

Ultra-slim PCB Relays (EMR or SSR) 0.1 - 0.2 - 2 - 6 A

Bottling plant

Packaging machines

Labelling machines

Road / tunnel lighting

Burners, boilers and furnaces

Timers and lighting controls

Electronic circuit boards

Programmable controllers

Ultra-slim 1 Pole - 6 A relay

Printed circuit mount

- direct or via PCB socket

35 mm rail mount

- via screw, screwless or push-in terminal sockets
- 1 Pole changeover contacts or
 1 Pole normally open contact
- Ultra slim (5 mm), package
- Sensitive DC coil 170 mW (Dual AC/DC coil drive possible using 93 series sockets)
- UL Listing (certain relay/socket combinations)
- Cadmium Free contact materials
- 8/8 mm clearance/creepage distance
- 6 kV (1.2/50 μ s) insulation, coil-contacts

34.51

- 5 mm wide
- Low coil power
- PCB or 93 series sockets

34.51-5010

- 5 mm wide
- Low coil power
- PCB or 93 series sockets
- Contact AgNi + Au

FOR UL RATINGS SEE:

"General technical information" page V

For outline drawing see page 9		Copper side view	Copper side view
Contact specification			
Contact configuration		1 CO (SPDT)	1 CO (SPDT)
Rated current/			
Maximum peak current	Α	6/10	6/10
Rated voltage/ Maximum switching voltage	V AC	250/400	250/400
Rated load AC1	VA	1500	1500
Rated load AC15 (230 V AC)	VA	300	300
Single phase motor rating (230 \	/AC) kW	0.185	0.185
Breaking capacity DC1: 30/110/2	220 V A	6/0.2/0.12	6/0.2/0.12
Minimum switching load	mW (V/mA)	500 (12/10)	50 (5/2)
Standard contact material		AgNi	AgNi + Au
Coil specification			
Nominal voltage (U _N)	V AC (50/60 Hz)	_	_
	V DC	5 - 12 - 24 - 48 - 60	5 - 12 - 24 - 48 - 60
Rated power AC/DC	VA (50 Hz)/W	—/0.17	—/0.17
Operating range	AC	_	_
	DC	(0.71.5)U _N	(0.71.5)U _N
Holding voltage	AC/DC	—/0.4 U _N	—/0.4 U _N
Must drop-out voltage	AC/DC	—/0.05 U _N	—/0.05 U _N
Technical data			
Mechanical life AC/DC	cycles	—/10 · 10 ⁶	—/10 · 10 ⁶
Electrical life at rated load AC1	cycles	60 · 10 ³	60 · 10 ³
Operate/release time	ms	5/3	5/3
Insulation between coil			
and contacts (1.2/50 µs)	kV	6 (8 mm)	6 (8 mm)
Dielectric strength		4000	1000
between open contacts	V AC	1000	1000
Ambient temperature range	°C	-40+85	-40+85
Environmental protection		RT II	RT II

(C) [H] RINA c Nus &

Approvals (according to type)

34 SERIES Ultra-Slim solid state PCB relays (SSR) 0.1 - 6 A

Ultra-slim Solid State Relays

Printed circuit mount

- direct or via PCB socket

35 mm rail mount

- via screw, screwless or push-in terminal
- Single circuit output switching options
- 6 A, 24 V DC
- 2 A, 240 V AC
- Silent, high speed switching with long electrical life
- Ultra slim (5 mm), package
- Sensitive DC Input circuits (Dual AC/DC input drive possible using 93 series sockets)
- UL Listing (certain relay/socket combinations)
- Wash tight: RT III
- 3000 V AC insulation, input-output

34.81.7.xxx.9024

- 6 A, 24 V DC output switching
- PCB or 93 series sockets

34.81.7.xxx.8240

- 2 A, 240 V AC output switching
- Zero crossing switching
- PCB or 93 series sockets

\frac{1}{2} \frac{1}{2}	5
A2- A1+	13+ 14
 input	output

		11 11	ide view			Copper s		
		1 NO (SI	PST-NO)			1 NO (S	PST-NO)	
Α		6/	50			2/	80	
V		24	DC		:	240 AC (5	50/60 Hz))
V		(1.5	33)DC			(122	275)AC	
V		3	3			_	_	
V_{pk}		_	_			80	00	
W		3	6			_	_	
VA	_ 300			00				
mA	1			35				
mA	0.001 1.5			.5				
V	0.4				1.6			
V DC	5	12	24	60	5	12	24	60
W	0.035	0.085	0.17	0.21	0.06	0.085	0.17	0.21
V DC	3512	817	1630	3572	3.510	817	1630	3572
mA	7	7	7	3.5	12	7	7	3.5
V DC	4	4	10	20	1	4	10	20
cycles		> 1	10 ⁶			> '	10 ⁶	
ms		0.02	2/0.2			11,	/11	
50μs) kV	4			4				
°C		-20	.+70*		-20+50*			
		RT	· III			RT	· III	
	V V V pk W VA mA V V VDC W V DC mA V DC cycles ms 50(µs) kV	V V V V V V V V V V V V V V V V V V V	A 6/ V 24 V (1.5 V 3 V _{pk} W 3 VA MA 0.0 V 0 V DC 5 12 W 0.035 0.085 V DC 3512 817 MA 7 7 V DC 4 4 cycles ms 0.02 50µs) kV 4 C -20	V 24 DC V (1.533)DC V 33 V _{pk} — W 36 VA — mA 1 mA 0.001 V 0.4 VDC 5 12 24 W 0.035 0.085 0.17 VDC 3512 817 1630 mA 7 7 7 VDC 4 4 10 cycles > 10 ⁶ ms 0.02/0.2 50µs) kV 4	A 6/50 V 24 DC V (1.533)DC V 33 V _{pk} — W 36 VA — mA 1 mA 0.001 V 0.4 V DC 5 12 24 60 W 0.035 0.085 0.17 0.21 V DC 3512 817 1630 3572 mA 7 7 7 3.5 V DC 4 4 10 20 cycles > 10 ⁶ ms 0.02/0.2 50µs) kV 4 °C —20+70*	A 6/50 V 24 DC V (1.533)DC V 33 V _{pk} — W 36 VA — mA 1 mA 0.001 V 0.4 V DC 5 12 24 60 5 W 0.035 0.085 0.17 0.21 0.06 V DC 3512 817 1630 3572 3510 mA 7 7 7 3.5 12 V DC 4 4 10 20 1 cycles	A 6/50 2/4 DC 240 AC (5 V 240 AC (5 V (1.533)DC (122 V 33 V _{pk} — 86 VA — 36 VA — 37 VA — 37 VA — 38 VA	A 6/50 2/80 V 24 DC 240 AC (50/60 Hz) V (1.533)DC (12275)AC V 33 — 800 W 36 — 800 MA 1 35 — 300 mA 1 35 — 35 — 35 — 1.5 V 0.4 1.6 V DC 5 12 24 60 5 12 24 W 0.035 0.085 0.17 0.21 0.06 0.085 0.17 V DC 3512 817 1630 3572 3510 817 1630 mA 7 7 7 7 3.5 12 7 7 V DC 4 4 10 20 1 4 10 cycles > 10 ⁶ > 10 ⁶ ms 0.02/0.2 11/11 50μs) kV 4 4 4 -20+50*

^{*} Note: all technical data relates to using the relay directly on PCB or PCB socket type 93.11. If the relay is used with 35 mm rail socket type 93.51, refer to the technical data of 38 Series; if used with types 93.60, 93.61, 93.62, 93.63, 93.64, 93.65, 93.66, 93.67,93.68 and 93.69, refer to the technical data of the MasterINTERFACE 39 Series. See L34 diagrams page 8

(€ c\$10°s

Approvals (according to type)

Ultra-slim Solid State Relays

Printed circuit mount

- direct or via PCB socket

35 mm rail mount

- via screw, screwless or push-in terminal
- Single circuit output switching options
- 0.1 A, 48 V DC
- 0.2 A, 220 V DC
- Silent, high speed switching with long electrical life
- Ultra slim (5 mm), package
- Sensitive DC Input circuits (Dual AC/DC input drive possible using 93 series sockets)
- UL Listing (certain relay/socket combinations)
- Wash tight: RT III
- 3000 V AC insulation, input-output

34.81.7.xxx.7048

- 100 mA, 48 V DC output switching
- PCB or 93 series sockets
- 200 mA, 110/220 V DC output switching
- PCB or 93 series sockets

For outline drawing see page 9		Coppers	ide view	Coppers	side view
Output circuit					
Contact configuration		1 NO (SI	PST-NO)	1 NO (S	PST-NO)
Rated current/					
Maximum peak current (10 ms)	A	0.1/	/0.5	0.2	/10
Rated switching voltage	V	48	DC	220	DC
Switching voltage range	V	(1.5	53)DC	(902	256)DC
Maximum blocking voltage	V	5	3	2:	56
Rated load DC13	W	2	.4	4	4
Minimum switching current	mA	0.05		0.05	
Max. "OFF-state" leakage current	mA	0.001		0.001	
Max. "ON-state" voltage drop	V	1		0.4	
Supply specification					
Nominal voltage (U _N)	V DC	24	60	24	60
Rated power	W	0.17	0.21	0.17	0.21
Operating range	V DC	1630	3572	1630	3572
Control current	mA	7	3.5	7	3.5
Release voltage	V DC	10	20	10	20
Technical data					
Electrical life at rated load	cycles	> 1	10 ⁶	> .	10 ⁶
Operate/release time	ms	0.03	/0.6	0.4	/2.2
Insulation between input and output (1.2/50µs) kV	4	1		1
Ambient temperature range	°C	-20+70*		-20	.+70*
Environmental protection		RT	· III	RT	· III
Approvals (according to type)			CE	ر جری ® الح	

^{*} Note: all technical data relates to using the relay directly on PCB or PCB socket type 93.11.

If the relay is used with 35 mm rail socket type 93.51, refer to the technical data of 38 Series; if used with types 93.60, 93.61, 93.62, 93.63, 93.64, 93.65, 93.66, 93.67, 93.68 and 93.69, refer to the technical data of the *MasterINTERFACE* 39 Series.

Ordering information

Electromechanical relay (EMR)

Example: 34 series Ultra-Slim electromechanical relay, 1 CO (SPDT) 6 A contacts, 24 V sensitive DC coil.

Selecting features and options: only combinations in the same row are possible.

Preferred selections for best availability are shown in **bold**.

Туре	Coil version	A	В	С	D
34.51	sens. DC	0 - 4 - 5	0 - 3	1	0
34.51	sens. DC	0 - 4 - 5	0	1	9

Solid state relay (SSR)

Example: 34 series solid state relay, 6 A 24 V DC output, 24 V DC supply.

Flat pack version

Copper side view

Option = 34.51.7xxx.x019

Environmental protection RT I

Electromechanical relay

Technical data

Insulation according to EN 6181	10-1		
Nominal voltage of supply system	n V AC	230/400	
Rated insulation voltage	V AC	250	400
Pollution degree		3	2
Insulation between coil and cor	ntact set		
Type of insulation		Reinforced	
Overvoltage category		III	
Rated impulse voltage	kV (1.2/50 μs)	6	
Dielectric strength	V AC	4000	
Insulation between open conta	cts		
Type of disconnection		Micro-disconnection	
Dielectric strength	V AC/kV (1.2/50 μs)	1000/1.5	
Insulation between coil termina	als		
Rated impulse voltage (surge) dif			
(according to EN 61000-4-5)	kV(1.2/50 μs)	2	
Other data			
Bounce time: NO/NC	ms	1/6	
Vibration resistance (555)Hz: N	O/NC g	10/5	
Shock resistance	g	20/14	
Power lost to the environment	without contact current W	0.2	
	with rated current W	0.5	
Recommended distance			
between relays mounted on PCB	mm	≥ 5	

Contact specification

F 34 - Electrical life (AC) v contact current

H 34 - Maximum DC1 breaking capacity

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 60 \cdot 10^3$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load.

 Note: the release time for the load will be increased.

Coil specifications

DC coil data

Nominal voltage	Coil code	Operating range		Resistance	Rated coil consumption
U _N		U_{min}	U _{max}	R	I at U _N
V		V	V	Ω	mA
5	7 .005	3.5	7.5	130	38.4
12	7 .012	8.4	18	840	14.2
24	7 .024	16.8	36	3350	7.1
48	7 .048	33.6	72	12300	3.9
60	7 .060	42	90	19700	3

R 34 - DC coil operating range v ambient temperature

- 1 Max. permitted coil voltage.
- 2 Min. pick-up voltage with coil at ambient temperature.

Solid state relay

Technical data

Insulation			Dielectric strength	Impulse (1.2/50 μs)	
Between input and output			3000 V AC	4 kV	
EMC specifications		Reference standard			
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV		
	air discharge	EN 61000-4-2	8 kV		
Radiated electromagnetic field (801000 M	EN 61000-4-3	10 V/m			
Fast transients on supply terminals					
(burst 5/50 ns, 5 and 100 kHz)		EN 61000-4-4	2 kV		
Voltage pulses on supply terminals	common mode	EN 61000-4-5	0.7 kV		
(surge 1.2/50 μs)	differential mode	EN 61000-4-5	0.7 kV*		
Radio-frequency common mode voltage (0.1	5230 MHz)	EN 61000-4-6	10 V		
Other data					
Power lost to the environment	without output current	W	0.15		
	with rated current	W	0.4		

^{*} For 34.81.7.005... = 0.3 kV; for 34.81.7.012... = 0.5 kV

Input specification

Input data - DC types

Nominal voltage	Input code	Operating range		Release voltage	Impedance	Control current
voitage	code			voitage		Current
U_N		U_{min}	U _{max}			I at U _N
V		V	V	V	Ω	mA
5	7 .005	3.5	12*	1	715	7*
12	7 .012	8	17	4	1715	7
24	7 .024	16	30	10	3430	7
60	7 .060	35	72	20	17000	3.5

^{*} For 34.81.7.005.8240: $U_{MAX} = 10 \text{ V, I} @ 5 \text{ V} = 12 \text{ mA}$

Output specification

L 34-1 - Output DC current v ambient temperature

34.81.7...9024

L 34 - Output AC current v ambient temperature

34.81.7...8240

I: SSR installed on 93 series sockets as a group (without gap between sockets)

II: SSR installed individually in free air , or with a gap \geq 9 mm, which implies a not significant influence from nearby components

Max recommended switching frequency (Cycles/Hour, with 50% Duty-cycle) at ambient temperature 50°C, single mounting									
Load	34.81.7xxx. 9024	34.81.7xxx. 8240	34.81.7xxx. 7048	34.81.7xxx. 7220					
24 V 6 A DC1	180 000	_	_	_					
24 V 3 A DC L/R = 10 ms	5000	_	_	_					
24 V 2 A DC L/R = 40 ms	3600	_	_	_					
24 V 1 A DC L/R = 40 ms	6500	_	_	_					
24 V 0.8 A DC L/R = 40 ms	9000	_	_	_					
24 V 1.5 A DC L/R = 80 ms	3250	_	_	_					
230 V 2 A AC1	_	60 000	_	_					
230 V 1.25 A AC15	_	3600	_	_					
48 V 0.1 A DC1	_	_	60 000	_					
220 V 0.2 A DC1	_	_	_	60 000					

Outline drawings

Type 34.51

Type 34.81

finder

93 SERIES Sockets and accessories for 34 series relays

93.61

Screw terminal socket 35 mm rail mounting (EN 60715)

Common features

- Space saving 6.2 mm wide
- Connections for 16-way jumper link
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip
- Dual screw head (blade+cross) terminals

For technical data and supply versions, refer to the Master INTERFACE 39 Series – "Relay interface module"

Electromechanical Relay - EMR

			Socket type (reference with the 39 Series)				
Supply voltage	Relay type	Master BASIC	Master PLUS	Master INPUT	Master OUTPUT	Master TIMER	
Supply voltage	nelay type	(39.11)	(39.31)	(39.41)	(39.21)	(39.81)	
6 V AC/DC	34.51.7.005.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	_	
12 V AC/DC	34.51.7.012.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	93.68.0.024	
24 V AC/DC	34.51.7.024.xx10	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	93.68.0.024	
60 V AC/DC	34.51.7.060.xx10	_	93.63.7.060	_	_	_	
(110125)V AC/DC*	34.51.7.060.xx10	_	93.63.3.125	_	_	_	
(220240)V AC*	34.51.7.060.xx10	_	93.63.3.230	_	_	_	
(110125)V AC/DC	34.51.7.060.xx10	93.61.0.125	93.63.0.125	93.64.0.125	93.62.0.125	_	
(24240)V AC/DC	34.51.7.024.xx10	_	93.63.0.240	_	_	_	
(220240)V AC	34.51.7.060.xx10	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	_	
(110125)V DC	34.51.7.060.xx10	_	93.63.7.125	_	_	_	
220 V DC	34.51.7.060.xx10	_	93.63.7.220	_	_	_	

^{*} Leakage current suppression

93.63

93.64

Approvals (according to type): **C €** [H[c**91**0°us

Solid State Relay - SSR

		Socket type (reference with th			the 39 Series)		
Supply voltage	Relay type	Master BASIC	Master PLUS	Master INPUT	Master OUTPUT	Master TIMER	
Supply voltage	nelay type	(39.10)	(39.30)	(39.40)	(39.20)	(39.80)	
12 V AC/DC	34.81.7.012.xxxx	_	_	_	_	93.68.0.024	
24 V AC/DC	34.81.7.024.xxxx	_	93.63.0.024	93.64.0.024	_	93.68.0.024	
(110125)V AC/DC*	34.81.7.060.xxxx	_	93.63.3.125	_	_	_	
(220240)V AC*	34.81.7.060.xxxx	_	93.63.3.230	_	_	_	
(110125)V AC/DC	34.81.7.060.xxxx	93.61.0.125	93.63.0.125	93.64.0.125	93.62.0.125	_	
(24240)V AC/DC	34.81.7.024.xxxx	_	93.63.0.240	_	_	_	
(220240)V AC	34.81.7.060.xxxx	93.61.8.230	93.63.8.230	93.64.8.230	93.62.8.230	_	
6 V DC	34.81.7.005.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	_	
12 V DC	34.81.7.012.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	_	
24 V DC	34.81.7.024.xxxx	93.61.7.024	93.63.7.024	93.64.7.024	93.62.7.024	_	
60 V DC	34.81.7.060.xxxx	_	93.63.7.060	_	_	-	
(110125)V DC	34.81.7.060.xxxx	_	93.63.7.125	_	_	_	
220 V DC	34.81.7.060.xxxx	_	93.63.7.220	_	_	_	
*1 1							

^{*} Leakage current suppression

Accessories			
16-way jumper link		093.16 (blue), 093.16.0 (black), 093.16.1 (red)	
Dual-purpose plastic separator		093.60	
Sheet of marker tags		060.48 and 093.48	
Technical data			
Rated values		6 A - 250 V	
Dielectric strength		6 kV (1.2/50 μs) between coil and contacts	
Protection category		IP 20	
Ambient temperature	°C	-40+70	
Screw torque	Nm	0.5	
Wire strip length	mm	10	
Max wire size		Solid wire and stranded wire	
	mm ²	1 x (0.52.5) / 2 x 1.5	
	AWG	1 x (2114) / 2 x 16	

Push-In terminal socket 35 mm rail mounting (EN 60715)

- Space saving 6.2 mm wide
- Connections for 16-way jumper link
- Terminal doubler 093.62
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip

For technical data and supply versions, refer to the Master *INTERFACE* 39 Series – "Relay interface module"

Electromechanical Relay - EMR

		Socket type (reference with the 39 Series)				
Supply voltage	Dolov tveo	Master BASIC	Master PLUS	Master INPUT	Master OUTPUT	Master TIMER
Supply voltage Relay type		(39.01)	(39.61)	(39.71)	(39.51)	(39.91)
6 V AC/DC	34.51.7.005.xx10	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	
12 V AC/DC	34.51.7.012.xx10	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	93.69.0.024
24 V AC/DC	34.51.7.024.xx10	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	93.69.0.024
60 V AC/DC	34.51.7.060.xx10		93.66.7.060	_	_	<u> </u>
(110125)V AC/DC*	34.51.7.060.xx10	_	93.66.3.125	_	_	<u> </u>
(220240)V AC*	34.51.7.060.xx10	_	93.66.3.230	_	_	_
(110125)V AC/DC	34.51.7.060.xx10	93.60.0.125	93.66.0.125	93.67.0.125	93.65.0.125	_
(24240)V AC/DC	34.51.7.024.xx10	_	93.66.0.240	_	_	_
(220240)V AC	34.51.7.060.xx10	93.60.8.230	93.66.8.230	93.67.8.230	93.65.8.230	_
(110125)V DC	34.51.7.060.xx10	_	93.66.7.125	_	_	_
220 V DC	34.51.7.060.xx10	_	93.66.7.220	_	_	

^{*} Leakage current suppression

Solid State Relay - SSR

			Socket type (reference with the 39 Series)				
,	Supply voltage Relay type	Dolov tveo	Master BASIC	Master PLUS	Master INPUT	Master OUTPUT	Master TIMER
		(39.00)	(39.60)	(39.70)	(39.50)	(39.90)	
	12 V AC/DC	34.81.7.012.xxxx	_	_	_	_	93.69.0.024
	24 V AC/DC	34.81.7.024.xxxx	_	93.66.0.024	93.67.0.024	_	93.69.0.024
	(110125)V AC/DC*	34.81.7.060.xxxx	_	93.66.3.125	_	_	_
	(220240)V AC*	34.81.7.060.xxxx	_	93.66.3.230	_	_	_
	(110125)V AC/DC	34.81.7.060.xxxx	93.60.0.125	93.66.0.125	93.67.0.125	93.65.0.125	_
	(24240)V AC/DC	34.81.7.024.xxxx	_	93.66.0.240	_	_	_
	(220240)V AC	34.81.7.060.xxxx	93.60.8.230	93.66.8.230	93.67.8.230	93.65.8.230	_
)	6 V DC	34.81.7.005.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	_
	12 V DC	34.81.7.012.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	_
	24 V DC	34.81.7.024.xxxx	93.60.7.024	93.66.7.024	93.67.7.024	93.65.7.024	_
	60 V DC	34.81.7.060.xxxx	_	93.66.7.060	_	_	_
	(110125)V DC	34.81.7.060.xxxx	_	93.66.7.125	_	_	_
	220 V DC	34.81.7.060.xxxx	_	93.66.7.220	_	_	_

^{*} Leakage current suppression

Accessories		
16-way jumper link		093.16 (blue), 093.16.0 (black), 093.16.1 (red)
Dual-purpose plastic separator		093.60
Terminal doubler		093.62
Sheet of marker tags		060.48 and 093.48
Technical data		
Rated values		6 A - 250 V
Dielectric strength		6 kV (1.2/50 μs) between coil and contacts
Protection category		IP 20
Ambient temperature	°C	-40+70
Wire strip length	mm	8
Max wire size		Solid wire and stranded wire
	mm^2	1 x (0.52.5)
	AWG	1 x (2114)

93.69

Approvals (according to type):

C € [∏[c**91**0° US

93 SERIES Sockets and accessories for 34 series relays

93.51

Screw less terminal socket 35 mm rail mounting (EN 60715)

Common features

- Space saving 6.2 mm wide
- Connections for 20-way jumper link
- Integral coil indication and protection circuit
- Secure retention and easy ejection by plastic clip

For technical data and supply versions, refer to the 38 Series – "Relay interface module"

Approvals (according to type):

combinations

Electromechanical Relay - EMR and Solid State Relay - SSR

	Relay type (reference		
Supply voltage	Electromechnanical relay - EMR (38.61)	Solid State Relay - SSR (38.81)	Socket type
12 V AC/DC	34.51.7.012.xx10	_	93.51.0.024
24 V AC/DC	34.51.7.024.xx10	_	93.51.0.024
(110125)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.0.125
(220240)V AC/DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.0.240
(110125)V AC/DC*	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.3.125
(220240)V AC*	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.3.240
(220240)V AC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.8.240
12 V DC	34.51.7.012.xx10	34.81.7.012.xxxx	93.51.7.024
24 V DC	34.51.7.024.xx10	34.81.7.024.xxxx	93.51.7.024
60 V DC	34.51.7.060.xx10	34.81.7.060.xxxx	93.51.7.060

^{*} Leakage current suppression

Accessories	
20-way jumper link	093.20
Plastic separator	093.01
Sheet of marker tags	093.48
Technical data	
Rated values	6 A - 250 V
Dielectric strength	6 kV (1.2/50 μs) between coil and contacts
Protection category	IP 20
Ambient temperature ($U_N \le 60 \text{ V/>} 60 \text{ V}$)	°C -40+70/-40+55
Wire strip length m	m 10
Max wire size	Solid wire and stranded wire
_ mr	n ² 1 x 2.5 / 2 x 1.5
AW	G 1 x 14 / 2 x 16

Approvals (according to type):

(I)	ERE	C 711 ® US
------------	-----	-------------------

93.11 (blue)	
34.51, 34.81	
6 A - 250 V	A
≥ 6 kV (1.2/50 µs) between coil and contacts	
IP 20	
-40+70	
	34.51, 34.81 6 A - 250 V ≥ 6 kV (1.2/50 μs) between coil and contacts IP 20

Retaining and release clip use:

