Systém pro správu 3D tisku

Semestrální projekt Softwarového inženýrství

Bc. Vladimír Zábrodský Bc. Lukáš Caha Bc. Mária Běhalová Obsah 2

Obsah

1	Úvod a cíl práce		3
	1.1	Úvod	3
	1.2	Cíl práce	3
2	Pr	ojektová část	4
	2.1	Ericsson-Penker diagram	4
	2.2	Use Case diagram	7
Seznam modelůZobrazení modeluSmazání modelu			
		azení modelu	8
		zání modelu	8
	Přidání modelu		9
-		va modelu	10
		knou model	11
	2.3	Diagram tříd	12
Analýza Use Case diagramu		ýza Use Case diagramu	12
	2.4	Sekvenční diagram	14
3	Z á	věr	16

1 Úvod a cíl práce

1.1 Úvod

Tato práce je zaměřena na fázi zahájení a rozpracování při tvorbě softwaru. Problémovou doménou je v našem případě systém pro správu 3D tisku. V této práci využíváme osvědčená pravidla UML metodiky, díky kterým jsme schopni rozdělit systém na jednotlivé části a zachytit procesy, které se v systému odehrávají. Práce postupně přechází k fázi rozpracování kde dochází k tvorbě objektových tříd a poté k přípravě na fázi konstrukce.

1.2 Cíl práce

Cílem práce je provést fázi zahájení a rozpracování tvorby softwaru na problémové doméně systém pro správu 3D tisku.

2 Projektová část

V této části se budeme zabývat návrhem diagramů. Postupně vytvoříme Ericsson-Penker diagram první a druhé vrstvy, Use Case diagram, diagramy aktivit, diagram tříd a diagram aktivit.

2.1 Ericsson-Penker diagram

Nejprve vytvoříme Ericsson-Penker diagram, který zachycuje všechny procesy v aplikaci 3D tisk.

Obrázek 1: E-P diagram 1. vrstvy, zachycení procesů

Obrázek 2: E-P diagram 1. vrstvy, 2. část diagramu

Nyní se podíváme na jednotlivé vrstvy blíže. Následující E-P diagramy zachycují druhou vrstvu procesů v aplikaci.

Obrázek 3: E-P diagram 2. vrstvy, Modely

Obrázek 4: E-P diagram 2. vrstvy, Profil uživatele

Obrázek 5: E-P diagram 2. vrstvy, Sklad materiálu

Obrázek 6: E-P diagram 2. vrstvy, Tisková fronta

2.2 Use Case diagram

Pomocí Ericsson-Penker diagramu byl vytvořen diagram případů užití (= Use Case diagram) modulu modely. Tento diagram zachycuje případy užití, které spouští uživatel.

Obrázek 7: Případy užití, Modely

Seznam modelů

Primární scénář:

- 1. Uživatel spustí modul modely.
- 2. Program načte databázi modelů.
- 3. Uživateli se zobrazí seznam modelů.

Alternativní scénář (Prázdný seznam):

- 3. Databáze modelů je prázdná.
- 4. Program se zeptá uživatele, zda chce přidat model do seznamu.

Vstupní podmínky:

Uživatel musí spustit modul modely.

Následné podmínky:

Uživatel zvolí přidání modelu.

Uživatel zvolí upravit model.

Uživatel zvolí pokračovat v tisku.

Zobrazení modelu

Primární scénář:

- 1. Uživatel označí model v seznamu modelů.
- 2. Uživatel zvolí zobrazit náhled modelu.
- 3. Program otevře nové okno s náhledem modelu.

Vstupní podmínky:

Uživatel označí model v seznamu.

Uživatel zvolí zobrazit náhled modelu.

Následné podmínky: Uživatel zavře náhled modelu.

Smazání modelu

Primární scénář:

- 1. Uživatel označí model v seznamu modelů.
- 2. Uživatel zvolí smazat model.
- 3. Program se zeptá uživatele, zda chce model opravdu smazat.
- 4. KDYŽ Uživatel zvolí "Ano"
- 5. Program provede smazání modelu ze seznamu.
- 6. KDYŽ Uživatel zvolí "Ne"
- 7. Návrat na seznam modelů.

Vstupní podmínky:

Uživatel označí model v seznamu.

Uživatel zvolí smazat model.

Následné podmínky:

Uživatel zvolí odpověď "Ne" na otázku, zda chce opravdu smazat model. Program provede smazání modelu.

Přidání modelu

Primární scénář:

- 1. Uživatel zvolí přidání modelu.
- 2. Uživateli se otevře dialogový panel s nastavenou cestou do složky Modely.
- 3. Uživatel vybere soubor na disku, který chce přidat do seznamu modelů.
- 4. Uživatel zvolí přidat model.
- 5. Systém provede kontrolu formátu.
- 6. Systém provede kontrolu duplicity.
- 7. Model se uloží do seznamu modelů.

Alternativní (špatný formát):

6. Program vypíše chybu "Model nelze přidat, protože má neznámý formát."

Alternativní 2 (model již existuje)

- 7. Program vypíše chybu "Model nelze přidat, daný model již existuje. Chcete jej přepsat?"
- 8. KDYŽ "Ano"
- 9. Program provede přepsání modelu a model uloží do seznamu.
- 10. KDYŽ "Ne"
- 11. Program provede návrat na dialogový panel.

Vstupní podmínky:

Uživatel zvolí přidání modelu.

Následné podmínky:

Uživatel zavře dialogový panel. Program uloží model do seznamu modelů.

Úprava modelu

Primární scénář:

- 1. Uživatel zvolí upravit model.
- 2. Uživateli se zobrazí náhled modelu a jeho parametry, které lze měnit.
- 3. Uživatel provede úpravy modelu.
- 4. Uživatel zvolí uložit model zpět do seznamu.
- 5. Program provede kontrolu duplicity.
- 6. Program uloží model.
- 7. Návrat na seznam modelů.

Alternativní (Název modelu již existuje):

- 6. Program vypíše chybu "Daný model již existuje."
- 7. Program se zeptá uživatele zda, chce daný model přepsat.
- 8. KDYŽ "Ano"
- 9. Program provede přepsání modelu a uloží jej do seznamu modelů.
- 8. KDYŽ "Ne"
- 9. Návrat na úprava modelu.

Vstupní podmínky:

Uživatel zvolí upravit model.

Následné podmínky:

Uživatel provede návrat na seznam modelů.

Program uloží model do seznamu modelů.

Vytisknou model

Primární scénář:

- 1. Uživatel zvolí pokračovat v tisku.
- 2. Zobrazení okna tisku.
- 3. Kontrola množství materiálu.
- 4. Kontrola množství barev.
- 5. Výpočet stability modelu.
- 6. Výpočet délky doby tisku.
- 7. Zobrazení tiskových informací.
- 8. Uživatel zvolí tisk.
- 9. Iniciace tisku modelu.

Alternativní (Tisk nelze provést):

8. Zobrazení chybového hlášení o neproveditelnosti tisku.

Vstupní podmínky:

Uživatel zvolí pokračovat v tisku.

Následné podmínky:

Program ukončí tisk, protože nelze provést. Uživatel nepotvrdí tisk.

Program provede iniciaci tisku.

2.3

2.3 Diagram tříd

Pomocí případů užití a pečlivě sepsaných scénářů k nim, lze nyní bez problémů sestavit analytický diagram tříd.

Obrázek 8: Získaný Use Case diagram

Analýza Use Case diagramu

Typy kandidátů analytických tříd:

- Uživatel
- Administrátor
- Nový uživatel
- Přihlášený uživatel
- Registr uživatelů
- Přihlašovací formulář

Atributy:

• Přihlašovací údaje

Operace:

- Přihlášení, odhlášení
- Vytvoření, smazání uživatele
- · Změna hesla
- · Změna práv
- Editace údajů
- Ověření údajů

Na základě získaného Use Case diagramu popisujícího případy užití modulu Správa uživatelů, jsme vytvořili následující diagram tříd.

Obrázek 9: Analytický diagram tříd, modul Správa uživatelů

2.4 Sekvenční diagram

Nyní vytvoříme sekvenční diagram modulu Správa uživatelů z původního Use Case diagramu.

Obrázek 10: Vytvoření uživatele

Obrázek 11: Smazání uživatele

Obrázek 12: Editace údajů uživatele

Na základě sekvenčních diagramů byly zjištěny některé nedostatky v diagramu tříd. Tyto nedostatky jsou opraveny na následujícím diagramu:

Obrázek 13: Opravený diagram tříd Správa uživatelů

3 Závěr

Na základě metodiky UML, jsme provedli postup kterým dochází k vývoji softwaru. Výsledný diagram tříd, který jsme v této práci vytvořili je možné použít pro konstrukci funkčního programového kódu a navázat tak na tuto práci dalšími fázemi vývoje softwaru až po vytvoření funkčního produktu, který slouží svému cíli.