

MRTV

CSE - MAY 2012

YEAR 12 CHEMISTRY

Written test 1

ANSWERS & SOLUTIONS BOOK

SECTION A - Multiple choice questions (20 marks)

1	С	5	В	9	С	13	В	17	D
2	В	6	D	10	С	14	В	18	A
3	В	7	Α	11	A	15	D	19	A
4	D	8	С	12	D	16	Α	20	В

EXPLANATION

1.	С	$M(C_{19}H_{39}COOH) = (20 \times 12 + 40 + 32) = 312$					
	e e f	m (one molecule) = M / N_A					
		$= 312/6.02 \times 10^{23}$					
	MICT A	$= 5.18 \times 10^{-22} \mathrm{g}$					
2.	В	$pV = nRT$ so $n = \frac{pV}{RT}$					
		I DESCRIPTOR TO SECTION OF THE SECTION OF THE PROPERTY OF THE					
		$=\frac{101.3\times0.250}{8.31\times298}$					
		$m = n \times M$					
	0.0	$= \left(\frac{101.3 \times 0.250}{8.31 \times 298}\right) \times 44 = 0.45 \text{ g}$					
3.	В	27.60 – 0.15 = 27.45 mL					
4.	D	Note that CH ₃ CH ₂ NH ₂ is a semi-structural formula not a molecular formula.					
5.	В	The components with the lowest boiling point will vapourise firstly as the distillation occurs and they will condense at the top of the column where it is coolest.					
6.	D	Methyl red is red in an ammonium nitrate, NH ₄ NO ₃ , solution which is acidic.					
7.	A	A double bond is stronger than a single bond between carbon atoms and so stretchin the double bond requires more energy.					
8.	С	An absorbance of 0.17 corresponds to a reading from the graph of					
	lun S	concentration 340 mg L ⁻¹ . c (original sample) = $\frac{340 \times 50.00}{10.0}$ = 1700 mg L ⁻¹ = 1.7 g L ⁻¹ .					
9.	С	Hydrolysis of aspirin will produce salicylic acid which has a hydroxyl group. The structure of the molecule that produces a peak at 2.3 can be found in the data book.					
10.	С	Refer to data book to find structures.					
11.	A	The size of a sample of DNA must be increased before analysis. This achieved with PCR.					
12.	D	Arsenic is a metalloid which can be detected by AAS.					
13.	В	Fragment C with more base pairs will be larger in size than A and so it will not move as far along the stationary phase. Origin 2 must have been the origin.					
14.	В	Since $-2 \times 5 + -2 = -12$, and there are four Sb ions to balance the -12 charge. The oxidation number of each Sb ion is +3. For $K_2C_2O_4$ the oxidation number of					
		each C = +3 to balance (4 × -2 + 2)= -6.					
15.	D	HPLC is the most suitable technique.					
16.	A	Colours higher up the page show higher R_f values as the distance travelled is greater than those further down and R_f = Distance travelled/ solvent front. Particles of higher colours spend less time adsorbed to the stationary phase.					
17.	С	Note that the cyclic ring has 8 hydrogen atoms attached to it.					
18.	A	Fermentation involves the production of an alkanol and carbon dioxide.					
19.	A	The functional groups are –S, -COOH (an acid group which will react with a base)					
		and -NH ₂ (a basic group that will react with an acid).					
20.	В	Glycerol is formed in the process of the hydrolysis of a triglyceride involving methanol.					

SECTION B – Short answer questions (60 marks)

Question 1 (1 + 2 + 1 + 1 + 2 + 1 + 1 = 9 marks)

a.
$$\operatorname{Sn}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-}$$

1 mark

b.
$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

2 marks

$$Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^- \times 3$$

$$Cr_2O_7^{\text{2-}}(aq) \ + \ 14H^{\text{+}}(aq) \ + \ 3Sn^{\text{2+}}(aq) \ \rightarrow \ 2Cr^{\text{3+}}(aq) \ + \ 7H_2O(I) \ + \ 3Sn^{\text{4+}}(aq)$$

c.
$$n(\text{Sn}^{2+}(\text{aq})) = c \times V = 0.105 \times 0.0265 = 2.78 \times 10^{-3} \text{ mol}$$

1 mark

d.
$$n(Cr_2O_7^{2-}(aq)) = n(Sn^{2+}(aq)/3 = 9.28 \times 10^{-4} \text{ mol}$$

1 mark

e.
$$n(\text{Cr}_2\text{O}_7^{2^-}(\text{aq})) = n(\text{K}_2\text{Cr}_2\text{O}_7(\text{s})) = 9.28 \times 10^{-4} \text{ mol}$$

 $m = n \times Mr = 9.28 \times 10^{-4} \times 294.2 = 0.273 \text{ g}$

2 marks

$$%(K_2Cr_2O_7(s)) = 0.273 / 0.355 \times 100 = 76.9%$$

1 mark

The ions in sodium sulfate will not react with the dichromate ion but the Fe²⁺ ions will be oxidised to Fe³⁺

1 mark

Question 2(1+2+2=5 marks)

a.
$$2AI(s) + 6HCI(aq) \rightarrow 2AICI_3(aq) + 3H_2(g)$$

1 mark

b.
$$n(HCI) = c \times V = 1.50 \times 100/1000 = 0.150 \text{ mol}$$

2 marks

$$n(AI)_{reacted} = 2/6 \times 0.150 = 0.0500 \text{ mol}$$

 $m(AI)_{reacted} = 0.0500 \times 27.0 = 1.35 g$

$$m(AI)_{unreacted} = 23.5 - 1.35 = 22.2 g$$

f.

 $n(H_2(g)) = 3/6 \times n(HCI) = 0.0750 \text{ mol}$

2 marks

 $V(H_2(g)) = 0.0750 \times 24.5 = 1.84 L$

Question 3(1+1+1+2+1+2+2+1=11 marks)

Mass Spectrometry or percentage composition analysis

1 mark

Alkanol and alkene

1 mark

Decolourising of bromine or acidified potassium permanganate solutions

1 mark

d. CH₃CH₂COCH₃ 2 marks

4 peaks

1 mark

CH₃CH₂⁺ 29 and CH₃CO⁺ 43 f.

2 marks

2 marks

Isomers

1 mark

or any isomer of the above

Question 4(2 + 1 + 1 + 2 + 1 = 7 marks)

a.

Reverse structural formula not acceptable because alkanol section should be drawn last.

2 marks

b. Water

1 mark

c. Benzyl ethanoate is heat stable and volatile

1 mark

d.

The mass of the unknown sample is 1.7 µg

e. By comparing retention times which should match the standard benzyl ethanoate solution 1 mark or by 'spiking' the sample with benzyl ethanoate.

Question 5(1 + 3 = 4 marks)

a. CH_3COOCH_3 1 mark **b. i.** $CH_3COOCH_3^+$ or $C_3H_6O_2^+$ 1 mark **ii.** 74 1 mark **iii.** $CH_3COOCH_3^+ \rightarrow CH_3CO^+ + OCH_3$ 1 mark 43 31

Question 7 (8 + 1 + 1 = 10 marks)

a. Addition reaction 1 mark

b. Condensation or esterification 1 mark

Question 8 (1 + 2 + 1 + 1 = 5 marks)

a. Oxidant due to removal of oxygen or decrease in oxidation state 1 mark

b. n(aspirin) = 1.80/180 = 0.0100 mol n(aspirin) = n(amide) = 0.0100 mol n(amide) = 0.0100 mol 2 marks % yield = 1.10/1.79 x 100 = 61.5%

c. Incomplete reaction, side-reaction, loss of product during isolation/purification 1 mark

d. Amide is polar like the carboxylic acid functional group and is more likely to have similar intermolecular bonding than a nonpolar -CH₃.