BINGNAN LI

EDUCATION

University of California, San Diego

Sep. 2024 - Present

M.S in Computer Science and Engineering

San Diego, US

- GPA: 4.00/4.00
- Selected Courses: Algorithm Design and Analysis I(A), Probabilistic Reason&Learning(A), Recommender Sys&Web Mining(A)

ShanghaiTech University

Sep. 2020 - Jul. 2024

B.E in Computer Science and Technology

Shanghai, China

- **GPA:** 3.87/4.00
- Ranking: 3/248
- Selected Courses: Artificial Intelligence I(A+), Computer Vision II(A+), Introduction to Machine Learning(A), Deep Learning(A)

PUBLICATIONS

Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts

Zhitong Gao, Bingnan Li, Mathieu Salzmann, Xuming He

Neural Information Processing Systems (NeurIPS 2024)

Gradient-Map-Guided Adaptive Domain Generalization for Cross Modality MRI Segmentation

Bingnan Li, Zhitong Gao, Xuming He

Machine Learning for Health (ML4H 2023)

RESEARCH EXPERIENCES

Overlap-Aware Layout-to-Image Generation: A New Task and Dataset Construction (ongoing, project lead)

Jan. 2025 - Present

San Diego, US

Supervisor: Zhuowen Tu

- Investigating failure modes in existing layout-to-image generation models under overlapping bounding boxes.
- Constructed the **first layout-aware preference dataset for overlapping objects** by designing synthetic win/loss image pairs via object inpainting, **avoiding ranking-based heuristics** which bias the model toward generic image quality instead of layout faithfulness.
- Developed a **supervised fine-tuning (SFT)** + **Direct Preference Optimization (DPO)-based** fine-tuning pipeline on top of SOTA models, demonstrating improved overlap handling on our constructed dataset.

OoD Detection under Multiple Distribution shifts

Apr. 2024 - Aug. 2024

Supervisor: Xuming He, Mathieu Salzmann

Shanghai, China

- Proposed a method to help Out-of-Domain(OoD) detection model distinguish between domain-level and semantic-level distribution shifts.
- Developed an automatic data augmentation method that simultaneously generates images with novel classes and domain shift via ControlNet and SAM.
- · Proposed a multi-margin contrastive loss to control the uncertainty score with finer granularity.
- The relevant paper has been accepted by NeurlPS 2024

Single Domain Generalization in Medical Image Segmentation

Aug. 2022 - Nov. 2023

Supervisor: Xuming He

Shanghai, China

- Developed a novel domain generalization framework that enables model to better generalize between various Magnetic resonance image modalities.
- Utilized **gradient-map** as a domain-invariant representation to eliminate the global image style discrepancy while preserving the structural information shared among different MRI modalities.
- Proposed a **pseudo-label based test-time-adaptation** method to gradually refine the segmentation results on areas that been affected by lesion tissues.
- The relevant paper has been accepted by ML4H 2023

ACTIVITIES & HONORS & AWARDS

Outstanding Graduates of Shanghai (top 5%)

Outstanding Student at ShanghaiTech University (top 3%)

Merit Student at ShanghaiTech University (top 7%)

2022

TECHNICAL SKILLS

Languages: Python, C, C++, Matlab, RISC-V **Developer Tools**: JetBrains Pycharm, VS Code,

Technologies/Frameworks: Linux, GPU Cluster, GitHub, PyTorch, Numpy, OpenCV