Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

CS-Template: una applicazione per la piattaforma Zendesk basata su moderne tecnologie web

Tesi di laurea triennale

Relatore

Prof.Francesco Ranzato

 ${\it Laure and o}$ Singh Parwinder

Anno Accademico 2017-2018

I computer sono incredibilmente veloci, accurati e stupidi. Gli uomini sono incredibilmente lenti, inaccurati e intelligenti. L'insieme dei due costituisce una forza incalcolabile.

— Albert Einstein

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage (dal 03/06/2018 al 03/08/2018), della durata di circa 320 ore, dal laureando Singh Parwinder presso l'azienda Nextep alla sede di Cittadella.

In questo documento verrano descritte in dettaglio l'analisi dei requisiti, la progettazone, l'implementazione e la validazione dell'applicazione CS-template. L'applicazione in questione è stato realizzato utilizzanod le tecnolgie web inovvative sia per quanto riguarda lato frant-end dell'applicazione che quello back-end.

L'intero lavoro è stato svolto in ambiente Linux Ubuntu 18.04 LTS. Tutti i diagrammi delle classi, dei package e dei casi d'uso (presenti nei Capitoli 3 e 4) sono conformi allo standard UML 2.0. Per realizzarli è stato usato il software Astah Professional.

$\hbox{``Life is really simple,}\\$	but we	insist on	$making\ it$	complicated"
				— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. NomeDelProfessore, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, settembre 2018

Singh Parwinder

Indice

1	Inti	roduzione	1
	1.1	Dominio aziendale	1
		1.1.1 L'azienda ospitante	1
		1.1.2 Prodotti e servizi	2
	1.2	Lo stage	2
	1.3	Organizzazione del testo	2
2	Tec	nologie scelte e utilizzate	5
	2.1	Frontend	5
		2.1.1 Angular 6	5
		2.1.2 Angular material	5
		2.1.3 SASS	6
	2.2	Framework e le API di Zendesk	6
		2.2.1 Zendesk Apps framework (ZAF)	6
3	Des	crizione dello stage	7
	3.1	Introduzione al progetto	7
	3.2	Analisi preventiva dei rischi	7
	3.3	Requisiti e obiettivi	7
	3.4	Pianificazione	7
4	Ana	alisi dei requisiti	9
	4.1	Casi d'uso	9
	4.2	Tracciamento dei requisiti	10
5	Pro	gettazione e codifica	13
	5.1	Tecnologie e strumenti	13
	5.2	Ciclo di vita del software	13
	5.3	Progettazione	13
	5.4	Design Pattern utilizzati	13
	5.5	Codifica	13
6	Ver	ifica e validazione	15
7	Cor	nclusioni	17
	7.1	Consuntivo finale	17
	7.2	Raggiungimento degli obiettivi	17
	7.3	Conoscenze acquisite	17
	7.4	Valutazione personale	17

xii	INDICE
A Appendice A	19
Bibliografia	23

Elenco delle figure

1.1	Logo di Nextep: immagine tratta dal sito dell'azienda	 1
4.1	Use Case - UC0: Scenario principale	 9

Elenco delle tabelle

4.1	Tabella del tracciamento dei requisti funzionali	11
4.2	Tabella del tracciamento dei requisiti qualitativi	11
4.3	Tabella del tracciamento dei requisiti di vincolo	-11

Introduzione

In questo capitolo viene brevemente descritta l'azienda ospitante in cui è stata svolta l'attività di stage e una descrizione ad alto livello del progetto realizzato.

1.1 Dominio aziendale

1.1.1 L'azienda ospitante

Nextep è una società fondata nel 2000 da Marco De Toni e Mirco Soffia, con sede attuale a Cittadella (PD). Opera nel settore informatico e si occupa di servizi web, web marketing e di infrastrutture per gestire le informazioni delle aziende, e più in generale ha come obiettivo quello di migliorare l'efficacia delle strategie di comunicazione web, delle aziende, dedicando particolare attenzione alla reputazione e all'identità digitale.

Nextep fa parte del gruppo Allos, insieme ad Allos Italia, Allos Sud Africa, Allos USA e Zero12. Allos si occupa di progetti e tecnologie per lo sviluppo del capitale umano, mentre Zero12 si occupa dello sviluppo di soluzioni mobile e cloud based. Il gruppo Allos è stato recentemente acquisito da EOH Holdings Ltd, una grande società sudafricana.

Nextep ha un organico di circa venti persone, tra dipendenti e collaboratori, con varie competenze: grafici, sviluppatori, esperti di web marketing e tecnici. Sono presenti tre gruppi principali di lavoro: quello di sviluppo, quello creativo e quello del supporto tecnico. In Nextep c'è un ambiente di lavoro giovane, dinamico ma allo stesso tempo professionale, ed è incentivata la collaborazione e la condivisione di conoscenze e idee tra le persone. Tutto questo favorisce sia la crescita individuale, dal punto di vista professionale, che la crescita e l'amalgamazione dei vari gruppi di lavoro.

Figura 1.1: Logo di Nextep: immagine tratta dal sito dell'azienda

1.1.2 Prodotti e servizi

Nextep lavora per clienti di diversa tipologia e conformazione, dalla piccola impresa privata alla multinazionale che si sta espandendo ulteriormente, e con questo offre svariati prodotti e servizi in base alle esigenze e alle opportunità del mercato e proprie.

La maggior parte dei progetti riguarda la realizzazione di portali e siti web, ma vengono sviluppati anche diversi altri prodotti, tra cui soluzioni e-commerce e applicazioni mobile, sviluppo di progetti di virtualizzazione, e storage networking. Inoltre negli ultimi mesi l'azienda si sta dedicato molto anche ai prodotti di machine learning, come i chatbot.

Nextep offre diversi tipi di servizi tra questi l'installazione e assistenza del portale di customer service Zendesk. Guida le diverse società(piccole o grandi) verso la gestione dei proprio cliente in manienra semplice ed efficace.

1.2 Lo stage

Il progetto di stage è consistito principalmente nella realizzaizone di una applicazione per la piattaforma di customer service Zendesk. La piattaforma Zendesk permette ad un'aziedna di gestire tutte le richieste(in sottoforma di tickets) di propri clienti in unico posto.

L'applicazione realizzata permette agli agenti(persone che gestiscono le richieste dei clienti) e agli aministratori di Zendesk di realizzare dei contenuti(chiamati template) HTML e CSS in maniera molto semplice e veloce, ovvero utilizzando un editor dragand-drop. I template successivamente sono utilizzati nelle risposte verso i clienti. Questo permette di risparmiare una notevole quantità di tempo e non è neccario avere conoscenza di HTML e CSS. Diverse aziende(clienti di Nextep) avevano fatta la rischiesta esplicitamente di tale applicazione. Semplicemnte anche per rispondere agli utenti con le risposte molto "decorate" e velocizzare la generazione di codice html.

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- * per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[g]}$;

 $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Tecnologie scelte e utilizzate

In questo capitolo seguirà un elenco delle tecnologie di riferimento adottate per la realizzazione dell'applicazione CS-Template.

2.1 Frontend

2.1.1 Angular 6

Angular è una piattaforam opensourse realizzato da Google nel 2016 che permette di creare le SPA, sfruttando i pattern architetturali MVC e MVVM.

Le applicazioni sviluppate in Angular vengono eseguite interamente dal web browser dopo essere state scaricate dal web server. Questo comporta il risparmio di dover spedire indietro la pagina web al web-server ogni volta che c'è una richiesta di azione da parte dell'utente. Il codice generato da Angular gira su tutti i principali web browser moderni

Ogni pagina web viene costruitta da diversi componenti. Un componente in Angular in generale è una piccola parte della view che reppressenta una specifica funzionalità(esempio la navbar). Ogni component ha una propria logica strutturale (scritta tramite appositi marcatori HTML), di presentazione (scritta con appositi fogli di stile CSS oppure SCSS) e di business (scritta con il linguaggio di programmazione TypeScript). Tutti i componenti possono comunicare tra di loro scambiandosi oggetti, lo scambio viene fatto utilizzando diversi strumenti messi a disposizione da Angular. Oggi tale framework è alla versione 6.

2.1.2 Angular material

Angular material è una libreria che contiene una raccolta di componenti di Materia DesignG. Questo libreria è stata sviluppata sempre da Google e permette di realizzare

delle UI molto avvanzata in maniena molto semplice. Fornendo una serie di semplici componenti(come i pulsanti, inputbox ecc) di Angular già fatta permette algli sviluppatori di risparmiare una notevole quantità di tempo. Tutti i componenti sono testati da Google garantendo così un corretto funzionamento.

2.1.3 SASS

Sass (Syntactically Awesome StyleSheets) è un'estensione del linguaggio CSS che permette di utilizzare variabili, di creare funzioni e di organizzare il foglio di stile in più file.

Il linguaggio Sass si basa sul concetto di preprocessore CSS, il quale serve a definire fogli di stile con una forma più semplice, completa e potente rispetto ai CSS e a generare file CSS ottimizzati, aggregando le strutture definite anche in modo complesso. SASS/CSS è un linguaggio utilizzato per definire la presentazione dell'applicazione. Poichè Angular Material fornisce molti componenti prefatti, questo linguaggio è utilizzato principalmente per definire il layout delle pagine.

2.2 Framework e le API di Zendesk

2.2.1 Zendesk Apps framework(ZAF)

ZAF è un semplice framework sviluppato da Zendesk Inc. Viene utilizzato per realizzare le applicazione per la piattaforma Zendesk. Questo framework premette in manienra molto semplice di realizzare dei

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia $2\,$

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia