

Hochschule Konstanz

Präsentation Optische Systeme Team 4

Lavinia Weber Mechatronik

> Mathias Götz Elektrische Systeme

Optische Systeme

Prof. Dr. Bernd Jödicke

Prof. Dr. Jürgen Sum

Prof. Dr. Matthias Franz

WS 20/21

Hochschule Konstanz 22.01.2022

Überblick über die Themenfelder

Kamera, Objektiv und Software

Kamera: IDS UI-3250LE-M-GL

Sensortyp: CMOS Mono

Auflösung: 1600 x 1200 Pixel

• Pixelgröße: 4,5 µm

Sensor-Ausiesemethode	Progressive Scan	
Auflösungsklasse	UXGA	
Auflösung	1,92 MPixel	
Auflösung (h x v)	1600 x 1200 Pixel	
Seitenverhältnis	4:3	
ADC	10 Bit	
Farbtiefe (Kamera)	12 Bit	
Optische Sensorklasse	1/1,8"	
Optische Fläche	7,200 mm x 5,400 mm	
Optische Sensordiagonale	9 mm (1/1,78")	

4,5 µm

CMOS Mono

Linear

Global-Shutter / Rolling-Shutter / Global-Start-Shutter

Objektiv: Ricoh FL-CC2514A-2M

Sensor

Sensortyp Shuttersystem

Pixelgröße

Charakteristik

Aufgabenstellung und Lösungsansatz

A, 0 Grad	0 Pixel
B, 0 Grad	215 Pixel
C, 0 Grad	430 Pixel
D, 0 Grad	645 Pixel
A', 45 Grad	0 Pixel
B', 45 Grad	250 Pixel
C', 45 Grad	500 Pixel
D', 45 Grad	750 Pixel
•	

Versuchsaufbau und Systemarchitektur

$$MTF (f) = \frac{\sigma(f)}{\emptyset(f)}$$

- Idealisierte Bedingungen:
 - Definierte Bildgröße
 - Definierte Positionen

Übersichtsgraph:

- 0 Grad Bilder weisen bessere MTF auf
- Geringe Abweichung bei Sagittal und Radial

0 Grad:

- · Minimale Tendenz bei größerem Abstand
- Qualitativer Einbruch ab 32 lp

45 Grad

- · Minimale Tendenz bei größerem Abstand
- Ausreißer begründen sich durch Bildqualität

Versuchsaufbau mit dem Ziel ein möglichst Diffuses Licht mit der Kamera einzufangen

Vorbild Ulbrichtkugel

Bildquelle: https://www.opsira.de/fileadmin/benutzerdaten/opsira-de/bilder/Adam_Hall_Lichtmessung_mit_opsira_uku.png Abgerufen am 15.01.2020

Problem

Radior

Optimierı

Abgedunk eines leer

schließen.

Analyse des möglichen Softwarefehlers

Fehlerursache

Bilder mit gleicher Belichtungszeit:

Daten aus Bilder der Gruppe 1

Bestrahlungsstärke $E = 0.02 \frac{W}{m^2}$ Responsitivität:

Wellenlänge $\lambda = 527nm$ Quanteneffizienz $\eta = \frac{R}{\kappa} = 37\%$

Kameraverstärkung K = 0.037

Photonentransfer

Daten aus Bilder der Gruppe 1

- Das Signal-zu-Rauschverhältnis ist ein Qualitätsmerkmal des Kamerasignals
- Die SNR hängt von der Quanteneffizienz ab
- Je höher die Quanteneffizienz, desto näher ist die theoretische SNR an der Idealen SNR (η=1)
- Der Dynamikbereich ist ein Maß für den nutzbaren Bestrahlungsbereich

$$DR = 20 \log 10 * \frac{\mu_{p,sat}}{\mu_{p,min}} = 28.94 dB$$

Daten aus Bilder der Gruppe 1

- Dunkelsignal variiert von Pixel zu Pixel und damit der Offsetwert
- Zeitliches Rauschen als Referenzwert
- Keine räumliche Inhomogenität erkennbar

- Sensitivität variiert und daher auch die Kennliniensteigung jeden Pixels
- Im Horizontalen Spektrogramm der PRNU sind geringe Inhomogenitäten erkennbar
- Die sind Inhomogenitäten in dem Bild nicht zu sehen
- Keine Inhomogenität im vertikalen Spektrogramm der PRNU

Daten aus Bilder der Gruppe 1

Schwellwert f
ür Hotpixel bei 0.3 DN

Daten aus Bilder der Gruppe 1

- Die Pixel folgen dem Gauß Modell
- Deadpixel ab einer Abweichung von -4% vorhanden

Daten aus Bilder der Gruppe 1

n.o.

Problemstellung und Lösungsansatz

• Gegenstandsgröße: 120mm

• Volumen: $750ml \pm 15ml$

i.0.

System- und Softwaremodel

Kameraauslegung

1.
$$Na = \frac{3*230mm}{4mm} = 90 \ px$$

2. Allied Vision Mako-Kamera CP90-3-M/C-540

3. CMOS-Sensor in Farbe mit Global Shutter

4.
$$spx = 6.9 \mu m$$
, $Na = 544 px$, $Nb = 728 px$, $Aufl\"{o}sung = 0.4 Mpx$

5.
$$\beta = \frac{3*spx}{d} = \frac{3*6.9*10^{-3}mm}{4mm} = 0.005$$

6.
$$b = g * \beta = 400mm * 0.00 = 2.0mm$$

7.
$$\phi_{Bk} = spx * \sqrt{Na^2 + Nb^2} = 6.9 \mu m * \sqrt{544^2 + 728^2} = 6.27 mm$$

8.
$$k_{max} = \frac{spx}{1.34 \text{um}} = \frac{6.9 \text{µm}}{1.34 \text{um}} = 5.15$$

Zusammenfassung und Ausblick

Vorteile

Einfach zu realisierende Beleuchtung

Günstige "optische Lösung"

Wartung und Fehlersuche

"einfache" Algorithmik

Parameter der Flasche können leicht verändert werden

Potential

LIFO

Motion Detection

Mehr Flaschen pro Zeiteinheit: Schnellere Kamera Mehrere Kameras

Vielen Dank für die Aufmerksamkeit.

Kameraauslegung

1.
$$Na = \frac{3*230mm}{4mm} = 90 \ px$$

2.
$$f_S = \frac{3*v}{d} = \frac{3*0.5\frac{m}{s}}{4*10^{-3}m} = 375 \ Hz$$

3. <u>Highspeed-Kamera Optronis CP90-3-M/C-540</u>

4. CMOS-Sensor in Farbe mit Global Shutter

5.
$$spx = 8\mu m$$
, $fs = 540Hz$, $Na = 1710px$, $Nb = 1696px$, $Aufl\"{o}sung = 3.9Mpx$

6.
$$\beta = \frac{3*spx}{d} = \frac{3*8*10^{-3}mm}{4mm} = 0,006$$

7.
$$b = g * \beta = 400mm * 0,006 = 2,4mm$$

8.
$$\phi_{Bk} = spx * \sqrt{Na^2 + Nb^2} = 8\mu m * \sqrt{1710^2 + 1696^2} = 19,27mm$$

9.
$$k_{max} = \frac{spx}{1,34\mu m} = \frac{8\mu m}{1,34\mu m} = 5,97$$

Speicherbaustein

Adresse	Inhalt
0	n.o.
1	i.o.
2	n.o.
3	i.o.
4	i.o.
5	i.o.
6	i.o.

Kantendetektion

Canny-Operator

Ziele:

Gute Detektion aller Kanten ohne viel Clutter.

Minimale Distanz zwischen detektierter Kante und echter Kante.

Klare Antwort: Nur eine Antwort pro Kante.

Vorgehensweise:

- 1. Glättung des Bildes mittels Gaußfilter.
- 2. Differenzierung mit Prewitt-Operator.
- 3. Unterdrückung von Nichtmaxima.
- 4. Schwellwertbildung.

Bildquelle: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F40737-canny-edge-detector&psig=AOvVaw3AwGSd-dux21Wm2EYjBzsi&ust=1611652080147000&source=images&cd=vfe&ved=0CAlQjRxqFwoTCPCs8Yfetu4CFQAAAAAdAAAABAF Abgerufen am 15.01.2020

Floodfill

Bildverarbeitung

Füllt zusammenhängende Flächen mit einer Farbe aus.

Siehe Video: https://de.wikipedia.org/wiki/Floodfill#/media/Datei:Recursive_Flood_Fill_4_(aka).gif