Лекция 26 от 06.04.2016

Матрицы билинейных функций

Пусть V — векторное пространство, $\dim V < \infty, \ \beta \colon V \times V \to F$ — билинейная функция.

Определение. Матрицей билинейной функции в базисе e называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

Пусть $x = x_1e_1 + \ldots + x_ne_n \in V$ и $y = y_1e_1 + \ldots + y_ne_n \in V$. Тогда:

$$\beta(x,y) = \beta\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i=1}^{n} x_i \beta\left(e_i, \sum_{j=1}^{n} y_j e_j\right) =$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j \beta(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i b_{ij} y_j =$$

$$= (x_1, \dots, x_n) B\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad (*)$$

Предложение.

- 1. Всякая билинейная функция однозначно определяется своей матрицей в базисе (u, c) следовательно, в любом другом базисе).
- 2. Для любой матрицы $B \in M_n(F)$ существует единственная билинейная функция β такая, что $B = B(\beta, e)$.

Доказательство.

- 1. Уже доказано, это следует из формулы (*).
- 2. Определим β по формуле (*). Тогда β это билинейная функция на V и ее матрица есть в точности B. Единственность следует из все той же формулы.

Замечание. Эта биекция не имеет никакого отношения к биекции линейных операторов с квадратными матрицами.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$.

Предложение. $B' = C^T B C$.

Доказательство. Рассмотрим представление вектора $x \in V$ в обоих базисах.

$$x = x_1 e_1 + \dots + x_n e_n = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

$$x = x'_1 e'_1 + \dots + x'_n e'_n = (e'_1, \dots, e'_n) \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x'_n \end{pmatrix}$$

Аналогично для $y \in V$:

$$y = (e_1, \dots, e_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

$$y = (e'_1, \dots, e'_n) \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y'_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Тогда, если мы транспонируем формулу для x, получаем:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x'_1, \dots, x'_n) C^T B C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Одновременно с этим:

$$\beta(x,y) = (x'_1, \dots, x'_n)B'\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Сравнивая эти две формулы, получаем, что $B' = C^T B C$.

Следствие. Число ${\rm rk}\ B$ не зависит от выбора базиса.

Определение. Число $\operatorname{rk} B$ называется рангом билинейной функции β . Обозначение: $\operatorname{rk} \beta$.

Симметричные билинейные функции

Как и для линейных операторов, неплохо было бы научиться находить такой базис, в котором матрица B была бы проще. Но мы это сделаем только для некоторого класса билинейных функций.

Определение. Билинейная функция называется симметричной, если $\beta(x,y) = \beta(y,x)$ для любый $x,y \in V$.

Предложение. Билинейная функция β симметрична тогда и только тогда, когда матрица $B(\beta, e)$ — симметрическая (т.е. она равна своей транспонированной).

Доказательство. Пусть $B = B(\beta, e)$.

$$\Rightarrow \beta(e_i, e_j) = b_{ij} = b_{ji} = \beta(e_j, e_i) \Rightarrow B$$
 симметрична.

 \Leftarrow Пусть $x = x_1e_1 + \dots x_ne_n$ и $y = y_1e_1 + \dots + y_ne_n$. Также воспользуемся тем, что данная нам матрица симметрична, то есть равна своей транспонированной.

$$\beta(y,x) = (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{bmatrix}^T =$$

$$= (x_1, \dots, x_n) B^T \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \beta(x, y)$$

То есть $\beta(y, x) = \beta(x, y)$, что и означает, что β симметрична.

Квадратичные функции

Определение. Пусть $\beta \colon V \times V \to F$ — билинейная функция. Тогда $Q_{\beta} \colon V \to F$, заданная формулой $Q_{\beta}(x) = \beta(x,x)$, называется квадратичной функцией (формой), ассоциированной с билинейной функцией β .

Покажем, что такая квадратичная функция на самом деле является однородным многочленом степени 2 от n переменных. Пусть $e = (e_1, \ldots, e_n)$ — базис $V, B = B(\beta, e), x = (x_1, \ldots, x_n)$. Тогда:

$$Q_{\beta}(x) = (x_1, \dots, x_n)V\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n b_{ij}x_ix_j$$

Квадратичную функцию удобно так представлять, но не определять.

Пример. $3 decb \ e - cmandapmnый базис.$

1.
$$V = \mathbb{R}^n$$
, $\beta(x,y) = x_1y_1 + \ldots + x_ny_n \implies Q_{\beta}(x) = x_1^2 + \ldots + x_n^2$, $B(\beta, e) = E$.

2.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = 2x_1y_2 \implies Q_{\beta}(x) = 2x_1x_2$, $B(\beta, e) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

3.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = x_1 y_2 + x_2 y_1 \implies Q_{\beta}(x) = 2x_1 x_2$, $B(\beta, e) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Замечание. Kвадратичная функция задает билинейную функцию не однозначно (примеры 2 и 3).

В дальнейшем нам понадобится делить на два. Поэтому далее предположим, что в нашем поле F можно делить на два. Что это означает? Заметим, что 2=1+1, и, строго говоря, нельзя делить на ноль. Следовательно, наше условие можно переформулировать: рассматриваем такие поля F, в которых $1+1\neq 0$. В терминах поля, это уже гораздо более осмысленное и понятное условие.

Теорема. Отображение $\beta \mapsto Q_{\beta}$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

Доказательство.

Суръективность. Пусть β — билинейная функция. Рассмотрим тогда ассоциированную с ней квадратичную функцию $Q_{\beta}(x) = \beta(x,x)$. Пусть $\sigma(x,y) = \frac{1}{2}(\beta(x,y) + \beta(y,x))$ — симметричная билинейная функция на V. Тогда:

$$Q_{\sigma}(x) = \sigma(x, x) = \frac{1}{2}(\beta(x, x) + \beta(x, x)) = \beta(x, x) = Q_{\beta}(x)$$

Итого, $Q_{\sigma} = Q_{\beta}$. Следовательно, отображение суръективно.

<u>Инъективность</u>. Пусть $\beta(x,y)$ – симметричная билинейная функция. Аналогично, рассмотрим $Q_{\beta}(x) = \beta(x,x)$. Посмотрим на $Q_{\beta}(x+y)$:

Полученная выше формула как раз и означает, что значения билинейной функции однозначно задаются соответствующей квадратичной функцией.

Замечание.

- 1. Билинейная функция $\sigma(x,y)=\frac{1}{2}(\beta(x,y)+\beta(y,x))$ называется симметризацией билинейной функции β . Причем если $B=B(\beta,\mathbb{e})$ и $S=B(\sigma,\mathbb{e}),$ то $S=\frac{1}{2}(B+B^T).$
- 2. Симметричная билинейная функция $\beta(x,y) = \frac{1}{2} \left(Q_{\beta}(x+1) Q_{\beta}(x) Q_{\beta}(y) \right)$ называется поляризацией квадратичной функции Q.

Пример. Для предыдущих двух примеров:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}^T \right)$$

Далее вся терминология для билинейных функций переносится на квадратичные функции.

Теперь вспоминаем, что перед нами стоит задача научиться приводить к хорошему виду.

Определение. Квадратичная функция Q имеет в базисе e канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q_{\beta}(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$. Иными словами, $B(\beta, e) = \operatorname{diag}(a_1, \ldots, a_n)$.

Определение. Квадратичная функция Q имеет нормальный вид в базисе e, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q_{\beta}(x) = a_1x_1^2 + \ldots + a_nx_n^2$, причем $a_i \in \{-1, 0, 1\}$.