Homework 3 CSCI4100

Han Hai Rin:661534083 haih2@rpi.edu

September 24 2018

1. [100 points] Exercise 1.13 Consider the bin model for a hypothesis h that makes an error with probability μ in approximating a deterministic target function f (both h and f are binary functions). If we use the same h to approximate a noisy version of f given by

 $P(y|x) = \lambda \text{ if } y=f(x),$

 $P(y|x) = 1 - \lambda \text{ if } y \neq f(x)$

- (a) What is the probability of error that h makes in approximating y? $P(e) = \mu \lambda + (1 \lambda)(1 \mu)$
- (b) At what value of λ will the performance of h be independent of μ ? When λ is 0.5 $0.5\mu + 0.5 0.5\mu = 0.5$ it's independent of μ
- 2. [100 points] Exercise 2.1 By inspection, find a break point k for each hypothesis set in Example 2.2(if there is one). Verify that $m_H k < 2^k$ using the forumlas derived in that example.
 - (a) positive rays: the break points is k+1 the minimum k for this to work is $2\ 2+1=3\ 2^2=4$ so $k+1<2^k$ for k=2
 - (b) positive intervals: for N=1 and N=2 $0.5N^2 + 0.5N + 1 = 2^N$ for N=3 it's 7 < 8 therefore, the break point is 3
 - (c) convex sets: there isn't a break point for this one since 2^N is the formula
- 3. [100 points Exercise 2.2]
 - (a) Verify the bound of Theorem 2.4 in the three cases of Example 2.2:
 - i. positive rays: H consists of all hypotheses in one dimension of the form h(x)=sign(x-a). From 2.1 we know k=2, so $\sum_{i=0}^{2-1} Nci = 1 + N$ therefore the theorem hold in this case

ii. Positive intervals: H consists of all hypotheses in one dimension that are positive within some interval and negative elsewhere.

From 2.1 we know k=3,so

$$\sum_{i=0}^{3-1} Nci = 1 + \frac{1}{2}N^2 + \frac{1}{2}N$$
 here, the theorem hold as well

- iii. Convex sets k doesn't exist here so the theorem doesn't apply
- (b) Doe there exist a hypothesis set for which $m_H(N) = N + 2^{[N/2]}$ where N/2 is the largest integer < N/2

No, because $m_H(N)$ is bounded by polynomial, an exponential term seems unreasonable

- 4. [200 points] Exercise 2.3 Compute the VC dimension of H for the hypothesis sets in parts 1 2 and 3 of exercise 2.2
 - (a) for this one $d_{VC}=1$, since 2 is the break point
 - (b) $d_{VC}=2$, since 3 is the break point
 - (c) d_{VC} is ∞ since break point does not exist
- 5. [100 points] Exercise 2.6 A data set has 600 examples. To properly test the performance of the final hypothesis, you set aside a randomly selected subset of 200 examples which are never used in the training phase; these form a test set. You use a learning model with 1000 hypotheses and select the final hypothesis g based on the 400 training examples. We wish to estimate $E_{out}(g)$. We have access to two estimates: $E_{in}(g)$, the in-sample error on the 400 training access to two estimates; and, Etest(g), the test error on the 200 test examples that were set aside.
 - (a) Using a 5 % error tolerance ($\lambda = 0.05$) which estimates has the higher error bar?

let
$$\lambda = 2Me^{-2\epsilon^2 N}$$

then, $\epsilon = \sqrt{\frac{1}{2N}ln(\frac{2M}{\lambda})}$

plus in the numbers, Etraining with a smaller N though large M will have larger error bar

- (b) Is there any reason why you shouldn't reserve even more examples for testing? Yes, a even larger testing data will result in a even smaller training data, that might have a negative effect
- 6. [200 points] Problem 1.11 The matrix which tabulates the cost of various error for the CIA and Supermarket applications in Example 1.1 is called a risk or loss matrix.

For the two risk matrices in Example 1.1, explicitly write down the in-sample error E_{in} that one should minimize to obtain g. This in-sample error should weight the different types of errors based on the risk matrix.

for the first matrix supermarket:
$$E_{in} = 10 * \frac{1}{N} \sum_{n=1}^{N} [h(x_n) = -1, f(x_n) = +1] + \frac{1}{N} \sum_{n=1}^{N} [h(x_n) = +1, f(x_n) = -1]$$

for the second matrix CIA:
$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} [h(x_n) = -1, f(x_n) = +1] + 1000 * \frac{1}{N} \sum_{n=1}^{N} [h(x_n) = +1, f(x_n) = -1]$$

- 7. [200 points] Problem 1.12 The problem investigates how changing the error measure can change the result of the learning process. You have N data points $y_1 \leq ..., y_N$ and wish to estimate the "representative" value.
 - (a) If you algorithm is to find the hypothesis h that minimizes the in-sample sum of squared devia-

$$E_{in}(h) = \sum_{n=1}^{N} (h - y_n)^2,$$

 $E_{in}(h) = \sum_{n=1}^{N} (h - y_n)^2$, show that your estimate will be the in-sample mean,

$$h_{mean} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

take the derivative of Ein $E'_{in} = 2\sum_{n=1}^{N}(h-y_n)$ when $E'_{in} = 0$ E_{in} is minimize, so $h_n = y_n$ would minimize, the hypothesis $h_{mean} = \frac{1}{N}\sum_{n=1}^{N}y_n$ can get close to y_n

- (b) If your algorithm is to find the hypothesis h that minimizes the in-sample sum of absolute deviations $E_{in} = \sum_{n=1}^{N} |h - y_n|$, show that the median will be the estimate again take the derivatie $E'_{in} = \sum_{n=1}^{N} |h - y_n|/h - y_n$ it's either 1 or -1, so when half of the number is positive above y_n and half of the number is below, E'_{in} 1+1-1+1-1... is zero and E_{in} is minimize, that is the the median number
- (c) Suppose y_n is perturbed to $y_N + \epsilon$ where $\epsilon \to \infty$ So, the single data point y_N becomes an outlier. What happens to your two estimators hmeans and hmedian?

hmedian is unaffected, because median number is robust, while hmean $\to \infty$, so hmean is perturbed