Uncovering Bias and Explaining Decisions in a Text-Based Job Screening Model

48-Hour Challenge - Bias Detection & Explainability in AI Prepared by: Rana Helal

Dataset Description

The dataset includes 1,500 job applicant profiles, each represented with 11 structured features. These include:

• Numerical Features:

Age, ExperienceYears, PreviousCompanies, DistanceFromCompany, InterviewScore, SkillScore, PersonalityScore

• Categorical Features:

```
Gender (0 = Female, 1 = Male),
EducationLevel (1 to 4),
RecruitmentStrategy (1 to 3)
```

• Target Column:

```
HiringDecision (0 = Not Hire, 1 = Hire)
```

There were no missing values, and all columns were appropriately typed. To simulate bias, the training dataset was artificially imbalanced to include significantly fewer female candidates (only 30% of female data used for training).

2. Modeling Approach

Data Preparation:

- The dataset was split into training and testing subsets (70% / 30%).
- Numerical features were scaled using StandardScaler.

Classifier:

- A Logistic Regression model was trained using scikit-learn.
- Model: LogisticRegression(max iter=1000)

Performance:

• Accuracy: 84.7%

• Precision (Hire): 78%

• Recall (Hire): 72%

• **F1-Score** (Hire): 75%

Although overall accuracy is high, lower performance on the "Hire" class indicates an imbalance and potential unfairness.

3. Fairness Analysis

Group fairness metrics were calculated using the Fairlearn library. The sensitive attribute chosen was Gender.

Metric		Value
Accuracy	(Female)	83.4%
Accuracy	(Male)	86.0%
Demographic Parity Difference		0.104

A demographic parity difference of 0.104 indicates that gender bias exists in the model's predictions.

4. Explainability with SHAP

The SHAP (SHapley Additive Explanations) framework was applied to understand the feature contributions to individual predictions.

- Five samples were selected: three predicted as "Hire" and two as "Not Hire".
- Key influencing features included InterviewScore, SkillScore, and PersonalityScore.
- Gender did not appear as a top feature, but indirect influence through correlated attributes cannot be ruled out.

SHAP visualizations helped to understand how individual features pushed predictions toward "Hire" or "Not Hire".

5. Bias Mitigation

To reduce bias, a constrained optimization approach was used:

- **Method:** ExponentiatedGradient (with DemographicParity constraint) from Fairlearn
- Post-Mitigation Performance:
 - Accuracy: 86.3%
 - Demographic Parity Difference: 0.088

This shows that fairness improved without harming (and even slightly improving) overall model accuracy.

6. Summary and Conclusions

This challenge demonstrated a real-world application of fairness auditing in recruitment models. The workflow included:

- · Identifying bias caused by training data imbalance
- Measuring fairness with standard metrics
- Explaining predictions using SHAP
- Applying bias mitigation techniques

The results confirm that fairness improvements are achievable alongside strong performance, provided proper auditing and modeling strategies are followed.

Additional Notes:

- Full implementation is available in a well-documented Python notebook.
- Visualizations include correlation heatmaps, distribution plots, and SHAP graphs.
- Code is modular and reproducible, designed for Colab or local execution