

平成 28 年 9 月 24 日

目 次

第1章	決定論的微分方程式の時間離散近似	2
1.1	Introduction	2
1.2	時間離散近似方法	2

第1章 決定論的微分方程式の時間離散近似

1.1 Introduction

$$\dot{x} = \frac{dx}{dt} = a(t, x), \quad x(t_0) = x_0$$
 (1.1.1)

というような (決定論的) 微分方程式の初期値問題を解くことは多くの場面において必要となるが、一般にこの微分方程式の解 $x=x(t;t_0,x_0)$ を明示的に求めることは出来ない。また解が見つかったとしても、明示的でなかったり数値解析の視点からすると複雑で計算や描画に不向きであることが多い。

ここで広く使われている方法が**時間離散近似** である. 時間離散近似は, 与えられた時間離散化 $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ に対して、解 $x(t_1;t_0,x_0),x(t_2;t_0,x_0),\cdots,x(t_n;t_0,x_0),\cdots$ を近似するような、 $y_1,y_2,\cdots,y_n,\cdots$ を生成する方程式である. この章ではまずこれらの近似方法の一覧を示し、次にその離散化誤差、整合性、安定性、収束といった性質を示す.

1.2 時間離散近似方法

(1.1.1) のような初期値問題を解くときに一番シンプルな方法が以下の Euler 法である.

方法 1.2.1 (Euler 法) Euler 法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$y_{n+1} = y_n + a(t_n, y_n)\Delta_n, \quad y_0 = x_0$$
 (1.2.1)

によって与える.

次に、この Euler 法を更に精度を上げるために以下の台形法を用いる.

方法 1.2.2 (台形法) 台形法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$y_{n+1} = y_n + \frac{1}{2} \{ a(t_n, y_n) + a(t_{n+1}, y_{n+1}) \} \Delta_n, \quad y_0 = x_0$$
 (1.2.2)

によって与える.

この方法は y_{n+1} という不定値が両辺に含まれているため **implicit** な方法と呼ばれる. 一般にはこの不定値は移行することが出来ないので計算が複雑になることがある. 故にそれを修正したのが, 以下の修正台形法である.

方法 1.2.3 (修正台形法) 修正台形法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$\bar{y}_{n+1} = y_n + a(t_n, y_n) \Delta_n \tag{1.2.3}$$

$$y_{n+1} = y_n + \frac{1}{2} \{ a(t_n, y_n) + a(t_{n+1}, \bar{y}_{n+1}) \} \Delta_n$$
 (1.2.4)

によって与える. つまり, \bar{y}_{n+1} を下の式に代入して,

$$y_{n+1} = y_n + \frac{1}{2} \{ a(t_n, y_n) + a(t_{n+1}, y_n + a(t_n, y_n) \Delta_n) \} \Delta_n$$
(1.2.5)

によって与えられる。

修正台形法は,**improved Euler 法**や **Heun 法**とも呼ばれている。また、このような方法は**予測子修正子法**と呼ばれている。というのは、一度 (1.2.3) で予測子 \bar{y}_{n+1} を計算し、それを (1.2.4) のような式に代入して修正子 y_{n+1} を得ているからである。

ここで今まで上げたような方法を一般化して次の方法を得る.

方法 1.2.4 (一段法) 一段法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$y_{n+1} = y_n + \Psi(t_n, y_n, \Delta_n)\Delta_n, \quad y_0 = x_0$$
 (1.2.6)

によって与える. $\Psi(t,y,\Delta)$ のことを increment function という.

例えば Euler 法 (1.2.1) では $\Psi(t,y,\Delta) = a(t,x)$ であり、Heun 法 (1.2.5) では $\Psi(t,y,\Delta) = \frac{1}{2}\{a(t,y) + a(t+\Delta,y+a(t,y)\Delta)\}$ であった。これまで上げた方法は全て一段法であったが、それとは別の多段法を紹介する.

方法 1.2.5 (Adams-Bashford 法) Adams-Bashford 法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta = t_{n+1} - t_n$ が一定な離散化に対して, 近似解を

$$y_{n+1} = y_n + \frac{1}{12} \{ 23a(t_n, y_n) - 16a(t_{n-1}, y_{n-1}) + 5a(t_{n-2}, y_{n-2}) \} \Delta$$
(1.2.7)

によって与える.

これは $,y_{n+1}$ を求めるために $y_n,y_{n-1},\cdots,y_{n-k}$ を必要としているために多段法と呼ばれている. 例えば Adams-Bashford 法は 3 段法である. 3 段法において、計算を始めるためには $,y_0,y_1,y_2$ を求める必要があるが、これらは一段法によって計算される.

また更に高い精度を得るために次のように、既存の方法を反復するような方法を紹介する.

方法 1.2.6 (Richardson 反復法) 間隔 $\Delta=T/N$ によって [0,T] が等間隔に N 等分されており, その離散化に対して Euler 法を適用する場合を考える. $y_N(\Delta)$ を Δ 間隔で離散化したときの近似解の ΔN での値とする. x(T) を T での真の解の値とする. このとき

$$y_N(\Delta) = x(T) + e(T)\Delta + O(\Delta^2) \tag{1.2.8}$$

が成り立っており、また、2N 等分して離散化したときのことを考えると、

$$y_{2N}(\frac{1}{2}\Delta) = x(T) + \frac{1}{2}e(T)\Delta + O(\Delta^2)$$
 (1.2.9)

が成り立っている.e(T)を消去することによって、

$$x(T) = 2y_{2N}(\frac{1}{2}\Delta) - y_N(\Delta) + O(\Delta^2)$$
(1.2.10)

を得るので.

$$Z_N(\Delta) = 2y_{2N}(\frac{1}{2}\Delta) - y_N(\Delta) \tag{1.2.11}$$

とすることによって近似を得る. これを Richardson 反復法という.

ここで、a に条件を課せば、次の Taylor の定理が成り立っていることに着目する.

定理 1.2.7 (Taylor の定理) x(t) は p+1 回連続微分可能であるとする. このとき, $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して,

$$x(t_{n+1}) = x(t_n) + \frac{dx}{dt}(t_n)\Delta_n + \dots + \frac{1}{p!}\frac{d^px}{dt^p}(t_n)\Delta_n^p + \frac{1}{(p+1)!}\frac{d^{p+1}x}{dt^{p+1}}(\theta_n)\Delta_n^{p+1}$$
(1.2.12)

を満たすような $t_n < \theta_n < t_{n+1}$ が存在する.

そして, 微分方程式

$$\dot{x} = \frac{dx}{dt} = a(t, x(t)) \tag{1.2.13}$$

に着目して、チェインルールを適応すれば、

$$\frac{dx}{dt} = a, \frac{d^2x}{dt^2} = a_t + a_x a, \frac{d^3x}{dt^3} = a_{tt} + 2a_{tx}a + a_{xx}a^2 + a_t a_x + a_x^2 a, \dots$$
(1.2.14)

(t,x) での偏微分を省略して a_t,a_x と書いた) が成り立っているので、これらを代入して、剰余項を無視すれば次のような Taylor 近似が得られる.

方法 1.2.8 (Taylor 近似) p次 Taylor 近似は (1.2.13) をみたす微分方程式と $t_0 < t_1 < t_2 < \dots < t_n < \dots$ という 間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$y_{n+1} = y_n + a(t_n, y_n)\Delta_n + \frac{1}{2!}\frac{da}{dt}(t_n, y_n)\Delta_n^2 + \dots + \frac{1}{p!}\frac{d^{p-1}a}{dt^{p-1}}(t_n)\Delta_n^p$$
(1.2.15)

例 1.2.9 例えば,2 次 Taylor 近似は,

$$y_{n+1} = y_n + a(t_n, y_n)\Delta_n + \frac{1}{2!} \{a_t + a_x a\}\Delta_n^2$$
(1.2.16)

3次 Taylor 近似は,

$$y_{n+1} = y_n + a(t_n, y_n)\Delta_n + \frac{1}{2!}\{a_t + a_x a\}\Delta_n^2 + \frac{1}{3!}\{a_{tt} + 2a_{tx}a + a_{xx}a^2 + a_t a_x + a_x^2 a\}\Delta_n^3$$
(1.2.17)

によって与えられる. 各々の偏微分には (t_n, y_n) を代入する.

しかし、これらの Taylor 近似は、与えられた a に対して偏微分を計算しなければならないという点において実用的ではな い. その場合には、

$$a_t(t_n, y_n) \approx \frac{a(t_{n+1}, y_n) - a(t_n, y_n)}{\Delta_n}, a_x(t_n, y_n) \approx \frac{a(t_n, y_{n+1}) - a(t_n, y_n)}{y_{n+1} - y_n}$$
 (1.2.18)

という近似を使って偏微分を計算すれば良い. また, a_x の計算には y_{n+1} が現れるが, それは Euler 法等により予測すれば 良い.

再び一段法について着目する. 一段法はヒューリスティックに

$$y_{n+1} = y_n + \Psi(t_n, y_n, \Delta_n) \Delta_n \tag{1.2.19}$$

という式の $\Psi(t,y,\Delta)$ を計算することが重要であったが、ここではその方法の典型的な例である Runge-Kutta 法について 触れる.

方法 1.2.10 (2次 Runge-Kutta 法) 2次 Runge-Kutta 法は

$$y_{n+1} = y_n + \Psi(t_n, y_n, \Delta_n) \Delta_n, \quad y_0 = x_0$$
 (1.2.20)

という一段法の increment function に対して,

$$\Psi(t,y,\Delta)=\alpha~a(t,x)+\beta~a(t+\gamma\Delta,x+\gamma a(t,x)\Delta) \eqno(1.2.21)$$
 を代入することによって得られる.

ここで、右辺を展開することによって、

$$\Psi(t,y,\Delta) = (\alpha+\beta)a(t,x) + \gamma\beta(a_t + a_x a)\Delta + \frac{1}{2}\gamma^2\beta(a_{tt} + 2a_{tx}a + a_{xx}a^2)\Delta^2 + \cdots$$

が得られる. ここで 3次 Taylor 近似と各項を比較すると、

$$y_{n+1} = y_n + a(t_n, y_n)\Delta_n + \frac{1}{2!} \{a_t + a_x a\}\Delta_n^2 + \frac{1}{3!} \{a_{tt} + 2a_{tx}a + a_{xx}a^2 + a_t a_x + a_x^2 a\}\Delta_n^3$$
$$\alpha + \beta = 1, \quad \gamma\beta = \frac{1}{2}$$

が得られる. 一方で $\alpha=\beta=1/2, \gamma=1$ を代入するとこれは Heun 法 (1.2.5) となる. ここで更に 4 次の Runge-Kutta 法 について紹介する.

方法 1.2.11 (4次 Runge-Kutta 法) 4次 Runge-Kutta 法は $t_0 < t_1 < t_2 < \cdots < t_n < \cdots$ という

間隔 $\Delta_n = t_{n+1} - t_n$ の離散化に対して, 近似解を

$$y_{n+1} = y_n + \frac{1}{6} \{ k_n^{(1)} + 2k_n^{(2)} + 2k_n^{(3)} + k_n^{(4)} \} \Delta_n$$
 (1.2.22)

によって与える. ただし,

$$k_n^{(1)} = a(t_n, y_n),$$
 (1.2.23)

$$k_n^{(2)} = a\left(t_n + \frac{1}{2}\Delta_n, y_n + \frac{1}{2}k_n^{(1)}\Delta_n\right),$$
 (1.2.24)

$$k_n^{(3)} = a\left(t_n + \frac{1}{2}\Delta_n, y_n + \frac{1}{2}k_n^{(2)}\Delta_n\right),$$
 (1.2.25)

$$k_n^{(4)} = a \left(t_{n+1}, y_n + k_n^{(3)} \Delta_n \right),$$
 (1.2.26)

(1.2.27)