Immediate snapshot

SLR206, P1/2, 2021

Atomic snapshot: sequential specification

Each process p_i is provided with operations:

```
✓update<sub>i</sub>(v), returns ok
```

✓ snapshot_i(), returns $[v_1,...,v_N]$

In a sequential execution:

```
For each [v_1,...,v_N] returned by snapshot<sub>i</sub>(), v_j (j=1,...,N) is the argument of the last update<sub>j</sub>(.) (or the initial value if no such update)
```

One-shot atomic snapshot (AS)

Each process p_i : update_i(v_i) $S_i := snapshot()$

 $S_i = S_i[1],...,S_i[N]$ (one position per process)

Vectors S_i satisfy:

- Self-inclusion: for all i: v_i is in
 S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i

"Unbalanced" snapshots

Enumerating possible runs: two processes

Each process p_i (i=1,2): update_i(v_i) $S_i := snapshot()$

Three cases to consider:

- (a) p₁ reads before p₂ writes
- (b) p₂ reads before p₁ writes
- (c) p₁ and p₂ go "lock-step": first both write, then both read

if p, sees pz, then Si contains Sz

Topological representation: one-shot AS

(u, u, o) Topological representation: one-shot AS

One-shot immediate snapshot (IS)

One operation: WriteRead(v)

Each process p_i:

 $S_i := WriteRead_i(v_i)$

Vectors S₁,...,S_N satisfy:

- Self-inclusion: for all i: v_i is in
 S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i
- Immediacy: for all i and j: if
 v_i is in S_j, then is S_i is a subset
 of S_i

Topological representation: one-shot IS

IS is equivalent to AS (one-shot)

- IS is a restriction of one-shot AS => IS is stronger than one-shot AS
 ✓ Every run of IS is a run of one-shot AS
- Show that a few (one-shot) AS objects can be used to implements IS
 - ✓One-shot ReadWrite() can be implemented using a series of update and snapshot operations

IS from AS

shared variables:

```
A_1,...,A_N – atomic snapshot objects, initially [T,...,T]
Upon WriteRead<sub>i</sub>(v<sub>i</sub>)

W=3

V(V) S
  r := N+1
  while true do
         r := r-1 // drop to the lower level
         A_r.update_i(v_i)
         S := A_r.snapshot() \leftarrow 4 
         if ISI = r then // ISI is the number of non-T values in S
            return S
                             A7 V(TT
A2 V(1/2)
```

Drop levels: two processes, N>3

Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and Immediacy

 By induction on N: for all N>1, if the algorithm is correct for N-1, then it is correct for N

Base case N=1: trivial

Correctness, contd.

- Suppose the algorithm is correct for N-1 processes
- N processes come to level N
 - ✓ At most N-1 go to level N-1 or lower
 - √ (At least one process returns in level N)
 - √Why?
- Self-inclusion, Containment and Immediacy hold for all processes that return in levels N-1 or lower
- The processes returning at level N return all N values
 - √The properties hold for all N processes! Why?

Iterated Immediate Snapshot (IIS)

Shared variables:

```
IS<sub>1</sub>, IS<sub>2</sub>, IS<sub>3</sub>,... // a series of one-shot IS
```

Each process p_i with input v_i :

```
r := 0
while true do
r := r+1
v_i := IS_r.WriteRead_i(v_i)
```

Iterated standard chromatic subdivision (ISDS)

ISDS: one round of IIS

ISDS: two rounds of IIS

IIS is equivalent to (multi-shot) AS

- AS can be used to implement IIS (wait-free)
 - ✓ Multiple instances of the construction above (one per iteration)
- IIS can be used to implement multi-shot AS in the lock-free manner:
 - ✓ At least one correct process performs infinitely many read or write operations
 - ✓ Good enough for protocols solving distributed tasks!

From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each process p_i runs:

```
state := input value of p;
repeat
    update;(state)
    state := snapshot()
until undecided(state)

Recursively, vector
    of vectors
```

(the input value and the decision procedure depend on the problem being solved) If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k ("without loss of generality" – every written value is unique)

From IIS to AS: non-blocking simulation

```
Shared: IS<sub>1</sub>,IS<sub>2</sub>,... // an infinite sequence of one-shot IS
  memories
Local: at each process, c[1,...,N]=[(0,T),...,(0,T)]
Code for process p<sub>i</sub>:
  r:=0; c[i].clock:=1; // p<sub>i</sub>'s initial value
  repeat forever
            r:=r+1
            view := IS<sub>r</sub>.WriteRead(c) // get the view in IS<sub>r</sub>
            topc := top(view) // get the top clock values
            if Itopcl=r then // the current snapshot completed
                if undecided(ctop) then // if ready to stop
                        c[i].val:=ctop;
                        c[i].clock:=c[i].clock+1 // update the clock
                else
                        return decision(ctop) // return the decision
```

From IIS to AS

Each process p_i maintains a vector clock c[1,...,N]

- Each c[j] has two components:
 - √c[j].clock: the number of updates of p_j "witnessed" by p_i
 (c.clock the corresponding vector)
 - ✓c[j].val: the most recent value of p_j's vector clock "witnessed" by p_i (c.val the corresponding vector)
- To perform an update: increment c[i].clock and set c[i].val to be the "most recent" vector clock
- To take a snapshot: go through iterated memories until $|c| = \sum_{i} c[j]$.clock is "large enough",
 - ✓ i.e. lcl= r (the current round number)
 - ✓ As we'll see, Icl≥r: every process p_i begins with c[i]=1

 We say that c≥c' iff for all j, c[j].clock ≥ c'[j].clock (c observes a more recent state than c)

✓ Not always the case with c and c' of different processes

- $Icl = \sum_{i} c[j].clock$ (sum of clock values of the last seen values)
- For c = c[1],...c[N] (vector of vectors c[j]), top(c) is the vector of most recent seen values:

$$c[3] = [2 1 5]$$

$$top(c) = [4 3 5]$$

From IIS to AS: correctness

Let c_r denote the vector evaluated by a process p_i in round r (after computing the top function)

Lemma 1 lc_rl≥r

Proof sketch

 $c_{r+1} \ge c_r$ (by the definition of top)

Initially Ic₁l≥1 (each process writes c[1].clock=1 in IS₁)

Inductively, suppose lc_rl≥r, for some round r:

- If Ic_rI=r, then c', such that Ic' I=r+1, is written in IS_{r+1}
- If $|c_r| > r$, then c', such that $c' \ge c_r$ (and thus $|c'| \ge |c_r|$) is written in $|S_{r+1}|$

In both cases, $c_{r+1} \ge r+1$

From IIS to AS: correctness

Lemma 2 Let c_r and c_r ' be the clock vectors evaluated by processes p_i and p_j , resp., in round r. Then $|c_r| \le |c_r|$ implies $|c_r| \le |c_r|$

Proof sketch

Let S_i and S_j be the outcomes of IS_r received by p_i and p_j $c_r = top(S_i)$ and $c_r' = top(S_j)$

Either S_i is a subset of S_j or S_j is a subset of S_i (the Containment property of IS)

Suppose S_i is a subset of S_j , then each clock value seen by p_i is also seen by p_i Why?

 $=> |c_r| \le |c_r|$ and $|c_r| \le |c_r|$ Why?

From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot operation in round r, get the same clock vector c, lcl=r

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot operation in round r with clock vector c, then for each clock vector c'evaluated in round r' \geq r, we have $c \leq c'$

From IIS to AS: linearization

Lemma 3 Every execution's history is linearizable (with respect to the AS spec.) **Proof sketch**

Linearization

- Order snapshots based on the rounds in which they complete
- Put each update(c) just before the first snapshot that contains c (if no such snapshot remove)
- By Corollaries 1 and 2, snapshots and updates put in this order respect the specification of AS legality
- The linearization points take place "within the interval" of k-th update and k-th snapshot of p_i between the k-th and the (k+1)-th updates of c[i].val precedence

From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many snapshot operations (or every process decides).

Proof sketch

By Lemma 1, a correct process p_i does not complete its snapshot in round r only if $lc_r l>r$

Suppose p_i never completes its snapshot

- => c_r keeps grows without bound and
- => some process p_i keeps updating its c[j]
- => some process p_i completes infinitely many snapshots

(Chapter 9 in lecture notes)

IIS=AS for wait-free task solutions

- Suppose we simulate a wait-free protocol for solving a task:
 - ✓ Every process starts with an input
 - ✓ Every process taking sufficiently many steps (of the full-information protocol) eventually decides (and thus stops writing new values, but keeps writing the last one)
 - ✓ Outputs match inputs (we'll see later how it is defined)
- If a task can be solved in AS, then it can be solved in IIS
 - ✓ We consider IIS from this point on

Quiz 6: immediate snapshot

- 1. Would the (one-shot) IS algorithm be correct if we replace A_r .update_i(v_i) with U_r [i].write(v_i) and A_r .snapshot() with scan(U_r [1],..., U_r [N])?
- 2. Would it be possible to use only one array of N registers?
- 3. Complete the proofs of Lemma 2 and Corollaries 1 and 2