1. Dada la siguiente gramática de MiniLisp para expresiones aritméticas:

La siguiente sintaxis abstracta:

 $\bullet\,$ Da las reglas de semántica natural para el lenguaje.

RESPUESTA.

$$i \Rightarrow iv$$
 $d \Rightarrow dv$
 $suma(i,d) \Rightarrow iv + dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow iv + dv$
 $div(i,d) \Rightarrow iv / dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $d \Rightarrow dv$
 $d \Rightarrow dv$
 $i \Rightarrow iv$
 $i \Rightarrow i$

• Da las reglas de semántica estructural para el lenguaje. **RESPUESTA.**

i -> iv	i -> iv	i -> iv
suma(i,d) -> suma(iv,d)	resta(i,d) -> resta(iv,d)	mult(i,d) -> mult(iv,d)
d -> dv	d -> dv	d -> dv
suma(i,d) -> suma(iv,dv)	resta(i,d) -> resta(iv,dv)	mult(i,d) -> mult(iv,dv)
suma(iv,dv) -> iv + dv	resta(iv,dv) -> iv - dv	mult(iv,dv) -> iv * dv
i -> iv		b -> bv
div(i,d) -> div(iv,d)	add1(n) -> n + 1	expt(b,e) -> expt(bv,e)
d -> dv		e -> ev
div(i,d) -> div(iv,dv)		expt(b,e) -> expt(bv,ev)
div(iv,dv) -> iv / dv		expt(b,e) -> bv^ev

 \bullet Muestra la derivación de la siguiente expresión usando ambos enfoques: (expt (add1 1) 3).

RESPUESTA.

Para el enfoque natural tenemos.

$$\frac{\text{num}(1) \Rightarrow 1}{(\text{add1 num}(1)) \Rightarrow 2} \qquad \text{num}(3) \Rightarrow 3$$
$$(\text{expt (add1 num}(1)) \text{ num}(3)) \Rightarrow 2^3 = 8$$

Para el enfoque estructural tenemos.

• Muestra la propiedad de determinismo sobre el lenguaje.

RESPUESTA.

Caso base. Demostrar que se cumple para las operaciones.

Caso 1. Suma.

HI. Suponemos que $i \to iv$ es determinista.

PD. $suma(i,d) \rightarrow suma(iv,d)$ es determinista.

Por HI tenemos que $i \to iv$ es determinista, entonces se cumple.

Caso 2. Resta.

HI. Suponemos que $i \to iv$ es determinista.

PD. $resta(i,d) \rightarrow resta(iv,d)$ es determinista.

Por HI tenemos que $i \to iv$ es determinista, entonces se cumple.

Caso 3. Multiplicacion.

HI. Suponemos que $i \to iv$ es determinista.

PD. $mult(i,d) \rightarrow mult(iv,d)$ es determinista.

Por HI tenemos que $i \to iv$ es determinista, entonces se cumple.

Caso 4. División.

HI. Suponemos que $i \to iv$ es determinista.

PD. $div(i,d) \rightarrow div(iv,d)$ es determinista.

Por HI tenemos que $i \to iv$ es determinista, entonces se cumple.

Caso 6. Expt.

HI. Suponemos que $b \to bv$ es determinista.

PD. $\exp(b,e) \rightarrow \exp(bv,e)$ es determinista.

Por HI tenemos que $b \to bv$ es determinista, entonces se cumple.

Por lo tanto, el sistema de transición definido es determinista.