MATH 138 Personal Notes

by Sam Gunter

Instructors: Roberto Guglielmi, Jordan Hamilton, Eddie Dupont Course Notes by: Barbara A. Forrest, Brian E. Forrest • Winter 2021 • University of Waterloo •

Common Integrals:

Function	Integral
x^n	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	$\ln x + C$
e^x	$e^x + C$
$\sin\left(x\right)$	$-\cos\left(x\right) + C$
$\cos\left(x\right)$	$\sin(x) + C$
$\sec^2(x)$	$\tan(x) + C$
$\frac{1}{1+x^2}$	$\arctan(x) + C$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + C$
$\frac{-1}{\sqrt{1-x^2}}$	$\arccos(x) + C$
$\sec(x)\tan(x)$	$\sec(x) + C$
a^x where $a \in \mathbb{R} > 0, a \neq 1$	$\frac{a^x}{\ln{(a)}} + C$

Inverse Trigonometric Substitutions:

Class of Integrand	Integral	Trig Substitution	Trig Identity
$\sqrt{a^2 - b^2 x^2}$	$\int \sqrt{a^2 - b^2 x^2} \mathrm{d}x$	$bx = a\sin\left(u\right)$	$\sin^2(x) + \cos^2(x) = 1$
$\sqrt{a^2 + b^2 x^2}$	$\int \sqrt{a^2 + b^2 x^2} \mathrm{d}x$	$bx = a\tan\left(u\right)$	$\sec^2(x) - 1 = \tan^2(x)$
$\sqrt{b^2x^2 - a^2}$	$\int \sqrt{b^2 x^2 - a^2} \mathrm{d}x$	$bx = a\sec\left(u\right)$	$\sec^2(x) - 1 = \tan^2(x)$

Contents

1	Inte	egration	1
	1.1	Integrability Theorem for Continuous Functions	2
	1.2	Properties of Integrals	2
	1.3	Integrals over Subintervals	3
	1.4	Average Value Theorem	3
	1.5	Fundamental Theorem of Calculus (Part 1)	3
	1.6	Extended Version of the Fundamental Theorem of Calculus	4
	1.7	Power Rule for Antiderivatives	4
	1.8	Fundamental Theorem of Calculus (Part 2)	4
	1.9	Change of Variables Theorem	4
2	Tec	hniques of Integration	5
	2.1	Integration by Parts Theorem	5
	2.2	Integration of Partial Fractions	5
	2.3	p-Test for Type I Improper Integrals	7
	2.4	Properties of Type I Improper Integrals	7
	2.5	The Monotone Convergence Theorem for Functions	7
	2.6	Comparison Test for Type I Improper Integrals	8
	2.7	Absolute Convergence Theorem for Improper Integrals	8
	2.8	p-Test for Type II Improper Integrals	9
3	$\mathbf{Ap_{l}}$	plications of Integration	10
4	Difl	ferential Equations	11
	4.1	Solving First-Order Linear Differential Equations Theorem	12
	4.2	Existence and Uniqueness Theorem for First-Order Linear Differential Equations $$.	12

5	Nun	nerical Series	13
	5.1	Geometric Series Test	13
	5.2	Divergence Test	14
	5.3	Arithmetic for Series I	14
	5.4	Arithmetic for Series II	14
	5.5	Monotone Convergence Theorem	15
	5.6	Comparison Test for Series	15
	5.7	Limit Comparison Test	15
	5.8	Integral Test for Convergence	16
	5.9	p-Series Test	16
	5.10	Alternating Series Test	16
	5.11	Absolute Convergence Theorem	17
	5.12	Rearrangement Theorem	17
	5.13	Ratio Test	18
	5.14	Polynomial vs Factorial Growth	18
	5.15	Root Test	18
6	Pow	ver Series	19
	6.1	Fundamental Convergence Theorem for Power Series	19
	6.2	Test for the Radius of Convergence	20
	6.3	Equivalence of Radius of Convergence	20
	6.4	Abel's Theorem: Continuity of Power Series	20
	6.5	Addition of Power Series	21
	6.6	Multiplication of a Power Series by $(x-a)^m$	21
	6.7	Power Series of Composite Functions	21
	6.8	Term-by-Term Differentiation of Power Series	22
	6.9	Uniqueness of Power Series Representations	22
		Term-by-Term Integration of Power Series	22
		Taylor's Theorem	23
		Taylor's Approximation Theorem I	23
		Convergence Theorem for Taylor Series	24
		Binomial Theorem	24

Integration

Def Riemann Sum: Given a bounded function f on [a, b], a partition P where $a = t_0 < t_1 < \dots t_{n-1} < t_n = b$, and a set $\{c_1, c_2, \dots c_n\}$ where $c_i \in [t_{i-1}, t_i]$, then the Riemann sum for f is of the form

$$S = \sum_{i=1}^{n} f(c_i) \Delta t_i$$

Note: The norm of the partition P is the length of the widest subinterval denoted by

$$||P|| = \max\{\Delta t_1, \Delta t_2, \dots \Delta t_n\}$$

• **Def** Right-hand Riemann Sum: The Riemann sum R obtained by choosing $c_i = t_i$

$$R = \sum_{i=1}^{n} f(t_i) \Delta t_i$$

• **Def** Left-hand Riemann Sum: The Riemann sum R obtained by choosing $c_i = t_{i-1}$

$$R = \sum_{i=1}^{n} f(t_{i-1}) \Delta t_i$$

Def Regular *n*-Partition: Given an interval [a,b] and an $n \in \mathbb{N}$, a regular *n*-partition is the partition P^n where each subinterval has the same length, thus $\Delta t_i = \frac{b-a}{n}$

Right-hand Regular Sum:
$$R_n = \sum_{i=1}^n f(t_i) \frac{b-a}{n} = \sum_{i=1}^n f\left(a+i\left(\frac{b-a}{n}\right)\right) \left(\frac{b-a}{n}\right)$$

$$\text{Left-hand Regular Sum: } R_n = \sum_{i=1}^n f(t_{i-1}) \frac{b-a}{n} = \sum_{i=1}^n f\left(a + (i-1)\left(\frac{b-a}{n}\right)\right) \left(\frac{b-a}{n}\right)$$

Def Definite Integral: A bounded function f is integrable on [a,b] if there exists a unique $I \in \mathbb{R}$ such that if $\{P_n\}$ is a sequence of partitions with $\lim_{n\to\infty} ||P_n|| = 0$ and $\{S_n\}$ is a sequence of Riemann sums, we have

$$\lim_{n\to\infty} S_n = I$$

We call I the integral of f over [a, b] and denote it by

$$\int_{a}^{b} f(t) dt$$

where a and b are the limits of integration, f(t) is the integrand, and t is the variable of integration

1.1 Integrability Theorem for Continuous Functions

Let f be continuous on [a, b]. Then f is integrable on [a, b]. Moreover, Let

$$S_n = \sum_{i=1}^n f(c_i) \Delta t_i$$

with regular n-partitions, then

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} S_n$$

1.2 Properties of Integrals

Assuming that f and g are integrable on the interval [a, b]:

- (i) For any $c \in \mathbb{R}$, $\int_a^b cf(t)dt = c \int_a^b f(t)dt$
- (ii) $\int_a^b (f+g)(t)dt = \int_a^b f(t)dt + \int_a^b g(t)dt$
- (iii) If $m \le f(t) \le M$ for all $t \in [a, b]$, then $m(b a) \le \int_a^b f(t) dt \le M(b a)$
- (iv) If $0 \le f(t)$ for all $t \in [a, b]$, then $0 \le \int_a^b f(t) dt$
- (v) If $g(t) \leq f(t)$ for all $t \in [a, b]$, then $\int_a^b g(t) dt \leq \int_a^b f(t) dt$
- (vi) The function |f| is integrable on [a,b] and $|\int_a^b f(t) dt| \le \int_a^b |f(t)| dt$

Def Identical Limits of Integration: Let f(t) be defined at t = a, then

$$\int_{a}^{a} f(t) dt = 0$$

Def Switching the Limits of Integration: Let f be integrable on the interval [a, b] where a < b, then

$$\int_{b}^{a} f(t)dt = -\int_{a}^{b} f(t)dt$$

1.3 Integrals over Subintervals

Assume that f is integrable on an interval I containing a, b, and c. Then

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Def Average Value of f: If f is continuous on [a, b], the average value of f is

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt$$

1.4 Average Value Theorem

Assume that f is continuous on [a, b], then there exists $a \le c \le b$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

1.5 Fundamental Theorem of Calculus (Part 1)

Assume that f is continuous on an open interval I that contains a point a. Let

$$G(x) = \int_{a}^{x} f(t) dt$$

Then G(x) is differentiable at each $x \in I$, and

$$G'(x) = f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \mathrm{d}t$$

1.6 Extended Version of the Fundamental Theorem of Calculus

Assume that f is continuous and that g and h are differentiable. Let

$$H(x) = \int_{g(x)}^{h(x)} f(t) dt$$

Then H(x) is differentiable and

$$H'(x) = f(h(x))h'(x) - f(g(x))g'(x)$$

Def Antiderivative: For a function f, its antiderivative is the function F such that

$$F'(x) = f(x)$$

Note: if F'(x) = f(x) for all $x \in I$, then F is an antiderivative for f on I

Note: The family of all antiderivatives is denoted by

$$\int f(x) \mathrm{d}x$$

1.7 Power Rule for Antiderivatives

Assume $\alpha \neq -1$, then

$$\int x^{\alpha} \mathrm{d}x = \frac{x^{\alpha+1}}{\alpha+1} + C$$

1.8 Fundamental Theorem of Calculus (Part 2)

Assume that f is continuous and that F is any antiderivative of f. Then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

Def Integrals: For an antiderivative F,

$$F(x)|_a^b = F(b) - F(a)$$

1.9 Change of Variables Theorem

Assume that g'(x) is continuous on [a, b] and f(u) is continuous on g([a, b]). Then

$$\int_{x=a}^{x=b} f(g(x))g'(x)dx = \int_{u=q(a)}^{u=g(b)} f(u)du$$

Techniques of Integration

Def Integration by Parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

2.1 Integration by Parts Theorem

Assume f', g' are continuous on an interval containing a, b. Then

$$\int_a^b f(x)g'(x)dx = f(x)g(x) \mid_a^b - \int_a^b f'(x)g(x)dx$$

Def Rational Functions: Are of the form

$$f(x) = \frac{p(x)}{q(x)}$$

Def Type I Partial Fraction Decomposition: Assume that $f(x) = \frac{p(x)}{q(x)}$ where p, q are polynomials such that degree(p) < degree(q) = k and q can be factored into linear terms $q = a(x - a_1)(x - a_2) \dots (x - a_k)$ with distinct roots. Then there exists $A_1, A_2, \dots A_k$ such that

$$f(x) = \frac{1}{a} \left(\frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_k}{x - a_k} \right)$$

thus f admits a Type I Partial Fraction Decomposition

2.2 Integration of Partial Fractions

Assume that $f(x) = \frac{p(x)}{q(x)}$ admits a Type I Partial Fraction Decomposition. Then

$$\int f(x) dx = \frac{1}{a} \left(\int \frac{A_1}{x - a_1} dx + \dots + \int \frac{A_k}{x - a_k} dx \right) = \frac{1}{a} \left(A_1 \ln|x - a_1| + \dots + A_k \ln|x - a_k| \right) + C$$

Def Type II Partial Fraction Decomposition: Assume that $f(x) = \frac{p(x)}{q(x)}$ where p, q are polynomials such that degree(p) < degree(q) = k and q can be factored into linear terms $q = a(x-a_1)^{m_1}(x-a_2)^{m_2}\dots(x-a_k)^{m_k}$ with non-distinct roots. Then the partial fraction decomposition is

$$f(x) = \sum_{j=1}^{k} \left(\frac{A_{j,1}}{x - a_j} + \frac{A_{j,2}}{(x - a_j)^{m_2}} + \dots + \frac{A_{j,m_j}}{(x - a_j)^{m_j}} \right)$$

thus f admits a Type II Partial Fraction Decomposition

Note: m_i is the multiplicity of root a_i

Def Type III Partial Fraction Decomposition: Assume that $f(x) = \frac{p(x)}{q(x)}$ where p, q are polynomials such that degree(p) < degree(q) = k but q cannot be factored into linear terms. Suppose q has an irreducible factor $x^2 + bx + c$, then this factor contributes as

$$\frac{B_1x + C_1}{x^2 + bx + c} + \frac{B_2x + C_2}{(x^2 + bx + c)^2} + \dots + \frac{B_mx + C_m}{(x^2 + bx + c)^m}$$

thus f admits a Type III Partial Fraction Decomposition

Def Type I Improper Integrals:

1. Let f be integrable on [a, b] where $a \leq b$, then the integral

$$\int_{a}^{\infty} f(x) \mathrm{d}x$$

converges if

$$\lim_{b \to \infty} \int_a^b f(x) \mathrm{d}x$$

otherwise it diverges

2. Let f be integrable on [b, a] where $b \leq a$, then the integral

$$\int_{-\infty}^{a} f(x) \mathrm{d}x$$

converges if

$$\lim_{b \to -\infty} \int_{b}^{a} f(x) \mathrm{d}x$$

otherwise it diverges

3. Let f be integrable on [a, b] where a < b, then the integral

$$\int_{-\infty}^{\infty} f(x) dx$$

converges for $c \in \mathbb{R}$ if both

$$\int_{-\infty}^{c} f(x) dx \text{ and } \int_{c}^{\infty} f(x) dx$$

converge, otherwise it diverges

2.3 p-Test for Type I Improper Integrals

The improper integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{d}x$$

converges if and only if p > 1. Then

$$\int_{1}^{\infty} \frac{1}{x^p} \mathrm{d}x = \frac{1}{p-1}$$

2.4 Properties of Type I Improper Integrals

Assume that $\int_a^\infty f(x) \mathrm{d}x$ and $\int_a^\infty g(x) \mathrm{d}x$ converge

1. $\int_a^\infty cf(x)dx$ converges for all $c \in \mathbb{R}$

$$\int_{a}^{\infty} cf(x) dx = c \int_{a}^{\infty} f(x) dx$$

2. $\int_a^\infty f(x) + g(x) dx$ converges

$$\int_{a}^{\infty} f(x) + g(x) dx = \int_{a}^{\infty} f(x) dx + \int_{a}^{\infty} g(x) dx$$

3. If $f(x) \leq g(x)$ for all $a \leq x$

$$\int_{a}^{\infty} f(x) \mathrm{d}x \le \int_{a}^{\infty} g(x) \mathrm{d}x$$

4. If $a < c < \infty$ then $\int_{c}^{\infty} f(x) dx$ converges

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

2.5 The Monotone Convergence Theorem for Functions

Assume that f is non-decreasing on $[a, \infty)$

1. if $\{f(x) \mid x \in [a, \infty)\}$ is bounded above, then

$$\lim_{x \to \infty} f(x) = L = lub(\{f(x) \mid x \in [a, \infty)\})$$

2. If $\{f(x) \mid x \in [a,\infty)\}$ is not bounded above, then $\lim_{x\to\infty} f(x) = \infty$

2.6 Comparison Test for Type I Improper Integrals

Assume $0 \le g(x) \le f(x)$ for all $x \ge a$ and that f and g are continuous on $[a, \infty)$

- 1. if $\int_a^\infty f(x) dx$ converges, then so does $\int_a^\infty g(x) dx$
- 2. if $\int_a^\infty g(x) \mathrm{d}x$ diverges, then so does $\int_a^\infty f(x) \mathrm{d}x$

Fact: If f is integrable on [a,b) for every $b \ge a$ and $f(x) \ge 0$ on $[a,\infty)$, then $\int_a^\infty f(x) dx$ converges if and only if $\exists M$ such that

$$\int_{a}^{b} f(x) \mathrm{d}x \le M$$

for all b > a

Def Absolute Convergence for Type I Improper Integrals: Let f be integrable on [a, b) for all $b \ge a$. Then \int_a^∞ converges absolutely if

$$\int_{a}^{\infty} |f(x)| \mathrm{d}x$$

converges

2.7 Absolute Convergence Theorem for Improper Integrals

Let f be integrable on [a,b] for all b>a. Then |f| is integrable on [a,b] for all b>a. Moreover if

$$\int_{a}^{\infty} |f(x)| \mathrm{d}x$$

converges then so does

$$\int_{a}^{\infty} f(x) \mathrm{d}x$$

Def Gamma Function: For all $x \in \mathbb{R}$, the gamma function is defined as

$$\Gamma(x) = \int_{a}^{\infty} t^{x-1} e^{-1} \mathrm{d}x$$

Def Type II Improper Integrals:

1. Let f be integrable on [t,b] for every $t \in (a,b]$ with $\lim_{x\to a^+} = \infty$ or $\lim_{x\to a^+} = -\infty$, then the integral

$$\int_{a}^{b} f(x) \mathrm{d}x$$

converges if

$$\lim_{t \to a^+} \int_t^b f(x) \mathrm{d}x$$

exists, otherwise it diverges

2. Let f be integrable on [a,t] for every $t \in [a,b)$ with $\lim_{x\to b^-} = \infty$ or $\lim_{x\to b^-} = -\infty$, then the integral

$$\int_{a}^{b} f(x) \mathrm{d}x$$

converges if

$$\lim_{t \to b^-} \int_a^t f(x) \mathrm{d}x$$

exists, otherwise it diverges

3. If f has an infinite discontinuity at x = c where a < c < b, then the integral

$$\int_a^b f(x) \mathrm{d}x$$

converges for $c \in \mathbb{R}$ if both

$$\int_a^c f(x) dx$$
 and $\int_c^b f(x) dx$

converge, otherwise it diverges

2.8 p-Test for Type II Improper Integrals

The improper integral

$$\int_0^1 \frac{1}{x^p}$$

converges if and only if p < 1, Then

$$\int_0^1 \frac{1}{x^p} = \frac{1}{1 - p}$$

Applications of Integration

Def Area Between Curves: Let f, g be continuous on [a, b]. The area of a region bounded by f, g, a line at t = a and a line at t = b is

$$A = \int_{a}^{b} |g(t) - f(t)| dt$$

Def Volume of Revolution, Disk Method I: Let f be continuous on [a, b] with $f(x) \ge 0$ for all $x \in [a, b]$. The volume V of the solid of revolution obtained by rotating the region bounded by f(x), x = a, x = b around the x-axis is

$$V = \int_{a}^{b} \pi f(x)^{2} \mathrm{d}x$$

Def Volume of Revolution, Disk Method II: Let f, g be continuous on [a, b] with $0 \le f(x) \le g(x)$ for all $x \in [a, b]$. The volume V of the solid of revolution obtained by rotating the region bounded by f(x), g(x), x = a, x = b around the x-axis is

$$V = \int_{a}^{b} \pi(g(x)^{2} - f(x)^{2}) dx$$

Def Volume of Revolution, Shell Method: Let f, g be continuous on [a, b] with $f(x) \leq g(x)$ for all $x \in [a, b]$. The volume V of the solid of revolution obtained by rotating the region bounded by f(x), g(x), x = a, x = b around the y-axis is

$$V = \int_{a}^{b} 2\pi x (g(x) - f(x)) dx$$

Def Arc Length: Let f be continuously differentiable on [a, b]. The arc length S of f is

$$S = \int_a^b \sqrt{1 + (f'(x))^2} \mathrm{d}x$$

Differential Equations

Def Differential Equation: An equation involving an independent variable such as x, a function y = y(x), and various derivatives of y

$$F(x, y, y', y'', \dots y^{(n)}) = 0$$

where a solution is a function φ such that

$$F(x, \varphi(x), \varphi'(x), \varphi''(x), \dots \varphi^{(n)}(x)) = 0$$

Note: The highest order of a derivative is the order of the equation

Def Separable Differential Equation: A first-order differentiable equation is separable if there exists f = f(x) and g = g(y) such that

$$y' = f(x)g(y)$$

- 1. Identify f(x) and g(x)
- 2. Find Constant (Equilibrium) Solutions
- 3. Find Implicit Solution
- 4. Find Explicit Solutions

Def Constant (Equilibrium) Solution to a Separable Differential Equation: If y' = f(x)g(y) is a separable differential equation and $\exists y_0 \in \mathbb{R}$ such that $g(y_0) = 0$ then there is a constant (equilibrium) solution

$$\phi(x) = y_0$$

Method Finding Implicit Solution to a Separable Differential Equation: If y' = f(x)g(y) is a separable differential equation, then when $g(y) \neq 0$ it means $\frac{y'}{g(y)} = f(x)$, thus

$$\int \frac{y'}{g(y)} dx = \int f(x) dy \text{ or } \int \frac{1}{g(y)} dx = \int f(x) dx$$

which gives the implicit solution

$$F(y) = F(x) + C$$

Def First-Order Linear Differentiable Equations: A first-order differentiable equation is linear if it can be written as

$$y' = f(x)y + g(x)$$

4.1 Solving First-Order Linear Differential Equations Theorem

Let f, g be continuous and y' = f(x)y + g(x) be a first-order linear differential equation. Then the solutions are of the form

$$y = \frac{\int g(x)I(x)\mathrm{d}x}{I(x)}$$

where $I(x) = e^{-\int f(x)dx}$

4.2 Existence and Uniqueness Theorem for First-Order Linear Differential Equations

Let f, g be continuous on the interval I. Then $\forall x_0 \in I, \forall y_0 \in \mathbb{R}$ the initial value problem

$$y' = f(x)y + g(x)$$
 and $y(x_0) = y_0$

has exactly one solution $y = \varphi(x)$ on the interval I

Def Exponential Growth and Decay: The solution to a differential equation P' = kP that models unlimited resource growth is

$$P(t) = Ce^{kt}$$

Def Half-life formula: The time it takes for half of a substance to decay is model by

$$t_h = \frac{-\ln\left(2\right)}{k}$$

Def Newton's Law of Cooling: If T(t) denotes the temperature of an object and T_a denotes the ambient temperature, then the solution to the differential equation $T' = k(T - T_a)$ is

$$T(t) = Ce^{kt} + T_a$$

Def Logistic Growth: The solution to a differential logistic equation P' = kP(M - P) that models growth with maximum population M is

$$Ce^{Mkt} = \frac{|P(t)|}{|M - P(t)|}$$

thus

1. If 0 < P(0) < M, then

$$P(t) = M \frac{Ce^{Mkt}}{1 + Ce^{Mkt}}$$

2. If P(0) > M, then

$$P(t) = M \frac{Ce^{Mkt}}{Ce^{Mkt} - 1}$$

Numerical Series

Def Series: Given a sequence $\{a_n\}$ the formal sum of the terms (A_i) , with indexes i, is the series

$$\sum_{n=1}^{\infty} a_n$$

Def Convergence of a Series: Given a series as defined above, for each $k \in \mathbb{N}$ the k-th partial sum is

$$s_k = \sum_{n=1}^k a_n$$

The series converges if the sequence $\{S_k\}$ converges. If $L = \lim_{k \to \infty} S_k$, then

$$\sum_{n=1}^{\infty} a_n = L$$

otherwise it diverges

Def Geometric Series: A geometric series is of the form

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 \dots$$

where r is the ratio of the series

5.1 Geometric Series Test

The geometric series $\sum_{n=0}^{\infty} r^n$ converges if and only if |r| < 1, then

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

5.2 Divergence Test

If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$, thus

$$\lim_{n\to\infty} a_n \neq 0 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}$$

5.3 Arithmetic for Series I

Assume $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ converge, then

1. $\forall c \in \mathbb{R}$,

$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$$

2.

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

5.4 Arithmetic for Series II

Assume $\sum_{n=1}^{\infty} a_n$ converges, then

1. $\forall j \in \mathbb{Z}$, if

$$\sum_{n=1}^{\infty} a_n \text{ converges} \Longrightarrow \sum_{n=i}^{\infty} a_n \text{ converges}$$

2. If $\exists j \in \mathbb{Z}$ where

$$\sum_{n=j}^{\infty} a_n \text{ converges} \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges}$$

Def Monotonic Sequence: A sequence $\{a_n\}$ is monotonic if it is

- 1. non-decreasing, that is $a_{n+1} \geq a_n$ for all $n \in \mathbb{N}$
- 2. increasing, that is $a_{n+1} > a_n$ for all $n \in \mathbb{N}$
- 3. non-increasing, that is $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$
- 4. decreasing, that is $a_{n+1} < a_n$ for all $n \in \mathbb{N}$

5.5 Monotone Convergence Theorem

Let $\{a_n\}$ be a non-decreasing sequence, then $\{a_n\}$ converges if and only if it is bounded above, that is

- 1. If $\{a_n\}$ is bounded above, then $\{a_n\}$ converges to $L = lub(\{a_n\})$
- 2. If $\{a_n\}$ is not bounded above, then $\{a_n\}$ diverges to ∞

Def Positive Series: A series $\sum_{n=1}^{\infty} a_n$ is positive if $a_n \geq 0$ for all $n \in \mathbb{N}$

5.6 Comparison Test for Series

Assume that $0 \le a_n \le b_n$ for each $n \in \mathbb{N}$,

- 1. If $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges
- 2. If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges

5.7 Limit Comparison Test

Assume that $a_n > 0, b_n > 0$ for each $n \in \mathbb{N}$, and that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

- 1. If $0 < L < \infty$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges
- 2. If L=0 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges, equivalently if $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges
- 3. If $L = \infty$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} b_n$ converges, equivalently if $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges

5.8 Integral Test for Convergence

Assume that f(x) > 0 is continuous and decreasing on $[a, \infty)$, and the $a_k = f(k)$. For each $n \in \mathbb{N}$, let $S_n = \sum_{k=1}^n a_k$, then

1. For all $n \in \mathbb{N}$,

$$\int_{1}^{n+1} f(x) \mathrm{d}x \le S_n \le a_1 + \int_{1}^{n} f(x) \mathrm{d}x$$

- 2. $\sum_{k=1}^{\infty} a_k$ converges if and only if $\int_1^{\infty} f(x) dx$ converges
- 3. If $\sum_{k=1}^{\infty} a_k$ converges and $S = \sum_{k=1}^{\infty} a_k$, then

$$\int_{1}^{\infty} f(x) dx \le \sum_{k=1}^{\infty} a_k \le a_1 + \int_{1}^{\infty} f(x) dx$$

and

$$\int_{n+1}^{\infty} f(x) dx \le S - S_n \le \int_{n}^{\infty} f(x) dx$$

5.9 p-Series Test

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1

Def Alternating Series: If $a_n > 0$ for all n, then an alternating series is of the form

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n \text{ or } \sum_{n=1}^{\infty} (-1)^n a_n$$

5.10 Alternating Series Test

Assume that $a_n > 0$ and $a_{n+1} \leq a_n$ for all n, and that $\lim_{n \to \infty} a_n = 0$, then

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

converges. If $S_k = \sum_{n=1}^k (-1)^{n-1} a_n$, then S_k approximates the alternating series with an error

$$|S_k - S| \le a_{k+1}$$

Def Absolute vs Conditional Convergence: A series converges absolutely if

$$\sum_{n=1}^{\infty} |a_n|$$

converges, it converges conditionally if

$$\sum_{n=1}^{\infty} |a_n|$$

diverges but

$$\sum_{n=1}^{\infty} a_n$$

converges

5.11 Absolute Convergence Theorem

Assume that $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges Note: $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n$ if and only if $a_n \ge 0$ for all n

Def Rearrangement of a Series: Given a series $\sum_{n=1}^{\infty}$ and a one-to-one and onto function $\phi: \mathbb{N} \to \mathbb{N}$ where $b_n = a_{\phi(n)}$, then the series

$$\sum_{n=1}^{\infty} b_n$$

is called a rearrangement

5.12 Rearrangement Theorem

Assume that $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series, if $\sum_{n=1}^{\infty} b_n$ is a rearrangement then

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$$

Assume that $\sum_{n=1}^{\infty} a_n$ is a conditionally convergent series, if $\alpha \in \mathbb{R}$ or $\alpha = \pm \infty$ then there exists a rearrangement $\sum_{n=1}^{\infty} b_n$ such that

$$\sum_{n=1}^{\infty} b_n = \alpha$$

5.13 Ratio Test

Assume that for $\sum_{n=0}^{\infty} a_n$,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

where $L \in \mathbb{R}$ or $L = \infty$

- 1. If $0 \le L < 1$, then the series converges absolutely
- 2. If L > 1, then the series diverges

5.14 Polynomial vs Factorial Growth

For any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0$$

Def Order of Magnitude: For |x| > 1,

$$\ln(n) \ll n^p \ll x^n \ll n! \ll n^n$$

5.15 Root Test

Assume that for $\sum_{n=1}^{\infty} a_n$,

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$$

where $L \in \mathbb{R}$ or $L = \infty$

- 1. If $0 \le L < 1$, then the series converges absolutely
- 2. If L > 1, then the series diverges

Power Series

Def Power Series: A power series centered at the variable x = a is of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n$$

where a_n is the coefficient of $(x-a)^n$

Def Interval of Convergence: For a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$, the interval of convergence is the interval centered at x=a

$$I = \left\{ x_0 \mid \sum_{n=0}^{\infty} \mid a_n (x_0 - a)^n \text{ converges} \right\}$$

Def Radius of Convergence: For a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$, the radius of convergence is

$$R := \begin{cases} lub(\{|x_0 - a| \mid x_0 \in I\}) & \text{if } I \text{ is bounded} \\ \infty & \text{if } I \text{ is not bounded} \end{cases}$$

6.1 Fundamental Convergence Theorem for Power Series

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ centered at x=a

- 1. If R=0, then the series converges for x=a but diverges for all other x
- 2. If $0 < R < \infty$, then the series converges absolutely for every $x \in (a R, a + R)$ and diverges if |x a| > R
- 3. If $R = \infty$, then the series converges absolutely for every $x \in \mathbb{R}$

6.2 Test for the Radius of Convergence

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ such that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

where $0 \le L < \infty$ or $L = \infty$

- 1. If $0 < L < \infty$, then $R = \frac{1}{L}$
- 2. If L=0, then $R=\infty$
- 3. If $L = \infty$, then R = 0

6.3 Equivalence of Radius of Convergence

Let $p, q \neq 0$ be polynomials where $q(n) \neq 0$ for $n \geq k$. Then the following series have the same radius of convergence

1.

$$\sum_{n=k}^{\infty} a_n (x-a)^n$$

2.

$$\sum_{n=k}^{\infty} \frac{a_n p(n)(x-a)^n}{q(n)}$$

Def Functions Represented by a Power Series: For a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ with a radius of convergence R > 0 and interval of convergence I. The function represented by the power series on I is

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

6.4 Abel's Theorem: Continuity of Power Series

Assume $\sum_{n=0}^{\infty} a_n(x-a)^n$ has interval of convergence I. Let

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

for each $x \in I$, then f(x) is continuous on I

6.5 Addition of Power Series

Assume the radii of convergence of

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

$$g(x) = \sum_{n=0}^{\infty} b_n (x - a)^n$$

are R_f, R_g with intervals of convergence I_f, I_g . Then

$$(f+g)(x) = \sum_{n=0}^{\infty} (a_n + b_n)(x-a)^n$$

Moreover if $R_f = R_G$ then $R \geq R_f$, if $R_f \neq R_g$ then $R = \min\{R_f, R_g\}$ and $I = I_f \cap I_g$

6.6 Multiplication of a Power Series by $(x-a)^m$

Assume that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

has radius of convergence R_f with interval of convergence I_f . Let $m \in \mathbb{N}, h(x) = (x - a)^m f(x)$, then

$$h(X) = \sum_{n=0}^{\infty} a_n (x-a)^{n+m}$$

Moreover the series has the same radius and interval of convergence

6.7 Power Series of Composite Functions

Assume the power series centered at u = 0

$$f(u) = \sum_{n=0}^{\infty} a_n u^n$$

has radius of convergence R_f with interval of convergence I_f . Let $c \neq 0 \in \mathbb{R}, h(x) = f(cx^m)$, then

$$h(X) = \sum_{n=0}^{\infty} (a_n c^n) x^{nm}$$

with interval of convergence $I_h = \{x \in \mathbb{R} \mid cx^m \in I_f\}$ and if $R_f < \infty$, then radius of convergence $R_h = \sqrt[m]{\frac{R_f}{|c|}}$, otherwise $R_h = \infty$ **Def** Formal Derivative of a Power Series: Given a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$, the formal derivative is

$$\sum_{n=0}^{\infty} n a_n (x-a)^{n-1} = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$$

6.8 Term-by-Term Differentiation of Power Series

Assume that $\sum_{n=0}^{\infty} a_n(x-a)^n$ has radius of convergence R > 0. Let $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ for all $x \in (a-R, a+R)$, then f is differentiable on (a-R, a+R) and

$$f'(x) = \sum_{n=1}^{\infty} na_n (x-a)^{n-1}$$

for all $x \in (a - R, a + R)$

6.9 Uniqueness of Power Series Representations

Assume that $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ for all $x \in (a-R, a+R)$ where R > 0, then

$$a_n = \frac{f^{(n)}(a)}{n!}$$

That is if $f(x) = \sum_{n=0}^{\infty} b_n (x-a)^n$ then $a_n = b_n$ for each n

Def Formal Antiderivative of a Power Series: Given a power series $\sum_{n=0}^{\infty} a_n(x-a)^n$, the formal antiderivative is

$$\sum_{n=0}^{\infty} \int a_n (x-a)^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}$$

where C is an arbitrary constant

6.10 Term-by-Term Integration of Power Series

Assume that $\sum_{n=0}^{\infty} a_n(x-a)^n$ has radius of convergence R > 0. Let $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ for all $x \in (a-R, a+R)$, then

$$F(x) = \sum_{n=0}^{\infty} \int a_n (x-a)^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}$$

also has radius of convergence R, and F'(x) = f(x)

Furthermore, if $[c, b] \in (a - R, a + R)$, then

$$\int_{c}^{b} f(x) dx = \int_{c}^{b} \sum_{n=0}^{\infty} a_{n} (x - a)^{n} dx$$

$$= \sum_{n=0}^{\infty} \int_{c}^{b} a_{n} (x - a)^{n} dx$$

$$= \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} ((b-a)^{n+1} - (c-a)^{n+1})$$

Def Taylor Polynomials: Assume f is n-times differentiable at x = a, the n - th degree Taylor polynomial for f centered at x = a is

$$T_{n,a} = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Def Taylor Remainder: Assume f is n-times differentiable at x = a, the n - th degree Taylor remainder function for f centered at x = a is

$$R_{n,a}(x) = f(x) - T_{n,a}(x)$$

6.11 Taylor's Theorem

Assume that f is n+1 times differentiable on an interval I containing a, let $x \in I$, then $\exists c \in (x, a)$ where

$$R_{n,a}(x) = f(x) - T_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

6.12 Taylor's Approximation Theorem I

Assume that $f^{(k+2)}$ is continuous on [-1,1], then there exists M>0 such that

$$|f(x) - T_{k,0}(x)| \le M|x|^{k+1}$$

or equivalently, for each $x \in [-1, 1]$

$$-M|x|^{k+1} \le f(x) - T_{k,0}(x) \le M|x|^{k+1}$$

Def Taylor Series: Assume f has derivatives of all orders at $a \in \mathbb{R}$, the Taylor Series centered at x = a is

$$f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Note: The special case of a = 0 is the MacLaurin Series

6.13 Convergence Theorem for Taylor Series

Assume that f(x) has derivatives of all orders on an interval I containing a and that there exists $M \ge |f^{(k)}(x)|$ for all k and $x \in I$, then for all $x \in I$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

6.14 Binomial Theorem

Let $a \in \mathbb{R}$, $n \in \mathbb{N}$, then for each $x \in \mathbb{R}$,

$$(a+x)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} x^k$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

that is if a = 1 then

$$(1+x)^n = \sum_{k=0}^n \frac{n(n-1)\dots(n-k+1)}{k!} x^k$$

Def Generalized Binomial Coefficients and Binomial Series: Let $\alpha \in \mathbb{R}, k \in \mathbb{Z} \geq 0$, then

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1)\dots(\alpha - k + 1)}{k!}$$

and if $k \neq 0$ and $\binom{\alpha}{0} = 1$, then

$$1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

Generalized Binomial Theorem

Let $a \in \mathbb{R}$, then for each $x \in (-1,1)$,

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} x^k = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$