2D CFT from a bootstrapping perspective

X. D. H.

 $E ext{-}mail: yuliu21012858@gmail.com}$

ABSTRACT: 本文主要 follow 讲义"Conformal field theory on the plane"目的是更加系统化清晰的学习 2D CFT 的内容,并且涉及更加 advanced 的 topic。这个 note 不一样的地方是从bootstrap 的角度重新构建了量子场论与共形场论,同时通过对称性代数的讨论拒绝了对于经典的场论量子化的讨论。而是直接从"量子态"和"关联函数"(或者说量子场)这两个量子场论最基本的物理量开始讨论。

ARXIV EPRINT: 114.514

目录

1	the	2			
	1.1	Definitions	2		
	1.2	bootstrap method	3		
		1.2.1 Symmetry assumption	3		
		1.2.2 Consistency condition	4		
	1.3	Lagrangian method	ϵ		
2	highlight of Basic CFT				
	2.1	Symmetry algebra on manifold	7		
	2.2	2 Symmetry algebra on Spectrum			
	2.3	Spectrum of CFT	8		
	2.4	Conformal bootstrap	S		
3	Spe	ectrum of CFT	11		
	3.1	highest-weight representation	11		
	3.2	Verma modules & degenerate representation	13		
	3.3	singular vector 存在的条件	15		
	3.4	Sigular vector in all level 存在的条件	16		
	3.5	Unitary 对理论约束	18		
4	Correlation function of CFT				
	4.1	Fields corresponding to the spectrum	19		
	4.2	EM Tensor 包含对称性信息的场	20		
	4.3	Ward Identity 对称性约束条件	23		
		4.3.1 Local WI	24		
		4.3.2 Global WI	26		
	4.4	Global WI 对于 primary field 关联函数对称性约束	27		
	4.5	Local WI 对于 primary field OPE 的约束	30		
5	Cor	rrelation function of CFT(degenerate field)	35		
6	Cor	nformal Block basic	36		

7	Cor	ıforma	al block and crossing symmetry	38
	7.1	Confo	ormal Blocks	38
		7.1.1	q 的 0 阶的展开项	39
		7.1.2	q 的高阶的展开项	40
	7.2	derivi	ng conformal block	41
		7.2.1	4-point function conformal block	41
		7.2.2	one point function on a torus	44

1 theoretical QFT

1.1 Definitions

我们最初需要明确量子场论是什么? 在此我们使用比较抽象的语言描述。我们认为: quantum field theory is particularly well-suited to predicting the outcomes of collisions of particles, whether in the cosmos or in a particle accelerator.

而对任何理论我们主要研究的对象就是 Observables, 对于量子场论我们有两种 Obserable:

• Spectrum: 也就是系统的态的集合。描述系统整体性质。

$$|\sigma\rangle$$
 (1.1)

• Coorelation function: 也就是态对应的场的平均值。描述场的相互作用。

$$\left\langle \prod_{i=1}^{N} V_{\sigma_i}(x_i) \right\rangle \in \mathbb{C} \tag{1.2}$$

注意: 我们这里的讨论不包含"算符"也没有引入类似的概念。

对于 Spectrum 和 Correlation function 两种客观测量存在着一个对应关系。这是量子场论的公理这个公理保证我们可以用两种角度来研究这个理论。

Axiom 1. 每一个量子态(也就是 Spectrum) $|\sigma\rangle$ 对应着一个场 $V_{\sigma}(x)$

Remark:

我认为这个对应可以这样理解。

量子态对应着路径积分。那么态对应的场其实是如果在这个场所在的点进行一个圆圈 向外进行路径积分积分出的量子态。等价于在这个场这个点放一个初始的量子态往外演化出的量子态。

下面这个图片可以说明这个 point:

Remark:

我们定义的场都是在 Correlation function 的意义下的。单纯的拿出一个场对于量子场论是没有意义的。

由于我们研究的是 2D CFT。所以我们的讨论全部都是欧几里得量子场论。我们认为所有的维度都是等价的。或者说"时间维"可以任意选取。

1.2 bootstrap method

我们引入一个方法来构建一个量子场论。为了构建一个量子场论我们需要两点:

- Symmetry assumption
- Consistency condition

1.2.1 Symmetry assumption

Theorem 1. 如果场论存在对称性,那么 Spectrum 必须是这个对称性对应的代数的表示:

$$S = \bigoplus_{\mathcal{R}} m_{\mathcal{R}} \mathcal{R} . \tag{1.3}$$

(甘实是说是表示的其)

因此,量子场论的量子态可以写成: $|\sigma\rangle = |(\mathcal{R}, v)\rangle$ 其中 \mathcal{R} 是某个表示的 label,而 v 代表的是这个表示的第几个基。这个对于角动量很好理解,对于球对称的理论,本征态应该是被 j,m 这个用 j 代表的 SU2 群的表示,其中第 m 个基表示的。

我们认为对于量子态 $|(\mathcal{R}, v)\rangle$,或者关联函数 $\prod_i V_{(\mathcal{R}_i, v_i)}(x_i)$ (在量子场论里面我们很大程度研究的其实是场,或者关联函数),对称性假设决定了 \mathbf{v} ,而 consistency condition 决定了 \mathcal{R} 。而当量子态确定了,我们的理论的核心也就明确了。

Remark:

• Space-time symmetry: 这个对称性作用在流形上,并且场需要协变。

• internal Symmetry: 这个对称性不作用在流形上。

1.2.2 Consistency condition

首先我们讨论一个 consistent 的场论应该有的对于 correlation function (或者说场, 因为 我们的场都是在 correlation function 的意义下定义的)的公理条件:

$$V_{\sigma_1}(x_1)V_{\sigma_2}(x_2)=V_{\sigma_2}(x_2)V_{\sigma_1}(x_1) \eqno(1.4)$$
非同点场的关联函数 $Commute$ 。

XIOH 3. Of E
$$V_{\sigma_1}(x_1)V_{\sigma_2}(x_2)=\sum_{\sigma\in\mathcal{S}}C^{\sigma}_{\sigma_1,\sigma_2}(x_1,x_2)V_{\sigma}(x_2) \tag{1.5}$$
在复数的系数的 OPE 。

第一个公理保证了 OPE 的系数的两个性质:

• 结合律:

$$\sum_{\sigma_s \in \mathcal{S}} C_{\sigma_1, \sigma_2}^{\sigma_s}(x_1, x_2) C_{\sigma_s, \sigma_3}^{\sigma_4}(x_2, x_3) = \sum_{\sigma_t \in \mathcal{S}} C_{\sigma_1, \sigma_t}^{\sigma_4}(x_1, x_3) C_{\sigma_2, \sigma_3}^{\sigma_t}(x_2, x_3)$$
(1.6)

• 交换律: 也就是两个场左右交换其 OPE 不变((

根据上面的公理我们可以完整的计算出关联函数:

Theorem 2. 根据上面的公理、任意的关联函数可以由 2 point function 以及 OPE 的系

$$\left\langle \prod_{i=1}^{4} V_{\sigma_i}(x_i) \right\rangle = \sum_{\sigma \in \mathcal{S}} C_{\sigma_1, \sigma_2}^{\sigma}(x_1, x_2) \sum_{\sigma' \in \mathcal{S}} C_{\sigma, \sigma_3}^{\sigma'}(x_2, x_3) \langle V_{\sigma'}(x_3) V_{\sigma_4}(x_4) \rangle \tag{1.7}$$

而我们认为 2 point function 是一个已知的量。如果我们的系统满足:

- OPE 系数仅由位置决定
 Spectrum 可以写成少量表示的直和
 那么我们的系统很容易确定。

对于共形场论来说我们的上面的几条都能够满足,并且求出来! 同时,我们之前探讨的 对称性条件不仅仅会决定一个态的能取的 Spectrum 同时还会决定我们的 OPE。

Consistency condition 对于 OPE 系数的约束!

由于态在对称性变换下表示并不会变,会变的是表示的基,就是说元素作用在表示的基 上面会变成其他基的线性组合——这本身构成了一个大堆线性的约束方程。所以对称性约束 能够约束住某一个表示的基的具体的分量,也就是说约束是 $f(x_1, x_2, v_1, v_2, v_3) = 0$ 可以进行 求解。而 OPE 的系数的解的个数只和表示本身相关,因为这个决定了方程的形式。我们认为 对于 OPE 的系数 $C^{(\mathcal{R}_3,v_3)}_{(\mathcal{R}_1,v_1),(\mathcal{R}_2,v_2)}$ 的可能的解的数量是 $N^{\mathcal{R}_3}_{\mathcal{R}_1\mathcal{R}_2}$ 称之为 fusion multiplicity。

Definition 1. 我们定义两个表示的 fusion product 为:

$$\mathcal{R}_1\times\mathcal{R}_2=\sum_{\mathcal{R}_3}N^{\mathcal{R}_3}_{\mathcal{R}_1\mathcal{R}_2}\mathcal{R}_3\;. \eqno(1.8)$$
足:双线性,结合律,交换律。

讨论一下 fusion product 最重要的是包含了 OPE 的信息, 它告诉我们两个不同的场(也, 就是不同表示的量子态对应的场)可以进行一个运算操作,称为 OPE。这个运算操作的结果是 变成了了另外很多表示的场的集合。而 fusion product 正是描述这些混合的表示之间在 OPE 这个不同表示之间的量的运算下体现出来的关系。

Remark:

很值得讨论的是 fusion product 和 tensor product 的区别。

一个直观的想法就是 fusion product 融入了 OPE 的信息。这个信息对于场论至关重要!!

如果存在一个 \mathcal{R}_3 使得 $N_{\mathcal{R}_1\mathcal{R}_2}^{\mathcal{R}_3} \geq 2$ 我们称之为 non-trivial。仅为 0 或者 1 的时候是 trivial 的。我们会意识到,如果是 nontrivial 的那么就是说明约束 $f(x_1, x_2, v_1, v_2, v_3) = 0$ (例如 Ward Identity)并不可以完全的约束住 OPE 的系数。那么就是在表示确定的时候 OPE 的一些场的系数还是可能有很多解,需要通过更细致的讨论表示的具体的量子态来确定系数。但是如果真的可以约束住只和表示本身有关,也就是表示确定了这个表示之中所有的量子态的 OPE 系数都可以确定的话没那么就是 Trivial 的。

如果所有的 $\mathcal{R}_1 \times \mathcal{R}_2$ 都是 trivial 的话,那么其实 $C^{(\mathcal{R}_3,v_3)}_{(\mathcal{R}_1,v_1),(\mathcal{R}_2,v_2)}$ 在给定 \mathcal{R}_1 等表示之后已经确定了。因此我们的 OPE 仅仅需要对于表示求和,而不需要对于表示的某一个特定的基(量子态)进行求和。因为,对于特定基的求和系数已经通过表示确定了,所以可以省略不写出来!

Definition 2. 定义 Simple current:

some \mathcal{R}_3 , and trivial multiplicities if $N_{\mathcal{R}_1\mathcal{R}_2}^{\mathcal{R}_3} \in \{0,1\}$. A field is called a **simple current** if the corresponding representation \mathcal{R} is such that $\mathcal{R} \times \mathcal{R}'$ is indecomposable for any indecomposable \mathcal{R}' , so that $\sum_{\mathcal{R}''} N_{\mathcal{R}\mathcal{R}'}^{\mathcal{R}''} = 1$.

总结:

OPE coefficients obey linear equations from symmetry and quadratic equations (1.2.7) from consistency. The numbers of OPE coefficients, consistency equations, and terms in these equations, are determined by the dimension of the spectrum and are therefore in general very large. With the help of symmetry, these numbers can be reduced to the number of representations in the spectrum.

1.3 Lagrangian method

我们有时候会使用拉格朗日的方法研究场论。这个时候关联函数被定义为:

$$\left\langle \prod_{i=1}^{n} V_{\sigma_i}(x_i) \right\rangle = \int D\phi e^{-\int dx L[\phi](x)} \prod_{i=1}^{n} \tilde{V}_{\sigma_i}[\phi](x_i)$$
(1.9)

对于一个拉格朗日量的理论,我们预先知道 lagrangian 但是需要注意的是 lagrangian 不能代表这个系统的对称性,因为 measure 也可能对于对称性有影响。

我们的评价是,拉格朗日量不重要,累赘,我们讨论一般的理论,我们不计算!!!

2 highlight of Basic CFT

我们之后会研究一种量子场论,是二维的欧几里得量子场论。接下来我们用一种对称性 来描述这个量子场论。这个对称性描述了这个量子场论。

2.1 Symmetry algebra on manifold

我们首先讨论 \mathcal{R}^2 上面的流形的共形变换。可以定义一个代数称之为 Witt Algebra:

$$[\ell_n, \ell_m] = (n-m)\ell_{n+m} \tag{2.1}$$

我们定义 \mathcal{R}^2 上面的 local conformal transformation 的 Symmetry Algebra 是:

$$\ell_n + \bar{\ell}_n \quad , \quad i(\ell_n - \bar{\ell}_n) \ . \tag{2.2}$$

注意,我们的生成元不是 Witt Algebra 之中的任意元素,而仅仅是上面两种组合。因为我们 考虑的是一个二维的空间的共形变换 z 和 \bar{z} 并不是独立的。这个不独立性保证了只能有这两 种组合。

2.2 Symmetry algebra on Spectrum

上面的对称性是对于经典的流形的。接下来我们讨论共形场论这个量子场论的对称代数 是什么。

为了得到量子场论的 Symmetry algebra。我们需要进行"algebra extension"。我们进行两 个步骤:

- central extension: 也就是我们需要加入一个 central charge
- 解析延拓: 我们认为我们作用的空间是 \mathbb{C}^2 , 因此这个时候全纯和反全纯部分不再是相 关联的而是独立的两个变量。但是最后讨论到实际的量子场论,这两个必须是一个。

在这两个操作的基础上我们定义了 Virasoro Algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n-1)n(n+1)\delta_{n+m,0}$$
(2.3)

我们认为解析延拓之后,量子场论的 Symmetry Algebra 是两套 Virasoro Algebra,一个 left moving; 一个 right moving。并且这两套 algebra 互相 commute。

 $oldsymbol{Axiom 4.}$ 二维的共形场论的代数 我们定义二维的共形场论是由两套 $\emph{Virasoro}$ 代数生成的。分别是: \emph{L}_n 和 $ar{\emph{L}}_n$ 。

2.3 Spectrum of CFT

我们已经知道对称代数是两套 Virasoro 代数,那么我们知道二维的共形场论的 Spectrum 是两个 Vir 代数的表示。

1. 首先讨论对于 Spectrum 的基本约束:

Axiom 5. CFT 的 spectrum

• 2D CFT 的 spectrum 分解成 Irreducible and factorizable 表示 of 两个 Virasoro 代数 之后, 当表示的矩阵作用在基 (量子态) 上面的时候。

factorizable 的表示意味着谱可以写成这个形式:

$$S = \bigoplus_{(\mathcal{R}, \mathcal{R}') \in \text{Rep}(\mathfrak{V})^2} m_{\mathcal{R}, \mathcal{R}'} \mathcal{R} \otimes \bar{\mathcal{R}}'$$
(2.4)

其中写道的 $\operatorname{Rep}(\mathfrak{V})$ 是 Vir 代数的一个不可约表示。也就是表示相当于两个两边的 不可约表示直积!

- L_0 和 \bar{L}_0 是对角化的。也就是说态是这两个算符的本征值
- $L_0 + \bar{L}_0$ 是有下限的。也就是存在一个基态使得本征值最低 我们认为这个算符特殊是因为他是 radial coordinate 的 dilation 的生成元。

2. 接下来讨论 Symmetry consistent condition 带来的 Spectrum 的约束:

Axiom 6. 对于 CFT 如果两个不可约表示 \mathcal{R}_1 和 \mathcal{R}_2 出现在 Spectrum 之中。那么所有 $N^{\mathcal{R}_3}_{\mathcal{R}_1\mathcal{R}_2}\neq 0$ 的表示 \mathcal{R}_3 也会出现在表示之中。

这里我们回顾什么叫 $N_{\mathcal{R}_1\mathcal{R}_2}^{\mathcal{R}_3} \neq 0$ 其实就是,第三个表示能够出现在前两个表示下基对应 的态对应的场的 OPE 之中!!

3. 最后讨论 L_0 和 \bar{L}_0 这两个特殊的算符的本征值。我们称之为:conformal dimension。 如果 v_1 是一个 L_0 的本征态, 本征值是: Δ_1 。并且, 存在另一个态满足:

$$v_2 = \left(\prod_i L_{n_i}\right) v_1 \tag{2.5}$$

那么我们可以得到 v_2 也是一个本征态并且本征值是:

$$\Delta_2 = \Delta_1 - \sum_i n_i \tag{2.6}$$

这个是由代数关系自己决定的!

4. Vir 代数的表示我们可以想成一个 global conformal Symmetry group 的表示的组合而成。

首先我们讨论 Global conformal symmetry 的表示。我们知道 GCT 的代数只有三个元素 L_0, L_1, L_{-1} 。对于这种情况下我们如下构建表示:

$$L_0|v\rangle = \Delta|v\rangle \quad L_1|v\rangle = 0 \quad L_0(L_{-1}|v\rangle) = (\Delta + 1)L_{-1}|v\rangle \tag{2.7}$$

我们用 Δ 也就是这个表示之中 L_0 最小的本征态作为这个表示的 label。

那么我们用这个表示来书写 Vir 代数的表示,我们认为对于 Vir 代数的某一个表示 $\mathcal R$ 可以写成:

$$\mathcal{R} = \bigoplus_{n \in \mathbb{N}} m_{\mathcal{R},n} \mathcal{D}^{\Delta+n} \tag{2.8}$$

其中 $\mathcal{D}^{\Delta+n}$ 是 GCT 的一个用 $\Delta+n$ label 的表示。其中 $\bigoplus_{n\in\mathbb{N}}$ 是一个自然数。

5. 最后我们讨论 2D CFT 的 Unitarity。

因为只有 Unitary 的理论才能够被理解为量子力学。因为 Unitary 保证了量子态的模长是正整数,这意味着模长可以被理解为概率。所以当我们认为一个理论是量子场论的时候这个理论的 Spectrum 需要是 Unitary 的表示。

如果一个共形场论是 Unitary 的这意味着 Spectrum 也就是对称代数的表示应该是 Hilbert Space——存在着正定的厄米的形式。

这个时候我们给出对于共形场论的代数最后的约束:

- 我们一般认为 dilation generator $L_0 + \bar{L}_0$ 是 Hamiltonian 因此它是自伴的算子
- 认为表示的矩阵满足这个约束:

$$L_n^{\dagger} = L_{-n} \quad \bar{L}_n^{\dagger} = \bar{L}_{-n} \tag{2.9}$$

• $\forall \exists \exists \exists \exists c \in \mathbb{R}_{>0}$.

2.4 Conformal bootstrap

我们使用 bootstrap 的方法用在二维 CFT 上面。由于太多东西都是分成 holomorphic 和 antiholomorphic 两个部分进行讨论的我们在这里给出一个 THM:

Theorem 3. holomorphic factorization:

我们认为所有的 universal 的物理量都可以写成 z 和 \bar{z} 函数的乘积。

对于二维 CFT 我们可以推广"存在 OPE"的公理:

Theorem 4. 任意闭合回路 C 上面可以插入一个完备的恒等算符:

$$\mathbf{1} = \sum_{\sigma \in \mathcal{S}} |\sigma\rangle\langle\sigma^*| \tag{2.10}$$

其中 $\langle \sigma^* |$ 的定义是 $\langle \sigma^* | \sigma \rangle = \delta_{\sigma,\sigma^*}$

这个公理其实意味着, 所有态的完备的信息存储在一个闭合的回路上面。

如果这个定理成立意味着我们可以在路径积分上插入一个圆圈的恒等算符,然后根据 state-field correspondence 我们可以把原来的式子写成:

$$V_{\sigma_1}(x_1)V_{\sigma_2}(x_2) = \sum_{\sigma \in \mathcal{S}} \langle \sigma^* | V_{\sigma_1}(x_1)V_{\sigma_2}(x_2) \rangle V_{\sigma}(x_2)$$
 (2.11)

其实插入恒等算符, 意味着我们可以把一个圆圈收缩成一个算符! 就像这样的:

$$=\sum_{\sigma\in\mathcal{S}}\left(\begin{array}{c}\\\\\\\\\\\end{array}\right)V_{\sigma^*}\bullet$$

对于 OPE 其实是这个图:

这个假设不但对于 contractible loop 成立,我们认为对于任何 loop 都成立。这样的话,其实可以赋予很多奇奇怪怪曲面的欧几里得路径积分很多的约束。

3 Spectrum of CFT

下面我们讨论 Virasoro 代数的表示!

3.1 highest-weight representation

由于共形场论我们有公理: Axiom 5。我们这里就是构建满足这个公理的共形场论的表示(也就是谱)。

存在一种表示我们称之为 highest-weight representation 这个表示满足下面的条件:

• 取 $|\Delta\rangle$ 是 L_0 在一个表示 \mathcal{R} 下面本征值最低的本征态。称之为 primary state。 这样的条件自然满足:

$$\begin{cases} L_{n>0}|\Delta\rangle = 0 \\ L_0|\Delta\rangle = \Delta|\Delta\rangle \end{cases}$$
 (3.1)

• 为了努力让我们的表示尽量是 irreducable 的,我们定义我们的表示等于 $|\Delta\rangle$ 生成的 subrepresentation,也就是:

$$\mathcal{R} = U(\mathfrak{V})|\Delta\rangle \tag{3.2}$$

其中 $U(\mathfrak{V})$ 是 V 代数的 universal enveloping algebra

• 由于湮灭算符作用在 primary state 上面没有用, 所以其实表示的内容只有产生算符:

$$\mathcal{R} = U(\mathfrak{V})|\Delta\rangle = U(\mathfrak{V}^+)|\Delta\rangle \tag{3.3}$$

其中 $U(\mathfrak{D}^+)$ 表示 V 代数的 n < 0 部分。

• 定义一些名词 $U|\Delta\rangle$ 其中 $U \in U(\mathfrak{V}^+)$ 我们称呼这个态为:descendant state!

Remark:

我们注意到这个升降算符的关系其实完全是由代数本身决定的, V 代数会自动满足对 易关系:

$$[L_0, L_m] = -mL_m \tag{3.4}$$

这明显就是产生湮灭算符的关系。

下面我们讨论这个 highest-weight representation 的结构,这个表示根据一个映射可以这样定义:

$$\begin{array}{cccc} \varphi_{\mathcal{R}} & : & U(\mathfrak{V}^+) & \to & \mathcal{R} \\ & u & \mapsto & u|\Delta\rangle \ . \end{array}$$

我们不难发现这个表示的关键信息由 $|\Delta\rangle$ 决定. 并且我们只需要考虑 V 代数的一部分 $U(\mathfrak{V}^+)$,我们为这个子代数给出一个基:(也就是进行一个类似于"坐标变换"的重组)

$$\mathcal{L} = \left\{ L_{-n_1} \cdots L_{-n_p} \right\}_{1 < n_1 < n_2 < \cdots < n_p}. \tag{3.5}$$

这个基每一个元素是 V 代数 n<0 的部分按照从大到小的顺序线性组合进行生成的。我们称:

$$N = |L_{-n_1} \cdots L_{-n_p}| = \sum_{i=1}^p n_i, \tag{3.6}$$

是这个基的元素的 level。

这样子给出的新的基下面的子代数的基对应着一个表示为:

$$L_{-n_1} \cdots L_{-n_p} |\Delta\rangle \tag{3.7}$$

我们称这个态的 conformal dimension 为 $\Delta + N$

对于子代数 $U(\mathfrak{D}^+)$ level 相同的子空间存在着多种组合:

这个图之中每一个箭头都代表正在左边作用一个V代数的元素。

3.2 Verma modules & degenerate representation

我们定义为包含 $primary\ state\ |\Delta\rangle$ 的 highest-weight representation。并且!!! 其与 $U(\mathfrak{V}^+)$ 是线性同胚的!! 这个表示的基是:

$$\left\{L_{-n_1}\cdots L_{-n_p}|\Delta\rangle\right\}_{1\leq n_1\leq n_2\leq\cdots n_p} \tag{3.8}$$

Remark:

这里我们需要注意, 我们认为 Verma module 是最大可能的 highest-weight representation。这个表示必须包含最低的 conformal dimension state, 也就是 L_0 的本征值最低的

但是这样的定义我们会发现其实有的 highest-weight representation 并不一定是 |Δ⟩ 生成的。而是一种特殊的态 $|\chi\rangle$ 生成的因为其性质的原因我们称之为"singular vector"或 者"null vector"。而模掉这样的态生成的子表示就可以得到另一个 highest-weight representation

这意味着 Verma module 并不一定是不可分的,当如果存在特殊的 $|\chi\rangle$ 的时候那么结果就是可分的! 可以生成一种表示称之为"degenerate representation"

这个时候我们回顾我们理解一个表示其实是一个群元素到线性空间的映射:

$$\varphi_{\mathcal{R}}: U(\mathfrak{V}^+) \to \mathcal{R}$$
(3.9)

对于 Verma module 同样的我们有这样的映射:

$$\varphi_{\mathcal{V}_{\Delta}}: U(\mathfrak{V}^+) \to \mathcal{V}_{\Delta}$$
(3.10)

我们定义 degenerate representation 是所有并非 verma module 的 highest-weight representation。根据上面的表示的定义, 我们会发现我们的任何 degenerate representation 可以写 成一个 verma module 到其的映射。

$$\varphi_{\mathcal{R}}\varphi_{\mathcal{V}_{\Delta}}^{-1}: \mathcal{V}_{\Delta} \to \mathcal{R}.$$
 (3.11)

这意味着:

Theorem 5. 所有 degenerate rep 对应着一个 Verma module 的子表示! 并且这个对应的关系是:

$$\mathcal{R} = \frac{\mathcal{V}_{\Delta}}{\mathcal{R}'} \ . \tag{3.12}$$

其中 R' 就是那个子表示

对于 V 代数的子表示的存在,我们会发现 V 代数的表示之中很可能存在着子表示,而除掉这些子表示,我们依旧会得到一个 highest-weight representation。

Remark:

这里我们用到了 quotient representation 的概念, 所以说明一下它的意思是:

我们知道一个群或者代数的表示是一个从群元素到线性空间上的矩阵的映射。比如一个群 G 的 V 空间上的表示可以写成:

$$\mathcal{R}: G \to GL(V) \tag{3.13}$$

在线性空间之中我们可以定义 quotient space。定义为——如果一个线性空间 V 有一个子空间 X。我们认为存在一个等价类:

$$x \sim y \ if \ x - y \in N \tag{3.14}$$

quotient space 就是这个等价类的空间: V/N 。

那么 quotient representation 其实就是在这样的一个等价类的空间上群的表示。其中表示的元素可以这样构造。假如 $\pi(g)$ 是某个群元素 g 在表示空间 V 的表示。那么这个群元素 g 在表示空间 V/N 的表示 $\rho(g)$ 可以写成:

$$\rho(g)(\xi + N) = (\pi(g)\xi) + N \tag{3.15}$$

其中 $\xi \in V$

同时如果是表示之间的 quotient 说明 N 空间上面存在着一个表示。在我们这里讨论的语境其实就是 singular state 生成的表示。我们将其等价掉其实就可以生成一个不可约的 highest-weight representation。

子表示的存在是因为存在一些特殊的态,称之为"null state" 或者"singular state" $|\chi\rangle$ 对于这样子的态,我们有一些性质:

• $|\chi\rangle$ 及其 descendent 对于所有的 verma module 的态都正交。自己和自己内积也是 0

• 它同时是 descendent state 也是 primary state! 但是注意现在我们还没有定义什么是 内积!!! 所以这里就是感觉上说说而已,后面我们会仔细讨论!

对于一个 Verma module, 如果存在着一个 null vector 那么就会存在一个 degenerate state 我们写成:

$$\mathcal{R} = \frac{\mathcal{V}_{\Delta}}{U(\mathfrak{V}^+)|\chi\rangle} \tag{3.16}$$

如果存在着多个那么就需要另行讨论了!

Remark:

注意: Verma module 并不是唯一的,它是由我们具体 L_0 的表示矩阵的最低的本征值

我们取这个本征值是 Δ 这样的本征值决定了 Verma module 的性质。当然也决定了是

不是有 null vector 的存在! 的结构!
当然其实一个 Verma module 是由两个量决定的——分别是 central charge c 还有 conformal weight Δ 。应该说他们一同决定了性质!

3.3 singular vector 存在的条件

我们这里给出如果一个 Verma module 存在着 null vector 那么应该满足的条件:

• 对于 $|\chi\rangle = L_{-1}|\Delta\rangle$ 我们有条件:

$$L_1|\chi\rangle = L_1 L_{-1}|\Delta\rangle = [L_1, L_{-1}]|\Delta\rangle = 2L_0|\Delta\rangle = 2\Delta|\Delta\rangle \tag{3.17}$$

所以 $\Delta = 0$

• 对于 $|\chi\rangle = (a_{1,1}L_{-1}^2 + a_2L_{-2}) |\Delta\rangle$, 条件可以写成:

$$D_2(\Delta) = 4(2\Delta + 1)^2 + (c - 13)(2\Delta + 1) + 9 = 0$$
(3.18)

得到的结论就是:

$$\Delta = \frac{5 - c \pm \sqrt{(c - 25)(c - 1)}}{16} \tag{3.19}$$

为了能够更加简便的写出这些条件,相比于 (c,Δ) 我们一般使用另一些变量来标记我们的 Verma module:

对于 central charge 我们一般使用另外两个量:

$$c = 1 + 6Q^2$$
 , $Q = b + \frac{1}{b}$ (3.20)

$$b = \sqrt{\frac{c-1}{24}} + \sqrt{\frac{c-25}{24}}. (3.21)$$

称呼 Q 为 background charge; 称呼 b 为 coupling constant。我们注意到根据上面的定义,每一个 c 对应着两个 Q 以及四个 b。因为 Q 和-Q 以及 $\pm b^{\pm 1}$ 对应着一样的 c。

对于 conformal dimension 我们使用 Momentum 来进行标记 定义为:

$$\Delta(P) = \frac{Q^2}{4} - P^2 \tag{3.22}$$

所以我们的 Verma module 可以写成:

$$\mathcal{V}_P = \mathcal{V}_{-P} \tag{3.23}$$

3.4 Sigular vector in all level 存在的条件

上面我们讨论了低阶的 sigular vector 存在的条件,下面我们探讨任意阶的!下面的表格给出了 N = 1,2,3 的时候存在 singular vector 的时候对于系统的约束:

$oxed{N}$	$\langle r,s \rangle$	$\Delta_{\langle r,s angle}$	$L_{\langle r,s angle}$
1	$\langle 1, 1 \rangle$	0	L_{-1}
2	$\langle 2, 1 \rangle$	$-rac{1}{2} - rac{3}{4}b^2$	$\frac{1}{b^2}L_{-1}^2 + L_{-2}$
	$\langle 1, 2 \rangle$	$-\frac{1}{2} - \frac{3}{4b^2}$	$b^2L_{-1}^2 + L_{-2}$
3	$\langle 3, 1 \rangle$	$-1 - 2b^2$	$\frac{1}{4b^2}L_{-1}^3 + L_{-1}L_{-2} + (b^2 - \frac{1}{2})L_{-3}$
	$\langle 1, 3 \rangle$	$-1 - \frac{2}{b^2}$	$\frac{1}{4}b^2L_{-1}^3 + L_{-1}L_{-2} + (\frac{1}{b^2} - \frac{1}{2})L_{-3}$

其中 r 和 s 是对于 N 的一个 factorization 也就是 N level 可以分成哪几种样子的态! 我们不难发现所有的 singular vector 对应着一个 <r,s> 所以我们可以用 $|\chi_{\langle r,s\rangle}$ 来标记我们的 singular vector。并且,对于一般的 N level 的用 r,s 标记的态,如果它是一个 singular state 那么系统应该满足下面的约束条件:

对于一个 singular state 必然写成:

$$|\chi_{\langle r,s\rangle}\rangle = L_{\langle r,s\rangle}|\Delta_{\langle r,s\rangle}\rangle$$
 (3.24)

并且其中的 Primary field 的 conformal dimension 是:

$$\Delta_{\langle r,s\rangle} = \frac{1}{4} \left(Q^2 - (rb + sb^{-1})^2 \right)$$
 (3.25)

或者说:

$$P_{\langle r,s\rangle} = \frac{1}{2} \left(rb + sb^{-1} \right) \tag{3.26}$$

这个条件给出了所有只有一个 singular vector 的 descendant 的 singular vector 的形式以及 对于 conformal dimension 的约束。但是如果这个 singular vector 是其他 singular vector 的 descendant 那么并不一定需要满足这个约束。

对于一个 Verma module。如果存在 singular vector 那么久必然是 reducible。我们可以通过 quotient 掉所有子表示,给出一个"maximally degenerate representation" 一个例子就是:

如果 $|\chi_{< r, s>}\rangle$ 是唯一一个 singular state, 那么 maximally degenerate representation 就是:

$$\mathcal{R}_{\langle r,s\rangle} = \frac{\mathcal{V}_{\Delta_{\langle r,s\rangle}}}{U(\mathfrak{V}^+)|\chi_{\langle r,s\rangle}\rangle} = \frac{\mathcal{V}_{\Delta_{\langle r,s\rangle}}}{\mathcal{V}_{\Delta_{\langle -r,s\rangle}}}$$
(3.27)

第二个式子我们由于 singular vector 的条件使用了: $\Delta_{\langle r,s\rangle}=\frac{1}{4}\left(Q^2-(rb+sb^{-1})^2\right)$ 我们就可以知道:

$$\Delta_{\langle r,s\rangle} + rs = \Delta_{\langle -r,s\rangle} . \tag{3.28}$$

用图来说明一下上面的讨论就是:

3.5 Unitary 对理论约束

之前我们讨论一个量子场论必须是 Unitary 的理论。所以给出了表示矩阵需要满足的约束是:

$$L_n^{\dagger} = L_{-n} \quad \bar{L}_n^{\dagger} = \bar{L}_{-n} \tag{3.29}$$

根据这个约束条件我们可以定义"态的内积"。根据这个条件我们很容易发现一些结论,比如所有的 $|\chi\rangle$ 的模长为 0 等等,以及所有的不同 level 的态之间是正交的。

此外对于一个 Verma module 我们认为 primary state 是归一化的! $\langle \Delta | \Delta \rangle = 1$

对于一个 Verma module 我们现在讨论什么情况下这个理论是 Unitary 的! (也就是对于 conformal dimension 的更加强的约束)

如果一个 Verma module 是 Unitary 的,我们认为其本征空间(表示空间)所有的向量内积都是正定的! 由于不同 level 的态都是正交的(根据之前 Unitary 的条件),所以我们考虑某个 level N 的时候态内积的正定性。同时等价于说矩阵:

$$M_{ij}^{(N)} = \langle v_i | v_j \rangle \quad \det M^{(N)} > 0 \tag{3.30}$$

我们知道只有满足这样的约束条件的理论对于 c 和 Δ 存在约束。为此我们研究矩阵 $M_{ij}^{(N)}$ 的零点,发现有定理:

Theorem 6. $M_{ij}^{(N)}=0$ 等价于存在一个 N' level 的 singular vector 使得 N'<N 也就是说如果 Δ 使得 $M_{ij}^{(N)}=0$ 成立那么这个 Δ 必须满足关系:

$$\Delta = \Delta_{\langle r, s \rangle} = \frac{1}{4} \left(Q^2 - (rb + sb^{-1})^2 \right)$$
 (3.31)

我们因此知道行列式大致样子是:

$$\det M^{(N)} \propto \prod_{r,s>1} \sum_{r,s< N} (\Delta - \Delta_{\langle r,s\rangle})^{p(N-rs)}$$
(3.32)

我们称之为 Kac determinant formula。

这个定理的成立十分显然,我们知道 null vector 和他的 descendant 对于所有的同一个 level 的向量正交 (注意,不同 level 的向量本身就是正交的) 根据行列式的定义显然有行列式 为 0 是因为 singular vector 的正交而为 0。至于零点的级数取决于 null vector 能在这个 level 生成多少个独立的 descendant!

根据上面的约束条件,我们知道如果一个 Verma module 是 Unitary 的需要满足下面的条件:

• c>1 时: \mathcal{V}_{Δ} 必然是 Unitary 的

• c=1 时: \mathcal{V}_{Δ} 需要讨论 $\Delta > 0$ 同时 $\delta \neq \frac{1}{4}n^2$

• c>1 时: \mathcal{V}_{Δ} 必然不是 Unitary 的

但是有的时候 Verma module 并不是 Unitary 但是其 quotient 出的一些 highest-weight rep 是 Unitary 的。所以最后我们有一个表格:

central charge	c < 1	c = 1	c > 1
\mathcal{V}_{Δ} unitary?	no	$\Delta > 0$ and $\Delta \neq \frac{1}{4}n^2$	$\Delta > 0$
$\mathcal{R}_{\langle r,s \rangle}$ unitary?	see Eqs. $(2.1.33)$ and $(2.1.34)$	yes	$\langle r, s \rangle = \langle 1, 1 \rangle$
			(2.1.36)

4 Correlation function of CFT

对于场论来说我们最重要的是 representation 也就是谱。在讨论完谱之后,我们讨论我们的场。由于语境是量子场论,所以我们的场都是在"路径积分"之中(也就是关联函数平均之后)讨论的。之后我们讨论的就是系统的场和关联函数需要满足的性质。当然,在二维共形场论语境下。

4.1 Fields corresponding to the spectrum

之前我们有量子场论的公理,认为量子场和一个量子态是对应的。 那么 Virasoro 代数作用在量子态上面,相当于这个代数作用在场上面。下面我们定义:

Definition 4. Virasoro 代数作用在量子场上

$$L_n V_{\sigma}(z) = L_n^{(z)} V_{\sigma}(z) = V_{L_n \sigma}(z)$$

$$\tag{4.1}$$

因此我们可以定义 primary field 是对应 primary state 的量子场。满足:

$$\begin{cases}
L_{n>0}V_{\Delta}(z) = 0 \\
L_0V_{\Delta}(z) = \Delta V_{\Delta}(z)
\end{cases}$$
(4.2)

Remark:

这里我们是用了一个特殊的算符的标记 $L_n^{(z)}$ 这个指的是某一个点 z 上作用的 L_n 变换。这是一个作用在 local 的场的上面的变换!

但是相比于"对于场的作用"这样的"作用"其实我认为也是可以理解为一个"场"的。之后 我们会看到,我们把这样的"作用"treat 为一个独立的场之后可以讨论相关的性质。

Remark:

这里我们再讨论一下, $L_n^{(z)}$ 作用在场上面到底是什么。

由于 Virasoro 代数是 CFT 的 Symmetry algebra。我们很容易根据这个的定义会发现,这个代数作用在具体的场上面,是"生成元"(注意,生成元同时包含了"流形变换"和"场变换"的信息!!!)

但是至于哪个 V 代数的元素是什么变换生成元,我们并没有给出对应。但是如果熟悉 共形场论我们不难发现其实 L_{-1} 就是平移变换生成元。(下面公理就是在保证这样的信息 回归!)

由于一般的共形场论是有两个 V 代数的。所以我们可以定义两个 Verma module 对应的场为: $V_{\Delta,\bar{\Delta}}(z)$ 。

4.2 EM Tensor 包含对称性信息的场

对于一个场论我们一个重要的场是我们的能动量张量。这个量一个重要的作用就是存储着系统对称性的信息。对于一个共形场论,能动量张量存储着共形对称性的信息。并且通过 Ward Identity 把对称性约束赋予关联函数(或者说,场)。

Remark:

这里我们讨论一下我们的思路。最开始我们给出了 Vir 代数作为整个理论体系的对称性代数。这是理论体系的基础(公理)保证需要有的条件。

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n-1)n(n+1)\delta_{n+m,0}$$
(4.3)

我们澄清一下这个条件说明了哪些约束:

- 谱的语境 整个理论体系的谱是对称性代数的表示空间,也就是这个代数的表示空间 的元素就是这个理论体系的量子态
- 场的语境 这个代数的表示的矩阵其实是场的对称性变换的生成元。

(这个变换我们称之为对称性变换,因为对应"拉格朗日量以及 weight"不发生变换,但是在这个语境下我们不讨论拉格朗日量)值得注意的是场的语境下面,哪个代数元素代表着哪个空间的变换其实我们是不清楚的。这个需要通过公理来进行规定,否则我们无法获得理论体系更多的信息,所以又了下面的公理 7 通过规定平移算符规定了场的语境下这些对称性代数分别是什么对称性变换的生成元。

我们首先讨论场或者关联函数需要满足的一些量子场论的公理。(就像之前我们讨论 spectrum 需要满足的公理一样)

我们给出公理,这个公理关于场在平移变换下的量子态的变换方法:

Axiom 7. 平移变换下场对应量子态的变换

对于任何的场!! 我们满足:

$$\frac{\partial}{\partial z}V_{\sigma}(z) = L_{-1}V_{\sigma}(z) \quad and \quad \frac{\partial}{\partial \bar{z}}V_{\sigma}(z) = \bar{L}_{-1}V_{\sigma}(z),$$
 (4.4)

 $\frac{\partial}{\partial z}V_{\sigma}(z)=L_{-1}V_{\sigma}(z)\quad and\quad \frac{\partial}{\partial \bar{z}}V_{\sigma}(z)=\bar{L}_{-1}V_{\sigma}(z), \tag{4.4}$ 也就是说我们认为 V 代数之中的 L_{-1} 元素的意义其实是让量子态对应的场在空间之中平

根据这个公理我们可以推导:

$$\left(\frac{\partial}{\partial z}L_n^{(z)}\right)V_{\sigma}(z) = \frac{\partial}{\partial z}(L_n^{(z)}V_{\sigma}(z)) - L_n^{(z)}\frac{\partial}{\partial z}(V_{\sigma}(z)) \tag{4.5}$$

因此我们有结论:

$$\frac{\partial}{\partial z} L_n^{(z)} = [L_{-1}, L_n^{(z)}] = -(n+1)L_{n-1}^{(z)}. \tag{4.6}$$

这个关系说明不同点之间的 V 代数的集合 $\left(L_n^{(z_1)}\right)_{n\in Z}$ 其实是线性相关的。 接下来我们给出能动量张量的定义:

我们定义能动量张量是 $L_n^{(z)}$ 的组合使得,方程 $\partial L_n^{(z)}=[L_{-1},L_n^{(z)}]=-(n+1)L_{n-1}^{(z)}$ (或者说平移算符是 L_{-1})等价于 $\partial T(y)=0$ 满足这个条件的场是:

$$T(y) = \sum_{n \in \mathbb{Z}} \frac{L_n^{(z)}}{(y-z)^{n+2}}$$
(4.7)

这个张量的守恒就意味着对于 V 代数的约束 (4.5)。所以这个张量其实代表着不同点作 用 V 代数的结果。显式的写出来其实是:

$$L_n^{(z)} = \frac{1}{2\pi i} \oint_z dy (y - z)^{n+1} T(y)$$
 (4.8)

Remark:

我觉得需要注意的一点是,能动量张量虽然没有显示的写出来和 z 是相关的。但是其实本质上是相关联的。而这个 z 的定义其实是能动量张量作为一个"作用",而不是场,所"作用"的场的对象所在的点。

根据上面 remark 的提示,我们可以把能动量张量作用在一个场上,根据定义可以写出:

$$T(y)V_{\sigma}(z) = \sum_{n \in \mathbb{Z}} \frac{L_n V_{\sigma}(z)}{(y-z)^{n+2}}.$$
 (4.9)

上面的式子从"作用"的观点看,是一个作用,作用在场的上面的结果;我们因为认为 $L_n^{(z)}$ 是对称变换的生成元,所以左边其实就是作用上一堆对称变换。但是从场的观点看,我们发现其实是两个场的 OPE。

如果对于一个 Primary field(也就是和某一个 Verma module 表示(也就是某个 Verma Module 对应的理论)的最低能态的场)作用上一个 EM Tensor 的对称变换;或者说和 EM Tensor 的 OPE,我们有:

$$T(y)V_{\Delta}(z) = \frac{\Delta V_{\Delta}(z)}{(y-z)^2} + \frac{\partial V_{\Delta}(z)}{y-z} + O(1)$$

$$(4.10)$$

一般来说我们不在乎 OPE 的非奇异项。

一般能动量张量我们认为其实是全平面除了场所在的位置的全纯函数。特别是在无穷远的时候,我们有公理:

Axiom 8. 能动量张量在无穷远的全纯

$$T(y) = O\left(\frac{1}{y^4}\right) \tag{4.11}$$

注意: 我们这里说的: $O\left(\frac{1}{y^4}\right)$ 指的是发散的阶数只能比 4 更加大。也就是只能是 5 , 6 , 7 ... 阶的发散。

Remark:

这里我们对于这个发散性进行一个解释:

我们认为这个是四阶的发散是我们在讨论无穷远点的行为的时候是对于 EM Tensor 进行一个坐标变换之后产生的坐标变换矩阵是:

$$\frac{\partial 1/z}{\partial z} \sim \frac{1}{z^2} \tag{4.12}$$

由于能动量张量是一个二阶的张量,同时我们讨论的 CFT 之中只有对角的能动量张量不是 0。所以我们有两个坐标变换矩阵,我们可以写:

$$\left. \frac{1}{z^4} T(z' = \frac{1}{z}) \right|_{z'=0} = T(z = \infty) \tag{4.13}$$

由于我们认为 T(0) 是全纯的函数。所以我们认为无穷远处的 T(z) 是 $O(\frac{1}{z^4})$ 收敛的。

我们同时会发现 EM Tensor 自己的 OPE 对应着 V 代数的对易关系:

$$T(y)T(z) = \frac{\frac{c}{2}}{(y-z)^4} + \frac{2T(z)}{(y-z)^2} + \frac{\partial T(z)}{y-z} + O(1)$$
(4.14)

这里我们就融合了,作为场的 OPE 和作为生成元的对称性代数之间的关系。这里我们意识到能动量张量是一个 Symmetry field 也就是说它并不是和量子态相关的,但是包含了系统的对称性的信息。

我们定义一个场是 Virasoro field, 首先它是一个量子场, 所以满足两条公理: Commute in different points 和 OPE。如果这个场的 OPE 满足关系:

$$T(y)T(z) = \frac{\frac{c}{2}}{(y-z)^4} + \frac{2T(z)}{(y-z)^2} + \frac{\partial T(z)}{y-z} + O(1)$$
(4.15)

那么 T(z) 就是一个 Virasoro field。

4.3 Ward Identity 对称性约束条件

能动量张量包含了对称性的特质,而对称性的特质又赋予了关联函数的约束。之前在 Correlation function 的 general 讨论里面我们讨论了对称性对于 Correlation function 的约束。下面我们通过共形对称性的特质给出具体的,共形对称性对于量子场的关联函数的约束。

这个约束我们主要讨论一个特殊的关联函数:

$$\left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle \tag{4.16}$$

这个关联函数满足下面的一些性质:

- 函数在 $z_1...z_N$ 点之外都是全纯的
- 函数在 z₁...z_N 点的行为由 OPE 决定
- 函数在无穷远点的性质由

$$T(y) = O\left(\frac{1}{y^4}\right) \tag{4.17}$$

决定。

根据上面的公理我们知道能动量张量在无穷远处是: $O\left(\frac{1}{y^4}\right)$ 的。并且我们认为场在无穷远处是趋于 0 的或者 O(1) 的。所以我们关注的量 $\left\langle T(z)\prod_{i=1}^N V_{\sigma_i}(z_i) \right\rangle$ 在无穷远点是四阶或者以上的阶数发散的。为了保证留数为 0 也就是我们的函数在无穷远点没有一阶极点,我们应该乘上一个 $\epsilon(z)$ 并且保证这个函数最多是 $O(z^2)$ 的,这样 $\epsilon(z)\left\langle T(z)\prod_{i=1}^N V_{\sigma_i}(z_i) \right\rangle$ 最多是 $O(\frac{1}{z^2})$ 的,这个时候没有一阶极点,所以留数也不存在。写成公式就是:

$$\int_{\infty} dz \epsilon(z) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \quad \text{provided} \quad \epsilon(z) \underset{z \to \infty}{=} O(z^2)$$
 (4.18)

我们知道 $\epsilon(z)$ 必然只能小于二阶的。同时我们认为 $\epsilon(z)$ 除了在 z_i 点之外都是全纯的,因此如果在趋于无穷远的时候 $\epsilon(z)$ 是发散的那么必然是因为在 z_i 点有奇异。我们通过 $\epsilon(z)$ 的发散情况将其分类:

- Global Ward Identity $\epsilon(z)$ 是全纯的并且发散小于等于 2 阶
- Local Ward Identity $\epsilon(z)$ 是小于 0 阶的,也就是有一阶极点的。

!!ATTENTION!!

注意我们这里使用了两个比较强形但是合理的规定:

- 我们认为场在无穷远处是趋于 0 的或者 O(1) 的。
- 我们认为 $\epsilon(z)$ 除了在 z_i 点之外都是全纯的

4.3.1 Local WI

首先我们讨论 local 的。这个时候我们把 $\epsilon(z)$ 进行展开 (并且只考虑有在无穷远点发散的项,由于我们之前的规定,奇异只能存在在 z_i 点,所以我们可以下面这样展开) 并且讨论每一阶。我们展开为:

$$\epsilon(z) = \frac{1}{(z - z_i)^{n-1}} \tag{4.19}$$

其中 $n \ge 2$ 并且 i = 1, 2...N 标记着关联函数的 N 个场的位置。我们可以进行推导:

$$\int_{\infty} dz \epsilon(z) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = \sum_{j=1}^{N} \oint_{z_j} \frac{1}{(z-z_i)^{n-1}} \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \tag{4.20}$$

因此,根据 L_n 的定义是: $L_n^{(z)} = \frac{1}{2\pi i} \oint_z dy (y-z)^{n+1} T(y)$ 我们得到 local WI 的表达式:

Theorem 7. Local Ward Identiy:

$$\left\langle \left(L_{-n}^{(z_i)} + (-1)^{n+1} \sum_{j \neq i} \sum_{p=-1}^{\infty} \frac{\binom{p+n-1}{p+1}}{(z_i - z_j)^{n+p}} L_p^{(z_j)} \right) \prod_{j=1}^N V_{\sigma_j}(z_j) \right\rangle = 0 , \qquad (4.21)$$

我们解释一下这个函数的形式,就是对于第 i 点的场我们作用上 $L_{-n}^{(z_i)}$ 对于其他点 j 的场 我们作用上一些系数乘以 $L_p^{(z_j)}$ 。注意: 我们的第二项的求和对于其他点 \mathbf{j} 的作用 $\sum_{p=-1}^\infty$ 看 起来是对于所有 L_p 求和,但是实际上如果 L_p 的 p 值超过了场 V_{σ_i} 对应的态 σ_i 的 level 的 时候那么作用上去必然有:

$$L_p^{(z_j)} V_{\sigma_i}(z_j) = 0 (4.22)$$

我们观察会发现 Ward Identity 可以认为是把一个总体的 level 为 $n + \sum_{i} N_{i}$ 的场的关联 函数 $\left\langle L_{-n}^{(z_i)} \prod_{j=1}^N V_{\sigma_j}(z_j) \right\rangle$, 通过很多 $\sum_j N_j$ 作为总体 level 的场的关联函数进行表示。

推广这个观察的结论我们可以发现:

Theorem 8. Local Ward Identity 给出的等式是:

所有的 descendent 的关联函数可以通过 Primary field 的关联函数左乘上很多的微分

同时这个结论用 OPE 来写就是

$$T(y)V_{\Delta}(z) = (differential\ operator)V_{\Delta}(z) + O(1)$$
 (4.23)

 $T(y)V_{\Delta}(z)=(differential\ operator)V_{\Delta}(z)+O(1)$ (4.23) 然后由于 O(1) 的内容都因为考虑 L_n 作用,对于 $L_n^{(z_i)}$ 附近进行围道积分取留数消失了。只有微分算符相关的发散的项留下来了。

对于一种特殊的 local ward identity 也就是除了 i 全部都是 primary field:

$$\left\langle L_{-n}^{(z_i)} V_{\sigma_i}(z_i) \prod_{j \neq i} V_{\Delta_j}(z_j) \right\rangle = \sum_{j \neq i} \left(-\frac{1}{z_{ji}^{n-1}} \frac{\partial}{\partial z_j} + \frac{n-1}{z_{ji}^n} \Delta_j \right) \left\langle V_{\sigma_i}(z_i) \prod_{j \neq i} V_{\Delta_j}(z_j) \right\rangle \tag{4.24}$$

conformal ward identity 的用法在 bootstrap 里面其实就是可以通过 primary field 的 关联函数得到 descendent 的关联函数。

这个操作的意义在于 primary field 的关联函数一般特别好求。特别是三点函数。primary field 的三点函数的 conformal block 的形式是完全已知的:

$$\mathcal{F}^{(3)}(\Delta_1, \Delta_2, \Delta_3 | z_1, z_2, z_3) = z_{12}^{\Delta_3 - \Delta_1 - \Delta_2} z_{23}^{\Delta_1 - \Delta_2 - \Delta_3} z_{31}^{\Delta_2 - \Delta_3 - \Delta_1}$$
(4.25)

我们可以运用这个求出来更多的 descendent field 的关联函数。其中需要的操作其实只有求导和求和(见 4.24) 而能做到这一点最关键的就是我们的 local ward identity 的意义就是把作用在关联函数之中一个场上面的产生算符 $L_{-n}^{(x)}$ 等价于作用在其他场上面的湮灭算符。

同时我们也可以考虑把 T(z) 插入一个一堆 Primary field 的关联函数,根据 Ward Identity 应该得到的一些微分算符乘上场。我们发现结论是:

$$\left\langle T(z) \prod_{i=1}^{N} V_{\Delta_i}(z_i) \right\rangle = \sum_{i=1}^{N} \left(\frac{\Delta_i}{(z-z_i)^2} + \frac{1}{z-z_i} \frac{\partial}{\partial z_i} \right) \left\langle \prod_{i=1}^{N} V_{\Delta_i}(z_i) \right\rangle. \tag{4.26}$$

我们知道其实包含 T(x) 能动量张量的 OPE 其实就是一个形式化的书写。上面的结论 其实相当于对于所有阶的 local conformal ward identity 的乘上一个系数在积分得到的。 可以理解为一个生成所有 local conformal ward identity 的一个产生 ward identity。同 时也更贴近于我们正常量子场论之中对于 Ward identity 的形式的表达!

这个结论正好和 Priamry field 的 OPE 是一致的:

$$T(y)V_{\Delta}(z) = \frac{\Delta V_{\Delta}(z)}{(y-z)^2} + \frac{\partial V_{\Delta}(z)}{y-z} + O(1)$$

$$(4.27)$$

4.3.2 Global WI

接下来我们讨论 global 的 WI。首先写出最基本的式子:

$$\int_{\infty} dz \epsilon(z) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \tag{4.28}$$

当 $\epsilon(z) = 1$ 的时候我们有:

$$\int_{\infty} dz \epsilon(z) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = \sum_{i=1}^{N} \oint_{z_i} \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \tag{4.29}$$

所以我们有:

$$\left\langle \sum_{i=1}^{N} L_{-1}^{(z_i)} \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \tag{4.30}$$

接下来对于 $\epsilon(z) = z$ 的情况下:

$$\int_{\infty} dz \epsilon(z) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = \sum_{i=1}^{N} \oint_{z_i} ((z - z_i) + z_i) \left\langle T(z) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 \tag{4.31}$$

所以有:

$$\left\langle \sum_{i=1}^{N} \left(L_0^{(z_i)} + z_i L_{-1}^{(z_i)} \right) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0, \tag{4.32}$$

同理对于 $\epsilon(z) = z^2$ 的情况下:

$$\left\langle \sum_{i=1}^{N} \left(L_1^{(z_i)} + 2z_i L_0^{(z_i)} + z_i^2 L_{-1}^{(z_i)} \right) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0.$$
 (4.33)

总结一下上面的结果:

Theorem 9. Global Ward Identity

$$\left\langle \sum_{i=1}^{N} L_{-1}^{(z_i)} \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 , \qquad (4.34)$$

$$\left\langle \sum_{i=1}^{N} \left(L_0^{(z_i)} + z_i L_{-1}^{(z_i)} \right) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0 , \qquad (4.35)$$

$$\left\langle \sum_{i=1}^{N} \left(L_1^{(z_i)} + 2z_i L_0^{(z_i)} + z_i^2 L_{-1}^{(z_i)} \right) \prod_{i=1}^{N} V_{\sigma_i}(z_i) \right\rangle = 0.$$
 (4.36)

综上,我们的 Ward Identity 给出了对称性对于我们理论的关联函数的约束。这样的约束 能够帮助我们确定很多的性质,如关联函数的具体形式。关联函数之间的关系。子啊后面我 们将就这些内容进行讨论。

4.4 Global WI 对于 primary field 关联函数对称性约束

下面我们讨论 Global WI 对于关联函数的约束。我们着重考虑 Primary field 或者说 Quasi-Primary field 的关联函数。这个时候我们就发现, Global WI 已经可以帮助我们确定这些关联函数的具体形式了。

由于我们只考虑 global 的变换,我们会发现,并不一定需要 Priamry field 就可以满足一些性质,只需要 quasi-primary,也就是:

$$\begin{cases} L_1 V_{\Delta}(z) = 0\\ L_0 V_{\Delta}(z) = \Delta V_{\Delta}(z) \end{cases}$$
 (4.37)

我们首先写出对于 Primary field 的 Global WI, 换一种写法:

$$\forall a \in \{0, +, -\} \quad , \quad \left(\sum_{i=1}^{N} D_{z_i}^{-\Delta_i}(t^a)\right) \left\langle \prod_{i=1}^{N} V_{\Delta_i}(z_i) \right\rangle = 0 ,$$
 (4.38)

其中的微分算符的定义是:

$$\begin{cases}
D_x^j(t^-) = -\frac{\partial}{\partial x} \\
D_x^j(t^0) = x\frac{\partial}{\partial x} - j \\
D_x^j(t^+) = x^2\frac{\partial}{\partial x} - 2jx
\end{cases}$$
(4.39)

很显然这个跟上面的 Global WI 一样只是由于 Primary 的条件 L_1 作用在场上面就是 0。微 分算符其实对应的是 SL(2) 群的生成元,我们可以把生成元变成 finite 的对称性变换,通过 数学上的计算可以得到:

$$\left\langle \prod_{i=1}^{N} V_{\Delta_{i}, \bar{\Delta}_{i}}(z_{i}) \right\rangle = \left\langle \prod_{i=1}^{N} T_{g} V_{\Delta_{i}, \bar{\Delta}_{i}}(z_{i}) \right\rangle , \qquad (4.40)$$

并且其中:

$$T_g V_{\Delta,\bar{\Delta}}(z) = (cz+d)^{-2\Delta} (\bar{c}\bar{z}+\bar{d})^{-2\bar{\Delta}} V_{\Delta,\bar{\Delta}} \left(\frac{az+b}{cz+d}\right) \quad \text{with} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}) \in SL_2(\mathbb{C}). \quad (4.41)$$

很显然这个就是一般协变场的定义。我们一般定义 quasi-primary 协变场就是通过关联函数, 或者场的协变变换满足上面的公式确定的。所以,可以知道这两套公理体系是等价的。

Remark:

$$V_{\Delta,\bar{\Delta}}(z) \underset{z \to \infty}{=} O\left(z^{-2\Delta}\bar{z}^{-2\bar{\Delta}}\right) \tag{4.42}$$

Remark: 一个有趣的讨论是 quasi-primary field 在无穷远点的行为,我们根据坐标变换 $z \to -\frac{1}{z}$ 我们可以得到: $V_{\Delta,\bar{\Delta}}(z) \underset{z\to\infty}{=} O\left(z^{-2\Delta}\bar{z}^{-2\bar{\Delta}}\right) \tag{4.42}$ 由于我们可以通过其他手段证明能动量张量是一个 Quasi-primary field。我们会明白,能动量张量的 conformal weight 是 2。因为它的定义保证他在无穷远点的行为是 $T(z) \sim O(\frac{1}{z^4})$

同时对于 Primary field 我们可以进行同样的操作得到的变换是:

$$T_h V_{\Lambda,\bar{\Lambda}}(z) = h'(z)^{\bar{\Lambda}} h'(z)^{\bar{\Lambda}} V_{\Lambda,\bar{\Lambda}}(h(z)) , \qquad (4.43)$$

也正好就是很多教材之中的 Primary field 的定义。

Remark:

我们这里同时讨论了一个 left-moving 和 right-moving 的场的组合。之前我们讨论的其实并不是 CFT 的表示对应的量子态,因为我们的 CFT 其实是有两套 Vir 代数的,但是我们讨论的一直是一套 Vir 代数对应的量子态和场。

这个时候我们把另一套 Vir 代数直接加回来。因为我们的 CFT 的公理保证了,CFT 的谱是两套代数的一些表示的直积之后的直和,所以我们就可以分开来 treat 他们。

在这里在场的语境之下,我们认为这两套代数量子态对应的场满足相类似的性质,这个性质 decode 在一个直积出来的谱的空间。所以,就直接分开来讨论了。

!!!THIS PROBLEM DESERVES FURTHER CONSIDERATION!!!

当然我觉得我这个解释还是不够完备希望以后有更合理的解释。

在上面的讨论中之后我们可以讨论 Global WI 对称性约束对于 Priamry field 的关联函数约束了! 具体的推导我们掠过,需要明确的就是推导就是对于三个 WI 进行各种各样的线性组合,而线性组合的结果会给出神奇的结论,通过这些结论我们可以推导出关联函数。

我们会发现 2-point function 和 3-point function 都是形式上确定的。

2-point function 可以写成:

$$\left\langle V_{\Delta_1,\bar{\Delta}_1}(z_1)V_{\Delta_2,\bar{\Delta}_2}(z_2)\right\rangle = B_1\delta_{\Delta_1,\Delta_2}\delta_{\bar{\Delta}_1,\bar{\Delta}_2}z_{12}^{-2\Delta_1}\bar{z}_{12}^{-2\bar{\Delta}_1} \tag{4.44}$$

3-point function 可以写成:

$$\left\langle \prod_{i=1}^{3} V_{\Delta_{i}, \bar{\Delta_{i}}}(z_{i}) \right\rangle = C_{123} \left| \mathcal{F}^{(3)}(\Delta_{1}, \Delta_{2}, \Delta_{3} | z_{1}, z_{2}, z_{3}) \right|^{2}$$
(4.45)

其中:

$$\mathcal{F}^{(3)}(\Delta_1, \Delta_2, \Delta_3 | z_1, z_2, z_3) = z_{12}^{\Delta_3 - \Delta_1 - \Delta_2} z_{23}^{\Delta_1 - \Delta_2 - \Delta_3} z_{31}^{\Delta_2 - \Delta_3 - \Delta_1}$$
(4.46)

$$|f(\Delta, z)|^2 = f(\Delta, z)f(\bar{\Delta}, \bar{z}). \tag{4.47}$$

对于 4-point function 及以上,并不能被 Global WI 完全确定。但是我们这里讨论 4-point function 的一些性质,如果我们取:

$$x = \frac{z_{12}z_{34}}{z_{13}z_{24}},\tag{4.48}$$

那么我们有通解:

$$\left\langle \prod_{i=1}^{4} V_{\Delta_{i}, \bar{\Delta}_{i}}(z_{i}) \right\rangle = \left| z_{13}^{-2\Delta_{1}} z_{23}^{\Delta_{1} - \Delta_{2} - \Delta_{3} + \Delta_{4}} z_{34}^{\Delta_{1} + \Delta_{2} - \Delta_{3} - \Delta_{4}} z_{24}^{-\Delta_{1} - \Delta_{2} + \Delta_{3} - \Delta_{4}} \right|^{2} F(x) , \quad (4.49)$$

其中 F(x) 是一个特殊的 4-point function:

$$F(x) = \left\langle V_{\Delta_1, \bar{\Delta}_1}(x) V_{\Delta_2, \bar{\Delta}_2}(0) V_{\Delta_3, \bar{\Delta}_3}(\infty) V_{\Delta_4, \bar{\Delta}_4}(1) \right\rangle. \tag{4.50}$$

这些结论完全是通过 Global WI 对于体系的约束得到的。

Conformal SPIN 对于 CF 的约束 下面我们讨论的问题是一个特殊的 conformal transformation 对应的 Ward Identity 对于关联函数的约束。也就是转动变换。

对于 Primary field 在二维转动的 Ward Identity 可以写成:

$$T\left(\begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix}\right) V_{\Delta,\bar{\Delta}}(z) = e^{2i\theta(\Delta-\bar{\Delta})} V_{\Delta,\bar{\Delta}}(e^{2i\theta}z) . \tag{4.51}$$

并且我们定义 conformal spin 为:

$$S = \Delta - \bar{\Delta} \tag{4.52}$$

很显然这个对应的就是我们一般量子场论之中的 spin 的量子数。

由于 3-point function 是单值函数 (量子场论的公理)。我们有对于 spin 的约束:

$$S_i \in \frac{1}{2}\mathbb{Z}$$
 and $S_1 + S_2 + S_3 \in \mathbb{Z}$ (4.53)

这个正好和我们一般量子力学的约束一致。

The conformal spin then controls how three-point structure constants behave under permutations. For σ a permutation of (1, 2, 3), we indeed have

$$\left| \mathcal{F}^{(3)}(\Delta_{\sigma(1)}, \Delta_{\sigma(2)}, \Delta_{\sigma(3)} | z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}) \right|^2 = \operatorname{sign}(\sigma)^{S_1 + S_2 + S_3} \left| \mathcal{F}^{(3)}(\Delta_1, \Delta_2, \Delta_3 | z_1, z_2, z_3) \right|^2.$$
(2.2.47)

Since the three-point function is invariant under permutations of the fields, the structure constant must therefore behave as

$$C_{\sigma(1)\sigma(2)\sigma(3)} = \operatorname{sign}(\sigma)^{S_1 + S_2 + S_3} C_{123}$$
 (2.2.48)

For example, if fields 1 and 2 are identical, then $C_{123} = C_{213}$, and the three-point function can only be nonzero if the third field has even spin $S_3 \in 2\mathbb{Z}$.

4.5 Local WI 对于 primary field OPE 的约束

我们已经讨论了 Global WI 对于关联函数存在约束,那么 Local WI 约束了什么。我们发现其对于 OPE 存在着约束。

对于一个 OPE:

$$V_{\sigma_1}(z_1)V_{\sigma_2}(z_2) = \sum_{\sigma_3} C_{\sigma_1,\sigma_2}^{\sigma_3}(z_1, z_2)V_{\sigma_3}(z_2). \tag{4.54}$$

注意,OPE 的场我们的意思其实是关联函数,我们并没有"算符"的概念。这个时候两边作用上:

$$\oint_C dz (z - z_2)^{n+1} T(z) \tag{4.55}$$

算符,等式左边由于是两个算符的关联函数作用上,所以根据之前推导的 Ward Identity 的过程我们知道结果是,对于 z_2 位置的场我们作用上 $L_n^{(z_2)}$ 对于其他位置的场作用上一系列的算符。最终得到的结果我们称之为 OPE Ward Identity:

Theorem 10. OPE WI

$$\left(L_n^{(z_2)} + \sum_{m=-1}^n {m+1 \choose n+1} z_{12}^{n-m} L_m^{(z_1)}\right) V_{\sigma_1}(z_1) V_{\sigma_2}(z_2) = \sum_{\sigma_3} C_{\sigma_1,\sigma_2}^{\sigma_3}(z_1, z_2) L_n V_{\sigma_3}(z_2) \quad (4.56)$$

这是一系列的恒等式,通过一个数字 n 来标定。n 取决于作用在左边的算符的 $(z-z_2)^{n+1}$ 接下来我们讨论不同的 n 给出的不一样的约束。

n = -1 的时候 上面的等式是:

$$\left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}\right) V_{\sigma_1}(z_1) V_{\sigma_2}(z_2) = \sum_{\sigma_2} C_{\sigma_1, \sigma_2}^{\sigma_3}(z_1, z_2) \frac{\partial}{\partial z_2} V_{\sigma_3}(z_2) .$$
(4.57)

在等式左边再使用 OPE 替换:

$$\left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}\right) \sum_{\sigma_3} C_{\sigma_1, \sigma_2}^{\sigma_3}(z_1, z_2) V_{\sigma_3}(z_2) = \sum_{\sigma_3} C_{\sigma_1, \sigma_2}^{\sigma_3}(z_1, z_2) \frac{\partial}{\partial z_2} V_{\sigma_3}(z_2) .$$
(4.58)

我们会得到一个关于 OPE 系数的约束:

$$\left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}\right) C^{\sigma_3}_{\sigma_1, \sigma_2}(z_1, z_2) = 0 \tag{4.59}$$

也就是说 OPE 系数具有平移不变性。我们会发现平移算符对应的 OPE WI 给出的约束是 OPE 系数具有平移不变形,所以其实 OPE 系数只和两个场的相对位置有关系。

n=0 的时候 如果我们认为场对应量子态 σ_i 是 L_0 和 $\bar{L_0}$ 的本征态。我们有:

$$\left(z_{12}\frac{\partial}{\partial z_1} + \Delta_{\sigma_1} + \Delta_{\sigma_2}\right) V_{\sigma_1}(z_1) V_{\sigma_2}(z_2) = \sum_{\sigma_3} C_{\sigma_1,\sigma_2}^{\sigma_3}(z_1, z_2) \Delta_{\sigma_3} V_{\sigma_3}(z_2) .$$
(4.60)

根据 GLobal OPE WI 的约束我们可以得到对于 OPE 系数的一个很大的约束:

Theorem 11. dialation 本征态 OPE 系数形式:

$$C_{\sigma_1,\sigma_2}^{\sigma_3}(z_1, z_2) = C_{\sigma_1,\sigma_2}^{\sigma_3} \left| z_{12}^{\Delta_{\sigma_3} - \Delta_{\sigma_1} - \Delta_{\sigma_2}} \right|^2 \tag{4.61}$$

注意: 这里面的模长的平方指的是 Holomorphic 的和 anti-holomorphic 的乘积。我们之前推导的都是基本上 holomorphic 的情况, 现在我们把 anti-holomorphic 的情况加回来。

 $n \ge 1$ 的时候 这个时候我们只考虑 Primary Fields 我们的 OPE WI 左手边可以写成:

$$\left(z_{12}^{n+1} \frac{\partial}{\partial z_1} + (n+1)\Delta_1 z_{12}^n\right) V_{\Delta_1}(z_1) V_{\Delta_2}(z_2) \tag{4.62}$$

我们改写 OPE:

$$V_{\Delta_1}(z_1)V_{\Delta_2}(z_2) = z_{12}^{-\Delta_1 - \Delta_2} \mathcal{O}(z_1, z_2)$$
(4.63)

这样改写的意义是,借用了上面我们已知的 OPE 系数的形式,把部分项显示的写出来,这样的话其实很多项都是 0-dim 的"数"。值得注意的是 $\mathcal{O}(z_1, z_2)$ 是一个在 z_2 处的场。这个时候右项可以写成:

$$z_{12}^{-\Delta_1 - \Delta_2} L_n \mathcal{O}(z_1, z_2) \tag{4.64}$$

所以对于这种情况下 n=0 可以写成:

$$\left(z_{12}\frac{\partial}{\partial z_{1}} + \Delta_{1} + \Delta_{2}\right) z_{12}^{-\Delta_{1} - \Delta_{2}} \mathcal{O}(z_{1}, z_{2}) = z_{12}^{-\Delta_{1} - \Delta_{2}} \left(z_{12}\frac{\partial}{\partial z_{1}}\right) \mathcal{O}(z_{1}, z_{2}) = z_{12}^{-\Delta_{1} - \Delta_{2}} L_{0} \mathcal{O}(z_{1}, z_{2}) \tag{4.65}$$

因此最终由结论:

$$\left(z_{12}\frac{\partial}{\partial z_1} - L_0^{(z_2)}\right)\mathcal{O}(z_1, z_2) = 0.$$
(4.66)

将这个带入消除 L_{-1} 带来的导数项,我们可以得到 OPE WI 为:

$$\left\{ L_n^{(z_2)} - z_{12}^n \left(n\Delta_1 - \Delta_2 + L_0^{(z_2)} \right) \right\} \mathcal{O}(z_1, z_2) = 0 . \tag{4.67}$$

我们试图解这个方程。我们认为 $\mathcal{O}(z_1, z_2)$ 是在 z_2 的 Primary 和 descendent 的组合,这样的话我们可以这样设 $\mathcal{O}(z_1, z_2)$ 的形式:

$$\mathcal{O}_{\Delta_3}(z_1, z_2) = z_{12}^{\Delta_3} \sum_{L \in \mathcal{L}} z_{12}^{|L|} C_{12}^{L|\Delta_3\rangle} LV_{\Delta_3}(z_2) , \qquad (4.68)$$

Remark:

这个时候我们的形式只设了右面的项是仅仅是某一个 Prmary field 的 descendent。我 们关注这样的情况下面的解决,因为我们会发现的结论是所有的 descendent 都可以被 primary field 的 OPE 系数进行决定也就是不同 primary field 可以自行满足这个方程。

并且这样的假设的原因是 primary field 的 conformal dimension 是可以很任意的选取

的,这样的任意选取给出了正交的条件。 同时我们注意到 OPE 其实一直是一个不同表示的场混用的方程,一个方程等式两边 对应的是不同的表示。这个时候我们会直观的意识到 Symmetry condition 给出了不同表示

对于每一个 Level 的场我们有系数为:

$$z_{12}^{\Delta_3+N}$$
 (4.69)

正好消除了 dimension 使得系数就是一个无量纲的系数。我们把这个函数形式带入到我们的 OPE WI 之中得到的结论是:

$$\sum_{|L|=N-n} C_{12}^{L|\Delta_3\rangle} (\Delta_3 + N - n + n\Delta_1 - \Delta_2) LV_{\Delta_3}(z_2) = \sum_{|L|=N} C_{12}^{L|\Delta_3\rangle} L_n LV_{\Delta_3}(z_2) . \tag{4.70}$$

通过解这个方程, 我们会意识到。Descendent 的 OPE 系数会被 Primary field 的 OPE 系数 决定:

$$C_{12}^{L|\Delta_3\rangle} = C_{12}^3 f_{\Delta_1,\Delta_2}^{\Delta_3,L} \quad C_{12}^3 = C_{12}^{|\Delta_3\rangle}$$

$$(4.71)$$

为了求解决定系数,我们将这个表达式带回上面的方程之中!

where $f_{\Delta_1,\Delta_2}^{\Delta_3,L}$ are universal coefficients such that $f_{\Delta_1,\Delta_2}^{\Delta_3,1}=1$. Let us show this for $|L|\leq 2$. The cases (N,n)=(1,1),(2,2),(2,1) of (2.2.56) respectively yield

$$\Delta_3 + \Delta_1 - \Delta_2 = 2\Delta_3 f^{L_{-1}} , \qquad (2.2.58)$$

$$\Delta_3 + 2\Delta_1 - \Delta_2 = 6\Delta_3 f^{L_{-1}^2} + (4\Delta_3 + \frac{c}{2})f^{L_{-2}},$$
 (2.2.59)

$$(\Delta_3 + 1 + \Delta_1 - \Delta_2)f^{L_{-1}} = 2(2\Delta_3 + 1)f^{L_{-1}^2} + 3f^{L_{-2}}, \qquad (2.2.60)$$

where we temporarily use the notation $f^L = f_{\Delta_1,\Delta_2}^{\Delta_3,L}$. The first equation determines $f^{L_{-1}}$, unless $\Delta_3 = 0$. The next two equations determine $f^{L_{-1}^2}$ and $f^{L_{-2}}$, unless $\Delta_3 \in$ $\{\Delta_{\langle 1,2\rangle},\Delta_{\langle 2,1\rangle}\}$. More generally, given a value of the level $N\geq 2$, the equations with n=1,2 determine $\{f^L\}_{|L|=N}$, unless $\Delta_3\in\{\Delta_{\langle r,s\rangle}\}_{rs=N}$. (See Exercise 2.17.) If $\Delta_3\in\{\Delta_{\langle r,s\rangle}\}_{rs=N}$ $\{\Delta_{\langle r,s\rangle}\}_{r,s\in\mathbb{N}^*}$, then for generic values of Δ_1,Δ_2 there is no solution for $\{f^L\}_{L\in\mathcal{L}}$, which means that V_{Δ_3} cannot appear in the OPE $V_{\Delta_1}V_{\Delta_2}$.

根据这个正比关系我们认为 OPE 可以提出所有 Primary field 的 OPE 系数。这个提出操作可以给出这个系数很多约束。比如我们发现 Primary field 的 OPE 系数可以通过 2-point 和 3-point coefficient 确定,我们只需要把 2-point function 和 3-point function 利用 OPE 联系起来:

$$\left\langle \prod_{i=1}^{3} V_{\Delta_{i}, \bar{\Delta}_{i}}(z_{i}) \right\rangle = B_{3} C_{12}^{3} \left| z_{12}^{\Delta_{3} - \Delta_{1} - \Delta_{2}} \left(z_{23}^{-2\Delta_{3}} + O(z_{12}) \right) \right|^{2}. \tag{4.72}$$

对比方程和 3-point function 的方程

$$\left\langle \prod_{i=1}^{3} V_{\Delta_{i}, \bar{\Delta_{i}}}(z_{i}) \right\rangle = C_{123} \left| \mathcal{F}^{(3)}(\Delta_{1}, \Delta_{2}, \Delta_{3} | z_{1}, z_{2}, z_{3}) \right|^{2}$$
(4.73)

我们可以得到:

$$C_{12}^3 = (-1)^{S_1 - S_2 + S_3} \frac{C_{123}}{B_3} . (4.74)$$

其中的系数 $(-1)^{S_1-S_2+S_3}$ 是通过我们之前讨论 conformal spin 3-point function 在 permutation 下面不变决定的。最终我们写出 primary field 之间的 OPE 的系数:

$$V_{\Delta_1,\bar{\Delta}_1}(z_1)V_{\Delta_2,\bar{\Delta}_2}(z_2) = \sum_{\Delta_3,\bar{\Delta}_3} (-1)^{\sum S_i} \frac{C_{123}}{B_3} \left| z_{12}^{\Delta_3 - \Delta_1 - \Delta_2} \sum_{L \in \mathcal{L}} z_{12}^L f_{\Delta_1,\Delta_2}^{\Delta_3,L} L \right|^2 V_{\Delta_3,\bar{\Delta}_3}(z_2) \quad (4.75)$$

回顾我们最开始的讨论,我们发现我们的 consistency condition 也就是我们的 Ward Identity 在表示确定(也就是 primary state)确定的情况下可以完全的决定整个表示 primary state 和 descendent 的 OPE 系数,也就是说这个 OPE 是 trivial 的 $N_{\mathcal{R}_1,\mathcal{R}_2}^{\mathcal{R}_3} = 1,0$ 。

The case $z_2 = \infty$ can be obtained from the case $z_2 \in \mathbb{C}$ by a global conformal transformation, and we find

$$V_{\Delta_{1},\bar{\Delta}_{1}}(z_{1})V_{\Delta_{2},\bar{\Delta}_{2}}(\infty) = \sum_{\Delta_{3},\bar{\Delta}_{3}} (-1)^{\sum S_{i}} \frac{C_{123}}{B_{3}} \left| z_{1}^{\Delta_{2}-\Delta_{1}-\Delta_{3}} \right|^{2} \left(V_{\Delta_{3},\bar{\Delta}_{3}}(\infty) + O\left(z_{1}^{-1}\right) \right).$$

$$(2.2.65)$$

In the special case where there is no field at infinity, so that $\Delta_2 = 0$ and $\Delta_1 = \Delta_3$, this is consistent with the behaviour (2.2.27) of $V_{\Delta_1,\bar{\Delta}_1}(z_1)$ near $z_1 = \infty$.

Remark:

以上我们完成了, WI 也就是我们的 consistency condition 对于我们的 Correlation function 和场还有 OPE 的约束。

5 Correlation function of CFT(degenerate field)

上面我们讨论了很多 Verma module 对应的场,但是除了 Verma module 还有一种 highest-weight representation 就是 degenerate representation。他们对应的场就是 degenerate field。

6 Conformal Block basic

现在我们研究一系列特别特殊的场,我们称之为 conformal block。conformal block 容纳了系统的共形对称性的信息,并且通过这个信息,我们可以通过一些 system dependent 的系数搭建起来关联函数。Conformal Block 被 Ward Identity 限制住。之前我们讨论的时候就会发现我们的 Ward Identity 其实是由特定的一套 Vir 代数限制住的。但是我们的 CFT 有着两套 Vir 代数。所以,Ward Identity 的对于关联函数的约束其实是 holomorphically factorizable。这意味我们的 conformal block 可以写成两个,一个 left moving 一个 right moving 的乘积的形式。这样的形式下,全纯和反全纯的部分互不影响。

接下来我们讨论的都是 left moving 的全纯的 conformal block。为了构建关联函数其实只要取反全纯和全纯乘在一起就好了!

这个时候我们定义 Conformal Block 是对称性约束条件也就是 Ward Identity 的解的基。 并且我们认为推导过程可以通过 OPE 来进行! 我们可以通过用哪个 OPE 来推导对 conformal block 进行分类,如果我们使用:

$$V_{\sigma_1}(z_1)V_{\sigma_2}(z_2) (6.1)$$

的 OPE 来进行计算, 我们认为 4-point function 可以写成这个样子:

$$\left\langle \prod_{i=1}^{4} V_{\sigma_i}(z_i) \right\rangle = \sum_{\Delta_s, \bar{\Delta}_s} \frac{C_{12s} C_{s34}}{B_s} \left| \mathcal{F}_{\Delta_s}^{(s)}(\sigma_i | z_i) \right|^2, \tag{6.2}$$

我们发现 4-point function 完全的通过两点和三点的关联函数的系数以及一个特殊的量决定:

$$\mathcal{F}_{\Delta_s}^{(s)}(\sigma_i|z_i) \tag{6.3}$$

我们称之为 "s-channel 4-point conformal block"。

为了推导这个结论,或者就是构造 conformal block 的具体的形式,我们使用 OPE 的方法,但是为此我们需要把 OPE 右式的求和给分成两步:

- \forall weight \forall Δ_r 的表示讲行求和
- 对某个表示的量子态进行求和

而第二步的求和就给出了 conformal block 的定义!

根据不同的 OPE 选用我们可以给出不同的 conformal block。

- $V_{\sigma_1}(z_1)V_{\sigma_2}(z_2) \not\hookrightarrow \boxplus$ s-channel $\mathcal{F}_{\Delta_s}^{(s)}(\sigma_i|z_i)$
- $V_{\sigma_1}(z_1)V_{\sigma_4}(z_4)$ \leftherefore t-channel $\mathcal{F}_{\Delta_i}^{(t)}(\sigma_i|z_i)$

• $V_{\sigma_1}(z_1)V_{\sigma_3}(z_3)$ 给出 u-channel $\mathcal{F}^{(u)}_{\Delta_u}(\sigma_i|z_i)$

不同的 channel 本质上是不同的基。并且这些基的等价性给出了对于体系的约束——crossing Symmetry。

7 Conformal block and crossing symmetry

接下来我们主要 follow 讲义"Notes on crossing transformations of Virasoro conformal blocks"来讨论 crossing symmetry 相关的性质,并且根据这些性质,我们熟悉 Moore-Seiberg 的语言。

7.1 Conformal Blocks

我们之前认为, conformal block 是搭建 correlation function 的基础。那么更广义上到底说的是什么呢?

Definition 6. conformal block

我们认为 conformal block 是某一个二维的曲面上 (一般是复平面上,也就是一个球,但有的时候这个球会有一些变换) 满足 conformal symmetry Ward Identity 的一系列函数 基。

这一系列函数基完全由曲面的两个性质决定:

- 1. genus g 也就是洞洞的数量
- 2. punctures n 也就是插入的算符的数量

Conformal Block 根据二维曲面的拓扑的性质可以分成好多的种类。接下来我们的问题 是:我们如何求解 Conformal Block。

对于这个问题我们的方法是我们将一个二维流形可以进行 pant decomposition。也就是说我们的二维的流形可以分解成 2g-2+n 个三个洞洞的球,并且这些球可以通过粘贴 3g-3+n 个圈圈粘起来变成我们讨论的二维流形。下面的图片就是给出了一个这样的粘 pants 的方法:

Figure 1. Left: A pair of pants decomposition of the four-punctured sphere. Right: The same pair of pants decomposition with additional decoration keeping track of the Dehn twists.

通过这样的粘贴我们可以把一个流形上面的 conformal block 分解成很多小的流形上面的 conformal block 的展开。为了简单起见,我们考虑流形上就只切一圈变成两个流形的情况(上面图片就是切割的很好的例子!)。

对于研究怎么通过拼接流形得到其他的流形上面的 conformal block。这个操作我们需要有一个特殊的坐标点位 q 这个 q 需要根据我们讨论的流形仔细选取。更重要的是需要满足下面的一个特殊的性质: q=0 corresponds to the degenerate surface (the boundary divisor of moduli space). (好的,我也不懂这是啥性质(x)

Remark:

这里我们对于 q 进行一个说明, 其实就是 conformal block 应该是一个特殊函数。那么必须选取一个合适的自变量。并且这个自变量的选取应该十分合理, 合理到我们可以通过一个自变量清晰的描述这个体系上面很多很多很多个洞洞的位置。

就像是一般我们讨论四点函数的时候我们的 conformal block 求的是这样的一个四点函数:

$$\left\langle V_{\Delta_1,\bar{\Delta}_1}(x)V_{\Delta_2,\bar{\Delta}_2}(0)V_{\Delta_3,\bar{\Delta}_3}(\infty)V_{\Delta_4,\bar{\Delta}_4}(1)\right\rangle \tag{7.1}$$

因为这个特殊的四点函数,可以生成其他所有的四点函数。所以这个里面我们的自变量选的就是 \mathbf{x} 。

并且我们求我们的 conformal block 的时候其实就是对于 x 进行一个无数阶的展开!

7.1.1 q 的 0 阶的展开项

对于 0 阶的展开,其实就是在粘贴处赋予一个 primary field。一个特殊的 primary field 的选取给出了这个 conformal block 的一个特别的"基"。这个 primary field 成功的 label 了一种特别的 conformal block。

对于 0 阶的展开我们有:

$$\mathcal{F}_{g,n} \sim \mathcal{F}_{g_1,n_1+1} \mathcal{F}_{g_2,n_2+1} \quad \text{or} \quad \mathcal{F}_{g-1,n+2} \ .$$
 (7.2)

具体的图示可以看下面图片:

Figure 2. The two types of degenerations of surfaces. Pinching the blue curve on the left results in a once-punctured torus and a twice-punctured torus which are connected at a single point (node). Pinching the blue curve on the right results in a three-punctured torus.

我们不难发现我们 primary field 的零阶的展开其实就是直接乘起来。并且需要要求我们切开的线上赋予一个 conformal weight 是 Δ 的 primary field。

值得注意的是,由于我们最终可以把流形分解成很多很多的三点函数的乘积。而对于 primary field 的三点函数(也就是一个球上面破三个洞)的 conformal block 是完全由 global conformal symmetry 决定的:

$$= z_{21}^{-\Delta_1 - \Delta_2 + \Delta_3} z_{31}^{-\Delta_1 - \Delta_3 + \Delta_2} z_{32}^{-\Delta_3 - \Delta_2 + \Delta_1} \ .$$

所以零阶的 conformal block 用 Δ label 的基。我们可以很容易的得到。

7.1.2 q 的高阶的展开项

由于零阶的展开规定了一个 primary field。对于更高阶的展开,我们其实就是对于这个 primary field 的 descendent 进行一个求和。下面这个图可以仔细的说明这个求和。

the conformal block is fully determined. Concretely, a conformal block is nothing but a resolution of the identity as follows. Let Ψ be a primary state of conformal weight Δ . Let then $\Psi_i^{(n)}$ for $i=1,\ldots,|\mathbb{P}_n|$ be an enumeration of all the level n descendants. Here $|\mathbb{P}_n|$ denotes the number of partitions of n, corresponding to the number of level n descendants in a generic Virasoro representation. Let us choose the $\Psi_i^{(n)}$ for simplicity such that they form an orthonormal basis of the descendants, i.e. $\langle \Psi_i^{(n)} | \Psi_j^{(n)} \rangle = \delta_{ij}$. Then e.g. the g=1, n=2 conformal block admits a series expansion as follows

The conformal blocks appearing on the right are conformal blocks where the external states are not primary vertex operators. Using Virasoro symmetry, once can

也就是我们在切开的平面上对于 descendent 进行求和。由于我们知道 descendent 可以根据共形对称性用 primary field 写出来。这个展开其实就是用到了 q。所以, 对于 descendent 的求和其实就是对于 q 的更高阶的展开。

7.2 deriving conformal block

7.2.1 4-point function conformal block

接下来我们利用上面给出的这种套路讨论一种族很经典的 conformal block。也就是讨论一个复平面上面四点函数的 conformal block。

我们在复平面这个球面上选取特殊的四个点 $z_1=1, z_2=\infty, z_3=0, z_4=z$ 。并且这个时候我们认为 0< z<1。取 conformal block 的割线是 $z\in (-\infty,0]\cup [1,\infty)$ 。在这个基础上我们发现我们的 z 坐标就刚好就是之前讨论的 q。

接下来我们可以通过一些 notation 的定义把一个 4-point conformal block 展开成为下面的样子。注意: 我们的展开使用了 kac 矩阵, 其定义就是:

$$Kac = (\mathbf{M}^{-1})_{\nu_{\mathcal{L}},\nu_{\mathcal{R}}} = \langle \mathbf{L}_{-\nu_{\mathcal{L}}} \Psi \mid \mathbf{L}_{-\nu_{\mathcal{R}}} \Psi \rangle . \tag{7.3}$$

但是我们这么归一化已经确定了我们的输入和输出的态的位置必须是 0 和无穷远。因为这个是在 conformal field theory 之中量子化后的输入和输出的态的条件。所以剪开的左边的开口,相当于在 ∞ 点插入一个算符;剪开的右边的开口相当于在 0 点插入一个算符。

$$\begin{array}{c}
3 \\
\downarrow \Delta \\
1
\end{array} = \sum_{n\geq 0} \sum_{\nu_{L}, \nu_{R} \in \mathbb{P}_{n}} 3 \\
\downarrow L_{-\nu_{L}} \Psi \\
\downarrow L_{-\nu_{R}} \Psi \\
\downarrow M_{\nu_{L}, \nu_{R}} \times 0
\end{array} \qquad (2.9)$$

This is the same formula as (2.7), but for the four-punctured sphere and without assuming that the basis of descendants is orthonormal. The notation is as follows. $\nu = (\nu_1, \nu_2, \dots, \nu_k)$ with $\nu_1 \geq \nu_2 \geq \nu_3 \geq \dots \geq \nu_k$ with $n = \sum_i \nu_i$ is a partition of n. We denoted by \mathbb{P}_n the set of all partitions. It specifies a descendant at level n via the following action of the Virasoro modes

$$\mathbf{L}_{-\nu} \equiv L_{-\nu_k} L_{-\nu_{k-1}} \cdots L_{-\nu_1} \Psi \tag{2.10}$$

on the primary state. $\mathbf{M}_{\nu_{\mathrm{L}},\nu_{\mathrm{R}}}$ denotes the inverse of the Kac-matrix,

$$(\mathbf{M}^{-1})_{\nu_{\mathcal{L}},\nu_{\mathcal{R}}} = \langle \mathbf{L}_{-\nu_{\mathcal{L}}} \Psi \mid \mathbf{L}_{-\nu_{\mathcal{R}}} \Psi \rangle . \tag{2.11}$$

接下来我们求解左半边和右半边的 conformal block 的具体的函数形式。

首先,我们可以计算右半边的函数形式是:

$$\langle L_{-\nu}V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle = \langle \Psi_2 \mid V_{\Delta_1}(1)L_{-\nu} \mid \Psi\rangle \tag{7.4}$$

$$= \operatorname{Res}(x^{-\nu+1} - x) \langle \Psi_2 | V_{\Delta_1}(1) T(x) | \Psi \rangle \tag{7.5}$$

$$+ \Delta \langle \Psi_2 | V_{\Delta_1}(1) | \Psi \rangle \tag{7.6}$$

$$= -\left[\underset{x=1}{\text{Res}} + \underset{x=\infty}{\text{Res}}\right] (x^{-\nu+1} - x) \langle \Psi_2 | V_{\Delta_1}(1) T(x) | \Psi \rangle \tag{7.7}$$

$$+ \Delta \langle \Psi_2 | V_{\Delta_1}(1) | \Psi \rangle \tag{7.8}$$

$$= (\nu \Delta_1 - \Delta_2 + \Delta) \langle V_{\Delta_{21}}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle \tag{7.9}$$

Remark:

这个计算上方的过程其实就是在重新推导 conformal ward Identity。更简便的情况其 实是我们直接使用 conformal ward Identity 以及 primary field 的三点函数的函数形式。推

首先,我们之前给出了全是 primary field 的 conformal ward Identity

$$\left\langle L_{-n}^{(z_i)} V_{\sigma_i}(z_i) \prod_{j \neq i} V_{\Delta_j}(z_j) \right\rangle = \sum_{j \neq i} \left(-\frac{1}{z_{ji}^{n-1}} \frac{\partial}{\partial z_j} + \frac{n-1}{z_{ji}^n} \Delta_j \right) \left\langle V_{\sigma_i}(z_i) \prod_{j \neq i} V_{\Delta_j}(z_j) \right\rangle$$
(7.10)

$$\langle L_{-\nu}^{(0)} V_{\Delta}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle = \left[-\frac{\partial_{z_1}}{z_1^{\nu - 1}} + \frac{\nu - 1}{z_1^{\nu}} \Delta_1 \right] \langle V_{\Delta}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle \tag{7.11}$$

所以我们有: $\langle L_{-\nu}^{(0)}V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle = \left[-\frac{\partial_{z_1}}{z_1^{\nu-1}} + \frac{\nu-1}{z_1^{\nu}}\Delta_1\right]\langle V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle \tag{7.11}$ 对于 j 求和只有这样一项是因为 $\frac{1}{\infty-0}=0$ 接下来我们知道后面的三点函数由于是 primary field 的三点函数所以: 次ののでは、 $\langle V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle \sim z_1^{\Delta_2-\Delta_1-\Delta}$ (7.12) 求一阶导数之后指数项下来就变成了: $\langle L_{-\nu}^{(0)}V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle = \left[\Delta_1+\Delta-\Delta_2+(\nu-1)\Delta_1\right]\langle V_{\Delta+\nu}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle \ \ (7.13)$ $=(\nu\Delta_1+\Delta-\Delta_2)\langle V_{\Delta+\nu}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle$ 注意最后对于三点逐步。

$$\langle V_{\Delta}(0)V_{\Delta_1}(1)V_{\Delta_2}(\infty)\rangle \sim z_1^{\Delta_2 - \Delta_1 - \Delta} \tag{7.12}$$

$$\langle L_{-\nu}^{(0)} V_{\Delta}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle = \left[\Delta_1 + \Delta - \Delta_2 + (\nu - 1) \Delta_1 \right] \langle V_{\Delta + \nu}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle \tag{7.13}$$

$$= (\nu \Delta_1 + \Delta - \Delta_2) \langle V_{\Delta + \nu}(0) V_{\Delta_1}(1) V_{\Delta_2}(\infty) \rangle \tag{7.14}$$

注意最后对于三点函数由于我们进行求导操作并且还乘上了 z1 因此我们的三点函数后边

$$z_1^{\Delta_2 - \Delta_1 - \Delta} \to z_1^{\Delta_2 - \Delta_1 - \Delta - \nu} \tag{7.15}$$

也可以等价的理解为 primary field 的 conformal weight 从 Δ 变成了 $\Delta + \nu$.

段计算就是提醒我们利用 conformal ward identity 的性质求解一下存在一个场是 descendent 的时候的关联函数。

这个计算其实就是利用能动量张量的定义,或者说其实就是 conformal ward identity。基 损之后我们就可以发现,我们使用了一个固定三个点的 primary field 的三点函数表示了一个 descendent 的三点函数。

接下来,我们需要表示出所有的 descendent 的三点函数,那么我们就需要一遍遍作用 $L_{-\nu}$ 可以最后得到的结论是:

$$\mathbf{L}_{-\nu_{\mathbf{R}}} \Psi$$

$$= \prod_{j=1}^{k} \left(\nu_{\mathbf{R},j} \Delta_{1} - \Delta_{2} + \Delta + \sum_{m < j} \nu_{\mathbf{R},m} \right) .$$

这里对于这个结论进行一点点解释:

$$\mathbf{L}_{-\nu} \equiv L_{-\nu_k} L_{-\nu_{k-1}} \cdots L_{-\nu_1} \Psi \tag{7.16}$$

相当于不停重复上面的变化。并且重复之后,我们的 primary field 的 conformal weight 会发生变化。因此我们作用出的系数应该是:

$$\left(\nu_{\mathbf{R},j}\Delta_1 - \Delta_2 + \Delta + \sum_{m < j} \nu_{\mathbf{R},m}\right). \tag{7.17}$$

后面会加上 $\sum_{m < j} \nu_{\mathbf{R},m}$ 这一项! 同样的我们也可以求一下左边的三点函数的 conformal block:

$$\mathbf{L}_{-\nu_{\mathbf{L}}} \Psi$$

$$= z^{-\Delta_3 - \Delta_4 + \Delta + n} \prod_{j=1}^k \left(\nu_{\mathbf{L},j} \Delta_4 - \Delta_3 + \Delta + \sum_{m < j} \nu_{\mathbf{L},m} \right) .$$

最后我们把这两个 conformal block 拼起来我们就可以得到任意的 primary field 的 4-point conformal block 的表达了!! 拼起来的时候中间要使用 Kac 矩阵!!

另一个画风下面的求解四点的 conformal block (使用两点函数,而不是三点函数的性质)可以看下面的图片

2.4.2 Computing four-point conformal blocks

Pedestrian computation

Inserting the OPE (2.2.64) in our four-point function, we obtain

$$\left\langle V_{\Delta_{1},\bar{\Delta}_{1}}(x)V_{\Delta_{2},\bar{\Delta}_{2}}(0)V_{\Delta_{3},\bar{\Delta}_{3}}(\infty)V_{\Delta_{4},\bar{\Delta}_{4}}(1)\right\rangle
= \sum_{\Delta_{s},\bar{\Delta}_{s}} \frac{C_{12s}}{B_{s}} \left| x^{\Delta_{s}-\Delta_{1}-\Delta_{2}} \sum_{L\in\mathcal{L}} x^{L} f_{\Delta_{1},\Delta_{2}}^{\Delta_{s},L} \right|^{2} \left\langle L\bar{L}V_{\Delta_{s},\bar{\Delta}_{s}}(0)V_{\Delta_{3},\bar{\Delta}_{3}}(\infty)V_{\Delta_{4},\bar{\Delta}_{4}}(1)\right\rangle . \quad (2.4.6)$$

Using the universal factors $g_{\Delta_s,\Delta_3,\Delta_4}^L$ (2.3.2), this can be written as a conformal block decomposition (2.4.1), where the blocks are

$$\mathcal{F}_{\Delta_s}^{(s)}(\Delta_i|x) = x^{\Delta_s - \Delta_1 - \Delta_2} \sum_{L \in \mathcal{L}} f_{\Delta_1, \Delta_2}^{\Delta_s, L} g_{\Delta_s, \Delta_3, \Delta_4}^L x^{|L|} . \tag{2.4.7}$$

Explicitly, using Eqs. (2.2.58)-(2.2.60) for $f_{\Delta_1,\Delta_2}^{\Delta_{s,L}}$ and Eqs. (2.3.3)-(2.3.5) for $g_{\Delta_s,\Delta_3,\Delta_4}^L$, we find

$$\mathcal{F}_{\Delta_{s}}^{(s)}(\Delta_{i}|x) = x^{\Delta_{s}-\Delta_{1}-\Delta_{2}} \left\{ 1 + \frac{(\Delta_{s} + \Delta_{1} - \Delta_{2})(\Delta_{s} + \Delta_{4} - \Delta_{3})}{2\Delta_{s}} x + \frac{1}{D_{2}(\Delta_{s})} \begin{bmatrix} (\Delta_{s} + \Delta_{1} - \Delta_{2})_{2} \\ \Delta_{s} + 2\Delta_{1} - \Delta_{2} \end{bmatrix}^{T} \begin{bmatrix} 2 + \frac{c}{4\Delta_{s}} & -3 \\ -3 & 4\Delta_{s} + 2 \end{bmatrix} \begin{bmatrix} (\Delta_{s} + \Delta_{4} - \Delta_{3})_{2} \\ \Delta_{s} + 2\Delta_{4} - \Delta_{3} \end{bmatrix} x^{2} + O(x^{3}) \right\},$$
(2.4.8)

where we use the level-2 determinant $D_2(\Delta_s) = 4(2\Delta_s + 1)^2 + (c - 13)(2\Delta_s + 1) + 9$ from Eq. (2.1.13).

7.2.2 one point function on a torus

我们用同样的穿刺粘贴的方法可以得到一个 torus 上面的共形场论的一点函数。同样的选用一个 primary field 作为基的标定然后变成三点函数粘在一起!

同样的我们需要选择一个合适的 q 来描述我们的 torus。这个时候我们选择我们 torus 的 modulus τ ,为了保证有 degenerate 的 q 的性质,我们使用 $q=e^{2\pi i \tau}$ 。

Here, $\mathbf{M}_{\nu_{\mathrm{L}},\nu_{\mathrm{R}}}$ is again the inverse of the Kac matrix. It remains to compute the three-point block on the right. To do so, it is convenient to parametrize the torus via its modulus τ . We also set $q = \mathrm{e}^{2\pi i \tau}$. The degeneration corresponds to $q \to 0$.

To make the formula concrete, we again work out the three-punctured sphere block. To map this to the geometry of the plane, we apply the standard exponential map. This gives rise to the usual term from the conformal anomaly. We thus have

The three-point function appearing on the right hand side can be reduced to the primary three-point function in a similar way to the procedure in eq. (2.15). Plugging it into (2.18) gives the q-expansion of the conformal block.

希望以后能懂这一段在说啥呜呜呜呜呜!