

White Wine Quality Analysis

A statistical approach

Anna Del Savio, 2097098 Francesco Tomaselli, 2089207 Inês Jesus, 2073570

Introduction

Goal: Which characteristics of the wine give it quality?

Dataset

Exploratory Data Analysis

Models

Conclusion

Dataset

- 4898 observations
- No missing values
- 1. Fixed acidity
- 2. Volatile acidity
- 3. Citric acid
- 4. Residual sugar
- 5. Chlorides
- 6. Free sulfur dioxide
- 7. Total sulfur dioxide
- 8. Density
- 9. pH
- 10. Sulphates
- 11. Alcohol

12. Quality

3	4	5	6	7	8	9
20	163	1457	2198	880	175	5

Dataset (Imbalanced data problem)

Bad/neutral quali	ty (0) Good quality (1)
3838	1060

- Every good wine, we have 3.62 bad/neutral quality wine
- Imbalanced data
- Accuracy is untrustable
- Use surrogate diagnostics: specificity, sensitivity and AUC

Exploratory Data Analysis (Univariate)

- Unimodal
- Not normally distributed
- Right-skewed
- A lot of outliers

Exploratory Data Analysis

(Bivariate)

- Mean higher for "good quality" class
- Difference in mean is more notable for variable alcohol

- Mean slightly higher for "bad/neutral quality" class
- More outliers for "bad/neutral quality" class
- Still not normally distributed when divided by classes

Exploratory Data Analysis

(Correlation)

- Multicollinearity
- Remove density variable

Models

(K - Nearest Neighbours)

- 80% of observations to train the model and 20% to test it
- Best model turns out to be the 1-NN

Specificity	Sensitivity
90.3%	64.9%

Models

(Naive Bayes)

- Assumption of independence between features not respected
- Even so, relatively good fit with:

Specificity	Sensitivity	
70.3%	77.7%	

Models

(Logistic Regression)

$$logit(\hat{\mu}) = -13.04 - 3.94 * volatile_acidity - 0.76 * citric_acid + 0.06 * residual_sugar - 17.93 * chlorides + 0.01 * free_sulfur_dioxide - 0.003 * total_sulfure_dioxide + 1.07 * pH + 1.27 * sulphates + 0.87 * alcohol$$

- Feature selection using forward and backward stepwise and AIC in both directions produce the same results
- Good fit with:

Specificity	Sensitivity	
70.2%	77.3%	

Models Penalised Logistic Regres

(Penalised Logistic Regression)

Lasso keeps volatile acidity, chlorides, free sulfur dioxide, sulfates and alcohol

Conclusion

Good fit for all models except for K-Nearest Neighbours

Logistic Regression allows us to understand how the quality likely varies based on each wine characteristic

It is possible that differente type of features, like year of production and grape type, could bring better classification results

