$\frac{Exercices\ MP/MP^*}{Calcul\ matriciel}$

Exercice 1. Soit $M = (\omega^{(k-1)(l-1)})_{1 \leq k, l \leq n}$ où $\omega = e^{\frac{2i\pi}{n}}$. Montrer que $M \in GL_n(\mathbb{C})$ et calculer M^{-1} . Que vaut $\det(M)$?

Exercice 2. On dit que $A \in \mathcal{M}_{n,p}(\mathbb{R})$ est positive et on note $A \geqslant 0$ si et seulement si tous ses coefficients le sont.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A \geqslant 0$ si et seulement si pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, si $X \geqslant 0$ alors $AX \geqslant 0$.
- 2. Quelles sont les matrices $A \in GL_n(\mathbb{R})$ telles que $A \geqslant 0$ et $A^{-1} \geqslant 0$?

Exercice 3. Soit $A = \left(\binom{j-1}{i-1}\right)_{1 \leq i,j \leq n}$. Calculer A^{-1} et A^k pour $k \in \mathbb{Z}$.

Exercice 4. Soit \mathbb{K} un corps de caractéristique non nulle $(\mathbb{Q}, \mathbb{R}, \mathbb{C}, \dots)$. Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec Tr(A) = 0.

- 1. Montrer que A est semblable à une matrice dont tous les coefficients diagonaux sont nuls. On pourra procéder par récurrence, en distinguant selon qu'il existe $\lambda \in \mathbb{K}$, $A = \lambda I_n$ ou non. Dans le deuxième cas, pour $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associée à A, on montrera qu'il existe $e_1 \in \mathbb{K}^n$ telle que $(e_1, u(e_1))$ est libre.
- 2. Montrer qu'il existe $(X,Y) \in \mathcal{M}_n(\mathbb{K})^2$ tel que A = [X,Y] = XY YX. On pourra considérer

$$\varphi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto DM - MD$$

$$\tag{1}$$

avec D = diag(1, 2, ..., n) et déterminer $ker(\varphi)$.

Exercice 5. Soit $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{K})^2$.

- 1. Pour quelles valeurs de λ , $I_n + \lambda XY^{\mathsf{T}}$ est inversible?
- 2. Soit $A \in GL_n(\mathbb{R})$. A quelle condition nécessaire et suffisante $A + \lambda XY^{\mathsf{T}} \in GL_n(\mathbb{R})$?

 Montrer alors que

$$(A + \lambda X Y^{\mathsf{T}})^{-1} = A^{-1} - \frac{\lambda}{1 + \lambda Y^{\mathsf{T}} A^{-1} X} A^{-1} X Y^{\mathsf{T}} A^{-1}$$

Exercice 6. Soit $n \ge 1$ et pour tout $j \in \{0, ..., n\}$, $S_j = X^j (1-X)^{n-j}$. Montrer que c'est une base de $\mathbb{R}_n[X]$ et exprimer $(1, X, ..., X^n)$ en fonction de $(S_0, ..., S_n)$.

Exercice 7. Soit \mathbb{K} un corps et H un hyperplan de $\mathcal{M}_n(\mathbb{K})$. Montrer que $H \cap GL_n(\mathbb{K}) \neq 0$ pour $n \geq 2$.

Exercice 8. Soit $N: \mathcal{M}_n(\mathbb{C}) \to \mathbb{R}_+$ telle que :

- (i) $\forall \lambda \geqslant 0, \forall A \in \mathcal{M}_n(\mathbb{C}), \ N(\lambda A) = \lambda N(A),$
- (ii) $\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $N(A+B) \leqslant N(A) + N(B)$,
- (iii) $\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2$, N(AB) = N(BA).
 - 1. Calculer N(0).

- 2. Évaluer $N(E_{i,j})$ pour $i \neq j$ (matrice élémentaire de la base canonique de $\mathcal{M}_n(\mathbb{C})$).
- 3. Montrer que si $A \in \mathcal{M}_n(\mathbb{C})$ est telle que $\operatorname{Tr}(A) = 0$, alors A est semblable à une matrice dont tous les coefficients diagonaux sont nuls. On pourra procéder par récurrence, en distinguant selon qu'il existe $\lambda \in \mathbb{K}$, $A = \lambda I_n$ ou non. Dans le deuxième cas, pour $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associée à A, on montrera qu'il existe $e_1 \in \mathbb{K}^n$ telle que $(e_1, u(e_1))$ est libre.
- 4. En déduire N(A) si Tr(A) = 0.
- 5. Montrer qu'il existe $a \in \mathbb{R}^+$ telle que pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $N(A) = a|\operatorname{Tr}(A)|$.

Exercice 9. Soit E un espace vectoriel de dimension $n, f \in GL(E)$ et g un endomorphisme de E de rang 1. Montrer que $f + g \in GL(E)$ si et seulement $Tr(g \circ f^{-1}) \neq 1$.

Exercice 10. On considère un carré dans \mathbb{Z}^2 . Pour $n \in \mathbb{N}$, quel est le nombre de chemins de longueur n qui relient un sommet à un autre? Généraliser à un cube dans \mathbb{Z}^3 .

Exercice 11 (Matrice à diagonale strictement dominante). Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ telle que pour tout $i \in \{1,\ldots,n\} | a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. On dit que A est à diagonale strictement dominante. Montrer que $A \in GL_n(\mathbb{C})$. Est-ce encore vrai si on a seulement l'inégalité large?

Exercice 12. Calculer, pour $n \ge 1$, $\det((i \land j))_{1 \le i,j \le n}$. On pourra utiliser, pour tout $n \in \mathbb{N}^*$, $n = \sum_{k|n} \varphi(k)$.

Exercice 13. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$. On pose, pour $k \in \{1,\ldots,n\}$, $A_k = (a_{i,j})_{1 \leq i,j \leq k}$. On suppose que pour tout $k \in \{1,\ldots,n\}$, $A_k \in GL_k(\mathbb{C})$. Montrer qu'il existe une unique décomposition $(L,U) \in \mathcal{T}_n^-(\mathbb{C}) \times \mathcal{T}_n^+(\mathbb{C})$ (matrices triangulaires inférieures et supérieures) où L a des 1 sur la diagonale et A = LU.

Exercice 14. Soit $n \in \mathbb{N}$ et $(a_1, \ldots, a_{2n+1}) \in \mathbb{R}^{2n+1}$ tel que pour tout $i \in \{1, \ldots, 2n+1\}$, il existe des parties disjointes A_i et B_i de $\{1, \ldots, 2n+1\} \setminus \{i\}$ avec $|A_i| = |B_i| = n$ et $\sum_{k \in A_i} a_k = \sum_{k \in B_i} a_k$.

Monter que $a_1 = \cdots = a_{2n+1}$.

Exercice 15. Soit $M \in GL_n(\mathbb{C})$, montrer qu'il existe une unique permutation $\sigma \in \Sigma_n$ et il existe $(T, T') \in (\mathcal{T}_n^+)^2$ telles que $M = TP_{\sigma}T'$ où $P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n}$ et δ est le symbole de Kronecker. Cette décomposition est-elle unique?

Exercice 16. Soit \mathbb{K} un sous-corps de \mathbb{C} et J un idéal non nul de $\mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que si $J \cap GL_n(\mathbb{K}) \neq \emptyset$, alors $J = \mathcal{M}_n(\mathbb{K})$.
- 2. Montrer que J contient une matrice de rang 1.
- 3. Montrer que $J = \mathcal{M}_n(\mathbb{K})$.

Exercice 17. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \neq 0$ avec $\lambda AB + A + B = 0$, montrer que A et B commutent.

Exercice 18. Soit $(a_2, \ldots, a_n) \in \mathbb{R}^{n-1}$. Inverser, si possible,

$$A = \begin{pmatrix} 1 & -a_2 & \dots & -a_n \\ a_2 & \ddots & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ a_n & 0 & 0 & 1 \end{pmatrix}$$

Exercice 19. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $i \in \{1,\ldots,n\}$, $a_{i,i} = 0$ et pour tout $i \neq j$, $a_{i,j} + a_{j,i} = 1$. Soit $u \in \mathcal{L}(\mathbb{R}^n)$ canoniquement associé à A. Soit $H = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 0\}$.

- 1. Déterminer $\ker(u) \cap H$. En déduire que $\operatorname{rg}(A) \in \{n-1, n\}$.
- 2. Est-il possible que toutes les matrices A vérifiant ces conditions soient de rang n-1?
- 3. Même question avec n.

Exercice 20. Soit $(M, N) \in \mathcal{M}_n(\mathbb{C})^2$ tel que $\operatorname{rg}(M) = \operatorname{rg}(N) = 1$. Montrer que M et N sont semblables si et seulement si $\operatorname{Tr}(M) = \operatorname{Tr}(N)$.

Exercice 21. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$, on note $r = \max\{\operatorname{rg}(M) \mid M \in F\}$.

1. Montrer qu'il existe $(P_0, Q_0) \in GL_n(\mathbb{R})$ telle que

$$P_0^{-1}\underbrace{\left(\frac{I_r \mid 0_{r,n-r}}{0_{n-r,r} \mid O_{n-r,n-r}}\right)}_{J_r} Q_0 \in F$$

On note $F_0 = \{ P_0 M Q_0^{-1} \mid M \in F \}.$

- 2. Montrer que F_0 est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ isomorphe à F, et que $r = \max\{\operatorname{rg}(M_0) \mid M_0 \in F_0\}$.
- 3. On définit

$$G_0 = \begin{pmatrix} 0_r & B^\mathsf{T} \\ \hline B & C \end{pmatrix}$$

où $B \in \mathcal{M}_{n-r,r}(\mathbb{R})$ et $C \in \mathcal{M}_{n-r}(\mathbb{R})$. Quelle est la dimension de l'espace vectoriel engendré par G_0 ?

4. Soit $M_0 \in G_0 \cap F_0$ avec

$$M_0 = \left(\frac{0_r \mid B^\mathsf{T}}{B \mid C}\right) \in F_0$$

Montrer que pour tout $\lambda \in \mathbb{R}$,

$$\left(\begin{array}{c|c} \lambda I_r & B^\mathsf{T} \\ \hline B & C \end{array}\right) \in F_0$$

En déduire que pour tout $(i,j) \in \{1,\ldots,n-r\}^2$, pour tout $\lambda \neq 0$,

$$\det \begin{pmatrix} \lambda I_r & \begin{vmatrix} b_{j,1} \\ \vdots \\ b_{j,r} \\ \hline b_{i,1} & \dots & b_{i,r} & c_{i,j} \end{pmatrix} = 0$$

- 5. Montrer que C = 0, puis que B = 0.
- 6. Conclure.
- 7. $Si \dim(F) \ge n^2 n + 1$, montrer que $F \cap GL_n(\mathbb{R}) \ne \emptyset$.
- 8. Et sur $\mathcal{M}_n(\mathbb{C})$?

Exercice 22. Soit $f: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ non constante telle que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $f(AB) = f(A) \times f(B)$. Montrer que $f(M) \neq 0$ si et seulement si $M \in GL_n(\mathbb{C})$.

Exercice 23. Soit $(A_1, \ldots, A_k) \in \mathcal{M}_n(\mathbb{K})^k$ tels que

- (i) $\forall i \in [1, k], A_i^2 = A_i,$
- (ii) $\sum_{i=1}^k A_i = I_n.$

Montrer que pour tout $i \neq j$, $A_i A_j = 0$.