Projeto 5 - Simulações de Monte Carlo

Jefter Santiago (12559016)

Entrega: 08/06/2024

Introdução ao modelo de Ising

Seja uma malha 2D com L_x , L_y sítios nos eixos x e y, respectivamente. Cada sítio tem um spin $\sigma_k = \{-1, +1\}$ associado.

$$\mathcal{H} = -\frac{J}{2} \sum_{i=1}^{L_x} \sum_{\ell=1}^{L_y} s(i,\ell) \left[s_{i-1,\ell} + s_{i+1,\ell} + s_{i,\ell-1} + s_{i,\ell+1} \right] \quad (1)$$

trabalhamos apenas com malhas regulares quadradas, então $L \cdot L = N$, com $L = L_x = L_y$. a energia total é

$$E = \langle \mathcal{H} \rangle \tag{2}$$

Buscamos entender a relação da energia, magnetização e a temperatura nesse sistema. Partindo da função de partição

$$\mathcal{Z}(\beta) = \sum_{i=1}^{L} \sum_{\ell=1}^{L} e^{-\beta E}$$
(3)

onde E é a energia dada pela (1) e $\beta = 1/(K_bT)$. Além disso, o calor específico pode ser obtido por

$$C = \frac{1}{N} \frac{\langle \mathcal{H}^2 \rangle - \langle \mathcal{H} \rangle^2}{k_B T^2} \tag{4}$$

Partindo do hamiltoniano (1) e o spin σ_k em cada sítio (i,ℓ) podemos fazer diversas medidas como do sistema. Nesse trabalho estamos interessandos principalemente na energia média e magnetização média por sítio. Sendo a magnetização de um sítio sendo o estado do seu spin, dizemos que a magnetização total é simplesmente a soma de todos spins normalizada pela quantidade total de spins N.

$$\langle m \rangle = \frac{1}{N} \sum_{i=1}^{L} \sum_{\ell=1}^{L} s(i,\ell)$$
 (5)

Da descrição da magnetização e a eq.(5) já podemos intuir que as configurações correspondentes à máximo ou mínimo de magnetização são todos spins alinhados, sendo $\langle m \rangle_{\rm max} = \pm 1$.

Queremos estudar a relação dessas medidas de energia e magnetização e suas relações com a temperatura. Por isso buscamos uma outra relação para a magnetização média por spin. Utilizando a função de partição(3) para normalização dessa medida, temos Z constante de normalização e

$$\langle m \rangle = \frac{1}{N} \frac{1}{Z} \left(\sum_{\sigma}^{N} e^{-\beta E} s_{\sigma} \right)$$
 (6)

$$P(s) = \frac{e^{\beta s \Delta M}}{e^{-\beta s \Delta M} + e^{\beta s \Delta M}} \tag{7}$$

$$P(-s) = \frac{e^{-\beta s \Delta M}}{e^{-\beta s \Delta M} + e^{\beta s \Delta M}}$$
 (8)

onde ΔM é

$$\Delta M = J[s(i-1,\ell) + s(i+1,\ell) + s(i,\ell-1) + s(i,\ell+1)]$$
(9)

Com essa descrição da magnetização média por spin podemos impor alguma dinâmica para o sistema e observar as medidas desejadas. A dinâmica que trabalhamos nesse projeto que consiste em realizar alterar algum spin aleatório da malha de acordo com a probabilidade, isto é, sorteamos a chance de flipar o spin e se for menor ou maior (7) (8) o estado é alterado e realizamos as medidas desejadas. Utilizamos simulação de Monte Carlo para realizar a dinâmica até que o sistema atinja um determinado equilíbrio. Nesse método cada passo da simulação corresponde à dinâmica de alterar um spin para os N spins do sistema. Tipicamente nas simulações realizadas o número de passos de Monte Carlo utilizados foi 3000, mas para observar alguns fenômenos foi necessário aumentar esse número.

Detalhes de implementação

Todos os programas implementados no projeto seguem estruturas parecidas, portanto, foi criado um módulo apenas com operações básicas envolvendo o modelo de Ising em 2D. No arquivo ising_modules.f localizado na raiz do projeto estão as funções e rotinas gerais utilizadas nas diferentes simulações.

Na descrição da malha 2D foram adotadas condições periódicas de contorno, então as bordas da grade estão

conectadas e na discretização das posições dos spins foi utilizado um vetor de posição definido como

```
dimension ipbc(0:L+1)

N = L * L

! setting periodic boundary conditions

do i = 1, L

ipbc(i) = i

end do

ipbc(0) = L

ipbc(L+1) = 1
```

Além disso, como as (7) (8) envolvem exponenciais e são contas feitas várias vezes no programa, é mais eficiente armazenar o valor das exponenciais em vetores para cada um dos vizinhos $(i+1,\ell)$, $(i-1,\ell)$, $(i,\ell+1)$, $(i,\ell-1)$ de um spin em (i,ℓ) .

Algumas escolhas nas implementações podem ter sido ineficientes, como ter uma rotina apenas para initializar o calculo da magnetização. Embora isso seja verdade, optei por fazer dessa forma para obter um código mais limpo e fácil de trabalhar. Entretando poderia ter feito esse tipo de conta na inicialização da configuração da grade.

Segue abaixo as rotinas gerais utilizadas para medidas que envolvem o modelo de Ising:

```
subroutine define_exponentials(exps, beta)
  dimension exps(-4:4)
  do i = -4,4
     exps(i) = exp(-beta*i)/(exp(beta*i)+exp(-beta*i))
end subroutine define_exponentials
subroutine flip_spin(lattice, ipbc, exps, E, mag, L_real)
 implicit integer(s-s, d-d)
 implicit real(m-m)
 parameter(L = 100)
 parameter(J = 1.0)
 dimension exps(-4:4)
 byte lattice(1:L, 1:L)
 dimension ipbc(0:L+1)
  ! choose a random site
  i = floor(rand()* L_real) + 1
  k = floor(rand()* L_real) + 1
  dM = lattice(ipbc(i-1),k) + lattice(ipbc(i+1),k)
  dM = dM + lattice(i,ipbc(k-1)) + lattice(i,ipbc(k+1))
  dM = J * dM
  ! spin(i, k) and dM are positions of the lattice, so
  e_flip = exps(lattice(i,k)*dM)
  if(rand() < e_flip) then</pre>
     lattice(i, k) = - lattice(i, k)
     ! Magnetization
     N = L_real*L_real
     mag = mag + 2.0*(1.0e0*lattice(i, k)/N)
```

```
! print *, "<m> = ", mag
      ! Change in the energy
     E = E - 2*lattice(i, k)*dM
 end if
end subroutine flip_spin
function H_0(lattice, ipbc, L_real)
 parameter(L = 100)
 byte lattice(1:L, 1:L)
 dimension ipbc(0:L+1)
 H_0 = 0
 do i = 1, L_real
    do k = 1, L_real
         adj = lattice(ipbc(i-1),k)+lattice(ipbc(i+1),k)
         adj = adj+lattice(i,ipbc(k-1))+lattice(i,ipbc(k+1))
         H_0 = H_0 + adj * lattice(i, k)
    end do
           E = (-J/2) * (s(i, j)[s(i 1, j) + s(i + 1, j) + s(i, j 1) + s(i, j + 1))
 H_0 = -0.5 * H_0
end function H_0
subroutine initialize_lattice(lattice, L_x, L_y)
 implicit real(m-m)
 parameter(L = 100)
 byte lattice(1:L, 1:L)
 ! initializing lattice
 do i = 1, L_x
    do k = 1, L_y
       lattice(i, k) = 1
    end do
 end do
end subroutine initialize_lattice
\textbf{subroutine} \  \, \text{initialize\_random\_lattice(lattice, L\_x, L\_y)}
 implicit real(m-m)
 parameter(L = 100)
 byte lattice(1:L, 1:L)
 ! initializing lattice
 do i = 1, L_x
     do k = 1, L_y
        if(rand() < 0.5) then
             lattice(i, k) = 1
              lattice(i, k) = -1
          end if
     end do
end subroutine initialize_random_lattice
subroutine total_magnetization(lattice, mag, L_real)
 implicit real(m-m)
 parameter(L = 100)
 byte lattice(1:L, 1:L)
 N = L_real * L_real
 mag = 0.0e0
 do i = 1, L_real
     do j = 1, L_real
          mag = mag + 1.0e0 * lattice(i, j)
     end do
```

33

37

38

62

77

83

84

```
end do
mag = mag / N
end subroutine total_magnetization

subroutine write_lattice(lattice, L_real, f_name)

implicit integer (f-f)
parameter(L = 100)
byte lattice(1:L, 1:L)
character *1 symb(-1:1)
symb(1) = '1'
symb(-1) = '0'
do i = 1, L_real
write(f_name,'(100A2)') (symb(lattice(i,j)),j = 1,L_real)
end do
end subroutine write_lattice
```

Tarefa A - Dinâmica de Monte Carlo para temperaturas fixas

Nessa tarefa foi simulado a dinâmica de Monte Carlo para sistemas com temperaturas iniciais relativas à $\beta=3$ e $\beta=0.1$. Para temperaturas altas, β pequeno, é esperado que o sistema não atinja o equílibrio após a dinâmica. O oposto acontece com a dinâmica de temperatura baixa, o sistema fica ordenado e a magnetização ficará nula.

As simulação foram feitas para malhas de tamanhos L=60 e L=100. Segue abaixo a estrutura a implementação das simulações:

```
open(1, file="saidas/tarefa-1/saida-tarefa-A1-conf-L60.dat")
open(3, file="saidas/tarefa-1/saida-tarefa-A1-conf-L100.dat")
open(5, file="saidas/tarefa-1/saida-tarefa-A2-conf-L60.dat")
open(7, file="saidas/tarefa-1/saida-tarefa-A2-conf-L100.dat")
open(2, file="saidas/tarefa-1/saida-tarefa-A1-energia-L60.dat")
open(4, file="saidas/tarefa-1/saida-tarefa-A1-energia-L100.dat")
open(6, file="saidas/tarefa-1/saida-tarefa-A2-energia-L60.dat")
open(8, file="saidas/tarefa-1/saida-tarefa-A2-energia-L100.dat")
call tarefal(60, 3.0, 1, 2)
call tarefal(60, 0.1, 5, 4)
call tarefal(100, 3.0, 3, 6)
call tarefal(100, 0.1, 7, 8)
do i = 1, 8
   close(i)
end do
subroutine tarefal(L_real, beta, fname1, fname2)
    implicit integer(f-f)
    implicit real(m-m)
    parameter(L = 100)
    dimension exps(-4:4)
```


Figura 1: Configuração final para malha de tamanho L=100.

```
byte lattice(1:L, 1:L)
    ! periodic boundary conditions
   dimension ipbc(0:L+1)
    ! this or using mod
   N = L_real * L_real
   ! setting ipbc
   do i = 1, L_real
       ipbc(i) = i
    end do
   ipbc(0) = L_real
   ipbc(L_real+1) = 1
   call define_exponentials(exps, beta)
    call initialize_lattice(lattice, L_real, L_real)
    ! initial energy
   E = H_0(lattice, ipbc, L_real)
   write(fname2, *) 0, E
   call srand(iseed)
    ! intialize monte carlo dynamics
   do k = 1, 3000
       ! sweeps all configurations
       ! randomly flips spins
       do i = 1 , N
          call flip_spin(lattice,ipbc,exps,E,m,L_real)
       end do
       write(fname2, *) k, E / N
   call write_lattice(lattice, L_real, fname1)
end subroutine tarefal
```

*A.*1 -
$$\beta = 3$$

Podemos constatar pelas (3) e (1) que o sistema fica totalmente ordenado. A magnetização do sistema é $\langle m \rangle = \pm 1$ dependendo da orientação da ordenação.

$$A.2 - \beta = 0.1$$

Para temperaturas mais altas o sistema fica desordenado, sem uma orientação fixa para todos spins da malha, nesse caso a simetria vai existir magnetização mas essa é balanceada pelas orientações contrárias e se cancela.

Pelas figuras (??) e (??) podemos observar o estado final do sistema para diferentes tamanhos de grade.

Figura 2: Configuração final para malha de tamanho L=60.

Figura 3: Configuração final para malha de tamanho L=60.

B.1 - Recozimento

O programa desenvolvido para essa simulação está abaixo:

```
Tarefa B - Recozimento e quenching
implicit real(j-j, m-m)
parameter(L = 100)
dimension exps(-4:4)
byte lattice(1:L, 1:L)
! periodic boundary conditions
dimension ipbc(0:L+1)
L_real = 90
do i = 1, L_real
   ipbc(i) = i
end do
ipbc(0) = L_real
ipbc(L_real+1) = 1
N = L_real * L_real
mag = 0.0d0
call srand(351324)
call initialize_random_lattice(lattice, L_real, L_real)
open(1, file="saidas/tarefa-2/saida-tarefa-B1-conf-inicial.dat")
open(2, file="saidas/tarefa-2/saida-tarefa-B1-conf-final.dat")
open(3, file="saidas/tarefa-2/saida-tarefa-B1-mag-eng.dat")
call write_lattice(lattice, L_real, 1)
call total\_magnetization(lattice, mag, L\_real)
! initial energy
E = H_0(lattice, ipbc, L_real)
dbeta = 0.001
! monte carlo dynamics
do i = 1, 3000
   beta = i * dbeta
   call define_exponentials(exps, beta)
   do k = 1 , N
         call flip_spin(lattice,ipbc,exps,E,mag,L_real)
    end do
   write(3, *) i, mag, E/N
call write_lattice(lattice, L_real, 2)
close(1)
close(2)
close(3)
```

Fazendo evolução da temperatura de forma lenta, com $\Delta\beta=0.001$ temos o processo de recozimento. Partimo do sistema desordenado, com temperatura infinita e a cada

Figura 5: Configuração inicial da simulação. $\beta = 1/2$

passo de Monte Carlo provocamos uma variação de temperatura $\Delta\beta$. A figura (5) mostra a configuração inicial do sistema de spins.

Estamos interessados em observar a energia média por spin. Pelo gráfico abaixo(6) nota-se que a energia média parte de zero, pois o sistema está completamente desordenado, e decresce até atingir a energia limite em -2.

Figura 6: Energia média de spin por iterações de Monte Carlo.

Além disso, temos a configuração final dos spins do sistema bidimensional(7). Há uma faixa de magnetização na malha, a presença dela deve estar associada ao número de iterações de Monte Carlo feita utilizado na simulação (3000 passos) que não foi o bastante para o sistema ficar todo alinhado.

B.2 - Tempera

O código dessa simulação é quase idêntico ao da tarefa anterior e está compilado abaixo:

Figura 7: Configuração final da malha 2D após dinâmica de recozimento.

```
call srand(96312)
call initialize_random_lattice(lattice, L_real, L_real)
open(1, file="saidas/tarefa-2/saida-tarefa-B2-conf-inicial.dat")
open(2, file="saidas/tarefa-2/saida-tarefa-B2-conf-final.dat")
open(3, file="saidas/tarefa-2/saida-tarefa-B2-mag-eng.dat")
call write_lattice(lattice, L_real, 1)
call total_magnetization(lattice, mag, L_real)
! initial energy
E = H_0(lattice, ipbc, L_real)
dbeta = 0.001
write(3, *) 0, mag, E/N
! monte carlo dynamics
call define_exponentials(exps, beta)
do i = 1, 3000
   do k = 1 . N
         call flip_spin(lattice,ipbc,exps,E,mag,L_real)
   write(3, *) i, mag, E/N
call write_lattice(lattice, L_real, 2)
close(1)
close(2)
close(3)
```

Nessa simulação partimos da mesma configuração inicial que a anterior e variamos o β de maneira brusca e o sistema pode não atingir o equiblirio. Foi utilizada uma malha de tamanho L=90 para essa simulação e mesmo número de passos.

Nota-se que a energia média decaí muito mais rapidamente que no caso anterior(6) e a configuração final consegue atingir o equiblirio(9). Diferentemente do processo anterior, na têmpera os spins vizinhos conseguem se alinhar no tempo de Monte Carlo utilizado na simulação.

Figura 8: Energia média de spin por iterações de Monte Carlo.

Figura 9: Configuração final para rede de spins na dinâmica de têmpera.

C.1 - Histerese

Segue abaixo a implementação da simulção de histerese:

```
open(1, file="saidas/tarefa-3/saida-tarefa-C1-L60-DB1.dat")
open(2, file="saidas/tarefa-3/saida-tarefa-C1-L60-DB2.dat")
open(3, file="saidas/tarefa-3/saida-tarefa-C1-L80-DB1.dat")
open(4, file="saidas/tarefa-3/saida-tarefa-C1-L80-DB2.dat")
open(5, file="saidas/tarefa-3/saida-tarefa-C1-L100-DB1.dat")
open(6, file="saidas/tarefa-3/saida-tarefa-C1-L100-DB2.dat")
call tarefaC1(60, 0.001, 1)
call tarefaC1(60, 0.0001, 2)
call tarefaC1(80, 0.001, 3)
call tarefaC1(80, 0.0001, 4)
call tarefaC1(100,0.001, 5)
call tarefaC1(100,0.0001, 6)
do i = 1, 6
   close(i)
end do
end
subroutine tarefaC1(L_real, dbeta, f_name)
    implicit integer(f-f)
           Tarefa B - Recozimento e quenching
    implicit real(j-j, m-m)
    parameter(L = 100)
    dimension exps(-4:4)
    byte lattice(1:L, 1:L)
    ! periodic boundary conditions
    \textbf{dimension} \ \texttt{ipbc(0:L+1)}
    do i = 1, L_real
       ipbc(i) = i
    end do
    ipbc(0) = L_real
    ipbc(L_real+1) = 1
    N = L_real * L_real
    mag = 0.0d0
    call srand(96312)
    call initialize_random_lattice(lattice, L_real, L_real)
    call total_magnetization(lattice, mag, L_real)
    ! initial energy
```

```
E = H_0(lattice, ipbc, L_real)

beta = 0.0

write(f_name, *) 0, beta, mag, E/N

imax = int(1.75 / dbeta) + 1

do i = 1, imax

    call define_exponentials(exps, beta)

if(i < imax/ 2) then
    beta = beta + dbeta
    else
        beta = beta - dbeta
    end if

do k = 1 , N
        call flip_spin(lattice,ipbc,exps,E,mag,L_real)
    end do

write(f_name, *) i, beta, mag, E/N

end do
end subroutine tarefaC1</pre>
```

No gráfico (10) temos o comportamento da energia média por spin na dinâmica do loop térmico e o gráfico de histerese, isto é, a energia média em relação à β para variações de $\Delta b = 0,001$.

Figura 10: À esquerda energia média por spin por iterações de Monte Carlo e à direita em relação à β .

A figura (11) equivale a dinâmica como a anterior, mas com uma variação $\Delta\beta=0,0001$, que fornece um resultado com menos flutuações, sobretudo para as redes maiores.

Figura 11: À esquerda energia média por spin por iterações de Monte Carlo e à direita em relação à β .

Podemos observar nos gráficos que a região de histerese

correspondem à um intervalo de β entre 0,4 e 0,6, mas apenas a partir dessas medidas não conseguimos ter uma boa precisão dessa medida.

C.2 - Temperatura crítica

Modificação no código do item anterior:

```
dimension betas(1:5)
parameter(betas = (/0.41, 0.44, 0.47, 0.51, 0.55/))
open(1, file="saidas/tarefa-3/saida-tarefa-C2-L60-b1.dat")
open(2, file="saidas/tarefa-3/saida-tarefa-C2-L60-b2.dat")
open(3, file="saidas/tarefa-3/saida-tarefa-C2-L60-b3.dat")
open(4, file="saidas/tarefa-3/saida-tarefa-C2-L60-b4.dat")
open(5, file="saidas/tarefa-3/saida-tarefa-C2-L60-b5.dat")
do i = 1, 5
   call tarefaC2(60, betas(i), i)
end do
open(1, file="saidas/tarefa-3/saida-tarefa-C2-L80-b1.dat")
open(2, file="saidas/tarefa-3/saida-tarefa-C2-L80-b2.dat")
open(3, file="saidas/tarefa-3/saida-tarefa-C2-L80-b3.dat")
open(4, file="saidas/tarefa-3/saida-tarefa-C2-L80-b4.dat")
open(5, file="saidas/tarefa-3/saida-tarefa-C2-L80-b5.dat")
do i = 1, 5
   call tarefaC2(80, betas(i), i)
end do
open(1, file="saidas/tarefa-3/saida-tarefa-C2-L100-b1.dat")
open(2, file="saidas/tarefa-3/saida-tarefa-C2-L100-b2.dat")
open(3, file="saidas/tarefa-3/saida-tarefa-C2-L100-b3.dat")
open(4, file="saidas/tarefa-3/saida-tarefa-C2-L100-b4.dat")
open(5, file="saidas/tarefa-3/saida-tarefa-C2-L100-b5.dat")
do i = 1, 5
   call tarefaC2(100, betas(i), i)
   close(1)
end do
subroutine tarefaC2(L_real, beta, fname)
       Tarefa B - Recozimento e quenching
   implicit integer(f-f)
   implicit real(j-j, m-m)
   parameter(L = 100)
   dimension exps(-4:4)
   byte lattice(1:L, 1:L)
   ! periodic boundary conditions
   dimension ipbc(0:L+1)
   do i = 1, L_real
       ipbc(i) = i
   end do
   ipbc(0) = L_real
```


Figura 12: Configuração inicial para dinâmica utilizada na medida de temperatura crítica.

```
ipbc(L_real+1) = 1
    N = L_real * L_real
    mag = 0.0d0
    call srand(L_real * 392)
    ! half ordered / half random.
    call initialize_lattice(lattice, L_real, L_real)
    call initialize_random_lattice(lattice, L_real/2, L_real)
    open(99, file = "saidas/tarefa-3/saida-tarefa-C2-conf.dat")
    call write_lattice(lattice, L_real, 99)
    close(99)
    call total_magnetization(lattice, mag, L_real)
    ! initial energy
    E = H_0(lattice, ipbc, L_real)
    dbeta = 0.01
    write(fname, *) 0, E/N
    do i = 1, 3000
        call define_exponentials(exps, beta)
        \mbox{do} \ k \ = \ 1 \ \ , \ \ N
            call flip_spin(lattice,ipbc,exps,E,mag,L_real)
        write(fname, *) i, E/N
    end do
end subroutine tarefaC2
```

Partimos dos resultados do item anterior e tentamos obter a temperatura crítica do modelo. Para isso observamos a variação de energia no intervalo β discutido antes, isto é, $0,4<\beta<0.6$. A imagem (12) mostra a configuração inicial do sistema. Foram escolhidos alguns valores de β para executar a dinâmica de Monte Carlo.

Nas figuras (14), (13) e (15) estão as evoluções, em um intervalo de passos de Monte Carlo reduzido, da energia média por spin.

Figura 13: Dinâmica para L=80.

Figura 14: Dinâmica para L=60.

Nota-se que as energias médias por spin sempre partem do mesmo valor no intervalo da histerese e a que possui maior variação é a que corresponde à $\beta=0.44$, esse é o β relacionado à temperatura crítica $T_c=1/\beta_c\approx 2,27$.

Figura 15: Dinâmica para L=100.

Além disso, pela (4) podemos constatar que esse β_c = 0,44 também está associado à um valor específico crítico no modelo.

Tarefa D - Quebra espontânea de simetria

Nessa tarefa o nosso interesse é estudar o fenômeno de quebra espontânea de simetria. Queremos mostrar que o tempo que um sistema leva para mudar toda a orientação de magnetização cresce de forma exponencial com a dimensão da malha utilizada. Para isso foi implementado uma simulação que executa passos de Monte Carlo e contabiliza o intervalo de tempo de Monte Carlo que o sistema leva para mudar a magnetização conforme o tamanho L da rede aumenta.

O código em fortran para essa simulação está abaixo:

```
implicit integer(f-f)
implicit real(m-m)
parameter(L = 100)
dimension exps(-4:4)
byte lattice(1:L, 1:L)
! periodic boundary conditions
dimension ipbc(0:L+1)
! this or using mod
open(unit=1, file="saidas/tarefa-4/saida-tarefa-D.dat")
open(unit=2, file="saidas/tarefa-4/saida-tarefa-MAG_T.dat")
beta = 0.5
call define_exponentials(exps, beta)
do L_real = 4, 10
   print *, "L = ", L_real
    call srand(3519) ! /L_real+1)
   N = L_real * L_real
   ! setting ipbc
   do i = 1, L_real
```

```
ipbc(i) = i
    end do
    ipbc(0) = L_real
    ipbc(L_real+1) = 1
    mag = 0.0e0
    call initialize_random_lattice(lattice, L_real, L_real)
    call total_magnetization(lattice, mag, L_real)
    n_inversions = 10000
    n_curr = 0
    n_{time} = 0
    do while(n_curr < n_inversions)</pre>
        mag_prev = mag
        do i = 1, N
            call flip_spin(lattice, ipbc, exps, E, mag, L_real)
        n_{time} = n_{time} + 1
        ! Fazer o gráfico da magnetização aqui.
        if(mag_prev * mag < 0) then
            t_mean = t_mean + n_time
            n_time = 0
            n_curr = n_curr + 1
        end if
    end do
    write(2, *) t_mean, mag
    t_mean = t_mean / n_inversions
    write(1, *) L_real, t_mean
end do
close(1)
```

Podemos ver pela figura(16) que o intervalo cresce de forma exponencial com o tamanho L da malha:

Figura 16: Gráfico do crescimento do intervalo $\langle T_{\rm intervalo} \rangle$ em função de L e ajuste linear.

Para implementação com número de inversões da ordem de 10^4 foi obtido o ajuste linear $\ln (\langle T_{\rm intervalo}(L) \rangle) \approx 3,67 + 0,49 \cdot L$.

Essa dependência exponencial para que ocorra quebra da simetria talvez explique o que ocorre na simulação da tarefa B em que o sistema atinge o equilibrio mas a magnetização tem comportamento não usual. Aumentando o número de passos de Monte Carlo naquela simulação pode resolver o aparente problema.