STATS303 Midterm Exam

Fall'20 Session 2

NAME:	-
NetID:	
Time: 75min	
Total points: 200pt	
Please keep this exam confidential and do	o not share the problems with others.

Problem 1. (60pt)

Assume you are the principal data scientist of a company named Dorakitty. A manager from another division needs some help from you and asks you the following questions. Answer his / her questions in plain language.

- 1. (20pt) Our division have some sales data and we trained a linear regression model with 100 independent variables. But we don't believe we need to interpret our sales using so many variables. What should we do?
- 2. (20pt) Our sales data can be partitioned into several clusters and we plan to use K-means for this task. However, we don't know exactly how many clusters we have. What should we do? Give me **one** idea.
- 3. (20pt) Our division fit a Nadaraya-Watson kernel weighted average for our sales data. However, at boundary there seems to be a big bias. What should we do?

Problem 2. (50pt)

Assume a regression model $r=f(x)+\epsilon$ where $x,r\in\mathbb{R},\,f(x)$ is some deterministic but unknown function and $\epsilon\sim\mathcal{N}(0,\sigma^2)$. Suppose $g(x|\theta)$ is our estimator to f where θ denotes the parameters.

- 1. (20pt) Write the density p(r|x) in terms of $g(x|\theta)$ and σ .
- 2. (10pt) Suppose there is an unknown joint density p(x,r) for x and r. Explain why the log likelihood $\mathcal{L}(\theta|\mathcal{X})$ of p(x,r), where the sample $\mathcal{X}=\{x^t,r^t\}_{t=1}^N$ contains i.i.d. data points, can be written as

$$\mathcal{L}(\theta|\mathcal{X}) = \log \prod_{t=1}^{N} p(r^{t}|x^{t}) + C.$$

3. (20pt) According to Parts 1 and 2, show that the maximum likelihood estimator is given by minimizing

$$\frac{1}{2} \sum_{t=1}^{N} [r^t - g(x^t | \theta)]^2.$$

Problem 3. (50pt)

Consider the data points $x_1 = (0, 1, 2)^T$, $x_2 = (-1, 3, 4)^T$, $x_3 = (0, 0, 1)^T$ and $x_4 = (2, 3, -2)^T$.

- 1. (10pt) Write a data matrix X for the data points where each row correspond to a data point.
- 2. (10pt) What is the first step if we want to apply PCA to the data points? Choose from the following.
 - (A) Center the data around the origin;
 - (B) Perform SVD on X;
 - (C) Perform K-means on X;
 - (D) Perform dimensionality reduction on X.
- 3. (10pt) Suppose a system gives output r_j if we input x_j for j = 1, 2, 3, 4. We fit a ridge regression model by solving

$$\min_{oldsymbol{w} \in \mathbb{R}^4} rac{1}{2} \left\| oldsymbol{r} - ilde{oldsymbol{X}} oldsymbol{w}
ight\|^2 + rac{\lambda}{2} \left\| oldsymbol{w}
ight\|^2 \; ,$$
 (3)

where $\boldsymbol{r} = [r_1, r_2, r_3, r_4]^T$. What is $\tilde{\boldsymbol{X}}$?

4. (20pt) By taking the gradient with respect to w, derive the solution of (\mathbf{a}) in terms of \tilde{X}, λ and r.

Problem 4. (40pt)

- 1. (20pt) Let $\{x^t\}_{t=1}^N$ be given. The K-NN density estimator is given by $\hat{p}(x) = \frac{K}{2Nd_K(x)}$ where $d_K(x)$ is the distance between x and its K-th closest neighbor in $\{x^t\}_{t=1}^N$. Prove that \hat{p} is NOT a density.
- 2. (20pt) Consider applying K-means with K=2 clusters to the five points (0,0),(1,2),(2,0),(3,2),(4,0). Suppose the initial centers are set to be (0,0) and (3,0). Write the E-step and the M-step for the first iteration. You need to clearly state the locations of the centers and the labels of the points.