生成树

离散数学一树

南京大学计算机科学与技术系

内容提要

- 生成树
- 深度优先搜索
- 广度优先搜索
- 有向图的深度优先搜索
- 回溯
- 最小生成树算法

生成树

- 定义: 若图G的生成子图是树,则该子图称为G的生成树。
- 无向图G连通 当且仅当 G有生成树
 - 证明(充分性显然):
 - ⇒ 注意: 若G是有简单回路的连通图,删除回路上的一条边, G中的回路一定减少。(因此, 用"破圈法"总可以构造连通图的生成树)
- 简单无向图G是树 当且仅当 G有唯一的生成树。
 - 注意: G中任一简单回路至少有三条不同的边。

构造生成树:深度优先搜索 一

深度优先搜索算法


```
Procedure DFS(G: 带顶点v<sub>1</sub>, ...,v<sub>n</sub>的连通图)
  T:=只包含顶点v_1的树;
  visit(v_1);
Procedure visit(v: G的顶点)
  for v每个邻居w {
     if w不在T中 then {
         加入顶点w和边\{v, w\}到T;
         visit(w);
```

构造生成树:广度优先搜索 日下公

广度优先搜索算法


```
Procedure BFS(G: 带顶点v<sub>1</sub>, ...,v<sub>n</sub>的连通图)
T:=只包含顶点v1的树; L:=空表; 把v1放入表L中
While L非空 {
  删除L中的第一个顶点v;
 for v的每个邻居w {
     if w既不在L中也不在T中 then {
       加入w到L的末尾;
       加入顶点w和边\{v, w\}到T;
```

Spanning Tree: Examples

 Different spanning tree are obtained from a symmetric, connected relatioin:

最小生成树 MST Minimum Spanning Tree

- 考虑边有权重的连通无向图。其生成树可能不唯一。定义生成树的权重为其所含各边之和。 一个带权连通图的最小生成树是其权重最小的生成树。
 - 注意,这里的最小(Minimum)并不意味着唯一。

• 最小生成树有广泛的应用。

Prim算法(求最小生成树)

- 1: E={e}, e是权最小的边
- 2: 从E以外选择与E里顶点关联, 又不会与E中的边构成回路的 权最小的边加入E
- 3: 重复第2步,直到E中包含n-1 条边

算法结束

• 铺设一个连接各个城市的光纤通信网络(单位: 万元)。

Prim 算法的正确性

Let T be the output of Prim's algorithm edges $t_1, t_2, ..., t_{n-1}$, as the order the for $1 \le i \le n-1$, and $T_0 = \phi$.

Assume that T_k is contained in a MST T', then $\{t_1, t_2, ..., t_k\} \subseteq T'$. If $t_{k+1} \notin T'$, then $T' \cup \{t_{k+1}\}$ contains a cycle, which cannot wholly be in T_k .

Let s_l be the edge with smallest index l that is not in T_k . Exactly one of the vertices of s_l must be in T_k , which means that when t_{k+1} was chosen, s_l available as well. So, t_{k+1} has no larger weight than s_l . So, $(T'-\{s_l\}) \cup \{t_{k+1}\}$ is a MST containing T_{k+1} .

Kruskal算法(求最小生成树)

1: E={ }

2: 从E以外选择不会与E中的 边构成回路的权最小的边加 入E

3: 重复第2步,直到E中包含 n-1条边

算法结束

• 铺设一个连接各个城市的光纤通信网络(单位: 万元)。

Kruskal算法(举例)

后面证明: Kruskal算法的正确性

引理(更换生成树的边)

- T与T'均是图G的生成树,若e∈ E_T 且e $\not\in E_T$,则必有e'∈ E_T ,e' $\not\in E_T$,且T-{e}U{e'}和T'-{e'}U{e}均是G的生成树。
 - 设e=uv, T-{e}必含两个连通分支,设为 T_1 , T_2 。因T'是连通图,T'中有uv-通路,其中必有一边满足其两个端点x,y分别在 T_1 , T_2 中,设其为e',显然T-{e}U{e'}是生成树。

而 T'-{e'}中 x,y 分属两个不同的连通分支,但在 T'=T'-{e'}U{e}中,xu-通路+e+vy通路是一条xy-通路,因此 T'-{e'}U{e}连通,从而 T'-{e'}U{e}是生成树。

- 显然T是生成树。
- 按在算法中加边顺序,T中边是 $e_1, e_2, ..., e_{k-1}, e_k, ..., e_{n-1}$ 。
- 假设T不是最小生成树。对于任意给定的一棵最小生成树 T',存在唯一的k,使得 $e_k \notin E_T$,,且 $e_i \in E_T$,使得($1 \le i < k$).设T' 是这样的一棵最小生成树,使得上述的k达到最大。
- 根据前述引理, T'中存在边e', e'不属于T, 使得T*=T'-{e'}U{e_k}也是生成树。 e'∈T'与e₁,e₂,...e_{k-1}不会构成回路, 因此w(e')≥w(e_k). 所以w(T*)≤w(T'), 即T*也是最小生成树。但T*包含e₁,e₂,...e_{k-1},e_k, <u>矛盾</u>。

Generic Algorithm for MST Problem

Input: *G*: a connected, undirected graph

w: a function from V_G to the set of real number

```
Generic-MST(G, w)
```

- $1 A \leftarrow 0$
- 2 **while** A does not form a spanning tree
- do find an edge (u,v) that is safe for A
- $4 \qquad A \leftarrow A \cup \{(u,v)\}$
- 5 return A

Output: a minimal spanning tree of G

"避圈法"与"破圈法"

- 上述算法都是贪心地增加不构成回路的边,以求得最优树,通常称为"避圈法";
- 从另一个角度来考虑最优树问题,在原连通带权图G中逐步删除构成回路中权最大的边,最后剩下的无回路的子图为最优树。我们把这种方法称为"破圈法"。

作业

• 见课程QQ群

