স্থির তড়িৎ

প্রয়োজনীয় সূত্রাবলি (Summary):

 $q_{1,}\,q_{2}$ আধানবিশিষ্ট বস্তুদ্বয় d দুরত্বে থাকলে এদের মধ্যে ক্রিয়াশীল বল $F=rac{1}{4\pi\epsilon_{o}}\,rac{q_{1}q_{2}}{d^{2}}$

এখানে, $arepsilon_0$ = শূন্যমাধ্যমের ভেদনযোগ্যতা, $arepsilon_0=8.854 imes10^{-12}c^2N\ m^{-2}$,

যেকোন মাধ্যমের ভেদনযোগ্যতা (ϵ) , আপেক্ষিক ভেদনযোগ্যতা ϵ_r হলে, $\epsilon_r = \frac{\epsilon}{\epsilon_o}$

কোন পরিবাহীর বহিঃপৃষ্ঠের ক্ষেত্রফল A, চার্জ Q হলে চার্জের তলমাত্রিক ঘনতু; $\sigma = \frac{Q}{A}$

ক্ষেত্রফল নির্ণয় ঃ

ব্যাসার্ধ r এবং উচ্চতা h হলেঃ

 \bullet গোলকের ক্ষেত্রফল, $A = 4\pi r^2$

থ ফাঁপা অর্ধগোলকের ক্ষেত্রে,

 $A = 2 \pi r^2$

 $oldsymbol{3}$ ফাঁপা সিলিন্ডারের ক্ষেত্রে, $A=2\pi$ rh

্ব নিরেট সিলিন্ডারের ক্ষেত্রে, A = 2πr

(h+r)

তড়িৎক্ষেত্রের প্রাবল্য ঃ

যে বিন্দুতে তড়িৎক্ষেত্র নির্ণয় করতে হবে সেখান থেকে বিন্দু চার্জের দুরত্ব r হলে,

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A} = \frac{1}{4\pi\epsilon_0} \; \frac{Q}{r^2} \qquad ; \quad E = \frac{F}{q} \; \therefore \; F = qE$$

N সংখ্যক চার্জের জন্য সৃষ্ট মোট প্রাবল্য ঃ $\overrightarrow{E}=\overrightarrow{E_1}+\overrightarrow{E_2}+\overrightarrow{E_3}+\cdots\ldots+E_N=\sum \overrightarrow{E_N}$

2 v = Ed , d = বিন্দুদ্বয়ের

দূরত্ব

3 ধারকত্ব, $C = \frac{Q}{V}$

কালাকার পরিবাহীর

ধারকত্ব, C= 4πε_ο r

§ সমান্তরাল পাতের ধারকত্ব, $C = \frac{A\epsilon_0}{d}$

6 তুল্য ধারকত্বঃ

শ্রেণী সমবায় ঃ

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} + \dots + \frac{1}{C_n}$$

সমান্তরাল সমবায় ঃ

$$C_p = C_1 + C_2 + C_3 + C_4 + \cdots + C_n$$

- **1** ধারকে সঞ্চিত শক্তি, $U = \frac{1}{2}CV^2 = \frac{QV}{2} = \frac{1}{2}\frac{Q^2}{C}$
- 2 যেকোন মাধ্যমের ভেদনযোগ্যতা, $\varepsilon = K\varepsilon_0$; এখানে, $K = \gamma$ রাবৈদ্যুতিক ধ্রুবক
- 3 অসীম হতে একক ধনাত্বক চার্জকে তড়িৎক্ষেত্রে আনতে কৃতকাজ, W = QV
- $oldsymbol{\Phi}$ চার্জ স্থানান্তরে কৃতকাজ, $W=q(V_2-V_1)$ $\therefore W=rac{q}{4\pi\epsilon_o}\left(rac{q_2}{r_2}-rac{q_1}{r_1}
 ight)$

Details:

(epsilon) o মাধ্যমের ভেদনাযোগ্যতার বা ভেদ্যতা $(permittivity) \ c^2 N \ m^{-2} \ or \ Farad/m)$

$$rac{1}{4\piarepsilon_0}=9 imes10^9 N\;m^2c^{-2}$$
, েভক্টর পদ্ধতিতে $\overrightarrow{F}=\hat{\eta}F=rac{\vec{r}}{r}F$

$$\overrightarrow{F_3} = \overrightarrow{F}_{31} + \overrightarrow{F}_{32}, \left| \overrightarrow{F}_3 \right| = \sqrt{F_{31}^2 + F_{32}^2 + 2F_{31}F_{32}cos\theta}, \varphi = \tan^{-1}\frac{F_{32}\sin\theta}{F_{31} + F_{32}\cos\theta}$$

তি তি জুবাক্স ঃ কোন তল বা পৃষ্ঠের ভেতর দিয়ে যতগুলো তড়িৎ বলরেখা অতিকৃম করে তাকে তড়িৎ ফ্লাক্স বলে। এক $arphi_E$ দ্বারা প্রকাশ করা হয়।

Note : (i) তড়িং ক্ষেত্র ও তলের অভিলম্ব যখন সমান্তরাল অবস্থানে থাকে তখন তড়িং ফ্লাক্স সর্বাধিক হয় এবং যখন সমকোণে থাকে তখন তড়িং ফ্লাক্স শূণ্য হয়।

$$W = q \Delta v$$

ি বিন্দু চার্জের জন্য (একক ধনচার্জের দরুন) তড়িৎ ক্ষেত্রের কোন বিন্দুতে বিভব.

$$V = W = \frac{1}{4\pi\varepsilon_0} \times \frac{q}{r}$$
. [dw= -F× $dx = -Edx = -\frac{1}{4\pi\varepsilon_0} \times \frac{q}{r}dx$]

মোট কাজ
$$W=\int dw=\int_{\infty}^{r}-rac{1}{4\piarepsilon_{0}} imesrac{q}{x^{2}}dx=rac{1}{4\piarepsilon_{0}}rac{q}{r}$$
 .

 E_r পরা বৈদ্যতিক ধ্রুবক বিশিষ্ট মাধ্যমে $V=rac{1}{4\piarepsilon_0}\,rac{q}{E_r r}\,,\,E_r o$ আপেক্ষিক ভেদন যোগ্যতা $\left(rac{arepsilon}{arepsilon_0}
ight)$

$$q_1,q_2,q_3$$
..... q_n চার্জের জন্য বিভবঃ $=9 imes 10^9 \sum rac{q}{E_r r}$,

শূন্য বা বায়ু মধ্যমে $V=9 imes 10^9 \sum rac{q}{r}$

তি চার্জ গ্রস্থ গোলকের বিভবঃ

বায়ু মাধ্যমে ,
$$V=\frac{1}{4\pi\varepsilon_0} imes\frac{q}{r}$$
 প্রাবল্য , $E=\frac{F}{q}=\frac{1}{4\pi\varepsilon_0} imes\frac{q}{r^2}$ [মান] প্রকৃত পক্ষে প্রাবল্য , $E=-\frac{dv}{dr}=\frac{-q}{4\pi\varepsilon_0} imes\left(-\frac{1}{r^2}\right)=+\frac{1}{4\pi\varepsilon_0} imes\frac{q}{r^2}$ $V=\frac{q}{4\pi r^2} imes\frac{q}{\varepsilon_0}=\frac{\sigma r}{\varepsilon_0}$ এখানে, $\frac{dv}{dr}$ বিভরেবর নতিমাত্রা $E=\frac{q}{4\pi r^2} imes\frac{1}{\varepsilon}=\frac{q}{r}$ গোলকের চারপাশের মধ্যমের পরবৈদ্যুতিক প্রুবক বা ডাই ইলেকট্রিক প্রুবক ε_r হলে, $V=\frac{1}{4\pi\varepsilon_0\varepsilon_r}$ $\frac{q}{r}=\frac{\sigma r}{\varepsilon_0\varepsilon_r}$, $E=\frac{1}{4\pi\varepsilon_0\varepsilon_r}$ $\frac{q}{r^2}=\frac{\sigma}{\varepsilon_0\varepsilon_r}$, $V=E\times r$ সমবিভব তলে, বিভব, $V=\frac{1}{4\pi\varepsilon_0}$ $\frac{q}{r}$

Note: (i) কোন চার্জকে সমবিভব তলের একবিন্দু হতে অন্য বিন্দুযতে নিতে কাজের প্রয়োজন হয় না ।

(ii) সতবিভব তলের যে কোন বিন্দুতে তড়িৎ ক্ষেত্রের প্রাবল্য বা তড়িৎ প্রাবল্য ঐতলের সাথে লম্বভাবে ক্রিয়া করে।

তড়িৎ তারকত্ব ঃ

$${
m Q}={
m CV},\,{
m C}$$
 স্পারকত্ব (ধ্রুবক), $ightarrow{
m C}=rac{\it Q}{\it V}$ একক ${
m CV}^{-1}$ or $\mu{
m F}=10^{-6}$ F, ${
m PF}=10^{-12}F$

গোলকার পরিবাহির ক্ষেত্রে, ধারকত, $C=4\pi arepsilon_0 r$.

 ϵ^r পরাবৈদ্যুতিক ধ্রুবক সম্পন্ন মাধ্যমে, ${
m C}=4\piarepsilon_0arepsilon_r$

$$arepsilon_0 = 8.854 imes 10^{-12} c^2 N^{-1} m^{-2}, \quad \epsilon^r = rac{c_k}{c_o} = rac{}{}$$
 কোন মাধ্যেমে ধারকত্ব শূন্যস্থানে বা বায়ুতে ধারকত্ব

∴ কোন ধারকের ধারকত্ব = অন্তরীত পরিবাহীর চার্জ

দুই পরিবাহীর মধ্যে বিভব বৈষম্য

Note: [এক ঋণ চার্জকে ধন চাজের নিক্টবর্তা করলে ধনচার্জের চার্জিত পাত্রের বিভ কমবে এবং ধারকত্ব বৃদ্ধি পাবে]

সমান্তরাল পাত ধারকঃ

$$c=rac{arepsilon_0 A}{d}$$
 — শূন্য বা বায়ু মাধ্যমে, $c=rac{arepsilon A}{d}$ — অন্য মাধ্যমে, [$\epsilon=arepsilon_0 \epsilon^r$

পরা বৈদ্যুতিক ধ্রুবক বা তড়িৎ মাধ্যমাংক বা আপেকিক্ষ ভেদ্যতাঃ $\epsilon^r=rac{\epsilon}{\epsilon_0}=rac{F_0}{F}=rac{c}{c_0}$

[া] ধারকে স্থিতি বা সঞ্চিত শক্তি ঃ

$$PE = W = \frac{1}{2} \frac{Q^2}{C} [W = \int_0^Q V dq] = \frac{1}{2} QV = \frac{1}{2} CV^2$$

একক আয়তেন সঞ্চিত শক্তি ঃ

$$U = \frac{W}{\text{আয়তন}} : \frac{\frac{1}{2}cv^2}{Ad} = \frac{\frac{1}{2}C(Ed)^2}{Ad} = \frac{\frac{1}{2}\left(\frac{\mathcal{E}_0A}{d}\right)(Ed)^2}{Ad}$$

$$=rac{1}{2}\;\epsilon_0 E^2 \leftarrow$$
 শূন্য বা বায়ু মাধ্যমে, অন্য মাধ্যমে, $U==rac{1}{2}\;\epsilon\;E^2$

ুল্য ধারকত্ব : শ্রেণী সমাবায়ে,
$$\frac{1}{c_s}=\frac{1}{c_1}+\frac{1}{c_2}+\frac{1}{c_3}+\dots\dots+\frac{1}{c_n}=\sum \frac{1}{c}$$
 সমান্তরাল সমবায়ে, $C_P=C_1+C_2+C_3+\dots\dots+C_n=\sum c$

$\overline{\text{Type- }01}$: কুলম্বের সূত্র ঃ $F=rac{1}{4\pi arepsilon_0} rac{|q_1|\,|q_2|}{r^2}$ সংক্রোপ্ত গাণিতিক সমস্যা ।

 ϵ_0 (epsilon naught) \to তড়িৎ ধ্রুবক বা তড়িৎ ভেদন যোগ্যতা (শূন্য মাধ্যমে) \to $8.854 imes 10^{-12} c^2 N^{-1} m^{-2}$ এবং $\frac{1}{4\pi\epsilon_0} = 9 imes 10^9 N m^2 c^{-2}$

 ϵ তড়িৎ ধ্রুবক, $\mathrm{K}{=}rac{\epsilon}{arepsilon_0}\,[$ আপেক্ষিক ভেদন যোগ্যতা]

 ${
m EXAMPLE-01}$: ৪ একটি তড়িৎ নিরপেক্ষ আমার পয়সার সকল ধনাত্বক আধান ও সকল ঋণাত্বক আধানকে পরস্পর হতে $5.8 imes 10^9 m$ দুরে সরিয়ে আনা হলে এদর মধ্যে পারস্পারিক আকর্ষণ বলের মান কত হবে? ধর c_u এর প্রোটন সংখ্যা 29। তামার পয়সার ভর $0.1{
m g}$ c_u এর পারমানবিক ভর 63.546.

 $63.546~{
m g}$ চার্জ থাকে $29 imes 1.6 imes 10^{-19} C$

0.1 " "
$$7.3 \times 10^{-20}C$$

$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1| |q_2|}{r^2} = 9 \times 10^9 \frac{|7.3 \times 10^{-20}| |-7.3 \times 10^{-20}|}{(5.8 \times 10^9)^2} = 1.426 \times 10^{-48} \text{ N}.$$

Exercises

র্থা একটি তামার পয়সার সকল ধনাত্বক ও সকল ঋণাত্বক চার্জকে পরস্পর হতে কত দূরে সরিয়ে নিলে তাদের মধ্যেকার আকর্ষন বলে মান $7.5 \times 10^{-19} \, \mathrm{N}$ হবে। ধর তামার নিউক্লিয়াসের মোট ধনাত্বক আধান

$$7.3 \times 10^{-16} C. \text{ Ans: } \mathbf{r} = \left[\frac{1}{4\pi\epsilon_0} \times \frac{|\mathbf{q}_1| |\mathbf{q}_2|}{F} \right]^{0.5} = \mathbf{0}. \mathbf{071} \ m$$

(ii) একটি হিলিয়াম নিউক্লিয়াসের মধ্যে দুটি প্রোটনের মধ্যেকার বিকর্ষণ বলের মান কত ? ধর নিউক্লিয়াসের আয়তন $1.77 \times 10^{-4} {
m m}^3$. Ans: $1.02 \times 10^2 {
m N}$

EXAMPLE - 02: একটি নির্দিষ্ট পরিমাণ চার্জ q কে রিরূপ দুটি অংশে ভাগ করলে উহারা নির্দিষ্ট ব্যবধানে থেকে সর্বাত্বক বেশি বলে পরস্পরকে বিকর্ষণ করবে ?

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1(q-q_1)}{d^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{qq_1-q_1^2}{d^2} \Rightarrow \frac{dF}{dq_1} = \frac{1}{4\pi\epsilon_0 d^2} \neq 0.$$

$$\therefore \ q-2q_1=0 \Rightarrow q_1=rac{q}{2} \ \ q$$
 এর দুটি অংশ q_1 ও q_2 , তাহলে, $q_2=q-q_1$

সমান দুটি অংশে বিভক্ত করলে।

EXAMPLE-03: q পরিমাণ চার্জকে 3:2 অনুপাতে বিভক্ত করা হল। উহারা পরস্পর $5\times 10^{-5}~\mathrm{m}$ দুরত্বে থেকে একক বলে পরস্পরকে বিকর্ষণ করলে চার্জের মান কত ?

$$F = \frac{1}{4\pi\varepsilon_0} \frac{\frac{3q}{5}}{(5\times10^{-5})^2} = 1, q = 5\times10^{-5}\times5\div(6\times9\times10^9)^{0.5}$$
$$= 1.076\times10^{-9} \text{C}$$

EXAMPLE-04: দুটি শোলা বলের প্রত্যেকটির ওজন ও চার্জ সমান এরা এক অপরকে পরস্পর হতে বিকর্ষণ বল দ্বারা $0.6~\mathrm{m}$ ব্যবধানে রাখতে পারে। শেলো বল দুটিকে একটি $1\mathrm{m}$ দৈর্ঘ্যর সিঙ্কের সুতা দ্বারা ঝুলিয়ে দেয়া হল। বল দুটির প্রত্যোটির চার্জ কত ? ধর শোলা বলের প্রত্যেটির ভর $5\times10^{-2}~kg$.

$$\frac{F}{BD} = \frac{mg}{AD} \Rightarrow F = mg \frac{BD}{AD} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{r^2} \Rightarrow 5 \times 10^{-2} \times 9.8 \times \frac{0.3}{0.954} = 9 \times 10^9 \times \frac{q^2}{(0.6)^2}$$
$$q = +2.48 \times 10^{-6} C$$

চার্জ দ্বয়
$$+2.48 \times 10^{-6}$$
 C এবং $+2.48 \times 10^{-6}$ C বা, -2.48×10^{-6} C এবং -2.48×10^{-6} C

Exercises⁸

(i) $0.5~{
m g}$ ভরের একটি শোলা বলে $-6.67 \times 10^{-6}~{
m C}$ চার্জ দেয়া হল $_1+6.67 \times 10^{-8}~{
m C}$ চার্জযুক্ত একটি বস্তু কত উচ্চতায় শোলা বলটিকে শূন্যে স্থির রাখতে পারবে ? ${
m Ans:}~0.35{
m m}$

$$[F = mg = \frac{1}{4\pi\varepsilon_0} \times \frac{q_1 \times q_2}{r^2} \Rightarrow .5 \times 10^{-3} \times 9.8 = 9 \times 10^9 \times \frac{6.67 \times 10^{-6} \times 6.67 \times 10^{-8}}{h^2}$$

$$\Rightarrow$$
 h =0.35 m]

(ii) দুটি শোলা বলের প্রত্যেকটির ওজন $10^{-3}\,kg$ এবং $0.8~{\rm m}$ দৈর্ঘ্যর সিল্কের সুতার মাধ্যমে ঝুলিয়ে দেয়া হল। শোলা বল দুটি $6.6\times 10^{-9}\,C$ চার্জ দ্বারা চার্জিত হলে তারা পরস্পরকে বিকর্ষণ বল দ্বারা কত ব্যবধানে ভারসাম্যে রাখতে সক্ষম হবে ? Ans: $0.04~{\rm m}$

(iii) দুটি প্রোটনকে পরস্পর থেকে কত দূরে স্থাপন করলে প্রতিটি প্রোটনের উপর ক্রিয়াশীল বলের ওজন একটি প্রোটনের ওজনের সমান হবে ? Ans: 0.119 m

EXAMPLE-05: একটি বর্গক্ষেত্রের চারটি কৌণিক বিন্দুতে +q, -q, -2q ও +2q আধান আছে । +2q আধানের উপর লব্ধি বলের মান ও দিক নির্ণয় কর । [ধর, a=2cm এবং q $5 imes 10^{-6}$ C]

সমাধান ঃ AD বরাবর x অক্ষ, DC বরাবর y অক্ষ বিবেচনা করি,

$$F_x = F_{AD} - F_{BD}\cos 45^{\circ}$$
 , $F_y = F_{DC} + F_{BD}\sin 45^{\circ}$,

$$F_{AD} = \frac{1}{4\pi\epsilon_0} \times \frac{q_1 \times q_2}{a^2} = 9 \times 10^9 \times \frac{2 \times (5 \times 10^{-6})^2}{0.02^2} = 1125 \text{ N},$$

$$F_{BD} = \frac{1}{4\pi\epsilon_0} \times \frac{q \times 2q}{(2\sqrt{2} \times 10^{-2})^2} = 362.5 \text{ N}, \ F_{DC} = \frac{1}{4\pi\epsilon_0} \times \frac{2q \times 2q}{0.02^2} = 2250 \text{ N}$$

$$F_x = 1125 - 362.5 \times \frac{1}{\sqrt{2}} = 868.67 \text{ N}, \quad F_y = 2250 - 362.5 \times \frac{1}{\sqrt{2}} = 1993.67 \text{ N}$$

लिक वल,
$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(868.67)^2 + (1993.67)^2} = 2174.7N$$
,

দিক ধরি লব্ধি, F , x — অক্ষের সাথে(AD বাহুর সাথে)

$$\theta$$
 কোণে আনত , $\therefore \theta_{\chi} = an^{-1} rac{F_y}{F_x} = an^{-1} rac{1993.67}{868.67} = 66.56^0$

নিজে চেষ্টা করুন \imath উক্ত সমস্যা বর্গক্ষেত্রের প্রতি বাহু $50~{
m cm}$ এবং $q=1.0 imes10^{-7} C$ ধরে অংকটি সমাধান কর।

Ans: লব্ধি বল, F =0.176 N, $\theta_x = 74.86^0$

EXAMPLE - 06: একটি সরলরেখার A, B, P বিন্দুতে তিনটি বিন্দুচার্জ রয়েছে যাদের মান যথাক্রমে $+3\times10^{-7}$ C, -5×10^{-7} C ও $+1\times10^{-7}$ C. A ও B এর জন্য P বিন্দুতে লব্ধিবল নির্ণয় কর । P কে কোথায় স্থাপন করলে লব্ধিবল শূণ্য হবে । A থেকে B এর দূরত্ব 6cm, B থেকে P এর দূরত্ব 4cm.

SOLVE:
$$\frac{3\times10^{-7}C}{A}$$
 --- $\frac{-5\times10^{-7}C}{B}$ --- $\frac{1\times10^{-7}C}{P}$

P বিন্দুতে A এর জন্য বিকর্ষন বল F1 হলে,

$$\mathsf{F_1} = \frac{1}{4\pi\epsilon_0} \, \frac{q_\mathrm{A} q_\mathrm{P}}{r_\mathrm{I}^2} = \, 9 \times 10^9 \times \frac{3 \times 10^{-7} \times 1 \times 10^{-7}}{(10 \times 10^{-2})^2} = 2.7 \times 10^{-2} \mathsf{N} \quad [\text{বাইরের দিক}]$$

P বিন্দুতে B এর জন্য আকর্ষন বল F2 হলে,

$$F_2 = \frac{1}{4\pi\epsilon_0} \frac{q_B q_P}{(r_2)^2} = 9 \times 10^9 \times \frac{5 \times 10^{-7} \times 1 \times 10^{-7}}{(4 \times 10^{-2})^2} = 2.81 \times 10^{-1} N$$
 [ভেতরের দিকে]

এখানে, $F_2 > F_1$: বল আকর্ষণধর্মী; $F = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos 180^\circ} = F_2 - F_1 = 2.54 \times 10^{-1} N$

দ্বিতীয় অংশ, P কে A হতে x দুরত্বে সরালে লব্ধি বল শূণ্য হয়।

$$\frac{q_{A}q_{P}}{x^{2}} = \frac{q_{B}q_{P}}{(6+x)^{2}} \implies \left(\frac{x}{6+x}\right)^{2} = \frac{q_{A}}{q_{B}} \implies \frac{x}{6+x} = \sqrt{\frac{3\times10^{-7}}{5\times10^{-7}}} \implies \frac{x}{6+x} = 0.774$$

 \Rightarrow x = 7.647 + 0.774 x : x = 20.56 cm

EXAMPLE - 07: একটি ইলেক্ট্রন একটি প্রোটন থেকে 4×10⁻⁶m দূরত্বে আছে। এদের মধ্যবর্তী কুলম্ব বলের মান কত ? পরস্পারের দিকে অগ্রসর হলে এদের ত্বরণ কত হবে?

SOLVE:
$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} = 9 \times 10^9 \times \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{(4 \times 10^{-6})^2} = 1.44 \times 10^{-17} N$$

আবার, F = ma হতে পাই,
$$a_e = \frac{F}{m_e} = \frac{1.44 \times 10^{-17}}{9.1 \times 10^{-31}} = 1.58 \times 10^{13} \, \text{m/s}^2$$

$$a_p = \frac{F}{m_p} = \frac{1.44 \times 10^{-17}}{1.673 \times 10^{-27}} = 8.6 \times 10^9 \text{ m/s}^2$$

Type- 02: বিন্দু আধানের জন্য তড়িৎ বল , তড়িৎ ক্ষেত্র প্রাবল্য, তড়িৎ বিভব এর রাশি মালা সংক্রান্ত গাণিতিক সমস্যা।

কুলম্ব বল,
$$F=rac{1}{4\pi\epsilon_0} rac{|q_1|\,|q_2|}{r^2}$$
 এখানে, $q_0=$ পরীক্ষাধীনে ধনাতৃক আধান তড়িৎ ক্ষেত্র প্রাবল্য, $E=rac{F}{q_0}=rac{1}{4\pi\epsilon_0}.$ $rac{q}{r^2}$

তড়িৎ বিভব ,
$$V=rac{1}{4\piarepsilon_0}.rac{q}{r}$$
 $ightarrow$ শূন্য মাধ্যমে

অন্য কোনর মাধ্যমে হলে $arepsilon_0$ এর পরিবতে arepsilon হবে। বিভব ও প্রাবল্যের মধ্যে সম্পর্ক, $E=rac{dv}{dr}$.

ক্যালকুলাসের সাহায্যে লেখা যায়, $\mathrm{E}=-rac{dv}{dr}$

$$\mathbf{W} = \left[\int_{\infty}^{r} F. \, d\vec{r} = \int_{\infty}^{r} F. \, dr cos 180^{0} = \frac{qq_{0}}{4\pi\varepsilon_{0}} \right. \\ \left. \int_{\infty}^{r} r^{-2} dr = -\frac{qq_{0}}{4\pi\varepsilon_{0}} - \frac{1}{r} \right] = \frac{1}{4\pi\varepsilon_{0}}. \\ \frac{qq_{0}}{r} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{qq_{0}}{r} = \frac{qq_{0}}{r} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{qq_{0}}{r} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q$$

EXAMPLE-08: একটি সুষম তড়িৎ ক্ষেত্রে স্থাপিত $-5 \times 10^{-9}C$ আধান কণিকার উপর $3.5 \times 10^{-5}N$ মানের নিমুমুখী তড়িৎ বল ক্রিয়াশীল । এ তড়িৎ ক্ষেত্রে একটি প্রোটনকে স্থাপন করলে এর উপর ক্রিয়াশীল বলে মান কত হবে? এ বলের সাথে প্রোটনটির উপর মহাকর্ষীয় বলের তুলনা কর।

কুলম্ব বল,
$$F=\mathrm{Eq}$$
, মাহকর্ষীয় বল, $E_g=mg$, $E=\frac{F}{q}=\frac{4.5\times10^{-5}}{5\times10^{-9}}=9\times10^3Nc^{-1}$ প্রোটনের উপর কুলম্ব, $F=\mathrm{Ee}=9\times10^3\times1.6\times10^{-19}=14.4\times10^{-16}N$ মহাকর্ষীয় বল, $F_g=mg=1.67\times10^{-22}\times9.8=1.6\times10^{-26}N$, $\frac{F}{F_g}=9\times10^{10}$

EXAMPLE-09: বায়ুতে একটি বর্গক্ষেত্রের তিনটি কৌণিক বিন্দুতে যথাক্রমে $+6 \times 10^{-9} C$

 $-12 imes 10^{-9} C$ এবং $+14 imes 10^{-9} C$ আধান স্থাপন করা হল। চতুর্থ কৌণিক বিন্দুতে কত আধান স্থাপন করলে বর্গক্ষেত্রের কেন্দ্রে তড়িৎ বিভব শূন্য হবে।

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{6 \times 10^{-9}}{\frac{a}{\sqrt{2}}} + \frac{-12 \times 10^{-9}}{\frac{a}{\sqrt{2}}} + \frac{14 \times 10^{-9}}{\frac{a}{\sqrt{2}}} + \frac{q}{\frac{a}{\sqrt{2}}} \right)$$

প্রশ্নমতে, V=0 $\therefore \frac{\sqrt{2}}{4a\pi\varepsilon_0} \neq 0$ $\therefore 6\times 10^{-9}-12\times 10^{-9}+14\times 10^{-9}+q=0 \Rightarrow q=-8\times 10^{-9}C$

EXAMPLE-10: একটি সমবাহু ত্রিভূজের যেকোন দুটি বিন্দুতে যথাক্রমে $5\times 10^{-3} C$ ও $9\times 10^{-3} C$ চার্জ স্থাপন করলে তৃতীয় বিন্দুতে প্রাবল্যের মান ও দিক নির্ণয় কর। ত্রিভূজের প্রত্যেক বাহুর দৈর্ঘ্য $3~{
m cm}$.

সমাধান st ধরি, ABC ত্রিভুজের B ও C বিন্দুতে যথাক্রমে $5 \times 10^{-3} \ C$ ও $9 \times 10^{-3} \ C$ চার্জ স্থাপন করা হয়েছে। তাহলে A বিন্দুতে প্রাবল্যের মান ও দিক নির্ণয় করতে হবে।

$$E_{BA} = 9 \times 10^9 \times \frac{5 \times 10^{-3}}{3 \times 10^{-2}} = 4.5 \times 10^9 Nc^{-1}$$

$$E_{AC} = 9 \times 10^9 = \frac{9 \times 10^{-3}}{3 \times 10^{-2}} = 8.1 \times 10^9 Nc^{-1}$$

লব্ধি প্রাবল্য,
$$E=\sqrt{E_{BA}^2+E_{AC}^2+2E_{BA}.E_{AC}\cos 120^0}$$
 $\propto=120^0$

$$= \sqrt{(4.5 \times 10^9)^2 + (8.1 \times 10^9)^2 + 2 \times 4.5 \times 10^9 \times 8.1 \times 10^9 \times \left(-\frac{1}{2}\right)}$$

$$= 7.03 \times 10^9 Nc^{-1}$$

ধরি,
$$E$$
, AC রেখার সাথে $heta$ কোণ তৈরী করে, $heta = an^{-1} rac{E_{BA} sin imes}{E_{AC} + E_{BA} cos imes} \propto = 120^0$

$$= \tan^{-1} \frac{4.5 \times 10^9 \times \frac{\sqrt{3}}{2}}{8.1 \times 10^9 + 4.5 \times 10^9 \times \left(-\frac{1}{2}\right)} = 33.67^0 = 33^0 40' 13.79''$$

EXAMPLE – 11: দুটি ক্ষুদ্র গোলক যথাক্রমে 9c ও 16c চার্জ প্রদান করে 0.28m ব্যবধান রাখা হল। চার্জ দ্বয়ের সংযোগকারীরেখার কোন বিন্দুতে উভয় চার্জের জন্য প্রাবল্যের মান সমান হবে ?

সমাধান ঃ মনে করি, 9c চার্জ হতে x দুরত্বে প্রাবল্যের মান সমান হবে।

$$E_1 = E_2 \Rightarrow \frac{1}{4\pi\epsilon_0} \times \frac{q_1}{x^2} = \frac{1}{4\pi\epsilon_0} \times \frac{q_2}{(0.28 - x)^2} \Rightarrow \frac{9^2}{x^2} = \frac{16}{(0.28 - x)^2} \Rightarrow \frac{3}{x} = \pm \left(\frac{6}{.028 - x}\right)$$

- (+) Ve এর জন্য $0.28 \times 3 3x = 4x \Rightarrow 7x = 3 \times 0.28 \Rightarrow x = 0.12m$
- (+) Ve এর মান $0.28 \times 3 3x = -4x \Rightarrow x = -0.84m$. Ans: 0.12 m.

EXAMPLE-12: একটি গোলাকার পানির ফোঁটায় $6\times 10^{-16}C$ চার্জ রয়েছে। এর ব্যাসার্ধ .18m গোলকার ফোঁটার কেন্দ্র থেকে (i) 2.5m (ii) .1m দুরে প্রাবল্য ও ভিভ নির্ণয় কর।

(রর)
$$E = \frac{1}{4\pi\epsilon_0} \times \frac{q_1}{x^2} = 9 \times 10^9 \times \frac{6 \times 10^{-16}}{2.5^2} = 8.64 \times 10^{-7} \text{Nc}^{-1}$$
$$V = \frac{E}{r} = 3.456 \times 10^{-7} V$$

(ররর) $V=9\times 10^9\times \frac{6\times 10^{-16}}{.18}=3\times 10^{-5}V$ Ans : E=0 [গোলকের অভ্যন্তরে বিভব পুষ্টের বিভবের সমান কিন্তু প্রাবল্য শূন্য। কেন্দ্রে বিভব = পুষ্ঠে বিভব।]

 $EXAMPLE-13:8.4 imes 10^{-16} kg$ ভরের একটি চার্জিত প্লাষ্টিক বল $4 imes 10^4 V \, \mathrm{m}^{-1}$ মানের সুষম বৈদ্যুতিক ক্ষেত্রে ঝুলম্ভ অবস্থায় আছে। বলটির চার্জের পরিমাণ কত ? $\mathrm{g}=9.8 \, \mathrm{ms}^{-1}$

$$W = mg = F = Eq \Rightarrow q = \frac{8.4 \times 10^{-16} \times 9.8}{2.6 \times 10^{4}} = 3.17 \times 10^{-18} C$$

EXAMPLE-14: দুটি বিন্দুর মধ্যে বিভব পার্থক্য $322~{
m kv}$ । এদের এক বিন্দু থেকে অপর বিন্দুতে $9\mu c$ চার্জ স্থানান্তর করতে কৃতকাজের পরিমাণ নির্ণয় কর । $W={
m q}\Delta V=9\times 10^{-6}\times 322\times 10^3=2.898~J$

Exercises

(i) একটি সুষম তড়িৎ ক্ষেত্রে স্থাপিত $5 imes 10^{-6} C$ আধান কণিকার উপর $4 imes 10^{-5} N$ মানের একটি তড়িৎ বল তড়িত ক্ষেত্রের তলের সাথে 30^0 কোণে নিচের দিকে ক্রিয়াশীল । এ তড়িৎ ক্ষেত্রে একটি ইলেকট্রনকে ছেড়ে দিলে এর উপর ক্রিয়াশীল বলের মান কত হবে। [তড়িৎ ক্ষেত্রে এবং তলের অভিলম্ব সমান্তরাল]

Ans:
$$1.11 \times 10^{-18} N$$

কুলম বল,
$$F\sin 60^0 = Eq \Longrightarrow E = \frac{F\sin 60^0}{q}$$

ইলেক্ট্রনের উপর ক্রিয়াশীল কুলম্ব বল,
$$F=Ee=rac{4 imes10^{-5} imes1.6 imes10^{-19} imesrac{\sqrt{3}}{2}}{5 imes10^{-6}}=1.11 imes10^{-18}N$$

(ii) 2m বাহু বিশিষ্ট একটি বর্গক্ষেত্রের প্রতিটি কোণায় $2 \times 10^{-9} C$ চার্জ স্থাপন করা হল । বর্গক্ষেত্রের কেন্দ্রে বিভব নির্ণয় কর । $Ans: 50.91 \ volt$

(iii) একটি সমবাহু ত্রিভূজের প্রত্যেক বাহুর দৈর্ঘ্য 0.1 m । ত্রিভূজের $B \otimes C$ বিন্দুতে $+100 \otimes -100$ চার্জস্থাপন করলে C বিন্দুতে প্রাবল্যের মান ও দিক নির্ণয় কর । $Ans: 2 \times 10^{-13} C$ দিক 60^0 (BC বাহুর সাথে)

 $(iv)1 \times 10^{-6} C$ এবং $2 \times 10^{-6} C$ মানের দুটি আধান বিন্দু পরস্পর হতে 10 m দুরে অবস্থিত আধান দুটির সহংযোগকারী রেখার কোন বিন্দুতে তড়িৎ প্রাবল্যের মান শূন্য হবে? Ans:4.14cm

- $(v) \ 10cm$ ব্যাসার্ধের একটি গোলকের পরিধিতে 10c মানের দুটি চার্জ স্থাপন করা হলো গোলকের কেন্দ্র হতে 8c ও 12cm দুরে তড়িং বিভবের মান নির্ণয় কর। $1.8 \times 10^{12} V$, $1.5 \times 10^{12} V$
- $({
 m vi})~3.23 imes~10^{-19} C$ চার্জের একটি প্লাস্টিক বল কোন স্থানে $2.6 imes 10^4 {
 m Nc}^{-1}$ প্রাবল্যের একটি সুষম বৈদ্যুতিক ক্ষেত্রে ঝুলন্ত অবস্থায় রাখা হলো বলটির ভর নির্ণয় কর। ${
 m g}=9.8~ms^{-2}$
- $({
 m vii})$ একটি তড়িৎ ক্ষেত্রে কোন বিন্দুতে $-5 imes 10^{-13} C$ মানের একটি চার্জ আছে। অপর একটি $-5 imes 10^{-13} C$ মানের অপর একটি চার্জকে উক্ত তড়ি' ক্ষেত্রের হতে অসীম দুরত্বে নিতে কৃতকাজের মান বের কর। চার্জ দ্বয়ের মদ্যবর্তী দুরত্ব ছিল $5 imes 10^{-6} M$. ${
 m Ans}: 4 imes 10^{-6} J$

$$W = -9 \times 10^9 \times \frac{5 \times 10^{-9} \times 5 \times 10^{-13}}{5 \times 10^{-6}} = -4 \times 10^{-6}$$

EXAMPLE - 15: +5, -4, +2 মানের তিনটি চার্জ 0.5m ব্যাসার্ধ বিশিষ্ট বৃত্তের পরিধির উপর তিনটি বিন্দুতে স্থাপন করলে কেন্দ্রে বিভব ও পৃষ্ঠে প্রাবল্যের মান কত ?

সমাধান ঃ e কেন্দ্রের বিভব = পৃষ্ঠে বিভব =
$$\frac{1}{4\pi\epsilon_0}\sum \frac{q}{r}=9\times 10^9 \times \frac{5-4+2}{0.5}=5.4\times 10^{10}~V$$

প্রাবল্যে
$$E = 1.08 \times 10^{11} Vm^{-1} (Nc^{-1})$$

EXAMPLE – 16: 9×10⁻⁹C এবং 6×10⁻⁶C এর দুইটি চার্জ পরস্পর থেকে 0.2m দূরে অবস্থিত। এদেরকে আরও 0.1m নিকটে আনতে কি পরিমান কাজ করতে হবে।

SOLVE : দূরত্ব যখন 0.2m তখন বিভব,
$$V_1 = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r} = 9 \times 10^9 \times \frac{9 \times 10^{-9}}{0.2} = 405 V$$

দুরত্ব যখন 0.1m তখন বিভব,
$$V_2=\frac{1}{4\pi\epsilon_o}\frac{q_1}{r}=9\times10^9\times\frac{9\times10^{-9}}{0.1}=810V$$

∴ কৃতকাজ , W=
$$q_2(V_2-V_1)$$
= $6\times10^{-6}(810-405)J$ = $2.43\times10^{-3}J$

EXAMPLE – 17: 6m বাহু বিশিষ্ট একটি বর্গক্ষেত্রের তিনটি কৌনিক বিন্দুতে 6, -12, 18C চার্জ আছে। চতুর্থ কৌনিক বিন্দুতে বিভব নির্ণয় কর।

SOLVE: AB = BC = CD = DA = 6m : AC =
$$\sqrt{6^2 + 6^2} = 6\sqrt{2}$$
 m

6C এর জন্য বিভব =
$$\frac{1}{4\pi\epsilon_0} \times \frac{q}{r} = 9 \times 10^9 \times \frac{6}{6} = 9 \times 10^9 V$$

-12C এর জন্য বিভব =
$$\frac{1}{4\pi\epsilon_0} \frac{q}{r} = 9 \times 10^9 \times \frac{-12}{6\sqrt{2}} = -9\sqrt{2} \times 10^9 V$$

18C এর জন্য বিভব=
$$\frac{1}{4\pi\epsilon_o} \frac{q}{r} = 9 \times 10^9 \times \frac{18}{6} = 27 \times 10^9 V$$

∴ মোট বিভব =
$$(9-9\sqrt{2}+27)\times10^9 = 23.31\times10^9 \text{ V}$$

Type- 03: তড়িৎ দ্বিমেরুর ক্ষেত্রে প্রাবল্যে ঃ

* তড়িৎ দ্বিমেরুর অক্ষের লম্ব দ্বিখন্ডেকের উপর ডে কোন বিন্দু $\ P$ -তে তড়িৎ প্রাবল্য, $E=rac{1}{4\pi\epsilon_0} \cdot rac{2aq}{(r^2+a^2)^{3/2}}$

এখানে 2a চমুক দৈর্ঘ্য এবং 2aq তড়িৎ দ্বিমেরু ভ্রাসক।

দিক P বিন্দুতে q চার্জের দিকে । যদি $r\gg a$ হয় তবে $E=\frac{1}{4\pi\epsilon_0}.$ $\frac{p}{r^3}$, $\vec{E}=\frac{1}{4\pi\epsilon_0}.\frac{\vec{p}}{r^3}$ [ভেক্টর রূপ]

যদি P ধ্রুব হয় তবে, $E \infty r^{-3}$

* তড়িৎ দ্বিমেরু অক্ষের উপর প্রাবল্য ខ $E=rac{1}{4\pi\epsilon_0}.rac{4ra}{(r^2-a^2)^2}$, দিক +q চার্জের দিকে।

যদি
$$r\gg a$$
 হয় তবে $E=rac{1}{4\pi\epsilon_0}.~rac{2p}{r^3}$, ভেক্টর রূপ, $ec E=rac{1}{4\pi\epsilon_0}.rac{2ec p}{r^3}$

** তড়িৎ দ্বিমেরুর মধ্যবিন্দু হতে r দুরত্বে যে কোন বিন্দু $\ P$ -তে তড়িৎ বিভব।

$$V = V_1 + V_2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{\mathbf{q}}{\mathbf{r}_1} - \frac{1}{4\pi\epsilon_0} \cdot \frac{\mathbf{q}}{\mathbf{r}_2} = \frac{\mathbf{q}}{4\pi\epsilon_0} \left(\frac{1}{\mathbf{r}_1} - \frac{1}{\mathbf{r}_2} \right) \therefore V = \frac{1}{4\pi\epsilon_0} \cdot \frac{\mathbf{r}_2 - \mathbf{r}_1}{\mathbf{r}_1 \mathbf{r}_2}$$

 $r\gg a$ হলে, $r_2-r_1=2acos heta$ এবং $r_1.\,r_2=r^2$

$$V = \frac{q}{4\pi\epsilon_0} \cdot \frac{2acos\theta}{r^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\vec{q}r}{r^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\vec{q}\vec{r}}{r^3}$$

যদি heta=0 হয় অর্থাৎ দ্বিমেরুঅক্ষেল উপর ধনাত্বক আধানের দিকে $ext{P}$ বিন্দু অবস্থিত হলে বিভব,

 $V=rac{1}{4\pi\epsilon_0}\cdotrac{p}{r^2}$ যা তড়িৎ দ্বিমেরুর জন্য ভিববের সর্বোচ্চ মান। যদি $heta=180^0$ হয় তবে, $V=rac{1}{4\pi\epsilon_0}\cdotrac{-p}{r^2}$ যা তড়িৎ দ্বিমেরুর জন্য বিভবের সর্বনিমু মান।

 $heta=90^0$ অর্থাৎ দ্বিমেরু অক্ষেল লম্ব দ্বিখন্ডকের উপর যেকোন বিন্দুতে বিভবের মান শূন্য । তড়িৎ দ্বিমেরুর লম্ব দ্বিখন্ডক বরাবর একটি ধনাত্বক তড়িৎ আধান অমীম দুর তহে আনতে কোন কাজ হবে না।

EXAMPLE - 18: একটি তড়িৎ

দিমেরুর মধ্যে দুরত্ব এবং দিমেরুর লম্ব কি দিখন্ডের উপর দিমেরুর ম্যধ বিন্দু হতে $3 \mathrm{cm}$ দুরে তড়িৎ ক্ষেত্র $3.2~\mathrm{Nc}^{-1}$ হলে, দিমেরু আধানরে পরিমাণ কত ?

ধরি, AB এর মধ্য বিন্দু C হতে অক্ষের লম্বদ্বিখন্ডক CD রেখার P বিন্দুতে প্রবাল্য নির্ণয় করতে হবে।

$$2a = 8cm \ a = 4cm, d = 3cm, \therefore r = \sqrt{3^2 + 4^2} = 5cm$$

$$+{
m q}$$
 চার্জের জন্য P বিন্দুতে প্রাবল্য, $E_1=rac{1}{4\pi arepsilon_0} \cdot rac{{
m q}}{0.5^2}$

$$-{
m q}$$
 চার্জের জন্য P বিন্দুতে প্রাবল্য, $E_2=rac{1}{4\pi\epsilon_0}~.rac{-{
m q}}{0.5^2}$

- চিহ্ন নির্দেশ করে প্রাবল্য ${
m P}$ হতে ${
m B}$ এর দিকে কিন্তু E_1 ও E_2 মান সমান ।

$$E = 2E_1 \cos \theta = 2 \times \frac{1}{4\pi\epsilon_0} \times \frac{q}{25 \times 10^{-4}} \times \frac{4}{5} = 3.2, q = \frac{3.2 \times 5 \times 25 \times 10^{-4}}{4 \times 2 \times 9 \times 10^9}$$
$$= -115.55 \times 10^{-13} C$$

নিজে চেষ্টা করঃ একটি তড়িৎ দ্বিমেরূর মধ্যে দুরত্ব $3 \times 10^{-19} cm$ এবং দ্বিমেরূর লম্ব দ্বিখন্ডকের উপর দ্বিমেরূ হতে 3cm দুরে প্রাবল্য কত ? ধর দ্বিমেরূ আধানের পরিমাণ $3.2 \times 10^{-9} cm$ ।

Ans:
$$3.2 \times 10^{-15} Nc^{-1}$$

EXAMPLE-19: একটি তড়িৎ দিমেরু মধ্যবর্তী দুরত্ব কত হলে এর অক্ষ বরাবর চার্জ দুটির মধ্যবিন্দু হতে 10cm দুরে প্রাবল্য $5Nc^{-1}$ হবে। ধর তড়িৎ দিমেরুর চার্জ বা আধান $5\times 10^{-6}C$.

সমাধানঃ

$$E=rac{1}{4\pi\epsilon_0}$$
 . $rac{2aq.2r}{r_2-r_1}$ এখানে , $r=10~cm$

$$\Rightarrow 5 = 9 \times 10^9 \times \frac{2 \times a \times 5 \times 10^{-6} \times 2 \times 10^{\times 10^{-2}}}{(10 \times 10^{-2})^2 - a^2} \Rightarrow 5 = \frac{1800a}{\frac{1}{100} - a^2} \Rightarrow \frac{5}{100} - 5a^2 = 1800a$$

$$\Rightarrow 5 - 500a^2 = 180000a \Rightarrow 500a^2 + 180000a - 5 = 0$$

$$a = \frac{-18000 \pm \sqrt{(180000)^2 + 4 \times 500 \times 5}}{2 \times 500} = \frac{-180000 \pm 180000.0278}{1000}$$

(+) ve নিয়ে,
$$a = 0.0278 \times 10^{-3} = 2.78 \times 10^{-5} m$$
, $2a = 5.56 \times 10^{-5} m$. (Ans:)

নিজে চেষ্টর কর \circ একটি তড়িৎ দ্বিমেরুর মধ্যবর্তী দুরত্ব $9 \mathrm{mm}$ এবং এর অক্ষ বরাবর মেরুদ্বয়ের মধ্যবিন্দু হতে $9 \times 10^3 \mathrm{mm}$ দুরে প্রাবল্য কত \circ ধর মেরুদ্বয়ের আধান $5 \times 10^{-9} C$. Ans: $1.8 \times 10^7 Nc^{-1}$

$$[E = 9 \times 10^{9} \times \frac{4 \times 4.5 \times 10^{-3} \times 9}{9^{2} - (9 \times 10^{-3})^{2}} = 1.8 \times 10^{7} Nc^{-1}]$$

 $EXAMPLE - 20: + 5 \times 10^{-6} C$ ও $-5 \times 10^{-6} C$ আধান দুটি হতে খুব সংনিকটবর্তী হয়ে একটি তড়িৎ দিমেরু গঠন করেছে যার $55.6~{
m cm}$ তড়িৎ দিমেরু শ্রাসক $10^{-9} c - m$ । দিমেরুর মধ্য বিন্দু হতে $55.6~{
m cm}$ দুরে P বিন্দুতে বিভব কত বের করতে হবে। ধর P ধনাতুক ও ঋনাতুক আধানের সাথে $10^{-9} c - m$ । তেরী করে।

সমাধান ঃ

তড়িৎ দ্বিপোল ভ্রামক, $P = q \times 2a \Rightarrow 10^{-9} = 5 \times 10^{-6} \times 2a$

$$a = 10^{-2}m = 0.01m, cos 60^{0} = \frac{(0.01)^{2} + (.556)^{2} - r_{1}^{2}}{2 \times 0.01 \times .556}$$

$$\Rightarrow$$
 0.5 × 2 × 0.01 × .556 = (0.01)² + (.556)² - $r_1^2 \Rightarrow r_1 = 0.551$

অনুরূপভাবে,
$$\cos 45^0 = \frac{r_2^2 + (.01)^2 - (0.556)^2}{2 \times r_2 \times 0.01} \Rightarrow 0.01414 r_2 = r_2^2 - 0.319$$

$$\Rightarrow r_2^2 - 0.01414r_2 - 0.319 = 0, r_2 = \frac{0.01414 \pm \sqrt{(0.01414)^2 + 4 \times 0.319}}{2}$$

$$r_2 = 0.563 m$$

$$V = \frac{q}{4\pi\epsilon_0} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = 5 \times 10^{-6} \times 9 \times 10^9 \times \left(\frac{1}{0.551} - \frac{1}{0.563}\right) = 1.74 \times 10^3 V$$

নিজে চেষ্টা করঃ একটি তড়িৎ দ্বিমেরুর মধ্যবর্তী দুরত্ব খুবই কম । মেরুদ্বয় হতে যথাক্রমে $5 {
m cm}$ ও $7 {
m cm}$ দুরে তড়িৎ $5 {
m x} 10^3 V$ হলে মেরু দ্বয়ের আধান কত ? ${
m Ans}: +9.72 {
m x} 10^{-8} C$ ও $-9.72 {
m x} 10^{-8} C$

$$[5 \times 10^{3} = 9 \times 10^{9} \times q \left(\frac{1}{.05} - \frac{1}{0.07}\right) \Rightarrow q = 9.72 \times 10^{-8} \text{C}]$$

 $\underline{\mathbf{Type}}$ -04 : পরস্পর d দুরত্বে অবস্থি সমান্তরাল পাত ধারকের ধারকত্ব , $\mathbf{C}=\frac{\epsilon_0 A}{d}$ পাতদ্বয়ের মাঝে কোন পরাবৈদ্যুতিক মাধ্যম থাকলে ধারকত্ব, $\mathbf{c'}=\frac{\epsilon A}{d}$, $\div \frac{\mathbf{c'}}{c}=\frac{\epsilon}{\epsilon_0}=k$ পরাবৈদ্যুতিক ধ্রুবক বা আপেক্ষিক ভেদন যোগ্যতা

*গোলাকার পরিবহীর ধারকত্ব , $C=4\pi\epsilon_0 r$. K পরাবৈদ্যুতিক ধ্রুবক সম্পন্ন গোলাকার পরিবাহীর ধারত্ব, $c'=4\pi\epsilon_0 r$.

$$*$$
 শ্রেণী সমবায়ে ধারকত্ব, C_S হলে $, \frac{1}{c_S} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \dots + \frac{1}{c_n} = \sum \frac{1}{c_1}$

st সমান্তরাল সমবায়ে ধারকত্ব \mathcal{C}_P , হলে $\mathcal{C}_P=\mathcal{C}_1+\mathcal{C}_2+\mathcal{C}_3+....+\mathcal{C}_n=\sum \mathcal{C}_n$

$$*$$
 ধারকে সঞ্চিত শক্তি, $\text{P.E} = \text{W} = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q^2}{c} = \frac{1}{2}VQ$

* ধারকের একক আয়তনে সঞ্চিত শক্তি বা শাক্তির ঘনতু,

$$U = \frac{\frac{1}{2}CV^2}{Ad} = \frac{1}{2}\epsilon_0 \left(\frac{V}{d}\right)^2 = \frac{1}{2}\epsilon_0 E^2 \quad [\epsilon = \epsilon_0 k]$$

st \mathcal{C}_1 ও \mathcal{C}_2 ধারকত্ব বিশিষ্ট দুটি পরিবাহীকে যুক্ত করে এতে Q চার্জ দিলে ধারক দুটিতে চার্জের পরিমাণ q_1 ও q_2

হলে,
$$q_1=rac{c_1}{c_1+c_2}Q$$
 এবং $q_2=rac{c_2}{c_1+c_2}Q$ এবং সাধারণ বিভব, $V=rac{Q}{C}=rac{c_1V_1+c_2V_2}{c_1+c_2}$

EXAMPLE-21: একটি তারের ব্যাস 2mm ও দৈর্ঘ্য 5cm এরূপ দুটি তার দ্বারা একটি সমান্তরাল ধারক গঠন করা হল এবং পানি মাধ্যমে তাদের 5cm দুরে স্থাপন করা হল। পানির পরাবৈদ্যুতিক ধ্রুবক 18 এবং তার দ্বয়ের বিভব বৈষম্য $5\times 10^3 V$ হলে

- (i) ধারকের ধারকত্ব, (ii) প্রত্যেক পাতে আধান ও আধান ঘনত্ব (iii) তড়িৎ ক্ষেত্রের প্রাবল্য
- (iv) ধারকে সঞ্চিত শক্তি (v) ধারকের একক আয়তনে সঞ্চিত শক্তি কতটা বের কর।
- $({
 m vi})$ ধাকের অধাংশ ও অপর অধাংশ পানি দ্বারা পূর্ণ করা হলে ধারকত্ব হবে। মাইকার, $K_1=5.4$, পানির =18 সমাধান ঃ

(i) C =
$$\frac{\epsilon_0 KA}{d}$$
 = $\frac{8.854 \times 10^{-12} \times 18 \times \pi \times (1 \times 10^{-3})^2 \times 5 \times 10^{-2}}{5 \times 10^{-2}}$ = 5 × 10⁻¹⁶F = 5 × 10⁻⁴PF

(ii)
$$q = CV = 5 \times 10^{-16} \times 5 \times 10^3 = 2.5 \times 10^{-12} C$$

$$\sigma = \frac{q}{A} = \frac{2.5 \times 10^{-12}}{\pi \times 10^{-6} \times 5 \times 10^{-2}} = 1.59 \times 10^{-5} Cm^{-2}$$

(iii)
$$E = \frac{\sigma}{\epsilon_0 K} = \frac{1.59 \times 10^{-5}}{8.854 \times 10^{-12} \times 18} = 99863.57 Nc^{-1} (Vm^{-1})$$

(iv)
$$P.E = W = \frac{1}{2}CV^2 = \frac{1}{2} \times 5 \times 10^{-16} \times (5 \times 10^3)^2 = 6.25 \times 10^{-9}J$$

(v)
$$U = \frac{\frac{1}{2}CV^2}{Ad} = \frac{6.25 \times 10^{-9}}{\pi \times (10^{-3})^2 \times 5 \times 10^{-2} \times 5 \times 10^{-2}} = 0.7958 \, Jm^{-3}$$

(vi)
$$C = \frac{\varepsilon_0 k_1 A/2}{d} + \frac{\varepsilon_0 k_2 A/2}{d} = \frac{A \varepsilon_0}{d} \left(\frac{k_1 + k_2}{2} \right) = \frac{\pi \times (10^{-3})^2 \times 5 \times 10^{-2} \times 8.854 \times 10^{-12}}{5 \times 10^{-2}} \left(\frac{5.4 + 18}{2} \right)$$

$$= 3.25 \times 10^{-16} F = 3.25 \times 10^{-4} PF$$

EXAMPLE – 22: সমআকারের n টি পানির ফোঁটা মিলে একটি বড় ফোটায় পরিণত হল। ফোটান্তলোত্রে যদি সমপরিমাণ সমধর্মী চার্জ থাকে তবে বড় ও ছোট ফোটার (i) তলমাত্রিক ঘনত্বের অনুপাত (ii) ধাকত্বের অনুপাত (ii) বিভবের অনুপাত নির্ণয় কর।

সমাধান ঃ ধরি r ব্যাসার্ধের n টি ছোট পানির ফোটা মিলে R ব্যাসর্ধের একটি বড় ফোটায় পরিণত হল। এক্ষেত্রে n টি ছোট ফোটার আয়তন = একটি বড় ফোটার আয়তন

 $n.rac{4}{3}\pi r^3=rac{4}{3}\pi R^3$ \Rightarrow $R=\sqrt[3]{r}$. r ছোট একটি ফোটার আধান q হলে বড় ফোটার আধান = nqc

$$(i)$$
 বড় ফোটার তলমাত্রিক ঘনতৃ, $\sigma_2=rac{q}{A}=rac{q}{4\pi r^2}$ $\therefore rac{\sigma_1}{\sigma_2}=rac{nq/4\pi R^2}{q/4\pi r^2}=n imesrac{r^2}{R^2}=n\left(rac{r}{R}
ight)^2$

$$= n \times \frac{1}{n^{2/3}} = n^{1-2/3} = n^{1/3} = \sqrt[3]{n} \quad \therefore \sigma_1 : \sigma_2 = \sqrt[3]{n} : 1$$

(ii) বড় ফোটার ধারকত্ব , $\mathcal{C}_1 = 4\pi arepsilon_0 \mathit{KR}$ [k= পানির মাধ্যমাংক]

ছোট ফোটার ধারকত্ব,
$$C_2=4\pi arepsilon_0 kr.$$
 $\frac{c_1}{c_2}=rac{R}{r}=\sqrt[3]{n}$ $\therefore C_1\colon C_2=\sqrt[3]{n}\colon 1$

 $(ext{iii})$ বড় ফোটার বিভব, $V_1=rac{nq}{c_1}$, ছোট ফোটার বিভব, $V_2=rac{q}{c_2}$

$$\therefore \frac{V_1}{V_2} = \frac{\frac{nq}{C_1}}{\frac{q}{C_2}} = n \cdot \frac{C_1}{C_2} = n \times \frac{1}{\sqrt[3]{n}} = n^{1-1/3} = n^{2/3}, \quad V_1: V_2 = n^{2/3} : 1 = \left(\sqrt[3]{n}\right)^2 : 1$$

ফোটার সংখ্যা 1000 টি হলে,

$$\sigma_1$$
: $\sigma_2 = \sqrt[3]{1000}$: 1 = 10:1, C_1 : $C_2 = 10$:1, V_1 : $V_2 = 100$:1

EXAMPLE – 23: দুটি ধারককে সমান্তরাল ও শ্রেণীতে যুক্ত করলে তাদের সমবায়ের ধারকত্বের তুলনা কর। ধারক দুটি $9\mu F$ ও $2\mu F$ উভয় সমবায়ে দুপ্রান্তে 220V উৎস লাগনো হলে (i) প্রত্যেক ধারকে চার্জের পরিমাণ (ii) প্রত্যেকটি ধারকে বিভব পার্থক্য (iii) প্রত্যেক ধারকে সঞ্চিত শক্তির পরিমাণ নির্ণয় কর।

সমাধান ঃ
$$C_p = C_1 + C_2 = 9\mu F + 2\mu F = 11\mu F$$

প্রথম ক্ষেত্রে ঃ শ্রেণী সমবায়ে ধারকত্ব C_{ς} হলে ,

$$C_s^{-1} = C_1^{-1} + C_2^{-1} \Rightarrow C_s = \frac{C_1 C_2}{C_1 + C_2} = \frac{9 \times 2}{9 + 2} = \frac{18}{11}$$

$$\frac{C_p}{C_s} = \frac{C_1 + C_2}{\frac{C_1 C_2}{C_1 + C_2}} = \frac{(C_1 + C_2)^2}{C_1 C_2} = \frac{11^2}{18} = \frac{121}{18}$$

$$\therefore C_p$$
: $C_s = 121:18$, $C_p \times C_s = 18$ $C_p = \frac{18}{C_s} [C_p C_s = C_1 C_2]$

দুটি ধারকের ক্ষেত্রে: C_p $C_s=C_1C_2$, তিনটি ধারকের ক্ষেত্রে : C_p $C_s=C_1C_2+C_2C_3+C_3C_1$

দ্বিতীয় ক্ষেত্রে ঃ

(i) যখন সমান্তরাল সমবায়ে যুক্ত:

$$q_1 = C_1 V = 9 \times 10^{-6} \times 220 = 1.98 \times 10^{-3} C_1$$

$$q_2 = C_2 V = 2 \times 10^{-6} \times 220 = 4.4 \times 10^{-4} C$$

যখন শ্রেণীতে যুক্ত তখন প্রত্যেক ধারকে আধান সমান ।

$$q = C_S V = \frac{18}{11} \times 10^{-6} \times 220 = 3.6 \times 10^{-4} C$$

(ii) সমান্তরাল বিভব পার্থক্য একই থাকবে অর্থাৎ উৎসের বিভব পার্থক্যকের সমান $220 \mathrm{V}$. শ্রেণীতে যুক্ত হলে, $9 \mu F$ ধারকের বিভব পার্থক্য

$$V_1 = \frac{c_S V}{c_2} = \frac{18/11 \times 220}{2} = 180 V, V_2 = \frac{c_S V}{c_1} = \frac{18}{11} \times 220 \times 20 = 40 V$$

(iii) সমান্তরাল সমাবয়ে,

$$PE_1 = \frac{1}{2} C_1 V^2 = \frac{1}{2} \times 9 \times 10^{-6} \times (220)^2 = 0.2178J$$

$$PE_2 = \frac{1}{2} C_2 V^2 = \frac{1}{2} \times 2 \times 10^{-6} \times (220)^2 = 0.0484 J$$
 [মোট শক্তি $PE = PE_1 + PE_2$]

শ্ৰেণীতে,
$$PE_1 = \frac{1}{2} C_1 V_1^2 = \frac{1}{2} \times 9 \times 10^{-6} \times (180)^2 = 0.1458J$$

$$PE_2 = \frac{1}{2} C_2 V_2^2 = \frac{1}{2} \times 2 \times 10^{-6} \times (40)^2 = 1.6 \times 10^{-3} J_2$$

EXAMPLE - 24:0.02m ব্যাসার্ধের 27 টি গোলাকৃতি ফোঁটাকে একত্রিত করে একটি বৃহদাকার ফোঁটায় পরিণত করা হল। প্রত্যেকটি ফোঁটায় 44×10^{-8} C চার্জ থাকলে বৃহদাকার ফোঁটায় চার্জের তল ঘনত্ব নির্ণয় কর।

SOLVE: r = ক্ষুদ্র ফোঁটার ব্যাসার্ধ; R = বৃহৎ ফোটার ব্যাসার্ধ

$$\therefore R = 3r = 3 \times 0.02 = 0.06m \quad \therefore \sigma = \frac{Q}{A} = \frac{22 \times 44 \times 10^{-8}}{4\pi \times (10.06)^2} = 2.63 \times 10^{-4} cm^{-2}$$

EXAMPLE – 25: দুইটি গোলাকের ব্যাসার্ধ যথাক্রমে 0.02m এবং 0.04m এদেরকে যথাক্রমে 50C এবং 100C চার্জে চার্জিত করা হল। গোলকদ্বয়ের চার্জের তলমাত্রিক ঘনত্বের তুলনা কর।

SOLVE: আমরা জানি,
$$\sigma = \frac{Q}{A}$$
 $\therefore \sigma_1 = \frac{Q_1}{A_1} = \frac{50}{4\pi \times (0.02)^2} = 9.94 \times 10^3 \text{cm}^{-2}$

$$\therefore \sigma_2 = \frac{Q_2}{A_2} = \frac{100}{4\pi \times (0.04)^2} = 4.97 \times 10^3 \text{ cm}^{-2} \quad \therefore \quad \frac{\sigma_1}{\sigma_2} = \frac{9.94 \times 10^3}{4.97 \times 10^3} = \frac{2}{1} \quad \therefore \sigma_1: \sigma_2 = 2:1$$

Type -05:

EXAMPLE - 26: 0.02g ভরের সমান দুইটি বলকে 23 cm লম্বা দুটি সুতা দিয়ে কোন এক বিন্দু হতে ঝুলিয়ে দেওয়া হল। এরপর প্রত্যেককে সমান পরিমান ও সমজাতীয় চার্জে চার্জিত করা হয়। এরা পরস্পর হতে 20 cm দূরে গিয়ে সাম্যাবস্থায় থাকে। প্রত্যেক আধানের পরিমান কত ?

SOLVE : প্রতিটি বলের উপর তিনটি বল কার্যকর থাকে।
mg নিচের দিকে, F_c বাইরের দিকে, T সুতা বরাবর।
T এর দুইটি উপাংশ Tcosθ, Tsinθ
চিত্র হতে, Tsinθ = F_c, Tcosθ = mg

∴
$$\tan\theta = \frac{F_c}{mg}$$
 ∴ $F_c = mgtan\theta = mg \times \frac{OB}{OC}$

চিত্র হতে, OB = 10cm, BC = 23cm :: OC = $\sqrt{23^2 - 10^2}$ =20.71cm = 0.207m

$$\therefore F_c = \text{mg.} \frac{\text{OB}}{\text{OC}} = 0.02 \times 10^{-3} \times 9.8 \times \frac{0.1}{0.207} = 9.47 \times 10^{-5} \text{N} \quad \therefore F_c \qquad = \frac{1}{4\pi\epsilon_0} \frac{q^2}{r^2}$$

এখানে, q = উভয় বলে সমপরিমান চার্জ : $9.47 \times 10^{-5} = 9 \times 10^9 \times \frac{q^2}{(0.2)^2}$

$$\therefore q = \sqrt{9.47 \times 10^{-5} \times 0.2^{2} \times \frac{1}{9 \times 10^{9}}} = 2.05 \times 10^{-8} C$$

EXAMPLE - 27: 8cm এবং 12cm ব্যাসার্ধের দুইটি ধাতব গোলককে তার দিয়ে যুক্ত করে 2×10^{-7} C চার্জ প্রদান করা হল । এদের সাধারণ বিভব ও চার্জ নির্ণয় কর ।

SOLVE: $C_1 = 4\pi\epsilon_0 r_1$; $C_2 = 4\pi\epsilon_0 r_1$

আবার,
$$V = \frac{q}{C} = \frac{q}{C_1 + C_2}$$
 .: $V = \frac{q}{4\pi\epsilon_o(r_1 + r_2)} = \frac{2\times 10^{-7} \times 9\times 10^9}{0.08 + 0.12} = 9000V$

আবার,
$$q_1 = C_1 V = 4\pi\epsilon_o r_1 V = \frac{1}{9\times 10^9} \times 0.08\times 9000 = 8\times 10^{-8} C$$
 ; $q_2 = C_2 V = 4\pi\epsilon_o r_2 V = 1.2\times 10^{-7} C$

Type -06:

EXAMPLE - 28: $12\mu F$, $18\mu F$ এর দুইটি ধারককে শ্রেনী সমবায়ে যুক্ত করে 300V বিভব পার্থক্য প্রয়োগ করা হল । প্রতিটির চার্জ ও বিভব নির্ণয় কর ।

যেহেতু ধারকদ্বয় শ্রেনী সমবায়ে আছে তাই এদের চার্জ একই হবে।

$${f SOLVE}$$
 : তুল্য ধারকত্ব, ${1\over C_s} = {1\over C_1} + {1\over C_2} = {1\over 12} + {1\over 18} \ \ \therefore C_s = 7.2 \mu F$

$$\therefore$$
 Q = C_sV = 7.2×10⁻⁶×300 = 2.16×10⁻³C

$$\therefore V_1 = \frac{Q}{C_1} = \frac{2.16 \times 10^{-3}}{12 \times 10^{-6}} = 180V \quad \therefore V_2 = \frac{Q}{C_2} = \frac{2.16 \times 10^{-3}}{18 \times 10^{-6}} = 120V$$

Exercises:

01: 12μC, 6μC দুইটি চার্জ পরস্পর হতে 10cm দূরে অবস্থিত। এদেরকে 6cm দূরে আনতে কৃতকাজ কত ? [Ans: 4.32J]

02: একটি বর্গক্ষেত্রের চারকোণায় 100C এর চারটি চার্জ স্থাপন করা হল, বর্গের বাহুর দৈর্ঘ্য

2m হলে কর্ণদ্বয়ের ছেদ বিন্দুতে বিভব কত? [Ans: $2.546 \times 10^{12} \ V$]

03: 300PF ও 3500PF ধারকত্ববিশিষ্ট ধারকদ্বয় সমান্তরালে যুক্ত করে 120V বিভব প্রয়োগ

করা হল। প্রত্যেকটি ধারকের চার্জ ও সমান্তরাল সমবায়ের তুল্য ধারকত্ব কত ? [Ans: 4.56×10²⁰C, 3.8×10¹⁸F]

04: সমান আকারের 125টি পানির গোলক একত্রিত হয়ে বড়গোলকে পরিণত করা হল। বড় গোলকের ধারকত্ব ও বিভব কত? [বড় গোলকের ধারকত্ব ও বিভব যথাক্রমে ছোট গোলকের 5 গুণ এবং 25 গুণ]

 $\underline{\mathbf{Type}}$ -07 : গাউসের সূত্র হতে কুলম্বের সূত্রের প্রতিপাদন : স্থির বৈদ্যুতিক ক্ষেত্রে অবস্থিত কোন বন্ধ পৃষ্ঠের উপর তড়িৎ ক্ষেত্র প্রাবল্যর অভিলম্বিক উপাংশের যোজিত ফলের ϵ_0 গুন হবে ঐ পৃষ্ঠ দ্বারা আবদ্দ আধানের সমান । অর্থাৎ, ϵ_0 $\oint \vec{E} \cdot \overrightarrow{ds} = q \Rightarrow \oint \vec{E} \cdot \overrightarrow{ds} = \frac{q}{\epsilon_0}$ \rightarrow গাউসের সূত্র ।

$$E = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r_2}$$

ক্ষুদ্র পৃষ্ঠ ' \Box ' ds এর উপর ক্ষেত্রের মান একই থাকে । পৃষ্ঠের অভিলম্বিক দিক বরাবর E উপাংশ হলো $E_n=E\cos\theta$ যেখানে θ হলো E পৃষ্ঠের বহিমূর্খী অভিলম্বিক এর মধ্যবর্তী কোণ। সুতরাং আমরা পাই, $E\cos\theta$ $ds=\frac{q\cos\theta}{4\pi\epsilon_0 r_2}$ কিন্তু $\frac{q\cos\theta}{r_2}=d\Omega=ds$ ক্ষেত্রের জন্য যেখানে q অবিস্থৃত সে বিন্দুতে ঘনকোণ। সমগ্র পৃষ্ঠের জন্য মোট মোট ঘনকোণ = $\oint d\Omega=4\pi$ কোন ফাণেল বা পিরামিড আকৃতির তল দ্বারা পরিবেষ্টিত হয়ে যেঙ কোন উৎপন্ন হয় তাকে ঘনকোণ বলে।

$$\oint E \cos \theta \ ds_s = \oint rac{ ext{q}}{4\pi\epsilon_0} \cdot rac{ds\cos \theta}{ ext{r}_2} = rac{ ext{q}}{4\pi\epsilon_0} \cdot \oint d\Omega = rac{ ext{q}}{4\pi\epsilon_0} \cdot 4\pi = rac{ ext{q}}{\epsilon_0} \therefore \oint \vec{ ext{E}} \cdot \vec{ ext{ds}} = rac{ ext{q}}{\epsilon_0}$$
 যদি আধান ঋণাত্বক হয় তবে \vec{E} এর অভিমুখ ভিরত মুখী হবে কিন্তু গাউসের সূত্র একই থাকবে।

🔷 গাউসের সূত্র হতে কুলম্বের সুত্রের প্রতিপাদন :

$$\oint \vec{E}.\overrightarrow{ds} = rac{q}{\epsilon_0} \Rightarrow \ E \oint \overrightarrow{ds} = rac{q}{\epsilon_0} \ [\ E \$$
 পৃষ্ঠে একই থাকে বলে]
$$\Rightarrow E \times 4\pi r^2 = rac{q}{\epsilon_0} \Rightarrow E = rac{q}{4\pi\epsilon_0 r_2} \therefore F = q_0 E = rac{1}{4\pi\epsilon_0} \ . rac{qq_0}{r^2} \rightarrow$$
কুলম্বের সূত্র।

riangle একটি অন্তব্ধি ও আহিত পরিবাহীর বাইরে কোন বিন্দুতে প্রাবল্য $E=rac{\sigma}{arepsilon_0}$

একটি চার্জিত পরিবাহীর পৃষ্ঠে একটি ক্ষুদ্র গাইসিয়াল পৃষ্ঠ পরিবাহীর অভ্যন্তরে ফ্লাক্স শূন্য কারণ E=0 পিলবক্সের বাইরর বক্রপৃষ্ঠের দিকের সাথে প্রাবল্য শুধুমাত্র পিলবক্সের বাইরে মুখেল জন্য E এর মান নির্ণয় নির্দিষ্ট থাকে। $\oint \vec{E}. \ \overrightarrow{ds} = \frac{q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0}$, $E.A = \frac{\sigma A}{\epsilon_0}$.: $E = \frac{A}{\epsilon_0}$

- কুলম্বের সূত্র হতে কি কি ধারণা পাওয়া যায় ঃ
 - (i) পরমাণুর ইলেকট্রকন সমুহরে সাথেথ নিউক্লািযাসের বন্ধনকারী তড়িৎ বল।
 - পরমাণুর সমূহকে একত্রে আবদ্ধ রেখে অণু গঠনকারী বল এবং
 - (iii) পরমাণু বা অণুসমূহকে একত্রে আবদ্ধ রেখে কঠিন বা তরল গঠনকারী বল।
- এই বলসমূহ পরমাণুর অনু এবং বস্তুর স্থায়িত্ব প্রদান করে। কিন্তু নিউক্লিসের স্থায়িত্বের ব্যাখ্যা কুলম্বের সূত্র থেকে পাওয়া যায় না । নিউক্লিয়াসে ধনাত্বক আধান যুক্ত প্রোটন পরস্পরকে বিকর্ষণ করে কুলম্বের সূত্র মতে কিন্তু বাস্তবে তা ঘটেনা নিউক্লিয়াসে নিউক্লিয়ণ (প্রোটন, নিউট্রন) গুলো এমন এক ধরনের আকষর্ণ বল দারা আবদ্ধ থাকে যা কুলম্ব বলে চেয়ে অনেক শক্তিশালী (সবল নিউক্লিয় বল)। যালে কুলম্বের সূত্র নিউক্লিয়াসের স্থায়িত্বের ব্যাখ্যা প্রদান করতে পারে না ।

কোন বদ্ধ পৃষ্ঠ হতে নিৰ্গত বৈদ্যুতিক ফ্লাক্স = ঐ ক্ষেত্ৰে আবদ্দ চাৰ্জ $\div \, \mathcal{E}_{\circ}$

$$\oint \overrightarrow{E} . \, d\overrightarrow{A} = Q_{enc}/arepsilon$$
, s — কোন বদ্ধ পৃষ্ঠ, Q_{enc} — পৃষ্ঠে আবদ্ধ Net চার্জ । dA — পৃষ্ঠে একটি ক্ষুদ্রাতিক্ষুদ্র ক্ষেত্র, $d\overrightarrow{A}$ — বহিমুখী অভিলম্বের দিক । $arepsilon_\circ = 8.85 \times 10^{-12} \ s1 \ unit$.

ফ্লাক্স - এর জন্য ঃ

উদাহরণ -০১ ঃ মনে কর দুটি আধান +q এবং -q পৃষ্ঠ হতে নির্গত ফ্রাক্স নির্ণন কর। মনে রেখ বদ্ধ পৃষ্ঠে যখন বলে রেখাগুলি প্রবশে করে তখন ফ্রাক্স ঋণাত্মক হয়।

$$\varphi_1 = {}^{+q}/_{\delta_{\circ}}$$
 , $\varphi_2 = {}^{+q}/_{\mathcal{E}_{\circ}}$, $\varphi_3 = 0$, $\varphi_4 = (q-q)/\mathcal{E}_{\circ} = 0$

উদাহরণ— ০২ ঃ

উক্ত প্রবাহিত Net ফ্লাক্স কত ?

 $E \longrightarrow$ সমরূপ বৈদ্যুদিক ক্ষেত্র । অবস্যই পৃষ্ঠটা আবদ্ধ । সুতরাং ধরি, $s=s_{net}+s_{circle}$

 $\therefore Q_{enc}=0$, সুতরাং গাউস সূত্র হতে পাই, $arphi_{circle}=\pi a^2 E, \div arphi_{net}=-\pi a^2 E$

 \Rightarrow Gauss \longrightarrow Coulombs,

+ q হলো বিন্দু আধান একটি আবদ্ধ গোলক আঁক এবং গাউসের সূত্র প্রয়োগ কর ।

$$\overrightarrow{E} = E(r)\,\widehat{r}\,,$$

$$\varphi = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = E(r) \cdot 4\pi r^2$$

গাউস হতে, $arphi={}^q/_{\mathcal{E}^\circ}$

$$\therefore E(r) = q/4\pi r^2 \varepsilon_{\circ} = kq/r^2 \,!$$

** যদি একটি ভেক্টর ক্ষেত্র একটি ক্ষেত্র v দিয়ে A কোণে heta নির্গত হয় তবে \overrightarrow{V} . $\overrightarrow{A}=VA\cos\theta=?$

(ক) Curl (খ) Energy (গ) Flux (ঘ) Gradient

 $\overrightarrow{V}.\overrightarrow{A} = VA\cos\theta = Flux \ from \ the \ latin "toi \ Flow"$

** দুটি চার্জ Q_1 ও Q_2 এ বাহুবিশিষ্ট একটি বদ্ধ ঘনক আকারে বক্সের মধ্যে আছে। বক্স হতে ${
m Net}$ বহির্গমী ফ্লাক্স কত ?

(ক)
$$\varphi = 0$$
 (খ) $\varphi = \frac{Q_1 + Q_2}{\varepsilon_{\circ}}$ (গ) $\frac{K(Q_1 + Q_2)}{a^2}$ (ঘ) $\varphi = \frac{Q_1 + Q_2}{4\pi\varepsilon_{\circ}a^2}$ (ঙ) $\varphi = \frac{Q_1 - Q_2}{4\pi\varepsilon_{\circ}a^2}$

Gauss: The outward flux of the electric field through any closed surface = Net enclosed charge divided by ε_{\circ} .

<u>গাউসের সূত্রের প্রয়োগ</u> ঃ আরমা একটি চার্জিত ধাবত বস্তুর পৃষ্ঠের তড়িৎক্ষেত্রের মান নির্ণয় করতে চাই। এটা গাউস এর সূতের প্রকৃষ্ট উদাহরণ হতে পারে।

** প্রথমে আমরা ভাল পরিবাহীর জন্য শর্ত আরোপ করব। যেমন ভালো পরিবাহীর অভ্যান্তরে তড়িৎ ক্ষেত্র শূন্য হয়। যদি কোন ক্ষেত্র থাকে তবে চার্জ গুলো চলাচল করবে। চার্জগুলো চলাচল করবে যতক্ষণ পর্যন্ত না অভ্যান্তরে তড়িৎ ক্ষেত্র শূন্য হয়।

**তারপর নির্ণয় করব ব্যবহৃত ফলাফল $:E={}^{\sigma}/_{\mathcal{E}\circ}$

ভাল পরিবহীর চার্জ প্রবাহমান অবস্থায় যেকোন Net চার্জ ভালো পরিবাহীতে অবশ্যই পৃষ্ঠজুড়ে থাকবে। কারণ: যদি কোন চার্জ পরিবাহীর অভ্যন্তরে থাকে তবে পরিবাহীর তড়িৎক্ষেত্র সৃষ্টি হতে যা গাউসের সূত্র অনুযায়ী সত্য নয়।

পরিবাহীর পৃষ্ঠে তড়িৎ ক্ষেত্র :একটা গাউসিয়ান পৃষ্ঠ তৈরী করি যা ধাতব পৃষ্ঠে সাথে লম্ববাবে তাকে। প্রস্থচ্ছেদের ক্ষেত্রফল (face area) = A .

বাম পৃষ্ঠ হতে নির্গত ফ্লাক্স শূন্য কারণ, E=0ক্ষেত্রটি পৃষ্ঠের বা চার্জের সাথে লম্বভাবে থাকে বলে পার্শ্ব দিয়ে নির্গত ফ্লাক্স =0

$\therefore Net$ বহিৰ্গমী ফ্লাব্স = EA

ধরি, σ হলো পৃষ্ঠের চার্জের তলমাত্রিক ঘনতু (cm^{-2}) , $Q_{enc}=\sigma A$ এখন গাউসের সূত্র হতে পাই, $\varphi=Q_{enc}/arepsilon$, $EA=\sigma A/arepsilon$, \Longrightarrow $E=\sigma/arepsilon$, (Prove)

 $\sigma = charge/area = চার্জের তলঘনতু,$

$$Q = \sigma A, \varphi = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = 2EA = \frac{\sigma A}{2\varepsilon},$$

চার্জযুক্ত দীর্ঘরেখা (long line of charge) $\lambda = Charge / lengh =$ রৈখিক চার্জ ঘনতু।

 $\varphi = \frac{Q}{\varepsilon}$ Gauss law, $\varphi = l \lambda$, $\varphi = \oint \overrightarrow{E} \cdot dA = A = 2\pi r l$, $E = \frac{\lambda}{2\pi r \varepsilon}$ বিভিন্ন মাত্রার সংক্ষিপ্ত রূপঃ $E = \frac{1}{r^{2d}}$

বিন্দু আধান,
$$d=0$$
 $\begin{cases} arphi=4\pi r^2 E=Q/arepsilon_{\circ}\ E=Q/4\piarepsilon_{\circ}. \, r^2 \end{cases}$

আধান রেখা,
$$d=1$$
 $\begin{cases} \varphi=2\pi r l E=\lambda l/arepsilon_{\circ} \ E=\lambda/2\piarepsilon_{\circ} r \end{cases}$, পৃষ্ঠ আধান : $d=2$ $\begin{cases} \varphi=2AE=\sigma A/arepsilon_{\circ} \ E=\sigma/2arepsilon_{\circ} \end{cases}$

প্রতি একক চার্জের জন্য বিভব শক্তি : যেমন ক্ষেত্র হলো প্রতি চার্জের জন্য উদ্ধৃত বল তেমনি প্রতি একক চার্জের জন্য বিভব শক্তি ៖ ec F=qec E এবং U=qV $[1{
m v}=1{
m J/c}$ এককে]

বিভবকে প্রায়ই আকস্মিকভাবে (Casually) Voltage বলা হয়। যেহেতু বিভব শক্তি সুতরাং ইহা প্রকৃতপক্ষে বিভব পার্থক্য হিসেবে ব্যবহৃত হবে যা অত্যান্ত গুরুত্বপূর্ণ A বিন্দু থেকে B বিন্দুতে শক্তির পরিবর্তন,

$$U_B - U_A = W_{AB} = \int_A^B \overrightarrow{F}_{ext} \cdot d \vec{s}$$
 : যেখানে $dw = \overrightarrow{F}_{ext} \cdot d \vec{s}$

$$W_{AB}=2V_{AB}=\int_A^B\overrightarrow{F}_{ext}\cdot d\vec{s}=-\int_A^B\overrightarrow{E}_{ext}\cdot d\vec{s} : V_{AB}=V_B-V_A=--\int_A^B\overrightarrow{E}_{ext}\cdot d\vec{s}$$

❖ E ও V এর মধ্যে সম্পিক ঃ

$$\Delta V = -\int E_x \, dx$$
. এবং $E_x = -\frac{du}{dx} etc$.

❖ অসীমের সাপেক্ষে বিভব ঃ

\rightarrow	
E	

সিদ্ধান্তর :

০১। আমরা ইতি মধ্যে বিভব পার্থক্য পেছে গেছি ΔV কিন্তু V এর নিজস্ব মানের জ্যন আমাদের একটি শূন্য বিন্দু নিতে হচ্ছে।

০২। বর্তনীয় ক্ষেত্রে আমরা সঠিক কে বেছে নেই যেকানে V=0 এবং যাকে বলে বর্তনীয় ভূমি $({
m ground})$ ।

০৩। স্থির তড়িতের ক্ষেত্রে সাধারণভাবে V=0 ধরা হয় কারণ চার্জ হতে ঐ বিন্দুর দূরত্ব অনেক বেশী। তারপর P বিন্দুতে V(P) দ্বারা নির্দেশ করি বা $\Delta V=V(P)-V(\infty)VVi$.

*একটি নির্দিষ্ট বিন্দুতে বিভব একটি নির্দিষ্ট বিন্দু P তে বিভব বলতে বোঝায় অসীম দূরত্ব হয়ে এক কুলম্ব পরখ আধানতে P বিন্দুতে আনতে কতটুকু কাজ করতে হয়।

$$V(P) = \int_{\infty}^{P} \frac{\overrightarrow{F} \cdot d\overrightarrow{s}}{q} = -\int_{\infty}^{P} \overrightarrow{E} \cdot d\overrightarrow{s} = \int_{P}^{\infty} \overrightarrow{E} \cdot d\overrightarrow{s}$$

উদাহরণ : ০১ : সুষম তড়িৎ ক্ষেত্র :

$$\Delta V = -\int E dx = -E d,$$

$$V[O] - V(d) = Ed$$
, কাজ = বল $imes$ দূরত্ব ।

 $\begin{array}{c}
 & \longrightarrow \\
 & \longrightarrow \\$

একটি এক কুলম্ব চার্জকে তড়িৎ ক্ষেত্রের বিপরীতে x=d থেকে x=0 তে নিতে কৃতকাজ c

প্রশ্ন -০১ ঃ মনে কর xyz স্থানাংক ব্যবস্থায় কোন আকেটি স্তানে তড়িৎ বিভব $V(x)=Ax^2$ পাওয়া গেল যেকানে ঐ স্থানে তড়িৎ ক্ষেত্রের উপাংশ কত ?

$$E_x = -\frac{d}{dn}V = -A \cdot \frac{dx^2}{dx} = -2Ax$$

(i)
$$E_x = Ax$$
 (ii) $E_x = Ax^2$ (iii) $E_x = -2Ax$ (iv) $E_x = 0$

উক্ত প্রশ্নে তড়িৎ ক্ষেত্রের y ও z উপাংশ কত ? $E_y=-rac{d}{dy}Ax^2=-Arac{d(x^2)}{dy}=-Ax imes0=0$; Ans:0,0

similary, $E_z = 0$

** একক বিন্দু আধানের জন্য শর্ত ঃ

$$V(P) = \int_{R}^{\infty} \overrightarrow{E} \cdot d\overrightarrow{s} = \int_{R}^{\infty} E(r) \cdot dr$$

$$V(R) = \int_{R}^{\infty} E(r) \cdot dr = KQ \int_{R}^{\infty} \frac{dr}{r^2} = \left[-\frac{KQ}{r} \right]_{R}^{\infty}$$

$$= -KQ\left[\frac{1}{\infty} - \frac{1}{R}\right] = \frac{KQ}{R}$$

কুলম্বের
$$3^{\rm rd}$$
 from : (i) $F=KQq/r^2$ (ii) $E=KQ/r^2$ (iii) $V=KQ/r$

- * বিভব কোন ভেক্টর রাশি নয় ঃ
- ০১। লব্ধি ভেক্টর পাওয়ার জন্য তড়িৎ বল ও তড়িৎ ক্ষেত্রে যোগ করার অর্থ ভেক্টর যোগ কর ।
- ০২। বিভব যোগ করার অর্থ চিহ্নসহ কোন সংখ্যা যোগ করা এটা ভেক্টর যোগের চেয়ে সহজতর। সুতরাং কুলম্বের তৃতীয় সূত্র অনেক সরলীকৃত ।

উদাহরণ : বিভব এর যোজন

$$V(P) = V_1 + V_2 = \frac{KQ}{a} + \left(-\frac{KQ}{a}\right) = 0$$

বি:দ্র: তড়িৎ ক্ষেত্র (E) P বিন্দুর শূন্য নয়।

Q. চার্জ দ্বারা সুষমভাবে চার্জিত একটি দন্ডকে 120° কোণে বাঁকানো হলো \tilde{l} যার বক্রতার্র ব্যাসার্ধ R \tilde{d} বং বৃত্তচাপটির কেন্দ্রে V(P)=?

$$(\Phi) + KQ/R$$
 (খ) $-KQ/R$ (গ) $+KQ/2R$ (ঘ) $-KQ/2R$

SOLVE:
$$V = \int \frac{kdq}{r} = \frac{k}{R} \int dq = \frac{k}{R} (-Q)$$

* কিছু সংখ্যক চার্জের জন্য বিভব শক্তি :

চার্জগুলোর একটা গ্রুপ এর বিভব শক্তি হলো অসীম হতে চার্জগুলোর প্রত্যেককে একটা গ্রুপ এ সাজাতে কৃতকাজ।

 ${
m Result}: U = U_{12} + U_{13} + U_{13} + \dots$ যেখানে প্রত্যেক জোড়ার জন্য বিভব শক্তি

$$U_{12} = kq_1q_2/r_{12}$$

** বন্ধন শক্তি (Binding Energy) :

চার্জগুলোর গ্রুপের মোট বিভবশক্তি $\overset{\circ}{U}$ যদি ঋণাত্মক হয় তবে চার্জগুলোকে সরাতে কাজ করতে হয়। এই ঋণাত্মক বিভব শক্তিকে বন্ধন শক্তি বলে।

উদাহরণ:

- (ক) একটি ধনাতাক তৈরী করার জন্র পরমাণু হতে ইলেকট্রন সরানো ।
- (খ) অভিকর্ষ ক্ষেত্র হতে অনুসন্ধান করে একটি স্থানকে সরানো।
- (গ) চার্জিত রিং : বৃত্তকার রিং এর অক্ষের উপর z দূরত্বে p বিন্দুতে বিভব শক্তি, $V(P)=\int \frac{kdQ}{r}$ key point : প্রত্যেক চার্জ হতে p বিন্দুর দূরত্ব একই, $V(P)=\int \frac{kdQ}{r}=\frac{k}{r}\int dQ=\frac{kQ}{\sqrt{R^2+Z^2}}$

 $\operatorname{Note}: \operatorname{E}$ নির্ণয়ের ক্ষেত্রে কোন (heta) অথবা ক্ষুদ্র ক্ষুদ্র ভেক্টর যোগের প্রয়োজন নেই।

${f E}$ এর জন্য ${f V}$ এর ব্যবহার :

$$E_z=-rac{dV}{dz}.$$
 $Remember; rac{df^n}{dz}=nf^{n-1}rac{df}{dz}$ যেখানে, $f^n=(R^2+z^2)^{-1/2}$

$$E(z)=-rac{d}{dz}rac{KQ}{\sqrt{R^2+z^2}}=rac{KQZ}{(R^2+z^2)^{3/2}}$$
 [ঠিক টেক্সস্ বইয়ের আকার]এবং $E_y=-rac{d}{dy}V=-Arac{dx^2}{dy}=-A^2$

$$0$$
 — তাড়িং ক্ষেত্রে y উপাংশ $E_z=-rac{d}{dz}V=-Arac{dx^2}{dz}=0$ — \to

তাড়িৎ ক্ষেত্রে
$$z$$
 উপাংশ $:$ মোট ক্ষেত্র, $E=rac{KQZ}{\left(R^2+z^2
ight)^{3/2}}$

Summary of the Basics :
$$U = qV$$
, $V = \frac{KQ}{r}$, $W_{AB} = q(V_B - V_A)$, $\Delta V = -\int E_x dx$, $E_x = -\frac{dV}{dx}ctc$.

