

Answer pratice 1

Calculus 1 (McGill University)

Scan to open on Studocu

McGill Math 140 Fall 2023: Multiple choice practice 1. mailto:dylan.cant@mcgill.ca

Introduction

A selection of multiple choice questions.

1. Limit practice 1

- 1.1. $\lim_{x\to 0} \frac{1-1/x}{1+1/x^2}$ equals:
 - (a) 1
- (b) 0
- (c) $+\infty$
- (d) $-\infty$
- (e) DNE
- 1.2. $\lim_{x \to 0+} x^2 \cos(1/x)$ equals:
 - (a) 1/2
 - (b) 1
- (c) 0
 - (d) -1
 - (e) DNE
- 1.3. $\lim_{x \to \infty} \frac{9^x + 3^x}{3^x + 1}$ equals:
 - (a) 3
 - (b) $(\ln(9) + \ln(3))/(\ln(3) + \ln(1))$
 - (c) 1
- (d) ∞
 - (e) DNE
- 1.4. $\lim_{x \to \infty} \frac{(4+3x)^{1/2} 4}{x-4}$ equals:
 - (a) DNE
 - (b) $3^{1/2}$
- (c) 0
- (d) ∞
- (e) $\frac{1}{2\sqrt{3}}$

2. Derivative practice

2.1. If
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 then $f'(1) - f(1)^2$ equals:

(a)
$$\frac{e^1 - e^{-1}}{e^1 + e^{-1}}$$

(b)
$$\frac{(e^1 - e^{-1})^2}{(e^1 + e^{-1})^2}$$

(c)
$$\frac{e^1 + e^{-1}}{e^1 + e^{-1}} + \frac{(e^1 - e^{-1})^2}{(e^1 + e^{-1})^2}$$

- (d) 1
- (e) None of the above.

2.2. If
$$f(x) = \frac{e^x \sin(x)}{1 + e^x \sin(x)}$$
 then $f'(0)$ equals:

- (a) 1/2
- (b) 1
- (c) 2
- (d) 0
- (e) None of the above.

2.3. If
$$f(x) = \frac{\sqrt{1 + x + x^2 + x^3}}{1 + \sin(x)}$$
 then $f'(0)$ equals:

- (a) 1
- (b) 1/2
- (c) 0
- (d) -1/2
 - (e) None of the above.

2.4. If
$$f(x) = \ln(\ln(\ln(2^x)))$$
 then $\ln(\ln(2)) \ln(2) f'(\ln(2))$ equals:

- (i) 1
- (ii) 1/2
 - (iii) 0
 - (iv) -1/2
 - (v) None of the above.

- 3. Limit from the derivative
- - (d) $1/(h+4)^2$
- (e) None of the above.
- 3.2. Let $f(x) = \frac{e^{1+x}}{x}$. Then $\lim_{h\to 0} \frac{1}{f(x)} \frac{f(x+h) f(x)}{h}$ equals:

 - (e) None of the above.

- 3.3. Let $f(x) = \frac{1}{(x+1)^2}$. Then $\lim_{h\to 0} \frac{f(h) f(0)}{h}$ equals:
- (a) -2
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) None of the above.
- 3.4. Let $f(x) = e^x + e^{2x} + e^{3x}$. What is $\lim_{h \to 0} \frac{f'(h) 6}{h}$?
 - (i) 6
 - (ii) 9
 - (iii) 11
 - (iv) 14
 - (v) None of the above.

Note the "prime" appearing in the limit

4. Limit practice 2

4.1.
$$\lim_{x\to 0-}\frac{\sin(2|x|)\sin(3x)}{\cos(x)-1} \text{ equals:} \qquad \text{however the problem}$$

- (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $+\infty$
 - (e) $-\infty$

4.2.
$$\lim_{x \to -\infty} \frac{\sqrt{1-x^3}}{x^2-x-1} \text{ equals:}$$

- (a) a finite positive number
- (b) a finite negative number
- (c) zero
 - $(d) + \infty$
 - (e) $-\infty$

4.3.
$$\lim_{x\to 0+} \frac{(1^x - 2^x)(3^x - 4^x)}{5^x - 6^x}$$
 equals:

- (a) a finite positive number
- (b) a finite negative number
- (c) zero
- (d) $+\infty$
- (e) $-\infty$

4.4.
$$\lim_{x\to 0+} \frac{1+|x-1|-|2-3x|}{x}$$
 equals:

- (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $+\infty$
 - (e) $-\infty$

- 4.5. $\lim_{x \to 0+} \frac{x \sin(1/x)}{\sqrt{1+x^2}}$ equals:
 - (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $+\infty$
 - (e) $-\infty$
- 4.6. $\lim_{x \to -\infty} \frac{1 + \frac{1}{1+x}}{1 \frac{x}{x+1}}$ equals:
 - (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $+\infty$
- (e) $-\infty$
- 4.7. $\lim_{x \to \infty} \frac{(1 + \cos(x))^3}{\cos(x) + \ln(1 + x^2)}$ equals:
 - (a) a finite positive number
 - (b) a finite negative number
- (c) zero
 - (d) $+\infty$
 - (e) $-\infty$
- 4.8. $\lim_{x\to 4+} \frac{\sqrt{x^2-3x-4}}{\sqrt{x^2-8x+16}}$ equals:
 - (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $-\infty$
- (e) $+\infty$
- 4.9. $\lim_{x\to 0} \frac{\sin(x)(e^x 1)}{\cos(x)(e^{2x} 1)}$ equals:
 - (a) a finite positive number
 - (b) a finite negative number
 - (c) zero
 - (d) $-\infty$
 - (e) $+\infty$

- 5. Word problems
- 5.1. A particle travels along the y-axis according to the formula $y(t) = t^3 2t$. Find the average speed of the particle over the interval $[0, 2^{1/2}]$.
 - (i) $1/2^{1/2}$
 - (ii) 0
 - (iii) $2^{1/2}$
 - (iv) 1
- (v) None of the above.
- 5.2. A particle travels along the x-axis according to $x(t) = \ln(2 + \cos(t))$. Find the average speed of the particle over the interval $[0, 2\pi]$.
- (i) $\ln(3)/\pi$
 - (ii) $\ln(3^{1/2})/\pi$
 - (iii) $[\ln(3) \ln(2)]/2\pi$
- (iv) The function is discontinuous on the interval and the average speed cannot be computed.
 - (v) None of the above.
- 5.3. Let $a(t) = (1+0.05)^t$ be the amount of money (in millions) in an offshore investment account, where t is measured in months. Let A = a'(0), B = a'(12) and let C be the average rate of change of a(t) over [0, 12]. Which is correct:
 - (i) A < B < C
 - (ii) C < A < B
- (iii) A < C < B
 - (iv) B < C < A
 - (v) None of the above.
- 5.4. Let $B(t) = \gamma^t/(1+\gamma^t)$ be the amount of bacteria in a petri dish, where t is measured in hours and B(t) is measured in milligrams, and $\gamma = 2$ is the bacterial growth coefficient. Out of the options, what is the *smallest* time the scientist must wait until $B(t) \geq 2 \,\mathrm{mg}$?
 - (i) 1 hour is enough (t = 1)
 - (ii) 2 hours is enough (t=2)
 - (iii) 3 hours is enough (t=3)
 - (iv) 10 hours is enough (t=10) you may use $2^{10}=1024$
- (v) None of the above.

BH < 2 por all time

6. Implicit differentiation

6.1. If $f(x)^2 + x^4 = 5$ where f is a differentiable function satisfying f(1) = 2, what is f'(1)?

- (i) 2
- (ii) -1
 - (iii) 1
 - (iv) -2
 - (v) None of the above.

6.2. What is the slope of the tangent line to the curve $xy + y^2 = 2$ at (1,1)?

- (i) -1/6
- (ii) -1/3
- (iii) -1/2
- (iv) Cannot be determined with the information given.
- (v) None of the above.

6.3. Let $g:(0,1)\to\mathbb{R}$ be a differentiable function satisfying $\sin(g(x))=x$ and $g(0.5)=\pi/6$. What is g'(0.5)?

- (i) $2^{-1/2}$
- (ii) $3^{1/2}/2$

- $+\frac{2}{31/2}$
- (iii) $-2^{1/2}$ (iv) $-2/3^{1/2}$
- (v) None of the above.

6.4. Let $g:(0,1)\to\mathbb{R}$ be a differentiable function satisfying $\cos(g(x))=x$ and $g(0.5)=2\pi/3$. What is g'(0.5)?

- (i) $-2^{1/2}/3$
- (ii) $3/2^{1/2}$
- (iii) $-3/2^{1/2}$
- (iv) $2^{1/2}/3$

(v) None of the above.

6.5. Find the equation of the tangent line to $x = y^3 + y^2$ at the point (2, 1).

- (i) 1 Slope
- (ii) 5
- (iii) 1/5
 - (iv) -1/5
 - (v) None of the above.

7. Continuity

A discontinuity of an expression f(x) is a point a which is not in the maximal domain for which f(x) is well-defined, or for which $\lim_{x\to a} f(x) \neq f(a)$.

If f(a) can be redefined so that $\lim_{x\to a} f(x) = f(a)$, then we say a is a removable discontinuity.

If $\lim_{x\to a+} f(x)$ and $\lim_{x\to a-} f(x)$ both exist and are different, then we say a is a jump discontinuity.

7.1. Let:

$$f(x) = \frac{x^2 + 3x - 3\sqrt{2} - 2}{x^2 + 6x + 7}.$$

How many discontinuities does this expression have, how many are removable, and how many are jump discontinuities?

- (i) 2 and 1 and 0
 - (ii) 1 and 0 and 0
 - (iii) 2 and 2 and 0
 - (iv) 2 and 1 and 1
 - (v) None of the above

7.2. Let:

$$f(x) = \frac{|1-x|}{1-x} + \frac{|2-x|}{2-x}.$$

How many discontinuities does this expression have, how many are removable, and how many are jump discontinuities?

- (i) 2 and 2 and 0
- (ii) 2 and 0 and 2
 - (iii) 2 and 1 and 1
 - (iv) 2 and 0 and 0
 - (v) None of the above

7.3. Let:

$$f(x) = \frac{e^{\ln(2) + x} - e^{\ln(2)}}{x} + \frac{\sin(x-1)}{x-1}.$$

How many discontinuities does this expression have, how many are removable, and how many are jump discontinuities?

- (i) 2 and 2 and 0
 - (ii) 2 and 0 and 2
 - (iii) 2 and 1 and 1
 - (iv) 2 and 0 and 0
 - (v) None of the above

8. Asymptotes

8.1. Find all the asymptotes of the expression $f(x) = (e^x + 1)/(e^x - 1)$, and add them up (i.e., if $y = a_1, a_2, \ldots$ and $x = b_1, b_2, \ldots$ are the horizontal and vertical asymptotes, you should return $(a_1 + a_2 + \ldots) + (b_1 + b_2 + \ldots)$). If there are no asymptotes, return NA.

- (a) -1
- (b) 0
 - (c) 1
 - (d) NA
 - (e) None of the above.

8.2. Find all the asymptotes of the expression $f(x) = (x^3 + 2x + 1)/(x^3 + x^2)$, and add them up. If there are no asymptotes, return NA.

- (a) -1
- (b) 0
 - (c) 1
 - (d) NA
 - (e) None of the above.

8.3. Find all the asymptotes of the expression $f(x) = (2x\sin(x)+1)/(x^2+1)$, and add them up. If there are no asymptotes, return NA.

- (a) -1
- (b) 0
 - (c) 1
 - (d) NA
 - (e) None of the above.

8.4. Find all the asymptotes of the expression $f(x) = x(x-1)^{-1} - (x-2)^{-1}$, and add them up. If there are no asymptotes, return NA.

- (a) -1
- (b) 0
- (c) 1
- (d) NA
- (e) None of the above.

- 9. Piecewise functions
- 9.1. Find values of $m, b \in \mathbb{R}$ so that the following function is continuous.

$$f(x) = \begin{cases} (\cos(3x) - 1)/x & \text{for } x < 0\\ mx + b & \text{for } x \in [0, 1]\\ \sin(3x - 3)/(x - 1) & \text{for } x > 1 \end{cases}$$

What is m + b?

- (a) 1
- (b) 2
- (c) 3
 - (d) 4
 - (e) None of the above.
- 9.2. Find values of $k, m, \ell \in \mathbb{R}$ so that the following function is differentiable.

$$f(x) = \begin{cases} \frac{1 - e^{-2x}}{1 - e^{-x}} + \ell x & \text{for } x < 0\\ m & \text{for } x = 0\\ \frac{1 - e^{2x}}{1 - e^{x}} + k & \text{for } x > 0 \end{cases}$$

What is $k + m + \ell$?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
 - (e) None of the above.
- 9.3. Let f(x) = |1 |1 |x||. It can be shown that:

$$f(x) = \begin{cases} ax + b & \text{for } x \le -2\\ cx + d & \text{for } -2 < x \le -1\\ ex + f & \text{for } -1 < x \le 0\\ gx + h & \text{for } 0 < x \le 1\\ ix + j & \text{for } 1 < x \le 2\\ kx + \ell & \text{for } 2 < x \end{cases}$$

What is a + c + e?

- (a) -2
- (b) -1
- (c) 0
- (d) 1
- (e) None of the above.