CSIE5002 Prediction, learning, and games

Lecture 4: Introduction to statistical learning III

Yen-Huan Li (yenhuan.li@csie.ntu.edu.tw)

11.03.2019

Department of Computer Science and Information Engineering National Taiwan University

Abstract

This lecture is a continuation of Lecture 1 and Lecture 2. In particular, this lecture introduces the notions of PAC-Bayes analyses and model selection.

Related advanced topics

- PAC-Bayes with data-dependent priors
 - O. Catoni. 2007. Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning.
 - G. Lever *et al.* 2013. Tighter PAC-Bayes bounds through distribution-dependent priors.
 - G. K. Dziugaite and D. M. Roy. 2018. Data-dependent PAC-Bayes priors via differential privacy.

Deep learning

- B Neyshabur et al. 2017. Exploring generalization in deep learning.
- G. K. Dziugaite and D. M. Roy. 2018. Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of entropy-SGD and data-dependent priors.

Table of contents

- 1. PAC-Bayes analyses
- 2. Model selection
- 3. Conclusions

PAC-Bayes analyses

Starting point

Proposition 1. (Proposition 2 in Lecture 2) Let $\mathcal H$ be a finite hypothesis class. Suppose that the loss functions take values in [0,1]. Then for every $\delta\in]0,1[$, it holds with probability at least $(1-\delta)$ that

$$R(h) \le R_n(h) + \sqrt{\frac{\log(|\mathcal{H}|/\delta)}{2n}}, \quad \forall h \in \mathcal{H}.$$

Proof. (Proposition 1) By the union bound and Hoeffding's inequality, we write

$$P(\exists h \in \mathcal{H} : R(h) - R_n(h) > t) \le \sum_{h \in \mathcal{H}} P(R(h) - R_n(h) > t)$$
$$\le |\mathcal{H}| e^{-2nt^2}.$$

4

Countable hypothesis class

The previous proof cannot be directly applied when the hypothesis class is countable.

Proposition 2. Let $\mathcal H$ be a *countable* hypothesis class. Suppose that the loss functions take values in [0,1]. Then for any *probability distribution* π *on* $\mathcal H$ and $\delta \in]0,1[$, it holds with probability at least $(1-\delta)$ that

$$R(h) \le R_n(h) + \sqrt{\frac{\log(1/\pi(h)) + \log(1/\delta)}{2n}}, \quad \forall h \in \mathcal{H}.$$

Remark. The probability distribution π is called the *prior* in PAC-Bayes literature.

Proof of Proposition 2

Proof. (Proposition 2) Let $t: \mathcal{H} \to]0, +\infty[$. By the union bound and Hoeffding's inequality, we write

$$P(\exists h \in \mathcal{H} : R(h) - R_n(h) > t(h))$$

$$\leq \sum_{h \in \mathcal{H}} P(R(h) - R_n(h) > t(h))$$

$$\leq \sum_{h \in \mathcal{H}} e^{-2nt(h)^2}.$$

Fix some t > 0. Set

$$t(h) \coloneqq \sqrt{t^2 + \frac{\log(1/\pi(h))}{2n}}.$$

Then, we have

$$P(\exists h \in \mathcal{H} : R(h) - R_n(h) > t(h)) \le \sum_{h \in \mathcal{H}} \pi(h) e^{-2nt^2} = e^{-2nt^2}.$$

Looseness of the union bound

The union bound can be loose, because...

Gibbs Predictor

Definition. (Gibbs predictor) A *Gibbs predictor* is a random hypothesis following some probability distribution $\hat{\pi}$ on \mathcal{H} .

Remark. The probability distribution $\hat{\pi}$ is called the *posterior* distribution in PAC-Bayes literature.

Remark. Standard proof techniques in PAC-Bayes analyses consider *data-independent priors* and *possibly data-dependent posterior distributions*.

PAC-Bayes generalization bound

Definition. (Relative entropy) Let π and $\hat{\pi}$ be two probability density functions on \mathcal{H} . The relative entropy is given by

$$D(\hat{\pi}||\pi) \coloneqq \mathsf{E}_{\hat{\pi}} \, \frac{\hat{\pi}(h)}{\pi(h)}.$$

Theorem 1. Let π be a data-independent probability distribution on a hypothesis class \mathcal{H} ; let $\hat{\pi}$ be a possibly data-dependent probability distribution on \mathcal{H} . Let \hat{h} be the Gibbs predictor following $\hat{\pi}$. Suppose that the loss functions take values in [0,1]. Then for every $\eta>0$ and $\delta\in]0,1[$, it holds with probability at least $(1-\delta)$ that

$$\mathsf{E}_{\hat{\pi}} R(\hat{h}) \le \mathsf{E}_{\hat{\pi}} R_n(\hat{h}) + \frac{\eta}{8} + \frac{1}{\eta n} \left[D(\hat{\pi} || \pi) + \log \frac{1}{\delta} \right].$$

T. van Erven. 2014. PAC-Bayes mini-tutorial: A continuous union bound.

Choosing the posterior

$$\mathsf{P}\left(\mathsf{E}_{\hat{\pi}}\,R(\hat{h}) \leq \mathsf{E}_{\hat{\pi}}\,R_n(\hat{h}) + \frac{\eta}{8} + \frac{1}{\eta n}\left[D(\hat{\pi}\|\pi) + \log\frac{1}{\delta}\right]\right) \geq 1 - \delta.$$

Question. The prior π is arbitrary. How do we choose the posterior $\hat{\pi}$?

Theorem 2. (Gibbs variational principle) The generalization error bound is minimized by the *Gibbs distribution*:

$$\hat{\pi}(h) \propto \exp\left[-\eta n R_n(h) \pi(h)\right], \quad \forall h \in \mathcal{H}.$$

Question. What happens when $\eta \to +\infty$?

Preliminary: Mix risk

Definition. (Mix risk) Denote the loss function by $\rho: \mathcal{Z} \times \mathcal{H} \to \mathbb{R}$. Let z be a random variable taking values on \mathcal{Z} . The associated mix risk with parameter $\eta > 0$ is given by

$$M_{\eta}(h) \coloneqq -\frac{1}{\eta} \log \mathsf{E} \, \mathrm{e}^{-\eta \rho(z,h)}, \quad \forall h \in \mathcal{H}.$$

Remark. Suppose that ρ takes values in [a,b] for some $a,b\in\mathbb{R}$, a< b. Then, by Hoeffding's inequality, we have

$$R(h) \le M_{\eta}(h) + \eta \frac{(b-a)^2}{8}, \quad \forall \eta > 0.$$

Therefore, we may bound the generalization error by *relating the* mix risk with the empirical risk.

Proof of Theorem 1 (1/2)

The proof follows that in (van Erven 2014).

Proof. (Theorem 1) It suffices to prove that for any $\eta>0$ and $\delta\in\,]0,1[$, we have

$$\mathsf{E}_{\hat{\pi}} M_{\eta}(\hat{h}) \le \mathsf{E}_{\hat{\pi}} R_{n}(\hat{h}) + \frac{1}{\eta n} \left[D(\hat{\pi} \| \pi) + \log \frac{1}{\delta} \right],$$

with probability at least $(1 - \delta)$.

Notice that

$$e^{-\eta n M_{\eta}(h)} = \mathsf{E} e^{-\eta n R_n(h)}, \quad \forall h \in \mathcal{H}.$$

T. van Erven. 2014. PAC-Bayes mini-tutorial: A continuous union bound.

Proof of Theorem 1 (2/2)

Proof continued. (Theorem 1) Denote by $P^{\otimes n}$ the joint probability distribution of the data. By Jensen's inequality, we write

$$\begin{split} 1 &= \mathsf{E}_{\pi} \, \mathsf{E}_{P^{\otimes n}} \, \exp \left[\eta n M_{\eta}(\hat{h}) - \eta n R_{n}(\hat{h}) \right] \\ &= \mathsf{E}_{P^{\otimes n}} \, \mathsf{E}_{\pi} \, \exp \left[\eta n M_{\eta}(\hat{h}) - \eta n R_{n}(\hat{h}) \right] \\ &= \mathsf{E}_{P^{\otimes n}} \, \mathsf{E}_{\hat{\pi}} \, \exp \left[\eta n M_{\eta}(\hat{h}) - \eta n R_{n}(\hat{h}) - \log \frac{\hat{\pi}(\hat{h})}{\pi(\hat{h})} \right] \\ &\geq \mathsf{E}_{P^{\otimes n}} \, \exp \left[\eta n \mathsf{E}_{\hat{\pi}} M_{n}(\hat{h}) - \eta n \mathsf{E}_{\hat{\pi}} \, R_{n}(\hat{h}) - D(\hat{\pi} \| \pi) \right]. \end{split}$$

By Markov's inequality, we obtain

$$P\left(\eta n \mathsf{E}_{\hat{\pi}} M_n(\hat{h}) - \eta n \mathsf{E}_{\hat{\pi}} R_n(\hat{h}) - D(\hat{\pi} \| \pi) > t\right) \le \frac{1}{\mathrm{e}^t}.$$

Selecting the "learning rate" (1/2)

For every $\eta > 0$ and $\delta \in]0,1[$,

$$\mathsf{P}\left(\mathsf{E}_{\hat{\pi}}\,R(\hat{h}) \leq \mathsf{E}_{\hat{\pi}}\,R_n(\hat{h}) + \frac{\eta}{8} + \frac{1}{\eta n}\left[D(\hat{\pi}\|\pi) + \log\frac{1}{\delta}\right]\right) \geq 1 - \delta.$$

Question. How do we choose the learning rate η ?

Selecting the "learning rate" (2/2)

Corollary 1. Follow the setup in Theorem 1. Let $\alpha>1$, and v>u>0. For any $\delta\in]0,1[$, it holds with probability at least $(1-\delta)$ that for any $\eta\in [u,v]$,

$$\mathsf{E}_{\hat{\pi}} R(\hat{h}) \le \mathsf{E}_{\hat{\pi}} R_n(\hat{h}) + \frac{\eta}{8} + \frac{\alpha}{\eta n} \left[D(\hat{\pi} \| \pi) + \log \frac{1}{\delta} + \log \left\lceil \log_{\alpha} \frac{v}{u} \right\rceil \right].$$

Remark. Finding u and v such that the interval [u,v] contains the optimal η is ad hoc.

T. van Erven. 2014. PAC-Bayes mini-tutorial: A continuous union bound.

Proof of Corollary 1

Proof. (Corollary 1) It suffices to prove that

$$\mathsf{E}_{\hat{\pi}}\,M_{\eta}(\hat{h}) \leq \mathsf{E}_{\hat{\pi}}\,R_{n}(\hat{h}) + \frac{1}{\eta n} \left[D(\hat{\pi}\|\pi) + \log\frac{1}{\delta} + \log\left\lceil\log_{\alpha}\frac{v}{u}\right\rceil \right].$$

Define $\mathcal{U} := \{u, u\alpha, u\alpha^2, \dots, u\alpha^{\lceil \log_{\alpha}(v/u) \rceil - 1}\}$. By the union bound, it holds with probability at least $(1 - \delta)$ that

$$\mathsf{E}_{\hat{\pi}} \, M_{\eta}(\hat{h}) \le \mathsf{E}_{\hat{\pi}} \, R_n(\hat{h}) + \frac{1}{\eta n} \left[D(\hat{\pi} \| \pi) + \log \frac{1}{\delta} + \log \left\lceil \log_{\alpha} \frac{v}{u} \right\rceil \right],$$

for all $\eta \in \mathcal{U}$. It remains to notice that for any $\zeta \in [u,v]$, there must exist some $\eta \in \mathcal{U}$ such that $\eta \leq \zeta \leq \alpha \eta$.

Model selection

Trade-off between estimation and approximation errors

Consider the standard setting of statistical learning. Recall that

$$R(\hat{h}) - \min_{h} R(h) = \left[R(\hat{h}) - \min_{h \in \mathcal{H}} R(h) \right] + \left[\min_{h \in \mathcal{H}} R(h) - \min_{h} R(h) \right].$$

The first term on the RHS is called the *estimation error*; the second term is called the *approximation error*.

Question. How do we choose the hypothesis class \mathcal{H} ?

Structural risk minimization

Let \mathcal{H} be the hypothesis class.

Structural risk minimization. Let $\mathcal{H}_1, \mathcal{H}_2...$ be subsets of \mathcal{H}_n , such that their union equals \mathcal{H} . Let $\mathrm{pen}_n: \mathbb{N} \to \mathbb{R}$ be the *penalty function*. Denote by $\hat{h}_{n,k}$ the empirical risk minimizer of \mathcal{H}_k . The *structural risk minimization* approach is the following.

1. Solve the optimization problem

$$\hat{k} \in \operatorname*{arg\,min}_{k \in \mathbb{N}} R_n(\hat{h}_{n,k}) + \operatorname{pen}_n(k).$$

2. Output $\hat{h}_n = \hat{h}_{n,\hat{k}}$.

V. N. Vpanik. 1998. Statistical Learning Theory.

Oracle inequality

We expect that the output \hat{h}_n satisfies

$$R(\hat{h}_n) \le C \inf_{k \in \mathbb{N}} \left\{ \inf_{h \in \mathcal{F}_k} R(h) + \beta_n(k) \right\},$$

with high probability, for some $\beta_n : \mathbb{N} \to \mathbb{R}$. Such an inequality is called an *oracle inequality*. We expect that

$$\lim_{n\to\infty} \beta_n(k) \to 0, \quad \forall k \in \mathbb{N}.$$

If C = 1, then we call the oracle inequality *sharp*.

Question. How do we interpret such an inequality?

Penalization by error estimates (1/2): Rough idea

- \bullet We would like to find the $\hat{h}_{n,\hat{k}}$ which yields the smallest risk among $\hat{h}_{n,k}$'s.
- However, for every n and k, we do not have access to the exact value of $R(\hat{h}_{n,k})$.

Suppose that there are good risk estimates $\gamma_{n,k}$ for each \mathcal{H}_k :

$$\forall k \in \mathbb{N} : \gamma_{n,k} \approx R(\hat{h}_{n,k}), \quad \text{w.h.p.}$$

Then we may set

$$\operatorname{pen}_n(k) \approx \gamma_{n,k} - R_n(\hat{h}_{n,k}).$$

Penalization by error estimates (2/2)

Theorem 3. Let \hat{h}_n be the output of a learning method. Suppose there exist random variables $\gamma_{n,k}$, such that

$$P\left(R(\hat{h}_n) \ge \gamma_{n,k} + \varepsilon\right) \le ce^{-2m\varepsilon^2}, \quad \forall \varepsilon > 0,$$

where the numbers c and m may depend on n. Set

$$\operatorname{pen}_n(k) := \gamma_{n,k} - R_n(\hat{h}_{n,k}) + \sqrt{\frac{\log k}{m}}, \quad \forall k \in \mathbb{N}.$$

Then, it holds that

$$\mathsf{E}\,R(\hat{h}_n) \leq \inf_{k \in \mathbb{N}} \left[\inf_{h \in \mathcal{H}_k} R(h) + \mathsf{E}\,\mathrm{pen}_n(k) \right] + \sqrt{\frac{\log(c\mathrm{e})}{2m}}.$$

P. L. Bartlett et al. 2002. Model selection and error estimation.

Proof of Theorem 3 (1/4): Preliminary

Lemma 1. Let ξ be a non-negative random variable. Then, we have

$$\mathsf{E}\,\xi = \int_0^\infty \mathsf{P}\,(\xi > t) \;\mathrm{d}t.$$

Corollary 2. Let c>0 and $n\in\mathbb{N}$. Let ζ be a non-negative random variable satisfying $\mathsf{P}\left(\zeta>t\right)\leq c\mathrm{e}^{-2nt^2}.$ Then, it holds that

$$\mathsf{E}\,\zeta \le \sqrt{\frac{\log(c\mathrm{e})}{2n}}.$$

Proof. Notice that $\mathsf{E}\,\zeta \leq \sqrt{\mathsf{E}\,\zeta^2}$. Apply Lemma 1 to bound $\mathbb{E}\,\zeta^2$.

L. Devroye et al. 1996. A Probabilistic Theory of Pattern Recognition.

Proof of Theorem 3 (2/4)

Lemma 2. Define

$$\tilde{R}_n(\hat{h}_{n,k}) := R_n(\hat{h}_{n,k}) + \text{pen}_n(k) = \gamma_{n,k} + \sqrt{\frac{\log k}{m}}, \quad \forall k \in \mathbb{N}.$$

For any $\varepsilon > 0$, it holds that

$$P\left(R(\hat{h}_n) - \tilde{R}_n(\hat{h}_n) > \varepsilon\right) \le 2ce^{-2m\varepsilon^2}.$$

Proof. (Lemma 2) By the union bound, we write

$$\begin{split} \mathsf{P}\left(R(\hat{h}_n) - \tilde{R}_n(\hat{h}_n) > \varepsilon\right) &\leq \sum_{k \in \mathbb{N}} \mathsf{P}\left(R(\hat{h}_{n,k}) - \tilde{R}_n(\hat{h}_{n,k}) > \varepsilon\right) \\ &= \sum_{k \in \mathbb{N}} \mathsf{P}\left(R(\hat{h}_{n,k}) - \gamma_{n,k} > \varepsilon + \sqrt{\frac{\log k}{m}}\right). \end{split}$$

Proof of Theorem 3(3/4)

Proof. (Theorem 3) Define

$$R_k^{\star} \coloneqq \min_{h \in \mathcal{H}_k} R(h).$$

We decompose the expected excess risk as

$$\mathsf{E}\left[R(\hat{h}_n) - R_k^{\star}\right] = \mathsf{E}\left[R(\hat{h}_n) - \tilde{R}_n(\hat{h}_n)\right] + \mathsf{E}\left[\tilde{R}_n(\hat{h}_n) - R_k^{\star}\right].$$

By Corollary 2 and Lemma 2, we have

$$\mathsf{E}\left[R(\hat{h}_n) - \tilde{R}_n(\hat{h}_n)\right] \le \sqrt{\frac{\log(c\mathrm{e})}{2m}}.$$

It remains the bound the second term E $\left[\tilde{R}_n(\hat{h}_n) - R_k^\star \right]$.

Proof of Theorem 3 (4/4)

Proof continued. (Theorem 3) We write

$$\begin{split} \mathsf{E}\left[\tilde{R}_n(\hat{h}_n) - R_k^\star\right] &\leq \mathsf{E}\,\tilde{R}_n(\hat{h}_{n,k}) - R_k^\star \\ &= \mathsf{E}\,R_n(\hat{h}_n) - R_k^\star + \mathsf{E}\,\mathrm{pen}_n(k) \\ &\leq \mathsf{E}\,R_n(h_k^\star) - R_k^\star + \mathsf{E}\,\mathrm{pen}_n(k) \\ &= \mathsf{E}\,\mathrm{pen}_n(k). \end{split}$$

Then, we have

$$\mathsf{E}\,R(\hat{h}_n) \le R_k^{\star} + \mathsf{E}\,\mathrm{pen}_n(k) + \sqrt{\frac{\log(c\mathrm{e})}{2m}}, \quad \forall k \in \mathbb{N}.$$

High-probability guarantee

Theorem 4. Consider the assumptions in Theorem 3. Then, for any $\varepsilon > 0$, it holds that

$$R(\hat{h}_n) \le \inf_{k \in \mathbb{N}} \left[\inf_{h \in \mathcal{H}_k} R(h) + \operatorname{pen}_n(k) + \sqrt{\frac{\log k}{n}} \right] + \varepsilon,$$

with probability at least

$$1 - 2ce^{-m\varepsilon^2/2} - 2ce^{-n\varepsilon^2/2}.$$

Proof. Check the reference.

P. L. Bartlett et al. 2002. Model selection and error estimation.

Conclusions

Conclusions

- The PAC-Bayes approach is non-Bayesian. The prior does not represent a belief, and posterior is not updated following the Baye's rule.
- The PAC-Bayes approach considers the expected risk of a Gibbs predictor.
- Structural risk minimization is an approach to balancing estimation and approximation errors.
- Generalization error bounds can lead to structural risk minimization methods via *penalization*.

Important techniques

 Markov's inequality, the union bound, and expectation as integral of tail probabilities.

• Mix risk as a surrogate of the risk.

Next lecture

• Multiplicative weight update (voting, gambling, etc.).