MODELADO MATEMÁTICO GRUPO 001

Modelado Probabilístico con Sistemas Discretos

José Andree Flores Guerrero 1848962 Gustavo Juan Martínez Ortuño 1877422 Sebastian Silva Díaz 1877485

Cadena de Markov

Proceso en el que hay un numero finito de estados o resultados que se pueden ocupar en un momento dado. Los estados no se superponen y cubren todos los posibles resultados. En un proceso de Markov, el sistema puede pasar de un estado a otro, uno para cada paso de tiempo, y hay una probabilidad asociada con esta transición para cada posible resultado.

La suma de las probabilidades de pasar del estado actual a el siguiente estado es igual a 1 para cada estado en cada paso de tiempo.

Pasos

1) Construir esquema

1) Construir matriz de transición

		Estado 1	Estado 2
P =	Estado 1	р	1-p
	Estado 2	1-q	q

3) Definir las variables:

- S_n : porcentaje de personas en el estado 1 en el periodo n
- E_n : porcentaje de personas en el estado 2 en el periodo n

4) Definir ecuaciones:

$$S_{n+1} = p*S_n + (1-q)*E_n$$

•
$$E_{n+1} = (1-p)*S_n + q*E_n$$

Ejemplo

El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un producto un mes, no lo comprará el mes siguiente. Además, el 30% de quienes no lo compren un mes lo adquirirá al mes siguiente. Asumiendo que en una población de 1000 individuos, 100 compraron el producto el primer mes. ¿Cuántos lo comprarán al mes próximo? ¿Y dentro de dos meses? ¿Cuál es el comportamiento a largo plazo?

2) Construimos matriz

		Compran	No compran
P =	Compran	0.8	0.2
	No compran	0.3	0.7

3) Definamos las variables:

- C_n : el porcentaje de personas que compran en periodo n
- NC_n : porcentaje de personas que no compran en el periodo n

4) Definamos ecuaciones:

$$C_{n+1} = 0.8*C_n + 0.3*NC_n$$

■
$$NC_{n+1} = 0.2*C_n + 0.7*NC_n$$

a) ¿Cuántos lo comprarán al mes próximo?

$$C_{n+1} = 0.8*100 + 0.3*900 = 350$$

$$C_{n+2} = 0.8*350 + 0.3*650 = 475$$

b) Tendencia

n	Compran	No compran	n	Compran	No compran
0	0.5	0.5	0	0.8	0.2
1	0.55	0.45	1	0.7	0.3
2	0.575	0.425	2	0.65	0.35
3	0.5875	0.4125	3	0.625	0.375
4	0.59375	0.40625	4	0.6125	0.3875
5	0.596875	0.403125	5	0.60625	0.39375
6	0.5984375	0.4015625	6	0.603125	0.396875
7	0.59921875	0.40078125	7	0.6015625	0.3984375
8	0.599609375	0.400390625	8	0.60078125	0.39921875

Tendencia de votación

• Considerando las elecciones en la última década en Estados Unidos, en el cual hay 3 partidos, tenemos la siguiente matriz de transición:

	Republicanos	Demócratas	Independientes
Republicanos	0.75	0.05	0.20
Demócratas	0.20	0.60	0.20
Independientes	0.40	0.20	0.40

• ¿Es posible encontrar el comportamiento a largo plazo de los votantes en las elecciones?

Formulación del modelo

- Definamos las siguientes variables:
 - \blacksquare R_n el porcentaje de votantes que votan republicano en el período n
 - D_n el porcentaje de votantes que votan demócrata en el período n
 - \blacksquare I_n el porcentaje de votantes que votan independiente en el período n
- Utilizando la matriz de transición tenemos:
 - $R_{n+1} = 0.75R_n + 0.20D_n + 0.40I_n$
 - $D_{n+1} = 0.05R_n + 0.60D_n + 0.20I_n$
 - $I_{n+1} = 0.20R_n + 0.20D_n + 0.40I_n$

Solución del modelo

• Asumamos que en el periodo 0, los votantes se distribuyen equitativamente entre los partidos.

•	Podemos ver	que	la	tende	encia	a	largo)
	plazo es que:							

- Republicanos recibirán el 55% de los votos
- Demócratas recibirán el 19% de los votos
- Independientes recibirán el 25% de los votos

n	Republicanos	Demócratas	Independientes
0	0.3333333	0.3333333	0.3333333
1	0.4500000	0.2833333	0.2666667
2	0.5008333	0.2458333	0.2533333
3	0.5261250	0.2232083	0.2506667
4	0.5395021	0.2103646	0.2501333
5	0.5467528	0.2032205	0.2500267
6	0.5507194	0.1992753	0.2500053
7	0.5528967	0.1971022	0.2500011
8	0.5540934	0.1959064	0.2500002
9	0.5547514	0.1952485	0.2500000
10	0.5551133	0.1948867	0.2500000
11	0.5553123	0.1946877	0.2500000
12	0.5554218	0.1945782	0.2500000
13	0.5554820	0.1945180	0.2500000
14	0.5555151	0.1944849	0.2500000

Renta de autos

• Se considera una compañía de renta de autos con sucursales en Orlando y Tampa. Cada una de ellas renta autos a turistas de Florida. La compañía se especializa en reunir agencias de viaje que quieran organizar actividades turísticas tanto en Orlando como en Tampa. Por consecuencia, un viajero rentaría un auto en alguna de las ciudades y lo devolvería en cualquiera de las dos ciudades. La siguiente tabla muestra los datos históricos reunidos los pasados años del porcentaje de autos rentados y devueltos en estas localizaciones.

Present state

	Orlando	Tampa
Orlando	0.6	0.4
Tampa	0.3	0.7

Next state

• La tabla anterior se conoce como matriz de transición y también puede ser representada con el modelo de Markov:

Formulación del modelo

Definamos las siguientes variables:

- $^{\bullet}p_{n}$ el porcentaje de autos disponible para renta en Orlando al final del periodo n.
- $\bullet q_n$ el porcentaje de autos disponible para renta en Tampa al final del periodo n.

Utilizando la matriz de transición tenemos:

$$p_{n+1} = 0.6p_n + 0.3q_n$$

$$q_{n+1} = 0.4p_n + 0.7q_n$$

• Asumiendo que en n = 0, todos los autos se encuentran en Orlando, y de acuerdo a las ecuaciones definidas anteriormente, se obtienen las siguientes iteraciones:

n	Orlando	Tampa
0	1	0
1	0.6	0.4
2	0.48	0.52
3	0.444	0.556
4	0.4332	0.5668
5	0.42996	0.57004
6	0.428988	0.571012
7	0.4286964	0.5713036
8	0.42860892	0.57139108
9	0.42858268	0.57141732
10	0.4285748	0.5714252
11	0.42857244	0.57142756
12	0.42857173	0.57142827
13	0.42857152	0.57142848
14	0.42857146	0.57142854

• Esto indica una tendencia a largo plazo de que el 57% de los autos estarán en Tampa, mientras que el 43% estarían en Orlando.