

Sports Video Summarization

National Seminar on Computer Vision and Image Processing (NaSCaVIP 2017) jointly organized by IEEE Gujarat Section. IEEE Signal Processing Chapter and †Silver Oak College of Engineering & technology, Ahmedabad during 8-9 September 2017

Devang S. Pandya† Mukesh A. Zaveri, Computer Engineering Department Sardar Vallabhbhai National Institute of Technology, Surat mazaveri@coed synit ac in

Outline

- Introduction
- Motivation
- Literature
- Proposed Video Summarizing Algorithms
- Simulation Results
- Conclusion

Introduction

- Multimedia Content: Video, Audio, Text
- Huge amount of content
- Service based application: On demand
- Digital content analysis
- Numerous applications of multimedia processing
- Indexing, Searching, Retrieval of the content
- Summarizing for news, highlights
- Short, compact representation of digital content

Introduction: Application

- International, national events
- Movie trailer, News Summary
- Home Videos: personal, social festival and events
- Advertisement, News: abstract level representation
- Sport video summarization
- Surveillance Videos: crowd and traffic monitoring, event identification
- Crime investigation: key scene representation and identification

Motivation

- Documentary on sports, player, series
- Sport videos: cricket, football, hockey
- Training: Team work, World Cup-Football individual training
- Online decision making
- Critical analysis
- Strategic Planning

Motivation

- Video navigation
- Scanning video: detecting events
- Short summary, exciting events
- Issues:
 - Variety of videos, applications and its usage
 - Human intervention
 - Identifying common framework
 - More complex representation: video and audio combined

Video Summarization

- Abstract level vs. detailed representation
- Identifying key frames for abstract level
- Detailed representation: Events, Boundary, Significance
- Different ways for Video Summarization
 - Key frame based
 - Event based
 - Shot based
- Feature based
- Learning based
- Other approaches

Video Summarization

Structure of Video

Sport Video Summarization: Challenges

- Huge number of frames, analysis at deeper level
- Sport video: variety, broadcasters, and leagues
- Analysis per video captured stream
- Mix of all video captured streams
- Telecast: mixture of all streams
- Capturing video stream not under control
- Illumination conditions
- Sport rules varies, dress code

Sport Video Summarization: Literature

- Feature based
 - ► Color
 - * simple and most noticeable feature
 - * histogram: intensity distribution
 - * major drawback: variation of intensity
 - ★ histogram: insensitive to camera and object motion
 - Motion
 - * optical flow: effective feature for identifying key frames
 - Texture
 - * spatial arrangement of pixels
 - * texture elements referred as texel
 - * texture description: statistical and transform based
 - * for example, simple texture descriptor: edge

Sport Video Summarization: Literature

- Feature based
 - Object
 - * target object: ball, player etc.
 - * object segmentation: computationally expensive
 - * application: human tracking, activity recognition
 - * limitation: not optimal for collaborative event having multiple actors
- Learning based key frame selection
 - supervised: feature extraction, training
 - unsupervised: clustering, self grouping based of features
- Other approaches: hybrid methods

Proposed Algorithms: Contribution

- Video summarization techniques
 - Key frame based methods
 - * histogram based
 - * unsupervised learning based: k-means clustering
 - Semantic based using Bayesian Network
 - * Dynamic Bayesian Network: Hidden Markov Model
- Goal: quick, efficient, accurate summary generation
- Solution: exploit dominant feature: color histogram and motion
- invariant features for varying illumination, ground conditions
- general framework for variety of leagues

I

Histogram based Key Frame Selection

- Extract green color histogram of each frame
- Find the peak intensity of histogram
- Determine an interval which has a more concentration of pixels
- Determine intensity ranges on left and right sides of peak

$$H[i_{min}] \ge k * H[i_{peak}]$$
 $H[i_{min}-1] < k * H[i_{peak}]$
 $H[i_{max}] \ge k * H[i_{peak}]$
 $H[i_{max}+1] < k * H[i_{peak}]$

- value of k may be set based on variance
- Mean of green color component of detected interval is computed
- Threshold for computed mean is tuned 1% to declare key frame

Histogram based Key Frame Selection

(a) Frame No:500, Flood light video

(b) Green Histogram and extracted interval

Extracted Interval

Key Frame based Video Summarization using Unsupervised Learning

- Goal: efficient video summary generation using dominant features for variety of soccer leagues
- Solution: color and change in motion
 - partition video into shots using dominant color feature
 - select key frames from each shot using change in motion

Key Frame Selection using Unsupervised Learning: Feature Extraction

- Dominant Color
 - Soccer ground dominated by Green component
 - Hue is perceptually uniform

Frame divided into 4 parts

Key Frame Selection using Unsupervised Learning: Clustering

Partitioning video into shots using unsupervised learning

Field, Close-up, Audience views with Green and Hue values

Key Frame Selection using Unsupervised Learning: Clustering

Clusters formed for La Liga 2011:1

Key Frame Selection using Unsupervised Learning: Summary

- Sample output:
 - La Liga 2011
 - Serie A
- Advantage
 - Provides quick highlights
 - ► Effective for video which are uniform in nature
- Limitation
 - Complete event identification
 - More subjective: Key frame based summary
- Scope for meaningful summary in terms of
- significant happening during the complete match
- identifying as Events

Bayesian Network

- main task is knowledge modelling, (uncertain knowledge)
- limitation of domain expert
- learning structure from data indispensable
- inference used while learning Bayesian network
- learning the parameters of Bayesian networks
- other names:
 - recursive graphical models
 - Bayesian belief networks
 - belief networks
 - causal probabilistic networks
 - influence diagrams
 - HMM a specific type of dynamic Bayesian network
 - state space model

Event based Video Summarization

- Event identification
- State based event modeling
- Literature: Event based and Rule based approaches
- Limitation
 - lack of automatic framework, manual intervention
 - limited to few leagues
- Goal: automatic framework for variety of soccer leagues video summarization
- Solution: semantic based analysis for video summarization

Proposed Framework for Semantic based Analysis

- Semantic based event modeling
- framework consists of three phases
- event boundary detection in first phase
- second phase consists of three parallel operations
 - semantic level modeling in the second phase
 - * assign (meaning) to each frame in terms of view
 - * view based semantic for a frame of an event
 - * assign (meaning) to each event in terms of its impact
 - * impact of an event based semantic for an an event
 - extract features to define an impact of an event
 - each event defined using set of frames
 - each frame tagged based on particular view, view classification
 - event filteration: remove insignificant event detected
 - event categorized based on features to low and high impact event

Proposed Framework for Semantic based Analysis

- event classification using Hidden Markov Model in last phase
- third parallel task yellow card event detection

Framework for semantic analysis of soccer video

Event Boundary Detection

Events with corresponding change in optical flow: La Liga

Event Boundary Detection

Change in optical flow and corresponding event sequences

View Classification

- Event consists of set of frames
- Depending upon the event each frame has different view
- Frame view plays significant role for event categorization
- Need frame view classification
- Frame view as semantic feature
- Field view: displays global view of the field
- Goal-post view: covers the goal post along with surrounding field
- Close-up view: Single or multiple players are present in the frame
- Audience view: Out of the ground view, generally displays the audience
- Different frame view classified as input for HMM training
- HMM models built are used for event categorization

View Classification

