Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 17

Yun Yang

Random matrices and covariance estimation

Cumulant function of sum of independent matrices

The cumulant function of sum of independent matrices does not decompose additively, because **matrix products need not commute**.

Fortunately, for independent random matrices, it is possible to establish an upper bound in terms of the trace of the cumulant generating functions.

Lemma

Let Q_1, \ldots, Q_n be independent symmetric random matrices whose cumulant functions exists for all $\lambda \in I$. Then the sum $S_n = \sum_{i=1}^n Q_i$ satisfies

$$\operatorname{Tr}\left(e^{\Phi_{S_n}(\lambda)}\right) \leq \operatorname{Tr}\left(e^{\sum_{i=1}^n \Phi_{\mathcal{Q}_i}(\lambda)}\right) \quad \textit{for all } \lambda \in I.$$

A proof uses Lieb's theorem: for any fixed $H \in \mathcal{S}^{d \times d}$, the following function is concave:

$$A \mapsto \operatorname{Tr}\left(e^{H+\log(A)}\right)$$
.

Tail bounds for sub-Gaussian matrices

Theorem (Hoeffding bound for random matrices)

Let Q_1, \ldots, Q_n be independent symmetric random matrices that are sub-Gaussian with parameters V_1, \ldots, V_n . Then for any $\delta > 0$, we have

$$\mathbb{P}\Big[\|\sum_{i=1}^n Q_i\|_{op} \geq \delta\Big] \leq 2 d e^{-\frac{n\delta^2}{2\sigma^2}},$$

where
$$\sigma^2 = |||n^{-1} \sum_{i=1}^n V_i|||_{op}$$
.

This inequality also implies an analogous bound for general independent but potentially non-symmetric and/or non-square matrices in $\mathbb{R}^{d_1 \times d_2}$, with d replaced by $d_1 + d_2$ (why?).

Example: Looseness/Sharpness of leading factor d

- Let n = d, and E_i denote the diagonal matrix with 1 in position (i, i) and 0 elsewhere.
- Let $D_i = g_i E_i$ where g_i are i.i.d. sub-Gaussian with parameter 1.
- ▶ We showed D_i is sub-Gaussian with $V_i = E_i$, and hence $\sigma^2 = \|d^{-1}I_d\|_{\infty} = 1/d$. Therefore,

$$\mathbb{P}\Big[\|\!\| \frac{1}{d} \sum_{i=1}^d Q_i \|\!\|_{\mathsf{op}} \geq \delta\Big] \leq 2 \, d \, e^{-\frac{d\delta^2}{2\sigma^2}},$$

implying $\|\frac{1}{d}\sum_{i=1}^d Q_i\|_{op} \leq \frac{\sqrt{2\log(2d)}}{d}$ with high probability.

▶ On the other hand, if g_i are Rademacher variables, then $\|\frac{1}{d}\sum_{i=1}^d Q_i\|_{\text{op}} = \frac{1}{d}$ and the concentration inequality is off by the order d; if g_i are standard Gaussians, then $\|\frac{1}{d}\sum_{i=1}^d Q_i\|_{\text{op}} \approx \frac{\sqrt{2\log(2d)}}{d}$ and the inequality cannot be

improved.

Bernstein-type bounds for random matrices

Theorem (Matrix Bernstein concentration inequality)

Let Q_1, \ldots, Q_n be a sequence of independent, zero-mean, symmetric random matrices that satisfy the Bernstein condition with parameter b > 0. Then

$$\mathbb{P}\Big[\|\sum_{i=1}^n Q_i\|_{op} \geq \delta\Big] \leq 2 d \exp\Big\{-\frac{n\delta^2}{2(\sigma^2 + b\delta)}\Big\},\,$$

where
$$\sigma^2 = |||n^{-1} \sum_{i=1}^n \text{Var}(Q_i)|||_{op}$$
.

This inequality can also be generalized to non-symmetric matrices $A_i \in \mathbb{R}^{d_1 \times d_2}$, as long as we use

$$\sigma^{2} = \max \Big\{ \| \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[A_{i} A_{i}^{T}] \|_{\text{op}}, \| \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[A_{i}^{T} A_{i}] \|_{\text{op}} \Big\},$$

and replace d by $d_1 + d_2$.

Example: Tail bounds in matrix completion

- ► Consider an i.i.d. sequence of matrices of the form $A_i = \xi_i X_i \in \mathbb{R}^{d \times d}$.
- ξ_i is symmetric around zero, satisfying Bernstein condition with parameter b and variance ν^2 .
- ► X_i is independent from ξ_i , with a single entry d in a position chosen uniformly at random from all d^2 entries.
- Define a symmetric version

$$Q_i = \begin{bmatrix} 0_{d \times d} & A_i \\ A_i^T & 0_{d \times d} \end{bmatrix}$$

- ▶ $\| \sum_{i=1}^n A_i \|_{op} = \| \sum_{i=1}^n Q_i \|_{op}$, Q_i satisfies the Bernstein condition with parameter bd, and $\sigma^2 = \nu^2 d$.
- Then we have

$$\mathbb{P}\Big[\|\sum_{i=1}^{n} A_i\|_{\mathsf{op}} \geq \delta\Big] \leq 4 d \exp\Big\{-\frac{n\delta^2}{2d(\nu^2 + b\delta)}\Big\}.$$

Example: Tail bounds in matrix completion

Now we try to reduce the symmetric assumption on the distribution of ξ_i . We achieve this via the symmetrization technique:

$$\mathbb{E}\Big[\exp\Big\{\lambda\gamma_{\max}(\sum_{i=1}^{n}Q_{i})\Big\}\Big] = \mathbb{E}\Big[\exp\Big\{\lambda\sup_{\|u\|_{2}=1}u^{T}\Big(\sum_{i=1}^{n}Q_{i}\Big)u\Big\}\Big]$$

$$\leq \mathbb{E}\Big[\exp\Big\{2\lambda\sup_{\|u\|_{2}=1}u^{T}\Big(\sum_{i=1}^{n}\varepsilon_{i}Q_{i}\Big)u\Big\}\Big]$$

$$= \mathbb{E}\Big[\exp\Big\{2\lambda\gamma_{\max}(\sum_{i=1}^{n}\varepsilon_{i}Q_{i})\Big\}\Big],$$

where ε_i are i.i.d. Rademacher variables, and the second step follows by the symmetrization theorem with $\Phi(t) = e^{\lambda t}$.

Therefore, we may consider the symmetrized version $\varepsilon_i Q_i$ with the loss of a constant factor.

Applications to covariance matrices

Corollary (Sample Covariance concentration)

Let X_i be i.i.d. zero-mean random vectors with covariance Σ , such that $||x_i||_2 \leq \sqrt{b}$ almost surely. Then for all $\delta > 0$,

$$\mathbb{P}\big[\|\widehat{\Sigma} - \Sigma\|_{op} \ge \delta\big] \le 2d \exp\Big(-\frac{n\delta^2}{2b(\|\Sigma\|_{op} + \delta)}\Big).$$

Proof: Apply matrix Bernstein concentration inequality to $Q_i = x_i x_i^T - \Sigma$.

$$|||Q_i|||_{\text{op}} \le ||x_i||_2^2 + |||\Sigma|||_{\text{op}} \le 2b.$$

Moreover,

$$\operatorname{Var}(Q_i) \leq \mathbb{E}[(x_i x_i^T)^2] \leq b\Sigma.$$

Example: Random vectors uniform on sphere

 x_i are chosen uniformly from the sphere $S^{d-1}(\sqrt{d})$, so that $||x_i||_2 = \sqrt{d}$.

By construction, $\mathbb{E}[x_i x_i^T] = \Sigma = I_d$, and $||\Sigma||_{op} = 1$. Therefore,

$$\mathbb{P}\big[|\!|\!|\!|\widehat{\Sigma} - \Sigma|\!|\!|_{\mathsf{op}} \geq \delta\big] \leq 2d \exp\Big(-\frac{n\delta^2}{2d(1+\delta)}\Big),$$

which implies the high probability bound

$$\|\widehat{\Sigma} - \Sigma\|_{\text{op}} \lesssim \sqrt{\frac{d \log d}{n}} + \frac{d \log d}{n}.$$

This bound is off by a factor of $\log d$, since we can directly apply the matrix sub-Gaussian concentration inequality (x_i is sub-Gaussian with parameter c for some universal constant c > 0).

Example: "Spiked" random vectors

 x_i is uniformly chosen from $\{\sqrt{d}e_1,\ldots,\sqrt{d}e_d\}$, where $e_j\in\mathbb{R}^d$ is the canonical basis vector with 1 in position j.

As before, we have $||x_i||_2 = \sqrt{d}$, and $\mathbb{E}[x_i x_i^T] = I_d$. Therefore, the same bound applies:

$$\|\widehat{\Sigma} - \Sigma\|_{\text{op}} \lesssim \sqrt{\frac{d \log d}{n}} + \frac{d \log d}{n}.$$

This time, this bound is sharp (up to constant factors).

Structured covariance estimation: sparsity and thresholding

- ▶ Suppose Σ is known to be sparse, but the positions of non-zero entires are unknown.
- Motivates estimators based thresholding.
- ▶ Given a tuning parameter $\lambda > 0$, define the *hard* thresholding operator $T_{\lambda} : \mathbb{R} \to \mathbb{R}$ by

$$T_{\lambda}(u) = u \mathbb{I}[|u| > \lambda].$$

- ▶ For a matrix M, we define $T_{\lambda}(M)$ by applying T_{λ} to each element.
- We will study the property of the estimator $T_{\lambda_n}(\widehat{\Sigma})$, where $\lambda_n > 0$ is a suitably chosen parameter.

Sparsity and thresholding

- Let $A \in \mathbb{R}^{d \times d}$ denote the adjacency matrix, where $A_{ij} = \mathbb{I}(\Sigma_{ij} \neq 0)$.
- ▶ $|||A|||_{op}$ provides a measure of sparsity: if Σ has at most s non-zero entries per row, then $|||A|||_{op} \leq s$.

Theorem

 x_i are independent zero-mean sub-Gaussian with parameter at most σ^2 . If $n \geq \log d$, then for any $\delta > 0$ and $\lambda_n/\sigma^2 = 8\sqrt{\frac{\log d}{n}} + \delta$,

$$\mathbb{P} \Big[|\!|\!|\!| T_{\lambda_n}(\widehat{\Sigma}) - \Sigma |\!|\!|\!|_{\mathrm{op}} \geq 2 \, |\!|\!|\!| A |\!|\!|\!|\!|\!|_{\mathrm{op}} \lambda_n \Big] \leq 8 e^{-\frac{n}{16} \min\{\delta, \delta^2\}}.$$

Corollary

Suppose Σ has at most s non-zero entries per row, then

$$\mathbb{P}\Big[|\!|\!| T_{\lambda_n}(\widehat{\Sigma}) - \Sigma |\!|\!|_{\mathrm{op}}/\sigma^2 \geq 16s\sqrt{\frac{\log d}{n}} + 2\delta \Big] \leq 8e^{-\frac{n}{16}\min\{\delta,\delta^2\}}.$$

Example: Sparsity and adjacency matrices

- In certain cases, the two bounds discussed before coincide.
- ▶ Consider any graph with maximum degree s − 1 that contains a s-clique
- For any such graph, we have

$$||A||_{op} = s - 1.$$

- In general, the bound with $||A||_{op}$ can be substantially sharper.
- ▶ Consider a hub-and-spoke graph, in which one central node known as the hub is connected to s of the remaining d-1 node.
- ► For this graph, we have

$$||A||_{\mathsf{op}} = \sqrt{s}.$$