Semiconductor (Ionization) Detectors

Bandgap & Ionization Energy

	Mean Ioniz. En. W [eV]	Density [g/cm³]	Fano Factor
Gases	30	7 – 50x10 ⁻⁴	0.1-0.2 (ionization vs. excitation)
Si	3.62	2.33	~0.10 (ionization vs. phonons)
Ge	2.96	5.32	~0.10 (ionization vs. phonons)

Example: Ge bandgap ~ 0.7 eV; Ge mean ionization energy = 2.96 eV \rightarrow ~ 4x phonon production per e/h pair.

Electron/Hole Pairs: Information Carriers

- Low mean ionization energy → More information carriers / interaction

Measuring e⁻/h Pairs

- Challenge: Measure ionization with high precision (better than 0.1%) in large detector volumes (>~cm³)
 - \circ E.g. 300 keV energy deposition in Ge $\rightarrow \sim 10^5$ e/h pairs: .1% \sim 100 e/h pairs

Requirements

- Establish E-field to accelerate charge collection (with low leakage current)
- Excellent carrier transport
 - High carrier mobility (μ) and lifetime (τ)

Establishing E-Fields with Low Leakage

- Requires material with high resistivity depends on dopant concentration and carrier mobility $\rho = (eN_D \mu_{mai})^{-1}$
 - Dopant dictates majority carrier (p-type = holes, n-type = e⁻)
 - Dopant concentration → total number of available charge carriers
 - Challenge of crystal growth: defects affect carrier mobility
- Truly "pure" material not achievable in practice
 - Properties of Si/Ge determined by minute imbalances of dopant concentrations
 - Compensated material: donor and acceptor impurity concentration equal
 - E.g. Lithium-drifting: Si(Li) & Ge(Li) detectors
- High resistivity can be achieved in some compound semiconductors as well

Implementation: Reverse-Biased Diodes

Near-intrinsic bulk (N_D~10¹⁰cm⁻³)

Heavily doped thin contacts

$$N_A \sim 10^{18} \text{cm}^{-3}$$
 $N_D \sim 10^{18} \text{cm}^{-3}$

B \sim 3 mm Li \sim 0.5 mm

Apply reverse bias to accentuate contact potential difference

- Attract minority carriers across junction = very low current
- Generate high electric field

Depletion, Electric Fields, Capacitance

Example: Planar detector

Electric field:
$$-\mathscr{E}(x) = \frac{V}{d} + \frac{\rho}{\varepsilon} \left(\frac{d}{2} - x \right)$$

Depletion voltage:
$$V_d = \frac{\rho d^2}{2 \varepsilon}$$
 $\rho = \text{charge dens.} = (eN)$

Capacitance per unit area:
$$C = \sqrt{\frac{\varepsilon \rho}{2 V}}$$

$$= constant = \sqrt{\frac{\varepsilon \rho}{2 V_d}} \quad for V > V_d$$

Signal Formation - Shockley-Ramo

- Measure current signal induced at electrode due to carrier motion
- Weighting field & potential: convenient constructs for computing induced charge & current

$$i_{ind}(t) = \frac{dQ_{ind}}{dt} = -q \frac{dV_w(P)}{dt} = -q \frac{dV_w(P)}{d\vec{l}} \bullet \frac{d\vec{l}}{dt} \qquad \vec{v} = \frac{d\vec{l}}{dt}$$

$$i_{ind}(t) = q \vec{E}_w(P) \bullet \vec{v}(P(t))$$
 N.B. e⁻ & holes drift in opposite direction: induce signals of same sign!

$$Q_{ind}(t) = \int idt = q \int \vec{E}_w \bullet d\vec{l} = q(V_w(P_0) - V_w(P_t))$$

$$\vec{v} = \mu(E)\vec{E}$$
 Carrier velocity determined by **electric field** \rightarrow compute via **Poisson** equation (with space charge) in the detector

$$\vec{V}_w(P)$$
 Coupling determined by weighting potential \rightarrow compute via Laplace equation (ignore space charge) according to S/R

High-Purity Germanium (HPGe) Detectors

- Ge vs. Si detectors:
 - Smaller band gap than Si (0.7 vs 1.1 eV)
 - Higher density (5.32 vs. 2.33 g/cm³) and higher Z (32 vs. 14)
 - Lower impurity (10⁹ vs 10¹² cm⁻³) allows much larger volumes to be depleted
- 1962: Pell (LBL) produces first compensated
 Ge(Li) detector
 - Drawbacks: limited volume, must always be kept at LN₂ temperatures
- 1970's: HPGe replaces Ge(Li)
 - Improved purity (zone refining), improved crystal growth methods (Czochralski process)
- 1990's: Large-volume HPGe
 - >800 cm³
 - o Impurity conc O(10⁹ cm⁻³) = purest commercially available material on earth!

General Remarks

 HPGe and Si detectors are the "gold-standard" in many applications such as electron spectroscopy (Si) and gamma-ray spectroscopy (HPGe)

- Excellent energy resolution
 - Statistics of charge-carrier production
- High density (solid state)
- Excellent charge carrier collection properties
 - High mobility and lifetimes for both electrons and holes
- Very good timing characteristics
 - Design dependent, but influenced by high carrier mobility

Ag-108m & Ag-110m. Knoll 12.4

HPGe Detector Configurations

- Planar configuration
 - Limited volume

- Bulk material can be n-type or p-type
- Traditional contacts
 - o n^+ by Li diffusion (\sim O(100 μ m) thick)
 - o p⁺ by boron implantation (<1 μ m thick)
- Modern contacts: amorphous semiconductor (e.g. α-Ge)
 - Blocking contact for both carrier types

Coaxial detectors

Large volume

Signal Shapes in HPGe Detectors

 Signal induction process → Signal shape depends on interaction position!

Coaxial Geometry

Planar Geometry

Gamma-Ray Energy Spectrum in HPGe

- Features based on various gamma-ray interaction mechanisms (coupled to detector geometry)
 - Full energy peak
 - Last interaction must be PE abs.
 - Features due to Compton scattering
 - Compton continuum, Compton Edge, Compton "valley"
 - Backscatter peak
 - Features from pair production
 - Escape peaks (single, double)
- "Good" coaxial detector
 - Ener. Res. < 0.2% @ > 1 MeV

HPGe Detector Efficiency

- Absolute full-energy (peak) efficiency = (Counts in photopeak) / (number of emitted gamma rays)
- Intrinsic full-energy (peak) efficiency = (Counts in photopeak) / (number of emitted gamma rays incident on the detector)
- Relative full-energy (peak) efficiency = efficiency at 1332 keV (⁶⁰Co source) relative to 3"x3" cylindrical NaI(TI) crystal at 25 cm distance.

Historical Note about HPGe Efficiency

Detector efficiency is often quoted in percent of that for a 3"x3" NaI(Tl) detector (for historical reasons) and generally for the 1332.5 keV line from 60Co.

$$\begin{split} \varepsilon_{geo} &= \frac{1}{2} \Biggl(1 - \frac{d}{\sqrt{d^2 + a^2}} \Biggr) \qquad d = 25cm, \, a = 1.5 \text{''} \\ \varepsilon_{geo} &= 5.707 \, x 10^{-3} \end{split}$$

$$\varepsilon_{total}(NaI) = 1.2x10^{-3} \rightarrow \varepsilon_{intrinsic}(NaI) = 0.210$$