2019/2/1

08:49 First day of the conference

09:10

09:17 During this talk, I had the idea to blah blah...

11:00 Poster session

11:04

Pervasive Attention

2D Convolutional Neural Networks for Sequence-to-Sequence Prediction

Maha Elbayad†‡ Laurent Besacier‡ Jakob Verbeek† †firstname.lastname@inria.fr †firstname.lastname@univ-grenoble-alpes.fr

Code available at: github.com/elbayadm/attn2d

verview)

in state-of-the-art encoder-decoder models, the source and target sequences are processed **separately**. The decoder, equipped with an **attention mechanism**, ocuses on different parts of the source at each decoding step. However, the attention is limited to assigning weights to the **once and for all** computed encoder states.

Contributions: build an architecture from the get go around attention by **ointly** encoding the source and target sequences and allowing for different source representations for every target position.

Encoder-Decoders

Encoder

Inputs: source sequence $\mathbf{x} = (x_1, x_2, \dots, x_{|\mathbf{x}|})$

Depending on the chosen architecture, the encoder computes the source representations.

Decoder

Inputs: source codes $(s_1, \dots, s_{|\mathbf{x}|})$ and target sequence $\mathbf{y} = (y_1, y_2, \dots, y_{|\mathbf{y}|})$. At every step t:

- ▶ Under the architecture, compute the hidden state h_t causally.
- Given the new state, the attention mechanism yields a context c_t
- $h_t := \text{combine}(h_t, c_t).$

Pervasive attention: the input

Pervasive attention: the convolutional network

- ► Causality: with masked filters in the target direction.
- ► Context: grown with stacked convolutions

Pervasive attention: the aggregation

To aggregate activations across source positions e.g. with $H_3=[h_{31}^L,...,h_{3|x|}^L]\in\mathbb{R}^{d\times|x|}$ we can use:

- ▶ Max/average pooling.
- Self-attention: $\rho = softmax(H_3^TW + b).$ $h_3 = H_3\rho.$
- ► A combination of the above.

Experimental results

Benchmark: IWSLT'14 German↔English translation.

Pr	e-processing:
	Tokenization (Mose
-	Lower-casing.
-	Length ≤ 175 words
	Lengths ratio < 1.5

Train, Dev. Test 160k, 7.2k, 6.7k

Su	b-word segmentation
-	BPE (Sennrich et al., 2016).
-	14k merge operations on
	EN+DE (V1) / on each

separately (V2).
V1(EN,DE) = 8.8k, 12k,
V2(EN,DE) = 13.3k, 13.8k

Sequence length

	(800) (m.) - (800) (m.) - (800)	
8k.		-

Comparison to the stat-of-the-art

De→En	#prms	En→De	#prms
29.98	13M	25.04	15M
33.10	- Section	2000	2
31.59	21M	27.18	22M
32.84			
34.42	46M	28.23	48M
34.44	52M	28.07	52M
33.86	IIM	27.21	11M
34.05	22M	27.97	22M
	29.98 33.10 31.59 32.84 34.42 34.44 33.86	29 98 13M 33.10 - 31.59 21M 32.84 - 34.42 46M 34.44 52M 33.86 11M	33.10

through yet travely story other our implementation or faring.
If averaged through

Alignment visualization

BLEU per sequence length

Due to memory/compute limitations, $\mathcal{O}(|x|,|y|)$ instead of $\mathcal{O}(|y|+|x|)$, we truncate sequences longer than 80 tokens when training which affects the performance on long sequences.

2019/2/2

09:00 Second day of the conference

09:23

