

数学建模技巧分享

- · 直接替换法 · 函数变换法
- 级数展开法

<u>大M法</u>:

- Either-Or Constraints
- If-Then Constraints

<u>分段线性化</u>:

- Piecewise Linear Functions
- Functions of a Special Form

约束转目标:

直接替换法

倒数(双曲线)形式

$$\frac{1}{y} = \frac{b}{x} + a$$

$$Y = bX + a$$

多项式形式

$$y = bx^2 + cx + a$$

$$y = bX + cx + a$$

对数形式

$$y = b \ln x + a$$

$$y = bX + a$$

幂函数形式

指数函数形式

级数展开法

$$f(x) = (x-1)^2 + 1 = x^2 - 2x + 2$$
,

$$0 \le x \le 1$$

$$f(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x$$
$$= -2x + 2$$

$$f(x) = \frac{f(1)}{0!} + \frac{f'(1)}{1!}(x - 1)$$

= 1

 $x_0 = 0.5$ 处展开

泰勒级数展开公式

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

- · 直接替换法 · 函数变换法
- 级数展开法

<u>大M法</u>:

- Either-Or Constraints
- If-Then Constraints

<u>分段线性化</u>:

- Piecewise Linear Functions
- Functions of a Special Form

约束转目标:

Either-Or Constraints

If-Then Constraints

- · 直接替换法 · 函数变换法
- 级数展开法

<u>大M法</u>:

- Either-Or Constraints
- If-Then Constraints

<u>分段线性化</u>:

- Piecewise Linear Functions
- Functions of a Special Form

约束转目标:

Piecewise Linear Functions

$$c(x) = \begin{cases} a_1 x + d_1 & (b_1 \le x \le b_2) \\ a_2 x + d_2 & (b_2 \le x \le b_3) \\ a_3 x + d_3 & (b_3 \le x \le b_4) \\ \vdots & & \\ a_{n-1} x + d_{n-1} & (b_{n-1} \le x \le b_n) \end{cases}$$

$$(b_1 \le x \le b_2)$$

$$(b_2 \le x \le b_3)$$

$$(b_3 \le x \le b_4)$$

$$(b_{n-1} \le x \le b_n)$$

$$c(x) = z_1 c(b_1) + z_2 c(b_2) + \dots + z_n c(b_n)$$

$$z_1 \le y_1$$

 $z_2 \le y_1 + y_2$
 $z_3 \le y_2 + y_3$
 \vdots
 $z_{n-1} \le y_{n-2} + y_{n-1}$
 $z_n \le y_{n-1}$
 $y_1 + y_2 + \dots + y_{n-1} = 1$ 有且只有一个 y_i 为1
 $z_1 + z_2 + \dots + z_n = 1$ 最多有两个 z_i 非0

$$x = z_1b_1 + z_2b_2 + \dots + z_nb_n$$

 $y_i = 0 \text{ or } 1 \qquad (i = 1, 2, \dots, n - 1)$
 $z_i \ge 0 \qquad (i = 1, 2, \dots, n)$

引入0-1变量 y_i

和非负变量 Z_i

Functions of a Special Form

 $t \in T$

$$\mu_t \cdot W(\mu_t, p_t) = \sum_{i=0}^{M} \sum_{k=1}^{N} i \cdot z_{tki} \cdot W(i, k) \langle x_{tki} \rangle \langle x_{tki}$$

$$\mu_t \cdot W(\mu_t, p_t) \cdot F(\mu_t, \lambda_t)$$

$$F(\mu_t, \lambda_t) = \sum_{i=0}^{M} a_{ti} F(i, \lambda_t)$$

$$----$$
 M是 μ_t 可能的取值上限

$$\mu_t = \sum_{i=0}^{M} i \cdot \mathbf{x}_{ti}, \quad \forall \ t \in T$$

$$-\,$$
 N是 p_t 可能的取值上限

$$p_t = \sum_{k=1}^{N} k \cdot y_{tk}, \quad \forall t \in T$$

$$\sum_{i=0}^{M} \sum_{k=1}^{N} \mathbf{z}_{tki} = 1, \quad \forall t \in T$$

$$z_{tki} \ge x_{ti} + y_{tk} - 1,$$

$$z_{tki} \ge x_{ti} + y_{tk} - 1, \quad \forall t \in T, i \in [0, 1, ..., M], k \in [1, 2, ..., N]$$

 x_{ti} 等于1, y_{tk} 等于1时, z_{tki} 必须等于1

$$-\sum_{i=0}^{M} a_{ti} = 1, \quad \forall t \in T$$

$$-\mu_{t} = \sum_{i=0}^{M} i \cdot a_{ti}, \quad \forall t \in T$$

以上
$$x_{ti}$$
, y_{tk} , z_{tki} , a_{ti} 都是0-1变量

- · 直接替换法 · 函数变换法
- 级数展开法

<u>大M法</u>:

- Either-Or Constraints
- If-Then Constraints

<u>分段线性化</u>:

- Piecewise Linear Functions
- Functions of a Special Form

约束转目标:

Lagrangian Relaxation

拉格朗日松弛技术

有约束优化问题

▶ 无约束优化问题

minimize
$$L(P) = \sum_{\substack{v_{it} \in P \\ 1 \le i \le n}} f_i(t)$$
.

$$V_i(P) = |\{v_{it} | v_{it} \in P\}|, \qquad 1 \le i \le n$$

$$V_i(P) = 1, 1 \le i \le n$$

minimize
$$L(P) + \sum_{1 \le i \le n} \mu_i (1 - V_i(P))$$

$$= \sum_{\substack{v_{it} \in P \\ 1 \le i \le n}} f_i(t) + \sum_{1 \le i \le n} \mu_i - \sum_{1 \le i \le n} \mu_i \left| \{v_{it} \middle| v_{it} \in P\} \right|$$

$$= \sum_{\substack{v_{it} \in P \\ 1 \le i \le n}} (f_i(t) - \mu_i) + \sum_{1 \le i \le n} \mu_i$$

拉格朗日算子

为什么要松弛:

- 松弛后的问题比原问题更容易求解
- 计算原问题的上界或者下界