Teoria da Informação - Prof. Luís Tadeu

Códigos de condição prefixa

Fonte S: emite os símbolos s1 a sk, com probabilidades de ocorrência p1 a pk. A cada símbolo corresponde uma palavra de código Ck, em que cada elemento de mk de Ck é 0 ou 1 e nk é o número de bits da palavra. Ou seja o código Ck é m1k m2k m3k ...m1k m1n. Um prefixo de Ck é qualquer següência m1k m2k.de comprimento inferior a n. Um código é de condição prefixa se para qualquer par Ci Cj, Ci não é prefixo de Cj. Um código de condição prefixa é sempre de decodificação única.

Exemplos

Símbolo	Probabilidade	Código	Código	Código	
		I	II	III	
S0	0.5	0	0	0	
s1	0.25	1	10	01	
s2	0.125	00	110	011	
s3	0.125	11	111	0111	

Código I: não é de condição prefixa: s0 é prefixo de s2 ... Código II: é de condição prefixa Código III: não é de condição prefixa, mas é de descodificação única

Tipos de códigos

Decodificação única – só há uma forma de dividir uma seqüência não separada de códigos em códigos separados.

De condição prefixa – nenhum código é prefixo de outra palavra de código. É um código de descodificação única, em que quando se analisa uma seqüência não é preciso avançar sobre a sequência para decidir qual o código corrente.

Ótimo – O código tem o menor comprimento médio possível (=H(S)). Não existem códigos não utilizados.

Representação em árvore

Codificação de Huffman

Exercício 1. Seja alfabeto $A = \{1,2,3,4,5,6,7,8\}$ em que p(xi) = 1/8, desenhar a árvore de Huffman e estabelecer o código apropriado para cada símbolo.

Exercício 2. Na Tabela 1 estão listados os símbolos de uma fonte discreta sem memória e as respectivas probabilidades de ocorrência. Desenhar a árvore de Huffman e estabelecer o código apropriado para cada símbolo.

m_l	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9
0.200	0.150	0.130	0.120	0.100	0.09	0.08	0.07	0.06

Tabela 1: Estatísticas dos símbolos de uma fonte discreta sem memória

Exercício 3. Uma palavra foi codificada usando o código de Huffman, tendo-se obtido a seqüência binária

1011101101011100111000

O alfabeto original era constituído pelas letras A, B, C, D, E, I, L, R e T e a letra I foi codificada como "00". Supondo que estas letras ocorriam com as probabilidades:

$$P(A) = 0.26 P(D) = 0.01 P(L) = 0.01 P(B) = 0.09 P(E) = 0.07 P(R) = 0.23 P(C) = 0.08 P(I) = 0.22 P(T) = 0.03$$

qual terá sido a palavra codificada?