Lecture hours 16-18

Definitions and Theorems

Definition (Matrix multiplication). Let A be an $m \times p$ and B an $p \times n$. Matrix AB is an $m \times n$ matrix. Recall, to multiply matrices together: multiply left matrix by each column of the right matrix, those are the columns of the resulting matrix.

Definition (Composition of linear transformations). Let $S: \mathbb{R}^m \to \mathbb{R}^p$ and $T: \mathbb{R}^p \to \mathbb{R}^n$ be linear transformations. The composition $T \circ S: \mathbb{R}^m \to \mathbb{R}^n$ (pronounced "T composed with S") is given by

$$T \circ S(\vec{v}) \stackrel{\text{def}}{=} T(S(\vec{v})),$$

for $\vec{v} \in \mathbb{R}^m$.

Definition (Invertible linear transformation).

In terms of linear transformations:

A linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is invertible if for all $\vec{y} \in \mathbb{R}^n$ (outputs of T) there exists an $\vec{x} \in \mathbb{R}^m$ such that $T(\vec{x}) = \vec{y}$, and this \vec{x} is unique.

In terms of matrices:

A matrix A is invertible if for all $\vec{y} \in \mathbb{R}^n$ there is an unique $\vec{x} \in \mathbb{R}^m$ such that $A\vec{x} = \vec{y}$.

Problem 33 (Matrix algebra). Compute the following matrix products:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 \end{bmatrix}.$$

b)

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

Solution 33 (Matrix algebra)

a) This operation is called outer product.

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 & 1 \cdot 5 \\ 2 \cdot 4 & 2 \cdot 5 \\ 3 \cdot 4 & 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 8 & 10 \\ 12 & 15 \end{bmatrix}.$$

b) This operation is called inner product.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 4 \cdot 1 + 2 \cdot 5 + 3 \cdot 6 = 32.$$

Problem 34 (Compositions and inverses). Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be projection from \mathbb{R}^3 onto the xy-plane.

- a) Is *T* invertible? Why or why not?
- b) Find the matrix A with $T(\vec{x}) = A\vec{x}$.
- c) Find a linear transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ with $T \circ S = S \circ T$.
- d) Find a linear transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ with $T \circ S \neq S \circ T$.

Solution 34 (Compositions and inverses)

a) T is not invertible, because $ker(T) \neq \{0\}$.

b)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

- c) The identity transformation.
- d) S= rotation of 90 degrees around the x-axis works. The vector \vec{e}_2 is in the kernel of $T\circ S$, but $S\circ T(\vec{e}_2)=\vec{e}_3$. There are many other possible answers too.

Problem 35 (Compositions). True or false? If true, explain why; if false, give a counterexample.

- a) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation and $\ker(T) = \{\vec{0}\}$, then T is invertible.
- b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation with nullity 1 and $S:\mathbb{R}^2\to\mathbb{R}^2$ is another linear transformation with nullity 1, then $T\circ S$ is the zero transformation.
- c) If T and S are linear transformations with the domain of T equal to the codomain of S, then $\operatorname{rank}(T \circ S) \leq \operatorname{rank}(T)$.
- d) If T and S are linear transformations with the domain of T equal to the codomain of S, then $\operatorname{rank}(T \circ S) \leq \operatorname{rank}(S)$.

Solution 35 (Compositions)

- a) True. If $\ker(T) = \{0\}$, then, by the rank-nullity theorem, the rank of T is 3, so the image of T is \mathbb{R}^3 . Therefore, the equation $T(\vec{x}) = \vec{y}$ has a solution for any $\vec{y} \in \mathbb{R}^3$. This solution is unique because $\ker(T) = \{0\}$.
- b) This is false. For example, both T and S could be projection to the x-axis.
- c) This is true, because any vector that is in the image of $T \circ S$ must be in the image of T.
- d) This is true. Let A be the matrix for T and B be the matrix for S. Let the columns of B be $\vec{b}_1, \ldots, \vec{b}_n$. We have:

$$image(S) = span(\vec{b}_1, \dots, \vec{b}_n), \quad image(T \circ S) = span(A\vec{b}_1, \dots, A\vec{b}_n)$$

Any linear relation among the $\vec{b}_1, \ldots, \vec{b}_n$ gives a linear relation among the $A\vec{b}_1, \ldots, A\vec{b}_n$ (because A represents a linear transformation). Therefore, the dimension of $\mathrm{span}(A\vec{b}_1, \ldots, A\vec{b}_n)$ cannot be larger than the dimension of $\mathrm{span}(\vec{b}_1, \ldots, \vec{b}_n)$.

Problem 36 (Inverse of a problem). Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$.

- a) Find A^{-1} .
- b) Find B^{-1} .
- c) Find all 2×2 matrices X with $AXA^{-1} = B$.

Solution 36 (Inverse of a problem)

- a) $A^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- b) $B^{-1} = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$.
- c) $X = A^{-1}BA = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$.