Соснин В.В., Балакшин П.В. Введение в параллельные вычисления. – СПб: Университет ИТМО, 2019. - 51 с.

В пособии излагаются основные понятия и определения теории параллельных вычислений. Рассматриваются основные принципы построения программ на языке «Си» для многоядерных и многопроцессорных вычислительных комплексов с общей памятью. Предлагается набор заданий для проведения лабораторных и практических занятий.

Учебное пособие предназначено для студентов, обучающихся по магистерским программам направления «09.01.04 – Информатика и вычислительная техника», и может быть использовано выпускниками (бакалаврами и магистрантами) при написании выпускных квалификационных работ, связанных с проектированием и исследованием многоядерных и многопроцессорных вычислительных комплексов.

Рекомендовано к печати Ученым советом факультета компьютерных технологий и управления, 8 декабря 2015 года, протокол №10.**HET!!!!**

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2019 © Соснин В.В., Балакшин П.В., 2019

Введение

В настоящее время большинство выпускаемых микропроцессоров являются многоядерными. Это касается не только настольных компьютеров, но и в том числе мобильных телефонов и планшетов (исключением пока являются только встраиваемые вычислительные системы). Для полной реализации потенциала многоядерной системы программисту необходимо использовать специальные методы параллельного программирования, которые становятся всё более востребованными в промышленном программировании. Однако методы параллельного программирования ощутимо сложнее для освоения, чем традиционные методы написания последовательных программ.

Целью настоящего учебного пособия является описание практических заданий (лабораторных работ), которые можно использовать для закрепления теоретических знаний, полученных в рамках лекционного курса, посвященного технологиям параллельного программирования. Кроме этого, в пособии в сжатой форме излагаются основные принципы параллельного программирования, при этом теоретический материал даётся тезисно и поэтому для полноценного освоения требуется использовать конспекты лекций по соответствующей дисциплине.

При программировании многопоточных приложений приходится решать конфликты, возникающие при одновременном доступе к общей памяти нескольких потоков. Для синхронизации одновременного доступа к общей памяти в настоящее время используются следующие три концептуально различных подхода:

- 1. Явное использование блокирующих примитивов (мьютексы, семафоры, условные переменные). Этот подход исторически появился первым и сейчас является наиболее распространённым и поддерживаемым в большинстве языков программирования. Недостатком метода является достаточно высокий порог вхождения, т.к. от программиста требуется в "ручном режиме" управлять блокирующими примитивами, отслеживая конфликтные ситуации при доступе к общей памяти.
- 2. **Применение программной транзакционной памяти** (Software Transactional Memory, STM). Этот метод проще в освоении и применении, чем предыдущий, однако до сих пор имеет ограниченную поддержку в компиляторах, а также в полной мере он сможет себя проявить при более широком распространении процессоров с аппа-

ратной поддержкой STM.

3. Использование неблокирующих алгоритмов (lockless, lock-free, wait-free algorithms). Этот метод подразумевает полный отказ от применения блокирующих примитивов при помощи сложных алгоритмических ухищрений. При этом для корректного функционирования неблокирующего алгоритма требуется, чтобы процессор поддерживал специальные атомарные (бесконфликтные) операции вида "сравнить и обменять" (стрхсhg, "compare and swap"). На данный момент большинство процессоров имеют в составе системы команд этот тип операций (за редким исключением, например: "SPARC 32").

Предлагаемое вниманию методическое пособие посвящено первому из перечисленных методов, т.к. он получил наибольшее освещение в литературе и наибольшее применение в промышленном программировании. Два других метода могут являться предметом изучения углублённых учебных курсов, посвященных параллельным вычислениям.

Авторы ставили целью предложить читателям изложение основных концепций параллельного программирования в сжатой форме в расчёте на самостоятельное изучение пособия в течение двух-трёх месяцев. При использовании пособия в технических вузах рекомендуется приведённый материал использовать в качестве односеместрового учебного курса в рамках бакалаврской подготовки студентов по специальности "Программная инженерия" или смежных с ней. Однако приводимые примеры практических заданий могут быть при желании адаптированы для использования в магистерских курсах.

1 Теоретические основы параллельных вычислений

1.1 История развития параллельных вычислений

Разговор о развитии параллельного программирования принято начинать истории развития суперкомпьютеров. Однако первый в мире суперкомпьютер CDC6600, созданный в 1963 г., имел только один центральный процессор, поэтому едва ли можно считать его полноценной SMP-системой.

Третий в истории суперкомпьютер CDC8600 проектировался для использования четырёх процессоров с общей памятью, что позволяет говорить о первом случае применения SMP, однако CDC8600 так никогда и не был выпущен: его разработка была прекращена в 1972 году.

Лишь в 1983 году удалось создать работающий суперкомпьютер (Cray X-MP), в котором использовалось два центральных процессора, использовавших общую память. Справедливости ради стоит отметить, что чуть раньше (в 1980 году) появился первый отечественный многопроцессорный компьютер Эльбрус-1, однако он по производительности значительно уступал суперкомпьютерам того времени.

Уже в 1994 можно был свободно купить настольный компьютер с двумя процессорами, когда компания ASUS выпустила свою первую материнскую плату с двумя сокетами, т.е. разъёмами для установки процессоров.

Следующей вехой в развитии SMP-систем стало появление многоядерных процессоров. Первым многоядерным процессором массового использования стал POWER4, выпущенный фирмой IBM в 2001 году. Но по-настоящему широкое распространение многоядерная архитектура получала лишь в 2005 году, когда компании AMD и Intel выпустили свои первые двухъядерные процессоры.

На рисунке 1 показано, какую долю занимали процессоры с разным количеством ядер при создании суперкомпьютеров в разное время (по материалам сайта http://top500.org). Закрашенные области помечены цифрами 1, 2, 4, 6, 8, 10, 12, 16 для обозначения количества ядер. Ширина области по вертикали равна относительной частоте использования процессоров соответствующего типа в рассматриваемом году.

Рис. 1: Частотность использования процессоров с различным числом ядер при создании суперкомпьютеров

Как видим, активное использование двухъядерных процессоров в суперкомпьютерах началось уже в 2002 году, а примерно к 2005 году совершенно сошло на нет, тогда как в настольных компьютерах их применение в 2005 году лишь начиналось. На основании этого можно сделать простой прогноз распространённости многоядерных "настольных" процессоров к нужному году, если считать, что они в общих чертах повторяют развитие многоядерных архитектур суперкомпьютеров.