Design Approach:

System Overview:

- In this project, two ESP32 microcontrollers are utilized, designated as ESP32 A and ESP32 B. ESP32 A is configured to serve as both a file server and a LoRa communication module, while ESP32 B functions as a remote LoRa-based controller to issue commands and request files. This setup allows ESP32 B to communicate with ESP32 A to retrieve files stored on an SD card, and access them via a web server hosted on ESP32 A.
- The main objective is to design a reliable, long-range communication system that supports file transfer and remote access in areas with limited connectivity.

Roles of Each Module:

- ESP32 A: Equipped with an SD card module and a LoRa transceiver, ESP32 A acts as a data storage server, holding files for download or deletion. It also hosts a web server, accessible via WiFi, for user interaction and file management.
- ESP32 B: This module has a LoRa transceiver for issuing commands to ESP32 A. It requests specific files or file lists and controls file operations on ESP32 A without needing direct physical access.

Communication Flow:

- ESP32 B initiates communication by sending commands to ESP32 A via LoRa. Commands include "LIST" to get a directory of files and "FILE:<filename>" to request a specific file.
- Upon receiving a command, ESP32 A retrieves the requested file from the SD card, divides it into smaller data packets, and transmits them back to ESP32 B over LoRa.
- The ESP32 A's web server updates accordingly, showing available files, enabling download links, and providing real-time file management for the user.

System Model:

Architecture Diagram:

Figure 1ESP32 A CIRCUIT

Figure 2ESP32 B CIRCUIT

Flowchart:

Figure 3system flow diagram

Technical Description

ESP A and ESP B Setup:

- ESP32 A Configuration:
 - SD Card Module: ESP32 A reads/writes data to an SD card module for persistent storage. Connections to the SD card are via SPI (Serial Peripheral Interface), enabling high-speed data transfer.
 - Web Server Setup: ESP32 A hosts a web server accessible over WiFi, allowing users to view, download, or delete files on the SD card. HTML and JavaScript are embedded in the ESP32 A code to enable an interactive web interface.
 - LoRa Configuration: LoRa module on ESP32 A is set to operate on a predetermined frequency, with specific parameters for power, bandwidth, and spread factor to optimize for long-range, low-power communication.
- ESP32 B Configuration:
 - LoRa Module: Configured similarly to ESP32 A for compatibility, ESP32
 B's LoRa module only transmits and receives commands. It lacks an SD card or web server, relying on ESP32 A for file access.

Data Handling:

- SD Card File Management:
 - ESP32 A reads/writes to the SD card, creating, deleting, or retrieving files upon command.
 - o File directory information is cached for faster access, especially when

sending a file list to ESP32 B.

- Web Server Integration:
 - ESP32 A's web server has a simple HTML interface listing all files on the SD card. Users can click on a file name to download or delete it.
- Data Chunking:
 - File Transfer Optimization: Large files are split into data chunks, typically of 512 bytes, due to LoRa's limited payload capacity.
 - Reassembly: ESP32 B reassembles these chunks to form the complete file, verifying each chunk's integrity before assembling them.

5. RESULT ANALYSIS

Figure 4serial moniter of each esp nodes

Figure 5Setup and connecton of the prototype

Figure 6webserver from espB

Figure 8Sample pictures of functon of webserver