ConCR-TMLE R Paper

David Chen, Thomas Gerds, Helene Rytgaard

Abstract

An abstract of less than 150 words.

Introduction

Data Structure

Consider a survival analysis on an interval $[0, t_{max}]$ with competing risks. Let T^a_j denote counterfactual time-to-event variables for event j and intervention a, for competing events $j \in \mathcal{J} = \{1, 2, \ldots, J\}$ and an intervention $a \in \mathcal{A}$. Our counterfactual data structure can then be denoted by

$$(T_j^a, \mathbf{X} : a \in \mathcal{A}, j \in \mathcal{J})$$

where $\mathbf{X} \in \mathbb{R}^d$ is a \$d\$-dimensional vector of baseline covariates. For a single time-point binary intervention, as in many randomized control trials, $\mathcal{A} = \{0,1\}$ and the corresponding counterfactual data is

$$(T_j^1, T_j^0, \mathbf{X} : j \in \mathcal{J})$$

sample data.table for counterfactual data

Let O denote the corresponding coarsened observed data where $O \sim P_0$. The observed data would include the time-to-censoring C, and observed intervention A. The time to first event (censoring or otherwise) we denote as $\widetilde{T} = \min(C, T_j: j \in \mathcal{J})$ with $\Delta = (\operatorname*{argmin}_j T_j) \times \mathbf{1}(\operatorname*{min}_j T_j \leq C)$ marking which outcome is observed

($\Delta=0$ being that censoring occurred). The observable right-censored survival data with competing events can then be represented as

$$O = (\widetilde{T}, \ \Delta, \ A, \ \mathbf{X})$$

sample data.table of the observed data correlating to the above counterfactual data example

This observed data also allows the "long-format" formulation, where with single time-point intervention variable A and baseline covariate vector \mathbf{X} ,

$$O = (N_j(t), N_c(t), A, \mathbf{X} : j \in \mathcal{J}, t \leq \widetilde{T})$$

Here $N_j(t)=\mathbf{1}(\widetilde{T}\leq t,\Delta=j)$ and $N_c(t)=\mathbf{1}(\widetilde{T}\leq t,\Delta=0)$ denote counting processes for event j and censoring respectively.

Under coarsening at random (CAR), the observed data likelihood can be factorized as

$$p(O) = p(\mathbf{X}) \pi(A \mid \mathbf{X}) \lambda_c(\widetilde{T} \mid A, \mathbf{X})^{\mathbf{1}(\Delta = 0)} S_c(\widetilde{T} \mid A, \mathbf{X}) \prod_{j=1}^{J} S(\widetilde{T} \mid A, \mathbf{X}) \lambda_j(\widetilde{T} \mid A, \mathbf{X})^{\mathbf{1}(\Delta = j)}$$

where $\lambda_c(t \mid A, \mathbf{X})$ is the hazard of the censoring process and $\lambda_j(t \mid A, \mathbf{X})$ is the hazard of the j^{th} event process. Additionally

$$S_c(t \mid a, \mathbf{x}) = \exp\left(-\int_0^t \lambda_c(s \mid a, \mathbf{x}) \, ds\right)$$

while in a pure competing risks setting

$$S(t \mid a, \mathbf{x}) = \exp\left(-\int_0^t \sum_{j=1}^J \lambda_j(s \mid a, \mathbf{x}) \, ds\right)$$

and

$$F_{j}(t \mid a, \mathbf{x}) = \int_{0}^{t} S(s \mid a, \mathbf{x}) \lambda_{j}(s \mid a, \mathbf{x}) ds$$
$$= \int_{0}^{t} \exp\left(-\int_{0}^{s} \sum_{i=1}^{J} \lambda_{j}(u \mid a, \mathbf{x}) du\right) \lambda_{j}(s \mid a, \mathbf{x}) ds.$$

Target Parameter

For a target parameter of the treatment regime a^* , cause $k \in J$ cumulative risk at time τ

$$\Psi_{a^*,k,\tau}(P_0) = \mathbb{E}\left[F_k(\tau \mid A = a^*, \mathbf{X})\right]$$

the corresponding efficient influence function $D^*_{a^*,k,\tau}(P)(O)$ is

$$\sum_{j=1}^{J} \int_{0}^{\tau} \frac{\mathbf{1}(A=a^{*}) \mathbf{1}(s \leq \tau)}{\pi(A \mid \mathbf{X}) S_{c}(s \mid A, \mathbf{X})} \left(\mathbf{1}(\delta=k) - \frac{F_{k}(\tau \mid A, \mathbf{X}) - F_{k}(s \mid A, \mathbf{X})}{S(s \mid A, \mathbf{X})} \right)$$
$$\left(N_{j}(ds) - \mathbf{1}(\widetilde{T} \geq s) \lambda_{j}(s \mid A, \mathbf{X}) \right) ds$$
$$+ F_{k}(t \mid A=a^{*}, \mathbf{X}) - \Psi_{a^{*} k \tau}(P_{0})$$

with a clever covariate $h_{a^*,k,j,\tau,s}$

$$h_{a^*, k, j, \tau, s} = \frac{\mathbf{1}(A = a^*) \mathbf{1}(s \le \tau)}{\pi(A \mid \mathbf{X}) S_c(s - \mid A, \mathbf{X})} \left(\mathbf{1}(\delta = k) - \frac{F_k(\tau \mid A, \mathbf{X}) - F_k(s \mid A, \mathbf{X})}{S(s \mid A, \mathbf{X})} \right)$$

The components of the data distribution that must be estimated are $g(A \mid \mathbf{X})$ and $S_c(t \mid A, \mathbf{X})$, $\lambda_i(t \mid A, \mathbf{X})$, $F_i(t \mid A, \mathbf{X})$, and $S(t \mid A, \mathbf{X})$

Estimation

Cross-Validation Specification

Let $D_n=\{O_i\}_{i=1}^n$ be an observed sample of n i.i.d observations of $O\sim P_0$. For V-fold cross validation, let $B_n=\{1,...,V\}^n$ be a random vector that assigns the n observations into V validation folds. For each $v\in\{1,...,V\}$ we then define training set $D_v^{\mathcal{T}}=\{O_i:B_n(i)=v\}$ with the corresponding validation set $D_v^{\mathcal{V}}=\{O_i:B_n(i)\neq v\}$.

Stratified Cross-Validation

Propensity Score Estimation

For the conditional distribution of A given \mathbf{X} , $\pi(\cdot\mid\mathbf{X})$, and $\hat{\pi}:D_n\to\hat{\pi}(D_n)$, let L_π be a loss function such that the risk $\mathbb{E}_0\left[L_\pi(\hat{\pi},O)\right]$ is minimized when $\hat{\pi}=\pi_0$. For instance, with a binary A, we may specify the negative log loss $L_\pi(\hat{\pi},O)=-\log\left(\hat{\pi}(1\mid\mathbf{X})^A\,\hat{\pi}(0\mid\mathbf{X}))^{1-A}\right)$. Let \mathcal{M}_π be the set of candidate propensity score models. The discrete superlearner selector chooses the candidate propensity score model with the minimal cross validated risk

$$\hat{\pi}^{SL} = \operatorname*{argmin}_{\hat{\pi} \in \mathcal{M}_{\pi}} \sum_{v=1}^{V} P_{D_{v}^{\mathcal{V}}} L_{\pi}(\hat{\pi}(D_{v}^{\mathcal{T}}), D_{v}^{\mathcal{V}})$$