Application: Center effects

Theodor Balan & Hein Putter

Department of Medical Statistics and Bioinformatics Leiden University Medical Center

Frailty models: Theory & Practice November 3, 2017, Prague

Outline

Center comparisons

Center comparisons

Illustration with CLL data

The data

Preliminary analyses

Analysis using frailty models

Discussion

Extensions

Correlated frailties

Time-varying frailties

Conclusion

Center comparisons

Illustration with CLL data

The data

Preliminary analyses

Analysis using frailty models

Discussion

Extensions

Correlated frailties
Time-varying frailtie

Conclusion

- Comparison of centers or benchmarking is increasingly important
- Aim is to monitor centers annually
- To identify underperforming centers
- To learn from the best performing centers
- Ultimate aim is to improve health care
- But there are methodological issues in these center comparisons
- Hard to disentangle random from systematic differences
- Random effect models useful
- Frailty models when dealing with a time-to-event outcomes

Frailty models

- ▶ Say we have clusters j = 1, ..., J
- Individual with covariates x from cluster j

$$h(t \mid x, Z_j) = Z_j h_0(t) \exp(\beta^{\top} x)$$

- Z_i's are independent random variables with the same distribution (mean 1)
- If Z_j > 1, then the individuals in the cluster have higher event rate than expected on the basis of their covariates
- This can be due to insufficient case-mix correction (omitted covariates) or to sub-optimal treatment
- No distinction possible between these two explanations

Center comparisons

Illustration with CLL data

The data
Preliminary analyses
Analysis using frailty models

Discussion

Extensions

Correlated frailties
Time-varying frailties

Conclusion

CLL data

- Data collected by EBMT (European Society for Blood and Marrow Transplantation)
- CLL Data Quality Initiative
- Outcome after allogeneic stem cell transplantation of chronic lymphocytic leukemia (CLL) patients
- Failures of interest: death, relapse
- Covariates of interest: donor category, remission status, age, year of SCT (stem cell transplantation), combination of sex recipient-donor

Prognostic factors

$$n = 724$$

Prognostic factor		n (%)
Donor	HLA-id sib donor	291 (40)
	Other	433 (60)
Remission status	Complete Remission	94 (13)
	Partial Remission	366 (51)
	Stable/progressive disease	264 (36)
Sex match	other	567 (78)
	female to male	157 (22)
Age at SCT		55 (19–74)
Year of SCT		2007 (2000–2011)

The data

Centers

Center comparisons

The CLL data has 32 centers, sizes shown below

Histogram of center sizes

Stratified survival curves

Ordinary Cox model

	coef	exp(coef)	se(coef)	Z	р	
age	0.025	1.03	0.00699	3.58	0.00035	
remstatPR	0.214	1.24	0.18699	1.14	0.25000	
remstatSD/PD	0.584	1.79	0.18755	3.11	0.00180	
sibdonorother donor	0.291	1.34	0.11256	2.58	0.00980	
sexmatchfemale to male	0.380	1.46	0.12523	3.03	0.00240	

Likelihood ratio test=42.9 on 5 df, p=3.92e-08 n= 724, number

+

Cox model, with cluster as fixed effects

Likelihood ratio test=98.2 on 36 df, p=1.12e-07

n=724, number of events= 351

```
> coxOSfe
Call:
coxph(formula = Surv(srv_mo, srv_s) ~ age + remstat + sibdonor +
    sexmatch + cic, data = cll, method = "breslow")
                        coef exp(coef) se(coef) z p
                     0.02034 1.02055 0.00753 2.70 0.00693
aσe
                     0.26224 1.29984 0.19609 1.34 0.18112
remstatPR
                     0.64981 1.91517 0.19953 3.26 0.00113
remstatSD/PD
sibdonorother donor 0.25310 1.28801 0.12454 2.03 0.04213
sexmatchfemale to male 0.49413 1.63907 0.13034 3.79 0.00015
                     0.39225 1.48031 0.35748 1.10 0.27253
cicAA
cicAB
                      0.76467 2.14829 0.46002 1.66 0.09646
```

> coxOSfe <- coxph(Surv(srv_mo, srv_s) ~ age + remstat + sibdonor + se cic, data=cll, method="breslow")

.

Cox model, with cluster as fixed effects

- Only difference with stratified Cox model is that proportional hazards is now assumed for the centers
- ▶ Yields $J 1 \hat{\beta}$'s for J centers
- First center is reference
- ▶ J effects can be obtained by subtracting $\sum_{j=2}^{J} \hat{\beta}_j / J$ from each $\hat{\beta}_j$, and from 0 (reference center, nr 1)
- ▶ This yields, for each center, estimate and standard error, with the average β being 0
- So can be interpreted as deviation from average
 - Negative beta: better than average
 - Positive beta: worse than average
- Often visualized in a caterpillar plot

Caterpillar plot

Caterpillar plot

Pros and cons

- ▶ Pro
 - Quick and easy overview of relative quality of centers
- Cons
 - Inclined to pinpoint the worst center(s), even though variability may be large
 - Ranking is in general not a good idea
 - Ranking seen in this analysis may just be randomness

Fixed versus random effects

- Fixed effects assumes that interest is in centers A, B, C
- More natural to think of centers A, B, C etc as randomly drawn from a population of centers
- That implies that their effect on survival can be modeled by random effects
- Frailty model
- One (half) degree of freedom, instead of 31

Frailty Cox model

Using coxph from survival

```
> coxOSf <- coxph(Surv(srv mo, srv s) ~ age + remstat + sibdonor + sex
                 frailty(cic), data=cll, method="breslow")
> coxOSf
Call:
coxph(formula = Surv(srv_mo, srv_s) ~ age + remstat + sibdonor +
    sexmatch + frailty(cic), data = cll, method = "breslow")
                      coef se(coef) se2 Chisq DF p
                      0.0233 0.00725 0.00712 10.34 1.0 0.00130
age
                     0.2360 0.19075 0.18888 1.53 1.0 0.22000
remstatPR
              0.6035 0.19235 0.18980 9.84 1.0 0.00170
remstatSD/PD
sibdonorother donor 0.2895 0.11691 0.11445 6.13 1.0 0.01300
sexmatchfemale to male 0.4197 0.12716 0.12614 10.89 1.0 0.00097
frailty(cic)
                                             21.75 11.6 0.03400
```

Iterations: 8 outer, 34 Newton-Raphson
Variance of random effect= 0.0692 I-likelihood = -2087.4

Variance of random effect= 0.0692 I-likelihood = -2087. Degrees of freedom for terms= 1.0 1.9 1.0 1.0 11.6 Likelihood ratio test=77.2 on 16.4 df, p=7.76e-10 n= 724

Frailty Cox model

Using frailtyEM

```
> mod_emfrail <- emfrail(formula = Surv(srv_mo, srv_s) ~ age + remstat
                        sexmatch + cluster(cic), data = cll)
+
> mod emfrail
Call:
emfrail(formula = Surv(srv mo, srv s) ~ age + remstat + sibdonor +
   sexmatch + cluster(cic), data = cll)
log-likelihood: -2087.437
theta: 14.50802
                        coef exp(coef) se(coef) adjusted se
                                                               7.
                      0.0233
                               1.0236 0.0073
                                                   0.0073 3.2180 0.
aσe
remstatPR
                     0.2358 1.2660 0.1906
                                                   0.1908 1.2372 0.
                               1.8281 0.1923
remstatSD/PD
                     0.6033
                                                   0.1925 3.1370 0.
```

1.3357 0.1169

1.5213 0.1271

Score test for heterogeneity: p-val 0.0436

sibdonorother donor 0.2894

sexmatchfemale to male 0.4195

0.1170 2.4751 0. 0.1280 3.3**d**0.**111**.

Summary function gives more information

```
emfrail(formula = Surv(srv_mo, srv_s) ~ age + remstat + sibdonor +
    sexmatch + cluster(cic), data = cll)
```

Regression coefficients:

```
coef exp(coef) se(coef) adjusted se
                0.0233 1.0236 0.0073
                                      0.0073 3.2180 0.
aσe
remstatPR
                0.2358 1.2660 0.1906
                                      0.1908 1.2372 0.
remstatSD/PD
               0.6033 1.8281 0.1923
                                      0.1925 3.1370 0.
sibdonorother donor 0.2894 1.3357 0.1169
                                      0.1170 2.4751 0.
Estimated distribution: gamma / left truncation: FALSE
```

Fit summary:

```
Commenges-Andersen test for heterogeneity: p-val 0.0436
(marginal) no-frailty Log-likelihood: -2090.276
(marginal) Log-likelihood: -2087.437
LRT: 1/2 * pchisq(5.68), p-val 0.0086
```

Kendall's tau: 0.033 / 95% CI: [0.004, 0.088]□ > ⟨♂⟩ ⟨₹⟩ ⟨₹⟩

```
Frailty summary:
```

```
theta = 14.508 (9.05) / 95% CI: [5.168, 118.131]
variance = 0.069 / 95\% CI: [0.008, 0.193]
```


Comparing ordinary and frailty Cox model

- Gamma frailty used (by default)
- Frailty variance estimated to be quite small, 0.069, but significant
- The estimated regression coefficients of the frailty Cox model are mostly larger (in absolute value) than the ordinary one, with higher standard error
- This difference will be larger with larger frailty variance
- This is a well-known general phenomenon, in the presence of unobserved heterogeneity, ignoring this heterogeneity leads to estimates that are biased (attenuated)

Posterior frailties

- ▶ If the frailty distribution is gamma(θ , θ) with variance θ^{-1} , the posterior distribution of Z_j , given the data of center j is gamma($\hat{\theta} + D_i$, $\hat{\theta} + \hat{H}_i$), with
 - ▶ $D_j = \sum_k d_{jk}$: total number of events in cluster j (observed)
 - $\hat{H}_j = \sum_k \hat{H}_0(t_{jk}) \exp(\hat{\beta}^\top x_{jk})$ (expected)
- The posterior expectation (also called *empirical Bayes* estimate) is given by

$$\hat{Z}_j = \frac{\hat{\theta} + D_j}{\hat{\theta} + \hat{H}_j}$$

 In fact, the whole posterior distribution is known (also variance, quantiles etc)

Analysis using frailty models

Center comparisons

Posterior frailties

Histogram of posterior frailties

Posterior frailties

The six lowest frailties

		cic	frail
18	L		0.6248699
17	K		0.7563921
13	G		0.7578368
23	Q		0.8218523
30	Χ		0.8237069
12	F		0.8268701

The six highest frailties

		cic	frail
3	AB		1.141098
22	P		1.174341
26	Τ		1.180178
4	AC		1.197522
19	M		1.207932
14	Н		1.318338

Caterpillar plots

Extensions

Shrinkage

Center comparisons

 The posterior expectation (empirical Bayes estimate) is given by

$$\hat{Z}_j = \frac{\hat{\theta} + D_j}{\hat{\theta} + \hat{H}_j}$$

 \triangleright \hat{Z}_i is a weighted average of observed/expected in cluster jand the overall average (1) in the complete data

$$\hat{Z}_{j} = \frac{\hat{\theta} + D_{j}}{\hat{\theta} + \hat{H}_{j}} = \lambda \frac{D_{j}}{\hat{H}_{j}} + (1 - \lambda), \lambda = \frac{\hat{H}_{j}}{\hat{\theta} + \hat{H}_{j}}$$

Shrinkage towards 1 is stronger for smaller centers (smaller \hat{H}_i)

Shrinkage

Frailty-model based survival curves

Cantar comparisons

Illustration with CLL data

The data

Preliminary analyses

Analysis using frailty models

Discussion

Extensions

Correlated frailties
Time-varying frailties

Conclusion

Previous plot shows most extreme (L and H) and average (Z = 1) survival plots

- Much less variable than the model-based survival curves based on the stratified Cox model
- The most extreme centers in that plot were smallest centers, which have been shrunken to the average survival
- You could view the frailty-based curves as noise-free versions of the stratified Cox model-based curves
- Again: excess mortality in center H may be due to "bad treatment" but also to in adequate patient-mix correction!
- This is also true for other hospital performance comparisons

- Frailties are random effects models for survival data
- Used for two purposes
 - Explaining lack of fit of univariate survival models, like deviation from the proportional hazards assumption
 - 2. The modeling of dependence in clustered data
- Useful for center comparisons
 - More realistic (shrunken) center effects provided by posterior means of frailties

- Johannes Schetelig (clinical background, CLL dataset)
- EBMT Data Office Leiden, DKMS Clinical Trials Unit Dresden, EBMT centers (CLL dataset)

Center comparisons

Illustration with CLL data

The data

Preliminary analyses

Analysis using frailty models

Discussion

Extensions

Correlated frailties
Time-varying frailties

Conclusion

- So far emphasis on
 - Univariate frailties (selection effects, distortion of PH)
 - Shared frailty models
 - Clustered survival data
 - Recurrent events
- Shared frailty models assume
 - Single frailty, shared by all subjects in the cluster
 - Frailty does not change over time (information might!)

Limitations of the shared frailty model

- Frailty term has a double role
 - It quantifies dependence
 - It quantifies population heterogeneity
 - (With a conditional proportional hazards model it also quantifies non-PH)
- Shared frailty will only induce positive association within the group
- Looking back at where a frailty term might come from: if either x_{omit} or β_{omit} are time-varying, then the frailty
 Z = exp(β_{omit}^T x_{omit}) would also be time-varying

Two extensions considered

- Correlated frailties
- Time-varying frailties

Use of correlated frailties

Examples

- Twin pairs: each of the twins has its own frailty, they are correlated, possibly negatively correlated
 - Model provides not only variances of the frailties, but also separately the correlation between frailties in each group
- Competing risks in clustered data, one frailty for each competing risk
- Recurrent events: the frailty in first and later recurrent events might be different

Construction of correlated frailties

- For log-normal frailties it is simple
 - Specify $U = (U_1, U_2)$ bivariate normal with mean 0, covariance matrix $\begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$
 - Set $X_1 = \exp(U_1)$ and $X_2 = \exp(U_2)$
 - Note that σ_1^2 and σ_2^2 and ρ are not the variances and correlation of $X = (X_1, X_2)!$
 - Both positive and negative correlation possible
- Gamma frailties: next slides
- Other frailties: similar construction as gamma

Construction of correlated frailties

How to make two correlated gamma random variables

- Construction by Yashin et al. (1995)
- ▶ Three independent gamma variables X_0 , X_1 , X_2
- \rightarrow $X_0 \sim \text{Ga}(\rho\alpha, \beta), X_1, X_2 \sim \text{Ga}((1-\rho)\alpha, \beta)$
- $Z_1 = X_0 + X_1, Z_2 = X_0 + X_2$
- \triangleright Z_1 and Z_2 both $Ga(\alpha, \beta)$
- ▶ Correlation between Z_1 and Z_2 equals ρ (relative contribution of the *common* part X_0)
- Note: only positive correlation possible in this construction!

Extensions

Estimation

- Estimation of these models is similar to, but somewhat more involved than, estimation of shared frailty models
- EM-type algorithms, where the E-step is more complicated than before
- No standard software available (but try coxme for log-normal frailties)

Time-varying frailties

Model for hazard is

$$h(t \mid Z(t)) = Z(t)h(t)$$

- ► The conditional hazard h(t) itself may follow a proportional hazards model
- Frailty varies over time
- Possibilities for Z(t)
 - ▶ Piecewise constant (Paik et al. 1994, Wintrebert et al. 2004)
 - Log-normal Gaussian process Z(t) = exp(U(t)) (Yau & McGilchrist 1998)
 - Auto-correlated gamma processes (Putter & van Houwelingen 2015)
 - Implemented in package dynfrail (Balan & Putter, forthcoming)

Center comparisons

Illustration with CLL data

The data

Preliminary analyses

Analysis using frailty models

Discussion

Extensions

Correlated frailties
Time-varying frailties

Conclusion

Conclusion

- Discussed
 - Unobserved heterogeneity
 - Univariate frailty
 - Shared frailty models
 - Extensions
 - Software
 - Applications
- We hope this introduction to frailty models has been useful
- For questions, do not hesitate to contact us

