Capítulo 5

CURSO PROPEDEUTICO DE ANÁLISIS REAL

Depto. de Control Automático, CINVESTAV-IPN, Mayo-Junio 2013 Ejemplar de material completo, solo falta completar dibujos.

5. Continuidad de funciones reales de una variable

5.1. Definiciones equivalentes de continuidad y criterios a base de sucesiones

Def.: (Continuidad en un punto) Sea $A \subset \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$ ($D_f = A$), y $c \in A$. f se llama continua en c si, dado cualquier intervalo abierto $(f(c) - \epsilon, f(c) + \epsilon)$, existe un intervalo abierto $(c - \delta, c + \delta)$ tal que $x \in (c - \delta, c + \delta) \cap A$ implica $f(x) \in (f(c) - \epsilon, f(c) + \epsilon)$. Si f no es continua en c, entonces f se llama discontinua en c, y c se llama (punto de) discontinuidad de f.

Observaciones:

• Si c es un punto de acumulación de A, entonces f es continua en c si y solo si $\lim_{x\to c} f(x) = f(c)$, lo cual significa que:

$$f(c) \in I\!\!R$$
existe, $\lim_{x \to c} f(x) = l \in I\!\!R$ existe, y $f(c) = l$!!!

• Si $c \in A$ no es un punto de acumulación de A, entonces f es automáticamente continua en c (...vea clase...). Estos puntos c se llaman "puntos aislados" de A, y se consideran no interesantes para el estudio de la función.

Def.: (Continuidad sobre un conjunto) Sea $A \subset \mathbb{R}$, $f : A \longrightarrow \mathbb{R}$ ($D_f = A$), y $B \subset A$. f se llama continua sobre B si f es continua en todos los puntos de B.

Reformulemos la definición de continuidad en un punto:

Lema: Sea $A \subset \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$, $c \in A$. f es continua en $c \Longleftrightarrow \forall \epsilon > 0 \; \exists \; \delta = \delta(\epsilon) > 0$ tal que $(x \in A, |x - c| < \delta)$ implica que $|f(x) - f(c)| < \epsilon$.

Aplicando que f es continua en c si y solo si $\lim_{x\to c} f(x) = f(c)$, obtenemos:

Criterio de continuidad a base de sucesiones:

$$\mathit{Sea}\ A \subset I\!\!R, f: A \longrightarrow I\!\!R, c \in A.$$

f continua en $c \iff si(x_n)_{n \ge 1} \subset A$, $\lim_{n \to \infty} x_n = c$, entonces $\lim_{n \to \infty} f(x_n) = f(c)$.

Corolario: Criterio de discontinuidad a base de sucesiones:

Sea
$$A \subset \mathbb{R}, f : A \longrightarrow \mathbb{R}, c \in A$$
.

f es discontinua en $c \iff$ existe una sucesión $(x_n)_{n\geq 1}$ en A tal que $\lim_{n\to\infty} x_n = c$, pero la sucesión $(f(x_n))_{n\geq 1}$ no converge a f(c).

5.2. Ejemplos de funciones continuas y no continuas

- $f(x) = b, x \in \mathbb{R}$ función constante, es continua sobre $D_f = \mathbb{R}$, puesto que $\lim_{x \to c} f(x) = f(c) = b \ \forall c \in \mathbb{R}$.
- f(x) = x función identica, es continua sobre $D_f = \mathbb{R}$, puesto que $\lim_{x \to c} f(x) = f(c) = c$ para todo $c \in \mathbb{R}$.
- $f(x) = \frac{1}{x}$ no es continua en c = 0, pero es continua sobre $\mathbb{R} \setminus \{0\}$

Argumento para que f(x) no es continua en 0: f(x) no es definida en x = 0, es decir, $0 \notin D_f$, por lo tanto no es continua en este punto.

Para demostrar que $f(x) = \frac{1}{x}$ es continua sobre $\mathbb{R} \setminus \{0\}$, consideramos una sucesión (x_n) arbitraria en $\mathbb{R} \setminus \{0\}$ con la propiedad que $\lim_{n \to \infty} x_n = x$. Entonces $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{\lim_{n \to \infty} x_n} = \frac{1}{x} = f(x)$, lo cual demuestra la continuidad de f(x) en $x \neq 0$.

• f(x) = |x| es continua sobre \mathbb{R} .

Para demostrar eso, consideramos una sucesión (x_n) arbitraria en \mathbb{R} tal que $\lim_{n\to\infty}x_n=x.$

A demostrar: $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} |x_n| = |x| = f(x)$.

Demostramos que la sucesión (| | x | - | x_n | |) $_{n>1}$ tiene límite 0.

Es fácil de demostrar que (ejercicio) $0 \le | \mid x \mid - \mid x_n \mid | \le |x - x_n|$.

Aplicando el criterio de comparación de sucesiones se obtiene que $0 \le \lim_{n \to \infty} |\mid x \mid - \mid x_n \mid | \le \lim_{n \to \infty} |\mid x - x_n \mid$, pero este último término es igual a cero, puesto que $\lim_{n \to \infty} x_n = x$. En consecuencia $\lim_{n \to \infty} |\mid x \mid - \mid x_n \mid | = 0$, lo cual es equivalente a $\lim_{n \to \infty} |\mid x_n \mid = |\mid x \mid$, completando la demostración.

- La función escalón f(x) = 0 para $x \in (-\infty, 0]$, f(x) = 1 para $x \in (0, \infty)$, tiene una discontinuidad en c = 0, puesto que en este punto no tiene límite (ya lo sabemos). La función es continua sobre $\mathbb{R} \setminus \{0\}$ (ejercicio).
- La función dada como f(x)=1 para $x\in \mathbb{R}, x\neq 3$ y f(3)=2, tiene una discontinuidad en $c^*=3$, y es continua sobre $\mathbb{R}\setminus\{c^*\}$; $D_f=\mathbb{R}$. Nótese que $\lim_{x\to 3}f(x)=l=1$ (ejercicio), y la función f^* definida por

 $f^*(x) = f(x) \text{ para } x \in D_f \setminus \{c^*\} \text{ y } f(c^*) = 1,$

es continua sobre todo \mathbb{R} , en particular es continua en en $c^* = 3$, puesto que $f^*(x) = 1$ es una función constante.

5.3. Operaciones con funciones continuas

Recordemos $+, -, \cdot, :$ entre funciones, y $a \times f$ para $a \in \mathbb{R}$ y función f.

Lema: Sea $A \subset \mathbb{R}$, $f,g:A \longrightarrow \mathbb{R}$, $a \in \mathbb{R}$, $c \in A$. Si tanto f como g son continuas en c, entonces $f+g,f-g,f\cdot g,a\times f$ también son funciones continuas

en c. Si además $g(x) \neq 0$ para todo $x \in A$, entonces $\frac{f}{g}$ también es continua en c.

Ejemplos de aplicación:

Sabiendo que f(x) = x es continua sobre IR, mediante las reglas de cálculo se obtiene por ejemplo que

- $f(x) = \frac{1}{x}$ es continua sobre $\mathbb{R} \setminus \{0\}$.
- $f(x) = \frac{x^4 2x^2 + 3}{x^3 1}$ es continua sobre $\mathbb{R} \setminus \{1\}$.
- Cualquier función que es un polinomio de grado n, $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + a_1 x + a_0$ es continuo sobre \mathbb{R} .
- Cualquier función racional $f(x) = \frac{\text{polinomio } p_1(x)}{\text{polinomio } p_2(x)}$ es continuo en todos los puntos diferentes de las raices de $p_2(x)$.

Recordemos además la concatenación o entre funciones:

Lema: Sea $A, B \subset \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$, $g: B \longrightarrow \mathbb{R}$ tal que $f(A) \subset B$. Si f es continua en $c \in A$ y g es continua en $b = f(c) \in B$, entonces $g \circ f: A \longrightarrow \mathbb{R}$ es continua en c.

Ejemplo: f(x) = sen(x), g(x) = exp(x) son continuas sobre \mathbb{R} . Por lo tanto, exp(sen(x)) es continua sobre \mathbb{R} , puesto que $exp(sen(x)) = (g \circ f)(x)$.

5.4. Discontinuidad

5.4.1. Discontinuidad eliminable

Def.: Sea $A \subset \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$, c un punto de acumulacion de A. Si f **no** es continua en c pero $\lim_{x \to c} f(x) = L \in \mathbb{R}$ (existe!), entonces c se llama punto de discontinuidad eliminable. La funcion definida por

$$f^*(x) = f(x)$$
 para $x \in D_f \setminus \{c\}$ y $f^*(c) = L$ es continua en el punto c .

Ejemplo: f(x) = 1 para $x \in \mathbb{R}, \neq 0$, f(0) = 2 es una función definida sobre \mathbb{R} pero no es continua en c = 0. Sin embargo, se trata de una discontinuidad eliminable puesto que $\lim_{x\to c} f(x) = 1$ (ejercicio). Claramente la nueva función definida por $f^*(x) = f(x)$ para $x \neq 0$ y por $f^*(x) = 1$ es continua sobre \mathbb{R} .

5.4.2. Brincos

Introducimos límites de funciones unilaterales:

Def.: Sea $A \subset \mathbb{R}$, $f : A \longrightarrow \mathbb{R}$.

Si $c \in I\!\!R$ es punto de acumulación de $A \cap (c, \infty) = \{x \in A : x > c\}$, L se llama l'ímite por la derecha de f en c $(\lim_{x \to c+} f(x) = L)$, si, dado cualquier $\epsilon > 0$, existe

 $\delta = \delta(\epsilon) > 0$ tal que para cualquier $x \in A$ con $0 < x - c < \delta$ se sigue que $|f(x) - L| < \epsilon.$

Si $c \in \mathbb{R}$ es punto de acumulación de $A \cap (-\infty,c) = \{x \in A : x < c\}$, L se llama *límite por la izquierda* de f en c $(\lim_{x \to c^-} f(x) = L)$, si, dado cualquier $\epsilon > 0$, existe $\delta = \delta(\epsilon) > 0$ tal que para cualquier $x \in A$ con $0 < c - x < \delta$ se sigue que $|f(x) - L| < \epsilon$.

Aplicando las definiciones, se obtiene inmediatamente:

Lema.: Sea $A \subset \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$, $c \in \mathbb{R}$ un punto de acumulación de $A \cap (c, \infty)$ y de $A \cap (-\infty, c)$. Entonces $\lim_{x \to c} f(x) = L \in \mathbb{R}$ si y solo si $\lim_{x \to c+} f(x) = L = \lim_{x \to c-} f(x)$ (es decir, ambos límites existen, y son iguales !).

Ejemplos:

- Ya sabemos que la función signo dada por
 - f(x) = 1 para x > 0, f(x) = -1 para x < 0, f(0) = 0, no tiene límite en c = 0. Pero es obvio que para c = 0:

$$\lim_{x \to c+} f(x) = 1, \ \lim_{x \to c-} f(x) = -1.$$

• Consideremos la función $f(x) = exp(\frac{1}{x})$ en el punto c = 0. Resulta que $D_f = \mathbb{R} \setminus \{0\}$, claro que c = 0 es punto de acumulación de D_f , dibujo: vea clase.

Analicemos primero si existe un límite por la derecha:

Para $t \in \mathbb{R}$, t > 0 vale que 0 < t < exp(t) (vea literatura). Aplicando eso, tenemos para x > 0 que $0 < \frac{1}{x} < exp(\frac{1}{x})$.

Ahora tomamos una sucesión que "converge por la derecha al cero": $x_n=\frac{1}{n}, n\in \mathbb{N}$ (claro que $x_n>0 \ \forall \ n\in \mathbb{N}$ y $\lim_{n\to\infty}x_n=0$).

Debido a que $f(x_n) = exp(n) > n \ \forall n \in \mathbb{N}$ se sigue que la sucesión $(f(x_n))_{n\geq 1}$ es creciente y además no acotada, por lo tanto no es convergente.

En consecuencia, para $c=0, \lim_{x\to c+} exp(\frac{1}{x})$ no existe (en $I\!\!R$).

Ejercicio: Demostrar que para $c=0, \lim_{x\to c^-} exp(\frac{1}{x})=0.$

Ahora podemos definir brincos:

Def.: Si para $A \subset \mathbb{R}, f: A \longrightarrow \mathbb{R}$ vale que $L = \lim_{x \to c-} f(x) \neq \lim_{x \to c+} f(x) = M$, entonces se dice que f tiene en el punto c un brinco de magnitud |M-L|.

Ejemplo: Vimos arriba que para la función signo dada por f(x)=1 para $x>0,\ f(x)=-1$ para $x<0,\ f(0)=0,$ $\lim_{x\to c+}f(x)=1,\ \lim_{x\to c-}f(x)=0.$

Por eso, la función tiene en c = 0 un brinco de la magnitud |1 - (-1)| = 2.

5.4.3. Puntos de infinidad

Def.: Si para $A \subset \mathbb{R}, f: A \longrightarrow \mathbb{R}$ vale que $\lim_{x \to c} |f(x)| = \infty$, entonces c se llama punto (o, lugar) de infinidad de f.

Ejemplo: Vimos antes los ejemplos de las funciones $f(x) = \frac{1}{x}$ y $f(x) = \frac{1}{x^2}$. Ambas tienen en c = 0 un punto de infinidad.
