		Question A1	N.
		Page 1/3	Marks
a)	The human stomach secretes about 2 dm³ of gastric juice every day. If the stomach does not contain any food the mass percentage of hydrochloric acid, HCl(aq), in the gastric juice is about 0.5 to 1%. Many people suffer occasionally from heartburn. In this condition, a reflux of gastric juice into the oesophagus occurs.		
	i.	Give the definition of an acid according to Brønsted.	1 mark
	Sodiu	m hydrogen carbonate, NaHCO ₃ (s), is used as a traditional household dy.	
	ii.	Give the equation for the reaction between sodium hydrogen carbonate and hydrochloric acid.	1 mark
	Sodiu	ım hydrogen carbonate, NaHCO₃(aq), is an amphoteric substance.	
	iii.	Explain the term amphoteric using relevant chemical equations involving the hydrogen carbonate ion, HCO ₃ (aq).	3 mark
	Common antacids that are used to treat heartburn contain sparingly soluble hydroxides, such as aluminium hydroxide, $Al(OH)_3(s)$, and magnesium hydroxide, $Mg(OH)_2(s)$.		
	iv.	Give the equation for the reaction between aluminium hydroxide and hydrochloric acid.	2 mark
	v.	Identify the two conjugate acid-base pairs involved in reaction a) iv	2 mark
	vi.	Explain an advantage of these common antacids in the treatment of heartburn compared to the traditionally used sodium hydrogen carbonate.	1 mark

Page 2/3 Marks

b) Assuming that the only acid in gastric juice is hydrochloric acid, a sample of 5.00 cm³ was diluted with distilled water and analysed to determine the concentration of hydrochloric acid. This sample was titrated using a 1.00 x 10⁻² mol dm⁻³ solution of sodium hydroxide, NaOH(aq).

The titration curve below shows the variation in pH as an aqueous solution of sodium hydroxide was added progressively.

volume, in cm3, of NaOH(aq) added

- Using the titration curve determine the volume of sodium hydroxide solution added to reach the equivalence point.
- 1 mark
- Using the titration curve, determine the pH at the equivalence point.

1 mark

Cresol red is an indicator with two pH ranges of colour change:

Cresol red colour change	pH range of colour change
from orange red to yellow	0.2 - 1.8
from yellow to red	7.0 - 8.8

iii. Explain why cresol red can be used for this titration referring to what will be observed during the titration.

2 marks

iv. Give the equation for the titration reaction.

1 mark

D 2/2	1 12			
Page 3/3	Marks			
Using the equivalence point show, by calculation, that the molar concentration of hydrochloric acid in the undiluted gastric juice is 1.80×10^{-1} mol dm ⁻³ .	2 marks			
Calculate the concentration of hydrochloric acid in mass percentage assuming that the density of the undiluted sample is 1.00 g cm ⁻³ .	2 marks			
The pathogenic bacterium <i>Helicobacter pylori</i> is able to survive in the human stomach, due to the production of ammonia, NH₃(aq).				
Give the equation for the reaction of ammonia with water.	1 mark			
Write the expression for the base ionisation constant, K_{b} , for ammonia.	1 mark			
Ammonia is a weak base.				
Calculate the pH of a 1.00 x 10^{-1} mol dm ⁻³ aqueous solution of ammonia at 37 °C.	3 marks			
Explain why the production of ammonia helps Helicobacter pylori to survive in the stomach.	1 mark			
$K_b(NH_3(aq)) = 1.9 \times 10^{-5} \text{ at } 37^{\circ}\text{C}, pK_w(H_2O(I)) = 13.6 \text{ at } 37^{\circ}\text{C}$				
	molar concentration of hydrochloric acid in the undiluted gastric juice is 1.80 x 10 ⁻¹ mol dm ⁻³ . Calculate the concentration of hydrochloric acid in mass percentage assuming that the density of the undiluted sample is 1.00 g cm ⁻³ . genic bacterium <i>Helicobacter pylori</i> is able to survive in the human lue to the production of ammonia, NH ₃ (aq). Give the equation for the reaction of ammonia with water. Write the expression for the base ionisation constant, K₀, for ammonia. s a weak base. Calculate the pH of a 1.00 x 10 ⁻¹ mol dm ⁻³ aqueous solution of ammonia at 37 °C. Explain why the production of ammonia helps <i>Helicobacter</i>			