SSH Shell Attacks

ANDREA BOTTICELLA*, Politecnico di Torino, Italy ELIA INNOCENTI*, Politecnico di Torino, Italy RENATO MIGNONE*, Politecnico di Torino, Italy SIMONE ROMANO*, Politecnico di Torino, Italy

This paper introduces a comprehensive machine learning framework to analyze SSH shell attack sessions, leveraging both supervised and unsupervised learning techniques. Using a dataset of 230,000 unique Unix shell attack sessions, the framework aims to classify attacker tactics based on the MITRE ATT&CK framework and uncover latent patterns through clustering. The key contributions of this work are:

- Development of a robust pre-processing pipeline to analyze temporal trends, extract numerical features, and evaluate intent distributions from large-scale SSH attack session data.
- Implementation of supervised classification models to accurately predict multiple attacker tactics, supported by hyperparameter tuning and feature engineering for enhanced performance.
- Application of unsupervised clustering techniques to uncover hidden patterns in attack behaviors, leveraging visualization tools and cluster analysis for fine-grained categorization.
- Exploration of advanced language models, such as BERT and Doc2Vec, for representation learning and fine-tuning to improve intent classification and session interpretation.

CCS Concepts: • Security and privacy \rightarrow Intrusion detection systems; Malware and its mitigation; • Computing methodologies \rightarrow Supervised learning by classification; Unsupervised learning; Natural language processing.

Additional Key Words and Phrases: SSH shell attacks, machine learning, supervised learning, unsupervised learning, language models, security logs, intrusion detection.

CONTENTS

Abstract		1
Contents		1
1	INTRODUCTION	1
2	BACKGROUND	2
3	DATA EXPLORATION AND PRE-PROCESSING	2
4	SUPERVISED LEARNING - CLUSTERING	3
5	UNSUPERVISED LEARNING - CLUSTERING	3
6	LANGUAGE MODEL EXPLORATION	4
7	CONCLUSION	4

1 INTRODUCTION

This section introduces the topic of the project, provides background information, and outlines the objectives.

1.1 Motivation

Provide an explanation of why this topic is important and relevant.

Authors' Contact Information: Andrea Botticella, andrea.botticella@studenti.polito.it, Politecnico di Torino, Turin, Italy; Elia Innocenti, elia.innocenti@studenti.polito.it, Politecnico di Torino, Turin, Italy; Renato Mignone, renato.mignone@studenti.polito.it, Politecnico di Torino, Turin, Italy; Simone Romano, simone.romano@studenti.polito.it, Politecnico di Torino, Turin, Italy.

Publication date: December 2024.

^{*}All authors contributed equally to this research.

2 • Botticella, Innocenti, Mignone, and Romano

1.2 Objective

Clearly state the objectives and what the project aims to accomplish.

2 BACKGROUND

This section ...

2.1 Subsection 1

• •

2.2 Subsection 2

. .

3 DATA EXPLORATION AND PRE-PROCESSING

This section ...

3.1 Introduction

Brief introduction to the data exploration and pre-processing tasks.

• • •

3.2 Dataset Preparation

Loading the dataset and initial inspection.

. . .

3.3 Temporal Analysis

Analysis of when the attacks were performed.

...

3.4 Feature Extraction

Extracting features from the attack sessions.

• • •

3.5 Common Words Analysis

Identifying the most common words in the sessions.

...

3.6 Intent Distribution

Analyzing the distribution of intents over time.

...

3.7 Text Representation

Converting text into numerical representations (BoW, TF-IDF).

. . .

Publication date: December 2024.

4 SUPERVISED LEARNING - CLUSTERING

This section ...

4.1 Introduction

Overview of the supervised learning task and its objectives.

. . .

4.2 Data Splitting

Splitting the dataset into training and test sets.

...

4.3 Baseline Model Implementation

Implementing and evaluating baseline models.

...

4.4 Hyperparameter Tuning

Tuning hyperparameters and evaluating performance.

. . .

4.5 Result Analysis

Analyzing the results for each intent.

• •

4.6 Feature Experimentation

Exploring different feature combinations and their impact on performance.

• • •

5 UNSUPERVISED LEARNING - CLUSTERING

This section ...

5.1 Introduction

Overview of the clustering task and its objectives.

• • •

5.2 Determine the Number of Clusters

Using methods like the elbow method or silhouette analysis.

...

5.3 Hyperparameter Tuning

Tuning other hyperparameters, if any.

...

5.4 Cluster Visualization

Visualizing the clusters through t-SNE.

...

4 • Botticella, Innocenti, Mignone, and Romano

5.5 Cluster Analysis

Analyzing the characteristics of each cluster.

...

5.6 Intent Homogeneity

Assessing if clusters reflect intent division.

. .

5.7 Specific Attack Categories

Associating clusters with specific attack categories.

...

6 LANGUAGE MODEL EXPLORATION

This section ...

6.1 Introduction

Overview of the language models task and its objectives.

٠.

6.2 Pretraining

Pretraining Doc2Vec or using a pretrained Bert model.

• • •

6.3 Model Fine-tuning

Fine-tuning the last layer of the network.

. . .

6.4 Learning Curves

Plotting learning curves and determining the optimal number of epochs.

. . .

7 CONCLUSION

This section ...

7.1 Subsection 1

. . .

7.2 Subsection 2

. . .