

10/5691

WO 2005/011164

PCT/AU2004/001129

IAP20 Rec'd PCT/PTO 21 FEB 2006

- 1 -

SEQUENCE LISTING

<110> Virax Development Pty Ltd

<120> A novel vector

<130> 12486620/JEH

<150> AU 2003904496

<151> 2003-08-21

<160> 11

<170> PatentIn version 3.0

<210> 1

<211> 3271

<212> DNA

<213> virus

<400> 1

atggatagaa atatcaattt tagtcctgta tttatagaac ctaggtttaa acacgagttt	60
ctattatctc ctcaaaggta ttttatata ttagttttg aagtaatagt agctttgatt	120
atattgaatt ttttctttaa ggaagaaata ttatatacat ttttccgtt agctaaggct	180
tctaaaaatt caataaatacg totgctggat agaactatgt taaaatgtga agaagatgga	240
tctttatgtca tttcgagacc tcccggtatc tattcggct tgagttttaga tggttcacccg	300
gtaaggattt ccgattttag tttgtttta tcgtcaataa atggcgcata ctcataaca	360
tctccttact ctattttaa cagacgataa cggattttat tcttatctat ccgaabaaag	420
tgtatgtgaa gctcttgaag acataaatac tattaagaaa tatatggact ttattctaag	480
cgttcttata cgttctaaag agaaaactaga aaatatacgga tgttcttacg agcctatgag	540
tgaatcgaaa aaggcttta taaaagtaaa ggatgatggt acttttagtaa aagcatttac	600
caagccattt taaaatctc attccgaaaa gatagttta gatagaggtt atacttcgga	660
ttttgtata agcgtaataa gactatctag taaaagcagt tatatacttc ccgcaaatac	720
aaaatacata aatccaaacg agaatatgttataaacaac ctaatatcac tactgaagcg	780
caactagatc ttccaaaccc acccgctttt tatagtaagt ttttcaccca taaaataataa	840
atacaataat taatttctcg taaaagtaga aaatataattc taatttatttgc acggcttag	900
aactatgttgc tccatgtaca ggatgcaact cctgtcttgc attgcactaa ttcttgcact	960
tgtcacaaac agtgcaccta cttcaaggatc gacaaagaaa acaaagaaaa cacagctaca	1020
actggagcat ttactgctgg atttacagat gattttgaat ggaattaata attacaagaa	1080

VO 20050000464

PL. AL2004/001129

- 2 -

tcccaaactc accaggatgc tcacatttia gtttacatg cccaagaagg ccacagaact	1140
gaaacagctt cagtgtctag aagaagaact caaacctctg gaggaagtgc tgaatttagc	1200
tcaaagcaaa aactttcaact taagaccag ggacttaatc agcaatatac acgtaatagt	1260
tctggaacta aaggatctg aaacaacatt catgtgtgaa tatgcagatg agacagcaac	1320
cattgttagaa ttctgaaca gatggattac ctttgtcaa agcatcatct caacactaac	1380
ttgattttg tagatctgtc gaccatttag tatcctaaaa ttgaattgta attatcgata	1440
ataaatgaga gctgtccctc tgcacccctgt cgggacagca agcctcaccc ttggcttctt	1500
gtccctgcta tctctccgcc tggaccagg ccaagccaag gagttgaagt ttgtgacatt	1560
ggtgttccgg catggagacc gaggtcccat cgagaccttt cctaattgacc ccattaagga	1620
atcctcgtagg ccacaaggat ttggccaaact caccaagtgg ggcattggac agcactacga	1680
actcgaaagt tatataagga gaagatacgg gagattcttg aacaactcct ataaacatga	1740
ccaggtttat atccgaagca cagatgttga caggactctg atgagcgcta tgacaaacct	1800
cgcagccctg ttccccctg agggatcag catctggaaat cccagactgc tctggcagcc	1860
catcccgatg cacaccgtgt ctctctctga ggatcggttg ctatacctgc ctttcaggga	1920
ctgtcctcgc ttcaagaac tcaagagtga gactttaaaa tctgaggagt tcctgaagag	1980
gttcaacca tataaaagct tcatagacac cttgccatcg ctgtcgggat tcgaggacca	2040
ggatctttt gaaatctgga gtaggctta cgacccttta tattgcgaga gtgttcacaa	2100
ttcacccctc cgcacctggg ccacagagga cgccatgact aagttgaagg agttgtcaga	2160
attatctctg ttatctcttt atgaaattca caagcagaaa gagaaatcta gactccaggg	2220
ggcgctcctg gtcaatgaaa ttctcaagaa catgaagctt gcaactcaac cacagaaggc	2280
caggaagttt atcatgtatt ctgcatatga cactactgtg agtggcctgc agatggcgct	2340
agagctttat aatggacttc tacccctta cgcttctgc cacataatgg aattgtacca	2400
ggataatggg gggacccctcg tggagatgta ctaccggaaat gagacccaga acgagcccta	2460
cccactcactg ctgccccggct gtacccacag ctgccccttg gagaagtttg cagagctact	2520
ggacccctgtg atccccccagg actggccac agagtgtatg ggcacaagca accaccaagc	2580
gtcgctgtaa ttttctgtc gacccatggt tttaaaaaag gaattgaaag aaaatattt	2640
atatcgtaat aaattaaata tgcatttgcagg acatcaggag tcttttaaag aacttgcatt	2700
gacaaaacct tatatgttct tcaatgaact agtaggtgaa gaagactata acaaagagtt	2760
agaaaattct aatactaagt tcaaggaca gggccagctt aagctttat taggagaact	2820

WO 2005.019464

PCT/AU2004/001129

- 3 -

ttatccctta aatacattaa tcaagaataa aacgttatgt tcagatacag	ttatcgtgtaa	2880
tatagggtca gcaccaggaa gccatataaz tttttatata cattatatgg atgatcttaa		2940
aatagattta aaatggatat taatagatgg tagagatcat gatcgatctc tagaaagtct		3000
taaaaatgtg tctataatac ataggttgt agatgaacaa tactgttta agctacgtaa		3060
tatgattagg aaaaaccata aattgtact gatacagat attagatcgc taagaggaaa		3120
agaacctact agcggaggacc tattacacga ttacgcgttg cagaatcaaa tggtaagcat		3180
tcttaaacca atagcatcga gcctgaaatg gagatgtccg ttccggatc agtggataag		3240
agacttttac attccttgtg gagatgagtt t		3271

<210> 2
 <211> 3271
 <212> DNA
 <213> virus

<400> 2		
tacctatctt tatagttaaa atcaggacat aaatatctg gatccaaatt tgtgtcaaa		60
gataatagag gagttccat aaaaatataat aatcaaaaac ttcatatca tcgaaactaa		120
tataacttaa aaaagaaaatt cttttttat aatataatgt aaaaaggcaa tcgattcgga		180
agatttttaa gtatattatc agacgaccta tcttgataca attttacact tcttctacct		240
agaaactact aaagctctgg aaggccatag ataagccgga actcaaactt accaagtggc		300
cattcctaaa ggttaacatc aaacgaaaat agcagttatt taccgcgtag gagtagttgt		360
agaggaatga gataaaaatt gtctgctatt gcctaaaata agaatagata ggcttttttc		420
actactactt cgagaacttc tgtatattatg ataattctt atatacctga aataagattc		480
gcaagaatat gcaagatttc tctttgatct tttatatacct acaagaatgc tcggatactc		540
acttagcaaa ttccgagaat aatttcattt cctactacca tggaaatcatt ttctgtaaatg		600
gttcggtaac aatttaggag taaggctttt ctatcaaattt ctatctccaa tatgaagcct		660
aaaacgatat tcgcattatt ctgatagatc attttcgta atatatgaag ggctttatgt		720
ttttatgtat ttaggtttgc tcttatacat atatgttg gattatagtg atgacttcgc		780
gtttagatctg aaggtttggg tgggcgaaaa atatcaatca aaaagtgggt atttattatt		840
tatgttatta attaaagagc attttcatct ttatataaag attaaataac gtgccagatc		900
ttgatcacct aggtacatgt cctacgttga ggacagaacg taacgtgatt aagaacgtga		960
acagtgtttg tcacgtggat gaaagtcaag ctgtttcttt tgttatcttt gtgtcgatgt		1020

WO 2005 / 19464

PCT/AU2004/001129

- 4 -

tgacccctgta aatgacgacc taaatgtcta ctaaaactta ccttaattat taatgttctt 1080
agggttttag tggccctacg agtgtaaatt caaaatgtac gggttcttcc ggtgtcttga 1140
cttgtcgaa gtcacagatc ttcttcttga gtttgagac ctccttcacg acttaaatcg 1200
agtttcgttt ttgaaaagtga attctgggtc cctgaattag tcgttatagt tgcatatca 1260
agaccttgat ttcccctagac tttgttgtaa gtacacactt atacgtctac tctgtcggt 1320
gtaacatctt aaagacttgt ctacctaattt gaaaacagtt tcgttagtaga gttgtgattg 1380
aactaaaaac atctagacag ctggtaatc ataggatittt aacttaacat taatagctat 1440
tatttactct cgacagggag acgtggagca gccctgtcgt tcggagtggg aaccgaagaa 1500
cgaggacgat agagaggcgg acctgggtcc gggtcggttc ctcaacttca aacactgtaa 1560
ccacaaggcc gtacctctgg ctccagggtt gctctggaaa ggattactgg ggttaattcct 1620
taggagcacc ggtgttccta aaccgggtga gtgggtcacc ccgttaccctg tcgtgtatgt 1680
tgagccttca atatatttctt cttctatgcc ctctaaagaac ttgttgagga tatttgtact 1740
ggtccaaata taggcttcgt gtctacaact gtcctgagac tactcgcgtat actgtttgg 1800
gcgtcgggac aaagggggac tccctagtc gtagacctta gggtctgacy agaccgtcgg 1860
gtagggtcac gtgtggcaca gagagagact cctagccaac gatatggacg gaaagtccct 1920
gacaggagcg aaagttcttg agttctcaact ctgaaatttt agactcctca aggacttctc 1980
cgaagtttgtt atattttctga agtatctgtg gaacggtagc gacagcccta agctccctgg 2040
cctagaaaaa ctttagaccc catccgaaat gctggaaat ataacgctct cacaagtgtt 2100
aaagtggaaag gcgtggaccc ggtgttcctt gcggtactga ttcaacttcc tcaacagtct 2160
taatagagac aatagagaaa taccttaagt gttcgtcttt ctcttagat ctgaggtccc 2220
cccgcaggac cagttacttt aagagttctt gtacttcgaa cgtttagtgc gtgtttccg 2280
gtccctcaac tagtacataa gacgtataact gtgtacacac tcaccggacg tctaccgcga 2340
tctcgaaata ttacctgaag atggagggat gcgaaggacg gtgtattacc ttaacatgtt 2400
ccttattaccc ccctggaaagc acctctacat gatggcctta ctctgggtct tgctcgggt 2460
gggtgagtgc gacggcccgaa catgggtgtc gacggggagac ctcttcaaaac gtctcgtatga 2520
cctggggcac tagggggtcc tgaccccggtg ttcacatac ccgtgttcgt tggtgggtcg 2580
cagcgacatt aaaaagacag ctgggtacca acaattttc cttaacttcc ttttataaaaa 2640
tatacgatcca tttaattttat acgtacttcc ttttttttttcc agaaaatttc ttgttttttttta 2700

WO 2005/019464

PCT/AL2004/00129

- 5 -

ctgttttggaa atatacaaga agttacitga tcatccactt cttctgataat tgtttctcaa	2760
tcttttaaga ttatgattca aagtccctgt cccgggtcgaa ttgcacaata atccctttga	2820
aatazagaat ttatgtaaatt agttttattt ttgcatacata agtcatagtc aatagcacat	2860
atatcccagt cgtggtcctt cggtatattt aaaaatata gtaatatacc tactagaatt	2940
ttatctaattt tttacctata attatctacc atctctagta ctatctagag atctttcaga	3000
atttttacac agatattatg tatccaaaca tctacttgtt atgaacaaat tcgatgcatt	3060
atactaatacc tttttggat tatccaaaca tctacttgtt atgaacaaat tcgatgcatt	3120
tcttggatga tcgctcctgg ataatgtgct aatgcgcaac gttttagttt accattcgta	3180
agaatttggt tatctgtatc cggactttac ctctacaggc aaaggcttag tcacccattc	3240
tctgaaaatg taaggaacac ctctactcaa a	3271

<210> 3
 <211> 3286
 <212> DNA
 <213> virus

<400> 3	
atggatagaa atatcaattt tagtcctgta tttatagaac cttaggtttaa acacgagttt	60
ctattatctc ctcaaaggta tttttatata ttagtttttg aagtaatagt agctttgatt	120
atattgaatt ttttctttaa ggaagaaaata ttatatacat tttttccgtt agctaaggct	180
tctaaaaattt caataaaatag tctgctggat agaactatgt taaaatgtga agaagatgga	240
tctttgtatga ttccgagacc ttccggatc tattccgcct tgagttttaga tggttcaccg	300
gtttaggtttt ccgattgttag tttgctttta tcgtcaataa atggcgcatc ctcatcaaca	360
tctccctact ctatttttaa cagacgataa cggatttat tcttatctat ccgaaaaaaag	420
tgtatgtgaa gctcttgaag acataaatac tattaagaaa tataatggact ttattctaag	480
cgttcttata cgttctaaag agaaaactaga aaatataggta tggtttacg agcttatgag	540
tgaatcgatc aaggctctta taaaagtaaa ggatgtatggt acttttagtaa aagcatttac	600
caagccattt taaaatcctc attccgaaaa gatagtttta gatagaggtt atacttcgga	660
ttttgcataa agcgtataa gactatctag taaaagcagt tataatcttc ccgcaaatac	720
aaaatacata aatccaaacg agaataatgtta tataaacaac ctaatatcac tactgaagcg	780
caactagatc ttccaaaccc acccgctttt tataatgtt ttttccacccaa taaaataataa	840
atacaataat taaaatctcg taaaatgtttaa aaatataatcc taaaatgtt cacggatcg	900

WO 2005/019464

PCT/AU2004/001129

- 6 -

aactagtgg a tccatgtaca gatgcaact cctgtcttgc at:ycactaa ttcttgcact	960
tgtcacaaac agtgcaccta cttcaagttc gacaaagaaa acaaagaaaa cacagctaca	1020
actggagcat ttactgctgg atttacagat gatttgaat ggaatttaata attacaagaa	1080
tcccaaactc accaggatgc tcacatcaa gtttacatg cccaaagaagg ccacagaact	1140
gaaacagctt cagtgtctag aagaagaact caaacctctg gaggaagtgc tgaatttagc	1200
tcaaagcaaa aactttcact tsagacccag ggacttaatc agcaatatca acgttaatgt	1260
tctggaacta aaggatctg aaacaacatt catgtgtgaa tatgcagatg agacagcaac	1320
cattgtgaa ttctgaaca gatggattac ctttgcataa agcatcatct caacactnac	1380
ttgattttt tagatctgtc gaccatttag tatccataaaa ttgaattgtt attatcgata	1440
ataaaatgaga gctgcacccc tccctctggc cagggcagca agccttagcc ttggcttctt	1500
gtttctgctt ttttctggc tagaccgaag tgtactagcc aaggagttga agtttgcac	1560
tttgggtttt cggcatggag accgaagtcc cattgacacc tttcccaactg accccataaa	1620
ggaatccctca tggccacaaag gatttggcca actcacccag ctgggcatgg agcagcatta	1680
tgaacttgg a gatataaa gaaagagata tagaaaattc ttgaatgagt cctataaaca	1740
tgaacaggtt tatattcgaa gcacagacgt tgacccgact ttgatgagtg ctatgacaaa	1800
cctggcagcc ctgtttcccc cagaagggtgt cagcatctgg aatcctatcc tactctggca	1860
gcccattcccg gtgcacacag ttcctcttcc tgaagatcag ttgctataacc tgctttcag	1920
gaactgcctt cgtttcaag aacttgagag tgagactttg aaatcagagg aattccagaa	1980
gaggctgcac cttataagg attttatagc taccttgggaa aactttcag gattacatgg	2040
ccaggacctt ttggaaattt ggagtaatgt ctacgaccct ttatattgtg agagttca	2100
caatttcact ttacccctcc gggccactga ggacaccatg actaagttga gagaattgtc	2160
agaattgtcc ctccgtcccc tctatggaaat tcacaaggcag aaagagaaaat ctaggctcca	2220
aggggggtgtc ctggcataatg aaatccctaa tcacatgaag agagcaactc agataccaag	2280
ctacaaaaaa cttatcatgt attctgcgc tgcacactact gtgagtgcc tacagatggc	2340
gctagatgtt tacaacggac tccttccctcc ctatgcttct tgccacttga cggaaattgt	2400
ctttgagaag ggggagtaat ttgtggagat gtactatcg aatgagacgc agcacgagcc	2460
gtatccctc atgctacctg gctgcagccc tagctgtcct ctggagaggt ttgctgagct	2520
ggttggccct gtgatccctc aagactggtc cacggagtgt atgaccacaa acagccatca	2580
aggtaatgtgag gacagtacag attaattttt ctgtcgaccc atggttgtta aaaaggaatt	2640

WO 2005/019461

PCT/AT/2004 001179

- 7 -

gaaagaaaaat attttatatac gtaataaaatt aaataatgcattt	2700
taaagaactt gaaatgacaa aacccatatat gttttcaat gaacttagtag gtgaagaaga	2760
ctataacaaa gagtttagaaa attctaatac taagtttcaa ggacagggcc agcttaagct	2820
gttatttagga gaactttattt tcttaatac attaatcaag aataaaaacgt tatgttcaga	2880
tacagttatc gtgtatatacg ggtcagcacc aggaagccat atazattttt tatatcatta	2940
tatggatgt cttaaaatag atttaaaatg gatattaata gatggtagag atcatgatcg	3000
atctctagaa agtcttaaaa atgtgtctat aatacatagg tttgttagatg aacaatactt	3060
gtttaagcta cgttaatatga ttagaaaaaa ccataaaattt gtactgatata cagatattag	3120
atcgctaaga ggaaaagaac ctactagcga ggaccttata cacgattacg cgttgcagaa	3180
tcaaatggta agcatttta aaccaatagc atcgagcctg aaatggagat gtccgtttcc	3240
ggatcagtgg ataagagact tttacattcc ttgtggagat gagttt	3286

<210> 4
 <211> 3286
 <212> DNA
 <213> virus

<400> 4	
tacctatctt tatagttaaa atcaggacat aaatatctt gatccaaattt tgtgctcaaa	60
gataatagag gagtttccat aaaaatatat aatcaaaaac ttcatatca tcgaaaactaa	120
tataacttaa aaaagaaaattt ctttctttat aatataatgtt aaaaaggcaa tcgattcgga	180
agattttaa gttatttatac agacgaccta tcttgatatac attttacact tcttctacct	240
agaaaactact aaagctctgg aaggccatag ataagccgga actcaaatac accaagtggc	300
cattcctaaa ggctaacatc aaacgaaaat agcagttattt taccgcgttag gagtagttgt	360
agaggaatga gataaaaattt gtctgttattt gcctaaaata agaatagata ggcttttttc	420
actactactt cgagaacttc tgtattttatg ataattttt atataacctga aataagattc	480
gcaagaatat gcaagatttc tcttgcattt ttatatactt acaagaatgc tcggataactc	540
acttagcaaa ttccgagaat aatttcattt cctactacca tggaaatcattt ttcgtaaaatg	600
gttcggtaac aatttaggag taaggctttt ctatcaaaaat ctatctccaa tatgaagcct	660
aaaacgatat tcgcattttt ctgatagatc attttcgatca atataatgaag ggcgtttatg	720
ttttatgtat ttaggtttgc tcttatacat atatttgttg gattatagtg atgacttcgc	780
gttgatctag aaggtttggg tggcgaaaaa atatcattca aaaagttgggt atttattttt	840

WGS 2005/019464

PCT AT 2004/001129

- 8 -

tatgttatta	ataaaagagc	attttcatct	tttatataag	ctttaataac	g:gcagatc	900
ttgatcaact	aggcacatgt	cctacgttga	ggacagaacg	taacgtgatt	aagaacgttga	960
acagtgttg	tcacgtggat	gaagttcaag	ctgtttcttt	tgtttcttt	gtgtcgatgt	1020
tgacctcg	aatgacgacc	taaatgtcta	ctaaaactta	ccttaattat	taatgttctt	1080
agggtttgag	tggtcctacg	agtgtaaatt	caaaaatgtac	gggttcttcc	ggtgtcttga	1140
ctttgtcgaa	gtcacagatc	ttcttcttga	gtttggagac	ctcccttacg	acttaaattcg	1200
attttcgttt	ttgaaagtga	attctgggc	cctgaatttag	tcgttatagt	tgcattatca	1260
agacctttagat	ttcccttagac	tttggtaaa	gtacacactt	atacgtctac	tctgtcgttg	1320
gtaacatctt	aaagacttgt	ctacctaattg	gaaaacagtt	tcgttagtaga	gttgtgattt	1380
aactaaaaac	atctagacag	ctggtaattc	ataggatttt	aacttaacat	taatagctat	1440
tatttactct	cgacgtgggg	aggaggaccg	gtccccgtgt	tcggaatcgg	aaccgaagaa	1500
caaagacgaa	aaaaagacccg	atctgggttc	acatgatcgg	ttccctcaact	tcaazacactg	1560
aaaccacaaa	gccgtacctc	tggcttcagg	gttaactgtgg	aaagggtgac	tgggttattt	1620
ccttaggagt	accgggtgtc	ctaaaccgg	tgagtgggtc	gaccggtaacc	tcgtcgtaat	1680
acttgaacct	ctcatatattt	cttctctat	atcttttaag	aacttactca	ggatattttgt	1740
acttgc当地	atataagctt	cgtgtctgca	actggcttga	aactactcac	gatactgttt	1800
ggaccgtcgg	gacaaagggg	gtcttccaca	gtcgttagacc	ttaggatagg	atgagaccgt	1860
cggtagggc	cacgtgtgtc	aggagaaag	acttctagtc	aacgatatgg	acggaaagtc	1920
cttgacggga	gcaaaagttc	ttgaactctc	actctgaaac	tttagtctcc	ttaaggtctt	1980
ctccgacgtg	ggaatattcc	taaaatatcg	atggaaccct	tttgaagtc	ctaatgtacc	2040
ggtcctggaa	aaaccttaaa	cctcatttca	gatgctggga	aataaaacac	tctcacaagt	2100
gttaaagtga	aatgggagga	cccggtgact	cctgtggtac	tgattcaact	ctcttaacag	2160
tcttaacagg	gaggacaggg	agatacctta	agtgttcgtc	tttctcttta	gatccgaggt	2220
tcccccacag	gaccagttac	tttaggagtt	agtgtacttc	tctcggtgag	tctatggttc	2280
gatgtttttt	gaatagtaca	taagacgcgt	actgtgtatga	cactcaccgg	atgtctaccg	2340
cgatctacaa	atgttgcttg	aggaaggagg	gatacgaaga	acggtaact	gccttaacat	2400
gaaactcttc	cccctcatga	aacaccctta	catgatagcc	ttactctgcg	tcgtgctcgg	2460
cataggggag	tacgatggac	cgacgtcggg	atcgacagga	gacctctcca	aacgactcga	2520

W0 2005/0119464

PCT/AT/2004/001129

- 9 -

ccaaacggga cactagggag ttctgaccag gtcgcctcaca tactggtgtt tgtcggtagt	2580
tccatgactc ctgtcatgtc taataaaaaa gacagctggg taccacaat ttcccttza	2640
ctttccctta taaaatatac cattatcaa tttatacgtta ctccctgtag tcctcaga&&	2700
atttcttcaa ctttactgtt ttgaaatata caagaagttta ctgtatc cacttcttct	2760
gatattgttt ctcaatctt taagattatg attcaaagtt cctgtcccg tcgaattcga	2820
caataatccctt ctgaaataaa agaattatg taattagttt ttattttgcataatc	2880
atgtcaatag cacatatac ccagtcgtgg tccttcggta tatttaaaaa atatagtaat	2940
ataccatcta gaattttatc taaattttac ctataattat ctaccatctc tagtactago	3000
tagagatctt tcagaatttt tacacagata ttatgtatcc aaacatctac ttgttatgaa	3060
caaattcgat gcattatact aatcctttt ggtattttaa catgactataa gtctataatc	3120
tagcgattct ccttttcttg gatgatcgct cctggataat gtgctaatgc gcaacgtctt	3180
agtttaccat tcgtaagaat ttggttatcg tagctcggac tttacctcta caggcaaagg	3240
cctagtcacc tattctctga aaatgttaagg aacacctcta ctcataaa	3286

<210> 5
 <211> 381
 <212> PRT
 <213> rat

<400> 5
 Met Arg Ala Val Pro Leu His Leu Val Gly Thr Ala Ser Leu Thr Leu
 1 5 10 15

Gly Phe Leu Leu Leu Ser Leu Arg Leu Asp Pro Gly Gln Ala Lys
 20 25 30

Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Gly Pro
 35 40 45

Ile Glu Thr Phe Pro Asn Asp Pro Ile Lys Glu Ser Ser Trp Pro Gln
 50 55 60

Gly Phe Gly Gln Leu Thr Lys Trp Gly Met Gly Gln His Tyr Glu Leu
 65 70 75 80

Gly Ser Tyr Ile Arg Arg Arg Tyr Gly Arg Phe Leu Asn Asn Ser Tyr
 85 90 95

Lys His Asp Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr Leu
 100 105 110

Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly Ile
 115 120 125

WO 2005/019464

PCT/AL2004/001129

- 10 -

Ser Ile Trp Asn Pro Arg Leu Leu Trp Gln Pro Ile Pro Val His Thr
130 135 140

Val Ser Leu Ser Glu Asp Arg Leu Leu Tyr Leu Pro Phe Arg Asp Cys
145 150 155 160

Pro Arg Phe Gln Glu Leu Lys Ser Glu Thr Leu Lys Ser Glu Glu Phe
165 170 175

Leu Lys Arg Leu Gin Pro Tyr Lys Ser Phe Ile Asp Thr Leu Pro Ser
180 185 190

Leu Ser Gly Phe Glu Asp Gln Asp Leu Phe Glu Ile Trp Ser Arg Leu
195 200 205

Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Phe Arg Thr
210 215 220

Trp Ala Thr Glu Asp Ala Met Thr Lys Leu Lys Glu Leu Ser Glu Leu
225 230 235 240

Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gin Lys Glu Lys Ser Arg
245 250 255

Leu Gln Gly Gly Val Leu Val Asn Glu Ile Leu Lys Asn Met Lys Leu
260 265 270

Ala Thr Gln Pro Gln Lys Ala Arg Lys Leu Ile Met Tyr Ser Ala Tyr
275 280 285

Asp Thr Thr Val Ser Gly Leu Gln Met Ala Leu Glu Leu Tyr Asn Gly
290 295 300

Leu Leu Pro Pro Tyr Ala Ser Cys His Ile Met Glu Leu Tyr Gln Asp
305 310 315 320

Asn Gly Gly Thr Phe Val Glu Met Tyr Tyr Arg Asn Glu Thr Gln Asn
325 330 335

Glu Pro Tyr Pro Leu Thr Leu Pro Gly Cys Thr His Ser Cys Pro Leu
340 345 350

Glu Lys Phe Ala Glu Leu Leu Asp Pro Val Ile Pro Gln Asp Trp Ala
355 360 365

Thr Glu Cys Met Gly Thr Ser Asn His Gln Ala Ser Leu
370 375 380

<210> 6
<211> 386
<212> PRT
<213> human

<400> 6
Met Arg Ala Ala Pro Leu Leu Leu Ala Arg Ala Ala Ser Leu Ser Leu
1 5 10 15

WO 2005/019464

PC1 AU2004-001129

- 11 -

Gly Phe Leu Phe Leu Leu Phe Phe Trp Leu Asp Arg Ser Val Leu Ala
20 25 30

Lys Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Ser
35 40 45

Pro Ile Asp Thr Phe Pro Thr Asp Pro Ile Lys Glu Ser Ser Trp Pro
50 55 60

Gln Gly Phe Gly Gln Leu Thr Gln Leu Gly Met Glu Gln His Tyr Glu
65 70 75 80

Leu Gly Glu Tyr Ile Arg Lys Arg Tyr Arg Lys Phe Leu Asn Glu Ser
85 90 95

Tyr Lys His Glu Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr
100 105 110

Leu Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly
115 120 125

Val Ser Ile Trp Asn Pro Ile Leu Leu Trp Gln Pro Ile Pro Val His
130 135 140

Thr Val Pro Leu Ser Glu Asp Gln Leu Leu Tyr Leu Pro Phe Arg Asn
145 150 155 160

Cys Pro Arg Phe Gln Glu Leu Glu Ser Glu Thr Leu Lys Ser Glu Glu
165 170 175

Phe Gln Lys Arg Leu His Pro Tyr Lys Asp Phe Ile Ala Thr Leu Gly
180 185 190

Lys Leu Ser Gly Leu His Gln Asp Leu Phe Gly Ile Trp Ser Lys
195 200 205

Val Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Leu Pro
210 215 220

Ser Trp Ala Thr Glu Asp Thr Met Thr Lys Leu Arg Glu Leu Ser Glu
225 230 235 240

Leu Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gln Lys Glu Lys Ser
245 250 255

Arg Leu Gln Gly Gly Val Leu Val Asn Glu Ile Leu Asn His Met Lys
260 265 270

Arg Ala Thr Gln Ile Pro Ser Tyr Lys Lys Leu Ile Met Tyr Ser Ala
275 280 285

His Asp Thr Thr Val Ser Gly Leu Gln Met Ala Leu Asp Val Tyr Asn
290 295 300

Gly Leu Leu Pro Pro Tyr Ala Ser Cys His Leu Thr Glu Leu Tyr Phe
305 310 315 320

WO 2005/019464

PCT/AT 2004/001122

- 12 -

Glu Lys Gly Glu Tyr Phe Val Glu Met Tyr Tyr Arg Asn Gln Thr Gln
325 330 335

His Glu Pro Tyr Pro Leu Met Leu Pro Gly Cys Ser Pro Ser Cys Pro
340 345 350

Leu Glu Arg Phe Ala Glu Leu Val Gly Pro Val Ile Pro Gln Asp Trp
355 360 365

Ser Thr Glu Cys Met Thr Thr Asn Ser His Gln Gly Thr Glu Asp Ser
370 375 380

Thr Asp
385

<210> 7
<211> 156
<212> PRT
<213> human

<400> 7
Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu
1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys
20 25 30

Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu
35 40 45

Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr
50 55 60

Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Gln Leu Lys Gln Leu Gln
65 70 75 80

Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala
85 90 95

Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile
100 105 110

Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys
115 120 125

Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp
130 135 140

Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr
145 150 155

<210> 8
<211> 30
<212> DNA
<213> rat

<400> 8

WO 2005/019464

PCT/AU2004/001129

- 13 -

ctctgaggat	cggttgctat	acctgccttt	30
<210> 9			
<211> 30			
<212> DNA			
<213> rat			
<400> 9			
acttagtcat	ggcgccctct	gtggcccaagg	30
<210> 10			
<211> 30			
<212> DNA			
<213> human			
<400> 10			
ttcaggatta	catggccagg	acctttttgg	30
<210> 11			
<211> 30			
<212> DNA			
<213> human			
<400> 11			
ctcagtacct	tgtatggctgt	tttgtggtcat	30

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.