Bipolarni tranzistori

- Bipolarni tranzistor je komponenta sa tri elektrode
- Poseduje pojačavačko svojstvo u smislu da male promene signala između ulazne i referentne elektrode izazivaju nagle promene između izlazne i referentne elektrode
- Konstrukcija tranzistora je izvedena tako što su dva komada poluprovodnika istog tipa (zovu se kolektor i emiter) spojena uskim poluprovodnikom suprotnog tipa koji se zove baza
- U zavisnosti od toga da li su kolektor i emiter poluprovodnici N tipa, a baza P tipa ili obrnuto imamo NPN i PNP tipove bipolarnih tranzistora

Bipolarni tranzistori

Da bi bipolarni tranzistor imao pojačavačko svojstvo, potrebno je ispuniti:

- Tehnološke zahteve izrade
- Pravilno polarisati tranzistor

Tehnološki zahtevi da bi tranzistor imao pojačavačko svojstvo su:

- Emitor mora biti najjače dopiran, baza najslabije, a kolektor jače dopiran od baze a slabije od emitora
- Širina baze između emitora i kolektora mora biti dovoljno mala

Pravilno polarisati bipolarne tranzistore znači:

- Kolektorsko bazni PN spoj polarisati inverzno
- Bazno emitorski PN spoj polarisati direktno
- Ovo se postiže adekvatnim podešavanjem i napona i struja u kolu u kom se bipolarni tranzistor nalazi

Kada bipolarni tranzistor radi u aktivnom režimu, kolektorska struja je proporcionalna baznoj struji: i_c=βi_B

- Koeficijent strujnog pojačanja β je tipično vrednosti od nekoliko stotina puta
- Ovaj koeficijent zavisi od temperature tranzistora i vrednosti bazne struje
- Približno se može smatrati konstantnim kod rešavanja kola, sa vrlo tačnim rezultatima
- Kolektorska struja u manjoj meri zavisi od napona kolektor baza jer veći napon sužava oblast prostornog tovara i unekoliko povećava kolektorsku struju
- Ova pojava naziva se Erlijev (Early) efekat
- Napon V_A u izrazu naziva se Erlijev napon

$$i_C = I_S \left(1 + \frac{v_{CB}}{V_A} \right) e^{\frac{v_{BE}}{V_T}}$$

Električni model NPN tranzistora u aktivnom režimu

- Uloga električnog modela je da bipolarni tranzistor predstavi kao kombinaciju standardnih naponskih i strujnih generatora
- I pored relativne složenosti bipolarnog tranzistora, električni model u aktivnom režimu je relativno jednostavan
- Napon baze u aktivnom režimu je za 0,6V veći od napona emitora
- Kolektorska struja je β puta veća od bazne struje

Električni model PNP tranzistora u aktivnom režimu

- Napon baze u aktivnom režimu je za 0,6V manji od napona emitora
- Kolektorska struja je β puta veća od bazne struje, ali su smerovi i bazne i kolektorske struje suprotni od smerova bazne i kolektorske struje kod NPN tranzistora

Statičke karakteristike tranzistora

 Statičke karakteristike tranzistora su krive koje pokazuju zavisnosti između odgovarajućih napona i/ili struja

Ulazna karakteristika tranzistora sa zajedničkim emitorom

Prenosna karakteristika tranzistora sa zajedničkim emitorom

Realna izlazna karakteristika tranzistora sa zajedničkim emitorom

Idealizovana izlazna karakteristika tranzistora sa zajedničkim emitorom

Polarizacija tranzistora

- Pod polarizacijom se podrazumeva priključenje tranzistora na jednosmerne napone tako da tranzistor radi u željenom režimu
- Ako je cilj aktivni režim spoj kolektor baza mora biti polarisan inverzno, a baza emiter direktno

Polarizacija NPN tranzistora jednom baterijom

Polarizacija PNP tranzistora jednom baterijom

$$R_2 << R_B \quad V_X = \frac{V_{CC}}{2} \quad i_B = \frac{V_X - 0.6V}{R_B}$$

$$R_{B} = 10k\Omega \qquad i_{C} = \beta i_{B} \qquad R_{1} = R_{2} = 1k\Omega$$

Polarizacija Darlingtonove sprege tranzistora

- Da bi se povećalo strujno pojačanje β, tranzistori se povezuju u speregu, koja se naziva Darlingtonova sprega tranzistora
- Pošto je emitor ulaznog tranzistora direktno povezan na bazu izlaznog tranzistora, ukupno pojačanje Darlingtonove sprege jednako je proizvodu pojedinačnih strujnih pojačanja $\beta_e = \beta_1 \beta_2$
- Da bi Darlingtonova sprega imala veliko pojačanje i pri malim i pri velikim strujama, poželjno je staviti otpornik između baze i emitora izlaznog tranzistora
- Zadatak ovog otpornika je da dozvoli uključenje izlatnog tranzistora tek kad kolektorska struja ulaznog tranzistora dostigne vrednost

$$I_{C1} = \frac{V_{BET}}{R}$$

 Otpornik R ujedno doprinosi temperaturnoj stabilnosti, i omogućava brže rasterćenje sporednih nosilaca iz baze, odnosno omogućava brže isključenje

Polarizacija Darlingtonove sprege tranzistora

- Nedostatak darlingtonove sprege je taj što mu je napon uključenja 2V_{BET}=1,2V
- Kod zasićenja najniži napon saturacije mu je V_{CES2}=0,7V (V_{CES2}=V_{BE2}+V_{CES1}), što mu unekoliko ograničava primenu u energetskoj elektronici

Oblast sigurnog rada tranzistora

Postoje tri ograničenja o kojim treba voditi računa prilikom primene tranzistora, i to su:

- Naponsko ograničenje da napon kolektor baza ne pređe napon proboja V_{CEBDV}
- Strujno ograničenje struja kroz tranzistor stvara disipaciju kroz isti, pa se mora voditi računa o tome da struja ne pređe granične vrednosti (kataloški ih zadaje proizvođač) Icmax
- Ograničenje po snazi važno je da se tranzistor ne optereti preko ograničenja po snazi (proizvodu napona i struje) u skladu sa specifikacijom proizvođača

Primeri: <u>2N3055</u>, <u>PN2369</u>

P

V_{CE}

Zasićenje bipolarnog tranzistora

- Do zasićenja u radu bipolarnog tranzistora dolazi kada se oba PN spoja direktno polarišu
- U praksi, to se događa kada struja kolektora na otporniku u kolektorskoj grani stvori dovoljan pad napona da razlika između napona baterije V_{CC} i pada napona na otporniku u kolektorskoj grani bude jednaka naponu kolektor – emiter saturacije, koji tipično iznosi V_{CES}=0,2V
- Napon baza emiter kada je tranzistor u saturaciji je tipično V_{BES}=0,7V
- Napon kolektor baza je tada
- $V_{CBS} = V_{CES} V_{BES} = 0.2V 0.7V = -0.5V$
- Kolektor je na potencijalu za 0,5V nižem od potencijala baze, što za NPN tranzistor znači da je i spoj baza – kolektor direktno polarisan

Zasićenje bipolarnog tranzistora

- Usled velike koncentracije elektrona kao sporednih nosilaca naelektrisanja u bazi NPN tranzistora, smanjuje se gradijent, a sa njime i struja kolektora
- Pojačanje bazne struje više ne iznosi nekoliko stotina puta kao kod aktivnog režima, već 1 do 2 puta, a može se desiti da bazna struja bude veća od kolektorske u slučaju duboke saturacije

Zakočenje bipolarnog tranzistora

- Bipolarni tranzistor je zakočen kada su oba PN spoja inverzno polarisana, odnosno kada je napon baza – emiter manji od napona praga V_{BF}<0,5V
- Tada se sve tri elektrode modeluju kao međusobno nespojene (nulte struje između bilo koje dve elektrode)

Bipolarni tranzistor u inverzno aktivnom režimu

- Bipolarni tranzistor radi u inverzno aktivnom režimu kada je spoj baza – emiter inverzno polarisan, a spoj baza – kolektor direktno
- Tada je strujno pojačanje znatno manje nego u aktivnom režimu zbog slabije dopiranosti kolektora u odnosu na emiter
- Ovaj režim biće obrađen u okviru predavanja o logičkim kolima

Prekidački režim rada tranzistora

- Kada se koristi u impulsnom režimu, kao prekidač, tranzistor treba da brzo promeni stanje iz zakočenja (neprovodno stanje) u saturaciju (provodno stanje) i obrnuto u skladu sa kontrolnim naponom koji se dovodi na bazu
- Vreme kašnjenja t_d je vreme potrebno da bazna struja napuni kapacitivnost PN spoja baza – emiter do napona praga V_{BET}
- Kada je PN spoj baza emiter na naponu praga V_{BET}, kolektorska struja l_C počinje da raste eksponencijalno i potrebno je da prođe vreme uspona t_r dok ne dostigne 90% svoje nominalne vrednosti
- Vreme uključenja jednako je zbiru vremena kašnjenja td i vremena uspona tr, ti=td+tr
- Kod isključenja, prvo je potrebno da bazna struja krene na suprotnu stranu dok ne izvuče višak sporednih nosilaca iz baze
- To je vreme rasterećenja (storage time) t_s. Po isteku t_s, potrebno je da prođe vreme opadanja t_f da bi isključeni PN spoj baza – emiter isključio struju kolektora l_C koja eksponencijalno opada
- Vreme isključenja jednako je zbiru vremena rasterećenja t_s i vremena opadanja t_f, t_i=t_s+t_f

