

Structured Prediction

http://bit.ly/DLSP20

Yann LeCun

NYU - Courant Institute & Center for Data Science

Facebook AI Research

http://yann.lecun.com

TAs: Alfredo Canziani, Mark Goldstein

Structured Prediction

A particular type of latent variable models

The Oldest Example of Structured Prediction

Trainable Automatic Speech Recognition system with a convolutional net (TDNN) and dynamic time warping (DTW)

- The feature extractor and the structured classifier are trained simultanesously in an integrated fashion.
- with the LVQ2 Loss :
 - ➤ Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - ► Bengio's speech recognizer (1992)
 - ► Haffner's speech recognizer (1993)

Energy-Based Factor Graphs: Energy = Sum of "factors"

Sequence Labeling

- ► Output is a sequence Y1,Y2,Y3,Y4.....
- $Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$
- NLP parsing, MT, speech/handwriting recognition, biological sequence analysis
- ► The factors ensure grammatical consistency
- ► They give low energy to consistent sub-sequences of output symbols
- ► The graph is generally simple (chain or tree)
- ► Inference is easy (dynamic programming, min-sum)

Energy-Based Factor Graphs

- ► When the energy is a sum of partial energy functions (or when the probability is a product of factors):
 - ► Efficient inference algorithms can be used for inference (without the normalization step).

Efficient Inference: Energy-Based Factor Graphs

- **Example:**
 - Z1, Z2, Y1 are binary
 - Z2 is ternary
 - ➤ A naïve exhaustive inference would require 2x2x2x3=24 energy evaluations (= 96 factor evaluations)
 - ▶ BUT: Ea only has 2 possible input configurations, Eb and Ec have 4, and Ed 6.
 - ► Hence, we can precompute the 16 factor values, and put them on the arcs in a trellis.
 - A path in the trellis is a config of variable
 - The cost of the path is the energy of the config

The energy is a sum of "factor" functions

Factor graph

Simple Energy-Based Factor Graphs with "Shallow" Factors

- Linearly Parameterized Factors
- with the NLL Loss :
 - Lafferty's Conditional Random Field
- with Hinge Loss:
 - Taskar and Altun/Hofmann's Max Margin Markov Nets and Latent SVM
- with Perceptron Loss
 - Collins's Structured Perceptron model

Example: The Conditional Random Field Architecture

- ► A CRF is an energy-based factor graph in which:
 - the factors are linear in the parameters (shallow factors)
 - ► The factors take neighboring output variables as inputs
 - ▶ The factors a

Example: The Conditional Random Field Architecture

Applications:

X is a sentence, Y is a sequence of Parts of Speech Tags (there is one Yi for each possible group of words).

➤ X is an image, Y is a set of labels for each window in the image (vegetation, building, sky....).

Deep/non-linear Factors for Speech and Handwriting

- ➤ Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or other "deep" classifiers) with dynamic time warping, Hidden Markov Models, or other graph-based hypothesis representations
- Training the feature extractor as part of the whole process.
- with the LVQ2 Loss :
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - Bengio's speech recognizer (1992)
 - ► Haffner's speech recognizer (1993)

- With Minimum Empirical Error loss
 - ► Ljolje and Rabiner (1990)
- with NLL:
 - Bengio (1992), Haffner (1993), Bourlard (1994)
- With MCE
 - ▶ Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - ► Bottou pointed out the **label bias problem** (1991)
 - Denker and Burges proposed a solution (1995)

Deep Factors & implicit graphs: GTN

- Handwriting Recognition with Graph Transformer Networks
- Un-normalized hierarchical HMMs
 - Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]
 - ➤ Trained with NLL loss [Bengio, LeCun 1994], [LeCun, Bottou, Bengio, Haffner 1998]
- **►** Answer = sequence of symbols
- Latent variable = segmentation

Graph Transformer Networks

- Variables:
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path
- Loss function: computing the energy of the desired answer:

E(W, Y, X)

Graph Transformer Networks

- Variables:
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path
- ► Loss function: computing the constrastive term:

$$E(W, \check{Y}, X)$$

Graph Transformer Networks

- Example: Perceptron loss
- Loss = Energy of desired answer – Energy of best answer.
 - ► (no margin)

Graph Composition, Transducers.

- The composition of two graphs can be computed, the same way the dot product between two vectors can be computed.
- General theory: semi-ring algebra on weighted finite-state transducers and acceptors.

Check Reader

- Graph transformer network trained to read check amounts.
- Trained globally with Negative-Log-Likelihood loss.
- ► 50% percent corrent, 49% reject, 1% error (detectable later in the process.
- Fielded in 1996, used in many banks in the US and Europe.
- Processes an estimated 10% of all the checks written in the US.

Deep Factors / Deep Graph: ASR with TDNN/HMM

- Discriminative Automatic Speech Recognition system with HMM and various acoustic models
 - ➤ Training the acoustic model (feature extractor) and a (normalized) HMM in an integrated fashion.
- With Minimum Empirical Error loss
 - ► Ljolje and Rabiner (1990)
- with NLL:
 - ► Bengio (1992)
 - ► Haffner (1993)
 - ► Bourlard (1994)
- With MCE
 - ➤ Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - ► Bottou pointed out the **label bias problem** (1991)
 - ► Denker and Burges proposed a solution (1995)

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation #)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	0
hinge	$\max(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$	m
log	$\log \left(1 + e^{E(W,Y^i,X^i) - E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min \left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	0
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^{i}, X^{i})^{2} + \beta e^{-E(W, \bar{Y}^{i}, X^{i})}$	> 0
NLL/MMI	$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$	> 0
MEE	$E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0