第二章 热力学定律和热力学基本方程

一、概念题

- 二、 $\mathrm{CCl}_4(\mathbf{l})$ 的正常沸点为 77 ,蒸发热为 $198\,\mathrm{J}\cdot\mathrm{g}^{-1}$,摩尔质量为 $154\,\mathrm{g}\cdot\mathrm{mol}^{-1}$ 。 试分别计算下列过程的 ΔU 、 ΔH 、 ΔS 、 ΔA 、 ΔG 。 设 $\mathrm{CCl}_4(\mathbf{l})$ 的体积可略,蒸气可视为理想气体。
 - (1) 1 mol CCl₄(l) 在 77 恒压蒸发为 101325 Pa 的蒸气。
 - (2) 1 mol 77 、101325 Pa 的CCl₄(g)恒温可逆膨胀至 20265 Pa。
- (3) 1 mol 77 、101325 Pa 的 $CCl_4(g)$ 反抗 20265 Pa 的恒定外压,恒温膨胀至内外压力相等。

 \equiv

- (1) 0 时 $H_2O(s)$ 的熔化焓为 $333.5\,J\cdot g^{-1}$,摩尔体积为 $19.652\,cm^3\cdot mol^{-1}$,而 $H_2O(l)$ 的摩尔体积为 $18.018\,cm^3\cdot mol^{-1}$,试求压力对冰熔点的影响。水的摩尔质量为 $18.02\,g\cdot mol^{-1}$ 。
- (2) 25 时,若规定 $N_2(g)$ 的热力学标准状态为 101.325~kPa 的纯理想气体,则相应的标准摩尔熵为 $191.49J\cdot K^{-1}\cdot mol^{-1}$ 。而若在此温度,将 $N_2(g)$ 的热力学标准状态改为 100~kPa 的纯理想气体,试问 $N_2(g)$ 相应的标准摩尔熵又是多少?

四、

- (1) 25 时将 1 mol $O_2(g)$ 从 0.1 MPa 恒温可逆压缩至 0.6 MPa ,试求此过程的 Q、 W、 ΔU 、 ΔH 、 ΔS 、 ΔA 、 ΔG 。
- (2) 在(1)中 ,若自始至终用 0.6 MPa 的外压恒温压缩之 ,试求过程的 Q、W、 ΔU 、 ΔH 、 ΔS 、 ΔA 、 ΔG 。

五、将 450 、物质的量之比为 1 3 的 N_2 和 H_2 混合气体,从 20 Mpa 恒温压缩至 100 Mpa,试计算该过程的 ΔS_m 。

已知该混合气体在此温度和压力范围的状态方程为:

$$\frac{pV_{\rm m}}{\text{Pa} \cdot \text{m}^3} = 2.20 \times 10^3 + 19.3 \times 10^{-6} \ p/\text{Pa} + 846.06 \ t/^{\circ}\text{C}$$