Laboratorium Teorii Automatów			
Hazardy			
Grupa 4b (wtorek 17.15)	Sonia Wittek, Katarzyna Wątorska, Bartłomiej Mróz		

Wstęp teoretyczny

Ćwiczenie polegało na zaprojektowaniu i przetestowaniu układu asynchronicznego jakim jest automat obsługujący przejazd kolejowy.

Założenia zadania:

- 1. Pociąg może wjeżdżać na przejazd z dwóch kierunków
- 2. Czujniki wykrywające obecność pociągu umieszczono w punktach: A, B i C (patrz rysunek)
- 3. Światła sygnalizacyjne Y mają się zapalić (stan logiczny 1) gdy: (pociąg przesłania A lub C i jedzie w kierunku B) lub (przesłonił A lub C i jedzie w kierunku B) lub (przesłania B).
- 4. Pociąg nie może manewrować pomiędzy czujnikami A i C (zawracać).

Przebieg laboratorium

Na samym początku stworzyliśmy tabelę programu dla wejść A, B i C.

Q\ABC	000	001	011	010	110	111	100	Υ
1	1	7	-	-	-	-	2	0
2	3	-	-	ı	9	-	2	1
3	3	-	-	4	1	-	ı	1
4	5	-	10	4	9	-	1	1
5	5	6	-	1	1	-	8	0
6	1	6	-	1	1	-	1	0
7	3	7	10	-	-	-	-	1
8	1	-	-	ı	1	-	8	0
9	-	-	-	4	9	11	8	1
10	-	6	10	4	-	-	-	1
11	-	-	10	-	-	11	-	1

Ponieważ układ jest symetryczny, zastąpiliśmy sytuacje, gdy pociąg nadjeżdża z lewej lub prawej na jedną – tworząc wejście $D=A \vee C$.

Q\DB	00	01	11	10	Υ
1	1	-	-	2	0
2	3	-	7	2	1
3	3	4	-	-	1
4	5	4	7	-	1
5	5	-	-	6	0
6	1	-	-	6	0
7	-	4	7	6	1

Znajdując stany równoważne (2,3), (4,5) i (6,7) stworzyliśmy na podstawie tej tabeli automat Mealy'ego. Tabela minimalna:

Q\DB	00	01	11	10
1	1 , 0	-,-	-,-	2 3, 1
2 3	2 3 , 1	4 5,1	6 7, 1	2 3 , 1
4 5	4 5 , 0	4 5 , 1	6 7, 1	67,0
6 7	1, 0	4 5, 1	67 , 1	67 , 0

Stany zakodowano w następujący sposób:

- 1 − 00
- 23-01
- 45-11
- 67-10

q_1q_2 DB	00	01	11	10
00	0	-	-	0
01	0	1	1	0
11	1	1	1	1
10	0	_	-	1

Po wrysowaniu pokryć dla jedynek, otrzymano funkcję: $q_1' = B + q_1q_2 + Dq_1$

q_1q_2 DB	00	01	11	10
00	0	-	-	1
01	1	1	0	1
11	1	1	0	0
10	0	1	0	0

$$q_2' = B\overline{D} + D\overline{q_1}\overline{B} + \overline{D}q_2$$

q_1q_2 DB	00	01	11	10
00	0	-	-	1
01	1	1	1	1
11	0	1	1	0
10	0	1	1	0

$$Y = B + \overline{q_1}q_2 + D\overline{q_1}$$

Wykorzystując prawa de Morgana oraz podwójną negację powyższe funkcje logiczne przekształcono do równoważnych postaci możliwych do zrealizowania na bramkach NAND.

$$q_{1}' = \overline{B + q_{1}q_{2} + Dq_{1}} = \overline{B} \cdot \overline{q_{1}q_{2}} \cdot \overline{q_{1}D}$$

$$q_{2}' = \overline{B}\overline{D} + D\overline{q_{1}}\overline{B} + \overline{D}q_{2} = \overline{B}\overline{D} \cdot \overline{q_{1}}D\overline{B} \cdot \overline{D}q_{2}$$

$$Y = \overline{B + \overline{q_{1}}q_{2} + D\overline{q_{1}}} = \overline{B} \cdot \overline{\overline{q_{1}}D} \cdot \overline{\overline{q_{1}}q_{2}}$$

W programie Simulink narysowano schematy dla poszczególnych funkcji.

Końcowy układ:

Podsumowanie

Po wykonaniu tego laboratorium nauczyliśmy się, w jaki sposób wyglądają układy używane na co dzień i w jaki sposób można je projektować. Dowiedzieliśmy się jak wykonać prosty układ wyłącznie za pomocą bramek NAND oraz poznaliśmy działanie rzeczywistych bramek logicznych.