Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 32

1. Пусть
$$z=2\sqrt{3}+2i$$
. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{\frac{1}{2}+\frac{\sqrt{3}i}{2}}$ имеет аргумент $-\frac{5\pi}{4}$.

2. Решить систему уравнений:

$$\begin{cases} x(-5+2i) + y(-4-6i) = 136-51i \\ x(-15-9i) + y(-14+13i) = 313-238i \end{cases}$$

- 3. Найти корни многочлена $-2x^6 20x^5 78x^4 + 932x^2 + 6120x + 9248$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -1 + 4i$, $x_2 = -5 + 3i$, $x_3 = -2$.
- 4. Даны 3 комплексных числа: 8+24i, 26+15i, -15-26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -\frac{1}{2} \frac{\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-1| < 1\\ |arg(z+5+4i)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-4, -8, 0), b = (4, 7, -1), c = (-4, -3, 6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-15,4,-2) и плоскость P:-26x+22y-28z+438=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-14, -5, 4), $M_1(-3, 8, -9)$, $M_2(1, 0, -9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 2x + 5y + 20z + 407 = 0 \\ -3x + 7y + 12z + 331 = 0 \end{cases} \qquad L_2: \begin{cases} 5x - 2y + 8z - 482 = 0 \\ 9x + 6y - 10z - 2 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.