esposta

dos Testes e das Perguntas e Problemas İmpares

Capítulo 1

PR 1. (a) $10^9 \, \mu \text{m}$; (b) 10^{-4} ; (c) $9.1 \times 10^5 \, \mu \text{m}$ 3. (a) 160 varas; (b) 40 cadeias 5. (a) $4,00 \times 10^4$ km; (b) $5,10 \times 10^8$ km²; (c) $1,08 \times 10^8$ 10^{12} km³ 7. 1,9×10²² cm³ 9. 1,1×10³ acres-pés 11. 1,21×10¹² μ s **13.** (a) 1,43; (b) 0,864 **15.** (a) 495 s; (b) 141 s; (c) 198 s; (d) -245 s 17. C, D, A, B, E; o critério importante é a constância dos resultados, e não o seu valor 19.5,2 \times 10⁶ m 21. (a) 1 \times 10³ kg; (b) 158 kg/s **23.** $9.0 \times 10^{49} \text{ átomos}$ **25.** (a) $1.18 \times 10^{-29} \text{ m}^3$; (b) 0,282 nm **27.** 1750 kg **29.** 1,9 \times 10⁵ kg **31.** 1,43 kg/min **33.** (a) 22 pecks; (b) 5,5 Imperial bushels; (c) 200 L **35.** (a) 18,8 galões; (b) 22,5 galões 37. (a) 11,3 m^2/L ; (b) 1,13 × 10⁴ m^{-1} ; (c) 2.17×10^{-3} pés²/galão; (d) número de galões para pintar um pé quadrado 39.0,3 cord 41. (a) 293 alqueires americanos; (b) 3.81×10^3 alqueires americanos **43.** 8×10^2 km **45.** 0.12 UA/ min 47.3,8 mg/s 49.10,7 pimentas habanero 51. (a) sim; (b) 8,6 segundos do universo 53. (a) 3,88; (b) 7,65; (c) 156 ken³; (d) $1,19 \times 10^3$ m³ 55. 1,2 m 57. (a) $4,9 \times 10^{-6}$ parsecs; (b) 1,6 $\times 10^{-5}$ anos-luz **59.** (a) 3,9 m, 4,8 m; (b) 3,9 $\times 10^{3}$ mm, 4,8 \times 10³ mm; (c) 2,2 m³, 4,2 m³

Capítulo 2 **T** 1. b e c 2. (verifique a derivada dx/dt) (a) 1 e 4; (b) 2 e 3 3. (a) positivo; (b) negativo; (c) negativo; (d) positivo 4. 1 e 4 $(a = d^2x/dt^2 \text{ deve ser constante})$ 5. (a) positivo (deslocamento para cima ao longo do eixo y); (b) negativo (deslocamento para baixo ao longo do eixo y); (c) $a = -g = -9.8 \text{ m/s}^2$ **P** 1. (a) todas iguais; (b) 4, 1 e 2, 3 3. (a) negativo; (b) positivo; (c) sim; (d) positiva; (e) constante 5. (a) positivo; (b) negativo; (c) 3 e 5; (d) 2 e 6, 3 e 5, 1 e 4 **7.** (a) 3, 2, 1; (b) 1, 2, 3; (c) todas iguais; (d) 1, 2, 3 9. (a) D; (b) E**PR** 1. (a) +40 km/h; (b)40 km/h 3.13 m 5. (a) 0; (b) -2 m; (c) 0; (d) 12 m;(e) +12 m; (f) +7 m/s 7.1,4 m 9. 128 km/h 11. 60 km**13.** (a) 73 km/h; (b) 68 km/h; (c) 70 km/h; (d) 0 15. (a) -6 m/s; (b) no sentido negativo; (c) 6 m/s; (d) diminuindo; (e) 2 s; (f) não **17.** (a) 28,5 cm/s; (b) 18,0 cm/s; (c) 40,5 cm/s; (d) 28,1 cm/s; (e) 30,3 cm/s **19.** -20 m/s^2 **21.** (a) m/s²; (b) m/s³; (c) 1.0 s; (d) 82 m; (e) -80 m; (f) 0; (g) -12 m/s; (h) -36 m/s; (i) -72 m/s; (j) -6 m/s^2 ; (k) -18 m/s^2 ; (1) -30 m/s^2 ; (m) -42 m/s^2 **23.** (a) +1.6 m/s; (b) +18 m/s **25.** (a) 3.1×10^6 s; (b) 4.6×10^{13} m **27.** $1,62 \times 10^{15}$ m/s² **29.** (a) 30 s; (b) 300 m **31.** (a) 10,6 m; (b) 41,5 s **33.** (a) 3,56 m/s²; (b) 8,43 m/s **35.** (a) 4,0 m/s²; (b) positivo $37. (a) -2.5 \text{m/s}^2$; (b) l; (d) 0; (e) 2 39.40 m**41.** 0,90 m/s² **43.** (a) 15,0 m; (b) 94 km/h **45.** (a) 29,4 m; (b) 2,45 s **47.** (a) 31 m/s; (b) 6,4 s **49.** (a) 5,4 s; (b) 41 m/s **51.** 4,0 m/s **53.** (a) 20 m; (b) 59 m **55.** (a) 857 m/s²; (b) para cima 57. (a) $1,26 \times 10^3$ m/s²; (b) para cima 59. (a) 89 cm; (b) 22 cm **61.** 2,34 m **63.** 20,4 m **65.** (a) 2,25 m/s; (b) 3,90 m/s **67.** 100 m **69.** 0,56 m/s **71.** (a) 82 m; (b) 19 m/s **73.** (a) 2,00 s; (b) 12 cm; (c) -9.00 cm/s^2 ; (d) para a direita; (e) para a esquerda; (f) 3,46 s **75.** (a) 48,5 m/s; (b) 4,95 s; (c) 34,3 m/s; (d) 3,50 s **77.** 414 ms **79.** 90 m **81.** (a) 3,0 s; (b) 9,0 m **83.** 2,78 m/s² **85.** (a) 0.74 s; (b) 6.2 m/s^2 **87.** 17 m/s **89.** +47 m/s **91.** (a) 3.1 m/s^2 ; (b) 45 m; (c) 13 s **93.** (a) 1,23 cm; (b) por 4; (c) por 9; (d) por 16; (e) por 25 **95.** 25 km/h **97.** 1,2 h **99.** 4H **101.** (a) 3,2 s; (b) 1,3 s **103.** (a) 10,2 s; (b) 10,0 m **105.** (a) 8,85 m/s; (b) 1,00 m **107.** (a) 2,0 m/s²; (b) 12 m/s; (c) 45 m **109.** 3,75 ms **111.** (a) 5,44 s; (b) 53,3 m/s; (c) 5,80 m

113. (a) 9,08 m/s²; (b) 0,926g; (c) 6,12 s; (d) 15,3 T_p ; (e) ao processo de frenagem; (f) 5,56 m

Capítulo 3

T 1. (a) 7 m (\vec{a} e \vec{b} no mesmo sentido; (b) 1 m (\vec{a} e \vec{b} em sentidos opostos) 2. c, d, f (a origem da segunda componente deve coincidir com a extremidade da primeira; \vec{a} deve ligar a origem da primeira componente com a extremidade da segunda) 3. (a), +; (b) +, -; (c) +, + (o vetor deve ser traçado da origem de d_1 à extremidade de d_2) **4.** (a) 90°; (b) 0° (os vetores são paralelos); (c) 180° (os vetores são antiparalelos) 5. (a) 0° ou 180°; (b) 90° **P** 1. A sequência d_2 , d_1 ou a sequência d_2 , d_2 , d_3 . 3. sim, se os vetores forem paralelos 5. (a) sim; (b) sim; (c) não 7. todos, menos (e) 9. (a) +x para (1), +z para (2), +z para (3); (b) -x para (1), -z para (2), -z para (3) **PR** 1. (a) 47.2 m; (b) 122° 3. (a) -2.5 m; (b) -6.9 m**5.** (a) 156 km; (b) 39,8° a oeste do norte **7.** (a) 6,42 m; (b) não; (c) sim; (d) sim; (e) uma possível resposta: $(4,30 \text{ m})\hat{i} + (3,70 \text{ m})$ $\hat{j} + (3,00 \text{ m})\hat{k}$; (f) 7,96 m **9.** (a) $(-9,0 \text{ m})\hat{i} + (10 \text{ m})\hat{j}$; (b) 13 m; (c)132° **11.** 4,74 km **13.** (a) $(3.0 \text{ m})\hat{i} - (2.0 \text{ m})\hat{j} + (5.0 \text{ m})\hat{k};$ (b) $(5.0 \text{ m})\hat{\mathbf{i}} - (4.0 \text{ m})\hat{\mathbf{j}} - (3.0 \text{ m})\hat{\mathbf{k}}; (c) (-5.0 \text{ m})\hat{\mathbf{i}} + (4.0 \text{ m})\hat{\mathbf{j}} +$ $(3.0 \text{ m})\hat{k}$ **15.** (a) -70.0 cm; (b) 80.0 cm; (c) 141 cm; (d) -172° **17.** (a) 1,59 m; (b) 12,1 m; (c) 12,2 m; (d) 82,5° **19.** (a) 38 m; (b) -37.5° ; (c) 130 m; (d) 1.2° ; (e) 62 m; (f) 130° **21.** 5,39 m e 21,8° à esquerda ou para a frente **23.** 2,6 km **25.** 3,2 **27.** (a) 7,5 cm; (b) 90° ; (c) 8,6 cm; (d) 48° **29.** (a) $8\hat{i}$ + $16\hat{j}$; (b) $2\hat{i} + 4\hat{j}$ 31. (a) $a\hat{i} + a\hat{j} + a\hat{k}$; (b) $-a\hat{i} + a\hat{j} + a\hat{k}$; (c) $a\hat{i}$ $-a\hat{\mathbf{j}} + a\hat{\mathbf{k}}$; (d) $-a\hat{\mathbf{i}} - a\hat{\mathbf{j}} + a\hat{\mathbf{k}}$; (e) 54,7°; (f) 3^{0,5}a **33.** (a) -18,8 unidades; (b) 26,9 unidades, na direção +z 35. (a) -21; (b) -9; (c) 5i - 11j - 9k **37.** (a) 12; (b) +z; (c) 12; (d) -z; (e) 12; (f) +z **39.** 22° **41.** 70,5° **43.** (a) 3,00 m; (b) 0; (c) 3,46 m; (d) 2,00 m; (e) -5,00 m; (f) 8,66 m; (g) -6,67; (h) 4,33 m**45.** (a) 27,8 m; (b) 13,4 m **47.** (a) 30; (b) 52 **49.** (a) -2,83 m; (b) -2.83 m; (c) 5.00 m; (d)0; (e) 3.00 m; (f) 5.20 m; (g) 5.17 m; (h) 2,37 m; (i) 5,69 m; (j) 25° ao norte do leste; (k) 5,69 m; (l) 25° ao sul do oeste 51. (a) 103 km; (b) 60.9° ao norte do oeste **53.** (a) 140° ; (b) 90.0° ; (c) 99.1° **55.** (a) -83.4; (b) (1.14×10^{3}) k; (c) 1.14×10^3 , θ não é definido, $\phi = 0^\circ$; (d) 90.0° ; (e) $-5.14\hat{i} +$ $6,13\hat{j} + 3,00\hat{k}$; (f) 8,54, $\theta = 130^{\circ}$, $\phi = 69,4^{\circ}$ 57. (a) $3,0 \text{ m}^2$; (b) 52 m^3 ; (c) $(11 \text{ m}^2)\hat{\mathbf{i}} + (9.0 \text{ m}^2)\hat{\mathbf{j}} + (3.0 \text{ m}^2)\hat{\mathbf{k}}$ **59.** (a) +y; (b) -y; (c) 0; (d) 0; (e) +z; (f) -z; (g) ab; (h) ab; (i) ab/d; (j) +z **61.** (a) 0; (b) 0; (c) -1; (d) para oeste; (e) para cima; (f) para oeste 63. Walpole (onde fica a penitenciária estadual) **65.** (a) $(9,19 \text{ m})\hat{\mathbf{i}}' + (7,71 \text{ m})\hat{\mathbf{j}}';$ (b) $(14,0 \text{ m})\hat{\mathbf{i}}' + (3,41 \text{ m})\hat{\mathbf{j}}'$ **67.** (a) $11\hat{i} + 5.0\hat{j} - 7.0\hat{k}$; (b) 120° ; (c) -4.9; (d) 7.3**69.** (a) $(-40\hat{i} - 20\hat{j} + 25\hat{k})$ m; (b) 45 m **71.** 4,1

Capítulo 4

T 1. (trace \vec{v} tangente à trajetória, com a origem na trajetória) (a) primeiro; (b) terceiro 2. (calcule a derivada segunda em relação ao tempo) (1) e (3) a_x e a_y são constantes e, portanto, \vec{a} é constante; (2) e (4) a_v é constante mas a_x não é constante e, portanto, \vec{a} não é constante 3. não 4. (a) v_x é constante; (b) v_y é inicialmente positiva, diminui até zero e depois se torna cada vez mais negativa; (c) $a_x = 0$ sempre; (d) $a_y = -g$ sempre 5. (a) $-(4 \text{ m/s})\hat{i}$; (b) $-(8 \text{ m/s}^2)\hat{j}$ **P** 1. (a) (7 m)i + (1 m)j + $(-2 \text{ m})\hat{k}$; (b) $(5 \text{ m})\hat{i} + (-3 \text{ m})\hat{j} + (1 \text{ m})\hat{k}$; (c) $(-2 \text{ m})\hat{i}$

3. (a) todos iguais; (b) 1 e 2 (o foguete é disparado para cima), 3 e 4 (o foguete é disparado para baixo!) 5. diminui 7. (a) todas iguais; (b) todas iguais; (c) 3, 2, 1; (d) 3, 2, 1 **9.** (a) 0; (b) 350 km/h; (c) 350 km/h; (d) igual (a componente vertical do movimento seria a mesma) **11.** (a) 90° e 270°; (b)0° e 180°; **PR** 1. $(-2.0 \text{ m})\hat{i} + (6.0 \text{ m})\hat{j}$ (c) 90° e 270° **13.** 2, 1 e 4, 3 $(10 \text{ m})\hat{\mathbf{k}}$ 3. (a) 6.2 m 5. $(-0.70 \text{ m/s})\hat{\mathbf{i}} + (1.4 \text{ m/s})\hat{\mathbf{j}} - (0.40 \text{ m/s})\hat{\mathbf{k}}$ **7.** (a) 7,59 km/h; (b) 22,5° a leste do norte **9.** (a) 0,83 cm/s; (b) 0° ; (c) 0.11 m/s; (d) -63° **11.** (a) $(8 \text{ m/s}^2)t\hat{j} + (1 \text{ m/s})\hat{k}$; (b) $(8 \text{ m/s}^2)\hat{\mathbf{j}}$ **13.** (a) $(6,00 \text{ m})\hat{\mathbf{i}} - (106 \text{ m})\hat{\mathbf{j}}$; (b) $(19,0 \text{ m/s})\hat{\mathbf{i}} (224 \text{ m/s})\hat{j}$; (c) $(24.0 \text{ m/s}^2)\hat{i} - (336 \text{ m/s}^2)\hat{j}$; (d) -85.2° **15.** $(32 \text{ m/s})\hat{i}$ **17.** (a) $(-1,50 \text{ m/s})\hat{j}$; (b) $(4,50 \text{ m})\hat{i} - (2,25 \text{ m})\hat{j}$ **19.** (a) $(72,0 \text{ m})\hat{i}$ $+ (90.7 \text{ m})\hat{j}$; (b) 49.5° **21.** (a) 3.03 s; (b) 758 m; (c) 29.7 m/s **23.** 43,1 m/s (155 km/h) **25.** (a) 18 cm; (b) 1,9 m **27.** (a) 10,0 s; (b) 897 m **29.** (a) 1,60 m; (b) 6,86 m; (c) 2,86 m **31.** (a) 202 m/s; (b) 806 m; (c) 161 m/s; (d) -171 m/s 33. 3,35 m 35. $78,5^{\circ}$ **37.** (a) 11 m; (b) 23 m; (c) 17 m/s; (d) 63° **39.** 4,84 cm **41.** (a) 32,3 m; (b) 21,9 m/s; (c) 40,4° **43.** (a) na rampa; (b) 5,82 m; (c) 31.0° **45.** 64.8° **47.** (a) sim; (b) 2.56 m **49.** (a) 2.3° ; (b) 1,4 m; (c) 18° 51. (a) 31° ; (b) 63° 53. no terceiro **55.** (a) 75.0 m; (b) 31.9 m/s; (c) 66.9° ; (d) 25.5 m **57.** (a) 12 s; (b) 4.1 m/s^2 ; (c) para baixo; (d) 4.1 m/s^2 ; (e) para cima **59.** (a) 1.3×10^5 m/s; (b) 7.9×10^5 m/s²; (c) aumentam **61.** (a) 7,32 m; (b) para oeste; (c) para o norte **63.** $(3,00 \text{ m/s}^2)\hat{i}$ $+(6.00 \text{ m/s}^2)$ **65.** 2,92 m **67.** 160 m/s² **69.** (a) 13 m/s²; (b) para leste; (c) 13 m/s^2 ; (d) para leste **71.** 1,67 **73.** (a) 38 nós; (b) $1,5^{\circ}$ a leste do norte; (c) 4,2 h; (d) 1,5 $^{\circ}$ a oeste do sul **75.** 60 $^{\circ}$ 77. 32 m/s 79. (a) (80 km/h)i - (60 km/h)j; (b) 0° ; (c) não **81.** (a) $(-32 \text{ km/h})\hat{i} - (46 \text{ km/h})\hat{j}$; (b) $[(2.5 \text{ km}) - (32 \text{ km/h})r]\hat{i}$ + [(4.0 km) - (46 km/h)r]j; (c) 0,084 h; (d) $2 \times 10^2 \text{ m}$ 83. (a) 2,7 km; (b) 76° no sentido horário **85.** 2,64 m **87.** (a) 2,5 m; (b) 0,82 m; (c) 9.8 m/s^2 ; (d) 9.8 m/s^2 **89.** (a) -30° ; (b) 69 min; (c) 80 min; (d) 80 min; (e) 0° ; (f) 60 min **91.** (a) 62 ms; (b) 4.8×10^{2} m/s **93.** (a) 6.7×10^6 m/s; (b) 1.4×10^{-7} s **95.** (a) 4.2 m, 45° ; (b) 5.5 m, 68° ; (c) 6.0 m, 90° ; (d) 4.2 m, 135° ; (e) 0.85 m/s, 135° ; (f) 0.94 m/s, 90° ; (g) 0.94 m/s, 180° ; (h) 0.30 m/s², 180° ; (i) 0.30 m/s², 270° **97.** (a) 6,79 km/h; (b) $6,96^{\circ}$ **99.** (a) 16 m/s; (b) 23° ; (c) acima; (d) 27 m/s; (e) 57°; (f) abaixo **101.** (a) 24 m/s; (b) 65° **103.** (a) 1,5; (b) (36 m, 54 m) **105.** (a) 0,034 m/s²; (b) 84 min **107.** (a) 44 m; (b) 13 m; (c) 8,9 m **109.** (a) 2.6×10^2 m/s; (b) 45 s; (c) aumentaria 111. (a) 45 m; (b) 22 m/s 113. (a) 2,00 ns; (b) 2,00 mm; (c) $1,00 \times 10^7$ m/s; (d) $2,00 \times 10^6$ m/s **115.** (a) $4,6 \times$ $10^{12} \,\mathrm{m}$; (b) $2.4 \times 10^5 \,\mathrm{s}$ 117. 93° em relação à direção do movimento do vagão **119.** (a) 8,43 m; (b) -129° **121.** (a) 63 km; (b) 18° ao sul do leste; (c) 0,70 km/h; (d) 18° ao sul do leste; (e) 1,6 km/h; (f) 1,2 km/h; (g) 33° ao norte do leste 123.3×10^1 m **125.** (a) 14 m/s; (b) 14 m/s; (c) -10 m; (d) -4.9 m; (e) +10 m; (f) -4.9 m **127.** 67 km/h **129.** (a) 75° a leste do sul; (b) 30° a leste do norte. Existe uma segunda solução, com o leste substituído por oeste nas duas respostas. 131. (a) 11 m; (b) 45 m/s

Capítulo 5

T 1. c, d e e 2. (a) e (b) 2 N, para a esquerda (a aceleração é zero nas duas situações) 3. (a) igual; (b) maior (a aceleração é para cima e, portanto, a força resultante é para cima) 4. (a) igual; (b) maior; (c) menor 5. (a) aumentam; (b) sim; (c) permanecem **P** 1. aumentar 3. (a) 2 e 4; (b) 2 e os mesmos; (d) sim 4 5. (a) 2, 3, 4; (b) 1, 3, 4; (c) 1, +y; 2, +x; 3, quarto quadrante; 4, terceiro quadrante 7. (a) 20 kg; (b) 18 kg; (c) 10 kg; (d) todas iguais; (e) 3,2,1 9. (a) aumenta a partir do valor inicial mg; (b) diminui de mg até zero (e depois o bloco perde o contato com o piso) **11.** (a) M; (b) M; (c) M; (d) 2M; (e) 3M

PR 1. (a) 1.88 N; (b) 0.684 N; (c) $(1.88 \text{ N})\hat{i} + (0.684 \text{ N})\hat{j}$ **3.** 2,9 m/s² **5.** (a) $(-32.0 \text{ N})\hat{i} - (20.8 \text{ N})j$; (b) 38,2 N; (c) -147° 7. (a) $(0.86 \text{ m/s}^2)\hat{\mathbf{i}} - (0.16 \text{ m/s}^2)\hat{\mathbf{j}}$; (b) 0.88m/s^2 ; (c) -11° **9.** 9.0 m/s^2 **11.** (a) 8.37 N; (b) -133° ; (c) -125° **13.** (a) 108 N; (b) 108 N; (c) 108 N **15.** (a) 4,0 kg; (b) 1,0 kg; (c) 4,0 kg; (d) 1,0 kg 17. (a) -9.80 j m/s²; (b) 2,35 j m/s²; (c) 1,37 s; (d) $(-5,56 \times 10^{-3} \text{ N})\hat{j}$; (e) $(1,333 \times 10^{-3} \text{ N})\hat{j}$ **19.** (a) 42 N; (b) 72 N; (c) 4,9 m/s² **21.** (a) 11,7 N; (b) -59.0° **23.** (a) 0,022 m/s^2 ; (b) 8.3×10^4 km; (c) 1.9×10^3 m/s **25.** 1.2×10^5 N **27.** (a) 494 N; (b) para cima; (c) 494 N; (d) para baixo **29.** 1,5 mm **31.** (a) 46.7° ; (b) 28.0° **33.** (a) 0.62 m/s^2 ; (b) 0.13 m/s^2 ; (c) 2.6 m**35.** (a) 1,18 m; (b) 0,674 s; (c) 3,50 m/s **37.** (a) 2.2×10^{-3} N; (b) 3.7×10^{-3} N **39.** 1.8×10^{4} N **41.** (a) 31.3 kN; (b) 24.3 kN **43.** (a) 1,4 m/s²; (b) 4,1 m/s **45.** (a) 1,23 N; (b) 2,46 N; (c) 3,69 N; (d) 4,92 N; (e) 6,15 N; (f) 0,250 N **47.** (a) 2,18 m/s²; (b) 116 N; (c) 21.0 m/s^2 **49.** $6.4 \times 10^3 \text{ N}$ **51.** (a) 0.970 m/s^2 ; (b) 11.6 N; (c) 34,9 N 53. (a) 1,1 N 55. (a) 3,6 m/s²; (b) 17 N 57. (a) 4,9 m/s^2 ; (b) 2,0 m/s²; (c) para cima; (d) 120 N 59. (a) 0,735 m/s²; (b) para baixo; (c) 20,8 N **61.** 2Ma/(a+g) **63.** (a) 0,653 m/s³; (b) 0.896 m/s^3 ; (c) 6.50 s **65.** 81.7 N **67.** (a) 8.0 m/s; (b) +x**69.** (a) 13 597 kg; (b) 4917 L; (c) 6172 kg; (d) 20,075 L; (e) 45% **71.** (a) 0; (b) 0,83 m/s²; (c) 0 **73.** (a) 0,74 m/s²; (b) 7,3 m/s² **75.** (a) a corda arrebenta; (b) 1.6 m/s^2 **77.** 2.4 N **79.** (a) 4.6 m/s^2 ; (b) 2,6 m/s² **81.** (a) 65 N; (b) 49 N **83.** (a) 11 N; (b) 2,2 kg; (c) 0; (d) 2,2 kg **85.** (a) $4,6 \times 10^3$ N; (b) $5,8 \times 10^3$ N **87.** (a) 4 kg; (b) 6,5 m/s²; (c) 13 N **89.** 195 N **91.** (a) 44 N; (b) 78 N; (c) 54 N; (d) 152 N 93.16N 95. (a) 1.8×10^2 N; (b) 6.4×10^2 N **97.** (a) $(5.0 \text{ m/s})\hat{i} + (4.3 \text{ m/s})\hat{j}$; (b) $(15 \text{ m})\hat{i} + (6.4 \text{ m})\hat{j}$ **99.** 16 N **101.** (a) 2,6 N; (b) 17° **103.** (a) 4,1 m/s²; (b) 836 N

Capítulo 6

T 1. (a) zero (porque não há uma tentativa de deslizamento); (b) 5 N; (c) não; (d) sim; (e) 8 N 2. (ā aponta para o centro da trajetória circular) (a) \vec{a} aponta para baixo, \vec{F}_N aponta para cima; **P** 1. (a) permanece o mesmo; (b) \vec{a} e F_N apontam para cima (b) aumenta; (c) aumenta; (d) não 3. (a) diminui; (b) diminui; (c) aumenta; (d) aumenta; (e) aumenta 5. (a) para cima; (b) horizontal, na sua direção; (c) não varia; (d) aumenta; (e) aumenta 7. A princípio, \vec{f}_s aponta para cima ao longo da rampa e seu módulo aumenta a partir de mg sen θ até atingir $f_{s,\text{máx}}$. Daí em diante a força se torna a força de atrito cinético, que aponta para cima ao longo da rampa e cujo módulo é f_k (um valor constante menor que $f_{s,máx}$). 9. (a) todas iguais; (b) todas iguais; (c) 2, 3, 1 11. Primeiro 4, depois 3 e depois 1, 2 e 5 empatadas **PR** 1. (a) 2.0×10^2 N; (b) 1.2×10^2 N 3. (a) 1.9×10^2 N; (b) 0.56 m/s^2 **5.** 36 m **7.** (a) 11 N; (b) 0.14 m/s^2 **9.** (a) 6.0 N; (b) 3,6 N; (c) 3,1 N **11.** (a) $1,3 \times 10^2$ N; (b) $n\~{a}o$; (c) $1,1 \times 10^2$ N; (d) 46 N; (e) 17 N **13.** (a) $3.0 \times 10^2 \text{ N}$; (b) 1.3 m/s^2 **15.** 2° **17.** (a) $\tilde{\text{nao}}$; (b) $(-12 \text{ N})\hat{\text{i}} + (5,0\text{N})\hat{\text{j}}$ **19.** (a) 19° ; (b) 3,3 kN**21.** (a) $(17 \text{ N})\hat{i}$; $(20 \text{ N})\hat{i}$; (c) $(15 \text{ N})\hat{i}$ **23.** $1.0 \times 10^2 \text{ N}$ **25.** 0.37**27.** (a) 3.5 m/s^2 ; (b) 0.21 N **29.** (a) 0; (b) $(-3.9 \text{ m/s}^2)\hat{i}$; (c) $(-1.0 \text{ m/s}^2)\hat{i}$ 31. (a) 66 N; (b) 2.3 m/s² 33. 4.9 × 10² N **35.** 9,9 s **37.** 2,3 **39.** (a) $3,2 \times 10^2$ km/h; (b) $6,5 \times 10^2$ km/h; (c) não **41.** 21 m **43.** 0,60 **45.** (a) 10 s; (b) 4.9×10^2 N; (c) $1.1 \times$ $10^3 \,\text{N}$ 47. $1,37 \times 10^3 \,\text{N}$ 49. (a) mais leve; (b) 778 N; (c) 223 N; (d) 1,11 kN 51. 12° 53. 2,2 km 55. 1,81 m/s 57. 2,6 \times 10³ N **59.** (a) 8,74 N; (b) 37,9 N; (c) 6,45 m/s; (d) na direção da haste **61.** (a) 69 km/h; (b) 139 km/h; (c) sim **63.** (a) 7.5 m/s^2 ; (b) para baixo; (c) 9.5 m/s^2 ; (d) para baixo **65.** (a) 27 N; (b) 3.0 m/s^2 **67.** (a) 35,3 N; (b) 39,7 N; (c) 320 N **69.** g (sen $\theta - 2^{0.5}\mu_k \cos \theta$) **71.** (a) 3.0×10^5 N; (b) 1.2° **73.** 147 m/s **75.** (a) 56 N; (b) 59 N;