Efficient Training of Low-Curvature Neural Networks

IE 663 Course Project

Team Name: Supernova
Members
Tarun Bisht
Indian Institute of Technology Bombay

March 27, 2023

Introduction

Experiments by Author

Experiments by Team

Further Investigations

References

Introduction

- ▶ Deep Neural Networks(DNN) are non-linear by nature, but excess non-linearity is undesirable.
- ▶ Highly nonlinear models can have a high degree of sensitivity to small changes in the input, which can lead to large changes in the output. This affects the adversarial robustness of the model.
- ► Highly non-linear models can also suffer from exploding and vanishing gradient problems.
- ▶ This paper addresses the excess non-linearity issue using the idea of curvature and introduces training of low curvature Neural Networks.

Curvature

- ▶ In mathematics, the curvature is the amount by which a curve deviates from being a straight line.
- ► Intuitively, it is a measure of how much a curve or surface is bending at a particular point.
- ▶ Hessian norm at that point provides a measure of curvature at that point.
- Curvature $C_f(x) = 0 \ \forall x \in \mathbb{R}^d \iff f$ is linear.

Curvature in ML context

- ▶ In ML, curvature measures the non-linearity of a model.
- ► A common measure of the curvature of machine learning models is via Hessian norms

$$||\nabla_x^2 f(x)||_2$$

Adversarial Robustness

- ▶ Adversarial vulnerabilities of neural networks are a widely recognized phenomenon whereby the addition of small, imperceptible amounts of noise to an input can cause deep neural networks to misclassify the input with high confidence.
- ▶ Samples generated from adversarial attack methods like the Fast gradient method, Projected gradient descent (PGD) can fool neural networks, although the images look the same to human eyes.
- ▶ A go-to method to defend against this vulnerability is adversarial training, which trains models to predict samples correctly generated by adversarial attack methods.
- ► This approach, however, is computationally expensive and provides no formal guarantees on robustness. The defense against adversarial attacks is an interest of research in the ML community.

Gradient Instability

- ► Gradient instability occurs due to large hessian norms. [Dombrowski]
- ► Gradient regularization improves model robustness. [Ros and Doshi-Velez]
- ▶ Dombrowski et al. proposed to train low curvature models via softplus activations and weight decay.
- ▶ Dombrowski et al. [7] focused on the Frobenius norm of the Hessian

$$||A|| = \sqrt{AA^H}$$

► Author's penalize the normalized curvature.

Lipschitz Layers in Neural Networks

- ► Ideally with NN we want if input are similar then output should also be similar.
- ▶ A function $f: \mathbb{R}^M \to \mathbb{R}^N$ is Lipschitz continuous if there is a constant L such that

$$||f(x) - f(y)|| \le L||x - y||$$

$$\frac{||f(x) - f(y)||}{||x - y||} \le L$$

The smallest such L is the Lipschitz constant of f and is denoted Lip(f)

 \blacktriangleright We want constant L to be small as possible.

Lipschitz Layers in Neural Networks

- ▶ Property: Let $f = g \circ h$. If g and h are Lipschitz continuous, then f is also Lipschitz continuous with $Lip(f) \leq Lip(g)Lip(h)$.
- ▶ Therefore, if we make each component of a neural network such that it is Lipschitz continuous with small Lipschitz constants, the whole neural network will also be Lipschitz continuous with small Lipschitz constants.
- Activation functions and Pooling layers generally have Lipschitz constant L=1
- ▶ Spectral Normalization: where linear layers are re-parameterized by dividing by their spectral norm, ensuring that the overall spectral norm of the parameterized layer is 1 which bounds L to be 1.

Measuring Relative Model Non-Linearity via Normalized Curvature

- ▶ Common way to define curvature is via Hessain norm, however this measure is sensitive to gradient scaling.
- ► Scaling a function also scale its hessian.
- ► To avoid this problem author's proposed normalized curvature.

$$C_f(x) = \frac{||\nabla^2 f(x)||_2}{||\nabla f(x)||_2 + \epsilon}, \quad \epsilon > 0$$

- ▶ Directly penalizing the curvature is computationally expensive as it requires calculating the Hessian norm.
- ▶ We try controlling the curvature and Lipschitz constant of each layer of a neural network that enables us to control the overall curvature of the model.

- ▶ Authors propose to use activation functions with minimal curvature.
- ▶ softplus function $s(x; \beta) = \frac{\log(1 + \exp(\beta x))}{\beta}$
- curvature of softplus = $\beta(1 \nabla s(x; \beta))$
- using smaller β ensure lower curvature.

(c) Softplus vs Centered-Softplus

► Centered softplus: $s_0(x,\beta) = s(x,\beta) - \frac{\log 2}{\beta} = \frac{1}{\beta} \log(\frac{1 + exp(\beta x)}{2})$

Experiments by Author

- ► In experiments authors,
 - evaluates the effectiveness of the proposed method in training models with low curvature
 - evaluate whether low curvature models have robust gradients in practice
 - evaluate the effectiveness of low-curvature models for adversarial robustness
- ► Dataset Used
 - ► CIFAR100
 - ► CIFAR10
- ▶ The experiments are performed using NVIDIA GeForce GTX 1080 Tis.
- ► Implemented in Pytorch
- ▶ Baseline model: Resnet18

- ▶ Model geometry of various ResNet-18 models trained with various regularizers on the CIFAR100 test dataset.
- ► Results are averaged across two runs.

Model	$\ \mathbb{E}_{\mathbf{x}}\ \nabla f(\mathbf{x})\ _2$	$\mid \mathbb{E}_{\mathbf{x}} \ \nabla^2 f(\mathbf{x}) \ _2$	$\mathbb{E}_{\mathbf{x}}\mathcal{C}_f(\mathbf{x})$	Accuracy (%)	
Standard	19.66 ± 0.33	6061.96 ± 968.05	270.89 ± 75.04	77.42 ± 0.11	
LCNNs	22.04 ± 1.41	1143.62 ± 99.38	69.50 ± 2.41	77.30 ± 0.11	
GradReg [31]	8.86 ± 0.12	776.56 ± 63.62	89.47 ± 5.86	77.20 ± 0.26	
LCNNs + GradReg	9.87 ± 0.27	154.36 ± 0.22	25.30 ± 0.09	77.29 ± 0.07	
CURE [6]	8.86 ± 0.01	979.45 ± 14.05	116.31 ± 4.58	76.48 ± 0.07	
Softplus + Wt. Decay [7]	18.08 ± 0.05	1052.84 ± 7.27	70.39 ± 0.88	77.44 ± 0.28	
Adversarial Training [32]	7.99 ± 0.03	501.43 ± 18.64	63.79 ± 1.65	76.96 ± 0.26	

Plot showing relative gradient robustness,

(a) Gradient Robustness on CIFAR10

(b) Gradient Robustness on CIFAR100

Results indicate off-the-shelf model accuracies upon using l2 PGD adversarial examples across various noise magnitudes ϵ .

Model	Acc. (%)	$ \ \epsilon\ _2 = 0.05$	$\ \epsilon\ _2 = 0.1$	$\ \epsilon\ _2 = 0.15$	$ \ \epsilon\ _2 = 0.2$
Standard	77.42 ± .10	59.97 ± .11	37.55 ± .13	$23.41 \pm .08$	16.11 ± .21
LCNN	$77.16 \pm .07$	$61.17 \pm .53$	$39.72 \pm .17$	$25.60 \pm .32$	$17.66 \pm .18$
GradReg	$77.20 \pm .26$	$71.90 \pm .11$	$61.06 \pm .03$	$49.19 \pm .12$	$38.09 \pm .47$
LCNNs + GradReg	$77.29 \pm .26$	72.68 ± .52	63.36 ± .39	$52.96 \pm .76$	42.70 ± .77
CURE [6] $ 76.48 \pm .07 71.39 \pm .12 61.28 \pm .32$				$49.60 \pm .09$	39.04 ± .16
Softplus + Wt. Decay [7]	$77.44 \pm .28$	$60.86 \pm .36$	$38.04 \pm .43$	$23.85 \pm .33$	$16.20 \pm .01$
Adversarial Training [32]	$76.96 \pm .26$	72.76 ± .15	64.70 ± .20	$\textbf{54.80} \pm .25$	44.98 ± .57

Experiments by Team

Experimental Setup

- ▶ For testing Linux Machine CPU: Intel I3, GPU: Geforce 940MX, 12GB RAM.
- ▶ For longer training session Kaggle, GPU: P400, 16GB RAM, was used.

Dataset

► CIFAR10

Programming Setup

- ► PyTorch
- ▶ Default configurations and parameters used by authors were used.

Model	$\mathbf{E}_x \nabla f(x) _2$	$\mathrm{E}_x \nabla^2 f(x) _2$	$\mathrm{E}_x C_f(x)$	Accuracy
Standard	5.344159 ± 15.07	668.403381 ± 2161.75	119.779434 ± 86.29	93
LCNNs	2.738105 ± 1.79	11.158964 ± 7.37	4.531949 ± 2.06	64
$\operatorname{GradReg}$	1.444337 ± 1.79	49.747406 ± 126.30	32.834171 ± 19.15	93
LCNN +				
$\operatorname{GradReg}$	0.900491 ± 0.55	1.988849 ± 1.47	2.161540 ± 1.03	62

 $\blacktriangleright\,$ Analyze robustness towards adversarial attacks

References 24

► https://towardsdatascience.com/lipschitz-continuity-and-spectral-normalization-b03b36066b0d

► https://arxiv.org/abs/2206.07144

Thank You!