

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

Általános célú szerkesztőfelület parciális modellekhez

SZAKDOLGOZAT

 $\begin{tabular}{ll} \it K\'esz\'itette \\ \it Deim P\'eter P\'al \\ \end{tabular}$

Konzulens Semeráth Oszkár

Tartalomjegyzék

Kivonat i Abstract ii					
					1.
	1.1.	Témamegjelölés	1		
	1.2.		1		
	1.3.	Célkitűzés	1		
	1.4.	Kontribúció	1		
		Hozzáadott érték	1		
	1.6.	Dolgozat felépítése	1		
2.	Elői	smeretek	2		
	2.1.	Bemutatás egy példa segítségével	2		
	2.2.	Metamodell	2		
	2.3.	Részleges modell	2		
		2.3.1. Szintaktika	2		
		2.3.2. Szemantika	2		
3.	. Áttekintés				
4.	Megvalósítás				
	4.1.	Szükséges eszközök	5		
		4.1.1. EMF	5		
		4.1.2. Sirius	5		
		4.1.3. aql	5		
		4.1.4. Java	5		
	4.2.	Editor elkészítése	5		
		4.2.1. Metamodell szerkezete	5		
		4.2.2. Példánymodell felülete	5		
		4.2.3. Funkciók	5		
5.	Össz	zefoglalás és továbbfejlesztési lehetőségek	6		
Köszönetnyilvánítás					
Fii	ggel	ék	8		
. u		A TeXstudio felülete	8		
		Válasz az "Élet, a világmindenség, meg minden" kérdésére	9		
Irodalomjegyzék					

HALLGATÓI NYILATKOZAT

Alulírott Deim Péter Pál, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot/ diplomatervet (nem kívánt törlendő) meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2016. november 7.	
	Deim Péter Pál
	hallgató

Kivonat

Jelen dokumentum egy diplomaterv sablon, amely formai keretet ad a BME Villamosmérnöki és Informatikai Karán végző hallgatók által elkészítendő szakdolgozatnak és diplomatervnek. A sablon használata opcionális. Ez a sablon IATEX alapú, a TeXLive TEXimplementációval és a PDF-IATEX fordítóval működőképes.

Abstract

This document is a LATeX-based skeleton for BSc/MSc theses of students at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The usage of this skeleton is optional. It has been tested with the *TeXLive* TeX implementation, and it requires the PDF-LATeX compiler.

Bevezetés

- 1.1. Témamegjelölés
- 1.2. Problémafelvetés
- 1.3. Célkitűzés
- 1.4. Kontribúció
- 1.5. Hozzáadott érték
- 1.6. Dolgozat felépítése

Előismeretek

2.1. Bemutatás egy példa segítségével

pl osztálydiagram

2.2. Metamodell

mi az

2.3. Részleges modell

2.3.1. Szintaktika

hogyan néz ki egy részleges modell Annotációk

2.3.2. Szemantika

Annotációk jelentése

Áttekintés

A cél egy olyan metamodell elkészítése, ami segítségével lehetséges részleges modelleket készíteni. Ehhez olyan vizuális szerkesztőfelület társul, ami megkönnyíti ezt a folyamatot. Ahhoz, hogy ez generikusan működjön egy olyan modell szükséges, aminek segítségével a lehető legtöbb egyéb modell kifejezhető. Így ez a metamodell tartalmazni fog objektumokat, attribútumokat és az ezek közti kapcsolatot kifejező referenciákat. Ezen felül a részlegesség kifejezésére minden ilyen elemhez lehetséges rendelni May, Var vagy Abs részlegességet. Magához a modellhez pedig OW partiality-t lehet rendelni. A kapcsolódó editor képes részleges modellt létrehozni és manipulálni. Lehetőséget ad új objektumok, attribútumok, referenciák létrehozására. Ezen elemekhez a már fent említett részlegességek rendelhetők. A szerkesztő a részlegességek feloldására, tehát finomításra is biztosít eszközöket.

3.1. ábra. Áttekintő

Megvalósítás

- 4.1. Szükséges eszközök
- 4.1.1. EMF
- 4.1.2. Sirius
- 4.1.3. aql
- 4.1.4. Java
- 4.2. Editor elkészítése
- 4.2.1. Metamodell szerkezete
- 4.2.2. Példánymodell felülete
- 4.2.3. Funkciók

Összefoglalás és továbbfejlesztési lehetőségek

Köszönetnyilvánítás

Ez nem kötelező, akár törölhető is. Ha a szerző szükségét érzi, itt lehet köszönetet nyilvánítani azoknak, akik hozzájárultak munkájukkal ahhoz, hogy a hallgató a szakdolgozatban vagy diplomamunkában leírt feladatokat sikeresen elvégezze. A konzulensnek való köszönetnyilvánítás sem kötelező, a konzulensnek hivatalosan is dolga, hogy a hallgatót konzultálja.

Függelék

F.1. A TeXstudio felülete

F.1.1. ábra. A TeXstudio IAT_EX-szerkesztő.

F.2. Válasz az "Élet, a világmindenség, meg minden" kérdésére

A Pitagorasz-tételből levezetve

$$c^2 = a^2 + b^2 = 42. (F.2.1)$$

A Faraday-indukciós törvényből levezetve

$$\operatorname{rot} E = -\frac{dB}{dt} \longrightarrow U_i = \oint_{\mathbf{L}} \mathbf{Edl} = -\frac{d}{dt} \int_{A} \mathbf{Bda} = 42.$$
 (F.2.2)