Errata da lista 1:

Na página 4 (respostas), a resposta da letra e da questão 13 é $\{2,3,5,7,11,13,{\bf 17}\}$ (faltou o número 17)

Lista 1 - Bases Matemáticas

Elementos de Lógica e Linguagem Matemática

- 1 Dê exemplos ou contra-exemplos, se existirem, para as seguintes afirmações:
 - a) Para todo $x \in \mathbb{R}$, x + 1 > 2.
 - b) Todas as letras da palavra "banana" são vogais.
 - c) Para todo $x \in \mathbb{R}, x^2 < x$.
 - d) Para todos $\mathfrak{m},\mathfrak{n}\in\mathbb{N}$ pares, temos que $\mathfrak{n}+\mathfrak{m}$ é par.
- **2** O que as seguintes afirmações significam? Elas são universais ou particulares? Elas são verdadeiras? O universo de discurso em todos os casos é os números naturais.
 - a) $\forall x \exists y (x < y)$
 - b) $\exists y \forall x (x < y)$
 - c) $\exists x \forall y (x < y)$
 - d) $\forall y \exists x (x < y)$
 - e) $\exists x \exists y (x < y)$
 - f) $\forall x \forall y (x < y)$
- **3** O que as seguintes afirmações significam? Elas são verdadeiras? Dê exemplos e contraexemplos quando possível. O universo de discurso em todos os casos é os números naturais.
 - a) $\forall x \exists y (2x y = 0)$
 - b) $\exists y \forall x (2x y = 0)$
 - c) $\exists y \exists z (y + z = 100)$
- 4 Negue as seguintes proposições:
 - a) 3 > 4 e 2 é par.
 - b) Não é verdade que (3 é par ou que 5 é impar).
 - c) 2 é um número par e 3k+1 é um número ímpar.
 - d) 2 é número par e não é verdade que 3 é um número ímpar.
 - e) Todo elemento do conjunto A é elemento do conjunto B.

- f) Não é verdade que (5 é um número primo e 4 é um número ímpar).
- g) (Não é verdade que 5 é um número primo) ou 4 é um número ímpar.
- **5** Nas seguintes proposições abertas o domínio de discurso é o conjunto dos reais. Para essas proposições esboce na reta real o seu conjunto verdade.
 - a) x > 2 e x < 4
 - b) x > 2 ou x < 3
 - c) x > 2 ou (x < 5 e x > 3)
 - d) não é verdade que (x > 2 e x < 4)
- **6** Ache a contrapositiva, a recíproca e a inversa das seguintes frases:
 - a) $n\tilde{a}o p \Rightarrow q$.
 - b) $n\tilde{a}op \Rightarrow n\tilde{a}oq$.
 - c) $p \Rightarrow n\tilde{a}o q$.
 - d) Se chove então eu não vou trabalhar.
 - e) Se x é par, então 2x + 1 é impar.
 - f) Se minha mãe é um trator então eu sou uma moto-serra.
 - g) Se $2^k + 1$ é primo, então k é uma potência de 2.
 - h) Se $x^2 + y^2 = 0$ então x e y são iguais a 0.
- **7** Atribua um valor verdade as seguintes proposições:
 - a) Se 2 é par, então 3 é impar.
 - b) Se 2 não é par, então 3 é ímpar.
 - c) Se 3 não é par, então 3 não é impar.
 - d) Se minha mãe é um trator então eu sou uma moto-serra.
- ${\bf 8}$ Para os pares de proposições ${\bf p}$ e ${\bf q}$ diga se ${\bf p}$ é condição necessária e\ou suficiente para ${\bf q}$. Em todos os exemplos considere ${\bf x}$ um número natural.

- a) p = x é maior que 2 q = x é maior que 3.
- b) p="x é maior que 2" q="x é maior igual a 2".
- c) p="x é maior que 0 e x é menor que 2" q="x é menor que 2".
- d) p="x é maior que 0 e x é menor que 2" q="x=1".
- e) p=" Δ é um triângulo isósceles" q=" Δ é um triângulo equilátero".
- f) p= "M é uma matriz com determinante diferente de 0" q= "M é uma matriz invertível".

9 — Transcreva as seguintes proposições para a forma simbólica:

- a) Existe um número real n tal que $n^2 = 2$.
- b) Não existe número racional x tal que $x^2 = 2$.
- c) Existe x tal que x^2 é par e divisível por 3.
- d) Não existe número inteiro x tal que x^2 é primo ou x^2 é negativo.
- e) Existe um úmero inteiro x tal que x^2 é par ou x^2 é ímpar.
- f) Para cada número real x existe um número real y tal que x + y = 0.
- g) Todo elemento do conjunto A é elemento do conjunto B.
- h) Para todo ϵ , existe $\delta(\epsilon)$ tal que se $0 < |x a| < \delta$ então $|f(x) f(1)| < \epsilon$.
- i) Todo número natural é divisível por 2, 3, 5 ou 7.
- j) Para todo número racional x, x é menor que 1/x.
- k) Se $\mathfrak a$ e $\mathfrak b$ são dois números primos, então $\mathfrak a\mathfrak b$ é primo.
- Existem dois números cuja soma é 1000.
- m) N\(\tilde{a}\) existe n\(\tilde{u}\)mero racional cujo quadrado \(\tilde{e}\) 2.
- n) Para todos números $\mathfrak a$ e $\mathfrak b$ reais, há um número $\mathfrak c$ que é menor que $\mathfrak b$ e maior que $\mathfrak a$.
- 10 Para cada uma das proposições anteriores, escreva a negação simbólica e "em português".

11 — Reescreva cada afirmação a seguir em língua natural, sem usar notação simbólica.

- a) $\forall n \in \mathbb{R}, n < n^2$.
- b) $\exists n \in \mathbb{R}, n^2 = n.$
- c) $\exists ! n \in \mathbb{R}, n^2 = n.$
- d) $\exists n \in \mathbb{R}, n^2 = n^3$.
- e) $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} : k < n.$
- f) $\forall a, b \in \mathbb{R}, \exists c, d \in \mathbb{R} : a < c + d < b.$
- g) $\forall a, b \in \mathbb{Z}, \exists c \in \mathbb{Z} : (a/b)c \in \mathbb{Z}.$
- h) $\forall a, \in \mathbb{R}, \exists b \in \mathbb{R} : \forall c \in \mathbb{R}, ab = c$
- i) $\forall a, \in \mathbb{R}, \forall c \in \mathbb{R}, \exists b \in \mathbb{R} : ab = c$

12 — A fórmula de Bhaskara é uma proposição universal. Descreva-a simbolicamente.

13 — Para todas as afirmações a seguir n denota um número natural. Determine o conjunto verdade das seguintes proposições abertas:

- a) $n^2 < 12$
- b) 3n + 1 < 25
- c) 3n + 1 < 25 e n + 1 > 4
- d) n < 5 ou n > 3
- e) n é primo e não é verdade que n > 17
- f) (n-2)(n-3)(n-4)(n-5) = 0

14 — Para cada demonstração, diga que tipo de técnica de prova foi usada, e explique como a técnica foi aplicada (o símbolo | significa "divide"):

- a) $a|b \ e \ a|c \rightarrow a|(b+c)$. Prova: se $a|b, \exists k_1:$ $ak_1 = b$; mas porque $a|c, \exists k_2: ak_2 = c$. Assim, $b+c = ak_1 + ak_2 = a(k_1 + k_2)$, e mostramos que $\exists k: b+c = ak$.
- b) log₂ 3 é irracional. Prova: suponha que existem a e b tais que log₂ 3 = a/b com a, b ∈ Z. Então, 2^{a/b} = 3, e (2^{a/b})ⁿ = 3^b. Mas como (2^{a/b})^b = 2, teríamos que 2^a = 3^b. Mas 2 elevado a qualquer inteiro deve ser par, e 3 elevado a qualquer inteiro deve ser ímpar. Como um número não pode ser par e ímpar ao mesmo tempo, temos que concluir que log₂ 3 é irracional.
- c) Se a e b são reais e ab é irracional, então pelo menos um dentre a e b deve ser irracional. Prova: se tanto a como b forem racionais, então há $k_1, k_2, k_3, k_4 \in \mathbb{Z}$ tais que $a = k_1/k_2$ e $b = k_3/k_4$. Então,

 $\begin{array}{l} ab=(k_1/k_2)(k_3/k_4)=\frac{(k_1k_3)}{(k_2k_4)} - \text{o que significa que } ab \text{ poderia ser escrito como quociente de dois inteiros. Portanto, se } ab \text{ \'e} \\ \text{irracional, ou } a \text{ ou } b \text{ deve ser irracional.} \end{array}$

- d) Se α é irracional, então $\sqrt{\alpha}$ também é irracional. Prova: Se $\sqrt{\alpha}$ for racional, então existem inteiros m e n tais que $\sqrt{\alpha} = m/n$. Elevando ambos os lados ao quadrado, temos $\alpha = m^2/n^2$. Como m^2 e n^2 são inteiros, α é racional.
- e) Para qualquer triângulo retângulo não degenerado (ou seja, com todos os lados de comprimento maior que zero), sejam \mathfrak{a} e \mathfrak{b} os comprimentos de seus catetos e \mathfrak{c} o comprimento de sua hipotenusa. Então, $\mathfrak{a}+\mathfrak{b}>\mathfrak{c}$. Prova: Suponha qye $\mathfrak{a}+\mathfrak{b}\leq\mathfrak{c}$. Elevando ambos lados ao quadrado temos $(\mathfrak{a}+\mathfrak{b})^2\leq\mathfrak{c}^2$, ou ainda, $\mathfrak{a}^2+2\mathfrak{a}\mathfrak{b}+\mathfrak{b}^2\leq\mathfrak{c}^2$. Como o triângulo não é degenerado (todos os lados são maiores que zero), $\mathfrak{a}^2+\mathfrak{b}^2<\mathfrak{a}^2+2\mathfrak{a}\mathfrak{b}+\mathfrak{b}^2\leq\mathfrak{c}^2$, e portanto $\mathfrak{a}^2+\mathfrak{b}^2<\mathfrak{c}^2$. No entanto, o Teorema de Pitágoras afirma que $\mathfrak{a}^2+\mathfrak{b}^2=\mathfrak{c}^2$, e a prova está completa.

15 — As demonstrações a seguir estão incorretas. Aponte o erro em cada uma delas.

- a) 1 < 0. Prova: Seja um número real x < 1. Aplicando o logaritmo em ambos os lados da desigualdade, temos $\log x < \log 1$. Como sabemos que $\log 1 = 0$, então $\log x < 0$. Agora dividimos ambos os lados por $\log x$ e obtemos 1 < 0.
- b) Todo número inteiro tem raiz quadrada inteira. Prova: Provamos a contrapositiva de " $\forall n \in \mathbb{Z}, \sqrt{n} \in \mathbb{Z}$ ". Seja $\mathfrak{a} = \sqrt{n}$. Temos que $\mathfrak{a}^2 = \mathfrak{n}$, e como o quadrado de um inteiro é sempre outro inteiro, \mathfrak{n} também é inteiro.
- c) Se 5|ab então 5|a ou 5|b. Prova: Se 5|ab então ab é da forma 5k para algum k. Portanto, ou a = 5m ou b = m para algum m. Assim, concluímos que 5|a ou 5|b.
- d) 1 = 2. Prova: Sejam a e b dois números iguais. Multiplicando ambos os lados de "a = b'" por a obtemos $a^2 = ab$. Subtraindo b^2 dos dois lados, $a^2 b^2 = ab ab$

 b^2 . Fatorando, (a+b)(a-b) = b(a-b). Subtraindo (a-b) temos a+b=b. Quando a e b valem 1, temos que 1+1=1, e está concluída a prova.

16 — Demonstre as seguintes afirmações:

- a) Se $\mathfrak a$ divide $\mathfrak b$ e $\mathfrak a$ divide $\mathfrak c$ então $\mathfrak a$ divide $\mathfrak b + \mathfrak c$.
- b) Se p, q são números racionais, então p + q é um número racional.

17 — Use o método de redução ao absurdo para provar cada uma das seguintes proposições.

- a) A raiz cúbica de 2 é irracional.
- b) Dados a, b, c inteiros. Mostre que se a não divide bc, então a não divide b.

18 — Prove cada uma das seguintes proposições pelo método contra-positivo.

- a) Se x e y são dois números inteiros cujo produto é ímpar, então ambos têm de ser impar.
- b) Se a e b são números reais tais que o produto ab é um número irracional, então ou a ou b deve ser um número irracional.

19 — Mostre que o produto de um número racional não nulo com um número irracional é irracional.

20 — Dados a, b, c números inteiros com $c \neq 0$. Mostre que a divide b se e somente se ac divide bc.

Exercícios Complementares

- 21 Use o método de redução ao absurdo para provar cada uma das seguintes proposições.
 - a) Não há soluções inteiras positivas para a equação $x^2 y^2 = 10$.
 - b) Não há solução racional para a equação $x^5 + x^4 + x^3 + x^2 + 1 = 0$.

Respostas dos Exercícios

1 a.) Exemplos: qualquer número real maior que 1. Contra-exemplos: qualquer número real menor igual a 1. b.) Exemplos: letra a. Contra-exemplos: letras b,n e.) Exemplos $\mathfrak{m}=2$ e $\mathfrak{n}=4$ ou $\mathfrak{m}=6$ e $\mathfrak{n}=8$. Contra-exemplos: não possui, pois como provaremos em ?? essa afirmação é verdadeira.

 ${f 2}$ a.) Para todo número natural ${f x}$ existe um ${f y}$ tal que ${f x}<{f y}$. Ou seja, para qualquer número natural ${f x}$ existe um número natural ${f y}$ tal que ${f y}$ é maior que ${f x}$. Verdadeira. Afirmação Universal. Exemplo ${f x}={f 1}$ seja ${f y}={f 2}$. b.) Existe um ${f y}$ tal que para todo ${f x}$, ${f x}$ é menor que ${f y}$. Afirmação particular. Afirmação falsa, pois para qualquer número natural ${f y}$, ${f y}+{f 1}$ não é menor que ${f y}$.

e.) Existem x e y tais que x < y. Afirmação particular. Verdadeira.

3 a.) Verdadeira. **b.**) Existe y tal que para todo x, 2x - y = 0. Falsa, pois se x = 0 então y = 0, e se x = 1 então y = 2. **c.**) Verdadeira.

4 a.) $3 \le 4$ ou 2 é impar. **e.)** Existe um elemento no conjunto A que não é elemento do B.

6 b.) Contrapositiva: $q \Rightarrow p$. Reciproca: $n\tilde{a}o q \Rightarrow n\tilde{a}o p$. Inversa: $p \Rightarrow q$. **d.)** Contrapositiva: "Se vou trabalhar então não chove". Reciproca: "Se não vou trabalhar então chove". Inversa: "Se não chove então vou trabalhar.

7 a.) verdadeiro b.) verdadeiro c.) falso d.) verdadeiro

8 a.) Condição necessária, mas não suficiente. b.) Condição suficiente, mas não necessária. e.) Condição necessária, mas não suficiente. f.) Condição necessária e suficiente.

9 a.) $\exists n \in \mathbb{R} | n^2 = 2$ b.) $n\tilde{a}o \exists x \in \mathbb{Q} | x^2 = 2$ f.) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} | x + y = 0$

10 a.) $\forall n \in \mathbb{R}n^2 \neq 2$. Para todo número real n, $n^2 \neq 2$. **b.)** $\exists x \in \mathbb{Q} | x^2 = 2$. Existe um número racional x tal que $x^2 = 2$. **f.)** $\exists x \in \mathbb{R} | \forall y \in \mathbb{R} | x + y = 0$. Existe um número real x tal que para todo número real y, x + y = 0.

11 a.) Todo número real é menor que seu quadrado. b.) Existe um único número real que é igual a seu próprio quadrado. c.) Para todo número real $\mathfrak a$ existe algum outro real $\mathfrak b$ tal que para qualquer $\mathfrak c$ real, $\mathfrak a\mathfrak b$ é igual a $\mathfrak c$.

12 A fórmula diz que as soluções para $ax^2 + bx + c = 0$ são dadas por $(-b \pm \sqrt{b^2 - 4ac})/(2a)$. Simbolicamente,

$$\forall a, b, c, x, (ax^{2} + bx + c = 0)$$

$$\rightarrow \left(x = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}\right)$$
ou
$$x = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

13 a.) $\{0,1,2,3\}$ c.) $\{4,5,6,7\}$ e.) $\{2,3,5,7,11,13\}$

14 d.) A proposição provada é nao $R(a) \rightarrow$ nao $R(\sqrt{a})$; a prova apresentada é a da contrapositiva $R(\sqrt{a}) \rightarrow R(a)$. **e.)** Redução ao absurdo. A proposição diz que a+b>c, e a prova consiste em demonstrar que a negação da proposição, " $a+b \leq c$ ", leva ao absurdo.

15 a.) A própria demonstração diz que $\log x < \log 1$, portanto $\log x < 0$. No entanto, ao multiplicar uma inequação a < b por algum número negativo, tem-se que -ak > -bk. b.) A proposição provada não é a contrapositiva do que se queria provar, e sim a recíproca. c.) A proposição é "Se 5|ab então 5|a ou 5|b", e foi usada para provar a si mesma: "ab é da forma 5k ... Portanto ou a = 5m ou b = m para algum m".