

SCUOLA DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Informatica

Illuminant maps analysis for image splicing detection

Lorenzo Cioni

Anno Accademico 2015/2016

Introduction

Digital images are easy to manipulate thanks to the availability of the **powerful editing software** and **sophisticated digital cameras**.

The development of methods for verifying **image authenticity** is a real need in forensics.

Purpose: to detect image splicing aimed at *deceiving* the viewer.

Forgery detection

Image splicing detection techniques are based on inconsistencies:

- 1. **Image resampling, copy-paste**: deduced from image metadata.
- Compression-based inconsistencies: JPEG compression introduces blocking artifacts. Manufacturers of digital cameras and image processing software typically use different JPEG quantization tables.
- 3. **Neighboring pixels relationship inconsistencies**: when an image is spliced some artifacts can be created.
- 4. **Intrinsic image properties inconsistencies**: e.g. scene lights, shadows or perspective.

Lighting-based inconsistencies

Methods based on **lighting inconsistencies** are particularly *robust*: a perfect illumination adjustment in a image composition is very hard to achieve.

Lighting-based inconsistencies

These methods can be divided into two types of approaches:

- 1. **Object light source inconsistencies**: detected using *shadows*, *face geometry*, *generic object surfaces*.
- 2. **Illuminant colors inconsistencies**: assuming that a scene is lit by the same light source, all objects must have the same illuminant colors.
 - 2.1 Specular dichromatic reflectance models
 - 2.2 Illuminant Maps (IMs)

Illuminant Maps estimation

For the Illuminant Maps estimation, two different techniques are used:

- 1. A statistical-based approach using Generalized Grayworld Estimate (GGE) algorithm.
- 2. A physics-based approach using Inverse-Intensity Chromaticity (IIC) method.

Distance map

Generalized Greyworld Estimate (GGE)

Generalized Greyworld Estimate is proposed in [2] as a combination of the *Grey-World* and *Grey-Edge methods* aimed to evaluate **color constancy**.

The main premise behind it is that in a normal well color balanced photo, the **average** of all the colors is a neutral gray. Therefore, it assumes that the *Minkowski norm* of the derivative of the reflectance in a scene is **achromatic**.

$$k\mathbf{e}^{n,p,\sigma} = \left(\int \left| \frac{\vartheta^n \mathbf{f}^{\sigma}(\mathbf{x})}{\vartheta \mathbf{x}^n} \right|^p d\mathbf{x} \right)^{\frac{1}{p}} \tag{1}$$

where \mathbf{x} denotes a pixel coordinate, k is a scale factor, $|\cdot|$ is the absolute value operator, ϑ the partial differential operator, \mathbf{f}^{σ} is the observed intensities at position \mathbf{x} , smoothed by a Gaussian kernel σ , p is the *Minkowski norm*, and n is the derivative order.

Generalized Greyworld Estimate (GGE)

The illuminant estimation of (1) is a framework for low-level based illuminant estimation based on three variables:

- 1. The order *n* of the image structure.
- 2. The Minkowski norm *p* which determines the relative weights of the multiple measurements from which the final illuminant color is estimated.
- 3. The scale of the local measurements as denoted by σ .

Advantages:

- the Minkowski norm of RGB values or derivatives can be computed extremely fast
- the method does not require an image database taken under a known light source

Inverse-Intensity Chromaticity (IIC)

Extension of the **dichromatic reflectance model**, which states that the amount of light reflected from a point, **x**, of a dielectric, non-uniform material is a linear combination of diffuse reflection and specular reflection.

Given an image taken with a **RGB camera**, the response $I_c(\mathbf{x})$ for each color filter $c \in \{R, G, B\}$ is

$$I_c(\mathbf{x}) = m_d(\mathbf{x})B_c(\mathbf{x}) + m_s(\mathbf{x})G_c(\mathbf{x})$$

where m_d and m_s are geometric parameters of diffuse and specular reflection.

Let $\Delta_c(\mathbf{x})$ and $\Gamma_c(\mathbf{x})$ be the diffuse and **specular chromaticity**: $\Delta_c(\mathbf{x}) = \frac{B_c(\mathbf{x})}{\sum_{i i n \{R, G, B\}} B_i(\mathbf{x})} \text{ and } \Gamma_c(\mathbf{x}) = \frac{G_c(\mathbf{x})}{\sum_{i i n \{R, G, B\}} G_i(\mathbf{x})}$

Inverse-Intensity Chromaticity (IIC)

In this model, the intensity $I_c(\mathbf{x})$ and the chromaticity $\sigma_c(\mathbf{x})$ of a color channel $c \in \{R, G, B\}$ at pixel position \mathbf{x} are related by

$$\sigma_c(\mathbf{x}) = p_c(\mathbf{x}) \frac{1}{\sum_{i \in \{R,G,B\}} I_i(\mathbf{x})} + \Gamma_c(\mathbf{x})$$
 (2)

where $p_c(\mathbf{x}) = w_d(\mathbf{x}) \sum_i B_i(\mathbf{x}) (\Delta_c(\mathbf{x}) - \Gamma_c(\mathbf{x}))$

The *domain* of the line is determined by $\frac{1}{\sum_i I_i(\mathbf{x})}$ and the *range* is given by $0 \le \sigma_c \le 1$. Domain and range together form the **inverse-intensity chromaticity (IIC)** space.

10 di 17

Proposed approach

- Face forgery detection module: specifically for detecting forgeries involving people. Based on the work presented by Carvalho et al. [1].
- Regional forgery detection module: image content independent. Based on the work presented by Fan et al. [2]

Face forgery detection module

Region forgery detection module

Experimental results - 1

Test case	Train	Test	Accuracy	AUC	F-Score
Test 1	DSO-1	DSO-1	0.84	0.90	0.78
Test 2	DSI-1	DSI-1	0.89	0.92	0.89
Test 3	DSO-1	DSI-1	0.59	0.58	0.64
Test 4	DSI-1	DSO-1	0.63	0.60	0.54

Tabella: Performance of face forgery detection module over paired faces using non-uniform weights.

Experimental results - 1

Test case	Train	RC	ACC	AUC	F-Score
Test 1	-	Median	0.49	0.32	0.25
Test 2	-	Global	0.52	0.40	0.27
Test 3	SplicedCC	Median	0.54	0.53	0.26
Test 4	SplicedCC	Global	0.57	0.57	0.31
Test 5	SplicedDSO	Median	0.53	0.50	0.27
Test 6	SplicedDSO	Global	0.61	0.63	0.33

Tabella: Performance of region forgery detection module.

Conclusions

- Two different approaches for forgery detection are presented: a face forgery detection module and a generic region forgery detection module.
- *Illuminant maps* are used to entail the interaction between the light source and the objects contained in a scene.
- Face module achieved most promising results, but it needs some *a priori* knowledge about the content of the image.
- Future developments: given that our method compares skin material, it is feasible to use additional body parts, such as arms and legs, to increase the detection and confidence of the method.
- Further improvements can be achieved when more advanced illuminant color estimators become available

References

- [1] T. Carvalho, et al. *Illuminant-Based Transformed Spaces for Image Forensics*. IEEE Transactions on Information Forensics and Security 11.4 (2016): 720-733.
- [2] Y. Fan, P. Carrè, and C. Fernandez Maloigne. Image splicing detection with local illumination estimation. In Image Processing ICIP, 2015.
- [3] J. van de Weijer, Th. Gevers, A. Gijsenij, Edge-Based Color Constancy, IEEE Trans. Image Processing, accepted 2007.
- [4] C. Riess and E. Angelopoulou. 2010. Scene illumination as an indicator of image manipulation. In Proceedings of the 12th international conference on Information hiding, Berlin, Heidelberg, 66-80.