

Ensemble N et notions d'arithmétique

Capacités attendues

Utiliser la parité et la décomposition en produit de facteurs premiers pour résoudre des problèmes simples portant sur les entiers naturels.

Tronc commun scientifique

Rachid El Manssouri

Contenu du chapitre 01

I.L'ensemble des nombres entiers naturels1
II.Diviseurs d'un nombre - Multiples d'un nombre1
III. Nombres pairs - Nombres impairs1
IV.Critères de divisibilité par 2 ; 3 ; 4 ; 5 et 9
V.Nombres premiers
1. Nombres premiers
2. Méthode pour reconnaitre si un nombre est premier ou non
3. Décompositions d'un nombre entier naturel en produit de facteurs premiers 3
VI.Le plus grand commun diviseur de deux nombres
VII.Le plus petit commun multiple de deux nombres
VIII.Irréductibilité d'une fraction

I. L'ensemble des nombres entiers naturels

Définition 1 et notations :

- ▶ Les nombres 0; 1; 2; 3; ... sont appelés les nombres entiers naturels, et constituent un ensemble qu'on appelle l'ensemble des nombres entiers naturels, et on le note \mathbb{N} , et on écrit $\mathbb{N} = \{0; 1; 2; 3; ... \}$.
- ▶ L'ensemble des entiers naturels non nuls est noté N* (c'est l'ensemble N privé de zéro).

Exemples:

- 3 est un élément de \mathbb{N} , on dit que 3 appartient à \mathbb{N} , et on écrit $3 \in \mathbb{N}$.
- 2,7 n'est pas un élément de N, on écrit 2,7 ∉ N.

Remarque:

• Tout nombre de \mathbb{N}^* est un nombre de \mathbb{N} , on dit que \mathbb{N}^* est inclus dans \mathbb{N} , et on écrit $\mathbb{N}^* \subset \mathbb{N}$.

II. Diviseurs d'un nombre - Multiples d'un nombre

Définition 2:

Soient a, b et k trois entiers naturels.

Si a = b.k, alors on dit que :

b est un diviseur de a ou b divise a ou a est divisible par b ou a est un multiple de b.

Exemple:

• On a: 612 = 17 x 36. Donc 612 est un multiple de 17 (et de 36)

On dit aussi: 612 est divisible par 17 (et par 36);

17 est un diviseur de 612 (et 36 aussi);

17 divise 612 (et 36 aussi).

• On a: 2012: 25 = 80,48 et 80,48 n'est pas un nombre entier.

Donc 2012 n'est pas divisible par 25.

Remarques:

- Le nombre 0 est un multiple de tous les entiers naturels car : $0 = 0 \times n$ où $n \in \mathbb{N}$.
- Tout entier naturel a est un multiple de 1 et de lui-même car : $a = 1 \times a$.
- a étant un entier naturel, les multiples de a sont de la forme k. a avec $k \in \mathbb{N}$.

Application 1:

- 1. Déterminer les multiples de 24 qui sont inférieur à 200.
- 2. Déterminer les diviseurs de 72.

III. Nombres pairs - Nombres impairs

Définition 3:

Soit *a* un entier naturel.

- \triangleright On dit que a est un nombre **pair** s'il est divisible par 2. a s'écrit alors sous la forme 2k avec $k \in \mathbb{N}$.
- ▶ On dit que a est un nombre **impair** s'il n'est pas divisible par 2. a s'écrit alors sous la forme 2k + 1 avec $k \in \mathbb{N}$.

Exemples:

- Le nombre 641 est impair car : $641 = 2 \times 320 + 1$ (k = 320).
- Le nombre 3010 est pair car : $3010 = 2 \times 1505$ (k = 1505).

Application 2:

1. Soit *n* un entier naturel.

Parmi les nombres suivants déterminer les nombres pairs et impairs :

$$6667$$
; $4n + 6$; $10n + 5$; $2020n^2 + 8n + 2019$.

- 2. Montrer que la somme de deux nombres ayant la même parité est un nombre pair.
- 3. Compléter le tableau suivant :

Parité de <i>m</i>	Parité de <i>n</i>	Parité de $m + n$	Parité de <i>m</i> . <i>n</i>
pair	pair		
pair	impair		
impair	pair		
impair	impair		

IV. Critères de divisibilité par 2;3;4;5 et 9

- > Un nombre est divisible par 2 lorsqu'il se termine par un chiffre pair.
- ▶ Un nombre est divisible par 5 s'il se termine par 0 ou 5.
- > Un nombre est divisible par 4 lorsque les deux derniers chiffres forment un nombre multiple de 4.
- > Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3.
- > Un nombre est divisible par 9 si la somme de ses chiffres est divisible par 9.

Application 3:

Étudier la divisibilité de 27516 par 2; 3; 4; 5 et 9.

V. Nombres premiers

1. Nombres premiers

Activité:

Rechercher tous les nombres entiers naturels inferieurs à 30 qui ont exactement 2 diviseurs.

Définition 4:

On dit qu'un nombre entier naturel est premier s'il possède exactement deux diviseurs (1 et lui-même).

Exemples:

- 18 est divisible par 2, il possède donc au moins 3 diviseurs : 18 n'est donc pas premier.
- 1 possède un unique diviseur : 1 n'est donc pas premier.
- 23 possède exactement deux diviseurs (1 et 23) : 23 est donc premier.
- La liste des nombres premiers inférieurs à 100 sont :

2;3;5;7;11;13;17;19;23;29;31;37;41;43;47;53;59;61;67;71;73;79;83;89;97.

2. Méthode pour reconnaitre si un nombre est premier ou non

Pour reconnaitre si un entier naturel n est premier, on cherche tous les entiers naturels premiers p qui vérifient $p^2 \le n$.

Si n est divisible par l'un de ces nombres alors n n'est pas premier sinon, alors il est premier.

Exemple:

Est-ce que 107 est premier?

On a : les nombres premiers dont leurs carrés inférieurs à 107 sont : 2 ;3 ;5 ;7, et 107 n'est divisible par aucun de ces nombres premiers. Donc 107 est premier.

3. Décompositions d'un nombre entier naturel en produit de facteurs premiers

Propriété 1 et Définition 5 :

Soit *n* un entier naturel non premier et strictement supérieur à 1.

Le nombre n s'écrit sous forme de produit de facteurs premiers, cette écriture s'appelle la décomposition de n en produit de facteurs premiers.

Exemple:

On a : $1008 = 16 \times 9 \times 7$.

Alors la décomposition de 1008 en produit de facteurs premiers est : $1008 = 2^4 \times 3^2 \times 7$.

Application 4:

- 1. Décomposer en produit de facteurs premiers les nombres 12600 et 28350.
- 2. Simplifier les nombres $\sqrt{12600}$ et $\sqrt{28350}$.
- 3. Montrer que $\sqrt{12600 \times 28350} \in \mathbb{N}$.

VI. Le plus grand commun diviseur de deux nombres

Définition 6:

Soient *a* et *b* deux nombres entiers naturels non nuls.

- \triangleright Un **diviseur commun de** a **et** b est un nombre entier qui divise a et qui divise b.
- ➤ Le plus grand parmi les diviseurs communs de a et b, s'appelle le **plus grand commun diviseur de** a et b. On le note : pgcd(a;b) ou $a \land b$.

Exemple:

- (Les diviseurs de 10 sont : **1**; **2**; 5; 10
- Les diviseurs de 12 sont : 1;2;3;4;6;12

Donc pgcd(10; 12) = 2.

Application 5:

Calculer: pgcd(24; 36); pgcd(18; 14); pgcd(45; 16).

Définition 7:

On dit que deux nombres entiers naturels sont **premiers entre eux** si leur *pgcd* est égal à 1.

Autrement dit : Deux nombres entiers naturels sont premiers entre eux s'ils ne possèdent qu'un seul diviseur commun qui est 1.

Exemples:

- 24 et 36 sont divisibles par 2, donc 24 et 36 ne sont pas premiers entre eux.
- pgcd(45; 16) = 1, donc 45 et 16 sont premiers entre eux.

Propriété 2:

Soient *a* et *b* deux nombres entiers naturels non nuls. Pour calculer le *pgcd* de *a* et *b* :

- i. On décompose chacun des nombres en produit de facteurs premiers.
- *ii.* On calcule le produit de leurs facteurs premiers communs, chacun étant pris avec son plus petit exposant.

Exemple:

Calcul du : pgcd(108; 180).

Application 6:

Calculer pgcd(a; b) dans les cas suivants :

- 1. a = 120 et b = 144.
- 2. a = 225 et b = 75.
- 3. a = 12600 et b = 28350.

VII. Le plus petit commun multiple de deux nombres

Définition 8 :

Soient *a* et *b* deux nombres entiers naturels non nuls.

Le plus petit multiple commun de a et b non nul s'appelle le plus petit commun multiple de a et b, et on le note : ppcm(a;b) ou $a \lor b$.

Exemple:

- (Les multiples de 8 sont : 0; 8; 16; **24**; 32; 40; **48**; 56; 64; 72 ...
- Les multiples de 6 sont : 0;6;12;18;**24**;30;36;42;**48** ...

Donc ppcm(6; 8) = 24.

Propriété 3:

Soient a et b deux nombres entiers naturels non nuls. Pour calculer le pgcd de a et b:

- i. On décompose chacun des nombres en produit de facteurs premiers.
- *ii.* On calcule le produit de tous les facteurs premiers communs et non communs dans les deux décompositions, chacun étant pris avec son plus grand exposant.

Exemple:

Calcul du : *ppcm*(300; 504).

Application 7:

Calculer ppcm(a; b) dans les cas suivants :

1.
$$a = 120$$
 et $b = 144$.

2.
$$a = 225$$
 et $b = 75$.

3.
$$a = 12600$$
 et $b = 28350$.

VIII. Irréductibilité d'une fraction

Définition 9:

On dit qu'une fraction est **irréductible** si son numérateur et son dénominateur sont premiers entre eux.

Autrement dit: Une fraction est irréductible si le *pgcd* de son numérateur et de son dénominateur est égal à 1.

Ainsi, une fraction irréductible ne peut être simplifiée (puisque son numérateur et son dénominateur n'ont pas d'autre diviseur commun que 1).

Exemples:

- 24 et 36 ne sont pas premiers entre eux, donc la fraction $\frac{24}{36}$ n'est pas irréductible.
- 45 et 16 sont premiers entre eux, donc la fraction $\frac{45}{16}$ est irréductible.

Propriété 4:

Si on simplifie une fraction par le pgcd de son numérateur et de son dénominateur, alors on obtient une fraction irréductible.

Application 8:

- 1. Montrer que la fraction : $\frac{170}{578}$ n'est pas irréductible.
- 2. Déterminer le *pgcd* des nombres 170 et 578.
- 3. Écrire la fraction $\frac{170}{578}$ sous forme irréductible.