EE655: Computer Vision & Deep Learning

Lecture 19

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Credits: Prof. Shree K. Nayar

Structure From Motion

Compute 3D scene structure and camera motion from a sequence of frames.

Topics:

- (1) Structure from Motion Problem
- (2) SFM Observation Matrix
- (3) Rank of Observation Matrix
- (4) Tomasi-Kanade Factorization

Orthographic Structure from Motion

Given sets of corresponding image points (2D): $(u_{f,p}, v_{f,p})$

Find scene points (3D) P_p , assuming orthographic camera.

Orthographic Structure from Motion

From 3D to 2D: Orthographic Projection

Perspective cameras exhibit orthographic projection when distance of scene from camera is large compared to depth variation within scene (magnification is nearly constant).

From 3D to 2D: Orthographic Projection

$$u = \mathbf{i}^T \mathbf{x}_c = \mathbf{i}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{i}^T (P_{\triangleright} - C)$$
$$v = \mathbf{j}^T \mathbf{x}_c = \mathbf{j}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{j}^T (P - C)$$

$$u = \mathbf{i}^{T}(P - C)$$
$$v = \mathbf{j}^{T}(P - C)$$

Orthographic SFM

Given corresponding image points (2D) $(u_{f,p}, v_{f,p})$ Find scene points $\{P_p\}$.

Camera Positions $\{C_f\}$, camera orientations $\{(\mathbf{i}_f, \mathbf{j}_f)\}$ are unknown

Orthographic SFM

It turns out that

We can remove ${}^{\mathbb{R}}\mathcal{C}_f$ from equations

Centering Trick

Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=0}^{N}P_{p}=\bar{P}=0$$

We will compute scene points w.r.t their centroid!

Centering Trick

Centroid (\bar{u}_f, \bar{v}_f) of the image points in frame f:

$$\bar{u}_{f} = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} (P_{p} - C_{f}) \qquad \bar{v}_{f} = \frac{1}{N} \sum_{p=1}^{N} v_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} (P_{p} - C_{f})$$

$$\bar{u}_{f} = \frac{1}{N} \mathbf{i}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} C_{f} \qquad \bar{v}_{f} = \frac{1}{N} \mathbf{j}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} C_{f}$$

$$\bar{u}_f = -\mathbf{i}_f^T C_f$$
 $\bar{v}_f = -\mathbf{j}_f^T$

$$\bar{v}_f = -\mathbf{j}_f^T$$

Centering Trick

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

Image points w.r.t. (\bar{u}_f, \bar{v}_f) :

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f \qquad \qquad \tilde{v}_{f,p} = v_{f,p} - \bar{v}_f$$

$$= \mathbf{i}_f^T (P_p - C_f) + \mathbf{i}_f^T C_f \qquad \qquad = \mathbf{j}_f^T (P_p - C_f) + \mathbf{j}_f^T C_f$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p \qquad \qquad \tilde{v}_{f,p} = v_{f,p} - \bar{v}_f$$

$$= \mathbf{j}_f^T (P_p - C_f) + \mathbf{j}_f^T C_f$$

$$\tilde{v}_{f,p} = \mathbf{i}_f^T P_p$$

Observation Matrix W

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

 $egin{array}{ll} \mathbf{i}_1^T & \mathbf{i}_2^T & \vdots & \mathbf{i}_F^T & \vdots & \mathbf{j}_F^T & \vdots & \mathbf{j}_F$ Point 1 Point 2 Point N $S_{3\times N}$ Scene Structure (Unknown) $M_{2F\times3}$

Centroid-Subtracted

Shree K. Nayar Feature Points (Known)

Camera Motion (Unknown)

Observation Matrix W

Image 1 Image 2	Foint 1 $\widetilde{u}_{1,1}$ $\widetilde{u}_{2,1}$	Point 2 $\tilde{u}_{1,2}$ $\tilde{u}_{2,2}$ \vdots		$egin{array}{l} ar{u}_{1,N} & ar{u}_{2,N} \ & dots \end{array}$		$egin{bmatrix} \mathbf{i}_1^T \ \mathbf{i}_2^T \ \vdots \end{bmatrix}$				
Image F Image 1 Image 2	$egin{array}{c} \widetilde{u}_{F,1} \ \widetilde{v}_{1,1} \end{array}$	$egin{array}{l} ilde{u}_{F,2} \ ilde{v}_{1,2} \ ilde{u}_{2,2} \end{array}$		$egin{array}{ccc} & \ddots & & \\ & & & & & \\ & & & & & \\ & & & &$	=	\mathbf{i}_{F}^{T} \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T}		P_{2} . $S_{3 imes N}$ ene Str	uc	
		W_{2F} roid-Sure Point	btrac		Can	M _{2F} nera M Jnkno				

Can we find M and S from W?

Linear Independence of Vectors

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is said to be linearly independent if no vector can be represented as a weighted linear sum of the others.

{i, j} is linearly independent.

 $\{i, j, v_1\}$ is linearly dependent.

 $\{i, j, v_3\}$ is linearly dependent.

Rank of a Matrix

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T \end{bmatrix}$$

 $ColumnRank(A) \leq n$

$$RowRank(A) \leq m$$

$$ColumnRank(A) = RowRank(A) = Rank(A)$$

 $Rank(A) \le \min(m, n)$

Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row vectors of the matrix.

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

Rank(A) = 1

Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row vectors of the matrix.

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 2$$

Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row vectors of the matrix.

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 3$$

Important Properties of Matrix Rank

• $Rank(A^T) = Rank(A)$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

• $Rank(AA^T) = Rank(A^TA) = Rank(A^T) = Rank(A)$

$$A_{m \times m}$$
 is invertible iff $Rank(A_{m \times m}) = m$

...Back to Observation Matrix W

	Point 1	Point 2		Point N						
	:	:	:			$\begin{bmatrix} \mathbf{i}_1^T \\ \mathbf{i}_2^T \\ \vdots \end{bmatrix}$	Point 1	Point 2		Point N
Image 1 Image 2	$egin{array}{c} \widetilde{u}_{F,1} \ \widetilde{v}_{1,1} \ \widetilde{u}_{2,1} \ dots \ \widetilde{v}_{F,1} \end{array}$	$\tilde{u}_{F,2}$ $\tilde{v}_{1,2}$ $\tilde{u}_{2,2}$ \vdots $\tilde{v}_{F,2}$		$\widetilde{u}_{F,N}$ $\widetilde{v}_{1,N}$ $\widetilde{v}_{2,N}$ \vdots $\widetilde{v}_{F,N}$	=	\mathbf{i}_{F}^{T} \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T}	Sc	P_2 . $S_{3 \times N}$ ene St	v ruc	ture
$W_{2F \times N}$ Centroid-Subtracted Feature Points (Known)					$M_{2F \times 3}$ Camera Motion (Unknown)					

Rank of Observation Matrix

$$W = M \times S$$

$$2F \times N \qquad 2F \times 3 \qquad 3 \times N$$

We know:

$$Rank(MS) \le Rank(M)$$
 $Rank(MS) \le Rank(S)$

$$Arr Rank(MS) \le \min(3,2F) \qquad Rank(MS) \le \min(3,N)$$

$$\Rightarrow$$
 $Rank(W) = Rank(MS) \le min(3, N, 2F)$

Singular Value Decomposition (SVD)

For any matrix A there exists a factorization:

$$A_{M \times N} = U_{M \times M} \cdot \Sigma_{M \times N} \cdot V^{T}_{N \times N}$$

where U and V^T are orthonormal and Σ is diagonal.

MATLAB:
$$[U,S,V] = svd(A)$$

$$\Sigma_{M\times N} = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & 0 & \dots & 0 \\ 0 & 0 & 0 & \sigma_4 & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \dots & \sigma_N \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{pmatrix} \quad \sigma_1, \dots, \sigma_N \text{: Singular Values}$$

If Rank(A) = r then A has r non-zero singular values.

Enforcing Rank Constraint

Using SVD:
$$W = U \Sigma V^T$$

Since $Rank(W) \leq 3$, $Rank(\Sigma) \leq 3$.

Submatrices U_2 and V_2^T do not contribute to W.

Enforcing Rank Constraint

 $N \times N$

Using SVD:
$$W = U \Sigma V^T$$

$$\begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{bmatrix}$$

2F-3

3

$$W = U_1 \Sigma_1 V_1^T$$

$$(2F\times3)(3\times3)(3\times N)$$

Factorization (Finding M, S)

$$W = U_1 (\Sigma_1)^{1/2} (\Sigma_1)^{1/2} V_1^T$$
(2F×3) (3×N)

Not so fast. Decomposition not unique!

= M? = S?

For any 3x3 non-singular matrix Q:

3 non-singular matrix
$$Q$$
:
$$W = U_1 (\Sigma_1)^{1/2} Q Q^{-1} (\Sigma_1)^{1/2} V_1^T \text{ is also valid.}$$

$$(2F \times 3) \qquad (3 \times N)$$

$$= M \qquad = S \dots \text{ for some } Q.$$

How to find the matrix Q?

Orthonormality of M

The Motion Matrix M:

$$M = \begin{bmatrix} \mathbf{i}_{1}^{T} \\ \vdots \\ \mathbf{i}_{F}^{T} \\ \mathbf{j}_{1}^{T} \\ \vdots \\ \mathbf{j}_{F}^{T} \end{bmatrix} = \underbrace{U_{1}(\Sigma_{1})^{1/2}}_{\text{Computed}} Q = \begin{bmatrix} \hat{\mathbf{i}}_{1}^{T} \\ \vdots \\ \hat{\mathbf{i}}_{F}^{T} \\ \hat{\mathbf{j}}_{1}^{T} \\ \vdots \\ \hat{\mathbf{j}}_{F}^{T} \end{bmatrix} Q = \begin{bmatrix} \hat{\mathbf{i}}_{1}^{T} Q \\ \vdots \\ \hat{\mathbf{i}}_{F}^{T} Q \\ \hat{\mathbf{j}}_{1}^{T} Q \\ \vdots \\ \hat{\mathbf{j}}_{F}^{T} Q \end{bmatrix}$$

Orthonormality Constraints:

$$\mathbf{i}_{f} \cdot \mathbf{i}_{f} = \mathbf{i}_{f}^{T} \mathbf{i}_{f} = 1$$
$$\mathbf{j}_{f} \cdot \mathbf{j}_{f} = \mathbf{j}_{f}^{T} \mathbf{j}_{f} = 1$$
$$\mathbf{i}_{f} \cdot \mathbf{j}_{f} = \mathbf{i}_{f}^{T} \mathbf{j}_{f} = 0$$

$$\hat{\mathbf{i}}_f^T Q Q_{\triangleright}^T \hat{\mathbf{i}}_f = 1$$
 $\hat{\mathbf{j}}_f^T Q Q^T \hat{\mathbf{j}}_f = 1$
 $\hat{\mathbf{i}}_f^T Q Q^T \hat{\mathbf{j}}_f = 0$

Computed

Orthonormality of M

• We have computed
$$(\hat{\mathbf{i}}_f^T, \hat{\mathbf{j}}_f^T)$$
 for $f=1,...,F$.
$$\hat{\mathbf{i}}_f^T Q Q^T \hat{\mathbf{i}}_f = 1$$

$$\hat{\mathbf{j}}_f^T Q Q^T \hat{\mathbf{j}}_f = 1$$
 Q is unknown.
$$\hat{\mathbf{i}}_f^T Q Q^T \hat{\mathbf{j}}_f = 0$$

- Q is 3×3 matrix, 9 variables, 3F quadratic equations.
 Q can be solved with 3 or more images (F ≥ 3) using
 - Newton's method.

Final Solution:

$$M = U_1 (\Sigma_1)^{1/2} Q$$
 $S = Q^{-1} (\Sigma_1)^{1/2} V_1^T$ Camera Motion Scene Structure

Summary: Orthographic SFM

- 1. Detect and track feature points.
- Create the centroid subtracted matrix W of corresponding feature points.
 - Compute SVD of W and enforce rank constraint.

$$W = U \Sigma V^{T} = U_{1} \Sigma_{1} V_{1}^{T}$$

$$(2F \times 3) (3 \times 3) (3 \times N)$$

- 4. Set $M = U_1(\Sigma_1)^{1/2}Q$ and $S = Q^{-1}(\Sigma_1)^{1/2}V_1^T$.
- 5. Find Q by enforcing the orthonormality constraint.

Results

Input Image Sequence

3D Reconstruction

Tracked Features

3D Reconstruction

References

https://www.youtube.com/watch?v=olvg7sbJRIA&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index=7
https://www.youtube.com/watch?v=JlOzyyhk1v0&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index=8
https://www.youtube.com/watch?v=Uhkb8Zq-dnM&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index=9
https://www.youtube.com/watch?v=Lyd7cf0agvl&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index=10
https://www.youtube.com/watch?v=0BVZDvRrYtQ&list=PL2zRqk16wsdoYzrWStffqBAoUY8XdvatV&index=11