Destroying randomness and genericity using symmetric differences

Rutger Kuyper

24 May 2016

A degree with a name

Joint work with

Lowness and K-triviality

Definition. A set A is low for C-randomness if for every C-random set X we have that X is C-random relative to A.

Lowness and K-triviality

Definition. A set A is low for C-randomness if for every C-random set X we have that X is C-random relative to A.

Definition. A set A is K-trivial if $K(A \upharpoonright n) \leq K(n) + O(1)$.

Lowness and K-triviality

Definition. A set A is low for C-randomness if for every C-random set X we have that X is C-random relative to A.

Definition. A set *A* is *K*-trivial if $K(A \upharpoonright n) \leq K(n) + O(1)$.

Theorem. (Nies) A set A is K-trivial if and only if A is low for Martin-Löf randomness.

If A is low for C-randomness, and f is an A-computable measure-preserving bijection, then f(X) is C-random whenever X is.

If A is low for C-randomness, and f is an A-computable measure-preserving bijection, then f(X) is C-random whenever X is.

If A is not low for C-randomness, is there a C-random set X and an A-computable measure-preserving bijection f such that f(X) is not C-random?

If A is low for C-randomness, and f is an A-computable measure-preserving bijection, then f(X) is C-random whenever X is.

If A is not low for C-randomness, is there a C-random set X and an A-computable measure-preserving bijection f such that f(X) is not C-random?

Uniformly?

If A is low for C-randomness, and f is an A-computable measure-preserving bijection, then f(X) is C-random whenever X is.

If A is not low for C-randomness, is there a C-random set X and an A-computable measure-preserving bijection f such that f(X) is not C-random?

Uniformly?

Can the use of A be slow growing, for example, the identity?

Stabiliser

Definition. Let $\mathcal{C} \subseteq 2^{\omega}$. Then the *stabiliser* of \mathcal{C} is the set

$${A \in 2^{\omega} \mid \forall X \in \mathcal{C}(A \triangle X \in \mathcal{C})}.$$

We will say that such an A is C-stabilising.

Stabiliser

Definition. Let $\mathcal{C} \subseteq 2^{\omega}$. Then the *stabiliser* of \mathcal{C} is the set

$${A \in 2^{\omega} \mid \forall X \in \mathcal{C}(A \triangle X \in \mathcal{C})}.$$

We will say that such an A is C-stabilising.

Name comes from group theory: \triangle is an action of $(2^{\omega}, \triangle)$ on 2^{ω} .

Stabilisers in randomness

What do stabilisers look like for notions of randomness? Note that

$$X \mapsto A \triangle X$$

is an A-computable measure-preserving bijection, so if A is (uniformly) low for C-randomness, then it is C-stabilising.

Stabilisers in randomness

What do stabilisers look like for notions of randomness? Note that

$$X \mapsto A \triangle X$$

is an A-computable measure-preserving bijection, so if A is (uniformly) low for C-randomness, then it is C-stabilising.

What about the converse? If the stabiliser coincides with the sets which are uniformly low, this would give a positive answer to our question.

Stabilisers in randomness

What do stabilisers look like for notions of randomness? Note that

$$X \mapsto A \triangle X$$

is an A-computable measure-preserving bijection, so if A is (uniformly) low for C-randomness, then it is C-stabilising.

What about the converse? If the stabiliser coincides with the sets which are uniformly low, this would give a positive answer to our question.

Stabilisers have also been studied by Kihara and Miyabe, for their connections to null-additivity.

Can we think of a set which is not Martin-Löf-stabilising?

Can we think of a set which is not Martin-Löf-stabilising? A Martin-Löf random set X, because $X \triangle X = \emptyset$ which is not Martin-Löf random.

Can we think of a set which is not Martin-Löf-stabilising? A Martin-Löf random set X, because $X \triangle X = \emptyset$ which is not Martin-Löf random.

Can we think of a different example of such a set?

Can we think of a set which is not Martin-Löf-stabilising? A Martin-Löf random set X, because $X \triangle X = \emptyset$ which is not Martin-Löf random.

Can we think of a *different* example of such a set? Is $\Omega \triangle \emptyset'$ Martin-Löf random?

Can we think of a set which is not Martin-Löf-stabilising? A Martin-Löf random set X, because $X \triangle X = \emptyset$ which is not Martin-Löf random.

Can we think of a *different* example of such a set? Is $\Omega \triangle \emptyset'$ Martin-Löf random? (It is.)

Can we think of a set which is not Martin-Löf-stabilising? A Martin-Löf random set X, because $X \triangle X = \emptyset$ which is not Martin-Löf random.

Can we think of a *different* example of such a set? Is $\Omega \triangle \emptyset'$ Martin-Löf random? (It is.)

Even the answer to the following questions is unclear:

- Are the Martin-Löf-stabilisers degree-invariant?
- What is the cardinality of the Martin-Löf-stabiliser?

Some results of Kihara and Miyabe

Theorem. (Kihara and Miyabe) A set A is Kurtz-stabilising if and only if A is uniformly low for Kurtz randomness.

Some results of Kihara and Miyabe

Theorem. (Kihara and Miyabe) A set A is Kurtz-stabilising if and only if A is uniformly low for Kurtz randomness.

Theorem. (Kihara and Miyabe) A set A is weakly-1-generic-stabilising if and only if A is uniformly low for weak 1-genericity.

Some results of Kihara and Miyabe

Theorem. (Kihara and Miyabe) A set A is Kurtz-stabilising if and only if A is uniformly low for Kurtz randomness.

Theorem. (Kihara and Miyabe) A set A is weakly-1-generic-stabilising if and only if A is uniformly low for weak 1-genericity.

Kihara and Miyabe also have partial results that strongly suggest that a set A is Schnorr-stabilising if and only if A is uniformly low for Schnorr randomness.

Back to Martin-Löf randomness

Theorem. A set A is Martin-Löf-stabilising if and only if A is K-trivial.

What about 1-genericity?

What about 1-genericity?

Theorem. A set A is 1-generic-stabilising if and only if A is computable.

What about 1-genericity?

Theorem. A set A is 1-generic-stabilising if and only if A is computable.

Lemma. If A is 1-generic-stabilising, then A is infinitely often K-trivial, i.e. there is a constant c such that

$$\exists^{\infty} n(K(A \upharpoonright n) \leq K(n) + c).$$

What about 1-genericity?

Theorem. A set A is 1-generic-stabilising if and only if A is computable.

Lemma. If A is 1-generic-stabilising, then A is infinitely often K-trivial, i.e. there is a constant c such that

$$\exists^{\infty} n(K(A \upharpoonright n) \leq K(n) + c).$$

Proof. Let Y be a noncomputable c.e. set which is low for K (Muchnik). Let $X \leq_T Y$ be 1-generic. Because $A \triangle X$ is 1-generic, it is infinitely often K-trivial by a result of Barmpalias and Vlek. Now

$$K(A \upharpoonright n) \leq K^{X}(A \upharpoonright n) + O(1) \leq K^{X}((X \triangle A) \upharpoonright n) + O(1)$$

$$\leq K((X \triangle A) \upharpoonright n) + O(1).$$

Let A be non-computable. We construct a 1-generic set X. Core ideas:

• Code \emptyset' into $X \triangle A$.

- Code \emptyset' into $X \triangle A$.
- Code into X△A whether we forced the jump or not, a la Posner–Robinson/Jockusch–Shore.

Let A be non-computable. We construct a 1-generic set X. Core ideas:

- Code \emptyset' into $X \triangle A$.
- Code into X△A whether we forced the jump or not, a la Posner–Robinson/Jockusch–Shore.

$$n \notin A \wedge \exists \tau \succeq \sigma_s 0^n 1(\{s\}^{\tau}(s)\downarrow)$$

or

$$n \in A \land \forall \tau \succeq \sigma_s 0^n 1(\{s\}^{\tau}(s)\uparrow)$$

- Code \emptyset' into $X \triangle A$.
- Code into X△A whether we forced the jump or not, a la Posner–Robinson/Jockusch–Shore.
- Use left-c.e. and right-c.e. instead of c.e. and co-c.e..

- Code \emptyset' into $X \triangle A$.
- Code into X△A whether we forced the jump or not, a la Posner–Robinson/Jockusch–Shore.
- Use left-c.e. and right-c.e. instead of c.e. and co-c.e..
- Code A into $X \triangle A$, which we can do efficiently infinitely often.

- Code \emptyset' into $X \triangle A$.
- Code into X△A whether we forced the jump or not, a la Posner–Robinson/Jockusch–Shore.
- Use left-c.e. and right-c.e. instead of c.e. and co-c.e..
- Code A into $X \triangle A$, which we can do efficiently infinitely often.
- If some $n \in \omega$ is unsuitable to code whether we forced the jump or not, then $A \upharpoonright (n+1)$ also has a short description!

Open questions

- What about other randomness notions, such as computable randomness? Schnorr randomness?
- Is there any randomness notion for which stabilising and uniformly low do not coincide?
- Are there any randomness notions for which stabilising is not degree-invariant?
- (With Jason Rute) What is special about symmetric difference?
 Can we replace it by addition? Other group operations?

More details

For more details, see:

R. Kuyper and J. S. Miller, Nullifying randomness and genericity using symmetric difference, submitted.

Weak 2-randomness

By essentially the same proof, we get:

Theorem. For any set A, the following are equivalent:

- A is weakly-2-random-stabilising,
- A is (weakly-2-random, Martin-Löf)-stabilising,
- A is K-trivial.

Some results of Kihara and Miyabe (2)

Theorem. A set A is uniformly low for Schnorr randomness if and only if for every Schnorr null set N, the set

$$\{X\triangle A\mid X\in N\}$$

is Schnorr null.

Back to Martin-Löf randomness

Theorem. A set A is Martin-Löf-stabilising if and only if A is K-trivial.

Back to Martin-Löf randomness

Theorem. A set A is Martin-Löf-stabilising if and only if A is K-trivial.

Lemma. If B is Martin-Löf-stabilising, then there are a Π_1^0 -class P of positive measure and an $m \in \omega$ such that

$$B\triangle P\subseteq Q_m$$
,

where Q_m is the complement of the mth component U_m of the universal Martin-Löf test.

Back to Martin-Löf randomness

Theorem. A set A is Martin-Löf-stabilising if and only if A is K-trivial.

Lemma. If B is Martin-Löf-stabilising, then there are a Π_1^0 -class P of positive measure and an $m \in \omega$ such that

$$B\triangle P\subseteq Q_m$$
,

where Q_m is the complement of the mth component U_m of the universal Martin-Löf test.

Proof. Assume not. Let P_0 be an arbitrary nonempty Π^0_1 -class only containing Martin-Löf random sets. By finite extension, build $X \in P_0$ such that $B \triangle X \in \bigcap_{m \in \omega} U_m$. That is, at step s+1, apply the hypothesis to $P = P_0 \cap \llbracket \sigma_s \rrbracket$ to find $\sigma_{s+1} \succeq \sigma_s$ such that $B \triangle \sigma_{s+1} \in U_{s+1}$.

The proof for Martin-Löf randomness

Let P and Q_m be as in the previous lemma. We will be building a KC set L and a Π^0_1 -class R. By the recursion theorem, we know an index e for R. We will guarantee that $\mu(R) \geq 1 - 2^{-e - m - 2}$, which ensures that $Q_m \subseteq R$. It now suffices to show that A is K-trivial for all A such that $A \triangle P \subseteq R$, which is what we will do.

The proof for Martin-Löf randomness

Let P and Q_m be as in the previous lemma. We will be building a KC set L and a Π^0_1 -class R. By the recursion theorem, we know an index e for R. We will guarantee that $\mu(R) \geq 1 - 2^{-e - m - 2}$, which ensures that $Q_m \subseteq R$. It now suffices to show that A is K-trivial for all A such that $A \triangle P \subseteq R$, which is what we will do.

The idea is that, whenever we see that our enemy ensures that $\sigma \triangle P \subseteq R$, we use the measure it provides to enumerate a request for $(K(|\sigma|), \sigma)$. Of course, we need to make sure that the measure provided for different such pairs is independent. We ensure this by building R in a highly independent way.

Construction of R

For every pair of a string $\sigma \in 2^{<\omega}$ and every $k \in \omega$, reserve an exclusive interval $f(\sigma,k)$ of ω of size (k+e+m+2). Whenever $K_{s+1}(n) < K_s(n)$, for every string $\sigma \in 2^n$, remove from R all paths $X \succeq \sigma$ such that X is constantly 0 on the block $f(\sigma,k)$. Call this removed set $V_{k,n}$.

Construction of R

For every pair of a string $\sigma \in 2^{<\omega}$ and every $k \in \omega$, reserve an exclusive interval $f(\sigma,k)$ of ω of size (k+e+m+2). Whenever $K_{s+1}(n) < K_s(n)$, for every string $\sigma \in 2^n$, remove from R all paths $X \succeq \sigma$ such that X is constantly 0 on the block $f(\sigma,k)$. Call this removed set $V_{k,n}$.

Construction of R

For every pair of a string $\sigma \in 2^{<\omega}$ and every $k \in \omega$, reserve an exclusive interval $f(\sigma,k)$ of ω of size (k+e+m+2). Whenever $K_{s+1}(n) < K_s(n)$, for every string $\sigma \in 2^n$, remove from R all paths $X \succeq \sigma$ such that X is constantly 0 on the block $f(\sigma,k)$. Call this removed set $V_{k,n}$.

$$\lambda(\overline{R}) \le \sum_{k:\mathcal{U}(k)\downarrow} 2^{-k-e-m-2} = 2^{-e-m-2}\Omega \le 2^{-e-m-2}$$

Construction of L

For all σ , if $k = K_s(|\sigma|)$, and we see a string $\tau \succeq \sigma$ such that $\tau \triangle V_{n,k} \subseteq \overline{P}_s$, enumerate a request $(K_s(|\sigma|), \sigma)$.

Construction of L

For all σ , if $k = K_s(|\sigma|)$, and we see a string $\tau \succeq \sigma$ such that $\tau \triangle V_{n,k} \subseteq \overline{P}_s$, enumerate a request $(K_s(|\sigma|), \sigma)$. Why is this a KC set? Whenever $(k, \sigma) \neq (k', \sigma')$, the complements of the sets $\sigma \triangle V_{k,|\sigma|}$ and $\sigma' \triangle V_{k',|\sigma'|}$ are independent.

Construction of L

For all σ , if $k = K_s(|\sigma|)$, and we see a string $\tau \succeq \sigma$ such that $\tau \triangle V_{n,k} \subseteq \overline{P}_s$, enumerate a request $(K_s(|\sigma|), \sigma)$. Why is this a KC set? Whenever $(k, \sigma) \neq (k', \sigma')$, the complements of the sets $\sigma \triangle V_{k,|\sigma|}$ and $\sigma' \triangle V_{k',|\sigma'|}$ are independent.

Thus,

$$\prod_{(k,\sigma)\in L} (1-\mu(\sigma\triangle V_{k,|\sigma|})) \ge \mu(P) > 0,$$

and hence

$$\sum_{(k,\sigma)\in L} 2^{-k} = c \sum_{(k,\sigma)\in L} \mu(V_{k,|\sigma|}) < \infty.$$