60016 OPERATIONS RESEARCH

Sensitivity Analysis

09 November 2020

Last Lecture

Duality

This Lecture

- Value function
- Shadow prices

In a nutshell: how does solution of LP depend on parameters?

Example 1 (perturbed)

Assume that p_1 , the availability of machine X, is not precisely known.

```
max y = x_1 + x_2 : objective function
s.t. 2x_1 + x_2 < p_1: constraint on availability of machine X
      x_1 + 3x_2 \le 18: constraint on availability of machine Y
      x_1 < 4: constraint on demand of x_1
      x_1, x_2 \ge 0 : non-negativity constraints
                -\min -x_1 - x_2
                 s.t. 2x_1 + x_2 + x_3 = p_1
                         x_1 + 3x_2 + x_4 = 18
                         x_1 + x_5 = 4
                         x_1, x_2, x_3, x_4, x_5 > 0
```

Example 1 (perturbed)

The value function $v(p_1)$ expresses the optimal value of the LP as a function of the unknown availability parameter p_1 .

$$v(p_1) = \min -x_1 - x_2$$

s.t. $2x_1 + x_2 + x_3 = p_1$
 $x_1 + 3x_2 + x_4 = 18$
 $x_1 + x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Example 1 (perturbed)

Note: $v(p_1)$ is non-increasing, convex and piecewise linear.

Perturbation

Let $p \in \mathbb{R}^m$ denote a general RHS and define the value function $v(p) : \mathbb{R}^m \to \mathbb{R}$ by:

$$v(p) = \min \left\{ z = c^T x \mid A x = p; x \ge 0 \right\}$$

Solving the original LP (the reference problem)

$$\min \left\{ z = c^T x \mid A x = b, x \ge 0 \right\}$$

thus computes v(b).

Q: what do we learn on v(p) from v(b)?

Shadow Prices

Suppose we have solved the reference problem

$$\min \left\{ z = c^T x \mid Ax = b, x \ge 0 \right\}$$

and found an optimal basis matrix B satisfying

$$x_B = B^{-1} (\overline{b}) \ge 0$$
 (Feasibility)

and

$$r = c_N - N^T (B^{-1})^T c_B \ge 0$$
 (Optimality).

Let
$$p \in \mathbb{R}^m$$
 be given: if $B \not= \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$ B is also pleasible for \emptyset is also optimal $(X_B(p)) = B \not= \emptyset$

Shadow Prices (cont)

RESUME@ 11:04

Definition: The vector of shadow prices $\Pi \in \mathbb{R}^m$ is defined as

$$\Pi = (B^{-1})^T c_B,$$

where B = B(I) is an optimal basis.

Note that there can be more than one optimal basis \Rightarrow The shadow prices need not be unique.

The shadow prices give information about the sensitivity of the value function v(p) at p = b.

Behaviour of Value Function

Theorem: $v(p) = v(b) + \Pi^T(p - b)$ for all $p \in \mathbb{R}^m$ with $B^{-1}p > 0$.

Proof:

▶ If $B^{-1}p \ge 0$, then B remains the optimal basis for

$$\min\{z=c^Tx:Ax=p,x\geq 0\}$$

since r is not affected by changing b to p. $x_{B}(p) = B^{T}p$ Thus, we find $x_{B}(b) = B^{T}b$

Thus, we find

$$\begin{array}{rcl}
v(p) & = & c_B^T B^{-1} p \\
 & = & c_B^T B^{-1} b + c_B^T B^{-1} (p - b) \\
 & = & v(b) + \Pi^T (p - b)
\end{array}$$

In general: $v(p) \ge v(b) + \Pi^T(p-b)$ for all $p \in \mathbb{R}^m$.

Global Behaviour of Value Function

$$T = T(p = b)$$

Theorem: $v(p) \geq v(b) + \Pi^T(p-b)$ for all $p \in \mathbb{R}^m$.

Proof:

notes; for every functible
$$x_i$$
; it is
$$Ax-p=0$$

of:

Notes: for every fineable
$$x_1$$
 it is

$$Ax-p=0$$

$$v(p) \stackrel{\text{DEF}}{=} \min_{x\geq 0; Ax=p} \{c^Tx\} \quad \text{note 2: minim our baronset}$$

$$\stackrel{\text{Holinter: min}}{=} \min_{x\geq 0; Ax=p} \{c^Tx - \Pi^T(Ax - p)\} \quad \text{gives lowe} = value.$$

$$\stackrel{\text{Holinter: min}}{\geq} \min_{x\geq 0} \{c^Tx - \Pi^T(Ax - p)\}$$

$$\stackrel{\text{Holinter: min}}{\geq} \min_{x\geq 0} \{c^Tx - \Pi^T(Ax - p)\}$$

$$= \min_{x\geq 0} \{(c^T - \Pi^TA)x + \Pi^Tp\}$$

$$= \Pi^Tp + \min_{x\geq 0} \{(c^T - \Pi^TA)x\}$$

 \geq 0, proof left as an exercise (see next slide)

Q: why con I replace = "with">," in @

Global Behaviour of Value Function

$$\begin{bmatrix} c^{T} - \Pi^{T} A \end{bmatrix} x = \left(\begin{bmatrix} c_{B}^{T} \mid c_{N}^{T} \end{bmatrix} - c_{B}^{T} B^{-1} \left[B \mid N \right] \right) \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix}$$

$$= \left[c_{B}^{T} \mid c_{N}^{T} \right] \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix} - c_{B}^{T} \left[I \mid B^{-1} N \right] \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix}$$

$$= c_{B}^{T} x_{B} - c_{B}^{T} x_{B} + \left(c_{N}^{T} - c_{B}^{T} B^{-1} N \right) x_{N}$$

$$= r^{T} x_{N}$$

$$\geq 0 \qquad \text{(as } r \geq 0 \text{, and } x_{N} \geq 0 \text{)}$$

Global Behaviour of Value Function

Thus, we find

$$v(p) \geq \Pi^{T} p + \min_{x \geq 0} \{ (c^{T} - \Pi^{T} A) x \}$$

$$\geq \Pi^{T} p$$

$$= \Pi^{T} b + \Pi^{T} (p - b)$$

$$= c_{B}^{T} B^{-1} b + \Pi^{T} (p - b)$$

$$= v(b) + \Pi^{T} (p - b)$$

Shadow Prices in Example 1

Note: Π_1 is the shadow price for the budget of machine X.

At $p_1 = b_1 = 11$, the optimal costs change by $\Pi_1 = -\frac{2}{5}$ if the availability of X increases by 1.

Interpretation soy we were given Pi=10 -7 11

- Assume the company can buy a "small" additional amount of time on machine X, at price μ_1 per unit.
- ▶ Is it worthwhile to buy additional time on X?
 - Yes if $\mu_1 + \Pi_1 < 0$ (overall cost decreases);
 - No if $\mu_1 + \Pi_1 > 0$ (overall cost increases).
- \Rightarrow Therefore, $-\Pi_1$ is the maximum price one should pay for one additional unit of time on machine X!

Interpretation

New constraints RHS is therefore given as:

$$p = b + \xi e_t$$

with e_t being a vector with all coordinates 0 except a single 1 at position t:

$$e_t^T = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$$

Interpretation (assuming minimisation)

Extra production \Rightarrow total production cost:

$$\begin{cases} = v(b) + \Pi_t \xi & \text{if } B^{-1}(b + \xi e_t) \ge 0 \\ \ge v(b) + \Pi_t \xi & \text{in general.} \end{cases}$$

ACCEPT offer if $\mu_t + \Pi_t < 0$ and if $B^{-1}(b + \xi e_t) \ge 0$. REJECT offer if $\mu_t + \Pi_t > 0$ and if $B^{-1}(b + \xi e_t) \ge 0$. i.e. $-\Pi_t$ is the maximum price one should pay.

Maximisation Problems

For maximisation problems Theorem 8 is unchanged:

Theorem 8' (Local): If
$$B^{-1}p \ge 0$$
 then $v(p) = v(b) + \Pi^{T}(p - b)$.

and inequality is reversed in statement of Theorem 9:

Theorem 9' (Global):
$$v(p) \leq v(b) + \Pi^T(p-b)$$
 for all $p \in \mathbb{R}^m$.

NOV 13

- complete sen sitivity (read TT from Toblean)
- · Game theory
- · tutorial ou obuolity & sensitivity

$$\mathcal{N} = C_N - N^T (B^{-1})^T C_B$$

$$= Cs - \pi T Nes = Cs - \pi Tet$$

$$= O - \pi t$$

Q: Can we read shadow prices from final tableau?

Lemma: Suppose row t is initially a " \leq -constraint" and a slack variable x_s had been added. Then, $\Pi_t = \beta_s$, where β_s is the objective coefficient of x_s in the final (optimal) tableau.

Proof:

ightharpoonup If x_s is nonbasic in the final tableau, then

$$\beta_s = -r_s = -(c_N - N^T (B^{-1})^T c_b)^T e_s$$

= $-c_s + \Pi^T a_s = 0 + \Pi^T e_t = \Pi_t$.

where e_s is a vector of zeros except for a one in the s-th position, $a_s = Ne_s$ is column s of A, and since x_s is the slack for row t we noted that $c_s = 0$ and $a_s = e_t$.

Evaluation of Shadow Prices (cont)

If
$$x_s$$
 is basic in the final tableau, then
$$\beta_s = 0 = c_s = e_s^T c_B = e_s^T B^T \Pi = e_t^T \Pi = \Pi_t.$$
 Which completes the proof.
$$\Pi = \Pi_t = \Pi_t$$

Lemma: Suppose row t is initially a " \geq -constraint" and a surplus variable x_s had been added. Then, $\Pi_t = -\beta_s$, where β_s is the objective coefficient of x_s in the final tableau.

Example 1 (revisited)

The final tableau for Example 1 is:

BV	Z	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	RHS
Z	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	-8
<i>X</i> ₂	0	0	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	5
<i>X</i> 5	0	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	1	1
<i>x</i> ₁	0	1	0	3 5	$-\frac{1}{5}$	0	3

- ▶ The constraint on the availability of X was standardised by introducing the slack variable x_3 .
- The shadow price Π_1 for that constraint thus coincides with the coefficient of x_3 in the objective row of the above tableau $\Rightarrow \Pi_1 = -\frac{2}{5}$.