Introduction to Intelligent Systems Vector Quantization

Unsupervised Learning - VQ

Implement winner-takes-all unsupervised competitive learning (VQ) as discussed in class and apply it to the data sets w6_1x.mat, w6_1y.mat, and w6_1z.mat Use the (squared) Euclidean distance measure.

Your code should have roughly this structure:

- Read in the file containing the data, determine N: the dimension of input vectors, P: the number of examples
- set the parameters K: the number of prototypes, η : the learning rate (step size) t_{max} : maximum number of epochs (sweeps through the data set)
- \bullet initialize the prototypes by random selection of K data points
- repeat for epochs t = 1 to $t = t_{max}$:
 - · shuffle the data set by permuting the order of examples randomly (useful command: randperm(P))
 - perform one epoch of training (i = 1, ... P), present single examples to the system, evaluate the distances from all prototypes, and update the winner
 - · plot the data and prototype positions after each epoch, observe how they approach their final positions
 - · evaluate the quantization error H_{VQ} after each epoch
- plot the learning curve, i.e. H_{VQ} as a function of t

Perform experiments for K=2 and K=4. As an initial guess, use a learning rate $\eta = 0.1$, but try different values for comparison. Determine a reasonable value of t_{max} for which H_{VQ} seems to approach a minimum. Note that on-line VQ might need more epochs than K-means needed iterations for successful training.

Produce several learning curves for different choices of η . Observe how the behavior depends on the learning rate. How does the final value of the cost function change with η ? What happens if η is too large (too small)?

You should hand in (at least):

- Your MatLab code
- The learning curve for at least three different values of η for K=2 and K=4. for one of the data sets (your choice)
 A short discussion of your results, in particular with respect to the role of the
- learning rate