In [1]:

```
from pandas import Series,DataFrame
# import libs
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# machine Learning
import sklearn
from sklearn import preprocessing
from scipy.stats import pearsonr
# machine learning - supervised
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, confusion matrix
from sklearn.metrics import accuracy_score
# machine Learning - unsupervised
from sklearn import decomposition
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn import linear model
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn import svm
# visualization and plotting
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
%matplotlib qt
import warnings
warnings.filterwarnings('ignore')
```

```
In [5]:
```

```
df=pd.read_csv("indian_liver_patient.csv")
df.head()
df.describe()
df.describe(include=['0'])
df.info()
df.shape
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):
                              583 non-null int64
Age
Gender
                              583 non-null object
Total_Bilirubin
                              583 non-null float64
Direct_Bilirubin
                              583 non-null float64
Alkaline_Phosphotase
                              583 non-null int64
                              583 non-null int64
Alamine Aminotransferase
                              583 non-null int64
Aspartate_Aminotransferase
Total Protiens
                              583 non-null float64
                              583 non-null float64
Albumin
                              579 non-null float64
Albumin_and_Globulin_Ratio
Dataset
                              583 non-null int64
dtypes: float64(5), int64(5), object(1)
memory usage: 50.2+ KB
Out[5]:
(583, 11)
```

In [6]:

III [O]

```
df['Dataset'].value_counts()
```

Out[6]:

416
 167

Name: Dataset, dtype: int64

In [7]:

```
df[df["Albumin_and_Globulin_Ratio"].isnull()]
df["Albumin_and_Globulin_Ratio"].plot(kind='hist')
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x19c9f3c57b8>

In [9]:

df.Albumin_and_Globulin_Ratio.fillna(df['Albumin_and_Globulin_Ratio'].median(), inplace=Tru

In [10]:

```
# encode gender

le = preprocessing.LabelEncoder()
le.fit(df.Gender.unique())
df['Gender_Encoded'] = le.transform(df.Gender)
df.drop(['Gender'], axis=1, inplace=True)
```

In [11]:

```
# correlation plots
g = sns.jointplot("Total_Bilirubin", "Direct_Bilirubin", data=df, kind="reg")
```


In [12]:

```
# calculate correlation coefficients for two variables
print(pearsonr(df['Total_Bilirubin'], df['Direct_Bilirubin']))
```

(0.8746179301164123, 7.873553178042517e-185)

In [13]:

```
# calculate correlation coefficients for all dataset
correlations = df.corr()
```

In [14]:

```
# and visualize
plt.figure(figsize=(10, 10))
g = sns.heatmap(correlations, cbar = True, square = True, annot=True, fmt= '.2f', annot_kws
```


In [16]:

```
# based on correlation, you can exclude some highly correlated features

# pair grid allows to visualize multi-dimensional datasets
g = sns.PairGrid(df, hue="Dataset", vars=['Age','Gender_Encoded','Total_Bilirubin','Total_F g.map(plt.scatter)
plt.show()
```


In []:

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.countplot(label='count',x='Dataset',data=df)
sns.catplot(data=df,y='Age',x='Gender_Encoded',hue='Dataset',jitter=0.4)
sns.jointplot("Total_Bilirubin", "Direct_Bilirubin", data=df, kind="reg")
sns.jointplot("Aspartate_Aminotransferase", "Alamine_Aminotransferase", data=df, kind="reg"
sns.jointplot("Total_Protiens", "Albumin", data=df, kind="reg")
df.corr()
```

In [18]:

```
#Results of Analysis:
#Age and Gender affect the occurence of disease.
#Some features are directly correlated like Total_Bilirubin and Direct_Bilirubin, Aspartate
#Male has more the no of liver disease than female.
#Since gender is categorical we need to convert it to numeric data.
df['Dataset']=df['Dataset'].map({1:0,2:1}).astype(int)
```

In [19]:

```
X = df.drop(['Gender_Encoded','Dataset','Direct_Bilirubin','Aspartate_Aminotransferase'], a
y = df['Dataset']
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.33, random_state=101)
```

In [20]:

```
#Logistic Regression
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(xTrain,yTrain)
#Finding the performance of model
lg_pred = logmodel.predict(xTest)
#confusion matrix
from sklearn.metrics import confusion_matrix
confusion_matrix(yTest,lg_pred)
cmlog= confusion_matrix(yTest, lg_pred)
cmlog[1,1]
cmlog.sum()
acculog= (cmlog[0,0]+cmlog[1,1])/cmlog.sum()*100
round(acculog)
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
lg_roc_auc = roc_auc_score(yTest,logmodel.predict(xTest))
round(lg_roc_auc*100)
#Probability
Lgprob = logmodel.predict_proba(xTest)
lgfpr,lgtpr,thresholds = roc_curve(yTest,logmodel.predict_proba(xTest)[:,1])
#PLot ROC and AUC
plt.figure()
plt.plot(lgfpr,lgtpr,label='Logistic Regression (area = %0.2f)' %lg_roc_auc)
plt.plot([0,1],[0,1],'r--') #r means color red and -- means style of line
plt.xlim([0.0,1.0]) #limit of x axis
plt.ylim([0.0,1.0]) #limit of y axis
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC and AUC')
plt.legend(loc="lower right") #location of Legend by default is left top
plt.show()
```


In [21]:

```
#Random forest
from sklearn.ensemble import RandomForestClassifier
random_forest = RandomForestClassifier(n_estimators= 100, oob_score = True, random_state=12
random_forest.fit(xTrain,yTrain)
Y_prediction = random_forest.predict(xTest)
random_forest.score(xTrain,yTrain)
#Random Forest confusion matrix
from sklearn.metrics import confusion matrix
confusion_matrix(yTest, Y_prediction)
rf_roc_auc = roc_auc_score(yTest,random_forest.predict(xTest))
round(rf roc auc*100)
#Random forest Probability
rfprob = random_forest.predict_proba(xTest)
rffpr,rftpr,thresholds = roc_curve(yTest,random_forest.predict_proba(xTest)[:,1])
plt.figure()
plt.plot(rffpr,rftpr,label='Radom Forest (area = %0.2f)' %rf roc auc)
plt.plot([0,1],[0,1],'r--') #r means color red and -- means style of line
plt.xlim([0.0,1.0]) #limit of x axis
plt.ylim([0.0,1.0]) #limit of y axis
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC and AUC')
plt.legend(loc="lower right") #location of Legend by default is left top
plt.show()
```


In [24]:

```
'''KNN'''
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=39)
knn.fit(xTrain,yTrain)
Y_pred_knn = knn.predict(xTest)
confusion_matrix(yTest,Y_pred_knn)
#tuning KNN
error = []
#calculating error for k values between 1 and 40
for i in range(1,40):
    knn = KNeighborsClassifier(n_neighbors = i)
    knn.fit(xTrain,yTrain)
    pred_i = knn.predict(xTest)
    error.append(np.mean(pred_i != yTest))
plt.figure()
plt.plot(error, marker='o')
plt.xticks(np.arange(0,40,step=1))
plt.title('Error Rate K value')
plt.xlabel('K value')
plt.ylabel('Mean Error')
'''n neighbors = 22 because it is the lowest error
or 39 because it is giving the highest AUC'''
#PLot ROC and AUC
knn_roc_auc = roc_auc_score(yTest,knn.predict(xTest))
round(knn_roc_auc*100)
knnprob = knn.predict_proba(xTest)
knnfpr,knntpr,thresholds = roc_curve(yTest,knn.predict_proba(xTest)[:,1])
plt.figure()
plt.plot(knnfpr,knntpr,label='KNN (area = %0.2f)' %knn_roc_auc)
plt.plot([0,1],[0,1],'r--') #r means color red and -- means style of line
plt.xlim([0.0,1.0]) #limit of x axis
plt.ylim([0.0,1.0]) #limit of y axis
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC and AUC')
plt.legend(loc="lower right") #location of Legend by default is left top
plt.show()
```


In [25]:

```
#decision tree
#Decision Tree
from sklearn.tree import DecisionTreeClassifier
decision_tree = DecisionTreeClassifier()
decision_tree.fit(xTrain,yTrain)
Y_Pred_DT = decision_tree.predict(xTest)
confusion_matrix(yTest, Y_Pred_DT)
dtrob = decision_tree.predict_proba(xTest)
dt roc auc = roc auc score(yTest,decision tree.predict(xTest))
dtfpr,dttpr,thresholds = roc_curve(yTest,decision_tree.predict_proba(xTest)[:,1])
plt.figure()
plt.plot(dtfpr,dttpr,label='Decision Tree (area = %0.2f)' %dt_roc_auc)
plt.plot([0,1],[0,1],'r--') #r means color red and -- means style of line
plt.xlim([0.0,1.0]) #limit of x axis
plt.ylim([0.0,1.0]) #limit of y axis
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC and AUC')
plt.legend(loc="lower right") #location of Legend by default is left top
plt.show()
```


In [26]:

```
#support Vector Machines (SVM) ensemble model faster
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
svc= OneVsRestClassifier(BaggingClassifier(SVC(kernel='linear',
                                               probability=True)))
svc.fit(xTrain,yTrain)
Y pred SVM = svc.predict(xTest)
confusion_matrix(yTest,Y_pred_SVM)
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc curve
svm_roc_auc= roc_auc_score(yTest,svc.predict(xTest))
fpr,tpr,thresholds = roc_curve(yTest,svc.predict_proba(xTest)[:,1])
plt.figure()
plt.plot(fpr,tpr,label='SVM (area = %0.2f)' %svm_roc_auc)
plt.plot([0,1],[0,1],'r--') #r means color red and -- means style of line
plt.xlim([0.0,1.0]) #limit of x axis
plt.ylim([0.0,1.0]) #limit of y axis
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC and AUC')
plt.legend(loc="lower right") #location of Legend by default is left top
plt.show()
```


In [28]:

```
##MODEL EVALUATION TABLE
#pip install pTable
from prettytable import PrettyTable
from sklearn.metrics import accuracy score
from sklearn.metrics import recall score
from sklearn.metrics import precision_score
from sklearn.metrics import f1 score
x= PrettyTable()
x.fld names = ["MODEL1", "ACCURACY1", "PRECISION1", "RECALL1", "F1-SCORE1", "ACCURACY1"]
x.add_row(["LOGISTIC REGRESSION",
           format(round(accuracy_score(yTest,lg_pred),2),"0.2f"),
           format(round(precision_score(yTest,lg_pred),2),"0.2f"),
           format(round(recall_score(yTest,lg_pred),2),"0.2f"),
           format(round(f1_score(yTest,lg_pred),2),"0.2f"),
           format(round(lg_roc_auc,2),"0.2f")])
print(x)
x.add_row(["RANDOM FOREST",
           format(round(accuracy_score(yTest,Y_prediction),2),"0.2f"),
           format(round(precision_score(yTest,Y_prediction),2),"0.2f"),
           format(round(recall_score(yTest,Y_prediction),2),"0.2f"),
           format(round(f1_score(yTest,Y_prediction),2),"0.2f"),
           format(round(rf_roc_auc,2),"0.2f")])
print(x)
```

In [29]:

Field 1	Field 2	Field 3	Field 4	Field 5	++ Field 6 ++
LOGISTIC REGRESSION RANDOM FOREST RANDOM FOREST	0.68 0.68 0.68	0.46 0.47 0.47	0.20 0.37 0.37	0.28 0.42 0.42	: :

In [30]:

Field 1	Field 2 	Field 3 	Field 4	Field 5	Field 6
LOGISTIC REGRESSION RANDOM FOREST RANDOM FOREST SVM	0.68	0.46	0.20	0.28	0.55
	0.68	0.47	0.37	0.42	0.59
	0.68	0.47	0.37	0.42	0.59
	0.69	0.00	0.00	0.00	0.50

In [31]:

4	L	L	L	-	L L
Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
LOGISTIC REGRESSION	0.68	0.46	0.20	0.28	0.55
RANDOM FOREST	0.68	0.47	0.37	0.42	0.59
RANDOM FOREST	0.68	0.47	0.37	0.42	0.59
SVM	0.69	0.00	0.00	0.00	0.50
DECISION TREE	0.63	0.40	0.39	0.39	0.56

In [32]:

Field 1	Field 2	Field 3	Field 4	Field 5	+ Field 6
LOGISTIC REGRESSION	0.68	0.46	0.20	0.28	0.55
RANDOM FOREST	0.68	0.47	0.37		0.59
RANDOM FOREST	0.68	0.47	0.37	0.42	0.59
SVM	0.69	0.00	0.00	0.00	0.50
DECISION TREE	0.63	0.40	0.39	0.39	0.56
KNN	0.70	0.56	0.15	0.24	0.55

In []: