## ANTIBIOTICS

SURENDER RAWAT

M. Sc. MICROBIAL BIOTECHNOLOGY

## **Chemotherapeutic Agents**

- Used to treat infectious diseases
- Destroy pathogenic organisms or inhibit their growth at concentrations low enough to avoid undesirable damage to the host.
- ANTIBIOTICS : Anti against & bios life
- These are products of secondary metabolism
- 1904 "MAGIC BULLET" by Paul Ehrlich
  - Found Tryptan red active against Trypanosome
  - With Sahachiro Hata found Arsphenamine effective against Syphilis
  - Later in 1910, Arsphenamine was sold under name of Salvarsan
- 1920- Alexander Flemming discovered Lysozyme in tears
- 1927- Gerhard Domagk discovered Prontosil red against streptococci and staphylococci
- 1928- Penicillin by Alexander Flemming
- 1939- Sulfa drugs by Jaques and Therese
- 1944- Streptomycin by Selman Waksman

### **ANTIBIOTICS**

- Currently 8000 antibiotics are known
- Each year around 300 new antibiotically active compounds are detected, of which 30-35% are antibiotics
- Only 123 antibiotics of bacterial origin are produced by fermentation
- Only chloramphenicol, phosphonomycin and pyrrolnitrin are produced synthetically
- Significance for the strain is unclear

### **USES OF ANTIBIOTICS**

- Antitumor antibiotics
- Antibiotics for plant pathology
- Antibiotics as food preservatives
- · Antibiotics used as animal growth promoters and in veterinary medicine
- Antibiotics as tools in biochemistry and molecular biology

# Antibiotics are classified in several ways

1.On the basis of mechanism of action

2.On the basis of spectrum of activity

### On the basis of mechanism of action

#### Cell Wall Synthesis inhibitors:

Penicillins Cephalosporins Vancomycin

#### **Beta-lactamase Inhibitors**

Polymycin Bacitracin

### Protein Synthesis Inhibitors

Inhibit 30s Subunit
 Aminoglycosides (gentamycin)
 Tetracyclines

#### Inhibit 50s Subunit

Macrolides Chloramphenicol Clindamycin Streptogramins

#### **DNA Synthesis Inhibitors**

Fluoroquinolones (ciprofloxacillin) Metronidazole

- RNA synthesis Inhibitors
   Rifampin
- Mycolic Acid synthesis inhibitors
   Isoniazid
- Folic Acid synthesis inhibitors
   Sulfonamides
   Trimethoprim

Table 35.4 Mechanisms of Antibacterial Drug Action

| Drug                                            | Mechanism of Action                                                                                                                                                     |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell Wall Synthesis Inhibition                  |                                                                                                                                                                         |
| Penicillin Ampicillin Carbenicillin Methicillin | Inhibit transpeptidation enzymes involved in the cross-linking of the polysaccharide chains of the bacterial cell wall peptidoglycan. Activate cell wall lytic enzymes. |
| Cephalosporins                                  |                                                                                                                                                                         |
| Vancomycin                                      | Binds directly to the D-Ala-D-Ala terminus and inhibits transpeptidation.                                                                                               |
| Bacitracin                                      | Inhibits cell wall synthesis by interfering with action of the lipid carrier that transports wall precursors across the plasma membrane.                                |
| Protein Synthesis Inhibition                    |                                                                                                                                                                         |
| Streptomycin<br>Gentamicin                      | Binds with the 30S subunit of the bacterial ribosome to inhibit protein synthesis and causes misreading of mRNA.                                                        |
| Chloramphenicol                                 | Binds to the 50S ribosomal subunit and blocks peptide bond formation through inhibition of peptidyl transferase.                                                        |
| Tetracyclines                                   | Bind to the 30S ribosomal subunit and interfere with aminoacyl-tRNA binding.                                                                                            |
| Erythromycin and clindamycin                    | Bind to the 50S ribosomal subunit and inhibit peptide chain elongation.                                                                                                 |
| Fusidic acid                                    | Binds to EF-G and blocks translocation.                                                                                                                                 |
| Nucleic Acid Synthesis Inhibition               |                                                                                                                                                                         |
| Ciprofloxacin and other quinolones              | Inhibit bacterial DNA gyrase and thus interfere with DNA replication, transcription, and other activities involving DNA.                                                |
| Rifampin                                        | Blocks RNA synthesis by binding to and inhibiting the DNA-dependent RNA polymerase.                                                                                     |
| Cell Membrane Disruption                        |                                                                                                                                                                         |
| Polymyxin B                                     | Binds to the plasma membrane and disrupts its structure and permeability properties.                                                                                    |
| Metabolic Antagonism                            |                                                                                                                                                                         |
| Sulfonamides                                    | Inhibit folic acid synthesis by competition with p-aminobenzoic acid.                                                                                                   |
| Trimethoprim                                    | Blocks tetrahydrofolate synthesis through inhibition of the enzyme dihydrofolate reductase.                                                                             |
| Dapsone                                         | Interferes with folic acid synthesis.                                                                                                                                   |
| Isoniazid                                       | May disrupt pyridoxal or NAD metabolism and functioning. Inhibits the synthesis of the mycolic acid "cord factor."                                                      |

### On the basis of mechanism of action:



### On the basis of spectrum activity:

# **Broad spectrum** antibiotics:

- 1.Amoxicillin
- 2.Tetracycline
- 3.Cephalosporin
- 4.Chloramphenicol
- 5. Erythromycin

# Short spectrum antibiotics:

- 1.Penicillin –G
- 2.Cloxacillin
- 3. Vancomycin
- 4.Bacitracin
- 5.Fluxacillin

## ON THE BASIS OF MORE OF ACTION:

# Bacteriostatic antibiotics

- TetracyclineChloramphenicol
- •Erythromycin Lincomycin

## Bacteriocidal antibiotics

Cephalosporin
Penicillin
Erythromycin
Aminoglycosides
Cotrimoxazole

### **BETA LACTEM ANTIBIOTICS**

- Broad class of antibiotics, consisting of all antibiotic agents that contains a β-lactam ring in their molecular structures.
- Examples include Penicillin, cephalosporin, monobactems, Nocardins.
- Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism
- Bacteria often develop resistance to  $\beta$ -lactam antibiotics by synthesizing a  $\beta$ -lactamase, an enzyme that attacks the  $\beta$ -lactam ring. To overcome this resistance,  $\beta$ -lactam antibiotics are often given with  $\beta$ -lactamase inhibitors such as clavulanic acid.

## Penicillin

- Penicillin is a group of antibiotics derived from Penicillium fungi, including penicillin G(intravenous use), penicillin V (oral use), procaine penicillin, and benzathine penicillin (intramuscular use).
- β-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
- Basic sturucture of penicillin is 6 aminopenicillinic acid
- Penicillin can be
  - Natural penicillins
  - Syntheic penicillins
  - Semicynthetic peniciliins
- Microorganisms used are
  - P. chrysogenum

### PRODUCTION MEDIA

- Penicillin G and V are produced using submerged processes in 40,000-20,000 litre fermenters.
- Corn steep liquor(4-5% dry weight), an additional nitrogen source i.e. soy meal, yeast extract, whey a carbon source such as lactose, and various buffers.
- The pH is 6.5
- Phenyl acetic acid or phenoxy acetic acid is fed continuously as a precursor

### PRODUCTION OF PENICILLIN



Figure 13.5 Flow chart of the penicillin fermentation (From Swartz, 1979)

### **CEPHALOSPORINS**

- Any of various broad-spectrum beta- lactam antibiotics closely related to the Penicillins, that were originally derived from the fungus, Cephalosporium acremonium.
- They contain a dihydrothiazinering with D aminoadipic acid as acyl moiety.
- It is also produced by *Emericellopsis* and *Paecilomyces*.

**ACTION**: Inhibitors of peptidoglycan synthesis, Activate cell wall lytic enzymes

**COMMON USE**: In surgical procedures- to reduce the risk of post- operative infections.

FIRST GENERATION - Cefazolin, Cephalexin

Spectrum: Most G (+)ve cocci (Streptococcus, S. aureus), E. coli, proteus, Klebisella

Use: S. aureus infection, surgical prophylaxis

SECOND GENERATION - Cefoxitin, Cefuroxime, Cefaclor, Cefprozil

Spectrum: Mainly effective gram negative bacteria, modest activity against gram positive bacteria

Use: Primarily for upper & lower respiratory tract infections

**THIRD GENERATION** – Ceftriaxone, Cefotaxime

Spectrum: enhanced G (-)ve activity

Use: Meningitis, highly resistant & multi drug resistant Streptococcus along with vancomycin

FOURTH GENERATION - Cefepime

Spectrum: Active against Streptococcus, staphylococcus, pseudomonas aeruginosa & aerobic G –ve

### **Production of Cephalosporins**

- 13 therapeutically important semisynthetic cephalosporins are commercially produced.
- These have been synthesized by chemical splitting to form 7 aminocephalospioranic acid (7-ACA) with subsequent chemical acylation as well as by modification on the C-3 site.
- Complex media with Corn steep liquor, meat meal, sucrose, glucose and ammonium acetate are used in a fed batch system at ph 6-7 and temperature 24-28° C
- Recently chemical synthesis of cephalosporin by ring expansion of penicillin has been developed.
- Eg. Use of pennicillin V to produce oraspor, an orally active cephalosporin.



### Peptide antibiotics:

- Diverse class of natural products.
- Also known as natural antibiotics.
- •key elements directly implicated in the innate immune response of their hosts.
- Response is fast, highly efficient and applicable to wide range of infective organisms.
- Some contain only amino acids joined by amide bonds, whereas others contain non amino acid constituents joined in ways other than conventional peptide linkage.
- The amino acids range from those commonly found in proteins to uncommon ones, with highly modified structures.
- The peptide array may be linear or cyclic or various combinations.

- •Small molecules composed of less then 50amino acid residues mostly in common L configuration.
- •Produced by all living organisms in a defense strategy against invading pathogens.
- •Kill bacteria rapidly by acting on disrupting the bacterial membrane in a non-specific way.
- Potential replacement for antibiotics.
- Not affected by resistance mechanisms such as those witnessed for antibiotics.

### **CLASSES OF AMPS:**

For Educational Use Only For Educational line Only α-helical Extended (Indolicidin) (Magainin) **B-sheet** Mixed (defensin.human) (Protegrin-1)

## MECHANISM OF ACTION

- Based on membrane disruption followed by pore formation on the nanometer scale and membrane depolarization.
- •The following general model for the mechanism of action has been proposed:
  - (i) AP-membrane attraction
  - (ii) attachment of the AP onto the membrane and
- (iii) insertion of the AP into the membrane causing its disruption, leading to the leakage of ions and metabolites.

## PERMEABILIZATION MECHANISM:

#### **BARREL – STAVE MODEL**



#### **CARPET MODEL**

