Category theory in context

Siddharth Bhat

Monsoon, second year of the plague

CONTENTS

1	CAT	EGORIES, FUNCTORS, NATURAL TRANSFORMATIONS	2	
	1.1	Abstract and concrete categories 2		
	1.2	Duality 2		
		1.2.1 Musing 2		
		1.2.2 Solutions 2		
	1.3	Functors 5		
	1.4	Natural Transformations 9		
		1.4.1 Musing 9		
		1.4.2 Exercises 10		
	1.5	1.5: Equivalence of categories 14		
		1.5.1 Musings 14		
		1.5.2 Exercises 1.5 16		

1.1 ABSTRACT AND CONCRETE CATEGORIES

1.2 DUALITY

1.2.1 Musing

How does one remember mono is is $gk = gl \implies k = l$ and vice versa?

1.2.2 Solutions

Question: Lemma 1.2.3. $f: x \to y$ is an isomorphism iff it defines a bijection $f_*: C(c,x) \to C(c,y)$.

Proof [(f is iso \Longrightarrow post composition with f induces bijection)] Let $f: x \to y$ be an isomorphism. Thus we have an inverse arrow $g: y \to x$ such that $fg = id_y$, $gf = id_x$. The map:

$$C(c,x) \xrightarrow{f*} C(c,y) : (\alpha : c \to x) \mapsto (f\alpha : c \to y)$$

has a two sided inverse:

$$C(c,y) \xrightarrow{g*} C(c,x) : (\beta:c \to y) \mapsto (g\beta:c \to x)$$

which can be checked as $g_*(f_*(\alpha)) = g_*(f\alpha) = gf\alpha = id_x\alpha = \alpha$, and similarly for $f_*(g_*(\beta))$. Hence we are done, as the iso induces a bijection of hom-sets. \square

Proof [(post-composition with f is bijection implies f is iso)] We are given that the post composition by f, $f_*: C(c,x) \to C(c,y)$ is a bijection. We need to show that f is an isomorphism, which means that there exists a function g such that $fg = id_y$ and $gf = id_x$. Since post-composition is a bijection for all c, pick c = y. This tells us that the post-composition $f_*: C(y,x) \to C(y,y)$ is a bijection. Since $id_y \in C(y,y)$, id_y an inverse image $g \equiv f_*^{-1}(id_y)$. [We choose to call this map g]. By definition of f_*^{-1} , we have that $f_*(f_*^{-1}(id_y)) = id_y$, which means that $fg = id_y$. We also need to show that $gf = id_x$. To show this, consider $f_*(gf) = fgf = (fg)f = (1_y)f = f$. We also have that $f_*(id_x) = fid_x = f$. Since f_* is a bijection, we have that $id_x = gf$ and we are done. \Box

Iso is bijection of hom-sets

Question: Q 1.2.ii.. Show that $f: x \to y$ is split epi iff for all $c \in C$, post composition $f \circ -: C(c, x) \to C(c, y)$ is a surjection.

Proof [(split epi implies post composition is surjective)] Let $f: e \to b$ be split epi, and thus possess a section $s: b \to e$ such that $fs = id_b$. We wish to show that post composition $C(c,e) \xrightarrow{f_*} C(c,b)$ is surjective. So pick any $g \in C(c,b)$. Define $sg \in C(c,e)$. See:

$$f_*(sg) = fsg = (fs)g = id_bg = g$$

. Hence, for all $g \in C(c,b)$ there exists a pre-image under f_* , $sg \in C(c,e)$. Thus, f_* is surjective since every element of codomain has a pre-image. \Box

Proof [(post composition is surjective implies split epi)] Let $f: e \to b$ be a morphism such that for all $c \in C$, we have $C(c,e) \xrightarrow{f_*} C(c,b)$ is surjective. We need to show that there exists a morphism $s: b \to e$ such that $fs = id_b$. Set c = b. This gives us a surjection $C(b,e) \xrightarrow{f_*} C(b,b)$. Pick an inverse image of $id_b \in C(b,b)$. That is, pick any function $s \in f_*^{-1}(id_b)$. By definition, of s being in the fiber of id_b , we have that $f_*(s) = fs = id_b$. Thus means that we have found a function s such that $fs = id_b$. Thus we are done. \Box

Question: Q 1.2.iii:. Mono is closed under composition, and if gf is monic then so is f.

Proof [(Mono is closed under composition)] Let $f: x \to y, g: y \to z$ be monomorphisms (Recall that f is a monomorphism iff for any α, β , if $f\alpha = f\beta$ then $\alpha = \beta$). We are to show that $gf: x \to z$ is monic. Consider this diagram which shows that gfk = gfl for arbitrary $k, l: a \to x$. We wish to show that k = l.

a --k-
$$\dot{\iota}$$
 x --f-- $\dot{\iota}$ y --g-- $\dot{\iota}$ z a --l- $\dot{\iota}$ x --f-- $\dot{\iota}$ y --g-- $\dot{\iota}$ z

Since g is mono, we can cancel it from gfk = gfl, giving us fk = fl. Since f is mono, we can once again cancel it, giving us k = l as desired. Hence, we are done. \Box .

Proof [(If gf is monic then so is f)] Let us assume that fk = fl for arbitrary l. We wish to show that k = l. We show this by applying g, giving us $fk = fl \implies gfk = gfl$. As gf is monic, we can cancel, giving us $gfk = gfl \implies k = l$. \square .

Question: Q 1.2.iv. What are monomorphisms in category of fields?

Proof Claim: All morphisms are monomorphisms in the category of fields. Let $f: K \to L$ be an arbitrary field morphism. Consider the kernel of f. It can either be $\{0\}$ or K, since those are the only two ideals of K. However, the kernel can't be K, since that would send 1 to 0 which is an illegal ring map. Thus, the map f has trivial kernel, therefore is an injection, is left-cancellable, is a monomorphism. \square

Question: Q 1.2.v. Show that the ring map $i : \mathbb{Z} \to \mathbb{Q}$ is both monic and epic but not iso.

Proof [i is not iso] No ring map $i : \mathbb{Z} \to \mathbb{Q}$ can be iso since the rings are different (eg. \mathbb{Q} is a field). \square

Proof [*i* is epic] To show that it's epic, we must show that given for arbitrary $f, g : \mathbb{Q} \to R$ that fi = gi:

implies that f=g. Let $fi:\mathbb{Z}\to R=gi$. Then, the functions f,g are uniquely determined since \mathbb{Q} is the field of fractions of \mathbb{Z} , thus a ring map $\mathbb{Z}\to R$ extends uniquely to a ring map $\mathbb{Q}\to R$. Let's assume that f(i(z))=g(i(z)) for all z, and show that f=g. Consider arbitrary $p/q\in\mathbb{Q}$ for $p,q\in\mathbb{Z}$. Let's evaluate:

$$f(p/q) = f(p)f(q)^{-1} = f(i(p)) \cdot f(i(q))^{-1} = g(i(p)) \cdot g(i(q))^{-1} = g(p/q)$$

which shows that f(p/q) = g(p/q) for all p,q. Thus, we can extend a ring function defined on the integers to rationals uniquely, hence $fi = gi \implies f = g$ showing that i is epic. \square

Proof [i is monic] given two arbitrary maps $k, l : R \to \mathbb{Z}$, if ik = il then we must have k = l. Given ik = il, since i is an injection of \mathbb{Z} into \mathbb{Q} , we must have k = l.

Question: Q 1.2.vi. Mono + split epi iff iso.

Proof [Iso is mono + split epi] Iso is both left and right cancellable. Hence it's mono and epi. It splits because the inverse of the iso splits it. \Box .

Proof [mono + split epi is iso] Let $f: e \to b$ be mono (for all $k, l: p \to e$, $fk = fl \implies k = l$) and split epi (there exists $s: b \to e$ such that $fs: b \to b = id_b$. We need to show it's iso. That is, there exists a $g: b \to e$ such that $fg = id_b$ and $gf = id_e$. I claim that $g \equiv s$. We already know that $fg = fs = id_b$ from f being split epi. We need to check that $gf = sf = id_a$. Consider:

$$fsf = (fs)f = id_h f = f = fid_e$$

Hence, we have that $f(sf) = f(id_e)$. Since f is mono, we conclude that $sf = id_e$. We are done since we have found a map s such that $fs = id_b$, $sf = id_e$.

Question: 1.2.vii. Regarding a poset a category, define the supremum of a subcollection, such that the dual gives the infimum.

Proof We regard an arrow $a \to b$ as witnessing that $a \le b$. First define an upper bound of a set O to be an object u such that for all $o \in O$, we have $o \le u$. Now, the supremum of O is the least upper bound of O. That is, s is a supremum iff s is an upper bound, and for all other upper bounds t of O, we have that $s \le t$. So we draw a diagram showing upper bounds and suprema:

Upper bound and supremum

1.3 FUNCTORS

Question: Exercise 1.3.i. What is a functor between groups, when regarded as one-object categories?

Proof It's going to be a group homomorphism. Since, a functor preserves composition, we have that a functor $F:C\to D$ preserves the group structure; for elements of the group / isos $f,g\in Hom(G,G)$, we have that the functor obeys $F(f\circ_G g)=(Ff)\circ_H(Fg)$, which is exactly the equation we need to preserve group structure. For example, since a functor preserves isomorphisms, an element of the group $f\in Hom(G,G)$ is mapped to an inverbile element $F(f)\in Hom(H,H)$. \square

Question: Exercise 1.3.ii. What is a functor between preorders, regarded as a category?

Proof Going to be a preorder morphism. I don't know what these are called; If we had a partial order, these would be called monotone maps. Recall that $a \to b$ is the encoding of $a \le b$ within the category. Suppose we have a functors between preorders (encoded as categories) $F: C \to D$. Since F preserves identity arrows, and $a \le a$ is encoded as id_a , we have that $F(a) \le F(a)$ as:

$$F(a \le a) = F(id_a) = id_{F(a)} = F(a) \le F(a)$$

Similarly, since functors take arrows to arrows, the fact that $a \leq b$ which is witnessed by an arrow $a \xrightarrow{f} b$ translates to an arrow $F(a) \xrightarrow{Ff} F(b)$, which stands for the relation $F(a) \leq F(b)$. Thus, the map indeed preserves the preorder structure. Preservation of composition of arrows preserves transitivity of the order relation. \Box

Question: Exercise 1.3.iii. Objects and morphisms in the image of a functor $F: C \to D$ do not necessarily define a subcategory of D.

Proof Recall that a morphism can *smoosh* objects, thereby creating coalescing the domains and codomains of arrows that used to be disjoint. Concretely, consider the diagram:

$$a \stackrel{f}{\longrightarrow} b$$

$$c \stackrel{g}{\longrightarrow} d$$

Where we have a category of four objects a, b, c, d with two disconnected arrow $f: a \to b$, and $g: c \to d$. This is the domain of the functor we will build. The codomain is a three object category:

$$\begin{array}{c|c}
x & \xrightarrow{k} y \\
\downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow \\
7 & \downarrow & \downarrow & \downarrow
\end{array}$$

The functor will smoosh the four objects into three with a functor, which sends a to x, both b, c to y, and d to z. Now the image of the functor only has the arrows k, l, but not the composite $l \circ k$, which makes the image NOT a subcategory.

$$x: a \xrightarrow{k:f} y: b, c$$

$$lok: \downarrow \qquad \qquad l:g$$

$$z: d$$

Question: Exercise 1.3.iv. Very that the Hom-set construction is functorial.

Question: Exercise 1.3.v. What is the difference between a functor $F: C^{op} \rightarrow D$ and a functor $F: C \rightarrow D^{op}$?

Proof There is no difference. The functor $C^{op} \rightarrow D$ looks like:

$$\begin{array}{cccc} a & & b & \longrightarrow Fa \\ f \downarrow & & & \downarrow^{Ff_{op}} & \downarrow^{Ff_{op}} \\ b & & a & \longrightarrow Fb \end{array}$$

while the functor $G: D \to C^{op}$ looks like:

$$\begin{array}{ccc}
p & \longrightarrow Gp & Gp \\
\downarrow f & Gf \\
q & \longrightarrow Gq & Gq
\end{array}$$

Given a functor $F: C^{op} \to D$, we can build an associated functor $G_F: C \to D^{op}$. Consider an arrow $x \to fy \in C$. Dualize it, giving us an arrow $y_{op} \xrightarrow{f_{op}} x_{op} \in C^{op}$. Find it image under F, which gives us an arrow $F(y_{op}) \xrightarrow{F(f_{op})} F(x_{op}) \in D$. Dualize this in D, giving us $F(x_{op})_{op} \xrightarrow{F(f_{op})} c_{op} F(y_{op}) \in D^{op}$. See that the arrow direction coincides with the domain arrow direction $x \to fy \in C$. So we can build a functor H which sends the arrow $x \to fy \in C$ to the arrow $F(x_{op})_{op} \xrightarrow{F(f_{op})} c_{op} F(y_{op}) \in D^{op}$. Hence, $H: C \to D^{op}$, defined by $H(x) \equiv F(x_{op})_{op}$ and $H(f) \equiv F(f_{op})_{op}$. By duality, we get the other direction where we start from $F': C \to D^{op}$ and end at $H': C^{op} \to D$. Thus, the two are equivalent.

In a nutshell, the diagram is:

Question: Exercise 1.3.vi. Given the comma category $F \downarrow G$, define the domain and codomain projection functors $dom : F \downarrow G \rightarrow F$ and $codom : F \downarrow G \rightarrow G$.

Recall that an object in the comma category is a a triple $(d \in D, e \in E, F(d) \xrightarrow{f} F(e))$, or diagramatically:

$$d \in D \qquad e \in E$$

$$f:D \downarrow \qquad \qquad \downarrow G$$

$$fd \in C \xrightarrow{f} Ge \in C$$

and a morphism in such a category is a diagram:

$$\begin{array}{cccc} (d,e,f) & & Fd & \longrightarrow & Ge \\ & | & & | & & | \\ (\alpha \downarrow \beta) & & \alpha & & \beta \\ \downarrow & & \downarrow & & \downarrow \\ (d',e',f') & & Fd' & \longrightarrow & Ge' \\ \end{array}$$

We construct the domain functor dom as a functor that sends an object $(d \in D, e \in E, F(d) \xrightarrow{f} F(e))$ to an object $d \in D$. It sends the morphism between (d, e, f) and (d', e', f'), given by $(\alpha : Fd \to Fd', \beta : Ge \to Ge')$ to the arrow $Fd \xrightarrow{\alpha} Fd' \in D$.

In a diagram, this looks like:

codom will do the same thing, by stripping out the codomain of the comma instead of the domain. \Box

Question: Exercise 1.3.vii. Define slice category as special case of the comma category.

Proof To define the slice C/c whose objects are of the form $d \to c$ for varying $d \in C$, we pick the category D = C, E = C, and functors $F : C \to C = id$, $G : C \to C = \delta_c$, that is, the constant functor which smooshes the entire C category into the object $c \in C$ by mapping all objects to c and all arrows to id_c .

This causes the diagram to collapse down to objects of the form $d \to c$, and the arrows to be what we'd expect \Box .

Question: Exercise 1.3.viii. Show that functors need not reflect isomorphisms. for a functor $F: C \to D$, and a morphisms $f \in C$ such that Ff is an isomorphism in D but f is not an isomorphism in C.

Pick a category C and an object $o \in C$. Build the constant functor $\delta_o : C \to C$. The image of every arrow $c \xrightarrow{a} c'$ is the identity arrow id_o which is an iso. The arrow a need not be iso. The functor δ_o does not reflect isos. \square

Question: Exercise 1.3.ix. Consider the not-yet-functors $Grp \rightarrow Grp$ that sends a group to its center, comutator subgroup, and automorphism group. Are these functors if we limit the category Grp to have (a) only isomorphisms? (b) only epimorphisms? (c) all homomorphisms?

Proof [(isos)] If we have (a) only isomorphisms, then these are indeed functors, since an isomorphism $G \simeq H$ implies that their group theoretic properties are identical. Thus, we will have $Z(G) \simeq Z(H)$, ie, isomorphic centers. Thus, an iso arrow $f: G \to H$ becomes an iso arrow $Z(f): Z(G) \to Z(H)$. The exact same happens for commutator and automorphism. \square

Proof [(epis)] If we only have epimorphisms, we first invoke given footnote 29, that all epis in Group are surjections. Thus, given an epi (surjection) $\phi: G \twoheadrightarrow H$, we identify $im(\phi) \simeq G/ker(\phi)$ or $H \simeq G/ker(\phi)$, since $H \simeq im(\phi)$ by ϕ being a surjection. So we can choose to study only quotient maps $\phi: G \to G/ker\phi$.

For the center, consider the determinant map $|\cdot|:GL(2,\mathbb{R})\to\mathbb{R}^\times$. This map is surjective since we can pick the matrix $\begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$ to get all possible determinants for arbitrary $r\in\mathbb{R}$. The center of the group of matrices is scalar multiples of the identity, thus $Z(GL(2,\mathbb{R}))=\{kI:k\in\mathbb{R}\}$. The center of the reals $Z(\mathbb{R}^\times)$ is the reals themselves since it's an abelian group. Now see that the determinant of a matrix kI must be k^2 , since we get two copies of k along the diagonal. Thus, the image $\phi(Z(GL(2,\mathbb{R})))=\{k^2:k\in\mathbb{R}\}=\mathbb{R}_{\geq 0}$ which is smaller than the center of the image, $Z(\phi(GL(2,\mathbb{R})))=Z(\mathbb{R}^\times)=\mathbb{R}^\times$. Thus, the center not functorial on epis.

1.4 NATURAL TRANSFORMATIONS

1.4.1 Musing

Torsion decomposition

Let *TA* be the subgroup of *A* that have finite order.

- The idea is to first show that any natural transformation of the identity functor $\eta: 1 \Longrightarrow 1$ is multiplication by some $n \in \mathbb{Z}$ (recall that every abelian group is a \mathbb{Z} -module, so this is a sensible thing to say).
- Let's study the component of η at \mathbb{Z} . This means that we have an arrow at $1(\mathbb{Z}) \xrightarrow{\eta(id)} 1(\mathbb{Z})$, which is $\mathbb{Z} \to \eta(id)\mathbb{Z}$ since identity functor leaves objects and arrow invariant. Any arrow $\mathbb{Z} \xrightarrow{\eta(id)} \mathbb{Z}$ is a multiplication by some natural number.
- Now consider a homomorphism $f : \mathbb{Z} \to A$. This is determined entirely by $f(1) \in A$, so any such map is the same as picking an element $a \in A$.
- Let's now consider the isomorphism $A \rightarrow A/TA \rightarrow TA \oplus (A/TA) \simeq A$. If this isomorphism were natural, then we would have a natural endomorphism of the identity functor $\alpha : 1 \rightarrow 1$.
- Let's observe α at \mathbb{Z} . We already know that such a transformation is given by $\mathbb{Z} \xrightarrow{\alpha} \mathbb{Z}$, which is multiplication b a number $n \neq 0$ (can't be zero since we need an isomorphism).
- Now consider $C \equiv \mathbb{Z}/2n\mathbb{Z}$ where n is the α scale factor. See that $T(\mathbb{Z}/2n\mathbb{Z}) = \mathbb{Z}/2n\mathbb{Z}$. So we get the factoring as $\mathbb{Z}/2n\mathbb{Z} \to 0 \to \mathbb{Z}/2n\mathbb{Z} \oplus 0 \simeq \mathbb{Z}/2n\mathbb{Z}$. Since we factor through zero, the full map is the zero map. However, we know from the natural transformation that the natural transformation must scale all elements by $n \neq 0$. So we break naturality

The big thing I don't understand in this is why we need to factor *through* the epi. If I directly define $A \to (A/TA) \oplus TA$, given by the exact sequence $0 \rightarrowtail TA \rightarrowtail A \twoheadrightarrow A/TA \twoheadrightarrow 0$? Ah I see, this sequence need not always split.

Walking arrow for unnatural isomorphism

Consider the category $I \equiv (0 \to 1)$. Consider functors $F: I \to Vec(\mathbb{R})$. The functor picks out morphsisms between real vector spaces. If we consider endomorphisms, I could consider a functor F_{id} that picked out the identity map from \mathbb{R} to \mathbb{R} , and another F_0 that picked out the constant linear function f(x) = 0 from \mathbb{R} to \mathbb{R} . These have the same domain and range, but the actual action of the arrow is wildly different. So, for a natural transformation to be natural, it's not enough to have the same action on objects (clearly!)

Permutations and total orderings for unnatural isomorphism

Consider a subcategory of *Set* containing only bijections. Define the functor $Perm: Set \rightarrow Set$ which takes a set S to its set of permutations, where a permutation is a bijection $S \rightarrow S$, and the functor $Ord: Set \rightarrow Set$ which takes a set S to its total orderings, where a total ordering is a bijection $\{1,2,\ldots |S|\} \rightarrow S$. We claim that there is no natural transformation between

these two functors. To see why, let us study the situation on the smallest non-trivial case, a two element set $\{a, b\}$.

With the chosen arrow as $id : [a \mapsto a; b \mapsto b]$, we get the commutative diagram for the naturality square as:

$$id_A \equiv [a \mapsto a; b \mapsto b]$$

$$[a \mapsto a; b \mapsto b][a \mapsto b; b \mapsto a] \xrightarrow{\qquad \qquad Perm(id_A)(f) = id_A \circ f \circ id_A^{-1} = f} \qquad [a \mapsto a; b \mapsto b][a \mapsto b; b \mapsto a]$$

$$[1 \mapsto a; 2 \mapsto b][1 \mapsto b; 2 \mapsto a] \xrightarrow{\qquad Ord(id_A)(f) = id_A \circ f = f} \qquad [1 \mapsto a; 2 \mapsto b][1 \mapsto b; 2 \mapsto a]$$

While with the chosen arrow as $\sigma: [a \mapsto b; b \mapsto a]$ we get the non-commuting diagram for the naturality square as:

$$\sigma \equiv [a \mapsto b; b \mapsto a]$$

$$[a \mapsto a; b \mapsto b][a \mapsto b; b \mapsto a] \xrightarrow{Perm(\sigma)(f) = \sigma \circ f \circ \sigma^{-1}} [b \mapsto b; a \mapsto a][b \mapsto a; a \mapsto b]$$

$$\uparrow_{A} \downarrow \qquad \qquad [2 \mapsto b; 1 \mapsto a][2 \mapsto a; 1 \mapsto b]$$

$$\uparrow_{A} \downarrow \qquad \qquad [2 \mapsto b; 1 \mapsto a][2 \mapsto a; 1 \mapsto b]$$

$$\uparrow_{A} \downarrow \qquad \qquad \qquad [1 \mapsto a; 2 \mapsto b][1 \mapsto b; 2 \mapsto a] \xrightarrow{Ord(\sigma)(f) = \sigma \circ f} [1 \mapsto b; 2 \mapsto a][1 \mapsto a; 2 \mapsto b]$$

We see that we cannot define a single η_A that works in both cases.

Group as category v/s poset category

in poset as category, objects carry most of the structure, not many arrows. In group as category, only one object, many arrows.

1.4.2 Exercises

Question: Exercise 1.4.i. Let $\alpha : F \Rightarrow G$ be a natural isomorphism. Show that the inverses of the components define a natural isomorphism $\alpha^{-1} : G \Rightarrow F$.

We need to show that the square with ? in it commutes, given the square on top:

$$\begin{array}{cccc}
x & Fx & \xrightarrow{\eta(x)} & Gx \\
\downarrow a & & \downarrow Ga \\
y & Fy & \xrightarrow{\eta(y)} & Gy
\end{array}$$

$$\begin{array}{cccc}
Gx & \xrightarrow{\eta^{-1}(x)} & Fx \\
\downarrow Ga & & \uparrow Fx
\end{array}$$

$$\begin{array}{cccc}
Ga & & ? & \downarrow Fa \\
\downarrow Gy & \xrightarrow{\eta^{-1}(y)} & Fy
\end{array}$$

From the square, we know that $Ga \circ \eta(x) = \eta(y) \circ Fa$. Using inverses, we derive:

$$Ga \circ \eta(x) = \eta(y) \circ Fa$$

$$Ga \circ \eta(x) \circ \eta^{-1}(x) = \eta(y) \circ Fa \circ \eta^{-1}(x)$$

$$Ga \circ id_x = \eta(y) \circ Fa \circ \eta^{-1}(x)$$

$$Ga = \eta(y) \circ Fa \circ \eta^{-1}(x)$$

$$\eta^{-1}(y) \circ Ga = \eta^{-1}(y) \circ \eta(y) \circ Fa \circ \eta^{-1}(x)$$

$$\eta^{-1}(y) \circ Ga = id_y \circ Fa \circ \eta^{-1}(x)$$

$$\eta^{-1}(y) \circ Ga = Fa \circ \eta^{-1}(x)$$

which is exactly the diagram:

Question: Exercise 1.4.ii. What is a natural transformation between a parallel pair of functors between groups regarded as one object categories?

Proof Let G, H be groups regarded as one object categories, so elements are arrows. A functor $F: G \to H$ is a group homomorphism. Two functors $F, F': G \to H$ are two group homomorphisms. An natural transformation is a map $\eta: G \to H$ which for every (the only) object $*_G \in G$, assigns an arrow $\eta(*_G): F(*_G) \xrightarrow{\eta(*_G)} G(*_G)$ which is compatible with all arrows:

$$F(*_{G}) \in H \xrightarrow{\eta(*_{G})} F'(*_{G}) \in H$$

$$F(g) \qquad F'(g) \qquad F'(g)$$

$$F(*_{G}) \in H \xrightarrow{\eta(*_{G})} F'(*_{G}) \in H$$

Simplifying the diagram by substituting F(*) = F'(*) = *, and setting $\alpha \equiv \eta(*G) \in Hom(*_H, *_H)$, we get:

$$*_{H} \xrightarrow{\alpha \equiv \eta(*_{G})} *_{H}$$

$$F(g) \downarrow \qquad \qquad \downarrow F'(g)$$

$$*_{H} \xrightarrow{\alpha \equiv \eta(*_{G})} *_{H}$$

So we are looking for an arrow (group element) $\alpha \in H$ such that for all $g \in G$, $F'(g) \cdot \alpha = \alpha \cdot F(g)$. On rearranging: $\alpha^{-1} \cdot F'(g) \cdot \alpha = F(g)$. So it gives a sort of "inner automorphism" from F to F'. \square

Question: Exercise 1.4.iii. What is a natural transformation between a parallel pair of functors between preorders regarded as categories? **Proof** We regard preorders as thin categories, where there is an most arrow from $p \to p'$ if $p \le p'$. A functor from (P, \le) to (Q, \le) is a monotone map. A pair of functors $F, G: P \to Q$ is a pair of monotone maps. A natural transformation $\eta: F \Rightarrow G$ makes for each $p \in P$ the diagram commute:

$$\begin{array}{ccc}
p & F(p) & \xrightarrow{\eta(p)} G(p) \\
\downarrow^{p < p'} & F(p < p') \downarrow & \downarrow^{G(p < p')} \\
p' & F(p') & \xrightarrow{\eta(p)} G(p')
\end{array}$$

So, for every $p \leq p'$, the functor F maps us to elements $F(p) \leq F(p')$, and G maps us to elements $G(p) \leq G(p')$. The natural transformation η asks to witness an arrow $F(p) \xrightarrow{\eta(p)} G(p)$, which means that we must have $F(p) \leq G(p)$ within the category Q, and similarly for p'. Thus, it witnesses that G is always *above* F. For any element $p \in P$, we will always have $F(p) \leq G(p)$, in a way that is consistent with the monotonicity of F, G.

Question: Exercise 1.4.iv. Prove that distinct parallel morphisms $f, g : c \to d$ define distinct natural transformations $f_*, g_* : C(-, c) \Rightarrow C(-, d)$ by precomposition.

Recall that the natural transformation by f_* is given for a fixed $o \xrightarrow{a} o'$ by $Hom(o,c) \xrightarrow{f_* \equiv f \circ -} Hom(o,d)$, and similarly for g_* by $Hom(o,c) \xrightarrow{g_* \equiv g \circ -} Hom(o,d)$. If we choose o = c, then we can consider Hom(c,c). Let' then see where $id_c \in Hom(c,c)$ gets mapped to:

$$\begin{split} & Hom(o,c) \xrightarrow{f_* \equiv f \circ -} Hom(o,d) \\ & Hom(o=c,c) \xrightarrow{f^* \equiv f \circ -} Hom(o=c,d) \\ & Hom(c,c) \xrightarrow{f_* \equiv f \circ -} Hom(c,d) \\ & id_c \in Hom(c,c) \xrightarrow{f_* \equiv f \circ -} f \circ id_c \in Hom(c,d) \\ & id_c \in Hom(c,c) \xrightarrow{f_* \equiv f \circ -} f \in Hom(c,d) \end{split}$$

So we map $id \in Hom(c,c)$ into $f \in Hom(c,d)$ by f_* . Since there was nothing special about f, we similarly map $id \in Hom(c,c)$ into $g \in Hom(c,d)$ by g_* . Since the two morphisms are distinct, we have $f \neq g$. Thus, the two distinct parallel morphisms f,g. natural transformations f_* and g_* are inequivalent since they have different components on the element c: $f_*(c): Hom(c,c) \to Hom(c,d)$ is not the same action as $g_*(c): Hom(c,c) \to Hom(c,d)$, since they act differently on $id_c \in Hom(c,c)$, as $f_*(c)(id_c) = f \neq g = g_*(c)(id_c)$.

Question: Exercise 1.4.v. Consider the comma cataegory $F \downarrow G$ for $F : D \rightarrow C$, $G : E \rightarrow C$. Construct a canonical natural transformation $\alpha : F \circ dom \rightarrow G \circ codom$:

Proof

Recall that elements $k, k \in F \downarrow G$ and arrows $k \xrightarrow{a} k'$ is given by:

$$k \equiv (d, e, Fd \xrightarrow{a_k} Ge) \qquad Fd \xrightarrow{a_k} Ge$$

$$\downarrow a \equiv (d \xrightarrow{a_d} d', e \xrightarrow{a_e} e') \qquad F(a_d) \downarrow \qquad \downarrow G(a_e)$$

$$k' \equiv (d', e', Fd' \xrightarrow{a_{k'}} Ge') \qquad Fd' \xrightarrow{a_{k'}} Ge'$$

We need to make this diagram commute for all $k, k' \in F \downarrow G$

$$F \circ dom(k) \xrightarrow{\eta(k)} G \circ codom(k) \qquad \qquad d \xrightarrow{\eta(k)} e \\ \downarrow G \circ codom(k) \qquad \qquad \downarrow F \circ dom(k') \xrightarrow{\eta(k')} G \circ codom(k') \qquad \qquad d' \xrightarrow{\eta(k')} e'$$

in $F \downarrow G$

To show the equality between the left square and right square, we simplify using the definitions of k, k':

- $k \equiv (d, e, Fd \xrightarrow{a_k} Ge), k' \equiv (d', e'Fd' \xrightarrow{a'_k} Ge').$
- $a: k \to k'$ is given by $a \equiv (d \xrightarrow{a_d} d', e \xrightarrow{a_e} e')$ such that the diagram commutes.
- $dom(a) = a_d$. $F(dom(a)) = Fa_d$. Similarly, $codom(a) = a_e$, and $G(codom(a)) = G(a_e)$.
- dom(k) = d. F(dom(k)) = Fd. codom(k) = e. G(codom(k)) = G(e).

By comparing the simplified naturality square to the square in the *definition* of arrow in the comma category, we find that we can pick $\eta(k) \equiv a_k$, and $\eta(k') \equiv a'_k$, the only data of k and k' we have not used so far! This causes the diagram to commute by definition of what it means to have a morphism in a comma category. To be crystal clear, we compare the two diagrams:

condition for a in C

condition for η in C

Question: Exercise 1.4.vi. Why do extranatural transforms need a common target?

I don't understand the question. We need the same common target category to have a common space for the diagrams to live. But this feels too naive, so I'm not sure what it is I'm missing.

1.5 1.5: EQUIVALENCE OF CATEGORIES

1.5.1 Musings

Proof: Equivalence of categories implies full, faithful, essentially surjective

I reproduce the proof in a way that makes sense to me, since this feels like the first somewhat non-trivial theorem we have proven.

Equivalence is faithful: Let us have two arrows $c \xrightarrow{p} d$ and $c \xrightarrow{q} d$. We wish to show that if $Fc \xrightarrow{Fp} Fd$ equals $Fc \xrightarrow{Fq} Fd$, then p equals q. So $Fp = Fq \implies p = q$. The idea is to apply G to get GFp = GFq, at which point we can apply $g : 1_C \to GF$ to convert from GFp, GFq into $g : 1_C \to GF$ to convert from GFp, GFq into $g : 1_C \to GF$ to diagram:

In text, the proof proceeds as:

- Start by $Fc \xrightarrow{Fp} Fd = Fc \xrightarrow{Fq}$
- Augment by applying $\eta: 1 \Rightarrow FG$, $\eta^{-1}: FG \Rightarrow 1$ to the left and the right, giving

$$(c \xrightarrow{p} d) \xrightarrow{\eta} (Fc \xrightarrow{Fp} Fd) = (Fc \xrightarrow{Fq} Fd) \xrightarrow{\eta^{-1}} (c \xrightarrow{q} d)$$

• Collapse along the equality, apply composition $\eta^{-1} \circ \eta = id$ giving:

$$(c \xrightarrow{p} d) \stackrel{id}{\Longrightarrow} (c \xrightarrow{q} d)$$

• Thus, we derive p = q starting from Fp = Fq. \square

Equivalence is full: Suppose we are given an arrow $(Fc \xrightarrow{q} Fc')$ (Note that this **does not** give us an arrow $(d \xrightarrow{q} d')$ — we know that the objects in question are in the image of the functor). We must show that there is a pre-image of the arrow q, so we expect an arrow $(c \xrightarrow{p} d)$ such that Fp = q. Let's do the obvious thing, and pull back along G to get:

$$Fc \xrightarrow{q} Fd$$

$$c \xrightarrow{?} d \qquad c \xrightarrow{p=\eta_d^{-1} \circ Gq \circ \eta_c} d$$

$$\eta_c \downarrow \qquad \downarrow \eta_d \qquad \eta_c \downarrow \qquad \uparrow \eta_d^{-1}$$

$$GFc \xrightarrow{Gq} GFd \qquad GFc \xrightarrow{GFp=Gq} GFd$$

So we define an arrow $p \equiv \eta_d^{-1} \circ Gq \circ \eta_c$ since it seems to be the "right arrow" for our use case. By the commutativity of the diagram, we have that

GFp = Gq. Since G is faithful (as proven above), we have Fp = q and so we are done, as we have established a pre-image arrow p for the given q.

Equivalence is essentially surjective: Let $d \in D$. We must find a $c \in C$ such that $F(c) \simeq d$. Let's try the obvious candidate, $G(d) \in C$. We get F(G(d)), which we must show is isomorphic to d. Recall that we have a natural isomorphism $e : FG \Rightarrow 1_D$. We invoke e_d to get the isomorphism $e \in FG$ and $e_d \in FG$ and $e_d \in FG$ such that they are inverses of each other.

1.5.2 Exercises 1.5

Question: Exercise 1.5.i.

First, let's recall the category 2:

$$0 \xrightarrow{(0 \to 1)} 1$$

Now when we take the product of some category C with , get as objects $\cup_{c \in C} \{(c,0),(c,1)\}$ and as arrows we get three types:

- Cross arrows from (-,0) to (-,1): $\{(c,0) \xrightarrow{(a,0\to 1)} (d,1) : c,d \in C; a \in Hom(c,d)\}$
- Arrows within the component (-,0): $\{(c,0) \xrightarrow{(a,id_0)} (d,0) : c,d \in C; a \in Hom(c,d)\}$
- Arrows within the component (-,1): $\{(c,1) \xrightarrow{(a,id_1)} (d,1) : c,d \in C; a \in Hom(c,d)\}$

If we now have a functor $H: C \times 2 \to D$, we can recover the functors F, G by considering the commutative square:

$$\begin{array}{c|c} H(c,0) & \xrightarrow{H(f,\mathrm{id}_0)} & H(d,0) \\ & | & | \\ H(\mathrm{id}_c,0\to 1) & & H(\mathrm{id}_d,0\to 1) \\ \downarrow & & \downarrow \\ H(c,1) & \xrightarrow{H(f,\mathrm{id}_1)} & H(d,1) \end{array}$$

Where the top row is F, bottom row is G, and top-to-bottom morpshism is the natural transformation η :

$$Fc \simeq H(c,0) \xrightarrow{Ff \simeq H(f,id_0)} H(d,0) \simeq Fd$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Gc \simeq H(c,1) \xrightarrow{Gf \simeq H(f,id_1)} H(d,1) \simeq Gd$$

I haven't drawn one arrow, that of $H(f,0 \to 1)$. The diagram we have above only tells us that the arrows have the right shape. It does not tell us that the diagram actually *commutes*. We need to prove that $Gf \circ eta_c = \eta_d \circ Ff$.

The crux is to show that both of these are equal to $H(f, 0 \to 1)$ by functoriality of H:

Since in the original category we have $f \circ id_c = f$ and $\mathrm{id}_1 \circ (0 \to 1) = \mathrm{id}_1$, we combine these equations to get $(f,id_1) \circ (id_c,0 \to 1) = (f,0 \to 1)$. Similarly, we show that $(id_d,0 \to 1) \circ (f,id_0) = (f,0 \to 1)$. Thus, the diagram does indeed commute, and what we have is a natural transformation.

Question: Exercise 1.5.ii. Define a category Γ whose objects are finite sets, and whose morphisms from S to T are maps $\theta: S \to 2^T$ where $\theta(\alpha)$ and $\theta(\beta)$ are disjoint when $\alpha \neq \beta$. The composite map is given by $\psi(\alpha) = \bigcup_{\beta \in \theta(\alpha)} \psi(\beta)$ [set/list monad]. Prove that Γ is equivalent to the opposite of the category Fin_* of finite pointed sets.

- I can see why it is the opposite of finite sets.
- The arrow $\theta: S \to 2^T$ records the data of fibers of maps $T \to S$.
- Define $f_{\theta}: (T, t_*) \to (S, s_*)$ given by f(t) = s when $t \in \theta(s)$. We are guaranteed such an s is unique since all sets $\theta(s)$ is disjoint.
- At this stage, we also see why we need pointed sets. If there is no s such that $t \in \theta(s)$, then define $f(t) = s_*$, the basepoint of S. This is the "basepoint encoding" of partial functions.
- The above shows that the functor is full and faithful (each arrow in Fin* has a corresponding unique arrow in Γ), and surjective (not just essentially surjective), and thus the functor is an equialence of categories.

Question: Exercise 1.5.iii.

Recall that the data of the isomorphism of objects $a \simeq a'$ is given by morphisms $\alpha: a \to a'$ and $\alpha^{-1}: a' \to a$ such that $\alpha^{-1} \circ \alpha: a \to a \simeq id_a$ and $\alpha \circ \alpha^{-1}: a' \to a' \simeq id_{a'}$. Similarly, posit a β to witness $b \simeq b'$. Now the square on the left gives us the equation $\beta \circ f \circ \alpha^{-1} = f'$. We compose with β^{-1} , α to get the other squares:

$$\alpha \circ \alpha^{-1} = id \qquad a \xrightarrow{\alpha \atop \alpha^{-1}} a' \qquad a \longleftarrow \alpha^{-1} \qquad a'$$

$$\beta \circ \beta^{-1} = id \qquad b \xrightarrow{\beta \atop \beta^{-1}} b' \qquad f \qquad \beta \circ f \circ \alpha^{-1} = f' \qquad f'$$

$$f \longrightarrow \beta$$

- $\beta \circ f \circ \alpha^{-1} = f'$ implies $f \circ \alpha^{-1} = \beta^{-1} \circ f'$.
- $\beta \circ f \circ \alpha^{-1} = f'$ implies $\beta \circ f = \circ f' \circ \alpha$.
- $\beta \circ f \circ \alpha^{-1} = f'$ implies $f = \beta 1 \circ f' \circ \alpha$.

Question: Exercise 1.5.iv.

Question: 1.5.v A faithful functor need not reflect isos.

- High level idea: take a faithful functor *F* : *C* → *D* adjoin arrows into *D* to make arrows in *D* isos, see that this does not reflect.
- consider a category $C \equiv (a \xrightarrow{p} b)$. Map into a category D with arrows $x \xrightarrow{s} y$ and $y \xrightarrow{s^{-1}} x$ where s, s^{-1} are inverses of each other.
- The functor $F: C \equiv (a \xrightarrow{p} b) \rightarrow (x \xrightarrow{s} y)$ is faithful but does not reflect isos.

Question: 1.5.vii Construct inverse of inclusion of automorphism of some object of groupoid into groupoid.

- Let *O* be a connected groupoid and let *G* the automorphism group of some object in *O*.
- The inclusion $I: BG \hookrightarrow O$ defines an equivalence of categories.
- We need to define the inverse functor $G: O \rightarrow BG$.
- First define the basepoine b ≡ I(*), the image of the unique object in the category BG.
- To define the inverse functor *F* : *O* → *BG*, send all objects of *O* to the object *. This defines *F*(_) = * on objects.
- For each object $o \in O$, pick a special "path morphism" $path(o,b) \in Hom(o,b)$.
- Send each morphism $a \in Hom(o, o)$ to the morphism $path(o, b) \circ a \circ path(o, b)^{-1}Hom(b, b)$ (conjugate all loops to move basepoint). Send all other morphisms in Hom(o, o') where $o \neq o'$ to the identity morphism $id_* \in Hom(*, *)$.
- TODO: prove that this is functorial. This is tedious: draw the right pictures.

Question: 1.5.viii.

Question: 1.5.ix.

- Let *F* : *C ⇒ D* : *G* be an equivalence of categories. Let *D* be locally small. We must show that *C* is locally small.
- Recall that we must have $G: D \to C$ to be full, faithful, and essentially surjective as it witnesses an equivalence of categories. As D is locally small, all hom-sets $Hom_D(X,Y)$ are small.

- Since $G: D \to C$ is full, the image $Hom_C(Gx, Gy)$ is surjective, and thus $Hom_C(Gx, Gy)$ can have cardinality at most that of $Hom_D(x, y)$ which is already small. Thus $Hom_C(Gx, Gy)$ is also locally small. This settles the question for all Hom-sets in the image of G.
- Consider elements $c,d \in C$ which are not in the image of $G:D \to C$. Since the functor G is essentially surjective, we must have elements Gx,Gy such that $c \simeq Gx$ and $d \simeq Gy$. In particular, this implies that $Hom_D(c,d) = Hom_D(Gx,Gy)$. This reduces this case to the previous case, showing that these Hom-sets too are locally small.