準備

定義 1 (Subgraph Aggregation). G=(V,E) をネットワークグラフとし、 $P=(P_1,...P_{|\mathcal{P}|})$ を part の集合とし、各 P_i について H_i を P_i のノード上の G の連結部分グラフとする。必ずしもグラフ $G[P_i]$ から誘導されるとは限らない。各部分グラフ H_i について、 $V(H_i)$ 内のすべてのノードが部分グラフ H_i 内の隣接ノードを認識し、それ以外は何も知らないと仮定する。すべてのノード $v\in\bigcup_i P_i$ が $O(\log n)$ ビットの整数 x_v を持ち、 \oplus を長さ $O(\log n)$ の整数に作用する結合関数とする。 P_i 内の各ノードは値 $\bigoplus_{v\in P_i} x_v$ 、すなわ ち P_i 内のすべての値 x_v の集合 \oplus を知りたいとする。このようなタスクをオペレーター \oplus における Subgraph Aggregation と呼ぶ。

補題 1. 木幅が高々kのグラフG=(V,E)と二つの頂点 $s,t\subseteq V$ を与えると、k点素s-tパスを見つけるか、サイズk以下のs-t ノードカットを $\tilde{O}(k^{O(1)}D)$ ラウンドで出力することができる。前者の場合、すべてのノードは、それがパス上にあるかどうかを知っており、そうであれば、そのパス上のその前方と後方を知る。後者の場合、k点素パスが存在しないという事実と、ノードカットに含まれるかどうかをすべてのノードが知っている。

系 1. 結合演算子 \oplus について、 Q_G がグラフ G とその直径 D に依存するパラメータである場合、 $\tilde{O}(Q_G)$ ラウンドで Subgraph Aggregation 問題を解くことができる。

全てのグラフ $G: Q_G = O(\sqrt{n} + D)$

種数 g のグラフ $G: Q_G = O(\sqrt{g+1}D)$

木幅 k のグラフ $G: Q_G = \tilde{O}(kD)$

H をマイナーとして含まないグラフ $G:Q_G=\tilde{O}(f(H)\cdot D^2), f$ は H にのみ 依存する関数

系 2. 補題 1 のグラフ G を一般のグラフに置き換えると、最大 ℓ 本の s-t パスは $\tilde{O}(\ell^{O(1)}(\sqrt{n}+D))$ ラウンドで見つけることができる。

補題 2 (全域木). ネットワークグラフの連結部分グラフ $H \subseteq G$ が与えられると、G の全域木を $O(\log n)$ SA ラウンドで計算することができる。どのノードもスパニングツリーでの隣接ノードを認識している。

補題 3 (根付き木収集). G の木 T を考える。根 $v_r \in V(T)$ が与えられると、 $O(\log n)$ SA ラウンドで v_r を根とする木 T を計算することができ、 $V(T)-v_r$ の各ノードは v_r を根とする木 T の親を知る。さらに、各ノード v_i が整数 x_i と共通結合演算子 \oplus を知っていれば、各ノード v_i に部分木収集 $\bigoplus_{j \in T(v_i)} x_j$ を学習させることができる。ここで、 $T(v_i)$ は v_i をルートとする部分木、すなわち、根への経路に v_i を含む T 内のすべてのノードである。

補題 4 (経路収集). G の有向パス $P=\{v_1,...,v_\ell\}$ を考える。ここで、各ノード v_i はそのパスの先頭ノードと後尾ノードを知っている。 $O(\log n)$ SA ラウンドにおいて、各ノード v_i は i の値と経路内のそのインデックスを知ることができる。さらに、各ノード v_i が整数 x_i と共通の結合演算子 \oplus を知っていれば、各ノード v_i に先頭集約 $\bigoplus_{j\leq i} x_j$ と後尾集約 $\bigoplus_{j\geq i} x_j$ を学習させることができる。

補題 $\mathbf{5}$ (s-t パス). 連結部分グラフ $H \subseteq G$ と 2 つの頂点 $s,t \in V$ が与えられると、 $O(\log n)$ SA ラウンドで G における有向 s-t パスを計算することができる。すべてのノードは、自分がパス上にあるかどうか、またある場合はそのパス上の先頭ノードと後尾ノードを認識している。

定義 2. G をグラフとし、 $s,t \in V$ とする。 $f_1,...,f_k$ を G における一対の点素 s-t パスの集合とする。この時、すべての $1 \le i \le k$ に対して、 $w_i \in f_i$ 、 $s \ne wi \ne t$ であれば、 (f_1,f_k) に関してタプル $(w_1,...,w_i)$ をスライスと呼ぶ。 X を V の任意の部分集合とし、 $s,t=\in X$ とする。 $G[V\setminus X]$ に s-t パスがない場合、X は s と t を分離すると言う。s と t を切り離すスライスをカットと呼ぶ。

定義 3. $f_1,...,f_k$ を s-t 点素パスの集合とする。 $U=(u_1,...u_k)$ および $W=(w_1,...,w_k)$ を $(f_1,...,f_k)$ に関するスライスとし、すべての $1 \le i \le k$ について、 u_i は f_i における w_i の前者または $u_i=w_i$ とする。この時 U は W より S に近いと言い、 $U \preceq W$ と書く。もし $1 \le i \le k$ に対して、さらに $u_i \ne w_i$ ならば、U は W より厳密に S に近いと言い、 $U \prec W$ と書く。同様に、S は S は S は S は S に近いと言う。便宜上、S で、S がって、例えば、S が、S は S がって、より も S に近いと言える。" S " は 一般的な順序の合計を定義するものではない。

定義 4. U を任意のカットとする。s を含む $G[V \setminus U]$ の連結成分の頂点セットとして $V_s(U)$ を定義し、t を含む $G[V \setminus U]$ の連結成分の頂点セットとして $V_t(U)$ を定義し、 V_r を $G[V \setminus U]$ の残りの連結成分の頂点集合の和集合として 定義する。すなわち、s も t も含まないものである(したがって、 $V_r(u)$ は 空であり得る)。

定義 5. $(f_1,...,f_k)$ に関して U をスライスとする。 $U \preceq X$ であり、かつ $U \preceq X' \prec X$ を満たすカット X' が存在しないようなカットを X とする。この時 $U^+ := X$ を定義する。

上記のような X が存在しない場合は、 $U^+ := (t,t,...,t)$ とする。

同様に、 $Y \preceq U$ かつ $U \preceq Y' \prec Y$ を満たすカット Y' が存在しないようなカットを Y とする。この時、 $U^- := Y$ を定義する。

上記のような Y が存在しない場合は $U^- := (s, s, ..., s)$ とする

補題 **6.** g(s), g(t) を正の整数とする。 $1 \le i \le k$ かつ f_i 上で u_i の真後ろにある u^+ について $U = (u_1, ..., u_k)$ と $W = (u_1, ..., u_{i-1}, u^+, u_{i+1}, ..., u_k)$ はスライスであるとするこの時、

 $U^+ = (t, t..., t)$ または $|V_s(U^+)| + g(s) > |V_r(U^+) \cup V_t(U^+) + g(t)|$ ならば $W^+ = (t, t, ..., t)$ または $|V_s(W^+)| + g(s) > |V_r(W^+)| \cup V_t(W^+)|$

補題 7. $U \leq W$ のような U, W を $(f_1, ..., f_k)$ に関するスライスとする。この 時、 $U^+ \leq W^+$ かつ $U^- \leq w^-$ である。

定義 6. (A^*, S^*, B^*) を頂点セパレータとする。この時、反復で選択された頂点 s,t に対して、 $s,t \in A$ または $s,t \in B$ である場合、アルゴリズム 5 の while ループの反復は (A^*, S^*, B^*) に関して失敗する。そうでなければ、 (A^*, S^*, B^*) に関して反復は成功したという。