FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2003 TEST REPORT

For

Smart 300N Broadband Router

Model: BR485d

Trade Name: E-TOP

Issued for

E-Top Network Technology Inc.

No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.

Tainan Lab.
No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)
TEL: 886-6-580-2201
FAX: 886-6-580-2202

Issued Date: January 07, 2012

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	January 07, 2012	Initial Issue	ALL	Sunny Chang

TABLE OF CONTENTS

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 3. DESCRIPTION OF TEST MODES7 4. TEST METHODOLOGY9 5. FACILITIES AND ACCREDITATION......9 5.2 ACCREDITATIONS......9 5.3 MEASUREMENT UNCERTAINTY10 6. SETUP OF EQUIPMENT UNDER TEST......11 7. FCC PART 15.247 REQUIREMENTS......15 7.2 MAXIMUM PEAK OUTPUT POWER40 7.3 POWER SPECTRAL DENSITY46 7.4 CONDUCTED SPURIOUS EMISSION72 7.6 RADIATED EMISSION......101 APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE......149 APPENDIX II SETUP PHOTOS151

D Report No.: T11112830801-RP1

1. TEST REPORT CERTIFICATION

Applicant : E-Top Network Technology Inc.

Address: No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Manufacturer : E-Top Network Technology Inc.

Address: No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Equipment Under Test: Smart 300N Broadband Router

Model Number : BR485d

Brand Name : E-TOP

Date of Test : November 23, 2011 ~ December 23, 2011

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Reviewed by:

Jeter Wu Assistant Manager

Eric Huang
Assistant Section Manager

2. EUT DESCRIPTION

Product Name	Smart 300N Broadband Router	
Model Number		
Brand Name	E-TOP	
Identify Number	T11112830801	
Received Date	December 28, 2011	
	IEEE 802.11b/g, 802.11n HT20 : 2412MHz ~ 2462MHz	
_	IEEE 802.11n HT40 : 2422MHz ~ 2452MHz	
Frequency Range	IEEE 802.11a, IEEE 802.11n HT20 : 5745MHz ~ 5825MHz	
	IEEE 802.11n HT40 : 5755MHz ~ 5815MHz	
	IEEE 802.11b (2412MHz ~ 2462MHz) : 21.63 dBm	
	IEEE 802.11g (2412MHz ~ 2462MHz) : 25.02 dBm	
	IEEE 802.11n HT20 (2412MHz ~ 2462MHz) : 26.99 dBm	
Transmit Power	IEEE 802.11n HT40 (2422MHz ~ 2452MHz) : 24.37 dBm	
	IEEE 802.11a (5745MHz ~ 5825MHz) : 15.42 dBm	
	IEEE 802.11n HT20 (5745MHz ~ 5825MHz) : 17.41 dBm	
	IEEE 802.11n HT40 (5755MHz ~ 5815MHz) : 15.70 dBm	
	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz	
Channel Spacing	IEEE 802.11a, 802.11n HT20 : 20MHz	
	IEEE 802.11n HT40 : 40MHz	
	IEEE 802.11b/g, 802.11n HT20 : 11 Channels	
Channel Number	IEEE 802.11n HT40 : 7 Channels	
Chamie Number	IEEE 802.11a, 802.11n HT20 : 5 Channels	
	IEEE 802.11n HT40 : 6 Channels	
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps	
	IEEE 802.11g : 54, 48 ,36, 24, 18, 12, 9, 6 Mbps	
Transmit Data Rate	IEEE 802.11n HT20 : 130,117,104,78, 65, 58.5, 52, 39, 26, 19.5, 13, 6.5 Mbps	
	IEEE 802.11n HT40 : 300, 270,243, 216,162 ,135, 121.5, 108, 81, 54, 40.5, 27, 13.5 Mbps	
	IEEE 802.11a : 54, 48 ,36, 24, 18, 12, 9, 6 Mbps	
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)	
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)	
Type of Modulation	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11a : OFDM (64QAM, 16QAM, QPSK, BPSK)	

Antenna Type	Two antennas (2TX2RX) Manufacture: YONG-SHUN TECH. CO., LTD. Type: Co-linear dipole structure Model: AN-152RRSU00 Gain: 3dBi for 2.4GHz, 4dBi for 5GHz Connector: Reverse SMA PLUG
Power Rating	12Vdc; 1A(Powered from Adapter)
Power Source	Powered from adapter Model: JKY36-SP1201000 Input: 100-240Vac, 50/60Hz, 0.5A Output: 12Vdc, 1000mA
Test Voltage	120Vac, 60Hz

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: <u>U6A-BR485D</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 4. To add a series model is for business necessary. The different of the each model is shown as bellows:

Company Name/Address	Brand name	Model	Product Name
E-Top Network Technology Inc. No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.	E-TOP	BR485d	Smart 300N Broadband Router
Amigo Technology Inc. 5F., No.63, Lane 77, Xing-Ai Road, Neihu Dist., Taipei City 114, Taiwan (R.O.C.)	Amigo	BR485d	Smart 300N Broadband Router
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	RB-1830	Smart 300Mbps Dualband Router - All Broadbands

3. DESCRIPTION OF TEST MODES

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	TX Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode		
Emission	Radiated Emission	TX Mode
LIIIISSIOII	Conducted Emission	TX Mode

Remark : Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz)

IEEE 802.11b, 802.11g, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11a, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	5745
Middle	5785
High	5825

IEEE 802.11a mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 13Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	5755
Middle	5795
High	5815

IEEE 802.11n HT40 mode: 27Mbps data rate (worst case) were chosen for full testing.

While all conducted test the spectrum / power meter was connected to the Booster RF-out for 2.4GHz and the chain 1 of WiFi module for 5GHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada

Germany TUV NORD

Taiwan BSMI

USA FCC

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.38dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.04dB
Radiated Emission, 1 to 26.5 GHz	± 3.20dB
Power Line Conducted Emission	± 2.01dB

Uncertainty figures are valid to a confidence level of 95%, K=2

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

For RF test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m

I	No.	Signal cable description			
	Α	DC Power	Unshielded, 1.2m, 1pcs		
	В	LAN Cable	Unshielded, 1.0m, 1pcs		

For EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	R51	R33026	Power cable, unshd, 1.6m
2	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m
3	Note Book	IBM	R50E		Power cable, unshd, 1.6m
4	3G Modem	NOVATEL	Qualcomm 3G CDMA	PKRNVWMC7 27	N/A
5	HUB	BARRICAD	SMC7008BR	DoC	Power cable, unshd, 1.6m

No.	Signal cable description				
Α	DC Power	Unshielded, 1.8m, 1pcs			
В	LAN	Unshielded, 10m, 1pcs			
С	LAN	Unshielded, 2.0m, 3pcs			
D	LAN	Unshielded, 10m, 1pcs			

SETUP DIAGRAM FOR TESTS

For RF test

For EMI test

EUT OPERATING CONDITION

RF Setup (2.4G)

- 1. Set up all computers like the setup diagram.
- 2. Reset equipment and burn in the test program "MP_Test".
- 3. The "Realtek Test Program for "RTL819x" software was used for testing The EUT driver software installed in the host support equipment during testing was Realtek Test Program for RTL819x Drive

(1)TX Mode:

- ⇒ IC Type: RTL_8192D
- ⇒ Mode:2.4G/SingleMac
- **⇒** Dev:WLAN0
- ⇒ Test Item :Continuous TX
- Channel:1(2412MHz)、3(2422MHz)、6(2437MHz)、9(2452MHz)、11(2462MHz)
- ⇒ TX POWER: follow "Power Control"
- ⇒ Antenna: B, G Mode A, HT20, HT40 Mode AB
- ⇒ Tx Data: 1Mbps long (IEEE 802.11b mode, TX)

6Mbps (IEEE 802.11g mode, TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX) **27Mbps** (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

- ⇒ Bandwith: B、G、HT20 20MHz, HT40 40MHz
- ⇒ Start

Power control

Target Power: IEEE 802.11b Channel Low (2412MHz) = 52

IEEE 802.11b Channel Middle (2437MHz) =50 IEEE 802.11b Channel High (2462MHz) = 50

Target Power: IEEE 802.11g Channel Low (2412MHz) = 54

IEEE 802.11g Channel Middle (2437MHz) = 52

IEEE 802.11g Channel High (2462MHz) = 52

Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 52 (Chain 0)

IEEE 802.11 n HT20 Channel Middle (2437MHz) = 50 (Chain 0) IEEE 802.11 n HT20 Channel High (2462MHz) = 50 (Chain 0) IEEE 802.11n HT20 Channel Low (2412MHz) = 52 (Chain 1) IEEE 802.11 n HT20 Channel Middle (2437MHz) = 50 (Chain 1) IEEE 802.11 n HT20 Channel High (2462MHz) = 50 (Chain 1)

Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 47 (Chain 0)

IEEE 802.11 n HT40 Channel Middle (2437MHz) = 46 (Chain 0)
IEEE 802.11 n HT40 Channel High (2452MHz) = 46 (Chain 0)
IEEE 802.11n HT40 Channel Low (2422MHz) = 47 (Chain 1)
IEEE 802.11 n HT40 Channel Middle (2437MHz) = 46 (Chain 1)
IEEE 802.11 n HT40 Channel High (2452MHz) = 46 (Chain 1)

(2) RX Mode:

Test Item packets RX Start RX

Otalt IXX

(3).Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- Notebook PC (2) ping 192.168.0.10 –t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 -t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 -t to Wireless Access Point (3).

Start test.

RF Setup (5G)

- 1. Set up all computers like the setup diagram.
- 2. Reset equipment and burn in the test program "MP_Test".
- 3. The "Realtek Test Program for "RTL819x" software was used for testing
 The EUT driver software installed in the host support equipment during testing was
 Realtek Test Program for RTL819x Drive

(1)TX Mode:

 \Rightarrow

- ⇒ IC Type: RTL_8192D
- ⇒ Dev:WLAN0
- ⇒ Test Item :Continuous TX

Mode:5G/SingleMac

- ⇒ TX POWER: follow "Power Control"
- ⇒ Antenna: A Mode A, HT20、HT40 Mode AB
- ⇒ Tx Data: 6Mbps (IEEE 802.11a mode, TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX) **27Mbps** (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

- ⇒ Bandwith: A、HT20 20MHz, HT40 40MHz
- ⇒ Start

Target Power: IEEE 802.11a Channel Low (5745MHz) = 40 IEEE 802.11a Channel Middle (5785MHz) = 40

IEEE 802.11a Channel High (5825MHz) = 40

Target Power: IEEE 802.11n HT20 Channel Low (5745MHz) = 40 (Chain 0) IEEE 802.11 n HT20 Channel Middle (5785MHz) = 40 (Chain 0)

IEEE 802.11 n HT20 Channel High (5825MHz) = **40 (Chain 0)**IEEE 802.11n HT20 Channel Low (5745MHz) = **40 (Chain 1)**IEEE 802.11 n HT20 Channel Middle (5785MHz) = **40 (Chain 1)**

IEEE 802.11 n HT20 Channel High (5825MHz) = **40 (Chain 1)**

Target Power: IEEE 802.11n HT40 Channel Low (5755MHz) = **40 (Chain 0)**IEEE 802.11 n HT40 Channel Middle (5795MHz) = **40 (Chain 0)**IEEE 802.11n HT40 Channel High (5815MHz) = **40 (Chain 0)**

IEEE 802.11 n HT40 Channel Low (5755MHz) = **40 (Chain 1)**IEEE 802.11n HT40 Channel Middle (5795MHz) = **40 (Chain 1)**IEEE 802.11 n HT40 Channel High (5815MHz) = **40 (Chain 1)**

(2) RX Mode:

Test Item packets RX Start RX

(3).Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 -t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 -t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 -t to Wireless Access Point (3).

Start test.

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	SEP. 29, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10120	500	PASS
Middle	2437	10220	500	PASS
High	2462	10220	500	PASS

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16633	500	PASS
Middle	2437	16583	500	PASS
High	2462	16633	500	PASS

IEEE 802.11n HT20 Mode

Channel	Channel Frequency	(I ₂ LI=\		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain1	(kHz)		
Low	2412	17836	17836	500	PASS	
Middle	2437	17836	17886	500	PASS	
High	2462	17836	17836	500	PASS	

IEEE 802.11n HT40 Mode

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain1	(kHz)		
Low	2422	36743	36643	500	PASS	
Middle	2437	36774	36673	500	PASS	
High	2452	36603	36603	500	PASS	

IEEE 802.11a Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	5745	16633	500	PASS
Middle	5785	16633	500	PASS
High	5825	16633	500	PASS

IEEE 802.11n HT20 Mode

1222 002.1111 11120 III0000							
Channel	Channel Frequency	/I∠U=\		Minimum Limit	Pass / Fail		
	(MHz)	Chain 0	Chain1	(kHz)			
Low	5745	17836	17836	500	PASS		
Middle	5785	17836	17836	500	PASS		
High	5825	17836	17836	500	PASS		

IEEE 802.11n HT40 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail
		Chain 0	Chain1	(kHz)	
Low	5755	36673	36673	500	PASS
Middle	5795	36673	36673	500	PASS
High	5815	36673	36673	500	PASS

6dB BANDWIDTH

(2.4GHz)

Report No.: T11112830801-RP1

Report No.: T11112830801-RP1

Report No.: T11112830801-RP1

Report No. : T11112830801-RP1

-BR485D Report No. : T11112830801-RP1

Report No.: T11112830801-RP1

Report No.: T11112830801-RP1

(5GHz)

Report No.: T11112830801-RP1

Report No.: T11112830801-RP1

CH Low (IEEE 802.11n HT20 Mode / Chain 0) Delta 1 [T1] 100 kHz Ref Lvl 0.05 dB VBW 100 kHz 12.3 dBm 17.83567134 MHz SWT 12.5 ms Unit 12.3 dB Offse **▼**1 | [T 1] -20.01 dBm 5.73633267 GHz 0.05 dB 7.83567134 MHz -D1 −14.03 dBn 1MA -30 -50 -60 -80 Center 5.745 GHz 5 MHz/ Span 50 MHz 23.DEC.2011 10:05:09 CH Middle (IEEE 802.11n HT20 Mode / Chain 0) 100 kHz RF Att Delta 1 [T1] RBW Ref Lvl 0.02 dB ٧BW 100 kHz 12.3 dBm 17.83567134 MHz SWT 12.5 ms Unit 12.3 dB Offset -19.95 dBm 5.77633<mark>2</mark>67 GHz 0.02 dB [T1] 7.83567134 MHz -D1 −14<mark>.</mark>12 dBn 1MAX^{D2} -20.12 1MA -50 -60 -80 -87.7 Center 5.785 GHz 5 MHz/ Span 50 MHz 23.DEC.2011 10:06:59

Report No.: T11112830801-RP1

Report No.: T11112830801-RP1

CH Low (IEEE 802.11n HT40 Mode / Chain 0) Delta 1 [T1] 100 kHz Ref Lvl 2.20 dB VBW 100 kHz 12.3 dBm 36.67334669 MHz SWT 25 ms Unit dBm 12.3 dB Offse -23.15 dBm [11] 5.73686373 GHz 2.20 dB 36.67334669 MHz -D1 −16.12 dBn 1MAXD2 -22.12 dBm-1MA -30 -50 -60 -80 Center 5.755 GHz 10 MHz/ Span 100 MHz 23.DEC.2011 10:11:00 CH Middle (IEEE 802.11n HT40 Mode / Chain 0) RF Att 100 kHz Delta 1 [T1] RBW Ref Lvl 4.75 dB ٧BW 100 kHz 12.3 dBm 36.67334669 MHz SWT 25 ms Unit 12.3 bB Offset **▼**1 |[⊤1] -24.94 dBm 5.77686<mark>373 GHz</mark> 4.75 dB 6.67334669 MHz -D1 −16<mark>.</mark>01 dBn -20 1MAXD2 -22.01 dBm 1MA -50 -60 -80 -87.7 Center 5.795 GHz 10 MHz/ Span 100 MHz 23.DEC.2011 10:12:26

A-BR485D Report No. : T11112830801-RP1

Report No.: T11112830801-RP1

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY 30, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

Antenna Gain1: 3 dBi Antenna Gain2: 3 dBi

Array Gain=: 6.01 = $10*\log ((10^{(3 /10)} + (10^{(3 /10)}))$

Peak Power Limit: 29.99 = 30- (6.01 -6)

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	21.63		PASS
Middle	2437	20.87	30	PASS
High	2462	21.31		PASS

Remark: At finial test to get the worst-case emission at 1Mbps.

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	24.82		PASS
Middle	2437	24.63	30	PASS
High	2462	25.02		PASS

Remark: At finial test to get the worst-case emission at 6Mbps.

IFFF 802.11n HT20 Mode

Channel	Channel Frequency	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	(dBm)	(dBm)	
Low	2412	23.73	24.21	26.99		PASS
Middle	2437	23.34	23.89	26.63	29.99	PASS
High	2462	23.76	24.12	26.95		PASS

Remark: At finial test to get the worst-case emission at 6.5Mbps.

IEEE 802.11n HT40 Mode

Channel	Channel Frequency		Power Bm)	Peak Power (dBm)	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Chain 0	(dBm)	(dBm)	
Low	2422	20.78	21.46	24.14		PASS
Middle	2437	21.46	21.14	24.31	29.99	PASS
High	2452	21.05	21.65	24.37		PASS

Remark: At finial test to get the worst-case emission at 13.5Mbps.

Antenna Gain1: 4 dBi Antenna Gain2: 4 dBi

Array Gain=: $7.01 = 10*\log ((10^{(4 /10)} + (10^{(4 /10)}))$

Peak Power Limit: 28.99 = 30- (7.01 -6)

IEEE 802.11a Mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (W)	Pass / Fail
Low	5745	15.37	1	PASS
Middle	5785	15.42	1	PASS
High	5825	15.05	1	PASS

Remark: At finial test to get the worst-case emission at 6Mbps.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(IVITIZ)	Chain 0	Chain 1	(dBm)	(dBm)	
Low	5745	14.48	14.32	17.41		PASS
Middle	5785	14.37	14.09	17.24	28.99	PASS
High	5825	13.95	13.74	16.86		PASS

Remark: At finial test to get the worst-case emission at 13Mbps.

IEEE 802.11n HT40 Mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)		Peak Power Total	Peak Power Limit	Pass / Fail
	(IVITIZ)	Chain 0	Chain 1	(dBm)	(dBm)	
Low	5755	12.75	12.62	15.70		PASS
Middle	5795	12.40	12.27	15.35	28.99	PASS
High	5815	12.29	12.18	15.25		PASS

Remark: At finial test to get the worst-case emission at 27Mbps.

Average Power

802.11b Mode

Channel	Frequency (MHz)	Average Power ChainA (dBm)
Low	2412	19.00
Middle	2437	18.34
High	2462	18.77

802.11g Mode

Channel	Frequency (MHz)	Average Power Chain0 (dBm)
Low	2412	14.86
Middle	2437	14.42
High	2462	14.6.

802.11n HT20 Mode

Channel	Frequency (MHz)	Average Power Chain0 (dBm)	Average Power ChainB (dBm)
Low	2412	13.89	14.24
Middle	2437	13.36	14.14
High	2462	13.07	14.59

802.11n HT40 Mode

Channel	Frequency	Average Power Chain0	Average Power ChainB			
	(MHz)	(dBm)	(dBm)			
1	· /					
Low	2422	11.15	11.95			
Middle	2437	11.45	12.20			
High	2452	11.27	11.91			

802.11a Mode

	Frequency	Average Power
Channel		Chain0
	(MHz)	(dBm)
Low	5745	5.30
Middle	5785	5.28
High	5825	5.11

802.11n HT20 Mode

002111111120111040							
Channel	Frequency	Average Power Chain0	Average Power ChainB				
	(MHz)	(dBm)	(dBm)				
Low	5745	4.39	4.25				
Middle	5785	4.22	4.18				
High	5825	4.07	3.93				

802.11n HT40 Mode

002::::::::::	002111111111111111111111111111111111111							
Channel	Frequency	Average Power Chain0	Average Power ChainB					
	(MHz)	(dBm)	(dBm)					
Low	5755	2.83	2.90					
Middle	5795	2.67	2.57					
High	5815	2.29	2.28					

7.3 POWER SPECTRAL DENSITY

LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	SEP. 29, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 3KHz and VBW RBW, set sweep time = span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-10.48	8	PASS
Middle	2437	-11.08	8	PASS
High	2462	-10.74	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

ELL OULTING MOGO							
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail			
Low	2412	-13.09	8	PASS			
Middle	2437	-13.68	8	PASS			
High	2462	-13.03	8	PASS			

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Report No.: T11112830801-RP1

Antenna Gain1: dBi 3 Antenna Gain2: 3 dBi

Array Gain=: 6.01 10*log ((10^(3 /10)+ (10^(3 /10))) =

PPSD Limit: 7.99 6.01 -6 (

IEEE 802.11n HT20 Mode

Channel	Channel Frequency		F Power I Iz BW (di		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total (dBm)		
Low	2412	-13.22	-12.60	-9.89		PASS
Middle	2437	-13.83	-13.75	-10.78	7.99	PASS
High	2462	-13.61	-12.96	-10.26		PASS

Remark:

- 1. At finial test to get the worst-case emission at 13Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 Mode

Channel Frequency			F Power I Iz BW (di		Minimum Limit (dBm)	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total	(dBIII)	
Low	2422	-17.85	-18.10	-14.96		PASS
Middle	2437	-17.74	-19.62	-15.57	7.99	PASS
High	2452	-17.58	-18.87	-15.17		PASS

Remark:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Antenna Gain1: 4 dBi Antenna Gain2: 4 dBi

Array Gain=: 7.01 = $10*\log ((10^{(4 /10)} + (10^{(4 /10)}))$

PPSD Limit: 6.99 = 8- (7.01 -6)

IEEE 802.11a Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	5745	-24.46		PASS
Middle	5785	-25.02	8	PASS
High	5825	-24.78		PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 12.3dB (including 10 dB pad and 2.3 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency	Final RF Power Level in 3KHz BW (dBm)		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain 1	Total	(dBm)	
Low	5745	-27.47	-28.20	-24.81		PASS
Middle	5785	-28.02	-29.01	-25.48	6.99	PASS
High	5825	-28.23	-29.57	-25.84		PASS

Remark:

- 1. At finial test to get the worst-case emission at 13Mbps.
- 2. The cable assembly insertion loss of 12.3dB (including 10 dB pad and 2.3 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 Mode

Channel Frequency		Final RF Power Level in 3KHz BW (dBm)			Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total	(dBm)	, uo o , , u
Low	5755	-30.94	-31.69	-28.29		PASS
Middle	5795	-30.96	-31.81	-28.35	6.99	PASS
High	5815	-31.13	-31.58	-28.34		PASS

Remark:

- 1. At finial test to get the worst-case emission at 27Mbps.
- 2. The cable assembly insertion loss of 12.3dB (including 10 dB pad and 2.3 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

POWER SPECTRAL DENSITY

BR485D Report No. : T111112830801-RP1

