$\begin{array}{c} {\rm Math~128B,~Spring~2021.}\\ {\rm Homework~7,~due~March~27.} \end{array}$

Prob 1. Find the least squares polynomial approximation of degrees 2 and 3 to the function $f(x) = e^x$ on the interval [-1,1].

Prob 2. Show that for any positive integers i > j, the following identity holds:

$$T_i(x)T_j(x) = \frac{1}{2} [T_{i+j}(x) + T_{i-j}(x)].$$

Prob 3. Derive the 3-term recurrence relation for the Laguerre polynomials \underline{L}_n , which are orthogonal with respect to the weight function $w(x) = e^{-x}$ on the interval $(0, \infty)$. Plot the polynomials L_0 , L_1 , L_2 and L_3 on an interval containing all their zeros. Do you observe interlacing? Discuss.

Prob 4. Determine the Padé approximation of degree 6 with n=2, m=4 to the function $f(x)=\sin x$.

 ${\bf Prob~5.}~$ Express the following rational functions as continued fractions:

(a)
$$\frac{4x^2 + 3x - 7}{2x^3 + x^2 - x + 5}$$
, (b) $\frac{2x^3 + x^2 + 3x - 1}{3x^3 + x^2 - x + 1}$.

(b)
$$\frac{2x^3 + x^2 + 3x - 1}{3x^3 + x^2 - x + 1}$$