What is Claimed:

1. A device for handling a fluid comprising:

a corona discharge device including at least one corona discharge electrode and at least one collector electrode; and

an electric power supply connected to said corona discharge and collector electrodes to supply an electric power signal by applying a voltage V_t between said electrodes so as to cause a corona current I_t to flow between said corona discharge and collector electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, a current ripple value $I_{a.c.}/I_{d.c.}$ related to a voltage ripple value $V_{a.c.}/V_{d.c.}$ as

$$\frac{I_{a.c.}}{I_{d.c.}} = \frac{C \cdot V_{a.c.}}{V_{d.c.}}$$

wherein $C \ge 2$.

- 2. The device according to claim 1 wherein $C \ge 10$.
- 3. The device according to claim 1 wherein $C \ge 100$.
- 4. The device according to claim 1 wherein $C \ge 1000$.
- 5. The device according to claim 1 wherein a frequency of said alternating component of said voltage $V_{a.c.}$ has a main frequency well in excess of an audible sound level.
- 6. The device according to claim 1 wherein a frequency of said alternating component of said voltage $V_{a.c.}$ is in a range above 30 kHz.

- 7. The device according to claim 1 wherein a frequency of said alternating component of said voltage $V_{a.c.}$ is in a range of 50 kHz to 1 MHz.
- 8. The device according to claim 1 wherein a frequency of said alternating component of said voltage $V_{a.c.}$ is approximately 100 kHz.
- 9. The device according to claim 1 wherein said amplitude of said constant component of said voltage of said electric power signal is within a range of 10 kV to 25 kV.
- 10. The device according to claim 1 wherein said amplitude of said constant component of said voltage $V_{d.c.}$ is greater than 1 kV.
- 11. The device according to claim 1 wherein said amplitude of said constant component of said voltage $V_{d.c.}$ of said electric power signal is approximately 18 kV.
 - 12. The device according to claim 1 wherein:

said amplitude of said alternating component of said corona current $I_{a.c.}$ of said electric power signal is no more than 10 times greater than said amplitude of said constant current component $I_{d.c.}$ of said electric power signal; and

said amplitude of said constant current component $I_{d.c.}$ of said electric power signal is no more than 10 times greater than said amplitude of said alternating component $I_{a.c.}$ of said corona current of said electric power signal.

13. The device according to claim 1 wherein said amplitude of an alternating component of said voltage $V_{a.c.}$ of said electric power signal is no greater than one-tenth of said amplitude of said constant component of said voltage $V_{d.c.}$.

- 14. The device according to claim 1 wherein said amplitude of said alternating component of said voltage of said electric power signal $V_{a.c.}$ is no more than 1 kV.
- 15. The device according to claim 1 wherein said constant component of said corona current $I_{d.c.}$ is at least 100 μ A.
- 16. The device according to claim 1 wherein said constant component of said corona current $I_{d.c.}$ is at least 1 mA.
- 17. The device according to claim 1 wherein a reactive capacitance between said corona discharge electrodes has a capacitive impedance that corresponds a highest harmonic of a frequency of said alternating component of said voltage that is no greater than $10~\text{M}\Omega$.
- 18. The device according to claim 1 wherein the potential of the corona electrode is close to a ground potential.
- 19. The device according to claim 18 wherein the potential of the corona discharge electrode is within ± 50 V of said ground potential.
- 20. The device according to claim 1 wherein the potential of the collecting electrode is close to a ground potential.
- 21. The device according to claim 20 wherein the potential of the collecting electrode is within ± 50 V of said ground potential.
- 22. The device according to claim 1 wherein the potential of neither said corona discharge electrode nor said collecting electrode is close to a ground potential.

- 23. The device according to claim 22 wherein the potentials of both said corona discharge electrode and said collecting electrode are at least 10 V different from said ground potential.
- 24. The device according to claim 23 wherein the potentials of both said corona discharge electrode and said collecting electrode are at least 50 V different from said ground potential.

25. A device for handling a fluid comprising:

a corona discharge device including at least one corona discharge electrode and at least one collector electrode; and

an electric power supply connected to said corona discharge and collector electrodes to supply an electric power signal by applying a voltage V_t between said electrodes so as to cause a corona current I_t to flow between said corona discharge and collector electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, wherein $V_{a.c.} \ll V_{d.c.}$ and $I_{a.c.} \sim I_{d.c.}$

26. A device for handling a fluid comprising:

a corona discharge device including at least one corona discharge electrode and at least one collector electrode; and

an electric power supply connected to said corona discharge and collector electrodes to supply an electric power signal by applying a voltage V_t between said electrodes so as to cause a corona current I_t to flow between said corona discharge and collector electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, wherein $V_{a.c.} < V_{d.c.}$ and $I_{a.c.} > I_{d.c.}$.

27. A device for handling a fluid comprising:

a corona discharge device including at least one corona discharge electrode and at least one collector electrode; and

an electric power supply connected to said corona discharge and collector electrodes to supply an electric power signal by applying a voltage V_t between said electrodes so as to cause a corona current I_t to flow between said corona discharge and collector electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, wherein $V_{RMS} \simeq V_{MEAN}$ and $I_{RMS} > I_{MEAN}$.

28. A method of handling a fluid comprising:

introducing the fluid to a corona discharge device including at least one corona discharge electrode and at least one collector electrode positioned proximate said corona discharge electrode so as to provide a total inter-electrode capacitance within a predetermined range; and

supplying an electric power signal to said corona discharge device by applying a voltage V_t between said corona discharge and collector electrodes so as to induce a corona current I_t to flow between said electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, a current ripple value $I_{a.c.}/I_{d.c.}$ related to a voltage ripple value $V_{a.c.}/V_{d.c.}$ as

$$\frac{I_{a.c.}}{I_{d.c.}} = \frac{C \cdot V_{a.c.}}{V_{d.c.}}$$

wherein $C \ge 2$.

29. The device according to claim 28 wherein $C \ge 10$.

- 30. The device according to claim 28 wherein $C \ge 100$.
- 31. The device according to claim 28 wherein $C \ge 1000$.
- 32. The method according to claim 28 further comprising a step of supplying said power signal to have and alternating component of said voltage $V_{a.c.}$ with a main frequency well in excess of an audible sound level
- 33. The method according to claim 28 further comprising a step of supplying said power signal to have a frequency of said alternating component of said corona current is in the range above 30 kHz.
- 34. The method according to claim 28 wherein a frequency of said alternating component of said voltage is in a range of 50 kHz to 1 MHz.
- 35. The method according to claim 28 wherein a frequency of said alternating component of said voltage is approximately 100 kHz.
- 36. The method according to claim 28 wherein said amplitude of said constant component of said voltage $V_{d.c.}$ is within a range of 10 kV to 25 kV.
- 37. The method according to claim 28 wherein said amplitude of said constant component of said voltage $V_{d,c}$ is greater than 1 kV.
- 38. The method according to claim 28 wherein said amplitude of said constant component of said voltage $V_{d.c.}$ is approximately 18 kV.
 - 39. The method according to claim 28 wherein:

said amplitude of said alternating component of said corona current $I_{a.c.}$ is no more than 10 times greater than said amplitude of said constant component of said corona current $I_{d.c.}$; and

said amplitude of said constant component of said corona current $I_{d.c.}$ is no more than 10 times greater than said amplitude of said alternating component of said corona current $I_{d.c.}$.

- 40. The method according to claim 28 wherein said amplitude of said alternating component of said voltage $V_{a.c.}$ is no greater than one-tenth of said amplitude of said constant component of said voltage $V_{d.c.}$.
- 41. The method according to claim 28 wherein said amplitude of said alternating component of said voltage $V_{a.c.}$ of said electric power signal is no greater than 1 kV.
- 42. The method according to claim 28 wherein said constant component of said corona current $I_{d.c.}$ is at least 100 μ A.
- 43. The method according to claim 28 wherein said constant component of said corona current $I_{d.c.}$ is at least 1 mA.
- 44. The method according to claim 28 wherein a reactive capacitance between said corona discharge electrodes and said collector electrodes has a capacitive impedance that corresponds to a highest harmonic of a frequency of said alternating component of said voltage and is no greater than $10 \text{ M}\Omega$.

45. A method of handling a fluid comprising:

introducing the fluid to a corona discharge device including at least one corona discharge electrode and at least one collector electrode positioned proximate said corona discharge electrode so as to provide a total inter-electrode capacitance within a predetermined range; and

supplying an electric power signal to said corona discharge device by applying a voltage V_t between said corona discharge and collector electrodes so as to induce a

corona current I_t to flow between said electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, and wherein $V_{a.c.} << V_{d.c.}$ and $I_{a.c.} \sim I_{d.c.}$

46. A method of handling a fluid comprising:

introducing the fluid to a corona discharge device including at least one corona discharge electrode and at least one collector electrode positioned proximate said corona discharge electrode so as to provide a total inter-electrode capacitance within a predetermined range; and

supplying an electric power signal to said corona discharge device by applying a voltage V_t between said corona discharge and collector electrodes so as to induce a corona current I_t to flow between said electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, and wherein $V_{a.c.} < V_{d.c.}$ and $I_{a.c.} > I_{d.c.}$

47. A method of handling a fluid comprising:

introducing the fluid to a corona discharge device including at least one corona discharge electrode and at least one collector electrode positioned proximate said corona discharge electrode so as to provide a total inter-electrode capacitance within a predetermined range; and

supplying an electric power signal to said corona discharge device by applying a voltage V_t between said corona discharge and collector electrodes so as to induce a corona current I_t to flow between said electrodes, both said voltage V_t and corona current I_t each being a sum of respective constant d.c. and alternating a.c. components

superimposed on each other whereby $V_t = V_{d.c.} + V_{a.c.}$ and $I_t = I_{d.c.} + I_{a.c.}$, and wherein $V_{RMS} \simeq V_{MEAN}$ and $I_{RMS} > I_{MEAN}$.