
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Tue Sep 25 09:52:10 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10580901 Version No: 3.0

Input Set:

Output Set:

Started: 2007-09-12 16:33:57.345 **Finished:** 2007-09-12 16:33:58.037

2007-09-12 16:33:38.037

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 692 ms

Total Warnings: 11
Total Errors: 0

No. of SeqIDs Defined: 11

Actual SeqID Count: 11

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	402	Undefined organism found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)

SEQUENCE LISTING

<110>	Bern Thom Kamk	dula, Sharma ry, Carole mas, Mark padur, Ravi er, Robert S					
<120>	Novel Muscle Growth Regulator						
<130>	AJPARK39.001APC						
<140>	1058	30901					
		7-09-12					
		,					
		/NZ2004/0003	308				
<151>	2004	1-11-26					
<150>	NZ52	29860					
<151>	2003	3-11-28					
<160>	11						
<170>	Pate	entIn versio	on 3.1				
<210>	1						
	576						
<212>	DNA						
<213>	Ovir	ne					
- 100>	1						
<400> atagcat	1	aaacaacact	gaagcggccc	atggagttgg	aggraggart	actaaaccct	60
acggcg	-909	gggegaeaee	gaageggeee	acggageeeg	aggeggegee	gergageeer	0.0
ggctct	ccga	agcggcggcg	ctgcgcccct	ctgtccggcc	ccactccggg	cctcaggccc	120
ccggac	gccg	aaccgccgcc	gctgcttcag	acgcagaccc	caccgccgac	tctgcagcag	180
cccgcc	ccgc	ccggcagcga	gcggcgcctt	ccaactccgg	agcaaatttt	tcagaacata	240
aaacaaq	gaat	atagtcgtta	tcagaggtgg	agacatttag	aagttgttct	taatcagagt	300
gaagctt	gta	cttcggaaag	tcagcctcac	tcctcagcac	tcacagcacc	tagttctcca	360
ggttcct	cct	ggatgaaaaa	ggaccagccc	acctttaccc	tccgacaagt	tggaataata	420
tgtgag	egte	tcttaaaaga	ctatgaagat	aaaattcggg	aggaatatga	gcaaatcctc	480
aatacta	aaac	tagcagaaca	atatgaatct	tttgtgaaat	tcacacatga	tcagattatg	540
cgacgat	atg	ggacaaggcc	aacaagctat	gtatcc			576

<212> PRT <213> Ovine <400> 2 Met Ala Cys Gly Ala Thr Leu Lys Arg Pro Met Glu Phe Glu Ala Ala 10 Leu Leu Ser Pro Gly Ser Pro Lys Arg Arg Cys Ala Pro Leu Ser 25 Gly Pro Thr Pro Gly Leu Arg Pro Pro Asp Ala Glu Pro Pro Pro Leu 40 Leu Gln Thr Gln Thr Pro Pro Pro Thr Leu Gln Gln Pro Ala Pro Pro 50 55 Gly Ser Glu Arg Arg Leu Pro Thr Pro Glu Gln Ile Phe Gln Asn Ile 70 Lys Gln Glu Tyr Ser Arg Tyr Gln Arg Trp Arg His Leu Glu Val Val 85 90 Leu Asn Gln Ser Glu Ala Cys Thr Ser Glu Ser Gln Pro His Ser Ser 100 105 Ala Leu Thr Ala Pro Ser Ser Pro Gly Ser Ser Trp Met Lys Lys Asp 115 120 Gln Pro Thr Phe Thr Leu Arg Gln Val Gly Ile Ile Cys Glu Arg Leu 130 135 Leu Lys Asp Tyr Glu Asp Lys Ile Arg Glu Glu Tyr Glu Gln Ile Leu 150 155 Asn Thr Lys Leu Ala Glu Gln Tyr Glu Ser Phe Val Lys Phe Thr His 165 170 Asp Gln Ile Met Arg Arg Tyr Gly Thr Arg Pro Thr Ser Tyr Val Ser <210> 3 <211> 576 <212> DNA <213> Bovine <400> 3 atggcgtgcg gggcgacact gaagcggccc atggagttcg aggcggcgct gctgagccct 60 ggetetecga agegaeggeg etgegeeeet etgteeggee ceaeteeggg eeteaggeee 120 ccggacgccg aaccgccacc gctgcttcag acgcagatcc caccgccgac tctgcagcag 180 240 cccgccccgc ccggcagcga ccggcgcctt ccaactccgg agcaaatttt tcagaacata

aaacaagaat atagtcgtta tcagaggtgg agacatttag aagttgttct taatcagagt

300

gaagcttgta c	ttcggaaag t	cageeteae te	ctcaacac	tcacagcacc	tagtteteea 3	860
ggtteeteet g	gatgaaaaa g	gaccagece ac	ctttacgc	tccgacaagt	tggaataata 4	120
tgtgagcgtc t	cttaaaaga c	tatgaagat aa	aattcggg	aggaatatga	gcaaatcctc 4	180
aatactaaac t	agcagaaca a	tatgaatct tt	tgtgaaat	tcacacatga	tcagattatg 5	40
cgacgatatg g	gacaaggcc a	acaagctat gt	atcc		5	576
<210> 4 <211> 192 <212> PRT <213> Bovine						
<400> 4				_, _, _,		
Met Ala Cys 1	Gly Ala Thr 5	Leu Lys Arg	Pro Met 10	Glu Phe Glu	Ala Ala 15	
Leu Leu Ser	Pro Gly Ser 20	Pro Lys Arg	Arg Arg	Cys Ala Pro 30	Leu Ser	
Gly Pro Thr 35	Pro Gly Leu	Arg Pro Pro	Asp Ala	Glu Pro Pro 45	Pro Leu	
Leu Gln Thr 50	Gln Ile Pro	Pro Pro Thr 55		Gln Pro Ala 60	Pro Pro	
Gly Ser Asp	Arg Arg Leu 70	Pro Thr Pro	Glu Gln 75	Ile Phe Gln	Asn Ile 80	
Lys Gln Glu	Tyr Ser Arg 85	Tyr Gln Arg	Trp Arg	His Leu Glu	Val Val 95	
Leu Asn Gln	Ser Glu Ala 100	Cys Thr Ser		Gln Pro His 110	Ser Ser	
Thr Leu Thr	Ala Pro Ser	Ser Pro Gly	Ser Ser	Trp Met Lys 125	Lys Asp	
Gln Pro Thr 130	Phe Thr Leu	Arg Gln Val	_	Ile Cys Glu 140	Arg Leu	
Leu Lys Asp	Tyr Glu Asp 150	Lys Ile Arg	Glu Glu 155	Tyr Glu Gln	Ile Leu 160	
Asn Thr Lys	Leu Ala Glu 165	Gln Tyr Glu	Ser Phe	Val Lys Phe	Thr His 175	
Asp Gln Ile	Met Arg Arg	Tyr Gly Thr	Arg Pro	Thr Ser Tyr	Val Ser	

<400> 5

ccacattcac tgtgcaagtc gtggggaaat acagatgaat aaaggcttcc ttgttattct 60 caaggaatgt atggttttga agcacagtta gacatatatt caaattacag cttcctcctt 120 taaaacacta atattccaag gcacactcaa tgttttaaag gatcacagag tgactaccaa 180 agcacqtagc aaaaccctac taaqaqaqqt qtgtttaaaa tgactaccca agggacatac 240 ttttcaagtc ttctaatcgt tcactttgga tctgtttata ccacaagaaa acaatttact 300 tgatgctctt aggtcccctt aaaaaataac catcgtgaag tggcttttca tgtccttggc 360 420 ttttattgaa catagaaaca gccatgcaag cggtcttaaa ggctttatta catcattgtt tcctaataaa gtcatgacag tctacctttg gaattaaagt gatacacaaa atgatggtct 480 540 gtgtcctctg gtgaactggt tccattcaga taacacctat tcatcatgac tatggtttca 600 tttttcttta gccttcaaga agctcagaac tgaattttaa attcagtcat ttaccaccaa gataattgtg agtttttttt ttttaaaaaa actctaatgt tttatttcta gattttagtt 660 720 taaaccacgt tacatctata ttgacaataa atgtgctaaa ataaacttaa catgggtaat gtgcctaggg aggcttgaat cccaatatgg caaaacaaac agaaaaccag caatttggta 780 tgctgtgctg tcttatattt tacagaaata aatgtgaaag tatatgacct atgttatgat 840 900 ctttaaagag tttgtagaaa cggaagagga ctcagagaaa agcaaccaaa acgaacagga 960 ggagaaggaa gaagaggcgg agaaggagga ggaagattgg agatagtatg cctttattgt 1020 ctaaccccaa gtgtgttgaa gtactgtgac agccatcttg gcaattagaa atgagtatct aaaatttgga ctgttctaga aaaatctgtt acagagataa tgttaaagcc agattacagg 1080 aatcacagcc actaatatac aaataattac agaaaggctt tgaatgtgga ggtgttgttc 1140 tgatgactct attgatgtat ttgaaagcac tggagttact ccccaggaaa attacaacca 1200 gagttcccta aagcagaacc tccctgtttt ctattcattt gctgaatatc aaaagcattt 1260 tccagccaac agtacggcag agaatctcga ttgacccgag gaagaaccag tctgagttgc 1320 caagteggat gaggaageea actgecaaat cagetateag gggaagttee taacaceetg 1380 gtatcacttg gttagacagt ttaagccagt gagttttctg gtaggattgt tttttggttt 1440 tttttttttc cttttaatcc ttttttgcgt aacacatatc catttagtga tccgattaat 1500 1560 ggccgggtca tctatcccca aaatacattc atttgtaaca cacctcccct tccaattttg

cccatga	attg	cacagggttc	gtggattaaa	taaagtctat	ccttagataa	cccggttatg	1620
tttgtga	aaga	tttcctggga	ctcaagacaa	aatcctttga	taacccttta	gaatcacctc	1680
ttttato	cggt	cacgcggcca	agggaacccg	ggtctcccag	ggtctctccc	atcccccgcc	1740
cccgag	gccc	ctgccgcgca	ggtgcgaaag	acctcccagg	ccactccggc	agagagcgtg	1800
aaggggg	aaaa	ccctgggagg	aacaaaaaca	ggggtgttgc	taggcgacca	cgctctccgc	1860
ccagaco	cggc	ctacttcttc	cgcagggggc	gccatgggcc	gagcccaggc	tegegggeet	1920
cccggat	tegg	cccttttccg	acttcttccc	ctctgccggg	cggtggcgca	cgcccgtgac	1980
gtcaca	ggag	gcggggccag	cgcggctgcc	gggtgccgga	ggcgccattg	gageeggett	2040
ggcttg	ggag	ccgtagctga	agagttggat	С			2071
<210>	6						
<211>	25						
<212>	DNA						
<213>		ficial Sequ	uence				
<220>							
<223>	olic	gonucleotide	2				
\223/	OII	jondereoerde	-				
<400>	6						
caccat	ggcg	tgcggggcga	cactg				25
<210>	7						
<211>	21						
<212>	DNA						
<213>	Arti	ficial Sequ	lence				
.000							
<220>							
<223>	0110	gonucleotide	=				
<400>	7						
		cttgttggcc	t				21
33	ر	3 33					
<210>	8						
<211>	20						
<212>	DNA						
<213>	Arti	ficial Sequ	uence				
<220>							
<223>	olic	gonucleotide	Э				
<400>	8						
tgaagc	tgaageggee catggagtte 20						20

<210> 9 <211> 22

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
	9	
ggtggg	ctgg tccttcttca tc	22
<210>	10	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
. 100		
	10	25
agatet	gate caactettea getae	25
<210>	11	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
< 40.05	11	
<400>		24
gctagc	ccac attcactgtg caag	$\angle 4$