Vorlesung Analysis II

May 20, 2025

Teil 1: Differnetialrechnung im \mathbb{R}^n

an2: Geometrie von Funktionen $\mathbb{R}^n \to \mathbb{R}^m$ mit m=1 und n=1

Stichworte: Affine Räume, Parameter- und Normdarstellung, Funktionen $\mathbb{R}^n \to \mathbb{R}^m$

<u>Literatur: [Hoff], Kapitel 9.2</u>

2.1<u>Einleitung</u>: Nach Kurzer Überlegung zur Darstellung affin-Linearer Objekte im \mathbb{R}^n , also Geraden, Ebenen, Hyperebenen,... arbeiten wir an der geometrischen Anschauung von Funktionen $f: \mathbb{R}^n \to \mathbb{R}^m$, die affinlinear oder nicht affinlinear sind. Wir betrachten insbesondere \mathbb{R} -wertiger (auch: reellwertiger) Funktionen, d.h. solche Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ mit n = 1, sowie auch "Kurvenartige Funktionen $f: \mathbb{R} \to \mathbb{R}^m$ mit m = 1.

2.2<u>Affine Räume</u> im \mathbb{R}^n : Ist $U \subseteq \mathbb{R}^n$ ein Untervektorraum des \mathbb{R}^n , so heißt a+U für ein $a \in \mathbb{R}^n$ ein (d-dimensionaler) affiner Raum, wenn dim U=d ist. (Man kann a einen Aufpunkt von a+U nennen.)

Es gibt folgende Atren zur Beschreibung der El. von a+U:

2.3 •Parameterfarstellung: Ist u die Lineare Hülle von Vektoren $v_1, ..., v_r$, d.h. $U = L(v_1, ..., v_r) := \alpha_1 v_1 + ... + \alpha_r v_r; \alpha_1, ..., \alpha_r \in \mathbb{R} = \mathbb{R} v_1 + ... + \mathbb{R} v_r$, d.h. die Menge aller Linearkombinationen $\sum_{i=1}^r \alpha_i v_i$ der $v_1, ..., v_r$, auch: der Span der $v_1, ..., v_r$ geschrieben $span(v_1, ..., v_r)$,

bzw. auch: das Lineare Erzeugnis der $v_1,...,v_r$ geschrieben $< v_1,...,v_r>$ (\leftarrow keine skalarproduktklammern, sondern "Erzeugnissklammern"!)

Dann ist $a+U = a+L(v_1,...,v_r) = a + \alpha_1v_1 + ... + \alpha_rv_r; \alpha_1,...,\alpha_r \in \mathbb{R}$

Sind $v_1, ..., v_r$ Linear unabhängig, gilt dim(a+U)=dim U = r, die $v_1, ..., v_r$ heißen dann Richtungsvektoren.

Für r= dim U = 1 ist die eine Gerade $a + \mathbb{R}v_1 = a + tv_1; t \in \mathbb{R}^n$, "in Richtung" $v_1 \in \mathbb{R}^n$, $v_1 \neq 0$, und mit Aufpunkt $a \in \mathbb{R}^n$. Für r=dim U = 2 ist dies eine Ebene $a + \mathbb{R}v_1 + \mathbb{R}v_2 = a + tv_1 + sv_2; t, s \in \mathbb{R} \subseteq \mathbb{R}^n$ mit zwei (linear unabh.) Richtungsvektoren $v_1, v_2 \in \mathbb{R}^n$ und Aufpunkt $a \in \mathbb{R}$. Usw.

Eine besonders einfache Darstellung ist im Fall dim U = n-1 möglich, den zugehörigen affinen Raum nennen wir eine Hyperebene in \mathbb{R}^n :

2.4• Normalendarstellung(einer <u>Hyperebene</u> im \mathbb{R}^n):

Sei $H_{c,a} := x \in \mathbb{R}^n | \langle x, c \rangle = \alpha$ für $c \in \mathbb{R}^n, c \neq 0$, und $\alpha \in \mathbb{R}$.

Sei $p \in H_{c,\alpha}$ irgenein Punkt dieser Menge, d.h. es gelte $< p, c > = \alpha$.

Dann ist $H_{c,\alpha} = p + U$ mit einem Untervektorraum $U \subseteq \mathbb{R}^n$, für den dim U = n-1 ist, denn: U = kerf für die Lineare Abb. $f: \mathbb{R}^n \to \mathbb{R}, x \to \langle x, c \rangle$

$$_x \in H_{c,\alpha} \Leftrightarrow \langle x, c \rangle = \alpha \Leftrightarrow \langle x - p, c \rangle = \alpha - \langle \underbrace{\langle p, c \rangle}_{\alpha} \Leftrightarrow x = p + n \text{ mit } n \in kerf^{\hat{}}$$

dabei ist $imf = \mathbb{R}$, also dimU = dimkerf = n - dimimf = n - 1

Mit U = ker f = $u \in \mathbb{R}$; $\langle u, c \rangle = 0 =: c^{\perp}$ folgt, dass die $u \in U$ genau die Vektoren im \mathbb{R}^n sind, die senktrecht auf c stehen, bzw. wir haben $\underline{U}^{\perp} = \mathbb{R}\underline{c}.(\ddot{\mathbf{U}})$

Da c senkrecht zu jedem Punkt von U ist, heißt c Normalenvektor von $H_{c,\alpha}$. Denn eine Gerade $p + \mathbb{R}c \subseteq \mathbb{R}^n$ heißt Normale von $H_{c,\alpha}$ und steht senkrecht auf $H_{c,a}$.

2.5 • Ein Spezialfall der Normalendarstellung ist die Hessesche Normalform: $H_{c,\alpha}$ mit ||c|| = 1 (wo der Normalenvektor auf 1 normiert ist).

Die Formel in 2.8 und 2.9 werden dann noch einfacher.

2.6 Bsp. zur normalendarstellung: Eine Ebene E im Raum \mathbb{R}^3 kann in der Form $E = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_2 \end{pmatrix}$; $\underbrace{\gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3}_{=<\pi} = \frac{1}{2}$

dargestellt werden; c= $\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$ ist darin der Normalenvektor, d.h. c \bot E. Die Eben $E = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3; 3x - 2y - z = 2$ z.b. steht senkrecht auf c= $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$.

In dieser Form nennt man die Normalendarstellung auch oft Koordinatendarstellung von E. Anderes

Bsp. $E = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3; x = 0$ ist die y-z-Ebene, und $E = (w, x, y, z) \in \mathbb{R}^4; w - 3x - y + 4z = 10$ ist die

(3-dim) Hyperevene im \mathbb{R}^4 , die senkrechte zu $\begin{pmatrix} 1\\ -3\\ -1\\ 4 \end{pmatrix}$ ist.

2.7Schul bsp. zur Normalendarstellung: Eine Gerade g in der Ebene \mathbb{R}^2 ist auch eine "Hyperebene" im \mathbb{R}^2 , da dim g =1=2-1 gilt.

Eine Normalendarstellung lautet dann $g = \begin{pmatrix} x \\ y \end{pmatrix}; \langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} \rangle = \alpha$ für $\gamma_1, \gamma_2, \alpha \in \mathbb{R}$, d.h. wird beschrieben durch die Gleichung $\gamma_1 x + \gamma_2 y = \alpha \Leftrightarrow (\gamma_2 \neq 0) y = -\frac{\gamma_1}{\gamma_2} x + \frac{\alpha}{\gamma_2} \leftarrow$ Geradengleichung der Schule mit Steigung $m = \frac{\gamma_1}{\gamma_2}$ und $c = \frac{\alpha}{\gamma_1}$ als y-Achsenabschnitt Schule mit Steigung m $=\frac{\gamma_1}{\gamma_2},$ und c $=\frac{\alpha}{\gamma}$ als y-Achsenabschnitt.

Sogar an eine "Schulglg." $1 \cdot y = mx + c$ für eine Gerade kann man also den Normalenvektor $\binom{-m}{1}$ ablesen, der senkrecht auf der Geraden g (mit Richtungsvektor $\binom{m}{1}$) steht: $<\binom{-m}{1}\binom{1}{m}>=-m+m=$ 0.

- 2.8 Rechen mit der Hesseschen Normalform: Sei $E = H_{c,\alpha} \subseteq \mathbb{R}^n$ geg., so ist der Abstand von 0 zu $H_{c,\alpha}$ gegeben als $dist(0, H_{c,\alpha}) = \frac{|\alpha|}{||c||}$.

 Ist außerdem ||c|| = 1, ist dieser Abstand also $= |\alpha|$.

<u>Bew.:</u> Sei $x \in H_{c,\alpha}$ beliebig. Der gesuchte Abstand ist die Länge von p(x,c), also $dist(0,H_{c,\alpha}) = ||p(x,c)|| = ||\frac{|\langle x,c\rangle|}{||c||} = \frac{|\alpha|}{||c||}$.

