SURE Project

September 21, 2022

Objective

Compare spatial predictions of kelp to "in situ" survey data. Compare each year and location for 150, 300, 600, 900 resolutions.

Extraction

Extract the predicted log kelps density of every year (2004 - 2021) for each site in the North Coast.

```
# set a directory
w.dir <- here()</pre>
d.dir <- here('data')</pre>
r1.dir <- here('spatial_data/sp_predictions_300m')</pre>
r2.dir <- here('spatial_data/sp_predictions_150m')</pre>
r3.dir <- here('spatial_data/sp_predictions_600m')
r4.dir <- here('spatial_data/sp_predictions_900m')
r5.dir <- here('spatial data/sp predictions 120m')
r6.dir <- here('spatial_data/sp_predictions_1500m')
# read and transform the observed data to the log scale
df <- read.csv(paste(d.dir,</pre>
                     'RCCA kelp inverts NC depth-zones wave clim temp nit subs orbvel npp.csv',
                     sep = '/')) %>%
  dplyr::select(site_name, year, transect, zone, latitude, longitude, den_NERLUE) %>%
  mutate_at(vars(year, transect, zone, site_name), list(as.factor)) %>%
  mutate(log_den_NERLUE = log(den_NERLUE))
head(df)
##
     site_name year transect zone latitude longitude den_NERLUE log_den_NERLUE
## 1
       Caspar 2018 1 INNER 39.36173 -123.822
                                                                           -Inf
## 2
       Caspar 2018
                         2 INNER 39.36173 -123.822
                                                               0
                                                                           -Inf
## 3
       Caspar 2018
                         3 INNER 39.36173 -123.822
                                                               0
                                                                           -Inf
       Caspar 2018
                                                                           -Inf
## 4
                         4 OUTER 39.36173 -123.822
                                                               0
## 5
       Caspar 2018
                         5 OUTER 39.36173 -123.822
                                                               0
                                                                           -Inf
## 6
       Caspar 2018
                           6 OUTER 39.36173 -123.822
                                                                           -Inf
```

Note that $\log(0)$ returns -Inf. How to deal with $\log(0)$?

```
df$log_den_NERLUE <- replace(df$log_den_NERLUE, df$log_den_NERLUE == -Inf, 0)</pre>
```

 ${\it Calculate the mean and standard\ error\ of\ kelps\ density\ of\ every\ year\ for\ each\ site\ by\ zone\ (INNER/OUTER).}$

```
obs <- df %>%
  group_by(site_name, year, zone) %>%
  summarise_at(vars(log_den_NERLUE), list(mean = mean, se = std.error), na.rm = TRUE) %>%
  pivot_wider(names_from = zone, values_from = c(mean, se))
head(obs)
## # A tibble: 6 x 6
## # Groups: site_name, year [6]
##
     site_name year mean_INNER mean_OUTER se_INNER se_OUTER
##
     <fct>
            <fct>
                         <dbl>
                                     <dbl>
                                                <dbl>
## 1 Caspar
               2008
                           4.38
                                       3.03
                                               0.150
                                                         0.996
## 2 Caspar
               2010
                           4.37
                                       4.17
                                              0.0664
                                                         0.586
                           0.799
## 3 Caspar
               2014
                                       0
                                               0.799
                                                         0
## 4 Caspar
               2015
                                       0
                                                         0
## 5 Caspar
               2016
                                               0
                                                         0
                           0
                                       0
## 6 Caspar
               2017
                           0
                                                         0
Extract the predicted log kelps density of every year for each site at different resolutions.
# kelp density predictions at 300m resolution ----
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                   fit = numeric())
for (i in c(2006:2021)) {
  rast <- rast(paste0(r1.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
                                   fit
## 1
             Caspar 2006 8.715952e-05
## 2
       Caspar North 2006 1.153930e-04
         Dark Gulch 2006 1.639244e-05
## 3
## 4 Flat Iron Rock 2006 1.293419e-05
## 5
          Fort Ross 2006
## 6
        Frolic Cove 2006 2.514721e-05
# write to cus
```

site %>% dplyr::select(c(site_name, longitude, latitude)),

merge_df <- left_join(pred,</pre>

```
by = 'site_name')
 \textit{\# write.csv(merge\_df, file.path(d.dir, 'NC\_kelp\_density\_predictions\_300m.csv'), row.names = FALSE) } 
# kelp density predictions at 150m resolution ----
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                    fit = numeric())
for (i in c(2006:2021)) {
  rast <- rast(paste0(r2.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
                                    fit
## 1
             Caspar 2006 1.247151e-04
## 2
      Caspar North 2006 1.158852e-04
         Dark Gulch 2006 2.009678e-05
## 3
## 4 Flat Iron Rock 2006 1.248947e-05
          Fort Ross 2006
## 5
## 6
        Frolic Cove 2006 2.890074e-05
# write to cvs
merge_df <- left_join(pred,</pre>
                       site %>% dplyr::select(c(site_name, longitude, latitude)),
                       by = 'site_name')
\# write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions_150m.csv'), row.names = FALSE)
# kelp density predictions at 600m resolution ----
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                    fit = numeric())
```

```
for (i in c(2006:2021)) {
  rast <- rast(paste0(r3.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site name = site$site name, year = as.factor(i), .before = fit) %%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
                                   fit
## 1
             Caspar 2006 4.765976e-05
## 2
       Caspar North 2006 1.033656e-04
         Dark Gulch 2006 1.581757e-05
## 4 Flat Iron Rock 2006 1.356833e-05
          Fort Ross 2006
## 5
## 6
        Frolic Cove 2006 2.109280e-05
# write to cvs
merge_df <- left_join(pred,</pre>
                       site %>% dplyr::select(c(site_name, longitude, latitude)),
                       by = 'site_name')
\# write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions_600m.csv'), row.names = FALSE)
# kelp density predictions at 900m resolution
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                    fit = numeric())
for (i in c(2006:2021)) {
  rast <- rast(paste0(r4.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
## 1
             Caspar 2006 5.600709e-05
## 2
       Caspar North 2006 5.600709e-05
         Dark Gulch 2006 8.153335e-06
```

4 Flat Iron Rock 2006 1.218360e-05

```
## 5
          Fort Ross 2006
## 6
        Frolic Cove 2006 2.195355e-05
# write to cus
merge_df <- left_join(pred,</pre>
                       site %>% dplyr::select(c(site_name, longitude, latitude)),
                       by = 'site name')
\# write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions_900m.csv'), row.names = FALSE)
# kelp density predictions at 120m resolution
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                    fit = numeric())
for (i in c(2006:2021)) {
  rast <- rast(paste0(r5.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
                                    fit
## 1
             Caspar 2006 1.249614e-04
## 2
      Caspar North 2006 1.153889e-04
         Dark Gulch 2006 2.207590e-05
## 4 Flat Iron Rock 2006 1.211293e-05
          Fort Ross 2006
## 5
                                   NaN
## 6
        Frolic Cove 2006 3.023131e-05
# write to cvs
merge_df <- left_join(pred,</pre>
                       site %>% dplyr::select(c(site_name, longitude, latitude)),
                       by = 'site name')
 \textit{\# write.csv(merge\_df, file.path(d.dir, 'NC\_kelp\_density\_predictions\_120m.csv'), row.names = FALSE) } 
# kelp density predictions at 1500m resolution
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
```

```
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                   year = numeric(),
                    fit = numeric())
for (i in c(2006:2021)) {
 rast <- rast(pasteO(r6.dir, pasteO('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
 pred <- rbind(pred, ext)</pre>
}
head(pred)
##
          site_name year
                                   fit
## 1
             Caspar 2006 3.185520e-05
## 2
       Caspar North 2006 3.185520e-05
         Dark Gulch 2006 1.221586e-05
## 4 Flat Iron Rock 2006 1.352611e-05
          Fort Ross 2006
## 6
        Frolic Cove 2006 3.185520e-05
# write to cus
merge_df <- left_join(pred,</pre>
                       site %>% dplyr::select(c(site_name, longitude, latitude)),
                      by = 'site_name')
\# write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions_1500m.csv'), row.names = FALSE)
```

Comparison

```
# kelp density predictions at 300m resolution
pred_300m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_300m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_300m <- left_join(pred_300m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_300m)
## # A tibble: 6 x 9
## # Groups:
               site_name [1]
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_OU~3
               <fct>
##
     <fct>
                         <dbl>
                                  <dbl>
                                             <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                      <dbl>
                                                                               <dbl>
## 1 Caspar
               2006
                         -124.
                                   39.4
                                             NA
                                                      NA
                                                            NA
                                                                     NA
                                                                             8.72e-5
## 2 Caspar
               2007
                         -124.
                                   39.4
                                             NA
                                                      NA
                                                            NA
                                                                     NA
                                                                             2.31e-5
## 3 Caspar
               2008
                         -124.
                                   39.4
                                             4.38
                                                      3.03 0.150
                                                                     0.996 9.86e-6
               2009
                                   39.4
                                                                            7.44e-6
## 4 Caspar
                         -124.
                                             NA
                                                      NA
                                                            NΑ
                                                                     NΑ
```

```
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                        4.17 0.0664
                                                                       0.586 7.67e-5
               2011
                         -124.
                                    39.4
                                                       NΑ
                                                              NΑ
                                                                              4.43e-5
## 6 Caspar
                                              NΑ
                                                                       NΑ
## # ... with abbreviated variable names 1: mean OUTER, 2: se INNER, 3: se OUTER
# kelp density predictions at 150m resolution
pred_150m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_150m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_150m <- left_join(pred_150m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_150m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
##
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_OU~3
                                                       <dbl>
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                <dbl>
## 1 Caspar
               2006
                         -124.
                                    39.4
                                              NA
                                                                       NA
                                                                              1.25e-4
                                                       NΑ
                                                              NΑ
                         -124.
                                    39.4
## 2 Caspar
               2007
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                              2.97e-5
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                        3.03 0.150
                                                                        0.996 1.31e-5
## 4 Caspar
               2009
                         -124.
                                    39.4
                                                              NA
                                                                       NA
                                                                              1.13e-5
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                         4.17 0.0664
                                                                        0.586 9.84e-5
## 6 Caspar
               2011
                         -124.
                                    39.4
                                              NA
                                                              NA
                                                                       NA
                                                                              5.66e-5
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 600m resolution
pred_600m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_600m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_600m <- left_join(pred_600m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp data 600m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_0U~3
##
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                <dbl>
## 1 Caspar
                         -124.
                                    39.4
               2006
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                              4.77e-5
## 2 Caspar
               2007
                         -124.
                                    39.4
                                                                       NA
                                                                              1.76e-5
                                              NΑ
                                                       NΑ
                                                              NΑ
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                        3.03 0.150
                                                                        0.996 7.04e-6
## 4 Caspar
               2009
                         -124.
                                    39.4
                                                                       NΑ
                                              NΑ
                                                       NΑ
                                                              NΑ
                                                                              4.02e-6
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                         4.17 0.0664
                                                                        0.586 5.93e-5
## 6 Caspar
               2011
                         -124.
                                    39.4
                                              NA
                                                       NA
                                                              NA
                                                                       NΑ
                                                                              3.78e-5
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 900m resolution
pred_900m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_900m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
```

```
kelp_data_900m <- left_join(pred_900m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_900m)
## # A tibble: 6 x 9
## # Groups:
               site_name [1]
##
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_0U~3
                                                                                  fit.
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                <dbl>
                         -124.
                                    39.4
## 1 Caspar
               2006
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                              5.60e-5
## 2 Caspar
               2007
                         -124.
                                    39.4
                                                       NA
                                                              NA
                                                                       NA
                                                                              1.91e-5
                                              NA
                                    39.4
## 3 Caspar
               2008
                         -124.
                                               4.38
                                                        3.03 0.150
                                                                        0.996 8.12e-6
## 4 Caspar
               2009
                         -124.
                                    39.4
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                              5.28e-6
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                        4.17
                                                             0.0664
                                                                        0.586 6.34e-5
               2011
                         -124.
                                    39.4
## 6 Caspar
                                                       NA
                                                              NA
                                                                       NA
                                                                              4.19e-5
                                              NA
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 120m resolution
pred_120m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_120m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_120m <- left_join(pred_120m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_120m)
## # A tibble: 6 x 9
## # Groups:
               site_name [1]
##
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_OU~3
                                                                                  fit
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                <dbl>
## 1 Caspar
               2006
                         -124.
                                    39.4
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                              1.25e-4
## 2 Caspar
               2007
                         -124.
                                    39.4
                                              NA
                                                                              2.96e-5
                                                              NΑ
                                                                       NΑ
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                        3.03 0.150
                                                                        0.996 1.31e-5
## 4 Caspar
               2009
                                    39.4
                         -124.
                                              NA
                                                       NΑ
                                                              NA
                                                                       NA
                                                                              1.12e-5
               2010
                         -124.
                                    39.4
                                                        4.17 0.0664
                                                                        0.586 9.74e-5
## 5 Caspar
                                               4.37
                                    39.4
## 6 Caspar
               2011
                         -124.
                                              NA
                                                       NA
                                                              NA
                                                                       NA
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 1500m resolution
pred_1500m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_1500m.csv', sep ='/')) %>%
  mutate at(vars(year, site name), list(as.factor))
kelp_data_1500m <- left_join(pred_1500m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_1500m)
## # A tibble: 6 x 9
## # Groups:
               site_name [1]
```

```
##
     site_name year longitude latitude mean_INNER mean_0~1 se_IN~2 se_0U~3
##
     <fct>
               <fct>
                          <dbl>
                                   <dbl>
                                               <dbl>
                                                        <dbl>
                                                                <dbl>
                                                                        <dbl>
                                                                                 <dbl>
                         -124.
## 1 Caspar
               2006
                                    39.4
                                              NA
                                                              NA
                                                                       NA
                                                                               3.19e-5
                                    39.4
## 2 Caspar
               2007
                         -124.
                                                       NA
                                                                       NA
                                                                               1.28e-5
                                              NΑ
                                                              NΑ
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                         3.03 0.150
                                                                        0.996 5.17e-6
## 4 Caspar
               2009
                         -124.
                                    39.4
                                                                       NA
                                                                               3.05e-6
                                              NA
                                                       NA
                                                              NA
## 5 Caspar
                         -124.
                                    39.4
                                               4.37
                                                         4.17 0.0664
                                                                        0.586 4.43e-5
               2010
                         -124.
                                    39.4
## 6 Caspar
               2011
                                              NA
                                                       NA
                                                              NA
                                                                       NA
                                                                               3.19e-5
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
```

Plotting

Plot log of kelps density vs year for each site at different resolutions.

```
sites <- unique(kelp_data_300m$site_name)</pre>
kelp_longer_300m <- kelp_data_300m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names sep = ' '
   ) %>%
  mutate(resolution = as.factor(300))
kelp_longer_150m <- kelp_data_150m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_
    ) %>%
  mutate(resolution = as.factor(150))
kelp_longer_900m <- kelp_data_900m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot longer(
    -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(900))
kelp_longer_600m <- kelp_data_600m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(600))
kelp_longer_120m <- kelp_data_120m %>%
```

```
dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
   -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(120))
kelp_longer_1500m <- kelp_data_1500m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
   names to = c('.value', 'zone'),
   names_sep = '_'
   ) %>%
  mutate(resolution = as.factor(1500))
kelp_longer <- rbind(kelp_longer_120m, kelp_longer_150m,</pre>
                     kelp_longer_300m, kelp_longer_600m,
                     kelp_longer_900m, kelp_longer_1500m)
for (i in sites) {
 plot <- kelp_longer %>%
   filter(site_name == i) %>%
   ggplot() +
   geom_pointrange(aes(
      x = year, y = mean, group = zone, color = zone,
      ymin = mean - se, ymax = mean + se
      ), alpha = 0.5, size = 0.3) +
   geom_bar(aes(x = year, y = fit,
                fill = ifelse(!is.na(fit) & fit >= 6.6, 'YES', 'NO')),
             stat = 'identity', position = 'dodge', alpha = 0.2) +
   facet_wrap(. ~ resolution, nrow = 3) +
   theme_bw() +
   theme(axis.text.x = element_text(angle = 90, size = 8),
          plot.title = element_text(hjust = 0.5),
          panel.grid.major = element_blank(),
          legend.title = element_text(size = 9),
          legend.text = element_text(size = 7)) +
    labs(y = 'log of kelp density', title = i, fill = 'fit >= 6.6')
 print(plot)
}
```


