Orbit-Cone correspondence:

(d)
$$\overline{O(t)} = \coprod O(\sigma)$$

3.6 Toric morphisms (between abstract boric vorieties) Lef: Let X_{ξ_1} , X_{ξ_2} be normal boric vorieties, with dense bori T_1 , T_2 . A morphism $\phi: X_{\xi_1} \to X_{\xi_2}$ is toric if $\phi(T_1) \subset T_2$ and ϕ_{T_1} is a group homomorphism.

Lemma A toric morphism $\phi: X_{\underline{z}_1} \to X_{\underline{z}_2}$ is equivariant. that is $\phi(t, p) = \phi(t) \cdot \phi(p)$.

Del

Let \mathcal{Z}_{i} be a fam in $(N_{i})_{R}$, i=1,2. A \mathbb{Z} -linear map $\overline{\phi}: N_{1} \rightarrow N_{2}$ is compatible with \mathcal{Z}_{i} , \mathcal{Z}_{2} if for each $\sigma_{i} \in \mathcal{Z}_{1}$, there is $\sigma_{2} \in \mathcal{Z}_{2}$ s.t. $\overline{\phi}(\sigma_{i}) \subset \overline{\sigma}_{2}$.

Remma/def Let $X = \bigcup_i N_i$ and Y be varieties, and let $\phi_i : N_i \to Y$ be morphisms. A morphism $\phi_i : X \to Y$ is glied from the ϕ_i if $\phi_{iN_i} = \phi_i$. Such a $\phi_i = A_i \cdot N_i \cdot N$

Theorem Let \mathcal{E}_{i} be a fan in $(N_{i})_{R}$, i=1,2.

(a) If $\bar{\phi}: N_{i} \rightarrow N_{2}$ is a Z-linear map that is compatible with \mathcal{E}_{i} , \mathcal{E}_{2} , then it induces a boric marking $\phi: X_{\mathcal{E}_{i}} \rightarrow X_{\mathcal{E}_{2}}$ satisfying $\phi_{H_{i}} = \bar{\phi} \otimes \dot{\mu}: u \otimes t \rightarrow \bar{\phi}(u) \otimes t$.

(b) If $\phi: X_{\mathcal{E}_{i}} \rightarrow X_{\mathcal{E}_{2}}$ is a force marknown, then ϕ induces a Z-linear map $\bar{\phi}: N_{i} \rightarrow N_{2}$, compatible with \mathcal{E}_{i}^{i} , \mathcal{E}_{2}^{i} .

pad (a) $\sigma_{i} \in \mathcal{L}_{i}$, $\overline{\phi}_{R}(\overline{q}) \subset \overline{g}$. We have seen that $\overline{\phi}$ induces a morphism $\phi_{i}: M_{\overline{q}} \to M_{\overline{g}}$ (if $\overline{\phi}$ is given by a matrix $\overline{+}$, this comes from $\widehat{\phi}(m) = \overline{+}^{T}m$.)

There agree on overlaps, so they glue to $\phi: X_{\mathcal{L}_{i}} \to X_{\mathcal{L}_{i}}$. ϕ is toric since $\phi_{i}: T_{i} \to T_{i}$ is the group homomorphism $\overline{\phi} \otimes id : N_{i} \otimes_{\mathcal{L}_{i}} C^{+} \to N_{i} \otimes C^{+}$.

(in coordinates: $t \mapsto (t^{T_{i}})_{i}$.

(b) $\phi_{|T_1}$ is a group homomorphism. It udices $\overline{\phi}: N_1 \rightarrow N_2$, by sending $n \in N_1$ to the cocharacter $\phi_{|T_1} \circ \lambda^n : \mathbb{C}^* \longrightarrow T_2$.

Since ϕ is equivariant, it sends the orbit $O(\tau_1)$ into an orbit $O(\tau_2)$, $\sigma_i \in \mathcal{Z}_i$. To show that $\overline{\phi}_R(\tau_1) \subset \tau_2$ it is enough to show that $\phi(\mathcal{U}_{\tau_1}) \subset \mathcal{U}_{\tau_2}$. By OCC, $\mathcal{M}_{\sigma_1} = \coprod_{\tau_1 \leq \tau_1} O(\tau_1)$, $\mathcal{M}_{\sigma_2} \in \coprod_{\tau_2 \leq \tau_2} O(\tau_2)$. We need to show that $\phi(O(\tau_1)) \subset O(\tau_2)$ for some face $\tau_2 \leqslant \tau_2$.

Let τ_2 be such that $\phi(O(\tau_1)) \subset O(\tau_2)$. By occ, $O(\tau_1) \subset \overline{O(\tau_1)}$. By continuity, $\phi(\overline{O(\tau_1)}) \subset \overline{O(\tau_2)}$. Hence $O(\overline{\tau_2}) \subset \overline{O(\tau_2)}$, and the statement follows from occ. \Box . Example: Let $N_i = \mathbb{Z}^2$, i = 1, 2 and $\overline{q} : \mathcal{N} \mapsto l \cdot \mathcal{N}$. This is compatible with the fan of \mathbb{P}^2 . The matrix is $\overline{F} = \begin{bmatrix} l & l \\ l & l \end{bmatrix}$, $(t_1, t_2) \mapsto (t_1^l : t_2^l)$ is the restriction of \overline{p} to the forms. Isolably, \overline{p} is given by $\overline{q}((x_0 : x_1 : x_2)) = (x_0^l : x_1^l : x_2^l)$.

Exercise: Compute op in our previous reample un coordinates.

SUBLATTICES OF FINITE INDEX.

Proposition: Let N'CN be a sublattice of finite index, Z a fau in $(N')_R = N_R$ and $C_1 = N/N'$. Then $\overline{d}: N' \longrightarrow N$ induces the morphism $\varphi: X_{Z_1',N'} \longrightarrow X_{Z_1',N}$ that presents $X_{Z_1',N'}$ as $X_{Z_1',N'}/G$.

(See El 3.3.8).

TORUS FACTORS

Theorem Let Zbe a fan in NR. TFAE!

(a) $X_{\underline{z}_1} \simeq X_{\underline{z}_1'} \times (\mathbb{C}^*)^r \quad (X_{\underline{z}_1'} \text{ has a form factor}).$

(b) There is a nonconstant morphism $X_{\Xi} \to \mathbb{C}^*$

(c) The rays $e \in \Xi'(1)$ do not span $N_{\mathbb{R}}$

 $\underset{\underline{\mathcal{C}}}{\text{proof}}: \quad (a) \Rightarrow (b) \qquad X_{\underline{\mathcal{C}}^{1}} \rightarrow (\mathbb{C}^{*})^{\Lambda} \xrightarrow{\chi^{m}} \mathbb{C}^{*} \ .$

(b)=> (c) $\phi: X_{\underline{z}'} \rightarrow \mathbb{C}^{+}$ non-constant implies $\phi_{|T}: T \rightarrow \mathbb{C}^{+}$ non-constant, hence $\phi_{|T}: c \cdot \chi^{m^{+}}$ Moultiplying by c^{-1} ,

we may assume of - x". The corresponding map

\$\overline{\psi} is given by \$\overline{\psi}(n) = \langle(n, m \rangle. Since \$\overline{\phi}\$ is compatible

with \leq , and $\{0\}$, we have $n_e \in \ker \bar{\phi} \; \forall \; e \in \Xi(i)$.

Therefore, the ne are R- linearly dependent.

Remains to show (c) = (a), see Prop 3.3.9 in [CLS] II.

REFINENENTS.

A four E' refinier E', if every cone of E' is con-Varied in a cone of Z and 12'1 = 121.

Edample:

refines

V(x, y-x, x) C P'x C²

R is compatible.

C²

Corresponds to the "blow-down" norphism $\mathbb{B}_{0}(\mathbb{C}^{2}) \to \mathbb{C}^{2}$.

Let or be a smooth, come of E. The star subdivision Z'(r) of & along or is given by Z\183 U Z'(r) where E'(0) is constructed as follows. Let 0 = Cone(u,,..., mn). Set no- n, + ... + nn. &'(6) is the four of all Cone (no,..., û,,..., un), i +0, and all their faces.

Example &

/ £*(6)

Proposition $\Sigma^+(r)$ refines Σ^- , and the induced bonic morphism $\phi: X_{\Sigma^+(r)} \to X_{\Sigma^-}$ makes $X_{\Sigma^+(r)}$ the blowup of X_{Σ^-} at Y_{Σ^-} .

Proof By restricting ϕ , we may assume $\Sigma^- = \{r + \{aces\}\}$. $\phi: X_{\Sigma^+(r)} \to \mathcal{U}_{\Gamma}^-$ comes from the identity map $\overline{\phi} = id$

 $\phi: X_{Z^{+}(G)} \longrightarrow U_{\Gamma}^{-}$ comes from the identity map $\overline{\phi}=i$ on V. The glueing construction shows that the affine presert of $X_{Z^{+}(G)}$ are those of $Bl_{o}(\mathbb{C}^{n})$. \square .

Lemma: Let $\phi: X_{\underline{z}} \to X_{\underline{z}'}$ be the bonic morphism coming from $\overline{\phi}: N \to N'$. Given $\overline{\tau} \in \underline{z}'$, let $\sigma' \in \underline{z}'$ be the minimal cone s.t. $\overline{\phi}_R(\overline{\tau}) \subset \overline{\sigma}'$, then

- (a) \$(x) \(\dagger\),
- (p) \$ (0(e)) = 0(a,) and \$ (1(a)) = 1(e,)
- (c) $\phi_{|V(e)}$: $V(\sigma) \rightarrow V(\sigma')$ is a toxic marphism.

proof (a) $\bar{\phi}(n) \in \text{Relint}(\bar{\tau})$ if $n \in \text{Relint}(\bar{\tau})$ since σ' is minimal. Therefore $d(\chi_{r}) = \phi\left(\lim_{t\to 0} \lambda^{n}(t)\right) = \lim_{t\to 0} \phi(\lambda^{n}(t))$ $= \lim_{t\to 0} \lambda^{\bar{\phi}(n)}(t)$ $= \lim_{t\to 0} \lambda^{\bar{\phi}(n)}(t)$ $= \chi_{r}'.$

(b) follows from (a).

(c) By equivariance, ρ_{100} : $O(\sigma) \rightarrow O(\sigma')$ is a group homomorphism.