Modeling Streaming Data for Processing with Apache Beam

GETTING STARTED WITH STREAM PROCESSING

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Batch data and bounded datasets

Streaming data for unbounded datasets and real-time processing

Micro-batch processing and continuous processing

Lambda and Kappa architectures

Challenges in real-time stream processing

Prerequisites and Course Outline

Prerequisites

No prior experience of working with Streaming Data required

Experience programming in Java

Apache Maven for dependency management

Course Outline

Getting Started with Stream Processing

Introducing Apache Beam for Stream Processing

Perform Windowing Operations

Batch Processing and Stream Processing

E-commerce site

How are they distributed across the country?

Are there routes that can be clubbed together?

How do courier companies compare?

Generate periodic reports to improve delivery metrics

Collect

Source and destination of packages

Courier company details

Extract

Trends in the form of visuals

Actionable insights

Analyze

Run jobs on different slices Courier, metro areas, rural areas, warehouses

Bounded datasets: Finite unchanging datasets to analyze

- week, month, year

Batch processing: Runs for a specific time, completes, releases resources

- minutes, hours, days

Processing Data

Day 1

Day 1

Input Data

Processing Data

Day 1 Day 2

Day 1

Input Data

Processing Data

Input Data

E-commerce site

Real-time location of delivery agents

Real-time order status updates

Real-time inventory tracking

Continuously monitor data to ensure deliveries are flowing smoothly

Monitor

Constantly listen for updates
GPS coordinates, status
information, inventory changes

Extract

Plot real-time graphs
Track on a map

Process

As entities flow in process them in micro-batches

Whole stream, predetermined window

Unbounded datasets: Infinite datasets which are added to continuously

- streaming data

Continuous processing: Runs constantly as long as data is received

- stream processing

Bounded datasets are processed in batches

Unbounded datasets are processed as streams

Processing Data

Input Data

Processing Data

Input Data

Batch vs. Stream Processing

Batch

Bounded, finite datasets

Slow pipeline from data ingestion to analysis

Latency in minutes, hours considered acceptable

Periodic updates as jobs complete

Stream

Unbounded, infinite datasets

Processing immediate, as data is received

Latency usually must be in seconds, milliseconds

Continuous updates as jobs run constantly

Batch vs. Stream Processing

Batch

Order of data received unimportant

Single global state of the world at any point in time

Processing code "knows" all data

Stream

Order important, out of order arrival tracked

No global state, only history of events received

Processing code does not know what lies ahead

Batch vs. Stream Processing

Batch

Payroll processing

No latency threshold

All employee data available before processing begins

Stream

Fraud detection

Latency important

New data keeps coming - need to detect fraud quickly without slowing down legitimate transactions

Data is received as a stream

- Log messages
- Tweets
- Climate sensor data

- Filter error messages
- Find references to the latest movies
- Track weather patterns

- Trigger an alert
- Show trending graphs
- Warn of sudden squalls

Stream Processing

Streaming data

Stream Processing

Traditional Systems

Reliable storage as the source of truth

Stream-first Architecture

Stream

Stream-first Architecture

Stream

Message Transport

Buffer for event data

Performant and persistent

Decoupling multiple sources from processing

Kafka, MapR streams

Stream-first Architecture

Files

Databases

Message transport

Stream processing

Stream Processing

High throughput, low latency

Fault tolerance with low overhead

Manage out of order events

Easy to use, maintainable

Replay streams

Stream Processing Model

Stream Processing Model

Transformations

Transformations

A directed-acyclic graph

Stream Processing Models

Stream Processing Models

Stream Processing Models

Stream processing does not necessarily mean continuous real-time processing

Run transformations on smaller accumulations of data

Collect say less than one minute of data

Process this micro-batch in near real-time

A stream of integers

Grouped into batches

If the batches are small enough...

Close to real-time processing

Exactly once semantics

Replay micro-batches

Latency-throughput trade-off based on batch sizes

Batch Processing for Streams

Latency, freshness of data are not considerations

Complex analytical operations

Joins on relational data

 Data might be in a data warehouse, need not be in an RDBMS

Continuous Stream Processing for Streams

Latency and freshness of data are most important considerations

Rate of arrival is high

 Latency in seconds/milliseconds only possible with continuous processing

Micro-batch Processing for Streams

Latency and freshness of data are important

but

Real-time processing is overkill

Rate of arrival is low/moderate

- Latency in seconds/milliseconds less important
- Acceptable latency possible with micro-batches

Stream Processing Architectures

Stream Processing Architectures

Distinct Batch Layer and Stream Layer

Unified Batch and Stream Layers

The difference between these architectures depend on how you treat batch as well as stream data

Lambda Architecture

Run a streaming system along with a batch system

Streaming systems gives you low-latency but approximate results

Batch system ensures correctness, with higher-latency

Lambda Architecture

Lambda Architecture

Hybrid approach to batch and near real-time processing

Why Lambda?

Frameworks make separate batch and stream architecture choices

Because stream-first architecture offer poor performance for pure batch data

Optimizations for batch data are boltedon, rather than built-in

Problems with Lambda Architectures

Batch and Stream layers perform the same computation, twice

- Batch computation is perfectly correct, but high latency
- Stream computation is low-latency, but often only approximately correct

Can lead to serious issues

- e.g. Training-serving skew in ML

Kappa architectures tightly integrate batch and streaming

No separate code

Batch code simply fed through the streaming layer

In theory, eliminate training-serving skew

In practice, fragile and can be needlessly complex

"Batch is a special case of stream"

Well-designed streaming systems offer a superset of batch functionality

Process batch and streaming data using the same code

Process batch and streaming data using the same code

Stream Processing APIs

Distinct Batch Layer and Stream Layer

Unified Batch and Stream Layers

Unified Batch and Stream APIs are becoming more popular - but a Unified API can still rely on any of the architectures under the hood

Challenges of Stream Processing

Challenges of Stream Processing

Latency bounds

Dealing with late, out-of-order data Guaranteeing reliability

- "Exactly-once, ordered processing"

Security

- Encryption
- Authentication
- MITM attacks

Challenges of Stream Processing

Dimensions of scaling

- Number of senders
- Number of receivers
- Number of messages
- Organizing messages (e.g. topics)
- Size of messages

Summary

Batch data and bounded datasets

Streaming data for unbounded datasets and real-time processing

Micro-batch processing and continuous processing

Lambda and Kappa architectures

Challenges in real-time stream processing

Up Next:

Introducing Apache Beam for Stream Processing