

Universidad Carlos III de Madrid Grado en Ingeniería Informática. Grupos 81,82 Tecnología de Computadores. 1^{er} parcial. Marzo de 2012

Nombre:	Grupo:
Apellidos:	

Duración: 1h 15 minutos

NO se permite el uso de calculadora. Es obligatorio entregar el enunciado.

Problema 1 (1,25 puntos)

1.1) Dado el circuito de la figura:

Se pide:

- a) Expresión algebraica de la función f
- b) Tabla de verdad
- c) Expresión de f en sus dos formas canónicas
- 1.2) Dada la siguiente función:

$$F = A\bar{B} + \bar{A}BC$$

- a) Implementar empleando un multiplexor de dos entradas de selección
- b) Implementar usando el menor número de puertas NOR

Problema 2 (0,75 puntos)

- 1) Convertir 825₁₀ a binario natural, octal, hexadecimal y BCD natural.
- 2) Realizar las siguientes operaciones utilizando notación en complemento a 2 con 7 bits. Razonar si en algún caso hay acarreo o desbordamiento.
 - a) 32 + 17
 - b) 17 32
- 3) Convertir el número real 113,125₁₀ en un número binario en formato de coma flotante siguiendo la norma IEEE-754 de 32 bits.
- 4) Dados las siguientes cantidades expresadas según la norma IEEE-754:
 - 0 10000000 1010000 00000000 00000000
 - 0 10000011 0011000 00000000 00000000

Calcule la suma de ambas cantidades y exprese el resultado siguiendo la misma norma IEEE.

1.1 a)
$$f = ab \cdot ab$$
 δ $f = ab + ab$

b) $a b \mid f$
 $0 \mid 0 \mid 0$
 $0 \mid 1 \mid 0 \mid 0$

c) $f = \frac{1}{4}(0,3) = (a+b)(a+b)$

1.2) $ab \mid c \mid ab \mid ab \mid F$
 $0 \mid 0 \mid 0 \mid 0 \mid 0$
 $0 \mid 0$

