תוכן עניינים

7

8

$A \cdot B =$	$\left(\begin{array}{c} \\ A \cdot C_1(B) \\ \end{array}\right)$	A	$A \cdot C_n(B)$	2.1 משפט

1.1.1 טענות לגבי כפל מטריצות:

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.1 משפט

- $.(A\cdot B)\cdot C=A\cdot (B\cdot C)$.1
 - 2. חוק הפילוג.
 - $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3
- $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$:1:3. 4. $I_m\cdot A=A$, $A\cdot I_n=A$

1. פעולות אלמנטריות

- $R_i \leftrightarrow R_i$. להחליף סדר בין משוואות.
- $R_i \rightarrow \alpha \cdot R_i$.2 .2. להכפיל
 - $R_i o R_i + R_i$. לחבר משוואות.

כולן משמרות את הפתרונות של המטריצה, ואת המרחב כולן משמרות את התרונות ו $\operatorname{rank}\left(A\right)$ ואת ואת $R\left(A\right)$

משפט 4.1 יהיו $A\cdot B$ ישר כך מטריצות מטריאו יהיו 4.1 יהיו פעולה אלמנטרית. אזי: φ

$$\varphi\left(A\cdot B\right)=\varphi\left(A\right)\cdot B$$

הגדרה לכל המטריצה האלמנטרית: לכל פעולה הגדרה לאלמנטרית עם איל מטריצות עם p על מטריצה אלמנטרית על ידי ב $E_\varphi \coloneqq \varphi\left(I_m\right)$ על ידי על ידי אלמנטרית א

, אלמנטרית ופעולה אלמנטרית אלכל אל $A\in M_{m\times n}\left(\mathbb{F}\right)$ אלמנטרית מתקיים ש $\varphi\left(A\right)=E_{\varphi}\cdot A$

בנוסף מטריצות אלמנטריות הפיכות, אלמנטריות של בנוסף הפיכות הפיכות של החופכית של הפעולה ההופכית של φ

דירוג ודירוג קנוני

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b (מהצורה למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

<u>משתנה חופשי</u> הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 1 המקדם של כל משתנה פותח הוא
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית **יחידה** ששקולה לה.

$$2$$
 מימד 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.3 4.4 4.5 4.5 4.5 4.5 5.1 6.1

1 מטריצות בסיסיות

1.1 כפל מטריצה במטריצה

 $A\in M_{n imes m}\left(R
ight), B\in$ הגדרה 1.1 יהא R חוג ויהיו $M_{m imes p}\left(R
ight)$ מטריצות. נגדיר כפל מטריצות $M_{m imes p}\left(R
ight)$ בצורה הבאה:

$$(A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

3 צירופים לינאריים

תקרא $(\overline{v_1},\dots,\overline{v_k})\in (\mathbb{F}^m)^k$ חיות חדרת בלתי תלויה לינארית (בת"ל) אם לכל $\bar{b}\in \mathbb{F}^m$ אם לכל היותר פתרון אחד למשוואה $\sum_{i=1}^k x_i\overline{v_i}=\bar{b}$

משפט 2.3 סדרת וקטורים \mathbb{F}^n בלתי בלתי בלתי עלויה לינארית \iff כל איבר אינו צירוף לינארי של קודמיו.

 $(\overline{v_1},\ldots,\overline{v_k})$ של התלויות של מרחב את נגדיר את מרחב להיות:

$$LD\left((\overline{v_1}, \dots, \overline{v_k})\right) = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n \mid \alpha_1 \overline{v_1} + \dots + \alpha_k \overline{v_k} = 0 \right\}$$

 $LD(\overline{v_1},\ldots,\overline{v_k})=\{0\}\iff \overline{v_1},\ldots,\overline{v_k}$ בנוסף

בסיס 4

תת קבוצה B (משפט 2 מתוך 3) יהי $\mathbb F$ שדה, B תת קבוצה של B אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים:

- בת"ל.
- \mathbb{F}^n את פורשת B .2
 - .m = n .3

כל שניים מוכיחים גם את השלישי. הנאים הבאים שקולים לכך B בסיס:

- המכילה לכל הכ"ל וכל בת"ל המכילה בת"ל מקסימלית Bה המכילה ממש את ממש את Bהינה הלויה לינארית.
- 2. פורשת מינימלית B פורשת וכל קבוצה שמוכלת ממש ב-B אינה פורשת.
- יש הצגה יחידה כצירוף של וקטורים $v\in\mathbb{F}^n$ מ־B

4.1 מימד

הגדרה 2.4 (מימד): יהי V מ"ו מעל \mathbb{F} בעל בסיס, המימד של V הינו עוצמת בסיס כלשהו (והמימד יחיד). מסמנים כ־ $\dim_{\mathbb{F}}(V)$.

משפט 3.4 (משפט המימדים הראשון):

$$\dim (U_1 + U_2) = \dim (U_1) + \dim (U_2) - \dim (U_1 \cap U_2)$$

U=V אז $\dim U=\dim V$ ו ו־ $U\subseteq V$ אז מסקנה: אם

 ${\cal T}:V o U$ משפט 4.4 (משפט המימדים השני): עבור

$$\dim (V) = \dim (\ker (T)) + \dim (Im (T))$$

4.2 למת ההחלפה של ריס

יהי V מ"ו, ותהא (v_1,\ldots,v_n) סדרה פורשת ב־V, ו־ מ"נ, אזי: (u_1,\ldots,u_m)

- נק"מים $1 \leq i_1 < i_2 < \dots < i_m \leq n$ כך ש־ .1 $(u_1,\dots,u_m) \smallfrown (v_j \mid j \notin \{i_1,\dots,i_m\})$
 - .m < n .2

כלומר אפשר להחליף איברים כלשהם של סדרה פורשת באיבריה של כל סדרה בת"ל.

(A^{-1},A^T) שחלוף והפיכות 5

נגדיר את השחלוף של A, A^T , א השחלוף של גדיר את נגדיר את אם $A = A^T$, אם אם אם אינו שי

משפט 1.5 חוקי

- . (אם החיבור מוגדר) (A+B) $^T=A^T+B^T$: חיבור
 - $(\alpha A)^T = \alpha (A^T)$:כפל בסקלר:

- תיקרא $A\in M_{m imes n}(\mathbb{F})$ מטריצה 2.5 מטריצה

- $B\in M_{n imes m}(\mathbb{F})$ הפיכה משמאל: אם קיימת אם הפיכה .1 . $B\cdot A=I_n$
- $B\in M_{n imes m}(\mathbb{F})$ הפיכה מימין: אם קיימת מטריצה . $A\cdot B=I_m$ כך ש
- $A\cdot$ ע כך ש $B\in M_{n imes m}(\mathbb{F})$ מטריצה מטריצה אם קיימת הפיכה: אם הפיימת הופכית אם $B=I_m$

 $A\in M_{m imes n}(\mathbb{F})$ משפט 3.5 משפט

- יש $A\cdot \overline{x}=0$ הפיכה משמאל אם למערכת $A\cdot \overline{x}=0$ הפיכה מפתרון יחיד (כלומר סדרת העמודות של בת"ל, ולכן $m\geq n$).
- יש פתרון אים הפיכה מימין און למערכת למערכת לא פתרון הפיכה מימין לכל לכל $\bar{b}\in\mathbb{F}^m$ לכל לכל (כלומר סדרת העמודות של ל $\bar{b}\in\mathbb{F}^m$ פורשת, ו־ח).
- למערכת של $A\cdot \overline{x}=\overline{b}$ יש פתרון יחיד למערכת הפיכה הפיכה לכל (כלומר סדרת העמודות של ה $\overline{b}\in\mathbb{F}^m$ לכל ולכן ולכן הוכן ולכן היחים.

בפרט מטריצה הפיכה היא ריבועית.

:טענות

- אם במטריצה שורת אפסים אז $A \in M_{m \times n}(\mathbb{F})$ אם במטריצה.1 אם לא הפיכה מימין.
 - . אם A הפיכה A^T הפיכה.
 - $.(A^T)^{-1} = (A^{-1})^T$.3
- $A\cdot B$ אם $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes n}(\mathbb{F})$.4 .4 ... $(A\cdot B)^{-1}=B^{-1}\cdot A^{-1}$...

שקולים מטריצת ונדרמונד 6.3 במטריצה להפיכות 5.1 ריבועית

- I_n שקולת שורות ל- A .1
- .2 קיים $\overline{b}\in\mathbb{F}^n$ יש פתרון יחיד.
- יש פתרון. הוא גם $ar{b}\in\mathbb{F}^n$ למערכת $ar{b}\in\mathbb{F}^n$ יחיד אבל מספיק להוכיח שיש פתרון.
- 4. A הפיכה משמאל $^{ au}$ כלומר עמודות A בת"ל. אפשר גם שורות לפי 6.
- אפשר ביכה מימין 2 כלומר עמודות A פורשות. אפשר A .5 גם שורות לפי 6.
 - .6 אפיכה. A^T
 - $|A| \neq 0$.7
 - $\mathcal{N}(A) = 0$ כלומר, $\operatorname{rank} A = n$.8

ובנוסף A,B ריבועיות. $A \cdot B \iff A \cdot B$ ריבועיות.

דטרמיננטה 6

דרכי חישוב

- $\det_{j}^{(n)}(A) = \sum_{k=1}^{n}(A)_{k,j} \cdot \ldots \cdot \Delta \cot_{j}^{(n)}(A) = \sum_{k=1}^{n}(A)_{k,j} \cdot \ldots \cdot \Delta \cot_{j}^{(n)}(A)$.1 $c_{j} = \frac{|B_{j}|}{|A|}$.2 $\ldots \cdot (-1)^{k+j} \cdot \det^{(n-1)}(A_{(k\,j)})$. $B_{j}\left(C_{1}\left(A\right),\ldots,C_{j-1}\left(A\right),\overline{b},\ldots,C_{n}\left(A\right)\right)$
 - $\det\left(A\right) = \sum_{\sigma \in S_n} \mathrm{sign}\left(\sigma\right)$ י בטרמיננטה לפי תמורות: .2 $\prod_{i=1}^{n} (A)_{i,\sigma(i)}$
 - אם A ואם $\det\left(A\right)=0$ הפיכה A הפיכה A אם Aכאשר $\det(A)=x_{\varphi_1}\cdot\dots\cdot x_{\varphi_n}$ ו $\det(A)\neq 0$ אז φ פעולות הדירוג. אם φ פעולות הדירוג. $\varphi_1,\dots,\varphi_n$ ואם $x_{arphi}=\lambda^{-1}$ ואם אז בסקלר arphi כפל בסקלר $x_{arphi}=-1$ $_{\odot}$ הוספת שורה אז $_{\odot}$

טענות 6.2

1. לינאריות לפי שורה:

$$(a \ (2) \ b \ (3) \ b \ (4))$$
 $(a \ (3) \ b \ (4))$ $(a \ (4))$

- N(I) = 1 נרמול: 2.
- $\det(A \cdot B) = \det(A) \cdot \det(B) \cdot \mathbf{3}$
- לכן אפשר גם להפעיל פעולות. $\det\left(A\right) = \det\left(A^T\right)$.4 עמודה, שהן פעולות שורה על השחלוף.
- orall j כם במטריצה משולשית עליונה או תחתונה .5 או $i.\,(A)_{i,j} = 0$, או $i.\,(A)_{i,j} = 0$ היא מכפלת האלכסון.

עבור מטריצה מהצורה הבאה:

$$V = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3 & \dots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{pmatrix}$$

 $\det\left(V
ight) = \prod_{1 \leq i < j \leq n} \left(lpha_j - lpha_i
ight)$ אז הדטרמיננטה היא

6.4 מטריצה מוצמדת

 $(\operatorname{adj}(A))_{i,j} = (-1)^{j+i} \cdot \det (A_{(j\,i)})$ נגדיר:

- $.(\operatorname{adj}(A))^T = \operatorname{adj}(A^T)$.1
- $A \cdot \operatorname{adj}(A) = A \cdot \operatorname{adj}(A)$ אם $A \cdot \operatorname{adj}(A)$ $\operatorname{adj}(A) \cdot A =$
 - $.A^{-1}=rac{1}{|A|}\cdot\operatorname{adj}\left(A
 ight)$ የአ $.A\cdot\operatorname{adj}\left(A
 ight)=I\cdot\det\left(A
 ight)$.3

כלל קרמר

 $A\overline{x}=\overline{b}$ תהא $\overline{b}\in\mathbb{F}^n$ למערכת $A\in M_n\left(\mathbb{F}
ight)$ יש פתרון יחיד והפתרון הינו: (שתי דרכים לתאר אותו)

$$c = A^{-1} \cdot \overline{b}$$
 .1

כאשר

תמורות

הגדרות 7.1

 $J_n o$ בית ועל ב־החח"ע ועל ביר פורמלית, פורמלית, החוצת הפוצת הפונקציות פו $J_n = \{1, \dots, n\}$ כאשר J_n

סימונים לתמורות:

- חת"ע ועי $\sigma:J_n o J_n$.1
- $.ig(egin{array}{cccc} 1 & 2 & 3 & 4 \ \sigma\left(1
 ight) & \sigma\left(2
 ight) & \sigma\left(3
 ight) & \sigma\left(4
 ight) \end{pmatrix}$:רישום ישיר.

 $A \in M_n\left(\mathbb{F}
ight)$ מטריצה (מטריצה תמורה): 1.7 מטריצה כך $\sigma \in \overset{\sim}{S_n}$ תמורה מטריצת תמורה אם קיימת תמורה נקראת

sign סיגנטורה

 (σ) עבור של $\sin{(\sigma)}$ $\sigma \in S_n$ עבור אבור $\sin{(\sigma)}$. $\operatorname{sign}\left(\sigma\right)=|P\left(\sigma\right)|$ מוגדרת כ־

 $\sigma \in S_n$ תמורה. $\sigma \in S_n$ תמורה $N\left(\sigma
ight) = \left|\left\{\left(i,j\right) \mid j>i \wedge \sigma\left(j
ight) < \sigma\left(i
ight)
ight\}
ight|$ נגדיר את $i\leq n$ $N\left(\sigma
ight) = 1) \quad z_{\sigma}\left(i
ight) = \left|\left\{\left(i,j
ight) \mid j>i, \sigma\left(i
ight) < \sigma\left(j
ight)
ight\}\right| = 1$ $\operatorname{sign}(\sigma) = (-1)^{N(\sigma)}$: נגדיר את sign גדיר את (גדיר את $\sum_{i=1}^n z_{\sigma}(i)$

 $\operatorname{sign}\left(\sigma au
ight)=\operatorname{sign}\left(\sigma
ight)\cdot\operatorname{sign}\left(au
ight)$ 3.7 משפט

8 מרחב וקטורי

 \mathbb{F} מרחב וקטורי מעל שדה 1.8 מרחב וקטורי מעל אדה זו שלשה ($V,+,\cdot$) או שלשה ($V,+,\cdot$) מי

- . חבורה חילופית. $\langle V, + \rangle$
- : בסקיימת: בסקיימת: $\mathbb{F} imes V o V$.2
- $orall lpha, eta \in \mathbb{F}. orall \overline{v} \in V. eta \cdot (lpha \cdot \overline{v}) =$. (a) . (b) . (b) . (c) . (c) .
 - . $orall \overline{v} \in V.1_{\mathbb{F}} \cdot \overline{v} = \overline{v}$ (ב)
 - 3. חוק הפילוג:
 - $\forall \alpha, \beta \in \mathbb{F}. \forall \overline{v} \in V. (\alpha + \beta) \cdot \overline{v} = \alpha \cdot \overline{v} + \beta \cdot \overline{v}$ (x)
- $\forall a \in \mathbb{F}. \forall \overline{v_1}, \overline{v_2} \in V.\alpha \cdot (\overline{v_1} + \overline{v_2}) = \alpha \cdot \overline{v_1} + \alpha \cdot \overline{v_2}$ (2)

8.1 בוחן תת מרחב

"מימ: מרחב אמ $U\subseteq F^n$

- .1 סגורה לחיבור. U
- .2 סגורה לכפל בסקלר. U
- $U
 eq \emptyset$ ניתן להחליף את התנאי ב־. $ar{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

9 בסיס האמל

- לכל אם תת קבוצה $X\subseteq V$ נקראת בת"ל אם לכל $v_1,\ldots,v_n,v_1,\ldots,v_n\in X$ בת"ל. כלומר אין צירוף לינארי לא טריויאלי של איברים מ"ל שיוצא v_1,\ldots,v_n
- $\mathrm{.sp}\,(X)=V$ אם פורשת פורשת גקראת $X\subseteq V$
- קבוצה אם היא בסיס לקראת נקראת גע $X\subseteq V$ היא קבוצה ופורשת.

10 סכום ישר

 $U_1\oplus$ ישר שכום אוא $U_1+\cdots+U_n$ הוא סכום ישר הגדרה: נאמר כי $\overline{v}\in U_1+\cdots+U_n$ אם לכל $\overline{v}\in U_1+\cdots+U_n$ קיימת ויחידה סדרה $\overline{v}=\sum_{i=1}^n\overline{u_i}$ כך ש $\overline{u_i},\ldots,\overline{u_n}\in U_i$ יחידה.

משפט האיפיון: יהיו יהיו $U_1,\dots,U_n\subseteq U$ תמ"ו, הבאים שקולים:

- $.U_1\oplus\cdots\oplus U_n$.1
- $B_1 \frown B_2 \frown$ לכל סדרות בת"ל, השרשור B_i ב־.2 בת"ל. בת"ל. בת"ל.
 - $.U_i\cap\left(\sum_{j=1,j
 eq i}^nU_j
 ight)=\left\{\overline{0}
 ight\}$, $1\le i\le n$.3 .3 .2 בפרט אם $.U_1\cap U_2=\left\{\overline{0}
 ight\}$,n=2

:, נגדיר. תהא $A\in M_{m imes n}\left(\mathbb{F}
ight)$, נגדיר

11

.Sols $(A)=\{x\in\mathbb{F}^n\mid Ax=\overline{0}\}$: מרחב הפתרונות:

מרחב העמודות והשורות

- $.C(A) = {
 m sp}\left({{C_1}\left(A \right), \ldots ,{C_n}\left(A \right)} \right)$.2
- $R(A) = \text{sp}(R_1(A), \dots, R_m(A))$ מרחב השורות: 3.

עם גם כי . $\dim\left(R\left(A\right)\right)=\dim\left(C\left(A\right)\right)$ 1.11 משפט . $\operatorname{Rank}\left(A\right)$

 $\mathcal{N}(A) = \dim(\operatorname{Sols}(A))$ בנוסף נסמן

משפט 2.11 (משפט הדרגה): פעולות דירוג משמרות את משפט 1.11 (משפט הדרגה): אבל אב בהכרח משמרות (Rank (A) גם את (C(A).

 $\operatorname{Rank}\left(A\right)+\mathcal{N}\left(A\right)=n$ (משפט הדרגה והאפסות):

 $\mathrm{Rank}\,(A)=n\iff$ הפיכה A הפיכה, $A\in M_{m imes n}\left(\mathbb{R}
ight)$ מטקנה: rank

- $.\mathrm{Rank}\left(A\right) \leq \min\left(n,m\right) \ .\mathbf{1}$
- $\operatorname{Rank}(A \cdot B) \leq \min(\operatorname{Rank}(A), \operatorname{Rank}(B))$.2
 - $\operatorname{Rank}(A+B) \leq \operatorname{Rank}(A) + \operatorname{Rank}(B)$.3
- $\mathrm{Rank}\,(A\cdot B)=$ אם אז הפיכה אז הפיכה A שם 4.4 Rank (B), $\mathrm{Rank}\,(B\cdot A)=\mathrm{Rank}\,(B)$

12 העתקות לינאריות

T:V o U יהיו (אמר מ"ו מעל \mathbb{F} , נאמר כי V,U יהיו העתקה לינארית אם:

- $\forall v_1, v_2 \in V.T(v_1 + v_2) = T(v_1) + T(v_2)$.1
 - . $\forall \alpha \in \mathbb{F}. \forall v \in V.T (\alpha \cdot v) = \alpha \cdot T(v)$.

הגדרות נוספות:

- הגרעין $\ker\left(T\right)=T^{-1}\left[\{0\}\right]=\left\{\overline{v}\in V\mid T\left(\overline{v}\right)=0\right\}$.1 .kernel , T
 - T התמונה של $Im(T) = \{T(\overline{v}) \mid \overline{v} \in V\} \subseteq U$.2

T בנוסף $\ker\left(T\right),Im\left(T\right)$ תמ"ו של

12.1 תכונות בסיסיות

תהא T:V o U לינארית,

- לינארי כל צירוף לינארי $T\left(\sum_{i=1}^n \alpha_i v_i\right) = \sum_{i=1}^n \alpha_i T\left(v_i\right)$.1 נשמר.
 - .2 מכפליות. $T\left(-\overline{v}\right)=-T\left(\overline{v}\right)$
 - $T(\overline{0}_V) = \overline{0}_U$.3
 - $\ker(T) = {\overline{0}} \iff \mathsf{v}^n\mathsf{n}\mathsf{n} T$.4
 - (טריויאלי). Im $(T)=U\iff T$.5
- אם (u_1,\ldots,u_n) סדרה פורשת של V אז (u_1,\ldots,u_n) סדרה פורשת של $(T\left(u_1
 ight),\ldots,T\left(u_k
 ight))$

$$LD\left(v_{1},\ldots,v_{n}
ight)$$
 \subseteq , $\left(v_{1},\ldots,v_{n}
ight)$.7 .7 ..., $LD\left(T\left(v_{1}
ight),\ldots,T\left(v_{n}
ight)
ight)$

$$(v_1,\ldots,v_n)$$
 אם $(T\left(v_1\right),\ldots,T\left(v_n\right))$ בת"ל.

$$egin{array}{lll} v_i &\in& \mathrm{sp}\left(v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_n
ight) & \mathrm{T}\left(v_i
ight) &\in& \mathrm{LL} & \mathrm{SP}\left(T\left(v_1
ight),\ldots,T\left(v_{i-1}
ight),T\left(v_{i+1}
ight),\ldots,T\left(v_n
ight) \end{array}
ight) \end{array}$$

$$LD\left(T\left(v_{1}\right),\ldots,T\left(v_{n}\right)
ight)=$$
 אם T חח"ע, אז $LD\left(v_{1},\ldots,v_{n}\right)$

V אם T על, אז T מעבירה סדרה פורשת של T לסדרה פורשת של U.

 $B=(b_1,\dots,b_n)$ היי V,U בסיס של .8 מ"ו. יהי $u_1,\dots,u_n\in U$ יהיו $u_1,\dots,u_n\in U$ יהיו ויחידה העתקה לינארית U_i לינארית U_i כך שלכל U_i כלומר העתקה לינארית נקבעת U_i כלומר העתקה לינארית נקבעת ביחידות לפי U_i U_i איברים.

$$\dim\left(V
ight) = \dim\left(\ker\left(T
ight)
ight) +$$
משפט המימדים השני: . $\dim\left(Im\left(T
ight)
ight)$

12.2 הטלה

יהי $V=U\oplus W$ תמ"ו כך ש
 $U,W\subseteq V$. ראינו יהי עי מ"ו, ו־ $\overline{v}\in V$ מיתן להציג באופן יחיד:

$$\overline{v} = \overline{u} + \overline{w}, \overline{u} \in U, \overline{w} \in W$$

U על V על על על על את ההטלה של

$$\begin{split} P_{(U,W)}: V &\to U \\ P_{(W,U)}: V &\to W \\ P_{(U,W)}\left(\overline{v}\right) &= \iota x \in U. \exists y \in W. \overline{v} = x + y \end{split}$$

כלומר זה ייצוג לאחד מהאיברים בהצגה היחידה של וקטור.

:טענות

.1 הטלה $P_{(U,W)}$ היא העתקה לינארית.

$$.P_{(U,W)} + P_{(W,U)} = Id_V , P_{(U,W)} \circ P_{(U,W)} = P .2$$

$$.P_{(U,W)}^{-1}[\{0\}] = W$$
 , $Im(P_{(U,W)}) = U$.3

12.3 איזומורפיזם

12.3.1 הגדרות

היא $f:V \to U$ כי גאמר מ"ו מעל \mathbb{F} , מ"ו מעל עהיה יהיו איזומורפיזם של מ"ו אם:

- .1 חח"ע ועל.
- .2 העתקה לינארית (חיבורית והומוגנית).

 $v=\sum_{i=1}^n x_i\overline{u_i}$ איזומורפיזם משמר את הפתרונות של $.v,\overline{u_1},\dots,\overline{u_n}\in V$ כאשר

שני מרחבים וקטוריים מעל אותו שדה נקראים שני מרחבים ומסומנים ע $V \simeq U$ ומסומנים איזומורפיים איזומורפיים ומסומנים עו הייחס שקילות". $T:V \to U$

 $V\simeq U\iff$ משפט: יהיו V,U מ"ו נוצרים סופית, אז ווצרים $\dim\left(V
ight)=\dim\left(U
ight)$

משפט 1.12 (2 מתוך 3 להעתקות לינאריות): כל 2 מתוך 3 הבאים שקולים לכך ש־T איזומורפיזם.

.dim
$$(V) = \dim(U)$$
 .1

- ע."ע.T .2
 - .3 על.

12.3.2 קואורדינטות

יהי 0 מ"ו מעל \mathbb{R} , בסיס של N. נסמן n מ"ו מעל \mathbb{R} , ויהי מים $v\in V$ בסיס. על פי משפט, לכל $v\in V$ בסיס. על פי משפט, לכל $v=\sum_{i=1}^n\alpha_ib_i$ כך ש $v=\sum_{i=1}^n\alpha_ib_i$ נגדיר את הקואורדינטות של $v=\sum_{i=1}^n\alpha_ib_i$

$$\left[\overline{v}\right]_{B} = \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n}$$

זה איזומורפיזם מ־V ל־- \mathbb{F}^n העתקת הקואורדינטות זה איזומורפיזם מ־ $[\cdot]_B:V \to \mathbb{F}^n$ תסומן גם בתור

12.4 מרחב ההעתקות

מרחב ${\rm Hom}\,(V,U)=\left\{T\in U^V\mid {\rm T\ is\ linear}\right\}$ התדרה: .
 $\langle U^V,+,\cdot\rangle$ מרחב של מרחב זה תת מרחב ההעתקות.

משפט: $\dim\left(\operatorname{Hom}\left(V,U\right)\right)=\dim\left(V\right)\cdot\dim\left(U\right)$ זה נכון אפילו אם V,U לא נוצרים סופית.

מטריציונית 12.5

את גדיר את, $A\in M_{m\times n}(\mathbb{F})$ מטריצה לכל הגדרה: $T_A:\mathbb{F}^n\to\mathbb{F}^m$, אימה המערקה המטריציונית המתאימה ל

$$T_A(\overline{v}) = A\overline{x}$$

 $A\in$ מטריצה אם קיימת מטריציונית פונקציה fנקראת נקראת פונקציה .A=[f]ונסמן הו $f=T_A$ ש־ כך ש $M_{m\times n}\left(\mathbb{F}\right)$

היא: [T] היא:

$$[T] = \left(T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad T \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \quad \dots \quad T \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right)$$

משפט: תהא $T:\mathbb{F}^n \to \mathbb{F}^m$ העתקה לינארית משפט: תהא $T:\mathbb{F}^n \to \mathbb{F}^m$ מטריציונית.

:טענות

.Sols
$$(A) = T_A^{-1} [\{\overline{0}\}] = \ker (T_A)$$
 .1

$$.C(A) = Im(T_A)$$
 .2

על אם היא פורשות. אם היא ריבועית אז גם הפיכה. T_A .3 אז גם הפיכה.

עמודות A בת"ל. כי אין שתי \longleftrightarrow חח"ע אין שתי T_A .4 דרכים להגיע לאותו הדבר.

.הפיכה $A\iff$ עמודות A בסיס A הפיכה T_A .5

$$[T + S] = [T] + [S], [\alpha \cdot T] = \alpha \cdot [T], [S \circ T] = [S] \cdot [T]$$
 .6

13 מטריצה מייצגת

יהי מוצר סופית. א"ל V,U צ"ל $T:V\to U$ מוצר סופית. הגדרה: תהא U בסיס של U, ו־U בסיס של U, ו־U בסיס של U, ו־U בסיס של U בסיס של U, ו־U בסיס של U בסיס של און בסיס של בסיס של בסיס של בסיס של המייצגת בסיס של בס

$$T_C^B = Q_C \circ T \circ Q_B$$
$$[T]_C^B = [T_C^B]$$

:טענות

$$.C_{i}\left(\left[T_{C}^{B}\right]\right)=T_{C}^{B}\left(e_{i}\right)$$
 .1

$$.[T]_C^B = \left(egin{bmatrix} |&&&&|&&&|\\ [T(b_1)]_C&\dots&[T(b_n)]_C&&&&|\\ |&&&&|&\end{array}
ight)$$
 כלומר

$$[T]_{C}^{B} \cdot [v]_{B} = [T(v)]_{C}$$
 .2

$$.[\overline{v}]_B \in \mathrm{Sols}\left([T]_C^B
ight) \iff \overline{v} \in \ker\left(T
ight)$$
 , $\overline{v} \in V$.3

$$[\overline{u}]_C\in \mathrm{Cols}\left([T]_C^B
ight)\iff \overline{u}\in Im\left(T
ight)$$
, גלכל מסיקים ש:

$$\mathcal{N}\left(\left[T\right]_{C}^{B}\right)=\dim\left(\ker\left(T\right)\right),\operatorname{Rank}\left(\left[T\right]_{C}^{B}\right)=\dim\left(\operatorname{Im}\left(T\right)\right)$$

הפיכה,
$$[T]_C^B\iff$$
 הפיכה $T_C^B\iff$ הפיכה, T .5 בנוסף $T_C^B=\left[T^{-1}\right]_B^C$

$$[S \circ T]_D^B = [S]_D^C \cdot [T]_C^B$$
 .6

אלגוריתם לחישוב המטריצה המייצגת: נבחר בסיס שנוח לחשב בו קואורדינטות ב־U בדרך כלל הבסיס הסטנדרטי. $W=(w_1,\ldots,w_n)$ נשתמש בדירוג:

באופן דומה לאיך שמחשבים מטריצה הופכית.

B,C הגדרה 1.13 מטריצות שינוי הקואורדינטות: יהיו שני בסיסים של מ"ו V. אז נגדיר את מטריצת שינוי הקואורדינטות מ־V ל־V על ידי: $Id_V|_C^B$.

$$[Id_V]_C^B \cdot [\overline{v}]_B = [\overline{v}]_C$$
 , $\overline{v} \in V$.1

$$.[T]_C^B = [Id]_C^{C'} \cdot [T]_{C'}^{B'} \cdot [Id_V]_{B'}^B$$
 .2

14 מטריצות דומות

יהיו אם דומות אם וא וא גאמר כי א $\mathcal{A}, B \in M_n\left(\mathbb{F}\right)$ יהיו יהיו אם א. א גאמר כך א $A, B \in M_n\left(\mathbb{F}\right)$ מטריצה הפיכה פי כך א כך אינ

(באים שקולים: $A,B\in M_n\left(\mathbb{F}\right)$ משפט: נתון

- .1 A, B דומות
- על V של C,C' ובסיסים $T:V\to V$ של .2 .2 . $[T]_C=A,[T]_{C'}=B$

על V על C כלים בסיס , $T:V\to V$ כל .3 .5. לכל , $[T]_{C'}=B$ אז קיים בסיס אז קיים בסיס , $[T]_{C}=A$

ואס A,B דומות אז:

.Rank
$$(A) = \text{Rank}(B)$$
, $\mathcal{N}(A) = \mathcal{N}(B)$.1

$$\operatorname{tr}(A) = \sum_{i=1}^{n} (A)_{i,i}$$
 כאשר $\operatorname{tr}(A) = \operatorname{tr}(B)$.2

$$\det(A) = \det(B)$$
 .3

15 אלגוריתמים

15.1 צמצום סדרה לבת"ל

15.1.1 לפי שורות

יהיו
$$v_1,\dots,v_n$$
 נשים את $v_1,\dots,v_n\in\mathbb{F}^m$ יהיו יהיו $B=\begin{pmatrix}v_1^t\\\vdots\\v_n^t\end{pmatrix}\in M_{n\times m}\left(\mathbb{F}\right)$

(כלומר, בעמודה של מקדם הפותח יש רק 1 במקום אחד והשאר אפסים, אבל המקדמים הפותחים לא ממוינים). השורות שהתאפסו מתאימות לוקטורים שהיו תלוים לינארית באחרים, וסדרת השורות שלא התאפסו הן סדרה בת"ל.

15.1.2 לפי עמודות

נשים את $A=(v_1\dots v_n)$ כעמודות, v_1,\dots,v_n נדרג ונבדוק שיש רק פתרון טריויאלי למערכת ההומוגנית (A \mid 0), כלומר שאין אף משתנה חופשי.

15.2 השלמה של סדרה בת"ל לבסיס

תהא (u_1,\ldots,u_m) סדרה בת"ל, ור (v_1,\ldots,v_k) סדרה פורשת. נבנה מטריצה שעמודותיה:

$$(v_1,\ldots,v_k,u_1,\ldots,u_m)$$

נדרג את המטריצה, ונסתכל על העמודות מu שנפתחה בהן מדרגה. את הuים המתאימים נוסיף לסדרת הuים, ונקבל בסיס.

15.3 חיתוך של מרחבים וקטוריים

יהיו v_1,\ldots,v_n מרחבים שבסיסיהם U,V ו־ יהיו u_1,\ldots,v_n מרחבים שבסיסיהם וקטוריים u_1,\ldots,u_m

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 u_1 + \dots + \beta_m u_m$$

ונראה מה הפתרונות. מרחב הפתרונות הוא בדיוק החיתוך.