ASSIGNMENT - IL

Q≠)a) To prove λ is the root of equation:

where,

 (λ, q) is eigenpain of rank-one perturbed diagonal matrix $\hat{\theta} = D + Puu^{T}$.

Since, (λ, q) is an eigen pair of $\widehat{\mathfrak{D}}$, we must have, $(\mathfrak{D} + \rho u u^{\mathsf{T}}) q = \lambda q$ (for some $q \neq 0$)

Now assumption that $p \neq 0$ that $d_1 < d_2 < -- dn$ and that mone of the components of u is zero imply that

a) (D-XI) is non sigular

b) 4 g is nonzero

Then, multiplying by $(D-\lambda I)^{-1}$, we have, $Q = -P(4^{T}q)(D-\lambda I)^{-1}4$

and the state of t

salar utg we have,

1+ Put (8-21) 4 = 0

Hence proved

(9b)
$$q = (D-\lambda I)^{-1}Y$$
 when q is an eigenvector of $(B+\beta uu^T)$ corresponding to λ .

Proof $(B+\beta uu^T)(B-\lambda I)^{-1}Y = (B-\lambda I + \lambda I + \beta uu^T)(B-\lambda I)$
 $= u + \lambda(D-\lambda I)^{-1}Y + upu^T(B-\lambda I)^{-1}Y$
 $= Y + \lambda(D-\lambda I)^{-1}Y + u(-1)$
 $= Y + \lambda(D-\lambda I)^{-1}$

$$S_{2} = \sqrt{|\hat{A}_{2}^{T} \cdot \hat{V}_{2}|} = 7.3485$$

$$B_{2} = (\hat{A}_{2}^{T} \cdot \hat{V}_{2})/S_{2} = 7.3485$$

$$H_{2} = \hat{H}_{2}/\beta_{2} = [0 \quad 0.2722 \quad 1.0887]^{t}$$

$$V_{2} : \hat{V}_{2}/S_{2} = [-0.4082 \quad 0.4082 \quad 0.8165]^{t}$$

$$\frac{4}{100}$$
 $\frac{1}{2}$ $\frac{$