# SEQUENTIAL CIRCUITS - II

©COPYRIGHT CHUA DINGJUAN. ALL RIGHTS RESERVED.

#### **Counters**

**Asynchronous:** Circuit elements do not get the clock input simultaneously **Synchronous Counters:** Circuit elements get the clock input simultaneously



#### **Counters: Mod-X**

- Each FF successively halves the input clock frequency
- $\circ$  The 4-bit counter counts from  $0000(0) \rightarrow 1111(15)$
- → 16 distinct count states ⇒ called a mod-16 counter
- N x FFs connected this way will have \_\_\_\_ states ⇒ mod-

How to obtain a counter with mod- $X < 2^{N}$ ?

- 1. Assume counter starts from 0
- Identify FFs that will be in HIGH state when count = X
- 3. Feed those FFs outputs to a \_\_\_\_ gate
- 4. Connect \_\_\_\_ gate output to asynchronous CLR



## **Mod-6 Asynchronous Counter**



#### **Mod-? Counters**



Decade / BCD counter: counts up in ordinary binary sequence  $0000 \rightarrow 1001$ 

Ripple counters considered so far, counted up  $\uparrow$ . How to make them count down  $\downarrow$ ?

#### Count Down Ripple Counter...

To count down: connect \_\_\_\_\_ of FF outputs to clock inputs of succeeding FFs **CBA** В CLK CLK > CLK Κ CLR CLR CLR 100 Clock **LSB MSB** 

# t<sub>pd</sub> → limiting frequency

- Ripple counters are very easy to implement
- But they have a major drawback → they cannot operate beyond a limiting frequency

∏ **€**−0⊳clκ

- Due to propagation delays of the FFs in the chain adding up:
  - 1. Clock input FF<sub>1</sub>: t<sub>0</sub>
  - 2. Clock input  $FF_2$ :  $t_0 + \Delta tpd$
  - 3. Clock input  $FF_3$ :  $t_0 + 2*\Delta tpd$
  - 4. Clock input  $FF_N$ :  $t_0 + (n 1) * \Delta tpd$ 
    - $\rightarrow$  the nth FF changes state at n\*  $\triangle$ tpd after t<sub>0</sub>



#### For proper operation:

O CLK

 $Tclock \ge n*\Delta tpd$  $fmax ≤ 1 / n*\Delta tpd$ 

?>clk

## Synchronous (Parallel) Counters

#### **Mod-16 Synchronous Parallel Counter:**



- Since all FFs are triggered simultaneously by the clock, this counter can operate at higher frequencies.
- Total delay =  $\Delta$ tpd (FF) +  $\Delta$ tpd (AND)
- Operating frequency is irrespective of the number of FFs
- O Disadvantages?

B toggles when A = 1 C toggles when AB = 1 D toggles when ABC = 1

| Count | D | C | В | Α |
|-------|---|---|---|---|
| 0     | 0 | 0 | 0 | 0 |
| 1     | 0 | 0 | 0 | Q |
| 2     | 0 | 0 | 1 | 0 |
| 3     | 0 | 0 | 1 | 1 |
| 4     | 0 | 1 | 0 | 0 |
| 5     | 0 | 1 | 0 | 1 |
| 6     | 0 | 1 | 1 | 0 |
| 7     | 0 | V | 1 | A |
| 8     | 1 | 0 | 0 | 0 |
| 9     | 1 | 0 | 0 | 1 |
| 10    | 1 | 0 | 1 | 0 |
| 11    | 1 | 0 | 1 | 1 |
| 12    | 1 | 1 | 0 | 0 |
| 13    | 1 | 1 | 0 | 1 |
| 14    | 1 | 1 | 1 | 0 |
| 15    | 1 | 1 | 1 | 1 |
|       |   |   |   |   |
| 0     | 0 | 0 | 0 | 0 |
|       | С | 0 | n | t |



#### Counting Down...

What about a count down mod-16 counter?

B toggles when C toggles when D toggles when



| Count  | D     | C | В | Α |
|--------|-------|---|---|---|
| 0      | 0     | 0 | 0 | 0 |
| 1      | 0     | 0 | 0 | 1 |
| 2      | 0     | 0 | 1 | 0 |
| 3      | 0     | 0 | 1 | 1 |
| 4<br>5 | 0     | 1 | 0 | 0 |
|        | 0     | 1 | 0 | 1 |
| 6      | 0 0 0 | 1 | 1 | 0 |
| 7      | 0     | 1 | 1 | 1 |
| 8      | 1     | 0 | 0 | 0 |
| 9      | 1     | 0 | 0 | 1 |
| 10     | 1     | 0 | 1 | 0 |
| 11     | 1     | 0 | 1 | 1 |
| 12     | 1 1 1 | 1 | 0 | 0 |
| 13     | 1     | 1 | 0 | 1 |
| 14     | 1     | 1 | 1 | 0 |
| 15     | 1     | 1 | 1 | 1 |
|        |       |   |   |   |
| 0      | 0     | 0 | 0 | 0 |
|        | С     | 0 | n | t |

# **Up/Down Synchronous Counters**



 $\circ$  Counting Up : Direction = 1,  $\overline{Direction} = 0$ 

$$J,K_{FFC} =$$

 $\circ$  Counting Down : Direction = 0,  $\overline{Direction} = 1$ 

$$J,K_{FFB} =$$

$$J,K_{FFC} =$$

# **Example (D Flip-Flops)**



#### Mod-8 Count-Up Counter Using D-FFs:



| Count | С | В | Α |
|-------|---|---|---|
| 0     | 0 | 0 | 0 |
| 1     | 0 | 0 | 1 |
| 2     | 0 | 1 | 0 |
| 3     | 0 | 1 | 1 |
| 4     | 1 | 0 | 0 |
| 5     | 1 | 0 | 1 |
| 6     | 1 | 1 | 0 |
| 7     | 1 | 1 | 1 |
|       |   |   |   |
| 0     | 0 | 0 | 0 |
| С     | 0 | n | t |



## Verilog!

- Incrementing / Counting is easy in Verilog! → COUNT <= COUNT + 1;</li>
- O What about the following features?
  - Positive / Negative clock edge triggered
  - Counting Up / Counting Down
  - o mod-X Counters
  - Synchronous / Asynchronous Resets
  - Synchronous / Asynchronous Presets

```
module counter(input clear, clk, output reg [3:0] g);
always @ (posedge clk) begin
   q \le clear ? (q - 1) : 4'b0000;
end
endmodule
```

- What counter does this code describe?
- Positive/Negative Edge clock triggered?
- Asynchronous / Synchronous Clear?
- Count Up / Down Counter ?