

UNTREF UNIVERSIDAD NACIONAL DE TRES DE FEBRERO

SEÑALES Y SISTEMAS AÑO 2019

Profesora Titular: Magister Ingeniera Miryam Sassano Profesor Adjunto: Ingeniero Antonio Greco Profesor Adjunto: Ingeniero Maximiliano Yommi

Índice general

Guía 0: NÚMEROS COMPLEJOS	1
Guía 1: SEÑALES	3
Guía 2: SISTEMAS	7
Guía 3: SISTEMAS LTI	11
Guía 4: SERIES DE FOURIER	15
Guía 5: TRANSFORMADA DE FOURIER. PARTE I	17
Guía 6: TRANSFORMADA DE FOURIER. PARTE II	19
Guía 7: TRANSFORMADA DE LAPLACE	21
Guía 8: TEOREMA DE MUESTREO	25
Guía 9: TRANSFORMADA Z. PARTE I	27
Guía 10: TRANSFORMADA Z. PARTE II	29
TABLA DE TRANSFORMADAS	31

Guía 0: NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS

- 1. Efectuar las siguientes operaciones escribiendo los números complejos que intervienen en forma trigonométrica y exponencial, escribir el resultado en forma binómica:
 - a) $i(1-\sqrt{3}i)(\sqrt{3}+i)$
 - $b) \frac{5i}{1+i}$
 - c) $(1 \sqrt{2}i)^3$
- 2. Considerar un número complejo z definido por $z=z_1z_2,$ siendo $z_1=a+ib$ y $z_2=c+id.$
 - a) Demostrar que el módulo de z es el producto de los módulos de z_1 y z_2 .
 - b) Demostrar que el ángulo comprendido entre z y el eje x es la suma de los ángulos que forman z_1 y z_2 con el eje x.
- 3. Hallar el módulo y la fase de los números complejos: $2+i\sqrt{3}$ y $(2-i\sqrt{3})^2$.
- 4. Calcular en forma binómica $\frac{1+i}{\sqrt{3}+i}.$ Expresar el resultado en forma exponencial compleja.
- 5. Demostrar:
 - $a) \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$
 - b) $\overline{z_1.z_2} = \overline{z_1}.\overline{z_2}$.
 - c) $z\overline{z} = |z|^2$.
 - $d) z + \overline{z} = 2Re(z).$
 - e) $z \overline{z} = 2iIm(z)$.
 - $f) \ 0 \leqslant |Re(z)| \leqslant |z|.$
 - $g) \ 0 \leqslant |Im(z)| \leqslant |z|.$
 - h) $||(z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$.
 - $i) |z| = |\overline{z}|.$
 - j) Si $z \neq 0 \Rightarrow z^{-1} = \frac{\overline{z}}{|z|^2}$.
- 6. Calcular la magnitud y la fase de: $z = e^i + e^{3i}$.
- 7. Emplear la fórmula de Euler para obtener las expresión del $cos(\theta)$ y $sen(\theta)$. $(e^{i\theta} = cos(\theta) + isen(\theta))$.

- 8. Emplear los resultados del ítem anterior para calcular: $\int_0^\infty e^{-2t} cos(\pi t) dt.$
- 9. Graficar las siguientes regiones del plano:
 - a) |z-1|=2.
 - b) $|z-1| \le 2$.
 - c) Re(z+4) < 2.
 - d) $Im(z) \leqslant 1$ y Re(z) > 2.
 - e) $|z-2| \le |z+2i|$.
 - f) |z-2| = |z+2i|.

Guía 1: SEÑALES

SEÑALES

1. Determinar la energía y la potencia de las siguientes señales:

$$a) \ x(t) = 3e^{-2t}u(t)$$

$$b) \ x(t) = 2cos(\omega_0 + \pi)$$

$$c) \ x[n] = 2u[n]$$

- $d)\,$ Triangular de altura 2 y ancho 2.
- 2. Expresar las siguientes señales en términos de superposiciones desplazadas y escaladas de impulsos unitarios y escalones unitarios.

3. Para las curvas dadas realizar las transformaciones indicadas de x(t) para cada caso. Expresar el resultado analítica y graficamente.

a)
$$y(t) = x(-2t+1)$$

b)
$$y(t) = \frac{1}{2}x(-t + \frac{1}{2})$$

c)
$$y(t) = \frac{-1}{2}x(t+2)$$

d)
$$y(t) = \frac{1}{2}x(-2t + \frac{1}{2})$$

4. Empleando las señales discretas $x_1[n]$ y $x_2[n]$ representadas en la figura. Obtener y graficar:

- a) $y[n] = x_1[n] + x_2[n]$.
- b) $y[n] = 2x_1[n]$.
- c) $y[n] = -3x_2[n]$.
- d) $y[n] = x_1[n]x_2[n]$.

5. Para la siguiente señal continua grafique las siguientes señales:

a)
$$y(t) = x(t)u(1-t)$$
.

b)
$$y(y) = x(t)u(t)u(t-1)$$
.

c)
$$y(t) = x(t)\delta(t - \frac{3}{2})$$
.

6. Sea la señal discreta x[n] del siguiente gráfico:

Graficar cada una de las siguientes señales:

a)
$$y[n] = x[n]u[n-2]$$
.

b)
$$y[n] = x[n]\delta[n-3]$$
.

c)
$$y[n] = \frac{1}{2}x[n] + (-1)^nx[n]$$
.

7. Determinar si las siguientes señales son periódicas. Si lo son, encuentrar el período fundamental:

a)
$$x(t) = cos(\frac{3\pi}{2}t)$$
.

b)
$$x[n] = cos[\frac{3\pi}{2}n].$$

c)
$$x(t) = \cos(\frac{3\pi}{2}t) + \sin(\frac{3\pi}{2}t)$$
.

$$d) \ x(t) = \cos(\frac{3\pi}{2}t) + 3sen(t).$$

$$e) \ x[n] = cos[3n].$$

$$f) x[n] = e^{\frac{4\pi n}{3}} + e^{\frac{3\pi n}{4}}.$$

g)
$$x(t) = 2\cos(\frac{\pi}{4}t) + \sin(\frac{3\pi}{4}t)$$
.

Guía 2: SISTEMAS

SISTEMAS

- 1. Indicar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas. Justificar la respuesta.
 - a) El sistema resultante de la interconexión en serie de dos sistemas lineales es también lineal.
 - b) El sistema resultante de la interconexión en serie de dos sistemas estables es también estable.
 - c) El sistema resultante de la interconexión en serie de dos sistemas invariantes en el tiempo es también invariante en el tiempo.
 - d) El sistema resultante de la interconexión en serie de dos sistemas variantes en el tiempo (no invariantes en el tiempo) no es invariante en el tiempo.
- 2. Considerar el sistema dado en la figura. Determinar si se trata de un sistema:
 - a) Sin memoria.
 - b) Causal.
 - c) Lineal.
 - d) Invariante en el tiempo.
 - e) Estable.

3. Encuentrar la relación entre la entrada y salida del sistema retroalimentado de la siguiente figura.

4. Se sabe que el sistema representado por la transformación T es invariante en el tiempo. Cuando las entradas al sistema son $x_1[n]$ y $x_2[n]$, las salidas del mismo son $y_1[n]$ e $y_2[n]$, respectivamente. Determinar si el sistema dado es lineal.

5. Determinar si el sistema definido por la transformación T es lineal.

$$y[n] = T\{x[n]\} = \frac{1}{3}\{x[n+1] + x[n] + x[n-1]\}.$$

- 6. Un sistema presenta una relación entre la entrada y la salida dada por la expresión: $y(t) = T\{x(t)\} = (t-2)x(t)$. Determinar si el sistema es:
 - a) Sin memoria.
 - b) Causal.
 - c) Lineal.
 - d) Invariante en el tiempo.
 - e) Estable.
- 7. Un sistema presenta una relación entre la entrada y la salida dada por la expresión: $y[n] = T\{x[n]\} = nx[n]$. Determinar si el sistema es:
 - a) Sin memoria.
 - b) Causal.
 - c) Lineal.
 - d) Invariante en el tiempo.
 - e) Estable.

- 8. Un sistema presenta una relación entre la entrada y la salida dada por la expresión: $y(t) = T\{x(t)\} = tx(t)$. Determinar si el sistema es:
 - a) Sin memoria.
 - b) Causal.
 - c) Lineal.
 - $d)\,$ Invariante en el tiempo.
 - e) Estable.

Guía 3: SISTEMAS LTI

SISTEMAS LTI. CONVOLUCIÓN

1. Verificar las siguientes igualdades:

$$a) \ x[n] * \delta[n] = x[n].$$

b)
$$x[n] * \delta[n - n_0] = x[n - n_0].$$

c)
$$x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
.

2. La entrada x(t) y la respuesta al impulso h(t) de un sistema continuo, lineal e invariante en el tiempo (LTI), están dadas por: x(t) = u(t) y $h(t) = e^{-\alpha t}u(t)$ con $\alpha > 0$. Hallar y(t) = x(t) * h(t). Puede usar la propiedad conmutativa si facilita las cuentas.

3. La entrada x(t) y la respuesta al impulso h(t) de un sistema continuo, lineal e invariante en el tiempo (LTI), están dadas por: $x(t) = e^{\alpha t}u(-t)$ y $h(t) = e^{-\alpha t}u(t)$ con $\alpha > 0$. Hallar y(t) = x(t)*h(t). Puede usar la propiedad conmutativa si facilita las cuentas.

4. La entrada x(t) y la respuesta al impulso h(t) de un sistema continuo, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y(t) = x(t) * h(t).

5. La entrada x[n] y h[n] la respuesta al impulso de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por: x[n] = u[n] y $h[n] = \alpha^n u[n]$ con $0 < \alpha < 1$. Hallar y[n] = x[n] * h[n].

6. La entrada x[n] y la respuesta al impulso h[n] de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y[n] = x[n] * h[n].

7. La entrada x[n] y la respuesta al impulso h[n] de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y[n] = x[n] * h[n].

8. La entrada x[n] y la respuesta al impulso h[n] de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y[n] = x[n] * h[n].

9. La entrada x[n] y la respuesta al impulso h[n] de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y[n] = x[n] * h[n].

10. La entrada x[n] y la respuesta al impulso h[n] de un sistema discreto, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y[n] = x[n] * h[n].

11. La entrada x(t) y la respuesta al impulso h(t) de un sistema continuo, lineal e invariante en el tiempo (LTI), están dadas por el siguiente gráfico. Hallar y(t) = x(t) * h(t).

12. La entrada x(t) y la respuesta al impulso h(t) de un sistema continuo, lineal e invariante en el tiempo (LTI), están dadas por:

$$x(t) = \begin{cases} 2 & si & -1 \le t \le 1 \\ 0 & caso & contrario \end{cases}$$

$$h(t) = \begin{cases} 1 & si & -1 \le t \le 1 \\ 0 & caso & contrario \end{cases}$$

Guía 4: SERIES DE FOURIER

SERIES DE FOURIER

- 1. Dada la función $f(t) = e^{-4t}$ si $-2 \le t \le 2$. Se pide
 - a) Graficar f(t).
 - b) Hallar la Transformada de Fourier de f(t).
- 2. Demostrar que el desarrollo en serie de Fourier de la función $f(t) = t^4$ con $t \in (-1,1)$ es: $\mathcal{F}(j\omega) = \frac{1}{5} + \sum_{n=1}^{\infty} 8 \frac{n^2 \pi^2 6}{\pi^4 n^4} (-1)^n cos(n\pi t)$.
- 3. Demostrar que el desarrollo en serie de Fourier de la función $f(t)=t^3$ con $t\in(-4,4)$ es: $\mathcal{F}(\mathrm{j}\omega)=\sum_{n=1}^\infty 128 \tfrac{n^2\pi^2-6}{\pi^3n^3}(-1)^{n+1}sen(\tfrac{n\pi t}{4}).$
- 4. La respuesta recortada de un rectificador de media onda es la función f(t) de período 2π definida en su periodo por:
 - $f(t) = \begin{cases} 5sen(t) & si & 0 \le t \le \pi \\ 0 & si & \pi \le t \le 2\pi \end{cases}$ Expresar f(t) como una expansión en serie de Fourier.
- 5. Dada la función f(t) de período 2π definida en su periodo por:

$$f(t) = \begin{cases} \pi & si & -\pi < t < 0 \\ t & si & 0 < t < \pi \end{cases}$$
 Se pide:

- a) Graficar f(t) en el intervalo $[-4\pi, 4\pi]$.
- b) Expresar f(t) como una expansión en serie de Fourier.
- 6. Hallar la serie trigonométrica de Fourier para la señal onda cuadrada periódica mostrada en la siguiente figura y graficar su espectro en amplitud y fase.

7. Hallar la serie trigonométrica de Fourier para la señal onda triangular periódica mostrada en la siguiente figura y graficar su espectro en amplitud y fase.

8. Hallar la serie trigonométrica de Fourier para las señales periódicas mostradas en la siguiente figura y graficar su espectro en amplitud y fase.

Guía 5: TRANSFORMADA DE FOURIER. PARTE I

TRANSFORMADA DE FOURIER. PARTE I

- 1. Usar la definicion para calcular la Transformada de Fourier de las siguientes funciones:
 - a) $f(t) = e^{-2(t-1)}u(t-1) \cos \alpha > 0$.
 - b) $f(t) = e^{-2|t-1|}$.
 - c) Graficar la magnitud de las tranformadas de ambas señales.
- 2. Usar la definicion para calcular la Transformada de Fourier de la siguiente función:
 - $a) f(t) = Ae^{-\alpha t}u(t).$
 - b) Graficar f(t), $|\mathcal{F}(j\omega)|$ y $\theta((j\omega)$.
- 3. Usar la definicion para calcular la Transformada de Fourier de la siguiente función:
 - a) $f(t) = \begin{cases} 1 & si & |t| < \frac{T}{2} \\ 0 & si & |t| \ge \frac{T}{2} \end{cases}$
 - b) Graficar f(t), $|\mathcal{F}(j\omega)|$ y $\theta((j\omega)$.
- 4. Encuentrar la transformada de Fourier de la señal modulada $x(t) = rect(\frac{t}{4})cos(20t)$. Graficar el espectro de Fourier. Indicar claramente todas las propiedades utilizadas.
- 5. Dado que x(t) tiene transformada de Fourier $\mathcal{X}(j\omega)$, expresar las transformadas de Fourier de las señales enumeradas a continuación en términos de $\mathcal{X}(j\omega)$. Indicar claramente todas las propiedades que usa.
 - a) $x_1(t) = x(1-t) + x(-1-t)$.
 - b) $x_2(t) = x(3t 6)$.
 - c) $x_3(t) = \frac{d^2}{dt^2}x(t-1)$.
- 6. Usar las propiedades de diferenciación e integración y el par de transformadas de Fourier para el pulso rectangular para encontrar una expresión de la transformada de Fourier de:

$$x(t) = \begin{cases} 0 & si & t < -\frac{1}{2} \\ t + \frac{1}{2} & si & -\frac{1}{2} \le t \le \frac{1}{2} \\ 1 & si & t > \frac{1}{2} \end{cases}$$

¿Cuál es la transformada fe Fourier de la función $g(t) = x(t) - \frac{1}{2}$?.

7. Utilizar la definición de la Anti transformada de Fourier para hallar $\boldsymbol{x}(t)$ siendo:

$$\mathcal{X}(j\omega) = \begin{cases} 2 & si & 0 \le \omega \le 2\\ -2 & si & -2 \le \omega \le 0\\ 0 & si & |\omega| > 2 \end{cases}$$

8. Hallar la Anti transformada de Fourier para hallar x(t). Indicar claramente las propiedades que usa.

$$\mathcal{X}(j\omega) = 2\pi\delta(\omega) + \pi\delta(\omega - 4\pi) + \pi\delta(\omega + 4\pi).$$

9. Hallar las transformadas de Fourier de las siguientes señales:

a)
$$x(t) = \delta(t+1) + \delta(t-1)$$
.

b)
$$x(t) = \frac{d}{dt}[u(-t-2) + u(t-2)].$$

10. Determinar la transformada de Fourier de cada una de las siguientes señales periódicas:

a)
$$x(t) = sen(2\pi t + \frac{\pi}{4}).$$

b)
$$x(t) = 1 + \cos(6\pi t + \frac{\pi}{8}).$$

Guía 6: TRANSFORMADA DE FOURIER. PARTE II

TRANSFORMADA DE FOURIER. PARTE II

- 1. Calcular la Transformada de Fourier de la siguiente función:
 - a) $f(t) = cos(\omega_0 t)u(t)$.
 - b) Graficar la señal y la magnitud de su tranformada.
- 2. a) Usar las propiedades de la transformada de Fourier, para hallar la transformada de la señal: $x(t) = t(\frac{sen(t)}{\pi t})^2$.
 - b) Usar la relación de Parseval y el resultado de la parte anterior para determinar el valor numérico de: $A = \int_{\infty}^{\infty} t^2 (\frac{sen(t)}{\pi t})^4 dt.$
- 3. Sabiendo que la transformada de Fourier $f(t)=e^{-|t|}$ es $\mathcal{F}(i\omega)=\frac{2}{1+\omega^2}$. Se pide:
 - a) Usar las propiedades adecuadas de la transformada de Fourier para encontrar la transformada de Fourier de: $g(t) = te^{-|t|}$.
 - b) Usar el resultado del ítem anterior junto con la propiedad de dualidad, para determinar la transformada de Fourier de: $\frac{4t}{(1+t^2)^2}$.
- 4. Hallar la transformada de Fourier de:

$$a) f(t) = e^{at}u(-t).$$

b)
$$g(t) = e^{-a|t|} \cos a > 0$$
.

- c) Realizar un gráfico de g(t) y su espectro.
- 5. Hallar la transformada de: $f(t) = e^{-a|t-t_0|} \cos a > 0$.
- 6. Encuentrar y graficar la transformada de Fourier de la señal modulada: g(t) = f(t).cos(10t). Donde $f(t) = rect(\frac{t}{4})$, mostrado en la siguiente figura,

7. Calcular la convolución de cada uno de los siguientes pares de señales x(t) y h(t) mediante el cálculo de sus respectivas transformadas de Fourier, usar la propiedad de la transformada de la convolución y por último obtener la transformada inversa.

a)
$$x(t) = te^{-2t}u(t), h(t) = e^{-4t}u(t).$$

b)
$$x(t) = te^{-2t}u(t), h(t) = te^{-4t}u(t).$$

c)
$$x(t) = e^{-t}u(t), h(t) = e^{t}u(-t).$$

8. Un sistema LTI está caracterizado por la ecuación diferencial:

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 4x(t)$$
. Se pide:

- a) Hallar la función de transferencia.
- b) Hallar la respuesta del sistema cuando la entrada es el impulso.
- 9. La entrada y la salida de un sistema LTI causal están relacionadas por la ecuación diferencial: $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t).$ Se pide:
 - a) Encontrar la respuesta de este sistema al impulso.
 - b) ¿Cuál es la respuesta de este sistema si $x(t) = te^{-2t}u(t)$?.
- 10. La entrada y la salida de un sistema LTI causal están relacionadas por la ecuación diferencial:

$$\frac{d^2y(t)}{dt^2} + \sqrt{2}\frac{dy(t)}{dt} + y(t) = \frac{d^2x(t)}{dt^2} - 2x(t)$$
. Se pide:

- a) Encontrar la función de transferencia.
- b) ¿Cuál es la respuesta de este sistema al impulso?.
- 11. Considerar un sistema LTI continuo con respuesta en frecuencia, es decir función de transferencia:

$$\mathcal{H}(\omega) = \frac{a - i\omega}{a + i\omega}$$
, donde $a > 0$. Hallar:

- a) La magnitud de $\mathcal{H}(i\omega)$.
- b) La fase de $\mathcal{H}(i\omega)$.
- c) La respuesta del sistema a la entrada impulsiva.
- 12. Encontrar la respuesta al impulso del siguiente sistema.

Guía 7: TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE

1. Para cada una de las siguientes integrales, especificar los valores del parámetro real σ que asegure que la integral converge:

a)
$$\int_0^{+\infty} e^{-5t} e^{-(\sigma+i\omega)t} dt$$
.

b)
$$\int_{-\infty}^{0} e^{-5t} e^{-(\sigma+i\omega)t} dt$$
.

c)
$$\int_{-5}^{+5} e^{-5t} e^{-(\sigma+i\omega)t} dt$$
.

$$d) \int_{-\infty}^{+\infty} e^{-5t} e^{-(\sigma + i\omega)t} dt.$$

$$e)$$
 $\int_{-\infty}^{+\infty} e^{-5|t|} e^{-(\sigma+i\omega)t} dt$.

$$f) \int_{-\infty}^{0} e^{-5|t|} e^{-(\sigma+i\omega)t} dt.$$

2. Calcular la transformada de Laplace de las siguientes funciones temporales:

a)
$$x(t) = 5u(t)$$
.

b)
$$x(t) = e^{-at}u(t)$$
, con $a > 0$.

$$c) x(t) = Atu(t).$$

$$d) x(t) = cos(\omega_0 t)u(t).$$

$$e) x(t) = sen(\omega_0 t)u(t).$$

$$f) x(t) = 4\delta(t).$$

$$y(t) = e^{-2t} sen(\omega_0 t) u(t).$$

- 3. Para las transformadas del ejercicio anterior, dibujar en el plano s los polos y la región de convergencia. Analizar la ubicación de los polos con la forma temporal de las funciones.
- 4. Considerar la señal: $x(t) = e^{-5t}u(t) + e^{-\beta t}u(t)$. Sea X(s) la transformada de Laplace de x(t). ¿Cuáles son las restricciones que debe imponer sobre las partes real e imaginaria de β si la región de convergencia de X(s) es Re(s) > -3?

5. a) Hallar la transformada de Laplace de:
$$x(t) = \begin{cases} e^t sen(2t) & si & t \leq 0 \\ 0 & si & t > 0 \end{cases}$$

b) Indicar la localización de sus polos y su región de convergencia.

- 6. Dado que: $\mathcal{L}(e^{-at}u(t)) = \frac{1}{s+a}$ si Re(s) > Re(-a). Determinar la transformada inversa de Laplace de: $X(s) = \frac{2(s+2)}{(s^2+7s+12)}$, si Re(s) > -3.
- 7. Determinar la transformada inversa de Laplace de:
 - a) $X(s) = \frac{1}{s^2+9}$. Si Re(s) > 0.
 - b) $X(s) = \frac{1}{s^2+9}$. Si Re(s) < 0.
 - c) $X(s) = \frac{s+1}{(s+1)^2+9}$. Si Re(s) < -1.
 - d) $X(s) = \frac{s-1}{(s+1)(s-3)}$. Si Re(s) > 3.
 - e) $X(s) = \frac{3s^2 + s + 1}{s + 1}$. Si Re(s) > -1.
 - $f)\ X(s)=\frac{s}{(s+1)^2+16}.$ Indicar región de convergencia.
- 8. Un sistema LTI cuya entrada es x(t) y su salida y(t) está caracterizado por la ecuación diferencial: $\frac{d^2y(t)}{dt^2} \frac{dy(t)}{dt} 2y = x(t)$. Se pide:
 - a) Hallar la función de transferencia G(s).
 - b) Dibujar el patrón de polos y ceros de la función de transferencia.
 - c) Analizar la estabilidad del sistema.
 - d) Encontrar la respuesta impulsiva del sistema.
- 9. Dado el siguiente sistema:

- a) Encontrar la ecuación diferencial que lo describe.
- b) Resolver el sistema para una entrada $x(t) = \delta(t),$ con $a = 1,\, b = 3$ y c = 4.
- 10. a) Determinar la ecuación diferencial que relaciona $v_i(t)$ con $v_o(t)$ para el circuito RLC de la figura:

b) Suponga que $v_i(t)=e^{-3t}u(t)$. Usar la transformada unilateral de Laplace para determinar $v_0(t)$ para t>0, $R=30\Omega$, $L=1\mathrm{H}$, $C=0.5\mathrm{F}$, $v_0(0^+)=1$, $\frac{dv_0(t)}{dt}|_{0^+}=2$.

11. a) Determinar la ecuación diferencial que relaciona x(t) con F(t) para el sistema Masa, Resorte, Amortiguador de la figura:

- b) Suponga que F(t)=2u(t) . Usando la transformada unilateral de Laplace determinar x(t) para t>0.
- 12. Dado el siguiente sistema:

- a) Hallar la función de transferencia H(s) del sistema.
- b) A partir de H(s) encontrar la respuesta al impulso $\delta(t)$.

Guía 8: TEOREMA DE MUESTREO

TEOREMA DE MUESTREO

- 1. Se sabe que una señal de valor real x(t) ha sido determinada sólo por sus muestras cuando la frecuencia de muestreo es $\omega(s) = 10000\pi$. ¿Para qué valores de ω se garantiza que $X(i\omega)$ sea cero?.
- 2. Una señal continua x(t) se obtiene a la salida de un filtro pasa bajos ideal con frecuencia de corte $\omega_c = 1000\pi$. Si el muestreo con tren de impulsos se realiza sobre x(t), ¿Cuál de los siguientes períodos de muestreo garantiza que x(t) se pueda recuperar a partir de sus versiones muestreadas usando un filtro pasa bajos adecuado?

a)
$$T = 0.510^{-3}$$
.

b)
$$T = 210^{-3}$$
.

c)
$$T = 10^{-4}$$
.

3. Aquella frecuencia que de acuerdo con el teorema de muestreo, debe ser excedida por la frecuencia de muestreo se llama razón de Nyquist. Determinar la razón de Nyquist correspondiente a cada una de las siguientes señales:

a)
$$x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t)$$
.

b)
$$x(t) = \frac{sen(4000\pi t)}{\pi t}$$
.

c)
$$x(t) = (\frac{sen(4000\pi t)}{\pi t})^2$$
.

4. Sea x(t) una señal con razón de Nyquist ω_0 . Determinar la razón de Nyquist para cada una de las siguientes señales:

a)
$$y(t) = x(t) + x(t-1)$$
.

b)
$$y(t) = \frac{dx(t)}{dt}$$
.

c)
$$y(t) = x^2(t)$$
.

d)
$$y(t) = x(t)cos(\omega_0 t)$$
.

Guía 9: TRANSFORMADA Z. PARTE I

TRANSFORMADA Z. PARTE I

- 1. Hallar la transformada \mathcal{Z} y la región de convergencia para la señal $x[n] = a^n u[n]$. Graficar.
- 2. Hallar la transformada $\mathcal Z$ de:
 - a) $x[n] = \delta[n]$.
 - $b) \ x[n] = u[n].$
 - c) $x[n] = cos(\beta n)u[n]$.
- 3. Sabiendo que: $\mathcal{Z}(a^nu[n]) = \frac{1}{1-az^{-1}}$, con |z| > |a|. Detrerminar la transformada \mathcal{Z} inversa de: $\mathcal{X}(z) = \frac{1-\frac{1}{3}z^{-1}}{(1-z^{-1})(1+2z^{-1})}$, |z| > 2.
- 4. Sabiendo que la transformada \mathcal{Z} de una sucesión x[n] es:

$$\mathcal{X}(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})}.$$

- a) Realizar una expansión en fracciones simples para la ecuación anterior expresada como una razón de polinomios en potencias de z^{-1} y, a partir de dicha expansión, determinar x[n].
- b) Reescribir la ecuación anterior como una razón de polinomios en potencias de z y realizar una expansión en fracciones simples de $\mathcal{X}(z)$ expresada en términos de polinomios de z. A partir de esta expansión determinar x[n] y demuestrar que la secuencia obtenida es idéntica a la obtenida en la parte a).
- 5. Mostrar que: $\mathcal{Z}(k^2) = \frac{z(z+1)}{(z-1)^3}$.
- 6. Hallar $\mathcal{Z}^{-1}(Y[z])$ en los siguientes casos:

a)
$$Y[z] = \frac{z}{(z-1)(z+2)}$$
.

b)
$$Y[z] = \frac{z}{(2z+1)(z-3)}$$
.

c)
$$Y[z] = \frac{z^2}{(2z+1)(z-1)}$$
.

d)
$$Y[z] = \frac{2z}{2z^2 + z - 1}$$
.

e)
$$Y[z] = \frac{z}{z^2+1}$$
.

7. Hallar la respuesta al impulso de un sistema, cuya función de transferencia es: $H(z) = \frac{3z^2}{z^2 - 2z + 1}$.

Guía 10: TRANSFORMADA Z. PARTE II

TRANSFORMADA Z. PARTE II

- 1. Hallar la función de transferencia para cada uno de los siguientes sistemas discretos:
 - a) $y_{k+2} 3y_{k+1} + 2y_k = u_k$.
 - b) $y_{k+2} 3y_{k+1} + 2y_k = u_{k+1} u_k$.
 - c) $y_{k+2} + y_{k+1} 2y_k = u_k$. Indicar si los sistemas son estables.
- 2. Dibujar un diagrama que represente el sistema discreto en los siguientes casos:
 - a) $y_{k+2} + 0.5y_{k+1} + 0.25y_k = u_k$.
 - b) $y_{k+2} + 0.5y_{k+1} + 0.25y_k = u_{k+1} u_k$.
- 3. La entrada x[n] y la salida y[n] de un sistema LTI causal están relacionadas a través de la representación en diagrama de bloques mostrada en la figura siguiente:

- a) Determinar una ecuación en diferencias que relacione y[n] con x[n].
- b) ¿El sistema es estable?
- c) Determinar y[n] cuando la entrada es: $x[n] = \delta[n]$.
- 4. Considerar un sistema lineal discreto, invariante en el tiempo con entrada x[n] y salida y[n] para el cual $y[n-1] \frac{10}{3}y[n] + y[n+1] = x[n]$.
 - a) ¿El sistema es estable?
 - b) Determinar la respuesta del sistema a la muestra unitaria.

5. La entrada x[n] y la salida y[n] de un sistema LTI causal están relacionadas a través de la representación en diagrama de bloques mostrada en la figura siguiente:

- a) Determinar una ecuación en diferencias que relacione y[n] con x[n].
- b) ¿El sistema es estable?
- c) Determinar y[n] cuando la entrada es: $x[n] = \delta[n]$.
- 6. Considerar la estructura del filtro digital mostrado en la figura siguiente:

- a) Encuentrar $\mathcal{H}(z)$ para este filtro causal. Trazar el patrón de polos y ceros e indicar la región de convergencia.
- b) ¿Para qué valores de k el sistema es estable?
- c) Determinar y[n] si k=1 y $x[n]=(\frac{2}{3})^n, \, \forall n\leq 0.$
- d) Determinar la respuesta al impulso unitario.
- e) Determinar la respuesta al escalón unitario.

TABLA DE TRANSFORMADAS TRANSFORMADA DE FOURIER

TRANSFORMADA DE FOURIER		PROPIEDADES
Linealidad	ax(t) + by(t)	$a\mathcal{X}(i\omega) + b\mathcal{Y}(i\omega)$
Desplazamiento en el tiempo	$x(t-t_0)$	$e^{-i\omega t_0}\mathcal{X}(i\omega)$
Desplazamiento en la fracuencia	$e^{i\omega_0 t}x(t)$	$\mathcal{X}(i(\omega-\omega_0))$
Conjugación	$x^*(t)$	$\mathcal{X}^*(-i\omega)$
Inversión de Tiempo	x(-t)	$rac{1}{ a }\mathcal{X}(-i\omega)$
Escalamiento de Tiempo y de Fracuancia	x(at)	$\mathcal{X}(rac{i\omega}{a})$
Convolución en el tiempo	x(t) * y(t)	$\mathcal{X}(i\omega)\mathcal{Y}(i\omega)$
Multiplicación	x(t)y(t)	$\frac{1}{2\pi}\mathcal{X}(i\omega)*\mathcal{Y}(i\omega)$
Derivación en el tiempo	$\frac{d^n x(t)}{dt^n}$	$(i\omega)^n \mathcal{X}(i\omega)$
Derivación en la fracuencia	tx(t)	$i\frac{d\mathcal{X}(i\omega)}{d\omega}$
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{i\omega}\mathcal{X}(i\omega) + \pi\mathcal{X}(0)\delta(\omega)$
Relación de Parseval		$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(i\omega) ^2 d\omega$

$SE\~NAL$	TRANSFORMADA
$e^{-at}u(t) \text{ con } a > 0$	$\frac{1}{a+i\omega}$
$e^{at}u(-t) \text{ con } a > 0$	$\frac{1}{a-i\omega}$
$e^{-a t }u(-t) \text{ con } a > 0$	$\frac{2a}{a^2 + \omega^2}$
$te^{at}u(t) \text{ con } a > 0$	$rac{1}{(a+i\omega)^2}$
$t^n e^{at} u(t) \text{ con } a > 0$	$\frac{n!}{(a+i\omega)^{n+1}}$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$sen(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$
$cos(\omega_0 t)u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{i\omega}{\omega_0^2-\omega^2}$
$sen(\omega_0 t)u(t)$	$\frac{\pi}{2i}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$
$e^{-at}cos(\omega_0 t)u(t)$ con $a>0$	$rac{a\!+\!i\omega}{(a\!+\!i\omega)^2\!+\!\omega_0^2}$
$e^{-at}sen(\omega_0 t)u(t) \text{ con } a > 0$	$rac{\omega_0}{(a+i\omega)^2+\omega_0^2}$
$rec(\frac{t}{ au})$	$ au sinc(rac{\omega au}{2})$
$\frac{W}{\pi}sinc(Wt)$	$rec(rac{\omega}{2W})$
$\Delta(\frac{t}{ au})$	$\frac{\tau}{2} sinc^2(\frac{\omega \tau}{4})$
$\frac{W}{2\pi}sinc^2(\frac{Wt}{2})$	$\Delta(rac{\omega}{2W})$

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE		PROPIEDADES
Linealidad	ax(t) + by(t)	$a\mathcal{X}(s) + b\mathcal{Y}(s) \text{ con } ROC = R_1 \cap R_2$
Desplazamiento en el tiempo	$x(t-t_0)$	$e^{st_0}\mathcal{X}(s) \text{ con } ROC = R$
Desplazamiento en la fracuencia	$e^{s_0t}x(t)$	$\mathcal{X}(s-s_0)$ si $(s-s_0) \in R$
Conjugación	$x^*(t)$	$\mathcal{X}^*(s^*) \text{ con } ROC = R$
Convolución en el tiempo	x(t) * y(t)	$\mathcal{X}(s)\mathcal{Y}(s) \text{ con } ROC = R_1 \cap R_2$
Derivación en el tiempo	$\frac{dx(t)}{dt}$	$s\mathcal{X}(s) \text{ con } ROC = R$
Derivación en la fracuencia	-tx(t)	$\frac{d\mathcal{X}(s)}{ds} \text{ con } ROC = R$
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}\mathcal{X}(s) \text{ con } ROC = R \cap \{Re(s) > 0\}$
Escalamiento de Tiempo y de Fracuancia	x(at)	$\frac{1}{ a }\mathcal{X}(\frac{s}{a}) \text{ si } \frac{s}{a} \in R$

SEÑAL TRANSFORMADA DE LAPLACE ROC		
$\delta(t)$	1	$\forall s$
u(t)	$\frac{1}{s}$	Re(s) > 0
-u(-t)	$\frac{1}{s}$	Re(s) < 0
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	Re(s) > 0
$e^{-at}u(t)$	$\frac{1}{s+a}$	Re(s) > -a
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	Re(s) > -a
$\delta(t-T)$	e^{-sT}	$\forall s$
$cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	Re(s) > 0
$sen(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	Re(s) > 0
$e^{-at}cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re(s) > -a
$e^{-at}sen(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	Re(s) > -a

TRANSFORMADA $\mathcal Z$

$TRANSFORMADA~\mathcal{Z}$ $PROPIEDADES$		
Linealidad	ax[k] + by[k]	$a\mathcal{X}(z) + b\mathcal{Y}(z)$
Primera Propiedad de Traslación: Retraso	$y[k] = x[k - k_0]$	$\mathcal{Z}(x[k-k_0]) = \frac{1}{z^{k_0}} \mathcal{Z}(x[k])$
Segunda Propiedad de Traslación: Avance	y[k] = x[k+1]	$\mathcal{Z}(x[k+1]) = z\mathcal{X}(z) - zx_0$
Segunda Propiedad de Traslación: Avance	y[k] = x[k+2]	$\mathcal{Z}(x[k+2]) = z^2 \mathcal{X}(z) - z^2 x_0 - z x_1$
Multiplicación por a^k	$\mathcal{Z}(x[k]) = \mathcal{X}(z)$	$\mathcal{Z}(a^k x[k]) = \mathcal{X}(\frac{1}{a}z)$
Multiplicación por k^n	$\mathcal{Z}(x[k]) = \mathcal{X}(z)$	$(-zrac{d}{z})^n\mathcal{X}(z)$
Teorema del valor inicial	$\mathcal{Z}(x[k])$	$\lim_{z\to\infty} \mathcal{X}(z) = x_0$
Teorema del valor final	$\mathcal{Z}(x[k])$	$\lim_{z \to 1} (1 - z^{-1}) \mathcal{X}(z) = \lim_{k \to \infty} x_k$

TABLA DE TRANSFORMADAS $\mathcal Z$

SEÑAL	L TRANSFORMADA Z	
$x[k] = \delta[k] \text{ con } k \ge 0$	1	$\forall z$
$x[k] = u[k] \text{ con } k \ge 0$	$\frac{z}{z-1}$	z > 1
$x[k] = a^k \text{ con } a = \text{cte.}$	$\frac{z}{z-a}$	z > a
$x[k] = k \text{ con } k \ge 0$	$\frac{z}{(z-1)^2}$	z > 1
$x[k] = ka^{k-1} \text{ con } a = \text{cte}$	$\frac{z}{(z-a)^2}$	z > a
$x[k] = e^{-kT} \text{ con } T = \text{cte}$	$\frac{z}{z - e^{-T}}$	$ z > e^{-T}$
$x[k] = cos(k\omega T) \text{ con } \omega, T =$	ectes. $\frac{z(z-cos(\omega T))}{z^2-2zcos(\omega T)+1}$	z > 1
$x[k] = sen(k\omega T) \text{ con } \omega, T =$	(T)	z > 1