Gesture Recognition Case Study:

Group: Harshul Agarwal and Mikhil Varshney

This is the write-up for all models built to recognize the gestures correctly

Below experiments were performed to train models for Gesture Recognition,

Following are the results:

Experiment Number			Result		Decision + Explanation	
Number 1	Conv3D [Vanilla] Image-size Layers Dense Layer [Con3D filter size/ strides/ padding Max pool size / strides / padding Optimizer	120X120 64-128 neurons with max pooling -> Flatten() -> Dropout (0.50) -> Dense (256) -> Dropout (0.50) -> Dense(5,softmax) 256 neurons (3,3,3) / (1,1,1) / same (3,3,3) / (2,2,2) / valid (2,2,2) / (2,2,2) / valid SGD	Out of Men	nory Error	•	Created a vanilla model with 2 Conv3D layers. Batch size was taken as 60 which gave Out of Memory Error. Next Step is to reduce the batch size to 40.
2	Batch size Conv3D [Vanilla] Image-size Layers Dense Layer [Con3D filter size/ strides/ padding Max pool size / strides / padding Optimizer Batch size	120X120 64-128 neurons with max pooling -> Flatten() -> Dropout (0.50) -> Dense (256) -> Dropout (0.50) -> Dense(5,softmax) 256 neurons (3,3,3) / (1,1,1) / same (3,3,3) / (1,2,1) / same (2,2,2) / (2,2,2) / valid (2,2,2) / (2,2,2) / valid SGD 40	Trainable Parameters Training Accuracy Validation Accuracy	88,701,701 87.30 % 57.14 %		This vanilla model with 2 conv3D layers performs well on training accuracy but have very low validation accuracy. Overfitting as well. Next step is to change the filter size to a small value (2,2,2) to have better validation accuracy

3	Conv3D [Vanilla] (changed filter size to (2,2,2), Otherwise same as model 1	Trainable Parameters 88,483,717 Training 85.71 % Accuracy 75 % Accuracy	 As expected smaller filter size improved both accuracies. Overfitting got reduced by a large extent. Next step is to increase filter size to (5,5,5) to validate that bigger filter will perform bad.
4	Conv3D [Vanilla] (changed filter size to (5,5,5), Otherwise same as model 1	Trainable 89,523,333 Parameters 28.71 % Accuracy Validation 31 % Accuracy	 As expected bigger filter size worsened both accuracies. Next step is to try for lower image size for reducing training time, reverting to filter size of 2
5	Vanilla (changed image size 80X80)	Trainable Parameters Training 83.34 % Accuracy Validation Accuracy	 Smaller image size as expected performed worse than larger. Switch back to (120X120) size as model perform best on it. Next Step is to reduce overfitting by trying different optimized (Adam)

6	Conv3D [Vanilla] (changed optimizer to Adam) Image-size 120X120 64-128 neurons with max pooling -> Flatten() -> Dropout (0.50) -> Dense (256) -> Dropout (0.50) -> Dense(5,softmax) Dense Layer 256 neurons [Con3D filter size/ strides/ padding (2,2,2) / (1,1,1) / same Max pool size / strides / (2,2,2) / (2,2,2) / valid	Trainable 88,542,405 Parameters 40.65 % Accuracy 28.57 % Accuracy	 Performed worse than SGD optimized. Will continue with SGD optimized. Next Step:- Add batch Normalization layer and revert back to SGD optimizer
7	padding (2,2,2) / (2,2,2) / valid Optimizer Adam Conv3D	Trainable 88,548,573	Batch normalization
	Image-size 120X120	Parameters Training 89.34 % Accuracy Validation 75.43 % Accuracy	improved the model performance and accuracy slightly. Next step, try adding dropout (0.25) layers between 64-128 neurons layer of
8	Conv3D [Vanilla + 3 rd layer + Conv3D Dropout between 2 nd and 3 rd layer] Image-size 120X120 32 neurons with max pooling and batch Norm -> Dropout (0.25)-> 64 neurons with max pooling -> Dropout (0.25)-> 128 neurons with max pooling -> Platten () -> Dropout (0.50) -> Dense (256) -> Dropout (0.50) -> Dense (250) -> Dense (250	Trainable 92,436,531 Parameters Training 87.36 % Accuracy Validation 79.67 % Accuracy	model. Adding additional layer to improve training accuracy and Adding dropouts between 2 nd and 3 rd layer to reduce the overfitting, increased the model validation accuracy slightly

Conv3D Conclusion

- Dropouts are helping in reducing the overfitting by reducing training accuracy.
- (2,2,2) filter size is performing the best.
- 2 Conv3D layers are sufficient for achieving high training accuracy. But the model is overfitting.
- 3 Conv3D layers (model 8 with 256 layers in 3rd layer) can achieve a good fit and we can improve validation accuracy by using more training data

9 CNN(Conv2D) + RNN(GRU) **Trainable Parameters:** We tried to create a 2.429.285 CNN network that can Val Accuracy: 56.25% Conv3D+BatchNorm+MaxPool **Training Accuracy**: 98.47% repeated thrice followed by single learn & extract features GRU layer + 1 Dense layers. and then fed that into Dropout after each of the dense layers and GRU layer and then RNN to perform connect to the final output layer. classification of the gesture The Current Model with 3 Con2D layer each followed by Maxpooling, batch Normalization & then by Flatten & dense layers with dropouts overfits & achieves a validation accuracy of 56.25% We can see that we need more dense CNN network so we will try transfer learning with predefined N/W

11	CNN(MobileNet)All	Trainable Parameters :	Now lets use another
	parameters trainable)+ 2 RNN(GRU) layers having	3,331,653 Val Accuracy : 89.25%	Predefined network for
	dropout layers	Training Accuracy: 99.09%	transfer learning :
	GRU (32, return_sequences =		MobileNet
	True) -> Dropout (0.5) -> GRU		We will train all the
	(64) -> Dropout (0.25)		weights as seen from
			previous models that
			works better.
			This is much better than
			Resnet. But too much
			fluctuation can be seen in
			later epochs and
			overfitting is also
			noticeable.

12. Final	CNN(MobileNet)All	Trainable Parameters :	Now adding:
Model	parameters trainable) + 2 RNN(GRU) layers having	3,331,653 Val Accuracy : 95.83%	■ Kernel regularizer =
	dropout layers + L2	Training Accuracy: 99.41%	L2(0.01)
GRU (32, True) -> E GRU (64)	regularization in dense layers GRU (32, return_sequences =		Activity Regularizer =
			L2(0.01)
	True) -> Dropout (0.25) -> GRU (64) -> Dropout (0.25)		■ This is the best model
	+ Add L2 regularization		with less over fitting and
			the accuracy curve is
			converging.