MT51 - P2011TP3: Quaternions

Ordinairement, les systèmes informatiques ne fournissent pas les outils relatifs à la théorie des quaternions, alors qu'ils le font par exemple pour les nombres complexes. L'objectif de ce TP est alors d'établir un certain nombre de résulats relatifs à cette théorie et de développer les modules indispensables afin d'en disposer dans l'environnement de travail lorsque le besoin s'en fera sentir dans le cadre de travaux en image.

1. Structure de corps de l'ensemble des quaternions

- (a) On considère tout quaternion q = t + xi + yj + zk comme un vecteur h = (t, x, y, z). Ecrire une fonction $affiche_h(h)$ qui, à partir du vecteur h défini ci-dessus, renvoie la chaîne de l'écriture de q sous forme conventionnelle.
- (b) Ecrire une fonction $somme_h(h_1,h_2)$ qui, à partir des deux vecteurs h_1 et h_2 , renvoie le quaternion somme.
- (c) Ecrire une fonction $produit_-h(h_1,h_2)$ qui, à partir des deux vecteurs h_1 et h_2 , renvoie le quaternion produit.
- (d) Ecrire les fonctions $conjugue_h$, $module_h$ et $inverse_h$ qui, à partir d'un quaternion convenable h renvoient le conjugué, le module et l'inverse s'ils existent ...

2. Forme polaire

(a) Ecrire une fonction $polaire_h$ qui, pour un quaternion convenable q représenté par h, renvoie sa forme polaire $[r,\theta]$ définie par : $q=re^{I\theta}$

(b) Ecrire la fonction inverse algebr_h.

3. Exemple d'utilisation des outils développés : vérification de l'associativité du produit

Proposer une preuve informatique de l'associativité du produit de quaternions.

4. Quaternions et rotations

- (a) Etant donnés un vecteur non nul \overrightarrow{n} et un réel θ d'un intervalle convenable, écrire une fonction $matrice_rotation$ $(\overrightarrow{n}, \theta)$ qui renvoie la matrice de la rotation vectorielle $l_{\overrightarrow{n}, \theta}$ obtenue en utilisant les résultats du cours.
- (b) Ecrire une fonction h rot(h) qui, à partir du quaternion unitaire q représenté par h, fournit la matrice de la rotation vectorielle associée.
- (c) Inversement, écrire une fonction $rot_-h(L)$ qui, à partir d'une matrice de rotation vectorielle L de \mathcal{V}_3 , détermine le quaternion unitaire associé.