Example of multiplying two 2-digit numbers (n = 2)

9 9

n = 2

Step 1. Generating Partial Products

c_1	c_2	0	
	9	9	
	9	9	

Step 1. Generating Partial Products

C₁ 8 0
9 9
9 9
1

Step 1. Generating Partial Products

Step 1. Generating Partial Products

8 8 0 0 1 1

Step 1. Generating Partial Products

8	8	0	
	9	9	
	9	9	
	1	1	

Step 1. Generating Partial Products

9 9 9 9 9 9 1

Step 1. Generating Partial Products

Step 1. Generating Partial Products

c_1	8	0		
		9	9	
		9	9	
	8	9	1	
		1		

Step 1. Generating Partial Products

Multiplications: 2, Additions: 3

Step 1. Generating Partial Products

8 8 0 0 1 1

Multiplications: 2, Additions: 3

Step 1. Generating Partial Products

0			8	8	0	
9	9	_	0	1	1	
9			8	9	1	

Step 1. Generating Partial Products

		9	9	
		9	9	
	8	9	1	
}	9	1		

n = 2

		9	9	
		9	9	
	8	9	1	Partial product 1 took: (Multiplications: 2, Additions: 3)
8	9	1	×	Partial product 2 took: (Multiplications: 2, Additions: 3)

$$n = 2$$

Step 2. Adding Partial Products

$$p \leftarrow 0$$

for $i = 0$ to $n - 1$ do
 $p \leftarrow p + a \cdot b_i \cdot B^i$
end for

n=2

		9	9
		9	9
	8	9	1
8	9	1	×

p = 0

Step 2. Adding Partial Products

$$p \leftarrow 0$$

for $i = 0$ to $n - 1$ do
 $p \leftarrow p + a \cdot b_i \cdot B^i$
end for

$$n=2$$

$$p = 0$$
 $i = 0$ $p = p + 891 = 891$

Step 2. Adding Partial Products

$$p \leftarrow 0$$
 for $i = 0$ to $n - 1$ do $p \leftarrow p + a \cdot b_i \cdot B^i$ end for

1 summation of 2+1 digits

$$n=2$$

Step 2. Adding Partial Products

$$p \leftarrow 0$$

for $i = 0$ to $n - 1$ do
 $p \leftarrow p + a \cdot b_i \cdot B^i$
end for

This digit does not incur any operation

$$p = 0$$

$$i = 0$$
 $p = p + 891 = 891$

$$i = 1$$
 $p = 0891 + 8910 = 9801$

2 summations of 2+1 digits

For multiplying two n-digit numbers

Computing n partial products take n multiplications and n+1 additions

Addition of the aligned partial products take n summations of n+1 digits

$$n(n + (n+1)) = n(2n+1) = 2n^2 + n$$

 $n(n+1) = n^2 + n$
 $= 3n^2 + 2n$