

第1篇第 2.1~2.4节作业

1、参考下表复习器件基本原理和基本特性

- (1) 用电力MOSFET的特性说明,其通态压降与电流成正比。
- (2) 表中有一项错误,请指出并给出正确结果。

器件	结构特 点	驱动	开关 速度	通态压降	额定电 流计算	反向耐压	用途
GTR	N ⁺ P N ⁻ N ⁺	电流型 功率大	一般开关 时间为数 十微秒	通态压降 低	半波平均值	耐压较高	被 IGBT 取代
电力 MOSFET	单极型 晶体管, 垂直导 电结构		开关时间 为数十纳 秒	通态压降 与电流成 正比		低,目前较 多的是 600V	单管:数 kw~十几 kw 电压不高/开关频 率高的场合,应用 最广
IGBT	复合型 MOSFET +GTR		开关时间 为数百纳 秒	通态压降低	最大值	耐压较高, 目前多个等 级,最高 4500V	单管:数十~上 百 kw,主要用于 工业装备

2、定性作出二极管整流电路

- (1) 下左图, 纯电阻负载下
 - ✓ 如果不忽略 VD 开通压降, u_{VD1} 的波形?
 - ✓ VD的功率损耗波形?
- (2) 下右图, R-L 负载下
 - ✓ 为何 u_d 出现负值?
 - ✓ 如果不能忽略 VD 开通压降,此时 u_{VD1} 的 波形?

提示: 判断整流二极管导通的方法: 串联在电路时,用电流流向判断,并联时 用正向电压大小判断。

- 3、全控器件的开关损耗有几部分,瞬间损耗最严重的部分是那部分?请用图形示意。
- 4、以下两表是制造商提供的IGBT的部分参数表(作业目的:选三个重要参数),
- 1) 请从下表中找出以下3个参数,并**说明3个参数的作用**: (1)集电极-发射极最大反向电压; (2)最大集电极电流,它与最大集电极**峰值电流**的区别? (3)用表B中参数计算器件的 开通时间t_{on}时还需要其他什么参数?
- 2) 将一个IGBT用于承受电压为800V的电路时,应该选择该器件的反向电压值为多少?

表A 额定值 (注: FWD是反向二极管)

	· · · · · · · · · · · · · · · · · · ·	
Vces	集电发射极阻断电压	栅极-发射极短路时,允许的断态集-发极最高电压.
Vges	栅极-发射极电压	集-发短路时,允许的栅极-发射极最高电压.
Ic	集电极电流	最大直流电流
Icm	集电极峰值电流	集电极极值
IE	FWD 电流	最大允许 FWD 直流电流
IEM	续流二极管峰值电流	最大允许 FWD 峰值电流
Pc	集电极功耗	TC=25 度的情况下,每个 IGBT 开关最大也许的功率损耗.
Tj	结温	工作期间 IGBT 的结温
Tstg	储存温度	无电源供应下的允许温度
Viso	绝缘电压	基片与模块间最大绝缘电压.

表B电气参数。

	>/\ '	
ICES	集电极-发射极漏电流	VCE=VCES 和栅极-发射极短路条件下的 IC
VGE(th)	栅极-发射极阈值电压	VCE=10V 的条件下, 栅极发射极电压.
Iges	栅极-发射极漏电流	VGE=VGES 和集电极-发射极短路条件下 IG
VCE(sat)	集电极-发射极饱和压降	IGBT 的通态电压
Id(on)	开通延迟时间	开关时间
tr(on)	开通上升时间	开关时间
Tf	关断下降时间	开关时间
Td(off)	关断延迟时间	开关时间
VEC	FWD正向电压	在额定电流下的续流二极管正向电压
Trr	FWD 恢复时间	换流时续流二极管反向电压
Qrr	FWD反向恢复电荷	额定电流和 di/dt=-1EM/us 下,续流二极管反向恢复电荷。

5、(附加题)仿照图(b)的二极管的理想外特性,作出下图(a)的复合器件的理想外特性图/伏安特性图

提示:

- (1)图(a)给出了电流电压参考正方向
- (2) 需要考虑IGBT通断两种状况

