Optimizing Quantum Oracle for Standard Hash Algorithms

Korea University Sangheon Lee, Mingyu Cho

December 13, 2020

Table of Contents

- Introduction
- 2 Theoretical Background
- 3 SHA-2 Quantum Circuit Experiment
- 4 References

Introduction

Previous Work

- Studied the basics of quantum computing and Grover's Algorithm
- Analysis of reversible quantum S-DES oracle and its construction
- Implementation of quantum S-DES oracle with Grover's Algorithm in Microsoft Q#

Motivation

- Targeting SHA-2/3
 - Current de facto standard hash algorithm
- Goal is to perform a preimage attack.
 - The most straightforward to apply Grover's Algorithm.
 - It will be assumed that Grover's Algorithm(or some variation of it) will be applied
 - Therefore target is to optimize the quantum oracle for SHA-2/3.

Recap: Grover's Algorithm

- Searching in an unordered database among 2^n elements takes $\tilde{\mathcal{O}}(2^{n/2})$ time complexity and $\tilde{\mathcal{O}}(n)$ quantum space complexity
- Proved to be optimal in general
- Specifically, improved Grover's Algorithm for collision search yields $\tilde{\mathcal{O}}(2^{n/3})$ time complexity and (quantum) space complexity [BHT98]
 - However, quantum queries are costly in this algorithm

Chailloux's Algorithm [CNPS17]

• Use poly-time qubits and reduce time complexity to $\tilde{\mathcal{O}}(2^{2n/5})$ for collision search and $\tilde{\mathcal{O}}(2^{3n/7})$ for multi-target preimage attacks with additional classic memory

SHA-2 Quantum Circuit Experiment

Introduction

surface code

Suggest cost metric for quantum computation based on

- ullet Theoretically implement reversible SHA-2/3 quantum circuits
- Estimate required physical resources and its scale

References

Expectations

- Focus on micro-scale improvement(regarding quantum oracle)
- May be able to reduce the cost in at least one of the following metrics:
 - The cost metric from before
 - The raw number of gates
 - The number of levels after achieving parallelization
- Main target will be the cost metric, not the gates or the levels

In-depth Topics

- Surface code(Toric code): topological quantum error correcting code
- Cost metric based on surface code
- T-par [AMM14]: an quantum circuit optimization tool
- Advanced quantum circuit (in-place adder, etc.)

Theoretical Background

Why Clifford + T?

- By Gottesman-Knill Theorem, Clifford gates can be simulated efficiently on a classical computer.
- ullet T-gate is eqal to $R_{\pi/4}=egin{pmatrix} 1 & 0 \ 0 & \sqrt{\it i} \end{pmatrix}$, a $rac{\pi}{4}$ rotation.
- Clifford+T gate utilizes only one inefficient gate, while is universal.
- Since Clifford gates can be efficiently simulated, we need to minimize the number(or the depth once parallized) of the T-gates.

Figure 4: A simple ripple-carry adder for n = 6.

SHA-2 Quantum Circuit Experiment

SHA-256 Algorithm

```
Algorithm 1 SHA-256. All variables are 32-bit words.
```

Theoretical Background

```
1: for i=0 to 63 do
                   \Sigma_1 \leftarrow (\mathbf{E} \gg 6) \oplus (\mathbf{E} \gg 11) \oplus (\mathbf{E} \gg 25)
                   \mathbf{Ch} \leftarrow (\mathbf{E} \wedge \mathbf{F}) \oplus (\neg \mathbf{E} \wedge \mathbf{G})
                   \mathbf{t}_1 \leftarrow \mathbf{H} + \Sigma_1 + \mathbf{Ch} + \mathbf{K}[i] + \mathbf{W}[i]
                   \Sigma_0 \leftarrow (\mathbf{A} \gg 2) \oplus (\mathbf{A} \gg 13) \oplus (\mathbf{A} \gg 22)
                   Maj \leftarrow (A \land B) \oplus (A \land C) \oplus (B \land C)
                   \mathbf{t}_2 \leftarrow \Sigma_0 + \mathrm{Maj}
 8:
                  H \leftarrow G
                   G \leftarrow F
 9.
10:
                \mathbf{F} \leftarrow \mathbf{E}
          \mathbf{E} \leftarrow \mathbf{D} + \mathbf{t}_1
11:
              D \leftarrow C
13:
                   C \leftarrow B
14:
                   B \leftarrow A
                   A \leftarrow t_1 + t_2
16: end for
```

Embedded images and charts in the section are from [ADMG+16].

SHA-256 Stretching

Algorithm 2 SHA-256 Stretch. All variables are 32-bit words.

```
1: for i = 16 to 63 do

2: \sigma_0 \leftarrow (\mathbf{W}_{i-15} \gg 7) \oplus (\mathbf{W}_{i-15} \gg 18) \oplus (\mathbf{W}_{i-15} \gg 3)

3: \sigma_1 \leftarrow (\mathbf{W}_{i-2} \gg 17) \oplus (\mathbf{W}_{i-2} \gg 19) \oplus (\mathbf{W}_{i-2} \gg 10)

4: w[i] \leftarrow \mathbf{W}_{i-16} + \sigma_0 + \mathbf{W}_{i-7} + \sigma_1
```

- 5: end for
- Both requires bitwise operations, bit shifting and addition
- Addition can be done by Ripple-Carry Adder

SHA-256 Quantum Circuit

- Ignore padding and precalculations
- Thesis used 2402 qubits
- But with our calculation, 801 explicit qubits were sufficient
 - 256 for hash, 32×16 for w[i], 32+1 for ancilla

SHA-256 Quantum Circuit Analysis

	T/T^{\dagger}	P/P^{\dagger}	Z	H	CNOT	T-Depth	Depth
Round	5278	0	0	1508	6800	2262	8262
Round (Opt.)	3020	931	96	1192	63501	1100	12980
Stretch	1329	0	0	372	2064	558	2331
Stretch (Opt.)	744	279	0	372	3021	372	2907
SHA-256	401584	0	0	114368	534272	171552	528768
SHA-256 (Opt.)	228992	72976	6144	94144	4209072	70400	830720

The literature has calculated the number of required gates.

- How to calculate these?
 - Implement digital SHA-256 quantum circuit in OpenQASM[CBSG17]
- How to optimize these?
 - T-par algorithm [AMM14]
 - Implemented in Feynman toolkit¹

¹https://github.com/meamy/feynman

OpenQASM : an imperative programming language for describing quantum circuits

- Latest version : 3.0(Pre-release), 2.0
- Feynman accetps 2.0 format
- Problem: 2.0 lacks basic operations
 - Only qubits/bits available, no loops, no array slicing

Implementing SHA-256 in OpenQASM 2.0

We made a code to generate SHA-256 OpenQASM code in Python 3.6.

 Excluding preambles like hardcoded gate definitions, 100 lines were sufficient.

Optimizing SHA-256

Generated OpenQASM code is quite long (36k lines)

- Gate calculation was successful
- However, optimizing with T-par as a whole failed due to memory limit
- Workaround: Split code into 32-64 parts

Our experiment has two criteria: optimization algorithm and round per code.

- Algorithms: tpar[AMM14] and cnotmin[AAM18]
- Code size : 1/2 round per code (64/32 parts)

Results

SHA-256 Type	T	Н	Χ	CNOT	Misc.
Literature, naïve	401584	114368	0	534272	
Ours, naïve	351232	100352	1986	465088	
Ours, T-Par, 1r	343040	100352	10730	661376	8192 <i>SWAP</i>
Ours, CNOTmin, 1r	343040	100352	10730	381824	
Ours, T-Par, 2r	343040	100352	10730	664832	8192 <i>SWAP</i>
Ours, CNOTmin, 2r	343040	100352	10730	385280	
Literature, T-Par	228992	94144	0	4209072	72976 <i>P</i> , 6144 <i>Z</i>

^{&#}x27;1r' and '2r' denotes 1 round per code and 2 rounds per code, respectively.

Analysis: Incomplete Business

Three strange discrepancies...

- Gate differences of naïve ones
- Smaller decrement of *T*-gate
- Increased CNOT gate when applied 2 rounds per code compared to 1 rounds of code

Introduction

Why did the Naïve gate differ?

- Different way of implementation
- Specifically, we utilized X-gates; the literature did not.
 - The reason for non-utilization is unknown
- The overall gate would have decreased due to the usage of X-gates, but its difference is too large.

Analysis: T-gate and CNOT-gate Discrepancies

Why did *T*-gate decrease less, even after considering the reduced gate count?

In the 2r case, the number of CNOT gates decreased less than 1r case. Why?

- Cannot be sure
- Possibility 1: Our implementation of SHA is wrong
- ⇒ Possible, since we couldn't test it, but even after we searched for incorrect result multiple times in the source and its generator, we couldn't find the error.
 - Possibility 2: The software we used is wrong or is only partially implemented
- ⇒ Possible, and most probable due to the CNOT gate discrepancy.

References

References I

Introduction

- Matthew Amy, Parsiad Azimzadeh, and Michele Mosca, On the controlled-not complexity of controlled-not-phase circuits, Quantum Science and Technology 4 (2018), no. 1, 015002.
- Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, and John Schanck, *Estimating the cost of generic quantum pre-image attacks on sha-2 and sha-3*, International Conference on Selected Areas in Cryptography, Springer, 2016, pp. 317–337.
- Matthew Amy, Dmitri Maslov, and Michele Mosca, Polynomial-time t-depth optimization of clifford+ t circuits via matroid partitioning, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems **33** (2014), no. 10, 1476–1489.

References

References II

- Gilles Brassard, Peter Høyer, and Alain Tapp, Quantum cryptanalysis of hash and claw-free functions, Latin American Symposium on Theoretical Informatics, Springer, 1998, pp. 163–169.
- Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta, Open quantum assembly language, 2017.
- André Chailloux, María Naya-Plasencia, and André Schrottenloher, An efficient quantum collision search algorithm and implications on symmetric cryptography, International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2017, pp. 211–240.