Отчет по лабораторной работе №8

Дисциплина: архитектура компьютера

Ицков Андрей Станиславович

Содержание

6	Список литературы	17
5	Выводы	16
	4.1 Реализация циклов в NASM	8 11 13
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Создание каталога и файла	8
4.2	Копирование программы из листинга	8
4.3	Запуск программы	9
4.4	Изменение программы	9
4.5	Запуск программы	10
4.6	Изменение программы	10
4.7	Запуск программы	10
4.8	Копирование программы из листинга	11
4.9	Запуск программы	11
4.10	Копирование программы из третьего листинга	12
4.11	Запуск программы	12
4.12	Изменение программы	13
4.13	Запуск программы	13
4.14	Текст программы	14
4.15	Запуск программы	15

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклом в NASM
- 2. Обработка аргументов командной строки
- 3. Самостоятельное написание программы по материалам лабораторной работы

3 Теоретическое введение

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров.

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

Создаю каталог и пустой файл lab8-1.asm в нем (рис. -fig. 4.1).

```
asitskov@vbox:~$ mkdir ~/work/arch-pc/lab08
asitskov@vbox:~$ cd ~/work/arch-pc/lab08
asitskov@vbox:~/work/arch-pc/lab08$ touch lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$
```

Рис. 4.1: Создание каталога и файла

Вставляю в файл данную мне программу из листинга (рис. -fig. 4.2).

```
Lab8-1.asm
-/work/arch-pe/lab08

Coxpанить 

x

1 %include 'in_out.asm'
2 $ECTION .data
3 msgl db 'Bsequre N: ',0h
4 $ECTION .bss|
5 Nr resb 10
6 $ECTION .text
7 global _start
8 _start:
9; ---- Вывод сообщения 'Введите N: '
10 mov eax, msgl
11 call sprint
12; ---- Ввод 'N'
13 mov ecx, N
14 mov edx, 10
15 call sread
16; ---- Преобразование 'N' из символа в число
17 mov eax,N
18 call atof
19 mov [N],eax
20; ---- Организация цикла
21 mov ecx,[N]; Счетчик цикла, `ecx=N`
22 label:
23 mov [N],ecx
24 mov eax,[N]
26 loop label; 'ecx=ecx-1` и если `ecx` не '0'
27; переход на `label`
28 call quit
```

Рис. 4.2: Копирование программы из листинга

Компилирую и запускаю программу (рис. -fig. 4.3).

```
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-1
10
```

Рис. 4.3: Запуск программы

Изменяю текст программы, дбавляя изменение значения регистра еах в цикле (рис. -fig. 4.4).

Рис. 4.4: Изменение программы

Запускаю программу и вижу, что количество проходов уменьшилось вдвое (рис. -fig. 4.5).

```
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 10
9
7
5
3
1
asitskov@vbox:~/work/arch-pc/lab08$
```

Рис. 4.5: Запуск программы

Изменяю текст программы, добавляя команды push и pop (рис. -fig. 4.6).

Рис. 4.6: Изменение программы

Запускаю программу и вижу, что количество проходов совпадает введенному N, но произошло смещение выводимых чисел на один (рис. -fig. 4.7).

```
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 10
9
8
7
6
5
4
3
2
1
0
asitskov@vbox:~/work/arch-pc/lab08$
```

Рис. 4.7: Запуск программы

4.2 Обработка аргументов командной строки

Создаю новый пустой файл и копирую в него программу из листинга (рис. -fig. 4.8).

```
        Открыть
        ▼
        *lab8-2.asm
        Сохранить
        ж

        1 %include 'in_out.asm'
        2 SECTION .text
        3 global _start
        4 _start:
        4 _start:
        5 pop ecx ; Извлекаем из стека в `ecx` количество
        6 ; аргументов (первое значение в стеке)
        7 pop edx ; Извлекаем из стека в `edx` имя программы
        8 ; (второе значение в стеке)
        9 sub ecx, 1 ; Уменьшаем `ecx` на 1 (количество
        10 ; аргументов без названия программы)
        11 пехт:
        12 стер есx, 0 ; проверяем, есть ли еще аргументы
        13 јг _end ; если аргументов нет выходим из цикла
        14 ; (переход на метку `_end`)
        15 рор еах ; иначе извлекаем аргумент из стека
        16 call sprintLF ; вызываем функцию печати
        17 loop next ; переход к обработке следующего
        18 ; аргумента (переход на метку `next`)
        19 _end:

        20 call quit
        20 call quit
        20 call quit
        20 call quit
        20 call duit
```

Рис. 4.8: Копирование программы из листинга

Компилирую и запускаю программу, указав аргументы (рис. -fig. 4.9).

```
asitskov@vbox:-/work/arch-pc/lab08$ touch lab8-2.asm
asitskov@vbox:-/work/arch-pc/lab08$ gedit lab8-2.asm
asitskov@vbox:-/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
asitskov@vbox:-/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o
asitskov@vbox:-/work/arch-pc/lab08$ ./lab8-2 аргумент1 аргумент 2 'аргумент 3'
аргумент
аргумент
2
аргумент 3
asitskov@vbox:-/work/arch-pc/lab08$
```

Рис. 4.9: Запуск программы

Создаю новый пустой файл и копирую в него программу из третьего листинга (рис. -fig. 4.10).

```
*tab8-3.asm

\[
\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t
```

Рис. 4.10: Копирование программы из третьего листинга

Запускаю программу, добавив в аргументы данные мне числа (рис. -fig. 4.11).

```
asitskov@vbox:~/work/arch-pc/lab08$ touch lab8-3.asm
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-3.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5
Peзультат: 47
asitskov@vbox:~/work/arch-pc/lab08$
```

Рис. 4.11: Запуск программы

Изменяю программу так, чтобы числа из аргументов умножались а не складывались (рис. -fig. 4.12).

```
| Stortion | Stort | S
```

Рис. 4.12: Изменение программы

Запускаю программу и вижу что числа из аргументов умножились (рис. -fig. 4.13).

```
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-3.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-3 10 5 3
Результат: 150
```

Рис. 4.13: Запуск программы

4.3 Задание для самостоятельной работы

Пишу программму, которая находит сумму значений функции 17 + 5х (данную для моего 18 варианта) (рис. -fig. 4.14).

Рис. 4.14: Текст программы

Текст программы:

```
%include 'in_out.asm'
SECTION .data
msg_func db "Функция: f(x) = 17 + 5x", 0
msg_result db "Результат: ", 0
SECTION .text
GLOBAL _start
_start:
mov eax, msg_func
call sprintLF
pop ecx
pop edx
sub ecx, 1
mov esi, ⊙
next:
cmp ecx, 0h
jz _end
pop eax
```

```
call atoi
mov ebx, 5
mul ebx
add eax, 17
add esi, eax
loop next
_end:
mov eax, msg_result
call sprint
mov eax, esi
call iprintLF
call quit
```

Запускаю программу и ввожу несколько чисел, вижу, что программа работает корректно (рис. -fig. 4.15).

```
asitskov@vbox:~/work/arch-pc/lab08 Q = x

asitskov@vbox:~/work/arch-pc/lab08$ touch lab8-4.asm
asitskov@vbox:~/work/arch-pc/lab08$ gedit lab8-4.asm
asitskov@vbox:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
asitskov@vbox:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
asitskov@vbox:~/work/arch-pc/lab08$ ./lab8-4 1 2 3 4

Функция: f(x) = 17 + 5x
Peзультат: 118
asitskov@vbox:~/work/arch-pc/lab08$
```

Рис. 4.15: Запуск программы

5 Выводы

В результате выполнения данной лабораторной работы я приобрел навыки написания программ с использованием циклов а также научился обрабатывать аргументы командной строки.

6 Список литературы

- 1. Курс на ТУИС
- 2. Лабораторная работа №8
- 3. Программирование на языке ассемблера NASM Столяров А. В.