Quantum Processes Near Black Holes*

G. W. Gibbons
University of Cambridge, D.A.M.T.P.
Silver Street, Cambridge, England

Abstract

A general review is given of quantum processes near black holes with a special emphasis on the Hawking Thermodynamic Emission Process. Astrophysical applications are not discussed.

I wish in this talk to summarize recent work on quantum effects near black holes. In doing so I wish to confine myself to giving an outline of what principles go into the calculations and the results. I shall not discuss any astrophysical applications (for which see e.g. [40]). I have tried to put the various results in some sort of perspective and I hope that in doing so I have not given insufficient weight to anyone's contribution or incorrectly judged it. If I have done so I apologize in advance. In my talk I hope to indicate what parts of the theory look satisfactory and which require more work and also I shall try to indicate parallels which other parts of physics — especially the theory of quantum processes in strong external electromagnetic fields.

The first indication of potentially interesting effects arose when Penrose pointed out the existence of what has come to be known as the "Penrose Effect" [1]. This arises because of the existence of negative energy orbits in-side the "ergosphere" of a rotating black hole (the region where the Killing vector which is timelike at infinity becomes spacelike). Given a region of negative energy orbits it is possible to extract energy — in this case the rotational energy of the black hole. One simply drops in a particle with positive energy E_1 , and lets it split (inside the region) into 2 particles one with positive energy E_2 , which emerges and the other with negative energy E_3 which remains inside. Since $E_1 = E_2 + E_3$

^{*}This is a remake of the paper *Quantum Processes Near Black Holes* originally published in the first Marcel Grossmann Meeting on the Recent Progress of the Fundamentals of General Relativity, 1975, pages 449-458. The new version was typed out by Pete Su on November 18, 2024.

we have $E_2 > E_1$. This situation also occurs in electromagnetism near a point charge, in special relativity or indeed in any deep enough potential well [2]. It also occurs near charged black holes [3].

In fact in any electro-magnetic background which is stationary, axisymmetric and invariant under simultaneous inversion of time and angle coordinates one finds that the energy E and angular momentum L of a particle of mass m and charge e must satisfy

$$(E dt + L d\phi + eA)^2 > m^2 \tag{1}$$

where A is the vector potential which falls to zero at infinity. This expression (or a simple generalization of it if there is a third constant of the motion) determines two surfaces $E^{\pm}(r,\theta)$ in the (E,r,θ) space between which a classical particle cannot exist. If the surface E^{+} can fall below -m we have just the required situation referred to sometimes as "level crossing". The region r, is referred to as a "generalized ergosphere" for the mode in question. It is easy to check the existence of such a region in "superheavy" atoms. If

$$A = \Phi \ dt + B \ d\phi; \quad \Omega = g_{\phi t}/(g_{tt}) \tag{2}$$

the rate of rotation of inertial frames and $\sigma^2 = (g_{\phi t})^2 - g_{\phi \phi} g_{tt}$ we have

$$E^{\pm} = e\Phi + (L + eB)\Omega \pm \sigma^2 \sqrt{m^2 + (L + eB)^2}.$$
 (3)

On a horizon $\sigma \to 0$ and $\Omega \to \Omega_H$, $\Phi + \Omega B \to \Omega_H$, and $E^{\pm} \to e\Phi_H + L\Omega_H = \mu_H$ which may be thought of as a chemical potential for the mode in question.

From the duality between waves and particles one expects a similar phenomenon to occur for waves and indeed this turns out to be the case (Misner [4] and Zeldovich [5]), and one has here the phenomenon of "super radiance." For a classical scalar field this arises because the conserved flux vector

$$J_{\mu} = \frac{(\bar{\phi} \nabla_{\mu} \phi - \phi \nabla_{\mu} \bar{\phi})}{2i} \tag{4}$$

need not necessarily be future directed timelike. An incident wave carrying positive flux can send negative flux down the hole and the reflected positive flux can be greater than the incident flux. All of this is very reminiscent of the well known "Klein Paradox" situation [6] and indeed in the most general case of a charged, rotating black hole we have a rather close analogy to the Klein Paradox.

In our previous notation we find the ϕ can be written as $\phi = e^{iEt}e^{iL\phi}\chi$ and χ obeys

$$\frac{1}{\sigma}(\nabla_A \,\sigma \,\nabla^A \chi) + [(E \,dt + L \,d\phi + eA)^2 - m^2]\chi = 0 \tag{5}$$

where ∇_A denotes covariant differentiation in the r,θ plane. The conserved flux is

$$J = (E dt + L d\phi + A)|\chi|^2 + \frac{(\bar{\chi}d\chi - \chi d\bar{\chi})}{2i}$$
(6)

The null generator of the horizon is