Klausur Diskrete Strukturen 2 Sommersemester 2021

Jörg Vogel

26. Juli 2021

1. Aufgabe

Beweisen Sie die folgenden Beziehungen für Binomialkoeffizienten:

a)
$$\binom{n}{m} \cdot \binom{m}{k} = \binom{n}{k} \cdot \binom{n-k}{m-k}$$

b)
$$\sum_{k=0}^{m} \binom{n}{k} \cdot \binom{n-k}{m-k} = 2^m \cdot \binom{n}{m}$$

c)
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$
 (für $n > 0, r > 0$)

d)
$$\sum_{r=0}^{m} {n+r-1 \choose r} = {n+m \choose m} \quad \text{(für } n > 0)$$

2. Aufgabe

- a) Wie viele Lösungen im Bereich der natürlichen Zahlen hat die Gleichung $x_1 + x_2 + x_3 + x_4 + x_5 = 23$?
- b) Für wie viele dieser Lösungen gilt zusätzlich $x_i \le 6$ für alle $i \in \{1, 2, 3, 4, 5\}$?
- c) Wie viele Wurfbilder mit der Augenzahl 24 gibt es bei fünf verschiedenfarbigen Würfeln?

3. Aufgabe

In einem Raum steht ein großer runder Tisch mit 12 nummerierten Plätzen un 12 (nicht unterscheidbaren) Stühle.

Wie viele verschiedene Möglichkeiten gibt es, k Personen so an diesem Tisch zu platzieren, dass mindestens ein freier Platz zwischen je zwei Personen bleibt? Bestimmen Sie die entsprechenden Anzahlen für

- a) k = 7
- b) k = 6
- c) k = 5

4. Aufgabe

Es sei n eine natürliche Zahl. Der **n-dimensionale Würfel** Q_n ist derjenige Graph, dessen Knotenmenge gerade die Menge aller 0-1-Folgen der Länge n ist, wobei zwei Knoten genau dann benachbart sind, wenn sie sich in genau einer Komponente unterscheiden

- a) Beweisen Sie. Dieser Graph hat 2^n Knoten und $n \times 2^{n-1}$ Kanten.
- b) Beweisen Sie. Dieser Graph ist bipartite. Erklären Sie diesen Begriff!
- c) Bestimmen Sie seinen **Durchmesser**. (Erklären Sie auch diesen Begriff!)
- d) Bestimmen Sie seine Taillenweite. (Erklären Sie auch diesen Begriff!)

5. Aufgabe

- a) Gegeben sei ein einfacher Graph G = (V, E). Definieren Sie die Begriffe **zusammenhängend** und **kreisfrei**. Definieren Sie den Begriff **Brücke** und geben Sie hierfür eine Charakterisierung an.
- b) Beweisen Sie:

Für einen einfachen Graphen G sind die folgenden Aussagen äquivalent:

- I.) (z) G ist zusammenhängend und (kf) G ist kreisfrei.
- II.) (z) · G ist zusammenhängend und (z min) jede Kante von G ist eine Brücke
- III.) (kf) G ist kreisfrei und (kf max) mit jeder zusätzlichen Kante erhält G einen Kreis