Spring 2021 Probability and Statistics, CQU Midterm Review Uncertainty

The equation for calculating the velocity of a stream of air flow using a measuring device called a Pitot Tube is given by:

$$v = \sqrt{\frac{2\Delta p}{\rho}}$$

Where v is the air velocity (m/sec), Δp is the difference between the static and total air stream pressures (N/m²) and ρ is the ambient density of air (kg/m³). The density is related to the ambient temperature (T_a) and ambient pressure (P_a) by the Perfect Gas Law

$$\rho = \frac{P_a}{RT_a}$$

Where R is the gas constant for air (= $287.058\ J/kg - K$). You are given the following nominal values and uncertainties with units:

$$\Delta p = 2000 \pm 25 N/m^2$$
 $P_a = 101,350 \pm 2100 N/m^2$
 $T_a = 293 \pm 0.1 K$

Compute the <u>dimensionless</u> uncertainty for the measured air velocity Which parameter has the largest impact on the (dimensionless) air velocity uncertainty?

Suggestion: First, compute the dimensionless uncertainties for Δp , P_a and T_a . Second, apply RSS method to obtain dimensionless uncertainty for measured air velocity

Use
$$(2a)$$
, (6) $\rightarrow (2b)$ $\rightarrow (2a)$, (6) $\rightarrow (2a)$, (7)

Dimensionless uncertainty for density has largest impact on dimensionless uncertainty for velocity