CSCE 222 [Sections 502, 503] Discrete Structures for Computing Spring 2017 – Hyunyoung Lee

Problem Set 1

Due dates: Electronic submission of yourLastName-yourFirstName-hw1.tex and yourLastName-yourFirstName-hw1.pdf files of this homework is due on Friday, 1/27/2017 before 11:00 a.m. on http://ecampus.tamu.edu. You will see two separate links to turn in the .tex file and the .pdf file separately. Please do not archive or compress the files. A signed paper copy of the pdf file is due on Friday, 1/27/2017 at the beginning of class. If any of the three submissions are missing, your work will not be graded.

Name: Joseph Martinsen Section: 503

Resources. The Textbook *Discrete Mathematics and Its Applications* Also, familiar with the topics because I am retaking the course...

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:

Problem 1. Section 1.1, Exercise 6 on page 13.

Solution.

Smartphone	RAM (MB)	ROM (GB)	PIXELS (MP)
A	256	32	8
В	288	64	4
С	128	32	5

(a) **Phrase:** Smartphone B has the most RAM of these three smart-phones. **Logic:** $(B_{RAM} > A_{RAM}) \wedge (B_{RAM} > C_{RAM})$ **Analysis:**

$$(288 > 256) \land (288 > 128)$$

$$T \land T$$

$$T$$

 \therefore The **Phrase** is T

(b) **Phrase:** Smartphone C has more ROM or a higher resolution camera than Smartphone B.

Logic: $(C_{ROM} > B_{ROM}) \lor (C_{PIX} > B_{PIX})$ **Analysis:**

$$(32 > 64) \lor (5 > 4)$$

$$F \lor T$$

$$T$$

 \therefore The **Phrase** is T

(c) **Phrase:** Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A.

Logic: $(B_{RAM} > A_{RAM}) \wedge (B_{ROM} > A_{ROM}) \wedge (B_{PIX} > A_{PIX})$ **Analysis:**

$$(288 > 256) \land (64 > 32) \land (4 > 8)$$

$$T \land T \land F$$

$$F$$

 \therefore The **Phrase** is F

(d) **Phrase:** If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.

Logic: $((B_{RAM} > C_{RAM}) \land (B_{ROM} > C_{ROM})) \rightarrow (B_{PIX} > C_{PIX})$ **Analysis:**

$$((288 > 128) \land (64 > 32)) \rightarrow (4 > 5)$$

$$(T \land T) \rightarrow F$$

$$T \rightarrow F$$

$$F$$

 \therefore The **Phrase** is F

(e) **Phrase:** Smartphone A has more RAM than Smartphone B if and only if Smartphone B has more RAM than Smart-phone A.

Logic: $(A_{RAM} > B_{RAM}) \leftrightarrow (B_{RAM} > A_{RAM})$ **Analysis:**

$$\begin{array}{c} (256 > 288) \leftrightarrow (288 > 256) \\ F \leftrightarrow T \\ F \end{array}$$

 \therefore The **Phrase** is F

Problem 2. Section 1.1, Exercise 16 on page 14. Solution.

- (a) 2+2=4 if and only if 1+1=2 $T \leftrightarrow T$
 - $\therefore T$
- (b) 1+1=2 if and only if 2+3=4 $T \leftrightarrow F$ $\therefore F$
- (c) 1+1=3 if and only if monkeys can fly. $F \leftrightarrow F$ $\therefore T$
- (d) 0 > 1 if and only if 2 > 1 $F \leftrightarrow T$ $\therefore F$

Problem 3. Section 1.1, Exercise 22 a) – e) on page 14.

Solution.

- (a) It is necessary to wash the bosss car to get promoted.
 - p: one washes the boss's car
 - q: one gets promoted
 - if p, then q: if one washes the boss's car then one gets promoted
- (b) Winds from the south imply a spring thaw.
 - p: there are winds from the south
 - q: there will be a spring thaw
 - if p, then q: if there are winds from the south then there will be a spring thaw
- (c) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
 - p: you bought the computer less than a year ago
 - q: sufficient condition for the warranty is good
 - if p, then q: if you bought the computer less than a year ago then sufficient condition for the warranty is good
- (d) Willy gets caught whenever he cheats.
 - p: he cheats
 - q: gets caught
 - if p, then q: if Willy cheats then he gets caught.
- (e) You can access the website only if you pay a subscription fee.
 - p: you pay a subscription fee
 - q: you can access the website
 - if p, then q: if you pay a subscription fee then you can access the website

Problem 4. Section 1.1, Exercise 40 on page 16.

Solution.

Explain, without using a truth table, why $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$ is true when p, q, and r have the same truth value and it is false otherwise.

Case 1: If p,q, and r are all T, then the results is

$$\begin{split} (T \vee \neg T) \wedge (T \vee \neg T) \wedge (T \vee \neg T) \\ T \wedge T \wedge T \\ T \end{split}$$

Case 2: If p, q, and r are all F, then the result is

$$(F \vee \neg F) \wedge (F \vee \neg F) \wedge (F \vee \neg F)$$
$$T \wedge T \wedge T$$
$$T$$

Case 3: If p is T and q is F, r will be set to F, then the reulst is

$$\begin{array}{c} (T \vee \neg F) \wedge (T \vee \neg F) \wedge (F \vee \neg T) \\ T \wedge T \wedge F \\ F \end{array}$$

Regardless of r, the result is the same.

Case 4: If p is F and q is T, r will be set to F, then the reulst is

$$(F \vee \neg T) \wedge (T \vee \neg F) \wedge (F \vee \neg F)$$
$$F \wedge T \wedge T$$
$$F$$

Regardless of r, the result is the same.

: If p, q, and r are not the same truth value, the proposition will result in false.

Problem 5. Section 1.1, Exercise 42 on page 16. Explain.

Solution. x := 1

- (a) if x + 2 = 3 then x := x + 1Since x is 1 to begin with, 1 + 2 = 3 is true $\therefore x := x + 1$ will occur and x will result in x = 2
- (b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1Since x is 1 to begin with, (1 + 1 = 3) is false and (2(1) + 2 = 3) is false \therefore the statement will not enter and x will stay 1
- (c) if (2x+3=5) AND (3x+4=7) then x := x+1Since x is 1 to begin with, (2(1)+3=5) is true and (3(1)+4=7) is true $\therefore x := x+1$ will execute and the result of x is 2

- (d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1Since x is 1 to begin with, (1 + 1 = 2) is true and (1 + 2 = 3) is true \therefore the statement x := x + 1 will not execute and x will stay as 1
- (e) if x < 2 then x := x + 1
 Since x is 1 to begin with, 1 < 2 is true
 ∴ the statement will execute and x will result in being 2

Problem 6. Section 1.2, Exercise 6 on page 22.

Solution.

u: You can upgrade your operating system

 b_{32} : You have a 32-bit processor

 b_{64} : You have a 64-bit processor

 g_1 : Your processor runs at 1 GHz or faster

 g_2 : Your processor runs at 2 GHz or faster

 r_1 : Your processor has at least 1 GB RAM

 r_2 : Your processor has at least 2 GB RAM

 h_{16} : You have at least 16 GB free hard disk space

 h_{32} : You have at least 32 GB free hard disk space

 $u \rightarrow (b_{32} \wedge g_1 \wedge r_1 \wedge h_{16}) \vee (b_{64} \wedge g_2 \wedge r_2 \wedge h_{32})$

Problem 7. Section 1.2, Exercise 22 on page 23. Explain.

Solution.

Since both A and B both said that they are knights the following conclutions can be drawn:

A is either a knight or a knave and B is knight or a knave

Problem 8. Section 1.3, Exercise 10 b) and c), page 35.

Solution. (a)

(b)
$$((p \to q) \land (q \to r)) \to (p \to r)$$

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p \to q) \land (q \to r)$	$((p \to q) \land (q \to r)) \to (p \to r)$
F	F	F	Т	Τ	Τ	T	T
F	\mathbf{F}	\mathbf{T}	T	F	${ m T}$	\mathbf{F}	${ m T}$
F	${\rm T}$	F	Т	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	\mathbf{T}	\mathbf{T}	Т	${ m T}$	${ m T}$	${ m T}$	${ m T}$
Т	F	F	F	Т	F	F	Т
T	\mathbf{F}	\mathbf{T}	F	Τ	${ m T}$	\mathbf{F}	${ m T}$
T	${\rm T}$	F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
T	\mathbf{T}	Τ	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$

This is the definition of hypothetical syllogism

(c)
$$((p \land (p \rightarrow q)) \rightarrow q)$$

p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$((p \land (p \to q)) \to q$
F	F	Т	F	${ m T}$
F	Т	T	\mathbf{F}	${ m T}$
Т	F	F	\mathbf{F}	${ m T}$
Т	T	T	${ m T}$	${ m T}$

This is the definition of modus ponens

Solve the following two problems by developing a series of logical equivalences, as shown in class and also in Examples 7 and 8 on page 30.

Problem 9. Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.

Solution.

$$(p \to q) \lor (p \to r) \equiv (\neg p \lor q) \lor (\neg p \lor r) \qquad \qquad \mathbf{By} \ A \to B \equiv \neg A \lor B$$

$$\equiv \neg p \lor \neg p \lor q \lor r \qquad \qquad \mathbf{By} \ \mathbf{Associative} \ \mathbf{Laws}$$

$$\equiv \neg p \lor q \lor r \qquad \qquad \mathbf{By} \ \mathbf{Simplification}$$

$$\equiv \neg p \lor (q \lor r) \qquad \qquad \mathbf{By} \ \mathbf{Associative} \ \mathbf{Laws}$$

$$\equiv p \to (q \lor r) \qquad \qquad \mathbf{By} \ \mathbf{Associative} \ \mathbf{Laws}$$

$$\equiv p \to (q \lor r) \qquad \qquad \mathbf{By} \ \neg A \lor B \equiv A \to B$$

Problem 10. Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology.

Solution.

$$(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r) \equiv \neg ((p \lor q) \land (\neg p \lor r)) \lor (q \lor r)$$

$$\equiv (\neg (p \lor q) \lor \neg (\neg p \lor r)) \lor (q \lor r)$$

$$\equiv (\neg p \land \neg q) \lor (p \land \neg r) \lor (q \lor r)$$

$$\equiv (\neg p \land \neg q) \lor q \lor (p \land \neg r) \lor r$$

$$\equiv ((\neg p \lor q) \land (\neg q \lor q)) \lor (p \land \neg r) \lor r$$

$$\equiv ((\neg p \lor q) \land T) \lor (p \land \neg r) \lor r$$

$$\equiv \neg p \lor q \lor (p \land \neg r) \lor r$$

$$\equiv \neg p \lor q \lor ((p \lor r) \land (r \lor \neg r))$$

$$\equiv \neg p \lor q \lor ((p \lor r) \land T)$$

$$\equiv \neg p \lor q \lor p \lor r$$

$$\equiv T \lor q \lor r$$

$$\Rightarrow T$$

\mathbf{C}	hecklist:
	Did you type in your name and section?
	Did you disclose all resources that you have used?
	(This includes all people, books, websites, etc. that you have consulted.)
	Did you sign that you followed the Aggie Honor Code?
	Did you solve all problems?
	Did you submit the .tex and .pdf files of your homework to the correct link
	on eCampus?
	Did you submit a signed hardcopy of the pdf file in class?