Simplifying BRDF Acquisition

Dual Degree Project

Presented by: Shubham Chitnis

Supervised by: Prof. Sharat Chandran

What is BRDF?

Determines how we perceive objects

Formal definition

The ratio of the outgoing radiance from a point on the material to the incoming irradiance for a given *incidence and reflection angle pair*.

Why measure BRDF?

BRDF data

Laborious!

Problem Description

BRDF acquisition is expensive, requiring multiple hours (even days) for material capture forcing us to devise more efficient ways for BRDF capture.

This could be done using:

- a) Better data (smartly chosen angles)
- b) Better ways to represent data

For (a), we suggest using in-plane angles

For (b), existing BRDF representations suffice

Existing BRDF representations

Input: Directions, Material-specific parameters

Output: BRDF

Contributions

- We demonstrate that a small subset of *in-plane* angles sufficiently represents isotropic BRDFs.
- We also generate reduced BRDF datasets and compare their fit qualities using *existing representations*.

Data Description (MERL)

Publicly available dataset for 100 isotropic materials

BRDF datapoints in millions (tristimulus domain, unrestricted)

Granularity (polar and azimuthal angles):

- 10° intervals for incoming polar angle
- 1° intervals for outgoing polar angle
- 1° intervals for outgoing azimuthal angle

Samples: tungsten carbide, blue acrylic, brass, nylon, specular black phenolic

Data Description (MERL)

Picked materials with diverse optical properties: diffuse, light-specular, heavy-specular

Here, we have fixed incoming angle to -45° and varied the outgoing angle, querying the BRDF for each pair

Problem Description

Efficient BRDF acquisition

Unrestricted data pipelineIn-plane pipeline

Parametric Representation

ABC model based on **Microfacet theory**

Parameter estimation: 9 total (k_d RGB, ARGB, B, C, eta) estimated using least squares optimization on BRDF data with a weighted L2 loss function.

$$L_{\text{cus}}^2 = \frac{1}{N} \sum_{n=1}^{N} (g_{\text{mea}} - g_{\text{pred}})^2 \sin \theta_r$$

$$g_{\text{mea}} = \ln(1 + \cos\theta_i f_{\text{mea}})$$

$$g_{\text{pred}} = \ln(1 + \cos\theta_i f_{\text{pred}})$$

ABC distribution variant of Cook-Torrance

$$f_r(\mathbf{l}, \mathbf{v}) = \frac{k_d}{\pi} + \frac{F(\theta_h)G(\mathbf{n} \cdot \mathbf{l}, \mathbf{n} \cdot \mathbf{v})S(\sqrt{1 - (\mathbf{n} \cdot \mathbf{h})})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

(Geometric attenuation)

$$G = \min \left\{ 1, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})}, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{l})}{(\mathbf{v} \cdot \mathbf{h})} \right\}$$

(Fresnel factor)
$$F = \frac{(g-c)^2}{2(g+c)^2} \left\{ 1 + \frac{[c(g+c)-1]^2}{[c(g-c)+1]^2} \right\}$$

(ABC distribution)

$$S(f) = \frac{A}{(1 + Bf^2)^C}$$
n: surface normal
l: incoming angle
v: outgoing angle

h: half angle

c: v.h

 $g: \eta^2 + c^2 - 1$ η : index of refraction

In-plane vs Unrestricted (ABC Model)

Renderings (MERL)

Renderings (MERL)

Rendering comparison

Mitsuba living room scene

<u>link</u>

BRDF and relative-rmse plots

0.00

incident direction

(for a particular incoming directions, values are aggregated over all the outgoing directions and the three channels)

BRDF and relative-rmse plots

Low et al. (unrestricted angle) fits produce superior relative-rmse plots for only 20/100 MERL materials

Neural Layered BRDF

Inputs

- Incoming direction
- Outgoing direction
- Material-specific latent vector

Back-propagation

- For learning a new material
- Freeze network weights
- Optimize V_f using BRDF data

In-plane vs Unrestricted (NLB Model)

BRDF and relative-rmse plots

Ablations

Progressively reduce dataset (DS1-DS4) from 900 angle pairs to 6 angle pairs

ABC parameters obtained through least squares optimization. NLB latent vector obtained using backprop shown earlier.

Dataset	θ_i interval	θ_r interval: Diffuse	θ_r interval: Glossy
DS1	5°	5°	1°
DS2	15°	10°	2°
DS3	30°	20°	3°

Dataset	Incoming angle (θ_i°)	Outgoing angle (θ_r°)
DS4	30°	$-60^{\circ}, -20^{\circ}, 20^{\circ}, 28^{\circ}, 36^{\circ}, 60^{\circ}$

Renderings (ABC Model)

BRDF and relative-rmse plots (ABC Model)

Renderings (NLB Model)

BRDF and relative-rmse plots (NLB Model)

Problem Description

Parametric representations for BRDFs lie in the tristimulus domain, forcing premature wavelength compression of spectral data and loss of information.

Contribution:

We propose an MLP architecture that learns underlying BRDF trends using a subset training data and provides suitable estimates for unseen angles and wavelengths.

Spectral to RGB

Spectral BRDF matching

Input (normalized): Incident angle, viewing angle, wavelength

Output: BRDF value

Network: 3 layer MLP, 10 nodes each layer

Data Description (Packaging print)

BRDF measured for 31 wavelengths (390–730 nm at 10 nm intervals, in-plane)

Granularity (incident and viewing angles):

- 5° intervals for diffuse region
- 1° intervals for specular region.

Samples: Gold, Cyan, Magenta, Gonio

Results

Cyan Sample

Results

Gold Sample

Results

Gonio Sample

Summarizing

- For isotropic materials, we demonstrate the sufficiency of inplane angles for material capture.
- Both physics-based and network-based models were used to show comparable results between our chosen angles and 256x larger out-of-plane ones.
- The effect of data reduction on material capture was studied with the findings suggesting that even six angle pairs are enough in simpler materials.

Thank You!

References

- [1] https://www.sciencedirect.com/topics/engineering/bidirectional-reflectance-distribution-function
- [2] https://en.wikipedia.org/wiki/Bidirectional reflectance distribution function
- [3] https://snr.unl.edu/agmet/brdf/brdf-definition.asp
- [4] https://tips.clip-studio.com/en-us/articles/4405
- [5] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4587766&tag=1
- [6] https://www.semanticscholar.org/paper/Image-Based-BRDF-Measurement-Including-Human-Skin-Marschner-Westin/c05c4b5238b8344d44de424811a4b2d8f6f99f48
- [7] https://x.com/keenanisalive/status/1526158057151111169
- [8] https://blog.yiningkarlli.com/2013/04/working-towards-importance-sampled-direct-lighting.html
- [9] https://www.projector1.com/color-gamut-rec-2020-vs-dci-p3-vs-adobe-rgb-vs-ntsc/
- [10] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624368/
- [11] https://www.researchgate.net/figure/At-left-the-CIE-illuminant-D65-average-daylight-The-colors-show-the-spectral-bins-for_fig2_320108906
- [12] https://www.mcrl.co.jp/english/products/p_color_sp/detail/GCMS3B.html