Robust Resolved-Rate Motion Control (RRMC) for Redundant Manipulators

Guan-Sheng Chen

Supervisor: Dr Giordano Scarciotti MathWorks: Roberto G. Valenti

George Amarantidis Rory Adams

Back & Motivation

- **Background:** Modern robots (UR5) must achieve high precision and safety across diverse tasks and dynamic environments.
- **Challenge:** Redundant manipulators suffer severe instability (torque/velocity spikes) near kinematic singularities.
- **Engineering Aim:** Deliver a plug-and-play velocity control architecture that is robust, modular, and hardware-ready.

Core Equations

RRMC:

 $v_{des} = v_{traj} + K_p(p_{des}, -p_{current})$

Inverse Kinematics:

Moore-Penrose (MP)

$$\dot{q}_{des} = J^+ v_{des}$$

Damped Least Squares (DLS)

$$\dot{q}_{des} = J^T (JJ^T + \lambda^2 I)^{-1} v_{des}$$

MP: simple but fragile at singularities. DLS: robust, tunable by λ .

Optimised Parameter

Parameter	Recommended Value
Inverse Kinematics	$DLS (\lambda = 0.03)$
$RRMC\mathit{K}_p$	[2.2; 2.2; 2.2; 0.5; 0.5; 0.5]
PID (P/I/D/N)	7.5 / 0.01 / 1.3 / 60
Rate Limiter	±[0.3, 0.3, 0.3, 0.8, 0.8, 0.8]
Velocity Sat.	1.6 <i>rad/s</i>
Torque Sat.	±50 Nm

Model Limitations

• Simulation only—no real robot validation yet.

Table 1: Optimal settings for robust, hardware-friendly control

- No null-space/secondary objectives implemented.
- Friction, delay, noise are not modelled.

Sustainability

- All results: simulation only, minimal energy, no data privacy concerns.
- Open-source workflow, full reproducibility.
- EDI/Accessibility: methods directly support rehab/assistive robotics.
- Engineering process aligns with safety, legal, and ethical guidelines.

Resolved-Rate Motion Control Framework Works

Figure 1: Overall RRMC Simulink framework: Trajectory Generation Kinematics → RRMC (MP/DLS) → Joint PID → UR5 Plant

- Key Modules: All blocks are modular and support batch parameter sweeps.
- Core Signals: p_{des} , $p_{current}$, v_{des} , \dot{q}_{des} , $joint\ torque$
- Plug-and-Play: Safety blocks (rate limiter, saturation) ensure hardware transferability.

Key Simulation Insights

Figure 2: 3D End-Effector Path (MP V.S. DLS) with desired trajectory

- DLS closely follows the desired 3D path, while MP diverges when approaching singularities.
- Robust tracking with DLS, especially in complex, multi-axis trajectories.
- Instability and path deviation for MP.

- Increasing λ reduces RMSE and max error (λ > 0.01 is stable).
- A moderate λ yields robust performance, while too little damping risks large errors.
- Under-regularization of λ leads to instability.
- DLS with tuned λ achieves safe, consistent tracking even near singularities.

- DLS (blue) maintains lower task-space tracking error than MP (red) throughout the trajectory.
- MP is highly sensitive to parameter choice, with error spikes in challenging sections.
- DLS is less sensitive to gain tuning and always maintains safer, more reliable error profiles.

Future Work

- Hardware tests & real robot integration.
- Null-space extension (obstacle/joint limit avoidance).
- Adaptive/robust PID.
- Modelling real-world uncertainty/friction.

Conclusion

- DLS makes velocity control practical for real robots.
- MP is only reliable in simple, slow trajectories.
- Robust tuning and safety blocks are key to safe, transferable robot control.
- Grouped K_p allocation minimizes error and actuator effort.
- Higher gains for major axes, lower for the wrist, strikes a balance between tracking and smoothness.

