Operación XOR de manera cruzada en mapas Renyi donde $1 \le j \le 10$, valores diferentes para el parámetro β , aplicación de pruebas NIST.

Marcos Daniel Calderón Calderón
Maestría en Ciencias de la Computación
Centro de Investigación en Matemáticas (CIMAT)
Guanajuato , Gto.
marcos.calderon@cimat.mx

Resumen—Se explica de manera detallada el comportamiento de mapas Renyi donde varía el parámetro j.

I. Introducción.

Para este ejercicio, se trabajó con el mapa caótico Renyi fundamental:

$$f(k) = \left(bk + \lfloor \frac{k}{2^j} \rfloor\right) \mod 2^n \tag{1}$$

Esto significa que es importante buscar valor adecuado para b. Se tienen algunas restricciones para el valor de b que son mencionadas a continuación:

1. Se debe cumplir que $1 \le b < 2^n$.

Ahora, para facilitar la explicación, supongamos que estamos trabajando con datos de 8 bits. Esto significa que cada número se puede dividir en dos partes de 4 bits, la parte izquierda es la más significativa, la parte derecha es la menos significativa. Supongamos que vamos a trabajar con los siguientes datos:

$$x_1 = 103 \quad (01100111) \qquad x_2 = 89 \quad (01011001) \qquad (2)$$

También, necesitamos un valor auxiliar:

$$a = 15$$
 (00001111) (3)

El esquema que se manejará es el siguiente:

1

Figura 1. Esquema de intercambio.

Un código simplificado (para ocho bits) que hace la operación anterior es el siguiente:

Ahora, para los ejemplos que se muestran aquí se utilizan 32 bits, esto significa que se van a dividir los datos generados por los mapas caóticos en dos partes: cada una de 16 bits. También, en este caso, necesitamos un nuevo valor para a: $(a=2^{16}-1=65,535)$

Todos los números impares i tales que $i < 2^{32}$ son coprimos con 2^{32} .

II. RESULTADOS.

II-A. Ejemplo 1.

Se eligieron los siguientes parámetros fijos para el valor de b:

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales, recordemos que al ser mapas caóticos, no importa que los valores iniciales se encuentren cerca, con el paso de las iteraciones, se obtentrán resultados muy distintos.

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro I. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ1.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.521549	
Block Frecuency	0.418270	
Cumulative Sums	F:0.826938, R:0.625796	
FFT	0.408863	√
Frecuency	0.477704	√
Linear Complexity	0.352064	√
Longest Run	0.453277	l √
Non Overlapping Template	147 de 148	
Overlapping Template	0.103749	l √
Random Excursions	8 de 8	
Random Excursions Variant	18 de 18	√
Rank	0.404006	√
Runs	0.910677	√
Serial	2 de 2	
Universal	0.445230	$\sqrt{}$

II-B. Ejemplo 2.

En este segundo ejemplo, se utilizó un valor para b de tipo par, además dicho valor tiene una representación de la forma 2^n .:

- Mapa 1: b = 128.
- Mapa 2: b = 128.

Los valores iniciales son los mismos que los utilizados en el ejemplo anterior.

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro II. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ2.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.499866	
Block Frecuency	0.864971	$\sqrt{}$
Cumulative Sums	F:0.552499, R:0.393020	$\sqrt{}$
FFT	0.967975	$\sqrt{}$
Frecuency	0.457784	·
Linear Complexity	0.330454	$$
Longest Run	0.577948	$\sqrt{}$
Non Overlapping Template	147 de 148	√
Overlapping Template	0.590943	$\sqrt{}$
Random Excursions	8 de 8	$\sqrt{}$
Random Excursions Variant	18 de 18	
Rank	0.118981	$\sqrt{}$
Runs	0.560840	\downarrow
Serial	2 de 2	√
Universal	0.587190	, v

II-C. Ejemplo 3.

Se eligieron los siguientes parámetros fijos para el valor de b:

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales, a diferencia del ejemplo 1, en este caso, los valores iniciales difieren mucho entre si:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 123,879,573$.

Cuadro III. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ3.DAT .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.343785	
Block Frecuency	0.996993	$\sqrt{}$
Cumulative Sums	F:0.072120, R:0.024275	
FFT	0.189046	
Frecuency	0.045097	
Linear Complexity	0.969194	
Longest Run	0.238385	
Non Overlapping Template	147 de 148	$\sqrt{}$
Overlapping Template	0.892500	
Random Excursions	8 de 8	
Random Excursions Variant	18 de 18	
Rank	0.128193	$\sqrt{}$
Runs	0.389105	$\sqrt{}$
Serial	2 de 2	√
Universal	0.913238	, v

II-D. Ejemplo 4.

Para el ejemplo 4, se tomó como referencia los parámetros iniciales del ejemplo 1, pero ahora, en el primer mapa, se asignará j=3, esto significa que los mapas no coincidirán en este parámetro.

- Mapa 1: j = 3.
- Mapa 2: j = 5.

Para este ejemplo, el valor del parámetro es el mismo para ambos mapas:

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales, recordemos que al ser mapas caóticos, no importa que los valores iniciales se encuentren cerca, con el paso de las iteraciones, se obtentrán resultados muy distintos.

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro IV. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ4.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.325726	1/
Block Frecuency	0.713352	\ \sqrt{}
Cumulative Sums	F:0.586388, R:0.421338	\ \ \sqrt{}
FFT	0.858882	\ \sqrt{}
Frecuency	0.414357	Ĭ v
Linear Complexity	0.460441	ĺ . √
Longest Run	0.048773	\downarrow
Non Overlapping Template	146 de 148	$\sqrt{}$
Overlapping Template	0.079603	l √
Random Excursions	8 de 8	
Random Excursions Variant	14 de 18	
Rank	0.979570	
Runs	0.447753	
Serial	2 de 2	
Universal	0.927187	

II-E. Ejemplo 5.

Este ejemplo es similar al caso 1, pero aquí se ha modificado el valor de j: los dos mapas utilizarán j=1. En teoría, se supone que con este cambio, es posible generar más valores. Se eligieron los siguientes parámetros fijos para el valor de b:

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales, recordemos que al ser mapas caóticos, no importa que los valores iniciales se encuentren cerca, con el paso de las iteraciones, se obtentrán resultados muy distintos.

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro V. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ5.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.674153	
Block Frecuency	0.282417	
Cumulative Sums	F:0.059542, R:0.036427	
FFT	0.189046	
Frecuency	0.059093	
Linear Complexity	0.507308	
Longest Run	0.216161	
Non Overlapping Template	146 de 148	
Overlapping Template	0.280685	
Random Excursions	8 de 8	
Random Excursions Variant	18 de 18	
Rank	0.690115	
Runs	0.945406	$\sqrt{}$
Serial	2 de 2	$\sqrt{}$
Universal	0.819727	√

II-F. Ejemplo 6.

Este ejemplo es similar al caso 1 y al caso 5, pero aquí se ha modificado el valor de j: los dos mapas utilizarán j = 2.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro VI. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ6.DAT .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.128491	
Block Frecuency	0.264198	\ \div
Cumulative Sums	F:0.820872, R:0.660928	\ \ \ \ \
FFT	0.679644	\ \div
Frecuency	0.812269	\ \ \ \ \
Linear Complexity	0.578214	$$
Longest Run	0.699453	\ \ \ \ \
Non Overlapping Template	145 de 148	\ \ \ \ \
Overlapping Template	0.768770	\ \div
Random Excursions	8 de 8	\ \ \ \ \
Random Excursions Variant	18 de 18	\ \div
Rank	0.548353	$\sqrt{}$
Runs	0.764204	$$
Serial	2 de 2	\ \div
Universal	0.468438	, v

II-G. Ejemplo 7.

Este ejemplo es similar al caso 1 y al caso 5, pero aquí se ha modificado el valor de j: los dos mapas utilizarán j=3.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro VII. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ7.DAT .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.405724	
Block Frecuency	0.432030	$\sqrt{}$
Cumulative Sums	F:0.673151, R:0.452943	$\sqrt{}$
FFT	0.895052	$\sqrt{}$
Frecuency	0.546010	$\sqrt{}$
Linear Complexity	0.655230	$\sqrt{}$
Longest Run	0.156917	$\sqrt{}$
Non Overlapping Template	147 de 148	
Overlapping Template	0.253751	$\sqrt{}$
Random Excursions	8 de 8	$\sqrt{}$
Random Excursions Variant	16 de 18	$\sqrt{}$
Rank	0.366550	
Runs	0.215522	\ \lambda
Serial	2 de 2	$\sqrt{}$
Universal	0.683250	\ \lambda

II-H. Ejemplo 8.

Similar al caso y, pero aquí se ha modificado el valor de j: los dos mapas utilizarán j=4.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro VIII. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ8.DAT .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.237421	
Block Frecuency	0.008199	X
Cumulative Sums	F:0.387010, R:0.354730	$\sqrt{}$
FFT	0.688069	· √
Frecuency	0.349144	
Linear Complexity	0.290362	√
Longest Run	0.440753	· √
Non Overlapping Template	147 de 148	, ,
Overlapping Template	0.072547	√
Random Excursions	8 de 8	, ,
Random Excursions Variant	18 de 18	, ,
Rank	0.667748	, ,
Runs	0.190805	, ,
Serial	2 de 2	· √
Universal	0.188711	Ŭ,

II-I. Ejemplo 9.

Similar al caso 1, pero aquí se ha modificado el valor de j: los dos mapas utilizarán j=6.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro IX. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ9.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.296938	
Block Frecuency	0.518738	$\sqrt{}$
Cumulative Sums	F:0.085992, R:0.309723	$\sqrt{}$
FFT	0.228422	l √
Frecuency	0.154881	$\sqrt{}$
Linear Complexity	0.359101	$\sqrt{}$
Longest Run	0.568405	$\sqrt{}$
Non Overlapping Template	146 de 148	$\sqrt{}$
Overlapping Template	0.018236	$\sqrt{}$
Random Excursions	NA	X
Random Excursions Variant	NA	X
Rank	0.517635	$\sqrt{}$
Runs	0.596122	$\sqrt{}$
Serial	2 de 2	
Universal	0.796828	

II-J. Ejemplo 10.

Valor de j: los dos mapas utilizarán j = 7.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro X. Resultados de las pruebas de aleatoriedad NIST a los datos ej10.dat .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.608377	
Block Frecuency	0.898356	
Cumulative Sums	F:0.529105, R:0.872757	
FFT	0.335274	
Frecuency	0.513273	
Linear Complexity	0.035298	
Longest Run	0.560911	
Non Overlapping Template	146 de 148	
Overlapping Template	0.565435	√
Random Excursions	NA	X
Random Excursions Variant	NA	X
Rank	0.365659	
Runs	0.157147	√
Serial	2 de 2	$\sqrt{}$
Universal	0.988075	ĺ . √

II-K. Ejemplo 11.

Valor de j: los dos mapas utilizarán j = 8.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro XI. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ11.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.156682	
Block Frecuency	0.145581	$\sqrt{}$
Cumulative Sums	F:0.082204, R:0.097820	
FFT	0.823006	
Frecuency	0.062533	√
Linear Complexity	0.457037	√
Longest Run	0.789188	
Non Overlapping Template	144 de 148	l √
Overlapping Template	0.140399	
Random Excursions	NA	\dot{X}
Random Excursions Variant	NA	X
Rank	0.477033	√
Runs	0.101856	l √
Serial	2 de 2	√
Universal	0.833920	

II-L. Ejemplo 12.

El valor de j: los dos mapas utilizarán j = 9.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro XII. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST A LOS DATOS EJ12.DAT .

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.225604	
Block Frecuency	0.159517	\ \ \
Cumulative Sums	F:0.360374, R:0.323347	$\sqrt{}$
FFT	0.692295	$\sqrt{}$
Frecuency	0.353019	$\sqrt{}$
Linear Complexity	0.036720	$\sqrt{}$
Longest Run	0.820065	$\sqrt{}$
Non Overlapping Template	146 de 148	\ \ \
Overlapping Template	0.046354	$\sqrt{}$
Random Excursions	8 de 8	$\sqrt{}$
Random Excursions Variant	18 de 18	$\sqrt{}$
Rank	0.558845	$\sqrt{}$
Runs	0.440878	$\sqrt{}$
Serial	2 de 2	· √
Universal	0.780192	√

II-M. Ejemplo 13.

Valor de j: los dos mapas utilizarán j = 10.

- Mapa 1: b = 5.
- Mapa 2: b = 5.

También, se han elegido los siguientes valores iniciales:

- Mapa 1: $x_0 = 7$.
- Mapa 2: $x_0 = 9$.

Cuadro XIII. RESULTADOS DE LAS PRUEBAS DE ALEATORIEDAD NIST
A LOS DATOS EJ13.DAT.

Prueba Aplicada	P-Valor	Exito?
Aproximate Entropy	0.45556	
Block Frecuency	0.921870	$\sqrt{}$
Cumulative Sums	F:0.687762, R:0.539668	
FFT	0.613759	
Frecuency	0.810330	√
Linear Complexity	0.253101	$\sqrt{}$
Longest Run	0.062643	
Non Overlapping Template	142 de 148	$\sqrt{}$
Overlapping Template	0.468493	
Random Excursions	8 de 8	$\sqrt{}$
Random Excursions Variant	18 de 18	
Rank	0.665825	√
Runs	0.737598	\downarrow
Serial	2 de 2	$\sqrt{}$
Universal	0.309633	√

III. CONCLUSIONES.

Cuando se asigna el parámetro b como se ha hecho en este ejemplo, se puede asignar el mismo valor a los dos mapas caóticos que participarn en la operación XOR, lo único que se necesita para obtener buenos resultados es asignar valores distintos a x_0 , estos valores pueden estar muy cerca entre sí, el comportamiento caótico asegura que aún así, la secuencia obtenida será aleatoria.

Se obtuvieron mejores resultados (ligeramente) mejores en el ejemplo 1 en comparación con el ejemplo 2. Quizá esto se debe a que en el ejemplo 1 se utilizó un primo relativo con respecto a *b*.

En el ejemplo 3, los valores iniciales fueron muy distintos entre sí, a pesar de que se aprobaron los exámenes de aleatoriedad, los resultados no fueron tan buenos como en el ejemplo 1

En el ejemplo 4, a pesar de que los rsultados no fueron malos, no fueron tan bueno es comparación con ejemplos anteriores, algunas pruebas obtivieron valores relativamente bajos en comparación con los experimentos de pruebas anteriores.

En el ejemplo 5, donde j=1, se obtuvieron buenos resultados, aunque la prueba de Frecuencia obtuvo un valor bajo, esto indica que el número de ceros y unos no está bien nivelado. También se obtuvieron algunas pruebas Non Overlapping Template, otra prueba que obtuvo resultados apenas aceptables fué Cumulative Sums.

En el ejemplo 6, se obtuvieron buenos resultados, pero, hubo dos pruebas con reultados no tan buenos: Serial y Non Overlapping Template.

En el ejemplo 7, Random Excursions Variant fué la prueba con menor desempeño.

En el ejemplo 8, la Prueba Frecuency Block ha fallado.

En el ejemplo 9, hay unas pruebas que no se pueden aplicar, pero esto se debe a las especificaciones del programa.

Ejemplo 12 y 13, buenos resultados.

En general, se obtienen buenos resultados para $5 \le j \le 10$. Además, se obtienen mejores resultados cuando no se utiliza la fórmula para el parámetro b.