Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 07 Vector Spaces.

Concepts & Notation

- (Sec. 1.5) column matrix B_j , elementary matrix.
- (Sec. 1.6) left inverse, right inverse, invertible matrix, inverse A^{-1} .
- (Sec. 2.1) vector, vector space.
- 1. (**Homework:**) Show that any subfield of the complex numbers $\mathbb C$ contains the rational numbers.

Elementary Matrices

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 2. A is a square $(n \times n)$ matrix. Argue that the following statement are equivalent:
 - (a) That A is invertible.
 - (b) That the reduced matrix R is the $(n \times n)$ identity matrix.
 - (c) That A is a product of elementary matrices.

Vector Spaces

- 3. What is the prototypical example of a *vector space*?
- 4. What is the *formal* definition of a vector space?

5. What is a vector?	
Examples of vector spaces	
What needs to be checked in the following examples?	
6. Any field \mathbb{F} can be viewed as a vector space over itself.	
7. Let \mathbb{R}^n be the set of tuples (a_1, a_2, \dots, a_n) $(a_i \in \mathbb{R})$. Then \mathbb{R}^n is a vector space over \mathbb{R} .	
8. The space of a functions from a set S to a field $\mathbb F$ is a vector space.	
9. The complex numbers \mathbb{C} over \mathbb{R} (with scalar multiplication by real numbers specifically—and not by complex numbers generally).	

10. What is a **linear combination** of vectors $\alpha_1, \alpha_2, \dots, \alpha_n$ in a vector space V over a field \mathbb{F} ?