Cours II

Exercices XIII 1. - 7.

Exercices: XIII. 1-7 solubilité

XIII.1.: Quelle est la solubilité massique du chlorure d'argent?

$$K_{ps}$$
 de AgCl = 1.8 x 10⁻¹⁰

a. équation de dissolution: $AgCl \Leftrightarrow Ag^+ + Cl^-$

b. produit de solubilité: $K_{ps} = [Ag^+][Cl^-] = s^2 = 1.8 \times 10^{-10}$

$$s_{\text{molaire}} = \sqrt{1.8 \cdot 10^{-10}} = 1.35 \cdot 10^{-5} \text{ M}$$

$$s_{\text{massique}} = 1,34 \cdot 10^{-5} \text{M} \cdot 143,3 \text{ g/mol} = 1,92 \cdot 10^{-3} \text{g/L}$$

XIII.2.: Le perchlorate de potassium est soluble dans l'eau à raison de 0.75 g par 100 ml à 0° C. Calculer la valeur du K_{ps} relatif à $KClO_4$.

$$M$$
 de KClO₄ = 138,55 g/mol $s_{\text{massique}} = 7,5$ g/L $s_{\text{molaire}} = s_{\text{massique}}/M = 7,5$ g L⁻¹/138,55 g mol⁻¹ = 0,054 mol/L $K_{\text{ps}} = [\text{K}^+] [\text{ClO}_4^-] = s^2 = (0,054)^2 = 0,0029$ $\underline{K}_{\text{ps}} = 2,9 \times 10^{-3}$

XIII.3.: Le produit de solubilité de $Mg(OH)_2(s)$ dans de l'eau à 25°C vaut $1.8 \cdot 10^{-11}$.

Calculer la solubilité (en g x 100 mL⁻¹) du $Mg(OH)_2(s)$ sous ces conditions.

a. réaction chimique: $Mg(OH)_2 \Leftrightarrow Mg^{2+} + 2(OH)^{-}$

b. produit de solubilité: $[Mg^{2+}][OH^{-}]^2 = 1,8 \ 10^{-11} = s(2s)^2 = 4s^3$

$$s^{3} = \frac{1.8 \cdot 10^{-11}}{4}$$
 $s = \sqrt[3]{\frac{1.8 \cdot 10^{-11}}{4}} = 1.65 \cdot 10^{-4} \text{ mol } L^{-1}$

c. $M \text{ de Mg(OH)}_2 = 58,32 \text{ g/mol}$ $58,32 \times 1,65 \times 10^{-4} = 9,62 \times 10^{-3} \text{ g/L}$ $\underline{s} = 9,62 \times 10^{-4} \text{ g/100ml}$ XIII.4.: La solubilité de $Pb_3(PO_4)_2 = 1.4 \ 10^{-5} \ g/100ml$. Calculer Kps.

a.
$$Pb_3(PO_4)_2 \Leftrightarrow 3 Pb^{2+} + 2 (PO_4)^{3-}$$
 M de $Pb_3(PO_4)_2 = 811,5$ g/mol

b.
$$s_{\text{molaire}} = 1,4 \ 10^{-4} \text{ g L}^{-1} / 811,5 \text{ g mol}^{-1} = 1,73 \ 10^{-7} \text{ mol/L}$$

c.
$$K_{ps} = [Pb^{2+}]^3 [PO_4^{3-}]^2 = (3s)^3 (2s)^2 = 27s^3 \ 4s^2 = 108 \ s^5$$

 $Kps = 108 \ (1,73 \ 10^{-7})^5 = \underline{1,67 \ 10^{-32}}$

XIII.5.: Combien de g de chromate de barium se dissout à 25° C dans 50 ml d'eau pure? La constante $K_{ps} = 1,2 \ 10^{-10}$ à cette température.

- a. Réaction chimique: $BaCrO_4 \Leftrightarrow Ba^{2+} + CrO_4^{2-}$
- b. Produit de solubilité: $K_{ps} = [Ba^{2+}] [CrO_4^{2-}] = 1.2 \ 10^{-10} = s^2$

$$s = \sqrt{1.2 \cdot 10^{-10}} = 1.1 \cdot 10^{-5} \,\mathrm{M}$$

- c. $M ext{ de BaCrO}_4 = 253.3 ext{ g/mol}$ $s_{\text{massique}} = 253.3 ext{ x}$ 1.1 $10^{-5} = 2.8 ext{ } 10^{-3} ext{ g/L}$
- d. Dans 0.05 L: $s = 2.8 \cdot 10^{-3} \times 0.05 = 1.4 \cdot 10^{-4} \text{ g/50 ml}$

XIII.6.: Quel volume d'une solution aqueuse est nécessaire pour dissoudre 10 mg de sulfate d'argent, Ag_2SO_4 ? $K_{ps} = 6.9 \ 10^{-15}$.

a.
$$Ag_2SO_4 \Leftrightarrow 2 Ag^+ + SO_4^{2-}$$

b.
$$K_{ps} = [Ag^+]^2[SO_4^{2-}] = (2s)^2s = 4s^3$$

$$s^{3} = \frac{6.9 \cdot 10^{-15}}{4} = \sqrt[3]{\frac{6.9 \cdot 10^{-15}}{4}} = 1.2 \cdot 10^{-5} \text{mol/L}$$

c.
$$S_{\text{massique}} = 311.79 \text{ g/mol x } 1.2 \cdot 10^{-5} \text{ mol/L} = 0.00374 \text{ g/L}$$

 $0.01 \text{ g x } 1 \text{ L } / 0.00374 \text{ g} = \underline{2.674 \text{ L}}$

XIII.7.: Quelle est la formule de s pour un sel type AB_4 (exemple: $Sn(OH)_4$)? $s (4s)^4 = 256s^5$