

DNS of a Turbulent Channel Flow with Partial Slip

Aditya Raman

Advisor: Prof. Maurizio Quadrio

Motivation

• Friction drag: A major component of total drag in turbulent flows

A Generic Example: Aviation industry

- Friction Drag $\approx 50\%$ of Total Drag
- Drag reduction by 10%= 40% increase in profit margins
- ullet Drag reduction o Flow control: Active and Passive strategies
- Superhydrophobic surfaces → entraps air underneath cavities → prevents direct contact of fluid and wall ⇒ Slip

Source: Hasegawa et.al (2011)

Passive strategy

Source: Hasegawa et.al (2011) ¹

- Inclined alternating slip and no slip \rightarrow spanwise forcing
- · Involves Slip in streamwise and spanwise direction
- \cdot Requires a fundamental and prerequisite step \to Uniform Streamwise Slip

Hasegawa, Frohnapfel & Kasagi, J. Phys. Conf. Ser. (2011)

Partial Slip

- · Most employed B.c: No penetration, No slip
- No Penetration: An exact boundary condition
- No Slip: An assumption \rightarrow Is it really valid everywhere?

Source: Lauga et. al, SHB(2005)

Navier Slip Model

$$u_s = \lambda \frac{du}{dy}|_w$$

 λ : Slip Length

Domain and Approach

Source: Luchini & Quadrio, JCP(2006)

Statistically 1D flow

$$\delta = \frac{y_u - y_u}{2}$$
$$Re = \frac{u\delta}{\nu}$$

- Unsteady, viscous, incompressible flow → Non-dimensional Navier-Stokes
- Pseudo-spectral approach
- Mesh Resolution: 128×100×128

x, y, z: Streamwise, wall-normal, spanwise

 \mathcal{L}_{x} , \mathcal{L}_{y} , \mathcal{L}_{z} : Domain size in respective directions

Reference Case: Comparison

$$C_f = \frac{\tau_w}{\frac{1}{2}\rho u_b^2}$$
$$c_f = \frac{\tau_w}{\frac{1}{2}\rho u_c^2}$$

 u_b : Bulk velocity

 u_c : Centerline velocity

 u_{τ_0} : Reference friction velocity

Parameter	Kim et. al ²	DNS Study
C_f	8.18×10^{-3}	7.96×10^{-3}
c_f	6.04×10^{-3}	5.98×10^{-3}
u_b/u_{τ_0}	15.63	15.85
u_c/u_{τ_0}	18.2	18.29

² Kim, Moin & Moser, JFM (1987)

Drag Reduction

Reference literature: Min-Kim (2004) $^3 \to \text{Study}$ with uniform slip for various slip lengths \to chosen case for comparison: Uniform streamwise slip at Re_{τ} =180

$$DR = \frac{\frac{d\overline{u}}{dy} - \frac{d\overline{u}}{dy}|_{0}}{\frac{d\overline{u}}{dy}|_{0}} \times 100$$

$$(.)^+$$
 = Reference friction scaling

$$(.)^*$$
 = Actual friction scaling

Parameter	Min-Kim	DNS Study
λ	0.02	0.02
λ^+	3.566	3.558
u_s^*	3.006	2.974
DR(%)	-29	-27.5

 λ : Slip length

 u_s : Mean slip velocity

³Min & Kim, Phys. Fluids (2004)

Mean Properties

- Reduction in $Re_{ au}$
- Higher shift o Due to slip velocity?
- Collapse of Profiles

$$\cdot u^+ = \kappa^{-1} ln(y^+) + B$$

$$\cdot$$
 $\Delta B > 0 \implies \mathrm{DR}$

Estimating a ΔB from Drag reduction:

$$\Delta B = \sqrt{\frac{2}{C_{f_0}}} [(1 - DR)^{-\frac{1}{2}} - 1] - \frac{1}{2\kappa} ln(1 - DR)$$

	Expression Output	DNS Output
ΔB	2.99	3.02

^aGatti & Quadrio, JFM (2016)

Turbulent Intensities

- · Anisotropy across the channel
- Near wall contains peak turbulent activity
- Reduction of intensities with slip velocity
- Increase of u_{rms} near wall due to u_s fluctuations
- · Peak shifted farther away from wall

Shear Stresses

$$\tau = \mu \frac{d\overline{u}}{dy} - \rho \overline{u'v'} = \tau_w \left(1 - \frac{y}{\delta}\right)$$

- · Total stress linear
- Viscous stress near wall phenomenon
- Reynolds stress relevant across channel
- Low Reynolds number effects visible
- · Complementary behaviour near wall

Shear Stresses in + scaling

- τ^{+} = τ/τ_{w0} ; τ_{w0} : Wall shear stress of no slip wall
- Reduction in stresses when compared with no slip wall
- Reynolds stress irrelevant at the wall
- \cdot τ/τ_w = 0.73 for slip case $\implies \tau|_{slip}$ = 73 % τ_{w_0} \implies 27% DR

Turbulent Kinetic Energy

$$k = \frac{1}{2}(\overline{u^{'2}} + \overline{v^{'2}} + \overline{w^{'2}})$$

$$P = -\overline{u_i' u_j'} \frac{\partial \overline{u_i}}{\partial x_i} \qquad \epsilon = 2\nu \overline{s_{ij}' s_{ij}'}$$

- Increase of k^{*} at wall by 0.3 as u_{rms}^{*} increases by 0.7
- Peak of production at y* when stresses equate
- No peak of ϵ at the wall in slip.
- Decrease of ϵ in viscous sublayer and peak at $y^* \approx 20 \to \text{stable}$ structures, turbulence away from wall

Conclusions

- · Study coherent with data of Min-Kim(2004)
- Drag significantly reduced by partial slip specifically by 27% in accordance with Min-Kim(2004)
- Higher shift in mean profile $\implies \Delta B > 0 \rightarrow \text{Reduction in Drag}$
- · Turbulent intensities exhibit controlled behaviour
- ullet Low Re effects and peak dissipation away from wall ullet Turbulence away from wall
- · Validation successful and a green light to address spanwise forcing

Drag Reduction: A theoretical prediction

Can Drag be computed directly from λ ? ⁴

$$\lambda^{+} = \frac{1 - u_{\tau}^{+}}{u_{\tau}^{+2}} (\kappa^{-1} ln(Re_{\tau_{0}}) + F) - \frac{1}{\kappa u_{\tau}^{+}} ln(u_{\tau}^{+})$$

$$R_d = \frac{C_{f_0} - C_f}{C_{f_0}} = 1 - \left(\frac{u_\tau}{u_{\tau_0}}\right)^2 \implies u_\tau^+ = \sqrt{1 - R_d}$$

 R_d : Drag Reduction Rate

$$\cdot$$
 λ^+ = 3.56 $\Longrightarrow u_{\tau}^+$ = 0.86 $\Longrightarrow R_d$ = 0.267

Parameter	Theory	DNS Study
u_{τ}	0.03	0.03
$R_d(\%)$	26.7	27.4

⁴Fukagata, Kasagi & Koumoutsakos, Phys. Fluids (2006)