Модели взаимодействия частиц газа между собой

• Потенциал Леннард-Джонса — будем использовать

$$U(r) = 4 arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight]$$
, где сигма и эпсилон зависят от вещества. Второй член отвечает за притяжение молекул между собой, а первый за отталкивание (на малых расстояниях)

Для программирования разделяют на несколько функций:

$$egin{cases} U(r) = 4arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight] & r\leqslant r_{s}, \ k_{1}(r-r_{c})^{3} + k_{2}(r-r_{c})^{2} & r_{s} < r\leqslant r_{c} \ 0 & r>r_{c}, \end{cases}$$

 $r_s=(26/7)^{1/6}\sigma\approx 1,24\sigma,\; r_c=67/48r_s\approx 1,73\sigma,\; k_1=-rac{387072}{61009}arepsilon/r_s^3,\; k_2=-rac{24192}{3211}arepsilon/r_s^2$ Нужно отметить, что при $r=\sqrt[6]{2}\sigma$ потенциал взаимодействия минимален. Очень удобен для моделирования.

• ТЕОРЕМА ВИРИАЛА И ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ДВУХ МОЛЕКУЛ

Вывод уравнения достаточно сложный. Написано, что «В целях проверки изложенного материала было рассмотрено восемь веществ и для каждого вещества независимым путем определено по четыре параметра. Получена высокая точность данного уравнения»

уравления»
$$V(r) = -\frac{ka}{3\sqrt{2}N_0r^3} + k \left[\frac{3b}{2\pi N_0\Gamma(1-n)r^3} \right]^{1/n}$$
 Это потенциал взаимодействия двух молекул, учитывает одновременное взаимодействие каждой молекулы с окружающими ее молекулами.

$$F(r) = \frac{ka}{\sqrt{2}N_0r^4} - \frac{3k}{n} \left[\frac{3b}{2\pi N_0\Gamma(1-n)r^{3+n}} \right]^{1/n}$$
 Это сила Взаимодействия двух молекул. Учитывает одновременное взаимодействие каждой молекулы с окружающими ее молекулами.

Все константы, которые тут используются, есть в табличных данных.

Газ	a , $Å^3 K^m$ моль ⁻¹	b, Å ³ K ⁿ моль ^{−1}	m	n	
He	470×10^{24}	38.8×10^{24}	1.0	0.19	http://www.mathnet.ru/links/
Ne	3580×10^{24}	97×10^{24}	1.0	0.25	intep:// www.iniatimetina/inimo/
Ar	33200×10^{24}	1745×10^{24}	1.0	0.51	7dc0180b15d49d8b0e9638c8fd13d9f4/
H_2	3750×10^{24}	110.5×10^{24}	1.0	0.25	/ dcolooblad-adobocaoacoldladaal-/
N_2	35600×10^{24}	2350×10^{24}	1.0	0.53	<u>tvt391.pdf</u> — ссылка на эту статью
O_2	35000×10^{24}	1960×10^{24}	1.0	0.52	<u>tvtээт.риг</u> — ссылка на эту статью
CO	40500×10^{24}	3100×10^{24}	1.0	0.56	
CII	55200 1024	2450 × 1024	1.0	0.50	

Таблица 2. Параметры потенциала взаимодействия двух молекул

Газ	M	N	α , Дж Å ^M	β, Дж Å ^N	$\Gamma(1-n)$	D	ε/k, K
Не	3.0	15.8	2.539×10^{-21}	4.424×10^{-16}	1.153	1.823	5.951
Ne	3.0	12.0	1.934×10^{-20}	2.141×10^{-16}	1.225	2.117	29.70
Ar	3.0	5.88	1.794×10^{-19}	6.230×10^{-18}	1.808	4.113	78.70
H_2	3.0	12.0	2.027×10^{-20}	3.606×10^{-16}	1.225	2.117	26.56
N_2	3.0	5.66	1.924×10^{-19}	6.182×10^{-18}	1.884	4.353	63.94
O_2	3.0	5.77	1.891×10^{-19}	5.831×10^{-18}	1.845	4.231	78.91
CO	3.0	5.36	2.188×10^{-19}	4.487×10^{-18}	2.013	4.754	71.36
CH ₄	3.0	6.00	2.983×10^{-19}	1.658×10^{-17}	1.773	4.000	97.16

• **Потенциал Букиннгема** — сильно сложно и лучше не нужно (для неполярных сферо-симметрических молекул)

сферо-симметрических молекул)
$$U(r) = A \exp \left(-\alpha \frac{r}{r_m}\right) - \frac{\lambda}{r^6} - \frac{\lambda'}{r^8}$$

$$A = \left[-\varepsilon + (1+\beta) \frac{\lambda}{r_m^6} \right] e^{\alpha}, \quad \lambda = \frac{\varepsilon \alpha r_m^6}{\alpha (1+\beta) - 8\beta - 6}, \quad \lambda' = \beta r_m^6 \lambda,$$
 вычисляются:

• Потенциал Штокмайера - учитывает постоянные дипольные моменты молекул (добавляет член, отвечающий за это в уравнение для потенциала Леннарда-Джонса)

$$U(r, heta_a, heta_b,arphi) = 4arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^6
ight] - rac{\mu_a\mu_b}{r^3} \, g(heta_a, heta_b,arphi).$$