TASK-BASED SPARSE DIRECT SOLVER FOR SYMMETRIC INDEFINITE SYSTEMS

lain S. Duff and **Florent Lopez** SIAM CSE19, Spokane, WA, 2019

Rutherford Appleton Laboratory

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

Fast

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

- Fast
- Numerically Stable

,

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

- Fast
- Numerically Stable

In the context of the NLAFET project, we have developed the package SyLVER, that contains the two direct solvers:

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

- Fast
- Numerically Stable

In the context of the NLAFET project, we have developed the package SyLVER, that contains the two direct solvers:

- SpLDLT: for symmetric systems:
 - positive-definite_(LL^T)
 - ∘ indefinite (LDL^T)

Objective: solve Ax = b

Where A is a large, sparse and symmetrically-structured matrix

The algorithm needs to be:

- Fast
- Numerically Stable

In the context of the NLAFET project, we have developed the package SyLVER, that contains the two direct solvers:

- SpLDLT: for symmetric systems:
 - positive-definite_(LL^T)
 - ∘ indefinite (LDL^T)
- SpLU: for unsymmetric (LU) systems

,

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

Top500¹: #1 (Power9&V100), #2 (Power9&V100), #5 (Haswell&P100)

¹https://www.top500.org/

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

```
Top500<sup>1</sup>: #1 (Power9&V100), #2 (Power9&V100), #5 (Haswell&P100)
GPU architectures:
```

▲ High performance peak (GFlop/sec, GFlop/watt)
e.g. NVIDIA V100 GPU: 7.8 TFlop/s theoretical peak (FP64), Cholesky peak 5.7 TFlop/s (FP64)

¹https://www.top500.org/

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

```
Top500<sup>1</sup>: #1 (Power9&V100), #2 (Power9&V100), #5 (Haswell&P100)
```

GPU architectures:

- High performance peak (GFlop/sec, GFlop/watt) e.g. NVIDIA V100 GPU: 7.8 TFlop/s theoretical peak (FP64), Cholesky peak 5.7 TFlop/s (FP64)
- ▲ Support for reduced precision arithmetic such as FP16 e.g. Cholesky peak 46.0 TFlop/s (FP16 using Tensor Cores)

¹https://www.top500.org/

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

```
Top500<sup>1</sup>: #1 (Power9&V100), #2 (Power9&V100), #5 (Haswell&P100)
```

GPU architectures:

- ▲ High performance peak (GFlop/sec, GFlop/watt) e.g. NVIDIA V100 GPU: 7.8 TFlop/s theoretical peak (FP64), Cholesky peak 5.7 TFlop/s (FP64)
- ▲ Support for reduced precision arithmetic such as FP16 e.g. Cholesky peak 46.0 TFlop/s (FP16 using Tensor Cores)
- ▼ Limited memory available on the device (16GB on V100)

¹https://www.top500.org/

Heterogeneous CPU-GPU architectures have been increasingly popular in the HPC community over the past few years:

```
Top500<sup>1</sup>: #1 (Power9&V100), #2 (Power9&V100), #5 (Haswell&P100)
```

GPU architectures:

- ▲ High performance peak (GFlop/sec, GFlop/watt) e.g. NVIDIA V100 GPU: 7.8 TFlop/s theoretical peak (FP64), Cholesky peak 5.7 TFlop/s (FP64)
- ▲ Support for reduced precision arithmetic such as FP16 e.g. Cholesky peak 46.0 TFlop/s (FP16 using Tensor Cores)
- ▼ Limited memory available on the device (16GB on V100)
- ▼ CPU ↔ GPU memory transfer potentially slow e.g. PCIe 10× slower than NVLink but still common

¹https://www.top500.org/

Sparse direct methods: parallelism

The multifrontal factorization is achieved with a topological traversal of the elimination tree:

- 1. Assemble the contributions from the descendant
- Factor the column associated with the current node
- 3. Form the contribution blocks

Sparse direct methods: parallelism

The multifrontal factorization is achieved with a topological traversal of the elimination tree:

- Assemble the contributions from the descendant
- Factor the column associated with the current node
- 3. Form the contribution blocks

For the factorization and the solve phases, the sources of parallelism in the *elimination tree* include:

- Tree parallelism: nodes in independent branches can be processed concurrently
- Node parallelism: when a node is large enough, it may be processed in parallel

MULTIFRONTAL FACTORIZATION FOR MULTICORE CPUS

Factor diagonal block $A_{kk} = L_{kk}L_{kk}^T$ Apply pivots $L_{ik} = A_{ik}L_{kk}^{-T}$ Update trailing sub-matrix $A_{ij} - = L_{ik}L_{jk}^T$

Factor diagonal block $A_{kk} = L_{kk}L_{kk}^T$ Apply pivots $L_{ik} = A_{ik}L_{kk}^{-T}$ Update trailing sub-matrix $A_{ij} - = L_{ik}L_{jk}^T$

Indefinite systems: small diagonal elements and/or large off-diagonal elements might cause a lose of accuracy

Factor diagonal block $A_{kk} = L_{kk}L_{kk}^T$ Apply pivots $L_{ik} = A_{ik}L_{kk}^{-T}$ Update trailing sub-matrix $A_{ij} - = L_{ik}L_{jk}^T$

Indefinite systems: small diagonal elements and/or large off-diagonal elements might cause a lose of accuracy

 \implies avoid it by using pivoting

Factor diagonal block $A_{kk} = L_{kk}L_{kk}^T$ Apply pivots $L_{ik} = A_{ik}L_{kk}^{-T}$ Update trailing sub-matrix $A_{ij} - = L_{ik}L_{jk}^T$

Pivoting strategies

Two main pivoting strategies for the LDL^{T} factorization:

Pivoting strategies

Two main pivoting strategies for the LDL^{T} factorization:

- Threshold Partial Pivoting (TPP)
 - \blacktriangle Ensures that $|I_{ij}| < u^{-1}$ for some threshold u
 - ▼ Requires global communication on each columns
 - Used in HSL_MA97

Numerically robust but hard to parallelize

Pivoting strategies

Two main pivoting strategies for the LDL^T factorization:

- Threshold Partial Pivoting (TPP)
 - ▲ Ensures that $|I_{ij}| < u^{-1}$ for some threshold u
 - ▼ Requires global communication on each columns
 - o Used in HSL_MA97

Numerically robust but hard to parallelize

- Supernode Bunch-Kaufmann (SBK)
 - ▲ Performs pivoting in only within *F*₁₁ using Bunch-Kaufmann algorithm
 - ▼ Requires the use of a pivots perturbation strategy
 - Scaling and ordering techniques may be used to alleviate this problem
 - Used in PARDISO

Plenty of parallelism but potentially unstable

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

1. Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

 Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:

2. Failed-in-place approach: keep the failed columns in place:

Factor diagonal block using complete pivoting

```
do k = 1, nblk
  ! Factor diagonal block
  call Factor(A(k,k):RW, nelim_k)
end do
```


 Apply pivots in parallel using speculative execution

```
do k = 1, nblk
  ! Factor diagonal block
  call Factor(A(k,k):RW, nelim_k)
  ! Compute factors sub-diagonal on blocks
 do j = k+1, mblk
    call ApplyN(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute factors left-diagonal on blocks
 do j = 1, k-1
    call ApplyT(A(k,j):RW, A(k,k):R, nelim_k)
  end do
end do
```


• Determine the number of successfully eliminated pivots w.r.t threshold u^{-1}

```
do k = 1, nblk
  ! Factor diagonal block
  call Factor(A(k,k):RW, nelim_k)
  ! Compute factors sub-diagonal on blocks
 do j = k+1, mblk
    call ApplyN(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute factors left-diagonal on blocks
 do i = 1, k-1
    call ApplyT(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute nelim L
  call Adjust (A(:,k):R, nelim_k)
end do
```


 Update blocks in the trailing sub-matrix

```
do k = 1, nblk
  ! Factor diagonal block
  call Factor(A(k,k):RW, nelim k)
  ! Compute factors sub-diagonal on blocks
 do j = k+1, mblk
    call ApplyN(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute factors left-diagonal on blocks
 do i = 1, k-1
    call ApplyT(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute nelim L
  call Adjust (A(:,k):R, nelim_k)
  ! Update trailing sub-matrix
 do j = k, nblk
    do i = j, mblk
      call UpdateNN(A(i,k):R, A(j,k):R, A(i,j):RW,
                    nelim_k)
    end do
  end do
end do
```


 Update uneliminated and failed entries in the left-diagonal blocks

```
do k = 1, nblk
  ! Factor diagonal block
  call Factor(A(k,k):RW, nelim k)
  ! Compute factors sub-diagonal on blocks
 do j = k+1, mblk
    call ApplyN(A(k,i):RW, A(k,k):R, nelim k)
  end do
  ! Compute factors left-diagonal on blocks
 do i = 1, k-1
    call ApplyT(A(k,j):RW, A(k,k):R, nelim_k)
  end do
  ! Compute nelim L
  call Adjust (A(:,k):R, nelim_k)
  ! Update trailing sub-matrix
 do j = k, nblk
    do i = j, mblk
      call UpdateNN(A(i,k):R, A(j,k):R, A(i,j):RW,
                    nelim_k)
    end do
  end do
  ! Update uneliminated entries on left-diagonal
  ! blocks
 do j = 1, k-1
   do i = j, k-1
      call UpdateTT(A(k,i):R, A(k,j):R, A(i,j):RW,
                    nelim_k)
    end do
    do i = k, mblk
      call UpdateTT(A(i,k):R, A(k,j):R, A(i,j):RW,
                     nelim k)
    end do
  end do
end do
```

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

 Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:

2. Failed-in-place approach: keep the failed columns in place:

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

- Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:
 - ▲ Increased parallelism
- 2. Failed-in-place approach: keep the failed columns in place:

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

- Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:
 - ▲ Increased parallelism
 - ▼ Backups of entries ⇒ increased memory footprint
- 2. Failed-in-place approach: keep the failed columns in place:

A Posteriori Threshold Pivoting

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

- Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:
 - ▲ Increased parallelism
 - ▼ Backups of entries ⇒ increased memory footprint
- 2. Failed-in-place approach: keep the failed columns in place:
 - ▲ Dramatically reduce data movement

A Posteriori Threshold Pivoting

A Posteriori Threshold Pivoting (APTP) strategy: improve the parallelism of TPP while preserving numerical stability of the factorization

- Speculative execution: execute some tasks speculatively, assuming no numerical issues occurred, then check for instability and backtrack if necessary:
 - ▲ Increased parallelism
 - ▼ Backups of entries ⇒ increased memory footprint
- 2. Failed-in-place approach: keep the failed columns in place:
 - ▲ Dramatically reduce data movement
 - ▼ Failed entries must be kept up-to-date ⇒ Reduced granularity

Parallel multifrontal factorization for multicore CPUs

SpLDLT implements a multifrontal factorization using a Sequential Task Flow (STF) model

```
do n = 1, nnodes ! Topologically ordered
 ! Allocate memory
  call activate(front(n));
 ! Assemble fully-summned columns
  call assemble(front(n), children(n));
 ! Compute factors
  call factor(front(n));
 ! Assemble contribution block
  call assemble_contrib(front(n), children(n));
end do

! Wait for completion of submitted tasks
  call task_wait_for_all();
```

• assemble

- 1. Allocate memory (fully-summed and contribution blocks)
- Assemble contributions from children nodes into fully-summed columns
- factor Factorize the fully-summed columns and form the contribution blocks
- assemble_contrib Assemble contributions from children nodes into contribution blocks

MULTIFRONTAL FACTORIZATION FOR GPU DEVICES


```
do lvl = 1, nlevels
! Allocate memory
call activate_lvl(fronts(lvl))
! Assemble fully-summed columns
call assemble_lvl(fronts(lvl), child(lvl))
! Compute factors
call factor_lvl(fronts(lvl))
! Assemble contribution block
call assemble_cb_lvl(fronts(lvl), child(lvl))
end do
```



```
do lvl = 1, nlevels
! Allocate memory
call activate_lvl(fronts(lvl))
! Assemble fully-summed columns
call assemble_lvl(fronts(lvl), child(lvl))
! Compute factors
call factor_lvl(fronts(lvl))
! Assemble contribution block
call assemble_cb_lvl(fronts(lvl), child(lvl))
end do
```

```
chol_gpu: do jj = 1, n(lvl), nb
  do kk = jj, jj+nb, ib
  ! Factor inner panel
  call potrf_gpu_batched(lvlnodes(kk))
  ! Update inner panel
  call syrk_gpu_batched(lvlnodes(kk))
  ! Update trailing submatrix
  end do
  call syrk_gpu_batched(lvlnodes(jj), &
    lvlnodes(jj+nb))
end do chol_gpu
```

HETEROGENEOUS CPU-GPU MULTIFRONTAL FACTORIZATION

- Partition the assembly tree between NUMA regions and GPU devices
- balance $= \frac{\max_i(w_i)}{\frac{1}{n_{\mathrm{res}}} \sum_j (w_j)}$

• balance
$$= rac{\max_i (w_i/lpha_i)}{rac{1}{n_{\mathrm{res}}} \sum_j (w_j/lpha_j)}$$

- $\circ \ \ \alpha_i = 1.0 \ {\sf for} \ {\sf NUMA} \ {\sf regions}$
- $\alpha_i = Perf_{GPU}/Perf_{CPU}$ for GPU devices

• balance
$$= rac{\max_i (w_i/lpha_i)}{rac{1}{n_{\mathrm{res}}} \sum_j (w_j/lpha_j)}$$

- $\circ \ \ \alpha_i = 1.0 \ {\sf for} \ {\sf NUMA} \ {\sf regions}$
- $\circ \ \alpha_i = Perf_{GPU}/Perf_{CPU} \text{ for GPU devices}$
- Within subtree:
 - NUMA partition: task-based factorization
 - o GPU partition: batched factorization

• balance
$$= rac{\max_i (w_i/lpha_i)}{rac{1}{n_{ ext{res}}} \sum_j (w_j/lpha_j)}$$

- $\circ \ \ lpha_i = 1.0 \ {\sf for} \ {\sf NUMA} \ {\sf regions}$
- $\circ \ \alpha_i = Perf_{GPU}/Perf_{CPU} \text{ for GPU devices}$
- Within subtree:
 - \circ NUMA partition: task-based factorization
 - GPU partition: batched factorization
- Root partition: use task-based factorization where tasks run either on a CPU core or in a GPU stream

• balance
$$= rac{\max_i (w_i/lpha_i)}{rac{1}{n_{ ext{res}}} \sum_j (w_j/lpha_j)}$$

- $\circ \ \ lpha_i = 1.0 \ {\sf for} \ {\sf NUMA} \ {\sf regions}$
- $\circ \ \alpha_i = Perf_{GPU}/Perf_{CPU} \text{ for GPU devices}$
- Within subtree:
 - \circ NUMA partition: task-based factorization
 - GPU partition: batched factorization
- Root partition: use task-based factorization where tasks run either on a CPU core or in a GPU stream
- The DAG is dynamically scheduled in the root partition

SpLDLT implementation details:

• We use StarPU to manage the DAG at the higher level

- We use StarPU to manage the DAG at the higher level
- Two level parallelism in the DAG
 - Use OpenMP runtime system in NUMA regions as it comes with lower task management cost

- We use StarPU to manage the DAG at the higher level
- Two level parallelism in the DAG
 - Use OpenMP runtime system in NUMA regions as it comes with lower task management cost
- The dynamic scheduling is handled by the Heteroprio
 - Task scheduling criterion: acceleration factor on given resources

- We use StarPU to manage the DAG at the higher level
- Two level parallelism in the DAG
 - Use OpenMP runtime system in NUMA regions as it comes with lower task management cost
- The dynamic scheduling is handled by the Heteroprio
 - o Task scheduling criterion: acceleration factor on given resources
- ▲ We are able to exploit GPU device while overcoming memory limitations

- We use StarPU to manage the DAG at the higher level
- Two level parallelism in the DAG
 - Use OpenMP runtime system in NUMA regions as it comes with lower task management cost
- The dynamic scheduling is handled by the Heteroprio
 - o Task scheduling criterion: acceleration factor on given resources
- ▲ We are able to exploit GPU device while overcoming memory limitations
- ▲ Exploitation of data locality within each subtree

- We use StarPU to manage the DAG at the higher level
- Two level parallelism in the DAG
 - Use OpenMP runtime system in NUMA regions as it comes with lower task management cost
- The dynamic scheduling is handled by the Heteroprio
 - o Task scheduling criterion: acceleration factor on given resources
- ▲ We are able to exploit GPU device while overcoming memory limitations
- ▲ Exploitation of data locality within each subtree
- lacktriangle Reduce the impact of the cost for the CPU \leftrightarrow GPU memory transfers

NUMERICAL EXPERIMENTS

Numerical experiments

Experimental setup:

- 20 cores Intel Haswell machine (2 x E5-2695 v3)
- 1 NVIDIA Pascal P100
- 64 GB of RAM
- GNU compilers 7.1.0 with flags "-g -O2 -march=native"
- Intel MKL BLAS 11.3.1
- Metis 4.0.3

#	Problem	<i>n</i> ×10 ³	$nz(A) \times 10^6$	$nz(L) \times 10^6$	flops ×10 ⁹
1	Oberwolfach/t3dh	79.17	2.22	50.60	70.10
2	Lin/Lin	256.00	1.01	126.00	285.00
3	PARSEC/H2O	67.02	2.22	234.00	1290.00
4	<pre>GHS_indef/sparsine</pre>	50.00	0.80	207.00	1390.00
5	PARSEC/Ge99H100	112.98	4.28	669.00	7070.00
6	PARSEC/Ga10As10H30	113.08	3.11	690.00	7280.00
7	PARSEC/Ga19As19H42	133.12	4.51	823.00	9100.00

- HSL_MA97: multifrontal solver from the HSL library (CPU-only)
- PARDISO: supernodal solvers part of the MKL library (CPU-only)
- SpLDLT: our new solver, part of the SyLVER package (CPU-GPU)

CPU-only SpLDLT code is up to ×3 faster compared to PARDISO

- CPU-only SpLDLT code is up to $\times 3$ faster compared to PARDISO
- Heterogeneous CPU-GPU SpLDLT code is up to ×3 faster compared to CPU-only version

Numerical experiments: Sparse Cholesky factorization

#	Problem	n	nz(A)	nz(L)	flops
"	TIODICM	$\times 10^3$	$\times 10^6$	$\times 10^6$	$\times 10^9$
1	Koutsovasilis/F1	344	13.6	173.7	218.8
2	Oberwolfach/boneS10	915	28.2	278.0	281.6
3	ND/nd12k	36.0	7.1	116.5	505.0
4	ND/nd24k	72.0	14.4	321.6	2054.4
5	Janna/Flan_1565	1565	59.5	1477.9	3859.8
6	Oberwolfach/bone010	987	36.3	1076.4	3876.2
7	GHS_psdef/audikw_1	944	39.3	1242.3	5804.1
8	Janna/Fault_639	639	14.6	1144.7	8283.9
9	Janna/Hook_1498	1498	31.2	1532.9	8891.3
10	Janna/Emilia_923	923	21.0	1729.9	13661.1

• SpLDLT: our new solver, part of the SyLVERpackage (CPU-GPU)

Numerical experiments: Sparse Cholesky factorization

Numerical experiments: Sparse Cholesky factorization

Conclusions and future work

- Our sparse LDL^T factorization with APTP on multicore compares favourably with the state of the art solvers
- Using StarPU allows us GPU devices along with the multicores
- SpLDLT offers better numerical robustness compared to SBK like strategies

- We adapted the APTP pivoting to LU factorization...
- \bullet ...integrating it within SpLU using the same tree partitioning strategy as for SpLDLT

Thanks for listening!

Questions?