Auf diesem Übungsblatt sollen Sie die folgenden Begriffe wiederholen

- Teiler bzw. größter gemeinsamer Teiler (ggT)
- Primzahl
- natürliche, ganze, rationale und reelle Zahlenmengen

und üben,

- Beweise mit Hilfe der vollständigen Induktion durchzuführen;
- mit Hilfe des euklidischen Algorithmus den ggT zweier ganzer Zahlen zu berechnen;
- in Restklassen zu rechnen (Modulorechnung).

Verständnisfragen

- 1. Der größte gemeinsame Teiler zweier Zahlen a, b ist eine Primzahl. Besitzen die Zahlen a, b weitere gemeinsame Teiler?
- 2. Wieviele gerade Primzahlen gibt es?
- 3. Zeigen Sie:
 - (a) $\forall a, b \in \mathbb{Z}$: Ist $a \mid b \text{ und } b \mid a \Rightarrow a = b \text{ oder } a = -b$.
 - (b) $\forall a_1, a_2, b_1, b_2 \in \mathbb{Z}$: $a_1 \mid b_1 \text{ und } a_2 \mid b_2 \Rightarrow a_1 a_2 \mid b_1 b_2$
- 4. Sei $n \in \mathbb{N}$. Ist n! = 0 in \mathbb{Z}_n ?
- 5. Erklären Sie, warum der Euklidische Algorithmus immer zu einer Lösung führt.
- 6. Welche der folgenden Aussagen ist richtig? Beweisen Sie richtige Aussagen bzw. geben Sie für falsche Aussagen ein Gegenbeispiel an.

$$\square \ a \in \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q} \quad \Rightarrow \quad a + b \in \mathbb{R} \setminus \mathbb{Q}$$

$$\Box \ a, b \in \mathbb{R} \setminus \mathbb{Q} \quad \Rightarrow \quad a + b \in \mathbb{R} \setminus \mathbb{Q}$$

$$\square \ a \in \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q} \quad \Rightarrow \quad a \cdot b \in \mathbb{R} \setminus \mathbb{Q}$$

$$\square \ \exists a \in \mathbb{R} : a^2 \notin \mathbb{Q}, a^4 \in \mathbb{Q}$$

$$\square \ \exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a + b \in \mathbb{Q}, a \cdot b \in \mathbb{Q}.$$

Vollständige Induktion

- 1. Zeigen Sie die folgenden Aussagen mit Hilfe der vollständigen Induktion:
 - (a) n Menschen schütteln sich genau einmal untereinander die Hände. Dann wird genau $\frac{n(n-1)}{2}$ -mal die Hände geschüttelt.
 - (b) Die Summe der ersten n ungeraden Zahlen ist n^2 .

(c)
$$\forall n \in \mathbb{N} : \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(d) $\forall n \in \mathbb{N} : \sum_{k=0}^{n} 2^k = 2^{n+1} - 1$.

(d)
$$\forall n \in \mathbb{N} : \sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$
.

Standardaufgaben

- 1. Berechnen Sie mit Hilfe des Euklidischen Algorithmus d = ggT(104, 47) und Zahlen $r, s \in \mathbb{Z}$, so dass d = 104r + 47b.
- 2. Berechnen Sie mit Hilfe des Euklidischen Algorithmus d = ggT(12345, 54321).
- 3. Berechnen Sie
 - (a) 12 mod 5
 - (b) 237 mod 10
 - (c) 222 mod 11
 - (d) 1001 mod 11
- 4. Berechnen Sie für n > 4
 - (a) $(n+1) \mod n$
 - (b) $n(n+1) \mod n$
 - (c) $(n+1)(n-1) \mod n$
 - (d) $(n-1) \mod (n+1)$
 - (e) $(n+2)^2 \mod (n+1)$
- 5. Zeigen Sie, dass eine Zahl $a=a_n \dots a_0$ genau dann durch 11 teilbar ist, wenn die alternierende Summe $\sum_{i=0}^{n} (-1)^i a_i$ ihrer Ziffern a_i durch 11 teilbar ist. Ist die Zahl 317206375 durch 11 teilbar?
- 6. Zeigen Sie, dass $2^{10} = 1 \mod 11$.
- 7. Zeigen Sie, dass $9518^{42} = 4 \mod 5$.
- 8. (*) Was sind die letzten drei Ziffern von 7^{9999} ? Starten Sie zunächst mit $7^4 = 2401$ und betrachten Sie dann $7^{4k} = (2400 + 1)^k$ mittels des Binomischen Lehrsatzes. Der Binomische Lehrsatz lautet

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Übungsaufgaben: Abgabe

- 1. Zeigen Sie die folgenden Aussagen mit Hilfe der vollständigen Induktion:
 - (a) $\forall n \in \mathbb{N} : 8^n 3^n$ ist ein Vielfaches von 5.
 - (b) $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. Verwenden Sie die Rekursionsformel für $\binom{n}{k}$:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

(16 Punkte)

- 2. Berechnen Sie mit Hilfe des Euklidischen Algorithmus d = ggT(98701, 345) (per Hand!). (4 Punkte)
- 3. (a) Beweisen Sie eine Teilbarkeitsregel für 7 und 13:
 - 1. Bestimmen Sie zunächst die Primfaktorzerlegung von 1001.
 - 2. Zeigen Sie, dass eine Zahl genau dann durch 7 oder 13 teilbar ist, wenn die alternierende Quersumme seiner 3-er Päckchen von Ziffern durch 7 oder 13 teilbar ist. Hinweis: Überlegen Sie sich, dass Sie jede Zahl also $1000 \cdot a + b = 1001 \cdot a + (b-a)$ darstellen können. Wann ist $1001 \cdot a + (b-a)$ durch 1001 teilbar?
 - 3. Ist 317206375 durch 3 oder 7 teilbar? Beantworten Sie die Frage mit Hilfe der Teilbarkeitsregeln.
 - (b) Bestimmen Sie den Rest von 3^{15} und 15^{83} bei Division durch 13.

(12 Punkte)

4. Zeigen Sie, dass $35^{57} - 7$ durch 11 teilbar ist. (8 Punkte)

Abgabe möglich bis zu Beginn der Vorlesung am **04.05.2020**.