# Sequence Classification(序列分类)

Real value sequence as exemplified

刘精昌

April 27, 2016

刘精昌 Weekly report April 27, 2016 1/39

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

刘精昌 Weekly report

#### sequence

## what is sequence?

- DNA and protein sequence
- The time series of heart rates
- Trend of stock

#### How to represent sequence?

- An ordered list of the symbols, such as ACCCCCGT
- A sequence of real values, such as 0.1,0.3,0.5,0.1,...

刘精昌 Weekly report April 27, 2016 3/39

## sequence classification

## Applications of sequence classification

- gait analysis
- speech recognition
- learn the functions of a new protein

刘精昌 Weekly report April 27, 2016 4/39

## sequence classification

#### Applications of sequence classification

- gait analysis
- speech recognition
- learn the functions of a new protein

#### task

A sequence may carry a class label. Given L as a set class labels, the task of (conventional) sequence classification is to learn a sequence classifier C, which is a function mapping a sequence s to a class label  $l \in L$ , written as,

$$C: s \to l, l \in L$$



刘精昌 Weekly report

# methods and problems

#### methods

1NN, 待分类序列的 label 即距离其最近的序列的 label

#### problems

How to measure the distance between two sequence?

5/39

刘精昌 Weekly report April 27, 2016

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

4□ ト 4回 ト 4 重 ト 4 重 ト 3 至 り 9 ○ ○

#### Euclid distance

The simplest distance is Euclid distance:

$$dist(s, s') = \sqrt{\sum_{i=1}^{L} (s[i] - s'[i])^{2}}$$

And other similar distance.



刘精昌 Weekly report April 27, 2016 8/39

#### Weakness of Euclid distance

- ■需要满足两序列长度相同。
- 设想这样一种情况。在步态分析中,同一测试者的步速可能不同,或者在某时间段上存在着加速和减速。那么对于其两段步态序列,比较相似的步态之间可能会有一定的时间差,而上面的这些距离测度只会将同一时刻的步态相比较。也就是说,上面的这些距离测度不能反映出序列比较中的错位。

刘精昌 Weekly report April 27, 2016 9/39



Figure: DTW 示意图



刘精昌 Weekly report April 27, 2016 10/39

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

4 D > 4 A > 4 B > 4 B > B 900

#### **Definitions**

- $Q = q_1, q_2, \cdots, q_i, \cdots, q_m, C = c_1, c_2, \cdots, c_j, \cdots, c_n$
- $D(i^{th}, j^{th}) = d(q_i, c_j) = (q_i c_j)^2$
- warping path:

$$W = w_1, w_2, \cdots, w_k, \cdots, w_K \quad max(m, n) \le K \le m + n - 1$$

$$w_k = (i,j)_k$$

**4ロト 4回 ト 4ミト ∢ ミト ・ ミー か** 9 0 0

刘精昌 Weekly report April 27, 2016 12 / 39



Figure: warping path 示意图

#### Constraints

- **Boundary conditions:**  $w_1 = (1, 1)$  and  $w_K = (m, n)$
- Continuity: Given  $w_k = (a, b)$  then  $w_{k-1} = (a', b')$  where  $a a' \le 1$  and  $b b' \le 1$
- Monotonicity: Given  $w_k = (a, b)$  then  $w_{k-1} = (a', b')$  where  $a a' \ge 0$  and b b' > 0

4□ > 4□ > 4 = > 4 = > = 90

刘精昌 Weekly report April 27, 2016 14 / 39

## target and evaluation

#### **Target**

minimizes the warping cost:

$$DTW(W) = \sum_{k=1}^{K} d(w_{ki}, w_{kj})$$

 $d(w_{ki}, w_{kj})$ : the distance between two data point indexes(one from Q and one from C) in the  $k^{th}$  element of the warp path.

#### Evaluation

 $\gamma(i,j)$ : cumulative distance

$$\gamma(i,j) = d(q_i, c_j) + \min(\gamma(i-1,j), \gamma(i,j-1), \gamma(i-1,j-1))$$

4 D > 4 A > 4 B > 4 B > B

#### **Algorithm 1** Calculate DTW

```
Require: s : array[1..m], t : array[1..n]
Ensure: DTW[m, n]
  1. DTW := [0..m, 0..n]
  2. for i := 0 to m do
       DTW[i,0] := inf
  4. end for
  5. for j := 0 to n do
       DTW[0,j] := inf
  7. end for
  8. DTW[0,0] := 0
  9.
    for i := 1 to m do
       for j := 1 to n do
 11.
          cost := d(s[i], t[j])
 12.
          DTW[i, j] := cost + min(DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])
 13.
       end for
 14.
 15. end for
```

□ > < □ > < □ > < □ > < □ >
 □ > < □ >

April 27, 2016

## Trace back the best path



Figure: A greedy search is performed that evaluates cells to the left,down,and diagonally to the bottom-left

16/39

刘精昌 Weekly report April 27, 2016

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

## warp window

刘精昌

 An obvious observation is that an intuitive alignment path is unlikely to drift/very far from the diagonal



Figure: warp window

Weekly report

April 27, 2016

### **Algorithm 2** Calculate DTW with warp window

```
Require: s : array[1..n], t : array[1..m], w : warp window
Ensure: DTW[n, m]
  1. DTW := array[0..n, 0..m]
  2. w := max(w, |n - m|)
  3 for i := 0 to n do
       for j := 0 to m do
         DTW[i,j] := inf
       end for
  7. end for
  8. DTW[0,0] := 0
  9.
    for i := 1 to n do
       for j := max(1, i - w) to min(m, i + w) do
 11.
         cost := d(s[i], t[j])
 12.
         DTW[i,j] := cost + min(DTW[i-1,j], DTW[i,j-1], DTW[i-1,j-1])
 13.
       end for
 14.
 15. end for
```

# Piecewise aggregate representation



(b) PAR 处理后的 DTW 对齐

Figure: PAR 处理示意图

19/39

刘精昌 Weekly report April 27, 2016

## **FastDTW**

#### Time and Space Complexity

- **DTW:** $O(n^2)$
- **FastDTW:** O(n)

## Three key operations

- Coarsening(粗化)
- 2 Projection (投影)
- 3 Refinement

刘精昌 Weekly report

## **FastDTW**



Figure: FastDTW 示意图

4□ > 4□ > 4 = > 4 = > = 90

# Time Complexity of FastDTW

刘精昌



Figure: Maximum number of cells evaluated for a radius of 1

maximum number of cells : 3N + 2 \* (2Nr) = N(4r + 3)**Total number of cells filled:** 

$$N(4r+3) + \frac{N}{2}(4r+3) + \frac{N}{2^2}(4r+3) + \dots = 2N(4r+3)$$

Weekly report

April 27, 2016

# Time Complexity of FastDTW

#### Time Complexity

- 1 number of cells calculated: 2N(4r+3)
- 2 creat the coarser resolutions: 4N
- 3 determining the warp path by tracing throungth the matrix: 4N

#### Total FastDTW time complexity

$$N(8r + 14)$$

(ロ) (回) (国) (E) (E) (9)(()

## Space Complexity of FastDTW

## Space Complexity

- Space of resolutions: 4N
- 2 Space of distance matrix: N(4r + 3)
- 3 Space complexity of storing the warp path: 4N

#### Total FastDTW space complexity

$$N(4r + 11)$$

(ロト・個)・ (重)・ (重)・ (重)・ の(で)

April 27, 2016

24/39

刘精昌 Weekly report

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet

4 D > 4 A > 4 B > 4 B > B 9 Q C

April 27, 2016

data: 在一段间隔上加上随机误差而产生



Figure: Euclid、DTW 距离下分类精确度随间隔变化曲线

◆□▶◆□▶◆■▶◆■▶ ■ 釣へで

刘精昌 Weekly report April 27, 2016 26/39

#### TSDMA数据集

| name                | Computers | Trace | FaceFour | WordsSynonyms |
|---------------------|-----------|-------|----------|---------------|
| lasses              | 2         | 4     | 4        | 25            |
| training set size   | 250       | 100   | 24       | 267           |
| test set size       | 250       | 100   | 88       | 638           |
| sequence length     | 720       | 275   | 350      | 270           |
| error rate (Euclid) | 0.424     | 0.24  | 0.21591  | 0.38245       |
| error rate (DTW)    | 0.332     | 0.01  | 0.15909  | 0.32445       |

(ロ) (레) (토) (토) (토) · 토 · 원익(연)

April 27, 2016

#### TSDMA数据集

| name                | Gun_Point | Plane    | StrawBerry |
|---------------------|-----------|----------|------------|
| lasses              | 2         | 7        | 2          |
| training set size   | 50        | 105      | 370        |
| test set size       | 150       | 105      | 613        |
| sequence length     | 150       | 144      | 235        |
| error rate (Euclid) | 0.086667  | 0.038095 | 0.06199    |
| error rate (DTW)    | 0.12      | 0        | 0.066884   |

April 27, 2016



Figure: 精度随 warp window 变化示意图

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet



- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet



#### Introdiction



Figure: shapelets are subsequences which are in some sense maximally representative of a class

#### Advantages

- Provide interpretable results
- 2 More accuracy/robust on some datasets
- Faster, O(ml), m: length of query sequence, l: length of shapelets

40.40.41.41.11.11.000

#### Definition

SubsequenceDist
$$(T, S) = min(Dist(S', S))$$
, for  $S' \in S_T^{|S|}$ 

Optimal Split Point(OSP). A sequence dataset  $\mathbf{D}$  consists of two classes, A and B. For a shapelet candidate S, we choose some distance threshold  $d_{th}$  and split  $\mathbf{D}$  into  $D_1$  and  $D_2$ , such that for every time series object  $T_{1,j}$  in  $D_1$ ,  $SubsequenceDist(T_{1,i},S) < d_{th}$  and for every time series object  $T_{2,i}$  in  $D_2$ ,  $SubsequenceDist(T_{2,i},S) > d_{th}$ . An Optimal Split Point is a distance threshold that

$$Gain\left(S, d_{OSP(D,S)}\right) \geq Gain\left(S, d_{th}\right)$$

for any other distance threshold  $d'_{th}$ .

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

刘精昌 Weekly report April 27, 2016 33 / 39

## Definition

Shapelet. Given a time series dataset  $\mathbf{D}$  which consists of two classes, A and B, shapelet D is a subsequence that, with its corresponding optimal split point,

$$\textit{Gain}\left(\textit{shapelet}\left(D\right), \textit{d}_{\textit{OSP}\left(D, \textit{shapelet}\left(D\right)\right)}\right) \geq \textit{Gain}\left(S, \textit{d}_{\textit{OSP}\left(D, S\right)}\right)$$

for any other subsequence S.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . 횽 . 쒸٩안

April 27, 2016

34 / 39

刘精昌 Weekly report

- introductions to sequence and sequence classification
- 2 Dynamic Time Warping(DTW)
  - Why is DTW?
  - How to compute DTW
  - Speed up the DTW calculations
  - experimental result
- 3 Shapelets
  - What is shapelets?
  - Find and speed the shapelet



## Algorithm 3 Brute force algorithm for finding shapelet

**Require:** dataset *D*,*MAXLEN*,*MINLEN* 

Ensure: bsf\_shapelet

- 1. candidates := GenerateCandidates(*D*,*MAXLEN*,*MINLEN*)
- 2.  $bsf_gain := 0$
- 3. for S in candidates do
- gain:=CheckCandidate(D,S)
- 5. if gain>bsf\_gain then
- 6. bsf\_gain :=gain
- 7. bsf\_shapelet :=S
- 8. end if
- 9. end for

## Speedup methods

#### Subsequence Distance Early Abandon

Stop distance calculations once the partial distance exceeds the minimum distance known so far.



Figure: Subsequence Distance Early Abandon

刘精昌

# Admissible Entropy Pruning



Figure: Entropy Prunning 示意图

刘精昌 Weekly report April 27, 2016 37/39

# Q & A

# 谢谢观看