HAMBURGER STERNWARTE WARNER AND SWASEY OBSERVATORY

AD 740726

LUMINOUS STARS

IN THE NORTHERN MILKY WAY

II prim I

NATIONAL TECHNICAL INFORMATION SERVICE Springfield Va 22151

Hamburger Sternwarte Warner and Swasey Observatory

LUMINOUS STARS IN THE NORTHERN MILKY WAY

II

J. STOCK*, J. J. NASSAU, C. B. STEPHENSON

Warner and Swasey Observatory
Case Institute of Technology

Hamburg - Bergedorf 1960

^{*} Now at Kitt Peak National Observatory

I. INTRODUCTION

This publication is the second of a series of catalogues presenting the results of a joint survey, by the Hamburg and Warner and Swasey Obersvatories, of early-type stars of high luminosity in the northern Milky Way. The historical origins and intended scope of the survey are discussed in the first number of the series (1), hereafter referred to as "Paper I." The discussion in Paper I of the various practical details of the production of the catalogue applies in nearly all respects to the present publication and will not be repeated here except insofar as desirable for convenience in using the material. The remainder of this preface will, therefore, primarily have the purpose of detailing the few differences between this publication and the preceding one and of including additional remarks.

The boundaries, in right ascension and declination or in galactic longitude and latitude, of the area surveyed for the present catalogue are given by the solid-line boundaries on the charts following the catalogue. The plates were taken with the Hamburg Schmidt telescope. The rest of the task was the sole responsibility of the present authors.

II. THE PROGRAM

The details of the observational procedure are essentially as given in Paper I. It should be mentioned, however, that no $H\alpha$ -plates were taken for the fields between declinations $+20^{\circ}$ and $+10^{\circ}$, nor in many cases at the highest latitudes, and this fact should be borne in mind in connection both with the catalogue and the charts, both of which contain information about the presence of $H\alpha$ in emission as will be discussed below.

The limiting magnitude of this survey is approximately that of Paper I, viz., the 12th to 13th photographic magnitude, depending on the spectral types of the stars in question. A discussion of the relation between spectral type and limiting magnitude is given in Paper I.

III. CLASSIFICATION

See Paper I for fuller discussion. We should take this opportunity to mention that some of the MK types of the catalogue are given in a form implying extreme precision in subdivision of spectral classes (e.g., A6 Ib-II). Such types are the result m. y of averaging differing classifications of two observers or of more than one plate, and they have been retained solely for the statistical purpose of lowering the over-all mean errors of the published types.

Preceding page blank

The enlarged experience with H\u03c4 plates and other material obtained since Paper I has left some uncertainty as to the exact physical significance of the spectral feature designated as "ce," which is an apparent continuous emission near the Balmer limit (cf. Paper I, p. 7). The nature of this uncertainty is best characterized by saying that the occurrence of the "ce" notation with an OB type serves as a wrning that the star may be less luminous than indicated by the hydrogen line strength (its classification as OB*, OB, or OB*), but not as a guarantee that it is so. The same remark applies to OE stars which in the present publication are stated to show H\u03c4 in emission and accounts for the retention of these stars in the present catalogue.

The spectral types given in the "Remarks" column have been taken from the literature, mostly from the Morgan, Code and Whitford catalogue (2) but also from many other sources of slit spectrograph classifications. These types are given only for purposes of comparison with our classifications, and for this reason the search for published classifications has not been exhaustive, although it should be nearly complete; for the same reason, references to the sources of these types are omitted even though in a few cases differing classifications have been published for the same star. In all cases our spectra were classified without knowledge of published types.

IV. THE MAGNITUDES

As in Paper I, photoelectric magnitude sequences, as available, were used to calibrate the spectral image densities, and these calibrations were transferred to other fields through plate overlaps. For this purpose, data given by Morgan, Code, and Whitford (2) and Hilmer (3) were the principal sources. Photographic sources such as the AGK₂ were also used to strengthen the transfer from plate to plate.

V. THE POSITIONS

The positions given here should almost always be reliable to 0.1, but by no means always to the precision of 0.51 and 1" which is given in the catalogue. The precession has also been calculated with formulae guaranteeing 0.1 accuracy for time intervals up to 100 years. The positions came from measurements of the spectral plates themselves, in consequence of which the declination errors, which depend critically upon the accurate locations of spectral lines, may sometimes exceed 0.1 for the faint or highly luminous OB stars whose lines were difficult to see at the measuring engine. The right ascension error,

however, is nearly always very much smaller than 0.1. The positions given for stars occurring in the AGK_2 are the AGK_2 positions and accordingly are exempt from the foregoing discussion.

From the 1950 values, 1855 coordinates were computed, and, as in Paper I, BD numbers were obtained by comparison of computed coordinates with the BD catalogue. This procedure can be expected to lead to a few errors in identification. The more doubtful cases were clarified by direct examination of the plates, and a check against false identification was in some cases available from the complete comparison between our coordinates and the Aitken double star catalogue which was performed. Nevertheless, as an aid to resolving any ambiguities which may arise in the use of the catalogue as a finding list, we quote the maximum disagreement between our data and the BD which was formally tolerated in making identifications: For stars brighter than m_{pg} 10.1, 2^{S_3} in R. A. and 0^{I_3} is declination, and $-0^{I_3} \le m_{pg} - m_{BD} \le +1^{I_3}$. For stars fainter than 10.0 pg the position tolerances were 1^{S_3} in R. A. and 0^{I_3} in declination. Stars fainter than m_{pg} 11.4 were assumed to be non-BD stars; and the few BD identifications exceeding the above limits are based on plate examinations.

The precession for 50 years was computed with auditatic time terms, in the sense 1950 to 1900. The sign of the catalogue precession is, however, that for going forward in time. The tabulated precessions thus permit coordinate transformations forward with sufficient accuracy for most purposes, and (with signs reversed) yield 1960 positions as accurate as the measurements "hemselves.

VI. THE CATALOGUE

The arrangement of the catalogue is that of Paper I. For convenience in use of the catalogue, we repeat the description of the columns in addition to a few additions and changes.

The remarks to the catalogue contain a number of data of a type not present in Paper I. The only one which warrants any discussion is the identification of components of double and multiple stars. For the stars of the Aitken catalogue, the identifications are based on comparisons with the Aitken catalogue and, in a great many cases, on examinations of the plates. Most of the blends, indicated by AB, etc., were not apparent as blends on the original plates, resembling only a single, non-composite spectrum. These were nevertheless designated as blends for lack of accurate knowledge of the photographic magnitude difference

between the components. The pairs included by Burnham but omitted by Aitken were merely quoted from the AGK₂. The identification of Burnham systems is thus somewhat incomplete; but, since our principal purpose in identifying double stars is to avoid ambiguities, and since the Aitken-omitted Burnham stars are generally wide pairs, the incompleteness of the Burnham data is not important in the present context.

The columns contain the following data:

- Column 1. Consecutive number for the 1950 declination zone.
- Column 2. BD number.
- Column 3. Estimated spectral type. Here "ce" = continuous emission near the Balmer limit; "le" = line emission, usually one or more members of the Balmer series, noted on the blue plates; "h" = Ha observed in emission; "p" = peculiar; and parentheses enclose uncertain information.
- Column 4. Photographic magnitude. Colons indicate especially incertain values.
- Column 5. Right ascension for the equinox 1950.0.
- Column 6. Declination for the equinox 1950.0. Colons indicate uncertain values.
- Column 7. 50 year precession in R.A., in the sense 1950 to 1900 as to quadratic terms but with sign for precession forward.
- Column 8. 50-year precession in decl., computed as for R.A.
- Column 9. Remarks. These include published slit spectral classifications; designation in the Yale Catalogue of Bright Stars, the Aitken (ADS) or Burnham (BDS) double star catalogues, and the 1958 edition of the Russian variable star catalogue; and some other material. "R" indicates a remark in the section of supplementary remarks following the main catalogue.

VII. THE DISTRIBUTION OF THE STARS

As in Paper I, the distribution of the stars of the catalogue are shown in charts following the catalogue. These show separately the OB⁺, OB, OB⁻, OBce, cB-A and cF-G groups. The OBce plot now includes Ha-emission OB stars, le stars, and Wolf-Rayets, the last being indicated by horizontal lines flanking the dots. The supergiant plots distinguish luminosity class II and Ib-II from higher luminosities, the latter being shown with horizontal lines for the cBA group and the former thus for the cFG group. Equatorial coordinates for 1950 are indicated by short crosses at intervals of 20^m in R.A. and 5^o in decln. Calactic coordinates, based on the new galactic coordinate system recommended by the I. A. U. (4), are shown by longer crosses at intervals of 2^o in 1 and b. On two charts, the crowding of the

stars in Cygnus, at the well-known collection of early-type objects near P Cygni, made the use of the regular magnitude symbols impractical. Here all stars are indicated by small dots; the region in which this was done is shown by a rectangle.

VIII. ANALYSIS OF THE DATA

The purpose of publishing this material at this time is to present at the earliest moment a finding list for observers who may wish to utilize such a list. Even in their present raw form, however, these data are amenable to certain types of analysis and interpretation. This work is still in progress, and the results will be published separately. The types of discussion now under way, most of which will, to be sure, be incomplete until reddening data become available, include: tests for reality of known OB associations by looking for concentrations of fainter stars at larger distance moduli in the same directions, or for associated concentrations of early giants (omitted from this catalogue) and supergiants; a search for possible new associations; possible new exciting stars for known emission regions; aspersion of the various OB classes about the old and new galactic planes; crude estimates of mean interstellar absorption; and possible galactic cluster membership of the new F supergiants.

Similarly, a large number of byproducts of this survey are still under investigation. These include early giants, new Ha- and blue-emission stars, planetary nebulae, composite spectra, visual binaries, carbon and S stars, and so on. A discussion of new data for known and new galactic clusters, based on this material, has already been published by Roslund (5).

The reduction from plate measures to 1950 coordinates was carried out on an IBM 650 at Cincinnati by Professor Paul Herget, whose valuable aid and advice are greatly appreciated. The reduction to 1855 coordinates and 50-year precession was computed on the Burroughs 220 of the Case Institute of Technology; we wish to thank Mr. Frederick Way, III, associate director of the Computing Center, for the aid furnished us by him and his staff.

Mr. Arthur Upgren and Mr. Curt Roslund measured many of the plates and were helpful in nearly all phases of this project. The Hamburg observers, who too's varying proportions of the plates, are J. Hardorp, I. Ozsvath, K. Rohlfs, J. Stock, and A. Slettebak. Mrs. Betty Stephenson, Mr. Rolf Mehlhorn and Mr. John Finnerty assisted with various phases of plate measurement, computing, editing, and chart construction; our thanks are due to all of them.

This work was supported in part by the United States Office of Naval Research.

REFERENCES

- (1) J. Hardorp, K. Rohlfs, A. Slettebak, J. Stock, Luminous Stars in the Northern Milky Way I.

 (Hamburg Bergedorf: Hamburger Sternwarte and Warner and Swasey Observatory, 1959).
- (2) W. W. Morgan, A. D. Code, and A. E. Whitford, Ap. J. Suppl. 2, no. 14, 1955.
- (3) W. A. Hiltner, Ap. J. Suppl. 2, no. 24, 1956.
- (4) <u>The Observatory</u>, <u>79</u>, 118, 1959.
- (5) C. Roslund, <u>Pub.</u> A. S. P., 72, 205, 1960.

No.	BD	Srectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
1		OB ⁻ r	11.3	19 ^h 56 ^m 22. ⁹ 2	9 ⁰ 52' 56"	2 ^m 23 ^ș 5 8'2"	
1 2 3 4 5	9 ⁰ 3894	OB OB OB(ce) OB- (F9 I2)	10.6 11.0 10.2 10.6 9.2	18 41 28.3 42 22.7 48 43.4 50 11.9 19 6 54.1	10 56 21 58 46 3 30 5 52 28 16	2 21.0 2 55 2 20.9 2 58 2 22.1 3 26 2 22.1 3 32 2 21.9 4 43	FM Aql
6 7 8 9 10	10 3849 10 3872 10 4058	B9 II B8 lbr OB- G2 Ia F8 I	8.4 10.9 11.7 7.6 12.2	19 14 24.9 19 17.6 22 56.2 46 7.9 50 52.0	53 22 39 55 16 54 34 7 10 42	2 21.5 5 14 2 21.8 5 34 2 22.3 5 49 2 22.5 7 22 2 23.1 7 41	Fe Ib-II
1 2 3 4 5	11 3687 10 3774 11 3738 10 3799 11 3850	B8 II OB ⁺ (ce,le)r OBr (F2 II)	9.5 9.7 9.7 10.5 9.9	18 57 22.9 19 1 46.8 4 37.5 6 40.0 26 3.8	11 20 49 1 53 21 48 1 49 57 44	2 20.7 4 3 2 21.1 4 21 2 20.8 4 33 2 21.2 4 42 2 20.5 6 2	B1.5; IV ne; R ADS 12489 A; R
8 9 10	11 3908 11 3946	F6 Ib F3 Ib-II OB ⁺ OB ⁺ F8 I	11.2 9.4 10.5 9.1 12.2	28 12.6 34 3.7 35 52.4 38 52.0 20 0 50.9	56 18 55 20 33 4 56 42 42 56	2 20.6 6 11 2 20.7 6 35 2 21.2 6 42 2 20.8 6 54 2 21.7 8 19	
1 2 3 4 5	12 3790 11 3725 	AO II B8 II OB [†] r OB	8.0 9.7 11.6 13.1 12.5	19 2 3.8 3 5.4 3 14.5 3 53.7 9 14.2	12 55 16 5 54 48 22 21 26 26 43	2 18.9 4 22 2 19.9 4 27 2 19.1 1 27 2 19.6 4 30 2 19.6 4 53	
6 7 8 9 10	12 3927 	OB- OBr F3 II OB+ F6 fb	12.2 10.4 10.4 11.0 11.8	13 37.0 27 6.4 30 43.5 34 26.8 55 9.2	52 4 28 11 35 26 58 51 52 7	2 19.2 5 11 2 20.0 6 6 2 19.9 6 21 2 19.6 6 36 2 20.3 7 57	
1 2 3 4 5	13 3754	OBr OBr OB OBle (OBle)	10.6 11.8 12.5 12.5 12.5	18 45 25.1 19 2 18.2 6 0.0 20 51.7 21 9.4	13 8 28 56 36 44 47 45 24 29 2	2 18.4 3 12 2 17.7 4 24 2 18.0 4 39 2 18.3 5 41 2 18.7 5 42	R
6 7 8 9 10	13 4091	B9 II OB F5 Ib OB [†] (le) OB(le)	11.3 11.1 10.4 11.4 10.5	25 17.1 34 44.9 34 50.7 37 20.9 37 22.7	24 18 25 38 45 49 45 34 55 57	2 18.8 5 59 2 19.1 6 37 2 18.7 6 38 2 18.8 6 48 2 18.6 6 48	R
11 12 13		OB- OB- OB	11.3 12.0 12.4	41 40.0 48 9.3 48 41.6	29 21 27 1 39 38	2 19.2 7 5 2 19.5 7 30 2 19.2 7 32	
1 2 3 4 5	14 3720 14 3763	OB OB OB(ce) OB ⁺	10.0 10.3 10.6 9.3 10.6	18 44 51.1 45 55.9 50 46.2 55 7.2 19 1 20.7	14 43 17 5 51 43 37 20 12 51 48	2 16.4 3 9 2 17 2 3 14 2 16.5 3 35 2 17.1 3 53 2 16 6 4 20	
6 7 8 9	14 3863 14 3881	OB ⁺ (OB) OB ⁺ OB ⁺ F8 lar	11.8 12 0 10 7 10.7 8 5	5 10 0 5 44 5 14 30 7 16 34 6 18 23.2	24 27 36 47 28 24 14 8 19 28	2 17. 2 4 36 2 17 0 4 38 2 17. 3 5 15 2 17. 7 5 23 2 17. 6 5 31	BDS 9223 A

No	BD	Spectral Type	m _{PE}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
11 12 13 14 15	14º 3887 14 3952 14 4158	OB [†] le,r B9 II OB OB [†] F0 Ib	11.3 10.4 11.9 11.4 12.4	19h19m16se 29 5c.4 37 1.2 40 5c.8 5. 20.6	14 ⁰ 47 ' 9" 19 14 48 56 43 3 50 11	2 ^m 1751 5'34" 2 17.9 6 18 2 17.6 6 46 2 17.8 7 2 2 18.0 7 43 2 18.4 8 22	ADS 13310 A
1 2 3 4 5		OB [†] ce F3 I OB B8 II B8 II	11.5 10.5 10.3 11.3 11.7	18 38 48.3 48 12.3 55 30.4 19 8 51.0 12 21.0	15 20 58 52 46 24 56 5 33 31 37	2 15.6 2 43 2 15.1 3 24 2 15.8 3 55 2 16.5 4 51 2 16.0 5 6	AP Her
6 7 8 9 10	15 3782	OB [*] OB ⁺ OB ⁺ A3 Ib	12.7 10.8 11.7 12.0 9.6	15 10.5 17 1.0 17 19.4 18 12.9 19 42.8	8 5 33 36 32 0 32 44 46 11	2 16.6 5 17 2 16.1 5 25 2 16.2 5 26 2 16.2 5 30 2 15.9 5 36	
11 12 13 14 15	15 3787 14 3898 14 3880	В7 П ОВ [†] (се)г А0 П + А0 П В8 П ОВ	9.8 10.2 9.8 10.1 9.9:	20 44.1 21 7.1 35 2.4 42 13.0 46 11.7	57 38 7 5 27 8 8 7 29 54	2 15.7 5 40 2 16.7 5 42 2 16.8 6 38 2 17.4 7 7 2 17.1 7 23	B0 III V688 Aql
16 17 10	14 4146	OB [†] le,rr F6 lab G0 I	12.4 10.0 9.3	55 21.5 58 52.4 59 56.3	7 3 39 52 12 6	2 17.9 7 58 2 17.4 8 12 2 18.0 8 16	KL Aql
1 2 3 4 5	16 3721 16 3780	F (I)p F8 lb A0 (II) WN(5) F4 lab	12.1: 10.2: 10.0 11.7 9.9	18 39 26.9 47 25.6 19 2 39.1 9 16.4 10 48.2	16 3 41 25 1 29 23 46 35 25 1	2 14.7 2 46 2 14.4 3 20 2 14.6 4 25 2 14.4 4 53 2 14.9 4 59	к
6 7 8 9 10	16 3826 	A2 II OB ⁺ OB ⁺ ce,r OBle OB ⁻	9.9 12.0 11.1 11.1 11.8	19 50.4 24 20.0 28 30.4 30 31.0 30 53.6	26 51 49 15 49 8 55 18 44 49	2 '5.1 5 37 2 14.8 5 55 2 15.0 6 12 2 14.9 6 20 2 15.1 6 22	R
11 12 13 14	16 3919 16 3938 16 4067	B9 Ib OB OB F8 Iab	8.7 10.4 11.3 6.5	35 7.6 37 17.5 41 19.4 53 44.9	21 10 34 58 40 46 30 4	2 15.7 6 35 2 15.5 6 48 2 15.6 7 4 2 16.3 7 52	ADS 1263 B F6 lb, 105 Sge.
1 2 3 4 5	17 3799	OB ⁻ (le) F8 I F4 I OB ⁻ A0 Ц(le)	10.5 10.8 6.3 12.3 11.1	18 33 49,3 53 2.1 56 1.2 56 3.2 19 12 36.3	17 42 15 8 8 17 33 10 20 30 34	2 12.6 2 22 2 13.6 3 44 2 13.5 3 57 2 13.7 4 3 2 13.6 5 7	HR 7165, FF Aql; R
6 7 8 9 10		B9 Ib (B9 II) O3 B9 II OB ⁺ r	10.8 12.2 11.8 11.4 11.4	19 30.1 29 20.8 31 35.7 34 47.0 36 25.9	30 30 25 52 4 47 16 56 55 30	2 13.9 5 35 2 14.8 6 25 2 14.6 58 2 13.9 6 44	
11 12 13 14 15	 17 4195	OB ⁺ r OBr AO II B9 II B8 II	12.2 10.5 11.4 10.9 9.2	37 35.9 38 57.2 40 18.3 41 52.5 59 37.6	54 53 44 22 50 48 42 42 57 14	2 14.0 6 49 2 14.3 6 54 2 14.2 7 0 2 14.4 7 6 2 14 9 8 15	
16	17 4206	ए 0 I	7.3	20 1 58.6	35 34	2 15.4 8 24	

No	BD	Spectral Type	m pg	Right Ascension 1950	Declination 1950	Precession R.A., Deci.	Remarks
1 2 3 4 5	 18º 4085	CBr F5 I OB ⁻ B6 Iar OB	12.0 10.3 11.2 8.1 11.2	18 ^h 47 ^m 49 ^S 8 52 5.9 52 11.4 19 25 13.2 36 55.0	18 ⁰ 19' 2'' 4 46 49 4 11 37 42 50	2 ^m 12 ⁵ 0 3' 22" 2 12.4 3 40 2 11.5 3 41 2 13.2 5 59 2 13.0 6 45	B7 Ia
6 7 3 9	18 4179 18 4186 18 4213	OB ⁻ F6 I B9 II OB ⁺ B8 II	7.5 10.0 11.6 11.0 8.5	37 0.9 38 10.3 39 39.6 41 17.5 41 53.4	34 6 47 28 0 37 17 24 26 39	2 13.2 6 46 2 13.0 6 51 2 14.0 6 57 2 13.7 7 3 2 13.6 7 6	
11 12 13 14 15	17 4087 17 4100 16 4264	OB B7 IIIe OB WN(7) OB	11.7 19.4 9.7 10.2 9.9	43 4.8 44 43.6 46 2.6 46 18.0 48 6.0	11 41 7 30 6 22 4 34 27 0	2 13.9 7 11 2 14.1 7 17 2 14.1 7 22 2 14.2 7 23 2 13.8 7 30	WN5
16 17 18	18 4276 18 4431	OB ⁺ (ce) OB ⁻ F6 Ib	6.2 9.8 8.5	50 7.9 52 39.0 20 11 45.5	32 32 6 5 27 7	2 13.8 7 36 2 14.4 7 48 2 15.0 9 0	O8f, 9 Sge SV Sge
1 2 3 4 5	19 3670 18 3976	OB*r F0 II OB A3 II B8 Ib	10.4 9.4 11.7 8.4 11.0	18 27 1,4 29 35.6 47 29.6 19 8 37.5 11 17.0	19 42 32 57 19 27 17 8 36 53 15	2 9.9 1 52 2 9.6 2 4 2 10.6 3 21 2 11.5 4 50 2 10.7 5 1	
6 7 8 9 10	19 4003 	A3 II A1 Iab OB A2 II OB	10.5 11.6 11.2 11.3 12.0	22 29 9 29 11.9 30 5.7 30 43.0 30 50.0	41 16 51 17 52 12 24 51 24 6	2 11.3 5 48 2 17.4 6 15 2 11.4 6 21 2 11.9 6 21 2 12.0 6 22	
11 12 13 14 15	19 4086 	A0 Iab OB OB OB OB	10.3 11.2 10.9 10.5 11.0	35 6.4 36 31.4 36 41.0 38 55.2 40 17.4	19 21 49 10 46 57 48 37 57 10	2 12.2 6 39 2 11.7 6 45 2 11.8 6 45 2 11.8 6 54 2 11.7 7 0	
16 17 18 19 20	19 4162	OB ⁺ A2 II OB ⁻ (ce) OB ⁻	12.2 11.0 10.8 7.4 11.3	43 40.3 44 2.6 45 27.8 46 31.7 46 41.5	39 52 17 24 48 41 32 7 50 34	2 12.2 7 13 2 12.7 7 14 2 12.1 7 20 2 12.5 7 24 2 12.1 7 25	192 III
21 22 23	19 4198 19 4266 	OB [†] ce,le OBce OB ⁺	9.8 10.2 12.5	51 29.0 20 1 18.4 23 26.1	21 2 50 45 57 17	2 12.9 7 43 2 12.9 8 21 2 14.0 9 42	
1 2 3 4 5	20 4010 19 4028 20 4168	(F8 I) F0 II OB ⁻ OB ⁻ h B8 II	10.7 8.3 11.0 6.8 11.2	18 36 50.2 57 4.9 58 56.3 19 25 43.1 28 19.8	20 5 52 47 29 14 16 8 41 47 35	2 9.5 2 35 2 9.1 4 2 2 9.8 4 10 2 10.9 6 1 2 10.2 6 12	
6 7 8 9 10	19 4048 20 4200 19 4095	OB OB F8 lab OBle,r OB"	10.1 11.5 8.1 10.4 11.2	29 9.8 32 14.6 34 26.5 36 30.0 37 8.5	5 31 43 23 13 13 0 53 26 43	2 11.1 6 15 2 10.4 6 27 2 11.1 6 36 2 11.5 6 44 2 11.0 6 47	U Vul
11 12 13 14 15	20 4220 20 4218	B8 II OB [†] h OB [†] r OB [†]	10.8 6.2 11.5 11.6 12.2	38 16,8 38 17,1 40 33.5 45 59.0 48 31.1	57 22 21 37 51 19 24 58 40 53	2 10.4 6 52 2 11.1 6 52 2 10.6 7 1 2 11.4 7 22 2 11.2 7 32	B0.5 La, HR 7482

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
16 17 18 19	20° 4304 20° 4449	OB- OB- OB(ce,le) OB-le,r	10,2 12,2 8,2 10,0	19 ^h 49 ^m 12.8 50 5.0 20 7 27.6 9 43.1	20 ⁰ 17'40" 56 56 55 51 11 7	2 ^m 11 ⁸ 7 7'35" 2 11.0 7 38 2 12.0 8 44 2 12.9 8 53	
1 2 3 4 5		OB F4 II F9 I B8 IIr OB	10.7 9.0 11.4 11.1 12.5	18 37 24.0 49 17.4 19 6 46.4 18 12.1 21 1.9	21 59 19 37 46 14 18 59 58 25 23	2 7.0 2 38 2 7.8 3 29 2 8.8 4 43 2 8.2 5 30 2 9.1 5 42	
6 7 8 9 10	20 4207	B9 II OB"r F2 II OB"	11.7 12.0 10.8 11.7 12.3	27 57.4 29 53.7 35 48.9 36 13.5 39 6.1	15 12 29 49 12 3 34 59 46 33	2 9.6 6 10 2 9.4 6 18 2 10.0 6 42 2 9.5 6 43 2 9.4 6 55	R
11 12 13 14 15	21 3912	A0 II F4 II B8 Iab OBce OB	12.2 9.0 11.3 11.3 11.9	42 13.8 45 14.1 47 36.8 47 52.6 49 12.9	57 47 56 41 2 46 19 1 32 21	2 9.4 7 7 2 9.5 7 19 2 10.7 7 28 2 10.4 7 30 2 10.2 7 35	
16 17 18 19 20	20 4350 21 4045 21 4088	OB OB F4 II OBce B8 II	11.6 9.7 9.6 6.7 11.5	53 24.1 54 47.6 20 2 49.3 9 9.8 22 34.3	53 36 11 45 55 53 43 31 11 57	2 10.0 7 5i 2 10.9 7 56 2 10.5 8 27 2 11.2 8 51 2 12.6 9 39	Bl Ib; HR 7716
1 2 3 4 5	22 3466 22 3648 22 3655 22 3686	F8 Ib OB OB A0 II F2 II	9,2 11,6 5,3 10,4 9,2	18 41 26.6 19 10 25.5 15 36.6 16 37.1 22 35.9	22 34 22 16 11 56 3 39 1 38 1	2 6.3 2 55 2 9.6 5 34 2 6.9 5 20 2 7.3 5 24 2 7.6 5 48	R B0.5 IV, 2 Vul; R
6 7 8 9 10	22 3687 22 3762 22 3836	OBce,le,h,r OB [†] r B9 Ia,h OB ⁻ OBce	10.0 11.5 12.0 11.0 9.7	22 38.1 34 2.9 38 5.0 38 27.2 48 59.3	40 31 38 45 24 36 26 2 42 12	2 7.6 5 48 2 8.1 6 35 2 8.6 6 51 2 8.6 6 52 2 8.8 7 34	B2 (V) pe; R В1 П
11 12 13 14 15	22 3837 22 3843 	A1 II F5 I OB- OB- UB	9.4 10.0 11.6 12.6 11.6	49 20.4 51 11.5 54 21.2 54 58.4 56 39.6	57 22 29 8 10 50 17 55 57 9	2 8.5 7 35 2 9.2 7 42 2 9.8 7 55 2 9.6 7 57 2 9.0 8 4	
16 17 18 19 20	22 3876 21 4017 21 4027	F2 II OB [†] le OB (A1 Ia) OB	10.3 11.6 10.2 12.9 7.1	57 16.0 58 31.0 59 11.8 59 18.4 20 0 11.7	53 18 6 7 9 3 40 15 0 42	2 9.1 8 6 2 10.1 9 11 2 10.1 8 13 2 9.5 8 14 2 10.3 8 17	
21 22 23	21 4133	OB ⁺ ce OB ⁻ F3 II	11.9 10.4 7.6	2 47.3 13 12.3 14 14.6	12 4 34 54 14 31	2 10.2 8 27 2 10.4 9 5 2 10.9 9 9	
1 2 3 4 5	23 3461 23 3644	OB - F7 Lab (OB) OB - (B7 II)	9.9 6.0 11.0 9.6 11.0	18 42 0.1 46 10.9 19 21 10.2 22 2.8 32 18.0	23 40 15 27 29 26 0 47 33 39 21	2 4.9 2 57 2 5.3 3 15 2 6.5 5 43 2 6.1 5 46 2 6.7 6 28	н. 7079
6 7 9 9	23 3706	OBh OB ⁻ F4 II B8 II B8 I _{2,h}	11.8 11.7 11.3 11.5 8.9	33 3.0 33 12.1 33 20.9 33 46.4 33 49.3	12 54 34 43 36 30 36 16 44 40	2 7.3 6 31 2 6.9 6 31 2 6.9 6 32 3 6.9 6 34 2 6.7 6 34	B8 Ia

No.	BD	Spectral Type	^m pg	tight Ascension 1950	n Declination 1950	Precession R.A. Decl.	Remarks
11 12 1? 14 15	23° 3730	A0 II OBr OB OB ⁺ B6 Iab,r	11 5 12.2 12.3 12.2 10.3	19 ^h 36 ^m 19 ⁵ 8 37 27.2 38 0.0 38 5.2 38 8.6	23 ⁰ 30 ¹ 10" 1 52 24 1 30 43 53 42	2 ^m 751 6'44" 2 7.8 6 48 2 7.4 6 51 2 7.2 6 51 2 6.7 6 51	B8 Ib
16 17 18 19 20	23 3741	OB OB(ce)h r OB-(ce,r) OB(ce)r OB-	12.2 10.3 10.6 9.8 11.8	38 29.9 39 57.9 40 1.8 40 3.9 40 19.4	49 43 11 51 50 53 18 53 13 27	2 6.8 6 53 2 7.7 6 58 2 6.9 6 59 2 7.6 6 59 2 7.7 7 0	
21 22 23 24 25	23 3745 22 3781 23 3747	OBCE OBr OBce OCC	11.3 9.4 10.2 10.5 1.3	40 37.4 40 42.0 40 58.9 41 1.1 41 2.0	31 28 20 38 9 1 10 56 19 4	2 7.3 7 1 2 7.6 7 1 2 7.8 7 2 2 7.8 7 3 2 7.6 7 3	B0.5 Ib B0 IV ADS 12828 ABC B1 III
26 27 28 29 30	22 3782 	OBc° OB OB- OB-	9.6 11.7 11.8 10.8 12.0	41 3.1 41 5.7 41 15.1 41 24.6 41 27.3	10 34 33 6 5 24 14 0 34 42	2 7.8 7 3 2 7.3 7 3 2 7.9 7 4 2 7.8 7 4 2 7.3 7 4	
31 32 33 34 35		OB OBr OBce OB A3 Ib	11.0 11.0 11.0 12.1 11.6	41 28.8 41 36.4 42 12.7 42 13.0 42 15.0	13 54 56 16 45 30 9 51 50 16	2 7.8 7 4 2 6.9 7 5 2 7.1 7 7 2 7.9 7 7 2 7.0 7 8	
26 37 38 39 40		OB-r OB- OBr OB-	10.6 11.0 11.0 11.6 12.0	42 18.2 42 27.8 42 36.8 42 43.7 42 44.6	10 38 35 46 43 50 41 32 39 26	2 7.9 7 8 2 7.4 7 8 2 7.2 7 9 2 7.2 7 9 2 7.3 7 9	
41 42 43 44 45	23 3758 23 3759 23 3760 23 3762	OB OB OB OB OB OB OB OB	10.8 9.0 8.0 9.5	42 55.7 42 59.1 43 5.6 43 17.1 43 35.0	48 6 51 17 55 44 49 14 51 42	2 7.1 7 10 2 7.1 7 10 2 7.0 7 11 2 7.1 7 12 2 7.1 7 13	ADS 12871 AB B0 II B8 Ia B ⁰ ,5 III; nn
46 47 48 49 50	22 3800 23 3767	OB- OB- OB- OB- OB-	9.6 11.7 8.6 11.9 11.6	43 40.1 43 40.2 43 47.1 45 0.8 49 30.7	4 20 58 39 58 24 39 58 45 30	2 8.1 7 13 2 6.9 7 13 2 7.0 7 14 2 7.4 7 18 2 7.6 7 36	B2 III. n B1 Ia
51 52 53 54 55	23 3834 23 3835	OB(le) OB- OB- OB- OB-	11.6 10.3 11.9 10.^ 11.6	52 21.5 52 42.8 52 45.2 52 50.0 53 7.0	13 14 19 59 24 1 20 39 22 34	2 8.4 7 47 2 8.3 7 48 2 8.2 7 49 2 8.3 7 49 2 8.2 7 50	
56 57 58 59	23 4002	A1 II OB OB B9 Ib	11.0 11.9 10.4 10.2	53 36.9 58 34.2 20 7 3.9 21 57.2	34 34 7 44 58 9 37 34	2 8.0 7 52 2 8.9 8 11 2 8.4 8 43 2 9.9 9 37	
1 2 3 4 5	24 3632	OB OB OB(re,le) OB OB	10.7 10.2 9.4 13.1 11.8	18 36 4.5 40 11.6 19 3 51.4 14 12.0 25 50.5	24 40 24 57 15 42 59 56 12 14 43	2 3.4 2 32 2 3.1 2 50 2 4.1 4 31 2 4.2 5 14 2 5.7 6 2	
6 7 8 9	24 3786 24 3843 23 3756	A6 Ib OB OBce,r OB A0 U,r	9.4 12.2 11.0 12.4 9.7	32 51.7 35 43.5 39 46.2 42 11.4 42 28.9	28 9 20 3 13 45 37 44 4 33	2 5.7 6 30 2 6.1 6 42 2 6.4 6 58 2 6.5 7 7 2 6.8 7 8	

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
11 12 13 14 15	24° 3862 23 3761 23 3763 24 3873 24 3880	A4 II OB ⁺ ce,h,r OB OB ⁻ ce OB ⁻	11.1 9.1 10.5 10.1 11.0	9 ^h 43 ⁿⁱ 151 43 16.5 43 38.2 44 16.2 44 51.9	24 ⁰ 32'39" 12 \$ 12 0 30 26 25 45	2 ^m 6 ^S 2 7'11" 2 6.6 7 12 2 6.7 7 13 2 6.3 7 15 2 6.4 7 18	во п:
16 17 18 19 20	24 3881 24 3883 	OB(ce) OB- OB- OB-	9.3 10.3 11.0 11.3 11.9	44 56.6 45 14.8 45 28.9 45 39.0 48 22.7	43 28 26 17 38 41 31 43 4 50	2 6.1 7 18 2 6.5 7 19 2 6.2 7 20 2 6.4 7 21 2 7.1 7 32	06f
21 22 23 24 25	24 3914 24 4085	(B9 Ib) A0 Iab A4 Ia OB F6 Iab	11.9 6.3 11.6 11.3 8.7	48 54.9 49 55.3 52 31.8 20 0 37.8 16 5.1	52 26 51 45 47 27 29 15 20 41	2 6.1 7 34 2 6.2 7 38 2 6.5 7 48 2 7.4 8 19 2 8.6 9 16	A0 Iab; HR 7593
26 27	23 3986	В8 П В8 П	6.3 10.4	19 54.4 23 21.8	17 8 5 34	2 9.0 9 30 2 9.4 9 42	25 V ul; R
1 2 3 4 5	24 3721 25 3852 	F4 II F1 I OB- OBce,h,r OB	10.4 11.1 11.0 19.8 11.8	19 18 43.9 27 37.1 36 39.2 38 17.6 40 0.8	25 1 44 54 32 6 20 9 48 8 9	2 4.3 5 33 2 3.6 6 9 2 5.1 6 45 2 5.1 6 52 2 5.3 6 59	
6 7 8 9 10	24 3866 25 3952 25 3970	A1 Pb OBr OBce OB- A0 H	12.3 10.8 10.8 12.4 9.9	42 9.6 43 34.8 43 36.7 44 29.5 45 37.3	14 0 0 13 13 54 4 5 21 20	2 5.3 7 7 2 5.6 7 13 2 5.3 7 13 2 5.6 7 16 2 5.3 7 21	O8 80
11 12 13 14 15	25 3974	OBOBOBH,r	11.6 11.0 12.2 11.8 12.6	46 5.9 46 7.8 46 36.3 47 37.8 48 45.0	12 42 57 33 41 5 53 49 52 22	2 5.5 7 23 2 4.6 7 23 2 4.9 7 25 2 4.7 7 29 2 4.8 7 33	
16 7 19 20	25 3998 	OB ⁻ ce OBr OB OB	12,0 10.6 11.3 12.5 11.7	48 49.9 48 57.9 55 33.1 56 16.3 56 54.5	55 4 49 33 1 13 36 2 3 13	2 4.8 7 33 2 4.9 7 34 2 6.4 7 59 2 5.7 8 2 2 6.4 8 5	
21 22 23 24	24 4050 25 4347 	OB F1 II A7 II A4 Ib	10.4 11.1 7.5 10.6	20 12 7.3 34 2.6 41 10.7 44 10.0	1 35 55 28 38 38 53 39	2 7.5 9 2 2 8.2 10 20 2 9.2 10 44 2 9.2 10 54	
1 2 3 4 5		F4 II OB ⁻ B9 II OB ⁻ OB ⁻	10.7 11.9 11.9 12.3 12.4	19 13 22.5 30 37.6 39 10.6 40 29.6 40 36.2	26 29 4 29 21 54 0 26 44 29 43	2 2.1 5 10 2 2.9 6 21 2 2.9 6 55 2 3.6 7 1 2 3.5 7 1	
6 7 8 9 10		OB- OB- OB- OB	12.3 13.0 12.8 12.3 12.4	47 10.7 47 34.6 48 9.0 48 31.3 51 23.4	40 3 13 37 50 56 3 23 44 31	2 3.7 7 27 2 4.3 7 29 2 3.5 7 31 2 4.6 7 32 2 3.9 7 43	
11 12 13 14 15	26 3741 25 4083	OB ⁻ h F8 La OB ⁺ r OB ⁻ le A0 II	12.6 \$.2 12.1 9.6 11.3	53 56.5 55 23.9 57 22.6 20 1 55.2 9 3.4	38 46 25 16 43 21 7 45 15 24	2 4.2 7 53 2 4.6 7 59 2 4.3 8 6 2 5.4 8 24 2 5.8 8 50	X Vup B1 III

No	BD	Spectial Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
16 17	25° 4238 	OB- G0 Ib	, 9.4 10.5	20 ^h 24 ^m 37 ^{\$} 1 35 16.6	26 ⁰ 3'14" 48 9	2 th 753 9'47" 2 7.4 10 24	
1 2 3 4 5	27 3014 27 3334 27 3406	OB To the A4 lb(le)r OBle,h	12.5 6.7 10.1 12.1 9.6	19 \$ 51.7 13 59.1 16 19.1 26 50.3 27 21.1	27 38 4 50 13 45 31 3 50 57 44	2 0.0 4 31 2 0.2 5 13 2 0.4 5 23 2 2.0 6 6 2 0.7 6 8	F6 II: HR 7308 EP Lyr
6 7 8 9 10	27 3513	A4 Ib OB ⁺ OB OB ⁻ h A2 Iab	10.7 10.7 11.7 11.9 8.7	32 24.8 36 8.9 41 36.7 42 40.7 44 56.4	14 51 4 21 26 21 43 51 55 16	2 2.0 6 28 2 2.5 6 43 2 2.3 7 5 2 2.0 7 9 2 1.9 7 18	A2 Ta
11 12 13 14 15		OBTOBO	12.4 12.2 11.9 11.2 11.0	45 28.9 46 21.4 46 30.2 47 24.1 48 21.4	19 40 41 2 45 32 20 16 20 15	2 2.7 7 20 2 2.3 7 24 2 2.2 7 24 2 2.9 7 28 2 2.9 7 32	
16 17 18 19 20	26 3687 27 3534 27 3536 27 3538	A0 lb-II OB" F8 la OB" F6 lb	10.1 7.6 8.2 12.6 9.6	18 57.2 19 2.0 49 27.8 49 49.6 50 0.1	0 9 35 18 19 53 17 16 50 20	2 3.4 7 34 2 2.6 7 34 2 3.0 7 36 2 3.1 7 37 2 2.4 7 38	SV Vup
21 22 23 24 25		OB- OB- OB-	12.0 10.5 12.1 12.0 12.6	50 6.1 50 7.8 50 16.4 50 24.5 51 12.9	48 7 55 53 23 42 20 46 19 58	2 2.4 7 38 2 2.3 7 39 2 3.0 7 39 2 3.0 7 40 2 3.1 7 43	
26 27 28 29 30		OBTORTOR	10.3 12.0 12.4 11.7 12.6	51 24.5 51 33.9 51 45.1 56 20.4 58 26.6	35 28 25 36 7 37 52 56 58 39	2 2.8 7 43 2 3.0 7 44 2 3.4 7 45 2 2.8 8 2 2 2.7 8 3	
31 32 33 34 35	27 3768 27 3836	OB ⁻ h OB F2 II (G2 I) OB ⁻	12.6 12.3 11.8 7.9 9.1	20 1 36.7 25 29.3 26 37.5 28 19.3 40 20.4	0 20 25 13 15 37 39 50 34 35	2 4.3 8 23 2 5.7 9 50 2 6.0 9 54 2 5.7 10 0 2 7.0 10 41	
1 2 3 4 5	27 3280 28 3304 28 3445	F4 II OB ⁺ A1 II F3 (II) F2 II	9.5 11.2 10.3 10.7 8.6	19 10 2.6 18 43.0 20 7.4 28 20.3 40 34.8	28 5 34 9 35 34 17 42 44 13 42	1 59.7 4 57 1 60.0 5 33 1 59.5 5 38 1 59.8 6 12 2 1.2 7 1	R
6 7 8 9 10	28 3458 27 3512 28 3487	A0 II WNh OB- OBce OB	10.3 10.5 11.9 9.0 10.5	42 21.9 44 14.3 44 31.2 44 37.1 47 24.0	56 51 8 56 40 43 7 13 48 34	2 0.3 7 8 2 1.6 7 16 2 0.9 7 17 2 1.6 7 17 2 0.9 7 28	ADS 12859 A WN, HD 186943 07
11 12 13 14 15	27 3550 28 3524	OB OB OB- A2 Lab,r A0 II	12.0 11.3 11.6 9.9 11.0	47 38.7 48 6.4 49 49.5 52 4.9 52 31.0	5 43 0 22 33 59 12 16 59 0	2 1.9 7 29 2 2.0 7 31 2 1.4 7 37 2 2.0 7 46 2 1.0 7 48	B9 Ia
16 17 18 19 20	27 3570	OB OB- OB OB OBr	12.8 12.6 12.8 10.8 10.8	54 4.6 54 13 5 55 42.7 55 45.4 55 51.5	52 24 43 6 57 28 49 2 11 40	2 1.3 7 54 2 1.5 7 54 2 1.3 8 0 2 1.5 8 0 2 2.3 8 1	

No	BD	Spectral Type	^m pg	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
21 22 23	280 3598	OBce,le,r OB B9 Ib	10.4 12.2 11.9	20 ^h 1 ^m 857 1 57.8 3 51.3	28 ⁰ 33' 51" 22 47 15 57	2 ^m 2.53 8'21'' 2 2.6 8 24 2 2.9 8 31	B0 III: np
24		OBr	11.7	22 18.2	51 29	2 3.7 9 39	
25		OB~	11.0	21 47.8	39 31	2 4.2 9 47	
26		F4 II	10.5	31 54.0	7 6	2 5.5 10 12	
27 28	***	OB F3 II	10.6 11.3	33 3.3 36 35.7	20 22 6 59	2 5.4 10 16 2 6.0 10 28	
				00 00.1	0 00	2 0.0 10 20	
1 2	29 3514	F2 II OB ⁺	8.3 12.6	19 10 29.8 12 14.9	2′ - 19 - 73	1 57.0 4 59 1 53.2 5 6	R
3		OB"	10.7	18 50.5	,	1 58.5 5 33	K
4 5		OBle Pec	11.4 12.0	19 13.5	.1 5.	1 58.5 5 35	_
		rec	12,0	21 55.2	34 36	1 58.1 5 48	R
6 7	***	Pec F3 II	11.7	23 55.3	34 33	1 58.3 5 54	R
8		OB	11.7 10.0	28 26.3 31 26.2	52 58 51 9	1 58.1 6 12 1 58.3 6 25	
9	29 3660	OB"	9.0	34 11.7	42 32	1 58.7 6 36	
10	28 3434	ОВ	8.7	39 19.8	1 36	2 0.0 6 56	В1 Ть,р
11	29 3724	A2 II	8.5	43 4.7	28 27	1 59.7 7 11	
12 13	29 3735	A1 II OB-	9.7	44 16.1	17 12	2 0.0 7 16	
14	29 3753	F3 II	11.4 9.6	45 51.3 46 40.1	20 51 56 3	2 0.0 7 22 1 59.3 7 25	
15	29 3754	В7 П	6.9	46 41.6	16 35	2 0.2 7 25	
16		OB-	12.0	47 57.0	42 34	1 59.7 7 30	
17		AO lab	11.1	48 2.4	45 54	1 59.6 7 30	
18 19	29 3772 29 3774	OB ⁺ (cl,r) OB	10.6 10.5	48 44.6 48 51.0	16 8 16 31	2 0.4 7 33 2 0.4 7 34	071
20		ОВ	12.4	49 53.4	41 30	2 0.4 7 34 1 59.9 7 38	B2 Ib
21	29 3779	FO I	10.3	50 13.1	16 41	2 0.5 739	
22 23	29 3791	OB- F8 I	11.7 10.2	50 27.7 51 39.4	17 19 42 25	2 0.5 7 40 1 60.0 7 45	R
24		OB-	12.2	52 16.6	32 31	2 0.3 7 47	
25		OB"	11.4	54 6.6	34 9	2 0.4 7 54	
26		OB ⁺	12,2	54 35.4	34 51	2 0.4 7 56	
27 28	29 3814	OBce	10.6	54 39.3	51 25	2 0.0 7 56	B0 V
29		OB OB-r	11.2 12.6	55 15.7 55 16.5	51 7 5 8	2 0.0 7 58 2 1.1 7 58	
30		OB-	12,6	55 33.6	25 42	2 0.7 8 0	
31		OBce	10.7	57 3.3	53 20	2 0.2 8 5	
32 33	***	OB- OB	12,9 11,6	58 49.2 59 18.1	26 11 35 42	2 0.9 8 12 2 0.7 8 14	
34	29 3861	F5 lab	9.2	59 53.9	45 13	2 0.7 8 14 2 0.6 8 16	
35		OB	12.7	20 1 30.1	42 15	2 0.8 8 22	
36		OB"	12,4	2 28.6	2 36	2 1.7 8 26	
37 38		OB OB	12,2	2 43.0	5 17	2 1.7 8 27	
39		OB	12,3 11,8	2 44.1 2 45.3	5 5 1 14	2 1.7 8 27 2 1.8 8 27	
40		OB-	12,2	3 3.6	4 5	2 1.8 8 28	
41	28 3612	F2 Ia	10,9	3 24.2	12 19	2 1.6 8 29	
42 43	29 3973	A3 (II) CB~ce	11,7 9,3	5 43.8 15 6.4	34 8 57 2 3	2 1.3 8 38 2 1.7 9 13	
44		F4 II	11,5	32 44.6	20 57	2 4.1 10 15	
45	~~=	F3 lb	10,6	38 26.7	19 21	2 4.7 10 35	
46		ОВ	12.7	47 33.9	53 46	2 5.0 11 5	

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Prece R.A.	ssion Decl.	Remarks
1 2	30° 3482	OB F7 I	13.4 10.9	19h 6m ₁₃ s ₂ 12 38.6	30° 6'11" 58 7	1 ^m 56.5 1 55.6	4'41" 5 8	
3	30 3559	OB	9.7	24 16.0	59 12	1 56.2	5 56	
<u>4</u> 5	30 3639 30 3689	WC8,h ОВ	10,3 10,4	32 47.5 39 4.0	24 21 31 12	1 57.6 1 57.9	6 30	WC8
•	00 0000	OD	10.1	30 4,0	31 14	1 57.9	6 55	
6		ОВ	10.9	53 27.0	1 46	1 59.7	7 51	
7 8	30 3808	AO II	9.4	53 32.3 54 33.3	22 44	1 59.2	7 52	
9		OBle,h,r OBr	11.9 12.9	54 33.3 55 0.2	58 12 42 32:	1 58.5 1 58.9	7 56 7 57	
10	***	ОВ	12,6	55 37.8	40 9	1 59.0	8 0	
11		A D		FF 44 4				
12		OB OBce	11,3 10,8	55 41.4 55 48.9	13 13 53 11	1 59.6	8 0	
13		OBC	12.2	56 32.7	26 13	1 58.7 1 59.4	8 0 8 3	
14	****	OB"	12.6	57 1.8	27 32	1 59.4	8 5	
15	***	OB-	12.6	58 15.1	43 50	1 59.1	8 10	
16	29 3842	OBce(le)	10.6	58 33.5	14 35	1 59.8	8 11	B1 V: e;
17 18		OB-	11.6	58 38.5	17 35	1 59.7	8 11	R
19		OBce OB	11.6 12.1	58 46.0 59 7.8	13 14 22 1	1 59.8 1 59.7	8 12 8 13	
20		OB	11.2	59 31.0	22 15	1 59.7	8 15	
21		OD=	11 5		40. 4			
22		ОВ" ОВ"	11.5 12.6	20 0 1.0 0 15.6	13 6 44 0	1 60.0	8 17	
23		OB-	12.1	0 41.0	16 36:	1 59.3 1 59.9	8 18 8 19	
24		ОВ	12.5	1 21.5	16 45	1 60.0	8 22	
25	30 3887	A6 Ib	11.3	3 58.5	16 5	2 0.2	8 31	
26		В9 П	12.0	7 46.1	6 30	2 0.8	8 46	
27 28	30 3963	OB OB	10.5 12.5	13 36.1 14 23.8	59 18	2 0.2	9 7	
29	30 3980	В9 Ib-П	9.0	16 25.4	17 58 39 51	2 1.1 2 0.9	9 10 9 18	В9 Љ-П
30		OB-	12,1	16 48.5	53 2	2 0.6	9 19	De 10-11
31	30 4021	W0 TY	10.0	00 50 5	FD 4F		•	
32	29 4057	F2 II F4 Ib	10.8 5.1	22 56.5 27 21.1	52 45 12 2	2 1.2 2 2.5	9 41 9 57	P5 W 41 Cmm
33	30 4097	OB	9.1	34 34.3	36 55	2 2.8	10 22	F5 II, 41 Cyg
34		OB-	12.5	34 38.7	13 11	2 3.3	10 22	
35		ОВ	12.3	46 28.8	3 9	2 4.7	11 1	
36 37	30 4318	OB" F8 lab	10.6 6.7	56 40.8 21 4 24.2	54 57 59 0	2 4.9 2 5.8	11 34	PEELW DOOR Own D
•	00 1010	10 220	٧,١	21 7 21,2	38 0	2 5.8	11 58	F5.5 I-II, DT Cyg; R
•	***		• •	10.10.44.0				
1 2	30 3526	A0 lb-ll, le F8 l	9.8 10.6	19 19 44.2 22 50.1	31 3 59 10 26	1 55.8	5 37	R
3	30 3645	OB-	7.0	33 35.3	9 54	1 55.9 1 56.6	5 50 6 33	
4		OB	12.0	36 14.0	27 58	1 56.3	6 44	
5	31 3765	OBce	7.2	44 19.6	59 34	1 56.2	7 16	07.5
6		OBce	12.1	45 53.6	41 53	1 56.7	7 22	
7	30 3751	F2 II	9,6	46 10.5	8 18	1 57.6	7 23	
8 9	31 3797	B8 II F3 La	11.4 9.9	47 28.4 47 32.1	22 28 19 38	1 57.3 1 57.4	7 28	
10		OB-	11.2	50 55.0	4 24	1 58.0	7 29 7 42	
11		ОВ	11.8	53 23.2	9 1	1 58.1	7 51	
12 13	700	OB" OBr	12.6 11.9	54 27.2 56 17.8	19 57 58 34	1 58.0	7 55	
14	31 3870	A0 fbr	9.8	56 57.5	56 34 28 56	1 57.3 1 58.0	8 3 8 5	
15		A I pec	12.0	56 58.0	42 6	1 57.7	8 5	R
16	*	ОВ	11.9	57 11.7	1 31	1 58.6	8 6	
17		OB	11.9	58 48.3	41 43	1 57.8	8 12	
18 19		OB- OB	11.7 13.2	58 49.5 59 26.2	43 27 49 8;	1 57.8	8 12	
20		A0 Ib	12.3	59 36.4	39 29	1 57.7 1 58.0	8 14 8 15	

No	BD	Spectral Type	m _{PE}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
21 22 23 24 25	31° 3907 31° 3933 31° 3996 31° 4001	OB F8 I OB OB :	12,2 9,4 10,0 10,8 7,4	19 ^h 59 ^m 39 ⁵ 7 20 1 13.6 3 36.4 11 41.4 12 17.1	31 ⁰ 57 '47" 4\(41 38 22 55 47 50 42	1 ^m 57 ⁵ 5 8' 15" 1 57.9 8 21 1 58.3 8 30 1 58.7 9 0 1 58.9 9 2	B2 HI
26 27 28 29 30	31 4126 31 4191 31 4204	B9 II OB-ce OB- OB OB-	12.0 7.8 11.0 10.6 7.9	28 1.2 31 3.7 36 11.8 40 41.8 42 23.9	2 48 29 9 7 7 36 36 30 49	1 1.5 9 59 2 1.3 10 9 2 2.3 10 27 2 2.2 10 42 2 2.5 10 48	
31 32 33 34 35	31 4218	B9 II OB-ce OB+ OB OB+	11,2 9.0 11,9 12,8 12,7	42 39.4 44 59.5 46 2.8 46 39.1 47 4.3	35 15 58 23 3 0 25 5 19 47	2 2.5 10 49 2 2.3 10 57 2 3.5 11 0 2 3.2 11 2 2 3.3 11 3	
36 37	30 4282	OBle OBce	11.5 10.0	52 40.5 59 4.4	52 27 5 20	2 3.3 11 22 2 5.0 11 42	
1 2 3 4 5	32 3526 32 3583	F8 I A5 Ib A4 II OBce,h OB	11.3 8.1 11.8 9.1 11.1	19 36 16.8 39 44.4 40 52.3 47 37.6 51 13.6	32 22 30 57 53 30 42 49 46 9 59	1 55.0 6 44 1 54.4 6 58 1 55.1 7 2 1 55.2 7 29 1 56.5 7 43	B1 V: pe
6 7 8 9 10	32 3647	OB ⁻ OB- B9 II OB OB	11.1 11.8 9.3 12.1 12.1	52 29.7 52 53.1 56 29.4 56 57.9 57 12.6	10 56 27 16 32 15 27 56 50 43	1 58.6 7 48 1 56.2 7 49 1 56.4 8 3 1 56.6 8 5 1 56.1 8 6	
11 12 13 14 15	31 3921 31 3925	CB ⁻ WC7 OB ⁺ OB OB ⁺	12.0 13.5 9.2 11.7 6.1	58 48.0 59 43.0 20 2 13.8 2 25.0 2 38.4	50 44 26 2 0 48 3 34 4 33:	1 56.2 8 12 1 58.9 8 16 1 57.7 8 25 1 57.6 8 26 1 57.6 8 27	HD 190002 B1 lb B1.5 la ⁺ ?, HR 7678, R
16 17 18 19 20	31 3948 32 3713 32 3749	FO II A3 Ib OB OB OB+	10.9 10.7 11.1 10.8 11.4	5 18.0 5 37.9 7 43.4 11 43.3 12 38.6	11 16 37 43 18 46 23 55 17 36:	1 57.7 8 37 1 57.2 8 38 1 57.8 8 46 1 58.1 9 0 1 58.3 9 4	В0: ре
21 22 23 24 25	32 3761 31 4018	A2 In ⁺ OBce:lc F4 II OB ⁻ OB	10.2 7.0 12.0 11.5 11.2	14 16.3 14 49.3 21 55.8 23 8.7 29 7.6	31 43 13 29 28 32 22 48 42 44	1 58, 2 9 10 1 58, 6 9 12 1 59, 0 9 37 1 59, 3 9 42 1 59, 5 10 3	B1 V: pnne
26 27 28	31 4300	OB ⁻ F4 II OB	12.5 11.5 9.0	40 11.9 49 50.4 57 27.2	54 43 41 46 0 4	2 0.5 10 41 2 2.0 11 12 2 3.8 11 37	
1 2 3 4 5	33 3409 33 3573	OB OBce F4 II B8 Ib OB+ce	13.1 6.2 11.0 9.8 10.3	19 11 11.3 17 11.5 34 52.0 42 15.1 43 23.7	33 24 48: 17 47: 28 17 48 56 51 5	1 51.7 5 2 1 52.3 5 27 1 53.2 6 39 1 53.3 7 8 1 53.3 7 12	HR 7335
6 7 8 9 10	33 3602 32 3594 33 3618	OB(ce) F6 Ib OB OB- OB	6.3 9.7 10.4 12.0 11.4	46 56,0 48 44.1 48 53.0 49 15.6 51 35.4	18 40 8 54 32 10 56 35 19 30	1 54.5 7 26 1 54.9 7 33 1 54.3 7 34 1 53.7 7 35 1 54.8 7 44	B0.5 Ia, HR 7551 B1 Ib

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
11 12 13 14 15	33 0 3652	F2 lb OB ⁺ ce OB ⁻ (Of) OBr	9.7 11.5 12.0 12.6 11.7	19 ^h 53 ^m 17 ⁵ 0 56 52.4 58 21.6 58 23.7 59 5.0	33 ⁰ 21 '49" 30 57 12 32 7 30 15 24	1 ^m 54 ⁵ 9 7'51" 1 55.0 8 5 1 55.6 8 10 1 55.8 8 11 1 55.6 8 23	
16 17 18 19 20	33 3697	OBTOBE OBD F8 In OBT	11.7 12.1 12.4 9.7 11.1	59 7.1 20 0 0.2 0 14.0 0 32.6 0 39.0	11 45 12 17 14 56 37 43 24 28	1 55.7 8 13 1 55.8 8 17 1 55.8 8 18 1 55.2 8 19 1 55.6 8 19	
21 22 23 24 25	33 3708 33 3717 33 3729	OB OB OB F2 II F4 Ia	8.5 10.5 10.8 11.0 10.1	1 22.8 2 8.3 2 31.5 3 33.0 3 38.1	18 30 25 46 33 46 28 15 35 34	1 55.8 8 22 1 55.7 8 25 1 55.5 8 26 1 55.8 8 30 1 55.6 8 30	07:
26 27 28 29 30	33 3746 32 3743	F4 II OBle,h F4 Ib (OBle) OB	12.0 12.2 10.0 11.0 9.3	3 57.4 4 22.9 5 47.1 8 7.9 11 31.1	26 36 12 42 30 30 40 46 13 50	1 55.8	
31 32 33 34 35	32 3752	OB OB ⁺ OB ⁺ h	10.6 12.2 10.9 11.1 12.0	12 22.7 22 36.2 24 35.4 33 22.0 35 52.3	17 2 56 50 38 44 50 18 17 16	1 56.9 9 3 1 57.1 9 40 1 57.7 9 47 1 58.5 10 18 1 59.5 10 26	B2 Vn
36 37 38	33 3998 32 4060	F4 II OB OB	10.3 12.3 7.5	40 52.1 21 0 40.2 5 51.7	55 40 4 40 11 40	1 59.3 10 43 2 2.9 11 47 2 3.5 12 3	
1 2 3 4 5	34 3707 34 3713	OB II OB OB	11,4 12,1 10,6 10,6 12,0	19 20 5.5 42 37.0 44 49.2 45 31.1 57 49.2	34 57 6: 38 43 31 50 29 25 . 51 9	1 49.8 5 39 1 52.1 7 9 1 52.4 7 18 1 52.5 7 21 1 53.2 8 8	B3; II;
6 7 8 9 10	34 3867 34 3874 34 3881	OB A9 Ib OBr OBce B7 Ib	10.8 8.7 12.0 8.9 6.0	20 3 9.3 3 43.0 4 37.9 4 46.9 5 46.5	49 36 46 15 23 16 45 58 16 37	1 53.7 8 29 1 53.9 8 31 1 54.5 8 34 1 54.0 8 35 1 54.8 8 38	B0 III, ADS 13391 AB B5 Ib, HR 7699
11 12 13 14 15	34 3920	OB ⁺ r OB ⁻ OBce,r OB- OBr	12.5 10.8 8.8 12.2 12.8	6 11.6 7 55.1 11 24.2 11 45.1 12 8.1	5 28: 58 57 52 24 51 47 43 1	1 55.1 8 40 1 54.0 8 46 1 54.5 8 59 1 54.6 9 1 1 54.8 9 2	R 07
16 17 18 19 20	34 3952 34 961 34 3967	OBTOBTIE,FOBTIE	12.0 10.5 10.6 10.2 6.1	12 35.1 13 18.9 14 35.6 15 58.7 16 43.7	51 42 51 12 57 14 39 39 49 32	1 54.7 9 4 1 54.8 9 6 1 54.8 9 11 1 55.4 9 16 1 55.2 9 19	B3 II O9.5 lb F5 lb, 35 C/g
21 22 23 24 25	33 3910 33 3923 34 4152	F2 lab F7 I-D OB- A0 lb OB-	6.4 10.1 12.2 10.0 12.2	25 10.5 27 37.5 39 8.0 45 2.1 45 35.4	9 48 2 42 42 7 24 37 53 43	1 57,1 9 49 1 57,6 9 58 1 58,1 10 37 1 59,2 10 57 1 58,7 10 59	F3 II, HR 7823
26 27 28 29 30	34 4184	OB ⁺ ce OB OB F4II OBr	11.0 12.9 7.2 11.9 12.4	46 13.9 46 23.3 50 3.6 52 14.1 21 2 2.6	16 22 15 27 28 9 42 47 21 14	1 59.6 11 1 1 59.6 11 1 1 59.8 11 13 1 59.8 11 20 2 1 6 11 51	У Суд

No	BD	Spectral Type	m _{Pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
1 2 3 4 5	34 ⁰ 3631 35 3773	A3 In OB F1 II OB OB T	11.3 10.0 9.3 12.1 10.7	19 ^h 17 ^m 38 ² 7 34 55.7 42 3.9 42 51.2 49 32.5	35 ⁰ 14 '54" 7 58 18 23 26 24 36 56	1 ^m 4951 5'29" 1 50.6 6 39 1 51.0 7 7 1 50.8 7 10 1 51.2 7 37	B2 V
6 7 8 9 10	35 3837 34 3815 34 3828	B9 N F7 i OB ⁺ r OBce OB ⁻	11.9 9.3 9.7 9.4 11.5	49 36,9 49 37,0 56 28,9 57 56,3 59 18,5	56 12 41 58 3 55 10 17 51 3	1 50.7 7 37 1 51.0 7 37 1 52.7 8 3 1 52.7 8 9 1 51.8 8 14	B0 Tb O 7
11 12 13 14 15	35 3915 35 3924 34 3850	OB ⁻ (OB ⁻) OB ⁻ r OBce OBce(le)	10.4 11.7 11.2 10.3 9.4	59 22.9 59 24.5 59 52.2 20 0 29.3 0 30.2	49 6 12 27 24 45 32 4 10 15	1 51.8 8 14 1 52.8 8 15 1 52.5 8 16 1 52.4 8 19 1 52.9 8 19	ADS 13292 A
16 17 18 19 20	34 3850 35 3929	OB" OB" OB" OB"(ce)r	10.9 10.9 11.5 11.9 9.9	0 31.6 0 33.0 0 43.2 1 10.8 1 35.5	10 13 31 50 8 30 32 41 53 36	1 52.9 8 19 1 52.4 8 19 1 53.0 8 19 1 52.4 8 21 1 52.0 8 23	ADS 13292 B
21 22 23 24 25	35 3930 35 3932	OB OB(ce) OB-ce A0 Ib	11.2 11.4 6.6 9.5 11.3	1 36.1 1 36.8 1 37.1 2 0.1 2 13.0	33 10 22 17 53 19 25 30 40 59	1 52.5 8 23 1 52.8 8 23 1 52.0 8 23 1 52.7 8 24 1 52.3 8 25	ADS 13312 AB
26 27 28 29 30	35 3948 35 3949 35 3950	OB- OB- OB- OBce,le,h	11.7 9.2 8.2 11.7 8.9	3 27.5 3 43.5 3 46.9 3 47.9 3 52.7	35 10 28 46 27 50 5 37 45 25	1 52.6 8 30 1 52.8 8 31 1 52.8 8 31 1 53.4 8 31 1 52.4 8 31	ADS 13361 B ADS 13361 A
31 32 33 34 35	35 3952 35 3953 35 3955 35 3957	OB OB ⁺ OB ⁺ le(r) OBr	7.0 10.4 7.2 7.2 8.2	4 3.3 4 3.8 4 4.6 4 6.0 4 8.6	31 50 38 45 38 39 39 11 37 16	1 52.8 8 32 1 52.6 8 32 1 52.6 8 32 1 52.6 8 32 1 52.6 8 32	ADS 13374 D WN5 + O9.5 III,r ADS 13374 F ADS 13376 D
36 37 38 39 40	34 3871	OB OB OB-	11.1 8.4 10.9 11.5 10.6	4 10.4 4 16.6 4 22.0 4 23.2 4 29.5	48 50 14 29 42 22 29 38 34 14	1 52.4 8 33 1 53.2 8 33 1 52.5 8 33 1 52.9 8 33 1 52.8 8 34	В1 16-11, V448 Суд
41 42 43 44 45	35 3970 35 3978	OBO OB OB OB	11.5 10.6 7.2 11.1 10.1	5 1.2 5 8.0 5 30.7 5 50.1 6 3.7	10 23 31 28 34 34 52 9 31 0	1 53.4 6 36 1 52.9 8 36 1 52.9 8 38 1 52.5 8 39 1 53.0 8 40	ADS 13405 AB
46 47 48 49 50	35 3981 35 3986 35 3987	A2 Ia,h OB OBle OB- B8 II	10.2 10.3 10.7 8.2 11.5	6 12.2 6 35.4 6 59.2 7 0.1 7 2.8	58 43 56 57 26 11 21 56 29 12	1 52.3 8 40 1 52.4 8 42 1 53.2 8 43 1 53.3 8 43 1 53.2 8 43	V425 Cyg ADS 13429 AB
51 52 53 54 55	35 3993 35 3994 35 3995 35 3996	OB ⁻ OBce OB ⁻ r OB	11.1 9.8 7.7 8.1 10.8	7 4.9 7 19.1 7 20.7 7 35.4 7 44.8	19 35 54 11 20 22 35 17 50 46	1 53.4 8 43 1 52.6 8 44 1 53.4 8 44 1 53.1 8 45 1 52.7 8 46	
56 57 58 59 60	35 3998 35 4004 35 4006	OB- OBce,h OB- OBce OB-(ce)	10,2 9,3 10,5 9,1 7,9	7 56.7 8 4.9 8 32.6 8 45.4 9 4.0	16 57 20 51 45 41 43 31 48 14	1 53.6 8 47 1 53.5 8 47 1 52.9 8 49 1 53.0 8 50 1 52.9 8 51	

No	BD	Spectral Type	m pg	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
61 62 63 64 65	350 4008	OB"r OB OB" OB"	10.8 11.7 10.6 9.6 10.5	20 ^h 9 ^m 6 ^s 4 9 18.9 9 25.4 9 25.9 9 32.7	35 ⁰ 36'28" 57 52 43 42 40 50 41 58	1 ³³ 53 ⁵ 2 8'51" 1 52.7 8 52 1 53.1 8 52 1 53.1 8 52 1 53.1 8 53	R ADS 13486 AB ADS 13490 AB
66 67 68 69 70	35 4021	OBh OB [†] A0 Ib B8 II OB [*] r	10.6 11.9 9.8 11.3 11.3	9 40.3 10 4J.3 11 11.1 11 44.7 12 12.5	42 37 47 10 53 16 7 41 10 10	1 53.1 8 53 1 53.1 8 57 1 53.0 8 59 2 54.2 9 1 1 54.2 9 2	
71 72 73 74 75	35 4096	OBCe OB OB OB OB	10,7 11.9 11.6 11.3 12,2	12 20.5 14 33.3 21 43.1 21 56.6 22 16.1	19 51 32 38 55 40 46 47 42 7	1 54.0 9 3 1 53.9 9 11 1 54.2 9 37 1 54.4 9 38 1 54.6 9 39	R
76 77 78 79 80	35 4126 35 4234	(OB) OB OB F7 I F4 II	10.7 12.2 12.2 8.1 12.0	25 48.1 33 50.1 37 45.3 41 26.6 41 46.8	54 40 36 55 15 39 24 24 6 18	1 54.7 9 51 1 56.2 10 19 1 57.2 10 33 1 57.5 10 45 1 57.9 10 46	ADS 13882 ABD
81 82 83 84 85	35 4258 34 4157 35 4277 35 4285 34 4312	OB-ce F3 II OB-ce F6 Ib OB-(ce)	9,2 10,2 9,0 9,2 8,7	44 14.6 46 5.1 46 49.4 47 54.9 21 7 51.6	21 26 1 6 54 31 28 23 17 15	1 57.9 10 54 1 58.6 11 0 1 57.5 11 3 1 58.2 11 6 2 1.4 12 9	B2.5 Vn, ADS 14277 AB B0.5 Ib
1 2 3 4 5	36 3811 36 3827 36 3845	OB OBh OBce B9 Ib	10.0 11.7 11.5 10.7 10.5	19 58 37,2 59 21,5 59 23,3 20 0 24,4 2 1,0	36 23 39 57 19 11 37 57 15 59 48	1 50.9 8 12 1 50.1 8 14 1 51.3 8 15 1 50.2 8 18 1 50.3 8 24	
6 7 8 9 10	35 3943 36 3864 35 3961 35 3966 35 3967	AO II OBr OB OB	9.5 10.0 9.9 8.1 9.0	3 16.0 3 54.0 4 33.8 5 5.7 5 20.8	0 44 22 34 11 8 15 21 12 49	1 52.0 8 29 1 51.5 8 32 1 51.8 8 34 1 51.8 8 36 1 51.9 8 37	R
11 12 13 14 15	36 3892 36 3896	OB OB OBr OB	11.7 10.0 11.5 7.6 11.5	5 23.5 5 33.5 6 29.4 6 44.5 7 1.7	22 39 24 36 40 0 31 39 1 38	1 51.6 8 37 1 51.6 8 38 1 51.3 8 41 1 51.6 8 42 1 52.3 8 43	R
16 17 18 19 20	36 3905 36 3906	OB- OB- OB- OBr	10.8 11.1 12.1 9.9 8.6	7 6.8 7 22.5 7 32.1 7 33.6 7 34.1	34 14 1 44 21 45 20 56 20 27	1 51.5 8 44 1 52.4 8 45 1 51.9 8 45 1 51.9 8 45 1 51.9 8 45	
21 22 23 24 25	36 3914 35 4001	OB- OB WNh OB-h B9 II	11.1 9.2 9.4 10.9 8.9	7 40.4 8 8.6 8 21.6 8 54.2 9 3.8	42 44 33 9 1 40 22 23 7 31	1 51.4 8 46 1 51.7 8 47 1 52.5 8 48 1 52.0 8 50 1 52.4 8 51	WN6
26 27 28 29 30	36 3927 35 4013 36 3932 36 3935	OBTWCh OBT A0 II A8 Ib	9.1 9.3 3.9 11.7 10.6	9 35.1 10 0.8 10 35.1 11 5.8 11 10.3	20 57 2 49 31 24 12 17 52 8	1 52.1 8 53 1 52.7 8 54 1 52.0 8 56 1 52.5 8 58 1 51.5 8 59	WC7

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
31 32 33 34 35	35° 4026 36° 3946	OB- OB- OB-h OBce OB-	11.7 10.8 7.2 8.8 11.5	20 ^h 11 ^m 155; 11 23.6 11 40.2 11 58.0 12 4.7	38°51 '57" 19 52 10 35 28 44 11 38	1 ^m 51.56 8'59" 1 52.4 8 59 1 52.6 9 0 1 52.2 9 2 1 52.7 9 2	
36 37 38 39 40	36 3947 36 3956	OB OB ⁺ WCh OBr OB(le)	8.9 11.7 8.8 10.4 10.6	12 6.5 12 16.5 12 39.4 12 46.5 12 47.9	23 29 37 49 30 28 42 33 29 32	1 52.4 9 2 1 52.0 9 3 1 52.3 9 4 1 52.0 9 4 1 52.3 9 5	WC6
41 42 43 44 45	36 3963 36 3963	OBr OB OB- B8 IIr	10.7 11.2 11.2 11.9 11.1	13 3.3 13 3.8 13 16.0 13 16.3 13 19.9	42 2 17 34 37 36 44 22 42 37	1 52.0 9 6 1 52.6 9 6 1 52.2 9 6 1 52.0 9 6 1 52.0 9 7	
46 47 48 49 50	36 3968 35 4039	OB"h,r OBr OB OB B8 II	11.7 10.8 19.4 11.4 10.4	13 23.3 13 33.0 13 42.4 13 45.9 13 59.1	45 41 28 14 40 43 38 23 12 16	1 52.0 9 7 1 52.4 9 7 1 52.1 9 8 1 52.2 9 8 1 52.9 9 9	
51 52 53 54 55	35 4062	B8 II OBr OBh OB	11.5 10.7 11.7 11.0 8.8	14 15.9 14 50.9 15 39.5 16 7.9 16 53.9	11 3 20 55 42 47 29 53 11 2	1 52.9 9 10 1 52.8 9 12 1 52.3 9 15 1 52.7 9 17 1 53.2 9 19	V382 Cyg
56 57 58 59 60	36 4001 36 4005 35 4067	OBle F4 II OB OBr OB	10.0 7.8 11.1 10.4 12.1	16 59.2 17 14.4 17 32.4 17 43.6 17 56.0	48 17 35 42 43 12 3 36 16 38	1 52.3 9 20 1 52.7 9 21 1 52.5 9 22 1 53.5 9 22 1 53.2 9 23	ADS 15893 AB
61 62 63 64 65	36 4016 36 4022 36 4028	OBTE OBTE OBTE WNh	11.7 10.5 10.6 12.3 11.0	18 31.2 18 36.4 19 13.5 19 33.8 19 38.9	17 33 43 32 38 58 55 59 45 37	1 53.3 9 25 1 52.7 9 26 1 52.8 9 28 1 52.5 9 29 1 52.7 9 29	WN6
66 67 68 69 70		OB OB-h OB- OB-	11.3 11.6 12.1 11.2 11.3	19 45.5 19 46.3 20 3.6 20 20.5 21 0.6	58 35 47 8 30 8 47 4 57 7	1 52.4 9 30 1 52.7 9 30 1 53.2 9 31 1 52.8 9 32 1 52.6 9 34	
71 72 73 74 75	36 4044 36 4049 36 4051 36 4050	A5 lab OB OB B9 II OB	11.7 10.4 9.3 6.8 10.2	21 19.8 21 24.8 21 42.8 21 55.1 21 56.3	54 42 56 56 46 0 51 49 21 37	1 52.7 9 35 1 52.7 9 36 1 53.0 9 37 1 52.9 9 38 1 53.6 9 38	в3 п в1 в
76 77 78 79 80	35 4141	OBT OBT OBT OB A0 Ib	11.7 11.5 11.0 11.1 6.1	22 49.5 23 38.4 23 44.6 24 29.0 27 25.9	17 23 45 24 57 56 4 47 17 13	1 53.8 9 41 1 53.2 9 44 1 52.9 9 44 1 54.3 9 47 1 54.4 9 57	A1 Ib, 42 Cyg
81 82 83 84 85	36 4095 36 4105 35 4229 36 4308	OBce,h F5 Lab OB OB ce	8.1 7.2 8.5 11.9 9.9	27 54.0 29 5.2 40 44.7 47 15.0 52 8.5	48 44 45 59 12 1 29 22 49 51	1 53.7 9 59 1 53.9 10 5 1 56.3 10 43 1 56.8 11 4 1 57.1 11 20	BO IV: pe F5 Lab, ADS 13949 A BO.5 Lb
88 87	35 4426 36 4470	ОВ A7 П	6.2 6.8	21 9 3.0 11 25.7	5 49 25 04	2 0.6 12 12 2 0.5 12 19	B1 Vp, HR 8105, R HR 8120

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declimation 1950	Precession R.A. Decl.	Remarks
1 2 3 4 5	37° 3578 37° 3615 37° 3723	F3 Ib OB(ce) OB OB_r OB_	9.1 12.1 9.4 12.9 8.0	19 ^h 41 ^m 556 42 41.6 46 26.8 57 24.3 59 10.5	37 ⁰ 33'30" 47 59 14 27 24 42 33 35	1 ^m 4752 7' 4" 1 47.0 7 10 1 48.3 7 25 1 49.1 8 7 1 49.1 8 14	BD6 9559 B AD6 13262 AB
6 7 8 9 10	37 3768 37 3776 37 3783	OB" OB" OB" OBce	10.9 11.3 9.9 9.7 8.1	59 35.8 20 1 6.5 5 0.2 5 57.4 6 29.8	17 15 40 36 52 58 17 50 59 2	1 49.6 8 15 1 49.1 8 21 1 49.2 8 36 1 50.3 8 39 1 49.2 8 41	BDS 9945 B
11 12 13 14 15	37 3785 36 3900 37 3793 37 3795	OB B9 U OB OBr	9.3 8.4 11.5 9.7 10.6	6 44.3 6 55.0 7 1.0 7 26.8 7 39.2	21 15 5 24 6 49 21 18 41 54	1 50.3 8 42 1 50.7 8 43 1 50.7 8 43 1 50.3 8 45 1 49.8 8 46	
16 17 18 19 20	37 3816 37 3819 37 3824	OB ^{**} (ce) OB ^{**} OB OB ^{**}	11.1 10.6 8.9 9.5 9.7	8 10.0 9 6.5 9 54.3 10 12.0 10 30.7	0 38 58 59 23 59 29 54 51 6	1 51.0 8 47 1 49.6 8 51 1 50.6 8 54 1 50.5 8 55 1 49.9 8 56	ADS 13501 A
21 22 23 24 25	37 3825 36 3945 37 3835 37 3838	OB" OB OB OB- OBce	10.0 9.8 11.0 9.7 9.8	10 33.3 11 55.2 12 6.6 12 12.7 12 21.2	54 49 8 52 59 35 36 20 40 48	1 49.8 8 56 1 51.2 9 1 1 49.9 9 2 1 50.5 9 2 1 50.4 9 3	
26 27 28 29 30	36 3958 37 3844 37 3845	OB ⁺ (B /1 II B8 II OB ⁻	7.6 8.8 7.6 11.1 11.5	12 39.2 13 6.5 13 1°.9 13 3.5 13 54.0	12 11 59 6 32 31 50 57 33 23	1 51.2 9 4 1 50.0 9 6 1 50.7 9 6 1 50.4 9 9 1 50.8 9 9	
31 32 33 34 35	37 3856	OB OBr OB-le OB OB	12.3 11.1 10.4 11.5 11.7	14 1.8 14 10.4 14 17.4 14 18.6 14 35.5	39 23 38 5 24 9 35 48 25 48	1 50.7 9 9 10 1 51.1 9 10 1 50.8 9 10 1 51.1 9 11	R
36 37 38 39 40	37 3861 37 3859 37 3860 37 3862	OB OBce! OB OB OBce	9.4 10.0 10.0 8.8 9.9	14 38.6 14 38.9 14 39.4 14 40.3 14 41.4	46 3 29 18 43 9 29 13 29 24	1 50.6 9 11 1 51.0 9 11 1 50.7 9 11 1 51.0 9 11 1 51.0 9 12	ADS 13626 c ADS 13626 A ADS 13626 C
41 12 43 44 45	37 3866 36 3987	OB OB WNh OB- OB-	9,8 8,1 9,0 11,1 11,1	14 45.8 15 7.9 15 8.6 15 10.2 15 22.1	31 58 31 39 16 4 57 56 57 48	1 51.0 9 12 1 51.0 9 13 1 51.4 9 13 1 50.3 9 13 1 50.4 9 14	WN7, ADS 13641 A
46 47 48 49 50	36 3991 37 3871	OBce,le OB OB OB OB ⁺ le,h,r	9.7 11.3 11.5 11.1 4.9:	15 38.0 15 39.7 15 40.1 15 48.2 15 56.6	9 9 56 35 6 56 57 13 52 35	1 51.6 9 15 1 50.4 9 15 1 51.7 9 15 1 50.4 9 16 1 50.6 9 16	Р Суд
51 52 53 54 55	37 3872	OB ⁻ (ce) OB F5 lab OB ⁻ OB ⁻	10.7 10.7 10.3 10.9 11.3	16 0.6 16 2.8 16 7.5 16 18.5 16 38.3	46 22 39 28 25 58 52 0 25 58	1 50.7 9 16 1 50.9 9 16 1 51.3 9 17 1 50.6 9 17 1 51.3 9 19	
56 57 58 59 60	36 4000 37 3877 37 3878 36 4004	OBTH OBT OB OB OB	11.7 10.3 10.4 8.7 10.4	16 51.0 16 55.5 17 0.7 17 2.4 17 12.6	49 45 5 58 38 16 41 7 14 28	1 50.8 9 19 i 51.9 9 20 1 51.1 9 20 1 51.0 9 20 1 51.7 9 21	

No	BD	Spectral Type	m _{pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
61 62 63 64 65	37° 3881 37 3886	CBle OBT OBT AO II OBTT	9.1 11.9 11.1 10.7 12.3	20 ^h 17 ^m 16 ^s 3 17 17.7 17 26.7 17 31.5 17 34.3	37 ⁰ 36' 42" 4 2 18 45 29 53 28 9	1 ^m 51 ⁸ 1 9'21" 1 52.0 9 21 1 51.6 9 22 1 51.3 9 22 1 51.4 9 22	
66 67 68 69 70	37 3894	OBh,r OB(ce,le) OBh OB ⁻ le OBr	11.0 8.8 11.9 11.7	17 40.4 18 17.7 18 35.0 18 43.6 18 59.1	7 48 40 20 0 26 48 8 38 37	1 51.9 9 22 1 51.2 9 25 1 52.2 9 26 1 51.0 9 26 1 51.3 9 27	
71 72 73 74 75	37 3898 36 4024 37 3901	(Br OB ⁺ rr OBr OB OBr	9.2 9.9 11.9 10.6 10.9	19 3.9 19 23.3 19 27.2 19 31.5 19 38.8	04 21 14 56 13 49 42 1 51 55	1 51.4 9 27 1 52.0 9 29 2 52.0 9 29 1 51.3 9 29 1 51.1 9 29	R
76 77 78 79 80	37 3909	OB- B9 II OB OBh OBr	11.5 11.1 11.7 11.9 9.4	19 46.7 20 16.4 20 19.6 20 39.7 20 44.4	15 39 33 27 46 47 44 40 58 5	1 52.0 \$.0 1 51.6 9 32 1 51.3 9 32 1 51.4 9 33 1 51.0 9 33	
81 82 83 84 85		OB OBr OB ⁻ OB	12.1 10.2 11.3 11.1 12.2	20 44.6 20 53.9 21 5.9 21 9.0 21 20.7	50 2 48 1 4 15 42 11 7 34	1 51.2 9 33 1 51.3 9 34 1 52.4 9 35 1 51.5 9 35 1 52.4 9 36	
86 87 88 89 90	36 4048 37 3917 37 3927	OBr OBr OBr OBh,r OBr	10.9 11.0 12.4 12.1 11.4	21 40.6 21 5'.2 22 1.1 22 16.5 23 14.6	8 44 44 14 49 8 21 50 18 3	1 52.4 9 37 1 51.5 9 37 1 51.4 9 38 1 52.2 9 39 1 52.4 9 42	B0 Ib
91 92 93 94 95	36 4063	OB OB OB OBh	12.7 10.8 11.2 11.9 11.6	23 18.5 23 47.5 24 7.3 20 14.4 35 32.7	9 31 12 36 58 56 9 12 29 47	1 52.6 9 43 1 52.6 9 44 1 51.5 9 45 1 52.9 9 49 1 52.4 9 50	09.5 Ib
96 97 98 99 100	37 3948 36 4145 37 4048	F6 Ia OB-rr OB- OB(ce,le) B9 II	10.6 12.4 11.7 9.6 10.6	26 5.7 31 42.7 31 53.7 34 24.1 44 35.2	50 36 51 19 22 16 14 35 54 49	1 51.9 9 52 1 52.7 10 12 1 53.4 10 13 1 54.0 10 21 1 54.5 10 56	09 V
101 102 103 104	37 4092 36 4330 37 4115	OB- B9 II F4 II OB-h	10.0 9.3 9.2 10.3	51 45.0 54 45.3 55 1.2 21 11 15.4	59 52 10 25 22 10 15 50	1 55.4 11 19 1 57.0 11 28 1 56.8 11 29 1 59.5 12 19	ві ш
1 2 3 4 5	38 3786 38 3790 38 3793	F8 I F5 Lab OB OB- F4 II	10.5 9.9 10.5 12.3 10.9	19 49 17.8 49 53.4 50 29.7 51 2.4 50.3	38 49 24 37 10 16 17 18 3 12 20	1 45.9 7 36 1 46.3 7 38 1 47.0 7 40 1 47.0 7 43 1 47.2 7 46	F6 lb
6 7 8 9 10		A2 lab OB OB OB OBr	11.7 11.4 11.3 11.4 10.7	20 6 4.7 6 46.8 6 54.9 6 58.6 9 4.8	4 42 36 23 2 37 43 57 9 15	1 49.0 8 40 1 48.5 8 42 1 49.2 8 43 1 48.1 8 43 1 49.3 8 51	
11 12 13 14 15	37 3821 37 3827 37 3828	WNh OB F3 Ia OB CB	8.7 11.9 9.0 9.2 12.1	10 17.1 10 18.0 10 54.9 10 58.1 11 27.3	12 16 43 48 14 26 4 35 23 39	1 49.3 8 55 1 48.5 8 55 1 49.4 8 58 1 49.6 8 53 1 49.1 9 0	WN6

No	BD	Spectral Type	^m pg	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
16 17 18 19 20	38 ⁰ 3956	OB" OBr OB' OBr	10.6 7.6 11.3 11.9 9.1	20 ^h 11 ^m 33 ^s 2 11 33.5 11 37.2 11 39.1 11 39.6	38 ⁰ 26' 10" 36 56 49 15 5 26 19 39	1 ^m 49. ^S 1 9' 0'' 1 48.9 9 0 1 48.5 9 0 1 49.7 9 0 1 49.3 9 0	AGK2: +38 ⁰ 1987 R
21 22 23 24 25	37 3837 38 3968 38 3980	OB [†] r OBle O3ce B8 B OBle	11.9 9.6 9.7 11.3 11.3	11 52.5 12 16.6 12 59.1 13 12.8 14 18.8	59 32 5 31 18 3 39 54 23 50	1 48.3 9 1 1 49.8 9 3 1 49.5 9 5 1 49.0 9 6 1 49.5 9 10 1 49.1 9 12	AD6 13584 AB
27 28 29 30	37 3867	OB OB OB OBr	11.7 12.1 11.7 7.5	15 7.9 15 11.5 15 23.7 15 32.5	57 15 59 2 40 24 4 50	1 48.8 9 13 1 48.7 9 13 1 49.2 9 14 1 50.2 9 15	
31 32 33 34 35	38 3999	OB OB OB	i2.1 10.7 10.4 12.1 11.0	16 8.0 16 19.2 16 26.8 16 33.8 16 36.6	11 45 9 5 29 47 51 26 3 54	1 50.1 9 17 1 50.2 9 17 1 49.7 9 18 1 49.1 9 18 1 50.4 9 19	
36 37 38 39 40	38 4000 37 3879 37 3887	OBce A0 lab,h OB OBr OB	9.3 10.3 7.4 10.8 10.8	16 40.3 16 51.4 17 1.4 17 10.0 17 31.1	43 14 10 31 7 22 47 49 15 15	1 49.3 9 19 1 50.2 9 19 1 50.3 9 20 1 49.3 9 21 1 50.2 9 22	ADS 13686 AB
41 42 43 44 45	38 4012 38 4010 37 5890	OB WWh OB ⁻ r OBce OB	8.9 8.7 11.3 9.4 11.5	17 42.0 17 42.6 17 46.9 17 48.3 17 54.7	53 57 34 24 25 52 10 40 49 28	1 49.2 9 23 1 49.7 9 23 1 49.9 9 23 1 50.3 9 23 1 49.3 9 23	WN5, V444 Cyg ADS 13711 AB
46 47 48 49 50	38 4016 37 3892 38 4017	OB OB- OB- OBr OB	10.2 7.4 11.2 11.5 10.3	17 57.3 17 58.8 18 11.2 18 16.4 18 17.4	26 15 11 4 57 59 30 48 49 22	1 50.0 9 23 1 50.4 9 23 1 49.1 9 24 1 49.9 9 25 1 49.4 9 25	
51 52 53 54 55	38 4018 38 4031 38 4032	OBr OB OB OB ⁻ r OB ⁻	10.3 10.4 11.3 10.3 7.9	18 19.6 18 31.4 18 55.4 19 11.9 19 18.0	30 3 32 31 33 44 51 19 52 19	1 49.9 9 25 1 49.9 9 25 1 49.9 9 27 1 49.5 9 28 1 49.4 9 28	
58 57 58 59 60		OB OB- OB- OB-	11.9 12.1 11.9 11.7 10.8	19 21.7 19 24.7 19 35.5 19 40.0 19 43.7	25 45 32 40 29 38 31 33 57 33	1 50.2 9 28 1 50.0 9 29 1 50.1 9 29 1 50.0 9 30 1 49.4 9 30	
61 62 63 64 65	38 4036 38 4043	B8 Ib OB OB OB OBce	8.9 10.9 11.9 10.4 9.3	20 0.6 20 17.0 20 18 9 20 22.1 20 30.8	28 8 14 15 19 28 52 17 33 50	1 50.2 9 31 1 50.6 9 32 1 50.4 9 32 1 49.6 9 32 1 50.1 9 33	
66 67 68 69 70	38 4044 37 3913 38 4054	OB OBr OB(le) OB	10.5 11.2 9.9 11.9 11.1	20 34. a 20 50. 8 21 12.2 21 19. 9 21 21.4	4 41 0 57 17 39 50 27 59 59	1 49.8 9 33 1 51.0 9 34 1 50.6 9 35 1 49.8 9 36 1 49.5 9 36	B0.5 III:n
71 72 73 74 75	38 4055 38 4057 38 4059 38 4062	OBr OE- OBce,le,r OBce,le,r OB+ce,h,r	11.1 11.5 9.2 9.8 10.2	21 32.5 21 35.6 21 36.3 21 45.3 21 55.2	52 14 26 36 46 38 43 13 20 19	1 49.8 9 36 1 50.4 9 36 1 49.9 9 37 1 50.0 9 37 1 50.6 9 38	B0 Ib 07.5 V Bpe

No.	BD	Spectral Type	m _{Pg}	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
78 77 78 79 80	38 ⁰ 4065 38 4067 38 4070 38 4069	OBr OB OB OB [†] ce,le,r OBcer	11.8 10.2 10.6 10.4 9.7	20 ^b 21 ^m 57 ⁸ 6 22 4.2 22 8.8 22 9.4 22 10.6	38 ⁰ 56'29" 1° 14 22 3 56 27 21 4	1 ²⁰ 49 ⁵ .7 9'38" 1 50.7 9 36 1 50.6 9 38 1 49.7 9 39 1 50.6 9 39	BO II 05f 09.5 III
81 82 83 84 85	38 4071 38 4072 38 4078	OBr OBr OB- OB-	9.8 9.8 11.4 12.0 11.2	22 14.0 22 15.8 22 21.4 22 22.1 23 2.0	22 32 19 48 56 5 55 35 48 13	1 50.6 9 39 1 50.7 9 39 1 49.8 9 39 1 49.8 9 39 1 50.1 9 42	B0 I B0 U R
86 87 88 89 90	38 4098 37 3945	OBh OBr WC	12.4 9.8 12.2 10.3 12.5	25 4.1 25 42.2 25 52.7 26 26.1 26 31.5	2 56 36 22 44 35 11 20 27 15	1 51.5 9 49 1 50.7 9 51 1 50.5 9 52 1 51.5 9 54 1 51.1 9 54	B9 Ib B0 IInn HD 195177
91 93 93 94 95	37 3976	OBr OB-r OB- OB- (B8 II)	11.6 11.0 11.9 12.3 12.3	31 12.3 31 57.3 41 56.2 54 33.0 54 40.4	12 11 6 40 49 37 5 13 13 38	1 52.1 10 10 1 52.3 10 13 1 52.7 10 47 1 55.7 11 28 1 55.6 11 28	B1,5 V n
96 97	38 4372	OB"h	10.9 7.6	21 1 12.1 8 41.2	47 40 45 24	1 55.8 11 49 1 57.2 12 11	B1 V
1 2 3 4 5	39 3813	AS II OB ⁻ A2 Iab OB ⁻ OB ⁻	10.5 11.5 11.9 11.7 11.5	19 31 29.3 41 27.6 52 48.0 59 23.7 20 1 32.2	39 16 0 54 26 40 23 45 24 14 14	1 43.3 6 25 1 43.2 7 5 1 44.8 7 49 1 45.5 8 15 1 46.6 8 23	
6 7 8 9	39 4022 39 4031 39 4033 39 4049 39 4059	F1 II OB- OB- OB-	10.2 9.5 8.0 8.2 9.2	2 17.7 3 56.7 4 14.8 6 21.1 7 39.5	48 53 51 12 55 14 36 15 25 57	1 45.7 8 26 1 45.9 8 32 1 45.8 8 33 1 46.6 8 41 1 47.0 8 46	
11 12 13 14 15	39 4076 39 4087 39 4098	OB ⁺ ce,h,r OB A7 lab OB OBce!h	10.5 11.9 11.1 11.7 10.7	10 7.7 10 44.2 11 12.5 11 21.7 13 10.2	51 28 51 29 58 41 10 16 48 43	1 46.6 8 55 1 48.7 8 57 1 46.6 8 59 1 47.9 8 59 1 47.1 9 6	
16 17 18 19 20	30 4100 32 4115 39 4117	OB B9 II OBr OB OB	10.2 6.6 10.7 11.9 11.5	13 19.2 15 37.0 16 1.6 16 9.3 16 14.4	21 15 26 14 52 31 48 46 10 54	1 47.9 9 7 1 48.1 9 15 1 47.4 9 16 1 47.5 9 17 1 48.5 9 17	
21 22 23 24 25	38 4002 39 4131 38 400d	OB1 OB- OB OB	10.9 9.8 10.8 8.1 11.5	16 32.3 16 56.5 17 2.7 17 19.6 17 27.0	44 22 14 56 18 33 6 56 38 50	1 47.7 9 18 1 48.5 9 20 1 48.4 9 20 1 48.8 9 21 1 48. \$ 22	
26 27 28 29 30	39 4136 39 4137	OB OBr OB-le OBce,h OB-	10.8 10.7 9.9 11.2 11.3	17 43.2 17 48.7 18 6.8 18 7.5 18 23.8	12 54 45 7 23 53 37 34 15 53	1 48.7 9 23 1 47.8 9 23 1 48.4 9 24 1 48.4 9 24 1 48.7 9 25	ADS 13718 AD
31 32 33 34 35	39 4141 38 4028 39 4151	OBce OBT OBT OBT OB	10.8 10.9 9.9 10.1 11.7	18 42.7 18 45.0 18 56.2 19 44.4 20 2.5	52 10 41 33 12 24 40 9 28 19	1 47.8 9 26 1 46.1 9 26 1 48.5 9 27 1 18.2 9 30 1 48.6 9 31	

No	BD	Spectral Type	m Pg	Right Ascension 1950	Declination 1950	Precession R.A. Decl.	Remarks
36 37 38 39 40	38° 4(38 38° 4050 38° 4053	OB OB OB OBr	10.3 11.9 11.7 9.5 9.6	20 ^h 20 ^m 7\$1 20 41.3 20 50.5 21 4.5 21 12.2	39 ⁰ 17'55" 8 53 26 3 2 48 10 58	1 ^m 4859 9'31" 1 49.2 9 33 1 48.8 9 34 1 49.4 9 35 1 49.2 9 35	B1.5 lb, ADS 13783 B B2 III
41 42 45 44 45	38 4054 39 4162	OBle,h OB OBr OBr	11.6 12.2 11.0 10.4 11.8	21 14.7 21 17.9 21 21.2 21 34.9 21 39.3	20 9 56 6 0 4 59 40 11 13	1 49.0 9 35 1 48.0 9 35 1 49.5 9 36 1 48.0 9 37 1 49.3 9 37	51: III: 08 V: B0 V
46 47 48 49 50	39 4168 39 4169	OB" OBle,r OBr OB"	11.7 11.8 11.0 11.1 10.2	21 49.4 21 57.3 22 22.9 22 32.8 22 38.8	28 27 27 25 30 57 36 17 39 41	1 48.8 9 37 1 48.9 9 38 1 48.8 9 39 1 48.7 9 40 1 48.6 9 40	R 07 07
51 52 53 54 55	39 4189 39 4313 38 4235	B0.5: fil; OB [†] le,r OB [†] A9 Ia A5 Iab	12.2 10.5 11.1 10.6 8.2:	23 8.6 24 31.8 25 28.3 44 41.4 46 6.4	17 39 30 16 34 37 44 44 6 8	1 49.3 9 42 1 49.2 9 47 1 49.2 9 50 1 51.8 10 56 1 53.0 11 1	A0.5 III: V367 Суg, R
56 57 58 59 60	39 4423	B8 II OB- B7 II OD- G0 I	11.2 12.3 11.2 11.8 10.4	48 59.9 59 21.4 21 0 34.1 1 0.4 2 21.8	4 31 3 16 18 48 33 28 46 21	1 53.5 11 10 1 55.2 11 43 1 55.0 11 47 1 54.8 11 48 1 59.7 11 53	VY Cyg
1 2 3 4 5	40 3948 39 4020 39 4082	OB- F5 Ib OB- OB- OB+r	7.5 8.9 11.1 11.9 7.6	19 54 0.8 20 1 39.3 10 8.8 10 32.6 10 47.0	40 15 29 8 17 5 6 19 3 7 0	1 44.0 7 54 1 45.1 8 23 1 46.3 8 55 1 45.9 8 56 1 46.3 8 57	BDS 9748 A, R
6 7 8 9 10	40 4061 39 4096 40 4082 40 4086	OB OBr OB ⁺ r OB ⁻	9.9 7.9 10.4 7.6 11.5	11 16.7 12 39.8 14 8.7 14 28.1 14 40.5	52 28 10 34 43 15 48 31 8 18	1 45.1 8 59 1 46.4 9 4 1 45.7 9 10 1 45.6 9 11 1 46.8 9 12	
11 12 13 14 15	40 4087 40 4090 40 4103	OBr OB OB OB ⁺ r OB	9.7 11.1 11.1 9.2 5.9	14 50.3 15 3.4 15 11.3 15 13.9 16 21.1	43 42 37 40 7 59 41 17 34 27	1 45.8 9 12 1 46.0 9 13 1 46.9 9 13 1 45.9 9 14 1 46.3 0 18	ADS 13672 AB, HR 7767
16 17 18 19 20	39 4130 40 4113 40 4115 39 4135 40 4117	A0 Lab,r OBrr OBr OBr	9.1 10.3 8.6 10.4 10.5	16 52.5 17 11.8 17 35 17 41 17 46.6	4 10 32 45 43 48 18 11 29 36	1 47.2 9 20 1 46.4 9 21 1 46.2 9 22 1 46.9 9 23 1 46.6 9 23	
21 22 23 24 25	40 4119 40 4157 39 4159 40 4119	OB ⁻ le OB (F5 lab) OB ⁻ OB	9.1 8.6 2.8: 8.0 11.0	17 53.9 20 18.9 20 25.9 20 57.7 21 12.4	43 50 49 30 5 44 33 12 35 48	1 46.2 9 23 1 46.4 9 32 1 47.6 9 32 1 47.0 9 3/ 1 46.9 9 35	F8 lb, gamma Cyg
26 27 28 29 30	40 4147 40 4146 40 4150 39 4177	OB ⁺ r OB OB ⁺ r OB OBce,r	9.4 10.3 8.0 10.4 10.0	21 23.9 21 24.1 21 31.1 22 29.0 23 33.9	42 48 35 59 35 50 16 0 3 9	1 46.8 9 36 1 47.0 9 36 1 47.0 9 36 1 47.7 9 40 1 48.2 9 44	ADS 13792 A

No	BD	Spectral	m _{pg}	Right Ascension	Declination	Precession	Remarks
		Type	16	1950	1950	R.A. Decl.	
31	39° 4179	OBle,r	11.0	20 ^h 23 ^m 39. ⁸ 3	40 ⁰ 13'59"	1 ^m 47.59 9'44"	
32		OB ⁺ ce	11.7	23 40.3	3 4	1 48.2 9 44	
33		OB"	10.4	25 47.3	22 5	1 48.0 9 51	
34	40 4179	OB	10.0	25 56.0	25 24	1 47.9 9 52	
35		OB	12,2	26 35.1	17 26	1 48.2 9 54	
36	***	OB~r	11,2	30 47.5	3 36	1 49.2 10 9	
37		OB~	11.5	48 51.0	12 53	1 51.8 11 10	
38	39 4368	OB ce	7.3	53 30.2	6 29	1 52.7 11 25	B2 IV p
39	39 4455	OB"ce	10.0	21 7 25.7	11 16	1 55.0 12 b	- •
1	40 4015	A0 Iab	7.8	20 3 54.9	41 8 9	1 43.6 3 32	
2	40 4032	ОВ	10.5	6 40.0	6 15	1 44.1 8 42	
3		OB-	10.6	12 34.6	4 18	1 44.9 9 4	
4	40 4072	OB	10.6	12 35.6	6 1'	1 44.9 9 4	
4 5		OB ⁺ r	10.1	16 19.2	12 35	1 45.2 9 18	
6	40 4132	ОВ	9.1	19 39.7	2 3	1 46.0 9 30	
		- -	- • · ·		-		

Notes to the Catalogue

Zone	Star	Remarks
11 ⁰	2	ADS 12000 AB.
11 ⁰	5	Only one absorption spectrum is clearly identifiable in this
		overlap, and is assumed to belong to Aitken's component A.
13 ⁰	2	May be cA.
13°	10	May be B6 Iau.
16 ⁰	4	Nucleus of planetary nebula no. 220 in Vorontsov-
		Velyaminov's catalogue (Gaseous Nebulae and New Stars,
		p. 563 ff. Moscow-Leningrad: Soviet Academy of
		Sciences, 1948).
16 ⁰	9	Perhaps B7 II le.
17 ⁰	3	ADS 11884 A.
21 ⁰	7	May be cA.
22 ⁰	2	May be B8 lb.
22 ⁰	3	ADS 12287 AB.
22°	6	BDS 3487 A.
24 ⁰	26	B7 IV (e), Osawa, Ap. J. 130, 159, 1959.
28 ⁰	2	May be cA.
29 ⁰	2	May be cA.
29 ⁰	5	P Cyg type. Strong $H\alpha$ emission.
29 ⁰	6	Similar to AG Peg.
29 ⁰	2 2	May be cA.
30 ⁰	17	May be B7 II.
30°	37	HR 8084.
31 ⁰	1	H β in emission.
31 ⁰	15	The type given here is purely descriptive; among the
		grounds for doubting it is the fact that the spectrum
		shows no reddening despite its low galactic latitude.
		On the one plate covering its position, an absorption
		feature which may be $\mathbf{H}_{\mathcal{T}}$ is strong, while all other
		features, including the Balmer discontinuity, are at
		the limit of visibility.

Zone	Star	Remarks
32 ⁰	15	ADS 13335 A.
34 ⁰	12	
		May be B8 lb.
350	33	ADS 13374 A.
35 ⁰	61	May be B9 II.
35 ⁰	73	May be cA.
36 ⁰	8	May be B7 II.
36 ⁰	11	May be cA.
36 ⁰	86	ADS 14724 A.
37 ⁰	35	May be B8 II.
37 ⁰	72	May be B7 Ir.
38º	17	May be B6 Ia.
38 ⁰	83	May be B7 Ib.
39°	47	May be cA.
39°	55	ADS 14314 AB. The published Δm (Aitken, A New General
		Catalogue of Double Stars Within 1200 of the North Pole)
		is so large that the observed spectrum must actually be
		entirely that of the primary. The primary is said to be
		composite in the Henry Draper Catalogue, and for this
		reason the star is given two HD numbers, HD 198287/8.
		The spectrum does not appear composite on our plates,
		and was characterized by Hynek (Perkins Contribution $\underline{1}$,
		No. 10, 1938) as one simulating compositeness because
		of high luminosity. This conclusion is almost certainly
		correct.
40 ⁰	1	May be B7 II.

\RS

OR STA

● 8.0 -

e## - 11"9

EMISSION OBJECTS

EMISSION OBJECTS

F&G SUPERGIANTS

F&G SUPERGIANTS