Notes on Noncommutative Geometry and Particle Physics

Popovic Milutin

Week 2: 12.02 - 19.02

Contents

1	Noncommutative Geometric Spaces			
	1.1	Noncommutative Matrix Algebras		1
		1.1.1	Balanced Tensor Product and Hilbert Bimodules	1
		1.1.2	Kasparov Product and Morita Equivalence	

1 Noncommutative Geometric Spaces

1.1 Noncommutative Matrix Algebras

1.1.1 Balanced Tensor Product and Hilbert Bimodules

Definition 1. Let A be an algebra, E be a *right* A-module and F be a *left* A-module. The *balanced tensor product* of E and F forms a A-bimodule.

$$E \otimes_A F := E \otimes F / \left\{ \sum_i e_i a_i \otimes f_i - e_i \otimes a_i f_i : a_i \in A, e_i \in E, f_i \in F \right\}$$

In other words the balanced tensor product forms only elements of

- E that preserver the *left* representation of A and
- *F* that preserver the *right* representation of *A*.

Which is the same saying:

$$E \otimes_A F = \{ea \otimes_A f = e \otimes_A af : a \in A, e \in E, f \in F\}$$

Definition 2. Let A, B be matrix algebras. The Hilbert bimodule for (A, B) is given by

- E, an A-B-bimodue E and by
- an *B*-valued inner product $\langle \cdot, \cdot \rangle_E : E \times E \to B$

 $\langle \cdot, \cdot \rangle_E$ needs to satisfy the following for $e, e_1, e_2 \in E$, $a \in A$ and $b \in B$.

$$\begin{split} \langle e_1, a \cdot e_2 \rangle_E &= \langle a^* \cdot e_1, e_2 \rangle_E & \text{sesquilinear in } A \\ \langle e_1, e_2 \cdot b \rangle_E &= \langle e_1, e_2 \rangle_E b & \text{scalar in } B \\ \langle e_1, e_2 \rangle_E &= \langle e_2, e_1 \rangle_E^* & \text{hermitian} \\ \langle e, e \rangle_E &\geq 0 & \text{equality holds iff } e = 0 \end{split}$$

We denote $KK_f(A, B)$ the set of all *Hilbert bimodules* of (A, B).

Exercise 1. Check that a representation $\pi: A \to L(H)$ of a matrix algebra A turns H into a Hilbert bimodule for (A, \mathbb{C}) .

Solution 1.

Exercise 2. Show that the A-A bimodule given by A is in $KK_f(A,A)$ by taking the following inner product $\langle \cdot, \cdot \rangle_A : A \times A \to A$:

$$\langle a, a \rangle_A = a^* a' \quad a, a' \in A$$

Solution 2.

Example 1. Consider a * homomorphism between two matrix algebras $\phi : A \to B$. From it we can construct a Hilbert bimodule $E_{\phi} \in KK_f(A,B)$ in the following way. We let E_{ϕ} be B in the vector space sense and an inner product from the above Exercise 2, with A acting on the left with ϕ .

$$a \cdot b = \phi(a)b$$
 $a \in A, b \in E_{\phi}$

1.1.2 Kasparov Product and Morita Equivalence

Definition 3. Let $E \in KK_f(A,B)$ and $F \in KK_F(B,D)$ the *Kasparov product* is defined as with the balanced tensor product

$$F \circ E := E \otimes_R F$$

Such that $F \circ E \in KK_f(A, D)$ with a *D*-valued inner product.

$$< e_1 \otimes f_1, e_2 \otimes f_2 >_{E \otimes_B F} = < f_1, < e_1, e_2 >_E f_2 >_F$$

Question 1. What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E$ or of A, B or D?

Exercise 3. Show that the association $\phi \leadsto E_{\phi}$ (from the previous Example) is natrual in the sense

- $E_{id_A} \simeq A \in KK_f(A,A)$
- for *-algebra homomorphism $\phi: A \to B$ and $\psi: B \to C$ we have an isomorphism

$$E_{\psi} \circ E_{\phi} \equiv E_{\phi} \otimes_B E_{\psi} \simeq E_{\psi \circ \phi} \in KK_f(A,C)$$

Solution 3.

Exercise 4. *In the definition of Morita equivalence:*

- Check that $E \otimes_B F$ is a A D bimodule
- Check that $\langle \cdot, \cdot \rangle_{E \oplus_B F}$ defines a D valued inner product
- Check that $< a^*(e_1 \otimes f_1), e_2 \otimes f_2 >_{E \otimes_B F} = < e_1 \otimes f_1, a(e_2 \otimes f_2) >_{E \otimes_B F}.$

Solution 4.

Definition 4. Let A, B be *matrix algebras*. They are called *Morita eqivalent* if there exists an $E \in KK_f(A,B)$ and an $F \in KK_f(B,A)$ such that:

$$E \otimes_B F \simeq A$$
 and $F \otimes_A E \simeq B$

Where \simeq denotes the isomorphism between Hilbert bimodules, note that A or B is a bimodule by itself.

Question 2. Why are E and F each others inverse in the Kasparov Product?

Example 2.

- Hilber bimodule of (A,A) is A
- Let $E \in KK_f(A, B)$, we take $E \circ A = A \oplus_A E \simeq E$
- we conclude, that ${}_{A}A_{A}$ is the identity in the Kasparov product (up to isomorphism)

Example 3. Let $E = \mathbb{C}^n$, which is a $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard \mathbb{C} inner product.

On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product:

$$< v_1, v_2 > = \bar{v_1} v_2^t \in M_n(\mathbb{C})$$

Now we take the Kasparov product of *E* and *F*:

- $F \circ E = E \otimes_{\mathbb{C}} F \simeq M_n(\mathbb{C})$
- $E \circ F = F \otimes_{M_n(\mathbb{C})} E \simeq \mathbb{C}$

 $M_n(\mathbb{C})$ and \mathbb{C} are Morita equivalent

Theorem 1. Two matrix algebras are Morita Equivalent iff their their Structure spaces are isomorphic as discreet spaces (have the same cardinality / same number of elements)

Proof. Let A, B be Morita equivalent. So there exists ${}_{A}E_{B}$ and ${}_{B}F_{A}$ with

$$E \otimes_B F \simeq A$$
 and $F \otimes_A E \simeq B$

Consider $[(\pi_B, H)] \in \hat{B}$ than we construct a representation of A,

$$\pi_A \to L(E \otimes_B H)$$
 with $\pi_A(a)(e \otimes v) = ae \otimes w$

Question 3. Is $E \simeq H$ and $F \simeq W$?

vice versa, consider $[(\pi_A, W)] \in \hat{A}$ we can construct π_B

$$\pi_B: B \to L(F \otimes_A W)$$
 and $\pi_B(b)(f \otimes w) = bf \otimes w$

These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$

Exercise 5. Fill in the gaps in the above proof:

- show that the representation of π_A defined is irreducible iff π_B is.
- Show that the association of the class $[\pi_A]$ to $[\pi_B]$ is independent of the choice of representatives π_A and π_B

Solution 5.

Lemma 1. The matrix algebra $M_n(\mathbb{C})$ has a unique inrreducible representation (up to isomorphism) given by the defining representation on \mathbb{C}^n .

Proof. We know \mathbb{C}^n is a irreducible representation of $A = M_n(\mathbb{C})$. Let H be irreducible and of dimension k, then we define a map

$$\phi: A \oplus ... \oplus A \to H^*$$
$$(a_1, ..., a_k) \mapsto e^1 \circ a_1^t + ... + e^k \circ a_k^t$$

With $\{e^1,...,e^k\}$ being the basis of the dual space H^* and (\circ) being the pre-composition of elements in H^* and A acting on H. This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ acts on H^* with $v \mapsto v \circ a^l$ ($v \in H^*$). Furthermore this morphism is surjective, thus making the pullback $\phi^* : H \mapsto (A^k)^*$ injective. Now identify $(A^k)^*$ with A^k as a A-module and note that $A = M_n(\mathbb{C}) \simeq \oplus^n \mathbb{C}^n$ as a $n \in A$ module. It follows that H is a submodule of $A^k \simeq \oplus^{nk} \mathbb{C}$. By irreducibility $H \simeq \mathbb{C}$.

Example 4. Consider two matrix algebras *A*, and *B*.

$$A = \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C}) \quad B = \bigoplus_{j=1}^{M} M_{m_j}(\mathbb{C})$$

Let $\hat{A} \simeq \hat{B}$ that implies N = M and define E with A acting by block-diagonal matrices on the first tensor and B acting in the same way on the second tensor. Define F vice versa.

$$E:=\bigoplus_{i=1}^N\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}\ \ F:=\bigoplus_{i=1}^N\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}$$

Then we calculate the Kasparov product.

$$E \otimes_B F \simeq \bigoplus_{i=1}^N (\mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}) \otimes_{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i})$$

$$\simeq \bigoplus_{i=1}^N \mathbb{C}^{n_i} \otimes (\mathbb{C}^{m_i} \otimes_{M_{m_i}(\mathbb{C})} \mathbb{C}^{m_i}) \oplus \mathbb{C}^{n_i}$$

$$\simeq \bigoplus_{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i} \simeq A$$

and from $F \otimes_A E \simeq B$.

We conclude that.

- There is a duality between finite spaces and Morita equivalence classes of matrix algebras.
- By replacing *-homomorphism $A \to B$ with Hilbert bimodules (A,B) we introduce a richer structure of morphism between matrix algebras.