Universidade Federal de Pernambuco Departamento de Matemática - Geometria Analítica 1 Prof. Rodrigo Cavalcante

Terceira Lista Dependência Linear, Bases e Componentes

- 1. Julgue os itens abaixo como verdadeiro ou falso, justificando sua resposta.
 - a) Se a sequência $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LD, então o vetor \overrightarrow{w} é uma combinação linear de \overrightarrow{u} e \overrightarrow{v} .
 - b) Uma sequência de vetores contendo o vetor nulo é sempre LD.
 - c) A sequência $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LI se, e somente se, $(\overrightarrow{u}, \overrightarrow{v})$ também é.
 - d) Dado que \overrightarrow{u} é forma com \overrightarrow{v} uma sequência LI e que o vetor \overrightarrow{w} também forma uma sequência LI com \overrightarrow{v} , então a sequência formada por estes três vetores pode ou não ser LI.
- 2. Dados os vetores não coplanares \overrightarrow{e}_1 , \overrightarrow{e}_2 e \overrightarrow{e}_3
 - a) Justifique porque esses vetores formam uma base;
 - b) Encontre as componentes de \overrightarrow{e}_1 , \overrightarrow{e}_2 e \overrightarrow{e}_3 na base $\beta_1 = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$;
 - c) Encontre as componentes de \overrightarrow{e}_1 , \overrightarrow{e}_2 e \overrightarrow{e}_3 na base $\beta_2 = (3 \overrightarrow{e}_1, 2 \overrightarrow{e}_2, 4 \overrightarrow{e}_3)$;
 - d) Encontre as componentes do vetor $(2,1,0)_{\beta_1}+(3,2,1)_{\beta_2}$ nas bases β_1 e β_2 .
- 3. Seja OABC um tetraedro e M o ponto médio de BC.
 - a) Justifique porque a sequência $\beta = (\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ é uma base do espaço (\mathbb{V}^3);
 - b) Determine as componentes do vetor \overrightarrow{AM} na base β ;
- 4. Seja VABCD uma pirâmide regular de base quadrada com vértice fora do quadrado V.
 - a) Justifique porque a sequência $\beta = (\overrightarrow{VA}, \overrightarrow{VB}, \overrightarrow{CD})$ não é uma base do espaço (\mathbb{V}^3);
 - b) Considere a sequência $\beta = (\overrightarrow{VA}, \overrightarrow{VB}, \overrightarrow{VC})$. Escreva os vetores \overrightarrow{AC} e \overrightarrow{BD} como combinação linear dos vetores desta sequência.
 - c) As combinações lineares do item anterior são únicas?
- 5. Dadas as componentes dos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} em relação a uma base β de \mathbb{V}^3 , determine $m \in \mathbb{R}$ de forma que as sequências formadas pelos seguintes vetores sejam LD:
 - a) $\vec{u} = (m^2 4, m + 2, 0)_{\beta}$;
 - b) $\vec{u} = (1, 3, 5)_{\beta} \ e^{\vec{v}} = (2, m + 1, 10)_{\beta} ;$
 - c) $\overrightarrow{u} = (3,5,1)_{\beta}, \ \overrightarrow{v} = (2,0,4)_{\beta} \ {\bf e} \ \overrightarrow{w} = (1,m,3)_{\beta}$.