Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano berkeley. edu, UC Berkeley), Tamara Broderick (MIT) Stanford Statistics Seminar May 2024

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

.

- · Data reweighting
 - Write the change in the posterior expectation as linear component $+\ \mbox{error}$
 - The linear component can be computed from a single run of $\ensuremath{\mathsf{MCMC}}$

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
 - · Consistent variance estimates via a uniform Bernstein-von Mises theorem

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
 - Consistent variance estimates via a uniform Bernstein-von Mises theorem
- High-dimensional problems
 - · The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$
 - · Study the variance estimates via a Bayesian von-Mises expansion

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
 - Consistent variance estimates via a uniform Bernstein-von Mises theorem
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N o \infty$
 - · Study the variance estimates via a Bayesian von-Mises expansion
- · Some implications and future work

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$

$$\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

.

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\text{Bootstrap variance} = \operatorname*{Var}_{p(w)} \left(\operatorname*{\mathbb{E}}_{p(\theta|X,w)} [f(\theta)] \right)$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{aligned} \text{Bootstrap variance} &= \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &= \underset{p(w)}{\text{Var}} \left(\sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n) \right) \\ &= \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 + \text{Term involving } \mathcal{E}(w_n) \text{ for } n = 1, \dots, N \\ &\approx \frac{1}{N} \left(\frac{1}{N} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \right) \end{aligned}$$

"Infinitesimal jackknife variance estimate"

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n-1) + \mathcal{E}(w_n)$$

c

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right](w_n-1)^2}_{\text{Cannot compute directly (don't know }\bar{w})}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n - 1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{\substack{p(\theta|X)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \quad \mathcal{E}(w_n) = \frac{1}{2} \underbrace{\mathbb{E}_{\substack{p(\theta|X,\bar{w}_n)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know \bar{w})}} = O_p(N^{-1}) \text{ under posterior concentration}$$

Theorem 1 [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem), a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

Negative binomial experiment

Example: Negative binomial models with an unknown parameter γ .

For $n=1,\ldots,N$ let $x_n|\gamma \overset{iid}{\sim}$ NegativeBinomial (α,γ) for fixed α .

Write
$$\log p(X|\lambda, \gamma, w) = \sum_{n=1}^{N} w_n \ell_n(\gamma)$$
.

Negative binomial experiment

Example: Negative binomial models with an unknown parameter γ .

For $n=1,\ldots,N$ let $x_n|\gamma \stackrel{iid}{\sim}$ NegativeBinomial (α,γ) for fixed α .

Write
$$\log p(X|\lambda,\gamma,w) = \sum_{n=1}^N w_n \ell_n(\gamma)$$
.

Negative Binomial model leaving out single datapoints with N = 800

Variance consistency theorem

How do the results for a single weight translate into variance estimates?

$$\operatorname{Var}_{p(w)}\left(\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]\right) = \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi}\right)^2 + \operatorname{Term involving} \mathcal{E}(w_n) \text{ for } n = 1, \dots, N$$

Variance consistency theorem

How do the results for a single weight translate into variance estimates?

$$\operatorname{Var}_{p(w)}\left(\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right]\right) = \frac{1}{N^2}\sum_{n=1}^{N}\left(\psi_n - \overline{\psi}\right)^2 + \operatorname{Term involving} \mathcal{E}(w_n) \text{ for } n = 1,\dots,N$$

- Assume: A well–behaved MAP maximum a posteriori estimator $\hat{\theta}$ exists.
 - The dimension of θ is fixed as $N \to \infty$.
 - The expected log likelihood has a unique maximum at θ_{∞}
 - The observed log likelihood statisfies $\hat{\theta} \to \theta_{\infty}$
 - The expected log likelihood Hessian ${\mathcal I}$ is negative definite at $heta_\infty$
- · Assume: We can apply standard asymptotics.
 - · The log prior and log likelihood are four times continuously differentiable
 - · The prior is proper, and a technical set of squared expectations are finite
 - The log likelihood derivatives are dominated by a square–integrable envelope function in a neighborhood of θ_∞ .

Variance consistency theorem

How do the results for a single weight translate into variance estimates?

$$\operatorname{Var}_{p(w)}\left(\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right]\right) = \frac{1}{N^2}\sum_{n=1}^{N}\left(\psi_n - \overline{\psi}\right)^2 + \operatorname{Term involving} \mathcal{E}(w_n) \text{ for } n = 1, \dots, N$$

- Assume: A well-behaved MAP maximum a posteriori estimator $\hat{\theta}$ exists.
 - The dimension of θ is fixed as $N \to \infty$.
 - The expected log likelihood has a unique maximum at θ_{∞}
 - The observed log likelihood statisfies $\hat{\theta} \to \theta_{\infty}$
 - The expected log likelihood Hessian \mathcal{I} is negative definite at θ_{∞}
- Assume: We can apply standard asymptotics.
 - The log prior and log likelihood are four times continuously differentiable
 - The prior is proper, and a technical set of squared expectations are finite
 - The log likelihood derivatives are dominated by a square–integrable envelope function in a neighborhood of θ_{∞} .

Theorem 2 [Giordano and Broderick, 2023]: Under the above assumptions,

$$\sqrt{N}\left(\underset{p(\theta|X)}{\mathbb{E}}\left[g(\theta)\right]-g(\theta_{\infty})\right)\xrightarrow[N\to\infty]{dist}\mathcal{N}\left(0,V^{g}\right)$$
 [Kleijn and Van der Vaart, 2012]

$$\begin{split} &\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[g(\theta) \right] - g(\theta_{\infty}) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N} \left(0, V^g \right) \quad \text{[Kleijn and Van der Vaart, 2012]} \\ &\text{and} \quad V^{\text{IJ}} := \frac{1}{N} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \xrightarrow[N \to \infty]{prob} V^g. \end{split} \tag{our contribution}$$

Data Analysis Using Regression and Multilevel/Hierarchical Models.

We ran rstanarm on 56 different models on 13 different datasets from Gelman and Hill [2006], including Gaussian and logistic regression, fixed and mixed-effects models.

Across all models, we estimate 799 distinct covariances (regression coefficients and log scale parameters).

Using the bootstrap as ground truth, compute the relative errors:

$$rac{V_{
m Bayes} - V_{
m Boot}}{|V_{
m Boot}|}$$
 and $rac{V_{
m IJ} - V_{
m Boot}}{|V_{
m Boot}|}.$

Figure 1: The distribution of the relative errors. Log scale parameters include all variances or covariances that involve at least one log scale parameters.

Total compute time for all models:

Initial fit: 1.6 hours Bootstrap: 381.5 hours

How to connect to the election data?

Problem: MCMC is only interesting when the posterior doesn't concentrate.

High dimensional problems

Example: Exponential families with random effects (REs) λ and fixed effects $\gamma.$

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

Example: Exponential families with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

In general, we cannot hope for an asymptotic analysis of
$$\underset{p(\lambda,\gamma|X)}{\mathbb{E}}[f(\lambda)].$$

Can we save the approximation when some parameters concentrate?

Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [f(\gamma)]$?

11

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} [\gamma] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} [\gamma] = \\ & \psi_n(w_n - 1) \\ & + \mathcal{E}(w_n) \end{split}$$

$$\mathbb{E}_{p(\gamma,\lambda|X,w_n)}[\gamma] - \mathbb{E}_{p(\gamma,\lambda|X)}[\gamma] =
\psi_n(w_n - 1) + \mathcal{E}(w_n)
= \mathbb{E}_{p(\gamma,\lambda|X)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)](w_n - 1) + \frac{1}{2} \mathbb{E}_{p(\gamma,\lambda|X,\bar{w}_n)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)^2](w_n - 1)^2$$

$$\mathbb{E}_{p(\gamma,\lambda|X,w_n)}[\gamma] - \mathbb{E}_{p(\gamma,\lambda|X)}[\gamma] =$$

$$\psi_n(w_n - 1) + \mathcal{E}(w_n)$$

$$= \mathbb{E}_{p(\gamma,\lambda|X)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)](w_n - 1) + \frac{1}{2}\mathbb{E}_{p(\gamma,\lambda|X,\tilde{w}_n)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)^2](w_n - 1)^2$$

$$= \mathbb{E}_{p(\gamma|X)}[\bar{\gamma}\mathbb{E}_{p(\lambda|\gamma,X)}[\bar{\ell}_n(\gamma,\lambda)]](w_n - 1) + \frac{1}{2}\mathbb{E}_{p(\gamma|X,\tilde{w}_n)}[\bar{\gamma}\mathbb{E}_{p(\lambda|X,\gamma,\tilde{w}_n)}[\bar{\ell}_n(\gamma,\lambda)^2]](w_n - 1)$$

$$F_1(\gamma) + \frac{1}{2}\mathbb{E}_{p(\gamma|X,\tilde{w}_n)}[\bar{\gamma}\mathbb{E}_{p(\lambda|X,\gamma,\tilde{w}_n)}[\bar{\ell}_n(\gamma,\lambda)^2]](w_n - 1)$$

 \Rightarrow

$$\mathbb{E}_{p(\gamma,\lambda|X,w_n)}[\gamma] - \mathbb{E}_{p(\gamma,\lambda|X)}[\gamma] = \\ \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

$$= \mathbb{E}_{p(\gamma,\lambda|X)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)](w_n - 1) + \frac{1}{2}\mathbb{E}_{p(\gamma,\lambda|X,\tilde{w}_n)}[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda)^2](w_n - 1)^2$$

$$= \mathbb{E}_{p(\gamma|X)}[\bar{\gamma}\mathbb{E}_{p(\lambda|\gamma,X)}[\bar{\ell}_n(\gamma,\lambda)]](w_n - 1) + \frac{1}{2}\mathbb{E}_{p(\gamma|X,\tilde{w}_n)}[\bar{\gamma}\mathbb{E}_{p(\lambda|X,\gamma,\tilde{w}_n)}[\bar{\ell}_n(\gamma,\lambda)^2]](w_n - 1)$$

$$= \mathbb{E}_{p(\gamma|X)}[\bar{\gamma}F_1(\gamma)](w_n - 1) + \frac{1}{2}\mathbb{E}_{p(\gamma|X,\tilde{w}_n)}[\bar{\gamma}F_2(\gamma)](w_n - 1)^2$$

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n - 1) \\ & = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] \left[\bar{\ell}_n(\gamma,\lambda) \right] \left[(w_n - 1) \right] \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] \left[(w_n - 1) \right] \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X,\bar{w}_n)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2}_{O_p(N^{-1})} \\ & \underset{p(\gamma|X) \text{ concentration)}}{\underbrace{P_n(\gamma,\lambda|X)}} \\ & \Rightarrow \psi_n = O_p(N^{-1}) \\ & & \mathcal{E}(w_n) = O_p(N^{-1}) \end{split}$$

We assume that $p(\gamma|X)$ concentrates but $p(\lambda|X)$ does not. By our series expansion:

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n - 1) \\ & = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X,\bar{w}_n)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & + \frac{1}{2} \underset{p(\gamma|X,\bar{w}_n)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \frac{1}{2} \underset{p(\gamma|X,\bar{w}_n)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \times \psi_n = O_p(N^{-1}) \\ & \times \psi_n = O_p(N^{-1}) \end{split}$$

Corollary [Giordano and Broderick, 2023]:

In general,
$$w_n \mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma] - \underset{p(\gamma|X)}{\mathbb{E}} [\gamma]\right)$$
 remains non-linear as $N \to \infty$.

Experiments

Example: Poisson regression with Gamma-distributed random effects

For
$$g=1,\ldots,G,\ \lambda_g\overset{iid}{\sim}\operatorname{Gamma}(\alpha,\beta)$$
 for fixed α,β For $n=1,\ldots,N,\ g_n\overset{iid}{\sim}\operatorname{Categorical}(1,\ldots,G),\ y_n|\lambda_n,\gamma,g_n\overset{iid}{\sim}\operatorname{Poisson}(\gamma\lambda_{g_n}).$ $x_n=(y_n,g_n)$ are IID given $\lambda,\gamma.$ Write $\log p(X|\lambda,\gamma,w)=\sum_{n=1}^N w_n\ell_n(\lambda,\gamma).$

Experiments

Example: Poisson regression with Gamma-distributed random effects

For
$$g=1,\ldots,G,\ \lambda_g\overset{iid}{\sim}\operatorname{Gamma}(\alpha,\beta)$$
 for fixed α,β
$$\operatorname{For} n=1,\ldots,N,\ g_n\overset{iid}{\sim}\operatorname{Categorical}(1,\ldots,G),\ y_n|\lambda_n,\gamma,g_n\overset{iid}{\sim}\operatorname{Poisson}(\gamma\lambda_{g_n}).$$

$$x_n=(y_n,g_n) \text{ are IID given } \lambda,\gamma. \text{ Write } \log p(X|\lambda,\gamma,w)=\sum_{n=1}^N w_n\ell_n(\lambda,\gamma).$$

Poisson random effect model leaving out single datapoints with N = 800

Bayesian von–Mises Expansion

How can we apply the single-weight result to variance computations?

Bayesian von–Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G}, N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\underset{p(\theta|X)}{\mathbb{E}}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta}{\int \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta} = T(\mathbb{F}_N, N).$$

Bayesian von–Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G},N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\underset{p(\theta|X)}{\mathbb{E}}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta}{\int \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta} = T(\mathbb{F}_N, N).$$

Let \mathbb{F} denote the true distribution of x_n , and let $\mathbb{F}_N^t = t\mathbb{F}_N + (1-t)\mathbb{F}$.

We can study the von Mises expansion:

$$\begin{split} \sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[g(\theta) \right] - T(\mathbb{F}, N) \right) &= \sqrt{N} \left. \frac{\partial T(\mathbb{F}_N^t, N)}{\partial t} \right|_{t=0} (\mathbb{F}_N - \mathbb{F}) \\ &= \sqrt{N} \sum_{n=1}^N (\psi_n - \overline{\psi}) + o_p(1) \\ &+ \mathcal{E}(\tilde{t}). \end{split}$$

Inconsistency is suggested if $\mathcal{E}(\tilde{t})$ fails to vanish.

Bayesian von-Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):

(Consistency of the von-Mises expansion in finite dimensions)

 $Under \ slightly \ stronger \ conditions \ our \ original \ finite-dimensional \ posterior \ consistency \ result,$

$$\sup_{\tilde{t} \in [0,1]} | \mathcal{E}(\tilde{t}) | \to 0 \quad \text{in the Bayesian von-Mises expansion.}$$

Bayesian von-Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):

(Consistency of the von-Mises expansion in finite dimensions)

Under slightly stronger conditions our original finite-dimensional posterior consistency result,

$$\sup_{\tilde{t} \in [0,1]} | \frac{\mathcal{E}(\tilde{t})}{|} \to 0 \quad \text{in the Bayesian von-Mises expansion}.$$

Theorem 4 [Giordano and Broderick, 2023] (sketch, not yet on arxiv): (Inconsistency of the von–Mises expansion in infinite dimensions)

Assume that x_n comes with a random group assignment $g_n \in 1, ..., G$. Conditional on g, x_n is modeled as a finite-dimensional exponential family given λ , γ :

$$\log p(x_n|g_n=g,\gamma,\lambda) = \tau(x_n)^\mathsf{T} \eta_g(\gamma,\lambda) + \mathsf{Constant}.$$

Define the average product of second moments:

$$\mathcal{V}_{\mathcal{N}} := \frac{1}{N} \sum_{g=1}^{G} \underset{\mathbb{F}(x_n)}{\mathbb{E}} \left[\tau(x_n) \tau(x_n)^\intercal \right] \underset{p(\lambda, \gamma \mid \mathbb{F})}{\operatorname{Cov}} \left(\eta_g(\gamma, \lambda) \right).$$

If $\mathcal{V}_{\mathcal{N}}$ is strictly bounded away from 0 as $N \to \infty$, then

$$\sup_{\tilde{t} \in [0,1]} |\mathcal{E}(\tilde{t})| \to \infty \quad \text{in the Bayesian von-Mises expansion.}$$

More experimental results for Gamma-Poisson mixtures

We ran simulations of the Gamma–Poisson mixture with different ratios of N/G (average observations per group).

- When N/G is small:
 - IJ is biased significantly downwards
 - Bootstrap is biased somewhat downwards

 Output

 Description:

 Output

 Description:
- When N/G is larger:
 - · Both improve
 - Both remain somewhat biased
 - The IJ and bootstrap perform similarly

Figure 2: The error of the IJ and bootstrap covariances for different values of N and G. The y-axis shows the difference between $N(V-\hat{V}_{\text{sim}})$, where V is either \hat{V}_{IJ} or \hat{V}_{Boot} .

Negative binomial observations. Poisson observations with random effects.

 $\mbox{ Asymptotically linear in } w. \mbox{ Asymptotically non-linear in } w. \mbox{}$

 $\label{eq:poisson} \mbox{Negative binomial observations.} \qquad \mbox{Poisson observations with random effects.} \\ \mbox{Asymptotically linear in } w. \qquad \mbox{Asymptotically non-linear in } w.$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

 $\label{eq:poisson} \mbox{Negative binomial observations.} \qquad \mbox{Poisson observations with random effects.} \\ \mbox{Asymptotically linear in } w. \qquad \mbox{Asymptotically non-linear in } w.$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}\left[\gamma\right]$ linear in the data weights or not?

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \qquad \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

The two weightings are not equivalent in general.

What is the right exchangeable unit for a particular problem?

Exchangeable units: Experimental results revisited

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Negative Binomial model

Uses
$$\log p(x_n|\gamma)$$
:
$$\psi_n = \mathop{\mathbb{E}}_{p(\gamma|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$$

Exchangeable units: Experimental results revisited

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses
$$\log p(x_n|\gamma)$$
:
 $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not easily computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses
$$\log p(x_n|\gamma, \lambda)$$
:

$$\psi_n = \underset{p(\gamma, \lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma, \lambda) \right]$$

Easily computable from γ , $\lambda \sim p(\gamma, \lambda|X)$.

Exchangeable units: Experimental results revisited

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses
$$\log p(x_n|\gamma)$$
:
 $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not easily computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses
$$\log p(x_n|\gamma,\lambda)$$
:
$$\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$$

Easily computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Observations and consequences

- For finite–dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.

Observations and consequences

- For finite-dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.
- When the weighting is linear, there are many other applications:
 - · Cross-validation
 - · Conformal inference
 - · Identification of influential subsets
- When the weighting is non–linear, the inconsistency results should apply more widely:
 - · The EM algorithm
 - · The nonparametric bootstrap
 - · Local prior sensitivity measures

Observations and consequences

- For finite-dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.
- When the weighting is linear, there are many other applications:
 - · Cross-validation
 - · Conformal inference
 - · Identification of influential subsets
- When the weighting is non–linear, the inconsistency results should apply more widely:
 - · The EM algorithm
 - · The nonparametric bootstrap
 - · Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (Major update in progress, coming soon.)

References

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- A. Gelman and J. Hill. Data analysis using regression and multilevel/hierarchical models. Cambridge university press, 2006.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. Bayesian and Likelihood Methods in Statistics and Econometrics, 1990.
- B. Kleijn and A. Van der Vaart. The Bernstein-von-Mises theorem under misspecification. Electronic Journal of Statistics, 6: 354–381, 2012.