Graphs with few trivial critical ideals

Carlos A. Alfaro

- Grupo Crítico
 - Factores invariantes
 - El grupo crítico del ciclo gordo
 - Gráficas con conectividad uno.
 - La Familia G_i

• are connected,

 multiple edges are allowed, and

• loops are forbidden.

Grupo Crítico

En la literatura el grupo de pilas de arena tambien es conocido como el grupo crítico, el grupo Jacobiano, el grupo de Picard, etc.

Más aún, existen varias formas equivalentes de definirlo.

La descripción algebraica del grupo de pilas de arena también es conocida como el grupo crítico.

Definición

El grupo crítico K(G) de G está definido como la parte de torción del cokernel de la matriz Laplaciana de G.

$$coker(L(G)) = \mathbb{Z}^n/ImL(G) = \mathbb{Z} \oplus K(G).$$

Proposición

Para toda gráfica G, y todo $s \in V(G)$, tenemos

$$SP(G,s)\cong K(G).$$

(relación matriz laplaciana)

El grupo crítico se puede obtener calculando la forma normal de Smith de la matriz Laplaciana.

El grupo crítico se puede obtener calculando la forma normal de Smith de la matriz Laplaciana.

Definición

Dos matrices M y N son equivalentes si existen P, $Q \in GL_n(\mathbb{Z})$ tal que N = PMQ.

El grupo crítico se puede obtener calculando la forma normal de Smith de la matriz Laplaciana.

Definición

Dos matrices M y N son equivalentes si existen P, $Q \in GL_n(\mathbb{Z})$ tal que N = PMQ.

Teorema

Si M y N son equivalentes, entonces $\mathbb{Z}^n/M \cong \mathbb{Z}^n/N$.

El grupo crítico se puede obtener calculando la forma normal de Smith de la matriz Laplaciana.

Definición

Dos matrices M y N son equivalentes si existen $P, Q \in GL_n(\mathbb{Z})$ tal que N = PMQ.

Teorema

Si M y N son equivalentes, entonces $\mathbb{Z}^n/M \cong \mathbb{Z}^n/N$.

Definición

La forma normal de Smith de una matriz M es la matriz diagonal $diag(d_1, ..., d_r)$, equivalente a A, que satisface $d_i > 0$ y $d_i \mid d_j$ si $i \leq j$.

Teorema

$$K(G) \cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \cdots \oplus \mathbb{Z}_{d_r},$$

donde $d_i > 0$ y $d_i \mid d_i$ si $i \leq j$.

Definición

Los enteros d_1, \ldots, d_r son llamados factores invariantes.

Proposición

 $d_i = \Delta_i/\Delta_{i-1}$, donde $\Delta_0 = 1$ y Δ_i es el gcd de los $i \times i$ menores de L(G).

Teorema [Cori y Rossin 2001]

Si K_n es la gráfica completa de n vértices. Entonces

$$K(K_n) \cong \bigoplus_{i=1}^{n-2} \mathbb{Z}_n.$$

Demostración.

$$L(K_n,s) = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{bmatrix}$$

El grupo crítico del ciclo gordo

El ciclo gordo C_n es la gráfica cuya gráfica subyacente es un ciclo.

Figura: Ciclo gordo C_n .

Teorema

Sea C_n el ciclo gordo con m_i la multiplicidad entre v_i y v_{i+1} , entonces

$$K(\mathcal{C}_n) = \mathbb{Z}_{\Delta_1} \oplus \left(\bigoplus_{i=2}^{n-1} \mathbb{Z}_{\Delta_i/\Delta_{i-1}} \right).$$

con

$$\Delta_{i} = \begin{cases} \gcd \left\{ m_{j_{1}} \cdots m_{j_{i}} \right\}_{1 \leq j_{1} < \cdots < j_{i} \leq n} & \text{si } 1 \leq i \leq n-2, \\ (-1)^{n} \sum_{i=1}^{n} m_{1} m_{2} \cdots \hat{m}_{i} \cdots m_{n} & \text{si } i = n-1. \end{cases}$$

Corolario

Sea C_n el ciclo gordo con $m_i = m$, entonces

$$K(C_n) = \left(\bigoplus_{i=1}^{n-2} \mathbb{Z}_m\right) \oplus \mathbb{Z}_{mn}.$$

Corolario

El grupo de pilas de arena del ciclo de n vertices es isomorfo a \mathbb{Z}_n .

Gráficas con conectividad uno.

Teorema

Sea G una gráfica y sean G_1 , G_2 , ..., G_l sus bloques, entonces

$$K(G) = K(G_1) \oplus K(G_2) \oplus \cdots \oplus K(G_l).$$

Pregunta

Dado un grupo fínito abeliano Γ. ¿Existe una gráfica G tal que $K(G) = \Gamma$?

Sí, basta tomar a *G* como un wedge de ciclos.

$$\mathbb{Z}_{a_1} \oplus \mathbb{Z}_{a_2} \oplus \cdots \mathbb{Z}_{a_r}$$

Algunos isomorfismos.

Teorema [Cori y Rossin, 2000]

Sea G una gráfica y G^* su dual, entonces $K(G) \cong K(G^*)$.

Teorema [Wagner, 2000]

Sean G y H gráficas. Si las matroides gráficas de G y H son isomorfas, entonces $K(G) \cong K(H)$.

La Familia G_i

Denotemos por:

- f_i(G), el número de factores invariantes iguales a i de K(G),
- f_{≥2}(G) al número de factores invariantes mayores a 2 de K(G).

Teorema [Godsil, 2001]

$$f_1(G) + f_{>2}(G) = n - c$$

donde c es el número de componentes conexas.

Corolario

Una gráfica simple conexa cumple

$$1 \le f_1(G) \ y \ f_{>2}(G) \le n-2.$$

Definición

Denotemos por G_i a la familia de gráficas simples conexas con $f_1(G) = i$.

Ejemplo

Por ejemplo, la siguiente gráfica pertenece a \mathcal{G}_2 .

$$L(G,s) \sim \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 3 \end{array}
ight]$$

Figura : Número normalizado de graficas con f_1 factores invariantes iguales a 1

Pregunta

¿Qué tan frecuente es cíclico el grupo crítico? es decir, ¿Qué tan frecuente $f_1(G)$ es igual a n-1 o n-2?

Conjetura [D. Wagner, 2001]

Casi todas las gráficas simples y conexas tienen grupo crítico ciclico.

Teorema [M. Wood, 2014]

La probabilidad de que el grupo crítico de una gráfica aleatoria sea cíclica es asintóticamente a lo más

$$\zeta(3)^{-1}\zeta(5)^{-1}\zeta(7)^{-1}\zeta(9)^{-1}\zeta(11)^{-1}\cdots \approx 0,7935212$$

donde ζ es la función zeta de Riemann.

Gráficas con un factor invariante igual a 1

Por otro lado...

Pregunta

¿Qué podemos decir sobre G_1 ?

Teorema [Lorenzini, 1989]

Si *G* es una gráfica simple conexa, entonces los siguientes enunciados son equivalentes:

- I. $G \in \mathcal{G}_1$,
- II. G es P_2 -libre,
- III. G es la gráfica completa.

Pregunta

¿Qué podemos decir sobre G_2 y G_3 ?

Teorema

Sea G una gráfica simple conexa . Entonces, $G \in \mathcal{G}_2$ si y solamente si G es una de las siguientes gráficas:

- I. K_{n_1,n_2,n_3} , donde n_1 , n_2 y n_3 tienen la misma paridad.
- II. L_{n_1,n_2,n_3} , si $n_1,n_2,n_3 \ge 3$ tienen la misma paridad, u otros once casos.

La demostración usa los ideales críticos.

¡Gracias!