Chapitre 6

Fonctions usuelles

1 Logarithmes et exponentielles

1.1 Logarithme népérien

Définition 1.1 (Logarithme népérien)

Le logarithme népérien est l'unique primitive de la fonction

$$\begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{array}$$

qui s'annule en 1. Il est noté ln.

Proposition 1.2 (Propriétés élémentaires de ln)

- 1. La fonction ln est continue, dérivable et strictement croissante sur \mathbb{R}_+^* et $\ln(1) = 0$.
- 2. Pour tous $a, b \in \mathbb{R}_+^*$, on a $\ln(ab) = \ln(a) + \ln(b)$ et $\ln\left(\frac{1}{a}\right) = -\ln(a)$.
- 3. Pour tous $a \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$, on a $\ln(a^n) = n \ln(a)$.
- 4. On a $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to 0^+} \ln(x) = -\infty$.
- 5. Pour tout $x \in \mathbb{R}_+^*$, on a $\ln(x) \leqslant x 1$.
- 6. Le logarithme népérien et une bijection de \mathbb{R}_+^* sur \mathbb{R} .
- 7. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$

Voici le graphe du logarithme népérien.

Proposition 1.3

- 1. Une primitive de ln sur \mathbb{R}_+^* est la fonction $x \mapsto x \ln(x) x$.
- 2. Une primitive de la fonction $x \mapsto 1/x$ sur \mathbb{R}^* est la fonction $x \mapsto \ln |x|$.

Remarque.

Les primitives sur
$$\mathbb{R}^*$$
 de $x \longmapsto 1/x$ sont les fonctions $x \longmapsto \begin{cases} \ln(|x|) + C_1 & \text{si } x > 0 \\ \ln(|x|) + C_2 & \text{si } x < 0, \end{cases}$ où $C_1, C_2 \in \mathbb{R}$.

1.2 Fonction exponentielle

Définition 1.4 (Exponentielle)

La fonction exponentielle exp et la fonction réciproque du logarithme népérien. Son domaine de définition est \mathbb{R} et son image est \mathbb{R}_+^* .

Proposition 1.5 (Propriétés élémentaires de exp)

- 1. Pour tous $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}$, on a $\ln(\exp(y)) = y$, $\exp(\ln(x)) = x$ et exp est strictement positive.
- 2. La fonction $\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*$ est strictement croissante, dérivable et $\exp' = \exp$.
- 3. $\exp(0) = 1$.
- 4. Pour tous $a, b \in \mathbb{R}$, $\exp(a+b) = \exp(a) \exp(b)$ et $\exp(-a) = \frac{1}{\exp(a)}$.
- 5. Pour tout $a \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a $\exp(na) = (\exp(a))^n$.
- 6. Soit $x \in \mathbb{R}$. Alors $\exp(x) \geqslant x + 1$.
- 7. On a $\lim_{x \to +\infty} \exp(x) = +\infty$ et $\lim_{x \to -\infty} \exp(x) = 0$ et pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.
- 8. $\lim_{x \to 0} \frac{\exp(x) 1}{x} = 1.$

Voici le graphe de la fonction exponentielle.

Définition 1.6 (e)

- 1. On définit le réel e par $e = \exp(1)$. Autrement dit, e et l'unique antécédent de 1 par $\ln : \ln(e) = 1$.
- 2. On définit pour tout $x \in \mathbb{R}$ le réel e^x par : $e^x = \exp(x)$.
- 3. Pour tout $x \in \mathbb{R}$, et tout $a \in \mathbb{R}_+^*$, on définit le réel a^x par $a^x = e^{x \ln(a)}$.

Proposition 1.7

Pour tous x > 0 et $y \in \mathbb{R}$, on a $\ln(x^y) = y \ln(x)$.

Proposition 1.8

Soient u et v deux fonctions dérivables sur un intervalle I de \mathbb{R} telle que u soit à valeurs strictement positives. Alors la fonction f définie sur I par

$$\forall x \in I, \ f(x) = u(x)^{v(x)}$$

est dérivable sur I, et si $x \in I$, on a

$$f'(x) = f(x) \times \left(v'(x)\ln(u(x)) + v(x)\frac{u'(x)}{u(x)}\right).$$

Remarque.

On utilise souvent en informatique le logarithme en base 2, et en physique le logarithme en base 10. $\ln(x)$

Le logarithme en base 2, noté \ln_2 , est défini sur \mathbb{R}_+^* par $\ln_2(x) = \frac{\ln(x)}{\ln(2)}$. Il vérife les mêmes propriétés que le logarithme usuel, à ceci près que $\ln_2(2) = 1$, et donc pour $x \in \mathbb{R}$, $\ln_2(2^x) = x$.

Le logarithme en base 10, noté en général log, est défini sur \mathbb{R}_+^* par $\log(x) = \frac{\ln(x)}{\ln(10)}$. Il vérife les mêmes propriétés que le logarithme usuel, à ceci près que $\log(10) = 1$, et donc pour $x \in \mathbb{R}$, $\log(10^x) = x$.

2 Fonctions puissances

On connait déjà les fonctions $x \mapsto x^n$ si $n \in \mathbb{N}$, définies sur \mathbb{R} . On connait aussi les fonctions $x \mapsto x^n$ si $n \in \mathbb{Z}$, définies sur \mathbb{R}^* . On connait aussi les fonctions $x \mapsto x^{1/n} = \sqrt[n]{x}$ lorsque $n \in \mathbb{Z}^*$, définies sur \mathbb{R}_+ si n est pair, sur \mathbb{R} si n est impair : ce sont les fonctions réciproques des précédentes : on utilise le théorème de la bijection.

On voudrait maintenant définir une fonction $x \longmapsto x^{\alpha}$ pour $\alpha \in \mathbb{R}$.

Définition 2.1 (Fonctions puissances)

Soit $\alpha \in \mathbb{R}$. La fonction puissance $\alpha^{\grave{a}me}$ est la fonction

$$\begin{array}{ccc} \mathbb{R}_{+}^{*} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^{\alpha} = e^{\alpha \ln(x)}. \end{array}$$

Proposition 2.2 (Propriétés élémentaires)

Soit $\alpha \in \mathbb{R}$.

1. Pour tout x > 0 et tout $\beta \in \mathbb{R}$, on a

$$x^{\alpha}x^{\beta} = x^{\alpha+\beta}, \qquad x^{-\alpha} = \frac{1}{x^{\alpha}}, \qquad (x^{\alpha})^{\beta} = x^{\alpha\beta}.$$

2. La fonction puissance α -ème est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, on a $\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}x} = \alpha x^{\alpha-1}$.

3. Pour $\alpha \neq -1$, une primitive de $x \longmapsto x^{\alpha}$ sur \mathbb{R}_{+}^{*} est la fonction $x \longmapsto \frac{x^{\alpha+1}}{\alpha+1}$.

4. Si $\alpha < 0$, la fonction $x \longmapsto x^{\alpha}$ est strictement décroissante,

$$\lim_{x \to 0^+} x^{\alpha} = +\infty, \qquad \lim_{x \to +\infty} x^{\alpha} = 0,$$

et réalise une bijection de \mathbb{R}_+^* sur \mathbb{R}_+^* .

5. Si $\alpha > 0$, la fonction $x \longmapsto x^{\alpha}$ est strictement croissante,

$$\lim_{x \to 0^+} x^{\alpha} = 0, \qquad \lim_{x \to +\infty} x^{\alpha} = +\infty,$$

et réalise une bijection de \mathbb{R}_+^* sur \mathbb{R}_+^* .

Voici les graphes des fonctions puissances.

Remarques.

- 1. Bien entendu, si $n \in \mathbb{N}^*$, la fonction puissance n-ème se prolonge à \mathbb{R} , comme rappelé au début du paragraphe.
- 2. Pour $\alpha = 0$, on obtient la fonction constante égale à 1, et pour $\alpha = 1$, la fonction identité de \mathbb{R} .
- 3. Il ne faut pas confondre les fonctions $x \mapsto x^y$ (fonction puissance sur \mathbb{R}_+^*) et $y \mapsto x^y$ (fonction exponentielle définie sur \mathbb{R} pour x > 0).

Proposition 2.3

3

- 1. Si $0 < \alpha, x \mapsto x^{\alpha}$ est prolongeable par continuité en 0 en posant $0^{\alpha} = 0$.
- 2. Si $0 < \alpha < 1$, le graphe de $x \longmapsto x^{\alpha}$ admet une tangente verticale au point d'abscisse 0.
- 3. Si $1 < \alpha$, le graphe de $x \longmapsto x^{\alpha}$ admet une tangente horizontale au point d'abscisse 0.

Proposition 2.4 (Fonction réciproque)

Soit $\alpha \neq 0$. La fonction réciproque de $x \longmapsto x^{\alpha}$ est $x \longmapsto x^{1/\alpha}$.

Croissances comparées

Proposition 3.1 (Croissances comparées 1)

On a
$$\lim_{x \to +\infty} \ln(x)/x = 0$$
.

Proposition 3.2 (Croissances comparées 2)

Soit $\alpha \in \mathbb{R}$ et $\beta > 0$. Alors

$$\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^{\alpha}}{x^{\beta}} = 0, \qquad \lim_{x \to 0^{+}} x^{\beta} \left|\ln(x)\right|^{\alpha} = 0.$$

Proposition 3.3 (Croissances comparées 3)

Soient $\alpha > 0$ et $\beta \in \mathbb{R}$. Alors

$$\lim_{x \to +\infty} \frac{\left(e^{x}\right)^{\alpha}}{x^{\beta}} = +\infty, \qquad \lim_{x \to -\infty} |x|^{\beta} \left(e^{x}\right)^{\alpha} = 0.$$

4 Fonctions circulaires réciproques

4.1 Définitions

Proposition 4.1

Les fonctions

$$\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1], \qquad \cos: [0, \pi] \longrightarrow [-1, 1], \qquad \tan: \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\longrightarrow \mathbb{R}$$

sont bijectives.

Méthode 4.2

En particulier, on a:

- 1. Si $a, b \in [0, \pi]$, $a = b \iff \cos(a) = \cos(b)$.
- 2. Si $a, b \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], a = b \iff \sin(a) = \sin(b).$
- 3. Si $a, b \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[, a = b \iff \tan(a) = \tan(b).$

C'est très utile pour résoudre des équations. Et facilement vérifiable sur un cercle trigonométrique.

Définition 4.3 (Fonctions circulaires réciproques)

Les fonctions

$$\arcsin: [-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right], \qquad \arccos: [-1,1] \longrightarrow [0,\pi], \qquad \arctan: \mathbb{R} \longrightarrow \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$$

sont les fonctions réciproques respectives des bijections de la proposition 4.1.

Proposition 4.4

Soit $x \in [-1, 1]$ et $\theta \in \mathbb{R}$.

- 1. $\arccos(x)$ est l'unique angle de $[0, \pi]$ dont le cosinus est x.
- $2. \quad \cos(\arccos(x)) = x.$
- 3. $\arccos(\cos(\theta)) = \theta \iff \theta \in [0, \pi].$

Proposition 4.5

Soit $x \in [-1, 1]$ et $\theta \in \mathbb{R}$.

- 1. $\arcsin(x)$ est l'unique angle de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus est x.
- $2. \quad \sin(\arcsin(x)) = x.$
- 3. $\arcsin(\sin(\theta)) = \theta \iff \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

Proposition 4.6

Soit $x \in \mathbb{R}$] et $\theta \in \mathbb{R}$, $\theta \not\equiv \frac{\pi}{2} \mod \pi$.

- 1. $\arctan(x)$ est l'unique angle de $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ dont la tangente est x.
- 2. $\tan(\arctan(x)) = x$.
- 3. $\arctan(\tan(\theta)) = \theta \iff \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$

Remarques.

- 1. Attention, $\arctan \neq \frac{\arcsin}{\arccos}$.
- 2. En général,

$$\arcsin(\sin(a)) \neq a$$
, $\arccos(\cos(a)) \neq a$, $\arctan(\tan(a)) \neq a$.

Par exemple, si $a \in [\pi/2, 3\pi/2]$, alors $\sin(u) = \sin(a)$ et $u \in [-\pi/2, \pi/2]$ impose $u = \pi - a$ et donc $\arcsin(\sin(a)) = \pi - a$.

Proposition 4.7

 $\frac{\text{ition } 4.7}{\text{Soit } \theta \in \mathbb{R}. \text{ Il existe } k \in \mathbb{Z} \text{ tel que } \arcsin(\sin(\theta)) = \begin{cases} \theta + 2k\pi \\ \text{ou} \\ \pi - \theta + 2k\pi \end{cases}.$

Proposition 4.8

 $\frac{\text{ition 4.8}}{\text{Soit } \theta \in \mathbb{R}. \text{ Il existe } k \in \mathbb{Z} \text{ tel que } \arccos(\cos(\theta)) = \begin{cases} \theta + 2k\pi \\ \text{ou} \\ -\theta + 2k\pi \end{cases}.$

Proposition 4.9

Soit $\theta \in \mathbb{R}$, $\theta \not\equiv \frac{\pi}{2} \mod \pi$. Alors il existe $k \in \mathbb{Z}$ tel que $\arctan(\tan(\theta)) = \theta + k\pi$.

Méthode 4.10 (Déterminez $\arccos(\cos(\theta))$, $\arcsin(\sin(\theta))$, $\arctan(\tan(\theta))$)

On place sur un cercle trigonométrique, suivant le cas, $\cos(\theta)$, $\sin(\theta)$ ou $\tan(\theta)$. Puis :

- 1. Pour $\arccos(\cos(\theta))$, on détermine dans le cercle trigonométrique l'unique angle $\alpha \in [0, \pi]$ tel que $\cos(\alpha) = \cos(\theta)$: on a $\alpha = \arccos(\cos(\theta))$.
- 2. Pour $\arcsin(\sin(\theta))$, on détermine dans le cercle trigonométrique l'unique angle $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $\sin(\alpha) = \sin(\theta)$: on a $\alpha = \arcsin(\sin(\theta))$.
- 3. Pour $\arctan(\tan(\theta))$, on détermine dans le cercle trigonométrique l'unique angle $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ tel que $\tan(\alpha) = \tan(\theta)$: on a $\alpha = \arctan(\tan(\theta))$.

Ensuite, on justifie avec des phrases. Par exemple pour le cosinus, on peut écrire : Soit $\alpha = \cdots$. Alors $\alpha \in [0, \pi]$, et $\cos(\alpha) = \cos(\theta)$ car ... (à justifier), donc $\alpha = \arccos(\cos(\theta))$.

Proposition 4.11 (Symétries)

Les fonctions arcsin et arctan sont impaires, et pour $x \in [-1, 1]$, on a $\arccos(-x) = \pi - \arccos(x)$, autrement dit, le graphe de arccos est symétrique par rapport au point de coordonnées $(0, \pi/2)$.

4.2 Dérivation des fonctions circulaires réciproques

Proposition 4.12

On a

$$\forall x \in [-1, 1], \quad \sin(\arccos(x)) = \cos(\arcsin(x)) = \sqrt{1 - x^2},$$

$$\forall x \in]-1, 1[, \quad \tan(\arcsin(x)) = \frac{x}{\sqrt{1 - x^2}},$$

$$\forall x \in [-1, 1] \setminus \{0\}, \quad \tan(\arccos(x)) = \frac{\sqrt{1 - x^2}}{x},$$

$$\forall x \in \mathbb{R}, \quad \sin(\arctan(x)) = \frac{x}{\sqrt{1 + x^2}},$$

$$\forall x \in \mathbb{R}, \quad \cos(\arctan(x)) = \frac{1}{\sqrt{1 + x^2}}.$$

Proposition 4.13 (Dérivation des fonctions circulaires réciproques)

1. La fonction arcsinus est dérivable sur]-1,1[et

$$\forall x \in]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

2. La fonction arccosinus est dérivable sur]-1,1[et

$$\forall x \in]-1,1[, \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}.$$

3. La fonction arctangente est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}.$$

Proposition 4.14 (Tangentes remarquables)

- 1. Le graphe de arcsin admet au point d'abscisse 0 une tangente d'équation y = x, et des tangentes verticales au point d'abscisse ± 1 .
- 2. Le graphe de arccos admet au point d'abscisse 0 une tangente d'équation $y = -x + \frac{\pi}{2}$, et des tangentes verticales au point d'abscisse ± 1 .
- 3. Le graphe de arctan admet au point d'abscisse 0 une tangente d'équation y = x.

Proposition 4.15 (Asymptotes)

Le graphe de arctan admet une asymptote horizontale d'équation $y=\frac{\pi}{2}$ (resp. $y=-\frac{\pi}{2}$) quand $x\longrightarrow +\infty$ (resp. $x\longrightarrow -\infty$).

On en déduit les tableaux de variations :

x	-1	(0	1
$\arccos'(x)$			-1 –	
	π \		$\frac{\pi}{2}$	
$\arccos(x)$				0

x	$-\infty$		0		$+\infty$
$\arctan'(x)$		+	1	+	
$\arctan(x)$	$-\frac{\pi}{2}$		v 0 -	7	$\frac{\pi}{2}$

Voici également les graphes de ces fonctions, avec en pointillés ceux de cos, sin et tan. Rajoutez les tangentes remarquables et les asymptotes.

4.3 Propriétés diverses

Proposition 4.16

Soient $x, y \in \mathbb{R}$. Alors

$$xy = 1 \iff \arctan(x) + \arctan(y) = \pm \frac{\pi}{2}.$$

Proposition 4.17

- 1. Soit $x \in [-1, 1]$. Alors $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.
- 2. Soit $x \in \mathbb{R}^*$. Alors

$$\arctan(x) + \arctan(1/x) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{sinon.} \end{cases}$$

Proposition 4.18

Soient $a, b \in \mathbb{R}$ tels que $a^2 + b^2 = 1$. Alors il existe $x \in \mathbb{R}$ tel que $a = \cos(x)$ et $b = \sin(x)$. De plus, un tel x est unique à 2π près.

5 Fonctions hyperboliques

Définition 5.1 (Définition des fonctions hyperboliques)

Les fonctions sinus hyperbolique, cosinus hyperbolique et tangente hyperbolique, notées respectivement sh, ch et th, sont définies sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}, \qquad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}, \qquad \operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Proposition 5.2

Pour tout $x \in \mathbb{R}$, on a $\mathrm{ch}^2(x) - \mathrm{sh}^2(x) = 1$.

Proposition 5.3

Pour tout $x \in \mathbb{R}$, on a $ch(x) \ge 1$ et -1 < th(x) < 1.

Proposition 5.4

- 1. La fonction cosinus hyperbolique est paire et les fonctions sinus et tangente hyperboliques sont impaires.
- 2. Ces trois fonctions sont dérivables sur \mathbb{R} et on a

$$sh'=ch, \qquad ch'=sh, \qquad th'=1-th^2=\frac{1}{ch^2}.$$

- 3. Les fonctions sinus et tangente hyperboliques sont strictement croissantes sur \mathbb{R} , et la fonction cosinus hyperbolique est strictement croissante sur \mathbb{R}_+ .
- 4. Ces trois fonctions admettent des limites en $\pm \infty$ et on a

$$\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty, \qquad \lim_{x \to -\infty} \operatorname{ch}(x) = +\infty, \qquad \lim_{x \to -\infty} \operatorname{th}(x) = -1,$$

$$\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty, \qquad \lim_{x \to +\infty} \operatorname{ch}(x) = +\infty, \qquad \lim_{x \to +\infty} \operatorname{th}(x) = 1.$$

Proposition 5.5 (Tangentes remarquables)

1. La fonction sh' admet une tangente d'équation y = x au point d'abscisse 0.

- 2. La fonction cha dmet une tangente horizontale d'équation y=1 au point d'abscisse 0.
- 3. La fonction the admet une tangente d'équation y = x au point d'abscisse 0.

Proposition 5.6 (Asymptotes)

Le graphe de th admet une asymptote horizontale d'équation y=1 (resp. y=-1) quand $x \longrightarrow +\infty$ (resp. $x \longrightarrow -\infty$).

Voici les tableaux de variations de ces fonctions.

x	$-\infty$		0		$+\infty$
$\mathrm{ch}'(x)$		_	0	+	
ch(x)	$+\infty$		1-	7	$r + \infty$

Voici les graphes. Rajoutez les tangentes remarquables et les asymptotes.

Remarque.

Les fonctions hyperboliques paramàtrent les hyperboles. En effet, la courbe paramétrée donnée par $x(t) = \operatorname{ch}(t)$ et $y(t) = \operatorname{sh}(t)$ est une branche d'une hyperbole équilatàre, car $x^2(t) - y^2(t) = 1$.

Proposition 5.7

Les fonctions

$$\mathrm{sh}:\mathbb{R}\longrightarrow\mathbb{R},\qquad \mathrm{ch}:\mathbb{R}_+\longrightarrow [1,+\infty[,\qquad \mathrm{th}:\mathbb{R}\longrightarrow]-1,1[$$

sont bijectives.

Remarque.

On notera bien que si sh et th sont injectives sur \mathbb{R} , la fonction ch ne l'est que sur \mathbb{R}_+ .