Geo distance vs. Avg RTT

1. Are RTT and geographic distance correlated positively, negatively, or not at all? If applicable, also comment on the strength of the correlation (weak vs. strong).

There's a weak positive correlation between RTT and geographic distance. As the geographic distance increases, the RTT tends to increase as well. Although we can see an outlier that has a 10010-mile geographic distance but only 10 ms RTT, it is reasonable to say that according to the performances of the other 9 IP addresses, there is a positive correlation between RTT and geographic distance.

Why do you think you observe this trend (or lack thereof)?

We had a bunch of outliers. The average RTT of IP from California(PA), Zurich, and Sydney are shorter than others, which according to the trend above, we expected the average RTT to be longer. Another proof is that the R² value of the linear regression line is small, which indicates a weak linear correlation. Another possible reason is that the RTT time is highly correlated with the hops. It is possible that although the geographical distance is far, the hops the data used to travel provide higher transmission speed due to less congestive traffic or special transmission media like optic fiber.

Geo distance vs. # Hops to Target

1. Are # hops and geographic distance correlated positively, negatively, or not at all? If applicable, also comment on the strength of the correlation (weak vs. strong).

There's a negative correlation between # hops and geographic distance. As the geographic distance increases, the number of hops tends to decrease. The correlation is very weak.

Why do you think you observe this trend (or lack thereof)?

We did not get a clear linear correlation. The # hops of the last three IPs (Zurich, Falkenstein, Sydney) are lower than we expected based on the trend above. And the # hops of the IP at North Bergen (NJ) is much greater than we expected. Another proof is that the R² value of the linear regression line is small, which indicates a weak linear correlation. And the slope of that linear regression line is negative which indicates a lack of proof of this trend. One guess to explain this is that the locations near us are where population density is high and a lot of hops are gathered. Therefore, the data passes many hops but only takes a relatively small amount of time. On the contrary, locations that are far away from us may use submarine cables, which only involve one or two hops, but take more time.

Supporting information:

Ping data

		Geo					Ava DTT	
	Domain/IP	distance /miles	Repeat 1	Repeat 2	Repeat 3	Avg RTT	Avg RTT in miliec	Geo Location
1	161.35.252 .68	127	0.02416300 774	0.02411603 928	0.015951 15662	0.021410 06788	21.41006 788	North Bergen, NJ
2	172.67.195 .193	354	0.02462172 508	0.01621794 701	0.023717 16499	0.021518 94569	21.51894 569	Toronto, Canada
3	185.199.11 0.153	409	0.01831293 106	0.01057100 296	0.015983 81996	0.014955 91799	14.95591 799	California, PA
4	209.244.0. 3	1474	0.02946019 173	0.01652193 069	0.018772 36366	0.021584 82869	21.58482 869	Dallas, TA
5	8.8.8.8	2614	0.02847886 086	0.02733802 795	0.018033 26607	0.024616 71829	24.61671 829	Mountain View, CA
6	146.75.74. 2	3346	0.07534122 467	0.08229780 197	0.076843 0233	0.078160 68331	78.16068 331	London, Engalnd
7	18.155.129 .64	3513	0.08410429 955	0.09279608 727	0.084096 90857	0.086999 09846	86.99909 846	Paris, France
8	9.9.9.9	3818	0.01847982 407	0.01394319 534	0.020398 85521	0.017607 29154	17.60729 154	Zurich, Switzerland
9	148.251.13 6.139	3874	0.09971785 545	0.09759402 275	0.098317 86156	0.098543 24659	98.54324 659	Falkenstein, Germany
10	1.0.0.1	10010	0.00913929 9393	0.00863218 3075	0.012555 83763	0.010109 1067	10.10910 67	Sydney, Australia

Traceroute data

	Domain/IP	Geo distance /miles	# Hops to Target
1	161.35.252.68	127	17
2	172.67.195.193	354	10
3	185.199.110.153	409	10
4	209.244.0.3	1474	10
5	8.8.8.8	2614	11
6	146.75.74.2	3346	12
7	18.155.129.64	3513	15
8	9.9.9.9	3818	9
9	148.251.136.139	3874	11
10	1.0.0.1	10010	9