## Ch-5单项选择题



$$B = A^3 - 4A^2$$
,  $\mathbb{M} \det(B+4E) = ($ 

$$(A) -2$$

3. 设
$$\alpha = (1,-1,2)^T$$
 是矩阵  $A = \begin{pmatrix} 2 & 1 & 2 \\ 2 & b & a \\ 1 & a & 3 \end{pmatrix}$  的一

- 个特征向量,则a,b的值为( 个特征问重,则 a, b 的值为 ( ). (A) 5,2 (B) -3,1 (C) 1,-3 (D) -1,3

- 4. 设 A,B 都是 n 阶矩阵, 且  $P^{-1}AP = B$ . 若 A
- 的一个特征值为 $\lambda_0$ ,对应于 $\lambda_0$ 的特征向量为 $\alpha$ ,
- 则 B 的对应于  $\lambda_0$  的特征向量为 (
- (A)  $\alpha$
- (B)  $P\alpha$  (C)  $P^{-1}\alpha$  (D)  $P^{T}\alpha$

5. 设 $\lambda_1, \lambda_2$  是矩阵 A 的两个不同的特征值, 对应的特征向量分别为 $\alpha_1,\alpha_2,\dots$ 则 $\alpha_1,A(\alpha_1+\alpha_2)$ 线性无关的充分必要条件是(



$$(A) \quad \lambda_1 = 0 \qquad (B) \quad \lambda_2 = 0$$

(B) 
$$\lambda_2 = 0$$

(C) 
$$\lambda_1 \neq 0$$

(C) 
$$\lambda_1 \neq 0$$
 (D)  $\lambda_2 \neq 0$ 

6. 设矩阵 A 与 B 相似,其中

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a & 2 \\ 0 & 2 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$$

则 a,b 的值分别为 (

$$(C) -3,5$$

(A) 3,2 (B) 3,5 (C) -3,5 (D) -3,-2

7. 设 4 阶矩阵 A = B 相似, A 的特征值为

$$\frac{1}{2}$$
,  $\frac{1}{3}$ ,  $\frac{1}{4}$ ,  $\frac{1}{5}$ , 则行列式  $\det(B^{-1} - E) = ($ 



$$(C) -32$$

8. 下列矩阵中不能相似于对角矩阵的是(

(A) 
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 (B)  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 

(C) 
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
 (D) & \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 1 \\
 0 & 0 & 2
 \end{array}
 \right)$$

9. 设 A,B 都是 n 阶矩阵,则下述结论中不正确的是 ( ).



- (A)若  $A \sim B(A 相似于 B)$ ,则  $A^T \sim B^T$
- (B) 若  $A \sim B$ , 且 A 可逆,则  $A^{-1} \sim B^{-1}$
- (C) 若  $A \sim B$ , 且 A 可逆,则  $A^* \sim B^*$
- (D) 若  $A \sim B$ , 且 A 可逆,则 A,B 都相似于单位矩阵 E

10. 设 A,B 为 n 阶矩阵,且  $A\sim B$ ,则下述结论中不正确的是 ( ).

$$(A)r(A)=r(B)$$

(B) 
$$det(A) = det(B)$$

(C) 
$$\lambda E - A = \lambda E - B$$

(D) 
$$\det(\lambda E - A) = \det(\lambda E - B)$$

11. 设二阶实对称矩阵 A 的特征值为 1, 2. 对应于特征值 1 的特征向量为 $\alpha_1 = (1,-1)^T$ , 则矩阵A=(



$$(A) \begin{pmatrix} \frac{7}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{5}{4} \end{pmatrix}$$

(A) 
$$\begin{pmatrix} \frac{7}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{5}{4} \end{pmatrix}$$
 (B)  $\begin{pmatrix} \frac{7}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{5}{4} \end{pmatrix}$ 

(C) 
$$\begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

(C) 
$$\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$
 (D)  $\begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$ 

12. 设 $\alpha = (1,0,-1)^T$ ,矩阵 $A = \alpha \alpha^T$ ,若 n 为正



整数,则 
$$\det(aE-A^n)=$$
 (

(A) 
$$a-2^n$$

(A) 
$$a-2^n$$
 (B)  $a^2(a-2^n)$  (C)  $a^2-2$  (D) 0

(C) 
$$a^2 - 2$$

13.设 3 阶矩阵 A 的特征值为-2, -1, 2.矩阵

$$B = A^3 - 3A^2 + 2E$$
,  $\emptyset$  det  $B = ($ 

$$(B) - 16$$

$$(C) -36$$

**(D)** 
$$-72$$

14.设A为3阶矩阵,满足 $\det(3A+2E)=0$ ,  $\det(A-E)=0$ ,  $\det(3E-2A)=0$ ,则  $\det(A^*-E)=($  ).



(A) 
$$\frac{5}{3}$$
 (B)  $\frac{2}{3}$  (C)  $-\frac{2}{3}$  (D)  $-\frac{5}{3}$ 

- 15.设 n 阶矩阵 A 可逆,  $\alpha$  是 A 的对应于特征值  $\lambda$  的特征向量,则下列结论中不正确的是( ).
- (A)  $\alpha$  是矩阵-2A 的对应于特征值 2 $\lambda$  的特征向量
- (B)  $\alpha$  是矩阵  $\left(\frac{1}{2}A^2\right)^{-1}$  的对应于特征值  $\frac{2}{\lambda^2}$  的特征向量
- (C)  $\alpha$  是矩阵  $A^*$  的对应于特征值  $\frac{\det A}{\lambda}$  的特征向量
- (D)  $\alpha$  是矩阵  $A^{T}$  的对应于特征值  $\lambda$  的特征向量

16.设矩阵 
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
, 则  $A$  的全部



特征值为(

(A) 3, 3, -3 (B) 1, 1, 7 (C) 3, 1, -1 (D) 3, 1, 7

17.已知 $\lambda = 2$ 是 3 阶矩阵 A 的一个特征值,

 $\alpha_1, \alpha_2$  是 A 的对应于  $\lambda = 2$  的特征向量.

若 $\alpha_1 = (1,2,0)^T$ ,  $\alpha_2 = (1,0,1)^T$ , 向量 $\beta = (-1,2,-2)^T$ ,

则  $A\beta = ($ 

(A)  $(2,2,1)^T$  (B)  $(-1,2,-2)^T$  (C)  $(-2,4,-4)^T$  (D)  $(-2,-4,4)^T$ 

18.设 $\lambda_1, \lambda_2$ 是 n 阶矩阵 A 的特征值, $\alpha_1, \alpha_2$  分别是

A 的对应于特征值 $\lambda_1,\lambda_2$  的特征向量,则(

(A)当 $\lambda_1 = \lambda_2$ 时, $\alpha_1, \alpha_2$ 必线性相关

(B) 当 $\lambda_1 = \lambda_2$ 时, $\alpha_1, \alpha_2$ 必线性无关

(C)当 $\lambda_1 \neq \lambda_2$ 时, $\alpha_1, \alpha_2$ 必线性相关

(D) 当 $\lambda_1 \neq \lambda_2$ 时, $\alpha_1, \alpha_2$ 必线性无关

19.n 阶矩阵 A 具有 n 个不同特征值是 A 与对角阵相似的( ).



- (A)充分必要条件
- (B)充分但非必要条件
- (C)必要但非充分条件
- (D)既非充分也非必要条件

20.设矩阵 
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,则下述矩阵中与  $A$ 



相似的矩阵是(

$$(A) \quad A_1 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(B) \quad A_2 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(C) 
$$A_3 = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(D) 
$$A_4 = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$

- 21.设 A,B 均为 n 阶矩阵,且  $A\sim B$ ,则(
- (A)  $\lambda E A = \lambda E B$
- (B)A与B有相同的特征值和特征向量
- (C)A与B都相似于一个对角矩阵
- (D)对任意常数 t, 必有  $tE A \sim tE B$

22.设 3 阶矩阵 
$$A = \begin{pmatrix} 0 & 0 & 1 \\ x & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
有 3 个线性无关的

特征向量,则 x = 0

 $(A) -1 \qquad (B) 0$ 

**(C)** 1



23.设矩阵 
$$B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
, 矩阵  $A \sim B$ ,则



$$r(E-A)+r(A-3E)=($$
 ).

(A) 7

**(B)** 6

(C) 5

**(D)** 4