Санкт-Петербургский Государственный Электротехнический Университет "ЛЭТИ" им. В. И. Ульянова (Ленина)" (СПбГЭТУ)

Кафедра математического обеспечения и применения ЭВМ

Выпускная квалификационная работа бакалавра Анализ производительности файловых систем открытых NAS

Выполнила: Иноземцева Л. С., гр. 9381

Руководитель: Кринкин К. В., к.т.н.

Санкт-Петербург 2013

Введение

NAS (Network Attached Storage) представляет собой отдельный компьютер, подключенный к сети (обычно локальной) и поддерживающий работу по принятым в ней протоколам. Может быть построен на произвольной архитектуре.

Постановка задачи

Цель работы - определить оптимальный NAS-сервер.

Задачи работы:

Протестировать различные NAS;

Выработать методику тестирования;

Исследовать компоненты зависимости уровня

производительности NAS;

Исследовать способы повышения производительности NAS.

Область исследования - сетевые хранилища данных NAS.

Предмет исследования — производительность открытых реализаций NAS.

Архитектура Клиент-Сервер

Это одна из моделей взаимодействия компьютеров в сети. Сервер владеет и распоряжается информационными ресурсами системы, клиент имеет возможность воспользоваться ими.

Выбор NAS-серверов

NAS-	Поддержка	Поддержк	Одновременн	Контроль	Шифрован
решение	виртуальных	a web-	ый доступ к	состояния	ие данных
	пользовател	интерфей	нескольким	системы	
	ей	ca	пользователя		
			M		
Samba	+	-	+	-	-
FreeNAS	-	+	1	-	-
CryptoN	-	+	-	-	+
AS					
ProFTPd	-	-	1	+	+
Pure-	+	-	-	-	-
FTPd					
CrushFTP	-	+	-	-	-
Netatalk	-		-	-	-
Serv-U	+	+	-	-	-
NFS	-	-	+	+	-

Выбор инструментов тестирования

Инструмент	Свободный	Возможные тесты
NASPT	+	Тесты по открытию файлов,
		проведению резервного копирования,
		способности хранилища обрабатывать
		потоки при записи и воспроизведении
		видео, изучения скорости работы с
		хранилищем из офисных приложений.
IOMeter	+	Измерение скорости передачи
		данных, времени задержки, нагрузки
		центрального процессора.
FIO	+	Оценка скорости чтения жестких
		дисков.
IOzone	+	Измерение скорости чтения и записи в
		различных режимах.
NetBench	+	Отображение пропускной
		способности и времени ответа
		сервера.
SPECsfs	+	Измерение пропускной способности и
		времени отклика.
Netperf	+	Измерение пропускной способности
		сети и времени задержки ответа.

Аппаратное обеспечение

Параметр	Единица	Window	Window	Debian	Xubuntu
	измерения	s 7	s XP	GNU/Linux	
Объем жесткого диска	Гб	1024	60	40	40
Размер КЭШа	Гб	4	4	2	4
Объем оперативной	Гб	2	0,5	1	2
памяти					
Интерфейс	-	SATA	SATA	ATA	SATA
подключения					
винчестера					
Частота процессора	Гц	2,8	1,5	1,4	2

Тестирование Samba с помощью NASPT

Проведено 3 теста копирования файлов на устройство и 1 тест копирования с устройства.

ОС компьютера	Пропускная способность	Время обслуживания
Windows 7	81435 Кб/с	17302 мс
Windows XP	8222 Кб/с	30037 мс
Debian GNU/Linux	2370 Кб/с	594403 мс
Xubuntu	91930 Кб/с	15326 мс

Пример графического представления теста NASPT под Windows XP

Тестирование NFS с помощью IOzone

Тестирование проходит блоками, на примере размер файла равен 625 КБ.

Тестирование CIFS и NFS с помощью SPECsfs

Программное обеспечение

Операционная система	Windows XP	Windows 7	Debian GNU/Linux	Xubuntu
Версия SMB	SMB v.2.0.	SMB v.3.0.	SMB v.3.5.6.	SMB v.3.6.3.
Bepcия NFS	-	-	NFS v.3.	NFS v.4.0
Наличие конкурирующих процессов	Нет	Нет	Нет	Нет

Результирующие данные

Сервер	Пропускная способность	Время отклика
CIFS	73143 опц/с	4,31 мс
NFS	65766 опц/с	4,52 мс

Параметры, влияющие на производительность NAS

Свойства машин:

- Сеть
- Винчестер:
- скорость вращения
- размер КЭШа
- интерфейс подключения винчестера
- Частота процессора

Программные свойства:

- Тип операционной системы
- Тип файловой системы
- Наличие конкурирующих процессов
- Объем оперативной памяти

Сравнительный анализ

Производительность NFS, полученная IOzone:

Чем больше блок, тем выше скорость чтения и записи дисков. NFS полезен в случае проигрывания небольших файлов, например, текстовых. Чтение и запись метаданных проходит быстрее по сравнению с обработкой самих данных.

Производительность CIFS и NFS, полученная SPECsfs:

Тест SPECsfs оценивает производительность NFS и CIFS, измеряя время отклика сервера при различных величинах нагрузки. Обычно сервер обрабатывает запросы быстрее при невысоком уровне загрузки; когда загрузка растет, то растет и их время отклика. Тестирование показало, что пропускная способность CIFS выше, чем NFS.

Способы повышения производительности NAS

Виртуализация:

Виртуализация значительно упрощает добавление и поддержку устройств хранения.

Кластеризация:

Кластеризация позволяет выполнять динамическое распределение поступающих сетевых запросов по различным узлам кластера.

Кэширование:

Кэширование в памяти сервера уменьшает время доступа по сети за счет исключения времени обмена с диском сервера.

Выводы

Оптимальный NAS-сервер — это Samba. Он полезен в случаях поддержки многочисленных пользователей и виртуализации. Высокие показатели производительности NAS обусловлены архитектурой компьютеров.

Пропускная способность NAS зависит от аппаратного обеспечения (сеть), функции устройства — от программного (объем оперативной памяти, количество жестких дисков). Также влияют некоторые характеристики винчестера: тип подключения, скорость вращения, частота.

Чтобы повысить производительность и обеспечить отказоустойчивость, систему надо сделать комбинированной.

Некоторые сетевые протоколы предоставляют сквозную расширяемость. Это также позволяет добиться значительного повышения производительности отдельных приложений.