

— Data structures for graphs —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

— Incidence matrix —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Matriz de incidência nó-arco

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma matriz de incidência $A_{n \times m}$ nó-arco é representada por:

- ► Uma linha para cada nó
- ► Uma coluna para cada aresta

$$a = (i,j) \in A \Rightarrow \begin{bmatrix} 0 & +1 & 0 & -1 & 0 \end{bmatrix}^T$$

Matriz de incidência nó-arco

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma matriz de incidência $A_{n \times m}$ nó-arco é representada por:

- ► Uma linha para cada nó
- ► Uma coluna para cada aresta

$$a = (i,j) \in A \Rightarrow \begin{bmatrix} 0 & +1 & 0 & -1 & 0 \end{bmatrix}^T$$

$$A_{n \times m} = \left[\begin{array}{ccccc} +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & +1 & +1 & 0 \\ 0 & -1 & -1 & 0 & +1 \\ 0 & 0 & 0 & -1 & -1 \end{array} \right]$$

Questions?

Data structures for graphs

Incidence matrix –

— Adjacency matrix —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Matriz de adjacência

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma matriz de adjacência $A_{n \times n}$ é representada por:

- ► Uma linha para cada nó
- ► Uma coluna para cada nó

$$a_{ij} = \begin{cases} 1, & (i,j) \in A \\ 0, & (i,j) \notin A \end{cases}$$

Matriz de adjacência

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma matriz de adjacência $A_{n \times n}$ é representada por:

- ► Uma linha para cada nó
- ► Uma coluna para cada nó

$$a_{ij} = \begin{cases} 1, & (i,j) \in A \\ 0, & (i,j) \notin A \end{cases}$$

$$A_{n \times n} = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Questions?

Data structures for graphs

Adjacency matrix –

— Adjacency list —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma lista de adjacência $A_{n \times n}$ é representada por uma lista de nós (ou vértices) em que cada nó aponta para a lista de seus sucessores (ou nós adjacentes).

Seja um grafo G = (V, A) em que |V| = n e |A| = m. Uma lista de adjacência $A_{n \times n}$ é representada por uma lista de nós (ou vértices) em que cada nó aponta para a lista de seus sucessores (ou nós adjacentes).

SUCESSORES

PREDECESSORES

Monte o grafo a partir da representação

Exemplo 1

$$A_{n \times n} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Monte o grafo a partir da representação

Exemplo 1

$$A_{n \times n} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Monte o grafo a partir da representação

Exemplo 1

$$A_{n \times n} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

MATRIZ DE INCIDÊNCIA

Γ+1	+1	-1	0	0	0	0	0	0	0	0	
-1	0	0	0	+1	0	+1	-1	0	0	0	
0	0	0	-1	0	0	-1	0	0	+1	-1	
0	0	0	0	0	0	0	0	-1	-1	+1	
0	0	0	0	0	-1	0	+1	+1	0	0	
L o	-1	+1	+1	-1	+1	0	0	0	0	0	

Questions?

Data structures for graphs

- Adjacency list -