1 Hauptsätze der Thermodynamik

\mathcal{A}	Menge aller atomischen Systeme, e.g. $\mathcal{A} = \{A_1, A_2, A_3\}$
\mathcal{S}	Menge aller Systeme; ∨ steht für die Zusammensetzung von Systemen
	e.g. $S = \{A_1, A_2, A_3, A_1 \lor A_2, A_1 \lor A_3, A_2 \lor A_3, A_1 \lor A_2 \lor A_3\}$
	∧ steht für den Schnitt von Systemen
$\operatorname{Sub}(S)$	Menge aller Subsysteme von $S \in \mathcal{S}$; Sub $(S) := \{S' \in \mathcal{S} : S' \lor S = S\}$
	e.g. $Sub(A_1 \vee A_2) = \{A_1, A_2, A_1 \vee A_2\}$
Atom(S)	Menge aller atomischen Subsysteme von $S \in \mathcal{S}$; $Atom(S) := \{A \in \mathcal{A} : A \in Sub(S)\}$
	e.g. $Atom(A_1 \vee A_2) = \{A_1, A_2\}$
\mathcal{P}	Menge aller Prozesse; ∘ steht für die Komposition von Prozessen
Σ_A	Zustandsraum von $A \in \mathcal{A}$, e.g. falls A ein ideales Gas ist: $\sigma = (p, V) \in \Sigma_A = \mathbb{R}_{>0}^{\times 2}$
Σ_S	Zustandsraum von $S \in \mathcal{S}$, e.g. falls $S = A_1 \vee A_2$, dann $\sigma = (\sigma_1, \sigma_2) \in \Sigma_S = \Sigma_{A_1} \times \Sigma_{A_2}$
$\lfloor p \rfloor_S$	Anfangszustand des Prozesses $p \in \mathcal{P}$ auf $S \in \mathcal{S}$
$\lceil p \rceil_S$	Endzustand des Prozesses $p \in \mathcal{P}$ auf $S \in \mathcal{S}$
	e.g. falls p ein Prozess von $\sigma_1 \in \Sigma_S$ nach $\sigma_2 \in \Sigma_S$ ist: $\lfloor p \rfloor_S = \sigma_1$, $\lceil p \rceil_S = \sigma_2$
\mathcal{P}_S	Menge aller Arbeitsprozesse auf $S \in \mathcal{S}$
	$\mathcal{P}_S := \{ p \in \mathcal{P} : \lfloor p \rfloor_{S'} \text{ ist definiert genau dann wenn } S' \in \operatorname{Sub}(S) \}$

Ein System $S \in \mathcal{S}$ ist involviert im Prozess $p \in \mathcal{P}$ (oder: ein Prozess $p \in \mathcal{P}$ wirkt unter anderem auf $S \in \mathcal{S}$) falls $\exists A \in \text{Atom}(S)$ so, dass $\lfloor p \rfloor_A$ definiert ist.

Ein Prozess $p \in \mathcal{P}$ ist zyklisch auf (oder: ein Kreisprozess auf) $S \in \mathcal{S}$ falls $\lfloor p \rfloor_S = \lceil p \rceil_S$.

Ein Prozess $p \in \mathcal{P}$ ist ein *Identitätsprozess auf* $S \in \mathcal{S}$ falls p zyklisch auf S ist und $p \in \mathcal{P}_S$. (Notationskonvention: Falls $p \equiv \operatorname{id}_S^{\sigma}$ ein Identitätsprozess auf S ist, so gilt $\lfloor p \rfloor_S = \sigma = \lceil p \rceil_S$.)

Ein Arbeitsprozess $p \in \mathcal{P}_S$ ist reversibel falls $\exists p^{\text{rev}} \in \mathcal{P}_S$ so, dass $p^{\text{rev}} \circ p$ ein Identitätsprozess auf S ist. Jedes solche p^{rev} wird als ein Umkehrprozess für p bezeichnet.

Allgemeiner: Für $p \in \mathcal{P}$ sei \bar{S} die Zusammensetzung all jener atomischen Systeme in \mathcal{A} , die in p involviert sind. Dann bezeichnen wir p als reversibel, falls p betrachtet als ein Arbeitsprozess auf \bar{S} reversibel ist (i.e. falls $p \in \mathcal{P}_{\bar{S}}$ reversibel ist).

1. Hauptsatz. (Postulat) Für jedes System $S \in \mathcal{S}$ gilt:

- (i) Zu jedem Paar von Zuständen $\sigma_1, \sigma_2 \in \Sigma_S$ gibt es einen Arbeitsprozess $p \in \mathcal{P}_S$ sodass $(\lfloor p \rfloor_S = \sigma_1 \text{ und } \lceil p \rceil_S = \sigma_2) \text{ oder } (\lfloor p \rfloor_S = \sigma_2 \text{ und } \lceil p \rceil_S = \sigma_1) \text{ gilt.}$
- (ii) $\forall p \in \mathcal{P}_S, \forall p' \in \mathcal{P}_S$ gilt: Falls $\lfloor p' \rfloor_S = \lfloor p \rfloor_S$ und $\lceil p' \rceil_S = \lceil p \rceil_S$ ist, dann ist $W_S(p') = W_S(p)$.

Arbeit	$W_A: \mathcal{P} \to \mathbb{R}$ quantifiziert die während $p \in \mathcal{P}$ in $A \in \mathcal{A}$ investierte Arbeit
\dots Annahmen	• Falls $A \in \mathcal{A}$ nicht in $p \in \mathcal{P}$ involviert ist: $W_A(p) = 0$.
	• Additivität unter Komposition: $W_A(p' \circ p) = W_A(p) + W_A(p') \ \forall p, p' \in \mathcal{P}$
	• $\forall S \in \mathcal{S}$: falls $p \in \mathcal{P}_S$ reversibel ist, existiert ein Umkehrprozess p^{rev} sodass
	für alle $S' \in \operatorname{Sub}(S)$ gilt: $W_{S'}(p^{\text{rev}}) = -W_{S'}(p)$.
für $S \in \mathcal{S}$	$W_S \coloneqq \sum_{A \in \operatorname{Atom}(S)} W_A$ ist auch eine Funktion $\mathcal{P} \to \mathbb{R}$
	\Rightarrow Additivität unter Zusammensetzen: $W_{A_1\vee A_2}(p)=W_{A_1}(p)+W_{A_2}(p)\ \forall p\in\mathcal{P}$
1. Hauptsatz	$\Rightarrow \forall S \in \mathcal{S}, \forall \sigma \in \Sigma_S : \exists$ ein Identitätsprozess $p \equiv \mathrm{id}_S^{\sigma} \in \mathcal{P}_S$ und $W_S(\mathrm{id}_S^{\sigma}) = 0$
	\Rightarrow falls $p \in \mathcal{P}_S$ reversibel ist: $W_S(p^{\text{rev}}) = -W_S(p)$ für jeden Umkehrprozess p^{rev}

Zustands-	von $S \in \mathcal{S}$ ist eine Funktion $Z: \Sigma_S \to \mathbb{R}^n$
grösse	• Differenz einer Zustandsgrösse: $\Delta Z(p) \coloneqq Z(\lceil p \rceil_S) - Z(\lfloor p \rfloor_S)$ für $p \in \mathcal{P}$
innere	$U_S(\sigma) := W_S(p) + U_{0,S}$ falls $p \in \mathcal{P}_S$ ein Prozess von $\sigma_{0,S} \in \Sigma_S$ nach $\sigma \in \Sigma_S$ ist
Energie	$U_S(\sigma) := -W_S(p') + U_{0,S}$ falls $p' \in \mathcal{P}_S$ ein Prozess von $\sigma \in \Sigma_S$ nach $\sigma_{0,S} \in \Sigma_S$ ist
	\Rightarrow Die innere Energie $U_S: \Sigma_S \to \mathbb{R}$ ist eine Zustandsgrösse von $S \in \mathcal{S}$.
	\Rightarrow Additivität unter Komposition: $\Delta U_S(p' \circ p) = \Delta U_S(p) + \Delta U_S(p') \ \forall p, p' \in \mathcal{P}$
	\Rightarrow Additivität unter Zusammensetzen: $\Delta U_{A_1 \vee A_2}(p) = \Delta U_{A_1}(p) + \Delta U_{A_2}(p) \ \forall p \in \mathcal{P}$
	\Rightarrow falls $p \in \mathcal{P}_S : W_S(p) = \Delta U_S(p)$
Wärme	$Q_S(p) \coloneqq \Delta U_S(p) - W_S(p)$ für beliebige $p \in \mathcal{P}$
	quantifiziert die dem System S während dem Prozess p zufliessende Wärme
	\Rightarrow Additivität unter Komposition: $Q_S(p' \circ p) = Q_S(p) + Q_S(p') \ \forall p, p' \in \mathcal{P}$
	\Rightarrow Additivität unter Zusammensetzen: $Q_{A_1\vee A_2}(p)=Q_{A_1}(p)+Q_{A_2}(p) \ \forall p\in\mathcal{P}$
	\Rightarrow falls $p \in \mathcal{P}_S : Q_S(p) = 0$
	\Rightarrow falls $p \in \mathcal{P}$ zyklisch auf S ist: $Q_S(p) = -W_S(p)$

Quasistatische Prozesse. Ein quasistatischer Abeitsprozess auf einem System $S \in \mathcal{S}$ ist eine zweiparametrige Familie von Arbeitsprozessen $\{p(\lambda, \lambda')\}_{\lambda, \lambda'} \subset \mathcal{P}_S$ mit $\lambda, \lambda' \in [0, 1]$ und $\lambda \leq \lambda'$ und:

- (i) Für $\lambda \leq \lambda' \leq \lambda'' \in [0,1]$ gilt $p(\lambda', \lambda'') \circ p(\lambda, \lambda') = p(\lambda, \lambda'')$.
- (ii) Der Pfad $\lambda \mapsto \sigma_{\lambda} := \lfloor p(\lambda, \lambda') \rfloor_S$ ist stetig.
- (iii) Für alle $A \in \text{Atom}(S)$ ist $W_A(p(\lambda, \lambda'))$ stetig in λ und λ' für $\lambda, \lambda' \in [0, 1]$ mit $\lambda \leq \lambda'$.

Sei $\{p(\lambda, \lambda')\}_{\lambda, \lambda'}$ ein quasistatischer Arbeitsprozess auf S. Für $A \in \text{Atom}(S)$:

differentielle innere Energie	ist die 1-Form d U_A (i.e. das Differential der inneren Energie U_A)
	$\Rightarrow \int_{\sigma_{\lambda}}^{\sigma_{\lambda'}} \mathrm{d}U_A = U_A(\sigma_{\lambda'}) - U_A(\sigma_{\lambda})$
	\Rightarrow falls $p:=p(0,1)$ zyklisch auf A ist: $\oint \mathrm{d}U_A = \Delta U_A(p) = 0$
differentielle Arbeit	ist eine 1-Form $\delta^{(p)}W_A$, sodass $\forall \lambda, \lambda' \in [0, 1]$ mit $\lambda \leq \lambda'$ gilt
	$\int_{\sigma_{\lambda}}^{\sigma_{\lambda'}} \delta^{(p)} W_A = W_A(p(\lambda, \lambda')).$
differentielle Wärme	ist die 1-Form $\delta^{(p)}Q_A := \mathrm{d}U_A - \delta^{(p)}W_A$
	\Rightarrow falls $p:=p(0,1)$ zyklisch auf A ist: $\oint \delta^{(p)}Q_A = -\oint \delta^{(p)}W_A$

Ein quasistatischer Prozess $p \in \mathcal{P}_{\overline{S}}$ auf $\overline{S} \in \mathcal{S}$, der unter anderem auf $S \in \mathcal{S}$ wirkt, heisst adiabatisch auf S falls $\delta^{(p)}Q_S = 0$.

Reservoire. Ein System $R \in \mathcal{S}$ heisst (thermisches) Reservoir / Wärmereservoir falls:

- (i) Die Zustandsfunktion $U_R: \Sigma_R \to \mathbb{R}$ ist injektiv.
- (ii) Für alle Prozesse $p \in \mathcal{P}$ gilt $W_R(p) \geq 0$.
- (iii) Für jeden Prozess $p \in \mathcal{P}$, der das Reservoir R involviert, und für jede Energiedifferenz ΔU gibt es einen Prozess $p' \in \mathcal{P}$, welcher auf die um ΔU verschobenen Zustände von R wirkt, aber sonst identisch ist zu p. Das heisst, $U_R(\lfloor p' \rfloor_R) = U_R(\lfloor p \rfloor_R) + \Delta U$ und $U_R(\lceil p' \rceil_R) = U_R(\lceil p \rceil_R) + \Delta U$.

$$\Rightarrow \text{ falls } U_R(\sigma_2) > U_R(\sigma_1) : \exists p \in \mathcal{P}_R : W_R(p) = U_R(\sigma_2) - U_R(\sigma_1) \geq 0 \text{ und } \lfloor p \rfloor_R = \sigma_1, \lceil p \rceil_R = \sigma_2.$$

2. Hauptsatz. (Postulat) Sei $S \in \mathcal{S}$ und $R \in \mathcal{S}$ ein Reservoir $(S \land R = \emptyset)$. Dann gilt für alle $p \in \mathcal{P}_{S \lor R}$, welche auf S zyklisch sind, dass $W_S(p) \ge 0$.

$$\begin{array}{c}
R & \stackrel{WR(p)}{\longleftarrow} \\
\downarrow Q_S(p) \\
S & \stackrel{W_S(p)}{\longleftarrow}
\end{array}$$

Carnots Theorem. Sei $S \in \mathcal{S}$ und seien R_1, R_2 zwei separate Reservoire. Sei $p \in \mathcal{P}_{S \vee R_1 \vee R_2}$ ein reversibler Prozess und zyklisch auf S. Angenommen, $Q_{R_1}(p) \neq 0$ oder $Q_{R_2}(p) \neq 0$.

Sei $S' \in \mathcal{S}$ ein weiteres, separates System. Sei $p' \in \mathcal{P}_{S' \vee R_1 \vee R_2}$ zyklisch auf S'. Angenommen, $Q_{R_1}(p') \neq 0$ oder $Q_{R_2}(p') \neq 0$. Dann muss mindestens ein Wärmefluss positiv sein; o.B.d.A. sei $Q_{R_2}(p') > 0$. O.B.d.A. sei $Q_{R_2}(p) > 0$. Dann:

- (i) Die Verhältnisse der Wärmeflüsse erfüllen $-\frac{Q_{R_1}(p')}{Q_{R_2}(p')} \le -\frac{Q_{R_1}(p)}{Q_{R_2}(p)}$.
- (ii) Das Verhältnis $-\frac{Q_{R_1}(p)}{Q_{R_2}(p)}$ für die reversible Maschine ist eine Funktion von R_1 und R_2 . (\rightarrow Die absolute Temperatur eines Reservoirs $R \equiv R_1$ relativ zu einem Referenzreservoir $R_{\text{ref}} \equiv R_2$ ist definiert als $T := -\frac{Q_R(p)}{Q_{\text{ref}}(p)} T_{\text{ref}}$ wobei $T_{\text{ref}} \in \mathbb{R}_{>0}$.)

Effizienz und Leistungszahl. Sei $S \in \mathcal{S}$ und seien R_1, R_2 wieder zwei separate Reservoire. Sei $p \in \mathcal{P}_{S \vee R_1 \vee R_2}$ zyklisch auf S, und es gelte $Q_{R_2}(p) > 0$. Die Temperatur von R_i sei T_i für $i \in \{1, 2\}$.

7	9 - 12 - 7
Wärmekraftmaschine	falls zusätzlich gilt: $W_S(p) < 0$ (Das System S leistet Arbeit.)
	$\Rightarrow T_2 < T_1, Q_{R_1}(p) < 0$
Effizienz	$\eta \coloneqq \frac{ W_S(p) }{ Q_{R_1}(p) } \le 1 - \frac{T_2}{T_1}$
\dots falls p zusätzlich reversibel	$\eta = \eta_C := 1 - \frac{T_2}{T_1}$ (Carnot Effizienz)
Wärmepumpe	falls zusätzlich gilt: $T_2 > T_1$ (Das System S pumpt Wärme in R_2 .)
	$\Rightarrow W_S(p) > 0$
Leistungszahl	$COP := \frac{Q_{R_2}(p)}{W_S(p)} \le \frac{1}{1 - \frac{T_1}{T_{72}}}$
\dots falls p zusätzlich reversibel	$COP = \frac{1}{1 - \frac{T_1}{T_2}}$

Clausius' Theorem. Sei $S \in \mathcal{S}$ ein beliebiges System und $\{R_i\}_{i=1}^N$ eine Menge von Reservoiren, sodass R_i die Temperatur T_i hat. Für $i \in \{1, ..., N\}$ sei $p_i \in \mathcal{P}_{S \vee R_i}$ ein Arbeitsprozess auf S und R_i mit $W_{R_i}(p_i) = 0$. Der Prozess $p := p_N \circ \cdots \circ p_1$ sei definiert und insgesamt zyklisch auf S. Dann: (i) $\sum_{i=1}^N \frac{Q_S(p_i)}{T_i} \leq 0$ und (ii) wenn alle p_i reversibel sind, dann gilt $\sum_{i=1}^N \frac{Q_S(p_i)}{T_i} = 0$.

Falls alle p_i quasistatisch sind, gilt für p: (i) $\oint \frac{\delta Q_S}{T} \leq 0$ und (ii) falls p reversibel ist, gilt $\oint \frac{\delta Q_S}{T} = 0$.

D + 1 +		
Postulat	Zu jedem Paar von Zuständen $\sigma_1, \sigma_2 \in \Sigma_S$ gibt es einen Prozess $p = p_N \circ \cdots \circ p_1 \in$	
$\forall S \in \mathcal{S}$	${\mathcal P}$ (welcher möglicherweise auf weitere Systeme wirkt), der stückweise wohldefi-	
	nierte Temperaturen T_i der Wärmeflüsse $Q_S(p_i)$ hat, wobei alle p_i reversibel sind,	
	sodass $(\lfloor p \rfloor_S = \sigma_1 \text{ und } \lceil p \rceil_S = \sigma_2) \text{ oder } (\lfloor p \rfloor_S = \sigma_2 \text{ und } \lceil p \rceil_S = \sigma_1) \text{ gilt.}$	
Entropie	Setting: wie im Postulat mit $\lfloor p \rfloor_S = \sigma_{\text{ref}}, \lceil p \rceil_S = \sigma$	
diskret	$S_S(\sigma) \coloneqq \sum_{i=1}^N rac{Q_S(p_i)}{T_i} + S_{ ext{ref}}$	
kontinuierlich	$S_S(\sigma) := \int_{\sigma_{\text{ref}}}^{\sigma} \frac{\delta Q_S}{T} + S_{\text{ref}} \Rightarrow dS_S = \frac{\delta Q_S}{T}$ [gilt, falls alle p_i quasistatisch sind]	
\Rightarrow Die Entropie $S_S: \Sigma_S \to \mathbb{R}$ ist eine Zustandsgrösse von $S \in \mathcal{S}$.		
\Rightarrow Additivität unter Komposition: $\Delta S_S(p' \circ p) = \Delta S_S(p') + \Delta S_S(p) \forall p, p' \in \mathcal{P}$		
\Rightarrow Additivität unter Zusammensetzen: $\Delta S_{A_1 \vee A_2}(p) = \Delta S_{A_1}(p) + \Delta S_{A_2}(p) \forall p \in \mathcal{P}$		

Entropiesatz. Falls $p \in \mathcal{P}$ adiabatisch auf $S \in \mathcal{S}$ ist (wobei p möglicherweise noch auf andere Systeme wirkt), gilt $S_S(\lfloor p \rfloor_S) \leq S_S(\lceil p \rceil_S)$, und es gilt Gleichheit, falls p zusätzlich reversibel ist.