实习总结

李伟豪

北京星天地信息科技有限公司

2024/05/28 - 2024/07/31

目录

第-	一章 实习目标	 1
	1.1 学习方向及目标	 1
	1.2 期望 · · · · · · · · · · · · · · · · · ·	 1
第.	二章 模型的搭建以及学习 · · · · · · · · · · · · · · · · · · ·	 2
	2.1 Yolo V5 · · · · · · · · · · · · · · · · · ·	 2
	2.1.1 模型简介 · · · · · · · · · · · · · · · · · · ·	 2
	2.1.2 模型环境配置	 2
	2.1.3 模型训练 · · · · · · · · · · · · · · · · · · ·	 2
	2.1.4 测试自己制作的数据集 · · · · · · · · · · · · · · · · · · ·	 3
	2.1.5 实现原理 · · · · · · · · · · · · · · · · · · ·	 3
第	三章 英文标题 Test · · · · · · · · · · · · · · · · · · ·	 4
	3.1 英文标题 Test · · · · · · · · · · · · · · · · · · ·	 4
	3.1.1 英文标题 Test · · · · · · · · · · · · · · · · · · ·	 4
参	考文献 · · · · · · · · · · · · · · · · · · ·	 5
致	谢	 6
毕	业设计小结·····	 7
附	· 录·····	 8

第一章 实习目标

1.1 学习方向及目标

学习现在先进的计算机视觉(Computer Vision)以及图形学与 AI 结合的模型如 Neural Radiance Fields(神经辐射场,简称 NeRF),3D Gaussian Splatting(3D 高斯溅射,简称 3dgs),以及 YOLO(全称 You Only Look Once),同时理解各个模型的实现原理。

1.2 期望

- 完成搭建尽可能多的 AI 模型,配置其环境,并完成训练其预设数据库。
- 学习并理解各个模型的实现原理。
- 自己制作数据并通过基于 AI 的三维重建制作模型。

第二章 模型的搭建以及学习

2.1 Yolo V5

2.1.1 模型简介

Yolo(You Only Look Once) 是一种单阶段目标检测算法,即仅需要"看"一次就可以识别出图片中物体的 class 类别和边界框。Yolov5 是由 Alexey Bochkovskiy 等人在 YOLO 系列算法的基础上进行改进和优化而开发的,使其性能与精度都得到了极大的提升。

2.1.2 模型环境配置

- Python = 3.8.19
- torch = 2.3
- torchyision = 0.18.0
- gitpython = 2.40.1
- opency-python = 4.9.0.80
- matplotlib = 3.7.5
- pandas = 2.0.3

模型从https://github.com/ultralytics/yolov5.git 克隆下来,然后在本地进行配置。

2.1.3 模型训练

模型训练是在<u>train.py</u> 文件中进行的,训练时可以同时输入 data¹、cfg²和 weight³文件; 或是 epochs⁴和 batch size⁵。

如下图:

¹文件中包含了训练集和验证集的路径,以及所有的标注种类

²文件中包含了模型的参数,如学习率、batch size 等

³文件中包含了预训练模型的权重

⁴训练的次数

⁵每次训练的图片数量

python train.pydata coco.ya	ılepochs 300	weights '	'cfg yolov5n.yaml	batch-size 128
			yolov5s	64
			yolov5m	40
			yolov5l	24
			yolov5x	16

图 2-1 YOLOv5 目标检测模型的训练命令

2.1.4 测试自己制作的数据集

从网上找寻了 30 张宝可梦的图片,然后通过 labelImg 工具标注这些图片中比较常见的宝可梦,如皮卡丘、杰尼龟等,然后将这些图片和标注文件放入到一个文件夹中。最后通过 YOLOv5 模型进行训练,得到了一个可以识别这些宝可梦的模型,因为数据集比较小,所以模型的识别率不是很高。训练结果示例:

图 2-2 YOLOv5 目标检测模型的训练结果

2.1.5 实现原理

YOLOv5 首先会在输入端中将输入图片进行预处理,图像大小调整为模型所需的大小,进行归一化操作,及将像素值缩放到0到1之间。

然后将图片输入到 backbone 网络⁶中,backbone 网络会将图片的特征提取出来,然后将这些特征输入到 neck 网络⁷中,neck 网络会将不同层次的特征进行融合,然后将这些特征输入到 head 网络⁸中,head 网络会将图片中的物体进行预测,得到物体的类别和边界框。

⁶backbone 网络是一个特征提取网络,用于提取图片的特征

⁷neck 网络是一个特征融合网络,用于将不同层次的特征进行融合

⁸head 网络是一个预测网络,用于预测图片中的物体

第三章 英文标题 Test

- 3.1 英文标题 Test
- 3.1.1 英文标题 Test

参考文献

致 谢

致谢内容。

毕业设计小结

小结内容。

附 录

附录内容。