Question Number	Scheme	Marks
8(a)	$(i) \frac{2}{3}\mathbf{b} - \mathbf{a}$	B1
	(ii) $\overrightarrow{OE} = \overrightarrow{OA} + \frac{2}{5}\overrightarrow{AD} = \mathbf{a} + \frac{2}{5}\left(\frac{2}{3}\mathbf{b} - \mathbf{a}\right) = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b}$	M1A1
	(iii) $\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \mathbf{b} = \frac{3}{5}\mathbf{a} - \frac{11}{15}\mathbf{b}$	M1A1 (5)
(b)	$\overrightarrow{FE} = \overrightarrow{OE} - \overrightarrow{OF} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \lambda\mathbf{a}$	M1A1
	F, E, B collinear $\frac{\frac{3}{5} - \lambda}{\frac{4}{15}} = \frac{\frac{3}{5}}{-\frac{11}{15}}$	M1A1
	$\frac{3-5\lambda}{4} = \frac{3}{-11}$ $\lambda = \frac{9}{11}$	A1 (5)
	$\frac{\mathbf{ALT}}{OF} + \overline{FB} = \overline{OB}$	M1
	$\lambda \mathbf{a} + \mu \left(-\frac{3}{5} \mathbf{a} + \frac{11}{15} \mathbf{b} \right) = \mathbf{b}$	A1
	$\mu = \frac{15}{11} \lambda = \frac{3}{5}\mu$	M1A1
	$\lambda = \frac{9}{11}$	A1 (5)
(c)	$\triangle OFB = 5 \text{ units}^2 \Rightarrow \triangle OAB = \frac{11}{9} \times 5 \text{ units}^2$	M1
	$\Delta OAD = \frac{2}{3} \Delta OAB = \frac{2}{3} \times \frac{55}{9} = \frac{110}{27} \text{ units}^2$	M1A1
	$\frac{\text{ALT}}{\text{area }\Delta OFB} = \frac{9/11}{2/3} = \frac{27}{22}$	M1
	$area \Delta OAD = \frac{22}{27} \times 5 = \frac{110}{27}$	M1A1 (3) [13]

Notes

(a) (i)

B1: for
$$\frac{2}{3}$$
b – **a**

(ii)

M1: for $\overrightarrow{OE} = \overrightarrow{OA} + \frac{2}{5}\overrightarrow{AD}$ (for the vector statement)

(or for any other valid path)

A1:
$$\overrightarrow{OE} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b}$$

(iii)

M1: for $\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB}$ (for the vector statement) (again for any other valid path)

A1:
$$\overrightarrow{BE} = \frac{3}{5}\mathbf{a} - \frac{11}{15}\mathbf{b}$$

(b)

M1: for $\overrightarrow{FE} = \overrightarrow{OE} - \overrightarrow{OF}$

A1: for
$$\overrightarrow{FE} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \lambda\mathbf{a} \quad \left(= \mathbf{a}\left(\frac{3}{5} - \lambda\right) + \frac{4}{15}\mathbf{b} \right)$$

M1: for using their \overrightarrow{FE} and \overrightarrow{BE} to form;

$$\frac{\frac{3}{5} - \lambda}{\frac{4}{15}} = \frac{\frac{3}{5}}{\frac{11}{15}} \quad \text{or} \quad \frac{\frac{3}{5} - \lambda}{\frac{3}{5}} = \frac{\frac{4}{15}}{\frac{11}{15}}$$

A1: for the correct equation in λ

A1:
$$\lambda = \frac{9}{11}$$

ALT

M1: for
$$\overrightarrow{OF} + \overrightarrow{FB} = \overrightarrow{OB}$$
 oe

A1: for the correct expression in terms of λ and μ (or any other letter for the second constant)

M1: for comparing coefficients of λ and their μ

A1: for achieving μ and an expression for λ in terms of μ

A1:
$$\lambda = \frac{9}{11}$$

(c)

M1: for stating and using that area of triangle $\triangle OAB = \frac{11}{9} \times$ area of $\triangle OFB \Rightarrow \triangle OAB = \frac{11}{9} \times 5$ Note: area of triangle OAB = the reciprocal of their $\lambda \times 5$

M1: for stating and using that area of $\triangle OAD = \frac{2}{3} \times \text{ area of } \triangle OAB$

A1: area of triangle $OAD = \frac{110}{27}$

ALT 1

M1: for the ratio of areas of triangle *OFB* and triangle *OAD* as follows;

$$\frac{\text{area }\Delta OAB}{\text{area }\Delta OFB} = \frac{11}{9} \text{ and } \frac{\text{area }\Delta OAD}{\text{area }\Delta OAB} = \frac{2}{3} \implies \frac{\text{area }\Delta OAD}{\text{area }\Delta OFB} = \frac{11}{9} \times \frac{2}{3} = \frac{22}{27}$$

M1: for
$$\frac{\Delta OAD}{5} = \frac{22}{27}$$

A1: area of triangle $OAD \frac{110}{27}$

ALT 2

M1: for using $\frac{1}{2}ab\sin C$ on triangles *OAD* and *OFB*

Triangle *OFB*: $\frac{1}{2} \times \frac{9}{11} |\mathbf{a}| \times |\mathbf{b}| \times \sin \theta = 5$ **AND** Area $OAD = \frac{1}{2} \times |\mathbf{a}| \times \frac{2}{3} |\mathbf{b}| \times \sin \theta$

M1: for substituting . $\sin \theta = \frac{110}{9 |\mathbf{a}||\mathbf{b}|}$ into \Rightarrow Area $OAD = \frac{|\mathbf{a}||\mathbf{b}|}{3} \times \frac{110}{9 |\mathbf{a}||\mathbf{b}|} \left(= \frac{110}{27} \right)$

A1: area of triangle *OAD* $\frac{110}{27}$