

Introduction

- The logical addresses in TCP/IP protocol suite are IP addresses
- Physical address is usually implemented in hardware
 - Ex) 48-bit MAC addresses in Ethernet and Token ring protocols, which are imprinted on the NIC installed in the host or router

Introduction (cont'd)

Mapping a logical address to its corresponding physical address

Static mapping

- means creating a table that associates a logical address with a physical address
- need to update periodically

Dynamic mapping

- each time a machine knows one of the two addresses (logical or physical), it can use a protocol to find the other one
- ARP (address resolution protocol), RARP (reverse address resolution protocol)

ARP and RARP

- ARP (address resolution protocol)
- RARP (reverse address resolution protocol)

Logical address

ARP

Physical address

Logical address

RARP

Physical address

Position of ARP and RARP in TCP/IP Protocol Suite

ARP Operation

a. ARP request is broadcast

ARP Operation (cont'd)

□ An ARP request is broadcast; an ARP reply is unicast

The Format of ARP packet

Hard	dware Type	Protocol Type				
Hardware length	Protocol length	Operation Request 1, Reply 2				
	Sender hardware address (For example, 6 bytes for Ethernet)					
	Sender protocol address (For example, 4 bytes for IP)					
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)						
Target protocol address (For example, 4 bytes for IP)						

Encapsulation of ARP Packet

- encapsulated directly into a data link frame
- ARP packet encapsulated in an Ethernet frame

Four Cases using ARP

Case 1. A host has a packet to send to another host on the same network.

Case 2. A host wants to send a packet to another host on another network. It must first be delivered to the default router.

Four Cases using ARP (cont'd)

Case 3. A router receives a packet to be sent to a host on another network. It must first be delivered to the appropriate router.

Case 4. A router receives a packet to be sent to a host on the same network.

- Two standard distributed routing algorithms
 - Link State (LS) routing
 - Distance Vector (DV) routing

Link State vs Distance Vector

- Both assume that
 - The address of each neighbor is known
 - The cost of reaching each neighbor is known
- Both find global information
 - By exchanging routing info among neighbors
- Differ in the information exchanged and route computation
 - LS: tells every other node its distances to neighbors
 - DV: tells neighbors its distance to every other node

Link State Algorithm

- Basic idea: Distribute link state packet to all routers
 - Topology of the network
 - · Cost of each link in the network
- Each router independently computes optimal paths
 - From itself to every destination
 - Routes are guaranteed to be loop free if
 - · Each router sees the same cost for each link
 - Uses the same algorithm to compute the best path

Topology Database: Example

c(x,y)	A	В	C	D	E	F
A	0	2	5	1	00	00
В	2	0	3	2	0	9
С	5	3	0	3	1	5
D	1	2	3	0	t	00
E	00	8	1	1	0	2
F	00	\odot	5	$_{\odot}$	2	0

link state database

Algorithm (at Node X)

Initialization

- N = {X}
- For all nodes V
 - If V adjacent to X, D(V) = C(X,V) else D(V) = ∞

- Find U not in N such that D(U) is the smallest
- Add U into set N
- Update D(V) for all V not in N
 - D(V) = min{D(V), D(U) + C(U,V)}
- Until all nodes in N

Example: Dijkstra's Algorithm

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→ 0	Α	2,A	5,A	1,A	∞	∞
1						
2						
3						
4						
5			-			

1 Initialization:

- $2 N = \{A\};$
- 3 for all nodes v
- 4 if v adjacent to A
- 5 then D(v) = c(A,v);
- 6 else D(v) = ∞;

...

			V			
Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→1	AD		4,D		2,D	∞
2	1100000		101/100		,	
3						
4						
5						

- 9 find w not in N s.t. D(w) is a minimum;
- 10 add w to N;
- 5 update D(v) for all v adjacent to w and not in N:
- 12 D(v) = min(D(v), D(w) + c(w,v));
- -13 until all nodes in N;

	E CONTRACTOR DE LA CONT	<u>54</u>				
Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D	11000000	2,D	∞
→ 2	ADE		3,E			4,E
3				il.		
4						
5						

- 9 find w not in N s.t. D(w) is a minimum;
- 10 add w to N;
- 5 update D(v) for all v adjacent to w and not in N:
- 12 D(v) = min(D(v), D(w) + c(w,v));
- -13 until all nodes in N;

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	∞	∞
1	AD	401	4,D	1.9	2,D	∞
2	ADE		3,E			4,E
→ 3	ADEB		***************************************			
4						
5			2-100			

- 9 find w not in N s.t. D(w) is a minimum;
- 10 add w to N;
- 5 update D(v) for all v adjacent to w and not in N:
- 12 D(v) = min(D(v), D(w) + c(w,v));
- -13 until all nodes in N;

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	∞
2	ADE		3,E			4,E
3	ADEB		3-330 = 1			
→ 4	ADEBC					
5						

8 Loop
9 find w not in N s.t. D(w) is a minimum;
10 add w to N;
5 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v));

until all nodes in N;

Ste	ер	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
-	0	A	2,A	5,A	1,A	00	∞
	1	AD		4,D		2,D	∞
100	2	ADE		3,E			4,E
	3	ADEB					
	4	ADEBC					
→	5	ADEBCF					

8 Loop
9 find w not in N s.t. D(w) is a minimum;
10 add w to N;
5 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in N;

Dijkstra's Algorithm: In a Nutshell

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→0	Α	2,A	5,A	1,A	infinity	infinity
→ 1	AD	2,A	4,D	40	2,D	infinity
→ 2	ADE	2,A	3,E	27		4,E
→3	ADEB		3,E			4,E
→ 4	ADEBC					4,E
5	ADERCE					

Distance Vector Routing

- The least-cost route between any two nodes is the route with minimum distance.
- Each node maintains a vector(table) of minimum distances to every node.
- c) The table at each node also guides the packets to the desired node by showing the showing the next hop routing.

Example:

Assume each node as the cities.

Lines as the roads connecting them.

Final Distance vector routing tables

