GAN Specialization (deeplearning. QI)	Generative Mc
Sharon Zhou	
Artforger ArtInspector	Vanat
Generator Classifier	(JAV) Anthony
GANS are unsupervised technique Week!: Fundamental Components of GAVS Week?: Deep Conv GANS Week?: Deep Conv GANS with Gradu	trotol all
Week3: Wasserstell GAN and Controlla	ble Generation
Generative Models:	de/s
Gienerative vs General Discriminative Mo	
Features class Y->4 P(Y/X) Representation	ake a realistic
Noise Class	Featores
	XJY) adding noise uld generate perse representation

Generative Models: (Variation	nal Encoders, Ga.
1	and the manager of
Variational	Grenerative
Encoders	Adversaria /
	Ne tworks
Red things ()	1 Landvaran a dimene
Latent Space > 3 Recommend	
Space Space	Scenerator Discriminator
Encoder (store) Decoder	
This inject some	S Carlos Wasserston Sight
maise into this	492 1
chall model	brenerator takes some random =
and training process	noise input & decoder,
Will the Modes	These two models compete =
Aftertraining	Random noise, Afterfrains
Creverative	Random noise,
Randoll	Generator -> Imag
Decoder -> Reconstruct	- 2/sbore
cotent sortotra zargas	(solos)
Representation sugar	(X/Y)) - 4 - x
Marie Chis	
-) Generative models	learn to produce realistic
1.0	
a Diccriminative n	nodels distinguish between classes
volues adding miss	
12 4 4 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1	

Real life GAMS mortistagemen with trate of the Les Style GRAN - all Brien astormin its said Cycle GAN (Image translation):
Generative Design Intuition Behind GANS (Works by computation competing between generator and discriminator) Generator Discriminator learns to make fakes I learns to distinguish heat look real by head an from fake that look real by home in the second of the sec =) Guenerator tries to fool the discriminator. Discrimination is an expert inspection. It learns how to not get fooled by the generator -> The generator is n't allowed to see the real images. Initially it generates, a masterpiece -> The discriminator is allowed to look at the heal images and distinguish between the real and falles.

=) To start the competition, we train the	
I won a the real all work	
T (NAU)S	
so that ining is let the discriminato	h
During training, we let the discriminate	0
which one ove real arrow	
are fake so that it can turn out to be	
are in die crimin ator	
a good dis criminator	,

-) Generator know will know in what direction to go on and i improve, by looking at the scores assigned discriminator.

Discriminator: (goal is to distinguis Classifien

Cost funct

P(YXX) -> how take the image is This will be given to the generator to that it can generate better next time Generator) output an image Noise vector NN Feature Piscriminaton Parameter Output

BCE Cast Function: Binary Crosss Entropy J(0) = - 1 [y(i) logh(x(i),0)+(1-y(i)) log(1-h(x(i),0)) Putting it All together, Output Train Gien Noise of Generator of Features Discriminaton Soutput Og (Parameters Generatus) Output } BCE

Both model chould be fale as 100% , No kept at smilar skill level improve

Pytorch:

Pytorch	Tensorflow
Imperative, computations on the go	Symbolic, first define and them compile
Dynamic Computational Graphs	
Graphs	Graphs

import torch from torch import mm define model as classes

def __init_(self, in): super() . init ()

Initialization method with parameters set. log-reg: nn Sequential [Def. of nn linear (in,1),