A Introduction to TensorFlow

HUIXIONG QIN

2018 12 27

FEATURES OF PYTHON

Glue Language

python is designed specifically to write and manage program and code, which connects together different software components.

API	language
Cython	Python Extending with C/ C++
rpy2	R in Python
JPype	Java in Python
PyExecJS	Run JavaScript code from Python
python-sql	Connect SQL Server in Python

Table: examples

Machine Learning/Deep Learning Frameworks

- ML: Theano&Ecosystem, Torch, TensorFlow, Caffe, CNTK, DSSTNE, Speed
- DL: Scikit-learn, Apache Mahout, SystemML, Microsoft DMTK

FEATURES OF TENSORFLOW

High Availability

- TensorFlow is perfectly compatible to NumPy, containing plenty of high-level APIs.
- TensorFlow programs are allow to deploy in a wide range of devices, from computer groups to smart phones.

Completed Communities and Abundant Sort of Study Resource

- An online open course
- The most popular deep learning framework in Github.

TensorBoard: Visualizing Learning

- Visualize your TensorFlow graph.
- Plot quantitative metrics about the execution of your graph.
- Show additional data like images that pass through it.

BASIC CLASSES

TENSORFLOW.TENSOR

When writing a TensorFlow program, the main object you manipulate and pass around is the tf.Tensor.

constructed function

__init__(op, value_index, dtype)
Args:

- op: An **Operation**. Operation that computes this tensor.
- value_index: An **int**. Index of the operation's endpoint that produces this tensor.
- dtype: A **DType**. Type of elements stored in this tensor.

Properties

- device: The name of the device on which this tensor will be produced, or None.
- dtype: The DType of elements in this tensor.
- graph: The Graph that contains this tensor.
- name: The string name of this tensor.
- op: The Operation that produces this tensor as an output.
- shape: Returns the TensorShape that represents the shape of this tensor.

Method

```
__add__(), __eq__(), __matmul__(), __eval__()
```

5

Remark

<u>These methods</u> are the same as tf.add_n(), tf.matmul(), ...

tf.variable

A tf.variable represents a tensor whose value can be changed by running ops on it.

__init__(initial_value=None, validate_shape=True, name=None)

```
v = tf.Variable([1, 2], validate_shape=[1, 2], name="v1")
```

tf.constant

Creates a constant tensor.

__init__(value, dtype=None, shape=None, name='Const')

tf.placeholder

Inserts a placeholder for a tensor that will be always fed.

tf.placeholder(dtype, shape=None, name=None)

```
x = tf.placeholder(tf.float32, shape=(1024, 1024))
with tf.Session() as sess:
rand_array = np.random.rand(1024, 1024)
print(sess.run(y, feed_dict={x: rand_array}))
```

TENSORFLOW.OPERATION

An op is a node in a TensorFlow Graph that takes zero or more Tensor objects as input, and produces zero or more Tensor objects as output.

Objects of type Operation are created by calling a Python op constructor (such as **tf.matmul**) or **tf.Graph.create_op**.

Create a op

create_op(op_type, inputs, dtypes,) Args:

- op_type: The Operation type to create. This corresponds to the **OpDef.name** field.
- inputs: A list of Tensor objects that will be inputs to the Operation.
- dtypes: A list of DType objects that will be the types of the tensors that the operation produces.

TENSORFLOW.GRAPH

TensorFlow uses a dataflow graph to represent your computation in terms of the dependencies between individual operations. In a dataflow graph, the nodes represent units of computation(**tf.Operation**), and the edges represent the data consumed or produced by a computation(**tf.Tensor**). TensorFlow would build a default graph that is an implicit argument to all API functions in the same context.

```
# Build your graph.
x = tf.constant([[37.0, -23.0], [1.0, 4.0]])
w = tf.Variable(tf.random uniform([2, 2]))
v = tf.matmul(x, w)
y_{-} = tf.constant([[0, 0], [1, 1]])
loss = tf.losses.absolute_difference(y_, y)
train op = tf.train.AdagradOptimizer(0.01).minimize(loss)
with tf.Session() as sess:
    writer = tf.summary.FileWriter("../logs", sess.graph)
    init = tf.global variables initializer()
    sess.run(init)
    for i in range(1000):
        sess.run(train op)
    writer.close()
```


Dutuflow edge 2
 Control dependency edge 2
 Reference edge 2

TENSORFLOW.SESSION

TensorFlow computing relies on a efficient C++ server. The connection to this back end is tf.session. Generally, we need to build a graph before running it in the session.

session.run(fetches)

fetches argument may be a single graph element, or an arbitrarily nested list, tuple, namedtuple, or dictionary, including objects from **tf.Operation** and **tf.tensor**.

There is a easier way to run your graphs: tf.InteractiveSession()

Remark

Before Variables can be used within a session, they must be initialized using that session.

```
#session.run(fetches)
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  print(sess.run(c))
#tf.InteractiveSession()
sess = tf.InteractiveSession()
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
print(c.eval())
sess.close()
```

SAVE AND RESTORE

tf.train.saver.save(sess, save_path) tf.train.saver.restore(sess, save_path)

Remark

Restored variables does not need to initiate again.

```
# to save variables
v1 = tf.get_variable("v1", shape=[3], initializer = tf.
                              zeros initializer)
v2 = tf.get_variable("v2", shape=[5], initializer = tf.
                              zeros_initializer)
inc v1 = v1.assign(v1+1)
dec v2 = v2.assign(v2-1)
init op = tf.global variables initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
  sess.run(init op)
 inc v1.op.run()
 dec_v2.op.run()
  save path = saver.save(sess, "/tmp/model.ckpt")
# to restore variables
tf.reset default graph()
v1 = tf.get variable("v1", shape=[3])
v2 = tf.get variable("v2", shape=[5])
saver = tf.train.Saver()
with tf.Session() as sess:
  saver.restore(sess, "/tmp/model.ckpt")
  print("Model restored.")
```

EXPERIMENT: HANDWRITTEN DIGITS RECOGNITION

IMPORT DATA

A Typical pipeline for loading data contains the following steps:

- 1. A list for file names.
- 2. A file reader/interpretor for certain file formats.
- 3. Preprocessing, including normalizing, shuffling and adding additional noise.
- 4. batching.
- 5. A DataSet class as the return object.

```
SOURCE URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe download(filename, work directory)
def read32(bytestream)
def extract images(filename)
def dense_to_one_hot(labels_dense, num_classes=10)
def extract labels(filename, one hot=False)
class DataSet(object)
 def init (self, images, labels, fake_data=False,
                              one hot=False, dtype=tf.
                              float32)
   def next batch(self, batch size, fake data=False)
def read data sets(train dir, fake data=False, one hot=
                              False, dtvpe=tf.float32):
    class DataSets(object):
        pass
   data sets = DataSets()
    if fake data:
        def fake():
            return DataSet([], [], fake_data=True, one_hot=
                                          one hot, dtype=
                                          dtype)
        data sets.train = fake()
```

```
data_sets.validation = fake()
    data sets.test = fake()
    return data sets
TRAIN IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN LABELS = 'train-labels-idx1-ubyte.gz'
TEST IMAGES = 't10k-images-idx3-ubvte.gz'
TEST LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train dir)
train images = extract images(local file)
local file = maybe download(TRAIN LABELS, train dir)
train labels = extract_labels(local_file, one_hot=
                              one hot)
local_file = maybe_download(TEST_IMAGES, train dir)
test images = extract images(local file)
local file = maybe download(TEST LABELS, train dir)
test labels = extract labels(local file, one hot=
                              one hot)
validation_images = train_images[:VALIDATION SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data sets.train = DataSet(train images, train labels,
```

THE MODEL OF HANDWRITTEN DIGITS RECOGNITION

Firstly, to build a elementary model that mainly contains the following steps.

1. Sortmax regression model

$$softmax(x_i) = \frac{e^{x_i}}{\sum_{j=0}^{N} x_j}$$
$$y = softmax(Wx + b)$$

Where W is the weight matrix, x is the input data, b is the bias.

2 | 1

2. model training

cross-entropy is a nice loss function which is information compression coding technique in information theory.

$$H_{y'}(y) = -\sum_i y_i' log(y_i)$$

Where y is the predicted value and y_ is the precise value. Once the optimizer is set, TensorFlow would automatically calculate the gradient and optimizer the model.

3. model estimating

Use tf.argmax – a useful function the return the index of the maximum of certain tensors object – to check if the prediction is correct.

Then compute the accuracy by tf.reduce_mean.

```
mnist = input data.read data sets("MNIST data/")
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
v = tf.nn.softmax(tf.matmul(x, W) + b)
y = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train step = tf.train.GradientDescentOptimizer(0.01).
                              minimize(cross entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
    batch xs, batch ys = mnist.train.next batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:
                                  batch ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y
                              , 1))
accuracy = tf.reduce mean(tf.cast(correct prediction, "
                              float"))
print(sess.run(accuracy, feed dict={x: mnist.test.images,
                              y : mnist.test.labels}))
```

```
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST data/train-images-idx3-ubvte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting MNIST data/train-labels-idx1-ubvte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubvte.gz 4542 bvtes.
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
```

Figure: Output

A CNN-besed model may further improve the accuracy of handwritten digits recognition.

There are some key ideas behind ConvNets that take advantages of natural signals:

- Local connections.
 - Local groups of values are often highly correlated.
 - ► Conv op is efficient algorithm to make use of the correlation.
- Pooling.
 - ► To merge semantically similar features into one.
 - A typical pooling unit computes the maximum of a local patch of units in one feature map(such as conv op), hence the name — maximum pooling.
- The use of many layers.


```
mnist = input_data.read_data_sets('MNIST_data', one_hot=
                              True)
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784], name="x")
y_ = tf.placeholder("float", shape=[None, 10], name="labels
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
def weight variable(shape):
    initial = tf.truncated normal(shape, stddev=0.1)
    return tf.Variable(initial, name="W")
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial, name="B")
def conv2d(x1, W1):
    return tf.nn.conv2d(x1, W1, strides=[1, 1, 1, 1],
                                  padding='SAME')
def max_pool_2x2(x2):
    return tf.nn.max_pool(x2, ksize=[1, 2, 2, 1], strides=[
                                  1, 2, 2, 1], padding='
                                  SAME')
# convolutional layer
```

```
with tf.name_scope(name="conv1"):
    W conv1 = weight variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_{image} = tf.reshape(x, [-1, 28, 28, 1])
    h conv1 = tf.nn.relu(conv2d(x image, W conv1) + b conv1
    h pool1 = max_pool_2x2(h_conv1)
with tf.name scope(name="conv2"):
    W conv2 = weight variable([5, 5, 32, 64])
    b conv2 = bias variable([64])
    h conv2 = tf.nn.relu(conv2d(h pool1, W conv2) + b conv2
    h pool2 = max_pool_2x2(h_conv2)
# fully-connected layer
with tf.name scope(name="fc1"):
    W_{fc1} = weight_variable([7 * 7 * 64, 1024])
    b fc1 = bias variable([1024])
    h pool2 flat = tf.reshape(h pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) +
                                  b fc1)
with tf.name scope(name="fc2"):
```

```
keep_prob = tf.placeholder("float")
    h fc1 drop = tf.nn.dropout(h fc1, keep prob)
    W fc2 = weight variable([1024, 10])
    b fc2 = bias variable([10])
    y conv = tf.nn.softmax(tf.matmul(h fc1 drop, W fc2) +
                                  b fc2)
#draw histograms
tf.summary.histogram("weights", W conv1)
tf.summary.histogram("weights", W_conv2)
tf.summary.histogram("biases", b conv2)
tf.summary.histogram("biases", b conv1)
tf.summary.histogram("activation", h conv1)
tf.summary.histogram("activation", h conv2)
with tf.name_scope(name="cross_entropy"):
    cross entropy = -tf.reduce sum(v *tf.log(v conv))
tf.summary.scalar('cross entropy', cross entropy)
with tf.name scope(name="train"):
    train step = tf.train.AdamOptimizer(1e-4).minimize(
                                  cross entropy)
with tf.name_scope(name="accuracy"):
    correct prediction = tf.equal(tf.argmax(y conv, 1), tf.
                                  argmax(y_{1}, 1)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "
```

```
float"))
tf.summary.scalar('accuracy', accuracy)
sess.run(tf.initialize all variables())
writer = tf.summary.FileWriter("/tmp/log/mnist")
writer.add graph(sess.graph)
for i in range(500):
    batch = mnist.train.next batch(50)
   if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch[
                                      o], y : batch[1],
                                      keep prob: 1.0})
        print("step %d, training accuracy %g" % (i,
                                      train accuracy))
    train_step.run(feed_dict={x: batch[0], y : batch[1],
                                  keep prob: 0.5})
writer.close()
print("test accuracy %g" % accuracy.eval(feed_dict={x:
                              mnist.test.images, y : mnist.
                              test.labels, keep prob: 1.0})
```


A Game of arguments adjusting?

```
for learning_rates in [1e-3, 1e-4, 1e-5]:
    with tf.name scope(name="train"):
        train step = tf.train.AdamOptimizer(learning rates)
                                       .minimize(
                                      cross entropy)
    sess.run(tf.initialize_all_variables())
    merged summary = tf.summary.merge all()
    writer = tf.summary.FileWriter("/tmp/log/mnist")
    writer.add_graph(sess.graph)
    for i in range(500):
        batch = mnist.train.next batch(50)
        if i % 5 == 0:
            s = sess.run(merged summary, feed dict={x:
                                           batch[o], y_:
                                           batch[1],
                                           keep prob: 1.0})
            writer.add_summary(s, i)
        if i % 100 == 0:
            train accuracy = accuracy.eval(feed dict={x:
                                           batch[o], y_:
                                           batch[1],
```


THANK YOU!