Regression

Week 5 & 6

Spring 2025

Rida Maryam

What is Regression

- Regression is a statistical method used to model the relationship between a dependent (target) variable and one or more independent (predictor) variables.
- Regression is a statistical method that help us to understand and predict the relationship between a dependent variable and one or more independent variables.
- It represents the best-fit line that predicts the dependent variable based on the independent variable.

Application of Regression

Regression plays a crucial role in various computer science fields and other fields.

- Commonly used for prediction, forecasting, and determining the strength of relationships between variables.
- Its applications continue to grow with advancements in AI and data science, Such as

Finance and Economics

- Predicting stock prices based on historical trends.
- Estimating economic growth using GDP indicators.

Application of Regression

Healthcare

- Predicting disease progression based on patient data.
- Estimating the effectiveness of treatments using medical history.

Marketing and Sales

Forecasting sales based on advertising spend and consumer behavior.

Real-world Applications of Regression in Software Engineering

- **1.Predictive Modeling**: Regression is used to predict outcomes such as software defects, project completion time, or system performance.
- 2. Data Analysis: It helps in analyzing trends and patterns in large datasets, such as user behavior or system logs.
- **3.Resource Estimation**: Regression models can estimate the resources (time, cost, effort) required for software development projects.
- **4. Quality Assurance**: Predicting the likelihood of bugs or failures in software systems.

Difference Between Regression and Classification

Regression: Predicts continuous values (e.g., house prices, temperature, sales).

Classification: Predicts discrete labels or categories (e.g., spam/not spam, yes/no, high/medium/low).

Example: Predicting the price of a house is a regression problem, while predicting whether a house will sell or not is a classification problem.

Identify which problem requires classification and which requires regression.

- 1. A bank wants to predict whether a loan applicant will default on their loan or not.
- 2. A real estate agency wants to estimate the price of a house based on its size, location, and number of rooms.
- 3. An e-commerce website wants to predict whether a customer will buy a product based on their browsing history.
- 4. A weather forecasting system needs to predict the amount of rainfall in millimeters for the next day.

Types Of Regression

- 1. Liner Regression
- 2. Multiple regression
- 3. Polynomial regression
- 4. Ridge Regression (L2 Regularization)
- 5. Lasso Regression (L1 Regularization)
- 6. Logistic Regression (For Classification)
- 7. Stepwise Regression
- 8. Support Vector Regression (SVR)
- 9. Decision Tree Regression
- 10. Random Forest Regression

LINEAR REGRESSION

Models the relationship between the dependent and independent variables as a straight line.

```
Equation: y=mx+c
```

```
where:
```

```
1.y = dependent variable,
```

2.x = independent variable,

3.m = slope of the line, (how much y changes for a unit change in x)

4.c = y-intercept.(value of y, when x is 0)

Example: Predicting house prices based on square footage.

• Example: Predicting Monthly Sales Based on Advertising Budget

Given Data: Advertising Budget vs Sales

Advertising Budget (x) (in \$1000s)	Monthly Sales (y) (in \$1000s)
1	20
2	25
3	30
4	38
5	45
6	50
7	55
8	60

Formula: y=mx+c

$$m = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$
 $c = ar{y} - mar{x}$

Step 1: Calculate Mean Values

$$\bar{x} = \frac{1+2+3+4+5+6+7+8}{8} = \frac{36}{8} = 4.5$$

$$\bar{y} = \frac{20+25+30+38+45+50+55+60}{8} = \frac{323}{8} = 40.375$$

Step 2: Compute m (Slope)

$$m=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sum (x_i-ar{x})^2}$$

x_i	y_i	$x_i - ar{x}$	$y_i - ar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i-ar{x})^2$
1	20	-3.5	-20.375	71.3125	12.25
2	25	-2.5	-15.375	38.4375	6.25
3	30	-1.5	-10.375	15.5625	2.25
4	38	-0.5	-2.375	1.1875	0.25
5	45	0.5	4.625	2.3125	0.25
6	50	1.5	9.625	14.4375	2.25
7	55	2.5	14.625	36.5625	6.25
8	60	3.5	19.625	68.6875	12.25

$$\sum (x_i - \bar{x})(y_i - \bar{y}) = 248.5$$
 $\sum (x_i - \bar{x})^2 = 40$
 $m = \frac{248.5}{40} = 6.2125$

Step 3: Compute c (Intercept)

$$c=ar{y}-mar{x}$$

$$c=40.375-(6.2125\times 4.5)$$

$$c=40.375-27.95625=12.41875$$

Final Equation

$$y = 12.42 + 6.21x$$

Step 4: Prediction

• If the company spends \$5,000 on advertising (x=5):

```
• y=12.42+6.21(5)
```

- y=12.42+31.05
- y=43.47

Predicted sales: \$43,470

Example: Predicting Exam Scores Based on Study Hours

Study Hours (X)	Exam Score (Y)
2	50
4	70
6	80
8	90

Formula to Find m and c

$$m = rac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$$
 $c = rac{\sum Y - m(\sum X)}{n}$

Study Hours (X)	Exam Score (Y)	X^2	XY
2	50	4	100
4	70	16	280
6	80	36	480
8	90	64	720
Sum	290	120	1580

Calculate m and c:

$$m = \frac{4(1580) - (20)(290)}{4(120) - (20)^2} = \frac{6320 - 5800}{480 - 400} = \frac{520}{80} = 6.$$
$$c = \frac{290 - 6.5(20)}{4} = \frac{290 - 130}{4} = \frac{160}{4} = 40$$

So, the regression equation is:

$$Y = 6.5X + 40$$

Now put X=5 to predict the Exam score.

$$Y=6.5(5)+40$$

$$y=32.5+40$$

$$y=72.5$$

If a student studies for 5 hours, he can score 72.5.

Your Task?

Write A computer program in any language to implement the following program. (Take a data set of 10 rows)

- 1. Predicting house prices based on square footage.
- 2. Predicting Exam Scores Based on Study Hours

MULTIPLE REGRESSION

Multiple Regression?

Multiple regression is a statistical technique used to model the relationship between a **dependent variable (Y)** and **two or more independent variables (X₁, X₂, ..., X\square)**. It extends simple linear regression, which involves only one independent variable, to cases where multiple factors influence the outcome.

Multiple Linear Regression

Extension of linear regression with multiple independent variables.

Formula:
$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_n X_n + \varepsilon$$

- > Y: Dependent variable (the outcome you want to predict).
- > X₁, X₂, ..., X□: Independent variables (predictors).
- $\triangleright \beta_0$: Intercept (value of **Y** when all **X** are 0).
- $\triangleright \beta_1, \beta_2, ..., \beta_\square$: Coefficients (represent the change in Y for a unit change in the corresponding X, holding other variables constant).
- \succ ϵ : Error term (accounts for variability in Y not explained by the independent variables).

Example: Predicting Scores based on study hours, and Attendance.

Predicting Scores based on study hours, and Attendance.

Here's the sample dataset again:			
Student	Study Hours (X ₁)	Attendance % (X ₂)	Exam Score (Y)
1	2	80	50
2	4	90	70
3	6	95	80
4	8	100	90

The regression equation is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Where:

- Y: Exam score (dependent variable, range: 0 to 100).
- X_1 : Study hours.
- X_2 : Attendance percentage (range: 0 to 100).
- β_0 : Intercept.
- β_1, β_2 : Coefficients for X_1 and X_2 .
- ε: Error term.

The normal equations for two variables are:

1.
$$\sum Y = n\beta_0 + \beta_1 \sum X_1 + \beta_2 \sum X_2$$

2.
$$\sum X_1Y = \beta_0 \sum X_1 + \beta_1 \sum X_1^2 + \beta_2 \sum X_1X_2$$

3.
$$\sum X_2Y = eta_0 \sum X_2 + eta_1 \sum X_1X_2 + eta_2 \sum X_2^2$$

Student	X_1	X_2	$oldsymbol{Y}$	X_1^2	X_2^2	X_1Y	X_2Y	X_1X_2
1	2	80	50	4	6400	100	4000	160
2	4	90	70	16	8100	280	6300	360
3	6	95	80	36	9025	480	7600	570
4	8	100	90	64	10000	720	9000	800

Using the sample data, we calculate the sums:

Sum	Value
$\sum Y$	290
$\sum X_1$	20
$\sum X_2$	365
$\sum X_1^2$	120
$\sum X_2^2$	33525
$\sum X_1 X_2$	1890
$\sum X_1 Y$	1580
$\sum X_2 Y$	26900

The normal equations for two variables are:

1.
$$\sum Y = n\beta_0 + \beta_1 \sum X_1 + \beta_2 \sum X_2$$

2.
$$\sum X_1Y = \beta_0 \sum X_1 + \beta_1 \sum X_1^2 + \beta_2 \sum X_1X_2$$

3.
$$\sum X_2Y = eta_0 \sum X_2 + eta_1 \sum X_1X_2 + eta_2 \sum X_2^2$$

Substitute the sums into the normal equations:

1.
$$290 = 4\beta_0 + 20\beta_1 + 365\beta_2$$

$$2.1580 = 20\beta_0 + 120\beta_1 + 1890\beta_2$$

3.
$$26900 = 365\beta_0 + 1890\beta_1 + 33525\beta_2$$

$\lceil 4 \rceil$	20	365	$\lceil \beta_0 \rceil$		290
20	120	1890	β_1	=:	1580
365	1890	33525	$oxed{eta_2}$		26900

Using the sample data, we calculate the sums:

Sum	Value
$\sum Y$	290
$\sum X_1$	20
$\sum X_2$	365
$\sum X_1^2$	120
$\sum X_2^2$	33525
$\sum X_1X_2$	1890
$\sum X_1 Y$	1580
$\sum X_2 Y$	26900

 $eta_0=10$: The expected exam score when study hours and attendance are both 0.

 $eta_1=5$: For every additional hour of study, the exam score increases by 5 points, holding attendance constant.

 $eta_2=0.2$: For every 1% increase in attendance, the exam score increases by 0.2 points, holding study hours constant.

Equation:

For example, if a student:

Studies 5 hours, and has 85% attendance,

The predicted exam score is:

$$Y=10+5(5)+0.2(85)=$$

Polynomial Regression

Polynomial regression is a type of regression analysis that models the relationship between a dependent variable $\frac{v}{v}$ and an independent variable $\frac{v}{v}$ as an nth-degree polynomial

Formula:
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots + \beta_n x^n + \epsilon$$

- **y** → Dependent variable (output or response).
- $\mathbf{x} \rightarrow$ Independent variable (input or predictor).
- **n** → Degree of the polynomial
- $\beta 0,\beta 1,\beta 2,...,\beta n \rightarrow$ Regression coefficients (weights assigned to each power of x).
- Example: Predicting population growth over time.

Polynomial Regression

- •B0 is the **intercept**, the value of y when x=0.
- •B1 x is the **linear term**, representing a straight-line effect.
- •B2 x2 is the quadratic term, capturing curvature.

A higher-degree polynomial allows the model to fit more complex relationships, but too high a degree can lead to **overfitting**.

Evaluating Regression Models: R-squared & Error Analysis

- Once a regression model is built, it is essential to evaluate its performance.
- Common evaluation metrics include:
 - 1. R-squared
 - 2. Mean Absolute Error (MAE)
 - 3. Mean Squared Error (MSE)

R Squared

- •R-squared shows how well the model predicts the actual values, ranging from 0 (no fit) to 1 (perfect fit).
- •A higher R-squared means the model is more accurate in explaining the data.

The formula for \mathbb{R}^2 (coefficient of determination) is:

$$R^2 = 1 - rac{SS_{ ext{residual}}}{SS_{ ext{total}}}$$

Where:

- $SS_{ ext{total}} = \sum (y_{ ext{actual}} \bar{y})^2$ (Total sum of squares)
- $SS_{
 m residual} = \sum (y_{
 m actual} y_{
 m predicted})^2$ (Residual sum of squares)
- ullet $ar{y}$ is the mean of actual y-values
- $ullet y_{
 m actual}$ are the actual values
- ullet $y_{
 m predicted}$ are the predicted values from the model

We have the **linear regression equation**:

The **given data**:

Advertising Budget (\$1000s) (x)	Monthly Sales (\$1000s) (y)
1	20
2	25
3	30
4	38
5	45
6	50
7	55
8	60

R-squared

R-squared

Step 1: Compute Mean of y

$$\bar{y} = \frac{20 + 25 + 30 + 38 + 45 + 50 + 55 + 60}{8}$$

$$\bar{y} = \frac{323}{8} = 40.375$$

Step 2: Compute Predicted Values $y_{ m predicted}$

Using the equation y=12.42+6.21x, we compute $y_{
m predicted}$:

\boldsymbol{x}	$y_{ m actual}$	$y_{ m predicted} = 12.42 + 6.21 x$
1	20	$12.42 + (6.21 \times 1) = 18.63$
2	25	12.42 + (6.21 imes 2) = 24.84
3	30	12.42 + (6.21 imes 3) = 31.05
4	38	12.42 + (6.21 imes 4) = 37.26
5	45	12.42 + (6.21 imes 5) = 43.47
6	50	$12.42 + (6.21 \times 6) = 49.68$
7	55	12.42 + (6.21 imes 7) = 55.89
8	60	$12.42 + (6.21 \times 8) = 62.10$

Step 3: Compute SS_{total} (Total Sum of Squares)

Formula:

$$SS_{
m total} = \sum (y_i - ar{y})^2$$

$y_{ m actual}$	$y_{ m actual} - ar{y}$	$(y_{ m actual} - ar{y})^2$
20	20 - 40.375 = -20.375	$(-20.375)^2 = 415.13$
25	25 - 40.375 = -15.375	$(-15.375)^2 = 236.44$
30	30 - 40.375 = -10.375	$(-10.375)^2 = 107.69$
38	38 - 40.375 = -2.375	$(-2.375)^2 = 5.64$
45	45 - 40.375 = 4.625	$(4.625)^2 = 21.39$
50	50 - 40.375 = 9.625	$(9.625)^2 = 92.62$
55	55 - 40.375 = 14.625	$(14.625)^2 = 213.94$
60	60 - 40.375 = 19.625	$(19.625)^2 = 385.06$

Step 4: Compute $SS_{ m residual}$ (Residual Sum of Squares)

Formula:

$$SS_{ ext{residual}} = \sum (y_{ ext{actual}} - y_{ ext{predicted}})^2$$

$y_{ m actual}$	$y_{ m predicted}$	$y_{ m actual} - y_{ m predicted}$	$(y_{ m actual} - y_{ m predicted})^2$
20	18.63	20 - 18.63 = 1.37	$(1.37)^2 = 1.88$
25	24.84	25 - 24.84 = 0.16	$(0.16)^2 = 0.03$
30	31.05	30 - 31.05 = -1.05	$(-1.05)^2 = 1.10$
38	37.26	38 - 37.26 = 0.74	$(0.74)^2 = 0.55$
45	43.47	45 - 43.47 = 1.53	$(1.53)^2 = 2.34$
50	49.68	50 - 49.68 = 0.32	$(0.32)^2 = 0.10$
55	55.89	55 - 55.89 = -0.89	$(-0.89)^2 = 0.79$
60	62.10	60 - 62.10 = -2.10	$(-2.10)^2 = 4.41$

$$SS_{\text{residual}} = 11.20$$

Step 5: Compute \mathbb{R}^2

Formula:

$$R^2 = 1 - rac{SS_{
m residual}}{SS_{
m total}}$$
 $R^2 = 1 - rac{11.20}{1477.91}$ $R^2 = 1 - 0.0076$ $R^2 = 0.9924$

Final Interpretation

- $R^2=0.9924$ means 99.24% of the variance in monthly sales is explained by the advertising budget.
- Since \mathbb{R}^2 is very close to 1, the model fits the data very well.

Conclusion

- Regression Equation: y = 12.42 + 6.21x
- $R^2 = 0.9924$: Model is highly accurate.

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) in Regression

Mean Absolute Error (MAE) is a metric used to evaluate the performance of a regression model. It measures the average absolute difference between the predicted values and the actual values. A lower MAE indicates better model accuracy.

Formula:

$$MAE = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

- y_i = Actual value
- \hat{y}_i = Predicted value
- n = Number of observations

MAE Example

Example: Predicting Pizza Delivery Time

A pizza shop predicts delivery times (in minutes). Here's real vs. predicted data for 5 orders

Order	Actual Time	Predicted Time	Absolute Error
1	20 min	18 min	20 - 18 = 2 min
2	30 min	35 min	30 - 35 = 5 min
3	25 min	23 min	25 - 23 = 2 min
4	40 min	45 min	40 - 45 = 5 min
5	15 min	10 min	15 - 10 = 5 min

Step 1: Find absolute errors (ignore +/- signs).

Step 2: Sum the errors:

 \triangleright Divide by number of orders (5): 19/5 = 3.8 min

Conclusion: On average, predictions are off by 3.8 minutes.

Your Task?

Find MAE

Student	Actual Score	Predicted Score
1	85	82
2	60	65
3	90	88
4	75	70
5	95	98

Mean Squared Error (MSE)

Mean Squared Error (MSE)

 MSE is another popular metric for regression. It calculates the average of the squared differences between actual and predicted values.

Formula:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Where:

- y_i = actual value
- \hat{y}_i = predicted value
- n = number of data points

Example

House	Actual Price (y)	Predicted Price	Error	Squared Error
1	200	180	-20	400
2	150	160	10	100
3	300	310	10	100
4	250	240	-10	100

```
MSE= (400+100+100+100)/4
= 700/4
= 175
```