

CS/CE 6390 ACN Programming Project Description

Energy Efficient Communication in WSN

Project Objective

Objective

- Design a spanning tree construction algorithm for efficient dissemination of query messages and a protocol for energy efficient data aggregation method of the requested query message in the wireless sensor networks.
- Implement your proposed energy efficient communication application

What is WSNs (1)

- Wireless Sensor Networks
 - Wireless Sensor Networks are networks that consists of sensors which are distributed in an ad hoc manner.
 - These sensors work with each other to sense some physical phenomenon and then the information gathered is processed to get relevant results.
 - Wireless sensor networks consists of protocols and algorithms with self-organizing capabilities

What is WSNs (2)

- Application of WSNs
 - Environmental and Habitat monitoring
 - Military Surveillance
 - Health monitoring and Home automation
 - And more ...

What is WSNs (3)

- Characteristic of WSNs
 - Wireless Communication
 - Low power
 - Limited memory
 - Energy constrained due to their small size
 - Main Issue: energy consumption

Energy Efficient Communication in Wireless Sensor Networks

Wireless Communication (1)

- Omni directional coverage
- How to emulate it in the project
 - UDP communication
 - Euclidean distance
 - $D(A,B) \leq r$
 - ⇒ B node can receive message from node A

Wireless Communication (2)

- Design in a way to ensure energy efficiency in communicating the response back to the sink node.
 - Communication consumes more energy than computation
 - A large message consumes more energy than a short message

Building a Spanning Tree (1)

- At the Sink node, you do the following:
 - The topology of the entire network including (x,y) coordinate locations and IDs of each sensor node in the network
 - Compute a spanning tree -> in a centralized way
 - Disseminate this information to the nodes on the spanning tree

Building a Spanning Tree(2)

Sensor deployment

Node Id	Location	Address/port number	
1	(X1, Y1)	129.110.92.15/8080	
2	(X2, Y2)	129.110.92.16/8080	
3	(X3, Y3)	129.110.92.17/8080	
20	(X20,Y20)	129.110.92.35/8080	

Building a Spanning Tree (3)

Tree Construction

Building a Spanning Tree(4)

 How to disseminate a spanning tree information after tree construction?

Network Operation (1)

Sink

- Sink node will do this
 - Query Dissemination

 Send out query messages to the network to collect the required information to compute the requested value.

Network Operation(2)

Query Response Collection

- Temperature collection

• J,K,L,M => G

- 75+76+72+73+74=370/5=74

• H,I => F

- 86+84+85=255/3=85

15

Network Operation(3)

Query Response Collection

CS/CE 6390 Advanced Computer Networks

Implementation (1)

- Each sensor node
 - A process running on netxx.utdallas.edu
 - Read topology file to learn its location and the location of its neighbors
 - Sink will learn the location of all to use in spanning tree construction
 - No node except for sink will use the network topology file for the locations of any other nonneighbor node
 - Broadcast communication
 - Emulated by wsing UDP messagerks

Implementation (2)

- Sink node
 - Know the entire topology
 - Compute its spanning tree
 - Disseminate spanning tree information
 - Temperature data gathering

Node Id	Location	Address/port number	Temperature	Radius(communication range (meter))
1	(X1, Y1)	129.110.92.15/8080	Х	Х
2	(X2, Y2)	129.110.92.16/8080	Х	Х
3	(X3, Y3)	129.110.92.17/8080	Х	Х
		•		
20	(X20,Y20)	129.110.92.35/8080	Х	Х

CS/CE 6390 Advanced Computer Networks

Logistics

- Submit design document
 - Tree construction and data collection protocol
 - Nov 9th
- Submit final project
 - Dec 14th
- Project Demos
 - Dec 15th
 - Dec 18-19th => Preferred. Can do earlier if needed