(b)
$$f(x,y) = \sqrt{y \cos x}$$

+.+ ->+

Analiticamente:

$$D = \left\{ (x, y) \in \mathbb{R}^{2} : \underbrace{y \cdot \cos x}_{> 0} \right\}$$

$$\left(y > 0 \land \cos x > 0 \right) \lor \left(y \leq 0 \land \cos x \leq 0 \right)$$

Geometricamente:

96) Não limitado Não é aberto

(g)
$$f(x,y) = \frac{\sqrt{x+1}}{\sqrt{\frac{3}{4} - x^2 - y^2 + x}}$$

$$D_{1} = \{(x,y) \in \mathbb{R} : x > 0 \land \frac{3}{4} - x^{2} - y^{2} + x > 0 \}$$

$$x^{2} + y^{2} - x < \frac{3}{4}$$

$$x^{2} - x + \left(\frac{1}{2}\right)^{2} + y^{2} < \frac{3}{4} + \left(\frac{1}{2}\right)^{2}$$

$$(x - \frac{1}{2})^{2}$$

$$\frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$

$$D_{4} = \left\{ (x, y) \in \mathbb{R}^{2} : x > 0, \wedge \left(x - \frac{1}{2} \right)^{2} + y^{2} < 1 \right\}$$

~ 1

interior da circunferência centrada em (\$1,0) e raio 1

 $Q(o_1o)$ x = 0

9. g) limitado por existe uma laola que contém o conjunto D.

Aberto X O conjunto nos é nem aberto nem
fechado
QEDV QÉ int D

D = int D

D na é aberto

Q é um ponto interior a D se existir uma bola centrada em Q contida no conjunto

 $\mathring{\mathbb{C}}=$ int $\mathbb{C}=$ conjunto das pontes interiores \rightarrow é sempre um conjunto aberto $\overline{\mathbb{D}}=$ aderência ou fecho do conjunto \rightarrow é ,, ,, , fechado $\overline{\mathbb{D}}=$ int \mathbb{D} \mathbb{U} fr \mathbb{D}

Fechado X o conji. D noù é fechado pq $D \neq \overline{D}$ uma vez que, por exemplo, o ponto $P(\frac{3}{2}, o) \notin D$ mas $P \in \overline{D} = \operatorname{int}(D) \cup \operatorname{fr}(D)$ é um ponto fizonteiro, donde é ponto aderente

Exemplo : A =] 1, 4]

não é aberto pa intA + A

interior de A: int(A) =]1, 4[

não é fechado pa A # A

Fronteira de A: Fr (A) = {1,4}

Fecho ou aderência: $\overline{A} = int(A) \cup fr(A) = [1, 4]$

Derivado de A : A = [1,4]

é o conjunto dos pontos de acumulação

lim ponto de acumulação

> X é um ponto de acumulação de A se qualquer bola centrada em X contém pelo menos um ponto do conjunto A diferente de X (isto é, X é ponto de acumulação se não for ponto isolado)

 $\lim_{n \to \infty} \frac{1}{n} = 0$

A = A U joy

A = { o}

 $D = \left\{ (x,y) \in \mathbb{R}^2 : x \leq 1 \land 0 < y < 2 \right\}$

nas é aberto, nem fechado

int $D = \{(x, y) \in \mathbb{R}^2 : x < 1 \land o < y < 2 \}$

int (D) -

 $\overline{\mathbb{D}} = \left\{ (x, y) \in \mathbb{R}^2 : x \leqslant 1 \quad \land \quad 0 \leqslant y \leqslant 2 \right\}$

$$E = D \cup \{(a,o)\}$$

$$E' = D$$

