Example of GAP SCSCP client connecting to Python 3 SCSCP server

In this example GAP SCSCP client communicates with the Python 3 SCSCP server. The Python code is based on https://github.com/OpenMath/py-scscp/blob/master/demo server.py (https://github.com/OpenMath/py-scscp/blob/master/demo server.py)

Simple calls

In Python, addition of lists and strings is their concatenation

Using NumPy linear algebra tools

In the next example, we extend Python server to offer some procedures from the NumPy package for scientific computing (http://www.numpy.org/ (http://www.numpy.org/). To do that, we need only to add several more lines to the Python script to run the server:

```
import numpy

CD_SCSCP_TRANSIENT1 = {
    'numpy.linalg.det' : numpy.linalg.det,
    'numpy.linalg.matrix_rank' : lambda x: int(numpy.linalg.matrix_rank
(x)),
}
```

• Compute determinant and rank of a random 5x5 matrix

Let's try with matrices of larger dimensions

Using NumPy to calculate complex roots of polynomials

Similarly, on the Python server we export another function that calculates (complext) roots of univariate polynomials and returns a list of their real and imaginary parts:

```
def polyroots( coeffs ):
    f = numpy.polynomial.polynomial.Polynomial( coeffs )
    r = f.roots()
    return [ [x.real,x.imag] for x in r]
```

· create polynomials with integer roots

· calculate roots with GAP

```
In [11]: RootsOfUPol(f);
     [ 10, 1, -5 ]
```

· check that Python results agree

```
In [12]: coeffs:=CoefficientsOfUnivariatePolynomial(f)
      [ 50, -45, -6, 1 ]
In [13]: EvaluateBySCSCP("polyroots",[ coeffs ],"localhost",26133:OMignoreMatrice s).object;
      [ [ -5., 0. ], [ 1., 0. ], [ 10., 0. ] ]
```

• But GAP can not compute (approximations of) complex roots of another polynomial

```
In [14]: RootsOfUPol(1+2*x+3*x^2);
[ ]
```

· However, Python with the help of NumPy is capable of doing this

```
In [15]: coeffs := CoefficientsOfUnivariatePolynomial(1+2*x+3*x^2)
        [ 1, 2, 3 ]
In [16]: EvaluateBySCSCP("polyroots",[ coeffs ],"localhost",26133:OMignoreMatrice s).object;
        [ [ -0.333333, -0.471405 ], [ -0.333333, 0.471405 ] ]
```