Convex Hull

The Problem

Tomato plants are planted in the ground at various points in a garden. We wish to build a single continuous fence around the tomato plants at minimal cost. Each linear metre of fence costs \$5; posts cost \$1. You may assume that you do not need to leave any buffer zone around a tomato plant. You may also assume that the area enclosed by the fence will always be non-zero.

The Input

The first line of input will be a number on a line by itself which is the number of test cases to run. For each test case, the first line will be a number $N \ge 3$ on a line by itself which is the number of tomato plants. The next N lines consists of a pair of non-negative integers, which are the x and y coordinates of the end points of the line segments.

The Output

For each test case, output a single line containing the cost of building the fence, rounded to two decimal places.

Sample Input	Sample Output	
2	\$82.61	
7	\$35.88	
5 4		
4 2		
3 3		
6 1		
7 4		
2 1		
1 3		
4		
6 2		
6 3		
6 4		
5 1		