

Intel® Processor Architecture

January 2013

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

Intel® Processor Segments Today

Architecture		Target Platforms	ISA	A Specific Features	
(intel® atom™ inside™	Intel® ATOM™ Architecture	phone, tablet, netbook, low- power server	x86 up to SSSE-3, 32 and 64 bit	optimized for low-power, in- order	
(intel) inside Xeon*	Intel® Core™ Architecture	mainstream notebook, desktop, server	x86 up to Intel® AVX, 32 and 64bit	flexible feature set covering all needs	
(intel [®] inside [®] Itanium [®]	Intel® Itanium® Architecture	high end server	IA64, x86 by emulation	RAS, large address space	
(intel) inside Xeon Phi	Intel® MIC Architecture	accelerator for HPC	x86 and Intel® MIC Instruction Set	+60 cores, optimized for Floating-Point performance	

Itanium® 9500 (Poulson) New Itanium Processor

Poulson Processor

- Compatible with Itanium[®] 9300 processors (Tukwila)
- New micro-architecture with 8 Cores
- 54 MB on-die cache
- Improved RAS and power management capabilities
- Doubles execution width from 6 to 12 instructions/cycle
- 32nm process technology
- Launched in November 2012

Compatibility provides protection for today's Itanium® investment

Intel® XEON™ Phi Former Code Name "Knights Corner"

Intel® XEON™ Phi - The first product implementation of the Intel® Many Integrated Core Architecture (Intel® MIC)

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

X86: From Smartphones to ... Motorola RAZR* i

- Launched September 2012
- RAZR i is the first smartphone that can achieve speeds of 2.0 GHz

Processor:

Intel® ATOM™ Z2460

X86: ... to Supercomputers LRZ SuperMUC System

- Installed summer 2012
 - Most powerful x86-architecture based computer
 - #6 on Top500 list
 - More than 150000 cores

Processor:

- Intel® Xeon®E5-2680("SandyBridge")
- Intel® Xeon® E7-4870 ("Westmere")

Intel Tick-Tock Roadmap for Mainstream x86 Architecture since 2006

Intel® Core™
MicroArchitecture

Micro Architecture Codename "Nehalem"

Generation Intel® Core™ Micro Architecture

3nd Generation Intel® Core™ Micro Architecture

Merom

Penrvn

NEW

Process Technology

Nehalem

Westmere

NEW

Process Technology

TICK

Sandy Bridge

Ivy Bridge

NFW

Process Technology

22nm

TICK

NEW Micro architecture

> 65_{nm} 45nm

> > TICK

NEW Micro architecture

45nm

TOCK

32nm

NEW Micro architecture

32nm

TOCK

2006

TOCK

2007 SSSE-3 SSE4.1

2008

SSE4.2

2009

AES

2011

AVX

2012

7 new instructions

TICK + TOCK = SHRINK + INNOVATE

To be continued ...

4 nth Generation Intel® Core™ Micro Architecture	TBD	TBD	TBD	TBD	TBD
Haswell	Broadwell	TBD	TBD	TBD	TBD
NEW Micro architecture 22nm	NEW Process Technology 14nm	NEW Micro architecture 14nm	NEW Process Technology 10nm	NEW Micro architecture 10nm	NEW Process Technology 7nm
TICK	ТОСК	TICK	TOCK	TICK	ТОСК
2013 AVX-2	>= 2014	???	???	???	???

TICK + TOCK = SHRINK + INNOVATE

Registers State for Intel® Pentium® 3 Processor (1998)

IA32-INT Registers

Fourteen 32-bit registers Scalar data & addresses Direct access to regs MMX Technology / IA-FP Registers

Eight 80/64-bit registers
Hold data only
Direct access to MM0..MM7
No MMX[™] Technology / FP
interoperability

SSE Registers

Eight 128-bit registers Hold data only:

4 x single FP numbers

2 x double FP numbers

128-bit packed integers

SSE Vector Types

Intel® SSE2

AVX Vector Types

Intel® AVX

Intel® AVX2 (Future)

X86 ISA: The Instruction Set

- The instruction set for the x86 architecture has been extended numerous times since the set supported by the 8086 processor
 - See http://en.wikipedia.org/wiki/X86_instruction_listings
 for an excellent overview
- Today, the "base" instructions set ("IA32 ISA") is the one supported by the first 32bit processor -80386
- Multiple, "smaller" extensions added then before SSE (1998 / Intel® Pentium® 3) like
 - MMX(64 bit SIMD using the x87 FP registers)
 - Conditional move
 - Atomic exchange

20

New Instructions in Haswell (2013)

Group		Description	Count *
(2	SIMD Integer Instructions promoted to 256 bits	Adding vector integer operations to 256-bit	
AVX2	Gather	Load elements from vector of indices vectorization enabler	170 / 124
	Shuffling / Data Rearrangement	Blend, element shift and permute instructions	
FMA		Fused Multiply-Add operation forms (FMA-3)	96 / 60
Bit Manipulation and Cryptography		Improving performance of bit stream manipulation and decode, large integer arithmetic and hashes	15 / 15
TSX=RTM+HLE		Transactional Memory	4/4
Others		MOVBE: Load and Store of Big Endian forms INVPCID: Invalidate processor context ID	
		* Total instructions / differen	t mnemonics

HSW Improvements for Threading Sample Code Computing PI by Windows Threads

```
#include <windows.h>
#define NUM THREADS 2
HANDLE thread handles[NUM THREADS];
CRITICAL SECTION hUpdateMutex;
static long num steps = 100000;
double step;
double global_sum = 0.0;
void Pi (void *arg)
  int i, start;
 double x, sum = 0.0;
 start = *(int *) arg;
 step = 1.0/(double) num steps;
 for (i=start;i<= num_steps;</pre>
                    i=i+NUM THREADS){
     x = (i-0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
 EnterCriticalSection(&hUpdateMutex);
 global sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
```

```
void main ()
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];
 for(i=0; i<NUM THREADS; i++)</pre>
          threadArg[i] = i+1;
 InitializeCriticalSection(&hUpdateMutex);
 for (i=0; i<NUM THREADS; i++){
         thread handles[i] = CreateThread(0, 0,
          (LPTHREAD_START_ROUTINE) Pi,
                    &threadArg[i], 0, &threadID);
 }
 WaitForMultipleObjects(NUM THREADS,
          thread_handles, TRUE, INFINITE);
 pi = global sum * step;
 printf(" pi is %f \n",pi);
```

Locks can be key bottleneck – even in case there is no conflict

Intel® Transactional Synchronization Extensions (Intel® TSX)

Intel® TSX = HLE + RTM

HLE (Hardware Lock Elision) is a hint inserted in front of a LOCK operation to indicate a region is a candidate for lock elision

- XACQUIRE (0xF2) and XRELEASE (0xF3) prefixes
- Don't actually acquire lock, but execute region speculatively
- Hardware buffers loads and stores, checkpoints registers
- Hardware attempts to commit atomically without locks
- If cannot do without locks, restart, execute non-speculatively

RTM (Restricted Transactional Memory) is three new instructions (XBEGIN, XEND, XABORT)

- Similar operation as HLE (except no locks, new ISA)
- If cannot commit atomically, go to handler indicated by XBEGIN
- Provides software additional capabilities over HLE

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

Core™ 2 Architecture (Merom)

NHM/SNB: Enhanced Processor Core

Peak FP Performance per Core & Cycle

	Single Precision	Double Precision	Comment
Nehalem	8	4	By SSE; MULT and ADD can start each cycle:
Sandy Bridge	16	8	AVX doubles all due to twice the vector length
Haswell	32	16	2 FMA instructions can start each cycle – doubling performance compared to SNB

For a 2-socket, 16-core Haswell server system running at 3 GHz, this will sum up to 1.5 terra flops SP FP peak performance (0.77 for DP)

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

Common Core, Modular Uncore

- Common "core"
 - Same core for server, desktop, mobile
 - Incremental improvements to uarch of current Core architecture
 - Common target for SW optimization
 - Common feature set
- Segment differentiation in the "Uncore"
 - # of cores
 - # of QPI links
 - Size of L3 cache
 - # IMC channels
 - Frequency DDR3
 - Integrated graphics (GT)

– ...

. د		V QPI V					
		# of Cores	L3\$ Size	Memory Controller	QPI Links	Graphic	
	Desktop i5 Desktop i3	2	4MB	2xDDR3	N/A	Yes	
	Desktop i7 NHM	4	8МВ	3xDDR3	1 x 4.8	Yes	
	Desktop i7 SNB	6	8MB	3xDDR3	1 x 6.4	Yes	
	XEON E5- 2600	2x8	20MB	4xDDR3	2 x 8.0	No	
	XEON E7- 8870	4x10	30MB	3xDDR3	4 x 6.4	No	

Level 3 Cache

- New 3rd level cache
 - Also called LLC Last Level Cache
- Shared across all cores of processor (socket)
- Size
 - NHM: 2MB/core (EX up to 3.0)
 - SNB: 2.5 MB/core (today)
- Latency:
 - NHM: >=35
 - SNB: 25-31
- Inclusive property
 - Cache line residing in L1/L2 must be present too in 3rd level cache

QuickPath Interconnect

- Nehalem introduces new QuickPath Interconnect (QPI)
- High bandwidth, low latency point to point interconnect
- 4.8/6.4/8.0 GT/sec
 - E.g. 6.4 GT/sec -> 12.8 GB/sec each direction
- Highly scalable for systems with varying # of sockets

Remote Memory Access

51

- CPU0 requests cache line X, not present in any CPU0 cache
 - CPU0 requests data from CPU1; request sent over QPI to CPU1
 - CPU1's IMC makes request to its DRAM
 - CPU1 snoops internal caches
 - Data returned to CPU0 over QPI
- Remote memory latency a function of having a low latency interconnect
 - Typical numbers: Local access 60ns, remote access 90ns

Non-NUMA (UMA) Mode

- Addresses interleaved across memory nodes by cache line
 - Some systems too support page size granularity
- Accesses may or may not have to cross QPI link

UMA lacks tuning for peak performance but in general delivers good performance without any additional tuning effort

NUMA Mode

- Non-Uniform Memory Access (NUMA)
- Addresses not interleaved across memory nodes by cache line.
- Each CPU has direct access to contiguous block of memory.

Combined with thread affinity ("pinning") enables potential for peak performance but can degrade performance in case not taken care of

Uncore Architecture: Sandy Bridge

Significant Bandwidth Increases over Prior Generation

SNB: Scalable Ring On-die Interconnect (intell

- Ring-based interconnect between Cores, Graphics, Last Level Cache (LLC) and System Agent domain
- Composed of 4 rings
 - 32 Byte Data ring, Request ring, Acknowledge ring and Snoop ring
 - Fully pipelined at core frequency bandwidth, latency scale with cores
- Access on ring always picks the shortest path - minimize latency
- **Distributed arbitration**, sophisticated ring protocol to handle coherency, ordering, and core interface
- Scalable to servers with large number of processors

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

Intel® Turbo Boost Improvements

	Merom/	Nehalem/V			
Client	Penryn (Mobile only)	Clarksfield Lynnfield/Clarkdale	Arrandale	Sandy Bridge	
Key New Capabilities	• 1 turbo bin when other core is asleep	 Turbo controlled within power limit Multi-core turbo More turbo if cores are asleep 	 Graphics Dynamic Frequency Driver controlled power sharing between IA and Graphics (Mobile) 	 HW controlled power sharing between IA cores and Graphics Dynamic Turbo provides high responsiveness More Turbo headroom from Improved power monitoring and control 	
Turbo Behavior Illustrative only. Does not represent actual number of turbo bins.	0 1	Ouad Core Die Single Dual Quad Core Core Core Turbo Turbo Turbo	Dual Core Die Single Dual Core Core Turbo Turbo Turbo O 1 GT 0 1 GT 0 1 GT	Dual Quad Core Die Core Die	

Dynamic Adaption in Sandy Bridge

*Other brands and names are the property of their respective owners.

Simultaneous Multi-Threading (SMT) "Intel Hyper-Threading – HT"

- Run 2 threads at the very same time per core
- Available on Nehalem (and successors) as well as Intel® ATOM Architecture
- Take advantage of 4-wide execution engine
 - Keep it fed with multiple threads
 - Hide latency of a single thread
- Most power efficient performance feature
 - Very low die area cost
 - Can provide significant performance benefit depending on application
 - Much more efficient than adding an entire core
- Nehalem advantages
 - Larger caches
 - Massive memory BW

SMT Performance Chart NHM

Floating Point is based on SPECfp_rate_base2006* estimate Integer is based on SPECint_rate_base2006* estimate

SPEC, SPECint, SPECfp, and SPECrate are trademarks of the Standard Performance Evaluation Corporation. For more information on SPEC benchmarks, see: http://www.spec.org

Agenda

- Overview Intel® processor architecture
- Intel x86 ISA (instruction set architecture)
- Micro-architecture of processor core
- Uncore structure
- Additional processor features
 - Hyper-threading
 - Turbo mode
- Summary

Memory Bandwidth and Performance Sample Estimations

Platform	Memory Bandwidth	GFLOPs (DP) per core	FLOPS per DP Data Move to get Peak
NHM: 32GB/Socket 4 cores	8.00GB/core (3ch x 1333 x 8bytes)/4	12 4 x 3GHz	12.0
WSM: 32GB/Socket 6 cores	5.33GB/core (3ch x 1333 x 8bytes)/6	9.6 4 x 2.4GHz	14.4
SNB: 51GB/Socket 8 cores, SSE	6.40GB/core (4ch x 1600 x 8bytes)/8	9.6 4 x 2.4GHz	12.0
SNB: 51GB/Socket 8 cores, AVX	6.40GB/core (4ch x 1600 x 8bytes)/8	19.2 8 x 2.4GHz	24.0
Itanium 2 "Montecito" Dual core	5.40 GB/core (0.677Ghz x 16bytes)/2	6.4 4 x 1.6 Ghz	9.5

Tuning for memory bandwidth remains key challenge!

References

- Intel <u>Software Development and Optimization</u> manual
- Session from Intel Developer Forum on processor architecture – www.intel.com/idf
- Michael E. Thomadakis, Texas University, "The Architecture of the Nehalem Processor ..."
- Agner, "The microarchitecture of Intel, AMD and VIA CPUs ..."
- Wikipedia
 - <u>x86</u>
 - x86 assembly language

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2012. Intel Corporation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel® ATOM Processor: Block Diagram

Intel® Xeon Phi™ Overview

Standard IA Shared Memory Programming

Intel® Xeon Phi™ Microarchitecture Overview

Interleaved Memory Access

Intel[®] Xeon Phi[™] Core

Intel[®] Xeon Phi[™] co-processor core:

- Scalar pipeline derived from the dual-issue Pentium processor
- Short execution pipeline
- Fully coherent cache structure
- Significant modern enhancements
- such as multi-threading, 64-bit extensions, and sophisticated pre-fetching.
- 4 execution threads per core
- Separate register sets per thread
- 32KB instruction cache and 32KB data cache for each core.

Enhanced instructions set with:

- Over 100 new instructions
- Wide vector processing operations, incl. gather/scatter and masking
- Some specialized scalar instructions
- 3-operand, 16-wide vector processing unit (VPU)
- VPU executes integer, SP-float, and DP-float instructions
- Supports IEEE 754 2008 for floating point arithmetic

Interprocessor Network

1024 bits wide, bi-directional (512 bits in each direction)

Vector/SIMD High Computational Density

VPU Block Diagram

Intel® Xeon Phi™ Coprocessor: Prorgaming Model:

Restrictive architectures limit the ability for applications to use arbitrary nested parallelism, functions calls and threading models

Well, it is an SMP-on-a-chip running Linux*

```
000
                                          root@dpdknf01:/KNC - ssh - 100x35
% cat /proc/cpuinfo | head -5
processor
                : 0
vendor_id
                : GenuineIntel
cpu family
                : 11
model
                : 1
model name
                : 0b/01
% cat /proc/cpuinfo | tail -26
                : 243
processor
vendor_id
                : GenuineIntel
cpu family
                : 11
model
                : 1
model name
                : 0b/01
stepping
                : 1
cpu MHz
                : 1090.908
cache size
                : 512 KB
physical id
                : 0
siblings
                : 244
core id
                : 60
                : 61
cpu cores
apicid
                : 243
initial apicid : 243
fpu
                : yes
fpu_exception
                : yes
cpuid level
                : 4
wp
                : yes
flags
                : fpu vme de pse tsc msr pae mce cx8 apic mtrr mca pat fxsr ht syscall lm lahf_lm
                : 2192.10
bogomips
clflush size
                : 64
cache_alignment : 64
address sizes
                : 40 bits physical, 48 bits virtual
power management:
```


Intel® Xeon Phi™ Environment

Physical View

NATIVE Linux

IP SSH FTP NFS

Logical Views

OFFLOAD

Flexible Execution Models SINGLE Optimized Performance for different Workloads SOURCE CODE SERIAL AND MODERATELLY HIGHLY PARALLEL CODE PARALLEL CODE Compilers, Libraries, **Runtime Systems** MAIN() MAIN() MAIN() MAIN() MAIN() **XEON XEON XEON XEON® XEON® XEON® XEON®** PHI™ PHI™ PHI™ RESULTS RESULTS RESULTS RESULTS RESULTS **Multicore Only Multicore Hosted with Symmetric Many-Core Only Many-Core Offload**

Flexible Execution Models

Optimized Performance for different Usage Models

