MATTHEW DIM

Computer Science

@ matthewdim30@gmail.com

(571) 455-6075

Reston, Virginia

in MDim0330

MDim0330

SKILLS

Java C/C++ Python CSS/HTML Ruby Vim Solidworks MatLab

Microsoft Office

LEARNING

Computer Systems

Algorithms **Data Structures**

Lin Algebra Calculus

Differential Equations

Discrete Structures

ABOUT ME

Enthusiastic Computer Science Student eager to contribute to a technology related project. Motivated to learn, grow and excel in a hardware or software related industry.

EXPERIENCE

Software Engineer Intern | Sedna Digital Solutions

6 06 2022 - 08 2022

- Manassas, Virginia
- Created tools for the conversion of C library into other programming languages using WSDL and Protobuf
- Facilitated integration of Java tools with C programs using reflections

Business Intern | FBLA - National Office

08 2018 - 06 2019

Reston, Virginia

- Manipulated and sorted through large data sets
- Assisted with website operation

Machine Learning

Chemistry

Robotics

Engineering Design

EDUCATION

Bachelor of Science: Computer Science | James Madison University

1 08 2019 - Current

GPA: 3.55

Harrisonburg, Virginia

HOBBIES

Debate Team

- Wyoming Tournament Novice Champion
- Rutgers 3rd Place Speaker Award

Cycling

 First Century 1 Year Ago

Minor in Mathematics Minor in Robotics

RESEARCH

Autonomous Vehicle - JACart | 😯 | 🌐

in 01 2022 - Current

- Robotics Operating System (ROS) Team Lead
 - Assist with Electronic/UI Team
- Goals: Improve upon the collision avoidance of the vehicle

REFERENCES

References provided upon inquiry

PROJECTS

Buoy Project | 😯 | 🌐

- 08 2020 05 2021
- Advised by Northrop Grumann
- Communication Team Member
 - Worked on integrating Raspberry Pi, Lowra, and Sensors
 - System achieved autonomous state

FitBit Project - Step Counter | 😽 | 🌐

- **1** 09 2021 Current
- Using micro-processor, acceleration sensor, and radio integrated system using a selfdeveloped foot-step algorithm
- Accurate up to 5 percent currently