किसी समकोण △ में,

आधार =
$$\sqrt{avf^2 - लम्ब^2}$$

$$_{\text{लम्ब}} = \sqrt{\text{and}^2 - 311213}^2$$

1. Sinθ =
$$\frac{\overline{c}_{\mu}}{\overline{a}_{\mu}}$$
 $\frac{\overline{c}_{\mu}}{\overline{c}_{\mu}}$ $\frac{\overline{c}_{\mu}}{\overline{c}_{\mu}}$ $\frac{\overline{c}_{\mu}}{\overline{c}_{\mu}}$

2.
$$\cos\theta = \frac{\text{आधार}}{\text{कर्ण}}$$
 तथा $\sec\theta = \frac{\text{कर्ण}}{\text{आधार}}$

3.
$$tan\theta = \frac{e}{sin} \frac{d}{sin} \frac{d$$

॥ किसी एक अनुपात को अन्य अनुपात में बदलने पर,

1.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 तथा $\cot \theta = \frac{\cos \theta}{\sin \theta}$

2.
$$\operatorname{Cosec}\theta = \frac{1}{\operatorname{Sin}\theta}$$
 तथा $\operatorname{Sin}\theta = \frac{1}{\operatorname{Cosec}\theta}$

3.
$$Sec\theta = \frac{1}{Cos\theta}$$
 तथा $Cos\theta = \frac{1}{Sec\theta}$

III. किसी कोण के त्रिकोणमितीय अनुपातों में संबंध

1.
$$\sin^2\theta + \cos^2\theta = 1 \checkmark$$

2.
$$\sin^2\theta = 1 - \cos^2\theta$$

3.
$$\cos^2\theta = 1 - \sin^2\theta$$

4.
$$Sec^2\theta = 1 + tan^2\theta$$

5.
$$\operatorname{Cosec}^2 \theta = 1 + \operatorname{Cot}^2 \theta$$

IV. दो कोणों के योग तथा अन्तर के त्रिकोणमितीय अनुपात

4.
$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B$$

5.
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

6.
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$$

पूरक कोणों के त्रिकोणमितीय अनुपात

VI. 0° से 90° तक के कोणों की त्रिकोणमितीय मान

कोण	0°	30°	45°.	60°	90°
Sin	0	1/2	$\frac{1}{\sqrt{2}}$	<u>√3</u> 5	o 43
Cos	1	<u>√3</u>	$\frac{1}{\sqrt{2}}$	1 2	0
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	

याद रखें : Sin का उल्टा Cosec, Cos का उल्टा Sec तथा tan का उल्टा Cot होता है। अत: Cosec, Sec तथा Cot का मान ज्ञात करने के लिए उन्हें उल्ट दें।

जैसे - Cosec 30° = Sin 30° का उल्टा =
$$\frac{2}{1}$$
 = 2

इसी प्रकार

Cot 60° =
$$\tan 60^{\circ}$$
 की उल्य = $\frac{1}{\sqrt{3}}$

इसी प्रकार आगे भी ज्ञात करें।

VII. त्रिकोणमितीय अनुपातों के चिन्ह -

- प्रथम चतुर्थांश (0° से 90°): जब किसी कोण का मान 0° से 90° तक होता है तो वह प्रथम चतुर्थांश में कहा जाता है। इसमें सभी त्रिकोणमितीय अनुपातों के चिन्ह सदैव घनात्मक होते है।
- 2. द्वितीय चतुर्थांश (90° से 180°) : इसमें केवल Sin और Cosec के चिन्ह धनात्मक होते है परन्तु अन्य सभी के चिन्ह ऋणात्मक होते है।
- तृतीय चतुर्थांश (180° से 270°): इसमें tan और Cot के चिन्ह घनात्मक परन्तु अन्य सभी के चिन्ह ऋणात्मक होते हैं।
- 4. चतुर्थ चतुर्थांश (270° से 360°) : इसमें Cos और Sec के चिन्ह घनात्मक होते हैं, परन्तु अन्य सभी के चिन्ह ऋणात्मक होते हैं।

महत्त्वपूर्ण निर्देश

 किसी भी कोण के Sin और Cos का संख्यात्मक मान कभी भी 1 से अधि क तथा –1 से कम नहीं हो सकता है।

- ऋणात्मक न्यूनकोण के Cos या Sec का मान घनात्मक एवं शेष सभी का मान ऋणात्मक होता है।
- कोण 360° × n 0 के त्रिकोणमितीय अनुपात का मान वहीं होगा जो -0 का होता है।
- यदि θ न्यूनकोण हो, तो θ का मान बढ़ने पर Sin θ , tan θ और Seco का मान बढ़ता है। परन्तु Coseco, Coto तथा Coso का मान घटता है।

अन्य महत्त्वपूर्ण सूत्र

- $Sin 2\theta = 2 Sin \theta . Cos \theta$ 1.
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 1 2\sin^2 \theta$
- $\sin B + \sin C = 2\sin \frac{B+C}{2} \cdot \cos \frac{B-C}{2}$
- $\cos B + \cos C = 2\cos \frac{B+C}{2} \cdot \cos \frac{B-C}{2}$
- $\sin B \sin C = 2\cos \frac{B+C}{2} \cdot \sin \frac{B-C}{2}$
- $\cos B \cos C = 2\sin \frac{B+C}{2}$. $\sin \frac{B-C}{2}$
- $\tan 2\theta = \frac{2\tan \theta}{1 \tan^2 \theta}$
- $Sin(90^{\circ}+\theta) = Cos\theta$
- 9. Cos (90°+θ) = -Sinθ
- $Sin(180^{\circ} \theta) = Sin\theta$
- $\cos(180^{\circ} \theta) = -\cos\theta$

Sin 18° =
$$\frac{\sqrt{5}-1}{4}$$
,

Sin 18° =
$$\frac{\sqrt{5}-1}{4}$$
, Cos 18° = $\frac{\sqrt{10+2\sqrt{5}}}{4}$

Sin 36° =
$$\frac{\sqrt{10 + 2\sqrt{5}}}{4}$$
, Cos 36° = $\frac{\sqrt{5} + 1}{4}$

1 समकोण =
$$90^{\circ}$$
 1 समकोण = 100° D° = $\frac{10D}{9}$ ग्रेड 1° समकोण = 60° 1° समकोण = 100° G ग्रेड = $\frac{9G}{10}$ डिग्री 1' समकोण = 60° 1' समकोण = 100° 180° = π रेडियन

प्रमुख निर्देश एवं सत्र पर आधारित प्रश्न

1. यदि $\tan\theta = \frac{12}{5}$ हो, तो $\sin\theta$ का मान क्या होगा ?

Speedy Solution :-

$$\because \tan \theta = \frac{12}{5} = \frac{\overline{e}}{3\pi}$$

$$=\sqrt{(12)^2+(5)^2}=\sqrt{144+25}=\sqrt{169}=13$$

2. यदि $\sin A = \frac{3}{4} \cos A$ तो $\sec^2 A$ का मान क्या होगा ? Speedy Solution :-

$$\because Sin A = \frac{3}{4} Cos A \implies \frac{Sin A}{Cos A} = \frac{3}{4}$$

∴
$$\tan A = \frac{3}{4} = \frac{\overline{e}}{3}$$
 $\left[\frac{\sin A}{\cos A} = \tan A\right]$

$$\therefore$$
 कर्ण = $\sqrt{\text{लम्ब}^2 + 311धार}^2 = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5$

$$\therefore \operatorname{Sec}^2 A = \left(\frac{\operatorname{quot}}{\operatorname{SMRIT}}\right)^2 = \left(\frac{5}{4}\right)^2 = \frac{25}{16}$$

TYPE - 2

3. यदि $tan\theta = \frac{4}{3}$ तो $Sin\theta + Cos\theta$ का मान क्या होगा ? Speedy Solution :

$$\tan\theta = \frac{4}{3} = \frac{\overline{\Theta}}{3\overline{\Theta}}$$

$$= \sqrt{(4)^2 + (3)^2} = \sqrt{25} = 5$$

$$\therefore \sin\theta + \cos\theta = \frac{\overline{e} \circ}{\overline{a} \cdot \overline{u}} + \frac{\overline{3} \circ}{\overline{a} \cdot \overline{u}} = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$$

यदि $5 \sin\theta = 4$ तो $\frac{5 \sin\theta - 3 \cos\theta}{\sin\theta + 2 \cos\theta}$ का मान क्या होगा ?

Speedy Solution :-

$$\therefore \sin\theta = \frac{4}{5} = \frac{1}{8} \frac{\overline{e}}{8} \frac{\overline{e}$$

ं आधार =
$$\sqrt{4}$$
 कर्ण $\sqrt{4}$ = $\sqrt{4}$

$$\therefore \frac{5 \sin\theta - 3 \cos\theta}{\sin\theta + 2 \cos\theta} = \frac{\frac{5 \times \frac{\overline{\forall} 6}{\sin\theta} - 3 \times \frac{3\overline{1} 6}{\sin\theta}}{\overline{\forall} 6}}{\frac{\overline{\forall} 6}{\cos\theta} + 2 \times \frac{3\overline{1} 6}{\cos\theta}} = \frac{5 \times \frac{4}{5} - 3 \times \frac{3}{5}}{\frac{4}{5} + 2 \times \frac{3}{5}}$$

$$=\frac{\frac{20}{5} - \frac{9}{5}}{\frac{4}{5} + \frac{6}{5}} = \frac{\frac{11}{5}}{\frac{10}{5}} = \frac{11}{10}$$

TYPE - 3

Cos 30° + Sin 60° 1+ Sin 30° + Cos 60° का मान क्या होगा ? Speedy Solution :-

$$\frac{\cos 30^{\circ} + \sin 60^{\circ}}{1 + \sin 30^{\circ} + \cos 60^{\circ}} = \frac{\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}}{1 + \frac{1}{2} + \frac{1}{2}} = \frac{\frac{2\sqrt{3}}{2}}{\frac{4}{2}} = \frac{2\sqrt{3}}{4}$$

यदि A = 60° तथा B = 30° हो, तो $\frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$ क्या होगा ?

Speedy Solution :-

tan A - tan B tan 60° - tan 30° 1+ tan A. tan B 1+ tan 60° . tan 30° मान रखने पर,

$$=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3}\times\frac{1}{\sqrt{3}}}=\frac{\frac{3-1}{\sqrt{3}}}{1+1}=\frac{2}{\sqrt{3}\times2}=\frac{1}{\sqrt{3}}.$$

TYPE - 4

Cos 70° का मान क्या होगा ? I SE THE F YOUR TO

Speedy Solution :-

$$\frac{\sin 20^{\circ}}{\cos 70^{\circ}} = \frac{\sin (90^{\circ} - 70^{\circ})}{\cos 70^{\circ}} = \frac{\cos 70^{\circ}}{\cos 70^{\circ}} = 1$$

√5 Sin 18° का मान क्या होगा ?

Speedy Solution :-

$$\sqrt{5} \frac{\sin 18^{\circ}}{\cos 72^{\circ}} = \sqrt{5} \frac{\sin (90^{\circ} - 72^{\circ})}{\cos 72^{\circ}}$$
$$= \sqrt{5} \times \frac{\cos 72^{\circ}}{\cos 72^{\circ}} = \sqrt{5} \times 1 = \sqrt{5}$$

Sin 60°. Cos 30° - Cos 60°. Sin 30° का मान क्या होगा? Speedy Solution :-

: Sin A . Cos B - Cos A . Sin B = Sin (A - B)

.: Sin 60°. Cos 30° - Cos 60°. Sin 30°

 $= Sin (60^{\circ} - 30^{\circ}) = Sin 30^{\circ} = \frac{1}{3}$

tan 60° - tan 30° 1+ tan 60° . tan 30° का मान क्या होगा ?

Speedy Solution :-

सुत्र से, = $\tan (A - B) = \tan (60^{\circ} - 30^{\circ}) = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$ tan A - tan B

11. Sin 42°. Cos 48° + Cos 42°. Sin 48° का मान क्या होगा ? Speedy Solution :-

: Sin A. Cos B + Cos A. Sin B = Sin (A + B)

= Sin (42° + 48°) = Sin 90° = 1

12. (Cos A + Sin A)2 + (Cos A - Sin A)2 का मान क्या होगा ? Speedy Solution :-

: (Cos A + Sin A)2 + (Cos A - Sin A)2

= Cos2 A + 2Cos A . Sin A + Sin2 A

+ Cos2 A - 2Cos A . Sin A + Sin2 A

 $= 2\cos^2 A + 2\sin^2 A = 2(\cos^2 A + \sin^2 A)$

 $= 2 \times 1 = 2 \quad \left[\because \cos^2 A + \sin^2 A = 1 \right]$

TYPE - 7

Speedy Solution :-

$$\frac{1}{\operatorname{Cosec}^{2} \theta} + \frac{1}{\operatorname{Sec}^{2} \theta} = \frac{1}{\frac{1}{\operatorname{Sin}^{2} \theta}} + \frac{1}{\frac{1}{\operatorname{Cos}^{2} \theta}} = \operatorname{Sin}^{2} \theta + \operatorname{Cos}^{2} \theta = 1$$

14. Cos⁴θ – Sin⁴θ का मान बताये ? Speedy Solution :-

A main the relative markets are carro only

TYPE - 8

15. यदि Sinθ = Cosθ हो, तो θ का मान बतायें ?

Speedy Solution : and is seen on 3.5. In 1900, on 8.

$$Sin\theta = Cos\theta$$

$$= Sin (90^{\circ}-\theta)$$

$$= Sin (90^{\circ}-\theta)$$

16. यदि θ न्यूनकोण हो और 7+4 Sinθ = 9 हो, तो θ का मान क्या होगा ?

Speedy Solution :-

या,
$$\sin \theta = \frac{2}{4} = \frac{1}{2}$$

[231]

TYPE - 9

17. tan 15° का मान क्या होगा ? Speedy Solution :-

$$\frac{1}{1 + \tan 45^{\circ} - \tan (45^{\circ} - 30^{\circ})}{1 + \tan 45^{\circ} \times \tan 30^{\circ}} = \frac{\tan (45^{\circ} - \tan 30^{\circ})}{1 + \tan 45^{\circ} \times \tan 30^{\circ}} = \frac{\tan (4 - \tan 4)}{1 + \tan 4 \cdot \tan 4} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \times \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3} + 1}}{\frac{\sqrt{3} + 1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

18. tan 75° का मान बताये ? Speedy Solution :-

$$\frac{\tan 75^{\circ} = \tan (45^{\circ} + 30^{\circ})}{1 - \tan 45^{\circ} + \tan 30^{\circ}} = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \times \tan 30^{\circ}} = \left[|V| \stackrel{\Rightarrow}{\Rightarrow} (5)| \stackrel{\rightleftharpoons}{\forall} \right]$$

$$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \times \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} + 1}{\sqrt{3} - 1}}{\frac{\sqrt{3} - 1}{\sqrt{3} - 1}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

TYPE - 10

19. Sinθ + Cosθ का अधिकतम मान कितना होगा ? Speedy Solution :-

TRICK: a Cos α ± b Sin α का

अधिकत्तम मान =
$$\sqrt{a^2 + b^2}$$

न्यूनत्तम मान
$$= -\sqrt{a^2 + b^2}$$

$$\therefore$$
 Sinθ + Cosθ का मान अधिकत्तम मान = $\sqrt{(1)^2 + (1)^2} = \sqrt{2}$

20. 3 Sinθ – 4 Sinθ का न्यूनत्तम मान बतायें ?

Speedy Solution :-3 Sine – 4 Sine में न्यूनतम मान

$$=-\sqrt{(3)^2+(-4)^2}=-\sqrt{9+16}=-\sqrt{25}=-5$$

21. Sinθ.Cosθ का अधिकत्तम मान क्या होगा ? Speedy Solution :-

$$\because Sin\theta . Cos\theta = \frac{1}{2} . 2 Sin\theta . Cos\theta = \frac{1}{2} . Sin 2\theta$$

अतः $Sin\theta$. $Cos\theta$ का अधिकत्तम मान $\frac{1}{2}$ होगा

D ; Sik²h का अधिकत्तम मान 1 होगा।

TYPE - 11

22. 60°, 75°, 115° के कोण को वृत्तीय पद्धति में लिखों ? Speedy Solution :-

Grander A. Grander by the

$$60^{\circ} = \frac{\pi}{180} \times 60 = \frac{\pi}{3}$$
 रेडियन

$$75^{\circ} = \frac{\pi}{180} \times 75 = \frac{5\pi}{12}$$
 रेडियन

$$115^{\circ} = \frac{\pi}{180} \times 115 = \frac{23\pi}{36}$$
 रेडियन

23. एक सम अप्ट्रभुज के कोण को रेडियन में ज्ञात करें ? Speedy Solution :-

भुजाओं की संख्या = 8

सभी बाह्य कोण = 360°

प्रत्येक आंतरिक कोण = $180 - 45 = 135^{\circ} = 135 \times \frac{\pi}{180} = \frac{3\pi}{4}$ रेडियन

24. $\left(\frac{12\pi}{5}\right)^{C}$ को डिग्री में व्यक्त करें ?

Speedy Solution :-

$$\therefore \left(\frac{12\pi}{5}\right)^C = \left(\frac{12\pi}{5} \times \frac{180}{\pi}\right)^C = 432^\circ$$

25. एक पहिया एक मिनट में 180 चक्कर लगाता है तो एक सेकेण्ड में कितना रेडियन घुमेगा ?

Speedy Solution :-

एक सेकेण्ड में चक्करों की संख्या = $\frac{180}{60}$ = 3

एक चक्कर में घूमेगा $=(2\pi)^{\mathbb{C}}$

तीन चक्कर में घूमेगा $=(6\pi)^C$

26. एक घोड़ा 30 मीटर लम्बी रस्सी से बंधा है। यह रस्सी को सख्त रखते हुये परिधि के अनुदिश 105° घुमता है, तो घोड़े ने कितनी दूरी तय की ?

Speedy Solution :-

$$r = 30$$
 और $\theta = 105^{\circ} = \frac{7\pi}{12}$

अब,
$$I = \frac{7\pi}{12} \times 30 = \frac{7}{12} \times \frac{22}{7} \times 30 = 55$$
 मीटर

27. किसी ΔABC में, यदि C=105°, B=45° तथा a=2 सेमी॰ हो तो b का मान क्या होगा ?

Speedy Solution :- In the state of the state

ΔABC Ť,

.. A+B+C=180° ...

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{a}{\sin 30^{\circ}} = \frac{b}{\sin 45^{\circ}}$$

$$\Rightarrow b = \frac{2\sin 45^{\circ}}{\sin 30^{\circ}} = 2 \times \frac{1}{\sqrt{2}} \times \frac{2}{1} = 2\sqrt{2}$$

PREVIOUS YEAR'S RRB'S QUESTIONS

- Sinx + Cosx का अधिकत्तम मान है ?
 - (A) √3 (B) 2

- (C) $\sqrt{2}$ (D) $-\sqrt{2}$

(RRB बंगलीर ESM, 2004)

Speedy Solution : (C)

Type (10) से,

अधिकत्तम मान = $\sqrt{(1)^2 + (1)^2} = \sqrt{2}$

- 3 Sinx + 4 Cosx को अधिकत्तम मान है ?

 - (A) 3 (B) 4
- (C) 5 (D) 7

(RRB गोरखपुर P.Way, 2004

Speedy Solution : (C)

Type (10) से,

अधिकत्तम मान =
$$\sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5$$

- Sin (90° − 0) किसके बराबर है ?

- (A) $Sin\theta$ (B) $-Sin\theta$ (C) $Cos\theta$ (D) $-Cos\theta$

(RRB गोरखपुर P.Way, 2004)

Speedy Solution : (C)

सूत्र से,

$$Sin (90^{\circ} - \theta) = Cos \theta$$

- 4. tan 70° किसके बराबर है ?

 - (A) tan 50° + tan 20° (B) 2 tan 50° + tan 20°
 - (C) tan 50° + 2 tan 20°
- (D) 2 tan 50° + 2 tan 20°

(RRB गोरखपुर ESM, 2003)

Speedy Solution : (B)

tan 70° = tan (20° + 50°)

या, tan 70°-tan 70° . tan 20° . tan 50°

या, tan 70° – tan 50° = tan 20° + tan 50°

या, tan 70° = tan 20° + tan 50° + tan 50°

$$= 2 \tan 50^\circ + \tan 20^\circ$$

Note: [tan 70°. tan 20° = 1]

- 5. यदि Sinx = Cosy तो x+y बराबर है ?
- (C) 90°

(RRB गोरखपुर Ast. Driver, 2003

Speedy Solution : (C)

- $\because \operatorname{Sin} x = \operatorname{Cos} y$
- या, Sin x = Sin (90° y)

या,
$$x = 90^{\circ} - y$$
 ार्था अस्त एक सम

- 6. Sin2 38° + Cos2 38° = 7

 - (A) $\frac{1}{2}$ (B) $\sqrt{3}$

Speedy Solution : (C)

$$\sin^2\theta + \cos^2\theta = 1$$

- Sin A Sin B Cos A + Cos B Sin A + Sin B किसके बराबर है ?

 - (A) Sin A . Cos B (B) Cos A . Cos B
 - (C) tan A . tan B
- (D) शून्य

(RRB कोलकाता Driver, 2002)

Speedy Solution: (D)

$$\frac{\sin A - \sin B}{\cos A + \cos B} + \frac{\cos A - \cos B}{\sin A + \sin B}$$

= (Sin A - Sin B) (Sin A + Sin B)

$$= \frac{\sin^2 A - \sin^2 B + \cos^2 A - \cos^2 B}{(\cos A + \cos B)(\sin A + \sin B)}$$

$$\sin^2 A + \cos^2 A - (\sin^2 B + \cos^2 B)$$

$$=\frac{1-1}{\left(\operatorname{Cos} \mathsf{A} + \operatorname{Cos} \mathsf{B}\right)\left(\operatorname{Sin} \mathsf{A} + \operatorname{Sin} \mathsf{B}\right)} = 0$$

- $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ बरावर है ? (5)

 - (A) Sec θ + tan θ (B) Sec θ tan θ

 - (C) Sin0 + Cos0 (D) Sin0 Cos0

(RRB कोलकाता Driver, 2002)

Speedy Solution: (B)

$$=\sqrt{\frac{(1-\operatorname{Sin}\theta)^2}{1-\operatorname{Sin}^2\theta}} = \sqrt{\frac{(1-\operatorname{Sin}\theta)^2}{\operatorname{Cos}^2\theta}} = \frac{1-\operatorname{Sin}\theta}{\operatorname{Cos}\theta}$$

$$= \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} = \sec \theta - \tan \theta$$

Cosθ+Sinθ का मान महत्तम होगा, जबिक ~

(B)
$$\theta = 30^{\circ}$$

(C)
$$\theta = 60^{\circ}$$
 (D) $\theta = 90^{\circ}$

(RRB गोरखपुर Ast Driver, 2001)

Speedy Solution: (A)

Type (10) 社,

अधिकत्तम मान =
$$\sqrt{(1)^2 + (1)^2} = \sqrt{2} = \frac{\sqrt{2} \times \sqrt{2}}{\sqrt{2}}$$

$$= \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \sin 45^{\circ}$$

10. Cot 9°. Cot 27°. Cot 63°. Cot 81° का मान है ?

(D)
$$\frac{1}{\sqrt{3}}$$

Speedy Solution: (C)

Cot 9°. Cot 27°. Cot 63°. Cot 81°

= (Cot 9°, Cot 81°). (Cot 27°, Cot 63°)

= (Cot 9° . tan 9°) . (Cot 27° . tan 27°)

11. यदि $\sin\theta = \frac{8}{10}$ तो $\tan\theta$ का मान बताये ?

(A)
$$\frac{6}{8}$$

(A)
$$\frac{6}{8}$$
 (B) $\frac{8}{10}$ (C) $\frac{10}{8}$ (D) $\frac{8}{6}$

(D)
$$\frac{8}{6}$$

$$Sin\theta = \frac{8}{10} = \frac{\overline{e}}{\overline{a}}$$

$$=\sqrt{(10)^2-(8)^2}=\sqrt{100-64}=\sqrt{36}=6$$

$$\therefore \tan \theta = \frac{\overline{e}}{3\pi} = \frac{8}{6}$$

- 12. यदि $7 \sin^2 \theta + 3 \cos^2 \theta = 4$ व θ न्यूनकोण है, तो $\tan^2 \theta$ का मान (6) printing being
- (A) $\frac{1}{3}$ (B) $\frac{1}{7}$ (C) $\frac{3}{7}$ (D) $\frac{2}{7}$

Speedy Solution: (A)

या,
$$4 \sin^2 \theta + 3 \sin^2 \theta + 3 \cos^2 \theta = 4$$

या,
$$4 \sin^2 \theta + 3 (\sin^2 \theta + \cos^2 \theta) = 4$$

या,
$$4 \sin^2 \theta + 3 = 4$$

या,
$$4 \sin^2 \theta = 4 - 3 = 1$$

या,
$$\sin^2 \theta = \frac{1}{4}$$

$$\therefore \tan^2\theta = \frac{\text{Sin}^2\theta}{\text{Cos}^2\theta} = \frac{\text{Sin}^2\theta}{1 - \text{Sin}^2\theta} = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{1}{3}$$

13. Sin 75° का मान है ?

$$(A) \frac{3}{4}$$

(B)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

(A)
$$\frac{3}{4}$$
 (B) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (D) $\frac{\sqrt{3}}{\sqrt{2}}$

(RRB कोलकाता G.G., 2002)

Speedy Solution: (B)

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}$$

14.
$$\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}} + \frac{\cot 78^{\circ}}{\tan 12^{\circ}} + \frac{\sin 160^{\circ}}{\cos 20^{\circ}} + \frac{\sec 40^{\circ}}{\cos 140^{\circ}} - 1\right)$$
 का मान है ?

C)
$$\frac{\sqrt{3}}{4}$$

(D) Init (B) Cole (A)

(A) 3 (B) 4 (C) $\frac{\sqrt{3}}{4}$ (D) कोई नहीं

Speedy Solution: (D)

$$\because \frac{\tan 35^{\circ}}{\cot 55^{\circ}} + \frac{\cot 78^{\circ}}{\tan 12^{\circ}} + \frac{\sin 160^{\circ}}{\cos 20^{\circ}} + \frac{\sec 40^{\circ}}{\cos 140^{\circ}} - 1$$

$$= \begin{pmatrix} \frac{\tan 35^{\circ}}{\cot (90^{\circ}-35^{\circ})} + \frac{\cot 78^{\circ}}{\tan (90^{\circ}-78^{\circ})} + \frac{\sin (180^{\circ}-20^{\circ})}{\cos 20^{\circ}} \\ + \frac{\sec 40^{\circ}}{\cos (180^{\circ}-40^{\circ})} - 1 \end{pmatrix}$$

$$= \frac{\tan 35^{\circ}}{\tan 35^{\circ}} + \frac{\cot 78^{\circ}}{\cot 78^{\circ}} + \frac{\sin 20^{\circ}}{\cos 20^{\circ}} - \frac{\sec 40^{\circ}}{\cos 40^{\circ}} - 1$$

= 1+1+ tan 20° -
$$\frac{1}{\cos^2 40^\circ}$$
 - 1 = 1+ tan 20° - $\frac{1}{\cos^2 40^\circ}$

15. यदि
$$\sin(A+B) = \frac{1}{\sqrt{2}}$$
 तथा $\sin(A-B) = \frac{1}{\sqrt{2}}$ हो, वो

(A)
$$\frac{1}{2}$$

(RRB कोलकाता G.G., 2002)

Speedy Solution : (A)

$$= \cos^2 B (1 - \cos^2 A) - \cos^2 A (1 - \cos^2 B)$$

$$= \sin(A - B) \cdot \sin(A + B) = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{2}$$

(A)
$$\left(\frac{x+y}{xy}\right)$$
 (B) $(x-y)$ (C) $(x+y)$

(D)
$$\left(\frac{1}{x} - \frac{1}{y}\right)$$

(D) DEPUTE YEARS

Speedy Solution : (A) 11 To A 15 A S 2900 - A 3 200 A 3

$$\because \mathsf{Cot}\,\mathsf{B} - \mathsf{Cot}\,\mathsf{A} = y$$

या,
$$\frac{1}{\tan B} - \frac{1}{\tan A} = 3$$

या,
$$\frac{\tan A - \tan B}{\tan A \cdot \tan B} = y$$

या,
$$\frac{x}{\tan A \cdot \tan B} = y$$

या,
$$\frac{x}{\tan A \cdot \tan B} = y$$
 या, $\frac{x}{y} = \tan A \cdot \tan B$

$$\because \cot(A - B) = \frac{1 + \tan A \cdot \tan B}{\tan A - \tan B} = \frac{1 + \frac{x}{y}}{x} = \frac{x + y}{xy}$$

(A)
$$a^2 + b^2$$

(RRB कोलकाता Goods Guard, 2002)

Speedy Solution: (D)

$$x^2 - y^2 = (a \operatorname{Sec}\theta + b \tan \theta)^2 - (b \operatorname{Sec}\theta + a \tan \theta)^2$$

=
$$a^2$$
Sec² $\theta + b^2$ tan² $\theta + 2a$ Sec $\theta \times b$ tan θ

$$-b^2 \operatorname{Sec}^2 \theta - a^2 \tan^2 \theta - 2b \operatorname{Sec} \theta \times a \tan \theta$$

$$= \operatorname{Sec}^{2} \theta \left(a^{2} - b^{2} \right) - \tan^{2} \theta \left(a^{2} - b^{2} \right)$$

$$= (Sec^2\theta - tan^2\theta)(a^2 - b^2) = a^2 - b^2$$

(RRB भुवनेश्वर A.S.M., 2002)

Speedy Solution: (C)

$$\frac{1}{1+\tan^2\theta} + \frac{1}{1+\cot^2\theta}$$

$$= \frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta} = \frac{1}{\frac{1}{\cos^2 \theta}} + \frac{1}{\frac{1}{\sin^2 \theta}}$$

$$= \cos^2 \theta + \sin^2 \theta = 1$$

19. यदि
$$3 \cot \theta = 4$$
 हो, तो $\frac{5 \sin \theta + 3 \cos \theta}{5 \sin \theta - 3 \cos \theta}$ का मान है ?

(C) 3 (D)
$$\frac{1}{3}$$

(RRB भवनप्रवर A.S.M., 2002)

Speedy Solution: (B)

या,
$$\cot \theta = \frac{4}{3} = \frac{311}{200}$$

:.
$$a_1 = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

$$\frac{5\sin\theta + 3\cos\theta}{5\sin\theta - 3\cos\theta}$$

$$= \frac{5 \times \frac{3}{5} + 3 \times \frac{4}{5}}{5 \times \frac{3}{5} - 3 \times \frac{4}{5}} = \frac{\frac{15}{5} + \frac{12}{5}}{\frac{15}{5} - \frac{12}{5}} = \frac{27}{5} \times \frac{3}{5} = \frac{27}{5} \times \frac{5}{3} = \frac{27}{$$

Speedy Solution: (C)

21. Sin (A+B) का सही मान क्या होगा ?

(RRB अजमेर A.S.M., 2001

Speedy Solution : (D)

$$Sin(A+B) = Sin A \cdot Cos B + Cos A \cdot Sin B$$

tanθ तथा Cotθ का मान होगा ? 22.

Speedy Solution: (A)

23. यदि
$$\tan\theta = 1$$
 हो, तो $\frac{\sin\theta - 2\cos\theta}{\sin\theta + 3\cos\theta}$ का मान होगा ?

$$(A) - \frac{1}{4}$$

(RRB अजमेर A.S.M., 2001)

(RRB अजमेर A.S.M., 2001)

Speedy Solution: (A)

$$\tan \theta = \frac{1}{1} = \frac{\overline{\Theta}}{3\Pi}$$

কর্ण =
$$\sqrt{(1)^2 + (1)^2} = \sqrt{2}$$

$$\therefore \frac{\sin\theta - 2\cos\theta}{\sin\theta + 3\cos\theta} = \frac{\frac{1}{\sqrt{2}} - 2 \times \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 3 \times \frac{1}{\sqrt{2}}} = \frac{\frac{1-2}{\sqrt{2}}}{\frac{1+3}{\sqrt{2}}} = -\frac{1}{4}$$

(A)
$$\frac{1}{2}$$
 (B) $\frac{2}{\sqrt{3}}$ (C) 1 (D) $\frac{1}{3}$

Speedy Solution: (C)

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
 .: $\sin^2 38^\circ + \cos^2 38^\circ = 1$

25. यदि
$$(\tan\theta + \sec\theta) = x$$
 हो, तो $\tan\theta$ का मान है ?

$$(A) \frac{2x}{x^2-1}$$

(B)
$$\frac{2x}{x^2 + 1}$$

(C)
$$\frac{x^2+1}{2x}$$

(A)
$$\frac{2x}{x^2-1}$$
 (B) $\frac{2x}{x^2+1}$ (C) $\frac{x^2+1}{2x}$ (D) $\frac{x^2-1}{2x}$

(RRB कोलकाता/भुवनेश्वर TC, 2003)

Speedy Solution: (D)

$$\because \tan\theta + \sec\theta = x$$

दोनों ओर वर्ग करने पर,

$$(\tan\theta + \sec\theta)^2 = (x)^2$$

या,
$$\tan^2 \theta + \sec^2 \theta + 2 \sec \theta \cdot \tan \theta = x^2$$

या,
$$\tan^2 \theta + 1 + \tan^2 \theta + 2 \operatorname{Sec} \theta \cdot \tan \theta = x^2$$

या,
$$2 \tan^2 \theta + 2 \operatorname{Sec} \theta \cdot \tan \theta = x^2 - 1$$

या,
$$2 \tan \theta (\tan \theta + \sec \theta) = x^2 - 1$$

या,
$$2 \tan \theta \times x = x^2 - 1$$

$$\tan \theta = \frac{x^2 - 1}{2x}$$

26. यदि
$$\cos \theta = \frac{3}{5}$$
 हो, तो $\frac{\sin \theta - \cot \theta}{2 \tan \theta}$ का मान है ?

(A)
$$\frac{3}{16}$$

(A)
$$\frac{3}{16}$$
 (B) $\frac{30}{16}$ (C) $\frac{3}{160}$

(RRB चेन्नई C.C., 2001)

Speedy Solution: (C)

$$\cos\theta = \frac{3}{5} = \frac{310}{60}$$

∴
$$eqred = \sqrt{(5)^2 - (3)^2} = \sqrt{25 - 9} = \sqrt{16} = 4$$

$$\therefore \frac{\sin\theta - \cot\theta}{2 \times \tan\theta} = \frac{\frac{4}{5} - \frac{3}{4}}{2 \times \frac{4}{9}} = \frac{\frac{16 - 15}{20}}{\frac{8}{3}} = \frac{3}{160}$$

(A)
$$\sqrt{1-m^2}$$
 (B) m

(A)
$$\sqrt{1-m^2}$$
 (B) m (C) $\frac{m}{\sqrt{1-m^2}}$ (D) $\sqrt{1+m^2}$

(RRB चेन्नई C.C., 1998)

Speedy Solution: (D)

$$= \sqrt{1 + \left[\tan(90^\circ - 36^\circ)\right]^2} = \sqrt{1 + \cot^2 36^\circ} = \sqrt{1 + m^2}$$

(B)
$$5\frac{1}{2}$$

(C)
$$7\frac{1}{2}^{\circ}$$

(B)
$$5\frac{1}{2}^{\circ}$$
 (C) $7\frac{1}{2}^{\circ}$ (D) $4\frac{1}{2}^{\circ}$

(RRB चेन्नई C.C., 1998)

Speedy Solution: (C)

या,
$$Sec 5A = Sec (90^{\circ} - 7A)$$
 या, $5A = 90^{\circ} - 7A$

a, 12 A = 90° ∴ A =
$$\frac{90^\circ}{12} = \frac{15^\circ}{2} = 7\frac{1}{2}$$
°

29.
$$\cos 0^{\circ} + \tan^{3} \frac{\pi}{4} + \sin^{4} \frac{\pi}{4}$$
 का मान है ?

(B)
$$1\frac{1}{4}$$

(A)
$$\frac{1}{4}$$
 (B) $1\frac{1}{4}$ (C) $2\frac{1}{4}$

Speedy Solution: (C)

$$\cos 0^{\circ} + \tan^{3} \frac{\pi}{4} + \sin^{4} \frac{\pi}{4} = \cos 0^{\circ} + \tan^{3} 45^{\circ} + \sin^{4} 45^{\circ}$$

$$=1+(1)^3+\left(\frac{1}{\sqrt{2}}\right)^4=1+1+\frac{1}{4}=2\frac{1}{4}$$

30. यदि
$$A = 60^{\circ}$$
 और $B = 30^{\circ}$ तो $\frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$ का मान है ?

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\sqrt{3}$ (C) $\frac{2}{\sqrt{3}}$ (D) $\frac{\sqrt{3}}{2}$

(C)
$$\frac{2}{\sqrt{3}}$$

(D)
$$\frac{\sqrt{3}}{2}$$

Speedy Solution: (A)

$$\frac{\tan A - \tan B}{1 + \tan A \cdot \tan B} = \tan (A - B) = \tan (60^{\circ} - 30^{\circ}) = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

31. Cos 52° + Cos 68° + Cos 172° का मान है -(A) 0 (B) 1 (C) 2 (D) -1(RRB गोरखपुर, E.S.M., 2003) Speedy Solution : (A)

 $2 \cos \frac{68^{\circ} + 52^{\circ}}{2} \cdot \cos \frac{68^{\circ} - 52^{\circ}}{2} + \cos(180^{\circ} - 8^{\circ})$

=
$$2 \times \frac{1}{2} \cos 8^{\circ} - \cos 8^{\circ} = 0$$
 $\left[\because \cos 60^{\circ} = \frac{1}{2}\right]$

32.
$$4 \sin^{-1}(x) + \cos^{-1}(x) = \pi \ \overrightarrow{di}(x) = ?$$

(RRB बंगलोर P.way, 2004)

Speedy Solution : (B)

$$\therefore 4 \sin^{-1}(x) + \cos^{-1}(x) = \pi$$

$$\Rightarrow 4 \sin^{-1}(x) + \frac{\pi}{2} - \sin^{-1} \times (x) = \pi$$

$$\Rightarrow 3 \sin^{-1}(x) = \pi - \frac{\pi}{2} \Rightarrow \sin^{-1}(x) = \frac{\pi}{6}$$

$$\Rightarrow x = \sin \frac{\pi}{6} \qquad \therefore x = \sin 30^{\circ} = \frac{1}{2} \qquad \left[\because \pi = 180^{\circ} \right]$$

33. Cos⁻¹(-1) - Sin⁻¹(1) का मान क्या होगा -

(A)
$$\frac{\pi}{2}$$

(B)
$$\pi$$
 (C) $\frac{1}{2}$ (D) $\frac{1}{\pi}$

(RRB बंगलोर P.way, 2004)

Speedy Solution: (A) home to story to the graduation

$$\cos^{-1}(-1) - \sin^{-1}(1) = \pi - \left[\cos^{-1}(1) - \sin^{-1}(1)\right]$$

$$=\pi - \left[\cos^{-1}(1) - \sin^{-1}(1)\right] = \pi - \frac{\pi}{2} = \frac{\pi}{2}$$

34. Cosθ – Sinθ = 0 तो tanθ का मान निकालें ?

Speedy Solution : (C)

$$\because \cos\theta - \sin\theta = 0$$

$$\Rightarrow$$
 Cos θ = Sin θ

$$\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta}{\sin \theta} = 1$$

35. (Cosecθ - Sinθ)(Secθ - Cosθ)(tanθ + cotθ) का मान निकाले -

Speedy Solution : (D)

 $(Cosec\theta - Sin\theta)(Sec\theta - Cos\theta)(tan\theta + cot\theta)$

 $= \left(\frac{1}{\sin \theta} - \sin \theta\right) \left(\frac{1}{\cos \theta} - \cos \theta\right) \left(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}\right)$

$$= \left(\frac{1 - \text{Sin}^2 \theta}{\text{Sin} \theta}\right) \left(\frac{1 - \text{Cos}^2 \theta}{\text{Cos} \theta}\right) \left(\frac{\text{Sin}^2 \theta + \text{Cos}^2 \theta}{\text{Sin} \theta \cdot \text{Cos} \theta}\right)$$

$$= \frac{\sin^2\theta \cdot \cos^2\theta}{\sin^2\theta \cdot \cos^2\theta} = 1 \qquad \left[\text{ सूत्र के प्रयोग से} \right]$$

$$36. \quad \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = ?$$

- (A) Sin0 + Cos0
- (B) Sine
- (C) Sec θ tanθ
- (D) Sin2 0 tan0

(RRB कोलकाता Diesel Driver, 200

Speedy Solution : (C)

$$\sqrt{\frac{1-\operatorname{Sin}\theta}{1+\operatorname{Sin}\theta}} \times \frac{1-\operatorname{Sin}\theta}{1-\operatorname{Sin}\theta} = \sqrt{\frac{\left(1-\operatorname{Sin}\theta\right)^2}{1-\operatorname{Sin}^2\theta}} = \sqrt{\frac{\left(1-\operatorname{Sin}\theta\right)^2}{\operatorname{Cos}^2\theta}}$$

$$= \frac{1 - \sin \theta}{\cos \theta} = \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} = \sec \theta - \tan \theta$$

37. tan 70° को tan 50° एवं tan 20° के सम्बंधों में व्यक्त करें -

- (A) 2 tan 50° + tan 20°
- (B) Cot 50° + tan 20°
- (C) Sin 60°
- (D) Cot 70°

(RRB गोरखपुर E.S.M.-III, 2003)

Speedy Solution : (A)

$$\Rightarrow \tan 70^\circ = \frac{\tan 20^\circ + \tan 50^\circ}{1 - \tan 20^\circ \times \tan 50^\circ}$$

(RRB कोलकाता Goods Guard, 2002)

Speedy Solution: (B)

$$= \left(1 + \frac{\cos\theta}{\sin\theta} - \frac{1}{\sin\theta}\right) \left(1 + \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta}\right)$$

$$= \left(\frac{\sin\theta + \cos\theta - 1}{\sin\theta}\right) \left(\frac{\sin\theta + \cos\theta + 1}{\cos\theta}\right)$$

$$= \frac{\left(\sin\theta + \cos\theta\right)^2 - 1^2}{\sin\theta \cdot \cos\theta} = \frac{1 + 2\sin\theta \cdot \cos\theta - 1}{\sin\theta \cdot \cos\theta}$$

$$= \frac{2 \sin \theta \cdot \cos \theta}{\sin \theta \cdot \cos \theta} = 2$$

[237]