ÁLGEBRA LINEAR

Exercícios - Espaços Vectoriais

Lic. Ciências da Computação

1. Verifique que $(\mathbb{R}^2, \mathbb{R}, \widetilde{+}, \widetilde{\cdot})$ é um espaço vectorial real, onde $\widetilde{+} : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ e $\widetilde{\cdot} : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ são as aplicações definidas por

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2 - 3),$$

 $\alpha + (x_1, x_2) = (\alpha x_1, \alpha (x_2 - 3) + 3),$

para quaisquer $\alpha \in \mathbb{R}$ e $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$.

- 2. Prove que $\mathcal{M}_{m \times n}$ (\mathbb{R}), algebrizado com as operações usuais de adição de matrizes e multiplicação de um real por uma matriz, é um espaço vectorial real.
- 3. Verifique se
 - (a) $W_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 = 0\}$ é um subespaço vectorial do espaço vectorial real \mathbb{R}^3 .
 - (b) $W_2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}$ é um subespaço vectorial do espaço vectorial real \mathbb{R}^2 .
 - (c) $W_3 = \{(0, a, b, -1) : a, b \in \mathbb{R}\}$ é um subespaço vectorial do espaço vectorial real \mathbb{R}^4 .
 - (d) $W_4 = \{a + bi \in \mathbb{C} : a = 0\}$ é um subespaço vectorial do espaço vectorial complexo \mathbb{C} .
- 4. Considere os seguintes subespaços vectoriais do espaço vectorial real \mathbb{R}^3 :

$$V_1 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\},$$

$$V_2 = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0, y - z = 0\},$$

$$V_3 = \{(x, y, z) \in \mathbb{R}^3 : x - 2y = 0, z = 0\}.$$

(a) Mostre que

i.
$$V_2 = \{(b, 0, 0) \in \mathbb{R}^3 : b \in \mathbb{R}\}.$$

ii. $V_3 = \{(2a, a, 0) \in \mathbb{R}^3 : a \in \mathbb{R}\}.$

(b) Diga, justificando, se:

i.
$$(7,1,-2) \in V_3 + V_2;$$

ii.
$$V_1 \subseteq V_2, V_2 \subseteq V_3, V_3 \subseteq V_2;$$

- iii. $V_1 \cap V_3, \ V_2 + V_3, \ V_1 \cup V_2, \ V_2 \cup V_3$ são subespaços vectoriais do espaço vectorial \mathbb{R}^3 ;
- iv. \mathbb{R}^3 é soma directa de V_1 e V_3 ;
- v. \mathbb{R}^3 é soma directa de V_2 e V_3 .
- 5. Considere, no espaço vectorial real $\mathbb{R}^3,$ os vectores

$$v_1=(1,-1,1), \quad v_2=(2,1,-2), \quad u_1=(-1,0,1), \quad u_2=(1,0,0), \quad u_3=(1,0,1).$$

Verifique se

- (a) (1, -4, 5) é combinação linear de v_1, v_2 .
- (b) (1,2,4) é combinação linear de v_1, v_2 .
- (c) (3,0,2) é combinação linear de u_1,u_2,u_3 .
- (d) (0,2,1) é combinação linear de u_1,u_2,u_3 .
- 6. Determine os subespaços vectoriais de \mathbb{R}^3 gerados por
 - (a) $\{(1,1,1)\}$

- (b) $\{(0,0,0)\}$
- (c) $\{(1,0,0),(0,1,0),(0,0,1)\}$ (d) $\{(1,0,0),(0,2,0),(0,0,3),(2,3,4)\}$
- (e) $\{(1,2,3),(-2,-4,-6),(4,8,12)\}$ (f) $\{(1,2,3),(-2,-4,-6),(3,6,9\}$
- 7. Determine dois conjuntos distintos de geradores de cada um dos seguintes subespaços vectoriais de \mathbb{R}^4 :
 - (a) \mathbb{R}^4 ;
 - (b) $\{(a, c a, c, 2c) \in \mathbb{R}^4 : a, c \in \mathbb{R}\};$
 - (c) $\{(a, b, c, d) \in \mathbb{R}^4 : a + c = 0, 2b + d + c = 0\}.$
- 8. Considere o espaço vectorial complexo \mathbb{C}^3 . Mostre que
 - (a) $\{(1,1,1),(1,1,0),(1,0,0)\}$ é um conjunto gerador de \mathbb{C}^3 .
 - (b) $\{(1,0,1),(1,1,0),(0,1,1),(1,1,1)\}$ é um conjunto gerador de \mathbb{C}^3 .
 - (c) $\{(1,1,0),(0,0,1)\}$ não é um conjunto gerador de \mathbb{C}^3 .
- 9. Considere o espaço vectorial $\mathcal{M}_3(\mathbb{R})$ e os seus vectores

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 6 & 1 & 6 \\ 1 & 1 & 6 \\ 8 & 2 & 1 \end{bmatrix}$$

Escreva, se possível, C como combinação linear de A e B.

10. Determine o subespaço vectorial do espaço vectorial real $\mathcal{M}_2(\mathbb{R})$ gerado por

$$(a) \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

$$(b) \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \quad \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\},$$

$$(a) \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \qquad (b) \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \qquad (c) \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

- 11. Diga se são linearmente independentes os vectores que se apresentam a seguir:
 - (a) (0,1,1,0), (-1,0,1,1), (1,1,0,-1) no espaço vectorial real \mathbb{R}^4 .
 - (b) $x^2 + x, x^2 + 1, x, x^3$ no espaço vectorial real $\mathbb{R}_3[x]$.
- 12. Verifique se os seguintes vectores do espaço vectorial real $\mathcal{M}_2(\mathbb{R})$ são linearmente independentes:
 - (a) $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & 6 \\ 4 & 6 \end{bmatrix}$.
 - (b) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$.
- 13. Sejam V um espaço vectorial sobre \mathbb{K} tal que dim V = n e $v_1, ..., v_n, v_{n+1}$ elementos de V tais que $V = \langle v_1, v_2, ..., v_n \rangle$. Seja $\alpha \in \mathbb{K}$.

Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.

- (a) $(v_1, v_2..., v_n)$ é uma base de V.
- (b) Os vectores $v_1, v_2, ..., v_n, v_{n+1}$ são linearmente dependentes.
- (c) Os vectores $v_1, v_2, ..., \alpha v_i, ..., v_n$ são linearmente independentes.
- (d) Os vectores $v_1, v_2, ..., v_{i-1}, v_i + \alpha v_j, v_{i+1}, ..., v_n$ são linearmente independentes.
- 14. Considere, no espaço vectorial real \mathbb{R}^4 , os subespaços

$$U = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 - a_4 = 0, a_4 - a_3 = 0\}$$

$$W_1 = \{(b_1, b_2, b_3, b_4) \in \mathbb{R}^4 : b_2 + 2b_3 = 0, b_1 + 2b_3 - b_4 = 0\}$$

$$W_2 = \langle (1, 1, 1, 0), (-1, 1, 0, 1), (1, 3, 2, 1), (-3, 1, -1, 2) \rangle.$$

- (a) Diga, justificando, se ((1,1,1,1),(0,1,0,0),(1,0,0,1)) é uma base de U.
- (b) Determine uma base de i. W_1 . ii. W_2
- 15. Determine uma base de $W \cap U$ e uma base de W + U onde
 - (a) W = <(0,0,-1),(1,0,2)> e U = <(0,1,1),(-1,3,2)> são subespaços do espaço vectorial real \mathbb{R}^3 .
 - (b) $W = \{x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + 2x_4 = 0\}$ e $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_4 = 0\}$ são subespaços do espaço vectorial complexo \mathbb{C}^4 .
- 16. Considere os seguintes vectores do espaco vectorial real \mathbb{R}^3 :

$$v_1 = (\alpha, 6, -1), v_2 = (1, \alpha, -1), v_3 = (2, \alpha, -3).$$

- (a) Determine os valores do parâmetro real α para os quais (v_1, v_2, v_3) é uma base de \mathbb{R}^3 .
- (b) Para um dos valores de α determinados na alínea anterior, calcule as coordenadas do vector v = (-1, 1.2) em relação à base (v_1, v_2, v_3) .
- 17. Indique, se existir, uma base do espaço vectorial real \mathbb{R}^4 da qual façam parte os vectores:
 - (a) (1,0,-1,2), (1,0,1,0).
 - (b) (0,1,1,-1), (0,1,0,2), (0,2,1,1).
 - (c) (1,-1,-1,2), (0,1,2,0), (1,0,1,-2).

- 18. Determine um suplementar de
 - (a) $W = <(-1, 2, 1), (1, 1, 1) > \text{relativamente a } \mathbb{R}^3.$
 - (b) $U = \langle 3x^4 + x^2, 2x, -3x^4, x^2 + x \rangle$ relativamente a $\mathbb{R}^4[x]$.
 - (c) $F = \{(a, b, c, d) \in \mathbb{C}^4 : 2a + b \in c = 0\}$ relativamente a \mathbb{C}^4 .
- 19. Considere os seguintes subespaços vectoriais do espaço vectorial real \mathbb{R}^3 :

$$V_1 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\},\$$

$$V_2 = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0, y - z = 0\},\$$

$$V_3 = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0, 2y + z = 0\},\$$

$$V_4 = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}.$$

- (a) Diga, justificando, se é directa cada uma das seguintes somas de subespaços:
 - i. $V_1 + V_3$.
 - ii. $V_1 + V_2$
 - iii. $V_3 + V_4$
- (b) Verifique que
 - i. \mathbb{R}^3 é soma directa de V_2 e V_4 .
 - ii. \mathbb{R}^3 não é soma directa de V_1 e V_2 .
- 20. Sejam V um espaço vectorial sobre \mathbb{K} , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, de dimensão finita e W, U subespaços de V. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) Se dimW \leq dimU, então $W \subseteq U$.
 - (b) Se $\dim W = \dim U$, então $\dim(W + U) = \dim W + \dim U$.
 - (c) Se $\dim U + \dim W = \dim V$, então V é soma directa de U e W.
 - (d) Se $\dim(U + W) = \dim V$, então V é soma directa de U e W.
 - (e) Se $\dim(U + W) = \dim U + \dim W$, então V é soma directa de U e W.
 - (f) Se V é soma directa de U e W, então $\dim(U + W) = \dim U + \dim W$.
- 21. Considere, no espaço vectorial complexo \mathbb{C}^4 , o subespaço

$$W = \langle (1,0,0,2), (-1,0,1,2), (0,i,0,0) \rangle$$
.

- (a) Mostre que, se U é um subespaço de \mathbb{C}^4 tal que dim $\mathbf{U}=2$ e $U\cap W=<(0,1,0,0)>$, então $U+W=\mathbb{C}^4$.
- (b) Dê exemplo de um subespaço U de \mathbb{C}^4 tal que dim $\mathbf{U}=2$ e $U\cap W=<(0,1,0,0)>$. Justifique.