1 week TEQIP-II STTP on

Computer Vision & Pattern Recognition (CVPR 2014)

June 16 – 20, 2014 NIT, Durgapur, WB

Santosh Chapaneri,

Assistant Professor, EXTC, SFIT

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Talks Delivered by ...

- Dr. Sudipta Mukhopadhyay, IIT KGP
- Dr. M. K. Mandal, NIT Durgapur
- Dr. S. P. Maity, IIEST Shibpur (formerly BESU)
- Dr. D. Nandi, NIT Durgapur
- Dr. B. Chakraborty, NIT Durgapur
- Dr. U. Roy & Dr. A. Roy, ISI Kolkata
- Dr. A. K. Roy, Vice-Chancellor, IIEST Shibpur
- Dr. Chandan Chakraborty, IIT KGP
- Dr. Utpal Garain, ISI Kolkata

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Pattern Recognition (PR)

- Machine Learning for Pattern Recognition
 - Computer Vision
 - OCR
 - Computer Aided Diagnosis
 - Speech Recognition
 - Biometrics
 - Data Mining
 - Bioinformatics

PR – Face Detection/Recognition

PR – OCR

PR – Signature Recognition

Pattern Recognition

• Features, Feature Vectors $\underline{x} = [x_1, ..., x_l]^T \in \mathbb{R}^l$

Feature Extraction & Recognition

Supervised v/s Unsupervised Learning

Bayesian Classifier

• Baye's Classification rule for (m =) 2 classes

If
$$P(\omega_1|\underline{x}) > P(\omega_2|\underline{x}) \ \underline{x} \to \omega_1$$

If $P(\omega_2|\underline{x}) > P(\omega_1|\underline{x}) \ \underline{x} \to \omega_2$

Equivalently, classify as per rule:

$$p(\underline{x}|\omega_1)P(\omega_1)(><)p(\underline{x}|\omega_2)P(\omega_2)$$

For equi-probable, this becomes

$$p(\underline{x}|\omega_1)(><)P(\underline{x}|\omega_2)$$

Bayesian Classifier

$$R_1(\rightarrow \omega_1)$$
 and $R_2(\rightarrow \omega_2)$

If
$$\underline{x} \in R_1 \Rightarrow \underline{x} \text{ in } \omega_1$$

If $\underline{x} \in R_2 \Rightarrow \underline{x} \text{ in } \omega_2$

$$P_e = \int_{-\infty}^{x_0} p(x|\omega_2) dx + \int_{x_0}^{+\infty} p(x|\omega_1) dx$$

OPTIMAL wrt minimizing P_e

Types of Classifiers

Linear Classifiers

- Perceptron Algorithm
- Least Means Square (LMS) Algorithm
- Support Vector Machines (SVM)
 - √ Expandable to multi-class

Non-Linear Classifiers

- Back Propagation Neural Network (BPNN)
- Probabilistic Classifier
- Decision Trees

Support Vector Machines

Support Vector Machines

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- *Margin* ρ of the separator is the distance between support vectors.

Support Vector Machines

Fuzzy C-Means Clustering

- Similar to K-Means algorithm
- But membership is fuzzy rather than crisp
- Iterative clustering method to produce an optimal c-partition using fuzzy logic
- Each pattern associated with every cluster using DoM (degree of membership)

FCM for Retina Blood Vessel Extraction

Ref: S. Silkar, S. P. Maity, "Extraction of Retinal Blood Vessel using Curvelet Transform and Fuzzy C-Means", *Intl. Conf. Pattern Recognition*, Aug 2014, Stockholm, Sweden (accepted)

- Green Channel Extraction
- Curvelet Denoising
- Matched Filtering
- Vessel Segmentation using FCM clustering

FCM for Retina Blood Vessel Extraction

Fig. 1. Simulation Results (a),(d) Original Retinal Image. (b),(f) Vessel Extracted by [13] and [14] ,respectively. (c),(g) Vessel Extracted by Proposed method. (d),(h) Manually Segmented mage

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Rain Detection & Removal

Ref: A. K. Tripathi, and S. Mukhopadhyay, "A Probabilistic Approach for Detection and Removal of Rain from Videos", *IETE Journal of Research*, (paper communicated)

- Bad weather conditions: Fog, Snow, Drizzle, Rain
- Temporal & Spatio-temporal properties of videos

Rain Detection & Removal

Results of Rain Removal

Santosh Chapaneri, CVPR2014

Applications – Rain Removal

- Outdoor Security Video
- Tracking and Navigation apps
- Consumer Electronics
- Film Post Production

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Chaotic Patterns

Double Rod Pendulum:

Starting the pendulum from a slightly different initial condition would result in a completely different trajectory.

Consider a simple 1D equation of Logistic Map:

$$x_{n+1} = rx_n(1-x_n)$$

 It produces a "deterministic random" sequence of values for parameter r in the range (3.57, 4.0).

Chaotic Patterns

Chaotic behavior of the Logistic map at r = 3.99.

Chaotic Patterns

Chaotic Pattern Synchronization

Chaotic Pattern Synchronization

Chaotic Pattern Synchronization

• The result is seen in DPO 5104. The blue signal represent the transmitted signal and the pink one shows the received signal.

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Sparse Image Reconstruction

Using the concept of Compressive Sampling

"Can we not just **directly measure** the part that will not end up being thrown away?"

Compressive Sampling

• As per Nyquist's rate, $f_s \ge 2f_b$

- Assume: signal is sparse in some domain...
- e.g. JPEG, JPEG2000, MPEG...
- 1. Sample with frequency f_s . Get signal of length N
- 2. Transform signal → K (<< N) nonzero coefficients
- 3. Preserve K coefficients and their locations

Compressive Sampling

As per CS theory, sample with rate less than f_s!

	Nyquist's Sampling	Compressive Sampling
Sampling Frequency	$\geq 2f_b$	< 2 <i>f</i> _b
Recovery	Low pass filter	Convex Optimization

Sparse Image Reconstruction

- Reconstruction using Convex Optimization techniques
- Relying on Convergence of Random Variables

 X_n converges almost surely to X, denoted by $X_n \stackrel{a.s}{\longrightarrow} X$, if

$$\mathbb{P}(\lim_{n\to\infty}X_n=X)=1.$$

• Eg. Robbins-Monro Stochastic Approximation (1951)

 Iterative stochastic optimization to find extrema of functions, estimated via noisy observations

Sparse Image Reconstruction

1. Undersample

2. Fill in the I₁ minimi

pes => sparsity

4. Add more smaller shapes

5. Iterate to achieve clarity

Results – Sparse Image Reconstruction

Reconstructed Images for different no. of measurement

Original Image

N=50625 TV=64.770

TV = Total Variation Regularization

$$J_{\text{TV}}f = \int_{\Omega} \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\right)^2} dx_1 dx_2$$

K=5062(10%) TV= 25.469

K= 15186(30%) TV=41.578

K=10124(20%) TV= 35.273

K=25312(50%) TV= 51.479

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Sparse Image Denoising

Sparse Image Denoising

Ref: D. Nandi, S. Mukhopadhyay, "An improved ultrasound imaging method for speckle reduction", **US Patent**, June 2013

Speckle filtering Scan Conversion in Ultrasound Sector Scanner

Sparse Image Denoising

- Speckle Noise = most prevalent noise in ultrasound images
- Speckle Noise distorts or hide edges making object detection less reliable
- Take contribution of multiple scatterers from ultrasound device => model as Random Walk pattern
- Use CLT to result in 2-D Gaussian distribution

Results – Sparse Image Denoising

AWM = Adaptive Weighted Median Filter; ANW = AWM with Negative Weights

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Color Image Segmentation

- To extract text from colored background
- Using HSV color model

Color Image Segmentation

- Hue modeled from von-Mises (vM) circular distribution
- Saturation modeled from Gaussian distribution

Let a pair of independent random variables be (Θ, X) with $\theta \in [0,2\pi)$ and $x \in (-\infty,\infty)$. The pdf of vM-Gauss distribution is given by:

$$f\left(\Theta,X|\mu,\kappa,\nu,\sigma\right)=f_{1}(\Theta|\mu,\kappa). \ f_{2}(X|\nu,\sigma), \qquad \text{Von Mises distribution}$$
 Where,
$$f_{1}(\Theta|\mu,\kappa)=\frac{1}{2\pi\,I_{0}(\kappa)}\exp\left(\kappa\cos\left(\mu-\theta\right)\right)$$
 Gaussian distribution
$$f_{2}(X|\nu,\sigma)=\frac{1}{\sigma\,\sqrt{2\,\pi}}\exp\left(\frac{-(x-\nu)^{2}}{2\,\sigma^{2}}\right)$$

Clearly Θ and X are independent.

Results – Text Extraction

THREE RIVERS

Galileo Galilei
COASTAL
Cooking Light
Organic

GARDENING

Text Extraction using BMM

Text Extraction using BMM

RGB := tri-variate Beta Mixture Model distribution

Parameter estimation using Expectation Maximization (EM) algorithm

Results – Text Extraction using BMM

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Oral Cancer = 10th most common cancer

Higher rates of occurrence in India due to late diagnosis

Qualitative assessment by pathologists – subjective

Automated Diagnosis => Quantitative assessment

Via Pattern recognition methods

- Imaging of the histopathological slides
 - » Hematoxylin and Eosin (H&E) stained images
 - » Periodic acid-schiff (PAS) stained images
 - » Van Gieson (VG) stained images
 - » Magnifications-10x, 40x, 100x

H&E stained image

PAS stained image

VG stained image

Otsu's Thresholding & Region Merging with Hotelling T² test
 criteria after optimization

- Multi-scale Texture Characterization via
 - Fractal Dimension (FD)
 - Gabor Wavelet
 - Brownian Motion Curve
 - Local Binary Pattern (LBP)
 - Principal Component Analysis (PCA)
 - Support Vector Machines (SVM)

Comparison between classifiers

	LDA	BPNN
TP	7	12
TN	17	15
FP	3	0
FN	0	1
Sensitivity (%)	100.00	92.31
Specificity (%)	85.00	100.00
Area under ROC (%)	92.50	96.15
Accuracy (%)	88.89	96.43

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

 Early screening required to prevent loss of vision specially in Indian population

Developed Prototype Software for DR characterization

Report Generation for Patients

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Brain Gliomas – MRI Imaging

- Characterization and Grading of Brain Gliomas using MRI images, via computer vision
- Glioma = most common primary malignant brain tumor
- Glioma grades I, II, III, IV (WHO 2000)
- 2nd leading cause of cancer deaths in Male and Children

Brain Gliomas - MRI Imaging

Outline

- Fundamentals of Pattern Recognition
- Rain Detection & Removal from Videos
- Chaotic Patterns
- Sparse Image Reconstruction
- Sparse Image Denoising
- Color Image Segmentation
- CBIR for Pathology
- Diabetic Retinopathy
- Brain Gliomas
- Language Engineering

Language Engineering – Daily Life

- Message/Email => type in your own language/script
- No need to write full text = > Predictive Text
- "Hinglish" => mera bharat mahan
- Say "Call maa"...your mom's number will be dialled
- Scribble => translated to text
- Press 1 for existing customer, Press 2 ... = BORING
 - Say it => Speech Recognition

Language Engineering – Daily Life

- How about Cross Lingual Information Search?
 - Suppose I want to know what's going on recently in Kerala, pick up local newspaper, but I don't know
 Malayalam language ☺
 - Give query online in my language
 - Obtain news articles of Kerala in my language ©

Translation:

Don't know French, but can chat with my French friend ©

- Language is key to culture, identity
- Multi-lingual Character of Indian Society
- Language = both basis for communication + barrier

- Provide technology in my language
- My language should play big role in business

- So, who will develop technology for my language?
 - Should we wait for Google or Microsoft to do this??

- How do we recognize alphabet?
- Can machine be trained to do the same?
 - Pattern classifiers
 - How to design pattern classifier
 - Structural
 - Shape, shape grammar
 - Statistical
 - Feature vector
 - Distance measure
 - Classification techniques
 - Prototype based
 - » Single prototype
 - » Multiple prototype
 - Machine learning
 - » NN, SVM

- Style and size variation
- · Machine printed L 2 3 L 5 G 7 B G 0
- Hand-printed
- Handwriting

ARTON APP STORY,

ART STORE WIND STOR STORY,

The butterfly does not count graces
but moments

and therefore has enough time.

স্যারের বদলি রুখতে মরিয়া গোটা গ্রাম

বাবা মা'কে বুঝিয়ে মেয়েটিকে প্রথম শ্রেণিতে বিদ্যালয়ে ভর্তি করেছিলেন 'মাস্টার।' সেই মেয়ে, রেকসানা খাতুন এ বার উচ্চ মাধ্যমিক দিয়েছে। ফাঁক পেলেই বল নিয়ে মাঠে চলে যেত সাহারুল হোসেন। মাঠ থেকে সাহারুলদের স্কুলে ধরে আনতেন তরুণ মাস্টারমশাই।

স্যারের বদলি রুখতে মরিয়া গোটা গ্রাম

বাবা মা'কে বুঝিয়ে মেয়েটিকে প্রথম গ্রেণিতে বিদ্যালয়ে ভর্তি করেছিলেন 'মাস্টার।' সেই মেয়ে, রেকসানা খাতুন এ বার উচ্চ মাধ্যমিক দিয়েছে। ফাঁক পেলেই বল নিয়ে মাঠে চলে যেত সাহারুল হোসেন। মাঠ থেকে সাহারুলদের স্কুলে ধরে আনতেন তরুণ মাস্টারমশাই।

স্যারের বদলি রুখতে মরিয়া গোটা গ্রাম

স্যারেরর

Page layout analysis

Skew

Image quality

