1. Übungsblatt (Regression)

Übungsaufgabe 1.

Sie haben m Datenpunkte x_1, \ldots, x_m mit $x_i \in \mathbb{R}$ gegeben. Nehmen Sie folgendes Modell an:

$$p(x|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2),$$

d.h. die Daten sind normalverteilt mit Mittelwert μ und Varianz σ^2 . Bestimmen Sie die Parameter μ und σ mit Hilfe des Maximum-Likelihood Prinzip.

Übungsaufgabe 2.

Erweitern Sie ihren Code zur Regression um folgende Punkte:

- 1. Bestimmen Sie auch den Parameter σ mit Hilfe der Maximum-Likelihood Methode. Zeichnen Sie das entsprechende Konfidenzintervall mit ein (ist bereits im Code vorhanden).
- 2. Erlauben Sie beim Bestimmen der Parameter w auch einen Regularisierungparameter λ (L2-Regularisierung bzw. Gauss-Prior).
- 3. Lassen Sie Ihr Regressionsprogramm auch auf den Datensatz data3.csv laufen. Wählen Sie ein Polynom vom Grad 9 und variieren Sie den Regularisierungsparameter (sinnvolle Werte sind $10^{-15}...10^{-5}$).

Sie finden die Daten und ein Python-Grundgerüst unter:

Schicken Sie Ihre Lösung bitte bis spätestens 17.01. an soeren.laue@uni-jena.de.