Appendix: Model Confidence Sets

Bootstrap Procedure, Inflation forecasting, Regression simulations and Taylor Rules

Peter R. Hansen^a, Asger Lunde^b, and James M. Nason^c

^aStanford University, Department of Economics, 579 Serra Mall, Stanford, CA 94305-6072, USA & CREATES

^bAarhus University, School of Economics and Management, Bartholins Allé 10, Aarhus, Denmark & CREATES

^c Federal Reserve Bank of Philadelphia, Ten Independence Mall, Philadelphia, PA 19106-1574, USA

March 2010

Contents

1	Bootstrap Procedure	1
	1.1 Justification of bootstrap implementation	2
2	Inflation Forecasting	3
	2.1 Sensitivity to estimation scheme and the choice of EPA test	3
3	Regression Simulation	3
4	Taylor Rules	3

List of Tables

A.1	MCS <i>p</i> -values for Stock and Watson JME (1999, table 2) (recursive scheme)	5
A.2	MCS <i>p</i> -values for Stock and Watson JME (1999, table 2) (rolling scheme)	6
A.3	MCS <i>p</i> -values for Stock and Watson JME (1999, table 4) (recursive scheme,	7
A.4	MCS <i>p</i> -values for Stock and Watson JME (1999, table 4) (rolling scheme	8
A.5	Simulation Experiment II: $\beta^2 = 0.1$, fraction in MCS	9
A.6	Simulation Experiment II: $\beta^2 = 0.5$, fraction in MCS	10
A.7	Simulation Experiment II: $\beta^2 = 0.9$, fraction in MCS	11
A.8	Simulation Experiment II: $\beta^2 = 0.1$, average MCS p-value	12
A.9	Simulation Experiment II: $\beta^2 = 0.5$, average MCS p-value	13
A.10	Simulation Experiment II: $\beta^2 = 0.9$, average MCS p-value	14
A.11	MCS for Taylor Rules: 1979:Q1 to 2006:Q4	15
A.12	MCS for Taylor Rules: 1984:01 to 2006:04	16

1. Bootstrap Procedure

This section describes the bootstrap implementation of the MCS procedure used in the forecasting application.

1. (Bootstrap indexes for resampling)

This is the first step because we need to use common random numbers for the bootstrap resamples in each iteration of the sequential test.

- (a) Choose the block-length bootstrap parameter, l. The optimal choice for l is tied to the persistence in $d_{i\cdot,t} = m^{-1} \sum_{j \in \mathcal{M}_0} d_{ij,t}$, $i = 1, \ldots, m$, which is difficult to estimate precisely when m is large. Instead one can use different choices for l, and verify that the result is not sensitive to the choice.
- (b) Generate B bootstrap resamples of $\{1, ..., n\}$. I.e., for b = 1, ..., B:
 - i. Choose $\xi_{b_1} \sim U\{1, \dots, n\}$ and set $(\tau_{b,1}, \dots, \tau_{b,l}) = (\xi_{b_1}, \xi_{b_1} + 1, \dots, \xi_{b_1} + l 1)$, with the convention n + i = i for $i \geq 1$.
 - ii. Choose $\xi_{b_2} \sim U\{1,\ldots,n\}$ and set $(\tau_{b,l+1},\ldots,\tau_{b,2l}) = (\xi_{b_2},\xi_{b_2}+1,\ldots,\xi_{b_2}+l-1)$.
 - iii. Continue until a sample size of n, is constructed.
 - iv. This is repeated for all resamples b = 1, ..., B, using independent draws of the ξ 's.
- (c) Save the full matrix of bootstrap indexes.

 Alternatively one can use a different bootstrap scheme, such as the stationary bootstrap of ?.

2. (Sample and Bootstrap Statistics)

- (a) For each model and each point in time we evaluate the performance to obtain the variables $L_{i,t}$, for $i=1,\ldots,m$, and $t=1,\ldots,n$. These variables are used to calculate the sample averages for each model $\bar{L}_{i,\cdot} \equiv \frac{1}{n} \sum_{t=1}^{n} L_{i,t}$, $i=1,\ldots,m$.
- (b) The corresponding bootstrap variables are now given by

$$L_{b,i,t}^* = L_{i,\tau_{b,t}},$$
 for $b = 1, ..., B, i = 1, ..., m,$ and $t = 1, ..., n,$

and calculate the bootstrap sample averages, $\bar{L}_{b,i}^* \equiv \frac{1}{n} \sum_{t=1}^n L_{b,i,t}^*$. The only variables that need to be stored are \bar{L}_i and $\zeta_{b,i}^* \equiv \bar{L}_{b,i}^* - \bar{L}_i$, as all required statistics can be calculated from these two variables.

- 3. (Sequential Testing) Initialize by setting $\mathcal{M} = \mathcal{M}_0$.
 - (a) Let m denote the number of elements in \mathcal{M} , and calculate

$$\bar{L}_{\cdot} \equiv \frac{1}{m} \sum_{i=1}^{m} \bar{L}_{i}, \qquad \zeta_{b,\cdot}^{*} = \frac{1}{m} \sum_{i=1}^{m} \zeta_{b,i}^{*}, \quad \text{and} \quad \widehat{\text{var}}(\bar{d}_{i\cdot}) \equiv \frac{1}{B} \sum_{b=1}^{B} (\zeta_{b,i}^{*} - \zeta_{b,\cdot}^{*})^{2}.$$

Alternatively one can define $\widehat{\text{var}}(\cdot)$ to be its analytical value given the employed bootstrap scheme. Now define $t_i \equiv \bar{d}_i / \sqrt{\widehat{\text{var}}(\bar{d}_i)}$ and calculate the test statistic $T_{\text{max}} = \max_i t_i$.

(b) The bootstrap estimate of T_D 's distribution is given by the empirical distribution of

$$T_{b,\max}^* = \max_i t_{b,i}^*, \quad \text{for} \quad b = 1, \dots, B,$$

where
$$t_{h.i.}^* \equiv (\zeta_{h.i.}^* - \zeta_{h..}^*) / \sqrt{\widehat{\operatorname{var}}(\bar{d}_{i.})}$$
.

(c) The p-value of $H_{0,\mathcal{M}}$ is given by

$$P_{H_{0,\mathcal{M}}} \equiv \frac{1}{B} \sum_{b=1}^{B} 1_{\left\{T_{\text{max}} > T_{b,\text{max}}^*\right\}},$$

where $1_{\{\cdot\}}$ is the indicator function.

- (d) If $P_{H_{0,\mathcal{M}}} < \alpha$, where α is the level of the test, then $H_{0,\mathcal{M}}$ is rejected and $e_{\mathcal{M}} \equiv \arg \max_i t_i$. is eliminated from \mathcal{M} .
- (e) The steps in 3.(a)-(d) are repeated until first 'acceptance'. The resulting set of models is denoted $\widehat{\mathcal{M}}_{1-\alpha}^*$ and referred to as the $(1-\alpha)$ MCS.

1.1. Justification of bootstrap implementation

Let $Z_t = (d_{1\cdot,t},\ldots,d_{m\cdot,t})'$ then by Lemma 5 we have that $n^{1/2}(\bar{Z}-\psi) \stackrel{d}{\to} N_m(0,\Omega)$, where $\bar{Z} = \sum_{t=1}^n Z_t$. The bootstrap variables $\{Z_{b,t}^*\}$ are generated such that $n^{1/2}(\bar{Z}_b^* - \bar{Z}) \stackrel{d}{\to} N_m(0,\Omega)$, where the covariance matrix can be estimated by its analytical form under the bootstrap scheme, $\hat{\Omega}_n^*$ say, where $\hat{\Omega}_n^*$ is consistent for Ω as $n \to \infty$. Alternatively, Ω can be estimated directly from the resamples by $\hat{\Omega}_{n,B} \equiv n/B \sum_{b=1}^B (\bar{Z}_b^* - \bar{Z})(\bar{Z}_b^* - \bar{Z})'$, where $\hat{\Omega}_{n,B} \stackrel{p}{\to} \hat{\Omega}_n^*$ as $B \to \infty$ by the law of large numbers.

Our implementation is based on $\hat{\Omega}_{n.B}$, and the identity

$$\zeta_{b,i}^* - \zeta_{b,\cdot}^* = \bar{L}_{b,i}^* - \bar{L}_i - \frac{1}{m} \sum_{i=1}^m (\bar{L}_{b,i}^* - \bar{L}_i) = (\bar{L}_{b,i}^* - \bar{L}_{b,\cdot}^*) - (\bar{L}_i - \bar{L}_{\cdot}) = \bar{d}_{b,i\cdot}^* - \bar{d}_{i\cdot},$$

that shows that the diagonal elements of $\hat{\Omega}$ are given by

$$n/B\sum_{b=1}^{B}(\bar{Z}_{b,i}^* - \bar{Z}_i)^2 = n/B\sum_{b=1}^{B}(\bar{d}_{b,i}^* - \bar{d}_{i.})^2 = \frac{n}{B}\sum_{b=1}^{B}(\zeta_{b,i}^* - \zeta_{b,.}^*)^2 = \widehat{\operatorname{var}}(n^{1/2}\bar{d}_{i.}).$$

Under the null hypothesis, the distribution of T_{max} is approximated by

$$\begin{split} \max_{i} \left(\hat{D}^{-1/2} n^{1/2} (\bar{Z}_b^* - \bar{Z}) \right)_i &= \max_{i} \left(\operatorname{diag}(\widehat{\operatorname{var}}(\bar{d}_{1\cdot}), \ldots, \widehat{\operatorname{var}}(\bar{d}_{1\cdot}))^{-1/2} (\bar{Z}_b^* - \bar{Z}) \right)_i \\ &= \max_{i} \frac{\bar{d}_{b,i\cdot}^* - \bar{d}_{i\cdot}}{\sqrt{\widehat{\operatorname{var}}(\bar{d}_{i\cdot})}} = \max_{i} \frac{\zeta_{b,i}^* - \zeta_{b,\cdot}^*}{\sqrt{\widehat{\operatorname{var}}(\bar{d}_{i\cdot})}} = \max t_{b,i\cdot}^* \\ &= T_{b,\max}^*. \end{split}$$

2. Inflation Forecasting

Here we investigate the sensitivity of our MCS for Stock and Watson (JME,1999) to the choice of estimation scheme and equivalence test.

2.1. Sensitivity Analysis of MCS's to estimation scheme and the choice of test for EPA

The Tables corresponding to Table 2 in Stock and Watson (JME,1999) are as follows.

Table A.1 use an expanding recursive estimation scheme.

Table A.2 use a rolling estimation scheme.

The Tables corresponding to Table 4 in Stock and Watson (JME,1999) are as follows.

Table A.3 use a expanding recursive estimation scheme.

Table A.4 use an rolling estimation scheme.

These tables also display the root MSE of each model.

3. Regression Simulation

Here we present simulation results for $\beta^2 = 0.1, 0.5, 0.9$ for the simulation experiment in section 5.2.

Tables A.5-A.7 report the fraction that each of the specifications is in the MCS for the KLIC, AIC* and BIC*.

Tables A.9-A.10 report the average MCS p-value for the KLIC, AIC* and BIC*.

4. Taylor Rules

The Tables are as follows.

Table A.11 gives MCS results when the models are estimated on a sample period covering 1979Q1 to

2006Q4.

Table A.12 gives MCS results when the sample period only span 1984Q1 to 2006Q4.

References

Table A.1: MCS *p*-values for Stock and Watson JME (1999, table 2) (recursive scheme).

		PUNEV	V: 1970-	1983		PUNEV	V: 1984-	1996		GMDC:	1970-19	983		GMDC:	1984-19	996	
Variable	Trans	RMSE	<i>p</i> ₆	<i>p</i> 9	p_{12}	RMSE	<i>p</i> ₆	<i>p</i> 9	p_{12}	RMSE	<i>p</i> ₆	<i>p</i> 9	p_{12}	RMSE	<i>p</i> ₆	<i>p</i> 9	<i>p</i> ₁₂
No change (month)		3.290	.001	.002	.003	2.140	.002	.003	.003	2.208	.013	.028	.035	1.751	.024	.025	.019
No change (year)	-	2.798	.007	.012	.013	1.207	1.00**	1.00**	1.00**	2.100	.024	.048	.056	0.888	1.00**	1.00**	1.00**
uniar	-	2.675	.004	.009	.011	1.360	.802**	.809**	.796**	1.941	.044	.069	.075	1.082	.205*	.213*	.208*
'Gaps' specification	S																
dtip	DT	2.519	.021	.029	.026	1.310	.845**	.871**	.868**	1.913	.053	.076	.077	1.043	.281**	.297**	.292**
dtgmpyq	DT	2.644	.004	.007	.008	1.446	.389**	.416**	.389**	2.067	.024	.047	.056	1.103	.144*	.145*	.134*
dtmsmtq	DT	2.341	.092	.095	.085	1.280	.845**	.871**	.868**	1.844	.061	.088	.084	1.007	.330**	.351**	.354**
dtlpnag	DT	2.482	.024	.030	.026	1.323	.835**	.871**	.868**	2.024	.040	.069	.075	1.012	.330**	.351**	.354**
ipxmca	LV	2.373	.055	.060	.057	1.264	.845**	.871**	.868**	1.887	.058	.087	.084	1.026	.330**	.351**	.354**
hsbp	LN	2.205	.763**	.766**	.765**	1.392	.765**	.782**	.779**	1.829	.061	.088	.084	0.993	.330**	.367**	.370**
lhmu25	LV	2.433	.026	.030	.026	1.401	.741**	.754**	.744**	1.937	.040	.070	.073	1.055	.295**	.308**	.314**
First difference spec	ification	S															
ip	DLN	2.384	.047	.030	.026	1.429	.701**	.751**	.728**	1.819	.061	.088	.084	1.115	.144*	.145*	.131*
gmpyq	DLN	2.233	.496**	.453**	.385**	1.532	.256**	.292**	.270**	1.565	1.00**	1.00**	1.00**	1.149	.159*	.161*	.153*
msmtq	DLN	2.169	1.00**	1.00**	1.00**	1.353	.802**	.871**	.868**	1.778	.061	.088	.084	1.062	.289**	.303**	.314**
lpnag	DLN	2.308	.109*	.107*	.100	1.317	.845**	.871**	.868**	1.809	.061	.088	.084	1.009	.330**	.351**	.354**
dipxmca	DLV	2.355	.055	.060	.057	1.456	.536**	.549**	.517**	1.839	.059	.087	.083	1.128	.128*	.128*	.117*
dhsbp	DLN	2.701	.004	.007	.008	1.405	.741**	.754**	.744**	1.969	.035	.061	.064	1.077	.243*	.255**	.250**
dlhmu25	DLV	2.352	.055	.060	.057	1.474	.190*	.229*	.214*	1.878	.054	.078	.077	1.103	.137*	.141*	.130*
dlhur	DLV	2.321	.109*	.107*	.100	1.451	.283**	.308**	.288**	1.843	.059	.087	.084	1.088	.194*	.206*	.200*
Phillips curve																	
LHUR		2.387	.024	.030	.026	1.371	.741**	.754**	.744**	1.939	.047	.076	.077	1.050	.289**	.303**	.296**

S

Table A.2: MCS p-values for Stock and Watson JME (1999, table 2) (rolling scheme).

		PUNEW	V: 1970-	1983		PUNEV	V: 1984-	1996		GMDC:	1970-1	983		GMDC:	1984-1	996	
Variable	Trans	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	<i>p</i> ₁₂	RMSE	p_6	<i>p</i> ₉	<i>p</i> ₁₂
No change (month)		3.290	.000	.000	.001	2.140	.120*	.128*	.122*	2.208	.035	.041	.042	1.751	.106*	.116*	.113*
No change (year)	-	2.798	.003	.004	.006	1.207	1.00**	1.00**	1.00**	2.100	.077	.174*	.109*	0.888	1.00**	1.00**	1.00**
uniar	-	2.802	.001	.001	.004	1.330	.742**	.753**	.736**	2.026	.136*	.165*	.145*	1.070	.391**	.412**	.411**
'Gaps' specification	S																
dtip	DT	2.597	.022	.030	.059	1.475	.640**	.672**	.651**	2.103	.059	.092	.095	1.050	.391**	.412**	.411**
dtgmpyq	DT	2.751	.002	.004	.020	1.691	.249*	.302**	.299**	2.090	.149*	.106*	.157*	1.125	.307**	.323**	.317**
dtmsmtq	DT	2.202	.835**	.858**	.872**	1.704	.386**	.436**	.477**	1.806	.462**	.475**	.464**	1.046	.391**	.412**	.411**
dtlpnag	DT	2.591	.048	.060	.068	1.433	.688**	.706**	.694**	2.132	.059	.079	.075	1.026	.391**	.412**	.411**
ipxmca	LV	2.609	.044	.055	.034	1.318	.742**	.753**	.736**	2.040	.262**	.283**	.261**	1.034	.391**	.412**	.411**
hsbp	LN	2.114	1.00**	1.00**	1.00**	1.582	.549**	.590**	.579**	1.967	.352**	.378**	.364**	1.034	.391**	.412**	.411**
lhmu25	LV	2.968	.002	.004	.006	1.439	.640**	.672**	.651**	2.231	.027	.062	.061	1.040	.391**	.412**	.411**
First difference spec	ification	s															
ip	DLN	2.344	.252**	.285**	.306**	1.393	.742**	.753**	.736**	1.946	.322**	.335**	.298**	1.058	.391**	.412**	.411**
gmpyq	DLN	2.306	.828**	.856**	.842**	1.524	.545**	.588**	.421**	1.709	1.00**	1.00**	1.00**	1.158	.304**	.322**	.317**
msmtq	DLN	2.158	.835**	.858**	.872**	1.391	.742**	.753**	.736**	1.857	.462**	.475**	.464**	1.066	.391**	.412**	.411**
lpnag	DLN	2.408	.385**	.413**	.430**	1.341	.742**	.753**	.736**	1.940	.341**	.342**	.298**	1.027	.391**	.412**	.411**
dipxmca	DLV	2.379	.099	.121*	.139*	1.353	.742**	.753**	.736**	1.903	.426**	.449**	.446**	1.041	.391**	.412**	.411**
dhsbp	DLN	2.850	.001	.002	.003	1.456	.664**	.683**	.665**	2.076	.066	.079	.075	1.070	.391**	.412**	.411**
dlhmu25	DLV	2.383	.130*	.154*	.169*	1.440	.640**	.672**	.579**	2.035	.122*	.100	.102*	1.065	.391**	.412**	.411**
dlhur	DLV	2.296	.594**	.621**	.631**	1.429	.687**	.706**	.691**	1.904	.415**	.363**	.330**	1.067	.391**	.412**	.411**
Phillips curve																	
LHUR		2.637	.024	.032	.034	1.388	.742**	.753**	.736**	2.076	.076	.097	.098	1.162	.317**	.333**	.325**

9

Table A.3: MCS p-values for Stock and Watson JME (1999, table 4) (recursive scheme).

	PUNEW	V: 1970-1	.983		PUNEW	7: 1984-1	996		GMDC:	1970-19	983		GMDC:	1984-19	96	
Variable	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}
No change (month)	3.290	.006	.010	.007	2.140	.000	.000	.000	2.208	.000	.002	.004	1.751	.000	.000	.000
No change (year)	2.798	.010	.017	.021	1.207	1.00**	1.00**	1.00**	2.100	.002	.005	.011	0.888	1.00**	1.00**	1.00**
Univariate	2.675	.010	.017	.021	1.360	.741**	.757**	.749**	1.941	.026	.054	.075	1.082	.140*	.136*	.125*
Panel A. All indicato	rs															
Mul. factors	2.158	.256**	.286**	.290**	1.291	.923**	.941**	.944**	1.894	.085	.102*	.128*	0.964	.576**	.601**	.596**
1 factor	2.069	.699**	.722**	.714**	1.274	.923**	.941**	.944**	1.692	1.00**	1.00**	1.00**	1.002	.568**	.596**	.596**
Comb. mean	2.439	.011	.017	.021	1.289	.923**	.941**	.944**	1.853	.110*	.110*	.128*	1.036	.437**	.470**	.469**
Comb. median	2.550	.011	.017	.021	1.316	.904**	.917**	.920**	1.895	.077	.092	.106*	1.063	.236*	.241*	.232*
Comb. ridge reg.	2.209	.062	.066	.054	1.280	.923**	.941**	.944**	1.842	.116*	.117*	.130*	1.019	.430**	.456**	.452**
Panel B. Real activity	y indicator	rs														
Mul. factors	2.019	1.00**	1.00**	1.00**	1.357	.797**	.820**	.820**	1.792	.156*	.174*	.194*	0.946	.576**	.601**	.596**
1 factor	2.079	.699**	.722**	.714**	1.281	.923**	.941**	.944**	1.753	.235*	.271**	.292**	1.017	.542**	.575**	.573**
Comb. mean	2.346	.016	.025	.029	1.284	.923**	.941**	.944**	1.807	.132*	.130*	.148*	1.020	.430**	.456**	.452**
Comb. median	2.381	.012	.019	.029	1.299	.923**	.917**	.920**	1.831	.122*	.117*	.130*	1.036	.265**	.241*	.232*
Comb. ridge reg.	2.192	.114*	.124*	.116*	1.298	.923**	.941**	.944**	1.773	.174*	.174*	.194*	1.022	.430**	.456**	.452**
Panel C. Interest rate	?S															
Mul. factors	2.585	.011	.017	.021	1.495	.054	.030	.014	1.976	.058	.075	.097	1.173	.111*	.114*	.103*
1 factor	2.524	.016	.025	.029	1.495	.009	.005	.001	2.038	.001	.004	.010	1.077	.209*	.213*	.204*
Comb. mean	2.424	.016	.025	.029	1.341	.844**	.862**	.862**	1.900	.077	.092	.106*	1.079	.132*	.128*	.118*
Comb. median	2.513	.011	.017	.021	1.336	.873**	.888**	.891**	1.912	.061	.078	.099	1.078	.187*	.149*	.138*
Comb. ridge reg.	2.432	.016	.025	.029	1.368	.513**	.460**	.384**	1.943	.007	.010	.017	1.123	.102*	.099	.088
Panel D. Money																
Mul. factors	2.679	.010	.017	.019	1.360	.619**	.592**	.532**	1.933	.058	.071	.086	1.080	.152*	.164*	.153*
1 factor	2.679	.010	.017	.021	1.360	.715**	.727**	.715**	1.933	.058	.072	.090	1.080	.168*	.187*	.176*
Comb. mean	2.664	.010	.017	.021	1.350	.769**	.789**	.786**	1.964	.003	.012	.020	1.066	.326**	.355**	.347**
Comb. median	2.670	.010	.017	.021	1.348	.816**	.833**	.828**	1.954	.010	.025	.037	1.070	.267**	.274**	.265**
Comb. ridge reg.	2.638	.010	.017	.021	1.385	.260**	.205*	.150*	1.934	.058	.075	.097	1.121	.124*	.107*	.096
Phillips curve																
LHUR	2.387	.012	.019	.024	1.371	.479**	.428**	.358**	1.939	.062	.081	.106*	1.050	.398**	.340**	.328**

Table A.4: MCS *p*-values for Stock and Watson JME (1999, table 4) (rolling scheme).

	PUNEW	7: 1970-1	983		PUNEW	': 1984-1	996		GMDC:	1970-19	83		GMDC:	1984-19	96	
Variable	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}	RMSE	p_6	<i>p</i> 9	p_{12}
No change (month)	3.290	.005	.007	.006	2.140	.000	.000	.000	2.208	.001	.002	.006	1.751	.000	.000	.000
No change (year)	2.798	.010	.019	.020	1.207	1.00**	1.00**	1.00**	2.100	.070	.100*	.120*	0.888	1.00**	1.00**	1.00**
Univariate	2.802	.008	.011	.012	1.330	.702**	.725**	.718**	2.026	.017	.030	.046	1.070	.360**	.369**	.378**
Panel A. All indicato	rs															
Mul. factors	2.367	.246*	.266**	.266**	1.407	.059	.089	.069	2.105	.041	.065	.088	1.013	.528**	.566**	.570**
1 factor	2.106	1.00**	1.00**	1.00**	1.351	.125*	.171*	.186*	1.746	1.00**	1.00**	1.00**	1.038	.528**	.566**	.570**
Comb. mean	2.423	.119*	.126*	.093	1.269	.844**	.866**	.869**	1.880	.521**	.557**	.585**	1.030	.528**	.566**	.570**
Comb. median	2.585	.028	.030	.030	1.294	.844**	.866**	.869**	1.939	.270**	.310**	.323**	1.055	.499**	.532**	.530**
Comb. ridge reg.	2.121	.971**	.974**	.975**	1.318	.844**	.866**	.869**	1.918	.294**	.316**	.518**	1.013	.528**	.566**	.570**
Panel B. Real activity	indicator	S														
Mul. factors	2.245	.778**	.783**	.768**	1.416	.013	.022	.022	1.959	.294**	.316**	.323**	0.990	.528**	.566**	.570**
1 factor	2.115	.971**	.974**	.975**	1.347	.302**	.353**	.358**	1.774	.684**	.713**	.720**	1.041	.528**	.566**	.570**
Comb. mean	2.284	.597**	.615**	.615**	1.263	.844**	.866**	.869**	1.827	.646**	.685**	.698**	1.012	.528**	.566**	.570**
Comb. median	2.329	.442**	.476**	.495**	1.284	.844**	.866**	.869**	1.854	.584**	.628**	.647**	1.038	.514**	.550**	.553**
Comb. ridge reg.	2.160	.952**	.954**	.953**	1.326	.826**	.851**	.855**	1.888	.543**	.578**	.518**	1.013	.528**	.566**	.570**
Panel C. Interest rate	2.5															
Mul. factors	2.828	.019	.016	.019	1.512	.003	.004	.005	2.215	.001	.003	.008	1.294	.003	.007	.008
1 factor	2.776	.033	.033	.030	1.463	.001	.003	.003	2.111	.001	.003	.007	1.102	.029	.085	.161*
Comb. mean	2.474	.161*	.165*	.092	1.349	.087	.114*	.123*	1.935	.263**	.308**	.323**	1.060	.484**	.514**	.522**
Comb. median	2.567	.033	.033	.077	1.377	.046	.033	.034	1.974	.211*	.257**	.290**	1.066	.486**	.518**	.418**
Comb. ridge reg.	2.436	.189*	.199*	.164*	1.372	.013	.069	.069	1.962	.144*	.185*	.216*	1.052	.499**	.532**	.530**
Panel D. Money																
Mul. factors	2.801	.010	.012	.015	1.340	.358**	.592**	.597**	2.028	.005	.011	.020	1.075	.097	.049	.057
1 factor	2.805	.010	.016	.013	1.352	.148*	.177*	.186*	2.027	.010	.020	.031	1.104	.006	.013	.026
Comb. mean	2.742	.010	.016	.019	1.390	.013	.022	.022	2.033	.003	.006	.012	1.088	.014	.026	.015
Comb. median	2.752	.010	.016	.019	1.340	.605**	.389**	.386**	2.032	.002	.004	.008	1.077	.181*	.223*	.095
Comb. ridge reg.	2.721	.010	.016	.019	1.446	.003	.006	.007	2.013	.041	.065	.088	1.088	.003	.009	.010
Phillips curve																
LHUR	2.637	.033	.033	.030	1.388	.013	.022	.022	2.076	.010	.020	.031	1.162	.334**	.429**	.423**

Table A.5: Simulation Experiment II: $\beta^2 = 0.1$, fraction in MCS

	$Q(\mathcal{Z}_j, \hat{\theta}_j)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	47.8 48.1	2.00 1.99	0.974 0.956	0.985 0.980	0.988 0.989
X_0, X_1	41.4 41.8	3.03 3.03	1.000 0.999	1.000 0.999	0.979 0.960
X_0,\ldots,X_2	40.3 40.8	4.09 4.09	1.000 0.999	0.998 0.999	0.928 0.922
X_0,\ldots,X_3	39.3 39.7	5.19 5.19	1.000 1.000	0.997 0.998	0.840 0.832
X_0,\ldots,X_4	38.2 38.5	6.33 6.33	1.000 1.000	0.994 0.996	0.676 0.653
X_0,\ldots,X_5	37.0 37.4	7.51 7.51	1.000 1.000	0.987 0.989	0.482 0.435
X_0, \ldots, X_6	35.8 36.2 46.3 42.8	8.75 8.74	1.000 1.000 0.979 0.997	0.970 0.965 0.984 0.999	0.312 0.250 0.944 0.959
$X_0, X_2 \\ X_0, X_2, X_3$	46.3 42.8 45.0 41.5	3.03 3.03 4.09 4.09	0.982 0.998	0.978 0.999	0.944 0.939 0.812 0.914
X_0, X_2, X_3 X_0, X_2, \ldots, X_4	43.7 40.3	5.19 5.18	0.983 0.999	0.966 0.998	0.612 0.808
X_0, X_2, \dots, X_5	42.5 39.2	6.33 6.32	0.983 0.999	0.946 0.995	0.422 0.609
X_0, X_2, \dots, X_6	41.3 38.0	7.51 7.51	0.983 0.999	0.906 0.987	0.271 0.396
Panel B: $n = 100$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	97.9 98.2	2.00 1.99	0.859 0.806	0.903 0.886	0.930 0.943
X_0, X_1	86.2 86.7	3.01 3.01	1.000 0.999	1.000 1.000	0.996 0.991
X_0,\ldots,X_2	85.2 85.6	4.03 4.03	1.000 1.000	0.994 1.000	0.926 0.973
X_0,\ldots,X_3	84.2 84.6	5.07 5.07	1.000 1.000	0.990 1.000	0.864 0.900
X_0,\ldots,X_4	83.1 83.5	6.12 6.12	1.000 1.000	0.987 1.000	0.677 0.684
X_0,\ldots,X_5	82.0 82.4	7.19 7.19	1.000 1.000	0.980 0.999	0.447 0.412
X_0,\ldots,X_6	80.9 81.4	8.28 8.27	1.000 1.000	0.972 0.993	0.268 0.220
X_0, X_2	95.9 88.7	3.01 3.00	0.881 0.994	0.900 0.998	0.847 0.988
X_0, X_2, X_3	94.4 87.2 93.1 86.0	4.03 4.03 5.07 5.07	0.894 0.997 0.901 0.998	0.884 0.999 0.865 0.998	0.628
$X_0, X_2, \dots, X_4 $ X_0, X_2, \dots, X_5	93.1 80.0	6.12 6.12	0.901 0.998	0.826 0.997	0.242 0.591
X_0, X_2, \dots, X_5 X_0, X_2, \dots, X_6	90.5 83.7	7.19 7.18	0.906 0.998	0.770 0.991	0.140 0.343
$Panel\ C:\ n = 500$	70.5 03.7	7.17 7.10	0.500 0.550	0.770 0.551	0.110 0.515
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	498 498	2.00 2.00	0.002 0.001	0.005 0.003	0.015 0.018
X_0, X_1	444 444	3.00 3.00	1.000 1.000	1.000 1.000	1.000 1.000
X_0,\ldots,X_2	443 443	4.01 4.01	1.000 1.000	0.957 0.999	0.215 0.779
X_0,\ldots,X_3	442 442	5.01 5.01	1.000 1.000	0.937 0.998	0.109 0.554
X_0,\ldots,X_4	441 441	6.02 6.02	1.000 1.000	0.903 0.996	0.054 0.208
X_0,\ldots,X_5	440 440	7.03 7.03	1.000 1.000	0.859 0.992	0.031 0.085
X_0,\ldots,X_6	439 439	8.04 8.04	1.000 1.000	0.796 0.986	0.014 0.035
X_0, X_2	493 454	3.00 3.00	0.007 0.849	0.011 0.886	0.013 0.717
X_0, X_2, X_3	489 451	4.00 4.00	0.011 0.915	0.013 0.916	0.008 0.478
X_0, X_2, \ldots, X_4	486 449	5.01 5.01	0.016 0.932	0.015 0.909	0.003 0.241
X_0, X_2, \ldots, X_5	484 448	6.02 6.02	0.019 0.939	0.016 0.886	0.002 0.100
X_0, X_2, \ldots, X_6	483 447	7.03 7.02	0.022 0.943	0.016 0.843	0.001 0.042

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the frequency that a particular regression model is in the $\widehat{\mathcal{M}}_{90\%}^*$ for each of the three criteria, KLIC, AIC* and BIC*.

Table A.6: Simulation Experiment II: $\beta^2 = 0.5$, fraction in MCS

	^	^			
	$Q(\mathcal{Z}_j, \hat{\theta}_j)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	48.1 48.1	1.99 2.00	0.058 0.038	0.085 0.070	0.118 0.124
X_0, X_1	12.4 12.4	3.02 3.02	0.998 0.999	1.000 1.000	1.000 1.000
X_0,\ldots,X_2	11.3 11.3	4.08 4.08	0.998 0.999	0.962 0.999	0.566 0.940
X_0, \ldots, X_3	10.2 10.2	5.18 5.18	0.999 0.999	0.940 0.998	0.469 0.912
X_0, \ldots, X_4 X_0, \ldots, X_5	9.09 9.04 7.95 7.88	6.32 6.32 7.50 7.50	1.000 1.000 1.000 1.000	0.905 0.997 0.867 0.994	0.367 0.803 0.279 0.598
X_0, \ldots, X_6	6.77 6.69	8.73 8.74	1.000 1.000	0.806 0.990	0.203 0.400
X_0, X_2	44.7 21.0	3.02 3.02	0.086 0.905	0.100 0.935	0.099 0.877
X_0, X_2, X_3	42.3 18.1	4.08 4.08	0.106 0.948	0.107 0.949	0.077 0.806
X_0, X_2, \ldots, X_4	40.4 16.3	5.18 5.18	0.120 0.958	0.105 0.938	0.054 0.665
X_0, X_2, \ldots, X_5	38.8 14.8	6.32 6.32	0.132 0.962	0.100 0.913	0.036 0.501
X_0, X_2, \ldots, X_6	37.2 13.4	7.50 7.51	0.145 0.964	0.094 0.869	0.022 0.348
<i>Panel B:</i> $n = 100$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	98.0 98.1	1.99 1.99	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	27.6 27.8	3.00 3.00	0.998 1.000	1.000 1.000	1.000 1.000
X_0, \ldots, X_2	26.6 26.7	4.03 4.03	0.999 1.000	0.959 0.982	0.402 0.675
X_0, \ldots, X_3	25.5 25.7 24.4 24.6	5.07 5.06 6.12 6.12	0.999 1.000 1.000 1.000	0.939 0.975 0.908 0.960	0.276 0.619 0.174 0.545
X_0, \ldots, X_4 X_0, \ldots, X_5	23.4 23.6	7.19 7.18	1.000 1.000	0.864 0.942	0.174 0.343 0.101 0.390
X_0, \ldots, X_6	22.3 22.5	8.28 8.27	1.000 1.000	0.800 0.920	0.059 0.238
X_0, X_2	92.4 45.1	3.00 3.01	0.000 0.548	0.000 0.585	0.000 0.490
X_0, X_2, X_3	88.8 40.4	4.03 4.03	0.000 0.691	0.000 0.666	0.000 0.443
X_0, X_2, \ldots, X_4	86.1 38.1	5.07 5.07	0.000 0.736	0.000 0.675	0.000 0.338
X_0, X_2, \ldots, X_5	83.9 36.3	6.12 6.12	0.000 0.759	0.000 0.655	0.000 0.236
X_0, X_2, \ldots, X_6	82.0 34.8	7.19 7.19	0.001 0.772	0.000 0.631	0.000 0.143
<i>Panel C:</i> $n = 500$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	498 498	2.00 2.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	151 151	3.00 3.00	0.999 0.999	1.000 1.000	1.000 1.000
X_0,\ldots,X_2	150 150	4.00 4.00	0.999 0.999	0.958 0.960	0.207 0.206
X_0, \ldots, X_3	149 149	5.01 5.01	0.999 1.000	0.938 0.938	0.100 0.099
X_0, \ldots, X_4 X_0, \ldots, X_5	148 148 147 147	6.02 6.01 7.03 7.02	1.000 1.000 1.000 1.000	0.907 0.901 0.858 0.852	0.044 0.042 0.020 0.017
X_0, \ldots, X_5 X_0, \ldots, X_6	147 147	8.04 8.03	1.000 1.000	0.790 0.792	0.020 0.017
X_0, \ldots, X_6 X_0, X_2	474 238	3.00 3.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, X_3	460 219	4.00 4.00	0.000 0.002	0.000 0.002	0.000 0.002
X_0, X_2, \ldots, X_4	451 211	5.01 5.01	0.000 0.004	0.000 0.004	0.000 0.001
X_0, X_2, \ldots, X_5	444 206	6.02 6.01	0.000 0.006	0.000 0.006	0.000 0.001
X_0, X_2, \ldots, X_6	439 203	7.03 7.02	0.000 0.008	0.000 0.007	0.000 0.000

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the frequency that a particular regression model is in the $\widehat{\mathcal{M}}_{90\%}^*$ for each of the three criteria, KLIC, AIC* and BIC*.

Table A.7: Simulation Experiment II: $\beta^2 = 0.9$, fraction in MCS

	$Q(\mathcal{Z}_j, \hat{ heta}_j)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
$Panal A \cdot n = 50$	20 1,11			- (- /	-
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	47.9 48.1	2.00 1.99	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-68.4 -68.3	3.03 3.03	0.999 0.999	1.000 1.000	1.000 1.000
X_0, \ldots, X_2	-69.5 -69.3	4.09 4.09	0.999 0.999	0.959 0.962	0.521 0.521 0.405 0.406
X_0, \ldots, X_3	-70.6 -70.4 -71.7 -71.5	5.19 5.19 6.33 6.32	0.999 0.999 1.000 0.999	0.939 0.941 0.909 0.908	0.405
X_0, \ldots, X_4 X_0, \ldots, X_5	-71.7 -71.3 -72.8 -72.7	7.51 7.51	1.000 0.999	0.858 0.864	0.283 0.289 0.190 0.202
X_0, \ldots, X_6	-74.0 -73.9	8.75 8.75	1.000 1.000	0.786 0.797	0.119 0.135
X_0, \dots, X_0	42.6 -18.5	3.03 3.02	0.000 0.005	0.000 0.007	0.000 0.009
X_0, X_2, X_3	39.2 -27.2	4.09 4.08	0.000 0.021	0.000 0.023	0.000 0.016
X_0, X_2, \ldots, X_4	36.5 -31.4	5.19 5.18	0.000 0.036	0.000 0.032	0.000 0.018
X_0, X_2, \ldots, X_5	34.3 -34.2	6.33 6.32	0.000 0.048	0.000 0.036	0.000 0.014
X_0, X_2, \ldots, X_6	32.3 -36.4	7.51 7.50	0.000 0.056	0.000 0.038	0.000 0.010
<i>Panel B:</i> $n = 100$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	98.0 98.0	1.99 1.99	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-134 -133	3.01 3.00	0.999 0.999	1.000 1.000	1.000 1.000
X_0,\ldots,X_2	-135 -134	4.03 4.02	1.000 0.999	0.958 0.958	0.400 0.400
X_0,\ldots,X_3	-136 -135	5.07 5.06	1.000 1.000	0.937 0.937	0.277 0.275
X_0,\ldots,X_4	-137 -137	6.12 6.11	1.000 1.000	0.903 0.904	0.176 0.166
X_0,\ldots,X_5	-138 -138	7.19 7.18	1.000 1.000	0.855 0.859	0.103 0.100
X_0,\ldots,X_6	-139 -139	8.28 8.27	1.000 1.000	0.796 0.796	0.057 0.053
X_0, X_2	88.5 -33.9	3.00 3.00 4.02 4.03	0.000 0.000	0.000 0.000	0.000 0.000
$X_0, X_2, X_3 $ X_0, X_2, \dots, X_4	82.7 -50.2 78.5 -57.4	4.02 4.03 5.06 5.06	$0.000 0.000 \\ 0.000 0.000$	$0.000 0.000 \\ 0.000 0.000$	0.000 0.000 0.000 0.000
X_0, X_2, \ldots, X_4 X_0, X_2, \ldots, X_5	75.2 -61.8	6.11 6.12	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \dots, X_6	72.4 -64.8	7.18 7.19	0.000 0.000	0.000 0.000	0.000 0.000
$Panel\ C:\ n = 500$	72.1 01.0	7.10 7.17	0.000	0.000 0.000	0.000
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	499 499	2.00 2.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-654 -654	3.00 3.00	0.999 0.999	1.000 1.000	1.000 1.000
X_0,\ldots,X_2	-656 -655	4.01 4.00	1.000 1.000	0.957 0.956	0.206 0.202
X_0,\ldots,X_3	-657 -656	5.01 5.01	1.000 1.000	0.937 0.936	0.097 0.093
X_0,\ldots,X_4	-658 -657	6.02 6.02	1.000 1.000	0.902 0.901	0.040 0.037
X_0,\ldots,X_5	-659 -658	7.03 7.03	1.000 1.000	0.858 0.852	0.019 0.015
X_0,\ldots,X_6	-660 -659	8.04 8.04	1.000 1.000	0.796 0.789	0.006 0.006
X_0, X_2	455 -156	3.00 3.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, X_3	430 -233	4.00 4.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \ldots, X_4	413 -264	5.01 5.01	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \ldots, X_5	401 -282	6.01 6.02	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \ldots, X_6	392 -293	7.02 7.02	0.000 0.000	0.000 0.000	0.000 0.000

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the frequency that a particular regression model is in the $\widehat{\mathcal{M}}_{90\%}^*$ for each of the three criteria, KLIC, AIC* and BIC*.

Table A.8: Simulation Experiment II: $\beta^2 = 0.1$, average MCS p-value

	$Q(\mathcal{Z}_j, \hat{\theta}_j)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	47.8 48.1	2.00 1.99	0.682 0.659	0.729 0.739	0.744 0.768
X_0, X_1	41.4 41.8	3.03 3.03	0.927 0.918	0.938 0.908	0.841 0.794
X_0,\ldots,X_2	40.3 40.8	4.09 4.09	0.905 0.921	0.784 0.820	0.504 0.515
X_0,\ldots,X_3	39.3 39.7	5.19 5.19	0.905 0.925	0.738 0.765	0.366 0.359
X_0,\ldots,X_4	38.2 38.5	6.33 6.33	0.907 0.928	0.690 0.705	0.258 0.242
X_0,\ldots,X_5	37.0 37.4	7.51 7.51	0.905 0.927	0.635 0.635	0.176 0.158
X_0, \ldots, X_6	35.8 36.2	8.75 8.74	0.903 0.919	0.575 0.560	0.117 0.099
X_0, X_2	46.3 42.8 45.0 41.5	3.03 3.03 4.09 4.09	0.702 0.880 0.711 0.893	0.676 0.848 0.631 0.791	0.474 0.696 0.334 0.486
X_0, X_2, X_3 X_0, X_2, \dots, X_4	43.7 40.3	5.19 5.18	0.716 0.900	0.579 0.738	0.234 0.339
X_0, X_2, \dots, X_4 X_0, X_2, \dots, X_5	42.5 39.2	6.33 6.32	0.717 0.901	0.522 0.675	0.161 0.228
X_0, X_2, \dots, X_6	41.3 38.0	7.51 7.51	0.714 0.897	0.465 0.606	0.101 0.220
Panel B: $n = 100$.110 5010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.71.	0.100	01100 01100
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	97.9 98.2	2.00 1.99	0.421 0.390	0.485 0.490	0.521 0.552
X_0, X_1	86.2 86.7	3.01 3.01	0.919 0.920	0.964 0.936	0.950 0.893
X_0, \ldots, X_2	85.2 85.6	4.03 4.03	0.883 0.916	0.732 0.814	0.450 0.490
X_0,\ldots,X_3	84.2 84.6	5.07 5.07	0.883 0.921	0.689 0.768	0.324 0.333
X_0,\ldots,X_4	83.1 83.5	6.12 6.12	0.882 0.925	0.650 0.720	0.224 0.215
X_0,\ldots,X_5	82.0 82.4	7.19 7.19	0.880 0.925	0.609 0.663	0.148 0.134
X_0,\ldots,X_6	80.9 81.4	8.28 8.27	0.879 0.921	0.566 0.603	0.094 0.080
X_0, X_2	95.9 88.7	3.01 3.00	0.451 0.824	0.471 0.802	0.345 0.674
X_0, X_2, X_3	94.4 87.2	4.03 4.03	0.467 0.849	0.444 0.756	0.227 0.447
X_0, X_2, \ldots, X_4	93.1 86.0	5.07 5.07	0.476 0.858	0.412 0.712	0.149 0.298
X_0, X_2, \ldots, X_5	91.8 84.9 90.5 83.7	6.12 6.12 7.19 7.18	0.483 0.861 0.488 0.859	0.378	0.095 0.190
$X_0, X_2,, X_6$ Panel C: $n = 500$	90.5 83.7	7.19 7.10	0.466 0.639	0.343 0.605	0.058 0.117
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	498 498	2.00 2.00	0.006 0.005	0.008 0.006	0.013 0.014
X_0, X_1	444 444	3.00 3.00	0.909 0.925	0.962 0.968	0.997 0.984
X_0, \ldots, X_2	443 443	4.01 4.01	0.868 0.883	0.646 0.706	0.114 0.264
X_0,\ldots,X_3	442 442	5.01 5.01	0.866 0.883	0.588 0.670	0.053 0.149
X_0,\ldots,X_4	441 441	6.02 6.02	0.866 0.882	0.535 0.635	0.031 0.080
X_0,\ldots,X_5	440 440	7.03 7.03	0.862 0.880	0.480 0.598	0.021 0.045
X_0,\ldots,X_6	439 439	8.04 8.04	0.858 0.880	0.427 0.559	0.015 0.026
X_0, X_2	493 454	3.00 3.00	0.009 0.410	0.011 0.427	0.011 0.284
X_0, X_2, X_3	489 451	4.00 4.00	0.011 0.490	0.012 0.455	0.008 0.168
X_0, X_2, \ldots, X_4	486 449	5.01 5.01	0.013 0.521	0.012 0.441	0.005 0.088
X_0, X_2, \ldots, X_5	484 448	6.02 6.02	0.014 0.537	0.013 0.417	0.003 0.046
X_0, X_2, \ldots, X_6	483 447	7.03 7.02	0.016 0.546	0.013 0.388	0.002 0.026

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the average MCS p-value for each of the three criteria, KLIC, AIC* and BIC*.

Table A.9: Simulation Experiment II: $\beta^2 = 0.5$, average MCS p-value

	$Q(\mathcal{Z}_i, \hat{\theta}_i)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
	$Q(\mathcal{L}_j, \theta_j)$	K	KLIC	AIC (IIC)	DIC
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	48.1 48.1	1.99 2.00	0.027 0.021	0.035 0.031	0.043 0.046
X_0, X_1	12.4 12.4	3.02 3.02	0.897 0.918	0.955 0.958	0.983 0.971
X_0,\ldots,X_2	11.3 11.3	4.08 4.08	0.858 0.885	0.644 0.725	0.293 0.438
X_0,\ldots,X_3	10.2 10.2	5.18 5.18	0.857 0.888	0.584 0.690	0.204 0.345
X_0, \ldots, X_4	9.09 9.04	6.32 6.32	0.856 0.889	0.529 0.650 0.470 0.605	0.148 0.258
X_0, \ldots, X_5 X_0, \ldots, X_6	7.95 7.88 6.77 6.69	7.50 7.50 8.73 8.74	0.852 0.888 0.848 0.887	0.470 0.605 0.417 0.554	0.108 0.189 0.079 0.133
X_0, \ldots, X_6 X_0, X_2	44.7 21.0	3.02 3.02	0.035 0.491	0.040 0.494	0.079 0.133
X_0, X_2, X_3	42.3 18.1	4.08 4.08	0.041 0.566	0.041 0.511	0.032 0.314
X_0, X_2, \ldots, X_4	40.4 16.3	5.18 5.18	0.045 0.594	0.040 0.491	0.024 0.241
X_0, X_2, \ldots, X_5	38.8 14.8	6.32 6.32	0.048 0.608	0.038 0.457	0.018 0.177
X_0, X_2, \ldots, X_6	37.2 13.4	7.50 7.51	0.051 0.615	0.037 0.418	0.013 0.125
Panel B: $n = 100$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	98.0 98.1	1.99 1.99	0.001 0.000	0.001 0.001	0.001 0.001
X_0, X_1	27.6 27.8	3.00 3.00	0.898 0.914	0.957 0.964	0.990 0.990
X_0,\ldots,X_2	26.6 26.7	4.03 4.03	0.862 0.873	0.652 0.667	0.213 0.290
X_0,\ldots,X_3	25.5 25.7	5.07 5.06	0.862 0.873	0.592 0.618	0.130 0.229
X_0,\ldots,X_4	24.4 24.6	6.12 6.12	0.863 0.870	0.539 0.574	0.081 0.174
X_0, \ldots, X_5	23.4 23.6	7.19 7.18	0.860 0.868	0.482 0.535	0.051 0.126
X_0, \ldots, X_6	22.3 22.5 92.4 45.1	8.28 8.27 3.00 3.01	0.858 0.865 0.001 0.207	0.429 0.496 0.001 0.230	0.031 0.086 0.001 0.183
$X_0, X_2 \ X_0, X_2, X_3$	88.8 40.4	4.03 4.03	0.001 0.207	0.001 0.230	0.001 0.163
X_0, X_2, X_3 X_0, X_2, \ldots, X_4	86.1 38.1	5.07 5.07	0.002 0.319	0.001 0.280	0.001 0.104
X_0, X_2, \dots, X_5	83.9 36.3	6.12 6.12	0.002 0.338	0.002 0.271	0.001 0.087
X_0, X_2, \ldots, X_6	82.0 34.8	7.19 7.19	0.002 0.351	0.002 0.256	0.000 0.056
Panel C: $n = 500$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	498 498	2.00 2.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	151 151	3.00 3.00	0.903 0.905	0.960 0.962	0.997 0.997
X_0,\ldots,X_2	150 150	4.00 4.00	0.864 0.864	0.644 0.648	0.112 0.110
X_0,\ldots,X_3	149 149	5.01 5.01	0.864 0.865	0.587 0.592	0.050 0.050
X_0,\ldots,X_4	148 148	6.02 6.01	0.864 0.864	0.533 0.536	0.023 0.022
X_0,\ldots,X_5	147 147	7.03 7.02	0.860 0.859	0.480 0.482	0.011 0.011
X_0, \ldots, X_6	145 146 474 238	8.04 8.03 3.00 3.00	0.858 0.855 0.000 0.000	0.430 0.432 0.000 0.000	0.005 0.006 0.000 0.001
$X_0, X_2 \ X_0, X_2, X_3$	474 238 460 219	4.00 4.00	0.000 0.000	0.000 0.000	0.000 0.001
X_0, X_2, X_3 X_0, X_2, \ldots, X_4	451 211	5.01 5.01	0.000 0.002	0.000 0.002	0.000 0.002
X_0, X_2, \ldots, X_4 X_0, X_2, \ldots, X_5	444 206	6.02 6.01	0.000 0.005	0.000 0.005	0.000 0.002
X_0, X_2, \ldots, X_6	439 203	7.03 7.02	0.000 0.006	0.000 0.005	0.000 0.001

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the average MCS p-value for each of the three criteria, KLIC, AIC* and BIC*.

Table A.10: Simulation Experiment II: $\beta^2 = 0.9$, average MCS p-value

	$Q(\mathcal{Z}_j, \hat{\theta}_j)$	\hat{k}^*	KLIC	AIC* (TIC)	BIC*
	$\mathcal{Q}(\mathcal{D}_j, \sigma_j)$	K	KLIC	riie (rie)	DIC
Panel A: $n = 50$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	47.9 48.1	2.00 1.99	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-68.4 -68.3		0.902 0.899	0.957 0.955	0.984 0.983
X_0,\ldots,X_2	-69.5 -69.3		0.862 0.861	0.644 0.647	0.279 0.285
X_0,\ldots,X_3	-70.6 -70.4		0.860 0.860	0.582 0.584	0.188 0.191
X_0,\ldots,X_4	-71.7 -71.5		0.860 0.859	0.524 0.526	0.127 0.131
X_0, \ldots, X_5	-72.8 -72.7 -74.0 -73.9		0.855 0.856 0.851 0.850	0.465 0.469 0.411 0.413	0.085 0.090 0.057 0.061
X_0, \ldots, X_6 X_0, X_2	42.6 -18.5		0.000 0.005	0.000 0.006	0.000 0.007
$X_0, X_2 \\ X_0, X_2, X_3$	39.2 -27.2		0.000 0.003	0.000 0.000	0.000 0.007
X_0, X_2, \dots, X_4	36.5 -31.4		0.000 0.018	0.000 0.016	0.000 0.010
X_0, X_2, \dots, X_5	34.3 -34.2		0.000 0.021	0.000 0.017	0.000 0.009
X_0, X_2, \ldots, X_6	32.3 -36.4	7.51 7.50	0.000 0.024	0.000 0.018	0.000 0.007
<i>Panel B:</i> $n = 100$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	98.0 98.0	1.99 1.99	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-134 -133	3.01 3.00	0.902 0.900	0.960 0.958	0.991 0.990
X_0,\ldots,X_2	-135 -134	4.03 4.02	0.861 0.863	0.644 0.654	0.211 0.214
X_0,\ldots,X_3	-136 -135	5.07 5.06	0.861 0.862	0.586 0.592	0.127 0.128
X_0,\ldots,X_4	-137 -137	6.12 6.11	0.861 0.862	0.531 0.536	0.079 0.079
X_0, \ldots, X_5	-138 -138	7.19 7.18	0.857 0.858	0.477 0.480	0.048 0.047
X_0, \ldots, X_6	-139 -139 88.5 -33.9		0.855 0.854 0.000 0.000	0.426 0.428 0.000 0.000	0.028
$X_0, X_2 \\ X_0, X_2, X_3$	82.7 -50.2		0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, X_3 X_0, X_2, \ldots, X_4	78.5 -57.4		0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \dots, X_5	75.2 -61.8		0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \dots, X_6	72.4 -64.8		0.000 0.001	0.000 0.000	0.000 0.000
<i>Panel C:</i> $n = 500$					
$\rho =$	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9	0.3 0.9
X_0	499 499	2.00 2.00	0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_1	-654 -654	3.00 3.00	0.908 0.910	0.962 0.963	0.997 0.997
X_0,\ldots,X_2	-656 -655	4.01 4.00	0.868 0.868	0.646 0.646	0.111 0.110
X_0,\ldots,X_3	-657 -656		0.866 0.866	0.588 0.587	0.047 0.047
X_0,\ldots,X_4	-658 -657	6.02 6.02	0.866 0.864	0.535 0.532	0.022 0.021
X_0,\ldots,X_5	-659 -658		0.862 0.860	0.480 0.478	0.011 0.010
X_0,\ldots,X_6	-660 -659		0.858 0.854	0.427 0.426	0.005 0.005
X_0, X_2	455 -156 430 -233		0.000 0.000 0.000 0.000	$0.000 0.000 \\ 0.000 0.000$	$0.000 0.000 \\ 0.000 0.000$
X_0, X_2, X_3 X_0, X_2, \dots, X_4	430 -233		0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \ldots, X_4 X_0, X_2, \ldots, X_5	401 -282		0.000 0.000	0.000 0.000	0.000 0.000
X_0, X_2, \ldots, X_6	392 -293		0.000 0.000	0.000 0.000	0.000 0.000

The average value of the maximized log-likelihood function multiplied by minus two is reported in the first two columns. The next pair of columns has the average estimate of the degrees of freedom. The last three pairs of columns report the average MCS p-value for each of the three criteria, KLIC, AIC* and BIC*.

Table A.11: MCS for Taylor Rules: 1979:Q1 to 2006:Q4

Model Specification			$Q(\mathcal{Z}_j,\hat{\theta}_j)$	\hat{k}^{\star}	KLIC	AIC*	BIC⁺
R_{t-1}			93.15	13.74	106.89 (0.30)**	120.63 (0.47)**	157.99 (0.63)**
	π_{t-1}	y_{t-1}	284.82	11.44	296.25 (0.00)	307.69 (0.00)	338.79 (0.00)
	$\pi_{t-j}, j=1,2$	$y_{t-j}, j=1,2$	258.95	14.66	273.61 (0.00)	288.28 (0.01)	328.14 (0.01)
	π_{t-1}	ur_{t-1}	289.65	10.20	299.84 (0.00)	310.04 (0.00)	337.75 (0.00)
	$\pi_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	268.90	12.82	281.72 (0.00)	294.53 (0.00)	329.37 (0.01)
	π_{t-1}	$rulc_{t-1}$	289.99	9.89	299.88 (0.00)	309.77 (0.00)	336.67 (0.01)
	$\pi_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	266.07	12.12	278.19 (0.00)	290.31 (0.01)	323.26 (0.01)
	y_{t-1}	ur_{t-1}	387.45	17.04	404.49 (0.00)	421.54 (0.00)	467.86 (0.00)
	$y_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	385.86	23.42	409.28 (0.00)	432.69 (0.00)	496.35 (0.00)
	y_{t-1}	$rulc_{t-1}$	386.47	14.92	401.39 (0.00)	416.32 (0.00)	456.89 (0.00)
	$y_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	385.43	19.44	404.87 (0.00)	424.31 (0.00)	477.16 (0.00)
	ur_{t-1}	$rulc_{t-1}$	386.21	15.41	401.62 (0.00)	417.02 (0.00)	458.90 (0.00)
	$ur_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	384.82	19.86	404.68 (0.00)	424.54 (0.00)	478.52 (0.00)
R_{t-1}	π_{t-1}	y_{t-1}	68.57	17.71	86.28 (0.86)**	103.98 (1.00)**	152.12 (0.64)**
R_{t-1}	$\pi_{t-j}, j=1,2$	$y_{t-j}, j=1,2$	62.11	22.11	84.22 (1.00)**	106.32 (0.93)**	166.43 (0.41)**
R_{t-1}	π_{t-1}	ur_{t-1}	77.57	16.32	93.89 (0.72)**	110.22 (0.89)**	154.60 (0.64)**
R_{t-1}	$\pi_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	73.27	18.79	92.07 (0.80)**	110.86 (0.89)**	161.95 (0.57)**
R_{t-1}	π_{t-1}	$rulc_{t-1}$	72.80	16.06	88.86 (0.86)**	104.92 (0.93)**	148.58 (1.00)**
R_{t-1}	$\pi_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	69.21	19.26	88.47 (0.86)**	107.73 (0.92)**	160.09 (0.58)**
R_{t-1}	y_{t-1}	ur_{t-1}	86.16	19.16	105.33 (0.33)**	124.49 (0.38)**	176.59 (0.16)*
R_{t-1}	$y_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	85.51	24.32	109.83 (0.28)**	134.16 (0.18)*	200.28 (0.02)
R_{t-1}	y_{t-1}	$rulc_{t-1}$	89.42	18.92	108.35 (0.29)**	127.27 (0.31)**	178.72 (0.15)*
R_{t-1}	$y_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	88.11	22.42	110.53 (0.28)**	132.94 (0.20)*	193.88 (0.03)
R_{t-1}	ur_{t-1}	$rulc_{t-1}$	87.42	18.07	105.49 (0.33)**	123.55 (0.38)**	172.66 (0.21)*
R_{t-1}	$ur_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	85.93	21.32	107.25 (0.30)**	128.56 (0.28)**	186.51 (0.06)

We report the maximized log-likelihood function (multiplied by minus two), the effective degress of freedom, and the three criteria, KLIC, AIC* and BIC*, along with the corresponding MCS p-values. The regression models in $\widehat{\mathcal{M}}_{90\%}^*$ and $\widehat{\mathcal{M}}_{75\%}^*$ are identified by one and two asterisks, respectively. See the text and Table 6 for variable mnemonics and definitions.

Table A.12: MCS for Taylor Rules: 1984:Q1 to 2006:Q4

Model Specification			$Q(\mathcal{Z}_j, \hat{\theta}_j)$	\hat{k}^\star	KLIC	AIC*	BIC⁺
R_{t-1}			-38.90	6.97	-31.93 (0.56)**	-24.96 (0.93)**	-7.39 (1.00)**
	π_{t-1}	y_{t-1}	208.37	11.57	219.93 (0.00)	231.50 (0.00)	260.68 (0.00)
	$\pi_{t-j}, j=1,2$	$y_{t-j}, j=1,2$	190.30	13.76	204.06 (0.00)	217.83 (0.00)	252.54 (0.00)
	π_{t-1}	ur_{t-1}	227.79	11.91	239.70 (0.00)	251.61 (0.00)	281.63 (0.00)
	$\pi_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	220.78	14.10	234.88 (0.00)	248.97 (0.00)	284.52 (0.00)
	π_{t-1}	$rulc_{t-1}$	228.07	10.34	238.41 (0.00)	248.75 (0.00)	274.83 (0.00)
	$\pi_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	213.53	12.06	225.59 (0.00)	237.65 (0.00)	268.07 (0.00)
	y_{t-1}	ur_{t-1}	226.30	12.82	239.12 (0.00)	251.93 (0.00)	284.25 (0.00)
	$y_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	216.60	16.04	232.65 (0.00)	248.69 (0.00)	289.15 (0.00)
	y_{t-1}	$rulc_{t-1}$	225.63	12.38	238.01 (0.00)	250.39 (0.00)	281.62 (0.00)
	$y_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	216.68	14.39	231.07 (0.00)	245.46 (0.00)	281.76 (0.00)
	ur_{t-1}	$rulc_{t-1}$	238.39	12.46	250.85 (0.00)	263.31 (0.00)	294.74 (0.00)
	$ur_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	233.41	14.90	248.31 (0.00)	263.21 (0.00)	300.78 (0.00)
R_{t-1}	π_{t-1}	y_{t-1}	-66.21	14.74	-51.47 (0.78)**	-36.73 (0.96)**	0.44 (0.92)**
R_{t-1}	$\pi_{t-i}, j=1,2$	$y_{t-j}, j=1,2$	-70.85	16.93	-53.92 (1.00)**	-37.00 (1.00)**	5.69 (0.86)**
R_{t-1}	π_{t-1}	ur_{t-1}	-45.39	9.63	-35.76 (0.64)**	-26.13 (0.93)**	-1.84 (0.92)**
R_{t-1}	$\pi_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	-45.55	13.23	-32.31 (0.56)**	-19.08 (0.74)**	14.30 (0.57)**
R_{t-1}	π_{t-1}	$rulc_{t-1}$	-51.84	11.31	-40.53 (0.72)**	-29.22 (0.93)**	-0.71 (0.92)**
R_{t-1}	$\pi_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	-53.68	12.74	-40.94 (0.72)**	-28.21 (0.93)**	3.91 (0.88)**
R_{t-1}	y_{t-1}	ur_{t-1}	-58.05	13.50	-44.55 (0.72)**	-31.05 (0.93)**	2.99 (0.89)**
R_{t-1}	$y_{t-j}, j=1,2$	$ur_{t-j}, j=1,2$	-62.18	16.65	-45.53 (0.72)**	-28.88 (0.93)**	13.12 (0.60)**
R_{t-1}	y_{t-1}	$rulc_{t-1}$	-58.72	14.20	-44.52 (0.72)**	-30.32 (0.93)**	5.50 (0.86)**
R_{t-1}	$y_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	-64.74	15.81	-48.94 (0.78)**	-33.13 (0.93)**	6.74 (0.86)**
R_{t-1}	ur_{t-1}	$rulc_{t-1}$	-50.00	12.00	-37.99 (0.64)**	-25.99 (0.93)**	4.28 (0.87)**
R_{t-1}	$ur_{t-j}, j=1,2$	$rulc_{t-j}, j=1,2$	-50.96	15.73	-35.22 (0.62)**	-19.49 (0.74)**	20.19 (0.35)**

Hansen, Lunde and Nason: Model Confidence Sets - Appendix

We report the maximized log-likelihood function (multiplied by minus two), the effective degress of freedom, and the three criteria, KLIC, AIC* and BIC*, along with the corresponding MCS p-values. The regression models in $\widehat{\mathcal{M}}_{90\%}^*$ and $\widehat{\mathcal{M}}_{75\%}^*$ are identified by one and two asterisks, respectively. See the text and Table 6 for variable mnemonics and definitions.