

properties of non-archimedean valuations

Canonical name PropertiesOfNonarchimedeanValuations

Date of creation 2013-03-22 18:01:11 Last modified on 2013-03-22 18:01:11

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 6

Author rm50 (10146)
Entry type Theorem
Classification msc 13F30
Classification msc 13A18
Classification msc 12J20
Classification msc 11R99

Related topic CompleteUltrametricField

If K is a field, and $|\cdot|$ a nontrivial non-archimedean valuation (or absolute value) on K, then $|\cdot|$ has some properties that are counterintuitive (and that are false for archimedean valuations).

Theorem 1. Let K be a field with a non-archimedean absolute value $|\cdot|$. For r > 0 a real number, $x \in K$, define

$$B(x,r) = \{y \in K \mid |x-y| < r\}, \text{ the open ball of radius } r \text{ at } x$$

 $\bar{B}(x,r) = \{y \in K \mid |x-y| \le r\}, \text{ the closed ball of radius } r \text{ at } x$

Then

- 1. B(x,r) is both open and closed;
- 2. $\bar{B}(x,r)$ is both open and closed;
- 3. If $y \in B(x,r)$ (resp. $\bar{B}(x,r)$) then B(x,r) = B(y,r) (resp. $\bar{B}(x,r) = \bar{B}(y,r)$);
- 4. B(x,r) and B(y,r) (resp. $\bar{B}(x,r)$ and $\bar{B}(y,r)$) are either identical or disjoint;
- 5. If $B_1 = B(x,r)$ and $B_2 = B(y,s)$ are not disjoint, then either $B_1 \subset B_2$ or $B_2 \subset B_1$;
- 6. If (x_n) is a sequence of elements of K with $\lim_{n\to\infty} x_n = 0$, then $\sum_{n=1}^{\infty} x_n$ is Cauchy (and thus if K is complete, a sufficient condition for convergence of a series is that the terms tend to zero)

Proof. We start by proving (3). Suppose $y \in B(x,r)$. If $z \in B(x,r)$, then since the absolute value is non-archimedean, we have

$$|z - y| = |(z - x) + (x - y)| \le \max(|z - x|, |x - y|) < r$$

so that $z \in B(y,r)$. Clearly $x \in B(y,r)$, so reversing the roles of x and y, we see that B(x,r) = B(y,r). Finally, replacing B by \bar{B} and < by \leq , we get equality of closed balls as well.

(4) is now trivial: If $B(x,r) \cap B(y,r) \neq \emptyset$, choose $z \in B(x,r) \cap B(y,r)$; then by (3), B(x,r) = B(z,r) = B(y,r). An identical argument proves the result for closed balls.

To prove (5), choose $z \in B_1 \cap B_2$. Assume first that $r \leq s$; then $B(z,r) = B_1$, and $B(z,r) \subset B(z,s) = B_2$, so that $B_1 \subset B_2$. If $s \leq r$, then we have identically that $B_2 \subset B_1$. (Note that (4) is a special case when r = s).

(1) and (2) now follow: for (1), note that B(x,r) is obviously open; its complement consists of a union of open balls of radius r disjoint with B(x,r) and its complement is therefore open. Thus B(x,r) is closed. For (2), $\bar{B}(x,r)$ is obviously closed; to see that it is open, take any $y \in \bar{B}(x,r)$; then $\bar{B}(x,r) = \bar{B}(y,r)$ and thus $B(y,s) \subset \bar{B}(y,r)$ for s < r is an open neighborhood of y contained in $\bar{B}(x,r)$, which is therefore open.

Finally, to prove (6), we must show that given ϵ , we can find N > 0 sufficiently large such that $|\sum_{i=m}^{n} x_i| < \epsilon$ whenever m, n > N. Simply choose N such that $|x_i| < \epsilon$ for i > N; then

$$\left| \sum_{i=m}^{n} x_i \right| \le \max(\left| x_m \right|, \dots, \left| x_n \right|) < \epsilon$$