Student Performance Analysis

Cet ensemble de données comprend une base des étudiants, d'un exemple de lycée au États-Unis qui comprends des résultats de trois examens et une variété de facteurs personnels, sociaux et économiques qui ont des effets d'interaction sur eux.

Table des matières

- 1. Importation des librairies
- 2. Chargement des données Student (EDA)
- 3. Visualisation des données
- 4. Descente de Gradient from scratch
- 4. Régression linéaire multiple
- 5. Régression logistique

1. Importer les librairies

```
Entrée [1]: #Importer les librairies
            import os
            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            from sklearn import linear model
            import seaborn as sns
            import matplotlib.pyplot as plt
            import warnings
            import matplotlib as mpl
            from sklearn import metrics
            from sklearn.metrics import *
            import matplotlib.gridspec as gridspec
            from sklearn.model selection import train test split
            from sklearn.linear_model import LinearRegression
            from sklearn.linear_model import LogisticRegression
            %matplotlib inline
```

2. Lire le Dataset Student

Out[2]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

```
Entrée [3]: student.describe()
```

Out[3]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

La moyenne des scores de math est de 66 de l'oral 68 et de l'ecriture est de 69. le minimum est de 0 le maximum est de 100%

```
Entrée [4]: student.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	gender	1000 non-null	object
1	race/ethnicity	1000 non-null	object
2	parental level of education	1000 non-null	object
3	lunch	1000 non-null	object
4	test preparation course	1000 non-null	object
5	math score	1000 non-null	int64
6	reading score	1000 non-null	int64
7	writing score	1000 non-null	int64

dtypes: int64(3), object(5)
memory usage: 62.6+ KB

Entrée [5]: #Pas de variable manquante student.isnull().sum()

```
Out[5]: gender
race/ethnicity
parental level of education
lunch
test preparation course
math score
reading score
writing score
dtype: int64
```

```
Entrée [6]: student.tail()
```

Out[6]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
995	female	group E	master's degree	standard	completed	88	99	95	
996	male	group C	high school	free/reduced	none	62	55	55	
997	female	group C	high school	free/reduced	completed	59	71	65	
998	female	group D	some college	standard	completed	68	78	77	
999	female	group D	some college	free/reduced	none	77	86	86	

```
Entrée [7]: student.shape
```

Out[7]: (1000, 8)

Le jeu de données comporte 1000 observations et 8 colonnes qui représentent :

- · Le Genre
- Le niveau d'éducation des parents
- Le test de preparation des cours
- · Le score des math
- Le score de l'oral de lecture
- Le score de l'écriture

Statistiques descriptives

Entrée [8]: student.describe().T

Out[8]:

	count	mean	std	min	25%	50%	75%	max
math score	1000.0	66.089	15.163080	0.0	57.00	66.0	77.0	100.0
reading score	1000.0	69.169	14.600192	17.0	59.00	70.0	79.0	100.0
writing score	1000.0	68.054	15.195657	10.0	57.75	69.0	79.0	100.0

Classement des variables par Group

Entrée [9]: #Groupe la moyenne des 'race/ethnicity' par 'parental level of education' student.groupby(['race/ethnicity','parental level of education']).mean()

Out[9]:

		math score	reading score	writing score
race/ethnicity	parental level of education			
group A	associate's degree	61.000000	67.071429	63.571429
	bachelor's degree	67.166667	68.083333	68.333333
	high school	60.444444	62.888889	60.500000
	master's degree	57.666667	64.666667	67.666667
	some college	63.888889	65.777778	65.000000
	some high school	58.916667	62.083333	58.583333
group B	associate's degree	66.097561	69.585366	68.243902
	bachelor's degree	69.300000	72.950000	71.650000
	high school	59.791667	63.458333	61.250000
	master's degree	67.166667	80.166667	77.166667
	some college	63.189189	65.756757	64.189189
	some high school	61.815789	66.447368	64.605263
group C	associate's degree	66.730769	71.128205	70.269231
	bachelor's degree	68.150000	75.675000	75.900000
	high school	60.906250	64.421875	61.656250
	master's degree	67.052632	70.526316	69.526316
	some college	65.130435	69.420290	68.869565
	some high school	60.551020	65.632653	63.285714
group D	associate's degree	67.600000	70.540000	69.860000
	bachelor's degree	67.571429	70.142857	71.892857
	high school	62.863636	64.409091	63.159091
	master's degree	72.521739	77.173913	79.739130
	some college	68.731343	70.880597	71.701493
	some high school	66.760000	69.980000	69.100000
group E	associate's degree	74.897436	73.820513	73.205128
	bachelor's degree	76.55556	74.833333	75.388889
	high school	70.772727	70.318182	67.545455
	master's degree	74.625000	82.125000	80.500000
	some college	73.828571	72.628571	70.200000
	some high school	72.111111	69.555556	66.55556

3. Visualisation de la base student (EDA)

Entrée [10]: sns.pairplot(student, hue='gender', palette='Paired')

Out[10]: <seaborn.axisgrid.PairGrid at 0x7ff97c56f850>

Out[11]:

	gender	race/ethnicity	level of education	lunch	test preparation course	math score	reading score	writing score	tota
873	male	group E	associate's degree	free/reduced	none	90	90	82	87.333333

Classification des étudiants par sexe

total

```
Entrée [12]: #Groupe par genre
student.groupby(['gender']).mean()
```

Out[12]:

gender				
female	63.633205	72.608108	72.467181	69.569498
male	68.728216	65.473029	63.311203	65.837483

math score reading score writing score

```
Entrée [13]: #Genre par test preparation
    student.groupby(['gender']).mean().plot.bar()
    plt.show()
```


par Test Preparation Course

```
Entrée [14]: plt.rcParams['figure.figsize'] = (10, 5)
             sns.countplot(student['test preparation course'], palette = 'dark')
             plt.title('Test preparation course',fontsize = 20)
             plt.show()
```


Visualisation des Grades par le total des scores

#Crée une table Total des Grade de A à E

```
Entrée [15]:
              student['Total'] = student['math score']+student['reading score']+student
              student['percentage']=student['Total']/300*100
Entrée [16]: def determine grade(Total):
                  if Total >= 85 and Total <= 100: return 'Grade A'</pre>
                  elif Total >= 70 and Total< 85: return 'Grade B'</pre>
                  elif Total >= 55 and Total < 70: return 'Grade C'</pre>
                  elif Total >= 35 and Total < 55: return 'Grade D'</pre>
                  elif Total >= 0 and Total < 35: return 'Grade E'</pre>
              student['grades']=student['percentage'].apply(determine grade)
```

```
Entrée [17]: plt.figure(figsize=(15,8))
    student['grades'].value_counts().plot.pie(autopct="%1.1f%%")
    plt.title("Pie Chart des Grades")
    plt.show()
```

Pie Chart des Grades

Classification des étudiants selon qu'ils ont réussi ou pas

```
Entrée [19]: # Diagramme à secteurs pour représenter le ratio de réussite et d'échec e
passmarks = 40
plt.rcParams['figure.figsize'] = (18, 12)

# creating a new column pass_math, this column will tell us whether the s
student['pass_math'] = np.where(student['math score'] < passmarks, 'Fail',
student['pass_reading'] = np.where(student['reading score'] < passmarks, '
student['pass_writing'] = np.where(student['writing score'] < passmarks, '
size = student['pass_math'].value_counts()
colors = plt.cm.Reds(np.linspace(0, 1, 3))
labels = "pass", "fail"
explode = [0, 0.2]</pre>
```

```
Entrée [20]: plt.subplot(1, 3, 1)
             plt.pie(size, colors = colors, labels = labels, autopct = '%.2f%', explo
             plt.title('Students Result for Maths', fontsize = 20)
             plt.legend()
             size = student['pass_reading'].value_counts()
             colors = plt.cm.Greens(np.linspace(0, 1, 2))
             labels = "pass", "fail"
             explode = [0, 0.2]
             plt.subplot(1, 3, 2)
             plt.pie(size, colors = colors, labels = labels, autopct = '%.2f%%', explo
             plt.title('Students Result for Reading', fontsize = 20)
             plt.legend()
             size = student['pass_writing'].value_counts()
             colors = plt.cm.Blues(np.linspace(0, 1, 3))
             labels = "pass", "fail"
             explode = [0, 0.2]
             plt.subplot(1, 3, 3)
             plt.pie(size, colors = colors, labels = labels, autopct = '%.2f%%', explo
             plt.title('Students Result for Writing', fontsize = 20)
             plt.legend()
             plt.show()
```


Correlation entre les Variables

```
Entrée [21]: plt.figure(dpi=100)
    plt.title('Correlation Analysis')
    sns.heatmap(student.corr(),annot=True,lw=1,linecolor='white',cmap='viridi
    plt.xticks(rotation=60)
    plt.yticks(rotation = 60)
    plt.show()
```



```
Entrée [22]: corr = student.corr()
    mask = np.triu(np.ones_like(corr,dtype = bool))

plt.figure(dpi=100)
    plt.title('Correlation Analysis')
    sns.heatmap(student.corr(),mask=mask,annot=True,lw=1,linecolor='white',cm
    plt.xticks(rotation=60)
    plt.yticks(rotation = 60)
    plt.show()
```


4. Descente de Gradient from scratch

En se référant à la matrice de corrélation et au heatmap ci-dessus, il semblerait que la variable explicative 'math score' soit la plus corrélée au total des 3 scores, et donc serait aussi la plus corrélée à la moyenne des 3 scores. On va utiliser cette variable 'math score' comme variable explicative, avec les autres variables ordinales, pour tenter de prédire la moyenne des scores de chaque élève.

```
Entrée [23]: # ajouter la colonne 'mean score'
             studentregli['mean score'] = studentregli[['math score', 'reading score',
Entrée [24]: # déclarer les variables catégorielles
             studentregli[['gender',
                             'race/ethnicity',
                             'parental level of education',
                             'test preparation course'|| = studentregli[['gender',
                                                                          'race/ethnici
                                                                          'parental lev
                                                                          'lunch',
                                                                          'test prepara
Entrée [25]: | studentregli['gender'] = studentregli['gender'].cat.codes
             studentregli['race/ethnicity'] = studentregli['race/ethnicity'].cat.codes
             studentregli['parental level of education'] = studentregli['parental level
             studentregli['lunch'] = studentregli['lunch'].cat.codes
             studentregli['test preparation course'] = studentregli['test preparation
Entrée [26]: # définir la variable à prédire et les variables explicatives
             y = studentregli['mean score'].values.reshape(-1,1)
             x = studentregli[['gender','race/ethnicity','parental level of education'
                                 'lunch', 'test preparation course', 'math score']].value
Entrée [27]: x.shape
  Out[27]: (1000, 6)
Entrée [28]: y.shape
 Out[28]: (1000, 1)
Entrée [29]: # ajouter une colonne de bias à la matrice des x train
             x b = np.concatenate((np.ones((len(x),1)),x),axis=1)
Entrée [30]: # préparer les jeux train et test
             x_train, x_test, y_train, y_test = train_test_split(x_b, y, test_size=0.3
Entrée [31]: x train
  Out[31]: array([[ 1.,
                         0.,
                              2., ...,
                                        1., 1., 58.],
                                             1., 61.],
                  [ 1.,
                         1.,
                              1., ...,
                                        0.,
                  [ 1.,
                                        1., 1., 76.1,
                         1.,
                                        1., 0., 44.],
                         0.,
                              2., ...,
                  [ 1.,
                  [ 1.,
                         1.,
                              3., ..., 1., 1., 73.],
                              1., ...,
                                        1., 0., 62.]])
                  [ 1.,
                         1.,
Entrée [32]: x_train.shape
  Out[32]: (700, 7)
```

```
Entrée [33]: y_train.shape
  Out[33]: (700, 1)
Entrée [34]: x_test.shape
  Out[34]: (300, 7)
Entrée [35]: # estimer l'intercept et les coefficients de régression par un calcul mat
Entrée [36]: a = (np.linalg.inv(x train.T@x train))@(x train.T@y train)
Entrée [37]: def predict(features, weights):
                    features - (1000, 7)
                    weights - (7, 1)
                    --> predictions - (1000,7)
                   predictions = np.dot(features, weights)
                   predictions = np.array(predictions).reshape(-1,1)
                   return predictions
Entrée [38]: y_test_pred = predict(x_test,a)
Entrée [39]: df = pd.DataFrame({'True' : y_test.flatten(), 'Predicted' : y_test_pred.
              df['error'] = df['True'] - df['Predicted']
              df['error2'] = df['error']**2
  Out[39]:
                     True Predicted
                                               error2
                                       error
               o 69.333333 67.471583
                                   1.861751
                                             3.466116
               1 77.333333 82.539221 -5.205888 27.101271
               2 45.333333 42.462532 2.870802
                                             8.241502
               3 67.666667 72.499737 -4.833070 23.358569
               4 74.333333 72.768770 1.564563
                                             2.447857
                70.666667 67.068548
                                    3.598118 12.946455
             296 74.333333 74.160424 0.172910
                                             0.029898
             297 77.000000 77.138696 -0.138696
                                             0.019236
             298 66.000000 68.846171 -2.846171
                                             8.100688
             299 54.666667 55.341709 -0.675043
                                            0.455683
```

300 rows × 4 columns

```
Entrée [40]: # MSE
             df['error2'].mean()
  Out[40]: 14.238556161073872
Entrée [41]: # comparer avec la MSE de scikit-learn
             from sklearn import metrics
             metrics.mean_squared_error(y_test,y_test_pred)
  Out[41]: 14.238556161073872
Entrée [42]: # définir la fonction de coût
             def cost_function(features, targets, weights):
                 m = len(targets)
                 J = np.sum((predict(features, weights) - targets) ** 2)/(2 * m)
                 return J
Entrée [43]: cost_function(x_train, y_train, a)
  Out[43]: 6.009992903768611
Entrée [44]: # initialiser les coefficients
             init_weights = np.zeros((7,1))
             init weights = init weights.reshape(-1,1)
Entrée [45]: cost function(x train, y train, init weights)
 Out[45]: 2404.346587301587
Entrée [46]: # définir la fonction qui calcule le gradient
             def feature derivative(errors, features):
                 derivative = 2 * np.dot(errors, features)
                 return derivative
```

Entrée [47]: # définir la fonction de descente de gradient et qui renvoie les nouveaux # coût def batch gradient descent (feature matrix, output, initial weights, step converged = False weights = np.array(initial_weights) # make sure it's a numpy array for j in range(200000): # compute the predictions based on feature matrix and weights usi predictions = predict(feature matrix, weights) # compute the errors as predictions - output errors = predictions - output errors = errors.reshape(1,-1) gradient sum squares = 0 # initialize the gradient sum of squares # while we haven't reached the tolerance yet, update each feature for i in range(len(weights)): # loop over each weight # Recall that feature matrix[:, i] is the feature column asso # compute the derivative for weight[i]: derivative = feature derivative(errors, feature matrix[:, i]) # subtract the step size times the derivative from the curren weights[i] = weights[i] - (step size * derivative) # add the squared value of the derivative to the gradient sum derivative_square = derivative * derivative gradient_sum_squares = derivative_square.sum() # compute the square-root of the gradient sum of squares to get ${\sf t}$ gradient magnitude = np.sqrt(gradient sum squares) if gradient_magnitude < tolerance:</pre> converged = True return(weights)

```
Entrée [48]: # calculer la descente de gradient
             initial_weights = np.random.randn(7)
             step_size = 8e-8
             tolerance = 1e9
             up weights = batch gradient descent(x train, y train, initial weights, st
             print ('inital weights:', initial weights, 'cost function:', cost function
             print('')
             print ('up weights by BGD: ', up weights, 'cost function:', cost function
             print('')
             print ('weights by matrix calculus:', a, 'cost function:', cost_function(
           inital weights: [-0.10177396 -0.85161756 1.10385209 0.20558433 -0.33423
           095 -1.23546543
             0.86024016] cost function: 59.124595305725265
           up weights by BGD: [ 8.28694644 -7.91553858 -0.20243202 0.10952762 -1.2
           3858315 -1.3756928
             0.98111341] cost function: 6.927821976036074
           weights by matrix calculus: [[15.50006698]
            [-8.08162095]
            [-0.40498323]
            [-0.14910847]
            [-0.98711701]
            [-2.70044322]
            [ 0.90380672]] cost function: 6.009992903768611
```

5. Régression linéaire multiple

On utilise ici studentregli qui est une copie du dataframe student de départ

```
#On essaie de faire une regression linéaire pour prédire la moyenne des n
Entrée [49]:
Entrée [50]: studentregli.dtypes
 Out[50]: gender
                                              int8
           race/ethnicity
                                              int8
           parental level of education
                                              int8
           lunch
                                              int8
           test preparation course
                                              int8
           math score
                                             int64
           reading score
                                             int64
           writing score
                                             int64
                                           float64
           mean score
           dtype: object
Entrée [51]: # On convertit les variables catégorielles en numériques
```

```
Entrée [52]: mapGender = {'female':0, 'male':1}
             mapGroup = {'group C':3,'group D':4,'group B' :2,'group E':5,'group A':1}
             mapLevel = {'some college':1, "associate's degree":2, "high school":3,
                          'some high school':4, "bachelor's degree":5, "master's degree":
             mapLunch = {"standard":0,"free/reduced":1}
             mapPrepare = {'none':0,'completed':1}
Entrée [53]: | studentregli['gender'] = student['gender'].map(mapGender)
             studentregli['race/ethnicity'] = student['race/ethnicity'].map(mapGroup)
             studentregli['parental level of education'] = student['parental level of
             studentregli['lunch'] = student['lunch'].map(mapLunch)
             studentregli['test preparation course'] = student['test preparation cours
Entrée [54]: studentregli.dtypes
 Out[54]: gender
                                             int64
           race/ethnicity
                                             int64
           parental level of education
                                             int64
           lunch
                                             int64
           test preparation course
                                             int64
           math score
                                             int64
           reading score
                                             int64
           writing score
                                             int64
           mean score
                                           float64
           dtype: object
Entrée [55]: #On sépare les features de la target pour la régression linéaire
Entrée [56]: X = studentregli.drop(columns = ['mean score', 'writing score', 'reading
             y = studentregli['mean score']
           Création des datasets Train et Test
```

```
Entrée [58]: # instancier l'objet lm
             lm = LinearRegression()
Entrée [59]: # fitter le modèle sur le jeu train
             lm.fit(X train,y train)
 Out[59]: LinearRegression()
Entrée [60]: # afficher l'estimation de l'intercept et les coefficients par le modèle
             print(lm.intercept , lm.coef )
           11.269166294994676 [-8.08141916 -0.38793342 0.13435224 0.9973349
                                                                                2.69
           584437 0.90558752]
```

Entrée [57]: X train, X test, y train, y test = train test split(X, y, test size=0.3,

```
Entrée [61]: # prédire sur le jeu test
predictions = lm.predict(X_test)
```

On représente ici ce qu'on a prédit versus ce qu'on devrait avoir (les valeurs réelles)

```
Entrée [62]: sns.scatterplot(y=y_test,x=predictions)
plt.title('Independent score vs Dependent score')
plt.xlabel('Predicted mean score')
plt.ylabel('Actual mean score')
```

```
Out[62]: Text(0, 0.5, 'Actual mean score')
```


Entrée [63]: #On observe la répartition des erreurs et le taux d'erreur

Entrée [64]: sns.distplot((y_test-predictions))

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff97c4fd670>

Hypothèse stochastique vérifiée: les erreurs du modèle suivent une loi normale centrée réduite autour de 0.

Entrée [65]: #L'erreur absolue moyenne est une mesure des erreurs entre des observation

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

```
Entrée [66]: MAE = metrics.mean_absolute_error(y_test,predictions)
MAE
```

Out[66]: 2.974385520434697

Entrée [67]: #L'erreur quadratique moyenne

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Out[68]: 13.96769043872347

```
Entrée [69]: # root mean squared error (RMSE)
np.sqrt(metrics.mean_squared_error(y_test,predictions))
```

Out[69]: 3.7373373461227004

Accuracy of linear regression on test set: 0.92

6. Régression logistique

1 482

Name: gender, dtype: int64

```
Entrée [72]: | studentregli.groupby(['lunch']).gender.count()
  Out[72]: lunch
           0
                645
           1
                355
           Name: gender, dtype: int64
Entrée [73]: | studentregli.groupby(['test preparation course']).gender.count()
 Out[73]: test preparation course
                642
           0
                358
           1
           Name: gender, dtype: int64
Entrée [74]: colomns_drop = [ "race/ethnicity", "parental level of education", "lunch"
             studentregli.drop(colomns_drop, axis=1, inplace=True)
Entrée [76]: # la variable à prédire 'gender'
             y = studentregli.gender.values
             y.shape
 Out[76]: (1000,)
```

Entrée [92]: # relation entre les 3 scores pour les 2 classes de 'gender'
sns.pairplot(student.drop(['total','Total','percentage'],axis=1),hue='gen

Out[92]: <seaborn.axisgrid.PairGrid at 0x7ff97f23eac0>


```
Entrée [77]: X = studentregli.drop("gender", axis=1)
             X.shape
 Out[77]: (1000, 3)
Entrée [78]: x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3
Entrée [79]: print('Train:', x_train.shape, '\n Test:', x_test.shape)
           Train: (700, 3)
            Test: (300, 3)
Entrée [80]: LogisticReg = LogisticRegression(max iter = 1000)
Entrée [81]: LogisticReg.fit(x_train, y_train)
  Out[81]: LogisticRegression(max iter=1000)
Entrée [82]: | acc train = LogisticReg.score(x train, y train)
             print("Precision du model :", (acc train * 100).round())
           Precision du model: 87.0
Entrée [83]: y pred = LogisticReg.predict(x test)
Entrée [84]: | acc = LogisticReg.score(x_test, y_test)
             print("Precision du model :", (acc * 100).round())
           Precision du model: 90.0
Entrée [85]: confusion = confusion matrix(y test, y pred)
             print(confusion)
           [[147 11]
            [ 20 122]]
```

A partir de notre matrice de conclusion, nous pouvons voir que notre modèle a obtenu (147 + 122) 269 prédictions correctes et (20 + 11) 31 prédictions fausses.

Entrée [86]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.88	0.93	0.90	158
1	0.92	0.86	0.89	142
accuracy			0.90	300
macro avg	0.90	0.89	0.90	300
weighted avg	0.90	0.90	0.90	300

Interprétation: De notre rapport de classification, nous pouvons voir que notre modèle a un taux de précision de 90% et un taux de rappel de 90%, notre modèle à un taux de prediction correcte