Um Método Para Planejamento de Produção em Sistemas de Manufatura Flexível

Gustavo Silva Paiva guustavo.paiva@gmail.com Marco Antonio Moreira de Carvalho mamc@iceb.ufop.br

Universidade Federal de Ouro Preto

10 de outubro de 2016

Contextualização

Recentemente, Sistemas de Manufatura Flexível (SMF) têm sido adotado por empresas para aumentar a flexibilidade e diversificação da produção:

- Permite que uma maior gama de produtos seja produzida;
- Com um baixo custo adicional é possível a produção de novos produtos;
- Permitir uma rápida adequação à produção de novos produtos, ou imprevistos.

Sistemas de Manufatura Flexível

O tipo mais comum de SMF, principalmente em empresas metalúrgicas, é caracterizado por utilizar máquinas flexíveis.

- A flexibilidade é referente à capacidade de configuração das ferramentas utilizadas na máquina;
- Cada produto requer um diferente conjunto de ferramentas (e.g. lâminas de corte, brocas de perfuração, etc) para sua fabricação.

Máquina Flexível

Uma máquina flexível possui as seguintes características e consequências:

- Há um compartimento de capacidade limitada para o carregamento de ferramentas;
- Para se fabricar um produto é necessário carregar todas as ferramentas necessárias com antecedência;
- Entre a fabricação de diferentes produtos em sequência, eventualmente serão necessárias trocas de ferramentas;
- Para efetuar estas trocas, é necessário interromper a linha de produção dado que a máquina deve ser desligada.

Figura 1: Foto de uma máquina flexível com compartimento para 5 ferramentas.

Figura 2: Foto de uma máquina flexível com compartimento para 5 ferramentas.

Figura 3: Foto de uma ferramenta de uma máquina flexível.

Figura 4: Foto de uma ferramenta de uma máquina flexível.

Descrição do Problema

A partir de uma demanda por produtos, predeterminada, é necessário a criação de um plano de produção para que uma máquina flexível cumpra esta demanda:

- Este plano tem como objetivo minimizar o tempo ocioso da máquina, maximizando a produtividade;
- Considera-se a manufatura de um produto como sendo uma tarefa a ser executada.

Plano de Produção

- O plano de produção consiste em:
 - Determinar a ordem em que as tarefas serão executadas; e
 - Decidir quando realizar cada troca de ferramentas e quais ferramentas serão trocadas,de maneira a viabilizar a produção.

A primeira etapa é o Problema de Minimização de Trocas de Ferramentas (MTSP);

Já a segunda pode ser determinada tempo polinomial determinístico pelo algoritmo *Keep Tool Needed Soonest* (KTNS).

Instância

Uma instância do MTSP pode ser descrita pelos seguintes dados:

- O conjunto $T = \{1 \cdots n\}$ de tarefas que devem ser processadas;
- O conjunto $F = \{1 \cdots m\}$ de ferramentas disponíveis;
- Para cada tarefa $j \in T$, um conjunto de ferramentas $F_j \in F$ necessárias para processamento da mesma; e
- A capacidade *C* do compartimento de ferramentas da máquina.

Instância e Representação Computacional

Tabela 1: Instância do MTSP.

Tarefas	1	2	3	4	5
Ferramentas	1	1	3	2	1
	2	3	4	3	4
	4		5	5	6
Capacidade do compartimento = 3					

Tabela 2: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

• Crama et al. (1994) definiram 1-block: um conjunto de entradas consecutivas em uma mesma linha da matriz com o valor igual a 1.

Solução

Uma solução do MTSP é obtida pela permutação ϕ das colunas da matriz A, resultando na matriz permutação A^{ϕ} ;

O número de trocas de ferramentas em uma solução A^ϕ é equivalente ao número de inversões em cada uma das linhas, e pode ser calculado utilizando o algoritmo KTNS.

Descrição do Problema

Exemplo de Solução

Tabela 3: Matriz A^{ϕ} com $\phi = [3, 4, 1, 5, 2]$.

F	3	4	1	5	2
1	0	0	1	1	1
2	0	1	1	0	0
3	1	1	0	0	1
4	1	0	1	1	<u>1</u>
5	1	1	0	0	0
6	0	0	0	1	0

- Para executar essa sequência de tarefas são necessárias 8 trocas de ferramentas;
- Ferramentas em negrito indicam a inserção das mesmas;
- Ferramentas sublinhadas não são necessárias para execução da tarefa em questão mas são mantidas para, eventualmente, evitar trocas.

Motivação

Motivação

- O MTSP é um problema NP-Difícil;
- Aplicabilidade prática do problema em empresas metalúrgicas e produção de placas de circuitos impressos;
- Foi constatado que os planos de produção das empresas podem ser facilmente melhorados.

- Nova representação do problema, baseada em Teoria dos Grafos;
- Uma nova heurística construtiva;
- Um novo método de busca local; e
- Incorporação das Contribuições anteriores em uma metaheurística.

Contribuição 1 – Grafo de Ferramentas

Um Grafo de Ferramentas é definido como G = (V, E), tal que:

- V é o conjunto de vértices representando as ferramentas;
- E é o conjunto de arestas $\{i,j\}$ representando a utilização das ferramentas i e j por uma mesma tarefa;
- Não existem loops e arestas paralelas;
- É proposto um peso para cada aresta $\{i,j\}$ representando o número de vezes em que as ferramentas i e j aparecem juntas em uma mesma tarefa.

Contribuição 1 – Grafo de Ferramentas

Tabela 4: Instância do MTSP.

Tarefas	1	2	3	4	5
Ferramentas	1	1	3	2	1
	2	3	4	3	4
	4		5	5	6
Capacidade do compartimento $= 3$					

Figura 5: Grafo de ferramentas da instância apresentada anteriormente.

Contribuição 2 – Heurística Construtiva

A ideia é procurar entre as ferramentas aquelas que são mais utilizadas em conjunto, baseando-se na frequência dessas ocorrências;

A partir de um vértice inicial, executa-se uma Busca em Largura (ou *Breadth-First Search* – BFS):

A busca é guiada pela aresta de maior peso.

Ao final, a ordem de exploração F_ϕ é obtida e representa a sequência de ferramentas.

Contribuição 2 – Heurística Construtiva

O sequenciamento das tarefas ϕ é obtido a partir de F_{ϕ} , do seguinte modo:

- Iterativamente, é simulado a disponibilização das ferramentas de F_{ϕ} , uma a uma;
- A cada iteração, verifica se existem tarefas aptas, isto é, tarefas que possuem todas ferramentas disponibilizadas;
- \bullet De acordo com os critérios de desempate, adiciona as tarefas aptas em ϕ da seguinte maneira:
 - Se $\phi = \emptyset$, escolha a tarefa com o maior número de ferramentas;
 - Caso contrário, escolha a tarefa que adiciona o menor número de trocas na solução parcial.

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Ferramentas Disponíveis
[1]
[1, 4]
[1, 4, 2]
[1, 4, 2, 3]
[1, 4, 2, 3, 6]
[1, 4, 2, 3, 6, 5]

$$\phi = \{\}$$

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{\}$$

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1,4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1\}$$

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
_ 6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2\}$$

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1,4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2, 5\}$$

Tabela 5: Matriz binária.

1	2	3	4	5
1	1	0	0	1
1	0	0	1	0
0	1	1	1	0
1	0	1	0	1
0	0	1	1	0
0	0	0	0	1
	1 0	1 1 1 0 0 1 1 0 0 0	1 1 0 1 0 0 0 1 1 1 0 1 0 0 1	1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2, 5, 3\}$$

$$\phi = \{1, 2, 5, 4\}$$

Tabela 5: Matriz binária.

1	2	3	4	5
1	1	0	0	1
1	0	0	1	0
0	1	1	1	0
1	0	1	0	1
0	0	1	1	0
0	0	0	0	1
	1 0	1 1 1 0 0 1 1 0 0 0	1 1 0 1 0 0 0 1 1 1 0 1	1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1

Tabela 6: Sequência das Ferramentas

Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2, 5, 3\} \rightarrow 6 \text{ trocas}$$

$$\phi = \{1, 2, 5, 4\} \rightarrow 7 \text{ trocas}$$

Tabela 5: Matriz binária.

1	2	3	4	5
1	1	0	0	1
1	0	0	1	0
0	1	1	1	0
1	0	1	0	1
0	0	1	1	0
0	0	0	0	1
	1 0	1 1 1 0 0 1 1 0 0 0	1 1 0 1 0 0 0 1 1 1 0 1 0 0 1	1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1

Tabela 6: Sequência das Ferramentas

 Iteração	Ferramentas Disponíveis
1	[1]
2	[1, 4]
3	[1, 4, 2]
4	[1, 4, 2, 3]
5	[1, 4, 2, 3, 6]
6	[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2, 5, 3\} \rightarrow \text{6 trocas}$$

$$\phi = \{1, 2, 5, 4\} \rightarrow \text{7 trocas}$$

Tabela 5: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 6: Sequência das Ferramentas

Ferramentas Disponíveis
[1]
[1, 4]
[1, 4, 2]
[1, 4, 2, 3]
[1, 4, 2, 3, 6]
[1, 4, 2, 3, 6, 5]

$$\phi = \{1, 2, 5, 3, 4\} \rightarrow 8 \text{ trocas}$$

Contribuição 3 – Busca Local de Agrupamento de 1-blocks

A partir da definição de 1-block (Crama et al., 1994), podemos perceber que:

• Cada 1-block representa uma troca de ferramentas que deve ser efetuada.

Com base nessa definição, é proposta uma busca local que objetiva a redução do número de 1-blocks em cada linha da matriz A^{ϕ} , que consiste em:

- Examinar iterativamente a matriz A^{ϕ} em busca de dois 1-blocks i e j em uma mesma linha;
- Ao encontrar, tenta-se mover as colunas, uma por vez, de i para antes ou depois de j.

Tabela 7: Matriz binária.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 8: 9 trocas.

FI	1	2	3	4	5
1	1	1	0	0	1
2	1	0	0	1	0
3	0	1	1	1	0
4	1	0	1	0	1
5	0	0	1	1	0
6	0	0	0	0	1

Tabela 9: 8 trocas.

ET	2	3	4	1	5
1	1	0	0	1	1
2	0	0	1	1	0
3	1	1	1	0	0
4	0	1	0	1	1
5	0	1	1	0	0
6	0	0	0	0	1

Tabela 10: 9 trocas.

FJ	2	3	4	5	1
1	1	0	0	1	1
2	0	0	1	0	1
3	1	1	1	0	0
4	0	1	0	1	1
5	0	1	1	0	0
6	0	0	0	1	0

$$\phi = [2, 3, 4, 1, 5]$$

Tabela 11: 8 trocas.

FI	2	3	4	1	5
1	1	0	0	1	1
2	0	0	1	1	0
3	1	1	1	0	0
4	0	1	0	1	1
5	0	1	1	0	0
6	0	0	0	0	1

Tabela 12: 8 trocas.

3	4	1	2	5
0	0	1	1	1
0	1	1	0	0
1	1	0	1	0
1	0	1	0	1
1	1	0	0	0
0	0	0	0	1
	0 1 1 1	0 0 0 1 1 1 1 0 1 1	0 0 1 0 1 1 1 1 0 1 0 1 1 1 0	0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0

Tabela 13: 8 trocas.

FI	3	4	1	5	2
1	0	0	1	1	1
2	0	1	1	0	0
3	1	1	0	0	1
4	1	0	1	1	0
5	1	1	0	0	0
6	0	0	0	1	0

$$\phi = [3, 4, 1, 5, 2]$$

Contribuição 4 – Busca Local Iterada

Foi proposta uma implementação da metaheurística Busca Local Iterada (ou *Iterated Local Search* – ILS) (Lourenço et al., 2003) com as seguintes especificações:

- Utiliza-se a sequência obtida pela heurística construtiva como solução inicial;
- O conhecido método 2-*opt* é utilizado como mecanismo de perturbação, aceitando qualquer troca;
- Como buscas locais de intensificação são utilizados:
 - Novamente o método 2-opt^a; e
 - O Método de Agrupamento de 1-blocks.

^aApenas um percentual do espaço de busca é explorado

Métodos

- Busca Local Iterada (ILS) proposta;
- Clustering Search, Descida em Vizinhança Variável e Algoritmo Genético de Chaves Aleatórias Viciadas (CS+BRKGA, Chaves et al. (2016))^a;

Visto que ambos os métodos possuem componentes aleatórios, são apresentados os resultados de 20 execuções independentes.

^aEste método é considerado o atual estado-da-arte

ILS

- Processador Intel Core i5 3.2
 GHz;
- 8 GB RAM;
- Ubuntu 15.10 LTS;
- Códigos escritos em C++, compilado com g++ 4.8.4 e com a opção de otimização -O3.

CS + BRKGA

- Processador Intel Core i7 3.4 GHz;
- 16 GB RAM.
- Códigos escritos em C++.

Instâncias

Dois grupos de instâncias foram considerados, totalizando 1510 instâncias.

- Yanasse et al. (2009) (A, B, C, D, E): 1350 instâncias artificiais;
- Crama et al. (1994) (C_1 , C_2 , C_3 , C_4): 160 instâncias artificiais.

Legenda dos Resultados

São utilizadas a seguir as seguintes nomenclaturas:

- $e \rightarrow$ número de exemplares;
- $S* \rightarrow$ melhor solução obtida pelos métodos;
- $S \rightarrow \text{solução média obtida pelos métodos}$;
- OPT → solução ótima;
- BKS → melhor solução conhecida;
- $\sigma \rightarrow$ desvio padrão entre as 20 execuções.

Instâncias de Yanasse et al. (2009)

Tabela 14: Resultados dos Grupos A, B, C e E de Yanasse et al. (2009)

C:		OPT	CS+BR	CS+BRKGA		Método Proposto		
Conjunto	e		S	T	S	T	σ	
A	340	24,544	24,544	3,71	24,544	0,11	0,000	
В	330	25,216	25,218	4,05	25,217	0,18	0,0026	
С	340	28,925	29,079	9,83	28,926	1,67	0,0034	
E	80	16,888	16,949	6,54	16,890	0,51	0,0051	

Instâncias de Yanasse et al. (2009)

Tabela 15: Resultados do Grupo D de Yanasse et al. (2009)

Coni		CS+BRKGA			Método Proposto			
Conj.	Conj. e	<i>S</i> *	5	Τ	<i>S</i> *	S	T	σ
D	260	24,258	26,252	27,66s	24,016	24,025	6,05s	0,0113

Instâncias de Crama et al. (1994)

Tabela 16: Resultados dos Grupos C_1 e C_2 de Crama et al. (1994)

Conjunto	OPT	CS+BRKGA		Método Proposto			
Conjunto	e	OPT	S	T	S	T	σ
$\overline{C_1}$	40	11,175	11,178	2,418	11,175	0,075	0,000
C_2	40	22,000	22,073	11,578	22,025	1,033	0,056

Instâncias de Crama et al. (1994)

Tabela 17: Resultados dos Grupos C_3 e C_4 de Crama et al. (1994)

Conjunto		CS+B	RKGA	Método Proposto		
Conjunto	е	<i>S</i> *	5	<i>S</i> *	5	
<i>C</i> ₃	40	79,825	80,958	79,575	79,888	
C ₄	40	159,275	161,455	158,300	158,723	

Tabela 18: Resultados estatísticos dos Grupo C_3 e C_4 de Crama et al. (1994)

Conjunto		CS+BR	KGA	Método Proposto		
Conjunto	e	T	σ	T	σ	
<i>C</i> ₃	40	123,15s	0,68	175,10s	0,14	
C_4	40	541,10s	1,22	1097,28s	0,28	

Conclusões

Conclusões

- O método proposto foi capaz de suplantar os melhores resultados conhecidos e em mais de 3 grupos de instâncias novos melhores resultados foram estabelecidos;
- O método proposto obteve um desvio padrão igual a zero em 380 instâncias e para as demais instâncias o desvio padrão foi extremamente baixo, demonstrando robustez;
- O tempo de execução do método aumentou de acordo com o tamanho da instância, porém são valores aceitáveis na prática.
- Trabalhos futuros incluem:
 - Novas estruturas de vizinhança;
 - Utilização de novas técnicas, como paralelismo.

Referências

- Daniele Catanzaro, Luis Gouveia, and Martine Labbé. Improved integer linear programming formulations for the job Sequencing and tool Switching Problem. *European Journal of Operational Research*, 2015. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.02.018.
- A. A. Chaves, L. A. N. Lorena, E. L. F. Senne, and M. G. C. Resende. Hybrid method with CS and BRKGA applied to the minimization of tool switches problem. *Computers & Operations Research*, 67:174–183, March 2016. ISSN 0305-0548. doi: 10.1016/j.cor.2015.10.009.
- Yves Crama, Antoon W. J. Kolen, Alwin G. Oerlemans, and Frits C. R. Spieksma. Minimizing the number of tool switches on a flexible machine. *International Journal of Flexible Manufacturing* Systems, 6(1):33–54, January 1994. ISSN 0920-6299, 1572-9370. doi: 10.1007/BF01324874.
- Helena R Lourenço, Olivier C Martin, and Thomas Stützle. *Iterated local search*. Springer, 2003.
- Horacio Hideki Yanasse, Rita de Cássia Meneses Rodrigues, and Edson Luiz França Senne. Um algoritmo enumerativo baseado em ordenamento parcial para resolução do problema de minimização de trocas de ferramentas. Gestão & Produção, 16(3):370–381, 2009. ISSN 0104-530X. doi: 10.1590/S0104-530X2009000300005.

Agradecimentos

Agradecimentos

Agradecimentos

Instâncias de Catanzaro et al. (2015)

Tabela 19: Resultados dos Grupos A, B, C e D de Catanzaro et al. (2015)

Caniumta		BKS ^a		Método P	roposto	
Conjunto	e	DN3	<i>S</i> *	5	T	σ
datA	40	10,850	10,850	10,850	0,068	0,000
datB	40	21,975	21,775	21,778	1,005	0,006
datC	40	77,725	74,850	75,065	174,286	0,140
datD	40	163,900	158,325	158,810	1052,259	0,246

^aMelhor solução conhecida