T4 - Ondas estacionárias

1. Objetivos

Observar experimentalmente diversas situações em que são geradas ondas estacionárias. Aprofundar a compreensão dos conceitos de sobreposição de ondas e de ressonância. Estudar e compreender as várias dependências entre os parâmetros envolvidos.

PARTE A - Corda vibrante

A2. Fundamentos

Quando um fio, com as extremidades fixas, é colocado em vibração, as reflexões originadas em ambas as extremidades originam ondas que se propagam na mesma direção mas em sentidos opostos. Estas ondas combinam-se de acordo com o princípio da sobreposição. Para um dado comprimento do fio existem certas frequências para as quais a sobreposição das ondas dá origem a uma onda denominada onda estacionária.

Neste tipo de ondas existem pontos em que a amplitude de vibração é nula. Estes pontos são denominados **nodos.** Entre cada par de nodos, existem pontos de máxima amplitude de vibração denominados **antinodos**.

O número de nodos que se formam entre as duas extremidades depende do comprimento de onda (fig.).

Laboratório de Mecânica Newtoniana 2020/2021

A velocidade de propagação das ondas transversais no fio, sujeito a uma certa tensão, pode ser calculada através da equação:

$$\nu = \sqrt{\frac{\tau}{\mu}} \qquad \text{valor dada} \tag{7.1}$$

em que T corresponde à tensão no fio e μ à massa do fio por unidade de comprimento. Se f for a frequência da onda e λ o seu comprimento de onda, então:

em que l representa o comprimento do fio, que se encontra relacionado com λ através da expressão

$$l = n \frac{\lambda}{2}$$

$$\lim_{n \to \infty} l = n \frac{\lambda}{2}$$

Para estudar experimentalmente a dependência da frequência de ressonância da onda estacionária com a tensão aplicada na corda usa-se, neste trabalho, a montagem esquematizada na figura seguinte:

Um fio é esticado entre os pontos A e C; ao ponto B é ligado um altifalante que permite transmitir à corda uma vibração com uma frequência previamente escolhida; a tensão no fio é controlada suspendendo um corpo na corda.

Coloque diferentes massas na extremidade livre do fio de modo a variar de forma controlada a tensão (nota: T = mg).

Para cada valor de tensão, obtenha um sistema de ondas estacionárias com frequência diferente: para tal ajuste o gerador de sinal (o que na prática permitirá visualizar um diferente número de antinodos para cada valor de frequência da onda estacionária). Registe a frequência e o número de antinodos da onda estacionária gerada desta forma (para cada valor de tensão do fio, registe o número de antinodos obtidos para pelo menos cinco valores diferentes de frequência).

Verifique se os dados experimentais se encontram em concordância com a equação (7.4), recorrendo, para o efeito, a um gráfico de f = g(n). $T_{\text{experimental}}$

Através dos gráficos obtidos, determine o valor da tensão no fio e compare com o valor medido.

Para cada caso, calcule os valores da frequência e compare com os valores lidos no gerador.

Pela expressão
$$f = \frac{n}{2l} \sqrt{\frac{1}{l}}$$
 obtemos os valores de frequência calculados através do Todos e do número de antinodos n obtidos

PARTE B - Tubo de Kundt

B2. Fundamentos

Nesta experiência ondas longitudinais produzidas numa haste ou barra fina são transmitidas a uma coluna de gás contida num tubo (*Tubo de Kundt*). O objetivo da experiência é determinar a velocidade de propagação da onda na barra e/ou no gás, usando as propriedades do movimento ondulatório.

Figura B1 – Montagem experimental utilizada para a determinação da velocidade de propagação do som, utilizando um tubo de Kundt.

O tubo transparente, fechado numa das extremidades, contém um pó fino distribuído uniformemente ao longo do seu comprimento. Quando uma onda sonora é gerada dentro do tubo, o ar vibra e o pó movimenta-se.

Se o comprimento do tubo (distância entre a placa na extremidade da barra e a extremidade fechada do tubo) for |igual| a um número inteiro de $\lambda_{an}/2$, uma onda estacionária é criada no tubo e o pó

distância entre dois nodos (o primeiro e o último, por exemplo), det, e o número de nodos entre eles , next, e uma vez que a distância entre dois nodos corresponde a uma meia enda, para obter 2 ar usamos: 7 ar (obtido) = dext x 2

acumula-se em determinados pontos – os nodos – onde a pressão é mais baixa. Medindo a distância entre nodos pode-se determinar o comprimento de onda no gás (λ_c

Se a velocidade de propagação do som no gás (v_{ar}) / na barra (v_b) for conhecida a frequência da onda (f) pode ser calculada:

$$v_{ar} = \lambda_{ar} f$$

E como a frequência da onda na barra é igual à frequência da onda no gás, fica:

$$f = \frac{v_{ar}}{\lambda_{ar}} = \frac{v_b}{\lambda_b} \tag{7.7}$$

Repare que a barra é móvel, permitindo ajustar o comprimento útil do tubo (ver figura) de forma a obter uma onda estacionária.

Nesta experiência a onda é gerada pela vibração da barra de um material para o qual a velocidade de propagação do som é eventualmente (dês)conhecida. Esta barra tem acoplado um disco, que funciona como fonte geradora da onda que se propaga no tubo.

Esfregando a barra com um papel molhado em álcool, criam-se oscilações longitudinais. Se os pontos o valor oblido de fixação forem bem escolhidos é possível gerar ondas estacionárias na barra cujo comprimento de com o tabelado onda (e por isso também a frequência) depende da posição dos pontos fixos. Nesta experiência a barra deve ser fixada a ¼ e ¾ do seu comprimento l_b. Estes pontos são obrigatoriamente nodos da oscilação, enquanto o centro e os extremos da barra são pontos de amplitude máxima - antinodos, ou seja, o comprimento da barra l_b corresponde ao comprimento de onda λ_b (ver figura).

> Como vimos a partir da equação (7.7), o cálculo da velocidade do som no gás/sólido é imediato, uma vez conhecida a velocidade de propagação num deles:

$$v_{ar} = \frac{\lambda_{ar}}{\lambda_b} v_b \Longrightarrow \bigotimes$$

De lembrar ainda que a velocidade do som num gás ideal depende da temperatura (T), da massa

molecular (M) e do expoente adiabático (γ), de acordo com:

experiência

inal do

comparar

guião para

$$v = \sqrt{\gamma \frac{RT}{M}}$$

Então, a velocidade do som no ar pode aproximar-se por:

$$v_{ar} = (331.45 + 0.6T[{}^{\circ}C]) m/s$$

> Recolhido o valor da temperatura (I) do laboratório, do som no tubo por essa expressão.

(*) Para obter o valor experimental da propagação do som na barra (Vb (obtido) recorremos a essa expressão rearranjada:

$$V_b$$
 (obtido) = $\frac{\lambda_b}{\lambda_{ar}}$ · V_{ar}

[26] > corresponde ao comprimento total da barra 1

| Tar > obtido na expressão da margem superior da pagina

Pela expressão Var = 2 vb, manterob var, 16 e Vb, alteraria 2 ar e também a f (que é a mesma na barra e no tubo), alterando o padrão do pó no tubo

B3. Sugestão de procedimento experimental

B3.1 Cuidados a ter na execução da experiência

Em toda a execução deste trabalho é fundamental que todos os movimentos sejam feitos com muito cuidado. O tubo e a barra são frágeis, e como estão fixos em determinadas zonas, qualquer movimento mais brusco pode facilmente quebrar uma das peças da experiência.

Verifique que o disco não toca nas paredes do tubo – se tal acontecer, quando provoca a vibração da barra pode quebrar o tubo.

Durante a experiência, quando friccionar a barra não a desloque dos apoios.

B3.2 Execução da experiência

Distribua uniformemente o pó ao longo de todo o comprimento do tubo. Coloque o tubo no suporte e rode-o ligeiramente (~45°) para permitir visualizar a onda estacionária no seu interior.

Friccione a barra, provocando uma onda sonora no tubo. Verifique se a onda é estacionária. Se for necessário, desloque a barra fina, variando o comprimento útil do tubo, até observar que obtém uma onda estacionária no seu interior. Deve conseguir obter uma figura no pó semelhante à esquematizada na figura B1.

Meça a separação entre diversos máximos e/ou mínimos, no interior do tubo.

Meça o comprimento da barra fina. Meça a temperatura da sala. - para obter Var!

Repita a experiência até ter confiança nos valores medidos.

Ao utilizar outra barra com o mesmo & , mudaria Yb .ia Repita a experiência com a outra barra. > como os pontos de fixação são = , 26 tom. seria = logo & alteraria (Vb = 2b.f)

B4. Algumas questões e resultados da experiência

Determine a velocidade do som no ar. Confira posteriormente os valores utilizados para a velocidade do som nos outros meios utilizados. Compare com os valores da literatura.

- (4) Se variar a força com que fricciona a barra, qual a característica da onda que varia?
- 2) Como se poderia variar a frequência do som produzido no tubo?
- 3) Justifique a existência de ondas estacionárias no tubo.
- 4) Justifique a equação (7.10).

1) Se variarmos força com que friccionamos a barra, iremos aumentar a amplitude da onda visualizada.

- 2) Teríamos duas formas : uma, a descrita em 1 outra seria alterar 26. Sendo o mesmo material, alterando l (sempre fixar a 1/4 e 3/4 do seu comprimento), alteraríamos o comprimento de anda da enda gerada. a vetocidade de propagação nattera, a frequência seria diferente.
- 3) Ocorrem ondas estacionárias no tubo uma vez que existe reflexão destas na extremidade fechada do tubo. Assim, como se imitir a onda na extremidade da barra, continua a certa distância a sobreposição das ondas irá dar origem a uma onda estacionaria.
- 4) (préxima pegina)

4) Sabemos que a velocidade de propagação depende sempre da temperatura pois quanto maior a temperatura, maior vai ser a vibração das partículas no meio. Ora, por isso, a propagação das variações da densidade e pressão, ou seja, as ondas sonovas, e muito mais rápida.

ANEXO A

Velocidade de propagação do som em vários meios

GASES

MATERIAL	V(M/S)
Hidrogénio (0°C)	1286
Hélio (0°C)	972
Ar (20°C)	343
Ar (0°C)	331
CO ₂ (0°C)	259

Líquidos a 25°C

MATERIAL	V(M/s)
Glicerol	1904
Água salgada	1533
Água	1493
Mercúrio	1450

SÓLIDOS

MATERIAL	V(M/S)
Diamante	12000
Vidro (Pyrex)	5640
Vidro (Flint)	4000
Ferro	5130
Cobre	3560
Latão	4700
Alumínio	5100

Comparação entre os dois métodos:

No método usado na parte A, os valores calculados estiveram mais afastados dos valores medidos do que na parte B.

Tal pode ser explicado pelo facto de , na parte A, é dificil recolher la frequencia correspondente à amplitude máxima / mínima (antinodos) da onda estacionária, o que acarreta um certo erro de medição considerável.

Mesmo assim, na parte B, também é complicado achar um comprimento onde estejam presentes ondas estacionárias e também devido à humidade presente no ambiente onde fai realizada a experiência, que fixou o pó mas paredes internas do tubo, o que dificulta a correta observação do comprimento de anda.