Name:

Quiz 3

Chemistry 3BB3; Winter 2006

When we performed the Born-Oppenheimer approximation for the Hydrogen molecule, we separated the Schrödinger equation for the molecule into an electronic Schrödinger equation and a nuclear Schrödinger equation.

, showing the
electron from a akes to remove zation potential y of the neutral
7

4.	Which of the following	statements is true.	There may	be more than	one answer.
----	------------------------	---------------------	-----------	--------------	-------------

- (a) The energy of the Lithide ion Li is less than the energy of the Beryllium atom, Be.
- (b) The energy of the Beryllium atom, Be, is <u>less than</u> the energy of the Boron cation, B⁺.
- (c) The energy of the Lithide ion Li is greater than the energy of the Beryllium atom, Be.
- (d) The energy of the Beryllium atom, Be, is greater than the energy of the Boron cation, B⁺.

5. Which of the following statements is true. There may be more than one answer.

- (a) The energy of the Lithium atom, Li, is greater than three times the energy of the Lithium dication, Li²⁺.
- (b) The energy of the Lithium atom, Li, is <u>less than</u> three times the energy of the Lithium dication, $\mathrm{Li}^{2^{+}}$.
- (c) The energy of the Lithium atom, Li, is equal to three times the energy of the Lithium dication,
- 6. Which of the following commutators are zero; there may be more than one answer.

(a)
$$\left[\hat{S}^2, \hat{S}_x\right]$$

(d)
$$\left[\hat{S}_x,\hat{S}^2\right]$$

(g)
$$\left[\hat{S}_{y},\hat{S}_{x}\right]$$

(b)
$$\left[\hat{S}^2,\hat{S}_y\right]$$

(d)
$$[S_x, S]$$

(e) $[\hat{S}_y, \hat{S}^2]$
(f) $[\hat{S}_z, \hat{S}^2]$

(h)
$$\left[\hat{S}_{\scriptscriptstyle{y}},\hat{S}_{\scriptscriptstyle{y}}
ight]$$

(c)
$$\left[\hat{S}^2,\hat{S}_z\right]$$

(f)
$$\left[\hat{S}_z,\hat{S}^2\right]$$

(i)
$$\left[\hat{S}_{y},\hat{S}_{z}\right]$$

7. The spin-magnetic moment of an electron is related to the operator for the spin-angular momentum of the electron by the formula $\mu_S = g \cdot \frac{-e}{2mc} \hat{S}$. The potential energy of interaction between the spinning electron and a magnetic field, B, is expressed using the operator:

(a)
$$\hat{V}_{mag} \equiv \hat{m{\mu}} \cdot m{B}$$

$$\begin{array}{l} \text{(d)} \ \ \hat{V}_{mag} \equiv -\hat{\boldsymbol{\mu}} \times \boldsymbol{B} \\ \text{(e)} \ \ \hat{V}_{mag} \equiv i\hbar\hat{\boldsymbol{\mu}} \cdot \boldsymbol{B} \end{array}$$

(g)
$$\hat{V}_{mag} \equiv i\hbar\hat{m{\mu}} imes m{B}$$

(b)
$$\hat{V}_{mag} \equiv -\hat{\boldsymbol{\mu}} \cdot \boldsymbol{B}$$

(e)
$$\hat{V}_{mag} \equiv i\hbar\hat{\mathbf{\mu}}\cdot\mathbf{B}$$

(h)
$$\hat{V}_{maq} \equiv -i\hbar\hat{m{\mu}} imesm{B}$$

(c)
$$\hat{V}_{mag} \equiv \hat{\boldsymbol{\mu}} \times \boldsymbol{B}$$

(f)
$$\hat{V}_{mag} \equiv -i\hbar\hat{m{\mu}}\cdotm{B}$$

- 8. The "g factor" for an electron is approximately
 - (a) 1.0

(e) ln(2)

(d) π

(f) $\ln \hbar$

- 9. The quantity $\beta_e = \frac{e\hbar}{mc}$ is called the
 - (a) Hartree magneton.
- (c) Bohr magneton.
- (e) Gauss magneton.

(b) Landau factor.

(d) Hartree factor.

- (f) Schrödinger factor.
- 10. Consider the Beryllium atom. (Z=4 with 4 electrons.) The effective nuclear charge felt by one of the electrons when it is very, very far from the nucleus is

(a)
$$Z_{eff} = -1$$

(c)
$$Z_{eff} = 1$$

(e)
$$Z_{eff} = 3$$

(b)
$$Z_{eff} = 0$$

(d)
$$Z_{eff}=2$$

(f)
$$Z_{eff} = 4$$

Quiz 3

Chemistry 3BB3; Winter 2006

When we performed the Born-Oppenheimer approximation for the Hydrogen molecule, we separated the Schrödinger equation for the molecule into an electronic Schrödinger equation and a nuclear Schrödinger equation.

1. Write the electronic Schrödinger equation for the Helium atom in SI units, showing the dependence on \hbar , e, m_e , etc..

$$\left(-\frac{\hbar^2}{2m_e}\nabla_1^2 - \frac{\hbar^2}{2m_e}\nabla_2^2 - \frac{Ze^2}{4\pi\varepsilon_0r_1} - \frac{Ze^2}{4\pi\varepsilon_0r_2} + \frac{e^2}{4\pi\varepsilon_0|\boldsymbol{r}_1 - \boldsymbol{r}_2|}\right)\Psi \ \boldsymbol{r}_1, \sigma_1; \boldsymbol{r}_2, \sigma_2 \ = E\Psi \ \boldsymbol{r}_1, \sigma_1; \boldsymbol{r}_2, \sigma_2$$

The ionization potential is defined as "the amount of energy it takes to remove one electron from a system." The second ionization potential is defined as "the amount of energy it takes to remove the second electron from the system." (E.g., for a neutral molecule, the second ionization potential is the amount of energy it takes to remove an electron from the cation.) The energy of the neutral Helium atom is -2.9037 Hartree.

2. What is the first ionization potential of the Helium atom?

$$.9037 \text{ Hartree} = E(He^+) - E(He)$$

3. What is the second ionization potential of the Helium atom?

$$2 \text{ Hartree} = - \text{E}(\text{He}^+)$$

Note that since it always requires energy to remove electrons, ionization potential are always positive.

(h) $\left[\hat{S}_{\scriptscriptstyle y},\hat{S}_{\scriptscriptstyle y}
ight]$

(i) $\left[\hat{S}_{y},\hat{S}_{z}\right]$

(g) $\hat{V}_{mag} \equiv i\hbar\hat{m{\mu}} imes m{B}$

(e) ln(2)

(f) $\ln \hbar$

(e) Gauss magneton.

(e) $Z_{eff} = 3$

(f) $Z_{eff} = 4$

(f) Schrödinger factor.

(h) $\hat{V}_{mag} \equiv -i\hbar\hat{m{\mu}} imes m{B}$

	Name:
4.	Which of the following statements is true. There may be more than one answer.
	(a) The energy of the Lithide ion Li ⁻ is <u>less than</u> the energy of the Beryllium atom, Be.
	(b) The energy of the Beryllium atom, Be, is <u>less than</u> the energy of the Boron cation, B ⁺ .
	(c) The energy of the Lithide ion Li is greater than the energy of the Beryllium atom, Be.
	(d) The energy of the Beryllium atom, Be, is greater than the energy of the Boron cation,
	\mathbf{B}^{+} .
5.	Which of the following statements is true. There may be more than one answer.
	(a) The energy of the Lithium atom, Li, is greater than three times the energy of the

The energy of the Lithium atom, Li, is less than three times the energy of the Lithium dication, Li²⁺. (c) The energy of the Lithium atom, Li, is equal to three times the energy of the Lithium dication, Li²⁺.

(d) $\left[\hat{S}_x, \hat{S}^2\right]$ (e) $\left[\hat{S}_y, \hat{S}^2\right]$

6. Which of the following commutators are zero; there may be more than one answer. (d) $\left[\hat{S}_x,\hat{S}^2\right]$

(f) $\left[\hat{S}_z, \hat{S}^2\right]$

(e) $\hat{V}_{mag} \equiv i\hbar\hat{m{\mu}}\cdotm{B}$

(c) 2.0

(d) π

by one of the electrons when it is very, very far from the nucleus is

7. The spin-magnetic moment of an electron is related to the operator for the spin-angular momentum of the electron by the formula $\mu_S = g \cdot \frac{-e}{2mc} \hat{S}$. The potential energy of interaction between the spinning electron and a magnetic field, B, is expressed using the

(d) $\hat{V}_{mag} \equiv -\hat{m{\mu}} imes m{B}$

(f) $\hat{V}_{mag} \equiv -i\hbar\hat{m{\mu}}\cdotm{B}$

(c) Bohr magneton.

10. Consider the Beryllium atom. (Z=4 with 4 electrons.) The effective nuclear charge felt

(d) Hartree factor.

(c) $Z_{eff} = 1$

(d) $Z_{eff}=2$

Lithium dication, Li²⁺.

(a) $\left[\hat{S}^2, \hat{S}_x\right]$

(b) $\left[\hat{S}^2, \hat{S}_y\right]$

(c) $\left[\hat{S}^2, \hat{S}_z\right]$

operator:

(a) 1.0

(b) 0.5

(a) $\hat{V}_{mag} \equiv \hat{m{\mu}} \cdot m{B}$

(b) $\hat{V}_{mag} \equiv -\hat{m{\mu}} \cdot m{B}$

(c) $\hat{V}_{mag} \equiv \hat{m{\mu}} imes m{B}$

(a) Hartree magneton.

(b) Landau factor.

(a) $Z_{\rm eff}=-1$

(b) $Z_{eff} = 0$

8. The "g factor" for an electron is approximately

9. The quantity $\beta_e = \frac{e\hbar}{mc}$ is called the