Glove: Global Vectors

The ratios of co-occurrence probabilities matters

- The contrast of two probabilities remove the less salient contexts.
- It is not sensitive to the scale of the probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)			3.0×10^{-3}	
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mathit{ice})/P(k \mathit{steam})$	8.9	8.5×10^{-2}	1.36	0.96

image courtesy of Stanford NLP group

The ratios of co-occurrence probabilities can be predicted by a neural network

• context-center words are symmetric: $\mathbf{v}_i^ op \mathbf{v}_j = \log P(w_i|w_j)$

$$\mathbf{v}_{k}^{\top}(\mathbf{v}_{i} - \mathbf{v}_{j}) = \log \frac{P(w_{k}|w_{i})}{P(w_{k}|w_{j})}$$

$$\mathbf{v}_{k}^{\top}(\mathbf{v}_{i} - \mathbf{v}_{j}) = \log \frac{P(w_{k}|w_{i})}{P(w_{k}|w_{j})}$$

• Let X_{ij} be the number of times context word j co-occurs with the center word i. \supseteq \gtrless

Glove: weighting

It is common in machine learning to stress certain observations.

- Focus on context words that are closer than those farther away.
 - count co-occurrences $x_{\text{egg, and}} = 2$ I do not like green eggs and ham $x_{\text{egg, ham}} = 1/2$ $x_{\text{egg, like}} = 1/2$ $x_{\text{egg, like}} = 1/2$
- But don't over emphasize frequent co-occurrences:
 - This can happen for common words, not just stop-words. "A" "the" "is"
 - Idea: cap the X values.

See the Glove paper

Glove: windows

Different design of the context window lead to different results

Larger windows capture more semantic information

• e.g., good ~ great, king ~ queen

Smaller windows capture more schiantic mornation

Shared context

walking vs. dancing: their closest contexts are quite similar.

Symmetric vs. Asymmetric windows

Symmetric ones capture semantics

Asymmetric ones find syntactic structures: syntaxes has orderings.

Word embedding evaluation of a language model

Word analogies

- a is to b as c is to?
 - Semantics: "Athens is to Greece as Berlin is to?"
 - Syntactics: "dance is to dancing as fly is to?"

$$w_b - w_a + w_c = ?$$

Word similarity

- Human-compiled pairs of similar words.
- http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Helping the end-task?

- Named entity recognition (sequence-to-sequence model): CoNLL-2003
- Combine continuous word vectors with 437,905 discrete features

Word vector space

Germany

Berlin

Athens

Word embedding evaluation

Table 3: Spearman rank correlation on word similarity tasks. All vectors are 300-dimensional. The CBOW* vectors are from the word2vec website and differ in that they contain phrase vectors.

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	65.8	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

Observations on measuring word similarity:

- The more training data the better for Glove.
- Skip-gram is better than CBOW.
- CBOW can't benefit from 100B tokens.
- SVD, if scaled properly, is a strong baseline

Word embedding evaluation

Observations on the word analogy task:

- Larger dimensionality is better and does not hurt performance.
- Larger windows are good for measuring semantics.
- Smaller windows are good enough for measuring syntactics.
- · Asymmetric windows work better than symmetric ones in capturing syntactics.

Word embedding evaluation

Observations on measuring word similarity:

- The larger the corpus the better.
- Depending on the task, need to select the right corpus: wikipedia is more comprehensive than news.
- Combining multiple corpora can hurt semantic measuring, but can help learning synatics (which is more general across corpora).

Neural networks (simplified)

Forward computation on a computation graph

Forward Propagation

$$V = a + b c$$

$$b \leftarrow b - y \frac{\partial J}{\partial b}$$

$$c \leftarrow c - y \frac{\partial J}{\partial c}$$

Fixed points = (bo, co) where $\frac{\partial J}{\partial b}|_{b=b_0}=0$

Gradient descent

Neural networks (simplified)

Backward computation for training the network.

A computation graph is a differentiable system.

$$\frac{3c}{3!} = \left(\frac{3n}{3!} \times \frac{3n}{3!}\right) \times \frac{3c}{3!}$$

Training error

$$\frac{\partial u}{\partial b} = \frac{\partial v}{\partial v} \times \frac{\partial v}{\partial b} \times \frac{\partial u}{\partial b}$$

$$= \frac{\partial v}{\partial v} \times \frac{\partial v}{\partial b} \times \frac{\partial u}{\partial b}$$

=
$$\frac{2J}{2b}$$
Implement the chain rule in

Training Glove model

Loss function
$$\hat{J} = \sum_{i,j} f(X_{ij}) (w_i^T \tilde{w}_j - \log X_{ij})^2$$

- 1. gradient descent of the loss function is slow since there are many pairs of cooccurred words.
- 2. stochastic gradient descent computes the loss and gradient on one randomly selected pair: fast to compute but can be noisy. $\sqrt[3]{\sqrt[3]{w}} \sqrt[3]{\sqrt[3]{w}}$
- 3. Mini-batch gradient descent: in the middle of the above. Use multiple pairs to reduce noise in the gradient
 - Seeing pairs [(is, dancing), (is, working), ..., (is, eating)] all at once is better than seeing just (is, dancing) in learning the vector for "is".

PyTorch

What Pytorch offers

- 1. Construct computation graph in a declarative way.
- 2. Autograd allows you to find gradients without manual calculation.
- 3. Sophisticated optimizers that control how to make gradient descent work.
- 4. GPU computing and memory management API's

You still need to:

- design the network architecture (the graph);
- 2. prepare training data.
- 3. monitor training and evaluate models.

Now walk through Project 1 in PyTorch in Colab.

Natural Language Processing CSE 325/425

Sihong Xie

Lecture 5:

- Part-of-Speech (POS)
- POS tagging
- Hidden Markov Models (HMM)

Part-of-Speech

English word classes: cover a few common classes that will be used in tagging.

- 1. Nouns: pronouns (she, he, I, who, others), proper nouns (Russia), countable nouns (desk), mass noun (air)
- 2. Verbs: participles (paced), gerund (pacing), auxiliaries (be, do, have, can, may, should)
- 3. Adjectives: comparative, superlative. describe nouns
- 4. Adverbs: I went Church yesterday describe verbs
- 5. Prepositions: in, on, over, ...
 - 6. Particles: phrasal verb like "go over". over adds additional meaning to
 - Easy to be confused with prepositions.
 - Combination of verb and particle does not have their meanings combined simply.
 - 7. Determiners: a, the, an
 - 8. Conjunctions: and, but, that, when
 - 9. Other smaller classes.

Small class of words

Part-of-Speech

Syntatic information: how words are ordered in a sentence.

- noun-verb

determiner-noun
adjective-noun
verb-adverb
preposition-noun
Useful for grammar checking: go to (a?the?) hospital

Semantic information: meaning of a word in a context. Useful for:

- machine translation (building a building): building -> (建 vs. 楼)
- question-answering, need to understand the semantics of what a person is asking.
- relation extraction (Bill Gates founded MS): gates (verb vs. noun)
- event extraction (They went to a concert): concert (verb vs. noun)
- entity extraction (I will visit DC): DC?