Learning Circuits with Few Negations Boolean functions are not that monoton(ous).

Eric Blais Clément Canonne Igor Carboni Oliveira Rocco Servedio Li-Yang Tan

RANDOM - 2015

Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Introduction

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $\mathcal{C} \subseteq 2^{\{0,1\}^n}$, unknown $f \in \mathcal{C}$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $\mathcal{C} \subseteq 2^{\{0,1\}^n}$, unknown $f \in \mathcal{C}$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

With membership queries: learn f from queries of the form $x? \leadsto f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

10

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $\mathcal{C} \subseteq 2^{\{0,1\}^n}$, unknown $f \in \mathcal{C}$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

With membership queries: learn f from queries of the form $x? \leadsto f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Uniform-distribution PAC-learning: learn f from random examples $\langle x, f(x) \rangle$, where $x \sim \{0, 1\}^n$?

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Goal: fixed, known class of Boolean functions $\mathcal{C} \subseteq 2^{\{0,1\}^n}$, unknown $f \in \mathcal{C}$. How to learn f efficiently, i.e. output a hypothesis $\hat{f} \simeq f$?

With membership queries: learn f from queries of the form $x? \leadsto f(x)$

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Uniform-distribution PAC-learning: learn f from random examples $\langle x, f(x) \rangle$, where $x \sim \{0, 1\}^n$?

$$\Pr_{x \sim \{0,1\}^n} [f(x) \neq \hat{f}(x)] \le \varepsilon \tag{w.h.p.}$$

Uniform-distribution learning \leq learning with queries

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if for any $x \leq y$ in $\{0,1\}^n$, $f(x) \leq f(y)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if for any $x \leq y$ in $\{0,1\}^n$, $f(x) \leq f(y)$.

For people with a twisted mind:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if $f(0^n) \le f(1^n)$, and f changes value at most once on any increasing chain from 0^n to 1^n .

(These definitions are equivalent.)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if it is computed by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if for any $x \leq y$ in $\{0,1\}^n$, $f(x) \leq f(y)$.

For people with a twisted mind:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is monotone if $f(0^n) \le f(1^n)$, and f changes value at most once on any increasing chain from 0^n to 1^n .

(These definitions are equivalent.)

Majority function (1 iff at least half the votes are positive): more votes cannot make a candidate lose. s-clique function (1 iff the input graph contains a clique of size s): more edges cannot remove a clique. Dictator function (1 iff $x_1 = 1$): more voters have no influence anyway.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Learning the class C^n from membership queries (to error $\frac{1}{\sqrt{n}\log n}$) requires query complexity $2^{\Omega(n)}$. [BT96]

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Can we learn them?

Learning the class C^n of monotone Boolean functions from uniform examples (to error ε) can be done in time $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. [BT96]

Can we do better?

Learning the class C^n from membership queries (to error $\frac{1}{\sqrt{n}\log n}$) requires query complexity $2^{\Omega(n)}$. [BT96]

Are we done here?

Outline of the talk

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Introduction

Generalizing monotone functions: \mathcal{C}_t^n .

Learning C_t^n : Upper bound.

Learning C_t^n : Lower bound.

Conclusion and Open Problem(s).

Plan in more detail

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

 \blacksquare Generalizing monotone functions to "k-alternating:" two views, reconcilied by Markov's Theorem.

A structural theorem: characterizing these new functions as combination of simpler ones \rightsquigarrow upper bound on learning k-alternating functions, almost "for free."

Lower bound: a succession and combination thereof (from monotone... to monotone to k-alternating: hardness amplification)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Generalizing monotone functions: \mathcal{C}^n_t .

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ has inversion complexity t if it can be computed by a Boolean circuit with t negations (besides AND and OR gates), but no less.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ has inversion complexity t if it can be computed by a Boolean circuit with t negations (besides AND and OR gates), but no less.

For people with a twisted mind:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is k-alternating if f changes value at most k times on any increasing chain from 0^n to 1^n .

(Analysis of Boolean functions enthusiasts, stay with us?)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

For circuit complexity theorists:

Definition. $f: \{0,1\}^n \to \{0,1\}$ has inversion complexity t if it can be computed by a Boolean circuit with t negations (besides AND and OR gates), but no less.

For people with a twisted mind:

Definition. $f: \{0,1\}^n \to \{0,1\}$ is k-alternating if f changes value at most k times on any increasing chain from 0^n to 1^n .

(Analysis of Boolean functions enthusiasts, stay with us?)

"Not-suspicious" function (1 iff between 50% and 90% of the votes are positive): more than 90%, fishy. s-clique-but-no-Hamiltonian function (1 iff the input graph contains a clique of size s, but no Hamiltonian cycle): more edges can make things worse.

Highlander function (1 iff exactly one of the x_i 's is 1): there shall be only one.

ø.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 4 (Markov's Theorem [Mar57]). Suppose $f: \{0,1\}^n \to \{0,1\}$ is not identically 0. Then f is k-alternating iff it has inversion complexity $O(\log k)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 7 (Markov's Theorem [Mar57]). Suppose $f: \{0,1\}^n \to \{0,1\}$ is not identically 0. Then f is k-alternating iff it has inversion complexity $O(\log k)$.

Refinement of this characterization:

Theorem 8. f is k-alternating iff it can be written $f(x) = h(m_1(x), \ldots, m_k(x))$, where each m_i is monotone and h is either the parity function or its negation.

Corollary 9. Every $f \in C_t^n$ can be expressed as $f = h(m_1, \dots, m_T)$ where h is either Parity_T or its negation, each $m_i : \{0,1\}^n \to \{0,1\}$ is monotone, and $T = O(2^t)$.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

But are these definitions the same? Related?

Theorem 10 (Markov's Theorem [Mar57]). Suppose $f: \{0,1\}^n \to \{0,1\}$ is not identically 0. Then f is k-alternating iff it has inversion complexity $O(\log k)$.

Refinement of this characterization:

Theorem 11. f is k-alternating iff it can be written $f(x) = h(m_1(x), \ldots, m_k(x))$, where each m_i is monotone and h is either the parity function or its negation.

Corollary 12. Every $f \in C_t^n$ can be expressed as $f = h(m_1, \dots, m_T)$ where h is either Parity_T or its negation, each $m_i : \{0,1\}^n \to \{0,1\}$ is monotone, and $T = O(2^t)$.

Proof (and interpretation). the m_i 's are successive nested layers:

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Learning C_t^n : Upper bound.

Influence, Low-Degree Algorithm, and a Can of

Soup Introduction Generalizing monotone functions: \mathcal{C}^n_t . Learning \mathcal{C}^n_t : Upper bound. Learning \mathcal{C}^n_t : Lower bound. Conclusion and Open Problem(s).

Theorem 13. There is a uniform-distribution learning algorithm which learns any unknown $f \in C_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$.

Influence, Low-Degree Algorithm, and a Can of

 $Soup \\ \textbf{Introduction Generalizing monotone functions: } \mathcal{C}^n_t. \textbf{ Learning } \mathcal{C}^n_t: \textbf{ Upper bound. Learning } \mathcal{C}^n_t: \textbf{ Lower bound. Conclusion and Open Problem(s).}$

Theorem 15. There is a uniform-distribution learning algorithm which learns any unknown $f \in C_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$. (Recall the $n^{O(\sqrt{n}/\varepsilon)}$ for monotone functions, i.e. t=0.)

Influence, Low-Degree Algorithm, and a Can of

 $Soup \\ \text{Introduction Generalizing monotone functions: } \mathcal{C}^n_t. \text{ Learning } \mathcal{C}^n_t \text{: Upper bound. Learning } \mathcal{C}^n_t \text{: Lower bound. Conclusion and Open Problem(s).}$

Theorem 17. There is a uniform-distribution learning algorithm which learns any unknown $f \in \mathcal{C}_t^n$ from random examples to error ε in time $n^{O(2^t\sqrt{n}/\varepsilon)}$. (Recall the $n^{O(\sqrt{n}/\varepsilon)}$ for monotone functions, i.e. t=0.)

Proof. Recall that (1) monotone functions have total influence $\leq \sqrt{n}$ and that (2) we can learn functions with good Fourier concentration:

Theorem 18 (Low-Degree Algorithm ([LMN93])). Let \mathcal{C} be a class such that for all $\varepsilon > 0$ and $\tau = \tau(\varepsilon, n),$

$$\sum_{|S|>\tau} \hat{f}(S)^2 \le \varepsilon, \qquad \forall f \in \mathcal{C}.$$

Then \mathcal{C} can be learned from uniform random examples in time poly $(n^{\tau}, 1/\varepsilon)$.

Decomposition theorem + union bound + massaging + the above: k-alternating functions have total influence $\leq k\sqrt{n}$, and we are done.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Learning C_t^n : Lower bound.

Three-step program

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Three-step program

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

$$\begin{bmatrix}
\text{high-accuracy} \\
\text{monotone}
\end{bmatrix}
\xrightarrow[\text{monotone}]{} \xrightarrow[\text{monotone}]{} \xrightarrow[\text{monotone}]{} \xrightarrow[\text{k-alternating}]{} \xrightarrow[\text{k-alternating}]{} \xrightarrow[\text{k-alternating}]{} (c)$$

(a) Monotone functions are hard to learn well. (A simple extension of [BT96].)

Learning monotone functions to (very small) error $\frac{1}{\sqrt{n}}$ requires 2^{Cn} queries, for some absolute C > 0.

(b) Monotone functions are hard to learn, period. (Hardness amplification and the previous result.)

Learning monotone functions to (almost any) error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ queries.

(c) k-alternating functions are hard to learn, too! (Hardness amplification again + truncated parity.)

Learning k-alternating functions to (almost any) error ε requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ queries.

Introduction Generalizing monotone functions: \mathcal{C}_{t}^{n} . Learning \mathcal{C}_{t}^{n} : Upper bound. Learning \mathcal{C}_{t}^{n} : Lower bound. Conclusion and Open Problem(s).

Composition:

- $\blacksquare \quad \text{"Inner" function } f \colon \{0,1\}^m \to \{0,1\}$
- \blacksquare + "combining" function $g: \{0,1\}^r \to \{0,1\}$
- \longrightarrow combined function $(g \otimes f) : \{0,1\}^{mr} \to \{0,1\}$

$$(g \otimes f)(x) = g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

In more detail: ingredients for (b) and (c)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Composition:

- "Inner" function $f: \{0,1\}^m \to \{0,1\}$
- \blacksquare + "combining" function $g: \{0,1\}^r \to \{0,1\}$
- \longrightarrow combined function $(g \otimes f) \colon \{0,1\}^{mr} \to \{0,1\}$

$$(g \otimes f)(x) = g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

Expected bias: "kill" each variable of f independently by a random restriction. What is the expected bias of the result?

In more detail: ingredients for (b) and (c)

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Composition:

- "Inner" function $f: \{0,1\}^m \to \{0,1\}$
- \blacksquare + "combining" function $g: \{0,1\}^r \to \{0,1\}$
- \longrightarrow combined function $(g \otimes f) : \{0,1\}^{mr} \to \{0,1\}$

$$(g \otimes f)(x) = g(f(x_1, \dots, x_m), \dots, f(x_{(r-1)m+1}, \dots, x_{rm}))$$

Expected bias: "kill" each variable of f independently by a random restriction. What is the expected bias of the result?

"XOR"-Lemma of [FLS11]: Let \mathcal{F} be a class of m-variable inner functions with "very small bias," and $g: \{0,1\}^r \to \{0,1\}$ an outer function with "very small expected bias." Then if one can learn $g \otimes \mathcal{F}$ efficiently, one can learn \mathcal{F} efficiently-ish.

In more detail: step (b)

10

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 19. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

-6

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 20. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

• Choose suitable $m, r = \omega(1)$ such that mr = n.

10

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 21. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise)

(Why? We want ExpectedBias_{γ} $(g_r) + \epsilon' \le 1 - \varepsilon$, and less stable means smaller expected bias)

- 62

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 22. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise)

(Why? We want ExpectedBias_{γ} $(g_r) + \epsilon' \leq 1 - \varepsilon$, and less stable means smaller expected bias)

Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class" from Step (a).

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 23. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise)

(Why? We want ExpectedBias_{γ} $(g_r) + \epsilon' \le 1 - \varepsilon$, and less stable means smaller expected bias)

- Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class" from Step (a).
- Hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 24. There exists a class \mathcal{H}_n of balanced n-variable monotone Boolean functions such that for any $\varepsilon \in [1/n^{1/6}, .49]$, learning \mathcal{H}_n to error ε requires $2^{\Omega(\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n.
- Take the "Mossel-O'Donnell function" g_r [MO03] (a balanced monotone function minimally stable under very small noise)
 - (Why? We want ExpectedBias_{γ} $(g_r) + \epsilon' \leq 1 \varepsilon$, and less stable means smaller expected bias)
- \blacksquare Apply the hardness amplification theorem on $g_r \otimes \mathcal{G}_m$, \mathcal{G}_m being the "hard class" from Step (a).
- Hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_{t}^{n} . Learning \mathcal{C}_{t}^{n} : Upper bound. Learning \mathcal{C}_{t}^{n} : Lower bound. Conclusion and Open Problem(s).

Theorem 25. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

•

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 26. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

■ Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.

Introduction Generalizing monotone functions: \mathcal{C}_{t}^{n} . Learning \mathcal{C}_{t}^{n} : Upper bound. Learning \mathcal{C}_{t}^{n} : Lower bound. Conclusion and Open Problem(s).

Theorem 27. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

(Why? We want it to be k-alternating, and very little stable)

е.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 28. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

(Why? We want it to be k-alternating, and very little stable)

Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m coming from Step (b).

т.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 29. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

(Why? We want it to be k-alternating, and very little stable)

- Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m coming from Step (b).
- Really hope all the constants and parameters work out.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Theorem 30. For any k = k(n), there exists a class $\mathcal{H}^{(k)}$ of balanced k-alternating Boolean functions (on n variables) such that, for n big enough and (almost) any $\varepsilon > 0$, learning $\mathcal{H}^{(k)}$ to accuracy $1 - \varepsilon$ requires $2^{\Omega(k\sqrt{n}/\varepsilon)}$ membership queries.

Sketch.

- Choose suitable $m, r = \omega(1)$ such that mr = n and $r \approx k^2$.
- Take $\mathsf{Parity}_{k,r}$, the "k-Truncated Parity function on r variables" as combining function, in lieu of the previous g_r .

(Why? We want it to be k-alternating, and very little stable)

- Apply the hardness amplification theorem on $\mathsf{Parity}_{k,r} \otimes \mathcal{H}_m$, \mathcal{H}_m coming from Step (b).
- Really hope all the constants and parameters work out.

Conclusion and Open Problem(s).

Open problems

Weak Learning: can one learn C_t^n to error $\frac{1}{2} - \frac{1}{\text{poly}(n)}$ ("barely better than random") in polynomial time?

(Related) Fourier spectrum: Can we get any further understanding of the Fourier spectrum of k-alternating functions?

Concrete example:

Let f, g be monotone Boolean functions, and $h = \mathsf{Parity}(f, g)$. Can we prove

$$\sum_{|S| \le 2} \hat{h}(S)^2 \ge \frac{1}{\text{poly}(n)}?$$

Or even $\sum_{|S| \le 2} \hat{h}(S)^2 > 0$?

Thank you.

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

Any question?

References

Introduction Generalizing monotone functions: \mathcal{C}_t^n . Learning \mathcal{C}_t^n : Upper bound. Learning \mathcal{C}_t^n : Lower bound. Conclusion and Open Problem(s).

- [BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the ACM, 43(4):747-770, 1996.
- [FLS11] V. Feldman, H. K. Lee, and R. A. Servedio. Lower bounds and hardness amplification for learning shallow monotone formulas. *Journal of Machine Learning Research Proceedings Track*, 19:273–292, 2011.
- [LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. *Journal of the ACM*, 40(3):607–620, 1993.
- [Mar57] A. A. Markov. On the inversion complexity of systems of functions. *Doklady Akademii Nauk SSSR*, 116:917–919, 1957.
- [MO03] E. Mossel and R. O'Donnell. On the noise sensitivity of monotone functions. Random Structures and Algorithms, 23(3):333–350, 2003.