Struktur Sistem Operasi

Komponen sistem

- Manajemen proses
- Manajemen memori utama
- Manajemen file
- Manajemen I/O
- Manajemen memori sekunder

Manajemen proses (1)

- Proses dinyatakan sebagai program yang dieksekusi
 - Sebuah batch job
 - Sebuah time-shared user program
 - Sebuah system task seperti spooling ke printer
- □ Proses memerlukan **resource** untuk menyelesaikan task
 - CPU time, memory, file dan I/O device
 - Semua resource dapat diberikan saat proses dibuat atau dialokasikan saat proses berjalan
- Program BUKAN suatu proses. Program adalah entiti pasif seperti file yang disimpan di disk, proses adalah entiti aktif, dg program counter untuk menunjuk ke instruksi berikutnya yang akan dieksekusi
- Pada sistem, proses dapat dinyatakan sebagai unit kerja yang berisi kumpulan proses :
 - Beberapa merupakan proses OS (mengeksekusi kode sistem)
 - Sisanya adalah user proses (mengeksekusi kode user)

Manajemen proses (2)

- Aktifitas yang harus ditangani oleh OS yang berhubungan dg manajemen proses :
 - Membuat (creation) dan menghapus (deletion) baik proses user maupun proses sistem
 - Menghentikan sementara (suspension) dan melanjutkan (resumption) proses
 - Menyediakan mekanisme untuk sinkronisasi proses
 - Menyediakan mekanisme untuk komunikasi proses
 - Menyediakan mekanisme untuk menangani deadlock

Manajemen memori utama (1)

- Memori adalah array besar ukuran word atau byte, dengan alamat tertentu
- Memori adalah gudang pengaksesan data shared yang cepat oleh CPU dan I/O device
- CPU membaca instruksi dari main memory selama siklus instruction-fetch, dan baik membaca dan menulis data dari dan ke memori selama siklus data-fetch
- I/O diimplementasi melalui DMA juga membaca dan menulis data di main memory
- Program awalnya harus dipetakan ke alamat absolut dan disimpan di memory untuk dieksekusi
- Beberapa program harus diletakkan di memori untuk meningkatkan utilitas CPU dan kecepatan dari respon komputer

Manajemen memori utama (2)

- Terdapat beberapa skema manajemen memory yang berbeda, tergantung beberapa faktor terutama desain hardware
- Aktifitas yang ditangani oleh OS yang berhubungan dengan manajemen memory :
 - Menyimpan bagian memori yang digunakan dan siapa yang menggunakan
 - Memutuskan proses yang disimpan ke memory bila tersedia ruang memory
 - Mengalokasikan dan men-dealokasikan ruang memory sesuai kebutuhan

Manajemen penyimpan sekunder

- Secondary storage (disk) digunakan sebagai penyimpan on-line medium baik program maupun data
- Kebanyakan program, seperti compiler, assembler, editor dll disimpan di disk sampai disimpan di memory
- OS bertanggung jawab untuk aktifitas yang berhubungan dengan manajemen disk sbb:
 - Manajemen ruang bebas (free space)
 - Alokasi penyimpan
 - Penjadwalan disk
- Penyimpan sekunder harus digunakan secara efisien.

Manajemen sistem I/O

- Salah satu tujuan OS adalah menyembunyikan kerumitan device H/W dari user
 - UNIX menyediakan sistem I/O untuk menyembunyikan device I/O dari bulk
- □ Sistem I/O terdiri dari:
 - Sistem buffer-catching
 - General device-driver interface
 - Drivers for specific H/W device

Manajemen File (1)

- Manajemen file adalah satu komponen yang visible dari O/S
- File adalah unit penyimpan logika, yang merupakan abstraksi dari properti fisik dari perangkat penyimpan yang digunakan OS
 - O/S memetakan file ke media fisik dan mengakses file melalui storage device
- File adalah kumpulan informasi yang berhubungan dengan pembuatnya
- File berisi urutan bit, byte, baris atau record yang berarti bagi creatornya
- OS mengimplementasikan konsep abstrak dari file dengan mengatur mass storage media seperti tape dan disk dan device yang mengontrolnya

Manajemen File (2)

- File secara normal diorganisasikan ke dalam direktori. Bila banyak user mengakses file, perlu ada kontrol oleh siapa dan dengan cara apa file diakses
- Aktifitas yang menjadi tanggung jawab OS yang berhubungan dengan manajemen file :
 - Pembuatan dan penghapusan file
 - Pembuatan dan penghapusan direktori
 - Primitif-primitif yang mendukung untuk manipulasi file dan direktori
 - Pemetaan file ke memori sekunder
 - Backup file ke media penyimpanan yang stabil (nonvolatile)

Sistem Proteksi

- Dalam sistem yang mengijinkan multiple user dan concurrent process, proses-2 yang berbeda harus diproteksi dari aktifitas proses yang lain
 - Mekanisme harus ditentukan untuk menjamin file, memory, CPU dan resource lain dapat dioperasikan oleh proses-proses yang menambah kegunakan OS
- Proteksi merupakan mekanisme mengontrol akses program, proses atau user untuk resource yang ditentukan sistem komputer

Networking

- Hal yang penting dalam sistem terdistribusi dimana kumpulan prosessor tidak membagi memory dan clok; tetapi setiap memory mempunyai memory lokal sendiri dan prosessor berkomunikasi dengan yang lain melalui saluran komunikasi yang berbeda
- Prosessor dalam sistem dihubungkan melalui jaringan komunikasi yang dikonfigurasi dengan beberapa cara yang berbeda
- Sistem terdistribusi mengumpulkan sistem yang heterogen secara fisik ke dalam sistem yang koheren, menentukan akses user ke resource berbeda yang ditangan sistem

Sistem Command Interpreter

- Command interpreter adalah system program terpenting dari OS dan bertindak sebagai antar muka antara user dengan OS
- Beberapa OS memasukkan command interpreter dalam kernel; beberapa lagi seperti MS-DOS dan UNIX memperlakukan command interpreter sebagai program khusus yang dijalankan saat job diinisialisasi
- Beberapa command yang diberikan OS sebagai pernyataan kontrol :
 - Bila job baru dimulai dalam sistem batch atau bila user masuk ke sistem time-shared, program yg membaca dan meng-interpret pernyataan kontrol dieksekusi otomatis
 - Program diatas biasanya disebut control-card interpreter, command-line interpreter dan shell (UNIX)
- OS secara terus menerus mengakses area command interpreter, interpreter yang user-friendly membuat sistem lebih disukai user

Pelayanan Sistem Operasi (1)

- OS menyediakan pelayanan untuk program dan untuk user dari program tsb
- Pelayanan berbeda untuk OS satu dengan lainnya
- Pelayanan OS disediakan untuk kenyamanan programmer seperti membuat programming task lebih mudah

Pelayanan Sistem Operasi (2)

- Eksekusi program → sistem memanggil program ke memori dan menjalankannya, program dapat mengakhiri eksekusinya dalam bentuk normal atau abnormal
- lacktriangledown Operasi-operasi I/O \rightarrow user tidak boleh mengontrol I/O secara langsung, pengontrolan dilakukan sistem operasi
- Manipulasi sistem file → pembuatan, penghapusan, read dan write
- Komunikasi
 - OS harus menyediakan program yang memungkinkan proses bertukar infiormasi dengan proses lain
 - Komunikasi antar proses dapat terjadi pada komputer yang sama atau komputer yang berbeda
 - Komunikasi diimplementasikan dengan "shared memory" atau dengan teknik "message passing" dalam paket informasi yang berpindah antar proses dengan OS
- Mendeteksi kesalahan → OS harus sanggup mendeteksi beberapa error yang terjadi pada CPU, memory, device I/O dll

Pelayanan Sistem Operasi (3)

■ Beberapa fungsi untuk meyakinkan operasi yang efisien dari sistem :

Resource allocation

 Bila terdapat multiple user atau multiple job berjalan pada waktu yang bersamaan, resouce harus dialokasikan masing-masing

Accounting

- Menyediakan keep track user yang menggunakan dan jenis dari resource
- Menyimpan data yang dibutuhkan untuk accounting atau secara sederhana statistik akumulasi penggunaan

Protection

- Kemungkinan owner mempunyai kontrol ke informasi yang disimpan di sistem komputer multi-user
- Sekuriti (keamanan) dari sistem dari orang asing harus dipertimbangkan

System Calls (1)

- Sistem call merupakan interface antara proses dengan
 OS yang tersedia sebagai instruksi bahasa assembly
- Beberapa sistem mengijinkan system calls dibuat secara langsung dari program high level language
- Beberapa bahasa, seperti C ditentukan sebagai pengganti bahasa assembly untuk pemrograman sistem
- System call terjadi dg cara berbeda tergantung penggunaan komputer :
 - Menambah informasi yang dibutuhkan, tidak hanya identitas dari sistem call tertentu
 - Tipe dan jumlah informasi bervariasi tergantung OS dan system call

System Calls (2)

- Terdapat 3 metode passing parameter pada OS :
 - Pass parameter pada register
 - Jika jumlah parameter lebih banyak dari jumlah register, parameter disimpan dalam "block" (table) dlm memory, dan alamat blok disimpan sebagai parameter pada register
 - Parameter dapat ditempatkan (push) ke "stack" oleh program dan "pop" dari stack oleh OS
- System calls dikelompokkan dalam 5 kategori :
 - Process control: end, abort, load, execute, create process, terminate process, get process attributes, set process attributes, wait for time, wait event, signal event, allocate and free memory
 - **File manipulation**: create file, delete file, open, close, read, write, reposition, get file attributes, set file attributes
 - Device manipulation: request device, release device, read, write, reposition, get device attributes, set device attributes, logically attach or detach devices
 - Information maintenance : get time or date, set time or date, get system data, set system data, get process, file, or device attributes, set process, file or device attributes
 - Communication : create, delete communication connection, send, receive message, transfer status information, attach or detach remote devices

System Calls (3)

MS DOS execution

free memory

command
interpreter

kernel

(a) At system startup

(b) Running a program

UNIX running multiple program

process D
free memory

process C
interpreter

process B

System Calls (4)

Model Komunikasi

(a) Message Passing

(b) Shared Memory

System program

- OS terdiri dari kumpulan system program
- System program berada antara OS dengan program aplikasi
- System program dibagi menjadi beberapa kategory
 - Manipulasi file
 - Program ini umumnya memanipulasi file dan direktory : create, delete, copy, rename dll
 - Informasi status
 - Beberapa program menanyakan sistem untuk informasi status seperti tanggal, waktu, jumlah user, jumlah penggunaan memori atau disk space dll
 - Modifikasi file
 - Menyediakan beberapa text editor
 - Bahasa pemrograman
 - Menyediakan ompiler, assembler dan interpreter
 - Loading dan eksekusi program
 - Menyediakan loader untuk menyimpan program yang di ompile ke main memory, seperti absolute loader dan relocatable loader
 - Komunikasi
 - Menyediakan mekanisme untuk membuat hubungan virtual antar proses, user dan sistem komunikasi yang berbeda
 - Program-program aplikasi
 - Program program applikasi yang digunakan bersama dengan OS, contoh : compiler to compiler, pemformat teks dll

Struktur Dasar Sistem Operasi

- Struktur Sederhana
- Sistem berlapis (layered)
- Mesin maya (virtual machine)

Sistem Sederhana (1)

Karakteristik :

- Struktur sistem tidak didefinisikan dengan baik
- Biasanya merupakan sistem kecil, sederhana dan terbatas, dan kemudian berkembang
- Contoh: MS-DOS, Original UNIX

■ MS-DOS:

- Meskipun mempunyai beberapa struktur, fungsi interface dan level tidak dipisahkan dg baik
- Program aplikasi dapat mengakses routine dasar I/O untuk menulis langsung ke display dan disk drive
- Terbatas oleh H/W tempat menjalankan

ORIGINAL UNIX :

- Struktur terbatas dan fungsi H/W terbatas
- Terdiri dari 2 bagian terpisah : "Kernel" dan "System Program"
- Kernel berada di bawah antar muka system call dan diatas H/W fisik
- Kernel lebih jauh dibagi dalam deretan interface dan device driver
- System program menggunakan sistem call yang didukung kernel untuk menyediakan fungsi yang berguna seperti kompilasi dan manipulasi file
- Sistem call mendefinisikan "program interface" ke UNIX

Sistem Sederhana (2)

Struktur layer MS-DOS

Struktur sistem UNIX

Sistem Layered (1)

IDE :

- menggunakan pendekatan top-down untuk menentukan fungsi secara keseluruhan dan gambaran OS dan membaginya ke dalam sejumlah komponen yang lebih kecil
- Memecah OS ke sejumlah layer (level), level terbawah (layer 0) adalah H/W dan level tertinggi (layer N) adalah user interface

Keuntungan :

- Modularity: layer dipilih sesuai fungsi kegunaan (operasi) dan melayani layer yang lebih rendah
- Debugging dan verifikasi sistem yang lebih sederhana: layer yang lebih rendah tertentu dapat di-debug tanpa menyangkut layer lebih tinggi
- Setiap layer dapat menyembunyikan keberadaan struktur data, operasi dan H/W dari layer yang lebih tinggi. Suatu layer tidak perlu mengetahui bagaimana operasi diimplementasikan, yang perlu diketahui hanya apa yang dikerjakan suatu operasi
- Contoh: Technische Hogeschool Eindoven (THE), sistem Venus

Sistem Layered (2)

Sistem Layered (3)

Struktur THE

<u>Lapis-5</u>: user program

<u>Lapis-4</u>: buffering untuk I/O device

<u>Lapis-3</u>: operator-console device driver

<u>Lapis-2</u>: manajemen memori

<u>Lapis-1: penjadwalan CPU</u>

<u>Lapis-0</u>: hardware

Struktur Venus

<u>Lapis-6</u>: user program

<u>Lapis-5</u>: device driver & scheduler

<u>Lapis-4</u>: virtual memory

<u>Lapis-3</u>: I/O channel

<u>Lapis-2</u>: penjadwalan CPU

<u>Lapis-1: instruksi interpreter</u>

<u>Lapis-0</u>: hardware

Sistem Layered (4)

Kelemahan :

- Kesulitan mendifinisikan layer yang tepat, karena sebuah layer hanya menggunakan layer yang berada di level yang lebih rendah. Diperlukan perencanaan secara hati-hati
- Implementasi layer cenderung lebih tidak efisien dibandingkan sistem lain
- □ Sistem Operasi OS/2
 - Turunan langsung dari MS-DOS, dibuat untuk mengatasi keterbatasan MS-DOS dan menghindari kesulitan definisi dan interaksi layer
 - Operasi multi-tasking dan dual-mode dan feature lain ditambahkan ke OS/2
 - Sistem diimplementasikan lebih fashionable
 - Akses user langsung ke fasilitas pada level lebih rendah tidak diperbolehkan

Sistem Layered (5)

Sistem OS/2

Virtual Machine (1)

□ IDE:

- Memperluas pendekatan layer dengan memperbolehkan system program dipanggil dengan mudah oleh program aplikasi
- Programmer sistem diberikan "virtual machine" tersendiri dan pengembangan sistem dilakukan pada virtual machine
- Contoh: VM
- Keuntungan utama :
 - Resource dari komputer fisik di-share untuk membuat virtual machine
 - Penjadwalan CPU dapat digunakan untuk membagi CPU dan menampilkan bahwa user mempunyai prosessor sendiri
 - Spooling dan sistem file disediakan oleh virtual card reader dan virtual line printer
 - Terminal time-sharing user yang normal menyediakan fungsi console operator dari virtual machine
- Kelemahan : implementasi yang efisien merupakan masalah yang sulit karena sistem menjadi besar dan kompleks

Virtual Machine (2)

Tanpa VM

Dengan VM

Studi Kasus – MS DOS

- Pandangan Pemakai :
 - Command language: perintah internal (dir, copy, del, cd, md, rd dll) & eksternal (.com, .exe, .bat)
- Pemrogram :
 - Layanan ROM BIOS berupa instruksi interupsi (utilitas Print-Screen, Video I/O, daftar perangkat, ukuran memori, disk I/O, serial port I/O, keyboard I/O, printer I/O dll)
 - Layanan MS DOS (IO.SYS dan MSDOS.SYS)
 - System Calls: operasi terhadap disk, direktori, pengelolaan file, perangkat masukan/keluaran, memori, kendali program, lingkungan eksekusi

Studi Kasus – MS Windows 95

- Pandangan Pemakai :
 - GUI, plug and play, nama file yang panjang
 - Build-in networking, pengamanan level pemakai, registry
 - Interface : menu, icon, task bar, window perintah
- Pemrogram :
 - System Calls disebut Win32 API:
 - window management
 - window controls
 - shell features : namespace dan shell link (shortcut)
 - graphics device interface(GDI)
 - system services
 - international features
 - network services

Studi Kasus – Windows NT

- Sistem operasi single-user, multitasking (multiprogramming)
- Perangkat lunak berorientasi aplikasi & sistem operasi yang berjalan pada priviledge mode / kernel mode (NT executive)
- Sasaran: extensibility, portability, reliability dan robustness, compatibility, performance
- Arsitektur dasar :
 - Hardware abstraction Layer (HAL): memetakan perintah dan tanggapan perangkat keras menjadi perintah dan tanggapan unik platform tertentu
 - Kernel : berisi komponen-komponen paling mendasar SO
 - Subsystem: modul fungsi-2 spesifik menggunakan layanan dasar kernel
 - System services : menyediakan interface ke perangkat lunak mode pemakai

Studi Kasus – UNIX^{TD}

Karakteristik :

- Interactive timesharing system: dirancang oleh pemrogram, untuk pengrogram, mengasumsikan pemakai menyukai pengembangan perangkat lunak
- Expert friendly OS: menyediakan banyak fasilitas yang dapat bekerja sama dan berbagi informasi secara terkendali yang disukai para pakar
- UNIX Shell: bourne shell (sh), C shell (csh), korn shell (ksh), bourne again shell (bash)
- Pandangan Pemrogram :
 - Program utilitas dasar : canggih dan bagus, ditulis dengan bahasa script
 - Pustaka standard : fungsi-fungsi standar POSIX
 - System Calls (API) : seperti fungsi di bahasa C untuk memasuki layanan kernel

Studi Kasus – LINUX

- Multitasking, multiuser, multiplatform, multiprocessor, standard POSIX, pengaksesan transparant ke partisi MS-DOS, system file UMSDOS, implementasi TCP/IP networking
- Arsitektur dasar : kernel (jantung SO) yang menyediakan tool untuk semua layanan melalui system call, mencegah proses aplikasi mengakses h/w secara langsung, memberi proteksi kepada pemakai dari gangguan pemakai lain
- Pandangan pemakai : melalui perintah-perintah dan aplikasi-aplikasi pada system linux
- Pandangan Pemrogram : pengkombinasian programprogram utilitas untuk suatu tujuan, rutin-rutin pustaka, system calls