Herd immunity in a network

Jens Kinch, Nikolai Plambech Nielsen & Mads Ehrhorn 28th of July 2017

Niels Bohr Institute University of Copenhagen

Introduction

Herd immunity Disease types Networks

Herd immunity

Protect the flock by immunizing Disease types Networks

Herd immunity

- R₀: 'basic reproduction number'
 Avg. no. of people infected pr. person
- p_c : herd immunity threshold

$$p_c = 1 - 1/R_0$$

Herd immunity passively protects whole population

Diseases

	R_0	Mortality rate	HIT
Ebola	1.5-2.5	0.25-0.90	0.33-0.60
Bubonic plague	3	0.6	0.67
Pneumonic plague	2	0.90-0.95	0.50
Measles	12-18	0.15	0.92-0.94
Flu	1.5-1.8	0.001	0.33-0.44
SARS	2-5	0.096	0.50-0.80
Polio	5-7	0.15-0.30	0.80-0.86

Table 1: Data from https://en.wikipedia.org/wiki/Herd_immunity & https://www.duo.uio.no/bitstream/handle/10852/45490/KDPlagueThesis.pdf?sequence=9

Networks

- · Small world
- · Scale free
- Random
- Custom network (two cities with commuters)

Custom network

Custom network, simulating two towns with commuters

Success criteria

- · Real world
 - · No percolation
 - · Disease no longer endemic
- · Our model
 - · Unable to define percolation
 - · Discussion of alternate criteria
 - Total sick < arbitrary threshold
 - Effective reproductive number ≤ 1
 - $n_{\rm sick} = 0$ and $n_{\rm healthy} \neq 0$

The simulations

- · Run each disease 50 times on each network
- With 20 p_I values
- Save all output

