

another example of Dirac sequence

 ${\bf Canonical\ name} \quad {\bf Another Example Of Dirac Sequence}$

Date of creation 2013-03-22 17:19:50 Last modified on 2013-03-22 17:19:50 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 8

Author Wkbj79 (1863)

Entry type Example Classification msc 26A30 Let $A_n = \left[\frac{-1}{2^n}, \frac{1}{2^n}\right]$ and $\delta_n = 2^{n-1}\chi_{A_n}$ for every positive integer n, where χ_S denotes the characteristic function of the set S. Then $\{\delta_n\}$ is a Dirac sequence:

- 1. $\delta_n(t) \geq 0$ for every positive integer n and every $t \in \mathbb{R}$.
- 2. Let n be a positive integer. Then $\int_{-\infty}^{\infty} \delta_n(t) dt = \int_{\frac{-1}{2^n}}^{\frac{1}{2^n}} 2^{n-1} dt = 1.$
- 3. Let r > 0. Then there exists a positive integer N such that, for every integer k > N, we have $\frac{1}{2^k} < r$. Thus, for every integer k > N, we have $\int_{\mathbb{R}\setminus [-r,r]} d_k(t)\,dt = 0$.