(c) We have

$$\sqrt{9x^5} = 10$$

$$3x^{5/2} = 10$$

$$x^{5/2} = \frac{10}{3}$$

$$x = \left(\frac{10}{3}\right)^{2/5} = 1.619.$$

Exercises to Skills for Chapter 4

For Exercises 1–33, evaluate without a calculator.

- 1. $(-5)^2$ 2. 11^2
- 3. 10^4

- **13.** $\frac{2^7}{2^3}$ **14.** $(-1)^{445}$ **15.** -11^2

- **16.** $(5^0)^3$ **17.** $2.1(10^3)$ **18.** $16^{1/2}$
- **19.** $16^{1/4}$ **20.** $16^{3/4}$
- **21.** 16^{5/4}

- **22.** $16^{5/2}$ **23.** $100^{5/2}$ **24.** $\sqrt{(-4)^2}$
- **25.** $(-1)^3 \sqrt{36}$
- **26.** $(0.04)^{1/2}$ **27.** $(-8)^{2/3}$
- **28.** 3⁻¹
- **29.** $3^{-3/2}$
- **30.** 25^{-1}

- 31. 25^{-2}
- **32.** $(1/27)^{-1/3}$
 - **33.** $(0.125)^{1/3}$

Simplify the expressions in Exercises 34-55 and leave without radicals if possible. Assume all variables are positive.

34.
$$\sqrt{x^4}$$

35.
$$\sqrt{y^8}$$

36.
$$\sqrt{w^8z^4}$$

37.
$$\sqrt{x^5y^4}$$

38.
$$\sqrt{49w^9}$$

39.
$$\sqrt{25x^3z^4}$$

40.
$$\sqrt{r^2}$$

41.
$$\sqrt{r^3}$$

42.
$$\sqrt{r^4}$$

43.
$$\sqrt{64s^7}$$

44.
$$\sqrt{50x^4y^6}$$

$$\frac{16}{16} \frac{\sqrt{6e^2t^3v^5}\sqrt{6et^5v^3}}{\sqrt{6et^5v^3}}$$

4.
$$(-1)^{13}$$
 5. $\frac{5^3}{5^2}$ **6.** $\frac{10^8}{10^5}$ **46.** $\sqrt{6s^2t^3v^5}\sqrt{6st^5v^3}$ **47.** $\left(S\sqrt{16xt^2}\right)^2$

45. $\sqrt{48u^{10}v^{12}y^5}$

7.
$$\frac{6^4}{6^4}$$
 8. $\sqrt{4}$ 9. $\sqrt{4^2}$ 48. $\sqrt{e^{2x}}$

49.
$$(3AB)^{-1} (A^2B^{-1})^2$$

10.
$$\sqrt{4^4}$$
 11. $\sqrt{(-4)^2}$ **12.** $\frac{1}{7^{-2}}$ **50.** $e^{kt} \cdot e^3 \cdot e$

51.
$$\sqrt{M+2}(2+M)^{3/2}$$

52.
$$(y^{-2}e^y)^2$$

53.
$$\frac{a^{n+1}3^{n+1}}{a^n3^n}$$

54.
$$(a^{-1} + b^{-1})^{-1}$$

55.
$$\left(\frac{35(2b+1)^9}{7(2b+1)^{-1}}\right)^2$$
 (Do not expand $(2b+1)^9$.)

If possible, evaluate the quantities in Exercises 56–64. Check your answers with a calculator.

56.
$$(-32)^{3/5}$$
 57. $-32^{3/5}$ **58.** $-625^{3/4}$

57.
$$-32^{3/5}$$

58.
$$-625^{3/4}$$

59.
$$(-625)^{3/4}$$

60.
$$(-1728)^{4/3}$$
 61. $64^{-3/2}$

61.
$$64^{-3/2}$$

62.
$$-64^{3/2}$$

62.
$$-64^{3/2}$$
 63. $(-64)^{3/2}$ **64.** $81^{5/4}$

In Exercises 65–66, solve for x.

65.
$$7x^4 = 20x^2$$

65.
$$7x^4 = 20x^2$$
 66. $2(x+2)^3 = 100$

In Exercises 67–68, use algebra to find the point of intersection.

67.

68.

Are the statements in Exercises 69–74 true or false?

69.
$$x^2y^5 = (xy)^{10}$$

70.
$$5u^2 + 5u^3 = 10u^5$$

71.
$$(3r)^2 9s^2 = 81r^2 s^2$$

71.
$$(3r)^2 9s^2 = 81r^2 s^2$$
 72. $\sqrt[3]{-64b^3c^6} = -4bc^2$

73.
$$-4w^2 - 3w^3 = -w^2(4+3w)$$

74.
$$(u+v)^{-1} = \frac{1}{u} + \frac{1}{v}$$

Solve the equations in Exercises 75–76 in terms of r and s, given that

$$2^r = 5$$
 and $2^s = 7$.

75.
$$2^x = 35$$
.

76.
$$2^x = 140$$
.

Let $2^a = 5$ and $2^b = 7$. Using exponent rules, solve the equations in Exercises 77–82 in terms of a and b.

77.
$$5^x = 32$$

78.
$$7^x = \frac{1}{8}$$

79.
$$25^x = 64$$

80.
$$14^x = 16$$

81.
$$5^x = 7$$

82.
$$0.4^x = 49$$