

Unifying agent architectures for explainability and transferability

Victor Gimenez-Abalos, Adrian Tormos, Filip Edström, **Sergio Alvarez-Napagao**, Javier Vázquez-Salceda, Mattias Brännström, John Lindqvist

Preface

From The Cognitive Hourglass: Agent Abstractions in the Large Models Era

Ricci, A., Mariani, S., Zambonelli, F., Burattini, S., & Castelfranchi, C. (2024, January). The Cognitive Hourglass: Agent Abstractions in the Large Models Era. In *AAMAS* (Vol. 24, pp. 2706-2711).

"Cognitive concepts that are pillars for the understanding and engineering of agent systems constitute the indispensable neck of the cognitive hourglass, that is, the fundamental human-compatible level of abstraction necessary for humans to understand/design/govern agents and MAS at the application level regardless of the specific AI technologies adopted at the implementation level"

Motivation and context

We actually need a common vocabulary of XAI for agents!

- shared/implementable across any architecture...
- ...so that all XAI can speak in a similar manner
 - to humans
 - or to other machines.

Why did the agent ram into the wall?

Motivation and context

Why is this **important**?

 Homogenising types of answers means decoupling the two processes:

Generating a truthful answer

Generating humaninterpretable answers

 This should help reuse findings in the second one for novel architectures

Motivation and context

- Agent architectures:
 - Policy-based / reinforcement learning (Q-learning, REINFORCE), BDI, Voyager, ReAct, SOAR, ACT-R, ...
 - First-order explanations vary!
- Therefore finding such a vocabulary is hard given that agent reasoning is extremely heterogeneous, ranging from trivial to extremely complex
 - Even for simple action choice in single-agent environments!

Background

- Classifying agent explainability in terms and levels is already explored in the literature
- However, for some agents, firstorder explanations can be
 - very complex, e.g. Voyager
 - very different, e.g. REINFORCE

Dazeley, R., Vamplew, P. & Cruz, F. Explainable reinforcement learning for broad-XAI: a conceptual framework and survey. Neural Comput & Applic 35, 16893–16916 (2023). https://doi.org/10.1007/s00521-023-08423-1

- But humans tend to explain via intentions and beliefs (Malle, Bratman)
 - Is there any way to reconcile this?

Our proposal

- This paper is a first attempt at finding common ground between architectures...
 - via building a meta-architecture
 - an optic from which to see existing architectures
 - stratifying behaviour using Intentions, and based on Beliefs
 - Intentions are imperative routines (goal-directed behaviour)
 - Beliefs are statements in the chosen formalism of the architecture
- Both artifacts can be given or learnt, in a way that explanations at a level refer to the same concepts and look similar across architectures

Our proposal

- Informally: our target is to be able to "make BDI" with PDDL, Q-learning and Voyager comparable architectures
- We do this by building a Structural Causal Model
 - Albeit one with very complex variables
 - This model can be used to trace causality through the graph

Our proposal

Key insight

Any action (simple or complex) is caused by:

State + Policy

- Generally, the focus of XAI is on the state, but... why is the policy as it is?
 - Q: "What was the cause of this policy?" A: "It was trained"
 - If there is a learning process, there is a method to use 'experience' to determine the policy. Furthermore, there are reasons for that learning process, and so on.
 - Q: "What was the cause of this training?" A: "It was the designer intent"
- We call this causal chain a ladder of intentions

Static view

- Any explanation can be a chain of explanandums
 - Referring to explanans of a previous sentence
 - Until the explainee is satisfied or there is no further explanation possible:
 - observations (some observed quality of the environment), or
 - designer-choice (this was so because someone made it so)

Static view

- Going UP is questioning the desire of an intention
 - Resulting in another, higher-level intention
- Going sideways is questioning the beliefs on how that desire is to be achieved

Static view: Q-Learning (exploration)

- Why did you ram into the wall (I_0) at t_1 ?
 - I wanted to pick a random action (I_1) so I did ightarrow

Static view: Q-Learning (exploration)

- Why did you do a random pick (I_1) at t_1 ?
 - Because I wanted to explore (I_2)

Static view: Q-Learning (exploration)

- Why did you explore (I_2) at t_1 ?
 - Because I want to get to the goal as fast as possible and to do that I need to trade-off exploring and exploiting what I know (I_3)

Static view: Q-Learning (exploitation)

- Why did you move around the wall (I_0) at t_1 ?
 - Because I believed I was in pos=[0,1] (S_1) and wanted to follow the policy (I_1) so I did \downarrow

Static view: Q-Learning (exploitation)

- Why did you follow this policy (I_1) at t_1 ?
 - Because I believed in this Q(s,a) which, maximising, makes me go to the goal (S_2) and I wanted to exploit it to go to the goal (I_2)

Static view: Q-Learning (exploitation)

- Why did you explore (I_2) at t_1 ?
 - Because I want to get to the goal as fast as possible and to do that I need to trade-off exploring and exploiting what I know (I_3)

Static view: Voyager

- Why did you move around the wall (I_0) at t_1 ?
 - I believed I was in pos=[0,1] (S_1) and I was executing the skill navigate_with_obstacles (I_1) so I did \downarrow

Static view: Voyager

- Why did you execute this skill (I_1) at t_1 ?
 - At t_0 I believed I was in position=[0,0] and could use navigate, but environment feedback (an obstacle impeded me from going right) showed it didn't work, so I programmed a new skill to navigate_with_obstacles (S_2) which corrects the previous one and is chosen to go to the goal (I_3)

Static view: Voyager

- Why did you program a new skill (I_2) at t_1 ?
 - Given feedback ($S_2 \subset S_3$) it seemed like a new skill was needed to solve the newly identified task of navigating with obstacles (S_3), and I want to solve new tasks (I_3)

Static view

- The main issue is choosing a non-arbitrary separation that will continue to work for new architectures
 - We chose the idea of statements that reify or include other statements as being the separator, and starting at observations of the environment and actions
 - Environmental observations belong on the 1st level, whilst a statement referring to how observations would change when taking actions (ie consequences of action) will belong on the second, and statements referring to how changing a course of action will affect how I learn about consequences will belong on the third
- This seems overcomplicated, but when using the language of an architecture it is more easy to determine

Dynamic view

- If the model has learning, it is the case that **observations** of a lower level cause some changes on upper levels, e.g. seeing an unexpected observation may make us reconsider consequences of actions, and so on.
- This means that learning statements are generated by compiling experiences of lower levels

Dynamic view

- In consequence: intentions and beliefs are fluents
- They hold at some times, until some experience from a lower level forces us to reconsider...
 - ...by updating statements...
 - ... thus producing a cascade of changes in intentions downward

n	REINFORCE [41]	Q-learning [40]	BDI [3]	FB Representation [37]	Voyager [38]
1	Standard+Reward	Standard+Reward	Standard	,	Standard + Errors + API (Mindflayer)
_	Policy $(a \sim P^{\pi}(a s))$	Policy $(argmax_aQ(s,a))$	1 1011	$argmax_amax_z \ F(s,a,z)B(z,s')$	Program/skill
2	Empirical $v = Q(s, a),$ $\nabla_{\theta} log \pi_{\theta}(s, a) v$	I .	, ,	$\begin{array}{ll} {\rm Successor} & {\rm Functions} \\ {\rm (F,B), desires/rewards} \\ {\rm of \ states} \end{array}$	Available skills, Possible tasks, LLM^8 , Feedback
	Policy training algorithm	Action-sampling policy generator		_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	Skill generator/corrector to solve a task
3		$egin{array}{lll} arepsilon &=& P(Q(s,a) &< \ Rand a) \end{array}$	Desire prioritisations	Given current goal	Task list priorisation ⁹ , directive prompt
		Explore/exploit mechanism	Deliberation (goal selection)	Goal selector	Automatic curriculum planner loop
4			Values over desire prioritisation (when used)		
			Value reasoner ($e.g.$ water tanks [13])		

Thanks for attending! Any questions?

Look for us at Poster/Technical Session 3 of the main conference (paper 999) for more on explainability!

This paper

XAI in AVs

Intentional policy graphs (main track)