Números naturales en distintas bases

Estamos habituados a encontrar los números representados en el sistema decimal, o de base 10, con los diez dígitos: 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9. De menor a mayor, y sin saltarnos ninguno, los primeros naturales se representan

$$0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < \dots$$

Y los que siguen a 437 son 438, 439, 440, 441, ... El sistema decimal lo tenemos tan asumido que vamos a pasar por él para entender cualquier otro. De cada sistema entenderemos que los dígitos $0 < a_1 < a_2 < ... < a_{b-1}$ de su base tienen los valores correspondientes a los b primeros números enteros no negativos. Es costumbre representarlos, si la base b es menor o igual que diez, con los símbolos 0, 1, ..., b-1.

Para sistemas con más de diez dígitos en la base se necesitan más *símbolos* para representar los dígitos a partir del undécimo, para lo que se añaden las primeras letras mayúsculas del alfabeto:

$$0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < \dots$$

De esta manera se podrá representar, en cualquier sistema, todo valor representable por el sistema decimal. En un sistema de numeración con base $\mathbf b$ y dígitos $0,\ a_1,\ ...,\ a_{b-1}$ un número natural de m dígitos, digamos $d_{m-1}d_{m-2}...d_2d_1d_0,\ 0 \le d_j < b$ para $j=0,1,\ldots,m-1$ y $d_{m-1}\ne 0$, tendrá valor:

$$d_{m-1} \cdot \mathbf{b}^{m-1} + d_{m-2} \cdot \mathbf{b}^{m-2} + \dots + d_2 \cdot \mathbf{b}^2 + d_1 \cdot \mathbf{b} + d_0.$$
 (1)

Para especificar que la expresión $d_{m-1}d_{m-2}...d_2d_1d_0$ es en una base **b**, distinta de la decimal, utilizaremos la notación: $d_{m-1}d_{m-2}...d_2d_1d_0$ _{-b}.

Es sencillo ver que dado un número z, sus dígitos en una base \mathbf{b} se pueden calcular con el siguiente algoritmo

Cálculo de los dígitos de un natural en base b

Objetivo: Dado $z \in \mathbb{N}$ y una base **b** averiguar $0 \le d_0, d_1, \dots, d_k < \mathbf{b}$, con $d_m \ne 0$ tales que $z = d_k \dots d_1 d_{0 \perp \mathbf{b}}$ es decir

$$z = d_k \cdot \mathbf{b}^k + d_{k-1} \cdot \mathbf{b}^{k-1} + \dots + d_2 \cdot \mathbf{b}^2 + d_1 \cdot \mathbf{b} + d_0.$$

Procedimiento: Se calcula d_0 como el resto, no negativo y menor que \mathbf{b} , de la división entera de z por \mathbf{b} . Si q_1 es el cociente de esta división, es decir $z = q_1 \cdot \mathbf{b} + d_0$ con $0 \le d_0 < \mathbf{b}$, se tiene:

$$q_1 = d_k \cdot \mathbf{b}^{k-1} + d_{k-1} \cdot \mathbf{b}^{k-2} + \dots + d_2 \cdot \mathbf{b} + d_1 \quad \text{con } 0 < q_1 < z.$$

Si $q_1 = 0$ se acaba el algoritmo. En otro caso, se repite el cálculo anterior con q_1 , encontrando $0 \le d_1 < \mathbf{b}$ tal que $q_1 = q_2 \mathbf{b} + d_1$, con $0 \le q_2 < q_1 < z$. Este procedimiento acaba pues en un número finito de pasos aparece un cociente menor que \mathbf{b} : si $0 < q_k < \mathbf{b}$ el siguiente paso sería $q_k = 0 \cdot \mathbf{b} + d_k$, con $d_k = q_k$ el dígito principal.

Ejemplos

• Sistema binario o de base 2 con dígitos 0 < 1. Primeros valores (naturales):

decimal:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
base 2:	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101

El desarrollo en base 2 del número 435 se averigua con los siguientes cálculos:

$$435 = 217 \cdot \mathbf{2} + 1, \quad 217 = 108 \cdot \mathbf{2} + 1, \quad 108 = 54 \cdot \mathbf{2} + 0, \quad 54 = 27 \cdot \mathbf{2} + 0,$$
$$27 = 13 \cdot \mathbf{2} + 1, \quad 13 = 6 \cdot \mathbf{2} + 1, \quad 6 = 3 \cdot \mathbf{2} + 0, \quad 3 = 1 \cdot \mathbf{2} + 1, \quad 1 = 0 \cdot \mathbf{2} + 1,$$

de manera que $435 = 110110011_{12}$.

El valor decimal del número de nueve dígitos 110110011 en base 2 es

$$110110011_{2} = 1 \cdot 2^{8} + 1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$
$$= 2^{8} + 2^{7} + 2^{5} + 2^{4} + 2 + 1 = 256 + 128 + 32 + 16 + 2 + 1 = 435.$$

■ Sistema ternario, base 3, dígitos 0 < 1 < 2. La representación en base 3 del número 428 se obtiene en los siguientes cálculos:

$$428 = 142 \cdot \mathbf{3} + 2$$
, $142 = 47 \cdot \mathbf{3} + 1$, $47 = 15 \cdot \mathbf{3} + 2$, $15 = 5 \cdot \mathbf{3} + 0$, $5 = 1 \cdot \mathbf{3} + 2$, $1 = 0 \cdot \mathbf{3} + 1$.

y así $428 = 120212_{13}$.

El valor decimal del número de seis dígitos 120212 en base 3 es:

$$\begin{aligned} 120212 \rfloor_3 &= 1 \cdot 3^5 + 2 \cdot 3^4 + 2 \cdot 3^2 + 1 \cdot 3 + 2 \\ &= 243 + 2 \cdot 81 + 2 \cdot 9 + 3 + 2 = 243 + 162 + 18 + 3 + 2 = 428 \,. \end{aligned}$$

• Sistema hexadecimal, base 16, dígitos 0123456789ABCDEF.

$$41531 = 2595 \cdot \mathbf{16} + 11, \quad 2595 = 162 \cdot \mathbf{16} + 3, \quad 162 = 10 \cdot \mathbf{16} + 2, \quad 10 = 0 \cdot \mathbf{16} + 10, \quad 41531 = A23B_{\perp 16}$$
$$A23B_{\perp 16} = 10 \cdot 16^3 + 2 \cdot 16^2 + 3 \cdot 16 + 11$$
$$= 10 \cdot 4096 + 2 \cdot 256 + 3 \cdot 16 + 11 = 40960 + 512 + 48 + 11 = 41531.$$

Algoritmo de Horner

Como acabamos de ver en los ejemplos, es muy sencillo averiguar qué número en base 10 es el que en base \mathbf{b} tiene expresión $d_{m-1}d_{m-2}\dots d_2d_1d_{0_{-\mathbf{b}}}$. Basta con sustituir y evaluar:

$$d_{m-1} \cdot \mathbf{b}^{m-1} + d_{m-2} \cdot \mathbf{b}^{m-2} + \dots + d_2 \cdot \mathbf{b}^2 + d_1 \cdot \mathbf{b} + d_0$$
.

Para evaluar esta expresión, para m dígitos, se han de realizar: m-1 sumas y $1+2+\cdots+(m-1)=\frac{m(m-1)}{2}$ productos. El siguiente algoritmo, de propósito más general, nos aporta un gran ahorro en el número de operaciones.

Algoritmo de Horner

Objetivo: Calcular $p(x_0)$ con p(x) el polinomio de grado n:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

Procedimiento: Se calcula, a partir de los coeficientes del polinomio y del valor x_0 , la sucesión

$$b_0 = a_n$$
, $b_j = b_{j-1} \cdot x_0 + a_{n-j}$ para $j = 1, \dots, n$.

Se tiene que $p(x_0) = b_n$ (el último de la sucesión).

Es directo ver que en este algoritmo se realizan n sumas y n productos: una suma y un producto en el cálculo de cada b_i para $j=1,\ldots,n$.

El uso de este algoritmo para el asunto que nos traemos entre manos es claro: el número que en base \mathbf{b} tiene expresión $d_{m-1}d_{m-2}\dots d_2d_1d_0$ es $p(\mathbf{b})$ con p(x) el polinomio $p(x)=d_{m-1}x^{m-1}+d_{m-2}x^{m-2}+\dots+d_2x^2+d_1x+d_0$.

Ejemplos: Para calcular, con el algoritmo de Horner, el valor decimal de 120212_{13} tomamos el polinomio en x de grado 6-1=5 con coeficientes, de mayor a menor grado, los 6 dígitos 1,2,0,2,1,2:

$$p(x) = x^5 + 2x^4 + 2x^2 + x + 2 = 2 + x(1 + x(2 + x(0 + x(2 + x(1))))).$$

La sucesión del algoritmo de Horner, para evaluar dicho polinomio en x=3, quedaría:

$$b_0 = 1$$
, $b_1 = 1 \cdot \mathbf{3} + 2 = 5$, $b_2 = 5 \cdot \mathbf{3} + 0 = 15$, $b_3 = 15 \cdot \mathbf{3} + 2 = 47$, $b_4 = 47 \cdot \mathbf{3} + 1 = 142$, $b_5 = 142 \cdot \mathbf{3} + 2 = 428$.

El valor decimal de $A23B_{\perp 16}$ es el que se alcanza con el siguiente cálculo

$$p(x) = 10x^3 + 2x^2 + 3x + 11$$

 $b_0 = 10$, $b_1 = 10 \cdot \mathbf{16} + 2 = 162$, $b_2 = 162 \cdot \mathbf{16} + 3 = 2592 + 3 = 2595$, $b_3 = 2595 \cdot \mathbf{16} + 11 = 41520 + 11 = 41531$.

Desarrollos decimales finitos y periódicos

Los números racionales tienen desarrollos decimales finitos o infinitos pero periódicos. Ejemplos:

$$\frac{33}{12} = 2.75$$
 $\frac{12901}{10100} = 1.27\overline{7326}$.

Si $p,q \in \mathbb{N}$ son dos naturales (se pueden considerar coprimos), el racional p/q se puede descomponer como una suma

$$\frac{p}{q} = z + \frac{p'}{q} \quad \text{con } 0 \le p' < q \text{ y } z \in \mathbb{N}.$$

El natural z, que es ≥ 0 , se dice la parte entera y $\frac{p'}{q}$ la parte fraccionaria, un racional no negativo y menor que 1. Sea r un racional positivo y menor que 1, 0 < r < 1. Sea $\mathbf{b} \geq 2$ una base de numeración. Existen únicos enteros $0 \leq d_{-j} < \mathbf{b}$, los dígitos decimales en base \mathbf{b} de r, tales que

$$r = d_{-1}\mathbf{b}^{-1} + d_{-2}\mathbf{b}^{-2} + \dots + d_{-k}\mathbf{b}^{-k} + \dots$$

que denotaremos como $r = 0.d_{-1}d_{-2}\dots d_{-k}\dots_{\mathbf{b}}$. Este desarrollo puede ser

finito
$$r = 0.d_{-1} \dots d_{-j \perp \mathbf{b}} \quad (d_{-j} \neq 0)$$
 ocurre si $r \cdot \mathbf{b}^j \in \mathbb{N}$ periódico $r = 0.d_{-1} \dots d_{-\ell} \overline{d_{-\ell+1} \dots d_{-k \perp \mathbf{b}}}$ ocurre si $r(\mathbf{b}^k - \mathbf{b}^\ell) \in \mathbb{N}$

en este segundo caso existe un valor mínimo de k para el que se verifica la condición. Ejemplos, en base 2:

$$\begin{split} \frac{9}{16} &= \frac{1}{2} + \frac{1}{16} = 0.1001 \rfloor_2 \\ \frac{7}{24} &= \frac{1}{4} + \frac{1}{24} = 0.010\overline{01} \rfloor_2 \quad \text{obs\'ervese que } \frac{7}{24}(2^5 - 2^3) = 7 \in \mathbb{N} \,. \end{split}$$

De la expresión

$$r = d_{-1}\mathbf{b}^{-1} + d_{-2}\mathbf{b}^{-2} + \dots + d_{-k}\mathbf{b}^{-k} + \dots$$

es sencillo ver cómo, dado un racional de este tipo, recuperar sus dígitos decimales: basta con ir multiplicando por \mathbf{b} y separar la parte entera (el dígito decimal a extraer) de la parte fraccionaria (donde encontramos el resto de dígitos). Por ejemplo, para encontrar los dígitos decimales de 7/24 en base $\mathbf{b} = 2$:

- Puesto que $\mathbf{2} \cdot \frac{7}{24} = \frac{7}{12} < 1$, el primer decimal es $0, \frac{7}{24} = 0.0 \dots_{2}$, y el siguiente será el primer decimal de $\mathbf{2} \cdot \frac{7}{24} 0 = \frac{7}{12}$.
- De $\mathbf{2} \cdot \frac{7}{12} = \frac{7}{6} = 1 + \frac{1}{6}$, averiguamos el segundo decimal: $\frac{7}{24} = 0.01..._2$, y el siguiente será el primero de de $2 \cdot \frac{7}{12} 1 = \frac{1}{6}$.
- Ahora, $2 \cdot \frac{1}{6} = \frac{1}{3} < 1$, y así: $\frac{7}{24} = 0.010 \dots_{2}$, y seguirá el primer decimal de $\frac{1}{3}$.
- La igualdad $\mathbf{2} \cdot \frac{1}{3} = \frac{2}{3}$, nos dice que $\frac{7}{24} = 0.0100..._{2}$, y hay que seguir con $\frac{2}{3}$.
- De $\mathbf{2} \cdot \frac{2}{3} = 1 + \frac{1}{3}$, $\frac{2}{24} = 0.01001..._2$, con $\frac{1}{3}$ para averiguar el siguiente decimal.
- Pero $\frac{1}{3}$ es un racional que ya hemos visitado en esta lista, y así tenemos una repetición de decimales desde su aparición. En definitiva $\boxed{\frac{7}{24} = 0.010\overline{01}_{2}}$.

¿Cómo reconstruir un número fraccionario a partir de su expresión en una base?

Cuando el desarrollo es finito, estamos evaluando un polinomio en b^{-1} , así que podemos usar el algoritmo de Horner. Nótese que el término independiente de este polinomio es 0.

Supongamos ahora que r tiene un desarrollo periódico,

$$r = 0.d_{-1} \dots d_{-\ell} \overline{d_{-\ell-1} \dots d_{-k}} \rfloor_{\mathbf{b}}.$$

Entonces

$$\mathbf{b}^{k}r = d_{-1} \dots d_{-\ell} d_{-\ell-1} \dots d_{-k} \overline{d_{-\ell-1} \dots d_{-k}}_{\mathbf{b}},$$

$$\mathbf{b}^{l}r = 0.\overline{d_{-\ell-1} \dots d_{-k}}_{\mathbf{b}},$$

de manera que

$$r = (d_{-1} \dots d_{-k \cup \mathbf{b}} - d_{-1} \dots d_{-\ell \cup \mathbf{b}}) / (\mathbf{b}^k - \mathbf{b}^l).$$

Basta ahora con hacer la resta del numerador, transformando cada número natural usando el algoritmo de Horner. Nótese que esta idea vale tanto para números periódicos puros ($\ell=0$), como para números periódicos mixtos con un anteperiodo.