《数字逻辑》 Digital Logic

组合逻辑(3)

北京工业大学软件学院

干晓懿

常用组合逻辑电路

▶编码器 (Encoder)

编码器 (Encoder)

- ▶编码器(Encoder)原理
- ▶优先编码器(Priority Encoder)
- ▶8-3优先编码器
- ▶扩展应用: 16-4 优先编码器

编码器(Encoder)原理

- ▶ 功能:将译码器反过来,对应输入的每一个状态,输出一个编码。
- ▶ 4-2编码,将输入的4个状态编成2位二进制数码; 8-3编码,将输入的8个状态编成3位二进制数码; BCD编码,将 10个输入编成BCD码。

编码器(Encoder)原理

例: **4-2**编码器 功能表

I_0	I_1	I_2	I_3	A_0	A_1
0	1	1	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	0	1	1

$$\begin{cases} A_0 = I_0 \overline{I_1} I_2 I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{\overline{I_0} I_1 I_2 I_3} + I_0 I_1 \overline{I_2} I_3 \\ A1 = I_0 I_1 \overline{I_2} I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{\overline{I_0} I_1 I_2 I_3} + \overline{I_0} \overline{I_1} I_2 I_3 \end{cases}$$

8421码编码器

$$Y_3 = X_8 + X_9$$

 $Y_2 = X_4 + X_5 + X_6 + X_7$
 $Y_1 = X_2 + X_3 + X_6 + X_7$
 $Y_0 = X_1 + X_3 + X_5 + X_7 + X_9$

X_9	X ₈	X ₇	X_6	X_5	X ₄	X ₃	X ₂	X_1	Y ₃	Y ₂	Y_1	Y ₀
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	1

8421码编码器

$$Y_{3} = X_{8} + X_{9}$$

$$Y_{2} = X_{4} + X_{5} + X_{6} + X_{7}$$

$$Y_{1} = X_{2} + X_{3} + X_{6} + X_{7}$$

$$Y_{0} = X_{1} + X_{3} + X_{5} + X_{7} + X_{9}$$

局限: 只有互斥输入时,才能用这种编码器。即在任一时刻所有输入线中只允许有一个为"1",否则编码器会发生混乱。必须用优先编码器。

优先编码器

当两条或两条以上线为"O"时,优先按输入编号大的编码,称优先编码器(Priority Encoder)。以8-3优先编码器为例。

优先编码功能表

$\overline{E_i}$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	$G_{\rm S}$	E ₀
0	X	X	X	X	X	X	X	0	0	0	0	0	1
0	X	X	X	X	X	X	0	1	1	0	0	0	1
0	X	X	X	X	X	0	1	1	0	1	0	0	1
0	X	X	X	X	0	1	1	1	1	1	0	0	_ 1
0	X	X	X	0	1	1	1	1	0	0	1	0	1
0	X	X	0	1	1	1	1	1	1	0	1	0	1
0	X	0	1	1	1	1	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

 $(A_2,A_1,A_0$ 用反码编码,Gs为编码输出,Eo为使能输出, E_i 为使能输入)

$$\begin{split} \overline{A_0} &= \overline{E_i} (\overline{7} + 76\overline{5} + 7654\overline{3} + 765432\overline{1}) = \overline{E_i} (\overline{7} + 6\overline{5} + 64\overline{3} + 642\overline{1}) & \text{\mathbb{H}} \triangle \mathbb{R} \land \mathbb{R} \\ \overline{A_1} &= \overline{E_i} (\overline{7} + 7\overline{6} + 7654\overline{3} + 76543\overline{2}) = \overline{E_i} (\overline{7} + \overline{6} + 54\overline{3} + 54\overline{2}) & \text{$\mathbb{A} + \overline{\mathsf{A}} \mathsf{B} = \mathsf{A} + \mathsf{B}$} \\ \overline{A_2} &= \overline{E_i} (\overline{7} + 7\overline{6} + 76\overline{5} + 765\overline{4}) = \overline{E_i} (\overline{7} + \overline{6} + \overline{5} + \overline{4}) & \text{$\mathbb{A} + \overline{\mathsf{A}} \mathsf{B} = \mathsf{A} + \mathsf{B}$} \end{split}$$

3-8优先编码器扩展为16-4优先编码器

若高位片有"0"输入,高位 $E_{0}=1$,应禁止低位片,以 $(A_{2\sim 0})_{\tilde{a}}$ 作为 $(A_{2\sim 0})_{16-4}$,高位片的 $G_{S}(=0)$ 作为 A_{3} 若高位片无"0"输入,高位 $E_{0}=0$,低位片工作,以 $(A_{2\sim 0})_{\tilde{a}}$ 作为 $(A_{2\sim 0})_{16-4}$,高位片的 $G_{S}(=1)$ 作为 A_{3}

编码器的Verilog描述

```
module pri_encoder83 (
  output [2:0] binary_out,
  input [7:0] encoder_in ,
  input enable );
  assign binary_out = (!enable)? 3'd7: (
        (\sim encoder_in[7]) ? 3'd7:
        (~encoder_in[6]) ? 3'd6 :
        (~encoder_in[5]) ? 3'd5 :
        (\sim encoder_in[4]) ? 3'd4 :
        (~encoder_in[3]) ? 3'd3 :
        (~encoder_in[2]) ? 3'd2 :
        (~encoder_in[1]) ? 3'd1 :
        (~encoder_in[0]) ? 3'd0 : 3'd7);
```

endmodule

常用组合逻辑电路

▶数据比较器

数据比较器

功能:比较A、B两数大小,判断A>B、A<B、A=B

$$A_i>B_i$$
的条件: $A_i=1$, $B_i=0$; 即 $A_i \bullet \overline{B_i}=1$ 或 $Z=A_i \bullet \overline{A_i}\overline{B_i}=1$
 $A_i的条件: $A_i=0$, $B_i=1$; 即 $\overline{A_i} \bullet B_i=1$ 或 $W=B_i \bullet \overline{A_i}\overline{B_i}=1$$

$$A_i = B_i$$
的条件: $\overline{A_i \oplus B_i} = 1$ 或 $Y = A_i \bullet \overline{A_i B_i} + B_i \bullet \overline{A_i B_i} = 1$

数据比较器功能表

A_3 , B_3	A_2 , B_2	A_1 , B_1	A_0 , B_0	A>B	A <b< th=""><th>A=B</th></b<>	A=B
$A_3 > B_3$	X	X X		1	0	0
$A_3 < B_3$	X	X	X	0	1	0
$A_3 = B_3$	A ₂ >B ₂	X	X	1	0	0
$A_3 = B_3$	A ₂ <b<sub>2</b<sub>	X	X	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	X	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	X	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	0	1

$$(A>B)=W_3+Y_3W_2+Y_3Y_2W_1+Y_3Y_2Y_1W_0+Y_3Y_2Y_1Y_0$$
 表达式: $(A $(A=B)=Y_3Y_2Y_1Y_0$ (Y_i表示A_i=B_i; W_i表示A_ii; Z_i表示A_i>B_i$

数据比较器逻辑图

这是4位并行比较器, 一次判断4位数大 小。

按此思想可以推广到多位并行比较。

但是位数多了以后会 出现组合爆炸,因 此用分段比较。

分段比较:

多片比较器构成更长位数的方法

比较器不仅输出比较结果,还要能接受其它片输出的结果。

数据比较器的Verilog描述

```
module compare(output A_lt_B, A_eq_B, A_gt_B, input [3:\ 0] A, B); assign A_lt_B = (A < B); assign A_gt_B = (A > B); assign A_eq_B = (A == B); endmodule
```

其他运算器

- ▶ 乘法器
- ▶算术逻辑部件ALU

乘法器

四位乘法器

乘法器的Verilog结构描述

```
module product (output [6:0] res,
        input [3:0] a, input [2:0] b);
  wire [4:0] r1, i1;
  wire [3:0] r2, r3;
  assign r1[0] = a[0] \& b[0]; assign r1[1] = a[1] \& b[0];
  assign r1[2]=a[2]\&b[0]; assign r1[3]=a[3]\&b[0];
  assign r2[0]=a[0]\&b[1]; assign r2[1]=a[1]\&b[1];
  assign r2[2]=a[2]\&b[1]; assign r2[3]=a[3]\&b[1];
  assign r3[0] = a[0] \& b[2]; assign r3[1] = a[1] \& b[2];
  assign r3[2]=a[2]\&b[2]; assign r3[3]=a[3]\&b[2];
  assign r1[4]=1'b0;
  assign res[0]=r1[0];
  adder a1(r1[4:1],r2,i1[3:0],i1[4],1'b0);
  assign res[1]=i1[0];
  adder a2(i1[4:1], r3, res[5:2], res[6], 1'b0);
endmodule
```

算术逻辑部件ALU

- ▶ 实现多个算数逻辑运算
- ▶计算机的核心部件
- ▶ 《计算机组成原理》课程将进一步详细 介绍

4位ALU功能表 : 16种算数逻辑运算

					正 逻	辑
S_3 S_2	S_1	S_{0}	M=H 逻辑	M=L	算 术 运 算	
				运算	$C_n = 1$	$C_n = 0$
L	L	L	\overline{L}	\overline{A}	A	A+1
L	L	L	H	$\overline{A+B}$	A+B	(A+B)加1
L	L	H	L	$\overline{A} \cdot B$	$A+\overline{B}$	$(A+\overline{B})$ 加 1
L	L	H	H	" 0"	减 1	" ₀ "
L	H	L	L	$\overline{A \cdot B}$	A 加 $(A \cdot \overline{B})$	A 加 $(A \cdot \overline{B})$ 加 1
L	H	L	H	$\overline{\mathcal{B}}$	$(A \cdot \overline{B})$ 加 $(A+B)$	
L	H	H	L	$A \oplus B$	A 减 B 减 1	A减 B
L	H	H	H	$A ullet \overline{B}$	(A • B)减 1	$A \cdot \overline{B}$
H	L	L	L	$\overline{A} + B$	A 加(A · B)	A 加 $(A \cdot B)$ 加 1
H	L	L	H	$\overline{A \oplus B}$	A加B	A加B加1
H	L	H	L	B	$(A \cdot B)$ 加 $(A+\overline{B})$	
H	L	H	H	$A \cdot B$	(A · B)减 1	$A \cdot B$
H	H	L	L	"1"	A 加 A	A加A加1
H	H	L	H	$A + \overline{B}$	A加($A+B$)	A加($A+B$)加1
H	H	H	L	A+B	A 加 $(A+\overline{B})$	A 加 $(A+\overline{B})$ 加 1
<u>H</u>	H	H	H	A	A 减 1	A

(b) 功能表(正逻辑)

图 2.9 四位 ALU 逻辑图及功能表