ISIMA PREMIÈRE ANNÉE

PROJET

Interception de mobiles

Axel DELSOL Pierre-Loup PISSAVY $Tuteur\ de\ projet:$ Christophe DUHAMEL

 $mars-juin\ 2015$

Table des matières

1	Intr	roduction	2
	1.1	Problème à modéliser	2
	1.2	Méthodes utilisées	
	1.3	Outils proposés	2
2	\mathbf{Pro}	blèmes étudiés	3
	2.1	Calcul d'interception	3
	2.2	Heuristique H_0	
	2.3	Heuristique H_1	
3	Tes	ts réalisés	5
	3.1	Test n° 1 : Tous les mobiles interceptés, séquences différentes $\dots \dots \dots \dots \dots$	5
	3.2	Test n° 2 : Résultats identiques et mobile non-intercepté	7
	3.3		
	3.4	Test n° 4 : Heuristique H_1 plus rapide	
4	Cor	nclusion	13
_	4.1	Intérêt de ce projet	13
		Propositions d'améliorations	

1 Introduction

- 1.1 Problème à modéliser
- 1.2 Méthodes utilisées
- 1.3 Outils proposés

2 Problèmes étudiés

2.1 Calcul d'interception

On modélise le déplacement de l'intercepteur par la fonction suivante :

$$i(t,\alpha) = \left(\begin{array}{c} x_1 + t * v_1 * cos(\alpha) \\ y_1 + t * v_1 * sin(\alpha) \end{array}\right)$$

avec $t \in \Re^+$ et $\alpha \in [-\pi, \pi]$.

On modélise de même la même manière le déplacement du mobile :

$$m(t) = \begin{pmatrix} x_0 + t * v_0^x \\ y_0 + t * v_1^y \end{pmatrix}$$

avec $t \in \Re^+$.

On doit donc résoudre l'équation suivante afin de calculer le temps d'interception d'un mobile :

$$\begin{cases} x_1 + t * v_1 * cos(\alpha) &= x_0 + t * v_0^x \\ y_1 + t * v_1 * sin(\alpha) &= y_0 + t * v_1^y \end{cases}$$

La valeur est donnée par la résolution de l'équation $a * cos(\alpha) + b * sin(\alpha) = c$ avec :

$$\begin{cases} a = y_0 - y_1 \\ b = x_1 - x_0 \\ c = \frac{a * v_0^x + b * v_1^y}{v_1} \end{cases}$$

On obtient alors 2 possibilités pour la date t : $\frac{-b}{-v_0^x+v_1*cos(\alpha)}$ et $\frac{a}{-v_0^y+v_1*sin(\alpha)}$

La fonction d'interception teste alors les positions obtenues avec les deux dates et retient celle qui fonctionne et qui est minimale.

- 2.2 Heuristique H_0
- 2.3 Heuristique H_1

3 Tests réalisés

Nous présentons dans cette partie un ensemble de tests que nous avons effectués pour contrôler le bon fonctionnement de nos algorithmes.

Nous avons réalisé des graphiques afin d'avoir une meilleure interprétation des résultats obtenus.

Sur ces graphiques, nous avons choisi de représenter les mobiles M_i non-interceptés par des croix vertes (+), et les mobiles M_i interceptés par des croix rouges (+).

Les vecteurs vitesse et la trajectoire empruntée par les mobiles sont indiqués en vert par des vecteurs (----) et des lignes pointillées (----).

La position initiale de l'intercepteur est repérée par un carré bleu (\square) et ses positions successives par des croix bleues (+). La date de la dernière interception est indiquée au-dessus de la position où elle a lieu.

3.1 Test n° 1 : Tous les mobiles interceptés, séquences différentes

Figure 3.1 – Heuristique H_0 : Test n° 1

Nº mobile	Position interception	Date interception (u.t.)
0	(0.000; 2.000)	1.0000
1	(0.000; 2.000)	1.0000
4	(-2.385; -0.615)	2.7696
3	(8.509; 5.509)	9.0184
2	(14.345; 8.703)	12.3446

Tableau 3.1 – Heuristique H_0 : Résultats test nº 1

Figure 3.2 – Heuristique H_1 : Test nº 1

Nº mobile	Position interception	Date interception (u.t.)
0	(0.000; 2.000)	1.0000
1	(0.000; 2.000)	1.0000
2	(7.323; 6.597)	5.3233
3	(7.249; 4.249)	6.4979
4	(-8.089; 5.089)	14.1785

Tableau 3.2 – Heuristique H_1 : Résultats test nº 1

Nombre de mobiles interceptés

FIGURE 3.3 – Comparaison de H_0 et de H_1 : test n° 1

3.2 Test n° 2 : Résultats identiques et mobile non-intercepté

Figure 3.4 – Heuristique H_0 : Test nº 2

Nº mobile	Position interception	Date interception (u.t.)
0	(0.461; 2.000)	1.0262
1	(-1.000; 2.652)	1.8260
2	(0.959; 4.088)	3.0406
3	(5.797; -0.367)	6.3288

Tableau 3.3 – Heuristique H_0 : Résultats test nº 2

Figure 3.5 – Heuristique $H_1: {
m Test~n^{\circ}}\, 2$

Nº mobile	Position interception	Date interception (u.t.)
0	(0.461; 2.000)	1.0262
1	(-1.000; 2.652)	1.8260
2	(0.959; 4.088)	3.0406
3	(5.797; -0.367)	6.3288

Tableau 3.4 – Heuristique H_1 : Résultats test nº 2

Nombre de mobiles interceptés

FIGURE 3.6 – Comparaison de H_0 et de H_1 : test n° 2

3.3 Test no 3: Mobiles positionnés aléatoirement

Figure 3.7 – Heuristique $H_0: {
m Test~n^o\,3}$

Nº mobile	Position interception	Date interception (u.t.)
1	(2.957; 4.645)	2.2296
4	(6.317; 6.027)	4.0460
0	(7.140; 8.876)	5.5291
2	(-2.411; 5.356)	10.6190
5	(-1.263; -5.623)	16.1384
3	(-14.218; 1.088)	23.4335

Tableau 3.5 – Heuristique H_0 : Résultats test nº 3

Figure 3.8 – Heuristique H_1 : Test n° 3

Nº mobile	Position interception	Date interception (u.t.)
0	(7.140; 8.876)	2.5709
1	(-1.586; 3.021)	7.8255
2	(-3.278; 3.652)	8.7281
3	(-12.292; -2.640)	14.2246
4	(-2.281; 6.690)	21.0671
5	(-3.540; -3.592)	26.2462

Tableau 3.6 – Heuristique H_1 : Résultats test nº 3

FIGURE 3.9 – Comparaison de H_0 et de H_1 : test n° 3

3.4 Test n° 4 : Heuristique H_1 plus rapide

Figure 3.10 – Heuristique H_0 : Test n° 4

Nº mobile	Position interception	Date interception (u.t.)
0	(0.903; 2.000)	1.0972
2	(1.685; 4.306)	2.3146
1	(-1.000; 9.298)	5.1488
3	(14.363; -7.374)	16.4844

Tableau 3.7 – Heuristique H_0 : Résultats test n° 4

Figure 3.11 – Heuristique H_1 : Test nº 4

Nº mobile	Position interception	Date interception (u.t.)
0	(0.903; 2.000)	1.0972
1	(-1.000; 3.844)	2.4221
2	(0.716; 4.015)	3.2842
3	(7.785; -1.322)	7.7127

Tableau 3.8 – Heuristique H_1 : Résultats test n° 4

Nombre de mobiles interceptés

FIGURE 3.12 – Comparaison de H_0 et de H_1 : test n° 4

4 | Conclusion

4.1 Intérêt de ce projet

4.2 Propositions d'améliorations

On pourrait considérer que l'intercepteur se déplace à une vitesse variable (majorée par une vitesse max v_1) et chercher à trouver la vitesse v qui nous permettrait d'intercepter un mobile plus rapidement.

Remerciements

Table des figures

3.1	Heuristique H_0 : Test n° 1	5
3.2	Heuristique H_1 : Test n° 1	6
3.3	Comparaison de H_0 et de H_1 : test n° 1	7
3.4	Heuristique H_0 : Test n° 2	7
3.5	Heuristique H_1 : Test n° 2	8
3.6	Comparaison de H_0 et de H_1 : test n° 2	8
3.7	Heuristique H_0 : Test n° 3	9
3.8	Heuristique H_1 : Test n° 3	10
3.9	Comparaison de H_0 et de H_1 : test n° 3	10
3.10	Heuristique H_0 : Test n° 4	11
3.11	Heuristique H_1 : Test n° 4	12
3.12	Comparaison de H_0 et de H_1 : test n° 4	12

Liste des tableaux

3.1	Heuristique H_0 : Résultats test n° 1	6
3.2	Heuristique H_1 : Résultats test nº 1	6
3.3	Heuristique H_0 : Résultats test n° 2	8
3.4	Heuristique H_1 : Résultats test n° 2	8
3.5	Heuristique H_0 : Résultats test n° 3	9
3.6	Heuristique H_1 : Résultats test n° 3	10
3.7	Heuristique H_0 : Résultats test n° 4	11
3.8	Heuristique H_1 : Résultats test n° 4	12