This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 38/00, 39/00, C07K 1/00, 14/00, 17/00, G01N 33/53, 33/567, 33/574

(11) International Publication Number:

WO 98/05347

(43) International Publication Date:

12 February 1998 (12.02.98)

(21) International Application Number:

PCT/US97/12677

(22) International Filing Date:

18 July 1997 (18.07.97)

(30) Priority Data:

08/681,219

22 July 1996 (22.07.96)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

08/681,219 (CIP) 22 July 1996 (22.07.96)

(71) Applicant (for all designated States except US): THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SATO, Taka-Aki [JP/US]; 1587 Ann Street, Fort Lee, NJ 07024 (US). YANAGI-SAWA, Junn [JP/JP]; Institute of Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1, Yayoi, Bunkyoku, Tokyo 113 (JP).

(74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 1185 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOUNDS THAT INHIBIT INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF

(57) Abstract

This invention provides for a composition capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein. This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein. This invention also provides a method of inhibiting the proliferation of cancer cells. This invention also provides a method of treating cancer with a composition in an amount effective to result in an amount in apoptosis of the cells. This invention also provides a method of inhibiting the proliferation of virally infected cells. This invention also provides for a method of treating a virally-infected subject with a composition in an amount effective to result in apoptosis of the cells. This invention also provides for pharmaceutical compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	l_esotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SK	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS THAT INHIBIT INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF

The invention disclosed herein was made with Government support under Grant No. R01GM55147-01 from the National Institutes of Health of the United States Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

BACKGROUND

Throughout this application, various publications are referenced by author and date. Full citations for these publications may be found listed alphabetically at the end of the specification immediately preceding Sequence Listing and the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

25

30

5

10

Fas (APO-1/CD95) and its ligand have been identified as important signal-mediators of apoptosis (Itoh, et al. 1991) The structural organization of Fas (APO-1/CD95) has suggested that it is a member of the tumor necrosis factor receptor superfamily, which also includes the p75 nerve growth factor receptor (NGFR) (Johnson, et al. 1986), the T-cell-activation marker CD27 (Camerini, et al. 1991), the Hodgkin-lymphoma-associated antiqen CD30 (Smith, et al. (1993), the human B cell antigen CD40 (Stamenkovic, et al. 1989), and T cell antigen OX40 (Mallett, et al. 1990). Genetic mutations of both Fas its ligand have been associated lymphoproliferative and autoimmune disorders in mice (Watanabe-Fukunaga, et al. 1992; Takahashi, et al. 1994).

35

Furthermore, alterations of Fas expression level have been thought to lead to the induction of apoptosis in T-cells infected with human immunodeficiency virus (HIV) (Westendorp, et al. 1995).

-2-

5

10

15

Several Fas-interacting signal transducing molecules, such as Fas-associated phosphatase-1 (FAP-1) (Figure 1) (Sato, et al. 1995) FADD/MORT1/CAP-1/CAP-2 (Chinnaiyan, et al. 1995; Boldin, et al. 1995; Kischkel, et al. 1995) and RIP (Stanger, et al. 1995), have been identified using yeast two-hybrid and biochemical approaches. All but FAP-1 associate with the functional cell death domain of Fas and overexpression of FADD/MORT1 or RIP induces apoptosis in cells transfected with these proteins. In contrast, FAP-1 is the only protein that associates with the negative regulatory domain (C-terminal 15 amino acids) (Ito, et al. 1993) of Fas and that inhibits Fas-induced apoptosis.

FAP-1 (PTPN13) has several alternatively-spliced forms 20 that are identical to PTP-BAS/hPTP1E/PTPL1, (Maekawa, et al. 1994; Banville, et al. 1994; Saras, et al. 1994) and contains a membrane-binding region similar to those found in the cytoskeleton-associated proteins, ezrin, (Gould et al. 1989) radixin (Funayama et al. 1991) moesin (Lankes, 25 et al. 1991), neurofibromatosis type II gene product (NFII) (Rouleau, et al. 1993), and protein 4.1 (Conboy, et al. 1991), as well as in the PTPases PTPH1 (Yang, et al. 1991), PTP-MEG (Gu, et al. 1991), and PTPD1 (Vogel, FAP-1 intriguingly contains six GLGF et al. 1993). 30 (PDZ/DHR) repeats that are thought to mediate intra-and inter-molecular interactions among protein domains. The third GLGF repeat of FAP-1 was first identified as a specific interaction with domain showing the C-terminus of Fas receptor (Sato, et al. 1995). This 35 suggests that the GLGF domain may play an important role in targeting proteins to the submembranous cytoskeleton

and/or in regulating biochemical activity. GLGF repeats have been previously found in guanylate kinases, as well as in the rat post-synaptic density protein (PSD-95) (Cho, et al. 1992), which is a homolog of the Drosophila tumor suppressor protein, lethal-(1)-disc-large-1 (Woods, et al 1991; Kitamura, et al. 1994). These repeats may mediate homo- and hetero-dimerization, which could potentially influence PTPase activity, binding to Fas, and/or interactions of FAP-1 with other signal transduction proteins. Recently, it has also been reported that the different PDZ domains of proteins interact with the C-terminus of ion channels and other proteins (Figure 1) (TABLE 1) (Kornau, et al. 1995; Kim, et al. 1995; Matsumine, et al. 1996).

15

10

5

TABLE 1. Proteins that interact with PDZ domains.

Protein	C-terminal sequence	Associated protein	Reference
Fas (APO-1/CD95)	SLV	FAP-1	2
NMDA receptor NR2 subunit	SDV	PSD95	3
Shaker-type K+ channel	TDV	PSD95 & DLG	4
APC	TEV	DLG	5

20

SUMMARY OF THE INVENTION

5

10

15

20

invention provides a composition capable inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L) (Sequence I.D. No.: Further, the cytoplasmic protein may contain the acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$ (Sequence I.D. No.: 2), wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In a preferred embodiment, the amino acid sequence is SLGI (Sequence I.D. No.: 3). Further, the invention provides for a composition when the signal-transducing protein has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L) (Sequence I.D. No.: 4), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

This invention also provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L). Further this invention provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I) and a cytoplasmic protein.

35 This invention also provides for a method inhibiting the proliferation of cancer cells, specifically, where the cancer cells are derived from organs comprising the

WO 98/05347 - 5 -

colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head, thymus and neck, or the cells are derived from either T-cells or B-cells.

PCT/US97/12677

5

10

25

30

This invention also provides for a method of treating cancer in a subject in an amount of the composition of effective to result in apoptosis of the cells, specifically, where the cancer cells are derived from organs comprising the thymus, colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head and neck, or the cells are derived from either T-cells or B-cells.

This invention also provides for a method of inhibiting the proliferation of virally infected cells, specifically wherein the virally infected cells are infected with the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adenovirus, Human T-cell lymphtropic virus, type 1 or HIV.

This invention also provides a pharmaceutical composition comprising compositions capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

This invention also provides a pharmaceutical composition comprising compounds identified to be capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

20

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Diagram of Fas-associated phosphatase-1 protein, showing the six GLGF (PDZ/DHR) domain repeats; comparison of similar membrane binding sites with other proteins and proteins that contain GLGF (PDZ/DHR) repeats.

- Figures 2A, 2B, 2C and 2D. Mapping of the minimal region of the C-terminal of Fas required for the binding to FAP-1. Numbers at right show each independent clone (Figures 2C and 2D).
 - 2A. Strategy for screening of a random peptide library by the yeast two-hybrid system.
- 2B. Alignment of the C-terminal 15 amino acids of Fas between human (Sequence I.D. No.: 5), rat (Sequence I.D. No.: 6), and mouse (Sequence I.D. No.: 7).
 - 2C. The results of screening a semi-random peptide library. Top row indicates the amino acids which were fixed based on the homology between human and rat. Dash lines show unchanged amino acids.
- 2D. The results of screening a random peptide library (Sequence I.D. No.: 8, Sequence I.D. No.: 9, Sequence I.D. No.: 10, Sequence I.D. No.: 11, Sequence I.D. No.: 12, Sequence I.D. No.: 13, Sequence I.D. No.: 14, Sequence I.D. No.: 15, Sequence I.D. No.: 16, Sequence I.D. No.: 17, respectively).
- 30 Figures 3A, 3B and 3C. Inhibition assay of Fas/FAP-1 binding in vitro.
- 3A. Inhibition assay of Fas/FAP-1 binding using the C-terminal 15 amino acids of Fas. GST-Fas fusion protein (191-355) was used for *in vitro* binding assay (lane 1, 3-10). GST-Fas fusion protein (191-320) (lane 2) and 1 mM human PAMP (N-terminal 20 amino acids of proadrenomedullin, M.W. 2460.9)

PCT/US97/12677

WO 98/05347

(lane 3) were used as negative controls. concentrations of the C-terminal 15 amino acids added were 1 (lane 4), 3 (lane 5), 10 (lane 6), 30 (lane 7), 100 (lane 8), 300 (lane 9), and 1000 μM (lane 10).

-7-

- Inhibition assay of Fas/FAP-1 binding using the 3B. truncated peptides corresponding to the C-terminal 15 amino acids of Fas. All synthetic peptides were acetylated for this inhibition assay (Sequence I.D. No.: 4, Sequence I.D. No.: 18, Sequence I.D. No.: 19, Sequence I.D. No.: 20, Sequence I.D. No.: 21, Sequence I.D. No.: 22, Sequence I.D. No.: 23, respectively).
- Inhibitory effect of Fas/FAP-1 binding using the 3C. scanned tripeptides. 15

Figures 4A, 4B, 4C and 4D.

- Interaction of the C-terminal 3 amino acids of Fas 4A. with FAP-1 in yeast.
- Interaction of the C-terminal 3 amino acids of Fas 20 4B. with FAP-1 in vitro.
 - Immuno-precipitation of native Fas with GST-FAP-1. 4C.
 - Inhibition of Fas/FAP-1 binding with Ac-SLV or Ac-4D. SLY.

25

30

5

10

Figures 5A, 5B, 5C, 5D, 5E and 5F. Microinjection of Ac-SLV into the DLD-1 cell line. Triangles identify the cells both that were could be microinjected with Ac-SLV and that showed condensed chromatin identified. On the other hand, only one cell of the area appeared apoptotic when microinjected with Ac-SLY.

- Representative examples of the cells microinjected 5A. with Ac-SLV in the presence of 500 ng/ml CH11 are shown in phase contrast.
- Representative examples of the cells microinjected 35 5B. with AC-SLY in the presence of 500 ng/ml CH11 are shown in phase contrast.

5

10

15

-8-

- 5C. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown stained with FITC.
- 5D. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown stained with FITC.
- 5E. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown with fluorescent DNA staining with Hoechst 33342.
 - 5F. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown in fluorescent DNA staining with Hoechst 33342.

Figure 6. Quantitation of apoptosis in microinjected DLD-1 cells.

Figures 7A, 7B, 7C, 7D, 7E, 7F, 7G, and 7H.

- 20 7A. Amino acid sequence of human nerve growth factor receptor (Sequence I.D. No.: 24).
 - 7B. Amino acid sequence of human CD4 receptor (Sequence I.D. No. 25).
- 7C. The interaction of Fas-associated phosphatase-1 to the C-terminal of nerve growth factor receptor (NGFR) (p75).
 - 7D. Amino acid sequence of human colorectal mutant cancer protein (Sequence I.D. No.: 26).
 - 7E. Amino acid sequence of protein kinase C, alpha type.
- 30 7F. Amino acid sequence of serotonin 2A receptor (Sequence I.D. No.: 27).
 - 7G. Amino acid sequence of serotonin 2B receptor (Sequence I.D. No.: 28).
- 7H. Amino acid sequence of adenomatosis polyposis coli protein (Sequence I.D. No.: 29).

- Figure 8. Representation of the structural characteristics of p75 NGFR (low-affinity nerve growth factor receptor).
- Figure 9. Comparison of the C-terminal ends of Fas and p75 NGFR.
- Figure 10. In vitro interaction of ³⁵S-labeled FAP-1 with various receptors expressed as GST fusion proteins. The indicated GST fusion proteins immobilized on glutathione-Sepharose beads were incubated with in vitro translated, ³⁵S-labeled FAP-1 protein. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.

Figures 11A and 11B. In vitro interaction ³⁵S-labeled FAP-1 with GST-p75 deletion mutants.

- 11A. Schematic representation of the GST fusion proteins containing the cytoplasmic domains of p75 and p75 deletion mutants. Binding of FAP-1 to the GST fusion proteins with various p75 deletion mutants is depicted at the right and is based on data from (11B).
- Interaction of in vitro translated, ³⁵S-labeled FAP-1 protein with various GST fusion proteins immobilized on glutathione-Sepharose beads. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.
- Figure 12. The association between LexA-C-terminal cytoplasmic region of p75NGFR and VP16-FAP-1. The indicated yeast strains were constructed by transformation and the growth of colonies was tested.

 +/- indicates the growth of colonies on his plate.

30

35

DETAILED DESCRIPTION OF THE INVENTION

As used herein, amino acid residues are abbreviated as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

- In order to facilitate an understanding of the material which follows, certain frequently occurring methods and/or terms are best described in Sambrook, et al., 1989.
- The present invention provides for a composition capable 15 inhibiting specific binding between a transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, 20 and each slash within such parentheses separating the alternative amino acids. Further, the cytoplasmic protein may contain the amino acid sequence $(K/R/Q)-X_n-$ (G/S/A/E)-L-G-(F/I/L), wherein X represents any amino acid which is selected from the group comprising the twenty 25 naturally occurring amino acids and n represents at least 2, but not more than 4. Specifically, in a preferred embodiment, the cytoplasmic protein contains the amino acid sequence SLGI.

The amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$ is also well-known in the art as "GLGF (PDZ/DHR) amino acid domain." As used herein, "GLGF (PDZ/DHR) amino acid domain" means the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$.

In a preferred embodiment, the signal-transducing protein

PCT/US97/12677

5

20

25

30

35

has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

The compositions of the subject invention may be, but not limited to, antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins. The composition may be naturally occurring and obtained by purification, or may be non-naturally occurring and obtained by synthesis.

Specifically, the composition may be a peptide containing (S/T) - X - (V/I/L) - COOHwherein represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. In preferred embodiments, the following sequences: peptide contains one of DSENSNFRNEIQSLV, RNEIQSLV, NEIQSLV, EIQSLV, IQSLV, QSLV, SLV, IPPDSEDGNEEQSLV, DSEMYNFRSQLASVV, IDLASEFLFLSNSFL, PPTCSQANSGRISTL, SDSNMNMNELSEV, QNFRTYIVSFV, RETIESTV, RGFISSLV, TIQSVI, ESLV. A further preferred embodiment would be an organic compound which has the sequence Ac-SLV-COOH, wherein the Ac represents an acetyl and each represents a peptide bond.

An example of the subject invention is provided <u>infra</u>.

Acetylated peptides may be automatically synthesized on

-12-

an Advanced ChemTech ACT357 using previously published procedures by analogy. Wang resin was used for each run and N°-Fmoc protection was used for all amino acids, and then 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequently HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac_2O/DMF . The acetylated peptide was purified by HPLC and characterized by FAB-MS and 1H -NMR.

10 Further, one skilled in the art would know how to construct derivatives of the above-described synthetic peptides coupled to non-acetyl groups, such as amines.

This invention also provides for a composition capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein.

The compositions of the subject invention includes antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins.

30

35

5

15

20

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses

10

15

20

25

30

35

separating the alternative amino acids, which comprises (a) contacting the cytoplasmic protein bound to the signal-transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the signal-transducing protein bound to the cytoplasmic protein and the bound cytoplasmic protein to form a complex; and (b) detecting the displaced signal-transducing protein or the complex formed in step (a) wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

The inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein may affect the transcription activity of a reporter gene.

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein are bound. One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not limited to, histidine resistant genes, ampicillin resistant genes, β -galactosidase gene.

-14-

Further the cytoplasmic protein may be bound to a solid support. Also the compound may be bound to a solid support and comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

An example of the method is provided infra. One can identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct methods of detection such as immuno-precipitation of the cytoplasmic protein and the compound bound to a detectable marker. one could use indirect methods of detection that would detect the increase or decrease in levels of gene expression. As discussed infra, one could construct synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into the L40-strain with an appropriate cell line having an appropriate reporter gene. One could then detect whether inhibition had occurred by detecting the levels of expression of the reporter gene. In order to detect the expression levels of the reporter gene, one skilled in the art could employ a variety of well-known methods, e.g. two-hybrid systems in yeast, mammals or other cells.

25

30

35

5

10

15

20

Further, the contacting of step (a) may be <u>in vitro</u>, <u>in vivo</u>, and specifically in an appropriate cell, e.g. yeast cell or mammalian cell. Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk cells, Cos cells, etc.

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells (including gram positive cells), fungal cells, insect cells, and other animals cells.

WO 98/05347

-15-

PCT/US97/12677

Further, the signal-transducing protein may be a cell surface receptor, signal transducer protein, or a tumor suppressor protein. Specifically, the cell surface protein is the Fas receptor and may be expressed in cells derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, lung, stomach, prostate, uterus, skin, head, and neck, or expressed in cells comprising T-cells and B-cells. In a preferred embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

15

20

10

5

Further, the signal transducer protein may be Protein Kinase- $C-\alpha$ -type.

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase-1.

25

30

35

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein which comprises (a) contacting the signal-transducing protein bound to the cytoplasmic protein with

a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the cytoplasmic protein bound to the signal-transducing protein and bound signal-transducing protein to form a complex; and (b) detecting the displaced cytoplasmic protein or the complex of step (a), wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein. The inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein affects the transcription activity of a reporter gene. Further, in step (b), the displaced signal-transducing protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the cytoplasmic protein is displaced.

-16-

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.

30

35

5

10

15

20

25

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein are bound. One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the

-17-

cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not limited to, histidine resistant genes, ampicillin resistant genes, β -galactosidase gene.

٠5

10

15

20

25

Further, the cytoplasmic protein may be bound to a solid support or the compound may be bound to a solid support, comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

An example of the method is provided infra. One could identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct 'methods of detection such as immuno-precipitation of the cytoplasmic protein and the compound bound with a detectable marker. Further, one could use indirect methods of detection that would detect the increase or decrease in levels of gene expression. As discussed infra, one could construct synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into L40-strain with an appropriate cell line having a reporter gene. One could then detect whether inhibition had occurred by detecting the levels of the reporter gene. methods are also well known in the art, such as employing a yeast two-hybrid system to detect the expression of a reporter gene.

30

Further the contacting of step (a) can be <u>in vitro</u> or <u>in vivo</u>, specifically in a yeast cell or a mammalian cell. Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk⁻ cells, Cos cells, etc.

35

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells

-18-

5

10

20

WO 98/05347 PCT/US97/12677

(including gram positive cells), fungal cells, insect cells, and other animals cells.

Further, the signal-transducing protein is a cell surface receptor, signal transducer protein, or a tumor suppressor protein. Specifically, the cell surface protein is the Fas receptor and is expressed in cells derived from organs comprising thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or expressed in cells comprising T-cells and B-cells. In a preferred embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

Further, the signal transducer protein may be Protein Kinase-C- α -type.

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase1.

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the above-described composition, specifically, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

PCT/US97/12677

5

30

35

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the compound identified by the above-described method, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

-19-

- The invention also provides a method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the above-described composition effective to result in apoptosis of the cells, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- As used herein "apoptosis" means programmed cell death of the cell. The mechanisms and effects of programmed cell death differs from cell lysis. Some observable effects of apoptosis are: DNA fragmentation and disintegration into small membrane-bound fragments called apoptotic bodies.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

The invention also provides for a method of inhibiting the proliferation of virally infected cells comprising the above-described composition or the compound identified by the above-described, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr

virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

The invention also provides a method of treating a virally-infected subject which comprises introducing to the subject's virally- infected cells the above-described composition effective to result in apoptosis of the cells or the compound identified by the above-described method of claim 27 effective to result in apoptosis of the cells, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

20

5

10

This invention also provides for a pharmaceutical composition comprising the above-described composition of in an effective amount and a pharmaceutically acceptable carrier.

25

This invention also provides for a pharmaceutical composition comprising the compound identified by the above-described method of in an effective amount and a pharmaceutically acceptable carrier.

30

35

This invention further provides a composition capable of specifically binding a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X

represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. The composition may contain the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids. In a preferred embodiment, the composition contains the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$. wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In another preferred embodiment, the composition contains the amino acid sequence SLGI.

15

20

25

30

35

10

5

This invention further provides a method for identifying compounds capable of binding to a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino which comprises (a) contacting the signaltransducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to bind to the signaltransducing protein to form a complex; and (b) detecting the complex formed in step (a) so as to identify a compound capable of binding to the signal-transducing protein. Specifically, the identified compound contains the amino acid sequence (G/S/A/E)-L-G-(F/I/L). further preferred embodiment, the identified compound contains the amino acid sequence SLGI.

Further, in the above-described method, the signal-

5

10

15

20

25

30

35

-22-

transducing protein may be bound to a solid support. Also, the compound may be bound to a solid support, and may comprise an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

Further, the signal-transducing protein may be a cell-surface receptor or a signal transducer. Specifically, the signal-transducing protein may be the Fas receptor, CD4 receptor, p75 receptor, serotonin 2A receptor, serotonin 2B receptor, or protein kinase- $C-\alpha$ -type.

This invention also provides a method of restoring negative regulation of apoptosis in a cell comprising the above-described composition or a compound identified by the above-described method.

As used herein "restoring negative regulation of apoptosis" means enabling the cell from proceeding onto programmed cell death.

For example, cells that have functional Fas receptors and Fas-associated phosphatase 1 do not proceed onto programmed cell death or apoptosis due to the negative regulation of Fas by the phosphatase. However, if Fas-associated phosphatase 1 is unable to bind to the carboxyl terminus of the Fas receptor ((S/T)-X-(V/L/I) region), e.g. mutation or deletion of at least one of the amino acids in the amino acid sequence (G/S/A/E)-L-G-(F/I/L), the cell will proceed to apoptosis. By introducing a compound capable of binding to the carboxyl terminus of the Fas receptor, one could mimic the effects of a functional phosphatase and thus restore the negative regulation of apoptosis.

This invention also provides a method of preventing apoptosis in a cell comprising the above-described

5

-23-

composition or a compound identified by the abovedescribed method.

This invention also provides a means of treating pathogenic conditions caused by apoptosis of relevant cells comprising the above-described composition or the compound identified by the above-described method.

This invention is illustrated in the Experimental Details section which follows. These sections are set forth to aid in an understanding of the invention but are not intended to, and should not be construed to, limit in any way the invention as set forth in the claims which follow thereafter.

FIRST SERIES OF EXPERIMENTS

Experimental Details

5 Methods and Materials

1. Screening a semi-random and random peptide library.

To create numerous mutations in a restricted DNA with 10 sequence, PCR mutagenesis degenerate oligonucleotides was employed according to a protocol described elsewhere (Hill, et al. 1987). Based on the homology between human and rat, two palindromic sequences were designed for construction of semi-random library. t w o primers used 15 The were 5'-CGGAATTCNNNNNNNNAACAGCNNNNNNNNNAATGAANNNCAAAGTCTGNN NTGAGGATCCTCA-3' I.D. No.: 30) (Seq. 5'-CGGAATTCGACTCAGAANNNNNAACTTCAGANNNNNNATCNNNNNNNNGT CTGAGGATCCTCA-3' (Seq. I.D. No.: 31). Briefly, the two primers (each 200 pmol), purified by HPLC, were annealed 20 at 70 °C for 5 minutes and cooled at 23 °C for 60 minutes. A Klenow fragment (5 U) was used for filling in with a dNTP mix (final concentration, 1 mM per each dNTP) at 23°C for 60 minutes. The reaction was stopped with 1 μ l of 0.5 M EDTA and the DNA was purified with ethanol 25 The resulting double-stranded DNA was precipitation. digested with EcoRI and BamHI and re-purified by electrophoresis on non-denaturing polyacrylamide gels. The double-strand oligonucleotides were then ligated into the EcoRI-BamHI sites of the pBTM116 plasmid. 30 ligation mixtures were electroporated into the E. coli XL1-Blue MRF' (Stratagene) for the plasmid library. The large scale transformation was carried out as previously reported. The plasmid library was transformed into L40-strain cells (MATa, trpl, leu2, his3, ade2, 35 LYS2: (lexAop) 4-HIS3, URA3:: (lexAop) -lacZ) carrying the plasmid pVP16-31 containing a FAP-1 cDNA (Sato, et al.

WO 98/05347

-25-

PCT/US97/12677

1995). Clones that formed on histidine-deficient medium (His') were transferred to plates containing 40 μ g/ml X-gal to test for a blue reaction product (ß-gal') in plate and filter assays. The clones selected by His' and ß-gal' assay were tested for further analysis. The palindromic oligonucleotide, 5'-CGGAATTC-(NNN)₄₋₁₅-TGAGGATCCTCA-3' (Seq. I.D. No. 32), was used for the construction of the random peptide library.

10

15

20

25

5

2. Synthesis of peptides

Peptides were automatically synthesized on an Advanced ChemTech ACT357 by analogy to published procedures (Schnorrenberg and Gerhardt, 1989). Wang resin (0.2-0.3 mmole scale) was used for each run and N°-Fmoc protection was employed for all amino acids. Deprotection was achieved by treatment with 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequent HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac₂O/DMF. The peptide was cleaved from the resin with concomitant removal of all protecting groups by treating with TFA. The acetylated peptide was purified by HPLC and characterized by FAB-MS and ¹H-NMR.

- 3. Inhibition asssay of Fas/FAP-1 binding using the C-terminal 15 amino acids of Fas.
- HFAP-10 cDNA (Sato, et al. 1995) subcloned into the 30 vector pSK-II (Stratagene) vitro-translated from an internal methionine codon in the presence of 35S-L-methionine using a coupled in vitro transcription/translation system (Promega, TNT lysate) and T7 RNA polymerase. The resulting 35S-labeled protein 35 was incubated with GST-Fas fusion proteins that had been immobilized GST-Sepharose 4B affinity on

(Pharmacia) in a buffer containing 150 mM NaCl, 50 mM Tris [pH 8.0], 5 mM DTT, 2 mM EDTA, 0.1 % NP-40, 1 mM PMSF, 50 μ g/ml leupeptin, 1 mM Benzamidine, and 7 μ g/ml pepstatin for 16 hours at 4 °C. After washing vigorously 4 times in the same buffer, associated proteins were recovered with the glutathione-Sepharose beads by centrifugation, eluted into boiling Laemmli buffer, and analyzed by SDS-PAGE and fluorography.

- 10 4. Inhibition assay of terminal 15 amino acids of Fas and inhibitory effect of Fas/FAP-1 binding using diverse tripeptides.
- In vitro-translated [35S]HFAP-1 was purified with a NAP-5 column (Pharmacia) and incubated with 3 µM of GST-fusion proteins for 16 hours at 4°C. After washing 4 times in the binding buffer, radioactivity incorporation was determined in a b counter. The percentage of binding inhibition was calculated as follows: percent inhibition = [radioactivity incorporation using GST-Fas (191-335) with peptides radioactivity incorporation using GST-Fas (191-320) with peptides] / [radioactivity incorporation using GST-Fas (191-335) without peptides radioactivity incorporation using GST-Fas (191-335) without peptides radioactivity incorporation using GST-Fas (191-320) without peptides].
 - 5. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in yeast and in vitro.
- The bait plasmids, pBTM116 (LexA)-SLV, -PLV, -SLY, and -SLA, were constructed and transformed into L40-strain with pVP16-FAP-1 or -ras. Six independent clones from each transformants were picked up for the analysis of growth on histidine-deficient medium. GST-Fas, -SLV, and PLV were purified with GST-Sepharose 4B affinity beads (Pharmacia). The methods for in vitro binding are described above.

-27-

6. Immuno-precipitation of native Fas with GST-FAP-1 and inhibition of Fas/FAP-1 binding with Ac-SLV.

GST-fusion proteins with or without FAP-1 were incubated with cell extracts from Jurkat T-cells expressing Fas. The bound Fas was detected by Western analysis using anti-Fas monoclonal antibody (F22120, Transduction Laboratories). The tripeptides, Ac-SLV and Ac-SLY were used for the inhibition assay of Fas/FAP-1 binding.

10

15

20

25

5

Microinjection of Ac-SLV into the DLD-1 cell line. 7. DLD-1 human colon cancer cells were cultured in RPMI 1640 medium containing 10% FCS. For microinjection, cells were plated on CELLocate (Eppendorf) at 1 X 105 cells/2 ml in a 35 mm plastic culture dish and grown for 1 day. Just before microinjection, Fas monoclonal antibodies CH11 (MBL International) was added at the concentration of 500 All microinjection experiments were performed ng/ml. using an automatic microinjection system (Eppendorf transjector 5246, micro-manipulator 5171 and Femtotips) Synthetic tripeptides were (Pantel, et al. 1995). suspended in 0.1% (w/v) FITC-Dextran (Sigma)/K-PBS at the concentration of 100 mM. The samples were microinjected into the cytoplasmic region of DLD-1 cells. Sixteen to 20 hours postinjection, the cells were washed with PBS and stained with 10 μ g/ml Hoechst 33342 in PBS. incubation at 37°C for 30 minutes, the cells were photographed and the cells showing condensed chromatin were counted as apoptotic.

30

 Quantitation of apoptosis in microinjected DLD-1 cells.

For each experiment, 25-100 cells were microinjected.

Apoptosis of microinjected cells was determined by assessing morphological changes of chromatin using phase contrast and fluorescence microscopy (Wang, et al., 1995;

McGahon, et al., 1995). The data are means +/- S.D. for two or three independent determinations.

Discussion

5

10

15

20

25

30

35

In order to identify the minimal peptide stretch in the C-terminal region of the Fas receptor necessary for FAP-1 binding, an in vitro inhibition assay of Fas/FAP-1 binding was used using a series of synthetic peptides as well as yeast two-hybrid system peptide libraries (Figure 2A). First, semi-random libraries (based on the homology between human and rat Fas) (Figures 2B and 2C) of 15 amino acids fused to a LexA DNA binding domain were constructed and co-transformed into yeast strain L40 with pVP16-31 (Sato, et al. 1995) that was originally isolated as FAP-1. After the selection of 200 His' colonies from an initial screen of 5.0 X 106 (Johnson, et al. 1986) transformants, 100 colonies that were β -galactosidase positive were picked for further analysis. Sequence analysis of the library plasmids encoding the C-terminal 15 amino acids revealed that all of the C-termini were either valine, leucine or isoleucine residues. a random library of 4-15 amino acids fused to a LexA DNA binding domain was constructed and screened according to this strategy (Figure 2D). Surprisingly, all of the third amino acid residues from the C-termini were serine, and the results of C-terminal amino acid analyses were identical to the screening of the semi-random cDNA libraries. No other significant amino acid sequences were found in these library screenings, suggesting that the motifs of the last three amino acids (tS-X-V/L/I) are very important for the association with the third PDZ а crucial of FAP-1 and play protein-protein interaction as well as for the regulation of Fas-induced apoptosis. To further confirm whether the last three amino acids are necessary and sufficient for Fas/FAP-1 binding, plasmids of the LexA-SLV, -PLV, -PLY,

10

15

20

25

30

35

WO 98/05347 PCT/US97/12677

-SLY, and -SLA fusion proteins were constructed and co-transformed into yeast with pVP16-FAP-1. The results showed that only LexA-SLV associated with FAP-1, whereas LexA-PLV, -PLY, -SLY, and -SLA did not (Figure 4A). In vitro binding studies using various GST-tripeptide fusions and *in vitro*-translated FAP-1 were consistent with these results (Figure 4B).

In addition to yeast two-hybrid approaches, in vitro inhibition assay of Fas/FAP-1 binding was also used. First, a synthetic peptide of the C-terminal 15 amino acids was tested whether it could inhibit the binding of Fas and FAP-1 in vitro (Figure 3A). The binding of in vitro-translated FAP-1 to GST-Fas was dramatically reduced and dependent on the concentration of the synthetic 15 amino acids of Fas. In contrast with these results, human PAMP peptide (Kitamura, et al. 1994) as a negative control had no effect on Fas/FAP-1 binding activity under the same biochemical conditions. Second, the effect of truncated C-terminal synthetic peptides of Fas on Fas/FAP-1 binding in vitro was examined. As shown in Figure 3B, only the three C-terminal amino acids (Ac-SLV) were sufficient to obtain the same level of inhibitory effect on the binding of FAP-1 to Fas as achieved with the 4-15 synthetic peptides. Furthermore, Fas/FAP-1 binding was extensively investigated using the scanned tripeptides to determine the critical amino acids residues required for inhibition (Figure 3C). results revealed that the third amino acids residues from the C-terminus, and the C-terminal amino acids having the strongest inhibitory effect were either serine or threonine; and either valine, leucine, or isoleucine, respectively. However, there were no differences among the second amino acid residues from the C-terminus with respect to their inhibitory effect on Fas/FAP-1 binding. These results were consistent with those of the yeast two-hybrid system (Figures 2C and 2D). Therefore, it was

10

15

20

25

30

35

WO 98/05347 PCT/US97/12677

concluded that the C-terminal three amino acids (SLV) are critical determinants of Fas binding to the third PDZ domain of FAP-1 protein.

To further substantiate that the PDZ domain interacts with tS/T-X-V/L/I under more native conditions, GST-fused FAP-1 proteins were tested for their ability to interact with Fas expressed in Jurkat T-cells. The results revealed that the tripeptide Ac-SLV, but not Ac-SLY, abolished in a dose-dependent manner the binding activity of FAP-1 to Fas proteins extracted from Jurkat T-cells (Figures 4C and 4D). This suggests that the C-terminal amino acids tSLV are the minimum binding site for FAP-1, and that the amino acids serine and valine are critical for this physical association.

To next examine the hypothesis that the physiological association between the C-terminal three amino acids of Fas and the third PDZ domain of FAP-1 is necessary for the in vivo function of FAP-1 as a negative regulator of signal transduction, a microinjection Fas-mediated experiment was employed with synthetic tripeptides in a colon cancer cell line, DLD-1, which expresses both Fas and FAP-1, and is resistant to Fas-induced apoptosis. The experiments involved the direct microinjection of the synthetic tripeptides into the cytoplasmic regions of single cells and the monitoring of the physiological response to Fas-induced apoptosis in vivo. The results showed that microinjection of Ac-SLV into DLD-1 cells dramatically induced apoptosis in the presence of Fas-monoclonal antibodies (CH11, 500 ng/ml) (Figures 5A, 5E and Figure 6), but that microinjection of Ac-SLY and PBS/K did not (Figures 5B, 5F and Figure 6). results strongly support the hypothesis that the physical association of FAP-1 with the C-terminus of Fas is for protecting cells from Fas-induced essential apoptosis.

10

15

In summary, it was found that the C-terminal SLV of Fas is alone necessary and sufficient for binding to the third PDZ domain of FAP-1. Secondly, it is proposed that the new consensus motif of tS/T-X-V/L/I for such binding to the PDZ domain, instead of tS/T-X-V. It is therefore possible that FAP-1 plays important roles for the modulation of signal transduction pathways in addition to its physical interaction with Fas. Thirdly, demonstrated that the targeted induction of Fas-mediated apoptosis in colon cancer cells by direct microinjection the tripeptide Ac-SLV. Further investigations including the identification of a substrate(s) of FAP-1 and structure-function analysis will provide insight to the potential therapeutic applications of Fas/FAP-1 interaction in cancer as well as provide a better understanding of the inhibitory effect of FAP-1 on Fas-mediated signal transduction.

SECOND SERIES OF EXPERIMENTS

5

10

15

20

25

30

FAP-1 was originally identified as a membrane-associated protein tyrosine phosphatase which binds to the Cterminus of Fas, and possesses six PDZ domains (also known as DHR domain or GLGF repeat). PDZ domain has recently been shown as a novel module for specific protein-protein interaction, and it appears to be important in the assembly of membrane proteins and also in linking signaling molecules in a multiprotein complex. In recent comprehensive studies, it was found that the third PDZ domain of FAP-1 specifically recognized the sequence motif t(S/T)-X-V and interacts with the Cterminal three amino acids SLV of Fas (Fig. 9). In order to investigate the possibility that FAP-1 also interacts with the C-terminal region of p75NGFR (Fig. 8), an in vitro binding assay, was performed as well as, a yeast two-hybrid analysis by using a series of deletion mutants The results revealed that the C-terminal of p75NGFR. cytoplasmic region of p75NGFR, which is highly conserved among all species, interacts with FAP-1 (Fig. 10). Furthermore, the C-terminal three amino acids SPV of p75NGFR were necessary and sufficient for the interaction with the third PDZ domain of FAP-1 (Fig. 11A and 11B). Since FAP-1 expression was found highest in fetal brain, these findings imply that interaction of FAP-1 with p75NGFR plays an important role for signal transduction pathway via p75NGFR in neuronal cells as well as in the formation of the initial signal-transducing complex for p75NGFR.

WO 98/05347

REFERENCES

Banville, D., et al. <u>J. Biol.Chem.</u> 269: 22320-22327 (1994).

-33-

5

- Boldin, M. P. et al. J. Biol. Chem. 270: 7795-7798 2. (1995).
- Camerini, D., et al. J. Immunol. 147: 3165-3169 3. (1991). 10
 - Chao, M.V. and B.L. Hempstead TINS 18: 321-326 4. (1995).
- Chinnaiyan, A. M., et al. Cell 81: 505-512 (1995). 15 5.
 - Cho, K.-O., et al. Neuron 9: 929-942 (1992). 6.
- Conboy, J. G., et al. <u>J. Biol. Chem.</u> **266**: 8273-8280 7. (1991). 20
 - Doyle, D.A., et al. Cell 85: 1067-1076 (1996). 8.
- Funayama, N., et al. <u>J. Cell Biol.</u> 115: 1039-1048 9. (1991). 25
 - Gould, K. L., et al. <u>EMBO J.</u> 8: 4133-4142 (1989). 10.
- Gu, M. X., et ak. Proc. Natl. Acad. Sci. U.S.A. 88: 11. 5867-5871 (1991). 30
 - Hill, D. E., et al. Meth. Enzymol. 155, 558-568 12. (1987).
- Ito, N., and Nagata, S. J. Biol. Chem. 268: 35 13. 10932-10937 (1993).

WO 98/05347 PCT/US97/12677

- 14. Itoh, N. et al. Cell 66: 233-243 (1991).
- 15. Johnson, D. et al. Cell 47: 545-554 (1986).
- 5 16. Kim, E., et al. <u>Nature</u> 378: 85-88 (1995).
 - 17. Kischkel, F. C. et al. <u>EMBO J</u>. 14: 5579-5588 (1995).
 - 18. Kitamura, K. et al. <u>FEBS Lett</u>. 351: 35-37 (1994).

10

- 19. Kornau, H.-C., et al. Science 269:1737-1740 (1995).
- 20. Lankes, W. T., and Furthmayr, H. <u>Proc. Natl. Acad.</u> Sci. U.S.A. 88: 8297-8301 (1991).

15

- 21. Maekawa, K., et al. <u>FEBS Letters</u> **337**: 200-206 (1994).
 - 22. Mallett, S., et al. <u>EMBO J</u>. 9: 1063-1068 (1990).

20

- 23. Matsumine, A. et al. Science 272: 1020-1023 (1996).
- 24. McGahon, A. J. et al. Meth. Cell Biol. 46: 153-185 (1995).

25

- 25. Pantel, K. et al. <u>J. Natl. Cancer Inst</u>. **87**: 1162-1168 (1995).
 - 26. Rouleau, G. et al. <u>Nature</u> 363: 515-521 (1993).

30 27.

- 28. Sambrook, J., et al.(1989) <u>Molecular Cloning: a laboratory manual.</u> Second Edition. Cold Spring Harbor Laboratory Press.
- 35 29. Sato, T., et al. <u>Science</u> 268: 411-415 (1995).
 - 30. Schnorrenberg, G. and Gerhardt H. Tetrahedron 45:

7759-7764 (1989).

31. Saras, J., et al. <u>J. Biol. Chem.</u> **269**, 24082-24089 (1994).

5

- 32. Smith, C. A. et al. Cell 73: 1349-1360 (1993).
- 33. Stamenkovic, I., et al. <u>EMBO J.</u> 8: 1403-1410 (1989).

10

- 34. Stanger, B. Z., et al. Cell 81: 513-523 (1995).
- 35. Takahashi, T. et al. Cell 76: 969-976 (1994).
- 15 36. Vogel, W., et al. (1993). <u>Science</u> **259**: 1611-1614 (1993).
 - 37. Watanabe-Fukunaga, R., et al. <u>Nature</u> **356**: 314-317 (1992).

20

- 38. Wang, X. W., et al. <u>Cancer Res</u>. 55: 6012-6016 (1995).
- 39. Westendorp, M. O. et al. Nature 375: 497-500 (1995).

25

- 40. Woods, D.F. and Bryant, P.J. <u>Cell</u> **66**: 451-464 (1991).
- 41. Yang, Q., and Tonks, N. K. <u>Proc. Natl. Acad. Sci.</u>
 30 <u>U.S.A.</u> 88: 5949-5953 (1991).

-36-

SEQUENCE LISTING

-	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Takaaki Sato and Junn Yanagisawa
10	(ii)	TITLE OF INVENTION: COMPOUNDS THAT INHIBIT THE INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF
	(iii)	NUMBER OF SEQUENCES: 33
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham LLP (B) STREET: 1185 Avenue of the Americas (C) CITY: New York
20		(D) STATE: New York (E) COUNTRY: U.S.A. (F) ZIP: 10036
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Not Yet Known (B) FILING DATE: 18-JUL-1997 (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: White, John P (B) REGISTRATION NUMBER: 28,678 (C) REFERENCE/DOCKET NUMBER: 0575/48962-A-PCT/JPW/JKM
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (212) 278-0400 (B) TELEFAX: (212) 391-0525
	(2) INFO	RMATION FOR SEQ ID NO:1:
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii)	MOLECULE TYPE: peptide
	(iii)	HYPOTHETICAL: NO
55	(iv)	ANTI-SENSE: NO
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:
60	Gl _y 1	/Ser/Ala/Glu Leu Gly Phe/Ile/Leu
	(2) INFO	RMATION FOR SEQ ID NO:2:
65	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
5	(ii) MOLECULE TYPE: peptide
J	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
	Lys/Arg/Gln Xaa(n) Gly/Ser/Ala/Glu Leu Gly Phe/Ile/Leu 1
15	(2) INFORMATION FOR SEQ ID NO:3:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: peptide
25	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
	Ser Leu Gly Ile 1
35	(2) INFORMATION FOR SEQ ID NO:4:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
4.5	(ii) MOLECULE TYPE: peptide
45	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
	Ser/Thr Xaa Val/Ile/Leu 1
55	(2) INFORMATION FOR SEQ ID NO:5:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
65	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

		Asp S	er Glu	_	Ser .	Asn :	Phe	Arg	Asn	Glu 10	Ile	Gln	Ser	Leu	Val 15
5	(2)	INFORM	ATION I	FOR SI	I QE	D NO	:6:								
10		,	EQUENCE (A) LEN (B) TYI (C) STE (D) TOI	IGTH: PE: an VANDEI	15 nino ONES	amin aci S: s	o ac d ingl	ids							
		(ii) M	OLECULI	TYPE	E: p	epti	de								
15		(xi) S	EQUENCI	E DESC	CRIP	TION	: SE	Q II	NO:	6:					
		Ser I	le Ser	Asn S	Ser 5	Arg .	Asn	Glu	Asn	Glu 10	Gly	Gln	Ser	Leu	Glu 15
20	(2)	INFORM	ATION I	FOR SI	EQ I	D NO	:7:								
25		•	EQUENCE (A) LER (B) TYI (C) STI (D) TOI	NGTH: PE: ar RANDEI	15 mino ONES	amin aci S: s	o ac d ingl	ids							
30		(ii) M	OLECULI	E TYPI	E: p	epti	de								
30		(xi) S	EQUENCI	E DES	CRIP	TION	: SE	Q II	NO:	7:					
35		Ser T	hr Pro		Thr 5	Gly	Asn	Glu	Asn	Glu 10	Gly	Gln	Суѕ	Leu	Glu 15
	(2)	INFORM	ATION 1	FOR S	EQ I	D NO	:8:								
40		(i) S	EQUENCI (A) LEI (B) TYI (C) STI (D) TOI	NGTH: PE: a: RANDE!	4 a mino DNES	mino aci S: s	aci d ingl	ids							
45		(ii) M	OLECUL	E TYP	E: p	epti	de								
		(xi) S	EQUENC	E DES	CRIF	TION	: SI	II QE	ON C	:8:					
50		Glu S 1	er Leu	Val											
	(2)	INFORM	MOITA	FOR S	EQ 1	D NO	9:9:								
55		(i) S	EQUENC (A) LE (B) TY (C) ST (D) TO	NGTH: PE: a RANDE	6 a mino DNES	mino aci SS: s	ac: .d :ing:	ids							
60		(ii) M	OLECUL	E TYP	E: p	pepti	de								
		(xi) S	EQUENC	E DES	CRII	MOITS	i: S1	EQ I	D NO	:9:					
65		Thr I	le Gln		Val 5	Ile									

PCT/US97/12677 WO 98/05347

-39-

	(Ż)	INFORMATION FOR SEQ ID NO:10:
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		(ii) MOLECULE TYPE: peptide
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
15		Arg Gly Phe Ile Ser Ser Leu Val
	(2)	INFORMATION FOR SEQ ID NO:11:
20		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
30		Arg Glu Thr Ile Glu Ser Thr Val
	(2)	INFORMATION FOR SEQ ID NO:12:
35	•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
45		Gln Asn Phe Arg Thr Tyr Ile Val Ser Phe Val 1 5 10
5 0	(2)	INFORMATION FOR SEQ ID NO:13:
50		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid
55		(C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
60		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
		Ser Asp Ser Asn Met Asn Met Asn Glu Leu Ser Glu Val 1 5 10
65	(2)	INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

5			(B) TY (C) SY	ENGTH: (PE: a (RANDE)POLOG	mino DNESS	acio S: s:	i ingl								
,		(ii) M	OLECUI	LE TYP	E: pe	eptio	de								
		(xi) S	EQUEN	CE DES	CRIP:	rion:	: SE	O II	NO:	14:					
10		Pro F	Pro Thi	Cys	Ser (5	Gln /	Ala i	Asn	Ser	Gly 10	Arg	Ile	Ser	Thr	Leu 15
15	(2)	INFORM	MATION	FOR S	EQ II	ои о	:15:								
	,	(i) S	(B) T	ength: (PE: a (rande	15 a mino DNES	amino acio S: s:	o ac d ingl	ids							
20		(ii) N	(D) I(OPOLOG LE TYP	_										
		•	EQUEN		_	-		Q II	ONO:	:15:					
25		Ile A	Asp Le	ı Ala	Ser (5	Glu 1	Phe :	Leu	Phe	Leu 10	Ser	Asn	Ser	Phe	Leu 15
30	(2)	INFORM	MOITAN	FOR S	EQ I	D NO	:16:								
35		(i) S	(B) T (C) S'	CE CHA ENGTH: YPE: a TRANDE OPOLOG	15 mino DNES	amino acio S: s:	o ac d ingl	ids							
		(ii) P	MOLECU	LE TYP	E: p	epti	de								
40		(xi) 5	SEQUEN	CE DES	CRIP	TION	: SE	Q II	ON C	:16:					
		Asp S	Ser Gl	u M et	Tyr 5	Asn :	Phe	Arg	Ser	Gln 10	Leu	Ala	Ser	Val	Val 15
45	(2)	INFOR	MATION	FOR S	EQ I	D NO	:17:								
50		(i) {	(B) T (C) S	CE CHA ENGTH: YPE: 6 TRANDE OPOLOG	15 mino DNES	amin aci S: s	o ac d ingl	ids							
		(ii) 1	MOLECU	LE TYP	E: p	epti	de								
55		(xi)	SEQUEN	CE DES	CRIP	TION	: SE	Q I	D NO	:17:					
		Ile 1	Pro Pr	o Asp	Ser 5	Glu	Asp	Gly	Asn	Glu 10	Glu	Gln	Ser	Leu	Val 15
60	(2)	INFOR	MATION	FOR S	SEQ I	D NO	:18:								
65		(i)	(B) T (C) S	CE CHI ENGTH YPE: 6 TRANDI	: 4 a emino EDNES	mino aci SS: s	aci d ingl	.ds							

		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
5		Gln Ser Leu Val 1
10	(2)	INFORMATION FOR SEQ ID NO:19:
15		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
17		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
20		Ile Gln Ser Leu Val 1 5
25	(2)	INFORMATION FOR SEQ ID NO:20:
30		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
35		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
		Glu Ile Gln Ser Leu Val
40	(2)	INFORMATION FOR SEQ ID NO:21:
45		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 7 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
50		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Asn Glu Ile Gln Ser Leu Val 1 5
55	(2)	INFORMATION FOR SEQ ID NO:22:
60		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
65		(ii) MOLECULE TYPE: peptide
J J		(vi) SPOTTENCE DESCRIPTION: SEO ID NO:22:

Arg Asn Glu Ile Gln Ser Leu Val

5	(2)	INFOR	MATI	ON F	OR S	EQ I	D NC):23:									
10		(i)	(A) (B) (C)	LEN TYP STR	CHA IGTH: PE: a LANDE POLOG	15 mino DNES	amir aci S: s	o ac .d singl	ids								
		(ii)	MOLE	CULE	TYP	E: p	epti	.de									
15		(xi)	SEQU	JENCE	DES	CRIE	COLT	I: SE	Q II	NO:	23:						
		Asp 1	Ser	Glu	Asn	Ser 5	Asn	Phe	Arg	Asn	Glu 10	Ile	Gln	Ser	Leu	Val 15	
20	(2)	INFOR	MATI	ON F	FOR S	EQ I	D NC):24:									
25		(i)	(A) (B) (C)	LEN TYI STR	E CHA IGTH: PE: a RANDE POLOG	427 mino DNES	ami aci SS: s	ino a id singl	cids	3							
30		(ii)	MOLE	CULE	TYE	E: F	epti	ide									
		(xi)	_						-								
		Met G	lly F	Ala G	Sly A	lla 1 5	Thr (Sly A	arg A	Ala N	1et <i>1</i>	lsp (ily i	Pro 1	Arg I	Leu I 15	Leu
35		Leu	Leu	Leu	Leu 20	Leu	Gly	Val	Ser	Leu 25	Gly	Gly	Ala	Lys	Glu 30	Ala	Cys
40		Pro	Thr	Gly 35	Leu	Tyr	Thr	His	Ser 40	Gly	Glu	Cys	Cys	Lys 45	Ala	Cys	Asn
		Leu	Gly 50	Glu	Gly	Val	Ala	Gln 55	Pro	Cys	Gly	Ala	Asn 60	Gln	Thr	Val	Cys
45		Glu 65	Pro	Cys	Leu	Asp	Ser 70	Val	Thr	Phe	Ser	Asp 75	Val	Val	Ser	Ala	Thr 80
		Glu	Pro	Суз	Lys	Pro 85	Суз	Thr	Glu	Cys	Val 90	Gly	Leu	Gln	Ser	Met 95	Ser
50		Ala	Pro	Сув	Val 100	Glu	Ala	Asp	Asp	Ala 105	Val	Cys	Arg	Cys	Ala 110	Tyr	Gly
55		Tyr	Tyr	Gln 115	Asp	Glu	Thr	Thr	Gly 120	Arg	Сув	Glu	Ala	Cys 125	Arg	Val	Сув
		Glu	Ala 130	Gly	Ser	Gly	Leu	Val 135	Phe	Ser	Cys	Gln	Asp 140	Lys	Gln	Asn	Thr
60		Val 145	Cys	Glu	Glu	Сув	Pro 150	Asp	Gly	Thr	Tyr	Ser 155	Asp	Glu	Ala	Asn	His 160
		Val	Asp	Pro	Сув	Leu 165	Pro	Cys	Thr	Val	Cys 170	Glu	Asp	Thr	Glu	Arg 175	Gln
65		Leu	Arg	Glu	Cys 180		Arg	Trp	Ala	Asp 185		Glu	Cys	Glu	Glu 190	Ile	Pro

-43-

		Gly	Arg	Trp 195	Ile	Thr	Arg	Ser	Thr 200	Pro	Pro	Glu	Gly	Ser 205	Asp	Ser	Thr
5		Ala	Pro 210	Ser	Thr	Gln	Glu	Pro 215	Glu	Ala	Pro	Pro	Glu 220	Gln	Asp	Leu	Ile
		Ala 225	Ser	Thr	Val	Ala	Gly 230	Val	Val	Thr	Thr	Val 235	Met	Gly	Ser	Ser	Gln 240
10		Pro	Val	Val	Thr	Arg 245	Gly	Thr	Thr	Asp	Asn 250	Leu	Ile	Pro	Val	Tyr 255	Cys
1.5		Ser	Ile	Leu	Ala 260	Ala	Val	Val	Val	Gly 265	Leu	Val	Ala	Tyr	Ile 270	Ala	Phe
15		Lys	Arg	Trp 275	Asn	Ser	Суз	Lys	Gln 280	Asn	Lys	Gly	Gly	Ala 285	Asn	Ser	Arg
20		Pro	Val 290	Asn	Gln	Thr	Pro	Pro 295	Pro	Glu	Gly	Glu	100 200	Ile	His	Ser	Asp
		Ser 305	Gly	Ile	Ser	Val	Asp 310	Ser	Gln	Ser	Leu	His 315	Asp	Gln	Gln	Pro	His 320
25		Thr	Gln	Thr	Ala	Ser 325	Gly	Gln	Ala	Leu	Lys 330	Gly	Asp	Gly	Gly	Leu 335	Tyr
30		Ser	Ser	Leu	Pro 340	Pro	Ala	Lys	Arg	Glu 345	Glu	Val	Glu	Lys	Leu 350	Leu	Asn
50		Gly	Ser	Ala 355	Gly	Asp	Thr	Trp	Arg 360	His	Leu	Ala	Gly	Glu 365	Leu	Gly	Tyr
35		Gln	Pro 370	Glu	His	Ile	Asp	Ser 375	Phe	Thr	His	Glu	Ala 380	Cys	Pro	Val	Arg
		Ala 385	Leu	Leu	Ala	Ser	Trp 390	Ala	Thr	Gln	Asp	Ser 395	Ala	Thr	Leu	Asp	Ala 400
40		Leu	Leu	Ala	Ala	Leu 405	Arg	Arg	Ile	Gln	Arg 410	Ala	Asp	Leu	Val	Glu 415	Ser
45		Leu	Cys	Ser	Glu 420	Ser	Thr	Ala	Thr	Ser 425	Pro	Val					
	(2)	INFO	TAMS	ON I	FOR S	SEQ 1	D NO	25:	:								
50		(i)	(Ā) (B) (C)	LEN TYP STE	E CHA NGTH: PE: & RANDI POLOG	458 mino DNES	3 ami 5 aci 5S: s	ino a id singl	cide	3					,		
55		(ii)	MOLI	ECULI	TYI	?E: p	pepti	de									
		(xi)	_									7	7	**- 1	•	01	•
60		Met 1	ASN	AIG	GIÀ	vai 5	PTO	rne	AIG	His	Leu 10	ren	ьeu	val	ьец	15	Leu
		Ala	Leu	Leu	Pro 20	Ala	Ala	Thr	Gln	Gly 25	Lys	Lys	Val	Val	Leu 30	Gly	Lys
65		Lys	Gly	Asp 35	Thr	Val	Glu	Leu	Thr 40	Cys	Thr	Ala	Ser	Gln 45	Lys	Lys	Ser

-44-

	Ile	Gln 50	Phe	His	Trp	Lys	Asn 55	Ser	Asn	Gln	Ile	Lys 60	Ile	Leu	Gly	Asn
5	Gln 65	Gly	Ser	Phe	Leu	Thr 70	Lys	Gly	Pro	Ser	Lys 75	Leu	Asn	Asp	Arg	Ala 80
	Asp	Ser	Arg	Arg	Ser 85	Leu	Trp	Asp	Gln	Gly 90	Asn	Phe	Pro	Leu	Ile 95	Ile
10	Lys	Asn	Leu	Lys 100	Ile	Glu	Asp	Ser	Asp 105	Thr	Tyr	Ile	Сув	Glu 110	Val	Glu
15	Asp	Gln	Lys 115	Glu	Glu	Val	Gln	Leu 120	Leu	Val	Phe	Gly	Leu 125	Thr	Ala	Asn
15	Ser	Asp 130	Thr	His	Leu	Leu	Gln 135	Gly	Gln	Ser	Leu	Thr 140	Ile	Thr	Leu	Glu
20	Ser 145	Pro	Pro	Gly	Ser	Ser 150	Pro	Ser	Val	Gln	Cys 155	Arg	Ser	Pro	Arg	Gly 160
	Lys	Asn	Ile	Gln	Gly 165	Gly	Lys	Thr	Leu	Ser 170	Val	Ser	Gln	Leu	Glu 175	Leu
25	Gln	Asp	Ser	Gly 180	Thr	Trp	Thr	Сув	Thr 185	Val	Leu	Gln	Asn	Gln 190	Lys	Lys
20	Val	Glu	Phe 195	Lys	Ile	Asp	Ile	Val 200	Val	Leu	Ala	Phe	Gln 205	Lys	Ala	Ser
30	Ser	Ile 210	Val	Tyr	Lys	Lys	Glu 215	Gly	Glu	Gln	Val	Glu 220	Phe	Ser	Phe	Pro
35	Leu 225	Ala	Phe	Thr	Val	Glu 230	Lys	Leu	Thr	Gly	Ser 235	Gly	Glu	Leu	Trp	Trp 240
	Gln	Ala	Glu	Arg	Ala 245	Ser	Ser	Ser	Lys	Ser 250	Trp	Ile	Thr	Phe	Asp 255	Leu
40	Lys	Asn	Lys	Glu 260	Val	Ser	Val	Lys	Arg 265	Val	Thr	Gln	Asp	Pro 270	Lys	Leu
45	Gln	Met	Gly 275	Lys	Lys	Leu	Pro	Leu 280	His	Leu	Thr	Leu	Pro 285	Gln	Ala	Leu
4.5	Pro	Gln 290	Tyr	Ala	Gly	Ser	Gly 295	Asn	Leu	Thr	Leu	Ala 300	Leu	Glu	Ala	Lys
50	Thr 305	-	Lys	Leu	His	Gln 310		Asn	Val	Leu	Val 315	Val	Met	Arg	Ala	Thr 320
	Gln	Leu	Gln	Lys	Asn 325		Thr	Cys	Glu	Val 330	Trp	Gly	Pro	Thr	Ser 335	Pro
55	Lys	Leu	Met	Leu 340		Leu	Lys	Leu	Glu 345	Asn	Lys	Glu	Ala	Lys 350	Val	Ser
60	Lys	Arg	Glu 355		Ala	Val	Trp	Val 360		Asn	Pro	Glu	Ala 365	Gly	Met	Trp
60	Gln	Cys 370		Leu	Ser	Asp	Ser 375		Gln	Val	Leu	Leu 380	Glu	Ser	Asn	Ile
65	Lys 385		Leu	Pro	Thr	Trp 390		Thr	Pro	Val	Gln 395		Met	Ala	Leu	Ile 400
	Val	Leu	Gly	Gly	Val	Ala	Gly	Leu	Leu	Leu	Phe	Ile	Gly	Leu	Gly	Ile

-45-

						405					410					415	
5		Phe	Phe	Cys	Val 420		Суз	Arg	His	Arg 425		Arg	Gln	Ala	Glu 430		Met
,		Ser	Gln	Ile 435	Lys	Arg	Leu	Leu	Ser 440		Lys	Lys	Glu	Cys 445		Cys	Pro
10		His	Arg 450	Phe	Gln	Lys	Thr	Cys 455		Pro	Ile						
	(2)	INFO	RMAT:	ION 1	FOR S	SEQ	ID N	0:26	:			•					
15		(i)	(A (B (C	LEI TYI STI	NGTH PE: 6 RAND	: 82 amin EDNE	TERIS 8 am 0 ac SS: 8	ino a id sing:	acid	s							
20		(ii)	MOLI	ECULI	E TY	PE: j	pept:	ide									
		(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: S	EQ I	D NO	:26:						
25		Met 1	Asn	Ser	Gly	Val 5	Ala	Met	Lys	Tyr	Gly 10	Asn	Asp	Ser	Ser	Ala 15	Glu
		Leu	Ser	Glu	Leu 20	His	Ser	Ala	Ala	Leu 25	Ala	Ser	Leu	Lys	Gly 30	Asp	Ile
30		Val	Glu	Leu 35	Asn	Lys	Arg	Leu	Gln 40	Gln	Thr	Glu	Arg	Glu 45	Asp	Leu	Leu
35		Glu	Lys 50	Lys	Leu	Ala	Lys	Ala 55	Gln	Cys	Glu	Gln	Ser 60	His	Leu	Met	Arg
		Glu 65	His	Glu	Asp	Val	Gln 70	Glu	Arg	Thr	Thr	Leu 75	Arg	Tyr	Glu	Glu	Arg 80
40		Ile	Thr	Glu	Leu	His 85	Ser	Val	Ile	Ala	Glu 90	Leu	Asn	Lys	Lys	Ile 95	Asp
45		Arg	Leu	Gln	Gly 100	Thr	Thr	Ile	Arg	Glu 105	Glu	Asp	Glu	Tyr	Ser 110	Glu	Leu
13		Arg	Ser	Glu 115		Ser	Gln	Ser		His				Glu 125	_	Ser	Arg
50		Ser	Met 130	Asp	Gln	qaA	Gln	Thr 135	Ser	Val	Ser	Ile	Pro 140	Glu	Asn	Gln	Ser
		Thr 145	Met	Val	Thr	Ala	Asp 150	Met	Asp	Asn	Cys	Ser 155	Ąsp	Ile	Asn	Ser	Glu 160
55		Leu	Gln	Arg	Val	Leu 165	Thr	Gly	Leu	Glu	Asn 170	Val	Val	Cys	Gly	Arg 175	Lys
60		Lys	Ser	Ser	Cys 180	Ser	Leu	Ser	Val	Ala 185	Glu	Val	Asp	Arg	His 190	Ile	Glu
		Gln	Leu	Thr 195	Thr	Ala	Ser	Glu	His 200	Cys	Asp	Leu	Ala	Ile 205	Lys	Thr	Val
65		Glu	Glu 210	Ile	Glu	Gly	Val	Leu 215	Gly	Arg	Asp	Leu	Tyr 220	Pro	Asn	Leu	Ala
		~1. .	C1	N	cor	A	·m	C3	Tare	G1	Low	λ1 ~	G) v	T 011	7 ~~	C1	~1··

	225					230					235					240
_	Asn	Glu	Ser	Leu	Thr 245	Ala	Met	Leu	Cys	Ser 250	Lys	Glu	Glu	Glu	Leu 255	Asn
5	Arg	Thr	Lys	Ala 260	Thr	Met	Asn	Ala	Ile 265	Arg	Glu	Glu	Arg	Asp 270	Arg	Leu
10	Arg	Arg	Arg 275	Val	Arg	Glu	Leu	Gln 280	Thr	Arg	Leu	Gln	Ser 285	Val	Gln	Ala
	Thr	Gly 290	Pro	Ser	Ser	Pro	Gly 295	Arg	Leu	Thr	Ser	Thr 300	Asn	Arg	Pro	Ile
15	Asn 305	Pro	Ser	Thr	Gly	Glu 310	Leu	Ser	Thr	Ser	Ser 315	Ser	Ser	Asn	Asp	Ile 320
	Pro	Ile	Ala	Lys	Ile 325	Ala	Glu	Arg	Val	Lys 330	Leu	Ser	Lys	Thr	Arg 335	Ser
20	Glu	Ser	Ser	Ser 340	Ser	Asp	Arg	Pro	Val 345	Leu	Gly	Ser	Glu	Ile 350	Ser	Ser
25	Ile	Gly	Val 355	Ser	Ser	Ser	Val	Ala 360	Glu	His	Leu	Ala	His 365	Ser	Leu	Gln
	Asp	Cys 370	Ser	Asn	Ile	Gln	Glu 375	Ile	Phe	Gln	Thr	Leu 380	Tyr	Ser	His	Gly
30	Ser 385	Ala	Ile	Ser	Glu	Ser 390	Lys	Ile	Arg	Glu	Phe 395	Glu	Val	Glu	Thr	Glu 400
	Arg	Leu	Asn	Ser	Arg 405	Ile	Glu	His	Leu	Lys 410	Ser	Gln	Asn	Asp	Leu 415	Leu
35	Thr	Ile	Thr	Leu 420	Glu	Glu	Cys	Lys	Ser 425	Asn	Ala	Glu	Arg	Met 430	Ser	Met
40	Leu	Val	Gly 435	Lys	Tyr	Glu	Ser	Asn 440	Ala	Thr	Ala	Leu	Arg 445	Leu	Ala	Leu
	Gln	Tyr 450	Ser	Glu	Gln	Cys	Ile 455	Glu	Ala	Tyr	Glu	Leu 460	Leu	Leu	Ala	Leu
45	Ala 465		Ser	Glu	Gln	Ser 470	Leu	Ile	Leu	Gly	Gln 475	Phe	Arg	Ala	Ala	Gly 480
	Val	Gly	Ser	Ser	Pro 485		Asp	Gln	Ser	Gly 490	Asp	Glu	Asn	Ile	Thr 495	Gln
50	Met	Leu	Lys	Arg 500	Ala	His	Asp	Cys	Arg 505	Lys	Thr	Ala	Glu	Asn 510	Ala	Ala
55	Lys	Ala	Leu 515		Met	Lys	Leu	Asp 520	Gly	Ser	Сув	Gly	Gly 525	Ala	Phe	Ala
	Val	Ala 530	_	Cys	Ser	Val	Gln 535		Trp	Glu	Ser	Leu 540		Ser	Asn	Ser
60	His 545		Ser	Thr	Thr	Ser 550		Thr	Ala	Ser	Ser 555		Asp	Thr	Glu	Phe 560
	Thr	Lys	Glu	Asp	Glu 565		Arg	Leu	Lys	Asp 570		Ile	Gln	Gln	Leu 575	Lys
65	Asn	Asp	Arg	Ala 580		. Val	. Lys	Leu	Thr 585		. Leu	Glu	Leu	Glu 590	Ser	Ile

		His	Ile	Asp 595	Pro	Leu	Ser	Tyr	Asp 600	Val	Lys	Pro	Arg	Gly 605	Asp	Ser	Gln
5		Arg	Leu 610	Asp	Leu	Glu	Asn	Ala 615	Val	Leu	Met	Gln	Glu 620	Leu	Met	Ala	Met
		Lys 625	Glu	Glu	Met	Ala	Glu 630	Leu	Lys	Ala	Gln	Leu 635	Tyr	Leu	Leu	Glu	Lys 640
10		Glu	Lys	Lys	Ala	Leu 645	Glu	Leu	Lys	Leu	Ser 650	Thr	Arg	Glu	Ala	Gln 655	Glu
3 F		Gln	Ala	Tyr	Leu 660	Val	His	Ile	Glu	His 665	Leu	Lys	Ser	Glu	Val 670	Glu	Glu
15		Gln	Lys	Glu 675	Gln	Arg	Met	Arg	Ser 680	Leu	Ser	Ser	Thr	Ser 685	Ser	Gly	Ser
20		Lys	Asp 690	Lys	Pro	Gly	Lys	Glu 695	Cys	Ala	Asp	Ala	Ala 700	Ser	Pro	Ala	Leu
		Ser 705	Leu	Ala	Glu	Leu	Arg 710	Thr	Thr	Cys	Ser	Glu 715	Asn	Glu	Leu	Ala	Ala 720
25		Glu	Phe	Thr	Asn	Ala 725	Ile	Arg	Arg	Glu	Lys 730	Lys	Leu	Lys	Ala	Arg 735	Val
30		Gln	Glu	Leu	Val 740	Ser	Ala	Leu	Glu	Arg 745	Leu	Thr	Lys	Ser	Ser 750	Glu	Ile
30		Arg	His	Gln 755	Gln	Ser	Ala	Glu	Phe 760	Val	Asn	Asp	Leu	Lys 765	Arg	Ala	Asn
35		Ser	Asn 770	Leu	Val	Ala	Ala	Tyr 775	Glu	Lys	Ala	Lys	Lys 780	Lys	His	Gln	Asn
		Lys 785	Leu	Lys	Lys	Leu	Glu 790	Ser	Gln	Met	Met	Ala 795	Met	Val	Glu	Arg	His 800
40		Glu	Thr	Gln	Val	Arg 805	Met	Leu	Lys	Gln	Arg 810	Ile	Ala	Leu	Leu	Glu 815	Glu
45		Glu	Asn	Ser	Arg 820	Pro	His	Thr	Asn	Glu 825	Thr	Ser	Leu				
	(2)	INFOR	TAMS	ON I	FOR S	SEQ 1	D NO):27:	:								
50		(i)	(A)	JENCI LEN TYI STI	NGTH:	672 mino ZDNES	e ami aci SS: s	no a d singl	cids	3							
55		(ii)	MOLE	CULI	TYI	?E: [pepti	de									
		(xi)	_														
60		Met 1	Ala	Asp	Val	Phe 5	Pro	Gly	Asn	Asp	Ser 10	Thr	Ala	Ser	Gln	Asp 15	Val
		Ala	Asn	Arg	Phe 20	Ala	Arg	Lys	Gly	Ala 25	Leu	Arg	Gln	Lys	Asn 30	Val	His
65		Glu	Val	Lys 35	Asp	His	Lys	Phe	Ile 40	Ala	Arg	Phe	Phe	Lys 45	Gln	Pro	Thr

	Phe	Cys 50	Ser	His	Cys	Thr	Asp 55	Phe	Ile	Trp	Gly	Phe 60	Gly	Lys	Gly	Gly
5	Phe 65	Gln	Сув	Gln	Val	Cys 70	Сув	Phe	Val	Val	His 75	Lys	Arg	Cys	His	Glu 80
	Phe	Val	Thr	Phe	Ser 85	Сув	Pro	Gly	Ala	Asp 90	Lys	Gly	Pro	Asp	Thr 95	Asp
10	Asp	Pro	Arg	Ser 100	Lys	His	Lys	Phe	Lys 105	Ile	His	Thr	Tyr	Gly 110	Ser	Pro
15	Thr	Phe	Cys 115	qaA	His	Cys	Gly	Ser 120	Leu	Leu	Tyr	Gly	Leu 125	Ile	His	Gln
13	Gly	Met 130	Lys	Cys	Asp	Thr	Cys 135	Asp	Met	Asn	Val	His 140	Lys	Gln	Cys	Val
20	Ile 145	Asn	Val	Pro	Ser	Leu 150	Cys	Gly	Met	Asp	His 155	Thr	Glu	Lys	Arg	Gly 160
	Arg	Ile	Tyr	Leu	Lys 165	Ala	Glu	Val	Ala	Asp 170	Glu	Lys	Leu	His	Val 175	Thr
25	Val	Arg	Asp	Ala 180	Lys	Asn	Leu	Ile	Pro 185	Met	Asp	Pro	Asn	Gly 190	Leu	Ser
30	Asp	Pro	Tyr 195	Val	Lys	Leu	Lys	Leu 200	Ile	Pro	Asp	Pro	Lys 205	Asn	Glu	Ser
	Lys	Gln 210	Lys	Thr	Lys	Thr	Ile 215	Arg	Ser	Thr	Leu	Asn 220	Pro	Gln	Trp	Asn
35	225	Ser				230		-			235	_				240
		Val			245					250					255	
40	•	Ser		260		_			265					270		
45	_	Trp	275					280					285			
		Ile 290					295					300				
50	305					310					315					320
		Glu			325					330					335	
55		Asp		340					345					350		
60		Met	355					360					365			
		370	-				375					380				Thr
65	385			_		390					395					Leu 400
	Thr	Gln	Leu	His	Ser	CAa	Phe	Gln	Thr	Val	Asp	Arg	Leu	Tyr	Phe	Val

-49-

						405					410					415	
		Met	Glu	Tyr	Val 420	Asn	Gly	Gly	qaA	Leu 425	Met	Tyr	His	Ile	Gln 430	Gln	Val
5		Gly	Lys	Phe 435	Lys	Glu	Pro	Gln	Ala 440	Val	Phe	Tyr	Ala	Ala 445	Glu	Ile	Ser
10		Ile	Gly 450	Leu	Phe	Phe	Leu	His 455	Lys	Arg	Gly	Ile	Ile 460	Tyr	Arg	Asp	Leu
		Lys 465	Leu	Asp	Asn	Val	Met 470	Leu	Asp	Ser	Glu	Gly 475	His	Ile	Lys	Ile	Ala 480
15		Asp	Phe	Gly	Met	Cys 485	Lys	Glu	His	Met	Met 490	Asp	Gly	Val	Thr	Thr 495	Arg
		Thr	Phe	Cys	Gly 500	Thr	Pro	Asp	Tyr	Ile 505	Ala	Pro	Glu	Ile	Ile 510	Ala	Tyr
20		Gln	Pro	Tyr 515	Gly	Lys	Ser	Val	Asp 520	Trp	Trp	Ala	Tyr	Gly 525	Val	Leu	Leu
25		Tyr	Glu 530	Met	Leu	Ala	Gly	Gln 535	Pro	Pro	Phe	Asp	Gly 540	Glu	Asp	Glu	Asp
		Glu 545	Leu	Phe	Gln	Ser	Ile 550	Met	Glu	His	Asn	Val 555	Ser	Tyr	Pro	Lys	Ser 560
30		Leu	Ser	Lys	Glu	Ala 565	Val	Ser	Ile	Суз	Lys 570	Gly	Leu	Met	Thr	Lys 575	His
25		Pro	Ala	Lys	Arg 580	Leu	Gly	Cys	Gly	Pro 585	Glu	Gly	Glu	Arg	Asp 590	Val	Arg
35		Glu	His	Ala 595	Phe	Phe	Arg	Arg	Ile 600	Asp	Trp	Glu	Lys	Leu 605	Glu	Asn	Arg
40			610					615					620				
		Asn 625	Phe	Asp	Lys	Phe	Phe 630		Arg	Gly	Gln	Pro 635	Val	Leu	Thr	Pro	Pro 640
45		_		Leu		645					650					655	
50		Ser	Tyr	Val	Asn 660		Gln	Phe	Val	His 665	Pro	Ile	Leu	Gln	Ser 670	Ala	Val
	(2)	INFO															
55		(i)	(A (B (C	UENC) LE) TY !) ST) TO	NGTH PE: RAND	: 47 amin EDNE	1 am o ac SS:	ino id sing	acid	s							
60		(ii)	-	ECUL		•											
				UENC					EQ I	D NO	:28:						
65		Met 1	Asp	Ile	Leu	Cys 5	Glu	Glu	Asn	Thr	Ser 10	Leu	Ser	Ser	Thr	Thr 15	Asr

	Ser	Leu	Met	Gln 20	Leu	Asn	Asp	Asp	Thr 25	Arg	Leu	Tyr	Ser	Asn 30	Asp	Phe
5	Asn	Ser	Gly 35	Glu	Ala	Asn	Thr	Ser 40	Asp	Ala	Phe	Asn	Trp 45	Thr	Val	Asp
	Ser	Glu 50	Asn	Arg	Thr	Asn	Leu 55	Ser	Cys	Glu	Gly	Cys 60	Leu	Ser	Pro	Ser
10	Су з 65	Leu	Ser	Leu	Leu	His 70	Leu	Gln	Glu	Lys	Asn 75	Trp	Ser	Ala	Leu	Leu 80
15	Thr	Ala	Val	Val	Ile 85	Ile	Leu	Thr	Ile	Ala 90	Gly	Asn	Ile	Leu	Val 95	Ile
13	Met	Ala	Val	Ser 100	Leu	Glu	Lys	Lys	Leu 105	Gln	Asn	Ala	Thr	Asn 110	Tyr	Phe
20	Leu	Met	Ser 115	Leu	Ala	Ile	Ala	Asp 120	Met	Leu	Leu	Gly	Phe 125	Leu	Val	Met
	Pro	Val 130	Ser	Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Tyr	Arg 140	Trp	Pro	Leu	Pro
25	Ser 145	Lys	Leu	Сув	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Thr 160
30	Ala	Ser	Ile	Met	His 165	Leu	Cys	Ala	Ile	Ser 170	Leu	Asp	Arg	Tyr	Val 175	Ala
30	Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala
35	Phe	Leu	Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met
	Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu
40	Gly 225	Ser	Сув	Leu	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240
45	Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Сув	Val	Ser 270	Asp	Leu
50	Gly	Thr	Arg 275	Ala	Lys	Leu	Ala	Ser 280	Phe	Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
	Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
55	Ser 305	Tyr	Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
60	Ala	Cys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
	Сув	Pro	Phe	Phe 340	Ile	Thr	Asn	Ile	Met 345	Ala	Val	Ile	Cys	Lys 350	Glu	Ser
65	Cys	Asn	Glu 355	Asp	Val	Ile	Gly	Ala 360	Leu	Leu	Asn	Val	Phe 365	Val	Trp	Ile
	Gly	Tyr	Leu	Ser	Ser	Ala	Val	Asn	Pro	Leu	Val	Tyr	Thr	Leu	Phe	Asn

-51-

		370					375					380				
	Lys 385	Thr	Tyr	Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
5	Glu	Asn	Lys	Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
10	Leu	Ala	Tyr	Lys 420	Ser	Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
	Lys	Gln	Asp 435	Ala	Lys	Thr	Thr	Asp 440	Asn	Asp	Суз	Ser	Met 445	Val	Ala	Leu
15	Gly	Lys 450	Gln	His	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
20	Asn 465	Glu	Lys	Val	Ser	Cys 470	Val									
20	(2) INFO	RMAT I	ON E	OR S	SEQ I	D NO):29:	:								
25	(i)	(B)	LEN TYI STI	E CHANGTH: PE: & RANDI POLOG	481 mino EDNES	lam: cac: SS: 4	ino á id singl	cids	3							
30	(ii)	MOLE	CULI	TYI	PE: 1	pept:	ide									
		SEQU								•						
35	Met 1	Ala	Leu	Ser	Tyr 5	Arg	Val	Ser	Glu	Leu 10	Gln	Ser	Thr	Ile	Pro 15	Glu
	His	Ile	Leu	Gln 20	Ser	Thr	Phe	Val	His 25	Val	Ile	Ser	Ser	Asn 30	Trp	Ser
40	Gly	Leu	Gln 35	Thr	Glu	Ser	Ile	Pro 40	Glu	Glu	Met	Lys	Gln 45	Ile	Val	Glu
ΛE	Glu	Gln 50	Gly	Asn	Lys	Leu	His 55	Trp	Ala	Ala	Leu	Leu 60	Ile	Leu	Met	Val
45	65	Ile				70					75					80
50	Leu	Glu	Lys	Lys	Leu 85	Gln	Tyr	Ala	Thr	Asn 90	Tyr	Phe	Leu	Met	Ser 95	Leu
	Ala	Val	Ala	Asp 100	Leu	Leu	Val	Gly	Leu 105	Phe	Val	Met	Pro	Ile 110	Ala	Leu
55	Leu	Thr	Ile 115	Met	Phe	Glu	Ala	Met 120		Pro	Leu	Pro	Leu 125	Val	Leu	Суѕ
60	Pro	Ala 130	Trp	Leu	Phe	Leu	Asp 135	Val	Leu	Phe	Ser	Thr 140	Ala	Ser	Ile	Met
60	His 145	Leu	Cys	Ala	Ile	Ser 150		Asp	Arg	Tyr	Ile 155	Ala	Ile	Lys	Lys	Pro 160
65	Ile	Gln	Ala	Asn	Gln 165		Asn	Ser	Arg	Ala 170	Thr	Ala	Phe	Ile	Lys 175	Ile
	Thr	Val	Val	Trp	Leu	Ile	Ser	Ile	Gly	Ile	Ala	Ile	Pro	Val	Pro	Ile

-52-

					180					185					190		
5		Lys	Gly	Ile 195	Glu	Thr	Asp	Val	Asp 200	Asn	Pro	Asn	Asn	Ile 205	Thr	Cys	Val
3		Leu	Thr 210	Lys	Glu	Arg	Phe	Gly 215	Asp	Phe	Met	Leu	Phe 220	Gly	Ser	Leu	Ala
10		Ala 225	Phe	Phe	Thr	Pro	Leu 230	Ala	Ile	Met	Ile	Val 235	Thr	Tyr	Phe	Leu	Thr 240
		Ile	His	Ala	Leu	Gln 245	Lys	Lys	Ala	Tyr	Leu 250		Lys	Asn	Lys	Pro 255	Pro
15		Gln	Arg	Leu	Thr 260	Trp	Leu	Thr	Val	Ser 265	Thr	Val	Phe	Gln	Arg 270	Asp	Glu
20		Thr	Pro	Cys 275	Ser	Ser	Pro	Glu	Lys 280	Val	Ala	Met	Leu	Asp 285		Ser	Arg
20		Lys	Asp 290	Lys	Ala	Leu	Pro	Asn 295	Ser	Gly	Asp	Glu	Thr 300	Leu	Met	Arg	Arg
25		Thr 305	Ser	Thr	Ile	Gly	Lys 310	Lys	Ser	Val	Gln	Thr 315	Ile	Ser	Asn	Glu	Gln 320
		Arg	Ala	Ser	Lys	Val 325	Leu	Gly	Ile	Val	Phe 330	Phe	Leu	Phe	Leu	Leu 335	Met
30		Trp	Сув	Pro	Phe 340	Phe	Ile	Thr	Asn	Ile 345	Thr	Leu	Val	Leu	Cys 350	Asp	Ser
35		Cys	Asn	Gln 355	Thr	Thr	Leu	Gln	Met 360	Leu	Leu	Glu	Ile	Phe 365	Val	Trp	Ile
		Gly	Tyr 370	Val	Ser	Ser	Gly	Val 375	Asn	Pro	Leu	Val	Tyr 380	Thr	Leu	Phe	Asn
4 0		385					390					395		_		Tyr	400
						405					410				•	Ile 415	-
45					420					425					430	His	-
50				435					440					445		Arg	
		Arg	Ser 450	Ser	Thr	Ile	Gln	Ser 455	Ser	Ser	Ile	Ile	Leu 460	Leu	Asp	Thr	Leu
55		Leu 465	Leu	Thr	Glu	Asn	Glu 470	Gly	Asp	Lys	Thr	Glu 475	Glu	Gln	Val	Ser	Val 480
		Val															
60	(2)	INFO	RMAT:	ON I	FOR S	SEQ 1	D NO):30:	:								

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2843 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- 65

-53-

	(i	.i)	MOLE	CULE	TYI	?E: [pept	ide									
	(x	:i)	SEQU	JENCE	E DES	CRI	OITS	N: S1	II QE	ON C	:30:						
5	M 1		Ala	Ala	Ala	Ser 5	Tyr	Asp	Gln	Leu	Leu 10	Lys	Gln	Val	Glu	Ala 15	Le
10	L	ys	Met	Glu	Asn 20	Ser	Asn	Leu	Arg	Gln 25	Glu	Leu	Glu	Asp	Asn 30	Ser	Ası
10	H	is	Leu	Thr 35	Lys	Leu	Glu	Thr	Glu 40	Ala	Ser	Asn	Met	Lys 45	Glu	Val	Le
15	L	ys	Gln 50	Leu	Gln	Gly	Ser	Ile 55	Glu	Asp	Glu	Ala	Met 60	Ala	Ser	Ser	Gly
		ln 5	Ile	Asp	Leu	Leu	Glu 70	Arg	Leu	Lys	Glu	Leu 75	Asn	Leu	Asp	Ser	Sei 80
20	A	sn	Phe	Pro	Gly	Val 85	Lys	Leu	Arg	Ser	Lys 90	Met	Ser	Leu	Arg	Ser 95	Туз
25	G	ly	Ser	Arg	Glu 100	Gly	Ser	Val	Ser	Ser 105	Arg	Ser	Gly	Glu	Cys 110	Ser	Pro
23	v	al	Pro	Met 115	Gly	Ser	Phe	Pro	Arg 120	Arg	Gly	Phe	Val	Asn 125	Gly	Ser	Arg
30	G		Ser 130	Thr	Gly	Tyr	Leu	Glu 135	Glu	Leu	Glu	Lys	Glu 140	Arg	Ser	Leu	Lev
		eu 45	Ala	Asp	Leu	Asp	Lys 150	Glu	Glu	Lys	Glu	Lys 155	Asp	Trp	Tyr	Tyr	Ala 160
35	G	ln	Leu	Gln	Asn	Leu 165	Thr	Lys	Arg	Ile	Asp 170	Ser	Leu	Pro	Leu	Thr 175	Glu
40	A	sn	Phe	Ser	Leu 180	Gln	Thr	Asp	Met	Thr 185	Arg	Arg	Gln	Leu	Glu 190	Tyr	Glı
	A	la	Arg	Gln 195	Ile	Arg	Val	Ala	Met 200	Glu	Glu	Gln	Leu	Gly 205	Thr	Cys	Glr
45	• А	•	Met 210	Glu	Lys	Arg	Ala	Gln 215	Arg	Arg	Ile	Ala	Arg 220	Ile	Gln	Gln	Ile
		lu 25	-	Asp	Ile	Leu	Arg 230		Arg	Gln	Leu	Leu 235	Gln	Ser	Gln	Ala	Th: 240
50	G	lu	Ala	Glu	Arg	Ser 245	Ser	Gln	Asn	Lys	His 250	Glu	Thr	Gly	Ser	His 255	Ası
55	A	la	Glu	Arg	Gln 260	Asn	Glu	Gly	Gln	Gly 265	Val	Gly	Glu	Ile	Asn 270	Met	Ala
<i>J J</i>	т	'hr	Ser	Gly 275	Asn	Gly	Gln	Gly	Ser 280	Thr	Thr	Arg	Met	Asp 285	His	Glu	Thi
60	A		Ser 290	Val	Leu	Ser	Ser	Ser 295	Ser	Thr	His	Ser	Ala 300	Pro	Arg	Arg	Lev
		hr 05	Ser	His	Leu	Gly	Thr 310	Lys	Val	Glu	Met	Val 315	Tyr	Ser	Leu	Leu	Ser 320
65	м	let	Leu	Gly	Thr	His 325	Asp	Lys	Asp	Авр	Met 330	Ser	Arg	Thr	Leu	Leu 335	Ala

	Met	Ser	Ser	Ser 340	Gln	Asp	Ser	Cys	Ile 345	Ser	Met	Arg	Gln	Ser 350	Gly	Cys
5	Leu	Pro	Leu 355	Leu	Ile	Gln	Leu	Leu 360	His	Gly	Asn	Asp	Lys 365	Asp	Ser	Val
	Leu	Leu 370	Gly	Asn	Ser	Arg	Gly 375	Ser	Lys	Glu	Ala	Arg 380	Ala	Arg	Ala	Ser
10	Ala 385	Ala	Leu	His	Asn	Ile 390	Ile	His	Ser	Gln	Pro 395	Asp	Asp	Lys	Arg	Gly 400
15	Arg	Arg	Glu	Ile	Arg 405	Val	Leu	His	Leu	Leu 410	Glu	Gln	Ile	Arg	Ala 415	Tyr
	Cys	Ser	Thr	Cys 420	Trp	Glu	Trp	Gln	Glu 425	Ala	His	Glu	Pro	Gly 430	Met	Asp
20	Gln	Asp	Lys 435	Asn	Pro	Met	Pro	Ala 440	Pro	Val	Glu	His	Gln 445	Ile	Cys	Pro
	Ala	Val 450	Cys	Val	Leu	Met	Lys 455	Leu	Ser	Phe	Asp	Glu 460	Glu	His	Arg	His
25	Ala 465	Met	Asn	Glu	Leu	Gly 470	Gly	Leu	Gln	Ala	11e 475	Ala	Glu	Leu	Leu	Gln 480
30	Val	Asp	Сув	Glu	Met 485	Tyr	Gly	Leu	Thr	Asn 490	Asp	His	Tyr	Ser	Ile 495	Thr
	Leu	Arg	Arg	Tyr 500	Ala	Gly	Met	Ala	Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp
35	Val	Ala	Asn 515	Lys	Ala	Thr	Leu	Суs 520	Ser	Met	Lys	Gly	Cys 525	Met	Arg	Ala
	Leu	Val 530	Ala	Gln	Leu	Lys	Ser 535	Glu	Ser	Glu	Asp	Leu 540	Gln	Gln	Val	Ile
40	Ala 545	Ser	Val	Leu	Arg	Asn 550	Leu	Ser	Trp	Arg	Ala 555	Asp	Val	Asn	Ser	Lys 560
45	Lys	Thr	Leu	Arg	Glu 565	Val	Gly	Ser	Val	Lys 570	Ala	Leu	Met	Glu	Cys 575	Ala
	Leu	Glu	Val	-	Lys		Ser	Thr		Lys			Leu	Ser 590	Ala	Гел
50	Trp	Asn	Leu 595	Ser	Ala	His	Cys	Thr 600	Glu	Asn	Lys	Ala	Asp 605	Ile	Суз	Ala
	Val	Asp 610	Gly	Ala	Leu	Ala	Phe 615	Leu	Val	Gly	Thr	Leu 620	Thr	Tyr	Arg	Ser
55	Gln 625	Thr	Asn	Thr	Leu	Ala 630		Ile	Glu	Ser	Gly 635	Gly	Gly	Ile	Leu	Arg 640
60	Asn	Val	Ser	Ser	Leu 645	Ile	Ala	Thr	Asn	Glu 650	Asp	His	Arg	Gln	Ile 655	Leu
	Arg	Glu	Asn	Asn 660	Сув	Leu	Gln	Thr	Leu 665	Leu	Gln	His	Leu	Lys 670	Ser	His
65	Ser	Leu	Thr 675	Ile	Val	Ser	Asn	Ala 680	Сув	Gly	Thr	Leu	Trp 685	Asn	Leu	Ser
	Ala	Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val

-55-

690 695 700

		690					695					700				
5	Ser 705	Met	Leu	Lys	Asn	Leu 710	Ile	His	Ser	Lys	His 715	Lys	Met	Ile	Ala	Met 720
5	Gly	Ser	Ala	Ala	Ala 725	Leu	Arg	Asn	Leu	Met 730	Ala	Asn	Arg	Pro	Ala 735	Lys
10	Tyr	Lys	Asp	Ala 740	Asn	Ile	Met	Ser	Pro 745	Gly	Ser	Ser	Leu	Pro 750	Ser	Leu
	His	Val	Arg 755	Lys	Gln	Lys	Ala	Leu 760	Glu	Ala	Glu	Leu	Asp 765	Ala	Gln	His
15	Leu	Ser 770	Glu	Thr	Phe	Asp	Asn 775	Ile	Asp	Asn	Ile	Ser 780	Pro	Lys	Ala	Ser
20	His 785	Arg	Ser	Lys	Gln	Arg 790	His	Lys	Gln	Ser	Leu 795	Tyr	Gly	Asp	Tyr	Val 800
	Phe	Asp	Thr	Asn	Arg 805	His	Asp	Asp	Asn	Arg 810	Ser	Asp	Asn	Phe	Asn 815	Thr
25	Gly	Asn	Met	Thr 820	Val	Leu	Ser	Pro	Tyr 825	Leu	Asn	Thr	Thr	Val 830	Leu	Pro
	Ser	Ser	Ser 835	Ser	Ser	Arg	Gly	Ser 840	Leu	Asp	Ser	Ser	Arg 845	Ser	Glu	Lys
30	Asp	Arg 850	Ser	Leu	Glu	Arg	Glu 855	Arg	Gly	Ile	Gly	Leu 860	Gly	Asn	Tyr	His
35	Pro 865	Ala	Thr	Glu	Asn	Pro 870	Gly	Thr	Ser	Ser	Lys 875	Arg	Gly	Leu	Gln	Ile 880
	Ser	Thr	Thr	Ala	Ala 885	Gln	Ile	Ala	Lys	Val 890	Met	Glu	Glu	Val	Ser 895	Ala
40	Ile	His	Thr	Ser 900	Gln	Glu	Asp	Arg	Ser 905	Ser	Gly	Ser	Thr	Thr 910	Glu	Leu
	His	Суз	Val 915	Thr	Asp	Glu	Arg	Asn 920	Ala	Leu	Arg	Arg	Ser 925	Ser	Ala	Ala
45	His	Thr 930	His	Ser	Asn	Thr	Tyr 935	Asn	Phe	Thr	Lys	Ser 940	Glu	Asn	Ser	Asn
50	Arg 945	Thr	Cys	Ser	Met	Pro 950	Tyr	Ala	Lys	Leu	Glu 955	Tyr	Lys	Arg	Ser	Ser 960
	Asn	Asp	Ser	Leu	Asn 965	Ser	Val	Ser	Ser	Ser 970	Asp	Gly	Tyr	Gly	Lys 975	Arg
55	Gly	Gln	Met	Lys 980	Pro	Ser	Ile	Glu	Ser 985	Tyr	Ser	Glu	Asp	Asp 990	Glu	Ser
	Lys	Phe	Cys 995	Ser	Tyr	Gly	Gln	Tyr 1000		Ala	Asp	Leu	Ala 1005		Lys	Ile
60	His	Ser 101	Ala O	Asn	His	Met	Asp 101		Asn	Asp	Gly	Glu 1020		Asp	Thr	Pro
65	Ile 102		Tyr	Ser	Leu	Lys 103		Ser	Asp	Glu	Gln 1035		Asn	Ser	Gly	Arg 1040
	Gln	Ser	Pro	Ser	Gln 104		Glu	Arg	Trp	Ala 1050		Pro	Lys	His	Ile 1055	

	Glu	Asp	Glu	Ile 1060		Gln	Ser	Glu	Gln 1065		Gln	Ser	Arg	Asn 1070		Ser
5	Thr	Thr	Tyr 1075		Val	Tyr	Thr	Glu 1080		Thr	qaA	Asp	Lys 1085		Leu	Lys
	Phe	Gln 1090		His	Phe	Gly	Gln 1095		Glu	Cys	Val	Ser 110		Tyr	Arg	Ser
10	Arg 1105		Ala	Asn	Gly	Ser 1110		Thr	Asn	Arg	Val 1115		Ser	Asn	His	Gly 1120
. 5	Ile	Asn	Gln	Asn	Val 1125		Gln	Ser	Leu	Cys 1130		Glu	Asp	Asp	Tyr 1135	Glu
15	Asp	Asp	Lys	Pro 1140	Thr	Asn	Tyr	Ser	Glu 1145		Tyr	Ser	Glu	Glu 1150		Gln
20	His	Glu	Glu 1155		Glu	Arg	Pro	Thr 1160		Tyr	Ser	Ile	Lys 1165	-	Asn	Glu
	Glu	Lys 1170		His	Val	Asp	Gln 1175		Ile	Asp	Tyr	Ser 1180		Leu	Lys	Ala
25	Thr 1185	-	Ile	Pro	Ser	Ser 1190		Lys	Gln	Ser	Phe 1195		Phe	Ser	Lys	Ser 1200
3.0	Ser	Ser	Gly	Gln	Ser 1205		Lys	Thr	Glu	His 1210		Ser	Ser	Ser	Ser 1215	
30	Asn	Thr	Ser	Thr 1220	Pro	Ser	Ser	Asn	Ala 1225		Arg	Gln	Asn	Gln 1230		His
35	Pro	Ser	Ser 1235		Gln	Ser	Arg	Ser 1240		Gln	Pro	Gln	Lys 1245		Ala	Thr
	Cys	Lys 1250		Ser	Ser	Ile	Asn 1255		Glu	Thr	Ile	Gln 1260		Tyr	Cys	Val
40	Glu 1265	_	Thr	Pro	Ile	Сув 1270		Ser	Arg	Сув	Ser 1275		Leu	Ser	Ser	Leu 1280
4 5	Ser	Ser	Ala	Glu	Asp 1289		Ile	Gly	Cys	Asn 1290		Thr	Thr	Gln	Glu 1295	
43	Asp	Ser	Ala	Asn 1300		Leu	Gln	Ile	Ala 1305		Ile	Lys	Glu	Lys 1310		Gly
50	Thr	Arg	Ser 131		Glu	Asp	Pro	Val 1320		Glu	Val	Pro	Ala 1325		Ser	Gln
	His	Pro 1330	_	Thr	Lys	Ser	Ser 1335	_	Leu	Gln	Gly	Ser 1340		Leu	Ser	Ser
55	Glu 134		Ala	Arg	His	Lys 1350		Val	Glu	Phe	Ser 1359		Gly	Ala	Lys	Ser 1360
60	Pro	Ser	Lys	Ser	Gly 136		Gln	Thr	Pro	Lys 1370		Pro	Pro	Glu	His 1375	Tyr
60	Val	Gln	Glu	Thr 138	Pro	Leu	Met	Phe	Ser 1385		Сув	Thr	Ser	Val 1390		Ser
65	Leu	Asp	Ser 139		Glu	Ser	Arg	Ser 140		Ala	Ser	Ser	Val 140		Ser	Glu
	Pro	Cys	Ser	Gly	Met	Val	Ser	Gly	Ile	Ile	Ser	Pro	Ser	Asp	Leu	Pro

-57-

	141	0		1415		142	0	
_	Asp Ser 1425	Pro Gly	Gln Thr 143		Pro Ser	Arg Ser 1435	Lys Thr	Pro Pro 1440
5	Pro Pro	Pro Gln	Thr Ala	Gln Thi	Lys Arg		Pro Lys	Asn Lys 1455
10	Ala Pro	Thr Ala		Arg Glu	Ser Gly	Pro Lys	Gln Ala 1470	
	Asn Ala	Ala Val 1475	Gln Arg	Val Glr 148		Pro Asp	Ala Asp 1485	Thr Leu
15	Leu His 149		Thr Glu	Ser Thi	Pro Asp	Gly Phe 150	Ser Cys 0	Ser Ser
20	Ser Leu 1505	Ser Ala	Leu Ser 151		Glu Pro	Phe Ile 1515	Gln Lys	Asp Val 1520
20	Glu Leu	Arg Ile	Met Pro 1525	Pro Val	. Gln Glu 153		Asn Gly	Asn Glu 1535
25	Thr Glu	Ser Glu 154		Lys Glu	Ser Asn 1545	Glu Asn	Gln Glu 1550	•
	Ala Glu	Lys Thr 1555	Ile Asp	Ser Glu		Leu Leu	Asp Asp 1565	Ser Asp
30	Asp Asp 157	_	Glu Ile	Leu Glu 1575	ı Glu Cys	Ile Ile 158	Ser Ala O	Met Pro
35	Thr Lys 1585	Ser Ser	Arg Lys 159		Lys Pro	Ala Gln 1595	Thr Ala	Ser Lys 1600
35	Leu Pro	Pro Pro	Val Ala 1605	Arg Lys	Pro Ser 161		Pro Val	Tyr Lys 1615
40	Leu Leu	Pro Ser 162		Arg Let	Gln Pro 1625	Gln Lys	His Val	
	Thr Pro	Gly Asp 1635	Asp Met	Pro Arg		Cys Val	Glu Gly 1645	Thr Pro
45	Ile Asn 165		Thr Ala	Thr Ser	Leu Ser	Asp Leu 166	Thr Ile	Glu Ser
50	Pro Pro 1665	Asn Glu	Leu Ala 167		Glu Gly	Val Arg 1675	Gly Gly	Ala Gln 1680
	Ser Gly	Glu Phe	Glu Lys 1685	Arg Asp	Thr Ile 169		Glu Gly	Arg Ser 1695
55	Thr Asp	Glu Ala 170		Gly Lys	Thr Ser	Ser Val	Thr Ile 1710	
	Leu Asp	Asp Asn 1715	Lys Ala	Glu Glu 172		Ile Leu	Ala Glu 1725	Cys Ile
60	Asn Ser 173		Pro Lys	Gly Lys 1735	Ser His	Lys Pro 174	Phe Arg	Val Lys
65	Lys Ile 1745	Met Asp	Gln Val 175		Ala Ser	Ala Ser 1755	Ser Ser	Ala Pro 1760
	Asn Lys	Asn Gln	Leu Asp 1765	Gly Lys	Lys Lys 177		Thr Ser	Pro Val 1775

	Lys	Pro	Ile	Pro 1780		Asn	Thr	Glu	Tyr 1785	Arg	Thr	Arg	Val	Arg 1790	-	Asn
5	Ala	Asp	Ser 1795	_	Asn	Asn	Leu	Asn 1800		Glu	Arg	Val	Phe 1805		Asp	Asn
	Lys	Asp 1810		Lys	Lys	Gln	Asn 1815		Lys	Asn	Asn	Ser 1820	-	Asp	Phe	Asn
10	Asp 1825	•	Leu	Pro	Asn	Asn 1830		Asp	Arg	Val	Arg 1835		Ser	Phe	Ala	Phe 1840
3.5	Asp	Ser	Pro	His	His 1845	-	Thr	Pro	Ile	Glu 1850	-	Thr	Pro	Tyr	Cys 1855	
15	Ser	Arg	Asn	Asp 1860		Leu	Ser	Ser	Leu 1865	Asp	Phe	qeA	Asp	Asp 1870	_	Val
20	Asp	Leu	Ser 1875		Glu	Lys	Ala	Glu 1880		Arg	Lys	Ala	Lys 1885		Asn	ГÀа
	Glu	Ser 1890		Ala	Lys	Val	Thr 1895		His	Thr	Glu	Leu 1900		Ser	Asn	Gln
25	Gln 1905		Ala	Asn	Lys	Thr 1910		Ala	Ile	Ala	Lys 1915		Pro	Ile	Asn	Arg 1920
20	Gly	Gln	Pro	Lys	Pro 1925		Leu	Gln	Lys	Gln 1930		Thr	Phe	Pro	Gln 1935	
30	Ser	ГÀЗ	Asp	Ile 1940		Asp	Arg	Gly	Ala 1949	Ala	Thr	Asp	Glu	Lys 1950		Gln
35	Asn	Phe	Ala 1955		Glu	Asn	Thr	Pro 1960		Cys	Phe	Ser	His 1965		Ser	Ser
	Leu	Ser 1970		Leu	Ser	Asp	Ile 1975		Gln	Glu	Asn	Asn 1980		Lys	Glu	Asn
40	Glu 198		Ile	Lys	Glu	Thr 1990		Pro	Pro	Asp	Ser 1995		Gly	Glu	Pro	Ser 2000
45	Lys	Pro	Gln	Ala	Ser 200	_	Tyr	Ala	Pro	Lys 2010		Phe	His	Val	Glu 2019	_
43	Thr	Pro	Val	Cys 2020		Ser	Arg	Asn	Ser 202	Ser	Leu	Ser	Ser	Leu 2030		Ile
50	Asp	Ser	Glu 203		Asp	Leu	Leu	Gln 2040		Cys	Ile	Ser	Ser 2045		Met	Pro
	Lys	Lys 205	_	Lys	Pro	Ser	Arg 205		Lys	Gly	Asp	Asn 2060		Lys	His	Ser
55	Pro 206	_	Asn	Met	Gly	Gly 207		Leu	Gly	Glu	Asp 207		Thr	Leu	Asp	Leu 2080
60	Lys	Asp	Ile	Gln	Arg 208		Asp	Ser	Glu	His 2090	_	Leu	Ser	Pro	Asp 2095	
60	Glu	Asn	Phe	Asp 210		Lys	Ala	Ile	Gln 210	Glu 5	Gly	Ala	Asn	Ser 211		Val
65	Ser	Ser	Leu 211		Gln	Ala	Ala	Ala 212		Ala	Cys	Leu	Ser 212		Gln	Ala
	Ser	Ser	Asp	Ser	Asp	Ser	Ile	Leu	Ser	Leu	Lys	Ser	Gly	Ile	Ser	Leu

-59-

WO 98/05347

	21	30				2135	5				2140)			
5	Gly Se 2145	r Pro	Phe	His	Leu 2150		Pro	Asp	Gln	Glu 2155		Lys	Pro	Phe	Thr 2160
3	Ser As	n Lys	Gly	Pro 2165		Ile	Leu	Lys	Pro 2170		Glu	Lys	Ser	Thr 2175	
10	Glu Th	r Lys	Lys 2180		Glu	Ser	Glu	Ser 2185		Gly	Ile	Lys	Gly 2190	_	Lys
	Lys Va	l Tyr 2195		Ser	Leu	Ile	Thr 2200		Lys	Val	Arg	Ser 2205		Ser	Glu
15	Ile Se 22	r Gly 10	Gln	Met	Lys	Gln 2215		Leu	Gln	Ala	Asn 2220		Pro	Ser	Ile
20	Ser Ar 2225	g Gly	Arg	Thr	Met 2230		His	Ile	Pro	Gly 2235		Arg	Asn	Ser	Ser 2240
	Ser Se	r Thr	Ser	Pro 2245		Ser	Lys	Lys	Gly 2250		Pro	Leu	Lys	Thr 2255	
25	Ala Se		Ser 2260		Ser	Glu	Gly	Gln 2265		Ala	Thr	Thr	Ser 2270		Arg
	Gly Al	a Lys 2275		Ser	Val	Lys	Ser 2280		Leu	Ser	Pro	Val 2285		Arg	Gln
30	Thr Se 22	r Gln 90	Ile	Gly	Gly	Ser 2295		Lys	Ala	Pro	Ser 2300		Ser	Gly	Ser
35	Arg As 2305	p Ser	Thr	Pro	Ser 2310		Pro	Ala	Gln	Gln 2315		Leu	Ser	Arg	Pro 2320
	Ile Gl	n Ser		Gly 2325	_	Asn	Ser	Ile	Ser 2330		Gly	Arg	Asn	Gly 2335	
40	Ser Pr		Asn 2340	-	Ile	Ser	Gln	Leu 2345		Arg	Thr	Ser	Ser 2350		Ser
	Thr Al	a Ser 2355		Lys	Ser	Ser	Gly 2360		Gly	Lys	Met	Ser 2365		Thr	Ser
45		70				2375	i				2380)		-	
50	Ser Ly 2385	s Asn	Ala	Ser	Ser 2390		Pro	Arg	Ser	Glu 2395		Ala	Ser	Lys	Gly 2400
	Leu As	n Gln		Asn 2405		Gly	Asn	Gly	Ala 2410		Lys	Lys	Val	Glu 2415	
55	Ser Ar		Ser 2420		Thr	Lys	Ser	Ser 2425		Ser	Glu	Ser	Asp 2430		Ser
	Glu Ar	g Pro 2435		Leu	Val	Arg	Gln 2440		Thr	Phe	Ile	Lys 2445		Ala	Pro
60		50			_	2455					2460)			
65	Leu Se 2465	r Pro	Ser	Ser	Arg 2470		Ala	Ser	Pro	Thr 2475		Ser	Gln	Ala	Gln 2480
- -	Thr Pr	o Val		Ser 2485		Ser	Leu	Pro	Asp 2490		Ser	Leu	Ser	Thr 2495	

	Ser	Ser	Val	Gln 2500	Ala	Gly	Gly	Trp	Arg 2505		Leu	Pro	Pro	Asn 2510		Ser
5	Pro	Thr	Ile 2515		Tyr	Asn	Asp	Gly 2520		Pro	Ala	Lys	Arg 2529		qaA	Ile
	Ala	Arg 2530		His	Ser	Glu	Ser 2535		Ser	Arg	Leu	Pro 2540		Asn	Arg	Ser
10	Gly 2545		Trp	Lys	Arg	Glu 2550		Ser	Lys	His	Ser 2555		Ser	Leu	Pro	Arg 2560
15	Val	Ser	Thr	Trp	Arg 2565		Thr	Gly	Ser	Ser 2570		Ser	Ile	Leu	Ser 2575	
15	Ser	Ser	Glu	Ser 2580	Ser	Glu	Lys	Ala	Lys 2585		Glu	Asp	Glu	Lys 2590		Val
20	Asn	Ser	lle 2595		Gly	Thr	Lys	Gln 2600		Lys	Glu	Asn	Gln 2609		Ser	Ala
	Lys	Gly 2610		Trp	Arg	Lys	Ile 2615	-	Glu	Asn	Glu	Phe 2620		Pro	Thr	Asn
25	Ser 2625		Ser	Gln	Thr	Val 2630		Ser	Gly	Ala	Thr 2635		Gly	Ala	Glu	Ser 2640
30	Lys	Thr	Leu	Ile	Tyr 2645		Met	Ala	Pro	Ala 2650		Ser	Lys	Thr	Glu 2655	-
30	Val	Trp	Val	Arg 2660	Ile)	Glu	Asp	Cys	Pro 2665		Asn	Asn	Pro	Arg 2670		Gly
35	Arg	Ser	Pro 2675		Gly	Asn	Thr	Pro 2680		Val	Ile	Asp	Ser 268		Ser	Glu
	Lys	Ala 2690		Pro	Asn	Ile	Lys 2699		Ser	Lys	Asp	Asn 2700		Ala	Lys	Gln
40	Asn 2705		Gly	Asn	Gly	Ser 2710		Pro	Met	Arg	Thr 2715		Gly	Leu	Glu	Asn 2720
45	Arg	Leu	Asn	Ser	Phe 2725		Gln	Val	Asp	Ala 2730		Asp	Gln	Lys	Gly 2735	
45	Glu	Ile	Lys	Pro 2740	Gly	Gln	Asn	Asn	Pro 2745		Pro	Val	Ser	Glu 2750		Asn
50	Glu	Ser	Ser 275		Val	Glu	Arg	Thr 2760		Phe	Ser	Ser	Ser 276		Ser	Ser
	Lys	His 2770		Ser	Pro	Ser	Gly 277		Val	Ala	Ala	Arg 278		Thr	Pro	Phe
55	Asn 278	-	Asn	Pro	Ser	Pro 279		Lys	Ser	Ser	Ala 279		Ser	Thr	Ser	Ala 2800
60	Arg	Pro	Ser	Gln	Ile 280		Thr	Pro	Val	Asn 281		Asn	Thr	Lys	Lys 2815	
60	Asp	Ser	Lys	Thr 282	Asp O	Ser	Thr	Glu	Ser 282		Gly	Thr	Gln	Ser 283		Lys
65	Arg	His	Ser 283		Ser	Tyr	Leu	Val 284		Ser	Val					

	(2) INFORMATION FOR SEQ ID NO:31:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
1.0	(ii) MOLECULE TYPE: other nucleic acid	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	CGGAATTCNN NNNNNNAAC AGCNNNNNN NNAATGAANN NCAAAGTCTG NNNTGAGGAT	60
20	CCTCA	65
	(2) INFORMATION FOR SEQ ID NO:32:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: other nucleic acid	
	(iv) ANTI-SENSE: NO	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
33	CGGAATTCGA CTCAGAANNN NNNAACTTCA GANNNNNNAT CNNNNNNNN GTCTGAGGAT	60
	CCTCA	65
40	(2) INFORMATION FOR SEQ ID NO:33:	
4 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: other nucleic acid	
50	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
55	CGGAATTCNN NNNNNNNNN NNNNNNNNN NNNNNNNNN NNNTGAGGAT	60
	CCTCA	65

What is claimed is:

20

- 1. A composition capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids.
- The composition of claim 1, wherein the cytoplasmic protein contains the amino acid sequence (K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L), wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4.
 - 3. The composition of claim 1, wherein the cytoplasmic protein contains the amino acid sequence SLGI.
- transducing protein has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.
- The composition of claim 1, wherein the composition comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic

5

10

15

30

35

compound, a polypeptide, or a protein.

- 6. The composition of claim 5, wherein the peptide comprises the sequence (S/T)-X-(V/I/L)-COOH, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.
 - 7. The composition of claim 6, wherein the peptide has the amino acid sequence DSENSNFRNEIQSLV.
- 8. The composition of claim 6, wherein the peptide has the amino acid sequence RNEIQSLV.
- 9. The composition of claim 6, wherein the peptide has the amino acid sequence NEIQSLV.
 - 10. The composition of claim 6, wherein the peptide has the amino acid sequence EIQSLV.
- 25 11. The composition of claim 6, wherein the peptide has the amino acid sequence IQSLV.
 - 12. The composition of claim 6, wherein the peptide has the amino acid sequence QSLV.
 - 13. The composition of claim 6, wherein the peptide has the amino acid sequence SLV.
 - 14. The composition of claim 6, wherein the peptide has the amino acid sequence IPPDSEDGNEEQSLV.
 - 15. The composition of claim 6, wherein the peptide has

5

20

30

35

the amino acid sequence DSEMYNFRSQLASVV.

- 16. The composition of claim 6, wherein the peptide has the amino acid sequence IDLASEFLFLSNSFL.
- 17. The composition of claim 6, wherein the peptide has the amino acid sequence PPTCSQANSGRISTL.
- 18. The composition of claim 6, wherein the peptide has the amino acid sequence SDSNMNMNELSEV.
 - 19. The composition of claim 6, wherein the peptide has the amino acid sequence QNFRTYIVSFV.
- 15 20. The composition of claim 6, wherein the peptide has the amino acid sequence RETIESTV.
 - 21. The composition of claim 6, wherein the peptide has the amino acid sequence RGFISSLV.
 - 22. The composition of claim 6, wherein the peptide has the amino acid sequence TIQSVI.
- The composition of claim 6, wherein the peptide has the amino acid sequence ESLV.
 - 24. The composition of claim 6, wherein the organic compound has the sequence Ac-SLV-COOH, wherein the Ac represents an acetyl, each represent a peptide bond.
 - 25. A composition capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such

parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein.

5

26. The composition of claim 25, wherein the composition comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

10

15

27. A method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, which comprises:

20

25

(a) contacting the cytoplasmic protein bound to the signal-transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the signal-transducing protein bound to the cytoplasmic protein and the bound cytoplasmic protein to form a complex; and

30

(b) detecting the displaced signal-transducing protein or the complex formed in step (a), wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

35

28. The method of claim 27, wherein the inhibition of specific binding between the signal-transducing

30

protein and the cytoplasmic protein affects the transcription activity of a reporter gene.

- 29. The method of claim 28, where in step (b) the displaced signal-transducing protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the signal-transducing protein is displaced.
- 30. The method of claim 27, wherein the cytoplasmic protein is bound to a solid support.
 - 31. The method of claim 27, wherein the compound is bound to a solid support.
- 20 32. The method of claim 27, wherein the compound comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.
- 25 33. The method of claim 27, wherein the contacting of step (a) is <u>in vitro</u>.
 - 34. The method of claim 27, wherein the contacting of step (a) is in vivo.
 - 35. The method of claim 34, wherein the contacting of step (a) is in a yeast cell.
- 36. The method of claim 34, wherein the contacting or step (a) is in a mammalian cell.
 - 37. The method of claim 27, wherein the signal-

WO 98/05347 PCT/US97/12677

-67-

transducing protein is a cell surface receptor.

38. The method of claim 27, wherein the signal-transducing protein is a signal transducer protein.

39. The method of claim 27, wherein the signal-transducing protein is a tumor suppressor protein.

5

15

20

35

- 40. The method of claim 37, wherein the cell surface protein is the Fas receptor.
 - 41. The method of claim 40, wherein the Fas receptor is expressed in cells derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - 42. The method of claim 40, wherein the Fas receptor is expressed in cells comprising T-cells and B-cells.
 - 43. The method of claim 37, wherein the cell-surface receptor is the CD4 receptor.
- 44. The method of claim 37, wherein the cell-surface receptor is the p75 receptor.
 - 45. The method of claim 37, wherein the cell-surface receptor is the serotonin 2A receptor.
- 30 46. The method of claim 37, wherein the cell-surface receptor is the serotonin 2B receptor.
 - 47. The method of claim 38, wherein the signal transducer protein is Protein Kinase-C- α -type.
 - 48. The method of claim 39, wherein the tumor suppressor protein is adenomatosis polyposis coli tumor

5

10

20

25

30

35

suppressor protein.

- 49. The method of claim 39, wherein the tumor suppressor protein protein is the colorectal mutant cancer protein.
- 50. The method of claim 27, wherein the cytoplasmic protein contains the amino acid sequence SLGI, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids.
- 15 51. The method of claim 40, wherein the cytoplasmic protein is Fas-associated phosphatase-1.
 - 52. A method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein, which comprises:
 - (a) contacting the signal-transducing protein bound to the cytoplasmic protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the cytoplasmic protein bound to the signal-transducing protein and the bound signal-transducing protein to form a complex; and

WO 98/05347 - 6 9 -

5

15

20

25

(b) detecting the displaced cytoplasmic protein or the complex of step (a) wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

PCT/US97/12677

- 53. The method of claim 52, wherein the inhibition of specific binding between the signal-transducing protein and the cytoplasmic protein affects the transcription activity of a reporter gene.
 - 54. The method of claim 53, where in step (b) the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the cytoplasmic protein is displaced.
 - 55. The method of claim 52, wherein the cytoplasmic protein is bound to a solid support.
 - 56. The method of claim 52, wherein the compound is bound to a solid support.
- 57. The method of claim 52, wherein the compound comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.
- 58. The method of claim 52, wherein the contacting of step (a) is <u>in vitro</u>.
 - 59. The method of claim 52, wherein the contacting of

WO 98/05347 PCT/US97/12677

-70-

step (a) is in vivo.

60. The method of claim 59, wherein the contacting of step (a) is in a yeast cell.

5

- 61. The method of claim 59, wherein the contacting or step (a) is in a mammalian cell.
- 62. The method of claim 52, wherein the signaltransducing protein is a cell surface receptor.
 - 63. The method of claim 52, wherein the signaltransducing protein is a signal transducer protein.
- 15 64. The method of claim 52, wherein the signaltransducing protein is a tumor suppressor protein.
 - 65. The method of claim 62, wherein the cell surface protein is the Fas receptor.

20

66. The method of claim 65, wherein the Fas receptor is expressed in cells derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.

25

- 67. The method of claim 65, wherein the Fas receptor is expressed in cells comprising T-cells and B-cells.
- 30 68. The method of claim 62, wherein the cell-surface receptor is the CD4 receptor.
 - 69. The method of claim 62, wherein the cell-surface receptor is the p75 receptor.

35

70. The method of claim 62, wherein the cell-surface receptor is the serotonin 2A receptor.

10

- 71. The method of claim 62, wherein the cell-surface receptor is the serotonin 2B receptor.
- 5 72. The method of claim 63, wherein the signal transducer protein is Protein Kinase-C- α -type.
 - 73. The method of claim 64, wherein the tumor suppressor protein is adenomatosis polyposis coli tumor suppressor protein.
 - 74. The method of claim 64, wherein the tumor suppressor protein is the colorectal mutant cancer protein.
- 75. The method of claim 52, wherein the cytoplasmic protein contains the amino acid sequence SLGI, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids.
 - 76. The method of claim 52, wherein the cytoplasmic protein is Fas-associated phosphatase-1.
 - 77. A method inhibiting the proliferation of cancer cells comprising the composition of claim 1.
- 78. The method of claim 77, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 79. The method of claim 77, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
 - 80. A method of inhibiting the proliferation of cancer

cells comprising the composition of claim 25.

The method of claim 80, wherein the cancer cells are 81. derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.

5

25

- The method of claim 80, wherein the cancer cells are 82. derived from cells comprising T-cells and B-cells.
- 10 A method of inhibiting the proliferation of cancer 83. cells comprising the compound identified by the method of claim 27.
- The method of claim 83, wherein the cancer cells are 15 84. derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- The method of claim 83, wherein the cancer cells are 85. 20 derived from cells comprising T-cells and B-cells.
 - A method of inhibiting the proliferation of cancer 86. cells comprising the compound identified by the method of claim 52.
 - The method of claim 86, wherein the cancer cells are 87. derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - The method of claim 86, wherein the cancer cells are 88. derived from cells comprising T-cells and B-cells.
- A method of treating cancer in a subject which 89. 35 comprises introducing to the subject's cancerous cells an amount of the composition of claim 1

WO 98/05347 PCT/US97/12677

-73-

effective to result in apoptosis of the cells.

90. The method of claim 89, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.

5

10

15

- 91. The method of claim 89, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 92. A method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the composition of claim 25 effective to result in apoptosis of the cells.
- 93. The method of claim 92, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
 - 94. The method of claim 92, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 95. A method of treating cancer in a subject which
 25 comprises introducing to the subject's cancerous
 cells an amount of the compound identified by the
 method of claim 27 effective to allow apoptosis of
 the cells.
- 30 96. The method of claim 95, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 35 97. The method of claim 95, wherein the cancer cells are derived from cells comprising T-cells and B-cells.

5

10

25

30

- 98. A method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the compound identified by the method of claim 52 effective to result in apoptosis of the cells.
- 99. The method of claim 98, wherein the cancer cells are derived from organs comprising the thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck.
- 100. The method of claim 98, wherein the cancer cells are derived from cells comprising T-cells and B-cells.
- 15 101. A method of inhibiting the proliferation of virally infected cells comprising the composition of claim 1.
- 102. A method of inhibiting the proliferation of virally infected cells comprising the composition of claim 25.
 - 103. A method of inhibiting the proliferation of virally infected cells comprising the compound identified by the method of claim 27.
 - 104. A method of inhibiting the proliferation of virally infected cells comprising the compound identified by the method of claim 52.
 - 105. The method of claim 101, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
 - 106. The method of claim 102, wherein the virally

infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

5

10

15

20

25

30

107. The method of claim 103, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

108. The method of claim 104, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

109. A method of treating a virally-infected subject which comprises introducing to the subject's virally-infected cells the composition of claim 1 effective to result in apoptosis of the cells.

110. A method of treating a virally-infected subject which comprises introducing to the subject's virally infected cells the composition of claim 25 effective to result in apoptosis of the cells.

111. A method of treating a virally-infected subject which comprises introducing to the subject's virally-infected cells an amount of the compound identified by the method of claim 27 effective to result in apoptosis of the cells.

112. A method of treating a virally-infected subject
35 which comprises introducing to the subject's virally- infected cells an amount of the compound identified by the method of claim 52 effective to

5

20

30

result in apoptosis of the cells.

- 113. The method of claim 109, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
- 114. The method of claim 110, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
- 115. The method of claim 111, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
- 116. The method of claim 112, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus. Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.
 - 117. A pharmaceutical composition comprising the composition of claim 1 in an effective amount and a pharmaceutically acceptable carrier.
 - 118. A pharmaceutical composition comprising the composition of claim 25 in an effective amount and a pharmaceutically acceptable carrier.
- 35 119. A pharmaceutical composition comprising the compound identified by the method of claim 27 in an effective amount and a pharmaceutically acceptable carrier.

120. A pharmaceutical composition comprising the compound identified by the method of claim 52 in an effective amount and a pharmaceutically acceptable carrier.

2/26

FIG. 2A

DNA sequences

6-3

14-5

Ш И

SR

DSENSNTBNELOS

Human

FIG. 2B

U Z Z FIG. 2D S 20 6-2 9-5 13-0 297 18-1 71-1 22-1 0 S O Q Ш Z U Z S Z O O 9 Z Z Ш Œ S Z TQ dd 0 U Ø | C | V M A Q Z G V S S RPV S 4 S O 4 ш S S Ø Z FIG. 2C S M M H 4 GLR S S Mouse 4 S T G F z S Rat

3/26

57-5 16-13 25-9 14-1 72-1 18-1 DLASEFLFLSNSF PIPITICISIQIA NISIGIRI I ST S < SDSNMNMNELSE RGFISSL V S D EST QNFRTYIVSF S ES EEO 4 RSQL RET PPDSEDGN

0-2

Consensus: tS-X-V/L/I

FIG. 3A

200 -

97.4 - 69 - FAP-1

46 -

30 -21.5 -14.3 -

FIG. 3B

7/26

FIG. 4A

8/26

250 **-** 148 **-**

 \leftarrow FAP-1

60 -

42 -

30 -

9/26

11/26

12/26

14/26

Receptor

NGF

adlveslcse egvagpcgan ygyyddettg edterqlrec vvttvmgssq ngtpppegek Ingsagdtwr eaddavcrca vdpclpctvc qdliastvag nkqgansrpv gecckacnlg llaalrrigr pakreevekl dgtysdeanh stdepeappe afkrwnsckg gdgglysslp gldsmsapcv acptglyths atqdsat1da lgvslggake epckpctecv kgntvceecp ppegsdstap tqtasgqalk cpvrallasw avvvglvayi sgslhdggph ipgrwitrst lipvycsila dgpr111111 gsglvfscqd ehidsfthea vtfsdvvsat mgagatgram qtvcepclds pvvtrgttdn trwadaecee rceacrycea lhsdsgisvd hlagelgyqp statspv 421 241 181 301 361

FIG. 78

CD4 Receptor

yagsgnltla fhwknsngik vedakeeval vsglelgdsg kltgsgelww vskrekavwv figlgiffcv ctasqkksiq iedsdtyice fsfplaftve hltlpgalpg kniqggktls slklenkeak vlggvaglll nfpliiknlk gkkgdtvelt vykkegegve psvqcrsprg klqmgkklpl wgptspklml stpvqpmali fqktc**spi** vsvkrvtgdp qlqknltcev esnikvlptw ekktcgcphr dsrrslwdgg 1tlesppgss llvlglallp aatggkkvvl vlafqkassi kkvefkidiv rmsqikrlls kgpsklndra witfdlknke thllqgqslt evnlvvmrat 11sdsgqv11 twtctvlgng rcrhrrrgae ilgnagsflt gaerasssks lnpeagmwgc lvfgltansd leaktgklhg mnrgvpfrhl 421 121 181 241 301 361 61

15/26

FIG. 7C

Species	C-terminal sequences of NGFR (p75)	Binding activity of FAP-1
Human	SESTATSPV-COOH	+
Rat	SESTATSPV-COOH	+
Chicken	SESTATSPV-COOH	+

FIG. 7

wekelagire rttcsenela kklakaqceq gpsspgrits **1661g**vsssv agcsvqpwes **e**sibidolsy nlvaayekak selrselsgs nvvcgrkkss ksgnälltit streageday slilgqfraa qtererd1le elgrvitgle qtrlqsvqat 111alaeseq gttireedey ypnlaeersr ssdrpvlgse erlneriehl dgscggafav aavkitmiel kekkalelkl aspalelael **Evndlkrans** rphtnets dyiqqlkadr elkaqlylle rialleeens seirhqqsae dkpgkecada klisktreess yseqcieaye divelnkrlq elnkkidrlg dadacsdins skirefevet etegvlgrdl drlrrrvrel naakallmkl hetgvzmlkg ipiakiaerv slsstssgsk **vsaleritks** lyshgsalse natalrialq rahdczktae ftkedegzlk elmamkeema ncdlasktve ritelhsvia pengetmyta atmuaireer hsaalaslkg esquaranver gdenitamlk qerttlryee hiegittase memlvgkyee sstasscdte ldlenavlmq elstssssnd csniqeifqt veedkegrmr kklkarvgel mdqdqtsvs1 skeeelnrtk ndseaelsel aeftnairre leecksnaer lvhiehlkse kkhank1kk1 mnsgvamkyg shlmrehedv cslsvaevdr enes | tamlc thrpinpstg achiahs 1qd gvgsspgdas lssnshtstt dvkprgdsgr ghevnedsra 181 241 301 361 421 481 **541 601** 661 721

FIG. 7E

mlaggppfdg drlyfvmeyv vrehaffrri ldseghikia pegdeegrme shctdfiwgf spefedhegs eklhvtvrđa 1kpsdkdrr1 gkvmladrkg khkfkihtyg riylkaevad pownesftfk yrdlkldnvm wwaygv11ye tqlhacfqtv lgcgpegerd dalvianidq eegeyynvpi flavlgkgsf arffkaptfc ayapygksvd glmtkbpakr ldrvkltdfn ergapyltpp kgpdtddprs ktktirstln asgwykllng lalldkppfl 1fflbbrgii camdhtekry vhevkdhkf1 vectuvekry lskeavsick kgaenfükff sedrkapsnn vfyaaeisig tpdyiapeii ipdplaneskq fgvselmkmp fvtfscpgad arkgalrdm kgcvinvpsl gpagnkvisp kkdvv1qddd qvgkfkepqa mehnysypks appflepleveg devetrtfcg cfwhkrche tradingsls kedtedmoh 1sdpyvk1k1 tasqdvanrf gkagfacave 11yglihagm knlipmapna ededelfqsi dweklenrei pdfvhpild dfgmckehmm pidymlbggn sveiwdwdrt teelyaikil 1rqkfekak1 madyfpgnds 661 481 541 601 181 241 301361421

FIG. 7F

seklfgrsih ddn fyl igef nrtalscego yflmslaiad ldryvaignp edgynekveg v faflpgeele itrimavick enkkplq1i1 vfkegsclla lekklqnatn dafnwtvdse asimhleais digtraklas ifvvmecpff qhseeaskdn fsrylgcgyk gnilvimavs pvfglgdak wiyldvlfst dfnsgeants ndcsmvalgk wplpsklcav tlfnktyrsa Inddtrlysa tavviiltia tisvgismpi lqkeatlevs ackvlgivff nskqdakttd tmgs isnegk vityfltiks smitilygyr kaflkijavw lgeknwsall lestraslmq lspsclellh mllgflympv repgsytgrr seglopogokk veffipleim .lnvfvwigy mdilesents ihhsrfnsrt 181 341 461 421

FIG. 7G

gdkteeqver kalpnøgdet reskiytrnp alltimfeam tafikitvvw aimivtyflt dscrattlan gnklhwaall vamldgsrkd fitnitlvlc 1dt111tene atkovktlrk eemkgiveeg 11vglfvmp1 igangynera gslaafftpl fgryitemyr stigsssii. waglqtestp yflmelavad detpcsspek flfllmwcpf vdryiaikkp ker fgdfml f raskvlgivf tlfnktfrda mygspmrlrs npnniccv1t stfvhvissn lekkloyatn asimhleafs witvetvegr vknkppgrlt køvqtieneg vasgvnplvy hgirnginpa qstipehilq gntlvilavs wlfldvlfst pikgietavd ilmvilptig wplplylcpa lisigialpy lleif-wigy ihalqkkayl Imrrestigk maenskffkk malsyrvsel 1241 1341 1301 1301 141 141 421

WO 98/05347 PCT/US97/12677

20/26

FIG. 7H

```
1 mazasydql: kqvealkmen snlrqeledn snhltklete asnmkevlkq lqgsiedeam
 61 assggidile rikelnidss nfpgvklrsk msirsygere gsvssrsged spvpmgsfpr
121 rgfvngsres tgyleeleke rsliladidk eekekdwyya qiqmltkrid sipitenisi
181 qtdmtrrqle yearqirvam eeqlqtcqdm ekraqrriar iqqiekdilr irqllqsqa:
241 eaerssqukh eigshdaerg negggygein matsgngggs tirmdnetas vissssthsa
301 preltshigt kvemvyslis migthdkddm srtliamess qdscismrqs gclpliqii
361 hgndkdsvll gnsrgskear arasaalhni ihsqpddkrg rreirvlhll egiraycetc
421 wewgeahepg mdqdkmpmpa pvehqicpav cvlmklsfde ehrhammelg glqaiaellq
481 vdcemygltn dhysitlrry agmaltnitf gdvankatic smkgcmralv aciksesedi
541 qqviasvlrn lswradvnsk ktlrevgsvk almecalevk kestlksvls alwnisahct
 601 enkadicavd galaflygtl tyrsqtntla iiesgggilr nyssliatne dhrqilrenn
 661 clqtllqhlk shaltivana cgtlwnlaar npkdqealwd mgavsmlknl ihakhkmiam
 721 gsaaairnim anrpakykda nimspgssip sihvrkqkal eaeldaqhis etfdnidnis
 781 pkashrskqr hkqslygdyv fdtnrhddnr sdnfntgnmt vlspylnttv lpsssssrqs
 841 ldssrsekdr slerergigl gnyhpateno gtsskrglqi sttaaqiakv meevsaihts
901 qedrssgstt elhovtdern alrrssaaht hsntynftks ensnrtcsmp yakleykrss
961 ndelnevses dgygkrgqmk psiesysedd eskfcsyggy padlahkihs arhmddndge
1021 ldtpinyslk ysdeqlnsgr qspsqnerwa rpkhiiedei kqseqrqsrn qsttypvyte
1081 stddkhlkfq phigqqecvs pyrsrgangs etnrvgankg inquvsqslc qeddyeddip
1141 tnyserysee eqheeeerpt nysikyneek rhvdqpidys lkyatdipss qkqsfsfsks
1201 saggsakteh masssentst pasnakrong lhpssagers gopokaatek vasingetig
1261 tycvedtpic ferceslasi seaedeigen attqeadean tiqiaeikek igtreaedev
1321 sevpayschp rtkssrlqgs slssesarhk avefssgaks paksgaqtpk sppehyvqet
1381 plmfarctsv ssldsfesrs iasavqsepc sgmvagiisp adlpdapgqt mppsraktpp
1441 pppqtaqtkr evpkmkapta ekresqpkqa avnaavqrvq vipdadtiih fatestpdgf
1501 scassisals idepfickdy elrimppyge ndngmetese opkesnenge keaektidse
1561 kdllddsddd dieileecii samptkssrk akkpaqtask lpppvarkps qlpvykllps
1621 qurlqpqkhv sftpqddmpr vycvegtpin fstatsledl tiesppnela agegvrggaq
1681 sgefekrdti ptegratdea gggktasvti pelddnkaee gdilaecina ampkgkahkp
1741 frykkimday agasassap nkaaldakkk kptspykpip anteyrtryr knadskanla
1801 aervisdnkd skkonlknns kdindklpnn edryrgsiai dsphhytpie gtpycismd
1861 slasldfddd dwdlarekae lrkakenkes eakvtshtel tanqqsankt qalakqpinr
1921 gqpkpilqkq stfpqsskdi pdrgaatdek lqnfaientp vcfshnssls sladidqenn
1981 nkenepiket eppdaggeps kpgasgyapk sfhvedtpvc fsrnaslssl sidaeddllg
2041 ecisampkk kkpsrlkgdn ekhaprnmgg ilgedltldl kdigrpdseh glspdaenfd
2101 wkaigegans ivsslhqaza aaclsrqass dsdsilslks gislgspfhl tpdqeelpft
2161 snkaprilkp gekstletkk ieseskaika akkvykslit akvranseis gamkaplan
2221 mpsisrgrtm lhipgvrnss sstspvskkg pplktpasks psegqtatte prgakpsvke
2281 elspyarqts qiggsskaps regerdatps rpaqqplsrp iqspgrnsis pgrngisppn
2341 klsqlprtss petastkssg sgkmaytapg romsqqnltk qtglsknass iprsesaskg
2401 inquinginga nkkvelsims stkssgsesd rserpvlvrq stfikeapsp tirrkleesa
2461 efealapear pasptragag tovispalpd malathasvq aggwrklppm laptieyndg
2521 rpakrhdiar sheesperlp inregtwkre hekheselpr vetwrrtgee seilsasses
2581 sekakaedek hynsisgtko skenovsako twrkikenef spinstsotv ssgaingaes
2641 ktliygmapa vsktedvwvr iedopinnpr sgrsptgntp pvidsvseka npnikdskdn
2701 qakqnvgngs vpmrtvglen rinsfiqvda pdqkgteikp gqnnpvpvse tnessivert
2761 pissasskh sapagtvaar vtpinynpap rkasadatsa rpaqiptpvn nntkkrdakt
2821 detessgtqs pkrhsqsylv ter
```

(Low-affinity nerve growth factor receptor) p75NGFR

C-terminal amino acid sedneuce STATSPV NEIOSLV FIG. 9 p75NGFR Fas

PDZ domain t (S/T)-X-V |- COOH

interaction

FIG. 10

In vitro interaction of 35S-labeled FAP-1 with various receptors FAP-1 binds to the cytoplasmic region of p75NGFR.

FIG. 11A

FAP-1 binds to C-terminal three amino acids SPV of p75NGFR.

FIG. 12

FAP-1 binds to p75NGFR C-terminal cytoplasmic region in yeast.

VP16-FAP-1 VP16-cRaf	+	'	++	+	•
VP1	LexA-p75NGFR(338-396)	LexA-p75NGFR(365-396)	LexA-Fas	LexA-Ras ^{V12}	LexA-Lamin

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12677

TRICE - 24/19R.; 3142; 350931; 435/71. 7.23 commentation searched (classification system followed by classification and IPC FIELDS SEARCHED aimum documentation searched (classification system followed by classification symbols) 2.3.: 424/19R.; 514/2; 530/35; 435/71. 7.23 commentation searched other than minimum documentation to the extent that such documents are included in the fields searched classification symbols and the search documents are included in the fields searched data base consulted during the interestional search (name of data base and, where practicable, search terms used) APS, DIALOO DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE, A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU, HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further document published on a fate the international filing data to anticide the page of the protein september of the protein september of the service september of the s				
TRILDS SEARCHED aimum documentation searched (classification system followed by classification and IPC FIELDS SEARCHED aimum documentation searched (classification system followed by classification symbols) J.S.: 424/198.1; 514/2; 530/351; 435/7.1, 7.23 commentation searched other than minimum documentations to the extent that such documents are included in the fields searched data base consulted during the interestional search (name of data base and, where practicable, search terms used) APS, DIALOO DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Polytle. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed to the continuation of Box C. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents my binded on or after the identification or other was a series of the continuation or other was a series of the continuation or other was a series of the continuation or other was a series of the page of the international search in a series of the continuation of the international search in a series of the continuation of the international search in a series of the continuation of the international search in a series of the continuation of the international search in a series of the continuation of the international search in a series of the continuation of the international search in a series of the continuation of the international				
precision of international Putery Classification (PC) or to both astional classification and IPC FIELDS SEARCHED intuition documentations searched (classification system followed by classification symbols) J.S.: 424/19R.1; 314/2; 330/351; 435/7.1, 7.23 commentation searched other than minimum documentation to the extent that such document are included in the fields searched classification symbols) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Popular Free Membrane Protein-Binding Domain: Molecular Basis of Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ. Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Eniding of APC to the Human Homolog of the Drusophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95. Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special congretion of shirts documents with the set of the state of the september between the set of the set of the september of the set of the se				
FIFEDS SEARCHED insure documentation searched (classification system followed by classification symbols) 2.3.: 424/19.1.; 514/2; 530/51; 435/7.1, 7.23 commentation searched other than minimum documentation to the ortent that such document are included in the fields searched class base consulted during the international search (name of data base and, where practicable, search terms used) APS, DIALOO DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE, A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU, HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further document published or or the the international filing data to be of reliable to the original release or the condensation or other symmetric reliable to the file of the second reliable to the second reliable to the decision of the international filing data to make the condensation or other symmetric reliable to the second reliable to the decision of the international filing data but have fore doctors in printing the condensation or other symmetric reliable to the second reliable to the decision of the international search to the second reliable	US CL :	:424/198.1; 514/2; 550/551; 455/7.1, 725 to International Patent Classification (IPC) or to both national classification and	IPC	
animum decommutation searched (classification system followed by classification symbols) 1.3. : 424/198.1; 514/2; 530/351; 435/7.1, 7.23 Commentation searched other than minimum decommentation to the extent that such document are included in the fields searched class base consulted during the international search (name of data base and, where practicable, search terms used) APS, DIALOO DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Polytide. Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Free Opinion by PDZ. "Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Crystal Structures of a Complexed and Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 3264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Prother documents are listed in the continuation of Box C. Special suggestion of cited domanance: demanded to the september are more printing white to be of subunitied and the selection of the animal service domanance referring to an end defined member of the service domanance published or or the the international filing date but labor for the proving or the continual to reach the comment of periodic relations, and to reach the sequence of the continual filing date but labor for the proving of the continual to include the continual to				
Commentation searched other than minimum documentation to the extent that such documents are included in the finide searched search of the sea			3)	
DOCUMENTS CONSIDERED TO BE RELEVANT Consistency Citation of document, with indication, where appropriate, of the relevant passages DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85, pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Speaked sengerine of sized document. domains which has published and on or hard deciments. domains which has published and or other an interior or other and the private document published prive to the international filing date to the sendence of the international search to provide the sendence of the international search to provide the sendence of the international search to provide the sendence of the sendence of the international search to provide the sendence of the sendence of the international search to provide the sendence of the international search to the private date that the sendence of the sendence of the international search to provide the sendence of the				
DOCUMENTS CONSIDERED TO BE RELEVANT Toggry* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE, A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU, HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special emperies of sized domanace and the document published on or other the international filing date of country statistics or other special reason (or specified) domanace which may favor doubte one priority chies(s) or which is classed to modificate to the country statistics of the state of the country published after the international filing date to income the country statistics of the state of the country published after the internation cannot be country published after the internation cannot be considered to involve an inventor sup when the document of the priority date which any discountry chies(s) or which is its own to the country published after the internation cannot be considered to involve an inventor sup when the document of the priority date of the country to the priority date which any discountry country to the country to the country to the priority date of the country to the priority date of the country to the country to the priority date of the country to the priority date of the country to the country t	U.S. :	4 2 4/198.1; 514/2; 530/351; 453/7.1, 7.25		•
DOCUMENTS CONSIDERED TO BE RELEVANT Toggry* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE, A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU, HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special emperies of sized domanace and the document published on or other the international filing date of country statistics or other special reason (or specified) domanace which may favor doubte one priority chies(s) or which is classed to modificate to the country statistics of the state of the country published after the international filing date to income the country statistics of the state of the country published after the internation cannot be country published after the internation cannot be considered to involve an inventor sup when the document of the priority date which any discountry chies(s) or which is its own to the country published after the internation cannot be considered to involve an inventor sup when the document of the priority date of the country to the priority date which any discountry country to the country to the country to the priority date of the country to the priority date of the country to the country to the priority date of the country to the priority date of the country to the country t	Documentat	tion seembed other then minimum documentation to the extent that such documen	ts are included i	s the fields searched
DOCUMENTS CONSIDERED TO BE RELEVANT Largery* Citation of document, with indication, where appropriate, of the relevant passages Poyle. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special energetine of detect documents with the selection of the continuation of the set visial is not enumerated to be of proteined relevance published or or she the international filing date content of the completion fact of models within in or other special research published or or she the international filing date content of proteined relevance. the chianced in visition contents to be of proteined relevance published prior to the international filing date to be provided to involve an involve an environ to account to the set of the chiance of the protein o	D000111001			
DOCUMENTS CONSIDERED TO BE RELEVANT Largery* Citation of document, with indication, where appropriate, of the relevant passages Poyle. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special energetine of detect documents with the selection of the continuation of the set visial is not enumerated to be of proteined relevance published or or she the international filing date content of the completion fact of models within in or other special research published or or she the international filing date content of proteined relevance. the chianced in visition contents to be of proteined relevance published prior to the international filing date to be provided to involve an involve an environ to account to the set of the chiance of the protein o				
DOCUMENTS CONSIDERED TO BE RELEVANT Largery* Citation of document, with indication, where appropriate, of the relevant passages Poyle. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special energetine of detect documents with the selection of the continuation of the set visial is not enumerated to be of proteined relevance published or or she the international filing date content of the completion fact of models within in or other special research published or or she the international filing date content of proteined relevance. the chianced in visition contents to be of proteined relevance published prior to the international filing date to be provided to involve an involve an environ to account to the set of the chiance of the protein o	Electronic d	lata base consulted during the international search (name of data base and, who	ere practicable,	search terms used)
DOCUMENTS CONSIDERED TO BE RELEVANT Integory* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DOYLE, D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE, A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU, HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further document are listed in the continuation of Box C				
DOYLE. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special senguries of sited domainant: domained referring to a cred dischours, was, established accounted with any given other or other or which is not considered to be of protein protein referrings to an oral dischours, was, established nor other which the other which may given other or the international fling date domained which may give other or of more other which the other which the other which the published of the referring to an oral dischours, was, established nor or their was accounted to involve an inventor sensor to combined with one of the sensor (or specified). **To domain and published accounted to involve an inventor step when the decomment of published after the international fling date but here than the sensor of published after the international fling date but here than the sensor of published after the international fling date but here than the published of the state of published after the international search to comment published after the international fling date but here than the published of the state of published after the international search to comment of published after the international fling date but here than the published of the state of published after the international search to comment the control of published after the international search to comment the international search to comment the state and the published price of the state substitute to the substitute that the publ	71.0,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
DOYLE. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special senguries of sited domainant: domained referring to a cred dischours, was, established accounted with any given other or other or which is not considered to be of protein protein referrings to an oral dischours, was, established nor other which the other which may given other or the international fling date domained which may give other or of more other which the other which the other which the published of the referring to an oral dischours, was, established nor or their was accounted to involve an inventor sensor to combined with one of the sensor (or specified). **To domain and published accounted to involve an inventor step when the decomment of published after the international fling date but here than the sensor of published after the international fling date but here than the sensor of published after the international fling date but here than the published of the state of published after the international search to comment published after the international fling date but here than the published of the state of published after the international search to comment of published after the international fling date but here than the published of the state of published after the international search to comment the control of published after the international search to comment the international search to comment the state and the published price of the state substitute to the substitute that the publ				
DOYLE. D.A. et al. "Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. September documents are listed in the continuation of Box C. Special engarine of clied documents: document defining the ground state of the set which is not considered to be of particular referrance in the international filing date was sently decument specially about the continuation of matcher selection or other special reason of particular referrance, the claimed investion cannot be considered to be review and expensive of particular referrance, the claimed investion cannot be considered to be review an investive septime to the selection of matcher steel and the page of the second comments of page of the international filing date but there them document of page of the international filing date but there them document of page of the international filing date but there them document of page of the international filing date but there them document of page of the international search Delay of mailing of the sexual completion of the international search Delay of mailing of the sexual completion of the international search PO CCTOBER 1997 Authorized of page of the international search Type of the sexual completion of the international search Type of the sexual completion of the international search Type of the sexual completion of the international search Delay of mailing of the sexual completion of the international search Type of the sexual completion of the international search Type of the sex	c. Doc	CUMENTS CONSIDERED TO BE RELEVANT		
Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. See patent family annex. See patent family annex. **To document published are or after the international filing date or priority chine clients on another interior and the exprised to the continuation of the or priority chine clients on another interior or charman common published prior to the international filing date but better than document published prior to the international filing date but better than the document in takina alone considered across or a control to the considered to involve an investire step when the documents in the common published prior to the international filing date but better than the common published prior to the international filing date but better than the priority date chinned in receive to international filing date but better than the priority date chinned. To common the priority date chinned in the continuation of the continuation date of the international search to considered to involve an investire septiment but of the priority date chinned. Date of mailing of the international search report to the constitution of the continuation of	Category*	Citation of document, with indication, where appropriate, of the relevant	passages	Relevant to claim No.
Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. See patent family annex. See patent family annex. **To document published are or after the international filing date or priority chine clients on another interior and the exprised to the continuation of the or priority chine clients on another interior or charman common published prior to the international filing date but better than document published prior to the international filing date but better than the document in takina alone considered across or a control to the considered to involve an investire step when the documents in the common published prior to the international filing date but better than the common published prior to the international filing date but better than the priority date chinned in receive to international filing date but better than the priority date chinned. To common the priority date chinned in the continuation of the continuation date of the international search to considered to involve an investire septiment but of the priority date chinned. Date of mailing of the international search report to the constitution of the continuation of	Y	DOVIE D.A. at al. "Countal Structures of a Compl	exed and	1-120
Peptide Recognition by PDZ." Cell. June 1996. Vol. 85. pages 1067-1076, especially page 1067. MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special components are listed in the continuation of Box C. See patent family annex. **T* **domesment defining the general state of the set which is not essentiated to be of pretrived released to be of particular released to the continuation data of enother established and to state desired to enother which a principle or theory underlying the ter estate and test in enotities which the particular released to the continuation data of enother estations or other enough to the continuation of the continuation of the principle or the international filing data but later than document published prior to the international filing data but later than document published prior to the international filing data but later than document of particular released to the continued of the continuation of particular released to the continued of the continuation of the priority date claimed in reaction cannot be considered to increase step when the document is underlying the terrestore step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be considered to increase step when the document is underlying the terrestore cannot be con	r i	Denvide Free Membrane Protein Binding Domain: Molecular	ar Basis of	
MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. See patent family annex. Further document defining the general state of the art which is not considered to be of particular relevance to the application but circled to understand to be of particular relevance, the claimed invention of the priority desirable for months of the priority desirable for months of the continuation of the priority desirable for months of the priority desirable for months of the continuation of the priority desirable for the international filing data but later than desirable for published prior to the international filing data but later than desirable for published prior to the international search report Description of the desirable for the desirable for the priority des ordinared to the priority description of the international search report OF OCTOBER 1997 The and mailing address of the ISA/US Commissioner of Patents and Trademarks Date of mailing of the factors and Trademarks Authorized select. Authorized select. Authorized select. Authorized select. The Authorized select. Authorized select. Authorized select. The Authorized se				
MATSUMINE. A. et al. "Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. See patent family annex. See patent			os. pagos	
of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special estoprims of sited documents: document offining the general state of the set which is not committed to be of particular relevance active document published case other the international filing date and not in socificit with the application but cried to understand the publication date of encolars election or other manual comment referring to an oral disaboture, use, exhibition or other manual decomment published prior to the international filing date but their than the publication date of encolars election or other manual decomment referring to an oral disaboture, use, exhibition or other manual decomment published prior to the international filing date but their than the priority date claimed. The document referring to an oral disaboture, use, exhibition or other manual decomment referring to an oral disaboture, use, exhibition or other manual decomment referring to an oral disaboture, use, exhibition or other manual decomment referring to an oral disaboture, use, exhibition or other manual decomment referring to an oral disaboture, use, exhibition or other manual disaboture, use, exhibition or other manual disaboture, use, exhibition or other manual disaboture to previous step when the documents is combined with one or more other such documents in subtine slower of the same patient family the referring to the claimed. Date of mailing of the international search plant of the priority date claimed. Date of mailing address of the ISA/US plant and mailing address of the ISA/US plant and mailing address of the international search plant and mailing address of the international search plant and mailing address of the ISA/US plant and mailing address of the ISA/US plant and	į	1067-1076, especially page 1067.	ł	•
of the Drosophila Discs Large Tumor Suppressor Protein." Science. May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special estoprims of sited documents: document offining the general state of the set which is not committed to be of particular relevance active document published on or other the international filing date document which may drow doubte on priority athin(s) or which is cited to unablish the publication date of encolars established or or other mans. document referring to an oral disoloners, use, exhibition or other mans to priority date claimed in the set of the actual completion of the international search to priority date claimed to priority date claimed. The document referring to an oral disoloners, use, exhibition or other mans to the priority date claimed. The priority date claimed in the publication date of members eviation or other mans priority date claimed. The priority date claimed in the publication date of members eviation or other mans and mailing address of the ISA/US commissioner of Patients and Trademarks Date of mailing of the international search post of the cause of the priority date claimed. Authorized spacer TVV Sell 18 18 Authorized spacer TVV Sell 18 18 Bigstone No. (703) 308-0196	. 1	Description A and a Spinding of ADC to the Human	Homolog	1.120
May 1996. Vol. 272. No. 5264. pages 1020-1023, especially page 1020. KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special congrains of cited documents: document offining the general state of the art which is not committened to be of particular references carrier documents which may throw doubts on priority chains(s) or which is niced to unbilish the publication date of matcher elemina or other muses document referring to on oral disclosure, use, exhibition or other muses document published prior to the international filing date but they dot of the schill discount of the international search the priority date obtained to be priority date obtained to be presented to incomment to the international search the priority date obtained the priority date obtained to incomment to the international search the priority date obtained to the international search 90 OCTOBER 1997 Authorized select Authorized select Well B.B. Jainton No. (703) 308-0196		MATSUMINE. A. et al. "Binding of APC to the Human	Homorog	1-120
KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special categories of cited domainance: document defining the general state of the set which is not committed to be of puriousir relevance or other document which may throw doubts on priority chimnels or other special reason (on specially) document published on or after the international filing date to the set of the set		of the Drosophila Discs Large Tumor Suppressor Protein.	Science.	
KORNAU. HC. et al. "Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Special estagories of eited domainants: document defining the posent state of the set which is not considered to be of periodist relevance of the set which as pollination but cited to understand the principle of electron cannot be considered downess referring to an oral disalosure, use, exhibition or other seem document referring to an oral disalosure, use, exhibition or other the principle date of the set and a completion of the international filing date but there then the principle date of the set and comment of periodist with one or more other state documents in other shores of previous step when the document is one shore other state documents in other shores of previous date of more part of the international search to considered for the set and mailing address of the ISA/US commissioner of Patonts and Trademarks ON CCT Washington, D.C. 20231 csimile No. (703) 305-3230			ially page	
Receptor Subunits and the Postsynaptic Density Protein PSD-95. Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special enterprise of circle documents: document defining the general state of the art which is not considered to be of particular relevance or after the international filing date of particular relevance or after the international filing date of particular relevance or after the international filing date or other special reason (as specified) document published on or after the international filing date or other special reason (as specified) document referring to us oral disabosars, use, exhibition or other seems document published prior to the international filing date but later them the priority date claimed invention cannot be considered to involve an invention cannot be considered to involve an invention stanot be considered to involve an invention and to cannot be considered to involve an invention stanot be considered to involve an invention stanot be considered to involve an invention stanot be considered to involve an invention and to cannot be appropriate relevance; the datamed invention cannot be considered to involve an invention and to the actual completion of the international filing date but later them. The document involves the application of the stanot invention cannot be considered and not in conflict with the ophicism but indeed to involve an invention cannot be considered to involve an invention and to considered to involve an invention and to combine and the actual completion of the international filing date but later them. The document family and act is extended to involve the ophicism of continuents and the actual complete in the actual complete in the actual		1020.		
Receptor Subunits and the Postsynaptic Density Protein PSD-95." Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special enterprise of eited documents: document defining the general state of the art which is not committed to be of particular relevance certifier document published on or after the international filing date document published on or after the international filing date or enter document published on or after the international filing date or enter document published on or after the international filing date or enter document published on or after the international filing date or enter document or purious and the processor of particular relevance; the claimed investine cannot be considered to involve an investive step when the document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed with one or more other such document is committed to committed the principle of particular relevance; the claimed investor committed to committed the principle of particular relevance; the claimed investor committed to committed the principle of particular relevance; the claimed				
Science. September 1995. Vol. 269. No. 5231. pages 1737-1740, especially page 1737. Further documents are listed in the continuation of Box C. Special energories of cited documents. document defining the general case of the net which is not essentiated to be of patienthe relevance earlier document published on or after the international filing date or priority date and not in conflict with the application but viced to understand the primarity or the arrestand about or case or earlier document which may three document published on or after the international filing date or the principle or case or earlier document in the maintenance or expenditure relevance; the claimed investion cannot be considered to involve an investive stap when the document is document relevance; the claimed investion cannot be considered with one or more other such document is combined with one or more other such document in the entire them the priority date claimed. See patent family annex. The document published after the international filing date but before the considered to invertice the entire document of particular relevance; the claimed investion cannot be considered above or ensents the considered to invertice stap when the document is combined with one or more other such document is combined with one or more other such document in the entire of the same patent family Date of the actual completion of the international search report OP OCTOBER 1997 International search report Authorized glaster VV Nil 118 Date of mailing address of the ISA/US Commissioner of Patonts and Trademarks ON PCT. Authorized glaster VV Nil 118 Date of mailing address of the post of the search report VV Nil 118 Date of mailing of the patential patent of the patential patent of the patential paten	Y			1-120
Further documents are listed in the continuation of Box C. See patent family annex. Special estagories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document published one or after the international filing date document which may throw doubte on priority claim(s) or which is cited to subdish the publication date of sunday entires of particular relevance; the claimed investion cannot be considered sovel or ensured to involve an investive step when the document is document published prior to the international filing date but later them the priority date claimed divection or other means the of the actual completion of the international search OF OCTOBER 1997 The and mailing address of the ISA/US Commissioner of Patents and Trademarks OSS POTT VANISHUR B. Authorized galaxier VVON 1918 July 1918 July 2000-1916 July 2018		Receptor Subunits and the Postsynaptic Density Protein	PSD-95.*	
Further documents are listed in the continuation of Box C. Special entegories of cited documents: document defining the general state of the act which is not considered to be of puriousir relevances of the act which are principle or other uses of the international filing date document published on or after the international filing date document of particular relevance; the claimed invention cannot be considered acrea or priority claimed to entablish the published on or after the international filing date documents which the published on or after the international filing date document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later them document published after the international scannot be considered to involve an inventive step when the document in taken alone of comment of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with once or more other mank documents, such combination being obvious to a person strilled in the ext document member of the sense pasent family Date of mailing of the international search report O 9 JAN 1998 Authorized paser VVO 1 13-8 Jalageous Nota (703) 308-0196		Science. September 1995. Vol. 269. No. 5231. pages 1'	737-1740,	
Further documents are listed in the continuation of Box C. Special entegories of cited documents: document defining the general state of the act which is not considered to be of puriousir relevances of the act which are principle or other uses of the international filing date document published on or after the international filing date document of particular relevance; the claimed invention cannot be considered acrea or priority claimed to entablish the published on or after the international filing date documents which the published on or after the international filing date document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later them document published after the international scannot be considered to involve an inventive step when the document in taken alone of comment of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with once or more other mank documents, such combination being obvious to a person strilled in the ext document member of the sense pasent family Date of mailing of the international search report O 9 JAN 1998 Authorized paser VVO 1 13-8 Jalageous Nota (703) 308-0196		especially page 1737.	,	
Special estegories of eited documents: document defining the general state of the art which is not considered to be of particular relevances earlier document published on or after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document, such combination the priority date claimed inventional filling date but later them the priority date claimed for international search Date of mailing of the international search report OP OCTOBER 1997 Authorized offer Authorized offer Authorized offer Washington, D.C. 20231 Casimile No. (703) 305-3230 Telephone No. (703) 308-0196			1	
Special estegories of eited documents: document defining the general state of the art which is not considered to be of particular relevances earlier document published on or after the international filling date or other special reacon (a specified) document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another election or other special reacon (a specified) document referring to an oral disclosura, use, exhibition or other means document published prior to the international filling date but later them the priority date claimed document published prior to the international filling date but later them the priority date claimed document published after the international filling date or priority date and not in conflict with the application but oried to understand the principle or theory underlying the invention cannot be considered to reason the claimed invention cannot be considered to involve an inventive an inventive an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive and invention and considered and inventi			į	
Special estegories of eited documents: document defining the general state of the art which is not considered to be of particular relevances earlier document published on or after the international filling date or action to establish the published on or after the international filling date or other special reacon (se specified) document velocities on priority claim(s) or which is cited to establish the publisation date of another election or other special reacon (se specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later them the priority date claimed document published prior to the international filling date but later them the priority date claimed document published after the international filling date or priority date and not in condition or other special reacon (se specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later them the priority date claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, is taken alone considered to involve an inventive at priority at invention cannot be considered to involve an inventive combination being obvious to a person stilled in the est combined with one or more other such document, is taken alone combined to involve an inventive step when the document is combined with one or more other such document, is taken alone combined to involve an inventive at person stilled in the est combined with one or more other such documents, such combination and the principle of the sense patent family Date of mailing of the international search report 19 9 JAN 1998 Authorized of the combined to involve an inventive step when the combined with one or more other such documents is combined to involve an inventive at invention and invention combined to involve an inventive at invention and invention and inventio			Í	
Special estegories of eited documents: document defining the general state of the art which is not considered to be of particular relevances earlier document published on or after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed invention cannot be considered now of particular relevance; the claimed to involve an inventive and invention and the principle of particular relevance; the claimed to involve an inventive and invention and invention and the principle of particular relevance; the claimed				
document defining the general state of the art which is not considered to be of particular relevances certier document published on or after the international filling date document which may throw doubts on princrity chaim(s) or which is cited to establish the publisation date of another ceintion or other special reason (so specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later them the priority date claimed document published prior to the international filling date but later them the priority date claimed Date of mailing of the international search OP OCTOBER 1997 Authorized other Authorized other Authorized other VOINTER Telephone Not. (703) 308-0196	X Furth	her documents are listed in the continuation of Box C. See patent fa	mily annex.	
document defining the general state of the art which is not exemisted to be of perticular relevances to be principle or theory underlying the exvention cannot be earlier document published on or after the international filing date document of particular relevance; the claimed invention cannot be empirical to establish the published on or after the internation or other special reason (so specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later them the priority date claimed inventional filing date but later them the priority date claimed invention and the occasion of the international search Date of mailing of the international search report OP OCTOBER 1997 Authorized dates Authorized dates Authorized dates Authorized dates Followings No. (703) 305-3230	30	pocial categories of cited documents:	lished after the inter	national filing data or priority
document published on or after the international filing date document which may throw doubts on priority chain(s) or which is eited to establish the publisation date of enother election or other epseinl reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later them the priority date claimed are of the actual completion of the international search Date of mailing of the international search report OP OCTOBER 1997 Authorized description Authorized particular relevance; the claimed inventive susp when the document is document, such considered to involve an inventive susp when the document is combined with one or more other such document, such combination being obvious to a person skilled in the ert document member of the same patent family Date of mailing of the international search report OP OCTOBER 1997 Authorized particular relevance; the claimed inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document is accommended to involve an inventive susp when the document of particular relevance; the claimed invention cannot be considered to involve an inventive susp when the document is accommended to involve an inventive susp when the document of particular relevance; the claimed invention cannot be considered to involve an inventive susp when the document of particular relevance; the claimed invention cannot be considered to involve an inventive susp when the document of particular relevance; the claimed invention cannot be considered to involve an inventive susp when the document of particular relevance; the claimed invention cannot be considered to involve an	ماہ م	represent defining the general state of the art which is not considered the principle or the	without with the application with the control of th	EASTER DAY GUED AS ATTERNATION
document which may throw doubts on priority chain(s) or which is cited to establish the publisation date of mother election or other special reason (so specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed are of the actual completion of the international search Date of mailing of the international search report OP OCTOBER 1997 Authorized search Authorized search Authorized search Tolorious No. (703) 305-3230 Telorious No. (703) 308-0196	_	"Y" dominant of partic	rular relevance; the	eleimed invention cannot be
cited to establish the published or other special reason (as specially destabled) document referring to an oral diselectra, use, exhibition or other means document published prior to the international filing data but later them the priority data claimed investion and in the priority data claimed investion and in the priority data claimed investion combination being obvious to a person skilled in the ert document member of the same patent family Date of mailing of the international search report 199 OCTOBER 1997 The and mailing address of the ISA/US Commissioner of Patents and Trademarks Sox PCT Washington, D.C. 20231 casimile No. (703) 305-3230 Telephone No. (703) 308-0196	•			ed to my olive an inventive step
document referring to an oral diselectra, use, exhibition or other needs document published prior to the interactional filing date but later then the priority date claimed Date of the actual completion of the interactional search Date of mailing of the international search plant in the mailing address of the ISA/US Commissioner of Patouts and Trademarks Sox PCT Washington, D.C. 20231 caimile No. (703) 305-3230 Commissioner No. (703) 308-0196	cit	ted to establish the publication date of enother election or other	using relevance: the	claimed invention cannot be
document published prior to the international filing date but later them the priority date claimed Date of the actual completion of the international search Date of mailing of the international search possible of the international search possible of the international search possible of mailing of the international search report possible of possible of the ISA/US commissioner of Patents and Trademarks Sox PCT Washington, D.C. 20231 casmile No. (703) 305-3230 Date of mailing of the international search report possible of the international se	0• da	remember referring to an oral diselectre, use, exhibition or other combined with one	oive an inventive or more other such	step when the document is documents, such combination
Date of the actual completion of the international search Date of mailing of the international search Place of mailing of the international search Date of mailing of the international search Place of mailin	P° do	occurrent published prior to the interactional filing data but later then *&* document member		
on OCTOBER 1997 Imme and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 csimile No. (703) 305-3230 Authorized of Cer (VOS) 17 LR Telephone No. (703) 308-0196			ternational scar	ch report
Authorized of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 csimile No. (703) 305-3230 Authorized of the ISA/US (VOICE TURE (703) 308-0196			Q JAN 10	298
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 csimile No. (703) 305-3230 Telephone No. (703) 308-0196	09 OCTO	OBER 1997	J UMN K	
Commissioner of Patents and Trademarks 3ox PCT Washington, D.C. 20231 csimile No. (703) 305-3230 Telephone No. (703) 308-0196	Vame and		A	
Washington, D.C. 20231 csimile No. (703) 305-3230 Telephone No. (703) 308-0196	Commissio	oper of Patents and Trademarks	Vi, I	
csimile No. (703) 305-3230 Telephone No. (703) 308-0196	Washington	n, D.C. 20231	~ I	The state of the s
DOTES A CITO (second sheet) hitu 1992) e		702	308-0196	
m PC1/15A/210 (second succession) 1775)-	orm PCT/I	SA/210 (second sheet)(July 1992)*		U

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/12677

Category	ry* Citation of document, with indication, where appropriate, of the relevant passages Relevant to clair		
Ą,Y	US 5,632,994 A (REED et al) 27 May 1997, col. 2, lines 12-56.	1-120	
Y	WO 96/18641 A1 (YEDA RESEARCH AND DEVELOPMENT CO. LTD.) 20 June 1996. pages 1-57, especially page 6	1-120	
Y	ZHANG. J. et al. "A Mouse Fas-Associated Protein with Homology to the Human MORT1/FADD Protein is Essential for Fas-Induced Apoptosis." Molecular and Cellular Biology. June 1996. Vol. 16. No. 6. pages 2756-2763, especially page 2756.	1-120	
	•		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/12677

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	
A61K 38/00, 39/00; C07K 1/00, 14/00, 17/00; G01N 33/53, 33/567, 33/574	
<u>.</u>	