Lect 16 – NumPy

Rob Capra
INLS 490-172

Numerical Python (NumPy)

- Package for scientific computing and data analysis
- Foundation for other tools
- Provides:
 - ndarray fast, space-efficient multidimensional array
 - Fast operation application of math functions to arrays
 - Tools for reading/writing arrays to disk

import numpy as np

Creating ndarrays

- N-dimensionary array
- ndarrays can be created using the array() function
- Can create an array from any sequence-like object

```
In [1]: import numpy as np
In [2]: t = [1, 2, 3]
In [3]: a1 = np.array(t)
In [4]: a1
Out[4]: array([1, 2, 3])
```

ndarrays

ndim, shape, dtype

```
In [10]: t2 = [[1,2,3], [4,5,6]]
In [11]: a2 = np.array(t2)
In [12]: a2
Out[12]:
array([[1, 2, 3],
       [4, 5, 6]])
In [13]: a2.ndim
Out[13]: 2
In [14]: a2.shape
Out[14]: (2L, 3L)
In [15]: a2.dtype
Out[15]: dtype('int32')
```

zeros, ones, empty

- Create arrays of 0's or 1's with a given shape
- Empty does not initialize the values (garbage to start)

```
In [17]: np.zeros((3,6))
Out[17]:
array([[ 0., 0., 0., 0., 0., 0.],
      [0., 0., 0., 0., 0., 0.]
      [0., 0., 0., 0., 0., 0.]
In [18]: np.ones((2,3))
Out[18]:
array([[ 1., 1., 1.],
      [1., 1., 1.]
In [19]: np.empty((2,3))
Out[19]:
array([[ 2.05915396e+184, 1.77296837e+160, 5.58290476e-091],
                          1.00000038e+000, 1.0000000e+000]
     [ 4.31091749e-033,
```

zeros_like, ones_like, arange

- Create a new array of the same shape with 0's or 1's
- Arange is like range, but for arrays

```
In [20]: np.arange(7)
Out [20]: array([0, 1, 2, 3, 4, 5, 6])
In [21]: a3 = np.ones((2,3))
In [22]: a3
Out[22]:
                                 There is also: empty like
array([[ 1., 1., 1.],
       [ 1., 1., 1.]])
In [23]: a4 = np.zeros like(a3)
In [24]: a4
Out [24]:
array([[ 0., 0., 0.],
       [0., 0., 0.]
```

eye, identity

- Create an NxN identity matrix
- 1's on diagonal, 0's elsewhere

dtype

Can specify the data type for arrays

```
In [34]: a7
Out [34]: array([1, 2, 3])
In [35]: a7.dtype
Out[35]: dtype('int32')
In [36]: a8 = np.array([1,2,3],
dtype=float64)
In [37]: a8
Out[37]: array([ 1., 2., 3.])
In [38]: a8.dtype
Out[38]: dtype('float64')
```

dtype

- Dtypes are very important
- Mostly, they map to underlying machine data types
- This is a key part of the speed and power of ndarrays
- Because they use underlying machine data types, they can quickly be processed, written as binary data, and integrated with other languages like C.

dtype

Table 4-2. NumPy data types

Туре	Type Code	Description
int8, uint8	i1, u1	Signed and unsigned 8-bit (1 byte) integer types
int16, uint16	i2, u2	Signed and unsigned 16-bit integer types
int32, uint32	i4, u4	Signed and unsigned 32-bit integer types
int64, uint64	i8, u8	Signed and unsigned 32-bit integer types
float16	f2	Half-precision floating point
float32	f4 or f	Standard single-precision floating point. Compatible with C float
float64	f8 or d	Standard double-precision floating point. Compatible with C double and Python float object
Туре	Type Code	Description
Type float128	Type Code f16 or g	Description Extended-precision floating point
7.5		·
float128 complex64, complex128,	f16 or g c8, c16,	Extended-precision floating point
float128 complex64, complex128, complex256	f16 or g c8, c16, c32	Extended-precision floating point Complexnumbers represented by two 32,64, or 128 floats, respectively
float128 complex64, complex128, complex256 bool	f16 or g c8, c16, c32	Extended-precision floating point Complex numbers represented by two 32,64, or 128 floats, respectively Boolean type storing True and False values

Cast using astype

Convert (cast) array from one type to another

```
In [42]: a9
Out[42]: array([ 1.2, 2.5, 3.7])
In [43]: a9.dtype
Out[43]: dtype('float64')
In [44]: a10 = a9.astype(int32)
In [45]: a10
Out [45]: array([1, 2, 3])
In [46]: a10.dtype
Out[46]: dtype('int32')
In [47]: all = al0.astype(float64)
In [48]: a11
Out[48]: array([ 1., 2., 3.])
In [49]: all.dtype
Out[49]: dtype('float64')
```

Strings to numbers

Can also convert strings to numbers this way

```
In [50]: a12 = np.array(['1.2', '2.5', '3.7'],
dtype=np.string )
In [51]: a12
Out[51]:
array(['1.2', '2.5', '3.7'],
      dtvpe='|S3')
In [52]: a12.dtype
Out[52]: dtype('S3')
In [53]: a13 = a12.astype(float)
In [54]: a13
Out[54]: array([ 1.2, 2.5, 3.7])
In [55]: a13.dtype
Out[55]: dtype('float64')
```

astype always creates new array (copy of the data), even if the data type is the same as the old type

Arrays versus lists

 Arrays have built-in support for many common operations without having to use for loops

Lists

NumPy Arrays

```
In [65]: a1 = np.array([1,2,3])
In [66]: a1
Out[66]: array([1, 2, 3])
In [67]: a2 = a1 + 1
In [68]: a2
Out[68]: array([2, 3, 4])
```

More operations

- Arrays and scalars
- Vector operations
- Operations between equal-sized arrays (elementwise)

```
In [69]: a1 = np.array([1,2,3])
In [70]: a1
Out [70]: array([1, 2, 3])
In [71]: a2 = a1 * a1
In [72]: a2
Out [72]: array([1, 4, 9])
In [73]: a3 = a1 * 2
In [74]: a3
Out [74]: array([2, 4, 6])
In [75]: a4 = a1 ** 2
In [76]: a4
Out [76]: array([1, 4, 9])
```

Indexing and Slicing

Indexing and slices on 1-dim arrays work like lists

```
In [77]: a1 = np.arange(7)

In [78]: a1
Out[78]: array([0, 1, 2, 3, 4, 5, 6])

In [79]: a1[2]
Out[79]: 2

In [80]: a1[3:5]
Out[80]: array([3, 4])

In [81]: a1[:3]
Out[81]: array([0, 1, 2])
```

Broadcasting

Values can be propagated (or broadcast) into an array

```
In [82]: a1 = np.arange(10)
In [83]: a1
Out[83]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [84]: a1[3:5] = 99
In [85]: a1
Out[85]: array([ 0,  1,  2, 99, 99,  5,  6,  7,  8,  9])
In [86]: a1[:3] = 44
In [87]: a1
Out[87]: array([44, 44, 44, 99, 99,  5,  6,  7,  8,  9])
```

Array slices are *views*

- A BIG difference between array slices and list slices is that array slices are views into the original array.
- The slice data is not copied any modifications to the view will be reflected in the original array

```
In [90]: a1 = np.arange(10)
In [91]: a1
Out [91]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [92]: fred = a1[3:7]
In [93]: fred
                                            Motivation for this is that
Out [93]: array([3, 4, 5, 6])
                                            NumPy is designed to work
                                            on large data sets. Copying
In [94]: fred[:3] = 99
                                            data for slices would add
In [95]: fred
                                            lots of overhead.
Out[95]: array([99, 99, 99, 6])
In [96]: a1
Out[96]: array([ 0, 1, 2, 99, 99, 99, 6, 7, 8, 9])
```

Copy a slice

If you want to copy a slice, you can copy it explicitly

```
In [97]: a1 = np.arange(10)
In [98]: a1
Out [98]: array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [99]: fred = a1[3:7].copy()
In [100]: fred
Out[100]: array([3, 4, 5, 6])
In [101]: fred[:3] = 99
In [102]: fred
Out[102]: array([99, 99, 99, 6])
In [103]: a1
Out[103]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

Higher dimension indexing

Things get more complex with higher dimensional arrays

```
In [105]: a1 = np.array([[1,2,3], [4,5,6], [7,8,9]])
In [106]: a1
Out[106]:
array([[1, 2, 3],
      [4, 5, 6],
       [7, 8, 9]])
In [107]: a1[1]
Out [107]: array([4, 5, 6])
In [108]: a1[1][1]
Out[108]: 5
In [109]: a1[1,1]
Out[109]: 5
```

Higher dimension indexing

```
In [111]: a1 = np.array([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])
In [112]: a1
Out[112]:
                                         In [115]: a1[0] = 99
array([[[ 1, 2, 3],
      [4, 5, 6]],
                                         In [116]: a1
       [[7, 8, 9],
                                         Out[116]:
       [10, 11, 12]])
                                         array([[[99, 99, 99],
                                                 [99, 99, 9911,
In [113]: a1[0]
Out[113]:
                                                [[7, 8, 9],
array([[1, 2, 3],
                                                 [10, 11, 12]]
       [4, 5, 6]])
                                         In [117]: a1[0] = tmp
In [114]: tmp = a1[0].copy()
                                         In [118]: a1
                                         Out[118]:
                                         array([[[ 1, 2, 3],
                                               [4, 5, 6]],
                                                [[7, 8, 9],
                                                [10, 11, 12]])
```

Higher dimension slicing

Things get more complex with higher dimensional arrays

```
In [122]: a1 = np.array([[1,2,3],[4,5,6],[7,8,9]])
In [123]: a1
                                         In [125]: a1[:2, 1:]
Out[123]:
                                         Out[125]:
array([[1, 2, 3],
                                         array([[2, 3],
       [4, 5, 6],
                                                 [5, 6]])
       [7, 8, 9]])
                                         In [126]: a1[1, :2]
In [124]: a1[:2]
                                         Out [126]: array ([4, 5])
Out[124]:
array([[1, 2, 3],
                                         In [127]: a1[2, :1]
       [4, 5, 6]])
                                         Out[127]: array([7])
                                         In [128]: a1[:, :1]
                                         Out[128]:
                                         array([[1],
                                                 [4],
                                                 [7]])
```

Higher dimension indexing

Figure 4-2. Two-dimensional array slicing

Boolean Indexing

```
In [129]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [130]: names
Out[130]:
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='|S4')
In [131]: rdata = randn(7,4)
In [132]: rdata
Out[132]:
array([[-0.50616171, -0.22846826, -0.42737071, -0.63261581],
       [-0.39151879, 0.7829083, -0.05144168, 0.16832157],
       [0.32729197, 0.45675639, -0.47354509, 0.59531804],
       [0.17286501, -0.01831906, 0.23977178, -0.47188809],
       [0.60561711, -0.55625868, -1.40889478, -1.24903569],
       [-1.3945014, 1.5493835, 0.41147468, -0.72185362],
       [0.34212125, -0.72760385, 0.58684746, -0.5108895411)
In [133]: names == 'Bob'
Out[133]: array([ True, False, False, True, False, False, False], dtype=bool)
In [135]: rdata[names == 'Bob']
Out[135]:
array([[-0.50616171, -0.22846826, -0.42737071, -0.63261581],
       [0.17286501, -0.01831906, 0.23977178, -0.47188809]])
In [136]: rdata[names == 'Bob', 2:]
Out[136]:
array([[-0.42737071, -0.63261581],
       [0.23977178, -0.47188809]])
```

Boolean Indexing

```
In [145]: rdata
Out[145]:
array([[-0.50616171, -0.22846826, -0.42737071, -0.63261581],
     [-0.39151879, 0.7829083, -0.05144168, 0.16832157],
     [0.32729197, 0.45675639, -0.47354509, 0.59531804],
     [0.17286501, -0.01831906, 0.23977178, -0.47188809],
     [0.60561711, -0.55625868, -1.40889478, -1.24903569],
     [-1.3945014, 1.5493835, 0.41147468, -0.72185362],
     [0.34212125, -0.72760385, 0.58684746, -0.51088954]])
In [146]: rdata[rdata < 0] = 0</pre>
In [147]: rdata
Out[147]:
[ 0.32729197, 0.45675639, 0. , 0.59531804],
    [ 0.17286501, 0. , 0.23977178, 0.
     [ 0.60561711, 0. , 0. , 0. ],
     [ 0. , 1.5493835 , 0.41147468, 0. ],
     [ 0.34212125, 0. , 0.58684746, 0.
In [148]: rdata[names != 'Joe'] = 7
In [149]: rdata
Out[149]:
, 7.
           , 7. , 7.
                            , 7.
         , 7. , 7.
     [ 0. , 1.5493835 , 0.41147468, 0.
     [ 0.34212125, 0. , 0.58684746, 0.
```