Exercice 1. Expliciter le terme général des suites suivantes en fonction de l'indice.

• $\forall k \in \mathbb{N}^*, a_{k+1} = -2a_k \text{ avec } a_1 = 7, \forall n \geq 2, 2b_n = b_{n-1} \text{ avec } b_1 = 3.$

- $\forall p \geq 0, c_{p+1} c_p = 3 \text{ et } c_0 = 10, \forall n \in \mathbb{N}^*, d_n = \frac{d_{n-1}}{3} + 4 \text{ avec } d_0 = 1.$
- $\forall i \in \mathbb{N}, 4e_{i+1} + 1 = e_i \text{ avec } e_0 = 0, \forall j \in \mathbb{N}, 3f_{j+1} 2f_j = 1 \text{ avec } f_0 = 1.$
- $\forall n \in \mathbb{N}, 2h_{n+2} + h_{n+1} h_n = 0 \text{ avec } h_0 = h_1 = 1.$
- $\forall m \in \mathbb{N}^*, l_{m+1} = l_m + l_{m-1} \text{ avec } l_0 = 1 \text{ et } l_1 = 2.$

Exercice 2. Soit u une suite vérifiant $\forall n \geq 0, u_{n+1} = 2u_n + n$ et $u_0 = 1$.

- 1. Montrer qu'il existe un couple (a,b) de réels tel que la suite $\forall n \in \mathbb{N}, w_n = an + b$ vérifie la relation $\forall n \in \mathbb{N}, w_{n+1} = 2w_n + n$.
- 2. Montrer que la suite $z_n = u_n + n + 1$ vérifie $z_{n+1} = 2z_n$.
- 3. En déduire l'expression de z_n en fonction de n puis celle de u_n .

Exercice 3. Soient α, β deux suites satisfaisant la relation $\forall k \in \mathbb{N}$ $\begin{cases} \alpha_{k+1} = 3\alpha_k + \beta_k \\ \beta_{k+1} = 2\alpha_k + 4\beta_k \end{cases} \text{ et } \begin{cases} \alpha_0 = 2 \\ \beta_0 = -1 \end{cases}.$

On introduit deux suites auxiliaires z et t en posant $z_k = \alpha_k + \beta_k$, $t_k = 2\alpha_k - \beta_k$.

- 1. Montrer que les deux suites z et t sont géométriques.
- 2. Donner l'expression de z_k , t_k en fonction de k, puis celle de α_k , β_k .

Exercice 4. Soit $(u_p)_{p\geq 0}$ une suite satisfaisant à la relation $\forall p\geq 0,\ u_{p+1}=2u_p+5p$. Pour expliciter le terme général de cette suite, on pose $\forall p\in\mathbb{N},\ \alpha_p=\frac{u_p}{5p}$.

- 1. Vérifier que $\forall p \in \mathbb{N}, \ \alpha_{p+1} = \frac{2}{5}\alpha_p + \frac{1}{5}$.
- 2. En déduire l'expression de α_p en fonction de p puis celle de u_p .

Exercice 5. On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $\forall n\in\mathbb{N}$, $\begin{cases} u_{n+1}=2u_n-v_n \\ v_{n+1}=u_n+4v_n \end{cases}$ et $\begin{cases} u_0=2 \\ v_0=-1 \end{cases}$.

- 1. On considère la suite p définie par $\forall n \in \mathbb{N}, p_n = u_n + v_n$. Montrer que la suite $(p_n)_{n \in \mathbb{N}}$ est géométrique. En déduire l'expression de p_n en fonction de n.
- 2. À l'aide de la question précédente, montrer que $\forall n \in \mathbb{N}, v_{n+1} = 3v_n + 3^n$.
- 3. Montrer que la suite $z_n = \frac{v_n}{3^n}$ est arithmétique. En déduire l'expression de z_n en fonction de n.
- 4. Donner enfin l'expression de v_n puis de u_n en fonction de n.

Exercice 6. On considère la suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{3u_n + 1}{2u_n + 4}$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \in \mathbb{R}_+$.
- 2. On introduit alors la suite auxiliaire t définie par $\forall n \in \mathbb{N}, t_n = \frac{2u_n 1}{u_n + 1}$.
- 3. Montrer que la suite t est géométrique.
- 4. Expliciter alors t_n en fonction de n, puis u_n en fonction de n.
- 5. En déduire la convergence de la suite u et donner sa limite.

Exercice 7. Soit la suite vérifiant $\forall n \in \mathbb{N}, u_{n+1} = e\sqrt{u_n}$ avec $u_0 > 0$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 2. On introduit la suite auxiliaire t définie par $\forall n \in \mathbb{N}, t_n = \ln u_n$.
- 3. Justifier que la suite t est arithmético-géométrique.
- 4. En déduire l'expression de t_n en fonction de n, t_0 puis de u_n en fonction de n, u_0 .
- 5. En déduire la convergence de la suite u et donner sa limite.

 $u_0 > 0$ et $u_1 > 0$.

Exercice 8. Soit u une suite vérifiant la relation $\forall n \in \mathbb{N}, u_{n+2} = \sqrt{u_n u_{n+1}}$ avec

1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$ (on posera comme hypothèse de récurrence " $u_n > 0$ et $u_{n+1} > 0$ ').

- 2. On considère alors la suite w définie par $\forall n \in \mathbb{N}, w_n = \ln u_n$.
- 3. Montrer que la suite w est récurrente linéaire d'ordre 2 à coefficients constants.
- 4. Expliciter w_n en fonction de n, w_1 , w_0 et en déduire sa limite en $+\infty$.
- 5. Calculer alors la limite de u en $+\infty$ en fonction de u_0, u_1 .

Exercice 9. Soient a et b deux éléments distincts de \mathbb{R} . On considère les suites (u_n) et (v_n) définies par :

$$v_0 = b$$
 et $u_0 = a$

$$\forall n \in \mathbb{N} \quad \begin{cases} u_{n+1} = \frac{1}{a-b}(au_n + bv_n) \\ v_{n+1} = \frac{1}{a-b}(bu_n + av_n) \end{cases}$$

1. Montrer que pour tout $n \in \mathbb{N}$:

$$u_n - v_n = a - b$$

2. On considère la suite (w_n) définie par :

$$\forall n \in \mathbb{N}, \quad w_n = u_n + v_n$$

Montrer que (w_n) est une suite géométrique dont on déterminera la raison et le premier terme.

3. Déterminer le terme général des suites (u_n) et (v_n) .

Exercice 10. Problème: Étude de Suites Géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $\alpha \neq 1$ et de premier terme $u_0 \neq 0$. On note S_n la somme partielle :

$$S_n = \sum_{k=0}^{n-1} u_k$$

Question préliminaire: Calculer $S_n - \alpha S_n$, Puis en déduire que

$$S_n = \sum_{k=0}^{n-1} u_k = u_0 \frac{1 - \alpha^n}{1 - \alpha}$$

Partie I: Relations entre sommes partielles

1. Pour $m, n \in \mathbb{N}$, montrer que :

$$S_n + \alpha^n S_m = S_{m+n}$$

2. En déduire que :

$$S_m - S_n = \alpha^m S_n - \alpha^n S_m$$

3. Déterminer α sachant qu'il existe n impair tel que :

$$S_{n+1} - S_1 = 4S_n$$

Partie II: Identités remarquables

1. Montrer que pour tout $n \in \mathbb{N}^*$:

$$S_{3n} - S_{2n} = \alpha^{2n} S_n$$

2. Établir que :

$$S_{2n} - S_n = \alpha^n S_n$$

3. Démontrer l'identité :

$$S_n(S_{3n} - S_{2n}) = (S_{2n} - S_n)^2$$

Partie III: Produit et sommes harmoniques

Pour $n \in \mathbb{N}^*$, on pose :

$$P_n = \prod_{k=0}^{n-1} u_k, \quad T_n = \sum_{k=0}^{n-1} \frac{1}{u_k}$$

1. Montrer que

$$\frac{S_n}{T_n} = u_0^2 \alpha^{n-1}.$$

2. En déduire que :

$$P_n^2 = \left(\frac{S_n}{T_n}\right)^n$$

Exercice 11. Problème : Étude de Comportements de Suites Remarquables

Partie I : Suite factorielle et croissance exponentielle

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_n = \frac{n^{n+1}}{2^n n!}$$

1. Montrer que :

$$\forall n \in \mathbb{N}^*, \quad \left(1 + \frac{1}{n}\right)^{n+1} > 2$$

- 2. (a) Démontrer que (u_n) est strictement croissante.
 - (b) En déduire que :

$$\forall n \in \mathbb{N}^* \setminus \{1\}, \quad 2^n n! \le n^{n+1}$$

Partie II : Convergence de suites géométriques pondérées

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$v_n = nq^n$$
 où $q \in]0, \frac{1}{2}]$

- 1. (a) Montrer que (v_n) est décroissante, et convergente.
 - (b) Établir que $n \leq 2^{n-1}$ pour tout $n \in \mathbb{N}^*$.
- 2. Déterminer la limite de (v_n) .

Partie III : Comparaison factorielle/exponentielle

On étudie la suite $(w_n)_{n\in\mathbb{N}^*}$ donnée par :

$$w_n = \frac{2^n}{n!}$$

- 1. (a) Prouver que (w_n) est décroissante et convergente.
 - (b) Démontrer que :

$$2 \cdot 3^{n-2} < n! \quad \forall n \in \mathbb{N}^*$$

2. Calculer $\lim_{n\to\infty} w_n$.

Partie IV : Approximation asymptotique de factorielle

Considérons $(z_n)_{n\in\mathbb{N}^*}$ définie par :

$$z_n = \frac{2^n n!}{(n+1)^n}$$

- 1. (a) Vérifier que $(z_n)_{n>0}$ est décroissante.
 - (b) Établir l'inégalité:

$$n! \le \left(\frac{n+1}{2}\right)^n$$

2. Déduire la valeur de :

$$\lim_{n \to \infty} \frac{n!}{n^n}$$

3. Retrouvez cette limite en utilisant partie I et II.

On dit que : Le super-exponentiel n^n domine la factorielle n!, qui surpasse l'exponentielle a^n (a > 1), elle-même plus forte que le polynomial n^b (b > 0).

$$n^n \gg n! \gg a^n \gg n^b \quad (a > 1, b > 0)$$

Pour $|q| < 1 : q^n \to 0$ et domine toute croissance polynomiale $(n^b q^n \to 0)$

Exercice 12. Problème : Étude Combinatoire de Suites et Coefficients Binomiaux

Partie I : Sommes de Coefficients Binomiaux

Soient $n, m, p \in \mathbb{N}^*$ avec $m+1 \leq p < n$. On pose $I = \{0, \dots, n-1\}$ et :

$$v_p = \sum_{k=0}^{p} {n-k \choose m} + {n-p \choose m+1}$$
 pour $p \in I$

- 1. Étudier la monotonie de la suite $(v_p)_{p \in I}$.
- 2. Démontrer l'identité :

$$\sum_{k=0}^{p} \binom{n-k}{m} = \binom{n+1}{m+1} - \binom{n-p}{m+1}$$

Partie II : Produits de Coefficients Binomiaux Symétriques

Pour $n \in \mathbb{N}^* \setminus \{1\}$, on pose $I = \{0, \dots, n\}$ et :

$$u_p = \binom{2n+p}{n} \cdot \binom{2n-p}{n}$$
 pour $p \in I$

- 1. Montrer que $(u_p)_{p\in I}$ est strictement décroissante.
- 2. Démontrer l'inégalité :

$$\binom{2n+p}{n} \cdot \binom{2n-p}{n} \le \binom{2n}{n}^2$$

3. Démontrer l'inégalité :

$$\binom{3n}{n} \le \binom{2n}{n}^2$$

Partie III : Comportement Asymptotique des Coefficients Centraux

On considère la suite $(w_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_n = \frac{2\sqrt{n}}{4^n} \binom{2n}{n}$$

- 1. Montrer que (w_n) est croissante.
- 2. Montrer que pour tout $n \in \mathbb{N}^* \setminus \{1\}$:

$$\binom{2n}{n} > \frac{4^n}{2\sqrt{n}}$$

- 3. Établir que $n < 4^n$ pour tout $n \in \mathbb{N}$.
- 4. Étudier la convergence de la suite (t_n) définie par $v_n = \binom{2n}{n}$.