

بهینهسازی ترکیبیاتی مقدماتی

مدرس: مرتضى عليمى، هانى احمد زاده

تمرین تحویلی ۵

شماره دانشجویی: ۹۷۱۰۰۴۰۵

نام و نامخانوداگی: سروش زارع

پرسش ۱

در ابتدا فرض میکنیم که مواردی مانند دور با ظرفیت بی نهایت و مجموع هزینههای منفی وجود ندارد، زیرا در غیر این صورت مساله جواب بهینه ندارد.

لم ۱ میتوانیم یک ماتریس U با درایه های ثابت u پیدا کنیم به طوری که افزودن قید $f \leq U$ جواب های مساله را عوض نکند.

برهان. می توانیم با استفاده از الگوریتمی شبیه به باینری سرچ مقدار u را پیدا کنیم. در ابتدا قرار می دهیم u=1 و جواب بهینه مساله را پیدا می کنیم، سپس در هر مرحله u را دو برابر می کنیم، اگر جواب بهینه ی مساله عوض نشد، همین u را به عنوان درایه های u در قید u در نظر می گیریم. ولی اگر جواب تغییر کرد، همین الگوریتم را ادامه می دهیم. با فرض اینکه مساله یک جواب بهینه دارد، این الگوریتم پس از تعدادی تکرار متوقف می شود، در نتیجه لم (۱) اثبات می شود.

پس تا کنون مسالهای به شکل زیر داریم:

کمینه کن
$$c^T f$$
 کمینه کن $0 \leq f \leq U$ $abla (f)_i = b_i \quad orall i \in V$

حال سعی میکنیم هزینه های منفی را از بین ببریم. برای این کار، در ابتدا به ازای هر یال e=xy با a منفی، مقادیر b_y و b_x

$$b_x + = u$$
$$b_y - = u$$

خود یال e را حذف می کنیم و یک یال e'=yx را با هزینه ی $e'=-c_e$ و شار اولیه ی و اضافه می کنیم. این آپدیت را به ازای تمام یالهای با هزینه ی منفی انجام می دهیم تا در نهایت هیچ هزینه ی منفی باقی نمانده باشد. نحوه ی این مدل سازی به این گونه است که به ازای یک یال e=xy با هزینه ی منفی، با عوض کردن b_u و b_u فرض می کنیم که تمام ظرفیت این به این گونه است که به ازای یک یال به الگوریتم می دهیم که بتواند از تمام این ظرفیت استفاده نکند (با قرار دادن یال بر عکس e=xy با هزینه ی مثبت). در واقع تمام هزینه های منفی را در ابتدا لحاظ می کنیم و صرفا در صورت نیاز برخی از آن ها را بعدا کنسل می کنیم. در نهایت اگر مقدار e=xy آپدیت شده را با e=xy نشان دهیم و هزینه ها را با e=xy نشان دهیم، کافیست مساله ی زیر را حل کنیم:

کمینه کن
$$c'^T f$$

$$0 \leq f \leq U$$

$$\nabla(f)_i = b'_i \quad \forall i \in V$$

اگر جواب بهینه ی این مساله را با f^* نشان دهیم، برای به دست آوردن جواب مساله ی اصلی، برای یال های e که از همان ابتدا هزینه ی مثبت داشته اند کافیست همان f_e را برای f_e در نظر بگیریم و برای یالهای e که در ابتدا هزینه ی منفی داشته اند، f_e کافیست f_e و نام نظر بگیریم و برای یالهای e که در ابتدا هزینه ی منفی داشته اند، کافیست f_e را برابر با f_e قرار دهیم (چون در ابتدا فرض کردیم تمام ظرفیت f_e استفاده شده است ولی در نهایت به کافیست f_e اندازهی $f_e^{\prime\prime}$ از آن را کنسل کردهایم). اندازهی $v\in V$ در داریم: نکته: میتوان دید که برای هر $v\in V$ داریم:

$$b'_v = b_v + u(|\delta^+(v)| - |\delta^-(v)|)$$

پرسش ۲

ابتدا برنامهی اصلی (Primal) را مینویسیم:

کمینه کن
$$c^T f$$

$$0 \le f \le u$$

$$\nabla(f)_i = b_i \quad \forall i \in V$$

حال برنامهی دوگان (Dual) را مینویسیم:

بیشینه کن
$$b^T\pi+u^Ty$$
 خد $y_{i,j}+\pi_j-\pi_i\leq c_{i,j} \quad \forall e=ij\in E$ $y,\pi\geq 0$

طبق لنگی مکمل، اگر f^* یک جواب شدنی برای P و مجموعه ی $B^* = \{y^*, \pi^*\}$ یک جواب شدنی برای D باشند، این جواب ها بهینه اند اگر و تنها اگر داشته باشیم:

$$f_e^* > 0 \to y^*_{i,j} + \pi_j^* - \pi_i^* = c_{i,j} \tag{1}$$

$$f_e^* < u_e \to y_e^* = 0 \tag{Y}$$

لم ۲ تساوی سمت راست (۱) در صورت بهینه بودن D همواره برقرار است و در واقع شرطی اضافه است. برهان. (فرض خلف) فرض کنید $B^*=\{y^*,\pi^*\}$ یک جواب بهینه برای D باشد. اگر i,j موجود باشند به طوری که داشته باشیم

$$y^*_{i,j} + \pi^*_j - \pi^*_i < c_{i,j}$$

میتوانیم $y_{i,j}$ را به اندازه یی یک 0 > 0 افزایش دهیم به طوری که همچنان قیود D برقرار باشند و علاوه بر آن، با توجه به مثبت بودن B در تناقض است. پس فرض خلف باطل است و لم (۱) اثبات می شود.

حال با توجه به لم (۱)، مى توانىم بنويسىم:

$$y^*_{i,j} = c_{i,j} - \pi_j^* + \pi_i^*$$

و در نتیجه شرط (۲) را میتوانیم به صورت معادل زیر بنویسیم:

$$f_e^* < u_e \to c_{i,j} - \pi_j^* + \pi_i^* = 0$$

پس توانستیم شروط لنگی مکمل را بدون استفاده از y^* بنویسیم.

پرسش ۳

هدفمان این است که مساله را به این شکل مدل کنیم:

کمینه کن
$$c^T f$$
 $0 \leq f$ که $\nabla(f)_i = b_i \quad \forall i \in V$

که c_e هزینهی کپی گرفتن از یال e میباشد.

حال سعی می کنیم مساله را طوری ملل کنیم که هر یال مجبور باشلا حلاقل ۱ بار استفاده شود (بلون هزینه)، و سپس به ازای هر استفاده ی مجلد، هزینه ای اضافه متحمل شود. سعی می کنیم این هزینه های اضافه را با f ملل کنیم و خود e اولیه d_u به ازای هر استفاده ی مجلد، هزینه ای اضافه متحمل شود. سعی می کنیم این هزینه های اضافه را با d_v ملل کنیم. برای این کار کافیست برای هر یال d_v مقلار را به ازای تک تک یالها انجام می دهیم و این کار عملا باعث می شود که هر یال حلاقل و d_v عوض کنیم. همین کار را به ازای تک تک یالها انجام می دهیم و این کار عملا باعث می شود که هر یال حلاقل یک بار استفاده شود. برای اینکه در نهایت یک گراف اویلری داشته باشیم، کافیست کاری کنیم که d_v های اولیه (قبل از عوض شدن)، همگی برابر با d_v باشند (باعث می شود درجه ی خروجی و ورودی رئوس پس از اضافه شدن یالها برابر باشد). پس کافیست در ابتدا قرار دهیم d_v و با پیمایش روی یالهای d_v مقادیر d_v را با d_v نشان دهیم، مسالهی زیر را حل می کنیم:

کمینه کن
$$c^T f$$
 $0 \leq f$ که $\nabla(f)_i = b_i' \quad \forall i \in V$

در جواب بهینهی به دست آمده، اگر شار استفاده شده برای یال e برابر با f_e باشد، این مقدار نشان می دهد که f_e بار کپی از یال e از یال e اضافه شده است (به جز خود e اولیه).

 $v \in V$ داریم: نکته: میتوان دید که برای هر

$$b'_v = |\delta^+(v)| - |\delta^-(v)|$$