Лабораторная работа номер 5.

Основы работы с Midnight Commander (mc). Структура программы на языке ассемблера NASM. Системные вызовы в ОС GNU Linux

Сорокин Кирилл

Содержание

Сп	Список литературы	
5	Выводы	19
4	Выполнение лабораторной работы 4.1 Самостоятельная работа	7 14
3	Теоретическое введение	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

4.1	Oткрытие Midnight Commander	1
4.2	Отображение папок в Midnight Commander	7
4.3		8
4.4		8
4.5		8
4.6		9
4.7		9
4.8	Сохранение файла	9
4.9	Просмотр содержимого файла	0
	Содержимое папки после создания всех файлов	0
4.11	Работа первой программы	0
4.12	Вид двойного терминала	1
4.13	Копирование файла in_out.asm	
4.14	Вид папки c in_out.asm	2
4.15	Создание файла lab5-2.asm	2
4.16	Редактирование lab5-2.asm	3
4.17	Вид папки с новыми файлами	3
4.18	Работа файла lab5-2.asm	3
4.19	Редактирование файла lab5-2.asm	4
4.20	Работа второй версии lab5-2	4
4.21	Начало самотоятельной работы	4
4.22	Изменение первого файла	5
4.23	Файлы lab5-1s	5
4.24	Работа lab5-1s	6
4.25	Копирование второго файла	6
4.26	Изменение второго файла	7
	Файлы lab5-2s	7
4.28	Работа lab5-2s	8

1 Цель работы

Начиться работать с Midnight Commander, а также освоить инструкции mov и int в языке ассемблера.

2 Задание

Используя MC, написать программы, основываясь на приведённых материалах, а затем выполнить самостоятельную работу.

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике. Инструкция языка ассемблера int предназначена для вызова прерывания с указанным номером.

4 Выполнение лабораторной работы

Откроем Midnight Commander командой mc (рис. 4.1).

Рис. 4.1: Открытие Midnight Commander

Перейдём в необходимую нам дерикторию(рис. 4.2).

Рис. 4.2: Отображение папок в Midnight Commander

С помощью клавиши F7 создадим папку(рис. 4.3).

Рис. 4.3: Создание папки

Удостоверимся, что папка создана (рис. 4.4).

Рис. 4.4: Вид созданной папки

Командой touch создадим файл lab5-1.asm (рис. 4.5).

Рис. 4.5: Создание файла lab5-1.asm

Откроем файл для редактирование клавишой F4 (рис. 4.6).

Рис. 4.6: Вид открытого файла

Введём текст программы в файл (рис. 4.7).

Рис. 4.7: Файл с текстом программы

Так как у нас редактор mcedit нажмем клавишу F2 для сохранения и клавишой F10 для выхода из редактирования файла (рис. 4.8).

Рис. 4.8: Сохранение файла

Нажмём клавишу F3 для просмотра содежимого файла lab5-1.asm (рис. 4.9).

Рис. 4.9: Просмотр содержимого файла

Оттрансилруем текст lab5-1.asm в объектный файл, затем выполним его компоновку и запустим файл командой ./lab5-1 (рис. 4.10).

Рис. 4.10: Содержимое папки после создания всех файлов

Убедимся в правильности работы программы (рис. 4.11).

```
kvsorokin@dk6n51 ~/work/arch-pc/lab05 $ ./lab5-1
Введите строку:
Сорокин Кирилл Васильевич
```

Рис. 4.11: Работа первой программы

Для удобства откроем дополнительную панель терминала и найдём заранее скаченный файл in out.asm (рис. 4.12).

Рис. 4.12: Вид двойного терминала

Скопируем файл в наш рабочий каталог с помощью клавиши F5 (рис. 4.13).

Рис. 4.13: Копирование файла in out.asm

Убедимся, что он корректно перенёсся (рис. 4.14).

Рис. 4.14: Вид папки с in out.asm

Создадим копию файла lab5-1.asm с именем lab5-2.asm (рис. 4.15).

Рис. 4.15: Создание файла lab5-2.asm

Отредактируем его, так чтобы он использовал файл in_out.asm (рис. 4.16).

Рис. 4.16: Редактирование lab5-2.asm

Создадим его объектный файл и файл программы (рис. 4.17).

Рис. 4.17: Вид папки с новыми файлами

Проверим его работу (рис. 4.18).

```
kvsorokin@dk6n51 ~/work/arch-pc/lab05 $ ./lab5-2
Введите строку:
Сорокин Кирилл Васильевич
```

Рис. 4.18: Работа файла lab5-2.asm

Заменим подпрограмму sprintLF на sprint (рис. 4.19).

Рис. 4.19: Редактирование файла lab5-2.asm

Выполним новую программу и заметим, что теперь ввод текста идёт не с новой строки, а стой же на какой был напичатан изначальный текст (рис. 4.20).

```
kvsorokin@dk6n51 ~/work/arch-pc/lab05 $ ./lab5-2
Введите строку: Сорокин Кирилл Васильевич
```

Рис. 4.20: Работа второй версии lab5-2

4.1 Самостоятельная работа

Создадим копию файла lab5-1.asm с именем lab5-1s.asm для самостоятельной работы (рис. 4.21).

Рис. 4.21: Начало самотоятельной работы

Для того чтобы новая программа выполняла дополнительные действия добавим вывод, ранее введённых данных, и запросим новый ввод, чтобы была возможность отследить результат вывода (рис. 4.22).

```
mov eax,4; Системн mov ebx,1; Описате mov ecx,buf1; Адре mov edx,80; Размер int 80h; Вызов ядр mov ebx, 0; Дескри mov ecx, buf2; Адр mov edx, 80; Длина int 80h; Вызов ядр
```

Рис. 4.22: Изменение первого файла

Создадим все файлы для работы программы (рис. 4.23).

```
lab5-1s.asm
lab5-1s.o
*lab5-1sm
```

Рис. 4.23: Файлы lab5-1s

Запустим программу и убедимся, что она корректно выполняет заданное задание (рис. 4.24).

```
kvsorokin@dk6n51 ~/work/arch-pc/lab05 $ ./lab5-1s
Введите строку:
Сорокин Кирилл Васильевич
Сорокин Кирилл Васильевич
```

Рис. 4.24: Работа lab5-1s

Создадим копию файла lab5-2.asm с именем lab5-2s.asm для самостоятельной работы (рис. 4.25).

Рис. 4.25: Копирование второго файла

От редактируем новую программу. Чтобы она могла выполнить все необходимые действия добавим вывод, ранее введённых данных, и запросим новый ввод, чтобы была возможность отследить результат вывода (рис. 4.26).

```
mov eax, buf1;
call sprintLF;
mov ecx, buf2;
mov edx, 80;
call sread;
```

Рис. 4.26: Изменение второго файла

Создадим все файлы для работы программы (рис. 4.27).

```
*lab5-2s
lab5-2s.asm
lab5-2s.o
```

Рис. 4.27: Файлы lab5-2s

Запустим программу и убедимся, что она корректно выполняет заданное задание, но из-за того, что в изначальном файле lab5-2.asm мы оставили sprint, а не sprintLF, то вид ввода немного отличается от lab5-1s (рис. 4.28).

kvsorokin@dk6n51 ~/work/arch-pc/lab05 \$./lab5-2s Введите строку: Сорокин Кирилл Васильевич Сорокин Кирилл Васильевич

Рис. 4.28: Работа lab5-2s

5 Выводы

Мы научились использовать Midnight Commander, а также написали несколько программ на языке ассемблера с использованием новых инструкций.

Список литературы

- 1. GDB: The GNU Project Debugger. URL: https://www.gnu.org/software/gdb/.
- 2. GNU Bash Manual. 2016. URL: https://www.gnu.org/software/bash/manual/.
- 3. Midnight Commander Development Center. 2021. URL: https://midnightcommander.org/.
- 4. NASM Assembly Language Tutorials. 2021. URL: https://asmtutor.com/.
- 5. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c. (In a Nutshell). ISBN 0596009658. URL: http://www.amazon.com/Learning-bash-Shell-Programming-Nutshell/dp/0596009658.
- 6. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c. ISBN 978-1491941591.
- 7. The NASM documentation. -2021. URL: https://www.nasm.us/docs.php.
- 8. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c. ISBN 9781784396879.
- 9. Колдаев В. Д., Лупин С. А. Архитектура ЭВМ. М.: Форум, 2018.
- 10. Куляс О. Л., Никитин К. А. Курс программирования на ASSEMBLER. М. :Солон-Пресс, 2017.
- 11. Новожилов О. П. Архитектура ЭВМ и систем. М.: Юрайт, 2016.
- 12. Расширенный ассемблер: NASM. 2021. URL: https://www.opennet.ru/docs/RUS/nasm/.
- 13. Робачевский А., Немнюгин С., Стесик О. Операционная система UNIX. 2-е изд. БХВ- Петербург, 2010. 656 с. ISBN 978-5-94157-538-1.
- 14. Столяров А. Программирование на языке ассемблера NASM для ОС Unix. 2- е изд. М.: MAKC Пресс, 2011. URL: http://www.stolyarov.info/books/asm_unix.
- 15. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб. : Питер, 2013. -

- $874\,\mathrm{c.}-\mathrm{(Kлассика\ Computer\ Science)}.$
- 16. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. -СПб. : Питер,
- 17. 1120 с. (Классика Computer Science)