Laboratorium 4

Aleksander Milach 22/05/2020

Exercise from the manuscript

Point i)

$$f(||A^Tb||_{\infty}/2) = (||A^Tb||_{\infty}/2) \left(1 + \frac{||b||_2}{||A^Tb||_{\infty}}\right) - ||b||_2 = ||A^Tb||_{\infty}/2 + ||b||_2/2 - ||b||_2 =$$
$$= ||A^Tb||_{\infty}/2 - ||b||_2/2 \le 0,$$

since $||A^Tb||_{\infty} = \max\{|\langle A_i^T, b \rangle|\} \le \max\{||A_i^T||_2||b||_2\} \le ||b||_2$, by Cauchy-Schwarz inequality. Simirarly

$$g\left(||A^Tb||_{\infty}/2\right) = -\frac{||A^Tb||_{\infty}||b||_2}{||A^Tb||_{\infty}/2} + ||b||_2 + ||A^Tb||_{\infty} = -||b||_2 + ||A^Tb||_{\infty} \le 0.$$

Obviously, when values of both functions are smaller or equal to 0, then their values cannot be larger than $|A_i^T b|$, thus in that case both rules do not discard the column j.

Point ii)

$$f(||A^Tb||_{\infty}) = (||A^Tb||_{\infty}) \left(1 + \frac{||b||_2}{||A^Tb||_{\infty}}\right) - ||b||_2 = ||A^Tb||_{\infty} + ||b||_2 - ||b||_2 = ||A^Tb||_{\infty},$$

and

$$g\left(||A^{T}b||_{\infty}\right) = -\frac{||A^{T}b||_{\infty}||b||_{2}}{||A^{T}b||_{\infty}} + ||b||_{2} + ||A^{T}b||_{\infty} = -||b||_{2} + ||b||_{2} + ||A^{T}b||_{\infty} = ||A^{T}b||_{\infty}.$$

$$f(\lambda) = 0 \iff \lambda \left(1 + \frac{||b||_{2}}{||A^{T}b||_{\infty}}\right) - ||b||_{2} = 0 \iff \frac{\lambda \left(||A^{T}b||_{\infty} + ||b||_{2}\right)}{||A^{T}b||_{\infty}} = ||b||_{2} \iff \lambda \left(||A^{T}b||_{\infty} + ||b||_{2}\right) = ||A^{T}b||_{\infty}||b||_{2} \iff -\left(||A^{T}b||_{\infty} + ||b||_{2}\right) = -\frac{||A^{T}b||_{\infty}||b||_{2}}{\lambda} \iff -\frac{||A^{T}b||_{\infty}||b||_{2}}{\lambda} + ||b||_{2} + ||A^{T}b||_{\infty} = 0 \iff g(\lambda) = 0.$$

Point iii)

$$\begin{split} f(|A_j^Tb|) &= |A_j^Tb| \left(1 + \frac{||b||_2}{||A^Tb||_\infty}\right) - ||b||_2 = |A_j^Tb| + \frac{|A_j^Tb|||b||_2}{||A^Tb||_\infty} - ||b||_2 = |A_j^Tb| + ||b||_2 \left(\frac{|A_j^Tb|}{||A^Tb||_\infty} - 1\right) = \\ &= |A_j^Tb| - ||b||_2 \left(1 - \frac{|A_j^Tb|}{||A^Tb||_\infty}\right) \leq |A_j^Tb| \\ g(|A_j^Tb|) &= -\frac{||A^Tb||_\infty||b||_2}{|A_j^Tb|} + ||b||_2 + ||A^Tb||_\infty = \frac{||A^Tb||_\infty|A_j^Tb| - ||A^Tb||_\infty||b||_2}{|A_j^Tb|} + ||b||_2 = \\ &= \frac{||A^Tb||_\infty}{|A_j^Tb|} \left(|A_j^Tb| - ||b||_2\right) + ||b||_2 \leq \left(|A_j^Tb| - ||b||_2\right) + ||b||_2 \leq |A_j^Tb|. \end{split}$$

In both subproofs we use the definition of infinity norm, in particular for every $j: |A_j^T b| \le ||A^T b||_{\infty}$. From that reasoning and definitions of safe and DPP rules, when $\lambda \le |A_j^T|$, both rules do not discard a column A_j .

Exercise 1

For values of λ higher or equal than those written in the following table, by safe and DPP rules $x_i(\lambda) = 0$.

	x1	x2	х3	x4
Safe rule DPP rule	0.0===00	8.779657 8.522724	00	0.00000

Lasso solution path

Indeed, both rules provide an upper bound for value of λ , for which $x_i(\lambda) = 0$. For the column of matrix A, for which $|A_j^T b| = ||A_j^T b||_{\infty}$, which in this case is column 4, both rules provide the exact bound.

Exercise 2

Question 1

Lasso solution path

If, and only if the value of tuning parameter exceeds the value of λ_i corresponding to that column of matrix A, the value of LASSO estimate for corresponding variable equals. After the value of tuning parameter exceeds $||A^Tb||_{\infty}$, then LASSO estimates for all variables equals zero (for convenience I deleted from the plot some lines corresponding to the values of λ_i very close to zero).

Question 2

One can notice, that until the tuning parameter reaches the value λ_i , the value of $A_i^T(b-Ax(\lambda))$ equals to either λ or $-\lambda$. After it exceeds the value λ_i , all the values of $A_i^T(b-Ax(\lambda))$ lie between $\pm\lambda$. Finally, after the value of tuning parameter exceeds $||A^Tb||_{\infty}$, all values of $A_i^T(b-Ax(\lambda))$ remain constant.

Question 3

Let $x(\lambda)$ be a LASSO minimizer and x^* be a BP minimizer. Let us prove an inequality $||x(\lambda)||_1 \le ||x^*||_1$.

$$\lambda ||x(\lambda)||_1 \leq \lambda ||x(\lambda)||_1 + \frac{1}{2}||Ax(\lambda) - b||_2 \leq \lambda ||x^*||_1 + \frac{1}{2}||Ax^* - b||_2 = \lambda ||x^*||_1,$$

which gives the desired inequality. In the second inequality we use definition of LASSO minimizer, thus we can replace $x(\lambda)$ with x^* . Finally we use the property of BP minimizers, such that $||Ax^* - b||_2 = 0$.

L1 norm of x(lambda)

Question 4

Lasso solution path

The points obtained for $\lambda = 0$ obtained in Question 2 are points of discontinuity in curves following them. However if we would replace these points with points $(0, x_i^*)$, the curves of the functions $\lambda \to x_i(\lambda)$ will be continue.