A Convolutional Encoder Model for Neural Machine Translation

Presented by: Dushyanta Dhyani, Pravar Mahajan (The Ohio State University)

Paper By: Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin (Facebook Al Research)

Neural Machine Translation

End to end deep learning based machine translation model.

Current State of the Art uses an encoder-decoder model.

Encoder: Creates a hidden representation (encoding) of the input sentence.

Decoder: Converts the hidden representation (decoding) into a sentence in target language.

Encoder and Decoder are generally Recurrent Neural Networks. Current state of the art models use separate Bi-LSTMs for the encoder and decoder components

Drawback: Slow, since recurrent nets are not easily parallelizable.

Convolutional Encoder

Convolution operations are fast and easy parallelizable.

Challenges:

- Convolution does not fit naturally into sequence modeling task due to their spatial nature.
- Word ordering is lost(which is implicitly captured by RNN)

Solution:

- Include position embedding - Append to word representation the embedding of the index of the word in the sequence.

Encoder Architecture

- Two Set of Convolution Layers:
 - CNN-a Responsible for encoding the sentence and is used to generate attention weights that are applied to CNN-c.
 - cnn-c Responsible for generating the conditional input c_i to the decoder.
 - Attention weights, having values between 0 and 1, allow the decoder to *focus* on certain aspects of c_i which are useful for generation of the current word in the output sentence

- Both CNN-a/CNN-c have:
 - Input Representation as Word Embeddings + Position Embeddings
 - Fixed Kernel width and fixed number of convolution layers (which are different for CNN-a and CNN-c)
 - Contains Residual connections bypassing convolution layers to ease learning for deep networks.

Decoder Architecture

- Recurrent Neural Network (GRU/LSTM/RNN etc)
- Generates attention weights using CNN-a and current hidden state h₁.
- Applies the attention weights over CNN-c to get input context c.
- Input to the next step of the recurrent network is concatenation of input step c_i and embedding g_t of the current output y_t

The Complete Architecture

Tying the encoder and decoder together, the whole model looks like this:

