

Computational Learning Theory

Prof. Chia-Yu Lin
Yuan Ze University
2021 Spring

Outline

- Sample Complexity
- Errors of a Hypothesis
- PAC Learnability
- Exhausting the Version Space
- Mistake Bounds

Computational Learning Theory

- What general laws constrain inductive learning?
- We seek theory to relate:
 - Complexity of hypothesis space considered by the learner
 - Accuracy to which target concept is approximated
 - Probability that the learner outputs a successful hypothesis
 - Manner in which training examples presented to the learner

Goals:

- Sample complexity: How many training examples are needed for successful learning?
- Computational complexity: How much computational effort is needed for a learner to converge to a successful hypothesis?
- Mistake bound: How many examples will the learner misclassify before the convergence?

Q1:

- Which of the following statements below is not the goal that computational learning theory want to achieve?
- (A) Learning successfully in polynomial time.
- (B) Finding out the upper and lower bound of error.
- (C) Deriving sample complexity.
- (D) All of the above.

Sample Complexity

- How many training examples are sufficient to learn the target concept?
- 3 settings:
 - ① Learner proposes instances, as queries to teacher: Learner proposes instance x, teacher provides c(x).
 - 2 Teacher provides training examples: Teacher provides sequence of examples of form $\langle x, c(x) \rangle$.
 - Some random process (e.g., nature) proposes instances: Instance x generated randomly, teacher provides c(x).

Cross-validation

Sample Complexity: Setting 1

- Learner proposes instance x, teacher provides c(x) (assume c is in learner's hypothesis space H)
- Optimal query strategy: play 20 questions
 - Pick instance x such that half of hypotheses in VS classify x positive, half classify x negative.
 - When this is possible, need $\lceil \log_2 |H| \rceil$ queries to learn c. => Best case
 - When not possible, need even more.

Sample Complexity: Setting 2

- Teacher (who knows c) provides training examples (assume c is in learner's hypothesis space H)
- Optimal teaching strategy: depends on H used by learner.
- Consider the case where H is conjunctions of up to n boolean literals (positive or negative).
 - e.g., $(AirTemp = Warm) \land (Wind = Strong)$, where AirTemp, Wind, . . . each has 2 possible values.
 - if *n* possible boolean attributes in H, (n+1) examples suffice.
 - Why?

The size of hypothesis space (|H|) : 3^n (Attribute is +, -, or ?) The number of examples: log(|H|) => Worst case

如果concept有don 't care? (1/2)

	A_1	A ₂	A ₃	••••	A _n
Concept:	+	-	?	?	?

要學會這樣的concept,需要提供幾個example??

Step1: 學don't care

Step2: 學A₁只能是+ & A₂只能是-

如果concept有don 't care? (2/2)

A_1	A ₂	A ₃	••••	A _n
+	-	?	?	?

要學會這樣的concept,需要提供幾個example??

Step1: 學don't care

Step2: 學A₁只能是+ & A₂只能是-

如果concept都沒有don 't care?

	A_1	A ₂	A_3	••••	A _n
Concept:	+	+	+	+	+

要學會這樣的concept,需要提供幾個example??

A_1	A ₂	A ₃		A _n	Class	
+	+	+	+	+	=>+}	– 1 example
-	+	+	+	+	=> -	
+	-	+	+	+	=> -	– n ovamnio
+	+	-	+	+	=> -	– n example
Ė					ل	

Total example: n+1

Sample Complexity: Setting 3

Given:

- Set of instances X.
- Set of hypotheses H.
- Set of possible target concepts C.
- Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$.
 - Instances x are drawn from distribution D.
 - Teacher provides target value c(x) for each x.
- Learner must output a hypothesis h estimating c
 - h is evaluated by its performance on subsequent instances drawn according to D
- Note: randomly drawn instances, noise-free classifications.

True Error of a Hypothesis

Definition

The **true error** (denoted $error_{\mathbb{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathbb{D} is the probability that h misclassifies an instance drawn at random according to \mathbb{D} .

$$error_{\mathbb{D}}(h) \equiv \Pr_{x \in \mathbb{D}} (c(x) \neq h(x))$$

Two Notations of Error

多常錯? =>100個training example 錯2個 =>2%

- Training error, denoted $error_D(h)$, of hypothesis h with respect to c: How often $h(x) \neq c(x)$ over training instances.
- True error, denoted $error_{\mathbb{D}}^{\frac{k}{2}}(h)$, of hypothesis h with respect to c: How often $h(x) \neq c(x)$ over future random instances.
- Our concerns: Training error: 2% => True error不高於3%的機率是多少?
 - Can we bound the true error of h given its training error?
 - First consider when training error of h is zero (i.e., $h \in VS_{H,D}$)

PAC Learning

- Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.
- We desire that the learner probably learns a hypothesis that is approximately correct.

Definition

C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathbb{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathbb{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

 To prove any concept is PAC-learnable or not, we need to derive the sample complexity needed for setting 3.

如果一個concept是PAC-learnable,代表此concept沒有很難,可以 在夠短的時間內,夠高的機率輸出一個夠準確的hypothesis

Q2:

- Which of the following statements is true about PAC learning?
- (A) The parameters ε should be less than $\frac{1}{2}$.
- (B) The algorithm is expected to output a hypothesis that is approximately correct.
- (C) If the concept is PAC learnable, we can get an accurate hypothesis with a high enough probability in a short time.
- (D) All of the above.

Exhausting the Version Space

Hypothesis Space H

r: training error error: true error

This version space is **0.3-exhausted**.

(r is training error, error is true error)

Definition

The version space $VS_{H,D}$ is ϵ -exhausted with respect to c and \mathbb{D} , if every hypothesis h in $VS_{H,D}$ has error less than ϵ with respect to c and \mathbb{D} .

$$(\underline{\forall}h \in VS_{H,D}) \ error_{\mathbb{D}}(h) < \epsilon$$

Question

 Given training error is 0 (i.e. hypothesis is in version space), what is the true error?

• => How many examples can make version space ε -exhausted?

Probability of Exhausting the Version Space

How many examples ε-exhaust the VS?

Theorem (Haussler, 1988)

If H is finite, and D is a sequence of $m \geq 1$ independent random examples (from distribution \mathbb{D}) of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that $VS_{H,D}$ is not ϵ -exhausted is less than or equal to

$$|H|e^{-\epsilon m}$$
.

- The above theorem bounds the probability that any consistent learner will output a hypothesis h with $error_{\mathbb{D}}(h) \geq \epsilon$.
- ullet If we want to this probability to be below δ

充分但不必要條件!!

Q3:

- Which of the following statements is true about the probability of the version space is not ε -exhausted?
- (A) By this theorem , we can know the most number of example drawn from distribution, that we can get a hypothesis such that the true error is large than or equal to ε .
- (B) According to this, we can infer that if, Pr will be large than or equal to $|H|e^{-\varepsilon m}$.
- (C) m is the symbol of the number of the examples.
- (D) The theorem is still true, if H is infinite.

Proof of ε -exhausting (1/2)

• What is the probability that version space is not ε -exhausted if m examples are given?

Proof: ϵ -exhausting the version space.

- Let h_1, \dots, h_k be all hypotheses in H with true errors greater than ϵ with respect to c.
- Fail to ϵ -exhausting the VS iff at least one of these hypotheses consistent with all m examples.
- Such prob. for a single hypothesis and a single random example is (1ϵ) ; or $(1 \epsilon)^m$ for all m examples.
- The prob. that fail to ϵ -exhausting is at most $k(1-\epsilon)^m$.

For k 個hypothesis

$$k(1-\epsilon)^m \le |H|(1-\epsilon)^m \le |H|e^{-\epsilon m}$$

Proof of ε -exhausting (2/2)

After asking m times, the probability of h consistent with c is $(1 - \varepsilon)^m$

Learning Conjunctions of Boolean Literals

- Recall that $m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$ examples are sufficient to assure with probability at least (1δ) that every h in $VS_{H,D}$ satisfies $error_{\mathbb{D}}(h) \leq \epsilon$.
- Suppose H contains conjunctions of constraints on up to n boolean attributes.
 - $|H| = 3^n$. Every attribute can be (+, -, don't care)
 - $m \ge \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$
 - Boolean conjunctions is PAC-learnable!

Polynomial in $\frac{1}{\varepsilon}$. Polynomial in $\frac{1}{\delta}$. Polynomial in n

EnjoySport Revisit

• Inn *EnjoySport*, if we consider only conjunctions, |H| = 973.

$$m \geq \frac{1}{\epsilon}(\ln 973 + \ln(1/\delta))$$

• If want to assure that with probability 95%, VS contains only hypotheses with $error_{\mathbb{D}}(h) \leq 0.1$, then it is sufficient to have m examples, where

$$m \ge \frac{1}{0.1} \left(\ln 973 + \ln \frac{1}{0.05} \right)$$

Agnostic Learning (Learning Inconsistent Hypotheses)

• The equation $m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$ tells us how many training examples suffice to ensure that every hypotheses in H having zero training error will have true error of at most ϵ .

 $C \neq H$

- However, if $c \notin H$, zero training error may not be achievable.
- We desire to know how many examples suffice to ensure $error_{\mathbb{D}}(h) \leq error_{\mathbb{D}}(h) + \epsilon$.
- Hoeffding bounds: $|\bar{X} \mu|$ $\Pr(\textit{error}_{\mathbb{D}}(h) > \textit{error}_{D}(h) + \epsilon) \leq e^{-2m\epsilon^2}$
- Sample complexity in this case:

$$\Pr\left((\exists h \in H) \; error_{\mathbb{D}}(h) > error_{D}(h) + \epsilon\right) \leq \frac{|H|e^{-2m\epsilon^{2}}}{H} \leq \delta$$

$$m \geq \frac{1}{2\epsilon^{2}}(\ln|H| + \ln(1/\delta)) \qquad H \boxtimes$$

Infinite Hypothesis Space

- The above sample complexity has two drawbacks:
 - Weak bounds.
 - # has to be finite.
- We need another measure of the complexity of H.

Definition

A **dichotomy** of a set *S* is a partition of *S* into two disjoint subsets.

Definition

A set of instances *S* is **shattered** by hypothesis space *H* iff for every dichotomy of *S* there exists some hypothesis in *H* consistent with this dichotomy.

$$S = \{a,b,c\} => \{a\}$$

 $\{b,c\}$ $h \in H$ $\{a\}:+$ $\{b,c\}:-$

Shattering a Set of Instances (1/2)

- S is a subset of instances, $S \subseteq X$; $2^{|S|}$ distinct dichotomies in total.
- Each $h \in H$ imposes a dichotomy on S:

$$\{x \in S | h(x) = 0\}$$
 and $\{x \in S | h(x) = 1\}$

• H shatters S iff every dichotomy of S is represented by some $h \in H$.

Instance Space X

a, b, c instances have 8 dichotomies.

=>如果8個dichotomies對應的h都在H裡

=>S is shattered by H

Shattering a Set of Instances (2/2)

• H shatter S => $|H| \ge 2^{|S|}$

а	b	С		
+	+	+	h ₁	
+	+	-	h ₂	0 /IT!
•••			•••	► 8個h均屬於H
-	-	-	h ₈	7万里///

The Vapnik-Chervonenkis (VC) Dimension

- The ability to shatter a set of instances is closely related to the inductive bias of the hypothesis space.
- An unbiased hypothesis space can represent every possible concept (dichotomy) over X: An unbiased hypothesis space shatters X.
- What if H cannot shatter X, but can shatter a subset S?
- Intuitively, the larger S is, the more expressive H is.

Definition

The **Vapnik-Chervonenkis dimension**, VC(H), of hypothesis space H is the size of the <u>largest finite subset</u> of instance space X shattered by H. If arbitrarily large finite sets of X can be shattered by X, then X

• Note that for any finite H, $VC(H) \leq \log_2 |H|$. => $|H| \geq 2^{|S|}$ => $|H| \geq 2^{|VC(H)|}$ =>雙邊取 \log

Why VC Dimension?

- Make VC dimension to define sample complexity.
- Since $m \ge log|H|$ is too weak, we will use VC Dimension to bound.

Q4:

- Which of the following statements is the application of VC dimension?
- (A) The complexity of the model.
- (B) The accuracy of the prediction.
- (C) The speed of the computation.
- (D) The upper bound of the training examples.

VC Dimension (1/3)

- Instances are real numbers: $X = \mathbb{R}$
- Hypotheses are real intervals: $h_{ab} = a < x < b$; $H = \{ \forall a, b \mid h_{ab} \}$
- Consider $S = \{3.1, 5.7\}$. H shatters S, why?
- For any set of 3 instances: $S = \{x, y, z\}$, where x < y < z. There is no way for H to represent this dichotomy: $\{x, z\}$ and $\{y\}$.

$$VC(H) = 2$$

• For 2D points (X) and line separations (H), VC(H) = 3.

Example: 1 Instance on a Line

$$X = \mathbb{R}$$
 $/H/=\infty$

$$\{x\} => Dichotomy: \emptyset, \{x\}$$

 $\{x\}, \emptyset$

Is there h can make \emptyset : + , $\{x\}$: - ? =>don' t include x: $h_{10,20}$

Is there h can make $\{x\}$: +, \emptyset : -? =>include x: $h_{0,1}$

 $h_{10,20}$ and $h_{0,1}$ are belong to H = > H shatter $\{x\}$

$$VC(H)=?$$
 $VC(H) \ge 1$

Example: 2 Instances on a Line

$$X = \mathbb{R}$$
$$/H/ = \infty$$

Is there h can get + + ? = Include a and b: $h_{5,5}$

Is there h can get + -? =>Include a and not include b: $h_{-5,0.5}$

Is there h can $get - +? => not include a and include b: <math>h_{0.5,5}$

Is there h can $get - -? => not include a and b: <math>h_{20,40}$

All h are belong to H => H shatter $\{a,b\}$

$$VC(H)=?$$
 $VC(H) \ge 2$

Example: 3 Instances on a Line

$$X = \mathbb{R}$$
 $/H/=\infty$

Dichotomy: 8

Is there h can get + - + ? => Include a, c and not include b:??

=> We cannot get a "h" to shatter **any** 3 instances in the line.

By definition of VC, we have to shatter "every" dichotomy

$$=> VC(H) \neq 3$$

$$=> VC(H) = 2$$

Example: Linear Classifier with 2 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax + by + c \ge 0, a,b,c \in R\}$$

$$VC(H)=?$$
 $\Rightarrow VC(H) \ge 2$

Example: Linear Classifier with 3 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax + by + c \ge 0, a,b,c \in R\}$$

Example: Linear Classifier with 3 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax+by+c \ge 0, a,b,c \in R\}$$

If 3 instances are on a line??

We cannot find a linear classifier to shatter 3 instances on a line.

So
$$VC(H) \ge 2$$
??

Definition

The **Vapnik-Chervonenkis dimension**, VC(H), of hypothesis space H is the size of the <u>largest finite subset</u> of instance space X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Q5:

- Consider the case on the 2D plane. VC(H)=?
- (A) 2
- (B) 3
- (C) 4
- (D) 8

Example: Linear Classifier with 4 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax+by+c \ge 0, a,b,c \in R\}$$

Case 1: Any 3 instances are on a line.

+

Case 2: Any 3 instances are not on a line.

Dichotomy: 16

- ⇒ There is one dichotomy cannot be shattered.
- \Rightarrow XOR problem.

$$VC(H)=?$$
 $=> VC(H) \neq 4$
 $=> VC(H) = 3$

Linear Classifier in n Dimension

Linear classifier in n dimension => In general, the VC is n+1