Udacity - Deep Reinforcement Learning Course

Project 3: Collaboration and Competition

by Mauricio Ciprián Rodríguez (@mauriciociprian)

This document summarizes the relevant details of the proposed solution to Project 3 of the course.

Actor-Critic Agent Implementation

The implementation of the agent was made starting from the code provided in the <u>DDPG</u> <u>Udacity code</u>, making several modifications: managing multiple agents, sharing their experience to train a single Actor model, and adapting the network architecture. The code for this is in the <u>mult_ddpg_agent.py</u> file.

The Actor uses a Feed Forward neural network with the following architecture

State	Linear ReLu	Linear ReLu	Action Linear Tanh
24	256	256	2

In addition, the Critic neural network follows this architecture:

State	Linear	Linear	Linear
	BatchNorm ReLu	ReLu	
24	256	128	1

In addition, the agent uses the following hyperparameters:

• Replay Buffer size: 100,000

• Batch Size: 256

Gamma (Discount factor): 0.99
Tau (Parameter update): 0.001
Learning rate Actor: 0.0001
Learning rate Critic: 0.0001
Weight Decay (Critic Network): 0

Results

The graph below shows the evolution of the agent's reward during training

After 520 episodes, the agent reached the minimum score required to pass the project (Average Score = 0.5 in 100 Episodes). However, the agent trained to achieve an average score of 0.55. The models resulting from this training are stored in the **checkpoint_actor.pth** and **checkpoint_critic.pth** files.

Further Work

- A hyper parameters search (GridSearch) and other network architecture (Dropout, Layers sizes, etc) could improve the learning capacity of this DDPG implementation.
- Evaluate other Actor-Critic approaches (ie. A3C, PPO).