DATA MINING PRESENTATION

IMPLEMENTASI DATA MINING PADA DATASET BREAST CANCER WISCONSIN

VENANSIUS RYAN TJAHJONO 06111540000043 SUMIHAR CHRISTIAN N.S. 06111540000115

LATAR BELAKANG

RUMUSAN MASALAH

CARA PREPROCESSING DATA

ANALISIS DATASET DENGAN TASK DATA MINING

CROSS VALIDATION DENGAN MULTI LAYER PERCEPTRON

DATASETS

https://archive.ics.uci.edu/ml/machine-learningdatabases/breast-cancer-wisconsin/

<u>Name</u>	Last modified	Size Description
Parent Directory		-
Index	03-Dec-1996 04:07	326
breast-cancer-wisconsin.data	16-Jul-1992 10:15	19K
breast-cancer-wisconsin.names	16-Jul-1992 14:13	5.5K
unformatted-data	16-Jul-1992 06:17	21K
wdbc.data	05-Feb-1996 11:04	121K
wdbc.names	05-Feb-1996 11:04	4.6K
? wpbc.data	01-Feb-1996 16:00	43K
<u>wpbc.names</u>	01-Feb-1996 16:00	5.5K

Apache/2.2.15 (CentOS) Server at archive.ics.uci.edu Port 443

ATRIBUT DATA (mean, se, worst)

- 1. ID number
- 2. Diagnosis (M = malignant, B = benign)
- 3 32 Ten real-valued features are computed for each cell nucleus:
 - a) radius (mean of distances from center to points on the perimeter)
 - b) texture (standard deviation of gray-scale values)
 - · c) perimeter
 - d) area
 - e) smoothness (local variation in radius lengths)
 - f) compactness (perimeter² / area 1.0)
 - g) concavity (severity of concave portions of the contour)
 - h) concave points (number of concave portions of the contour)
 - i) symmetry
 - j) fractal dimension ("coastline approximation" 1)

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('data.csv', header=0)
#PREPROCESSING DATA
# dataset.replace('?', -99999, inplace=True) #-9999 biar
outlier, gak masuk ke grafik
dataset.drop("id",1)
mapping={'M':4, 'B':2}
print(dataset.shape)
dataset['diagnosis'] = dataset['diagnosis'].map(mapping)
X = dataset.iloc[:, 1:31].values # parameter yang mau di
train
y = dataset.iloc[:, 1].values # target
```

PREPROCESSING DATA

SUATU PROSES/LANGKAH YANG
DILAKUKAN UNTUK MEMBUAT
DATA MENTAH MENJADI DATA
YANG BERKUALITAS(INPUT YANG
BAIK UNTUK DATA MINING
TOOLS).

PADA DATA YANG DIPILIH,
DITANGANI NILAI OUTLIER SAJA
SEBAB TIDAK ADA *MISSING*VALUE.


```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read csv('data.csv', header=0)
#PREPROCESSING DATA
# dataset.replace('?', -99999, inplace=True) #-9999 biar
outlier, gak masuk ke grafik
dataset.drop("id",1)
mapping={'M':4, 'B':2}
print(dataset.shape)
dataset['diagnosis'] = dataset['diagnosis'].map(mapping)
X = dataset.iloc[:, 1:31].values # parameter yang mau di
train
y = dataset.iloc[:, 1].values # target
```

PLOT DATASET

PROSES PLOTTING DILAKUKAN
DALAM BENTUK EXPLANATORY
DATA ANALYSIS.

CLASSIFICATION

PROSES PEMBELAJARAN SUATU
FUNGSI (MODEL) YANG
MEMETAKAN SUATU ITEM DATA
KEDALAM SATU KELAS DARI
SEJUMLAH KELAS YANG TELAH
DIDEFINISIKAN

DIGUNAKAN ALGORITMA KNN, SVM, DAN NAÏVE BAYES.

k N N A L G O R I T H M

Test Accuracy: $0.9736842105263158 \approx 97.37\%$

Train Accuracy: 0.9736263736263736 ≈ 97.36%

SUPPORT VECTOR MACHINE

Test Accuracy: $0.9912280701754386 \approx 99.12\%$ Train Accuracy: $0.9692307692307692 \approx 96.92\%$

NAÏVE BAYES ALGORITHM

Test Accuracy: $0.9385964912280702 \approx 93.85\%$ Train Accuracy: $0.9318681318681319 \approx 93.19\%$

PERFORMANCE ANALYSIS (precision, recall, f1 score, support)

kNN

Туре	Precision	recall	f1-score	support
2	1.00	0.96	0.98	70
4	0.94	1.00	0.97	44
micro avg	0.97	0.97	0.97	114
macro avg	0.97	0.98	0.97	114
weighted avg	0.98	0.97	0.97	114

NaiveBayes

Туре	Precision	recall	f1-score	support
2	0.98	0.91	0.95	70
4	0.88	0.98	0.92	44
micro avg	0.94	0.94	0.94	114
macro avg	0.93	0.95	0.94	114
weighted avg	0.94	0.94	0.94	114

SVM

Туре	Precision	recall	f1-score	support
2	1.00	0.93	0.96	70
4	0.90	1.00	0.95	44
micro avg	0.96	0.96	0.97	114
macro avg	0.97	0.96	0.95	114
weighted avg	0.96	0.96	0.96	114

CLUSTERING

PENGELOMPOKAN DARI CLASS
(YANG DISEBUT JUGA DENGAN
CLUSTER/GROUP) UNTUK SUATU
HIMPUNAN OBYEK SEDEMIKIAN
HINGGA ANGGOTA DARI SUATU
CLUSTER SEDAPAT MUNGKIN
MEMPUNYAI SIFAT YANG MIRIP
DENGAN SESAMA ANGGOTA
CLUSTER.

ALGORITMA YANG DIGUNAKAN
ADALAH K-MEANS, SPECTRAL
CLUSTERING, HIERARCHICAL
CLUSTERING

DENDOGRAM

SEQUENTIAL PATTERN

TEKNIK DALAM DATA MINING
UNTUK MEMPEROLEH POLA
PADA SUATU BARISAN DATA.

PREDIKSI DENGAN MULTI LAYER PERCEPTRON

PADA DASARNYA, MLP ADALAH PERCEPTRON YANG MEMILIKI LAYER ATAU LAPISAN TAMBAHAN DIANTARA $\overline{LAYE}R$ INPUT $(\overline{\mathsf{NEURON}}\ X_i)$ DAN LAYER OUTPUT (NEURON Y_i) YANG DISEBUT DENGAN HIDDEN LAYER. PROSES PERHITUNGAN DARI SETIAP NEURONNYA SAMA DENGAN PERCEPTRON. SINYAL OUTPUT NEURON (v) DIMASUKKAN KEDALAM SEBUAH FUNGSI AKTIVASI. (FAUSETT, 2006)(HAM & KOSTANIC, 2001).

HASIL PREDIKSI

Neural Network Parameters

```
learning_rate = 0.005
training_dropout = 0.9
display_step = 1
batch_size = 100
accuracy_history = []
cost_history = []
valid_accuracy_history = []
valid_cost_history = []
```

