LA II Basics

Andreas Mai

9. September 2016

LA Klausur am 16.09.2016 08:00 - 10:00 LA I 11:00 - 13:00 (12:30) LA II

Kein Anspruch auf Vollständigkeit ;) Jetzt Ernsthaft.. Dieses Skript ist nicht ansatzweise fertig

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega_{2} \\ \Omega_{2} \end{bmatrix}$$

Inhaltsverzeichnis

1	Jord	lan
	1.1	Jordan Normalform
		1.1.1 Lösen von Allgemeinen Aufgaben
	1.2	Bestimmung der Basiswechselmatrix S $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$
2	Isometrienormalform	
	2.1	Tipps
	2.2	Basisswechselmatrix
3	Dre	hachse und -winkel
	3.1	Vorgehen Drehwinkel
	3.2	Isometrienormalform aus dem Drehwinkel im $\mathbb{R}^3 \times \mathbb{R}^3$

1 Jordan

Tipp: "Kochen mit Jordan" von Daniel Winkler¹

1.1 Jordan Normalform

Vorgehen:

- Charakteristisches Polynom berechnen (Eigenwerte)
 - Anzahl der Eigenwerte = Anzahl der Jordanblöcke
 - Algebraische VVK = Größe des Jordanblocks des Eigenwertes
 - Geometrische VVK = Anzahl der Jordankästchen im Block
- Wenn mehrere Möglichkeiten Kästchen zu bilden:
 - Index des Hauptraumes herausfinden
 - Matrix hochnehmen bis sie sich nicht mehr ändert (oft Nullmatrix)
 - Index = größtes Jordankästchen im Block
- Per Konvention: größte Jordanblöcke und -kästchen zuerst

Lösen von Allgemeinen Aufgaben

Zum lösen von allgemeinen Aufgaben ohne konkret gegebene Matrix hilft:

- Größe der Matrix = Größe der JNF (= Dimension???)
- Spur der Matrix = Spur der JNF
- Wenn gegeben: Größe, Eigenwerte, Spur: Jordanblöcke ausrechenbar
- Wenn Hauptraumgleichung $\neq 0$, dann Jordan**kästchen** größer als Potenz bsp: $(A I_i)^2 \neq 0 \Rightarrow$ Jordankästchen vom EW $i \geq 3$ (falls Jordanblock > 2)

1.2 Bestimmung der Basiswechselmatrix S

Hauptraum: Kleinste Zahl p, für die gilt: $Kern(A - \lambda I)^p = Kern(A - \lambda I)^{p+1}$

- Nehme Basisvektoren aus $Kern(A \lambda I)^p$, welche nicht in $Kern(A \lambda I)^{p-1}$ enthalten sind $\Rightarrow v_1, v_2, ...$
- Die Geordnete Basis ist definiert durch: $v_1, (A \lambda I) \cdot v_1, (A \lambda I)^2 \cdot v_1, \ldots, v_2, (A \lambda I) \cdot v_2, (A \lambda I)^2 \cdot v_2, \ldots$ (jeweils bis $(A \lambda I)^{p-1}$)
- hieer fehlt glaub noch was

¹http://www.danielwinkler.de/la/jnfkochrezept.pdf

2 Isometrienormalform

- Hilfsmatrix $H = A + A^T$ bestimmen
- ullet Eigenwerte von H bestimmen
- Isometrienormalform erstellen
 - Algebraische VVK des Eigenwerts 2 ist die Anzahl der 1 auf der Hauptdiagonale
 - Algebraische VVK des Eigenwerts -2ist die Anzahl der -1auf der Hauptdiagonale
 - Die anderen Eigenwerte müssen $\in (-2, 2)$ liegen
 - Für die anderen Eigenwerte gilt weiterhin das

Drehkästchen:
$$\begin{pmatrix} \frac{\lambda}{2} & -\sqrt{1-(\frac{\lambda}{2})^2} \\ \sqrt{1-(\frac{\lambda}{2})^2} & \frac{\lambda}{2} \end{pmatrix}$$

Beispiel

$$CP(H) = (2 - \lambda)^2 (-2 - \lambda)^2 (0 - \lambda)$$

$$\Rightarrow D_{\lambda} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & & \\ & & & -1 & \\ & & & 0 & -1 \\ & & & 1 & 0 \end{pmatrix}$$
 (Leere Felder sind 0)

2.1 Tipps

Hilfreich, bei allgemeinen Aufgaben ohne konkret gegebene Matrix

- Können Eigenwerte 1 und -1 vorkommen?
- Determinante und Spur von der Matrix und der Isometrienormalform sind identisch
- Beim \mathbb{R}^3 gilt: (siehe nächstes Kapitel)
 - Ein Eintrag mit 1 (entspricht der Drehachse)
 - Ein Drehkästchen

2.2 Basisswechselmatrix

- Für H die Eigenräume von ± 2 berechnen und in Orthonormalbasis umwandeln (ablesbar, oder Gram-Schmidt-Verfahren)
 - ⇒ Man erhält die ersten Spalten

• Für die anderen Eigenwerte Eigenräume ausrechnen. Ein v wählen und mit $\tilde{A}v$ orthonalisieren und Normalisieren (Gram-Schmidt) Falls Eigenraum Dimension 2 hat, mit nächstem Eigenraum fortfahren

3 Drehachse und -winkel

- Drehebene: $[x \Phi(x), y \Phi(y)]$
- \bullet Drehachse: Finde einen Vektor v, für den gilt:

$$-\langle x - \Phi(x), v \rangle = 0$$

$$-\langle y - \Phi(y), v \rangle = 0$$

- \bullet Drehwinkel: Finde einen Vektor u, für den gilt:
 - Orthgonal zur Drehachse
 - Bild kann berechnet werden
 - $\Rightarrow u$ ist Linearkombination aus x, y, v

3.1 Vorgehen Drehwinkel

- Wähle ein $u \in D$ rehebene
- Löse folgendes LGS: u = ax + by + cv
- Berechne $\Phi(u) = a \cdot \Phi(x) + b \cdot \Phi(y) + c \cdot \Phi(v)$ (Da v Drehachse, gilt $\Phi(v) = v$)
- Berechne Winkel zwischen $\Phi(u)$ und u:

$$\cos \alpha = \frac{\langle x, y \rangle}{||x|| \cdot ||y||}$$

3.2 Isometrienormalform aus dem Drehwinkel im $\mathbb{R}^3\times\mathbb{R}^3$

Die Isometrienormalform im \mathbb{R}^3 besteht immer aus:

- Ein Eintrag mit 1
- Ein Drehkästchen

• also:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & D_{\lambda} & \\ 0 & & \end{pmatrix}$$

•
$$D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

•
$$\sin = \sqrt{1 - \cos^2}$$

Merke auch die Matrix D_λ unter dem Punkt Isometrienormalform