五、实验内容

实验拓扑如图 4 所示:

图 4 实验使用的拓扑

实验要求执行 IPv4/IPv6 网络配置,实现全网互联互通,并将设备配置备份 到 TFTP 服务器。IPv4 地址与 IPv6 地址需要同时配置,且还需要激活交换机的管理接口。

(1) 路由器 main_building:

路由器初始化配置

接口配置以及 IPv4 和 IPv6 地址配置

设备安全性相关配置

SSH访问配置

将配置文件备份到 TFTP 服务器

(2) 交换机 sw 2nd floor:

启用基本远程配置,即可以通过 Telnet 连接配置交换机

(3) PC 和服务器主机:

IPv4与 IPv6 地址配置

全网地址配置表如下:

Device	Interface	IPv4	Subnet Mask	IPv4	Default
		Address		Gateway	
		IPv6 Address		IPv6	Default
				Gateway	
main_building	G0/0	192. 168. 1. 126	255. 255. 255. 224	N/A	

		2001:DB8:ACA	N/A		
	G0/1	192. 168. 1. 158	255. 255. 255. 240	N/A	
		2001:DB8:ACAD:B::1/64		N/A	
	Link	FE80::1		N/A	
	Local				
sw_1st_floor	Vlan 1	192. 168. 1. 96	255. 255. 255. 224	192. 168. 1. 126	
		N/A	N/A	N/A	
sw_2nd_floor	Vlan 1	192. 168. 1. 144	255. 255. 255. 58	192. 168. 1. 158	
		N/A	N/A	N/A	
Host 1	NIC	192. 168. 1. 98	255. 255. 255. 224	192. 168. 1. 126	
		2001:DB8:ACAD:A::FF		FE80::1	
Host 2	NIC	192. 168. 1. 99	255. 255. 255. 224	192. 168. 1. 126	
		2001:DB8:ACAD:A::15		FE80::1	
Host 3	NIC	192. 168. 1. 156	255. 255. 255. 240	192. 168. 1. 158	
		2001:DB8:ACAD:B::FF		FE80::1	
TFTP Server	NIC	192. 168. 1. 152	255. 255. 255. 240	192. 168. 1. 158	
		2001:DB8:ACAD:B::15		FE80::1	

六、实验器材

Packet Tracer

七、实验步骤

1. 确定 IPv4 编址方案, 并完成如下地址表:

Subne	Hosts	Network	Beginning	Ending Address	Mask	Assignmen
t	Availab	Address	Address			t
Numbe	1e					
r						
1	30	192. 168. 1. 0	192. 168. 1. 1	192. 168. 1. 30	255. 255. 255. 224	
2	30	192. 168. 1. 32	192. 168. 1. 33	192. 168. 1. 62	255. 255. 255. 224	
3	30	192. 168. 1. 64	192. 168. 1. 65	192. 168. 1. 94	255. 255. 255. 224	
4	30	192. 168. 1. 96	192. 168. 1. 97	192. 168. 1. 126	255. 255. 255. 224	
5	14	192. 168. 1. 128	192. 168. 1. 129	192. 168. 1. 142	255. 255. 255. 240	

6	14	192. 168. 1. 144	192. 168. 1. 145	192. 168. 1. 158	255. 255. 255. 240	

- **(1)** 以浪费最少的原则进行 192. 168. 1. 0/24 子网划分,每个子网提供 30 个主机地址。
- (2) 将第四个子网分配给 First Floor LAN。
- (3) 将此子网中的最后一个网络主机地址分配给 Building1 上的 GO/0 接口。
- (4) 从第五个子网开始,再次对网络进行子网划分,在浪费最少的地址的基础上新子网将为每个子网提供 14 个主机地址。
- (5) 将这些新的 14 主机子网中的第二个分配给二楼 LAN。
- (6) 将第二层 LAN 子网中的最后一个网络主机地址分配给主楼路由器的 GO / 1接口。
- (7) 将第该子网倒数第二个地址分配给第二层交换机的 VLAN 1 接口。
- (8) 将所在子网中任意一个其他地址分配给相应主机。

2. 配置主楼 Router

- (1) 初始化交换机
 - 1) 将路由器 hostname 修改为 "main_building";
 - 2) 使用加密的特权执行模式密码保护设备配置;
 - 3) 将路由器的所有访问线路加密;
 - 4) 要求新输入的密码的最小长度必须为 10 个字符:
 - 5) 防止在设备配置文件中以明文形式查看所有密码;
 - 6) 将路由器配置为仅接受比 Telnet 更安全的协议上的带内管理连接 (SSH),使用值 1024 作为加密密钥强度;
 - 7) 为带内管理连接配置本地用户身份验证,创建一个名称为 netadmin 且密码为 Cisco CCNA5 的用户,为该用户提供最高的管理特权;
- (2) 使用计算的 IPv4 地址值和地址表中提供的 IPv6 值配置两个千兆以太网接口。
 - 1) 将 link-local 地址重新配置为表中所示的值;
 - 2) 在配置文件中记录接口;

3. 配置第二层交换机

配置第二层交换机以通过 Telnet 进行远程管理。

4. 配置验证主机地址

- (1) 使用步骤 1 中的 IPv4 地址和地址表中的 IPv6 地址值,为所有 PC 配置正确的寻址;
- (2) 使用路由器接口 link-local 地址作为主机上的 IPv6 默认网关。

5. 将主楼路由器的配置备份到 TFTP

- (1) 使用步骤 1 中的 IPv4 地址和地址表中的 IPv6 地址值来完成 TFTP 服务器 的配置:
- (2) 将主楼的运行配置备份到 TFTP Server, 使用默认文件名。

八、操作步骤示例

1. 配置主楼 Router

- (1) 初始化交换机
- 1) 将路由器 hostname 修改为 "main_building";

Router>enable //使用 enable 命令从用户模式进入特权模式

Router#configure terminal

//使用 configure terminal 命令从特权模式进入全局配置模式

Router(config) #hostname main_building

//使用 hostname 命令更改交换机的名称

main building (config)#

2) 使用加密的特权执行模式密码保护设备配置;

main_building(config)#enable secret passwd12345

3) 将路由器的所有访问线路加密;

```
main building (config) #line console?
 <0-0> First Line number
//查看线路 console 的起止序号,本例显示只有序号为 0 的 console 线路
main building(config)#line console 0
//进入线路 console 0 的配置模式
main building (config-line) #password passwd12345
//使用 password 命令设置该线路的访问密码
main building(config-line)#login
//使能设置的密码
main building (config-line) #exit
//退出线路 console 0 的配置模式
main_building(config)#
main building(config)# line vty?
  <0-15> First Line number
//查询线路 vty 的起止序号
main building (config) # line vty 0 ?
 <1-15> Last Line number
//查询命令 line vty 0 的 Last Line number 的范围,从而确定线路 vty 的
序号范围
main building(config)# line vty 0 15
//进入线路 vty 的配置模式,同时对序号为 0-15 的线路进行配置
main building (config-line) #password passwd12345
//使用 password 命令设置该线路的访问密码
main_building(config-line)#login
//使能设置的密码
main building (config-line) #exit
main building(config)#
```

4) 要求新输入的密码的最小长度必须为 10 个字符:

main_building(config) #security passwords min-length 10

5) 防止在设备配置文件中以明文形式查看所有密码;

main_building(config)#service password-encryption

6) 将路由器配置为仅接受比 Telnet 更安全的协议上的带内管理连接(SSH), 使用值 1024 作为加密密钥强度;

main_building(config)#ip domain-name admins

//使用 ip domain-name 命令配置域名: admins

main_building(config)#crypto key generate rsa

//使用该命令生成 RSA 非对称密钥

How many bits in the modulus [512]: 1024 //选择 1024 作为加密
密钥强度

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

main_building(config)#line vty 0 15

//进入线路 vty 配置模式,对序号为 0-15 的所有线路同时进行配置
main_building(config-line)#no transport input

//清除原有登录协议
main_building(config-line)#transport input ssh

//让 VTY 接收 SSH 连接
main building(config-line)#login local

main_bulluing (config fine) #10gin 10ca

//根据本地数据库进行身份验证

main_building(config-line)#exit

main building(config)#ip ssh time 60

//设置超时时间(不活动退出时间,这里设置为60s)

main building (config) #ip ssh authentication-retries 5

//设置重试次数(这里设置为5次)

main building (config) #

7) 为带内管理连接配置本地用户身份验证,创建一个名称为 netadmin 且密码

为 Cisco_CCNA5 的用户,为该用户提供最高的管理特权;

main_building(config)#username netadmin privilege 15 secret
Cisco_CCNA5

- (2) 使用计算的 IPv4 地址值和地址表中提供的 IPv6 值配置两个千兆以太网接口。
- 1) 将 link-local 地址重新配置为表中所示的值;
- 2) 在配置文件中记录接口;
 - (1) 配置端口 gigabitEthernet 0/0

main_building(config)#interface gigabitEthernet 0/0

//在全局配置模式使用 interface 进入接口配置模式,这里是进入端口 gigabitEthernet 0/0 的配置模式。

main_building(config-if)#ip address 192.168.1.126 255.255.255.224 //使用 ip address 配置 ipv4 的地址,包括子网掩码

main building(config-if)#no shutdown

//激活端口

main building(config-if)#ipv6 address 2001:DB8:ACAD:A::1/64

//使用 ipv6 address 配置端口的 ipv6 地址

main_building(config-if)#ipv6 address FE80::1 link-local

//配置 link-local 地址

main building(config-if)#exit

main building (config) #ipv6 unicast-routing

(2) 配置端口 gigabitEthernet 0/1

main building(config)#interface gigabitEthernet 0/1

//在全局配置模式使用 interface 进入接口配置模式,这里是进入端口 gigabitEthernet 0/1 的配置模式。

main_building(config-if)#ip address 192.168.1.158 255.255.255.240 main building(config-if)#no shutdown

main building(config-if)#ipv6 address 2001:DB8:ACAD:B::1/64

main_building(config-if)#ipv6 address FE80::1 link-local
main_building(config-if)#exit

2. 配置第二层交换机

配置第二层交换机以通过 Telnet 进行远程管理。

Switch>enable

Switch#configure terminal

Switch(config)#interface vlan 1

//进入 vlan 1 的配置模式

Switch(config-if)#ip address 192.168.1.157 255.255.255.240

//使用 ip address 配置 vlan 1 的虚拟接口 IP

Switch(config-if)#no shutdown

//激活 vlan 1 的虚拟接口

Switch (config-if) #exit

//退出 vlan 1 的配置模式,进入全局配置模式

Switch (config) #ip default-gateway 192.168.1.158

//使用 ip default-gateway 设置网关,该网关就是与之相连的路由器接口的 IP 地址。

Switch (config) #exit

Switch#write

//保存当前配置

3. 配置验证主机地址

(1) 使用步骤 1 中的 IPv4 地址和地址表中的 IPv6 地址值,为所有 PC 配置正确的寻址;

(2) 使用路由器接口 link-local 地址作为主机上的 IPv6 默认网关。

4. 将主楼路由器的配置备份到 TFTP

- (1) 使用步骤 1 中的 IPv4 地址和地址表中的 IPv6 地址值来完成 TFTP 服务器的 配置:
- (2) 将主楼的运行配置备份到 TFTP Server, 使用默认文件名。

main_building#copy running-config tftp

```
main_building#copy running-config tftp
Address or name of remote host []? 192.168.1.152
Destination filename [main_building-confg]?

Writing running-config...!!
[OK - 1483 bytes]

1483 bytes copied in 0.196 secs (7566 bytes/sec)
main_building#
```

注:这个操作还有些遗漏,有些信息没有配置,自己根据测试结果补充修改。