Application No.: 10/539,643 Amdt. Dated: December 5, 2006

Reply to Office Action Dated: July 12, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-9 (Canceled).

Claim 10 (Previously presented): A method for combating or controlling insects, arachnids or nematodes comprising contacting an insect, arachnid or nematode or their food supply, habitat or breeding grounds with a pesticidally effective amount of at least one compound of formula I or a composition comprising at least one compound of formula I:

$$(R^{1})_{n} \xrightarrow{X} (R^{2})_{m}$$

$$N = N - R^{3}$$

$$(I)$$

wherein

X is sulfur, oxygen, sulfinyl (S=O), sulfonyl (SO₂), NR^a, or CR^bR^c;

 R^a is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, or C_2 - C_6 -alkynyl, wherein the carbon atoms in these groups may be substituted by 1 to 3 groups $R^\#$ wherein

R[#] is halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆alkylcarbonylamino, carboxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₂-C₆alkenyloxy, C₂-C₆-alkynyloxy, C₁-C₆-haloalkoxy, or C₁-C₆-alkylthio;

phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups;

 R^b , R^c are each independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -hydroxyalkyl, wherein the carbon atoms in these groups

Application No.: 10/539,643 Amdt. Dated: December 5, 2006 Reply to Office Action Dated: July 12, 2006

may be substituted by 1 to 3 groups R[#], or

phenyl, unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups, or

CR^bR^c represents C=O or C=CR^jR^k, wherein R^j and R^k each independently are hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, or C₃-C₆-cycloalkyl;

R¹,R² are each independently halogen, hydroxy, mercapto, amino, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₈-alkylthio, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₂-C₆-alkenylamino, C₂-C₆-alkenylthio, C₂-C₆-alkynyl, C₂-C₆-alkynyloxy, C₂-C₆-alkynylamino, C₂-C₆-alkynylthio, C₁-C₆-alkylsulfoxyl, C₂-C₆-alkynylsulfoxyl, C₂-C₆-alkylsulfoxyl, C₂-C₆-alkoxycarbonyl, C₁-C₆-alkylcarbonyl, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, carbonyloxy, C₁-C₆-alkylcarbonyloxy, phenyloxy, C₁-C₆-alkylcarbonylamino, C(O)NR^dR^e, or (SO₂)NR^dR^e, wherein the carbon atoms in the aliphatic and aromatic groups may be substituted by 1 to 3 groups R[#] and wherein R^d and R^c are each independently groups as listed for R^a; or

 $C(=NOR^f)$ - G_p - R^f , wherein R^f and R^f are each independently hydrogen or C_1 - C_6 -alkyl, G is oxygen, sulfur or NR^f and p is 0 or 1; or

a mono- or bicyclic 5- to 10-membered aromatic ring system which may contain 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen and which is unfused or fused to the aromatic group to which it is bonded and which, when unfused, is bonded directly or through an oxygen, sulfur, C₁-C₆-alkyl, or C₁-C₆-alkoxy linkage, and which is unsubstituted or substituted with any combination of 1 to 5 groups R[#]; or

 C_3 - C_{12} -cycloalkyl, which is bonded directly or through an oxygen, sulfur or C_1 - C_6 -alkyl linkage, and which is unsubstituted or substituted with any combination

Application No.: 10/539,643 Amdt. Dated: December 5, 2006 Reply to Office Action Dated: July 12, 2006

cepty to office Action Dated. July 12, 200

of 1 to 5 groups R#;

 R^3 , R^4 are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylamino, C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, wherein the carbon atoms in these groups may be substituted with any combination of 1 to 3 groups $R^\#$, or $C(O)R^g$, $C(O)NR^hR^i$, or $C(S)NR^hR^i$,

R^g is hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, or

phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups;

R^h,Rⁱ are each independently groups as listed for R^a;

or R³ and R⁴ together with the nitrogen atom to which they are attached form a saturated or partially saturated mono- or bicyclic 5- to 10-membered ringsystem containing 1 to 3 heteroatoms selected from nitrogen and oxygen or 5-membered hetaryl containing 1 to 4 nitrogen atoms, wherein the carbon and/or nitrogen atoms in the saturated, partially saturated or aromatic rings are unsubstituted or substituted with any combination of 1 to 4 groups selected from amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₂-C₆-alkenyloxy, C₂-C₆-alkynyloxy, C₁-C₆-alkylthio, C₂-C₆-alkenylthio, C₂-C₆-alkynylthio, C₁-C₆-alkylamino, di(C₁-C₆alkyl)amino, C2-C6-alkenylamino, C2-C6-alkynylamino, C1-C6hydroxyalkyl, hydroxycarbonyl-C₁-C₄-alkyl, C₁-C₆-alkoxycarbonyl-C₁-C₄alkyl, formyl-C₁-C₄-alkyl, formyl-C₁-C₄-alkoxy, C₁-C₆-alkylcarbonyl-C₁-C₄-alkoxy, C₃-C₆-cycloalkyl, which is bonded directly or via an oxygen, sulfur or C₁-C₆-alkyl linkage, and C₅-C₈-cycloalkenyl, wherein the carbon atoms in these aliphatic groups can be substituted by 1 to 4 groups selected from halogen, cyano, hydroxy and nitro; or

Application No.: 10/539,643 Amdt. Dated: December 5, 2006

Reply to Office Action Dated: July 12, 2006

phenyl or benzyl which may be substituted by halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; or R^3 and R^4 together form the chains - $(CH_2)_2N^+(O^-)(CH_2)_2$ - or - $(CH_2)_3N^+(O^-)(CH_2)_2$ -;

or the enantiomers or diastereomers, salts or esters thereof.

Claim 11 (Previously presented): A method for protecting growing plants from attack or infestation by insects, arachnids or nematodes comprising contacting a plant, or soil or water in which the plant is growing, with a pesticidally effective amount of at least one compound of formula I or a composition comprising at least one compound of formula I:

$$(R^{1})_{n} \xrightarrow{X} (R^{2})_{m}$$

$$N = N - R^{3}$$

$$(I)$$

wherein

- X is sulfur, oxygen, sulfinyl (S=O), sulfonyl (SO₂), NR^a, or CR^bR^c;
 - R^a is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, or C_2 - C_6 -alkynyl, wherein the carbon atoms in these groups may be substituted by 1 to 3 groups $R^\#$ wherein
 - R[#] is halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆-alkylcarbonylamino, carboxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₂-C₆-alkyl

Application No.: 10/539,643 Amdt. Dated: December 5, 2006 Reply to Office Action Dated: July 12, 2006

alkenyloxy, C₂-C₆-alkynyloxy, C₁-C₆-haloalkoxy, or C₁-C₆-alkylthio;

phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups;

 R^b , R^c are each independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -hydroxyalkyl, wherein the carbon atoms in these groups may be substituted by 1 to 3 groups $R^{\#}$, or

phenyl, unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy groups, or

CR^bR^c represents C=O or C=CR^jR^k, wherein R^j and R^k each independently are hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, or C₃-C₆-cycloalkyl;

R¹,R² are each independently halogen, hydroxy, mercapto, amino, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₈-alkylthio, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₂-C₆-alkenylamino, C₂-C₆-alkenylthio, C₂-C₆-alkynyloxy, C₂-C₆-alkynylamino, C₂-C₆-alkynylthio, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfoxyl, C₂-C₆-alkenylsulfonyl, C₂-C₆-alkynylsulfoxyl, formyl, C₁-C₆-alkylcarbonyl, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, carbonyloxy, C₁-C₆-alkylcarbonyloxy, phenyloxy, C₁-C₆-alkylcarbonylamino, C(O)NR^dR^e, or (SO₂)NR^dR^e, wherein the carbon atoms in the aliphatic and aromatic groups may be substituted by 1 to 3 groups R[#] and wherein R^d and R^e are each independently groups as listed for R^a; or

 $C(=NOR^f)$ - G_p - R^f , wherein R^f and R^f are each independently hydrogen or C_1 - C_6 -alkyl, G is oxygen, sulfur or NR^f and p is 0 or 1; or

a mono- or bicyclic 5- to 10-membered aromatic ring system which may contain 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen and which is

Application No.: 10/539,643 Amdt. Dated: December 5, 2006 Reply to Office Action Dated: July 12, 2006

unfused or fused to the aromatic group to which it is bonded and which, when unfused, is bonded directly or through an oxygen, sulfur, C₁-C₆-alkyl, or C₁-C₆-alkoxy linkage, and which is unsubstituted or substituted with any combination of 1 to 5 groups R[#]; or

 C_3 - C_{12} -cycloalkyl, which is bonded directly or through an oxygen, sulfur or C_1 - C_6 -alkyl linkage, and which is unsubstituted or substituted with any combination of 1 to 5 groups $R^{\#}$;

 R^3 , R^4 are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylamino, C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, wherein the carbon atoms in these groups may be substituted with any combination of 1 to 3 groups $R^\#$, or $C(O)R^g$, $C(O)NR^hR^i$, or $C(S)NR^hR^i$,

R^g is hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, or

phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups;

 R^h, R^i are each independently groups as listed for R^a ;

or R³ and R⁴ together with the nitrogen atom to which they are attached form a saturated or partially saturated mono- or bicyclic 5- to 10-membered ringsystem containing 1 to 3 heteroatoms selected from nitrogen and oxygen or 5-membered hetaryl containing 1 to 4 nitrogen atoms, wherein the carbon and/or nitrogen atoms in the saturated, partially saturated or aromatic rings are unsubstituted or substituted with any combination of 1 to 4 groups selected from amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₂-C₆-alkenyloxy, C₂-C₆-alkynyloxy, C₁-C₆-alkylthio, C₂-C₆-alkenylthio, C₂-C₆-alkynylthio, C₁-C₆-alkylylamino, di(C₁-C₆-alkyl)amino, C₂-C₆-alkenylamino, C₂-C₆-alkynylamino, C₁-C₆-hydroxyalkyl, hydroxycarbonyl-C₁-C₄-alkyl, C₁-C₆-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₆-alkyl, C₁-C

Application No.: 10/539,643 Amdt. Dated: December 5, 2006

Reply to Office Action Dated: July 12, 2006

alkyl, formyl- C_1 - C_4 -alkyl, formyl- C_1 - C_4 -alkoxy, C_1 - C_6 -alkylcarbonyl- C_1 - C_4 -alkoxy, C_3 - C_6 -cycloalkyl, which is bonded directly or via an oxygen, sulfur or C_1 - C_6 -alkyl linkage, and C_5 - C_8 -cycloalkenyl, wherein the carbon atoms in these aliphatic groups can be substituted by 1 to 4 groups selected from halogen, cyano, hydroxy and nitro; or phenyl or benzyl which may be substituted by halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; or C_4 -haloalkyl; or C_4 -haloalkyl; or C_4 - C_4 -

- m is 0, 1, 2, 3 or 4;
- n is 0, 1, 2, 3 or 4;

or the enantiomers or diastereomers, salts or esters thereof.

Claims 12-21 (Canceled)