Chapter 2 Notes

John J Li *

February 8, 2021

^{*}notes from "How to Prove It" by Daniel J. Velleman

Contents

1	Qua	Quantifiers																2								
	1.1	Example																								2
		Example																								3

1 Quantifiers

 $\forall x \, P(x)$ reads: "For all $x, \, P(x)$." This symbol is called the *universal quantifier* because the statement states that P(x) is universally true. This statement is saying that the truth set of P(x) is equal to U.

 $\exists x \, P(x)$ reads: "There exists an x such that P(x)." This symbol is called the *existential quantifier*. P(x) is true for at least one value of x.

The quantifiers *binds* a variable. So x is a bound variable in the statements $\forall x P(x)$ and $\exists x P(x)$.

1.1 Example

What do the following formulas mean? Are they true or false?

- 1. $\forall x (x^2 \ge 0) \in \mathbb{R}$
- 2. $\exists x (x^2 2x + 3 = 0) \in \mathbb{R}$
- 3. $\exists x (M(x) \land B(x))$ where the universe is the set of all people. M(x) stands for: "x is a man," and B(x) stands for: "x has brown hair."
- 4. $\forall x (M(x) \to B(x))$ with same universe and definition as 3.
- 5. $\forall x L(x, y)$ where the universe is the set of all people, and L(x, y) means "x likes y."

Solutions

- 1. true
- 2. true
- 3. true
- 4. false
- 5. not enough information

1.2 Example

Analyze the logical forms of the following statements.

- 1. Someone didn't do the homework
- 2. Everything in that store is either overpriced or poorly made
- 3. Nobody's perfect
- 4. Susan likes everyone who dislikes Joe
- 5. $A \subseteq B$
- 6. $A \cap B \subseteq B \setminus C$

Solutions

- 1. $\exists x \ (x \ \text{didn't do the hw})$
- 2. $\forall x \ ((x \text{ in the store}) \rightarrow ((x \text{ is overpriced}) \lor (x \text{ is poorly made}))$
- 3. $\neg \exists x \text{ (x is perfect)}$
- 4.
- 5. not enough information