- Représentations des courbes et frontières
 - Par codage
 - Transformation qui fournit une représentation différente de la représentation initiale
 - S'évalue selon 3 caractéristiques (Freeman 74)
 - Conservation de l'info (réversibilité)
 - La réduction de la place nécessaire au stockage (taux de compression)
 - L'application facilitée d'opérateurs de traitements

- Représentations des courbes et frontières (suite)
 - Par codage (suite)
 - Codage par frontière ajustée (Merrill 73)
 - Repose sur un tri des coordonnées des points frontières (d'abord en abscisses croissantes puis en ordonnées croissantes)
 - Codage exact
 - Taux de compression peu élevé
 - Test facile de l'appartenance d'un point à l'objet délimité par la frontière
 - Opérations d'intersection et d'union également faciles
 - · Mais perte de toute l'information de voisinage

- Représentations des courbes et frontières (suite)
 - Par codage (suite)
 - Codage de Freeman (74)
 - Exploite le fait que 2 points successifs de la frontière sont des points voisins => il suffit d'indiquer comment passer de l'un à l'autre

 \vec{u} (b, a)

- Représentations des courbes et frontières (suite)
 - Par codage (suite)
 - Codage de Freeman (74)
 - Exploite la linéarité de l'information
 - Pas de solution particulière à la reconnaissance d'un point intérieur
 - Mais adaptés à des opérations ensemblistes ou géométriques
 - Intersections d'arcs ou courbes
 - Translations (facile => il suffit de translater les coordonnées du 1er point)
 - Rotations (rotations d'un angle multiple de 90° simples mais celles d'un angle quelconque non)

- Représentations des courbes et frontières (suite)
 - Par codage (suite)
 - Représentations Approchées = Approximations Polygonales
 - Extractions de sommets caractéristiques (sommets de l'approximation polygonale) qui définissent un nouveau codage de la frontière
 - Taux de compression + impt que pour les codages exacts
 - Perte d'information (quantité peut être contrôlée par un critère de précision qui s'associe à la notion de bruit)
 - Approximation réalisée à partir d'une entité de référence (segment de droite, arc de cercle
 ..)
 - Plusieurs types de méthodes d'approximation
 - Méthodes fondées sur les changements de direction (détection des points de forte courbure)
 - Méthodes de découpages récursifs (ajout de points de cassure = sommets de l'approximation)
 - Méthodes d'approximation itérative

- Représentations des courbes et frontières (suite)
 - Par codage (suite)
 - Représentations Approchées = Approximations Polygonales
 - Méthodes itératives
 - Données introduites séquentiellement (points de contour ordonnés par le suivi de contour) et regroupées jusqu'à ce qu'un certain critère (erreur remise à jour à chaque ajout) ne soit plus vérifié
 - Extrémités du segment : point de départ + dernier point ayant satisfait le critère

- Représentations des régions par
 - Quadtree
 - Maillage carré => extension de ce principe à un objet = partionnement en carrés discrets
 - Distances discrètes
 - Modification de la distance utilisée = > moyen d'étendre les possibilités de recouvrement d'1 objet par des formes élémentaires
 - Axes médians discrets
 - Recouvrement d'1 objet par des boules => accès à une représentation minimale de l'objet
 - Liée à la notion de squelette dans l'espace continu

- Représentations des régions par (suite)
 - Quadtree (suite)
 - Liée à la propriété de récursivité du maillage carré
 - diviser récursivement une région si le critère d'uniformité n'est pas satisfait

- Représentations des régions par (suite)
 - Quadtree (suite)
 - Représentation fortement dépendante de la position des objets dans l'image (codage s'appuie sur un partitionnement sans tenir compte a priori du contenu de l'image)
 - Codage non invariant en translation
 - Temps de calcul proportionnel au nombre de feuilles et pas au nombre de pixels
 - Opérations possibles (union, intersection, complémentation, recherche de voisins, translations, rotations par angle multiple de 90°)
 - Généralisation du Quadtree=> principes de hiérarchie, multi-résolution, construction de pyramides

- Représentations des régions par
 - Distances discrètes
 - Distances d-4, d-8 / euclidienne

8	8	8	8	8	8	8	8	8	8	-8	-8	8	8	8	8	18
8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	1	8
8	7	∕6	6	6	6	6	6	6	6	6	6	6	6	>6	7	8
8	71	6	5	5	5	5	5	5	5	5	5	5	∕ 5	6	7	8
8⁄	7	6	5	4	4	4	4	4	4	4	4	4	5	6	አ	8
/8	7	6	5	4	3	3	3	3	3	3	<i>7</i> 3	4	5	6	7	8/
/ 8	7	6	5	4	3	2	2	2	2	Ź	3	4	5	6	7	8
8	7	6	5	4	3	2	1	1	1	2	3	4	5	6	7	8
8	7	6	5	4	3	2	1	Р	1	2	3	4	5	6	7	8
8	7	6	5	4	3	2	1	1	1	2	3	4	5	6	7	8
8	7	6	5	4	3	2	2	2	2	2	3	4	5	6	7	8 /8
\8	7	6	5	4	3	3	3	3	3	3	3	4	5	6	7	/
8	7	6	5	4	4	4	4	4	4	4	4	4	5	6	7/	8
8	∇	6	5	5	5	5	5	5	5	5	5	5	5	6	/7	8
8	7	6	6	6	6	6	6	6	6	6	6	6	6	∕ 6	7	8
8	7	7	Z	7	7	7	7	7	7	7	7	7	1	7	7	8
8	8	8	8	8	-8	8	8	8	8	_8	-8	8	8	8	8	8
	d8															

d-4 > de > d-8 (d4 = 2 d8 , d8= √2 de) dans les diagonales

F. Cloppet → Recherche de nouvelles distances

- Distances discrètes
 - Moyenne pondérée des distances d4 et D8
 - u/w d4 + v/w d8 approximation(de)
 - \Rightarrow u d4 + v d8 approximation(w*de) et u+v > 0 et u et v entiers strictement positifs
 - ⇒Distance d'un pixel à ses voisins axiaux u+v
 - ⇒Distance d'un pixel à ses voisins diagonaux 2u + v
 - ⇒"Cercle" unité pour cette distance = octogone

- Distances discrètes
 - Distances de chanfrein
 - Pondération sur l'adjacence d'un pixel à ses voisins par la distance entre ces 2 pixels

Masque de chanfrein

a>0

Distance de chanfrein(P,Q) = poids minimum d'un 8 chemin de P à Q d = y b + (x-y) a (cas $x \ge y$ et $x \ge 0$ et $y \ge 0$ généralisable)

- Distances discrètes
 - Distances de chanfrein (suite)
 - Remarques : si a=1 et b=2 => d4

1	1	1
1	0	1
1	1	1

d8

2	1	2
1	0	1
2	1	2

d4

si a =u+v et b= 2u+v => combinaison pondérée ud4 + vd8

- Choix optimal des coefficients afin d'approximer au mieux la distance euclidienne Étude de Borgefors (86)
 - 2 contraintes : erreur relative maximale doit être la plus petite les coefficients du masque de chanfrein doivent être des nombre rationnels ayant de petits numérateurs et dénominateurs

- Distances discrètes
 - Distances de chanfrein (suite)
 - Borgefors a montré
 - Pour un voisinage 3x3 qu'1 bonne approximation pouvait être obtenue pour a =1 et b = 4/3

Masque

4	3	4
3	0	3
4	3	4

Distance (3,4) de Borgefors

• Pour un voisinage 5x5 qu'1 bonne approximation pouvait être obtenue pour a =1 b = 7/5 c= 11/5

е	С	d	С	е
O	b	а	b	C
d	а	0	а	d
С	b	а	b	С
е	С	d	С	е

14	11	10	11	14	
11	7	5	7	11	
10	5	0	5	10	
11	7	5	7	11	
14	11	10	11	14	

- Distances discrètes
 - Image de distance au fond et courbes de niveau

4	3	4
3	0	3
4	3	4

Image de distance au fond pour la distance de chanfrein 3-4

Courbe de niveau formée par les points qui sont à équidistance du fond Courbe n° i : a * (i-1)<distance≤ a*i

Ex i= 1 0 < distance ≤ 3

i = 2 3 < distance ≤ 6

i = 3 6 < distance ≤ 9

i = 4 9 < distance ≤ 12

- Axe médian (ou squelette de distance)
 - Squelette d'un figure = représentation simplifiée de celle-ci (Blum 64)
 - formée de lignes sans épaisseur
 - centrée dans la figure
 - Ayant les mêmes formes et topologie (même nb de composantes connexes et de trous) que celle-ci

Points de rencontre des différents fronts à tous les instants => squelette

- Axe médian (ou squelette de distance) (suite)
 - Squelette dans l'espace discret
 - axe médian = concept qui fait intervenir le recouvrement d'un objet par des boules
 - Définition

Soit une image : O: ens des points objets

F: ens des points formant le fond

Tout point objet peut être étiqueté par la valeur de sa distance au fond en utilisant une distance d et un facteur d'échelle a

Une boule incluse dans 0 telle que $B_d(p, R_p)$ avec $R_p = d(p,F) - a$

- Axe médian (ou squelette de distance) (suite)
 - Squelette dans l'espace discret
 - Définition (suite)
 - 1 boule est dite maximale si elle ne peut être complètement incluse dans une autre boule (incluse dans O)

- Axe médian (ou squelette de distance) (suite)
 - Squelette dans l'espace discret
 - Définition (suite)
 - 1 point P de O est un point de l'axe médian s'il est le centre d'une boule maximale incluse

Points de l'Axe médian = ensemble des centres P des boules maximales incluses à 0

Axe médian = ens des centres P des boules retenues complété des rayons associés R_P

Propriétés

Boules discrètes associées aux points de l'axe médian définissent un recouvrement de l'ensemble O

=> Permet la reconstruction de O

- Axe médian (ou squelette de distance) (suite)
 - Axe médian = pb de non connexité
 - Si on prend comme image une distance au fond maximum local sur l'image de distance = point de l'axe médian

		1	1	1	1	1	1	1								
		1				2	2	1	1	1	1					
1	1	1						2	2	2	1	1	1			
1	2	2	2	3	4	3	3	3	3	2	2	2	1			
1	2	3	3	3	3	3	2	2	2	2	1	1	1			
1	2	2	2	2	2	2	2	1	1	1	1			1	1	1
1	1	1	1	1	1	1	1	1						1	2	1
														1	1	1

Distance au fond

Maxima locaux = points de l'axe médian ⇒Ensemble de points non connexes ⇒Rajout de points de connexions

On passe alors de l'axe médian à la ligne médiane

