G54ARS Autonomous Robotic Systems Lecture 9

Particle Filter

© University of Nottingham G54ARS

Last Week – Kalman Filter

- · Basic concepts
 - filtering overview
 - system model
 - filter operation
- · Worked example
 - model example
 - illustrative examples of operation
- · Properties of Kalman filters
 - the optimal filter
 - misconceptions and myths
- Revision

© University of Nottingham

G54ARS

SET – SEM Results, Feedback and Discussion

© University of Nottingham G54ARS 3 © University of Nottingham G54ARS

-1

Particle Filters - Overview

- · Basic concepts
 - system model
 - outline algorithm
- · Algorithmic detail
 - predict & update phases
 - resampling
- · Worked example
 - model example
 - illustrative examples of operation

© University of Nottingham

G54ARS

_

Basic Concepts

© University of Nottingham

G54ARS

Navigation

Definition

- A particle filter is a sample-based filter that sequentially estimates the state of a dynamic system from a series of noisy observations
 - introduced by Gordon, Salmond & Smith, 1993
- · A PF is similar to a KF in that it
 - combines a prediction phase with an update phase
 - operates sequentially over discrete time-steps
- · It differs from a KF, in that it
 - makes no assumptions of process/measurement linearity or noise characteristics
 - maintains a population of estimates

© University of Nottingham

G54ARS

General Schematic

System Model

· State, x

$$x \in \Re^n$$

· Non-linear process

$$x_k = f(x_{k-1}, u_k, w_k)$$

· Non-linear measurement model

$$z_k = h(x_k, v_k)$$

The Real World

Population of Particles

• Each particle, s^i , consists of a state (possible robot pose), x^i , and an associated weight, ω^i , at each time, k

$$s_k^i = (x_k^i, w_k^i)$$

• There is a set, S, of N particles

$$S_k = \{s_k^1, ..., s_k^N\}$$

© University of Nottingham

G54ARS

11

© University of Nottingham

G54ARS

14

16

Outline Algorithm

- for k = 1 ... t
 - for each particle // predict
 - · calculate new state based on process model
 - end for
 - for each particle // update
 - · calculate new weight based on measurement model
 - · normalise weights (to sum to unity)
 - end for
 - calculate overall predicted position
 - if particles are insufficiently diverse
 - · resample particles
 - end if
- end for

© University of Nottingham

G54ARS

13

Predict Particles

 Predict the state of each particle, by moving it in state space according to the process model

$$x_k^i = f(x_{k-1}^i, u_k, w_k^i)$$

- Note that process noise, w_k, is included in each particle's state update
 - this is a sample drawn from the known process noise distribution (not necessarily Gaussian)
 - if unknown, then use Gaussian

Algorithmic Detail

© University of Nottingham

G54ARS

Update Weights

 Update weight of each particle, by estimating the probability of the observed measurement assuming this particle is the actual position

$$\omega_{\mathbf{k}}^{\mathbf{i}} = \omega_{\mathbf{k}}^{\mathbf{i}} \mathsf{P}(\mathsf{z}_{\mathbf{k}}|\mathsf{x}_{\mathbf{k}}^{\mathbf{i}})$$

Calculate the residual

$$z_k - h(x_k^i, 0)$$

- Calculate the probability by considering the distribution of the measurement noise
 - if unknown, then assume Gaussian distribution

© University of Nottingham G54ARS 15 © University of Nottingham G54ARS

Determine Position

· Weighted mean

$$\hat{\mathbf{x}}_{\mathsf{k}} = \sum_{\mathsf{i}=1}^{\mathsf{N}} \omega_{\mathsf{k}}^{\mathsf{i}} \mathbf{x}_{\mathsf{k}}^{\mathsf{i}}$$

· Best particle

$$\hat{\mathsf{x}}_{\mathsf{k}} = \mathsf{x}_{\mathsf{k}}^{\mathsf{i}} \mid \omega_{\mathsf{k}}^{\mathsf{i}} = \max_{\mathsf{i}} \omega_{\mathsf{k}}^{\mathsf{i}}$$

- Robust mean
 - weighted mean of particles within given distance of best

$$\hat{\mathbf{x}}_{\mathsf{k}} = \sum_{\mathsf{i}=1}^{\mathsf{N}} \omega_{\mathsf{k}}^{\mathsf{i}} \mathbf{x}_{\mathsf{k}}^{\mathsf{i}} : |\mathbf{x}_{\mathsf{k}}^{\mathsf{i}} - \mathbf{x}_{\mathsf{k}}^{\mathsf{best}}| \leq \epsilon$$

© University of Nottingham

© University of Nottingham

G54AR

17

Systematic Resampling Algorithm

 $1: \ \mathsf{S}' = \emptyset$

 $2: \quad \Delta = \mathsf{rand}(0, \mathsf{N}^{-1}]$

3: $c = \omega_{k}^{1}$

4: i = 1

5: for j = 0...N - 1

 $6: \qquad u = \Delta + j/N$

7: $\mathbf{while} \ \mathbf{u} > \mathbf{c}$

8: i = i + 1

9: $c = c + \omega_k^i$

10: end while

11: $S' = S' \cup \{(x_k^i, 1/N)\}$

12: end for

G54ARS

Resample

- A common problem is that the population may quickly converge to a single state
 - one particle with weight one; others zero
- · Calculate the effective sample size
 - usually termed ESS or Neff

$$\mathsf{N}_{\mathsf{eff}} = rac{1}{\sum_{\mathsf{i}=1}^{\mathsf{N}} (\omega_{\mathsf{k}}^{\mathsf{i}})^2}$$

- If N_{eff} falls below a threshold (often N/5), then resampling is performed
- pick random new population, in proportion to weights

© University of Nottingham

G54ARS

18

Systematic Resampling Algorithm

Worked Example, e.g.:

$$S = \{(x_k^1, w_k^1 = 0.1), (x_k^2, w_k^2 = 0.2), (x_k^3, w_k^3 = 0.7)\}$$

S' = ?

© University of Nottingham

G54ARS

20

Implementation

- · Number of particles
 - more particles ⇒ better approximation
 - more particles ⇒ more computation
- · PFs approach the Bayesian optimal estimate
 - if number of particles is sufficiently large!
- · Many detailed variations
 - bootstrap particle filter
 - auxiliary sampling importance resampling
 - regularised particle filter
 - local linearisation particle filter
 - multiple-model particle filter

© University of Nottingham

G54ARS

21

© University of Nottingham

G54ARS

Worked Example

22

24

Example System

- Mobile robot with pose $x = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$
- Moving with speed s in direction Θ $u = \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$

$$x_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{k-1} \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix} + w_k$$

$$\mathsf{z}_\mathsf{k} = egin{bmatrix} \mathsf{H} & \mathsf{0} & \mathsf{0} \ \mathsf{1} & \mathsf{0} & \mathsf{0} \ \mathsf{0} & \mathsf{1} & \mathsf{0} \end{bmatrix} \left[egin{array}{c} x \ y \ heta \end{array}
ight] + \mathsf{v}_\mathsf{k}$$

© University of Nottingham

G54AR

23

Covariances

$$\mathsf{Q} = \left[\begin{array}{ccc} \sigma_x^2 & 0 & 0 \\ 0 & \sigma_y^2 & 0 \\ 0 & 0 & \sigma_\theta^2 \end{array} \right]$$

$$\mathsf{R} = \left[egin{array}{cc} \sigma_{x_m}^2 & 0 \ 0 & \sigma_{y_m}^2 \end{array}
ight]$$

© University of Nottingham

G54ARS

Particle Filter

An Example of Resampling

Worked Example

Time	Position	Weight	Weighted Position	Best Weight
	(4,2)	0.2		
	(3,3)	0.2		
t = 1	(8,4)	0.2		
	(5,4)	0.3		
	(7,6)	0.1		
		POSITION ESTIMATE:		
	(11,10)	0.4		
	(12,11)	0.3		
t = 2	(9,12)	0.0		
	(10,12)	0.1		
	(12,9)	0.2		
POSITION ESTIMATE:				

- Calculate the estimate of the position at both times, using both the weighted mean method and the best particle method
- Suppose that the robust mean method, with a distance limit of 2.5, was used at time t=1. Which particles would now contribute to the estimate of position?

© University of Nottingham G54ARS 28

Properties of Particle Filters

- While it's not entirely accurate to state that PFs have no underlying assumptions, they can be used in very many (all?) situations
 - particle states must be predicted
 - noise must be added to process
 - an estimate of measurement errors required
- However, they are (far) more computationally expensive than Kalman filters (and EKFs)
 - if KF assumptions are valid, then they are better

© University of Nottingham G54ARS 29

Revision

Summary

- Particle Filters
 - basic concepts
 - system model
 - · outline algorithm
 - algorithmic detail
 - · predict & update phases
 - resampling
 - worked example
 - model example
 - · illustrative examples of operation
- · Next: Revision

© University of Nottingham G54ARS

Revision Overview

- Module Assessment Review
- Exam Structure
- · Brief Revision of Topics

© University of Nottingham G54ARS 31 © University of Nottingham G54ARS

Review of Module Assessment

- Examination 50%
 - Covering all material covered in lectures and reading week. (This includes scientific papers, articles, videos, etc.)
- Coursework 50%
 - Working in teams throughout term
 - 35% Laboratory assignment & <u>individual</u> associated report
 - 15% Five lab sheets/demos per team (3% each)
 - The lab is only accessible during your allocated lab and practice sessions.
 - · i.e. attend and prepare your sessions!

© University of Nottingham G54ARS 33

G54ARS Review of Topics

G54ARS Exam Structure

- · Time: 2 hours
 - Only silent, self-contained calculators with a Single-Line Display or Dual-Line Display are permitted.
 - No electronic devices capable of storing and retrieving text, including electronic dictionaries, may be used.
 - No dictionaries (except standard dictionary if English is not your first language)
- · Questions:
 - All questions are mandatory

© University of Nottingham G54ARS 34

Updated Weekly Topics - 1

Week	Lecture		
2	Introduction & Overview (Autonomous) Robots =? Foundations of Robotic Systems Architectures & Behaviours		
3	Brooks' Subsumption Architecture - Theory Robot Hardware		
4	DARPA Grand Challenge PID Control		
5	Fuzzy Control		
6	Ultrasonic Sensor Models Localisation and Mapping		

© University of Nottingham G54ARS 35 © University of Nottingham G54ARS

Updated Weekly Topics - 2

Week	Lecture
7	Sensor Fusion
8	Guest Lecture: Dr Barbara Bruni, University of Genova
9	Reading week (Ethics and Robotics) Lab will be open in lecture slot
10	Kalman Filters
11	Particle Filters & Revision

Note:

Weekly topics may change subject to timing and new material. All lecture notes will be available online.

© University of Nottingham G54ARS 37

Exam content

- Covering all material covered in lectures and reading week
- · General pointers:
 - Focus on understanding and being able to explain concepts and key terms.
 - Be ready to explain challenges in Autonomous Robotic Systems.
 - Remember and be able to explain key equations.
 - Practise key calculations (no continuous integration/derivatives).

Note on Reading List

- · Reading List on Moodle
- · Core reading Week materials
- · Other sources for better understanding

Exam - tips

- · All parts of the exam are compulsory
 - Do NOT study selectively
- Time is short (2 hours)
 - Keep your answers concise no need for "essays"
- · Use diagrams where useful/needed
 - Explain and refer to the diagrams from your written answer
 - Annotate diagrams

© University of Nottingham G54ARS 39 © University of Nottingham G54ARS

Q & A

Next Week: No lecture – Send revision Questions by email the end of Wednesday 13th December 2017

© University of Nottingham G54ARS 41 © University of Nottingham G54ARS 4