Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 Si s_1 et s_2 sont les racines de $aX^2 + bX + c$, on a : $aX^2 + bX + c = a(X - s_1)(X - s_2)$ donc

$$\sigma_1 = s_1 + s_2 = -\frac{b}{a}$$
 et $\sigma_2 = s_1 s_2 = \frac{c}{a}$

- 2 On note (C) l'équation caractéristique associée à la relation de récurrence.
 - Si r_1 et r_2 sont deux solutions réelles distinctes de (C), alors

$$\exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = Ar_1^n + Br_2^n$$

• Si r est solution double de (C), alors

$$\exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = (An + B)r^n$$

• Si (C) possède deux racines r_1 et r_2 non réelles conjuguées, on note ces racines $re^{i\theta}$ et $re^{-i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in]0, \pi[$. Alors

$$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = (A\cos(n\theta) + B\sin(n\theta))r^n$$

3 La suite $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ est une suite de réels indexée par \mathbb{Z} telle que les sous-suites $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ et $\left(\frac{1}{\operatorname{ch}(-n)}\right)_{n\in\mathbb{N}}$ convergent.

Par ailleurs ce n'est pas une suite constante. On a bien trouvé une suite non constante élément de C.

- La suite nulle est évidemment dans E
 - Soit $(x,y) \in \mathcal{C}^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. On pose $z = \lambda x + \mu y$. Comme les suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ convergent, il en est de même pour $(z_n)_{n \in \mathbb{N}}$. Comme les suites $(x_{-n})_{n \in \mathbb{N}}$ et $(y_{-n})_{n \in \mathbb{N}}$ convergent, il en est de même pour $(z_{-n})_{n \in \mathbb{N}}$. Ainsi $z \in \mathcal{C}$.

 $\mathcal C$ est un sous-espace vectoriel de E

5 Soit $x \in \mathcal{C}$.

La suite $(x_n)_{n\in\mathbb{N}}$ converge donc est bornée : il existe $A\in\mathbb{R}_+$ tel que $\forall n\in\mathbb{N}, \ |x_n|\leq A$. De même, la suite $(x_{-n})_{n\in\mathbb{N}}$ converge donc est bornée : il existe $B\in\mathbb{R}_+$ tel que $\forall n\in\mathbb{N}, \ |x_{-n}|\leq B$. On pose alors $C=\max(A,B)$ et on a : $\forall n\in\mathbb{Z}, \ |x_n|\leq C$: la suite x est bornée. Ainsi toute suite dans C est bornée

6 Linéarité. Soient $(x, y) \in \mathcal{C}^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\forall n \in \mathbb{Z}, \ T(\lambda x + \mu y)_n = (\lambda x + \mu y)_{n-1} + (\lambda x + \mu y)_{n+1}$$

$$= \lambda x_{n-1} + \mu y_{n-1} + \lambda x_{n+1} + \mu y_{n+1}$$

$$= \lambda (x_{n-1} + x_{n+1}) + \mu (y_{n-1} + y_{n+1})$$

$$= \lambda T(x)_n + \mu T(y)_n = (\lambda T(x) + \mu T(y))_n$$

1

Ainsi $T(\lambda x + \mu y) = \lambda T(x) + \mu T(y)$.

Stabilité. Soient $x \in \mathcal{C}$ et y = T(x). Ainsi $\forall n \in \mathbb{Z}, y_n = x_{n-1} + x_{n+1}$.

• La suite $(y_n)_{n \in \mathbb{N}^*}$ est la somme des suites $(x_{n-1})_{n \in \mathbb{N}^*}$ et $(x_{n+1})_{n \in \mathbb{N}^*}$ qui convergent en tant que suites extraites de $(x_n)_{n \in \mathbb{N}}$. Ainsi $(y_n)_{n \in \mathbb{N}^*}$ converge de même que la suite $(y_n)_{n \in \mathbb{N}}$.

• De la même manière, la suite $(y_{-n})_{n\in\mathbb{N}^*}$ est la somme des suites $(x_{-n-1})_{n\in\mathbb{N}^*}$ et $(x_{-n+1})_{n\in\mathbb{N}^*}$ qui convergent en tant que suites extraites de $(x_{-n})_{n\in\mathbb{N}}$. Ainsi $(y_{-n})_{n\in\mathbb{N}^*}$ converge de même que la suite $(y_{-n})_{n\in\mathbb{N}}$.

Ainsi $y \in \mathcal{C}$.

Par conséquent, T est un endomorphisme de C.

- 7 Soit $x \in \mathcal{C}$. Pour tout $n \in \mathbb{Z}$, $(S \circ S(x))_n = (S(x))_{-n} = x_n$ donc $S \circ S(x) = x$ puis $S^2 = \mathrm{Id}_{\mathcal{C}}$. S est donc une symétrie. On sait alors que $\mathcal{C} = \mathrm{Ker}(S \mathrm{Id}_{\mathcal{C}}) \oplus \mathrm{Ker}(S + \mathrm{Id}_{\mathcal{C}})$. De manière évidente, $F = \mathrm{Ker}(S \mathrm{Id}_{\mathcal{C}})$ et $G = \mathrm{Ker}(S + \mathrm{Id}_{\mathcal{C}})$. On en déduit que $F \oplus G = \mathcal{C}$.
- 8 Il découle de la question précédente que S est la symétrie par rapport à F et parallélement à G.
- **9 9.a** Supposons que $\lambda \in \mathbb{R} \setminus \{-2, 2\}$. Soit alors $x \in \text{Ker}(T \lambda \text{Id}_{\mathcal{C}})$. On a alors

$$\forall n \in \mathbb{Z}, \ x_{n-1} + x_{n+1} = \lambda x_n$$

et en particulier

$$\forall n \in \mathbb{N}, \ x_{n+2} - \lambda x_{n+1} + x_n = 0$$

De même, en posant $y_n = x_{-n}$

$$\forall n \in \mathbb{N}, \ y_{n+2} - \lambda y_{n+1} + y_n = 0$$

L'équation caractéristique associée à cette relation de récurrence est (C) : $r^2 - \lambda + 1 = 0$ dont le discriminant est $\Delta = \lambda^2 - 4 \neq 0$.

 Supposons Δ > 0. Alors (C) admet deux racines réelles distinctes de produit 1. L'une d'entre elles est donc de valeur absolue strictement supérieure à 1 : on la note r. De plus, il existe (A, B, C, D) ∈ ℝ⁴ tel que

$$\forall n \in \mathbb{N}, \ x_n = Ar^n + \frac{B}{r^n}$$

et

$$\forall n \in \mathbb{N}, \ x_{-n} = y_n = \mathbf{C}r^n + \frac{\mathbf{D}}{r^n}$$

Comme |r| > 1, (r^n) diverge et $\frac{1}{r^n}$ converge. Puisque (x_n) et (x_{-n}) convergent, on a donc A = C = 0. Mais alors $x_0 = A + B = C + D$ donc $x_0 = B = D$. Enfin, $x_1 + x_{-1} = \lambda x_0$ donc $\frac{B}{r} + \frac{B}{r} = \lambda B$ i.e. $\left(\frac{2}{r} - \lambda\right)B = 0$. Par ailleurs, $\frac{1}{r}$ est une racine de (C) donc $\frac{1}{r} = \frac{\lambda \pm \sqrt{\Delta}}{2}$ i.e. $\frac{2}{r} - \lambda = \pm \sqrt{\Delta} \neq 0$. Par conséquent B = D = 0 puis $x = 0_C$. Ainsi Ker $(T - \lambda \operatorname{Id}_C) = \{0_C\}$.

• Supposons $\Delta < 0$. Alors (C) admet deux racines complexes non réelles distinctes conjuguées et de produit 1 : elles sont donc toutes deux de module 1 et on peut les écrire $e^{i\theta}$ et $e^{-i\theta}$ avec $\theta \in]0, \pi[$. De plus, il existe $(A, B, C, D) \in \mathbb{R}^4$ tel que

$$\forall n \in \mathbb{N}, \ x_n = A\cos(n\theta) + B\sin(n\theta)$$

et

$$\forall n \in \mathbb{N}, \ x_{-n} = y_n = C\cos(n\theta) + D\sin(n\theta)$$

On sait alors qu'il existe $(R, S, \varphi, \psi) \in \mathbb{R}^4$ tel que

$$\forall n \in \mathbb{N}, \ x_n = R\cos(n\theta + \varphi)$$

et

$$\forall n \in \mathbb{N}, \ x_{-n} = y_n = S\cos(n\theta + \psi)$$

On montre classiquement que la suite de terme général $u_n = \cos(n\theta + \varphi)$ diverge. Supposons qu'elle converge : la suite de terme général $u_{n+1} - \cos(\theta)u_n = \sin(n\theta + \varphi)\sin\theta$ converge alors également. Mais comme $\sin\theta \neq 0$ ($\theta \in]0, \pi[$), la suite de terme général $\sin(n\theta + \varphi)$ converge. On en déduit que la suite de terme général $z_n = e^{i(n\theta + \varphi)} = \cos(n\theta + \varphi) + i\sin(n\theta + \varphi)$ converge. Mais (z_n) est une suite géométrique de raison $e^{i\theta}$ donc sa convergence implique $e^{i\theta} = 1$ i.e. $\theta \equiv 0[2\pi]$, ce qui est impossible $\tan\theta \in [0, \pi[$. Ainsi $(\cos(n\theta + \varphi))$ diverge. Comme (x_n) converge, ceci impose que $\theta \in [0, \pi[$ 0. On montre de même que $\theta \in [0, \pi[$ 1. Ainsi $\theta \in [0, \pi[$ 2]2]3 diverge. Comme (x_n) converge, ceci impose que $\theta \in [0, \pi[$ 3]3 diverge. Comme (x_n) converge, ceci impose que $\theta \in [0, \pi[$ 3]4 diverge. Comme (x_n) converge, ceci impose que $\theta \in [0, \pi[$ 4]5 diverge. Comme (x_n) 6 diverge. Comme (x_n) 7 converge, ceci impose que (x_n) 8 diverge. Comme (x_n) 8 diverge. Comme (x_n) 9 converge.

Finalement, si $\lambda \in \mathbb{R} \setminus \{2, -2\}, \overline{Ker(T - \lambda Id_{\mathcal{C}}) = \{0_{\mathcal{C}}\}}$

9.b On applique le résultat précédent avec $\lambda = 0$. On a Ker(T) = $\{0_{\mathcal{C}}\}$, donc par caractérisation de l'injectivité des applications linéaires, T est injectif.

9.c • Soit
$$x \in \text{Ker}(T - 2 \text{Id}_{\mathcal{C}})$$
. Alors

$$\forall n \in \mathbb{Z}, \ x_{n+1} - 2x_n + x_{n-1} = 0$$

Comme l'équation caractéristique $r^2 - 2r + 1 = 0$ admet 1 pour racine double, il existe donc (A, B, C, D) $\in \mathbb{R}^4$ tel que

$$\forall n \in \mathbb{N}, \ x_n = An + B$$

et

$$\forall n \in \mathbb{N}, \ x_{-n} = Cn + D$$

Comme (x_n) et (x_{-n}) convergent, A = C = 0. De plus, $x_0 = B = D$. On en déduit que x est constante. Réciproquement, les suites constantes sont clairement dans $Ker(T - 2 Id_C)$.

Ainsi $\text{Ker}(T - 2 \text{Id}_{\mathcal{C}})$ est l'ensemble des suites constantes

• Soit $x \in \text{Ker}(T + 2 \text{Id}_{\mathcal{C}})$. Alors

$$\forall n \in \mathbb{Z}, \ x_{n+1} + 2x_n + x_{n-1} = 0$$

Comme l'équation caractéristique $r^2+2r+1=0$ admet -1 pour racine double, il existe donc $(A,B,C,D) \in \mathbb{R}^4$ tel que

$$\forall n \in \mathbb{N}, \ x_n = (-1)^n (An + B)$$

et

$$\forall n \in \mathbb{N}, \ x_{-n} = (-1)^n (Cn + D)$$

A nouveau, (x_n) et (x_{-n}) convergent donc A = C = 0 sinon $(|x_n|)$ et $(|x_{-n}|)$ divergent vers $+\infty$. Mais comme la suite de terme général $(-1)^n$ diverge, on obtient ensuite B = D = 0. Ainsi $Ker(T + 2 Id_C) = \{0_C\}$.

9.d Avec les 3 questions précédentes, on a établi que $Sp(T) = \{2\}$

10 10.a Soit $x \in \mathcal{C}$. On a alors

$$\forall n \in \mathbb{N}, \ 0 \le \frac{|x_n| + |x_{-n}|}{2^n} \le \frac{2\|x\|_{\infty}}{2^n} = \frac{\|x\|_{\infty}}{2^{n-1}}$$

Or la série $\sum \frac{\|x\|_{\infty}}{2^{n-1}}$ est une série géométrique convergente. Ainsi $\sum \frac{|x_n|+|x_{-n}|}{2^n}$ converge par comparaison : N(x) est bien définie

10.b Positivité N est bien une application de \mathcal{C} vers \mathbb{R}^+

Séparation Soit $x \in \mathcal{C}$ telle que N(x) = 0. Alors

$$\sum_{n=0}^{+\infty} \frac{|x_n| + |x_{-n}|}{2^n} = 0$$

Comme les termes de cette somme sont positifs, ils sont nuls :

$$\forall n \in \mathbb{N}, |x_n| + |x_{-n}| = 0$$

Mais comme il s'agit à nouveau de termes positifs

$$\forall n \in \mathbb{N}, |x_n| = |x_{-n}| = 0$$

puis

$$\forall n \in \mathbb{Z}, x_n = 0$$

Ainsi $x = 0_{\mathcal{C}}$.

Homogénéité Soit $x \in \mathcal{C}$ et $\lambda \in \mathbb{R}$. Alors

$$N(\lambda x) = \sum_{n=0}^{+\infty} \frac{|\lambda x_n| + |\lambda x_{-n}|}{2^n} = |\lambda| \sum_{n=0}^{+\infty} \frac{|x_n| + |x_{-n}|}{2^n} = |\lambda| N(x)$$

Inégalité triangulaire Soit $(x, y) \in \mathcal{C}^2$.

$$N(x+y) = \sum_{n=0}^{+\infty} \frac{|x_n + y_n| + |x_{-n} + y_{-n}|}{2^n}$$

$$\leq \sum_{n=0}^{+\infty} \frac{|x_n| + |y_n| + |x_{-n}| + |y_{-n}|}{2^n} \quad \text{par inégalité triangulaire}$$

$$= \sum_{n=0}^{+\infty} \frac{|x_n| + |x_{-n}|}{2^n} + \sum_{n=0}^{+\infty} \frac{|y_n| + |y_{-n}|}{2^n} = N(x) + N(y)$$

Ainsi N est une norme sur \mathcal{C} .

10.c Soit $x \in \mathcal{C}$ et y = S(x). Alors

$$N(S(x)) = N(y) = \sum_{n=0}^{+\infty} \frac{|y_n| + |y_{-n}|}{2^n} = \sum_{n=0}^{+\infty} \frac{|x_{-n}| + |x_n|}{2^n} = N(x)$$

Ainsi S est bien une isométrie. A fortiori, $N(S(x)) \le N(x)$ donc S est continue par caractérisation de la continuité pour les applications linéaires.

10.d $\operatorname{Id}_{\mathcal{C}}$ est également une application continue de (\mathcal{C},N) vers lui-même, donc $S-\operatorname{Id}_{\mathcal{C}}$ est continue sur (\mathcal{C},N) . Donc

$$F = Ker(S - Id_{\mathcal{C}}) = (S - Id_{\mathcal{C}})^{-1}(\{0_{\mathcal{C}}\})$$

est l'image réciproque du fermé $\{0_{\mathcal{C}}\}$ par une application continue donc \boxed{F} est une partie fermé de l'espace vectoriel normé (\mathcal{C},N) De même,

$$G = \operatorname{Ker}(S + \operatorname{Id}_{\mathcal{C}}) = (S + \operatorname{Id}_{\mathcal{C}})^{-1}(\{0_{\mathcal{C}}\})$$

est l'image réciproque du fermé $\{0_{\mathcal{C}}\}$ par une application continue donc \boxed{G} est une partie fermé de l'espace vectoriel normé (\mathcal{C},N)

10.e On considère la suite $\left(x^{(p)}\right)_{p\in\mathbb{N}^*}$ la suite d'éléments de $\mathcal C$ définie par :

$$\forall n \in \mathbb{Z}, x_n^{(p)} = \begin{cases} 1 & \text{si } n = p \\ 0 & \text{sinon} \end{cases}$$

Les suites $x^{(p)}$ sont bien dans \mathcal{C} et

$$N(x^{(p)}) = \frac{1}{2^p}$$
 et $||x^{(p)}||_{\infty} = 1$

Ainsi $\frac{\mathrm{N}(x^{(p)})}{\|x^{(p)}\|_{\infty}} \xrightarrow[p \to +\infty]{} 0$ donc les normes $\|\cdot\|_{\infty}$ et N ne sont pas équivalentes.