Física Moderna

Ingeniería en Nanotecnología

(ruben.velazquez@uteq.edu.mx)

Universidad Tecnológica de Querétaro

Cuatrimestre Mayo - Agosto 2025

BIENVENIDA

- Asignatura: Física Moderna
- Carrera: Ingeniería en Nanotecnología
- ► Modalidad: Presencial asistida por tecnología
- ► **Período:** Mayo Agosto 2025
- ▶ **Duración:** 60 horas totales (26 sesiones de 2 horas, 52 horas efectivas)
- ► Plataforma: Google Classroom

¿Qué sucede a nivel cuántico?

"Si crees que entiendes la mecánica cuántica... es que no la entiendes." Richard Feynman

Objetivos del Curso

Objetivo HA

El alumno describirá el comportamiento de los materiales nanoestructurados con base en los conceptos, teorías y principios de física moderna para determinar sus características y propiedades.

Objetivo General

El alumno describirá los fenómenos fundamentales de la física moderna y aplicará sus principios (cuantización, dualidad, ecuación de Schrödinger) para comprender el comportamiento cuántico de la materia a nivel atómico y subatómico.

Utilizará herramientas computacionales y de inteligencia artificial como apoyo para determinar las características y propiedades de materiales nanoestructurados.

Competencia a Desarrollar

Fundamentar el diseño de procesos de producción de materiales nano-estructurados mediante la aplicación de los principios y modelos de la física moderna, para determinar sus características, propiedades y potenciales aplicaciones que contribuyan a la innovación tecnológica.

Unidades Temáticas

En Hoja de Asignatura

- 1. Teoría básica del electromagnetismo
- 2. Modelo nuclear del átomo
- 3. Dualidad onda-partícula
- 4. Solución de la ecuación de Schrödinger

Mapa Curso

Políticas Institucionales

- Para tener derecho a asistir a clases y evaluaciones, es requisito estar inscritos oficialmente.
- 2. Utilizaremos el correo institucional como medio oficial de comunicación.
- 3. El plagio está estrictamente prohibido. Cualquier trabajo que no sea de su autoría resultará en la pérdida del derecho a aprobar la evaluación correspondiente.
- 4. Se requiere un mínimo de 80% de asistencia para tener derecho a evaluación.
- Las entregas deben ser puntuales y cumplir con los criterios establecidos.
- 6. Las inasistencias solo pueden justificarse por causas específicas como enfermedad con incapacidad o solicitud de autoridad.

Políticas Específicas del Curso

Aspectos Académicos:

- ► Entrega puntual de actividades con penalización por retraso
- Originalidad en todos los trabajos
- Uso ético y declarado de herramientas de IA

Uso de Tecnología:

- Aprovechar simulaciones y herramientas de IA como apoyo
- Enfoque en comprensión conceptual, no solo en resultados

Metodología de Enseñanza-Aprendizaje

Sesiones Sincrónicas (en clase)

- Exposición dialogada
- Resolución guiada de problemas
- ► Trabajo con simulaciones
- Discusión y colaboración

Actividades Asincrónicas (Google Classroom)

- Resolución de problemas
- Uso guiado de herramientas de IA
- Reportes de simulación
- Foros de discusión

Uso de Tecnología

Simulaciones

- ► PhET Interactive Simulations
- Otras simulaciones específicas

Herramientas de IA

- Asistentes conversacionales para:
 - Profundizar conceptos
 - Obtener explicaciones alternativas
 - Verificar pasos en resolución de problemas
 - Buscar información complementaria

Evaluación

Requisito de asistencia:

Mínimo 80% para tener derecho a evaluación

Evaluación Diagnóstica (0%)

► Cuestionario inicial (hoy)

Evaluación Formativa (30%)

- ► Portafolio digital de problemas (10%)
- ► Reportes de simulaciones (10%)
- Participación y foros (5%)
- Autoevaluación/coevaluación (5%)

Evaluación Sumativa (70%)

- ▶ Evaluaciones de unidad ($5 \times 10\% = 50\%$)
- Proyecto integrador final (20%)

Niveles de Desempeño

SA (Satisfactorio)

- Comprensión básica de principios fundamentales
- ▶ 80% de actividades formativas con calidad aceptable
- ► Mínimo 70% en evaluaciones sumativas

DE (Destacado)

- Comprensión profunda de conceptos
- ▶ 100% de actividades con alta calidad
- ► Mínimo 85% en evaluaciones sumativas

AU (Autónomo)

- Pensamiento crítico avanzado
- Soluciones originales a problemas complejos
- Mínimo 95% en evaluaciones sumativas

Recursos Principales

Bibliografía Base

- ► Griffiths, D. (2016). Quantum Mechanics
- Eisberg, R., & Resnick, R. Física cuántica
- Serway, R. A., Moses, C. J., & Moyer, C. A. (2005). Física moderna
- ► Tipler, P. A. (2012). Física Moderna

Recursos Digitales

- Simulaciones PhET
- Classroom: código de acceso [insertar código]
- Repositorio de recursos digitales

Políticas del Curso

Aspecto Académico

- ► Entrega puntual de actividades
- Originalidad en trabajos
- Uso ético de herramientas de IA

Uso de Tecnología

- Aprovechar simulaciones y herramientas IA como apoyo
- Declarar uso de IA en trabajos cuando corresponda
- Enfoque en comprensión conceptual, no solo en resultados

Políticas de Clase Institucionales

- Para tener derecho a asistir a clases y a la evaluación del aprendizaje correspondiente, será requisito que los alumnos estén inscritos oficialmente.
- 2. Los alumnos contarán con correo institucional, que será el medio oficial para la comunicación y entrega de reportes, trabajos o actividades asignadas en la plataforma de Google.
- 3. El plagio de tareas, proyectos, presentaciones, evaluaciones o prácticas, queda estrictamente prohibido. El alumno que sea sorprendido entregando resultados que no sean de su autoría, perderá derecho a aprobar la evaluación correspondiente.

Políticas de Clase Institucionales

- 4. El alumno tendrá derecho a la evaluación del aprendizaje siempre y cuando cumpla con las actividades encomendadas y entregue en tiempo y forma los productos de aprendizaje señalados.
- 5. La puntualidad y asistencia, así como las actitudes y valores son criterios para evaluar el saber ser y aprobar la unidad en la fase ordinaria. El porcentaje mínimo de asistencia será del 80% del total de horas de la unidad.
- 6. El estudiante podrá justificar alguna inasistencia solamente en caso de incapacidad por enfermedad o a solicitud de alguna autoridad educativa, familiar o empresa debido a alguna situación especial.

¿Qué esperar del curso?

Semana 1

- ► Hoy: Presentación y diagnóstico
- Próxima sesión: Repaso de conceptos de electromagnetismo clásico

Semanas 2-13

- Desarrollo de las unidades temáticas
- Actividades prácticas y simulaciones
- Evaluaciones programadas

A lo largo del curso

- Conexión entre teoría cuántica y nanotecnología
- Construcción progresiva de competencias
- Aplicación práctica de conocimientos

Evaluación Diagnóstica

A continuación realizaremos:

- 1. Presentación breve de cada estudiante
- 2. Expectativas sobre el curso
- 3. Cuestionario diagnóstico (Google Forms)
- 4. Discusión sobre uso ético de IA como herramienta de aprendizaje

¡Comencemos!

Contacto:

- ► Correo electrónico: [insertar correo]
- ► Horario de consulta: [insertar horario]
- ► Classroom: [insertar enlace]

¿Preguntas?

