IN THE CLAIMS

Please amend the claims as follows:

1-24. (Canceled).

25. (Currently Amended) A tool holder device for supporting at least one tool

configured to collaborate with an edge of at least one substrate, the device comprising:

a first tool configured to move translationally or rotationally;

a second tool arranged fixedly and configured to operate while the at least one

substrate is moving translationally;

a rotary support configured to receive the first tool, and to move translationally along

a vertical beam and rotationally relative to the at least one substrate;

the vertical beam provided with the rotary support and with a linear guidance element

extending at least partially over a height of the vertical beam, the linear guidance element

being configured to prevent the rotary support from rotating when the rotary support is

moved translationally, wherein

the at least one substrate is moved translationally relative to the first tool supported by

the rotary support, as the first tool is operating in a predetermined position,

collaboration between the first tool and the at least one substrate occurs with or

without contact relative to an edge face of the at least one substrate, and

the first tool comprises means for applying and bonding is of a first tool type

configured to apply and bond an interlayer to all or part of a periphery and to the edge faces

of at least two substrates facing each other, and the second tool comprises means for is of a

second tool type configured to measure, machine, shape, measuring, machining, shaping, or

surface treating treat the at least one substrate, the first tool type being different from the

second tool type.

Application No. 10/541,675

Reply to Office Action of February 26, 2010

26. (Previously Presented) The device as claimed in claim 25, wherein the rotational

support is controlled via a control loop to ensure precise positioning of the first tool relative

to the at least one substrate.

27. (Previously Presented) The device as claimed in claim 26, further comprising:

means for compensating for a position of the at least one substrate; and

at least one position sensor,

wherein the means for compensating and the at least one position sensor are

associated with the first tool.

28.-29. (Canceled)

30. (Currently Amended) The device as claimed in claim 25, wherein the means for

applying and bonding first tool comprises at least two press rollers each configured to press

against one of the edge faces of the two substrates, the two process rollers being control-loop

controlled independently.

31. (Previously Presented) The device as claimed in claim 27, wherein the means for

compensating for the position of a substrate and a position sensor are associated with each of

the press rollers respectively.

32. (Previously Presented) The device as claimed in claim 25, wherein the first tool is

fixed to the rotary support.

Application No. 10/541,675 Reply to Office Action of February 26, 2010

33-34. (Canceled).

35. (Previously Presented) The device as claimed in claim 26, wherein the rotational and translational movements of the first tool and the control loop control of the rotational support are controlled by a numerical control.

36. (Previously Presented) An installation comprising:

a tool holder device as claimed in claim 25, and

at least one module for progressing, holding, and positioning the at least one substrate in X, Y, Z directions of space facing the tool holder device.

- 37. (Previously Presented) The installation as claimed in claim 36, wherein the at least one module for progressing, holding, and positioning comprises a fixed chassis that comprises a substantially vertical stand, means for holding and positioning a substrate against the stand in the X and Y directions, and means for holding and positioning the substrate in the Z-direction.
- 38. (Previously Presented) The installation as claimed in claim 37, wherein the means for holding and positioning the substrate against the stand in the X and Y directions and the means for holding and positioning the substrate in the Z-direction is controlled through a control loop.
- 39. (Previously Presented) The installation as claimed in claim 36, wherein the at least one module for progressing, holding, and positioning comprises a fixed chassis and a moving chassis, the fixed chassis and the moving chassis collaborating with one another to

Application No. 10/541,675

Reply to Office Action of February 26, 2010

each support at least one substrate, the substrates being placed facing each other and positioned relative to one another with a given separation.

- 40. (Previously Presented) The installation as claimed in claim 39, wherein the fixed chassis and the moving chassis are open in their upper part so as to support substrates of any dimensions.
- 41. (Previously Presented) The installation as claimed in claim 39, wherein the moving chassis comprises means for positioning, in the Z-direction, the substrate resting on the moving chassis so as to obtain a desired separation between the two substrates.
- 42. (Previously Presented) The installation as claimed in claim 39, wherein the moving chassis comprises means for holding and positioning, in the X-direction, the two substrates resting on the fixed and moving chassis, the means for holding and positioning configured to be moved in the Z-direction independently of the moving chassis.
- 43. (Previously Presented) The installation as claimed in claim 36, wherein the at least one module comprises means for transferring a substrate supported by a fixed chassis to a moving chassis.
- 44. (Previously Presented) The installation as claimed in claim 37, wherein the means for holding and positioning the substrate against the stand in the X and Y directions and the means for holding and positioning the substrate in the Z-direction substrate comprise conveyor belts and suction means for holding the substrate tightly against the conveyor belts.

Application No. 10/541,675

Reply to Office Action of February 26, 2010

45. (Previously Presented) The installation as claimed in claim 44, further comprising

an additional high-performance suction device to generate a tangential holding force holding

the substrate at the end of the at least one module.

46. (Previously Presented) The installation as claimed in claim 36, wherein a holding

system using suction cups is provided, associated with the at least one module, to route, from

the at least one module to an adjacent support element, a substrate which, in the X-direction,

has a dimension substantially equivalent to or smaller than a space separating the module

from the support element adjacent to the at least one module.

47. (Previously Presented) The installation as claimed in claim 36, further comprising

plural modules for progressing, holding, and positioning substrates, which may or may not be

electronically coupled depending on lengths of the substrates.

48. (Previously Presented) The installation as claimed in claim 36, wherein the at

least one module for progressing, holding, and positioning constitutes a module for

preassembling or assembling an insulating glazing comprising at least two glass substrates

and an interlayer secured to all or part of a periphery of the at least two glass substrates.

49. (New) The device as claimed in claim 25, wherein the vertical beam is provided

with a fixed support, the fixed support being configured to hold the second tool.