Business Understanding

Problem Statement

The company is expanding into aviation but lacks reliable insights about aircraft risks. Without analysis, procurement decisions could expose the business to safety, financial, and reputational risks.

Objectives

- Identify safest manufacturers.
- Determine if safety has improved over time.
- Compare risk across aircraft categories.

Success Criteria

Deliver three clear, evidence-backed recommendations that guide aircraft purchasing decisions.

Aviation Safety Analysis for Business Expansion

This project analyzes aviation accident data (1962–2022) from the NTSB to identify the safest aircraft manufacturers and categories for guiding company expansion into aviation operations.

Key business questions:

- 1. Which manufacturers have the lowest fatal accident rates?
- 2. Has aviation safety improved over time?
- 3. Which categories of aircraft carry the lowest risk?

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (12,6)
```

```
# Load dataset (Google Colab users: upload file when prompted)
import os
from google.colab import files

file_path = "Aviation_Data.csv"
if not os.path.exists(file_path):
    print("Please upload Aviation_Data.csv")
    uploaded = files.upload()
    file_path = list(uploaded.keys())[0]

df = pd.read_csv(file_path, encoding="latin-1", low_memory=False)
print("Dataset loaded:", df.shape)
df.head()
```

Please upload Aviation_Data.csv

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving Aviation_Data.csv to Aviation_Data.csv

Dataset loaded: (90348, 31)

	Event.Id	Investigation.Type	Accident.Number	Event.Date	Location			
0	20001218X45444	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID			
1	20001218X45447	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA			
2	20061025X01555	Accident	NYC07LA005	1974-08-30	Saltville, VA			
3	20001218X45448	Accident	LAX96LA321	1977-06-19	EUREKA, CA			
4	20041105X01764	Accident	CHI79FA064	1979-08-02	Canton, OH			
5 rows × 31 columns								

```
df.info()
df.describe(include="all").transpose().head(20)
```

10/2/25, 3:41	25, 3:41 PM Aviation_Safety_Analysis_(4).ipynb - Colab					

```
# Clean manufacturer names and extract year

df['Make'] = df['Make'].astype(str).str.upper().str.strip()

df['Year'] = pd.to_datetime(df['Event.Date'], errors='coerce').dt.year

df_clean = df[df['Make'].notna() & df['Year'].notna()].copy()

print("Clean dataset size:", df_clean.shape)

CteanLatitude size: (88889, 32/382 non-null object
7 Longitude 34373 non-null object
8 Airport.Code 50132 non-null object
4 Analysis Airport Name cturer Safe 1704 non-null object
10 Injury.Severity 87889 non-null object
11 Aircraft.damage 85695 non-null object
```

```
make_counts = df_clean.groupby("Make").size()
significant_makes = make_counts[make_counts >= 100].index
df_sig = df_clean[df_clean["Make"].isin(significant_makes)]

fatal = df_sig[df_sig["Injury.Severity"].str.contains("Fatal", na=False)]
fatal_by_make = fatal.groupby("Make").size()
total_by_make = df_sig.groupby("Make").size()
accident_rate = (fatal_by_make / total_by_make * 100).sort_values()

accident_rate.head(10).plot(kind="barh", color="green")
plt.title("Top 10 Safest Manufacturers (Lowest Fatal Accident Rate)")
plt.xlabel("Fatal Accident Rate (%)")
plt.show()
```


	Airport.Code	00 IOZ	103/4	INOINE	1400	ivaiv	ivaiv	ivaiv
	Airport.Name	52704	24870	Private	240	NaN	NaN	NaN
~	.Injury Severity Analysis 2: Safety Tre	87889 nds Öve	er Time	Non-Fatal	67357	NaN	NaN	NaN
	Aircraft.damage	85695	4	Substantial	64148	NaN	NaN	NaN

```
yearly_total = df_clean.groupby("Year").size()
yearly_fatal = df_clean[df_clean["Injury.Severity"].str.contains("Fatal", na=False

plt.plot(yearly_total.index, yearly_total.values, label="Total Accidents")
plt.plot(yearly_fatal.index, yearly_fatal.values, label="Fatal Accidents", color='
plt.title("Aviation Accidents Over Time (1948-2022)")
plt.xlabel("Year")
plt.ylabel("Number of Accidents")
plt.legend()
plt.show()
```


Analysis 3: Aircraft Category Comparison

```
cat_counts = df_clean.groupby("Aircraft.Category").size()
significant_cats = cat_counts[cat_counts >= 100].index
```

```
df_cat = df_clean[df_clean["Aircraft.Category"].isin(significant_cats)]

fatal_by_cat = df_cat[df_cat["Injury.Severity"].str.contains("Fatal", na=False)].{
  total_by_cat = df_cat.groupby("Aircraft.Category").size()
  fatal_rate_cat = (fatal_by_cat / total_by_cat * 100).sort_values()

fatal_rate_cat.plot(kind="barh", color="orange")
  plt.title("Fatal Accident Rate by Aircraft Category")
  plt.xlabel("Fatal Accident Rate (%)")
  plt.show()
```


Conclusion & Recommendations

Findings

- Airbus and Boeing have much lower fatal accident rates than small manufacturers.
- Aviation safety has improved significantly since the 1980s.
- Standard airplanes are safer than helicopters, gliders, and experimental aircraft.

Recommendations

- 1. Invest in commercial aircraft from Airbus and Boeing.
- 2. Focus on aircraft manufactured after 2000.
- 3. Prioritize standard airplanes over helicopters and experimental types.

Next Steps

- Drill down into specific models.
- Analyze causes of accidents for training and maintenance insights.
- Build predictive models for risk monitoring.