

V2164M/D

1. Overview

The V2164M/D contains four independent voltage controlled amplifiers(VCAs) in a single package. High performance(100 dB dynamic range, 0.02% THD) is provided at a very low-cost-per-VCA, resulting in excellent value for cost sensitive gain control applications. Each VCA offers current input and output for maximum design flexibility, and a ground referenced –33 mV/dB control port..

The V2164M/D will operate over a wide supply voltage range of ± 4 V to ± 18 V. Available in 16-pin SOIC packages, the device is guaranteed for operation over the extended industrial temperature range of -40° C to $+85^{\circ}$ C.

The V2164M/D is available for many applications as Remote, Automatic, or Computer Volume Controls , Automotive Volume / Balance/Faders, Audio Mixers, Compressor / Limiters / Compandors, Noise Reduction Systems, Automatic Gain Controls, Voltage Controlled Filters, Spatial Sound Processors, Effects Processors.

Its features are:

- Four High Performance VCAs in a Single Package
- 0.02% THD
- No External Trimming
- 120 dB Gain Range
- 0.07 dB Gain Matching (Unity Gain)
- Class A or AB Operation

2. Block Diagram and Pin Description

2.1 Block Diagram

2. 2 Pin Description

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	MODE	Mode select	9	V-	negative power supply
2	I_{IN1}	current input1	10	I_{IN3}	current input 3
3	V_{C1}	voltage controller 1	11	V_{C3}	voltage controller 3

V2164M/D

4	I _{OUT1}	current output 1	12	I _{OUT3}	current output 3
5	I_{OUT2}	current output 2	13	I_{OUT4}	current output 4
6	V_{C2}	voltage controller 2	14	V_{C4}	voltage controller 4
7	I _{IN2}	current input 2	15	I_{IN4}	current input 4
8	GND	GND	16	V+	positive power supply

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Unless otherwise specified, $T_{amb}=25^{\circ}C$

Parameter	Symbol	Value	Unit
Supply voltage	Vcc	±18	V
input, output, control voltages	Vin, Vout, VCA	$V\text{-}\sim V\text{+}$	V
Output Short Circuit Duration to GND		Indefinite	S
Storage Temperature Range	Tstg	-65~+150	$^{\circ}$
Operating Temperature Range	Topr	-40~+85	$^{\circ}$
Junction Temperature Range	Tj	-65~+150	$^{\circ}$
Lead Temperature Range (Soldering 60 sec)		+300	$^{\circ}$

3. 2 Electrical Characteristics

Unless otherwise specified, T_{amb} = 25 °C , V_{CC} =±15V , A_V =0dB , V_{IN} =0dB μ , R_{IN} = R_{OUT} =30k Ω , f=1kHz , using Typical Application Circuit (Class AB)

Domonoston	Symbol	Conditions	Value			I I:4		
Parameter		Conditions	Min	Тур	Max	Unit		
Audio signal path								
Noise	V_{NO}	V _{IN} =GND,BW=20kHz		-94		dΒμ		
Headroom	Hr	Clip point=1%THD+N		22		dΒμ		
Total Harmonic		A _V =0dB, Class A		0.02	0.1	%		
Distortion	THD	$A_V = \pm 20 dB$, Class A^1		0.15		%		
(2nd and 3rd	לחו	A _V =0dB, Class AB		0.16		%		
Harmonics Only)		$A_V = \pm 20 dB$, $Class AB^1$		0.3		%		
Channel Separation	Sep			-110		dB		
Unity Gain	GB	C _F =10pF		500		kHz		
Bandwidth		C _F Topi						
Slew Rate	S_R	$C_F=10pF$		0.7		$mA/\mu s$		
Input Bias Current	$ m I_{IB}$			±10		nA		
Output Offset	I	IO V _{IN} =0		±50		nA		
Current	IļO			± 50				
Output Compliance	V_{OD}			±0.1		V		
Control port								
Input Impedance	Rin			5		$\mathbf{k}\Omega$		

Gain Constant	$G_{\mathbb{C}}$	(note 2)		-33		mV/dB	
Gain Constant							
Temperature	G_{CT}			-3300		ppm/°C	
Coefficient							
Control Feedthrough	V_{CF}	0dB to -40dB Gain Range ³		1.5	8.5	mV	
Gain Matching,	C	A _V =0dB		0.07		dB	
Channel-to-Channel	G_{M}	A_V =-40dB		0.24		dB	
Maximum	C			100		чD	
Attenuation	G_{A}			-100		dB	
Maximum Gain	G_{MAX}			+20		dB	
Power supplies							
Supply Voltage	3.7		±4		±18	V	
Range	V_{CC}		工4		±18	V	
Supply Current	I_{CCQ}	Class AB		6	8	mA	
Power Supply	DCDD	60112		90		4D	
Rejection Ratio	PSRR	60Hz		90		dB	

Note: 1, -10 dB μ input @ 20 dB gain, +10 dB μ input @ -20 dB gain

2, After 60 seconds operation

3, +25°C to +85°C

4. Test Circuit

5. Characteristics Curve

Figure 1 THD Distribution, Class AB

Figure 3 THD+N vs. Frequency, Class AB

Figure 5 THD Distribution, Class A

Figure 7 THD vs. Temperature, Class A

Figure 2 THD+N vs. Frequency, Class A

Figure 4 THD+N vs. Amplitude

Figure 6 THD+N vs. Supply Voltage, Class A

Figure 8 Voltage Noise Density vs. R_{BIAS}

Figure 15 Slew Rate vs. I-to-V Feedback Capacitor

-3dB BW - Hz

Figure 16 Gain Flatness vs. Frequency

Figure 17 Bandwidth vs. Gain

Figure 19 PSRR vs. Frequency

Figure 21 Gain Constant vs. Temperature

Figure 18 Control Feedthrough vs. Frequency

Figure 20 Supply Current vs. R_{BIAS}

6. Application Circuit and Information

6. 1 Basic VCA Configurationm

This is the basic application circuit of V2164M/D., Each of the four channels is configured identically. A 30 k Ω resistor converts the input voltage to an input current for the VCA. Additionally, a 500 Ω resistor in series with a 560 pF capacitor must be added from each input to ground to ensure stable operation. The output current pin should be maintained at a virtual ground using an external amplifier.

6.2 Low Cost, Four-Channel Mixer

The four VCAs in a single package can be configured to create a simple four-channel mixer. The inputs and control ports are configured the same as for the basic VCA, but the outputs are summed into a single output amplifier.

Additional V2164M/D could be added to increase the number of mixer channels by simply summing their outputs into the same output amplifier. Another possible configuration is to use a dual amplifier such as the OP275 to create a stereo, two channel mixer with a single V2164M/D. If additional V2164M/Ds are added, the 100 pF capacitor may need to be increased to ensure stability of the output amplifier. Most op amps are sensitive to capacitance on their inverting inputs. The capacitance forms a pole with the feedback resistor, which reduces the high frequency phase margin. As more V2164M/D's are added to the mixer circuit, their output capacitance and the parasitic trace capacitance add, increasing the overall input capacitance. Increasing the feedback capacitor will maintain the stability of the output amplifier.

6.3 Digital Control of the V2164M/D

Using a voltage output digital-to-analog converter such as DAC8426 also can control the gain and attenuation of the V2164M/D. In Digitally Controlled system, its simple 8-bit parallel interface can easily be connected to a microcontroller or microprocessor, The coltage output of D/A provedes a low impenence drive to the V2164M/D, so the attenuation can be controlled accurately. The input and output configuration for the V2164M/D is the same as for the basic VCA circuit shown . The 4-to-1 mixer configuration could also be used.

6.4 V2164M/D Single Supply Operation

The V2164M/D can easily be operated from a single power supply as low as +8V or as high as +36V. The key to using a single supply is to reference all groung connection to a voltage midway between the supply

and ground., as shown above. The OP176 is used to create a pseude-ground reference for the V2164M/D. Both the OP482 and OP176 are single supply amplifiers, and can operate over the same voltage range as the V2164M/D, with little or no change in performance.

7. Package Dimensions

