ST 352 | Lab Assignment 5 - Guide

Brian Cervantes Alvarez

2024-11-01

Honor Code Reminder:

Complete lab assignments individually!

Objective

In this lab, you'll explore interaction terms in regression models and apply model selection using the brainhead dataset. You'll examine gender-based differences, test the significance of interaction terms, and assess multiple regression conditions through transformations.

Part I: Interaction Term and Gender Differences (12 points)

Problem 1: Scatterplot with Regression Lines by Gender (2 points)

Create a scatterplot that includes:

- Different symbols for males and females
- Separate regression lines for each gender
- A legend explaining each symbol and line

Steps

- 1. Use plot() and points() to create scatterplots for males and females.
- 2. Use abline() to add regression lines for each gender.

```
# Read brainhead data
brainheadData <- read.table("https://raw.githubusercontent.com/bcervantesalvarez/MS-Statistic
# Separate data by gender
maleData <- subset(brainheadData, gender == "male")</pre>
femaleData <- subset(brainheadData, gender == "female")</pre>
# Plot
plot(maleData$headsize, maleData$brainwt,
     pch = 19, col = "blue",
     xlab = "Head Size (cm³)",
     ylab = "Brain Weight (g)",
     main = "Brain Weight vs. Head Size by Gender")
points(femaleData$headsize, femaleData$brainwt, pch = 17, col = "red")
# Fit separate regression lines
maleModel <- lm(brainwt ~ headsize, data = maleData)</pre>
femaleModel <- lm(brainwt ~ headsize, data = femaleData)</pre>
abline(maleModel, col = "blue", lty = 1)
abline(femaleModel, col = "red", lty = 2)
legend("topleft",
       legend = c("Male", "Female"),
       pch = c(19, 17),
       col = c("blue", "red"))
```

Brain Weight vs. Head Size by Gender

Problem 2: Need for an Interaction Term? (2 points)

Using the scatterplot, discuss if an interaction term is necessary.

• Guiding Questions: Are the regression lines parallel, or do they have different slopes? If they're similar, an interaction term may not add much value.

Problem 3: Hypothesis Test for Interaction Term (4 points)

Perform a hypothesis test to evaluate the significance of the interaction term between headsize and gender.

- a. State null and alternative hypotheses.
 - Guiding Questions: What does it mean for the interaction term to be significant? Does headsize affect brainwt differently for each gender?
- **b.** Report t-statistic, degrees of freedom, and p-value.

```
# Fit model with interaction
interactionModel <- lm(brainwt ~ headsize * gender, data = brainheadData)
summary(interactionModel)</pre>
```

Call:

```
lm(formula = brainwt ~ headsize * gender, data = brainheadData)
```

Residuals:

```
Min 1Q Median 3Q Max -171.215 -47.721 0.182 47.768 237.690
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 286.08702 83.10127 3.443 0.000683 ***
headsize 0.27280 0.02421 11.269 < 2e-16 ***
gendermale 144.21567 110.44279 1.306 0.192910
headsize:gendermale -0.03544 0.03082 -1.150 0.251403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 72.13 on 233 degrees of freedom Multiple R-squared: 0.6453, Adjusted R-squared: 0.6408 F-statistic: 141.3 on 3 and 233 DF, p-value: < 2.2e-16

- c. Draw a conclusion based on the p-value.
 - **Prompt**: Is the p-value for the interaction term low enough (e.g., below 0.05) to suggest that head size's effect on brain weight differs by gender?

Problem 4: Least-Squares Regression Equation (2 points)

Write the regression equation, including the interaction term.

• Guiding Questions: How do we interpret each term? What do headsize and gender contribute to the equation?

Problem 5: Coefficient Interpretation (2 points)

Interpret the coefficient of the interaction term in the context of gender differences in brain weight.

• Guiding Questions: Does the interaction term suggest that head size's impact on brain weight changes depending on gender? How much?

Part II: Multiple Linear Regression Conditions Using the fish.txt Dataset (12 points)

Problem 6: Correlation and Scatterplot Matrix (3 points)

Construct a scatterplot matrix and correlation matrix for the variables in fish.txt:

- catch: Seasonal bass catch (thousands)
- residences: Number of lakeshore residences per square mile
- size: Lake size (square miles)
- structure: Structure index (measure of lakebed structure)

```
# Load fish data
fishData <- read.table("https://raw.githubusercontent.com/bcervantesalvarez/MS-Statistics/re
# Scatterplot matrix
pairs(fishData[, c("catch", "residences", "size", "structure")])</pre>
```



```
# Correlation matrix
cor(fishData[, c("catch", "residences", "size", "structure")])
```

```
catch residences
                                      size
                                            structure
catch
           1.0000000 0.1491201
                                 0.0428054
                                            0.8753489
                     1.0000000 -0.8286589
residences 0.1491201
                                            0.1639370
           0.0428054 -0.8286589
                                 1.0000000 -0.1142250
          0.8753489
                      0.1639370 -0.1142250
                                           1.0000000
structure
```

• Guiding Questions: Are there any variables with high correlations? If so, which pairs? Could these correlations suggest multicollinearity in a regression model?

Problem 7: Model Comparison (3 points)

Compare different models using transformations of catch, residences, size, and structure to determine which model best satisfies linearity, constant variance, and normality conditions. Create four models to compare:

- 1. Original scale
- 2. Log-transformed response variable (catch)
- 3. Log-transformed predictor variables (residences, size, structure)
- 4. Log-transformation of all variables (except access)

```
# Log transformations
fishData$logCatch <- log(fishData$catch)</pre>
fishData$logResidences <- log(fishData$residences)</pre>
fishData$logSize <- log(fishData$size)</pre>
fishData$logStructure <- log(fishData$structure)</pre>
originalModel <- lm(catch ~ residences + size + structure + access, data = fishData)
logCatchModel <- lm(logCatch ~ residences + size + structure + access, data = fishData)</pre>
logPredictorsModel <- lm(catch ~ logResidences + logSize + logStructure + access, data = fist</pre>
logAllModel <- lm(logCatch ~ logResidences + logSize + logStructure + access, data = fishDate</pre>
# Summaries for comparison
summary(originalModel)
Call:
lm(formula = catch ~ residences + size + structure + access,
    data = fishData)
Residuals:
              1Q
                   Median
                                3Q
-0.85859 -0.14400 -0.04054 0.21234 0.72653
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.784001  0.815706  -3.413  0.00385 **
residences 0.026794 0.009141 2.931 0.01032 *
          size
structure 0.051129 0.004542 11.258 1.03e-08 ***
access 0.742933 0.202128 3.676 0.00225 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3895 on 15 degrees of freedom
Multiple R-squared: 0.9136, Adjusted R-squared: 0.8906
F-statistic: 39.65 on 4 and 15 DF, p-value: 8.296e-08
```

summary(logCatchModel)

Call:

```
data = fishData)
Residuals:
    Min
                  Median
                              3Q
              1Q
                                      Max
-0.31029 -0.12029 0.00497 0.14028 0.31527
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.130217  0.446701 -2.530
                                       0.0231 *
residences 0.006585 0.005006 1.315 0.2081
            0.194501 0.120898 1.609 0.1285
size
            structure
access
          0.291726  0.110690  2.636  0.0187 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2133 on 15 degrees of freedom
Multiple R-squared: 0.8663,
                             Adjusted R-squared: 0.8306
F-statistic: 24.29 on 4 and 15 DF, p-value: 2.096e-06
summary(logPredictorsModel)
Call:
lm(formula = catch ~ logResidences + logSize + logStructure +
   access, data = fishData)
Residuals:
    Min
              1Q
                  Median
                              3Q
                                      Max
-0.90022 -0.15491 -0.02307 0.16859 1.12108
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -16.5388
                       4.1208 -4.013 0.00113 **
logResidences
              2.3007
                        0.9901 2.324 0.03460 *
logSize
              0.5740
                        0.3884
                                 1.478 0.16013
```

lm(formula = logCatch ~ residences + size + structure + access,

```
logStructure 2.4000 0.2519 9.527 9.42e-08 ***
access 0.6913 0.2568 2.691 0.01674 *
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4615 on 15 degrees of freedom
Multiple R-squared: 0.8787, Adjusted R-squared: 0.8463
F-statistic: 27.16 on 4 and 15 DF, p-value: 1.023e-06
summary(logAllModel)
```

Call:

```
lm(formula = logCatch ~ logResidences + logSize + logStructure +
access, data = fishData)
```

Residuals:

```
Min 1Q Median 3Q Max -0.30922 -0.05861 -0.00630 0.06515 0.33572
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.35568   1.54448 -4.115 0.000918 ***
logResidences   0.67181   0.37110   1.810 0.090324 .
logSize    0.22036   0.14557   1.514 0.150856
logStructure   1.11068   0.09442   11.763 5.67e-09 ***
access    0.27524   0.09626   2.859 0.011941 *
---
Signif. codes:   0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.173 on 15 degrees of freedom
Multiple R-squared: 0.9121, Adjusted R-squared: 0.8886
F-statistic: 38.89 on 4 and 15 DF, p-value: 9.465e-08
```

• Guiding Questions: Compare the residual plots, constant variance, and normality of each model's residuals. Which model best meets these assumptions? Explain why this model is preferable.

Problem 8: Least-Squares Regression Equation for Chosen Model (2 points)

Write the least-squares regression equation for the model that best satisfies the assumptions, defining each term.

• Guiding Questions: For your chosen model, what are the predictors (residences, size, structure, access)? What does each term in the equation represent?

$$\log(\mathrm{Catch}) = -6.356 + 0.672 \cdot \log(X_1) + 0.220 \cdot \log(X_2) + 1.111 \cdot \log(X_3) + 0.275 \cdot X_4$$

Here's a breakdown of the equation components:

- Intercept: -6.356
- $log(X_1) =$ Effect of log(Residences): 0.672
- $log(X_2) =$ Effect of log(Size): 0.220
- $log(X_3) =$ Effect of log(Structure): 1.111
- $X_4 =$ Effect of Access: 0.275

This model indicates that each predictor has a multiplicative effect on the catch when transformed logarithmically, with Structure and Access showing the most substantial contributions to Catch in this log-transformed model.

Problem 9: Predicting Seasonal Bass Catch (2 points)

Use your final model to predict the seasonal bass catch for a lake with:

- 1.5 square miles in size
- 75 lakeshore residences per square mile
- Structure index of 50
- Public access (represented by 1)

Code Example

```
# Model from model selection
finalModel <- lm(formula = logCatch ~ logResidences + logSize + logStructure + access, data = summary(finalModel)</pre>
```

Call:

```
lm(formula = logCatch ~ logResidences + logSize + logStructure +
access, data = fishData)
```

Residuals:

```
Min 1Q Median 3Q Max -0.30922 -0.05861 -0.00630 0.06515 0.33572
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
             -6.35568 1.54448 -4.115 0.000918 ***
(Intercept)
logResidences 0.67181 0.37110 1.810 0.090324 .
logSize
              0.22036 0.14557 1.514 0.150856
logStructure 1.11068 0.09442 11.763 5.67e-09 ***
access
              0.27524
                         0.09626 2.859 0.011941 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.173 on 15 degrees of freedom
Multiple R-squared: 0.9121,
                               Adjusted R-squared:
F-statistic: 38.89 on 4 and 15 DF, p-value: 9.465e-08
# Define new data point with transformed predictors
newLake <- data.frame(</pre>
  logResidences = log(75),
 logSize = log(1.5),
 logStructure = log(50),
  access = 1
)
# Predict using the chosen model
predictedLogCatch <- predict(finalModel, newdata = newLake)</pre>
```

1 3.505907

predictedCatch

• Guiding Questions: Interpret the prediction in the context of the model. If a log transformation was used, remember to back-transform the predicted value.

Problem 10: Interpreting the Coefficient of access (2 points)

predictedCatch <- exp(predictedLogCatch)</pre>

Convert the log prediction back to the original scale if needed

Interpret the coefficient of access in your final model, explaining its impact on predicted seasonal bass catch.

