

Image Quality Detection with Machine Learning

Hervind – Junior Data Scientist

2017-08-05

The goal is help our user

OLX Global Innovation Awards 2017

Quality is subjective

HOW?

About 20,100,000 results (0.63 seconds)

Machine learning to design full-reference image quality assessment ...

www.sciencedirect.com/science/article/pii/S0923596512000033 ▼

by C Charrier - 2012 - Cited by 27 - Related articles

The proposed method namely **Machine Learning**-based **Image Quality** Measure (MLIQM) first classifies the quality using multi-Support Vector Machine (SVM) ...

The luminance comparison between an original image I and its degraded version J is defined as

l as lesign ... ∋-learning/ ▼ an image to a

$$\lim_{\text{catt}} l(I,J) = \frac{2\mu_I \mu_J + C_1}{\mu_I^2 + \mu_I^2 + C_1} \tag{1}$$

 G_C where μ_I and μ_J , respectively, represent the mean intensity http of the images I and J, and C_1 is a constant for avoiding NoN instability when $\mu_I^2 + \mu_J^2 \approx 0$. A common choice for the for stabilizing constant is $C_1 = (K_1 L)^2$, where L is the theoretical dynamic range of the image's pixels and $K_1 = 0.01$.

Vis The contrast distortion measure is defined to have a www similar form:

similar form: $Visi \atop Mai \ c(I,J) = \frac{2\sigma_I \sigma_J + C_2}{\sigma_t^2 + \sigma_t^2 + C_2}$

ental Knowledge of

| Springer

Res Photos

pscaling, ... created

es-photos/ ▼

Cooking and Machine learning

What can we do with Image respect to its quality

107	378	100	100	101	110	110	190	163	131	1
18							68	10.0		
62							101	135	165	l i
97				131		120		168	205	2
16				63				100		
58				104	94	56	89	123	166	1
99						118			199	2
21									148	17
80						74			163	1
122					156	128			191	2
46					87	57			142	1
82					116	91			164	2
140				139	162	113			202	2
60					-88	44			160	
95				95	121	83		106	184	2
152					120	110		159	218	2 2
68								107	185	2
102	85	-82	90					143	204	2
135							145	200	226	2
49							89	160	198	1
86	92	95	92				128	187	210	2
1111						137	186	220	229	2
26						79	1145	189	199	1
85						120	175	207	207	1
134					162	186	208	220	222	2
54					107	100	179	194	190	
93				107	149	180	201	207	195	1
162	150	144	153	169	192	206	220	219	224	2
76				117	148	170	189	187	187	1
123	126	129	142	156	171	182	195	192	194	1
187	182	184	186	196	214	226	231	230	234	2
1000	1000	160	100		1		1000		111	

Blurness

Distinct Pixel Rate

33.07%

3.15% **Saturation**

Sharpness

Original image

Sharpened

Over-sharpened

colorfulness

$$\sigma_{rgyb} = \sqrt{\sigma_{rg}^2 + \sigma_{yb}^2}$$

$$\mu_{rgyb} = \sqrt{\mu_{rg}^2 + \mu_{yb}^2}$$

$$C = \sigma_{rgyb} + 0.3 * \mu_{rgyb}$$

Don't worry, python script for this is on my GitHub

Least Colorful

Most Colorful

It Is Not Fair to Judge from Whole Image

consider this picture

The Result

Model: Gradient Boosting Classifier

False Positive

False Negative

The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" (I found it!) but "That's funny ..."

— Isaac Asimov

SIMULATION?

Refference

- C. Charrier, O. Lezoray, G. Leburn, Machine learning to design full-reference image quality assessment algorithm: Signal Processing: Image Communication, 2012, pp. 209-219.
- A. Bouzerdoum, A. Havstad, A. Beghdadi, Image quality assessment using a neural network approach, in: Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, pp. 330–333.
- http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opency/
- http://www.pyimagesearch.com/2017/06/05/computing-image-colorfulnesswith-opency-and-python/
- https://medium.com/@hervindphilipe/can-machine-predict-the-quality-of-image-5e8d63163308

Python script for image quality metrices: https://github.com/hervindphil/image_quality/

hervindruid@gmail.com

hervindphil