Number Theory Algorithms

Ervin Gegprifti

gegprifti.ervin@gmail.com

Abstract

This paper is the documentation for the Linear Congruence In Two Variables module in Number Theory Algorithms mobile application.

Linear Congruence In Two Variables

The Linear Congruence In Two Variable $ax + by \equiv c \pmod{m}$ is equivalent to the Linear Diophantine Equation In Three Variables ax + by + mz = c. If $GCD(a, b, m) \nmid c$ there is no solution modulo m and if $GCD(a, b, m) \mid c$ there are solutions modulo m.

Algorithm 1: Linear Congruence In Two Variablea

Input: $a, b, c, x, y \in \mathbb{Z}, m \in \mathbb{N}$

Output: x, y general solution if any

- 1 Let g = GCD(a, b, m)
- **2** if $g \nmid c$ then there is no solution modulo m. Stop.
- **3 if** $q \mid c$ **then** there are solutions modulo m. Continue...
- 4 The Congruence $ax + by \equiv c \pmod{m} \iff x + by = mz + c \iff x + by + mz = c$
- **5** Let h = GCD(a, b), d = a/h, e = b/h
- 6 Factoring out ax + by we get h(dx + ey) + mz = c
- 7 Note that GCD(d, e) is always 1, since d = a/h and e = b/h
- 8 Let dx + ey = w
- 9 Rewriting we must solve hw + mz = c
- 10 Simplify hw + mz = c by dividing both sides with i = GCD(h, m, c) to get jw + nz = f
- 11 Let k = GCD(j, n)
- 12 if $k \nmid f$ then there is no integer solution. Stop.
- 13 if $k \mid f$ then there are infinitely many integer solutions. Continue...
- 14 Use EEA to find w_{ee} and z_{ee} from |j|w + |n|z = GCD(|j|, |n|) = k
- 15 A particular first initial solution is $w_0 = w_{ee}(f/k)$ and $z_0 = z_{ee}(f/k)$
- 16 For $r \in \mathbb{Z}$, the general solution to jw + nz = f is $w = w_0 + (n/k)r$ and $z = z_0 (j/k)r$
- 17 Let p = (n/k) and q = (j/k), hence the general solution is $w = w_0 + pr$ and $z = z_0 qr$
- 18 Substituting for w, then we have $dx + ey = w_0 + pr$
- 19 Since GCD(d, e) is always 1, then we find x_0 and y_0 by solving dx + ey = 1
- 20 Use EEA to find x_{ee} and y_{ee} from |d|x + |e|y = GCD(|d|, |e|) = 1, hence $dx_{ee} + ey_{ee} = 1$
- Multiplying both sides with $w_0 + pr = w$ we have $dx_{ee}(w_0 + pr) + ey_{ee}(w_0 + pr) = w$
- 22 Hence $x_0 = x_{ee}(w_0 + pr) = x_{ee}w_0 + x_{ee}pr$ and $y_0 = y_{ee}(w_0 + pr) = y_{ee}w_0 + y_{ee}pr$
- 23 The general x, y solution is $x = x_{ee}w_0 + x_{ee}pr + et$ and $y = y_{ee}w_0 + y_{ee}pr dt$
- The congruence $ax + by \equiv c \pmod{m}$ can be written as $a(x_{ee}w_0 + x_{ee}pr + et) + b(y_{ee}w_0 + y_{ee}pr dt) \equiv c \pmod{m}$
- 25 return x, y general solution