Foundations of Garbled Circuits

21 .31

by Mihir Bellare, Viet Tung Hoang and Phillip Rogaway

Sebastian Verschoor

CS 858: Computing on Encrypted Data September 23rd, 2016

Outline

Paper overview

Definitions

Garbling scheme

Circuit

Security

Security relations

 $\begin{array}{l} \mathsf{priv}.\mathsf{sim} \Rightarrow \mathsf{priv}.\mathsf{ind} \\ \mathsf{priv}.\mathsf{ind} \ \land \ \mathsf{eff}.\mathsf{inv} \Rightarrow \mathsf{priv}.\mathsf{sim} \end{array}$

Rest of the paper

Garbled Circuits

- Garbling as a goal, not a technique
- Garbling scheme
- Fit existing literature in the framework
- Examples: Garble1/Garble2
- Goal:
 - More efficient construction
 - More rigourous analyses
 - More modular design

Garbling scheme

- $\blacktriangleright \ \mathcal{G} = (\mathsf{Gb}, \mathsf{En}, \mathsf{De}, \mathsf{Ev}, \mathsf{ev})$
- Compute $F(X) = Y \sim f(x) = y$
- ► Gb: Garbler
- En, De: encrypter/decrypter
- ► Ev, ev: "interpreters"

- f = (n, m, q, A, B, G)
- ▶ f is both an *encoding* of a function and the function itself
 - $ightharpoonup \operatorname{ev}(f,x) = f(x)$

Security

- $\blacktriangleright \Phi(f)$: side-information on f
 - $\Phi_{size}(f) = (n, m, q)$
 - $\Phi_{topo}(f) = (n, m, q, A, B)$
 - $\Phi_{circ}(f) = (n, m, q, A, B, G) = f$
- Privacy
 - \blacktriangleright (F,X,d) reveals nothing beyond $\Phi(f)$ and y
- Obliviousness
 - \triangleright (F,X) reveals nothing beyond $\Phi(f)$
- Authenticity
 - ▶ Given F, X, adversary is unable to produce Y^* , s.t $d(Y^*) \neq \bot$

Security

- $\blacktriangleright \Phi(f)$: side-information on f
 - $\Phi_{\text{size}}(f) = (n, m, q)$
 - $\Phi_{topo}(f) = (n, m, q, A, B)$
 - $\Phi_{circ}(f) = (n, m, q, A, B, G) = f$
- Privacy
 - \triangleright (F,X,d) reveals nothing beyond $\Phi(f)$ and y
- Obliviousness
 - \triangleright (F,X) reveals nothing beyond $\Phi(f)$
- Authenticity
 - ▶ Given F, X, adversary is unable to produce Y^* , s.t. $d(Y^*) \neq \bot$

Indistinguishability (privacy)

Indistinguishability (obliviousness)

Simulation (privacy)

Simulation (obliviousness)

Authenticity

Security relations

- ▶ GS(priv.sim, Φ) is the set of all garbling schemes that are privacy simulation secure over Φ
- similar for priv.ind, obv.sim, obv.ind
- ightharpoonup similar for aut, but without Φ

Efficient invertibility

- ightharpoonup M is a Φ -inverter if
 - $M(\phi)$ returns f s.t. $\Phi(f) = \phi$
- ightharpoonup M is a (Φ, ev) -inverter if
 - ▶ $M(\phi, y)$ returns (f, x) s.t. $\Phi(f) = \phi$ and ev(f, x) = y
- Efficient inverters do it in polynomial time

Rest of the paper

- Proofs for the other drawn security relations
- ▶ Garble1
 - Definition
 - Dual-key ciphers
 - ▶ Proof of security (priv.ind over Φ_{topo})
- Garble2
 - Definition
 - Proof of security
 - priv.ind over $\Phi_{topo}(\Rightarrow priv.sim)$
 - obv.ind over $\Phi_{topo}(\Rightarrow obv.sim)$
 - aut
- Casting existing schemes to the GS framework
 - Secure function evaluation (SFE)
 - Private function evaluation (PFE)

Thank you

Any questions?