PROPRIETA' DI IE [X19]

1) LINEARITA!

2) HONOTONIA:

- 3) II TEOREHI WHITE I'
- 4) TOWER PROPERTY

MOSCHAPT BY TENSEN

6 CONTRACTOUTA

$$\mathbb{E}[P] : \mathbb{E}[P] : \mathbb{E}[P] \rightarrow \mathbb{E}[P] = \mathbb{E}[P]$$

$$\mathbb{E}[P|X] = \mathbb{E}[P|X] = \mathbb{E}[P|X]$$

$$\mathbb{E}[P|X] = \mathbb{E}[P|X] = \mathbb{E}[P|X]$$

$$\mathbb{E}[P|X] = \mathbb{E}[P|X] = \mathbb{E}[P|X]$$

$$\mathbb{E}[P|X] = \mathbb{E}[P|X]$$

$$\mathbb{E}[P|X]$$

$$\mathbb{E}[P|X] = \mathbb{E}[P|X]$$

$$\mathbb{E}[P|X]$$

$$\mathbb$$

3) CARAGERIZZA (4)

 $\hat{X} = \mathbb{E}[X|Q]$ \tilde{z} $\tilde{$

٤.

 $\Rightarrow \forall \forall \in C^2(\mathcal{Q}, \beta, \beta) \Rightarrow \Leftrightarrow \textcircled{3}$ appious the

 $E \left[\begin{array}{ccc} x & y \end{array} \right] = E \left[\begin{array}{ccc} x & y \end{array} \right]$ (x, y) = (x, y)

Luimoli $\vec{\chi} = \mathbb{E}[X|Q]$ à la projetione ortopomale di $X \in L^2(L, Q, P)$ sur sottos pasio chiuso $L^2(L, Q, P)$

Allow in positions $\|x-x\|_2 \le \|x-z\|_2$ $\forall z \in L^2(z, g, p)$

onnero $\mathbb{E}\left[\left(x-x\right)_{5}\right] \in \mathbb{E}\left[\left(x-5\right)_{5}\right]$

Ossewians the $\mathbb{E}[\hat{X}] = \mathbb{E}[X] \Rightarrow se$ premas $Z \in L^2(\Omega, g, p)$ T.c. $\mathbb{E}[Z] = \mathbb{E}[X]$ oldre be \otimes divents

 $vox(x-x^2) \leq vox(x-2)$

 $\frac{1}{2}$ = la miplior stime un distorta di \times mate le unfarme, soni contenute in $\frac{1}{2}$ can la sense media

teienieur un segnate X

Veienieur un segnate X

Veieni

de information in notes possesso sons dele de elle de

to wijeior stime possitive del septice tousmests

e' f(y) = E[x|y] = E[x|g(y)]

In realization mai discurrance Responde $y \in \mathbb{R}$ e de miglione value del seponde Pasomesso é $h(y) = \mathbb{E}[X|Y=y] \in \mathbb{R}$

 $P_{X|Y=Y}$:

dove q: IR-1R wisurable

2) de définire variouse di X condisionale a Y

(3) bidefiniser voisioner di X conditionerro a G & F la va. G. missable:

Poporisione:

dies 2)

NOTE:
$$\times \in L^{2}(\Delta, \frac{1}{4}, \mathbb{P})$$
 $\hat{\times} = \mathbb{E}[\times | \mathbb{Q}]$
Vose $(\times) = \mathbb{E}[(\times - \mathbb{E}[\times 1)^{2}] = \mathbb{E}[((\times - \hat{\times}) + (\hat{\times} - \mathbb{E}[\times 1)^{2}])]$
 $= \mathbb{E}[(\times - \hat{\times})^{2}] + \mathbb{E}[(\hat{\times} - \mathbb{E}[\times 1)^{2}]$
 $+ 2 \mathbb{E}[(\times - \hat{\times})(\hat{\times} - \mathbb{E}[\times 1)^{2}]$
 $= \mathbb{E}[(\times - \hat{\times})^{2}] + \mathbb{E}[(\times - \mathbb{E}[\times 1)^{2}]$

bedosiero, 4)

 $= \mathbb{E}\left[\left(x - \hat{x}\right)y\right] = \langle x - \hat{x}, y \rangle = 0$

200

$$\mathbb{E}[(\hat{x} - \mathbb{E}[x])^2] = \mathbb{E}[(\hat{x} - \mathbb{E}[\hat{x}])^2] = \text{vox}(\hat{x})$$

$$\mathbb{E}[x] = \mathbb{E}[\hat{x}]$$

$$\mathbb{E}[x] = \mathbb{E}[\hat{x}]$$

$$\mathbb{E}[x] = \mathbb{E}[\hat{x}]$$

$$\mathbb{E}[x] = \mathbb{E}[\hat{x}]$$

$$\times N \cup (0,2)$$
 use $\times|_{z_{2}} N \cup (0,2) \forall 270$

som mome

$$|E[X|z=z] = \frac{2+b}{2} = \frac{z}{2}$$

$$|E[X|z] = \frac{z}{2}$$

Vox(x) = IE[Vox(x|2)] + Vox(IE[x|2]) $\int_{x}^{x} IE[U] = \frac{x}{\lambda^2}$

=
$$\mathbb{E}\left[\frac{2^{\lambda}}{12}\right] + \text{vox}\left(\frac{2}{\lambda}\right) =$$

=
$$\frac{45}{7}$$
 ($nor(5) + 10[5]_5) + $\frac{4}{7}$ $nor(5)$$

T

Esercizio 2

Siano X una variabile di Poisson di parametro $\lambda > 0$ e Y una variabile aleatoria di legge non nota. Si sa che, condizionatamente all'evento (X = n), la v.a. Y segue una legge Binomiale di parametri n e p.

- a) Calcolare $\mathbb{E}[Y|X]$ e $\mathbb{E}[Y]$.
- b) Determinare la legge di Y e ritrovare il valore atteso.
- c) Determinare la legge di X condizionata a (Y = k).
- d) Calcolare $\mathbb{E}[X|Y]$ (calcolare prima $\mathbb{E}[X-Y|Y]$)

Source

$$(X \cap P(X))$$
 $(X = m) \cap B(m, p)$ over $(X \cap P(X))$

$$E[A|X] = B(X) = Xb$$

$$P_{Y}(R) = \sum_{m=0}^{\infty} P_{(X,Y)}(m,R) = \sum_{m=0}^{\infty} P_{Y|X=m}(R) \cdot P_{X}(m)$$

$$(P(Y=R) = \sum_{m=0}^{\infty} P(X=m, Y=R) = \sum_{m=0}^{\infty} P(Y=R|X=m) P(X=m)$$

$$Prob. Forale appaich a $1(X=m)^{\frac{1}{2}} = 0$$$

$$= \sum_{m=k}^{\infty} {m \choose k} p^{k} (1-p)^{m-k} e^{-\lambda} \frac{\lambda^{m}}{m!}$$
Se $k \leq m$
altinent ho 0

$$= \sum_{\infty}^{m=k} \frac{(m-k)!}{(m-k)!} \left(\frac{p^{k}}{p^{k}} (1-p)^{m-k} e^{-\lambda} \frac{\lambda^{m}}{\lambda^{m}} \right)$$

=
$$\frac{1}{k!} \rho^{\frac{1}{k}} e^{-\lambda} \int_{m=k}^{k} \frac{\sum_{m=k}^{\infty} (\underline{1-\rho})^{m-k} \lambda^{m-k}}{(m-k)!} = \frac{1}{k!} \rho^{\frac{1}{k}} e^{-\lambda} \int_{m-k}^{k} \frac{\sum_{m=k}^{\infty} (\underline{1-\rho})^{m-k} \lambda^{m-k}}{(m-k)!} = \frac{1}{k!} \rho^{\frac{1}{k}} e^{-\lambda} \int_{m-k}^{k} \frac{1}{k!} \rho^{\frac{1}{k}} e^{-\lambda} \rho^{\frac{1}{k}} e^{-\lambda} \int_{m-k}^{k} \frac{1}{k!} \rho^{\frac{1}{k}} e^{-\lambda} \rho^{\frac{1$$

=
$$\frac{4}{8} (\gamma b)_{\beta} e^{-\gamma} \sum_{\alpha} \frac{\beta}{2} [\gamma (1-\beta)]_{\alpha} =$$

=
$$\frac{1}{k!} (\lambda \rho)^k e^{-\lambda} e^{\lambda (\lambda - \rho)} = e^{-\lambda \rho} \frac{(\lambda \rho)^k}{k!} = \rho_{\lambda}(k) \forall k \in \mathbb{N}$$