Introdução aos Processos Estocásticos

Luiz Renato Fontes

Distribuições invariantes

Def. Dadas uma medida λ e uma Q-matriz \mathbf{Q} em \mathcal{S} , dizemos que λ é invariante para \mathbf{Q} se $\lambda \mathbf{Q} = \mathbf{0}$.

Teorema 1

Seja ${\bf Q}$ uma ${\it Q}$ -matriz e ${\bf \Pi}$ a matriz de saltos resp. São equivalentes:

- (i) λ é invariante para **Q**;
- (ii) $\mu \Pi = \mu$, onde $\mu_x \equiv \lambda_x q_x$ (μ é invariante para Π).

Dem. Note que
$$q_x(\pi_{xy} - \delta_{xy}) = q_{xy} \ \forall \ x, y \in \mathcal{S}$$
. Logo, $\forall \ y \in \mathcal{S}$ $(\mu(\mathbf{\Pi} - \mathbf{I}))_y = \sum_{x \in \mathcal{S}} \mu_x(\pi_{xy} - \delta_{xy}) = \sum_{x \in \mathcal{S}} \lambda_x q_{xy} = (\lambda \mathbf{Q})_y$, e concluímos que $\mu \mathbf{\Pi} - \mu = \lambda \mathbf{Q}$.

Distribuições invariantes (cont)

Podemos usar os resultados de tempo discreto para o caso de tempo contínuo.

Teorema 2

Suponha que \mathbf{Q} seja uma Q-matriz irredutível e recorrente. Então \mathbf{Q} tem uma medida invariante, que é única a menos de múltiplos escalares.

Dem. Excluindo o caso trivial em que S é unitário, a irredutibili// obriga a que $q_x > 0 \ \forall \ x$. Pelos resultados acima, Π é irred e recorr. Pelos resultados em tempo discreto, Π tem uma única med inv a menos de mults escs. Pelo Teo 1, podemos tomar $\lambda_x = \mu_x/q_x$. \square

Recorrência positiva

Lembremos que x é dito recorrente se $q_x = 0$ ou $\mathbb{P}_x(\mathcal{T}_x < \infty) = 1$.

Se $q_x = 0$ ou ou $m_x := \mathbb{E}_x(\mathcal{T}_x) < \infty$, então dizemos que x é recorrente positivo.

Se x for recorrente, mas não recorrente positivo, então dizemos que é *recorrente nulo*.

Teorema 3

Seja \mathbf{Q} seja uma Q-matriz irredutível. São equivalentes:

- (i) Todo estado $x \in \mathcal{S}$ é recorrente positivo;
- (ii) Algum estado $x \in \mathcal{S}$ é recorrente positivo;
- (iii) ${f Q}$ é não explosiva e tem uma distribuição invariante λ .

Além disto, qdo (iii) valer, termos $\lambda_{\scriptscriptstyle X} = \frac{1}{q_{\scriptscriptstyle X} m_{\scriptscriptstyle X}}.$

Dem. Teo 3

Excluindo o caso trivial em que S é unitário, a irredutibili// obriga a que $q_x > 0 \ \forall \ x$.

(i \Rightarrow ii) é óbvio.

Seja, para $x \in \mathcal{S}$, $\mu^{x} = (\mu^{x}_{y}, y \in \mathcal{S})$, onde

$$\mu_y^{\mathsf{x}} = \int_0^{\mathcal{T}_{\mathsf{x}} \wedge \zeta} \mathbb{1}\{X_{\mathsf{s}} = y\} \, d\mathsf{s}.$$

Fubini: $\sum_{y \in \mathcal{S}} \mu_y^x = \mathbb{E}_x (\mathcal{T}_x \wedge \zeta)$.

Seja N_x a 1ra passagem de (Y_n) , a cadeia de saltos associada a \mathbf{Q} , por x. Então,

$$\begin{split} \mu_{y}^{x} &= \mathbb{E}_{x} \sum_{n=0}^{\infty} T_{n+1} \mathbb{1} \{ Y_{n} = y, n < N_{x} \} \\ &= \sum_{n=0}^{\infty} \mathbb{E}_{x} (T_{n+1} | Y_{n} = y) \mathbb{P}_{x} (Y_{n} = y, n < N_{x}) \\ &= \frac{1}{q_{x}} \mathbb{E}_{x} \sum_{n=0}^{\infty} \mathbb{1} \{ Y_{n} = y, n < N_{x} \} = \frac{1}{q_{x}} \mathbb{E}_{x} \sum_{n=0}^{N_{x}-1} \mathbb{1} \{ Y_{n} = y \} = \frac{\gamma_{y}^{x}}{q_{x}}, \end{split}$$

usando a notação do caso discreto.

Dem. Teo 3 (cont)

- $(ii \Rightarrow iii)$
- (ii) $\Rightarrow x$ é recorrente, logo (Y_n) é recorrente e \mathbf{Q} é não explosiva pelo Teo 2 do cj de slides sobre PMS (Teo 2.7.1 do livro).

Sabemos do caso discreto (Teo 1 do 3ro cj de slides sobre CM's em tempo discreto; Teo 1.7.5. do livro) que γ^x é inv p/ Π ; logo $\mu^x \mathbf{Q} = 0$ pelo Teo 1 acima.

Como μ^{x} é finita:

$$\textstyle \sum_{y \in \mathcal{S}} \mu_y^{\mathsf{x}} = \mathbb{E}_{\mathsf{x}} (\mathcal{T}_{\mathsf{x}} \wedge \zeta) = \mathbb{E}_{\mathsf{x}} (\mathcal{T}_{\mathsf{x}}) = \mathit{m}_{\mathsf{x}} < \infty,$$
 e temos uma distr inv: $\lambda_y = \mu_y^{\mathsf{x}} / \mathit{m}_y$, $y \in \mathcal{S}$, e temos (iii).

Dem. Teo 3 (cont)

$$(iii \Rightarrow i)$$

Supondo agora a validade de (iii), fixemos $x \in \mathcal{S}$ tq $\lambda_x > 0$ e façamos $\nu_y^x = \frac{\lambda_y q_y}{\lambda_x q_x}$. Então $\nu_x = 1$, e $\nu \Pi = \nu$, pelo Teo 1.

Logo, pelo Teo 2 do 3ro cj de slides sobre CM's em tempo discreto (Teo 1.7.6. do livro): $\nu_{\nu}^{x} \geq \gamma_{\nu}^{x} > 0$, $y \in \mathcal{S}$; segue que $\lambda_{x} > 0$, $x \in \mathcal{S}$, e logo

$$m_x \stackrel{*}{=} \sum_{y \in \mathcal{S}} \mu_y^x = \sum_{y \in \mathcal{S}} \frac{\gamma_y^x}{q_y} \le \sum_{y \in \mathcal{S}} \frac{\nu_y}{q_y} = \sum_{y \in \mathcal{S}} \frac{\lambda_y}{\lambda_x q_x} = \frac{1}{\lambda_x q_x} < \infty$$

e x é rec pos, $x \in \mathcal{S}$, e temos (i).

Voltando ao cálculo anterior, sabendo agora que $\bf Q$ é recorrente, temos que $\bf \Pi$ é recorrente (Teo 3 do cj de slides anterior), e do Teo 2 do 3ro cj de slides sobre CM's em tempo discreto (Teo 1.7.6. do livro), segue que

$$u_y = \gamma_y^x, \ y \in \mathcal{S}, \quad \mathsf{e} \quad \lambda_x = \frac{1}{q_x m_x}.$$

*Aqui usamos a hipótese de não explosividade. 🕡 🗸 🗸 🕞 🔻 💈 🔻 🔾 🗬

Contra exemplo

$$q_x > 0 \ \forall \ x \ge 0, \ \mu = 1 - \lambda \in (0, 1)$$
: irredutibili//.

Cadeia de saltos: PAS; rec pos $\Leftrightarrow \mu > \lambda$.

Eqs de eq detalhado (que dá a distr inv, como veremos adiante):

$$u_{\mathsf{x}} = \frac{1}{q_{\mathsf{x}}} \left(\frac{\lambda}{\mu}\right)^{\mathsf{x}} \ ... \ \mathsf{medida} \ \mathsf{finita} \ \mathsf{em} \ \mathbb{N} \ \mathsf{qdo} \ \mathsf{p.ex.} \ 1 < \frac{\lambda}{\mu} < 2 \ \mathsf{e} \ q_{\mathsf{x}} = 2^{\mathsf{x}}.$$

Note que, neste último caso, a cadeia de saltos, e logo o PMS, são transitórios. A única explicação é que ${\bf Q}$ é explosiva neste caso.

Teorema 4

Suponha que ${\bf Q}$ seja uma ${\it Q}$ -matriz irredutível e recorrente em ${\it S}$, e seja ${\it \lambda}$ uma medida em ${\it S}$. São equivalentes:

- (i) $\lambda \mathbf{Q} = 0$;
- (ii) $\lambda \mathbf{P}(s) = \lambda \ \forall \ s \geq 0$.

Dem. Como \mathbf{Q} é recorrente, então, pelo Teo 2 do cj de slides sobre PMS (Teo 2.7.1 do livro), \mathbf{Q} é não explosiva., e $\mathbf{P}(s)$ é recorrente pelo Teo 3 do cj de slides anterior.

Logo, λ satisfazendo (i) ou (ii) é única a menos de cte mult. Da prova do Teo 3 acima, temos que, fixado x, se fizermos

$$\mu_y = \mathbb{E}_{\mathsf{X}}\Big(\int_0^{\mathcal{T}_{\mathsf{X}}}\mathbb{1}\{X_t = y\}\,dt\Big)$$
, então $\mu\mathbf{Q} = \mathbf{0}$.

Basta então mostrar que $\mu P(s) = \mu$.

Dem. Teo 4 (cont)

Pela PFM (que neste caso segue prontamente da PFM para a cadeia de saltos):

$$\mathbb{E}_{\mathsf{x}} \int_0^{\mathsf{s}} \mathbb{1}\{X_t = y\} \, dt = \mathbb{E}_{\mathsf{x}} \int_{\mathcal{T}_{\mathsf{x}}}^{\mathcal{T}_{\mathsf{x}} + \mathsf{s}} \mathbb{1}\{X_t = y\} \, dt.$$

Logo,

$$\mu_{y} = \mathbb{E}_{x} \int_{0}^{\mathcal{T}_{x}} \mathbb{1}\{X_{t} = y\} dt = \mathbb{E}_{x} \int_{0}^{\mathcal{T}_{x}+s} \cdots - \mathbb{E}_{x} \int_{\mathcal{T}_{x}}^{\mathcal{T}_{x}+s} \cdots$$

$$= \mathbb{E}_{x} \int_{0}^{\mathcal{T}_{x}+s} \cdots - \mathbb{E}_{x} \int_{0}^{s} \cdots = \mathbb{E}_{x} \int_{s}^{\mathcal{T}_{x}+s} \mathbb{1}\{X_{t} = y\} dt$$

$$= \mathbb{E}_{x} \int_{0}^{\mathcal{T}_{x}} \mathbb{1}\{X_{t+s} = y\} dt = \mathbb{E}_{x} \int_{0}^{\infty} \mathbb{1}\{X_{t+s} = y, t < \mathcal{T}_{x}\} dt$$

$$= \int_{0}^{\infty} \mathbb{P}_{x}(X_{t+s} = y, t < \mathcal{T}_{x}) dt \stackrel{PM}{=} \sum_{z \in \mathcal{S}} \int_{0}^{\infty} \mathbb{P}_{x}(X_{t} = z, t < \mathcal{T}_{x}) P_{zy}(s) dt$$

$$=\sum_{s}\left(\mathbb{E}_{\mathsf{x}}\int_{0}^{f_{\mathsf{x}}}\mathbb{1}\left\{X_{t}=\mathsf{z}\right\}dt\right)P_{\mathsf{z}\mathsf{y}}(\mathsf{s})=\sum_{s}\mu_{\mathsf{z}}P_{\mathsf{z}\mathsf{y}}(\mathsf{s}).$$

Teorema 5

Seja \mathbf{Q} uma Q-matriz irredutível e não explosiva admitindo uma distr inv λ . Se (X_t) form um PMS (λ, \mathbf{Q}) , então $(X_{t+s})_{t\geq 0}$ th é um PMS (λ, \mathbf{Q}) para todo $s\geq 0$.

Dem. Pelo Teo 4, para todo $x \in \mathcal{S}$, $\mathbb{P}(X_s = x) = (\lambda \mathbf{P}(s))_x = \lambda_x$. Pela PM, dado $X_s = x$, $(X_{s+t})_{t \geq 0}$ é um PMS (δ_x, \mathbf{Q}) , indep de $(X_r)_{0 \leq r \leq s}$. Logo, dados $0 < t_1 < \cdots < t_n \in x_1, \dots, x_n \in \mathcal{S}$, $\mathbb{P}(X_{t_n+s} = x_n, \dots, X_{t_1+s} = x_1)$ $= \sum_{x \in \mathcal{S}} \mathbb{P}(X_s = x) \mathbb{P}(X_{t_n+s} = x_n, \dots, X_{t_1+s} = x_1 | X_s = x)$ $= \sum_{x \in \mathcal{S}} \lambda_x \mathbb{P}_x (X_{t_n} = x_n, \dots, X_{t_1} = x_1)$

 $= \mathbb{P}(X_{t_n} = x_n, \dots, X_{t_1} = x_1).$

4 D > 4 D > 4 E > 4 E > 9 Q C

Convergência ao equilíbrio

Lema 1

Seja \mathbf{Q} uma Q-matriz e $(\mathbf{P}(t))$ o semigrupo associado (dado pela slç mínima da eq. atrasada). Então para todo $t,h\geq 0$

$$|P_{xy}(t+h)-P_{xy}(t)| \leq 1-e^{-q_x h}.$$

Dem.

$$|P_{xy}(t+h) - P_{xy}(t)|$$

$$= |\sum_{z \in S} P_{xz}(h) P_{zy}(t) - P_{xy}(t)|$$

$$= |\sum_{z \neq x} P_{xz}(h) P_{zy}(t) - (1 - P_{xx}(h)) P_{xy}(t)|$$

$$< 1 - P_{xx}(h) < \mathbb{P}_{x}(T_{1} < h) = 1 - e^{-q_{x}h}$$

Teorema 6 (Convergência ao equilíbrio)

Seja \mathbf{Q} uma Q-matriz irredutível, invariante e não explosiva com semigrupo $(\mathbf{P}(t))$ e distr inv λ . Então para todo $x,y\in\mathcal{S}$

$$P_{xy}(t) \to \lambda_y \text{ qdo } t \to \infty.$$

Dem. Seja $(X_t) \sim \mathsf{PMS}(\delta_x, \mathbf{Q})$. Para h > 0 fixado, seja $(Z_n)_{n \geq 0} = (X_{nh})_{n \geq 0}$.

Pelo Teo 4 do cj de slides sobre as Eqs de Kolmogorov (Teo 2.8.4 do livro), temos que $(Z_n) \sim \text{CM}(\delta_x, \mathbf{P}(h))$.

Pelo Teo 1 do cj de slides anterior (Teo 3.2.1 do livro) e irredutibili// implicam que $P_{xy}(h) > 0 \ \forall \ x, y$.

Logo, P(h) é irredutível e aperiódica; logo, pelo Teo 4, λ é inv para P(h), e pelo teo de conv para CM's em tempo discreto:

$$P_{xy}(nh) \to \lambda_y \text{ qdo } n \to \infty.$$

Dem. Teo 6 (cont)

Dado $\varepsilon > 0$, podemos escolher h > 0 tq

$$1 - e^{-q_x s} \le \varepsilon/2 \,\,\forall \,\, 0 \le s \le h \tag{1}$$

e então escolher N tq

$$|P_{xy}(nh) - \lambda_y| \le \varepsilon/2 \ \forall \ n \ge N.$$
 (2)

Para $t \ge Nh$ e $n \ge N$ tq $nh \le t < (n+1)h$, temos

$$|P_{xy}(t) - \lambda_y| \le |P_{xy}(t) - P_{xy}(nh)| + |P_{xy}(nh) - \lambda_y| \le \varepsilon,$$

pelo Lema 1, (1) e (2).

Teorema 7

Seja **Q** uma Q-matriz irredutível e ν uma distr qquer em S.

Suponha que $(X_t) \sim \mathsf{PMS}(\nu, \mathbf{Q})$. Então

$$\mathbb{P}(X_t = y) o rac{1}{q_y m_y} \; \mathsf{qdo} \; t o \infty \; orall \; x,y \in \mathcal{S}$$
,

onde $m_y = \mathbb{E}_y(\mathcal{T}_y)$.

Dem. Segue do caso discreto, usando o mesmo argumento do Teo 6 (e que \mathbf{Q} rec nula $\Rightarrow \mathbf{P}(s)$ rec nula; caso transitório é simples).

Ш