Deski kontratakują

XIV OIJ, zawody I stopnia, tura ukryta 14 października 2019 – 13 stycznia 2020

Uwaga. To zadanie różni się (nieznacznie) od zadania z tury otwartej: w tym zadaniu deski można dzielić, a nie tylko skracać.

Bajtek chce zbudować wielką, kwadratową piaskownicę. Do budowy piaskownicy są mu potrzebne zaledwie cztery deski, które muszą być równej długości. Niestety, podczas kupowania desek w tartaku Bajtek zupełnie zapomniał o tym fakcie i kupił N przypadkowych, niekoniecznie takich samych desek. Na szczęście Bajtek może – jeśli potrzebuje – podzielić część posiadanych desek na mniejsze kawałki, a następnie wybrać do budowy cztery kawałki równej długości. Na przykład, gdyby Bajtek miał deski o długościach 5, 2, 2, 2 i 1, może deskę o długości 5 podzielić na mniejsze, o długościach 2, 3 (ale też np. 1, 2, 2), w wyniku czego będzie już mógł wybrać cztery deski o długości 2. Bajtek nie lubi ułamków, dlatego wszystkie długości desek są całkowite oraz wszystkie długości kawałków po podzieleniu również muszą być całkowite. 2 drugiej strony chciałby jednak, żeby jego piaskownica była jak największa.

Napisz program, który wczyta długości desek posiadanych przez Bajtka, wyznaczy pole największej piaskownicy, którą może zbudować i wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 1\,000\,000$), określająca liczbę desek posiadanych przez Bajtka. W drugim (ostatnim) wierszu wejścia znajduje się ciąg N liczb naturalnych L_1, L_2, \ldots, L_N ($1 \le L_i \le 10^9$), pooddzielanych pojedynczymi odstępami. Są to długości desek posiadanych przez Bajtka.

Wyjście

W pierwszym (jedynym) wierszu wyjścia powinna się znaleźć jedna liczba całkowita – pole powierzchni największej możliwej do uzyskania kwadratowej piaskownicy zgodnie z warunkami powyżej. Jeśli zbudowanie takiej piaskownicy nie jest możliwe, należy wypisać 0.

Przykład

Wejście dla testu dek0a:	Wyjście dla testu dek0a:
7	16
4 10 3 4 2 1 2	
Wejście dla testu dek0b:	Wyjście dla testu dek0b:
4	10000000000000000
1000000000 1000000000 1000000000 1000000	
Wejście dla testu dek0c:	Wyjście dla testu dek0c:
3	144
7 13 36	
Wejście dla testu dek0d:	Wyjście dla testu dek0d:
1	0
1	

Pozostałe testy przykładowe

- test dek0e: $N = 999\,999$, ciąg L to $1, 2, 3, \ldots, 999\,999$.

Ocenianie

Poniższa tabela opisuje dodatkowe warunki, które spełniają pewne grupy testów oraz liczbę punktów, którą można otrzymać za rozwiązanie jedynie testów spełniające te warunki.

Dodatkowe ograniczenia	Liczba punktów
$N, L_i \leq 4$	10
$N \leq 5$	25
$N \le 50$	40
$L_i \le 20000$	59
$N \le 1000$	64