Midtern on 9/29. Syllahrs chapters 12 and 13. (Of course not enything, see discussion worksheets)

Time: 6:30 - 8:00 pm. Show up around 6-6:15 if possible. Location: TBA.

Def: A quadric surface is the graph of a second

degree equation in three variables 11, y, 2.

$$Ax^{1} + By^{2} + Cz^{2} + J = 0$$
 OR $Ax^{1} + By^{2} + Iz = 0$

· They form the three dimensional counterpats to conic sections.

Example 3

Use traces to sketch the quadric surface with equation

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

y2 = 40x

The ellipsoid
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

 $\frac{\chi^2}{\alpha^2} - \frac{y^2}{\lambda^2} = 1$

Eg $x = 0 \rightarrow \frac{y}{7} + \frac{2^2}{4^2} = 1$ which is an ellipse in the A: Check traces when x=0, y=0, t=0. Similarly, y=0,2=0 will give you in general, x = k in ll also give you an ellipse but k values must be restricted. ellipers on the nz-plane and my plane verp.

traces are parabolas.

Example 4

Use traces to sketch the surface $z = 4x^2 + y^2$.

A:
$$x = 0 \Rightarrow z = y^2$$
 (parabola on the $y \ge plane$)

 $y = 0 \Rightarrow z = 4x^2$ (parabola on the $x \ge plane$)

 $z = k \Rightarrow k = 4x^2 + y^2 \Rightarrow x^2 + y^2 = \frac{k}{4} \Rightarrow \frac{x^2}{k/4} + \frac{y}{k} = 1$ (ellipse on the plane $z = k$)

It original altraces are ellipses and vertical traces are parabolas.

Ellipse	oid
	<i>z</i> •
	x y

Surface

Equation

$$z^2$$

All traces are ellipses.

If
$$a = b = c$$
, the ellipsoid is a sphere.

Elliptic Paraboloid

Horizontal traces are ellipses.

power indicates the axis of the paraboloid.

Hyperbolic Paraboloid

Horizontal traces are hyperbolas.

Vertical traces are parabolas.

The case where c < 0 is

illustrated.

Cone

Horizontal traces are ellipses.

Vertical traces in the planes

$$x = k$$
 and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.

Hyperboloid of One Sheet

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry

corresponds to the variable whose coefficient is negative.

Hyperboloid of Two Sheets

Horizontal traces in z = k are

ellipses if k > c or k < -c. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Section 13.4, Velocity, Speed, and Acceleration:

· Suppose that a particle move through space so that the position vector is $\vec{r}(t)$ at time t.

· Y(t+h)-Y(t) is the average velocity over a time interval of length h

h direction vector the the targent line

· velocity vector: $\vec{V}(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h} = (r'(t))$ · speed: $||\vec{V}(t)|| = (|\vec{Y}(t)|| = v)$ Aside: $L = [||\vec{Y}(t)|| dt$ is the distance travelled by

Aside: L= SII \$\vec{7}(t) || dt is the distance travelled by

and legth

acceleration: $\vec{a}(t) = r''(t) = v'(t)$.

Example 1

The position vector of an object moving in a plane is given by $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}$. Find its velocity, speed, and acceleration when t = 1 and illustrate geometrically.

A:
$$\vec{y}(t) = \langle t^3, t^2 \rangle \Rightarrow \vec{v}(t) = \vec{v}'(t) = \langle st^2, 2t \rangle, ||\vec{v}'(t)|| = ||qt^4 + 4t^2|| = t ||qt^2 + 4||$$

$$\Rightarrow \vec{x}(t) = \langle 6t, 2 \rangle.$$
When $t = 1$, $\vec{v}(1) = \langle 1, 1 \rangle$, $\vec{v}(1) = \langle 3, 2 \rangle$, $v(1) = \sqrt{13}$, $\vec{x}(1) = \langle 6, 2 \rangle$.

Find the velocity, acceleration, and speed of a particle with position vector $\mathbf{r}(t) = \left\langle t^2, e^t, te^t \right\rangle$.

A:
$$\vec{v}(t) = \langle t^2, e^t, te^t \rangle$$

$$\vec{v}'(t) = \langle 2t, e^t, e^t, te^t \rangle \Rightarrow v(t) = \sqrt{4t^2 + e^{2t} + e^{2t} + e^{2t}}$$

$$= e^t(t+i)$$

Example 3

A moving particle starts at an initial position $\mathbf{r}(0) = \langle 1, 0, 0 \rangle$ with initial velocity $\mathbf{v}(0) = \mathbf{i} - \mathbf{j} + \mathbf{k}$. Its acceleration is $\mathbf{a}(t) = 4t \, \mathbf{i} + 6t \, \mathbf{j} + \mathbf{k}$. Find its velocity and position at time t.

A:
$$a(t) = v'(t) = 4t^{2} + 6t^{2} + 1$$

=> \ \ \a(t) dt = v(t)

$$= (2t^{2} + C_{1}) \hat{i} + (3t^{2} + C_{2}) \hat{j} + (t + C_{3}) \hat{k}$$

$$v(t) = \gamma'(t) \Rightarrow \gamma(t) = \left(\frac{2t^{\gamma} + t}{3} + t\right) \hat{i} + \left(t^{3} - t\right) \hat{j} + \left(\frac{t^{2} + t}{2} + t\right) \hat{k} + \hat{D}$$

$$\gamma(0) = (1+0)^{2} + 0)^{2} + 0)^{2} = (1+0)^{2} + (1+$$

Example 4

An object with mass m that moves in a circular path with constant angular speed ω has position vector $\mathbf{r}(t) = a \cos \omega t \, \mathbf{i} + a \sin \omega t \, \mathbf{j}$. Find the force acting on the object and show that it is directed toward the origin.

$$\Rightarrow \vec{\gamma}''(t) = -a\omega^2 \cos(\omega t) \hat{i} - a\omega^2 \sin(\omega t) \hat{j}$$

 $(\omega = d\theta)$

Tangential and Normal Components of Acceleration.

Recall:
$$\overrightarrow{T}(t) = \overrightarrow{\gamma'}(t) = \overrightarrow{V}(t) \Rightarrow \overrightarrow{V}(t) = v(t) \cdot \overrightarrow{T}(t)$$

Let ar and an be the tangential and normal components of acceleration. Then $a_7 = v'$ and $a_N = v^2 \cdot K$ Kenak: When K is large, eg: sharp trus, an is high so "travelling at high speeds on a sharp curve pushes you towards the center of the Throwback: K = ||T'(t)|| - Fact: K = ||8| x x" || || ||7||3 $\frac{\text{Proof:}}{||Y'||} = Y' = ||Y'|| \cdot T = \frac{ds}{dt} \cdot T$ orc length function

$$\Rightarrow Y'' = \frac{d^{2}s}{dt^{2}} \cdot T + \frac{ds}{dt} \cdot T'$$

$$\Rightarrow Y' \times Y'' = Y' \times (S'' \cdot T + S' \cdot T') = S'' (Y' \times T) + S' (Y' \times T')$$

$$= S'' \cdot ||Y'|| \left(\frac{Y'}{||Y'||} \times T\right) = S'' \cdot ||Y'|| (T \times T) = D$$

$$\Rightarrow Y' \times Y'' = S' (Y' \times T') \Rightarrow ||Y' \times Y''|| = |S'| \cdot ||Y' \times T'||$$

$$= ||S'| \cdot ||Y'|| \cdot ||T \times T'||$$

$$= |S'| \cdot ||T'|| = ||Y' \times Y''||$$

$$= ||T'|| = ||Y' \times Y''|| \Rightarrow ||T'||^{2}$$

$$= ||T'|| = ||Y' \times Y''|| \Rightarrow ||T'||^{2}$$

$$= ||T'|| = ||Y' \times Y''||$$

$$= ||T'|| = ||T'|| \times ||T'||$$

$$= ||T'|| = ||T'|| \times ||T'||$$

Example 7:

A:
$$a_{7} = \gamma'$$
, $a_{N} = \gamma^{2} \cdot k$.

 $y'(t) = \langle 2t, 2t, 3t^{2} \rangle = \gamma(t) = \sqrt{8t^{2} + 9t^{9}} \Rightarrow a_{7} = \frac{1}{2\sqrt{8t^{2} + 9t^{9}}}$. Het +36t³
 $\Rightarrow \gamma''(t) = \langle 2, 2, 6t \rangle$
 $\Rightarrow \gamma''(t)$