Chapter 5

格

Discrete Mathematics

December 27, 2012

黄正华, 数学与统计学院, 武汉大学

主要内容

• 格 (Lattice): 一个偏序集, 其任意两个元素都有最小上界和最大下界.

• 特殊的格: 分配格, 有补格.

• 布尔代数: 有补分配格.

本章概念关系图

Contents

1	格的定义	1
2	子格与格同态	11
3	几种特殊的格	15
4	布尔代数	24

5.3

5.2

5.5

5.6

1 格的定义

本节主要内容:

- 1. 格的两种定义;
- 2. 格的基本性质;
- 3. 格与代数系统间的关系.

回顾:

Definition 1 (偏序). 如果集合 A 上的关系 \preccurlyeq 具有

- 1. 自反性,
- 2. 反对称性,
- 3. 传递性.

则称关系 \preceq 为 A 上偏序关系. $\langle A, \preceq \rangle$ 称为偏序集.

Example 2. 设 $X = \{1, 2, 3, 4, 6, 12\}, Y = \{2, 3, 6, 12, 24, 36\}.$ 集合 X 和 Y 关于整除关系" | "构成两个偏序集: $\langle X, | \rangle, \langle Y, | \rangle$. 它们的哈斯图如下:

虽然都是偏序集, 但是它们有一个重要的差别:

- $\langle X, | \rangle$ 中 "每两个元素构成的集合"都有最大下界和最小上界.
- (Y, |) 无此特点.

格的定义

Definition 3 (格). 如果偏序集 $\langle A, \preccurlyeq \rangle$ 中任意两个元素都有最小上界和最大下界,则称 $\langle A, \preccurlyeq \rangle$ 是格 (lattice).

lattice: 木格, 窗格. a 和 b 的最小上界: lub $\{a, b\}$. (least upper bound) a 和 b 的最大下界: glb $\{a, b\}$. (greatest lower bound)

5.8

格的典型例子

Example 4. 偏序集 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格:

任意 $S_1, S_2 \in \mathcal{P}(S)$, 它们的最大下界为 $S_1 \cap S_2$; 最小上界为 $S_1 \cup S_2$.

☞ 这是格的一个典型例子. 关于格的很多性质, 都可以借助这个例子理解.

Example 5. 偏序集 $\langle \mathbb{Z}^+, | \rangle$ 是格:

Z⁺ 中任意两个元素的最小公倍数、最大公约数就是这两个元素的最小上界和最大下界.

格的等价定义

为什么格的定义中是要求"两个元素"?事实上,多个元素也可以.因为,"任意两个元素有上下确界"当且仅当"任意有限个元素有上下确界".从而,格有如下的等价定义.

Definition 6. 偏序集 $\langle A, \preccurlyeq \rangle$ 是一个格, 当且仅当 A 中任意非空有限子集 S 有最小上界、最大下界.

其中要求子集元素个数"有限"是重要的,不能是"任意的非空子集". 比如 $\langle \mathbb{N}, \leq \rangle$ 是一个格,但不是任意的非空子集都有最小上界、最大下界 —— \mathbb{N} 就是它自己的一个子集,它没有最小上界.

Definition 7. 设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},\tag{1}$$

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$
 (2)

则二元运算 \vee 和 \wedge 分别称为并运算和交运算; 称 $\langle A, \vee, \wedge \rangle$ 是格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统.

Example 8. 在格 $\langle \mathcal{P}(S), \subseteq \rangle$ 诱导的代数系统中, 运算 \vee 和 \wedge 就是普通的并、交运算: 任意 $S_1, S_2 \in \mathcal{P}(S)$, 有

$$S_1 \vee S_2 = S_1 \cup S_2, \quad S_1 \wedge S_2 = S_1 \cap S_2.$$

Example 9. 在格 $\langle \mathbb{Z}, \leqslant \rangle$ 或 $\langle \mathbb{N}, \leqslant \rangle$ 诱导的代数系统中, 运算 \vee 和 \wedge 就是普通的取大、取小运算. 比如, 任意的 $a, b \in \mathbb{N}$, 有

$$a\vee b=\max\{a,\,b\},\quad a\wedge b=\min\{a,\,b\}.$$

 $Example\ 10.$ 对于格 $\langle \mathbb{Z}^+, | \rangle$ 来说, 其诱导的代数系统 $\langle \mathbb{Z}^+, \vee, \wedge \rangle$ 中的二元运 算 \vee 和 \wedge 分别为: 对任意的 $a, b \in \mathbb{Z}^+$ 有

$$a \lor b = LCM(a, b),$$
 (least common mutiple, 最小公倍数) $a \land b = GCD(a, b).$ (greatest common divisor, 最大公约数)

这个定义表明, 从格出发, 可以构造一个代数系统. 这也说明了格这类特殊偏序集的重要性.

格的对偶原理

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的逆关系, 则

- ⟨*A*, ≽⟩ 也是偏序集.
- $\langle A, \preceq \rangle$ 与 $\langle A, \succeq \rangle$ 的哈斯图是互为颠倒的.
- $\pi \langle A, \preceq \rangle, \langle A, \succ \rangle$ 为彼此对偶的偏序集.
- 如果其中一个是格,则另一个也是格.
- 由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统的并 (交) 运算, 正好是由格 $\langle A, \succcurlyeq \rangle$ 诱导的代数系统的交 (并) 运算.

Theorem 11 (对偶原理). 设 P 是对任意格都为真的命题, 将 P 中的 \preccurlyeq , \lor , \land 分别换成 \succcurlyeq , \land , \lor 得命题 Q, 则 Q 对任意格也是真的命题. (Q 称为 P 的对偶命题.)

格的基本性质

Theorem 12. 设 $\langle A, \preceq \rangle$ 是格, 对任意 $a, b \in A$, 有

$$a \preceq a \vee b,$$
 $b \preceq a \vee b,$ $a \wedge b \preceq a.$ $a \wedge b \preceq b.$

分析 由 \vee , \wedge 的定义即得上述结论. 如图:

证 因为 $a \lor b$ 是 a 和 b 的 (最小) 上界, 所以

$$a \leq a \vee b$$
, $b \leq a \vee b$.

5.11

由对偶原理,即得

$$a \wedge b \leq a, \qquad a \wedge b \leq b.$$

Theorem 13. 设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

5.13

5.14

5.15

$$a \wedge c \leq b \wedge d.$$
 (4)

证 已知 $a \leq b, c \leq d,$ 又

$$b \leq b \vee d$$
, $d \leq b \vee d$,

由传递性可得

$$a \preccurlyeq b \lor d$$
, $c \preccurlyeq b \lor d$.

这说明 $b \lor d$ 是 a 和 c 的一个上界, 但 $a \lor c$ 是 a 和 c 的最小上界, 所以

$$a \lor c \preccurlyeq b \lor d$$
.

类似地可以证明

$$a \wedge c \leq b \wedge d.$$

推论

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

$$a \lor b \leq a \lor c$$
, $a \land b \leq a \land c$.

这个性质称为格的保序性.

证 已知 $b \leq c$, 又 $a \leq a$, 所以

$$a \lor b \preccurlyeq a \lor c$$
.

同理有

$$a \wedge b \preccurlyeq a \wedge c$$
.

Theorem 14. 设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \leq b$. 又 $a \leq a$, 则 $a \in a$ 和 b 的下界, 而 $a \wedge b$ 是最大下界, 得

$$a \preceq a \wedge b$$
.

又

$$a \wedge b \leq a$$
,

所以

$$a \wedge b = a$$
. (反对称性)

反之, 假定 $a \wedge b = a$, 又 $a \wedge b \leq b$, 所以

$$a \leq b$$
.

因此, $a \leq b \iff a \wedge b$. 其他的证明类似.

Theorem 15. 设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

\$

此时的哈斯图为:

"小∧大=小", "小∨大=大"

格的基本性质

Theorem 16. 设 $\langle A, \preccurlyeq \rangle$ 是格, 由格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统为 $\langle A, \lor, \land \rangle$, 则 对任意的 $a, b, c, d \in A$, 有 [1ex]

①
$$\left. \begin{array}{ll} a \lor b = b \lor a, \\ a \land b = b \land a. \end{array} \right\} \ ($$
交换律)

E 意的
$$a, b, c, d \in A$$
, 有 $[1ex]$

$$a \lor b = b \lor a,$$

$$a \land b = b \land a.$$

$$a \lor (b \lor c) = (a \lor b) \lor c,$$

$$a \land (b \land c) = (a \land b) \land c.$$

$$a \lor a = a,$$

$$a \land a = a.$$

$$a \lor (a \land b) = a,$$

$$a \land (a \lor b) = a.$$

③
$$a \lor a = a,$$
 $a \land a = a.$ $\left\{ \begin{array}{c} a & \Rightarrow a \\ a & \Rightarrow a \end{array} \right\}$ (幂等律)

④
$$\left. \begin{array}{ll} a \lor (a \land b) = a, \\ a \land (a \lor b) = a. \end{array} \right\}$$
 (吸收律)

5.18

5.17

下证结合律: $a \lor (b \lor c) = (a \lor b) \lor c$.

分析 由偏序的反对称性, 可证下列两式同时成立:

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c), \tag{5}$$

$$a \lor (b \lor c) \preccurlyeq (a \lor b) \lor c. \tag{6}$$

证 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c)$$
.

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preceq b \lor c \preceq a \lor (b \lor c)$$
.

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界. 但 $(a \lor b) \lor c$ 是 $a \lor b$ 和 c 的最小上界, 所以

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c).$$

类似可证

$$a \lor (b \lor c) \preccurlyeq (a \lor b) \lor c$$
.

因而

$$a \lor (b \lor c) = (a \lor b) \lor c.$$

证明吸收律: $a \lor (a \land b) = a$.

证 因为

$$a \wedge b \leq a$$
,

所以

$$a \lor (a \land b) = a. \tag{7}$$

5.19

5.20

这里 (7) 式成立的理由是"大 ∨ 小 = 大".

引理

设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算且满足吸收律, 那么 \vee , \wedge 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{8}$$

$$a \wedge (a \vee b) = a. \tag{9}$$

由 b 的任意性, 在 (8) 式中用 $a \lor b$ 取代 b 仍然成立, 可得

$$a \vee (a \wedge b) = a.$$

7

$$a \lor (a \land (\underbrace{a \lor b})) = a.$$

$$a \lor (\underbrace{a \land (\underbrace{a \lor b})}_{a}) = a.$$

再由 (9) 式得:

$$a \lor a = a$$
.

同理可证

$$a \wedge a = a$$
.

格与代数系统之间的关系

Theorem 17. 设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 则 A 上存在偏序关系 \preceq , 使 $\langle A, \preceq \rangle$ 是一个格.

分析 证明思路:

- 1. 在 *A* 上构造偏序关系 ≼;
- 2. 证明 $\langle A, \preccurlyeq \rangle$ 中任意两个元素有最小上界和最大下界.

证 在 A 上定义二元关系 \leq : 对任意 $a, b \in A$,

$$a \preccurlyeq b \iff a \land b = a$$
.

先证 ≼ 是偏序.

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交换 律, 所以

$$a \wedge b = b \wedge a$$
.

故 a = b. 从而 \leq 是反对称的.

$$a \wedge c = (a \wedge b) \wedge c \qquad (a \wedge b = a)$$

$$= a \wedge (b \wedge c) \tag{结合律}$$

$$= a \wedge b \qquad \qquad (b \wedge c = b)$$

$$=a.$$
 $(a \wedge b = a)$

所以 $a \leq c$, 说明 \leq 是传递的.

5.23

5.21

其次, 证明 $a \wedge b$ 是 a, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

又由 \preceq 的定义, 可得 $a \land b \preceq a$, $a \land b \preceq b$. 说明 $a \land b \not\in a$, $b \in a$

$$c \wedge a = c$$
, $c \wedge b = c$.

进而有

$$c \wedge (a \wedge b) = (c \wedge a) \wedge b = c \wedge b = c$$
.

第三, 证明 $a \lor b$ 是 a, b 的最小上界. 先证 $a \land b = a$ 与 $a \lor b = b$ 等价. 若 $a \land b = a$, 则

$$a \lor b = (a \land b) \lor b$$
 $(a \land b = a)$ $= b \lor (a \land b)$ (交換律) $= b \lor (b \land a)$ (交换律) $= b.$ (吸收律)

于是 $a \lor b = b$.

反之, 若 $a \lor b = b$, 则

$$a \wedge b = a \wedge (a \vee b)$$
 $(a \vee b = b)$ $($ 吸收律 $)$

亦即 $a \wedge b = a$.

由此可见, 偏序关系 \leq 的等价定义为: " $a \leq b \iff a \vee b = b$."

可以用证明 " $a \wedge b$ 是 a, b 的最大下界" 类似的方法证明 " $a \vee b$ 是 a, b 的最小上界".

综上所述, $\langle A, \preccurlyeq \rangle$ 是格.

☞ 事实上,这个定理给出的是格的另一个定义方式.

5.24

Definition 18. 设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 定义 A 上的偏序关系 \preccurlyeq : 对任意 $a, b \in A$,

$$a \leq b \iff a \wedge b = a$$
. ($\vec{\mathfrak{Q}} \ a \leq b \iff a \vee b = b$.)

则 $\langle A, \preccurlyeq \rangle$ 是一个格.

由格 $\langle A, \preccurlyeq \rangle$ 可以构造代数系统 $\langle A, \lor, \land \rangle$, 反过来, 由代数系统 $\langle A, \lor, \land \rangle$ 出发也可以返回到格 $\langle A, \preccurlyeq \rangle$.

5.26

Theorem 19 (弱分配律). 在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c), \tag{10}$$

$$(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c). \tag{11}$$

分析

• 比较: 集合的并、交运算的分配律

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{12}$$

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C). \tag{13}$$

- 谓之"分配不等式", 或弱分配律, 次分配律;
- 这里, (10) 式与 (11) 式是互为对偶的.
 下证 (10) 式成立, (11) 式由对偶原理可得.

5.27

证 要证 $a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$, 可以先分别证明

$$a \leq (a \vee b) \wedge (a \vee c), \tag{14}$$

$$b \wedge c \leq (a \vee b) \wedge (a \vee c). \tag{15}$$

• (14) 式成立, 因为

$$a = a \wedge a \tag{幂等性}$$

$$\preccurlyeq (a \lor b) \land (a \lor c).$$
 $(a \preccurlyeq (a \lor b), a \preccurlyeq (a \lor c))$

• (15) 式成立, 因为

$$b \wedge c \leq b \leq a \vee b$$
,

$$b \wedge c \leq c \leq a \vee c$$
,

所以

$$b \wedge c = (b \wedge c) \wedge (b \wedge c)$$
$$\leq (a \vee b) \wedge (a \vee c).$$

Example 20. 分配不等式实例:

$$b \wedge (c \vee d) = b \wedge e = b, \quad (b \wedge c) \vee (b \wedge d) = a \vee a = a.$$

™ 称为钻石格 (diamond lattice).

5.29

Example 21. 分配不等式实例:

$$d \wedge (b \vee c) = d \wedge e = d, \quad (d \wedge b) \vee (d \wedge c) = a \vee c = c.$$

隊 称为五角格 (pentagon lattice).

5.30

推论

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 对于任意的 $a, b, c \in A$, 必有

$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee (a \wedge c)), \tag{16}$$

$$a \lor (b \land (a \lor c)) \preccurlyeq (a \lor b) \land (a \lor c).$$
 (17)

证 注意到前述定理的结论:

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c,$$
 (18)

而 $a \leq a \vee c$ 恒成立, 将 (18) 式中的 c 换成 $a \vee c$, 即得

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c$$
.

$$a \preccurlyeq a \lor c \iff a \lor (b \land (a \lor c)) \preccurlyeq (a \lor b) \land (a \lor c).$$

而上式左边恒成立,则右边也恒成立.即证 (17)成立.

5.31

练习

设 $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \langle L, \preccurlyeq \rangle$ 是偏序集, \preccurlyeq 定义为: 对于 $n_1, n_2 \in L, n_1 \preccurlyeq n_2$ 当且仅当 n_1 是 n_2 的因子. 问 $\langle L, \preccurlyeq \rangle$ 是否为格?

解 不是格. 哈斯图为:

例如,"9和10"没有最小上界.

2 子格与格同态

Definition 22 (子格). 设 $\langle A, \preccurlyeq \rangle$ 是格, $\langle A, \lor, \land \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 设 B 是 A 的非空子集. 如果运算 \lor 和 \land 在 B 中封闭, 则称 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格.

可以证明, 子格也是格.

 $Example\ 23.$ 设 E^+ 是正偶数的全体, 易知 $\langle E^+, | \rangle$ 是 $\langle \mathbb{Z}^+, | \rangle$ 的子格:

任何两个偶数的最大公约数和最小公倍数都是偶数, 运算 \vee 和 \wedge 关于 E^+ 是封闭的.

Example 24. 设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp x \preccurlyeq a \},\$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

证 对任意的 $x, y \in T$, 必有 $x \leq a$ 和 $y \leq a$, 所以

$$x \lor y \le a$$
, $(a 是 x, y 的上界)$
 $x \land y \le a$, $(x \land y \le x \lor y)$

故

$$x \lor y \in T$$
, $x \land y \in T$.

运算 \vee 和 \wedge 关于 T 是封闭的, 因此, $\langle T, \prec \rangle$ 是 $\langle S, \prec \rangle$ 的一个子格.

注意

若 $\langle A, \preccurlyeq \rangle$ 是格, $B \subseteq A$ 且 $B \neq \emptyset$, 则 $\langle B, \preccurlyeq \rangle$ 仍然是偏序集,

5.32

5.33

- 但 ⟨B, ≼⟩ 不一定是格.
- 即使是格, 也不一定是 $\langle A, \preccurlyeq \rangle$ 的子格.

5.35

Example 25. 设 $S = \{a, b, c\}$, 则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格, 其哈斯图如下.[1em]

取

$$\begin{split} A &= \big\{\varnothing, \{a\}, \{c\}, \{a,c\}\big\}, \\ B &= \big\{\varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\big\}. \end{split}$$

- $\langle A, \subseteq \rangle$ 是 $\langle \mathcal{P}(S), \subseteq \rangle$ 的子格;
- ⟨B,⊆⟩ 是格, 但不是 ⟨𝒫(S),⊆⟩ 的 子格. 这是因为

$$\{a,b\}\cap\{b,c\}=\{b\}\notin B.$$

5.36

格同态

格 $\langle A, \preccurlyeq \rangle$ 可视为具有两个二元运算的代数系统 $\langle A, \lor, \land \rangle$,其中运算满足交换律、结合律、吸收律和幂等律.

因此, 对格可引入代数系统中同态的概念.

5.37

格同态

Definition 26. 设 $\langle A_1, \preccurlyeq_1 \rangle$, $\langle A_2, \preccurlyeq_2 \rangle$ 是格, 它们所诱导的代数系统分别是 $\langle A_1, \lor_1, \land_1 \rangle$, $\langle A_2, \lor_2, \land_2 \rangle$. 如果存在映射 $f: A_1 \to A_2$, 使对任意 $a, b \in A_1$, 有

$$f(a \vee_1 b) = f(a) \vee_2 f(b), \qquad f(a \wedge_1 b) = f(a) \wedge_2 f(b).$$

- 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同态.
- $\Re \langle f(A_1), \preceq_2 \rangle \in \langle A_1, \preceq_1 \rangle$ 的格同态象.
- 如果 f 是双射, 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同构. 也称 格 $\langle A_1, \preccurlyeq_1 \rangle$, $\langle A_2, \preccurlyeq_2 \rangle$ 同构.

5.38

Theorem 27. 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

证 己知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

$$x \wedge_1 y = x$$
.

所以

$$f(x) = f(x \land_1 y) \qquad (x \land_1 y = x)$$
$$= f(x) \land_2 f(y). \qquad (f 是格同态)$$

而 $f(x) \land_2 f(y) = f(x) \iff f(x) \leq_2 f(y)$, 所以

$$f(x) \preccurlyeq_2 f(y)$$
.

注:

此定理说明,格同态是保序的.但,其逆不真.

Example 28. 设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

作映射 $f: A \to A$, f(x) = x. 显然, 若 x|y, 则 $f(x) \leq f(y)$, 因而 f 是保序的. 但 f 不是格同态. 例如:

$$\underbrace{f(4 \wedge_1 6)}_{=2} \neq \underbrace{f(4) \wedge_2 f(6)}_{=4}.$$

Theorem 29. 设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射. 则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构, 当且仅当

$$\forall a, b \in A_1, \quad a \leq_1 b \iff f(a) \leq_2 f(b). \tag{19}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (19) 式成立.

- i) 对任意 $a, b \in A_1$, 如果 $a \leq_1 b$, 由保序性, 则 $f(a) \leq_2 f(b)$.
- ii) 若 $f(a) \preccurlyeq_2 f(b)$, 则

$$f(a) = f(a) \wedge_2 f(b)$$
$$= f(a \wedge_1 b).$$
 (f 是同构)

5.40

而 f 是双射,则

$$f(a \wedge_1 b) = f(a) \iff a \wedge_1 b = a$$
$$\iff a \leqslant_1 b.$$

5.41

续证: (2) 假设对任意 $a, b \in A_1$, $a \leq_1 b \iff f(a) \leq_2 f(b)$. 即映射 f 是保序的. 要证 f 是 $\langle A_1, \leq_1 \rangle$ 到 $\langle A_2, \leq_2 \rangle$ 的格同构, 即要证

$$f(a \wedge_1 b) = f(a) \wedge_2 f(b), \tag{20}$$

$$f(a \vee_1 b) = f(a) \vee_2 f(b). \tag{21}$$

要证 (20) 式成立, 即要证

$$f(a \wedge_1 b) \preccurlyeq_2 f(a) \wedge_2 f(b), \qquad f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b)$$

同时成立.

因为 $a \wedge_1 b \prec_1 a$, $a \wedge_1 b \prec_1 b$, 由 f 的保序性, 得

$$f(a \wedge_1 b) \preccurlyeq_2 f(a), \qquad f(a \wedge_1 b) \preccurlyeq_2 f(b).$$

所以

$$f(a \wedge_1 b) \preccurlyeq_2 f(a) \wedge_2 f(b)$$
.

5.42

续证: 记 $f(a) \wedge_2 f(b) \triangleq f(d)$, 则 $f(d) \preccurlyeq_2 f(a)$, $f(d) \preccurlyeq_2 f(b)$. 由 f 的保序性, 得

$$d \preccurlyeq_1 a, \qquad d \preccurlyeq_1 b.$$

所以, $d \leq_1 a \wedge_1 b$. 再由保序性, 得 $f(d) \leq_2 f(a \wedge_1 b)$, 即

$$f(a) \wedge_2 f(b) \leq_2 f(a \wedge_1 b).$$

类似可证 $f(a \lor_1 b) = f(a) \lor_2 f(b)$ 成立. 故 $f \in \langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构.

5.43

练习

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 $a, b \perp a \prec b$ (意指 $a \prec b \perp a \neq b$). 构造集合

$$B = \{ x \mid x \in A \perp a \leq x \leq b \}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preceq \rangle$ 是 $\langle A, \preceq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可.

任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b$$
, $a \preccurlyeq y \preccurlyeq b$.

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

由 $x \leq b$, 和 $y \leq b$, 可得

$$x \vee y \leq b$$
.

所以 $a \leq x \vee y \leq b$, 即 $x \vee y \in B$. 同理可证 $x \wedge y \in B$.

5.44

3 几种特殊的格

本节介绍几种特殊的格:

- 分配格:
- 有补格;
- 模格.

5.45

分配格

格中任意三个元素 a, b, c 满足分配不等式:

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c) \tag{22}$$

$$a \wedge (b \vee c) \succcurlyeq (a \wedge b) \vee (a \wedge c) \tag{23}$$

是否存在格使上述两式等号成立呢?

回答是肯定的. 比如格的典型例子 $\langle \mathcal{P}(S), \subseteq \rangle$, 其分配律是成立的.

5.46

分配格

Definition 30. 设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \prec \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 满足

$$a \lor (b \land c) = (a \lor b) \land (a \lor c),$$
 (并对交可分配)

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$
 (交对并可分配)

则称 $\langle A, \preccurlyeq \rangle$ 是分配格.

◎ 这和我们熟知的集合运算的分配律, 有完全相同的形式:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

可见 $\langle \mathcal{P}(S), \subseteq \rangle$ 也是分配格的典型例子.

Example 31. 判断下列各图是否为分配格?

解 (1), (4) 是分配格. (2), (3) 不是分配格. 在 (2) 中,

$$b \wedge (c \vee d) = b \wedge e = b$$
, $(b \wedge c) \vee (b \wedge d) = a \vee a = a$,

在(3)中,

$$d \wedge (b \vee c) = d \wedge e = d, \quad (d \wedge b) \vee (d \wedge c) = a \vee c = c.$$

② (2), (3) 这两个具有五个元素的格是很重要的, 分别称为钻石格 (diamond lattice) 和五角格 (pentagon lattice), 分别记为 M_3 和 N_5 .

有一个如下的重要结论 (证明略去).

Theorem 32. 一个格是分配格的充要条件是,在该格中没有任何子格与 M_3 和 N_5 中的任一个同构.

(a) 钻石格 M3

(b) 五角格 N₅

Example 33. 如图 (a) 所示的格中, $\langle \{a,b,d,g,e\}, \preccurlyeq \rangle$ 是格 $\langle \{a,b,c,d,e,f,g\}, \preccurlyeq \rangle$ 的子格,

而这个子格与图 (b) 是同构的, 所以, 图 (a) 所示的格不是分配格.

5.50

5.49

Theorem 34. 如果格中运算 \land 对运算 \lor 可分配,则运算 \lor 对运算 \land 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{24}$$

则

$$(a \lor b) \land (a \lor c)$$

$$= ((a \lor b) \land a) \lor ((a \lor b) \land c) \qquad (\land \forall \lor \neg f)$$

$$= a \lor ((a \lor b) \land c) \qquad ((a \lor b) \land a = a)$$

$$= a \lor ((a \land c) \lor (b \land c)) \qquad (\land \forall \lor \neg f)$$

$$= (a \lor (a \land c)) \lor (b \land c) \qquad (结合律)$$

$$= a \lor (b \land c).$$

类似可证 $a \lor (b \land c) = (a \lor b) \land (a \lor c) \Rightarrow a \land (b \lor c) = (a \land b) \lor (a \land c)$.

Theorem 35. 链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链,则 $\langle A, \preccurlyeq \rangle$ 是格.(链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$,则 $a \land b = a, a \lor b = b$. 任意两个元素都有最小上界和最大下界,所以是格.) 对任意 $a,b,c \in A$,可分两种情况讨论:

- 1. $a \leq b \not a \leq c$.
- 2. $b \leq a \perp c \leq a$.
- ① $a \leq b$ 或 $a \leq c$.

$$a \wedge (b \vee c) = \begin{cases} a \wedge c = a, & b \leq c, \\ a \wedge b = a, & c \leq b. \end{cases}$$
$$(a \wedge b) \vee (a \wedge c) = \begin{cases} a \vee (a \wedge c) = a, & a \leq b, \\ (a \wedge b) \vee a = a, & a \leq c. \end{cases}$$

所以, $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$.

5.52

续证: ② $b \leq a$ 且 $c \leq a$.

这时必有 $b \lor c \preccurlyeq a$ (上界). 进而有

$$a \wedge (b \vee c) = b \vee c$$

另一方面, 由 $b \leq a$ 且 $c \leq a$ 可得:

$$(a \wedge b) \vee (a \wedge c) = b \vee c$$

所以,

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

得证: 链是分配格.

5.53

5.54

Theorem 36. 设 $\langle A, \preccurlyeq \rangle$ 是分配格, 则对任意 $a, b, c \in A$, 如果

$$a \wedge b = a \wedge c$$
 且 $a \vee b = a \vee c$

则必有

b = c.

证

$$(a \wedge b) \vee c = (a \wedge c) \vee c$$

$$= c$$

$$(吸收律)$$

$$(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$$

$$= (a \vee b) \wedge (b \vee c)$$

$$= (b \vee a) \wedge (b \vee c)$$

$$= b \vee (a \wedge c)$$

$$= b \vee (a \wedge b)$$

$$(a \wedge b = a \wedge c)$$

$$(交換律)$$

$$(a \wedge b = a \wedge c)$$

=b. (吸收律)

所以 b=c.

模格

Theorem 37. 设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)

$$= (a \lor b) \land c. \qquad ((a \lor c) = c)$$

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

$$a \preceq a \lor (b \land c)$$

 $\preceq (a \lor b) \land c \preceq c.$

所以, $a \leq c$.

Definition 38. 设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 只要 $a \preccurlyeq c$, 就有

$$a \lor (b \land c) = (a \lor b) \land c, \tag{25}$$

则称 $\langle A, \preccurlyeq \rangle$ 是模格 (modular lattice).

☞ 对照前述结论:

设 $\langle A, \prec \rangle$ 是一个格,则对于任意的 $a, b, c \in A$,有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$
 (26)

№ 把 (25) 式与"分配等式"相比较:

$$a \lor (b \land c) = (a \lor b) \land (a \lor c), \tag{27}$$

5.56

5.57

知分配格必定是模格.

Theorem 39. 分配格必定是模格.

证 设 $\langle A, \preccurlyeq \rangle$ 是分配格, 任意的 $a, b, c \in A$, 若 $a \preccurlyeq c$, 则

$$a \lor c = c$$
.

故

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 (分配律)
= $(a \lor b) \land c$.

即证 $\langle A, \preccurlyeq \rangle$ 是模格.

模格不一定是分配格

钻石格 M_3 不是分配格, 但它是模格. 对于任意的 $a,b,c \in \{0,1,x,y,z\}$, 若有 $a \leq c$, 则必有 a=0 或者 c=1. 若 a=0, 则

(c)

Example 40.

(a)

$$a \lor (b \land c) = b \land c,$$

 $(a \lor b) \land c = b \land c.$

若 c=1, 则

(b)

$$a \lor (b \land c) = a \lor b,$$

 $(a \lor b) \land c = a \lor b.$

所以它是模格.

5.58

5.59

练习

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

解 分配格如图 (a) 所示, 不是分配格如图 (b) 所示.

图 (b) 中有子格与钻石格同构, 所以图 (b) 不是分配格.

当然, 分配格的最直接例子是链. 非分配格还有很多, 比如六个元素组成的一个环形结构, 此时在其中任取 5 点都是和五角格 N_5 同构的.

练习

在下图中给出的几个格,哪个是分配格?

解 图 (b) 是分配格.

格的全下界、全上界

Definition 41. 设 $\langle A, \preccurlyeq \rangle$ 是格, 如果存在元素 $a \in A$, 对任意 $x \in A$, 都有

 $a \preccurlyeq x$,

则称 a 为格 $\langle A, \preccurlyeq \rangle$ 的全下界. 格的全下界记为 0.

Definition 42. 设 $\langle A, \prec \rangle$ 是格, 如果存在元素 $a \in A$, 对任意 $x \in A$, 都有

 $x \leq a$

则称 a 为格 $\langle A, \prec \rangle$ 的全上界. 格的全上界记为 1.

格的全下界、全上界

Theorem 43. 格的全下界 (全上界) 如果存在, 则必惟一.

证 假设格 $\langle A, \preccurlyeq \rangle$ 有两个全下界 a 和 b. 那么按全下界的定义, 应有

 $a \leq b$ 和 $b \leq a$

同时成立, 从而

a=b.

5.62

5.61

有界格

Definition 44. 具有全下界和全上界的格称为有界格.

Example 45. 设 S 是有限集合, 那么格 $\langle \mathcal{P}(S), \subseteq \rangle$ 是有界格, 其全下界是 \varnothing , 全 上界是 S.

如图所示的格中, h 是全下界, Example 46. a 是全上界. 该格是有界格.

5.63

Theorem 47. 设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a;$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0$$
.

(28)

证 因 $\langle A, \prec \rangle$ 是有界格, 对任意 $a \in A$, 应有 $0 \prec a \prec 1$. 再由格的性质, 即可得:

$$a \lor 1 = 1$$
,

$$a \wedge 1 = a;$$

$$a \vee 0 = a$$
,

$$a \wedge 0 = 0$$
.

注

• 运算 ∨ 的零元和幺元分别为 1 和 0.

- $-a \lor 1 = 1 \lor a = 1 \Rightarrow 1 是 \lor$ 的零元;
- $-a \lor 0 = 0 \lor a = a \Rightarrow 0 是 \lor 的幺元.$
- 运算 ∧ 的零元和幺元分别为 0 和 1.
 - $-a \wedge 0 = 0 \wedge a = 0 \Rightarrow 0$ 是 \wedge 的零元;
 - $-a \wedge 1 = 1 \wedge a = a \Rightarrow 1$ 是 \wedge 的幺元.

补元

Definition 48. 设 $\langle A, \preccurlyeq \rangle$ 是有界格, 对 $a \in A$, 若存在 $b \in A$, 使

$$a \lor b = 1,$$
 $a \land b = 0,$

则称 $b \neq a$ 的补元.

补元

Example 50.

如图所示有界格中,

- *d* 和 *c*, *d* 和 *e*, *a* 和 *e*, 0 和 1 互为补元, 即 *a*, *c*, *d*, *e*, 0, 1 都 有补元.
- 但 b 没有补元.
- 一个元的补元可以有多个: 例如, d, e 有两个补元;
- 0 是 1 惟一的补元; 1 是 0 惟 一的补元.

\$

对于元素 $a \in A$, 可以存在多个补元, 也可以不存在补元.

有补格

Definition 51. 在一个有界格中,如果每个元素至少有一个补元,则称此格为有补格.

Example 52. 如下是一些有补格的例子.

5.67

5.66

5.64

Theorem 53. 在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \lor b = 1, \qquad a \land b = 0; \tag{30}$$

$$a \lor c = 1, \qquad a \land c = 0. \tag{31}$$

那么,

$$a \lor b = a \lor c, \qquad a \land b = a \land c,$$

由分配格的性质得

$$b=c$$
.

注

- 当补元惟一时, 我们通常用 x', \overline{x} 或 $\neg x$ 表示 x 的补元.
- 注意到有补格是有界格, 故有补分配格中, 每个元素必有惟一的补元.

练习

试根据如图所示有界格, 回答以下问题.

- a 和 f 的补元素分别是哪些元素?
- 该有界格是分配格吗?
- 该有界格是有补格吗?

解

- a 和 f 都没有补元;
- 该有界格不是是分配格: 有子格与 〈 〉 同构;

• 该有界格不是有补格.

5.69

4 布尔代数

主要内容

布尔代数 (或布尔格) 是抽象了集合运算和逻辑运算二者的根本性质的一个 代数结构.

在这一节中将证明:

任何一个有限布尔代数必定与格 $(\mathcal{P}(S), \subseteq)$ 所诱导的代数系统同构.

Definition 54. 一个有补分配格称为布尔格 (Boolean lattice).

概念之间的关系

布尔代数

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为补运算.

Definition 55. 由布尔格 $\langle A, \preccurlyeq \rangle$, 可以诱导一个代数系统 $\langle A, \lor, \land, ^- \rangle$, 这个代数系统称为布尔代数 (**Boolean lattice**).

为了强调布尔代数中的最小元 0 和最大元 1,也记布尔代数为 $\langle A, \vee, \wedge, -, 0, 1 \rangle$. $Example\ 56$. 设 S 是非空有限集合,则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是一个布尔格. 而由这个布尔格所诱导的代数系统 $\langle \mathcal{P}(S), \cup, \cap, - \rangle$ 是一个布尔代数.

布尔代数的等价定义

Definition 57. 布尔代数是一个集合 A, 提供了两个二元运算 \land , \lor , 一个一元运算 \neg 和两个元素 0 和 1, 对于集合 A 的任意元素 a, b 和 c, 满足

- 1. 结合律: $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$;
- 2. 交換律: $a \lor b = b \lor a$, $a \land b = b \land a$;
- 3. 吸收律: $a \lor (a \land b) = a$, $a \land (a \lor b) = a$;
- 4. 分配律: $a \lor (b \land c) = (a \lor b) \land (a \lor c), a \land (b \lor c) = (a \land b) \lor (a \land c);$

5.71

5.70

5. 互补律: $a \vee \neg a = 1$, $a \wedge \neg a = 0$.

☞ 前三条就是格的定义; 加上后面两条, 说明布尔代数是有补分配格.

Example 58. 最简单的布尔代数只有两个元素 0 和 1, 其运算表为:

V	0	1
0	0	1
1	1	1

\wedge	0	1
0	0	0
1	0	1

a	$\neg a$	
0	1	
1	0	

☞ 应用于逻辑和电路设计.

5.74

5.73

Theorem 59. 设 a, b 是布尔代数中任意两个元素,则

$$\overline{(\overline{a})} = a; \tag{32}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{33}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{34}$$

证 ① 按定义, a 与 \overline{a} 互补, 所以 \overline{a} 的补元是 a, 即

$$\overline{(\overline{a})} = a. \tag{35}$$

② 可直接验证 $a \lor b$ 的补元是 $(\overline{a} \land \overline{b})$:

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$

$$= (1 \lor b) \land (a \lor 1)$$

$$= 1 \land 1 = 1,$$

$$(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b})$$

$$= (0 \land \overline{b}) \lor (\overline{a} \land 0)$$

$$= 0 \lor 0 = 0.$$

所以 $\overline{a \lor b} = \overline{a} \land \overline{b}$. 同理可证 (34) 式.

5.75

布尔代数的同构

Definition 60. 设 $\langle A, \vee, \wedge, ^- \rangle$ 和 $\langle B, \vee, \wedge, ^- \rangle$ 是两个布尔代数, 如果存在双射 $f: A \to B$, 对任意 $a, b \in A$, 有

$$f(a \lor b) = f(a) \lor f(b) \tag{36}$$

$$f(a \wedge b) = f(a) \wedge f(b) \tag{37}$$

$$f(\overline{a}) = \overline{f(a)} \tag{38}$$

则称 $\langle A, \vee, \wedge, ^- \rangle$ 和 $\langle B, \vee, \wedge, ^- \rangle$ 同构.

5 有限布尔代数的表示定理

有限布尔代数

Definition 61. 具有有限个元素的布尔代数叫有限布尔代数.

注

关于有限布尔代数有如下重要结论:

- 对任一正整数 n, 必存在含有 2^n 个元素的布尔代数.
- 任一有限布尔代数的元素的个数必为 2^n , n 为正整数.
- 元素个数相同的布尔代数, 都是同构的.

为了证明上述关于有限布尔代数的结论, 先引入原子的概念.

原子

Definition 62. 设格 $\langle A, \preccurlyeq \rangle$ 具有全下界 0, 如果有元素 a 盖住 1 0, 则称元素 a 为 原子.

注

如果 a, b 皆为原子, $a \neq b$, 则 $a \wedge b = 0$.

因为, 若 $a \wedge b \neq 0$, 则

 $0 \leq a \wedge b \leq a \ (\mathfrak{A} \ b),$

则 a 和 b 没有盖住 0, 导致 " a 和 b 不是原子"的矛盾.

原子

Example 63. 例如, 如图所示格中, 元素 d, e 是原子.

☞ 可见

- 原子不是惟一的.
- 一个元素可以盖住多个元素. 例如, 1 盖住 a, b, c; b 盖住 d, e.

1在偏序集 $\langle A, \preccurlyeq \rangle$ 中, $\forall x, y \in A$, 如果 $x \preccurlyeq y, x \neq y$, 且不存在 $z \in A$ 使得 $x \preccurlyeq z \preccurlyeq y$, 则称 y 盖住 x. (见第二章)

5.77

5.78

Figure 1: $B \cap \overline{C} = \emptyset$ 当且仅当 $B \subseteq C$.

Theorem 64. 设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \leq b$, 命题得证. 如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

若 b_1 为原子, 命题得证. 否则, 必存在 $b_2 \in A$, 使

$$0 \prec b_2 \prec b_1 \prec b$$
.

因为 A 是有限集合, 经过上述有限的步骤之后, 必可找到一个原子 b_i , 使

$$0 \prec b_i \prec \cdots \prec b_2 \prec b_1 \prec b$$
,

它是 $\langle A, \preccurlyeq \rangle$ 中的一条链, 其中 b_i 是原子, 且 $b_i \preccurlyeq b$.

引理 1

在布尔格中, $b \wedge \bar{c} = 0$ 当且仅当 $b \leq c$.

用集合的情形, 很容易理解这个结论:

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

$$\iff b \preccurlyeq c.$$

反之,如果 $b \leq c$,则

$$b \wedge \overline{c} \leq c \wedge \overline{c}$$
 (格的保序性)
 $\Rightarrow b \wedge \overline{c} \leq 0$
 $\Rightarrow b \wedge \overline{c} = 0$.

5.81

引理 2

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_i \leq b$ $(j = 1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

$$a \leq b \wedge \overline{c}$$
.

又 $b \wedge \overline{c} \leq b$, $b \wedge \overline{c} \leq \overline{c}$, 由传递性得:

$$a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$$

因 a 是原子, 且 $a \leq b$, 所以

$$a \in \{a_1, a_2, \cdots, a_k\},\$$

故 $a \leq c$.

由 $a \preccurlyeq \overline{c}$ 和 $a \preccurlyeq c$ 可得 $a \preccurlyeq \overline{c} \land c$, 从而 $a \preccurlyeq 0$, 与 a 是原子矛盾. 假设不成立. 得证 $b \preccurlyeq c$.

引理 3

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满 足 $a_j \preccurlyeq b \ (j=1,\,2,\,\cdots,\,k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 a_{j_r} $(0 \leqslant r \leqslant t)$ 是原子. 于是有 $a_{j_r} \preccurlyeq b$ $(0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \dots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists a_{i_0} \in \{a_1, a_2, \dots, a_k\}$, 使得 $a_{i_0} \notin \{a_{i_1}, a_{i_2}, \dots, a_{i_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

$$\iff (a_{j_0} \wedge a_{j_1}) \vee (a_{j_0} \wedge a_{j_2}) \vee \cdots \vee (a_{j_0} \wedge a_{j_t})$$

$$= (a_{j_0} \wedge a_1) \vee (a_{j_0} \wedge a_2) \vee \cdots \vee (a_{j_0} \wedge a_{j_0}) \vee \cdots \vee (a_{j_0} \wedge a_k)$$

$$\iff 0 \vee 0 \vee \cdots \vee 0 = 0 \vee 0 \vee \cdots \vee a_{j_0} \vee 0 \vee \cdots \vee 0$$

$$\iff a_{j_0} = 0.$$

与 a_{j_0} 是原子相矛盾, 故必有 t = k.

5.83

比如布尔代数 $\langle \mathcal{P}(S), \cup, \cap, \sim \rangle$, 其中

$$S = \{a, b, c\}.$$

对 $\mathcal{P}(S)$ 中的元素 $\{a, b\}$ 来说, $\{a\}$, $\{b\}$ 是满足" $\preccurlyeq \{a, b\}$ "的所有原子, 有

$${a, b} = {a} \cup {b}.$$

Example~65.

类似地,

$$\{a, c\} = \{a\} \cup \{c\},$$
$$\{b, c\} = \{b\} \cup \{c\},$$
$$\{a, b, c\} = \{a\} \cup \{b\} \cup \{c\}.$$

这些表示为原子的并的形式当然是惟一的.

引理 4

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \leq b$$
 和 $a \leq \overline{b}$

两式中,有且仅有一个成立.

分析 这从含义上是不难理解的. b 的"原子表达式"

$$b = a_1 \vee a_2 \vee \cdots \vee a_k$$

是惟一的.

对任意的原子 a, 它要么是 a_1, a_2, \dots, a_k 其中之一, 要么不在其中. 易知,

$$a \leq b \not a \leq \overline{b}$$

两式中有且仅有一个成立. $\overline{\mathbf{u}}$ 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

1. 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \iff a \preccurlyeq \overline{b}$$

2. 若 $a \wedge b = a$, 由格的性质有

$$a \wedge b = a \iff a \leq b$$
.

下面证明两式仅有一个成立.

假设 $a \leq b$ 和 $a \leq \bar{b}$ 同时成立,则

$$a \leq b \wedge \overline{b}$$
,

即 a=0, 这与 a 是原子矛盾.

5.85

Theorem 66 (Stone 表示定理). 设 $\langle A, \vee, \wedge, ^- \rangle$ 是由有限布尔格 $\langle A, \preccurlyeq \rangle$ 所诱导的有限布尔代数, S 是布尔格 $\langle A, \preccurlyeq \rangle$ 中所有原子的集合, 则

$$\langle A, \vee, \wedge, \overset{-}{} \rangle$$
 和 $\langle \mathscr{P}(S), \cup, \cap, \sim \rangle$ 同构.

证明的主要思路 (具体证明略):

- 1. 作映射 $f: A \to \mathcal{P}(S)$,
 - $\stackrel{\text{def}}{=} a = 0$ pt, $f(a) = \emptyset$;
 - 当 $a \neq 0$ 时, $f(a) = S_i$, S_i 表示所有满足 $x \leq a$ 的原子 x 的集合. 然后证明 f 是双射.
- 2. 证明 f 是同构映射:

$$f(a \lor b) = f(a) \cup f(b),$$

$$f(a \land b) = f(a) \cap f(b),$$

$$f(\overline{a}) = \overline{f(a)}.$$

5.86

Stone 表示定理

推论 1

有限布尔格的元素的个数必等于 2^n , 其中 n 是布尔格中所有原子的个数.

推论 2

元素的个数相同的有限布尔代数是同构的.

5.87

 $Example\ 67.\$ 设 $\langle S, \lor, \land, ^- \rangle$ 是布尔代数, $x, y \in S.$ 证明 $x \preccurlyeq y$ 当且仅当 $\overline{y} \preccurlyeq \overline{x}.$ 解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

$$\iff \overline{y} \land x = 0$$

$$\iff x \land \overline{y} = 0$$

$$\iff x \preccurlyeq y.$$

故在任何布尔代数中, $x \leq y$ 当且仅当 $\overline{y} \leq \overline{x}$.

布尔表达式

Definition 68. 设 $\langle A, \vee, \wedge, {}^- \rangle$ 是布尔代数, 称 A 中的元素为布尔常元. 以 A 为取值范围的变元叫布尔变元.

Definition 69. 设 $\langle A, \vee, \wedge, - \rangle$ 是布尔代数, 在其上的布尔表达式 (Boolean expressions) 定义为:

- 1. A 中任何元素 (即布尔常元) 是布尔表达式;
- 2. 任何布尔变元是一个布尔表达式;
- 3. 若 e_1 , e_2 是布尔表达式, 则 $\overline{e_1}$, $e_1 \lor e_2$, $e_1 \land e_2$ 也都是布尔表达式;
- 4. 只有通过有限次运用规则 (2), (3) 所构造的符号串是布尔表达式.

☞ 我们见过类似的定义方式:命题演算的合式公式;谓词演算的合式公式.

Example 70. 设 $\langle \{0, a, b, 1\}, \vee, \wedge, -\rangle$ 是布尔代数, 则

$$a,$$
 (39)

$$1 \vee x_1, \tag{40}$$

$$(1 \lor x_1) \land x_2, \tag{41}$$

$$(a \wedge x_2) \vee (b \wedge x_1) \vee (x_2 \wedge x_3), \tag{42}$$

都是布尔表达式, 这里 x_1, x_2, x_3 是布尔变元.

并且 (40), (41), (42) 式分别称为

- 含有单个变元 x1 的布尔表达式;
- 含有两个变元 x_1, x_2 的布尔表达式:
- 含有三个变元 x_1, x_2, x_3 的布尔表达式.

n 元布尔表达式

Definition 71. 一个含 n 个相异变元的布尔表达式, 称为 n 元布尔表达式, 记作

$$E(x_1, x_2, \cdots, x_n),$$

其中 x_1, x_2, \cdots, x_n 为变元.

Definition 72 (布尔表达式的值). 设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数. n 元布尔表达式 $E(x_1, x_2, \cdots, x_n)$ 的值是指: 将 A 中的布尔常元作为变元 x_i 的值来代替表达式中相应的变元 (即对变元赋值), 从而计算得出的表达式的值.

5.89

5.91

n 元布尔表达式

Example 73. 设布尔代数 $\{\{0,1\}, \vee, \wedge, -\}$ 上的一个 3 元布尔表达式为

$$E(x_1, x_2, x_3) = (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_3).$$

当赋值为 $x_1 = 1$, $x_2 = 0$, $x_3 = 1$ 时, 其值为:

$$E(1,0,1) = (1 \lor 0) \land (\overline{1} \lor \overline{0}) \land \overline{(0 \lor 1)}$$
$$= 1 \land 1 \land 0$$
$$= 0.$$

布尔表达式的等价

Definition 74. 设 $E_1(x_1, x_2, \dots, x_n)$ 和 $E_2(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, ^- \rangle$ 上的两个 n 元布尔表达式, 如果对 n 个变元的任意赋值均相等, 即对任意赋值 $x_i = \widetilde{x_i}, \ \widetilde{x_i} \in A$ 均有

$$E_1(\widetilde{x_1}, \widetilde{x_2}, \cdots, \widetilde{x_n}) = E_2(\widetilde{x_1}, \widetilde{x_2}, \cdots, \widetilde{x_n}),$$
 (43)

则称布尔表达式 E_1 , E_2 是等价的. 记作:

$$E_1(x_1, x_2, \dots, x_n) = E_2(x_1, x_2, \dots, x_n).$$
 (44)

这类似于定义"命题公式的等价"、"谓词公式的等价".

Example 75. 在布尔代数 $\langle \{0,1\}, \vee, \wedge, -\rangle$ 上的两个布尔表达式

$$E_1(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}), \tag{45}$$

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3}), \tag{46}$$

容易验证, 它们是等价的. 比如

$$E_1(0,1,1) = (0 \land 1) \lor (0 \land \overline{1}) = 0 \land 0 = 0,$$

$$E_2(0,1,1) = 0 \land (1 \lor \overline{1}) = 0,$$

等等.

或者直接由运算规律验证:

$$E_{2}(x_{1}, x_{2}, x_{3}) = x_{1} \wedge (x_{2} \vee \overline{x_{3}})$$

$$= (x_{1} \wedge x_{2}) \vee (x_{1} \wedge \overline{x_{3}})$$

$$= E_{1}(x_{1}, x_{2}, x_{3}).$$
(分配律)

5.92

5.93

布尔函数

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, ^- \rangle$ 上的一个 n 元布尔表达式, 因为运算 \vee , \wedge , $^-$ 在 A 上封闭, 任意有序 n 元组 $\langle a_1, a_2, \dots, a_n \rangle$ $(a_i \in A)$, 可以对应着布尔表达式 $E(x_1, x_2, \dots, x_n)$ 的一个值, 这个值必属于 A.

因此, $E(x_1, x_2, \dots, x_n)$ 确定了一个由 A^n 到 A 的函数.

Definition 76. 设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 一个由 A^n 到 A 的函数如果能用 $\langle A, \vee, \wedge, ^- \rangle$ 上的一个 n 元布尔表达式来表示, 则称该函数为布尔函数.

 \bigcirc 一个由 A^n 到 A 的函数并不是一定能用 $\langle A, \lor, \land, - \rangle$ 上的一个布尔表达式表示.

Example 77. 设 $A = \{0,1\}$, 下面的表格表示了一个从 A^3 到 A 的函数 f.

	f
$\langle 0, 0, 0 \rangle$	0
$\langle 0, 0, 1 \rangle$	0
$\langle 0, 1, 0 \rangle$	1
$\langle 0, 1, 1 \rangle$	0
$\langle 1, 0, 0 \rangle$	1
$\langle 1, 0, 1 \rangle$	1
$\langle 1, 1, 0 \rangle$	0
$\langle 1, 1, 1 \rangle$	1

容易验证其布尔函数表达式为:

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3).$$

小项 & 大项

在给出下一个定理之前, 我们先给出小项、大项、析取范式、合取范式的概念.

Definition 78. 一个含有 n 个变元 x_1, x_2, \dots, x_n 的布尔表达式, 如果它有形式

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \dots \wedge \widetilde{x_n}$$
 (47)

其中 $\tilde{x_i}$ 是 x_i 或 $\overline{x_i}$ 中的任一个,则我们称这个布尔表达式为小项.

如果它有形式

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \dots \vee \widetilde{x_n}$$
 (48)

则我们称这个布尔表达式为大项.

每个位置 x_i 或 $\overline{x_i}$ 必出现且仅出现一次. 和命题逻辑里的定义完全一样, 后面的很多概念均是如此.

5.95

5.96

小项 & 大项

• 两个布尔变元 x_1, x_2 可构成 2^2 个小项和 2^2 个大项;

小项	二进制下标	十进制下标	大项	二进制下标	十进制下标
$\overline{x_1} \wedge \overline{x_2}$	m_{00}	m_0	$x_1 \vee x_2$	M_{00}	M_0
$\overline{x_1} \wedge x_2$	m_{01}	m_1	$x_1 \vee \overline{x_2}$	M_{01}	M_1
$x_1 \wedge \overline{x_2}$	m_{10}	m_2	$\overline{x_1} \lor x_2$	M_{10}	M_2
$x_1 \wedge x_2$	m_{11}	m_3	$\overline{x_1} \vee \overline{x_2}$	M_{11}	M_3

• n 个布尔变元 x_1, x_2, \dots, x_n , 可构成 2^n 个小 (大) 项.

5.98

5.99

析取范式 & 合取范式

Definition 79. 形如

$$m_0 \lor m_1 \lor \dots \lor m_t$$
 (49)

的布尔表达式称为析取范式;

形如

$$M_0 \wedge M_1 \wedge \dots \wedge M_t$$
 (50)

的布尔表达式称为合取范式.

其中 m_i 表示小项, M_i 表示大项, $i = 1, 2, \dots, t$.

简言之,

• 析取范式: 小项之并;

• 合取范式: 大项之交.

Theorem 80. 对于两个元素的布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$, 任意一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数都是布尔函数.

证 对于一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数, 先用那些使函数值为 1 的有序 n 元组分别构造小项

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \cdots \wedge \widetilde{x_n},$$
 (51)

其中

$$\widetilde{x}_i = \begin{cases} x_i, & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 1,} \\ \overline{x_i} & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 0.} \end{cases}$$

然后, 再由这些小项所构成的析取范式, 它就是给定函数对应的布尔表达式, 从而该函数是布尔函数. \square 注: 当然, 也可用那些使函数值为 0 的有序 n 元组分别构造大项

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \cdots \vee \widetilde{x_n},$$
 (52)

其中

$$\widetilde{x_i} = \begin{cases} x_i, & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 0, \\ \overline{x_i} & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 1. \end{cases}$$

由这些大项所构成的合取范式, 也是给定函数对应的布尔表达式.

5.100

Example 81. 求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f	构造小项	构造大项
$\langle 0, 0, 0 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$	
$\langle 0, 0, 1 \rangle$	0		$x_1 \vee x_2 \vee \overline{x_3}$
$\langle 0, 1, 0 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$	
$\langle 0, 1, 1 \rangle$	0		$x_1 \vee \overline{x_2} \vee \overline{x_3}$
$\langle 1, 0, 0 \rangle$	0		$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	0		$\overline{x_1} \lor x_2 \lor \overline{x_3}$
$\langle 1, 1, 0 \rangle$	0		$\overline{x_1} \vee \overline{x_2} \vee x_3$
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$	

解 函数 $f(x_1, x_2, x_3)$ 的析取范式:

$$f(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3).$$

解 合取范式:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3)$$
$$\land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3). \qquad \Box$$

5.101

一般布尔代数上的析 (合) 取范式

布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式的析取范式、合取范式可以扩充 到一般的布尔代数上.

Definition 82. 设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式.

• 若 $E(x_1, x_2, \dots, x_n)$ 能表示成

$$(a_0 \wedge m_0) \vee (a_1 \wedge m_1) \vee \cdots \vee (a_t \wedge m_t), \tag{53}$$

则称形如 (53) 式的布尔表达式为析取范式;

• 若 $E(x_1, x_2, \dots, x_n)$ 能表示成

$$(a_0 \vee M_0) \wedge (a_1 \vee M_1) \wedge \cdots \wedge (a_t \vee M_t), \tag{54}$$

则称形如 (54) 式的布尔表达式为合取范式.

其中 a_i 表示布尔常元, m_i 表示小项, M_i 表示大项, $i=1,2,\cdots,t$.

Theorem 83. 设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式,则它一定可化为析 (合) 取范式.

(证明略.)

作为布尔代数的直接应用, 命题逻辑可用布尔代数

$$\langle \{\mathbf{F}, \mathbf{T}\}, \vee, \wedge, -\rangle$$

来描述.

一个原子命题可视为一个布尔变元, 其值非 \mathbf{T} 即 \mathbf{F} . 因此, 任一复合命题都能用布尔代数

$$\langle \{\mathbf{F}, \mathbf{T}\}, \vee, \wedge, -\rangle$$

中的一个布尔函数来表示.

5.103

练习

将布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式

$$E(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3 \tag{55}$$

化为合取范式.

解

$$E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

$$= (x_1 \vee x_3) \wedge (x_2 \vee x_3)$$

$$= (x_1 \vee (x_2 \wedge \overline{x_2}) \vee x_3) \vee ((x_1 \wedge \overline{x_1}) \vee x_2 \vee x_3)$$

$$= (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

$$= M_0 \wedge M_2 \wedge M_4.$$

或者用列表的方式磁空士面 級

	$E(x_1, x_2, x_3)$	构造大项
$\langle 0, 0, 0 \rangle$	0	$x_1 \lor x_2 \lor x_3$
$\langle 0,0,1\rangle$	1	
$\langle 0, 1, 0 \rangle$	0	$x_1 \vee \overline{x_2} \vee x_3$
$\langle 0, 1, 1 \rangle$	1	
$\langle 1, 0, 0 \rangle$	0	$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	1	
$\langle 1, 1, 0 \rangle$	1	
$\langle 1, 1, 1 \rangle$	1	

得
$$E(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3).$$

5.104

习题

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $\langle \{0, 1\}, \lor, \land, \neg \rangle$ 上的一个布尔表达式. 试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式.

 \mathbf{R} 对 $E(x_1, x_2, x_3)$ 写出其对应的函数表, 然后构造小项、大项:

	$E(x_1,x_2,x_3)$	构造小项	构造大项
$\langle 0, 0, 0 \rangle$	0		$x_1 \lor x_2 \lor x_3$
$\langle 0, 0, 1 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge x_3$	
$\langle 0, 1, 0 \rangle$	0		$x_1 \vee \overline{x_2} \vee x_3$
$\langle 0, 1, 1 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge x_3$	
$\langle 1, 0, 0 \rangle$	0		$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	1	$x_1 \wedge \overline{x_2} \wedge x_3$	
$\langle 1, 1, 0 \rangle$	1	$x_1 \wedge x_2 \wedge \overline{x_3}$	
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$	

解 $E(x_1, x_2, x_3)$ 的析取范式:

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3).$$

 $E(x_1, x_2, x_3)$ 的合取范式:

$$E(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3). \qquad \Box$$