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	<i>c</i> -Pr	<i>n-</i> Bu	c-Hex
104	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
105	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
106	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
107	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	ОН	OMe	OBn
108	$G = Q-2; R^6 = SO_2CF_3;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
109	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	Me	Et	<i>i-</i> Pr
110	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	c-Pr	n-Bu	c-Hex
111	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	Bn	Ph	СН ₂ С≡СН
112	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
113	$G = Q-2; R^6 = P(O)(OMe)_2;$	$\mathbb{R}^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
114	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	ОН	OMe	OBn
115	$G = Q-2; R^6 = P(O)(OMe)_2;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
116	$G = Q-2; R^6 = P(O)(OMe)Me;$	$R^5 =$	Me	Et	<i>i-</i> Pr
117	$G = Q-2; R^6 = P(O)(OMe)Me;$	$R^5 =$	c-Pr	n-Bu	c-Hex

118	$G = Q-2; R^6 = P(O)(OMe)Me;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
119	$G = Q-2$; $R^6 = P(O)(OMe)Me$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
120	$G = Q-2$; $R^6 = P(O)(OMe)Me$;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
121	$G = Q-2$; $R^6 = P(O)(OMe)Me$;	$R^5 =$	OH	OMe	OBn
122	$G = Q-2$; $R^6 = P(O)(OMe)Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
123	$G = Q-3$; $R^6 = COMe$;	$R^5 =$	Et	<i>i</i> -Pr	c-Pr
124	$G = Q-3$; $R^6 = COMe$;	$R^5 =$	c-Hex	Bn	CH ₂ C≡CH
125	$G = Q-3; R^6 = COMe;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
126	$G = Q-3$; $R^6 = COMe$;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
127	$G = Q-3$; $R^6 = COMe$;	$\mathbb{R}^5 =$	ОН	OMe	OBn
128	$G = Q-3; R^6 = COMe;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
129	$G = Q-3; R^6 = CO-t-Bu;$	$R^5 =$	Me	Et	<i>i-</i> Pr
130	$G = Q-3$; $R^6 = CO-t-Bu$;	$R^5 =$	c-Pr	n-Bu	c-Hex
131	$G = Q-3; R^6 = CO-t-Bu;$	$R^5 =$	Bn	Ph	СН ₂ С≡СН
132	$G = Q-3$; $R^6 = CO-t-Bu$;	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
133	$G = Q-3; R^6 = CO-t-Bu;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
134	$G = Q-3; R^6 = CO-t-Bu;$	$R^5 =$	OH	OMe	OBn
135	$G = Q-3; R^6 = CO-t-Bu;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
136	$G = Q-3; R^6 = CO_2Me;$	$R^5 =$	Et	<i>i-</i> Pr	c-Pr
137	$G = Q-3; R^6 = CO_2Me;$	$R^5 =$	c-Hex	Bn	СН ₂ С≡СН
138	$G = Q-3; R^6 = CO_2Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
139	$G = Q-3; R^6 = CO_2Me;$	$\mathbb{R}^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
140	$G = Q-3; R^6 = CO_2Me;$	$\mathbb{R}^5 =$	ОН	OMe	OBn
141	$G = Q-3; R^6 = CO_2Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
142	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	Me	Et	i-Pr
143	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	c-Pr	n-Bu	c-Hex
144	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	Bn	Ph	СН ₂ С≡СН
145	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
146	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
147	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	ОН	OMe	OBn
148	$G = Q-3$; $R^6 = CO_2-t-Bu$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
149	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	Me	Et	<i>i-</i> Pr
150	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	c-Pr	n-Bu	c-Hex
151	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	Bn	Ph	СН ₂ С≡СН
152	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
153	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
154	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	ОН	ОМе	OBn
155	$G = Q-3$; $R^6 = CONMe_2$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
156	$G = Q-3$; $R^6 = SO_2Me$;	$R^5 =$	Me	Et	i-Pr

		_			
157	$G = Q-3; R^6 = SO_2Me;$	$R^5 =$	<i>c-</i> Pr	n-Bu	c-Hex
158	$G = Q-3; R^6 = SO_2Me;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
159	$G = Q-3; R^6 = SO_2Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
160	$G = Q-3$; $R^6 = SO_2Me$;	$\mathbb{R}^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
161	$G = Q-3; R^6 = SO_2Me;$	$R^5 =$	ОН	OMe	OBn
162	$G = Q-3$; $R^6 = SO_2Me$;	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	CH ₂ CO ₂ Me
163	$G = Q-3; R^6 = SO_2CF_3;$	$\mathbb{R}^5 =$	Me	Et	<i>i-</i> Pr
164	$G = Q-3; R^6 = SO_2CF_3;$	$\mathbb{R}^5 =$	c-Pr	n-Bu	c-Hex
165	$G = Q-3; R^6 = SO_2CF_3;$	$\mathbb{R}^5 =$	Bn	Ph	СН ₂ С≡СН
166	$G = Q-3; R^6 = SO_2CF_3;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
167	$G = Q-3; R^6 = SO_2CF_3;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
168	$G = Q-3; R^6 = SO_2CF_3;$	$R^5 =$	OH	OMe	OBn
169	$G = Q-3; R^6 = SO_2CF_3;$	$\mathbb{R}^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	CH ₂ CO ₂ Me
170	$G = Q-3$; $R^6 = P(O)(OMe)_2$;	$R^5 =$	Me	Et	i-Pr
171	$G = Q-3; R^6 = P(O)(OMe)_2;$	$R^5 =$	c-Pr	n-Bu	c-Hex
172	$G = Q-3; R^6 = P(O)(OMe)_2;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
173	$G = Q-3; R^6 = P(O)(OMe)_2;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
174	$G = Q-3; R^6 = P(O)(OMe)_2;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
175	$G = Q-3; R^6 = P(O)(OMe)_2;$	$R^5 =$	ОН	OMe	OBn
176	$G = Q-3; R^6 = P(O)(OMe)_2;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me
177	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	Me	Et	<i>i-</i> Pr
178	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	<i>c</i> -Pr	n-Bu	c-Hex
179	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	Bn	Ph	CH ₂ C≡CH
180	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	CH ₂ CN	CH ₂ CONMe ₂	CH ₂ OMe
181	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	CH ₂ SMe	CH ₂ SO ₂ Me	(CH ₂) ₂ CF=CF ₂
182	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	ОН	OMe	OBn
183	$G = Q-3; R^6 = P(O)(OMe)Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CH ₂ CO ₂ Me

			1	2	3
1	$G = Q-1; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	Me	Et	n-Pr
2	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
3	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	<i>i-</i> Bu	t-Bu	n-Hex
4	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
5	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
6	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
7	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
8	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
9	$G = Q-1; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	$(CH_2)_2CF=CF_2$

	,	- 1	1		l I
10	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	ОН	OMe	OEt
11	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
12	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
13	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	СОМе	COEt	COCF ₃
14	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
15	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
16	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
17	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
18	$G = Q-1$; $R^6 = 2$ -Pyr;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
19	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
20	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	Me	Et	n-Pr
21	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
22	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	<i>i-</i> Bu	<i>t-</i> Bu	n-Hex
23	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
24	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
25	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
26	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
27	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
28	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
29	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	ОН	OMe	OEt
30	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
31	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СНО
32	$G = Q-1$; $R^6 = 3$ -Pyr;	$R^5 =$	СОМе	COEt	COCF ₃
33	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
34	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
35	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
36	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
37	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
38	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
39	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	Me	Et	n-Pr
40	$G = Q-1$; $R^6 = 4-Pyr$;	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
41	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
42	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
43	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	СН ₂ - <i>c</i> -Рг
· 44	$G = Q-1; R^6 = 4-Pyr;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
45	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
46	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
47	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
48	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	ОН	OMe	OEt
49	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr

50	$G = Q-1; R^6 = 4-Pyr;$	R ⁵ =	OCH-CN	O(CH-)-CE-CE-	СНО
50 51	$G = Q-1$; $R^0 = 4$ -Pyr; $G = Q-1$; $R^6 = 4$ -Pyr;	R ⁵ =	OCH ₂ CN COMe	O(CH ₂) ₂ CF=CF ₂ COEt	
	$G = Q-1$; $R^6 = 4$ -Pyr; $G = Q-1$; $R^6 = 4$ -Pyr;	$R^{5} =$ $R^{5} =$	ŀ		COCF ₃
52 52		$R^{5} =$ $R^{5} =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
53	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$ $R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
54	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$ $R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
55	$G = Q-1$; $R^6 = 4$ -Pyr;		CO ₂ Bn	CONHMe	CONMe ₂
56	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
57	$G = Q-1; R^6 = 4-Pyr;$	R ⁵ =	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
58	$G = Q-1; R^6 = 2-Th;$	R ⁵ =	Me	Et	n-Pr
59	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	i-Pr	c-Pr	n-Bu
60	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	<i>i-</i> Bu	<i>t-</i> Bu	n-Hex
61	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
62	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
63	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
64	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
65	$G = Q-1; R^6 = 2-Th;$	$\mathbb{R}^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
66	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
67	$G = Q-1$; $R^6 = 2$ -Th;	$R^5 =$	ОН	OMe	OEt
68	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
69	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СНО
70	$G = Q-1$; $R^6 = 2$ -Th;	$R^5 =$	COMe	COEt	COCF ₃
71	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CO- <i>i</i> -Pr	CO-c-Pr	CO-t-Bu
72	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
73	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
74	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
75	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
76	$G = Q-1; R^6 = 2-Th;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
7 7	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	Me	Et	n-Pr
78	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
79	$G = Q-2; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
80	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
81	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	СН ₂ С≡СН	CH ₂ -c-Pr
82	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
83	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
84	$G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
85	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
86	$G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$	ОН	OMe	OEt
87	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
88	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
89	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	СОМе	COEt	COCF ₃
		,			, ,

90	$G = Q-2; R^6 = 2-Pyr;$	R ⁵ =	CO- <i>i-</i> Pr	CO-c-Pr	CO- <i>t</i> -Bu
90	$G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
92	$G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$	CO ₂ Et	CO ₂ - <i>i</i> -Pr	CO ₂ -t-Bu
	$G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$		CONHMe	CONMe ₂
93 94	$G = Q-2$; $R^6 = 2$ -Pyr; $G = Q-2$; $R^6 = 2$ -Pyr;	$R^5 =$ $R^5 =$	CO ₂ Bn		SO ₂ Ph
		$R^5 = $	SO ₂ Me	SO ₂ CF ₃	SO ₂ FII Ph
95	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$ $R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	n-Pr
96	$G = Q-2; R^6 = 3-Pyr;$	$R^3 = $ $R^5 = $	Me	Et	
97	$G = Q-2; R^6 = 3-Pyr;$		<i>i-</i> Pr	c-Pr	n-Bu
98	$G = Q-2; R^6 = 3-Pyr;$	$R^5 = -5$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
99	$G = Q-2; R^6 = 3-Pyr;$	R ⁵ =	c-Pen	Bn	CH ₂ CH=CH ₂
100	$G = Q-2; R^6 = 3-Pyr;$	R ⁵ =	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
101	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
102	$G = Q-2; R^6 = 3-Pyr;$	R ⁵ =	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
103	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
104	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
105	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	OH	OMe	OEt
106	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
107	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CHO
108	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	COMe	COEt	COCF ₃
109	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
110	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
111	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
112	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
113	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
114	$G = Q-2; R^6 = 3-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
115	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	Me	Et	n-Pr
116	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
117	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
118	$G = Q-2; R^6 = 4-Pyr;$	R ⁵ ≂	c-Pen	Bn	CH ₂ CH=CH ₂
119	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	СН ₂ С≡СН	CH ₂ -c-Pr
120	$G = Q-2$; $R^6 = 4$ -Pyr;	R ⁵ =	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
121	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
122	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
123	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
124	$G = Q-2; R^6 = 4-Pyr;$	R ⁵ =	ОН	OMe	OEt
125	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
126	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
127	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	COMe	COEt	COCF ₃
128	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
129	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
	- · · · · · · · · · · · · · · · · · · ·		•	. – – '	'

	_	ا ہ	!		
130	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
131	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
132	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	. SO ₂ Ph
133	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
134	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	Me	Et	n-Pr
135	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	<i>i-</i> Pr	<i>c</i> -Pr	n-Bu
136	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
137	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	c-Pen	Bn	CH ₂ CH=CH ₂
138	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
139	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
140	$G = Q-2; R^6 = 2-Th;$	$\mathbb{R}^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
141	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
142	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
143	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	ОН	OMe	OEt
144	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
145	$G = Q-2; R^6 = 2-Th;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
146	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	COMe	COEt	COCF ₃
147	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
148	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	COPh	CH ₂ CO ₂ Me	CO ₂ Me
149	$G = Q-2; R^6 = 2-Th;$	$\mathbb{R}^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
150	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
151	$G = Q-2; R^6 = 2-Th;$	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
152	$G = Q-2; R^6 = 2-Th;$	R ⁵ =	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
153	$G = Q-3; R^6 = 2-Pyr;$	R ⁵ =	Me	Et	<i>n</i> -Pr
154	$G = Q-3; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
155	$G = Q-3; R^6 = 2-Pyr;$	R ⁵ =	<i>i-</i> Bu	<i>t-</i> Bu	n-Hex
156	$G = Q-3; R^6 = 2-Pyr;$	R ⁵ =	c-Pen	Bn	CH ₂ CH=CH ₂
157	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
158	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
159	$G = Q-3; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
160	$G = Q-3; R^6 = 2-Pyr;$	R ⁵ =	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
161	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
162	$G = Q-3; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	ОН	OMe	OEt
163	$G = Q-3; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
164	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
165	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	COMe	COEt	COCF ₃
166	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	CO- <i>i</i> -Pr	CO-c-Pr	CO-t-Bu
167	$G = Q-3; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
168	$G = Q-3; R^6 = 2-Pyr;$	R ⁵ =	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
169	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
		,	*		

				1	;
170	$G = Q-3$; $R^6 = 2-Pyr$;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
171	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
172	$G = Q-3; R^6 = 3-Pyr;$	$R^5 =$	Me	Et	n-Pr
173	$G = Q-3; R^6 = 3-Pyr;$	$R^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
174	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	<i>i-</i> Bu	<i>t-</i> Bu	n-Hex
175	$G = Q-3$; $R^6 = 3-Pyr$;	$\mathbb{R}^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
176	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
177	$G = Q-3$; $R^6 = 3-Pyr$;	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
178	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
179	$G = Q-3; R^6 = 3-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
180	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
181	$G = Q-3$; $R^6 = 3-Pyr$;	$R^5 =$	ОН	ОМе	OEt
182	$G = Q-3$; $R^6 = 3-Pyr$;	$\mathbb{R}^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
183	$G = Q-3; R^6 = 3-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CHO
184	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	СОМе	COEt	COCF ₃
185	$G = Q-3$; $R^6 = 3-Pyr$;	R ⁵ =	CO-i-Pr	CO-c-Pr	CO- <i>t</i> -Bu
186	$G = Q-3$; $R^6 = 3-Pyr$;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
187	$G = Q-3$; $R^6 = 3$ -Pyr;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
188	$G = Q-3$; $R^6 = 3$ -Pyr;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
189	$G = Q-3$; $R^6 = 3$ -Pyr;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
190	$G = Q-3$; $R^6 = 3-Pyr$;	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
191	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	Me	Et	n-Pr
192	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	<i>i-</i> Pr	c-Pr	<i>n-</i> Bu
193	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
194	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
195	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
196	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
197	$G = Q-3$; $R^6 = 4$ -Pyr;	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
198	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
199	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
200	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	ОН	ОМе	OEt
201	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
202	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	CHO
203	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	COMe	COEt	COCF ₃
204	$G = Q-3$; $R^6 = 4-Pyr$;	R ⁵ =	CO- <i>i-</i> Pr	CO-c-Pr	CO-t-Bu
205	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
206	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
207	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
208	$G = Q-3$; $R^6 = 4-Pyr$;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
209	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph

210	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	Me	Et	n-Pr
211	$G = Q-3$; $R^6 = 2-Th$;	$\mathbb{R}^5 =$	<i>i-</i> Pr	c-Pr	n-Bu
212	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	<i>i-</i> Bu	<i>t</i> -Bu	n-Hex
213	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	c-Pen	Bn	CH ₂ CH=CH ₂
214	$G = Q-3; R^6 = 2-Th;$	$\mathbb{R}^5 =$	CH ₂ CCl=CH ₂	CH ₂ C≡CH	CH ₂ -c-Pr
215	$G = Q-3$; $R^6 = 2-Th$;	$R^5 =$	CH ₂ CN	CH ₂ CONH ₂	CH ₂ CONHMe
216	$G = Q-3$; $R^6 = 2-Th$;	$R^5 =$	CH ₂ CONMe ₂	CH ₂ OMe	CH ₂ OBn
217	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	CH ₂ SMe	CH ₂ S(O)Me	CH ₂ SO ₂ Me
218	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	(CH ₂) ₂ OH	(CH ₂) ₂ OMe	(CH ₂) ₂ CF=CF ₂
219	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	ОН	OMe	OEt
220	$G = Q-3$; $R^6 = 2-Th$;	$R^5 =$	OBn	OCH ₂ C≡CH	OCH ₂ -c-Pr
221	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
222	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	COMe	COEt	COCF ₃
223	$G = Q-3$; $R^6 = 2-Th$;	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
224	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
225	$G = Q-3$; $R^6 = 2-Th$;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
226	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
227	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	SO ₂ Me SO ₂ CF ₃		SO ₂ Ph
228	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph

		Î	1	2	3	4
1	$G = Q-1; R^5 = Me;$	$R^{17} =$	2-F	3-F	4-F	2-Cl
2	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
3	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
4	$G = Q-1; R^5 = Me;$	$R^{17} =$	4-Et	4- <i>n</i> -Pr	4- <i>i</i> -Pr	4- <i>n-</i> Bu
5	$G = Q-1; R^5 = Me;$	$R^{17} =$	4- <i>t-</i> Bu	2,4-diCl	2,6-diCl	3,4-diCl
6	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
7	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
8	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-ОМе	4-OMe	4-OEt	4-O- <i>t</i> -Bu
9	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
10	$G = Q-1; R^5 = Me;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
11	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	2-F	3-F	4-F	2-Cl
12	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
13	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
14	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4-Et	4- <i>n</i> -Pr	4- <i>i</i> -Pr	4- <i>n-</i> Bu
15	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
16	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
17	$G = Q-1; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH

4.0	0 0 1 P5 (OTT) OF OF	$R^{17} =$	2.004	1004	4.054	1048
18	$G = Q-1$; $R^5 = (CH_2)_2 CF = CF_2$;	$R^{17} =$	3-OMe	4-OMe	4-OEt	4-O- <i>t</i> -Bu
19	$G = Q-1$; $R^5 = (CH_2)_2 CF = CF_2$;	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
20	$G = Q-1$; $R^5 = (CH_2)_2 CF = CF_2$;	$R^{17} =$ $R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
21	$G = Q-1; R^5 = CO_2Me;$	$R^{17} = R^{17} =$	2-F	3-F	4-F	2-C1
22	$G = Q-1; R^5 = CO_2Me;$		3-Cl	4-C1	3-Br	4-Br
23	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
24	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	4-Et	4- <i>n</i> -Pr	4- <i>i</i> -Pr	4- <i>n</i> -Bu
25	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
26	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
27	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-ОН	4-OH
28	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-OMe	4-OMe	4-OEt	4-O- <i>t-</i> Bu
29	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
30	$G = Q-1; R^5 = CO_2Me;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
31	$G = Q-2; R^5 = Me;$	$R^{17} =$	2-F	3-F	4-F	2-Cl
32	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
33	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
34	$G = Q-2; R^5 = Me;$	$R^{17} =$	4-Et	4- <i>n</i> -Pr	4- <i>i</i> -Pr	4- <i>n-</i> Bu
35	$G = Q-2; R^5 = Me;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
36	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
37	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
38	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-ОМе	4-OMe	4-OEt	4-O- <i>t-</i> Bu
39	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
40	$G = Q-2; R^5 = Me;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
41	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	2-F	3-F	4-F	2-C1
42	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
43	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
44	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4-Et	4-n-Pr	4- <i>i</i> -Pr	4- <i>n</i> -Bu
45	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
46	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
47	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
48	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-OMe	4-ОМе	4-OEt	4-O- <i>t-</i> Bu
49	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
50	$G = Q-2; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
51	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	2-F	3-F	4-F	2-C1
. 52	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-C1	4-Cl	3-Br	4-Br
53	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-I	4-I	3-Ме	4-Me
54	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	4-Et	4- <i>n-</i> Pr	4- <i>i-</i> Pr	4- <i>n</i> -Bu
55	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	4- <i>t-</i> Bu	2,4-diCl	2,6-diCl	3,4-diCl
56	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
57	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH

58	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-OMe	4-OMe	4-OEt	4-O- <i>t</i> -Bu
59	$G = Q-2; R^5 = CO_2Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
60	$G = Q-2$; $R^5 = CO_2Me$;	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
61	$G = Q-3; R^5 = Me;$	$R^{17} =$	2-F	3-F	4-F	2-Cl
62	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
63	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
64	$G = Q-3; R^5 = Me;$	$R^{17} =$	4-Et	4- <i>n</i> -Pr	4- <i>i</i> -Pr	4- <i>n-</i> Bu
65	$G = Q-3; R^5 = Me;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
66 ·	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
67	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
68	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-OMe	4-OMe	4-OEt	4-O- <i>t</i> -Bu
69	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
70	$G = Q-3; R^5 = Me;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
71	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	2- F	3-F	4-F	2-Cl
72	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-C1	4-C1	3-Br	4-Br
73	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
74	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4-Et	4- <i>n-</i> Pr	4- <i>i</i> -Pr	4- <i>n</i> -Bu
75	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
76	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
77	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
78	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-OMe	4-OMe	4-OEt	4-O- <i>t</i> -Bu
79	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
80	$G = Q-3; R^5 = (CH_2)_2 CF = CF_2;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me
81	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	2-F	3-F	4-F	2-C1
82	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-Cl	4-C1	3-Br	4-Br
83	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-I	4-I	3-Me	4-Me
84	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	4-Et	4-n-Pr	4- <i>i</i> -Pr	4-n-Bu
85	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	4- <i>t</i> -Bu	2,4-diCl	2,6-diCl	3,4-diCl
86	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-CF ₃	4-CF ₃	3-CN	4-CN
87	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-NO ₂	4-NO ₂	3-OH	4-OH
88	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-ОМе	4-OMe	4-OEt	4-O- <i>t</i> -Bu
89	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-SMe	4-SMe	3-OCF ₃	4-OCF ₃
90	$G = Q-3; R^5 = CO_2Me;$	$R^{17} =$	3-S(O)Me	4-S(O)Me	3-SO ₂ Me	4-SO ₂ Me

$(R^2 = Et)$			COLUMN				
			1	2	3		
1	$R^3 = Br; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr		
2	$R^3 = Br; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn		
3	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH2CN	CH2OMe	CH2SO2Me		

		1	•	1	1
4	$R^3 = Br; R^6 = Me;$	$\mathbb{R}^5 =$	OH	OMe	(CH ₂) ₂ CF=CF ₂
5	$R^3 = Br; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
6	$R^3 = Br; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
7	$R^3 = Br; R^6 = Me;$	$\mathbb{R}^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
8	$R^3 = Br; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
9	$R^3 = Br; R^6 = Ph;$	$\mathbb{R}^5 =$	Me	Et	<i>i-</i> Pr
10	$R^3 = Br; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
11	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
12	$R^3 = Br; R^6 = Ph;$	$R^5 =$	OH	ОМе	(CH ₂) ₂ CF=CF ₂
13	$R^3 = Br; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
14	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
15	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
16	$R^3 = Br; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
17	$R^3 = Me; R^6 = Me;$	$R^5 = $	Me	<i>i</i> -Pr	c-Pr
18	$R^3 = Me; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
19	$R^3 = Me; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
20	$R^3 = Me; R^6 = Me;$	$R^5 =$	OH	ОМе	(CH ₂) ₂ CF=CF ₂
21	$R^3 = Me; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
22	$R^3 = Me; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
23	$R^3 = Me; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
24	$R^3 = Me; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
25	$R^3 = Me; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
26	$R^3 = Me; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
27	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
28	$R^3 = Me; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
29	$R^3 = Me; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
30	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
31	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
32	$R^3 = Me; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
33	$R^3 = OMe; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
34	$R^3 = OMe; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
35	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
36	$R^3 = OMe; R^6 = Me;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
37	$R^3 = OMe; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
38	$R^3 = OMe; R^6 = Me;$	R ⁵ =	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
39	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
40	$R^3 = OMe; R^6 = Me;$	R ⁵ =	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
41	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
42	$R^3 = OMe; R^6 = Ph;$	R ⁵ =	c-Pr	c-Pen	Bn
43	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me

		,			ı
44	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
45	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
46	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
47	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
48	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
49	$R^3 = SMe; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	<i>c</i> -Pr
50	$R^3 = SMe; R^6 = Me;$	$\mathbb{R}^5 =$	<i>t</i> -Bu	$c ext{-Hex}$	Bn
51	$R^3 = SMe; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
52	$R^3 = SMe; R^6 = Me;$	R ⁵ =	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
53	$R^3 = SMe; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
54	$R^3 = SMe; R^6 = Me;$	R ⁵ =	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
55	$R^3 = SMe; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
56	$R^3 = SMe; R^6 = Me;$	$\mathbb{R}^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
57	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
58	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
59	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	CH ₂ CN	СН ₂ ОМе	CH ₂ SO ₂ Me
60	$R^3 = SMe; R^6 = Ph;$	R ⁵ =	ОН	OMe	(CH ₂) ₂ CF=CF ₂
61	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
62	$R^3 = SMe; R^6 = Ph;$	$\mathbb{R}^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
63	$R^3 = SMe; R^6 = Ph;$	R ⁵ =	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
64	$R^3 = SMe; R^6 = Ph;$	R ⁵ =	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
65	$R^3 = CN; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	<i>c</i> -Pr
66	$R^3 = CN; R^6 = Me;$	R ⁵ =	<i>t-</i> Bu	$c ext{-Hex}$	Bn
67	$R^3 = CN; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
6 8	$R^3 = CN; R^6 = Me;$	R ⁵ =	ОН	OMe	(CH ₂) ₂ CF=CF ₂
69	$R^3 = CN; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
70	$R^3 = CN; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
71	$R^3 = CN; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
72	$R^3 = CN; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
73	$R^3 = CN; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
74	$R^3 = CN; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
75	$R^3 = CN; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
76	$R^3 = CN; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
77	$R^3 = CN; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
78	$R^3 = CN; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
79	$R^3 = CN; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
80	$R^3 = CN; R^6 = Ph;$	R ⁵ =	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me

PCT/US98/26013

46 TABLE 6

	$(R^2 = CH_2OMe)$			COLUMN	
	-		1	2	3
1	$R^3 = Br; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
2	$R^3 = Br; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
3	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
4	$R^3 = Br; R^6 = Me;$	R ⁵ =	OH	OMe	(CH ₂) ₂ CF=CF ₂
5	$R^3 = Br; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
6	$R^3 = Br; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
7	$R^3 = Br; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
8	$R^3 = Br; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
9	$R^3 = Br; R^6 = Ph;$	R ⁵ =	Me	Et	<i>i-</i> Pr
10	$R^3 = Br; R^6 = Ph;$	R ⁵ =	c-Pr	c-Pen	Bn
11	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
12	$R^3 = Br; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
13	$R^3 = Br; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
14	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
15	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
16	$R^3 = Br; R^6 = Ph;$	$R^{5} =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
17	$R^3 = Me; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
18	$R^3 = Me; R^6 = Me;$	$R^5 =$	<i>t</i> -Bu	c-Hex	Bn
19	$R^3 = Me; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
20	$R^3 = Me; R^6 = Me;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
21	$R^3 = Me; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
22	$R^3 = Me; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
23	$R^3 = Me; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
24	$R^3 = Me; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
25	$R^3 = Me; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
26	$R^3 = Me; R^6 = Ph;$	$R^5 =$	<i>c</i> -Pr	c-Pen	Bn
27	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
28	$R^3 = Me; R^6 = Ph;$	$R^5 =$	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
29	$R^3 = Me; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
30	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
31	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
· 32	$R^3 = Me; R^6 = Ph;$	$\mathbb{R}^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
33	$R^3 = SMe; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
34	$R^3 = SMe; R^6 = Me;$	$\mathbb{R}^5 =$	<i>t-</i> Bu	c-Hex	Bn
35	$R^3 = SMe; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
36	$R^3 = SMe; R^6 = Me;$	$R^5 =$	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
37	$R^3 = SMe; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе

		ı	1		1
38	$R^3 = SMe; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
39	$R^3 = SMe; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
40	$R^3 = SMe; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
41	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
42	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
43	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
44	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
45	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
46	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
47	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
48	$R^3 = SMe; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
49	$R^3 = CN; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i-</i> Pr	c-Pr
50	$R^3 = CN; R^6 = Me;$	$R^5 =$	<i>t</i> -Bu	$c ext{-Hex}$	Bn
51	$R^3 = CN; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
52	$R^3 = CN; R^6 = Me;$	$R^5 =$	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
53	$R^3 = CN; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
54	$R^3 = CN; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
55	$R^3 = CN; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
56	$R^3 = CN; R^6 = Me;$	R ⁵ =	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
57	$R^3 = CN; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
58	$R^3 = CN; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
59	$R^3 = CN; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
60	$R^3 = CN; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
61	$R^3 = CN; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
62	$R^3 = CN; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
63	$R^3 = CN; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
64	$R^3 = CN; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me

	$(R^2 = Me)$	_		COLUMN	
			1	2	3
1	$R^3 = C1; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	<i>c</i> -Pr
2	$R^3 = C1; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$R^3 = C1; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОН	OMe
4	$R^3 = C1; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	$R^3 = C1; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$R^3 = C1; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$R^3 = C1; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> −Pr
8	$R^3 = C1; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe

10	$R^3 = Cl; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
11	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$R^3 = Br; R^6 = Me;$	$R^5 =$	Me	i-Pr	c-Pr
14	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
16	$R^3 = Br; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
17	$R^3 = Br; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$R^3 = Br; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$R^3 = Br; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
20	$R^{3} = Br; R^{6} = Ph;$ $R^{3} = Br; R^{6} = Ph;$	$R^5 =$			
	$R^{3} = Br; R^{6} = Ph;$ $R^{3} = Br; R^{6} = Ph;$	$R^5 =$ $R^5 =$	CH ₂ CN	CH ₂ OMe OH	(CH ₂) ₂ CF=CF ₂ OMe
21	$R^{3} = Br; R^{6} = Ph;$ $R^{3} = Br; R^{6} = Ph;$	$R^5 =$ $R^5 =$	CH ₂ CO ₂ Me		COMe
22		$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	
23	$R^3 = Br; R^6 = Ph;$	$R^5 = $ $R^5 = $	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$R^3 = Me; R^6 = Me;$	$R^5 =$	Me	i-Pr	c-Pr
26	$R^3 = Me; R^6 = Me;$	$R^{5} =$ $R^{5} =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$R^3 = Me; R^6 = Me;$	$R^{5} = $ $R^{5} =$	CH ₂ CO ₂ Me	OH	OMe
28	$R^3 = Me; R^6 = Me;$	$R^{5} =$ $R^{5} =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
29	$R^3 = Me; R^6 = Me;$		CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$R^3 = Me; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$R^3 = Me; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
32	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$R^3 = Me; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	OH	OMe
34	$R^3 = Me; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$R^3 = OMe; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	<i>c</i> -Pr
38	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$R^3 = OMe; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
40	$R^3 = OMe; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
41	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$R^3 = OMe; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
44	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
46	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
47	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

	$(R^2 = c\text{-Pr})$			COLUMN	
			1	2	3
1	$R^3 = CI; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
2	$R^3 = C1; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$R^3 = C1; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
4	$R^3 = C1; R^6 = Me;$	$R^{5} =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	$R^3 = C1; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$R^3 = C1; R^6 = Me;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$R^3 = C1; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
8	$R^3 = C1; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
10	$R^3 = CI; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
11	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$R^3 = Cl; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$R^3 = Br; R^6 = Me;$	$R^5 =$	Me	i-Pr	<i>c</i> -Pr
14	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$R^3 = Br; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
16	$R^3 = Br; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
17	$R^3 = Br; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$R^3 = Br; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$R^3 = Br; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr
20	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$R^3 = Br; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
22	$R^3 = Br; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
23	$R^3 = Br; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$R^3 = Br; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$R^3 = Me; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i</i> -Pr	c-Pr
26	$R^3 = Me; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$R^3 = Me; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
28	$R^3 = Me; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
29	$R^3 = Me; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$R^3 = Me; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$R^3 = Me; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
32	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
34	$R^3 = Me; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
35	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$R^3 = Me; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

37	$R^3 = OMe; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
38	$R^3 = OMe; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$R^3 = OMe; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
40	$R^3 = OMe; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
41	$R^3 = OMe; R^6 = Me;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$R^3 = OMe; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$R^3 = OMe; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
44	$R^3 = OMe; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$R^3 = OMe; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
46	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
47	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$R^3 = OMe; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

				-	
	(X = O)			COLUMN	
			1	2	3
1	$G = Q-1; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-1; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$G = Q-1; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
4	$G = Q-1; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
5	$G = Q-1; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-1; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$G = Q-1; R^6 = Ph;$	R ⁵ =	Me	Et	<i>c-</i> Pr
8	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
10	$G = Q-1; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
11	$G = Q-1; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-1; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$G = Q-2; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	<i>c</i> −Pr
14	$G = Q-2; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$G = Q-2; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
16	$G = Q-2; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
17	$G = Q-2; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$G = Q-2; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-2; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
20	$G = Q-2; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-2; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
22	$G = Q-2; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
23	$G = Q-2; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-2; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	$G = Q-3; R^6 = Me;$	$\mathbb{R}^5 =$	Me	i-Pr	c-Pr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	$G = Q-3; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	$G = Q-3; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	$G = Q-3; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
31 G = Q-3; $R^6 = Ph$; $R^5 =$ Me	29	$G = Q-3; R^6 = Me;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	$G = Q-3; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	$G = Q-3; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
$\begin{array}{llllllllllllllllllllllllllllllllllll$	33	$G = Q-3; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	$G = Q-3; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	$G = Q-3; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	$G = Q-3; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	$G = Q-4; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i-</i> Pr	c-Pr
$\begin{array}{llllllllllllllllllllllllllllllllllll$	38	$G = Q-4$; $R^6 = Me$;	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	$G = Q-4; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
$\begin{array}{llllllllllllllllllllllllllllllllllll$	40	$G = Q-4; R^6 = Me;$	ī	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
43 $G = Q-4$; $R^6 = Ph$; $R^5 = Me$ Et $c-Pr$ 44 $G = Q-4$; $R^6 = Ph$; $R^5 = CH_2CN$ CH_2OMe $(CH_2)_2CF=CF_2$ 45 $G = Q-4$; $R^6 = Ph$; $R^5 = CH_2CO_2Me$ OH OMe 46 $G = Q-4$; $R^6 = Ph$; $R^5 = OCH_2CN$ $O(CH_2)_2CF=CF_2$ $COMe$ 47 $G = Q-4$; $R^6 = Ph$; $R^5 = CO-t-Bu$ CO_2Me CO_2-t-Bu	41	$G = Q-4; R^6 = Me;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
44 $G = Q-4$; $R^6 = Ph$; $R^5 = CH_2CN$ CH_2OMe $(CH_2)_2CF=CF_2$ 45 $G = Q-4$; $R^6 = Ph$; $R^5 = CH_2CO_2Me$ OH OMe 46 $G = Q-4$; $R^6 = Ph$; $R^5 = OCH_2CN$ $O(CH_2)_2CF=CF_2$ $COMe$ 47 $G = Q-4$; $R^6 = Ph$; $R^5 = CO-t-Bu$ CO_2Me CO_2-t-Bu	42	$G = Q-4; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
45 $G = Q-4$; $R^6 = Ph$; $R^5 = CH_2CO_2Me$ OH OMe 46 $G = Q-4$; $R^6 = Ph$; $R^5 = OCH_2CN$ O(CH_2) ₂ CF=CF ₂ COMe 47 $G = Q-4$; $R^6 = Ph$; $R^5 = CO-t$ -Bu CO ₂ Me CO ₂ -t-Bu	43	$G = Q-4; R^6 = Ph;$	R ⁵ =	Me	Et	<i>c</i> -Pr
46 $G = Q-4$; $R^6 = Ph$; $R^5 = \begin{array}{c ccc} & COMe \\ & CO_2 - t - Bu \end{array}$ $CO_2 Me$ $CO_2 - t - Bu$	44	$G = Q-4; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
47 $G = Q-4$; $R^6 = Ph$; $R^5 = CO-t-Bu$ CO_2Me CO_2-t-Bu	45	$G = Q-4; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
i i	46	$G = Q-4$; $R^6 = Ph$;	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
48 $G = Q-4$; $R^6 = Ph$; $R^5 = CONMe_2 SO_2CF_3 P(O)(OMe)Me$	47	$G = Q-4; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
	48	$G = Q-4; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

				ODDINI.	
	(X = S)		1	2	3
1	$G = Q-1; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-1; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$G = Q-1; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
4	$G = Q-1; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	$G = Q-1; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-1; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
` 7	$G = Q-1; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
8	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-1; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
10	$G = Q-1; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
- 11	$G = Q-1; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-1; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

13	$G = Q-2; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
14	$G = Q-2; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$G = Q-2; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
16	$G = Q-2; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
17	$G = Q-2; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$G = Q-2; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-2; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
20	$G = Q-2; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-2; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
22	$G = Q-2; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
23	$G = Q-2; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-2; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-3; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	<i>c</i> -Pr
26	$G = Q-3; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$G = Q-3$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
28	$G = Q-3; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
29	$G = Q-3; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-3$; $R^6 = Me$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-3; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
32	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-3; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
34	$G = Q-3; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$G = Q-3; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$G = Q-3; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$G = Q-4$; $R^6 = Me$;	$R^5 =$	Me	<i>i</i> -Pr	<i>c</i> -Pr
38	$G = Q-4$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
39	$G = Q-4; R^6 = Me;$	R ⁵ ==	CH ₂ CO ₂ Me	OH	ОМе
40	$G = Q-4; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
41	$G = Q-4; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$G = Q-4; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-4; R^6 = Ph;$	$\mathbb{R}^5 =$	Me	Et	c-Pr
44	$G = Q-4; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-4; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
46	$G = Q-4; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
47	$G = Q-4; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$G = Q-4; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

53

			<u> </u>	-	
	(X = NH)	_		COLUMN	
			1	2	3
1	$G = Q-5; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-5; R^6 = Me;$	$R^{5} =$	t-Bu	c-Hex	Bn
3	$G = Q-5; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
4	$G = Q-5; R^6 = Me;$	$R^5 =$	ОН	ОМе	(CH ₂) ₂ CF=CF ₂
5	$G = Q-5; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
6	$G = Q-5; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
7	$G = Q-5; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
8	$G = Q-5; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
9	$G = Q-5; R^6 = Ph;$	$R^5 =$	Me	Et	i-Pr
10	$G = Q-5; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
11	$G = Q-5; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
12	$G = Q-5; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
13	$G = Q-5; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
14	$G = Q-5; R^6 = Ph;$	$\mathbb{R}^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
15	$G = Q-5; R^6 = Ph;$	$\mathbb{R}^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
16	$G = Q-5; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
17	$G = Q-6; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr
18	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	<i>t-</i> Bu	c-Hex	Bn
19	$G = Q-6; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
20	$G = Q-6; R^6 = Me;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-6; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
22	$G = Q-6; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
23	$G = Q-6; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
24	$G = Q-6; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
25	$G = Q-6; R^6 = Ph;$	$R^5 =$	Me	Et	i-Pr
26	$G = Q-6; R^6 = Ph;$	$R^5 =$	<i>c</i> -Pr	c-Pen	Bn
27	$G = Q-6; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
28	$G = Q-6; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
29	$G = Q-6; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
30	$G = Q-6; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
31	$G = Q-6; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
·32	$G = Q-6; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
33	$G = Q-7; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr
34	$G = Q-7; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
35	$G = Q-7; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
36	$G = Q-7; R^6 = Me;$	$R^5 =$	ОН	OMe	$(CH_2)_2CF=CF_2$
37	$G = Q-7; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе

38	$G = Q-7; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
39	$G = Q-7; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
40	$G = Q-7; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
41	$G = Q-7; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
42	$G = Q-7; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
43	$G = Q-7; R^6 = Ph;$	$R^5 =$	CH ₂ CN	СН2ОМе	CH ₂ SO ₂ Me
44	$G = Q-7; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-7; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
46	$G = Q-7; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
47	$G = Q-7; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
48	$G = Q-7; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
49	$G = Q-8; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
50	$G = Q-8; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
51	$G = Q-8; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
52	$G = Q-8; R^6 = Me;$	$R^5 =$	OH	OMe	(CH ₂) ₂ CF=CF ₂
53	$G = Q-8; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
54	$G = Q-8; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
55	$G = Q-8; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
56	$G = Q-8; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
57	$G = Q-8; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
58	$G = Q-8; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
59	$G = Q-8; R^6 = Ph;$	$R^{5} =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
60	$G = Q-8; R^6 = Ph;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
61	$G = Q-8; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
62	$G = Q-8; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
63	$G = Q-8; R^6 = Ph;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
64	$G = Q-8; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
65	$G = Q-9; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i</i> -Pr	c-Pr
66	$G = Q-9; R^6 = Me;$	$R^5 =$	t-Bu	c-Hex	Bn
67	$G = Q-9$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
68	$G = Q-9; R^6 = Me;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-9; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
70	$G = Q-9; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
71	$G = Q-9; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
72	$G = Q-9; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
73	$G = Q-9; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
74	$G = Q-9; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
75	$G = Q-9; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
76	$G = Q-9; R^6 = Ph;$	$R^5 =$	OH	OMe	(CH ₂) ₂ CF=CF ₂
77	$G = Q-9; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе

78	$G = Q-9; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
79	$G = Q-9; R^6 = Ph;$	R ⁵ =	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
80	$G = Q-9; R^6 = Ph;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
81	$G = Q-10; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
82	$G = Q-10; R^6 = Me;$	$\mathbb{R}^5 =$	t-Bu	c-Hex	Bn
83	$G = Q-10; R^6 = Me;$	$R^5 =$	CH ₂ CN	СН ₂ ОМе	CH ₂ SO ₂ Me
84	$G = Q-10; R^6 = Me;$	$R^5 =$	ОН	OMe	(CH ₂) ₂ CF=CF ₂
85	$G = Q-10; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
86	$G = Q-10; R^6 = Me;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
87	$G = Q-10; R^6 = Me;$	$R^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
88	$G = Q-10; R^6 = Me;$	$R^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me
89	$G = Q-10; R^6 = Ph;$	$R^5 =$	Me	Et	<i>i-</i> Pr
90	$G = Q-10; R^6 = Ph;$	$R^5 =$	c-Pr	c-Pen	Bn
91	$G = Q-10; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	CH ₂ SO ₂ Me
92	$G = Q-10; R^6 = Ph;$	$R^5 =$	ОН	OMe	$(CH_2)_2CF=CF_2$
93	$G = Q-10; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
94	$G = Q-10; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CH ₂ CO ₂ Me	CO ₂ Me
95	$G = Q-10; R^6 = Ph;$	$\mathbb{R}^5 =$	CO ₂ -t-Bu	CONMe ₂	SO ₂ Me
96	$G = Q-10; R^6 = Ph;$	$\mathbb{R}^5 =$	SO ₂ CF ₃	P(O)(OMe) ₂	P(O)(OMe)Me

	(X = O)		COLUMN			
			1	2	3	
1	$G = Q-5; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	<i>c</i> -Pr	
2	$G = Q-5; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
3	$G = Q-5; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe	
4	$G = Q-5; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe	
5	$G = Q-5; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	
6	$G = Q-5; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me	
7	$G = Q-5; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr	
8	$G = Q-5; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$	
9	$G = Q-5; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe	
10	$G = Q-5; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе	
11	$G = Q-5; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	
12	$G = Q-5; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me	
13	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i</i> -Pr	c-Pr	
14	$G = Q-6; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
15	$G = Q-6; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe	
16	$G = Q-6; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе	
17	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	

18	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-6; R^6 = Ph;$	$\mathbb{R}^5 =$	Me	Et	c-Pr
20	$G = Q-6; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-6; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
22	$G = Q-6; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
23	$G = Q-6; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-6; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-7; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	<i>c</i> -Pr
26	$G = Q-7; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$G = Q-7; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
28	$G = Q-7; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
29	$G = Q-7; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-7; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-7; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr
32	$G = Q-7; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-7; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
34	$G = Q-7; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$G = Q-7; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$G = Q-7; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$G = Q-8; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
38	$G = Q-8; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$G = Q-8; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
40	$G = Q-8; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
41	$G = Q-8; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$G = Q-8; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-8; R^6 = Ph;$	R ⁵ =	Me	Et	<i>c</i> -Pr
44	$G = Q-8; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-8; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
46	$G = Q-8; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
47	$G = Q-8; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$G = Q-8; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
49	$G = Q-9; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr
50	$G = Q-9$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
51	$G = Q-9$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
52	$G = Q-9; R^6 = Me;$	$R^{5} =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
53	$G = Q-9$; $R^6 = Me$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
54	$G = Q-9$; $R^6 = Me$;	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
55	$G = Q-9; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
56	$G = Q-9; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
57	$G = Q-9; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	OH	ОМе

58	$G = Q-9; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
59	$G = Q-9; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-9; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-10; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
62	$G = Q-10; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63	$G = Q-10; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
64	$G = Q-10; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
65	$G = Q-10; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
66	$G = Q-10; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
67	$G = Q-10; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr
68	$G = Q-10; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-10; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
70	$G = Q-10; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
71	$G = Q-10; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-10; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

(X = S)	_	COLUMN			
		1	2	3	
$G = Q-5; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr	
$G = Q-5; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
$G = Q-5; R^6 = Me;$	$R^{5} =$	CH ₂ CO ₂ Me	ОН	OMe	
$G = Q-5; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe	
$G = Q-5; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	
$G = Q-5; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me	
$G = Q-5; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr	
$G = Q-5; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
$G = Q-5; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe	
$G = Q-5; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe	
$G = Q-5; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	
$G = Q-5; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me	
$G = Q-6; R^6 = Me;$	$R^5 =$	Me	i-Pr	c-Pr	
$G = Q-6; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
$G = Q-6; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	OH ·	OMe	
$G = Q-6; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе	
$G = Q-6; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu	
$G = Q-6; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me	
$G = Q-6; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr	
$G = Q-6; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂	
$G = Q-6; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe	
	$G = Q-5$; $R^6 = Me$; $G = Q-5$; $R^6 = Ph$; $G = Q-6$; $R^6 = Me$;	$G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Me$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-5$; $R^6 = Ph$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Me$; $R^5 = G = Q-6$; $R^6 = Re$; $R^5 = Q-6$; $R^6 = Re$; $R^6 = Re$; $R^5 = Q-6$; $R^6 = Re$; $R^5 = Q-6$; $R^6 = Re$; $R^6 =$	$G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Me; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-5; R^{6} = Ph; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Me; \qquad R^{5} = \\ G = Q-6; R^{6} = Ph; \qquad R^{5} = $	$G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Me; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-5; R^6 = Ph; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Me; \qquad R^5 = \\ G = Q-6; R^6 = Ph; \qquad R^5 = \\ G = Q-6; R^6 =$	

22	$G = Q-6; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
23	$G = Q-6$; $R^6 = Ph$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-6; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-7$; $R^6 = Me$;	$R^5 =$	Me	i-Pr	<i>c</i> -Pr
26	$G = Q-7$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
20 27	$G = Q-7$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
28	$G = Q-7$; $R^6 = Me$;	$R^5 =$	OCH ₂ CO ₂ MC	O(CH ₂) ₂ CF=CF ₂	СОМе
28 29	$G = Q-7$; $R^6 = Me$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-7$; $R^6 = Me$;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-7$; $R^6 = Ph$;	$R^5 =$	Me	Et	c-Pr
32	$G = Q-7; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-7$; $R^6 = Ph$;	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
33 34	$G = Q-7$; $R^6 = Ph$;	$R^5 =$	OCH ₂ CO ₂ Me	O(CH ₂) ₂ CF=CF ₂	COMe
3 4 35	$G = Q-7; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
	$G = Q-7$; $R^6 = Ph$;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
36	$G = Q-7$; $R^6 = Ph$; $G = Q-8$; $R^6 = Me$;	$R^5 =$	Me	i-Pr	c-Pr
37	$G = Q-8$; $R^6 = Me$;	$R^5 =$		CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
38	$G = Q-8$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	ОН	OMe
39		$R^5 =$	CH ₂ CO ₂ Me		COMe
40	$G = Q-8$; $R^6 = Me$;	$R^5 =$ $R^5 =$	OCH ₂ CN CO- <i>t</i> -Bu	O(CH ₂) ₂ CF=CF ₂ CO ₂ Me	CO ₂ -t-Bu
41	$G = Q-8$; $R^6 = Me$; $G = Q-8$; $R^6 = Me$;	$R^{5} = $ $R^{5} =$	CO-1-Bu CONMe2	SO ₂ CF ₃	P(O)(OMe)Me
42		$R^5 = R^5 =$	Me	Et	c-Pr
43	$G = Q-8$; $R^6 = Ph$; $G = Q-8$; $R^6 = Ph$;	$R^5 = R^5 =$		CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
44		$R^5 =$	CH ₂ CN	OH	OMe
45	$G = Q-8$; $R^6 = Ph$;	$R^5 =$	CH ₂ CO ₂ Me		COMe
46	$G = Q-8$; $R^6 = Ph$;	$R^5 = $ $R^5 = $	OCH ₂ CN CO- <i>t</i> -Bu	O(CH ₂) ₂ CF=CF ₂ CO ₂ Me	CO ₂ -t-Bu
47	$G = Q-8$; $R^6 = Ph$; $G = Q-8$; $R^6 = Ph$;	$R^5 =$		SO ₂ CF ₃	P(O)(OMe)Me
48	$G = Q-8$; $R^0 = Pn$; $G = Q-9$; $R^6 = Me$;	$R^{5} =$ $R^{5} =$	CONMe ₂	i-Pr	c-Pr
49	• •	$R^5 =$	Me CH-CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
50	$G = Q-9$; $R^6 = Me$; $G = Q-9$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	ОН	OMe
51	$G = Q-9$; $R^6 = Me$; $G = Q-9$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me		COMe
52 53	$G = Q-9$; $R^6 = Me$;	$R^5 =$	OCH ₂ CN CO- <i>t</i> -Bu	O(CH ₂) ₂ CF=CF ₂ CO ₂ Me	CO ₂ -t-Bu
		R ⁵ =	i e	SO ₂ CF ₃	P(O)(OMe)Me
54	$G = Q-9; R^6 = Me;$	$R^{5} = $ $R^{5} =$	CONMe ₂	Et	c-Pr
55	$G = Q-9; R^6 = Ph;$	R ⁵ =	Me		
56	$G = Q-9; R^6 = Ph;$		CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
57	$G = Q-9; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	OH	OMe
58	$G = Q-9; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
59	$G = Q-9; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-9$; $R^6 = Ph$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-10; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr

62	$G = Q-10$; $R^6 = Me$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63	$G = Q-10; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
64	$G = Q-10; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
65	$G = Q-10$; $R^6 = Me$;	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
66	$G = Q-10; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
67	$G = Q-10; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
68	$G = Q-10; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-10; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
70	$G = Q-10; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
71	$G = Q-10; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-10; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

	(X = NH)			COLUMN	
			1	2	3
1	$G = Q-11; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-11; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$G = Q-11; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
4	$G = Q-11; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
5	$G = Q-11; R^6 = Me;$	$R^5 = 0$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-11; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$G = Q-11; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
8	$G = Q-11; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-11; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
10	$G = Q-11; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
11	$G = Q-11; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-11; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$G = Q-12; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
14	$G = Q-12; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
15	$G = Q-12; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
16	$G = Q-12; R^6 = Me;$	$\mathbb{R}^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
17	$G = Q-12; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$G = Q-12; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-12; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
20	$G = Q-12; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-12; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
22	$G = Q-12; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
23	$G = Q-12; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-12; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-13; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr

			1	i .	
26	$G = Q-13; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$G = Q-13; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
28	$G = Q-13; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
29	$G = Q-13; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-13; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-13; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr
32	$G = Q-13; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-13; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
34	$G = Q-13; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$G = Q-13; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$G = Q-13; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$G = Q-14$; $R^6 = Me$;	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
38	$G = Q-14$; $R^6 = Me$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$G = Q-14$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
40	$G = Q-14$; $R^6 = Me$;	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
41	$G = Q-14$; $R^6 = Me$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$G = Q-14$; $R^6 = Me$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-14$; $R^6 = Ph$;	R ⁵ =	Me	Et	<i>c</i> -Pr
44	$G = Q-14; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-14$; $R^6 = Ph$;	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
46	$G = Q-14$; $R^6 = Ph$;	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
47	$G = Q-14; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$G = Q-14$; $R^6 = Ph$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
49	$G = Q-15; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
50	$G = Q-15$; $R^6 = Me$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
51	$G = Q-15; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
52	$G = Q-15$; $R^6 = Me$;	$\mathbb{R}^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
53	$G = Q-15$; $R^6 = Me$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
54	$G = Q-15$; $R^6 = Me$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
55	$G = Q-15; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
56	$G = Q-15; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
57	$G = Q-15; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
58	$G = Q-15; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
59	$G = Q-15; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-15; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-16; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
62	$G = Q-16; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63 ₀	$G = Q-16; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
64	$G = Q-16; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
65	$G = Q-16; R^6 = Me;$	$\mathbb{R}^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu

	C = 0 16. P6 = Max	R ⁵ =	CONIMO	SO ₂ CF ₃	P(O)(OMe)Me
66	$G = Q-16; R^6 = Me;$	ŀ	CONMe ₂		
67	$G = Q-16; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
68	$G = Q-16; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
69	$G = Q-16; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
70	$G = Q-16; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
71	$G = Q-16; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-16; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
73	$G = Q-17; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
74	$G = Q-17; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
75	$G = Q-17; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
76	$G = Q-17; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
77	$G = Q-17; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
78	$G = Q-17; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
79	$G = Q-17; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
80	$G = Q-17; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
81	$G = Q-17$; $R^6 = Ph$;	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
82	$G = Q-17; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
83	$G = Q-17; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
84	$G = Q-17; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

	(X = O)	_		COLUMN	
			1	2	3
1	$G = Q-11; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-11; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$G = Q-11; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
4	$G = Q-11; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
5	$G = Q-11; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-11; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$G = Q-11; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c</i> -Pr
8	$G = Q-11; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-11; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОН	OMe
10	$G = Q-11; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
11	$G = Q-11; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-11; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$G = Q-12; R^6 = Me;$	$R^5 =$	Me	<i>i</i> -Pr	c-Pr
14	$G = Q-12; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$G = Q-12; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
16	$G = Q-12; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
17	$G = Q-12; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu

	6	-s l	govn	50 OF	P(O)(O)(o)(o)
18	$G = Q-12; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-12; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
20	$G = Q-12; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-12; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
22	$G = Q-12; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
23	$G = Q-12; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-12; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-13; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	<i>c-</i> Pr
26	$G = Q-13; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$G = Q-13; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
28	$G = Q-13; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
29	$G = Q-13; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-13; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-13; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
32	$G = Q-13; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-13; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
34	$G = Q-13; R^6 = Ph;$	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$G = Q-13; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$G = Q-13; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$G = Q-14; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr
38	$G = Q-14; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$G = Q-14; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
40	$G = Q-14; R^6 = Me;$	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
41	$G = Q-14; R^6 = Me;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$G = Q-14$; $R^6 = Me$;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-14; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
44	$G = Q-14; R^6 = Ph;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-14; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
46	$G = Q-14; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
47	$G = Q-14; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$G = Q-14; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
49	$G = Q-15; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	· c-Pr
50	$G = Q-15; R^6 = Me;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
51	$G = Q-15; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
52	$G = Q-15; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
53	$G = Q-15; R^6 = Me;$	$R^5 =$	CO- <i>t</i> -Bu	CO ₂ Me	CO ₂ -t-Bu
54	$G = Q-15; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
55	$G = Q-15; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
56	$G = Q-15; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
57	$G = Q-15; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe

58	$G = Q-15; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
59	$G = Q-15; R^6 = Ph;$	$R^5 =$	CO- <i>t</i> -Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-15$; $R^6 = Ph$;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-16$; $R^6 = Me$;	R ⁵ =	Me	i-Pr	c-Pr
62	$G = Q-16$; $R^6 = Me$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63	$G = Q-16; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
64	$G = Q-16; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
65	$G = Q-16; R^6 = Me;$	$R^5 =$	CO- <i>t-</i> Bu	CO ₂ Me	CO ₂ -t-Bu
66	$G = Q-16; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
67	$G = Q-16; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
68	$G = Q-16; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-16; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
70	$G = Q-16; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
71	$G = Q-16; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-16; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
73	$G = Q-17; R^6 = Me;$	$\mathbb{R}^5 =$	Me	<i>i-</i> Pr	<i>c</i> -Pr
74	$G = Q-17; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
75	$G = Q-17; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
76	$G = Q-17; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
7 7	$G = Q-17; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
78	$G = Q-17; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7 9	$G = Q-17; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
80	$G = Q-17; R^6 = Ph;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
81	$G = Q-17; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	OH	ОМе
82	$G = Q-17; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
83	$G = Q-17; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
84	$G = Q-17; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

	(X = S)			COLUMN	
			1	2	3
1	$G = Q-11; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
2	$G = Q-11; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
3	$G = Q-11; R^6 = Me;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
· 4	$G = Q-11; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	$G = Q-11; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-11; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$G = Q-11; R^6 = Ph;$	$R^5 =$	Me	Et	<i>c-</i> Pr
8	$G = Q-11; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-11; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe

10	$G = Q-11; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
11	$G = Q-11; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-11; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$G = Q-12; R^6 = Me;$	$R^5 =$	Me	i-Pr	c-Pr
14	$G = Q-12; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$G = Q-12$; $R^6 = Me$;	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
16	$G = Q-12$; $R^6 = Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
17	$G = Q-12; R^6 = Me;$	$R^5 =$	CO- <i>t</i> -Bu	CO ₂ Me	CO ₂ -t-Bu
18	$G = Q-12$; $R^6 = Me$;	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-12; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
20	$G = Q-12; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-12; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
22	$G = Q-12; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
23	$G = Q-12; R^6 = Ph;$	R ⁵ =	CO- <i>t</i> -Bu	CO ₂ Me	CO ₂ -t-Bu
24	$G = Q-12; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	$G = Q-13; R^6 = Me;$	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
26	$G = Q-13; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
27	$G = Q-13; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
28	$G = Q-13; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
29	$G = Q-13; R^6 = Me;$	$\mathbb{R}^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	$G = Q-13; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-13; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
32	$G = Q-13; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	$G = Q-13; R^6 = Ph;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
34	$G = Q-13; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	$G = Q-13; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	$G = Q-13; R^6 = Ph;$	$\mathbb{R}^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	$G = Q-14$; $R^6 = Me$;	R ⁵ =	Me	<i>i-</i> Pr	c-Pr
38	$G = Q-14; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	$G = Q-14$; $R^6 = Me$;	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
40	$G = Q-14$; $R^6 = Me$;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
41	$G = Q-14$; $R^6 = Me$;	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
42	$G = Q-14; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-14; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
· 44	$G = Q-14$; $R^6 = Ph$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
45	$G = Q-14; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
46	$G = Q-14$; $R^6 = Ph$;	$\mathbb{R}^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
47	$G = Q-14; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
48	$G = Q-14; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
49	$G = Q-15; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	c-Pr

50	$G = Q-15; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
51	$G = Q-15; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
52	$G = Q-15; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
53	$G = Q-15; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
54	$G = Q-15; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
55	$G = Q-15; R^6 = Ph;$	$R^5 =$	Me	Et	c-Pr
56	$G = Q-15; R^6 = Ph;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
57	$G = Q-15; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
58	$G = Q-15; R^6 = Ph;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
59	$G = Q-15; R^6 = Ph;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-15$; $R^6 = Ph$;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-16; R^6 = Me;$	$R^5 =$	Me	<i>i-</i> Pr	<i>c-</i> Pr
62	$G = Q-16; R^6 = Me;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63	$G = Q-16; R^6 = Me;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
64	$G = Q-16; R^6 = Me;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
65	$G = Q-16; R^6 = Me;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
66	$G = Q-16; R^6 = Me;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
67	$G = Q-16$; $R^6 = Ph$;	R ⁵ =	Me	Et	<i>c</i> -Pr
68	$G = Q-16$; $R^6 = Ph$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-16; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
70	$G = Q-16; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
71	$G = Q-16$; $R^6 = Ph$;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-16; R^6 = Ph;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
73	$G = Q-17; R^6 = Me;$	R ⁵ =	Me	· i-Pr	c-Pr
74	$G = Q-17; R^6 = Me;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
75	$G = Q-17$; $R^6 = Me$;	R ⁵ =	CH ₂ CO ₂ Me	ОН	ОМе
76	$G = Q-17; R^6 = Me;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
77	$G = Q-17; R^6 = Me;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
78	$G = Q-17; R^6 = Me;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
79	$G = Q-17; R^6 = Ph;$	R ⁵ =	Me	Et	c-Pr
80	$G = Q-17$; $R^6 = Ph$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
81	$G = Q-17; R^6 = Ph;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
82	$G = Q-17; R^6 = Ph;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
83	$G = Q-17; R^6 = Ph;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
84	$G = Q-17; R^6 = Ph;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me

66

				COLUMN	
			1	2	3
1	G = Q-1;	$\mathbb{R}^5 =$	Н	Me	Et
2	G = Q-1;	$R^5 =$	<i>n-</i> Pr	c-Pr	n-Bu
3	G = Q-1;	$R^5 =$	<i>i-</i> Bu	n-Hex	Bn
4	G = Q-1;	$R^{5} =$	CH ₂ CH=CH ₂	CH ₂ CCl=CH ₂	(CH ₂) ₂ CF=CF ₂
5	G = Q-1;	$R^5 =$	СН ₂ С≡СН	CH ₂ -c-Pr	CH ₂ CN
6	G = Q-1;	$R^5 =$	CH ₂ CONH ₂	CH ₂ CONHMe	CH ₂ CONMe ₂
7	G = Q-1;	$R^5 =$	CH ₂ OMe	CH ₂ OBn	CH ₂ SMe
8	G = Q-1;	$R^5 =$	CH ₂ S(O)Me	CH ₂ SO ₂ Me	(CH ₂) ₂ OH
9	G = Q-1;	$R^5 =$	(CH ₂) ₂ OMe	ОН	OMe
10	G = Q-1;	R ⁵ =	OEt	осн ₂ с≡сн	OCH ₂ -c-Pr
11	G = Q-1;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
12	G = Q-1;	$R^5 =$	COMe	COEt	COCF ₃
13	G = Q-1;	$R^5 =$	CO- <i>i-</i> Pr	CO-c-Pr	CO-t-Bu
14	G = Q-1;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
15	G = Q-1;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
16	G = Q-1;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
17	G = Q-1;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
18	G = Q-1;	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
19	G = Q-2;	$R^5 =$	H	Me	Et
20	G = Q-2;	$R^5 =$	n-Pr	<i>c</i> -Pr	n-Bu
21	G = Q-2;	$R^5 =$	<i>i-</i> Bu	n-Hex	Bn
22	G = Q-2;	$R^5 =$	CH ₂ CH=CH ₂	CH ₂ CCI=CH ₂	(CH ₂) ₂ CF=CF ₂
23	G = Q-2;	$R^5 =$	CH ₂ C≡CH	CH ₂ -c-Pr	CH ₂ CN
24	G = Q-2;	$R^5 =$	CH ₂ CONH ₂	CH ₂ CONHMe	CH ₂ CONMe ₂
25	G = Q-2;	$R^5 =$	CH ₂ OMe	CH ₂ OBn	CH ₂ SMe
26	G = Q-2;	$R^5 =$	CH ₂ S(O)Me	CH ₂ SO ₂ Me	(CH ₂) ₂ OH
27	G = Q-2;	$R^5 =$	(CH ₂) ₂ OMe	ОН	OMe
28	G = Q-2;	$R^5 =$	OEt	OCH ₂ C≡CH	OCH ₂ -c-Pr
29	G = Q-2;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СНО
30	G = Q-2;	$R^5 =$	СОМе	COEt	COCF ₃
31	G = Q-2;	$R^5 =$	CO-i-Pr	CO-c-Pr	CO-t-Bu
32	G = Q-2;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
33	G = Q-2;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
34	G = Q-2;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
35	G = Q-2;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
36	G = Q-2;	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
37	G = Q-3;	$R^5 =$	н	Me	Et

38	G = Q-3;	$R^5 =$	n-Pr	c-Pr	n-Bu
39	G = Q-3;	$R^5 =$	<i>i-</i> Bu	n-Hex	Bn
40	G = Q-3;	R ⁵ =	CH ₂ CH=CH ₂	CH ₂ CCl=CH ₂	(CH ₂) ₂ CF=CF ₂
41	G = Q-3;	$R^5 =$	СН ₂ С≡СН	CH ₂ -c-Pr	CH ₂ CN
42	G = Q-3;	R ⁵ =	CH ₂ CONH ₂	CH ₂ CONHMe	CH ₂ CONMe ₂
43	G = Q-3;	$R^5 =$	CH ₂ OMe	CH ₂ OBn	CH ₂ SMe
44	G = Q-3;	$R^5 =$	CH ₂ S(O)Me	CH ₂ SO ₂ Me	(CH ₂) ₂ OH
45	G = Q-3;	$R^5 =$	(CH ₂) ₂ OMe	ОН	ОМе
46	G = Q-3;	$R^5 =$	OEt	OCH ₂ C≡CH	OCH ₂ -c-Pr
47	G = Q-3;	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СНО
48	G = Q-3;	$R^5 =$	СОМе	COEt	COCF ₃
49	G = Q-3;	$R^5 =$	CO- <i>i-</i> Pr	CO-c-Pr	CO-t-Bu
50	G = Q-3;	R ⁵ =	COPh	CH ₂ CO ₂ Me	CO ₂ Me
51	G = Q-3;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
52	G = Q-3;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
53	G = Q-3;	R ⁵ =	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
54	G = Q-3;	R ⁵ =	P(O)(OMe) ₂	P(O)(OMe)Me	Ph
55	G = Q-4;	R ⁵ =	H	Me	Et
56	G = Q-4;	$R^5 =$	n-Pr	c-Pr	n-Bu
57	G = Q-4;	$R^5 =$	<i>i-</i> Bu	n-Hex	Bn
58	G = Q-4;	R ⁵ =	CH ₂ CH=CH ₂	CH ₂ CCl=CH ₂	(CH ₂) ₂ CF=CF ₂
59	G = Q-4;	R ⁵ =	CH ₂ C≡CH	CH ₂ -c-Pr	CH ₂ CN
60	G = Q-4;	$R^5 =$	CH ₂ CONH ₂	CH ₂ CONHMe	CH ₂ CONMe ₂
61	G = Q-4;	$R^5 =$	CH ₂ OMe	CH ₂ OBn	CH ₂ SMe
62	G = Q-4;	R ⁵ =	CH ₂ S(O)Me	CH ₂ SO ₂ Me	(CH ₂) ₂ OH
63	G = Q-4;	R ⁵ =	(CH ₂) ₂ OMe	OH	OMe
64	G = Q-4;	$R^5 =$	OEt	OCH ₂ C≡CH	OCH ₂ -c-Pr
65	G = Q-4;	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СНО
66	G = Q-4;	R ⁵ =	СОМе	COEt	COCF ₃
67	G = Q-4;	R ⁵ =	CO-i-Pr	CO-c-Pr	CO-t-Bu
68	G = Q-4;	$R^5 =$	COPh	CH ₂ CO ₂ Me	CO ₂ Me
69	G = Q-4;	$R^5 =$	CO ₂ Et	CO ₂ -i-Pr	CO ₂ -t-Bu
70	G = Q-4;	$R^5 =$	CO ₂ Bn	CONHMe	CONMe ₂
71	G = Q-4;	$R^5 =$	SO ₂ Me	SO ₂ CF ₃	SO ₂ Ph
· 7 2	G = Q-4;	$R^5 =$	P(O)(OMe) ₂	P(O)(OMe)Me	Ph

68 TABLE 18

		,			
			1	2	3
1	G = Q-5;	R ⁵ =	Н	Me	c-Pr
2	G = Q-5;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	G = Q-5;	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
4	G = Q-5;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	G = Q-5;	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	G = Q-5;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	G = Q-6;	$R^5 =$	H	Me	<i>c</i> -Pr
8	G = Q-6;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	G = Q-6;	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
10	G = Q-6;	$R^5 =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	СОМе
11	G = Q-6;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	G = Q-6;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	G = Q-7;	$R^5 =$	н	Me	<i>c</i> -Pr
14	G = Q-7;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	G = Q-7;	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
16	G = Q-7;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
17	G = Q-7;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	G = Q-7;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	G = Q-8;	$R^5 =$	Н	Me	c-Pr
20	G = Q-8;	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
21	G = Q-8;	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
22	G = Q-8;	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
23	G = Q-8;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
24	G = Q-8;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
25	G = Q-9;	R ⁵ =	н	Me	c-Pr
26	G = Q-9;	R ⁵ =	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
27	G = Q-9;	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
28	G = Q-9;	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
29	G = Q-9;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
30	G = Q-9;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
31	G = Q-10;	$R^5 =$	н	Me	c-Pr
32	G = Q-10;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
33	G = Q-10;	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
34	G = Q-10;	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
35	G = Q-10;	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
36	G = Q-10;	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
37	G = Q-11;	$\mathbb{R}^5 =$	Н	Me	c-Pr

38	G = Q-11;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
39	G = Q-11;	$R^5 =$	CH ₂ CO ₂ Me	ОМе	СОМе
40	G = Q-11;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
41	G = Q-12;	$R^5 =$	н	Me	c-Pr
42	G = Q-12;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
43	G = Q-12;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
44	G = Q-12;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
45	G = Q-13;	$\mathbb{R}^5 =$	н	Me	c-Pr
46	G = Q-13;	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
47	G = Q-13;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
48	G = Q-13;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
49	G = Q-14;	$R^5 =$	H	Me	c-Pr
50	G = Q-14;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
51	G = Q-14;	$R^5 =$	CH ₂ CO ₂ Me	ОМе	COMe
52	G = Q-14;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
53	G = Q-15;	$R^5 =$	н	Me	c-Pr
54	G = Q-15;	$R^{5} =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
55	G = Q-15;	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
56	G = Q-15;	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
57	G = Q-15;	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
58	G = Q-15;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
59	G = Q-16;	$R^5 =$	н	Me	c-Pr
60	G = Q-16;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
61	G = Q-16;	$R^5 =$	CH ₂ CO ₂ Me	ОМе	COMe
62	G = Q-16;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
63	G = Q-17;	$R^5 =$	Н	Me	<i>c</i> -Pr
64	G = Q-17;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
65	G = Q-17;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
66	G = Q-17;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me

			1	2	3
1	$G = Q-1; R^6 = Q-2;$	R ⁵ =	Н	Me	c-Pr
2	$G = Q-1; R^6 = Q-2;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
3	$G = Q-1; R^6 = Q-2;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
4	$G = Q-1; R^6 = Q-2;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
5	$G = Q-1; R^6 = Q-2;$	$\mathbb{R}^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
6	$G = Q-1; R^6 = Q-2;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
7	$G = Q-1; R^6 = Q-3;$	$R^5 =$	H	Me	c-Pr

				,	
8	$G = Q-1; R^6 = Q-3;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
9	$G = Q-1; R^6 = Q-3;$	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
10	$G = Q-1; R^6 = Q-3;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
11	$G = Q-1; R^6 = Q-3;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
12	$G = Q-1; R^6 = Q-3;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
13	$G = Q-1; R^6 = Q-4;$	$R^5 =$	H	Me	<i>c</i> -Pr
14	$G = Q-1; R^6 = Q-4;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
15	$G = Q-1; R^6 = Q-4;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
16	$G = Q-1; R^6 = Q-4;$	$R^{5} =$	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
17	$G = Q-1; R^6 = Q-4;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
18	$G = Q-1; R^6 = Q-4;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
19	$G = Q-1; R^6 = Q-5;$	R ⁵ =	H	Me	c-Pr
20	$G = Q-1; R^6 = Q-5;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
21	$G = Q-1; R^6 = Q-5;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
22	$G = Q-1; R^6 = Q-5;$	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
23	$G = Q-1; R^6 = Q-6;$	$R^5 =$	H	Me	c-Pr
24	$G = Q-1; R^6 = Q-6;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
25	$G = Q-1; R^6 = Q-6;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
26	$G = Q-1; R^6 = Q-6;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
27	$G = Q-1; R^6 = Q-7;$	$R^5 =$	H	Me	c-Pr
28	$G = Q-1; R^6 = Q-7;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
29	$G = Q-1; R^6 = Q-7;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
30	$G = Q-1; R^6 = Q-7;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
31	$G = Q-1; R^6 = Q-8;$	$R^5 =$	H	Me	c-Pr
32	$G = Q-1; R^6 = Q-8;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
33	$G = Q-1; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
34	$G = Q-1; R^6 = Q-8;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
35	$G = Q-1; R^6 = Q-9;$	$R^5 =$	н	Me	c-Pr
36	$G = Q-1; R^6 = Q-9;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
37	$G = Q-1; R^6 = Q-9;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
38	$G = Q-1; R^6 = Q-9;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
39	$G = Q-1$; $R^6 = Q-10$;	$\mathbb{R}^5 =$	H	Me	c-Pr
40	$G = Q-1; R^6 = Q-10;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
41	$G = Q-1; R^6 = Q-10;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
42	$G = Q-1; R^6 = Q-10;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
43	$G = Q-1; R^6 = Q-15;$	$R^5 =$	Н	Me	c-Pr
44	$G = Q-1; R^6 = Q-15;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
45	$G = Q-1; R^6 = Q-15;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
46	$G = Q-1; R^6 = Q-15;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
47	$G = Q-1; R^6 = Q-16;$	$R^5 =$	н	Me	c-Pr

48	$G = Q-1; R^6 = Q-16;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
49	$G = Q-1; R^6 = Q-16;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
50	$G = Q-1; R^6 = Q-16;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
51	$G = Q-1; R^6 = Q-17;$	$R^5 =$	Н	Me	<i>c</i> -Pr
52	$G = Q-1; R^6 = Q-17;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
53	$G = Q-1; R^6 = Q-17;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
54	$G = Q-1; R^6 = Q-17;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
55	$G = Q-2; R^6 = Q-1;$	$R^5 =$	Me	Et	c-Pr
56	$G = Q-2; R^6 = Q-1;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
57	$G = Q-2; R^6 = Q-1;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
5 8	$G = Q-2; R^6 = Q-1;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
59	$G = Q-2; R^6 = Q-1;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
60	$G = Q-2; R^6 = Q-1;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
61	$G = Q-2; R^6 = Q-3;$	$\mathbb{R}^5 =$	H	Me	c-Pr
62	$G = Q-2; R^6 = Q-3;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
63	$G = Q-2; R^6 = Q-3;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
64	$G = Q-2; R^6 = Q-3;$	R ⁵ =	OCH ₂ CN	$O(CH_2)_2CF=CF_2$	COMe
65	$G = Q-2; R^6 = Q-3;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
66	$G = Q-2; R^6 = Q-3;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
67	$G = Q-2; R^6 = Q-4;$	$\mathbb{R}^5 =$	H	Me	c-Pr
68	$G = Q-2; R^6 = Q-4;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
69	$G = Q-2; R^6 = Q-4;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	OMe
70	$G = Q-2; R^6 = Q-4;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
71	$G = Q-2; R^6 = Q-4;$	$\mathbb{R}^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
72	$G = Q-2; R^6 = Q-4;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
73	$G = Q-2; R^6 = Q-5;$	$R^5 =$	H	Me	c-Pr
74	$G = Q-2; R^6 = Q-5;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
75	$G = Q-2; R^6 = Q-5;$	R ⁵ =	CH ₂ CO ₂ Me	OMe	COMe
76	$G = Q-2; R^6 = Q-5;$	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
77	$G = Q-2; R^6 = Q-6;$	$R^5 =$	H	Me	c-Pr
78	$G = Q-2; R^6 = Q-6;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
79	$G = Q-2; R^6 = Q-6;$	R ⁵ =	CH ₂ CO ₂ Me	OMe	СОМе
80	$G = Q-2; R^6 = Q-6;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
81	$G = Q-2; R^6 = Q-7;$	R ⁵ =	H	Me	c-Pr
82	$G = Q-2; R^6 = Q-7;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
83	$G = Q-2; R^6 = Q-7;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОМе	СОМе
84	$G = Q-2; R^6 = Q-7;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
85	$G = Q-2; R^6 = Q-8;$	$\mathbb{R}^5 =$	H	Me	c-Pr
86	$G = Q-2; R^6 = Q-8;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
87	$G = Q-2; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe

88	$G = Q-2; R^6 = Q-8;$	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
89	$G = Q-2$; $R^6 = Q-9$;	$R^5 =$	Н	Me	c-Pr
90	$G = Q-2$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
91	$G = Q-2$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
92	$G = Q-2; R^6 = Q-9;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
93	$G = Q-2$; $R^6 = Q-10$;	$R^5 =$	Н	Me	c-Pr
94	$G = Q-2$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
95	$G = Q-2$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
96	$G = Q-2; R^6 = Q-10;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
97	$G = Q-2; R^6 = Q-15;$	R ⁵ =	H	Me	c-Pr
98	$G = Q-2; R^6 = Q-15;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
99	$G = Q-2; R^6 = Q-15;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
100	$G = Q-2$; $R^6 = Q-15$;	$\mathbb{R}^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
101	$G = Q-3; R^6 = Q-1;$	$R^5 =$	Me	Et	<i>c</i> -Pr
102	$G = Q-3; R^6 = Q-1;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
103	$G = Q-3; R^6 = Q-1;$	R ⁵ ==	CH ₂ CO ₂ Me	ОН	ОМе
104	$G = Q-3; R^6 = Q-1;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
105	$G = Q-3; R^6 = Q-1;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
106	$G = Q-3; R^6 = Q-1;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
107	$G = Q-3; R^6 = Q-2;$	$R^5 =$	Me	Et	<i>c</i> -Pr
108	$G = Q-3; R^6 = Q-2;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
109	$G = Q-3; R^6 = Q-2;$	$R^5 =$	CH ₂ CO ₂ Me	ОН	ОМе
110	$G = Q-3; R^6 = Q-2;$	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	СОМе
111	$G = Q-3; R^6 = Q-2;$	$R^5 =$	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
112	$G = Q-3; R^6 = Q-2;$	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
113	$G = Q-3; R^6 = Q-4;$	$\mathbb{R}^5 =$	Н	Me	c-Pr
114	$G = Q-3; R^6 = Q-4;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
115	$G = Q-3; R^6 = Q-4;$	R ⁵ =	CH ₂ CO ₂ Me	ОН	OMe
116	$G = Q-3; R^6 = Q-4;$	$R^5 =$	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
117	$G = Q-3; R^6 = Q-4;$	R ⁵ =	CO-t-Bu	CO ₂ Me	CO ₂ -t-Bu
118	$G = Q-3; R^6 = Q-4;$	R ⁵ =	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
119	$G = Q-3; R^6 = Q-7;$	$R^5 =$	H	Me	c-Pr
120	$G = Q-3; R^6 = Q-7;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
121	$G = Q-3; R^6 = Q-7;$	R ⁵ =	CH ₂ CO ₂ Me	OMe	COMe
122	$G = Q-3; R^6 = Q-7;$	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
123	$G = Q-3; R^6 = Q-8;$	$R^5 =$	H	Me	c-Pr
124	$G = Q-3; R^6 = Q-8;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
125	$G = Q-3; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
126	$G = Q-3; R^6 = Q-8;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
127	$G = Q-3; R^6 = Q-9;$	$R^5 =$	H	Me	c-Pr

128	$G = Q-3; R^6 = Q-9;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
129	$G = Q-3$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
130	$G = Q-3$; $R^6 = Q-9$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
131	$G = Q-3$; $R^6 = Q-10$;	$R^5 =$	H	Me	<i>c</i> -Pr
132	$G = Q-3$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
132	$G = Q-3$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
133	$G = Q-3$; $R^6 = Q-10$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
135	$G = Q-3$; $R^6 = Q-15$;	$R^5 =$	H	Me	c-Pr
136	$G = Q-3$; $R^6 = Q-15$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
137	$G = Q-3$; $R^6 = Q-15$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
137	$G = Q-3$; $R^6 = Q-15$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
139	$G = Q-4$; $R^6 = Q-3$;	$R^5 =$	Me	Et Et	c-Pr
140	$G = Q-4$; $R^6 = Q-3$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
141	$G = Q-4$; $R^6 = Q-3$;	$R^5 =$	CH ₂ CO ₂ Me	OH	OMe
142	$G = Q-4$; $R^6 = Q-3$;	R ⁵ =	OCH ₂ CN	O(CH ₂) ₂ CF=CF ₂	COMe
143	$G = Q-4$; $R^6 = Q-3$;	$R^5 =$	CO- <i>t</i> -Bu	CO ₂ Me	CO ₂ -t-Bu
144	$G = Q-4$; $R^6 = Q-3$;	$R^5 =$	CONMe ₂	SO ₂ CF ₃	P(O)(OMe)Me
145	$G = Q-4$; $R^6 = Q-7$;	$R^5 =$	H	Me	c-Pr
146	$G = Q-4$; $R^6 = Q-7$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
147	$G = Q-4$; $R^6 = Q-7$;	R ⁵ =	CH ₂ CO ₂ Me	OMe	COMe
148	$G = Q-4$; $R^6 = Q-7$;	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
149	$G = Q-4$; $R^6 = Q-8$;	R ⁵ ==	H	Me	c-Pr
150	$G = Q-4$; $R^6 = Q-8$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
151	$G = Q-4; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
152	$G = Q-4$; $R^6 = Q-8$;	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
153	$G = Q-4$; $R^6 = Q-9$;	R ⁵ =	H	Me	c-Pr
154	$G = Q-4$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
155	$G = Q-4$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
156	$G = Q-4; R^6 = Q-9;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
157	$G = Q-4$; $R^6 = Q-10$;	$R^5 =$	н	Me	c-Pr
158	$G = Q-4; R^6 = Q-10;$	$\mathbb{R}^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
159	$G = Q-4$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
160	$G = Q-4$; $R^6 = Q-10$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
161	$G = Q-4$; $R^6 = Q-15$;	R ⁵ =	Н	Me	c-Pr
162	$G = Q-4; R^6 = Q-15;$	R ⁵ =	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
163	$G = Q-4$; $R^6 = Q-15$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
164	$G = Q-4$; $R^6 = Q-15$;	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
165	$G = Q-6; R^6 = Q-7;$	$R^5 =$	Н	Me	c-Pr
166	$G = Q-6; R^6 = Q-7;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
167	$G = Q-6; R^6 = Q-7;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе

168	$G = Q-6$; $R^6 = Q-7$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
169	$G = Q-6$; $R^6 = Q-8$;	R ⁵ =	Н	Me	c-Pr
170	$G = Q-6; R^6 = Q-8;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
171	$G = Q-6; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
172	$G = Q-6$; $R^6 = Q-8$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
173	$G = Q-6$; $R^6 = Q-9$;	$R^5 =$	н	Me	c-Pr
174	$G = Q-6$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
175	$G = Q-6$; $R^6 = Q-9$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
176	$G = Q-6; R^6 = Q-9;$	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
177	$G = Q-6$; $R^6 = Q-10$;	R ⁵ =	н	Me	c-Pr
178	$G = Q-6$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
179	$G = Q-6$; $R^6 = Q-10$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
180	$G = Q-6$; $R^6 = Q-10$;	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
181	$G = Q-6$; $R^6 = Q-15$;	$R^5 =$	н	Me	c-Pr
182	$G = Q-6; R^6 = Q-15;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
183	$G = Q-6$; $R^6 = Q-15$;	$R^5 =$	CH ₂ CO ₂ Me	ОМе	COMe
184	$G = Q-6; R^6 = Q-15;$	$\mathbb{R}^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
185	$G = Q-9; R^6 = Q-7;$	$R^5 =$	н	Me	c-Pr
186	$G = Q-9$; $R^6 = Q-7$;	$R^5 =$	CH ₂ CN	СН ₂ ОМе	(CH ₂) ₂ CF=CF ₂
187	$G = Q-9$; $R^6 = Q-7$;	$R^5 =$	CH ₂ CO ₂ Me	OMe	COMe
188	$G = Q-9$; $R^6 = Q-7$;	R ⁵ =	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
189	$G = Q-9$; $R^6 = Q-8$;	R ⁵ =	H	Me	c-Pr
190	$G = Q-9$; $R^6 = Q-8$;	R ⁵ =	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
191	$G = Q-9; R^6 = Q-8;$	$R^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
192	$G = Q-9$; $R^6 = Q-8$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
193	$G = Q-9$; $R^6 = Q-10$;	R ⁵ =	H	Me	c-Pr
194	$G = Q-9; R^6 = Q-10;$	$R^5 =$	CH ₂ CN	CH ₂ OMe	$(CH_2)_2CF=CF_2$
195	$G = Q-9; R^6 = Q-10;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	OMe	СОМе
196	$G = Q-9$; $R^6 = Q-10$;	$\mathbb{R}^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me
197	$G = Q-9; R^6 = Q-15;$	$R^5 =$	н	Me	c-Pr
198	$G = Q-9; R^6 = Q-15;$	$\cdot R^5 =$	CH ₂ CN	CH ₂ OMe	(CH ₂) ₂ CF=CF ₂
199	$G = Q-9; R^6 = Q-15;$	$\mathbb{R}^5 =$	CH ₂ CO ₂ Me	ОМе	СОМе
200	$G = Q-9$; $R^6 = Q-15$;	$R^5 =$	CO ₂ Me	SO ₂ CF ₃	P(O)(OMe)Me

COLUMN

	•		1	2	3	4	
1	G = Q-1; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth	
2	G = Q-2; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth	
3	G = Q-3; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth	

		•				
4	G = Q-4; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
5	G = Q-5; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
6	G = Q-6; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
7	G = Q-7; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
8	G = Q-9; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
9	G = Q-10; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
10	G = Q-15; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
11	G = Q-16; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
12	G = Q-17; X = NH;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
13	G = Q-1; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
14	G = Q-2; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
15	G = Q-3; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
16	G = Q-4; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
17	G = Q-5; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
18	G = Q-6; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
19	G = Q-7; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
20	G = Q-9; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
21	G = Q-10; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
22	G = Q-15; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
23	G = Q-16; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
24	G = Q-17; X = O;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
25	G = Q-1; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
26	G = Q-2; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
27	G = Q-3; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
28	G = Q-4; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
29	G = Q-5; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
30	G = Q-6; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
31	G = Q-7; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
32	G = Q-9; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
33	G = Q-10; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
34	G = Q-15; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
35	G = Q-16; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth
36	G = Q-17; X = S;	$NR^5R^6 =$	Piper	Morph	Phth	Hphth

COL	UMN
-----	-----

			1	2	3	4
1	G = Q-1; X = NH;	$R^{18} =$	Н	Me	<i>i</i> -Pr	ОН
2	G = Q-1; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
3	G = Q-2; X = NH;	$R^{18} =$	Н	Me	i-Pr	ОН

					•	1 1
4	G = Q-2; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
5	G = Q-3; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	ОН
6	G = Q-3; X = NH;	$R^{18} =$	ОМе	SMe	Ph	(2,6-diF)Ph
7	G = Q-4; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	OH
8	G = Q-4; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
9	G = Q-5; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	ОН
10	G = Q-5; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
11	G = Q-6; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	OH
12	G = Q-6; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
13	G = Q-7; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	ОН
14	G = Q-7; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
15	G = Q-9; X = NH;	$R^{18} =$	H	Me	<i>i-</i> Pr	ОН
16	G = Q-9; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
17	G = Q-10; X = NH;	$R^{18} =$	H	Me	<i>i-</i> Pr	ОН
18	G = Q-10; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
19	G = Q-15; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	ОН
20	G = Q-15; X = NH;	$R^{18} =$	ОМе	SMe	Ph	(2,6-diF)Ph
21	G = Q-16; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	ОН
22	G = Q-16; X = NH;	$R^{18} =$	OMe	SMe	Ph	(2,6-diF)Ph
23	G = Q-17; X = NH;	$R^{18} =$	Н	Me	<i>i-</i> Pr	OH
24	G = Q-17; X = NH;	$R^{18} =$	ОМе	SMe	Ph	(2,6-diF)Ph
25	G = Q-1; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
26	G = Q-2; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
27	G = Q-3; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
28	G = Q-4; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
29	G = Q-5; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
30	G = Q-6; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
31	G = Q-7; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
32	G = Q-9; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
33	G = Q-10; X = O;	$\mathbb{R}^{18} =$	Н	Me	Ph	(2,6-diF)Ph
34	G = Q-15; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
35	G = Q-16; X = 0;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
36	G = Q-17; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
37	G = Q-1; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
38	G = Q-2; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
39	G = Q-3; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
40	G = Q-4; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
41	G = Q-5; X = S;	$R^{18} =$	н	Me	Ph	(2,6-diF)Ph
42	G = Q-6; X = S;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
43	G = Q-7; X = S;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph

	$G = G \cap X = G$	$R^{18} =$	T.	3.60	DL	(2 6 dir)Dh	
44	G = Q-9; X = S;	~~	H	Me	Ph	(2,6-diF)Ph	
45	G = Q-10; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph	ŀ
46	G = Q-15; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph	
47	G = Q-16; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph	İ
48	G = Q-17; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph	

\sim		78	-	*
COI	L	J٨	ÆΓ	N

			1	2	3	4
1	G = Q-1; X = NH;	$R^{18} =$	Н	Cl	Me	<i>i-</i> Pr
2	G = Q-1; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
3	G = Q-1; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
4	G = Q-2; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
5	G = Q-2; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
6	G = Q-2; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
7	G = Q-3; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
8	G = Q-3; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
9	G = Q-3; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
10	G = Q-4; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
11	G = Q-4; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
12	G = Q-4; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
13	G = Q-5; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
14	G = Q-5; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
15	G = Q-5; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
16	G = Q-6; X = NH;	$R^{18} =$	Н	Cl	Me	i-Pr
17	G = Q-6; X = NH;	$R^{18} =$	OH	OMe	SMe	S-n-Pr
18	G = Q-6; X = NH;	$R^{18} =$	SO ₂ Me	COMe	Ph	(2,6-diF)Ph
19	G = Q-7; X = NH;	$R^{18} =$	H	Cl	Me	<i>i</i> -Pr
20	G = Q-7; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
21	G = Q-7; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
22	G = Q-9; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
23	G = Q-9; X = NH;	$R^{18} =$	OH	ОМе	SMe	S-n-Pr
24	G = Q-9; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
25	G = Q-10; X = NH;	$R^{18} =$	H	Cl	Me	<i>i-</i> Pr
26	G = Q-10; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
27	G = Q-10; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
28	G = Q-15; X = NH;	$R^{18} =$	Н	Cl	Me	<i>i-</i> Pr
29	G = Q-15; X = NH;	$R^{18} =$	ОН	ОМе	SMe	S-n-Pr
30	G = Q-15; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
31	G = Q-16; X = NH;	$R^{18} =$	Н	Cl	Me	<i>i</i> -Pr

			•		•	
32	G = Q-16; X = NH;	$R^{18} =$	ОН	OMe	SMe	S-n-Pr
33	G = Q-16; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
34	G = Q-17; X = NH;	$R^{18} =$	H	Cl	Me	<i>i</i> -Pr
3 5	G = Q-17; X = NH;	$R^{18} =$	OH	OMe	SMe	S-n-Pr
36	G = Q-17; X = NH;	$R^{18} =$	SO ₂ Me	СОМе	Ph	(2,6-diF)Ph
37	G = Q-1; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
38	G = Q-2; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
39	G = Q-3; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
40	G = Q-4; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
41	G = Q-5; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
42	G = Q-6; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
43	G = Q-7; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
44	G = Q-9; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
45	G = Q-10; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
46	G = Q-15; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
47	G = Q-16; X = O;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
48	G = Q-17; X = O;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
49	G = Q-1; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
50	G = Q-2; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
51	G = Q-3; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
52	G = Q-4; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
53	G = Q-5; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
54	G = Q-6; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
55	G = Q-7; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
56	G = Q-9; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
57	G = Q-10; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
58	G = Q-15; X = S;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph
59	G = Q-16; X = S;	$R^{18} =$	H	Me	Ph	(2,6-diF)Ph
60	G = Q-17; X = S;	$R^{18} =$	Н	Me	Ph	(2,6-diF)Ph

COLUMN

			1	2	3	4
1	G = Q-1; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
2	G = Q-1; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
3	G = Q-1; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
4	G = Q-2; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t</i> -Bu	Ph
5	G = Q-2; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO-t-Bu
6	G = Q-2; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
7	G = Q-3; X = NH;	$R^{18} =$	Me	i-Pr	t-Bu	Ph

		۱۵ ا		1		
8	G = Q-3; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO- <i>t-</i> Bu
9	G = Q-3; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
10	G = Q-4; X = NH;	R ¹⁸ =	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
11	G = Q-4; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO- <i>t-</i> Bu
12	G = Q-4; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
13	G = Q-5; X = NH;	$R^{18} =$	Me	i-Pr	<i>t-</i> Bu	Ph
14	G = Q-5; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO- <i>t</i> -Bu
15	G = Q-5; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
16	G = Q-6; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
17	G = Q-6; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
18	G = Q-6; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
19	G = Q-7; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
20	G = Q-7; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
21	G = Q-7; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
22	G = Q-9; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
23	G = Q-9; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
24	G = Q-9; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
25	G = Q-10; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t</i> -Bu	Ph
26	G = Q-10; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
27	G = Q-10; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
28	G = Q-15; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
29	G = Q-15; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO-t-Bu
30	G = Q-15; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
31	G = Q-16; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
32	G = Q-16; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	СОМе	CO-t-Bu
33	G = Q-16; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
34	G = Q-17; X = NH;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t</i> -Bu	Ph
35	G = Q-17; X = NH;	$R^{18} =$	(4-Cl)Ph	SO ₂ Me	COMe	CO-t-Bu
36	G = Q-17; X = NH;	$R^{18} =$	CO ₂ Me	CONEt ₂	CO ₂ -t-Bu	CONH-t-Bu
37	G = Q-1; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t</i> -Bu	Ph
38	G = Q-1; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
39	G = Q-2; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
40	G = Q-2; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
41	G = Q-3; X = O;	$R^{18} =$	Me	i-Pr	t-Bu	Ph
42	G = Q-3; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
43	G = Q-4; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
44	G = Q-4; X = 0;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
45	G = Q-5; X = O;	$R^{18} =$	Me	<i>i</i> -Pr	t-Bu	Ph
46	G = Q-5; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
47	G = Q-6; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t</i> -Bu	Ph

				1	, ,	
48	G = Q-6; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
49	G = Q-7; X = 0;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
50	G = Q-7; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
51	G = Q-9; X = O;	$R^{18} =$	Me	<i>i</i> -Pr	t-Bu	Ph
52	G = Q-9; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
53	G = Q-10; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
54	G = Q-10; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
55	G = Q-15; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
56	G = Q-15; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
57	G = Q-16; X = O;	$R^{18} =$	Me	i-Pr	t-Bu	Ph
58	G = Q-16; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
59	G = Q-17; X = O;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
60	G = Q-17; X = O;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
61	G = Q-1; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
62	G = Q-1; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
63	G = Q-2; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
64	G = Q-2; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
65	G = Q-3; X = S;	$R^{18} =$	Me	i-Pr	<i>t-</i> Bu	Ph
66	G = Q-3; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
67	G = Q-4; X = S;	$R^{18} =$	Me	i-Pr	t-Bu	Ph
68	G = Q-4; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
69	G = Q-5; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
70	G = Q-5; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
71	G = Q-6; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	<i>t-</i> Bu	Ph
72	G = Q-6; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
73	G = Q-7; X = S;	$R^{18} =$	Me	i-Pr	t-Bu	Ph
74	G = Q-7; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
7 5	G = Q-9; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
76	G = Q-9; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
77	G = Q-10; X = S;	$R^{18} =$	Me	i-Pr	<i>t-</i> Bu	Ph
78	G = Q-10; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
79	G = Q-15; X = S;	$R^{18} =$	Me	<i>i</i> -Pr	<i>t-</i> Bu	Ph
80	G = Q-15; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
81	G = Q-16; X = S;	$R^{18} =$	Me	i-Pr	<i>t-</i> Bu	Ph
82	G = Q-16; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu
83	G = Q-17; X = S;	$R^{18} =$	Me	<i>i-</i> Pr	t-Bu	Ph
84	G = Q-17; X = S;	$R^{18} =$	SO ₂ Me	CO-t-Bu	CO ₂ -t-Bu	CONH-t-Bu

81

	(X = NH; Hal = I)		COLUMN						
			1	2	3	4	5	6	
1	$G = Q-1; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
2	$G = Q-1; R^6 = Me;$	$\mathbb{R}^5 =$	n-Bu	<i>i-</i> Bu	c-Pen	n-Hex	c-Hex	Bn	
3	$G = Q-2; R^6 = Me;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	<i>i-</i> Pr	<i>c-</i> Pr	
4	$G = Q-2; R^6 = Me;$	$R^5 =$	n-Bu	<i>i-</i> Bu	c-Pen	n-Hex	c-Hex	Bn	
5	$G = Q-3; R^6 = Me;$	$\mathbb{R}^5 =$	Н	Me	Et	п-Рг	<i>i-</i> Pr	c-Pr	
6	$G = Q-3; R^6 = Me;$	$R^5 =$	n-Bu	<i>i-</i> Bu	c-Pen	n-Hex	c-Hex	Bn	
7	$G = Q-4; R^6 = Me;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
8	$G = Q-4; R^6 = Me;$	$R^5 =$	n-Bu	<i>i-</i> Bu	c-Pen	n-Hex	c-Hex	Bn	
9	$G = Q-5; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
10	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
11	$G = Q-7; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
12	$G = Q-8; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
13	$G = Q-9; R^6 = Me;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
14	$G = Q-10; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
15	$G = Q-11; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
16	$G = Q-12; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
17	$G = Q-13; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
18	$G = Q-14; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
19	$G = Q-15; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
20	$G = Q-16; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
21	$G = Q-17; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
22	$G = Q-1; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
23	$G = Q-2; R^6 = Ph;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
24	$G = Q-3; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
25	$G = Q-4; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
26	$G = Q-5; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
27	$G = Q-6; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
28	$G = Q-7; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
29	$G = Q-9; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
30	$G = Q-10; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
31	$G = Q-15; R^6 = Ph;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
32	$G = Q-1; R^6 = 2-Pyr;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	·Bn	
33	$G = Q-2; R^6 = 2-Pyr;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
34	$G = Q-3; R^6 = 2-Pyr;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
35	$G = Q-4; R^6 = 2-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
36	$G = Q-5; R^6 = 2-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
37	$G = Q-6; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	

38	$G = Q-7; R^6 = 2-Pyr;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
39	$G = Q-9; R^6 = 2-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
40	$G = Q-10; R^6 = 2-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
41	$G = Q-15; R^6 = 2-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
42	$G = Q-1; R^6 = 3-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
43	$G = Q-2; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
44	$G = Q-3; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
45	$G = Q-4$; $R^6 = 3-Pyr$;	R ⁵ =	H	Me	Et	n-Pr	n-Hex	Bn	
46	$G = Q-5; R^6 = 3-Pyr;$	R ⁵ =	H	Me	Et	n-Pr	n-Hex	Bn	
47	$G = Q-6; R^6 = 3-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
48	$G = Q-7; R^6 = 3-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
49	$G = Q-9; R^6 = 3-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
50	$G = Q-10; R^6 = 3-Pyr;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
51	$G = Q-15$; $R^6 = 3-Pyr$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
52	$G = Q-1; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
53	$G = Q-2; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
54	$G = Q-3; R^6 = 4-Pyr;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	ĺ
55	$G = Q-4; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
56	$G = Q-5; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
57	$G = Q-6; R^6 = 4-Pyr;$	R ⁵ =	H	Me	Et	n-Pr	n-Hex	Bn	i
58	$G = Q-7; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
59	$G = Q-9; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
60	$G = Q-10; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
61	$G = Q-15; R^6 = 4-Pyr;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	l
62	$G = Q-1; R^6 = 2-Th;$	R ⁵ =	Н	Me	Et	n-Pr	n-Hex	Bn	
63	$G = Q-2; R^6 = 2-Th;$	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
64	$G = Q-3; R^6 = 2-Th;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
65	$G = Q-4$; $R^6 = 2-Th$;	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
66	$G = Q-5$; $R^6 = 2-Th$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
67	$G = Q-6$; $R^6 = 2-Th$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
68	$G = Q-7; R^6 = 2-Th;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
69	$G = Q-9$; $R^6 = 2-Th$;	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
70	$G = Q-10; R^6 = 2-Th;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
71	$G = Q-15$; $R^6 = 2$ -Th;	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
	(X = NH; Hal = Br)								
72	$G = Q-1; R^6 = Me;$	R ⁵ =	Н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
73	$G = Q-2; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
74	$G = Q-3; R^6 = Me;$	R ⁵ =	Н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
75	$G = Q-4; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	

							1 1		
76	$G = Q-5; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
77	$G = Q-6; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
78	$G = Q-7; R^6 = Me;$	$R^5 =$	H	Me	Æt	n-Pr	n-Hex	Bn	
79	$G = Q-9$; $R^6 = Me$;	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
80	$G = Q-10; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
81	$G = Q-15; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
				ì					
	(X = NH; Hal = Cl)								
82	$G = Q-1; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
83	$G = Q-2; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
84	$G = Q-3; R^6 = Me;$	$R^{5} =$	H	Me	Et	n-Pr	i-Pr	c-Pr	
85	$G = Q-4$; $R^6 = Me$;	$R^5 =$	н	Me	Et	n-Pr	<i>i-</i> Pr	c-Pr	
86	$G = Q-5; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	l
87	$G = Q-6; R^6 = Me;$	$R^5 =$	Н	Me	Et	п-Рг	n-Hex	Bn	
88	$G = Q-7; R^6 = Me;$	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
89	$G = Q-9$; $R^6 = Me$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	l
90	$G = Q-10; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
91	$G = Q-15; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	

	(X = O; Hal = I)		COLUMN					
			1	2	3	4	5	6
1	$G = Q-1; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
2	$G = Q-2; R^6 = Me;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
3	$G = Q-3; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
4	$G = Q-4$; $R^6 = Me$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
5	$G = Q-5; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn
6	$G = Q-6; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
7	$G = Q-7; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
8	$G = Q-9$; $R^6 = Me$;	$\mathbb{R}^5 =$	н	Me	Et	n-Pr	n-Hex	Bn
9	$G = Q-10; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
10	$G = Q-15; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
11	$G = Q-1; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
12	$G = Q-2; R^6 = Ph;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
13	$G = Q-3; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn
14	$G = Q-4$; $R^6 = Ph$;	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
15	$G = Q-5; R^6 = Ph;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
16	$G = Q-6; R^6 = Ph;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 1	ļ.		1	i		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	$G = Q-7; R^6 = Ph;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$G = Q-9; R^6 = Ph;$	1	H	Me	Et	n-Pr	n-Hex	Bn
$(X = 0; Hal = Br)$ $21 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $22 G = Q-2; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $23 G = Q-3; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $24 G = Q-4; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $25 G = Q-5; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $26 G = Q-6; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $27 G = Q-7; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $28 G = Q-9; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $29 G = Q-10; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-15; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $31 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $32 G = Q-2; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $33 G = Q-3; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $34 G = Q-4; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $35 G = Q-3; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $36 G = Q-6; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $37 G = Q-7; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $39 G = Q-10; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad Et \qquad n-Pr \qquad n-Hex \qquad Bn$ $30 G = Q-1; R^6 = Me; \qquad R^5 = H \qquad Me \qquad $	19	$G = Q-10; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
21 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 22 G = Q-2; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 23 G = Q-3; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 24 G = Q-4; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 25 G = Q-5; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 26 G = Q-6; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 27 G = Q-7; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 28 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-15; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-15; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 10 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 11 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 12 G = Q-2; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 13 G = Q-3; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 14 G = Q-4; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 15 G = Q-5; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 16 G = Q-6; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 17 G = Q-7; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ =	20	$G = Q-15; R^6 = Ph;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
21 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 22 G = Q-2; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 23 G = Q-3; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 24 G = Q-4; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 25 G = Q-5; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 26 G = Q-6; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 27 G = Q-7; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 28 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-15; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-15; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 29 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 10 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 11 G = Q-1; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 12 G = Q-2; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 13 G = Q-3; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 14 G = Q-4; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 15 G = Q-5; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 16 G = Q-6; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 17 G = Q-7; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 18 G = Q-9; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ = H Me Et n-Pr n-Hex Bn 19 G = Q-10; R^6 = Me; R ⁵ =						;			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(X = O; Hal = Br)			,				
23 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 24 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 25 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 26 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 27 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 28 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 29 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 30 $G = Q-15$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 31 $G = Q-1$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 32 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 33 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 34 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 35 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 39 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn An	21	$G = Q-1; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	$G = Q-2; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn
25 G = Q-5; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 26 G = Q-6; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 27 G = Q-7; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 28 G = Q-9; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 30 G = Q-15; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 32 G = Q-2; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 33 G = Q-3; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 34 G = Q-4; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 35 G = Q-5; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 36 G = Q-6; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 37 G = Q-7; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 38 G = Q-9; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 39 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 39 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 39 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn	23	$G = Q-3; R^6 = Me;$	$R^5 =$	H.	Me	Et	n-Pr	n-Hex	Bn
26 G = Q-6; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 27 G = Q-7; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 28 G = Q-9; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-15; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-1; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-2; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-2; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-3; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-4; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-6; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-7; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-9; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn 29 G = Q-10; R^6 = Me; R^5 = H Me Et n -Pr n -Hex Bn n	24	$G = Q-4$; $R^6 = Me$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	$G = Q-5; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
28 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 29 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 30 $G = Q-15$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $m-Hex$ m	26	$G = Q-6; R^6 = Me;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
29 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $G = Q-15$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$	27	$G = Q-7; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
30 $G = Q-15$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn (X = O; Hal = Cl) 31 $G = Q-1$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 32 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 33 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 34 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 35 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 38 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 39 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn	28	$G = Q-9; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
$(X = O; Hal = Cl)$ 31 $G = Q-1; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 32 $G = Q-2; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 33 $G = Q-3; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 34 $G = Q-4; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 35 $G = Q-5; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 38 $G = Q-9; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 39 $G = Q-10; R^6 = Me;$ $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn	29	$G = Q-10; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
31 $G = Q-1$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 32 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 33 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 34 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 35 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 38 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $R^5 = H$	30	$G = Q-15$; $R^6 = Me$;	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
31 $G = Q-1$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 32 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 33 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 34 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 35 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 36 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn 38 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $R^5 = H$									
32 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $n-Pr$ $n-Hex$ $R^5 = H$ $R^5 = $		(X = O; Hal = Cl)							
33 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $n-Pr$ $n-Hex$ $R^5 = H$ $R^5 = $	31	$G = Q-1; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
34 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$	32	$G = Q-2; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
35 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $n-Pr$ $n-Hex$ $R^5 = H$ $R^5 = $	33	$G = Q-3; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
36 $G = Q-6$; $R^6 = Me$; $R^5 =$ H Me Et $n-Pr$ $n-Hex$ Bn 37 $G = Q-7$; $R^6 = Me$; $R^5 =$ H Me Et $n-Pr$ $n-Hex$ Bn 38 $G = Q-9$; $R^6 = Me$; $R^5 =$ H Me Et $n-Pr$ $n-Hex$ Bn 39 $G = Q-10$; $R^6 = Me$; $R^5 =$ H Me Et $n-Pr$ $n-Hex$ Bn	34	$G = Q-4; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
37 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn	35	$G = Q-5; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
38 $G = Q-9$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn $R^5 = H$	36	$G = Q-6; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
39 $G = Q-10$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn	37	$G = Q-7; R^6 = Me;$	$\mathbb{R}^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
	38	$G = Q-9; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
40 $G = Q-15$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ Bn	39	$G = Q-10; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn
	40	$G = Q-15; R^6 = Me;$	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn

1 $G = O - 1 \cdot R^6 = Me$ $R^5 = H$ Me Et $n - Pr$ $n - Hex$ B	<u>; </u>
2 2,72	n
2 $G = Q-2$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
3 $G = Q-3$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
4 $G = Q-4$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
5 $G = Q-5$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
6 $G = Q-6$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
7 $G = Q-7$; $R^6 = Me$; $R^5 = H$ Me Et $n-Pr$ $n-Hex$ B	n
8 $G = Q-9$; $R^6 = Me$; $R^5 = H Me Et n-Pr n-Hex B$	n

9	$G = Q-10; R^6 = Me;$	R ⁵ =	Н	Me	Et	n-Pr	n-Hex	Bn	١
10	$G = Q-15; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
11	$G = Q-1; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
12	$G = Q-2; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
13	$G = Q-3; R^6 = Ph;$	R ⁵ =	н	Me	Et	n-Pr	n-Hex	Bn	
14	$G = Q-4; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
15	$G = Q-5; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
16	$G = Q-6; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	١
17	$G = Q-7; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
18	$G = Q-9; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
19	$G = Q-10; R^6 = Ph;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
20	$G = Q-15; R^6 = Ph;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn.	l
	(X = S; Hal = Br)								l
21	$G = Q-1; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
22	$G = Q-2; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	١
23	$G = Q-3; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	
24	$G = Q-4$; $R^6 = Me$;	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
25	$G = Q-5; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
26	$G = Q-6; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
27	$G = Q-7; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	l
28	$G = Q-9; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	١
29	$G = Q-10; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	l
30	$G = Q-15; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
									l
	(X = S; Hal = Cl)								l
31	$G = Q-1; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	l
32	$G = Q-2; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	l
33	$G = Q-3; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	١
34	$G = Q-4$; $R^6 = Me$;	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	١
35	$G = Q-5; R^6 = Me;$	$R^5 =$	H	Me	Et	n-Pr	n-Hex	Bn	
36	$G = Q-6; R^6 = Me;$	$R^5 =$	н	Me	Et	n-Pr	n-Hex	Bn	İ
37	$G = Q-7; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
38	$G = Q-9; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
39	$G = Q-10; R^6 = Me;$	$R^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	
40	$G = Q-15; R^6 = Me;$	$\mathbb{R}^5 =$	Н	Me	Et	n-Pr	n-Hex	Bn	

Formulation/Utility

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be

10

15

20

25

consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent								
	<u>Active</u> Ingredient	Diluent	Surfactant						
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15						
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	4095	0–15						
Dusts Granules and Pellets	1–25 0.01–99	70 9 9 599.99	05 015						
High Strength Compositions	9099	0–10	0–2						

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example,

10

15

20

25

30

Wettable Powder

montmorillonite (calcined)

clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-B.

Example A

23.0%.

		·
	Compound 2	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
35	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%

WO 99/31072 PCT/US98/26013

88

Example B

	Granule	
	Compound 4	10.0%
	attapulgite granules (low volatile matter,	
5	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example C	
	Extruded Pellet	
	Compound 2	25.0%
	anhydrous sodium sulfate	10.0%
10	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
	Example D	
	Emulsifiable Concentrate	
15	Compound 4	20.0%
	blend of oil soluble sulfonates	
	and polyoxyethylene ethers	10.0%
	isophorone	70.0%.

The compounds of this invention exhibit activity against a wide spectrum of foliar-feeding, fruit-feeding, stem or root feeding, seed-feeding, aquatic and soil-inhabiting 20 arthropods (term "arthropods" includes insects, mites and nematodes) which are pests of growing and stored agronomic crops, forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and animal health. Those skilled in the art will appreciate that not all compounds are equally effective against all 25 growth stages of all pests. Nevertheless, all of the compounds of this invention display activity against pests that include: eggs, larvae and adults of the Order Lepidoptera; eggs, foliar-feeding, fruit-feeding, root-feeding, seed-feeding larvae and adults of the Order Coleoptera; eggs, immatures and adults of the Orders Hemiptera and Homoptera; eggs, larvae, nymphs and adults of the Order Acari; eggs, immatures and adults of the Orders Thysanoptera, Orthoptera and Dermaptera; eggs, immatures and adults of the Order Diptera; 30 and eggs, juveniles and adults of the Phylum Nematoda. The compounds of this invention are also active against pests of the Orders Hymenoptera, Isoptera, Siphonaptera, Blattaria, Thysanura and Psocoptera; pests belonging to the Class Arachnida and Phylum Platyhelminthes. Specifically, the compounds are active against southern corn rootworm (Diabrotica undecimpunctata howardi), aster leafhopper (Mascrosteles fascifrons), boll 35 weevil (Anthonomus grandis), two-spotted spider mite (Tetranychus urticae), fall armyworm (Spodoptera frugiperda), black bean aphid (Aphis fabae), green peach aphid (Myzus persica), cotton aphid (Aphis gossypii), Russian wheat aphid (Diuraphis noxia), English grain aphid

(Sitobion avenae), tobacco budworm (Heliothis virescens), rice water weevil (Lissorhoptrus oryzophilus), rice leaf beetle (Oulema oryzae), whitebacked planthopper (Sogatella furcifera), green leafhopper (Nephotettix cincticeps), brown planthopper (Nilaparvata lugens), small brown planthopper (Laodelphax striatellus), rice stem borer (Chilo suppressalis), rice leafroller (Cnaphalocrocis medinalis), black rice stink bug (Scotinophara 5 lurida), rice stink bug (Oebalus pugnax), rice bug (Leptocorisa chinensis), slender rice bug (Cletus puntiger), and southern green stink bug (Nezara viridula). The compounds are active on mites, demonstrating ovicidal, larvicidal and chemosterilant activity against such families as Tetranychidae including Tetranychus urticae, Tetranychus cinnabarinus, Tetranychus mcdanieli, Tetranychus pacificus, Tetranychus turkestani, Byrobia rubrioculus, Panonychus 10 ulmi, Panonychus citri, Eotetranychus carpini borealis, Eotetranychus, hicoriae, Eotetranychus sexmaculatus, Eotetranychus yumensis, Eotetranychus banksi and Oligonychus pratensis: Tenuipalpidae including Brevipalpus lewisi, Brevipalpus phoenicis, Brevipalpus californicus and Brevipalpus obovatus; Eriophyidae including Phyllocoptruta oleivora, Eriophyes sheldoni, Aculus cornutus, Epitrimerus pyri and Eriophyes mangiferae. 15 See WO 90/10623 and WO 92/00673 for more detailed pest descriptions.

The compounds of this invention are also useful as plant disease control agents. The present invention therefore further comprises a method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof to be protected, or to the plant seed or seedling to be protected, an effective amount of a compound of the 20 invention or a fungicidal composition containing said compound. The compounds and compositions of this invention provide control of diseases caused by a broad spectrum of fungal plant pathogens in the Basidiomycete, Ascomycete, Oomycete and Deuteromycete classes. They are effective in controlling a broad spectrum of plant diseases, particularly foliar pathogens of ornamental, vegetable, field, cereal, and fruit crops. These pathogens 25 include Plasmopara viticola, Phytophthora infestans, Peronospora tabacina, Pseudoperonospora cubensis, Pythium aphanidermatum, Alternaria brassicae, Septoria nodorum, Septoria tritici, Cercosporidium personatum, Cercospora arachidicola, Pseudocercosporella herpotrichoides, Cercospora beticola, Botrytis cinerea, Monilinia fructicola, Pyricularia oryzae, Podosphaera leucotricha, Venturia inaequalis, Erysiphe 30 graminis, Uncinula necatur, Puccinia recondita, Puccinia graminis, Hemileia vastatrix, Puccinia striiformis, Puccinia arachidis, Rhizoctonia solani, Sphaerotheca fuliginea, Fusarium oxysporum, Verticillium dahliae, Pythium aphanidermatum, Phytophthora megasperma, Sclerotinia sclerotiorum, Sclerotium rolfsii, Erysiphe polygoni, Pyrenophora teres, Gaeumannomyces graminis, Rynchosporium secalis, Fusarium roseum, Bremia 35 lactucae and other generea and species closely related to these pathogens.

Compounds of this invention can also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants,

10

15

20

25

30

35

semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Examples of such agricultural protectants with which compounds of this invention can be formulated are: insecticides such as abamectin, acephate, azinphos-methyl, bifenthrin, buprofezin, carbofuran, chlorfenapyr, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, esfenvalerate, fenoxycarb. fenpropathrin, fenvalerate, fipronil, flucythrinate, tau-fluvalinate, fonophos, imidacloprid, isofenphos, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, methyl 7-chloro-2,5-dihydro-2-[[N-(methoxycarbonyl)-N-[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)carboxylate (DPX-JW062), monocrotophos, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, rotenone, sulprofos, tebufenozide, tefluthrin, terbufos, tetrachlorvinphos, thiodicarb, tralomethrin, trichlorfon and triflumuron; fungicides such as azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cymoxanil, cyproconazole, cyprodinil (CGA 219417), diclomezine, dicloran, difenoconazole, dimethomorph, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole (BAS 480F), famoxadone, fenarimol, fenbuconazole, fenpiclonil, fenpropidin, fenpropimorph, fluazinam, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, maneb, mepronil, metalaxyl, metconazole, S-methyl 7-benzothiazolecarbothioate (CGA 245704), myclobutanil, neo-asozin (ferric methanearsonate), oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propiconazole, pyrifenox, pyroquilon, quinoxyfen, spiroxamine (KWG4168), sulfur, tebuconazole, tetraconazole, thiabendazole, thiophanate-methyl, thiram, triadimefon, triadimenol, tricyclazole, triticonazole, validamycin and vinclozolin; nematocides such as aldoxycarb and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis, Bacillus thuringiensis delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi.

In certain instances, combinations with other fungicides or arthropodicides having a similar spectrum of control but a different mode of action will be particularly advantageous for resistance management.

Preferred for better control of pests (use rate or spectrum) or resistance management are mixtures of a compound of this invention with an arthropodicide selected from the group:

10

15

20

25

30

35

acephate, buprofezin, carbofuran, 2,5-dihydro-2-[[*N*-(methoxycarbonyl)-*N*-[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2-*e*][1,3,4]oxadiazine-4a(3*H*)-carboxylate (DPX-JW062), dimethoate, esfenvalerate, fipronil, imidacloprid, methomyl, monocrotophos, phorate, and phosphamidon.

Arthropod pests are controlled and protection of agronomic, horticultural and specialty crops, animal and human health is achieved by applying one or more of the compounds of this invention, in an effective amount, to the environment of the pests including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests to be controlled. Thus, the present invention further comprises a method for the control of foliar and soil inhabiting arthropods and nematode pests and protection of agronomic and/or nonagronomic crops, comprising applying one or more of the compounds of the invention, or compositions containing at least one such compound, in an effective amount, to the environment of the pests including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests to be controlled. A preferred method of application is by spraying. Alternatively, granular formulations of these compounds can be applied to the plant foliage or the soil. Other methods of application include direct and residual sprays, aerial sprays, seed coats, microencapsulations, systemic uptake, baits, eartags, boluses, foggers, fumigants, aerosols, dusts and many others. The compounds can be incorporated into baits that are consumed by the arthropods or in devices such as traps and the like.

For the control arthropod pests, the compounds of this invention can be applied in their pure state, but most often application will be of a formulation comprising one or more compounds with suitable carriers, diluents, and surfactants and possibly in combination with a food depending on the contemplated end use. A preferred method of application involves spraying a water dispersion or refined oil solution of the compounds. Combinations with spray oils, spray oil concentrations, spreader stickers, adjuvants, other solvents, and synergists such as piperonyl butoxide often enhance compound efficacy.

The rate of application required for effective control will depend on such factors as the species of arthropod to be controlled, the pest's life cycle, life stage, its size, location, time of year, host crop or animal, feeding behavior, mating behavior, ambient moisture, temperature, and the like. Under normal circumstances, application rates of about 0.01 to 2 kg of active ingredient per hectare are sufficient to control pests in agronomic ecosystems, but as little as 0.001 kg/hectare may be sufficient or as much as 8 kg/hectare may be required. For nonagronomic applications, effective use rates will range from about 1.0 to 50 mg/square meter but as little as 0.1 mg/square meter may be sufficient or as much as 150 mg/square meter may be required.

Plant disease control is ordinarily accomplished by applying an effective amount of a compound of this invention either pre- or post-infection, to the portion of the plant to be

10

15

protected such as the roots, stems, foliage, fruit, seeds, tubers or bulbs, or to the media (soil or sand) in which the plants to be protected are growing. The compounds can also be applied to the seed to protect the seed and seedling.

For plant disease control, rates of application for these compounds can be influenced by many factors of the environment and should be determined under actual use conditions. Foliage can normally be protected when treated at a rate of from less than 1 g/ha to 5,000 g/ha of active ingredient. Seed and seedlings can normally be protected when seed is treated at a rate of from 0.1 to 10 g per kilogram of seed.

The following tests demonstrate the control efficacy of compounds of this invention on specific arthropod and pathogen pests. For the tests on arthropod pests, "control efficacy" represents inhibition of arthropod development (including mortality) that causes significantly reduced feeding. The arthropod and pathogen pest control protection afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared. Isomer indicates *cis* or *trans* with respect to the cyclohexane ring.

INDEX TABLE A

$$\mathbb{R}^{7}$$
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{7}

		G			
Cmpd No.	<u>Isomer</u>	<u>R</u> 7	<u>R</u> 5	<u>G</u>	<u>mp (°C)</u>
(Ex. No.)					
1 (Ex. 1)	cis	H	H	6-Et-5-Cl-4- pyrimidinyl	119-121
2	trans	Н	Н	6-Et-5-Cl-4- pyrimidinyl	> 255 a
3	cis:trans = 7.5:1	Н	H	4-quinazolinyl	solid a
4	trans	Н	Н	4-quinazolinyl	> 260 a
5	cis	Н	Н	6-MeOCH ₂ -5- MeO-4- pyrimidinyl	109-111
6	<i>cis:trans</i> = 18:1	Н	H	6-MeOCH ₂ -4- pyrimidinyl	solid ^a
7	cis	Н	Н	5,6,7,8- tetrahydro-4-	solid ^a
8	cis	Н	Н	quinazolinyl 6-Et-4- pyrimidinyl	123-124

Cmpd No.	<u>Isomer</u>	<u>R</u> 7	<u>R</u> 5	<u>G</u>	mp (°C)
(Ex. No.)					
9	cis	Н	H	3-t-Bu-1,2,4- thiadiazol-5-yl	175-180
10 (Ex. 2a)	cis	Н	Me	6-Et-5-Cl-4- pyrimidinyl	68-70
11	cis	Н	Et	6-Et-5-Cl-4- pyrimidinyl	oil ^a
12	cis	Н	n-Pr	6-Et-5-Cl-4- pyrimidinyl	81-83
13	cis	Н	n-Bu	6-Et-5-Cl-4- pyrimidinyl	oil a
14	cis	Н	CH ₂ CH=CH ₂	6-Et-5-Cl-4- pyrimidinyl	oil ^a
15 (Ex. 2b)	cis	Me	Me	6-Et-5-Cl-4- pyrimidinyl	86-87
16	cis	Et	Et	6-Et-5-Cl-4- pyrimidinyl	99-100
17	cis	CH ₂ CH=CH ₂	CH ₂ CH=CH ₂	6-Et-5-Cl-4- pyrimidinyl	oil ^a
18 (Ex. 3)	cis	H•HCl	н•нс1	6-Et-5-Cl-4- pyrimidinyl	239-242

 $[^]a$ See Index Table D for $^1{\rm H}$ NMR data.

INDEX TABLE B

Cmpd No.	Isomer	<u>R</u> 7	<u>R</u> 5	<u>R</u> 6	<u>mp (°C)</u>
19	cis	H	COMe	H	158-159
20	cis	Me	COMe	H	126-133 <i>a</i>
21	cis	H	CO ₂ -t-Bu	H	152-154
22	cis	Me	CO ₂ -t-Bu	H	121-127
23	cis	Et	CO ₂ -t-Bu	H	oil a
24	cis	CH ₂ C≡CH	CO ₂ -t-Bu	H	solid a

Cmpd No.	Isomer	<u>R</u> 7	<u>R⁵</u>	<u>R</u> 6	<u>mp (°C)</u>
25	cis	H H	CO ₂ Bn	H	oil a
26 (Ex. 11a)	cis	Н	OMe	Н	oil a
27 (Ex. 11b)	trans	Н	ОМе	Н	87-88
28	cis	Me	OMe	Н	oil a
29	cis:trans = 7:1	Н	OBn	Н	oil a
30	trans	H	OBn	н	116-121
31 (Ex. 7a)	cis	H	Me	Me	62-66
32 (Ex. 7b)	trans	H	Me	Me	oil a
33	cis	H	n-Bu	Me	oil a
34	trans	Н	n-Bu	Me	47-48
35	cis	Me	CO ₂ Et	Me	oil a
36	cis	Н	OMe	Me	oil a
37 (Ex. 5a)	cis	H	Н	Ph	88-93
38 (Ex. 5b)	trans	H	Н	Ph	137-139
39 (Ext. 50)	cis	H	Me	Ph	oil a
40	trans: cis = 8:1	H	Me	Ph	83-84 a
41	trans:cis =	H	Et	Ph	oil a
••	1.3:1				
42	cis:trans = 2:1	Н	Bn	Ph	oil a
43	trans	H	Bn	Ph	oil a
44	cis:trans =	Н	CH ₂ CH=CH ₂	Ph	oil ^a
	1.5:1		<i>L</i>		
45	trans:cis = 6:1	H	CH ₂ CH=CH ₂	Ph	oil a
46 (Ex. 6)	cis	Н	CH ₂ C≡CH	Ph	oil a
47	cis	H	CH ₂ CN	Ph	79-80
48	cis	Н	(CH ₂) ₂ OH	Ph	111-115
49	trans	Н	(CH ₂) ₂ OH	Ph	solid a
50	cis	H	CH ₂ CO ₂ -t-Bu	Ph	solid ^a
51	cis	H	СОМе	Ph	125-127
52	cis	Н	COEt	Ph	86-90
53	cis	H	COCF ₃	Ph	99-101
54	cis	Н	CO-c-Pr	Ph	oil a
55	cis	H	CO-t-Bu	Ph	80-81
56	cis	Н	COPh	Ph	134-136
57	cis	Н	CO ₂ Me	Ph	95
58	cis	Н	CO ₂ Et	Ph	oil ^a
59	trans	Н	CO ₂ Et	Ph	137-140
60	cis	Н	CO ₂ -i-Pr	Ph	72-75
61	cis	н	CO ₂ -t-Bu	Ph	oil a
62	cis	н	CO ₂ Bn	Ph	88-89
63	cis	Н	CONMe ₂	Ph	oil ^a
64	cis	Н	SO ₂ CF ₃	Ph	93-94
65	cis	H	SO ₂ Ph	Ph	solid ^a

Cmpd No.	<u>Isomer</u>	<u>R</u> 7	<u>R</u> 5	<u>R</u> 6	mp (°C)
66 (Ex. 12)	cis	H	OMe	COMe	oil a
67	cis	H	OBn	COMe	132-134
68	cis	H	\mathbf{H}	2,6-diCl-4-CF3-Ph	71-72
69	cis	Н	Н	3-Cl-5-CF ₃ -2- pyridinyl	91-92
70 (Ex. 2c)	cis	Me	Me	5-Cl-6- <i>i</i> -Pr-4- pyrimidinyl	95-97
71 (Ex. 9)	cis	Н	Н	6-MeOCH ₂ -5-MeO- 4-pyrimidinyl	> 104 ^a
72 (Ex. 4)	cis	H	H	4-quinazolinyl	188-191
73	cis	H	H	3-t-Bu-1,2,4-	solid a
				thiadiazol-5-yl	•

 a See Index Table D for $^1{\rm H}$ NMR data.

INDEX TABLE C

Cmpd No.	<u>Isomer</u>	<u>R</u> 7	NR^5R^6	mp (°C)
74	cis:trans = 1.4:1	Н	1-piperidinyl	solid a
75	cis	Н	1-pyrrolidinyl	95-97
76	trans	H	1-pyrrolidinyl	59-62
77	cis	Н	4-morpholinyl	145-146
78	trans	H	4-morpholinyl	141-146
79	cis	H	4-Me-1-piperazinyl	oil a
80	trans	H	4-Me-1-piperazinyl	85-89
81	cis	Н	4-Et-1-piperazinyl	oil a
82	trans	H	4-Et-1-piperazinyl	91-96
83	cis	H	4-(C ₆ H ₅ CH ₂)-1-piperazinyl	oil a
84	trans	Н	4-(C ₆ H ₅ CH ₂)-1-piperazinyl	88-89
85	cis	н	4-(C ₆ H ₅)-1-piperazinyl	105-108
86	trans	н	4-(C ₆ H ₅)-1-piperazinyl	115-120
87	cis	H	4-(4-F-C ₆ H ₅)-1-piperazinyl	93-94
88	trans	Н	4-(4-F-C ₆ H ₅)-1-piperazinyl	70-72
89	cis	н	4-(2-pyridinyl)-1-piperazinyl	130-137 ^a

Cmpd No. 90 91	Isomer trans:cis = 10:1 cis	<u>R⁷</u> Н Н	NR ⁵ R ⁶ 4-(2-pyridinyl)-1-piperazinyl	mp (°C) 100-103 ^a 145-154 ^a
			-N	
92 (Ex. 10)	cis	Н		157-160
93 (Ex. 8)	cis	н	Me N+ I- Me	217-221
94	trans	н	Me + I	194-197
95	cis	Н	Et I	106-110
96	cis	Н	Me Me	61-64

a See Index Table D for ¹H NMR data.

INDEX TABLE D

Cmpd	<u>Isomer</u>	¹ H NMR Data ^b
No.		
2		δ (CF ₃ CO ₂ D) 8.57 (s, 2H), 4.36 (m, 2H), 2.99 (q, 4H), 2.26 (m, 4H), 1.71 (m, 4H),
		1.36 (t, 6H).
3	cis	δ (DMSO-d ₆) 8.50 (s, 2H), 8.43 (dd, 2H), 7.81 (d, 2H), 7.77 (ddd, 2H), 7.68 (dd, 2H),
		7.52 (ddd, 2H), 4.32 (m, 2H), 2.09 (m, 4H), 1.80 (m, 4H).
4	trans	δ (CF ₃ CO ₂ D) 8.92 (s, 2H), 8.35 (d, 2H), 8.15 (t, 2H), 7.91 (m, 4H), 4.70 (m, 2H),
		2.47 (m, 4H), 1.98 (m, 4H).
6	cis	δ 8.48 (s, 2H), 6.47 (s, 2H), 5.04 (br s, 2H), 4.40 (s, 4H), 3.92 (br s, 2H), 3.49 (s, 6H),
		1.92 (m, 4H), 1.72 (m, 4H).
7	cis	δ 8.42 (s, 2H), 4.50 (d, 2H), 4.25 (m, 2H), 2.71 (t, 4H), 2.33 (t, 4H), 2.06-1.62 (m,
		16H).

Cmpd	<u>Isomer</u>		¹ H NMR Data ^b
<u>No.</u>		_	
11	cis	δ	8.48 (s, 1H), 8.43 (s, 1H), 5.63 (d, 1H), 4.34 (m, 1H), 4.03 (m, 1H), 3.55 (q, 2H),
		_	2.87 (q, 2H), 2.81 (q, 2H), 2.13-1.65 (m, 8H), 1.29 (t, 3H), 1.28 (t, 3H), 1.16 (t, 3H).
13	cis	δ	8.48 (s,1H), 8.43 (s, 1H), 5.61 (d, 1H), 4.33 (m, 1H), 3.98 (m, 1H), 3.45 (m, 2H),
			2.87 (q, 2H), 2.81 (q, 2H), 2.14-1.64 (m, 8H), 1.50 (m, 2H), 1.32 (m, 2H), 1.29 (t,
		_	3H), 1.28 (t, 3H), 0.91 (t, 3H).
14	cis	δ	8.49 (s, 1H), 8.42 (s, 1H), 5.92 (ddt, 1H), 5.64 (d, 1H), 5.21 (dq, 1H), 5.12 (dq, 1H),
			4.35 (m, 1H), 4.15 (dt, 2H), 4.00 (m, 1H), 2.87 (q, 2H), 2.81 (q, 2H), 2.04 (m, 4H),
		•	1.85-1.63 (m, 4H), 1.29 (t, 3H), 1.28 (t, 3H).
17	cis	δ	8.56 (s, 2H), 5.79 (m, 2H), 5.13 (m, 2H), 5.06 (m, 2H), 4.08 (m, 6H), 2.89 (q, 4H),
20			2.01 (m, 4H), 1.56 (m, 4H), 1.30 (t, 6H).
20	cis	ò	8.44 (s, 1H), 5.68 (br d, 1H), 4.12 (m, 2H), 3.01 (s, 3H), 2.85 (q, 2H), 2.04 (s, 3H),
00			1.96 (m, 2H), 1.73 (m, 6H), 1.28 (t, 3H).
23	cis	٥	8.46 (s, 1H), 4.78 (br s, 1H), 4.02 (m, 1H), 3.82 (m, 1H), 3.54 (q, 2H), 2.86 (q, 2H),
24	ais	8	1.97-1.53 (m, 8H), 1.47 (s, 9H), 1.28 (t, 3H), 1.12 (t, 3H). 8.56 (s, 1H), 4.72 (br s, 1H), 4.24 (d, 2H), 4.15 (m, 1H), 3.80 (m, 1H), 2.89 (q, 2H),
44	cis	0	2.19 (t, 1H), 1.98-1.56 (m, 8H), 1.47 (s, 9H), 1.29 (t, 3H).
25	cis	8	8.40 (s, 1H), 7.35 (m, 5H), 5.34 (d, 1H), 5.10 (s, 2H), 4.98 (br s, 1H), 4.13 (m, 1H),
25	Cis	Ü	3.78 (m, 1H), 2.77 (q, 2H), 1.84 (m, 4H), 1.68 (m, 4H), 1.25 (t, 3H).
26	cis	δ	8.41 (s, 1H), 5.47 (br s, 1H), 5.42 (br d, 1H), 4.18 (m, 1H), 3.58 (s, 3H), 3.07 (m,
20	•••		1H), 2.78 (q, 2H), 1.87-1.55 (m, 8H), 1.26 (t, 3H).
28	cis	δ	8.43 (s, 1H), 5.43 (br s, 1H), 4.15 (d, 1H), 3.59 (s, 3H), 3.17 (m, 1H), 3.00 (s, 3H),
			2.85 (q, 2H), 2.06-1.87 (m, 4H), 1.61 (m, 4H), 1.28 (t, 3H).
29	cis	δ	8.40 (s, 1H), 7.39-7.23 (m, 5H), 5.46 (br s, 1H), 5.40 (d, 1H), 4.73 (s, 2H), 4.17 (m,
			1H), 3.12 (m, 1H), 2.78 (q, 2H), 1.82-1.57 (m, 8H), 1.26 (t, 3H).
32	trans	δ	8.40 (s, 1H), 5.19 (d, 1H), 3.94 (m, 1H), 2.78 (q, 2H), 2.36 (s, 6H), 2.38 (m, 1H),
			2.21 (m, 2H), 2.01 (m, 2H), 1.47 (m, 2H), 1.28 (m, 2H), 1.26 (t, 3H).
33	cis	δ	8.41 (s, 1H), 5.53 (d, 1H), 4.27 (m, 1H), 2.79 (q, 2H), 2.64 (m, 3H), 2.42 (s, 3H),
			2.12-1.47 (m, 10H), 1.34 (m, 2H), 1.26 (t, 3H), 0.95 (t, 3H).
35	cis	δ	8.58 (s, 1H), 4.13 (q, 2H), 4.06 (m, 1H), 3.95 (m, 1H), 2.91 (s, 3H), 2.90 (q, 2H),
			2.84 (s, 3H), 2.15 (m, 2H), 1.83-1.44 (m, 6H), 1.31 (t, 3H), 1.26 (t, 3H).
36	cis	δ	8.41 (s, 1H), 5.46 (d, 1H), 4.22 (m, 1H), 3.55 (s, 3H), 2.78 (q, 2H), 2.59 (s, 3H), 2.51
			(m, 1H), 1.93-1.60 (m, 8H), 1.26 (t, 3H).
39	cis	δ	8.43 (s, 1H), 7.24 (m, 2H), 6.82 (d, 2H), 6.74 (t, 1H), 5.58 (br d, 1H), 4.33 (m, 1H),
			3.67 (m, 1H), 2.82 (s, 3H), 2.81 (q, 2H), 2.10 (m, 2H), 1.74 (m, 6H), 1.28 (t, 3H).
40	trans	δ	8.42 (s, 1H), 7.23 (m, 2H), 6.79 (d, 2H), 6.71 (t, 1H), 5.20 (d, 1H), 3.99 (m, 1H), 3.66
			(tt, 1H), 2.79 (s, 3H), 2.78 (q, 2H), 2.23 (d, 2H), 1.94-1.66 (m, 4H), 1.41 (m, 2H),
			1.26 (t, 3H).

Cmpd	<u>Isomer</u>	¹ H NMR Data ^b
<u>No.</u>		
41	cis	δ 8.43 (s, 1H), 7.24 (m, 2H), 6.79 (d, 2H), 6.71 (t, 1H), 5.58 (d, 1H), 4.34 (m, 1H), 3.63 (m, 1H), 3.30 (q, 2H), 2.82 (q, 2H), 2.08 (br d, 2H), 1.88-1.63 (m, 6H), 1.28 (t, 3H),
		1.17 (t, 3H).
41	trans	8 8.42 (s, 1H), 7.21 (m, 2H), 6.74 (d, 2H), 6.68 (t, 1H), 5.21 (d, 1H), 4.01 (m, 1H), 3.63 (m, 1H), 3.29 (q, 2H), 2.78 (q, 2H), 2.23 (br d, 2H), 1.96 (br d, 2H), 1.65 (m, 2H), 1.40 (m, 2H), 1.27 (t, 3H), 1.17 (t, 3H).
42	cis	δ 8.41 (s, 1H), 7.38-7.11 (m, 7H), 6.72 (m, 3H), 5.51 (br d, 1H), 4.50 (s, 2H), 4.32 (m,
72	Cis	1H), 3.88 (m, 1H), 2.78 (q, 2H), 2.08 (br d, 2H), 1.93-1.57 (m, 6H), 1.26 (t, 3H).
43	trans	8 8.38 (s, 1H), 7.34-7.11 (m, 7H), 6.70 (m, 3H), 5.19 (d, 1H), 4.48 (s, 2H), 3.97 (m, 1H), 3.86 (m, 1H), 2.77 (q, 2H), 2.21 (br d, 2H), 2.00 (br d, 2H), 1.66 (m, 2H), 1.41 (m, 2H), 1.25 (t, 3H).
44	cis	δ 8.43 (s, 1H), 7.22 (m, 2H), 6.76 (m, 3H), 5.91 (m, 1H), 5.57 (d, 1H), 5.21 (m, 3H), 4.33 (m, 1H), 3.87 (m, 2H), 3.73 (m, 1H), 2.80 (q, 2H), 2.09 (br d, 2H), 1.92-1.59 (m, 6H), 1.28 (t, 3H).
45	trans	δ 8.41 (s, 1H), 7.21 (dd, 2H), 6.72 (m, 3H), 5.89 (m, 1H), 5.19 (m, 3H), 4.20 (m, 1H), 3.86 (m, 2H), 3.73 (m, 1H), 2.79 (q, 2H), 2.23 (br d, 2H), 1.97 (br d, 2H), 1.67 (m, 2H), 1.41 (m, 2H), 1.26 (t, 3H).
46	cis	δ 8.42 (s, 1H), 7.28 (m, 2H), 6.99 (m, 2H), 6.86 (t, 1H), 5.57 (d, 1H), 4.31 (m, 1H), 3.99 (d, 2H), 3.70 (m, 1H), 2.80 (q, 2H), 2.22 (t, 1H), 2.04 (m, 2H), 1.94-1.68 (m, 6H), 1.27 (t, 3H).
49	trans	8 8.40 (s, 1H), 7.25 (dd, 2H), 6.90 (d, 2H), 6.83 (t, 1H), 5.20 (d, 1H), 3.97 (m, 1H), 3.67 (t, 2H), 3.53 (m, 1H), 3.37 (t, 2H), 2.78 (q, 2H), 2.23 (br d, 2H), 1.94 (br d, 2H), 1.87-1.58 (m, 3H), 1.38 (m, 2H), 1.26 (t, 3H).
50	cis	8.43 (s, 1H), 7.24 (m, 2H), 6.73 (m, 3H), 5.57 (d, 1H), 4.34 (m, 1H), 3.90 (s, 2H), 3.77 (m, 1H), 2.80 (q, 2H), 2.08 (m, 2H), 1.98-1.50 (m, 6H), 1.45 (s, 9H), 1.28 (t, 3H).
54	cis	δ 8.36 (s, 1H), 7.44 (m, 3H), 7.22 (m, 2H), 5.27 (d, 1H), 4.67 (tt, 1H), 4.26 (m, 1H), 2.73 (q, 2H), 1.97 (br d, 2H), 1.78 (m, 4H), 1.34 (m, 2H), 1.23 (t, 3H), 1.12 (m, 1H), 0.98 (m, 2H), 0.57 (m, 2H).
58	cis	δ 8.37 (s, 1H), 7.43-7.27 (m, 3H), 7.12 (m, 2H), 5.32 (d, 1H), 4.34-4.06 (m, 4H), 2.74 (q, 2H), 1.99 (br d, 2H), 1.85 (br d, 2H), 1.73 (m, 2H), 1.47 (m, 2H), 1.23 (t, 3H), 1.16 (t, 3H).
61	cis	δ 8.37 (s, 1H), 7.41-7.25 (m, 3H), 7.09 (m, 2H), 5.31 (d, 1H), 4.31-4.11 (m, 2H), 2.73 (q, 2H), 2.04-1.65 (m, 6H), 1.42 (m, 2H), 1.37 (s, 9H), 1.23 (t, 3H).
63	cis	δ 8.38 (s, 1H), 7.34 (m, 2H), 7.19 (m, 1H), 7.06 (m, 2H), 5.53 (d, 1H), 4.31 (m, 1H), 3.99 (m, 1H), 2.75 (q, 2H), 2.62 (s, 6H), 1.97 (br d, 2H), 1.89-1.61 (m, 6H), 1.24 (t, 3H).

Cmpd	Isomer		¹ H NMR Data ^b			
No.						
65	cis	δ	8.35 (s, 1H), 7.73 (m, 2H), 7.58-7.29 (m, 6H), 7.05 (m, 2H), 5.12 (d, 1H), 4.28 (tt,			
			1H), 4.22 (m, 1H), 2.70 (q, 2H), 2.01-1.67 (m, 6H), 1.33 (m, 2H), 1.20 (t, 3H).			
66	cis	δ	8.42 (s, 1H), 5.61 (d, 1H), 4.33 (m, 1H), 4.28 (m, 1H), 3.79 (s, 3H), 2.80 (q, 2H),			
			2.16 (s, 3H), 2.06 (m, 2H), 1.97-1.68 (m, 6H), 1.27 (t, 3H).			
71	cis	δ	8.42 (s, 1H), 8.38 (s, 1H), 5.41 (d, 1H), 5.31 (d, 1H), 4.47 (s, 2H), 4.20 (m, 2H), 3.83			
			(s, 3H), 3.49 (s, 3H), 2.80 (q, 2H), 1.95 (m, 4H), 1.75 (m, 4H), 1.27 (t, 3H).			
73	cis	δ	8.41 (s, 1H), 5.88 (d, 1H), 5.31 (d, 1H), 4.17 (m, 1H), 3.49 (m, 1H), 2.79 (q, 2H),			
			1.92 (m, 6H), 1.68 (m, 2H), 1.36 (s, 9H), 1.27 (t, 3H).			
74	cis	δ	8.41 (s, 1H), 5.54 (d, 1H), 4.30 (m, 1H), 2.79 (m, 7H), 2.17-1.42 (m, 14H), 1.26 (t,			
			3H).			
74	trans	δ	8.40 (s, 1H), 5.17 (d, 1H), 3.96 (m, 1H), 2.94-2.61 (m, 7H), 2.32-1.28 (m, 14H), 1.25			
			(t, 3H).			
79	cis	δ	8.41 (s, 1H), 5.48 (d, 1H), 4.24 (m, 1H), 2.78 (q, 2H), 2.71-2.34 (m, 8H), 2.30 (s,			
			3H), 2.23 (m, 1H), 1.97-1.53 (m, 8H), 1.26 (t, 3H).			
81	cis	δ	8.40 (s, 1H), 5.49 (d, 1H), 4.24 (m, 1H), 2.78 (q, 2H), 2.75-2.33 (m, 8H), 2.42 (q,			
			2H), 2.23 (m, 1H), 1.97-1.52 (m, 8H), 1.26 (t, 3H), 1.10 (t, 3H).			
83	cis	δ	8.40 (s, 1H), 7.34-7.20 (m, 5H), 5.48 (d, 1H), 4.23 (m, 1H), 3.52 (s, 2H), 2.77 (q,			
			2H), 2.54 (m, 8H), 2.22 (m, 1H), 1.97-1.52 (m, 8H), 1.26 (t, 3H).			
89	cis	δ	8.41 (s, 1H), 8.20 (ddd, 1H), 7.48 (ddd, 1H), 6.66 (d, 1H), 6.62 (dd, 1H), 5.49 (d,			
			1H), 4.25 (m, 1H), 3.56 (m, 4H), 2.78 (q, 2H), 2.67 (m, 4H), 2.29 (m, 1H), 2.01-1.59			
			(m, 8H), 1.26 (t, 3H).			
90	trans	δ	8.41 (s, 1H), 8.20 (m, 1H), 7.47 (m, 1H), 6.63 (m, 2H), 5.19 (d, 1H), 3.96 (m, 1H),			
			3.55 (m, 4H), 2.78 (q, 2H), 2.70 (m, 4H), 2.41 (t, 1H), 2.22 (d, 2H), 2.01 (d, 2H),			
			1.51 (q, 2H), 1.28 (m, 2H), 1.26 (t, 3H).			
91	cis	δ	8.41 (s, 1H), 6.66 (s, 2H), 5.79 (d, 1H), 4.42 (m, 1H), 4.04 (tt, 1H), 2.81 (q, 2H), 2.32			
			(m, 2H), 2.07 (br d, 2H), 1.67 (m, 4H), 1.28 (t, 3H).			

b 1_H NMR spectra are recorded in CDCl₃ unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublet of doublet of triplets, tt = triplet of triplets, br s = broad singlet and br d = broad doublet.

BIOLOGICAL EXAMPLES OF THE INVENTION TEST A

Fall Armyworm

5

Test units, each consisting of a H.I.S. (high impact styrene) tray with 16 cells were prepared. Wet filter paper and approximately 8 cm² of lima bean leaf was placed into twelve of the cells. A 0.5-cm layer of wheat germ diet was placed into the four remaining cells. Fifteen to twenty third-instar larvae of fall armyworm (*Spodoptera frugiperda*) were placed

into a 230-mL (8-ounce) plastic cup. Solutions of each of the test compounds in 75:25 acetone-distilled water solvent were sprayed into the tray and cup. Spraying was accomplished by passing the tray and cup on a conveyer belt directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.138 kilograms of active ingredient per hectare (about 0.13 pounds per acre) at 207 kPa (30 p.s.i.). The insects were transferred from the 230-mL cup to the H.I.S. tray (one insect per cell). The trays were covered and held at 27°C and 50% relative humidity for 48 hours, after which time readings were taken on the twelve cells with lima bean leaves. The four remaining cells were read at 6-8 days for delayed toxicity. Of the compounds tested, the following gave control efficacy levels of 80% or greater: 1, 5, 10, 15, 18, 26, 71, 72 and 92.

TEST B

Tobacco Budworm

5

10

15

20

25

35

The test procedure of TEST A was repeated for determining efficacy against third-instar larvae of the tobacco budworm (*Heliothis virescens*) except that three 230-mL (8-ounce) plastic cups with wheat germ diet were used in place of the H.I.S. tray, with each cup pre-infested with five third-instar larvae. Of the compounds tested, the following gave mortality levels of 80% or higher: 1, 10, 18, 46, 71 and 92.

TEST C

Southern Corn Rootworm

Test units, each consisting of a 230-mL (8-ounce) plastic cup containing a 6.5-cm² (1-square-inch) plug of a wheatgerm diet, were prepared. The test units were sprayed as described in TEST A with individual solutions of the test compounds. After the spray on the cups had dried, five second-instar larvae of the southern corn rootworm (*Diabrotica undecimpunctata howardi*) were placed into each cup. The cups were held at 27°C and 50% relative humidity for 48 hours, after which time mortality readings were taken. The same units were read again at 6-8 days for delayed toxicity. Of the compounds tested, the following gave control efficacy levels of 80% or greater: 1, 10, 15, 18, 19, 20, 21, 24, 26, 27, 31, 33, 37, 39, 40, 41, 42, 46, 47, 48, 51, 53, 58, 63, 69, 71, 72, 73, 75, 77 and 92.

TEST D

30 Two-Spotted Spider Mite

Pieces of kidney bean leaves, each approximately 6.5 cm² (1 square inch) in area, that had been infested on the undersides with 25 to 30 adult mites (*Tetranychus urticae*), were sprayed with their undersides facing up on a hydraulic sprayer with a solution of the test compound in 75:25 acetone-distilled water solvent. Spraying was accomplished by passing the leaves, on a conveyor belt, directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.138 kilograms of active ingredient per hectare (about 0.13 pounds per acre) at 207 kPa (30 p.s.i.). The leaf squares were then placed underside-up on a square of wet cotton in a petri dish and the perimeter of the leaf square was tamped down onto the

WO 99/31072 PCT/US98/26013

101

cotton with forceps so that the mites could not escape onto the untreated leaf surface. The test units were held at 27°C and 50% relative humidity for 48 hours, after which time mortality readings were taken. Of the compounds tested, the following gave mortality levels of 80% or higher: 1, 5, 6, 10, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 33, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 57, 58, 60, 61, 62, 63, 68, 69, 70, 71, 72, 73, 74, 77 and 92.

TEST E

Corn Planthopper Test

5

10

15

20

25

30

35

Test Unit: The test unit consists of a plastic cup containing 126 +/- 4 grams of sterilized, non-fertilized sassafras (sandy loam) soil. One pre-germinated Pioneer variety 3394 corn seed is placed in a 1 inch depression in the soil and covered. The test unit is watered with 15 mL of distilled water and placed in a closed Plexiglas box inside a greenhouse operating at 24 degrees centigrade and 36% relative humidity for 4 days at which time it is ready for test. A snug fitting test unit lid with a small opening at the top is placed on all test units prior to test.

Compound Application: Test compounds are formulated at 200 ppm in 20% acetone: 80% water containing 500 ppm Ortho X-77 surfactant. Compounds are applied through the opening in the test unit lid with an atomizer sprayer fitted with a Model 17690-1/8JJAU nozzle and a spray set-up consisting of a J2850 Fluid Cap and J70 Air Cap (Spray Systems, Inc.). The sprayer was operated at 12-13 psi. For each compound, 2 test units are sprayed with a total of 2 mL each of test solution. After spraying, test units are placed in a ventilated enclosure for 10-15 minutes to dry.

Insect Infesting/Evaluation: After drying, a thin layer of white quartz sand is poured onto the soil of each test unit to aid in the evaluation of live and dead insects at the conclusion of the test. Each unit is infested with a minimum of 15 nymphs of the corn planthopper (*Peregrinus maidis*) which are approximately 21 days old. Infested test units are held in a growth chamber operating at 22 degrees centigrade and 50% relative humidity with a 16:8 light:dark photoperiod. Insect mortality is evaluated at 6 days post-infestation. Moribund insects are counted as dead. Of the compounds tested, the following gave mortality of 80% or greater: 1, 5, 10, 15, 18, 19, 21, 22, 24, 26, 37, 39, 46, 47, 50, 58, 60, 70, 71, 72 and 92.

TEST F

Green Peach Aphid Test

A turnip plant infested with Green Peach Aphid (*Myzus persicae*) serves as a test unit for this bioassay. All plants have between 15 and 25 aphids (all life stages) on them. The turnip plants are sprayed with a single rate of 0.25 lb. AI/A of each compound at 30 p.s.i. on a moving belt sprayer. All test compounds are formulated using 75/25 acetone/distilled water solvent. All treatments are replicated once. A soil drench of the compound is also applied to each test unit. The drench consists of 2 mL the compound at 0.25 lb. AI/A.

10

15

25

30

35

102

Mortality is assessed at 7 days post compound application by counting live and dead insects under a microscope. Of the compounds tested, the following gave mortality of 80 % or greater: 1, 10, 18, 26, 70 and 71.

Test compounds in Tests G-K were first dissolved in acetone in an amount equal to 3% of the final volume and then suspended at a concentration of 200 ppm in purified water containing 250 ppm of the surfactant Trem[®] 014 (polyhydric alcohol esters). The resulting test suspensions were then used in Tests G-K. Spraying these 200 ppm test suspensions to the point of run-off on the test plants is the equivalent of a rate of 500 g/ha.

TEST G

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore dust of *Erysiphe graminis* f. sp. tritici, (the causal agent of wheat powdery mildew) and incubated in a growth chamber at 20°C for 7 days, after which disease ratings were made.

TEST H

The test suspension was sprayed to the point of run-off on wheat seedlings. The following day the seedlings were inoculated with a spore suspension of *Puccinia recondita* (the causal agent of wheat leaf rust) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 6 days, after which disease ratings were made.

20 TEST I

The test suspension was sprayed to the point of run-off on rice seedlings. The following day the seedlings were inoculated with a spore suspension of *Pyricularia oryzae* (the causal agent of rice blast) and incubated in a saturated atmosphere at 27°C for 24 h, and then moved to a growth chamber at 30°C for 5 days, after which disease ratings were made.

TEST J

The test suspension was sprayed to the point of run-off on tomato seedlings. The following day the seedlings were inoculated with a spore suspension of *Phytophthora* infestans (the causal agent of potato and tomato late blight) and incubated in a saturated atmosphere at 20°C for 24 h, and then moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

TEST K

The test suspension was sprayed to the point of run-off on cucumber seedlings. The following day the seedlings were inoculated with a spore suspension of *Botrytis cinerea* (the causal agent of gray mold on many crops) and incubated in a saturated atmosphere at 20°C for 48 h, and moved to a growth chamber at 20°C for 5 days, after which disease ratings were made.

Results for Tests G-K are given in Table A. In the table, a rating of 100 indicates 100% disease control and a rating of 0 indicates no disease control (relative to the controls).

PCT/US98/26013

103

A dash (-) indicates no test results. ND indicates disease control not determined due to phytotoxicity.

		<u>T.</u>	ABLE A		
Cmpd No.	Test G	Test H	Test I	Test J	Test K
· 1	99	100	86	99	_
2	32	86	0	o	
3	0	0	0	0	
4	0	0	0	5	_
5	0	0	0	21	0
6	0	0	0	0	0
7	0	0	0	63	0
8	0	0	0	85	0
9	0	25	0	76	8
10	100	100	86	ND	43
15	100	100	86	_	0
18	99	100	0	75	0
19	0	99	0	ND	69
20	39	0	0	61	19
21	95	100	0	_	0
22	86	0	0	47	65
23	61	0	0	26	0
24	0	0	0	0	0
25	97	99	0	86	0
26	99	100	0	93	0
27	98	99	0	47	0
31	77	85	0	62	8
32	0	0	0	23	8
33	62	97	0	86	8
34	0	25	0	23	47
37	99	100	53	100	47
38	98	0	0	21	0
39	20	100	0	100	48
40	80	97	0	84	0
41	80	94	0	92	0
42	88	86	0	74	94
43	93	0	0	59	83
44	80	86	0	99	0
45	46	68	0	92	0
46	97	100	0	95	0
47	99	100	53	ND	0

Cmpd No.	Test G	Test H	Test I	Test J	Test K
48	97	97	0	99	0
49	96	0	0	74	0
50	86	- .	0	ND	0
51	97	99	53	0	83
52	73	85	0	45	0
53	90	0	0	23	94
54	87	28	0	0	0
55	0	0	0	0	96
56	55	27	0	23	0
57	90	97	0	0	0
58	99	99	0	0	0
59	88	0	0	16	0
60	95	0	0	ND	0
61	0	0	0	0	0
62	90	85	0	0	94
63	0	0	0	26	65
64	0	0	0	0	0
65	0	0	0	0	88
68	95	99	86	ND	8
69	86	93	53	0	8
70	61	0	0	26	39
71	55	100	53	97	0
72	94	99	0	ND	0
73	0	66	0	ND	8
74	63	68	0	21	0
75	62	85	0	86	8
76	0	0	0	45	47
77	0	97	0	100	8
78	0	0	0	45	8
91	0	85	0	ND	69
92	95	100	74	26	0
93	0	0	0	60	0
94	0	0	0	85	0

CLAIMS

What is claimed is:

1. A compound selected from Formula I, and agriculturally suitable salts thereof,

wherein:

5

10

15

20

25

G is selected from the group consisting of

$$R^2$$
 R^3
 R^2
 R^3
 R^2
 R^2
 R^3
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

Y is a direct bond or C_1 - C_4 alkylene optionally substituted with C_1 - C_4 alkyl; X is O, NR⁷ or S(O)_p;

each Z is independently selected from N and CR3;

each Z¹ is independently selected from O, S and NR⁸;

each R^1 is independently selected from the group consisting of H, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and R^9 S(O)_p;

each R² is independently selected from the group consisting of H, CF₃, C₁ alkyl optionally substituted with one or two R¹⁰ substituents, C₂-C₄ alkyl, R¹⁰CH₂CH₂-, (R¹⁰)₂CHCH₂-, R¹⁰CH₂CH(R¹⁰)-, CH₃C(R¹⁰)₂-, C₃-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, C₂-C₄ alkylcarbonyl, C₂-C₄ haloalkylcarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, cyano, nitro, thiocyanato, C₂-C₄ alkoxycarbonyl, C₂-C₄ haloalkoxycarbonyl,

C₁-C₄ alkylamino, C₂-C₄ dialkylamino and R¹¹S(O)_p;

each R³ is independently selected from the group consisting of H, C₁-C₄ alkyl optionally substituted with one or two R¹0, CF₃, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, C₂-C₄ alkylcarbonyl, C₂-C₄ haloalkylcarbonyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, cyano, nitro, thiocyanato,

10

15

20

25

30

- C_2 - C_4 alkoxycarbonyl, C_2 - C_4 haloalkoxycarbonyl, C_1 - C_4 alkylamino, C_2 - C_4 dialkylamino and $R^{11}S(O)_p$; or
- R² and R³ with the carbon atoms to which they are attached are taken together to form a:
 - (1) 5- or 6-membered unsaturated carbocyclic ring optionally substituted with R¹²; or
 - (2) 5- or 6-membered unsaturated heterocyclic ring optionally substituted with R¹² containing at least one of the atoms selected from O, N and S in the ring; or
- R² and R³ with the carbon atoms to which they are attached are taken together to form a:
 - (1) 5-, 6- or 7-membered saturated carbocyclic ring optionally substituted with a C_1 - C_4 alkyl group; or
- (2) 5-, 6- or 7-membered saturated heterocyclic ring optionally substituted with a C₁-C₄ alkyl group containing one or two O and/or S(O)_p atoms in the ring; each R⁴ is independently selected from the group consisting of C₁-C₄ alkyl and C₁-C₄ alkoxy;
- R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, (R¹⁵)(R¹⁶)P(O), phenyl or benzoyl each optionally substituted with one, two or three R¹⁷ substituents, naphthalenyl or a 5- or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R¹⁷ substituents;
- R⁶ is G, H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, R¹⁴S(O)_p, (R¹⁵)(R¹⁶)P(O), phenyl optionally substituted with one, two or three R¹⁷ substituents, naphthalenyl or a 5- or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R¹⁷ substituents; or
- R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a:
 - (1) 5- or 6-membered unsaturated heterocyclic ring optionally containing an additional heteroatom selected from N, O and S in the ring and optionally

- containing one or two ring members C(=O), the ring optionally substituted with one or two R^{18} substituents;
- (2) 5-, 6- or 7-membered saturated heterocyclic ring optionally containing an additional heteroatom selected from N, O and S(O)_p in the ring and optionally containing one or two ring members C(=O), the ring optionally substituted with one or two R¹⁸ substituents; or
- (3) 9-, 10- or 11-membered fused bicyclic ring system optionally containing an additional heteroatom selected from N, O and S(O)_p in the ring and optionally containing one or two ring members C(=O), the ring optionally substituted with one or two R¹⁸ substituents;
- R⁷ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl; each R⁸ is independently selected from the group H, C₁-C₄ alkyl and C₃-C₆ cycloalkyl; each R⁹ is independently selected from the group C₁-C₄ alkyl and C₁-C₄ haloalkyl; each R¹⁰ is independently selected from the group consisting of halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, hydroxy, cyano, nitro, thiocyanato and R⁹S(O)_p;
- each R¹¹ is independently selected from the group C₁-C₄ alkyl and C₁-C₄ haloalkyl; each R¹² is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylsulfinyl and C₁-C₄ alkylsulfonyl;
- each R¹³ is independently selected from the group consisting of halogen, hydroxy, cyano, nitro, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, aminocarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, R⁹S(O)_p and phenyl optionally substituted with one, two or three R¹⁷ substituents;
- each R¹⁴ is independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ haloalkyl and phenyl optionally substituted with one, two or three R¹⁷ substituents;
- each R^{15} and each R^{16} are independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy;
- each R¹⁷ is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylsulfinyl and C₁-C₄ alkylsulfonyl;
- each R¹⁸ is independently selected from the group consisting of halogen, cyano, nitro, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy,

5

15

20

25

30

 $R^{14}S(O)_p$, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl and phenyl, phenylmethyl or pyridinyl each optionally substituted with one, two or three R^{17} substituents;

each p is independently selected from 0, 1 and 2.

2. A compound of Claim 1 wherein

G is G-1;

m is 0, 1 or 2; and

Y is a direct bond;

X is NR^7 :

10

5

R¹ is H or C₁-C₄ alkyl;

 R^2 is C_1 - C_4 alkyl, CF_3 , C_3 - C_6 cycloalkyl, $R^{10}CH_2CH_2$ -, $(R^{10})_2CHCH_2$ -, $R^{10}CH_2CH(R^{10})$ -, $CH_3C(R^{10})_2$ -, or C_1 alkyl optionally substituted with C_1 - C_4 alkoxy;

R³ is C₁-C₄ alkyl, CF₃, C₁ alkyl optionally substituted with C₁-C₄ alkoxy, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, halogen, hydroxy, cyano, nitro, thiocyanato or R¹¹S(O)_p; and m is 0.

3. A compound of Claim 2 wherein

R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, or (R¹⁵)(R¹⁶)P(O);

 R^6 is G, H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl, $R^{14}S(O)_p$, $(R^{15})(R^{16})P(O)$, phenyl optionally substituted with one, two or three R^{17} substituents, naphthalenyl or a 5-or 6-membered unsaturated heterocyclic ring optionally substituted with one or two R^{17} substituents; or

R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro-2,5-dioxo-1*H*-pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl; ring each optionally substituted with R¹⁸.

15

20

25

30

4. A compound of Claim 3 wherein

R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, or (R¹⁵)(R¹⁶)P(O);

 R^6 is G, H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl, phenyl optionally substituted with one, two or three R^{17} substituents, or pyridinyl optionally substituted with one or two R^{17} substituents; or

R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro-2,5-dioxo-1*H*-pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl; ring each optionally substituted with R¹⁸.

5. A compound of Claim 3 wherein

R⁵ is H, C₁-C₆ alkyl optionally substituted with R¹³, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkenyloxy, C₄-C₆ cycloalkylalkoxy, C₂-C₆-cyanoalkoxy, phenylmethoxy, C₂-C₆ alkylcarbonyl, C₃-C₆ cycloalkylcarbonyl, phenylmethoxycarbonyl, formyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, hydroxy, R¹⁴S(O)_p, or (R¹⁵)(R¹⁶)P(O);

 R^6 is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl, phenyl optionally substituted with one, two or three R^{17} substituents, or pyridinyl optionally substituted with one or two R^{17} substituents; or

R⁵ and R⁶ with the nitrogen atom to which they are attached are taken together to form a 1-piperazinyl; 2,5-dioxo-1-pyrrolidinyl; 2,5-dihydro-2,5-dioxo-1*H*-pyrrol-1-yl; or 1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl; ring each optionally substituted with R¹⁸.

6. A compound of Claim 1 wherein G is G-2;

10

5

15

20

25

30

15

Y is a direct bond;

X is NR⁷;

 Z^1 is S;

 R^2 is C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy, C_3 - C_6 cycloalkyl or C_1 alkyl optionally substituted with C_1 - C_4 alkoxy;

 R^3 is C_1 - C_4 alkyl, CF_3 , C_1 alkyl optionally substituted with C_1 - C_4 alkoxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, halogen, hydroxy, cyano, nitro, thiocyanato or $R^{11}S(O)_p$; and m is 0.

- 7. An arthropodicidal composition comprising an arthropodicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 8. A method for controlling arthropods comprising contacting the arthropods or their environment with an arthropodicidally effective amount of a compound of Claim 1.
 - 9. A fungicidal composition comprising a fungicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 10. A method for controlling plant diseases caused by fungal plant pathogens comprising applying to the plant or portion thereof, or to the plant seed or seedling, a fungicidally effective amount of a compound of Claim 1.

INTERNATIONAL SEARCH REPORT

Inte. ..ional Application No PCT/US 98/26013

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D239/42 C07D403/12 C07D401/12 CO7D417/12 C07D285/08 A01N43/54 A01N43/82 C07D401/14 C07D413/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7D A01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1 - 10WO 96 06086 A (UBE INDUSTRIES, LTD.) Y 29 February 1996 cited in the application see claims 1-12 1 - 10PATENT ABSTRACTS OF JAPAN Υ vol. 018, no. 639, 6 December 1994 & JP 06 247939 A (UBE INDUSTRIES, LTD.), 6 September 1994 see abstract 1 - 10Y PATENT ABSTRACTS OF JAPAN vol. 008, no. 095, 29 September 1995 & JP 07 138237 A (UBE INDUSTRIES, LTD.), 30 May 1995 see abstract -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use. exhibition or ments, such combination being obvious to a person skilled in the art. other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 13 April 1999 23/04/1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Herz, C

INTERNATIONAL SEARCH REPORT

Inter Jonal Application No PCT/US 98/26013

0.40	POOLING NEW CONTRACTOR TO BE SELEVANT	
C.(Continu Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 22 56 289 A (WACKER-CHEMIE GMBH)	1-10
n	6 June 1974 see claims 1-3,5; table 4	
Α	GB 1 182 584 A (ICI LTD.) 25 February 1970 see claims 1-28; table IV	1-10
Α	WO 94 20490 A (CIBA-GEIGY AG) 15 September 1994 see page 132 - page 137; claims 1-43	1-10
A	WO 97 16452 A (NOVARTIS AG) 9 May 1997 see claim 1; example 38	1-6

INTERNATIONAL SEARCH REPORT

Information on patent family members

inter ronal Application No PCT/US 98/26013

Patent document cited in search report	14, 1	Publication date		atent family nember(s)		Publication date
WO 9606086	Α	29-02-1996	JP	8113564	A	07-05-1996
DE 2256289		06-06-1974	BE	807384	Α	16-05-1974
			FR	2207134		14-06-1974
			JP	49081539		06-08-1974
			NL	7315687	Α	20-05-1974
GB 1182584	Α	25-02-1970	AT	276854	В	10-12-1969
			AT	279968	В	25-03-1970
			BE	696470		02-10-1967
			CH	497836		31-10-1970
			CS	165324	В	22-12-1975
			DE	1795726		31-07-1975
			DE	1795772		04-09-1975
			DE	1795833		11-03-1976
			DE	1795834	Α	24-06-1976
			DE		Α	24-06-1976
			DE	1695270	Α	20-04-1972
			DK	126593	В	30-07-1973
			ES	338694	Α	01-07-1968
			FR	1518112		28-06-1968
			NL	6704456	A,B	02-10-1967
			OA		Α	05-05-1970
			PH	11586		31-03-1978
			SE	356874		12-06-1973
			SE	405117		20-11-1978
			บร	3980781		14-09-1976
			US	4000138	Α	28-12-1976
WO 9420490	Α	15-09-1994	AU	6141294		26-09-1994
			EP	0687262		20-12-1995
			JP			13-08-1996
			ZA	9401411	Α	02-09-1994
WO 9716452	 A	09-05-1997	AU	7296896	Α	22-05-1997
	- •		CA	2234609	Α	09-05-1997
			CN	1202896	Α	23-12-1998
			EP	0874846	Α	04-11-1998