Automated Reasoning

Cynthia Kop & Sebastian Junges Fall 2024

Lecture 13:

Reasoning about Reachability

Slides inspired by: Sanjit Seshia, UC Berkeley Elizabeth Polgreen, Univ Edinburgh

1

Today's Lecture

- Automated reasoning on graphs:
- (Un)reachability via SAT-solvers
- Symbolic transition systems
- Algorithms for symbolic transition systems:
 - Abstraction
 - Interpolation

Goal:

Learn how SAT and SMT-solvers accelerate reasoning about reachability in graphs

Graphs are everywhere

- Planning problems in robotics, logistics, etc.
- Bug finding (an execution ends in an error-state, the course **model checking** treats more complex properties)

Given a transition system (a directed graph) $\langle S, I, T \rangle$, is there a **path** from some source state $s \in S$ to a target state $t \in S$?

A path is a sequence of states $s_1...s_n$ such that $(s_i, s_{i+1}) \in T$ for all i < n.

Two properties: (Un)reachability

Unreachable

Reachable

A state s is reachable, iff there exists a path from the initial state to s

Reachability is simple...

• Can be solved via breadth-First or Depth-First Search in $\mathcal{O}(|S| + |T|)$

- What if we have additional constraints
 - Examples: Your homework, building bridges,

k-Bounded Reachability

- Is there a path of length up to k between two states?
- One variable per state per time step. Variables: $X = \{x_{s,i} \mid s \in S, 0 \le i \le k\}$.
- Idea: Can we reach this state in k steps?
- Constraints:
 - If we can reach state s in i steps, then we can reach the successors in i + 1 steps.
 - We can reach the initial state in 0 steps.
 - We ensure that we reach the target in k steps.

What about unbounded reachability?

- We can set k sufficiently large
 - larger than the number of states,
 - more precisely, larger than the diameter

This quadratic growth in variables is often unacceptable

Notation

Forget about the symbolic aspect for a moment!

- For any relation $R \in Y \times Y$
 - For $y, y' \in Y$, we write R(y, y') to denote $\langle y, y' \rangle \in R$.
 - For $A \subseteq Y$, we write R(A) to denote $R(A) = \{y' \in Y \mid y \in A \text{ and } R(y, y')\}$.
- Reachable states: $I \cup T(I) \cup T(T(I)) \cup T(...(T(I))$
- Define $T_+(A) = I \cup A \cup T(A)$
- A Inductive iff $T(A) \subseteq A$

Reachable States as a Fixpoint

- T_{+} is an operator on subsets of states
- Reachability is a fixed point of T_+ . Which?

Reachable States as a Fixpoint

- T_{+} is an operator on subsets of states
- Reachability is a fixed point of T_+ . Which?
- Least fixed point! Induces the natural algorithm starting from the initial states

• Any fixed point of T_{+} contains all reachable states

Unreachability

- Let the SMT-solver guess (over-approximation of) reachable states
- Prevent including the bad states
- Ensure it is a fixed point to ensure it is an overapproximation
- Variables: $X = \{x_s \mid s \in S\}$.
- Constraints:
 - bad states false, initial states are true
 - If state is in, then also all successors

Idea: Reachability

Guess a subset of the states that can reach the target?

- Benefit: Avoid k copies state variables
- A state can reach the target if the successor can reach the target (i.e., the set is closed under the transition relation)
- The target reaches the target

The initial state should reach the target

Unreachable

SAT solution

Idea: Reachability Fix

- Benefit: Avoid k copies of the transition relation/state variables
- A state can reach the target if a successor can reach the target AND is closer to the target (i.e., the set is closed under the transition relation)
- The target reaches the target
- The initial state should reach the target

There are some alternatives that all help avoiding cyclic arguments (beyond the scope of this lecture)

Just Reachability is simple...

- Breadth-First or Depth-First Search in $\mathcal{O}(|S| + |T|)$
- Let us consider huge graphs...
- Actually, to find a path, it suffices to only guess the correct shortest path
- Complexity: NL (...nondeterministic logspace...)
- Idea: Use an SMT-solver to find such a path

Summary

- Reachability as part of an encoding
- Symbolic transition systems

Symbolically encoding graphs

- Transition systems are typically constructed from a high-level description
- Here: Transition is an assignment to variables integer variables x, y
- Transitions:
 - (only if x < 4) increment x
 - (only if y < 5) increment y
- $T_a = \{(u, v) \mid u(x) < 4 \land v(x) = u(x) + 1 \land u(y) = v(y)\}$
- $T_b = \{(u, v) \mid u(y) < 5 \land v(y) = u(y) + 1 \land u(x) = v(x)\}$

Symbolic Transition Systems

- ullet A set of variables V
- Initial states formula I(V)
- Transition relation formula T(V, V') where $V' = \{v' \mid v \in V\}$

• States are given as assignments to a set of variables

Transitions relate source and target states

We use 'primed' variables to describe the target states of transitions

• Transitions are described by a formula over normal and primed variables

• Transitions are described by a formula over normal and primed variables

Quiztime

SAT solver guessing paths up to 2 steps

- Symbolic transition system?
- $V = \{x, y\}, I = \neg x \land \neg y, T = ?$
- $T = \left((y \leftrightarrow y') \land (x \oplus x') \right) \lor \left((x \leftrightarrow x') \land \neg y \land y') \right)$

k-Bounded Reachability

- Is there a path of length up to k between two states?
- One variable per variable-set per time step. Variables: $X = \{v_i \mid v \in V, 0 \le i \le k\}$.
- Idea: Can we reach this state in k steps?
- Constraints:
 - If we can reach a state in i steps, then we can reach the successors in i + 1 steps.
 - We can reach the initial state in 0 steps.
 - We ensure that we reach the target in k steps.

Quiztime

SAT solver guessing paths up to 2 steps

Symbolic transition system?

•
$$V = \{x, y\}, I = \neg x \land \neg y, T = ?$$

•
$$T = ((y \leftrightarrow y') \land (x \oplus x')) \lor ((x \leftrightarrow x') \land \neg y \land y'))$$

Variables for paths of length 2

• Reachability constraints for exactly 2 steps? For at most 2 steps?

Summary

- (Un)Reachability as part of an encoding
- Symbolic transition systems

Approximating All Reachable States

Challenge:

- May require many steps to stabilize reachable states
- i-step reachable states may be not concisely representable

Abstraction

Rough idea

- Problem: Long paths are hard to guess, paths can be infinite, ...
- Observation: Precise value of 'data' is often not important
- Rather than a system M, consider a system $\alpha(M)$ such that
 - $\alpha(M) \models \varphi \implies M \models \varphi$

In this lecture: φ = "never reach a bad state"

• $\alpha(M)$ is more concise/shorter paths

Reverse direction does not always need to hold... We will discuss this later

 General theoretic framework often based on Abstract Interpretation (Cousot & Cousot, 1977)

Abstraction of Transition Systems

"Existential Abstraction"

- Let M = (S, I, R) with states S, initial states I, transition relation R
- $\alpha \colon S \to \hat{S}$ abstracts states
- Obtain $\alpha(M) = (\hat{S}, \{\alpha(s) \mid s \in I\}, \hat{T})$, with
 - $\hat{T}(\hat{s}, \hat{s}')$ iff $\exists s, s'$ s.t. T(s, s') and $\alpha(s) = \hat{s} \land \alpha(s') = \hat{s}'$

Every path in M is reflected by a path in $\alpha(M)$

Dead variable elimination

- initial = x > 0, y > 0
- 0: while (x >= 0)
 - 1: x = x 1
 - 2: y = y + 1 Can remove this line
- return: x >= 0

$$0,(2,3) \longrightarrow 1,(1,3) \longrightarrow 2,(1,4) \longrightarrow 0,(1,4)$$

$$0,(2,6) \longrightarrow 1,(1,6) \longrightarrow 2,(1,7) \longrightarrow 0,(1,7)$$

$$0,(2,?)$$
 \longrightarrow $1,(1,?)$ \longrightarrow $2,(1,?)$ \longrightarrow $0,(1,?)$

Predicate Abstraction

- States S given by an assignment to a set of N-valued variables $V = \{v_1, ..., v_n\}$
- Each predicate over variables V partitions the state space, $\beta\colon S\to\{0,1\}$ e.g., $x_1>2\land x_4\leq 3$
- For a set of predicates $\{\beta_1,\ldots,\beta_m\}$, $\hat{S}=\mathbb{B}^n$, $\alpha\colon S\to \hat{S}$, $\alpha(s)=[\beta_1(s),\ldots\beta_m]$
- Reduces the state space form N^n to 2^m

Bad states: x = 0

Bad states: x = 0 Predicates: $\{x = 0\}$

Bad states: x = 0

Bad states: x = 0 Predicates: $\{x = 0\}$

Bad states: x = 0

Predicates: $\{x = 0, x = 2\}$

Abstraction-Refinement

- Iteraterively adding predicates guaranteed to terminate
 - often, few predicates suffice.
- How to know which predicates to select...?
- To select optimal predicates is intractable, but...
 - looking at property and structure helps
 - and: looking at spurious counterexamples helps a lot

Counterexample-Guided Abstraction Refinement

Approximating All Reachable States

Challenge:

- May require many steps to stabilize reachable states
- i-step reachable states may be not concisely representable

Craig-InterpolantsDefinition

- Given two (first-order) formulas A and B
 - with variables var(A) and var(B)
- C is a Craig-Interpolant, iff
 - A implies C
 - C implies B
 - $var(C) = var(A) \cap var(B)$

In general, replace variables with non-logical symbols

(Reverse) Interpolants

McMillans Formulation (used hereafter)

- Given two (first-order) formulas A and B
 - with variables var(A) and var(B)
 - With $A \wedge B$ unsatisfiable
- C is an interpolant, iff
 - A implies C
 - C implies not B = not(B and C)
 - $var(C) = var(A) \cap var(B)$

Computing Interpolants

- For many SMT theories (including UF, EQ, LRA) interpolants can efficiently be computed from a resolution proof
- Details are beyond the scope of this lecture

Interpolants on with k-bounded reachability

Interpolant C overapproximates reachable states without admitting an k-1 path to P

Interpolation-Based Reachability

Extension to bounded reachability

For a fixed k:

- 1. Set REACH initially to I
- 2. Ask for k-bounded reachability from REACH
 - If SAT: have we found a counterexample?
 - If UNSAT, continue
- 3. Update REACH:
 - Use interpolation to compute over-approximation of one-step reachable states;
 - add them to REACH
 - Can newly added states lead to error states in k-1 steps?
 - In k steps?
- 4. If REACH does not increase, we've reached a fixed point!
 - Is the property true?
- 5. Otherwise, back to step 2

Summary

- Bounded Reachability, Reachability, and Unreachability with a SAT-solver
- Symbolic transition systems
- Interpolants
- Abstraction

Questions

Make sure you can answer the following questions!

- A. How can a SAT-solver prove unreachability? What is an inductive state set?
- B. Why is inductivity not enough to prove reachability? What idea can we use to fix this?
- C. How do we represent symbolic transition systems? How can a SAT-solver find paths up to length k?
- D. What is an interpolant? (NOT DISCUSSED IN LECTURE)
- E. What is existential abstraction and how does abstraction-refinement work?

See you next week!