

FACULTÉ DES SCIENCES DÉPARTEMENT DE PHYSIQUE

SYLLABUS DE COURS

Intitulé du parcours : Licence Fondamentale en Médecine et en Officine

Semestre d'évolution : Harmattan 1

<u>Code et intitulé de l'enseignement</u> : PHY100 - Electrostatique et Electrocinétique

Nombre de crédits : 2

Enseignant responsable de l'UE:

Dr LARE Yendoubé, MC, Matériaux et applications énergétiques, Tél: 90227989

Public cible : Cette UE est destinée aux apprenants inscrits au Semestre Harmattan 1 du Parcours Licence fondamentale en Médecine et en Officine.

Prérequis : Pas de prérequis

Objectifs de l'UE

OBJECTIF GÉNÉRAL

La parte « Electrostatique et Electrocinétique » du cours de « PHY100 - Physique » vise à faire comprendre aux étudiants les lois et les principes fondamentaux de l'Electrostatique et de l'Electrocinétique utiles pour la compréhension de certaines parties de leur parcours en sciences de la santé. A la fin de la parte « Electrostatique et Electrocinétique », l'apprenant sera capable d'analyser les lois et les principes fondamentaux de l'Electrostatique et de l'électrocinétique, de comprendre et d'expliquer certaines notions intervenant dans son parcours.

OBJECTIFS SPÉCIFIQUES

A la fin de ce cours, les étudiants devront capables de :

- Utiliser le syllabus et les dispositifs de formation à l'UL ;
- Appliquer les consignes de travail concernant l'UE;
- Utiliser les outils mathématiques (opérateurs vectoriels, différentielles) qui interviennent dans le cours ;

- Expliquer l'origine physique des charges électriques ;
- Calculer les forces de coulomb, le champ et le potentiel électrostatiques pour les distributions ponctuelles et continues de charges électriques ;
- Définir le dipôle électrostatique ;
- Déterminer les caractéristiques du dipôle électrostatique ;
- Définir les conducteurs en équilibre électrostatique ;
- Déterminer les caractéristiques des conducteurs en équilibre électrostatique et leurs applications ;
- Cerner l'enseignement par un point à mi-parcours et des précisions sur les séances précédentes ;
- Expliquer l'origine physique du courant électrique, la densité de courant et leur modélisation ;
- Déterminer les propriétés de l'électrostatique et les rapports quantitatifs entre la différence de potentiel, le courant et la résistance dans les circuits électriques ;
- Résoudre un réseau de dispositifs électroniques à partir des principes de base de l'électricité générale ;
- Analyser des circuits électriques à partir des théorèmes généraux ;
- Cerner l'enseignement par des précisions sur toutes les séances effectuées.

Langue d'enseignement : Français

Bref descriptif de l'enseignement :

Ce cours donne aux étudiants les fondements de la physique qui permettent de comprendre et d'expliquer certains phénomènes et thématiques de leur parcours. Un bref rappel mathématique ainsi qu'un complément sur les unités avec les notions sur les champs scalaires et vectoriels sont donnés au début pour permettre à l'étudiant de bien suivre et de comprendre les définitions des différentes lois et grandeurs physiques. L'essentiel du cours porte sur l'Electrostatique du vide (distribution de charges, forces, champs et potentiel électrostatiques, équations locales, énergie électrostatique, dipôle, conducteurs, etc.), l'électrocinétique (étude des circuits électriques linéaires en continu en abordant les notions de dipôles passifs et actifs, les théorèmes généraux de l'électrocinétique).

Organisation de l'enseignement

	Séance	Activités d'enseignement/apprentissage	Formules et	Matériel/
Objectifs	N°		techniques	Support
(étudiants)			pédagogiques	pédagogique
		<u>Présentiel 1</u>	-Lecture et	
- Utiliser le syllabus, les		- Présentation et discussion du syllabus avec	visionnement	
dispositifs de formation à		les étudiants	personnel des	
l'UK		- Explication du dispositif aux étudiants ;	ressources	
- appliquer les consignes de		- Explication des consignes de travail aux		
travail concernant l'UE;	1	étudiants ;	-Cours magistral	
- expliquer et situer l'intérêt		- Explication des modalités et consignes		Syllabus,
du cours pour leur parcours ;		d'échanges entre étudiants et enseignant.	-Travaux dirigés	Ordinateurs,
- utiliser les outils				Support de cours
mathématiques (opérateurs		Chapitre 0 :	-Approche	Vidéo projecteur
vectoriels, différentielles)		Introduction : Préliminaires, rappels	interactive,	
qui interviennent dans les		mathématiques et sur les unités et les	-Approche par	
incertitudes, l'expression		équations aux dimensions	situation problème,	
(équation aux dimensions) et				
l'utilisation des grandeurs		Activités :	-Démonstration	
physiques;		- Cours magistrale ;	-Recherche libre sur	
		- Exercices et travaux dirigés sur les dérivées,	les thématiques sur	
		intégrales, équations différentielles ; les	internet	
		équations et les unités en SI puis les	-Résolution de	
Expliquer l'exigina	2	incertitudes Chapitre 1	problème/ exercices	Ordinatours
- Expliquer l'origine physique des charges	2	Chapitre 1 :	-Travail d'équipe	Ordinateurs,
électriques et leurs		Force et Champ électrostatiques (Loi de Coulomb, force et champ électrostatiques)		Support de cours
creeniques et leurs		(Loi de Couloino, force et champ electrostatiques)		

applications; - Calculer les forces de coulomb, le champ électrostatique pour les distributions ponctuelles et continues de charges électriques		Activités: - Cours magistrale; - Exercices et travaux dirigés sur l'électrisation d'un corps; les charges ponctuelles et les charges continues, la force, le champ, le potentiel		Vidéo projecteur
- calculer le potentiel et le champ électrostatiques pour charges ponctuelles, déterminer les lignes de champs, les surfaces équipotentielles	3	Chapitre 2 : Champ et potentiel électrostatiques (Notion de gradient et propriétés du champ, calcul du potentiel et du champ électrostatique pour tcharges ponstuelles)	-Lecture et visionnement personnel des ressources -Cours magistral	Ordinateurs, Support de cours Vidéo projecteur
		Activités: - Cours magistrale; - Exercices et travaux dirigés sur le calcul du potentiel et du champ pour les distributions continues, la détermination des lignes de champs et des surfaces équipotentielles	-Travaux dirigés -Approche interactive, -Approche par situation problème,	
- Comprendre les notions d'invariance et de symétrie, Appliquer le théorème de Gauss pour le calcul du champ et du potentiel électrique	4	Chapitre 3 : Le théorème de Gauss (Notion d'angle solide, notions d'invariances et de symétrie, théorème de Gauss et application) Activités : - Cours magistrale ; - Exercices et travaux dirigés l'application du	-Démonstration -Recherche libre sur les thématiques sur internet -Résolution de problème/ exercices -Travail d'équipe	

- définir le dipôle	5	théorème de Gauss Chapitre 4 : Le dipôle électrostatique	-Lecture et
électrostatique; - déterminer les caractéristiques du dipôle électrostatique	ט	(champ et potentiel d'un dipôle, interaction d'un dipôle avec un champ électrique, applications) Activités: - Cours magistrale; - Exercices et travaux dirigés sur le dipôle électrostaique	-Lecture et visionnement personnel des ressources -Cours magistral -Travaux dirigés
- définir les conducteurs en équilibre électrostatique ; - déterminer les capacités, les coefficients, les caractéristiques des conducteurs en équilibre électrostatique et leurs applications	6	Chapitre 5: Conducteurs en équilibre électrostatique (Propriétés des conducteurs, théorème de Coulomb, capacité, coefficients d'influence, pouvoir des pointes, Condensateurs) Activités: - Cours magistral; - Exercices et travaux dirigés sur conducteurs en équilibre électrostatique	-Approche interactive, -Approche par situation problème, -Démonstration -Recherche libre sur les thématiques sur internet -Résolution de problème/ exercices -Travail d'équipe
- faire le bilan à mi-parcours des enseignements, comprendre les parties à difficultés ; - résoudre quelques	7	Présentiel 2 : Recadrage Mise au point Activités : Exercices et travaux dirigés sur le contenu des	-Lecture et visionnement personnel des ressources

1.15		′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′	C1
problèmes spécifiques		séances précédentes	-Cours magistral
		Exercices et travaux dirigés sur les conducteurs	
	_	et condensateurs	-Travaux dirigés
- Expliquer l'origine	8	Chapitre 6 : Le courant continu	
physique du courant		(Densité de courant et équation de	-Approche
électrique, de la densité de		continuité, Courants, tension, Conducteurs	interactive,
courant et leur modélisation		ohmiques et	
		Loi d'Ohm)	-Approche par
- Déterminer les propriétés		Activités :	situation problème,
de l'électrostatique et les		- Cours magistral ;	
rapports quantitatifs entre la		- Exercices et travaux dirigés la densité de	-Démonstration
différence de potentiel, le			-Recherche libre sur
courant et la résistance dans		courant ; les courants et la tension	les thématiques sur
les circuits électriques.			internet
			memer
			-Résolution de
			problème/ exercices
			-Travail d'équipe
			Travair a equipe
- Reconnaître les principaux	9	Chapitre 7: Généralités sur les circuits	-Lecture et
éléments d'un circuit et les		électriques	visionnement
concepts de base		(Lois de Kirchhoff, dipôles électriques et	personnel des
		associations)	•
- Appliquer les lois de		associations)	ressources
Kirchhoff		Activités :	
			-Cours magistral
		- Cours magistral ;	
		- Exercices et travaux dirigés les lois de	-Travaux dirigés
		Kirchhoff, les dipôles électriques et leurs	
		associations	-Approche
			-Approcise

Résoudre un réseau de dispositifs électroniques à partir des principes de base et des théorèmes généraux de l'électricité générale	10	Chapitre 8: Théorèmes Généraux de l'électricité (Théorème de superposition, théorèmes de Norton et de Thévénin, etc.) Activités: - Cours magistral; - Exercices et travaux dirigés sur les théorèmes généraux de l'électricité	interactive, -Approche par situation problème, -Démonstration -Recherche libre sur les thématiques sur internet -Résolution de problème/ exercices -Travail d'équipe
	11		-Lecture et visionnement personnel des ressources -Cours magistral -Travaux dirigés -Approche interactive, -Approche par situation problème,
- Cerner l'enseignement par des précisions sur toutes les séances précédentes - faire une synthèse de l'essentiel du cours	12	Récapitulatif de l'ensemble de l'enseignement Recadrage et Consolidation Activités Questions-Réponses, explications critiques sur les contenus des séances précédentes	-Démonstration -Recherche libre sur les thématiques sur internet -Résolution de problème/ exercices -Travail d'équipe

Évaluation

- Évaluation en cours d'apprentissage :

Contrôles continus: Devoirs Sur Table: 40 %

- Examen final: Examen 60 %

Épreuves écrites : Exercices normaux et QCM

Bibliographie

- 1. Émile Amzallag, Josep Cipriani, Josseline Ben Aïm, Norbert Piccioli ; ÉLECTROSTATIQUE et ÉLECTROCINÉTIQUE, Rappel de cours et exercices corrigés de Physique, 2e édition ; © Dunod, Paris, 2006 ; © Ediscience, Paris, 2002 pour la première édition ; ISBN 2 10 050249 2
- 2. PHYSIQUE, TOUT-EN-UN POUR LA LICENCE, Cours, applications et exercices corrigés Laurent Gautron, Christophe Balland, Alain Angelié, Cyrille Sylvestre, Jean-Luc Battaglia, Jean Denape, Laurence Ferrand-Tanaka, Laurent Cirio, Yves Berthaud, Arnault Monavon, Jean-Yves Paris, © Dunod, Paris, 2010, ISBN 978-2-10-055558-1
- 3. H PRÉPA, 1ANNÉE, EXERCICES ET PROBLÈMES PHYSIQUE, MPSI/PCSI/PTSI, © Hachette Livre 2010, 43 quai de Grenelle, 75905 Paris Cedex 15, I.S.B.N. 978-2-0118-1306-0
- 4. Electrostatique et magnétostatique, Michel SAINT-JEAN, Janine BRUNO et Jean MATRICON. Editions BELIN 2002
- 5. Electromagnétisme, Première année, MPSI, PCSI, PTSI, Jean-marie BREBEC, Thierry DESMARAIS, Marc MÉNÉTRIER, Bruno NOËL, Régine NOËL, Claude ORSINI. HACHETTE LIVRE 2003
- 6. Électrocinétique, MPSI, PCSI, PTSI; Bernard Gendreau, Christophe Gripon; Nathan Classe prépa.