Autómatas y Lenguajes Formales Nota 08 Gramáticas regulares y Forma Normal de Chomsky*

Noé Salomón Hernández S.

1. Gramáticas regulares

Definición 1.1 Una gramática G = (V, T, P, S) es **regular** si cada regla de producción es de la forma $A \longrightarrow \sigma B$ ó $A \longrightarrow \varepsilon$, donde $A, B \in V$ y $\sigma \in T$.

Teorema 1.2 Para todo lenguaje $L \subseteq T^*$, L es regular si y solo si $L = \mathcal{L}(G)$ para alguna gramática regular G.

Demostración.

- \Rightarrow Si L es un lenguaje regular, entonces sea $M=(Q,\Sigma,\delta,q_0,F)$ el autómata finito tal que L=L(M). Definimos G=(V,T,P,S) tomando $V=Q,\,T=\Sigma,\,S=q_0,\,\mathrm{y}\,P$ el conjunto que contiene a las producciones:
 - $\bullet \ A \longrightarrow \sigma B$ para cada transición $\delta(A,\sigma) = B$ en M, y
 - $A \longrightarrow \varepsilon$ para cada estado final A en M.

Así, G es la gramática regular que buscamos. Se deja como ejercicio verificar que para toda cadena w, $\delta(q_0, w) \in F \Leftrightarrow S \Rightarrow^* w$.

 \Leftarrow Si G = (V, T, P, S) es una gramática regular con $L = \mathcal{L}(G)$, podemos construir un autómata finito (AF) $M = (Q, \Sigma, \delta, q_0, F)$ que reconozca el mismo lenguaje. Definimos $Q = V, \Sigma = T,$ $q_0 = S, F$ como el conjunto de estados (variables) para las cuales se tiene en G una producción con ε del lado derecho, y para cada producción $A \longrightarrow \sigma B$ hay una transición $B \in \delta(A, \sigma)$ en M. Como es posible tener producciones $A \longrightarrow \sigma B$ con distintas Bs del lado derecho, entonces el AF M es un AFN.

Veremos ahora que para toda cadena $w, S \Rightarrow^* wA$ syss $A \in \widehat{\delta}(S, w)$. La demostración es por inducción estructural sobre la cadena w.

■ Base: $w = \varepsilon$. Así, $S \Rightarrow^* S$ syss $S \in \widehat{\delta}(S, \varepsilon)$, esto se cumple por definición de \Rightarrow^* y de $\widehat{\delta}$.

^{*}Esta nota se basa en el libro: J. Martin. Introduction to Languages and the Theory of Computation, en las notas del prof. Favio Miranda y en las notas del prof. Rajeev Motwani.

■ Paso inductivo: $w = x\sigma$. De modo que $S \Rightarrow^* xA \Rightarrow x\sigma B$, esto indica que se tiene la regla de producción $A \longrightarrow \sigma B$, por lo que $B \in \delta(A, \sigma)$. Además, por hipótesis de inducción, $S \Rightarrow^* xA$ syss $A \in \widehat{\delta}(S, x)$. Así se cumple que $B \in \widehat{\delta}(S, x\sigma)$. Por lo tanto, $S \Rightarrow^* x\sigma B$ syss $B \in \widehat{\delta}(S, x\sigma)$.

Observe que si se continua la derivación $S \Rightarrow^* wA$ usando por último una regla de producción $A \longrightarrow \varepsilon$ para llegar a $S \Rightarrow^* w$, entonces $w \in \mathcal{L}(G)$. También ocurre que $w \in \mathcal{L}(M)$ pues se tiene que $A \in \widehat{\delta}(S, w)$, y A tiene que ser un estado final pues $A \longrightarrow \varepsilon$.

Ejemplo 1.3 Dados los siguientes autómatas finitos encuentre gramáticas regulares correspondientes que generen el mismo lenguaje. Estos ejemplos se desarrollan a dos columnas.

a) Sea M_1 el siguiente autómata:

De acuerdo a la construcción descrita en la demostración de \Rightarrow del teorema anterior, definimos la gramática regular $G_1 = (V_1, T_1, S_1, P_1)$ como sigue. Así $L(M_1) = \mathcal{L}(G_1)$.

 \dashv

- $V_1 = \{A, B, C, D\},\$
- $T_1 = \{a, b\},\$
- $\bullet S_1 = A,$
- $P_1 = \begin{cases} A \to aB \mid bD \mid \varepsilon & B \to aB \mid bC \\ C \to aB \mid bC \mid \varepsilon & D \to aD \mid bD \end{cases}$

b) Sea M_2 el siguiente autómata:

Siguiendo la construcción descrita en la demostración de \Rightarrow del teorema anterior, defini-

mos la gramática regular $G_2 = (V_2, T_2, S_2, P_2)$ como:

- $V_2 = \{S, A, B\},$
- $T_2 = \{a, b\},$
- $S_2 = S,$
- $P_2 = \begin{cases} S \to aS \mid bA & A \to bA \mid aB \\ B \to bA \mid aS \mid \varepsilon \end{cases}$

Por lo tanto, $L(M_2) = \mathcal{L}(G_2)$.

Ejemplo 1.4 A partir de las siguientes gramáticas regulares encuentre autómatas finitos que reconozcan el mismo lenguaje. Estos ejemplos se desarrollan a dos columnas.

I) Considere la gramática

$$G_3: S \rightarrow aA \mid bC$$
 $A \rightarrow aS \mid bB$
 $B \rightarrow aC \mid bA$
 $C \rightarrow aB \mid bS \mid \varepsilon$

Por la construcción descrita en la demostración de ← del teorema anterior, encontramos el AF M_3 que está abajo. Así $\mathcal{L}(G_3) = L(M_3)$.

II) Considere la gramática:

$$G_4: S \rightarrow bS | aA | \varepsilon$$

$$A \rightarrow aA | bB | bC$$

$$B \rightarrow bS$$

$$C \rightarrow \varepsilon$$

Siguiendo la construcción dada en la demostración de \Leftarrow del teorema anterior, encontramos el AF M_4 de la derecha. Así $\mathcal{L}(G_4) = L(M_4)$.

2. Simplificando gramáticas

Nuestra meta es eliminar construcciones de gramáticas que retrasan a los analizadores sintácticos, como resultado estableceremos una forma normal.

2.1. Variables inútiles

Una variable útil es cualquier $X \in V$ tal que $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ con $w \in T^*$ y $\alpha, \beta \in (V \cup T)^*$. Así, variables inútiles son aquellas que no participan en derivaciones de cadenas en el lenguaje, por lo que pueden ser eliminadas de manera segura sin alterar el lenguaje.

Definición 2.1 $X \in V$ es variable **generadora** si $X \Rightarrow^* w$, con $w \in T^*$.

Definición 2.2 $X \in V$ es variable alcanzable si $S \Rightarrow^* \alpha X \beta$, con $\alpha, \beta \in (V \cup T)^*$.

Claramente, una variable útil es tanto generadora como alcanzable. Así, nuestro objetivo es eliminar variables inútiles al quitar:

- 1. Variables no generadoras, y todas sus producciones.
- 2. Variables no alcanzables, y todas sus producciones.

Este orden debe respetarse para efectivamente quitar las variable inútiles.

Estos dos pasos se realizan de manera recursiva como se indica enseguida:

Paso 1. Eliminar variables no generadoras.

Base. Etiquetar toda variable A como generadora si se tiene una regla $A \longrightarrow w$, con w una cadena, posiblemente vacía, de terminales únicamente.

Inducción. Etiquetar a la variable X como generadora si tiene una producción $X \longrightarrow w$, donde w es una cadena compuesta únicamente de terminales y/o variables etiquetadas previamente como generadoras.

Término. Cuando no se etiqueten nuevas variables *generadoras*. Eliminar aquellas variables no etiquetadas y sus producciones.

Paso 2. Eliminar variables no alcanzables.

Base. Etiquetar a S como alcanzable.

Inducción. Etiquetar a Y como alcanzable si hay una producción $X \longrightarrow w$, donde X es una variable previamente etiquetada como alcanzable y w es una cadena donde figura Y.

Término. Cuando no se etiqueten nuevas variables *alcanzables*. Eliminar aquellas variables no etiquetadas y sus producciones.

Ejemplo 2.3 Elimine las variables inútiles de la siguiente gramática:

$$G_1: S \longrightarrow AB \mid AC \mid CD$$

$$A \longrightarrow BB$$

$$B \longrightarrow AC \mid ab$$

$$C \longrightarrow Ca \mid CC$$

$$D \longrightarrow BC \mid b \mid d$$

1. Eliminar variables no generadoras de G_1 .

Base Las variables etiquetadas son $\{B, D\}$.

Inducción Los pasos de inducción etiquetan las siguientes variables:

$$\{B, D, A\}$$
$$\{B, D, A, S\}$$

Término Ya no se etiquetan más variables. El conjunto de variables generadoras es $\{B, D, A, S\}$. La variable C no es generadora, la eliminamos junto con sus producciones. Llegamos a:

$$G_2: S \longrightarrow AB$$

$$A \longrightarrow BB$$

$$B \longrightarrow ab$$

$$D \longrightarrow b \mid d$$

2. Eliminar variables no alcanzables de G_2 .

Base La variables S es alcanzable.

Inducción Las variables etiquetadas como alcanzables al ejecutar los pasos de inducción son:

$${S, A, B}$$

Término No hay nuevas variables alcanzables. Por lo tanto, las variables alcanzables de la gramática G_2 son $\{S, A, B\}$. Eliminamos D por no ser alcanzable, también quitamos sus producciones. Así, obtenemos la gramática G_3 sin variables inútiles.

$$G_3: S \longrightarrow AB$$

 $A \longrightarrow BB$
 $B \longrightarrow ab$

El orden es importante, si primero elimináramos las variables no alcanzables y luego las no generadoras obtendríamos una gramática con símbolos inútiles aún. Por ejemplo, en la gramática G_1 todas sus variables son alcanzables, si ahora quitamos las variables no generadoras obtendríamos como gramática sin variables inútiles G_2 , lo cual es incorrecto.

4

2.2. Producciones- ε

Una producción- ε es de la forma $A \longrightarrow \varepsilon$. Al igual que las variables inútiles, las producciones ε retrasan a los analizadores sintácticos.

Definición 2.4 $X \in V$ es anulable si $X \Rightarrow^* \varepsilon$.

La siguiente subrutina encuentra las variables anulables recursivamente:

Subrutina. Identificar las variables anulables.

Base. Si el conjunto de producciones P contiene a $A \longrightarrow \varepsilon$, entonces etiquetamos a A como anulable.

Inducción. Para cualquier producción $X \longrightarrow Y_1Y_2 \cdots Y_k$, si cada Y_i es *anulable*, entonces a X la etiquetamos como *anulable*. Es decir, se está condicionando a que en $X \longrightarrow Y_1Y_2 \cdots Y_k$ cada Y_i sea anulable, para toda producción en la que suceda eso, se va a etiquetar a X como anulable.

Término. Cuando no se etiqueten nuevas variables anulables.

Esta subrutina es empleada por el siguiente algoritmo para eliminar producciones- ε .

Algoritmo. Eliminar producciones- ε .

- a) Identificar las variables anulables usando la subrutina arriba descrita.
- b) Reemplazar cada producción $X \longrightarrow X_1 X_2 \cdots X_k$ por el conjunto de producciones de la forma $X \longrightarrow \alpha_1 \alpha_2 \cdots \alpha_k$, donde
 - $\alpha_i = X_i$, si X_i no es anulable.
 - $\alpha_i \in \{X_i, \varepsilon\}$, si X_i es anulable, de modo que no todas las $\alpha_i s$ son ε .

Lo anterior quiere decir que se analizarán los casos en los que se conservan y en los que se quitan las variables anulables en una producción. Las variables **no** anulables y los símbolos terminales se respetan y siempre se dejan intactas.

c) Eliminar las producciones- ε .

Ejemplo 2.5 Elimine las producciones- ε de la siguiente gramática G:

Para este fin, ejecutamos la subrutina que nos permite reconocer a las variables anulables.

Base Etiquetamos a C como anulable.

Inducción Las variables que resultan anulables ejecutando los pasos de inducción son:

$$\{C, B\}$$
$$\{C, B, S\}$$

Término Ya no hay más variables anulables, éstas son $\{C, B, S\}$.

De acuerdo con el algoritmo que elimina producciones- ε , examinamos las producciones donde figuran variables analizando los casos donde dichas variables se conservan o se quitan, generando así nuevas producciones, cuidando que no se retiren todos los elementos del lado derecho de la producción. Luego eliminamos todas las producciones- ε .

Por ejemplo, al considerar las producciones de S, que son $S \longrightarrow ABC \mid BCB$, tomamos los lados derechos y nos fijamos en las variables anulables, las cuales podemos conservar o quitar, cuidando al quitarlas de no generar producciones ε pues es lo que deseamos eliminar. Así, para el lado derecho ABC, primero conservamos ambas C y B, llegando a $S \longrightarrow ABC$. Ahora quitamos a C de ABC, queda $S \longrightarrow ABC \mid AB$. Quitamos a C de C0 de C1 de C2 de C3 de C4 de C4 de C5 de C5 de C6 de C6 de C7 de C8 de C9 de C

Para el lado derecho BCB de S, realizamos algo análogo. Conservamos todas las variables anulables, llegando a $S \longrightarrow BCB$. Luego quitamos la primer B de BCB, queda $S \longrightarrow BCB \mid CB$. Quitamos la C, queda $S \longrightarrow BCB \mid CB \mid BB$. Quitamos la segunda B de BCB, queda $S \longrightarrow BCB \mid CB \mid BB \mid BC \mid B$. Quitamos la C y la segunda B de BCB, pero queda lo mismo que se tenía $S \longrightarrow BCB \mid CB \mid BB \mid BC \mid B$. Finalmente, quitamos la primer B y la segunda B, queda $S \longrightarrow BCB \mid CB \mid BB \mid BC \mid B$.

Por lo tanto, las producciones para S al quitar las producciones ε son

$$S \longrightarrow ABC \mid AB \mid AC \mid A$$
 y $S \longrightarrow BCB \mid CB \mid BB \mid BC \mid B \mid C$

es decir,

$$S \longrightarrow ABC \mid AB \mid AC \mid A \mid BCB \mid CB \mid BB \mid BC \mid B \mid C.$$

Hay que hacer lo mismo para el resto de las producciones de A, B y C. A continuación se muestra el resultado de realizar este proceso sobre la gramática original G.

Notemos un inconveniente ya que si originalmente $S \Rightarrow^* \varepsilon$ era posible, después de haber ejecutado el algoritmo quitamos a ε de $\mathcal{L}(G)$, esto es inevitable.

2.3. Producciones unitarias

Definición 2.6 Una producción es **unitaria** si es de la forma $A \longrightarrow B$ con $A, B \in V$, es decir, una producción unitaria es aquella que tiene en su lado derecho una variable únicamente. Este tipo de producciones también retrasan a los analizadores sintácticos.

Para eliminar producciones unitarias primero necesitamos encontrar las variables Y etiquetadas con $unitaria_X$. Tales variables son el resultado de derivaciones unitarias $X \Rightarrow^* Y$. Observemos que al eliminar producciones- ε primero, hay un sólo modo de derivar $X \Rightarrow^* Y$, el cual es: $X \Rightarrow Y_1 \Rightarrow Y_2 \Rightarrow \ldots \Rightarrow Y_k \Rightarrow Y$, con $X, Y_1, Y_2, \ldots, Y_k, Y \in V$. Las variables Y para las que se tienen derivaciones unitarias $X \Rightarrow^* Y$ se encuentran mediante la subrutina:

Subrutina. Identificar las variables etiquetadas con unitaria $_X$.

Base. La variable X se etiqueta como unitaria $_X$.

Inducción. Etiquetar a $Y \in V$ como $unitaria_X$ si existe $Z \in V$ tal que $Z \longrightarrow Y$ y Z es $unitaria_X$.

Término. Cuando no se etiqueten nuevas variables como $unitaria_X$. Se regresa el conjunto de variables con etiqueta $unitaria_X$.

El siguiente algoritmo elimina las producciones unitarias.

Algoritmo. Eliminar producciones unitarias.

Paso 1. Eliminar producciones- ε .

Paso 2. Para toda $X,Y \in V$, con $X \neq Y$, agregar la producción nueva $X \longrightarrow \alpha$ si se tiene $Y \longrightarrow \alpha$ como una producción no unitaria, dado que Y tiene etiqueta $unitaria_X$ de acuerdo a la subrutina anterior.

Paso 3. Eliminar todas las producciones unitarias.

Ejemplo 2.7 Elimine las producciones unitarias de la siguiente gramática:

$$\begin{array}{ccc} S & \longrightarrow & A \mid B \\ A & \longrightarrow & Sa \mid a \\ B & \longrightarrow & S \mid b \end{array}$$

Primeramente, eliminamos las producciones ε , lo cual ya está hecho. Enseguida encontramos:

$$unitaria_S = \{S, A, B\}$$

 $unitaria_A = \{A\}$
 $unitaria_B = \{B, S, A\}$

Agregamos las producciones de acuerdo al Paso 2 y eliminamos las producciones unitarias como dice el Paso 3. Llegamos a la gramática siguiente sin producciones unitarias:

$$\begin{array}{ccc} S & \longrightarrow & Sa \,|\, a \,|\, b \\ A & \longrightarrow & Sa \,|\, a \\ B & \longrightarrow & Sa \,|\, a \,|\, b \end{array}$$

Observe que las variables A y B se volvieron inútiles al no poder ser alcanzables.

Ejemplo 2.8 Elimine las producciones unitarias de la gramática G que aparece a continuación:

$$S \longrightarrow XYZ$$

$$X \longrightarrow aY \mid Z \mid b$$

$$Y \longrightarrow bX \mid aZ$$

$$Z \longrightarrow aa \mid bY \mid Y$$

Como en G no hay producciones ε , hallamos primero los conjuntos $unitaria_A$, para toda variable A de la gramática. En tal conjunto ponemos a A y a todas las variables a las que se llega desde A siguiendo producciones unitarias. Entonces,

$$\begin{array}{rcl} unitaria_S &=& \{S\},\\ unitaria_X &=& \{X,Z,Y\}, \text{ pues tenemos la producción } X \longrightarrow Z,\\ &&& \text{y al seguirla vemos que } Z \longrightarrow Y.\\ \\ unitaria_Y &=& \{Y\},\\ unitaria_Z &=& \{Z,Y\}. \end{array}$$

Las producciones de S y de Y se mantienen igual. Para las producciones de X agregamos las producciones **no** unitarias de Y y Z. Para las producciones de Z agregamos las producciones no unitarias de Y.

$$\begin{array}{ccc} S & \longrightarrow & XYZ \\ X & \longrightarrow & aY \mid Z \mid b \mid bX \mid aZ \mid aa \mid bY \\ Y & \longrightarrow & bX \mid aZ \\ Z & \longrightarrow & aa \mid bY \mid Y \mid bX \mid aZ \end{array}$$

Quitamos las producciones unitarias. **Atención**: no se eliminan variables, sólo producciones. Quedando las producciones como:

$$S \longrightarrow XYZ$$

$$X \longrightarrow aY \mid b \mid bX \mid aZ \mid aa \mid bY$$

$$Y \longrightarrow bX \mid aZ$$

$$Z \longrightarrow aa \mid bY \mid bX \mid aZ$$

La gramática anterior ya no tiene producciones unitarias.

¿Importa el orden al eliminar variables inútiles, producciones- ε y producciones unitarias? Notemos que:

- Al eliminar variables inútiles se quitan elementos pero no se pueden agregar producciones- ε ó producciones unitarias.
- Al eliminar producciones- ε se podrían agregar producciones unitarias.
- El eliminar producciones unitarias requiere que se eliminen producciones- ε primero, y se podrían generar variables inútiles.

Por lo que el orden de eliminación es el siguiente:

A Producciones- ε .

B Producciones unitarias (no agrega producciones- ε).

C Variables inútiles (no agrega ninguna producción).

2.4. Forma Normal de Chomsky

Definición 2.9 Una GLC G está en Forma Normal de Chomsky (FNC) si todas sus producciones son de la forma:

- $A \longrightarrow a$
- $A \longrightarrow XY$,

donde $A, X, Y \in V$ y $a \in T$.

La FNC tiene aplicaciones importantes, como son: en el algoritmo CKY, en la demostración del lema del bombeo para LLC, en encontrar la forma normal de Greibach, y una gramática en FNC puede derivar una cadena de tamaño n en exactamente 2n-1 pasos, como lo indica la siguiente proposición.

Proposición 2.10 Sea G = (V, T, P, S) una gramática en FNC, y $w \neq \varepsilon$ una cadena en $\mathcal{L}(G)$, con |w| = n. Entonces $S \Rightarrow^* w$ en exactamente 2n - 1 pasos.

Demostración. Como las producciones $A \longrightarrow XY$ incrementan en uno la cadena que se va derivando, entonces necesitamos aplicar tales producciones n-1 veces iniciando en S para generar n variables, a las cuales se les tiene que aplicar la producción $A \longrightarrow a$ para convertirlas a símbolos terminales, y así obtener w. En total, en número de aplicaciones de producciones en G para derivar w es (n-1)+n=2n-1.

Teorema 2.11 Dada una GLC G_1 con $\varepsilon \notin \mathcal{L}(G_1)$, existe una gramática en FNC G_2 tal que $\mathcal{L}(G_1) = \mathcal{L}(G_2)$.

Demostración. Construimos la gramática G_2 en tres pasos.

Paso 1. Limpiar la gramática siguiendo este orden: (i) eliminamos las producciones- ε , (ii) eliminamos producciones unitarias y (iii) eliminamos las variables inútiles. Ahora, todas las producciones son de la forma:

- $A \longrightarrow a$
- $A \longrightarrow X_1 X_2 \dots X_k, \quad k > 2,$

con $A, X_1, X_2, \dots, X_k \in V \cup T$ y $a \in T$.

Paso 2. Eliminar el lado derecho mixto. Este paso tiene que ver con terminales presentes en las producciones. Para cada $a \in T$, agregamos variables nuevas V_a y producciones nuevas $V_a \longrightarrow a$. En cada producción $A \longrightarrow X_1 X_2 \dots X_k$ reemplazamos a por V_a si $k \ge 2$. Ahora, todas las producciones son de la forma:

$$A \longrightarrow a$$

$$A \longrightarrow A_1 A_2 \dots A_k, \quad k \ge 2,$$

$$con A, A_1, A_2, \ldots, A_k \in V$$
 y $a \in T$.

Paso 3. Factorizar producciones largas. Para $A \longrightarrow A_1 A_2 \dots A_k$ con $k \geq 3$, agregamos nuevas variables B_1, B_2, \dots, B_{k-2} y reemplazamos $A \longrightarrow A_1 A_2 \dots A_k$ por

$$\begin{array}{cccc} A & \longrightarrow & A_1B_1 \\ B_1 & \longrightarrow & A_2B_2 \\ B_2 & \longrightarrow & A_3B_3 \\ & & \vdots \\ B_{k-2} & \longrightarrow & A_{k-1}A_k \end{array}$$

Así obtenemos una GLC en Forma Normal de Chomsky que preserva el lenguaje de la gramática original.

Ejemplo 2.12 Encuentre la forma normal de Chomsky de la siguiente gramática:

$$G: S \longrightarrow ABB \mid ab$$

$$A \longrightarrow Ba \mid ba$$

$$B \longrightarrow aAbS$$

Paso 1 La gramática anterior está libre de producciones- ε , producciones unitarias y variables inútiles.

Paso 2 Agregamos las variables V_a y V_b , y sus producciones respectivas. También reemplazamos V_a y V_b en las producciones de la gramática G. Obtenemos:

$$S \longrightarrow ABB \mid V_a V_b$$

$$A \longrightarrow BV_a \mid V_b V_a$$

$$B \longrightarrow V_a A V_b S$$

$$V_a \longrightarrow a$$

$$V_b \longrightarrow b$$

Paso 3 Para factorizar las producciones largas necesitamos de las variables nuevas X_1 , Y_1 y Y_2 , que se ocupan de la siguiente manera.

$$S \longrightarrow AX_1 \mid V_a V_b$$

$$X_1 \longrightarrow BB$$

$$A \longrightarrow BV_a \mid V_b V_a$$

$$Y_1 \longrightarrow AY_2$$

$$Y_2 \longrightarrow V_b S$$

$$V_a \longrightarrow a$$

$$V_b \longrightarrow b$$

Esta gramática ya está en Forma Normal de Chomsky.