B.H.Hammouda Fethi

Définition:

- * On appelle fonction logarithme Népérien noté Ln la fonction définie sur]0,+∞[vérifiant : $(Lnx)' = \frac{1}{r}$ pour tout $x \in]0, +\infty[$ et Ln(1) = 0.
 - La fonction Ln est la primitive de la fonction $x : \rightarrow \frac{1}{r}$ qui s'annule en 1 c.à.d.

$$x \to Lnx = \int_{1}^{x} \frac{1}{t} dt$$
 , $x \succ 0$.

<u>Propriété algébrique</u>: Pour tout $a \in IR^*_+$, $b \in IR^*_+$ et $n \in \square$ on a:

- * Ln(a.b) = Lna + Lnb.
- * $Ln\left(\frac{1}{a}\right) = -Lna$.
- * $Ln\left(\frac{a}{b}\right) = Lna Lnb$.
- * $Ln(a^n) = nLna$
- * $Ln(\sqrt{a}) = \frac{1}{2}Lna$.
- * $Ln(\sqrt[n]{a}) = \frac{1}{n}Lna$.

<u>Limite remarquable :</u> * $\lim_{n \to \infty} L_{nx} = +\infty$.

- $\lim Lnx = -\infty$
- $\lim_{x\to 0^+} xLnx = 0.$
- * $\lim_{x \to +\infty} \frac{Lnx}{x} = 0$.
- * $\lim_{x \to 1} \frac{Lnx}{x-1} = 1$
- * $\lim_{x\to 0} \frac{Ln(x+1)}{x} = 1$.

Etude de la fonction Ln :

- * Posons f(x) = Lnx, f est définie, continue et dérivable sur $]0, +\infty[$ et $(Lnx)' = \frac{1}{x} > 0$ pour tout $x \in]0,+\infty[$.
 - La fonction f est continue est strictement croissante donc elle réalise une bijection de $]0,+\infty[$ sur IR..

- On a Ln(1) = 0 alors :*** Pour tout $x \in]0.1]$; $Lnx \le 0$.
 - *** Pour tout $x \in [1, +\infty[$; $Lnx \ge 0$.
- * Pour tout $a \in IR^*_+$, $a \in IR^*_+$; $Lna \ge Lnb \Leftrightarrow a \ge b$.

$$Lna = Lnb \Leftrightarrow a = b$$

- * L'équation Lnx = 1 possède une solution unique x_0 tel que $Lnx_0 = 1$ avec $x_0 = e \square 2,718...$ x_0 est un nombre irrationnelle.
- * $Lnx > 1 \Leftrightarrow x \in]e, +\infty[$.
- * $Lnx < 1 \Leftrightarrow x \in]0,e[$
- * Lne = 1.

Activité:

Tracer la courbe de la fonction Ln dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Théorème :

Pour tout $\overline{n} \in \square$ * et $m \in \square$ * on a

- * $\lim_{x \to +\infty} \frac{\left(Lnx\right)^n}{x^m} = 0$.
- * $\lim_{x \to 0^+} x^m \left(Log x \right)^n = 0.$

Théorème:

Soit U une fonction dérivable et non nulle sur un intervalle I alors la fonction $x \to Ln |U(x)|$

est dérivable sur I et pour tout
$$x \in]0,+\infty[$$
; $(Ln|U(x)|)' = \frac{U'(x)}{U(x)}$.

Exemple:

Soit f la fonction définie par $f: x \to Ln\sqrt{x^2 - 1}$.

Montrer f est dérivable sur $]1,+\infty[$ et calculer f'(x).

Théorème :

Soit U une fonction dérivable et ne s'annule pas sur I , alors la fonction $f: x \to \frac{U'(x)}{U(x)}$ admet

pour primitive la fonction $f: x \to Ln |U(x)| + k$ où k est une constante réelle.

Exemple:

Activité 6 page 145.

Théorème :

La fonction $x \to xLnx - x$ est une primitive de la fonction $x \to Lnx$ sur IR_+^* .