

Apache Spark

Enrique Martín (emartinm@ucm.es) Sistemas de Gestión de Datos y de la Información Master Ing. Informática Fac. Informática

Contenidos

- Bibliografía
- 2 Introducción
- 3 Resilient Distributed Dataset (RDD)
- 4 Usando Spark desde Python
- Ejemplos con pySpark
- 6 Referencias

Bibliografía

Bibliografía

- Learning Spark, 2nd Edition. Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee. O'Reilly, 2020
- Fast Data Processing with Spark. Holden Karau. Pakct, 2013.
- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei Zaharia et. al. Proceedings NSDI'12. Disponible en https://www.usenix.org/system/files/ conference/nsdi12/nsdi12-final138.pdf

Introducción

Apache Spark

- Apache Spark es un sistema de cómputo distribuido alternativo a MapReduce
- Surgió en 2009 en el AMPLab de la Universidad de California en Berkeley
- En 2013 pasó a ser un proyecto Apache, donde actualmente es uno de los proyectos más activos

Características de Apache Spark

- Al igual que MapReduce:
 - Es escalable: se pueden añadir nuevos equipos y la capacidad de cómputo aumenta
 - Es resistente a fallos: los equipos pueden caer y el cómputo no se aborta sino que recupera los datos perdidos
- Sin embargo, mejora a MapReduce en varios aspectos:
 - La organización del cómputo es más flexible, con una gran cantidad de operaciones disponibles.
 - Trabaja en memoria, por lo que es más eficiente

Flexibilidad de Spark

- Apache Spark es más flexible ya que proporciona una gran cantidad de operaciones para transformar nuestro conjunto de datos: map, filter, flatMap, aggregateByKey, etc.
- Estas operaciones se pueden **combinar** de cualquier manera compleja, sin necesidad de volcar resultados intermedios a disco

Eficiencia de Spark

- En Spark los datos residen principalmente en memoria, por lo que la velocidad de cómputo es mucho mayor
- Puede conseguir mejoras cercanas al 100x frente a MapReduce

Fuente: https://spark.apache.org/

Bibliotecas de Spark

- Además del núcleo, dispone de varias bibliotecas con utilidades para Big Data:
 - SQL y DataFrames: consultas SQL
 - Spark Streaming: proceso de flujos
 - MLlib: algoritmos de aprendizaje automático
 - **GraphX**: procesamiento de grafos

Fuente: https://spark.apache.org/

Programación en Spark

- El lenguaje oficial de Spark es Scala:
 - Funcional + imperativo
 - Con tipos
 - Funciones anónimas y orden superior
- Sin embargo también se puede utilizar desde Java, Python y R

Organización de un cómputo en Spark

- El programa driver se conecta a un clúster de workers
- El driver define uno o varios RDDs e invoca acciones en ellos
- Los workers pueden almacenar fragmentos de RDDs entre operaciones en su memoria (y también en disco)

Fuente: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei Zaharia et. al. Proc. NSDI'12.

Resilient Distributed Dataset (RDD)

RDD

- Es el concepto fundamental de Spark, y en el que expresan todos los cómputos
- Un Resilient Distributed Dataset (RDD) es una colección de elementos que se reparte entre la memoria de los equipos del clúster
- Un RDD es resiliente porque si un equipo deja de funcionar, el fragmento de RDD perdido se vuelve a recalcular de manera transparente
- Spark calcula automáticamente las particiones de un RDD
- El programador puede indicar explícitamente cuántas particiones quiere o cómo quiere realizar el particionado (hash, función personalizada)

RDD

- Sobre los RDDs se construyen interfaces de cómputo de alto nivel como los DataFrames o los DataSets
- Se programa realizando operaciones en paralelo, que afectan a todos los fragmentos del RDD
- Un RDD puede ser creado desde ficheros, o ser el resultado de transformar otro RDD
- Un RDD es inmutable: una vez creado nunca se modifica

Operaciones de RDD

- Los RDDs admiten dos tipos de operaciones:
 - Transformaciones: realizan algún cálculo sobre los datos y crean un nuevo RDD
 - Acciones: devuelven un valor al controlador (driver) o vuelcan los datos al almacenamiento
- Las transformaciones no se ejecutan en el momento, sino que se planifican. Cuando se realiza una acción es cuando se llevan a cabo todas las transformaciones.
- Retrasar las transformaciones permite a Spark optimizar transformaciones (p.ej. fusionando varias etapas en una sola)

Tipos de RDD

- Los RDDs son colecciones de elementos iguales. Estos elementos pueden ser:
 - De un mismo tipo: int, str, float, ...
 - Parejas (clave,valor)
- Los RDDs clave-valor proporcionan operaciones específicas que tienen en cuenta la clave, que veremos más adelante

Usando Spark desde Python

Spark desde Python

- A continuación veremos distintos ejemplos de transformaciones en Spark usando Python:
 - pyspark lanza el intérprete interactivo
 - spark-submit permite lanzar un fichero Python (Scala o Java) como programa completo
- Normalmente se usa pyspark para realizar pruebas intermedias e ir escribiendo poco a poco el programa final que se lanzará con spark-submit

Funciones como parámetros

- La mayoría de operaciones aceptan funciones como parámetros
- Si la función está definida, se puede usar directamente su nombre. Por ejemplo duplicar todos los elementos de un RDD con rdd.map(duplica)
- Normalmente se suele usar funciones anónimas, por ejemplo rdd.map(lambda x: x*2)

Ejemplos de funciones anónimas

- lambda x: x+2 #int -> int
- lambda x: x>0 #int -> bool
- lambda x,y: (len(x), y*3) #str -> int -> (int,int)

Creación de RDD

- Para la creación de RDD se utilizan métodos del SparkContext
- Desde la versión 2.0 el punto de entrada principal es SparkSession, que incluye a SparkContext
- pySpark carga por defecto la SparkSession en la variable spark y su SparkContext asociado en la variable sc
- En los programas completos lanzados con spark-submit tendremos que construirlo al inicio (ver referencias).

```
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
sc = spark.sparkContext
```

Elección del clúster

- El lanzador spark-submit admite varios parámetros, siendo master el más importante pues indica la URL del clúster:
 - $\bullet \ \mathtt{spark://host:port} \to \mathsf{Cl\'uster} \ \mathsf{Spark} \ \mathsf{espec\'ifico}$
 - $\bullet \ \mathsf{local} \to \mathsf{Local} \ \mathsf{con} \ \mathsf{un} \ \mathsf{solo} \ \mathsf{n\'ucleo}$
 - local[N] \rightarrow Local con N núcleos
 - ullet local[*] o Local con tantos núcleos como tenga la máquina
- También es posible configurar Spark sobre Mesos y YARN

Creación de RDDs: sc.textFile()

- Crea un RDD con los datos de uno o varios ficheros. Pueden ser locales o remotos (como HDFS)
- Se puede usar un nombre de fichero, de directorio o usar comodines:

```
• lines = sc.textFile("texto.txt")
```

```
• lines = sc.textFile("logs/")
```

```
• lines = sc.textFile("logs/2015*.log")
```

sc.textFile()

lines = sc.textFile("texto.txt")

- El búfalo
- corre muy rápido
- pero no se cansa
- 4: nunca

RDD lines

- "El búfalo"
- "corre muy rápido"
- "pero no se cansa" "nunca"

Creación de RDD: parallelize()

- Crea un RDD a partir de una colección existente en el programa:
 - sc.parallelize([1, 2, 3, 4])
 - sc.parallelize(['Hello', 'Sam']
 - sc.parallelize(('soy', 'una', 'tupla'))
 - sc.parallelize({1:'hola', 4:'hi'}) # solo incluirá las claves

Almacenar RDD

- Los RDDs se pueden volcar a disco local o distribuido usando diferentes formatos. Por ejemplo:
 - saveAsTextFile(path)
 - SaveAsNewAPIHadoopDataset(...)
 - saveAsPickleFile(path)
 - saveAsSequenceFile(path)
- Estas operaciones son acciones, así que lanzan el cómputo del RDD

Acciones

- Veamos algunas acciones importantes:
 - count()
 - countByValue()
 - reduce()
 - collect()
- Consultar la documentación de la clase pyspark.RDD para más información.

collect()

- Devuelve los elementos del RDD como una colección (en Python es una lista)
- Solo debe usarse con RDDs pequeños, ya que los datos deben caber en la memoria del programa driver.

```
>>> a = sc.parallelize([1, 2, 3, 4])
>>> a.collect()
[1, 2, 3, 4]
```

collect()

lista = numbers.collect()

RDD numbers

KDD I	unbers
	1
	3
	3
	4
	5
	6
	7
	8

Memoria [1,2,3,4,5,6,7,8]

count()

• Cuenta el número de elementos de un RDD

```
>>> a = sc.parallelize([1,2,3,4])
>>> a.count()
4
```

countByValue()

- Cuenta el número de veces que aparece cada elemento del RDD
- Devuelve un diccionario Python

```
>>> rdd = sc.parallelize(['A', 'B', 'A', 'A'])
>>> rdd.countByValue()
{'A': 3, 'B': 1}
```

reduce()

Combina los elementos del RDD utilizando la función proporcionada

```
>>> rdd = sc.parallelize([1,2,3,4])
>>> rdd.reduce(lambda x,y: x+y)
10
>>> rdd.reduce(lambda x,y: x*y)
24
>>> rdd.reduce(lambda x,y: max(x,y))
4
```

• La función debe ser asociativa y conmutativa, y tiene que producir elementos del mismo tipo que el RDD

reduce()

RDD numbers

1	3
2	
1	
1	
2 6	
6	
1	
8	

Transformaciones

- Existe un gran número de transformaciones disponibles en los RDD (ver referencias)
- Veremos con detalle algunas de ellas:
 - filter()
 - map()
 - flatMap()
 - union()

filter()

- Crea un nuevo RDD únicamente con aquellos elementos que cumplen la propiedad
- La propiedad se representa como una función que toma un elemento y devuelve un bool

```
>>> numbers = sc.parallelize([1,2,3,4])
>>> # imaginemos que existe una función es_numero_par(x)
    # que devuelve True cuando x es par
    even = numbers.filter(es_numero_par)
>>> even.collect()
[2,4]
>>> # Ahora con función anónima
    odd = numbers.filter(lambda x: x%2==1)
[1,4]
```

filter()

RDD numbers

1	
2	
3	
5	
6	
7	
8	

INDE CVCII
2
4
6

8

RDD even

map()

 Aplica una función a cada elemento del RDD y crea un RDD con todos los resultados

```
>>> numbers = sc.parallelize([1,2,3,4])
>>> plus1 = numbers.map(lambda x: x+1)
>>> plus1.collect()
[2,3,4,5]
```

map()

plus1 = numbers.map(lambda x: x+1)

RDD	numbers
	1
	2
	3
	4
	5
	6
	7
	8

RDD	plus1
	2
	3
	4
	5
	6
	7
	8
	9

map()

```
wordlist = lines.map(lambda x: x.split())
```

RDD lines

'el búfalo'
'corre'
'en el campo'
'nunca se'
'cansa pero'
'a veces'
'para un rato'
'FIN'

RDD wordlist ['el', 'búfalo'] ['corre'] ['en', 'el', 'campo'] ['nunca', 'se'] ['cansa', 'pero'] ['a', 'veces'] ['para', 'un', 'rato] ['FIN']

flatMap()

 Aplica una función a cada elemento del RDD para finalmente crear un RDD con el aplanamiento de todos los resultados

```
>>> text = ["quien es", "soy yo"]
>>> lines = sc.parallelize(text)
>>> words = lines.flatMap(lambda x:x.split())
>>> words.collect()
['quien', 'es', 'soy', 'yo'] # 4 elementos
```

• Importante: la función lambda x:x.split() crea listas que normalmente queremos aplanar con flatMap si buscamos procesar cada palabra de manera independiente

flatMap()

words = lines.flatMap(lambda x: x.split())

RDD lines

'el búfalo'
 'corre'
 'en el campo'
 'nunca se'
 'cansa pero'
 'a veces'
 'para un rato'
 'FIN'

RDD words

'el'
'búfalo'
'corre'
'en'
'el'
'campo'
'nunca'
'se'
'cansa'
'pero'
'a'
'veces'
'para'
'un'
'rato'
'FIN'
Fra 1. C

map() frente a flatMap()

- Ambas transformaciones aplican una función a cada elemento del RDD original
- La diferencia está en el aplanado posterior que realiza flatMap:

```
>>> text = ["quien es", "soy yo"]
>>> lines = sc.parallelize(text)
>>> words = lines.map(lambda x: x.split())
>>> words.collect()
[['quien', 'es'], ['soy', 'yo']]
# 2 elementos, cada elemento es una lista producida
# por split
```

union()

Crea un RDD uniendo los elementos de dos RDDs

```
>>> a = sc.parallelize([0, 2, 4])
>>> b = sc.parallelize([1, 3])
>>> all = a.union(b)
>>> all.collect()
[0, 2, 4, 1, 3]
```

 En Python los elementos de los dos RDD pueden ser de tipos diferentes (p.ej. int y str). Al usar Spark en otros lenguajes fuertemente tipados como Scala, la unión está restringida a RDD con elementos del mismo tipo

RDD clave-valor

- Los RDDs clave-valor almacenan parejas (clave, valor) en sus elementos, y Spark nos ofrece algunas transformaciones especiales
- Veremos solo unas pocas:
 - reduceByKey()
 - keys()
 - join()

reduceByKey()

 Combina todos los valores asociados a la misma clave usando la función proporcionada

```
>>> a = sc.parallelize([(1,2),(3,4),(3,9)]
>>> b = a.reduceByKey(lambda x,y: x+y)
>>> b.collect()
[(1, 2), (3, 13)]
```

• Esta transformación es similar a la fase Reduce de MapReduce

reduceByKey()

```
word_count = words.reduceByKey(lambda x,y: x+y)
```

RDD words

('casa', 8)
('arbol', 1)
('casa', 3)
('abogado', 1)
('abogado', 7)
('internet', 1)

RDD word_count

('casa', 11) ('arbol', 1) ('abogado', 8) ('internet', 1)

keys()

- Devuelve un RDD con todas las claves
- No elimina duplicados
- Es equivalente a map(lambda x: x[0])

```
>>> a = sc.parallelize([('ana',2),('pep',4),('pep',9)])
>>> b = a.keys()
>>> b.collect()
['ana', 'pep', 'pep']
```

join()

- Combina dos RDDs uniendo los valores de las claves comunes y omitiendo el resto
- Mismo funcionamiento que una reunión intern (inner join) en BD relacionales

• También existen las reuniones externas rightOuterJoin(), leftOuterJoin() y fullOuterJoin()

join()

combined = names.join(age)

RDD names

RDD combined

(1, ('pepe',36))	
(1, ('pepe',27))	
(5, ('loli',34))	

RDD age

(1,36)
(1, 27)
(5, 34)

Ejemplos con pySpark

Contar apariciones de cada palabra

Contar líneas, palabras y caracteres

```
def len_words(1):
# Dada una cadena de texto, suma la longitud de sus palabras
  nchars = 0
  for w in l.split():
    nchars += len(w)
  return nchars
lines = sc.textFile(filename)
nwords = (lines.map(lambda x: len(x.split()))
               .reduce(lambda x,y: x + y)
nchars = (lines.map(len_words)
               .reduce(lambda x,y: x + y)
print('#lines ', lines.count())
print('#words ', nwords)
print('#chars ', nchars)
```

Ejercicios en Spark

- Filtrar un log para obtener el número de páginas web servidas a navegadores Chrome cada hora de cada día.
- Formato de log (CSV):

```
fecha, hora, recurso, navegador 2012/12/03,10:30,/index.html, Chrome 2012/12/03,17:31,/perro.png, Chrome 2012/12/03,18:59,/index.html, Safari...
```

Resultado:

```
2012/12/03-17 1254
2012/12/03-18 58476
2012/12/03-19 258
```

◆□▶◆□▶◆□▶◆□▶□ ♥900

Ejercicios en Spark

- Longitud mínima y máxima de los mensajes de Twitter por horas (de cualquier día)
- Formato del fichero: JSON con un mensaje en cada línea:

```
{
  "user": {"name": "pepe", "location": "Magaluf, ES"},
  "date": "2018/08/29",
  "time": "5:25:34",
  "text": "viva el vino @juanpedro!"
}
```

Resultado:

```
9 {min:50, max:140}
10 {min:5, max:120}
11 {min:17, max:110}
```

Ejercicios en Spark

- Índice invertido de menciones en tuits, es decir, asociar a cada mención el conjunto de usuarios que las han realizado
- Formato del fichero: JSON en cada línea (como antes):

```
{ "user": {"name": "pepe", "location": "Magaluf, ES"},
  "date": "2018/08/29",
  "time": "5:25:34",
  "text": "viva el vino @juanpedro!"
}
```

• Resultado:

```
@juanpedro {pepe, ana}
@ana {pepe,eva,ana,evaristo}
@luis {eva,evaristo,julian}
...
```

Referencias

Referencias

- pyspark.RDD https://spark.apache.org/docs/latest/api/python/ reference/api/pyspark.RDD.html
- pyspark.SparkContext
 https://spark.apache.org/docs/latest/api/python/
 reference/api/pyspark.SparkContext.html
- SparkSession https://spark.apache.org/docs/latest/api/python/ reference/pyspark.sql/spark_session.html