نيمسال اول ۸۹–۸۸

۱. [۴ نمره] برای شکل مقابل، مقادیر آزمون پذیری (قابلیت کنترل و مشاهده) ترکیبی و ترتیبی SCOAP را محاسبه كنيد. توجه: خطوط CK و '(RESET) را فراموش نكنيد!

حل: قدم اول در محاسبه قابلیتهای کنترل و مشاهده

مقادیر نهایی قابلیت کنترل و مشاهده

۲. [۴ نمره] در شكل مقابل، براى هر يك از دو اشكال تكى d sa0 و m sa0 فقـط بـا اسـتفاده از

implication کدام یک از سیگنالها، مقداردهی می شود و چه نتیجهای حاصل می شود؟

حل:

Single fault d: s-a-0

- $d \rightarrow D (s-a-0: 1/0)$
- $a \rightarrow 1$ (excite s-a-0 fault), $c \rightarrow 1$
- $e \rightarrow 0$ (propagate fault), $b \rightarrow 0$, $f \rightarrow 0$
- $h \rightarrow 1$ (f implies h = 1)
- $g \rightarrow D$ (e = 0 implies fault D)
- $m \rightarrow D, k \rightarrow D$
- $n \rightarrow D'$ (c = 1 implies D')
- $p \rightarrow D (h = 1 \text{ implies D})$
- $q \rightarrow 1$ (p, n imply q = 1)

Fault is untestable, and thus redundant.

Single fault m: s-a-0

- $m \rightarrow D (s-a-0: 1/0)$
- $g \rightarrow 1$ (excite s-a-0 fault), $k \rightarrow 1$
- h → 1 (propagate fault)
- $f \rightarrow 0$ (h = 1 implies f = 0), b \rightarrow 0, e \rightarrow 0
- $a \rightarrow 1$ (g, b imply a = 1), $c \rightarrow 1$, $d \rightarrow 1$
- $n \rightarrow 0$ (c, k imply n = 0)
- $p \rightarrow D (h = 1 \text{ implies } D)$
- $q \rightarrow D (n = 0 \text{ implies } D)$
- Test: a = 1, b = 0

۳. یک مدار ترکیبی با تابع (w, x, y)f =z بیان شده و singular cover آن به صورت زیر است: 00x/0 0x0/0 x00/0 11x/1 1x1/1 x11/1

الف- (۱ نمره) تمام Cubes-propagation D که فقط یک مقدار D در ورودی آنها ظاهر می شود را بنویسید.

D10/D 1D0/D D01/D 10D/D 0D1/D 01D/D

بویسید که در ورودی آنها، مقدار D دو بار ظاهر می شود. (۱ نمره) سه D دو بار ظاهر می شود.

DDx/D DxD/D XDD/D

ج- (۲ نمره) فرض کنید اشکالی در مدار رخ داده که تابع خروجی را به صورت xy=z تغییر داده است. کلیه D cubes of failure برای این اشکال را بنويسيد.

اگر با استفاده از α و β حل کنیم، با توجه با الگوریتم، باید خروجیهای α 0 را به 1 تغییر دهیم و آن را با β 1 تقاطع دهیم. در ایس صورت، چون در ورودیها، α 0 و α 1 با هم compatible نیستند، هیچ α 2 دست نمیآید ولی بیرای α 1 و α 3 جوابهای زیبر به دست میآید. به عبارت دیگر، در به دست آوردن α 3 cube of failure-D نباید α 4 در ورودیها ظاهر شود و فقط باید در خروجی باشد.

Singular cover of the faulty function :x0x/0 xx0/0 x11/1 → D-cubes of failures :101/D 110/D

۴. [۴ نمره] برای شکل مقابل، مشخص کنید که الگوریتم مسیر بحرانی (critical path) چـه بردارهای تستی پیدا می کند و هر بردار، چه اشکالهایی را پیدا می کند؟ الگوریتم D برای پیدا کردن اشکال f sa0 چه مراحلی را طی می کند و چند بار backtrack می کند؟

الگوریتم مسیر بحرانی: (مقادیر بحرانی با شکل متفاوت نشان داده شدهاند)

 $h=\theta \Rightarrow e=\theta$, $f=\theta$, $g=\theta$, $a=\pm$, $b=\pm$, $c=\pm$, $d=\pm \Rightarrow$) $a,b,c,d) = (1,1,1,1) (<math>\Rightarrow$ detected faults :a0, b0, c0, d0, e1, f1, g1, h1, all fanout branches s-a-0.

h= $\frac{1}{2}$ ⇒ case 1 :e= $\frac{1}{2}$, f=0, g=0, a= $\frac{1}{2}$, b=1, c=1, d=1 ⇒) a,b,c,d) = (0,1,1,1 (→detected faults :a1, e0, h0 .Fanout branches are not critical.

case 2 : e=0, f=1, g=0) this combination is impossible(

case 3 :e=0, f=0, g= $\frac{1}{4}$, a=1, b=1, c=1, d= $\frac{1}{4}$ \Rightarrow) a,b,c,d) = (1,1,1,0 (\Rightarrow detected faults :d1, g0, h0 .Fanout branches are not critical .

۵. [۲ نمره] برای پیادهسازی یک XOR با n ورودی، می توان n-1 گیت XOR دو ورودی را به دنبال هم قرار داد که هر گیت، یک ورودی خود را از خروجی گیت قبل و ورودی دیگر خود را از یک Pl می گیرد (به جز XOR اول، که هر دو ورودی آن، Pl است). آیا این مدار Testable-C است؟ اگر جواب منفی است، دلیل آن را ذکر کنید.

حل: بله. برای تست کامل مدار، فقط به چهار بردار تست نیاز است: (xor خروجی xor اول است، ...)

gate0 		gate1 		gate2 		gate3 		gate4 	
a0	b0	out1	b1	out2	b2	out3	b3	out4	b4
0	0	0	0	0	0	0	0	0	0
0	1	1	0	1	0	1	0	1	0
1	0	1	1	0	1	1	1	0	1
1	1	0	1	1	1	0	1	1	1

۶. [۲ نمره] برای شکل مقابل، با روش مشتق بولی (Boolean Difference) بردارهای تستی که اشکال ۵-a-β را کشف می کند پیدا کنید.

Fault = $\beta/0$

 $T_{\beta/0} = \beta$) X.(dF)X, $/(\Box d\beta)$

$$\beta$$
) $X = (a +bc F)X$, β) = $(b' +c'(d'\beta)$

 $dF/d\beta$) = b' + c'(d') So **T**_{$\beta/0$} = ab'd' + ac'd' Test set for $\beta/0$ = {1000,1010,1100}