Local Polynomial Kernel Regression

Presented by Ksenia Bushmeneva

February 6, 2010

Definitions and Motivation

- Kernel smoothing refers to a general class of techniques for non-parametric estimation of functions. It can be useful in two classes of problems:
 - density function estimation
 - non-parametric regression estimation
- ▶ Benefits of non-parametric estimation: it is a lot less rigid than the parametric estimation, i.e. it imposes fewer restrictions on the functional relationship between the covariates and the outcome variable.
- ► Application of non-parametric regression: can suggest a simple parametric model that fits the data well (diagnostic). Estimation and prediction (same as parametric regression).

Parametric vs. Non-parametric

Parametric regression (linear regression)

$$y_i = \mu(x_i) + \epsilon_i = x_i'\beta + \epsilon_i$$
, where $\mu(x)$ is a known (linear) function and $E(y|x) = \mu(x) = x\beta$.

Goal: to obtain an estimate $\hat{\beta}$ of β , and to find fitted values \hat{y} , where $\hat{y} = W y = x \hat{\beta} = x(x'x)^{-1}x'y$

Non-parametric regression (Kernel regression, Local polynomial kernel regression)

$$y_i = \mu(x_i) + \epsilon_i,$$

where $\mu(x)$ is some unknown function and $E(y|x) = \mu(x)$. $\mu(x)$ is known as the mean response curve.

Goal: to obtain an estimate $\hat{\mu}(x; h)$ of $\mu(x)$.

Kernel regression

- ▶ The goal of the Kernel regression is to find the appropriate weights matrix, such that $\hat{y} = W y = \hat{\mu}(t)$, where \hat{y} is a weighted average.
- How do we assign weights to our observations?
- ▶ Nadaraya (1964, 1965) and Watson (1964) proposed one of the most common methods to assign weights using:

$$W_i = \frac{K(\frac{t_i - t}{h})}{\sum_{i=1}^n K(\frac{t_i - t}{h})}$$

Then ŷ at the point t is equal to:

$$\hat{y}(t) = \hat{\mu}(t) = \frac{\sum_{i=1}^{n} K(\frac{t_i - t}{h}) y_i}{\sum_{i=1}^{n} K(\frac{t_i - t}{h})}$$

where the $\hat{y}(t)$ is simply as weighted sum of all y's and $\sum_{i=1}^{n} W_i = 1$, K() is a Kernel function (e.g. Normal density), h - bandwidth.

Kernel regression in R

The following built-in R function evaluates the Nadaraya-Watson estimate in R:

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5, range.x = range(x), n.points = max(100, length(x)), x.points)

- x input x values
- y input y values
- kernel the kernel to be used.
- bandwidth the bandwidth.

Kernel regression results: cow data

Kernel regression results: cow data - by diet

Kernel regression results: cow data - by diet

Kernel regression results: cow data - by diet

Conclusions from Kernel regression

- "Wash-out" period is needed for all 3 diets in order to estimate the diet effect;
- On average barley diet has the best performance in terms of protein content, and lupins diet performs the worst;
- For lupins diet, the protein count declines and stays low for the entire period of observation;
- ► For barley diet, the protein count declines initially, but then slowly recovers close to initial level.

Local Polynomial Kernel Regression

Advantage: helps to mitigate the boundary problem common to Kernel regression.

Boundary problem arises since the Kernel weights at the boundary of the data are no longer symmetric. As a result \hat{y} is either overestimated or underestimated.

Polynomial regression:

$$y_i = \beta_0 + \beta_1(t_i - t) + \beta_2(t_i - t)^2 + ... + \beta_p(t_i - t)^p + \epsilon_i$$

- ▶ **Kernel**: use Kernel function to assign weights.
- ▶ **Local**: new set of weights is generated for every point t in the sample => which results in new vector of $\hat{\beta}$ for every y_i .

Estimation

Suppose our sample consists of (y_i, t_i) , i = 1...n pairs of data. Then $\hat{\beta}$ can be obtained by solving the following weighted least squares problem:

$$\hat{\beta} = \operatorname{argmin} \sum_{i=1}^{n} K(\frac{t_i - t}{h})(y_i - \beta_0 - \beta_1(t_i - t) - \beta_2(t_i - t)^2 - \dots - \beta_p(t_i - t)^p)^2$$

Estimation: continues

Standard least squares theory leads to solution:

$$\hat{\beta} = (X_x^T W_x X_x)^{-1} X_x^T W_x Y$$

Where $Y = (Y1, ..., Y_n)^T$ is a vector of responses.

$$X_{x} = \left[egin{array}{cccc} 1 & t_{1} - t & (t_{1} - t)^{2} \ \cdot & \cdot & \cdot \ \cdot & \cdot & \cdot \ \cdot & \cdot & \cdot \ 1 & t_{n} - t & (t_{n} - t)^{2} \end{array}
ight]$$

is an [nx3] design matrix for the 2nd degree polynomial, which can be extended to p-th order.

And $W_x = diag\left\{K\left(\frac{t_1-t}{h}\right),, K\left(\frac{t_n-t}{h}\right)\right\}$ is an [nxn] diagonal matrix of weights.

Estimation: continues

Then the predicted value of y at point t is simply equal to β_0 and can be found from:

$$\hat{y}(t) = \hat{\mu}(t; p, h) = \beta_0 = e_1^T (X_x^T W_x X_x)^{-1} X_x^T W_x Y \quad (1)$$

Where $e_1^T = (1, 0, 0 0)$ is a [(p+1)x1]

Thus in order to estimate each y(t) the following 3 steps need to be carried out:

- 1. construct X_x matrix for each $t \in \{t_1,, t_n\}$
- 2. construct W_x matrix for each $t \in \{t_1,, t_n\}$
- 3. estimate $\hat{\mu}(t; p, h)$ using equation (1).

Nataraya-Watson estimator is a special case of local polynomial kernel estimator for p=0, i.e. $\hat{\mu}(t; 0, h)$.

Local linear kernel estimator is also a special case of local polynomial kernel estimator for p=1.

Local polynomial regression results: amalgamated cow data

Local polynomial regression results: amalgamated cow data

Local polynomial regression results: amalgamated cow data

Local polynomial regression results: for h=0.5 and h=2

Local polynomial regression results: for h=0.5 and h=2

Local polynomial regression results: by diet types

Local polynomial regression results: by diet type

Local polynomial regression results: by diet type

locpoly R-function

library(KernSmooth) contains the R function **locpoly** for estimating the regression function using local polynomials.

locpoly(x, y, drv = 0L, degree, kernel = "normal", bandwidth, gridsize = 401L, bwdisc = 25, range.x, binned = FALSE, truncate = TRUE)

- x vector of x data. Missing values are not accepted.
- bandwidth the kernel bandwidth smoothing parameter.
- y vector of y data. This must be same length as x, and missing values are not accepted.
- drv order of derivative to be estimated.
- degree degree of local polynomial used.

Thank you!