SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Thomas Ciossek, Axel Ullrich, Birgit

Millauer

(ii) TITLE OF INVENTION: METHODS FOR DIAGNOSIS AND TREATMENT

OF MDK1 SIGNAL TRANSDUCTION DISORDERS

(iii) NUMBER OF SEQUENCES: 10

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Lyon & Lyon

(B) STREET: 633 West Fifth Street

(C) CITY: Los Angeles (D) STATE: California

(E) COUNTRY: USA (F) ZIP: 90071

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: 3.5" Diskette, 1.44 Mb

(B) COMPUTER: IBM compatible

(C) OPERATING SYSTEM: IBM P.C. DOS (Version 5.0)

(D) SOFTWARE: WordPerfect (Version 5.1)

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: to be assigned

(B) FILING DATE: January 3, 1995

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

Prior applications total, including application described below:

none

(A) APPLICATION NUMBER:

(B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Warburg, Richard J.

(B) REGISTRATION NUMBER: 32,327 (C) REFERENCE/DOCKET NUMBER: 208/007

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600 (B) TELEFAX: (213) 955-0440 67-3510

(C) TELEX:

(1)INFORMATION FOR SEQUENCE ID NO:

SEQUENCE CHARACTERISTICS: (i)

LENGTH: (A) 4304

(B) TYPE:

nucleic acid

(C) STRANDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: nucleic

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCGGCCGG TCTGCAGTCG GAGACTTGCA GGCAGCAAAC ACGGTGCGAA 50 CÉAACCGGAG GGGGGAGAGA GAAATCAAAC AGCTAAGCGT GGAGCAGACG 100 GCTGGGACC CAGAAGGGGA TCGATGCGAG GAGCGCAATA ATAACAACAA 150 TÄATAACCCA CTTCGGAGCA AACAGCATCT AAAGAGCTGC GACCCAACTG 200 CAGCCTAAAA AAATCAAACC TGCTCATGCA CCATGGTTGT TCAAACTCGG 250 TTCCCTTCGT GGATTATTTT GTGTTACATC TGGCTGCTTG GCTTTGCACA 300 CACGGGGGAG GCGCAGGCTG CGAAGGAAGT ACTATTACTG GACTCGAAAG 350 CACAACAAAC AGAATTGGAA TGGATTTCCT CTCCACCCAG TGGGTGGGAA 400 GAAATTAGTG GTTTGGATGA GAACTACACT CCGATAAGAA CATACCAGGT 450 GTGCCAGGTC ATGGAGCCCA ACCAGAACAA CTGGCTGCGG ACTAACTGGA 500 TTTCTAAAGG CAACGCACAA AGGATTTTTG TAGAATTGAA ATTCACCTTG 550 AGGGATTGTA ATAGTCTTCC CGGAGTCCTG GGAACTTGCA AGGAAACGTT 600 TAATTTGTAC TATTATGAAA CAGACTACGA CACCGGCAGG AATATACGAG 650 AAAACCTTTA TGTTAAAATA GACACCATTG CTGCAGATGA AAGTTTCACA 700 CAAGGTGACC TTGGTGAAAG AAAGATGAAG CTGAACACTG AGGTGAGAGA 750 GATTGGACCT TTGTCCAAAA AGGGATTCTA TCTTGCCTTT CAGGATGTAG 800 GGGCTTGCAT AGCATTGGTT TCTGTCAAAG TGTACTACAA GAAGTGCTGG 850

					•
ACCATTGTTG	AGAACTTAGC	TGTCTTTCCA	GATACAGTGA	CTGGTTCGGA	900
ATTTTCCTCC	TTAGTCGAGG	TCCGTGGGAC	ATGTGTCAGC	AGTGCCGAGG	950
AAGAGGCAGA	AAATTCCCCC	AGAATGCATT	GCAGTGCAGA	AGGAGAGTGG	1000
CTAGTACCCA	TTGGAAAATG	CATCTGCAAA	GCAGGCTATC	AGCAAAAAGG	1050
GGACACTTGC	GAACCCTGTG	GCCGCAGGTT	CTACAAATCT	TCCTCTCAGG	1100
ATCTCCAGTG	TTCTCGTTGT	CCAACCCACA	GCTTCTCTGA	CCGAGAAGGA	1150
TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CGGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700
ACTCAACACT	CAAAACCAAG	TCCACCTCCG	CCTCCATTAA	TAATCTGAAA	1750
CCGGGAACAG	TGTACGTCTT	TCAGATCCGG	GCGGTCACTG	CTGCCGGTTA	1800
TGGAAACTAC	AGCCCTAGGC	TTGATGTTGC	CACACTTGAG	GAAGCTTCAG	1850
GTAAAATGTT	TGAAGCGACA	GCAGTCTCCA	GTGAACAGAA	TCCTGTCATC	1900
ATAATTGCTG	TAGTGGCTGT	AGCAGGGACC	ATCATCTTGG	TGTTCATGGT	1950
GTTCGGCTTC	ATCATTGGAA	GAAGGCACTG	TGGTTATAGC	AAGGCTGACC	2000
AAGAAGGGGA	TGAAGAACTC	TACTTTCATT	TTAAATTTCC	AGGCACCAAA	2050
				CTGTCCATCA	2100
ATTCGCCAAG	GAGCTAGATG	CCTCCTGTAT	TAAAATTGAG	CGTGTGATTG	2150
GTGCAGGAGA	ATTTGGAGAA	GTTTGCAGTG	GTCGTTTGAA	ACTTCCGGGC	2200
CAGAGAGATG	TTGCAGTGGC	CATAAAAACC	CTGAAAGTTG	GTTACACAGA	2250

AAAGCAAAGG	AGGGACTTTT	TATGCGAAGC	AAGCATCATG	GGGCAATTTG	2300
ACCACCCAAA	TGTCGTCCAT	TTGGAAGGGG	TTGTTACAAG	AGGGAAGCCT	2350
GTCATGATTG	TGATAGAGTT	CATGGAGAAT	GGAGCCCTGG	ATGCATTTCT	2400
CAGGAAACAC	GATGGGCAGT	TTACAGTCAT	TCAGTTGGTA	GGAATGTTGA	2450
GAGGTATTGC	CGCTGGGATG	CGATACTTGG	CTGATATGGG	ATACGTTCAC	2500
AGGGACCTTG	CAGCGCGCAA	CATCCTTGTC	AACAGCAATC	TTGTTTGTAA	2550
AGTGTCAGAT	TTTGGCCTTT	CCCGGGTTAT	AGAGGATGAT	CCCGAAGCTG	2600
TCTACACCAC	GACTGGTGGA	AAAATTCCAG	TAAGGTGGAC	TGCACCGGAA	2650
GCCATTCAAT	ACCGGAAGTT	CACCTCAGCC	AGCGATGTGT	GGAGCTATGG	2700
GATTGTCATG	TGGGAAGTGA	TGTCTTATGG	AGAAAGACCT	TACTGGGACA	2750
ŢĠTCAAATCA	AGATGTCATT	AAAGCGATAG	AAGAAGGTTA	TCGTTTGCCG	2800
GCGCCCATGG	ATTGCCCAGC	TGGTCTTCAC	CAGCTAATGC	TGGATTGTTG	2850
GCAGAAAGAT	CGGGCGGAAA	GGCCAAAGTT	TGAGCAGATA	GTCGGAATTC	2900
TAGACAAAAT	GATTCGAAAC	CCAAGTAGTC	TGAAAACACC	CCTGGGAACT	2950
TGTAGTAGAC	CCTTAAGCCC	TCTTCTGGAC	CAGAGCACTC	CTGACTTCAC	3000
TECCTTCTGT	TCAGTTGGAG	AATGGTTGCA	AGCTATTAAA	ATGGAAAGGT	3050
ATAAGGACAA	CTTCACAGCA	GCGGGTTACA	ACTCACTCGA	GTCAGTGGCC	3100
AGGATGACTA	TCGATGATGT	GATGAGTTTA	GGGATCACAC	TGGTTGGCCA	3150
TCAAAAGAAG	ATCATGAGCA	GCATCCAGAC	TATGCGGGCA	CAAATGTTGC	3200
ATTTACACGG	AACAGGCATC	CAAGTGTGAC	ACATCGGCCT	CCCTCAGATG	3250
AGGCTTAAGA	CTGCAGGAGA	ACAGTTCTGG	CCTTCAGTAT	ACGCATAGAA	3300
TGCTGCTAGA	AGACAGTTGA	TATACTGGGT	CCTTCCTACA	AGAAAGAGAA	3350
GATTTTAGAA	GCACCTCCAG	ACTTGAACTC	CTAAGTGCCA	CCAGAATATA	3400
CAAAAAGGGA	ATTTAGGATC	CACCACTGGT	GGCCAGGAAC	ACAGCAGAGA	3450
CAATAAACAA	AGTACTACCT	GAAAAACATC	CCAACACCTT	GAGCTCTCGA	3500
ACCTCCTTTT	TATCTTATAG	ACTTTTTAAA	AATGTACATA	AAGAATTTAA	3550
				TTAAAATCAA	
TGAAATATTT	TCCTTAAAAT	ATGTGATTTC	AGACTATTCT	TTTCCAGAAC	3650

CATCTGTGTT	TATTCTGCTT	AAGGACTTTG	TTTTAGAAAG	TTATTTGTAG	3700
CTTTGGACCT	TTTTAGTGTT	AAATTTATGA	CACGTTACTA	CACTGGGAAC	3750
CTTTGAAGAC	TCTCAAACTT	AAAGGAAAGC	AAAACTACGC	ACATAGTCGA	3800
GGATGGACTT	TGTCCTTCAT	GGCTTTGGTA	TCCTGGCTGT	GTCATTTTGT	3850
TAAACCAGTG	ATGTTTTCAT	ATTGTTTGCT	GATTGGCAGG	TAGTTCAAAA	3900
TTGCAAGTTG	CCAAGAGCTC	TGATATTTTT	TAACAGGATT	TTTTTTTCTT	3950
TGTAAAAATC	AGATAACATA	CTAACTTTTC	AATGAAAAAA	AAAAAAAAG	4000
AAGCAATAAT	GATCCATAAA	TACTATAAGG	CACTTTTAAC	AGATTGTTTA	4050
TAGAGTGATT	TACTAGGCAG	AATTTAATAA	AAAAAAAAGA	GAGATGTCAA	4100
ATTTTAGGTT	TATGTGTATA	TGATAAAAGG	CTGAGCTTCG	TCTGAAGATG	4150
CTGGTGAAAG	CAAGACTGGA	AGCGAAGCTC	TCCAGCTTTG	GCTAACCCAA	4200
TCCGAGCACA	TCAAGAGCTT	CAGTCTTGTG	ACAGTAAGAA	ATTTAGGAAC	4250
ATAGTTGACC	TATATTTTGT	ATTCTTTCTT	GTTGAATGCA	GTCCAAATAC	4300
AAAA					4304

INFORMATION FOR SEQUENCE ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

998

(B) TYPE:

amino acid

(C) STRANDNESS:

single

(D) TOPOLOGY:

linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION:

SEQ ID NO: 2:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile 1 5 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 110 Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 130 135 140 Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 150 Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 170 Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys He Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile 195 Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 215 220 Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 225 230 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys Gly Asp Thr Cys Glu Pro Cys Gly Arg Phe Tyr Lys Ser Ser Ser 275 Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro 310 315

Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 390 395 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu Ada Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala 425 Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly 435 440 445 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln Gu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 470 475 to refer the Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val 505 Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 550 555 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 570 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly Asp Glu Glu Leu Tyr Phe His Phe Lys Phe Pro Gly Thr Lys Thr Tyr 600

Ile Asp Pro Glu Thr Tyr Glu Asp Pro Asn Arg Ala Val His Gln Phe 615 Ala Lys Glu Leu Asp Ala Ser Cys Ile Lys Ile Glu Arg Val Ile Gly 635 Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly Gln Arg Asp Val Ala Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr 665 Glu Lys Gln Arg Arg Asp Phe Leu Cys Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Val Val His Leu Glu Gly Val Val Thr Arg Gly 690 695 🛱 s Pro Val Met Ile Val Ile Glu Phe Met Glu Asn Gly Ala Leu Asp 710 Ala Phe Leu Arg Lys His Asp Gly Gln Phe Thr Val Ile Gln Leu Val 725 730 Hy Met Leu Arg Gly Ile Ala Ala Gly Met Arg Tyr Leu Ala Asp Met dly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu 770 Asp Asp Pro Glu Ala Val Tyr Thr Thr Thr Gly Gly Lys Ile Pro Val 790 Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala 805 810 Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala 840 Ile Glu Glu Gly Tyr Arg Leu Pro Ala Pro Met Asp Cys Pro Ala Gly 850 855 Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Ala Glu Arg 870 Pro Lys Phe Glu Gln Ile Val Gly Ile Leu Asp Lys Met Ile Arg Asn 890 895

111 208/007

Pro Ser Ser Leu Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro Leu Ser 900

Pro Leu Leu Asp Gln Ser Thr Pro Asp Phe Thr Ala Phe Cys Ser Val 920

Gly Glu Trp Leu Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe

Thr Ala Ala Gly Tyr Asn Ser Leu Glu Ser Val Ala Arg Met Thr Ile 950 955 960

Asp Asp Val Met Ser Leu Gly Ile Thr Leu Val Gly His Gln Lys Lys 970

Ile Met Ser Ser Ile Gln Thr Met Arg Ala Gln Met Leu His Leu His 980 ļ.

Thr Gly Ile Gln Val 995

N

INFORMATION FOR SEQUENCE ID NO:

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: (A)

610

- TYPE: (B)
- amino acid
- (C) STRANDNESS:

single

- (D) TOPOLOGY:
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile 10

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln 90 Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 155 Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro l-4 Theu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys He Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile 195 val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 215 Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 230 235 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 325 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 345 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu 355

Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser 375 Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 395 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu 405 Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln 455 🗿 u Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 475 Fyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys Şer Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val 505 Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu 530 535 Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 550 555 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 565 570 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly 590 Asp Glu Glu Leu Tyr Phe His Ser Leu Val Thr Asn Glu His Leu Ser 600

Val Leu 610 114 208/007

(1) INFORMATION FOR SEQUENCE ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: (B) TYPE:

2901

(B) TYPE: nucleic acid (C) STRANDNESS: single (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: nucleic
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

AAGCGGCCGG	TCTGCAGTCG	GAGACTTGCA	GGCAGCAAAC	ACGGTGCGAA	50
CGAACCGGAG	GGGGGAGAGA	GAAATCAAAC	AGCTAAGCGT	GGAGCAGACG	100
GCTGGGACC	CAGAAGGGGA	TCGATGCGAG	GAGCGCAATA	ATAACAACAA	150
TAATAACCCA	CTTCGGAGCA	AACAGCATCT	AAAGAGCTGC	GACCCAACTG	200
CAGCCTAAAA	AAATCAAACC	TGCTCATGCA	CCATGGTTGT	TCAAACTCGG	250
TTCCCTTCGT	GGATTATTTT	GTGTTACATC	TGGCTGCTTG	GCTTTGCACA	300
CACGGGGGAG	GCGCAGGCTG	CGAAGGAAGT	ACTATTACTG	GACTCGAAAG	350
CACAACAAAC	AGAATTGGAA	TGGATTTCCT	CTCCACCCAG	TGGGTGGGAA	400
GAAATTAGTG	GTTTGGATGA	GAACTACACT	CCGATAAGAA	CATACCAGGT	450
GTGCCAGGTC	ATGGAGCCCA	ACCAGAACAA	CTGGCTGCGG	ACTAACTGGA	500
TTTCTAAAGG	CAACGCACAA	AGGATTTTTG	TAGAATTGAA	ATTCACCTTG	550
AGGGATTGTA	ATAGTCTTCC	CGGAGTCCTG	GGAACTTGCA	AGGAAACGTT	600
TAATTTGTAC	TATTATGAAA	CAGACTACGA	CACCGGCAGG	AATATACGAG	650
AAAACCTTTA	TGTTAAAATA	GACACCATTG	CTGCAGATGA	AAGTTTCACA	700
CAAGGTGACC	TTGGTGAAAG	AAAGATGAAG	CTGAACACTG	AGGTGAGAGA	750
GATTGGACCT	TTGTCCAAAA	AGGGATTCTA	TCTTGCCTTT	CAGGATGTAG	800
GGGCTTGCAT	AGCATTGGTT	TCTGTCAAAG	TGTACTACAA	GAAGTGCTGG	850
ACCATTGTTG	AGAACTTAGC	TGTCTTTCCA	GATACAGTGA	CTGGTTCGGA	900
ATTTTCCTCC	TTAGTCGAGG	TCCGTGGGAC	ATGTGTCAGC	AGTGCCGAGG	950
AAGAGGCAGA	AAATTCCCCC	AGAATGCATT	GCAGTGCAGA	AGGAGAGTGG	1000
CTAGTACCCA	TTGGAAAATG	CATCTGCAAA	GCAGGCTATC	AGCAAAAAGG	1050

					200,007
GGACACTTGC	GAACCCTGTG	GCCGCAGGTT	CTACAAATCT	TCCTCTCAGG	1100
ATCTCCAGTG	TTCTCGTTGT	CCAACCCACA	GCTTCTCTGA	CCGAGAAGGA	1150
TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CEGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700
ACTCAACACT	CAAAACCAAG	TCCACCTCCG	CCTCCATTAA	TAATCTGAAA	1750
ecggaacag	TGTACGTCTT	TCAGATCCGG	GCGGTCACTG	CTGCCGGTTA	1800
TGGAAACTAC	AGCCCTAGGC	TTGATGTTGC	CACACTTGAG	GAAGCTTCAG	1850
ĞTAAAATGTT	TGAAGCGACA	GCAGTCTCCA	GTGAACAGAA	TCCTGTCATC	1900
ATAATTGCTG	TAGTGGCTGT	AGCAGGGACC	ATCATCTTGG	TGTTCATGGT	1950
GTTCGGCTTC	ATCATTGGAA	GAAGGCACTG	TGGTTATAGC	AAGGCTGACC	2000
AAGAAGGGGA	TGAAGAACTC	TACTTTCATT	CTTTAGTAAC	AAATGAGCAC	2050
CTGTCAGTTT	TATAAACCGC	AACAATAACT	GTTTAAGACA	ATCAATTTTG	2100
GATAAACAAT	CAACTACAGC	AGAATAAATC	AAGATTTTTA	AGTCCCATTT	2150
TCCTTTATAC	ATTCTGCTTA	TTTTGTTGTT	ATATGTTTAT	TTTTTAAACT	2200
CTGATCTTGA	TTGAATGTGA	TACCATAAGC	ACAGTTAGGC	TGCAGTGTAA	2250
ATATATAAAG	ACATTGTTCT	GAGAGCAGTA	CGATTTCATG	GAAAGATTGT	2300
TTGGTGGCTT	TGTTAAAATT	AATAAAGAAT	TTTTAAGGAT	ATAGTGTAAT	2350
TTTCTTCATT	GCATTAATAT	AACCAAATAT	GCCTACCTAT	CTTTGTCTTG	2400
AACCAAATGA	ATAGATTTGG	AATACTTTAT	TGTAATTGAA	TTTGATATAA	2450

116	208/007
AGTTGACTGA GCATTTATGT GTTACCTGCA TGCTTCTGGG TGCATTGAAA	2500
TATTTTAACT TTTAAAATGA TACTATGTTG TTTCAATTTT GACTACCTTT	2550
TGTGAGGCAT ACTGGCTACC TCCTCCTATT AGCTAAGATC TTCCAAAGCC	2600
TTATAATGAA AAGTTTATAT AAACCATTTC TCTTTCAAAT CACTGTCATA	2650
CTTGGTCACG GATCCCAGGA ATATTGTAAA TTTTCTAATT TACTCTGCAC	2700
TTTGTATATC CAGCCTCTAT TACCCTCAAG GTGAATATAA AACTATGTCT	2750
TTTGAATATT TCTCTTTGAT TTTGTGATAG CAGTCCCTCA TATCTTGTAC	2800
TAATTTTATG TATATGTCAA CAGTGGTTGG TCTTTAAAAA TAAATCAAAG	2850
AATAAGTAAA AAAAAAAAA AAAAAAAAA AAAAATAAAA AAAAAA	2900
	2901
INFORMATION FOR SEQUENCE ID NO: 5:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 626 (B) TYPE: amino acid (C) STRANDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	

Met
1ValValGlnThr
5ArgPhe
5Pro
6Ser
10Trp
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10Ile
10

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 135 Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 150 155 Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 170 Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys The Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile ♥al Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 210 220 210 215 Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 225 230 240 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg 290 295 Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 340 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser 370

Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 390 395 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu 410 Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala 420 425 Ala Val Ser Ile Thr Thr Gly Gln Ala Pro Ser Gln Val Ser Gly 435 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln 455 Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 465 470 480 Tr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys 490 ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro Alg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 545 550 560 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 570 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly 580 Asp Glu Glu Leu Tyr Phe His Ser Leu Tyr Arg Glu Arg Gly Asp Gly Met Glu Lys Thr Gln His Asn Lys Lys Trp Met Ile Ala Ser Cys Ser 615

Arg Leu 625 119 208/007

(1) INFORMATION FOR SEQUENCE ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2323
 - nucleic acid
 - (C) STRANDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: nucleic
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AAGCGGCCGG	TCTGCAGTCG	GAGACTTGCA	GGCAGCAAAC	ACGGTGCGAA	50
CGAACCGGAG	GGGGGAGAGA	GAAATCAAAC	AGCTAAGCGT	GGAGCAGACG	100
SCCTGGGACC	CAGAAGGGGA	TCGATGCGAG	GAGCGCAATA	ATAACAACAA	150
TAATAACCCA	CTTCGGAGCA	AACAGCATCT	AAAGAGCTGC	GACCCAACTG	200
CAGCCTAAAA	AAATCAAACC	TGCTCATGCA	CCATGGTTGT	TCAAACTCGG	250
TTCCCTTCGT	GGATTATTTT	GTGTTACATC	TGGCTGCTTG	GCTTTGCACA	300
CACGGGGGAG	GCGCAGGCTG	CGAAGGAAGT	ACTATTACTG	GACTCGAAAG	350
CACAACAAAC	AGAATTGGAA	TGGATTTCCT	CTCCACCCAG	TGGGTGGGAA	400
GAAATTAGTG	GTTTGGATGA	GAACTACACT	CCGATAAGAA	CATACCAGGT	450
GTGCCAGGTC	ATGGAGCCCA	ACCAGAACAA	CTGGCTGCGG	ACTAACTGGA	500
TTTCTAAAGG	CAACGCACAA	AGGATTTTTG	TAGAATTGAA	ATTCACCTTG	550
AGGGATTGTA	ATAGTCTTCC	CGGAGTCCTG	GGAACTTGCA	AGGAAACGTT	600
TAATTTGTAC	TATTATGAAA	CAGACTACGA	CACCGGCAGG	AATATACGAG	650
AAAACCTTTA	TGTTAAAATA	GACACCATTG	CTGCAGATGA	AAGTTTCACA	700
CAAGGTGACC	TTGGTGAAAG	AAAGATGAAG	CTGAACACTG	AGGTGAGAGA	750
GATTGGACCT	TTGTCCAAAA	AGGGATTCTA	TCTTGCCTTT	CAGGATGTAG	800
GGGCTTGCAT	AGCATTGGTT	TCTGTCAAAG	TGTACTACAA	GAAGTGCTGG	850
ACCATTGTTG	AGAACTTAGC	TGTCTTTCCA	GATACAGTGA	CTGGTTCGGA	900
ATTTTCCTCC	TTAGTCGAGG	TCCGTGGGAC	ATGTGTCAGC	AGTGCCGAGG	950
AAGAGGCAGA	AAATTCCCCC	AGAATGCATT	GCAGTGCAGA	AGGAGAGTGG	1000
CTAGTACCCA	TTGGAAAATG	CATCTGCAAA	GCAGGCTATC	AGCAAAAAGG	1050

GGACACTTGC	GAACCCTGTG	GCCGCAGGTT	CTACAAATCT	TCCTCTCAGG	1100
ATCTCCAGTG	TTCTCGTTGT	CCAACCCACA	GCTTCTCTGA	CCGAGAAGGA	1150
TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CGGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700
ACTCAACACT	CAAAACCAAG	TCCACCTCCG	CCTCCATTAA	TAATCTGAAA	1750
CCGGGAACAG	TGTACGTCTT	TCAGATCCGG	GCGGTCACTG	CTGCCGGTTA	1800
TOGAAACTAC	AGCCCTAGGC	TTGATGTTGC	CACACTTGAG	GAAGCTTCAG	1850
GTAAAATGTT	TGAAGCGACA	GCAGTCTCCA	GTGAACAGAA	TCCTGTCATC	1900
ATAATTGCTG	TAGTGGCTGT	AGCAGGGACC	ATCATCTTGG	TGTTCATGGT	1950
GTTCGGCTTC	ATCATTGGAA	GAAGGCACTG	TGGTTATAGC	AAGGCTGACC	2000
AAGAAGGGGA	TGAAGAACTC	TACTTTCATT	CTCTTTACAG	GGAAAGGGGA	2050
GACGGGATGG	AAAAGACACA	GCACAATAAG	AAGTGGATGA	TTGCATCGTG	2100
CTCTCGTTTG	TAGGTCTCTT	TTCCTAATCA	ACACTATGAT	TTTGAAGTAC	2150
GCGTACACGA	AGCAAACGGG	AAGAGATAAG	GAATTAGCAT	TGTGAACCTG	2200
ACTGTAATCC	TCTCTTCCGG	AAAGAGATGA	GATGCTATTG	CGATGAGAAT	2250
GTACAACTTG	CACCTTGAAA	TCTTTTTTGA	TAATTAGTGC	TCAGGGGAGG	2300
GGGGGGAAG	TAGAGAAAGC	AAA			2323

```
(2) INFORMATION FOR SEQ ID NO: 7:
   (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH:
        (B) TYPE:
                                 amino acid
        (C) STRANDEDNESS:
                                 single
        (D) TOPOLOGY:
                                 linear
   (ii) MOLECULE TYPE:
                                peptide
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
Ala Ala Thr Ala Ala Ala
(2) INFORMATION FOR SEQ ID NO: 8:
   (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH:
        (B) TYPE:
                                 amino acid
        (C) STRANDEDNESS:
                                single
        (D) TOPOLOGY:
                                 linear
   (ii) MOLECULE TYPE:
                                peptide
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
Ala Ala Thr Ala Ala Ala
                5
(2) INFORMATION FOR SEQ ID NO: 9:
   (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH:
        (B) TYPE:
                                 amino acid
        (C) STRANDEDNESS:
                                 single
        (D) TOPOLOGY:
                                 linear
   (ii) MOLECULE TYPE:
                                peptide
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO:
His Arg Asp Leu Ala Ala
                5
(2) INFORMATION FOR SEQ ID NO: 10:
```

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

6

(B) TYPE:

amino acid

(C) STRANDEDNESS:

single

(D) TOPOLOGY:

linear

(ii) MOLECULE TYPE:

peptide

(ix) FEATURE:

(D) OTHER INFORMATION:

Xaa in position 2 is valine or methionine; Xaa in position 5 is

phenylalanine or tyrosine.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Asp Xaa Trp Ser Xaa Gly

5