Y =
$$N(\mu, \sigma^2)$$

Y = $ln(x)$
X = e^{γ}
Fightet $f(y)$ be the PDF of Normal distribution
 $E(x) = \int_{-\infty}^{\infty} e^{\gamma} f(y) dy$

$$= \int_{-\infty}^{\infty} e^{\gamma} f(y) dy$$

$$=$$

Since the integral is now integrating
$$N(N+\sigma^2, \sigma^2)$$
, so it is equal to $E(X) = e^{M+\frac{\sigma^2}{2}}$ sub $N = 0.02$, $\sigma = 0.05$

$$E(X) = e^{0.02 + \frac{0.05^2}{2}}$$

$$Var(X) = E(X^{2}) - E(X)$$

$$E(X^{2}) = \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{2y - (y - \mu)^{2}} dy$$

$$y^{2} + 4y + 4\mu^{2}$$

$$\int_{-\Theta}^{2} \frac{d^{2} + y \mu + \mu^{2} - 4 \sigma^{2} y}{dy} = \int_{-\Theta}^{2} \frac{1}{\sigma \sqrt{27}} e^{-\left(\frac{y^{2} - 4 y \mu + \mu^{2} - 4 \sigma^{2} y}{2 \sigma^{2}}\right)} dy$$

$$= e^{2\mu + 2\sigma^{2}} \times 1$$

$$= e^{2\mu + 2\sigma^{2}}$$

Sub
$$\sigma\mu = 0.02$$
, $\sigma^{2} = 0.05$
 $Var(X) = e^{2(0.02) + 2(0.05)^{2}} - 1.021477389$
 $= 0.02455047$

Empircal data

Ī	*sample	101	100	1000	10000	100000
_	-		1.013513	1.020112	1.021 758	1-021626
	02	0.00244	0.002671259	0.00259146	0.00254836	0.0026/0849
		1				

Theoretical data

Var(x) = 0.02455047

Forom the result, when sample size ?, E(x) will more accurate but