Feuille d'exercices n°3 Algèbre linéaire I et II

(du lundi 26 octobre 2009 au vendredi 13 novembre 2009)

Exercice 1

Les ensembles suivants sont-ils des R-ev? Justifiez votre réponse.

- 1. C
- $2. \mathbb{Q}$

3.
$$A = \{ P \in \mathbb{R}[X], \ d^{\circ}(P) = 694 \}$$

4.
$$B = \{ P \in \mathbb{R}[X], \ d^{\circ}(P) \geqslant 496 \}$$

5.
$$C = \{ P \in \mathbb{R}[X], \ d^{\circ}(P) \leq 64 \}$$

6.
$$D = \{ P \in \mathbb{R}[X], P' = 0 \}$$

7.
$$E = \{ f \in \mathbb{R}^{\mathbb{R}}, f \text{ croissante} \}$$

8.
$$F = \{ f \in \mathbb{R}^{\mathbb{R}}, \ f(0) = 0 \}$$

9.
$$G = \{ f \in \mathbb{R}^{\mathbb{R}}, f \text{ paire} \}$$

10.
$$H = \{ f \in \mathbb{R}^{\mathbb{R}}, f \text{ continue} \}$$

11.
$$I = \{ f \in C^0([a, b], \mathbb{R}), \int_a^b f(t)dt = 0 \}$$

12.
$$J = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ convergente}\}$$

13.
$$K = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ divergente}\}\$$

14.
$$L = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, u_{n+2} = 2u_{n+1} - u_n^2\}$$

Exercice 2

Soient E un \mathbb{K} -ev, F et G deux sev de E.

- 1. Donner un exemple pour lequel $F \cup G$ n'est pas un sev de E.
- 2. Montrer que

$$(F \cup G \text{ sev de } E) \Leftrightarrow (F \subset G \vee G \subset F).$$

ЕРІТА

Exercice 3

Soient E un \mathbb{K} -ev, F et G deux sev de E. Montrer que

$$F + G = Vect(F \cup G)$$

Exercice 4

Déterminer toutes les applications linéaires de \mathbb{R} dans \mathbb{R} puis de \mathbb{R}^2 vers \mathbb{R}^2 .

Exercice 5

- 1. Soient E un \mathbb{R} -ev et $(f,g) \in (\mathscr{L}(E))^2$. Montrer que $g \circ f = 0 \iff Im(f) \subset Ker(g)$
- 2. Soient E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 + f 2id = 0$ où id désigne l'application identique de E dans E.
 - a. Montrer que $Im(f-id) \subset Ker(f+2id)$ et $Im(f+2id) \subset Ker(f-id)$.
 - b. Montrer que $E = Ker(f id) \oplus Ker(f + 2id)$

Exercice 6

Soient E un \mathbb{K} -ev, $(u,v) \in \mathcal{L}(E) \times \mathcal{L}(E)$ tels que $u \circ v = v \circ u$. Montrer que

$$E = \operatorname{Ker}(u) \oplus \operatorname{Ker}(v) \Longrightarrow \operatorname{Im}(u) \subset \operatorname{Ker}(v) \text{ et } \operatorname{Im}(v) \subset \operatorname{Ker}(u)$$

Exercice 7

Soit E un \mathbb{K} -ev.

- 1. Soit p un projecteur de E i.e. $p \in \mathcal{L}(E)$ et $p^2 = p$. Montrer que $E = \mathrm{Ker}(p) \oplus Im(p)$.
- 2. Soient p et q deux projecteurs de E. Montrer que
 - a. $(p \circ q = q \land q \circ p = p) \iff (\operatorname{Im}(p) = \operatorname{Im}(q))$
 - b. $(p \circ q = p \land q \circ p = q) \iff (\operatorname{Ker}(p) = \operatorname{Ker}(q))$
 - c. On suppose $p \neq 0$, $q \neq 0$ et $p \neq q$. Soit $\alpha \in \mathbb{R}$. Montrer que $q = \alpha p \Rightarrow \alpha p = \alpha^2 p$. En déduire que (p,q) forme une famille libre dans $\mathcal{L}(E)$.

Exercice 8

Les familles suivantes sont-elles libres dans E?

1.
$$(1, X - 1, (X + 1)^2)$$
 $(E = \mathbb{R}_2[X])$

2.
$$(x \mapsto e^{2x}, x \mapsto x^2, x \mapsto x)$$
 $(E = \mathbb{R}^{\mathbb{R}})$

3.
$$(x \mapsto e^x, x \mapsto e^{x+1}, x \mapsto e^{x+2})$$
 $(E = \mathbb{R}^{\mathbb{R}})$

4.
$$(x \mapsto \sin(x), x \mapsto \cos(x), x \mapsto x)$$
 $(E = \mathbb{R}^{\mathbb{R}})$

Exercice 9

Dans $\mathbb{R}^{\mathbb{R}}$, on note pour tout $i \in \mathbb{N}$, f_i la fonction définie par $\begin{cases} f_i(i) = 1 \\ f_i(x) = 0 \text{ si } x \neq i \end{cases}$ Soit $n \in \mathbb{N}$. Montrer que $(f_0, ..., f_n)$ est libre.

Exercice 10

Soient E un \mathbb{K} -ev de dimension 3 et $f \in \mathcal{L}(E)$ vérifiant $f^3 = 0$ et $f^2 \neq 0$. Soit $x \in E$ tel que $f^2(x) \neq 0$. Montrer que la famille $\{x, f(x), f^2(x)\}$ est une base de E.

Exercice 11

Soient E un \mathbb{K} -ev de dimension finie n paire et $f \in \mathcal{L}(E)$. Montrer que

$$\left(f^2=0 \text{ et } \operatorname{rg}(f)=\frac{n}{2}\right) \Longleftrightarrow \left(\operatorname{Im}(f)=\operatorname{Ker}(f)\right)$$

Exercice 12

Soient E un \mathbb{K} -ev de dimension finie et $f \in \mathcal{L}(E)$. Montrer que

$$\left(\operatorname{Im}(f) = \operatorname{Im}(f^2)\right) \Longleftrightarrow \left(E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)\right)$$