The McGraw-Hill Companies

Discrete Mathematics and Its Applications

Sixth Edition
By Kenneth Rosen

Chapter 7
Advanced Counting
Techniques

- ♦ 7.1 Recurrence Relations
- 7.2 Solving Linear Recurrence Relations
- 7.3 Divide-and-Conquer
 Algorithms and Recurrence
 Relations
- 7.4 Generating Functions
- ♦ 7.5 Inclusion—Exclusion
- 7.6 Applications of Inclusion— Exclusion

7.1 Recurrence Relations

- Definition 1: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses an in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with n>= n_0 , where n_0 is a nonnegative integer.
 - A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation
 - Ex.1-2

Modeling with Recurrence Relations

- Ex.3: Compound interest
- Ex.4: Rabbits and the Fibonacci numbers
- Ex.5: The Tower of Hanoi
- Ex.6
- Ex.7: Codeword enumeration
- Ex.8

© The McGraw-Hill Companies, Inc. all rights reserved.

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	0 10	1	0	1	1
	240	2	0	1	1
240	040	3	1	1	2
0 40	多多多	4	1	2	3
多多多	原物原物原物	5	2	3	5
具有多种的	安安安安安	6	3	5	8
	ata ata				

FIGURE 1 Rabbits on an Island.

FIGURE 2 The Initial Position in the Tower of Hanoi.

FIGURE 3 An Intermediate Position in the Tower of Hanoi.

FIGURE 4 Counting Bit Strings of Length *n* with No Two Consecutive 0s.

7.2 Solving Linear Recurrence Relations

• Definition 1: A linear homogeneous recurrence relation of degree k with constant coefficients:

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$, where c_1, c_2, \dots, c_k are real numbers, and $c_k \neq 0$.

- Ex.1
 - $P_n = (1.11)P_{n-1}$
 - $\bullet \overline{f_n} = \overline{f_{n-1}} + \overline{f_{n-2}}$
 - $a_n = a_{n-5}$

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

- $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ - $a_n = r^n$ is a solution iff $r^n = c_1 r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}$ - $r^k - c_1 r^{k-1} - c_2 r^{k-2} - ... - c_{k-1} r - c_k = 0$
 - Characteristic equation
 - Characteristic roots
- Theorem 1: Let c_1 and c_2 are real numbers. Suppose r^2 - c_1r - c_2 =0 has two distinct roots r_1 and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation a_n = c_1a_{n-1} + c_2a_{n-2} iff a_n = $\alpha_1r_1^n$ + $\alpha_2r_2^n$ for n=0, 1, 2, ..., where α_1 and α_2 are constants.
 - Proof.

- Ex.3: $a_n = a_{n-1} + 2a_{n-2}$, $a_0 = 2$, $a_1 = 7$.
- Ex.4: Fibonacci numbers.
- Theorem 2: Let c_1 and c_2 are real numbers with $c_2 \neq 0$. Suppose r^2 - c_1r - c_2 =0 has only one root r_0 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation a_n = c_1a_{n-1} + c_2a_{n-2} iff a_n = $\alpha_1r_0^n$ + $\alpha_2nr_0^n$ for n=0, 1, 2, ..., where α_1 and α_2 are constants.
 - Ex. 5: $a_n = 6a_{n-1} 9a_{n-2}$, $a_0 = 1$, $a_1 = 6$.

• Theorem 3: Let $c_1, c_2, ..., c_k$ be real numbers. Suppose r^k - c_1r^{k-1} -...- c_k =0 has k distinct roots $r_1, r_2, ..., r_k$. Then the sequence $\{a_n\}$ is a solution of the recurrence relation a_n = c_1a_{n-1} + c_2a_{n-2} +...+ c_ka_{n-k} iff a_n = $\alpha_1r_1^n$ + $\alpha_2r_2^n$ +...+ $\alpha_kr_k^n$ for n=0, 1, 2, ..., where $\alpha_1, \alpha_2, ..., \alpha_k$ are constants.

-Ex.6: $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$, $a_0 = 2$, $a_1 = 5$, $a_2 = 15$.

• Theorem 4: Let c_1, c_2, \ldots, c_k be real numbers. Suppose $r^k-c_1r^{k-1}-...-c_k=0$ has t distinct roots r_1, r_2, \ldots, r_t with multiplicities m_1, m_2, \ldots, m_t such that $m_i > = 1$ and $m_1 + m_2 + ... + m_t = k$. Then the sequence {a_n} is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ iff $a_n = (\alpha_{1.0} + \alpha_{1.1} n + ... + \alpha_{1.m1-1}) r_1^n$ $+(\alpha_{2.0}+\alpha_{2.1}n+...+\alpha_{2.m2-1})r_2^n$ $+\dots+(\alpha_{t,0}+\alpha_{t,1}n+\dots+\alpha_{t,mt-1})r_t^n$ for $n=0, 1, 2, \dots$ where $\alpha_{i,i}$ are constants.

- Ex.7
- Ex.8: a_n =-3 a_{n-1} -3 a_{n-2} - a_{n-3} , a_0 =1, a_1 =-2, a_2 =-1.

Linear Nonhomogeneous Recurrence Relations with Constant Coefficients

Nonhomogeneous:

- $-a_n=c_1a_{n-1}+c_2a_{n-2}+...+c_ka_{n-k}+F(n)$
- Associated homogeneous recurrence relation: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$
- Ex.9: $a_n = a_{n-1} + 2^n$, $a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$, $a_n = 3a_{n-1} + n^2$, $a_n = a_{n-1} + a_{n-2} + a_{n-3} + n!$

• Theorem 5: If $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous recurrence relation with constant coefficients $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + F(n)$, then every solution is of the form $\{a_n^{(p)} + a_n^{(h)}\}$, where $a_n^{(h)}$ is a solution of the associated homogeneous recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.

- Proof.
- Ex.10. $a_n = 3a_{n-1} + 2n$, $a_1 = 3$.
- Ex.11: $a_n = 5a_{n-1} 6a_{n-2} + 7^n$.

• Theorem 6: Suppose $\{a_n\}$ satisfies the nonhomogeneous recurrence relation with constant coefficients $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n)$, and $F(n) = (b_t n^t + b_{t-1} n^{t-1} + \ldots + b_1 n + b_0) s^n$. When s is **not** a root of the associate recurrence relation, there is a particular solution of the form $(p_t n^t + p_{t-1} n^{t-1} + \ldots + p_1 n + p_0) s^n$. When s is a root of the characteristic equation and its multiplicity is m, there is a particular solution of the form $n^m (p_t n^t + p_{t-1} n^{t-1} + \ldots + p_1 n + p_0) s^n$.

- Ex.12: $a_n = 6a_{n-1} 9a_{n-2} + F(n)$, $F(n) = 3^n$, $n3^n$, n^22^n , $(n^2+1)3^n$.
- Ex.13: $a_n = a_{n-1} + n$.

7.3 Divide-and-Conquer Algorithms and Recurrence Relations

- Divide-and-conquer algorithms
 - Divide: a problem of size n into a subproblems, each of size n/b
 - Conquer: combine the solutions of subproblems
- Divide-and-conquer recurrence relation
 - f(n) = af(n/b) + g(n)
 - Ex.1: binary search
 - Ex.2: finding the maximum and minimum of a sequence
 - Ex.3: merge sort
 - Ex.4: fast multiplication of integers
 - Ex.5: fast matrix multiplication

- n=b^k
- $f(n)=a^k f(1) + \sum_{j=0..k-1} a^j g(n/b^j)$
- Theorem 1: Let f be an increasing function that satisfies the recurrence relation

$$f(n)=af(n/b)+c$$
. Then $f(n)$ is $O(n^{\log b^a})$ if $a>1$, $O(\log n)$ if $a=1$. When $n=b^k$, $f(n)=C_1n^{\log b^a}+C_2$, where $C_1=f(1)+c/(a-1)$, $C_2=-c/(a-1)$

- Proof.
- Ex. 6: f(n)=5f(n/2)+3, f(1)=7. Find $f(2^k)$.
- Ex.7: binary search
- Ex.8: locate the maximum and minimum elements in a sequence.

 Theorem 2 (Master Theorem): Let f be an increasing function that satisfies the recurrence relation

 $f(n)=af(n/b)+cn^d$. When $n=b^k$, Then f(n) is $O(n^d)$ if $a < b^d$, $O(n^d \log n)$ if $a = b^d$, $O(n^{\log b^a})$ if $a > b^d$.

- Ex.9: merge sort
- Ex.10: fast multiplication algorithm
- Ex.11: fast matrix multiplication
- Ex.12: The Closest-Pair Problem

FIGURE 1 The Recursive Step of the Algorithm for Solving the Closest-Pair Problem.

At most eight points, including p, can lie in or on the $2d \cdot d$ rectangle centered at because at most one point can lie in or on each of the eight $(d \ 2) \cdot (d \ 2)$ squares.

FIGURE 2 Showing That There Are at Most Seven Other Points to Consider for Each Point in the Strip.

7.4 Generating Functions

- To represent sequences efficiently by coding the terms of a sequence as coefficients of powers of a variable x in a formal power series
 - To solve recurrence relations
 - To prove combinatorial identities
 - To study properties of sequences

• Definition 1: The generating function for the sequence $a_0, a_1, ..., a_k, ...$ of real numbers is the infinite series $G(x) = a_0 + a_1 x + ... + a_k x^k + ... = \sum_{k=0}^{\infty} a_k x^k$.

- Ordinary generating functions
- Ex.1
- Ex.2
- Ex.3

Useful Facts about Power Series

- Ex.4: f(x)=1/(1-x)
- Ex.5: f(x)=1/(1-ax)
- Theorem 1: Let $f(x) = \sum_{k=0..\infty} a_k x^k$ and $g(x) = \sum_{k=0..\infty} b_k x^k$. Then $f(x) + g(x) = \sum_{k=0..\infty} (a_k + b_k) x^k$ and $f(x) = g(x) = \sum_{k=0..\infty} (\sum_{j=0..k} a_j b_{k-j}) x^k$ and.
 - It's valid only for power series that converge in an interval.
 - Ex.6: $f(x)=1/(1-x)^2$.

- Definition 2: Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient (u,k) is defined by (u,k)=u(u-1)...(u-k+1)/k! if k>0, or 1 if k=0.
 - Ex.7: (-2, 3), (1/2, 3)
 - Ex.8: $(-n, r) = (-1)^{r}C(n+r-1,r)$
- Theorem 2: (The Extended Binomial Theorem) Let x be a real number with |x| < 1 and let u be a real number. Then

$$(1+x)^{u} = \sum_{k=0..\infty} (u,k) x^{k}.$$

 $\overline{-}$ Ex.9: $(1+x)^{-n}$, $(1-x)^{-n}$.

TABLE 1 Useful Generating Functions.							
G(x)	a						
$(1+x)^{\mu} = \sum_{k=0}^{n} C(n,k)x^{k}$ = 1 + C(n,1)x + C(n,2)x ² + \cdots + x ⁿ	C(n,k)						
$1 + ax)^n = \sum_{k=0}^n C(n, k)a^kx^k$ = 1 + C(n, 1)ax + C(n, 2)a^2x^2 + \cdots + a	$C(n,k)a^k$						
$(1+x^r)^n = \sum_{k=0}^n C(n, k)x^{rk}$ = 1 + C(n, 1)x^r + C(n, 2)x^{2r} + \cdots + x^{rk}	$C(n,k/r)$ if $r \mid k$; 0 otherwise						
$\frac{1 - x^{a+1}}{1 - x} = \sum_{k=0}^{a} x^{k} = 1 + x + x^{2} + \dots + x^{a}$	1 if $k \le n$; 0 otherwise						
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots$	1						
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \cdots$	at a						
$\frac{1}{1-x'} = \sum_{i=0}^{\infty} x'^{i} = 1 + x' + x^{2r} + \cdots$	1 if r k; 0 otherwise						
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots$	k+1						
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$ = 1 + C(n,1)x + C(n+1,2)x ² +	C(n+k-1,k) = C(n+k-1,n-1)						
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$ = 1 - C(n, 1)x + C(n+1, 2)x ²	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$						
$\frac{1}{1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^kx^k$ = 1 + C(n,1)ax + C(n+1,2)a^2x^2 +	$C(n+k-1,k)a^k = C(n+k-1,n-1)a^k$						
$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	1/41						
$\ln(1+x) = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{k} x^{4} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{4}}{3} + x^{4$	···· (-1) ^{k-1} /k						

Counting Problems and Generating Functions

- Counting the r-combinations from n elements when repetition is allowed
 - $e_1 + e_2 + ... + e_n = C$
 - Ex.10: $e_1+e_2+e_3=17$, $e_1:2-5$, $e_2:3-6$, $e_3:4-7$.
 - Ex.11
 - Ex.12
 - Ex.13: k-combinations from n elements.
 - Ex.14: r-combinations from n elements when repetition is allowed.
 - Ex.15: select r objects of n different kinds if we must select at least one object of each kind.

Using Generating Functions to Solve Recurrence Relations

- Ex.16: $a_k = 3a_{k-1}$, $a_0 = 2$.
- Ex.17: $a_n = 8a_{n-1} + 10^{n-1}$, $a_1 = 9$.

Proving Identities via Generating Functions

• Ex.18

7.5 Inclusion-Exclusion

- The principle of inclusion-exclusion
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - Ex.1: (Fig.1)
 - Ex.2: (Fig.2)
 - Ex.3

$$|A \cup B| = |A| + |B| - |A \cap B| = 25 + 13 - 8 = 30$$

FIGURE 1 The Set of Students in a Discrete Mathematics Class.

$$|A \cup B| = |A| + |B| - |A \cap B| = 142 + 90 - 12 = 220$$

FIGURE 2 The Set of Positive Integers Not Exceeding 1000 Divisible by Either 7 or 11.

- For three sets: (Fig. 3)
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |C \cap A| + |A \cap B \cap C|$
 - Ex. 4 (Fig. 4)

FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

FIGURE 4

The Set of
Students Who
Have Taken
Courses in Spanish,
French, and
Russian.

 Theorem 1: (The Principle of Inclusion-Exclusion) Let A₁, A₂, ..., A_n be finite sets. Then

$$\begin{split} & |A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1..n} |A_{i}| - \\ & \sum_{i,j=1..n} |A_{i} \cap A_{j}| + \sum_{i,j,k=1..n} |A_{i} \cap A_{j} \cap A_{k}| - \ldots \\ & + (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|. \end{split}$$

- Ex.5

7.6 Applications of Inclusion-Exclusion

- An alternative form of inclusion-exclusion
 - To solve: the number of elements in a set that have none of n properties P1, P2, ..., Pn.
 - Let Ai be the subset that have property Pi.
 - The number of elements with all the properties Pi1, Pi2, ..., Pik: N(Pi1, Pi2, Pik).
 - $\begin{array}{l} \ N(P1',P2',\ldots,Pn') = N \left| \ A_1 \cup A_2 \cup \ldots \cup \ A_n \ \right| \\ = N \Sigma_{i=1..n} N(P_i) + \Sigma_{i,j=1..n} N(P_i P_j) \Sigma_{i,j,k=1..n} N(P_i P_j P_k) + \ldots \\ + (-1)^n N(P_1 P_2 \ldots P_n). \end{array}$
 - Ex.1

The Sieve of Eratosthenes

- To find all primes not exceeding a specified positive integer
 - For example, the primes not exceeding 100
 - P1: divisible by 2
 - P2: divisible by 3
 - P3: divisible by 5
 - P4: divisible by 7

Integers divisible by 2 other than 2 receive an underline.								Integers divisible by 3 other than 3 receive an underline.											
1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60	51	52	53	54	55	56	57	<u>58</u>	59	60
61	62	63	64	65	66	67	68	69	70	61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80	71	72	73	74	<u>75</u>	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	86	87	88	89	90
91	92	93	0.4	ne.	ar	0.7	98	99	100	0.1	02	93	94	95	96	97	98	99	100
	-	100	94	95	96	97	98	99	100	91	92	93	94	93	<u>=</u>	91	20	29	100
	egers	divisi	ble b	v 5 ot	- SURVINE	28102	- Chance	99	100	In	teger	s divi	sible	by 7 a	= other	than	7 rec	eive	100
	egers eive a	divisi n und	ble b	y 5 ot ie.	her ti	lan 5	- Consider	1000	analogania.	In	teger.	Tanana .	sible	by 7 e	= other in co	than	7 rec e pri	eive me.	Assessed
rece	egers eive a	divisi n und	ible b derlin	y 5 ot ne.	her ti	1 an 5	8	9	10	In an	teger und	s divi erline	sible;; inte	by 7 o	= other in co	than lor ar 7	7 rec re prii	eive me.	10
1 1 11	egers eive a	divisi n und	ble b	y 5 ot ie.	her ti	lan 5	- Consider	1000	analogania.	In	teger.	s divi	sible	by 7 e	= other in co	than	7 rec e pri	eive me.	10 20 30
1 11 21	egers eive a 2 12	divisi n und 3 13	ible by derlin	y 5 ot ne. 5 <u>15</u>	6 16	7 17	<u>8</u> <u>18</u>	9 19	10 20	In an	teger und	s divi	sible ;; inte	by 7 c egers 5 15	in con	than lor ar 7 17	7 rec re prii 8 18	eive me.	10 20 30
1 11 21 31	2 12 22	3 13 23	derlin	y 5 or se. 5 <u>15</u> <u>25</u>	6 16 26	7 17 27	8 18 28	9 19 29	10 20 30	1 11 21	2 12 22 22	s divi	sible ; inte	by 7 degers 5 15 25	6 16 26	than lor ar 7 17 27	7 rec re prin <u>8</u> <u>18</u> <u>28</u>	9 19 29	10 20 30 40
1 11 21 31	2 12 22 32	3 13 23 33	4 14 24 34	5 15 25 35	6 16 26 36	7 17 27 37	8 18 28 38	9 19 29 39	10 20 30 40 50 60	1 11 21 31	2 12 22	3 13 23 33	### 14	by 7 degers 5 15 25 35	6 16 26 36	7 17 27 37	7 rec re prin 8 18 28 38	9 19 29	10 20 30 40 50
1 111 21 31 41	2 12 22 22 32 42	3 13 23 33 43	4 14 24 34 44	5 15 25 35 45	6 16 26 36 46	7 17 27 37 47	8 18 28 38 48	9 19 29 39 49	10 20 30 40 50	1 1 11 21 31 41	2 12 22 22 32 42	3 13 23 33 43	4 14 24 34 44	5 15 25 35 45	6 16 26 36 46	7 17 27 37 47	7 rec re prin 8 18 28 38 48	9 19 29 39 49	10 20 30 40 50
	2 12 22 22 32 42 52	3 13 23 33 43	4 14 24 34 44 54	5 15 25 25 45 55 65	6 16 26 36 46 56	7 17 27 37 47	8 18 28 38 48 58	9 19 29 39 49 59	10 20 30 40 50 60	1 1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43	4 14 24 34 44 54	5 15 25 35 45 55 65	6 16 26 36 46 56	7 17 27 37 47	7 rec re prin 8 18 28 38 48 58	9 19 29 39 49	10 20 30 40 50 60 70
1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43 53	14 24 34 44 54	5 15 25 25 45 55	6 16 26 36 46 56	7 17 27 37 47 57	8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50 60 70	1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43 53	4 14 24 34 44 54 64	5 15 25 35 45 55	6 16 26 36 46 56	than 7 17 27 37 47 57	7 rec re prin 8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50

The Number of Onto Functions

- Ex.2
- Theorem 1: Let m and n be positive integers with m>=n. Then, there are n^m - $C(n,1)(n-1)^m$ + $C(n,2)(n-2)^m$ +...+ $(-1)^n$ - $^1C(n,n-1)1^m$
 - onto functions from a set with m elements to a set with n elements.
 - =n!S(m,n), where S(m,n) is a Stirling number of the second kind
 - Ex.3

Derangement

- Derangement: a permutation of n objects that leave no objects in their original positions
 - Ex.4: The Hatcheck problem (later)
 - Ex.5
 - Let D_n denote the number of derangements of n objects, D₃=2
- Theorem 2: The number of derangements of a set with n elements is

$$D_n = n![1-1/1!+1/2!-1/3!+...+(-1)^n1/n!]$$

Proof.

TABLE 2 The Probability of a Derangement.										
n	2	3	4	5	6	7				
$D_n/n!$	0.50000	0.33333	0.37500	0.36667	0.36806	0.36786				

Thanks for Your Attention!