ВИДЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА АЛГОРИТМЫ РЕШЕНИЙ

1.1:
$$y'' = f(x)$$

1.2:
$$y'' = f(x; y')$$

1.2.1:
$$y'' = f(y')$$

1.3:
$$y'' = f(y; y')$$

1.3.1:
$$y'' = f(y)$$

2:
$$y'' + py' + qy = 0$$

3:
$$y'' + py' + qy = f(x)$$

3.2:

где
$$f(x) = e^{\alpha x} \cdot P_n(x)$$
 где $f(x) = M cos \beta x + N sin \beta x$ где $f(x) = e^{\alpha x} (M_{m_1}(x) cos \beta x + N_{m_2}(x) sin \beta x)$

3.4:
$$y'' + py' + qy = f_1(x) + f_2(x)$$

 $f_{1,2}(x)=e^{lpha x}P_n(x)$ или $f_{1,2}(x)=Acoseta x+Bsineta x$ или $f_{1,2}(x)=e^{lpha x}(M_{m_1}(x)\cdot coseta x+N_{m_2}(x)\cdot sineta x)$

4:
$$y'' + py' + qy = f(x)$$

где
$$f(x) \neq e^{\alpha x} \cdot P_n(x) \neq A \cdot cos\beta x + B \cdot sin\beta x \neq e^{\alpha x} (M_{m_1}(x) \cdot cos\beta x + N_{m_2}(x) \cdot sin\beta x)$$

5:

$$\begin{cases} y' = a_{11}y + a_{12}z \\ z' = a_{21}y + a_{22}z \end{cases}$$

$$(z' = a_{21}y + a_{22}z)$$

Алгоритмы решений

1.1. Вид уравнения:

$$y'' = f(x)$$

- 1. Находим: y'. Интегрируем: $y' = \int f(x) dx = \varphi_1(x) + C_1$.
- 2. Находим: y. Интегрируем: $y = \int (\phi_1(x) + C_1) dx$.
- 3.При необходимости решаем задачу Коши.
- 4.Записываем ответ:

 $y = \varphi_2(x) + C_1 x + C_2$ - общее решение уравнения.

!!! Если дано уравнение: $y^n = f(x)$, интегрируем n раз.

1.2. Вид уравнения:

$$y'' = f(x; y')$$

(не содержит явно функцию y)

1.Делаем замену:y' = p(x); y'' = p'

$$y'' = f(x; y') = p' = f(x; p)$$

- 2. Решаем уравнение p' = f(x; p). Решение: $p = \varphi(x; C_1)$
- 3. Находим общее решение: $y = \int \varphi(x; C_1) dx + C_2$
- 4. При необходимости решаем задачу(и) Коши.
- 5. Записываем ответ.

1.2.1. Вид уравнения:

$$y'' = f(y')$$

(частный случай **1.2.**)

- 1.Делаем замену: $y'=p(x);\;y''=p'=rac{dp}{dx};\;y''=f(y')$ => p'=f(p)
- 2. Решаем уравнение $p_x' = f(p)$. Решение: $p = \varphi(x; C_1)$
- 3. Находим общее решение: $y = \int (\phi_1(x; C_1) dx + C_2)$
- 4. При необходимости решаем задачу(и) Коши.
- 5. Записываем ответ.

1.3. Вид уравнения:

$$y'' = f(y; y')$$

(не содержит явно независимую переменную x)

- 1. Делаем замену: y' = p(y(x)).
- 2. Делаем замену: $y'' = p \frac{dp}{dy}$.

3.
$$y'' = f(y; y') = \frac{dp}{dy} = f(y; p)$$
.

- 4. $y' = p = \varphi(y; C_1)$
- 5. Интегрируем: $\int \frac{dy}{\varphi(y;\mathcal{C}_1)} = x + \mathcal{C}_2$
- 5. При необходимости решаем задачу(и) Коши.
- 6. Записываем ответ.

1.3.1. Вид уравнения:

$$y'' = f(y)$$

(частный случай 1.3.)

- 1. Делаем замену:y' = p(y(x)).
- 2. Делаем замену: $\mathbf{y}'' = \mathbf{p} \frac{d\mathbf{p}}{d\mathbf{y}}$.

3.
$$y'' = f(y) = p \frac{dp}{dy} = f(y)$$
.

4.
$$y' = p = \varphi(y; C_1)$$

- 5. Интегрируем: $\int \frac{dy}{\varphi(y;\mathcal{C}_1)} = x + \mathcal{C}_2$
- 6. При необходимости решаем задачу(и) Коши.
- 7. Записываем ответ.

2 Линейное однородное дифференциальное уравнение (ЛОДУ) второго порядка с постоянными коэффициентами

Вид уравнения: y'' + py' + qy = 0; p и q - действительные числа

Метод Эйлера. Алгоритм.

1. Делаем замену:
$$egin{bmatrix} y = e^{kx} \ y' = ke^{kx} \ y'' = k^2e^{kx} \end{bmatrix}$$

- 2. Подставляем в основное уравнение: y'' + py' + qy = 0 . Получаем: $k^2e^{kx} + kpe^{kx} + qe^{kx} = 0$
- 3. Выполняем действие: $k^2e^{kx} + kpe^{kx} + qe^{kx} = 0$ $|: e^{kx} \neq 0; (e^{kx} > 0)$
- 4. Получаем характеристическое уравнение: $k^2 + pk + q = 0$
- 5. Находим дискриминант: $m{D} = m{p}^2 m{4}m{q}$; решения уравнения: $m{k}_{1,2} = rac{-m{p} \pm \sqrt{D}}{2}$

Вариант 1 Вариант 2 Вариант 3
$$D>0;$$
 $D=0;$ $D<0;$ $k_1 \neq k_2$ $k_1 = k_2 = k$ $k_{1,2} = \alpha \pm i\beta$

6. Записываем решение (ответ): $y = C_1 y_1(x) + C_2 y_2(x)$

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$$

$$y = e^{kx} (C_1 + C_2 x)$$

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

2.К Задача Коши

1. Переписываем условия задачи:
$$\begin{bmatrix} y'' + py' + qy = \mathbf{0} \\ y(x_0) = y_0 \\ y'(x_0) = y_0' \end{bmatrix}$$

- 2. Решаем ЛОДУ II-го порядка по алгоритму **2** Находим **у**
- 3. Находим **у**′
- 4. Подставляем в уравнения y и y' значения $y_0; y_0'; x_0$
- 5. Решаем систему уравнений, находим \mathcal{C}_1 и \mathcal{C}_2 :

$$\begin{cases} a_1C_1 + b_1C_2 + d_1 = y_0 \\ a_2C_1 + b_2C_2 + d_2 = y_0' \end{cases}$$

где a_1 ; a_2 ; b_1 ; b_2 ; d_1 ; d_2 - произвольные действительные числа, получившиеся при подстановке y_0 ; y_0' ; x_0

- 6. В решение уравнения $y = \cdots$ подставляем значения c_1 и c_2
- 7. Записываем ответ, решение задачи Коши.
 - **3.1.** Линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами

Вид уравнения:
$$y'' + py' + qy = f(x)$$

где p и q - действительные числа;

$$f(x) = e^{\alpha x} P_n(x);$$

где α - коэффициент, действительное число n - степень многочлена $P_n(x)$:

$$\begin{bmatrix}
n = 0; P_0(x) = A \\
n = 1; P_1(x) = Ax + B \\
n = 2; P_2(x) = Ax^2 + Bx + C \\
n = 3; P_3(x) = Ax^3 + Bx^2 + Cx + D \\
\dots \\
n = N; P_N(x) = Ax^N + Bx^{N-1} + \dots + Yx + Z
\end{bmatrix}$$

Метод неопределенных коэффициентов

Уравнение y''+py'+qy=f(x): имеет решение: $y=y_0+\overline{y}$ где - $y_0=C_1y_1(x)+C_2y_2(x)$ - общее решение ЛОДУ (п. **6** алг. **2**) $\overline{y}=e^{\alpha x}x^TQ_n(x)$ - частное решение ЛНДУ

Алгоритм

- 1. Находим n и α функции $f(x) = e^{\alpha x} P_n(x)$
- 2. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты $k_1; k_2;$

находим общее решение ЛОДУ: $y_0 = C_1 y_1(x) + C_2 y_2(x)$

3. Определяем вид частного решения: $\overline{y} = e^{\alpha x} x^r Q_n(x)$:

Вариант 1	Вариант 2	Вариант 3
$\alpha \neq k_1$; $\alpha \neq k_2$	$\alpha = k_1 \neq k_2$	$\alpha = k_1 = k_2$

4. Определяем значение r:

$$r=0$$
 $r=1$ $r=2$

5. Записываем $\overline{y} = e^{\alpha x} x^r Q_n(x)$ (*n* и α - п.1; *r* - п.4 алгоритма)

$$Q_n(x)$$
 записываем как: $egin{align*} n=0; \ Q_0(x)=A \ n=1; \ Q_1(x)=Ax+B \ n=2; \ Q_2(x)=Ax^2+Bx+C \ \end{array}$

- 6. Находим \overline{y}' ; \overline{y}''
- 7. Подставляем \overline{y} ; \overline{y}' ; \overline{y}'' в $\overline{y}'' + p\overline{y}' + q\overline{y} = f(x)$
- 8. Решаем систему уравнений, находим A; B; C ...: приравнивая коэффициенты n_{ij} при одинаковых степенях:

$$x^2$$
: $n_{11}A + n_{12}B + n_{13}C = N_1$
 x^1 : $n_{21}A + n_{22}B + n_{23}C = N_2$,
 x^0 : $n_{31}A + n_{32}B + n_{33}C = N_3$

где n_{ij} ; N_v - действительные числа, получившиеся при подстановке.

9. Находим частное решение, подставив α ; r; A; B; C ...в:

$$\overline{y} = e^{\alpha x} x^r Q_n(x)$$

10. Записываем ответ (общее решение): $y = y_0 + \overline{y}$

3.1.К Задача Коши

1. Переписываем условия задачи:
$$\begin{bmatrix} y'' + py' + qy = f(x) \\ y(x_0) = y_0 \\ y'(x_0) = y_0' \end{bmatrix}$$

- 2. Находим общее решение: $y = y_0 + \overline{y}$ по алгоритмам **2 и 3.1**
- 3. Находим **у**′
- 4. Подставляем в уравнения y и y' значения y_0 ; y_0' ; x_0
- 5. Решаем систему уравнений, находим \mathcal{C}_1 и \mathcal{C}_2 :

$$\begin{cases}
a_1C_1 + b_1C_2 + d_1 = y_0 \\
a_2C_1 + b_2C_2 + d_2 = y_0'
\end{cases}$$

где a_1 ; a_2 ; b_1 ; b_2 ; d_1 ; d_2 - произвольные действительные числа, получившиеся при подстановке y_0 ; y_0' ; x_0

- 6. В уравнение $y=\cdots$ подставляем значения ${\color{magenta}{C_1}}$ и ${\color{magenta}{C_2}}$
- 7. Записываем ответ, решение задачи Коши.

3.2 Алгоритм

Вид уравнения:
$$y'' + py' + qy = f(x)$$

где p и q - действительные числа;

$$f(x) = M\cos\beta x + N\sin\beta x;$$

где $M; N; \beta$ - коэффициенты, действительные числа.

- 1. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты k_1 ; k_2 ; записываем y_0
- 2. Записываем β функции $f(x) = M\cos\beta x + N\sin\beta x$
- 3. Определяем вид частного решения: $\overline{y} = x^r (A\cos\beta x + B\sin\beta x)$:

Вариант 1 Вариант 2
$$oldsymbol{eta} oldsymbol{i}
otag k_{1,2} oldsymbol{\beta} oldsymbol{i} = oldsymbol{k}_{1,2}$$

4. Определяем значение r:

$$r=0$$
 $r=1$

- 5. Записываем $\overline{y}=x^rQ_n(x)$; $Q_n(x)=Acos\beta x+Bsin\beta x$ $\overline{y}=x^r(Acos\beta x+Bsin\beta x)$
- 6. Находим $\overline{oldsymbol{y}}'$; $\overline{oldsymbol{y}}''$
- 7. Подставляем \overline{y} ; \overline{y}' ; \overline{y}'' в $\overline{y}''+p\overline{y}'+q\overline{y}=f(x)$
- 8. Решаем систему уравнений, находим M; N

$$sin\beta x$$
: $\{p_{11}A + p_{12}B = P_1 \\ cos\beta x$: $\{p_{21}A + p_{22}B = P_2\}$

где p_{ij} ; P_v - действительные числа, получившиеся при подстановке.

9. Находим частное решение, подставив $r; A; B; \beta$ в:

$$\overline{y} = x^r (A\cos\beta x + B\sin\beta x)$$

- 10. Записываем ответ (общее решение): $y = y_0 + \overline{y}$
- 11. При необходимости решаем задачу Коши.

3.3 Алгоритм

Вид уравнения:
$$y''+py'+qy=f(x)$$
 $f(x)=e^{\alpha x}(\pmb{M}_{m_1}(x)\cdot \pmb{cos}\pmb{\beta}x+\pmb{N}_{m_2}(x)\cdot \pmb{sin}\pmb{\beta}x)$

- 1. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты k_1 ; k_2 ; записываем y_0
- 2. Определяем lpha; $m{B}$; $m{M}_{m_1}(x)$; $m{N}_{m_2}(x)$; $m{m}_1$; $m{m}_2$ из функции $m{f}(x)$
- 3. Определяем вид частного решения:

$$\overline{y} = x^r e^{\alpha x} (P_l(x) \cos \beta x + Q_l(x) \sin \beta x)$$
:

Вариант 1

Вариант 2

$$\alpha \pm \beta i \neq k_{1,2}$$

 $\alpha \pm \beta i = k_{1,2}$

4. Определяем значение r:

$$r=0$$
 $r=1$

5. Определяем значение $l = max(m_1; m_2)$

Записываем $\overline{y} = x^r e^{\alpha x} (P_I(x) \cos \beta x + Q_I(x) \sin \beta x)$

 $P_l(x)$; $Q_l(x)$ записываем как:

$$\begin{bmatrix}
l = 0; P_0(x) = A; Q_0(x) = B \\
l = 1; P_1(x) = Ax + B; Q_1(x) = Cx + D \\
l = 2; P_2(x) = Ax^2 + Bx + C; Q_2(x) = Dx^2 + Ex + F
\end{bmatrix}$$

- 6. Находим \overline{y}' ; \overline{y}''
- 7. Подставляем \overline{y} ; \overline{y}' ; \overline{y}'' в $\overline{y}'' + p\overline{y}' + q\overline{y} = f(x)$
- 8. Решаем систему уравнений:

$$\begin{array}{c}
sin\beta x \\
x \cdot sin\beta x \\
cos\beta x \\
x \cdot cos\beta x
\end{array}$$

- 9. Находим частное решение, подставив r; α ; β ; $P_l(x)$; $Q_l(x)$ в уравнение: $\overline{y}=x^re^{\alpha x}(P_l(x)cos\beta x+Q_l(x)sin\beta x)$
- 10. Записываем ответ (общее решение): $y = y_0 + \overline{y}$
- 11. При необходимости решаем задачу Коши.

3.4 Алгоритм

Вид уравнения:
$$y'' + py' + qy = f_1(x) + f_2(x)$$

где p и q - действительные числа;

$$f_{1,2}(x)=e^{lpha x}P_n(x)$$
 или $f_{1,2}(x)=Acoseta x+Bsineta x$ или $f_{1,2}(x)=e^{lpha x}(M_{m_1}(x)coseta x+N_{m_2}(x)sineta x)$

- 1. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты k_1 ; k_2 ; записываем y_0
- 2. Определяем вид функций $f_1(x)$; $f_2(x)$
- 3. Решаем независимо 2 уравнения:

$$\overline{y_1}'' + p\overline{y_1}' + q\overline{y_1} = f_1(x)$$

$$\overline{y_2}'' + p\overline{y_2}' + q\overline{y_2} = f_2(x)$$

- 4. Записываем ответ (общее решение): $y = y_0 + \overline{y_1} + \overline{y_2}$
- 5. При необходимости решаем задачу Коши.

4 Метод вариации произвольных постоянных

Вид уравнения:
$$y'' + py' + qy = f(x)$$

где
$$f(x) \neq e^{\alpha x} P_n(x)$$

$$f(x) \neq A\cos\beta x + B\sin\beta x$$

$$f(x) \neq e^{\alpha x} (M_{m_1}(x) \cos \beta x + N_{m_2}(x) B \sin \beta x)$$

Алгоритм

- 1. Решаем ЛОДУ 2-го порядка (алг. **2**): y'' + py' + qy = 0; находим коэффициенты k_1 ; k_2 ;
- 2. Записываем $y_0 = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$
- 3. Записываем вид общего решения:

$$y = C_1(x) \cdot y_1(x) + C_2(x) \cdot y_2(x)$$

- 4. Находим: $y'_1(x)$; $y'_2(x)$;
- 5. Решаем систему уравнений:

$$\begin{cases} C_{1}^{'}(x) \cdot y_{1}(x) + C_{2}^{'}(x) \cdot y_{2}(x) = 0 \\ C_{1}^{'}(x) \cdot y_{1}^{'}(x) + C_{2}^{'}(x) \cdot y_{2}^{'}(x) = f(x) \end{cases}$$

находим
$$C_1'(x) = \varphi_1(x); C_2'(x) = \varphi_2(x)$$

- 6. Находим ${m C}_1(x)=\int {m \phi}_1(x)+\overline{{m C}_1}$ и ${m C}_2(x)=\int {m \phi}_2(x)+\overline{{m C}_2}$
- 7. Находим общее решение, записываем ответ:

$$y = C_1(x) \cdot y_1(x) + C_2(x) \cdot y_2(x)$$

Метод Крамера. Алгоритм

- 1. Решаем систему: $\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases}$
- 2.Находим: $\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq \mathbf{0}; \ \Delta_x = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}; \ \Delta_y = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$
- 3. Находим: $\boldsymbol{x} = \frac{\Delta_{\boldsymbol{x}}}{\Lambda}$; $\boldsymbol{y} = \frac{\Delta_{\boldsymbol{y}}}{\Lambda}$

5 Метод исключения для системы уравнений 2-го порядка

Вид системы уравнений:

$$\begin{cases} y' = a_{11}y + a_{12}z \\ z' = a_{21}y + a_{22}z \end{cases}$$

где y; z - неизвестные функции; a_{21} - заданные числа, коэффициенты.

В системе уравнений могут быть записаны пары уравнений:

 $y_1(x); y_2(x)$ или y(t); z(t) или с использованием любых буквенных обозначений функций и/или переменных/

В данном алгоритме будут использованы обозначения: y(x); z(x)

Алгоритм будет описан на следующем примере:

$$\begin{cases} y' = 2y + z \\ z' = 4z - y \end{cases}$$

Алгоритм решения системы 2-го порядка методом исключения

1. Из первого уравнения выражаем функцию z через y и y':

$$z = y' - 2y$$

2. z подставляем во второе уравнение:

$$(y'-2y)' = 4(y'-2y) - y$$

3. Упрощаем и приводим к ЛОДУ 2го порядка:

$$y'' - 2y' = 4y' - 8y - y$$
$$y'' - 6y' + 9y = 0$$

4. Решаем ЛОДУ 2го порядка (алг. 2), получаем ответ:

$$y(x) = C_1 e^{3x} + C_2 x e^{3x}$$

5. Делаем обратную (п.1 алгоритма) подстановку:

$$z = y' - 2y = (C_1e^{3x} + C_2xe^{3x})' - 2(C_1e^{3x} + C_2xe^{3x})$$

6. Находим **z**:

$$z = C_1 e^{3x} + C_2 e^{3x} + C_2 x e^{3x}$$

7. Записываем ответ, систему уравнений:

$$\begin{cases} y = C_1 e^{3x} + C_2 x e^{3x} \\ z = C_1 e^{3x} + C_2 e^{3x} + C_2 x e^{3x} \end{cases}$$