F-871

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

7346222928

(currently amended) A compound of formula (Ia): 1.

$$R^1$$
 R^4
 R^3
 R^3

or a pharmaceutically acceptable salt, hydrate, tautomer or solvate thereof, wherein:

X is O-or-S;

R¹ is selected from the group consisting of

where R²² is independently selected from the group consisting of: (C₁-C₆)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C10)cycloalkyl, (C5-C10)aryl, (C1-C6)alkylaryl, amino, carbonyl, carboxyl, (C5-C10)heteroaryl,

(C₅-C₁₀)heterocyclyl, (C₁-C₆)alkoxy, nitro, halo, hydroxyl, and (C₁-C₆)alkoxy(C₁-C₆)ester, and where alkyl, alkenyl, alkynyl, cycloalkyl, aryl, amino, heteroaryl, heterocyclyl, and alkoxy of R^{2a} is optionally substituted by at least one moiety independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₃-C₁₀)cycloalkyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, formyl, NC-, (C₁-C₆)alkyl-(C=O)-,

and

_4.

phenyl-(C=O)-, HO-(C=O)-, (C1-C6)alkyl-O-(C=O)-, (C1-C6)alkyl-NH-(C=O)-, ((C1-C6)alkyl)2-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, O₂N-, amino, (C₁- C_6) alkylamino, $((C_1-C_6)$ alkyl)2-amino, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl-(C=O)- $[((C_1-C_6)$ alkyl-(C=O)- $((C_1-C_6)$ alkyl-(C= C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1 - C_6)alkyl)-N]-, H_2 N-(C=O)-NH-, (C_1 - C_6)alkyl-HN-(C=O)-NH-, ((C_1 - C_6)alkyl)₂N-(C=O)-NH-, (C_1 - C_6)alkyl-HN-(C=O)-[((C_1 - C_6)alkyl)-N]-, ((C_1 - C_6)alkyl)₂N-(C=O)-[(C_1 - C_6)alkyl-N]-, phenyl-HN-(C=O)-NH-, (phenyl)₂N-(C=O)-NH-, phenyl-HN-(C=O)- $[((C_1-C_6)a!kyl)-N]$ -, $(phenyl-)_2N-(C=O)-[((C_1-C_6)alkyl)-N]-, (C_1-C_6)alkyl-O-(C=O)-NH-,$ (C_1-C_6) alkyl-O-(C=O)- $[((C_1-C_6)$ alkyl)-N]-, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)-[(alkyl)-N]-, (C₁-C₆)alkyl-SO₂NH-, phenyl-SO₂NH-, (C₁-C₆)alkyl-SO₂-, phenyl-SO₂-, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₁-C₆)alkyl-(C=O)-O-. (C_1-C_6) ester- (C_1-C_6) alkyl-O-, phenyl-(C=O)-O-, H_2N -(C=O)-O-, (C_1-C_6) alkyl-HN-(C=O)-O-, $((C_1-C_6)alkyl)_2N-(C=O)-O-$, phenyl-HN-(C=O)-O-, and (phenyl)₂N-(C=O)-O-; wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C₁-C₆)alkyl, perhalo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, hydroxy, oxo, mercapto, (C_1-C_6) alkylthio, (C_1-C_6) alkoxy, (C_5-C_{10}) aryl, ef (C_5-C_{10}) heteroaryl, (C_5-C_{10}) C_{10})aryloxy, Θ_r (C_5 - C_{10})heteroaryloxy, (C_5 - C_{10})ar(C_1 - C_6)alkyl, Θ_r (C_5 - C_{10})heteroar(C_1 - C_6)alkyl, (C_5-C_{10}) ar (C_1-C_6) alkoxy, ef (C_5-C_{10}) heteroar (C_1-C_6) alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)alkyl, (C_5-C_{10}) heterocyclyl (C_1-C_6) alkyl, (C_1-C_6) alkyl-, and di (C_1-C_6) alkylamino, cyano, nitro, carbamoyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C1-C6)alkylaminocarbonyl, (C5-C10)arylcarbonyl, (C5-C10)aryloxycarbonyl, (C_1-C_6) alkylsulfonyl, and (C_5-C_{10}) arylsulfonyl;

-5-

C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-, (C₁-C₆)alkyl-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C₁-C₆)alkyl)-N]-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, [(C₁-C₆)alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C₁-C₆)alkyl)-N]-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heteroary

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of \mathbb{R}^3 is optionally substituted by at least one substituent independently selected from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N -, $Ph(CH_2)_{1-6}HN$ -, and (C_1-C_6) alkylHN-;

s is an integer from one to five;

R⁴ is independently selected from the group consisting of: hydrogen, halo, halo(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C₁-C₆)alkyl-S-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C₁-C₆)alkylHN-, (C₁-C₆)alkylamino, [(C₁-C₆)alkyl]₂-amino, (C₁-C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-, (C₁-C₆)alkyl-(C=O)-((C₁-C₆)alkyl)-N-, phenyl-(C=O)-((C₁-C₆)alkyl)-N]-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, ((C₁-C₆)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-(C=O)-, (C₃-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)- and (C₁-C₆)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of \mathbb{R}^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, (C_1-C_6) alkyl HN_- , (C_5-C_{10}) heteroaryl and (C_5-C_{10}) heterocyclyl;

with the proviso that when R⁴ is a substituted phenyl moiety, then (a) R¹ is not naphthyl, phenyl or anthracenyl and (b) if R¹ is a phenyl fused with an aromatic or non-aromatic cyclic

Feb-02-2007 11:10am

-6-

ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted;

with the proviso that when R^4 is NH_2 and X is S, then R^1 is not an amino-substituted pyridyl or pyrimidinyl moiety; and

with the proviso that when in formula (Ia) R⁴ is CH₃ and X is S, R¹ is not a 3,4-dimethoxy substituted phenyl moiety.

2. (original) A compound of claim 1, wherein R¹ is

3. (original) A compound of claim 1, wherein R¹ is

4. (currently amended) A compound of claim 1, wherein R¹ is

5. (original) A compound of claim 1, wherein R¹ is

6. (original) A compound of claim 1, wherein R¹ is

7. (original) A compound of claim 1, wherein R¹ is

-8-

8. (original) A compound of claim 1, wherein R¹ is

- 9. (canceled).
- 10. (original) A compound of claim 1, wherein X is S; s is one to two; \mathbb{R}^3 is hydrogen or (C_1-C_6) alkyl; and \mathbb{R}^4 is H, (C_1-C_6) alkyl, or amino.
- 11. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

12-13. (cancelled)

14. (currently amended) A compound selected from the groups consisting of

2 (5 Benze[1,3]dioxel 5 yl exazel 4 yl) 6 methyl pyridine;

2-(5-Benzo[1,3]dioxol-5-yl-oxazol-4-yl)-pyridine;

2 (5 Benzo[1,3]dioxol 5 yl oxazol 4 yl) 6 methoxy pyridine;

2-(5-Benzo[1,3]dioxol-5-yl-oxazol-4-yl)-6-trifluoromothyl-pyridine;

2 Methyl 5 [4 (6 methyl pyridin 2 yl) oxazol 5-yl]-2H-benzotriazolo;

4-[4-(6-Methyl pyridin 2-yl) exazel 5-yl] quineline;

1-Methyl 6-[4-(6-methyl-pyridin 2-yl) exazel 5-yl] 1H benzetriazele;

6 (4 Pyridin 2 yl oxazol 5 yl) quinoxaline;

6-[4-(6-Methyl-pyridin 2-yl) exazel 5-yl] quinoxaline;

6-[4-(6-Methyl pyridin 2 yl) exazel 5 yl] quinoline;

6 (4 pyridin 2 yl oxazol 5-yl) quinoline;

```
2-(5-Benzo[1,3]dioxol 5-yl-oxazol-4-yl) 6-ethyl-pyridine;
```

- 2 (5 Benzo[1,3]dioxol 5 yl oxazol 4 yl) 6 propyl pyridine;
- 6 [4 (6 Methyl pyridin-2 yl) exazel 5 yl] benzethiazele,
- 2-(4-Benzo[1,3]dioxol-5-yl-oxazol-5-yl)-6-methyl-pyridine;
- 4-[5-(6-Methyl-pyridin 2-yl) oxazol 4-yl] quinolino;
- 1 Methyl 6 [5 (6 methyl pyridin 2 yl) exazel 4 yl] 1H benzetriazele;
- 2 Methyl 5 [5 (6 methyl-pyridin 2 yl) exezel 4 yl] 2H benzetriazole;
- 6-[5-(6-Methyl-pyridin-2-yl)-exazel-4-yl]-quinoline;
- 6 [5-(6-Methyl pyridin 2 yl) exazel 4 yl] quinoxaline;
- 2 [5 (6 Methyl pyridin 2 yl) oxazol 4 yl] [1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl) exazel 4 yl] pyridin 2 yl}-phenyl-amine;
- 2 (4-Benzo[1,3]dioxol-5-yl-2-methyl-oxazol-5-yl) 6 methyl pyridine;
- 1-Methyl 6 [2 methyl 5 (6 methyl pyridin 2 yl) oxazol-4-yl]-1H-benzetriazole;
- 2 Methyl 5 [2 methyl 5 (6 methyl pyridin 2 yl) exazel 4 yl] 2H-benzetriazele;
- 6-[2-Methyl-5-(6-methyl-pyridin-2-yl)-oxazol-4-yl]-quinolino;
- 6 [2 Methyl 5 (6 methyl pyridin 2 yl) exazel 4-yl]-quinexaline;
- 2 [2 Methyl 5 (6 methyl pyridin 2 yl) exazel 4 yl] [1,5]naphthyridine;
- {4 [2 Methyl 5 (6 methyl pyridin 2 yl) exazel 4 yl] pyridin 2 yl} phenyl amine;
- 4-[2-Mothyl-5 (6-mothyl-pyridin 2-yl) exazol 4-yl] quinoline;
- 4-Benzo[1,3]dioxol-5-yl-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(3-Methyl-3H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-6-yl-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinoxalin-6-yl-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-[1,5]naphthyridin-2-yl-thiazol-2-ylamine;
- {4 [2 Amino 5 (6 methyl-pyridin 2 yl) thiazol 4 yl] pyridin 2 yl} -phonyl-amino;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-4-yl-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinolin-6-yl-thiazol-2-ylamine;
- 5-(3-Methyl-3H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(2-Methyl-2H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;

```
-10-
```

- 5-Benzo[1,3]dioxol-5-yl-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinoxalin-6-yl-thiazol-2-ylamine;
- 4-(6-Methyl-pyridin-2-yl)-5-[1,5]naphthyridin-2-yl-thiazol-2-ylamine;
- {4 [2 Amino 4 (6 methyl pyridin 2 yl) thiazol 5 yl] pyridin 2 yl) phonyl amine;
- 4-(6-Methyl-pyridin-2-yl)-5-quinolin-4-yl-thiazol-2-ylamine;
- 6-[2-Methyl-4 (6 methyl pyridin 2 yl) exazel 5 yl] quineline:
- 1 Methyl 6 [2 methyl 4 (6 methyl pyridin 2 yl) oxazol 5 yl] 1H benzetriazolo;
- 2 Methyl 5 [2 methyl 4 (6 methyl pyridin 2 yl) exazel 5 yl] 2H-benzetriazele;
- 2 (5 Benzo[1,3]dioxol 5 yl 2 mothyl exezel 4 yl) 6 methyl pyridine;
- 6-[2-Methyl-4-(6-methyl-pyridin-2-yl)-exazel-5-yl]-quinexaline;
- 2 [2 Methyl 4 (6 methyl pyridin 2 yl) exazel 5 yl] [1,5]naphthyridine;
- {4-[2-Methyl-4-(6-methyl-pyridin-2-yl)-exazel-5-yl] pyridin-2-yl} phenyl-amine;
- 4 [2 Methyl 4 (6 methyl pyridin 2 yl) exazel 5 yl] quineline;
- 1-Methyl-6-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
- 2-Methyl-5-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
- 2-(5-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)-6-methyl-pyridine;
- 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
- 2-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
- {4-[4-(6-Mothyl-pyridin-2-yl)-thiazol-5-yl]-pyridin-2-yl}-phenyl-amine;
- 4-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 1-Methyl-6-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl)-thiazol-4-yl]-pyridin 2 yl} phenyl amine;
- 4-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 1-Methyl-6-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;

-11-

- 2-Methyl-5-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
- 2-(5-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-4-yl)-6-methyl- pyridine;
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
- 2-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
- {4 [2 methyl 4 (6 Methyl pyridin 2 yl) thiazol 5 yl]-pyridin 2-yl} phenyl amine;
- 4-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4-[2-methyl 5-(6-Mothyl pyridin 2-yl) thiazol 4-yl]-pyridin 2-yl) phonyl amine:
- 4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; and
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; or a pharmaceutically acceptable salt thereof.
- 15. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 14 and a pharmaceutically acceptable carrier.
- 16. (canceled)
- 17. (canceled)
- 18. (currently amended) A compound of formula (Ib):

$$-12 R^1$$
 X
 R^4
 (Ib)

or a pharmaceutically acceptable salt, hydrate, tautomer or solvate thereof, wherein:

X is S;

R¹ is selected from the group consisting of

PATENT PFIZER ANN ARBOR MI

where R^{2a} is independently selected from the group consisting of: (C₁-C₆)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C10)cycloalkyl, (C5-C10)aryl, (C1-C6)alkylaryl, amino, carbonyl, carboxyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclyl, (C₁-C₆)alkoxy, nitro, halo, hydroxyl, and (C_1-C_6) alkoxy (C_1-C_6) ester, and where alkyl, alkenyl, alkynyl, cycloalkyl, aryl, amino, heteroaryl, heterocyclyl, and alkoxy of R^{2a} is optionally substituted by at least one moiety independently selected from the group consisting of halo, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, perhalo(C1-C6)alkyl, phenyl, (C3-C10)cycloalkyl, (C5-C10)heteroaryl, (C5-C₁₀)heterocyclic, formyl, NC-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, (C₁- C_6)alkyl-O-(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, ((C₁-C₆)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, O_2N- , amino, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2$ -amino, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl- $(C=O)-[((C_1-C_6)$ alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C1-C6)alkyl)-N]-, H_2N -(C=O)-NH-, (C1-C6)alkyl-HN-(C=O)-NH-, ((C1-C6)alkyl-HN-(C=O)-NH-, ((C1-C6)alkyl-HN-(C=O)-Alkyl-HN-(C=O)-Alkyl-HN-((C1-C6)alkyl-HN-(C=O)-Alkyl-HN-(C=O)-Alkyl-HN-((C1-C6)alkyl-HN-(C1-C6)alkyl-HN C_6)alkyl)₂N-(C=O)-NH-, (C₁-C₆)alkyl-HN-(C=O)-[((C₁-C₆)alkyl)-N]-, ((C₁-C₆)alkyl)-N]-, ((C₁-C₆)alkyl)-N]- C_6)alkyl)₂N-(C=O)-[(C₁-C₆)alkyl-N]-, phenyl-HN-(C=O)-NH-, (phenyl)₂N-(C=O)-NH-, C₆)alkyl-O-(C=O)-NH-, (C₁-C₆)alkyl-O-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)-[(alkyl)-N]-. (C1-C6)alkyl-SO2NH-, phenyl-SO2NH-, (C1-C0)alkyl-SO2-,

-14-

phenyl-SO₂-, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₁-C₆)alkyl-(C=O)-O-, (C₁-C₆)alkyl-O-, phenyl-(C=O)-O-, H₂N-(C=O)-O-, (C₁-C₆)alkyl-HN-(C=O)-O-, ((C₁-C₆)alkyl)₂N-(C=O)-O-, phenyl-HN-(C=O)-O-, and (phenyl)₂N-(C=O)-O-; wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy, oxo, mereapto-, (C₁-C₆)alkylthio, (C₁-C₆)alkoxy, (C₅-C₁₀)aryl₂ or (C₅-C₁₀)heteroaryl, (C₅-C₁₀)aryloxy₂ or (C₅-C₁₀)heteroaryloxy, (C₅-C₁₀)ar(C₁-C₆)alkyl₃ or (C₅-C₁₀)heteroar(C₁-C₆)alkyl, (C₅-C₁₀)ar(C₁-C₆)alkoxy₂, or (C₅-C₁₀)heteroar(C₁-C₆)alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylamino, cyano, nitro, carbamoyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₅-C₁₀)arylcarbonyl, (C₅-C₁₀)aryloxycarbonyl, (C₁-C₆)alkylsulfonyl, and (C₅-C₁₀)arylsulfonyl;

each R^3 is independently selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 - C_{10})heteroaryl, (C_5 - C_{10})heteroacyclic, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_5 - C_{10})heteroaryl-O-, (C_5 - C_{10})heteroacyclic-O-, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl- SO_2 -, (C_1 - C_6)alkyl- SO_2 -NH-, amino(C_1 - C_6)alkyl- C_1 -, phenyl-(C_1 - C_1 -, phenyl-(C_1 - C_1 -) heteroacyclic-(C_1 - C_1 -), (C_1 - C_1 - C_1 -) heteroacyclic-(C_1 - C_1 -), phenyl-(C_1 -), phenyl-(C

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R³ is optionally substituted by at least one substituent independently selected

F-871

-15-

from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N -, $Ph(CH_2)_{1-6}HN$ -, and (C_1-C_6) alkylHN-;

s is an integer from one to five;

 R^4 is independently selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 - C_{10})heteroaryl, (C_5 - C_{10})heterocyclic, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_5 - C_{10})heteroaryl-O-, (C_5 - C_{10})heterocyclic-O-, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C_1 - C_6)alkyl-HN-, (C_1 - C_6)alkyl-MH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, amino(C=O)-, aminoO₂S-, (C_1 - C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-((C_1 - C_6)alkyl-NI-, phenyl-(C=O)-((C_1 - C_6)alkyl)-NI-, (C_1 - C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_5 - C_{10})heteroaryl-(C=O)-, (C_5 - C_{10})heterocyclic-(C=O)-, (C_3 - C_{10})cycloalkyl-(C=O)-, (C_1 - C_6)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-(C=O)-, phenyl-(C=O)-, phenyl-(C=O)-, phenyl-(C=O)-, phenyl-(C=O)-, phenyl-(C=O)-, (C_3 - C_{10})cycloalkyl-NH-(C=O)-, and (C_1 - C_6)alkyl-(C=O)-O-; (C_5 - C_{10})heterocyclic-NH-(C=O)-, (C_3 - C_{10})cycloalkyl-NH-(C=O)- and (C_1 - C_6)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of \mathbb{R}^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, (C_1-C_6) alkyl HN_- , (C_5-C_{10}) heteroaryl and (C_5-C_{10}) heterocyclyl;

with the proviso that when R⁴ is a substituted phenyl moiety, then (a) R¹ is not naphthyl, phenyl or anthracenyl and (b) if R¹ is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted.

19. (currently amended) A compound selected from the groups consisting of 2-(4-Benzo[1,3]diexel 5 yl exazel 5-yl)-6-methyl pyridine;
4 [5 (6-Methyl-pyridin-2-yl) exazel 4 yl] quinoline;
1 Methyl-6-[5 (6-methyl-pyridin-2-yl) exazel-4-yl]-1H benzetriazele;
2 Methyl 5 [5 (6-methyl-pyridin-2-yl) exazel-4-yl]-2H benzetriazele;

- 6 [5 (6 Methyl pyridin 2 yl) oxazol 4 yl] quinoline;
- 6 [5 (6 Methyl pyridin 2 yl) exazol 4 yl] quinexaline;
- 2 [5 (6-Methyl-pyridin-2-yl)-oxazol-4-yl]-[1,5]naphthyridino;
- {4 {5 (6 Methyl pyridin 2 yl) exazel 4 yl] pyridin 2 yl} -phenyl-amine;
- 2-(4 Benzo[1,3]dioxol 5 yl 2 methyl exazel 5 yl) 6 methyl pyridine;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl) exazel 4 yl] 1H benzetriazele;
- 2 Methyl 5 [2 methyl-5 (6-methyl-pyridin-2-yl) oxazol 4 yl] 2H benzotriazole;
- 6 [2 Methyl 5 (6 methyl pyridin 2 yl) oxazol 4-yl]-quinoline;
- 6 [2 Mothyl 5 (6 mothyl pyridin 2 yl) oxazol 4 yl] quinoxaline;
- 2-[2-Mothyl-5-(6-mothyl-pyridin-2-yl)-oxazol 4-yl]-[1,5]naphthyridine;
- {4 [2 Methyl-5 (6-methyl-pyridin-2-yl) oxazol-4-yl] pyridin 2 yl) phonyl-amino;
- 4 [2 Methyl 5 (6 methyl pyridin 2 yl) exazol 4 yl] quinoline;
- 4-Benzo[1,3]dioxol-5-yl-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(3-Methyl-3H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinolin-6-yl-thiazol-2-ylamine;
- 5-(6-Methyl-pyridin-2-yl)-4-quinoxalin-6-yl-thiazol-2-ylamine;
- {4 [2 Amino 5 (6 methyl-pyridin 2 yl) thiazol 4 yl] pyridin 2 yl}-phenyl-amino:
- 1-Methyl-6-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxaline;
- 2-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-[1,5]naphthyridine;
- {4 [5 (6 Methyl pyridin 2 yl)-thiazol-4-yl]-pyridin 2 yl}-phenyl-amino;
- 4-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 6-[5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline;
- 1-Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-1H-benzotriazole;
- 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl)-thiazol-4-yl]-2H-benzotriazole;
- 2-(4-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-5-yl)-6-methyl-pyridine;
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoxalino;

-17-

- 2-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thia2ol-4-yl]-[1,5]naphthyridine;
- {4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazel-1-yl]-pyridin 2-yl}-phenyl-amine;
- 4-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; and
- 6-[2-methyl-5-(6-Methyl-pyridin-2-yl)-thiazol-4-yl]-quinoline; or a pharmaceutically acceptable salt thereof.

20. (canceled)

- 21. (currently amended) A compound selected from the groups consisting of
 - 1-Methyl-6-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
 - 2-Methyl-5-[4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
 - 2-(5-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)-6-methyl-pyridine;
 - 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
 - 2-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
 - {4 [4 (6 Methyl pyridin 2 yl)-thiazol-5-yl]-pyridin 2 yl) phenyl amine:
 - 4-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
 - 6-[4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline;
 - 1-Methyl-6-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-1H-benzotriazole;
 - 2-Methyl-5-[2-methyl-4-(6-methyl-pyridin-2-yl)-thiazol-5-yl]-2H-benzotriazole;
 - 2-(5-Benzo[1,3]dioxol-5-yl-2-methyl-thiazol-4-yl)-6-methyl-pyridine;
 - 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoxaline;
 - 2-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-[1,5]naphthyridine;
 - {4 [2 methyl-4 (6-Methyl-pyridin-2-yl) thiazol 5 yl] pyridin-2-yl} phenyl amine;
 - 4-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline; and
- 6-[2-methyl-4-(6-Methyl-pyridin-2-yl)-thiazol-5-yl]-quinoline; or a pharmaceutically acceptable salt thereof.
- 22. (currently amended) A compound selected from the groups consisting of 5-(3-Methyl-3H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine; 5-(2-Methyl-2H-benzotriazol-5-yl)-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine;

-18-

- 5-Benzo[1,3]dioxol-5-yl-4-(6-methyl-pyridin-2-yl)-thiazol-2-ylamine; and
- 4-(6-Methyl-pyridin-2-yl)-5-quinoxalin-6-yl-thiazol-2-ylamine; or a pharmaceutically acceptable salt thereof.