Here, I'll try to motivate on	group actions, and rels. Kabiri will talle
more on group thertical (the	group theory and dossical mechanics are
aspects of classical Connec	ted in more obvious ways, I'm a little
Mechanis! suspic	ious that Noether theorems are clear enough
	elaborate on groups and their significant in
	cal Contexts!)
Review of group action:	stabilizer or isotropy subgroup of x
Gacts on set X if then's	is Gr = { ge6 9.2=21}
$\alpha m p :: G \times X \longrightarrow X :$	orbit of x is Gx = {g.x ge6}
1. e.x = x 7x EX	
$\frac{2 \cdot 9 \cdot (9 \cdot x) = (9 \cdot 9 \cdot x)(x)}{2 \cdot 9 \cdot (9 \cdot x)}$	Orbit - Stabilizer theorem:
¥91192€6 ,VXEX	Thu's a bijection G_{κ} G_{κ}
Example: Gacts on itself by	so we have $[6:6x] = 6x $
Conjugation. If x = 6, Jefine	
temp Gx6 - G by:	orbits partition S:
(g, or) , grg-1	17 Covers all elements of 5 -> e-s=5 EGs
	so all ses que included in Gs.
Famous examples of action are:	21 If ZEGINGY, then
1) O(n) on vectors.	$Z = g_1 \chi = g_1 \psi \qquad \chi = g_1 g_2 \psi$
21 SO(1,3) on 4-vectors.	→ for all ge6: 9x = 99, 9z¥ ∈ GY
3) Cayley's thorem could be seen	= Gr SGY and sinhy GYSGX
as group action of G on 5161	= They're somethy like Costs!
by permutations.	

The Class equestions Lot God on itself by Chjugation.
orbits of this action: $Gx = \{g.x \mid g \in G\} = \{gxg^{-1} \mid g \in G\}$ since $x \in G$, it is the definition of Carriagon? Class \Rightarrow orbits are Carriagon? classes.
Stabilizers of the action: $C_x = \{g \in G \mid g : x : g^{-1} = f \}$ $= \{g \in G \mid g : x = xg\}$
It is the centralizer of first.
$Gr = C_G(\{x\})$
note: geG lies in Z(G) iff Conjugacy Class g is salely itself. or its Centralizer is G. since orbits pontition B (in our Case Conjugacy classes):
G= Gg, U Gg, U U Gg gis are represtate of distinct conj.
we find that ? ZIG).
$\frac{ G = Z(G) + \sum_{j=1}^{r} [G:G_{j_{j}}] = Z(G) + \sum_{j=1}^{r} \{G:C_{G}(j_{j})\}$
proof only involves finding Cardinality of equation!
and using the orbit - stabilize thorem.

```
Ex 1, Let G be a progroup (order of G is pm), show that
        Z(6) is no. N - trivial, or p[ |Z(6) |
    Utilize Class equation !
                                                              of Cnjugacy
                161 = 12(6)) + \(\frac{r}{\sum}\) [G:C6(3i)]
                                                              class with non
                                                              Central elements,
                                                               as above.
            [G: CG(9i)] >1 since otherwise 9; EZ(G)
             Since [G: CG(9i)] / 16/ (Layrage) -> (G: CG(9i)) is
              a power of P.
              \Rightarrow |Z(G)| = |G| - \sum_{i=1}^{r} [G: C_G(y_i)] \stackrel{p}{=} 0
         - note that [26) | = , and since p | 126) | - 126) |>1
 Ex 2. If G is cyclic \Longrightarrow G is abelian!
      \frac{G}{G} = \langle x Z \rangle for some x \in G.
   Ygh∈6 | 9Z = 2<sup>n</sup>Z for some mon f Z.
\frac{7}{7} = \frac{3 - x^{2}}{1 - x^{2}}
\frac{3 - x^{2}}{1 - x^{2}} = \frac{3 - x^{2}}{1 - x^{2}}
\frac{3 - x^{2}}{1 - x^{2}} = \frac{3 - x^{2}}{1 - x^{2}}
                                                      = Z1x1x ~Z,
                                                       = x"22 x"Z1
```

Ex3: Any group of order p2 is Abelian!
By Ex1, $\rho \mid Z(G) = \rho$ Eithe $Z(G) = \rho$ or $Z(G) = \rho^2$.
the latter implies G is cyclic, here Ahelian.
If $ Z(G) = P = 0$ $\frac{G}{Z(G)}$ has order P (any old-order group
$\Rightarrow \frac{G}{2(G)}$ is cyclic $\Rightarrow Ex 2$ implies that G is Ahelian. \Rightarrow
Sylow theorems from the lens of group action:
Remember: A sylomp-group is a subgroup of order p" where p" [16] and p" / 16]
First sylow thm; For every plid => p-sylow subgroups exist!
O couchy them 1: For any Pinite group 6, and any prine p: p/16
there is an subgroup of order p.

proof: proceed by induction. The base case 161=p is obvious! If G Contains subgroup H whose ([6: H],p)=1 => (n)

161:1H/(G:H) => (P"11H)

ap has no p-fected (IHI) pm (by Lagrange)	
So H is the desired programp!	
Suppose ([G:H],p) # => p/[G:H] (for any proper HSG)	
Consider the action by Conjugation and write the class equation:	
161 = 1Z(6) + I [6:6x]	
αp" (Gx())	
Gx is subsup of G	
which placex)	
This implies p (Z(G) - auchy lemmer gives Q = Z(G): O(a)=p.	
since Z(6) is abelian - (a) a Z(6)	
Since, p ⁿ⁻¹ Gas and p ⁿ Gas ap ⁿ⁻¹	
induction gives R (G a p-sylow subgroup of G.	
Let $K = f^{-1}(K)$ with $f: G = G$ the quotitinesp.	
we can easily check that $f(g) = g(a)$ is homomphs	
and Kerf = 1866 19607 = (a7) - kuf = (a)	
9e(a)	
so f is p-to-1 homomorphism.	
$f^{-1}(map): \frac{G}{\langle \alpha \rangle} \longrightarrow G$ takes $g(\alpha) + o(g, ga,, ga^{p-1})$	

Then K = f - (K) has p - xp = p adiulity.
By using a \in Z(6) you can check that $f(k)$ is subgroup!
So ve foud K < 6 a p-sylow subgroup.
sylow thorous: let G be a finite group!
1) Every p-subgroup of G is Contained in p-sylow subgrops, 2) All p-sylow subgrops of G are Conjugate. 3) $Np = 1$ (number of p-sylow subgrops o)
Let 5 denote the set of p-sylow subgroups of G (which is $\neq \phi$) G acts on 5 by (anjugation. Let pe 5 be a p-sylow subgroup of G,
Sp denotes its orbit, Np its hormalizer.
Sp = [6:6p] is Coprime to p, since pc6p order of 16pl is at least pn.
1) Let H be a non-trivial p-subgroup of 6, H acts on
Sp by Conjugation: 15pl = [H:Hp].
Like above - (15pl, p)=1 and [H, Hp] is p-power.
= 50me orbits contain only one p-sylow, or singleton.
70: HCGO - HP is a subgroup.

also par HP second isomorphism: HP ~ ++
also par Hp second isomorphism: HP = Hnp'
H0'.
HP has order Caprime to p, since p'is p-sylow subgroup exhaust all the factors of p.
enhands all its frotous of a
extractly and the law 1000 of the
RHS has provens since H is p-subgroup and H+p/
= so both any trivial quotients = HCp
- 3 30 DOING ALA LINGAL PARTICIONAL HCD
so H is Contained in p-sylow subgrap p.
2) In (1) let H be any p-sylow subgrup, by (1) H is a
subgroup et a Cijugate to p. since their order are equal,
1) is Consider to P
H) is Cyjugate to P.
3) (5) = np. Let p (a serie p-sylon) act on 5 by Cozingtion
3) (0) = 1) (3)
with 101 Trans
write $ S = \sum_{p'} [p \cdot p_{p'}]$
each term is 1 or power of P.
orbit of fpz is itself, so one of their term is 1.
Any othe p-sylow subgroup p/+p has nontrivial orbit!
(otherwise p c Np/ -> pp/(G => O(pp/) 6(6) therwise p c Np/ -> pp/(G => O(pp/) 6(6) therwise p c Np/ -> pp/(G => O(pp/) 6(6) therwise p c Np/ -> pp/(G => O(pp/) 6(6)
Sbu bu =,
Henen, the rest of the terms are multiples of p = np P 1

Last Exercise: p,q be two primes, G is a q-subgroup of
(For home) GL (n, Zp) (n,2).
show that if q x pn - 1 => 3 non-zero XEZZ
such that Ax=x for all AEG,