

COMPUTER NETWORKS

Assignment Unit1: Computer Networks and the Internet

Wireshark Lab: Getting Started

Getting Wireshark:

In order to run Wireshark, you'll need to have access to a computer that supports both Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will be installed for you, if it is not installed within your operating system, when you install Wireshark.

See http://www.wireshark.org/download.html for a list of supported operating systems and download sites.

Download and install the Wireshark software:

Go to http://www.wireshark.org/download.html and download and install the Wireshark binary for your computer. The Wireshark FAQ has a number of helpful hints and interesting tidbits of information, particularly if you have trouble installing or running Wireshark.

Taking Wireshark for a Test Run:

- 1) Assume that your computer is connected to the Internet via a wired Ethernet interface or a wireless 802.11 WiFi interface. Do the following:
- 2) Start up your favourite web browser, which will display your selected homepage.
- 3) Start up the Wireshark software. You will initially see a window. Wireshark has not yet begun capturing packets. To begin packet capture, select the Capture pull down menu and select Interfaces. This will cause the "Wireshark: Capture Interfaces" window to be displayed (on a PC) or you can choose Options on a Mac.
- 4) You'll see a list of the interfaces on your computer as well as a count of the packets that have been observed on that interface so far. On a Windows machine, click on Start for the interface on which you want to begin packet capture. On a Windows machine, select the interface and click Start on the bottom of the window). Packet capture will now begin -Wireshark is now capturing all packets being sent/received from/by your computer!

- 5) Once you begin packet capture, a window will appear. This window shows the packets being captured. By selecting Capture pulldown menu and selecting Stop, or by click on the red Stop square, you can stop packet capture. But don't stop packet capture yet. Let's capture some interesting packets first. To do so, we'll need to generate some network traffic. Let's do so using a web browser, which will use the HTTP protocol that we will study in detail in class to download content from a website.
- 6) While Wireshark is running, enter the URL: http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html and have that page displayed in your browser. In order to display this page, your browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP messages with the server in order to download this page, as discussed in section 2.2 of the text. The Ethernet or WiFi frames containing these HTTP messages (as well as all other frames passing through your Ethernet or WiFi adapter) will be captured by Wireshark.
- 7) After your browser has displayed the INTRO-wireshark-file1.html page (it is a simple one line of congratulations), stop Wireshark packet capture by selecting stop in the Wireshark capture window. You now have live packet data that contains all protocol messages exchanged between your computer and other network entities! The HTTP message exchanges with the gaia.cs.umass.edu web server should appear somewhere in the listing of packets captured. But there will be many other types of packets displayed as well. Even though the only action you took was to download a web page, there were evidently many other protocols running on your computer that are unseen by the user.
- 8) Type in "http" (without the quotes, and in lower case all protocol names are in lower case in Wireshark) into the display filter specification window at the top of the main Wireshark window. Then select Apply (to the right of where you entered "http") or just hit return. This will cause only HTTP message to be displayed in the packet-listing window. Note also that in the Selected packet details window, we've chosen to show detailed content for the Hypertext Transfer Protocol application message that was found within the TCP segment, that was inside the IPv4 datagram that was inside the Ethernet II (WiFi) frame. Focusing on content at a specific message, segment, datagram and frame level lets us focus on just what we want to look at (in this case HTTP messages).
- 9) Find the HTTP GET message that was sent from your computer to the gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the "listing of captured packets" portion of the Wireshark window that shows

"GET" followed by the gaia.cs.umass.edu URL that you entered. When you select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment, and HTTP message header information will be displayed in the packet header window3. By clicking on '+' and '-' and right-pointing and down-pointing arrowheads to the left side of the packet details window, minimize the amount of Frame, Ethernet, Internet Protocol, and Transmission Control Protocol information displayed. Maximize the amount information displayed about the HTTP protocol. (Note, in particular, the minimized amount of protocol information for all protocols except HTTP, and the maximized amount of protocol information for HTTP in the packet-header window).

10) Exit Wireshark

The goal of this first lab was primarily to introduce you to Wireshark. The following questions will demonstrate that you've been able to get Wireshark up and running, and have explored some of its capabilities. Answer the following questions, based on your Wireshark experimentation:

- a) List 3 different protocols that appear in the protocol column in the unfiltered packet-listing window in step 7 above.
- b) How long did it take from when the HTTP GET message was sent until the HTTP OK reply was received? (By default, the value of the Time column in the packet listing window is the amount of time, in seconds, since Wireshark tracing began. To display the Time field in time-of-day format, select the Wireshark View pull down menu, then select Time Display Format, then select Time-of-day.)
- c) What is the Internet address of the gaia.cs.umass.edu (also known as wwwnet.cs.umass.edu)? What is the Internet address of your computer?
- d) Print the two HTTP messages (GET and OK) referred to in question 2 above. To do so, select Print from the Wireshark File command menu, and select the "Selected Packet Only" and "Print as displayed" radial buttons, and then click OK.

Reference:

http://www-net.cs.umass.edu/wireshark-labs/Wireshark Intro v8.0.pdf

Assignment on Circuit Switching

Suppose users share a 2 Mbps link. Also suppose each user transmits continuously at 1 Mbps when transmitting, but each user transmits only 20 percent of the time. (See the discussion of statistical multiplexing in Section 1.3.)

- a. When circuit switching is used, how many users can be supported?
- b. For the remainder of this problem, suppose packet switching is used. Why will there be essentially no queuing delay before the link if two or fewer users transmit at the same time? Why will there be a queuing delay if three users transmit at the same time?
- c. Find the probability that a given user is transmitting.
- d. Suppose now there are three users. Find the probability that at any given time, all three users are transmitting simultaneously. Find the fraction of time during which the queue grows.

Assignment on Real-time End-to-End Delay Calculation using Traceroute

Perform a Traceroute between source and destination on the same continent at three different hours of the day.

- a. Find the average and standard deviation of the round-trip delays at each of the three hours.
- b. Find the number of routers in the path at each of the three hours. Did the paths change during any of the hours?
- c. Try to identify the number of ISP networks that the Traceroute packets pass through from source to destination. Routers with similar names and/or similar IP addresses should be considered as part of the same ISP. In your experiments, do the largest delays occur at the peering interfaces between adjacent ISPs?

d.Repeat the above for a source and destination on different continents. Compare the intra-continent and inter-continent results.