EE113DB 2015 FINAL PRESENTATION VOICE RECOGNITION AND CONTROL SYSTEM

Present By:

- George Li (Zhuoqi Li)
- Ben kim (Bumjoong Kim)

- ► Goal:
 - interpret spoken words
 - differentiate different people's voices
 - operate according to spoken commands
- ► Objective of this project: to accurately identify spoken vocabularies as well as their speakers from a 70-word database and operate as told

SYSTEM OVERVIEW

- Primary principle behind: to model human hearing system
- ▶ Based on EE113DA Miniproject 2
- ▶ Voice recognition process:
 - Synchronization
 - Feature extraction
 - Library Matching
 - Machine learning
- ▶ Voice control process:
 - conditional statements

TECHNICAL DESIGN

- ▶ Differentiate between environmental noise and human speech
- ▶ Utilize the STE (short time energy algorithm)

SYNCHRONIZATION

- ► Mainly based on EE113DA Miniproject 2
- ► Mel Frequency Cepstral Coefficient + Delta-delta = WMFCC
- ► For each speech input, break it into many frames
- Power spectrum information in different frequency range

FEATURE EXTRACTION

- ► Library data saved in txt files
- ▶ Library data loaded from txt files when needed
- ► DTW (Dynamic Time Wrapping)

LIBRARY MATCHING

- * Supervised machine learning algorithm
- user judge the result and give feedback
- * K-mean cluster algorithm

- * Update the library data every time
- * Can be turned off when the library is fully updated

MACHINE LEARNING

▶ Display Library

► Turn on LED on the DSP chip

VOICE CONTROL

- ▶ Coding challenges
- ► Equipment uncertainty
- ▶ Processing speed optimization
- Uncertain nature of human voice
 - intonation effects
 - Volume of the voice
 - length of the speech

TECHNICAL & GENERAL ISSUES

'Cat' with normal volume

'Cat' with high volume

TECHNICAL & GENERAL ISSUES – SPEECH VOLUME

'Cat' with exclamatory intonation

'Cat' with interrogative intonation

TECHNICAL & GENERAL ISSUES - INTONATION

- ► Experimental procedure
 - Words with clear vowels: cat, no, all fit, cute
 - Words with obvious consonants: share, crazy, sky, cough, thank
- ► Experimental results:

	Version 1.3	Version 1.4	Version 1.8
Total Recognition rate	65.0%	77.5%	85.7%
Speaker Recognition rate	75.0%	87.5%	85.7%
Vocab Recognition rate	90.0%	87.5%	100.0%
Trial times	40	40	42

Optimization level	Processing Time (s)		
C	22.5		
1	14.5		
2	5.45		
3	4.5		

EXPERIMENTAL RESULT

Ver 2.0 (05192015)	Ben	George	Lyndsay	Briggs	Yuyu	Brooke
cat	1	1	1	3	1	3
all	1	1	1	1	1	1
no	1	1	1	3	5	2
fit	1	1	3	1	6	3
cute	2	1	1	1	1	1
share	1	1	1	1	1	1
crazy	1	3	1	4	1	1
sky	1	1	3	1	3	3
cough	1	2	2	1	5	3
thank	1	1	2	1	1	2

EXPERIMENTAL RESULT

- vocabulary recognition but human voice identification needs to be improved
- MFCC algorithm works good but the system is still not robust enough
- More voice control operation could be added
- A more efficient machine learning algorithm could be employed

CONCLUSION