New Approaches for Enhancing Simulation Metamodeling

Xiaowei Zhang

HKUST

Joint work with Haihui Shen (CityU), L. Jeff Hong (CityU), and Liang Ding (HKUST)

Outline

- 1	l. i	Tan.	+-		 ٠.	0	۲:			
			ы	()	 ш	()		и.)	

2. Stylized-model Enhanced Stochastic Kriging

3. Regularized Stochastic Kriging

4. Markovian Stochastic Kriging

5. Conclusions

Introduction

- Simulation is a popular tool for studying complex stochastic systems
 e.g., supply chains, call centers, manufacturing systems
- We can optimize system performance by varying input parameters or design points of the simulation model
- ▶ However, simulation is often computationally expensive
 - e.g., large-scale queueing networks

Metamodeling

- ▶ "Model of the simulation model"
- ▶ Run simulation at a small number of design points
- ▶ Use the simulation outputs at the selected design points to *predict* the simulation outputs at others *without* doing simulation

Metamodeling

- ▶ "Model of the simulation model"
- ▶ Run simulation at a small number of design points
- ▶ Use the simulation outputs at the selected design points to *predict* the simulation outputs at others *without* doing simulation

- x = (x₁,...,x_d)^T: vector of decision variables of a real system
 arrival rate to a critical care facility, service rates at different care units, and the routing probabilities among the units
- $\triangleright \eta(\mathbf{x})$: mean performance of the simulation model

A Popular Metamodel: Stochastic Kriging (SK)

- ▶ Kriging was originally used in geostatistics (Matheron, 1963) and later in the design and analysis of computer experiments (Sacks et al., 1989)
- ▶ SK was proposed by Ankenman et al. (2010)

A Popular Metamodel: Stochastic Kriging (SK)

- ▶ Kriging was originally used in geostatistics (Matheron, 1963) and later in the design and analysis of computer experiments (Sacks et al., 1989)
- ▶ SK was proposed by Ankenman et al. (2010)
- ▶ SK metamodel: represent $\eta(\mathbf{x})$ by

$$\eta(\mathbf{x}) = \mathbf{f}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\beta} + M(\mathbf{x})$$

- f(x): vector of known functions
- β : vector of unknown parameters
- $M(\cdot)$: zero-mean Gaussian random field
- ► Simulation output:

$$Y_j(\mathbf{x}) = \mathbf{f}(\mathbf{x})^\mathsf{T} \boldsymbol{\beta} + M(\mathbf{x}) + \epsilon_j(\mathbf{x})$$

• $\epsilon_1(\mathbf{x}), \epsilon_2(\mathbf{x}), \dots$ are the simulation errors

SK (cont'd)

- ▶ Slow: simulate $\eta(\mathbf{x})$ at $(\mathbf{x}_i : i = 1, ..., k)$
 - $Y_j(\mathbf{x}_i)$: simulation output on replication j at location \mathbf{x}_i

$$\overline{Y}(\mathbf{x}_i) \coloneqq \frac{1}{n_i} \sum_{j=1}^{n_i} Y_j(\mathbf{x}_i)$$

▶ Fast: predict $\hat{\eta}(\mathbf{x_0})$ with $(\overline{Y}(\mathbf{x}_i) : i = 1, ..., k)$ for any $\mathbf{x_0}$

$$\hat{\eta}(\mathbf{x_0}) = \mathbf{f}(\mathbf{x_0})^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\Sigma}_{M}(\mathbf{x_0},\cdot)^{\mathsf{T}} (\boldsymbol{\Sigma}_{M} + \boldsymbol{\Sigma}_{\epsilon})^{-1} (\overline{\mathbf{Y}} - \mathbf{F} \boldsymbol{\beta})$$

Parameter Estimation via Maximum Likelihood

- Covariance function of M: $Cov[M(\mathbf{x}, \mathbf{x}')] = \tau^2 R(\mathbf{x} \mathbf{x}'; \boldsymbol{\theta})$ Typical example: $R(\mathbf{x} - \mathbf{x}'; \boldsymbol{\theta}) = \exp[-\theta \sum_i (x_i - x_i')^2]$
- ▶ Log-likelihood

$$\ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = -\ln |\boldsymbol{K}(\tau^2, \boldsymbol{\theta})| - (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}}\boldsymbol{K}(\tau^2, \boldsymbol{\theta})^{-1}(\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta}),$$
where $K(\tau^2, \boldsymbol{\theta}) = \boldsymbol{\Sigma}_M(\tau^2, \boldsymbol{\theta}) + \boldsymbol{\Sigma}_{\epsilon}$

Potential Issues

- 1. Specification the "trend term" f(x)
 - \bullet Stylized-model enhanced $SK\colon$ if a rough analytical approximation is available
 - Regularized SK: otherwise, apply statistical learning methods to automatically select from a large collection of candidates

Potential Issues

- 1. Specification the "trend term" f(x)
 - ullet Stylized-model enhanced SK: if a rough analytical approximation is available
 - Regularized SK: otherwise, apply statistical learning methods to automatically select from a large collection of candidates
- 2. Computation of the inverse covariance matrix \mathbf{K}^{-1}
 - Complexity is $O(k^3)$
 - ullet Prone to numerical instability: K becomes close to being singular if there are two design points that "close" to each other
 - $Markovian\ SK$: model K^{-1} directly and introduce sparsity by imposing Markovian structure

Literature on Enhancing Metamodels

- ▶ Incorporating gradient information
 - Morris et al. (1993), Mitchell et al. (1994) in DACE
 - Chen et al. (2013), Qu and Fu (2014) in stochastic simulation
- ▶ Leveraging another coarser but faster simulation model
 - Kennedy and O'Hagan (2000), Forrester et al. (2007)
- Let $f(x) = p(x)/(1-x)^n$ with p(x) being a polynomial
 - Cheng and Kleijnen (1999), Yang et al. (2007)
 - \bullet hard to generalize if ${\bf x}$ is multidimensional

Ordinary Stochastic Kriging (OSK)

- ▶ Despite its general form, in applications $\mathbf{f}(\mathbf{x})$ is mostly taken as a constant, i.e., $\mathbf{f}(\mathbf{x})^{\mathsf{T}}\boldsymbol{\beta} \equiv \beta_0$
 - Assuming no prior knowledge about $\eta(\mathbf{x})$
- ▶ Hard to capture highly nonlinear response surfaces

Stylized-model Enhanced Stochastic Kriging (SESK)

- ▶ A bulk of simulation models in practice are queueing networks
- Assuming no prior knowledge seems overly simplified given the long history of queueing theory

Stylized-model Enhanced Stochastic Kriging (SESK)

- ▶ A bulk of simulation models in practice are queueing networks
- Assuming no prior knowledge seems overly simplified given the long history of queueing theory
- ▶ SESK: add a stylized model with a closed-form solution to the trend term, $\mathbf{f}(\mathbf{x}) = (1, q(\mathbf{x}))$
 - \bullet e.g., $q(\mathbf{x})$ is the mean queue length of the Jackson network
- We do not expect much quantitative accuracy from $q(\mathbf{x})$ but merely a rough prediction of the qualitative behavior of $\eta(\mathbf{x})$.

Example: M/G/1 Queue

- True surface $\eta(x) = 1.5x^2/(1-x)$
- $q^{(1)}(x) = x^2/(1-x), q^{(2)}(x) = 3x^9, q^{(3)}(x) = 10(x-0.52)^2.$

Example: Patient Flow in a Hospital

- ▶ An open queueing network with 9 servers (medical units)
- ▶ Each server has a finite capacity and patients may be blocked
- \blacktriangleright Stylized model: treat each server as an isolated M/M/s/c queue
 - Adjust arrival rate and service rate via a system of heuristic equations

Example: Dock Allocation at an Air Cargo Terminal

- ▶ Four multi-server queues with time-varying arrivals: $M_t/G/s$ queues
- ► Find the optimal scheme for allocating servers to the four queues to minimize the mean waiting time

Cargo Type	Service Time Distribution (min.)	Number of Docks
1	WEIB(21.8, 1.3)	x_1
2	7 + WEIB(67.6, 1.5)	x_2
3	7 + GAMM(25.7, 0.9)	x_3
4	7 + GAMM(9.4, 3.0)	x_4

Dock Allocation (cont'd)

- Consider two distinct stylized models
 - Stationary approximation for each queue: M/M/s
 - Fluid approximation of $M_t/M/s$

Dock Allocation (cont'd)

- ▶ There are 111 servers in total
- ▶ Decision variable $\{x \in \mathbb{N}_+^4 : \sum_i x_i \le 111, x_1 \ge 5, x_2 \ge 61, x_3 \ge 5, x_4 \ge 21\}$
 8,855 possible values in total
- ▶ Apply the Gaussian process-based search (GPS) algorithm (Sun et al., 2014) for optimization
 - The original version uses OSK
 - Replace it with SESK

Regularized Stochastic Kriging (RSK)

- ▶ What if an analytical approximation is not easy to find or implement?
- ightharpoonup f(x) is analogous to basis functions in nonparametric regression
 - \bullet Nontrivial to select (form, number of terms, etc.) $\it manually$

Regularized Stochastic Kriging (RSK)

- ▶ What if an analytical approximation is not easy to find or implement?
- f(x) is analogous to basis functions in nonparametric regression
 Nontrivial to select (form, number of terms, etc.) manually
- ▶ Treat it as a feature selection problem in statistical learning
- ▶ Use the regularization technique to *automatically* select proper basis functions from a large collection
 - Penalize the magnitude of β properly in its estimation
 - L_1 penalty drives the estimated coefficients of the *insignificant* functions to zero
 - Different from LASSO regression because of the correlated noise

Penalized Maximum Likelihood Estimation

► Log-likelihood of SK:

$$\ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = -\ln |\boldsymbol{K}(\tau^2, \boldsymbol{\theta})| - (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}}\boldsymbol{K}(\tau^2, \boldsymbol{\theta})^{-1}(\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta}),$$

where $K(\tau^2, \boldsymbol{\theta}) = \boldsymbol{\Sigma}_M(\tau^2, \boldsymbol{\theta}) + \boldsymbol{\Sigma}_{\epsilon}$

▶ Penalized log-likelihood of RSK:

$$\tilde{\ell}(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = \ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) - p(\boldsymbol{\beta}),$$

where $p(\cdot)$ is a penalty function

- L_1 penalty: $p(\boldsymbol{\beta}) = \lambda ||\boldsymbol{\beta}||_1$
- Elastic net penalty: $p(\boldsymbol{\beta}) = \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2$

Penalized Maximum Likelihood Estimation

► Log-likelihood of SK:

$$\ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = -\ln |\boldsymbol{K}(\tau^2, \boldsymbol{\theta})| - (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}} \boldsymbol{K}(\tau^2, \boldsymbol{\theta})^{-1} (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta}),$$

where $K(\tau^2, \boldsymbol{\theta}) = \boldsymbol{\Sigma}_M(\tau^2, \boldsymbol{\theta}) + \boldsymbol{\Sigma}_{\epsilon}$

▶ Penalized log-likelihood of RSK:

$$\tilde{\ell}(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = \ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) - p(\boldsymbol{\beta}),$$

where $p(\cdot)$ is a penalty function

- L_1 penalty: $p(\boldsymbol{\beta}) = \lambda ||\boldsymbol{\beta}||_1$
- Elastic net penalty: $p(\boldsymbol{\beta}) = \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2$
- ▶ Use the block-coordinate descent method for numerical optimization
 - Alternately maximize over one of $\boldsymbol{\beta}$, τ^2 , $\boldsymbol{\theta}$ by fixing the other two

Penalized Maximum Likelihood Estimation

► Log-likelihood of SK:

$$\ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = -\ln |\boldsymbol{K}(\tau^2, \boldsymbol{\theta})| - (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}} \boldsymbol{K}(\tau^2, \boldsymbol{\theta})^{-1} (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta}),$$

where $K(\tau^2, \boldsymbol{\theta}) = \boldsymbol{\Sigma}_M(\tau^2, \boldsymbol{\theta}) + \boldsymbol{\Sigma}_{\epsilon}$

▶ Penalized log-likelihood of RSK:

$$\tilde{\ell}(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) = \ell(\boldsymbol{\beta}, \tau^2, \boldsymbol{\theta}) - p(\boldsymbol{\beta}),$$

where $p(\cdot)$ is a penalty function

- L_1 penalty: $p(\boldsymbol{\beta}) = \lambda ||\boldsymbol{\beta}||_1$
- Elastic net penalty: $p(\boldsymbol{\beta}) = \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2$
- ▶ Use the block-coordinate descent method for numerical optimization
 - Alternately maximize over one of $\boldsymbol{\beta}, \, \tau^2, \, \boldsymbol{\theta}$ by fixing the other two
- ▶ Nontrivial to prove the "oracle" property
 - Sparsity: estimated coefficients of the insignificant basis functions become zero asymptotically
 - Asymptotic optimality: estimated coefficients follow a multivariate normal distribution asymptotically

- ▶ True surface $\eta(x) = x/(1-x)$
- \blacktriangleright Improvement relative to OSK is significant but not as much as SESK
 - \bullet SESK is better if a good stylized model is available
 - \bullet RSK is more widely applicable

Numerical Issues

- ▶ MLE requires repeated computation of $\mathbf{K}(\tau^2, \boldsymbol{\theta})^{-1}$
- ▶ Computational complexity is $O(k^3)$
 - \bullet k becomes large easily if \mathbf{x} is multidimensional
- ▶ A more serious numerical issue is **K** becomes near-singular easily
- ▶ θ is hard to estimate (Li and Sudjianto, 2005)
 - $\boldsymbol{\theta}$ controls the correlation: $\operatorname{Corr}[M(\mathbf{x}), M(\mathbf{x}')] = \exp[-\theta \sum_i (x_i x_i')^2]$
 - \bullet Log-likelihood function is "flat" near the optimum of $\pmb{\theta}$

Numerical Issues

- ▶ MLE requires repeated computation of $\mathbf{K}(\tau^2, \boldsymbol{\theta})^{-1}$
- ▶ Computational complexity is $O(k^3)$
 - k becomes large easily if \mathbf{x} is multidimensional
- ▶ A more serious numerical issue is **K** becomes near-singular easily
- ▶ θ is hard to estimate (Li and Sudjianto, 2005)
 - θ controls the correlation: $Corr[M(\mathbf{x}), M(\mathbf{x}')] = \exp[-\theta \sum_i (x_i x_i')^2]$
 - \bullet Log-likelihood function is "flat" near the optimum of $\pmb{\theta}$
- ▶ Solution: model $\mathbf{Q} = \mathbf{K}^{-1}$ directly
 - Other approaches: tampering, low-rank approximation, etc.

Markovian Structure and Sparsity

► Crucial property: $\mathbf{Q}_{i,j} = 0$ if $\mathbf{x}_i \perp \mathbf{x}_j$ conditional on the others • $\{M(\mathbf{x}_i) : i = 1, ..., k\}$ forms a Markov chain

Markovian Structure and Sparsity

- Crucial property: Q_{i,j} = 0 if x_i ⊥ x_j conditional on the others
 {M(x_i): i = 1,...,k} forms a Markov chain
- ▶ $M(\mathbf{x}_i)$ and $M(\mathbf{x}_j)$ are independent unless they are "neighbors"
- \blacktriangleright "Neighborhood" is defined by a user-specified graph, so ${\bf Q}$ can be made sparse
 - Accelerate the related matrix computation dramatically
 - Solve the near-singularity issue

▶ If **x** is discrete, such $M(\mathbf{x})$ is a Gaussian Markov random field

Markovian Stochastic Kriging (MSK)

- ▶ With **x** being continuous, we assume $M(\mathbf{x})$ is a Gaussian free field
- ightharpoonup The domain of \mathbf{x} must be specified
- ▶ $G(\mathbf{x}, \mathbf{y}) := \text{Cov}[M(\mathbf{x}), M(\mathbf{y})]$ is the solution to a PDE (heat equation with Dirichlet boundary)

Markovian Stochastic Kriging (MSK)

- ▶ With **x** being continuous, we assume $M(\mathbf{x})$ is a Gaussian free field
- ightharpoonup The domain of \mathbf{x} must be specified
- ▶ $G(\mathbf{x}, \mathbf{y}) := \text{Cov}[M(\mathbf{x}), M(\mathbf{y})]$ is the solution to a PDE (heat equation with Dirichlet boundary)
 - \bullet E.g., if the domain is [0,L], then G(x,y) can computed analytically and ${\bf Q}$ is a tridiagonal matrix

$$\mathbf{Q} = \begin{pmatrix} b & -a & 0 & \cdots & 0 \\ -a & b & -a & \cdots & 0 \\ 0 & -a & b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b \end{pmatrix},$$

• Log-likelihood becomes

$$\ell(\boldsymbol{\beta}, a, b) = -\ln|\mathbf{Q}(a, b)^{-1}| - (\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}}\mathbf{Q}(a, b)(\overline{\mathbf{Y}} - \mathbf{F}\boldsymbol{\beta})$$

- ▶ True surface $\eta(x) = x/(100 x)$
- ▶ Set $\mathbf{f}(\mathbf{x}) \equiv 1$ for MSK
- ▶ OSK does not perform well because the correlation parameter θ is hard to estimate (close to 0)

Conclusions

- Discussed several issues of the SK metamodel
 - Hard to specify the trend term f(x)
 - High computational complexity
 - Numerical instability
- Proposed three approached for enhancing SK
 - They address different issues but can be used in a combined way
- ▶ SESK performs very well if a good stylized model is available
- RSK provides moderate enhancement but its applicability is higher than SESK
- ▶ MSK is very promising but the shape of the domain must be chosen carefully so that the PDE can be solved analytically

References I

- B. Ankenman, B. L. Nelson, and J. Staum. Stochastic kriging for simulation metamodeling. Oper. Res., 58(2):371–382, 2010.
- X. Chen, B. Ankenman, and B. L. Nelson. Enhancing stochastic kriging metamodels with gradient estimators. Oper. Res., 61(2):512–528, 2013.
- R. C. Cheng and J. P. Kleijnen. Improved design of queueing simulation experiments with highly heteroscedastic responses. *Oper. Res.*, 47(5): 762–777, 1999.
- A. I. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimization via surrogate modelling. In *Proc. R. Soc. A*, volume 463, pages 3251–3269, 2007.
- M. C. Kennedy and A. O'Hagan. Predicting the output from a complex computer code when fast approximations are available. *Biometrika*, 87 (1):1–13, 2000.
- R. Li and A. Sudjianto. Analysis of computer experiments using penalized likelihood in Gaussian kriging models. *Technometrics*, 47(2):111–120, 2005.
- G. Matheron. Principles of geostatistics. Econ. Geol., 58(8):1246–1266, 1963.

References II

- T. Mitchell, M. Morris, and D. Ylvisaker. Asymptotically optimum experimental designs for prediction of deterministic functions given derivative information. J. Stat. Plann. Infer., 41(3):377–389, 1994.
- M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction. *Technometrics*, 35(3):243–255, 1993.
- H. Qu and M. C. Fu. Gradient extrapolated stochastic kriging. ACM Trans. Model. Comput. Simul., 24(4):23:1–23:25, 2014.
- J. Sacks, S. B. Schiller, and W. J. Welch. Designs for computer experiments. *Technometrics*, 31(1):41–47, 1989.
- L. Sun, L. J. Hong, and Z. Hu. Balancing exploitation and exploration in discrete optimization via simulation through a Gaussian process-based search. Oper. Res., 62(6):1416–1438, 2014.
- F. Yang, B. Ankenman, and B. L. Nelson. Efficient generation of cycle time-throughput curves through simulation and metamodeling. *Naval Res. Logist.*, 54(1):78–93, 2007.