Chemistry Lecture #100: Hess's Law

Hess's law states that the change in enthalpy for a chemical reaction can be found by adding two or more thermochemical equations.

For example, suppose we are given the reactions

(a).
$$S_{(5)} + O_{2(g)}$$
 $SO_{2(g)}$ $\Delta H = -297 \text{ kJ}$

(b).
$$250_{3(g)}$$
 $250_{2(g)} + 0_2$ $\Delta H = 198 \text{ kJ}$

and we want to find the ΔH for the equation

(c).
$$2S(5) + 3O_{2}(6)$$
 $2SO_{3}(6)$ $\Delta H = ?$

We can add equations (a) and (b) to get the $\triangle H$ for equation (c). To do this, we need to modify equations (a) and (b) to make them look more like equation (c). We do this by multiplying and flipping the equations.

For example, equation (c) has a 2 in front of the 5, while equation (a) has an implicit 1 in front of the 5. So, we multiply equation (a) and its ΔH by 2 so the 5 matches equation (c).

(a).
$$S(s) + O_{2(g)}$$
 $SO_{2(g)}$ $\Delta H = -297 \text{ kJ}$ becomes
(a). $2S(s) + 2O_{2(g)}$ $\Delta H = -594 \text{ kg}$

(a).
$$2S_{(5)} + 2O_{2(g)}$$
 $2SO_{2(g)}$ $\Delta H = -594 \text{ kJ}$
Notice that ΔH has been multiplied by 2.

Next, compare equation (b) with equation (c). Notice that 250_3 is on the left side of equation (b), while it is on the right side of equation (c).

(b).
$$250_{3(g)}$$
 $250_{2(g)} + 0_{2(g)}$ $\Delta H = 198$
(c). $25(_{5}) + 30_{2(q)}$ $\Delta H = ?$

To make equation (b) match equation (c), we reverse the equation, and also change the sign of ΔH .

(b).
$$250_{3(g)}$$
 $250_{2(g)} + O_{2(g)}$ $\Delta H = 198$ becomes
(b) $250_{2(g)} + O_{2(g)}$ $\Delta H = -198$

If we add the modified equations (a) and (b) along with their $\Delta H's$, we get equation (c) and its ΔH .

(a).
$$2S_{(g)} + 2O_{2(g)}$$
 $2SO_{2(g)}$ $\Delta H = -594 \text{ kJ}$
(b) $2SO_{2(g)} + O_{2(g)}$ $2SO_{3(g)}$ $\Delta H = -198 \text{ kJ}$
(c). $2S_{(g)} + 3O_{2(g)}$ $\Delta H = -792 \text{ kJ}$

The ΔH for a reaction can also be found if you know the heat of formation ($\Delta H^o f$) of the product and reactants. The next page is a chart of thermodynamic properties which gives the heat of formation for various substances. Notice that elements have a $\Delta H^o f$ equal to zero.

	Δ	H _f ° (kJ/mol) (concent		kJ/mol) Solutions is	' (J/mol · K) 1 <i>M</i>)		
Substance	$\DeltaH_{f^{\circ}}$	ΔG_f°	S°	Substance	ΔH _f °	ΔG_f°	S°
Ag(cr)	0	0	42.55	H ₃ PO ₃ (aq)	-964.4		_
AgCI(cr)	-127.068	-109.789	96.2	H ₃ PO ₄ (aq)	-1279.0	-1119.1	110.50
AgCN(cr)	146.0	156.9	107.19	H ₂ S(g)	-20.63	-33.56	205.79
Al(cr)	0	0	28.33	H ₂ SO ₃ (aq)	-608.81	-537.81	232.2
Al ₂ O ₃ (cr)	-1675.7	-1582.3	50.92	H ₂ SO ₄ (aq)	-909.27	-744.53	20.1
BaCl ₂ (aq)	-871.95	-823.21	122.6	HgCl ₂ (cr)	-224.3	-178.6	_
BaSO ₄ (cr)	-1473.2	-1362.2	132.2	Hg ₂ Cl ₂ (cr)	-265.22	-210.745	192.5
Be(cr)	0	0	9.50	Hg ₂ SO ₄ (cr)	-743.12	-625.815	200.66
BeO(cr)	-609.6	-580.3	_	I ₂ (cr)	0	0	116.13
Bi(cr)	0	0	56.74	K(cr)	0	0	64.18
BiCl ₃ (cr)	-379.1	-315.0	177.0	KBr(cr)	-393.798	-380.66	95.90
3i ₂ S ₃ (cr)	-143.1	-140.6	200.4	KMnO ₄ (cr)	-837.2	-737.6	171.71
3r ₂ (I)	0	0	152.231	KOH(cr)	-424.764	_	_
CH ₄ (g)	-74.81	-50.72	186.264	LiBr(cr)	-351.213	-	_
$C_2H_2(g)$	+226.73	+209.20	200.94	LiOH(cr)	-484.93	-438.95	42.80
$C_2H_4(g)$	+52.26	+68.15	219.56	Mn(cr)	0	0	32.0
$C_2H_6(g)$	-84.68	-32.82	229.60	MnCl ₂ (aq)	-555.05	-490.8	38.9
CO(g)	-110.525	-137.168	197.674	$Mn(NO_3)_2(aq)$	-635.5	-450.9	218
O ₂ (g)	-393.509	-394.359	213.74	MnO ₂ (cr)	-520.03	-465.14	53.0
CS ₂ (I)	+89.70	+65.27	151.34	MnS(cr)	-214.2	_	
Ca(cr)	0	0	41.42	N ₂ (g)	0	0	191.6
Ca(OH) ₂ (cr)	-986.09	-898.49	_	NH ₃ (g)	-46.11	-16.45	192.4
Cl ₂ (g)	0	0	223.066	NH ₄ Br(cr)	-270.83	-175.2	113
Co ₃ O ₄ (cr)	-891	-774	-	NO(g)	+90.25	86.55	210.76
CoO(cr)	-237.94	-214.20	52.97	NO ₂ (g)	+33.18	+51.31	240.0
Cr ₂ O ₃ (cr)	-1139.7	-1058.1	81.2	N ₂ O(g)	+82.05	+104.20	219.8
CsCl(cr)	-443.04	-414.53	101.17	Na(cr)	0	0	51.2
Cs ₂ SO ₄ (cr)	-1443.02	-1323.58	211.92	NaBr(cr)	-361.062	_	70.4
CuI(cr)	−67.8 −53.1	-69.5 -53.6	96.7	NaCl(cr)	-411.153	-384.138	72.13
CuS(cr)	-53.1 -79.5	-86.2	66.5 120.9	NaNO ₃ (aq)	-447.48 425.600	-	_
Cu ₂ S(cr) CuSO ₄ (cr)	-79.3 -771.36			NaOH(cr)	-425.609	_	-
2(g)	0	-661.8 0	109 202.78	Na ₂ S(aq)	-447.3 -1387.08	-1270.16	140.5
eCl ₃ (cr)	-399.49	_		Na ₂ SO ₄ (cr)	-1367.06 0	-1270.16 0	149.58 205.13
eO(cr)	-272.0	_	_	O ₂ (g) P ₄ O ₆ (cr)	-1640.1	U	205.1
e ₂ O ₃ (cr)	-824.2		87.40	P ₄ O ₆ (cr)	-1640.1 -2984.0	-2697.7	228.86
e ₂ O ₃ (cr) e ₃ O ₄ (cr)	-1118.4	-1015.4	146.4	PbBr ₂ (cr)	-278.7	-261.92	161.5
H(g)	+217.965	-	114.713	PbCl ₂ (cr)	-359.41	-314.10	136.0
H ₂ (g)	0	0	130.684	S(cr)	0	0	31.80
HBr(g)	-36.40	-53.45	198.695	SO ₂ (g)	-296.830	-300.194	248.2
HCI(g)	-92.307	-95.299	186.908	SO ₃ (g)	-454.51	-374.21	70.7
HCI(aq)	-167.159	-131.228	56.5	SrO(cr)	-592.0	-561.9	54.4
HCN(aq)	+150.6	+172.4	94.1	Ti(cr)	0	0	30.63
HCHO(g)	-108.57	-102.53	218.77	TiO ₂ (cr)	-939.7	-884.5	49.92
HCOOH(I)	-424.72	-361.35	128.95	TII(cr)	-123.8	-125.39	127.6
HF(g)	-271.1	-273.2	173.779	UCl ₄ (cr)	-1019.2	-930.0	197.1
HI(g)	+26.48	+1.70	206.594	UCl ₅ (cr)	-1059	-950	242.7
H ₂ O(I)	-285.830	-237.129	69.91	Zn(cr)	0	0	41.6
H ₂ O(g)	-241.818	-228.572	188.825	ZnCl ₂ (aq)	-488.19	-409.50	0.8
H ₂ O ₂ (I)	_	-120.35	109.6	ZnO(cr)	-348.28	-318.30	43.64
H ₃ PO ₂ (I)	-595.4		_	ZnSO ₄ (aq)	-1063.15	-891.59	-92.0

The heat of formation for a reaction can be calculated using the formula

 $\Delta H^{o}_{rxn} = \sum \Delta H^{o}_{f}$ (products) - $\sum \Delta H^{o}_{f}$ (reactants)

 ΔH^{o}_{rxn} = change in enthalpy for a reaction

 $\Sigma\Delta H^{o}f$ (products) = sum of the $\Delta H^{o}f$ of the products

 $\Sigma\Delta H^{o}_{f}$ (reactants) = sum of the ΔH^{o}_{f} of the reactants

Using the chart of thermodynamic properties, find the ΔH^o_{rxn} for the reaction

$$CH_{4(g)} + 2O_{2(g)}$$
 $CO_{2(g)} + 2H_{2}O_{(1)}$ $\Delta H^{o}_{rxn} = ?$

Solution

Using the thermodynamic properties chart, list the $\Delta H^o f$ of each product and reactant.

$$\Delta H_{f}^{o}$$
 products (kJ/mole) ΔH_{f}^{o} reactants (kJ/mole) $CO_{2(g)} = -394$ $CH_{4(g)} = -74.8$ $H_{2}O_{(1)} = -286 \times 2 = -572$ $O_{2(g)} = 0.0 \times 2 = 0$

Notice that the for H_2O and O_2 , we multiplied the values by 2. This is because there is a 2 in front of these substances in the balanced equation.

Next, add the ΔH^{o}_{f} of the products and reactants.

$$\Sigma \Delta H^{o}_{f}$$
 (products) = -394 + (-572) = -966
 $\Sigma \Delta H^{o}_{f}$ (reactants) = -74.8 + 0 = -74.8

Finally, subtract $\Sigma\Delta H^{o}f$ (reactants) from $\Sigma\Delta H^{o}f$ (products) to get ΔH^{o}_{rxn} .

$$\Delta H^{\circ}_{rxn} = \Sigma \Delta H^{\circ}_{f} \text{ (products)} - \Sigma \Delta H^{\circ}_{f} \text{ (reactants)}$$

$$\Delta H^{\circ}_{rxn} = -966 - (-74.8)$$

$$\Delta H^{\circ}_{rxn} = -891.2 \text{ or } -891 \text{ kJ}$$

Thus, the combustion of one mole of $CH_{4(g)}$ produces 891 KJ of energy.