Лекция 7. Принцип Беллмана. Примеры применения.

Пример 1. Замена автомобиля (пример задачи о замене обрудования).

Обозначим через $\{0,1,...,K\}$ состояния, в которых может быть автомобиль. Состояние 0 соответствует новой машине, номер состояния возрастает по мере старения машины. Состояние машины X_n в момент времени n является случайной величиной. Предположим, что эволюция марковская и положим

$$P(i,j) = P(X_{n+1} = j | X_n = i), 0 \le i, j \le K.$$

Поддерживание «на ходу» старой машины требует технического обслуживания, т.е. требует затрат. Обозначим через $\alpha(i)$ — затраты на поддержание машины, находящейся в состоянии i. В каждый момент времени имеется также возможность заплатить сумму, равную R, и купить новую машину, т.е. перейти в состояние 0.

Задача. Описать оптимальную стратегию в интервале времени [0,N] и определить моменты времени, когда лучше всего покупать новую машину. Будем искать решение этой задачи, сформулировав её как задачу оптимального марковского управления. Рассмотрим управления, принимающие всего два значения: u=0, если оставляем старую машину, u=1, если покупаем новую машину. Положим

$$P^{(0)}(i,j) = P(i,j),$$

Поскольку при «нулевой» стратегии затраты производятся только на поддержание машины, то $P^{(0)}(i,j)=0$ для $0 \le j < i$ (машина не может перейти в состояние с меньшим номером, так как он соответствует менее изношенной машине, в состояние 0 также нет перехода, так как при «нулевой» стратегии новая машина не покупается).

Тогда как при «единичной» стратегии

$$P^{(1)}(i,0) = 1, P^{(1)}(i,j) = 0, если j > 0.$$

Затраты c(x, u) (для простоты считаем их не зависящими от n,т.е. не учитываем, например, изменение со временем цен на сервисные услуги) на поддержание или покупку машины в различных её состояниях равны соответственно

$$c(i,0) = \alpha(i), \qquad c(i,1) = R, \qquad \gamma(i) = \alpha(i).$$

Можно рассмотреть и другие финальные затраты $\gamma(i)$, это зависит от конкретной ситуации, которую мы хотим моделировать. Опишем алгоритм динамического программирования. Сначала $J_N(i) = \gamma(i) = \alpha(i)$, затем идем обратным ходом:

$$J_{n}(i) = \min_{u \in \{1,0\}} \left\{ c(i,u) + \left(P^{(u)} J_{n+1} \right)(i) \right\} =$$

$$\min \left\{ R + \sum_{j=0}^{K} J_{n+1}(j) P^{(1)}(i,j), \ \alpha(i) + \sum_{j=0}^{K} J_{n+1}(j) P^{(0)}(i,j) \right\} =$$

$$\min \left\{ R + J_{n+1}(0), \alpha(i) + \sum_{j=0}^{K} J_{n+1}(j) P^{(0)}(i,j) \right\}. \tag{6}$$

n = N - 1, N - 2, ..., 0. Выбирая минимум из двух выражений в (6), найдем оптимальное управление (0 или 1) на n-м шаге. Двигаясь обратным ходом, найдем значение $I_0(i)$, которое, в соответствии с Теоремой 1 Лекции 5, дает минимальные средние затраты на всем интервале наблюдений (исходя из состояния i), а также оптимальное Эти формулы достаточно просто управление на каждом шаге. программировать. Предположим теперь, что $\alpha(i)$ и $P^{(0)}(i,[j,K]), j \ge 1$ і, являются возрастающими функциями і, что отражает тот факт, более изношенная машина требует больше вложений на её поддержание и возрастает вероятность её дальнейшего старения или покупки новой машины. Это предположение влечёт: если f(i)возрастающая функция i, то $Pf(i) = \sum_{j=0}^{K} f(j) P^{(0)}(i,j)$ возрастающая функция і. В самом деле,

$$Pf(i) = \sum_{j=0}^{K} (P(i, [j, K]) - P(i, [j+1, K])) f(j) =$$

$$P(i,[0,K])f(0) + \sum_{j=1}^{K} (P(i,[j,K])(f(j) - f(j-1)).$$

Правая часть равенства, как сумма возрастающих по i функций, возрастает по i. Отсюда и из (6) получаем по индукции (двигаясь из конца в начало), что $J_n(i)$ возрастающая функция i для всех $0 \le n \le N$. Положим $\phi_{n+1}(i) = \alpha(i) + PJ_{n+1}(i)$. Как следует из наших предыдущих рассмотрений, эта фукция возрастает по i. Поэтому ϵ каждый момент n можно определить «пороговое» состояние машины, т.е. такое состояние, когда покупка машины становится рентабельнее, чем её поддержание:

$$a_n = \inf\{i: R + J_{n+1}(0) \le \phi_{n+1}(i)\}.$$

Стратегия состоит в покупке новой машины в тот момент n, когда её состояние впервые превзойдёт пороговое, то есть станет $\geq a_n$. Значения a_n вычисляются на компьютере.

Пример 2. Управление запасами. Каждый вечер менеджер магазина должен заказывать некоторое количество товара, чтобы удовлетворить спрос завтрашних покупателей. Сформулирум основные предположения модели. Закупочная стоимость x единиц товара равна $a \cdot x$. Каждый клиент покупает *одну* единицу товара, поэтому *спрос* равен числу пришедших клиентов. Спрос (= число пришедших клиентов) является последовательностью независимых, одинаково распределённых с.в., пусть и их общий закон распределения. Стоимость хранения на складе одной единицы товара до конца дня равна h. Неудовлетворённый спрос (по причине отсутствия товара) стоит p за каждую единицу не выданного товара. Если накануне (вечером) запас товара равен s, на завтра заказано u единиц товара (буква u выбрана не случайно, это единственная контролируемая величина модели, она будет играть роль управления), а придут (завтра) *w* клиентов, то *затраты к завтрашнему вечеру* будут равны

$$C(s, w, u) = a \cdot u + p \cdot (w - s - u)^{+} + h \cdot (s + u - w)^{+}$$

Функция x^+ равна x, если $x \ge 0$ и равна 0, если x < 0. Например, если w < s + u, то есть, если пришло клиентов меньше, чем количество товара в наличии, то платы за неудовлетворённый спрос нет, в противном случае она равна p(w - s - u). Аналогично, если пришло

клиентов больше, чем количесто товара в наличии, то есть если s+u < w, то плата за хранение отсутствует, в противном случае надо хранить (s+u-w) единицы товара, и плата за это равна $h \cdot (s+u-w)$. Чтобы перейти к управляемой марковской модели, поступим следующим образом. Обозначим через S_k размер запаса (со знаком, т.е. он может быть и отрицательным, что означает дефицит товара) к вечеру k - го дня, пусть W_k - число клиентов, пришедших на следующий, (k+1) - ый день. Общие средние затраты за N дней функционирования магазина равны

$$C_N = E\left(\sum_{k=0}^{N-1} C(S_k, W_k, U_k)\right).$$

Перепишем эти затраты следующим образом:

$$C_{N} = \sum_{k=0}^{N-1} E(C(S_{k}, W_{k}, U_{k})) = \sum_{k=0}^{N-1} E\left(\int C(S_{k}, w, U_{k}) d\mu(w)\right) = E\left(\sum_{k=0}^{N-1} \int C(S_{k}, w, U_{k}) d\mu(w)\right).$$

Если теперь положим $X_k = S_k$ (оставшееся к вечеру k-го дня количство единиц товара) и $c(x,u) = \int C(x,w,u) d\mu(w)$, $\gamma(x) = 0$, то получим марковскую модель с управлением (ср. с обозначениями Теоремы 1). Роль управления здесь играет с.в. U_k — количество единиц товара, которое надо дополнительно заказать вечером k-го дня. Возможно, более естественным было бы объявить состоянием вектор $X_k = (S_k, W_k)$, но тогда мы не были бы точно в рамках нашей управляемй модели, так как начальная точка была бы случайной (из-за

 W_0). Нетрудно обобщить наши рассмотрения и на этот случай, но мы этого делать не будем. Для упрощения анализа мы будем рассматривать ситуацию «backlog», т.е. когда необслуженные клиенты не уходят, а остаются в ожидании до получения товара (они приоритетно получат товар, когда он поступит). В этом случае

$$X_{n+1} = X_n + u - W_n,$$

где W_n - независимая с.в., имеющая закон распределения μ (если W_n велико, то X_{n+1} может быть и отрицательна). Напомним, что, по определению, W_n - число клиентов, пришедших на следующий, n+1ый, день. Если бы мы хотели моделировать ситуацию, когда неудовлетворёные клиенты уходят, то надо было бы положить $X_{n+1} = (X_n + u - W_n)^+ \ge 0$.

Решение задачи. Используем алгоритм Беллмана, положим $J_N(x) = \gamma(x) = 0$. Затем рекуррентно, обратным ходом определяем

$$J_n(x) = \min_{u} [c(x, u) + E_w(J_{n+1}(x + u - W))], \tag{7}$$

где W - с.в., имеющая закон распределения μ . Средние издержки (затраты) равны

$$c(x,u) = E_w[au + p(W - x - u)^+ + h(x + u - W)^+].$$

(м.о. берётся по распределению μ).

Предложение 6. Предположим, что $p,h \ge 0$ и p > a > 0. Тогда можно определить последовательность σ_n такую, что оптимальное управление имеет вид $u_n(x) = (\sigma_n - x)^+$.

Доказательство. Положим

$$g_n(z) = L(z) + E_w(J_{n+1}(z-W)), z \in R.$$

где

$$L(z) = a \cdot z + p \cdot E_w(W - z)^+ + h \cdot E_w(z - W)^+.$$

Заметим, что $J_{n+1} \ge 0$ (следует из (7), попятным движением, как минимум суммы неотрицательных функций). Кроме того,

$$\lim_{z\to\pm\infty}L(z)=+\infty.$$

Для $z \to +\infty$ это очевидно, для $z \to -\infty$ пользуемся тем, что

$$E_{w}(W-z)^{+} = E_{w}\{(W-z)^{+} \cdot 1(W < z) + (W-z)^{+} \cdot 1(W \ge z)\} = 0 + E_{w}(W-z) \cdot 1(W \ge z) = E_{w}[W \cdot 1(W \ge z)] - z \cdot P(W \ge z).$$

Поэтому

$$a \cdot z + p \cdot E(W - z)^{+} = a \cdot z + p \cdot E_{w}[W \cdot 1(W \ge z)] -$$
$$-z \cdot p \cdot P(W \ge z) \ge z(a - p).$$

Поскольку, по предположнию, a-p < 0, то $\lim_{z \to -\infty} z(a-p) = +\infty$. и, следовательно

$$\lim_{z\to-\infty}L(z)=+\infty.$$

Таким образом, и (т.к. $E_w(J_{n+1}(z-W)) \ge 0$),

$$\lim_{z\to\pm\infty}g_n(z)=+\infty.$$

Покажем теперь обратной индукцией, что для $n \leq N$ функция J_n выпуклая. Для J_N это очевидно, так как эта функция тождествено равна нулю. Предположим, что J_{n+1} выпуклая. Тогда и $E_w \big(J_{n+1} (z-W) \big)$ выпуклая. Функции x^+ и $(-x)^+$, очевидно, выпуклые, поэтому и

функция L(z), как сумма трёх выпуклых функций, выпуклая. Но тогда и $g_n(z)$ выпуклая. Имеем (см. (7))

$$J_n(x) = \min_{u \ge 0} [g_n(x+u) - ax].$$

(разность в квадратных скобках неотрицательна). Обозначим через σ_n (наименьшее) значение аргумента функции g_n , при котором g_n (а значит и J_n) достигает своего единственного минимума. Это значение существует и единственно, поскольку g_n - выпуклая функция и

$$\lim_{z\to+\infty}g_n(z)=+\infty.$$

Тогда

 $J_n(x)=g_n(\sigma_n)-ax\ u\ u_n(x)=\sigma_n-x, ecnu\ u_n(x)\geq 0 \Longleftrightarrow x\leq \sigma_n,$ и

$$J_n(x) = g_n(x) - ax$$
 и $u_n(x) = 0$, если $x > \sigma_n$.

(здесь $u_n(x)$ - **неотрицательное** управление, на котором достигается минимум). Эта функция J_n выпуклая (следует из её определения) и оптимальное управление дается формулой

$$u_n(x) = (\sigma_n - x)^+.$$

Оптимальная линейная фильтрация и управление.

Постановка задачи линейного управлеия.

Одной из наиболее часто используемых моделей является *линейная модель с квадратичной функцией затрат и гауссовскими шумами*. Расссмотрим систему:

$$X_{n+1} = AX_n + BU_n + W_n, \qquad n \in \mathbb{N}. \tag{8}$$

где $X_n \in \mathbb{R}^d$, A — вещественная $d \times d$ — матрица, $U_n \in \mathbb{R}^p$, Bвещественная $d \times p$ — матрица и $W_n \in \mathbb{R}^d$, $n \in \mathbb{N}$, последовательность независимых, одинаково распределённых гауссовских векторов $\mathcal{N}(0,V)$, то есть центрированных и имеющих матрицу ковариаций V. Рассматриваемые векторы всегда будут вектор-столбцами. В задачах управления обычно рассматривают более слабые ограничения: достаточно предполагать, что W_n интегрируемы с квадратом, центрированы и некоррелированы и имеют одну и ту же матрицу ковариаций, то есть

$$EW_n=0,$$
 $E(W_nW_n^*)=V, \qquad E(W_nW_m^*)=0,$ если $m \neq n.$

В частности, V может равняться нулю. Тогда $W_n \equiv 0$ и тогда имеют дело c *детерминированным* линейным управлением. Функция затрат (издержек) имеет вид

$$E\left(\sum_{k=0}^{N-1}c(X_k,U_k)+\gamma(X_N)\right),$$

где с и ү - квадратичные формы вида

$$c(x, u) = x^*Qx + u^*Ru,$$
$$\gamma(x) = x^*\Gamma x,$$

где Q и Γ - симметрические *неотрицательно* определённые $d \times d$ матрицы, а R - симметрическая *положительно* определённая $p \times p$ матрица.

Напомним кратко основные факты о симметрических матрицах, которые будут нам нужны.

Симметрические матрицы.

Определение 6. Вещественная d × d матрица M называется симметрической, если она совпадает со своей транспонированной M*. Она неотрицательно определена, если

$$x^*Mx \ge 0$$
 для всех $x \in \mathbb{R}^d$

и положительно определена, если

$$x^*Mx > 0$$
 для всех $x \neq 0$, $x \in R^d$.

Множество неотрицательно определённых матриц порядка d будем обозначать \mathcal{P}_d .

$$\lambda_1 \geq 0, \dots, \lambda_d \geq 0$$
,

и положительно определена, если

$$\lambda_1 > 0, \dots, \lambda_d > 0.$$

Таким образом, симметрическая неотрицательно определённая матрица является положительно определённой тогда и только тогда, когда она обратима. Нам понадобится

Лемма 3. Пусть S — симметрическая положительно определённая матрица порядка p и вектор $y \in R^p$ фиксирован. Минимум по и квадратичной формы

$$2u^*y + u^*Su$$

равен $-y^*S^{-1}y$ и он достигается при $u = -S^{-1}y$.

Доказательство. Имеем для любого $h \in R^p$

$$2y^*(u+h)+(u+h)^*S(u+h) = 2y^*u + u^*Su + h^*Sh + 2(Su+y)^*h.$$

(мы воспользовались тем, что $u^*Sh = h^*Su$ и $u^*y = y^*u$). Заменяя h на th, где t вещественное число, видим, что правая часть последнего равенства будет функцией h, достигающей минимума при h=0, если для всех $t\in R$

$$t^2h^*Sh + 2t(Su + y)^*h \ge 0.$$

Это возможно тогда и только тогда, когда $(Su+y)^*h=0$ (доказывается от противного, рассматривая достаточно малые t). Это рассуждение верно для всех $h \in R^p$, поэтому равенство $(Su+y)^*h=0$ возможно тогда и только тогда, когда Su+y=0, то есть $u=-S^{-1}y$. В этой точке минимум равен

$$2y^*u + u^*Su = -2y^*S^{-1}y + (S^{-1}y)^*S(S^{-1}y) = -y^*S^{-1}y.$$

Лемма 4

Eсли W – центрированный вектор, имеющий матрицу ковариаций V, то

$$E(W^*\Gamma W)=tr(\Gamma V).$$

Доказательство. Поскольку $W^*\Gamma W$ - вещественная с.в., она равна своему следу, поэтому (пользуемся также тем, что tr(AB) = tr(BA))

$$E(W^*\Gamma W) = E(tr(W^*\Gamma W)) = E(tr(\Gamma W W^*)) = tr(\Gamma E(W W^*))$$
$$= tr(\Gamma V).$$

Динамическое программирование для линейной модели с квадратичной функцией затрат.

Мы ищем

$$J(x) = \min_{\nu} E_{x}^{\nu} \left(\sum_{k=0}^{N-1} c_{k}(X_{k}, U_{k}) + \gamma(X_{N}) \right),$$

где минимум берётся по всем стратегиям $\nu = (\nu_0, ..., \nu_{N-1})$. Чтобы свести задачу к задаче динамического программирования, обозначим через $P^{(u)}(x, \cdot)$ закон распределения с.в. Ax + Bu + W, где $W \sim N(0, V)$. В этой ситуации алгоритм допускает явное решение. В самом деле,

$$J_N(x) = \gamma(x) = x^* \Gamma x = x^* \Gamma_N x, \tag{9}$$

где мы положили $\Gamma = \Gamma_N$.

Далее, для модели (8) имеем с учётом (9), Леммы 3 и Леммы 4 и того, что $W \sim N(0, V)$, имеем

$$J_{N-1}(x) = \min_{u} \left\{ x^* Q x + u^* R u + \int J_N(y) P^{(u)}(x, dy) \right\} =$$

$$\min_{u} \{ x^* Q x + u^* R u + E_w (J_N (A x + B u + W_{N-1})) \} =$$

$$\min_{u} \{x^*Qx + u^*Ru + (Ax + Bu)^*\Gamma_N(Ax + Bu) + tr(\Gamma_N V)\} =$$

$$\min_{u}\{x^*(Q+A^*\Gamma_NA)x+u^*(R+B^*\Gamma_NB)u+2x^*A^*\Gamma_NBu+tr(\Gamma_NV)\}=$$

$$x^*(Q + A^*\Gamma_N A)x + tr(\Gamma_N V) + \min_{u} \{u^*(R + B^*\Gamma_N B)u + 2x^*A^*\Gamma_N Bu\}.$$

Применяя Лемму 3 с $S = (R + B^*\Gamma_N B)$ и $y = B^*\Gamma_N A x$, видим, что

$$J_{N-1}(x) = x^* \Gamma_{N-1} x + tr(\Gamma_N V), \tag{10}$$

где

$$\Gamma_{N-1} = Q + A^* \Gamma_N A - (A^* \Gamma_N B) (R + B^* \Gamma_N B)^{-1} (B^* \Gamma_N A)$$

и достигается этот минимум в точке

$$u = -S^{-1}y = K_{N-1}x,$$

где

$$K_{N-1} = -(R + B^*\Gamma_N B)^{-1}(B^*\Gamma_N A).$$

Прямой проверкой нетрудно убедиться, что Γ_{N-1} можно переписать в следующем виде

$$\Gamma_{N-1} = Q + K_{N-1}^* R K_{N-1} + (A + B K_{N-1})^* \Gamma_N (A + B K_{N-1}).$$

С точностью до слагаемого $(tr(\Gamma_N V))$ выражение (10) для $J_{N-1}(x)$ имеет тот же вид, что и выражение (9) для $J_N(x)$, поэтому можно повторить те же вычисления, чтобы получить $J_{N-2}(x)$ и.т.д. В результате получим следующий замечательный результат.

Теорема 3. Положим (преобразование Риккати)

$$\rho(\Gamma) = Q + A^* \Gamma A - (A^* \Gamma B)(R + B^* \Gamma B)^{-1}(B^* \Gamma A).$$

Рассмотрим последовательность матриц, определённых последовательно уравнениями: $\Gamma_N = \Gamma$, затем для n < N полагаем

$$\Gamma_n = \rho(\Gamma_{n+1}).$$

Тогда

$$J_n(x) = x^* \Gamma_n x + \sum_{n+1}^N tr(\Gamma_k V)$$

и оптимальное управление (марковское, линейое по Х) имеет вид

$$U_n = K_n X_n$$
, $\partial e K_n = -(R + B^* \Gamma_{n+1} B)^{-1} (B^* \Gamma_{n+1} A)$.

Пусть, например, d=p=1, то есть рассматривается *одномерная модель*

$$X_{n+1} = aX_n + bU_n + W_n, \qquad n \in \mathbb{N}.$$

где W_n , $n \in \mathbb{N}$, последовательность независимых, одинаково распределённых гауссовских с.в. $\mathcal{N}(0,V)$, то есть центрированных и имеющих дисперсию V. Тогда оптимальное управление U_n даётся формулами для всех $0 \le n < N$

$$U_n = -\frac{ba\Gamma_{n+1}}{R + b^2\Gamma_{n+1}}X_n, \qquad J_n(x) = \Gamma_n x^2 + \sum_{k=n+1}^N \Gamma_k V,$$

где Γ_n находится из рекуррентного соотгошения

$$\Gamma_n = \frac{QR + (b^2Q + Ra^2)\Gamma_{n+1}}{R + b^2\Gamma_{n+1}}, \qquad 0 \le n < N.$$
 (11)

Отметим появление дробно-линейного преобразования (11) с положительными коэффициентами.

Обобщения.

Коэффициенты, зависящие от времени.

Можно предположить, что матрицы A,B,Q,R,V зависят от n. Получим результат того же типа с тем же самым доказательством. Достаточно заменить уравнение $\Gamma_n = \rho(\Gamma_{n+1})$ на $\Gamma_n = \rho_n(\Gamma_{n+1})$, где

$$\rho_n(\Gamma) = Q_n + A_n^* \Gamma A_n - (A_n^* \Gamma B_n) (R_n + B_n^* \Gamma B_n)^{-1} (B_n^* \Gamma A_n)$$

и каждое слагаемое $tr(\Gamma_n V)$ на $tr(\Gamma_n V_{n-1})$.

Корректировка траектории.

Другое полезное обобщение состоит в следующем. Предположим, что мы хотим, чтобы наша траектория X_n была близка к некоторому вектору ξ_n , известному заранее. В этом случае мы стремимся сделать малой разность $X_n - \xi_n$, то есть минимизировать критерий

$$E(\sum_{k=0}^{N-1} c_k(X_k, U_k) + \gamma(X_N - \xi_N)),$$

где $c_k(x,u)=(x-\xi_k)^*Q(x-\xi_k)+u^*Ru$. Хотим свести эту ситуацию к уже рассмотренной. Для этого положим $\bar{X}_k=X_k-\xi_k$. Критерий тогда запишется

$$E(\sum_{k=0}^{N-1} c_k(\bar{X}_k, U_k) + \gamma(\bar{X}_N)),$$

Но теперь наша модель (8) запишется

$$\bar{X}_{n+1} = A\bar{X}_n + BU_n + W_n + A\xi_n - \xi_{n+1}.$$

Увеличим на единицу размерность пространства состояний, полагая

$$ilde{X}_n = inom{ar{X}_n}{1}$$
 . Введём также матрицы

$$\widetilde{A}_n = \begin{pmatrix} A & v_n \\ 0 & 1 \end{pmatrix}$$
, $\widetilde{B} = \begin{pmatrix} B \\ 0 \end{pmatrix}$, $\widetilde{W}_n = \begin{pmatrix} W_n \\ 0 \end{pmatrix}$,

где $v_n = A\xi_n - \xi_{n+1}$. Тогда уравнение запишется

$$\tilde{X}_{n+1} = \tilde{A}_n \tilde{X}_n + \tilde{B} U_n + \tilde{W}_n,$$

и мы свели исходную модель к уже рассмотренной модели, при этом на единицу возросла размерность задачи.