WEBINAIRE

REPRODUCTIBILITÉ EN APPRENTISSAGE AUTOMATIQUE

30 OCTOBRE 2020

OBJECTIFS DE LA PRÉSENTATION

- Inciter l'intégration des solutions permettant une meilleure reproductibilité dans vos solutions d'affaires.
- Améliorer la reproductibilité de vos projets.
- Améliorer votre productivité.

VOTRE CONFÉRENCIER

DAVID BEAUCHEMINCandidat au doctorat
Département d'informatique et de génie logiciel

- Introduit à la recherche reproductible en 2016 (R Markdown et git)
- Participation à REPROLANG de la conférence LREC [Garneau et al., 2020]

david.beauchemin@baseline.quebec == *

AU MENU

Productivité Gestion version

Réutiliser

C'EST QUOI LA REPRODUCTIBILITÉ?

La reproductibilité est le principe qui dit qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des **personnes différentes**.

Par contre, en apprentissage automatique, la reproductibilité correspond (surtout) soit à être capable de reproduire des résultats, soit d'obtenir des résultats similaires en réexécutant un code source [Pineau et al., 2020].

POURQUOI S'Y INTÉRESSER?

70 % 1

POURQUOI S'Y INTÉRESSER?

50 %1

POURQUOI S'Y INTÉRESSER?

40 % 2

Productivité

Productivité

Transfert

Productivité

Transfert

Se faire connaître

Les barrières à la reproductibilité

Figure 1 - From Uber Engineering

**

AU MENU

Présenter

Réutiliser

Version

Gestion des versions

Gestion des versions

Étapes prétraitement

Data Version Control ♂*

Dask **♂***

Version

Différence

Différence

Divergences

GitHub **♂***

GitLab **♂***

Bitbucket **♂***

AU MENU

Productivité

Présenter

Réutiliser

Réinventer

Réinventer

Simplification

Réinventer

Simplification

Facilite

PyTorch Lightning **♂***

Scikit-learn **♂***

Gensim **♂***

Allen NLP ☑**

Version de l'entraînement

Version de l'entraînement

Résultats

Version de l'entraînement

Résultats

Visualisation

Version de l'entraînement

Résultats

Visualisation

Erreurs d'entraînement

Hydra

MLflow **♂***

Hydra **♂***

Sacred **♂***

Notif **♂***

AU MENU

Productivité

Présenter

Réutiliser

Tableau des résultats

Tableau des résultats

Mise à jour

Tableau des résultats

Mise à jour

Visualisation configuration

^{2.} I don't like notebooks - Joel Grus ☑**

^{3.} New York Oil and Gas ☑**

AU MENU

Productivité

Présenter

Réutiliser

ENVIRONNEMENT

Différents environnements

ENVIRONNEMENT

Différents environnements

Réutilisation

ENVIRONNEMENT

Docker **♂***

Kubernetes **∠****

Itérations d'expérimentations

POUR ALLER PLUS LOIN (EN ORDRE)

- Reproducibility in ML: Why it Matters and How to Achieve it

 *
- · Faire des tests!
- Writing Code for NLP Research [Gardner et al., 2018]
- Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program [Pineau et al., 2020]
- SOLID ☑**

PÉRIODE DE QUESTIONS

WEBINAIRE

MERCI DE VOTRE ÉCOUTE!

REFERENCES i

1,500 Scientists Lift the Lid on Reproducibility.

Nature News, 533(7604):452.

Gardner, M., Neumann, M., Grus, J., and Lourie, N. (2018).

Writing Code for NLP Research.

In Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts.

Garneau, N., Godbout, M., Beauchemin, D., Durand, A., and Lamontagne, L. (2020).

A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual Mappings of

Word Embeddings : Making the Method Robustly Reproducible as Well.

REFERENCES ii

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d'Alché Buc, F., Fox, E., and Larochelle, H. (2020).

Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program).

Raff, E. (2019).

A Step Toward Quantifying Independently Reproducible Machine Learning Research.