Decision Under Uncertainty

An introduction UV - MAD

Guillaume Lozenguez

at imt-lille-douai.fr

Last improvement in Artificial Intelligence

 \triangleright Nov. 2007, Carnegie-Mellon gagne le Darpa Urban Challenge (2M\$)

▶ *Oct. 2015*, Victory of d' over professional player

GO: 10^{170} positions, 10^{600} games (chess: 10^{120} games)

Last improvement in Artificial Intelligence

In France:

March 2018, Rapport Villani www.aiforhumanity.fr

Return to the notion of complexity (Go)

GO: 10^{170} positions, 10^{600} games (chess: 10^{120} games)

A classical 3 GHz computer: 3×10^9 op. per second $\rightarrow 2.6 \times 10^{14}$ op. a day $\rightarrow 10^{17}$ op. a year

Enumerating all games O(n) with $n = 10^{600}$: arround 10^{583} years. \rightarrow requires decomposed model and statistics...

Introduction - This Course

Decision Under Uncertainty

Is an introduction to models and algorithms to perform decision-making at a time step t by considering potential effects.

- ▶ 19 hours (5 sessions)
- Mainly as tutorials
- A simple dice game as a playground

Contents

- ▶ Introduction
- Class of problems
- ► The notion of Agent
- Decision Making Process of an agent

Class of problems - Deterministic Planning

is the process that determines *a succession of actions* to drive a system from an initial state to a target state.

Deterministic case:

the effects, by doing an action, from a specific state is certain.

Class of problems - Deterministic Planning

Is the process that determines *a succession of actions* to drive a system from an initial state to a target state.

Deterministic case:

▶ The effects, by doing an action, from a specific state is certain.

Class of problems - Determine a Plan

Finding a *path* in a *graph* modeling all possible evolutions

Class of problems - Plan Optimization

Finding an *optimized* path in a *weighted* Graph

Class of problems - Stokastic Planning

Build a *policy*:

Associate an action to perform to each reachable state

Class of problems - Stokastic Planning

Then the effective succession of actions remains stochastic

Class of problems - Game theory

Few entities control the same system (with different goals)

- Which actions for each entity?
- Which consequences?

Class of problems - Game theory

Few entities control the same system With different goals.

Uncertainty: At last on the actions of the others.

Class of problems - Control Complex systems

Complex systems: - A lot of entities in interactions

▶ *Uncertainty*: ...

Vocabulary

- graph composed of node and edges
- graph composed of state and action (State Automata)
- planning: finding a valid succession of actions
- determinist versus uncertain / stochastic
- system, control (automation)
- Multi-Agent System, Decision Making (AI)

Notion of Agent

"I act therefore I am"

- my actions have an effect on the world
- **and** I have the choice to act or not

cf. "BullShit Jobs" - David Graeber (2019) (p.132-133 fr. in version)

or the joy to be cause - Karl Groos (1901)

Notion of Agent - Simple definition

Entity capable of perception and action evolving in an environment.

Question:

How to choose appropriate action to perform considering the perception at a each time step?

Notion of Agent - Simple definition

Open loop control

rarely determinist, mostly uncertain (even stochastic)

Notion of Agent - Complementary Notions

Agent:

- defining by a perception-state, goals and a policy to achieve its (BDI model: Belief - Desire - Intention)
- with different positions in social structure (AGR model: Agent - Group - Role)
- capable of communication
- capable of adaptation (learning)
- driven by emotions
- **...**

Course notion to acquire

From *reactive control*

to

deliberative control

Immediate response to stimuli

model and statistical decision-making

Script: if then ... else if ...

versus

Course notion to acquire

Decision-making under uncertainty

- Script, Policy and Decision Tree
- Statistical evolution: Bayesian Network
- Planning: Markov Decision Process

Zombie dice

A Stokastic Dice Game

- ▶ Players are Starved Zombies
- dice are humans
- Zombies eat human brains
- and can't take more than 2 shots

Zombie dice

A Stokastic Dice Game

3 brains, 2 footprints, 1 shotgun

2 brains, 2 footprints, 2 shotguns

1 brain, 2 footprints, 3 shotguns

Complete Dice Set:

Decision:

Score or Continue

Uncertainty:

- dice selection
- dice result
- score evolution

