Convolutional Neural Networks: in pictures

It may be easier to grasp the workings of a CNN in pictures.

We start with the simplest case of input ${\bf x}$ and pattern ${\bf k}$

- one non-feature dimension: a 1D vector
- one input feature
- one output feature

We work our way up to a more complicated case

- two non-feature dimensions: 2D matrix
- a number of input features
- a number of output features (possibly different from the input)

The <u>notebook (CNN_pictorial.ipynb)</u> illustrates the various possibilities.

In the remainder of this notebook: we explain the pictures.

Preliminaries

Behavior of a CNN layer

Layer l in a Sequential NN transforms transforms input $\mathbf{y}_{(l-1)}$ to output $y_{(l)}$

- ullet $\mathbf{y}_{(l)}$ is called a *feature map*, for all layers l
 - lacksquare for each location in $\mathbf{y}_{(l-1)}$
 - it measures the intensity of the pattern match when the pattern is centered at that location

So we write the input as $\mathbf{y}_{(l-1)}$ rather than the \mathbf{x} we had used previously.

The size of all quantities in the convolution can vary by layer

• so we add a parenthesized subscript to indicate the layer

We write

- the kernel size as $f_{(l)}$ (can vary by layer) rather than the f used previously
- ullet the collection of kernels for layer l as $\mathbf{W}_{(l)}$

In general a layer l output $\mathbf{y}_{(l)}$ will have

- ullet $N_{(l)}>0$ non-feature dimensions
 - $\,\blacksquare\,\,$ non-feature dimension i has length (number of indices) $d_{(l),i}$ indices
 - $\circ~$ for dimensions $0 \leq i < N_{(l)}$
 - lacktriangle the set of indexes in dimension i is written as D_i
 - $\circ \;$ usually equal to $0,\dots,d_{(l),i}$
- one feature dimension

• preserves the non-feature dimensions (when padding is used)

$$egin{array}{lcl} N_{(l-1)} & = & N_{(l)} \ d_{(l-1),i} & = & d_{(l),i} & 0 \leq i < N_{(l-1)} \end{array}$$

- changes the length of the feature dimension
 - from $n_{(l-1)}$ to $n_{(l)}$

Thus the shape of the input $\mathbf{y}_{(l-1)}$ and $\mathbf{y}_{(l)}$ may only differ in the length of the feature dimension

- provided padding is used
 - in the absence of padding: $\lfloor \frac{f_{(l)}}{2} \rfloor$ locations are lost at each boundary

Thus the CNN layer l

$$egin{array}{lll} ||\mathbf{y}_{(l-1)}|| &=& (d_{(l-1),0} imes d_{(l-1),1} imes \ldots d_{(l-1),N_{(l-1)}}, & \mathbf{n_{(l-1)}}) \ ||\mathbf{y}_{(l)}|| &=& (d_{(l-1),0} imes d_{(l-1),1} imes \ldots d_{(l-1),N_{(l-1)}}, & \mathbf{n_{(l)}}) \ && because \end{array}$$

We write

 $\mathbf{y}_{(l),\mathbf{i},j}$ to denote feature j of layer l at non-feature dimension location \mathbf{i}

Channel Last/First

We have adopted the convention of using the final dimension as the feature dimension.

• This is called *channel last* notation.

Alternatively: one could adopt a convention of the first channel being the feature dimension.

• This is called *channel first* notation.

When using a programming API: make sure you know which notation is the default

• Channel last is the default for TensorFlow, but other toolkits may use channel first.

Kernel, Filter

There is one pattern per output feature.

A pattern is also called a kernel.

The kernels of layer l are just the weights of the layer.

The vector $\mathbf{W}_{(l),1}$ above

So kernel j (\mathbf{k}_j) is just an element $\mathbf{W}_{(l),j}$ of the weights of layer l. entered at $\mathbf{y}_{(l-1),j,1}$

There is one kernel per output feature, so $\boldsymbol{n}_{(l)}$ kernels

$$ullet$$
 $\mathbf{k}_{(l),1},\ldots,\mathbf{k}_{(l),n_{(l)}}$

The length of the feature dimension of a kernel matches it's input, i.e., $n_{(l-1)}$

The weight vector $\mathbf{W}_{(l)}$ therefore has multiple dimensions. Our convention for each dimension is

- $\mathbf{W}_{(l),j',\ldots,j}$
 - layer *l*
 - output feature j
 - lacksquare spatial location: . . . $\in \{1,2,3\}$
 - } . :/
 - $\bullet \ \ \text{input feature} \ j'$

Padding

Convolution centers the pattern at each location of the non-feature dimensions of the input.

But what happens when we try to center a patter over the first/last location?

• the pattern may extend beyond the boundaries of the input

In such a case, we can choose to pad the input

• create a special padding input at the locations of the input beyond the original boundary

We will see this in pictures below.

Activation of a CNN layer

Just like the Fully Connected layer, a CNN layer is usually paired with an activation.

The default activation $a_{\left(l\right)}$ in Keras is "linear"

- That is: it returns the dot product input unchanged
- Always know what is the default activation for a layer; better yet: always specify!

Conv 1D: single feature to single feature

Convolutions pictured: sliding a pattern over the input

A Convolution is often depicted as

- A filter/kernel
- That is slid over each location in the non-feature dimensions of the input
- Producing a corresponding output for that location

Here's a picture with a kernel of size $f_{\left(l
ight)}=3$

Conv 1D, single feature: sliding the filter

	$\mathbf{y}_{(l-1)}$					Kernel/Filter						
								$\mathbf{W}_{(l),1}$	$\mathbf{W}_{(l),2}$	$\mathbf{W}_{(l),3}$		
Ke	Kernel/Filter											
$\mathbf{W}_{(l),1}$	$\mathbf{W}_{(l),2}$	$\mathbf{W}_{(l),3}$	$\mathbf{y}_{(l),1}$									
Kernel/Filter												
	$\mathbf{W}_{(l),1}$	$\mathbf{W}_{(l),2}$	$oxed{\mathbf{w}_{(l),3}}$									

After sliding the Kernel over the whole $\mathbf{y}_{(l-1)}$ we get the output feature map $\mathbf{y}_{(l),1}$ for the first (and only) feature:

Conv 1D, single feature: output feature map

Element j of output $\mathbf{y}_{(l),\dots,1}$ (i.e., $\mathbf{y}_{(l),j,1}$)

- $\bullet \ \ \text{Is colored (e.g., } j=1 \text{ is colored Red)}$
- ullet Is computed by applying the same $\mathbf{W}_{(l),1}$ to
 - lacksquare The $f_{(l)}$ elements of $\mathbf{y}_{(l-1),1}$, centered at $\mathbf{y}_{(l-1),j,1}$
 - Which have the same color as the output

Note however that, at the "ends" of $\mathbf{y}_{(l-1)}$ the kernel may extend beyond the input vector.

In that case $\mathbf{y}_{(l-1)}$ may be extended with $\mathit{padding}$ (elements with 0 value typically)

• illustrated with the boxes with broken-line edges

Conv1d transforming single feature to multiple features

When there are multiple output features ($n_{(l)}>1$) there is one kernel per output feature

$$ullet$$
 $\mathbf{k}_{(l),1},\ldots,\mathbf{k}_{(l),n_{(l)}}$

Here are the 2 kernels for two output features, assuming $n_{(l-1)}=1$

Conv 1D: 1 input feature, 2 output features

- $\mathbf{W}_{(l),j',\ldots,j}$
 - layer *l*
 - lacksquare output feature j
 - lacktriangle spatial location: . . . $\in \{1,2,3\}$
 - input feature j'

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-single-feature-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a single feature
 - $lacksquare N_{(l-1)} = 1, n_{(l-1)} = 1$
- ullet into a 1-dimensional output layer l consisting of a multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} > 1$

Conv1d transforming multiple features to multiple features

What happens when the input layer has multiple features?

ullet e.g., applying Convolutional layer (l+1) to the $n_{(l)}$ features created by Convolutional layer l

The answer is

- The kernels of layer *l* also have a *feature* dimension
 - lacktriangle Kernel dimensions are $(f_{(l)} imes f_{(l)} imes n_{(l-1)})$
- This kernel is applied
 - at each spatial location
 - to all features of layer (l-1)
 - Computing a generalized "dot product": sum of element-wise products

When the input $\mathbf{y}_{(l-1)}$ has more than one feature ($n_{(l-1)}>1$)

ullet the kernel for each output feature must have feature dimension of length $n_{(l-1)}$

Here is the kernel for the first output feature, assuming $n_{\left(l-1\right)}=2$

• it's feature dimension is length 2.

There would be a similar kernel for each of the output features.

Conv 1D: 2 input features: kernel 1

- $\mathbf{W}_{(l),j',\dots,j}$ a layer l

 - output feature j
 - lacksquare spatial location: $\ldots \in \{1,2,3\}$
 - input feature j'

Notice that (apart from combining spatial locations)

- ullet multiple feature maps from layer (l-1) are combined into one feature map at layer l.
- This is how the "left" half-smile and "right" half-smile features combine into the single "smile" feature

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-Multiple-features-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a 2 features
 - $lacksquare N_{(l-1)} = 1, n_{(l-1)} = 2$
- ullet into a 1-dimensional output layer l consisting of a multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} = 3$

With an input layer having N spatial dimensions, a Convolutional Layer l producing $n_{(l)}$ features

- Preserves the "spatial" dimensions of the input
- Replaces the channel/feature dimensions

That is

$$egin{array}{lll} ||\mathbf{y}_{(l-1)}|| &=& (n_{(l-1),1} imes n_{(l-1),2} imes \ldots n_{(l-1),N}, & \mathbf{n_{(l-1)}}) \ ||\mathbf{y}_{(l)}|| &=& (n_{(l-1),1} imes n_{(l-1),2} imes \ldots n_{(l-1),N}, & \mathbf{n_{(l)}}) \end{array}$$

Conv2d: Two dimensional convolution (N=2)

Thus far, the spatial dimension has been of length N=1.

Generalizing to N=2 is straightforward.

- The number of spatial dimensions (elements denoted by \ldots) expands from 1 to 2

When N=1 and $d_1=1$

 $\bullet \ \ \mbox{we have our case of} \ n_{(l)} \ \mbox{features} \ \mbox{at a single location}$

We have shown that permuting the order of features has no effect on a Dense layer

• There is no ordering relationship among features

But when $d_1>1$, there is a spatial ordering. For example

- a 2D image
- time ordered data

We need some terminology to distinguish the final dimension from the non-final dimensions

Suppose $\mathbf{y}_{(l)}$ is $(N_{(l)}+1)$ dimensional of shape

$$||\mathbf{y}_{(l)}|| = (d_{(l),1} imes d_{(l),2} imes \ldots d_{(l),N_{(l)}} \ imes n_{(l)})$$

(Thus far: $N_{(l)}=1$ and $n_{(l)}=1$ but that will soon change)

The first $N_{(l)}$ dimensions $(d_{(l),1} imes d_{(l),2} imes \ldots d_{(l),N})$

ullet Are called the *spatial* dimensions of layer l

The last dimension (of size $n_{\left(l
ight)}$)

- Indexes the features i.e., varies over the number of features
- Called the feature or channel dimension

Notation

- ullet $N_{(l)}$ denotes the *number* of spatial dimensions of layer l
- ullet $n_{(l)}$ denotes the number of features in layer l
- We elide the spatial dimensions as necessary, writing

$$\mathbf{y}_{(l),\ldots,j}$$

to denote *feature map* j of layer l

- ${\color{blue} \blacksquare}$ where the dots (. . .) indicate the $N_{(l)}$ spatial dimensions
- e.g., the feature map detecting a "smile" in the image of a face

For example

- A grey-scale image
 - $N = 2, n_{(l)} = 1$
 - Each pixel in the image has one feature
 - the grey-scale intensity
 - There is an ordering relationship between 2 pixels
 - "left/right", "above/below"
- A color image
 - $lacksquare N = 2, n_{(l)} = 3$
 - Each pixel in the image has 3 features/attributes
 - the intensity of each of the colors

One can imagine even higher dimensional data (N>2)

- Equity data with "spatial location" identified by (Month, Day, Time)
 - With attributes: { Open, High, Low, Close }
 - Month/Day/Time are ordered

Note the distinction between the cases

- ullet When layer l has dimension $(d_{(l)} imes 1)$
 - a single feature
 - lacksquare at $d_{(l)}=d_{(l-1)}$ spatial locations
- ullet When layer l has dimension $(1 imes d_{(l)})$
 - (which is how we have implicitly been considering vectors when discussing the Dense layer type)
 - $lacksquare d_{(l)}=d_{(l-1)}$ features
 - at a single spatial location

 $n_{(l)}$ will always refer to the number of features of a layer l

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-single-feature)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a single feature
 - $lacksquare N_{(l-1)} = 1, n_{(l-1)} = 1$
- ullet into a 1-dimensional output layer l consisting of a single feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

We will generalize Convolution to deal with

- ullet $N_{(l)}>1$ spatial dimensions
- ullet $n_{(l)}>1$ features

As a preview of concepts to be introduced, consider

- ullet the input layer (l-1) is a two-dimensional ($N_{(l-1)}=2$) grid of pixels
- $\bullet \ \ n_{(l-1)}=1$
- ullet layer l is a Convolutional Layer identifying $n_{(l)}=3$ features

$$\begin{tabular}{c} $\mathbf{y}_{(l-1)}$ \\ $8\times8\times1$ \\ \hline \end{tabular}$$
 Spatial Channel

 $\mathbf{k}_{(l),2}$

•

 $\mathbf{k}_{(l),3}$

$$\mathbf{k}_{(l),1}$$

 $\mathbf{y}_{(l),1}$

 $\mathbf{y}_{(l),2}$

 $\mathbf{y}_{(l),3}$

$$\underbrace{\mathbf{y}_{(l)}}_{8\times8\times3}$$

Spatial Channel

Layer (l-1) is three-dimensional tensor: 8 imes 8 imes 1

- $\bullet \ \ \mathsf{Spatial} \ \mathsf{dimension} \ 8 \times 8$
- 1 feature map (channel dimension = 1)

- ullet Kernel $k_{(l),j}$ is applied to each spatial location of layer (l-1)
- Detecting the presence of the pattern (defined by the kernel) at that location
 - lacktriangle kernel $k_{(l),1}$ detects an eye
- ullet Which results in feature map $\mathbf{y}_{(l)},\ldots,j$ being created at layer l
 - $lacksquare \mathbf{y}_{(l),\dots,1}$ are indicators of the presence of an "eye" feature

Convolutional Layer description

With this terminology we can say that Convolutional Layer l:

- ullet Transforms the $n_{(l-1)}$ feature maps of layer (l-1)
- ullet Into $n_{(l)}$ feature maps of layer l
- ullet Preserving the spatial dimensions: $d_{(l),p}=d_{(l-1),p}\ 1\leq p\leq N_{(l-1)}$
- Uses a different kernel $\mathbf{k}_{(l),j}$ for each output feature/channel $1 \leq j \leq n_{(l)}$
- Applies this kernel to each element in the spatial dimensions
- Recognizing a single feature at each location within the spatial dimension

Conv 2D: single input feature: kernel 1

 $\mathbf{k}_{(l),1,1}$

$\mathbf{W}_{(l),1,1,1,1}$	$\mathbf{W}_{(l),1,1,2,1}$	$\mathbf{W}_{(l),1,1,3,1}$
$\mathbf{W}_{(l),1,2,1,1}$	$\mathbf{W}_{(l),1,2,2,1}$	$\mathbf{W}_{(l),1,2,3,1}$
$\mathbf{W}_{(l),1,3,1,1}$	$\mathbf{W}_{(l),1,3,2,1}$	$\mathbf{W}_{(l),1,3,3,1}$

- $\mathbf{W}_{(l),j',\dots,j}$ a layer l

 - output feature j
 - lacksquare spatial location: $\ldots \in \{(lpha, lpha')\}$ $\ldots \in \{(lpha, \ \in (d_{(l-1),1} \ imes d_{(l-1),2} \}$ = input feature j'

$$\in (d_{(l-1),1}$$

$$imes d_{(l-1),2} \}$$

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-single-feature-to-single-feature)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of a 1 feature
 - $\quad \blacksquare \ N_{(l-1)} = 2, n_{(l-1)} = 1$
- ullet into a 2-dimensional output layer l consisting of 1 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

We can further generalize to producing multiple output features

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-single-feature-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of a 1 feature
 - $lacksquare N_{(l-1)} = 2, n_{(l-1)} = 1$
- into a 2-dimensional output layer *l* consisting of 2 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 2$

Dealing with multiple input features works similarly as for N=1:

- The dot product
- $\bullet \;$ Is over a spatial region that now has a "depth" $n_{(l-1)}$ equal to the number of input features
- $\bullet\;$ Which means the kernel has a depth $n_{(l-1)}$

Conv 2D: multiple input features: kernel 1

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-multiple-features-to-single-feature)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of multiple features
 - $lacksquare N_{(l-1)} = 2, n_{(l-1)} = 2$
- ullet into a 2-dimensional output layer l consisting of 1 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

And finally: the general case for a 2 spatial dimensions

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-multiple-features-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of multiple features
 - $lacksquare N_{(l-1)} = 2, n_{(l-1)} = 3$
- ullet into a 2-dimensional output layer l consisting of multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} = 2$

```
In [5]: print("Done")
```

Done