

Intelligent Poka Yoke per il montaggio di paraoli e cuscinetti: il caso #### Motion System Matteo Martinelli

Kaizen: per non smettere di migliorare

Progetto SMED

• Per minimizzare il tempo di setup della linea

Progetto FTQ

- Sistemi intelligenti di assistenza all'operatore
- Sistemi Poka Yoke per prevenire l'errato montaggio dei paraoli

Intellingent Poka Yoke

La sede paraolio (A) e la sede cuscinetto

Fase di piantaggio del paraolio

Fase di piantaggio del cuscinetto

Difetti dovuti a montaggio errato del paraolio a causa di:

- Difficoltà nel riconoscere il lato del paraolio;
- Fatica dell'operatore a fine turno;
- Difficoltà nell'ispezione visiva del paraolio dopo il suo montaggio;
- Intercettazione del paraolio montato a rovescio non garantita dal test pneumatico.

La soluzione

Requisiti del sistema:

- Scalabile;
- Di facile manutenzione;
- Riconoscere il posizionamento del paraolio al volo;
- Validazione da eseguire prima del posizionamento del cuscinetto;
- Proattivo.

La soluzione

Il sistema deve riconoscere il paraolio anche in posizione *disassata*.

La soluzione

Il sistema deve riconoscere il paraolio anche in posizione *disassata*.

Computer Vision & Convolutional Neural Network - CNN

Perché una CNN?

- Negli ultimi tempi le reti neurali si sono diffuse su larga scala, anche grazie alle moderne GPU;
- Vantaggio black box: non è necessario formalizzare cosa sia un paraolio o cosa sia un carter; si lascia alla rete il compito di «comprendere» ciò che gli viene mostrato;
- Le CNN sono in grado di *astrarre* efficacemente ciò che viene mostrato sotto forma di immagini.

La raccolta dati

Un video è un flusso di fotogrammi

Le *immagini* sono il mattoncino fondamentale dei video

La raccolta dati

Punto di vista della telecamera

Raccolta dati

500 immagini, 3 classi:

1. Carter con paraolio dritto;

2. Carter con paraolio a rovescio;

3. Carter senza paraolio.

Preprocessing e rete

Preprocessing e rete

Immagine di input

Dopo preprocessing e filtro passa alto

Dopo filtro convoluzionale orizzontale

Risultati

- Validazione del modello eseguita con 5-Fold Validation;
- Validazione iterata 10 volte;
- Metrica di riferimento: Accuratezza.

+*		+_
1:	0	
6	1	

Prestazioni medie: 90% delle immagini riconosciute con successo

Matrice di Confusione

	Classe Effettiva				
		А	В	С	
Classe Predetta	А	TP A	FP A FN B	FP A FN C	
	В	FP B FN A	TP B	FP B FN C	
	С	FP C FN A	FP C FN B	TP C	

$$Accuracy = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + FN_{i}} = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + FP_{i}}$$

Roadmap

Definita la fattibilità tecnica del progetto, gli step di implementazione sono i seguenti:

Conclusioni

Prova di fattibilità tecnologica per l'Intelligent Poka Yoke superata con successo

Conclusioni

Grazie per l'attenzione!