Accelerated Failure Time

Avinash Barnwal

May 2019

Model

Assume the data follow below model:-

$$\log y_{i} = x_{i}'\beta + z_{i}\sigma$$

$$\log \hat{y}_{i} = x_{i}'\hat{\beta}$$

$$\eta = x_{i}'\hat{\beta}$$

$$z_{i} = \frac{\log y_{i} - \eta}{\sigma} \sim f$$
(1)

where y_i is the uncensored response and \hat{y}_i is the predicted value for *i*-th observation and σ is the standard deviation of the error.

Normal Distribution

$$f(z) = \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}}$$

$$f'(z) = -zf(z)$$

$$f''(z) = -f(z) - zf'(z)$$

$$F(z) = \phi(z)$$

$$F_{Y_i}(y_i) = F(z_i)$$

$$(2)$$

Logistic Distribution

$$f(z) = \frac{e^{z}}{(1+e^{z})^{2}}$$

$$w = e^{z}$$

$$f'(z) = f(z)\frac{1-w}{1+w}$$

$$f''(z) = f'(z)\frac{1-w}{1+w} - f(z)\frac{1}{1+w}$$

$$F(z) = \frac{e^{z}}{1+e^{z}}$$

$$F_{Y_{i}}(y_{i}) = F(z_{i})$$
(3)

1 Uncensored Data

1.1 Loss Function

$$L_i = -\log \operatorname{lik}_i = -\log(f_{Y_i}(y_i|\eta)) \tag{4}$$

where, $f_n(\eta)$ is the probability density function(pdf) of η .

Now using change of variable for probability density function(pdf). We can write the below equations.

Normal Distribution

$$f_Y(y|\eta) = f_Z(z) \frac{\partial z}{\partial y}$$

$$f_Y(y|\eta) = \frac{\exp^{-\frac{(\log(y) - \log(\hat{y_i}))^2}{2\sigma^2}}}{y\sigma\sqrt{2\pi}}$$

$$L_i = -\log(\frac{\exp^{-\frac{(\log(y_i) - \log(\hat{y_i}))^2}{2\sigma^2}}}{y_i\sigma\sqrt{2\pi}})$$

$$L_i = -\log(\frac{\exp^{-\frac{(\log(y_i) - \eta)^2}{2\sigma^2}}}{y_i\sigma\sqrt{2\pi}})$$
(5)

Logistic Distribution

$$f_Y(y|\eta) = f_Z(z) \frac{\partial z}{\partial y}$$

$$f_Y(y|\eta) = \frac{\exp^{(\frac{(\log(y) - \eta)}{\sigma})}}{\sigma * y * (1 + \exp^{(\frac{(\log(y) - \eta)}{\sigma})})^2}$$

$$L_i = -\log(\frac{\exp^{(\frac{(\log(y) - \eta)}{\sigma})}}{\sigma * y * (1 + \exp^{(\frac{(\log(y) - \eta)}{\sigma})})^2})$$

$$= -\log(\frac{\exp^{(\frac{(\log(y) - \eta)}{\sigma})}}{\sigma * y * (1 + \exp^{(\frac{(\log(y) - \eta)}{\sigma})})^2})$$
(6)

1.2 Negative Gradient

In Gradient Boosting and Xgboost, we need to calculate negative gradient of loss function with respect to real-value prediction which is $\hat{\eta}$. Here i am changing between $\hat{\eta_i}$ to $\hat{\eta}$ to make it general.

$$-\frac{\partial L_{i}}{\partial \hat{\eta}} = \frac{\partial log(f_{Y_{i}}(y_{i}|\eta))}{\partial \eta}$$

$$= \frac{1}{f_{Y_{i}}(y_{i}|\eta)} * \frac{\partial f_{Y_{i}}(y_{i}|\eta)}{\partial \eta}$$
(7)

Using change of variable between z and η . We can write the below in terms of z.

$$\frac{\partial f_Y(y|\eta)}{\partial \eta} = \frac{\partial}{\partial \eta} [f_Z(z) \frac{\partial z}{\partial y}] \tag{8}$$

Using product rule of differentiation, we can split $f_Z(z)$ and $\frac{\partial z}{\partial n}$

$$= \frac{\partial f_Z(z)}{\partial \eta} \frac{\partial z}{\partial y} + f_Z(z) \frac{\partial^2 z}{\partial \eta \partial y}$$
(9)

$$= \frac{\partial f_Z(z)}{\partial z} \frac{\partial z}{\partial n} \frac{\partial z}{\partial u} + f_Z(z) \frac{\partial^2 z}{\partial n \partial u}$$
 (10)

As we know $\frac{\partial f_Z(z)}{\partial z}=-zf_Z(z)$ Now, we will calculate the gradient of z with respect to η as we have $\frac{\partial z^2}{\partial \eta \partial y}$ in the equation 10.

$$\frac{\partial z}{\partial \eta} = \frac{-1}{\sigma} \tag{11}$$

$$\frac{\partial z}{\partial y} = \frac{1}{y\sigma} \tag{12}$$

We also need double differentiation of z with respect to η as we have $\frac{\partial^2 z}{\partial \eta^2}$ in the equation 10.

$$\frac{\partial^2 z}{\partial \eta \partial y} = 0 \tag{13}$$

$$= -\frac{f_Z'(z)}{u\sigma^2} \tag{14}$$

Now going back to original equation of calculating negative gradient of loss function with respect to η . In equation 9, we have calculated the second part of negative gradient of loss function with respect to η which is $\frac{\partial f_{Y_i}(y_i|\eta)}{\partial \eta}$. By replacing the 14th equation in the negative gradient of loss function w.r.t. to η , we get the results as follows:-

$$-\frac{\partial L_{i}}{\partial \eta} = \frac{1}{f_{Y_{i}}(y_{i}|\eta)} * \frac{\partial f_{Y_{i}}(y_{i}|\eta)}{\partial \eta}$$

$$= \frac{1}{f_{Y_{i}}(y_{i}|\eta)} * \frac{-f_{Z_{i}}'(z_{i})}{y\sigma^{2}}$$

$$= \frac{-f_{Z_{i}}'(z_{i})}{\sigma f_{Z_{i}}(z_{i}|\eta)}$$
(15)

Hessian is the second derivative of Loss with respect to η . As we have already calculated the negative gradient, further we need to take one more partial derivative with respect to η of negative gradient with negative sign.

$$\frac{\partial^{2} L_{i}}{\partial \eta^{2}} = \frac{\partial}{\partial \eta} \frac{\partial L_{i}}{\partial \eta}$$

$$= \frac{\partial}{\partial \eta} \frac{f'_{Z_{i}}(z_{i})}{\sigma f_{Z_{i}}(z_{i}|\eta)}$$

$$= \frac{\partial}{\partial z_{i}} \frac{f'_{Z_{i}}(z_{i})}{\sigma f_{Z_{i}}(z_{i}|\eta)} \frac{\partial z_{i}}{\partial \eta}$$

$$= \frac{\partial}{\partial z_{i}} \frac{f'_{Z_{i}}(z_{i})}{\sigma f_{Z_{i}}(z_{i}|\eta)} \frac{\partial z_{i}}{\partial \eta}$$

$$= -\frac{f_{Z_{i}}(z_{i})f''_{Z_{i}}(z_{i}) - [f'_{Z_{i}}(z_{i})]^{2}}{\sigma^{2} f^{2}_{Z_{i}}(z_{i})}$$
(16)

2 Left Censored Data

2.1 Loss Function

$$L_i = -\log \operatorname{lik}_i = -\log(F_{Y_i}(y_i|\eta)) \tag{17}$$

where, F is the cdf of $Y_i|\eta$.

$$L_i = -log(F(z_i)) \tag{18}$$

2.2 Negative Gradient

$$-\frac{\partial L_i}{\partial \eta} = -\frac{\partial - \log(F(z))}{\partial \eta} \tag{19}$$

$$-\frac{\partial L_i}{\partial \eta} = \frac{\partial log(F(z))}{\partial \eta} \tag{20}$$

$$= \frac{F'(z_i)}{F(z_i)} \frac{\partial z_i}{\partial \eta} \tag{21}$$

Therefore, combining results of chain rule and pdf, below is the final result for negative gradient,

$$-\frac{\partial L_i}{\partial \eta} = \frac{-f(z_i)}{\sigma F(z_i)} \tag{22}$$

Hessian is the second derivative of Loss with respect to η . As we have already calculated the negative gradient, further we need to take one more partial derivative with respect to η of negative gradient with negative sign.

$$\frac{\partial^2 L_i}{\partial \eta^2} = \frac{\partial}{\partial \eta} \frac{\partial L_i}{\partial \eta} \tag{23}$$

After inputting the values of negative gradient calculated to above equation.

$$= \frac{\partial}{\partial \eta} * \frac{f(z_i)}{\sigma F(z_i)}$$

$$= \frac{\partial}{\partial z_i} \frac{f(z_i)}{\sigma F(z_i)} * \frac{\partial z_i}{\partial \eta}$$

$$= \frac{F(z_i)f'(z_i) - f^2(z_i)}{\sigma F^2(z_i)} * \frac{-1}{\sigma}$$

$$= -\frac{F(z_i)f'(z_i) - f^2(z_i)}{\sigma^2 F^2(z_i)}$$
(24)

3 Right Censored Data

3.1 Loss Function

$$L_i = -\log \operatorname{lik}_i = -\log(1 - F_{Y_i}(y_i|\eta)) \tag{25}$$

where, F is the cdf of $Y_i|\eta$.

$$L_i = -\log(1 - F(z_i)) \tag{26}$$

3.2 Negative Gradient

$$-\frac{\partial L_i}{\partial \eta} = -\frac{\partial - \log(1 - F(z_i))}{\partial \eta}$$
 (27)

$$-\frac{\partial L_i}{\partial \eta} = \frac{\partial log(1 - F(z_i))}{\partial \eta}$$
 (28)

Using similar steps, we have done for left censored.

$$-\frac{\partial L_i}{\partial \eta} = -\frac{F'(z_i)}{1 - F(z_i)} \frac{\partial z_i}{\partial \eta}$$
 (29)

which is nothing but negative of the negative gradient of left censored data. Therefore,

$$-\frac{\partial L_i}{\partial \eta} = \frac{f(z_i)}{\sigma(1 - F(z_i))} \tag{30}$$

$$\frac{\partial^{2} L_{i}}{\partial \eta^{2}} = \frac{(1 - F(z_{i}))f'(z_{i}) + f^{2}(z_{i})}{\sigma^{2}(1 - F(z_{i}))^{2}}$$
(31)

4 Interval Censored Data

4.1 Loss Function

This is combination of left censored and right censored data.

$$L_{i} = -\log \operatorname{lik}_{i} = -\log(F_{Y_{i}^{u}}(y_{i}^{u}|\eta) - F_{Y_{i}^{l}}(y_{i}^{l}|\eta))$$
(32)

where, F is the cdf of $Y_i|\eta$, y_i^u is the upper limit of time and y_i^l is the lower limit of the time. Above equation is written in terms of ϕ notations as below.

$$L_i = -log(F(z_i^u) - F(z_i^l)) \tag{33}$$

4.2 Negative Gradient

$$-\frac{\partial L_i}{\partial \eta} = -\frac{\partial -\log(F(z_i^u) - F(z_i^l))}{\partial \eta} \tag{34}$$

Using chain rule for two variables

$$\frac{\partial L_i}{\partial \eta} = \frac{\partial L_i}{\partial z_i^u} \frac{\partial z_i^u}{\partial \eta} + \frac{\partial L_i}{\partial z_i^l} \frac{\partial z_i^l}{\partial \eta}$$
(35)

$$\frac{\partial L_i}{\partial z_i^u} = -\frac{F'(z_i^u)}{F(z_i^u) - F(z_i^l)} \tag{36}$$

$$\frac{\partial L_i}{\partial z_i^l} = \frac{F'(z_i^l)}{F(z_i^u) - F(z_i^l)} \tag{37}$$

$$\frac{\partial L_i}{\partial \eta} = \frac{\partial L_i}{\partial z_i^u} \frac{\partial z_i^u}{\partial \eta} + \frac{\partial L_i}{\partial z_i^l} \frac{\partial z_i^l}{\partial \eta}$$
(38)

$$-\frac{\partial L_{i}}{\partial \eta} = \frac{F'(z_{i}^{u})}{F(z_{i}^{u}) - F(z_{i}^{l})} \frac{\partial z_{i}^{u}}{\partial \eta} - \frac{F'(z_{i}^{l})}{F(z_{i}^{u}) - F(z_{i}^{l})} \frac{\partial z_{i}^{l}}{\partial \eta}$$

$$= \frac{f(z_{i}^{u})}{F(z_{i}^{u}) - F(z_{i}^{l})} \frac{-1}{\sigma} - \frac{f(z_{i}^{l})}{F(z_{i}^{u}) - F(z_{i}^{l})} \frac{-1}{\sigma}$$

$$= -\frac{f(z_{i}^{u}) - f(z_{i}^{l})}{\sigma(F(z_{i}^{u}) - F(z_{i}^{l}))}$$
(39)

Hessian is the second derivative of Loss with respect to η . As we have already calculated the negative gradient, further we need to take one more partial derivative with respect to η of negative gradient with negative sign.

$$\frac{\partial^2 L_i}{\partial \eta^2} = \frac{\partial}{\partial \eta} \frac{\partial L_i}{\partial \eta} \tag{40}$$

Then we apply the Chain Rule. Since $\partial L_i/\partial \eta$ is now a function of two variables z_i^u and z_i^l , the previous equation is broken down to two components:

$$\frac{\partial^{2} L_{i}}{\partial \eta^{2}} = \frac{\partial}{\partial \eta} \frac{\partial L_{i}}{\partial \eta} = \frac{\partial}{\partial z_{i}^{u}} \frac{\partial L_{i}}{\partial \eta} \cdot \frac{\partial z_{i}^{u}}{\partial \eta} + \frac{\partial}{\partial z_{i}^{l}} \frac{\partial L_{i}}{\partial \eta} \cdot \frac{\partial z_{i}^{l}}{\partial \eta}$$
(41)

Let us simplify the first term:

$$\frac{\partial}{\partial z_{i}^{u}} \frac{\partial L_{i}}{\partial \eta} \cdot \frac{\partial z_{i}^{u}}{\partial \eta} = \frac{\partial}{\partial z_{i}^{u}} \frac{f(z_{i}^{u}) - f(z_{i}^{l})}{\sigma \{\phi(z_{i}^{u}) - \phi(z_{i}^{l})\}} \frac{\partial z_{i}^{u}}{\partial \eta}
= \frac{\{F(z_{i}^{u}) - F(z_{i}^{l})\}f'(z_{i}^{u}) - f(z_{i}^{u})(f(z_{i}^{u}) - f(z_{i}^{l})) - 1}{\sigma \{F(z_{i}^{u}) - F(z_{i}^{l})\}^{2}} \frac{-1}{\sigma}
= \frac{-\{F(z_{i}^{u}) - F(z_{i}^{l})\}f'(z_{i}^{u}) + f^{2}(z_{i}^{u}) - f(z_{i}^{u})f(z_{i}^{l})}{\sigma^{2}\{F(z_{i}^{u}) - F(z_{i}^{l})\}^{2}}$$
(42)

Similarly, we simplify the second term:

$$\frac{\partial}{\partial z_{i}^{l}} \frac{\partial L_{i}}{\partial \eta} \cdot \frac{\partial z_{i}^{l}}{\partial \eta} = \frac{\partial}{\partial z_{i}^{l}} \frac{f(z_{i}^{u}) - f(z_{i}^{l})}{\sigma\{\phi(z_{i}^{u}) - \phi(z_{i}^{l})\}} \frac{\partial z_{i}^{l}}{\partial \eta}
= \frac{-\{F(z_{i}^{u}) - F(z_{i}^{l})\}f'(z_{i}^{l}) + f(z_{i}^{l})(f(z_{i}^{u}) - f(z_{i}^{l})) - 1}{\sigma\{F(z_{i}^{u}) - F(z_{i}^{l})\}^{2}} \frac{-1}{\sigma}
= \frac{\{F(z_{i}^{u}) - F(z_{i}^{l})\}f'(z_{i}^{l}) + f^{2}(z_{i}^{l}) - f(z_{i}^{l})f(z_{i}^{u})}{\sigma^{2}\{F(z_{i}^{u}) - F(z_{i}^{l})\}^{2}}$$
(43)

Combining the terms will give the full expression for $\partial^2 L_i/\partial \eta^2$:

$$\frac{\partial^{2}L}{\partial\eta^{2}} = -\frac{\{F(z_{i}^{u}) - F(z_{i}^{l})\}\{f^{'}(z_{i}^{u}) - f^{'}(z_{i}^{l})\} - (f(z_{i}^{u}) - f(z_{i}^{l}))^{2}}{\sigma^{2}\{F(z_{i}^{u}) - F(z_{i}^{l})\}^{2}}$$
(44)