ECE 3030 Spring 2025 HOMEWORK ASSIGNMENT NO. 8 Due: Friday, April 4th 11:59 pm upload to Carmen 3030 SpeedGrader

- 1. (20 pts) (a) What is the conductivity of a piece of Ge ($n_i = 2.5 \times 10^{13} \text{ cm}^{-3}$) doped with $5 \times 10^{13} \text{ cm}^{-3}$ donors and $2.5 \times 10^{13} \text{ cm}^{-3}$ acceptors? ($D_n = 100 \text{ cm}^2/\text{s}$, $D_p = 50 \text{ cm}^2/\text{s}$). (Hint: solve quadratic.) (b) If the electron affinity of Ge = 4.0 eV and we put down a metal electrode with work function = 4.5 eV, what is the work function difference? Do you expect this to be a Schottky barrier or an ohmic contact?
- 2. (20 pts) Consider an ideal abrupt heterojunction with a built-in potential V_0 =1.6 V. The dopant concentrations in semiconductor 1 and 2 are 1 x 10^{16} donors/cm³ and 3 x 10^{19} acceptors/cm³, and the dielectric constants are 12 and 13, respectively. Find the built-in potentials V_{01} and V_{02} in each material at thermal equilibrium ($V_{applied}$ = 0).
- 3. (20 pts) Sketch the band diagrams for $Al_{0.35}Ga_{0.65}As$ on GaAs for (a) p⁺-AlGaAs, n⁺-GaAs, (b) p⁺-AlGaAs, n GaAs, (c) n⁺-AlGaAs, intrinsic GaAs. The 35% AlGaAs composition has an indirect bandgap $E_g = 2.0$ eV. Assume $\Delta E_c = 2/3$ ΔE_g .
- 4. (20 pts)A Si solar cell 2 cm x 2 cm with I_{th} = 32 nA has an optical generation rate of 10^{18} EHP/cm³- s within L_p = L_n = 2 μ m of the junction. If depletion width is 1 μ m, calculate the short-circuit current and the open-circuit voltage for this cell.
- 5. (5 pts)If one makes an LED in a semiconductor with a band gap of 2.5 eV, what wavelength of light will it emit? Can you use it to efficiently detect photons of wavelength 900 nm? 100 nm?
- 6. (15 pt) For the p-i-n diode pictured in S&B Fig. 8.7, (a) explain why this detector does not have gain (more than one e-h pair per absorbed photon); (b) explain how making the device more sensitive to low light levels degrades its speed; (c) if this device is to be used to detect light with $\lambda = 0.6 \, \mu m$, what material would you rather use GaAs or CdS?
- 7. Extra Credit, 20 points: A long silicon pn junction solar cell at T=300 K has the following parameters: $Na=10^{16}$ cm⁻³, $N_d=10^{15}$ cm⁻³, $D_n=25$ cm²/s, $D_p=10$ cm²/s, $\tau_{n0}=10^{-6}$ s, and $\tau_{p0}=5$ x 10^{-7} s. The cross sectional area of the solar cell is 5 cm². The entire junction is uniformly illuminated such that the generation rate of electron-hole pairs is $g_{op}=5$ x 10^{21} cm⁻³s⁻¹. (a) Calculate the short circuit photocurrent generated in the space charge region. (b) Using the results of part (a), calculate the open-circuit voltage. (c) Determine the ratio of open circuit voltage V_{oc} to contact potential (built-in voltage) V_{bi} .