Exam: Introduction to logic and proof, angle pairs

- 1. Points that are all located on the same line are ______.
- 2. Given C(1,-2) and D(7,9), find the coordinates of the midpoint of \overline{CD} , the point M.

- 3. Given the conditional statement, "If two triangles' corresponding sides are congruent, then their corresponding angles are congruent."
 - (a) Write down the conclusion of the statement.
 - (b) Write down the negation of the hypothesis.
 - (c) Write down the converse of the statement.

4. Given $m \angle R = 50$, $m \angle S = 65$, and $m \angle UST = 115$. Find $m \angle RSU$.

5. Construct an equilateral triangle with one side the given line segment \overline{AB} .

- 6. Given the square BECA with BE = 2.50.
 - (a) Find the area of BECA.
 - (b) Find the perimeter of BECA.
- 7. Given $m \angle A = 75$, $m \angle B = 45$, $m \angle C = 165$, $m \angle DEF = 55$, $m \angle FEG = 15$.
 - (a) Find a pair of complementary angles. ______
 - (b) Find a pair of supplementary angles. ______

8. Find the value of $|\sqrt{11} - \frac{3}{2}| - \sqrt{11}$.

9. Given P(-2,4) and Q(1,0), find the length of \overline{PQ} .

10. In a proof, each of the following statements are written. Write down the reason that would justify each step.

(a)
$$2(DE + FG) = 2DE + 2FG$$
 property

(b)
$$\overline{EF} \cong \overline{EF}$$
 ______ property

(c)
$$DE + EF = FG + EF$$
 ______ property

11. Given \overline{ABC} , AC = 15, and the point B partitions \overline{AC} in a ratio of 2:3.

Find AB.

12. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: $\angle SPU$ is an obtuse angle.
- (b) True or False: \overrightarrow{PR} and \overrightarrow{PU} are opposite rays.
- (c) True or False: $\angle RPT$ and $\angle SPU$ are a linear pair.
- (d) True or False: $\angle SPT$ and $\angle TPU$ are adjacent.
- 13. Given B(-7,4), U(5,-1), and Z(-7,-1).
 - (a) Plot and label the points on the graph, drawing \overline{BU}
 - (b) Draw the legs of the right triangle, \overline{BZ} and \overline{ZU} , marking their lengths.
 - (c) Write down the distance formula for BU, substituting coordinate values.
 - (d) Find the value of BU.

14. Given the circle C with circumference 10π . Find the area of C.

15. Construction a perpendicular bisector of the given line segment, \overline{GH} .

16. Given \overrightarrow{QS} as shown on the number line, with Q having the coordinate 2.55 and S the coordinate 5.23.

(a) Find the value of the coordinate of the point R, the midpoint of \overline{QS} .

(b) The point P is collinear with \overrightarrow{QS} such that Q is the midpoint of \overrightarrow{PS} . Mark P on the line and state the value of its coordinate.

17. Given two vertical angles, $m\angle 1 = 4x + 6$, $m\angle 2 = 6x - 32$. Find $m\angle 1$. For full credit find the $m\angle 2$ as a check.

Name:

18. Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$. Find $m \angle DBC$.

For full credit, show the check using both angle measures.

19. Construct an angle bisector of the given angle.

20. Spicy: Construct the angle bisectors of the angles of the triangle and their intersection, the incenter.

