

From Excel to ML, NLP, DL. Learn everything about Data Science!

Learn More

Home

Harika Bonthu — Published On June 13, 2021 and Last Modified On May 19th, 2023

Algorithm Beginner Clustering Data Science Python Unsupervised

Clustering is an unsupervised learning method whose task is to divide the population or data points into a number of groups, such that data points in a group are more similar to other data points in the same group and dissimilar to the data points in other groups. It is basically a collection of objects based on similarity and dissimilarity between them. **KModes clustering** is one of the unsupervised <u>Machine Learning algorithms</u> that is used to cluster **categorical variables**.

Table of contents

- KModes vs KMeans
- How Does the KModes Algorithm Work?
 - Step 1: Pick K observations at random and use them as leaders/clusters
 - Step 2: Calculate the dissimilarities (no. of mismatches) and assign each observation to its closest cluster
 - Step 3: Define new modes for the clusters
- Implementation of KModes in Python
 - 1. Creating Toy Dataset
 - o 2. Scree Plot or Elbow Curve to Find Optimal Kvalue
 - o 3. Build a Model with 3 Clusters
- End Note

What is KModes?

KModes is a clustering algorithm used in data science to group similar data points into clusters based on their categorical attributes. Unlike traditional clustering algorithms that use distance metrics, KModes works by identifying the modes or most frequent values within each cluster to determine its centroid. KModes is ideal for clustering categorical data such as customer demographics, market segments, or survey responses. It is a powerful tool for data analysts and scientists to gain insights into their data and make informed decisions.

KModes vs KMeans

KMeans uses mathematical measures (distance) to cluster continuous data. The lesser the distance, the more similar our data points are. Centroids are updated by Means. But for categorical data points, we cannot calculate the distance. So we go for KModes algorithm. It uses the dissimilarities (total mismatches) between the data points. The lesser the dissimilarities the more similar our data points are. It uses Modes instead of means.

How Does the KModes Algorithm Work?

Unlike Hierarchical clustering methods, we need to upfront specify the K.

1. Pick K observations at random and use them as leaders/clusters

I hope you got the basic idea of the KModes algorithm by now. So let us quickly take an example to illustrate the working step by step.

Example: Imagine we have a dataset that has the information about hair color, eye color, and skin color of persons. We aim to group them based on the available information(maybe we want to suggest some styling ideas)

Hair color, eye color, and skin color are all categorical variables. Below $\frac{1}{2}$ is how our dataset looks like.

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
P3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

Image of our data

Alright, we have the sample data now. Let us proceed by defining the number of clusters(K)=3

Step 1: Pick K observations at random and use them as leaders/clusters

I am choosing P1, P7, P8 as leaders/clusters

	Lead	ders		
P1	blonde	amber	fair	
P7	red	green	fair	
P8	black	hazel	fair	
person	hair color	eye color	skin color	
P1	blonde	amber	fair	
P2	brunette	gray	brown	
Р3	red	green	brown	
P4	black	hazel	brown	
P5	brunette	amber	fair	
P6	black	gray	brown	
P7	red	green	fair	
P8	black	hazel	fair	

Leaders and Observations

Step 2: Calculate the dissimilarities (no. of mismatches) and assign each observation to its closest cluster

Iteratively compare the elector data points to each of the cheapirations. Similar data points six a O dissimilar data points six a 1

P1	blonde	amber	fair	
P7	red	green	fair	
P8	black	hazel	fair	
person	hair color	eye color	skin color	
P1	blonde	amber	fair	
P2	brunette	gray	brown	
P3	red	green	brown	
P4	black	hazel	brown	
P5	brunette	amber	fair	
P6	black	gray	brown	
P7	red	green	fair	
P8	black	hazel	fair	

Comparing leader/Cluster P1 to the observation P1 gives 0 dissimilarities.

	Lead	ders			
P1 blonde amber					
P7	red	green	fair		
P8	black	hazel	fair		
	7	1 5			
person	hair color	eye color	skin colo		
P1	blonde	V amber	fair		
P2	brunette	gray	brown		
Р3	red	green	brown		
P4	black	hazel	brown		
P5	brunette	amber	fair		
P6 black		gray	brown		
P7 red		green	fair		
P8 black		hazel	fair		

Comparing leader/cluster P1 to the observation P2 gives 3(1+1+1) dissimilarities.

Likewise, calculate all the dissimilarities and put them in a matrix as shown below and assign the observations to their closest cluster(cluster that has the least dissimilarity)

	Cluster 1 (P1)	Cluster 2 (P7)	Cluster 3 (P8)	Cluster
P1	0 🏑	2	2	Cluster 1
P2	3 🎸	3	3	Cluster 1
Р3	3	1 🗸	3	Cluster 2
P4	3	3	1 🗸	Cluster 3
P5	1 🗸	2	2	Cluster 1
P6	3	3	2 🗸	Cluster 3
P7	2	0 🎸	2	Cluster 2
P8	2	2	0 🗸	Cluster 3

Dissimilarity matrix (Image by Author)

After step 2, the observations P1, P2, P5 are assigned to cluster 1; P3, P7 are assigned to Cluster 2; and P4, P6, P8 are assigned

observation P2 has 3 dissimilarities with all the leaders. I randomly assigned it to Cluster 1.

Step 3: Define new modes for the clusters

Mode is simply the most observed value.

Mark the observations according to the cluster they belong to. Observations of Cluster 1 are marked in Yellow, Cluster 2 are marked in Brick red, and Cluster 3 are marked in Purple.

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

Looking for Modes (Image by author)

Considering one cluster at a time, for each feature, look for the Mode and update the new leaders.

Explanation: Cluster 1 observations(P1, P2, P5) has brunette as the most observed hair color, amber as the most observed eye color, and fair as the most observed skin color.

Note: If you observe the same occurrence of values, take the mode randomly. In our case, the observations of Cluster 3(P3, P7) have one occurrence of brown, fair skin color. I randomly chose brown as the mode.

Below are our new leaders after the update.

New Leaders					
	hair color	eye color	skin color		
Cluster 1	brunette	amber	fair		
Cluster 2	red	green	fair		
Cluster 3	black	hazel	brown		

Obtained new leaders

Repeat steps 2-4

After obtaining the new leaders, again calculate the dissimilarities between the observations and the newly obtained leaders.

	hair color	eye color	skin color
Cluster 1	brunette	amber	fair
Cluster 2	red	green	fair
Cluster 3	black	hazel	brown
		. /	
person	hair color	∨ eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

Comparing Cluster 1 to the observation P1 gives 1 dissimilarity.

	New Leaders					
	hair color	eye color	skin color			
Cluster 1	brunette	amber	fair			
Cluster 2	red	green	fair			
Cluster 3	black	hazel	brown			
		L 7				
person	hair color	eye color	skin color			
P1	blonde √	amber	fair			
P2	brunette	gray	brown			
Р3	red	red green				
P4	black	hazel	brown			
P5	brunette	amber	fair			
P6	black	black gray				
P7	red	green	fair			
P8	black	black hazel				

Comparing Cluster 1 to the observation P2 gives 2 dissimilarities.

Likewise, calculate all the dissimilarities and put them in a matrix. Assign each observation to its closest cluster.

	Cluster 1	Cluster 2	Cluster 3	Cluster
P1	1 🎸	2	3	Cluster 1
P2	2 🍑	3	2	Cluster 1
P3	3	1 🗸	2	Cluster 2
P4	3	3	0 🗸	Cluster 3
P5	0 🌌	2	3	Cluster 1
P6	3	3	1 🍑	Cluster 3
P7	2	0 🎸	3	Cluster 2
P8	2	2	1 🗸	Cluster 3
FO	Z	2	1	Cius

The observations P1, P2, P5 are assigned to Cluster 1; P3, P7 are assigned to Cluster 2; and P4, P6, P8 are assigned to Cluster 3.

We stop here as we see there is no change in the assignment of observations.

Begin with Importing necessary libraries

```
# importing necessary libraries
import pandas as pd
import numpy as np
# !pip install kmodes
from kmodes.kmodes import KModes
import matplotlib.pyplot as plt
%matplotlib inline
```

1. Creating Toy Dataset

Python Code:

KModes Clustering Algorithm for Categorical data • A Nix repl by AkashSharma62

♦ Show code
Ø 0 ▷ Run 24

35.0	, -	-	
			person
fair	amber	blonde	P1
brown	gray	brunette	P2
brown	green	red	P3
brown	hazel	black	P4
fair	amber	brunette	P5
brown	gray	black	P6
fair	green	red	P7
fair	hazel	black	P8

Image of our dataset

2. Scree Plot or Elbow Curve to Find Optimal Kvalue

For KModes, plot cost for a range of K values. Cost is the sum of all the dissimilarities between the clusters.

Select the K where you observe an elbow-like bend with a lesser cost value.

```
# Elbow curve to find optimal K
cost = []
K = range(1,5)
for num_clusters in list(K):
    kmode = KModes(n_clusters=num_clusters, init = "random", n_init = 5, verbose=1)
    kmode.fit_predict(data)
    cost.append(kmode.cost_)

plt.plot(K, cost, 'bx-')
plt.xlabel('No. of clusters')
plt.ylabel('Cost')
plt.title('Elbow Method For Optimal k')
plt.show()
```


Elbow Curve

We can see a bend at K=3 in the above graph indicating 3 is the optimal number of clusters.

```
# Building the model with 3 clusters
kmode = KModes(n_clusters=3, init = "random", n_init = 5, verbose=1)
clusters = kmode.fit_predict(data)
clusters
```

Finally, insert the predicted cluster values in our original dataset.

:

```
data.insert(0, "Cluster", clusters, True)
data
```

	Cluster	hair_color	eye_color	skin_color
person				
P1	0	blonde	amber	fair
P2	0	brunette	gray	brown
P3	2	red	green	brown
P4	1	black	hazel	brown
P5	0	brunette	amber	fair
P6	1	black	gray	brown
P7	2	red	green	fair
P8	1	black	hazel	fair

Dataset after inserting predicted cluster values

Inference from the model predictions: P1, P2, P5 are merged as a cluster; P3, P7 are merged; and P4, P6, P8 are merged.

The results of our theoretical approach are in line with the model predictions.

End Note

KModes is a valuable tool for clustering categorical data and gaining insights into your data. With its ability to identify modes and most frequent values, KModes can help you make informed decisions in your business or research. To learn more about data science and improve your skills, enrol in our <u>BlackBelt program</u>.

blogathon clustering machine learning python unsupervised learning

About the Author

Harika Bonthu

Our Top Authors

view more

Download

Analytics Vidhya App for the Latest blog/Article

Previous Post

Predict Future Sales using XGBRegressor

Next Post

4 Ways to Handle Insufficient Data In Machine Learning!

One thought on "KModes Clustering Algorithm for Categorical data"

ajit says:

May 16, 2022 at 7:21 pm

very well done! I worked thru the whole code and got excellent results on a much larger dataset...thanks! ajit balakrishnan founder and ceo rediff.com

<u>Reply</u>

Submit

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment	
Name*	Email*
Website	
Notify ma of follow up comments by omail	
✓ Notify me of follow-up comments by email.	
✓ Notify me of new posts by email.	

Top Resources

(Updated 2023)

Sruthi E R - JUN 17, 2021

KAVITA MALI - OCT 04, 2021

How to Read and Write With CSV Files in Python?

Harika Bonthu - AUG 21, 2021

Analytics Vidhya

About U

Our Team

Careers

Contact us

Companies

POST JODS

Advertising

Data Scientists

Rlos

Hackathon

Discussions

Apply Johs

Visit us

in

3 y

© Copyright 2013-2023 Analytics Vidhya

Privacy Policy Terms of Use Refund Policy