kaviyadevi 20106064

In [2]: #to import libraries

import numpy as np

import pandas as pd

 $\textbf{import} \ \texttt{matplotlib.pyplot} \ \textbf{as} \ \texttt{plt}$

import seaborn as sns

In [3]: #to import dataset

data=pd.read_csv(r"C:\Users\user\Downloads\22_countries - 22_countries.csv")

data

Out[3]:

native	tld	currency_symbol	currency_name	currency	capital	phone_code	numeric_code
افغانستان	.af	ģ	Afghan afghani	AFN	Kabul	93	4
Åland	.ax	€	Euro	EUR	Mariehamn	+358-18	248
Shqipëria	.al	Lek	Albanian lek	ALL	Tirana	355	8
الجزائر	.dz	دخ	Algerian dinar	DZD	Algiers	213	12
American Samoa	.as	\$	US Dollar	USD	Pago Pago	+1-684	16
Wallis et Futuna	.wf	F	CFP franc	XPF	Mata Utu	681	876
الصحراء الغربية	.eh	MAD	Moroccan Dirham	MAD	El-Aaiun	212	732
اليَمَن	.ye	ريال	Yemeni rial	YER	Sanaa	967	887
Zambia	.zm	ZK	Zambian kwacha	ZMW	Lusaka	260	894
Zimbabwe	.ZW	\$	Zimbabwe Dollar	ZWL	Harare	263	716

In [4]: #to display top 5 rows
data.head()

Out[4]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_name	С
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afghani	
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Euro	
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian lek	
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian dinar	
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Dollar	

DATA CLEANING AND PREPROCESSING

In [5]: #
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 250 entries, 0 to 249
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	id	250 non-null	int64		
1	name	250 non-null	object		
2	iso3	250 non-null	object		
3	iso2	249 non-null	object		
4	numeric_code	250 non-null	int64		
5	phone_code	250 non-null	object		
6	capital	245 non-null	object		
7	currency	250 non-null	object		
8	currency_name	250 non-null	object		
9	currency_symbol	250 non-null	object		
10	tld	250 non-null	object		
11	native	249 non-null	object		
12	region	248 non-null	object		
13	subregion	247 non-null	object		
14	timezones	250 non-null	object		
1 5	latitude	250 non-null	float64		
16	longitude	250 non-null	float64		
17	emoji	250 non-null	object		
18	emojiU	250 non-null	object		
dtypes: float64(2), int64(2), object(15)					

memory usage: 37.2+ KB

```
In [6]: #to display summary of statistics(here to know min max value)
data.describe()
```

Out[6]:

	Id	numeric_code	latitude	longitude
count	250.000000	250.00000	250.000000	250.00000
mean	125.500000	435.80400	16.402597	13.52387
std	72.312977	254.38354	26.757204	73.45152
min	1.000000	4.00000	-74.650000	-176.20000
25%	63.250000	219.00000	1.000000	-49.75000
50%	125.500000	436.00000	16.083333	17.00000
75%	187.750000	653.50000	39.000000	48.75000
max	250.000000	926.00000	78.000000	178.00000

EDA and DATA VISUALIZATION

In [9]: sns.pairplot(data)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1a8cd4fcd90>

In [11]: sns.distplot(data['longitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='longitude', ylabel='Density'>


```
In [13]: sns.heatmap(df.corr())
```

Out[13]: <AxesSubplot:>

TO TRAIN MODEL

```
In [15]: x=df[[ 'numeric_code', 'latitude']]
y=df[ 'longitude']
```

```
In [16]: #to split my dataset into trainning and test
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [17]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]: #to find intercept
         print(lr.intercept_)
         6.9106175018100195
In [19]:
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[19]:
                       Co-efficient
                         0.017294
           numeric_code
                         0.149752
                latitude
In [20]:
         prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[20]: <matplotlib.collections.PathCollection at 0x1a8cf151580>
           30
           25
           20
           15
           10
           5
                 -150
                      -100
                             -50
                                         50
                                               100
                                                     150
In [21]: print(lr.score(x_test,y_test))
```

RIDGE AND LASSO REGRESSION

-0.04765080309190939

```
In [22]: from sklearn.linear model import Ridge,Lasso
In [23]: |rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[23]: Ridge(alpha=10)
In [24]: |rr.score(x_test,y_test)
Out[24]: -0.04765044867109092
In [25]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
In [26]: la.score(x_test,y_test)
Out[26]: -0.04705597236351888
In [27]:
         from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[27]: ElasticNet()
In [28]: |print(en.coef_)
         [0.01730174 0.14889432]
In [29]: print(en.predict(x_test))
         [ 5.06377847 16.18580013 29.16345978 12.40525781 23.02635811 8.26856046
          20.40579836 28.64919652 11.72899975 7.51568636 20.53852088 13.16418351
          12.20586526 25.0990842 13.75926407 8.42802618 11.25719093 20.0971335
          20.16296455 10.40160015 20.15875723 15.86157697 21.24874919 23.93174006
          20.45738889 13.34054527 25.2817271 14.7387785 17.5149174 16.85248408
          13.16852129 15.9171056 16.43675945 27.11235345 20.44200475 20.24059573
          20.38830071 9.89926193 18.1593286 24.50116188 26.15295678 22.35190489
          18.93799797 5.08413763 18.90637478 7.93201259 19.0635806 13.59514589
          13.77748397 11.86515378 27.11254936 14.68357443 7.28710468 22.90122284
          13.59768284 17.84084837 10.38560653 15.05373235 15.83859771 25.61728154
          16.37417793 18.71971466 18.00017757 17.30591131 18.97315956 14.88740363
          12.82179384 18.51110033 18.85794657 17.35325904 19.73717306 22.68944619
          18.00410964 18.48648052 10.4548135 ]
In [30]: |print(en.score(x_test,y_test))
```

-0.047616873319522135

Evaluation metrics

MODEL SAVING

```
In [35]: import pickle
In [36]: filename='predict3'
pickle.dump(lr,open(filename,'wb'))
```