EXERCICE 1: OSCILLATIONS LIBRES

Soit un ressort vertical de constante de raideur k inconnue et de longueur à vide $l_0=5\,\mathrm{cm}$.

1. Un étudiant (vous !) cherche à déterminer expérimentalement la valeur de la constante k. Pour cela, il trace l'allongement du ressort en fonction de la valeur de la masse m qu'il a accrochée au ressort et obtient le résultat illustré par la figure ci-contre. Une régression linéaire donne un coefficient directeur de 0,655. En déduire la valeur de la constante de raideur k.

2. On accroche maintenant à ce ressort une masse m=75g, on écarte la masse de sa position d'équilibre d'une grandeur $z_0=4$ cm et on la lâche sans vitesse initiale. En considérant que le mouvement a lieu sans frottement, déterminer l'équation du mouvement z=f(t) et donner la position de la masse par rapport à sa position d'équilibre 3s après qu'il l'ait lâchée.

EXERCICE 2: SYSTÈME OSCILLANT À DEUX RESSORTS

Soit une masse m, attachée de chaque côté à deux ressorts de raideur respective k_1 et k_2 et de longueur à vide ℓ_{10} et ℓ_{20} , se déplaçant sans frottement suivant une direction horizontale x'x. A l'équilibre, les ressorts ont respectivement une longueur ℓ_{1e} et ℓ_{2e} . L'origine O du repère Ox correspond à la position d'équilibre de la masse.

Schéma représentant la masse m et les deux ressorts lorsque la masse est écarté de la distance x_o par rapport à sa position d'équilibre.

- 1. On écarte la masse m de sa position d'équilibre d'une grandeur x_0 on la lâche sans vitesse initiale. Donner l'équation du mouvement x=f(t).
- 2. Donner la constante de raideur k du ressort qui, attaché à la masse m, conduirait à la même équation du mouvement.

Réponse : 2. k=k_1+k_2.

EXERCICE 3: AMORTISSEUR DE VOITURE

On modélise l'amortisseur d'une roue de voiture à l'aide d'un ressort de raideur k et de longueur à vide ℓ_0 , en parallèle avec un amortisseur de coefficient de frottement λ . Une masse $\frac{m}{4}$ est posée sur ce dispositif et peut se déplacer verticalement le long de l'axe $O(\vec{e_x})$ lié au référentiel terrestre \mathcal{R}_g supposé galiléen.

- 1. Lors du changement d'une roue on soulève d'une hoteur $h=25\,\mathrm{cm}$ la masse $\frac{m}{4}$, ce qui correspond au moment où la roue (de masse négligeable) ne touche plus le sol : la longueur AM vaut alors 40cm. Déterminer les caractéristiques du ressort.
- 2. Déterminer et calculer λ afin que le dispositif fonctionne en régime critique (roue à l'arrêt et masse $\frac{m}{4}$ en mouvement vertical).
- 3. On enfonce la masse $\frac{m}{4}$ d'une hauteur $d=5\,\mathrm{cm}$ et on lache le système à t=0 sans vitesse initiale.

Déterminer l'évolution de l'altitude x de la masse $\frac{m}{4}$.

Donnée: m=1200 kg