第6章 频谱搬移电路

6.4 调幅信号的解调电路

6.4.1 包络检波器

实现包络检波过程的电路为包络检波器。

包络检波器根据所用器件不同,可分为二极管包络检波器和三极管包络检波器;根据信号的大小不同,又可分为小信号平方律检波器和大信号检波器。在大信号情况下,二极管的伏安特性曲线可以近似为线性关系。

一、二极管峰值包络检波器

- 二极管峰值包络检波器的原理电路如图6.4.1所示
- 1. 工作原理

由图6.4.1可见,

图6.4.1 二极管峰值包络检波器

当加在二极管上的正向电压为
$$v_i = V_{im}\cos\omega_c t$$

设
$$v_{D(on)} = 0$$

流过二极管的电流
$$i = \begin{cases} g_D \upsilon &, \upsilon \ge 0 \\ 0 &, \upsilon < 0 \end{cases}$$

电路参数要求
$$\frac{1}{\omega_c C} << R_L$$
 及 $\frac{1}{\Omega C} >> R_L$

其中 ω_c 为输入高频调幅信号的载频、 Ω 为调制信号频

率。理想情况下, R_LC 低通滤波器的阻抗 $Z(\omega)$ 应满足

$$Z(\omega_c) \approx 0$$

$$Z(\Omega) \approx R_L$$

工作原理可以由图 6.4.2描述。

图6.4.2 输入信号为高频等幅正弦波的检波过程

- 二极管导通时,给电容C充电,充电时间常数: R_DC
- 二极管截止时,电容C经 R_L 放电,放电时间常数: R_LC 充放电过程不断重复,达到动态平衡,输出电压 $v_o(t)$ 将稳定在 V_{av} 上下做锯齿波动,输出电压已接近输入信号的峰值。
- 给定R_D,若C增大,就会充电慢
 (蓝线),导通角 θ 变大;
- 给定R_L, 若C增大, 放电慢(蓝
 线), 所以波动小, v_o(t) 小;
- 若C一定, R_L增大,则放电慢(红线),波动小, v_o(t)大。

- 由于放电时间常数 R_LC 远大于输入电压载波周期,放电慢,使二极管的负极永远处于较高的正电位(输出电压接近高频正弦波的峰值,即 $v_o \approx V_{av} \approx V_{im}$)。该电压对二极管形成一个大的负电压,使二极管只有在输入电压的峰值附近才能导通,导通时间很短,二极管电流 i_D 是导通角为 θ 的窄脉冲序列。
- 二极管电流 i_D 中包含平均分量 I_{av} 和高频分量。 I_{av} 流经电阻 R_L 形成平均电压 V_{av} (载波输入时, $V_{av} \approx V_{im}$),它是检波器的有用输出电压。高频电流主要被旁路电容 C旁路,在其上产生很小的残余高频电压,程为纹波电压。实际中,当电路元件参 数选择合适时,高频纹波电压很小,可以忽略,这是检波器的输出电压为直流并接 近但小于输入电压的峰值。
- 如果输入信号为AM调幅波,只要选择合理的 R_L C参数, v_o 的波形可以反映输入调幅信号的包络变化规律,即解调出原来的调制信号。正常情况下,导通角 θ 越小,输出 $v_o(t)$ 曲线与输入包络越接近,此时效率最高,失真最小。

当输入为调幅波时的检波器工作波形如图6.4.3所示。

图6.4.3 输入为调幅波情况下的检波器工作波形

- 从工作过程可以看出,*R_LC*的数值对检波器输出的性能有很大的影响。 为使检波器的输出信号反映输入信号的包络,要求时间常数远大于输入 调幅信号载波的周期,但它又必须远小于调制信号的周期,即包络的周 期,否则将会引起解调的失真。 關書用来保证组成包络的点与点之间 (t)信号的变化
- 如果 R_L 值小(或者C小),则放电快,高频纹波加大,平均电压下降;如果 R_LC 的数值大则作用相反。当幅度变化快,例如调制频率 Ω 高或调幅指数 M_a 大时,电容器必须较快地放电,以使电容器上的电压能跟随峰值包络的下降而下降,此时,如果 R_LC 太大,就会造成失真。

2. 性能指标: 检波效率

当输入信号是 $v_i(t) = V_{im} \cos \omega_c t$ 时,检波效率 η_d 定义为输出直流电压 V_{av} 与输入 $v_i(t)$ 的振幅之比,即

$$\eta_d = \frac{V_{av}}{V_{im}}$$

当输入信号为已调幅信号时,建波效率 η_d 定义为输出 $v_o(t)$ 中低频分量 V_{om} 与输入已调波包络振幅的比值。如输入信号是单频调幅波,即 $v_i(t) = V_{im}(1 + M_a \cos \Omega t) \cos \omega_c t$,则检波效率为

$$\eta_d = \frac{V_{\Omega m}}{M_a V_{im}}$$

此时输出为 $v_o(t) = V_{av} + V_{\Omega m} \cos \Omega t = \eta_d V_{im} (1 + M_a \cos \Omega t)$

利用折线近似分析方法,可以求得检波效率的近似表达式为

$$\eta_d = \frac{V_{av}}{V_{im}} = \cos\theta \quad \blacksquare \quad \theta = \sqrt[3]{\frac{3\pi}{g_D R_L}}$$

2. 性能指标: 检波效率

- 检波器的检波效率 η_d 与 g_D , R_L 有关, g_D 或 R_L 越大, 导通角 θ 越小, 检波效率越高。考虑到二极管的实际导通电压 $U_{D(on)}$ 不为零,以及充电电流在二极管微变等效电阻上的压降等因素,实际检波效率比上述计算公式要小。当 $g_DR_L >> 3\pi$ 时, $\theta \to 0$, $\eta_d \to 1$
- 当电路一定时,二极管与负载 R_L 一定,则 θ 恒定,与输入信号大小无关。原因是由于负载电阻 R_L 的反作用,使电路具有自动调节作用而维持 θ 不变。例如,当输入电压增加时,引起 θ 增大, I_{av} 增大,使负载上获得的电压 $V_{av} = I_{av}R_L$ 加大,加大二极管是的反偏电压增大,使 θ 下降。
- 从提高检波效率的角度出发,总是希望 R_L 大一些为好。 R_L 越大, θ 越小, η_d 越大,并趋近于1。但是, R_L 增大将受到检波器中非线性失真的限制。

2. 性能指标: 等效输入电阻

在接收设备中,检波器前接有中频放大器。检波器的等效输入电阻对上一级电路具有负载效应。 R_i 定义为输入高频电

图6.4.4 中频放大器与检波器级联

压振幅与二极管电流 i_D 中基波分量振幅 I_{d1m} 的比值,可近似从能量守恒原理求得。

假设输入为高频等幅电压 $v_i=V_{im}\cos\omega_c t$,输出直流电压为 V_{av} ,则检波器从输入信号源获得的高频功率为 $P_i=\frac{V_{im}^2}{2R_i}$;经过二极管的变换作用,一部分转换为有用输出,平均功率为 $P_o=\frac{V_{av}^2}{R_L}$,其余部分则消耗在二极管正向导通电阻 R_D 上,由于二极管在一个周期内的导通时间很短,在 R_D 上消耗的功率很小,可忽略,因而近似认为 $P_i\approx P_o$ 。在 $\eta_d\to 1$ 的情况下, $V_{av}\approx V_{im}$

$$R_i \approx \frac{1}{2} R_L$$

所以,从增加中频放大器增益、提高接收机 灵敏度的角度出发,应尽量加大 R_i ,也即应 加大 R_L 。但是, R_L 的增大同样受到检波器中 非线性失真的限制。

解决以上矛盾的一个有效方法是采用图6.4.5 所示的三极管射极包络检波电路。由图可见, 就其检波物理过程而言,它利用发射结产生 与二极管包络检波器相似的工作过程,不同 的仅是输入电阻比二极管检波器增大了1+β 倍。这种电路适宜于集成化,在集成电路中 得到了广泛的应用。

图6.4.5 三极管射极 包络检波电路

3、二极管包络检波器中的失真

(1) 惰性失真(对角线切割失真)

惰性失真如图6.4.6所示。

产生的原因:它是在调幅波包络下降时,由于时间常数太大(图中时间 $t_1 \sim t_2$ 内),电容C的放电速度跟不上

输入电压包络的下降 速度。这种非线性失 真是由于C的惰性太大 引起的,所以称为惰 性失真。

图6.4.6 惰性失真

要避免惰性失真,就要保证电容C两端的电压减小速率(电容的放电速度)在任何一个高频周期内,都要大于或等于包络线的下降速率。

避免惰性失真的条件:

$$R_L C \le \frac{\sqrt{1 - M_a^2}}{\Omega M_a}$$

当 $\Omega = \Omega_{max}$ 时, A_{max} 最大。为了保证在 $\Omega = \Omega_{max}$

时也不产生失真,应满足
$$R_L C \leq \frac{\sqrt{1-M_a^2}}{\Omega_{\max} M_a}$$

调幅指数越大,调制信号的频率越高,时间常数 R_LC 的允许值越小。这是由于 M_a 越大,高频信号的包络变化越快,所以 R_LC 的时间常数需要小些,以缩短放电时间,从而保证电容C的放电速度能够跟得上包络的变化。同样,当最高调制角频率 Ω_{max} 加大时,高频信号包络的变化也加快,所以 R_LC 时间常数也应相应缩短。

(2) 底部切割失真(负峰切割失真)

负峰切割失真产生的原因:

检波器的直流负载阻抗 $Z_L(0)$ 与交流(音频)负载阻抗

 $Z_L(\Omega)$ 不相等,而且调幅度 M_a 太大时引起的。

通常情况下,检波器输出须通过耦合电容 C_C

与输入等 效电阻为

R_{i2}的低频放大器相连接,如图6.4.7所示。

图6.4.7 计入耦合电容 C_c 和低放输入等效电阻 R_c 后的检波电路

(a) 关于负峰切割失真的一种解释:

检波器输出是在一个直流电压上迭加了一个音频交流信号,即 $v_o(t) = V_0 + v_{\Omega}(t)$

为了有效地将检波后的低频信号耦合到下一级电路,

要求
$$\frac{1}{\Omega C_C} << R_{i2}$$

所以 C_C 的值很大。这样, $v_o(t)$ 中的直流分量几乎都落在 C_C 上,这个直流分量的大小近似为输入载波的振幅,即 $V_0 \approx V_{im}$

所以 C_C 等效为一个电压为 V_{im} 的直流电压源,此电压源在

$$R_L$$
上的分压为 $V_R = \frac{R_L}{R_{i2} + R_L} V_{im}$

此电压反向加在二极管两端,如图6.4.7所示。

当输入调幅 波的调幅指数*Ma* 较小时,这个 电压的存在不 致影响二极管 的工作。

当调制指数 M_a

图6.4.8 负峰切割失真

较大时,出现 $V_{im}(1-M_a) < V_R$ 如图6.4.8(a) 所示。 造成二极管截止,结果造成输出低频电压负峰切割掉 了。如图6.4.8(b) 所示。 显然, R_{i2} 愈小,则 R_L 上的分压值 V_R 愈大,这种失真愈易产生。另外, M_a 愈大,则 $(1-M_a)V_{im}$ 愈小,这种失真也愈易产生。

避免产生负峰切割失真的条件:

由图6.4.8(a)可见,要防止这种失真的产生,必须使包络线的最小电平大于或等于 V_R ,即满足

$$V_{im}(1-M_a) \ge \frac{R_L}{R_{i2} + R_L} V_{im}$$

$$M_a \le \frac{R_{i2}}{R_{i2} + R_L} = \frac{Z_L(\Omega)}{Z_L(0)}$$

通常情况下,图6.4.7中, C_C 容量较大,对音频来说,可以认为是短路。因此,检波器的交流负载阻抗 $Z_L(\Omega)$ 为

$$Z_L(\Omega) = R_L // R_{i2} = \frac{R_L R_{i2}}{R_L + R_{i2}}$$

检波器的直流负载阻抗

$$Z_L(0) = R_L$$

显然 $Z_L(0) > Z_L(\Omega)$

实际上,现代设备一般采用 R_{i2} 很大的集成运放,不会产生底部切割失真。

(b) 关于负峰切割失真的另一种解释:

在不产生负峰切割失真的正常情况下, 当 $v_i(t) = V_{im}(1 + M_a \cos \Omega t) \cos \omega_c t$

时,输出电压的平均值为 $v_o(t) = V_0 + v_{\Omega}(t)$

因而,相应的平均输出电流为 $i_o(t) = I_0 + I_{\Omega m} \cos \Omega t$

其中,
$$I_0 = \frac{V_0}{Z_L(0)} = \frac{V_0}{R_L}$$
, $I_{\Omega m} = \frac{V_{\Omega m}}{Z_L(\Omega)} = \frac{V_{\Omega m}}{R_L//R_{i2}}$

由于二极管的单向导电性,电容上的电压恒为正,所以电流 $i_o(t)$

必须为正值,所以得到
$$\frac{V_{\Omega m}}{Z_L(\Omega)} \le \frac{V_0}{Z_L(0)}$$

如果 $\eta_d \to 1$ 则 $V_0 \approx V_{im}, V_{\Omega m} \approx M_a V_{im}$

则产生负峰切割失真的条件可写为
$$M_a \leq \frac{Z_L(\Omega)}{Z_L(0)} = \frac{R_{i2}}{R_L + R_{i2}}$$

在分离元件的电路中,通常采用

如图6.4.9所示的分负载电路。

 $R_{L1}C_1$ 和 $R_{L2}C_2$ 组成检波负载

(低通滤波器),取出低频分量,

图6.4.9 分负载检波电路

滤除高频分量。该电路可以减少 $Z_L(0)$

和 $Z_L(\Omega)$ 的差别

电位器在中间位置时 $Z_L(0) = R_{L_1} + R_{L_2}$

$$Z_L(\Omega) = R_{L_1} + \frac{R_{L_2}}{2} + \frac{R_{L_2}}{2} / /R_{i2}$$

直流电阻和交流电阻之间的差距变小,减小负峰切割失真。为了减小R_{i2}的影响,还可以进一步加射随器。

例如,图6.4.10是某收音机二极管检波器的实际电路。

图6.4.10 收音机中的实际二极管检波电路

4、设计考虑(自学)

设计二极管包络检波器的关键在于:正确选用晶体二极管,合理选取 R_LC 等数值,保证检波器提供尽可能大的输入电阻,同时满足不失真的要求。

(1)检波二极管的选择

为了提高检波电压传输系数,应选用正向导通电阻 R_D 和极间电容 C_D 小(或最高工作频率高)的晶体二极管。为了克服导通电压的影响,一般都需外加正向偏置,提供(20~50) μ A静态工作点电流,具体数值由实验确定。

- (2) R_LC 和 C 的选择 首先根据下述考虑确定 R_LC 的乘积值。
- 1) 从提高检波电压传输系数和高频滤波能力考虑, R_L 应尽可能大。工程上,要求它的最小值满足下列条件

$$R_L C = \frac{5 \sim 10}{\omega_c}$$

2) 从避免惰性失真考虑,允许 R_LC 的最大值满足下列条件 $\sqrt{1-1/2}$

 $R_{L}C \leq \frac{\sqrt{1 - M_{a \max}^{2}}}{\Omega_{\max} M_{a \max}}$

工程分析时,取 $R_L C\Omega_{max} \leq 1.5$ 即可。

因此,要同时满足上述两个条件, R_LC 可供选用的数值范围由下式确定:

$$\frac{5 \sim 10}{\omega_c} \le R_L C \le \frac{1.5}{\Omega_{\text{max}}}$$

 R_LC 值确定后,一般可按下列考虑分配 R_L 和C的数值。

① 为保证所需的检波输入电阻 R_i, R_L 的最小值应满足

下列条件
$$R_L \geq 2R_i$$
 或 $R_L \geq 3R_i$

② 为避免产生负峰切割失真, R_L 的最大允许值应满下列条件:

$$R_L \le \frac{1 - M_{a \max}}{M_{a \max}} R_{i2}$$

因此,要同时满足上述两个条件, R_L 的取值范围应为

$$2R_i(或 3R_i) \le R_L \le \frac{1 - M_{a\max}}{M_{a\max}} R_{i2}$$

③ 当 R_L 选定后,就可按 R_L C 乘积值求得C,但应检验求得的C值是否满足下列条件

$$C > 10C_D$$

④ 当采用分负载电路时 R_{L1} 和 R_{L2} 的数值可按 $\frac{R_{L1}}{R_{L2}}=0.1\sim0.2$ 进行分配,而 C_1 和 C_2 均可取为 $\frac{C}{2}$ 。

二、并联型二极管包络检波器 (自学)

有些情况下,需要在中频放大器和检波器之间接入隔直流电容,以防止中频放大器的集电极馈电电压加到检波器上,为此可以采用并联型二极管包络检波器。如图6.4.11所示。

图6.4.11 并联型二极管包络检波器

- 该电路中,C是负载电容,并兼做隔直流电容, R_L 是负载电阻,与二极管并联。由于 R_L 和 VD并接,所以称为并联型包络检波器。
- 该电路具有与串联型电路相同的检波过程。当VD导通时, $v_i(t)$ 通过 VD给电容充电,时间常数为 R_D C。达到动态平衡后,C上具有与串联 型电路类似的锯齿波动电压 $v_c(t)$,输出电压为 $v_o(t) \approx v_i(t) v_c(t)$,含有低频和直流+高频成分,因此需要在检波器的后续电路中另加低 通滤波器,以滤除高频分量。
- 由于 $v_o(t)$ 加在了 R_L 上, R_L 上既有高频成分,也有低频和直流成分, 因此, R_I 除了消耗低频和直流功率,也会消耗高频功率。

电路的工作波形如图6.4.12所示。

图6.4.12 并联型包络检波器工作波形

当 $V_o \approx V_{im}$ 时,可以证明

$$\frac{V_{im}^2}{2R_i} \approx \frac{V_{im}^2}{2R_L} + \frac{V_o^2}{R_L} \implies R_i \approx \frac{1}{3}R_L$$

显然比串联型电路的等效输入电路小,不利于提高中频放大器的电压增益。图6.4.13为并联型包络检波器的实际电路。

图6.4.13 并联型包络检波器的实际电路

6.4.2 同步检波器

同步检波(Synchronous Detector)又称为相干检波,主要用于解调DSB和SSB信号,有乘积型和叠加型两种方式,其组成框图分别为图6.4.14所示。

图6.4.14 两种方式同步检波器的组成框图 (a) 乘积型 (b) 叠加型

一、乘积型同步检波器

乘积型同步检波器的原理在6.1.2中已讨论过,这 里不再赘述。

1、当同步信号与发送端的载波信号不同频同相的情况下,解调输出的信号会是怎样呢?

若同步信号 v_r 与发射端载波不同步,二者之间存在一相位差 $\phi(t)$,其一般表示式为

$$\varphi(t) = \Delta\omega \cdot t + \varphi_0 \tag{6.4.25}$$

式中 ϕ_0 为一常量,表示两个载波之间的相位误差, $\Delta\omega$ 表示两个载波之间的频率误差,即

$$\upsilon_r(t) = V_{rm} \cos \left[\omega_c t + \varphi(t) \right]$$
 (6.4.26)

则乘法器的输出为

$$\upsilon_{o1}(t) = k\upsilon_{i}(t)\upsilon_{r}(t) = kV_{rm}V_{im}\cos\Omega t\cos\omega_{c}t\cos\left[\omega_{c}t + \varphi(t)\right]$$
$$= \frac{1}{2}kV_{rm}V_{im}\cos\Omega t\left\{\cos\varphi(t) + \cos\left[2\omega_{c}t + \varphi(t)\right]\right\}$$

低通滤波器的输出为

$$\upsilon_o(t) = \frac{1}{2} k V_{rm} V_{im} \cos \varphi(t) \cos \Omega t \qquad (6.4.27)$$

从上式可以看出,相角 $\phi(t)$ 的存在将直接影响解调输出。

若 $\phi_t = \phi_0$ 是一常数,即同步信号与发射端载波的相位差始终保持恒定,同频不同相,则解调输出的低频分量仍与原调制信号成正比,只不过振幅有所减小。

当然 $\phi_t \neq \pm \frac{\pi}{2}$,否则 $\cos \phi_t = 0$ 将无解调输出。

若 $\phi(t)$ 是随时间变化的[见式(6.4.25)],则

 $v_r(t)$ 与发射端载波之间不再同频,这时式(6.4.27)为

$$\upsilon_o(t) = \frac{1}{2}kV_{rm}V_{im}\cos(\Delta\omega t + \varphi_0)\cos\Omega t \quad (6.4.28)$$

这个结果表明,解调输出是一个具有小的载波角频率和相位的**DSB**信号,信号的幅度缓慢且周期性地变化,不再与原调制信号成线性关系,而是振幅按 $\cos(\Delta\omega t + \phi_0)$ 的规律变化的音频电压,因此接收机发出的声音就会高低起伏,令人厌烦。

2、同步信号的获得 (自学)

获得 $v_r(t)$ 的电路(称之为载波恢复或载波提取电路) 也各不相同,如图6.4.15所示。

图6.4.15 同步检波器方框图

(1) 若是解调AM波,载波恢复电路的组成框图 见图6.4.16。在高质量解调电路中,采用锁相环产 生同步信号。

图6.4.16 解调AM信号时的载波恢复电路的框图

(2) 若是解调双边带信号,由于双边带信号不含固定的载波分量,不能用限幅滤波法得到同步信号,此时可以采用非线性变化方法,组成方框图如图6.4.17(a) 所示,其工作波形如图(b) 所示。

图6.4.17 解调DSB信号时的载波恢复电路的组成框图及工作波形

如若输入信号为单频率调制的DSB信号,即

$$\upsilon_{i}(t) = \upsilon_{DSB}(t) = V_{m} \cos \Omega t \cos \omega_{c} t$$

经平方器后的输出为

$$\upsilon_{1}(t) = \upsilon_{DSB}^{2} = V_{m}^{2} \cos^{2} \Omega t \cos^{2} \omega_{c} t$$

$$= \frac{1}{4} V_{m}^{2} (1 + \cos 2\Omega t) (1 + \cos 2\omega_{c} t) \tag{6.4.29}$$

经过带通滤波器取出

$$\upsilon_2(t) = \frac{1}{4} V_m^2 \cos 2\omega_c t \tag{6.4.30}$$

经过二分频可得到同步信号,大家可自行分析当 输入为多频率调制的DSB信号情况下的工作过程。

(3) 解调单边带信号,可在发射端发射单边带 信号的同时发射导频信号,在接收端采用高选择性的 窄带滤波器从输入信号中取出该导频信号,经过放大 后即可作为同步信号。或采用高稳定度的晶体振荡器 产生指定频率的同步信号,但这种方法产生的同步信 号不可能与原载频同步,只能将这种不同步量限制在 允许的范围内。

3、乘积型同步检波电路举例

图6.4.18是用MC1596组成的同步检波电路。普通调幅信号或双边带调幅信号经耦合电容后从y通道①、④脚输入,同步信号从x通道⑧、⑩脚输入。仰脚单端输出后经RCII型低通滤波器取出解调信号 υ_o

图6.4.18 MC1596组成的同步检波电路

二、叠加型同步检波器

将输入信号与同步信号 叠加后,合成包络反映调制 信号变化的普通调幅信号, 再利用包络检波器实现解调, 原理电路如图6.4.19所示。

图6.4.19 叠加型同步检波器

若
$$\upsilon_r(t) = V_{rm} \cos \omega_c t$$

当 $\upsilon_i(t) = V_{im} \cos \Omega t \cos \omega_c t$ 为双边带信号时,

合成电压

$$\upsilon(t) = \upsilon_i(t) + \upsilon_r(t) = V_{rm} \cos \omega_c t + V_{im} \cos \Omega t \cos \omega_c t$$

$$=V_{rm}\left(1+\frac{V_{im}}{V_{rm}}\cos\Omega t\right)\cos\omega_{c}t$$

$$=V_{rm}(1+M_a\cos\Omega t)\cos\omega_c t \tag{6.4.31}$$

只要满足 $V_{rm} \ge V_{im}$, $M_a = \frac{V_{im}}{V_{rm}} \le 1$, 合成信号即为不失真

的AM调幅信号,利用包络检波器可以解调出所需要的音频信号。

当 $v_i(t) = V_{im} \cos(\omega_c + \Omega)t$ 为单边带信号时,合成电压

$$\upsilon(t) = \upsilon_{i}(t) + \upsilon_{r}(t)$$

$$= V_{rm} \cos \omega_{c} t + V_{im} \cos(\omega_{c} + \Omega) t$$

$$= (V_{rm} + V_{im} \cos \Omega t) \cos \omega_{c} t - V_{im} \sin \Omega t \sin \omega_{c} t$$

$$= V_{rm} \cos(\omega_{c} t + \varphi)$$

$$= V_{rm} \cos(\omega_{c} t + \varphi)$$
(6.4.32)

$$\frac{1}{2} \mathbf{P}: \begin{cases}
V_{m} = \sqrt{(V_{rm} + V_{im} \cos \Omega t)^{2} + (V_{im} \sin \Omega t)^{2}} \\
\varphi = -arctg \frac{V_{im} \sin \Omega t}{V_{rm} + V_{im} \cos \Omega t}
\end{cases} (6.4.33)$$

合成信号的包络和相角均受到调制信号的控制,不 能不失真地反映原调制信号的变化规律。所以,一般情 况下,由包络检波器构成的叠加型同步检波器不能对单 边带信号实现线性解调。

将 V_m 改写为

$$V_{m} = V_{rm} \sqrt{1 + (\frac{V_{im}}{V_{rm}})^{2} + 2\frac{V_{im}}{V_{rm}} \cos \Omega t}$$
 (6.4.34)

$$\upsilon(t) = V_m \cos(\omega_c t + \varphi)$$

假若满足一定的条件,失真可以减小到允许值。

若满足V_{rm} » V_{im}, 上式可以简化为

$$V_m \approx V_{rm} \left[1 + \frac{V_{im}}{V_{rm}} \cos \Omega t - \frac{1}{2} \left(\frac{V_{im}}{V_{rm}} \right)^2 \cos^2 \Omega t + \cdots \right]$$
 (6.4.35)

进一步忽略上式中的三次方及其以上的各项, 经三角变换后可得

$$V_{m} \approx V_{rm} \left[1 - \frac{1}{4} \left(\frac{V_{im}}{V_{rm}}\right)^{2} + \frac{V_{im}}{V_{rm}} \cos \Omega t - \frac{1}{4} \left(\frac{V_{im}}{V_{rm}}\right)^{2} \cos 2\Omega t\right]$$
(6.4.36)

将角频率为Ω和 2Ω分量的振幅之比定义为二次谐波失

真系数,用 k_{f2} 表示,其值为

$$k_{f2} = \frac{V_{2\Omega m}}{V_{\Omega m}} = \frac{1}{4} \frac{V_{im}}{V_{rm}}$$
 (6.4.37)

若要求
$$k_{f2} < 2.5\%$$
,则要求 $\frac{V_{im}}{V_{rm}} < 0.1$

通过上述分析知:

当采用包络检波器构成同步检波电路用以解调单 边带信号时,为将 k_{f2} 限制在允许的范围内,必须要 求同步信号 $v_r(t)$ 有足够大的振幅 V_{rm}

实际上,为了进一步抵消众多的失真频率分量,可以采用平衡式叠加型同步检波器。如图6.4.20所示。可以证明,它的解调输出电压中抵消了2Ω及其以上的各偶次谐波分量。

图6.4.20 平衡叠加型同步检波器

作业: P. 223

6. 35 6. 36 6. 38 6. 40 6. 45

预习: 6.5