检错编码——循环冗余校验码 (CRC 码)

日期: 2024年10月20日

知识总览

- 循环冗余校验码 (CRC 码)
 - 。 CRC 码的基本思想
 - 。 如何构造
 - 。 如何检错纠错
- 循环冗余校验: Cyclic Redundancy Check (CRC)

循环冗余校验码的基本思想

	126		126		121
<mark>7</mark>	882	7	883	7	852
	7		7		7
	18		18		15
	14		14		14
	4 2		43		12
	4 2		4 2		7
	0		1		5

- 以上校验的思想就是检查余数是否发生错误
- 循环冗余校验码的思想
 - 。 数据发送、接收方约定一个"**除数**" (二进制除数)
 - K 个信息位 + R 个校验位作为"被除数",添加校验位后需保证除法的余数为 0

循环冗余校验码

- **例**: 设生成多项式为 $G(x)=x^3+x^2+1$,信息码为 101001,求对应的 CRC 码
 - 1. 确定 K、R 以及生成多项式对应的二进制码
 - \circ K = 信息码的长度 = 6, R = 生成多项式的最高次幂 = 3 \rightarrow 校验码位数N=K+R=9
 - \circ 生成多项式 $G(x)=1\cdot x^3+1\cdot x^2+0\cdot x^1+1\cdot x^0$, 对应二进制码**1101**

2. 移位

○ 将信息码左移 R 位, 低位补 0, 即得到 101001000

3. 相除

。 对移位后的信息码,用生成多项式进行模 2 除法,产生余数,过程如图

■ "模 2 除""模 2 减",模 2 减就是按位异或

○ 校验位: 001

。 得出对应的 CRC 码: 101001 001

4. 检错和纠错

接收: 101001001, 用 1101 进行模 2 除→余数为 000, 代表没有出错

。 接收: 101001011, 用 1101 进行模 2 除→余数为 010, 代表C₂出错

接受	余数	出错位
101001 01 0	001	1
101001 0 1 1	010	2
101001 1 01	100	3
10100 0 001	101	4
1010 1 1 001	111	5
101 1 01 001	011	6
10 0 001 001	110	7
1 1 1001 001	001	8
0 01001 001	010	9

■ 出错位 2 和出错位 9 对应的余数相同,这是信息码过长导致的

• 再看一个例子

接受	余数	出错位
0100 01 0	001	1
0100 0 1 1	010	2
0100 1 01	100	3
010 1 001	101	4
01 1 0 001	111	5
0 0 00 001	011	6
1 100 001	110	7

• **重要结论**:对于确定的生成多项式G(x),出错位与余数是相对应的;只要数据位数没有超过余数所能表示的范围,那么余数和出错位是**一一对应的**

- 对于 K 个信息位,R 个校验位,若生成多项式选择得当,且 $2^R \ge K + R + 1$ (000 对应正确),则 CRC 码**可以纠正 1 错位**
 - 。 但在实际计算机网络的应用中,CRC 校验码一般只用于检错,不用于纠错,因为信息码很长校验 码很短
- 理论而言,可以证明循环冗余验证码的检错能力有以下特点:
 - 。 可检测出所有奇数个错误
 - 。 可检测出所有双比特的错误
 - 。 可检测出所有小于等于校验位长度 (R) 的连续错误
- CRC 码名字中带"循环"的原因(不重要)
 - 。 数据循环移位 (即将数据从一端移至另一端) , 生成的 CRC 码将保持相同的形式