

Medium Access Control Sublayer Chapter 4

- Channel Allocation Problem
- Multiple Access Protocols
- Ethernet
- Wireless LANs
- Broadband Wireless
- Bluetooth
- ► RFID
- Data Link Layer Switching

The MAC Sublayer

Responsible for deciding who sends next on a multi-access link

An important part of the link layer, especially for LANs

Indirizzo univoco. Ad esempio le WLAN (Wireless LAN) sono dei canali di comunicazione broadca

Application

Transport

Network

Link

Physical

MAC is in here!

Channel Allocation Problem

For fixed channel and traffic from N users

- Divide up bandwidth using FTM, TDM, CDMA, etc.
- This is a static allocation, e.g., FM radio

This static allocation performs poorly for bursty traffic

Allocation to a user will sometimes go unused

Si può pensare, ad esempio, di utilizzare tecniche come FDM per ripartire i frame ai loro destinatari. Allora ad ogni utente alloco una frequenza specific

Channel Allocation Problem

Dynamic allocation gives the channel to a user when they need it.

Potentially N times as efficient for N users.

Schemes vary with assumptions:

ndependent ta	ıffic: L'arriv

Assumption	Implication		
Independent traffic	Often not a good model, but permits analysis		
Single channel	No external way to coordinate senders		
Observable collisions	Needed for reliability; mechanisms vary		
Continuous or slotted time	Slotting may improve performance		
Carrier sense	Can improve performance if available		

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Multiple Access Protocols

- ALOHA »
- CSMA (Carrier Sense Multiple Access) »
- Collision-free protocols »
- Limited-contention protocols »
- Wireless LAN protocols »

ALOHA (1)

frame sono inviati dagli utenti appena sono disponibili.Non previene collisioni e, in caso i frame sono danneggia

In pure ALOHA, users transmit frames whenever they have data; users retry after a random time for collisions

Efficient and low-delay under low load

ALOHA (2)

I frame generati dalla stazione si possono modellare come distribuzioni di Poisson.

Collisions happen when other users transmit during a vulnerable period that is twice the frame time

Synchronizing senders to slots can reduce collisions

ALOHA (3)

Analogo al Pure ALOHA ma divide il tempo in intervalli temporali discreti, chiamati slots, i quali corrist

Slotted ALOHA is twice as efficient as pure ALOHA

- Low load wastes slots, high loads causes collisions
- ► Efficiency up to 1/e (37%) for random traffic models

 ${\it CN5E} \ \ by \ {\it Tanenbaum} \ \ \& \ \ Wether all, \\ @\ \ {\it Pearson} \ \ \ {\it Education-Prentice} \ \ Hall \ and \ \ D. \ \ Wether all, \\ 2011$

CSMA (1)

La base è ALOHA. Prima di inviare i mittenti esamina il canale se altri stanno trasmettendo a loro volta.<mark>Se il canale è l</mark>

CSMA improves on ALOHA by sensing the channel!

User doesn't send if it senses someone else

Variations on what to do if the channel is busy:

- ▶ 1-persistent (greedy) sends as soon as idle
- Nonpersistent waits a random time then tries again
- p-persistent sends with probability p when idle

p-persistent: la stazione trasmette con una probabilità p quando lo trova idle.1-persistent: appena ha da inviare, il mittente esamina continuamente il cana

CSMA (2) - Persistence

Minore è la probabilità si trasmissione, maggiore è la probabilità di trasmissione corretta.

CSMA outperforms ALOHA, and being less persistent is better under high load

Bisogna essere sicuri di trasmettere quando il canale non è occupato. Però se due stazioni trasmettono contemporaneamente quando il canale è libero, i segnali

CSMA (3) - Collision Detection

CSMA/CD improvement is to detect/abort collisions

Reduced contention times improve performance

Fattore importante è sapere quanto tempo deve aspettare una stazione per capire se è avvenuta una collisione.Per fare ciò bisogna calcolare il tempo necessario

Collision-Free (1) - Bitmap

Collision-free protocols avoid collisions entirely

Senders must know when it is their turn to send

The basic bit-map protocol:

- Sender set a bit in contention slot if they have data
- Senders send in turn; everyone knows who has data

Il protocollo si divide in due momenti: di contesa e di trasmissione dei dati.Durante il periodo di contesa ogni stazione, al proprio turno invia un bit 1 se ha frame

Collision-Free (2) - Token Ring

Token sent round ring defines the sending order

- Station with token may send a frame before passing
- ▶ Idea can be used without ring too, e.g., token bus

Collision-Free (3) -

Binary countdown improves on the bitmap protocol

- Stations send their address in contention slot (log N bits instead of N bits)
- Medium ORs bits; stations give up when they send a "0" but see a "1"
- Station that sees its full address is next to send

Ogni stazione che vuole utilizzare il canale trasmette a tutti gli altri il suo indirizzo

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

In caso di carico leggero è preferibile tollerare collisioni (dato che saranno rare), piuttosto che aumentare il delay.In caso opposto di canalo molto carico, la conte

Limited-Contention Protoco

Idea is to divide stations into groups within which only a very small number are likely to want to send

Avoids wastage due to idle periods and collisions

Prendiamo per esempio il caso in cui ogni gruppo è composto da due stazioni e che ogni stazione ha probabilità p di acquisire il canale.La probabilità che e<mark>ntram</mark>

Limited Contention (2) -Adaptive Tree Walk Tree divides stations into groups (nodes) to poll

- Depth first search under nodes with poll collisions
- Start search at lower levels if >1 station expected

Wireless LAN Protocols (1)

Wireless has complications compared to wired.

Nodes may have different coverage regions

Leads to <u>hidden and exposed</u> terminals

Nodes can't detect collisions, i.e., sense while sending

Makes collisions expensive and to be avoided

Wireless LANs (2) - Hidden terminals

Hidden terminals are senders that cannot sense each other but nonetheless collide at intended receiver

- Want to prevent; loss of efficiency
- A and C are hidden terminals when sending to B

A e C non sono in range ognuno dall'altro e quindi se trasmettono contemporaneamente i pacchetti collideranno e saranno danneggiati. Il problema risiede soltar

CN5E by Tanenbaum & Wetherall, \odot Pearson Education-Prentice Hall and D. Wetherall, 2011

Wireless LANs (3) - Exposed terminals

Exposed terminals are senders who can sense each other but still transmit safely (to different receivers)

- Desirably concurrency; improves performance
- B → A and C → D are exposed terminals

Wireless LANs (4) - MACA

MACA protocol grants access for A to send to B:

- A sends RTS to B [left]; B replies with CTS [right]
- A can send with exposed but no hidden terminals

A sends RTS to B; C and E

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

hear and defer for CTS

B replies with CTS; D and E hear and defer for data

Ethernet

- Classic Ethernet » Singolo cavo coassiale che connette tutti i computer
- > Switched/Fast Ethernet » Cavi (con attacco RJ45) che connettono i computer a switch che gestriscono
- Gigabit/10 Gigabit Ethernet »

Standard di velocita della Switched ethernet.1 Gigabit corrisponde

Classic Ethernet (1) - Physical Laver

One shared coaxial cable to which all hosts attached

- Up to 10 Mbps, with <u>Manchester encoding</u>
- ► Hosts ran the classic Ethernet protocol for access

Dei dispositivi chiamati ripetitori (repeaters) rigenerano e ritrasmettono il segnale in entrambe le direzioni. Il software riconosce la rete come un

Il messaggio da trasmettere é diviso in frame, ognuno dei quali é composto come in figura. Ogni frame inizia il preambolo che é composto da 8 bytes ognuno dei quali ha pattern 10

Classic Ethernet (2) - MAC

Se il primo bit trasmesso dell'indirizzo del destinatario é 0, allora é un indirizzo ordinario, se é a 1 allora indirizza un gruppo, cosicché tutte le macchine facenti parte di quantificatione de la contractione de la cont

MAC protocol is 1-persistent CSMA/CD (earlier)

- Random delay (backoff) after collision is computed with BEB (Binary Exponential Backoff)
- Frame format is still used with modern Ethernet.

I primi tre byte sono identificativi del costruttore, mentre gli ultimi tre sono univoci per quell'singolo NIC (Network Interface Controller) assegnati dal costruttore stesso. Seguono due CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Un altro motivo per il limite massimo é dovuto al tempo di rilevamento di collisione. Come mostrato in figura, il tempo di rilevamento della collisione é al massimo 2tau, con tau ten

Classic Ethernet (3) - MAC

Se una stazione inoltra un messaggio breve, puó accadere che finisca di inoltrare prima che il segnale della collisione lo raggiunga, concludendo erroneamente d

Collisions can occur and take as long as 2τ to detect

- au is the time it takes to propagate over the Ethernet
- Leads to minimum packet size for reliable detection

Classic Ethernet (4) -

Perfection and senders even with many senders

Degrades for small frames (and long LANs)

10 Mbps Ethernet, 64 byte min. frame

CN5E by Tanenbaum & Wetherall, @ Pearson Education Pentile Stations trying to Send

Hubs: sono dispositivi che connettono gli input insieme, come se fossero una unica linea di trasmissione. Non incrementano la capacitá, perché, logicamente, equivale a un sino

Switched/Fast Ethernet (1)

Quando uno switch riceve un frame da una delle stazioni, connessa ad una delle sue porte, controlla l'indirizzo portato nel e lo inoltra solo nelle porte associate ai destinatari del

- Hubs wire all lines into a single CSMA/CD domain
- Switches isolate each port to a separate domain
 - Much greater throughput for multiple ports
 - ▶ No need for CSMA/CD with full-duplex lines

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Switched/Fast Ethernet (2)

Switches can be wired to computers, hubs and switches

- ► Hubs concentrate traffic from computers
- More on how to switch frames the in 4.8

Evoluzione della switched ethernet attualmente in uso.É retrocompatibile con le versioni precedenti di ethernet, poiché tutti utilizzano l

Switched/Fast Ethernet (3)

Fast Ethernet extended Ethernet from 10 to 100 Mbps

► Twisted pair (with Cat 5) dominated the market

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Gigabit / 10 Gigabit Ethernet

Switched Gigabit Ethernet is now the garden variety

With full-duplex lines between computers/switches

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Gigabit / 10 Gigabit Ethernet

(1) Gigabit Ethernet is commonly run over twisted pair

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

	Name	Cable	Max. segment	Advantages
	10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85 μ)
1	10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3 μ)
	10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5 μ)
Т	10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
	10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

. .

Wireless LANs

- 802.11 architecture/protocol stack »
- ▶ 802.11 physical layer »
- ▶ 802.11 MAC »
- ▶ 802.11 frames »

802.11 Architecture/Protocol

Stack (1)
Wireless clients associate to a wired AP (Access Point)

Called infrastructure mode; there is also ad-hoc mode with no AP, but that is rare.

802.11 Architecture/Protocol Stack (2) MAC is used across different physical layers

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

802.11 physical layer

- NICs are compatible with multiple physical layers
 - ► E.g., 802.11 a/b/g

Name	Technique	Max. Bit Rate
802.11b	Spread spectrum, 2.4 GHz	11 Mbps
802.11g	OFDM, 2.4 GHz	54 Mbps
802.11a	OFDM, 5 GHz	54 Mbps
802.11n	OFDM with MIMO, 2.4/5 GHz	600 Mbps

802.11 MAC (1)

- CSMA/CA inserts backoff slots to avoid collisions
- MAC uses ACKs/retransmissions for wireless errors

802.11 MAC (2)

Virtual channel sensing with the NAV and optional RTS/CTS (often not used) avoids hidden terminals

802.11 MAC (3)

- Different backoff slot times add quality of service
 - ▶ Short intervals give preferred access, e.g., control, VoIP
- ► MAC has other mechanisms too, e.g., power save

802.11 Frames

- Frames vary depending on their type (Frame control)
- Data frames have 3 addresses to pass via APs

Broadband Wireless

- ▶ 802.16 Architecture / Protocol Stack »
- ▶ 802.16 Physical Layer »
- ▶ 802.16 MAC »
- ▶ 802.16 Frames »

802.16 Architecture/Protocol Stack (1) Wireless clients connect to a wired basestation (like 3G)

802.16 Architecture/Protocol

Stack (2)
MAC is connection-oriented; IP is connectionless

Convergence sublayer maps between the two

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

802.16 Physical Layer

Based on OFDM; base station gives mobiles bursts (subcarrier/time frame slots) for uplink and downlink

802.16 MAC

Connection-oriented with base station in control

Clients request the bandwidth they need

Different kinds of service can be requested:

- Constant bit rate, e.g., uncompressed voice
- Real-time variable bit rate, e.g., video, Web
- Non-real-time variable bit rate, e.g., file download
- Best-effort for everything else

802.16 Frames

- Frames vary depending on their type
- Connection ID instead of source/dest addresses

(a) A generic frame. (b) A bandwidth request frame

Bluetooth

- Bluetooth Architecture »
- Bluetooth Applications / Protocol »
- Bluetooth Radio / Link Layers »
- Bluetooth Frames »

Bluetooth Architecture

Piconet master is connected to slave wireless devices

- Slaves may be asleep (parked) to save power
- ► Two piconets can be bridged into a scatternet

Bluetooth Applications /

Profiles give the set of protocols for a given application

25 profiles, including headset, intercom, streaming audio, remote control, personal area network, ...

Bluetooth Radio / Link Layers

Radio layer

Uses adaptive frequency hopping in 2.4 GHz band

Link layer

- ► TDM with timeslots for master and slaves
- Synchronous CO for periodic slots in each direction
- Asynchronous CL for packet-switched data
- Links undergo pairing (user confirms passkey/PIN) to authorize them before use

Bluetooth Frames

Time is slotted; enhanced data rates send faster but for the same time; addresses are only 3 bits for 8 devices

RFID

- ► Gen 2 Architecture »
- Gen 2 Physical Layer »
- ► Gen 2 Tag Identification Layer »
- ▶ Gen 2 Frames »

Gen 2 Architecture

Reader signal powers tags; tags reply with backscatter

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Gen 2 Physical Layer

- Reader uses duration of on period to send 0/1
- Tag backscatters reader signal in pulses to send 0/1

Gen 2 Tag Identification Layer

Reader sends query and sets slot structure

Tags reply (RN16) in a random slot; may collide

Reader asks one tag for its identifier (ACK)

Process continues until no tags are left

Gen 2 Frames

- Reader frames vary depending on type (Command)
 - Query shown below, has parameters and error detection
- Tag responses are simply data
 - ▶ Reader sets timing and knows the expected format

Query message

Data Link Layer Switching

- Uses of Bridges »
- Learning Bridges »
- Spanning Tree »
- Repeaters, hubs, bridges, .., routers, gateways »
- Virtual LANs »

USES OF Bridges ono dispositivi che uniscono due o piú reti. Nella ethernet classica si usavano i bridge, nella switch

- Common setup is a building with centralized wiring
 - Bridges (switches) are placed in or near wiring closets

l bridge accettano tutti i frame e in base all'indirizzo presente decidono se scartarlo (se non é indirizzato a una stazione connessa al bridge) o inoltrarlo in una p<mark>orta specifica.Ogn</mark>

Learning Bridges (1)

Questo algoritmo si chiama "backward learning". Attraverso l'indirizzo del mittente e la porta dalla quale hanno ricevuto il frame, riempiono la tabella. Ogni volta che viene ricevut

A bridge operates as a switched LAN (not a hub)

► Computers, bridges, and hubs connect to its ports

Ogni volta che un bridge riceve un frame controlla l'indirizzo e: - se é indirizzato alla porta dalla quale ha ricevuto il frame, allora lo scarta; - altrimeni se le porte da cui riceve e de

Learning Bridges (2)

Backward learning algorithm picks the output port:

- Associates source address on frame with input port
- Frame with destination address sent to learned port
- Unlearned destinations are sent to all other ports

Needs no configuration

- Forget unused addresses to allow changes
- Bandwidth efficient for two-way traffic

Learning Bridges (3)

Bridges extend the Link layer:

- Use but don't remove Ethernet header/addresses
- Do not inspect Network header

Spanning Tree (1) - Problem

Bridge topologies with loops and only backward learning will cause frames to circulate for ever

Need spanning tree support to solve problem

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Spanning Tree (2) - Algorithm

- Subset of forwarding ports for data is use to avoid loops
- Selected with the spanning tree distributed algorithm by Perlman

I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree which must be sure to span. So packets can reach every LAN. First the Root must be selected By ID it is elected. Least cost paths from Root are traced In the tree these paths are placed. A mesh is made by folks like me

Radia Perlman, 1985.

Then bridges find a spanning tree.

Spanning Tree (3) - Example

After the algorithm runs:

- ▶ B1 is the root, two dashed links are turned off
- ▶ B4 uses link to B2 (lower than B3 also at distance 1)
- ▶ B5 uses B3 (distance 1 versus B4 at distance 2)

Repeaters, Hubs, Bridges, Switches, Routers, & Gateways

Devices are named according to the layer they process

A bridge or LAN switch operates in the Link layer

Application layer
Transport layer
Network layer
Data link layer
Physical layer

Application gateway

Transport gateway

Router

Bridge, switch

Repeater, hub

Virtual LANs (1)

VLANs (Virtual LANs) splits one physical LAN into multiple logical LANs to ease management tasks

Ports are "colored" according to their VLAN

Virtual LANs (2) - IEEE 802.1Q

Bridges need to be aware of VLANs to support them

- ▶ In 802.1Q, frames are tagged with their "color"
- Legacy switches with no tags are supported

Virtual LANs (3) - IEEE 802.1Q

802.10 frames carry a color tag (VLAN identifier)

► Length/Type value is 0x8100 for VLAN protocol

