Today we discuss Borel subgroups of reductive groups and the corresponding quotients. They allow us to relate the structure of the finite reductive groups G^F to that of (finite) reflection groups called Weyl groups.

2.1.

We have discussed how an algebraic group G over $\overline{\mathbf{F}}_q$, equipped with a Frobenius map $F: G \to G$, gives rise to a finite group G^F . When G is reductive, the structure of G, resp. G^F , closely resembles that of GL_n , resp. $GL_n(\mathbf{F}_q)$.

Even earlier, we discussed the *Bruhat decomposition*. For now, let k be an arbitrary algebraically closed field of characteristic $p \nmid n$. Let $B \subseteq GL_n$ be the subgroup of upper-triangular matrices, and for all $w \in S_n$, let $\dot{w} \in GL_n$ be the permutation matrix of w. The Bruhat decomposition on k-points is

$$GL_n(k) = \coprod_{w \in S_n} B(k)\dot{w}B(k).$$

Its proof is similar to how we used row reduction to establish the Schubert cell decomposition of any Grassmannian. Namely, it suffices to show:

Theorem 2.1. The coset space $B(k)\backslash GL_n(k)$ is the disjoint union of the subsets $B(k)\backslash (B(k)\dot{w}B(k))$ for $w\in S_n$.

Proof. We can identify cosets of B(k) with (complete) flags in k^n via the map $B(k)g \mapsto \vec{V} \cdot g$, where $\vec{V} = (V_i)_i$ is the standard flag in row notation.

Pick an ordered basis $(v_i)_i$ that generates $\vec{V} \cdot g$ in the sense that $V_i \cdot g = \langle v_1, \ldots, v_i \rangle$, then apply row reduction to the associated matrix. The result is an upper-triangular matrix $b \in B(k)$. From the algorithm, we also get a permutation $w^{-1} \in S_n$ that only depends on the flag $\vec{V} \cdot g$: the composition of the row swaps (from the left) used to reduce g to b. We have $\vec{V} \cdot g = \vec{V} \cdot \dot{w}b$.

Note that the expression $B\dot{w}B$ can be reduced even further. For instance, we can always take b unipotent in the proof above. Another way to see this: Recall that B=TU, where T, resp. U is the subgroup of diagonal, resp. unipotent matrices, and observe that permutation matrices normalize T, meaning $\dot{w}T=T\dot{w}$ for all w.

Something stronger is true. For any algebraic groups $H \subseteq G$, Milne Prop. 1.83 exhibits an algebraic group $N_G(H)$ such that $N_G(H)(R) = N_{G(R)}(H(R))$ for any k-algebra R. It turns out that the connected components $N_{GL_n}(T)$ are precisely the cosets $\dot{w}T$ for $w \in S_n$. This suggests how Bruhat decomposition ought to generalize beyond GL_n .

Define the *Weyl group* of a maximal torus $T \subseteq G$ to be the normalizer $W = W(G,T) := N_G(T)/T$. Note that for any $w \in W$, and any algebraic subgroup $B \subseteq G$ containing T, the notation wB is unambiguous.

Theorem 2.2. Suppose that G is a reductive algebraic group. Let $B = T \ltimes U \subseteq G$ be a Borel subgroup, where U = [B, B]. Then $B(k) \setminus G(k)$ is the disjoint union of the subsets $B(k) \setminus (B(k)wB(k))$ for $w \in W(G, T)$.

2.2.

As in the first lecture, we switch notation from left-hand quotients back to right-hand quotients. The set G(k)/B(k) is precisely the set of k-points of the fppf sheaf quotient G/B, essentially because Spec k has no nontrivial fppf covers. However, we can be much more concrete about spaces like this. The key idea is a representation-theoretic characterization of algebraic subgroups:

Theorem 2.3 (Chevalley). If G is any affine algebraic group with algebraic subgroup G', then there exist a (finite-dimensional) representation V of G and a subspace $V' \subseteq V$ such that

$$G'(k) = \{ g \in G(k) \mid gV' \subseteq V' \}.$$

We can even choose V, V' so that V' is a line.

Proof. Let I be the kernel of the quotient map $k[G] \to k[G']$. We can pick a finite generating set for I as an ideal. Then we can pick a finite-dimensional k[G]-comodule $V^{\vee} \subseteq k[G]$ containing these generators, just like in the proof of the linearity of affine algebraic groups. This gives the representation V. To get $V' \subseteq V$, we take $(V')^{\vee} = V^{\vee} \cap I$.

If $g \in G'(k)$, then $gI \subseteq I$, so $gV' \subseteq V'$. Conversely, if $gV' \subseteq V'$, then g sends every generator of I to another element of I, but g acts on k[G] by algebra automorphisms, so $gI \subseteq I$ and hence I is also the kernel of the quotient map $k[G] \to k[G'g]$, which forces $g \in G'$.

Finally, once we have such V, V', we see that the same characterization of G' holds when we replace V, V' by $\bigwedge^d V, \bigwedge^d V'$, respectively, where $d = \dim(V')$.

Corollary 2.4. If G is a smooth affine algebraic group with algebraic subgroup G', then there is a locally closed, G-equivariant embedding $G/G' \to \mathbf{P}V$ for some representation V of G. In particular, G/G' is a quasiprojective variety.

Proof. Take V, V' as in the theorem, with V' a line. Let $G/G' \to \mathbf{P}V$ be induced by the map from G onto the orbit of [V']. The smoothness of G ensures that the latter is faithfully flat, allowing us to identify the orbit with G/G'.

2.3.

Henceforth, assume that G is smooth and affine over k. An algebraic subgroup $P \subseteq G$ is parabolic if and only if G/P is projective, not merely quasiprojective.

As it turns out, there is a nice characterization of parabolic subgroups. For the proof of the following fixed-point theorem, see Milne Chapter 17.

Theorem 2.5 (Borel). If B is a connected, smooth, solvable algebraic group acting on a nonempty proper variety X, then X^B is nonempty.

Corollary 2.6. An algebraic subgroup of (a smooth, affine) G is parabolic if and only if it contains some Borel subgroup of G.

Proof. The "only if" direction: First, Borels exist in G, because G has finite dimension and $\{1\}$ is connected, smooth, and solvable. If $B \subseteq G$ is a Borel and $P \subseteq G$ is parabolic, then the action of B by left multiplication on G/P must have a fixed point gP by Borel's theorem, in which case $g^{-1}Bg$ is a Borel contained in P.

The "if" direction: Since the image of any proper variety is proper, it suffices to show that if $B \subseteq G$ is a Borel, then G/B is proper. We induct on the dimension of G. Pick a faithful representation V of G. The action of G on PV must have a closed orbit. The stabilizer of any k-point of this orbit is a parabolic subgroup $P \subseteq G$. By the preceding paragraph, it contains some conjugate of B, and without loss of generality, we may replace B with this conjugate. Two cases: Either P is smaller than G, in which case P/B is proper by the inductive hypothesis, and hence G/B is proper, or else P = G, in which case V^G contains a line, and we can replace V with $V/(V^G)$ until we either reach $\{0\}$ or reduce to the previous case.

Corollary 2.7. Any two Borels in a smooth affine algebraic group are conjugate.

For most purposes, this characterization is overkill. In matrix groups, we can picture Borels roughly as conjugates of some subgroup of upper-triangular matrices, and parabolics as conjugates of subgroups of *block* upper-triangular matrices.

Instead, the main takeaway for now is the fact that G/B is a *projective variety* for any Borel subgroup $B \subseteq G$. Here is another useful viewpoint on G/B, which I may or may not prove later.

Theorem 2.8. If B is a Borel subgroup of a connected (smooth, affine) algebraic group G, then $N_G(B) = B$. In particular, (G/B)(k) is in bijection with the set of Borel subgroups of G, via the map $gB \mapsto gBg^{-1}$.

For $G = GL_n$, this theorem follows from the flag description of (G/B)(k): If B is the stabilizer of \vec{V} , then gBg^{-1} is the stabilizer of $g \cdot \vec{V}$.

The orbit decomposition of G/B under the action of B by left multiplication gives rise, on k-points, to the Bruhat decomposition that we discussed at the start.

I have not yet given a proof of Bruhat decomposition for an arbitrary reductive G. I can sketch the idea if we assume the following result, which I may or may not prove for general G later. For $G = GL_n$, it is a consequence of the proof of the Jordan–Hölder theorem, via the identification of (G/B)(k) with the set of flags in k^n .

Theorem 2.9. If G is reductive, then any two Borel subgroups of G contain a common maximal torus of G.

Sketch of Bruhat decomposition. We will exhibit a map from $B(k)\backslash G(k)/B(k)$ to the Weyl group W=W(G,T). For any $g\in G(k)$, pick a maximal torus $S\subseteq B\cap gBg^{-1}$. By Cartan–Lie–Kolchin, we can write

$$S = bTb^{-1} = (gb'g^{-1})(gTg^{-1})(gb'g^{-1})^{-1}$$

for some $b, b' \in B(k)$. But then $b^{-1}gb'$ normalizes T, so we obtain an element $[b^{-1}gb'] \in W$. One has to check that this element only depends on BgB. \square 2.5.

We now explain how the preceding structure theory for G implies consequences for G^F . Henceforth, $k = \bar{\mathbf{F}}_q$.

As a starting point, consider the Frobenius map $F: GL_n \to GL_n$ given by raising each matrix coordinate to the qth power, so that GL_n^F is the group classically denoted $GL_n(\mathbf{F}_q)$. Then F stabilizes B and fixes \dot{w} for all w. Hence the Bruhat decomposition of $GL_n(k)$ into double cosets of B(k) implies an analogous decomposition of GL_n^F into double cosets of B^F .

In particular, this immediately proves the identity $(G/B)^F = G^F/B^F$ (on k-points). What happens if we replace GL_n with another G? What happens if we choose a different Frobenius map F and F-stable Borel?

It turns out that the connectedness of B ensures that we always have $(G/B)^F = G^F/B^F$. On Problem Set 1, you will deduce a generalization of this fact from the following theorem:

Theorem 2.10 (Lang). Let H be a connected, smooth algebraic group over $\bar{\mathbf{F}}_q$ and $F: H \to H$ the Frobenius map for some \mathbf{F}_q -form. Then the Lang map

$$h \mapsto h^{-1}F(h): H \to H$$

is surjective.

For the proof, see Wikipedia. The key idea of the proof is to calculate the induced map on Lie algebras, using the fact that the differential of F vanishes to show bijectivity.

Note that the Lang map is finite étale, and its fiber over the identity is precisely H^F . For this reason, one can think of the theorem as presenting H as an H^F -principal bundle over itself in the étale topology.

Remark 2.11. For affine algebraic groups, Steinberg generalized Lang's theorem from Frobenius maps to any surjective map F with finitely many fixed points. For this reason, I sometimes speak of the Lang-Steinberg theorem.

2.6.

We now focus on the G^F -set G^F/B^F , where G is a reductive algebraic group over $\bar{\mathbf{F}}_q$ with Frobenius map F, and B is an F-stable Borel subgroup of G.

As usual, write $B = T \ltimes U$. The