Automatic Loss Function Design for Generic Vision Tasks

Jifeng Dai

SenseTime Research

General Deep Learning Training Framework

General Deep Learning Training Framework

- How to design the deep networks?
 - Handcrafting
 - AutoML

Design Paradigm - Handcrafting

Design Paradigm - AutoML

For image **Output deep Computational cost classification** task only networks Deployable Automated Pre-processing Design Automated **Backbone** Design Classification Automated Training Recipe Design Network Image Classification, *mAcc*

• Current AutoML focuses on searching for the image classification task only.

Design Paradigm

- Handcrafting
 - Requires human expertise & insight
 - High human cost for trial and error
- AutoML
 - Current AutoML algorithms focus on automatedly searching for pre-processing strategies, backbone networks and training recipes for the image classification task.

Design Paradigm

- Handcrafting
 - Requires human expertise & insight
 - High human cost for trial and error
- AutoML
 - Current AutoML algorithms focus on automatedly searching for pre-processing strategies, backbone networks and training recipes for the image classification task.
- Fully automated design?

Design Paradigm – Fully Auto Design for Generic Tasks

Given tasks & evaluation metrics

Computational cost

Output deep networks

Object Detection, *mAP*

Semantic Segmentation, mIoU

Image Classification, mAcc

Fully Automated Design of Deep **Networks for Generic Tasks** (Pre-processing/Backbone/Head/Loss/ Training Recipe)

Deployable Detection Network

Deployable Segmentation Network

Deployable Classification Network

• Searching for generic tasks and metrics.

Design Paradigm – Fully Auto Design for Generic Tasks

- Pre-processing
- Training Recipe
- Backbone
- Head
- Loss function

An unified search framework for generic tasks

Design Paradigm – Fully Auto Design for Generic Tasks

- Pre-processing
- Training Recipe
- Backbone
- Head
- Loss function

An unified search framework for generic tasks

Under-investigated!

Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Hao Li^{1,*}, Chenxin Tao^{2,*}, Xizhou Zhu³, Xiaogang Wang^{1,3}, Gao Huang², Jifeng Dai^{3,4,‡}

¹The Chinese University of Hong Kong, ²Tsinghua University, ³Sensetime Research, ⁴Qing Yuan Research Institute, Shanghai Jiao Tong University *Equal contribution [‡]Corresponding author

Different Focuses of Different Metrics

ImagePrediction #1Prediction #2

$$mIoU = 82\%$$

BF1 = 40%

$$mIoU = 83\% (+1\%)$$

BF1 = 75% (+35%)

mIoU: Mean Intersection over Union

BF1: Boundary F1 Score

Note: The tolerance radius of the BF1 score here is 5 pixels.

Different Focuses of Different Metrics

Image Prediction #1 Prediction #2

Some metrics (e.g. mIoU) measure the accuracy on the whole image, while others (e.g. BF1) focus more on the boundaries.

mIoU = 82%

BF1 = 40%

mIoU = 85% (+3%)

BF1 = 75% (+35%)

mIoU: Mean Intersection over Union

BF1: Boundary F1 Score

Note: The tolerance radius of the BF1 score here is 5 pixels.

Recalling General Image Recognition Framework

^[3] Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovasz-softmax loss: A tractable 's surrogate for the optimization of the intersection-over-union measure in neural networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4413–4421, 2018.
[4] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli Ouyang. Amlfs: Automl for loss function search. In Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp. 8410–8419, 2019.

Idea: designing the search space based on the formulation of the target evaluation metric.

Revisiting Metrics for Semantic Segmentation

• Non-differentiable

Type	Name	Formula					
Acc-based	Global Accuracy [†]	$\text{gAcc} = \frac{\sum_{n,c,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,c,h,w} y_{n,c,h,w}}$	(1)				
Acc-based	Mean Accuracy [†]	$\text{mAcc} = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} y_{n,c,h,w}}$	(2)				
	Mean IoU [†]	$\text{mIoU} = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}}$	(3)				
IoU-based	Frequency Weighted IoU†	$\text{FWIoU} = \sum_{c} \frac{\sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,c',h,w} y_{n,c',h,w}} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}}$					
	Boundary IoU*	$\begin{aligned} \text{BIoU} &= \frac{1}{C} \sum_{c} \frac{\sum_{n} \sum_{h,w \in \text{BD}(y_n)} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n} \sum_{h,w \in \text{BD}(y_n)} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}} \\ &\text{where BD}(y) = y \text{ XOR Min-Pooling}(y) \end{aligned}$	(5)				
F1-score-based	Boundary F1 Score*	$\begin{aligned} \operatorname{BF1-score} &= \frac{1}{C} \sum_{c} \frac{2 \times \operatorname{prec}_{c} \times \operatorname{recall}_{c}}{(\operatorname{prec}_{c} + \operatorname{recall}_{c})} \\ \operatorname{where} \operatorname{prec}_{c} &= \frac{\sum_{n,h,w} \operatorname{BD}(\hat{y}_{n})_{c,h,w} \operatorname{AND} \operatorname{Max-Pooling}(\operatorname{BD}(y_{n})_{c,h,w})}{\sum_{n,h,w} \operatorname{BD}(\hat{y}_{n})_{c,h,w}}, \\ \operatorname{recall}_{c} &= \frac{\sum_{n,h,w} \operatorname{Max-Pooling}(\operatorname{BD}(\hat{y}_{n})_{c,h,w}) \operatorname{AND}(\operatorname{BD}(y_{n})_{c,h,w})}{\sum_{n,h,w} \operatorname{BD}(y_{n})_{c,h,w}} \end{aligned}$	(6)				

Revisiting Metrics for Semantic Segmentation

- Non-differentiable
 - One-hot operation (Argmax)
 - Logical operation (AND/OR/XOR)
- Extend these operations to the continuous domain!

Type	Name	Formula	
Acc-based	Global Accuracy [†]	$\text{gAcc} = \frac{\sum_{n,c,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,c,h,w} y_{n,c,h,w}}$	(1)
Acc-based	Mean Accuracy [†]	$\text{mAcc} = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} y_{n,c,h,w}}$	(2)
	Mean IoU [†]	$\text{mIoU} = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}}$	(3)
IoU-based	Frequency Weighted IoU†	$\text{FWIoU} = \sum_{c} \frac{\sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,c',h,w} y_{n,c',h,w}} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}}$	(4)
	Boundary IoU*	$\begin{aligned} \text{BIoU} &= \frac{1}{C} \sum_{c} \frac{\sum_{n} \sum_{h,w \in \text{BD}(y_n)} \hat{y}_{n,c,h,w} \text{ AND } y_{n,c,h,w}}{\sum_{n} \sum_{h,w \in \text{BD}(y_n)} \hat{y}_{n,c,h,w} \text{ OR } y_{n,c,h,w}} \\ &\text{where BD}(y) = y \text{ XOR Min-Pooling}(y) \end{aligned}$	(5)
F1-score-based	Boundary F1 Score*	$\begin{aligned} \operatorname{BF1-score} &= \frac{1}{C} \sum_{c} \frac{2 \times \operatorname{prec}_{c} \times \operatorname{recall}_{c}}{(\operatorname{prec}_{c} + \operatorname{recall}_{c})} \\ \operatorname{where} \operatorname{prec}_{c} &= \frac{\sum_{n,h,w} \operatorname{BD}(\hat{y}_{n})_{c,h,w}}{\sum_{n,h,w} \operatorname{BD}(\hat{y}_{n})_{c,h,w}} \\ \sum_{n,h,w} \operatorname{BD}(\hat{y}_{n})_{c,h,w} \\ \operatorname{recall}_{c} &= \frac{\sum_{n,h,w} \operatorname{Max-Pooling}(\operatorname{BD}(\hat{y}_{n})_{c,h,w}) \operatorname{AND}(\operatorname{BD}(y_{n})_{c,h,w})}{\sum_{n,h,w} \operatorname{BD}(y_{n})_{c,h,w}} \end{aligned}$	(6)

$$mIoU = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} AND \sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} OR \sum_{n,h,w} y_{n,c,h,w}}$$

• One-hot operation

$$\hat{y}_{n,c,h,w} = \operatorname{argmax}_{c}(z_{n,c,h,w})$$

$$\hat{y}_{n,c,h,w} \approx \tilde{y}_{n,c,h,w} = \operatorname{softmax}_{c}(z_{n,c,h,w})$$

$$mIoU = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} AND \sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} OR \sum_{n,h,w} y_{n,c,h,w}}$$

- One-hot operation
- Logical operation

	$y_2 = 0$	$y_2 = 1$
$y_1 = 0$	0	0
$y_1 = 1$	0	1

$$\rightarrow f_{AND}(y_1, y_2) = y_1 y_2$$

	$y_2 = 0$	$y_2 = 1$
$y_1 = 0$	0	1
$y_1 = 1$	1	1

$$f_{OR}(y_1, y_2) = y_1 + y_2 - y_1 y_2$$

$$(y_1, y_2 \in [0, 1])$$

$$mIoU = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} AND \sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} OR \sum_{n,h,w} y_{n,c,h,w}}$$

- One-hot operation
- Logical operation

No guarantee to drive the training well!

AND

	$y_2 = 0$	$y_2 = 1$
$y_1 = 0$	0	0
$y_1 = 1$	0	1

$$f_{AND}(y_1, y_2) = y_1 y_2$$

OR

	$y_2 = 0$	$y_2 = 1$
$y_1 = 0$	0	1
$y_1 = 1$	1	1

$$f_{OR}(y_1, y_2) = y_1 + y_2 - y_1 y_2$$

$$(y_1, y_2 \in [0, 1])$$

$$mIoU = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} AND \sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} OR \sum_{n,h,w} y_{n,c,h,w}}$$

- One-hot operation
- Logical operation

$$f_{AND}(y_1, y_2) = y_1 y_2$$

$$g(y; \theta): [0, 1] \to \mathbb{R}$$

$$h_{AND}(y_1, y_2; \theta_{AND}) = g(y_1; \theta_{AND})g(y_2; \theta_{AND})$$

$$mIoU = \frac{1}{C} \sum_{c} \frac{\sum_{n,h,w} \hat{y}_{n,c,h,w} AND \sum_{n,h,w} y_{n,c,h,w}}{\sum_{n,h,w} \hat{y}_{n,c,h,w} OR \sum_{n,h,w} y_{n,c,h,w}}$$

- One-hot operation
- Logical operation

Add constraints:

Truth table constraint: $g(0; \theta) = 0, g(1, \theta) = 1$ Monotonicity constraint: $\frac{\partial h}{\partial y_i} \ge 0$

• Extend one-hot operation

$$\hat{y}_{n,c,h,w} \approx \tilde{y}_{n,c,h,w} = \text{softmax}_c(z_{n,c,h,w})$$

• Extend logical operation

$$f_{AND}(y_1, y_2) = y_1 y_2$$

 $f_{OR}(y_1, y_2) = y_1 + y_2 - y_1 y_2$

• Parameterize logical operation

$$h_{AND}(y_1, y_2; \theta_{AND}) = g(y_1; \theta_{AND})g(y_2; \theta_{AND})$$

$$h_{OR}(y_1, y_2; \theta_{OR}) = g(y_1; \theta_{OR}) + g(y_2; \theta_{OR}) - g(y_1; \theta_{OR})g(y_2; \theta_{OR})$$

Add constraints

Truth table constraint: $g(0; \theta) = 0, g(1, \theta) = 1$

Monotonicity constraint: $\frac{\partial h}{\partial v_i} \ge 0$

interpolate

Auto Seg-Loss Search Process - Sampling

 (Θ_{AND}) and Θ_{OR} are sampled from truncated gaussian distributions)

Auto Seg-Loss Search Process - Updating

Auto Seg-Loss Search Process – Re-training

MMSegmentation

Experiments on Semantic Segmentation

Dataset		PASCAL VOC					Cityscapes						
Loss Function	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc	
Cross Entropy	78.69	91.31	70.61	65.30	87.31	95.17	79.97	93.33	62.07	62.24	87.01	96.44	
WCE (Ronneberger et al., 2015)	69.60	85.64	61.80	37.59	92.61	91.11	73.01	90.51	53.07	51.19	89.22	94.56	
DPCE (Caliva et al., 2019)	79.82	91.76	71.87	66.54	87.76	95.45	80.27	93.38	62.57	65.99	86.99	96.46	
SSIM (Qin et al., 2019)	79.26	91.68	71.54	66.35	87.87	95.38	80.65	93.22	63.04	72.20	86.88	96.39	
DiceLoss (Milletari et al., 2016)	77.78	91.34	69.85	64.38	87.47	95.11	79.30	93.25	60.93	59.94	86.38	96.39	
Lovàsz (Berman et al., 2018)	79.72	91.78	72.47	66.65	88.64	95.42	77.67	92.51	56.71	53.48	82.05	96.03	
Searched mIoU	80.97	92.09	73.44	68.86	88.23	95.68	80.67	93.30	63.05	67.97	87.20	96.44	
Searched FWIoU	80.00	91.93	75.14	65.67	89.23	95.44	79.42	93.33	61.71	59.68	87.96	96.37	
Searched BIoU	48.97	69.89	79.27	38.99	81.28	62.64	45.89	39.80	63.89	38.29	62.80	58.15	
Searched BF1	1.93	0.96	7.39	74.83	6.51	2.66	6.78	3.19	18.37	77.40	12.09	8.19	
Searched mAcc	69.80	85.86	72.85	35.62	92.66	91.28	74.10	90.79	54.62	53.45	89.22	94.75	
Searched gAcc	79.73	91.76	74.09	64.41	88.95	95.47	79.41	93.30	61.65	62.04	87.08	96.51	
Searched mIoU + BIoU	81.19	92.19	76.89	69.56	88.36	95.75	80.43	93.34	63.88	65.87	87.03	96.45	
Searched mIoU + BF1	78.72	90.80	71.81	73.57	86.70	94.88	78.30	93.00	61.62	71.73	87.13	96.23	

Our searched losses are on par or better than the previous losses on their target eval metrics!

Experiments on Semantic Segmentation

Dataset		PASCAL VOC					Cityscapes						
Loss Function	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc	
Cross Entropy	78.69	91.31	70.61	65.30	87.31	95.17	79.97	93.33	62.07	62.24	87.01	96.44	
WCE (Ronneberger et al., 2015)	69.60	85.64	61.80	37.59	92.61	91.11	73.01	90.51	53.07	51.19	89.22	94.56	
DPCE (Caliva et al., 2019)	79.82	91.76	71.87	66.54	87.76	95.45	80.27	93.38	62.57	65.99	86.99	96.46	
SSIM (Qin et al., 2019)	79.26	91.68	71.54	66.35	87.87	95.38	80.65	93.22	63.04	<u>72.20</u>	86.88	96.39	
DiceLoss (Milletari et al., 2016)	77.78	91.34	69.85	64.38	87.47	95.11	79.30	93.25	60.93	59.94	86.38	96.39	
Lovàsz (Berman et al., 2018)	79.72	91.78	72.47	66.65	88.64	95.42	77.67	92.51	56.71	53.48	82.05	96.03	
Searched mIoU	80.97	92.09	73.44	68 86	88.23	95.68	80.67	93.30	63.05	67.97	87.20	96.44	
Searched FWIoU	80.00	91.93	75.14	65 67	89.23	95.44	79.42	93.33	61.71	59.68	87.96	96.37	
Searched BIoU	48.97	69.89	79.27	38 99	81.28	62.64	45.89	39.80	63.89	38 29	62.80	58.15	
Searched BF1	1.93	0.96	7.39	74.83	6.51	2.66	6.78	3.19	18.37	77.40	12.09	8.19	
Searched mAcc	69.80	85.86	72.85	35.62	92.66	91.28	74.10	90.79	54.62	53.45	89.22	94.75	
Searched gAcc	79.73	91.76	74.09	64.41	88.95	95.47	79.41	93.30	61.65	62.04	87.08	96.51	
Searched mIoU + BIoU	81.19	92.19	76.89	69.56	88.36	95.75	80.43	93.34	63.88	65.87	87.03	96.45	
Searched mIoU + BF1	78.72	90.80	71.81	73.57	86.70	94.88	78.30	93.00	61.62	71.73	87.13	96.23	

The searched losses show a huge improvement on the boundary metrics.

Generalization of the Searched Losses

Generalization among datasets

Search once, use everywhere.

• Searching on dataset A and training networks on dataset B

Datasets		City	scapes	V(OC	$VOC \longrightarrow Cityscapes$						
Loss Function	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc	mIoU	FWIoU	BIoU	BF1	mAcc	gAcc
Cross Entropy	78.69	91.31	70.61	65.30	87.31	95.17	79.97	93.33	62.07	62.24	87.01	96.44
Searched mIoU	80.05	91.72	73.97	67.61	88.01	95.45	80.67	93.31	62.96	66.48	87.36	96.44
Searched BF1	1.84	0.93	7.42	75.85	6.48	1.47	6.67	3.20	19.00	77.99	12.12	4.09
Searched mAcc	70.90	86.29	73.43	37.18	<u>93.19</u>	91.43	73.50	90.68	54.34	54.04	<u>88.66</u>	94.68

- Generalization among networks
 - Searching with a network and training networks with different structures

Network	R50-1	DeepLa	abv3+	R101-	DeepLabv3+		R101-PSPNet			HRNetV2p-W48		
Loss Function	mIoU	BF1	mAcc	mIoU	BF1	mAcc	mIoU	BF1	mAcc	mIoU	BF1	mAcc
Cross Entropy	76.22	61.75	85.43	78.69	65.30	87.31	77.91	64.70	85.71	76.35	61.19	85.12
Searched mIoU	78.35	66.93	85.53	80.97	68.86	88.23	78.93	65.65	87.42	77.26	63.52	86.80
Searched BF1	1.35	70.81	6.05	1.43	73.54	6.12	1.62	71.84	6.33	1.34	68.41	5.99
Searched mAcc	69.82	36.92	<u>91.61</u>	69.80	35.62	<u>92.66</u>	71.66	39.44	<u>92.06</u>	68.22	35.90	<u>91.46</u>

Take-away

• Auto Seg-Loss is the first general framework for searching surrogate losses for mainstream semantic segmentation metrics.

• We propose an effective parameter regularization and search algorithm, which can find loss surrogates optimizing the target metric performance with mild computational overhead.

• The searched losses can generalize well to other datasets and networks. They also show superior performance over other loss functions.

Rethinking Auto Seg-Loss

• Auto Seg-Loss focuses on the task of semantic segmentation, and can be applied to more tasks by parameterizing the evaluation metrics.

• Challenge:

Some evaluation metrics and operations are hard to parameterize.

e.g. ranking & matching operations in mAP.

Rethinking Auto Seg-Loss

• Auto Seg-Loss focuses on the task of semantic segmentation, and can be applied to more tasks by parameterizing the evaluation metrics.

• Challenge:

Some evaluation metrics and operations are hard to parameterize. *e.g.* ranking & matching operations in mAP.

• Can we search loss functions for more general tasks?

AutoLoss-Zero:

Searching Loss Functions from Scratch for Generic Tasks

Hao Li^{1,*}, Tianwen Fu^{2,*}, Jifeng Dai^{3,5}, Hongsheng Li¹, Gao Huang⁴, Xizhou Zhu^{3,‡}

¹CUHK-SenseTime Joint Laboratory, The Chinese University of Hong Kong

²Department of Information Engineering, The Chinese University of Hong Kong

³Sensetime Research

⁴Tsinghua University

⁵Qing Yuan Research Institute, Shanghai Jiao Tong University

*Equal contribution

‡Corresponding author

AutoLoss-Zero

- Zero from scratch, minimal human expertise
- Target:

A general framework for searching loss functions for any given tasks and evaluation metrics.

AutoLoss-Zero

- Zero from scratch, minimal human expertise
- Target:

A general framework for searching loss functions for any given tasks and evaluation metrics.

• Challenge:

Heterogeneity of various tasks and evaluation metrics.

→ **Search space:** Basic primitive operators

Search algorithm: Efficient enough to explore the huge space; No task-specific heuristics

Search Space

- Primitive mathematical operators to construct the loss functions
- All the tasks share the same operator list.

Element-wise Operator	Expression	Arity
Add	x + y	2
Mul	$x \times y$	2
Neg	-x	1
Abs	x	1
Inv	$1/(x+\epsilon)$	1
Log	$\operatorname{sign}(x) \cdot \log(x + \epsilon)$	1
Exp	e^x	1
Tanh	$\tanh(x)$	1
Square	x^2	1
Sqrt	$\operatorname{sign}(x) \cdot \sqrt{ x + \epsilon}$	1

[†] Aggregation Operator	Expression	Arity
$Mean_{nhw}$	$rac{1}{NHW}\sum_{nhw}x_{nchw}$	1
Mean_c	$rac{1}{C}\sum_{c}x_{nchw}$	1
Max -Pooling $_{3\times3}$	$\text{Max-Pooling}_{3 \times 3}(x)$	1
$Min-Pooling_{3\times 3}$	$Min-Pooling_{3\times 3}(x)$	1

Search Space

- Primitive mathematical operators to construct the loss functions
- Computational graphs to represent the loss functions

Cross Entropy (CE): $Output = -y * log(\hat{y})$

$$L = \frac{1}{NHW} * \sum_{n,c,h,w} Output_{n,c,h,w}$$

Search Algorithm

• Evolutionary search: Initialize population Select a well-performed individual Mutate to produce offsprings Update population Final population

Search Algorithm - Mutation

Insertion Deletion Replacement

Search Efficiency

Naïve evolution requires expensive network training in evaluating the loss functions.

	Speed-up	# Explored Losses in 48h
Naïve Evolution	1 ×	~300
+ Loss-Rejection Protocol	~700 ×	$\sim 2.1 \times 10^5$
+ Gradient-Equivalence-Check Strategy	~1000 ×	$\sim 3.2 \times 10^5$
+ Stop Training for Invalid Loss Values	~5000 ×	$\sim 1.5 \times 10^6$

Search Algorithm – Loss Rejection Protocol

Best among randomly selected

T = 5% of current population

Reject the unpromising loss functions until the mutant passes the Loss-Rejection Protocol.

Search Algorithm – Gradient-Equivalence-Check Strategy

Avoid duplicated evaluations of the mathematically equivalence loss functions.

Open-MMLab

Experiments – Semantic Segmentation

Loss I	unction	mIoU	FWIoU	gAcc	mAcc	BIoU	BF1
Cross E	ntropy	78.7	91.3	<u>95.2</u>	87.3	70.6	65.3
WCE [4	9]	69.6	85.6	91.1	<u>92.6</u>	61.8	37.6
DiceLos	ss [34]	77.8	91.3	95.1	87.5	69.9	64.4
Lovàsz	[<mark>2</mark>]	<u>79.7</u>	91.8	95.4	88.6	72.5	66.7
DPCE [4]	79.8	91.8	95.5	87.8	<u>71.9</u>	<u>66.5</u>
SSIM [4	Ю]	79.3	91.7	95.4	87.9	<u>71.5</u>	<u>66.4</u>
mIoU	ASL [27]	<u>81.0</u>	92.1	95.7	88.2	73.4	68.9
iiioc	Ours	<u>80.7</u>	92.1	95.7	89.1	74.1	66.0
FWIoU	ASL [27]	80.0	<u>91.9</u>	95.4	89.2	75.1	65.7
FW10U	Ours	78.7	<u>91.7</u>	95.2	87.7	72.9	64.6
~ A ~~	ASL [27]	79.7	91.8	<u>95.5</u>	89.0	74.1	64.4
gAcc	Ours	79.4	91.7	<u>95.3</u>	88.7	73.6	64.8
mAcc	ASL [27]	69.8	85.9	91.3	92.7	72.9	35.6
IIIACC	Ours	75.3	89.2	93.7	<u>92.6</u>	73.7	44.1
BIoU	ASL [27]	49.0	69.9	62.6	81.3	79.2	39.0
PIOC	Ours	39.8	66.6	79.7	47.8	<u>77.6</u>	45.5
DE1	ASL [27]	1.9	1.0	2.7	6.5	7.4	<u>74.8</u>
BF1	Ours	6.0	54.6	73.8	7.3	9.4	<u>79.8</u>

Experiments – More tasks

Object Detection

Loss Function			mAP	
Cls _{RPN}	$Reg_{RPN} \\$	Cls _{RCNN} Reg _{RCNN}		ши
CE	L1	CE	L1	37.3
CE	L1	CE	IoULoss [59]	37.9
CE	L1	CE	GIoULoss [48]	37.6
CE	L1	CSE-Auto-A [33]		38.5
CE	L1	Ours		38.0
Ours			38.1	

Instance Segmentation

Loss Function	mAP
CE + L1 + CE + L1 + CE	34.6
CE + L1 + CE + IoULoss [59] + CE	34.4
CE + L1 + CE + GIoULoss [48] + CE	34.7
Ours	34.8

Pose Estimation

Loss Function	mAP
MSE	71.5
Ours	72.0

Our searched losses are on-par or better compared with the previous handcrafted / searched losses on various vision tasks!

Generalization of the Searched Losses

• Semantic Segmentation

D	ataset	set Cityscapes		VOC			
Network R101-DLv3+		R50-DLv3+ R101-PSP			PSP		
Loss	Loss Function mIoU BF1		mIoU	BF1	mIoU	BF1	
Cross Entropy		80.0	62.2	76.2	61.8	77.9	64.7
mIoU	ASL [27]	<u>80.7</u>	66.5	<u>78.4</u>	66.9	<u>78.9</u>	65.7
шос	Ours	<u>80.4</u>	63.8	<u>78.0</u>	62.8	<u>78.5</u>	64.9
BF1	ASL [27]	6.7	<u>78.0</u>	1.4	<u>70.8</u>	1.6	<u>71.8</u>
DLI	Ours	9.3	<u>77.7</u>	7.2	<u>78.3</u>	5.1	<u>71.3</u>

Object Detection

Dataset	coco	VOC	
Network	ResNet-101	ResNet-50	
Loss Function	mAP	mAP	
CE + L1 + CE + IoULoss [59]	39.7	80.4	
Ours	39.9	80.6	

Experiments – Search Efficiency

	Speed-up	# Explored Losses in 48h
Naïve Evolution	1 ×	~300
+ Loss-Rejection Protocol	~700 ×	$\sim 2.1 \times 10^5$
+ Gradient-Equivalence-Check Strategy	~1000 ×	$\sim 3.2 \times 10^5$
+ Stop Training for Invalid Loss Values	~5000 ×	$\sim 1.5 \times 10^6$

No promising loss
functions can be
discovered without
Loss-Rejection Protocol

Take-away

• AutoLoss-Zero is the first general framework for searching loss functions from scratch for generic tasks.

• A novel loss-rejection protocol and a gradient-equivalence-check strategy greatly improve the search efficiency, and are generally applicable to various tasks and metrics.

• The searched loss functions show competitive performance, and are transferable across different models and datasets.

Thanks!