

Understanding the Impact of the Nightlife Industry on Urban Mobility in NYC and Charting COVID-19 Related Disruption

Kaifu Ren (kr2516), Nicholas LiCalzi (nl949)

Yingyuan Zhang (yz6378), Yutong Zhu (yz6080)

Sponsor: VibeLab

CUSP Mentor: Kim Mahler

July 23 2020

Creative Footprint

Source: Creative Footprint, "Measuring Live Music Space in NYC" (2018)

Why is this project important?

NYC's Music Industry accounts for:

Source: Mayor's Office of Media & Entertainment, "Music in New York City" (2017)

Research Questions

- Where does NYC's nightlife occur?
 - Is it centralized or diffuse?
 - Are there specific (or surprising) clusters?

Research Questions

- Where does NYC's nightlife occur?
 - Is it centralized or diffuse?
 - Are there specific (or surprising) clusters?
- How do people access nightlife in NYC?
 - Are there any discernible predictors of difference in mode choice?

Research Questions

- Where does NYC's nightlife occur?
 - Is it centralized or diffuse?
 - Are there specific (or surprising) clusters?
- How do people access nightlife in NYC?
 - Are there any discernible predictors of difference in mode choice?
- What changes do we see in citywide/boro-wide nighttime transportation ridership due to COVID-19?

Responding to COVID-19

We built a baseline model of winter day and nighttime transportation with data from 2019, expecting to see significant variation given the arrival of the COVID-19 pandemic and related disruptions.

Establish a **Baseline**:

"Normal" transit conditions (same period in 2019)

Capture all night time transportation data

Source: nycgo.com

Transition Period:

Pre-COVID closures, number of cases surging but businesses still open

- Did venue clusters see a decline in traffic before they were ordered shut?
- Was impact greater than in other areas?

Current **Snapshot**:

Post-COVID outbreaks (2020)

Changes in mobility and activity once nightlife businesses/venues were closed

Source: Business Insider

Data

Venue Data:

Creative Footprint (494 venues) + Google Maps (3,601 venues)

• Transportation Data:

TLC (For-hired vehicles) + MTA + Citibike

• Demographics:

Land Scan: day and night population

• Built Environment Features: PLUTO (NYC DCP)

• Weather: Weather Underground

Zip Codes Taxi Zones Census Blocks Nightlife Venues

Venue Data (Creative Footprint survey)

Venues Unique to Creative Footprint Survey Total: 400 nightlife venues

Venue Data (supplementing with Google)

Venues Unique to Creative Footprint Survey Total: 400 nightlife venues

Google Maps Nightlife Venues Total: 3601 bars and clubs

Aggregated Venue Data

Venues Unique to Creative Footprint Survey Total: 400 nightlife venues

Google Maps Nightlife Venues Total: 3601 bars and clubs

Venues aggregated to hexbin scheme Total hexes: 1199

Detecting Venue Clusters: The Wrong Way

Detecting Venue Clusters: The Wrong Way

 σ = 1.76% venue share

Detecting Venue Clusters: The Right Way

Citywide Nightlife Clusters w/ Venue Share Z-score > 0.5 & Min. 150 Businesses

Transportation Data (Public Transit)

Transportation Data (For-Hire Vehicles)

Transportation Data (For-Hire Vehicles) Areal Interpolation

The Modifiable Areal Unit Problem (MAUP)

The Modifiable Areal Unit Problem (MAUP)

The Modifiable Areal Unit Problem (MAUP)

Method - Data Engineering

Big Data

The sheer size of trip records

Streaming

Process data row by row; no monopolizing RAM

Final Dataset Preparation

Aggregating to daily day and night data intervals ranging from Jan. 1 - Apr. 30 for the years 2019 and 2020

Hex ID	Day/ Month/ Year	Night?	FHV/ Citibike/ MTA Inflow/ Outflow	Night/ Day Population	Venue/ Business Count	Res/ Comm Area	Temperatur e/ Rainfall	Covid?	Boro Code	Nos. of Citibike/ MTA stations
str	timestamp	bool	int	int	int	float	float	bool	int	int

Available via Github and available for public use and research (https://github.com/nlicalzi/cuspcapstone).

Method - Data Visualization

Data Visualization Interface

- D3.js and the MapboxGL Javascript API
- Monitor daily or nightly changes of different mobility usage in hexagons
- Time series analysis
- Comparison to baseline model

Method - Regression Analysis

 $DailyInflow_{i} = \beta_{0} + \beta_{1}DayoftheWeek_{i} + \beta_{2}AveTemp_{i} + \beta_{3}Precipitation_{i} +$ $\beta_{4}NightDummy + \varepsilon_{i}$

 $VenueCounts_{i} = \beta_{0} + \beta_{1}BuseinssCount_{i} + \beta_{2}TMTAInflows_{i} + \beta_{3}CitiBikeInflow_{i} +$ $\beta_{4}FHVInflows_{i} + \beta_{5}Stationcounts_{i} + \beta_{6}boroDummy + \varepsilon_{i}$

 $NightDailyInflow_{i} = \beta_{0} + \beta_{1}StationCount_{i} + \beta_{2}BusinessCount_{i} + \beta_{3}LotsArea_{i} +$ $\beta_{4}ResidentialArea_{i} + \beta_{5}OfficeArea_{i} + \beta_{6}RetailArea_{i} +$ $\beta_{7}NightPopulation_{i} + \beta_{8}BoroughDummy + \varepsilon_{i}$

Transportation: MTA, Citibike, Fhv(Yellow

Cab, Ubers etc.), Station counts(MTA & Citi)

Year: 2019 and 2020 (Covid-19)

Environment built Features:

Business Counts, Residential, Commercial,

Retail Area

Demographic feature: Population data

Weather: Temperature, Precipitation

Time-related: Day of the Week, day or

night

How do people access nightlife in NYC and are there any predictors of difference in mode choice?

NightTime Inflow Regression based on Borogouh

Unit approximately \% Central Park.

Nightlife transportation preference

- Staten Island MTA Preferred
- Manhattan Taxi Preferred

Citi Bike Influence

Manhattan - More dock locations

What is the relationship between transport mode choice and weather, weekday and weekend and day or night?

Area size: approximately % Central Park

Weekend

Taxi > Citi Bike > MTA

Weekday

MTA > Taxi > Citi Bike

Rainy Day solution

Taxi MTA and Citi Bike

What is the relationship between transport mode choice and weather, weekday and weekend and day or night?

Area size: approximately 1/5 Central Park

All Decrease at Night

How does the nightlife venue grows?

- Manhattan has the highest venue counts
- Citibike has a higher positive coefficient on venue counts.
 - o traffic congestion at night time
- Different land use has less impact on venue counts
- Venue locations have strong relationships with boroughs
- Little relationship with populations

What is the citywide and borough-wide decrease in transportation utilization due to Covid-19?

Period 1 Feb.12 to 28 Normal Condition

Period 2 Mar.1 to 17 Aware of Covid-19 Outbreak

25

Period 3 Mar.18 to Apr.3 Nightlife Closed

What is the citywide and borough-wide decrease in transportation utilization due to Covid-19?

Period 1 Feb.12 to 28 Normal Condition

Period 2 Mar.1 to 17 Aware of Covid-19 Outbreak

Period 3 Mar.18 to Apr.3 Nightlife Closed

Conclusion & Future work

We have outlined a process for identifying nightlife hotspots, combine and analyze disparate datasets to attempt to explain ridership phenomena.

Potential extensions of our work might include:

- 1. using measures of local/global spatial autocorrelation to identify clusters of nightlife activity
- 2. the use of Ridge/LASSO regressions to neutralize any collinearity in our datasets
- 3. placing a greater emphasis on last mile transit options

The COVID-19 pandemic has had devastating effects on the City as a whole, but particularly on the nightlife sector, and we hope that the research and processes contained in this project may be of use to interested parties.

Thank you!

Q&A Session