International TOR Rectifier

IRF6716MPbF IRF6716MTRPbF

DirectFET™ Power MOSFET ②

- RoHs Compliant Containing No Lead and Bromide ①
- Low Profile (<0.6 mm)
- Dual Sided Cooling Compatible ①
- Ultra Low Package Inductance
- Optimized for High Frequency Switching ①
- Ideal for CPU Core DC-DC Converters
- Optimized for Sync. FET socket of Sync. Buck Converter①
- Low Conduction and Switching Losses
- Compatible with existing Surface Mount Techniques ①
- 100% Rg tested

Typical values (unless otherwise specified)									
V _{DSS}	oss V _{GS}			R _{DS(on)}			R _{DS(on)}		
25V ma	x ±20	V max	1.2	1.2mΩ@10V		2.0mΩ@ 4.5			
Q _{g tot}	\mathbf{Q}_{gd}	Q	gs2	Q _{rr}	(oss	$V_{gs(th)}$		
39nC	12nC	5.3	3nC	28nC	2	7nC	1.9V		

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

SQ	SX	ST	MQ	MX	MT	MP		

Description

The IRF6716MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6716MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6716MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6716MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	25	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	39	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	31	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V @	180	
I _{DM}	Pulsed Drain Current ®	320	
E _{AS}	Single Pulse Avalanche Energy ®	330	mJ
IAB	Avalanche Current ©	32	Α

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.
- $\ensuremath{\mathfrak{G}}$ $T_{\ensuremath{\mathbb{C}}}$ measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25^{\circ}C$, L = 0.65mH, $R_G = 25\Omega$, $I_{AS} = 32A$.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		17		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.2	1.6	mΩ	$V_{GS} = 10V, I_D = 40A ①$
			2.0	2.6		$V_{GS} = 4.5V, I_D = 32A$ ①
$V_{GS(th)}$	Gate Threshold Voltage	1.4	1.9	2.4	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-6.1		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 25V$, $V_{GS} = 0V$
				150		$V_{DS} = 25V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	220			S	$V_{DS} = 15V, I_{D} = 32A$
Q_g	Total Gate Charge		39	59		
Q_{gs1}	Pre-Vth Gate-to-Source Charge		10			$V_{DS} = 13V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		5.3	_	nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		12			$I_D = 32A$
Q_{godr}	Gate Charge Overdrive		11.7			See Fig. 2
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		17.3			
Q _{oss}	Output Charge		27		nC	$V_{DS} = 16V$, $V_{GS} = 0V$
R_{G}	Gate Resistance		1.0	1.6	Ω	
t _{d(on)}	Turn-On Delay Time		19			$V_{DD} = 13V, V_{GS} = 4.5V$ ①
t _r	Rise Time		96		ns	$I_D = 32A$
t _{d(off)}	Turn-Off Delay Time	_	21			Clamped Inductive Load
t _f	Fall Time		11			
C _{iss}	Input Capacitance		5150			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1340		pF	$V_{DS} = 13V$
C _{rss}	Reverse Transfer Capacitance		610			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			4.5		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			320		integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage	_		1.0	V	$T_J = 25$ °C, $I_S = 32A$, $V_{GS} = 0V$ ①
t _{rr}	Reverse Recovery Time		28	42	ns	$T_J = 25^{\circ}C, I_F = 32A$
Q_{rr}	Reverse Recovery Charge		28	42	nC	di/dt = 200A/μs ①

Notes:

2 www.irf.com

① Pulse width \leq 400 μ s; duty cycle \leq 2%.

② Repetitive rating; pulse width limited by max. junction temperature.

Absolute Maximum Ratings

	Parameter	Max.	Units
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ①	3.6	W
P _D @T _A = 70°C	Power Dissipation ①	2.3	
P _D @T _C = 25°C	Power Dissipation 4	78	
T _P	Peak Soldering Temperature	270	°C
TJ	Operating Junction and	-40 to + 150	7
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ①⑤		35	
$R_{\theta JA}$	Junction-to-Ambient ②⑤	12.5		
$R_{\theta JA}$	Junction-to-Ambient 3 5	20		°C/W
$R_{\theta JC}$	Junction-to-Case 4 5		1.6	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ①	0.0	031	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ①

Notes:

- ① Surface mounted on 1 in. square Cu board, steady state.
- ② Used double sided cooling, mounting pad.
- ③ Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- \P T_C measured with thermocouple incontact with top (Drain) of part.

① Surface mounted on 1 in. square Cu (still air).

② Mounted to a PCB with small clip heatsink (still air)

③ Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

I_D, Drain Current (A) **Fig 9.** Typical On-Resistance vs.

Drain Current and Gate Voltage

4

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig 11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Board Footprint, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

www.irf.com 7

IRF6716MPbF

DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

8 www.irf.com

IRF6716MPbF

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6716). For 1000 parts on 7" reel, order IRF6716TR1

REEL DIMENSIONS								
S	TANDARI	OPTION	I (QTY 48	00)	TR	1 OPTION	(QTY 10	00)
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS								
	ME	TRIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
Е	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

International **IOR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903