Curs 11

Cuprins

Deducție și rescriere modulo axiome (*)

2 Logica ecuațională locală (*)

3 Programare logică. Teoremele lui Herbrand.

Deducție și rescriere modulo axiome (*)

Exemplu în Maude

```
fmod MYNAT is
  sort MyNat .
  op 0 : -> MyNat .
  op s : MyNat -> MyNat .
  op _+_ : MyNat MyNat -> MyNat [assoc] .
  op n : -> MyNat.
  vars X Y : MyNat .
  eq X + 0 = X.
  eq X + s(Y) = s(X + Y).
endfm
reduce in MYNAT : n + (0 + n) .
result MyNat: n + n
```

Termenii sunt unificați modulo asociativitate.

Deducție din E modulo F

- \square (S, Σ) signatură multisortată
- □ *E* mulțime de ecuații
- ☐ F mulțime de ecuații necondiționate (axiome)

Exemplu

```
fmod MYNAT is
    ...
endfm
```

- $\Box \ E = \{ (\forall \{x\})x + 0 =_{MyNat} x, (\forall \{x,y\})x + s(y) =_{MyNat} s(x+y) \}$
- $\Box F = \{ (\forall \{x, y, z\})(x + y) + z \stackrel{\cdot}{=}_{MyNat} x + (y + z) \}$
- □ Pentru un modul în Maude, F este mulţimea ecuaţiilor declarate ca atribute.

Echivalența semantică

- \Box (S, Σ) signatură multisortată
- □ F mulțime de ecuații necondiționate (axiome)
- □ Dacă X este o mulțime de variabile, definim echivalența semantică:

$$\equiv_F := \bigcap \{ Ker(h) \mid h : T_{\Sigma}(X) \to \mathcal{M} \models F \}$$

 \square Pentru $t \in T_{\Sigma}(X)_s$ notăm clasa de echivalență a lui t:

$$[t]_F:=[t]_{\equiv_F}$$

 $\Box T_{\Sigma,F}(X) := T_{\Sigma}(X)/_{\equiv_F}$

F-algebra liber generată

Propoziție (1)

 $T_{\Sigma,F}(X)$ este F-algebra liber generată de X, i.e. or. $\mathcal{B}\models F$, or. $e:X\to B$ funcție, există un unic morfism $\bar{e}:T_{\Sigma,F}(X)\to \mathcal{B}$ cu $\bar{e}([x]_F)=e(x)$, or. $x\in X$, și anume $\bar{e}([t]_F)=\tilde{e}(t)$, or. $t\in T_\Sigma X$.

Demonstrație [schiță]

Se aplică proprietatea de universalitate a algebrei cât:

7/3

Ecuații și satisfacere modulo F

- \square (S, Σ) signatură multisortată
- □ E mulțime de ecuații și
- ☐ *F* mulțime de ecuații necondiționate (axiome)
- \square O ecuație modulo F are forma $(\forall X)[t]_F \stackrel{\cdot}{=}_s [t']_F$, pt. $t, t' \in T_{\Sigma}(X)_s$.
- \square Pentru \mathcal{B} o F-algebră definim satisfacerea modulo F:

$$\mathcal{B} \models_{\mathcal{F}} (\forall X)[t]_{\mathcal{F}} \stackrel{\cdot}{=}_{s} [t']_{\mathcal{F}} \Leftrightarrow \bar{e}([t]_{\mathcal{F}}) = \bar{e}([t']_{\mathcal{F}}), \text{ or. } e: X \to B.$$

Vom nota $\mathcal{B} \models_F (\forall X)[t]_F \stackrel{\cdot}{=}_s [t']_F$.

□ Notăm $E \models_F (\forall X)[t]_F \doteq_s [t']_F$ dacă pt. or. F-algebră \mathcal{B} avem:

$$\mathcal{B}\models_{F} (\forall Y)[t_{1}]_{F} \doteq_{s'} [t_{2}]_{F}$$
, or. $(\forall Y)t_{1} \doteq_{s'} t_{2} \in E$, implică $\mathcal{B}\models_{F} (\forall X)[t]_{F} \doteq_{s} [t']_{F}$.

Deducție din E modulo F

Propoziție (2)

Dacă $\mathcal{B} \models F$, atunci sunt echivalente:

- $\blacksquare \mathcal{B} \models (\forall X)t \stackrel{\cdot}{=}_s t',$

Demonstrație

Fie \mathcal{B} astfel încât $\mathcal{B} \models F$.

- (1) \Rightarrow (2) Dacă $e: X \to B$, atunci $\tilde{e}(t) = \tilde{e}(t')$ din ipoteză. Avem $\bar{e}([t]_F) = \tilde{e}(t) = \tilde{e}(t') = \bar{e}([t']_F)$.
- (2) \Rightarrow (1) Dacă $e: X \to B$, atunci $\bar{e}([t]_F) = \bar{e}([t']_F)$ din ipoteză. Avem $\tilde{e}(t) = \bar{e}([t]_F) = \bar{e}([t']_F) = \tilde{e}(t')$.

9 / 33

Deducție din E modulo F

- \square (S, Σ) signatură multisortată,
- □ E mulţime de ecuaţii şi F mulţime de axiome.

Teorema (3)

Sunt echivalente:

- $\blacksquare E \cup F \models (\forall X)t \stackrel{\cdot}{=}_s t'$

Demonstrație

Consecință directă a Propoziției 2.

Rescriere modulo axiome

- \square (S, Σ) signatură multisortată,
- □ R sistem de rescriere
- □ *F* mulţime de axiome.

Dacă $t, t' \in T_{\Sigma}(X)_s$ definim relația $[t]_F \to_{R/F} [t']_F$ astfel:

```
 \begin{aligned} [t]_F \to_{R/F} [t']_F & \Leftrightarrow & t \equiv_F c[z \leftarrow \theta(I)] \text{ si} \\ & t' = c[z \leftarrow \theta(r)], \text{ unde} \\ & c \in T_\Sigma(X \cup \{z\}), \ z \not\in X, \ nr_z(c) = 1 \\ & I \to r \in R \text{ cu } Var(I) = Y, \\ & \theta : Y \to T_\Sigma(X) \text{ este o substituție.} \end{aligned}
```

$$[t]_F \rightarrow_{R/F} [t']_F \Leftrightarrow \text{ex. } t_0 \ (\ t \equiv_F t_0 \text{ si } t_0 \rightarrow_R t')$$

Exemplu

Exemplu

```
fmod MYNAT is
  sort MyNat .
  op 0 : -> MyNat .
  op s : MyNat -> MyNat .
  op _+_ : MyNat MyNat -> MyNat [assoc] .
 vars X Y : MyNat .
  eq X + 0 = X.
  eq X + s(Y) = s(X + Y).
endfm
  \square R := \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}
  \Box F := \{ \forall \{x, y, z\}(x+y) + z = M_{y,Nat} x + (y+z) \}
   s(0) + (0 + s(0)) \equiv_F (s(0) + 0) + s(0) \rightarrow_R s(0) + s(0) \rightarrow_R s(s(0))
```

Rescriere modulo axiome

- \square (S, Σ) signatură multisortată, F mulțime de axiome,
- \square E mulțime de ecuații, R_E sistemul de rescriere asociat,
- \square Notăm $\rightarrow_{E/F} := \rightarrow_{R_E/F}$

Teorema (4)

Sunt echivalente:

- $\blacksquare E \models_F (\forall X)[t]_F \stackrel{\cdot}{=}_s [t']_F$
- 2 $t \stackrel{*}{\leftrightarrow}_{E \cup F} t'$
- $[t] \stackrel{*}{\leftrightarrow}_{E/F} [t']_F$

Rescriere modulo axiome

Observații:

- \Box $(T_{\Sigma,F}(X)_s, \rightarrow_{E/F})$ este un sistem de rescriere abstract
- pentru care proprietățile de confluență, terminare și completare se definesc uzual.
- ☐ Algoritmul de completare necesită unificare modulo ecuații

Logica ecuațională locală (*)

Punct de vedere local

- \square O ecuație $(\forall X)t \stackrel{.}{=}_s t'$, cu $t, t' \in T_{\Sigma}(X)$.
- \square O ecuație modulo F $(\forall X)[t]_F \stackrel{\cdot}{=}_s [t']_F$, cu $[t]_F, [t]_F' \in \mathcal{T}_{\Sigma}(X)/_{\equiv_F}$.
- ☐ Punct de vedere local al logicii ecuaționale:
 - \square Putem înlocui termenii cu elemente dintr-o algebră fixată \mathcal{A} .
 - \square O ecuație (propoziție) din \mathcal{A} are forma $a =_s c$, unde $a, c \in A_s$.
 - V.E. Căzănescu, Note de curs.

Ecuațiile (propozițiile) din A

clasic
$$(\forall X)t \stackrel{\cdot}{=}_s t'$$
 $t, t' \in \mathcal{T}_{\Sigma}(X)_s$
local $a \stackrel{\cdot}{=}_s c$ $a, c \in A_s, \mathcal{A}$ fixată $(\forall \mathcal{A})a \stackrel{\cdot}{=}_s c$

În cele ce urmează

- \square \mathcal{A} va fi o (S, Σ) -algebră fixată.
- \square $Sen(\mathcal{A}) := \{a \stackrel{\cdot}{=}_s c \mid a, c \in \mathcal{A}_s, s \in S\}$ propozițiile din \mathcal{A}

Vom defini sintaxa și semantica logicii ecuaționale locale asociate lui \mathcal{A} .

Regulile deducției ecuaționale în ${\cal A}$

 Γ o mulțime de (S, Σ) ecuații (condiționate) și $a, b, c, a_i, b_i \in A$.

R
$$\frac{a \stackrel{\cdot}{=}_s a}{a \stackrel{\cdot}{=}_s b}$$
S
$$\frac{a \stackrel{\cdot}{=}_s b}{b \stackrel{\cdot}{=}_s a}$$
T
$$\frac{a \stackrel{\cdot}{=}_s b, \ b \stackrel{\cdot}{=}_s c}{a \stackrel{\cdot}{=}_s c}$$
C_{\Sigma}

$$\frac{a_1 \stackrel{\cdot}{=}_{s_1} b_1, \dots, a_n \stackrel{\cdot}{=}_{s_n} b_n}{A_{\sigma}(a_1, \dots, a_n) \stackrel{\cdot}{=}_s A_{\sigma}(b_1, \dots, b_n)}$$
Sub_{\Gamma}

$$\frac{\{h_{s'}(u) \stackrel{\cdot}{=}_{s'} h_{s'}(v) \mid u \stackrel{\cdot}{=}_{s'} v \in H\}}{h_s(t) \stackrel{\cdot}{=}_s h_s(t')}$$

$$h: T_{\Sigma}(Y) \to A, (\forall Y) t \stackrel{\cdot}{=}_s t' \text{ if } H \in \Gamma$$

Teorema de completitudine

- \square $a \sim_{\Gamma}^{\mathcal{A}} a' \Leftrightarrow \Gamma \vdash_{\mathcal{A}} a \stackrel{\cdot}{=}_{s} a'$ (echivalența sintactică)
- \Box $a \equiv_{\Gamma}^{\mathcal{A}} a' \Leftrightarrow \Gamma \models_{\mathcal{A}} a \stackrel{\cdot}{=}_{s} a'$ (echivalența semantică)
- \square Corectitudinea deducției locale: $\sim_{\Gamma}^{\mathcal{A}} \subseteq \equiv_{\Gamma}^{\mathcal{A}}$
- \square Completitudinea deducției locale: $\equiv_{\Gamma}^{\mathcal{A}} \subseteq \sim_{\Gamma}^{\mathcal{A}}$

Teorema (Teorema de completitudine)

$$\equiv^{\mathcal{A}}_{\Gamma} = \sim^{\mathcal{A}}_{\Gamma}$$

Rescrierea locală

- \square Fie \mathcal{A} o (S,Σ) -algebră
- $\square \text{ Definim } \mathcal{A}[z] := T_{\Sigma}(A \cup \{z\}), \ z \notin A$
- □ Un context este un termen $c \in A[z]$ cu $nr_z(c) = 1$, iar $c[a] := c[z \leftarrow a]$
- \square Pentru $Q \subseteq A \times A$ definim:
 - $\square \rightarrow_Q := \{(c[a], c[a']) \mid (a, a') \in Q, c \in A[z] \text{ context}\}$
 - $\square \stackrel{*}{\to}_Q$ închiderea reflexivă și tranzitivă
 - $\square \downarrow_Q := \{(a, a') \mid \text{ ex. } b \in A \text{ a.î. } a \xrightarrow{*}_Q b \text{ și } a' \xrightarrow{*}_Q b\}$

Rescrierea locală

- \square \mathcal{A} este (S, Σ) -algebra fixată și Γ mulțime de ecuații condiționate
- □ Definim $(Q_n)_n$:
 - \square $Q_n \subseteq A \times A$, or. n,
 - \square $Q_0 := \emptyset$,
 - $\square \ Q_{n+1} := \left\{ (h_s(I), h_s(r)) \mid (\forall Y)I \stackrel{\cdot}{=}_s \ r \ \text{if} \ H \in \Gamma, \\ h: T_{\Sigma}(Y) \to A \ \text{morfism}, \\ h_{s'}(u) \downarrow_{Q_n} h_{s'}(v) \ \text{or.} \ u \stackrel{\cdot}{=}_{s'} \ v \in H \right\}$
- \square $Q := \bigcup_n Q_n$
- □ Notăm
 - $\square \Rightarrow_{\Gamma,A} := \rightarrow_{Q},$
 - $\square \Downarrow_{\Gamma,A} := \downarrow_{Q}$

Rescrierea locală

Fie A o (S, Σ) -algebră fixată și Γ mulțime de ecuații condiționate.

Dacă $a, a' \in A_s$ definim relația $a \rightarrow_{\Gamma, A} a'$ astfel:

$$a \rightarrow_{\Gamma,A} a' \Leftrightarrow \text{ex. } c \in A[z], \ nr_z(c) = 1$$

$$a \text{ este } c[z \leftarrow h_s(l)] \text{ si } a' \text{ este } c[z \leftarrow h_s(r)],$$

$$(\forall Y)l \stackrel{\cdot}{=}_s r \text{ if } H \in \Gamma,$$

$$h: T_{\Sigma}(Y) \rightarrow A \text{ este un morfism,}$$

$$h_{s'}(u) \downarrow_{\Gamma,A} h_{s'}(v) \text{ or. } u \stackrel{\cdot}{=}_{s'} v \in H$$

Teorema

$$\stackrel{*}{\rightarrow}_{\Gamma,A} = \stackrel{*}{\Rightarrow}_{\Gamma,A} \subseteq \equiv^A_{\Gamma}$$

Rescriere locală

□ O relația \succ pe $A \times A$ este cofluentă dacă or. a, b, $c \in A$ $a \succ b$ și $a \succ c \Rightarrow$ ex. $d \in A$ a.î. $c \succ d$ și $b \succ d$

Teorema

Fie Γ o mulțime de ecuații condiționate a.î. $\stackrel{*}{\to}_{\Gamma}$ este confluentă. Atunci $\downarrow_{\Gamma} = \equiv_{\Gamma}^{\mathcal{A}}$, i.e.

$$a \equiv^{\mathcal{A}}_{\Gamma} a' \Leftrightarrow a \downarrow_{\Gamma} a'$$

Programare logică. Teoremele lui Herbrand.

Ce am studiat până acum

- \square (S,Σ) signatură multisortată și Γ mulțime de ecuații condiționate
- \square G o mulțime de ecuații de forma $(\forall X)t \stackrel{.}{=}_s t'$, $t,t' \in T_{\Sigma}(X)$.
- ☐ În cursurile anterioare am răspuns la problema

$$\Gamma \models (\forall X)G$$
.

- - $h_{s'}(u) = h_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow h_s(t) = h_s(t')$
- $□ A \models \Gamma:$ $A \models (∀X)t = _s t' \text{ if } H, \text{ or. } (∀X)t = _s t' \text{ if } H ∈ Γ$
- $\Box \Gamma \models (\forall X)t =_s t':$ or. \mathcal{A} a.î. $\mathcal{A} \models \Gamma$, $\mathcal{A} \models (\forall X)t =_s t'$
- $\Box \Gamma \models (\forall X)G:$ $\text{or. } A \text{ a.i. } A \models \Gamma, A \models (\forall X)t \stackrel{\cdot}{=}_s t', \text{ or. } (\forall X)t \stackrel{\cdot}{=}_s t' \in G$

Problema programării logice (ecuaționale)

- \square (S, Σ) signatură multisortată și Γ mulțime de ecuații condiționate
- \square G o mulțime de ecuații de forma $(\forall X)t \stackrel{.}{=}_s t', t,t' \in T_{\Sigma}(X)$.
- □ Problema programării logice ecuaționale:

$$\Gamma \models (\exists X)G$$
.

- $\Box \Gamma \models (\exists X)G:$ $\text{or. } \mathcal{A} \text{ a.i. } \mathcal{A} \models \Gamma, \mathcal{A} \models (\exists X)G.$
- $egin{aligned} & \mathcal{A} \models (\exists X) G \colon \\ & ext{există un morfim } h \colon T_{\Sigma}(X) o \mathcal{A} \text{ a.î. } h_s(t) = h_s(t'), \text{ or.} \\ & (\forall X) t \stackrel{\cdot}{=}_s t' \in G. \end{aligned}$

Amintiri

□ T_{Σ} este (S, Σ) -algebra inițială. □ pt. or. (S, Σ) -algebră \mathcal{A} , există un unic morfism $f: T_{\Sigma} \to \mathcal{A}$. □ $\equiv_{\Gamma, \mathcal{A}} := \bigcap \{ Ker(h) \mid h: \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$. □ $\equiv_{\Gamma, T_{\Sigma}} := \bigcap \{ Ker(h) \mid h: T_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$ □ $T_{\Sigma, \Gamma} := T_{\Sigma}/_{\equiv_{\Gamma, T_{\Sigma}}}$ este Γ -algebra inițială. □ pt. or. Γ -algebră \mathcal{B} , există un unic morfism $f: T_{\Sigma, \Gamma} \to \mathcal{B}$.

Propoziție (vezi Curs 4)

Fie $h: \mathcal{A} \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to \mathcal{A}$ astfel încât g; h = f.

- ☐ Fundamentale pentru demonstrarea automată.
- Reduce problema satisfacerii în toate modelele, doar la satisfacerea în modelul iniţial.

Teorema

Fie G o mulțime de ecuații de forma $(\forall X)t \stackrel{.}{=}_s t'$, $t,t' \in T_{\Sigma}(X)$. Sunt echivalente:

- $\Gamma \models (\exists X)G$
- 2 $T_{\Sigma,\Gamma} \models (\exists X)G$,
- **3** există un morfism $\psi: T_{\Sigma}(X) \to T_{\Sigma}$ a.î. $\Gamma \models (\forall \emptyset) \psi(G)$.

Demonstrație

- $1 \Rightarrow 2$: $\Gamma \models (\exists X)G \Rightarrow T_{\Sigma,\Gamma} \models (\exists X)G$
 - \square Ştim $\Gamma \models (\exists X)G$: or. \mathcal{A} a.î. $\mathcal{A} \models \Gamma$, $\mathcal{A} \models (\exists X)G$.
 - \square Dar $T_{\Sigma,\Gamma}$ este Γ -algebră inițială, deci $T_{\Sigma,\Gamma} \models \Gamma$.
 - \square În concluzie, $T_{\Sigma,\Gamma} \models (\exists X)G$.

Demonstrație (cont.)

$$2 \Rightarrow 3$$
: $T_{\Sigma,\Gamma} \models (\exists X)G \Rightarrow \text{ex. } \psi : T_{\Sigma}(X) \to T_{\Sigma} \text{ a.î. } \Gamma \models (\forall \emptyset)\psi(G)$

- $\square \text{ \mathfrak{f}tim $T_{\Sigma,\Gamma} \models (\exists X) G$: ex. $h: T_{\Sigma}(X) \to T_{\Sigma,\Gamma}$ a.î. $h_s(t) = h_s(t')$, or. } (\forall X) t \stackrel{.}{=}_s t' \in G.$
- $\square \ \eta : T_{\Sigma}' \to T_{\Sigma,\Gamma} := T_{\Sigma}/_{\equiv_{\Gamma},\tau_{\Sigma}} \ \text{morfism}$ surjectiv.
- □ Aplicând o propoziție din Cursul 4, obținem că există $\psi: T_{\Sigma}(X) \to T_{\Sigma}$ a.î. $\psi; \eta = h$.
 - Deci $\eta_s(\psi_s(t)) = \eta_s(\psi_s(t'))$, or. $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$.

Demonstrație (cont.)

$$2 \Rightarrow 3$$
: $T_{\Sigma,\Gamma} \models (\exists X)G \Rightarrow \text{ex. } \psi : T_{\Sigma}(X) \to T_{\Sigma} \text{ a.î. } \Gamma \models (\forall \emptyset)\psi(G)$

- □ Cum $\eta: T_{\Sigma} \to T_{\Sigma,\Gamma}$ este morfismul de factorizare, obţinem $\psi_s(t) \equiv_{\Gamma,T_{\Sigma}} \psi_s(t')$, or. $(\forall X)t \doteq_s t' \in G$.
 - $\square \text{ Dar } \equiv_{\Gamma, T_{\Sigma}} := \bigcap \{ Ker(g) \mid g : T_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$
 - Deci $\psi_s(t) \equiv_{\Gamma, T_{\Sigma}} \psi_s(t')$ înseamnă $g_s(\psi_s(t)) = g(\psi_s(t'))$, or. $g: T_{\Sigma} \to \mathcal{B} \models \Gamma$.
 - Trebuia să arătăm $\Gamma \models (\forall \emptyset) \psi(G)$: or. $\mathcal{B} \models \Gamma$, or. $g: T_{\Sigma} \to \mathcal{B}$, $g_s(\psi_s(t)) = g(\psi_s(t'))$, or. $(\forall X)t \stackrel{.}{=}_s t' \in G$.

Demonstrație (cont.)

$$3\Rightarrow 1$$
: ex. $\psi:T_{\Sigma}(X)\to T_{\Sigma}$ a.î. $\Gamma\models (orall\emptyset)\psi(G)\Rightarrow \Gamma\models (\exists X)G$

- \square Fie \mathcal{M} ο Γ-algebră. Arătăm că $\mathcal{M} \models (\exists X)G$.
 - lacksquare există $h: T_{\Sigma}(X) o \mathcal{M}$ a.î. $h_s(t) = h_s(t')$, or. $(\forall X)t \stackrel{.}{=}_s t' \in G$.
- \square Fie $\alpha_{\mathcal{M}}: T_{\Sigma} \to \mathcal{M}$ unicul morfism de la T_{Σ} la \mathcal{M} .
- \square Arătăm că pentru ψ ; $\alpha_{\mathcal{M}}: \mathcal{T}_{\Sigma}(X) \to \mathcal{M}$,

$$(\psi; \alpha_{\mathcal{M}})_s(t) = (\psi; \alpha_{\mathcal{M}})_s(t')$$
, or. $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$.

- Deoarece $\mathcal{M} \models \Gamma$, din ipoteză obținem $\mathcal{M} \models (\forall \emptyset) \psi(G)$.
 - lacksquare pt. or. $g: \mathcal{T}_{\Sigma} o \mathcal{M}, \ g_s(\psi_s(t)) = g_s(\psi_s(t')), \ \text{or.} \ (\forall X)t \stackrel{\cdot}{=}_s \ t' \in G.$
- Pentru morfism $\alpha_{\mathcal{M}}: T_{\Sigma} \to \mathcal{M}$ obţim $(\alpha_{\mathcal{M}})_s(\psi_s(t)) = (\alpha_{\mathcal{M}})_s(\psi_s(t'))$, or. $(\forall X)t \doteq_s t' \in G$.
- \square Deci $\mathcal{M} \models (\exists X)G$, or. \mathcal{M} o Γ -algebră. În concluzie, $\Gamma \models (\exists X)G$.

Pe săptămâna viitoare!