

La spectroscopie proche-infrarouge en agronomie

Martin Ecarnot, INRAE / AGAP Institut

Plan du TD

- Le phénotypage et la SPIR
- Données SPIR: Comment est généré le spectre
- Applications en agronomie
- Prétraitements et Analyse en Composantes Principales
- Au boulot! Application avec

- Prise en main des données
- Pré-traitements
- ACP
- Discussion

Besoin de phénotypage pour la **sélection variétale** et la qualité des produits

L'œil humain

- Qualité des épis/grains
- Caractérisation des feuilles (senescence, maladies)
- Architecture des plantes (Hauteur, port foliaire,...)
- Evaluation du dispositif

L'analyse chimique

- Azote (feuille, bottillon)
- Protéines des grains
- Lipides

Le génotypage

Sélection génomique

Le phénotypage optique ou « Haut-débit »

Avantages

- Mesures objectives et Répétables
- Bon marché
- Pas de produit chimique
- Mesures non destructive
- Rapide
- Facilement embarquable
- Voir dans l'Infra-rouge

Inconvénients

- · Adapter les capteurs au produit mesuré
- Nécessite un étalonnage/apprentissage

Grains de blé mesurés par SPIR

Pourquoi le Proche Infrarouge?

Mesure Optique

$$% R=(I/I_{0)}*100)$$

Pourquoi le Proche Infrarouge?

Mesure par spectroscopie

Pourquoi le Proche Infrarouge?

Mesure par spectroscopie

Pourquoi le Proche Infrarouge?

Identifier et Quantifier un composé:

Loi de Beer-Lambert

$$A = \varepsilon.l.c = -log(R)$$

ε: coef. d'absorption

I : longueur du trajet optique

c : concentration du composé

Faible ε : Rayon pénètre Spectre encombré (maths) Pas de préparation d'échantillon

High ε : traces Spectre bien défini Préparation de l'échantillon

- Avantages
 - Pénétration de la lumière + profonde que MIR (>1mm)
 - Nombreux composés sensibles dans cette gamme
- Inconvénients
 - Bandes larges → Recouvrement
 - Faible sensibilité (difficile si < 0.1%)
 - Nombreuses perturbations
 - Température
 - Granulométrie
 - Interactions

Les données SPIR, de A à Z

Les données SPIR, de A à Z

- Présentation de l'échantillon
 - Reflexion/Transmission
- Séparation des longueurs d'onde
 - Filtre
 - Réseau de diffraction
 - Transformée de Fourier
- Prétraitement des données
- Exploitation des données

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Grains de blé (reflectance)

Farine de blé, Bhandari et al, 2006

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Spectres de feuilles

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Feuilles fraiches

Feuilles sèches

Feuilles sénescentes

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique

- Perturbations: électronique, contamination,...

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Dérive de ligne de base: La diffusion de la lumière croît avec la longueur d'onde

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Réflexion spéculaire

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Xu et al, 2019

Les données SPIR, de A à Z

Prétraitement des données

Qu'est-ce qu'un spectre SPIR?

- Interaction lumière/matière
- Influence de la composition chimique
- Influence de la physique
- Perturbations: électronique, contamination,...

Les traitement mathématiques permettant de prendre en compte ses différentes sources d'influences sont appelés les **prétraitements**

On en parle juste après...

Les données SPIR, de A à Z

- Présentation de l'échantillon
- Séparation des longueurs d'onde
- Prétraitement des données
- Exploitation des données

Méthodes

Une technique utilisée dans de nombreux domaines

Agro alimentaire / Agronomie

Pharmacie

Médecine

Sciences du sol

Géologie

Tri des déchets

Détection de fraude

Police scientifique

Sur les grains:

Teneur en protéines (CTPS)

Humidité / Matière sèche Protéines Sucres Lipides

Soja OGM Roundup Ready™

Soja conventionnel

Bonne classif. de 92,4%

Sur les plantes:

Teneur en azote des feuilles

Estimation de la fusariose (Thèse Damien Vincke CRA-W)

Sur les fruits:

Analyse du contenu en sucre de pommes en ligne

La SPIR: Quelles précautions pour traiter les données

Entrez dans la matrice...

Echantillons

La SPIR: Quelles précautions pour traiter les données

Entrez dans la matrice...

Longueurs d'onde

 $X_{1,1} X_{1,2} X_{1,3} X_{1,4} X_{1,5} \dots X_{1,p}$ $X_{2,1}$ $X_{n,p}$ $X_{3,1}$ $X_{n,p}$ $X_{4.1}$ $X_{n,p}$ $X_{5.1}$ $X_{n,p}$ $X_{n.1}$ $X_{n,p}$

Dans la Matrice des spectres:

Lignes = Individus Colonnes = Variables

Exactement comme:

>	head(iris)				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

Spectres

Entrez dans la matrice...

Les prétraitements pour corriger les perturbations

- Réduire le bruit « blanc »
 - Lissage. Par ex. moyenne glissante

Les prétraitements pour corriger les perturbations

- Réduire un effet multiplicatif
 - Normalisation SNV
 Pour chaque spectre, on soustrait la moyenne, et on divise par l'écart-type

$$x_{i,j}^{SNV} = \frac{\left(x_{i,j} - \overline{x}_i\right)}{\sqrt{\frac{\sum_{j=1}^{p} (x_{i,j} - \overline{x}_i)^2}{p-1}}}$$

- Multi-scatter correction (MSC)
- Logarithme

Les prétraitements pour corriger les perturbations

- Réduire une dérive de ligne de base
 - Algorithme « Detrend »: On soustrait un polynôme ajusté d'ordre (1, 2, ...)

Les prétraitements pour corriger les perturbations

- Réduire une dérive de ligne de base
 - Dérivée (1ere, 2^{nde})
 Algorithme de Savitzky-Golay

Change aussi la résolution *** des pics!!

Entrez dans la matrice...

Comment classer les spectres

Si le spectromètre mesure 1 longueur d'onde

Faible teneur

Forte teneur

Si le spectromètre mesure 2 longueurs d'onde

Comment classer les spectres

Si le spectromètre mesure 2000 longueurs d'onde

Quelles longueurs d'onde choisir?

- Si on choisit 1 longueur d'onde toutes les X...
 - On ne voit plus les pics

- Si on choisit une gamme réduite
 - Très forte colinéarité entre les variables

Comment classer les spectres

Si le spectromètre mesure 2000 longueurs d'onde

Solution?

.

Comment classer les spectres

Si le spectromètre mesure 2000 longueurs d'onde

Quelles longueurs d'onde choisir?

Analyse en Composante principales!

Analyse en Composante principales

- Pour explorer les données (classement d'individus, outliers)
- Déterminer l'importance des longueurs d'onde

Une composante principale = une combinaison linéaire des longueurs d'onde

CP1=
$$\alpha \times \lambda 1 + \beta \times \lambda 2 + ... + \gamma \times \lambda p$$

Modéliser la matrice X, en :

- loadings V (= poids des variables dans le modèle)
- scores C (= « coordonnées » des individus)

$$X = C V^{T} + E$$
 (E= résidu de modélisation)

C

Analyse en Composante principales

Analyse en Composante principales

CP1=
$$\alpha \times \lambda 1 + \beta \times \lambda 2 + ... + \gamma \times \lambda p$$

On peut évaluer les longueurs d'onde les plus importantes pour le modèle.

Rstudio

- Aujourd'hui: Visualisation, Prétraitements et ACP
- Cours avec V. Segura: Régressions / Calibrations

