Глубокое обучение, или как стать Data Scientist'ом

Семинар компании NVIDIA

Международная научная конференция «Параллельные вычислительные технологии (ПаВТ) 2017»

Андрей Созыкин, www.asozykin.ru, sozykin@gmail.com

План

Кто такие Data Scientist'ы и как стать одним из них Глубокое обучение – теория и применение Демонстрация глубокого обучения нейронных сетей:

- Распознавание объектов на изображениях (Keras+Theano, MNIST и CIFAR-10)
- Обнаружение объектов на изображениях (NVIDIA DIGITS, KITTI Vision Benchmark Suite)

Что такое Data Science?

Data Science Process

By Farcaster at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=40129394

Где здесь глубокое обучение?

Imperial College, London

Microsoft

Анализ медицинских изображений

По данные Word Economic Forum для подготовки врачей необходимой квалификации в нужном количестве в мире требуется 300 лет.

Health Systems Leapfrogging in Emerging Economies.

Что должен знать Data Scientist?

- 1. Машинное обучение
- 2. Статистика
- 3. Математика
- 4. Компьютерные науки
- 5. Визуализация данных
- Коммуникации
- 7. Предметная область

Cathy O'Neil and Rachel Schutt. Doing Data Science Columbia University, Data Science Institute

Что необходимо Data Scientist'y?

- 1. Теоретические знания
- 2. Практический опыт
- 3. Независимое подтверждение своей квалификации

Теоретические знания

На русском языке:

- Курс "Введение в машинное обучение". Coursera, Высшая школа экономики, Константин Воронцов https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie
- Специализация "Машинное обучение и анализ данных" на Coursera, 6 курсов, МФТИ и Яндекс https://www.coursera.org/specializations/machine-learning-data-analysis

На английском языке:

- Kypc "Machine Learning", Andrew Ng https://www.coursera.org/learn/machine-learning
- Kypc "Neural Networks for Machine Learning", Geoffrey Hinton https://www.coursera.org/learn/neural-networks

Практический опыт

Сайт kaggle.com:

- Соревнования по анализу данных
- Открытые наборы данных
- Примеры решений

Практически-ориентированные курсы от udacity.com:

- Цель обучения реализация проекта
- Теоретические курсы нацелены помочь реализовать проект

Российские чемпионаты по анализу данных:

- boosters.pro
- mlbootcamp.ru
- dataring.ru

PROJECT

P3: Creating Customer Segments

A wholesale distributor recently tested a change to their delivery method for some customers, by moving from a morning delivery service five days a week to a cheaper evening delivery service three days a week.lnitial testing did not discover any significant unsatisfactory results, so they implemented the cheaper option for all customers. Almost immediately, the

PROJECT

P4: Train a Smartcab to Drive

In the not-so-distant future, taxicab companies across the United States no longer employ human drivers to operate their fleet of vehicles. Instead, the taxicab:

SUPPORTING COURSES
Reinforcement Learning

Независимое подтверждение квалификации

Сайт kaggle.com

Открытые репозитории с программами на GitHub Публикации на конференциях по анализу данных Статьи на Хабре и других подобных ресурсах

Школа анализа данных Яндекса

Школа анализа данных Яндекс:

• 2 года очного обучения

Филиалы:

- Санкт-Петербург
- Екатеринбург
- Новосибирск
- Минск

Совместная магистратура Уральского федерального университета и ШАД:

- Начало обучения 1 сентября 2017 г.
- Два диплома: УрФУ и ШАД

Глубокое обучение

Глубокие нейронные сети и глубокое обучение

Глубокие нейронные сети:

- Один из методов машинного обучения
- Сеть из простых вычислительных элементов искусственных нейронов

Традиционное машинное обучение:

• Выбор важных признаков из множества доступных данных (feature engineering)

Глубокие нейронные сети:

- Автоматическое определение важных признаков в процессе обучения
- Высокие вычислительные требования

Почему сейчас???

Основные идеи нейронных сетей придумали в прошлом веке

Рост производительности компьютеров:

- Многоядерные процессоры
- Графические ускорители GPU

Резкое увеличение количества накопленных данных

Большое количество готовых к использованию программных систем глубокого обучения

Суперкомпьютер NVIDIA DGX-1

Доступен для заказа в России

Суперкомпьютер NVIDIA DGX-1

Суперкомпьютер NVIDIA DGX-1

NVIDIA DGX-1 Software Stack

Нейрон головного мозга

https://ru.wikipedia.org/wiki/Нейрон

Искусственный нейрон

Маккалок Дж., Питтс У. Логические исчисления идей, относящихся к нервной деятельности // Автоматы. М.: ИЛ, 1956

Функции активации

• Функция Хевисайда

$$-\theta(x) = \begin{cases} 0, x < 0 \\ 1, x > 0 \end{cases}$$

• Сигмоидальные функции

$$-\sigma(x) = \frac{1}{1+e^{-x}}$$
 (логистическая)

$$-th(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

(гиперболический тангенс)

Нейронные сети

Сеть с прямым распространением сигналов

Рекуррентная сеть

Глубокая нейронная сеть

Обучение нейронной сети

Обучение нейронной сети – подбор весов таким образом, чтобы сеть решала поставленную задачу

Задачи

Классификация

https://www.kaggle.com/c/dogs-vs-cats

Регрессия

Динамика курса доллара США к рублю (USD, ЦБ РФ)

Типы обучения

С учителем

• Данные с правильными ответами

Без учителя

• Данные без информации о правильных ответах

Обучение с подкреплением

• Агент получает сигналы от внешней среды

Первые варианты обучения, правила Хэбба

Биологические предпосылки:

• Если нейроны срабатывают вместе, то их связи укрепляются

Правила обучения Хэбба, 1949 г.:

- Нейрон выдает сигналы {0, 1}
- Начальные веса назначаются случайным образом
- Если сигнал нейрона неверен и равен нулю, то необходимо увеличить веса тех входов, на которые была подана единица
- Если сигнал нейрона неверен и равен единице, то необходимо уменьшить веса тех входов, на которые была подана единица

Метод обратного распространения ошибки

Выходной сигнал сети:

• Вещественное число

Мера ошибки:

• Среднеквадратичная

Обучение:

• Минимизация ошибки методом градиентного спуска

Линейный нейрон

 x_1 w_1 x_2 x_2 x_n x_n x_n x_n x_n

Выходное значение:

$$a = \sum_{i=1}^{N} w_i x_i$$

Среднеквадратичная ошибка:

$$\varepsilon = \frac{1}{2} \sum_{j=1}^{M} (a_j - y_j)^2$$

Линейный нейрон

 w_2

Линейный нейрон

Изменение весов (дельта-правило):

$$w_i = w_i - \eta \sum_{j=1}^{M} x_j^i (a_j - y_j)$$

 η – параметр скорости обучения

Варианты реализации

Полное обучение:

• Изменяем веса после обработки всех элементов обучающей выборки

Онлайн обучение:

• Изменяем веса после обработки каждого объекта

Мини-выборки:

• Изменяем веса после обработки 10-100 объектов

Обратное распространение ошибки

Обратное распространение ошибки

Библиотеки глубокого обучения

theano

Набор данных MNIST

Mixed National Institute of Standards and Technology database

Back-Propagation Applied to Handwritten Zip Code Recognition / Y. LeCun, B. Boser, J. S. Denker et al. 1989

Нейронная сеть для MNIST

Входные значения сети

- Интенсивность пиксела в изображении
- Количество значений: 784 (28*28 пикселов)

Входной слой

- 800 нейронов
- Patrice Y. Simard; Dave Steinkraus; John C. Platt (2003).
 «Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis»
- https://en.wikipedia.org/wiki/MNIST_database

Выходной слой

- 10 нейронов
- Вероятность того, что на изображении данная цифра

One Hot Encoding

```
# 0 -> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# 2 -> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
# 9 -> [0, 0, 0, 0, 0, 0, 0, 0, 1]
```

Демонстрация MNIST

Демонстрация распознавания рукописных цифр из набора данных MNIST в Keras и Theano

Функции активации

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

$$f(x) = \ln(1 + e^x)$$

SoftMax – нормализованная экспоненциальная функция

- Используется для представления вероятности
- Сумма всех выходных значений нейронов равна 1

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

Проблема переобучения

Сеть может научиться распознавать особенности выборки, а не данных

Наборы данных для обучения

Обучающая выборка (training set) – набор данных, который используется для обучения сети

Проверочная выборка (validation set) – набор данных, который используется в процессе обучения для оценки качества обучения

Тестовая выборка (test set) – набор данных, который используется для оценки качества работы сети после завершения обучения

Сверточные нейронные сети

Принципы сверточных нейронных сетей (convolutional neural networks):

- Локальное восприятие
- Разделяемые веса
- Уменьшение размерности

Операция свертки

Ядро свертки

-1	0	1
-2	0	2
-1	0	1

Свертка изображений

Размытие

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Выделение границ

0	-1	0
-1	4	-1
0	-1	0

Повышение четкости

0	-1	0
-1	5	-1
0	-1	0

Свертка изображений

Размытие

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Выделение границ

0	-1	0
-1	4	-1
0	-1	0

Повышение четкости

0	-1	0
-1	5	-1
0	-1	0

В нейронных сетях ядра свертки определяются автоматически в процессе обучения

Разделяемые веса

Уменьшение размерности

Распознавание объектов вне зависимости от масштаба

Факт наличия признака важнее знания места его точного положения на изображении

Слои подвыборки (subsampling):

- Усреднение
- Выбор максимального значения

Сверточная нейронная сеть

Фукушима. Неокогнитрон

Сверточная сеть LeNet-5

Back-Propagation Applied to Handwritten Zip Code Recognition / Y. LeCun, B. Boser, J. S. Denker et al. 1989

Распознавание лиц сверточными сетями

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks (2011)

Набор данных CIFAR-10

Самолет

Собака

Автомобиль

Лягушка

Птица

Лошадь

Кот

Корабль

Олень

Грузовик

Набор данных CIFAR-10

Открытый набор данных:

- https://www.cs.toronto.edu/~kriz/cifar.html
- Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009.

Изображения в CIFAR-10:

- Размер 32х32
- Цветные изображения (коды интенсивности RGB)
- Набор данных для обучения 50 000 (5 000 для каждого класса)
- Набор данных для тестирования 10 000
- На каждом изображении только один объект
- Нет пересечений

Сверточная сеть для распознавания CIFAR-10

Демонстрация CIFAR-10

Демонстрация распознавания объектов на изображениях CIFAR-10 в Keras и Theano

Демонстрация обнаружения объектов

Демонстрация обнаружения объектов с помощью NVIDIA DIGITS и сети DetectNet

Набор данных Kitti Vision Benchmark Suite

Данные для обучения

```
Car 0.00 0 1.55 614.24 181.78 727.31 284.77 1.57 1.73 4.15 1.00 1.75 13.22 1.62 DontCare -1 -1 -10 5.00 229.89 214.12 367.61 -1 -1 -1 -1000 - 1000 -100 -10 DontCare -1 -1 -10 522.25 202.35 547.77 219.71 -1 -1 -1 -1000 - 1000 -1000 -10
```

Данные для обучения

```
Саг 0.00 0 1.55
Тип объекта Обрезан или нет Закрыт или нет Угол зрения (от - пи до пи)
614.24 181.78 727.31 284.77 1.57 1.73 4.15
координаты в пикселах Высота ширина, длина (в метрах)
1.00 1.75 13.22 1.62
3D координаты объекта в координатах камеры (в метрах)
```

Обучение сети DetectNet

Обучение сети DetectNet

DetectNet Validation*

*Loss function calculations omitted for brevity

Дополнительная информация

NVIDIA Deep Learning Institute:

http://www.nvidia.ru/dli

Примеры кода из демонстраций:

- https://github.com/sozykin/dlpython_course
- Курс с видео и упражнениями https://www.asozykin.ru/courses/nnpython

Суперкомпьютерная академия МГУ:

- http://academy.hpc-russia.ru/
- Трек Уральского Федерального Университета (Екатеринбург) по нейронным сетям

