1 Brezdimenzijska oblika

Iščemo odvisnost hitrosti od časa, pri kateri bodo izpolnjeni določeni pogoji. Za čas že imamo naravno enoto, to je čas T do prižiga zelene luči. Po drugi strani pa imamo za hitrost dve možni izbiri: začetna hitrost t_0 ali pa povprečna hitrost L/T. Za čim večjo splošnost sem dovolil možnost, da avto na začetku stoji, tako da je lahko $v_0 = 0$, in sem za mero hitrosti izbral drugo možnost.

$$x = \frac{t}{T} \tag{1}$$

$$y = \frac{vT}{L} \tag{2}$$

$$y' = \frac{dy}{dx} = \frac{T^2 \,\mathrm{d}v}{L \,\mathrm{d}t} = \frac{1}{a_0} \cdot \dot{v} \tag{3}$$

Tu je $a_0 = \frac{L}{T^2}$ konstanta z enotami pospeška.

Zdaj lahko zapišemo Lagranžijan in vez z brezdimenzijskimi spremenljiv-kami. Ker želimo izraz minimizirati, multiplikatvne konstante ne vplivajo na rezultat, zato ga lahko precej poenostavimo. Prav tako lahko Lagrangeev multiplikator λ množimo s poljubno konstanto.

$$\int_0^1 y(x) \, \mathrm{d}x = \frac{T}{L} \frac{1}{T} \int_0^T v(t) \, \mathrm{d}t = \frac{TL}{TL} = 1 \tag{4}$$

$$S = \int_0^T y'(t)^2 dt \tag{5}$$

$$1 = \int_0^1 y(x) \, \mathrm{d}x \tag{6}$$

$$\mathcal{L} = (y')^2 - \lambda y \tag{7}$$

Ta izraz za \mathcal{L} lahko vstavimo v Euler-Lagrangeevo enačbo.

2 Rešitve brezdimenzijske enačbe

$$\frac{\partial \mathcal{L}}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial y'} = 0 \tag{8}$$

$$-\lambda - 2y'' = 0 \tag{9}$$

$$y'' = -\frac{\lambda}{2} = 2A \tag{10}$$

$$y(x) = Ax^2 + Bx + C \tag{11}$$

Konstante A, B, C določimo iz vezi in dveh robnih pogojev. Poznamo začetno hitrost v_0 , začetno vrednost spremenljivke y lahko izrazimo kot $y_0 = y(0) = vT/L$. Ko to vstavimo v izraz za y(x) takoj dobimo pogoj $C = y_0$.

Zvezo med A in B lahko določmo iz integralske vezi.

$$\int_0^1 y(x)dx = \frac{A}{3} + \frac{B}{2} + C = 1 \tag{12}$$

$$B = 2 - 2C - \frac{2A}{3} \tag{13}$$

$$y(x) = A(x^2 - \frac{2}{3}x) + 2(1 - y_0)x + y_0$$
(14)

Ostane nam le še en prost parameter (A), ki ga določimo iz robnega pogoja v končni točki.

2.1 Brez robnega pogoja

Če dopustimo poljubno končno hitrost, variacijski račun določa dinamični robni pogoj

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y'}\bigg|_{x=1} = 2\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right|_{x=1} = 0\tag{15}$$

Pospešek v končni točki mora biti enak nič. Če izraz (14) odvajamo po x in postavimo x=1, dobimo:

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1} = A(2 - \frac{2}{3}) + 2(1 - y_0) = \frac{4}{3}A + 2(1 - y_0) = 0 \tag{16}$$

$$A = -\frac{3}{2}(1 - y_0) \tag{17}$$

$$y(x) = -\frac{3}{2}(1 - y_0)x^2 + 3(1 - y_0)x + y_0$$
(17)

$$= \frac{3}{2}(1 - y_0)x(2 - x) + y_0 \tag{19}$$

Rešitev je kvadratna funkcija, ki je simetrična glede na končno točko x=1. Edini ostali parameter problema je y_0 , ki nam tudi določa družino rešitev.

Slika 1: Odvisnost hitrosti od časa brez končnega robnega pogoja

3 Drugačni Lagranžijani

Naša mera za ekonomičnost vožnje je seveda lahko tudi drugačna.

3.1 Višje potence pospeška

Omejil se bom le na sode eksponente, zato da pospeševanje in zaviranje obravnavamo ekvivalentno. V tem primeru \mathcal{L} zapisemo kot

$$\mathcal{L} = (y')^{\alpha} - \lambda y \tag{20}$$

kjer je α sodo pozitivno celo število. Euler-Lagrangeeva enačba se glasi

$$-\lambda = \frac{\mathrm{d}}{\mathrm{d}x}\alpha(y')^{\alpha - 1} = \alpha(\alpha - 1)(y')^{\alpha - 2}y'' \tag{21}$$

Z uvedbo substitucije u=y' lahko enačbo prepišemo v enostavno rešljivo obliko

$$u' = \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{-\lambda}{\alpha(\alpha - 1)} u^{2-\alpha} = Au^{2-\alpha} \tag{22}$$

$$u^{\alpha - 2} du = A dx \tag{23}$$

$$\frac{u^{\alpha-1}}{\alpha-1} = Ax + B \tag{24}$$

$$u(x) = \sqrt[\alpha-1]{(\alpha-1)(Ax+B)} = y'(x)$$
 (25)

$$y(x) = y_{\alpha}(x) = \sqrt[\alpha-1]{\alpha - 1} \frac{(\alpha - 1)(Ax + B)}{\alpha A} \sqrt[\alpha-1]{Ax + B} + C$$
 (26)

Zaradi omejitve, da je α sod, je stopnja korena liha, s čimer se izognemo problemom, ker je izraz Ax + B pod korenom lahko tudi negativen.

Proste konstante podobno kot v prejšnjem poglavju določimo iz vezi in dveh robnih pogojev.

3.1.1 Preverjanje

Če v izraz vstavimo $\alpha = 2$, bi morali dobiti izraz (11).

$$y_2(x) = \frac{Ax + B}{2A}(Ax + B) + C = \frac{A}{2}x^2 + Bx + \frac{B^2}{2A} + C$$
 (27)

Koeficienti A, B in C tu niso enaki kot prej, ampak imamo spet polinom druge stopnje s tremi prostimi konstantami, tako da s primerno substitucijo lahko preidemo na izraz (11).

3.2 Limita $\alpha \to \infty$

Večanje eksponenta α proti neskončnosti pomeni, da k vrednosti funkcionala \mathcal{S} prispeva le tista točka, kjer je absolutna vrednost pospeška največja. Integral Lagranžijana bi torej lahko nadomestili kar z maksimumom |y'|. Naivno bi zato pričakovali, da bo rešitev takšnega problema gibanje s konstantnim pospeškom.

Seveda se problema lahko lotimo tudi bolj matematično, tako da gledamo limito izraza (26) ko gre α proti neskončnosti.

Ko gre α proti ∞ , gre $A = \frac{-\lambda}{\alpha(\alpha-1)}$ proti 0, tako da izraz pod zadnjim korenom konvergira. Izraz $y_{\alpha}(x) - C$ lahko razdelimo na produkt večih faktorjev in gledamo limito vsakega posebej:

$$\lim_{\alpha \to \infty} \sqrt[\alpha-1]{\alpha - 1} = \lim_{x \to \infty} \sqrt[x]{x} = 1 \tag{28}$$

$$\lim_{\alpha \to \infty} \frac{(\alpha - 1)^2 \left(\frac{-\lambda x}{\alpha(\alpha - 1)} + B\right)}{-\lambda} = x - \frac{(\alpha - 1)^2 B}{\lambda}$$
 (29)

Limite lahko nazaj združimo v končni izraz

$$y_{\infty}(x) = \lim_{\alpha \to \infty} y_{\alpha}(x) = \left(x - \frac{(\alpha - 1)^2 B}{\lambda}\right) \sqrt[\alpha - 1]{\frac{-\lambda x}{\alpha(\alpha - 1)} + B} + C \qquad (30)$$

Zopet uporabimo substitucijo $A = -\lambda/\alpha(\alpha-1)$. Ker je α zelo velik, lahko tudi povsod α zamenjamo z $\beta = \alpha - 1$, paziti moramo le da ne spremenimo parnosti eksponentov.

$$y_{\infty}(x) = \frac{1}{A} (Ax + B)^{1+1/\beta} + C$$
 (31)

Najprej poglejmo primer, ko nas ne zanima hitrost, s katero prevozimo semafor. Spet uporabimo dinamični robni pogoj

$$y'(x) = (1 + 1/\beta)(Ax + B)^{1/\beta}$$
(32)

$$y'(1) = (1 + 1/\beta)(A + B)^{1/\beta} = 0$$
(33)

Ker je β dosti večji od 1, levi oklepaj ne more biti nič, torej mora biti B=-A in

$$y_{\infty}(x) = \frac{1}{A} \left(A(x-1) \right)^{1+1/\beta} + C = A^{1/\beta} (x-1)^{1+1/\beta} + C \tag{34}$$

Konstanto C lahko določimo iz začetne hitrosti. Paziti moramo, da je β lih, torej je poteciranje na $(1+1/\beta)$ soda funkcija in je $(-1)^{1+1/\beta}=1$.

$$y(0) = A^{1/\beta} + C = y_0 \tag{35}$$

$$C = -\sqrt[\beta]{A} + y_0 \tag{36}$$

$$y(x) = \sqrt[\beta]{A}((x-1)^{1+1/\beta} - 1) + y_0$$
(37)

Določiti moramo le še A, za kar uporabimo vez:

$$\int_0^1 y(x) \mathrm{d}x = 1 \tag{38}$$

$$\left[A^{1/\beta} \left(\frac{(x-1)^{2+1/\beta}}{2+1/\beta} - x\right) + y_0 x\right]_0^1 = 1$$
 (39)

$$\sqrt[\beta]{A} \left(\frac{1}{2 + 1/\beta} - 1 \right) + y_0 = 1 \tag{40}$$

$$A = \left(\frac{(2+1/\beta)(1-y_0)}{1+1/\beta}\right)^{\beta} \tag{41}$$

$$y(x) = \left(\frac{(2+1/\beta)(1-y_0)}{1+1/\beta}\right)\left((x-1)^{1+1/\beta} - 1\right) + y_0 \tag{42}$$

Ker smo privzeli, da je $\beta >> 1$, lahko v prvem oklepaju $1/\beta$ zanemarimo in izraz poenostavimo. Na našem intervalu je $0 \le x \le 1$, zato je $(x-1)^{1+1/\beta} \to (1-x)$.

$$y_{\infty}(x) = 2x(1 - y_0) + y_0 \tag{43}$$

Naš naiven razmislek se je izkazal za pravilnega, saj je rešitev res enakomerno pospešeno gibanje, velikost pospeška pa je neposredno odvisna od začetne hitrosti.

Slika 2: Odvisnost hitrosti od časa v limiti, ko gre eksponent pospeška v Lagranžijanu proti neskončno

3.3 Poljuben sod α

Na podoben način in z istimi robnimi pogoji lahko izračunamo tudi optimalno rešitev za poljuben sod eksponent α . Z uporabo podobnih substitucij in trikov kot v prejšnjem poglavju pridemo do končnega izraza

$$y(x) = \frac{2\beta + 1}{\beta + 1} (1 - y_0) \left[1 - (x - 1)^{1 + 1/\beta} \right] + y_0$$
 (44)

(45)

Slika 3: Odvisnost hitrosti od časa pri različnih sodih vrednosti eksponenta pospeška v Lagranžijanu α

Graf za $\alpha=2$ res izgleda enako kot na sliki 2.1, medtem ko se z večanjem potence α vse bolj približujemo ravni črti, kot je na sliki 2.

3.4 Hitrost v Lagranžijanu

Na ekonomičnost vožnje seveda vpliva tudi hitrost. Za čim lažji račun upoštevamo njen kvadrat, tako da Lagrangeeva funkcija izgleda

$$\mathcal{L} = (y')^2 + \xi y^2 - \lambda y \tag{46}$$

Takšna funkcija spominja na probleme iz klasične mehanike, kjer imamo pogosto kvadratni člen hitrosti (v kinetični energiji) in kvadratni člen položaja (v potencialni energiji). Ustrezna enačba je sedaj

$$\frac{\partial \mathcal{L}}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial y'} = 0 \tag{47}$$

$$-\lambda + 2\xi y - 2y'' = 0 \tag{48}$$

$$y'' - \xi y = -\frac{\lambda}{2} \tag{49}$$

Verjetno si želimo vožnjo s čim manjšo hitrostjo, zato je $\xi>0$, kar pomeni da homogeni del dobljene enačbe predstavlja eksponentno narašcanje ali padanje hitrosti s časom. Ker je ξ pozitiven, lahko uvedemo substitucijo $\xi=\mu^2$.

Enačba je sicer nehomogena, ampak je njen nehomogeni del dovolj enostaven, da rešitev lahko uganemo

$$y(x) = \frac{\lambda}{2\xi} + Ae^{\mu x} + Be^{-\mu x} \tag{50}$$

Če substituiramo $C = \frac{\lambda}{2\xi}$ in nas ne zanima končna hitrost, lahko določimo vrednost konstant. Iz dinamičnega robnega pogoja spet sledi y'(1) = 0.

$$y'(1) = \mu(Ae^{\mu} - Be^{-\mu}) = 0 \tag{51}$$

$$B = Ae^{2\mu} \tag{52}$$

$$y(x) = A(e^{\mu x} + e^{\mu(2-x)}) + C = 2Ae^{\mu}\cosh(\mu(1-x)) + C$$
 (53)

$$y(0) = 2Ae^{\mu}\cosh\mu + C = y_0 \to C = y_0 - 2Ae^{\mu}\cosh\mu$$
 (54)

$$y(x) = 2Ae^{\mu}(\cosh(\mu(1-x)) - \cosh\mu) + y_0 \tag{55}$$

Iz pogoja, da v času T prevozimo ravno razdaljo L, lahko izračunamo še vrednost A.

$$\int_0^1 y(x) dx = \left[2Ae^{\mu} \left(\frac{\sinh(\mu(x-1))}{\mu} - x \cosh \mu \right) + y_0 x \right]_0^1$$
 (56)

$$=2Ae^{\mu}\left(\frac{\sinh\mu}{\mu}-\cosh\mu\right)+y_0=1\tag{57}$$

$$2Ae^{\mu} = \frac{1 - y_0}{\frac{\sinh \mu}{\mu} - \cosh \mu} \tag{58}$$

$$y(x) = \frac{1 - y_0}{\frac{\sinh \mu}{\mu} - \cosh \mu} \cdot \left(\cosh(\mu x - \mu) - \cosh \mu\right) + y_0 \tag{59}$$

Grafi y(x) pri različnih vrednostih ξ in y_0 so na slikah 4-7.

Slika 4: Odvisnost hitrosti od časa pri $\xi = 0,01$

Slika 5: Odvisnost hitrosti od časa pri $\xi = 1$

3.4.1 Preverjanje

Če ξ in s tem μ manjšamo proti 0, bi morali dobiti enak rezultat, kot če hitrosti ne bi upoštevali, torej izraz 19.

$$[\cosh a\mu - \cosh \mu]_{\mu < <1} = \frac{\mu^2}{2}(a^2 - 1) + \mathcal{O}(\mu^4)$$
 (60)

$$\left[\frac{\sinh \mu}{\mu} - \cosh \mu\right]_{\mu < 1} = -\frac{\mu^2}{3} + \mathcal{O}(\mu^4) \tag{61}$$

Ko oba izraza vsatvimo v (59), vidimo, da je rešitev za majhne ξ res enako gibanje, kot če je $\xi=0$.

$$y(x) = \frac{3}{2}(1 - y_0)x(2 - x) + y_0$$
(62)

Slika 6: Odvisnost hitrosti od časa pri $\xi = 100$

3.4.2 Samo hitrost v \mathcal{L}

Zanimiva je tudi druga limita, ko v Lagranžijanu nastopa samo hitrost. To rešitev lahko iz zadnjega rezultata če limitiramo $\xi \to \infty$. V tem primeru lahko hiperbolična sinus in kosinus zamenjamo z eksponentno funkcijo in rešitev postane

$$y(x) = \frac{1 - y_0}{e^{\mu}(\frac{1}{\mu} - 1)} (e^{\mu x} e^{-\mu} - e^{\mu}) + y_0$$
 (63)

$$= \frac{1 - y_0}{1 - \frac{1}{\mu}} (1 - e^{\mu(x-2)}) + y_0 \tag{64}$$

Izraz v eksponentu x-2 je na celotnem intervalu negativen, zato je $e^{\mu(x-2)} \approx 0$ za velike μ . V tem izrazu lahko brez nevšečnosti postavimo μ na neskončno in dobimo kot rešitev gibanje s konstantno hitrostjo y(x)=1. Če ne upoštevamo pospeška in nas zanima le vožnja z najmanjšim kvadratom hitrosti, je najugodneje takoj pospešiti ali zavreti na hitrost 1 in nato voziti

Slika 7: Odvisnost hitrosti od časa pri različnih vrednosti ξ in $y_0=1,5$

z nespremenjeno hitrostjo do semaforja.

4 Periodična rešitev

Če za drugi robni pogoj vzamemo y(1) = y(0), dobimo drugačno rešitev. Spet uporabimo izraz (14).

$$y(1) - y(0) = A(1 - \frac{2}{3}) + 2(1 - y_0) = 0$$
(65)

$$A = -6(1 - y_0) (66)$$

$$y(x) = -6(1 - y_0)x^2 + 4(1 - y_0)x + 2(1 - y_0) + y_0$$
 (67)

$$= 6(1 - y_0)x(1 - x) + y_0 (68)$$

V tem primeru je rešitev parabola, ki po pričakovanju v začetni in končni točki doseže enako vrednost y_0 .

Slika 8: Odvisnost hitrosti od časa pri periodičnem robnem pogoju

5 Komentar

5.1 Začetna hitrost

Skoraj povsod v odvisnosti hitrosti od časa nastopa člen $(1-y_0)$. Ta člen ima vrednost 0 natanko tedaj, ko nas vožnja z nespremenjeno hitrostjo pripelje skozi semafor ob ravno pravem času. Če je y_0 v naših brezdimenzijskih enotah večji od 1, moramo zavirati, če pa je manjši, moramo za dosego našega cilja najprej pospešiti.

5.2 "Vozli" na grafih

Na vsakem grafu najdemo vsaj eno takšno točko x_1 , da je $y(x_1) = 1$ neodvisno od y_0 . Vse rešitve, ki smo jih obravnavali pri tej nalogi, so namreč oblike

$$y(x) = (1 - y_0)f(x) + y_0 (69)$$

kjer je funkcija f(x) ni odvisna od y_0 in velja f(0) = 0 ter $f(x_1) = 1$. Funkcija f in s tem položaj točke x_0 sta odvisni od parametrov problema in robnih pogojev, pri problemu s periodičnim robnim pogojem dobimo celo dve taki vrednosti $x_1.$