Двойное лучепреломление

Ступаков Олег 722 группа 1 марта 2019 г. г. Долгопрудный

ЦЕЛЬ РАБОТЫ: изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления n_o -обыкновенной и n_e - необыкновенной волны в кристалле; наблюдение эффекта полного внутреннего отражения.

ОБОРУДОВАНИЕ: гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид

I. Теоретическое введение

Для характеристики оптических свойств анизотропной среды требуетс я девять величин ε_{ij} , образующих тензор диэлектрической проницаемости. Он вводитс я посредством соотношений

$$D_i = \sum_j \varepsilon_{ij} E_j \qquad (i, j = x, y, z). \tag{1}$$

Поворотом системы координат тензор диэлектрической проницаемости приводится к диагональному виду, и проекции векторов \vec{D} и \vec{E} на оси координат связаны простыми соотношениями:

$$D_x = \varepsilon_x E_x, \quad D_y = \varepsilon_y E_y, \quad D_z = \varepsilon_z E_z.$$

В оптически одноосном кристалле, каковым является исландский шпат, $\varepsilon_x = \varepsilon_y = \varepsilon_\perp$ и $\varepsilon_z = \varepsilon_\parallel$. В дальнейшем нам потребуетс я связь между проекциями векторов \vec{D} и \vec{E} на оптическую ось кристалла $(\vec{D}_\parallel$ и $\vec{E}_\parallel)$ и на плоскость, перпендикулярную оси $(\vec{D}_\perp$ и $\vec{E}_\perp)$

$$\overrightarrow{D}_{\parallel} = \varepsilon_{\parallel} \overrightarrow{E}_{\parallel} \quad \text{if} \quad \overrightarrow{D}_{\perp} = \varepsilon_{\perp} \overrightarrow{E}_{\perp} \tag{2}$$

Рис. 1. Расположение векторов \vec{N} и \vec{D} в анизотропной среде.

Волну, распространяющуюся в одноосном кристалле, можно разделить на две линейно поляризованные волны: обыкновенную, вектор электрической индукции \vec{D}_o которой перпендикулярен главному сечению, и необыкновенную, с вектором электрической индукции \vec{D}_e , лежащим в главном сечении (рис. 1). Главным сечение м кристалла называется плоскость, в которой лежит оптическая ось кристалла и нормаль

к фронту волны. Рассмотрим вначале обыкновенную волну, в которой вектор \vec{D}_o перпендикулярен главному сечению. Тогда $D_{oz}=0$, и из условия $Dz=\varepsilon_z E_z$ следует, что $E_{oz}=0$. Кроме того, так как $D_{oy}=\varepsilon_\perp E_{oy}$ и $D_{ox}=\varepsilon_\perp$ Еох, то можно записать

$$\vec{D}_o = \varepsilon_\perp \vec{E}_o \tag{3}$$

Введем единичный вектор нормали \vec{N} к фронту волны и скорость распространения фронт а в направлении этой нормали v. Тогда, в соответсвии со следствиями уравнений Максвелла

$$\vec{D} = -\frac{c}{h} \left[\vec{N} \vec{H} \right]; \quad \vec{B} = \frac{c}{v} \left[\vec{N} \vec{E} \right]. \tag{4}$$

Из (3) и (4) имеем

$$\begin{split} D_o &= \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o, \quad \varepsilon_\perp E_o = \frac{c}{v_o} H_o \\ v_o &= \frac{c}{\sqrt{\varepsilon_\perp}} \quad \text{if} \quad n_o = \frac{c}{v_o} = \sqrt{\varepsilon_\perp} \end{split}$$

Таким образом, скорость распространения обыкновенной волны и ее показатель преломления не зависят от направления распространения. У необыкновенной волны вектор \vec{D}_e не параллелен \vec{E}_e , и связь между ними сложнее, чем в (2). Для того чтобы найти скорость распространения v и показатель преломления необыкновенной волны n=c/v, достаточно найти связь между вектором электрической индукции этой волны \vec{D}_e и проекцией на него вектора электрического поля волны E_{eD} . Тогда, подставляя $De=\varepsilon E_{eD}$ в (4), приходим к соотношениям

$$\varepsilon E_{eD} = \frac{c}{v} H_e; \quad H_e = \frac{c}{v} E_{eD},$$

формально тождественным с соотношениями для обыкновенной волны. Роль величины ε_{\perp} теперь играет величина ε , а показатель преломления необыкновенной волны равен $\sqrt{\varepsilon}$.

Найдем связь между D_e и E_{eD} . Для этого разложим векторы \vec{D}_e и \vec{E}_e на составляющие, параллельные и перпендикулярные оси кристалла:

$$\begin{split} \vec{D}_e &= \vec{D}_{e\parallel} + \vec{D}_{e\perp}.\\ \vec{E}_e &= \vec{E}_{e\parallel} + \vec{E}_{e\perp}. \end{split}$$

Учитывая (2), находим

$$E_{eD} = \frac{\vec{E}_{e}\vec{D}_{e}}{D_{e}} = \frac{E_{e\parallel}D_{e\parallel} + E_{e\perp}D_{e\perp}}{D_{e}} = \frac{D_{e\parallel}^{2}/\varepsilon_{\parallel} + D_{e\perp}^{2}/\varepsilon_{\perp}}{D_{e}}$$

или

$$E_{eD} = D_e \left(\frac{\sin^2 \theta}{\varepsilon_\parallel} + \frac{\cos^2 \theta}{\varepsilon_\perp} \right) = \frac{D_e}{\varepsilon},$$

где θ — угол между оптической осью Z и волновой нормалью N (рис. 1):

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \quad \cos \theta = \frac{D_{e\perp}}{D_e}$$
 (5)

Таким образом, ε и соответственно скорость распространения и показатель преломления необыкновенной волны зависят от угла между оптической осью кристалла и направлением распространения волны.

Выпишем выражение для показателя преломления необыкновенной волны $n=\sqrt{\varepsilon}$ через главные показатели преломления n_o,n_e и угол θ :

$$\frac{1}{[n(\theta)]^2} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2}$$
 (6)

При $n_o-n_e\ll n_o$ и n_e (для исландского шпат а no=1,655, ne=1,485 для $\lambda=0,63$ мкм) (6) можно упростить:

$$n(\theta) \approx n_e + (n_0 - n_e)\cos^2\theta.$$
 (7)

Рассмотрим, как по преломлению лучей в кристаллической призме можно определить показатели преломления для обыкновенной и необыкновенной волны. В работе исследуетс я одна из двух призм, составляющих поляризатор (рис. 2). Для обыкновенной волны n не

Входная грань

Рис. 2. а) Исследуемая призма из исландского шпата. Штриховкой указано направление оптической оси кристалла. 6) Хо д лучей в поляризационной призме

будет зависеть от угла θ . Для неё из закона Снеллиуса в соответсвии с рис. 3

$$\sin \varphi_1 = n \sin \beta_1;$$

$$\sin \varphi_2 = n \sin \beta_2 = n \sin (A - \beta_1).$$

Откуда

$$n = \frac{q}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}$$
 (8)

Для необыкновенной волны зависимость n от θ должна описыватьс я выражением (6).

Показатель преломления призмы из изотропного материала удобно находить по углу наименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 3) минимален для

Рис. 3. Ход лучей в призме.

симметричного хода лучей, т.е. когда $\varphi_1 = \varphi_2$ Тогда показатель преломления можно рассчитать по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{9}$$

где ψ_m - угол наименьшего отклонения.

II. Экспериментальная установка

Рис. 4. Схема экспериментальной установки

Схема экспериментальной установки изображена на рис. 4. Источником излучения служит He-Ne лазер ($\lambda=0,63$ мкм). Излучение лазера поляризовано линейно за счет наличия брюстеровских окошек в кювете лазера. Направление вектора \vec{E} в луче можно изменять с помощью поляроида, установленного на выходе лазера. Исследуемая призма из исландского шпата закреплена в центре поворотного столика с неподвижным лимбом для отсчета углов.

Преломляющий угол A призмы (рис. 3) можно рассчитать, если известны угловые координаты нормалей N_1 и N_2 к преломляющим (рабочим) граням призмы, прилежащим преломляющему углу. Грань, противолежащая преломляющему углу, называется основанием призмы. Штриховкой указано направление оптической оси.

Обычно ход лучей в призме таков, что и падающий, и преломлённый лучи отклоняются от нормалей в сторону основания призмы, при этом углы φ_1 и φ_2 считаются положительными.

Угол падения φ_1 определяется по поло жению луча, отражённого от передней (входной) грани призмы

(рис. 4). Из рис. 3 можно получить связь углов φ_1 и φ_2 :

$$\varphi_2 = A + \psi - \varphi_1 \tag{10}$$

а угол ψ — отклонение преломлённого луча от первоначального направления— определяется по разности отсчётов на лимбе между точками, куда попадает луч в отсутствие призмы, и точкой, куда попадает преломлённый луч.

При монотонном увеличении угла падения угол ψ сначала уменьшается, а затем снова начинает увеличиваться. Минимальное отклонение соответствует симметричному ходу луча: внутри призмы луч идёт перпендикулярно биссектрисе угла A, а $\varphi_1 = \varphi_2$. Углы наименьшего отклонения ψ_m тразличны для обыкновенного и необыкновенного лучей.

Угол А подобран так, что призма мо жет выполнять роль поляризатора: при нормальном падении луча на первую преломляющую грань из призмы выходит только один луч, а другой испытывает полное внутреннее отражение на второй грани. При повороте призмы на небольшой угол на экране появляютс я оба преломлённых луча. Можно подобрать такой угол падения, при котором исчезнет второй преломлённый луч. Область углов поворот а призмы, в которой обеспечиваетс я пространственное разделение лучей с взаимно ортогональной поляризацией, определяетс я относительной разницей главных показателей преломления n_o и n_e .

III. Ход работы

1.Определим угол A при вершине призмы. Сначал добьёмся, чтобы луч, отражённый от входной грани (длинного катета), шёл точно назад, заметим положение отсчётной риски на лимбе (φ_K) , а затем повторим эту операцию для второй рабочей грани (гипотенузы, φ_G). По разнице этих двух отсчётов найдём угол A.

φ_K	φ_G	A		
251°	108°	$(37 \pm 1)^{\circ}$		

Таблица I Определение угла A

Вращая столик с призмой, снимем зависимость углов отклонения на выходе из призмы для обыкновенной и необыкновенной волн от угла падения луча на призму; будем замерять координату $2\varphi_1$ луча, отраженного от входной грани призмы — длинного катета, и координаты каждого из преломлённых лучей.

Проведём серию измерений, меняя φ_1 в диапазоне 10-70° через 5°, а вблизи минимального угла ψ_m -через 2,5°. Проведём расчет на компьютере с помощью программы SIGMA PLOT и запишем рассчитанные значения $\cos^2\theta, n_o(\theta)$ и $n_e(\theta)$ и окончательные результат — n_o и n_e .

По полученным данным построим на одном графике зависимости $n_o(\cos\theta)$ и $n_e(\cos\theta)$ и определим главные показатели преломления n_o и n_e

N_{T}	ψ_1	ψ_o	ψ_e	$\cos^2 \theta_o$	$\cos^2 \theta_o$	n_o	n_e
1	10	31,5	22	0,01	0,01	1,649	1,489
2	15	29	21	0,02	0,03	1,648	1,494
3	17,5	28,5	20,5	0,03	0,04	1,654	1,493
4	20	27,5	20	0,04	0,05	1,648	1,489
5	22,5	27	20	0,05	0,07	1,647	1,494
6	25	27	20	0,07	0,08	1,655	1,497
7	27,5	26,5	20	0,08	0,09	1,649	1,499
8	30	26,5	20	0,09	0,11	1,652	1,499
9	32,5	26,5	20,3	0,11	0,13	1,652	1,505
10	35	26,4	20,5	0,12	0,15	1,648	1,506
11	375	26,5	21	0,14	0,16	1,647	1,513
12	40	27	21	0,15	0,18	1,653	1,506
13	42,5	27,2	21,5	0,17	0,2	1,65	1,51
14	45	27,8	22	0,18	0,22	1,654	1,511
15	50	29	23,5	0,21	0,25	1,657	1,522
16	55	30	25,5	$0,\!25$	0,28	1,645	1,536
17	60	32	27	0,28	0,32	1,649	1,529
18	65	34,5	29,5	0,3	0,35	1,655	1,537
19	70	37	32,5	$0,\!32$	0,37	1,651	1,546

Рис. 5. График зависимости n_o и n_e от $\cos \theta$

Полученные значения n_o и n_e : $\boxed{n_o = 1,652 \pm 0,003 \atop n_e = 1,486 \pm 0,004}$

Как видими, результаты неплохо согласуются с табличными данными ($n_{o_{{
m Ta6n}}}=1,655,\ n_{e_{{
m Ta6n}}}=1,485$)

Из основной серии измерений определим средние значения углов наименьшего отклонения ψ_m ; по формуле (9) рассчитаем показатели преломления n_o и n_e :

$$\psi_{mo} = 26, 4^{\circ}$$
 $n_{o\psi} = 1, 65$
 $\psi_{me} = 20, 0^{\circ}$ $n_{e\psi} = 1, 5$

Для определения углов падения, соответствующих полному внутреннему отражению, сначала установим

призму так, чтобы были видны оба преломлённых луча; затем, уменьшая угол падения, добьёмся для каждого из лучей выполнения условий полного отражения от второй грани призмы ($\varphi_2=90^\circ$); определите соответствующие углы φ_{1e} и φ_{1o} с учётом знака. Рассчитаем значения n_o и n_e по формуле (8):

$$n_{o\varphi} = 1,660 \pm 0,013$$
 $n_{e\varphi} = 1,49 \pm 0,015$

IV. Вывод

В результате проведенной работы мы определили главные показатели преломления исландского шпата тремя способами: сняв зависимость $\psi=f(\varphi_1)$ для обыкновенной и необыкновенной волны; определив углы наименьшего отклонения ψ_m для обыкновенной и необыкновенной волны; измерив для каждого из лучей угол падения φ_1 в условиях полного внутреннего отражения. Наилучшие точность и приближенность к табличным значениям соответствуют первому способу.