0.1 Divisori elementari

Lezione del 07/01/2020 (appunti grezzi)

Sia R un PID e sia F un R-modulo sinistro libero su $X = \{x_1, \dots, x_n\} \subseteq F$, dove X è una base di F. Preso un elemento $z \in F$, siano $r_1, \dots, r_n \in R$ tali che $z = \sum_{i=1}^n r_i \cdot x_i$.

Definizione

L'ideale $con(z) = \langle r_1, \dots, r_n \rangle \triangleleft R$ si dice <u>contenuto</u> di z.

A priori, tale definizione è strana: per come lo abbiamo posto, sembra che con(z) dipenda dalla particolare base X scelta. Tuttavia questo non è vero, come mostra la proposizione seguente. Per comodità di notazione, sia $F^* = Hom(F, R)$.

Proposizione 3.6.1

Sia $z \in F$ e sia $I_z = {\phi(z) : \phi \in F^*}$. Allora, I_z è un ideale di R e con $(z) = I_z$.

Dimostrazione. Sia $x_i^* \in F^*$ definito come $x_i^*(x_j) = \delta_{i,j}$, così che $r_i = x_i^*(z)$, cioè $r_i \in I_z$.\frac{1}{2} Mostriamo ora che $I_z \lhd R$. Innanzitutto, sappiamo che F^* è un R-modulo, perché presi $\phi, \psi \in F^*$ anche $\phi + \psi \in F^*$ e $r \cdot \phi \in F^*$ per ogni $r \in R$. Dunque, la mappa $(z): F^* \to R$ è un omomorfismo di R-moduli (ma perché chiama le mappe con il trattino, e che cacchio) da cui $Im((z)) = I_z$, cioè I_z è un R-modulo (e quindi anche un ideale di R). Chiaramente $con(z) \subseteq I_z$. D'altra parte, preso $\phi \in F^*$, osserviamo che $\phi(z) = \phi\left(\sum_{i=1}^n r_i \cdot x_i\right) = \sum_{i=1}^n r_i \cdot \phi(x_i) \in con(z)$, da cui $I_z \subseteq con(I_z)$ e quindi seque che $con(z) = I_z$ come richiesto.

Lemma 3.6.2

Sia R un PID, F un R-modulo sinistro libero su $X = \{x_1, \dots, x_n\}$ e sia $M \subseteq F$ un R-sottomodulo di F. Sia $z \in F$. Allora,

- (a) esiste $\phi \in F^*$ tale che con $(z) = \langle \phi(z) \rangle$; (sono ideali o moduli? lui scrive $R \cdot \phi(z)$)
- (b) per ogni $\psi \in F^*$ si ha che $\psi(z) \in \text{con}(z)$;
- (c) esiste $x_0 \in M$ tale che per ogni $y \in M$ si abbia $con(y) \subseteq con(x_0)$.

Dimostrazione. (a) Poiché R è un PID, ogni suo ideale è principale, da cui essendo $con(z) \triangleleft R$ sappiamo che esiste $c \in con(z)$ tale che $con(z) = \langle c \rangle$. Dunque, per la Proposizione 3.6.1 esiste $\phi \in F^*$ tale che $c = \phi(z)$.

- (b) Segue banalmente dalla *Proposizione 3.6.1* essendo $con(z) = I_z$.
- (c) Poiché R è un PID, esso è noetheriano, dunque esiste $x_0 \in M$ tale che $\operatorname{con}(x_0)$ è massimale in $\{\operatorname{con}(y): y \in M\}$, cioè se $\operatorname{con}(x_0) \subseteq \operatorname{con}(z)$ per un certo $z \in M$, allora $\operatorname{con}(z) = \operatorname{con}(x_0)$. Resta da mostrare che x_0 soddisfa (c). Per (a), sappiamo che esiste $\phi \in F^*$ tale che $\operatorname{con}(x_0) = \langle \phi(x_0) \rangle$. Ora, per la Proposizione 3.6.1 basta verificare che $\phi(z) \subseteq \langle \phi(x_0) \rangle$ per ogni $z \in M$ e $\psi \in F^*$. Sia $R \cdot d = R \cdot \phi(x_0) + R \cdot z_0$. Allora, esistono $a, b \in R$ tali che $d = a \cdot \phi(x_0) + b \cdot \phi(z)$, cioè $d = \phi(ax_0 + bz) \in \operatorname{con}(ax_0 + bz)$ per la Proposizione 3.6.1.

 $^{^1 \}textsc{Osserviamo}$ che tali x_i^\star sono una base del duale.

Allora, $\operatorname{con}(x_0) = R \cdot \phi(x_0) \subseteq R \cdot d \in \operatorname{con}(ax_0 + bz)$, da cui $\operatorname{con}(x_0) = \operatorname{con}(ax_0 + bz)$. Dunque, $d \in R \cdot \phi(x_0)$, cioè $\phi(z) \in R \cdot d \subseteq R \cdot \phi(x_0) = \operatorname{con}(x_0)$. Manca da mostrare che $\psi(z) \in \operatorname{con}(x_0)$ per ogni $\psi \in F^*$. Sappiamo che $\psi(x_0) \in \operatorname{con}(x_0)$ per ogni $\psi \in F^*$. Sia $z_0 = z - \frac{\phi(z)}{\phi(x_0)} \cdot x_0$, dove quindi $\frac{\phi(z)}{\phi(x_0)} \in R$. Allora $\phi(z_0) = 0$. Basta dimostrare che $\psi(z_0) \in \operatorname{con}(x_0)$ (nota: mi sono perso). Sia $\psi_0 \in F^*$ tale che $\psi_0 = \psi - \frac{\psi(x_0)}{\phi(x_0)} \cdot \phi$. Osserviamo che $\psi_0(z_0) = \psi(z)$ e $\psi_0(x_0) = 0$. Ora basta mostrare che $\psi_0(z_0) \in \operatorname{con}(x_0)$. Usiamo lo stesso trucco di prima. Sia $R \cdot c = R \cdot \psi_0(z_0) + R \cdot \psi_0(x_0)$. Allora, esistono $p, q \in R$ tali che $x = p \cdot \psi_0(z_0) + q \cdot \psi_0(x_0)$. Dunque,

$$(\phi + \psi_0)(pz_0 + qx_0) = \phi(pz_0) + \phi(qx_0) + \psi_0(pz_0) + \psi_0(qx_0) = q \cdot \phi(x_0) + p \cdot \psi_0(z_0) = c$$

in quanto gli altri due termini sono nulli. Quindi per la Prosizione 3.6.1 vale $c = (\phi + \psi_0)(pz_0+qx_0) \in \text{con}(pz_0+qx_0)$, da cui $R \cdot c \subseteq \text{con}(pz_0+qx_0)$, dove $\text{con}(x_0) = R \cdot \phi(x_0) \subseteq R \cdot c$. Dunque, $R \cdot \phi(x_0) = \text{con}(pz_0+qx_0) \ni c$, cioè $R \cdot c = R \cdot \phi(x_0)$, quindi $\psi_0(z_0) \in R \cdot \psi(x_0) = \text{con}(x_0)$ come desiderato.

Teorema 3.6.3

Sia R un PID, F un R-modulo libero su $\{y_1,\ldots,y_n\}$ e sia $M\subseteq F$ un R-sottomodulo di F. Allora, esistono una base $\{x_1,\ldots,x_n\}$ di F e degli elementi $\alpha_1,\ldots,\alpha_m\in R\setminus\{0\}$ tali che $\{\alpha_1x_1,\ldots,\alpha_mx_m\}$ sia una base di M. Inoltre, la successione $(R\cdot\alpha_1,\ldots,R\cdot\alpha_m)$ è univocamente determinata da M.

Dimostrazione. Dannazione, me la sono persa per lo sciopero, ma c'è sulle sue note.

Definizione

Tali $R \cdot \alpha_i$ si dicono divisori elementari di M.

Corollario 3.6.4

Sia R un PID e sia A un R-modulo di torsione finitamente generato. Allora, esistono degli ideali $I_1, \ldots, I_n \triangleleft R$ con $\operatorname{Ann}_R(A) \subseteq I_n \subseteq \ldots \subseteq I_1 \subsetneq R$ tali che $A \simeq \bigoplus_{k=1}^n R/I_k$.

Ha detto qualcosa su come applicarlo ai gruppi abeliani. Notare come tale teorema+corollario implica il Teorema di Jordan.

Lezione del 08/01/2020 (manca, ha dimostrato le cose scritte nelle sue note sui divisori elementari)