RECOVERY TEAM

•••

WEEK X PROGRESS REPORT

THIS WEEKS ACTIVITIES

- Drilling of PCB
- Soldering components
- Testing flight computer and PDB
- 3D printing of the ejection system components
- Determining the sample rate & data acquisition

Gantt chart

		Display Week:	10			1	3-J	ul-2	3	
		M: 68	38	51		3	4 5	6 7	8	9
<u>TASK</u>	ASSIGNED TO	<u>PROGRESS</u>	START DATE	END DATE	DURATION	М	T W	T F	S	s
Introduction	N/A	100%	2-May-23	5-May-23	3	5.7	- Contractor			
Change the piston cylinder to steel	E/T	100%	8-May-23	12-May-23	4					
Implement the OTA updates to the system	V/C/B	100%	15-May-23	19-May-23	4					
Rectifying the code for the piston test	S/B	100%	17-May-23	19-May-23	2					
Design the Mechanism for holding the flight computer	B/E	40%	12-Jun-23	14-Jun-23	2					
Design and fabrication of the ejection cap	B/E	70%	22-May-23	30-Jun-23	39					
Determine the amount of crimson powder to be used	E/T	50%	22-May-23	7-Jul-23	46					
Design and fabricate the PCB for the flight computer	P/C	95%	9-Jun-23	1-Jul-23	22					
Design the mechanism to hold the piston in the rocket	B/E	90%	5-Jun-23	30-Jun-23	25	=V-				
Test the ejection system with the nose cone		10%	28-Jun-23	5-Jul-23	7					
Test how to log data from the flash memory		10%	1-Jul-23	7-Jul-23	6					
Research the best time to eject the parachute	V/T	70%	22-May-23	9-Jul-23	48					
Test the flight computer		50%	7-Jul-23	12-Jul-23	5					
Test the communication system		0%	4-Jul-23	7-Jul-23	3					
Video transmission from the rocket		20%	23-Jun-23	5-Jul-23	12					

KEY:	
B-Barbara	
E-Erick	
T-Tonny	
P-Patrick	
C-Catherine	

3d printing

Soldering of components to flight computer

Testing of PDB and flight computer

- Acquired pcb schematics made by previous batch
- Uploading code and testing working of the sensors on the pcb and nichrome wire ignition to be done next week

Sample rate - data acquisition

- Data acquisition from the three sensors
- 36.64ms for the code to be executed.
- Positive duty cycle 59.14%

BMP and MPU PRINTING

- Time taken for readings to be printed on serial monitor- 751.52 us
- Duty cycle- 1.21%

GPS PRINTING

- Positive duty cycle 70.62%
- Positie width 143.32 us

KALMAN FILTER

- Positive width -872.42ns
- Positive duty cycle 77.87%
- Almost intantaneously filtering of values by the kalman filter

ALL 4 CHANNELS

Execution of the whole code

Challenges

• Components being taken without communication

Next week's task

- 1. Designing the mechanism to hold the flight computer during the drone test
- 2. Test the ejection system with the nose cone/ determine the amount of crimson powder to be used
- 3. Finalize on video transmission from the rocket
- 4. Test the range of the communication system