

Linear classifiers:

Overfitting & regularization

Emily Fox & Carlos Guestrin
Machine Learning Specialization
University of Washington

©2015-2016 Emily Fox & Carlos Guestrin

Training and evaluating a classifier

Training a classifier = Learning the coefficients

Classification error

Learned classifier

ŷ = -

Test example

(\$Ersbickvaasgoda(t, =))

Micetaelcet!

Classification error & accuracy

Error measures fraction of mistakes

- Best possible value is 0.0
- Often, measure accuracy
 - Fraction of correct predictions

- Best possible value is 1.0

Overfitting in regression: preview

Flexibility of high-order polynomials

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$

Overfitting in classification

Decision boundary example

Word	Coefficient	
#awesome	1.0	Coons(v) 1.0 #avvasana 1.5 #avvául
#awful	-1.5	Score(x) = 1.0 #awesome - 1.5 #awful

14

Learned decision boundary

	Feature	Value	Coefficient learned	
	h ₀ (x)	V ₂ 1	0.23	
	$h_1(\mathbf{x})$	₩ , x [1]	1.12	Sur (x) = 0
	h ₂ (x)	₩ 2 x [2]	-1.07	0.23+1.12 X [1] - 1.07 X [2] =
4 _ 3 -	1 1 1			4
2	-	= =	_	2
1	-		٠+٠	
0		• + +	_+	
1 2		T_ T_	+]	-1 -2 -2 -2

x[1]

Quadratic features (in 2d)

Note: we are not including cross terms for simplicity

	Feature	Value	Coefficient learned	
	$h_0(\mathbf{x})$	1	1.68	
	$h_1(\mathbf{x})$	x [1]	1.39	
	$h_2(\mathbf{x})$	x [2]	- 0.59	
	$h_3(\mathbf{x})$	$(x[1])^2$	-0.17	Score (x) <0 68+1.34 XEI) -0.54 XEZ) -0.17 (XEI]) -0.96(xcz))2
	$h_4(\mathbf{x})$	$(x[2])^2$	-0.96	5000 (1.0) + 1.34 XC1) = 0.74 XC2) = 0.14(XC13) 0 1000 = 0
-: -:	_	+ + + + + + + 2 -1 0 x[1]	+ + + + + + + + + + + + + + + + + + +	(A) 3 2 1 1 2 1 2 1 2 3 5 1 2 3 5 1 1 2 3 5 1 1 1 2 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1

Degree 6 features (in 2d)

Note: we are not including cross terms for simplicity

	Feature	Value	Coefficient learned		
	h ₀ (x)	1	21.6		
	$h_1(\mathbf{x})$	x [1]	5.3	Coefficient values	$\overline{\mathcal{O}}$
	h ₂ (x)	x [2]	-42.7	getting large	
	$h_3(\mathbf{x})$	$(x[1])^2$	-15.9		$Score(\mathbf{x}) < 0$
	$h_4(\mathbf{x})$	$(x[2])^2$	-48.6	4	$Score(\mathbf{x}) < 0$
	$h_5(\mathbf{x})$	$(x[1])^3$	-11.0	3	3
	$h_6(\mathbf{x})$	$(x[2])^3$	67.0	2	2
	$h_7(\mathbf{x})$	$(x[1])^4$	1.5	\[\frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	h ₈ (x)	$(\mathbf{x}[2])^4$	48.0	_1 _ + + +	-1
	$h_9(\mathbf{x})$	$(x[1])^5$	4.4	-2	-2
	h ₁₀ (x)	$(\mathbf{x}[2])^5$	-14.2	$-3 \begin{bmatrix} -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \end{bmatrix}$	-3 -5 -4 -3 -2 -1 0 1 2 3
	h ₁₁ (x)	$(x[1])^6$	0.8	x[1]	$\begin{array}{c} x[1] \\ x = 1 \end{array}$
	h ₁₂ (x)	(x [2]) ⁶	-8.6		extremely complex (crazy) decision boundary
-	18			©2015-2016 Emily Fox & Carlos Guestrin	Machine Learning Specialization

Degree 20 features (in 2d) Note: we are not including cross terms for simplicity

Feature	Value	Coefficient learned
$h_0(\mathbf{x})$	1	8.7
$h_1(\mathbf{x})$	x [1]	5.1
$h_2(\mathbf{x})$	x [2]	78.7
	•••	
h ₁₁ (x)	$(x[1])^6$	-7.5
h ₁₂ (x)	(x [2]) ⁶	3803
h ₁₃ (x)	$(x[1])^7$	21.1
h ₁₄ (x)	$(\mathbf{x}[2])^7$	-2406
h ₃₇ (x)	$(x[1])^{19}$	-2*10 ⁻⁶
h ₃₈ (x)	(x [2]) ¹⁹	-0.15
h ₃₉ (x)	(x [1]) ²⁰	-2*10-8
h ₄₀ (x)	(x [2]) ²⁰	0.03
19		

Often, overfitting associated with very large estimated coefficients w

Overfitting in classifiers -> Overconfident predictions

Logistic regression model

The subtle (negative) consequence of overfitting in logistic regression

Overfitting -> Large coefficient values

 $^{\text{Th}}(\mathbf{x}_i)$ is very positive (or very negative) → $^{\text{sigmoid}}(^{\text{Th}}(\mathbf{x}_i))$ goes to 1 (or to 0)

Model becomes extremely overconfident of predictions

Effect of coefficients on logistic regression model

Input **x**: #awesome=2, #awful=1

w_0	0
W _{#awesome}	+1
W _{#awful}	-1

W_0	0
W _{#awesome}	+2
W #awful	-2

w_0	0
W _{#awesome}	+6
W #awful	-6

26

©2015-2016 Emily Fox & Carlos Guestrin

Learned probabilities

	Feature	Value	Coefficient learned	
	$h_0(\mathbf{x})$	1	0.23	
	$h_1(\mathbf{x})$	x [1]	1.12	$4 \qquad Pnb \hat{g} = +1$
	h ₂ (x)	x [2]	-1.07	pob zo
P(y)		4.A. I	$\frac{1}{1+e^{-\mathbf{w}^{\top}h}}$ So note region undertainly	$\begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$
27				-5 -4 -3 -2 -1 0 1 2 3 x[1]

Quadratic features: Learned probabilities

Feature	Value	Coefficient learned				
h ₀ (x)	1	1.68	l			
h ₁ (x)	x [1]	1.39			prob. 9=+1	
h ₂ (x)	x [2]	-0.58	better Fit to	4		
$h_3(\mathbf{x})$	$(x[1])^2$	-0.17	K+ to	3 -		
h ₄ (x)	(x [2]) ²	-0.96	data	2		
y = +1	$\mid \mathbf{x}, \mathbf{w}) =$	$\frac{1}{1 + e^{-\mathbf{w}^{\top}h}}$	inty n	1 × 0 -1 -2		
			Marower [*]	-3 -5 -	4 -3 -2 -1	0 1 2
8			©2015-2016 Emily	/ Fox & Carlos Guestrin	x[1]	Machine Learni

Overfitting Overconfident predictions

Overfitting in logistic regression: Another perspective

Linearly-separable data

Data are linearly separable if:

There exist coefficients w such that:

- For all positive training data

- For all negative training data

$$\int_{Core} (x) = \hat{w}^{T} h(x) < 0$$

Note 1: If you are using D features, linear separability happens in a D-dimensional space

Note 2: If you have enough features, data are (almost) always linearly separable

 $training_error(\mathbf{\hat{w}}) = 0$

Effect of linear separability on coefficients

Data are linearly separable with \hat{w}_1 =1.0 and \hat{w}_2 =-1.5

Data also linearly separable with \hat{w}_1 =10 and \hat{w}_2 =-15

Data also linearly separable with \hat{w}_1 =10⁹ and \hat{w}_2 =-1.5x10⁹

Maximum likelihood estimation (MLE) prefers most certain model → Coefficients go to infinity for linearly-separable data!!!

Overfitting in logistic regression is "twice as bad"

Learning tries to find decision boundary that separates data

If data are linearly separable

Overly complex boundary

Coefficients go to infinity!

$$\hat{\mathbf{w}}_1 = 10^9$$

 $\hat{\mathbf{w}}_2 = -1.5 \times 10^9$

Penalizing large coefficients to mitigate overfitting

Desired total cost format

Want to balance:

- i. How well function fits data
- ii. Magnitude of coefficients

Maximum likelihood estimation (MLE): Measure of fit = Data likelihood

Choose coefficients w that maximize likelihood:

$$\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

• Typically, we use the log of likelihood function (simplifies math and has better convergence properties)

$$\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Measure of magnitude of logistic regression coefficients

What summary # is indicative of size of logistic regression coefficients?

- Sum of squares (L_2 norm) $||w||_2^2 = w_0^2 + w_1^2 + w_2^2 + \cdots + w_0^2$ - Sum of absolute value (L_1 norm) $||w||_1 = |w_0| + |w_1| + |w_2| + \cdots + |w_0|$ Spark Solution

Consider specific total cost

Consider resulting objective

```
\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_2^2
tuning parameter = balance of fit and magnitude

If \lambda = 0:

Standard (unperalized) MLE solution

If \lambda = \infty:
    - a max l(w) - do ||w||_2^2 - only care about penalizing w, large coefficients - w=0
      If \lambda in between:
                Balance Anta hit against the magnitude of the coefficients
                                                  ©2015 Emily Fox & Carlos Guestrin
                                                                                                      Machine Learning Specialization
```

Consider resulting objective

What if w selected to minimize

$$\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_2^2$$
tuning parameter = balance of fit and magnitude

 L_2 regularized logistic regression

Pick \(\lambda\) using:

- Validation set (for large datasets)
- Cross-validation (for smaller datasets)
 (see regression course)

Bias-variance tradeoff

Large λ :

high bias, low variance

(e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$)

In essence, λ controls model complexity

Small λ :

low bias, high variance

(e.g., maximum likelihood (MLE) fit of high-order polynomial for $\lambda=0$)

Visualizing effect of regularization on logistic regression

Degree 20 features, $\lambda = 0$

Feature	Value	Coefficient learned
h ₀ (x)	1	8.7
$h_1(\mathbf{x})$	x [1]	5.1
$h_2(\mathbf{x})$	x [2]	78.7
h ₁₁ (x)	$(x[1])^6$	-7.5
h ₁₂ (x)	(x [2]) ⁶	3803
h ₁₃ (x)	$(x[1])^7$	21.1
h ₁₄ (x)	$(\mathbf{x}[2])^7$	-2406
h ₃₇ (x)	$(x[1])^{19}$	-2*10 ⁻⁶
h ₃₈ (x)	(x [2]) ¹⁹	-0.15
h ₃₉ (x)	(x [1]) ²⁰	-2*10 ⁻⁸
h ₄₀ (x)	(x [2]) ²⁰	0.03

Coefficients range from -3170 to 3803

Degree 20 features, effect of regularization penalty λ

Coefficient path

Degree 20 features:

regularization reduces "overconfidence"

Finding best L₂ regularized linear classifier with gradient ascent

57

Gradient ascent

59

Gradient of L₂ regularized log-likelihood

Total quality = measure of fit - measure of magnitude of coefficients $\ell(\mathbf{w}) \qquad \qquad \lambda \, ||\mathbf{w}||_2^2$ Total derivative = $\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_i} - \lambda \, \frac{\partial ||\mathbf{w}||_2^2}{\partial \mathbf{w}_i}$

Derivative of (log-)likelihood

Sum over data points Feature value Difference between truth and prediction
$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^N h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \Big)$$

Derivative of L₂ penalty

$$\frac{\partial ||\mathbf{w}||_2^2}{\partial \mathbf{w}_i} = \frac{\partial}{\partial \mathbf{w}_i} \left[\mathbf{w}_i^2 + \mathbf{w}_i^2 + \mathbf{w}_i^2 + \cdots + \mathbf{w}_i^2 \right] = \left[2 \mathbf{w}_i \right]$$

Understanding contribution of L₂ regularization

Summary of gradient ascent for logistic regression with L₂ Regularization

init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), t=1 while not converged:

$$\begin{aligned} & \textbf{for } j = 0, ..., D \\ & \text{partial[j]} = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right) \\ & \mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ (partial[j]} - 2\lambda \mathbf{w}_j^{(t)}) \\ & \mathbf{t} \leftarrow \mathbf{t} + 1 \end{aligned}$$

Sparse logistic regression with L_1 regularization

Recall sparsity (many $\hat{\mathbf{w}}_{j}=0$) gives efficiency and interpretability

Efficiency:

- If $size(\mathbf{w}) = 100B$, each prediction is expensive
- If w sparse, computation only depends on # of non-zeros

many zeros
$$\hat{y}_i = sign\left(\sum_{\hat{\mathbf{w}}_j \neq \mathbf{0}} \hat{\mathbf{w}}_j h_j(\mathbf{x}_i)\right)$$

Interpretability:

– Which features are relevant for prediction?

Sparse logistic regression

L_1 regularized logistic regression

Just like L2 regularization, solution is governed by a continuous parameter λ

```
\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_1
tuning parameter =
balance of fit and sparsity

Process of the sparsity

If \lambda = 0:

If \lambda = \infty:

all weight is an regularization \omega = 0

If \lambda in between:

\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty}
```

Regularization path – L₂ penalty

Regularization path – L₁ penalty

Summary of overfitting in logistic regression

What you can do now...

- Identify when overfitting is happening
- Relate large learned coefficients to overfitting
- Describe the impact of overfitting on decision boundaries and predicted probabilities of linear classifiers
- Motivate the form of L₂ regularized logistic regression quality metric
- Describe what happens to estimated coefficients as tuning parameter λ is varied
- Interpret coefficient path plot
- Estimate L₂ regularized logistic regression coefficients using gradient ascent
- Describe the use of L₁ regularization to obtain sparse logistic regression solutions