

§7.1

Dr. Basilio

§7.1: Integration by Parts

Ch 7: Techniques of Integration Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #9 Notes

March 21, 2019 Spring 2019

Outline

§7.1

Dr. Basilio

Guiding Questions

Integration Toolbox

Integration by Parts

IBP with limits of integration

21 Trick

6 Some harder integrals

Outline

Guiding Questions for §7.1

§**7**.1

Dr. Basilio

utline

Guiding Questions

Integration Toolbox

> tegration by arts

BP w/ limits

P W/ IIMITS

January E.

Harder Exs

Guiding Question(s)

- What tools are in the integration toolbox?
- What is integration by parts?
- 6 What is 2/ trick?
- 4 What are the reduction formulas?

Integration Toolbox

Integration Toolbox

When confronted with an integral, $\int f(x) dx$, the main tools in your integration toolbox are:

- know a lot of derivatives!
 If you can recognize DRs, use the corresponding ADRs!
 - General Theorems: power rule, sum/difference rule
 - DRs for basic functions: x^n , trig (sin, cos, ...), b^x , $\log_b(x)$, ...
 - DRs for more complex functions: $tan^{-1}(x)$, sinh(x), ...
- 2 u-substitution (corresponds to the chain rule)
- **6** integration by parts
- 4 trigonometric substitution

You already know Tools 1 and 2. In this chapter, you'll learn many, many more techniques including Tool 3 (this section) and Tool 4 (later).

§7.1

Dr. Basilio

Outline

uiding uestions

Integration Toolbox

arts

__..

Trick

larder Exs

Integration Toolbox

Tool 1: summarizing integrals/ADRs up through Chapter 6:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \tan x dx = \ln|\sec x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C, \quad a > 0$$

§7.1

Dr. Basilio

utline

Guiding Questions

Toolbox
Integration by

P w/ limits

Trick

larder Exs

IBP is one of the most powerful tricks for evaluating integrals! In fact, it gets used all the time in advanced mathematics and engineering courses.

Definition 1: Integration by Parts

• Integration by Parts is a technique of integration derived from the product rule of differentiation. It states:

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$

or, equivalently,

$$\int u\,dv = uv - \int v\,du$$

where u = f(x) and dv = g'(x)dx.

When to use? When the integral on the RHS is easier!

§7.1

Dr. Basilio

Outline

Guiding Questions

Integration Toolbox Integration by

Parts

or w/ illilits

/ Trick

Why is the formula true?

• Start with the product rule:

$$\frac{d}{dx}[f(x)\cdot g(x)] = f'(x)g(x) + f(x)g'(x)$$

Integrate both sides:

$$\int \frac{d}{dx} [f(x) \cdot g(x)] dx = \int (f'(x)g(x) + f(x)g'(x)) dx$$
$$f(x) \cdot g(x) = \int g(x)f'(x) dx + \int f(x)g'(x) dx$$

then re-arrange:

$$\int f(x)g'(x)\,dx = f(x)g(x) - \int g(x)f'(x)\,dx.$$

§7.1 Dr. Basilio

Integration by

Parts

$$\int u\,dv = uv - \int v\,du$$

Advice:

- You are trying to make the integral $\int v \, du$ easier than $\int u \, dv$
- Since you can differentiate almost anything, picking the *u* and then finding the *du* is easy so don't worry about it yet.
- So, instead, decide on the dv FIRST and pick it so that you can integrate it by finding $\int dv = v$
- Another helpful tip: pick the *u* so that *du* is "simpler" than *u*.

§7.1

Dr. Basilio

Outline

Guiding Questions

ntegration Toolbox

Integration by Parts

IBP w/ limits

Trick

§7.1

Dr. Basilio

Example 1: Integration by Parts

Consider the integral: $\int x \cos(x) dx$

Two choices for u and dv:

$$\begin{cases} u = x & dv = \cos(x) dx \\ du = dx & v = \sin(x) \end{cases}$$

$$\begin{cases} u = \\ du = \end{cases}$$

$$\begin{cases} u = \cos(x) & dv = x dx \\ du = -\sin(x)dx & v = \frac{x^2}{2} \end{cases}$$

Which is better?

$$u = x$$
 and $dv = \cos(x)dx$

$$u = x$$
 and $dv = \cos(x)dx$
 \longrightarrow

$$\int x \cos(x) dx = x \sin(x) - \int \sin(x) dx$$

$$u = \cos(x)$$
 and $dv = xdx$

$$\int x \cos(x) dx = \cos(x) \left(\frac{x^2}{2}\right) - \int \cos(x) \left(\frac{x^2}{2}\right) dx$$

The first choice is better since it follows the advice on the previous page.

§7.1

Dr. Basilio

Integration by Parts

Activity 1:

Evaluate using IBP:

(a)
$$\int xe^x dx$$

(a)
$$\int xe^x dx$$

(b) $\int t^2 \sin(t) dt$

§7.1

Dr. Basilio

utline

Guiding Questions

> ntegration oolbox

Integration by Parts

IBP w/ limits

/ Trick

Integration by Parts with limits of integration

§7.1

Dr. Basilio

IBP w/ limits

Definition 2: IBP with limits of integration

• Using integration by parts with limits of integration:

$$\int_a^b u \, dv = \left. uv \right|_a^b - \int_a^b v \, du$$

Activity 2:

Evaluate using IBP:

- (a) $\int_{1}^{3} \ln(x) dx$ (b) $\int_{0}^{1} \tan^{-1}(x) dx$

§7.1

Dr. Basilio

utline

Guiding Questions

oolbox

IBP w/ limits

/ Trick

Integration by Parts: 2/ Trick

Activity 3:

Evaluate using IBP: $\int \cos(x)e^x dx$

In this activity, it feels like you go around in a circle.

You'll do IBPs twice and come back to the original integral. If we set $I = \int \cos(x)e^x dx$, then you can re-arrange to get 2I (after 2 IBPs). So I call this the "2*I*-trick."

§7.1

Dr. Basilio

Outline

Guiding Questions

> ntegration Toolbox

ntegration by Parts

IBP w/ limits

21 Trick

Integration by Parts: 2/ Trick

§7.1

Dr. Basilio

utline

Guiding Questions

oolbox

IBP w/ limits

2/ Trick

§7.1

Dr. Basilio

Outline

uiding uestions

ntegration oolbox

Theorem 1: Reduction Formulas

For any integer $n \ge 2$:

(a)
$$\int \sin^n(x) dx = -\frac{1}{n} \cos(x) \sin^{n-1}(x) + \frac{n-1}{n} \int \sin^{n-2}(x) dx$$

(b)
$$\int \cos^n(x) dx = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} \int \cos^{n-2}(x) dx$$

(c)
$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$$

(d)
$$\int (\ln(x))^n dx = x(\ln(x))^n - n \int (\ln(x))^{n-1} dx$$

You can derive these formulas using IPBs with the 21 trick.

We'll derive: $\int \cos^{n}(x) dx = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} \int \cos^{n-2}(x) dx$

• We pick:
$$\begin{cases} u = \cos^{n-1}(x) & dv = \cos(x)dx \\ du = (n-1)\cos^{n-2}(x)(-\sin(x))dx & v = \sin(x) \end{cases}$$

$$\int \cos^n(x) \, dx =$$

$$\underbrace{\cos^{n-1}(x)}_{u}\underbrace{\sin(x)}_{v} - \int \underbrace{\sin(x)}_{v}\underbrace{(n-1)\cos^{n-2}(x)(-\sin(x))}_{dv} dx$$

$$= \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x)\sin^2(x) dx$$

$$= \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x)\sin^2(x) dx$$

$$= \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x)(1-\cos^2(x)) dx$$

$$= \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x) dx - (n-1)\int \cos^n(x) dx$$

21 Trick

We'll derive:
$$\int \cos^n(x) dx = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} \int \cos^{n-2}(x) dx$$

•
$$\int \cos^n(x) dx =$$

 $\cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x) dx - (n-1)\int \cos^n(x) dx$

• Setting $I = \cos^n(x) dx$ we can write:

$$I = \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x) dx - (n-1)I$$

$$nI = \cos^{n-1}(x)\sin(x) - (n-1)\int \cos^{n-2}(x) dx$$

• Then dividing by *n* gives us the reduction formula. Done :-)

§7.1

Dr. Basilio

utline

uiding uestions

tegration

rts D.w./ limite

2/ Trick

larder Exs

§7.1

Dr. Basilio

Outline

Guiding Questions

ntegration Foolbox

> egration by rts

BP w/ limits

2/ Trick

arder Exs

Activity 4:

Use the reduction formula to evaluate: $\int \sin^3(x) dx$

§7.1

Dr. Basilio

utline

Guiding Questions

> tegration oolbox

arts

IBP w/ limits

21 Trick

Integration by Parts: Some harder integrals

Activity 5:

Evaluate the following:

(a)
$$\int_0^{\pi/3} e^{2x} \cos(3x) dx$$

(b)
$$\int x^7 (x^4 + 1)^{2/3} dx$$

(Hint: By taking x^3 and grouping it with the $(x^4 + 1)^{2/3}$ term we can pull off the integration using u-sub. So, choose $dv = (x^4 + 1)^{2/3} (4x^3) dx$ and $u = \frac{1}{4}x^4$)

(c)
$$\int \frac{x^3 e^{x^2}}{(x^2+1)^2} dx$$

Integration by Parts: Some harder integrals

§7.1

Dr. Basilio

Outline

Guiding Questions

> ntegration oolbox

IBP w/ limits

. L Trials