Subject: MATHEMATICS

21095545

(Booklet Number)

Full Marks: 100

Duration: 2 Hours

INSTRUCTIONS

- 1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
- 2. Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
- 3. Category-II: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
- 4. Category-III: Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- 6. Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 9. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 10. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be **reported against** & his/her candidature will be summarily cancelled.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.

SPACE FOR ROUGH WORK

A 2

MATHEMATICS

Category-I (Q:1 to 50)

Category-1: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।

- 1. If $f:S\to\mathbb{R}$ where S is the set of all non-singular matrices of order 2 over \mathbb{R} and $f\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right]=ad-bc, then$
 - (A) f is bijective mapping.

- (B) f is one-one but not onto.
- (C) f is onto but not one-one.
- (D) f is neither one-one nor onto.

মনে কর $f:S \to \mathbb{R}$ যেখানে S, \mathbb{R} —উপাদান সহ দ্বিতীয়ক্রন্মের অবিশিষ্ট ম্যাট্রিক্সের সেট এবং $f\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ সেক্ষেত্রে,

(A) f একৈক উপরিচিত্রণ

- (B) f একৈক চিত্রণ কিন্তু উপরিচিত্রণ নয়
- (C) f উপরিচিত্রণ কিন্তু একৈক নয়
- (D) f একৈক-ও নয়, উপরিচিত্রণও নয়
- 2. Let the relation ρ be defined on $\mathbb R$ by a ρ b holds if and only if a-b is zero or irrational, then
 - (A) ρ is equivalence relation.
 - (B) ρ is reflexive & symmetric but is not transitive.
 - (C) ρ is reflexive and transitive but is not symmetric.
 - (D) ρ is reflexive only.

মনে কর \mathbb{R} -এ সম্বন্ধ ρ এভাবে সংজ্ঞায়িত আছে যে a ρ b হবে যদি এবং কেবলমাত্র যদি a-b শূণ্য বা অমূলদ হয়। সেক্ষেত্রে,

3

- (A) ρ সমতুল্যতা সম্বন্ধ
- (Β) ρ য়য়য় য়য়য় ও প্রতিয়য় য়য়য় কিয়ৢ সংক্রমণ য়য়য় য়য়
- (C) ρ স্বসম ও সংক্রমণশীল সম্বন্ধ কিন্তু প্রতিসম নয়
- (D) ρ ওধুমাত্র স্বসম সম্বন্ধ

3.	The	unit	vector	in	ZOX	plane,	making	angles	45°	and	60°	respectively	with
	$\vec{\alpha} = 2$	2 î + 2	$\hat{j} - \hat{k} a$	nd [$\vec{\beta} = \hat{j} -$	· k is							

(A)
$$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$$
 (B) $\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{k}$ (C) $\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j}$ (D) $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$

ZOX তলে একক ভেক্টর যথাক্রমে 45° ও 60° কোণ উৎপন্ন করে lpha ও eta এর সঙ্গে যেখানে $ec{lpha}=2\,\hat{i}+2\,\hat{j}=\hat{k}$ এবং $ec{m{\beta}}=\hat{j}=\hat{k}$ +সেক্ষেত্রে উক্ত একক ভেক্টরটি হবে

$$(A) \quad \frac{1}{\sqrt{2}} \; \hat{i} + \frac{1}{\sqrt{2}} \; \hat{j} \qquad (B) \quad \frac{1}{\sqrt{2}} \; \hat{i} - \frac{1}{\sqrt{2}} \; \hat{k} \qquad (C) \quad \frac{1}{\sqrt{2}} \; \hat{i} + \frac{1}{\sqrt{2}} \; \hat{j} \qquad (D) \quad \frac{1}{\sqrt{2}} \; \hat{i} + \frac{1}{\sqrt{2}} \; \hat{k}$$

- Four persons A, B, C and D throw an unbiased die, turn by turn, in succession till one 4. gets an even number and win the game. What is the probability that A wins if A begins?
 - $(\Lambda) = \frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{7}{12}$
- (D) $\frac{8}{15}$

A, B, C ও D চারজন একটি পক্ষপাতহীন ছক্কা পরপর নিক্ষেপ করবে এবং যে প্রথম জোড় সংখ্যা নিক্ষেপ করবে সে জিতবে , যদি \Lambda প্রথম নিক্ষেপ করে তবে তার জেতার সম্ভাবনা হবে

- (A)
- (B) $\frac{1}{2}$ (C) $\frac{7}{12}$
- (D) $\frac{8}{15}$
- A rifleman is firing at a distant target and has only 10% chance of hitting it. The least 5. number of rounds he must fire to have more than 50% chance of hitting it at least once, is
 - (A) 5
- (B) 7
- (C) 9
- (D) = 11

এক বন্দুক চালকের লক্ষ্যে আঘাত করার সম্ভাবনা 10%। লক্ষ্যে অন্তত একবার আঘাত করার সম্ভাবনা 50% এর বেশি হওয়ার জন্য কমপক্ষে যতবার গুলি ছুঁড়তে হবে তার সংখ্যা হল

- (A) 5
- (C) 9

6. $\cos(2x + 7) = a(2 - \sin x)$ can have a real solution for

(A) all real values of a

(B) $a \in [2, 6]$

(C) $a \in (-\infty, 2) \setminus \{0\}$

(D) $a \in (0, \infty)$

 $\cos (2x + 7) = a(2 - \sin x)$ -এর বাস্তব সমাধান থাকবে

- (A) a-এর সকল বাস্তব মানের জন্য
- (B) a ∈ [2, 6] -এর জন্য
- (C) a ∈ (-∞, 2)\{0}-এর জন্য
- (D) a ∈ (0, ∞) -এর জন্য

The differential equation of the family of curves $y = e^x (A \cos x + B \sin x)$ where A, B are 7. arbitrary constants is

(A) $\frac{d^2y}{dx^2} - 9x = 13$

(B) $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0$

(C) $\frac{d^2y}{dx^2} + 3y = 4$

(D) $\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} - xy = 0$

বক্র-রেখা-পরিবার $\mathbf{y}=\mathbf{e}^{x}\left(\mathbf{A}\cos x+\mathbf{B}\sin x
ight)\left(\mathbf{A}$ ও \mathbf{B} যদৃচ্ছ ধ্রুবক) এর অবকল সমীকরণ হবে

(A) $\frac{d^2y}{dx^2} - 9x = 13$

(B) $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0$

(C) $\frac{d^2y}{dr^2} + 3y = 4$

(D) $\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} - xy = 0$

The equation $r \cos \left(\theta - \frac{\pi}{3}\right) = 2$ represents 8.

- (B) a parabola
- (C) an ellipse
- (D) a straight line

 $r\cos\left(\theta - \frac{\pi}{3}\right) = 2$ সমীকরণটি সূচিত করে

- (A) একটি বৃত্ত
- (B) একটি অধিবৃত্ত (C) একটি উপবৃত্ত
- (D) একটি সরলরেখা

9.	The locus of the centre of the circles which touch both the circles $x^2 + y^2 = ax^2 + y^2 = 4ax$ externally is								
	(A)	a circle	(B)	a parabola					
	(C)	an ellipse	(D)	a hyperbola					
	বৃত্তদয় $x^2+y^2=a^2$ ও $x^2+y^2=4ax$ -কে বাইরে থেকে স্পর্শ করে এমন বৃত্তসমূহের স্থোরপথ হবে								
	(A)	একটি বৃত্ত	(B)	একটি অধিবৃত্ত					
	(C)	একটি উপবৃত্ত	(D)	একটি পরাবৃত্ত					
10.	Let each of the equations $x^2 + 2xy + ay^2 = 0$ & $ax^2 + 2xy + y^2 = 0$ represent two straig lines passing through the origin. If they have a common line, then the other two lines a given by								
	(A)	x-y=0, x-3y=0	(B)	x + 3y = 0, 3x + y = 0					
	(C)	3x + y = 0, 3x - y = 0	(D)	(3x - 2y) = 0, x + y = 0					
		কর $x^2 + 2xy + ay^2 = 0 ও ax^2 + 2xy + y^2$ ্রিচত করে। যদি দৃটি সমীকরণেই একটি অভিন্ন							
	(A)	x-y=0, x-3y=0	(B)	x + 3y = 0, 3x + y = 0					
	(C)	3x + y = 0, 3x - y = 0	(D)	(3x-2y)=0, x+y=0					
11.		traight line through the origin O meet $y + 6 = 0$ at P and Q respectively. The p							
	(A)	1:2	(B)	3:4					
	(C)	2:1	(D)	4:3					
মূলবিন্দুগামী (O) একটি সরলব্নেখা সমান্তরাল যুগল $4x+2y=9$ ও $2x+y+6=0$ কে য $^{\mathrm{t}}$ ও Q বিন্দুতে ছেদ করে। সেক্ষেত্রে $\mathrm{P}Q$ অংশ O বিন্দুতে যে অনুপাতে বিভক্ত হয় তা হল,									
	(A)	1:2	(B)	3:4					
	(C)	2:1	(D)	4:3					
A	· ·	6							

Area in the first quadrant between the ellipses $x^2 + 2y^2 = a^2$ and $2x^2 + y^2 = a^2$ is 12.

(A)
$$\frac{a^2}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$$
 (B) $\frac{3a^2}{4} \tan^{-1} \frac{1}{2}$ (C) $\frac{5a^2}{2} \sin^{-1} \frac{1}{2}$ (D) $\frac{9\pi a^2}{2}$

উপবৃত্তদয় $x^2+2y^2=a^2$ ও $2x^2+y^2=a^2$ -এর মধ্যস্থ ও প্রথম পাদে অবস্থিত অঞ্চলের ক্ষেত্রফল হবে

(A)
$$\frac{a^2}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$$
 (B) $\frac{3a^2}{4} \tan^{-1} \frac{1}{2}$ (C) $\frac{5a^2}{2} \sin^{-1} \frac{1}{2}$ (D) $\frac{9\pi a^2}{2}$

The equation of circle of radius $\sqrt{17}$ unit, with centre on the positive side of x-axis and 13. through the point (0, 1) is

(A)
$$x^2 + y^2 - 8x - 1 = 0$$

(B)
$$x^2 + y^2 + 8x - 1 = 0$$

(C)
$$x^2 + y^2 = 9y + 1 = 0$$

(D)
$$2x^2 + 2y^2 - 3x + 2y = 4$$

যে বৃত্ত (0,1) বিন্দুগামী, যার ব্যাসার্ধ $\sqrt{17}$ একক এবং যার কেন্দ্র x-অক্ষের ধনাত্মক দিকের উপরিষ্ঠ তার সমীকরণ হল

(A)
$$x^2 + y^2 - 8x - 1 = 0$$

(B)
$$x^2 + y^2 + 8x - 1 = 0$$

(C)
$$x^2 + y^2 - 9y + 1 = 0$$

(D)
$$2x^2 + 2y^2 - 3x + 2y = 4$$

The length of the chord of the parabola $y^2 = 4ax$ (a > 0) which passes through the vertex 14. and makes an acute angle α with the axis of the parabola is

(A) $\pm 4a \cot \alpha \csc \alpha$

(B) $4a \cot \alpha \csc \alpha$

(C) $-4a \cot \alpha \csc \alpha$

(D) 4a cosec² α

 $y^2=4ax~(a>0)$ অধিবৃত্তের একটি জ্যা অধিবৃত্তের শীর্ষবিন্দুগামী এবং অধিবৃত্তের অক্ষের সঙ্গে lpha সৃচ্ছা কোণ উৎপন্ন করে। জ্যাটির দৈর্ঘ্য হবে

(A) $\pm 4a \cot \alpha \csc \alpha$

(B) $4a \cot \alpha \csc \alpha$

(C) $-4a \cot \alpha \csc \alpha$

(D) $4a \csc^2 \alpha$

A double ordinate PQ of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{k^2} = 1$ is such that $\triangle OPQ$ is equilateral, O being the centre of the hyperbola. Then the eccentricity e satisfies the relation

(A) $1 \le e \le \frac{2}{\sqrt{3}}$ (B) $e = \frac{2}{\sqrt{3}}$ (C) $e = \frac{\sqrt{3}}{2}$ (D) $e \ge \frac{2}{\sqrt{3}}$

একটি পরাবৃত্ত $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ -এর একটি দ্বি-কোটি PQ এরূপ যে Δ OPQ সমবাহু ত্রিভূজ হয়, O পরাবৃত্তের কেন্দ্র। সেক্ষেত্রে উৎকেন্দ্রতা e যে সম্বন্ধটিকে সিদ্ধ করে তা হল

- (A) $1 \le e \le \frac{2}{\sqrt{3}}$ (B) $e = \frac{2}{\sqrt{3}}$ (C) $e = \frac{\sqrt{3}}{2}$ (D) $e \ge \frac{2}{\sqrt{3}}$

- If B and B' are the ends of minor axis and S and S' are the foci of the ellipse 16.

 $\frac{x^2}{25} + \frac{y^2}{9} = 1$, then the area of the rhombus SBS'B' will be

- (A) 12 sq. unit
- (B) 48 sq. unit (C) 24 sq. unit (D) 36 sq. unit

উপবৃত্ত $\frac{x^2}{2S} + \frac{y^2}{9} = 1$ -এর পরাক্ষের দুই প্রান্তবিন্দু B ও B' এবং S ও S' ঐ উপবৃত্তের নাভিদ্বয় । রম্বস

SBS'B' -এর ক্ষেত্রফল হবে

- (A) 12 বৰ্গ একক (B) 48 বৰ্গ একক (C) 24 বৰ্গ একক (D) 36 বৰ্গ একক
- The equation of the latus rectum of a parabola is x + y = 8 and the equation of the tangent 17. at the vertex is x + y = 12. Then the length of the latus rectum is
 - (A) $4\sqrt{2}$ unit
- (B) $2\sqrt{2}$ unit (C) 8 unit
- (D) $8\sqrt{2}$ unit

একটি অধিবৃত্তের নাভিলম্বর সমীকরণ হল x+y=8 এবং শীর্ষবিন্দুতে স্পর্শকের সমীকরণ হল x+y=12। নাভিলম্বর দৈর্ঘ্য হবে

The equation of the plane through the point (2, -1, -3) and parallel to the lines 18. $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z}{-4}$ and $\frac{x}{2} = \frac{y-1}{-3} = \frac{z-2}{2}$ is

- (A) 8x + 14y + 13z + 37 = 0

- (C) 8x 14y 13z + 37 = 0
- (D) 8x 14y + 13z + 37 = 0

(2, -1, -3) বিন্দুগামী এবং $\frac{x-1}{2} = \frac{y+2}{3} = \frac{x}{-4}$ এবং $\frac{x}{2} = \frac{y-1}{-3} = \frac{x-2}{2}$ সরলরেখাদ্বয়ের সমান্তরাল

তলের সমীকরণ হল

- (B) 8x + 14y 13z 37 = 0
- (C) $8x \cdot 14y 13z + 37 = 0$

(A) 8x + 14y + 13z + 37 = 0

(D) 8x - 14y + 13z + 37 = 0

The sine of the angle between the straight line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ and the plane 2x + 2y + z = 5 is

- (A) $\frac{2\sqrt{3}}{5}$ (B) $\frac{\sqrt{2}}{10}$ (C) $\frac{4}{5\sqrt{2}}$ (D) $\frac{\sqrt{5}}{6}$

 $\frac{x-2}{3} = \frac{y+3}{4} = \frac{z-4}{5}$ সরলরেখা এবং 2x - 2y + z = 5 তলের মধ্যেকার কোণের sine হবে

- (A) $\frac{2\sqrt{3}}{5}$ (B) $\frac{\sqrt{2}}{10}$ (C) $\frac{4}{5\sqrt{2}}$ (D) $\frac{\sqrt{5}}{6}$

Let $f(x) = \sin x + \cos ax$ be periodic function. Then 20.

(A) 'a' is any real number.

(B) 'a' is any irrational number.

(C) 'a' is rational number.

দেওয়া আছে যে $f(x) = \sin x + \cos ax$ পর্যায়বৃত্ত অপেক্ষক। সেক্ষেত্রে

(A) 'a' যেকোন বাস্তব সংখ্যা

(B) 'a' (যকোন অমূলদ সংখ্যা

(C) 'a' মূলদ সংখ্যা

(D) a = 0

- The domain of $f(x) = \sqrt{\frac{1}{\sqrt{x}} \sqrt{(x+1)}}$ is

- (A) $x \ge -1$ (B) $(-1, \infty) \setminus \{0\}$ (C) $\left[0, \frac{\sqrt{5} 1}{2}\right]$ (D) $\left[\frac{1 \sqrt{5}}{2}, 0\right]$
- $f(x) = \sqrt{\left(\frac{1}{\sqrt{x}} \sqrt{(x+1)}\right)}$ -এর সংজ্ঞার অঞ্চল হবে

- (A) $x \ge -1$ (B) $(-1, \infty) \setminus \{0\}$ (C) $\left[0, \frac{\sqrt{5} 1}{2}\right]$ (D) $\left[\frac{1 \sqrt{5}}{2}, 0\right]$
- Let $y = f(x) = 2x^2 3x + 2$. The differential of y when x changes from 2 to 1.99 is
 - (A) = 0.01
- (B) = 0.18
- (C) = -0.05
- (D) = 0.07

মনে কর $y = f(x) - 2x^2 - 3x + 2$ । সেক্ষেত্রে x-এর মান 2 থেকে 1.99 -এ পরিবর্তিত হলে y-এর অন্তরকল হবে

- (A) = 0.01
- (B) = 0.18
- (C) = -0.05
- (D) = 0.07

- 23. If $\lim_{x \to 0} \left(\frac{1 + cx}{1 cx} \right)^{1/x} = 4$, then $\lim_{x \to 0} \left(\frac{1 + 2cx}{1 2cx} \right)^{1/x}$ is
 - (A) 2
- (B) 4
- (C) = 16
- (D) 64

যদি
$$\lim_{x \to 0} \left(\frac{1+cx}{1-cx} \right)^{1/x} = 4$$
 হয়, তবে $\lim_{x \to 0} \left(\frac{1+2cx}{1-2cx} \right)^{1/x}$ হবে

- (A) = 2
- (B) 4
- (C) 16
- (D) 64

- 24. Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable (or f'' exists and is continuous) such that f(0) = f(1) = f'(0) = 0. Then
 - (A) f''(c) = 0 for some $c \in \mathbb{R}$
- (B) there is no point for which f''(x) = 0

(C) at all points f''(x) > 0

(D) at all points $f''(x) \le 0$

মনে কর $f:\mathbb{R}\to\mathbb{R}$ দ্বিবিধ সন্তত অবকলসহগ বিশিষ্ট অপেক্ষক (অথবা f''-এর অন্তিত্ব আছে ও সন্তত) এরূপ থে f(0)=f(1)=f'(0)=0। সেক্ষেত্রে

- (A) $c\in\mathbb{R}$ -এর অস্তিত্ব আছে যার জন্য f''(c)=0 হবে
- (B) এমন কোন বিন্দু নেই যার জন্য f''(x) = 0
- (C) সব বিন্দুতেই f"(x) > 0
- (D) সব বিন্দুতেই f''(x) < 0
- **25.** Let $f(x) = x^{13} + x^{11} + x^9 + x^7 + x^5 + x^3 + x + 12$. Then
 - (A) f(x) has 13 non-zero real roots.
 - (B) f(x) has exactly one real root.
 - (C) f(x) has exactly one pair of imaginary roots.
 - (D) f(x) has no real root.

মনে কর $f(x) = x^{13} + x^{11} + x^9 + x^7 + x^5 + x^3 + x + 12$

- (A) f(x) -এর 13 টি অশূণ্য বাস্তব বীজ থাকবে
- (B) f(x) -এর ঠিক একটি বাস্তব বীজ থাকবে
- (C) f(x) -এর ঠিক একটি যুগল কাল্পনিক বীজ থাক্বে
- (D) f(x) -এর কোন বাস্তব বীজ থাকবে না

į

26. Let
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
. Then

(A)
$$x^2y_2 + xy_1 + n^2y = 0$$

(B)
$$xy_2 - xy_1 + 2n^2y = 0$$

(C)
$$x^2y_2 + 3xy_1 - n^2y = 0$$

(D)
$$xy_2 + 5xy_1 - 3y \approx 0$$

(Here
$$y_2 = \frac{d^2y}{dx^2}$$
, $y_1 = \frac{dy}{dx}$)

মনে কর $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n +$ সেন্দেরে

(A)
$$x^2y_2 + xy_1 + n^2y = 0$$

(B)
$$xy_2 - xy_1 + 2n^2y = 0$$

(C)
$$x^2y_2 + 3xy_1 - n^2y = 0$$

(D)
$$xy_2 + 5xy_1 - 3y = 0$$

(এখানে
$$y_2 \equiv \frac{d^2y}{dx^2}$$
 , $y_1 \equiv \frac{dy}{dx}$)

27. Let
$$\varphi(x) = f(x) + f(1-x)$$
 and $f''(x) < 0$ in [0, 1], then

- (A) φ is monotonic increasing in $\left[0, \frac{1}{2}\right]$ and monotonic decreasing in $\left[\frac{1}{2}, 1\right]$
- (B) φ is monotonic increasing in $\left[\frac{1}{2}, 1\right]$ and monotonic decreasing in $\left[0, \frac{1}{2}\right]$
- (C) ϕ is neither increasing nor decreasing in any sub interval of [0, 1]
- (D) φ is increasing in [0, 1]

মনে কর $\varphi(x) = f(x) + f(1-x)$ ও [0, 1] অন্তরালে f''(x) < 0

- (A) φ, $\left[0, \frac{1}{2}\right]$ -এ ক্রমানুষী ক্রমবর্ধমান ও $\left[\frac{1}{2}, 1\right]$ -এ ক্রমানুষী ক্রমন্ত্রাসমান হবে
- (B) φ , $\left[\frac{1}{2}, 1\right]$ -এ ক্রমানুয়ী ক্রমবর্ধমান ও $\left[0, \frac{1}{2}\right]$ -এ ক্রমানুয়ী ক্রমহ্রাসমান হবে
- (C) φ. [0, 1] -এর কোন উপ-অন্তরালে ক্রুমানুয়ী ক্রুমবর্ধমান বা ক্রুমানুয়ী ক্রুমহ্রাসমান নয়
- (D) φ. [0, 1] -এ ক্রমবর্ধমান

28.
$$\int \frac{f(x)\phi'(x) + \phi(x)f'(x)}{(f(x)\phi(x) + 1)\sqrt{f(x)\phi(x) - 1}} dx =$$

(A)
$$\sin^{-1} \sqrt{\frac{f(x)}{\varphi(x)}} + c$$

(B)
$$\cos^{-1} \sqrt{(f(x))^2 - (\varphi(x))^2} + c$$

(C)
$$\sqrt{2} \tan^{-1} \sqrt{\frac{f(x)\phi(x)-1}{2}} + e^{-1}$$

(D)
$$\sqrt{2} \tan^{-1} \sqrt{\frac{f(x)\phi(x)+1}{2}} + c$$

Where c is the constant of integration. (যেখানে c সমাকলন ধ্রবক)

29. The value of
$$\sum_{n=1}^{10} \int_{-2n-1}^{-2n} \sin^{27} x \, dx + \sum_{n=1}^{10} \int_{-2n}^{-2n+1} \sin^{27} x \, dx$$
 is equal to

$$(A) = 27$$

(B)
$$-5e^{-3}$$

$$(C) = -54$$

$$(D) = 0$$

$$\sum_{n=1}^{10}\int\limits_{-2n+1}^{-2n}\sin^{27}x\,\mathrm{d}x+\sum_{n=1}^{10}\int\limits_{2n}^{-2n+1}\sin^{27}x\,\mathrm{d}x$$
 এর মান হবে

$$(\Lambda)$$
 27

(B)
$$54$$

$$(C) = -54$$

$$(D) = 0$$

30.
$$\int_{0}^{2} \left[x^{2} \right] dx$$
 is equal to

(B)
$$5 - \sqrt{2} - \sqrt{3}$$
 (C) $3 - \sqrt{2}$

$$\int_{0}^{2} \left[x^{2} \right] dx$$
 এর মান হল

(B)
$$5 - \sqrt{2} - \sqrt{3}$$
 (C) $3 - \sqrt{2}$

(C)
$$3 - \sqrt{2}$$

If the tangent to the curve $y^2 = x^3$ at (m^2, m^3) is also a normal to the curve at (M^2, M^3) , then the value of mM is

(A)
$$-\frac{1}{9}$$

(B)
$$-\frac{2}{9}$$
 (C) $-\frac{1}{3}$

(C)
$$-\frac{1}{3}$$

(D)
$$-\frac{4}{9}$$

বক্রবেখা $y^2=x^3$ -এর $(m^2,\ m^3)$ বিন্দুতে অঙ্কিত স্পর্শকটি ঐ বক্রবেখার $(M^2,\ M^3)$ বিন্দুতে অভিলম্ব। সেক্ষেত্রে mM এর মান হল

(A)
$$-\frac{1}{9}$$
 (B) $-\frac{2}{9}$ (C) $-\frac{1}{3}$

(B)
$$-\frac{2}{9}$$

(C)
$$-\frac{1}{3}$$

$$(D) -\frac{4}{9}$$

32. If
$$x^2 + y^2 = a^2$$
, then $\int_{0}^{a} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx =$

- (A) $2\pi a$
- (B) πa
- (C) $\frac{1}{2}\pi a$

যদি
$$x^2 + y^2 = a^2$$
 হয়, সেক্ষেত্রে
$$\int\limits_0^a \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x =$$

- (A) $2\pi a$
- (B)
- (C) $\frac{1}{2}\pi a$
- (D) $\frac{1}{4}\pi a$
- Let f, be a continuous function in [0, 1], then $\lim_{n\to\infty}\sum_{j=0}^n -\frac{1}{n}f\left(\frac{j}{n}\right)$ is 33,

- (A) $\frac{1}{2} \int_{0}^{2} f(x) dx$ (B) $\int_{1}^{1} f(x) dx$ (C) $\int_{0}^{1} f(x) dx$ (D) $\int_{0}^{\frac{\pi}{2}} f(x) dx$

যদি f,
$$[0,1]$$
 -এ সম্ভত অপেক্ষক হয়, তবে $\lim_{n\to\infty}\sum_{j=0}^n -\frac{1}{n}f\bigg(\frac{j}{n}\bigg)$ হবে

(A)
$$\frac{1}{2} \int_{0}^{\frac{1}{2}} f(x) dx$$
 (B) $\int_{1}^{\frac{1}{2}} f(x) dx$ (C) $\int_{0}^{\frac{1}{2}} f(x) dx$ (D) $\int_{0}^{\frac{1}{2}} f(x) dx$

- Let f be a differentiable function with $\lim_{x \to 0} f(x) = 0$. If y' + yf'(x) f(x)f'(x) = 0, 34.

 $\lim_{x \to \infty} y(x) = 0, \text{ then (where } y' = \frac{dy}{dx})$

(A) $y + 1 = e^{f(x)} + f(x)$

(C) $y + 1 = e^{-f(x)} + f(x)$

মনে কর f অবকল অপেক্ষক এবং $\lim_{x \to a} f(x) = 0 + \sqrt{2} \operatorname{unif}(x) + \sqrt{2} \operatorname{unif}(x) - f(x) + \sqrt{2} \operatorname{unif}(x) = 0$,

 $\lim_{x\to\infty} y(x) = 0$ হয়, তবে (যেখানে $y' \equiv \frac{\mathrm{d}y}{\mathrm{d}x}$)

(A) $y + 1 = e^{f(x)} + f(x)$

(B) $y-1 = e^{f(x)} + f(x)$

(C) $y + 1 = e^{-f(x)} + f(x)$

- 35. If $x \sin\left(\frac{y}{y}\right) dy = \left[y \sin\left(\frac{y}{x}\right) x\right] dx$, $x \ge 0$ and $y(1) = \frac{\pi}{2}$ then the value of $\cos\left(\frac{y}{x}\right)$ is
 - (A) = 1
- (B) $\log x$
 - (C) e
- যদি $x \sin\left(\frac{y}{x}\right) dy = \left[y \sin\left(\frac{y}{x}\right) x\right] dx, x \ge 0$ এবং $y(1) + \frac{\pi}{2}$ হয়, তবে $\cos\left(\frac{y}{x}\right)$ -এর মান হবে
- (A) = 1
- (B) $\log x$
- (C) e
- (D) = 0
- Let $f(x) = 1 \sqrt{(x^2)}$ where the square root is to be taken positive, then
 - (A) If has no extrema at x = 0
 - f has minima at x = 0(B)
 - **(C)** f has maxima at x = 0
 - (D) f' exists at 0

দেওয়া আছে $f(x)=1-\sqrt{(x^2)}$, যেখানে বর্গমূলটি ধনাত্মক হিসাবে নেওয়া হচেছ। সেক্ষেত্রে

- (A) = f(x)-এর x = 0 বিন্দুতে চরম/অবম মান নেই
- (B) x = 0 বিন্দুতে f(x)-এর অবম মান আছে
- (C) x = 0 বিন্দুতে f(x)-এর চরম মান আছে
- (D) 0 বিশ্বতে f'-এর অস্তিত আছে
- If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$ [a > 0] attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a is equal to
 - (A) = 2
- (B) $\frac{1}{2}$ (C) $\frac{1}{4}$
- (D) 3

যদি অপেক্ষক $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ [a > 0], যথাক্রমে p ও q বিন্দুতে সর্বোচ্চ ও সর্বনিমু মান পরিগ্রহ করে এবং $p^2 = q$ হয়, তবে a -র মান হবে

- If a and b are arbitrary positive real numbers, then the least possible value of $\frac{6a}{5b} + \frac{10b}{3a}$ is
 - (A) 4
- (B) $\frac{6}{5}$
- (C) $\frac{10}{3}$
- (D) $\frac{68}{15}$

a এবং b যদৃচ্ছ ধনাত্মক বাস্তব রাশি হলে $\dfrac{6a}{5b}+\dfrac{10b}{3a}$ রাশির সম্ভাব্য ক্ষুদ্রতম মান হল

- (A) 4
- (B) $\frac{6}{5}$ (C) $\frac{10}{3}$
- (D)

- **39.** If $2 \log (x + 1) \log (x^2 1) = \log 2$, then x =
 - (A) only 3
- (B) -1 and 3
- (C) only -1
- (D) 1 and 3

যদি $2 \log (x + 1) - \log (x^2 - 1) - \log 2$, তবে x =

- (A) উধুমাত্র 3
- (B) −1 **3** 3
- (C) শুধুমাত্র -1
- (D) 133
- The number of complex numbers p such that |p| 1 and imaginary part of p^4 is 0, is 40.
 - (A) 4
- (B) 2
- (C) 8
- (D) infinitely many

 $\parallel p \parallel = 1$ এবং p^4 -এর কাল্পনিক অংশ ()-এই শর্তাধীনে সম্ভাব্য জটিল রাশি p -এর সংখ্যা হল

- (A) 4
- (B) 2
- (C) 8
- (D) অসংখ্য
- 41. The equation $z\overline{z} + (2 3i)z + (2 + 3i)\overline{z} + 4 = 0$ represents a circle of radius
 - (A) 2 unit
- (B) 3 unit
- (C) 4 unit
- (D) 6 unit

 $z\overline{z}+(2-3i)z+(2+3i)\overline{z}+4=0$ সমীকরণটি যে বৃত্ত সূচিত করে, তার ব্যাসার্ধ হল

- (A) 2 একক
- (B) 3 একক
- (D) 6 একক

ţ

42.	The expression $ax^2 + bx + c$ (a, b and c are real) has the same sign as that of a for all x if									
	$(A) h^2 - 4ac \ge 0$			(B)	$b^2 - 4ac \neq 0$					
	$(C) b^2 - 4ac \le 0$			(D)	b and c have t	he same	sign as that of a			
	$ax^2 + bx + c$ (a, b 3	০ বাস্তব রা	শ) -রাশির চিহ্ন	সকল x-এ	ল x-এর জন্য a-র সঙ্গে একই হবে যদি					
	(A) $b^2 - 4ac > 0$			(B)	$b^2 - 4ac \neq 0$					
	$(C) b^2 - 4ac \le 0$			(D)	ь এবং с-র চিহ	a-র সঙ্গে	একই হয়			
43.	In a 12 storied builift at different flo second floor?	ors. In ho	w many ways	lift cabin can they (C)	do so if the li	ift does i	will leave the not stop at the			
	(A) 36	(B)		,		·				
	একটি বারোতলা ভবনে তিন ব্যাক্তি লিফটের কেবিনে প্রবেশ করেন। তাঁরা বিভিন্ন তলে নামবেন। যদি লিফট্ দ্বিতীয় তলে না থামে তবে যত ভাবে তাঁরা লিফ্ট্ ত্যাগ করতে পারেন, তার সংখ্যা									
	(A) 36	(B)	120	(C)	240	(D)	720			
44.	If the total number number of m elements		s containing a ₄	, then n i						
	$oldsymbol{\Lambda}=\{a_1,a_2,a_n\}$ সেটের $oldsymbol{\mathrm{m}}$ -সদস্য বিশিষ্ট উপসেটের সংখ্যা যদি $oldsymbol{\mathrm{m}}$ -সদস্য বিশিষ্ট উপসেট, যার একটি									
	সদস্য a4 , -এর সংখ	য়ার k গুণ হ								
	(Λ) $(m-1)k$	(B)	mk	(C)	(m + 1)k	(D)	(m + 2)k			
45.	Let $I(n) = n^n$, $J(n) = 1.3.5$ $(2n-1)$ for all $(n \ge 1)$, $n \in \mathbb{N}$, then									
	$(A) I(n) \geq J(n)$	(B)	$I(n) \leq J(n)$	(C)	I(n) = J(n)	(D)	$I(n) = \frac{1}{2}J(n)$			
	মনে কর সকল n ∈ Ì									
	$(A) I(n) \ge J(n)$	(B)	$I(n) \le J(n)$	(C)	I(n) = J(n)	(D)	$I(n) = \frac{1}{2}J(n)$			

- 46. If c_0 , c_1 , c_2 , c_{15} are the Binomial co-efficients in the expansion of $(1+x)^{15}$, then the value of $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + 15\frac{c_{15}}{c_{14}}$ is
 - (A) 1240

- (B) 120 (C) 124 (D) 140

 $(1+x)^{15}$ -এর বিস্তৃতিতে $\mathbf{c}_0,\ \mathbf{c}_1,\ \mathbf{c}_2,\\ \mathbf{c}_{15}$ দ্বিঘাত সহগ হলে $\frac{\mathbf{c}_1}{\mathbf{c}_0}+2\frac{\mathbf{c}_2}{\mathbf{c}_{1}}+3\frac{\mathbf{c}_3}{\mathbf{c}_2}+......+15\frac{\mathbf{c}_{15}}{\mathbf{c}_{14}}$

- -এর মান হবে
- (A) 1240
- (B) = 120
- (C) 124
- (D) 140

- 47. Let $A = \begin{bmatrix} 3-t & 1 & 0 \\ -1 & 3-t & 1 \\ 0 & -1 & 0 \end{bmatrix}$ and det A = 5, then
 - (A) t = 1

মনে কর $A = \begin{pmatrix} 3-t & 1 & 0 \\ -1 & 3-t & 1 \\ 0 & -1 & 0 \end{pmatrix}$ এবং $\det A = 5$, সেক্ষেত্রে

- (A) t=1 (B) t=2 (C) t=-1 (D) t=-2
- 48. Let $A = \begin{bmatrix} 12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3 \end{bmatrix}$. The value of x for which the matrix A is not invertible is
 - (A) 6

মনে কর $A = \begin{pmatrix} 12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3 \end{pmatrix}$ । A-এর বিপরীত ম্যাট্রিক্সের অস্তিত্ব না-থাকলে x-এর মান হবে

- (A) 6
- (B) 12 (C) 3
- (D) 2

- 49. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 real matrix with det A = 1. If the equation det $(A \lambda I_2) = 0$ has imaginary roots (I_2 be the Identity matrix of order 2), then
 - (A) $(a+d)^2 < 4$

(B) $(a + d)^2 = 4$

(C) $(a+d)^2 > 4$

- (D) $(a+d)^2 = 16$
- মনে কর $\mathbf{A}=egin{pmatrix} a & b \\ c & d \end{pmatrix}$ একটি 2×2 বাস্তব উপাদান বিশিষ্ট ম্যাট্রিক্স ও $\det \mathbf{A}=1$ ।
- $\det\left(\mathbf{A}-\lambda\mathbf{I}_{2}\right)=0$ সমীকরণের বীজ্বয় কাল্পনিক হলে (\mathbf{I}_{2} দ্বিতীয়ক্রন্মের একসম ম্যাট্রিক্স),
- (A) $(a+d)^2 < 4$

(B) $(a+d)^2 = 4$

(C) $(a+d)^2 > 4$

- (D) $(a+d)^2 = 16$
- 50. If $\begin{vmatrix} a^2 & bc & c^2 + ac \\ a^2 + ab & b^2 & ca \\ ab & b^2 + bc & c^2 \end{vmatrix} = ka^2b^2c^2$, then k = ab
 - (A) 2

(B) -2

(C) -4

(D) 4

$$\begin{vmatrix} a^2 & bc & c^2 + ac \\ a^2 + ab & b^2 & ca \\ ab & b^2 + bc & c^2 \end{vmatrix} = ka^2b^2c^2 \ \ \text{Reg} \ k =$$

(A) 2

(B) -2

(C) -4

(D) 4

Category-II (Q: 51 to 65)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.

একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।

- **51.** Let $f(x) = \sqrt{x^2 + 3x + 2}$ and $g(x) = \sqrt{x}$ be two given functions. If S be the domain of $f \circ g$ and T be the domain of $g \circ f$, then
 - (A) S = T

(B) $S \cap T = \varphi$

(C) $S \cap T$ is a singleton.

(D) $S \cap T$ is an interval.

মনে কর $f(x)=\sqrt{x^2-3x+2}$ ও $g(x)=\sqrt{x}$ দৃটি প্রদত্ত অপেক্ষক। যদি $f\circ g$ এর সংজ্ঞার অঞ্চল $g\circ f$ এর সংজ্ঞার অঞ্চল T হয়, তবে

 $(A) \quad S = T$

- (B) $S \cap T = \varphi$
- (C) $S \cap T$ শুধু একটি সদস্য বিশিষ্ট সেট
- (D) S ∩ T একটি অন্তরাল
- 52. Let ρ_1 and ρ_2 be two equivalence relations defined on a non-void set S. Then
 - (A) both $\rho_1 \cap \rho_2$ and $\rho_1 \cup \rho_2$ are equivalence relations.
 - (B) $\rho_1 \cap \rho_2$ is equivalence relation but $\rho_1 \cup \rho_2$ is not so.
 - (C) $\rho_1 \cup \rho_2$ is equivalence relation but $\rho_1 \cap \rho_2$ is not so.
 - (D) neither $\rho_1 \cap \rho_2$ nor $\rho_1 \cup \rho_2$ is equivalence relation.

মনে কর অ-শূণ্য সেট S-এ দুটি সমতৃল্যতা সম্বন্ধ ho_1 ও ho_2 সংজ্ঞায়িত আছে। সেক্ষেত্রে

- $(A) \rho_1 \cap \, \rho_2$ ও $\rho_1 \cup \, \rho_2$ উভয়ই সমতুল্যতা সম্বন্ধ
- (B) $ho_1 \cap
 ho_2$ সমতুল্যতা সম্বন্ধ কিন্তু $ho_1 \cup
 ho_2$ নয়
- (C) $ho_1 \cup
 ho_2$ সমতুলাতা সম্বন্ধ কিন্তু $ho_1 \cap
 ho_2$ নয়
- $(D) \rho_1 \cap \rho_2$ ও $\rho_1 \cup \rho_2$ -এর কোনটিই সমতুল্যতা সম্বন্ধ নয়

Consider the curve $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$. The portion of the tangent at any point of the curve intercepted between the point of contact and the directrix subtends at the corresponding focus an angle of

(A)

(B) $\frac{\pi}{3}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$

 $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$ বক্রবেখাটি বিবেচনা কর । ঐ বক্রবেখার উপরিস্থ যেকোনো বিন্দৃতে অঙ্কিত স্পর্শকের স্পূর্শবিন্দু ও নিয়ামকের মধ্যবত্তী ছেদিতাংশ সংশ্লিষ্ট নাভিতে যে কোণ উৎপন্ন করে সেটি হল

(B) $\frac{\pi}{3}$ (C) $\frac{\pi}{2}$

54. A line cuts the x-axis at A (7, 0) and the y-axis at B (0, -5). A variable line PQ is drawn perpendicular to AB cutting the x -axis at P (a, 0) and the y-axis at Q (0, b). If AQ and BP intersect at R, the locus of R is

(A) $x^2 + y^2 + 7x + 5y = 0$

(B) $x^2 + y^2 + 7x - 5y - 0$

(C) $x^2 + y^2 - 7x + 5y = 0$

(D) $x^2 + y^2 - 7x - 5y = 0$

একটি সরলরেখা x-অক্ষকে A (7,0) বিন্দুতে ও y-অক্ষকে B (0,-5) বিন্দুতে ছেদ করে। AB-এর উপর লম্ব সঞ্চরণশীল সরলরেখা PQ, x-অক্ষকে P (a, 0) বিন্দুতে ও y-অক্ষকে Q (0, b) বিন্দুতে ছেদ করে। যদি AQ ও BP পরস্পরকে R বিন্দুতে ছেদ করে, তবে R-এর সঞ্চারপথ হবে

(A) $x^2 + y^2 + 7x + 5y = 0$

(B) $x^2 + y^2 + 7x - 5y = 0$

(C) $x^2 + y^2 - 7x + 5y = 0$

(D) $x^2 + y^2 - 7x - 5y = 0$

Let $0 \le \alpha \le \beta \le 1$. Then $\lim_{n \to \infty} \sum_{k=1}^{n} \int_{1/(k+\alpha)}^{1/(k+\alpha)} \frac{dx}{1+x}$ is

(A) $\log_e \frac{\beta}{\alpha}$ (B) $\log_e \frac{1+\beta}{1+\alpha}$ (C) $\log_e \frac{1+\alpha}{1+\beta}$

(D) ∞

মনে কর $0<\alpha<\beta<1$, সেক্ষেত্রে $\lim_{n\to\infty}\sum_{k=1}^n\int\limits_{-\infty}^{1/(k+\alpha)}\frac{\mathrm{d}x}{1+x}$

(A) $\log_e \frac{\beta}{\alpha}$ (B) $\log_e \frac{1+\beta}{1+\alpha}$ (C) $\log_e \frac{1+\alpha}{1+\beta}$

56.
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{(x-1)} \right)$$

- (A) Does not exist. (B) 1
- (C) $\frac{1}{2}$
- (D) = 0

$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{(x-1)} \right) - \mathfrak{A}$$

- (A) অন্তিত্ব নেই (B) 1
- (C) $\frac{1}{2}$ (D) 0

57. Let
$$y = \frac{1}{1 + x + \ln x}$$
, Then

(A)
$$x \frac{dy}{dx} + y = x$$

(B)
$$x \frac{dy}{dx} = y(y \ln x - 1)$$

(C)
$$x^2 \frac{dy}{dx} = y^2 + 1 - x^2$$

(D)
$$x \left(\frac{dy}{dx}\right)^2 = y - x$$

মনে কর
$$y = \frac{1}{1+x+\ln x} +$$
েসক্ষেত্রে

(A)
$$x \frac{dy}{dx} + y = x$$

(B)
$$x \frac{dy}{dx} = y(y \ln x - 1)$$

(C)
$$x^2 \frac{dy}{dx} = y^2 + 1 - x^2$$

(D)
$$x \left(\frac{dy}{dx}\right)^2 = y - x$$

Consider the curve $y = be^{-x/a}$ where a and b are non-zero real numbers. Then

- (A) $\frac{x}{a} + \frac{y}{b} = 1$ is tangent to the curve at (0, 0).
- (B) $= \frac{x}{a} + \frac{y}{b} = 1$ is tangent to the curve where the curve crosses the axis of y.
- (C) $= \frac{x}{a} + \frac{y}{b} = 1$ is tangent to the curve at (a. 0).
- (D) $= \frac{x}{a} + \frac{y}{b} = 1$ is tangent to the curve at (2a, 0).

বক্রবেখা $y=be^{-x/a}$ বিবেচনা কর, যেখানে a ও b অ-শূণ্য বাস্তব সংখ্যা। সেক্ষেত্রে

- $(A) = \frac{x}{a} + \frac{y}{b} = 1$, মূলবিন্দুতে বক্রবেখার স্পর্শক
- (B) $\frac{x}{a} + \frac{y}{b} = 1$, বক্রবেখা যে বিন্দুতে y-অক্ষকে ছেদ করে সেই বিন্দুতে স্পর্শক
- $(C) = \frac{x}{a} + \frac{y}{b} = 1$, (a, 0) বিন্দুতে বক্রবেখার স্পর্শক
- (D) $-\frac{x}{a} + \frac{y}{b} = 1$, (2a, 0) বিন্দুতে বক্রবেখার স্পর্শক

The area of the region $\{(x, y) : x^2 + y^2 \le 1 \le x + y\}$ is

- (A) $\frac{\pi^2}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{4} \frac{1}{2}$ (D) $\frac{\pi^2}{3}$

 $\{(x,y): x^2+y^2 \le 1 \le x+y\}$ অঞ্চলের ক্ষেত্রফল হবে

- (A) $\frac{\pi^2}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{4} \frac{1}{2}$ (D) $\frac{\pi^2}{3}$

60. In open interval $\left(0, \frac{\pi}{2}\right)$.

- (A) $\cos x + x \sin x \le 1$
- (B) $\cos x + x \sin x > 1$
- (C) no specific order relation can be ascertained between $\cos x + x \sin x$ and 1
- (D) $\cos x + x \sin x < \frac{1}{2}$

 $\left(0, \frac{\pi}{2}\right)$ মুক্ত অন্তরালে,

- (A) $\cos x + x \sin x \le 1$
- (B) $\cos x + x \sin x \ge 1$
- $(C) = \cos x + x \sin x$ ও 1-এর মধ্যে কোন সুনির্দিষ্ট ক্রম সম্বন্ধ নেই
- (D) $\cos x + x \sin x < \frac{1}{2}$

If the line y - x is a tangent to the parabola $y - ax^2 + bx + c$ at the point (1, 1) and the 61. curve passes through (-1, 0), then

(A) a = b = 1, c = 3

(B) $a = b = \frac{1}{2}, c = 0$

 $(C) - a + c = \frac{1}{4}, b = \frac{1}{2}$ সরলরেখা y = x অধিবৃত্ত $y = ax^2 + bx + c$ -কে (1, 1) বিন্দৃতে স্পর্শ করে এবং বক্রন্থোটি (-1, 0)বিন্দুগামী। সেক্ষেত্রে

(A) a = b = -1, c = 3

(B) $a = b = \frac{1}{2}, c = 0$

(C) $a = c - \frac{1}{4}, b = \frac{1}{2}$

(D) $a = 0, b + c = \frac{1}{2}$

If the vectors $\vec{\alpha} = \hat{i} + a\hat{j} + a^2\hat{k}$, $\vec{\beta} = \hat{i} + b\hat{j} + b^2\hat{k}$ and $\vec{\gamma} = \hat{i} + c\hat{j} + c^2\hat{k}$ are three 62.

non-coplanar vectors and $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ e & e^2 & 1+e^3 \end{vmatrix} = 0$, then the value of abc is (A) = (A) - (B) - (A) - (A)

এবং $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ হয়, তবে abc-এর মান হবে

- (B) 0 (C) -1 (D) 2

Let z_1 and z_2 be two imaginary roots of $z^2 + pz + q = 0$, where p and q are real. The points z_1 , z_2 and origin form an equilateral triangle if

- $(A) \quad p^2 \ge 3q$
- (B) $p^2 < 3q$ (C) $p^2 = 3q$ (D) $p^2 = q$

 $m z^2+pz+q=0$ সমীকরণের দৃটি কাল্পনিক বীজ হল $m z_1$ ও $m z_2,\ p$ ও m q বাস্তব। সেক্ষেত্রে বিন্দুত্রয় $m z_1,$ z_2 ও মূলবিন্দু একটি সমবাহু ত্রিভুজ গঠন করবে যদি

- (A) $p^2 > 3q$ (B) $p^2 < 3q$ (C) $p^2 = 3q$ (D) $p^2 = q$

If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \ne 0$ [a, b, c, d are all real], 64. then P(x).Q(x) = 0 has

(A) at least two real roots

(B) two real roots

(C) four real roots

(D) no real root

যদি $P(x)=ax^2+bx+c$ এবং $Q(x)=-ax^2+dx+c$, $ac\neq 0$ হয় [a,b,c,d] বাস্তব), সেক্ষেত্রে P(x).Q(x)=0 -এর

- (A) কমপক্ষে দৃটি বাস্তব বীজ থাকবে (B) দৃটি বাস্তব বীজ থাকবে

(C) চারটি বাস্তব বীজ থাকবে

(D) কোন বস্তব বীজ থাকবে না

Let $A = \{x \in \mathbb{R} : -1 \le x \le 1\}$ & f: $A \to A$ be a mapping defined by f(x) = x|x|. Then f is 65.

- (A) injective but not surjective
- (B) surjective but not injective
- (C) neither injective nor surjective (D) bijective

মনে কর $\mathbf{A}=\{x\in\mathbb{R}: -1\leq x\leq 1\}$ ও $\mathbf{f}:\mathbf{A} o\mathbf{A}$ একটি চিত্রণ এভাবে সংজ্ঞায়িত আছে যে f(x) = x|x| । সেকেত্রে f

- (A) একৈক চিত্রণ কিন্তু উপরিচিত্রণ নয়
- (B) উপরিচিত্রণ কিন্তু একৈক চিত্রণ নয়
- (C) একৈক চিত্রণও নয় উপরিচিত্রণও নয়
- (D) একৈক চিত্রণ ও উপরিচিত্রণ

Category-III (Q: 66 to 75)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero marks will be awarded.

এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোনো ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধ্বে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শৃণ্য নম্বর পাবে।

66. A and B are independent events. The probability that both A and B occur is $\frac{1}{20}$ and the probability that neither of them occurs is $\frac{3}{5}$. The probability of occurrence of A is

 $(A) \quad \frac{1}{2}$

(B) $\frac{1}{10}$

 $(C) = \frac{1}{4}$

(D) $\frac{1}{5}$

A ও B দুটি ঘটনা পরস্পর নির্ভরশীল নয় +A ও B উভয়ের একসঙ্গে ঘটার সম্ভাবনা $\frac{1}{20}$ এবং কোনওটি না ঘটার সম্ভাবনা $\frac{3}{5}+A$ ঘটার সম্ভাবনা হবে

 $(A) = \frac{1}{2}$

(B) $\frac{1}{10}$

(C) $\frac{1}{4}$

Ā

(D) $\frac{1}{5}$

67. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is

$$(A) \quad \frac{x}{2} - \frac{y}{3} = 1$$

(B)
$$\frac{x}{-2} + \frac{y}{1} = 1$$

(C)
$$-\frac{x}{3} + \frac{y}{2} = 1$$

(D)
$$\frac{x}{1} - \frac{y}{2} = 1$$

(4, 3) বিন্দুগামী একটি সরলরেখার স্থানান্ধ অক্ষদ্বয়ের ছেদিতাংশের সমষ্টি হল —। সরলরেখাটির সমীকরণ হবে

$$(\Lambda) \quad \frac{x}{2} - \frac{y}{3} = 1$$

(B)
$$\frac{x}{-2} + \frac{y}{1} = 1$$

(C)
$$-\frac{x}{3} + \frac{y}{2} = 1$$

(D)
$$\frac{x}{1} - \frac{y}{2} = 1$$

68. Consider a tangent to the ellipse $\frac{x^2}{2} + \frac{y^2}{1} = 1$ at any point. The locus of the midpoint of the portion intercepted between the axes is

(A)
$$\frac{x^2}{2} + \frac{y^2}{4} = 1$$

(B)
$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$

(C)
$$\frac{1}{3x^2} + \frac{1}{4y^2} = 1$$

(D)
$$\frac{1}{2x^2} + \frac{1}{4y^2} = 1$$

উপবৃত্ত $\frac{x^2}{2} + \frac{y^2}{1} = 1$ -এর উপরিষ্ণ যেকোন বিন্দৃতে স্পর্শক বিবেচনা কর । অক্ষণ্ধয়ের মধ্যে ঐ স্পর্শকের

ছেদিতাংশের মধ্যবিন্দুর সঞ্চারপথ হবে

(A)
$$\frac{x^2}{2} + \frac{y^2}{4} = 1$$

(B)
$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$

(C)
$$\frac{1}{3x^2} + \frac{1}{4y^2} = 1$$

(D)
$$\frac{1}{2x^2} + \frac{1}{4y^2} = 1$$

69. Let
$$y = \frac{x^2}{(x+1)^2(x+2)}$$
. Then $\frac{d^2y}{dx^2}$ is

(A)
$$2\left[\frac{3}{(x+1)^4} - \frac{3}{(x+1)^3} + \frac{4}{(x+2)^3}\right]$$

(A)
$$2\left[\frac{3}{(x+1)^4} - \frac{3}{(x+1)^3} + \frac{4}{(x+2)^3}\right]$$
 (B) $3\left[\frac{2}{(x+1)^3} + \frac{4}{(x+1)^2} - \frac{5}{(x+2)^3}\right]$

(C)
$$\frac{6}{(x+1)^3} - \frac{4}{(x+1)^2} + \frac{3}{(x+1)^3}$$
 (D) $\frac{7}{(x+1)^3} - \frac{3}{(x+1)^2} + \frac{2}{(x+1)^3}$

(D)
$$\frac{7}{(x+1)^3} - \frac{3}{(x+1)^2} + \frac{2}{(x+1)^3}$$

মনে কর
$$y = \frac{x^2}{(x+1)^2(x+2)}$$
 । সেক্ষেত্রে $\frac{d^2y}{dx^2}$ হবে

(A)
$$2\left[\frac{3}{(x+1)^4} - \frac{3}{(x+1)^3} + \frac{4}{(x+2)^3}\right]$$

(A)
$$2\left[\frac{3}{(x+1)^4} - \frac{3}{(x+1)^3} + \frac{4}{(x+2)^3}\right]$$
 (B) $3\left[\frac{2}{(x+1)^3} + \frac{4}{(x+1)^2} - \frac{5}{(x+2)^3}\right]$

(C)
$$\frac{6}{(x+1)^3} - \frac{4}{(x+1)^2} + \frac{3}{(x+1)^3}$$

(C)
$$\frac{6}{(x+1)^3} - \frac{4}{(x+1)^2} + \frac{3}{(x+1)^3}$$
 (D) $\frac{7}{(x+1)^3} - \frac{3}{(x+1)^2} + \frac{2}{(x+1)^3}$

70. Let $f(x) = \frac{1}{3}x \sin x - (1 - \cos x)$. The smallest positive integer k such that $\lim_{x \to 0} \frac{f(x)}{x^k} \neq 0$ is

- (A) 4
- (B) 3
- (C) 2
- (D) 1

দেওয়া আছে যে $f(x) = \frac{1}{3}x \sin x - (1 - \cos x) + \lim_{x \to 0} \frac{f(x)}{x^k} \neq 0$ হলে k-এর সম্ভাব্য ক্ষুদ্রতম ধনাত্মক

মান হবে

- $(\Lambda) = 4$

- (C) 2 (D) 1

71. Tangent is drawn at any point P (x, y) on a curve, which passes through (1, 1). The tangent cuts X-axis and Y-axis at A and B respectively. If AP : BP = 3 : 1, then

- (A) the differential equation of the curve is $3x \frac{dy}{dx} + y = 0$
- (B) the differential equation of the curve is $3x \frac{dy}{dx} y = 0$
- (C) the curve passes through $\left(\frac{1}{8}, 2\right)$
- (D) the normal at (1, 1) is x + 3y = 4

(1,1) বিন্দুগামী একটি বক্রারেখার উপরিষ্থ P(x,y) বিন্দৃতে স্পর্শক আঁকা হল। ঐ স্পর্শক দুই অক্ষকে যথাক্রমে Λ ও B বিন্দৃতে ছেদ করে। যদি AP:BP=3:1 হয়, তবে

- (Λ) ঐ বক্রবেখার অবকল সমীকরণ হবে $3x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$
- (B) ঐ বক্রবেখার অবকল সমীকরণ হবে $3x \; \frac{dy}{dx} = y = 0$
- (C) বক্রবেখাটি $\left(\frac{1}{8}, 2\right)$ বিন্দুগামী
- (D) (1, 1) বিন্দুতে অভিলম্বর সমীকরণ x + 3y 4

72. The area of the figure bounded by the parabola $x^{-1}-2y^2$, $x=1-3y^2$ is

(A) $\frac{1}{3}$ square unit

(B) $\frac{4}{3}$ square unit

(C) 1 square unit

(D) 2 square unit

 $x=-2\mathbf{y}^2$ এবং $x=1-3\mathbf{y}^2$ অধিবৃত্তদ্বয়ের দারা বেষ্টিত অঞ্চলের ক্ষেত্রফল হবে

(A) $\frac{1}{3}$ বৰ্গ একক

(B) $\frac{4}{3}$ বৰ্গ একক

(C) া বৰ্গ একক

(D) 2 বর্গ একক

73.	A p	article is projected	vertically upwar	ds. If it h	nas to stay abov	e the g	round for 12				
	seconds, then										
(A) velocity of projection is 192 ft / sec											
	(B) greatest height attained is 600 ft										
	(C) velocity of projection is 196 ft / sec										
	(D) greatest height attained is 576 ft										
	একটি ব্স্তুকণা উল্লম্ব অভিমুখে প্রক্ষিপ্ত হল। কণাটি ভূমির উপরে 12 সেকেন্ড অতিবাহিত করলে										
	(A) প্রক্ষেপের গতিবেগ হবে 192 ft / sec										
	(B)	সৰ্বোচ্চ অৰ্জিত উচ্চৎ	গ হবে 600 ft								
	(C)	প্রক্ষেপের গতিবেগ হ	বে 196 ft / sec								
	(D)	সৰ্বোচ্চ অৰ্জিত উচ্চৎ	গ হবে 576 ft								
74.	74. The equation $x^{(\log_3 x)^2 - \frac{9}{2}\log_3 x + 5} = 3\sqrt{3}$ has										
	(A)	at least one real ro	oot	(B)	exactly one real	root					
	(C)	exactly one irratio	nal root	(D)	complex roots						
$x^{(\log_3 x)^2 - \frac{9}{2}\log_3 x + 5} = 3\sqrt{3}$ সমীকরণের											
	(A) কমপক্ষে একটি বাস্তব বীজ থাকবে				ঠিক একটি বাস্তব বীজ থাকবে						
	(C)	ঠিক একটি অমূলদ ব	ীজ থাকবে	(D)	বীজগুলি কাম্পনিক	ক হবে					
75. In a certain test, there are n questions. In this test 2 ⁿ⁻ⁱ students gave wrong answ at least i questions, where i = 1, 2, n. If the total number of wrong answers give 2047, then n is equal to							g answers to wers given is				
	(A)		(B) 11	(C)		` '	13				
	একটি পরীক্ষায় n সংখ্যক প্রশ্ন প্রদত্ত। ঐ পরীক্ষায় 2^{n-i} সংখ্যক পড়ুয়া কমপক্ষে i সংখ্যক প্রশ্নে $(i=1,2,2,1)$										
	n) ভ্রাপ্ত উত্তর দেয়। যদি ভ্রান্ত উত্তর সমূহের সংখ্যা 2047 হয়, ত্বে n হবে										
	(A)	10	(B) 11	(C)	12	(D)	13				
				30			gargery groups a company of the second decision in the second second second second second second second second				
A		•		30							

SPACE FOR ROUGH WORK

Ā

Subject: MATHEMATICS

সময়: ২ ঘন্টা

সর্বাধিক নম্বর: ১০০

নিৰ্দেশাবলী

- এই প্রশ্নপত্রে তিনটি ক্যাটেগরির অবজেয়িভ প্রশ্ন আছে এবং প্রতিটি প্রশ্নের চারটি সন্তাব্য উত্তর দেওয়া আছে।
- ২. Category-L : একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।
- ৩. Category-II : একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।
- 8. Category-III: এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিছু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।
- ৫. OMR পত্রে Λ , B, C, D চিহিন্ত সঠিক ঘরটি ভরাট করে উত্তর দিতে হবে \pm
- ৬. OMR পত্রে উত্তর দিতে ওধুমাত্র কালো বা নীল বল প্য়েন্ট পেন ব্যবহার কর্বে :
- OMR পত্রে নির্দিষ্ট স্থান ছাড়া অন্য কোথাও কোন দাগ দেবে না।
- ৮. OMR পত্রে নির্দিষ্ট হানে প্রশ্নপত্রের নম্বর এবং নিজের রোল নম্বর অতি সাবধানতার সাথে লিখতে হবে এবং প্রয়োজনীয় ঘরগুলি পূরণ করতে হবে।
- তMR পত্রে নির্দিষ্ট স্থানে নিজের নাম ও পরীক্ষা কেন্দ্রের নাম লিখতে হবে এবং নিজের সম্পূর্ণ স্বাক্ষর দিতে
 হবে।
- ১০. প্রশ্নপত্রের নম্বর বা রোল নম্বর ভুল লিখলে অথবা ভুল ঘর ভরাট করলে, পরীক্ষার্থীর নাম, পরীক্ষা কেন্দ্রের নাম বা স্বাক্ষরে কোন ভুল থাকলে উত্তর পত্র বাতিল হয়ে যেতে পারে। OMR পত্রটি ভাঁজ হলে বা তাতে অনাবশ্যক দাগ পড়লেও বাতিল হয়ে যেতে পারে। পরীক্ষার্থীর এই ধরনের ভুল বা অসর্তকতার জন্য উত্তরপত্র বাতিল হলে একমাত্র পরীক্ষার্থী নিজেই তার জন্য দায়ী থাকবে।
- ১১. মোবাইল্ফোন, ক্যালকুলেটর, খ্লাইডরুল, লগটেবল, হাতঘড়ি, রেখাচিত্র, গ্রাফ বা কোন ধরণের তালিকা পরীক্ষা কক্ষে আনা যাবে না। আনলে সেটি বাজেয়াপ্ত হবে এবং পরীক্ষার্থীর ওই পরীক্ষা বাতিল করা হবে।
- ১২. প্রশ্নপত্রের শেষে রাফ কাজ করার জন্য ফাঁকা জায়গা দেওয়া আছে। অন্য কোন কাগজ এই কাজে ব্যবহার করবে না।
- ১৩. পরীক্ষা কক্ষ ছাড়ার আগে OMR পত্র অবশ্য ই পরিদর্শককে দিয়ে যাবে।
- ১৪. এই প্রশ্নপত্রে ইংরাজী ও বাংলা উভয় ভাষাতেই প্রশ্ন দেওয়া আছে। বাংলা মাধ্যমে প্রশ্ন তৈরীর সময় প্রয়োজনীয় সাবধানতা ও সতর্কতা অবলম্বন করা হয়েছে। তা সত্ত্বেও যদি কোন অসঙ্গতি লক্ষ্য করা যায়, সেক্ষেত্রে ইংরাজী মাধ্যমে দেওয়া প্রশ্ন ঠিক ও চুড়ান্ত বলে বিবেচিত হবে।

