S. 3.1 (a)
$$f(n) = 1001$$

 $f(2n) = 1001 = f(n)$

(b)
$$f(n) = 3n$$

 $f(2n) = 3 \cdot 2n = 6n = 2 f(n)$

(c)
$$f(n) = 5n^2$$

 $f(2n) = 5 \cdot (2n)^2 = 20n^2 = 4 f(n)$

(d)
$$f(n) = 2.5 n^5$$

 $f(2n) = 2.5 \cdot (2n)^5 = 8 f(n)$

5.3.3 Show
$$g(n) = n!$$
 is $O(n^n)$.
Since $n! = 1 \cdot 2 \cdot 3 \cdots n \leq n \cdot n \cdot n \cdot n \cdot n \cdot n = n^n$ for $n \in \mathbb{Z}_+$ it follows by definition that $g(n)$ is $O(n^n)$.

5.3.6 Show
$$g(n) = n^{2} (7n-2)$$
 is $O(n^{3})$.
Since $n^{2} \cdot (7n-2) = 7n^{3} - 2n^{2} \leq 7n^{3}$ for $n \in \mathbb{Z}_{+}$, then $g(n)$ is $O(n^{3})$.

5.3.8 Show
$$f(n) = n^{100}$$
 is $O(g)$ for $g(n) = 2^n$, but also that g is not $O(f)$.

We have that $\Theta(n^k) \subseteq \Theta(n^m)$ for $k > 0$ and $a > 1$. Thus n^{100} is $O(2^n)$, but 2^n is not $O(n^m)$.

5.3.9 Show f and g have the same order for
$$f(n) = 5n^2 + 4n + 3 \quad \text{and} \quad g(n) = n^2 + 100 \text{ n.}$$

Recall:

$$\Theta(n^{a}) \leq \Theta(n^{b})$$
 if $0 \leq a \leq b$.
 $\Theta(r \cdot f) = \Theta(f)$ for function f and constant $r \neq 0$.
 $\Theta(f \cdot g) = \Theta(g)$ if $\Theta(f) \leq \Theta(g)$.
 $\Longrightarrow \Theta(f) = \Theta(n^{2}) = \Theta(g)$

5.3.4 Show
$$h(n) = 1 + 2 + 3 + \dots + n$$
 is $O(n^2)$.
Since $h(n) \le n + n + n + \dots + n = n^2$ for $n \in \mathbb{Z}_+$, so h is $O(n^2)$.

5.3.11-12 Determine which functions are in the same
$$\Theta$$
-class, and rank them.
$$f_1(n) = 5n \lg(n) \; , \qquad f_2(n) = 6n^2 - 3n + 7 \; , \qquad f_3(n) = 1,5^n \; , \qquad f_{11}(n) = \lg(n^4),$$

$$f_5(n) = 13 \cdot 463 \; , \qquad f_6(n) = -15n \; , \qquad f_{12}(n) = \lg(\lg(n)) \; , \qquad f_{13}(n) = 9 \; n^{0,9} \; ,$$

$$f_{14}(n) = n! \; , \qquad f_{16}(n) = n + \lg(n), \qquad f_{11}(n) = \sqrt{n} + 12n \; , \qquad f_{12}(n) = \lg(n!).$$
 We make use of the "rules for Θ -classes".

We have
$$\Theta(f_b) = \Theta(f_{10}) = \Theta(f_{11})$$
 by $\lambda_1 \beta_1 6$ and δ .

As $|g(n!)| = |g(1 \cdot 2 \cdot 5 \cdot \cdots n)| \le |g(n^n)| = n |g(n)| \le |S| n |g(n)|$, for $n \ge 1$, then f_{12} is $O(f_1)$.

Conversely $|g(n!)| = |g(1)| + |g(2)| + \cdots + |g(n)| = \sum_{k=1}^{n} |g(k)| \ge \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n} |g(k)| \ge \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n} |g(\frac{n}{2})| \ge \frac{n-1}{2} |g(\frac{n}{2})| = \frac{1}{2} n |g(n)| - \frac{1}{2} |g(n)|$ So |S| n |g(n)| = |S| O(|g(n)|) and $|S| O(|f_1|) = |O(|f_{12}|)$.

 $\lim_{n\to\infty} \ \frac{13463}{l_3 \left(l_3(n)\right)} = 0 \quad , \quad \text{so} \quad \mathcal{C}\left(\frac{1}{5}\right) < \mathcal{C}\left(\frac{1}{7}\right).$

For $n\ge 2$ $\lg(\lg(n)) \le \lg(n^9)$, so f_3 is $O(f_4)$. However, the converse is not the case, since for 2^n

By 2 and 6 $\Theta(f_4) < \Theta(f_8)$. Now 3 and 6 yield $\Theta(f_8) < \Theta(f_6)$. Since $\Theta(1) < \Theta(lg(n))$ 6,4 and 8 give $\Theta(f_{10}) < \Theta(f_1)$.

With $\Theta(\frac{1}{3}n) < \Theta(n)$ 3, 6, 7 and 8 give us $\Theta(\frac{1}{4}n) < \Theta(\frac{1}{2}n)$. By 3, 4, 6 and 8 $\Theta(\frac{1}{4}n) < \Theta(\frac{1}{4}n)$. We have $\frac{15^n}{n!} \leq 1.5 \left(\frac{1.5}{2}\right)^{n-1}$ for $n \geq 2$, so $\lim_{n \to \infty} \frac{1.5^n}{n!} = 0$, so $\Theta(\frac{1}{3}n) < \Theta(\frac{1}{3}n)$.

 $\text{Ultimately} \qquad \Theta(f_{5}) < \Theta(f_{4}) < \Theta(f_{4}) < \Theta(f_{5}) < \Theta(f_{5}) < \Theta(f_{1}) < \Theta(f_{5}) < \Theta(f_$

5.3.24 Prove $G(a^n)$ is lower than $G(b^n)$ if and only if 0 < a < b.

Assume 0 < a < b. Then 0 < $\frac{a}{b}$ < 1 and so $\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$.

Therefore $G(a^n) < G(b^n)$.

The opposite direction follows by the contrapositive. Suppose $a \ge b$, then $G(a^n) \ge G(b^n)$ by the above argument. Thus $G(a^n) < G(b^n) \iff 0 < a < b$.