PRACTICE PROBLEMS

- (1) True or false. If true, explain why. If false, give a counter-example.
 - (a) Let F be a finite field. For every n, the polynomial ring F[x] contains an irreducible polynomial of degree n.
 - (b) Let F be a finite field. Suppose $f(x) \in F[x]$ has a root in F. Then f(x) splits into linear factors in F.
 - (c) Same as (2), but assuming f is irreducible.
 - (d) Same as (2), but with F not necessarily finite.
- (2) Let p be a prime. Is the polynomial

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^p}{p!}$$

irreducible in $\mathbf{Q}[x]$?

- (3) Find, with proof, the kernel of the map $\mathbf{Q}[x] \to \mathbf{C}$ that sends x to i+2.
- (4) Find the gcd of $x^2 + x + 1$ and $x^4 + 3x^3 + x^2 + 7x + 5$ when considered as elements of (a) $\mathbf{Q}[x]$ and (b) $\mathbf{F}_7[x]$.
- (5) Construct fields with 4 elements, 9 elements, and 125 elements.
- (6) Are the following polynomials irreducible: (a) $x^2 + 1 \in \mathbf{F}_7[x]$ (b) $x^3 9 \in \mathbf{F}_{31}[x]$.
- (7) Factor $x^2 + 5x + 5$ into irreducible factors in (a) $\mathbf{F}_2[x]$ and (b) $\mathbf{Z}[x]$.
- (8) Let $\alpha, \beta \in \mathbf{C}$ be roots of irreducible polynomials $f(x), g(x) \in \mathbf{Q}[x]$, respectively. Prove that f(x) is irreducible over $\mathbf{Q}[\beta]$ if and only if g(x) is irreducible over $\mathbf{Q}[\alpha]$.
- (9) Let $F \subset L$ be a field extension. Suppose $\alpha, \beta \in L$ are such that both $\alpha + \beta$ and $\alpha \cdot \beta$ are algebraic over F. Prove or give a counterexample: α and β are algebraic over F.
- (10) Let p be a prime number. What is the minimal polynomial of $e^{2\pi i/p}$ over **Q**?
- (11) Let p be an odd prime number. What is the degree of $e^{\pi i/p}$ over \mathbf{Q} ?
- (12) Let p be a prime number. Suppose a regular p-gon can be constructed with a ruler and compass. Prove that p must have the form $p = 2^n + 1$ for some n. (We start only with the points (0,0) and (1,0)).
- (13) Let gcd(m, n) = 1. Prove that $x^m y^n \in \mathbf{C}[x, y]$ is irreducible.
- (14) Find all the primitive elements of $\mathbf{Q}[\sqrt{2}, \sqrt{3}]$.
- (15) Let $F = \mathbf{F}_2[a]/(a^4 + a + 1)/$ (this is a field).
 - (a) Find the degree of a^2 over \mathbf{F}_2 .
 - (b) Does F have an element that has degree 2 over \mathbf{F}_2 ? If yes, find one. If not, why not?
- (16) Let $\mathbf{F} = \mathbf{F}_p[a]/f(a)$ where f(a) has degree 6. Prove that the degree of $b = a + a^{p^3}$ over \mathbf{F}_p is at most 3.