

Problem R-05FK ($C_{16}H_{14}O_3$) This problem requires you to assign some of the protons of a substituted naphthalene, and determine the conformation. You may use first order analysis.

(a) For each proton give the chemical shift (δ), the multiplicity (e.g. dtq) and the coupling constants. To help you pick apart the overlapping peaks between δ 2.95 and 3.35 the signals for H³ have been identified for you.

- (b) A key signal is the one for H³. Draw a stick diagram (with correct intensities) of the multiplet for H³ above or below the appropriate peaks.
 - (c) Circle the correct conformation, and briefly explain how you made the assignment. Be specific.
 - (d) Assign the proton at δ 9.3 (circle it on the structure).

Problem R-05F ($C_{16}H_{14}O_3$) This problem requires you to assign some of the protons of a substituted naphthalene, and determine the conformation. You may use first order analysis.

$$\begin{array}{c} H \\ H \\ O \\ H \end{array}$$

(a) For each proton give the chemical shift (δ), the multiplicity (e.g. dtq) and the coupling constants. To help you pick apart the overlapping peaks between δ 2.95 and 3.35 the signals for H³ have been identified for you.

		δ	mult.	Coupling constants
1	H ¹	2.49	dd	16.5, 6.5
1	H^2	3.01	dd	16.5, 6.0
2	H^3	3.18	dtd	13.5, 6.5, 4.5
1	H^4	2.06	tdd	13.5, 12.5, 4.5 (almost qd)
1	H ⁵	2.30	dtd	13.5, 4.5, 3.0
2	H ⁶	3.12	ddd	17.5, 4.5, 3.0
2	H^7	3.27	ddd	17.6, 12, 5.0

- (b) A key signal is the one for H³. Draw a stick diagram (with correct intensities) of the multiplet for H³ above or below the appropriate peaks.
 - (c) Circle the correct conformation, and briefly explain how you made the assignment. Be specific.
- The proton H⁴ has three large couplings one is the gem (12.5) and the other two (13.5 and 12.5) are to the axial prons H⁷ and H³. Thus the CH₂CO₂H substituent is equatorial.
 - (d) Assign the proton at δ 9.3 (circle it on the structure).

