- 5.14 This would be paired data, as the cities contributing air quality measurements in 2013 are the same as the ones in 2014. Durs would be a paired test.
- 5.22 This is matched pairs data. There is no need to subtract values of healthy subjects from their match among cancer subjects; at the point where we enter the problem we know there are n=127 such differences, with sample mean $\overline{d}=2.7$ and sample Std. dev. $S_d=15.9$.
 - (a) We test H_0 : $\mu_a = 0$ vs. H_a : $\mu_b \neq 0$. Our test statistic is $t = \frac{\overline{J}}{6J/\sqrt{n}} = \frac{2.7}{15.9/\sqrt{127}} = 1.914$

The P-value comes from $2 \times (1 - pt(1.914, 126)) = 0.0578$ We fail to reject Ho at the 5% level.

(b) One might construct a 95% CI, but the simpler approach is to note that, since our test statistic was in the nonrejection region corresponding to $\alpha=0.05$ W/ df = 126, 0 is in the 95% CI. (The nonrejection region is all t-scores between -t* and t*, where t*= gt(0.975, 126).)

5.26 (a) Let μ_{m} , μ_{F} denote mean egg sizes for male, female chicks, respectively.

Our hypotheses are H_{0} : μ_{m} - μ_{F} = 0 vs. H_{a} : μ_{m} - μ_{F} # 0. The test statistic: $t = \frac{1619.95 - 1584.2}{\sqrt{\frac{127.54^{2}}{80} + \frac{102.51^{2}}{48}}} = \frac{35.75}{20.549} = 1.74$

2 * (1 - pt (1.74, 47)) = 0.088 (P-value), so we fail to reject Ho.

(b) $\overline{X}_{F} - \overline{X}_{0} + gt(0.975, 41) * SE_{\overline{X}_{F}} - \overline{X}_{0} = 1606.91 - 1605.87 + (2.0195) <math>\sqrt{\frac{126.32^{2}}{89} + \frac{103.46^{2}}{42}}$ = 1.04 + 42.079or (-41.039, 43.119)