Komutativna algebra - 2. domača naloga

Benjamin Benčina, 27192018

24. marec 2020

Nal. 1:

- (a) Pri reševanju naloge bomo uporabili razvojno okolje Macaulay 2 glej priloženo datoteko nal1a.m2 (če se je ne da naložiti direktno, kopirajte vrstice eno za drugo). Programu najprej povemo, da bomo delali s kolobarjem racionalnih polinomov v dveh spremenljivkah. Nato definiramo ideal $I=(xy^2+2y^2,x^4-2x^2+1)$ in vnesemo testna polinoma $p=x^4+1$ in $q=x^2-y-1$. Če želimo, lahko še posebej izračunamo Gröbnerjevo bazo ideala I in si ogledamo njene generatorje. Vemo, da je polinom v idealu I natanko tedaj, ko je njegov ostanek pri deljenju z Gröbnerjevo bazo enak ničelnemu polinomu. Pri obeh polinomih dobimo neničelen ostanek, torej $p,q\notin I$. Enako ponovimo z $J=\sqrt{I}$. V tem primeru ima p neničelen ostanek, ostanek pri q pa je enak 0, torej $p\notin J$ in $q\in J$.
- (b) Iščemo vse točke algebraične množice $V := V_{\mathbb{C}}(x^2 + y^2 z, x^2 + y + z^2, -x + y^2 + z^2)$.

Najprej si množico oglejmo v okolju Macaulay 2 - glej datoteko nal1b.m2. Najprej programu povemo, da bomo delali z racionalnimi polinomi v treh spremenljivkah z leksikografsko (Lex) monomsko ureditvijo in vnesemo algebraično množico v obliki ideala $I=(x^2+y^2-z,x^2+y+z^2,-x+y^2+z^2)$. Ukaz dim I vrne vrednost 0, kar pomeni, da je V diskretna množica točk (ne pa npr. krivulja ali ploskev). Ukaz degree I nam pove, da je točk najverjetneje 8. Izračunamo Gröbnerjevo bazo ideala I in si ogledamo njene generatorje. Sedaj postane jasno, zakaj smo na začetku vztrajali pri Lex ureditvi monomov. Prvi bazni polinom je polinom le v spremenljivki z, vsak naslednji pa ima največ eno spremenljivko več od prejšnjega. Postopek reševanja je sedaj idejno podoben Gaussovi eliminaciji - najprej bomo rešili prvo enačbo, dobili kandidate za z-koordinato rešitev in nato vstavljali v naslednje enačbe.

Postopek bomo na tem mestu še poenostavili. Iz definicijskih enačb množice V lahko sumimo na neke vrste simetrijo spremenljivk x in z. To zlahka preverimo tako, da v okolju Macaulay 2 v definiciji kolobarja zamenjamo vrstni red spremenljivk x in z. V Gröbnerjevi bazi je na prvem mestu isti polinom, le da je tokrat v spremenljivki x. Spremenljivki x in z svoje vrednosti torej jemljeta iz iste množice rešitev, spremenljivko y pa zlahka izrazimo iz druge definicijske enačbe množice V.

Edini problem je v dejstvu, da je prvi bazni polinom 6. stopnje, konkretno je to polinom

$$p(z) = 8z^6 + 12z^5 + 10z^4 + z^3 - z^2 - 2z.$$

Poskusimo ga zmanjšati. Prva očitna rešitev je z=0 (ta sovpada z očitno rešitvijo sistema (0,0,0)). S faktorizacijo dobimo polinom 5. stopnje. Na tej točki se spomnimo, da kompleksne rešitve vedno nastopajo v konjugiranih parih. Torej mora nujno obstajati še ena realna rešitev. S pomočjo slike, ki jo naredi Octave (ali Matlab) skripta slika.m, uganemo rešitev $z=\frac{1}{2}$. Če to rešitev vstavimo v preostanek baznih polinomov, dobimo še drugo realno rešitev $(\frac{1}{2},-\frac{1}{2},\frac{1}{2})$, kar lahko razberemo tudi samo s slike. S pomočjo Hornerjevega algoritma faktoriziramo polinom in dobimo polinom 4. stopnje

$$p(z) = 8z^4 + 16z^3 + 18z^2 + 10z + 4.$$

Za polinomske enačbe 4. stopnje končno obstaja splošna rešitev, zato rešimo p(z) = 0 v programskem okolju Mathematica ali pa s spletnimi orodji, na primer https://www.wolframalpha.com/widgets/view.jsp?id=dcc8007e03af36a0bd3635b09e4cd5a2. Dobimo 4 kompleksne rešitve

$$z_{1} = -\frac{1}{4}i(\sqrt{7} - 3i),$$

$$z_{2} = -\frac{1}{4}i(\sqrt{7} - i),$$

$$z_{3} = \frac{1}{4}i(\sqrt{7} + 3i),$$

$$z_{4} = \frac{1}{4}i(\sqrt{7} + i).$$

Vemo, da ima spremenljivka x isto množico rešitev, spremenljivko y pa lahko izračunamo iz druge definicijske enačbe množice V, zato preverimo vseh 16 možnosti. S skripto resitve.m jih lahko preverimo numerično in pričakovano dobimo še preostalih 6 rešitev:

- $\left(-\frac{1}{4} + \frac{\sqrt{7}}{4}i, \frac{1}{4} \frac{\sqrt{7}}{4}i, -\frac{3}{4} \frac{\sqrt{7}}{4}i\right)$
- $\left(-\frac{1}{4} \frac{\sqrt{7}}{4}i, \frac{3}{4} \frac{\sqrt{7}}{4}i, -\frac{1}{4} \frac{\sqrt{7}}{4}i\right)$
- $\left(-\frac{3}{4} + \frac{\sqrt{7}}{4}i, \frac{1}{4} + \frac{\sqrt{7}}{4}i, -\frac{1}{4} \frac{\sqrt{7}}{4}i\right)$
- $\left(-\frac{1}{4} \frac{\sqrt{7}}{4}i, \frac{1}{4} + \frac{\sqrt{7}}{4}i, -\frac{3}{4} + \frac{\sqrt{7}}{4}i\right)$
- $\left(-\frac{3}{4} \frac{\sqrt{7}}{4}i, \frac{1}{4} \frac{\sqrt{7}}{4}i, -\frac{1}{4} + \frac{\sqrt{7}}{4}i\right)$
- $\bullet \ (-\frac{1}{4} + \frac{\sqrt{7}}{4}i, \frac{3}{4} + \frac{\sqrt{7}}{4}i, -\frac{1}{4} + \frac{\sqrt{7}}{4}i)$

Da smo res gotovi, dobljene točke vstavimo v definicijske enačbe, ali pa rezultate preverimo še simbolno z Mathematico.

Nal. 2:

(a) Naj bo I poljuben pravi ideal kolobarja R. Želimo pokazati, da obstaja minimalni praideal P nad I, tj. tak praideal P, ki vsebuje I, da ne obstaja noben praideal Q, za katerega velja $I \subset Q \subsetneq P$. V dokazu bomo "navzdol"uporabili Zornovo lemo.

Označimo z Λ družino vseh praidealov kolobarja R, ki vsebujejo I. Ker je vsak pravi ideal vsebovan v nekem maksimalnem idealu, vsak maksimalen ideal pa je praideal, družina Λ ni prazna. Družino Λ sedaj delno uredimo z obratno vsebovanostjo, torej $P \leq Q \iff P \supseteq Q$, kjer sta $P,Q \in \Lambda$. Vzemimo poljubno linearno urejeno poddružino $C \subseteq \Lambda$ in si oglejmo

$$Q = \bigcap_{P \in C} P.$$

Očitno $I \subseteq Q$. Trdimo, da je Q praideal. Podtrditev dokažimo s protislovjem.

Recimo, da Q ni praideal kolobarja R. Potem obstajata elementa $x,y\in R$, da je $xy\in Q$, vendar $x\notin Q$ in $y\notin Q$. Po definiciji preseka obstajata praideala $P,P'\in C$, da $x\notin P$ in $y\notin P'$. Brez škode za splošnost privzamemo $P\subseteq P'$, saj je poddružina C linearno urejena. Od tod sledi $x,y\notin P'$, vendar pa je P' praideal, zato $xy\notin P'$ in posledično $xy\notin Q$, kar vodi v protislovje.

Ker je Q pradideal, ki vsebuje I, je $Q \in \Lambda$. Očitno je Q zgornja meja poddružine C glede na obratno urejenost, saj po definiciji preseka za vsak $P \in C$ velja $Q \subseteq P$. Ker je bila poddružina C poljubno izbrana, to velja za vsako linearno urejeno poddružino v Λ . Po Zornovi lemi Λ vsebuje maksimalen element, ki je po definiciji obratne vsebovanosti minimalni praideal nad I.

(b) Pri iskanju minimalnih praidealov nad $I = (x^2y, xy^2) \lhd \mathbb{Q}[x, y]$ si bomo spet pomagali z okoljem Macaulay 2 - glej priloženo datoteko nal2b.m2. Najprej okolju povemo, da bomo delali s kolobarjem racionalnih polinomov v dveh spremenljivkah in definiramo ideal I. Nato nam ukaz minimalPrimes I vrne seznam dveh minimalnih praidealov nad I: (x) in (y).

Opomba: V tem primeru lahko minimalne praideale najdemo hitro tudi brez računalnika. Ker smo v kolobarju polinomov z racionalnimi koeficienti, so edini pravi ideali, ki vsebujejo ideal I, naslednji: (x), (y), (x, y), (xy) (jasno je, da (x, xy) = (x), (ax) = (x) ipd.). Po inkluziji preverimo od najmanjših do največjih. Ideal (xy) ne more biti praideal, saj $xy \in (xy)$, vendar $x, y \notin (xy)$. Ideal (x) je praideal, saj če $fg \in (x)$, polinom fg nujno v vseh členih vsebuje spremenljivko x, torej jo mora vsebovati tudi najmanj eden od polinomov f in g. Podoben premislek velja za (y). Jasno je $(x), (y) \subset (x, y)$, zato nas ideal (x, y) ne zanima. Dobili smo isti rezultat kot zgoraj.