

Running CABLE in ACCESS-SCM (standalone)

Jatin Kala

(J.Kala@unsw.edu.au or Jatin.Kala.JK@gmail.com)

Outline

- ➤ Why run CABLE within ACCESS-SCM standalone?
- > How to use it?
- Some current issues
- > The GENESIS tool

Why run CABLE within ACCESS-SCM?

- ➤ Others are using it:
 - > The convection group within CoE uses the SCM
 - Franklin et al. (2012) used ACCESS SCM to study convection
 - ➤ No land/LSM
- > A valuable tool for model development:
 - > Run on command line, no need for UMUI, quick outputs
- Obvious caveats with any SCM:
 - Prescribed advection
 - ➤ But valuable tool for first-order approximation
 - ➤ How do my code changes affect UM?

How to run ACCESS-SCM?

- > Getting the code:
 - https://trac.nci.org.au/trac/access/wiki/SCM_testcases
 - ➤ Standalone version provided by Martin Dix
 - ➤ With help from COE CMS, the CABLE build was separated from SCM build
 - Link CABLE as external lib during SCM build
 - User can decide what version of CABLE to use
 - ➤ Compile and run on command line

How to run ACCESS-SCM?

- > The input namelist.scm file is rather long
 - ➤ Which options matter for CABLE?
 - ➤ We've worked out most of them:
 - ➤ How to "activate" the land
 - ➤ Define land/sea fraction
 - ➤ Define veg type(s)
 - ➤ Define canopy height
 - ➤ Define LAI
 - ➤ Initial soil moisture and temperature profile
 - ≻etc.....
- Will detail on Wiki soon

Current Issues

- ➤ Initial soil moisture profile has non-sense values
 - ➤ Subroutine soil_snow never gets called
 - ➤ Soil moisture and temperature remain constant
- ➤ This issue does Not seem to happen with Martin's original stand-alone code
 - ➤ Soil moisture and temperature outputs look "Ok"
- Something seems to have gone wrong in separating the CABLE build
 - ➤ Work in progress

GENESIS

- Major challenge in running any SCM:
 - Derive the input forcing
 - These are "spelt-out" in the input namelist file for ACCESS SCM!
 - VERY VERY long namelist (many thousands of lines)
 - Easy to make mistakes
- > GENESIS is a tool developed at BoM to address this issue!
 - Originally designed to read ERA40 as input
 - User defined lat, lon and time period
 - Provide a "template" namlist.scm (with right physics options)
 - GENESIS writes the input forcing for you

GENESIS

- But we have 0.75 deg ERA-INT data already at NCI
 - ➤ Tool developed to convert ERA-INT in a format genesis will read:
 - https://github.com/coecms/era2genesis
 - ➤ GENESIS source code:
 - https://github.com/coecms/genesis2
 - ➤ Provide a namelist.scm which "works"
 - ➤ Run GENESIS -> creates new namelist with forcing
 - ➤ Run the SCM
 - > Few issues with "long comments"
- > Documentation will be provided soon on wiki

GENESIS – Results look promising

SUMMARY

- > SCM versions of GCMs are generally very useful tools to have
- ➤ With GENESIS we can:
 - Run anywhere (almost)
 - > Any period over which ERA-INT is available
- > Need to fix the soil moisture and temperature issue

