Neural Networks and Deep Learning

www.cs.wisc.edu/~dpage/cs760/

Goals for the lecture

you should understand the following concepts

- perceptrons
- the perceptron training rule
- linear separability
- hidden units
- multilayer neural networks
- gradient descent
- stochastic (online) gradient descent
- sigmoid function
- gradient descent with a linear output unit
- gradient descent with a sigmoid output unit
- backpropagation

Goals for the lecture

you should understand the following concepts

- weight initialization
- early stopping
- the role of hidden units
- input encodings for neural networks
- output encodings
- recurrent neural networks
- autoencoders
- stacked autoencoders

Neural networks

- a.k.a. artificial neural networks, connectionist models
- inspired by interconnected neurons in biological systems
 - simple processing units
 - each unit receives a number of real-valued inputs
 - each unit produces a single real-valued output

Perceptrons

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

input units: represent given *x*

output unit: represents binary classification

Learning a perceptron: the perceptron training rule

- 1. randomly initialize weights
- 2. iterate through training instances until convergence

2a. calculate the output for the given instance

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

2b. update each weight

$$\Delta w_i = \eta (y - o) x_i$$

$$\eta \text{ is learning rate;}$$

$$\text{set to value} << 1$$

$$w_i \leftarrow w_i + \Delta w_i$$

Representational power of perceptrons

perceptrons can represent only linearly separable concepts

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

decision boundary given by:

1 if
$$w_0 + w_1 x_1 + w_2 x_2 > 0$$

also write as: $\mathbf{wx} > 0$

$$w_1 x_1 + w_2 x_2 = -w_0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Representational power of perceptrons

- in previous example, feature space was 2D so decision boundary was a line
- in higher dimensions, decision boundary is a hyperplane

Some linearly separable functions

AND

	$x_1 x_2$	y
а	0 0	0
b	0 1	0
С	1 0	0
d	1 1	1

<u>OR</u>

	$x_1 x_2$	y
a	0 0	0
b	0 1	1
С	1 0	1
d	1 1	1

XOR is not linearly separable

a multilayer perceptron can represent XOR

assume $w_0 = 0$ for all nodes