LC12 : Caractérisations par spectroscopie en synthèse organique

Niveau: Lycée

Prérequis : spectroscopie UV-visible, loi de planck Einstein, champ magnétique, groupe fonctionnel en chimie organique

Ester de poire : Acétate d'isoamyle

Acétate d'isoamyle

Spectroscopie infrarouge: principe

Spectre infrarouge de l'acide éthanoïque

Spectre infrarouge de l'acide éthanoïque

Type de liaison	Nombre d'onde (cm ⁻¹)
O-H sans liaison hydrogène	3580 - 3650
O-H avec liaison hydrogène	3200 - 3300
O-H d'un acide carboxylique	2500 - 3200
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100
C=C dans un cycle aromatique	1500 - 1600
C=O d'un acide carboxylique	1700 - 1725

Spectre infrarouge de l'acide éthanoïque

Type de liaison	Nombre d'onde (cm ⁻¹)
O-H sans liaison hydrogène	3580 - 3650
O-H avec liaison hydrogène	3200 - 3300
O-H d'un acide carboxylique	2500 - 3200
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100
C=C dans un cycle aromatique	1500 - 1600
C=O d'un acide carboxylique	1700 - 1725

Caractéristique d'un acide carboxylique

Synthèse de l'acétate d'isoamyle

Equation-bilan de la réaction d'estérification :

Spectre infrarouge du brut réactionnel

Spectre infrarouge du brut réactionnel

Acide éthanoïque introduit en excès!

Manipulation: lavage basique du produit brut

Spectre infrarouge de la phase organique

Spectroscopie RMN

Illustration de la résonance magnétique nucléaire (ici sur la molécule d'éthane)

Spectre RMN de l'éthanol

1. Compter le nombre de signaux pour déterminer le nombre de groupe équivalent.

- Compter le nombre de signaux pour déterminer le nombre de groupe équivalent.
- 2. Regarder la courbe d'intégration pour déterminer la proportion de chaque protons associés à un signal.

- Compter le nombre de signaux pour déterminer le nombre de groupe équivalent.
- 2. Regarder la courbe d'intégration pour déterminer la proportion de chaque protons associés à un signal.
- 3. Analyser la multiplicité du signal pour dénombrer les protons voisins au proton responsable du signal.

- Compter le nombre de signaux pour déterminer le nombre de groupe équivalent.
- 2. Regarder la courbe d'intégration pour déterminer la proportion de chaque protons associés à un signal.
- 3. Analyser la multiplicité du signal pour dénombrer les protons voisins au proton responsable du signal.
- 4. Regarder la table de δ pour vérifier et lever les ambiguïtés.

Spectre RMN de l'éthanol

Spectre RMN de l'éthanol

Spectre RMN de l'ester de poire

Spectre RMN de l'ester de poire

