Midterm 1 Extra Notes

Shuja Khwaja

Period

$$T=rac{2\pi}{\omega_0} \ \omega_0=2\pi f_0=rac{2\pi}{T_0}$$

Periodicity of Multiple Signals

$$rac{T_1}{T_2} = rac{k}{l} \; where \; k, l \; \in \mathbb{Z}$$

$$T_0 = LCM(T_1, T_2, ...) \ LCM(rac{a_1}{b_1}, rac{a_2}{b_2}, ..., rac{a_n}{b_n}) = rac{LCM(a_1, a_2, ..., a_n)}{GCD(b_1, b_2, ..., b_n)}$$

Support

- Smallest closed set where signal is non-zero,
- Include boundaries and ignore simple intersections $supp(x) = [0,1] \cup [2,\infty)$

Even and Odd

$$x_{even}(t) = \frac{1}{2}(x(t) + x(-t))$$

 $x_{odd}(t) = \frac{1}{2}(x(t) - x(-t))$

Special Signals

Unit Step: CT ≈ DT

$$u(t) = egin{cases} 1 & t \geq 0 \ 0 & t < 0 \end{cases}$$

Impulse: CT is derived from integral

$$\delta[n] = \left\{ egin{matrix} 1 & n = 0 \\ 0 & t
eq 0 \end{matrix}
ight.$$

Sifting:

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

$$\therefore \int_{-\infty}^{\infty} x(t)\delta(t-t_0) dt = x(t_0)$$

Sinusoids

$$\omega_0=2\pi f_0=rac{2\pi}{N_0}$$

DT: e^{jwn} is periodic N_0 if ω is an integer multiple of $\frac{2\pi}{N}$

Frequency Periodicity:

$$e^{j\omega n}=e^{j\omega n+2\pi}$$

$$e^{j\pi n} = (-1)^n$$

Theorem 2.3:

Let $N_0 \in \mathbb{Z}_{>1}$ be a desired period. There are exactly N_0 distinct DT complex exponential signals of period N_0 given by

$$\phi_k[n]=e^{jk\omega_0n}, \quad k\inig\{0,1,...,N_0-1ig\}$$

CT Fourier Series

Existence:

If
$$x$$
 has finite action, $x \in L_1^{per}$
then α_k are well defined and

$$\lim_{k o\pm\infty}|lpha_k|=0$$

Convergence:

Let $e_k = \hat{x}_k - x$ be the error of approximation of x \hat{x} converges to x

i. pointwise if $\lim_{k \to \infty} e_k(t_0) = 0, \; t_0$ is the point of interest

ii. uniformly if $\lim_{k\to\infty}||e_k||_\infty=0$, amplitude of error goes to 0 iii. in energy if $\lim_{k\to\infty}||e_k||_2=0$, energy of error goes to 0

i. if x has finite action and $rac{d}{dt}x$ is cont. at t_o , then \hat{x} converges to xOR if there is is a finite discontinuity (left and right limits exist) \hat{x} converges to the midpoint of the discontinuities, Gibbs Phenomenon

ii. if x has finite action and $\frac{d}{dt}x$ is cont. everywhere, then \hat{x} converges to x uniformly

iii. if x has finite energy, $x \in L_2^{per}$

- 1. \hat{x} converges to x in energy
- 2. $\left\{ lpha_{k}
 ight\}$ have finite energy, $lpha\in l_{2}^{per}$
- 3. the signal and coefficients satisfy *Parsevals Relation*:

$$\frac{1}{T_0}||x||_2^2 = ||\alpha||_2^2$$

$$egin{aligned} rac{1}{T_0} \int_0^{T_0} |x(t)|^2 \ dt &= \sum_{k=-\infty}^\infty |lpha_k|^2 \ & ext{energy of } x = ext{energy of } lpha_k \ & ext{scaled by period} \end{aligned}$$