

	1º ESO A D
Nombre:	4° ESO A-B

Instrucciones:

- Cada ejercicio puntúa como máximo con 2 puntos. Para obtener la puntuación máxima, será necesario hacer un dibujo del problema, plantear bien las ecuaciones y resolverlas con precisión, explicando lo que se hace en cada paso.
- 1.- Razone las repuestas a las siguientes preguntas:
 - a) Si el cero de energía potencial gravitatoria de una partícula de masa **m** si sitúa en la superficie de la Tierra, ¿cuál es el valor de la energía potencial de la partícula cuando ésta se encuentra a una distancia infinita de la Tierra?.
 - b) ¿Puede ser negativo el trabajo realizado por una fuerza gravitatoria? ¿puede ser negativa la energía potencial?
- 2.- Se arrastra un cuerpo de 15 kg por una mesa horizontal, sin rozamiento, con dos fuerzas de 30 N y 20 N cada una que forman un ángulo de 30° y 45° respectivamente con la mesa.
 - a) ¿Con qué aceleración se mueve el cuerpo?
 - b) Si en el instante de aplicar la fuerza se movía con una velocidad de 3 m/s, ¿qué velocidad habrá alcanzado a los 5 s?
- 3.- Se quiere subir un cuerpo de 200 kg por un plano inclinado 30° con la horizontal. Si el coeficiente de rozamiento entre el cuerpo y el plano es 0,5 calcular:
 - a) El valor de la fuerza de rozamiento.
 - La fuerza que debería aplicarse al cuerpo para que ascendiera por el plano a velocidad constante.
- 4.- Un bloque de 2 kg se lanza hacia arriba, por una rampa rugosa ($\mu = 0.2$) que forma un ángulo de 30° con la horizontal, con una velocidad de 6 m s⁻¹. Tras su ascenso por la rampa, el bloque desciende y llega al punto de partida con una velocidad de 4,2 m s⁻¹.
 - a) Dibuje un esquema de las fuerzas que actúan sobre el bloque cuando asciende por la rampa y, en otro esquema, las que actúan cuando desciende e indicar el valor de cada fuerza. ¿se verifica el principio de conservación de la energía mecánica en el proceso descrito? Razone la respuesta.
 - b) Calcule el trabajo de la fuerza de rozamiento en el ascenso del bloque y comente el signo del resultado obtenido.

I.E.E.S. Juan Ramón Jiménez

- 5.- Una bomba de 1,5 kW de potencia extrae agua de un pozo de 20 metros de profundidad a razón de 300 litros por minuto. Calcula:
 - a) El trabajo necesario para elevar cada litro de agua.
 - b) El trabajo realizado cada minuto.
 - c) La potencia desarrollada por la bomba.
 - d) El rendimiento de la bomba.

	1º ESO A D
Nombre:	4° ESO A-B

Instrucciones:

- Cada ejercicio puntúa como máximo con 2 puntos. Para obtener la puntuación máxima, será necesario hacer un dibujo del problema, plantear bien las ecuaciones y resolverlas con precisión, explicando lo que se hace en cada paso.
- 1.- Comente las siguientes frases:
 - a) La energía mecánica de una partícula permanece constante si todas las fuerzas que actúan sobre ella son conservativas.
 - b) Si la energía mecánica de una partícula no permanecer constante, es porque una fuerza disipativa realiza trabajo.
- 2.- Una bomba de 1,5 kW de potencia extrae agua de un pozo de 20 metros de profundidad a razón de 300 litros por minuto. Calcula:
 - a) El trabajo necesario para elevar cada litro de agua.
 - b) El trabajo realizado cada minuto.
 - c) La potencia desarrollada por la bomba.
 - d) El rendimiento de la bomba.
- 3.- Se quiere subir un cuerpo de 200 kg por un plano inclinado 30° con la horizontal. Si el coeficiente de rozamiento entre el cuerpo y el plano es 0,5 calcular:
 - a) El valor de la fuerza de rozamiento.
 - b) La fuerza que debería aplicarse al cuerpo para que ascendiera por el plano a velocidad constante.
- 4.- Un bloque de 2 kg de masa se desliza desde un punto $\bf A$, con una velocidad $v_A=10$ m/s por un plano horizontal de 9 m de longitud con un coeficiente de rozamiento dinámico de valor $\mu_1=0.2$. Al final del plano, señalado con $\bf B$ en la figura, existe una rampa inclinada 60° , con $\mu_2=0.3$. Se desea saber la velocidad del bloque en el punto $\bf B$, la distancia recorrida sobre el plano inclinado hasta que se para el bloque, y la posición final del mismo.

Departamento de Física y Química

I.E.E.S. Juan Ramón Jiménez

- 5.- Se arrastra un cuerpo de 25 kg por una mesa horizontal, sin rozamiento, con dos fuerzas de 70 N y 25 N que forman ángulos de 30° y 60° respectivamente con la mesa.
 - a) ¿Con qué aceleración se mueve el cuerpo?
 - b) ¿Qué tiempo tardará en alcanzar una velocidad de 2 m/s, suponiendo que parte del reposo?