Image Filtering in Fourier (Frequency) Domain

Computer Vision: CS 566

Computer Science

University of Wisconsin-Madison

Image Filtering in Fourier Domain

Transform image to new one that is easier to manipulate/analyze.

Topics:

- (1) Frequency Representation of Signals
- (2) Fourier Transform
- (3) Convolution and Fourier Transform
- (4) Deconvolution in Frequency Domain
- (5) Sampling Theory

Jean Baptiste Joseph Fourier

(1768-1830)

Any Periodic Function can be rewritten as a Weighted Sum of Sinusoids of Different Frequencies.

Sinusoid

$$f(x) = A\sin(2\pi ux + \varphi)$$

A: Amplitude T: Period

 φ : Phase u: Frequency (1/T)

Fourier Series

Fourier Series

An Alternate Representation of Signal

Fourier Transform (FT)

Represents a signal f(x) in terms of Amplitudes and Phases of its Constituent Sinusoids.

$$f(x) \longrightarrow F(u)$$

Inverse Fourier Transform (IFT)

Computes the signal f(x) from the Amplitudes and Phases of its Constituent Sinusoids.

$$f(x) \leftarrow F(u)$$

Fourier Transform is Complex!

F(u) holds the Amplitude and Phase of the Sinusoid of frequency u.

$$F(u) = \Re\{F(u)\} + i \Im\{F(u)\}$$

Amplitude: $A(u) = \sqrt{\Re\{F(u)\}^2 + \Im\{F(u)\}^2}$

Phase: $\varphi(u) = \operatorname{atan2}(\mathfrak{Im}\{F(u)\}, \mathfrak{Re}\{F(u)\})$

Signal f(x)

$$f(x) = \cos 2\pi kx$$

$$F(u) = \frac{1}{2} [\delta(u+k) + \delta(u-k)]$$

Signal f(x)

$$f(x) = \cos 2\pi k_1 x + \cos 2\pi k_2 x$$

$$F(u) = \frac{1}{2} [\delta(u + k_1) + \delta(u - k_1) + \delta(u + k_2) + \delta(u - k_2)]$$

Signal f(x)

f(x)
x

$$f(x) = 1$$

$$F(u) = \delta(u)$$

Signal f(x)

 $f(x) = \delta(x)$

$\Re\{F(u)\}$
u

$$F(u) = 1$$

Signal f(x)

$$f(x) = \text{Rect}(\frac{x}{T})$$

$$F(u) = T \operatorname{sinc} Tu$$

Signal f(x)

$$f(x) = e^{-ax^2}$$

$$F(u) = \sqrt{\pi/a} e^{-\pi^2 x^2/a}$$

Properties of Fourier Transform

Property	Spatial Domain	Frequency Domain
Linearity	$\alpha f_1(x) + \beta f_2(x)$	$\alpha F_1(u) + \beta F_2(u)$
Scaling	f(ax)	$\frac{1}{ a }F\left(\frac{u}{a}\right)$
Shifting	f(x-a)	$e^{-i2\pi ua}F(u)$
Differentiation	$\frac{d^n}{dx^n}\big(f(x)\big)$	$(i2\pi u)^n F(u)$

Correlation vs. Convolution

Correlation:

$$R_{tf}[i,j] = \sum_{m} \sum_{n} f[m,n]t[m-i,n-j] = t \otimes f$$

Convolution:

$$g[i,j] = \sum_{m} \sum_{n} f[m,n] \underline{t[i-m,j-n]} = t * f$$

Flipping in Convolution

Convolution with Discrete Images

$$g[i,j] = \sum_{m=1}^{M} \sum_{n=1}^{N} f[m,n]h[i-m,j-n]$$

Convolution and Fourier Transform

Spatial Domain			Frequency Domain
g(x) = f(x) * h(x) Convolution	←	→	G(u) = F(u) H(u) Multiplication
g(x) = f(x) h(x) Multiplication	←		G(u) = F(u) * H(u) Convolution

Convolution Using Fourier Transform

$$g(x) = f(x) * h(x)$$

$$IFT \qquad FT \qquad FT$$

$$G(u) = F(u) \times H(u)$$

Gaussian Smoothing in Fourier Domain

Convolve the Noisy Signal with a Gaussian Kernel

Gaussian Blurred Signal g(x)

Finding FT and IFT

Fourier Transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$$

Inverse Fourier Transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} du$$

x: space

u: frequency

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$i = \sqrt{-1}$$

2D Fourier Transform

Fourier Transform:

$$F(u,v) = \iint_{-\infty}^{\infty} f(x,y)e^{-i2\pi(ux+vy)}dxdy$$

u and v are frequencies along x and y, respectively

Inverse Fourier Transform:

$$f(x,y) = \iint_{-\infty}^{\infty} F(u,v)e^{i2\pi(xu+yv)}dudv$$

2D Fourier Transform: Discrete Images

Discrete Fourier Transform (DFT):

$$F[p,q] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-\frac{i2\pi pm}{M}} e^{-\frac{i2\pi qn}{N}}$$

$$p = 0 \dots M-1$$

$$q = 0 \dots N-1$$

p and q are frequencies along m and n, respectively

Inverse Discrete Fourier Transform (IDFT):

$$f[m,n] = \frac{1}{MN} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} F[p,q] e^{\frac{i2\pi pm}{M}} e^{\frac{i2\pi qn}{N}}$$

$$m = 0 \dots M - 1$$
$$n = 0 \dots N - 1$$

Note: log(|F|) is used just for display

Low Pass Filtering

Low Pass Filtering

Low Pass Filtering

Low Pass Filtering

Gaussian Smoothing

Gaussian Smoothing

Gaussian Smoothing

High Pass Filtering

High Pass Filtering

High Pass Filtering

Motion Blur

Scene f(x,y)

*

PSF h(x, y) (Camera Shake)

Image g(x,y)

$$f(x,y) * h(x,y) = g(x,y)$$

Motion Blur

$$f(x,y) * h(x,y) = g(x,y)$$

Given captured image g(x,y) and PSF h(x,y), can we estimate actual scene f(x,y)?

Fourier Transform to the rescue

Let f' be the recovered scene.

$$f'(x,y) * h(x,y) = g(x,y)$$

$$F'(u,v)H(u,v) = G(u,v)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow IFT \longrightarrow f'(x,y)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Step 1: Recover F'(u, v) in Fourier Domain

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Step 2: Compute IFT of F'(u,v) to recover scene

Adding Noise to the Problem

Scene f(x, y)

PSF h(x, y) (Camera Shake)

Noise $\eta(x, y)$

Image g(x, y)

$$f(x,y) * h(x,y) + \eta(x,y) = g(x,y)$$

Can we afford to ignore noise?

If we ignore the noise $(\eta(x,y))$:

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Image g(x,y) (with noise)

 $\mathsf{PSF}\ h(x,y)$

Recovered f'(x, y)

If we ignore the noise $(\eta(x,y))$:

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Higher frequencies in F'(u, v) are amplified

If we ignore the noise $(\eta(x, y))$:

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Noise is significantly amplified

Deconvolution: Issues

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

- 1. Where H(u,v)=0, $F'(u,v)=\infty \to \text{Not recoverable}$
- 2. Motion blur filter H(u, v) is a low pass filter.

For high frequencies (u, v):

- Noise N(u,v) in G(u,v) is high
- Filter $H(u, v) \approx 0$

Noise in G(u, v) is amplified

We need some kind of Noise Suppression.

Noise Suppression: Weiner Deconvolution

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$$

Where:

Weiner Filter
$$\stackrel{\text{def}}{=}$$
 $W(u,v) = \frac{1}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$

Noise-to-Signal Ratio, NSR(u, v)

$$NSR(u, v) = \frac{\text{Power of Noise at } (u, v)}{\text{Power of Signal (Scene) at } (u, v)} = \frac{|N(u, v)|^2}{|F(u, v)|^2}$$

Noise Suppression: Weiner Deconvolution

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$$

 Determining NSR requires us to have prior knowledge of the noise "pattern" and the scene (or of a similar scene).

$$NSR(u, v) = \frac{|N(u, v)|^2}{|F(u, v)|^2}$$

• Often NSR is set to a single suitable constant λ .

$$NSR(u, v) = \lambda$$

Noise Suppression: Weiner Deconvolution

Image g(x, y)

 $NSR(u,v) = \lambda = 0.002$ was used to recover image

From Continuous to Digital Image

Continuous Signal:

Digital Signal:

How "dense" should the samples be?

Sampling Problem

Low Frequency Signal

Reconstructed Signal

Higher Frequency Signal

Reconstructed Signal

Sampling Problem

"Well sampled" image

"Under sampled" image (visible aliasing artifacts)

Aliasing in Digital Imaging

Aliasing occurs when imaging a scene (signal) that has frequencies above the image sensor's Nyquist Frequency

Typical Power Spectrum of Natural Scenes

Aliasing artifacts usually occur in the form of Moiré patterns

How do sensors combat aliasing?

Minimizing the Effects of Aliasing

Band Limit: Clip the signal above the Nyquist frequency. Effectively, "blur" the scene before sampling.

Sensors use two strategies.

Pixels are area-samplers (box-averaging filter)

Use optical low-pass filter (anti-aliasing filter)

References: Textbooks

Digital Image Processing (Chapter 3) González, R and Woods, R., Prentice Hall

Computer Vision: Algorithms and Applications (Chapter 3) Szeliski, R., Springer

Robot Vision (Chapter 6 and 7) Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 7) Forsyth, D and Ponce, J., Prentice Hall

Image Credits

http://en.wikipedia.org/wiki/File:Fourier2.jpg I.1 I.2 http://www.instructables.com/image/FY1T8VKG79F1MO7/Rubikscube-pranks.jpg I.3 Matlab Demo Image I.4 Matlab Demo Image I.5 http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg http://www.todayandtomorrow.net/wp-content/uploads/2010/06/ I.6 shirt video.jpg http://www.svi.nl/wikiimg/StFargeaux_kasteel_buiten1_aliased.jpg I.7 I.8 http://learn.hamamatsu.com/articles/images/lenslet.jpg http://www.astrosurf.com/luxorion/Physique/nikon-d200-low-pass-ir.jpg I.9