5 A solid cylinder is lifted out of oil by a wire attached to a motor. Fig. 5.1 shows two different positions X and Y of the cylinder during the lifting process.

Fig. 5.1

The motor is fixed to an overhead beam.

The cylinder has cross-sectional area 0.018 m², length 1.2 m and weight 560 N.

The density of the oil is 940 kg m⁻³.

Throughout the lifting process, the cylinder moves vertically upwards with a constant velocity of 0.020 m s⁻¹. The viscous force of the oil acting on the cylinder is negligible.

(a) Calculate the density of the cylinder.

density =
$$kg m^{-3} [2]$$

(b) the cylinder at position X, show that the upthrust due to the oil is 200 N.

(c)	Calculate, for the moving cylinder at position X,	
	(i)	the tension in the wire,
	(ii)	tension =
(d)	The	power =
	(i)	State and explain the variation, if any, of the power output of the motor as the cylinder is raised. Numerical values are not required.
	/ii\	The rate of energy output of the mater is less than the rate of increase of gravitational
	(ii)	The rate of energy output of the motor is less than the rate of increase of gravitational potential energy of the cylinder. Without calculation, explain this difference.
		[1]
		[Total: 11]