

Компьютерная лингвистика и информационные технологии

Неделя 9: Векторные представления, часть 2 (на основе лекций М. Апишева и Е. Артемовой, ФКН ВШЭ)

Window-based Vector Models

- Out-of-vocabulary слова (OOV)
- Scale with the pre-trained corpus size
- Только локальные контексты => не учитываются глобальные повторения в обучающих данных
- В явном виде не используется корпусная статистика
- Не кодируются морфологические особенности

Global Vectors for Word Representation

- Можем ли мы закодировать значение слова с помощью счетчиков?
- Векторы кодируют как локальную, так и глобальную информацию
- Матрица совместной встречаемости по обучающему корпусу
- Решаем задачу регрессии: предсказываем счетчики

- Х: матрица совместной встречаемости слово-слово
- **Х**_{іј}: счетчик, показывающий сколько раз слово ј встретилось в контексте слова і
- $X_i = \sum_k X_{ik}$: сумма счетчиков, или сколько раз любое слово k встретилось в контексте слова i
- $P_{ij} = P(w_j|w_i) = X_{ij}/X_i$: вероятность встретить слово ј в контексте слова і

	кошка	собака	единорог
кошка	0	3	4
собака	3	0	2
единорог	4	2	0

- Пусть w_і векторное представление слова і
- Имеем две матрицы: W и W'
- Зададим функцию, показывающую, какое из слов (і или j) вероятнее встретить в контексте слова k:

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}, \quad F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{P_{ik}}{P_{jk}},$$

• $w_i = sum(W_i, W_i')$

	кошка	собака	единорог
кошка	0	3	0
собака	3	0	2
единорог	0	2	0

Target word: frogs

word2vec GloVe

amphibians

salamanders toad

tailed

birds

gulls

grieve toad

fastText

Enriching Word Vectors with Subword Information

- Слово как мешок посимвольных N-грамм
- Используем символы начала (<) и конца (>). Зачем?
- Обучим векторы для каждой N-граммы с помощью
 CBOW / Skip-gram
- Вектор слова есть среднее векторов N-грамм

N = 2: <к, ку, ук, кл, ла, а>

N = 3: <ку, кук, укл, кла, ла>

N = 4: <кук, кукл, укла, кла>

fastText

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\top} \mathbf{v}_c.$$

- Окно может быть скользящим (дефолт 3-6)
- Огромная мощность словаря N-грамм
- Хэш-функция: сопоставление индексу слова множества посимвольных N-грамм
- Фиксированное количество частотных N-грамм

Что мы знаем?

Оценка векторных представлений

Внутренняя (intrinsic)		
Word Similarity		
Syntactic analogies		
Semantic analogies		
Correlation between human evaluation and cosine similarity		

Внешняя (extrinsic)		
Downstream tasks		
Предобученные эмбеддинги		
Дообучение эмбеддингов		
NER, POS, Sentiment Analysis, etc.		

Внутренняя оценка

- Word analogies: Athens is to Greece as Berlin is to ???
- Word similarity: WordSim-353, SCWS, RW, SimLex695
- Syntactic similarity: bad -> worst big -> ???
- Correlation: corr(human_score(x_i, y_i), cos_score(x_i, y_i))

(hyper)parameters:

- Размерность;
- Объем корпуса;
- Домен корпуса;
- Специфика корпуса;
- Размер окна;
- Метод агрегации
 промежуточных или
 итоговых представлений

Внешняя оценка

- Имеем несколько предобученных векторных моделей
- Фиксируем параметры классификатора
- Качество классификатора косвенно отражает качество предобученных моделей
- Дообучение предобученных векторных моделей

Предобученные векторные модели

- fastText
- RusVectores (fastText, CBOW, Skip-gram)
- <u>DeepPavlov</u> (fastText)
- <u>navec</u> (compressed GloVe)

Bag of Tricks for Efficient Text Classification

(Joulin et al., 2016)

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

Полезные материалы

- CS224N: GloVe
- Pennington et al., 2014: GloVe
- Bojanowski et al., 2017: fastText
- fastText-based text classification
- Joulin et al., 2017: Bag of Tricks for Efficient Text Classification