Prezime, ime, br. indeksa:

E1

Studijski program

PRE2

IN (zaokruži)

KOLOKVIJUM 1

Studenti koji kod pitanja do zvezdica naprave više od pet grešaka nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti broj ili brojeve ispred tačnih odgovora. U jednom istom zadatku broj tačnih odgovora može biti  $0,1,2,3,\ldots$ , svi. U nekim zadacima ostavljena su prazna mesta za upisivanje odgovora.

IT

Neka su funkcije  $f, g: (-1,0) \to (-1,0)$  definisane sa  $f(x) = -\sqrt{x+1}$  i  $g(x) = x^2 - 1$ . Tada je  $f^{-1}(x) = x^2 - 1 = f^{-1}(x) = x^2 - 1$ . Tada je  $f^{-1}(x) = x^2 - 1 = f^{-1}(x) = x^2 - 1$ . Tada je  $f^{-1}(x) = x^2 - 1 = f^{-1}(x) = x^2 - 1$ . Tada je  $f^{-1}(x) = x^2 - 1 = f^{-1}(x) = x^2 - 1$ . Tada je  $f^{-1}(x) = x^2 - 1 = f^{-1}(x) = x^2 - 1$ .

• U Bulovoj algebri  $\mathcal{B} = (B, +, \cdot, ', 0, 1)$  važi: 1) x + y = x'y' 2 xy = (x' + y')' 3  $xy = 1 \Rightarrow x + y = 1$ 4)  $x + y = 1 \Leftrightarrow xy = 1$  5  $x = y \Rightarrow x' = y'$  6  $x' = y' \Rightarrow x = y$  7  $f(x) = x' \Rightarrow f : B \xrightarrow{\text{na}} B$ 

• Za funkciju  $f:(0,\infty)\to\mathbb{R}$  grupe  $((0,\infty),\cdot)$  u grupu  $(\mathbb{R},+)$ , definisanu sa  $f(x)=-\log_3 x$  važi da je:  $\mathfrak{S}$ )  $f^{-1}$  homomorfizam (4)  $f^{-1}$  funkcija izomrfizam 1 homomorfizam

• Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu  $(R, +, \cdot)$ : (b+c)a = ca + ba

2) (b+c)a = ca + ab (3) (R,+) je grupa (4)  $(R,\cdot)$  je asocijativni grupoid (5)  $ab = 0 \Leftrightarrow a = 0 \lor b = 0$ 2 operacija · je distributivna prema operaciji + 7)  $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$  (8)  $a \cdot 0 = 0$  (9)  $a \cdot (-a) = -a^2$ 

• Pri delenju polinoma  $x^4 - 4x^2 - 5$  sa  $x^2 + 1$  nad  $\mathbb{R}$ , količnik je  $\chi = 5$ 

• NZD(P,Q) za polinome  $P = (t-3)^4(t+7)^2(t-1)^5(t+13)^3$  i  $Q = (t-3)^2(t-15)(t-1)^7(t+13)^5$  je polinom 1)  $(t-3)^4(t-1)^7(t+13)^5$  2) (t-3)(t-1)(t+13) 3)  $(t-3)^4(t+7)^2(t-1)^7(t+13)^5(t-15)$  $(5)(t-3)^2(t-1)^5(t+13)^3$ 4) (t-3)(t+7)(t-1)(t+13)(t-15)

ullet Ako je  $z\in\mathbb{C}$ , upiši nedostajući element u skupu A, ako je  $z^4=-7-24i\Leftrightarrow z\in\left\{ullet A-2\lambda,\ 2-i,1+2i,-2+i
ight\}=A$ 

Neka su f i g funkcije definisane sa  $f = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$  i  $g = \begin{pmatrix} d & a & b & c \\ c & b & d & a \end{pmatrix}$ . Tada je  $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$   $f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & d & a \end{pmatrix}$ 

• Izračunati: 1)  $\arg(\pi) = \emptyset$  2)  $\arg(5e^{4i}) = 3$   $\arg(-6\pi) = 1$  4)  $\arg(9\pi) = \emptyset$  5)  $\arg(2i) = 1/2$ 9 x (6) arg(-1-i) = -31/47)  $\arg(8e^{2i}) = 2$  8)  $\arg(-1 - i\sqrt{3}) = -2\pi/3$  9)  $\arg(e^{i\pi} + 1) =$ 

Zaokružiti brojeve ispred sirektivnih funkcija: 1)  $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = 3x + 3$  (2)  $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ f(x) = x^4$ (3)  $f: (-\infty, \infty) \to [0, \infty), \ f(x) = x^2$  (4)  $f: \mathbb{R}^+ \to (0, \infty), \ f(x) = \ln(x+1)$  (5)  $f: \mathbb{R} \to [1, \infty), \ f(x) = e^x$ 

Neka je  $A=\{1,2,3\}$  i  $B=\{1,2\}$ . Odrediti broj elemenata sledećih skupova funkcija ako  $f \nearrow$  označava rastuću funkciju f i  $f \nearrow$  označava neopadajuću funkciju f:

 $\left|\{f|f:A\longrightarrow B\}\right|=\underbrace{\underline{\mathcal{S}}},\ \left|\{f|f:A\xrightarrow{1-1}B\}\right|=\underbrace{\underline{\mathcal{O}}},\ \left|\{f|f:A\to B\land f\nearrow\}\right|=\underbrace{\underline{\mathcal{O}}},\ \left|\{f|f:B\xrightarrow{na}B\}\right|=\underbrace{\underline{\mathcal{L}}},$  $\left|\{f|f:B\to A\}\right|=\underline{\mathcal{G}}, \left|\{f|f:A\to A \land f\nearrow\}\right|=\underline{\mathcal{A}}, \left|\{f|f:B\to A \land f\_\}\right|=\underline{\mathcal{G}}, \left|\{f|f:A\stackrel{na}{\to}B\}\right|=\underline{\mathcal{G}}.$ 

• Ako je  $f \in \mathbb{R}[x]$ , f(1+3i) = 0, tada je: 1) x - 1 + 2i | f(x) ② x - 1 - 3i | f(x) ③  $x - \sqrt{10} e^{i \operatorname{arctg} 3} | f(x)$  ④  $x^2 - 2x + 10 | f(x)$ ; 5)  $x^2 - 2x - 8 | f(x)$ ; 6)  $x - \sqrt{5} e^{-i \operatorname{arctg} 2} | f(x)$ ; 7)  $x^2 - x + 4 | f(x)$ 

 $\arg z \ge 0 \iff I_m(z) \ge 0$  2)  $\arg z \ge 0 \iff \left(R_e(z) \ge 0 \land z \ne 0\right)$ 

 $\begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{6} \\ \mathbf{-\frac{\pi}{2}} \leq \arg z \leq \frac{\pi}{2} \\ \end{array} \Rightarrow \left( I_m(z) \in \mathbb{R} \land z \neq 0 \right)$ 3)  $\arg z \ge 0 \Leftrightarrow \left(I_m(z) \ge 0 \land z \ne 0\right)$  4)  $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$  5)  $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Rightarrow R_e(z) \ge 0$ 

(7)  $-\frac{\pi}{2} < \arg z < \frac{\pi}{2} \implies (I_m(z) \in \mathbb{R} \land z \neq 0)$ 

• Funkcija  $f:(-\pi,0)\longrightarrow (-1,1]$  definisana sa  $f(x)=\cos x$  je:

1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna

• Funkcija  $f: (-\frac{\pi}{2}, \frac{3\pi}{4}) \longrightarrow (-1, 1]$  definisana sa  $f(x) = \sin x$  je: 📵 sirjektivna i nije injektivna 2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna

• Funkcija  $f: (\frac{\pi}{6}, \frac{\pi}{4}) \longrightarrow \mathbb{R}$  definisana sa  $f(x) = \operatorname{tg} x$  je: 1) sirjektivna i nije injektivna (2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna

• Ako je  $f = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$ , tada je  $f^{-1} = \begin{pmatrix} a & b & c \\ \beta & c & \bullet \end{pmatrix}$ ,  $f \circ f = \begin{pmatrix} a & b & c \\ \beta & c & \bullet \end{pmatrix}$ ,  $f \circ f^{-1} = \begin{pmatrix} a & b & c \\ \delta & c & \bullet \end{pmatrix}$ .

• Neka je  $\{-2,1,-1\}$  skup svih korena polinoma  $f(x)=x^3+ax^2+bx+c$  nad poljem realnih brojeva. Tada skup 71-23 = arg(21-23)-079(2) svih mogućnosti za a je  $a \in \{$ 

• Neka su  $z_1=1+i,\,z_2=2$  i  $z_3=1.$  Izraziti u zavisnosti od  $z_1,\,z_2$  i  $z_3$  ugao  $\not z_2z_3z_1=0$ izračunati  $\not z_2 z_3 z_1 = I$ Da li je ovaj ugao pozitivno orijentisan? DA

| Prez                 | zime, ime, br. ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndeksa:                                                                                                     |                                                                                                                               | LJUBO                                                                                             |                                                                                                  |                                                                                                                                                                                                   | 30 01 202                                                                                                           | 2. Studijski                                                                             |   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|
| prog<br>Stud<br>odgo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2<br>anja do zvezd<br>kružiti tačne o                                                                      | odgovore tj. s                                                                                                                | više od pet g<br>slova ili brojev                                                                 | ve ispred tak                                                                                    | čnih odgovora.                                                                                                                                                                                    | <b>KOLO</b><br>J svakom zadatk<br>U jednom istom                                                                    | KVIJUM 2<br>u dato je više<br>zadatku broj                                               |   |
| 420                  | Vektor normale i<br>Koordinate jedno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ravni $\alpha:z=$ e njene tačke :                                                                           | x + y - 1 je:<br>su: <b>6</b> ) (0                                                                                            | 1) (1,0,1)<br>0,0,0)                                                                              | <b>2)</b> (1,0,-1) (1,0,0)                                                                       | 1) 3) (0,1,0)<br>(0,1,0)                                                                                                                                                                          | (-1,-1,1) (9) $(0,0,1)$                                                                                             | (1,1,-1) $(1,1,1)$                                                                       | > |
| 30                   | Sistem jednačina<br>neodređen za: <b>5</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ax + ay = a $a = 1$                                                                                         | $\wedge \ ax - ay = 0$ 7) $a = -$                                                                                             | -a je određe<br>1 protivrečan                                                                     | en za: 1) $a$ n za: 8) $a =$                                                                     | $\neq 1$ 2) $a \neq -1$ 1 9) $a = 0$ 10                                                                                                                                                           | 3) $a \neq 1 \land a \neq 1$<br>) $a = -1$ 11) $a \neq 1$                                                           | -1                                                                                       |   |
| 5+3                  | Izračunati vektor $a: \vec{r} = (-1, 0, -2)$ $\vec{r}_{T'} = (-1, 0, -2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) + t(1, -1, 1)                                                                                           | ), $t \in \mathbb{R}$ i rav $\vec{r_{T''}} =$                                                                                 | an $\alpha: (1, -1, \frac{1}{2}, -\frac{1}{2})$                                                   | $0) \cdot \vec{r} = (1, -1)$                                                                     | $-1,0)\cdot (1,0,0).$                                                                                                                                                                             |                                                                                                                     |                                                                                          | 5 |
| 5                    | Izračunati $\alpha$ i $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ako je $\alpha(1, -3)$                                                                                      | $(3,2) + \beta(3,7,$                                                                                                          | -3) = (0,0,0)                                                                                     | $(\alpha,\beta) \in (\alpha,\beta)$                                                              | $\{(0,0)$                                                                                                                                                                                         | }                                                                                                                   | 5                                                                                        | - |
| 5)                   | Izračunati $\alpha$ i $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                               |                                                                                                   |                                                                                                  |                                                                                                                                                                                                   | 1                                                                                                                   | 1 1                                                                                      | 5 |
| 752                  | Neka je $(\vec{a}, b, \vec{c})$<br>nezavisna 2)<br>nezavisna 4) p<br>nezavisna 6) z<br>trojke vektora $(\bar{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trojka $(\vec{a}, \vec{b}, \vec{c})$ ostoji takav v<br>a svaki vektor                                       | ) je uvek lin $ec{d}$ da je                                                                                                   | earno zavisna<br>četvorka $(ec{a},ec{b})$                                                         | $(\vec{c}, \vec{d})$ post $(\vec{c}, \vec{d})$ zavisn                                            | oji takav vekto<br>a <b>5</b> ) za svaki                                                                                                                                                          | or $ec{d}$ da je četvo<br>vektor $ec{d}$ je četvo                                                                   | rka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$<br>rka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ | 2 |
| •                    | Format $(m, n)$ , n<br>(2,2),(2,1),(1,2);<br>Ispod svake matr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rice zaokruziti                                                                                             | i broj koji pre                                                                                                               | eastavija njen                                                                                    | rang.                                                                                            |                                                                                                                                                                                                   |                                                                                                                     | -                                                                                        | 1 |
|                      | $\begin{bmatrix} 2 & 0 & 6 & 4 \\ 1 & 3 & 3 & 2 \\ 1 & 0 & 3 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |                                                                                                                               |                                                                                                   |                                                                                                  |                                                                                                                                                                                                   |                                                                                                                     | $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$ $0 \underbrace{1}_{0} 2$                  | 1 |
| 643                  | Ako je $\vec{a} = (-2, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                               |                                                                                                   |                                                                                                  |                                                                                                                                                                                                   | (16)                                                                                                                | $\cos \sphericalangle (\vec{a}\vec{b}) = 8$                                              |   |
|                      | Ako je: $a = (0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,1),(0,1,0),                                                                                               | (1,0,0) $b =$                                                                                                                 | (1,0,0),(0,-1)                                                                                    | (-1,0) c =                                                                                       | (0,0,1),(0,1,0)                                                                                                                                                                                   | 0), (1, 0, 0), (1, 2, 3                                                                                             | 3)                                                                                       | * |
|                      | d = ((1, 1, 1), (2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                                               |                                                                                                   |                                                                                                  | (2) b                                                                                                                                                                                             | <b>3</b> ) c                                                                                                        | 4) d                                                                                     |   |
| 3                    | Ako je $A = \begin{bmatrix} -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ 1 & \end{bmatrix}$                         | $\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$ , tada                                                                        | a je: 1) $A = [$                                                                                  | 1 1 -1]                                                                                          | $\begin{bmatrix} \top & 2 \end{bmatrix} A = \begin{bmatrix} 1 \end{bmatrix}$                                                                                                                      | -1 ] (3) $A =$                                                                                                      | [1 1 -1] 3                                                                               | 1 |
| 5                    | Neka je $ABCD$ j $\overrightarrow{DT}$ kao linearnu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | paralelogram,<br>kombinaciju                                                                                | a tačka $T$ te<br>vektora $\vec{a} = \vec{L}$                                                                                 | ežište trougla $\overrightarrow{AB}$ i $\overrightarrow{b} = \overrightarrow{BC}$ .               | $\overrightarrow{DT} = $                                                                         | je dijagonala p                                                                                                                                                                                   | aralelograma). Iz                                                                                                   | zraziti vektor 💆                                                                         | 1 |
| 4)                   | Neka je u sedmo $(1)$ $k < 7$ $(2)$ $k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\leq 7$ 3) $k =$                                                                                           | 7 4) $k > 7$                                                                                                                  | 7 $(5)$ $k \geq 7$                                                                                | 6) ništa c                                                                                       | od prethodnog                                                                                                                                                                                     |                                                                                                                     |                                                                                          |   |
| )                    | Ako su nenula ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ektori $\vec{a} = a_1 \vec{i}$                                                                              | $+a_2\vec{j}+a_3\vec{k}$                                                                                                      | $\mathbf{i} \ \vec{b} = b_1 \vec{i} + b_2 \vec{j}$                                                | $ec{j} + b_3 ec{k}$ koli                                                                         | nearni tada jer                                                                                                                                                                                   | $\vec{l}$ $\vec{a} 	imes \vec{b} = 0$                                                                               | $\mathbf{2)} \ \vec{a} \cdot \vec{b} = 0$                                                |   |
| 86420                | Ako su nenula ve $3$ ) rang $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ $(\exists \lambda \in \mathbb{R}) \ \vec{a} \neq 0$ $(\exists \alpha, \beta \in \mathbb{R}) \ \vec{a} \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} a_3 \\ b_3 \end{bmatrix} = 1$ $\lambda \vec{b}$ $\alpha \vec{a} + \beta \vec{b} = 0 \land$ | (4) rang $\begin{bmatrix} \alpha \\ b \end{bmatrix}$<br>(8) $(\forall \lambda \in \mathbb{R})$<br>$\alpha^2 + \beta^2 \neq 0$ | $\begin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix} \le \vec{b} \ne \lambda \vec{a}$ | $\leq 2$ <b>5</b> ) ra $9) \ (\forall \lambda)$ $\in \mathbb{R}) \alpha \vec{a} + \beta \vec{b}$ | $ \operatorname{ang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \\ \in \mathbb{R}) (\vec{a} \neq \lambda \vec{b} \wedge \vec{b}) = 0 \Rightarrow \alpha^2 + \beta \vec{b} $ | $\begin{bmatrix} 3 \\ 3 \end{bmatrix} = 2 \qquad \textbf{6}  \vec{a}$ $\lambda \vec{a} \neq \vec{b}$ $\beta^2 = 0.$ | i $\vec{b}$ su zavisni $\vec{a} \parallel \vec{b}$                                       |   |
|                      | Koji od vektora :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                               |                                                                                                   |                                                                                                  |                                                                                                                                                                                                   |                                                                                                                     | 1                                                                                        |   |
| 20                   | Ako je matrica $A$ $ \det(A)  = \lambda  a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A'$ dobijena od $\det(A')$   za nek                                                                        | $\begin{array}{c} \text{matrice } A = \\ \text{ko } \lambda \in \mathbb{R} \end{array}$                                       | $[a_{ij}]_{nn}, a_{ij} \in $ $\operatorname{rang}(A) =$                                           | $\mathbb{R}$ elementa $\mathbf{rang}(A')$                                                        | arnim transform 3) $A \cdot A' = I$                                                                                                                                                               | acijama, tada je:                                                                                                   | $\Leftrightarrow \det A' \neq 0$                                                         |   |
| _                    | Koje od tvrđenja<br>1) $det(AB) = detaction = detaction$ | a je tačno za b                                                                                             | oilo koje kvad                                                                                                                | ratne matrice                                                                                     | A, B, C red                                                                                      | da 2 i svaki skal                                                                                                                                                                                 | ar $\lambda$ :                                                                                                      | 1(D) 1(4) 2                                                                              |   |

u

- 1. Neka je  $z_1 = a + 1 + i(a 1), z_2 = 2a ia$  i  $w = \frac{z_1}{z_2}$ . Odrediti  $a \in \mathbb{R}$  tako da je (a)  $I_m(w) = 0$ , (b)  $R_e(w) = 0$ , (c)  $|w| = \frac{2}{\sqrt{5}}$ .
- 2. Za uređeni par  $([0,\infty),*)$ , gde je binarna operacija \* skupa  $[0,\infty)$  definisana sa  $x*y=\sqrt{x^2+y^2}$ , ispitati zatvorenost operacije, asocijativnost, komutativnost, egzistenciju neutralnog elementa i egzistenciju inverznih elemenata.
- 3. Napisati SDNF, sve proste implikante i sve minimalne DNF Bulove funkcije

| x | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| y | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
|   | 0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| u | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| f | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |

- $\begin{bmatrix} z & & & & & \\ & z' & & & & & \\ & y & y' & y \end{bmatrix}$
- 4. Neka je  $A \neq B$  i  $\vec{n} \perp \overrightarrow{AB}$ . U zavisnosti od vektora  $\vec{n}$  i vektora položaja  $\vec{r}_A$  i  $\vec{r}_B$  susednih temena A i B kocke  $ABCDA_1B_1C_1D_1$ , izraziti vektore položaja temena kocke  $ABCDA_1B_1C_1D_1$  kod koje je ravan dijagonalnog preseka  $ABC_1D_1$  normalna na vektor  $\vec{n}$ .
- 5. Operacije  $+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$  i  $\odot: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$  su definisane na sledeći način: za sve  $(a,b), (c,d) \in \mathbb{R}^2$  i svako  $\lambda \in \mathbb{R}$  je:  $(a,b)+(c,d)=(a+c,b+d), \qquad \lambda \odot (a,b)=(\lambda a,b).$

Na uređenoj četvorci  $(\mathbb{R}^2,\mathbb{R},+,\odot)$ ispitati sve aksiome vektorskog prostora.

- 6. Za linearnu transformaciju  $f: \mathbb{R}^2 \to \mathbb{R}^2$  je poznato da je f(1,2) = (-1,3) i f(1,1) = (2,-6).
  - (a) Izračunati f(x,y) i matricu M linearne transformacije f. (b) Odrediti rang linearne transformacije f.
  - (c) Ispitati da li postoji inverzna linearna transformacija  $f^{-1}$ . (d) Napisati jednačinu skupa tačaka  $f(\mathbb{R}^2) = \{f(x,y) \mid (x,y) \in \mathbb{R}^2\}$  i dati geometrijsku interpretaciju toga skupa.

ALGEBRA 30.01.2022.

- 1. Neka je  $z_1 = a + 1 + i(a 1), z_2 = 2a ia$  i  $w = \frac{z_1}{z_2}$ . Odrediti  $a \in \mathbb{R}$  tako da je (a)  $I_m(w) = 0$ , (b)  $R_e(w) = 0$ , (c)  $|w| = \frac{2}{\sqrt{5}}$ .
- 2. Za uređeni par  $([0,\infty),*)$ , gde je binarna operacija \* skupa  $[0,\infty)$  definisana sa  $x*y=\sqrt{x^2+y^2}$ , ispitati zatvorenost operacije, asocijativnost, komutativnost, egzistenciju neutralnog elementa i egzistenciju inverznih elemenata.
- 3. Napisati SDNF, sve proste implikante i sve minimalne DNF Bulove funkcije

| [;    | $\overline{x}$ | 0  | 0  | 0   | 0   | 0  | 0  | 0   | 0   | 1  | 1  | 1   | 1   | 1  | 1  | 1   | 1   |
|-------|----------------|----|----|-----|-----|----|----|-----|-----|----|----|-----|-----|----|----|-----|-----|
| 1     | y              | 0  | 0  | 0   | 0   | 1  | 1  | 1   | 1   | 0  | 0  | 0   | 0   | 1  | 1  | 1   | 1   |
| - 1 : | z              | () | () | - 1 | - 1 | () | () | - 1 | - 1 | () | () | - 1 | - 1 | () | () | - 1 | - 1 |
| 1     | u              | 0  | 1  | 0   | 1   | 0  | 1  | 0   | 1   | 0  | 1  | 0   | 1   | 0  | 1  | 0   | 1   |
|       |                |    |    |     |     |    |    |     |     |    |    |     |     | 1  |    |     |     |



- 4. Neka je  $A \neq B$  i  $\vec{n} \perp \overrightarrow{AB}$ . U zavisnosti od vektora  $\vec{n}$  i vektora položaja  $\vec{r}_A$  i  $\vec{r}_B$  susednih temena A i B kocke  $ABCDA_1B_1C_1D_1$ , izraziti vektore položaja temena kocke  $ABCDA_1B_1C_1D_1$  kod koje je ravan dijagonalnog preseka  $ABC_1D_1$  normalna na vektor  $\vec{n}$ .
- 5. Operacije  $+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$  i  $\odot: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$  su definisane na sledeći način: za sve  $(a,b), (c,d) \in \mathbb{R}^2$  i svako  $\lambda \in \mathbb{R}$  je:  $(a,b)+(c,d)=(a+c,b+d), \qquad \lambda \odot (a,b)=(\lambda a,b).$

Na uređenoj četvorci  $(\mathbb{R}^2, \mathbb{R}, +, \odot)$  ispitati sve aksiome vektorskog prostora.

- 6. Za linearnu transformaciju  $f: \mathbb{R}^2 \to \mathbb{R}^2$  je poznato da je f(1,2) = (-1,3) i f(1,1) = (2,-6).
  - (a) Izračunati f(x,y) i matricu M linearne transformacije f. (b) Odrediti rang linearne transformacije f.
  - (c) Ispitati da li postoji inverzna linearna transformacija  $f^{-1}$ . (d) Napisati jednačinu skupa tačaka  $f(\mathbb{R}^2) = \{f(x,y) \mid (x,y) \in \mathbb{R}^2\}$  i dati geometrijsku interpretaciju toga skupa.

## REŠENJA

1. Kako je

$$w = \frac{z_1}{z_2} = \frac{a+1+i(a-1)}{2a-ia} = \frac{a+1+i(a-1)}{2a-ia} \cdot \frac{2a+ia}{2a+ia}$$
$$= \frac{2a^2+2a-a^2+a+i(2a^2-2a+a^2+a)}{4a^2+a^2} = \frac{a^2+3a+i(3a^2-a)}{5a^2}$$
$$= \frac{a^2+3a}{5a^2} + i\frac{3a^2-a}{5a^2},$$

dobijamo sledeća rešenja.

(a) 
$$I_m(w) = 0$$
 ako je 
$$\frac{3a^2 - a}{5a^2} = 0 \quad \Leftrightarrow \quad (3a^2 - a = 0 \quad \wedge \quad 5a^2 \neq 0)$$
 
$$\Leftrightarrow \quad (a(3a - 1) = 0 \quad \wedge \quad a \neq 0) \quad \Leftrightarrow \quad a = \frac{1}{3}.$$

(b) 
$$R_e(w) = 0$$
 ako je 
$$\frac{a^2 + 3a}{5a^2} = 0 \quad \Leftrightarrow \quad (a^2 + 3a = 0 \quad \wedge \quad 5a^2 \neq 0)$$
 
$$\Leftrightarrow \quad (a(a+3) = 0 \quad \wedge \quad a \neq 0) \quad \Leftrightarrow \quad a = -3.$$

(c) 
$$|w| = \frac{2}{\sqrt{5}} \iff \sqrt{(\frac{a^2 + 3a}{5a^2})^2 + (\frac{3a^2 - a}{5a^2})^2} = \frac{2}{\sqrt{5}}.$$

Za  $a = 0$  broj  $w$  nije definisan, a za  $a \neq 0$  je
$$|w| = \frac{2}{\sqrt{5}} \iff \sqrt{(\frac{a+3}{5a})^2 + (\frac{3a-1}{5a})^2} = \frac{2}{\sqrt{5}}$$

$$\Leftrightarrow \sqrt{\frac{(a+3)^2 + (3a-1)^2}{25a^2}} = \sqrt{\frac{10a^2 + 10}{25a^2}} = \frac{\sqrt{10}\sqrt{a^2 + 1}}{5|a|} = \frac{2}{\sqrt{5}}$$

$$\Leftrightarrow \frac{\sqrt{a^2 + 1}}{\sqrt{5}|a|} = \frac{\sqrt{2}}{\sqrt{5}} \iff \sqrt{a^2 + 1} = \sqrt{2}|a| /^2$$

$$\Leftrightarrow a^2 + 1 = 2a^2 \iff a^2 = 1 \iff a \in \{-1, 1\}.$$

- 2. (a) Zatvorenost operacije \* je očigledna jer za  $x,y\in[0,\infty)$  je  $\sqrt{x^2+y^2}\in[0,\infty)$ .
  - (b) Operacija \* jeste asocijativna jer za

$$L = (x*y)*z = \sqrt{x^2 + y^2}*z = \sqrt{(\sqrt{x^2 + y^2})^2 + z^2} = \sqrt{x^2 + y^2 + z^2},$$
 
$$D = x*(y*z) = x*\sqrt{y^2 + z^2} = \sqrt{x^2 + (\sqrt{y^2 + z^2})^2} = \sqrt{x^2 + y^2 + z^2},$$
 imamo da je  $L = D$ .

- (c) Komutativnost operacije \* je očigledna jer je  $x*y=\sqrt{x^2+y^2}=\sqrt{y^2+x^2}=y*x.$
- (d) Neutralni element je  $0\in[0,\infty)$  jer za sve  $x\in[0,\infty)$  važi  $0*x=x*0=\sqrt{x^2+0^2}=|x|=x.$
- (e) Inverzni element za 0 je naravno 0, a za sve ostale x > 0 ne postoji  $x' \ge 0$  takvo da je  $x * x' = \sqrt{x^2 + (x')^2} = 0$  (jer je  $x^2 > 0$ ).
- 3. Proste implikante:

$$yu', y'zu, x'y'z, x'zu'.$$
  
 $MDNF_1 = yu' + y'zu + x'y'z,$   
 $MDNF_2 = yu' + y'zu + x'zu'.$ 



4. Duži  $AD_1$  i  $BC_1$  su dijagonale strana kocke tj. kvadrata  $ADD_1A_1$  i  $BCC_1B_1$ , te je  $|AD_1| = |BC_1| = \sqrt{2}|\overrightarrow{AB}|$ . Vektori  $|AD_1|$  i  $|BC_1|$  su normalni i na  $\overrightarrow{AB}$  i na  $\overrightarrow{n}$ , dakle imaju pravac vektora  $\overrightarrow{a} = \overrightarrow{AB} \times \overrightarrow{n}$ . Stoga je

$$\vec{r}_{D_1} = \vec{r}_A \pm \sqrt{2} |\overrightarrow{AB}| \frac{\vec{a}}{|\vec{a}|}, \qquad \vec{r}_{C_1} = \vec{r}_B \pm \sqrt{2} |\overrightarrow{AB}| \frac{\vec{a}}{|\vec{a}|}$$

(zadatak ima dva rešenja). Neka je S sredina duži  $BC_1$ , dakle  $\vec{r}_S = \frac{1}{2}(\vec{r}_B + \vec{r}_{C_1})$ .

Vektori SC i  $SB_1$  su istog pravca kao vektori  $\vec{n}$  i jednake dužine kao vektori  $\vec{SB}$  i  $\vec{SC_1} = \frac{1}{2}|\vec{BC_1}|$ , te je

$$\vec{r}_C = \vec{r}_S \pm \frac{1}{2} |\overrightarrow{BC_1}| \frac{\vec{n}}{|\vec{n}|}, \qquad \vec{r}_{B_1} = \vec{r}_S \mp \frac{1}{2} |\overrightarrow{BC_1}| \frac{\vec{n}}{|\vec{n}|}$$

(rešenja dobijena sa  $\pm$  i  $\mp$  su jednaka jer se razlikuju samo u oznakama temena kocke).

Na kraju iz 
$$\overrightarrow{AA_1} = \overrightarrow{DD_1} = \overrightarrow{BB_1}$$
 dobijamo  $\vec{r}_{A_1} = \vec{r}_A + \vec{r}_{B_1} - \vec{r}_B$ ,  $\vec{r}_D = \vec{r}_{D_1} - \vec{r}_{B_1} + \vec{r}_B$ .

5. (a) Ispitujemo da li je  $(\mathbb{R}^2, +)$  komutativna grupa. Operacija + je zatvorena jer je  $(a, b) + (c, d) = (a+c, b+d) \in \mathbb{R}^2$  za sve  $(a, b), (c, d) \in \mathbb{R}^2$ . Asocijativna je i komutativna jer je

$$\begin{aligned} (a,b) + ((c,d) + (e,f)) &= (a,b) + (c+e,d+f) = (a+c+e,b+d+f) \\ &= (a+c,b+d) + (e,f) = ((a,b) + (c,d)) + (e,f), \end{aligned}$$

$$(a,b) + (c,d) = (a+c,b+d) = (c+a,d+b) = (c,d) + (a,b).$$

Neutralni element je (0,0) jer je (a,b) + (0,0) = (0,0) + (a,b) = (a,b).

Inverzni element za  $(a,b) \in \mathbb{R}^2$  je  $(-a,-b) \in \mathbb{R}^2$  jer je (a,b) + (-a,-b) = (-a,-b) + (a,b) = (0,0).

Dakle,  $(\mathbb{R}^2, +)$  je komutativna grupa.

(b) Jeste  $\lambda \odot ((a,b) + (c,d)) = \lambda \odot (a,b) + \lambda \odot (c,d)$  za svako  $\lambda \in \mathbb{R}$  i sve  $(a,b), (c,d) \in \mathbb{R}^2$  jer je  $\lambda \odot ((a,b) + (c,d)) = \lambda \odot (a+c,b+d) = (\lambda(a+c),b+d)$   $= (\lambda a + \lambda c, b+d) = (\lambda a, b) + (\lambda c, d) = \lambda \odot (a,b) + \lambda \odot (c,d).$ 

(c) Ispitujemo da li je  $(\lambda + \theta) \odot (a, b) = \lambda \odot (a, b) + \theta \odot (a, b)$  za sve  $\lambda, \theta \in \mathbb{R}$  i svako  $(a, b) \in \mathbb{R}^2$ . Nije, jer je npr. za  $\lambda = \theta = a = b = 1$ 

$$L = (\lambda + \theta) \odot (a, b) = ((1+1) \cdot 1, 1) = (2, 1),$$

$$D = \lambda \odot (a,b) + \theta \odot (a,b) = (\lambda a,b) + (\theta a,b) = (1,1) + (1,1) = (2,2) \neq L.$$

(d) Ispitujemo da li je  $\lambda \odot (\theta \odot (a,b)) = (\lambda \theta) \odot (a,b)$  za sve  $\lambda, \theta \in \mathbb{R}$  i svako  $(a,b) \in \mathbb{R}^2$ . Jeste, jer je  $\lambda \odot (\theta \odot (a,b)) = \lambda \odot (\theta a,b) = (\lambda \theta a,b) = (\lambda \theta) \odot (a,b)$ .

(e) Očigledno je 1  $\odot$   $(a,b)=(1\cdot a,b)=(a,b)$  za svako  $(a,b)\in\mathbb{R}^2.$ 

6. (a) Lin. transf. f odgovara matrica  $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , a iz uslova f(1,2) = (-1,3) i f(1,1) = (2,-6) dobijamo

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} a+2b \\ c+2d \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \Leftrightarrow \begin{array}{c} a + 2b = -1 \\ c + 2d = 3 \end{array},$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\ c+d \end{bmatrix} = \begin{bmatrix} 2 \\ -6 \end{bmatrix} \Leftrightarrow \begin{array}{c} a + b = 2 \\ c + d = -6 \end{array}.$$

Rešavanjem sistema jednačina

dobijamo  $a=5,\,b=-3,\,c=-15,\,d=9,$  dakle  $M=\left[\begin{array}{cc}5&-3\\-15&9\end{array}\right],$  te je

$$f(x,y) = \begin{bmatrix} 5 & -3 \\ -15 & 9 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5x - 3y \\ -15x + 9y \end{bmatrix}.$$
 Sledi da je  $f(x,y) = (5x - 3y, -15x + 9y).$ 

(b) Ako prvu vrstu matrice M pomnoženu sa 3 dodamo drugoj, dobijamo da je  $M \sim \begin{bmatrix} 5 & -3 \\ 0 & 0 \end{bmatrix}$ , odakle sledi da je rang(M) = 1.

(c) Iz det M=0 sledi da ne postoji inverzna linearna transformacija  $f^{-1}$ .

(d)  $f(\mathbb{R}^2) = \{f(x,y) | (x,y) \in \mathbb{R}^2\} = \{(5x-3y, -15x+9y) | (x,y) \in \mathbb{R}^2\} = \{(5x-3y, -3(5x-3y)) | (x,y) \in \mathbb{R}^2\} = \{(t, -3t) | t \in \mathbb{R}\} = \{t(1, -3) | t \in \mathbb{R}\},$ 

što je prava koja prolazi koordinatni početak i paralelna je sa vektorom (1,-3), i njena jednačina je  $f(\mathbb{R}^2): \frac{x}{1} = \frac{y}{-3}$ .