AE 330 Rocket Propulsion Solid Rocket Motors

Kowsik Bodi Aerospace Engineering, IIT Bombay

Solid propellant Rocket Motor (SRM)

Propellants for SRMs - Requirements

Fuel + Oxidizer **mixture** should be a rigid solid

Survives stresses (thermal & mechanical) during storage & operation

No/negligible reaction of the mixture during storage

Sustainable combustion only at $T \sim T_c$

Bad heat absorber(radiation)/conductor

Exhaust gases should not be trackable (for missiles)

Propellants for SRMs

Homogeneous: fuel and oxidiser are contained in the same molecule

Heterogenous/Composite: mixtures of oxidising crystals in an organic plastic-like fuel binder

Propellants for SRMs

- Oxidizer
- Fuel
- Binder
- Plasticizer
- Curing-Agent

Propellants for SRMs – Oxidizers, Inorganic

Oxidizing capacity: F > O > CI

Perchlorates $-(CIO_4) > Nitrates (-NO_3)$

Perchlorates

Ammonium Perchlorate (AP): NH₄ClO₄

Most widely used

Available as small white crystals

Exhaust has $HCI \rightarrow corrosive$

Nitrates

Ammonium Nitrate (AN): NH₄NO₃

 $\hbox{Hygrospcopic} \to \hbox{phase/volume changes}$

low-cost, smokeless, non-toxic exhaust

Usage: low burning-rate applications,

low performance applications,

gas-generators

1 U > 1 m > 1 = > 1 = > 9 Q

Propellants for SRMs – Oxidizers, Organic

$-NO_2$

NitroGlycerine (NG)

Liquid form

Acts as solvent for Nitrocellulose (fuel) etc.

Nitramines

RDX: CycloTriMethyleneTriNitramine

HMX: CycloTetraMethyleneTetraNitramine

White crystalline solids

Added for higher performance

Explosives

Careful handling required

Propellants for SRMs – Fuels, Inorganic

Powdered spherical Aluminium

Oxidized into Al₂O₃

Liquid droplet form during combustion

Solidifies in nozzle \rightarrow heat release

Liq. Al_2O_3 can form slag near nozzle

 \rightarrow intermittent ejection of large mass of Al₂O₃

Propellants for SRMs – Fuels, Inorganic

Powdered spherical Aluminium

Oxidized into Al₂O₃

Liquid droplet form during combustion

Solidifies in nozzle \rightarrow heat release

Liq. Al₂O₃ can form slag near nozzle

 \rightarrow intermittent ejection of large mass of Al₂O₃

Boron

Lighter than Al, higher melting point

Efficient only at small particle-sizes

Beryllium

More efficient than Boron

Oxides are toxic

Propellants for SRMs – Fuels, Organic

Nitrocellulose (NC)

Crystalline

Retains fiber structure of organic cellulose

Mixed with NG to form a propellant

Propellants for SRMs – Binder & Burn-rate Modifier

Binder

Structural glue/matrix to hold Fuel-Oxidizer mixture Polyethers, Polyesters, Polybutadienes

Grain: Binder + Fuel + Ox. \rightarrow Hard, rubber-like material

Older options: Poly-vinyl-chloride (PVC), Poly-urethane (PU)

Present-day: Hydroxyl-Terminated Poly-Butadiene (HTPB)

Allows larger solids fraction ($\sim 88 - 90\%$)

for fuel (AI)/oxidizer(AP)

Propellants for SRMs – Burn-rate Modifier

Burnrate Modifier

Tailor the burnrate for the mission of the vehicle Modifies burning rate vs time profile

Stabilizer

Prevents reactions during storage

Propellants for SRMs – Plasticizer & Curing-Agent

Plasticizer

Low viscosity liquid, organic, also a fuel Improves processing properties of the propellant mixture

Curing-Agent

Causes the formation of long polymeric chains from the ingredients, & solidification of mixture

Propellants for SRMs – Homogenous Propellants

Ingredients are usually large molecules, with both fuel and oxidizer elements

Fuels: Chemicals that can get oxidized

Double-base (DB)/Homogeneous Propellants

Fuel and Oxidizer are parts of the same molecule.

```
Nitrocellulose (NC) – fuel rich (12.9%), (s) + Nitroglycerine (NG) – ox. rich (0.04%), (l) Stoichiometric ratio: NG:NC\approx 6.5:1 is a slurry Typical NG:NC\approx 0.8:1 is a rigid solid \rightarrow Fuel Rich
```

NC-NG propellant can be transparanent \rightarrow radiative heat absorption \rightarrow internal damage/"bore-holing"

→ Add Carbon-black (Opacifying Agent)

CMDB: Composite Modified Double-base Propellant Modified with HMX, and AN composites

- \rightarrow Higher energy content
- \rightarrow Nearly Smokeless

Composite/Heterogeneous Propellants

Fuel and Oxidizer are macroscopically mixed, forming a composite solid propellant.

Convnetional composition

Crystalline Oxidizer, AP: 60 - 72%

Metallic Fuel, Al: $\sim 22\%$

Elastomeric Binder + Plasticizer: $\sim 8-16\%$

Modifications

Higher Energy: Energetic Nitramine (HMX/RDX)

Energetic Plasticizer (NG/HMX)

Lower energy: AN instead of AP

Propellant Combustion - visualized using Strand burners

 $p_{\rm expt} < p_{\rm c}
ightarrow {
m lower burning-rates}$ ($\sim 4-12\%$) than in a motor

Doublebase/Homogeneous

Composite/Heterogeneous Unsteady/Irregular Less brilliant emission zone Bright, strong emission portion of flame Visible flame length - Burning surface Degradation zone Preheated zone Unheated zone Width of strand burner

Doublebase/Homogeneous Propellant Combustion – visualized using Strand burners

 $\ensuremath{\mbox{p}_{\mbox{expt}}} < \ensuremath{\mbox{p}_{\mbox{c}}} \to \mbox{lower burning-rates}$ ($\sim 4-12\%$) than in a motor

Premixed - Steady

Composite/Heterogeneous Propellant Combustion – visualized using Strand burners

 $p_{\rm expt} < p_{\rm c}
ightarrow$ lower burning-rates ($\sim 4-12\%$) than in a motor

Basic Performance: $T = C_T p_c A_t = \dot{m} c^* c_T$

Propellant burning rate, r

$$\mathcal{T} = \dot{m}c^*c_{\mathcal{T}}$$

 $\dot{m} =
ho_p A_b \ r$

Propellant burning rates

Propellant	Density [lbm/in ³]	Flame Temperature [°F]	Burning rate [in/s]	Pressure exponent, n
PVC/AP/Al	0.064	6260	0.45	0.35
PS/AP/Al	0.062	5460	0.31	0.33
PBAN/AP/Al	0.064	6260	0.32	0.35
CTPB/AP/Al	0.064	6160	0.45	0.40
HTPB/AP/Al	0.065	6160	0.28	0.30
PBAA/AP/Al	0.064	6260	0.35	0.35

Propellant burning rate, r

Internal ballistics: combustion characteristics of the propellant – burn-rate, burn-surface & grain geometry

Burn-rate: rate of regression of propellant surface. Depends on

- \blacksquare p_c, T_c
- Initial temperature of solid propellant
- Gas flow velocity flow parallel to the burning surface
- Stresses due to motor acceleration

$$\mathcal{T} = \dot{\mathbf{m}} \mathbf{c}^* \mathbf{c}_{\mathcal{T}} \ \dot{\mathbf{m}} = \rho_{\mathbf{p}} \mathbf{A}_{\mathbf{b}} \mathbf{r}$$

Propellant burn profiles

$$\mathcal{T} = \dot{m} c^* c_{\mathcal{T}} \ \dot{m} =
ho_{
m p} \; {
m A_b} \; r$$

Propellant Grain & Grain Configuration

Propellant burning rate – Effect of $p_c \& T_c$

Burning rate

 $r = a p_c^n$

a, n are empirical constants, curve-fit from data.

Temperature coefficient, a: influenced by grain initial temperature

Combustion index, n: independent of the grain initial temperature

Propellant burning rate – Effect of p_c & T_c

Stable Operation $\rightarrow 0 < n < 1$

Heuristic Argument

 $\dot{m}\sim p_c$ – leaves the chamber

 $\dot{m}_0 \sim p_c^n$ – added to chamber (burning, $\dot{m} = \rho_p Ar$)

Propellant burning rate – Effect of Initial Temperature, T_p

Total impulse = integrated area under the curves

$$M_p = \int\limits_{T_c}^{t_b} \dot{m} dt = \left(\int\limits_{T_c}^{t_b} p_c dt\right)/c^* A_t$$

Propellant burning rate - Erosive burning

Flow past the grain

- \rightarrow convection + turbulence
- \rightarrow increased heating of propellant
- ightarrow velocity increases towards nozzle
 - \rightarrow r increases towards nozzle
- \rightarrow A/A_t < 4 \rightarrow significant effect
- \rightarrow Port Area smallest at start-up
- ightarrow faster burning at start-up
 - \rightarrow lower thrust at end of burning

Combustion Instability – Acoustic

Assembling Space Shuttle Solid Rocket Booster

Combustion Instability - Vortex-Shedding

References & sources of images

- Textbooks by Lee, Mukunda, Sutton, Sforza & Turner
- Webpages of ISRO, Pratt & Whitney
- Images from Wikipedia, Purdue, SPG, Stanford, TuDelft (Aerospace) webpages