

1 / 77

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

6 / 77

FIG. 6

ITEM	SIGN	REQUIRED
Original Data	y	<input type="radio"/>
Sequentially Assigned Data-item	z	<input type="radio"/>
Sequential Aggregation Tree No.	n	<input type="radio"/>
Sequential Aggregation Tree Leaf No.	i	<input type="radio"/>
Immediate Complementary Data (Positional Info. Assigned Value)	HK	
Digital Signature	DS	

7 / 77

FIG. 7

FIG. 8

FIG. 9

FIG. 10

11 / 77

FIG. 11

FIG. 12

Validation Result 1	Certification Apparatus 1	
	Receiving Point of Event-ordering Request (corres. user point τ)	Sending Point of Audit Receipt (corres. user point α)
Validation Result 2	Certification Apparatus 1	
	Receiving Point of Event-ordering Request (corres. user point τ)	Receiving Point of Acceptance of Audit Receipt (corres. user point α)

12 / 77

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

17 / 77

FIG. 18

18 / 77

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

22 / 77

FIG. 24

23 / 77

FIG. 25

FIG. 26

FIG. 27

FIG. 28

- (2) Performing of the following processes after withdrawing from loop 1 on reaching finish time.
- (2.1) Set $k := \text{ceiling}(\log_2(n))$.
- (2.2) Calculate $\text{rtPath}(k, 0, n-1)$ and Set $((0, r(0), \dots, k, r(k)))$ to the calculation result.
- (2.3) Loop 3: Performing of the follow processes for $j=0, \dots, k$
- (2.3.1) $i \rightarrow i_j$
- (2.3.2) Case of $j = 0$:
- (2.3.2.1) When i is an odd number:
- Produce a dummy $r := R(0, i)$
 - Set $A_j[i] := r$
(Assign r to node($0, i$).)
 - Set $b_j := \text{true}$.
 - Increase i_j by increment of 1.
- (2.3.2) Case of $0 < j \leq k$:
- (2.3.2.1) When $i = r(j)$:
- (when node(j, i) is on rtPath($k, 0, n-1$)):
- (2.3.2.1.1) $x_0 := A_{j-1}[\text{index}(\text{leftChild } (j, i))]$
(Set x_0 to an assigned value for left-child of node(j, i).)
- (2.3.2.1.2) $x_1 := A_{j-1}[\text{index}(\text{rightChild } (j, i))]$
(Set x_1 to an assigned value for right-child of node(j, i).)
- (2.3.2.1.3) Calculate $x_2 := h(x_0 \parallel x_1)$
- (2.3.2.1.4) Set $A_j[i] := x_2$
(Assign x_2 to node(j, i).)
- (2.3.2.1.5) When i is an even number and $j < k$:
- Increase i by increment of 1.
 - Calculate $r := R(j, i)$ and Set $A_j[i] := r$
(Assign r to node(j, i).)
 - Set $b_j := \text{true}$.
 - Set $i_j := i + 1$
- (2.3.2.2) When $i = r(j) + 1$, an odd number and $j < k$:
- Calculate $r := R(j, i)$ and Set $A_j[i] := r$
(Assign r to node(j, i).)
 - Set $b_j := \text{true}$.
 - Increase i_j by increment of 1.

Completion of loop 3

Processing Procedure 2

FIG. 29

28 / 77

FIG. 30

29 / 77

FIG. 31

FIG. 32

FIG. 33

31 / 77

FIG. 34

32 / 77

FIG. 35

33 / 77

FIG. 36

Event-ordering Receipt
EOC(y)

ITEM	SIGN REQUIRED
Original Data	<input checked="" type="radio"/> Y
Sequentially Assigned Data-item	<input checked="" type="radio"/> Z
Sequential Aggregation Tree No.	<input checked="" type="radio"/> n
Sequential Aggregation Tree Leaf No.	<input checked="" type="radio"/> i
Immediate Complementary Data of Registration Point (Positional Information Assigned Value)	<input checked="" type="radio"/> SK
Late Complementary Data of Each Past Registration Point (Positional Information Assigned Value)	<input checked="" type="radio"/> TK

FIG. 37

35 / 77

FIG. 38

FIG. 39

FIG. 42

39 / 77

FIG. 43

ITEM	SIGN	REQUIRED	Event-ordering Receipt EOC(y)
Original Data	y	<input type="radio"/>	
Sequentially Assigned Data-item	z	<input type="radio"/>	
Sequential Aggregation Tree No.	n	<input type="radio"/>	
Sequential Aggregation Tree Leaf No.	i	<input type="radio"/>	
Immediate Complementary Data of Registration Point (Positional Information Assigned Value)	SK	<input type="radio"/>	
Late Complementary Data of Immediately-preceding Registration Point (Positional Information Assigned Value)	TK2	<input type="radio"/>	

FIG. 44

FIG. 45

FIG. 46

42 / 77

FIG. 47

FIG. 48

42a

Memory Part

44 / 77
FIG. 49

42a

FIG. 50

46 / 77

FIG. 51

47 / 77
FIG. 52

48 / 77

FIG. 53

FIG. 54

49 / 77

FIG. 55

50 / 77

FIG. 56

FIG. 57

FIG. 58

$$k(1) > k(2) > k(3) > k(4) = 0$$

53 / 77

FIG. 59

FIG. 60

FIG. 61

$$k(1)=4 > k(2)=3 > k(3)=1 > k(4)=0$$

FIG. 62

57 / 77
FIG. 63

FIG. 64

59 / 77

FIG. 65A

FIG. 65B

FIG. 65C

FIG. 65D

FIG. 65E

FIG. 65F

60 / 77
FIG. 66

61 / 77

FIG. 67

62 / 77
FIG. 68

FIG. 69

FIG. 70

Sequential Aggregation Small Tree ST2

FIG. 71

FIG. 72

FIG. 73

FIG. 74

69 / 77

FIG. 75

70 / 77

FIG. 76

FIG. 77

FIG. 78

72 / 77
FIG. 79

FIG. 80

FIG. 81

FIG. 82

FIG. 83

FIG. 84

FIG. 85

