

ETF3231/5231 Business forecasting

Week 9: ARIMA models

https://bf.numbat.space/

Outline

- 1 ARIMA modelling in R
- 2 Forecasting
- 3 Seasonal ARIMA models
- 4 ARIMA vs ETS

Outline

- 1 ARIMA modelling in R
- 2 Forecasting
- 3 Seasonal ARIMA models
- 4 ARIMA vs ETS

Modelling procedure with ARIMA()

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Automatic modelling procedure with ARIMA()

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.

- Use ARIMA() to automatically select a model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Modelling procedure

Outline

- 1 ARIMA modelling in R
- 2 Forecasting
- 3 Seasonal ARIMA models
- 4 ARIMA vs ETS

Point forecasts

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t,$$

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t,$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4] y_t$$

= $(1 + \theta_1B)\varepsilon_t$,

$$y_{t} - (1 + \phi_{1})y_{t-1} + (\phi_{1} - \phi_{2})y_{t-2} + (\phi_{2} - \phi_{3})y_{t-3} + \phi_{3}y_{t-4} = \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

$$\begin{aligned} \mathbf{y}_t &= (\mathbf{1} + \phi_1) \mathbf{y}_{t-1} - (\phi_1 - \phi_2) \mathbf{y}_{t-2} - (\phi_2 - \phi_3) \mathbf{y}_{t-3} \\ &- \phi_3 \mathbf{y}_{t-4} + \varepsilon_t + \theta_1 \varepsilon_{t-1}. \end{aligned}$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

ARIMA(3,1,1) forecasts: Step 2

$$y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T.$$

$$\hat{\mathbf{y}}_{T+1|T} = (\mathbf{1} + \phi_1)\mathbf{y}_T - (\phi_1 - \phi_2)\mathbf{y}_{T-1} - (\phi_2 - \phi_3)\mathbf{y}_{T-2} - \phi_3\mathbf{y}_{T-3} + \theta_1\mathbf{e}_T.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

ARIMA(3,1,1) forecasts: Step 2

$$y_{T+2} = (1 + \phi_1)y_{T+1} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1} - \phi_3y_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$$

$$\hat{\mathbf{y}}_{T+2|T} = (1 + \phi_1)\hat{\mathbf{y}}_{T+1|T} - (\phi_1 - \phi_2)\mathbf{y}_T - (\phi_2 - \phi_3)\mathbf{y}_{T-1} - \phi_3\mathbf{y}_{T-2}.$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models regardless of parameters and orders.
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^{2} \left[1 + \sum_{i=1}^{h-1} \theta_{i}^{2} \right], \quad \text{for } h = 2, 3, \dots.$$

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors

Outline

- 1 ARIMA modelling in R
- 2 Forecasting
- 3 Seasonal ARIMA models
- 4 ARIMA vs ETS

where m = number of observations per year.

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant) $(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)\varepsilon_t.$ (Non-seasonal difference) (Non-seasonal AR(1)) (Seasonal AR(1)) (Seasonal AR(1)) (Seasonal difference) (Seasonal AR(1))

E.g., ARIMA(1, 1, 1)(1, 1, 1)₄ model (without constant)

$$(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)\varepsilon_t.$$

All the factors can be multiplied out and the general model written as follows:

$$\begin{aligned} y_t &= (1+\phi_1)y_{t-1} - \phi_1y_{t-2} + (1+\Phi_1)y_{t-4} \\ &- (1+\phi_1+\Phi_1+\phi_1\Phi_1)y_{t-5} + (\phi_1+\phi_1\Phi_1)y_{t-6} \\ &- \Phi_1y_{t-8} + (\Phi_1+\phi_1\Phi_1)y_{t-9} - \phi_1\Phi_1y_{t-10} \\ &+ \varepsilon_t + \theta_1\varepsilon_{t-1} + \Theta_1\varepsilon_{t-4} + \theta_1\Theta_1\varepsilon_{t-5}. \end{aligned}$$

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

ARIMA $(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

ARIMA $(0,0,0)(1,0,0)_{12}$ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

Outline

- 1 ARIMA modelling in R
- 2 Forecasting
- 3 Seasonal ARIMA models
- 4 ARIMA vs ETS

ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models are all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

ARIMA vs ETS

Equivalences

ETS model	ARIMA model	Parameters
ETS(A,N,N)	ARIMA(0,1,1)	$\theta_1 = \alpha - 1$
ETS(A,A,N)	ARIMA(0,2,2)	θ_1 = α + β $-$ 2
		θ_{2} = 1 $-\alpha$
$ETS(A,A_d,N)$	ARIMA(1,1,2)	$\phi_1 = \phi$
		θ_{1} = α + $\phi\beta$ $ 1$ $ \phi$
		θ_2 = (1 $-\alpha$) ϕ
ETS(A,N,A)	$ARIMA(0,0,m)(0,1,0)_m$	
ETS(A,A,A)	$ARIMA(0,1,m+1)(0,1,0)_m$	
$ETS(A,A_d,A)$	$ARIMA(1,0,m+1)(0,1,0)_m$	