UNIVERSITY DEPARTMENT OF MATHEMATICS

Tilka Manjhi Bhagalpur University, Bhagalpur

Assignment - III

Due Date: 10–09-19 PAPER – III Session: 2018–20

- 1. Problems on Inner Product Space
 - (a) Show that the set of all square matrices of order n over \mathbb{R} forms an inner product space with the innner product is given by

$$\langle A, B \rangle = \text{trace } B^T A$$

(b) Show that the set of all continuous function $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$, forms an inner product space with inner product given by

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$$

2. On the vector space over \mathbb{R} , consider three vectors

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}.$$

Suppose that v_4 is another vector which is orthogonal to v_1 and v_3 , and satisfying

$$\mathbf{v}_2 \cdot \mathbf{v}_4 = -3.$$

i.
$$\mathbf{v}_1 \cdot \mathbf{v}_2$$

ii.
$$\mathbf{v}_3 \cdot \mathbf{v}_4$$

iii.
$$(2\mathbf{v}_1 + 3\mathbf{v}_2 - \mathbf{v}_3) \cdot \mathbf{v}_4$$

iv.
$$\|\mathbf{v}_1\|$$
, $\|\mathbf{v}_2\|$, $\|\mathbf{v}_3\|$

- v. What is the distance between v_1 and v_2 ?
- 3. A set of nonzero orthogonal vectors forms a linearly independent set.
- 4. Show that the set of all bilinear forms over a vector space *V* over a field *F*, also forms a vector space over the same field *F*.
- 5. Problems on Gram Schmidt Orthogonalizaton
 - (a) Let W be the subspace of \mathbb{R}^4 spanned by

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}.$$

Construct an orthonormal basis of W.

(b) Let \mathcal{P}_2 be the set of all polynomials of degree less than 3 over real numbers with the inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Starting with a basis $(1, x, x^2)$, find an orthonormal basis.

6. Problems on Matrix of Bilinear Form

(a) Let \mathcal{P}_2 be the set of all polynomials of degree less than 3 over real numbers with the bilinear transformation given by

$$H(f,g) = \int_{-1}^{1} f(x)g(x) dx.$$

Find the matrix of bilinear forms with respect to the following bases.

i.
$$\beta_1 = (1, x, x^2)$$

ii.
$$\beta_2 = (1, 1 + x, 1 + x^2)$$

- 7. Problems on quadratic forms
 - (a) Write the following quadratic form in matrix form. Find it's rank and signature.

i.
$$K(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$$

ii.
$$K(x_1, x_2) = 5x_1^2 - 10x_1x_2 + x_2^2$$

iii.
$$K(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 - 6x_1x_3 + 8x_2x_3$$

(b) Reduce the quadratic form into the canonical form and decide the definiteness of a quadratic form

i.
$$-x^2 - y^2 - 2z^2 + 2xy$$

ii.
$$x^2 - 2xy + xz + 2yz + 2z^2 + 3zx$$

iii.
$$-4x^2 - y^2 + 4xz - 2z^2 + 2yz$$

iv.
$$-x^2 - y^2 + 2xz + 4yz + 2z^2$$

v.
$$-x^2 + 2xy - 2y^2 + 2xz - 5z^2 + 2yz$$
 vi. $y^2 + xy + 2xz$

vi.
$$y^2 + xy + 2xz$$