

Unidad 2:

Resolución de problemas mediante búsquedas y heurísticas

2.4 Algoritmos evolutivos

Introducción (1)

- La teoría de la evolución sugiere que los organismos vivos existentes en la actualidad no han sido siempre como ahora.
- Son el resultado de cambios sutiles a lo largo de los años dirigidos a adaptarse al entorno.
- Estos cambios se han realizado a través de la reproducción, con hijos que poseen genes de ambos padres.

Introducción (2)

- No es un proceso linear:
 - Caótico
 - Cambios tardan años en manifestarse.

Perceived evolution

Actual evolution

Introducción (3)

- Charles Darwin propuso:
 - Selección natural.
 - Se reproducen más y por tanto incorporan sus ventajas de supervivencia a las generaciones posteriores.
 - Podría derivar en un comportamiento mejorado respecto a sus ancestros.

Ej. Polilla moteada.

Introducción (3)

Introducción (4)

- Los descendientes son una combinación de los genes de sus padres con pequeños cambios denominados mutaciones.
- Además, algunos miembros mueren por diversas causas.
- Supervivencia del más apto.

Introducción (5)

- De acuerdo con Darwin una población se caracteriza:
 - Variedad
 - Herencia
 - Selección
- Estas propiedades implican que durante la evolución aparezcan:
 - Reproducción
 - Recombinaciones y mutaciones

Introducción (6) - Conclusiones

- Proceso caótico que produce distintas variantes de forma de vida.
- Unas variantes son mejores que otras para unos entornos determinados.
- Esta teoría sirve de base para los algoritmos evolutivos, que aprenden de la evolución biológica para encontrar soluciones óptimas a problemas prácticos.
- Generando soluciones que convergen entre sí para dar mejores resultados en próximas generaciones.
- Los algoritmos evolutivos pueden usarse solos o en compañía de otras técnicas como las redes neuronales.

Problemas aplicables a los algoritmos evolutivos (1)

- No todos los problemas son aptos.
- Problemas cuya solución está formada por un gran número de permutaciones.
- Hay varias soluciones posibles, pero unas más óptimas que otras.
- Ej. Problema de la mochila

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Observación reflexiva #1

Establece 3 soluciones para el problema de la mochila propuesto.

ID	Nombre	Peso (Kg)	Valor (\$)		
1	Perlas	3	4		
2	Oro	7	7		
3	Corona	4	5		
4	Moneda	1	1		
5	Hacha	5	4		
6	Espada	4	3		
7	Anillo	2	5		
8	Copa	3	1		

- Solución 1:
 - -1, 4, 6
 - 8kg y 8\$
- Solución 2:
 - **–** 1, 3, 7
 - 9kg y 14\$
- •
- Solución 256:
 - -2, 3, 6
 - 15kg

Problemas aplicables a los algoritmos evolutivos (2)

Item ID	Item name	Weight (kg)	Value (\$)		
1	Axe	32,252	68,674		
2	Bronze coin	225,790	471,010		
3	Crown 468,164 Diamond statue 489,494		944,620 962,094		
4					
5	Emerald belt	35,384	78,344 579,152 902,698 1,686,515		
6	Fossil	265,590			
7	Gold coin	497,911			
8	Helmet	800,493			
9	Ink	823,576	1,688,691		
10	Jewel box	552,202	1,056,157		
11	Knife	323,618	677,562		
12	Long sword	382,846	833,132		
13 Mask		44,676	99,192		

14	Necklace	169,738	376,418		
15	Opal badge	610,876	1,253,986		
16	Pearls	854,190	1,853,562		
17	Quiver	671,123	1,320,297		
18	Ruby ring	698,180	1,301,637		
19	Silver bracelet	446,517	859,835		
20	Timepiece	909,620	1,677,534		
21	Uniform	904,818	1,910,501		
22	Venom potion	730,061	1,528,646		
23	Wool scarf	931,932	1,827,477		
24	Crossbow	952,360	2,068,204		
25	Yesteryear book	926,023	1,746,556		
26	Zinc cup	978,724	2,100,851		

¿Fuerza bruta?

Combinations
Iterations
Accuracy
Compute time

2^26 = 67,108,864 2^26 = 67,108,864 100% ~7 minutes

SISTEMAS INTELIGENTES

Problemas aplicables a los algoritmos evolutivos (3)

Otros ejemplos de problemas aplicables son:

- Compañía que intenta optimizar los paquetes de cada camión de acuerdo a sus destinos.
- La misma compañía que intenta encontrar la ruta más corta entre varios destinos.
- Si una fábrica refina los artículos en materia prima a través de un sistema de cinta transportadora y el orden de los artículos influye en la productividad.

Problemas aplicables a los algoritmos evolutivos (4)

- Los algoritmos evolutivos son estocásticos:
 - La salida del algoritmo no tiene por qué ser igual cada vez que se ejecuta.
- Proporciona una buena solución, que no tiene por qué ser la mejor solución.
- Su empleo depende del contexto.

Algoritmos genéticos (1)

- Pertenecientes a la familia de los algoritmos evolutivos.
- Evalúan grandes espacios de búsqueda para encontrar una buena solución.
- Intenta buscar la mejor solución global mientras evita las mejores soluciones locales.
- La idea es intentar incrementa la búsqueda de soluciones locales para encontrar la mejor solución global.

Algoritmos genéticos (2)

- Intenta buscar una diversidad de soluciones para, gradualmente, alcanzar una mejor solución en cada generación.
- Al principio, las soluciones varían de acuerdo con sus atributos genéticos.
- Sin una variedad inicial, se corre el riesgo de estancarse en las generaciones posteriores.

Generations

Algoritmos genéticos (3) – Ciclo de vida

- Cada problema tiene un contexto único y un dominio diferente en el cual se representan los datos, por lo que las soluciones son evaluadas de forma distinta.
- El ciclo de vida de un algoritmo genético es el siguiente:
 - Crear una población.
 - Medir la aptitud de los individuos de la población.
 - Seleccionar padres basados en su aptitud.
 - Reproducir individuos usando estos padres.
 - Poblar la siguiente generación.

Algoritmos genéticos (4) – Algoritmo

1 - Codificar los espacios de la solución (1)

- Es necesario representar adecuadamente los posibles estados.
- Terminología:
 - Cromosoma: un candidato a solución. Los cromosomas están formados por distintos genes. Cada cromosoma tiene el mismo nº de genes.
 - Gen: Es la unidad lógica de cada unidad.
 - Alelo: Es el valor almacenado en cada gen.
 - Genotipo: La representación artificial de una solución potencial
 - Fenotipo: La representación en el mundo real de una solución potencial.
 - Población: Una colección de cromosomas.

1 – Codificar los espacios de la solución (2)

Observación reflexiva #2

¿Cómo representarías los elementos colocados en la mochila?

Una posible solución es emplear una codificación binaria.

Codificación binaria

- 0 y 1.
- Datos primitivos:
 - Menos demanda de memoria.
 - Normalmente las operaciones binarias son más rápidas.
- No todos los problemas pueden adaptarse a esta codificación.

Entregable 2.5

Representa una posible representación binaria del siguiente problema. ¿Cuál es el número de cromosomas?

THE	QUICK	BROWN	FOX	JUMPS	OVER	THE	LAZY	DOG
Incorrect phrases								
THE	•	BROWN		JUMPS	OVER			
	QUICK		FOX		OVER	THE		
THE			FOX			THE	LAZY	
Correct phrases								
THE	QUICK		FOX					
	QUICK		FOX	JUMPS				
THE		BROWN	FOX					DOG
THE		BROWN					LAZY	DOG
THE	QUICK							DOG
	QUICK				OVER	THE		DOG
THE	QUICK						LAZY	DOG

[Fecha límite: 08/11/2020 12:00]

3 – Crear una población de soluciones (1)

- Hay que crear un conjunto aleatorio de posibles soluciones.
- Aunque los cromosomas son creados aleatoriamente, hay que tener en cuenta las restricciones del problema.
- Si una solución viola las restricciones, podemos no incluirla o asignarle un valor de aptitud muy malo.
 - Asignarles valores de aptitud posibilita que haya asignaciones imparciales.

3 – Crear una población de soluciones (2)

•

Population size

3 – Crear una población de soluciones (3)

```
generate_initial_population (population_size, individual_size)
let population be an empty array
for individual in range 0 to population_size
    let current_individual be an empty array
    for gene in range 0 to individual_size
        let random_gene be 0 or 1 randomly
        append random_gene to current_individual
        append current_individual to population
return population
```


4 – Medir la aptitud de los individuos de una población (1)

- Hay que evaluar la aptitud de cada individuo que forma parte de la población.
- Proceso crítico, si no se realiza adecuadamente, es decir, con el objetivo de buscar la solución óptima:
 - La selección de padres para la creación de nuevas generaciones se verá influenciada.
 - El algoritmo será defectuoso y no alcanzará la mejor solución.
- Similar al concepto de heurística, son solamente guías, no verdades absolutas.
- Dependiendo del problema esta función puede intentar minimizar o maximizar.

4 – Medir la aptitud de los individuos de una población (2)

4 – Medir la aptitud de los individuos de una población (3)

```
calculate individual fitness (individual,
                               knapsack items,
                               knapsack max weight)
  let total weight equal 0
  let total value equal 0
  for gene index in range 0 to length of individual
    let current bit equal individual[gene index]
    if current bit equals 1
      add weight of knapsack items[gene index] to total weight
      add value of knapsack items[gene index] to total value
  if total weight is greater than knapsack max weight
    return value as 0 since it exceeds the weight constraint
  return total value as individual fitness
```


5 - Seleccionar padres según su aptitud (1)

- Basándose en las teorías de Darwin ...
- No obstante, algunos individuos también se pueden reproducir, aunque en global su aptitud no es muy buena, puede que algunos cromosomas sí lo sean.
- Cada individuo tiene su aptitud calculada y en base a ella se calcula la probabilidad de ser seleccionado para ser padre.
 - Aquí reside la naturaleza estocástica del algoritmo.
- Existen varias técnicas para esta selección.

5 – Seleccionar padres según su aptitud (2)

- Selección de la ruleta.
- Estado estable.
- Generacional.

5 – Seleccionar padres según su aptitud (3)

B 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 12,965,145

D 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1,739,363

F 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1,611,967

 $oldsymbol{G}$ $oldsymbol{1}$ $oldsymbol{0}$ $oldsymbol{0}$ $oldsymbol{1}$ $oldsymbol{0}$ $oldsymbol{0$

J 000011000000000011000010109,670,184

1000010010010001000100010008,931,719

M 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 8,324,936

P 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 6,056,664

5 – Seleccionar padres según su aptitud (4)

```
set_probabilities_of_population (population)
  let total fitness equal the sum of fitness of the population
  for individual in population
    let the probability_of_selection of individual...
        ...equal it's fitness/total fitness
roulette wheel selection (population, number of selections):
  let possible probabilities equal
      set_probabilities_of_population (population)
  let slices equal empty array
  let total equal 0
  for i in range (0, number of selections):
    append [i, total, total + possible probabilities[i]]
      to slices
    total += possible probabilities[i]
  let spin equal random (0, 1)
  let result equal [slice for slice in slices if slice[1] < spin <= slice[2]]</pre>
  return result
```


6 – Reproducir individuos a partir de los padres (1)

- Crear descendientes.
- Recombinaciones y mutaciones.
 - Recombinaciones: Partes de un cromosoma del primer padre y partes de un cromosoma del segundo padre.
 - Muy dependiente de la codificación empleada.
 - Mutaciones: Cambiar el descendiente de forma aleatoria para que haya variedad en la población.
- Los descendientes son el resultado de estos procesos.

6 – Reproducir individuos a partir de los padres (2) Recombinaciones

- Recombinaciones en un punto.
 - Aplicable a codificación binaria, codificación de permutación y codificación de valores reales.
- Recombinación en dos puntos.
 - Aplicable a codificación binaria y codificación de valores reales.
- Recombinación uniforme.
 - Aplicable a codificación binaria y codificación de valores reales.

Recombinación en un punto

Recombinación en dos puntos

Recombinación uniforme

6 – Reproducir individuos a partir de los padres (3)

```
one point crossover (parent a, parent b, xover point)
   let children equal empty array
   let child 1 equal genes 0 to xover point from parent a plus...
   ...genes xover point to parent b length from parent b
   append child 1 to children
   let child 2 equal genes 0 to xover point from parent b plus...
   ...genes xover point to parent a length from parent a
   append child 2 to children
   return children
```


6 – Reproducir individuos a partir de los padres (4) *Mutaciones*

- Ratio de mutación.
 - Similar a los seres vivos.
 - No es exactamente una combinación de los genes de sus progenitores.
 - Contiene ligeras diferencias.
 - Promueve la diversidad y previene que el algoritmo se quede atascado.
 - Un alto ratio de mutación puede provocar demasiada diversidad y que el algoritmo no sea bueno.

6 – Reproducir individuos a partir de los padres (5) *Mutaciones*

- Mutación bit-string para codificación binaria.
- Mutación flip-bit para codificación binaria.

Mutación bit-string para codificación binaria

 Un cromosoma es cambiado por otro valor válido.

Mutación flip-bit para codificación binaria

Todos los cromosomas son invertidos.

6 – Reproducir individuos a partir de los padres (6) *Mutaciones*

```
mutate_individual (individual, chromosome_length)
let random_index equal a random number between 0 and chromosome_length
if gene at index random_index of individual is equal to 1:
    let gene at index random_index of individual equal 0
else:
    let gene at index random_index of individual equal 1
return individual
```


Entregable 2.6

Realiza la recombinación uniforme de los siguientes cromosomas.

[Fecha límite: 08/11/2020 12:00]

- 7 Poblar la siguiente generación (1)
- ¿Aptitud de individuos?
- ¿Descendientes?
- ¿Quién permanece en la siguiente generación?
 - −Nº fijo
 - ¿Solo los más idóneos?

7 – Poblar la siguiente generación (2)

- Exploración vs explotación.
 - Equilibrio.
 - Situación ideal:
 - Diversidad.
 - Exprimir las soluciones posibles.
 - De este modo el algoritmo explora el espacio de búsqueda tanto como es posible y además permite la evolución.

8 – ...

¿Cuándo parar? (1)

- Proceso iterativo buscando mejores soluciones cada generación.
- Establecer condición de parada o será un bucle sin fin.
 - Constante.
 - Alcanzar cierta aptitud.
 - -Estancación.

¿Cuándo parar? (2)

```
run ga (population size, number of generations, knapsack capacity):
  let best_global_fitness equal 0
  let global population equal...
  ...generate_initial_population(population_size)
  for generation in range (number of generations):
    let current best fitness equal...
    ...calculate population fitness(global population, knapsack capacity)
    if current best fitness is greater than best global fitness:
      let best global fitness equal current best fitness
    let the chosen equal...
    ...roulette wheel selection (global population, population size)
    let the_children equal...
    ...reproduce_children(the_chosen)
    let the children equal...
    ...mutate_children(the_children)
    let global population equal ...
    ...merge population and children (global population, the children)
```


2 – Configurar parámetros del algoritmo (1)

2 – Configurar parámetros del algoritmo (1)

- Influyen en el rendimiento del algoritmo.
- Rendimiento:
 - Buenas soluciones.
 - Computacionalmente eficiente.
- Factores clave en el rendimiento:
 - Codificación.
 - Función de aptitud.
 - Parámetros del algoritmo.

2 – Configurar parámetros del algoritmo (2)

- Codificación del cromosoma.
- 2. Tamaño de la población.
- Inicialización de la población.
- Número de descendientes.
- Método de selección de padres.
- 6. Método de reproducción.
- Método de mutación.
- 8. Método de selección de generación.
- 9. Condición de parada.

Fuerza bruta VS Algoritmo genético

	Brute force	Genetic algorithm
Iterations	2^26 = 67,108,864	10,000 - 100,000
Accuracy	100%	100%
Compute time	~7 minutes	~3 seconds
Best value	13,692,887	13,692,887

Casos de uso de los algoritmos genéticos

- Predecir comportamiento del mercado financiero.
- Selección de características en Aprendizaje Automático.
- Cifrado.

Bibliografía

Esta presentación se basa principalmente en información recogida en las siguientes fuentes:

- Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.
- Russell, S. & Norvig, P. (2010). Artificial Intelligence: A modern approach. 3^a Ed. Prentice-Hall.