Lecture 3: Separation Theorems

Niao He

2nd May 2019

Niao He

.....

Quick Revie

Separation

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of Alternatives

Farkas' Lemm LP Duality

Outline

Warm-up

Quick Review Questions

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemma LP Duality

Niao He

Λ/-----

Quick Review Questions

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of

Farkas' Lemm

Quick Review

- ► Radon's Theorem
 - Any set of d+2 points in \mathbb{R}^d can be partitioned into two disjoint sets whose convex hulls intersect.
- Helley's Theorem
 - If every (d+1) of the sets from a collection of n sets in \mathbb{R}^d intersect (n>d), then the whole collection of sets intersect.

Niao He

IVIAO I I

Quick Revis

Quick Revie

Separation

Theorems
Definitions

Strong Separation Separation Hyperplane Theorem

Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm LP Duality

Question

What's in common and what's different?

Figure: Separation of sets

Niao He

Quick Revie

Separation

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems o

Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^Tx = b\}$ with $a \neq 0$ is said to separate S and T if $S \cup T \not\subset H$ and

$$S \subset H^{-} = \left\{ x \in \mathbb{R}^{n} : a^{T} x \leq b \right\}$$

$$T \subset H^{+} = \left\{ x \in \mathbb{R}^{n} : a^{T} x \geq b \right\}$$

Figure: Separation of two sets

Separation is equivalent to say

$$\sup_{x \in S} a^T x \le \inf_{x \in T} a^T x \text{ and } \inf_{x \in S} a^T x < \sup_{x \in T} a^T x.$$

Niao He

Quick Revie

Separation

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm

Strict Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^T x = b\}$ with $a \neq 0$ is said to strictly separate S and T if

$$S \subset H^{--} = \left\{ x \in \mathbb{R}^n : a^T x < b \right\}$$
$$T \subset H^{++} = \left\{ x \in \mathbb{R}^n : a^T x > b \right\}$$

Figure: Strict Separation of two sets

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm

Strong Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^Tx = b\}$ with $a \neq 0$ is said to strongly separate S and T if there exits b' < b < b'' such that

$$S \subset \left\{ x \in \mathbb{R}^n : a^T x \le b' \right\}$$
$$T \subset \left\{ x \in \mathbb{R}^n : a^T x \ge b'' \right\}$$

Remark.

- ▶ Strong separation ⇒ strict separation.
- ▶ Strict separation ⇒ strong separation.
- Strong separation is equivalent to say

$$\sup_{x \in S} a^T x < \inf_{x \in T} a^T x.$$

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm LP Duality

Example

In all examples, S and T are two closed and convex sets

- (A) S and T are separated, but not strictly;
- (B) S and T are strictly separated, but not strongly;
- (C) S and T are strongly separated.

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem

Strong Separation

Theorems of Alternatives

Farkas' Lemm LP Duality

Separation Hyperplane Theorem

Theorem. Let S and T be two nonempty convex sets. Then S and T can be separated if and only if

$$\mathsf{rint}(S)\cap\mathsf{rint}(T)=\emptyset.$$

Corollary. Let S be a nonempty convex set and $x_0 \in \partial S$. There exists a supporting hyperplane $H = \{x : a^T x = a^T x_0\}$ with $a \neq 0$ such that

$$S \subset \left\{x : a^T x \leq a^T x_0\right\}, \text{ and } x_0 \in H.$$

Niao He

TVIGO III

Quick Revie

Separation

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem

Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm LP Duality

Proof of Separation Theorem

S and T can be separated iff $rint(S) \cap rint(T) = \emptyset$.

- Necessity.
 - ▶ *S* and *T* are separated implies that for some $a \neq 0$,

$$\mathsf{sup}_{x \in \mathcal{S}} a^{\mathcal{T}} x \leq \mathsf{inf}_{x \in \mathcal{T}} a^{\mathcal{T}} x.$$

▶ If $z \in rint(S) \cap rint(T)$, then

$$z = \operatorname{argmax}_{x \in S} \{a^T x\} = \operatorname{argmin}_{x \in T} \{a^T x\}.$$

► The linear function $f(x) = a^T x$ has to be constant on both S and T, i.e., $S \cap T \subset H$. (why?)

Niao He

Warm-up Quick Review

Separation

Definitions of Separation, Strict and Strong Separation

Separation Hyperplane Theorem

Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemm

Proof of Separation Theorem

S and T can be separated iff $rint(S) \cap rint(T) = \emptyset$.

- **Sufficiency.** Based on constructive steps:
 - 1. Separation of a convex set S and $x_0 \notin cl(S)$ (key step);
 - 2. Separation of a convex set S and $x_0 \notin rint(S)$;
 - 3. Separation of 0 and rint(S) rint(T);
 - 4. Separation of S and T.

Niao He

Quick Revi

Separation Theorems

Separation, Strict a Strong Separation

Separation

Hyperplane Theorem

Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemi LP Duality

Separation of Convex Set and A Point Outside

Proposition. Let S be convex and closed, $x_0 \notin S$. Then x_0 and S can be separated.

Proof. Define
$$d(\{x_0\}, S) := \inf\{\|x_0 - x\|_2 : x \in S\}$$

 $\operatorname{proj}(x_0) := \operatorname{argmin}_{x \in S}\{\|x_0 - x\|_2\}$

Then $d({x_0}, S) > 0$ and $proj(x_0)$ exists and is unique (why?). The hyperplane

$$H := \{x : a^T x = b\}, a = x_0 - \text{proj}(x_0), b = a^T x_0 - \frac{||a||_2}{2}$$

separates x_0 and S , i.e. $a^T x < b$, $\forall x \in S$, $a^T x_0 > b$. (why?)

Figure: Separation of a convex set and a point

Niao He

Warm-up
Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives Farkas' Lemma

Strong Separation Hyperplane Theorem

Theorem. Let S and T be two nonempty convex sets. Then S and T can be strongly separated if and only if

$$dist(S, T) := \inf\{\|s - t\|_2 : s \in S, t \in T\} > 0.$$

In particular, if S-T is closed and $S\cap T=\emptyset$, then S and T can be strongly separated.

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemn LP Duality

Remarks

- "S T is closed" is only a sufficient condition for strong (strict) separation, not a necessary condition.
- ► Even if both S and T are closed convex, S T might not be closed, and they might not even be strictly separated.
- ▶ When both S and T are closed convex, $S \cap T = \emptyset$ and at least one of them is bounded, then S T is closed, and S and T can be strongly separated.

Niao He

Strong Separation Hyperplane Theorem

Proof of Strong Separation Theorem

S and T can be strongly separated iff dist(S, T) > 0.

▶ **Necessity.** If S and T are strongly separated, then $\exists a \neq 0 : \alpha := \sup_{x \in S} a^T x < \inf_{y \in T} a^T y := \beta.$ Hence, $\forall x \in S, v \in T$:

$$||a||_2||y-x||_2 \ge a^T(y-x) \ge \beta - \alpha \Rightarrow ||y-x||_2 \ge \frac{\beta - \alpha}{||a||_2}.$$

Sufficiency. Suppose r := dist(S, T) > 0, then (S - T)and B(0, r) are two disjoint convex sets. By Separation Theorem, $\exists a \neq 0$,

$$\sup_{z \in S - T} a^T z = \sup_{x \in S, y \in T} a^T (x - y) \le \inf_{z \in B(0, r)} a^T z < 0.$$

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of Alternatives

Farkas' Lemm LP Duality

Feasibility of Linear System

Example . Show that the following system have no solution.

$$\begin{cases} x_1 - x_2 + 2x_3 & \leq 0 & \cdots \times 3 \\ -x_1 + x_2 - x_3 & \leq 0 & \cdots \times 5 \\ 2x_1 - x_2 + 3x_3 & \leq 0 & \cdots \times 3 \\ 4x_1 - x_2 + 10x_3 & > 0 & \end{cases}$$

 $3 \times Eq.(1) + 5 \times Eq.(2) + 3 \times Eq.(3) \Rightarrow 4x_1 - x_2 + 10x_3 \le 0.$ Note the system

$$\begin{cases} y_1 - y_2 + 2y_3 &= 4 \\ -y_1 + y_2 - y_3 &= -1 \\ 2y_1 - y_2 + 3y_2 &= 10 \\ y_1, y_2, y_3 &\geq 0 \end{cases}$$
 has a solution $y = (3, 5, 3)$.

Niao He

Quick Revie

Separatio

Definitions of Separation, Strict an Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of Alternatives Farkas' Lemma

The Celebrated Farkas' Lemma

Theorem. (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Exactly one of the following sets must be empty:

- (i) $\{x \in \mathbb{R}^n : Ax = b, x \ge 0\};$
- (ii) $\{y \in \mathbb{R}^m : A^T y \le 0, b^T y > 0\}.$

- System (i) and (ii) are often called <u>strong alternatives</u>, i.e. exactly one of them must be feasible.
- ► This is an example of "theorem on alternatives".

Figure: Gyula Farkas (1847–1930)

Niao He

TVIAO I

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation

Separation
Hyperplane Theorem
Strong Separation

Strong Separation Hyperplane Theorem

Theorems (

Farkas' Lemma

Geometric View of Farkas' Lemma

Let $A = [a_1|a_2|...|a_n]$, define the cone Cone $\{a_1,...,a_n\} = \{\sum_{i=1}^n x_i a_i : x_i \ge 0, i = 1,...,n\}$

$$\{Ax = b, x \ge 0\}$$
 is infeasible $\iff b \notin \mathsf{Cone}\{a_1, ..., a_n\}$ $\implies \exists y, y^T a_i \le 0, \forall i, y^T b > 0$

► Farkas' lemma can be regarded as a special case of the separation theorem.

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems of Alternatives

Farkas' Lemma LP Duality

Proof of Farkas' Lemma

- System (i) feasible \Rightarrow system (ii) infeasible. Otherwise, $0 < b^T y = (Ax)^T y = x^T (A^T y) \le 0$.
- ▶ System (i) infeasible \Rightarrow system (ii) feasible. Let $C = \text{Cone}\{a_1, ..., a_n\}$. Then C is convex and closed. And $b \notin C$.
 - ▶ By the separation theorem, *b* and *C* can be strongly separated, i.e. $\exists y \neq 0 \in \mathbb{R}^m, \gamma \in \mathbb{R}$, s.t.

$$y^T z \le \gamma, \forall z \in C, y^T b > \gamma.$$

- ▶ Since $0 \in C$, we have $\gamma \ge 0$.
- Show that $\gamma = 0$. Suppose $\gamma > 0$, and $\exists z_0 \in C$ such that $y^T z_0 > 0$, then $y^T (\alpha z_0) > \gamma$ for α large enough.
- Since $a_1, ..., a_n \in C$, we have $y^T a_i \leq 0$, $\forall i = 1, ..., m$, i.e., $A^T y \leq 0$.

Niao He

Warm-up
Quick Revie

Separation Theorems

Definitions of Separation, Strict an Strong Separation Separation Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems Alternative

Farkas' Lemma LP Duality

Remarks

- ▶ The closedness of the cone Cone $\{a_1, ..., a_n\}$ is crucial here. Note that in general, when S is not a finite set, Cone(S) is not always closed.
- ► Farkas' Lemma can also be proved by Fourier-Motzkin elimination.
- ▶ Result can be generalized to convex inequalities.

Niao He

Warm-up

Quick Revi Questions

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation

Hyperplane Theorem Strong Separation Hyperplane Theorem

Theorems

Farkas' Lemma

Variant of Farkas' Lemma

Theorem. Exactly one of the following two sets must be empty:

- (i) $\{x \in \mathbb{R}^n : Ax \leq b\}$
- (ii) $\{y \ge 0 : A^T y = 0, b^T y < 0\}$

Theorem. Exactly one of the following two sets must be empty:

- (i) $\{x \in \mathbb{R}^n : Ax = b\}$
- (ii) $\{y \in \mathbb{R}^m : A^T y = 0, b^T y \neq 0\}$

Niao He

Quick Revie

Separation Theorems

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of Alternatives Farkas' Lemma LP Duality

Duality of Linear Program

Consider the primal and dual pair of linear programs

Theorem. (LP Duality) If (P) has a finite optimal value, then so does (D) and the two values equal each other.

Proof: Homework Exercise.

Niao He

Warm-up Quick Revie

Separation

Definitions of Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Theorems of Alternatives Farkas' Lemm LP Duality

Who introduced LP duality?

Figure: Leonid Kantorovich (1912–1986)

Figure: George Dantzig (1914–2005)

Figure: John von Neumann (1903–1957)

Niao He

Quick Review

Separation Theorems

Separation, Strict and Strong Separation Separation Hyperplane Theorem Strong Separation

Alternatives
Farkas' Lemma
LP Duality

References

- ▶ Boyd & Vandenberghe, Chapter 2.5
- ▶ Ben-Tal & Nemirovski, Chapter 1.2.5-1.2.6