PART 4 2D Future

Nakagawa - Onuki trick (2023)

say we want to create such a square, but we only have Eand some $\omega \in \operatorname{End}(E)$ of degree $q(2^a - q)$

we can find a suitable isogeny $\varphi: F \to E$ using Kani!!!

If the square above existed, then Kani's lemma should apply

should give 2D isogeny $\Phi: E \times E \rightarrow F \times F'$ of degree 2^a

2

(ignoring some isogeny maths) then the kernel of Φ should be given by $[q]P, \omega(P)$ for $P \in E[2^a]$

But we know these!!
We can compute 2D Φ using Kani

So we can also compute $\varphi: F \to E, \psi: F \to E$

that is, we can factor ω using Kani's lemma

PART 4 2D Future

Nakagawa - Onuki trick (2023)

say we want to create such a square, but we only have Eand some $\omega \in \operatorname{End}(E)$ of degree $q(2^a-q)$

we can find a suitable isogeny $\varphi: F \to E$ using Kani!!!

1

If the square above existed, then Kani's lemma should apply

should give 2D isogeny $\Phi: E \times E \rightarrow F \times F'$ of degree 2^a

2

(ignoring some isogeny maths) then the kernel of Φ should be given by $[q]P, \omega(P)$ for $P \in E[2^a]$

But we know these!!
We can compute 2D Φ using Kani

3

So we can also compute $\varphi: F \to E, \psi: F \to E$

that is, we can factor ω using Kani's lemma

apply this trick to translate ideal *I* to suitable 2D isogenies

