Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΕΒΔΟΜΗ ΔΙΑΛΕΞΗ

Προσέγγιση συνάρτησης (1/2)

Μαθηματικό Ποόβλημα

Για μια άγνωστη συνάρτηση f(x) ξέρουμε τις τιμές της, f_0, f_1, \ldots, f_n , στα σημεία x_0, x_1, \ldots, x_n (με $x_0 < x_1 < x_2 < \cdots < x_n$):

Ζητούμε να υπολογίσουμε:

- την τιμή της f ή κάποιας παραγώγου της σε ένα σημείο \bar{x} στο (x_0,x_n) ,
- ullet το ολοκλήφωμα της f σε κάποιο διάστημα (μέσα στο $[x_0,x_n]$),
- τη ρίζα της f στο $[x_0, x_n]$, κλπ.

Προσέγγιση συνάρτησης (2/2)

Λύση

Προσεγγίζουμε την f(x) με άλλη συνάρτηση. Η τιμή που προκύπτει από τη νέα συνάρτηση για το ζητούμενο ελπίζουμε ότι πλησιάζει αυτή της f(x).

Παρατήρηση

Οι τεχνικές που θα παρουσιάσουμε μπορούν να εφαρμοστούν και στην περίπτωση που έχουμε μια γνωστή συνάρτηση f(x), η οποία είναι εξαιρετικά πολύπλοκη. Γι' αυτό, θέλουμε να την προσεγγίσουμε σε κάποιο διάστημα με απλή συνάρτηση.

- Υπάρχει ένα και μοναδικό πολυώνυμο βαθμού n που περνά από τα n+1 σημεία (x_i,f_i) .
- Για να το προσδιορίσουμε, σχηματίζουμε ένα πολυώνυμο p(x), n βαθμού, με n+1 άγνωστους συντελεστές, και απαιτούμε να ικανοποιεί τις n+1 σχέσεις $p(x_i)=f_i$.
- Οι εξισώσεις είναι γραμμικές ως προς τους άγνωστους συντελεστές.
 Ανάλογα με τη μορφή που θα επιλέξουμε για πολυώνυμο, η επίλυση των εξισώσεων είναι πολύπλοκη ή απλή.

Το συγκεκριμένο πολυώνυμο λέγεται πολυώνυμο παρεμβολής.

Ανάπτυγμα σε μονώνυμα

An
$$p(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+a_nx^n$$
, of scens $p(x_i)=f_i$ ginontal
$$a_0+a_1x_0+\cdots+a_{n-1}x_0^{n-1}+a_nx_0^n = f_0$$

$$a_0+a_1x_1+\cdots+a_{n-1}x_1^{n-1}+a_nx_1^n = f_1$$

$$\vdots \qquad \vdots$$

$$a_0+a_1x_n+\cdots+a_{n-1}x_n^{n-1}+a_nx_n^n = f_n$$

Προσέξτε ότι οι άγνωστοι είναι οι n+1 συντελεστές a_i .

Ανάπτυγμα σε μονώνυμα

An
$$p(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+a_nx^n$$
, of scens $p(x_i)=f_i$ ginontal
$$a_0+a_1x_0+\cdots+a_{n-1}x_0^{n-1}+a_nx_0^n = f_0$$

$$a_0+a_1x_1+\cdots+a_{n-1}x_1^{n-1}+a_nx_1^n = f_1$$

$$\vdots \qquad \vdots$$

$$a_0+a_1x_n+\cdots+a_{n-1}x_n^{n-1}+a_nx_n^n = f_n$$

Προσέξτε ότι οι άγνωστοι είναι οι n+1 συντελεστές a_i . Με πίνακες το σύστημα γράφεται

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Ο πίνακας των συντελεστών είναι ο πίνακας Vandermonde.

Ανάπτυγμα σε μονώνυμα

An
$$p(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+a_nx^n$$
, of scens $p(x_i)=f_i$ givontal
$$a_0+a_1x_0+\cdots+a_{n-1}x_0^{n-1}+a_nx_0^n = f_0$$

$$a_0+a_1x_1+\cdots+a_{n-1}x_1^{n-1}+a_nx_1^n = f_1$$

$$\vdots \qquad \vdots$$

$$a_0+a_1x_n+\cdots+a_{n-1}x_n^{n-1}+a_nx_n^n = f_n$$

Προσέξτε ότι οι άγνωστοι είναι οι n+1 συντελεστές a_i . Με πίνακες το σύστημα γράφεται

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Ο πίνακας των συντελεστών είναι ο πίνακας Vandermonde.

Το σύστημα έχει μοναδική λύση και μπορεί να λυθεί με την απαλοιφή Gauss ή πιο γρήγορες μεθόδους που εκμεταλλεύονται την ειδική μορφή του (Björck-Pereyra).

Μπορούμε να επιλέξουμε να έχει το πολυώνυμο τη μορφή

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n \prod_{i=0}^{n-1} (x - x_i),$$

δηλαδή, να είναι ανάπτυγμα στα πολυώνυμα της βάσης Newton,

$$p(x) = \sum_{i=0}^n a_i q_i(x) \;, \quad \text{\'atou} \quad q_i(x) = \left\{ egin{array}{ll} 1 \;, & i=0 \;, \\ \prod_{j=0}^{i-1} (x-x_j) \;, & i=1,2,\ldots,n \;. \end{array}
ight.$$

Προσέγγιση με πολυώνυμο Ανάπτυγμα σε πολυώνυμα Newton (2/2)

Οι εξισώσεις $p(x_i)=f_i$ όταν το p(x) είναι ανάπτυγμα στη βάση Newton γίνονται τριγωνικό σύστημα

$$a_0$$
 = f_0
 $a_0 + a_1(x_1 - x_0)$ = f_1
 $a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$ = f_2
 \vdots \vdots

Επιλύεται εύκολα, σταδιακά: $a_0 = f_0$ και

$$a_j = rac{1}{q_j(x_j)} \left(f_j - \sum_{i=0}^{j-1} a_i q_i(x_j) \right) , \qquad j = 1, 2, \dots, n .$$

Προσέγγιση με πολυώνυμο Ανάπτυγμα σε πολυώνυμα Newton (2/2)

Οι εξισώσεις $p(x_i)=f_i$ όταν το p(x) είναι ανάπτυγμα στη βάση Newton γίνονται τριγωνικό σύστημα

$$a_0$$
 = f_0
 $a_0 + a_1(x_1 - x_0)$ = f_1
 $a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$ = f_2
 \vdots \vdots

Επιλύεται εύκολα, σταδιακά: $a_0 = f_0$ και

$$a_j = rac{1}{q_j(x_j)} \left(f_j - \sum_{i=0}^{j-1} a_i q_i(x_j) \right) , \qquad j = 1, 2, \dots, n .$$

Πλεονέκτημα: Εύκολα συμπεριλαμβάνεται κι άλλο σημείο.

Ανάπτυγμα στη βάση Lagrange

Αν

$$p(x) = \sum_{i=0}^{n} a_i \ell_i(x) ,$$

όπου

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} , \quad i = 0, 1, 2, \dots, n ,$$

τα πολυώνυμα n βαθμού της βάσης Lagrange, τότε οι εξισώσεις $p(x_i)=f_i$ γίνονται

$$\sum_{i=0}^{n} a_i \ell_i(x_j) = f_j \Rightarrow a_j = f_j , \qquad j = 0, 1, \dots, n$$

καθώς $\ell_i(x_j) = \delta_{ij}$.

Ανάπτυγμα στη βάση Lagrange

Αν

$$p(x) = \sum_{i=0}^{n} a_i \ell_i(x) ,$$

όπου

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} , \quad i = 0, 1, 2, \dots, n ,$$

τα πολυώνυμα n βαθμού της βάσης Lagrange, τότε οι εξισώσεις $p(x_i) = f_i$ γίνονται

$$\sum_{i=0}^{n} a_i \ell_i(x_j) = f_j \Rightarrow a_j = f_j , \qquad j = 0, 1, \dots, n$$

καθώς $\ell_i(x_j) = \delta_{ij}$.

Επομένως, το πολυώνυμο παρεμβολής είναι

$$p(x) = \sum_{i=0}^{n} f_i \, \ell_i(x) .$$

Παράδειγμα (1/2)

Μια άγνωστη συνάςτηση περνά από τα σημεία (2.0,0.5), (2.5,0.4), (4.0,0.25). Το πολυώνυμο παρεμβολής, υπολογιζόμενο από τον τύπο Lagrange, είναι

$$p(x) = \ell_0(x)f_0 + \ell_1(x)f_1 + \ell_2(x)f_2 = 0.5\ell_0(x) + 0.4\ell_1(x) + 0.25\ell_2(x) ,$$

όπου

$$\ell_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = x^2 - 6.5x + 10 ,$$

$$\ell_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = -4(x^2 - 6x + 8)/3 ,$$

$$\ell_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = (x^2 - 4.5x + 5)/3 .$$

Aga $p(x) = 0.05x^2 - 0.425x + 1.15$.

[Η πραγματική συνάρτηση είναι η f(x) = 1/x.]

Παράδειγμα (2/2)

Γραφική παράσταση της f(x)=1/x (μπλέ γραμμή) και της $p(x)=0.05x^2-0.425x+1.15$ (κόκκινη γραμμή).

Παρατήρηση

Δεν μπορούμε να κάνουμε αξιόπιστους υπολογισμούς με την p(x) έξω από το διάστημα παρεμβολής $[x_0,x_n]$.

Προσέγγιση με πολυώνυμο Σφάλμα

Το σφάλμα της προσέγγισης της f(x) από το πολυώνυμο παρεμβολής p(x) στο σημείο $x \in [x_0, x_n]$ είναι

$$|f(x) - p(x)| = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i) ,$$

όπου ξ ένα σημείο στο (x_0, x_n) .

Παρατήρηση

Αν το διάστημα $[x_0, x_n]$ είναι μικρό και χρησιμοποιούμε μικρού βαθμού πολυώνυμα έχουμε μικρό σφάλμα (καλή προσέγγιση). Αν οι αποστάσεις $x-x_i$ γίνουν μεγάλες (π.χ. αν το x είναι εκτός του διαστήματος παρεμβολής), το σφάλμα είναι μεγάλο.

Φαινόμενο Runge (1/2)

Πολυώνυμα παρεμβολής μεγάλου βαθμού μπορεί να παρουσιάζουν έντονη ταλαντωτική συμπεριφορά στα ακραία διαστήματα μεταξύ σημείων που ισαπέχουν.

Παράδειγμα

Προσέγγιση της συνάρτησης $f(x)=1/\left(1+25x^2\right)$ στο [-1,1] με πολυώνυμο p(x) $20^{\rm ou}$ βαθμού σε ισαπέχοντα σημεία.

Φαινόμενο Runge (2/2)

Αν έχουμε δυνατότητα επιλογής των σημείων παρεμβολής, μπορούμε να αντιμετωπίσουμε το φαινόμενο Runge.

Αν διαλέξουμε τα σημεία ώστε να είναι πυκνά κατανεμημένα στα άκρα του διαστήματος $[x_0, x_n]$ και αραιά προς το κέντρο, το φαινόμενο ατονεί.

Η ιδανική κατανομή σημείων που ελαχιστοποιεί το φαινόμενο Runge είναι η κατανομή Chebyshev: Τα n+1 σημεία στο διάστημα [a,b] είναι τα

$$x_i = \frac{b-a}{2} \cos\left(\frac{i+0.5}{n+1}\pi\right) + \frac{b+a}{2}, \quad i = 0, 1, \dots, n.$$

Σχήμα: Κατανομή σημείων Chebyshev

Ισαπέχοντα σημεία

Ποόβλημα

Θέλουμε να επιλέξουμε n+1 ισαπέχοντα σημεία, $x_i,\ i=0,1,\dots,n,$ στο διάστημα [a,b]. Τα άκρα του διαστήματος συμπεριλαμβάνονται στα σημεία. Ποια είναι τα $x_i;$

Ισαπέχοντα σημεία

Ποόβλημα

Θέλουμε να επιλέξουμε n+1 ισαπέχοντα σημεία, $x_i,\ i=0,1,\dots,n,$ στο διάστημα [a,b]. Τα άκρα του διαστήματος συμπεριλαμβάνονται στα σημεία. Ποια είναι τα $x_i;$

Λύση

Έστω h n απόσταση διαδοχικών σημείων. Τότε

$$x_0 \equiv a,$$
 $x_1 = a+h,$
 $x_2 = a+2h,$
 $\vdots \qquad \vdots$
 $x_n = a+nh.$

Αλλά $x_n \equiv b$. Επομένως $a+nh=b \Rightarrow h=(b-a)/n$. Γενικός τύπος για τα x_i :

$$x_i = a + ih$$
.

Προσέξτε: n+1 το πλήθος των σημείων, n το πλήθος των διαστημάτων.

Προσέγγιση με λόγο πολυωνύμων

Μια συνάςτηση f(x) μποςεί να προσεγγιστεί με λόγο πολυωνύμων R(x) = P(x)/Q(x) όπου

$$P(x) = a_0 + \sum_{k=1}^{M} a_k x^k, \qquad Q(x) = b_0 + \sum_{k=1}^{N} b_k x^k.$$

Συνολικά έχουμε M+N+2 άγνωστους συντελεστές a_k , b_k . Ένας από αυτούς μπορεί αυθαίρετα να οριστεί ίσος με 1, έστω ο b_0 . Το πλήθος των υπόλοιπων αγνώστων, M+N+1, πρέπει να είναι ίσο με το πλήθος των σημείων (x_i,f_i) στα οποία γνωρίζουμε τη συνάρτηση. Η απαίτηση να περνά η R(x) από αυτά τα σημεία δίνει ένα γραμμικό σύστημα εξισώσεων

$$R(x_i) = f_i \Rightarrow P(x_i) = f_i Q(x_i), \quad i = 1, \dots, M + N + 1$$

με άγνωστους τους M+N+1 συντελεστές.

Παρατήρηση

Δε γνωρίζουμε πώς να επιλέξουμε τα M, N (παρά μόνο το άθροισμά τους). Κακή επιλογή αυτών θα δώσει κακή προσεγγιστική συνάρτηση.

Προσέγγιση Padé

- Εφαρμόζεται όταν θέλουμε να απλοποιήσουμε μια πολύπλοκη συνάρτηση f(x).
- Απαιτούμε n f(x) και n R(x) = P(x)/Q(x), με P(x), Q(x) πολυώνυμα M και N βαθμού αντίστοιχα, να έχουν σε ένα σημείο x_0 , ίδιες τιμές και ίδιες παραγώγους μέχρι και τάξης M+N. Επομένως,

$$R(x_0) = f(x_0),$$

 $R'(x_0) = f'(x_0),$
 $\vdots :$
 $R^{(M+N)}(x_0) = f^{(M+N)}(x_0).$

- Η λύση του μη γραμμικού συστήματος προσδιορίζει τους συντελεστές a_k , b_k (με $b_0 \equiv 1$) των P(x), Q(x).
- Η συνά
ρτηση R(x) = P(x)/Q(x) είναι η προσεγγιστική συνάρτηση του Padé.
- Το σφάλμα της προσέγγισης, |f(x) R(x)|, είναι ανάλογο του $(x x_0)^{M+N+1}$.

Ποοσέγγιση κατά τμήματα με πολυώνυμα ελάχιστου βαθμού (1/2)

Στόχος

Θέλουμε να αποφύγουμε το φαινόμενο Runge (ταλαντώσεις στα άκρα του διαστήματος) κατά την προσέγγιση με πολυώνυμο παρεμβολής μεγάλου βαθμού.

Λύση

Προσεγγίζουμε την άγνωστη συνάρτηση κατά τμήματα, χρησιμοποιώντας πολυώνυμα πρώτου βαθμού: Χωρίζουμε το συνολικό διάστημα $[x_0,x_n]$ σε τμήματα μεταξύ διαδοχικών σημείων: $[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n]$. Σε κάθε διάστημα $i=0,1,\ldots,n-1$, προσαρμόζουμε ένα πολυώνυμο με δύο άγνωστους συντελεστές, $p_i(x)=a_ix+b_i$, ώστε να περνάει από τα άκρα του.

Παρατηρήσεις

Προκύπτει μια συνεχής, τμηματική προσεγγιστική συνάρτηση από ευθύγραμμα τμήματα. Όμως, οι παράγωγοι αυτής της καμπύλης είναι ασυνεχείς στα «εσωτερικά» σημεία x_i .

Ποοσέγγιση κατά τμήματα με πολυώνυμα ελάχιστου βαθμού (2/2)

Παράδειγμα

Προσέγγιση με ευθύγραμμα τμήματα

Ποοσέγγιση κατά τμήματα με πολυώνυμα ελάχιστου βαθμού (2/2)

Παράδειγμα

Προσέγγιση με ευθύγραμμα τμήματα

Προσέγγιση με παραβολικά τμήματα

Αντί να πάρουμε ζεύγη διαδοχικών σημείων, σχηματίζουμε τριάδες διαδοχικών σημείων: $\{x_0,x_1,x_2\}$, $\{x_2,x_3,x_4\}$, κλπ. Στην κάθε τριάδα i προσδιορίζουμε τους συντελεστές του $p_i(x)=a_ix^2+b_ix+c_i$ ώστε να περνά από τα σημεία της. Κατασκευάζουμε έτσι τμηματική προσεγγιστική συνάρτηση με παραβολές. Είναι συνεχής με ασυνεχείς παραγώγους στα σημεία τομής.

Ποοσέγγιση με spline Χαρακτηριστικά

Η καμπύλη spline είναι πολυώνυμο που

- ορίζεται τμηματικά από πολυώνυμα χαμηλού βαθμού, αλλά όχι του ελάχιστου δυνατού.
- Είναι συνεχής, με συνεχείς παραγώγους στα σημεία ένωσης των πολυωνύμων.

Πλεονεκτήματα

Η συγκεκριμένη καμπύλη

- αποφεύγει να χρησιμοποιήσει πολυώνυμα μεγάλου βαθμού (άρα το φαινόμενο Runge είναι ασήμαντο).
- είναι συνεχής και παραγωγίσιμη σε όλο το διάστημα ορισμού.

Κατασκευή φυσικής κυβικής spline (1/4)

Η «φυσική» κυβική spline είναι η συχνότερα χρησιμοποιούμενη καμπύλη. Την κατασκευάζουμε ως εξής:

- Έχουμε ένα σύνολο n+1 σημείων (x_i, f_i) με $i=0,1,\ldots,n$ και $x_i < x_{i+1}$. Ανά δύο διαδοχικά σημεία, $\{x_0, x_1\}, \{x_1, x_2\}, \ldots$, περνούμε πολυώνυμα τρίτου βαθμού. Το κάθε πολυώνυμο $p_i(x)$ ορίζεται στο διάστημα $[x_i, x_{i+1}]$. Το πλήθος τους είναι n, όσα τα ζεύγη σημείων (ή τα διαστήματα). Επομένως i = 0, 1, 2, ..., n - 1.
- Απαιτούμε για κάθε πολυώνυμο να περνά από τα άκρα του διαστήματος ορισμού του:

$$p_i(x_i) = f_i,$$

$$p_i(x_{i+1}) = f_{i+1}.$$

Έχουμε 2η γραμμικές εξισώσεις για τους συντελεστές.

Κατασκευή φυσικής κυβικής spline (2/4)

• Στα σημεία που ενώνονται τα πολυώνυμα, δηλαδή στα n-1 «εσωτερικά» σημεία $x_1, x_2, \ldots, x_{n-1}$, απαιτούμε να έχουν ίσες πρώτες και δεύτερες παραγώγους. Επομένως

$$p'_{i-1}(x_i) = p'_i(x_i),$$

 $p''_{i-1}(x_i) = p''_i(x_i),$

για i = 1, 2, ..., n - 1. Αυτές είναι άλλες 2(n - 1) γραμμικές εξισώσεις.

• Απαιτούμε οι δεύτερες παράγωγοι του $p_0(x)$ στο άκρο x_0 και του $p_{n-1}(x)$ στο άλλο άκρο x_n να είναι ίσες με 0 («φυσική» spline):

$$p_0''(x_0) = 0,$$

 $p_{n-1}''(x_n) = 0.$

Άλλες 2 γραμμικές εξισώσεις.

Γράψαμε συνολικά 2n+2(n-1)+2 γραμμικές εξισώσεις για τους 4n συντελεστές των πολυωνύμων.

Aν το πολυώνυμο στο $[x_i, x_{i+1}]$, με $i=0,\ldots,n-1$ είναι της μορφής

$$p_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i,$$

οι εξισώσεις γίνονται

$$\begin{array}{rcl} d_i & = & f_i \;,\; \text{fig.} \; i = 0, \dots, n-1 \;, \\ a_i(x_{i+1}-x_i)^2 + b_i(x_{i+1}-x_i) + c_i & = & \frac{d_{i+1}-d_i}{x_{i+1}-x_i} \;,\; \text{fig.} \; i = 0, \dots, n-1 \;, \\ 3a_i(x_{i+1}-x_i)^2 + 2b_i(x_{i+1}-x_i) + c_i - c_{i+1} & = & 0 \;,\; \text{fig.} \; i = 0, \dots, n-2 \;, \\ 3a_i(x_{i+1}-x_i) + b_i - b_{i+1} & = & 0 \;,\; \text{fig.} \; i = 0, \dots, n-2 \;, \\ b_0 & = & 0 \;, \\ 3a_{n-1}(x_n-x_{n-1}) + b_{n-1} & = & 0 \;. \end{array}$$

Η λύση του γραμμικού συστήματος υπολογίζει τους συντελεστές $a_i,\,b_i,\,c_i,\,d_i$ με $i=0,1,\ldots,n-1.$

Ποοσέγγιση με spline

Κατασκευή φυσικής κυβικής spline (4/4)

Παράδειγμα

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

Γνωρίζουμε να βρίσκουμε προσεγγιστική τιμή μιας συνάρτησης f(x) στο σημείο \bar{x} αν γνωρίζουμε τις τιμές της σε κάποια σημεία x_i , με $i=0,\ldots,n$:

Βρείτε προσεγγιστική τιμή για τη συνάρτηση g(x,y) στο σημείο (\bar{x},\bar{y}) , αν είναι γνωστή στα σημεία (x_i,y_i) :

