

SCE-181 Introdução à Ciência da Computação II Rosane Minghim

Material preparado por : Prof. Thiago A. S. Pardo e modificado por R. Minghim

SCC - ICMC

Algoritmo

- Noção geral: conjunto de instruções que devem ser seguidas para solucionar um determinado problema
- Cormen et al. (2002)
 - Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores de entrada e produz algum valor ou conjunto de valores de saída
 - Ferramenta para resolver um problema computacional bem especificado
 - Assim como o hardware de um computador, constitui uma tecnología, pois o desempenho total do sistema depende da escolha de um algoritmo eficiente tanto quanto da escolha de um hardware rápido

Algoritmo

- Comen et al. (2002)
 - Deseja-se que um algoritmo termine e seja correto
- Perguntas
 - Mas um algoritmo correto vai terminar, não vai?
 - A afirmação está redundante?

Recursos de um algoritmo

- Uma vez que um algoritmo está pronto/disponível, é importante determinar os recursos necessários para sua execução
 - Tempo
 - Memória
- Qual o principal quesito? Por que?

Análise de algoritmos

- Um algoritmo que <u>soluciona um determinado</u> <u>problema</u>, mas requer o processamento de <u>um ano</u>, não deve ser usado
- O que dizer de uma afirmação como a abaixo?
 - "Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos"
- Você trocaria o SimpleX que roda em sua empresa pelo TripleX?

Análise de algoritmos

- A afirmação tem que ser examinada, pois há diversos fatores envolvidos
 - Características da máguina em que o algoritmo foi testado
 - Quantidade de memória
 - Linguagem de programação
 - Compilada vs. interpretada
 - Alto vs. baixo nível
 - Implementação pouco cuidadosa do algoritmo SimpleX vs. "super" implementação do algoritmo TripleX
 - Quantidade de dados processados
 - Se o TripleX é mais rápido para processar 1.000 números, ele também é mais rápido para processar quantidades maiores de números, certo?

Análise de algoritmos

- A comunidade de computação começou a pesquisar formas de comparar algoritmos de forma independente de
 - Hardware
 - Linguagem de programação
 - Habilidade do programador
- Portanto, quer-se comparar algoritmos e não programas
 - Área conhecida como "análise/complexidade de algoritmos"

Eficiência de algoritmos

- Sabe-se que
 - Processar 10.000 números leva mais tempo do que 1000 números
 - Cadastrar 10 pessoas em um sistema leva mais tempo do que cadastrar 5
 - Etc.
- Então, pode ser uma boa idéia <u>estimar a eficiência</u> de um algoritmo em função do tamanho do <u>problema</u>
 - Em geral, assume-se que "n" é o tamanho do problema, ou número de elementos que serão processados
 - E calcula-se o número de operações que serão realizadas sobre os n elementos

Eficiência de algoritmos

- O melhor algoritmo é aquele que requer menos operações sobre a entrada, pois é o mais rápido
 - O tempo de execução do algoritmo pode variar em diferentes máquinas, mas o número de operações é uma boa medida de desempenho de um algoritmo
- De que operações estamos falando?
- Toda operação leva o mesmo tempo?

9

Exemplo: TripleX vs. SimpleX

- TripleX: para uma entrada de tamanho n, o algoritmo realiza n²+n operações
 - Pensando em termos de função: f(n)=n²+n
- SimpleX: para uma entrada de tamanho n, o algoritmo realiza 1.000n operações
 - g(n)=1.000n

10

Exemplo: TripleX vs. SimpleX

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada

Tamanho da entrada (n)	10	100	1.000	10.000
$f(n)=n^2+n$				
a(n)=1.000n				

11

Exemplo: TripleX vs. SimpleX

 Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada

Tamanho da entrada (n)		10	100	1.000	10.000
f(n)=n ² +n	2	110	10.100	1.001.000	100.010.000
g(n)=1.000n	1.000	10.000	100.000	1.000.000	10.000.000

- A partir de n=1.000, f(n) mantém-se maior e cada vez mais distante de g(n)
 - Diz-se que f(n) cresce mais rápido do que g(n)

Análise assintótica

- Deve-se preocupar com a eficiência de algoritmos quando o tamanho de n for grande
- Definição: a <u>eficiência assintótica</u> de um algoritmo descreve a eficiência relativa dele quando n tornase grande
- Portanto, para comparar 2 algoritmos, determinamse as taxas de crescimento de cada um: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande

13

Análise assintótica

- Atenção
 - Algumas funções podem não crescer com o valor de n
 - Quais?
 - Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo
 - Mas não é tão útil, pois é difícil estimar os detalhes exatos do uso de memória e o impacto disso

14

Análise de algoritmos

- Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores
 - Empírica ou teoricamente
- É desejável e possível estimar qual o melhor algoritmo sem ter que executá-los
 - Função da análise de algoritmos

45

Calculando o tempo de execução

• Supondo que as operações simples demoram uma unidade de tempo para executar, considere o programa abaixo para calcular o resultado de $\sum_{i=1}^{n} i^3$

Início
declare soma_parcial numérico;
soma_parcial ← 0;
para i←1 até n faça
soma_parcial←soma_parcial+i*i*i;
escreva(soma_parcial);
Fim

Calculando o tempo de execução

• Supondo que as operações simples demoram uma unidade de tempo para executar, considere o programa abaixo para calcular o resultado de $\sum_{i=1}^{n} i^3$

Calculando o tempo de execução

• Supondo que as operações simples demoram uma unidade de tempo para executar, considere o programa abaixo para calcular o resultado de $\sum_{i=1}^{n} i^3$

Calculando o tempo de execução

- Ter que realizar todos esses passos para cada algoritmo (principalmente algoritmos grandes) pode se tornar uma tarefa cansativa
- Em geral, como se dá a resposta em termos do bigoh, costuma-se desconsiderar as constantes e elementos menores dos cálculos
 - No exemplo anterior
 - A linha soma_parcial ←0 é insignificante em termos de tempo
 - É desnecessário ficar contando 2, 3 ou 4 unidades de tempo na linha soma_parcial←soma_parcial+i*i*i
 - O que realmente dá a grandeza de tempo desejada é a repetição na linha para i←1 até n faça

Regras para o cálculo

- Repetições
 - O tempo de execução de uma repetição é pelo menos o tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada

Regras para o cálculo

- Repetições aninhadas
 - A análise é feita de dentro para fora
 - O tempo total de comandos dentro de um grupo de repetições aninhadas é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições
 - O exemplo abaixo é O(n²)

para i←0 até n faça para j←0 até n faça faça k←k+1;

21

Regras para o cálculo

- · Comandos consecutivos
 - É a soma dos tempos de cada um, o que pode significar o máximo entre eles
 - O exemplo abaixo é O(n²), apesar da primeira repetição ser O(n)

para i←0 até n faça k←0; para i←0 até n faça para j←0 até n faça faça k←k+1;

22

Regras para o cálculo

- Se... então... senão
 - Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos relativos ao então e os comandos relativos ao senão
 - O exemplo abaixo é O(n)

se i<j então i←i+1 senão para k←1 até n faça i←i*k; Regras para o cálculo

- Chamadas a sub-rotinas
 - Uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou

Operações Elementares

- As operações elementares (OE), são as medidas básicas de complexidade de algoritmos.
- Exemplos:

```
• a++ \rightarrow 2 OE (=,+).

• b=a*5-Vetor[2*2] \rightarrow 5 OE (=,*,-,[],*).

• b+=soma(a,b<2) \rightarrow 4 OE (+,=,soma,<).

• C++ == E[1] AND B>3 \rightarrow 6 OE (=,+,==,[],AND,>).
```

```
Exemplos
•Para o seguinte problema primeiro temos que identificar as operações
elementares (OE) que são realizadas:
 1 Procedure Buscar (VAR a:Vetor, c:Integer):Cardinal;
      Var j:Cardinal
      BEGIN
        j:= 1;-
        WHILE (a[j]<c) AND (j<n) DO -
                                                         4 OE (<,<,[],AND)
          j:=j+1
        IF a[j]=c THEN
                                                         2 OE (IF,[])
           RETURN j
11
12
        ELSE RETURN 0
      END
14 End Buscar
```

```
Exemplos

• Melhor Caso

• A linha 5 e 6 entrem só na primeira metade da condição, isso quer disser que a comparação a[j]<c vai ser falsa.

• T1(n)=10E(linha 5) + 20E(linha 6) = 30E

• Da linha 9 à 11, vai fazer pelo menos 1 comparação e um Return.

• T2(n)=20E(linha 9) + 10E(Return) = 30E

T(n)=T1(n)+T2(n)
T(n)=60E
```

```
Exemplos
• Pior Caso:

    Linha 5 = 10E.

       Linha 2 é repetida n-1 vezes até que a
                                                                       WHILE (a[j]<c) AND (j<n) DO
        segunda condição seja cumprida.
                                                                        j:=j+1
      Linha 9 até 11 = 30E.
                                                                      END
       Cada iteração do ciclo while composta pelas
linhas 6 e 7 mas uma execução adicional do
while (que avalia de novo si as condições do
                                                                      IF a[j]=c THEN
                                                                      ELSE RETURN 0
       ciclo foram cumpridas).
                                                                    END
            T(n)=1+((\sum_{i=1}^{n-1}(4+2))+4)+3
            T(n)=1+((6(n-1)+4)+3
            T(n)=1+6n-6+4+3
            T(n)=6n+2
```


Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo Início declare i e j numéricos; declare A vetor numérico de n posições; i←1; enquanto i≤n faça A[i]←0; i←i+1; para i←1 até n faça para j←1 até n faça A[i]←A[i]+i+j; Fim

Exercício

Relembrando um pouco de matemática...

- Expoentes
 - $x^a x^b = x^{a+b}$
 - $x^{a}/x^{b} = x^{a-b}$
 - $(x^a)^b = x^{ab}$
 - $x^n+x^n=2x^n$ (diferente de x^{2n})
 - $2^n + 2^n = 2^{n+1}$

Relembrando um pouco de matemática...

- Logaritmos (usaremos a base 2, a menos que seja dito o contrário)
 - $x^a=b \rightarrow log_x b=a$
 - log_ab = lob_cb/log_ca, se c>0
 - log ab = log a + log b
 - $\log a/b = \log a \log b$
 - log(ab) = b log a

33

Relembrando um pouco de matemática...

- Logaritmos (usaremos a base 2, a menos que seja dito o contrário)
 - E o mais importante
 - log x < x para todo x>0
 - Alguns valores
 - log 1=0, log 2=1, log 1.024=10, log 1.048.576=20

Exemplo para várias bases

Função exponencial vs. logarítmica

• Na palma da mão direita

Relembrando um pouco de matemática...

Séries

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2}$$

Algumas notações

- Notações que usaremos na análise de algoritmos
 - T(n) = O(f(n)) (lê-se big-oh, big-o ou "da ordem de") se existirem constantes c e n₀ tal que T(n) ≤ c * f(n) quando n > n₀
 - A taxa de crescimento de T(n) é menor ou igual à taxa de f(n)
 - $T(n) = \Omega(f(n))$ (lê-se "ômega") se existirem constantes c e n_0 tal que $T(n) \ge c * f(n)$ quando $n \ge n_0$
 - A taxa de crescimento de T(n) é maior ou igual à taxa de f(n)

37

Algumas notações

- Notações que usaremos na análise de algoritmos
 - $T(n) = \Theta(f(n))$ (lê-se "theta") se e somente se T(n) = O(f(n)) e $T(n) = \Omega(f(n))$
 - A taxa de crescimento de T(n) é igual à taxa de f(n)
 - T(n) = o(f(n)) (lê-se little-oh ou little-o) se e somente se T(n) = O(f(n)) e $T(n) \neq O(f(n))$
 - A taxa de crescimento de T(n) é menor do que a taxa de f(n)

Algumas notações

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos
 - Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico

Exemplo

- Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes 1.000n e n²
 - A primeira é maior do que a segunda para valores pequenos de
 - A segunda cresce mais rapidamente e eventualmente será uma função maior, sendo que o ponto de mudança é n=1.000
 - Segunda as notações anteriores, se existe um ponto n_0 a partir do qual $c^*f(n)$ é sempre pelo menos tão grande quanto T(n), então, se os fatores constantes forem ignorados, f(n) é pelo menos tão grande quanto T(n)

Mais algumas considerações

- Ao dizer que T(n) = O(f(n)), garante-se que T(n) cresce numa taxa não maior do que f(n), ou seja, f(n) é seu limite superior
- Ao dizer que $f(n) = \Omega(T(n))$, tem-se que T(n)é o limite inferior de f(n)

Outros exemplos

- A função n³ cresce mais rapidamente que n²
 - $n^2 = O(n^3)$
 - $n^3 = \Omega(n^2)$
- Se f(n)=n² e g(n)=2n², então essas duas funções têm taxas de crescimento iguais
 - Portanto, f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

Taxas de crescimento

- Algumas regras
 - Se $T_1(n) = O(f(n))$ e $T_2(n) = O(g(n))$, então
 - $T_1(n) + T_2(n) = max(O(f(n)), O(g(n)))$
 - $T_1(n) * T_2(n) = O(f(n) * g(n))$
 - Para que precisamos desse tipo de cálculo?

Taxas de crescimento

- · Algumas regras
 - Se T(x) é um polinômio de grau n, então
 - $T(x) = \Theta(x^n)$
 - Relembrando: um polinômio de grau n é uma função que possui a forma abaixo

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots \cdot a_1 x + a_0$$

seguindo a seguinte classificação em função do grau

- Grau 0: polinômio constante Grau 1: função afim (polinômio linear, caso $a_0=0$) Grau 2: polinômio quadrático
- Grau 3: polinômio cúbico

Se f(x)=0, tem-se o polinômio nulo

Taxas de crescimento

- Algumas regras
 - log^kn = O(n) para qualquer constante k, pois logaritmos crescem muito vagarosamente

Funções e taxas de crescimento

As mais comuns

Função	Nome
С	constante
log n	logarítmica
log ² n	log quadrado
n	linear
n log n	quadrática
n ²	
n ³	cúbica
2 ⁿ	exponencial
a ⁿ	

Taxas de crescimento

- Apesar de às vezes ser importante, n\u00e3o se costuma incluir constantes ou termos de menor ordem em taxas de crescimento
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes
 - As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes
- Não se diz que T(n) = O(2n²) ou que T(n) = O(n²+n)
 - Diz-se apenas T(n) = O(n²)

--

Exercício em duplas

- Um algoritmo tradicional e muito utilizado é da ordem de n^{1,5}, enquanto um algoritmo novo proposto recentemente é da ordem de n log n
 - f(n)=n^{1,5}
 - g(n)=n log n
- Qual algoritmo você adotaria na empresa que está fundando?
 - Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa

Exercício em duplas

- Uma possível solução
 - $f(n) = n^{1,5}$
- → $n^{1,5}/n = n^{0,5}$
- \rightarrow $(n^{0,5})^2 = n$

- $g(n) = n \log n$ \rightarrow $(n \log n)/n = \log n$ \rightarrow $(\log n)^2 = \log^2 n$
- - Como n cresce mais rapidamente do que qualquer potência de log, temos que o algoritmo novo é mais eficiente e, portanto, deve ser o adotado pela empresa no momento

Exercício

- Muito tempo atrás, o visir Sissa bem Dahir inventou o jogo de xadrez para o Rey Shirham da Índia.
- O Rey deu a possibilidade de selecionar sua recompensa, e Sissa lhe deu algumas opções:
 - Poderia ser recompensando com uma quantidade de trigo equivalente à plantação de trigo de seu reino por 2 anos, ou,
 - Poderia ser recompensado com uma quantidade de trigo que seria calculado da seguinte forma:
 - Um grão de trigo na primeira seção do tabuleiro de xadrez
 - Dois grãos de trigo na segunda seção
 - Quatro grãos na terceira seção, e assim por diante, até chegar na ultima
 - O Rey selecionou a segunda opção. Quantos grão de trigo deu o Rey para Sissa?. Quál é a complexidade?

Análise de algoritmos

- Para proceder a uma análise de algoritmos e determinar as taxas de crescimento. necessitamos de um modelo de computador e das operações que executa
- Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente
 - Com memória infinita, por simplicidade

Análise de algoritmos

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc.
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada
 - Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes

Análise de algoritmos

- Considera-se somente o algoritmo e suas entradas (de tamanho n)
- Para uma entrada de tamanho n, pode-se calcular T_{melhor}(n), T_{média}(n) e T_{pior}(n), ou seja, o melhor tempo de execução, o tempo médio e o pior, respectivamente
 - Obviamente, $T_{melhor}(n) \le T_{média}(n) \le T_{pior}(n)$
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento

57

Análise de algoritmos

- Geralmente, utiliza-se somente a análise do pior caso T_{pior}(n), pois ela fornece os <u>limites</u> para todas as entradas, incluindo particularmente as entradas ruins
 - Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente
 - Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas
 - Dá mais trabalho calcular o tempo médio
 - O melhor tempo não tem muita utilidade

5

Pergunta

- Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos
 - Qual a configuração do vetor que você imagina que provavelmente geraria o melhor tempo de execução?
 - E qual geraria o pior tempo?

Exemplo

- Soma da subseqüência máxima
 - Dada uma seqüência de inteiros (possivelmente negativos) a₁, a₂, ..., a_n, encontre o valor da máxima soma de quaisquer números de elementos consecutivos; se todos os inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta é 20 (soma de a₂ a a₄)

- Há muitos algoritmos propostos para resolver esse problema
- Alguns são mostrados abaixo juntamente com seus tempos de execução

Algoritmo	1	2	3	4
Tempo	O(n³)	O(n2)	$O(n \log n)$	O(n)
Tamanho da entrada				
n =10	0.00103	0.00045	0.00066	0.00034
n =100	0.47015	0.01112	0.00486	0.00063
n =1.000	448.77	1.1233	0.05843	0.00333
n =10.000	ND*	111.13	0.68631	0.03042
n =100.000	ND	ND	8.0113	0.29832

*ND = Não Disponível

Soma da subseqüência máxima

- Deve-se notar que
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos
 - Portanto, se somente entradas pequenas s\u00e3o esperadas, n\u00e3o devemos gastar nosso tempo para projetar melhores algoritmos
 - Para entradas grandes, o melhor algoritmo é o 4
 - Os tempos não incluem o tempo requerido para leitura dos dados de entrada
 - Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: característica típica de algoritmos eficientes

Exercício 1

- Com um algoritmo de função de custo temporal $f(n) = n^3$ se podem resolver problemas de tamanho k em 1 hora.
 - Até que tamanho poderemos resolver o mesmo problema,no mesmo tempo e com o mesmo algoritmo se tivéssemos um computador 1000 vezes mais rápido.
 - E si a função de custo fosse f(n)= 2ⁿ

Solução 1

- F(n) representa o número de operações elementares feitas para o algoritmo de tamanho n.
- Cada operação precisa de um tempo t para ser feita, então temos que f(k)t é uma hora.
- Um computador 1000 vezes mais rápido vai demorar t/1000 para realizar cada operação Elemental.
 - A equação → f(k)t = f(x)t / 1000.
 - Quando f(n)= n³ → x=10*k.
 - Quando f(n)= 2ⁿ → x=k+log₂ 1000.

Exercício 2

- Usando a definição de notação assintótica Θ, demonstre que $1024n^2 + 5n \in \Theta(n^2)$.
 - Primeiro há que encontrar um número n₀ e uma constante c>0 que cumpra que 1024n² + 5n <= cn² para todo n<= n₀.
 - Para simplificar a equação só divide-se entre n² para obter 1024 + (5/n) <= c.
 - $n_0 = 5 e c = 1025$.

Exercício 3


```
procedure prod_mat (n:integer)
          var
               i,j,k:integer
          begin
               for i:=1 to n do
                    for j:=1 to n do begin
   C[i,j]:=0
   for k:=1 to n do
                             C[i,j] := C[i,j] + A[i,k] * B[k,j]
          end
14 end procedure
```