MAT 67 Homework 1

Hardy Jones 999397426 Professor Bandyopadhyay Fall 2013

1. Let a, b, c and d be fixed real numbers and consider the following system of linear equations in two real variables x_1 and x_2

$$ax_1 + bx_2 = 0$$
$$cx_1 + dx_2 = 0$$

Note that $x_1 = x_2 = 0$ is a solution of the above equations for any choice of a, b, c, and d.

Prove that if $ad - bc \neq 0$, then $x_1 = x_2 = 0$ is the only solution.

Proof. Assume $ad - bc \neq 0$

$$ax_1 + bx_2 = 0 cx_1 + dx_2 = 0$$
 (1)

Let's multiply the first equation by d and the second equation by b.

$$adx_1 + bdx_2 = 0$$
$$bcx_1 + bdx_2 = 0$$

Now let's subtract the second equation from the first.

$$adx_1 - bcx_1 = (ad - bc)x_1 = 0$$

We assumed that $ad - bc \neq 0$ so we can divide through by ad - bc.

$$x_1 = 0$$

Now we need x_2 . Let's go back to the system in (1).

$$ax_1 + bx_2 = 0 cx_1 + dx_2 = 0$$
 (1)

Now let's multiply the first equation by c and the second by a.

$$acx_1 + bcx_2 = 0$$
$$acx_1 + adx_2 = 0$$

Now let's subtract the first equation from the second.

$$adx_2 - bcx_2 = (ad - bc)x_2 = 0$$

Again, we assumed that $ad - bc \neq 0$ so we divide by ad - bc.

$$x_2 = 0$$

So $x_1 = x_2 = 0$. Thus if $ad - bc \neq 0$, then $x_1 = x_2 = 0$.

2. Let $z, w \in \mathbb{C}$.

Prove:

$$|z - w|^2 + |z + w|^2 = 2(|z|^2 + |w|^2)$$