TRACKING THE EVOLUTION OF THE HEMOGLOBIN BETA (HBB) GENE ACROSS SPECIES

1. Sequence Retrieval and BLAST Search

Protein	Protein •	
	Advanced	
FASTA ▼		

hemoglobin subunit beta [Homo sapiens]

NCBI Reference Sequence: NP_000509.1

GenPept | Identical Proteins | Graphics

>NP_000509.1 hemoglobin subunit beta [Homo sapiens]
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

Species Name	Accession Number	% Identity with Human
		НВВ
Chimpanzee (Pan troglodytes)	XP_508242.1	100.00%
Cow (Bos taurus)	NP_776342.1	84.72 %
Mouse (Mus musculus)	NP_001265090.1	80.27%
Chicken (Gallus gallus)	NP_990820.1	69.39 %
Zebrafish (Danio rerio)	NP_001013045.1	51.35 %

2. Pairwise Sequence Alignment

(a) Human vs Chimpanzee

NP_000509.1 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50 XP_508242.1 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50 NP_000509.1 51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100 XP_508242.1 51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100 NP 000509.1 101 PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 147 XP_508242.1 101 PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 147

#-----#

Identity: 100.0%

Similarity: 100.0%

Gaps: 0

Percentage identity and similarity is highest between humans and chimpanzees and lowest between humans and zebrafish. This indicates that humans and chimpanzees have had a closer evolutionary relationship compared to zebrafish.

(b) Human vs Zebrafish

NP_000509.1	1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS	50
NP_001013045.	:: : : : : . : : : 1 MVEWTDAERTAILGLWGKLNIDEIGPQALSRCLIVYPWTQRYFATFGNLS	50
NP_000509.1	51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD	100
NP_001013045.	: . : . :. : :: :	100
NP_000509.1	101 PENFRLLGNVLVCVLAHHFGKE-FTPPVQAAYQKVVAGVANALAHKYH 14	47
NP 001013045.	: .: :. 101 PDNFRLLADCITVCAAMKFGOAGFNADVOEAWOKFLAVVVSALCROYH 14	48

Identity: 76/148 (51.4%) Similarity: 106/148 (71.6%)

Gaps: 1/148 (0.7%)

3. Multiple Sequence Alignment

```
CLUSTAL 0(1.2.4) multiple sequence alignment
                    MVEWTDAERTAILGLWGKLNIDEIGPQALSRCLIVYPWTQRYFATFGNLSSPAAIMGNPK
NP_001013045.1
                                                                                        60
                    MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM
NP_990820.1
                                                                                        60
NP_001265090.1
                    MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAK
                                                                                        60
NP 000509.1
                    MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGNPK
                                                                                        60
                    MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
XP_508242.1
                                                                                        60
                    --MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK
NP_776342.1
                                                                                        58
                        * *: : :***:: * * :**.* *:*******:* :**:**: *::.*
```

```
VAAHGRTVMGGLERAIKNMDNVKNTYAALSVMHSE<mark>KLHVDP</mark>DNFRLLADCITVCAAMKFG
NP_001013045.1
                                                                                             120
NP_990820.1
                     VR<mark>AHG</mark>KKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS
                                                                                             120
NP_001265090.1
                     VKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLG
                                                                                             120
                     VK<mark>AHG</mark>KKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
NP_000509.1
                                                                                             120
                     VK<mark>AHG</mark>KKVLGAFSDGLAHLDNLKGTFATLSELHCD<mark>KLHVDP</mark>ENFRLLGNVLVCVLAHHFG
XP_508242.1
                                                                                             120
                     VK<mark>AHG</mark>KKVLDSFSNGMKHLDDLKGTFAALSELHCD<mark>KLHVD</mark>PENFKLLGNVLVVVLARNFG
NP_776342.1
                                                                                             118
                     * ***:.*: .: .::*.:*.: ** :*.:****:**::: . ::.
NP_001013045.1
                     OAGFNADVQEAWQKFLAVVVSALCROYH
                                                           148
NP_990820.1
                     K-DFTPECQAAWQKLVRVVAHALARKYH
                                                           147
NP_001265090.1
                     K-DFTPAAQAAFQKVVAGVATALAHKYH
                                                           147
NP_000509.1
                     K-EFTPPVQAAYQKVVAGVANALAHKYH
                                                           147
XP_508242.1
                     K-EFTPPVQAAYQKVVAGVANALAHKYH
                                                           147
NP_776342.1
                     K-EFTPVLQADFQKVVAGVANALAHRYH
                                                           145
                     : *. * :**.: *. **.::**
```

4. Sequence Logo Generation

There are a number of highly conserved residues in certain regions This could indicate that these regions are of great importance either structurally or functionally.

5. Phylogenetic Tree Construction

The species that are most closely related are human and chimpanzee. This indicates that they had a common ancestor in the course of evolution.