

Présentation BE : Pilote Barre Franche

Présenté par : DJAROUD Mohamed

Encadré par : Pedro CARVALHO, Thierry PERISSE | M2 SME | 2022/2023

00 Introduction

Diagramme de contexte

Présentation générale du projet

Exploration architecturale

Architecture de projet

02 Fonction simple

F1: Conversion Info Vent

ireset timer 1s -

in freq anemometre

reset

• Timer 1s

Schéma fonctionnel de l'Anémomètre

Détails des blocs

Machine a état du compteur de fronts montants

Implémentation du schéma bloc sur Quartus

- Création de plusieurs fichiers .vhd pour chaque bloc.
- Création d'un fichier BDF

440.0 ns 40.0 ns 80.0 ns 120,0 ns 160,0 ns 200,0 ns 240,0 ns 280,0 ns 320,0 ns 360,0 ns 400,0 ns 0 ps Name arazb en in_signal 11 val_cpt nombre de fronts montants détectés remise à 0 du compteur arrêt du fonctionnement autorisation de fonctionnement

Simulation sur Quartus 9 du bloc compteur de fronts montants

Simulation sur Quartus 9 de la machine a état de l'anémomètre

Simulation sur Quartus 9 du bloc de gestion de l'anémomètre

Fonction complexe

Fonction complexe – Gestion vérin partie VHDL

Le code vhdl de la fonction vérin comporte 4 fonctions principales :

- Bloc de génération PWM
- Bloc de Gestion butées
- Bloc de gestion du convertisseur MCP3201
- Bus Avalon

Schéma fonctionnel du Vérin

Gestion convertisseur MCP3201

Schéma bloc de la partie gestion convertisseur MCP3201

Gestion convertisseur MCP3201

Simulation du convertisseur MCP 3201

```
process(clk_1M, raz_n)
variable cnt : integer range 0 to 16;
variable cnt2 : integer range 0 to 16;
begin
if raz_n = '0' then
    data_out <= x"000";
elsif falling_edge(clk_1M) then if start_conv = '0' and cs = '0' then
        cnt := cnt + 1;
        cnt2 := cnt2 + 1;
        if cnt >= 5 then
            if cnt2 <= 15 then
               decalage(16- cnt2) <= data_in;</pre>
            end if;
        end if;
    else
        cnt := 0;
        cnt2 := 0;
    end if;
end if;
data_out <= decalage;
end process;
```


Conception du SOPC sur Platform Designer

Schéma bloc de l'avalon Vérin

04 Conclusion

Conclusion

Bilan:

- Mise en pratique des compétences acquises durant la formation
- Pouvoir travailler sur un projet à partir du besoin
- Acquérir de nouvelles compétences en VHDL et C embarqué

