

算法设计与分析

作业(一)

姓	名	熊恪峥
学	号	22920202204622
日	期	2022年2月24日
学	院	信息学院
课程名称		算法设计与分析

作业(一)

8	题1.11	6
7	题1.10	5
	6.3 时间复杂度	5
	6.2 正确性	
	6.1 算法	4
6	题1.9	4
5	题1.8	4
4	题1.7	4
3	题1.6	4
2	题1.5	3
1	题 1.2	3

1 题1.2

该算法符合算法的特点。

- 1. **有穷性:** 又穷集合有有穷个数的子集,遍历这些子集求和并判断就有有限步。因此算法能在有穷操作内 完成
- 2. 可行性: 求出子集可以用回溯算法实现, 是可行的
- 3. 确定性: 该算法的每一步是确定的
- 4. 输入、输出: 该算法输入一个整数集和一个数,输出所有和为该数的子集

2 题1.5

FindMax(A)算法每一行执行的次数如表1

表格 1: 执行一行的次数

花费	次数
c_1	1
c_3	n-1
c_4	$\sum_{j=2}^{n} t_j$
c_5	1

其中 t_i 为

$$t_j = \begin{cases} 1 \text{ 当 for 循环 的 第 j 轮 中 if 条件 成立} \\ 0 \text{ 当 for 循环 的 第 j 轮 中 if 条件 不 成立} \end{cases}$$

则算法运行所需要的时间为

$$T(n) = c_1 + c_3 \times (n-1) + c_4 \times \sum_{j=2}^{n} t_j + c_5$$
(1)

当A中的最大值的位置在末尾时,(1)中 t_i 满足

$$t_2 = \dots = t_n = 1$$

此时T(n)最大,最大值为

$$T(n) = c_1 + c_3 \times (n-1) + c_4 \times (n-2) + c_5$$
$$= c_1 - c_3 - 2 \times c_4 + c_5 + (c_3 + c_4) \times n$$

则FindMax(A)的时间复杂度为

3 题1.6

FindMax(A)有循环不变量 L_j

 L_i : 在for循环的第j个迭代执行前,max中有A[1...j-1]中的最大值

初始步: 在循环开始前j=2,max=A[1]是A[1...1]中的最大值, L_2 为真;

归纳步: 如果在循环的第k个迭代前 L_k 为真,则 \max 有 $A[1 \dots k-1]$ 中的最大值,当执行迭代k时,若 $A[k] > \max$ 则令 $\max = A[k]$ 。此时 \max 有 $A[1 \dots k]$ 中的最大值。在下一迭代开始前, L_k 为真;

终止步: 此时j = n+1,由第二步的保证,则max有A[1...n]中的最大值。对于任意输入A,此FindMax(A)都有一个正确的输出。因此FindMax(A)是正确的。

4 题1.7

Algorithm 1 查找最大值,返回下标

```
1: procedure FINDMAX(A)
2: max \leftarrow 1
3: for j \leftarrow 2 to n do
4: if A[j] > A[max] then
5: max \leftarrow j
return max
```

5 题1.8

Exp(a,n)有循环不变式 L_i

 L_i : 在while循环的第i个迭代执行前,pow中有 a^{i-1}

初始步: 在循环开始前i = 1, $pow = 1 = a^0 = a^{i-1}$, L_i 为真;

归纳步: 如果在循环的第k个迭代前 L_k 为真,则 $pow = a^{k-1}$,当执行迭代 $k \diamondsuit pow \leftarrow pow \times a$,此时 $pow = a^k$ 。在下一迭代开始前, L_k 为真;

终止步: 此时i = n + 1,由第二步的保证,则 $pow = a^n$ 对于任意输入(a, n),此Exp(a, n)都有一个正确的输出。因此Exp(a, n)是正确的。

6 题1.9

6.1 算法

该算法在没找到x时返回0.

6.2 正确性

Find(A,x)有循环不变量 L_i

 L_i : 在for循环的第j个迭代执行前,idx中有A[1...j-1]中等于x的下标

Algorithm 2 查找指定定值x,返回下标

```
1: \mathbf{procedure} \; \mathrm{FIND}(A,x)

2: idx \leftarrow 0

3: \mathbf{for} \; j \leftarrow 1 \; \mathrm{to} \; n \; \mathbf{do}

4: \mathbf{if} \; A[j] == x \; \mathbf{then}

5: idx \leftarrow j

6: \mathrm{break}

\mathbf{return} \; \mathrm{idx}
```

初始步: 在循环开始前j=1, max=A[1]是A[1...0]中等于x的下标, L_1 为真;

归纳步: 如果在循环的第k个迭代前 L_k 为真,则 \max 有A[1...k-1]中等于x值,当执行迭代k时,若A[k] == x则令idx = k。此时 \max 有A[1...k]中等于x值。在下一迭代开始前, L_k 为真;

终止步: 此时 j=n+1,由第二步的保证,则max有A[1...n]中的中等于x值。对于任意输入A,此Find(A,x)都有一个正确的输出。因此Find(A,x)是正确的。

6.3 时间复杂度

Find(A,x)算法每一行执行的次数如表2

表格 2: 执行每一行的次数

花费	次数
c_1	1
c_2	t
c_3	t-1
c_4	t-1
c_5	1

则算法运行所需要的时间为

$$T(n) = c_1 + c_2 \times t + c_3 \times (t-1) + c_4 \times (t-1) + c_5 \tag{2}$$

当x位于末尾时t最大,t=n+1,则

$$T(n) = c_1 + c_2 \times (n+1) + c_3 \times n + c_4 \times n + c_5$$
$$= (c_1 + c_2 + c_5) + (c_2 + c_3 + c_4) \times n$$

该算法的最坏时间复杂度为O(n)

7 题1.10

若前者比后者快,则有

$$100n^2 \le 2^n$$

 $n \geq 14.324727836998200633849297216651$

则从n = 15前者比后者快.

8 题1.11

若插入排序的效率高于归并排序,则有

 $8n^2 \le 64n \log n$

解得

 $n \leq 6.5070996729820298949891210615877$

则当n取1,2,3,4,5,6时插入排序的效率高于归并排序.