

GBM Algorithm

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$. 2. For m=1 to M:

(a) For
$$i = 1, 2, ..., N$$
 compute

- - $r_{im} = -\left|\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right|$.

 - (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{im}, j = 1, 2, \dots, J_m$.
 - (c) For $j = 1, 2, \ldots, J_m$ compute

(c) For
$$j = 1, 2, \ldots, J_m$$
 compute

- $\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(y_i, f_{m-1}(x_i) + \gamma).$
- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Gradient Boosting Machine (GBM) Implementations

H2O GBM

- XGBoost (in H2O)
 - LightGBM
 - DART

GBM Algorithm

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

