

ccccggcgtg agtgagctct cacccagtc agccaaatga gcctcttcgg gcttctccctg 60
gtgacatctg ccctggccgg ccagagacga gggactcagg cgaaatccaa cctgagtagt 120
aaattccagt tttccagcaa caaggaacag aacggagtagc aagatcctca gcatgagaga 180
attattactg tgtctactaa tggaaagtatt cacagccaa ggtttcctca tacttatcca 240
agaaatacgg tcttggatgt gagatttagta gcagtagagg aaaatgtatg gatacaactt 300
acgtttgatg aaagatttgg gcttgaagac ccagaagatg acatatgcaa gtatgattt 360
gtagaagttg aggaacccag tggatggaaact atattaggc gctgggtgtgg ttctggact 420
gtaccaggaa aacagatttc taaaggaaat caaatttagga taagatttgt atctgatgaa 480
tatttccctt ctgaaccagg gttctgcattt cactacaaca ttgtcatgcc acaattcaca 540
gaagctgtga gtccttcagt gctacccct tcagctttgc cactggacct gcttaataat 600
gctataactg ccttttagtac ctggaaagac ttatttcgtat atcttgaacc agagagatgg 660
cagttggact tagaagatct atataggcca acttggcaac ttcttggcaa ggctttgtt 720
tttggaaagaa aatccagagt ggtggatctg aaccttctaa cagaggaggt aagattatac 780
agctgcacac ctcgttaactt ctcaatgtcc ataaaggaaag aactaaagag aaccgatacc 840
attttctggc caggttgtct cctggtaaa cgctgtggtg ggaactgtgc ctgttgtctc 900
cacaattgca atgaatgtca atgtgtccca agcaaagtta ctaaaaaata ccacgaggtc 960
tttcgttga gaccaaaagac cggtgtcagg ggatggcaca aatcaactcac cgacgtggcc 1020
ctggagcacc atgaggagtg tgactgtgtg tgcagaggga gcacaggagg atagccgcat 1080
caccaccaggc agctcttgcc cafafctgtg cagtgcagg gctgattcta ttagagaacg 1140
tatgcgttat ctccatcctt aatctcaggta gtttgcattca aggacccccc atcttcaggaa 1200

FIG. 1A

tttacagtgt attctgaaag aggagacatc aaacagaatt aggacttgtc caacagctct 1260
tttgagagga ggcctaaagg acaggagaaa aggtcttcaa tcgtggaaag aaaattaaat 1320
gttgtttaaa atagatcacc agctagttc agagtccacca tgtacgtatt ccactagctg 1380
ggttctgtat ttcaaggctt tcgatacggc tttaggtaat gtcagtgacag gaaaaaaact 1440
gtgcaagtga gcacctgatt ccgttgcctt gcttaactct aaagctccat gtcctgggcc 1500
taaaatcgta taaaatctgg atttttttt tttttttgc tcataattcac atatgtaaac 1560
cagaacatcc tatgtactac aaacctggtt tttaaaaagg aactatgttg ctatgaattt 1620
aacttgtgtc rtgctgatag gacagactgg atttttcata ttttttatttta aaatttctgc 1680
catttagaag aagagaacta cattcatggt ttggaagaga taaacctgaa aagaagagtg 1740
gccttatcct cactttatcg ataagtgaact ttattttttt cattgtgtac atttttatat 1800
tctcccttttgc acattataac tttttttttt tctaatcttg ttaaatatat ctatttttac 1860
caaaggatt taatattctt ttttatgaca acttagatca actatttta gcttggtaaa 1920
tttttctaaa cacaattgtt atagccagag gaacaaagat ggatataaaa atattgttgc 1980
cctggacaaa aatacatgtt tntccatccc ggaatggtgc tagagttggtaaaaccc 2040
attttaaaaaa acctgaatttggaaatggtaaggt tggccaaanc ttttttggaaa 2100
ataattaa

2108

FIG. 1B

FIG. 2A

His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys
290 295 300
Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Cys Arg Gly Leu
305 310 315 320
His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp
325 330 335
Cys Val Cys Arg Gly Ser Thr Gly Gly
340 345

FIG. 2B

Gly	Lys	Phe	Gln	Phe	Ser	Ser	Asn	Lys	Glu	Gln	Asn	Gly	Val	Gln	Asp
1				5				10					15		
Pro	Gln	His	Glu	Arg	Ile	Ile	Thr	Val	Ser	Thr	Asn	Gly	Ser	Ile	His
				20				25					30		
Ser	Pro	Arg	Phe	Pro	His	Thr	Tyr	Pro	Arg	Asn	The	Val	Leu	Val	Trp
					35			40					45		
Arg	Leu	Val	Ala	Val	Glu	Glu	Asn	Val	Trp	Ile	Gln	Leu	Thr	Phe	Asp
					50			55					60		
Glu	Arg	Phe	Gly	Leu	Glu	Asp	Pro	Glu	Asp	Asp	Ile	Cys	Lys	Tyr	Asp
					65			70			75				80
Phe	Val	Glu	Val	Glu	Glu	Pro	Ser	Asp	Gly	The	Ile	Leu	Gly	Arg	Trp
					85			90					95		
Cys	Gly	Ser	Gly	Thr	Val	Pro	Gly	Lys	Gln	Ile	Ser	Lys	Gly	Asn	Gln
					100			105					110		
Ile	Arg	Ile	Arg	Phe	Val	Ser	Asp	Glu	Tyr	Phe	Pro	Ser	Glu	Pro	Gly
					115			120					125		
Phe	Cys	Ile	His	Tyr	Asn	Ile	Val	Met	Pro	Gln	Phe	Thr	Glu	Ala	Val
					130			135					140		
Ser	Pro	Ser	Val	Leu	Pro	Pro	Ser	Ala	Leu	Pro	Leu	Asp	Leu	Leu	Asn
					145			150			155				160
Asn	Ala	Ile	Thr	Ala	Phe	Ser	Thr	Leu	Glu	Asp	Leu	Ile	Arg	Tyr	Leu
					165			170					175		
Glu	Pro	Glu	Arg	Trp	Gln	Leu	Asp	Leu	Glu	Asp	Leu	Tyr	Arg	Pro	Thr
					180			185					190		
Trp	Gln	Leu	Leu	Glu	Lys	Ala	Phe	Val	Phe	Gly	Arg	Lys	Ser	Arg	Val
					195			200					205		
Val	Asp	Leu	Asn	Leu	Leu	Thr	Glu	Glu	Val	Arg	Leu	Tyr	Ser	Cys	Thr
					210			215					220		
Pro	Arg	Asn	Phe	Ser	Val	Ser	Ile	Arg	Glu	Glu	Leu	Lys	Arg	Thr	Asp
					225			230			235				240
the	Ile	Phe	Trp	Pro	Gly	Cys	Leu	Leu	Val	Lys	Arg	Cys	Gly	Gly	Asn
					245			250					255		
Cys	Ala	Cys	Cys	Leu	His	Asn	Cys	Asn	Glu	Cys	Gln	Cys	Val	Pro	Ser
					260			265					270		
Lys	Val	Thr	Lys	Lys	Tyr	His	Glu	Val	Leu	Gln	Leu	Arg	Pro	Lys	Thr
					275			280					285		
Gly	Val	Arg	Gly	Leu	His	Lys	Ser	Leu	Thr	Asp	Val	Ala	Leu	Glu	His
					290			295					300		
His	Glu	Glu	Cys	Asp	Cys	Val	Cys	Arg	Gly	Ser	Thr	Gly	Gly		
					305			310					315		

FIG.4

cacccctggaga cacagaagag ggctcttagga aaaatttgg atggggatta tgtggaaact 60
accctgcgtat tctctgctgc cagagccggc caggcgcttc caccgcagcg cagcctttcc 120
ccgggctggg ctgagccttg gatcgctgc ttccccatgt cccgcccgcg gtgagccctc 180
gccccagtcg cccaaatgtc cctcctcgcc cctcctcgcc ctccctctgc gctggccggc 240
caaagaacgg ggactcgggc tgagtccaaac ctgagcagca agttgcagct ctccagcgcac 300
aaggaacaga acggagtgcg agatccccgg catgagagag ttgtcaactat atctggtaat 360
gggagcatcc acagcccggaa gtttcctcat acgtacccaa gaaatatggt gctgggtgtgg 420
agattatgtc cagtagatga tatagtgcgg atccagctga catttgcgtga gagatttggg 480
ctggaagatc cagaagacgc tatatgcggat tatgattttg tagaaggatgc ggagcccagt 540
gatggaaatgc tttaggacg ctgggtgtgt tctggactg tgccaggaaa gcagacttct 600
aaaggaaatc atatcaggat aagatttgcgat tctgtatgcgt atttccatc tgaacccggaa 660
ttctgcatcc actacagtat tatcatgcgc caagtcacag aaaccacggat tccttcgggt 720
ttggccccctt catctttgtc attggacctg ctcaacaatg ctgtgactgc cttcagttacc 780
ttggaagagc tgattcggta cctagagccg gatcgatggc aggtggactt ggacagccctc 840
tacaagccaa catggcagct tttggcggaaatgcgat gctttccatgt atgggaaaaaa aagcaaaatgc 900
gtgaatctgc atctccctcaaa ggaagaggta aaactctaca gctgcacacc ccggaaacttc 960
tcagtgtccca tacggaaaga gctaaagagg acagatacca tattctggcc aggttgcgtt 1020
ctggtaatgcgat gctgtggagg aaattgtgcc tttgtctcc ataaattgcggaa tgaatgtcag 1080
tgtgtcccac gtaaaggatc aaaaaaggatc catgaggatcc ttcatgtatgcgat accaaaaact 1140
ggagtcaagg gattgcataa gtcactcaat gatgtggctc tggaaacacca cgaggaatgt 1200
gactgtgtgt gtatggaaa cgcaggaggg taactgcggc ctgcgtatgcgat gcaacacgtgc 1260
gcactggcat tctgtgtacc cccacaagca accttcatcc ccaccagcgat tggccgcagg 1320
gctctcagct gctgtatgcgat gctatggtaa agatcttact cgtctccaaac caaattctca 1380
gttgcgttgc tcaatagccct tccctgcggc gacttcaatgcgat gctttctaaa agaccagagg 1440
caccaanagg agtcaatcaccatc accgcactgc accg

1474

FIG.5

Met	Leu	Leu	Leu	Gly	Leu	Leu	Leu	Leu	Thr	Ser	Ala	Leu	Ala	Gly	Gln
1					5				10					15	
Arg	Thr	Gly	Thr	Arg	Ala	Glu	Ser	Asn	Leu	Ser	Ser	Lys	Leu	Gln	Leu
					20				25					30	
Ser	Ser	Asp	Lys	Glu	Gln	Asn	Gly	Val	Gln	Asp	Pro	Arg	His	Glu	Arg
					35			40					45		
Val	Val	Thr	Ile	Ser	Gly	Asn	Gly	Ser	Ile	His	Ser	Pro	Lys	Phe	Pro
					50			55					60		
His	Thr	Tyr	Pro	Arg	Asn	Met	Val	Leu	Val	Trp	Arg	Leu	Val	Ala	Val
					65			70		75				80	
Asp	Glu	Asn	Val	Arg	Ile	Gln	Leu	Thr	Phe	Asp	Glu	Arg	Phe	Gly	Leu
					85			90					95		
Glu	Asp	Pro	Glu	Asp	Asp	Ile	Cys	Lys	Tyr	Asp	Phe	Val	Glu	Val	Glu
					100			105					110		
Glu	Pro	Ser	Asp	Gly	Ser	Val	Leu	Gly	Arg	Trp	Cys	Gly	Ser	Gly	Thr
					115			120					125		
Val	Pro	Gly	Lys	Gln	Thr	Ser	Lys	Gly	Asn	His	Ile	Arg	Ile	Arg	Phe
					130			135					140		
Val	Ser	Asp	Glu	Tyr	Phe	Pro	Ser	Glu	Pro	Gly	Phe	Cys	Ile	His	Tyr
					145			150		155				160	
Ser	Ile	Ile	Met	Pro	Gln	Val	Thr	Glu	Thr	Thr	Ser	Pro	Ser	Val	Leu
					165			170					175		
Pro	Pro	Ser	Ser	Leu	Ser	Lei	Asp	Leu	Leu	Asn	Asn	Ala	Val	Thr	Ala
					180			185					190		
Phe	Ser	Thr	Leu	Glu	Glu	Leu	Ile	Arg	Tyr	Leu	Glu	Pro	Asp	Arg	Trp
					195			200					205		
Gln	Val	Asp	Leu	Asp	Ser	Leu	Tyr	Lys	Pro	Thr	Trp	Gln	Leu	Leu	Gly
					210			215					220		
Lys	Ala	Phe	Leu	Tyr	Gly	Lys	Lys	Ser	Lys	Val	Val	Asn	Leu	Asn	Leu
					225			230		235				240	
Leu	Lys	Glu	Glu	Val	Lys	Leu	Tyr	Ser	Cys	Thr	Pro	Arg	Asn	Phe	Ser
					245			250					255		
Val	Ser	Ile	Arg	Glu	Glu	Leu	Lys	Arg	Thr	Asp	Thr	Ile	Phe	Trp	Pro
					260			265					270		
Gly	Cys	Leu	Leu	Val	Lys	Arg	Cys	Gly	Gly	Asn	Cys	Ala	Cys	Cys	Leu
					275			280					285		

FIG. 6A

His Asn Cys Asn Glu Cys Gln Cys Val Pro Arg Lys Val Thr Lys Lys
290 295 300
Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Lys Gly Leu
305 310 315 320
His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp
325 330 335
Cys Val Cys Arg Gly Asn Ala Gly Gly
340 345

FIG. 6B

hPDCF-C	M S L F G L L V T S A L A C Q R R G T Q A E S N L S S K F Q F S S N K E Q N G	40
mPDCF-C	M [L] L C L L [L] T S A L A C Q R T G T R E S N L S S K [L] Q [L] S S O K E O N G	40
hPDCF-C	V Q O P O H E R L L T V S T N G S I H S P P F P H T Y F R N T V L V N R L V A V	80
mPDCF-C	V Q D P R M E R V V T I S G N G S T H S R K F P H T Y F R N M V L V N R L V A V	80
hPDCF-C	F E N V N I Q L T F D E R F G L E D P E D D I C K Y D F V E V E E P S D G T T S	120
mPDCF-C	G E N V R T Q L T F D E R F G L E D P E D D I C E Y D F V E V E E P S D G S V S	120
hPDCF-C	G R W C G S G T V F G K Q I S K G N O I R I R F V S D E Y F P S E P G F C I H Y	160
mPDCF-C	G R W C G S G T V F G K Q [T] S K G N H I R I R F V S D E Y E P S E P G F C I H Y	160
hPDCF-C	N I V M P Q F T E A V S P S V L P P S S L P L D L L N N A I T A F S T L F D L I	200
mPDCF-C	S I T M P Q V T E T T S P S V L P P S S L S L D L L N N A V T A F S T L F D L I	200
hPDCF-C	R Y L E P F R W Q L P L E O L Y E F T W Q L L L C K A F V F G R K S R V V D L N L	240
mPDCF-C	R Y L E P D P W Q V P L P S L Y K P T W Q L L G F A F L Y G K K S N V V N L N L	240
hPDCF-C	L T E E V R L Y S C T P R N F S V S I R E E L K R T D T I F W P G G L L V K R C	280
mPDCF-C	L [K] F F V K L Y S C T P R N F S V S I R E E L K R T D T I F W P G G L L V K R C	280
hPDCF-C	G G N C A C C L R N C N E C Q C V P S K V T K K Y H E V L Q L R P K T G V R G Y	320
mPDCF-C	G G N C A C C L R V C N E C Q C V P R K V T K K Y H E V L O L R P K T G V R G Y	320
hPDCF-C	H E S L T D V A L E H H E E C D C V C R G S T G G	345
mPDCF-C	H E S L T D V A L E H H E E C D C V C R G N A G G	345

FIG.7

FIG.8

FIG.10

FIG. 9A

VEGF 165	V K F M D V Y O R S Y C H P I E T L V D I F Q E Y P D E I E	70
PIGF-2	V P F Q E V W G R S Y C R A L E R L V D V V S E Y P S E V E	70
VEGF-B167	V S W I D V Y T R A T C Q P R E V V V P L T V E L M G T V A	65
Pox Orf VEGF	K G W S E V L K G S E C K P R P I V V P V S E T H P E L T S	54
VEGF-C	K S I D N E W R K T Q C M P R E V C I D V G K E F G V A T N	149
VEGF-D	K V I D E E W D R T Q C S P R E T C V E V A S E L G K T T N	134
PDGF-A	K R S I E E A V P A V C K T R T V I Y E I P R S Q V D P T S	114
PDGF-B	L T I A E E P A M I A E C K T R T E V F E I S R R L I D R T N	115
hPDGF-C PVDV	N L L T E E V R L Y S C T P R N F S V S I - R E E L K R T D	104
mPDGF-C PVDV	N L L K E E V K L Y S C T P R N F S V S I - R E E L K R T D	104
VEGF 165	Y I F K - - P S C V P L M R C G G - - - C C N D E G L E C V	95
PIGF-2	H M F S - - P S C V S L L R C T G - - - C C G D E D L H C V	95
VEGF-B167	K Q L V - - P S C V T V Q R C G G - - - C C P D D G L E C V	90
Pox Orf VEGF	Q R F N - - P P C V T L M R C G G - - - C C N D E S L E C V	79
VEGF-C	T F F K - - P P C V S V Y R C G G - - - C C N S E G L Q C M	174
VEGF-D	T F F K - - P P C V N V F R C G G - - - C C N E E G V M C M	159
PDGF-A	A N F L I W P P C V E V K R C T G - - - C C N T S S V K C Q	141
PDGF-B	A N F L V W P P C V E V Q R C S G - - - C C N N R N V Q C R	142
hPDGF-C PVDV	T I F - - W P P G C L L V K R C G G N C A C C L H N C N E C Q	132
mPDGF-C PVDV	T I F - - W P P G C L L V K R C G G N C A C C L E N C N E C Q	132
VEGF 165	P T E E S N I T M Q I M R I K - - - P H Q G Q - - - - H I	117
PIGF-2	P V E T A N V T M Q L L K I R - - - S G D R P - - - - S Y	117
VEGF-B167	P T G Q H Q V R M Q I L M I R Y - - P S S Q L - - - - -	111
Pox Orf VEGF	P T E E V N V S M E L L G A S G S G S N G M Q - - - - R L	104
VEGF-C	N T S T S Y L S K T L F E I T V - - P L S Q G - - - - P K	197
VEGF-D	N T S T S Y I S K O L F E I S V - - P L T S V - - - - P E	182
PDGF-A	P S R V H H R S V K V A K V E Y V R K K P K L - - - - K E	166
PDGF-B	P T Q V Q L R P V Q V R K L E I V R K K P I F - - - - K K	167
hPDGF-C PVDV	C V P - S K V T K K Y H E V L Q L R P K T G V R G L H K S L	161
mPDGF-C PVDV	C V P - R K V T K K Y H E V L Q L R P K T G V K G L H K S L	161
VEGF 165	G E M S F L Q H N K - C E C R P K K - - - - - - - - D R	136
PIGF-2	V E L T F S Q H V R - C E C R P L R E - - - - K M K P E R R	142
VEGF-B167	G E M S L E E H S Q - C E C R P K K K - - - - D S A V K P	135
Pox Orf VEGF	S F V E H K K - - - C D C R P R F T - - - - - T T P P	123
VEGF-C	P V T I S F A N H T S C R C M S K L D - - - V Y R Q V H S I	224
VEGF-D	L V P V K I A N H T G C K C L P T G P - - - - R H P Y S I	207
PDGF-A	V Q V R L E E H L E - C A C A T I S L N P D Y R E E D T G R	195
PDGF-B	A T V T L E D H L A - C K C E T V A A A R P V T R S P G G S	196
hPDGF-C PVDV	T D V A L E H H E E - C D C V C R G S T G G	182
mPDGF-C PVDV	T D V A L E H H E E - C D C V C R G N A G G	182

FIG. 9B

VEGF 165	A [R] Q E N P C G P C S S E R R K H L F V Q D P Q T C K C S C	166
PIGF-2	R P K G R G K R R R E N Q R P T D C H L C G D A V P R R	170
VEGF-B167	D S P R P L C P R C T Q H H Q R P D P R T - - - C R C R C	161
Pox Orf VEGF	T T T R P P R R R R	133
VEGF-C	I R R S L R A T - L P Q C Q A A N K T C P T N Y M W N N H I	253
VEGF-D	I R R S L O T P E E D E C P H S K K L C P I D M L W D N T K	236
PDGF-A	P R E S G K K R K R K R L K P T	211
PDGF-B	Q E Q R A K T P Q T R V T I R T V R V R R P P K G K H R K F	225
hPDGF-C PVDV		182
mPDGF-C PVDV		182
VEGF 165	K N T D S - R C K A R Q L E L N E R T C R C D K P R R	192
PIGF-2		170
VEGF-B167	R R R S F L R C Q G R G L E L N P D T C R C R K L R R	188
Pox Orf VEGF		133
VEGF-C	[C R C] L A Q E D F M F S S D A G D D S T D G F H D I C G P N	283
VEGF-D	C K C V L O D E - T P L P G T E D H S Y L O E P T L C G P H	266
PDGF-A		211
PDGF-B	K H T H D K T A L K E T L G A	241
hPDGF-C PVDV		182
mPDGF-C PVDV		182
VEGF 165		192
PIGF-2		170
VEGF-B167		188
Pox Orf VEGF		133
VEGF-C	K E L D E E T C Q C V C R A G L R P A S C G P H K E L D R N	313
VAGF-D	M T F D E D R -	273
PDGF-A		211
PDGF-B		241
hPDGF-C PVDV		182
mPDGF-C PVDV		182
VEGF 165		192
PIGF-2		170
VEGF-B167		188
Pox Orf VEGF		133
VEGF-C	S [C Q] C V C K N K L F P S Q C G A N R E F D E N T [C Q] C V C	343
VEGF-D	- C E C V C K A P C P G D L I O H P E N - - - - C S C F E	297
PDGF-A		211
PDGF-B		241
hPDGF-C PVDV		182
mPDGF-C PVDV		182

FIG. 9C

VEGF 165	192	
PIGF-2	170	
VEGF-B167	188	
Pox Orf VEGF	133	
VEGF-C	K R T C P R N Q P L N P G K C A C E C T E S P Q K C L L K G	373
VEGF-D	C K E S L E S C C O K K K I -----	312
PDGF-A		211
PDGF-B		241
hPDGF-C PVDV		182
mPDGF-C PVDV		182
VEGF 165	192	
PIGF-2	170	
VEGF-B167	188	
Pox Orf VEGF	133	
VEGF-C	K K F H H Q T C S C Y R R P C T N R Q K A C E P G F S Y S E	403
VEGF-D	-- F H P D T C S C E D R - C P F H T R T C A S R K P A C G	338
PDGF-A		211
PDGF-B		241
hPDGF-C PVDV		182
mPDGF-C PVDV		182
VEGF 165	192	
PIGF-2	170	
VEGF-B167	188	
Pox Orf VEGF	133	
VEGF-C	E V C R C V P S Y W K R P Q M S	419
VEGF-D	K H W R F P K E T R A Q G L Y S O E N P	358
PDGF-A		211
PDGF-B		241
hPDGF-C PVDV		182
mPDGF-C PVDV		182

FIG. 9D

mPDGF- ζ CUB	ERVVTISGNGSIHS	SPKFPHTYPRN	WVLYWWR	RLVAVDEN	VR	185
hPDGF- ζ CUB	ERITIIVS	TNGSIHS	SPRFPR	PRNTVLY	WVLYWWR	159
hBMP-1 CUB1	CGETLQD	STNGN	SPPEY	PRNTVLY	WVLYWWR	159
hBMP-1 CUB2	CGCDVKK	DYGN	PNGY	SANNN	NCVW	360
hBMP-1 CUB3	CGCFLTK	LNGSIT	SPNYP	NCVW	W	473
Neuropilin CUB1	GDTIK	TESPCYL	PSGVIK	SPKFPHTY	PRN	629
Neuropilin CUB2	CSQNY	TTPSGVIK	SPKFPHTY	WVLYAP	TQY-R	67
mPDGF- ζ cub	QLTF	DERD	GLED	-	-	195
hPDGF- ζ CUB	QLTF	DERF	GLED	-	-	120
hBMP-1 CUB1	QLNF	TS-	LDLYRSA-	-	-	93
hBMP-1 CUB2	QLTF	QS-	FEIERND-	-	-	393
hBMP-1 CUB3	SLQFD	F-	FEIEGN	-	-	506
Neuropilin CUB1	MINF	NPHF	FDLED	-	-	662
Neuropilin CUB2	ILEF	ES-	FDLED	-	-	100
mPDGF- ζ CUB	GRWCCSG	TVPGKQ	TSKCNGN	HIRIRFV	SDEYFP	160
hPDGF- ζ CUB	GRWCCSG	TVPGEQ	TSGNQ	IRFV	SDEYFP	133
hBMP-1 CUB1	CRFCGS	-KL	PEPIVST	DSRLWV	EFSSSNWV	431
hBMP-1 CUB2	GRYCGY	-EK	PDDIK	TSQYNNM	RVEXF	544
hBMP-1 CUB3	GKFCCS	-EK	PEVIT	SDNTVSK	SDYETKGA	700
Neuropilin CUB1	GKFCCGK	-I	APPVYSSG	FIKFVSDY	TKGA	138
Neuropilin CUB2	GKYCCGQ	-K	TPGRIRSS	SSGILSMV	YTFDSDAIAKE	262
mPDGF- ζ CUB	SII					163
hPDGF- ζ CUB	MLIV					136
hBMP-1 CUB1	EAII					434
hBMP-1 CUB2	FK					546
hBMP-1 CUB3	FSE					703
Neuropilin CUB1	-ET					140
Neuropilin CUB2	SVL					265

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16A

FIG. 16B

FIG. 16 C

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 18

FIG. 19

IP : PDGF alpha-rec.
IB: P-T yr

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

10 20 30 40 50 60 70 80 90 100 110 120

FIG. 25

FIG. 26A

FIG. 26D

FIG. 26B

FIG. 26E

FIG. 26C

FIG. 26F

FIG. 26I

FIG. 26L

FIG. 26H

FIG. 26K

FIG. 26G

FIG. 26J

FIG. 26 O

FIG. 26 N

FIG. 26 M

FIG. 26 Q

FIG. 26 P

FIG. 26 R

FIG. 26 S

FIG. 26 T

FIG. 26 U

FIG. 26 V

FIG. 27A

FIG. 27C

FIG. 27B

FIG. 27D

FIG. 27F

FIG. 27E

FIG. 28B

FIG. 28D

FIG. 28A

FIG. 28C

FIG. 28F

FIG. 28E

FIG. 29

FIG. 30A

FIG. 30B

C

D

FIG. 30C

FIG. 30D

FIG. 32A

FIG. 32B

FIG. 32C

FIG. 32D

FIG. 32E

FIG. 32F

FIG. 32G

FIG. 33A

FIG. 33B

FIG. 33C

FIG. 33D

FIG. 33E