Text Representation

Luciano Barbosa

Example of Text Classification: Spam

From: "" <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY!

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW!

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

Supervised Learning

- Goal: to infer a function from examples to predict classes of new examples
- Two phases:
 - Training: learn the function from examples
 - Execution: use the function to predict the class of a given instance

Supervised Model

- Training set: instances and labels
- Instance represented by its feature vector
- Learn function f(x)=y that best predicts the value of y given x
- For categorical y -> classification
- For numerical y -> regression

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

Spam Classification

Training instances

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

- Features
 - Words: viagra, learning, the, dating, nigeria
 - Occurrence: 1 or 0
- Class y: spam (1) or non-spam (-1)

Features

- Great importance in the classification result
- Important: high correlation with the classification output
 - Ex1: rain forecast: temperature, humidity
 - Ex2: sentiment analysis: words with polarity (negative/positive)
- Text classifiers can use any type of feature: words, punctuation, capitalization, etc.

Feature Representation in Text: One Hot Encoding

- Each word mapped to a dimension and represented by a vector
- Example
 - $V = \{dog, bites, man\}$
 - D_1 : "dog bites man" = {[1,0,0],[0,1,0],[0,0,1]}
 - D_2 : "man bites dog" = {[0,0,1],[0,1,0],[1,0,0]}
- Dimensionality: size of vocabulary
- Naïve embedding
- Similar words have different representations

Feature Representation in Text: Bag of Words

- Each document represented by a vector
- Each dimension: a word with its respective weight
- Dimensionality: size of vocabulary
- Pros: Simple and very effective
- Cons:
 - Orderless
 - No notion of semantic similarity

D₁: "the cat sat on the hat"

D₂: "the dog ate the cat and the hat"

,	V	[the,	, cat,	sat,	on,	hat,	dog,	ate,	and]	
	D ₁	[2,	1,	1,	1,	1,	0,	0,	0]	
	D_2	[3,	1,	0,	0,	1,	1,	1,	1]	

Term Weighting

- Terms in a document are not equally useful for describing its content
- Ex: frequent words in the document -> important
- Ex: words that appear in all documents of the collection -> not important
- Weight used to characterize the importance of the term

TF - Term Frequency

 The importance of a word is proportional to its frequency in a document

	tf weight
binary	{0,1}
raw frequency	$f_{i,j}$
log normalization	$1 + \log f_{i,j}$
double normalization 0.5	$0.5 + 0.5 \frac{f_{i,j}}{max_i f_{i,j}}$
double normalization K	$K + (1 - K) \frac{f_{i,j}}{\max_i f_{i,j}}$

TF - Term Frequency

Example using the log variation

Vocabulary							
1	to						
2	do						
3	is						
4	be						
5	or						
6	not						
7	1						
8	am						
9	what						
10	think						
11	therefore						
12	da						
13	let						
14	it						

$tf_{i,1}$	$tf_{i,2}$	$tf_{i,3}$	$tf_{i,4}$		
3	2		-		
2		2.585	2.585		
2 2 2	-	-	-		
2	2	2	2		
-	1	-	-		
-	1	-	-		
-	2 2	2			
-	2	1	-		
-	1	-			
-	-	1	-		
-		1	-		
-	-	-	2.585		
-	-	-	2		
-	-	-	2		

IDF - Inverse Document Frequency

- The importance of a word is inversely proportional to its frequency in a collection:
 - \circ n_i : number of occurrences of a word in the documents
 - N: total number of documents

	idf weight
unary	1
inverse frequency	$\log \frac{N}{n_i}$
inv frequency smooth	$\log(1 + \frac{N}{n_i})$
inv frequeny max	$\log(1 + \frac{\max_i n_i}{n_i})$
probabilistic inv frequency	$\log \frac{N-n_i}{n_i}$

IDF - Inverse Document Frequency

Example using the log variation

	term	n_i	$idf_i = \log(N/n_i)$
1	to	2	1
2	do	2	0.415
3	is	1	2
4	be	4	0
5	or	1	
6	not	1	2 2
2 3 4 5 6 7 8 9	1	2 2	1
8	am	2	1
9	what	1	2
10	think	1	2
11	therefore	1	2
12	da	1	2 2 2 2 2 2
13	let	1	2
14	it	1	2

TFIDF

Combination of tf and idf: tf x idf

		d_1	d_2	d_3	d_4
1	to	3	2	-	-
2 3 4	do	0.830		1.073	1.073
3	is	4			
4	be	-	-		
5	or	-	2	-	
6	not		2		
7	1		2 2 2 2	2	
8	am		2	1	
9	what	-	2	(*)	30.00
10	think	-		2 2	
11	therefore	-		2	-
12	da	2	-	-	5.170
13	let	-			4
14	it	-	-	-	4

	term	n_i	$idf_i = \log(N/n_i)$
1	to	2	1
2	do	3	0.415
3	is	1	2
4	be	4	0
5	or	1	2
6	not	1	2
7	1	2	1
8	am	2	1
9	what	1	2
10	think	1	2
11	therefore	1	2
12	da	1	2
13	let	1	2
14	it	1	2

Vo	cabulary	$tf_{i,1}$	$tf_{i,2}$	$tf_{i,3}$	$tf_{i,4}$
1	to	3	2		-
2	do	2		2.585	2.585
3	is	2		-	-
4	be	2	2	2	2
5	or	-	1	-	-
6	not	-	1	-	_
7	1	1/2	2	2	~
8	am		2	1	-
9	what		1		-
10	think		20.00	1	-
11	therefore			1	-
12	da			_	2.585
13	let			-	2
14	it				2

Representation Learning

- In ML models, instances are represented by their features
- Motivation:
 - Instance/data representation is essential for effective ML models
 - Less dependent on feature engineering
 - Dimensionality reduction
- Definition:
 - Set of techniques that learn a "better" representation from the raw data
- Distributed representation or embeddings
 - Dense and low dimensional representation
 - Dimensions have no meaning

Example of Representation Learning: MLP

Different levels of abstraction of the input

Img-Source: http://ufldl.stanford.edu/wiki/

Embeddings in NLP

- Represent a linguistic unit as a dense vector
- Linguistic unit: character, word, sentence, document
- Map semantic meaning into a geometric space (embedding space)

Word Embeddings

- Embed the context of a word in a low-dimensional vector (e.g., 100, 200)
- Similar words are close in this space

Img-Source: https://medium.com/@hari4om/wor d-embedding-d816f643140

Word Embeddings

- Built using dimensionality reduction techniques
 - Frequency based models (Latent Semantic Indexing)
 - Prediction based models (Neural networks)

Latent Semantic Indexing

- Build document and word representations
- Based on the co-occurrence of the words in the documents
- Dimensionality reduction: singular value decomposition (SVD)
 - $C = U\Sigma V^{T}$
 - C: term-document matrix
- Compute reduced C' with fewer dimensions

$C = U\Sigma V^{T}$

C		d_1	d_2	d_3	d ₄	d_5	d_6						
ship		1	0	1	0	0	0						٦
boat		0	1	0	0	0	0			Te	rm-Docu	ment	
ocea	n	1	1	0	0	0	0	=			Matrix		
wood	1	1	0	0	1	1	0						
tree		0	0	0	1	0	1						
U			1		2	3		4	. 5				
ship		−0 .	44	-0.3	0	0.57	la l	0.58	0.25				
boat		−0 .	13	-0.3	3	-0.59		0.00	0.73	212		10/07	
ocea	n	−0 .	48	-0.5	1	-0.37		0.00	-0.61	×		VVOIC	d Embeddings
wood	1	-0.	70	0.3	5	0.15	-	-0.58	0.16				
tree		−0 .	26	0.6	5	-0.41		0.58	-0.09				
Σ	1		2	3		4	5						
1	2.1	6	0.00	0.0	0	0.00	0.0	00		[
2	0.0	00	1.59	0.0	0	0.00	0.0	00			C:		
3	0.0	00	0.00	1.2	8	0.00	0.0	00 ×			Singu	ılar valu	es
4	0.0	00	0.00	0.0	0	1.00	0.0	00		l			
5	0.0	00	0.00	0.0	0	0.00	0.3	39					
V^T		d_1		d_2		d_3		d_4	d_5	a	6		
1	-	0.75	-	0.28	-	0.20	-0	.45	-0.33	-0.1	2		
2	-	0.29	_	0.53	_	-0.19	0	.63	0.22	0.4	1		
3	(0.28	-	0.75		0.45	-0	.20	0.12	-0.3	3		Doc Embedding
4	(0.00)	0.00		0.58	0	.00	-0.58	0.5	8		
5	-(0.53		0.29		0.63	0	.19	0.41	-0.2	2		CİI

gs

Reducing to 2 Dimensions

U		1	2	3	4	5			
ship	-0.4	14 –	-0.30	0.00	0.00	0.00			
boat	-0.1	13 -	-0.33	0.00	0.00	0.00			
ocean	-0.4	48 –	-0.51	0.00	0.00	0.00	Wo	rd Embeddings	
wood	-0.7	70	0.35	0.00	0.00	0.00			
tree	-0.2	26	0.65	0.00	0.00	0.00			
Σ_2	1	2	3	4	5				
1	2.16	0.00	0.00	0.00	0.00	- 2			
2	0.00	1.59	0.00	0.00	0.00				
3	0.00	0.00	0.00	0.00	0.00			Setting singular	
4	0.00	0.00	0.00	0.00	0.00			values to 0	
5	0.00	0.00	0.00	0.00	0.00				
VT	d_1		d_2	d_3	d_4	d_5	d_6		
1	-0.75	-0	.28 –	0.20	-0.45	-0.33	-0.12		
2	-0.29	-0	.53 –	-0.19	0.63	0.22	0.41		
3	0.00	0	.00	0.00	0.00	0.00	0.00	Doc E	mbeddings
4	0.00	0	.00	0.00	0.00	0.00	0.00		
5	0.00	0	.00	0.00	0.00	0.00	0.00		

Projecting LSI Word Embeddings

Rohde et al., An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence, 2005

Pros & Cons

- Pros
 - Simple
 - Capture similarity
- Cons
 - Co-occurrence matrix is sparse
 - Quadratic cost (SVD)

Prediction Based Models: CBOW

Predicts word in the context (language modeling)

Img-Source:

https://thinkinfi.com/continuous-bag-of-words-cbow-multi-word-model-how-it-works/

Prediction Based Models: CBOW

Prediction Based Models: Skip-gram

Predicts the context of a word

Skip-gram with Negative Sampling

- Previous models are very costly
- Predicts words as neighbors
- Negative examples: words that are not neighbors
- Inputs:
 - Word and its context word
 - Representation: one-hot encoding
- Output:
 - Probability of matching

Img-Source:

http://arxiv.org/pdf/1301.3781.p

Skip-gram vs Negative Sampling

Negative Sampling

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

Source: https://jalammar.github.io/illustrated-word2vec/

Img-Source: http://arxiv.org/pdf/ 1301.3781.pdf

Word Embeddings

Example: closest words

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	$_{ m KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Img-Source: http://arxiv.org/pdf/1301.3781.pdf

Word Embeddings in 2D

 $Img-Source: http://metaoptimize.s3. a mazonaws.com/cw-embeddings-ACL2010/embeddings-most common. EMBEDDING_SIZE=50.png$

Word Embeddings in 2D

Individuals factor map (PCA)

Impact of Word Embeddings

- In most networks for text, word embeddings are the basis
- Having good word embeddings increases significantly your performance
- Which is the best is hard to tell
 - Try all available
 - Use pre-trained vectors available (you can also create yours)
- Corpus selection and tuning the parameters for the task at hand
 - E.g. for sentiment, good and bad should be far away in vector space

Existent Tools

- Demo:
 - https://rare-technologies.com/word2vec-tutorial/
- Word2Vec
 - https://code.google.com/p/word2vec/
- Doc2Vec
 - Learns dense representations for phrases, sentences and documents
 - https://groups.google.com/forum/#!topic/word2vec-toolkit/Q49FIrNOQ Ro or Gensim
- GloVe:
 - http://nlp.stanford.edu/projects/glove/

Embeddings for Car Price Prediction

Model

Model	Features	RMSE	MALE
	STR	15,288	0.231
r. b.	TXT	39,801	0.217
Linear Regression	STR+TXT	18,555	0.171
	CE	12,926	0.125
	STR	15,410	0.228
av.	TXT	31,140	0.249
SVR	STR+TXT	17,672	0.185
	CE	13,076	0.127
	STR	13,940	0.179
D 1 D	TXT	16,909	0.193
Random Forest	STR+TXT	15,440	0.168
	CE	12,302	0.117
	STR	14,929	0.185
I: Lapar	TXT	14,601	0.177
LightGBM	STR+TXT	13,560	0.130
	CE	12,305	0.120
	STR	15,351	0.258
1100 1 111	TXT	18,644	0.283
H2O AutoML	STR+TXT	20,341	0.299
	CE	12,439	0.118
Regression Layer	CE	13,949	0.126

Results

Embeddings

Car Embeddings

Query	$\mathrm{Top}\ 5$	Average Price (USD)
Lamborghini	.=	271,591
	Ferrari	137,567
	Aston	119,979
	Aston Martin	124,978
	Hummer	17,253
	Audi	23,796
Rolls-royce	120	116,298
	Ferrari	137,567
	Bentley	87,142
	Aston	119,979
	Jaguar	23,795
	Studebaker	30,290
Volkswagen		12,429
	Ford	19,112
	Volvo	20,431
	Porsche	51,561
	Cadillac	20,480
	Saturn	4,536
Saturn	-	4,536
	Saab	5,484
	Studebaker	30,290
	Honda	14,979
	Land	30,755
	Nissan	14,379

Classification Evaluation Metrics

- Precision
- Recall
- F1 (F-measure)
- Accuracy

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)

precision:
$$P = TP/(TP + FP)$$

recall: $R = TP/(TP + FN)$

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P+R}$$
 Accuracy = (TP+TN)/(TP+TN + FN + FP)

Evaluation Strategies

- Holdout set: not used for training
- Training/validation/test
- Cross-validation

Evaluation Strategies

- Holdout set: not used for training
- Training/validation/test
- Cross-validation

