Cơ Sở Dữ Liệu Phân Tán Bài tập về nhà - IS211.M21

Nguyễn Hồ Duy Tri, Nguyễn Thị Kim Yến Sinh viên: Pham Đức Thể - 19522253

Thứ 6, ngày 25 tháng 03 năm 2022

Bài Tập Phân Mảnh Ngang

Bài Tập 1

Một công ty sản xuất có nhiều công nhân. Mỗi công nhân làm việc ở một phân xưởng. Công ty có ba phân xưởng đặt ở Quận 9 (MaPX='Q9'), Thủ Đức (MaPX='TĐ') và Bình Dương (MaPX='BD'). Một công nhân thì thuộc về một tổ. Công ty có hai tổ: tổ giao và nhận (MaTo=1), tổ sản xuất và đóng gói (MaTo=2). Thông tin công nhân được thể hiện qua lược đồ quan hệ sau:

CONGNHAN(MaCN, TenCN, NgaySinh, GioiTinh, MaPX, MaTo, Luong)

 $\underline{\text{Tân từ}}$: Mỗi công nhân có: mã công nhân, tên công nhân, ngày sinh, giới tính, mã phân xưởng, mã tổ và lương của công nhân đó.

MATHANG(MaMH, TenMH)

Tân từ: Các mặt hàng của công ty: mã mặt hàng, tên mặt hàng

PHANCONG(MaCN, MaMH, thang, nam, SoLuong)

 $\underline{\text{Tân từ}}$: Thông tin về phân công công việc của các công nhân: mã công nhân (MaCN), mã mặt hàng (MaMH), thời gian (tháng, năm) và số lượng (SoLuong).

Cho quan hệ ${f CONGNHAN}$ với tập dữ liệu demo như sau:

MaCN	TenCN	NgaySinh	GioiTinh	MaPX	МаТо	Luong
NV1	Nguyễn A	1/1/1975	Nam	Q9	1	5.000.000
NV2	Trần B	1/1/1976	Nữ	TĐ	2	12.000.000
NV3	Bùi C	1/1/1977	Nam	ΤĐ	2	20.000.000
NV4	Phạm D	1/1/1978	Nữ	BD	1	15.000.000
NV5	Lê E	2/1/1983	Nam	Q9	1	10.000.000
NV6	Bùi T	12/12/1980	Nam	BD	2	7.000.000
NV7	Phạm M	26/09/2003	Nữ	BD	1	3.000.000

Giả sử có ba ứng dụng truy suất đến ${f CONGNHAN}$:

Q1: SELECT * FROM **CONGNHAN** WHERE **MaPX** = value

Q2: SELECT * FROM **CONGNHAN** WHERE **MaTo** = value

Q3: SELECT * FROM **CONGNHAN** WHERE **Luong** < 3.000.000

1. Dùng giải thuật COM_MIN, tính Pr' thỏa tối tiểu và đầy đủ? (2 điểm)

Lời giải.

• Tập vị từ đơn giản dùng để phân hoạch **CONGNHAN**:

p1: MaPX = 'Q9'

p2: MaPX = TD

p3: MaPX = 'BD'

p4: MaTo = 1

p5: MaTo = 2

p6: Luong < 3.000.000

p7: Luong $\geq 3.000.000$

- Khởi tạo $P_r = \{p1, p2, p3, p4, p5, p6, p7\}, P_{r'} = \emptyset$
- Áp dụng thuật toán COM MIN:
 - -i = 1 làm giá trị khởi đầu, vị từ p1 thỏa quy tắc 1, $P_{r'} = \{p1\}$.
 - -i = 2: Vị từ p2 thỏa quy tắt 1, $P_{r'} = \{p1, p2\}$.
 - -i=3: Ta có vị từ p3 không phân hoạch f_2 (là mảnh giao tối thiểu tạo ra ứng với p2) theo quy tắt 1. Vì vậy: $P_{r'}=\{\text{p1},\,\text{p2}\}.$
 - -i = 4: Vị từ p4 thỏa quy tắt 1, $P_{r'} = \{p1, p2, p4\}$.
 - -i = 5: Ta có vị từ p5 không phân hoạch f_4 (là mảnh giao tối thiểu tạo ra ứng với p4) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p2, p4\}$.
 - i = 6: Ta có vị từ p6 không phân hoạch f_5 (là mảnh giao tối thiểu tạo ra ứng với p5) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p2, p4\}$.
 - i = 7: Ta có vị từ p7 không phân hoạch f_6 (là mảnh giao tối thiểu tạo ra ứng với p6) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p2, p4\}$.

Kết luận: $P_{r'} = \{p1, p2, p4\}$ là đầy đủ và tối thiểu.

2. Sử dụng thuật toán PHORIZONTAL, thiết kế phân mảnh ngang chính cho quan hệ \mathbf{CON} - \mathbf{GNHAN} ? (2 điểm)

Lời giải.

- Các vị từ giao tối thiểu là:
 - $m1: p1 \wedge p4;$
 - m2: p1 $\land \neg$ p4 = p1 \land p5;
 - $m3: p2 \wedge p4;$
 - m4: $p2 \land \neg p4 = p2 \land p5$;
 - $m5: (\neg p1 \land \neg p2) \land p4 = p3 \land p4;$
 - m6: $(\neg p1 \land \neg p2) \land \neg p4 = p3 \land p5;$
- Vì vậy, ta có tập vị từ giao tối thiểu là: $M = \{m1, m2, m3, m4, m5, m6\}$
- $\bullet\,$ Phân mảnh ngang chính quan hệ CONGNHAN theo M là:

 $CONGNHAN1 = \sigma_{m1}(CONGNHAN)$

 $CONGNHAN2 = \sigma_{m2}(CONGNHAN)$

 $CONGNHAN3 = \sigma_{m3}(CONGNHAN)$

 $CONGNHAN4 = \sigma_{m4}(CONGNHAN)$

 $CONGNHAN5 = \sigma_{m5}(CONGNHAN)$

CONGNHAN6 = σ_{m6} (CONGNHAN) • Đối với dữ liệu demo mảnh CONGNHAN2 và CONGNHAN3 là rỗng, do đó ta có các mảnh:

CONGNHAN1

MaCN	TenCN	NgaySinh	GioiTinh	MaPX	MaTo	Luong
NV1	Nguyễn A	1/1/1975	Nam	Q9	1	5.000.000
NV5	Lê E	2/1/1983	Nam	Q9	1	10.000.000

CONGNHAN4

MaCN	TenCN	NgaySinh	GioiTinh	MaPX	MaTo	Luong
NV2	Trần B	1/1/1976	Nữ	ΤĐ	2	12.000.000
NV3	Bùi C	1/1/1977	Nam	ΤĐ	2	20.000.000

CONGNHAN5

	MaCN	TenCN	NgaySinh	GioiTinh	MaPX	MaTo	Luong
	NV4	Phạm D	1/1/1978	Nữ	BD	1	15.000.000
Ì	NV7	Phạm M	26/09/2003	Nữ	BD	1	3.000.000

CONGNHAN6

MaCN	TenCN	NgaySinh	GioiTinh	MaPX	MaTo	Luong
NV6	Bùi T	12/12/1980	Nam	BD	2	7.000.000

3. Thiết kế phân mảnh ngang dẫn xuất cho bảng **PHANCONG**.

Lời giải.

• Phân mảnh ngang dẫn xuất cho bảng **PHANCONG**:

```
CONGNHAN1 = \sigma_{m1}(CONGNHAN)
```

 $CONGNHAN2 = \sigma_{m2}(CONGNHAN)$

 $CONGNHAN3 = \sigma_{m3}(CONGNHAN)$

 $CONGNHAN4 = \sigma_{m4}(CONGNHAN)$

 $CONGNHAN5 = \sigma_{m5}(CONGNHAN)$

 $CONGNHAN6 = \sigma_{m6}(CONGNHAN)$

Các mảnh của quan hệ PHANCONG tương ứng là:

```
\begin{array}{l} {\rm PHANCONG1} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN1} \\ {\rm PHANCONG2} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN2} \\ {\rm PHANCONG3} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN3} \\ {\rm PHANCONG4} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN4} \\ {\rm PHANCONG5} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN5} \\ {\rm PHANCONG6} = {\rm PHANCONG} \; \bowtie_{MaCN} \; {\rm CONGNHAN6} \\ \end{array}
```

Các vị từ định tính của phân mảnh là:

```
q1: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'Q9' \land MaTo = 1 q2: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'Q9' \land MaTo = 2 q3: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'TD' \land MaTo = 1 q4: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'TD' \land MaTo = 2 q5: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'BD' \land MaTo = 1 q6: PHANCONG.MaCN = CONGNHAN.MaCN \land MaPX = 'BD' \land MaTo = 2
```

4. Kết quả phân mảnh của lược đồ quan hệ **CONGNHAN** ở câu 2 có đáp ứng được qui tắc đúng đắn của phân mảnh hay không ? Giải thích.

Lời giải.

- Kết quả phân mảnh của lược đồ quan hệ CONGNHAN ở câu 2 đáp ứng được qui tắt đúng đắn của phân mảnh. Vì nó đảm bảo 3 điều kiện:
 - Điều kiện đầy đủ: Mỗi mục dữ liệu trong quan hệ CONGNHAN phải có trong một hoặc nhiều mảnh $CONGNHAN_i$.

```
\forall u \in CONGNHAN, \exists i \in [1, 6] : u \in CONGNHAN_i
```

 Điều kiện tái tạo: Giữa các mảnh có thể áp dụng phép toán hợp để tái tạo lại mảnh ban đầu:

Ta có: CONGNHAN1 \cup CONGNHAN2 \cup CONGNHAN3 \cup CONGNHAN4 \cup CONGNHAN5 \cup CONGNHAN6 = CONGNHAN

- ⇒ Điều kiện tái tạo của phân mảnh này là đúng đắn.
- Điều kiện tách biệt: Nếu mục dữ liệu d_i có trong R_i thì nó không có trong bất kỳ mảnh R_k khác $(i \neq k)$.

```
\forall i \neq k \text{ và } i, k \in [1, n] : R_i \cap R_k = \emptyset.
```

Bài Tập 2

Tổng công ty Cảng hàng không Việt Nam hiện muốn quản lý thông tin các sân bay tại Việt Nam. Tùy theo mục đích khai thác mà các sân bay được quy hoạch thành hai nhóm là sân bay Nội địa (LoaiSB = 'Nội địa') và sân bay Quốc tế (LoaiSB = 'Quốc tế'). Ngoài ra, các sân bay còn được phân chia theo loại đường băng để kiểm soát việc máy bay nào có thể cất hay hạ cánh, bao gồm đường băng được làm bê tông (LoaiDB = 'Bê tông') và đường băng được làm bằng nhựa đường (LoaiDB = 'Nhưa đường'). Thông tin của các sân bay được thể hiện qua lược đồ quan hê sau:

SANBAY(MaICAO, TenSB, NamTL, LoaiSB, BayDem, LoaiDB)

<u>Tân từ</u>: Mỗi sân bay bao gồm: Mã ICAO, Tên sân bay, năm thành lập sân bay, loại sân bay, cho phép bay đêm, loai đường băng.

Cho quan hệ **SANBAY** với tập dữ liệu demo như sau:

SANBAY(MaICAO, TenSB, NamTL, LoaiSB, BayDem, LoaiDB)

MaICAO	TenSB	NamTL	LoaiSB	BayDem	LoaiDB
		10.60		-	4)
VVCM	Cà Mau	1962	Nội địa	Không	Nhựa đường
VVCS	Côn Đảo	1945	Nội địa	Có	Nhựa đường
VVCI	Cát Bi	1985	Quốc tế	Có	Bê tông
VVRG	Rạch Giá	1970	Nội địa	Không	Bê tông
VVDL	Liên Khương	1961	Quốc tế	Có	Nhựa đường
VVCA	Chu Lai	1965	Nội địa	Không	Bê tông
VVPB	Phú Bài	1948	Quốc tế	Có	Nhựa đường
VVTX	Thọ Xuân	1965	Nội địa	Có	Bê tông

Giả sử có ba ứng dụng truy suất đến SANBAY:

- Q1: SELECT COUNT(*) FROM **SANBAY** WHERE NamTL < 1965
- Q2: SELECT MaICAO, TenSB FROM SANBAY WHERE LoaiSB = value
- Q3: SELECT * FROM **SANBAY** WHERE **LoaiDB** = value
- 1. Dùng giải thuật COM MIN, tính Pr' thỏa tối tiểu và đầy đủ? (2 điểm)

Lời giải.

- Tập vi từ đơn giản dùng để phân hoach SANBAY:
 - p1: NamTL < 1965
 - p2: NamTL ≥ 1965
 - p3: LoaiSB = 'Nôi địa'
 - p4: LoaiSB = 'Quốc Tế'
 - p5: LoaiDB = 'Nhựa đường'
 - p6: LoaiDB = 'Bê tông'
- Khởi tạo $P_r = \{\text{p1, p2, p3, p4, p5, p6}\}, P_{r'} = \emptyset$
- Áp dụng thuật toán COM MIN:
 - -i = 1 làm giá trị khởi đầu, vị từ p1 thỏa quy tắt 1, $P_{r'} = \{p1\}$.
 - i = 2: Ta có vị từ p2 không phân hoạch f_1 (là mảnh giao tối thiểu tạo ra ứng với p1) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1\}$.
 - -i = 3: Vị từ p3 thỏa quy tắt 1. $P_{r'} = \{p1, p3\}$.
 - -i=4: Ta có vị từ p4 không phân hoạch f_3 (là mảnh giao tối thiểu tạo ra ứng với p3) theo quy tắt 1. Vì vậy: $P_{r'}=\{p1,p3\}$.
 - -i = 5: Ta có vị từ p5 không phân hoạch f_4 (là mảnh giao tối thiểu tạo ra ứng với p4) theo quy tắt 1.Vì vậy: $P_{r'} = \{p1, p3\}$.
 - i = 6: ta có vị từ p6 không phân hoạch f_5 (là mảnh giao tối thiếu tạo ra ứng với p5) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p3\}$.

Kết luận: $P_{r'} = \{p1, p3\}$ là đầy đủ và tối thiểu.

2. Sử dụng thuật toán PHORIZONTAL, thiết kế phân mảnh ngang chính cho quan hệ **SAN-BAY**? Lưu ý, sinh viên không cần liệt kê dữ liệu trong các mảnh. (2 điểm)

Lời giải.

- Các vị từ giao tối thiểu là:
 - m1: p1 \wedge p3;
 - m2: p1 $\land \neg$ p3 = p1 \land p4;
 - m3: $\neg p1 \wedge p3 = p2 \wedge p3$;
 - $m4: \neg p1 \land \neg p3 = p2 \land p4;$
- Vì vậy, ta có tập vị từ giao tối thiểu là: M = {m1, m2, m3, m4}
- Phân mảnh ngang chính quan hệ SANBAY theo M là:

 $SANBAY1 = \sigma_{m1}(SANBAY)$

 $SANBAY2 = \sigma_{m2}(SANBAY)$

 $SANBAY3 = \sigma_{m3}(SANBAY)$

 $SANBAY4 = \sigma_{m4}(SANBAY)$

• Đối với dữ liệu demo, ta có các mảnh: SANBAY1

MaICAO	TenSB	NamTL	LoaiSB	BayDem	LoaiDB
VVCM	Cà Mau	1962	Nội địa	Không	Nhựa đường
VVCS	Côn Đảo	1945	Nội địa	Có	Nhựa đường

SANBAY2

MaICAO	TenSB	NamTL	LoaiSB	BayDem	LoaiDB
VVDL	Liên Khương	1961	Quốc tế	Có	Nhựa đường
VVPB	Phú Bài	1948	Quốc tế	Có	Nhựa đường

SANBAY3

MaICAO	TenSB	NamTL	LoaiSB	BayDem	LoaiDB
VVRG	Rạch Giá	1970	Nội địa	Không	Bê tông
VVCA	Chu Lai	1965	Nội địa	Không	Bê tông
VVTX	Thọ Xuân	1965	Nội địa	Có	Bê tông

SANBAY4

MaICAO	TenSB	NamTL	LoaiSB	BayDem	LoaiDB
VVCI	Cát Bi	1985	Quốc tế	Có	Bê tông

3. Hãy vẽ cây phân mảnh của lược đồ quan hệ **SANBAY** đã làm. Chứng minh điều kiện **tái tạo** của phân mảnh này là đúng đắn. (1 điểm)

Lời giải.

• Vẽ cây phân mảnh

Hình 1: Cây phân mảnh

Chứng minh điều kiện tái tạo.
Giữa các mảnh có thể áp dụng phép toán hợp để tái tạo lại mảnh ban đầu:
Ta có: SANBAY1 ∪ SANBAY2 ∪ SANBAY3 ∪ SANBAY4 = SANBAY
⇒ Diều kiện tái tạo của phân mảnh này là đúng đắn.

Bài Tập 3

Tổng công ty Cảng hàng không Việt Nam hiện muốn quản lý thông tin các sân bay tại Việt Nam. Tùy theo mục đích khai thác mà các sân bay được quy hoạch thành hai nhóm là sân bay có hỗ trợ các chuyển bay vào ban đêm (BayDem = 'Có') và sân bay không hỗ trợ các chuyển bay vào ban đêm (BayDem = 'Không'). Ngoài ra, các sân bay còn được phân chia theo loại đường băng để kiểm soát việc máy bay nào có thể cất hay hạ cánh, bao gồm đường băng được làm bê tông (LoaiDB = 'Bê tông') và đường băng được làm bằng nhựa đường (LoaiDB = 'Nhựa đường'). Thông tin của các sân bay được thể hiện qua lược đồ quan hệ sau:

SANBAY(MaICAO, TenSB, ChieuDaiDB, LoaiSB, BayDem, LoaiDB)

<u>Tân từ</u>: Mỗi sân bay bao gồm: Mã ICAO, Tên sân bay, chiều dài đường băng, loại sân bay, cho phép bay đêm, loại đường băng. Cho quan hệ **SANBAY** với tập dữ liệu demo như sau:

SANBAY(MaICAO, TenSB, ChieuDaiDB, LoaiSB, BayDem, LoaiDB)

Silvari (<u>izarerie</u> , rensp., encaparist, Edulist, Baytem, Ballet)						
MaICAO	TenSB	ChieuDaiDB	LoaiSB	BayDem	LoaiDB	
VVCM	Cà Mau	1500	Nội địa	Không	Nhựa đường	
VVCS	Côn Đảo	1830	Nội địa	Có	Nhựa đường	
VVCI	Cát Bi	3050	Quốc tế	Có	Bê tông	
VVRG	Rạch Giá	3000	Nội địa	Không	Bê tông	
VVDL	Liên Khương	2950	Quốc tế	Có	Nhựa đường	
VVCA	Chu Lai	3050	Nội địa	Không	Bê tông	
VVPB	Phú Bài	2700	Quốc tế	Có	Nhựa đường	
VVTX	Thọ Xuân	3200	Nội địa	Có	Bê tông	

Giả sử có ba ứng dung truy suất đến SANBAY:

- Q1: SELECT COUNT(*) FROM **SANBAY** WHERE **ChieuDaiDB** \geq 3000
- Q2: SELECT MaICAO, TenSB FROM SANBAY WHERE BayDem = value
- Q3: SELECT * FROM **SANBAY** WHERE **LoaiDB** = value
- 1. Dùng giải thuật COM MIN, tính Pr' thỏa tối tiểu và đầy đủ? (2 điểm)

Lời giải.

- Tập vị từ đơn giản dùng để phân hoạch SANBAY:
 - p1: ChieuDaiDB > 3000
 - p2: ChieuDaiDB < 3000
 - p3: BayDem = 'Không'
 - p4: BayDem = 'Có'
 - p5: LoaiDB = 'Nhựa đường'
 - p6: LoaiDb = 'Bê tông'
- Khởi tạo $P_r = \{\text{p1, p2, p3, p4, p5, p6}\}, P_{r'} = \emptyset$
- Áp dụng giải thuật COM MIN:
 - -i = 1 làm giá trị khởi đầu, vị từ p1 thỏa quy tắt 1, $P_{r'} = \{p1\}$.
 - i = 2: Ta có vị từ p2 không phân hoạch f_1 (là mảnh giao tối thiểu tạo ra ứng với p1) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1\}$.
 - i = 3: Vị từ p3 thỏa quy tắt 1. $P_{r'} = \{p1, p3\}$.
 - -i = 4: Ta có vị từ p4 không phân hoạch f_3 (là mảnh giao tối thiểu tạo ra ứng với p3) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p3\}$.
 - i = 5: Ta có vị từ p5 không phân hoạch f_4 (là mảnh giao tối thiểu tạo ra ứng với p4) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p3\}$.
 - i = 6: Ta có vị từ p6 không phân hoạch f_5 (là mảnh giao tối thiểu tạo ra ứng với p5) theo quy tắt 1. Vì vậy: $P_{r'} = \{p1, p3\}$.

Kết luận: $P_{r'} = \{p1, p3\}$ là đầy đủ và tối thiểu.

2. Sử dụng thuật toán PHORIZONTAL, thiết kế phân mảnh ngang chính cho quan hệ **SAN-BAY**? Lưu ý, sinh viên không cần liệt kê dữ liệu trong các mảnh. (2 điểm)

Lời giải.

- Các vị từ giao tối thiểu là:
 - m1: p1 \wedge p3;
 - m2: p1 $\land \neg$ p3 = p1 \land p4;
 - $m3: \neg p1 \land p3 = p2 \land p3;$
 - $m4: \neg p1 \land \neg p3 = p2 \land p4;$
- Vì vậy, ta có tập vị từ giao tối thiểu là: $M = \{m1, m2, m3, m4\}$
- Phân mảnh ngang chính quan hệ SANBAY theo M là:

 $SANBAY1 = \sigma_{m1}(SANBAY)$

 $SANBAY2 = \sigma_{m2}(SANBAY)$

 $SANBAY3 = \sigma_{m3}(SANBAY)$

 $SANBAY4 = \sigma_{m4}(SANBAY)$

• Đối với dữ liệu demo, ta có các mảnh: SANBAY1

MaICAO	TenSB	ChieuDaiDB	LoaiSB	BayDem	LoaiDB
VVRG	Rạch Giá	3000	Nội địa	Không	Bê tông
VVCA	Chu Lai	3050	Nội địa	Không	Bê tông

SANBAY2

MaICAO	TenSB	ChieuDaiDB	LoaiSB	BayDem	LoaiDB
VVCI	Cát Bi	3050	Quốc tế	Có	Bê tông
VVTX	Thọ Xuân	3200	Nội địa	Có	Bê tông

SANBAY3

MaICAO	TenSB	ChieuDaiDB	LoaiSB	BayDem	LoaiDB
VVCM	Cà Mau	1500	Nội địa	Không	Nhựa đường

SANBAY4

MaICAO	TenSB	ChieuDaiDB	LoaiSB	BayDem	LoaiDB
VVCS	Côn Đảo	1830	Nội địa	Có	Nhựa đường
VVDL	Liên Khương	2950	Quốc tế	Có	Nhựa đường
VVPB	Phú Bài	2700	Quốc tế	Có	Nhựa đường

3. Hãy vẽ cây phân mảnh của lược đồ quan hệ **SANBAY** đã làm. Chứng minh điều kiện **tách biệt** của phân mảnh này là đúng đắn. (1 điểm)

Lời giải.

• Vẽ cây phân mảnh

Hình 2: Cây phân mảnh

• Chứng minh điều kiện tách biệt: Nếu mục dữ liệu d_i có trong R_i thì nó không có trong bất kỳ mảnh R_k khác $(i \neq k)$.

$$\forall i \neq k \text{ và } i, k \in [1, n] : R_i \cap R_k = \emptyset.$$