APELLIDO Y NOMBRE:.....31/07/2020

Una compañía de transporte de personal elabora su estrategia comercial, para lo cual realiza un muestreo aleatorio entre sus vehículos; determinando X=número de pasajeros transportados por vehículo; Y=ganancia mensual (miles de \$). Los resultados se muestran a continuación.

Nº pasajeros	18	10	19	13	21	15	22	17	18	20	20	13	20	15	12	11
Ganancia (miles \$)	29,87	24,80	32,34	29,55	36,47	32,95	42,96	32,22	34,70	36,37	37,40	27,44	32,16	26,02	25,95	22,90

Se agregan algunos cálculos intermedios para agilizar la resolución del ejercicio.

 $\Sigma x_i = 264$; $\Sigma x_i^2 = 4576$; $\Sigma y_i = 504,1$; $\Sigma y_i^2 = 16313,4874$; $\Sigma x_i y_i = 8590,77$; $S^2 e = 6,580050682$.

- a) Estime mediante el método de mínimos cuadrados la recta de regresión que relaciona ambas variables. Interprete sus coeficientes en términos del problema.
- b) Pruebe la hipótesis más importante en el análisis de regresión. Use α = 0,05. Concluya en términos del problema.
- c) Realice una estimación puntual de la ganancia mensual para un vehículo que transporta 16 pasajeros. Interprete en términos del problema.
- d) Si tiene sentido, calcule r. Fundamente su elección. Interprete en términos del problema.

$= S^{2} e^{\left(\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}\right)}$	$=\mathbf{S}^{2} e^{\left(\frac{1}{n} + \frac{\overline{\mathbf{X}}^{2}}{\sum (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}}\right)}$	$=\frac{S^{2}_{e}}{\sum (x_{i}-\overline{x})^{2}}$	$=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$
$= \sum (y_i - \overline{y})^2 - b^2 \sum (x_i - \overline{x})^2$	$= \sum (y_i - \overline{y})^2 - b \sum (x_i - \overline{x})(y_i - \overline{y})$	$\sum x^2 - (\sum x)^2 / n$	
$= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$	$= \frac{\sum (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{y}_{i} - \overline{\mathbf{y}})}{\sqrt{\sum (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}} \sqrt{\sum (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}}}$	$=\frac{\overline{x}-\mu}{\sqrt[s]{\sqrt{n}}}$	$=\frac{x-\mu}{\sigma}$
$=\frac{p-\pi}{\sqrt{\frac{p(1-p)}{n}}}$	$=\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}$	$=\frac{(n-1)s^2}{\sigma^2}$	$= \frac{s_1^2}{\sigma_1^2} = \frac{s_2^2}{s_2^2} = \frac{s_1^2}{\sigma_2^2}$
$= \left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}\right)$	$=\sum y_i^2 - \frac{(\sum y_i)^2}{n}$	$\sum y^2 - (\sum y)^2 / n$	
$\sum (y_i - \overline{y})^2$	$\sum (x_i - \overline{x})^2$	$\sum (x_i - \overline{x})(y_i - \overline{y})$	
$=\frac{\left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}\right)}{\left(\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}\right)}$	$= \frac{1}{n-2} \left[\sum y_i^2 - \frac{(\sum y_i)^2}{n} - b \left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \right) \right]$	$= \frac{\left(\sum x_{i} y_{i} - \frac{\sum x_{i} \sum}{n}\right)}{\sqrt{\left(\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}\right)} \sqrt{\left(\sum y_{i}\right)^{2}}}$	$\frac{y_i}{2} - \frac{\left(\sum y_i\right)^2}{n}$
$=b^{2}\frac{\sum x_{i}^{2}-\frac{(\sum x_{i})^{2}}{n}}{\sum y_{i}^{2}-\frac{(\sum y_{i})^{2}}{n}}$	$= b \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum y_i^2 - \frac{(\sum y_i)^2}{n}}$	$=S^{2}e^{\left(\frac{1}{n}+\frac{(x_{0})^{2}}{\sum x_{i}^{2}}\right)}$	$-\frac{(-\overline{x})^2}{(\sum x_i)^2}$
$= S^{2}_{e} \left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} \right)$	$= \frac{S^{2}_{e}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}$	$= \sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n} - b^{2} \left(\sum y_{i}^{2} + \sum y_{i}^{2} \right)^{2} + b^{2} \left(\sum y_{i}^{2} + \sum y_{i}^{2} + \sum y_{i}^{2} \right)^{2} + b^{2} \left(\sum y_{i}^{2} + \sum y_{i}^{2} + \sum y_{i}^{2} \right)^{2} + b^{2} \left(\sum y_{i}^{2} + \sum y$	$\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$

