《最优化方法》第二章习题

一、填空题

max
$$2x_1 + x_2$$
 min $y_1 + 5y_2$

1. 线性规划 $s.t. - x_1 + 2x_2 \ge 1$ 的对偶规划为 $x_1 + 3x_2 = 5$ $x_1 \ge 0$ $y_1 \le 0$

- 2. 在三维空间 R^3 中,集合 $\{(x,y,z)|x^2+y^2\leq 1, x\geq 0, y\geq 0, z\geq 0\}$ 的极点构成的集合为 $\{(x,y,0|x^2+y^2=1, x\geq 0, y\geq 0\}\cup\{(0,0,0)\}$
- 3 . 集合 $\{(x,y)|x^2+2y^2 \le 4, x \ge 1, y \ge 1\}$ 的 极 点 构 成 的 集 合 为 $\{(x,y)|x^2+2y^2=4, x \ge 1, y \ge 1\}$
- 4. 在二维空间 R^2 中,集合 $\{(x,y)|x^2+y^2 \le 1, y \ge x\}$ 的极点构成的集合为 $\{(x,y)|x^2+y^2 = 1, y \ge x\}$

$$\min 3x_1 - 2x_2$$

- 5. 线性规划 $\frac{s.t. x_1 + x_2 \le 10}{5x_1 + 4x_2 \ge 11}$ 的可行域共有<u>3</u>个不同的极点。 $x_2 \ge 0$
- 6. 若 $f(x) = 3x_1^2 + x_2^2 + ax_1x_2$ 为严格凸函数,则 a 取值范围是 $|a| < 2\sqrt{3}$ 二、证明题
- 1. f(x) 为凸集 $D \subset R^n$ 上的函数,上图 $epi(f) = \{(x,y) | x \in D, y \in R, y \ge f(x)\}$,证明f(x) 为凸函数的充要条件是epi(f)为凸集。

证明: 充分性: 对于 任意的 $x_1, x_2 \in D, \alpha \in [0,1]$, 由 epi(f) 的定义, $(x_1, f(x_1)), (x_2, f(x_2)) \in epi(f), \quad \overline{m} \, epi(f)$ 为凸集,得 $\alpha(x_1, f(x_1)) + (1-\alpha)(x_2, f(x_2)) \in epi(f), \quad \overline{p}$ $(\alpha x_1 + (1-\alpha)x_2, \alpha f(x_1) + (1-\alpha)f(x_2)) \in epi(f),$

因此 $\alpha f(x_1) + (1-\alpha)f(x_2) \ge f(\alpha x_1 + (1-\alpha)x_2)$,从而f(x)为凸函数。

必要性: 对于任意的 $(x_1, y_1), (x_2, y_2) \in epi(f), \alpha \in [0,1]$,有

 $y_1 \ge f(x_1), y_2 \ge f(x_2)$

由于f(x)为凸函数,有

$$f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2) \le \alpha y_1 + (1-\alpha)y_2$$

所以
$$(\alpha x_1 + (1-\alpha)x_2, \alpha y_1 + (1-\alpha)y_2) \in epi(f)$$
,即

 $\alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2) \in epi(f)$,

epi(f)为凸集。

注: 典型错误: 在充分性的证明中, 一开始就取 $(x_1,f(x_1)),(x_2,f(x_2)) \in epi(f)$,凸函数的定义不全,

必要性证明中,一开始就取 $x_1, x_2 \in D, \alpha \in [0,1]$,

2. 考虑规划问题: $\frac{\min f(x)}{s.t. c_i(x) \le 0}$, 其中, $f(x), c_i(x) (i = 1, 2, \dots, m) : R^n \to R$

是凸函数,证明: (1) 该问题的可行域是凸集; (2) 该问题的最优解的集合A 是凸集。

证: 考虑规划问题: $\frac{\min}{s.t.} \frac{f(x)}{c_i(x) \le 0}$, 其中, $f(x), c_i(x) (i = 1, 2, \dots, m) : \mathbb{R}^n \to \mathbb{R}$

是凸函数,证明: (1) 该问题的可行域是凸集; (2) 该问题的最优解的集合A 是凸集。

证明: (1) 设 $\mathbf{D}_i = \{x \mid c_i(x) \leq 0\}$,可行域 $\mathbf{D} = \bigcap_{i=1}^m \mathbf{D}_i$ 。

对于任意 $x_1, x_2 \in D_i = \{x \mid c_i(x) \le 0\}$,任意 $\alpha \in [0,1]$,有

 $c_i(x_1) \le 0, c_i(x_2) \le 0$,根据 $c_i(x)$ 是凸函数

 $c_i(\alpha x_1 + (1-\alpha)x_2) \le \alpha c_i(x_1) + (1-\alpha)c_i(x_2) \le 0,$

因此 $\alpha x_1 + (1-\alpha)x_2 \in D_i$ 。

凸集的交集是凸集,因此 $\mathbf{D} = \bigcap_{i=1}^{m} \mathbf{D}_{i}$ 为凸集。

(2) 设A为最优解的集合,若 A 不是空集,任取 $x_1, x_2 \in A, \alpha \in [0,1]$,有 $x_1, x_2 \in D$ 。由于D是凸集, $\alpha x_1 + (1-\alpha)x_2 \in D$ 。 f(x)是凸函数, $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$ 。

 x_1, x_2 都是最优解,因此 $f(x_1) = f(x_2)$ 为最优函数值。得

$$f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2) = f(x_1)$$

 $f(\alpha x_1 + (1-\alpha)x_2) = f(x_1)$,因此 $\alpha x_1 + (1-\alpha)x_2$ 也是最优解,从而 A 为凸集

 $\min c^T x$ $\min c^T x$ $\min c^T x$ $3. 设 z^*, s^* 分别为下列两个问题(I) s.t. <math>Ax = b$ (II) s.t. Ax = b + d 的最优 $x \ge 0$ $x \ge 0$

值。 y^* 是(I)的对偶问题的最优解,证明 $z^* + y^{*T}d \le s^*$ 。

证明:(I)与(II)的对偶规划分别为

$$(DI) \max_{s.t.} b^{T} y \qquad \max_{s.t.} (b+d)^{T} y$$

$$s.t. \quad A^{T} y \le c \qquad s.t. \quad A^{T} y \le c$$

(I)的最优值与(DI)的最优值相同,得: $z^*=b^Ty^*$

 y^* 是对偶规划(DI)的最优解,从而是(DII)的可行解。

 y^* 在(DII)的目标函数值不大于最优值, $(b+d)^T y^* \le s^*$

因此, $z^* + y^{*T} d \leq s^*$

4 设 x, y 分别为下列两个问题

$$\min c^{T} x \qquad \max y^{T} b$$

$$(I) s.t. \quad Ax \ge b \qquad (II) s.t. \quad y^{T} A \le c^{T}$$

$$x \ge 0 \qquad y \ge 0$$

的可行解。证明 $c^T \bar{x} \geq \bar{y}^T b$ 。

证明: 若 \bar{x} , \bar{y} 分别是(LP)与(DP)的可行解,则

$$A\overline{x} = b, \overline{x} \ge 0, \overline{y}^T A \le c^T, \overline{y} \ge 0$$

于是
$$\overline{y}^T b \le \overline{y}^T (A\overline{x}) = (\overline{y}^T A)\overline{x} \le c^T \overline{x}$$

三、计算题

$$\min -4x_1 - 3x_2$$
 1、(1) 用单纯形方法求解下面的线性规划 $\frac{s.t. 2x_1 + 3x_2 \le 14}{3x_1 + x_2 \le 16}$ $x_1, x_2 \ge 0$

- (2) 写出该线性规划的影子价格向量;
- (3)若在上面的线性规划中要求变量为整数,在相应的整数规划中,请对变量 x_1 写出对应的割平面方程。
- 或 (3) 若在上面的线性规划中要求变量为整数,用分枝定界法求解相应的整数规划,针对对变量 \mathbf{x}_2 写出分枝后的线性规划。

解: (1) 问题化为标准型:

$$\min -4x_1 - 3x_2$$
s.t. $2x_1 + 3x_2 + x_3 = 14$
 $3x_1 + x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

 p_3, p_4 为初始可行基, $(0,0,4,3)^T$ 为初始基可行解,相应的单纯形表如下

c_{j}			-4	-3	0	0	$ heta_{j}$
сВ	В	b	p1	p2	p3	p4	
0	p3	14	2	3	1	0	7

0	p4	16	(3)	1	0	1	16/3
σj			-4	-3	0	0	
0	р3	10/3	0	(7/3)	1	-2/3	10/7
-4	p1	16/3	1	1/3	0	1/3	16
σj			0	-5/3	0	4/3	
-3	p2	10/7	0	1	3/7	-2/7	
-4	p1	34/7	1	0	-1/7	3/7	
σj			0	0	5/7	6/7	

判别数均非负,所以得到最优解为 $(\frac{34}{7},\frac{10}{7})^T$,最有函数值 $f^* = -\frac{166}{7}$ 。

(2) 影子价格向量为
$$(c_B^T B^{-1})^T = \left((-4, -3) \begin{pmatrix} -\frac{1}{7} & \frac{3}{7} \\ \frac{3}{7} & -\frac{2}{7} \end{pmatrix} \right)^T = (-\frac{5}{7}, -\frac{6}{7})^T$$

(3)(5分)由单纯形表可以得到

$$x_1 - \frac{1}{7}x_3 + \frac{3}{7}x_4 = \frac{34}{7}$$
,
即 $x_1 - x_3 - 4 = \frac{6}{7} - \frac{6}{7}x_3 - \frac{3}{7}x_4$
割平面方程为 $\frac{6}{7} - \frac{6}{7}x_3 - \frac{3}{7}x_4 \le 0$

2、扩展题

二、(18%)(1)以(5/2,1/2,0,0)⁴为初始基可行解,用单纯形方法求解下面的线性规划 $\min x_1 + 2x_2 + 3x_3 + 4x_4$

s.t.
$$x_1 + x_2 + x_3 + x_4 = 3$$

 $2x_1 + 2x_3 - 6x_4 = 5,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$

- (2) 写 出 该 线 性 规 划 的 影 子 价 格 向 量 ; (3) 若在上面的线性规划中要求变量为整数,用分枝定界法求解相应的整数规划,针对变
- (3) 若在上面的线性规划中要求变量为整数,用分枝定界法求解相应的整数规划,针对变量 x_1 写出分枝后的线性规划。
- 二、解: (1) 利用消元法,得到以 p_1, p_2 为基矩阵的规范式为:

min
$$2x_3 - x_4 + \frac{7}{2}$$

s.t. $x_1 + x_3 - 3x_4 = \frac{5}{2}$
 $x_2 + 4x_4 = \frac{1}{2}$
 $x_1, x_2, x_3, x_4 \ge 0$

(或者:以 $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ 为基矩阵,在约束方程组的两端同时左乘 B^{-1} ,得到约束方程组为

$$\begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad \text{#all } \begin{aligned} x_2 + 4x_4 &= \frac{1}{2} \\ x_1 + x_3 - 3x_4 &= \frac{5}{2} \end{aligned}$$

然后再将目标函数中基变量系数消为 0。

约束等式交换两行,不影响后面的计算和结果)

以 p_1, p_2 为基, $(\frac{5}{2}, \frac{1}{2}, 0, 0)^T$ 为初始基可行解,单纯形表为

c_{j}			0	0	2	-1	θ_{i}
cВ	В	ь	p1	p2	p3	p4	J
0	P1	5/2	1	0	1	- 3	
0	P2	1/2	0	1	0	(4)	1/8
σj			0	0	2	-1	
0	P1	23/8	1	3/4	1	0	
-1	P4	1/8	0	1/4	0	1	
σ_j			0	1/4	2	0	

原问题最优解为 $(\frac{23}{8},0,0,\frac{1}{8})^T$,最优函数值为 27/8。

(2) 影子价格向量为
$$(c_B^T B^{-1})^T = \left((1,4) \begin{pmatrix} 1 & 1 \\ 2 & -6 \end{pmatrix}^{-1} \right)^T$$

$$= \left((1,4) \begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{8} \end{pmatrix}^{-1} \right)^T = (\frac{7}{4}, -\frac{3}{8})^T$$

(3) 由单纯形表可以得到

因为
$$\frac{23}{8} = 2 + \frac{7}{8}$$
, 所以分枝后的两个线性规划为

$$\min 2x_3 - x_4 + \frac{7}{2} \qquad \min 2x_3 - x_4 + \frac{7}{2}$$

$$s.t. \ x_1 + x_3 - 3x_4 = \frac{5}{2} \qquad s.t. \ x_1 + x_3 - 3x_4 = \frac{5}{2}$$

$$x_2 + 4x_4 = \frac{1}{2} \qquad , \qquad x_2 + 4x_4 = \frac{1}{2}$$

$$x_1 \le 2 \qquad x_1 \ge 3$$

$$x_1, x_2, x_3, x_4 \ge 0 \qquad x_1, x_2, x_3, x_4 \ge 0$$

三、(教材 90 页第(4) 小题)) 求解线性规划

$$\min 3x_1 + 2x_2 + x_3 - x_4$$

s.t.
$$x_1 - 2x_2 + x_3 - x_4 \le 15$$

 $2x_1 + x_2 - x_3 + 2x_4 \ge 10$,
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, |x_4| \le 2$.

三、提示: 先处理 $|x_4| \le 2$ 这个约束,最基本的处理方法: 考虑两个约束: $x_4 \le 2, x_4 \ge -2$ 也可以令 $2+x_4$ (或 $2-x_4$)为一个新变量再处理。

然后必须用两阶段或者大 M 法来进行求解。

最优解是(3,0,0,2)^T.

四、(教材 92 页第 (5) 小题) 写对偶规划

$$\min S = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, 2, \dots, m$$
$$\sum_{i=1}^{m} x_{ij} = b_j, j = 1, 2, \dots, n$$
$$x_{ii} \ge 0, i = 1, 2, \dots, m, j = 1, 2, \dots, n.$$

四、提示: 把 mn 个变量对应的矩阵写出来。

对偶规划:
$$\max \sum_{i=1}^{m} a_i y_i + \sum_{i=1}^{n} b_i z_i$$
 s.t. $y_i + z_j \le c_{ij} (i = 1, 2, \dots, m, j = 1, 2, \dots, n)$

$$\min x_1 + 2x_2 + x_3$$

五、若线性规划 $x_1 + 4x_2 = 5$ 的最优解为 $(a,b,c)^T$,其对偶规划的最优解为 $x_1,x_2,x_3 \ge 0$

 $(1/6,1/2)^T$. a,b,c,u 四个常数中,你可以确定哪些?如果有不能确定的常数,确定其范围。

解:
$$x^* = (a,b,c)^T, y^* = (\frac{1}{6},\frac{1}{2})^T$$
,

$$A^{T}y^{*} - \overline{c} = \begin{bmatrix} 3 & 1 \\ 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{6} \\ \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{4}{3} \\ 0 \end{bmatrix}$$

(注:字母c在题目中已用,我们将价格向量用 \overline{c} 表示)

由互补松弛性定理, $(A^T y^* - \overline{c})^T x^* = 0$,得 $-\frac{4}{3}b = 0$,b = 0.

$$x^* = (a,b,c)^T$$
 可行,由第一个等式约束得 $3a + 4b = 5$, $a = \frac{5}{3}$.

c 的范围是 $c \ge 0$,由第二个约束等式, $\frac{5}{3} + 4c = u$, $u \ge \frac{5}{3}$.