	the past daily prices for over 1000 companies over a "training" period to generate right singular vectors and normalize these singular vector to get allocations for each of the 1000 companies over the "test" period. In particular, we outline below how to create these "eigen"-portfolios: 1. Import necessary packages and data. 1. Pre-process, clean up, and plot the data using pandas and matplotlib. 1. Transform the data to use company returns and normalized returns rather than close prices.
	 Split the data into a training set and a test set. Compute the SVD of the training data (you will complete this portion). Plot the SVD to get a sense of the market. Compile the SVD into the eigen-portfolios. Compute returns and cumulative returns. Compute performances of portfolios with the Sharpe ratio. Plot performances of best eigen-portfolios. Plot performances of these steps that you need to actually do here will be to compute the SVD and compile the SVD into the eigen-portfolios.
In [1]:	<pre># import packages import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt %matplotlib inline df_path = 'close_prices.csv'</pre>
	C:\Users\matth\anaconda3\lib\site-packages\pandas\core\computation\expressions.py:20: UserWarning: Pa ndas requires version '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installed). from pandas.core.computation.check import NUMEXPR_INSTALLED Uploading data into Google Colaboratory To actually run this jupyter notebook, you can run jupyter notebook on your own computer if you have it set up; however, you may also use Google colaboratory to create and run this notebook. I've implemented the first method of how to import the data into google colaboratory. The details are outlined here . If you are using Google colaboratory, uncomment the lines of code after the first in the next cell.
In [2]:	<pre># only uncomment the next lines if using google colaboratory (takes some time) # import io # from google.colab import files # uploaded = files.upload() # df_path = io.StringIO(uploaded['close_prices.csv']).decode('utf-8')</pre> Data Wrangling
In [3]:	We clean the data here to make sure that any of the dates we use have at least 500 data points. In particular, we get rid of dates that have too many NaN values. We also transform the dates into pandas datetime indices to be able to easily manage data. We finally take a look a some portion of the dataframe. # import data close_prices = pd.read_csv(df_path) # clean data close_prices['date'] = close_prices['date'].apply(lambda x: x.split()[0]) close_prices = close_prices.set_index(['date']) close_prices = close_prices[~close_prices.index.duplicated(keep='first')]
Out[3]:	<pre>close_prices = close_prices[close_prices.isnull().sum(axis=1) < 500] dts = pd.to_datetime(close_prices.index) close_prices.index = dts close_prices.name = 'prices' close_prices.head(40)</pre> AAIC AAL AAON AAP AAPL AB ABB ABBV ABC ABCB Y YELL YNDX date
	17.215847 NaN 0.963988 NaN 0.595872 5.832890 NaN NaN 2.646925 5.628370 150.909670 108830.902945 NaN 11.1 1999- 11-02 18.253337 NaN 0.995558 NaN 0.616062 6.378645 NaN NaN 2.621790 5.602393 151.699773 108438.483824 NaN 11.0 1999- 11-03 18.026386 NaN 1.009507 NaN 0.625658 6.289377 NaN NaN 2.536717 5.576416 151.897299 110400.579430 NaN 11.0 1999- 11-04 18.447866 NaN 0.995558 NaN 0.641933 6.555154 NaN NaN 2.513515 5.576416 150.909670 110008.160309 NaN 10.9 1999- 11-05 19.452934 NaN 1.005102 NaN 0.677937 6.620076 NaN NaN 2.440043 5.576416 149.724516 109223.322067 NaN 10.8
	1999- 11-08 18.836925 NaN 0.991153 NaN 0.739812 6.441539 NaN NaN 2.453578 5.736608 149.724516 107195.823274 NaN 10.8 1999- 11-09 18.447866 NaN 0.963988 NaN 0.687993 6.429366 NaN NaN 2.513515 5.628370 149.329464 107588.242395 NaN 10.9 1999- 17.831857 NaN 0.945633 NaN 0.701965 6.327925 NaN NaN 2.610189 5.576416 147.354207 110400.579430 NaN 11.1 1999- 17.831857 NaN 0.940494 NaN 0.708183 6.175762 NaN NaN 2.501915 5.602393 146.666817 111185.417673 NaN 11.0 1999- 20.684954 NaN 0.936989 NaN 0.665670 6.530808 NaN NaN 2.536717 5.602393 145.378949 112362.675036 NaN 10.9
	1999- 11-12 20.684954 NaN 0.936089 NaN 0.695670 6.530808 NaN NaN 2.536717 5.602393 145.378949 112362.675036 NaN 10.9 1999- 11-15 24.316168 NaN 0.954443 NaN 0.686612 6.417193 NaN NaN 2.561852 5.602393 146.169052 111970.255915 NaN 10.9 1999- 11-16 23.505629 NaN 0.963988 NaN 0.700046 6.682970 NaN NaN 2.501915 5.628370 147.749258 113212.916465 NaN 10.8 1999- 11-17 23.311100 NaN 0.945633 NaN 0.692830 6.569356 NaN NaN 2.476779 5.628370 148.491955 113409.126026 NaN 10.8 1999- 11-18 22.695090 NaN 0.954443 NaN 0.687993 6.542981 NaN NaN 2.670127 5.844846 152.395064 113212.916465 NaN 11.0
	1999- 11-19 24.737648 NaN 0.954443 NaN 0.709642 6.518635 NaN NaN 2.646925 5.901130 150.514619 111577.836794 NaN 11.2 1999- 11-22 23.116570 NaN 0.954443 NaN 0.695670 6.352271 NaN NaN 2.561852 5.576416 150.514619 111577.836794 NaN 11.3 1999- 11-23 21.495493 NaN 0.936089 NaN 0.712482 6.301550 NaN NaN 2.380106 5.844846 149.179345 113605.335587 NaN 11.3 1999- 11-24 20.879483 NaN 0.945633 NaN 0.726915 6.250829 NaN NaN 2.380106 5.736608 148.586768 112362.675036 NaN 11.3 1999- 11-26 20.879483 NaN 0.917734 NaN 0.729755 6.277204 NaN NaN 2.380106 5.736608 147.796665 109615.741188 NaN 11.3
	1999- 11-29 19.258405 NaN 0.936089 NaN 0.725917 6.086494 NaN NaN 2.368505 5.684654 148.539361 109223.322067 NaN 11.3 1999- 11-30 19.258405 NaN 0.927278 NaN 0.751327 6.112868 NaN NaN 2.393640 5.684654 151.699773 107195.823274 NaN 11.3 1999- 17.831857 NaN 0.936089 NaN 0.791169 6.149387 NaN NaN 2.345303 5.736608 152.884928 107588.242395 NaN 12.3
	18.253337 NaN 0.931683 NaN 0.882830 6.265031 NaN NaN 2.271831 5.684654 153.279979 107588.242395 NaN 12.3 1999- 12-06 17.442798 NaN 0.917734 NaN 0.890507 6.137214 NaN NaN 2.308567 5.576416 161.378535 106803.404153 NaN 12.3 1999- 12-07 17.637327 NaN 0.908924 NaN 0.904402 6.289377 NaN NaN 2.283432 5.684654 159.995855 100066.875905 NaN 12.3 1999- 12-08 19.647464 NaN 0.931683 NaN 0.844907 6.417193 NaN NaN 2.283432 5.680324 158.858106 97646.957991 NaN 11.3 1999- 12-09 18.642396 NaN 0.936089 NaN 0.807982 6.265031 NaN NaN 2.295033 5.628370 157.230494 92676.315790 NaN 11.5
	1999- 12-10 19.063876 NaN 0.954443 NaN 0.790709 6.289377 NaN NaN 2.490314 5.602393 153.327385 93657.363592 NaN 11.3 1999- 12-13 18.836925 NaN 0.945633 NaN 0.760002 6.289377 NaN NaN 2.405241 6.104619 152.094825 94834.620956 NaN 11.3 1999- 12-14 19.647464 NaN 0.940494 NaN 0.728296 6.214310 NaN NaN 2.525116 5.912389 150.909670 94049.782714 NaN 11.3 1999- 19.452934 NaN 0.945633 NaN 0.744648 5.997225 NaN NaN 2.525116 6.302045 153.279979 95684.862385 NaN 11.4 1999-
	1999- 12-16 21.074012 NaN 0.950038 NaN 0.754705 6.086494 NaN NaN 2.416842 6.104619 152.537282 94049.782714 NaN 11.5 1999- 12-17 21.268542 NaN 0.954443 NaN 0.767678 6.125041 NaN NaN 2.476779 5.912389 148.642075 96862.119749 NaN 11.5 1999- 12-20 20.263473 NaN 1.009507 NaN 0.752325 6.125041 NaN NaN 2.453578 5.844848 148.144310 96077.281507 NaN 11.5 1999- 12-21 20.263473 NaN 1.027862 NaN 0.786870 6.149387 NaN NaN 2.525116 5.782503 146.169052 102028.971511 NaN 11.5 1999- 12-22 18.836925 NaN 1.027862 NaN 0.767218 6.098667 NaN NaN 2.490314 5.325306 147.006562 103206.228875 NaN 11.5
	1999- 12-23 19.874415 NaN 1.009507 NaN 0.794547 6.112868 NaN NaN 2.585054 5.325306 150.024755 105233.727668 NaN 11.2 1999- 12-27 19.874415 NaN 1.027862 NaN 0.762381 6.137214 NaN NaN 2.683661 5.553905 147.899378 110008.160309 NaN 11.2 1999- 12-28 19.452934 NaN 1.046217 NaN 0.753783 6.098667 NaN NaN 2.925345 5.569491 146.564104 113997.754708 NaN 11.2 40 rows × 1256 columns
In [4]:	Plotting functionality Just to get a visual idea of the data, we plot the prices for a particular symbol. We will finally plot this for the asset returns later on as well. Take a look at the plot for AAPL. # plotting function def plot_symbol(symbol, df, csum=False): # csum denotes cummulative summation (useful for returns) yvals = df[symbol]
	<pre>if csum: yvals = np.cumsum(yvals) plt.plot(df.index, yvals) title = symbol + ' ' + df.name plt.title(title) # check price chart for plot_symbol('AAPL', close_prices)</pre> AAPL prices
	25 - 20 - 15 - 10 - 5 -
	Asset Returns Transform We calculate the returns by the day-to-day percent change of an asset. Once we have the returns, we normalize them by normalizing each individual asset's mean and standard deviation. Why would we want to normalize the returns in this manner?
in [6]:	<pre># calculate the percent change of each asset (pandas as an easy way to do this) returns = close_prices.pct_change().dropna(axis=0, how='all') normed_returns = (returns - returns.mean())/returns.std() normed_returns = normed_returns.dropna(axis=0, how='all') returns.name = 'returns' normed_returns.name = 'normalized returns'</pre> # plot returns plot_symbol('AMZN', returns, csum=True) AMZN returns
	4 - 3 - 2 - 1 - Man
In [7]:	# plot normalized returns plot_symbol('AMZN', normed_returns, csum=True) AMZN normalized returns 10 -
	0 - -10 - -20 - -30 - -40 - -50 -
n [8]:	Data Preparation In this section, we create a training and test data set. # use datetime cut-off for training vs test data set train end = datetime.datetime(2014, 9, 24)
	<pre># get training data for normed returns df_train = normed_returns[normed_returns.index <= train_end].copy().dropna(axis=1, how='any') # get test data for normed returns df_test = normed_returns[normed_returns.index > train_end].copy().dropna(axis=1, how='any') df_test = df_test[df_train.columns] # retain same tickers in test data as in training # get training data for regular returns df_raw_train = returns[returns.index <= train_end].copy().dropna(axis=1, how='any') # get test data for regular returns</pre>
	<pre>df_raw_test = returns[returns.index > train_end].copy().dropna(axis=1, how='any') df_raw_test = df_raw_test[df_train.columns] # retain same tickers in test data as in training print('Train dataset:', df_train.shape) print('Test dataset:', df_test.shape) Train dataset: (3747, 1073) Test dataset: (252, 1073)</pre> Computing SVD of training data
	Consider our training data matrix as an $T \times N$ matrix X with N samples (our tickers) and T variables (our dates). If we assume that X is normalized as we have done above, we can calculate the empirical correlation matrix of our data by $C = \frac{1}{T-1} X^\top X \in \mathbb{R}^{N \times N}$ with eigendecomposition $C = VLV^\top$. The eigenvectors of C should tell us how the stocks correlate to each other. Notice, however, that the eigenvectors V of C are just the right singular vectors of $X = U\Sigma V^\top$. This means that we only need to compute the SVD of our data to be able to investigate the correlation of the stocks. Let's calculate the SVD using $\underbrace{\text{numpy}}_{\text{numpy}}$. Call the right singular vectors V for
n [9]:	After gathering the singular vectors, we proceed to create a scatter plot of the singular vectors. Try to plot different singular vectors and comment on the behavior of the singular vectors for the normalized vs raw return SVDs. # calculate SVD here v = np.linalg.svd(df_train)[2] #ADDED THIS v_raw = np.linalg.svd(df_raw_train)[2] #ADDED THIS
n [13]:	
	scatter_plot_svd(v, 2, 3) scatter_plot_svd(v_raw, 2, 3) Scatter of singular vectors 0.075 0.050 m 0.025 0.000
	0.025
	1.0 - 0.8 - 0.6 - 0.4 - 0.2 -
	Generate portfolios by normalizing We will define the j th eigenportfolio $Q^{(j)}$ by simply the normalized j th right singular vector $v^{(j)}$ so that the resultant $Q^{(j)}$ sums to 1. In particular, compute
n [15]:	$Q^{(j)} = \frac{1}{\sum_{k=1}^N v_k^{(j)}} v^{(j)}.$ We do this in the function below and compile the portfolios into a single pandas dataframe.
	<pre># normalize singular vector to sum to 1 # calculate the jth eigenportfolio and call it j_port j_port = 1/np.sum(s_vecs[j])*s_vecs[j] #ADDED THIS j_port = pd.DataFrame(j_port,index=tickers, columns=['Q_'+str(j+1)]) portfolios.append(j_port) portfolios = pd.concat(portfolios, axis=1) return portfolios</pre>
n [16]:	portfolios_svd = j_eigPortfolio(v) # SVD portfolio computed from normalized returns portfolios_svd_raw = j_eigPortfolio(v_raw) # SVD portfolio computed from raw returns # view data display(portfolios_svd_raw.head(10)) Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_7 Q_8 Q_9 Q_10 Q_1064 Q_1064 AAIC 0.001680 0.006791 -0.005605 -0.004373 0.008490 -0.013861 -0.026036 0.321520 5.287515 -0.007419 0.087886 -0.045364
	AAON 0.000998 0.005098 0.000990 -0.007519 0.005757 -0.008419 0.003069 0.102075 2.265475 0.003815 -0.204599 0.43617 AAPL 0.000897 0.005534 0.000963 -0.005424 -0.022579 0.000186 0.008870 -0.046476 -1.765839 -0.002053 0.186630 -0.12887 AB 0.001120 0.007951 -0.000712 -0.000002 0.005648 -0.006837 -0.017325 -0.046924 -1.115297 -0.004185 0.728807 0.12402 ABC 0.000490 0.010355 -0.002882 0.001852 0.002460 0.000924 0.005171 -0.084748 0.491095 0.011815 0.072781 0.01574 ABCB 0.001283 0.008977 -0.004340 -0.001490 0.021949 -0.020366 -0.042097 0.093879 3.209758 -0.001036 -0.411860 -0.44374 ABC 0.000642 0.005053 0.00413 0.002142 0.008668
	ABM 0.000852 0.000508 -0.000361 0.002642 0.004187 -0.005465 -0.010340 0.019721 1.038481 0.005829 0.149413 -0.14467 ABMD 0.001068 0.017214 0.001355 0.012386 -0.014966 -0.004158 -0.019399 0.088884 4.477438 0.006511 0.296563 0.24425 10 rows × 1073 columns Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_7 Q_8 Q_9 Q_10 Q_1064 Q_10 AAIC 0.000869 -0.002110 -0.011231 -0.039571 0.018026 -0.032980 -0.014841 0.004586 -0.011438 -0.009146 0.288421 -5.4509 AAON 0.000986 -0.001087 -0.009540 -0.021038 0.020908 0.077128 0.031736 0.000100 -0.004756 -0.001349 0.144197 4.1922
	AAPL 0.000822 0.021252 -0.002387 -0.014092 0.003918 -0.055220 -0.037208 -0.002334 -0.021707 -0.013464 0.235998 -1.27349 AB 0.001232 -0.000710 -0.008048 -0.022987 -0.017994 -0.065367 0.008990 -0.003866 0.020271 0.016062 -0.146031 -2.63314 ABC 0.000711 -0.001175 0.010994 0.155579 0.002968 0.008083 0.016982 0.024506 0.038724 -0.015596 -0.116903 3.46245 ABCB 0.001107 -0.012768 -0.020011 -0.029253 0.024680 0.013709 0.041800 -0.002010 -0.017206 -0.009567 0.348618 -6.31460 ABEV 0.000745 -0.004757 0.020183 -0.046637 -0.002984 -0.030452 -0.047121 0.011433 -0.009518 0.014774 0.093813 -2.02744 ABIO 0.000266 0.010099 0.006700 0.026754 0.
	ABMD 0.000687 0.009123 -0.004855 -0.007072 0.018357 -0.016268 0.039279 0.011799 0.030670 -0.0013620.047342 0.6019 10 rows × 1073 columns Compute performance of eigenportfolios
	Compute returns and cumulative returns We will simply compute the dot product of each eigenportfolio weight with how each stock performed for the test data. This is easily done to using .dot for a pandas dataframe. Afterwards, we can compute the cumulative returns by just using the pandas function .cumsum() We will consider 3 portfolio performances: 1. How the SVD portfolio from the normalized returns training data behaves against the normalized returns test data. 2. How the SVD portfolio from the raw returns training data behaves against the raw returns test data. 3. How the SVD portfolio from the normalized returns training data behaves against the raw returns test data.
n [17]:	<pre># use df.dot from pandas to do this # SVD returns svd_rets = df_test.dot(portfolios_svd) # norm_return train vs norm_return svd_rets_raw = df_raw_test.dot(portfolios_svd_raw) # raw_return train vs raw_return test svd_rets_prime = df_raw_test.dot(portfolios_svd) # norm_return train vs raw_return test # SVD cumulative returns c_svd_rets = svd_rets.cumsum() c_svd_rets_raw = svd_rets_raw.cumsum() c_svd_rets_prime = svd_rets_prime.cumsum()</pre>
	Performance metrics with Sharpe Ratio When looking for a good investment, we want positive steady returns. We can think of the positive returns aspect as a positive average return whilst the steady returns aspect can be thought of as having low variance in the returns. This idea gives rise to the Sharpe ratio $\frac{\mu}{\sigma}$, common method to measure the profitability of a trading strategy, which is essentially the mean divided by the standard deviation. • A high Sharpe ratio indicates high average returns with low variance (i.e. steady returns). • A low (but positive) Sharpe ratio means positive returns but risky.
n [18]:	A negative Sharpe ratio means negative returns. We will calculate the Sharpe ratios of all the portfolios and order them by the best performing ones.
	<pre>Arguments: ts_returns - pd.Series of returns of a single eigen portfolio """ annualized_return = 0. annualized_vol = 0. annualized_sharpe = 0. n_years = ts_returns.shape[0] ret = ts_returns.mean() ret.name = 'mean returns'</pre>
	=
	# syd sharpo ratios
ı [19]:	<pre># svd sharpe ratios svd_sharpe = sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False) svd_raw_sharpe = sharpe_ratio(svd_rets_raw).sort_values(by=['sharpe'], ascending=False) svd_prime_sharpe = sharpe_ratio(svd_rets_prime).sort_values(by=['sharpe'], ascending=False) Take a look at the top 5 performing portfolios from each section. print('SVD sharpe') display(svd_sharpe.head(5)) print('SVD raw sharpe')</pre>
n [19]:	<pre>svd_sharpe = sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False) svd_raw_sharpe = sharpe_ratio(svd_rets_raw).sort_values(by=['sharpe'], ascending=False) svd_prime_sharpe = sharpe_ratio(svd_rets_prime).sort_values(by=['sharpe'], ascending=False) Take a look at the top 5 performing portfolios from each section. print('SVD_sharpe') display(svd_sharpe.head(5))</pre>
n [19]:	svd_sharpe = sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False) svd_raw_sharpe = sharpe_ratio(svd_rets_raw).sort_values(by=['sharpe'], ascending=False) svd_prime_sharpe = sharpe_ratio(svd_rets_prime).sort_values(by=['sharpe'], ascending=False) Take a look at the top 5 performing portfolios from each section. print('SVD sharpe') display(svd_sharpe.head(5)) print('SVD raw sharpe') display(svd_raw_sharpe.head(5)) print('SVD prime sharpe') display(svd_prime_sharpe.head(5)) SVD sharpe mean returns cumulative returns vol sharpe Q_575
n [19]:	avd_sharpe = sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False) svd_raw_sharpe = sharpe_ratio(svd_rets_raw).sort_values(by=['sharpe'], ascending=False) svd_prime_sharpe = sharpe_ratio(svd_rets_prime).sort_values(by=['sharpe'], ascending=False) Take a look at the top 5 performing portfolios from each section.
n [19]:	avd sharpe - sharpe_ratio(svd_rets).sort_values(by=['sharpe'], ascending=False) avd_raw_sharpe - sharpe_ratio(svd_rets_prixe).sort_values(by=['sharpe'], ascending=False) avd_prine_sharpe - sharpe_ratio(svd_rets_prixe).sort_values(by=['sharpe'], ascending=False) avd_prine_sharpe - sharpe_ratio(svd_rets_prixe).sort_values(by=['sharpe'], ascending=False) avd_prine_sharpe - sharpe - sharpe print('SVD_sharpe') display(svd_sharpe.head(5)) print('SVD_rev_sharpe').head(5)) print('SVD_prine_sharpe - head(5)) svD_sharpe
	avd_sharpe = sharpe ratio(avd_rate).scrt_values by=['sharpe'], ascending=False) avd_raw sharpe = sharpe ratio[svd_rate raw].scrt_values(by=['sharpe'], ascending=False) avd_prime_sharpe = sharpe_ratio(svd_rate_prime).scrt_values(by=['sharpe'], ascending=False) avd_prime_sharpe = sharpe_ratio(svd_rate_prime).scrt_values(by=['sharpe'], ascending=False) avd_prime_sharpe = sharpe_ratio(svd_rate_prime).scrt_values(by=['sharpe'], ascending=False) print('SVD_sharpe') display(avd_sharpe_head(S)) print('SVD_rate_sharpe) display(avd_raw_sharpe_head(S)) SVD_sharpe mean returns cumulative returns vol sharpe Q.575
n [20]:	### Study Fast Ansarpe = Sharpe_ratio(acut rots).sucre values (by=['sharpe'], ascending=False) ### Stud_raw_harpe = sharpe_ratio(acut_reta_prime).suct_values(by=['sharpe'], ascending=False) ### Stud_prime_sharpe = sharpe_ratio(acut_reta_prime).suct_values(by=['sharpe'], ascending=False) ### Take a look at the top 5 performing portfolios from each section. ### Primal ('SVD sharpe') ### display(swd_sharpe.hood(5)) ### primal ('SVD sharpe') ### display(swd_sharpe.hood(5)) ### primal ('SVD sharpe') ### display(swd_saw_sharpe.head(5)) ### SVD sharpe ### mean returns
n [20]:	good charme = charme cariolater retar, cart values layer charme
n [20]:	Section Sect
n [20]:	Section
n [20]:	Section Control Cont
n [20]:	The content of the
n [20]:	### About ### Ab
n [20]:	Section Community Commun