Learning Influence Propagation on Personal Blogs

Il-Chul Moon, Dongwoo Kim, Yohan Jo, Alice H. Oh

yohan.jo@kaist.ac.kr

KAIST Daejeon, Korea

In this presentation, I will talk about

- how to measure a blog's influence to readers
- how to predict the potential influence of a new blog post well

Hits Measured by WordPress

3,783,718 hits since April 1, 2006

2,500 visits / day

Comments»

- 1. The May Unemployment Numbers are Here, and Worse Than Predicted « Innocent Bystanders June 8, 2009
- [...] The May Unemployment Numbers are Here, and Worse Than Predicted June 5, 2009 Posted by geoff in News. trackback UPDATE: Corrected graph available here. [...]
- 2. The April Numbers Are In It's Official « Innocent Bystanders June 8, 2009
- [...] Correction to the May Unemployment Chart [...]
- 188. Hot Air » Obama on the stimulus: Hey, at least unemployment's not at 15% June 30, 2010
- [...] back before he was sworn in, when his economic team was pushing that chart that showed unemployment topping out at eight percent or so if we gave him whatever moneybomb he asked for? Those days are loooong gone; now, instead of [...]

Power of stimulating the readers to express their thoughts in response

The influence is reflected,

- quantitatively, by the network position
 e.g. number of people influenced
- qualitatively, in the **content** e.g. similarity of the topics

Content Analysis

Apply the author-topic model to the blogs [Rosen-Zvi, 2004]

Topic	Highly Related Words
1	gold, wave, market, term, short, cycle
2	money, tax, government, fund, pay, financial
•••	
50	school, student, university, education, class

Blog	Topic								
	1	2	3	4	•••	50			
1	0.011	0.324	0.003	0.008		0.003			
2	0.250	0.007	0.012	0.009		0.011			
•••									
4,165	0.009	0.015	0.003	0.010		0.363			

In-degree Centrality = 3

Out-degree Centrality = 1

Total-degree Centrality = 4

Betweenness Centrality = 16

Clustering Coefficient = 1/3

"Influence Size"

Takes into account

- how many readers write posts in response
- how similar their topics are

$$S_i = \{B_j : B_j \text{ can reach } B_i \text{ by following links}\}$$

InfluenceSize
$$(B_i) = \sum_{B_j \in S_i} \text{TopicSimilarity}(B_i, B_j)$$
$$= \sum_{B_i \in S_i} \frac{\mathbf{t}_i \cdot \mathbf{t}_j}{\|\mathbf{t}_i\| \|\mathbf{t}_j\|}$$

Existing Measures of Blog Influence

- Number of Comments
 - Quantitative
- Digg Score (Digg.com)
 - Quantitative, partly qualitative

How can we predict the potential influence of a new blog post?

Prediction of Blog Influence

Experiments

- 1. Content information and network information capture different aspects of blog influence
- 2. It is important to use both content information and network information for finding influential blogs

Dataset

Selected from TREC Blog08

http://ir.dcs.gla.ac.uk/test_collections/blogs08info.html

# of Blogs	of Blogs # of Posts		Average # of Words/Post		
4,165	72,143	53,257	225.24		

- ✓ Blogspot, LiveJournal
- ✓ Contains >50 words
- ✓ Has at least one link to another post
- ✓ Written in 2008
- ✓ Written in English

Experiment I

Do content information and network information play different roles in predicting blog influence?

Design

• Task

Classify the blogs into three groups (non-influential, influential, and very-influential)

Ground Truth

Sort the blogs in the order of *influence size* and group them into three

Classification

- Linear SVM
- Features
 - Content: Topic proportions (50)
 - Network: In-degree, out-degree, total-degree, betweenness, clustering coefficient (5)
- Training

Train a classifier using 30% of the data blogs

Testing

Test with the rest of the data

Feature Importance

Group 1	Group 2	Group 3
OutDegree	OutDegree	Topic 47
TotalDegree	TotalDegree	Topic 14
Betweenness	Topic 9	Topic 15
Clustering Coefficient	Topic 35	Topic 43
Topic 8	Topic 13	Topic 41
Topic 28	Topic 0	Topic 38
Topic 19	Topic 24	Topic 42
InDegree	Topic 27	Topic 24
Topic 43	Topic 16	Topic 12
Topic 23	Topic 19	Topic 22

Most Important Features

Experiment II

If we use both content information and network information, can we find potentially influential blogs better than when using only one of them?

Design

Task

Classify each blog whether it belongs to the top 10% influential blogs or not

Ground Truth

Top 10% influential blogs are obtained with regard to each influence measure (influence size, number of comments, and Digg score)

Classification

- Linear SVM
- Features
 - Content: Topic proportions (50)
 - Network: In-degree, out-degree, total-degree, betweenness, clustering coefficient (5)
 - Content-Network: All (55)
- Training

Train a classifier using 30% of the data blogs

Testing

Test with the rest of the data

Prediction Result

Features	Influence Size	Number of Comments	Digg Score	
Content	0.360	0.275	0.295	
Network	0.726	0.308	0.239	
Content- Network	0.727	0.322	0.308	

F1-Measure

(Harmonic mean of precision and recall)

Prediction Result

Features	Influence Size			Number of Comments			Digg Score					
	Accuracy	Precision	Recall	F1- Measure	Accuracy	Precision	Recall	F1- Measure	Accuracy	Precision	Recall	F1- Measure
Content	0.841	0.303	0.445	0.360	0.631	0.172	0.691	0.275	0.688	0.197	0.583	0.295
Network	0.934	0.683	0.775	0.726	0.857	0.307	0.309	0.308	0.851	0.283	0.207	0.239
Content- Network	0.943	0.699	0.759	0.727	0.716	0.213	0.664	0.322	0.714	0.211	0.571	0.308

Contributions

- We proposed a new measure of blog influence, *Influence Size*, which considers both content and network
- We showed that content information and network information play different roles in predicting blog influence
- We showed that it is important to use both content information and network information for finding influential blogs

Future Work

- Evaluation of the influence measures
- Exploration of various methods for content analysis

Thank You

Presenter

Yohan Jo

yohan.jo@kaist.ac.kr

Users & Information Lab Computer Science Dept. Korea Advanced Institute of Science and Technology