

Vishay Siliconix

N- and P-Channel 40-V (D-S) MOSFET

PRODUCT SUMMARY						
	V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ)		
N-Channel	40	0.027 at V _{GS} = 10 V	6.0	9.6		
		0.032 at V _{GS} = 4.5 V	4.8	9.6		
P-Channel	-40	$0.029 \text{ at V}_{GS} = -10 \text{ V}$	-6.0	21		
	-40	$0.039 \text{ at V}_{GS} = -4.5 \text{ V}$	-4.9	21		

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_g and UIS Tested

APPLICATIONS

CCFL Inverter

Ordering Information: Si4569DY-T1—E3 (Lead (Pb)-free)

N-Channel MOSFET

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)							
Parameter		Symbol	N-Channel	P-Channel	Unit		
Drain-Source Voltage	V _{DS}	40	-40				
Gate-Source Voltage		V _{GS}	±	_ v			
	T _C = 25 °C		7.6	-7.9			
0 11 0 17 1700	T _C = 70 °C	- I _D -	6.0	-6.3			
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C		6.0 ^{b, c}	−6.1 ^{b, c}			
	T _A = 70 °C	1	4.8 ^{b, c}	−4.9 ^{b, c}			
Pulsed Drain Current (10 μs Pulse Width)		I _{DM}	20	-20	Α		
Source-Drain Current Diode Current	T _C = 25 °C		2.6	-2.6			
	T _A = 25 °C	ls l	1.6 ^{b, c}	-1.6 ^{b, c}			
Pulsed Source-Drain Current		I _{SM}	20	-20			
Single Pulse Avalanche Current	1 04 11		10	20			
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	5	20	mJ		
	T _C = 25 °C		3.1	3.2			
Maximum Power Dissipation	T _C = 70 °C	1 _ [2	2.1	-		
	T _A = 25 °C	- P _D	2 ^{b, c}	2 ^{b, c}	W		
	T _A = 70 °C	1	1.28 ^{b, c}	1.28 ^{b, c}	7		
Operating Junction and Storage Temperature Rar	T _J , T _{stg}	–55 t	°C				

THERMAL RESISTANCE RATINGS									
			N-Channel P-Channel			annel			
Parameter	Symbol	Тур	Max	Тур	Max	Unit			
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 sec	R _{thJA}	49	62.5	47	62.5	0000		
Maximum Junction-to-Foot (Drain)	Steady-State	R _{thJF}	30	40	29	38	°C/W		

Notes

- a. Based on $T_C = 25 \,^{\circ}C$.
- b. Surface Mounted on 1" x 1" FR4 Board.
- c. t = 10 sec
- Maximum under steady state conditions is 120 °C/W (n-channel) and 110 °C/W (p-channel).

Vishay Siliconix

New Product

Parameter	Symbol	Test Condition		Min	Typ ^a	Max	Unit
Static				l		l	l
		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	N-Ch	40			
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	P-Ch	-40			
		I _D = 250 μA	N-Ch		37		- - - - -
V _{DS} Temperature Coefficient	ΔV _{DS} /T _J	I _D = -250 μA	P-Ch		-38		
		I _D = 250 μA	N-Ch		-5		
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	II _D = -250 μA	P-Ch		4.0		
		$V_{DS} = V_{GS}, I_D = 250 \mu A$	N-Ch	0.6		2.0	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	P-Ch	-0.8		-2.2	
Out Bull Indian	Igss	V 0VV 146V	N-Ch			100	nA
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 16 \text{ V}$	P-Ch			-100	
		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch			1	
Zero Cata Valtaga Prain Current		$V_{DS} = -40 \text{ V}, V_{GS} = 0 \text{ V}$	P-Ch			-1	μ Α
Zero Gate Voltage Drain Current	IDSS	V_{DS} = 40 V, V_{GS} = 0 V, T_{J} = 55 $^{\circ}$ C	N-Ch			10	
		V_{DS} = -40 V, V_{GS} = 0 V, T_J = 55 $^{\circ}$ C	P-Ch			-10	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	N-Ch	20			А
		$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	P-Ch	-20			
	r _{DS(on)}	V _{GS} = 10 V, I _D = 6 A	N-Ch		0.022	0.027	
Droin Source On State Begintanech		$V_{GS} = -10 \text{ V}, I_D = -6 \text{ A}$	P-Ch		0.024	0.029	Ω
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V, } I_D = 4.8 \text{ A}$	N-Ch		0.026	0.032	
		$V_{GS} = -4.5 \text{ V, } I_D = -4.9 \text{ A}$	P-Ch		0.031	0.039	
E. J.T. b. b		V _{DS} = 15 V, I _D = 6 A	N-Ch		20		s
Forward Transconductance ^b	9 _{fs}	$V_{DS} = -15 \text{ V}, I_D = -6 \text{ A}$	P-Ch		17		3
Dynamic ^a							
Input Capacitance	C _{iss}		N-Ch		855		
		N-Channel	P-CH		1505		
Output Capacitance	6	$V_{DS} = 20 \text{ V}, \ V_{GS} = 0 \text{ V}, \ f = 1 \text{ MHz}$	N-Ch		105		pF
Output Capacitarice	C _{oss}	P-Channel	P-Ch		230		ρι
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch		65		
	Orss		P-Ch		175		<u></u>
Total Gate Charge		$V_{DS} = 20 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 5 \text{ A}$	N-Ch		21	32	
	Qg	$V_{DS} = -20 \text{ V}, \ V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}$	P-Ch		41	62	
			N-Ch		9.6	14.5	
		N-Channel	P-Ch		21	31	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 20 \text{ V}, \ V_{GS} = 4.5 \text{ V}, \ I_D = 5 \text{ A}$	N-Ch		2.3		110
		P-Channel	P-Ch		4.5		
Gate-Drain Charge	Q _{gd}	$V_{DS} = -20 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -5 \text{ A}$	N-Ch		3.2		
			P-Ch		9.2		
Gata Resistance	ь	f = 1 MHz	N-Ch		2.5	3.8	Ω
Gate Resistance	R_g	f = 1 MHz	P-Ch		6.5	10	32

Vishay Siliconix

SPECIFICATIONS ($T_J = 2$	5 °C UNLE	ESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition		Min	Typ ^a	Max	Unit
Dynamic ^a							
Turn-On Delay Time	t _{d(on)}		N-Ch		6	12	
Turn on Bolay Timo	'd(on)	N-Channel	P-Ch		7	14	
Rise Time	t _r	$V_{DD} = 20 \text{ V, R}_{L} = 4 \Omega$	N-Ch		11	20	-
The Time	4	$I_D \cong 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	P-Ch		15	25	
Turn-Off Delay Time	t _{d(off)}	P-Channel	N-Ch		24	36	
Turn on Bolay Timo	40(011)	V_{DD} = -20 V, R_L = 4 Ω $I_D \cong$ -5 A, V_{GEN} = -10 V, R_q = 1 Ω	P-Ch		51	77	
Fall Time	t.	b , all , g	N-Ch		6	12	
Tall Time	all Time t _f	P-Ch		54	81] nc	
Turn-On Delay Time	+ >		N-Ch		12	20	ns
Turn-On Delay Time	ırn-On Delay Time t _{d(on)}		P-Ch		26	40	
Rise Time		N-Channel V_{DD} = 20 V, R_L = 4 Ω	N-Ch		60	90	- - - -
nise tittle	t _r	$I_D \cong 5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	P-Ch		105	160	
Turn Off Doloy Time	t _{d(off)}	V 00 V D 4 O	N-Ch		22	33	
Turn-Off Delay Time			P-Ch		60	90	
Fall Time		1D = 371, VGEN = 4.3 V, Fig = 132	N-Ch		5	10	
Fail Time	t _f		P-Ch		60	90	1
Drain-Source Body Diode Chara	acteristics						
		T _C = 25 °C				2.6	
Continuous Source-Drain Diode Current	I _S	10-23 0	P-Ch			-2.6	1 .
			N-Ch			20	Α
Pulse Diode Forward Current ^a	I _{SM}		P-Ch			-20	
Body Diode Voltage		I _S = 1.5 A	N-Ch		0.73	1.2	·
	V _{SD}	I _S = -1.6 A	P-Ch		-0.73	-1.2	V
	t _{rr}		N-Ch		26	40	
Body Diode Reverse Recovery Time			P-Ch		30	45	ns
Body Diode Reverse Recovery Charge	Q _{rr}	N-Channel	N-Ch		21	32	
		$I_F = 5 \text{ A}$, di/dt = 100 A/ μ s, $T_J = 25 ^{\circ}\text{C}$	P-Ch		24	36	nC
	1	P-Channel	N-Ch		13		
Reverse Recovery Fall Time	t _a	$I_F = -5$ A, di/dt = -100 A/ μ s, $T_J = 25$ °C	P-Ch		15		1
			N-Ch		13		ns
Reverse Recovery Rise Time	t _b		P-Ch		15		1

Notes

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

N-CHANNEL

V_{DS} - Drain-to-Source Voltage (V)

V_{GS} - Gate-to-Source Voltage (V)

I_D - Drain Current (A)

 V_{DS} - Drain-to-Source Voltage (V)

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

N-CHANNEL

$$\begin{split} &V_{DS} - \text{ Drain-to-Source Voltage (V)} \\ ^*V_{GS} > & \text{ minimum } V_{GS} \text{ at which } r_{DS(on)} \text{ is specified} \end{split}$$

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

N-CHANNEL

^{*}The power dissipation P_b is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

N-CHANNEL

New Product

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

V_{GS} - Gate-to-Source Voltage (V)

V_{DS} = 10 V

 $V_{DS} = 30 \text{ V}$

27

 $Q_g\,-\,$ Total Gate Charge (nC)

36

45

 $V_{DS} = 20 \text{ V}$

18

Gate Charge

 $I_D = 6 A$

8

6

2

0

 $T_J-Junction$ Temperature (°C)

V_{GS} - Gate-to-Source Voltage (V)

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

P-CHANNEL

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

P-CHANNEL

T_C – Case Temperature (°C)

^{*}The power dissipation P_b is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C UNLESS NOTED)

P-CHANNEL

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73586.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000
Revision: 08-Apr-05
www.vishay.com