Attention based models in End-to-End ASR

Exploration of Attention in ESPNET toolkit

Shreekantha Nadig

November 9, 2018

International Institute of Information Technology - Bangalore

Table of contents

- 1. Introduction
- 2. No Attention [Equal Attention?]
- 3. Dot product Attention
- 4. Additive Attention
- 5. Location Aware Attention
- 6. 2D Location Aware Attention
- 7. Location Aware Recurrent Attention
- 8. Coverage mechanism Attention
- 9. Coverage mechanism location aware Attention
- 10. Multi-Head Attention
- 11 Multi Head Dot Product Attention

Introduction

No Attention [Equal Attention?]

No Attention [Equal Attention?]

Dimensions of representations

Mostly $eproj \neq dunits \neq adim$

Matching the dimensions of representations

			_
- la	- La	- L	_
111	112	h;	+7
			_

Dot product Attention

Dot product Attention

Dot product Attention - Full picture

Additive Attention - Full picture

$$\begin{bmatrix} \beta_1^1 & \beta_2^1 & \dots & \beta_{i}^1 & \dots & \beta_{T_X}^1 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$\begin{bmatrix} \beta_1^2 & \beta_2^2 & \dots & \beta_i^2 & \dots & \beta_{Tx}^2 \\ & & & & & & & \\ w_1^2 & w_2^2 & \dots & w_i^2 & \dots & w_{filt_size}^2 \\ & & & & * \\ \\ \hline 0 & 0 & \dots & 0 & \alpha_1^{t-1} & \alpha_2^{t-1} & \dots & \alpha_i^{t-1} & \dots & \alpha_{Tx}^{t-1} & 0 & 0 & \dots & 0 \\ \end{bmatrix}$$

Location Aware Attention - Full picture

2D Location Aware Attention - Full picture

Location Aware Recurrent Attention

Location Aware Recurrent Attention

Location Aware Recurrent Attention - weights

Location Aware Recurrent Attention - Full picture

- Text summarization Seq-to-Seq models
- Not reliable in producing factual details correctly
- Extend the standard seq-to-seq attention models
 - Hybrid pointer-generator network
 - Coverage

Coverage mechanism location aware

Attention

Coverage mechanism location aware Attention

Coverage mechanism location aware Attention

Coverage mechanism location aware Attention

Coverage mechanism location aware Attention

Multi-Head Attention

Scaled Dot product

Multi-Head Attention

The Transformer - model architecture

Positional Encoding - Example

$$PE_{(pos,2_i)} = sin(pos/1000^{2i/d_{model}})$$

$$PE_{(pos,2_{i+1})} = cos(pos/1000^{2i/d_{model}})$$

Pending Discussion

- Pointer Generator Attention network
- Multi Head location based Attention
- Multi Head multi resolution location based Attention

Questions?

Multi Head Dot Product Attention

Multi Head location based Attention

Multi Head multi resolution location

based Attention