Curvas de rotación. Ecuaciones de Lane-Emden.

Néstor Andrés Montiel Hernández.

Asesor: Dra. Argelia Bernal Bautista Universidad de Guanajuato

19 de junio de 2022

Objetivo.

Realizar ajustes en las velocidades de rotación de las galaxias LSB usando las ecuaciones de Lane-Emden.

Introducción

Las curvas de rotación observadas junto con un modelo de masa son de las herramientas principales para derivar el potencial gravitatorio y la distribución de masa en las galaxias. Para la distribución de materia oscura, se prefiere un comportamiento "core" en las regiones centrales de las enanas esferoidales (dSphs) y en galaxias de bajo brillo superficial (LSB). De Blok et al. [de Blok, W.J.G., McGaugh, S.S., van der Hulst, J.M., 1996, MNRAS 283, 18] fueron los primeros en estudiar las propiedades de las curvas de rotación de las galaxias LSB, encontraron que las curvas de rotación aumentan más lentamente que las galaxias HSB y están dominadas por materia oscura.

Ecuación de Lane-Emden

Tenemos las ecuaciones de equilibrio para un objeto esférico

$$\frac{dm}{dr} = 4\pi r^2 \rho \quad \frac{dP}{dr} = -\frac{mG}{r^2} \rho \tag{1}$$

consideramos una ecuación para un fluido politrópico

$$P = \kappa \rho^{\gamma} \tag{2}$$

donde $\gamma=1+1/n$ con n el índice politrópico. Despejamos m(r) de la ecuación diferencial para la presión y sustituimos en la ecuación diferencial para la masa, obteniendo

$$\frac{d}{dr} \left[-\frac{r^2}{G\rho} \frac{dP}{dr} \right] = 4\pi r^2 \rho \tag{3}$$

de la ecuación politrópica derivamos ambos lados respecto de r

$$\frac{dP}{dr} = \kappa \gamma \rho^{\gamma - 1} \frac{d\rho}{dr} \tag{4}$$

y sustituimos en 3

$$\frac{d}{dr}\left[-\frac{r^2}{G\rho}\left\{\kappa\gamma\rho^{\gamma-1}\frac{d\rho}{dr}\right\}\right] = 4\pi r^2\rho\tag{5}$$

ahora reescribimos a γ en términos de el ínidce politrópico n como

$$\gamma - 1 = 1/n \quad \gamma = \frac{n+1}{n} \tag{6}$$

sustituimos en 5 y obtenemos

$$\frac{d}{dr}\left[-\frac{r^2}{G\rho}\left(\frac{n+1}{n}\right)\left\{\kappa\rho^{1/n}\frac{d\rho}{dr}\right\}\right] = 4\pi r^2\rho\tag{7}$$

realizamos el siguiente cambio de variable $\rho = \rho_0 \theta^n$, por lo tanto

$$\rho^{1/n} = \rho_0^{1/n} \theta \quad \frac{d\rho}{dr} = \rho_0 n \theta^{n-1} \frac{d\theta}{dr} \tag{8}$$

sustituyendo lo anterior obtenemos

$$\frac{d}{dr}\left[-\frac{r^2}{G\rho_0\theta^n}\left(\frac{n+1}{n}\right)\left\{\kappa(\rho_0^{1/n}\theta)\left(\rho_0n\theta^{n-1}\frac{d\theta}{dr}\right)\right\}\right] = 4\pi r^2\rho_0\theta^n \tag{9}$$

eliminando terminos, llegamos a la siguiente ecuacióno simplificada

$$\frac{d}{dr}\left\{\frac{r^2}{4\pi G}(n+1)\kappa \rho_0^{\frac{1-n}{n}}\frac{d\theta}{dr}\right\} + r^2\theta^n = 0$$
 (10)

hacemos

$$\alpha^2 = \frac{\kappa(n+1)\rho_0^{\frac{1-n}{n}}}{4\pi G}$$
 (11)

Podemos reescribir la ecuación como

$$\frac{d}{dr} \left[\alpha^2 r^2 \frac{d\theta}{dr} \right] + r^2 \theta^n = 0 \tag{12}$$

Se realiza el siguiente cambio $r=lpha\xi$, la ecuación queda como

$$\frac{d}{\alpha d\xi} \left[\alpha^2 (\alpha^2 \xi^2) \frac{d\theta}{\alpha d\xi} \right] + \alpha^2 \xi^2 \theta^n = 0$$
 (13)

y obtenemos la ecuación de Lane-Emden

$$\frac{d}{d\xi} \left\{ \xi^2 \frac{d\theta}{d\xi} \right\} = -\xi^2 \theta^n \qquad \xi^2 \frac{d^2\theta}{d\xi^2} + 2\xi \frac{d\theta}{d\xi} + \theta^n = 0 \tag{14}$$

con las siguientes condiciones de frontera

$$\theta(\xi=0) = 1 \quad \frac{d\theta}{d\xi}(\xi=0) = 0 \tag{15}$$

Vamos a calcular la masa

$$m = 4\pi \int \rho r^2 dr \tag{16}$$

reescribimos en las nuevas variables

$$m = 4\pi \int (\rho_0 \theta^n) (\alpha^2 \xi^2) \alpha d\xi$$
 (17)

usamos la ecuación (14)

$$m = 4\pi\alpha^3 \rho_0 \int \left(-\frac{d}{d\xi} \left\{ \xi^2 \frac{d\theta}{d\xi} \right\} \right) d\xi \tag{18}$$

$$m = -4\pi\alpha^3 \rho_0 \xi^2 \frac{d\theta}{d\xi} \tag{19}$$

Para la velocidad sabemos que

$$v^{2} = \frac{GM}{r} = \frac{G}{\alpha \xi} \left(-4\pi \alpha^{3} \rho_{0} \xi^{2} \frac{d\theta}{d\xi} \right)$$
 (20)

por lo tanto

$$v = \sqrt{-4\pi\alpha^2 G\rho_0 \xi \frac{d\theta}{d\xi}}$$
 (21)

Para calcular la presión recuerde que

$$P = \kappa \rho^{n+1/n} = \kappa \rho_0^{(n+1)/n} \theta^{n+1}$$
(22)

Para calcular el valor de κ usamos α

$$\alpha = \sqrt{\frac{(n+1)\kappa}{4\pi G \rho_0^{(n-1)/n}}} \tag{23}$$

por lo tanto, el valor para la constante es

$$\kappa = \frac{\alpha^2 4\pi G \rho_0^{(n-1)/n}}{n+1} \tag{24}$$

y obtendriamos

$$P = \frac{\alpha^2 4\pi G \rho_0^2 \theta^{n+1}}{n+1}$$
 (25)

Figura: ξ VS θ

Figura: distribución de masa

Figura: velocidad de rotación

Usando los valores máximos para la velocidad de rotación y el radio, tanto de la solución numérica, como la de los datos, podemos calcular α y ρ_0 . Sean

$$m = -4\pi \xi^2 \frac{d\theta}{d\xi} \qquad v = \sqrt{\frac{m}{\xi}} \tag{26}$$

valores numéricos y, V y R el dato máximo para la curva de rotación. Entonces, para obtener los valores de α y ρ_0 tendremos

$$R = \alpha \xi_R \qquad V^2 = \alpha^2 \rho_0 G v^2 \tag{27}$$

$$\alpha = \frac{R}{\xi_R} \qquad \rho_0 = \frac{V^2}{\alpha^2 G V^2} \tag{28}$$

Figura: Datos galaxia LSB ESO3020120

Figura: Datos teóricos usando las ecuaciones de Lane-Emden

Resultados

Figura: mejor ajuste para $n=0, \alpha=1,9519, \rho_0=0,002654, \chi^2=8,58102$

Figura: mejor ajuste para $n=1, \alpha=2,3023, \rho_0=0,0029779, \chi^2=3,7943$

Figura: mejor ajuste para $n=2, \alpha=2,492, \rho_0=0,003339, \chi^2=1,616$

Figura: mejor ajuste para $n=3, \alpha=2,6626, \rho_0=0,0036246, \chi^2=0,7399$

Figura: Mejor ajuste para n=4, $\alpha=2,85$, $\rho_0=0,00379579$, $\chi^2=0,4252187179$

Figura: Mejor ajuste para n=5, $\alpha=3{,}053$, $\rho_0=0{,}003871$, $\chi^2=0{,}2795$

Buscando el mejor valor de χ^2 para n diferentes

	Valores de n					
	n = 0	n = 1	n = 2	n = 3	n = 4	
	$\alpha = 1,953255$	$\alpha = 2,303839$	$\alpha = 2,504173$	$\alpha = 2,671118$	$\alpha = 2,854757$	
ESO3020120		$\rho_0 = 0.002966$	$\rho_0 = 0.003315$	$\rho_0 = 0.003601$	$\rho_0 = 0.003791$	
	$\chi^2 = 8,581417$	$\chi^2 = 3,795385$	$\chi^2 = 1,617199$	$\chi^2 = 0.740173$	$\chi^2 = 0.425009$	

	Valores de n					
	n = 5	n = 6	n = 7	n = 8	n = 9	
ESO3020120	$\alpha = 3,041903$	$\alpha = 3,240233$	$\alpha = 3,422036$	$\alpha = 3,587312$	$\alpha = 3,756260$	
	$\rho_0 = 0.003885$	$\rho_0 = 0.003950$	$\rho_0 = 0.004015$	$\rho_0 = 0.004048$	$\rho_0 = 0.004076$	
	$\chi^2 = 0.280667$	$\chi^2 = 0.200573$	$\chi^2 = 0.153912$	$\chi^2 = 0.122746$	$\chi^2 = 0.101481$	

	MINIMO DE n					
	n = 75	n = 76	n = 77	n = 78	n = 79	
		$\alpha = 9,874290$	$\alpha = 9,933889$	$\alpha = 9,993489$	$\alpha = 10,072954$	
ESO3020120	$\rho_0 = 0.004341$					
	$\chi^2 = 0.020289$	$\chi^2 = 0.020248$	$\chi^2 = 0.020291$	$\chi^2 = 0.020509$	$\chi^2 = 0.020782$	

Para la galaxia ESO3020120 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [20,90] del mejor valor para el χ^2

In [27]: print(n_minimo) print(alpha_minimo) print(rhoc_minimo) print(xi_minimo)

73.03030303030303

9.68686686868687

0.004338383838388

0.020275257195562557

Para la galaxia ESO3050090 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [20,90] del mejor valor para el χ^2

In [12]: print(n_minimo)
 print(alpha_minimo)
 print(rhoc_minimo)
 print(xi_minimo)

71.61616161616162
 8.5757575757576
 0.0026111111111111
 0.8585911005019571

Para la galaxia ESO4880049 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [20,90] del mejor valor para el χ^2

```
In [12]: print(n_minimo)
    print(alpha_minimo)
    print(rhoc_minimo)
    print(xi_minimo)

89.292929292929
8.4242424242424
0.0086565656565657
0.9177167681439127
```


Para la galaxia U4115 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [20,90] del mejor valor para el χ^2

```
In [12]: print(n_minimo) print(alpha_minimo) print(rhoc_minimo) print(xi_minimo)

20.0
6.9595959595959
9.01
3.3877787715435304
```


Para la galaxia U11557 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [10,40] del mejor valor para el χ^2

```
In [15]: print(n_minimo)
print(alpha_minimo)
print(rhoc_minimo)
print(xi_minimo)

16.0606060606060602
10.0
0.001494949494949495
0.42769160235344716
```


Para la galaxia U11616 se busca por intervalos de n, por ejemplo, a continuación se realizo la busqueda en el intervalo [10,40] del mejor valor para el χ^2

In [18]: print(n_minimo) print(alpha_minimo) print(rhoc_minimo) print(xi_minimo)

88.58585858585859 8.777777777779 0.0146535353535354 5.025830347160955

Falta explorar la alternativa para los casos negativos

$$\frac{1}{\xi^m} \frac{d}{d\xi} \left(\xi^m \frac{d\theta}{d\xi} \right) = \mp \theta^n \tag{29}$$

El signo superior se refiere a los polítropos de índice $-1 < n < +\infty$, mientras que el signo inferior se aplica cuando $-\infty < n < -1$. Nótese que el caso n=-1 no se considera, ya que corresponde a configuraciones en las que la presión es constante en todo momento. En ausencia de campo magnético o de rotación, como se supone aquí, tales configuraciones no pueden estar en equilibrio hidrostático ya que ningún gradiente de presión equilibra la atracción gravitatoria.

Bibliografía