

 $20~\mathrm{mars}~2018$

1 Symboles

1.1 Lettres grèques

Symbole	Commande	Description
λ	\lambda	
П	\Pi	
Θ	\Theta	

1.2 Logique

Symbole	Commande	Description
\Leftrightarrow	\Leftrightarrow	Équivalent
T	\top	True
	\bot	False
V	\lor	Disjonction
\wedge	\land	Conjonction
\Longrightarrow	\implies	Implique

1.3 Ensemble

Symbole	Commande	Description	
U	\cup	Union	
Λ	\cap	Intersection	
\subseteq	\subseteq	Sous-ensemble	
\supseteq	\supseteq	$\operatorname{Sur-ensemble}$	
⊈	\nsubseteq	teq Non sous-ensemble	
⊉	\nsupseteq	Non sous-ensemble	
	\nsupseteq	teq Non sur-ensemble	
\in	\in	Appartient	
N	\mathbb{N}	Ensemble des entiers naturels	

1.4 Arithmétique

		,	
Symbole	Commande	Description	
	\sqsubseteq	Est plus définie que	
3	\exists	Il existe	
\forall	\forall	Pour tout	
$\sum_{i=0}^{n}$	\sum_{i=0}^{n}		
\rightarrow	\to	Vers	
=	\equiv	Est identique à	
	\neg	Negation	
*	\nless	Non inférieur	
*	\ngtr	Non supérieur	
¥	\ngeqslant	Non supérieur ou égal	
*	\nleqslant	Non inférieur ou égal	
ſ	\int	Intégrale	

1.5 Autres

Symbole	Commande	Description
\overline{abc}	\overline{abc}	
\sqrt{abc}	\sqrt{abc}	
$\sqrt[n]{abc}$	\sqrt[n]{abc}	
$\frac{abc}{xyz}$	\frac{abc}{xyz}	

2 Commandes

2.1 Longues formules mathématiques

$$(1+x)\hat{n} = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \frac{n(n-1)(n-2)(n-3)}{4!}x^4 + \dots$$

$$P_B'(t) = \lim_{T \to 0} \left(\frac{P_B(t+T) - P_B(t)}{T} \right)$$

$$= \lim_{T \to 0} \left(\frac{\alpha_T(1 - P_B(t)) - (n-1)\alpha_T P_B(t)}{T} \right)$$

$$= (1 - P_B(t)) \lim_{T \to 0} \left(\frac{\alpha_T}{T} \right) - (n-1)P_B(t) \lim_{T \to 0} \left(\frac{\alpha_T}{T} \right)$$