DISEÑO AUTOMÁTICO DE SISTEMAS FIABLES

Práctica 4

Marcos Gago García David Gregorio Muñoz

ÍNDICE

Objetivos	3
Conceptos	3
Diseño	4
Otras posibles funcionalidades	8

OBJETIVOS:

En esta cuarta práctica se va a hacer el diseño de un procesador utilizando un microcontrolador Microblaze y diferentes componentes que ofrecen Vivado y la placa Nexys 4 DDR, como una memoria, un reloj o el módulo UART.

CONCEPTOS:

Para esta práctica es necesario definir y entender determinados conceptos que se aplicarán a lo largo de la misma. Estos conceptos son los siguientes:

MicroBlaze: es un microprocesador de 32 bits, con arquitectura de tipo RISC (conjunto de instrucciones reducido) y de tipo Harvard (memorias de datos e instrucciones separadas). Está diseñado y distribuido por Xilinx,y debido a su estructura y requisitos y alta configurabilidad lo hacen ideal para implementarse en una FPGA.

SoC: es el acrónimo de *System On a Chip*. Se les llama así a los chips que dentro de ellos integran múltiples componentes diferentes como memorias, procesadores, GPUs o sistemas de entrada/salida. Juntos forman un sistema electrónico completo.

UART: es el acrónimo de *Universal Asynchronous Receiver/Transmitter*. Es un circuito integrado utilizado para enviar y recibir datos en serie de manera asíncrona entre diferentes componentes y/o dispositivos. Es un estándar muy utilizado en el diseño hardware para la transmisión de datos.

GPIO: es un conjunto de pines de entrada/salida de propósito general que se encuentran en multitud de dispositivos, que al no tener una función específica pueden aportar soluciones cuando se requieren pines adicionales en un diseño específico, y pueden ser programados para llevar a cabo funciones como la de sensores o LEDs.

MONTAJE DEL PROCESADOR

Creado el proyecto con la placa *Nexys 4 DDR*, se comienza haciendo un nuevo diagrama de bloques. Una vez hecho, lo primero para el diseño del procesador es añadir el microcontrolador Microblaze.

Se hace *Run Block Automation* y le asigna una memoria local de 32KB y una caché de 16KB, que se traduce en el siguiente diagrama. El propio Vivado ha introducido los módulos del reloj y de la memoria, aparte del de debug. También se va a modificar el bloque del reloj con las siguiente configuración donde, a las entradas de reloj y y reset, se les asigna el reloj y el reset de la FPGA. Además se crean dos frecuencias diferentes, de 100 y 200MHz, y se pone el reset a *Active Low*.

Se añaden ahora dos nuevos bloques: el de los switches y el de los LEDs.

Al bloque de los LEDs hay que asignarle los LEDs de la placa a la salida, y hacerla externa.

Tras esto, se añade el bloque de la interfaz UART (AXI Uartlite), se hace el Run Connection Automation para todos los bloques y se obtiene el siguiente diagrama (después del regenerate layout).

Se añade otro bloque más. Este es el *Memory Interface Generator*, o el generador de interfaz de memoria, la RAM del sistema. Se realiza el Run Connection Automation exclusivamente para este bloque.

El resultado es este diagrama.

Se realiza un ajuste, donde se desconecta la RAM del reloj de 100MHz y se conecta al de 200MHz. O lo que es lo mismo, en vez de que la entrada *sys_clock_i* del bloque de memoria vaya a la salida *clk_out1* del reloj, que esta vaya a la *clk_out2*.

Para finalizar el diagrama de bloques, se debe indicar que las conexiones a la RAM deben ir a la memoria integrada de la FPGA. El resultado final es el diagrama de la imagen inferior, que como se puede ver, ha pasado con éxito la validación de Vivado.

OTRAS POSIBLES FUNCIONALIDADES:

La Nexys 4 DDR incluye multitud de módulos con diferentes funcionalidades y propósitos. Por citar algunos, tiene una salida VGA de 12 bit, gracias a la cuál podría mandar señales de vídeo a una pantalla conectada a la placa. Contiene también un sensor de temperatura, con el cual poder implementar multitud aplicaciones comerciales. Otros módulos que podrían ser interesantes que existen en la placa son un puerto Ethernet y un conector USB.