COMP 335: Introduction to Theoretical Computer Science

Assignment 1

Nathan Grenier

September 12, 2024 Fall 2024

- 1. [15 Points] For each of the following statements write if the statement is TRUE or FALSE. If the statement is TRUE then provide a proof. If the statement is FALSE then provide a counter-example.
 - (a) For every language L we have $L^2 \subseteq L^3$

Answer: FALSE

Counter Example:

$$\Sigma = \{a, b\}$$

$$L = \{a, ab\}$$

$$L^2 = LL = \{aa, aab, aba, abab\}$$

$$L^3 = L^2L = \{aaa, aaaba, aaba, aabab, abaa, abaab, ababa, ababab\}$$

 $\{aa, aab, aba, abab\} \not\subseteq \{aaa, aaaba, aaba, aabab, abaa, abaab, ababa, ababab\}$

$$\therefore L^2 \not\subseteq L^3$$

(a) For every language L we have $L^2 \subseteq L^3$

This statement is TRUE.

Proof:

Let L be any language over some alphabet Σ .

Consider any string $w \in L^2$. This means w can be written as w = xy, where $x, y \in L$.

Now, we can form a string in L³ by concatenating w with any string $z \in L$.

So, $xyz \in L^3$, where x, y, $z \in L$.

But notice that xy (which is w) is a prefix of xyz.

This means that every string in L^2 is also contained in L^3 as a prefix.

Therefore, $L^2 \subseteq L^3$.

This proof shows that for any language L, every string in L^2 is also in L^3 , which establishes the subset relationship $L^2 \subseteq L^3$.

(b) For every two languages L_1 and L_2 we have $(L_1 \cup L_2)^* \subseteq (L_1 L_2)^*$

Answer:

Proof:

(c) Let L_1 and L_2 be two languages such that $\lambda \in L_1 \cap L_2$. Then it holds that $(L_1L_2)^* = (L_2L_1)^*$

Answer:

Proof:

2. [10 Points] The following is a transition diagram for a DFA over the alphabet $\Sigma = \{0, 1\}$. Answer the following questions about this automaton:

(a) What is the start state? What is the set of accept states?

Answer:

Start State = q_0

Accept States = $\{q_0, q_1, q_2, q_3, q_6\}$

(b) What is the sequence of states the DFA goes through on input 101100?

Answer: $(q_0, q_1, q_5, q_6, q_7, q_3, q_7)$

(c) Does the machine accept every string w that contains exactly two 1s? Why or why not?

Answer: $L = \{0^*10^*10^*\}$

Yes. Since the string always contains exactly two 1s, the machine traverses to one of these states $\{q_2, q_6\}$. Since $q_2, q_6 \in F$ and only 0 appear in the string after consuming both 1s, the machine can only transition between these acceptance states.

(d) Does the machine reject every string w that has odd number of 0s? Why or why not?

Answer: $L = \{w \in \Sigma^* : \text{Where } n_0(w) \text{ mod } 2 \neq 0\}$

No. Since there's an odd number of 0s, the any string will always terminate in the following states $\{q_4, q_5, q_6, q_7\}$. However, not all of these states are acceptance states (only $q_6 \in F$). Therefore, depending on how many 1s are present in the string, we may or may not reach an acceptance state.

Counter Example: w = 01, Final State = q_5

(e) Describe the language accepted by the machine using the set builder notation.

$$L = \{ w \in \Sigma^* : \text{Where } n_0(w) \bmod 2 = 0 \} \lor$$

$$\{ w \in \Sigma^+ : \text{Where } n_0(w) \bmod 2 \neq 0 \land n_1(w) = 2 \}$$

$$(1)$$

- 3. [30 Points] For each of the following languages, give a DFA that accepts it.
 - (a) $\{ba^nb^m : n \ge 3, m \ge 2\}$

Answer:

(b) $\{w \in \{a, b\}^* : \text{every maximal substring } w \text{ consisting entirely of symbols } a \text{ is of length exactly } 3\}$

Answer:

(c) $\{w \in \{a,b\}^* : w \text{ does not contain } bab \text{ as a substring}\}$

(d) $\{w \in \{a, b\}^* : w \text{ begins with bb and } n_b(w) \text{ mod } 3 = 0\}$

Answer:

(e) $\{a^m b^n : mn > 4\}$

(f) $\{vwv^R: v, w \in \{a, b\}^* \text{ and } | v |= 2\}$

