(2) Since we are assuming that \Im is not the null ideal, there is some polynomial of smallest degree in \Im , and since K is a field, by suitable multiplication by a scalar, we can make sure that this polynomial is monic. Thus, let f be a monic polynomial of smallest degree in \Im . By (ID2), it is clear that $(f) \subseteq \Im$. Now, let $g \in \Im$. Using the Euclidean algorithm, there exist unique $q, r \in K[X]$ such that

$$g = qf + r$$
 and $deg(r) < deg(f)$.

If $r \neq 0$, there is some $\lambda \neq 0$ in K such that λr is a monic polynomial, and since $\lambda r = \lambda g - \lambda q f$, with $f, g \in \mathfrak{I}$, by (ID1) and (ID2), we have $\lambda r \in \mathfrak{I}$, where $\deg(\lambda r) < \deg(f)$ and λr is a monic polynomial, contradicting the minimality of the degree of f. Thus, r = 0, and $g \in (f)$. The uniqueness of the monic polynomial f follows from (1).

Proposition 30.10 shows that K[X] is a principal ring when K is a field.

We now investigate the existence of a greatest common divisor (gcd) for two nonzero polynomials. Given any two nonzero polynomials $f, g \in K[X]$, recall that f divides g if g = fg for some $g \in K[X]$.

Definition 30.7. Given any two nonzero polynomials $f, g \in K[X]$, a polynomial $d \in K[X]$ is a greatest common divisor of f and g (for short, a gcd of f and g) if d divides f and g and whenever $h \in K[X]$ divides f and g, then h divides g. We say that f and g are relatively prime if 1 is a gcd of f and g.

Note that f and g are relatively prime iff all of their gcd's are constants (scalars in K), or equivalently, if f, g have no divisor g of degree $\deg(g) \geq 1$.

In particular, note that f and g are relatively prime when f is a nonzero constant polynomial (a scalar $\lambda \neq 0$ in K) and g is any nonzero polynomial.

We can characterize gcd's of polynomials as follows.

Proposition 30.11. Let K be a field and let $f, g \in K[X]$ be any two nonzero polynomials. For every polynomial $d \in K[X]$, the following properties are equivalent:

- (1) The polynomial d is a gcd of f and g.
- (2) The polynomial d divides f and g and there exist $u, v \in K[X]$ such that

$$d = uf + vg.$$

(3) The ideals (f), (g), and (d) satisfy the equation

$$(d) = (f) + (g).$$

In addition, $d \neq 0$, and d is unique up to multiplication by a nonzero scalar in K.