International **Rectifier**

IRF7509

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching

	N-Ch	P-Ch
V _{DSS}	30V	-30V
R _{DS(on)}	0.11Ω	0.20Ω

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8 package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Ma	Units	
		N-Channel	P-Channel	
V_{DS}	Drain-Source Voltage	30	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS}	2.7	-2.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS}	2.1	-1.6	Α
I _{DM}	Pulsed Drain Current①	21	-16	
P _D @T _A = 25°C	Maximum Power Dissipation⊕	1.2	W	
P _D @T _A = 70°C	Maximum Power Dissipation⊕	0.	W	
	Linear Derating Factor	10	mW/°C	
V _{GS}	Gate-to-Source Voltage	± 20		V
V_{GSM}	Gate-to-Source Voltage Single Pulse tp<10µS	30	V	
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns	
T_J , T_{STG}	Junction and Storage Temperature Range	-55 to	°C	
	Soldering Temperature, for 10 seconds	240 (1.6mn	n from case)	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @	100	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		- (
	Parameter		Min.	Тур.	Max.	Units	Conditions
V	Drain-to-Source Breakdown Voltage	N-Ch	30	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
$V_{(BR)DSS}$	Drain-to-Source Breakdown voltage	P-Ch	-30	_	_	V	$V_{GS} = 0V, I_{D} = -250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	N-Ch	_	0.059		V/°C	Reference to 25°C, I _D = 1mA
7 * (RK)D22/7 1 J	breakdown voltage remp. Coemcient	P-Ch	_	-0.039	—	v/ C	Reference to 25°C, I _D = -1mA
		N-Ch	_	0.09	0.110		V _{GS} = 10V, I _D = 1.7A ④
R _{DS(ON)}	Static Drain-to-Source On-Resistance	IN-CII	_		0.175	Ω	$V_{GS} = 4.5V, I_D = 0.85A \oplus$
VDS(ON)		P-Ch	 —	0.17			V _{GS} = -10V, I _D =-1.2A ⊕
			— 0.3	0.30	0.40		$V_{GS} = -4.5V, I_{D} = -0.6A \oplus$
V _{GS(th)}	Gate Threshold Voltage	N-Ch		_	_	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
• 03(11)	Cate Timeshell Tellage	P-Ch	_				$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9 _{fs}	Forward Transconductance	N-Ch				s	$V_{DS} = 10V, I_{D} = 0.85A$ @
315		P-Ch					$V_{DS} = -10V, I_{D} = -0.6A$ (4)
		N-Ch		_	1.0		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$
I _{DSS}	Drain-to-Source Leakage Current	P-Ch		_	-1.0	μA	$V_{DS} = -24V, V_{GS} = 0V$
-033		N-Ch		_	25	μΛ	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$
		P-Ch	_	_	-25		$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	N-P		_	±100		$V_{GS} = \pm 20V$
Q _g	Total Gate Charge	N-Ch	_	7.8	12		N-Channel
		P-Ch	_	7.5	_		I _D = 1.7A, V _{DS} = 24V, V _{GS} = 10V
Q _{as}	Gate-to-Source Charge	N-Ch	_	1.2		nC	(A)
go		P-Ch		1.3	1.9	0	P-Channel
Q_{qd}	Gate-to-Drain ("Miller") Charge	N-Ch		2.5	3.8		$I_D = -1.2A$, $V_{DS} = -24V$, $V_{GS} = -10V$
		P-Ch	_	2.5	3.7		2 20 1 00
t _{d(on)}	Turn-On Delay Time	N-Ch P-Ch		4.7			N-Channel
* *		N-Ch	-	9.7			$V_{DD} = 15V$, $I_D = 1.7A$, $R_G = 6.1\Omega$,
t _r	Rise Time	P-Ch		12			$R_D = 8.7\Omega$
		N-Ch		12		ns	4
t _{d(off)}	Turn-Off Delay Time	P-Ch		19	_		P-Channel
		N-Ch		5.3		-	$V_{DD} = -15V$, $I_{D} = -1.2A$, $R_{G} = 6.2\Omega$,
t _f	Fall Time	P-Ch		9.3			$R_D = 12\Omega$
		N-Ch		210	=		
C _{iss}	Input Capacitance	P-Ch		180	$\vdash \equiv$	pF	N-Channel $V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1.0MHz$
		N-Ch		80			
Coss	Output Capacitance	P-Ch		87	_	۲۰	3
	· · · ·	N-Ch	_	32		-	P-Channel
C _{rss} F	Reverse Transfer Capacitance	P-Ch		42	_		$V_{GS} = 0V, V_{DS} = -25V, f = 1.0MHz$
		. 011		72			

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
	C+i C (P+- Di+-)	N-Ch		_	1.25		
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-1.25	A	
	Duland Course Courset (Dady Diady)	N-Ch	_	_	21	_ ^	
ISM	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-16		
	D: 1 5 10/ 16	N-Ch	_	_	1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ③
V_{SD}	/ _{SD} Diode Forward Voltage	P-Ch	_	_	-1.2	'	$T_J = 25^{\circ}C$, $I_S = -1.8A$, $V_{GS} = 0V$ ③
	D D T	N-Ch		40	60	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	30	45	113	$T_{.1} = 25^{\circ}C$, $I_{F} = 1.7A$, $di/dt = 100A/\mu s$
_	D D OI	N-Ch	_	48	72	nC	P-Channel 3
Q _{rr}	Reverse Recovery Charge	P-Ch	_	37	55	'''	$T_J = 25$ °C, $I_F = -1.2A$, $di/dt = -100A/\mu s$

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 21)

- ③ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- ② N-Channel $I_{\rm SD} \leq 1.7$ A, di/dt ≤ 120 A/ μ s, $V_{DD} \leq V_{(BR)DSS}$, $T_{J} \leq 150$ °C P-Channel $I_{\rm SD} \leq -1.2$ A, di/dt ≤ 160 A/ μ s, $V_{DD} \leq V_{(BR)DSS}$, $T_{J} \leq 150$ °C
- $\ \, \mbox{\Large \textcircled{4}} \ \, \mbox{Surface mounted on FR-4 board,} \ \, \mbox{\Large $t \leq $ 10$sec.}$

N - Channel

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 2. Typical Output Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical On-Resistance Vs. Drain Current

IRF7509

International

TOR Rectifier

N - Channel

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Typical Output Characteristics

Fig 13. Typical Transfer Characteristics

Fig 15. Normalized On-Resistance Vs. Temperature

Fig 12. Typical Output Characteristics

Fig 14. Typical Source-Drain Diode Forward Voltage

Fig 16. Typical On-Resistance Vs. Drain Current

IRF7509

International

TOR Rectifier

P - Channel

Fig 17. Typical On-Resistance Vs. Gate Voltage

Fig 18. Maximum Safe Operating Area

Fig 19. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 20. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 21. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF7509

Package Outline

Micro8 Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

International TOR Rectifier

Tape & Reel Information

Micro8

Dimensions are shown in millimeters (inches)

NOTES:

- 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 2. CONTROLLING DIMENSION: MILLIMETER.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 12/98