Introduction to Graph Mining

What is a graph?

- A graph G = (V,E) is a set of vertices V and a set (possibly empty) E of pairs of vertices $e_1 = (v_1, v_2)$, where $e_1 \in E$ and $v_1, v_2 \in V$.
- Edges may
 - contain weights
 - contain labels
 - have direction
- Nodes may
 - contain additional labels

(b) Euler's graphical representation

Formal study of graphs is called graph theory.

Motivation

- Many domains produce data that can be intuitively represented by graphs.
- We would like to discover interesting facts and information about these graphs.
- Real world graph datasets too large for humans to make any sense of.
- We would like to discover patterns that have structural information present.

Application Domains

- Web structure graphs
- Social networks
- Protein interaction networks
- Chemical compound
- Program Flow
- Transportation networks

Graph Mining Problems

- Graph Theoretic Problems
 - Radius
 - Diameter
- Graph Statistics:
 - Degree Distribution
 - Clustering Co-efficient
- Data Mining Problems
 - Pattern Mining
 - Clustering
 - Classification / Prediction
 - Compression
 - Modelling

Researchers

- Xifeng Yan UC Santa Barbara
- Jiawei Han U Illinois Urbana Champaign
- George Karypis U Minnesota
- Charu Aggarwal IBM T.J. Watson Research Center
- Jennifer Neville Purdue University

Social Network Analysis

- Interested in populations not individuals
- Structure within society

Social Network Analysis

- Network (Graph)
 - Nodes: Things (people, places, etc.)
 - Edges: Relationships (friends, visited, etc.)

Quantitative Analysis

- Analysis
 - Quantitative not qualitative
 - Usually Scale-Free Networks

Further Resources

- Social network analysis: methods and applications
 - -Stanley Wasserman & Katherine Faust
- Christos Faloutsos, Watch the video
- Jure Leskovec @ Stanford
- The Mining Graph Data book

Towards Proximity Pattern Mining in Large Graphs

Arijit Khan, Xifeng Yan, Kun-Lung Wu

Overview

- Detects novel type of pattern in large graphs called proximity patterns
- Develop two models to model the growth of proximity patterns
- Use a probabilistic frequent pattern miner to extract proximity patterns
- Test their approach on Last.fm, Intrusion Alert Network, DBLP Collaboration Graph. Evaluate the interestingness of patterns generated using a statistical measure.

What is a proximity pattern?

- "A proximity pattern is a subset of labels that repeatedly appear in multiple tightly connected subgraphs" – (from [1]).
- Characteristics of proximity patterns:
 - Labels in pattern are tightly connected
 - They are frequent
 - They may not be connected in the same way always
- Useful in modelling information flow in a dynamic graph

Definitions

- The support sup(I) of an itemset P⊆ L (the set of labels) is the number of transactions in the data set that I is present in.
- A frequent itemset is an itemset which has a support greater than an user-defined threshold.
- The downward closure property of an itemset states that all subsets of a frequent itemset are frequent. Consequently all supersets of an infrequent itemset are infrequent.

Definitions

• Given a graph G = (V,E) and a subset of vertices π , $\pi \in V$ (G), let $L(\pi)$ be the set of labels in π , i.e., $L(\pi) = \bigcup_{u \in \pi} L(u)$. Given a label subset I, π is called an embedding of I if $I \subseteq L(\pi)$. The vertices in π need not be connected. (from [1])

 v_1, v_2, v_3 is an embedding of $\{l_1, l_2, l_5\}$

- $\bullet\Phi_1(l_1,l_2,l_5) = (v_2,v_1,v_3) \ (minimum)$
- $\Phi_2(I_1,I_2,I_5) = (v_2,v_3,v_3)$ (non-minimum)
- A mapping φ between I and the vertices in π is a function φ:I → π s.t., ∃ I, φ(I) ∈ π and I ∈ L(φ(I)). A mapping is minimum if it is surjective, i.e., ∀v ∈ π, ∃I s.t. φ(I) = v. (from [1])
- Given an itemset I and a mapping φ , we need a function $f(\varphi)$ to measure its association strength. (from [1])

Neighbour Association Model

Procedure:

- Find all embeddings π_{1} , π_{2} , ..., π_{m} of an itemset I.
- For each embedding π measure the strength $f(\pi)$
- Support of itemset $I = \sum_{i=1}^{m} f(\pi)$.

Problems are:

- Support count based on overlapping embeddings violate the downward closure property
- Any subset of vertices could be an embedding.
- To solve the first problem, a overlap graph is created. The support is the sum of weights of the nodes in the maximum weight independent set of this graph.
- Disadvantages:
 - NP-Hard w.r.t. to the number of embeddings for a given pattern.
 - Not feasible to generate all the embeddings for a pattern as there could be a large number of embeddings
 - Support count is NP-Complete.

Information Propagation Model

- $G_0 \rightarrow G_1 \rightarrow G_i \rightarrow \ldots \rightarrow G_n$
- Let $\underline{L(u)}$ be the present state of u, denoted by the labels present in u, and l be a distinct label propagated by one of its neighbors and $l \notin L(u)$. Hence, the probability of observing L(u) and l is written as:

$$P(L \cup \{l\}) = P(L|I)P(l),$$

where P(I) is the probability of I in u's neighbors and P(L|I) is the probability that I is successfully propagated to u.

- For multiple labels, I_1, I_2, \ldots, I_m , $P(L \cup \{I_1, I_2, \ldots, I_m\}) = P(L|I_1) * \ldots * P(L|I_m) * P(I_1) * \ldots P(I_m).$
- Propagation model indicates the characteristic of social networks where the influence of a given node on any other decreases as the distance from the given node to the other node increases.

Nearest Probabilistic Association

- A_u(I) = P(L(u)|I) = e^{-α.d},
 where 'I' is a label present in a vertex 'v' closest to 'u',
 'd' is the distance from 'v' to 'u' (=1 for unweighted graph)
 'α' is the decay constant (α > 0)
- Probabilistic Support of I:

$$\frac{1}{|V|} \sum_{u \in V} A_u(l_1) \cdots A_u(l_m),$$

If I = {I1, I2, ..., m} and J = {I1, I2, ..., Im, Im+1 ..., n}, then since,

$$\prod_{i=1}^{m} A_u(l_i) \ge \prod_{i=1}^{m} A_u(l_i) \prod_{i=m+1}^{n} A_u(l_i)$$

$$sup(I) \ge sup(J)$$

Nearest Probabilistic Association

```
Algorithm 1 Generate Intermediate Dataset \bar{G}
Input: Graph G, cut-off parameter \epsilon.
Output: Intermediate Dataset G.
 1: i = 0 // iteration
 2: for all vertex u of G do
      Let L_0(u) be the label set of u
      \forall l \in L_0(u), A_u(l)=1; otherwise A_u(l)=0
 5: end for
6: for all vertex u of G do
      for all label l in L_i(v) \setminus L_i(u), v is u's neighbor do
8:
         update A_u(l) using Definition 4 (choose the maxi-
        mum one)
         If less than \epsilon, do not propagate l to u
9:
      end for
10:
      L_{i+1}(u) = \{L_i(u) \cup \{l\} | A_u(l) > 0\}
11:
12: end for
13: if L_{i+1} = L_i for all vertices in G then
      Output A_u for all u \in V(G)
15: else
16: i = i + 1, goto step 2
17: end if
```


Nearest Probabilistic Association

Consistency between NPA and Frequent Itemset

Problem with NPA

NPA – Complexity, Advantages and Disadvantages

- O(|V| . d^t . s),
 - V is the total no. of vertices
 - 'd' is the average degree
 - 't' is the number of iterations
 - 's' is the number of labels in every vertex
- Advantage: It is fast to calculate
- Disadvantage: Considers only the nearest neighbour for propagation.

Normalized Probabilistic Association

Normalized Probabilistic Association of label 'l' at vertex 'u'

$$NA_u(l) = P(L(u)|l) = \frac{m}{n+1}e^{-\alpha}$$

- NMPA can break ties when
 - two vertices have the same number of neighbors
 - two vertices have different number of neighbours but the same number of neighbours having label 'l'.
- The update rule of Algorithm 1 is changed:

$$NA_u(l) = \frac{1}{n+1} \sum_{v \in N(u)} e^{-\alpha} * NA_v(l)$$

 Complexity same as NPA, however propagation decays faster due to normalization.

Probabilistic Itemset Mining

- Uses a probablistic version of FP-growth algorithm[3][4] to mine frequent itemsets from uncertain data.
- Two variations of probabilistic FP-growth algorithm used
 - Exact Mining: Using an FP-tree where nodes are augmented with the probability values present in the proximity patterns
 - Approximate Mining: FP-tree augmented not with all probability values, but only sum of probability values and number of occurrences.
- C. Aggarwal et al. in [2] proposes various techniques to mine frequent patterns from uncertain data. Probabilistic version of H-Mine found to be the best.

- Datasets used
 - LAST.FM: Nodes labelled with artists, edges represent communication between users
 - Intrusion Alert Network: Node is a computer labelled with attacks, edge represents possible attack
 - **DBLP Collaboration Graph**: Nodes represent authors labelled with keywords, edges represent collaboration.
- Labels are randomized and G-test score used to compare between the support of patterns in actual graph and randomized graph.

• Effectiveness test:

#	Proximity Patterns	Score
1	Tiësto, Armin van Buuren , ATB	0.62
2	Katy Perry, Lady Gaga, Britney Spears	0.58
3	Ferry Corsten, Tiësto, Paul van Dyk	0.55
4	Neaera, Caliban, Cannibal Corpse	0.52
5	Lacuna Coil, Nightwish, Within	0.47
	Temptation	

Table 3: Top-5 Proximity Patterns (Last.fm)

#	Proximity Patterns	Score
1	Tiësto, Armin van Buuren , ATB	0.62
2	Katy Perry, Lady Gaga, Britney Spears	0.58
3	Ferry Corsten, Tiësto, Paul van Dyk	0.55
4	Neaera, Caliban, Cannibal Corpse	0.52
5	Lacuna Coil, Nightwish, Within	0.47
	Temptation	

Table 4: Proximity Patterns minus Frequent Itemsets (Last.fm)

Efficiency and Scalability

Steps	Last.fm	Intrusion	DBLP
NmPA	2.0	5.0	187.0
FP-tree	1.0	10.0	89.0
Formation			
Top-k Pattern	4.0	2.0	254.0
Mining			

Table 8: Runtime (sec)

Exact vs. Approximate Mining

#	Proximity Patterns	Score
1	Katy Perry, Lady Gaga, Britney Spears	0.58
2	Ferry Corsten, Tiësto, Paul van Dyk	0.55
3	Tiësto, Armin van Buuren, ATB	0.55
4	Neaera, Caliban, Cannibal Corpse	0.51
5	Lacuna Coil, Nightwish, Within	0.46
	Temptation	

Steps	aFP(approximate)	pFP(exact)
FP-tree Formation	1.0	3.0
Top-k Pattern Mining	4.0	21.0

 Gives more proximity patterns than Frequent Subgraph Mining, and is faster as it avoids isomorphism checking

Strengths

- Discovers new kind of patterns.
- Considers structure without incurring isomorphism checking.
- Applicable to weighted and un-weighted graphs.
- Can be extended to directed graphs

Weaknesses

- Run-time exponential with depth of propagation.
- Proximity pattern itself does not retain structural information.
- Large number of patterns might be generated.
- Different paths in the graph might have different decay rates.

Discussions

- What real life graphs/problems might this approach be really good for?
- Is there a better way to determine proximity?
- What modifications would be needed for the technique to handle directed subgraphs?
- How does the rate of decay affect the patterns found?
- How well will the approach fare when graphs have billions of nodes and edges or more?

References

- 1. A. Khan, X. Yan, and K.-L.Wu. Towards proximity pattern mining in large graphs. In *SIGMOD*, 2010.
- 2. C.C. Aggarwal, Y. Li, J. Wang, J. Wang. Frequent Pattern Mining with Uncertain Data. KDD 2009.
- 3. Presentation on Frequent Pattern Growth (FP-Growth)
 Algorithm: An Introduction by Florian Verhein
- 4. J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation. SIGMOD, 2000.

What are your research problems?

Avista Data (HW 4)

Radius Plots for Mining Tera-byte Scale Graphs

Algorithms, Patterns, and Observations

Authors

- U. Kang (CMU)
- C. Tsourakakis (CMU)
- A. Appel (USP São Carlos)
- C. Faloutsos (CMU)
- J. Leskovec (Stanford)

Basic Definitions

- Distance (u,v)
 - d(u,v) => shortest path between u and v
- Eccentricity (v)
 - \bullet e(i) => max(d(i, v)), for all v in G
- Radius (G)
 - Minimum e(v) for all v in G
- Diameter (G)
 - Maximum e(v) for all v in G

Big Data

- YahooWeb
 - 6B edges, 125GB on disk
 - -TBs of memory required to run algos
 - -Large enough nobody else has published on it
- Billion Triple Challenge
 - ~2B edges
- Social networking data
 - Spinn3r
- Google's <u>1T word language model</u>

Flajolet-Martin

- Probabilistic counting paper from 1985
- Given
 - M => K x 64 bit matrix
 - h(a) => mostly uniform 64-bit hashing function
 - $\rho(a) =$ index of lowest cleared bit in a

Pseudo-Code

- For x in data:
 - M[h(x) % K, ρ (h(x)/K)] = 1
- S=0
- For row in M:
 - from i=0 until row[i++] == 0:
 - S += i
- Return K/0.77351 * 2^{S/K}

Flajolet-Martin for Radius Estimation

- Authors set K to 32
 - Original paper shows this gives stdev 13% error
- 64-bit bitstrings used
- Bit-Shuffle Encoding
 - Only pass around the number of starting 1s and ending 0s
 - Optimizes network load

Map/Reduce in a nutshell

• From the paper:

MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key.

Implementation is out of our scope

MapReduce/Hadoop Radius

- Map: Output (node_id, list of neighbor bitstrings)
- Reduce: Add bitstrings to my own
- Optimizations
 - Bundle edges into blocks
 - Change bitstring to count blocks
 - Perform sequence length encoding on bitstrings

Recall Basic Definitions

- Distance (u,v)
 - d(u,v) => shortest path between u and v
- Eccentricity (v)
 - \bullet e(i) => max(d(i, v)), for all v in G
- Radius (G)
 - Minimum e(v) for all v in G
- Diameter (G)
 - Maximum e(v) for all v in G

Visualizing HADI

Network Dynamics

Why diameter shrinks over time

What is happening with Patents

- Edges are undirected
- Patents reference previous work
- Always more previous work to reference

Network Dynamics

- Patent vs. LinkedIn
- See HADI: Mining Radii of Large Graphs

Other observations

- "Surprising" diameter of 7~8
 - Could be a PageRank effect of SEO

Graph structure in the web Broder et al., 2000

Discussion

- Can you represent your research problem as a graph?
 - Should you?
- Would it be useful to know how fast information can propagate through your graph?
- Can you breakdown your approach into a map/reduce paradigm?

Graphs are pretty, look at them more!