CSCI 246 Problem 1-1

Collaborators: none

Section 9.2, Problem 17

- a. Let n_i be the number integers from 1000 to 9999. The first digit has nine options (integers 1 through 9), and the remaining three have ten options (integers 0 through 9). $n_i = 9 * 10 * 10 * 10 * 10 * 9000$
- b. Let n_o be the number of integers from 1000 to 9999 that are odd. The first digit has nine options (integers 1 through 9) and the middle two have ten options (integers 0 through 9). The final digit must be in the set $A = \{1, 3, 5, 7, 9\}$ to make the integer even, the size of A is 5, therefore, the last digit has 5 options. $n_o = 9 * 10 * 10 * 5 = 4500$
- c. Let n_d be the number of integers from 1000 to 9999 that are distinct. The first digit has nine options (integers 1 through 9) and the second digit also has nine options (integers 0 through 9 excluding the first choice). Each subsequent digit has one less option than the digit before it. $n_d = 9 * 9 * (9-1) * (9-2) = 9 * 9 * 8 * 7 = 4536$
- d. Let n_b be the number of integers from 1000 to 9999 that are both odd and distinct. To be odd, the final digit of a number must be odd. Let $A = \{1, 3, 5, 7, 9\}$ be the set of odd digits. We will now find the amount of distinct 4-digit numbers that can be created given we have selected a final digit. Given an arbitrary final digit in the set A, there are 8 options for the first digit (integers 1-9 excluding final digit), the second digit also has 8 options (integers 0-9 excluding the first digit and the final digit), and the third digit has 7 options (integers 0-9 excluding the first and second digits as well as the final digit). Because an arbitrary final digit was chosen, this product can be multiplied by the magnitude of A to find n_b . $n_b = 8 * 8 * 7 * |A| = 8 * 8 * 7 * 5 = 2240$.
- e. $P(A \text{ random 4-digit integer has distinct digits}) = \frac{\text{number of 4-digit integers with distinct digits}}{\text{number of 4 digit integers}} = \frac{4536}{9000} = \frac{0.504}{P(A \text{ random 4-digit integer has distinct digits and is odd})} = \frac{\text{number of odd 4-digit integers with distinct digits}}{\text{number of 4 digit integers}} = \frac{2240}{9000} = 0.2488$

Nathan Stouffer		December 4, 2018
CSCI 246 Problem 1-2		
Collaborators: none		