^nsys

Ansys Fluent Simulation Report

Table of Contents

- 1 Geometry and Mesh
 - 1.1 Mesh Size
 - 1.2 Mesh Quality
 - 1.3 Orthogonal Quality
- 2 Simulation Setup
 - 2.1 Physics
 - 2.1.1 Models
 - 2.1.2 Material Properties
 - 2.1.3 Cell Zone Conditions
 - 2.1.4 Boundary Conditions
 - 2.1.5 Reference Values
 - 2.2 Solver Settings
- **3 Run Information**
- **4 Solution Status**
- **5 Report Definitions**
- 6 Plots
- **7 Contours**
- 8 Vectors
- 9 XY Plots

Geometry and Mesh

Mesh Size

Cells	Faces	Nodes
34736	183162	131099

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio
component1-fluid	Poly Cell	0.20060606	58.937107

Orthogonal Quality

Simulation Setup

Physics

Models

Model	Settings
Space	3D
Time	Steady
Viscous	SST k-omega turbulence model

Material Properties

- Fluid	
— air	
Density	1.18 kg/m^3
Cp (Specific Heat)	1006.43 J/(kg K)
Thermal Conductivity	0.0242 W/(m K)
Viscosity	1.85e-05 kg/(m s)
Molecular Weight	28.966 kg/kmol
- Solid	

- aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid	
component1-fluid	
Material Name	air
Specify source terms?	no
Specify fixed values?	no
Frame Motion?	no
Laminar zone?	no
Porous zone?	no
3D Fan Zone?	no

Boundary Conditions

- Inlet	
- inlet	
Velocity Specification Method	Components
Reference Frame	Absolute
Supersonic/Initial Gauge Pressure [Pa]	0
Coordinate System	Cartesian (X, Y, Z)
X-Velocity	x-coordinate-3 x-velocity
Y-Velocity	x-coordinate-3 y-velocity
Z-Velocity [m/s]	0
Turbulent Specification Method	K and Omega
Turbulent Kinetic Energy	x-coordinate-3 turb-kinetic-energy
Specific Dissipation Rate	x-coordinate-3 specific-diss-rate
Outlet	
outlet	
Backflow Reference Frame	Absolute
Gauge Pressure [Pa]	0
Pressure Profile Multiplier	1
Backflow Direction Specification Method	Normal to Boundary
Turbulent Specification Method	Intensity and Viscosity Ratio
Backflow Turbulent Intensity [%]	5
Backflow Turbulent Viscosity Ratio	10
Backflow Pressure Specification	Total Pressure
Build artificial walls to prevent reverse flow?	no
Radial Equilibrium Pressure Distribution	no
Average Pressure Specification?	no
Specify targeted mass flow rate	no
Symmetry	
symmetry-1	symmetry

symmetry-2	symmetry
- Wall	
- wall-top	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500
wall-downstream	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500
wall-step	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500
─ wall-step-small	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500
─ wall-upstream	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500
wall-upstream-small	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	500

Reference Values

Area	1 m^2
Density	1.225 kg/m^3
Enthalpy	0 J/kg
Length	1 m

Pressure	0 Pa
Temperature	288.16 K
Velocity	1 m/s
Viscosity	1.7894e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300
Reference Zone	component1-fluid

Solver Settings

Equations	
Flow	True
Turbulence	True
Numerics	
Absolute Velocity Formulation	True
 Pseudo Time Explicit Relaxation Factors 	
Density	1
Body Forces	1
Turbulent Kinetic Energy	0.75
Specific Dissipation Rate	0.75
Turbulent Viscosity	1
Explicit Momentum	0.5
Explicit Pressure	0.5
 Pressure-Velocity Coupling 	
Туре	Coupled
Pseudo Time Method (Global Time Step)	True
 Discretization Scheme 	
Pressure	Second Order
Momentum	Second Order Upwind
Turbulent Kinetic Energy	Second Order Upwind
Specific Dissipation Rate	Second Order Upwind
- Solution Limits	
Minimum Absolute Pressure [Pa]	1
Maximum Absolute Pressure [Pa]	5e+10
Minimum Temperature [K]	1
Maximum Temperature [K]	5000
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14
Minimum Spec. Dissipation Rate [s^-1]	1e-20
Maximum Turb. Viscosity Ratio	100000

Run Information

	Number of Machines	1
--	--------------------	---

Number of Cores	2
Case Read	2.649 seconds
Iteration	53.231 seconds
AMG	36.914 seconds
Virtual Current Memory	1.03912 GB
Virtual Peak Memory	1.07289 GB
Memory Per M Cell	12.4753

Solution Status

Iterations: 213

	Value	Absolute Criteria	Convergence Status
continuity	9.829567e-06	1e-05	Converged
x-velocity	1.577921e-07	0.001	Converged
y-velocity	3.684683e-08	0.001	Converged
z-velocity	6.532571e-10	0.001	Converged
k	1.221443e-06	0.001	Converged
omega	1.272151e-06	0.001	Converged

Report Definitions

report-wallshearstress	1.79462	Ра
report-viscosityratio	104.2103	

Plots

Residuals

report-def-1-rplot

report-def-1-rplot

report-def-0-rplot

report-def-0-rplot

Contours

contour-2

contour-1

Vectors vector-1 **^nsys** vector-1 Velocity Magnitude [m/s] 40.06 STUDENT 0.01 4.46 8.91 13.36 17.81 22.26 26.71 31.16 35.61

xy-plot-2

xy-plot-1

