PS 49: Problem 4.29

(a)

(b) Letting the program run with parameters d=3, N=40, and E=40 for a time >100,000 mcs, we obtain the mean energy of the demon $\langle E_d \rangle = 0.65$, and the mean energy per particle $\langle E \rangle / N = 0.98$. For varying N, we have the following:

Table 1: Energy values for E = 40.

	N	$\langle E_d \rangle$	$\langle E \rangle$	$\langle E \rangle / N$
	40	0.65	39.35	0.984
١	60	0.438	0.329	0.659
	80	0.329	39.671	0.496
	100	0.265	39.735	0.397

Figure 1: Relationship between $\langle E_d \rangle$ and $\langle E \rangle / N$ for N = 40.

From linear regression, we observe a direct relationship between $\langle E_d \rangle$ and $\langle E \rangle / N$, with a proportionality constant m = 1.52 or $m = \frac{31}{20} \approx \frac{3}{2}$. This implies the relation

$$\frac{\langle E \rangle}{N} \approx \frac{3}{2} \langle E_d \rangle \tag{1}$$

(c) The mean energy of an ideal classical gas is 3 dimensions is

$$\langle E \rangle = \frac{3}{2} NkT \tag{2}$$

Setting units of k = 1, and rearranging terms,

$$\frac{\langle E \rangle}{N} = \frac{3}{2}T\tag{3}$$

But (1) implies

$$\frac{3}{2} \langle E_d \rangle = \frac{3}{2} T \tag{4}$$

or

which means that the temperature of the gas is equal to the mean energy of the demon at any N.