Enzo de Almeida Belfort Rizzi Di Chiara - RA: 168813

Exercício I:

Os gráficos das funções plotadas com a biblioteca matplotlib em python foram gerados a partir do seguinte código:

```
import numpy as np
import matplotlib.pyplot as plt
def plot functions():
   fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
   x1 = np.linspace(-1, 4, 1000)
   f1 = x1 * np.exp(-x1)
   ax1.plot(x1, f1, 'b-', label='f(x) = xe^(-x)')
   ax1.grid(True)
    ax1.axhline(y=0, color='k', linestyle='-', alpha=0.3)
   ax1.axvline(x=0, color='k', linestyle='-', alpha=0.3)
   ax1.set_title('f(x) = xe^{-(-x)'})
   ax1.legend()
   x2 = np.linspace(-2, 3, 1000)
   ax2.plot(x2, f2, 'r-', label='f(x) = x^3 - x - 3')
   ax2.grid(True)
   ax2.axhline(y=0, color='k', linestyle='-', alpha=0.3)
   ax2.axvline(x=0, color='k', linestyle='-', alpha=0.3)
   ax2.set_title('f(x) = x^3 - x - 3')
   ax2.legend()
    x3 = np.linspace(-2, 2, 1000)
   f3 = np.arctan(x3)
   ax3.plot(x3, f3, 'g-', label='f(x) = arctg(x)')
    ax3.grid(True)
   ax3.axhline(y=0, color='k', linestyle='-', alpha=0.3)
   ax3.axvline(x=0, color='k', linestyle='-', alpha=0.3)
   ax3.set_title('f(x) = arctg(x)')
   ax3.legend()
   plt.tight_layout()
    plt.show()
```

E os seguintes gráficos foram plotados:

Analisando agora os resultados do Método de Newton para as todas as funções, temos:

- Função $f(x) = xe^{x}(-x)$: A função apresenta comportamento suave e contínuo, com uma raiz evidente em x = 0. A análise revelou:
 - Com x₀ = 2: O método necessitou de 17 iterações para convergir, demonstrando uma convergência mais lenta devido à distância inicial da raiz.
 O comportamento é estável, mas a taxa de convergência é moderada devido à natureza exponencial da função.

k xk f(xk) f(xk) step 0 4.000000 7.326256e-02 -5.494692e-02 2.000000e+00 1 5.333333 2.574907e-02 -2.092112e-02 1.333333e+00 2 6.564103 9.255968e-03 -7.845879e-03 1.230769e+00 3 7.743826 3.356253e-03 -2.922843e-03 1.179724e+00 4 8.892110 1.222392e-03 -1.084923e-03 1.148284e+00	
1 5.333333 2.574907e-02 -2.092112e-02 1.333333e+00 2 6.564103 9.255968e-03 -7.845879e-03 1.230769e+00 3 7.743826 3.356253e-03 -2.922843e-03 1.179724e+00 4 8.892110 1.222392e-03 -1.084923e-03 1.148284e+00	
2 6.564103 9.255968e-03 -7.845879e-03 1.230769e+00 3 7.743826 3.356253e-03 -2.922843e-03 1.179724e+00 4 8.892110 1.222392e-03 -1.084923e-03 1.148284e+00	
3 7.743826 3.356253e-03 -2.922843e-03 1.179724e+00 4 8.892110 1.222392e-03 -1.084923e-03 1.148284e+00	
4 8.892110 1.222392e-03 -1.084923e-03 1.148284e+00	
5 10.010010 4.62740-04.4.010004-04. 1.10670000	
5 10.018819 4.463740e-04 -4.018204e-04 1.126709e+00	
6 11.129698 1.632740e-04 -1.486039e-04 1.110879e+00	
7 12.228418 5.979102e-05 -5.490151e-05 1.098720e+00	
8 13.317477 2.191367e-05 -2.026819e-05 1.089060e+00	
9 14.398663 8.036415e-06 -7.478279e-06 1.081185e+00	
10 15.473297 2.948596e-06 -2.758036e-06 1.074634e+00	
11 16.542390 1.082255e-06 -1.016832e-06 1.069093e+00	
12 17.606730 3.973498e-07 -3.747818e-07 1.064340e+00	
13 18.666947 1.459222e-07 -1.381051e-07 1.060217e+00	
14 19.723549 5.359896e-08 -5.088145e-08 1.056603e+00	
15 20.776958 1.969082e-08 -1.874309e-08 1.053409e+00	
16 21.827522 7.234892e-09 -6.903435e-09 1.050564e+00	
Convergência atingida: f(xk) < epsilon	
Resultado final:	
Solução aproximada: x = 21.827522	
Valor de f(x): 7.234892e-09	
Número de iterações: 17	

o Com x₀ = 0.5: A convergência foi alcançada em apenas 6 iterações, evidenciando uma eficiência significativamente maior. A proximidade do ponto inicial à raiz real facilitou uma convergência mais rápida e precisa.

k	xk :	f(xk)	f'(xk)	step	
				·	
0	-0.500000	-8.243	606e-01	2.473082e+00	-1.000000e+00
1	-0.166667	-1.968	934e-01	1.378254e+00	3.333333e-01
2	-0.023810	-2.438	322e-02	1.048478e+00	1.428571e-01
3	-0.000554	-5.540	165e-04	1.001108e+00	2.325581e-02
4	-0.000000	-3.064	250e-07	1.000001e+00	5.534034e-04
5	-0.000000	-9.389	621e-14	1.000000e+00	3.064248e-07
Con	nvergência a	tingida: f(x	ik) < epsilo	 on	
Res	sultado final:				
Sol	lução aproxir	nada: x = -(0.000000		
Val	lor de f(x): -9	.389621e-1	14		
Nú	mero de itera	ıções: 6			

- Função f(x) = x³ x 3: Esta função cúbica apresenta características interessantes que afetam o comportamento do método:
 - Com x_0 = 0.57: O método não conseguiu convergir no limite de 20 iterações. Este comportamento pode ser atribuído à proximidade de um ponto de inflexão onde $f'(x) \approx 0$, causando instabilidade numérica e oscilações nas aproximações.

k	xk f(xk	t) f'(xk)	step		
0	-133.216838	-2.364032e+06	 5.323918e+04	-1.337868e+02	
1	-88.812837	-7.004450e+05	2.366216e+04	4.440400e+01	
2	-59.210934	-2.075335e+05	1.051680e+04	2.960190e+01	
3	-39.477424	-6.148778e+04	4.674401e+03	1.973351e+01	
4	-26.323271	-1.821646e+04	2.077744e+03	1.315415e+01	
5	-17.555850	-5.396295e+03	9.236236e+02	8.767421e+00	
6	-11.713323	-1.598377e+03	4.106058e+02	5.842526e+00	
7	-7.820594	-4.735001e+02	1.824851e+02	3.892729e+00	
8	-5.225860	-1.404904e+02	8.092885e+01	2.594734e+00	
9	-3.489886	-4.201451e+01	3.553792e+01	1.735974e+00	
10	-2.307642	-1.298104e+01	1.497563e+01	1.182244e+00	
11	-1.440831	-4.550326e+00	5.227984e+00	8.668106e-01	
12	-0.570452	-2.615182e+00	-2.375246e-02	8.703789e-01	
13	-110.671961	-1.355434e+06	3.674385e+04	-1.101015e+02	
14	-73.783233	-4.016026e+05	1.633090e+04	3.688873e+01	
15	-49.191651	-1.189887e+05	7.258455e+03	2.459158e+01	
16	-32.798539	-3.525304e+04	3.226232e+03	1.639311e+01	
17	-21.871540	-1.044369e+04	1.434093e+03	1.092700e+01	
18	-14.589102	-3.093583e+03	6.375257e+02	7.282438e+00	
19	-9.736618	-9.163117e+02	2.834052e+02	4.852484e+00	
		······································			
Nui	neto maximo de	e iterações atingido			
Resultado final:					
Solução aproximada: x = -9.736618					
Valo	or de f(x): -9.16	3117e+02			
Núr	nero de iteraçõe	es: 20			

o Com x₀ = 0.62: A convergência foi alcançada em 10 iterações para x* ≈ 1.6717, com erro residual de aproximadamente 9.466×10^(-8). A pequena alteração no ponto inicial foi suficiente para evitar a região problemática e permitir a convergência.

k	xk f(x	k) f(xk)	step		
0	22.693577	1.166146e+04	1.543995e+03	2.207358e+01	
1	15.140793	3.452789e+03	6.867308e+02	-7.552784e+00	
2	10.112929	1.021150e+03	3.058140e+02	-5.027864e+00	
3	6.773808	3.010389e+02	1.366534e+02	-3.339121e+00	
4	4.570872	8.792775e+01	6.167861e+01	-2.202937e+00	
5	3.145292	2.497066e+01	2.867859e+01	-1.425579e+00	
6	2.274585	6.493521e+00	1.452121e+01	-8.707072e-01	
7	1.827410	1.275095e+00	9.018285e+00	-4.471749e-01	
8	1.686020	1.067694e-01 7.5	527993e+00 -1	.413900e-01	
9	1.671837	1.014612e-03 7.3	385120e+00 -1	.418299e-02	
10	1.671700	9.466481e-08 7.3	383742e+00 -1	.373860e-04	
11	1.671700	8.881784e-16 7.3	383741e+00 -1	.282071e-08	
Con	Convergência atingida: f(xk) < epsilon				
Res	Resultado final:				
Sol	Solução aproximada: x = 1.671700				
Valo	Valor de f(x): 8.881784e-16				
Núr	nero de iteraçõ	Ses: 12			

- Função f(x) = arctg(x): A função arco tangente apresenta características particulares que influenciam a convergência:
 - \circ Com x_0 = 1.45: O método convergiu em 12 iterações, demonstrando um comportamento estável apesar da não-linearidade da função.

k	xk f(x	k) f(xk)	step		
0	22.693577	1.166146e+04	1.543995e+03	2.207358e+01	
1	15.140793	3.452789e+03	6.867308e+02	-7.552784e+00	
2	10.112929	1.021150e+03	3.058140e+02	-5.027864e+00	
3	6.773808	3.010389e+02	1.366534e+02	-3.339121e+00	
4	4.570872	8.792775e+01	6.167861e+01	-2.202937e+00	
5	3.145292	2.497066e+01	2.867859e+01	-1.425579e+00	
6	2.274585	6.493521e+00	1.452121e+01	-8.707072e-01	
7	1.827410	1.275095e+00	9.018285e+00	-4.471749e-01	
8	1.686020	1.067694e-01 7.5	527993e+00 -	-1.413900e-01	
9	1.671837	1.014612e-03 7.3	385120e+00 -	-1.418299e-02	
10	1.671700	9.466481e-08 7.2	383742e+00 -	-1.373860e-04	
11	1.671700	8.881784e-16 7.2	383741e+00 -	-1.282071e-08	
Con	Convergência atingida: f(xk) < epsilon				
Res	ultado final:				
Solı	Solução aproximada: x = 1.671700				
Valo	or de f(x): 8.88	1784e-16			
Nún	nero de iteraçõ	es: 12			

 Com x₀ = 1: A convergência foi notavelmente mais rápida, requiring apenas 4 iterações. Este caso ilustra como a escolha do ponto inicial pode impactar significativamente a eficiência do método.

Considerações Gerais:

A análise demonstra que o Método de Newton é sensível tanto à escolha do ponto inicial quanto às características específicas da função em estudo. Em particular, a proximidade de pontos onde a derivada se aproxima de zero pode causar problemas de convergência, enquanto pontos iniciais mais próximos da raiz tendem a resultar em convergência mais rápida.

Exercício II:

E	xercício II:
1	V(0) = h.A(0)
	Avec do selor circular:
) -	NA NA
	Area do triângulo:
	A= 1 r2 sen(20)
	A área de petróleo contide em uma sogo transversa ircular qual quer será: A(0) = 0r2 - 1r2 sem(20)
3	$A(\theta) = r^{3} \left(\theta - 1. \operatorname{sem}(2\theta) \right)$
E	seu volume sevá:
	V(e) = h.A(e) $V(e) = h.r^{a}(e - 1.sen(2e))$
_	
7	

Plotando a função V, temos:

Pelo método de Newton, conclui-se que a solução aproximada de theta quando $V = 250 \text{ m}^3 \text{ é } x = 1.099177$

