AMENDMENTS TO THE CLAIMS

The listing of claims below replace all prior versions, and listings, of claims:

1	1.	(Currently Amended) A method of determining performance of a		
2	communications system, comprising:			
3		storing representations of plural components of the communications		
4	system, the	components including a first packet-based network and at least one network		
5	device;			
6		assigning performance parameters for each of the components, the		
7	performance parameters comprising at least a first performance parameter and a second			
8	performance parameter;			
9		combining the first performance parameters of respective components to		
10	derive an overall first performance parameters parameter;			
11		combining the second performance parameters of respective components		
12	to derive an overall second performance parameter; and			
13		deriving a quality indication of the communications system based at least		
14	on the overa	Il first and second performance parameters.		
1	2.	(Previously Presented) The method of claim 1, wherein the components		
2	include a second packet-based network, the method further comprising assigning			
3	performance parameters for the second packet-based network.			
1	3.	(Previously Presented) The method of claim 1, wherein assigning the		
2	performance	parameters includes assigning a packet delay parameter.		
1	4.	(Previously Presented) The method of claim 1, wherein assigning the		
2	performance parameters includes assigning a packet loss parameter.			
1	5.	(Previously Presented) The method of claim 1, wherein assigning the		
2	performance parameters includes assigning a packet jitter parameter.			

6. (Original) The method of claim 1, wherein storing the representations 1 2 includes storing models of the plural components, the models capable of being linked to 3 create a representation of the communications system. 1 7. (Original) The method of claim 6, further comprising providing a 2 graphical user interface in which the models may be manipulated to create the 3 representation of the communications system. (Original) The method of claim 1, wherein deriving the quality indication 1 8. 2 includes calculating an E-model quality rating value. 9. (Original) The method of claim 1, further comprising combining the 1 2 representations of the plural components to create the communications system. 1 10. (Cancelled) 1 11. (Previously Presented) The apparatus of claim 35, wherein the one or 2 more performance parameters include a packet delay. 1 ·12. (Original) The apparatus of claim 11, wherein the packet delay of each 2 network component is treated as an independent variable. (Original) The apparatus of claim 12, wherein the controller calculates an 1 13. 2 overall packet delay of the communications system by summing the packet delays of the 3 plural components. 1 14. (Cancelled) 1 15. (Cancelled)

1	16.	(Previously Presented) The apparatus of claim 35, wherein the			
2	representation of the packet-based network includes a representation of a collection of				
3	links and routers.				
1	17.	(Previously Presented) The apparatus of claim 35, wherein the			
2	representation	n of the packet-based network includes a representation of an Internet			
3	Protocol network.				
1	18.	(Previously Presented) The apparatus of claim 35, wherein the packet-			
2	based network includes a public network, and wherein the storage device further contain				
3	a representati	on of a local network.			
		·			
1	19.	(Previously Presented) The apparatus of claim 35, wherein the storage			
2	device further	contains a representation of a circuit-switched device.			
1	20.	(Previously Presented) An article including one or more machine-readable			
2	storage media containing instructions for modeling performance of a communications				
3	system, the instructions when executed causing a controller to:				
4		store models of plural components of the communications system, the			
5	plural components including a packet-based network and at least one network device, the				
6	stored models containing at least first performance parameters and second performance				
7	parameters associated with respective components;				
8		combine the models to represent the communications system;			
9		combine the first performance parameters of respective components to			
10	derive an overall first performance parameter;				
11		combine the second performance parameters of respective components to			
12	derive an ove	rall second performance parameter; and			
13		determine a quality level of the communications system using at least the			
14	overall first p	erformance parameter and overall second performance parameter.			

- 1 21. (Original) The article of claim 20, wherein the instructions when executed 2 cause the controller to derive an E-model rating using the stored models.
- 1 22. (Canceled)
- 1 23. (Original) The article of claim 20, wherein the performance parameters are associated with communications of packets through the communications system.
- 1 24. (Original) The article of claim 23, wherein the performance parameters 2 include at least one of a packet delay, packet loss, and packet jitter.
 - 25. (Canceled)

1

- 1 26. (Previously Presented) The article of claim 20, wherein the performance 2 parameters include at least one of a packet delay, packet jitter, and packet loss.
- (Previously Presented) A data signal embodied in a carrier wave and 1 27. including one or more code segments containing instructions for predicting performance 2 of a communications system, the instructions when executed causing a controller to: 3 4 assign performance parameters to each of plural components in the communications system, the plural components including a packet-based network, the 5 performance parameters comprising packet loss, packet jitter, and packet delay; and · 6 derive a quality indication based on the packet losses, packet jitters, and 7 8 packet delays of the plural components.
- 1 28. (Previously Presented) The method of claim 1, wherein combining the 2 first performance parameters comprises combining packet delays of respective 3 components to derive an overall packet delay, and wherein combining the second 4 performance parameters comprises combining packet losses of respective components to 5 derive an overall packet loss.

1	29.	(Previously Presented) The method of claim 28, wherein the performance			
2	parameters further comprise packet jitter, the method further comprising combining the				
3	packet jitters of respective components to derive an overall packet jitter,				
4		wherein deriving the quality indication is further based on the overall			
5	packet jitter.				
1	30.	(Previously Presented) The method of claim 1, further comprising			
2	assigning an a	audio CODEC type parameter to at least one of the components,			
3		wherein deriving the quality indication is further based on the audio			
4	CODEC type parameter.				
1	31.	(Previously Presented) The method of claim 1, further comprising			
2	assigning at least one of a signal loss parameter, echo parameter, and noise parameter to				
3	at least another one of the components,				
4		wherein deriving the quality indication is further based on the at least one			
5	of the signal l	oss parameter, echo parameter, and noise parameter.			
1	32.	(Previously Presented) The method of claim 1, wherein deriving the			
2	quality indica	tion comprises deriving a mean opinion score (MOS).			
1	33.	(Previously Presented) The method of claim 1, wherein deriving the			
2	quality indica	tion comprises deriving a value that is representative of a subjective			
3	perceived qua	ality of communications in the communications system by a user.			
1	34.	(Previously Presented) The apparatus of claim 35, wherein the value			
2	comprises at l	least one of an E-model quality rating value, mean opinion score (MOS),			
3	percentage of users that view a connection as good or better, percentage of users that				
4	view a connection as poor or worse, and percentage of connections that users may				
5	terminate earl	terminate early due to quality problems.			

l	35. (Previously Presented) An apparatus for determining performance of a			
2	communications system, comprising:			
3	a storage device containing representations of plural components of the			
4	communications system, the plural components including a packet-based network and a			
5	least one network device, each of the components being assigned one or more			
6	performance parameters; and			
7	a controller to calculate a predicted quality of the communications system			
8	based on the one or more performance parameters, wherein the predicted quality			
9	comprises a value that is representative of a subjective perceived quality of			
10	communications in the communications system by a user,			
11	wherein the performance parameters comprise at least first and second			
12	performance parameters;			
13	the controller to combine the first performance parameters of respective			
14	components to derive an overall first performance parameter, and the controller to			
15	combine the second performance parameters of respective components to derive an			
16	overall second performance parameter, the controller to calculate the predicted quality			
17	based at least on the overall first performance parameter and the overall second			
18	performance parameter.			
1	36. (Previously Presented) The article of claim 20, wherein the quality level			
2	comprises a mean opinion score (MOS).			
1	37. (Previously Presented) The data signal of claim 27, wherein deriving the			
2	quality indication comprises deriving at least one of an E-model quality rating and a			
3	mean opinion score (MOS).			