

讲者: 顾乃杰 教授、黄章进 副教授

计算机科学与技术学院

线性规划及单纯形法

Chap.2 Linear Programming & Classical Simplex Methods

5C

3 2020/3/15

- 2.1 线性规划问题及其数学模型
- 2.2 线性规划问题的几何意义
- 2.3 单纯形法
- 2.4 单纯形法的计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 应用举例
- 2.7 使用计算机工具求解线性规划问题

- 一般讲,一个经济、管理问题凡满足以下条件时,才能建立线性规划的模型。
 - 要求解问题的目标函数能用数值指标来反映,且为线性函数;
 - 存在着多种方案及有关数据;
 - 要求达到的目标是在一定约束条件下实现的,这些约束条件可用 线性等式或不等式来描述。

例10 合理利用线材问题

例10 合理利用线材问题。现要做100套钢架,每套需用长为2.9m,2.1m和1.5m的元钢各一根。已知原料长7.4m,问应如何下料,使用的原材料最省。

·解:最简单做法是,在每一根原材料上截取2.9m,2.1m和1.5m的元钢各一根组成一套,每根原材料剩下料头0.9m。

- 为了做100套钢架,需用原材料100根,共有90m料头。

- 若改为用套裁,这可以节约原材料。下面有几种套裁方案,都可以老点双用

以考虑采用。

下料根数		ブ	分	Ř	
长度(m)	Ι	II	III	IV	V
2.9	1	2		1	
2. 1			2	2	1
1.5	3	1	2		3
合计	7.4	7.3	7.2	7. 1	6.6
料头	0	0.1	0.2	0.3	0.8

例10 合理利用线材问题

上。 设按I方案下料的原材料根数为 x_1 ,II方案为 x_2 ,III方案 为 x_3 ,IV方案为 x_4 ,V方案为 x_5 。可列出以下数学模型:

$$\max z = 0x_1 - 0.1x_2 - 0.2x_3 - 0.3x_4 - 0.8x_5 - Mx_6 - Mx_7 - Mx_8$$

$$\begin{cases} x_1 + 2x_2 + x_4 + x_5 + x_7 = 100 \\ 3x_1 + x_2 + 2x_3 + 3x_5 + x_8 = 100 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$c_{1} - z_{1} = c_{1} - c_{6}a_{1,1} - c_{7}a_{2,1} - c_{8}a_{3,1} = 0 + 1 \times M + 0 \times M + 3 \times M = 4M$$

$$c_{2} - z_{2} = c_{2} - c_{6}a_{1,2} - c_{7}a_{2,2} - c_{8}a_{3,2} = -0.1 + 2 \times M + 0 \times M + 1 \times M = -0.1 + 3M$$

$$c_{3} - z_{3} = c_{3} - c_{6}a_{1,3} - c_{7}a_{2,3} - c_{8}a_{3,3} = -0.2 + 0 \times M + 2 \times M + 2 \times M = -0.2 + 4M$$

$$c_{4} - z_{4} = c_{4} - c_{6}a_{1,4} - c_{7}a_{2,4} - c_{8}a_{3,4} = -0.3 + 1 \times M + 2 \times M + 0 \times M = -0.3 + 3M$$

$$c_{5} - z_{5} = c_{5} - c_{6}a_{1,5} - c_{7}a_{2,5} - c_{8}a_{3,5} = -0.8 + 0 \times M + 1 \times M + 3 \times M = -0.8 + 4M$$

■ 例10 合理利用线材问题

7 2020/3/15

加入人工变量x₆, x₇和x₈, 采用大M法求解:

	$c_j \rightarrow$	•	0	-0.1	-0.2	-0.3	-0.8	-M	-м	-м	1:
C _B	X_B	b	x_1	<i>x</i> ₂	<i>x</i> ₃	x4	x_5	<i>x</i> ₆	x7	<i>x</i> ₈	θ_i
-м	<i>x</i> ₆	100	1	2	0	1	0	1	0	0	100
-м	x 7	100	0	0	2	2	1	0	1	0	-
- M	<i>x</i> ₈	100	[3]	1	2	0	3	0	0	1	100
	c _j — :	z _j	4M	-0.1+3M	-0.2+4M	-0.3+3M	-0.8+4M	0	0	0	
-м	<i>x</i> ₆	200/3	0	5/3	-2/3	1	-1	1	0	-1/3	200
-м	<i>x</i> ₇	100	. 0	0	2	[2]	1	0-	1	0	100
0	x_1	100/3	1	1/3	2/3	0	1	0	0	1/3	-
9	c, —:	z,	0	-0,1+ 5/3 M	-0.2+ 4/3M	-0.3+3M	-0.8	0	0	-4/3M	

例10 合理利用线材问题

	$c_j \rightarrow$	6	0	-0.1	-0.2	-0.3	-0.8	-м	-м	-м	
C_B	X_B	ь	<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	θ_i
-м	<i>x</i> ₆	50/3	0	[5/3]	-5/3	0	-3/2	1	-1/2	-1/3	150 15
-0.3	<i>x</i> ₄	50	0	0	1	1	1/2	0	1/2	0	-
0	x_1	100/3	1	1/3	2/3	0	1	0	0	1/3	100 1
0	c, – :	ij	0	-0.1+ 5/3 M	0.1- 5/3 M	0	-0.65- 3/2M	0	0, 15— 3/2 M	-4/3 M	
0.1	<i>x</i> ₂	10	0	1	-1	0	-9/10	3/5	-3/10	-1/5	
-0.3	x4	50	0	0	1 .	1	1/2	0	1/2	0	
0	x_1	30	1	0	1	0	13/10	-1/5	1/10	2/5	
- 20	c, -:	۲,	0	0	0	0	-0.74	-M+0.06	-M+0.12	-M-0.02	

- 最优下料方案:按I方案下料30根;II方案下料10根;IV方案下料50根。即需90根原材料可以制造100套钢架。
- 存在多重最优解
 - 非基变量x3的检验数为0

例11 配料问题

9 2020/3/15

例11 (配料问题) 某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表2-14和表2-15。该厂应如何安排生产,使利润收入为最大?

表	2-	1	4

产品名称	规格要求	单价 (元 /Kg)
Α	原材料C不少于50% 原材料P不超过25%	50
В	原材料C不少于25% 原材料P不超过50%	35
D	不限	25

表2-15

5	原材料名称	每天最多供应量	单价(元 /Kg)
-	С	100	65
	Р	100	25
	Н	60	35

- 解:用X_Y表示生产产品X使用原料Y的数量。其中X=A,B,D,Y=C,P,H。根据表2-14和2-15得到的约束条件分别为:
- 由表2-14, 可得:

$$\begin{cases} A_{C} \geq \frac{1}{2} A, A_{P} \leq \frac{1}{4} A, B_{C} \geq \frac{1}{4} B, B_{P} \leq \frac{1}{2} B \\ A_{C} + A_{P} + A_{H} = A \\ B_{C} + B_{P} + B_{H} = B \end{cases} \Rightarrow \begin{cases} -\frac{1}{2} A_{C} + \frac{1}{2} A_{P} + \frac{1}{2} A_{H} \leq 0 \\ -\frac{1}{4} A_{C} + \frac{3}{4} A_{P} - \frac{1}{4} A_{H} \leq 0 \\ -\frac{3}{4} B_{C} + \frac{1}{4} B_{P} + \frac{1}{4} B_{H} \leq 0 \\ -\frac{1}{2} B_{C} + \frac{1}{2} B_{P} - \frac{1}{2} B_{H} \leq 0 \end{cases}$$

• 由表2-15得:

$$A_C + B_C + D_C \le 100$$

 $A_P + B_P + D_P \le 100$
 $A_H + B_H + D_H \le 60$

2020/3/15

$$x_1 = A_C, x_2 = A_P, x_3 = A_H, x_4 = B_C, x_5 = B_P, x_6 = B_H, x_7 = D_C, x_8 = D_P, x_9 = D_H$$

约束方程变为:
$$\begin{cases}
-\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 \le 0 \\
-\frac{1}{4}x_1 + \frac{3}{4}x_2 - \frac{1}{4}x_3 \le 0 \\
-\frac{3}{4}x_4 + \frac{1}{4}x_5 + \frac{1}{4}x_6 \le 0 \\
-\frac{1}{2}x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 \le 0 \\
x_1 + x_4 + x_7 \le 100 \\
x_2 + x_5 + x_8 \le 100 \\
x_3 + x_6 + x_9 \le 60 \\
x_1, x_2, \dots, x_9 \ge 0
\end{cases}$$

例11 配料问题

12 2020/3/15

• 目的是使利润达到最大,即:产品价格减去原材料价格达到最大。

• 产品价格为:
$$50(x_1 + x_2 + x_3) - - -$$
产品A

$$35(x_4 + x_5 + x_6) - - - 产品B$$

$$25(x_7 + x_8 + x_9) - - - 产品D$$

• 原材料价格为:

$$65(x_1 + x_4 + x_7) - - -$$
 原材料C

$$25(x_2 + x_5 + x_8) - - -$$
 原材料P

$$35(x_3 + x_6 + x_9) - - -$$
 原材料H

• 目标函数: 利润最大

$$\max z = \frac{50(x_1 + x_2 + x_3) + 35(x_4 + x_5 + x_6) + 25(x_7 + x_8 + x_9)}{25(x_1 + x_2 + x_3) + 35(x_4 + x_5 + x_6) + 25(x_7 + x_8 + x_9)}$$

$$-65(\underline{x_1 + x_4 + x_7}) - 25(\underline{x_2 + x_5 + x_8}) - 35(\underline{x_3 + x_6 + x_9})$$

$$= -15x_1 + 25x_2 + 15x_3 - 30x_4 + 10x_5 - 40x_7 - 10x_9$$

例11 配料问题

13 2020/3/15

为了得到初始解,在约束条件中加入7个松弛变量x₁₀~x₁₆,得到线性规划模型:

目标函数
$$\max z = -15x_1 + 25x_2 + 15x_3 - 30x_4 + 10x_5 - 40x_7 - 10x_9 + 0(x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16})$$

约束条件

$$\begin{cases} -\frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} & + x_{10} & = 0 \\ -\frac{1}{4}x_{1} + \frac{3}{4}x_{2} - \frac{1}{4}x_{3} & + x_{11} & = 0 \\ & -\frac{3}{4}x_{4} + \frac{1}{4}x_{5} + \frac{1}{4}x_{6} & + x_{12} & = 0 \\ & -\frac{1}{2}x_{4} + \frac{1}{2}x_{5} - \frac{1}{2}x_{6} & + x_{13} & = 0 \\ x_{1} & + x_{4} & + x_{7} & + x_{14} & = 100 \\ x_{2} & + x_{5} & + x_{8} & + x_{15} & = 100 \\ & x_{3} & + x_{6} & + x_{9} & + x_{16} = 60 \end{cases}$$

• 用单纯形法计算,经过四次迭代,得最优解为:

$$x_1=100, x_2=50, x_3=50$$

- 最优生产方案: 每天只生产产品 A: 200kg。 分别需要用原材料 C: 100kg, P: 50kg; H: 50kg
- 总利润是 z =500元/天

例12 快件分拣问题

15 2020/3/15

 例12: 某快递公司下设一个快件分拣部,处理每天到达和 外寄的快件。根据统计资料及经验预测,每天各时段快件 数量如表2一16所示。

表 2-16

时 段	到达快件数	时 段	到达快件数
10:00 前	5 000	14:00~15:00	3 000
10:00~11:00	4 000	15:00~16:00	4 000
11:00~12:00	3 000	16:00~17:00	4 500
12:00~13:00	4 000	17:00~18:00	3 500
13:00~14:00	2 500	18:00~19:00	2 500

- 快件有时间性要求,

12:00前到达的, 在14:00以前处理完; (总件数 ≤12000)

15:00前到达的, 在17:00以前处理完; (总件数 ≤21500)

全部快件在当天 20:00以前处理完。 (总件数 ≤36000)

M12 快件分拣问题

16 2020/3/15

- 分拣机器效率为每台 500体/h,每台机器一名职工,共有11台机器。
- 全日制职工上班时间,每人每天工资150元;

10:00-18:00, 11:00~19:00, 12:00-20:00,

- 非全日制职工,每人每天工资80元,上班5小时。

13:00-18:00, 14:00-19:00, 15:00-20:00,

- 每个整点起可处理该整点前到达的快件,例如从11:00起可处理 11:00前到达的。
- 问该分拣部要完成快件处理任务,应设多少名全日制及非 全日制职工,并使总的工资支出为最少。

M12 快件分拣问题

17 2020/3/15

- 解: 设x₁、x₂、x₃分别为从10:00-18:00、11:00-19:00、12:00-20:00上班的全日制职工数。
- y_1 、 y_2 、 y_3 分别为从13:00—18:00、14:00~19:00、15:00—20:00上班的非全日制职工数。
- 可用下图表示职工上班的时段。

10	1,1	12	13	14	15	16	17	18	19	20
x_1 —		·			_					
x_2										
x_3										
<i>y</i> ₁										
y_2						_				
<i>y</i> 3										

根据题意,可列出目标函数和约束条件如下

$$\min z = 150(x_1 + x_2 + x_3) + 80(y_1 + y_2 + y_3)$$

本题求解的结果有两个:

(1)
$$x_1 = 2, x_2 = 2, x_3 = 5, y_1 = 0, y_2 = 0, y_3 = 0;$$

(2)
$$x_1 = 3, x_2 = 0, x_3 = 6, y_1 = 0, y_2 = 0, y_3 = 0.$$

总工资支出均为1350元/天。

```
3500x_1 + 3000x_2 + 2500x_3 + 2000y_1 + 1500y_2 + 1000y_3 \le 25500
                                                                                       (7)
4\ 000x_1 + 3\ 500x_2 + 3\ 000x_3 + 2\ 500y_1 + 2\ 000y_2 + 1\ 500y_3 \le 30\ 000
                                                                                       (8)
4\ 000x_1 + 4\ 000x_2 + 3\ 500x_3 + 2\ 500y_1 + 2\ 500y_2 + 2\ 000y_3
                                                                        \leq 33500
                                                                                       (9)
4\ 000x_1 + 4\ 000x_2 + 4\ 000x_3 + 2\ 500y_1 + 2\ 500y_2 + 2\ 500y_3
                                                                         \geqslant 36 000
                                                                                       (10)
                                                                          \geqslant 12000
                                                                                       1
2\ 000x_1 + 1\ 500x_2 + 1\ 000x_3 + 500y_1
                                                                         \geqslant 21 500
                                                                                       (12)
3500x_1 + 3000x_2 + 2500x_3 + 2000y_1 + 1500y_2 + 1000y_3
                                                                                       (13)
                                                                          \leq 11
x_1 + x_2 + x_3 + y_1 + y_2 + y_3
(x_i \geqslant 0 (j = 1, \dots 3), y_i \geqslant 0 (j = 1, \dots 3)
```

约束条件①~⑨为各时段内投入两类职工数和可处理该时段前到达的快件数,⑩~

⑩为快件处理时限的要求,⑩为分拣机器的限制。

School of Computer Science and Technology

「2.7 使用计算机工具求解线性规划问题

SC

19 2020/3/15

- 2.7.1 使用编程语言
- 2.7.2 使用Excel
- 2.7.3 使用Matlab

「2.7.1 使用编程语言

20 2020/3/15

• 输入:标准形式的线性规划数据。(便于编程)

mn的数值

c: 价值系数[c_1, c_2, \ldots, c_n]; $1 \times n$

A: 系数矩阵 $m \times n$

b: 约束方程组右方的常数[$b_1; b_2; ...; b_m$]; $m \times 1$

初始基变量

• 输出:

最优解的目标值z(或者-z)和对应的一个最优解 或者无界解、无可行解

- 1. 对输入数据进行初始化,转2
- 2. 计算非基变量各列的检验数。全部小于等于0,则转5, 否则转3
- 3. 对任一大于0检验数,判断对应的系数矩阵是否全部小于等于0。是则返回无界解,程序结束,否则转4
- 4. 根据检验数大小计算换入变量,根据θ大小计算换出变量,对矩阵进行变换。转2
- 5. 判断基变量是否有人工变量,是则返回无可行解,否则返回矩阵对应的最优解及目标值大小。
- 具体的编程细节根据所用编程语言的不同而不同。

· Java简单例子(没有考虑人工变量)

```
while (true) {
      max = maxi(a[0]);//最大的检验数
      if (max == 0) {//所有检验数都小于等于0
            printmatrix2(writer, a, x, c);//输出最终结果
            break;//返回
      }
      calculateth(a, th, max);//计算θ的值
      min = mini(th);
      if (min == 0) {//对应的系数矩阵是否全部小于等于0
            writer.write("无界解\r\n");//返回无界解
            break;
      printmatrix(writer, th, a, x, c, max, min);//输出中间计算结果
      transform(a, min, max, x);//根据换入换出变量对矩阵进行变换
```


• 以例1为例:

	$C_{j\rightarrow}$		2	3	0	0	0	θ_{i}
$\overline{C_{\scriptscriptstyle B}}$	X_{B}	b	x_1	x_2	x_3	x_4	x_5	
0	x_3	8	1	2	1	0	0	4
0	X_4	16	4	0	0	1	0	_
0	x_5	12	0	[4]	0	0	1	3
	$c_j - z_j$	·	2	3	0	0	0	

• 输入文件:

SC

24 2020/3/15

• 输出文件:

文件(F) 編輯(E) 格式(O) 查看(V) 帮助(H) cj ->	Out.	txt - 记事本						-	- 🗆	×
cb Xb b x1 x2 x3 x4 x5 θ i 0.0 x3 8.0 1.0 2.0 1.0 0.0 0.0 4.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0	文件(F)									
0.0	cb	cj-> Xb 					I		θi	^
0.0	0.0 0.0	x4	16. 0 12. 0	4. 0 0. 0	0.0 [4.0]	0. 0 0. 0	1. 0 0. 0	0.0 1.0	Infinit	у
0.0 x4 8.0 0.0 0.0 -4.0 1.0 [2.0] 4.0 3.0 x2 3.0 0.0 1.0 0.0 0.0 0.25 12.0 cj-zj -13.0 0.0 0.0 -2.0 0.0 0.25	0.0 3.0	x4	16.0 3.0	4. 0 0. 0	0. 0 1. 0	0. 0 0. 0	1. 0 0. 0	0.0 0.25	4.0	у
	0.0 3.0	x4	8. 0 3. 0	0. 0 0. 0	0. 0 1. 0	-4.0 0.0	1. 0 0. 0	[2. 0] 0. 25	4.0	
2.0 x1 4.0 1.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0	3.0		2.0	0.0	1.0	0.5	-0.125	0.0		

• 第一步: Excel2016: Excel选项->加载项->点击"转到..."-> 勾选"分析工具库"和"规划求解加载项",有可能需要调用安装文件。

School of Computer Science and Technology

0

26 2020/3/15

- 第二步:列出已知数据,设置一个可变量(实际最优时生产的数量) 为随机值(可设为0,0)。将由已知量和可变量推导出来的单元格用 Excel公式计算填充。例如,需要的设备有效台时数的计算公式为:
- =SUM(PRODUCT(B3,B6),PRODUCT(C3,C6))
- 红色为已知量,紫色为可变量,黄色为推导量,蓝色为最优值 (max)

-1	A	В	С	D	
1					
2	产品 资源	产品I (x1)	产品II (x2)	现有条件	
3	设备(台时/件)	1	2	8	
4	原材料A(kg/件)	4	0	16	
5	原材料B(kg/件)	0	4	12	
6	产量(件)	4	2		
7	利润(元)	2	3	=SUM(PRODUCT(B3,B6	5),PR
8				ODUCT(C3,C6))	
9	式子含义	参与计算的式子左边	值	=SUM(PRODUCT(B3,B6	5) DD
10	需要的设备有效台时数	$x_1 + 2x_2$	8	ODUCT(C3,C6))	J),1 IX
11	原料A需求量	4x ₁	16		
12	原料B需求量	4x2	8	=SUM(PRODUCT(B3,B6	5),PR
13	利润	$2x_1 + 3x_2$	14	ODUCT(C3,C6))	

School of Computer Science and Technology

第三步:点击Excel规划求解宏,设置约束条件,进行公式求解,对应单元格中的值即为解的值。

2020/3/15

使用Matlab

目标函数: $\max z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$

目标函数:
$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_n \\ x_1, x_2, \dots, x_n \ge 0 \end{cases}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

 $x_1, x_2, \dots, x_n \ge 0$

1. 算法输入:

c: 价值系数[c_1, c_2, \ldots, c_n]; $1 \times n$

A: 系数矩阵 $m \times n$

b: 约束方程组右方的常数[b_1 ; b_2 ; ...; b_m]; $m \times 1$

2. 算法初始化:

 $[m, n] = size(A); \% m \times n$ assert(n>m);

 $X_B = n-m+1:n; % 1 \times m,$ 初始时, 获取基变量的索引

z=0; % 保存最优解的值

3. 计算各非基变量的检验数:

 $C_B = c(X_B)$; % 基变量的价值系数

 $z_{j} = C_B*A$; % $1 \times n$, 求基变量系数和所有变量的乘积和(包括非基变量)

 $sigma_j = c - z_j$;% 计算每个变量的检验数

X = zeros(1, n);% 初始化最优解

4. 判断校验数是否都小于等于0, 若是,则已得到最优解,终止计算(没有考虑无界情况); 否则,跳转到下一步:

```
if(max(sigma\_j) <= 0) for i=1:m X(X\_B(i))=b(i); % 最优解end for i=1:n z=z+(c(i)*X(i)); % 最优解的值end break;
```

5. 根据 $\max(\sigma_i > 0)$ 确定换入变量,并按 θ 规则确定换出变量:

6.对 x_{l_out} 所对应的列向量进行迭代,将 a_{l_out, l_out} ,其余为0:

```
X_B(l_out) = l_in; % 换出 E = [b, A]; E(l_out, :) = E(l_out, :) / E(l_out, l_in+1); % 位置(l_out, l_in+1)置1 for(i = 1:m) if(i == l_out) continue; end ...
```

```
while(1) % 对其他列进行初等行变换,使其为0 E(i,:) = E(i,:) - E(i,l_in+1) * E(l_out,:); if(E(i,l_in+1) == 0) break; end b = E(1:m,1); A = E(1:m,2:n+1); end
```

7. 返回步骤3

实例: 例1

化成标准型后各输入数据为:

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 4 & 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 8 \\ 16 \\ 12 \end{bmatrix}$$

$$c = \begin{bmatrix} 2 & 3 & 0 & 0 & 0 \end{bmatrix}$$

在matlab中运行程序:

```
>> A = [1,2,1,0,0;4,0,0,1,0;0,4,0,0,1];

>> b = [8;16;12];

>> c = [2,3,0,0,0];

>> [X, z] = simplex(c, A, b)

X =

4 2 0 0 4

z =

14
```


本章完 The end