习题 1.1

或

- 3. 极小化步骤省略
- - ② 若 $\alpha \in A$ 且 $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,则 $\alpha \bullet a \in A$; 若 $\alpha \in A$ 且 $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,则 $a \bullet \alpha \in A$ 。
 - $(1) \{0., 1., 2., 3., 4., 5., 6., 7., 8., 9.\} \subseteq A ;$
 - ② 若 $\alpha \in A$ 且 $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,则 $\alpha \bullet a \in A$; 若 $\alpha \in A$ 且 $a \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,则 $a \bullet \alpha \in A$ 。
- f) (1) $\{0\} \subseteq A$ 或 $0 \in A$;
 - ② 若 $\alpha \in A$,则 $(\sqrt{\alpha}+1)^2 \in A$ 。

10.

若 A≠B,不妨设 x∈A 且 x ∉ B,则有{x}∈P(A)且{x} ∉ P(B),即 $P(A)\neq P(B)$ 。因此,若 P(A)=P(B),则 A=B。

习题 1.2

- 5. e) 结论成立。分两种情况证明。
- (1) 如果 A⊕B = Ø (空集),则 A⊕B = (A-B)U(B-A) = Ø,得 A-B = Ø且
 B-A = Ø,从而 A⊆ B且 B⊆A,即 A=B。

又由 A⊕B = A⊕C=Ø, 得 A=C。

因此 B=C。

(2) 如果 A⊕B $\neq \emptyset$, 则 A⊕C $\neq \emptyset$ 。用反证法证明。

假设 B≠C,则 B⊈C 或者 C⊈B。不妨假设 B⊈C,C⊈B 时同理证明。由于 B⊈C,则一定存在 x∈B,但 x∉C.

考虑两种情况:

- (a) 若 x∈A, 则 x∈A∩B, 得 x∉A⊕B=A∪B-A∩B;
 又由 x∉C 得 x∈A-C, 因此 x∈A⊕C
 以上与 A⊕B=A⊕C 矛盾。
- (b) 若 x∉A,则 x∈B-A,得 x∈A⊕B,则 x∈A⊕C,与 x∉C, x∉A 矛盾。

因此假设不成立,即 B⊆C。

同理可证明 C⊈B 不成立, 因此 B=C。

6.

- a) 由于 (A-B)U(A-C) = (A∩~B) U(A∩~C)=A∩(~BU~C) = A

 因此(A-B)U(A-C)=A 当且仅当 A⊆~BU~C 当且仅当~(B∩C)⊆A。
- c) 由于 (A-B)∩(A-C) = (A∩~B)∩(A∩~C) = A∩(~B∩~C)=A
 因此 (A-B)∩(A-C) = A 当且仅当 A⊆~B∩~C 当且仅当 B∪C⊆~A。
- e) $(A B) \oplus (A C) = (A \cap \sim B) \oplus (A \cap \sim C) =$ $((A \cap \sim B) \cup (A \cap \sim C)) ((A \cap \sim B) \cap (A \cap \sim C)) =$ $((A \cap \sim B) \cup (A \cap \sim C)) \cap \sim ((A \cap \sim B) \cap (A \cap \sim C)) =$ $((A \cap \sim B) \cup (A \cap \sim C)) \cap (\sim (A \cap \sim B) \cup \sim (A \cap \sim C)) =$ $((A \cap \sim B) \cup (A \cap \sim C)) \cap ((\sim A \cup B) \cup (\sim A \cup C)) =$

$$(A \cap (\sim B \cup \sim C)) \cap (\sim A \cup (B \cup C)) =$$

$$(A \cap (\sim B \cup \sim C)) \cap (B \cup C) =$$

$$A \cap ((B \cup C) \cap \sim (B \cap C)) =$$

$$A \cap (B \oplus C) = A$$

因此,
$$(A-B) \oplus (A-C) = A$$
 当且仅当 $A \subseteq (B \oplus C)$ 。

习题 1.2

- 9. 证明:
- i) 若 x ∈ R₀, 则 x ∈ R 且 x ≤ 1。所以对于任意 i∈I+均有 x < 1+1/i。
 即对于任意 i∈I+均有 x ∈ R_i。所以, x∈ ⋂_{i=1}[∞] R_i。
- ii) 若 $\mathbf{x} \in \bigcap_{i=1}^{\infty} R_i$,则对于任意 $\mathbf{i} \in \mathbf{I}_+$ 均有 $\mathbf{x} \in \mathbf{R}_i$ 。所以对于任意 $\mathbf{i} \in \mathbf{I}_+$ 均有 $\mathbf{x} < \mathbf{1} + \mathbf{1}/\mathbf{i}$ 。所以, $\mathbf{x} \le \mathbf{1}$,故 $\mathbf{x} \in \mathbf{R}_0$ 。

习题 1.4

2.

 $c) \times$

反例 1: A={1, 2}, B={1}, C={3,4}, D={3}, 则左边={<2, 4>}, 右边={<1, 4>, <2, 3>, <2, 4>};

反例 2: A=C=D=N, B=Ø, 则左边=Ø, 而右边=N×N

 $d) \times$

反例: A=C={1,2}, B={1}, D={2}, 则左边={<2,1>}, 而右边={<1,1>,<2,1>,<2,2>})

7. 证明: 题目等价于证明: 若<a, b>= <c, d>, 则 a = c 且 b = d。设<a, b>= <c, d>, 则{{a, A}, {b, B}} = {{c, A}, {d, B}}考虑以下情况:

- (1)若 n({{a, A}, {b, B}})=1,则{a, A}={b, B}={c, A}={d, B}。因为A≠B,此时必有 a=c, b=d。
- (2)若 n({{a, A}, {b, B}})=2, 考虑以下情况:
 - ① 若{a,A} = {c,A},则必有 {b,B} = {d,B}。 所以,a=c且b=d。
 - (2) {a, A} = {d, B}, 则必有{b, B} = {c, A}。
 因为 A≠B, 所以 a = B, d = A, b = A 且 c = B。
 所以, a = c 且 b = d。

故总有: a = c 且 b = d。

4.

习题 2.2

1. R 是自反的、对称的、传递的。

4.

- (a) $\langle x, y \rangle$ ∈R $\exists x \langle y, x \rangle \notin R$,

- (b) <y, x> ∈R 且<x, y> \notin R, 或
- $(c)\mathop{<\!x},y\mathop{>}\not\in R\ \mathop{\underline{\vdash}}\mathop{<\!y},x\mathop{>}\not\in R_\circ$

成对考虑序偶对<x, y>, <y, x>, x≠y, 一共有 n(n-1)/2 对。

另外,对任意的 $x \in A$, 有< x, $x > \in R$ 或者< x, $x > \notin R$, 这样的序偶 < x, x > - 共有 n 个。

因此, A上的不相同的反自反关系的个数为 3^{n(n-1)/2}·2ⁿ。

3. 证明:

因为 \forall x \in A, < x, x > \in $I_A \subseteq I_A \cup R \cup R^{-1}$, 所以 $I_A \cup R \cup R^{-1}$ 是自反的;

若 $< x,y > \in I_A \cup R \cup R^{-1}$,因为 $< x,y > \notin I_A$,所以 $< x,y > \in R \cup R^{-1}$;则若 $< x,y > \in R$,那么 $< y,x > \in R^{-1} \subseteq I_A \cup R \cup R^{-1}$;若 $< x,y > \in R^{-1}$,那么 $< y,x > \in R \subseteq I_A \cup R \cup R^{-1}$,所以 $I_A \cup R \cup R^{-1}$ 是对称的。

4.i) 证明: 假设 R 是集合 A 到 B 的二元关系。

对于 \forall x ∈ dom R^{-1} , 存在 $y \in B$, 使得 < x, y >∈ R^{-1} . 则 < y, x >∈ R, 得 x ∈ ranR, 所以 dom $R^{-1} \subseteq ranR$;

对于 \forall x ∈ ranR, 存在y ∈ A, 有 < y, x >∈ R.则 < x, y >∈ R^{-1} , 得 x ∈ $domR^{-1}$, 所以 ranR ⊆ $domR^{-1}$;

因此, $dom R^{-1} = ranR$

(反证法亦可,证明类似)

1.
$$R_2 \circ R_1 = \{ < c, d > \}$$

 $R_1 \circ R_2 = \{ < a, d >, < a, c > \}$
 $R_1^2 = \{ < a, a >, < a, b >, < a, d > \}$
 $R_2^2 = \{ < b, b >, < c, c >, < c, d > \}$

4. 设 R_1 , R_2 , R_3 , R_4 是 $A = \{1,2,3\}$ 上的二元关系令:

$$R_1 = \{<1,2>,<1,3>\}$$

$$R_2 = \{< 2,2 >\}$$

$$R_3 = \{ < 2,3 >, < 3,2 > \}$$

$$R_4 = \{ < 2,1 >, < 3,1 > \}$$

则:

$$R_1 \circ (R_2 \cap R_3) = \emptyset$$

$$(R_1 \circ R_2) \cap (R_1 \circ R_3) = \{<1,2>\}$$

$$(R_2 \cap R_3) \circ R_4 = \emptyset$$

$$(R_2 \circ R_4) \cap (R_3 \circ R_4) = \{<2,1>\}$$

满足条件

(此题答案不唯一, 若有其它解法, 满足条件即可)

5.(b)错误, 反例:

令 $A = \{1,2\}, R_1 = \{<1,2>\}, R_2 = \{<2,1>\}, R_1 和 R_2$ 都是反自反的。

则 $R_1 \circ R_2 = \{<1,1>\}$,不是反自反的

(d)错误, 反例:

令 $A = \{1,2,3\}, R_1 = \{<1,3>\}, <2,1>\}, R_2 = \{<3,2>, <$ 1,1 $>\}, R_1$ 和 R_2 都是反对称的

则 $R_1 \circ R_2 = \{ < 1,2 >, < 2,1 > \}$,不是反对称的 (反例正确即可)

10. 证明:

对于任意 < x, y > \in R^2 , 存在z \in A, 使得< x, z > \in R, < z, y > \in R, 由 R 的传递性可知, < x, y > \in R, 所以 $R^2 \subseteq R$ 。

对于 \forall < x, y > \in R,由 R 的自反性可知,< x, x > (或 < y, y >) \in R,因此< x, y > \in R^2 ,所以R \subseteq R^2 。

综上所述, 得 $R^2 = R$

4.证明:

- (a) $r(R_1 \cap R_2) = (R_1 \cap R_2) \cup I_A$ = $(R_1 \cup I_A) \cap (R_2 \cup I_A) = r(R_1) \cap r(R_2)$
- (b) 由于 $R_1 \cap R_2 \subseteq R_1$,所以 $s(R_1 \cap R_2) \subseteq s(R_1)$ 。 同理,由 $R_1 \cap R_2 \subseteq R_2$,得 $s(R_1 \cap R_2) \subseteq s(R_2)$ 。 故 $s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$
- (c) 由于 $R_1 \cap R_2 \subseteq R_1$,所以 $t(R_1 \cap R_2) \subseteq t(R_1)$ 。 同理,由 $R_1 \cap R_2 \subseteq R_2$,得 $t(R_1 \cap R_2) \subseteq t(R_2)$ 。 故 $t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$

反例:

令A = {1,2},
$$R_1$$
 = {< 1,2 >}, R_2 = {< 2,1 >}, 则 $s(R_1) \cap s(R_2)$ = {< 1,2 >, < 2,1 >}, $s(R_1 \cap R_2) = \emptyset$ 。
令A = {1,2,3}, R_1 = {< 1,2 >, < 2,1 >}, R_2 = {< 1,3 >, < 3,1 >}, 则 $t(R_1) \cap t(R_2)$ = {< 1,1 >}, $t(R_1 \cap R_2) = \emptyset$ 。

- 6. 令A = {1,2}, R = {< 1,2 >} 则st(R) = {< 1,2 >, < 2,1 >} ts(R) = {< 1,2 >, < 2,1 >, < 1,1 >, < 2,2 >} 此时st(R) ≠ ts(R)
- (以上两题反例合理即可)

3. 解:

(a) 断言为真。

对于 $\forall x \in S$,由于 R 是半序的,故 R 自反,所以 $\langle x, x \rangle \in R|_{s}$,所以 $R|_{s}$ 自反;

对于 \forall <x,y>∈ $R|_s$,由于R的反对称性,<y,x> $\notin R$,得<y,x> $\notin R|_s$,所以 $R|_s$ 反对称;

对于 $\forall \langle x, y \rangle, \langle y, z \rangle \in R|_{s}$,由于 R 的传递性得 $\langle x, z \rangle \in R$ 。由于 $x,z \in S$,得 $\langle x, z \rangle \in R|_{s}$,所以 $R|_{s}$ 传递;

综上所述得,R]。为 S 上的半序。

(b) 断言为真

对于 \forall x ∈ S,由于 R 是拟序的,故 R 反自反,即< x,x > \notin R。所以< x,x > \notin R| $_s$,因此, R| $_s$ 反自反;

对于 $\forall < x, y >, < y, z > \in R|_s$,由于 R 的传递性,R 的传递性得< $x, z > \in R$ 。又由 $x, z \in S$,得 $< x, z > \in R|_s$,所以 $R|_s$ 传递;

所以 $R|_s$ 为 S 上的拟序

(c) 断言为真。

由(a)可知, R|s为半序;

对于 $\forall x, y \in S$,由于 R 是全序的,所以< x, y > 或者 $< y, x > \in R$, 所以 < x, y > 或者 $< y, x > \in R|_s$,所以 $R|_s$ 是全序的。

(d) 断言为真

由 (a) 可知, R|s为半序;

对于 $\forall X \subseteq S \coprod X \neq \emptyset$,则 $X \subseteq R$,由于 R 良序,所以X存在最小元,所以 $R|_{S}$ 也为良序

6. 解:

- (a) 断言为真的是 x_4Rx_1 , x_1Rx_1
- (b) 最大元为 x_1 ,没有最小元。极大元为 x_1 ,极小元为 x_4 , x_5
- (c) $\{x_2, x_3, x_4, \}$ 的上界为 x_1 ,上确界 x_1 ;下界为 x_4 ,下确界为 x_4 。 $\{x_3, x_4, x_5\}$ 的上界为 x_1 和 x_3 。上确界为 x_3 ;没有下界和下确界。 $\{x_1, x_2, x_3\}$ 的上界为 x_1 ,上确界 x_1 。下界为 x_4 ,下确界为 x_4 。
- 8. 证明:: (反证法)设 S 为 A 的任意一个非空有限子集,且 S 没有极小元。

则对任意的 $a_0 \in S$, 存在 $a_1 \in S$, 使得 $a_1 \le a_0$ 。

可以证明,对任意的 $n \in I+$,若存在 $a_0, a_1, ..., a_n \in S$,满足 $a_n \le a_{n-1} \le ... \le a_1 \le a_0$,由于 S 没有极小元,则一定存在 a_{n+1} ,使得 $a_{n+1} \le a_n$ 。由归纳法知,S 中一定存在一个无限递减序列 $a_0, a_1, ..., a_n, ...,$ 与 S 是有限集合矛盾。因此 S 一定有一个极小元。

同理可证 S 一定有一个极大元。