Reference Booklet for

CORE COMPETENCY EXAM

Department of Chemical Engineering Brigham Young University

Heat Transfer Correlations

Correlation	Conditions
$Nu_D = 4.36$	Circular tube, Laminar, fully developed, uniform q_s , $Pr \ge 0.6$
$Nu_D = 3.66$	Circular tube, Laminar, fully developed, uniform $T_s, Pr \geq 0.6$
$Nu_D = 0.023 Re_D^{4/5} Pr^{1/3}$	Circular tube, turbulent, fully developed, $0.6 \le Pr \le 160$ $Re_D \ge 10,000, (L/D) \ge 10$
$Nu_x = 0.0296Re_x^{4/5}Pr^{1/3}$	Flat plate, turbulent, local, T_f , $Re_x \le 10^8$, $0.6 \le Pr \le 60$
$\overline{Nu_L} = (0.037 Re_L^{4/5} - 871) Pr^{1/3}$	Flat plate, mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \le 10^8$, $0.6 < Pr < 60$
$\overline{Nu_D} = 2 + 0.6 Re_D^{-1/2} Pr^{1/3}$	Falling drop or flow over a sphere, average, T_{∞}
$Nu_D = 0.027 Re_D^{.805} Pr^{1/3}$	External flow (cross flow) over a cylinder, average, T_f , $4x10^4 < Re_D < 4x10^5$, $Pr \ge 0.7$

Useful equations

Friction Head Loss =
$$h_L = f \frac{L}{D} \frac{V^2}{2g}$$

$$\frac{V}{F_{A0}} = \frac{X_A}{-r_A} \text{ CSTR performance equation}$$

$$\frac{\Delta P}{\rho} + \frac{\Delta V^2}{2} + g\Delta z = w_s - gh_L$$

$$x_i P_i^{sat} = y_i P$$

$$q'' = -k\nabla T$$

$$J_A^* = -cD_{AB}\nabla x_A$$

$$\Delta T_{lm} = \left[(\Delta T)_1 - (\Delta T)_2\right] / \ln\left[(\Delta T)_1/(\Delta T)_2\right]$$

Dimensionless variables/groups

$$Sc = \frac{v}{D}$$
 $Pr = \frac{v}{\alpha} = \frac{C_P \mu}{k}$ $Nu_D = \frac{hD}{k}$ $Sh_D = \frac{h_m D}{D_{4R}}$

Other Information Available in the Printed Booklet

- 1. Conversion Factors (e.g. inside the cover of many textbooks)
- 2. Values of the gas constant
- 3. Moody friction factor diagram
- 4. Antoine Equation Constants (e.g. Table B.4, Felder and Rousseau)
- 5. Steam tables (e.g. Tables B.5-B.7, Felder and Rousseau)