

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DE CRATEÚS

CIRCUITOS DIGITAIS 2020.1

Lista 01 - Sistemas de Numeração, Operações com binários, Portas Lógicas e Funções booleanas

Prof. Marciel Barros

1.	Adicione of	os números	seguintes,	representados	na base	binária:

- a. $1001_{(2)} + 1110_{(2)}$
- b. $101011_{(2)} + 111001_{(2)}$
- c. $11011110_{(2)} + 10011111_{(2)}$
- d. $1011011_{(2)} + 10111111_{(2)}$
- e. $101110110111_{(2)} + 10101110111_{(2)}$
- f. $1011110111101111_{(2)} + 1011011110101010_{(2)}$
- 2. Represente os números abaixo utilizando a notação sinal-magnitude, complemento de 1 e complemento de 2 com 8 bits (considere '0' como positivo e '1' como negativo):

-		C1	•	
		C1		
	$-3B_{16} = SM$			
	$+52_8 = SM$		C2	
	$-31_8 = SM$		C2	
f.	$-81_{10} = SM$	C1	C2	
	$+E6_{16} = SM$		C2	
h.	$-60_{16} = SM$		C2	

- 3. Explique o significado dos termos a seguir, envolvendo operações com números binários:
 - a. Carry in
 - b. Carry out
 - c. Overflow
- 4. Converter de binário para octal e hexadecimal

a.	01011010111111011 = OCTAL:	HEXA:
b.	10010001110000101 = OCTAL:	HEXA:
	11110000111110000 OCTAI	I I I I X A

- c. 1111000011110000 = OCTAL: HEXA:
- d. 0101010110101010 = OCTAL:_____HEXA:____
- 5. Converter de hexadecimal para binário

a.	FFFF = BIN:_	OCTAL:
b.	55AA = BIN:	OCTAL:

c. 01AC = BIN: OCTAL:
d. 3210 = BIN: OCTAL:

6. Realize as conversões entre sistemas de numeração indicadas a seguir

- a. -123₁₀ para binário em complemento de UM (8 bits);
- b. -3B₁₆ para binário em complemento de DOIS (8 bits);
- c. $01AC_{16}$ para DECIMAL;
- d. 55AA₁₆ para OCTAL;
- e. 0101010110101010₂ para OCTAL e HEXADECIMAL;
- 7. Realize as conversões entre sistemas de numeração indicadas a seguir
 - a. −52₈ para binário em complemento de UM (8 bits);
 - b. -103₁₀ para binário em complemento de DOIS (8 bits);
 - c. 1110110011001010101010111₂ para OCTAL e HEXADECIMAL;
- 8. Realize as conversões entre sistemas de numeração indicadas a seguir
 - a. -99₁₀ para binário em complemento de UM (8 bits);
 - b. -5D₁₆ para binário em complemento de DOIS (8 bits);
 - c. 234₁₆ para binário;
 - d. 1110110011001010101010111, para OCTAL e HEXADECIMAL;
- 9. Qual função booleana representa o circuito a seguir?

10. Qual função booleana representa o circuito a seguir? Considere que as entradas são A,B,C,D e E de cima para baixo.

11. Represente os circuitos a seguir em termos de sua expressão booleana:

