ZKP Crash Course

Zero-Knowledge proofs

Prove correctness of an argument, without revealing the witnesses

What are zero-knowledge proofs?

Two balls and the colour-blind friend

Can we prove/verify *arbitrary* computations?

zk-SNARK

Zero-Knowledge
Succinct
Non-interactive
ARgument of
Knowledge

How is a problem represented?

```
int f(x) {
  int y = x * x * x;
  return x + y + 5;
}
```

Prove: I know x, which f(x) = 35

Transform the problem to R1CS form

(R1CS = Rank-1 Constraint System)

```
int f(x) {
 int y = x * x * x;
 return x + y + 5;
                                          sym1
     sym1
                                          (x + sym2)
    (sym2 + 5)
                                          ~out
```

v. A * v. B - v. C = 0

$$(sym2 + 5) * 1 - ~out = 0$$

V
 A
 B
 C

 ONE
 1
 5
 1
 1
 0

 x
 3
 0
 3
 0

$$\sim$$
 out
 35
 0
 35
 0

 sym1
 9
 0
 9
 0

 y
 27
 0
 27
 0

 sym2
 30
 1
 30
 0
 30
 0

$$35 * 1 - 35 = 0$$

Gate #4

$$egin{aligned} A: (5,0,0,0,0,1) \ B: (1,0,0,0,0,0) \ C: (0,0,1,0,0,0) \end{aligned}$$

 $(sym2 + 5) * 1 - \sim out = 0$

R1CS Representation

(6 variables, 4 gates)

```
A:
                          B:
                                                     C:
(0, 1, 0, 0, 0, 0)
                          (0, 1, 0, 0, 0, 0)
                                                     (0,0,0,1,0,0)
(0,0,0,1,0,0)
                          (0, 1, 0, 0, 0, 0)
                                                     (0,0,0,0,1,0)
(0,1,0,0,1,0)
                          (1,0,0,0,0,0)
                                                     (0,0,0,0,0,1)
(5,0,0,0,0,1)
                                                     (0,0,1,0,0,0)
                          (1,0,0,0,0,0)
                         int f(x) {
                           int y = x * x * x;
                           return x + y + 5;
```

What if?

```
int f(x) {
  int y = x * x * x;
  if(x > 10) {
    y = y * 2;
  return x + y + 5;
```

Side note:

$$A,B\in\{0,1\}$$
 R1CS: $A*(1-A)+0=0$ $A\wedge B=A*B$ $A\vee B=A+B-A*B$ $eg A=1-A$

Thus we can build conditional R1CS code!

Variables are numbers in \mathbb{F}_p

$$0 \le r < P$$
 $r+s = (r+s) \mod P$
 $r*s = (r*s) \mod P$
 $-r = P-r$
 $(r+s)+t = r+(s+t)$
 $(r*s)*t = r*(s*t)$
 $r*(s+t) = r*s+r*t$

Multiplication Gate

$$(a)*(b)-(c)=0$$

Addition Gate

$$(a+b)*(\mathit{ONE})-(c)=0$$

Or:

$$(c)*(ONE) - (a+b) = 0$$

Division Gate

$$(b)*(c) - (a) = 0$$

Boolean Restriction Gate

$$(b)*(ONE-b)-(0)=0$$

$$A, B \in \{0, 1\}$$

 $A \wedge B = A * B$
 $A \vee B = A + B - A * B$
 $\neg A = 1 - A$

Bit Decomposition Gate

(+ Range check)

1 + bits constraints

$$(b_0 2^0 + b_1 2^1 + \dots + b_{63} 2^{63}) * (ONE) - (a) = 0$$

$$b_0*(1-b_0)=0 \ b_1*(1-b_1)=0$$

$$b_{63}*(1-b_{63})=0$$

Is-Zero check gate (Naive method)

```
is_zero = 1 if a == 0 else 0
```

- Decompose the number to 255 bits (1 constraint)
- Apply OR operation on all the bits (~255 constraints)

Is-Zero check gate

(Smart method - 2 constraints)

$$IsZero = -a_{inv}*a + 1 \ IsZero*a = 0$$

Now, if a is not zero, then is_zero has no choice but to be zero in order to satisfy the second constraint. If is_zero is 0, then a_inv should be set to inverse of a in order to satisfy the first constraint. inverse of a exists, since a is not zero. If a is zero, the first constraint is reduces to $is_zero == 1$.

Equality check gate

$$Equals(a,b) = IsZero(a-b)$$

Ternary gate

```
c = s ? a : b
```

Ternary gate

Naive method (2 constraints)

$$c = s ? a : b$$

$$c = s * a + (1 - s) * b$$

$$tmp = s*a \ c = tmp + (1-s)*b$$

Ternary gate

Smart method (1 constraint)

$$c = s ? a : b$$

$$(a-b)*s = a-c$$

Comparison gate (64-bit number)

$$c = a < b$$

 $c = (a - b) < 0$

- Check if both A and B are 64-bit (Range check)
- Calculate two's complement of B: B_neg = 2^64 B
- Add A and B_neg: Sub = A + B_neg
- Decompose Sum into 65 bits: SubBits = DecomposeBits(Sub, 65)
- c = SubBits[64]

Hash function?

$$H(a) = a * a + 21894798 + 328a + \dots$$

Not secure :(

Hash functions must be:

- Collision resistant
- Preimage resistant

SHA-256?

Very expensive :(

- Works on bits
- Needs thousands of constraints

Poseidon hash - ZK friendly hash function

Research paper

Reference implementation

Encryption with Poseidon

Poseidon in Plonk

PDF

Sage with test vectors

PDF

TornadoCash

- Pick a secret **s** (E.g. $s \in \mathbb{F}_p$)
- Calculate a Commitment and a Nullifier:
 - Commitment: Poseidon(s)
 - Nullifier: Poseidon(s | 1234)
- Users will deposit their Commitment values into a PUBLIC merkle tree

- The recipient will provide a proof that he knows the corresponding nullifier of a commitment in the merkle tree.
- The nullifier becomes unusable after the withdrawal

TornadoCash

Digital Signature?

- Elliptic curve cryptography operates on points on elliptic curve defined on prime fields.
- If the prime-field of the DSA is equal with the prime-field of the circuit, then E(C/D)DSA verification can be efficiently done on the circuit! E.g. JubJub
- Poseidon can be used as the hash-function of the DSA

zkRollup

- Imagine an account merkle tree...
- Each account consists of 4 *Fp* numbers:
 - Address point X
 - Address point Y
 - Balance
 - Nonce
- Leaves are Poseidon(AddrX, AddrY, Balance, Nonce)

Single Transition

- Reveal source account by providing merkle proof to the source account
- Check if Amount < SrcBalance
- Check if EdDSA_Verify(Poseidon(Tx), TxSig)
- Decrease the source account's balance, increase the source account's nonce, and recalculate the account hash:

 Poseidon(SrcAddrX, SrcAddrY, SrcBalance Amount, SrcNonce + 1)
- Re-apply the same source merkle proof to the new account hash, to get an intermediary merkle-root!
- Reveal the destination account by providing merkle proof to the destination account AFTER applying the changes of source account
- Calculate new account hash of destination:
 Poseidon(DstAddrX, DstAddrY, DstBalance + Amount, DstNonce)
- Re-apply the same destination merkle proof to the new account hash, to get the **final** merkle root!

Transition Batch

- Apply a sequence of 1024 transitions
- Then we will effectively process 1024 txs in a single low-size proof, which can be verified in constant-time.
- What if there aren't 1024 txs?
 - Some transitions can be null, in that case, they won't change the merkle-root
 - CurrMerkleRoot = TransitionIsNull ? CurrMerkleRoot : NewMerkleRoot

zkVM

- Imagine a zkRollup of VM instructions...
- Machine state is merkle-root of its RAM and its CPU registers
- Program is stored as a list of opcodes in RAM, and there is a Program-Counter (PC) register

Sparse Merkle Tree

- Merkle Tree with a fixed size of 2ⁿ
- Can contain billions of leaves
- Is sparse
- Each leaf has a "Default value" and default-values of lower depths are also precalculated
- Defaults = [0, Poseidon(0, 0), Poseidon(Poseidon(0, 0), Poseidon(0, 0)), ...]

Sparse Merkle Trees are RAMs

SMTs are Random Access Memories with log(n) access time-complexity

