Markov Decision Process

• Given the policy the utility of any state can be calculated based on:

$$V(s) = R(s) + \max_{a \in A} *\gamma \sum_{s'} P(s'|s, a) * V(s')$$

Given $\gamma = 0.9$, R(s) = 0, P(up) = 0.8, P(right) = P(left) = 0.1

After iteration 1, the policy of the agent is as given in the question.:

- Value of cell (0,2) = 0+0.1*0.9*0+0.8*0.9*1+0.1*0.9*0=0.72
- Value of cell (1,2) = 0 as P(down) = 0 and the neighboring utilities are 0 as well.
- Value of all other cells would be 0 as the neighboring and local utilities are 0.

The grid with values is as shown below:

Figure 1: Values after 1st iteration

• Given these values a policy can be found based on:

$$\operatorname*{arg\,max}_{s \in A} \sum_{s^{'}} P(s^{'}|s,a) * V(s^{'})$$

The policies for each grid are calculated as follows:

-0.2: $* \uparrow = 0.9*(0.8*0.72 + 0.1*1 + 0.1*0) = 0.6084$ $* \to = 0.9*(0.8*1 + 0.1*0.72 + 0.1*0) = 0.7848$ $* \leftarrow = 0.9*(0.8*0 + 0.1*0.72 + 0.1*0) = 0.0648$ $* \downarrow = 0.9*(0.8*0 + 0.1*1 + 0.1*0) = 0.09$

Hence the policy for this case would be \rightarrow with a value of 0.7848.

$$-1.2:$$
* $\uparrow = 0.9*(0.8*0.72 + 0.1*-1 + 0.1*0) = 0.4284$

*
$$\rightarrow = 0.9*(0.8*-1 + 0.1*0.72 + 0.1*0) = -0.6552$$

* $\leftarrow = 0.9*(0.8*0 + 0.1*0.72 + 0.1*0) = 0.0648$
* $\downarrow = 0.9*(0.8*0 + 0.1*-1 + 0.1*0) = -0.09$

Hence the policy for this case would be \uparrow with a value of 0.4284.

-0,1:

*
$$\uparrow = 0.9*(0.8*0 + 0.1*0.72 + 0.1*0) = 0.0648$$

* $\rightarrow = 0.9*(0.8*0.72 + 0.1*0 + 0.1*0) = 0.5184$
* $\leftarrow = 0.9*(0.8*0 + 0.1*0 + 0.1*0) = 0$
* $\downarrow = 0.9*(0.8*0 + 0.1*0.72 + 0.1*0) = 0.0648$

Hence the policy for this case would be \rightarrow with a value of 0.5184.

-2,3:

*
$$\uparrow = 0.9*(0.8*-1 + 0.1*0 + 0.1*0) = -0.72$$

* $\rightarrow = 0.9*(0.8*0 + 0.1*-1 + 0.1*0) = -0.09$
* $\leftarrow = 0.9*(0.8*0 + 0.1*-1 + 0.1*0) = -0.09$
* $\downarrow = 0.9*(0.8*0 + 0.1*0 + 0.1*0) = 0$

Hence the policy for this case would be \downarrow with a value of 0.

– The rest of the cells have a policy \uparrow as all the states would have values to be 0 but \uparrow has a higher preference.

The grid with the policy and the values is as shown below:

Figure 2: Policy and Values after 2nd iteration