Chapitre V

La méthode du pivot de Gauss et ses applications

I – Présentation

1. Systèmes linéaires

Problème: Résoudre les systèmes linéaires à n inconnues $x_1, x_2, ..., x_n$ et p équations.

$$(S) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\ \dots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn}x_n = y_p \end{cases}$$

où les a_{ij} sont les coefficients du système et $y_1, ..., y_p$ les second membres connus des équations.

2. Combinaisons linéaires et systèmes

On a $(S) \Leftrightarrow x_1V_1 + x_2V_2 + \dots + x_nV_n = Y$ avec :

$$Y = (y_1, ..., y_n), V_1 = (a_{11}, ..., a_{n1}), V_2 = (a_{12}, ..., a_{n2}), ..., V_n = (a_{1n}, ..., a_{nn})$$

Principe: les vecteurs $Y, V_1, V_2, ..., V_n \in \mathbb{R}^p$ sont présents en *colonnes* dans le système (S). Notez que le premier indice de a_{ij} est celui de la ligne, et le second celui de l'inconnue (ou colonne).

3. Systèmes triangulaires

Un système triangulaire est de le forme :

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\ 0 \dots \dots \dots \dots \dots a_{pn}x_n = y_p \end{cases} \Rightarrow a_{ij} = 0 \text{ si } i > j$$

Exemple:
$$(S) = \begin{cases} x_1 + x_2 + x_3 = y_1 \\ ax_2 + x_3 = y_2 \\ x_3 = y_3 \end{cases}$$

- (S) a une solution unique si $a \neq 0$.
- Si a = 0, le système a des solution si et seulement si $y_2 y_3 = 0$
- → condition de compatibilité portant sur les données.

Si
$$y_2 = y_3$$
 et $a = 0$, (S) \Leftrightarrow $\begin{cases} x_3 = y_3 = y_2 \\ x_1 + x_2 + x_3 = y_1 \end{cases}$

$$(S) \Leftrightarrow \begin{cases} x_3 = y_3 = y_2 \\ x_1 = \underbrace{y_1 - y_2}_{\text{Données}} - \underbrace{x_2}_{\text{quelconque}} \end{cases} \text{ Paramètre réel quelconque}$$

(S) contient une infinité de solutions paramétrées par x_2 .

<u>Définition</u>: Un système triangulaire est dit *de Cramer* si les coefficients $a_{11}, a_{22}, ..., a_{nn}$ sont *tous non nul*s.

Propriété : Un système de Cramer possède une *unique solution* que l'on détermine en partant de la dernière équation.

$$x_n = \frac{y_n}{a_{nn}} \implies x_{n-1} = \frac{y_{n-1} - y_n}{a_{n-1} - n-1} \dots$$

II - Technique du pivot de Gauss-Jordan

1. Systèmes échelonnés

Systèmes de la forme $\begin{cases} a_{11} & x_1, x_2, \dots, x_r \\ 0 & a_{rr} \end{cases} \xrightarrow{x_{r+1}, \dots, x_n} = y_1 \\ \dots \\ y_r \\ = y_{r+1} \\ 0 & \dots \\ = y_p \end{cases}$

Propriétés clés:

- 1) Le système échelonné (S) possède des solutions si et seulement si les équations de compatibilité $0 = y_{r+1} = y_{r+2} = \dots = y_p$ sont satisfaites (portant sur les données).
- 2) Si ces conditions sont satisfaites alors toute donnée des *inconnues non principales* $x_{r+1}, ..., x_n$ détermine une *unique* solution de (S).
- \Leftrightarrow les solutions de (S) sont paramétrées par les inconnues non principales.

Les inconnues $x_1, ..., x_r$ s'appellent les *inconnues principales*, ou *pivot*s.

<u>Preuve</u>: On fait passer les inconnues non principales dans le second membre et on résout le système triangulaire de Cramer en $x_1, ..., x_r$.

2. La méthode du pivot

Théorème de Gauss-Jordan

Tout système linéaire se ramène à un système échelonné équivalent en utilisant trois types d'opérations élémentaires :

- Intervertir deux équations : $L_i \leftrightarrow L_j$,
- Intervertir l'ordre des inconnues,
- Remplacer une équation L_i par $L_i + \lambda L_j$.

La technique du pivot :

On décrit l'algorithme qui permet d'échelonner un système linéaire quelconque.

$$(S) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 & L_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 & L_2 \\ & \dots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn}x_n = y_p & L_p \end{cases}$$

- Si $a_{11} \neq 0$, on garde L_1 et on utilise x_1 en *pivot*.

On remplace
$$L_2$$
 par $L_2 - \frac{a_{21}}{a_{11}}L_1 = L'_2$... jusqu'à $L_p - \frac{a_{p1}}{a_{11}}L_1 = L'_p$.

Et on continue avec le sous système $L'_2, ..., L'_p$ avec les inconnues $x_2, ..., x_n$.

- Si $a_{11} = 0$, on intervertit 2 lignes ou 2 inconnues pour ramener un coefficient différent de 0 en haut à gauche. Cela s'arrête quand le 1^{er} membre du système restant à traiter est nul.

Les systèmes restent *équivalents* : ils ont même espace des solutions, car chaque opération élémentaire s'inverse.

Attention: il est essentiel de pouvoir faire ses opérations de manière *séquentielle*, et non simultanément, pour conserver l'espace de solution et avoir ainsi des systèmes équivalents. Par exemple un système à trois équations :

$$(S): L_1, L_2, L_3 \text{ implique } (S'): L'_1 = L_1 - L_2, \ L'_2 = L_2 - L_3, \ L'_3 = L_3 - L_1,$$

mais (S') n'implique pas (S) en général : on ne peut pas revenir aux équations de départ en partant des L'_i . Ces nouvelles équations sont liées car $L'_1 + L'_2 + L'_3 = 0$!

III - Applications

1. Trouver le rang d'un système de n vecteurs de \mathbb{R}^p et extraire une base de $E = Vect(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n})$

Théorème. Soient $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, ..., $\overrightarrow{v_n} \in \mathbb{R}^p$.

i) Le rang de $\mathcal{F} = (\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n})$ est le nombre r d'inconnues principales dans un système échelonné équivalent au système

$$(S): x_1\overrightarrow{v_1} + x_2\overrightarrow{v_2} + \dots + x_n\overrightarrow{v_n} = \overrightarrow{0}.$$

En d'autres termes, il est égal au nombre de pivots, i.e. au nombre de coefficients encadrés au cours de l'échelonnage.

ii) Une base de $E = Vect(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n})$ est donnée par les vecteurs $\overrightarrow{v_l}$ correspondants aux inconnues principales de (S).

<u>Démonstration</u>: Soit $\mathcal{F} = (\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n})$ une famille. On lui associe le système $(S): \sum_{i=1}^n x_i \overrightarrow{v_i} = \overrightarrow{0}$.

On suppose que les inconnues principales sont $x_1, ..., x_r$.

<u>Problème</u>: Montrer que $(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_r})$ est une base de $Vect(\mathcal{F})$.

On sait que quel que soit $x_{r+1}, ..., x_n$ donnés, le système (S) possède une unique solution.

Il existe donc une unique solution avec $x_{r+1} = 1$ et $x_{r+2} = \cdots = x_n = 0$.

 \Rightarrow Il existe des réels x_1, \dots, x_r tels que $x_1 \overrightarrow{v_1} + x_2 \overrightarrow{v_2} + \dots + x_r \overrightarrow{v_r} + \overrightarrow{v_{r+1}} = \overrightarrow{0}$

$$\Rightarrow \overrightarrow{v_{r+1}} \in Vect(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_r}).$$

Idem pour $\overrightarrow{v_{r+2}}, \dots, \overrightarrow{v_n}$.

On a montré que $Vect(\mathcal{F}) = Vect(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_r})$.

<u>Problème</u>: la famille $(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_r})$ est-elle libre?

On suppose que $x_1 \overrightarrow{v_1} + x_2 \overrightarrow{v_2} + \dots + x_r \overrightarrow{v_r} = \overrightarrow{0}$.

$$\Leftrightarrow x_1\overrightarrow{v_1} + x_2\overrightarrow{v_2} + \dots + x_r\overrightarrow{v_r} + 0 \times \overrightarrow{v_{r+1}} + \dots + 0 \times \overrightarrow{v_n} = \overrightarrow{0}$$

 \Leftrightarrow Solution de (S) avec $x_{r+1} = \cdots = x_n = 0$

 $\Rightarrow x_1 = \dots = x_r = x_{r+1} = \dots = x_n = 0$, car c'est l'unique solution possible correspondant aux inconnues non principales nulles.

 $\Rightarrow rang(\mathcal{F}) = r$ et $(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_r})$ est une base de $Vect(\mathcal{F})$.

Exemple: $\overrightarrow{v_1} = (0,1,a)$; $\overrightarrow{v_2} = (a,-1,0)$; $\overrightarrow{v_3} = (2a,a,a)$ avec $a \in \mathbb{R}$ paramètre.

On considère $x_1 \overrightarrow{v_1} + x_2 \overrightarrow{v_2} + x_3 \overrightarrow{v_3} = \overrightarrow{0}$.

$$\Leftrightarrow \begin{cases} ax_2 + 2ax_3 = 0 \\ x_1 - x_2 + ax_3 = 0 \\ ax_1 + 0 + ax_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \boxed{x_1} - x_2 + ax_3 = 0 \\ ax_2 + 2ax_3 = 0 \\ ax_1 + ax_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \boxed{x_1} - x_2 + ax_3 = 0 \\ ax_2 + 2ax_3 = 0 \\ ax_2 + (a - a^2)x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \boxed{x_1} - x_2 + ax_3 = 0 \\ \boxed{ax_2} + 2ax_3 = 0 \\ -(a^2 + a)x_3 = 0 \end{cases}$$

- Si $a \neq 0$ et $a \neq 1$ alors le système a 3 inconnues principales x_1, x_2, x_3 .

 $\Rightarrow rg(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) = 3 \text{ et } (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) \text{ est une base de } Vect(e_1, e_2, e_3) = \mathbb{R}^3.$

- Si a = 0, (S) $\Leftrightarrow x_1 - x_2 = 0$ donc le système a une seule inconnue principale : x_1 (par exemple).

$$\Rightarrow rg(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) = 1$$
 et $(\overrightarrow{v_1})$ est ne base de la droite $Vect(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$.

- Si a = 1, deux inconnues principales : x_1, x_2 .

$$\Rightarrow rg(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) = 2 \text{ et } (\overrightarrow{v_1}, \overrightarrow{v_2}) \text{ est une base du plan } Vect(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}).$$

2. Trouver un système d'équations cartésiennes d'un sous-espace de \mathbb{R}^p engendré par n vecteurs $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}$.

Soient
$$E = Vect(V_1, ..., V_n)$$
 un sev de \mathbb{R}^p et $Y = (y_1, ..., y_p) \in \mathbb{R}^p$

On cherche à quelles conditions on a $Y \in E$.

 $Y \in E \iff$ Le système $x_1V_1 + \cdots + x_nV_n = Y$ possède au moins une solution.

 \Leftrightarrow Les équations de compatibilité du système échelonné sont satisfaites (i.e. $0 = y_{n+1} \dots \dots \dots 0 = y_n$).

Théorème.

Soit $E = Vect(V_1, ..., V_n)$ un sev de \mathbb{R}^p .

Un système d'équations cartésiennes de E est donnée par les conditions de compatibilité d'un système échelonnée équivalent au système $x_1V_1 + \cdots + x_nV_n = Y$.

Exemple:
$$V_1 = (1,1,1,1)$$
; $V_2 = (1,2,3,4) \in \mathbb{R}^4$.

Trouver les équations de $P = Vect(V_1, V_2)$.

$$Y = (y_1 y_2, y_3, y_4) \in P \iff \exists x_1, x_2 \in \mathbb{R} \mid x_1 V_1 + x_2 V_2 = Y$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 = y_1 \\ x_1 + 2x_2 = y_2 \\ x_1 + 3x_2 = y_3 \\ x_1 + 4x_2 = y_4 \end{cases} \Leftrightarrow \begin{cases} \boxed{x_1} + x_2 = y_1 \\ x_2 = y_2 - y_1 \\ 3x_2 = y_3 - y_1 \\ 4x_2 = y_4 - y_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \boxed{x_1} + x_2 = y_1 \\ \boxed{x_2} = y_2 - y_1 \\ 0 = y_3 - y_1 - 2(y_2 - y_1) \\ 0 = y_4 - y_1 - 3(y_2 - y_1) \end{cases} \Leftrightarrow \begin{cases} \boxed{x_1} + x_2 = y_1 \\ \boxed{x_2} = y_2 - y_1 \\ 0 = y_1 - 2y_2 + y_3 \\ 0 = 2y_1 - 3y_2 + y_4 \end{cases}$$

$$\Rightarrow P = \{ Y = (y_1, y_2, y_3, y_4) \mid y_1 - 2y_2 + y_3 = 0 \text{ et } 2y_1 - 3y_2 + y_4 = 0 \}.$$

3. Trouver une base d'un sous espace vectoriel de \mathbb{R}^n défini par p équations

Soit E un sous-espace vectoriel de \mathbb{R}^n défini par p équations homogènes. C'est-à-dire que E = Sol(S) est l'espace des solutions d'un système (S) homogène à n inconnues et p équations.

On échelonne (S) : on suppose que $x_1, ..., x_r$ sont les inconnues principales et $x_{r+1}, ..., x_n$ sont les inconnues non principales.

Théorème.

Soit E = Sol(S) un sev de \mathbb{R}^n défini par un système d'équations. Alors on a :

- i) dim E = nbr d'inconnues non principales = n nbr d'inconnues principales de (S).
- ii) Une base de E est donnée par V_{r+1}, \dots, V_n avec :

$$V_{r+1}$$
 unique solution de (S) telle que $x_{r+1}=1$, $x_{r+2}=\cdots=x_n=0$, V_{r+2} unique solution de (S) telle que $x_{r+1}=0$, $x_{r+2}=1$, $x_{r+3}=\cdots=x_n=0$, ... V_n unique telle que $x_{r+1}=\cdots=x_{n-1}=0$, $x_n=1$.

<u>Attention</u> de ne pas confondre les deux techniques de calcul de dimension d'un espace vectoriel.

- La dimension d'un espace défini comme solution d'un système est le nombre d'inconnues non principales de ce système,
- tandis que la dimension d'un espace **engendré** par n vecteurs $V_1, V_2, ..., V_n$ est le nombre **d'inconnues principales** du système $\sum_{i=1}^n x_i V_i = 0$.

Démonstration:

Tout élément V de E est déterminé linéairement par la donnée de ses coordonnées « non principales » $(x_{r+1}, ..., x_n)$. Par unicité, on doit avoir $V = x_{r+1}V_{r+1} + \cdots + x_nV_n$. En effet ce vecteur est solution de (S) et ses dernières coordonnées sont celles de V par construction des V_i .

$$\Rightarrow E = Vect(V_{r+1}, ..., V_n) \text{ avec }:$$

$$V_{r+1} = (?,?,...,?,1,0,0,...,0) \text{ : unique solution telle que } (x_{r+1},x_{r+2},...,x_n) = (1,0,...,0),$$

$$V_{r+2} = (?,?,...,?,0,1;0,...,0) \text{ : unique solution telle que } (x_{r+1},x_{r+2},...,x_n) = (0,1,...,0),$$
...
$$V_n = (?,?,...,?,0,0,0,0,...;1) \text{ : unique solution telle que } (x_{r+1},x_{r+2},...,x_n) = (0,0,...,1)$$

- ⇒ Système libre à cause des dernières coordonnées de ces vecteurs
- \Rightarrow dim E = n r et $B = (V_{r+1}, ..., V_n)$ est une base de E.

Exemple: Soit
$$E = \{V = (x, y, z, t, u) \in \mathbb{R}^5 \mid \begin{cases} x + y + z - t + u = 0 \\ 2x + y + z + t + u = 0 \end{cases} \}$$

On a
$$V \in E \Leftrightarrow \begin{cases} \boxed{x} + y + z - t + u = 0 \\ -\boxed{y} - z + 3t - u = 0 \end{cases}$$

- \Rightarrow x et y sont inconnues principales et z, t, u non principales.
- \Rightarrow dim E = 3. Pour trouver une base, il faut résoudre le système.

On résout :
$$\begin{cases} x + y = z + t - u \\ -y = z - 3t + u \end{cases} \Leftrightarrow \begin{cases} x = -z + t - u + z - 3t + u \\ y = -z + 3t - u \end{cases}$$

$$V \in E \Leftrightarrow V = (-2t, -z + 3t - u, z, t, u)$$

$$\Leftrightarrow V = z(0, -1, 1, 0, 0) \\ +t(-2, 3, 0, 1, 0) \\ +u(0, -1, 0, 0, 1) = z V_1 + t V_2 + u V_3.$$

Une base de E est donc $B = (V_1, V_2, V_3)$.

Une application utile du résultat général précédent est le

<u>Corollaire</u>: Un sous-espace de \mathbb{R}^n défini par p équations est de dimension $\geq n - p$.

<u>Démonstration</u>: En effet il y a au plus p inconnues principales (au plus une par ligne).

 \rightarrow Au moins n-p inconnues non principales.

4. Trouver un supplémentaire d'un sev de \mathbb{R}^n défini par un système d'équations

Soit $E = \operatorname{Sol}(S)$ un sev de \mathbb{R}^n défini à l'aide d'un système d'équations homogènes (S). On note $B = (e_1, e_2, ..., e_n)$ la base canonique de \mathbb{R}^n .

Théorème. Un supplémentaire de E = Sol(S) dans \mathbb{R}^n est donné par le sev

$$F = Vect(e_{i_1}, e_{i_2}, \dots, e_{i_k} \mid avec x_{i_1}, x_{i_2}, \dots, x_{i_k} \text{ inconnues principales de } (S)).$$

<u>Par exemple</u>, avec le sev E de \mathbb{R}^5 du paragraphe précédent, on a $F = Vect(e_1, e_2)$ supplémentaire de E, car x et y sont inconnues principales du système définissant E.

Démonstration:

On a :
$$\mathbb{R}^n = E \oplus F \iff \dim E + \dim F = n \text{ et } E \cap F = \{0\}.$$

- La condition sur la dimension est satisfaite car $\dim E = \text{nbr}$ inconnues non principales et $\dim F = \text{nbr}$ inconnues principales.
- Si $V \in E \cap F$, alors V est une solution de (S) dont les coordonnées « non principales » sont nulles (système d'équations de F). Par unicité, on doit avoir V = 0, et donc $E \cap F = \{0\}$.

<u>En conclusion</u>, ces applications montrent que la technique du pivot de Gauss est un véritable « couteau suisse » pour résoudre les problèmes d'algèbre linéaire que nous avons rencontrés jusqu'ici!