Chapter 4. Continuous Random Variables and Probability Distributions

Peijia Zheng (鄰格嘉)
School of Data & Computer Science
Sun Yat-Sen University
Email: zhpj@mail.sysu.edu.cn

Chapter four:

Continuous Random Variables and Probability Distributions

- 4.1 Probability Density Functions
- 4.2 Cumulative Distribution Functions and Expected Values
- 4.3 The Normal Distribution
- 4.4 The Exponential and Gamma Distributions
- 4.5 Other Continuous Distributions
- 4.6 Probability Plots

Continuous Random Variables

A random variable X is said to be continuous if its set of possible values is an entire interval of numbers – that is, if for some A<B, any number x between A and B is possible

Example 4.2

If a chemical compound is randomly selected and its PH X is determined, then X is a continuous rv because any PH value between 0 and 14 is possible. If more is know about the compound selected for analysis, then the set of possible values might be a subinterval of [0, 14], such as $5.5 \le x \le 6.5$, but X would still be continuous.

■ Probability Distribution for Continuous Variables

Suppose the variable X of interest is the depth of a lake at a randomly chosen point on the surface. Let M be the maximum depth, so that any number in the interval [0,M] is a possible value of X.

Measured by meter

Measured by centimeter

A limit of a sequence of discrete histogram

Discrete Cases

Continuous Case

Probability Distribution

Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is f(x) such that for any two numbers a and b with $a \le b$

$$P(a \le X \le b) = \int_a^b f(x) dx$$

The probability that X takes on a value in the interval [a,b] is the area under the graph of the density function as follows.

- A legitimate pdf should satisfy
 - 1. $f(x) \ge 0$ for all x
 - 2. $\int_{-\infty}^{\infty} f(x) dx = \text{area under the entire graph of } f(x)$ = 1

pmf (Discrete) vs. pdf (Continuous)

$$P(X=c) = p(c)$$

$$P(X=c) = f(c)$$
?

$$P(X=c) = \int_{c}^{c} f(x)dx = 0$$

Proposition

If X is a continuous rv, then for any number c, P(X=c)=0. Furthermore, for any two numbers a and b with a
b,

$$P(a \le X \le b) = P(a \le X \le b)$$
$$= P(a \le X \le b)$$
$$= P(a \le X \le b)$$

Impossible event :the event contain no simple element $P(A)=0 \Rightarrow A$ is an impossible event ?

Uniform Distribution

A continuous rv X is said to have a uniform distribution on the interval [A, B] if the pdf of X is

$$f(x; A, B) = \begin{cases} \frac{1}{B - A} & A \le x \le B \\ 0 & \text{otherwise} \end{cases}$$

Example 4.4

The direction of an imperfection with respect to a reference line on a circular object such as a tire, brake rotor, or flywheel is, in general, subject to uncertainty. Consider the reference line connecting the valve stem on a tire to the center point, and let X be the angle measured clockwise to the location of an imperfection, One possible pdf for X is

$$f(x) = \begin{cases} \frac{1}{360} & 0 \le x \le 360\\ 0 & \text{otherwise} \end{cases}$$

Example 4.3 (Cont')

Example 4.5

"Time headway" in traffic flow is the elapsed time between the time that one car finishes passing a fixed point and the instant that the next car begins to pass that point. Let X = the time headway for two randomly chosen consecutive cars on a freeway during a period of heavy flow. The following pdf of X is essentially the one suggested in "The Statistical Properties of Freeway Traffic".

$$f(x) = \begin{cases} 0.15e^{-0.15(x-0.5)} & x \ge 0.5\\ 0 & \text{otherwise} \end{cases}$$

Example 4.4 (Cont')

$$f(x) = \begin{cases} 0.15e^{-0.15(x-0.5)} & x \ge 0.5\\ 0 & \text{otherwise} \end{cases}$$

- 1. $f(x) \ge 0$;
- 2. to show $\int_{-\infty}^{\infty} f(x) \ge 0 dx = 1$, we use the result $\int_{a}^{\infty} e^{-kx} dx = \frac{1}{k} e^{-ka}$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0.5}^{\infty} 0.15e^{-0.15(x-5)}dx = 0.15e^{0.075} \int_{0.5}^{\infty} e^{-0.15x}dx$$
$$= 0.15e^{0.075} \cdot \frac{1}{0.15}e^{-(0.15)(0.5)} = 1$$

Example 4.4 (Cont')

$$P(X \le 5) = \int_{-\infty}^{5} f(x)dx = \int_{0.5}^{5} .15e^{-0.15(x-5)}dx = 0.15e^{0.075} \int_{0.5}^{5} e^{-0.15x}dx$$

$$=0.15e^{0.075} \cdot \left(-\frac{1}{0.15}e^{-0.15x}\right)\Big|_{0.5}^{5} = 0.491 = P(X < 5)$$

Homework

Ex. 2, Ex. 5, Ex. 8

Cumulative Distribution Function

The cumulative distribution function F(x) for a continuous rv X is defined for every number x by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

For each x, F(x) is the area under the density curve to the

Example 4.6

Let X, the thickness of a certain metal sheet, have a uniform distribution on [A, B]. The density function is shown as follows.

For x < A, F(x) = 0, since there is no area under the graph of the density function to the left of such an x.

For $x \ge B$, F(x) = 1, since all the area is accumulated to the left of such an x.

Example 4.6 (Cont')

For A ≤X≤ B

$$F(x) = \int_{-\infty}^{x} f(y) dy = \int_{A}^{x} \frac{1}{B - A} dy = \frac{1}{B - A} \cdot y \Big|_{y = A}^{y = x} = \frac{x - A}{B - A}$$

Therefore, the entire cdf is

$$F(x) = \begin{cases} 0 & x < A \\ \frac{x - A}{B - A} & A \le x < B \\ 1 & x \ge B \end{cases}$$

Using F(x) to compute probabilities
 Let X be a continuous rv with pdf f(x) and cdf F(x).
 Then for any number a

$$P(X > a) = 1 - F(a)$$

and for any two numbers a and b with a<b

$$P(a \le X \le b) = F(b) - F(a)$$

Example 4.7

Suppose the pdf of the magnitude X of a dynamic load on a bridge is given by $\begin{pmatrix} 1 & 2 \end{pmatrix}$

$$f(x) = \begin{cases} \frac{1}{8} + \frac{3}{8}x, & 0 \le x \le 2\\ 0, & otherwise \end{cases}$$

For any number x between 0 and 2,

$$F(x) = \int_{-\infty}^{x} f(y)dy = \int_{0}^{x} (\frac{1}{8} + \frac{3}{8}x)dy = \frac{x}{8} + \frac{3}{16}x^{2}$$

$$F(x) = \begin{cases} 0, x < 0 \\ \int_{-\infty}^{x} f(y) dy = \int_{0}^{x} (\frac{1}{8} + \frac{3}{8}x) dy = \frac{x}{8} + \frac{3}{16}x^{2}, x \in [0, 2] \\ 1, x > 2 \end{cases}$$

Example 4.7 (Cont')

$$P(1 \le X \le 1.5) = F(1.5) - F(1) = 0.297$$

 $P(X > 1) = 1 - F(X = 1) = 0.688$

Obtaining f(x) form F(x)

If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the derivative F'(x) exists, F'(x)=f(x)

$$f(x) = F(x)$$
 $F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$

$$F(x) = f(x)$$
 $f(x) = F'(x) = (\int_{-\infty}^{x} f(y)dy)'$

Example 4.8 (Ex. 4.6 Cont')

When X has a uniform distribution, F(x) is differentiable except at x=A and x=B, where the graph of F(x) has sharp corners. Since F(x)=0 for x<A and F(x)=1 for x>B, F'(x)=0=f(x) for such x. For A< x<B

$$F'(x) = \frac{d}{dx} \left(\frac{x - A}{B - A} \right) = \frac{1}{B - A} = f(x)$$

Percentiles of a Continuous Distribution

Let p be a number between 0 and 1. The (100p)th percentile of the distribution of a continuous rv X, denoted by $\eta(p)$, is defined by

$$p = F(\eta(p)) = \int_{-\infty}^{\eta(p)} f(y) dy$$

Example 4.9

The distribution of the amount of gravel (in tons) sold by a particular construction supply company in a given week is a continuous rv X with pdf

$$f(x) = \begin{cases} \frac{3}{2}(1 - x^2) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

The cdf of sales for any x between 0 and 1 is

$$F(x) = \int_{0}^{x} \frac{3}{2} (1 - y^{2}) dy = \frac{3}{2} (y - \frac{y^{3}}{3}) \Big|_{y=0}^{y=x} = \frac{3}{2} (x - \frac{x^{3}}{3})$$

Example 4.9 (Cont')

$$p = F(\eta(p)) = \frac{3}{2} \left[\eta(p) - \frac{(\eta(p))^3}{3} \right]$$

$$(\eta(p))^3 - 3\eta(p) + 2p = 0$$

If
$$p = 0.5, \eta(p) = 0.347$$

The median

The median of a continuous distribution, denoted by $\widetilde{\mu}$, is the 50th percentile, so satisfies 0.5=F($\widetilde{\mu}$), that is, half the area under the density curve is to the left of $\widetilde{\mu}$ and half is to the right of $\widetilde{\mu}$

Symmetric Distribution

Expected/Mean Value

The expected/mean value of a continuous rv X with pdf f(x) is

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$\mu_X = E(X) = \sum_{x \in D} x \cdot p(x)$$

Discrete Case

Example 4.10 (Ex. 4.9 Cont')

The pdf of weekly gravel sales X was

$$f(x) = \begin{cases} \frac{3}{2}(1-x^2) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

So

$$E(x) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \frac{3}{2} (1 - x^{2}) dx = \frac{3}{2} (\frac{x^{2}}{2} - \frac{x^{4}}{4}) \Big|_{x=0}^{x=1} = \frac{3}{8}$$

Expected value of a function If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

$$E[h(X)] = \mu_{h(X)} = \int_{-\infty}^{\infty} h(x) f(x) dx$$

$$\mu_{h(X)} = E(h(X)) = \sum_{x \in D} h(x) \cdot p(x)$$

Discrete Case

Example 4.11

Two species are competing in a region for control of a limited amount of a certain resource. Let X = the proportion of the resource controlled by species 1 and suppose X has pdf

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

which is a uniform distribution on [0,1]. Then the species that controls the majority of this resource controls the amount

$$h(X) = \max(X, 1 - X) = \begin{cases} 1 - X & \text{if } 0 \le x < \frac{1}{2} \\ X & \text{if } \frac{1}{2} \le X \le 1 \end{cases}$$

The expected amount controlled by the species having majority control is then

$$E[h(X)] = \int_{-\infty}^{\infty} \max(x, x - 1) \cdot f(x) dx = \int_{0}^{1} \max(x, 1 - x) \cdot 1 dx$$

$$= \int_{0}^{\frac{1}{2}} (1 - x) \cdot 1 dx + \int_{\frac{1}{2}}^{1} x \cdot 1 dx = \frac{3}{\text{School of Data & Computer Science}}$$

The Variance

The variance of a continuous random variable X with pdf f(x) and mean value μ is

$$\sigma_X^2 = V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = E[(X - \mu)^2]$$

The standard deviation (SD) of X is

$$\sigma_X = \sqrt{V(X)}$$

Proposition

$$E(aX + b) = aE(X) + b$$

$$V(X) = E(X^{2}) - [E(X)]^{2}$$

The Same Properties as Discrete Cases

Homework

Ex. 13, Ex. 18, Ex. 22, Ex. 24

4.3 The Normal Distribution

Normal (Gaussian) Distribution

A continuous rv X is said to have a normal distribution with parameters μ and σ (or μ and σ^2), where $-\infty < \mu < +\infty$ and $0 < \sigma$, if the pdf of X is

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad -\infty < x < \infty$$

Note:

- 1. The normal distribution is the most important one in all of probability and statistics. Many numerical populations have distributions that can be fit very closely by an appropriate normal curve.
- 2. Even when the underlying distribution is discrete, the normal curve often gives an excellent approximation.
- 3. Central Limit Theorem (see next Chapter)

• Properties of $f(x; \mu, \sigma)$

$$f(x; \mu, \sigma) \ge 0, \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} dx = 1$$
 Proof?

$$E(X) = \mu \& V(X) = \sigma^2$$
, $X \sim N(\mu, \sigma^2)$

 σ is large

 σ is medium

 σ is small

Symmetry Shape

Standard Normal Distribution

The normal distribution with parameter values μ =0 and σ =1 is called the standard normal distribution. A random variable that has a standard normal distribution is called a standard normal random variable and will be denoted by Z. The pdf of Z is

$$f(z;0,1) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty$$

The cdf of Z is

$$\Phi(z) = \int_{-\infty}^{z} f(t)dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$$

Refer to Appendix Table A.3

• Properties of $\Phi(z)$

$$\Phi(-z) = 1 - \Phi(z)$$

$$\Phi(0) = 0.5$$

$$P(|X| \le z) = 2\Phi(z) - 1$$

$$P(|X| \ge z) = 2[1 - \Phi(z)]$$

Example 4.13

(a)
$$P(Z \le 1.25)$$

(b)
$$P(Z>1.25)$$

(a)
$$P(Z \le 1.25)$$
 (b) $P(Z > 1.25)$ (c) $P(Z \le -1.25)$

Shaded area= $\Phi(1.25)$

Example 4.13 (Cont')

(d)
$$P(-0.38 \le Z \le 1.25)$$

\mathbf{z}_{α} notation

 z_{α} will denote the values on the measurement axis for which α of the area under the z curve lies to the right of z_{α}

Note: Z_{α} is the 100(1- α)th percentile of the standard normal distribution

Percentile	90	95	97.5	99	99.5	99.9	99.95
lpha(tail area)	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
$z_{\alpha} = 100(1 - \alpha)th$ percentile	1.28	1.645	1.96	2.33	2.58	3.08	3.27

Nonstandard Normal Distribution

If X has the normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution (why?). Thus

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$$

Equality of nonstandard and standard normal curve area

$$P(Z \le z) = P(X \le \sigma z + \mu) = \int_{-\infty}^{\sigma z + \mu} f(x; \mu, \sigma) dx$$

Percentiles of an Arbitrary Normal Distribution

$$(100p)$$
th percentile for normal (μ, σ)

$$= \mu + [(100p) \text{th for standard normal}] \cdot \sigma$$

Example 4.16

The time that it takes a driver to react to the brake lights on a decelerating vehicle is critical in helping to avoid rear-end collisions. Reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled with a normal distribution having mean value 1.25 sec and standard deviation of .46 sec. What is the probability that reaction time is between 1.00 sec and 1.75 sec?

$$P(1.00 \le X \le 1.75) = P\left(\frac{1.00 - 1.25}{0.46} \le Z \le \frac{1.75 - 1.25}{0.46}\right)$$
$$= \Phi(1.09) - \Phi(-0.54)$$
$$= 0.8621 - 2.946 = 0.5675$$

Example 4.17

The breakdown voltage of a randomly chosen diode of a particular type is known to be normally distributed. What is the probability that a diode's breakdown voltage is within 1 standard deviation of its mean value?

P(X is within 1 standard deviation of its mean)

$$= P\Big(\mu - \sigma \le X \le \mu + \sigma\Big) = P\bigg(\frac{\mu - \sigma - \mu}{\sigma} \le Z \le \frac{\mu + \sigma - \mu}{\sigma}\bigg)$$

$$= P(-1.00 \le Z \le 1.00) = \Phi(1.00) - \Phi(-1.00) = 0.6826$$

Note: This question can be answered without knowing either μ or σ , as long as the distribution is known to be normal; in other words, the answer is the same for any normal distribution:

If the population distribution of a variable is (approximately) normal, then

- 1. Roughly 68% of the values are within 1 SD of the mean.
- 2. Roughly 95% of the values are within 2 SDs of the mean
- 3. Roughly 99.7% of the values are within 3 SDs of the mean

The Normal Distribution and Discrete Populations

Ex. 4.19: IQ in a particular population is known to be approximately normally distributed with $\mu = 100$ and $\sigma = 15$. What is the probability that a randomly selected individual has an IQ of at least 125? Letting X = the IQ of a randomly chosen person, we wish $P(X \ge 125)$. The temptation here is to standardize $X \ge 125$ immediately as in previous example. However, the IQ population is actually discrete, since IQs are integer-valued, so the normal curve is an approximation to a discrete probability histogram,

continuity correction

$$P(X \ge 125) = P(Z \ge [(125 - 0.5) - 100)]/15)$$
$$= P(Z \ge 1.63) = 0.0516$$

$$P(X = 125)$$

$$= P([(125-0.5)-100]/15 \le Z \le [(125+0.5)-100]/15)$$

$$= P(1.63 \le Z \le 1.7) \neq 0$$

• The Normal Approximation to the Binomial Distribution Recall that the mean value and standard deviation of a binomial random variable X are $\mu_X = \text{np}$ and $\sigma_X = (\text{npq})^{1/2}$. Consider the binomial probability histogram with n = 20, p = 0.6. It can be approximated by the normal curve with $\mu = 12$ and $\sigma = 2.19$ as follows.

Proposition

Let X be a binominal rv based on n trials with success probability p. Then if the binomial probability histogram is not too skewed, X has approximately a normal distribution with $\mu = np$ and $\sigma_X = (npq)^{1/2}$. In particular, for x = a possible value of X,

$$p(X \le x) = B(x; n, p)$$

 \approx (area under the normal curve to the left of x + 0.5)

$$=\Phi\left(\frac{x+0.5-np}{\sqrt{npq}}\right)$$

Rule: In practice, the approximation is adequate provided that both np \geq 10 and nq \geq 10. (where q=1-p)

Example 4.20

Suppose that 25% of all licensed drivers in a particular state do not have insurance. Let X be the number of uninsured drivers in a random sample of size 50, so that p=0.25. Since $np=50(0.25)=12.5\geq10$ and $nq=37.5\geq10$, the approximation can safely be applied. Then $\mu=12.5$ and $\sigma=3.06$.

$$P(X \le 10) = B(10; 50, 0.25) \approx \Phi\left(\frac{10 + 0.5 - 12.5}{3.06}\right)$$
$$= \Phi(-0.65) = 0.2578$$

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers are uninsured is

$$P(5 \le X \le 15) = B(15;50,0.25) - B(4;50,0.25)$$

$$\approx \Phi\left(\frac{15.5 - 12.5}{3.06}\right) - \Phi\left(\frac{4.5 - 12.5}{3.06}\right) = 0.8320$$

Homework

Ex. 29, Ex. 32, Ex. 44, Ex. 48, Ex. 52

Gamma Function

For $\alpha > 0$, the gamma function $\Gamma(\alpha)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{a-1} e^{-x} dx$$

The most important properties of the gamma function are the following:

- 1. For any $\alpha > 1$, $\Gamma(\alpha) = (\alpha 1) \Gamma(\alpha 1)$;
- 2. For any positive integer n, $\Gamma(n)=(n-1)!$
- 3. $\Gamma(1/2) = \Pi^{1/2}$

Standard Gamma Distribution

$$f(x;\alpha) = \begin{cases} \frac{x^{\alpha-1}e^{-x}}{\Gamma(\alpha)} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Satisfying the two Basic Properties of a pdf:

$$1: f(x;a) \ge 0$$

$$2: \int_0^\infty f(x; a) dx = \frac{\int_0^\infty x^{\alpha - 1} e^{-x} dx}{\Gamma(\alpha)} = \frac{\Gamma(\alpha)}{\Gamma(\alpha)} = 1$$

Example 4.23

Suppose the reaction time X of a randomly selected individual to a certain stimulus has a standard gamma distribution with α =2 sec. Then

$$P(3 \le X \le 5) = F(5;2) - F(3;2)$$

$$= 0.960 - 0.801 = 0.159$$

$$P(X>4) = 1 - P(X \le 4) = 1 - F(4;2) = 1 - 0.908 = 0.902$$

The Family of Gamma Distributions

A continuous random variable *X* is said to have a gamma distribution if the pdf of *X* is

$$f(x;\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} & x^{\alpha-1} e^{-x/\beta} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where the parameters α and β satisfy $\alpha > 0$, $\beta > 0$. The standard gamma distribution has $\beta = 1$.

• Illustrations of the Gamma pdfs

(a) Gamma density curves

(b) Standard gamma density curves

Mean and Variance

The mean and variance of a random variable X having the gamma distribution $f(x;\alpha,\beta)$ are

$$E(X) = \mu = \alpha\beta$$
$$V(X) = \delta^2 = \alpha\beta^2$$

The cdf of a standard gamma distribution

$$F(x;\alpha) = \int_0^x \frac{y^{\alpha-1}e^{-y}}{\Gamma(\alpha)} dy \qquad x > 0$$

Incomplete gamma function (or without the denominator $\Gamma(\alpha)$ sometimes)

Proposition

Let X have a gamma distribution with parameters α and β . Then for any x > 0, the cdf of X is given by

$$P(X \le x) = F(x; \alpha, \beta) = F\left(\frac{x}{\beta}; \alpha\right)$$

where $F(\bullet; \alpha)$ is the incomplete gamma function.

Example 4.24

Suppose the survival time X in weeks of a randomly selected male mouse exposed to 240 rads of gamma radiation has a gamma distribution with α =8 and β =15, then the probability that a mouse survives between 60 and 120 weeks is

$$P(60 \le X \le 120) = P(X \le 120) - P(X \le 60)$$
$$= F(120/15;8) - F(60/15;8)$$
$$= F(8;8) - F(4;8) = 0.496$$

the probability that a mouse survives at least 30 weeks is

$$P(X \ge 30) = 1 - P(X < 30) = 1 - P(X \le 30)$$
$$= 1 - F(30/15; 8) = 0.999$$

The Exponential Distribution

X is said to have an exponential distribution with parameter λ (λ >0) if the pdf of X is

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Just a special case of the general gamma pdf

$$\alpha=1$$
 and $\beta=1/\lambda$

therefore, we have

$$E(X) = \alpha\beta = 1/\lambda; V(X) = \alpha\beta^2 = 1/\lambda^2$$

• Illustrations of the Exponential pdfs

The cdf of Exponential Distribution
 Unlike the general gamma pdf, the exponential pdf can be easily integrated.

$$F(x;\lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Example

Suppose the response time X at a certain on-line computer terminal (the elapsed time between the end of a user's inquiry and the beginning of the system's response to inquiry) has an exponential distribution with expected response time equal to 5 sec. then $E(X) = 1/\lambda = 5$, so $\lambda = 0.2$. the probability that the response time is at most 10 sec is

$$P(X \le 10) = F(10; 0.2) = 1 - e^{-(0.2)(10)} = 0.865$$

The probability that response time is between 5 and 10 sec is

$$P(5 \le X \le 10) = F(10; 0.2) - F(5; 0.2) = 0.233$$

The Chi-Squared Distribution

Let v be a positive integer. Then a random variable X is said to have a chi-squared distribution with parameter v if the pdf of X is the gamma density with $\alpha = v/2$ and $\beta = 2$. The pdf of a chi-squared rv is thus

$$f(x,v) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & x \ge 0\\ 0 & x < 0 \end{cases}$$

The parameter v is called the number of degrees of freedom of X. The symbol χ^2 is often used in place of "chi-squared."

Homework

Ex. 64, Ex. 66, Ex. 70

The Weibull Distribution

A random variable X is said to have a Weibull distribution with parameters α and β ($\alpha > 0$, $\beta > 0$) if the cdf of X is

$$f(x;\alpha,\beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-(x/\beta)^{\alpha}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

When α =1, the pdf reduces to the exponential distribution (with λ =1/ β), so the exponential Distribution is a special case of both the Gamma and Wellbull distributions.

Mean and Variance

$$\mu = \beta \Gamma \left(1 + \frac{1}{\alpha} \right); \quad \sigma^2 = \beta^2 \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) - \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^2 \right\}$$

The cdf of a Weibull Distribution

$$F(x;\alpha,\beta) = \begin{cases} 0 & x < 0 \\ 1 - e^{-(x/\beta)^{\alpha}} & x \ge 0 \end{cases}$$

The Lognormal Distribution

A nonnegative rv X is said to have a lognormal distribution if the rv $Y = \ln(X)$ has a normal distribution . The resulting pdf of a lognormal rv when $\ln(X)$ is normally distributed with parameters μ and σ is

$$f(x;\mu,\sigma) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-(\ln(x)-\mu)^2/(2\sigma^2)} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Mean and Variance

$$E(X) = e^{\mu + \sigma^2/2}$$
; $V(X) = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} - 1)$

The cdf of Lognormal Distribution

$$F(x; \mu, \sigma) = P(X \le x) = P[\ln(X) \le \ln(x)]$$
$$= P\left(Z \le \frac{\ln(x) - \mu}{\sigma}\right) = \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right)$$

The Beta Distribution

A random variable X is said to have a beta distribution with parameters α , β , A, and B if the pdf of X is

$$f(x;\alpha,\beta,A,B) = \begin{cases} \frac{1}{B-A} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \left(\frac{x-A}{B-A}\right)^{\alpha-1} \left(\frac{B-x}{B-A}\right)^{\beta-1}, & A \le x \le B \\ 0 & \text{otherwise} \end{cases}$$

The case A = 0, B = 1 gives the standard beta distribution. And the mean and variance are

$$\mu = A + (B - A) \cdot \frac{\alpha}{\alpha + \beta}; \quad \sigma^2 = \frac{(B - A)^2 \alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

Homework

Ex. 72, Ex. 81

Probability Plot

An investigator obtained a numerical sample $x_1, x_2, ..., x_n$ and wish to know whether it is plausible that it came from a population distribution of some particular type (and/or the corresponding parameters).

An effective way to check a distributional assumption is to construct the so-called Probability plot.

Sample Percentiles

Order the n sample observations from the smallest to the largest. Then the ith smallest observation in the list is taken to be the [100(i-.5)/n]th sample percentile. Considering the following pairs (as a point on a 2-D coordinate system) in a figure

```
\begin{bmatrix} [100(i-0.5)/n] \text{th percentile,} & i \text{th smallest sample} \\ \text{of the distribution} & \text{observation} \end{bmatrix}
```

Note: If the sample percentiles are close to the corresponding population distribution percentiles, then all points will fall close to a 45° line.

Normal Probability Plot

Just a special case of the probability plot

$$\begin{bmatrix} [100(i-0.5)/n] \text{th percentile,} & i \text{th smallest sample} \\ \text{of the distribution} & \text{observation} \end{bmatrix}$$

$$\left[[100(i-0.5)/n] \text{th z percentile,} \right]$$

*i*th smallest sample \ observation

Used to check the Normality of the sample data

Example 4.29

The value of a certain physical constant is known to an experimenter. The experimenter makes n = 10 independent measurements of this value using a particular measurement device and records the resulting measurement errors (error = observed value - true value). These observations appear in the accompanying table.

Percentage	5	15	25	35	45
z percentile	-1.645	-1.037	675	385	126
Sample observation	-1.91	-1.25	−.7 5	− .53	.20
Percentage	55	65	75	85	95
z percentile	.126	.385	.675	1.037	1.645
Sample observation	.35	.72	.87	1.40	1.56

Example 4.29 (Cont')

Example 4.29 (Cont')

Example 4.29

- Categories of a non-normal population distribution
- 1. It is symmetric and has "lighter tails" than does a normal distribution; that is, the density curve declines more rapidly out in the tails than does a normal curve.
- 2. It is symmetric and heavy-tailed compared to normal distribution.
- 3. It is skewed.

Normal Probability plot of the normal distribution

Normal Probability plot of the uniform distribution

Normal Probability plot of the Weibull distribution

Homework

Ex. 88

