

3. [2] Using basic known equivalences, show that $(\neg p \land q) \lor \neg (p \lor q)$ is logically equivalent to $\neg p$.

4. [4] Prove the following logical argument, giving a list of statements and reasons.

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
r \to s
\end{array}$$

$$\therefore q \lor s$$

#	statement	reason
1.	$p \lor q$	premise
2.	$\neg p \lor r$	premise
3.	$r \rightarrow s$	premise
4.	5-5 L	L.E to 2
4. 5-	PTS	4,3 Chan Rule
6.	qup	1, Comm.
7	79 -> P	L.6. to 6
8.	79-35	7,5 ChamPule.
9.	ZTG VS	L.E. to 8
	ı	Dbl Neg'n.

- 5. Let A, B and C be sets.
 - (a) [3] Prove that $A \setminus (B \cap C^c) \subseteq (A \cap B^c) \cup (A \cap C)$.

If
$$x \in B^C$$
, then $x \in A \cap B^C$, so $x \in RHS$

(b) [2] Use a Venn diagram to investigate whether these sets may, in fact, be equal. Make a conjecture. Do not prove it.

6. [3] Let $a,b,c \in \mathbb{Z}$. Prove that if a|b and b|c then a|c.

6. [3] Let
$$a, b, c \in \mathbb{Z}$$
. Prove that if $a|b$ and $b|c$ then $a|c$.

- 7. Let A and B be nonempty sets. Consider the statement: if $A \times B = B \times A$ then A = B.
 - (a) [1] Write the contrapositive of the given statement. If $A \neq B$, then $A \times B \neq B \times A$.

(b) [3] Prove the statement in (a).

Suppose A + B. Then one of these sets how an element not in the other. Suppose there is an element XEA 5.1. X&B. Since B + Ø it now an element, b. Then (X, b) EAXB, and (X, b) & BXA b/c X&B. ". AXB + BXA.

The case where I y EB 5.1. y & A is similar.

- (c) [1] What does the result in part (b) tell you about the original statement?

 That it is true: a stmt and its

 contrapositive are logically equivalent
- (d) [1] Does the truth value of the original statement change if $A = \emptyset$? Explain. Les. If $A = \emptyset$, then $A \times B = \emptyset = B \times A$ no matter what set B is.
- 8. [4] Prove that the set of rational numbers is countable. Use a diagram to illustrate your proof.

Consider the array: $\frac{37}{11} = \frac{37}{11} = \frac{37}{11$

9. [4] Consider the relation \mathcal{R} defined on the set \mathbb{Z} of integers by $(a,b) \in \mathcal{R}$ if and only if $a-b \leq 5$. Consider the statements below. If a statement is true, prove it. If it is false, give a counterexample.

(a) R is reflexive. True.

Take any X∈ Z. Then X-X = 0 ≤ 5.

Take any X∈ Z. Then X-X = 0 ≤ 5.

(b) R is symmetric. False (0,10) eR b/c 0-10=-10 \(\delta\)5. But (10,0) \(\delta\) R b/c 10-0=10 \(\delta\)5.

(c) R is antisymmetric. Falso. $(l_10) \in R$ blc $l-0=1 \le S$ $(o_1) \in R$ blc $o-l=-1 \le S$ But $l \ne 0$

- But 1+0.

 (d) R is transitive. False

 (10,5) $\in \mathbb{R}$ b/c $10-5=5 \le 5$ (5,0) $\in \mathbb{R}$ b/c $5-0=5 \le 5$ But $(10,0) \notin \mathbb{R}$ b/c 10-0=10 + 5.
- 10. [3] Let $f: A \to B$ and $g: B \to C$ be functions. Prove that if $g \circ f$ is one-to-one then f is one-to-one.

- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = 4 + |2x + 3|.
 - (a) [1] Determine rng f. 12x+3/70, and all real #'s on [0,00) 00 rng f = [4,00)
 - (b) [2] Give reasons why f is neither one-to-one nor onto.

$$f(2) = 4 + |2.2 + 3| = 11$$

 $f(-5) = 4 + |2.(-5) + 3| = 11$
Since $2 \neq -5$, f is not $1-1$.
Since rng $f = [4,00]$, $\neq \times s.t.$ $f(x) = 0$
 $f(x) = 0$

(c) [1] Explain how to replace the target $\mathbb R$ of f with a set $B\subseteq \mathbb R$ so that the function $g: \mathbb{R} \to B$, defined by g(x) = f(x) for all $x \in \mathbb{R}$, is onto.

(d) [1] Explain how to replace the domain \mathbb{R} of g with a set $A \subseteq \mathbb{R}$ so that the function $h:A\to B$, defined by h(x)=g(x) for all $x\in A$, is one-to-one and onto.

Take
$$A = \begin{bmatrix} -\frac{3}{2}, \infty \end{bmatrix}$$
. For $x \in A$, $f(x) = 4 + 12x + 3 = 4 + 2x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$
 $b(c 2x + 3) = 4 + 12x + 3$

(e) [2] Find a formula for h^{-1} . From (d)

$$h(x) = 7 + 2x$$

$$y = h(x) \implies y = 7 + 2x$$

$$\implies y = 7 + 2x$$

$$\implies y = 7 + 2x$$

If
$$y \in [4, \infty)$$
 then $\frac{2}{y-7} \in [-\frac{3}{2}, \infty)$
 $\therefore A^{-1}(y) = y-7$

12. [3] Let a and b be integers and let p be a prime such that $gcd(a, p^2) = p$ and $gcd(b, p^3) = p^2$. Determine $gcd(ab, p^4)$.

 $gcd(a,p^2)=p \Rightarrow exponent of p in prime facin d$ $gcd(b,p^3)=p^2=) exponent of p in prime facin
<math>d$ b is 2

: exp. of p m prime fac'n of ab is 1+2 : gcd (ab, p4) = p3

13. [2] Use the Fundamental Theorem of Arithmetic to prove that every integer $n \geq 2$ is divisible by a prime number.

F.T.A. says every n? 2 can be uniquely written as

N= Pi Pz - PE

where each pi is prime, each x:7,1, and PI < PZ < -- < PK

: 0 N = PI (Pix-1 Pz-- Pix) 50 PI N

- 14. [3] Determine the last digit of 3366.

 Want $d \in \{0,1,-,9\}$ S.t. $33^6 \equiv d \pmod{10}$ $33^6 \equiv 3^6 \equiv (3^2)^{33} \equiv (-1)^3 \equiv -1 \equiv 9 \pmod{10}$ The last digit is 9
- 15. [3] Find the positive integer *b* if $(122)_b = (203)_7$.

 $(123)_b = 1.0b^2 + 2.0b + 3$ $(203)_7 = 2.7^2 + 0.7 + 3 = 101$

 $b^{2} + 2b + 2 = 101$ $b^{2} + 2b - 99 = 0$ (b+11)(b-9) = 0

8 at -11 isn't a base, so b=9

16. [5] Let a_n be the sequence recursively defined by $a_0 = 1$, $a_1 = -3$, $a_n = -6a_{n-1} - 9a_{n-2}$ for $n \ge 2$. Use strong induction to show that $a_n = (-3)^n$ for all integers $n \ge 0$.

Basis When n=0, $a_0=1=(-3)^0$. When n=1, $a_1=-3=(-3)^1$. Start true when n=0 or n=1.

IH. Assume $a_0 = (-3)^0$, $a_1 = (-3)^1$, $a_2 = (-3)^2$ for some $(2, 7)^1$.

IS. Want $a_{k+1} = (-3)^{k+1}$ Look at a_{k+1} . Since $k+1 \ge 2$, we have $a_{k+1} = -6a_k - 9a_{k-1}$ $= -6(-3)^k - 9(-3)^{k-1}$ $= 2(-3)^{k+1} - (-3)^2(-3)^{k+1}$ $= (-3)^{k+1} (2-1) = (-3)^k$ as wanted

:. By strong induction, an= (-3) " 4n>, 0

17. (a) [2] Assume that $1+2+\cdots+k=\frac{(k+(1/2))^2}{2}$ for some $k\geq 1$. Use this hypothesis to prove $1+2+\cdots+(k+1)=\frac{((k+1)+(1/2))^2}{2}$.

LHS=
$$1+2+\cdots+(k+1)$$

= $(k+(1/2))^2/2+(k+1)$
= $(k+(1/2))^2/2+(k+1)^2/2$
= $\frac{1}{2}[k^2+k+\frac{1}{4}+2(k+1)]$
= $\frac{1}{2}[k^2+3k+\frac{q}{4}]=((k+1)+\frac{1}{2})^2$

(b) [2] Is the statement $1+2+\cdots+n=\frac{(n+(1/2))^2}{2}$ true for all integers $n\geq 1$? Explain.

No. When
$$n=1$$
, $LHS=1$

$$RHS = \frac{1+1/2}{2} = \frac{3}{2}^{2} = \frac{9}{8}$$

'Part (a) is an induction step, but the base 18. [2] Let a_1, a_2, a_3, \ldots be the sequence recursively defined by $a_1 = 1$ and, for n > 1, $a_n = 3a_{n-1} + 1$.

Find the first 4 terms of the sequence and conjecture a formula for a_n . Do not prove it.

$$a_1 = 1$$
 $a_2 = 3a_1 + 1 = 3 \cdot 1 + 1$
 $a_3 = 3a_2 + 1 = 3(3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3(3^2 \cdot 1 + 3 \cdot 1 + 1) + 1$
 $a_4 = 3a_3 + 1 = 3a$

19. Let $A = \{a, b, c\}$ and $B = \{u, x, y, z\}$. Answer the following questions. No reasons are necessary.
(a) [1] There are \mathcal{A}^3 functions from A to B .
(b) [1] There are $4 \cdot 1 - 1$ functions from A to B. $4 \cdot 3 \cdot 2 = 4$
(c) [2] There are 32 functions f from A to B such that $f(a) = x$ or $f(a) = y$.
20. Let $S = \{1, 2,, 1000\}$.
(a) [2] Explain why the number of integers in S divisible by 11 is [1000/11] = 90. State a general result in which 11 is replaced by an arbitrary positive integer b. By the division algorithm, if a = bg tr, 0 \(\)
= 1A1+1B1+1C1- (ANB1-1ANC)-1BNO
$= \lfloor \frac{1000}{3} \rfloor + \lfloor \frac{1000}{5} \rfloor + \lfloor \frac{1000}{11} \rfloor - \lfloor \frac{1000}{15} \rfloor - \lfloor \frac{10}{3} \rfloor$
$-\frac{1000}{55} + \frac{1000}{165}$
= 515
(c) [2] How many integers in S relatively prime to 165? 165 = 3×5×11 Every mt. m 3 15 divisible by me of these, And this is all of them / END OF EXAMINATION