WEST

End of Result Set

Generate Collection

L6: Entry 6 of 6

File: JPAB

Jan 13, 1992

DOCUMENT-IDENTIFIER: JP 04006:35 A TITLE: POWER TRANSMISSION DEVICE

FPAR:

PURPOSE: To reduce vibration an noise and prevent crack initiation and breakage in/of assist machines or the like by coupling the assist machines directly with a crank shaft using a belt transmitting mechanism installed at the tail of an engine, and thereby suppressing amplified vibration at the head of the engine and vibrations of the assist machines themselves.

FPAR

CONSTITUTION: In a power transmission device according to the present invention, a transmission case 38, transfer case 39, etc., are installed in line at the side of the engine 31, so that the coupling rigidity of power plant is heightened, and booming noise likely at high speed revolutions of engine can be suppressed satisfactorily. An alternator 54 is installed at the outer side of a chain case 35, and a rotor 58 is coupled directly with the output shaft 45, so that the weight on the front side of the engine is reduced, and rotation of the alternator 54 is transmitted directly from the crank shaft 31a. Accordingly the amplified vibration can be suppressed sufficiently, and vibration of the alternator itself 54 be suppressed. This prevents generation of large vibratory sounds and also crack initiation and breakage in/of an alternator casing 55.

⑲ 日本国特許庁(JP)

⑩特許出願公開

母公開 平成4年(1992)1月13日

四公開特許公報(A) 平4-8636

⑤Int. Cl.* 歳別記号 庁内整理番号 B 60 K 17/348 C 8710-3D 5/04 E 8710-3D 17/02 Z 8710-3D F 16 H 7/06 7233-3 J

審査請求 未請求 請求項の数 1 (全6頁)

◎発明の名称 動力伝達装置

❷特 願 平2-110772

❷出 願 平2(1990)4月26日

@発明者 兼利 和彦

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

内,

⑦出 頤 人 日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

⑫代 理 人 弁理士 志賀 富士弥 外3名

明細書

1. 発明の名称

動力伝達装置

2. 特許請求の範囲

(1) 機関のクランク軸の駆動力を、クラッチ機構とベルト伝達機構を介して変速機に伝達する動力伝達装置であって、前記機関の後端部に、前記クラッッチ機構に動力を伝達する前記ベルト伝達機構を取り付け、かつ前記クランク軸に、前記ベルト伝達機構を介して補機類を略直結したことを特徴とする動力伝達装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は、例えば4輪駆動用の自動車用内燃機 関の動力伝送装置に関する。

従来の技術

周知のように、前輪駆動車(FF車)や4輪駆動車(4 W D 車)等のパワープラント構造としては、機関をエンジンルーム内に構置きにすると共に、トランスミッションを機関と直列に配置した

所謂ジアコーサタイプのものがある (特開昭 5 3 - 1 0 0 5 3 5 号公報帯参照)。

ところが、このジアコーサタイプのものでは、パワープラントの全長が長く、最低次の固有短動数が低くなるために、特に機関高回転時にパワープラントの短動によってこもり音が発生し易くなる。

そこで、第3図A. Bに示すように、緩関1の
シリンダブロック2の関節に変速機たるトランス
ミッション3と、トランスファイとを取り付ける
パワープラントの全長を短くして結合剛性を高いた
る工夫もなされている。即ち、機関1の後端部に
クラッチハウジング5が取り付けられ、痰クラの
サハウジング5の後端部にチューンケース6をよう
り付けられていると共に、クラッチハウジンス
り付けられていると
にないないる。

前記トランスミッション3は、トランスミッン ッンケース6に収納され、玉ギア列9aを上に割 ギア列9 5 を下に、シリングブロック 2 の例方に 並放されている。 駒紀トランスファ4は、フロントデファレンシャル 1 0. センタデファレンシャル 1 1 と共に、トランスファケース 7 に収納され、シリンダブロック 2 下部のオイルパン 1 2 の例方に配投されている。 駒記クラッチハウジング 5 は、フランジ 1 3 を介して機関!の前面にボルトにより固定され、トランスミッションケース 6 とトランスファケース 7 は、機関!例部に設けたアランジ 1 4 を介してきらにシリンダブロック 2 の側面とオイルパン 1 2 に側面に形成した取付座 1 5 にボルトにより固定される。

そして、前記クラッチハのジング 5内には、クランク始16の講部に連結されたフライホィール17と摩擦クラッチ 18が収納されている。また、チェーンケース8内には、前記摩擦クラッチ 18の出力 19 講部に設けられた出力側チェーンスプロケット 20 と、主ギア列 9 a のメインシャフト 21 選部に設けられたた人力側チェーンスプロケット 20 と、この両スプロケット 20、22の

等に起因して機関 1 の駆動中にオルタネータ 2 5 付近で機関前後及び巾方向(矢印方向)に過大な 一一増幅振動が発生する。この結果、大きな振動騒音 が車内外に伝播されると共に、過大振動により結 機類に敵裂や破損が発生する底がある。

課題を解決するための手段

本発明は、前記従来の問題点に指みて賞出されたもので、機関の後端部に、クラッッチ機構に動力を伝達するベルト伝達機構を取り付け、かつクランク軸に、前記ベルト伝達機構を介して補機類を略直詰したことを特徴としている。

作用

前記様成の本発明によれば、特に機関の後端部に取り付けられたベルト伝達機構を介してクランク 結に組機類を略直結するようにしたため、機関 耐燃側の重量低減化や補機類の駆動振動の減少化 によって増級振動の発生を十分に抑制できる。 実施例

以下、本発明の実施例を図面に基づいて詳述する。

間に巻弦された契助チェーン23とが収納されており、この駆動チェーン23を介してクランク始 16の駆動力がトランスミッション3及びトラン スファ4に伝達されるようになっている。

更に、シリンダブロック2の前端側側部には、取付ブラケット24を介して補機類だるオルクネータ25がベルト張力調整用のアグャストバー26と共に取り付けられており、このオルタネータ25は、機関1前端側から突出したクランク給16の他端部16aから伝達ベルト27を介して駆動力が伝達されるようになっている。

発明が解決しようとする課題

このように、従来の動力伝達装置にあっては、 機関1の側部に、トランスミッション3とトラン スファ4とを取り付けることによりパワープラン トの結合剛性が高くなって、最低次の固有協動数 が低くなり高回転時のこもり音を十分に抑制でき るものの、オルタネータ25 等の複数の舗機類が 機関1の前端側に集中配置されているため、機関 前端側の重量増や伝達ベルト27による引張り力

第1図は本発明に係る動力伝建装置を4WD重 に適用した第1実施例を示し、図中31は4気間 内燃機関、32はシリンダブロック、33はトラー ンスミッション、36ほトランスファであって、 前記機関31の後端部には、チェーンケース35 がポルト36により取り付けられている。また、 シリングブロック32の側部には、前端側がチェ ーンケース35にポルトにより連結されたクラッ チハクジング37が取り付けられていると共に、 該クラッチハウジング37後端側に、シリングブ ロック32側部に一体に有するフランジ32aを 介してトランスミッションケース38が取り付け られている。また、トランスミッションケース3 8の下方に、トランスファケース39がンリング ブロック32の側面とオイルパンの側面に形成し た取付座にポルトにより取り付けられている。

前記トランスミッションケース38内に収納されたトランスミッション33は、主ギア列33a と、該主ギア列33aの下に配覆された副ギア列 33bとを備えている一方、トランスファケース 39内には、トランスファ34とフロントデファレンシャル40、センタデファレンシャル41が 夫々収納配置されている。また、前記チェーンケース35内には、機関31の駆動力が直接伝達されるベルト伝達機構42が収納されている一方、クラッチハワジング37内にはベルト伝達機構42からの回転力をトランスミッション33に伝達するクラッチ機構43が夫々収納されている。

具体的に説明すれば、前記ベルト伝達機構42は、一端が機関31のクランク軸31aに連結されてベアリング44・44により回転自在に支持された出力軸45と、該出力軸45に固定された第1チェーンスプロケット46と、該第1チェーンスプロケット46から一定の間隔をもって配置されて、ベアリング47・47により回転自在に支持された入力軸48と、該入力軸48に固定された第2チェーンスプロケット49と、両チェーンスプロケット46・49間に巻装された駆動チェーン50とから構成されている。

また、前記クラッチ機構43は、前記入力帕4

足されて、出力軸45からの回転力が直接伝達されるようになっている。

したがって、本実施例によれば、トランスミッションケース38やトランスファケース39等を、機関31の側部に並行に取り付けたため、パワープラントの結合剛性が高くなり、機関高回転時のこもにから音を十分に仰制できることは勿論のこと、オルタネーク54をチェーンケース35の外側部に取り付けてローク58を出力袖45に直結したため、機関31前端側の重量が低減すると共に、オルタネーク54の回転力がクランク袖31aから直接伝達される形になる。

したがって、増幅援動を十分に抑制できると共に、オルタネータ54自体の援動も抑制できる。 依って、大きな援動騒音の発生やオルタネータケーシング55の亀裂や破損等が防止される。尚、 ここでオルタネータ54は、前記のようにクラン ク始31aに直接回転させられるため、緩開31 駆動中において速既した発電作用が得られる。

更に、ベルト伝達機構42をクランク铂31a

8の一躍倒大径割く8aに固着されたフライホイール51と、一線部が該フライホイール51の略中央に連繋すると共に、他端部が主ギア列33aのメインシャフト33cに連結されたクラッチシャフト52に設けられた摩擦クラッチ53とを備えている。前記フライホィール51は、その外径寸法が前記ベルト伝連機構42で発生する遺性モーメントを考慮して前記従来のものよりも小さく設定されている。

そして、前記チェーンケース35の第1チェーンスプロケット46側の外側部には、稀縄類たるオルタネータ54が取り付けられている。このオルタネータ54は、一般的な構造でありチェーンケース35の外側壁にボルト56により固着されたケーシング55と、抜ケーシング55の内部に収納されたステータ57と、ローク58と、グリング61年から構成されている。また、ロータ58の先端部に有するロータ軸58aが前記出力軸45の内部軸方向に穿改された固定用孔内に挿通

に直接接続したため、クランク軸3iaの回転トルク変動を、まず駆動チェーン50 事のベルト伝達機構42で完生する信性セーメントー。で吸収し、次にフライホィール51で発生する領性モーメントー。で吸収する。即ち、トルク変動を吸収するために最低限必要な信性モーメントほよる。であるために最低限必要な信性モーメントは、そ2にも分担させることができるため、フライホィール51の例にベルト伝達は42にも分担させることができるため、フライホィールの個足させることができるため、フライホィールができる。この結果、重重の軽量化と製造コストの低度化が図れる。

また、前述のようにベルト伝達機構42の間代 モーメント1 n をも必要値性モーメント1 n の一部として子が加えているため、必要以上の値性モーメントの発生が防止され、したがって、メインシャフト33cがクランク触31aと同期回転する。依って、変速ギアの切換えを円費に行なうことが可能になる。

| 第2図は本発明の第2実施例を示し、この実施

例ではオルクキータ54が、第2チェーンスプロケット49例のチェーンケース35外側部にポルト62により取り付けられていると共に、ロータ始58aが人力結48の固定用孔に挿通固定されている。また、第2チェーンスプロケット49の外径が、第1チェーンスプロケット46のそれよりも小さく設定されて、第1実施例の場合よりも増速されるようになっている。

したがって、この実施例では第2チェーンスプロケット49の増退に伴いオルタネータ54のロータ回転速度も速くなり発電効率も高くなるため、該オルタネータ54を可及的に小さくすることが可能になり、また、フライホィール51の優性モーメントも大きくなるので、該フライホィール51も可及的に小さくすることが可能となり、これによって単体の軽量化が一層助長される。

尚、本発明は、前記実施例の構成に限定されるものではなく、トランスミッションケース38やトランスファケース39等の配数位置等を任意に変更することも可能である。また、補機類として

に、オルタネータ以外のオイルポンプやエアコン ポンプ奇でもよい。

発明の効果

以上の説明で明らかなように、本発明に係る動力伝達装置によれば、とりわけ緩関の後端部にかり付けられたベルト伝達機械を介して、クランク動に補機類を略直結する構成としたため、機関の増幅振動が十分に抑制されると共に、補機額自体の振動も抑制される。この結果、振動騒音の低減化と補機額の亀裂や破損等が防止される。4. 図面の簡単な説明

第1図は本発明に係る動力伝達袋屋の第1実施例を示す平断面図、第2図は本発明の第2実施例を示す平断面図、第3図Aは従来の装置を示す平断面図、同図Bは同従来装置の経断面図である。

31…内燃裁関、3; a…クランク館、33… トランスミッション(変速機)42…ベルト伝達 機構、43…クラッチ機構、54…オルタネータ (新機)。

第1図

-247-

第3図(B)

WES

End of Result Set

Generate Collection

L6: Entry 6 of 6

File: JPAB

Jan 13, 1992

PUB-NO: JP404008636A

DOCUMENT-IDENTIFIER: JP 04008-36 A TITLE: POWER TRANSMISSION DEVICE

PUBN-DATE: January 13, 1992

INVENTOR - INFORMATION:

NAME

KANETOSHI, KAZUHIKO

COUNTRY

ASSIGNEE-INFORMATION:

NAME

NISSAN MOTOR CO LTD

COUNTRY

N/A

APPL-NO: JP02110772 APPL-DATE: April 26, 1990

US-CL-CURRENT: 180/337; 180/383

INT-CL (IPC): B60K 17/348; B60K 5/04; B60K 17/02; F16H 7/06

ABSTRACT:

PURPOSE: To reduce vibration an noise and prevent crack initiation and breakage in/of assist machines or the like by coupling the assist machines directly with a grank shaft using a belt transmitting mechanism installed at the tail of an engine, and thereby suppressing amplified vibration at the head of the engine and vibrations of the assist machines themselves.

CONSTITUTION: In a power transmission device according to the present invention, a transmission case 38, transfer case 39, etc., are installed in line at the side of the engine 31, so that the coupling rigidity of power plant is heightened, and booming noise likely at high speed revolutions of engine can be suppressed satisfactorily. An alternator 54 is installed at the outer side of a chain case 35, and a rotor 53 is coupled directly with the output shaft 45, so that the weight on the front side of the engine is reduced, and rotation of the alternator 54 is transmitted directly from the crank shaft 31a. Accordingly the amplified vibration can be suppressed sufficiently, and vibration of the alternator itself 54 be suppressed. This prevents generation of large vibratory sounds and also crack initiation and breakage in/of an alternator casing 55.

COPYRIGHT: (C)1992, JPO&Japio