

Next Generation Sequencing

an Introduction

The future of SEQUENCING

ever more MASSIVE

ever more PARALLEL

ever more DATA

Next generation sequencing has outpaced

MOORE'S LAW:

"overall processing power of computers will double every two years"

A quick look at 2^{nd} Ceneration Sequencing

2nd Generation Sequencing

results in massively parallel sequencing of tens of gigabases ≈ 45 human genomes per day!

Sequencing

Flow cell

GAAACAAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA GAAACAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA BAAACAAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA GAAACAAAAGCAATTGACA/ CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA

Increased coverage

with Paired-end sequencing

Read 1

Sequence the first 35 – 400 base pairs (READS")

GTTGAGGCTTGCGTTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGTCGCTTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

A typical run can have up to 6 bln. reads!! HOW

DO WE
PROCESS
THIS DATA?

The FASTQ FORMAT for efficient storage & information

Quality scores

• Sequence ID Sequence @HWUSI-EAS100R:6:73:941:1973#0/1 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT + !''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

The FASTQ FORMAT

Sequence ID: Headers

The FASTO FORMAT Sequences, barcodes & cut-sites

Barcode #1

Barcode #2

RAD cut-site

The

FASTQ FORMAT

Quality Scores

```
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

Quality Score	Error Probability
Q40	0.0001 (1 in 10,000)
Q30	0.001 (1 in 1,000)
Q20	0.01 (1 in 100)
Q10	0.1 (1 in 10)

The FASTQ FORMAT

Quality Scores

```
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

Sequencing

Flow cell

GAAACAAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA GAAACAAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA BAAACAAAAGCAATTGACA CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA CCTCAGCAGTAGTAAGAAA GAAACAAAAGCAATTGACA/ CTTACGCCGTACTACCTCA AGTAAGAAACAAAAGCAAT ACGCCGTACTACCTCAGCA

Q40 0.0001 (1 in 10,000)	
Q30 0.001 (1 in 1,000)	
Q20 0.01 (1 in 100)	
Q10 0.1 (1 in 10)	

We can use quality scores to

Remove bad reads

We can use quality scores to

Remove bad reads

Matching reads to a reference

MAPPING

BWA BOWTIE SOAP NOVOALIGN

Mapping is more effective with

PAIRED-END DATA

The **SAM** FORMAT

Information rich storage of read alignments

The **SAM** Header

Information about the files origin and content

The

SAM ALIGNMENTS

Information about individual read alignments

#	Name	Description
1	QNAME	Query NAME of the read or the read pair
2	FLAG	bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	extended CIGAR string (operations: MIDNSHP)
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)
8	MPOS	1-based leftmost Mate POSition
9	ISIZE	inferred Insert SIZE
10	SEQ	query SEQuence on the same strand as the reference
11	QUAL	query QUALity (ASCII-33=Phred base quality)

The **SAM** ALIGNMENTS

Information about individual read alignments

SAM CIGAR STRING

M: match/mismatch

I: insertion

D: deletion

P: padding

N: skip

S: soft-clip

H: hard-clip

Ref: GCATTCAGATGCAGTACGC
Read: CCTCAG--GCAGTAGTG

CIGAR 2S4M2D6M3S

POS 5

SAMFLAG: 99 000001100011

#	Binary	Decimal	Hexadecimal	Description				
1	1	1	0x1	Read paired				
2	10	2	0x2	Read mapped in proper pair				
3	100	4	0x4	Read unmapped				
4	1000	8	0x8	Mate unmapped				
5	10000	16	0x10	Read reverse strand				
6	100000	32	0x20	Mate reverse strand				
7	1000000	64	0x40	First in pair				
8	10000000	128	0x80	Second in pair				
9	100000000	256	0x100	Not primary alignment				
10	1000000000	512	0x200	Read fails platform/vendor quality checks				
11	10000000000	1024	0x400	Read is PCR or optical duplicate				
12	100000000000	2048	0x800	Supplementary alignment				
SUM:	000001100011	113						

http://www.samformat.info/sam-format-flag

SAMFLAG:113 000001110001

#	Binary	Decimal	Hexadecimal	Description				
1	1	1	0x1	Read paired				
2	10	2	0x2	Read mapped in proper pair				
3	100	4	0x4	Read unmapped				
4	1000	8	0x8	Mate unmapped				
5	10000	16	0x10	Read reverse strand				
6	100000	32	0x20	Mate reverse strand				
7	1000000	64	0x40	First in pair				
8	10000000	128	0x80	Second in pair				
9	100000000	256	0x100	Not primary alignment				
10	1000000000	512	0x200	Read fails platform/vendor quality checks				
11	10000000000	1024	0x400	Read is PCR or optical duplicate				
12	100000000000	2048	0x800	Supplementary alignment				
SUM:	000001110001	113						

http://www.samformat.info/sam-format-flag

CLONES

that can artificially bias coverage

- 1. Shatter genomic DNA
- 2. Ligate adaptors to both ends & PCR amplify
- 3. Spread DNA molecules across flowcells
- 4. Goal: exactly one DNA molecule per flowcell lawn
- 5. Amplify the single molecule on each lawn

CLONES

that can artificially bias coverage

TCTCGTGCTCGCTGCGTTGAGGCTTGCGTTTA

TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GCGTTGAGGCTTGCGTTTATGGTACGCT

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT **ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT**

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT

CLONES

that can artificially bias coverage

TCTCGTGCTCGCTGCGTTGAGGCTTGCGTTTA

TCGTGCTCGCTGCGTTGAGGCTTGCGTTTTTG

GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT

Possible PCR clones

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

CLONES

that can artificially bias coverage

TCTCGTGCTCGCTGCGTTGAGGCTTGCGTTTA

TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

GTTGAGGCTTGCGTTTTTTGGTACGCTGGACTTTGT

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

CTCTCGTGCTCGTCGCTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

The **BAM** FORMAT

Compressed, binary, indexed version of SAM

sample_01.sam (2.5 GB)

1:497:R:-272+13M17D24M	113	1	497	37	37M	15	100	0	CGGGTCT	0;==-==
19:20389:F:275+18M2D19M	99	1	176	0	37M	=	179	314	TATGACT	>>>>>
19:20389:F:275+18M2D19M	147	1	179	0	18M2D19M	=	176	-314	GTAGTAC	;44999;
9:21597+10M2I25M:R:-209	83	1	216	0	8M2I27M	=	214	-244	CACCACA	<;9<<5>

sample_01.bam (611 MB)

sample_01.sorted.bam

sample_01.sorted.bam.bai

downstream analysis

FLOW CHART	FILE FORMAT	PROGRAMS
Raw sequence reads	Fastq	
De-multiplex & remove low quality reads	Fastq	Custom scripts Fastqc/Fastx-toolkit
Map reads to reference genome	SAM/BAM	BWA/Bowtie Soap/Novoalign
Filter unpaired, unmapped & duplicate reads	SAM/BAM	SAMtools/Picard

NT/CC

DOWNSTREAM ANALYSIS

USEFUL LINKS

SAMtools: http://www.htslib.org

Picard tools: https://broadinstitute.github.io/picard/

BWA: http://bio-bwa.sourceforge.net

Bowtie: http://bowtie-bio.sourceforge.net/index.shtml

SOAP: http://soap.genomics.org.cn/index.html

Novoalign: http://www.novocraft.com/products/novoalign/

FASTX-toolkit: http://hannonlab.cshl.edu/fastx_toolkit/

FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/