DESIGN

an <mark>algorithm</mark> for designing <mark>any</mark> digital units (logic circuits), given <mark>truth table</mark>

TRUTH TABLE en.wikipedia.org/wiki/Truth_table

SUM OF PRODUCTS (SOP) 2 LEVELS AND-OR

with *product* meaning the ANDing with *sum* meaning the ORing

Z	Y	X	$F(Z,Y,X)=m_0+m_3+m_5+m_6=\sum m(0,3,5,6)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

MULTIPLE BOOLEAN FUNCTIONS $F_1, F_2, ...$

Z	Y	X	$F_1(Z,Y,X) = \sum m(0,3,5,6)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F_2(Z,Y,X) = \sum m(4,5)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Z	Y	X	$F_1(Z,Y,X) = \sum m(0,3,5,6)$	$F_2(Z,Y,X) = \sum m(4,5)$
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

RE-USE minterms

SHOW THE REMAINDER (MOD) NUMBER % 3 = ?

TRUTH TABLE ←→ minterm

INPUTS/BINARY VARIABLES

OUTPUTS/BOOLEAN FUNCTIONS

WHAT IS THE RANGE OF NUMBERS?

WHAT IS THE RANGE OF NUMBERS? [0, 15]₁₀

HOW MANY INPUT BINARY VARIABLES? $[0, 15]_{10} = [0, 1111]_{2} = [00000, 1111]_{2}$

W	Z	Υ	Χ
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

WHAT IS THE RANGE OF OUTPUT?

WHAT IS THE RANGE OF OUTPUT?

The remainder of any number divided by 3 is 0, 1, 2

WHAT IS THE RANGE OF OUTPUT? [0, 2]₁₀

HOW MANY BOOLEAN FUNCTION? $[0, 2]_{10} = [0, 10]_2 = [00, 10]_2$

W	Z	Υ	X	F ₁	F ₂
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

W	Z	Υ	X	F ₁	F ₂
0	0	0	0	0	0
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

W	Z	Υ	X	F ₁	F ₂
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

W	Z	Υ	X	F ₁	F ₂
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

W	Z	Υ	X	F ₁	F ₂
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

W	Z	Υ	Х	F ₁	F ₂
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	0

minterms

W	Z	Υ	X	$F_1 = m_2 + m_5 + m_8 + m_{11} + m_{14}$	F ₂
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	0

W	Z	Υ	Х	$F_1 = \sum m(2,5,8,11,14)$	$F_2 = m_1 + m_4 + m_7 + m_{10} + m_{13}$
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	O
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	0

W	Z	Υ	Х	$F_1 = \sum m(2,5,8,11,14)$	$F_2 = \sum m(1,4,7,10,13)$
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	0

Circuit /Logic Diagram

DESIGN II

a new algorithm for designing any logic circuits, given truth table

X' vs. X

1 binary variable appear either:

- in its normal form X, or
- in its complement form X'

$$M_0 = m'_0$$
 $(X') = (X')' = X$
 $M_1 = m'_1$ X'

$$Y+X \vee S. Y+X' \vee S. Y'+X \vee S. Y'+X'$$

2 binary variables appear either in one of these forms:

Augustus De Morgan (1806–1871) Mathematician Logician

DE MORGAN'S LAWS

$$(YX)' = Y' + X'$$

$$(Y+X)'=Y'X'$$

$M_0 = m'_0$	(Y'X')' = Y + X
$M_1=m_1'$	(Y'X)' = Y + X'
$M_2=m_2'$	(YX')' = Y' + X
$M_3 = m'_3$	(YX)' = Y' + X'

$$Z+Y+X$$
 vs. $Z+Y+X'$ vs. ...

3 binary variables appear either in one of these forms: how many?

$$Z+Y+X$$
 vs. $Z+Y+X'$ vs. ...

3 binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have 3 variables, $2 \times 2 \times 2 = 2^3 = 8$

$M_0 = m'_0$	(Z'Y'X')'=Z+Y+X
$M_1=m'_1$	(Z'Y'X)'=Z+Y+X'
$M_2=m'_2$	(Z'YX')'=Z+Y'+X
$M_3 = m'_3$	(Z'YX)'=Z+Y'+X'
$M_4 = m'_4$	(ZY'X')'=Z'+Y+X
$M_5 = m'_5$	(ZY'X)'=Z'+Y+X'
$M_6 = m'_6$	(ZYX')'=Z'+Y'+X
$M_7 = m'_7$	(ZYX)'=Z'+Y'+X'

$$A_n + \cdots A_2 + A_1 + A_0 \text{ VS. } A_n + \cdots A_2 + A_1 + A_0 \dots$$

n binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have n variables, $2 \times 2 \times 2 \times \cdots \times 2 = 2^n$

TRUTH TABLE en.wikipedia.org/wiki/Truth_table

TRUTH TABLE ↔ MAXTERM

Y	X	$F=m_0+m_1$
0	0	1
0	1	1
1	0	
1	1	

Y	X	$F=m_0+m_1$	$F'=m_2+m_3$
0	0	1	0
0	1	1	0
1	0	0	1
1	1	0	1

Y	X	$F=m_0+m_1$	$F'=m_2+m_3$	$(F')'=(m_2+m_3)'$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	0
1	1	0	1	0

Y	X	$F=(F')'=(m_2+m_3)'=m'_2m'_3$
0	0	1
0	1	1
1	0	
1	1	

Y	X	$F=(F')'=m'_2m'_3=M_2M_3$
0	0	1
0	1	1
1	0	
1	1	

Y	X	$F=(F')'=m'_2m'_3=M_2M_3$
0	0	1
0	1	1
1	0	0
1	1	

Y	X	$F=(F')'=M_2M_3=\prod M(2,3)$
0	0	1
0	1	1
1	0	
1	1	

Y	X	$F = \prod M(2,3) = (Y'+X)(Y'+X')$
0	0	1
0	1	1
1	0	0
1	1	

PRODUCT OF SUMS (POS)

2 LEVELS OR → AND

Y	X	$F=F(Y,X)=m_0+m_1+m_3=\sum m(0,1,3)$
0	0	1
0	1	1
1	0	0
1	1	1

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$
0	0	1	0
0	1	1	0
1	0	0	1
1	1	1	0

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$	$(F')'=m'_2$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	0
1	1	1	0	1

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$	$(F')' = M_2$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	0
1	1	1	0	1

DESIGN I vs. II SoP vs. PoS

Lecture Assignment

Given 3 inputs, design a circuit to determine if there is even number of 1

Z	Y	X	F(Z,Y,X)=?
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Z	Y	X	F(Z,Y,X)=?
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X)=\Sigma m(0,3,5,6)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X)=M_1$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1M_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1 M_2 M_4$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1M_2M_4M_7$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1M_2M_4M_7 = \prod M (1,2,4,7)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

UNIVERSALITY