2. laboratorijska vježba

Multivarijatna analiza podataka

Ivan Klabucar

ak. god. 2021/2022

1. Uvod i upute za predaju

Cilj ove laboratorijske vježbe je primijeniti osnovne koncepte multivarijatne analize podataka, istražiti podatke te ispitati hipoteze. Preduvjet za rješavanje vježbe je osnovno znanje programskog jezika R i rad sR Markdown dokumentima. Sama vježba je koncipirana kao projekt u kojem istražujete i eksperimentirate koristeći dane podatke - ne postoji nužno samo jedan točan način rješavanja svakog podzadatka.

Rješavanje vježbe svodi se na čitanje uputa u tekstu ovog dokumenta, nadopunjavanje blokova kôda (možete dodavati i dodatne blokove kôda ukoliko je potrebno) i ispisivanje rezultata (u vidu ispisa iz funkcija, tablica i grafova). Vježbu radite samostalno, a svoje rješenje branite na terminima koji su vam dodijeljeni u kalendaru. Pritom morate razumjeti teorijske osnove u okviru onoga što je obrađeno na predavanjima i morate pokazati da razumijete sav kôd koji ste napisali.

Vaše rješenje potrebno je predati u sustav *Moodle* u obliku dvije datoteke:

- 1. Ovaj .Rmd dokument s Vašim rješenjem (naziva IME PREZIME JMBAG.rmd),
- 2. PDF ili HTML dokument kao izvještaj generiran iz vašeg .Rmd rješenja (također naziva IME PREZIME JMBAG).

Rok za predaju je 15. svibnja 2022. u 23:59h. Jedan od uvjeta za prolaz predmeta je minimalno ostvarenih 50% bodova na svim laboratorijskim vježbama. Nadoknade laboratorijskih vježbi neće biti organizirane. Za sva dodatna pitanja svakako se javite na email adresu predmeta: map@fer.hr.

2. Podatkovni skup

U laboratorijskoj vježbi razmatra se dinamika cijena vrijednosnica na financijskim tržištima. Dane su povijesne tjedne cijene ETF-ova (eng. exchange traded fund) koji prate određene dioničke, obvezničke ili druge indekse. Konkretno, radi se o sljedećim fondovima:

- AGG (iShares Core U.S. Aggregate Bond ETF) obveznice s američkog tržišta,
- IEF (iShares 7-10 Year Treasury Bond ETF) srednjeročne državne obveznice,
- LQD (iShares iBoxx \$ Investment Grade Corporate Bond ETF) korporativne obveznice,
- SHY (iShares 1-3 Year Treasury Bond ETF) kratkoročne državne obveznice,
- TIP (iShares TIPS Bond ETF) državne obveznice zaštićene od inflacije,
- TLT (iShares 20+ Year Treasury Bond ETF) dugoročne državne obveznice,
- DBC (Invesco DB Commodity Index Tracking Fund) sirovine i roba,
- GLD (SPDR Gold Trust) zlato,
- USO (United States Oil Fund) nafta,
- IJH (iShares Core S&P Mid-Cap ETF) dionice tvrtki s američkog tržišta,
- IWM (iShares Russell 2000 ETF) dionice američkih tvrtki s malim kapitalom,
- SPY (SPDR S&P 500 ETF Trust) dionice tvrtki s američkog tržišta,
- VTV (Vanguard Value ETF) dionice tvrtki s američkog tržišta,

- XLB (Materials Select Sector SPDR Fund) dionice tvrtki za materijale,
- XLE (Energy Select Sector SPDR Fund) dionice tvrtki energetskog sektora,
- XLF (Financial Select Sector SPDR Fund) dionice tvrtki financijskog sektora,
- XLI (Industrial Select Sector SPDR Fund) dionice tvrtki industrijskog sektora,
- XLK (Technology Select Sector SPDR Fund) dionice tvrtki iz tehnološkog sektora,
- XLP (Consumer Staples Select Sector SPDR Fund) dionice tvrki za necikličku potrošačku robu,
- XLU (Utilities Select Sector SPDR Fund) dionice tvrtki komunalnih djelatnosti,
- XLV (Health Care Select Sector SPDR Fund) dionice tvrtki iz zdravstvenog sektora,
- XLY (Consumer Discretionary Select Sector SPDR Fund) dionice tvrtki za cikličku potrošačku robu,
- IYR (iShares U.S. Real Estate ETF) dionice tvrtki iz područja nekretnina,
- VNQ (Vanguard Real Estate Index Fund) dionice tvrtki iz područja nekretnina.

Pri modeliranju zajedničkog kretanja i rizika vrijednosnica, najčešće se koriste povrati: $R(t) = \frac{S(t) - S(t-1)}{S(t-1)}$, gdje je S(t) cijena vrijednosnice u tjednu t.

2.1. Učitavanje podataka i korelacijska analiza

Podaci se nalaze u datoteci "ETFprices.csv". Učitajte ih, provjerite ispravnost, izračunajte tjedne povrate te vizualizirajte matricu korelacije povrata - razmislite o grupama i korelacijskim strukturama koje u njoj vidite. U ostatku laboratorijske vježbe također koristite povrate, a ne cijene.

```
ETF.prices = read.csv(file = 'ETFprices.csv')
ETF.prices$Time = as.Date(ETF.prices$Time, "%d-%b-%Y")
summary(ETF.prices)
```

```
##
         Time
                                 AGG
                                                    IEF
                                                                      LQD
    {\tt Min.}
##
            :2006-04-09
                                   : 64.93
                                                      : 56.54
                                                                         : 54.42
                           Min.
                                              Min.
                                                                 Min.
    1st Qu.:2009-06-17
                           1st Qu.: 78.45
                                              1st Qu.: 74.56
                                                                 1st Qu.: 69.36
##
    Median :2012-08-26
                           Median: 94.34
                                              Median: 92.17
                                                                 Median: 94.16
                                   : 90.16
                                                      : 86.75
##
    Mean
            :2012-08-26
                           Mean
                                              Mean
                                                                 Mean
                                                                         : 90.01
##
    3rd Qu.:2015-11-04
                           3rd Qu.:101.10
                                              3rd Qu.:100.00
                                                                 3rd Qu.:105.13
##
    Max.
            :2019-01-13
                           Max.
                                   :106.69
                                              Max.
                                                      :108.30
                                                                 Max.
                                                                         :117.26
         SHY
                                                                 DBC
##
                           TIP
                                              TLT
##
    Min.
            :65.21
                     Min.
                              : 68.62
                                        Min.
                                                : 54.14
                                                           Min.
                                                                   :11.92
##
    1st Qu.:77.13
                      1st Qu.: 83.69
                                        1st Qu.: 71.00
                                                           1st Qu.:17.04
##
    Median :80.57
                     Median :103.62
                                        Median: 96.30
                                                           Median :23.43
##
    Mean
            :78.57
                     Mean
                              : 96.78
                                        Mean
                                                : 92.61
                                                           Mean
                                                                   :22.68
##
    3rd Qu.:81.80
                     3rd Qu.:108.71
                                        3rd Qu.:113.83
                                                           3rd Qu.:26.30
##
    Max.
            :83.62
                     Max.
                              :112.45
                                        Max.
                                                :134.72
                                                           Max.
                                                                   :45.11
                            USO
##
         GLD
                                               IJH
                                                                  IWM
##
    Min.
            : 56.99
                       Min.
                               :
                                 8.33
                                         Min.
                                                 : 35.47
                                                            Min.
                                                                    : 30.54
##
    1st Qu.: 93.73
                       1st Qu.: 14.71
                                          1st Qu.: 69.84
                                                            1st Qu.: 62.51
##
    Median :117.84
                       Median: 34.58
                                         Median: 89.81
                                                            Median: 74.99
            :114.75
                               : 34.99
                                                 :107.04
                                                                    : 89.68
##
    Mean
                       Mean
                                         Mean
                                                            Mean
    3rd Qu.:127.50
                       3rd Qu.: 39.56
                                          3rd Qu.:139.99
                                                            3rd Qu.:112.25
##
##
    Max.
            :183.24
                       Max.
                               :117.39
                                         Max.
                                                 :203.47
                                                            Max.
                                                                    :171.99
##
         SPY
                           VTV
                                              XLB
                                                                XLE
##
    Min.
            : 56.2
                     Min.
                              : 22.35
                                        Min.
                                                :14.74
                                                          Min.
                                                                  :30.90
##
    1st Qu.:105.1
                      1st Qu.: 43.96
                                        1st Qu.:28.78
                                                          1st Qu.:50.52
                     Median : 52.52
    Median :123.8
                                        Median :33.75
                                                          Median :61.05
##
##
    Mean
            :151.0
                     Mean
                             : 61.32
                                        Mean
                                                :36.80
                                                          Mean
                                                                  :59.53
##
    3rd Qu.:194.2
                     3rd Qu.: 77.25
                                        3rd Qu.:45.13
                                                          3rd Qu.:67.59
##
    Max.
            :290.3
                     Max.
                              :111.68
                                        Max.
                                                :62.84
                                                          Max.
                                                                  :88.75
##
         XLF
                            XLI
                                              XLK
                                                                XLP
```

```
Min. : 3.200
                            :12.55
                                             :11.56
                                                      Min.
                                                             :14.99
                     Min.
                                      Min.
   1st Qu.: 8.322
##
                     1st Qu.:27.42
                                      1st Qu.:19.73
                                                      1st Qu.:20.74
   Median :12.913
                                                      Median :29.86
                     Median :32.44
                                      Median :26.26
          :13.782
                            :40.52
                                             :32.07
##
   Mean
                     Mean
                                     Mean
                                                      Mean
                                                              :33.05
##
    3rd Qu.:16.881
                     3rd Qu.:51.81
                                      3rd Qu.:40.36
                                                      3rd Qu.:45.49
           :29.614
                                             :75.02
##
    Max.
                     Max.
                            :79.51
                                     Max.
                                                      Max.
                                                              :57.01
##
         XLU
                         XLV
                                          XLY
                                                           IYR
##
    Min.
           :15.88
                    Min.
                            :18.74
                                     Min.
                                            : 14.06
                                                      Min.
                                                              :14.88
##
    1st Qu.:23.73
                    1st Qu.:27.15
                                     1st Qu.: 29.06
                                                      1st Qu.:41.81
##
    Median :28.92
                    Median :35.05
                                     Median : 41.46
                                                      Median :51.47
   Mean
           :32.57
                    Mean
                           :46.27
                                     Mean
                                           : 52.11
                                                      Mean
                                                             :53.08
##
    3rd Qu.:39.97
                    3rd Qu.:67.28
                                     3rd Qu.: 74.06
                                                      3rd Qu.:66.79
                                     Max.
##
           :56.34
                    Max.
                           :95.44
                                           :116.76
                                                      Max.
                                                             :81.89
    Max.
##
         VNQ
##
    Min.
           :13.86
##
    1st Qu.:39.18
##
  Median :49.90
##
           :52.62
  Mean
##
    3rd Qu.:69.29
  {\tt Max.}
           :82.43
head(ETF.prices)
                                        LQD
                                                                             DBC
##
           Time
                     AGG
                              IEF
                                                 SHY
                                                          TTP
                                                                    TI.T
## 1 2006-04-09 65.09827 56.76505 60.70945 65.21442 68.62030 55.09219 23.18837
## 2 2006-04-16 65.11148 57.07544 60.98924 65.30439 69.29211 55.32708 24.19736
## 3 2006-04-23 65.32363 57.01193 61.00089 65.36169 69.18821 54.90950 23.71601
## 4 2006-04-30 65.17391 56.81649 60.83233 65.35593 69.04548 54.75883 23.79006
## 5 2006-05-07 64.93439 56.54039 60.71520 65.35593 69.11513 54.13662 24.85459
## 6 2006-05-14 65.36685 57.07851 61.15432 65.46262 69.48401 55.30253 23.53087
       GLD
             USO
                                                   VTV
##
                      IJH
                                IWM
                                          SPY
                                                            XLB
                                                                      XLE
                                                                               XI.F
## 1 59.50 68.82 65.63398 62.55068 99.18915 42.67178 24.63047 42.91956 15.42653
## 2 63.20 72.81 67.69395 64.32922 101.06951 43.65933 25.71436 45.94183 15.73049
## 3 65.09 69.62 67.35899 63.92653 101.31612 43.97420 25.04160 43.94236 16.12946
## 4 67.99 68.00 68.38899 65.03390 102.12528 44.59678 25.89375 45.26510 16.22445
## 5 71.12 69.11 66.19505 61.66143 99.59763 43.43749 25.25837 43.63475 15.76849
## 6 65.58 65.57 64.09319 60.31911 97.94840 42.66463 24.10720 41.54298 15.48352
##
          XLI
                   XLK
                            XLP
                                      XLU
                                               XLV
                                                        XLY
                                                                  IYR
                                                                           VNQ
## 1 25.99025 18.21236 16.62211 18.97177 24.89937 27.91007 40.64932 36.12251
## 2 26.78085 18.17940 16.73646 19.60541 25.01174 27.96821 42.06361 37.39742
## 3 26.50452 18.00634 17.02945 19.64933 24.87528 28.31710 41.89862 37.17645
## 4 27.38724 18.06403 17.19381 20.18887 24.70672 28.74904 42.19325 37.41442
## 5 26.81155 17.28938 16.91511 19.61169 24.39367 28.31710 40.82611 36.26982
## 6 26.12841 16.97623 16.87938 19.50503 24.30538 27.97652 40.23091 35.74854
n = nrow(ETF.prices)
p = ncol(ETF.prices)
ETF_returns = ((data.matrix(ETF.prices[2:n,2:p]) - data.matrix(ETF.prices[1:(n-1),2:p]))/data.matrix(ET
ETF_returns = cbind(ETF.prices$Time[2:n],as.data.frame(ETF_returns))
names(ETF_returns)[1] <- "Time"</pre>
head(ETF returns)
##
                          AGG
                                        IEF
                                                      LQD
                                                                     SHY
           Time
```

```
## 2 2006-04-16 0.0002029854 0.005468119 0.0046086562 1.379541e-03
## 3 2006-04-23 0.0032582579 -0.001112755 0.0001910173 8.773836e-04
## 4 2006-04-30 -0.0022919577 -0.003428160 -0.0027633038 -8.812502e-05
## 5 2006-05-07 -0.0036751668 -0.004859505 -0.0019255222
                                                     0.000000e+00
## 6 2006-05-14 0.0066600305 0.009517515 0.0072324729
                                                     1.632430e-03
## 7 2006-05-21 0.0018327944 0.001736643 -0.0002868154
                                                    1.629770e-03
            TIP
                        TLT
                                   DBC
                                               GLD
                                                           USO
## 2
     0.009790208 0.004263435
                             0.04351289
                                        0.062184891
                                                    0.05797730 0.031385785
## 3 -0.001499406 -0.007547480 -0.01989275 0.029904984 -0.04381260 -0.004948152
## 4 -0.002062938 -0.002743879
                             0.001008842 -0.011362752
                            0.04474696 0.046036257 0.01632354 -0.032080195
     0.002705270 -0.002605885
                             0.02478361 -0.007319365
                                                    0.03324691 0.001959927
##
             IWM
                        SPY
                                    VTV
                                                XLB
                                                           XLE
                                                                       XLF
     0.028433553
                 0.018957346
                             0.023142976
                                        0.044006110
                                                    0.07041725
## 2
                                                                0.019704242
## 3 -0.006259722
                 0.002439954
                             0.007212043 -0.026162816 -0.04352184
                                                                0.025362649
## 4 0.017322447 0.007986479 0.014157800 0.034029699 0.03010175
                                                                0.005889347
## 5 -0.051857111 -0.024750474 -0.025994947 -0.024538233 -0.03601792 -0.028103259
## 6 -0.021769201 -0.016558939 -0.017792487 -0.045575589 -0.04793810 -0.018072367
     0.010429283
##
            XLI
                       XLK
                                   XLP
                                               XLU
                                                           XT.V
                                                                        XI.Y
## 2 0.03041930 -0.001809924
                            0.006879332
                                        0.033399474
                                                    0.004513127
                                                                0.0020832268
## 3 -0.01031827 -0.009519512 0.017506275 0.002239841 -0.005455758
                                                                0.0124745559
## 4 0.03330440 0.003203872 0.009651340 0.027458601 -0.006776284 0.0152536095
## 5 -0.02102023 -0.042883509 -0.016209326 -0.028589021 -0.012670681 -0.0150244326
## 6 -0.02547943 -0.018112389 -0.002112136 -0.005438440 -0.003619504 -0.0120273611
    0.00293776
                0.007767273 \quad 0.019898066 \quad 0.017369210 \quad 0.008916627 \quad -0.0002970705
            IYR
                        VNQ
## 2
    0.034792391
                 0.035294060
## 3 -0.003922369 -0.005908803
## 4 0.007032022 0.006401258
## 5 -0.032401913 -0.030592375
## 6 -0.014578809 -0.014372443
## 7 0.016552173 0.018544674
R = cor(ETF_returns[,2:p])
ggcorr(ETF_returns, label = TRUE, label_size=3, cex=3)
```

Warning in ggcorr(ETF_returns, label = TRUE, label_size = 3, cex = 3): data in
column(s) 'Time' are not numeric and were ignored

3. Analiza glavnih ati glavne komponente koje

komponenti Cilj ovog zadatka je analizirati kretanje danih ETF-ova i izračunati glavne komponente koje objašnjavaju njihovu dinamiku.

3.1. Glavne komponente

Izračunajte glavne komponente matrice korelacije i izračunajte koliki udio varijance objašnjavaju. Odredite broj glavnih komponenti koje ćete zadržati u analizi. Grafički prikažite i usporedite koeficijente prvih nekoliko komponenti.

```
ev R = eigen(R)
lambda_R = ev_R$values
e_R = ev_R$vectors
lambda_R
##
    [1] 12.267970767
                      4.080795585
                                                               0.732784909
                                    2.110540958
                                                 1.031704443
##
    [6]
         0.659925665
                      0.500415286
                                    0.398476759
                                                 0.359793030
                                                               0.296415864
## [11]
         0.291520255
                      0.243574145
                                    0.231955205
                                                 0.186011616
                                                               0.121919175
## [16]
         0.115569222
                      0.099948510
                                    0.095157238
                                                 0.075167525
                                                               0.051743893
## [21]
         0.021456721
                      0.018277559
                                    0.005052089
                                                 0.003823582
sum(lambda_R)
## [1] 24
tr(R)
## [1] 24
```

```
sum(lambda_R[1:3])/sum(lambda_R)

## [1] 0.7691378

sum(lambda_R[1:4])/sum(lambda_R)

## [1] 0.8121255

#scree plot za glavne komponente kovarijance
```

plot(lambda_R, type = "b", cex.lab=0.75, cex.main=0.75, cex.axis=0.75, xlab="i", ylab=expression(lambda

Scree plot svojstvenih vrijednosti korelacijske matrice

grid()

midpts <- barplot(e_R[,1], col="#69b3a2", main="1. svojstveni vektor korelacijske matrice") # assign re axis(1, at = midpts, labels=colnames(ETF_returns[,2:p]), cex.axis=0.47) # shrinks axis labels

1. svojstveni vektor korelacijske matrice

midpts <- barplot(e_R[,2], col="#69b3a2", main="2. svojstveni vektor korelacijske matrice") # assign re axis(1, at = midpts, labels=colnames(ETF_returns[,2:p]), cex.axis=0.47) # shrinks axis labels

2. svojstveni vektor korelacijske matrice

midpts <- barplot(e_R[,3], col="#69b3a2", main="3. svojstveni vektor korelacijske matrice") # assign re axis(1, at = midpts, labels=colnames(ETF_returns[,2:p]), cex.axis=0.47) # shrinks axis labels

3. svojstveni vektor korelacijske matrice

midpts <- barplot(e_R[,4], col="#69b3a2", main="4. svojstveni vektor korelacijske matrice") # assign re axis(1, at = midpts, labels=colnames(ETF_returns[,2:p]), cex.axis=0.47) # shrinks axis labels

4. svojstveni vektor korelacijske matrice

Prikažite graf raspršenja prve dvije glavne komponente i proučite možete li primijetiti neke grupe fondova.

```
Y = R%*%e_R
plot(Y[,1],Y[,2], pch = 20, main="graf raspršenja fondova po prve dvije glavne komponente", cex=0.7, ce
```

- ## Warning in title(...): conversion failure on 'graf raspršenja fondova po prve
 ## dvije glavne komponente' in 'mbcsToSbcs': dot substituted for <c5>
- ## Warning in title(...): conversion failure on 'graf raspr \check{s} enja fondova po prve

```
## dvije glavne komponente' in 'mbcsToSbcs': dot substituted for <a1>
grid()
#moguce je dodati i tekst - pritom treba pripaziti na citljivost
text(Y[,1]+0.06,Y[,2]-0.04, colnames(ETF_returns[,2:p]),cex=0.4)
```

graf raspr..enja fondova po prve dvije glavne komponente

3.2. Svojstveni portfelji

U primjeni PCA i svojstvenoj dekompoziciji kovarijance u financijama, svojstveni vektori se često zovu i tzv. svojstveni portfelji. Općenito, portfelj je vektor $w = [w_1, ..., w_N]$ u kojem svaki element predstavlja težinu ili udio kapitala u određenoj vrijednosnici. Često je dobro pomnožiti njihove težine s predznakom njihove sume - na taj način zapravo samo "okrećemo" predznak svojstvenog vektora tako da mu je suma pozitivna (konačni PCA rastav je i dalje isti ako svojstveni vektor pomnožimo s -1). Također, dobro je i skalirati svojstvene portfelje sa sumom njihovih apsolutnih vrijednosti: $\tilde{w}_i = \frac{w_i}{\sum_{j}^{N} |w_j|}$. Na taj način se

osigurava da visoke magnitude pojedinih elemenata ne uzrokuju velike razlike u volatilnostima svojstvenih portfelja. Ukoliko znamo povrate $R \in \mathbb{R}^{T \times N}$ (gdje je $R_i \in \mathbb{R}^T$ vektor povrata za vrijednosnicu i) za N vrijednosnica u nekom vremenskom periodu od T dana, povrate portfelja w u tom istom periodu možemo izračunati kao: $R_p = \sum R_i w_i = R \cdot w$. Izračunajte skalirane svojstvene portfelje \tilde{w} koji proizlaze iz prve dvije glavne komponente. Za ta dva svojstvena portfelja izračunajte povijesne povrate kroz razmatrani period. Grafički prikažite vremensko kretanje njihovih vrijednosti tako da njihove povrate "vratite" natrag u cijene, s tim da početna cijena bude jednaka za oba portfelja, npr. $V_0 = 100$. Vrijednost portfelja u trenutku t možemo izračunati po formuli: $V_t = V_{t-1} \cdot (1 + R_t)$.

Vaš kôd ovdje

4. Faktorska analiza

4.1. Metode procjena koeficijenata modela

Na danim podacima odredite broj faktora te procijenite faktorski model pomoću metode glavnih komponenti i metode najveće izglednosti. Usporedite procjene ove dvije metode. Koja Vam se čini bolja? Što možete

zaključiti iz vrijednosti faktora? Pronađite procjenu vrijednosti faktora koja daje najbolju interpretabilnost.

Vaš kôd ovdje

4.2. Specifične varijance faktora

Izračunajte specifične varijance faktora za model s dva faktora i model s tri faktora. Pomoću stupčastog dijagrama prikažite i usporedite dobivene vrijednosti.

Vaš kôd ovdje

5. Diskriminantna analiza

Financijska tržišta su od listopada 2007. do srpnja 2009. godine bila u krizi. U datoteci "crisis.csv" za svaki tjedan iz prethodno učitanih povijesnih tjednih cijena možete pronaći je li tržište tada bilo u krizi ili ne - 1 predstavlja krizu, 0 predstavlja period bez krize. Učitajte nove podatke te ih spojite s tablicom povrata.

Vaš kôd ovdje

5.1. Diskriminantna analiza pomoću povrata

Provedite diskriminantnu analizu koja tjedne odvaja na krizne i one bez krize pomoću povrata fondova. Pomoću stupčastog dijagrama prikažite vektore srednjih vrijednosti u krizi i izvan nje. Također, na isti način prikažite korelaciju fonda AGG (Aggregate Bond ETF-a) s ostalim fondovima u krizi i izvan krize. Usporedite rezultate linearne diskriminantne analize (funkcija u R-u: 1da) i kvadratne diskriminantne analize (funkcija u R-u: qda) pomoću tablica konfuzije i mjere APER (eng. apparent error rate). Razmislite o tome koji je razlog razlike u rezultatima ove dvije metode.

Vaš kôd ovdje

5.2. Diskriminantna analiza pomoću glavnih komponenti

Provedite diskriminantnu analizu kao u prošlom podzadatku, no ovaj put koristeći glavne komponente izračunate u 3. zadatku kao varijable. Provjerite i usporedite uspješnost klasifikacije koristeći tablice konfuzije i APER za različit broj komponenti.

Vaš kôd ovdje