

DISCIPLINA: HIDRÁULICA

UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA INSTITUTO DE CIÊNCIAS AGRÁRIAS

DISCIPLINA: HIDRÁULICA

MÓDULO V

PROJETO

SEM ESCALA

Prof. Dr. Rodrigo Otávio Rodrigues de Melo Souza

DISCIPLINA: HIDRÁULICA

PROJETO

Projetar um sistema para realizar o abastecimento do reservatório principal da fazenda. O reservatório irá abastecer por gravidade a horta, o pomar e a sede.

Dados:

- A horta tem dimensões de 150 x 150 m:
- Consumo aproximado da horta: 4 mm/dia (1 mm = 1 L/m²);
- O pomar também tem as dimensões de 150 x 150 m;
- Consumo aproximado do pomar: 5 mm/dia;
- Na sede residem 05 pessoas;
- Consumo diário de 1 pessoa: 135 L/dia;
- Considerar uma altura geométrica de sucção de 2 m;
- Considerar a tubulação de sucção com um comprimento de 6 m;
- Considerar a tubulação de recalque com um comprimento de 926 m;
- O consumo total da propriedade (horta+sede+pomar) deve ser reposto em 9 horas;

SEM ESCALA

DESENHO - PERFIL - Bomba x Reservatório

1 - Desenho - perfil - bomba x reservatório

VAZÃO

2 - Consumo da horta: $22500 \text{ m}^2 \text{ x 4 L/m}^2 = 90000 \text{ L}$

3 - Consumo do pomar: $22500 \text{ m}^2 \text{ x } 5 \text{ L/m}^2 = 112500 \text{ L}$

4 - Consumo da sede: 5 pessoas x 135 L = 675 L

5 - Consumo total = 203175 L

6 - Vazão da bomba = 203175 L / 9 h = 22575 L/h

RECALQUE

Diâmetro de Recalque:

Adotar V = 1.5 m/s

$$D = \sqrt{\frac{4Q}{\pi V}}$$

 $7 - D_{calculado} = 0.0729 \text{ m} = 72.9 \text{ mm}$

 $8 - D_{adotado} = 75 \text{ mm}$

9 - DI = 72.5 mm

DISCIPLINA: HIDRÁULICA

Hf no recalque:

Acessórios (75 mm)	Quantidade	Comp. Equivalente por peça (m)
Ampliação	1	1,0 x 1
Válvula de retenção	1	6,3 x 1
Registro de gaveta	1	0,5 x 1
Curva 90°	3	1,0 x 3
		T (1 10 0

Total = 10,8 m

$$10 - L_{equivalente} = 10.8 \text{ m}$$

11 -
$$L_{total} = L + L_{equivalente} = 926 + 10,8 = 936,8 \text{ m}$$

Calcular Hf com Hazen Willians utilizando: $L_{total} = 936.8 \text{ m}$; $Q = 22.575 \text{m}^3/\text{h}$; DI = 72.5 mm e C=150.

$$12 - HfR = 27,5 mca$$

Altura manométrica de recalque

$$13 - HgR = 15 \text{ m}$$

$$14 - HmR = HgR + HfR = 15 + 27,5 = 42,5 \text{ m}$$

SUCÇÃO

Diâmetro da sucção

Diâmetro da sucção ≥ Diâmetro do recalque

$$16 - DI = 97.6 \text{ mm}$$

Hf na Sucção

Acessório	Quantidade	Comp. Equivalente por peça (m)		
Válvula de pé com crivo	1	23 x 1		
Curva 90°	1	1,3 x 1		
Redução	1	0,6 x 1		
		Total = 24,9		

$$17 - L_{\text{equivalente}} = 24.9 \text{ m}$$

18 -
$$L_{total} = L + L_{equivalente} = 6 + 24,9 = 30,9m$$

Calcular Hf com Hazen Williams utilizando: $L_{total} = 30.9 \text{m}$; $Q = 22.575 \text{m}^3/\text{h}$; DI = 97.6 mm e C=150.

$$19 - HfS = 0.21 \text{ mca}$$

Altura manométrica de sucção

20 - HmS = HgS + HfS = 2 + 0.21 = 2.21m

ALTURA MANOMÉTRICA TOTAL

21 - HmT = 2,21 + 42,5 = 44,71 mca

ESCOLHA DA BOMBA

Dados: HmT = $44,71 \text{ mca e } Q = 22,575 \text{ m}^3/\text{h}$

22 - Bomba escolhida: KSB ETABLOC 32-160.1, ϕ =176 mm, Pot = 7,5 cv

LISTA DE MATERIAIS

23 - Lista de materiais:

Materiais Materiais	Quantidade	Preço Unitário	Preço Total
Válvula de pé c/ crivo de 100 mm*	1 un		
Adaptador 100 mm x 4" - Irrigação	2 un		
Tubo PVC - Linha Fixa de Irrigação - DN 100 mm*	1 barra		
Curva 90° de 100 mm*	1 un		
Redução - Luva de redução 4" x 2" - Galvanizado	1 un		
Nipel 2"	1 un		
KSB ETABLOC 32-160.1, φ=176 mm, Pot = 7,5 cv*	1 un		

DISCIPLINA: HIDRÁULICA Nipel 2" 1 un Redução - Luva de redução 3" x 2" - Galvanizado 1 un Adaptador 75 mm x 3" - Irrigação 3 un Curva 90° de 75 mm* 3 un Válvula de retenção de 3"* 1 un Nipel 3" 1 un Registro de gaveta de 3"* 1 un Tubo PVC - Linha Fixa de Irrigação - DN 75 mm* 155 barras Registro de esfera 75 mm 1 un Adaptador PVC Soldável para Caixa D' água 75 mm 1 un Lixa 100 20 un Adesivo para PVC 175 g 5 un

Ufra	DISCIPLINA: HIDRÁULICA		INSTITUTO DE CIÊNCIAS AGRÁRIAS	
Fita veda rosca 18 mm x 25 m		2 un		

^{*} Itens mínimos