Digital Logic Circuits 'Sequential Logic Analysis' ELEC2200

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj Office: Broun 360

Sequential Analysis

- Divides into two categories
 - Given a circuit, find the state table and diagram
 - Given a state and an input sequence, what will the output sequence be?
- We'll perform both today and through the rest of the semester

Sequential Analysis

- Use combinational analysis to write the expressions for each flip-flop input and each output.
- Use characteristics of flip-flops to construct state table
- Draw state diagram based on state table
- Use state diagram to find state/output sequence

- Given this sequential logic circuit and:
 - An initial state of A=0,B=1
 - An input sequence of X=010011
- What will the final state be?
- What will the output sequence be?

Use combinational analysis to write the expressions for each flip-flop input and each output

- Flip-flop inputs
 - $D_A = X \cdot A + X \cdot B$
 - D_B=X·A'
- Output
 - C=X'·(A+B)

Use characteristics of flip-flops to construct state table

$$D_{A} = X \cdot A + X \cdot B$$

$$D_{B} = X \cdot A'$$

$$C = X' \cdot (A + B)$$

Input Curr. State Next State Output

X	Α	В	Α	В	С
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	0	0

Draw state diagram

based on state table						X/C • 01
Input	Cur	r. State	Next State		Output	1/0
X	Α	В	Α	В	C	
0	0	0	0	0	0	0/0
0	0	1	0	0	1	00 4 0/1 (11
0	1	0	0	0	_1	
0	1	1	0	0	1	
1	0	0	0	1	0	0/1 1/0
1	0	1	1	1	0	
1	1	0	1	0	0	(10)
1	1	1	1	0	0	States: AB 1/0

Use state diagram to find state/output sequence

- X=010011
- initial state of A=0,B=1
- State order
 AB=01,00,01,00,00,0
 1,11
- Output

C=1,0,1,0,0,0

Assuming A and B
 are the circuit
 outputs draw the
 state diagram for this
 circuit

Use combinational analysis to write the expressions for each flip-flop input and each output

- Flip-flop inputs
 - J_A=B
 - K_A=X'-B

 - J_B=X'
 K_B=A(+)X

Use characteristics of flip-flops to construct state table

$$J_{A} = B$$

$$J = X'$$

JK Exercise

- Draw the state diagram
- Given the initial state
 A=1 and B=0 and the
 input X=1001111, find
 the output sequence

D Exercise

Draw the state diagram

 Given the initial state C=0 and input A=0011, B=0101 Find the sequence of states and output

