

数据结构和算法

作者: 小甲鱼

让编程改变世界 Change the world by program

弗洛伊德算法

迪杰特斯拉算法对比弗洛伊德算法

PK

 $O(n^2)$

 $O(n^3)$

弗洛伊德算法

- 那我们为嘛还有讲它的必要呢?
 - 因为迪杰特斯拉算法求的是一个顶点到所有顶点的最短路径,但弗洛伊德算法是求所有顶点到所有顶点的最短路径。
 - 一弗洛伊德算法非常简洁优雅。
- 为了能讲明白弗洛伊德算法的精妙所在,我们先来看最简单的案例:

弗洛伊德算法

D0	V0	V1	V2
V0	0	1	5
V1	1	0	3
V2	5	3	0

D1	V0	V1	V2
V0	0	1	4
V1	1	0	3
V2	4	3	0

P0	V0	V1	V2
V0	0	1	2
V1	0	1	2
V2	0	1	2

P1	V0	V1	V2
V0	0	1	1
V1	0	1	2
V2	1	1	2

D1[0][2]=min{D0[0][2],D0[0][1]+D[1][2]}

弗洛伊德算法原理

弗洛伊德算法原理

D0	V0	V1	V2	V3	V4	V5	V6	V7	V8
V0	0	1	5	∞	∞	∞	∞	∞	∞
V1	1	0	3	7	5	∞	∞	∞	∞
V2	5	3	0	∞	1	7	∞	∞	∞
V 3	∞	7	∞	0	2	∞	3	∞	∞
V4	∞	5	1	2	0	3	6	9	∞
V5	∞	∞	7	∞	3	0	∞	5	∞
V6	∞	∞	∞	3	6	∞	0	2	7
V7	∞	∞	∞	∞	9	5	2	0	4
V8	∞	∞	∞	∞	∞	∞	7	4	0

P0	V0	V1	V2	V3	V4	V5	V6	V7	V8
V0	0	1	2	3	4	5	6	7	8
V1	0	1	2	3	4	5	6	7	8
V2	0	1	2	3	4	5	6	7	8
V3	0	1	2	3	4	5	6	7	8
V4	0	1	2	3	4	5	6	7	8
V5	0	1	2	3	4	5	6	7	8
V6	0	1	2	3	4	5	6	7	8
V7	0	1	2	3	4	5	6	7	8
V8	0	1	2	3	4	5	6	7	8

弗洛伊德算法原理

D8	V0	V1	V2	V3	V4	V5	V6	V7	V8
V0	0	1	4	7	5	8	10	12	16
V1	1	0	3	6	4	7	9	11	15
V2	4	3	0	3	1	4	6	8	12
V3	7	6	3	0	2	5	3	5	9
V4	5	4	1	2	0	3	5	7	11
V5	8	7	4	5	3	0	7	5	9
V6	10	9	6	3	5	7	0	2	6
V7	12	11	8	5	7	5	2	0	4
V8	16	15	12	9	11	9	6	4	0

Р8	V0	V1	V2	V3	V4	V5	V6	V7	V8
V0	0	1	1	1	1	1	1	1	1
V1	0	1	2	2	2	2	2	2	2
V2	1	1	2	4	4	4	4	4	4
V3	4	4	4	3	4	4	6	6	6
V4	2	2	2	3	4	5	3	3	3
V5	4	4	4	4	4	5	7	7	7
V6	3	3	3	3	3	7	6	7	7
V7	6	6	6	6	6	5	6	7	8
V8	7	7	7	7	7	7	7	7	8