	ansfer arning	Settings	Domain/ Task	Feature spaces/	Source Data	Target Data	Related Areas	Examples	Algorithms	References
Transfer Learning	Space-setting-based Label-setting-based			Label spaces	Unlabeled		Self-taught Learning	Self-taught Learning	Use unlabeled data to construct a new representation with <u>sparse</u> <u>coding algorithm</u> . Apply this new representation to labeled data. Use existing classification methods in this new space.	Self-taught Learning: http://al.stanford.edu/~hllee/icml 07-selftaughtlearning.pdf
		Inductive Transfer Learning	Same or Different / Different			Labeled	Multi-task Learning	Question Answering	Build a Multitask O/A Network trained jointly on decaNLP. Takes in a question and context, encodes both with a BILSTM, uses dual coattention to condition representations for both sequences, compresses all info with another two BISTMs, and applies eld-attention. Uses a final two BISTMs to get representations of the question & context. Creates Multi-pointer-generator decoder.	The Natural Language Decathlon Multitask Learning as Question Answering: https://arxiv.org/pdf/1806.08730. pdf
					Labeled	Labeled + Unlabeled	General ITL	Kidney Detection	Initialize the weight from Source Network parameters on the target network. Freeze the weights of the low-level layers of the network, while updating the weights of other layers until it saturates.	Understanding the Mechanisms of Deep Transfer Learning for Medical Images: https://arxiv.org/pdf/1704.06040.pdf
								Teacher- student Network	Distillation between teacher and student network. Train the teacher model to produce class probabilities by using output layer that convert the logit. Establish the correspondence between the intermediate outputs of the student and teacher network by matching the logit. Forward pass through the teacher network Backpropagate through the student network	Distilling the Knowledge in a Neural Network: https://arxiv.org/pdf/1503.02531v 1.pdf
		Transductive Transfer Learning	Different / Different		Labeled	Unlabeled /Limited	Domain Adaptation	Supervised Domain Adaptation	Create pairs of source and target instances to handle target data. Extend adversarial learning to align the semantic information of classes. Create a discriminator to distinguish between samples of the source and target distributions. Create an inference function to map a target sample to a feature space.	Few-shot Adversarial Domain Adaptation: https://arxiv.org/pdf/1711.02536. pdf
						Limited	Covariate Shift/ Sample Selection Bias	Binary Classification	Build a minimax estimator, Robust Bias-aware classifier, measured by the conditional logloss (for <u>Sample</u> <u>Selection Bias</u>) Datasets: Generate biased subsets of used datasets as source and unbiased subsets as target samples.	Robust Classification Under Sample Selection Bias: https://papers.nips.cc/paper/5458 -robust-classification-under- sample-selection-bias.pdf
		Unsupervised Transfer Learning	Same or Different / Different		Unlabeled	Unlabeled	Clustering/ Dimensionality reduction	Self-taught Clustering	A clustering problem of self-taught learning Learn the feature representation of data in the source domain as auxiliary data using <u>Sporse Coding technique</u> . Build two objective functions by extending the <u>information theoretic</u> <u>co-clustering</u> and share feature clustering.	Self-taught Clustering: https://www.cse.ust.hk/~qyang/D ocs/2008/dwyakicml.pdf
		Homogeneous Transfer Learning		Same/ Same	Labeled	Limited/ Unlabeled		Fatigue Detection	CP-MDA (Limited target data): Build classifiers for all source domains to get weight value, create a learning task and build a target learner using labeled & pseudo labeled target data. ZSW-MDA (Unlabeled target data): Compute weights for source domains, modify the weights, and learn a target classifier.	Multi-source Domain Adaptation and Its Application to Detection of Fatigue: https://www.cs.ucdavis.edu/~davidson/Publications/TKDD.pdf
				Same/ Different	Labeled	Labeled		Feature Transferring	Initialize the weights from a pre- trained model Use the target data to fine-tune the parameters for the target task. Fine-tune all the layers of DNN Freeze several layers of the DNN and only fine-tune the layers that can reduce overfitting.	How transferable are features in deep neural networks?: https://papers.nips.cc/paper/5347how-transferable-are-features-in-deep-neural-networks.pdf
		Heterogeneous Transfer Learning		Different/ Same	Labeled	Limited		Translated Learning	Build a translator to connect two different feature spaces using co-occurrence data. Use the language model and combine feature translation with nearest neighbor learning. Build a model using a Markov chain c	Translated learning: Transfer learning across different feature spaces: https://papers.nips.cc/paper/3492_translated-learning-transfer-learning-across-different-feature-spaces.pdf
				Different/ Different	Labeled	Limited		Drug Efficacy Prediction	Find a common latent input spaces using spectral mapping. Apply a clustering-based sample selection method to select new related instances. Use Bayesian-based method to find the relationship and resolve the differences in the output space.	Transfer Learning on Heterogeneous Feature Spaces via Spectral Transformation: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.7133 &rep=rep1&type=pdf