Lab 03 Cascode Amplifier

Part 1: Sizing Chart

V*=180mv, ID=25uA

Sweep VGS from 0 to $\approx VTH + 0.4V$ with 10mV step. Set VDS = VDD/2. We want to compare V*=2ID/gm and Vov=VGS-VTH by plotting them overlaid. Use the calculator to create expressions for V* and Vov. You can save the expressions to reuse them later.

Plot V* and Vov overlaid vs VGS. Make sure the y-axis of both curves has the same range.

From the above graph it shows that at V*=180mV, Vgs=623.4mV which is our operating point.

Plot ID, gm, and gds vs VGS.

The above graph shows the values of gm,ld,gds at our operating point Vgs.

Now we will use the table to find W and hence find the values of the rest of the parameters that will achieve our design

W	Id
10uM	77.35uA
W_new	25uA

Therefore W_new=3.23u M

Hence I can get the rest of the values of gm,gds the same way by substituting in the table above or also can get it by simulating results at W=3.23u M

Here we can find that:

Id=25uA

Gm=275.8uS

Gds=2.783uS

PART 2: Cascode for Gain

OP Analysis

<u>Choose VB</u> (the cascode device bias voltage) such that M2 has <u>VDS</u>≈ <u>V*+100mV</u> (you may sweep VB and plot VDS vs VB to help you choose a good value for VB).

To satisfy our condition of VDS=280mV

VB=0.9819V

<u>Simulate the DC OP point of the above CS and cascode amplifiers. Report a snapshot showing the following parameters for M1, M2 and M3 in addition to DC node voltages clearly annotated</u>

M1:

M2:

M3:

Check that all transistors operate in saturation

It's shown that the region of the three transistors region=2 (saturation region)

Do all transistors have the same Vth? Why?

No, not all transistors have the same Vth M3 has higher Vth than M1 and M2 due to the body effect since the VSB of M3 \neq 0.

gm>>gds gm>>gmb cgs>cgd csb>cd

SIDE NOTE:

It's the doctor's permission to skip the hand analysis part in AC analysis point 4,5

AC Analysis

Create a new simulation configuration. Perform AC analysis (1Hz:10GHz, logarithmic, 10points/decade) to simulate gain and bandwidth. Use calculator to create expressions for circuit parameters (DC gain, BW, GBW, and UGF) and export them to adexl.

Report the Bode plot (magnitude) of CS and cascode appended on the same plot.

Using

Report a table comparing the DC gain, BW, UGF, and GBW of both circuits from simulation and hand analysis.

Test	Output	Nominal	Spec	Weight	Pass/Fail
AIC_Training:Cascode_Amplifier:1	dB20(VF("/VOUT1"))	<u>~</u>			
AIC_Training:Cascode_Amplifier:1	ymax(dB20(VF("/VOUT1")))	39.17			
AIC_Training:Cascode_Amplifier:1	ymax(mag(VF("/VOUT1")))	90.89			
AIC_Training:Cascode_Amplifier:1	bandwidth(VF("/VOUT1") 3 "low")	482.9k			
AIC_Training:Cascode_Amplifier:1	gainBwProd(VF("/VOUT1"))	43.99M			
AIC_Training:Cascode_Amplifier:1	ymax(mag(VF("/VOUT2")))	3.523k			
AIC_Training:Cascode_Amplifier:1	bandwidth(VF("/VOUT2") 3 "low")	12.04k			
AIC_Training:Cascode_Amplifier:1	dB20(VF("/VOUT2"))	<u>~</u>			
AIC_Training:Cascode_Amplifier:1	ymax(dB20(VF("/VOUT2")))	70.94			
AIC_Training:Cascode_Amplifier:1	gainBwProd(VF("/VOUT2"))	42.53M			

Comments:

- -Cascode amplifiers are used to boost the gain of a single stage CS amplifier
- -Cascode amplifier provide a very high output impedance
- -Due to the very high output impedance of the cascode, it has a much smaller bandwidth than the single stage CS amplifier
- -The GBW is constant therefore, we have a gain-bandwidth tradeoff.