Knowledge Representation and Reasoning

Exercise Session 5

Exercise 1. Type Graph	(*)
Let $\varphi = x \ \mathcal{U} \neg y$	
1. Find the types of φ	
2. Construct the type graph	
3. Identify initial and final types	
Exercise 2. Model Counting	(*)
How many temporal models of length 2 satisfy the formula φ from Exercise 1?	
Exercise 3. KR 1	(*)
1. Construct an LTL_f formula describing the following specification of a (simplified) traffic light; you can use the abbreviations seen during the lecture.	
• the light is either green or red, but never both	
ullet whenever the light is red, it will eventually turn green	
Hint: use the propositional variables green and red.	
2. What characterises the last timepoint of all models satisfying this specification?	
Exercise 4. KR 2	(**)
1. Extend the specification from Exercise 3 to include two traffic lights (with variables $green_i$ and red_i $(i=1,2)$ such that the two green lights are never simultaneously on.	
2. Is this specification satisfiable? If yes, give a temporal model satisfying it; if not, envision a way to fix it	
Exercise 5. Model Size 1	(**)
Build a formula that is satisfied by models of even length only, or argue why it cannot exist.	
Exercise 6. Model Size 2	(***)

Build a formula that is satisfied by models of **prime** length only, or argue why it cannot

exist.

Exercise 1. Type Graph

(*)

Let $\varphi = x \ \mathcal{U} \neg y$

- 1. Find the types of φ
- 2. Construct the type graph
- 3. Identify initial and final types