

MOVIONS

Open Source Autopilots

Presented by:

Iman Shirdareh

Outline

- Why, How, What?
- Basics of Pixhawk project
- Pixhawk FMU hardware overview
- Basic concepts
- Control theory
- Estimation theory
- Pixhawk Software overview
- Operational Software Guide
- Operational Assembly Guide
- Flying Guide
- Flight Log Analysis Guide
- Advanced Guides

History Of open source autopilot projects

Autopilot.com since 2001

- RC to servo
- inertial sensor (3 gyros, 3 accels)
- GPS positioning

Availble at:

Purpose of open-source

- ☐ To understand and learn:
- Electronics (sensors, EMI, RF,...)
- Automatics (data fusion, control loops)
- Software (airborne systems, datalink, HMI,...)
- Flight mechanics and aerodynamics
- ☐ To have fun
- ☐ To take part in flight competitions

Purpose of open-source

☐ Safety First!

How about Security? (Terrorists worries)

Purpose of open-source

☐ Source Version Control (SVC)

Purpose of open-source

☐ Source Version Control (SVC)

Purpose of open-source

☐ Licenses

GNU,GPL, BSD, MIT, Apache, Open Software License, zLib ...

Purpose of open-source

☐ Pixhawk Licenses: BSD3

Permissions

- ✓ Commercial use
- ✓ Modification
- ✓ Distribution
- ✓ Private use

Limitations

- X Liability
- × Warranty

Conditions

i License and copyright notice

List of major projects

Going, Going, Gone...

Make sure that your autopilot isn't next!

List of major projects

Who are still alive?

General overview of a UAV autopilot

Is this possible to use it on manned planes!?

SNOWBIRD Mission

converting a Cessna 172 aircraft to unmanned operation!

Is this possible to use it on manned planes!?

ESTIMATED PERFORMANCE SPECS

Expected Endurance	30+ hrs		No Reserve
Payload	100 lbs	45 kg	At Full Endurance
Cruise Speed	140 mph	225 km/hr	maximum
Stall Speed	55 mph	85 km/hr	At Gross Weight
Useful Load	1500 lbs	680 kg	(130% Ferry Weight)

Cost of complete unit	Under \$250,000, expected (ready to fly, no payload).
Crew	Minimally, one. Practically, two, in shifts.
Anti-Icing	Thermawing™ supplied by RDD Enterprises.
Emergency Recovery	Ballistic Parachute from BRS.

Become familiar with names and their roles

Pixhawk Key Founder Lorenz Meier

https://auterion.com/

Become familiar with names and their roles

3DR CEO& Co-Founder
Chris Anderson

Become familiar with names and their roles

Dronecode Co-Founder Jordi Muñoz

Become familiar with names and their roles

Dronecode Partners

Become familiar with names and their roles

Dronecode Partners

Become familiar with names and their roles

Websites

```
http://pixhawk.org/
https://docs.px4.io/en/
https://dev.px4.io/en/
https://dev.px4.io/en/
https://www.dronecode.org/
http://ardupilot.org/
```

Become familiar with names and their roles

Branching Model

The PX4 project uses a three-branch Git branching model:

master is by default unstable and sees rapid development.

beta has been thoroughly tested. It's intended for flight testers.

stable points to the last release.

Pixhawk/Ardupilot history, differences, benefits

Differences

Pixhawk/Ardupilot history, differences, benefits

Differences

Pixhawk/Ardupilot history, differences, benefits

Arduino Mega

https://www.arduino.cc/en/Main/Products

Pixhawk/Ardupilot history, differences, benefits

Arduino Mega Schematic vs an AVR microcontroller

https://store.arduino.cc/usa/mega-2560-r3

Pixhawk/Ardupilot history, differences, benefits

Ardupilot mega v1 controller(2009)
 Sparkfun AVC winner

Pixhawk/Ardupilot history, differences, benefits

• Ardupilot mega v1 Sensor hat

Pixhawk/Ardupilot history, differences, benefits

- Ardupilot mega v1 Specs
- Controller designed to be used with autonomous aircraft, car or boat.
- Based on a 16MHz Atmega2560 processor.
- Built-in hardware failsafe that uses a separate circuit (multiplexer chip and ATMega328 processor) to transfer control from the RC system to the autopilot and back again. Includes ability to reboot the main processor in mid-flight
- Dual-processor design with 32 MIPS of onboard power
- Supports of 3D waypoints and mission commands (limited only by memory)
- Has 16 spare analog inputs (with ADC on each) and 40 spare digital input/outputs to add additional sensors
- Four dedicated serial ports for two-way telemetry
- Can be powered by either the RC receiver or a separate battery
- Hardware-driven servo control, which means less processor overhead, tighter response and no jitters
- Eight RC channels (including the autopilot on/off channel) can be processed by the autopilot.
- LEDs for power, failsafe status, autopilot status and GPS lock
- 40mm x 69mm

Pixhawk/Ardupilot history, differences, benefits

Ardupilot mega v2 (2010)

Pixhawk/Ardupilot history, differences, benefits

Ardupilot mega v2 difference

Pixhawk/Ardupilot history, differences, benefits

Pixhawk/Ardupilot history, differences, benefits

Make ardupilot better

Features	STM32F103	ATMEGA328
Clock Frequency	72 Mhz	16 Mhz
I2C Buses	2	1
SPI Buses	2	1
CAN Bus	Yes	No
Analog Channel	10	8
PWM Channel	15	6
USART Buses	3	1
GPIO's	32	24
On Board RTC	Yes	No
Architecture	ARM Cortex M3 32 bit	AVR RISC 8 bit
ADC Resolution	12 bit	10 bit
Quantization Level	4096	1024
Flash Memory	64KB	32KB
SRAM	20KB	2KB
Debugging	Serial, JTAG	Serial
PWM Resolution	16 bit	10bit
Price	110	115

Pixhawk/Ardupilot history, differences, benefits

Make ardupilot better

Pixhawk/Ardupilot history, differences, benefits

Arduino DUE

Microcontroller	AT91SAM3X8E
Operating Voltage	3.3V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-16V
Digital I/O Pins	54 (of which 12 provide PWM output)
Analog Input Pins	12
Analog Output Pins	2 (DAC)
Total DC Output Current on all I/O lines	130 mA
DC Current for 3.3V Pin	800 mA
DC Current for 5V Pin	800 mA
Flash Memory	512 KB all available for the user applications
SRAM	96 KB (two banks: 64KB and 32KB)
Clock Speed	84 MHz
Length	101.52 mm
Width	53.3 mm
Weight	36 g

Pixhawk/Ardupilot history, differences, benefits

Make ardupilot better

Microcontroller	STM32F4
Operating Voltage	3.3V
Digital I/O Pins	24 (8 PWM)
Analog Input Pins	12
Analog Output Pins	0 (DAC)
DC Current for 5V Pin	500mA
Flash Memory	1024KB
SRAM	192KB
Clock Speed	168 MHz
Length	36 mm
Width	50 mm
Weight	9.62 g

Pixhawk/Ardupilot history, differences, benefits

Pixhawk/Ardupilot history, differences, benefits

PX4 FMU kit & IO

Ardupilot stack system overview

• http://ardupilot.org/dev/docs/learning-ardupilot-introduction.html

Pixhawk stack system overview

- https://dev.px4.io/en/concept/architecture.html
- https://dev.px4.io/en/concept/dronecode architectu re.html

Ardupilot & Pixhawk compatibility & limitations

- http://ardupilot.org/copter/docs/commonautopilots.html
- https://docs.px4.io/en/flight_controller/

