IP CORE MANUAL

10 Gigabit Ethernet UDP Transmit Core

px_10ge_udp_tx

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818–5900
http://www.pentek.com/

Copyright © 2017–2018

Manual Part Number: 807.48401 Rev: 1.2 – June 7, 2018

Manual Revision History

<u>Date</u>	Version	<u>Comments</u>
6/16/17	1.0	Initial Release
10/20/17	1.1	Revised Sect 3.2, Sect 3.3, Sect 4.1, Sect 4.9, Sect 4.12, Sect 4.13, Sect 4.14, Sect 5.5, Sect 6.1, and Sect 6.2.
6/7/18	1.2	Revised Sect 1.6, Table 4–1, and Sect 5.6.

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/ contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2017–2018, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. Texas Instruments is a trademark of Texas Instruments, Incorporated. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

		Page
	IP Facts	
		_
	Description	
	Features	
	Table 1–1: If Facts Table	/
	Chapter 1: Overview	
1.1	Functional Description	9
	Figure 1–1: 10 Gigabit Ethernet UDP Transmit Core Block Diagram	
1.2	Applications	
1.3	System Requirements	
1.4	Licensing and Ordering Information	
1.5	Contacting Technical Support	
1.6	Documentation	
	Chapter 2: General Product Specifications	
2.1	Standards	13
2.2	Performance, Maximum Frequencies	13
2.3	Resource Utilization	13
	Table 2-1: Resource Usage and Availability	13
2.4	Limitations and Unsupported Features	
	Chapter 3: Port Descriptions	
	·	
3.1	AXI4-Lite Core Interfaces	
	3.1.1 Control/Status Register (CSR) Interface	
	Table 3–1: Control/Status Register (CSR) Interface Port Descriptions	
3.2	AXI4-Stream Core Interfaces	
	3.2.1 Stream Data (DATAIO_PD) Interface	
2.2	Table 3–2: Stream Data (DATAIO_PD) Interface Port Descriptions	
3.3	I/O Signals	
	Table 3–3: I/O SIgnals	19

Page

Chapter 4: Register Space

4.1	Memory Maps	21
	Table 4–1: Memory Map: Control Registers	
	Table 4–2: Memory Map: Status Registers	
	Table 4–3: Memory Map: Interrupt Enable/Status/Flag Registers	
4.2	Upper Dest MAC	
	Figure 4–1: Upper Dest MAC	
	Table 4–4: Upper Dest MAC (Base Address + 0x00)	
4.3	Lower Dest MAC	
	Figure 4–2: Lower Dest MAC	
	Table 4–5: Lower Dest MAC (Base Address + 0x04)	
4.4	IP Source	25
	Figure 4–3: IP Source	25
	Table 4–6: IP Source (Base Address + 0x08)	25
4.5	IP Destination	26
	Figure 4–4: IP Destination	26
	Table 4–7: IP Destination (Base Address + 0x0C)	
4.6	UDP Source Port	27
	Figure 4–5: UDP Source Port	27
	Table 4–8: UDP Source (Base Address + 0x10)	27
4.7	UDP Destination Port	28
	Figure 4–6: UDP Destination Port	28
	Table 4–9: UDP Destination (Base Address + 0x14)	28
4.8	Core Function Control	29
	Figure 4–7: Core Function Control	29
	Table 4–10: Core Function Control (Base Address + 0x18)	29
4.9	TX Status	30
	Figure 4–8: TX Status	30
	Table 4–11: TX Status (Base Address + 0x1C)	30
4.10	Intake FIFO Status	31
	Figure 4–9: Intake FIFO Status	31
	Table 4–12: Intake FIFO Status (Base Address + 0x20)	31
4.11	Outgoing FIFO Status	32
	Figure 4–10: Outgoing FIFO Status	32
	Table 4–13: Outgoing FIFO Status (Base Address + 0x24)	32
4.12	Interrupt Enable Register	33
	Figure 4–11: Interrupt Enable Register	33
	Table 4–14: Interrupt Enable Register (Base Address + 0x28)	
4.13	Interrupt Status Register	
	Figure 4–12: Interrupt Status Register	34
	Table 4–15: Interrupt Status Register (Base Address + 0x2C)	34

		Page
	Chapter 4: Register Space (continued)	
4.14	Interrupt Flag Register	35
	Figure 4-13: Interrupt Flag Register	35
	Table 4–16: Interrupt Flag Register (Base Address + 0x30)	35
	Chapter 5: Designing with the Core	
5.1	General Design Guidelines	37
5.2	Clocking	
5.3	Resets	37
5.4	Interrupts	37
5.5	Interface Operation	38
5.6	Programming Sequence	38
	Chapter 6: Design Flow Steps	
6.1	Pentek IP Catalog	39
	Figure 6-1: 10 Gigabit Ethernet UDP Transmit Core in Pentek IP Catalog	
	Figure 6-2: 10 Gigabit Ethernet UDP Transmit Core IP Symbol	40
6.2	User Parameters	
6.3	Generating Output	
6.4	Constraining the Core	
6.5	Simulation	
	Figure 6-3: Setup Registers	
	Figure 6–4: Valid Data to Core	42

Page

This page is intentionally blank

IP Facts

Description

Pentek's NavigatorTM 10 Gigabit Ethernet UDP Transmit IP Core takes AXI4–Lite data and packages it into UDP packets to be sent by the Xilinx PCS/PMA IP Core, or the Xilinx MAC IP Core. This core also handles setup for the PCS/PMA Core, or Xaui IP Core.

This core complies with the ARM® AMBA® AXI4 specification. This manual defines the hardware interface, software interface, and parameterization options for the 10 Gigabit Ethernet UDP Transmit IP Core.

Features

- Programmable MAC, IP, and UDP source and destination addresses.
- Selectable maximum packet sizes of 1K or 8K.
- Custom packet size enable.
- All controls and registers are accessible via AXI4-Lite.

Table 1-1: IP Facts Table					
Core Specifics					
Supported Design Family ^a	Kintex® Ultrascale				
Supported User Interfaces	AXI4-Lite and AXI4- Stream				
Resources	See Table 2-1				
Provided with the Core					
Design Files	encrypted VHDL				
Example Design	Not Provided				
Test Bench	VHDL				
Constraints File	Not Provided ^b				
Simulation Model	VHDL				
Supported S/W Driver	HAL Software Support				
Tested Design Flows	Tested Design Flows				
Design Entry	Vivado [®] Design Suite 2017.2 or later				
Simulation	Vivado VSim				
Synthesis	Vivado Synthesis				
Support					
Provided by Pentek fpgasupport@pentek.com					

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

Page 8

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

Pentek's Navigator 10 Gigabit Ethernet UDP Transmit IP Core takes AXI4–Lite data and packages it into UDP packets to be sent by the Xilinx PCS/PMA IP Core, or Xilinx MAC IP core. This core also handles setup for the PCS/PMA core, or Xaui IP core.

Figure 1–1 is the top level block diagram of the 10 Gigabit Ethernet UDP Transmit Core. The modules within the block diagram are explained in the later sections of this manual.

Figure 1–1: 10 Gigabit Ethernet UDP Transmit Core Block Diagram

1.1 Functional Description (continued)

Pentek Control & Status Registers: This module implements a 32-bit AXI4 Slave interface to access the Register Space.
Counter: This module counts the incoming data. If custom packet size is enabled, this count is used in the state machine to count how much data there is to send. This count is also used to compute the IP header checksum.
MAC Header: Reads the Control block to get the Destination and Source MAC address. This is used in the State machine when packaging the data.
IP Header: Reads the Control block to get the Destination and Source IP address. This is used in the State machine when packaging the data. The IP header checksum is also calculated.
UDP Header: Reads the Control block to get the Destination and Source ports. This is used in the State machine when packaging the data.
Intake FIFO: Takes data in and waits for a whole packet if custom packet size is enabled or waits for 1K or 8K if custom size is disabled.
State Machine: Builds the Ethernet packet 64 bits at a time. Sends the MAC layer, IP header, UDP header, then data payload. There are no pauses once the state machine starts building the packet. Calculates the correct tkeep on the last cycle of sending each packet.
Outgoing FIFO: Stores a whole packet ready for the PCS/PMA core. Packet fifo handles the AXI control signals to the PCS/PMA core.

1.2 Applications

The Pentek Navigator 10 Gigabit Ethernet UDP Transmit IP Core can be used to package data for the following Xilinx IP Cores:

10G Ethernet Subsystem 10G Ethernet MAC Tri Mode Ethernet MAC

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

The 10 Gigabit Ethernet UDP Transmit IP Core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for licensing and ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201–818–5900 ext. 238, 9 am to 5 pm EST).

1.6 Documentation

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) ARM AMBA AXI4 Protocol Version 2.0 Specification http://www.arm.com/products/system-ip/amba-specifications.php

Page 12

This page is intentionally blank

Chapter 2: General Product Specifications

2.1 Standards

The 10 Gigabit Ethernet UDP core has bus interfaces that comply with the *ARM AMBA AXI4–Lite Protocol Specification* and the *AMBA AXI4–Stream Protocol Specification*.

This core also complies with the following:

- 802.1Q-2011 IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
- IPv4 (Internet Protocol version 4)
- UDP (User Datagram Protocol)

2.2 Performance, Maximum Frequencies

- 10 Gigabit Ethernet capable core
- Ethernet IP runs at 156.25 MHz

2.3 Resource Utilization

The resource utilization of the 10 Gigabit Ethernet UDP core is shown in Table 2–1. Resources have been estimated for the Kintex Ultrascale XCKU060–2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2–1: Resource Usage and Availability				
Resource	# Used			
LUT	447 384			
Flip-Flops	398 431			

NOTE: Actual utilization may vary based on the user design in which the 10 Gigabit Ethernet UDP core is incorporated.

2.4 Limitations and Unsupported Features

This core cannot send data packets larger than 8192 bytes.

Page 14

This page is intentionally blank

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

- AXI4-Lite Core Interfaces
- AXI4–Stream Core Interfaces
- I/O Signals

3.1 **AXI4-Lite Core Interfaces**

The 10 Gigabit Ethernet UDP Transmit IP Core uses the Control/Status Register (CSR) interface to control, and receive status from, the user design.

3.1.1 Control/Status Register (CSR) Interface

The CSR interface is an AXI4–Lite Slave Interface that can be used to access the control and status registers in the 10 Gigabit Ethernet UDP Transmit Core. Table 3–1 defines the ports in the CSR Interface. See Chapter 4 for a Control/Status Register memory map and bit definitions. See the *AMBA AXI4–Lite Specification* for more details on operation of the AXI4–Lite interfaces.

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions					
Port	Direction	Width	Description		
s_axi_csr_aclk	Input	1	Clock		
s_axi_csr_aresetn	Input	1	Reset: Active low. This value will reset all control registers to their initial states.		
s_axi_csr_awaddr	Input	7	Write Address: Address used for write operations. It must be valid when s_axi_csr_awvalid is asserted and must be held until s_axi_csr_awready is asserted by the 10 GbE UDP Transmit Core.		
s_axi_csr_awprot	Input	3	Protection: The 10 GbE UDP Transmit Core ignores these bits.		

Table 3-1: Cor	ntrol/Status	Registe	er (CSR) Interface Port Descriptions (Continued)
Port	Direction	Width	Description
s_axi_csr_awvalid	Input	1	Write Address Valid: This input must be asserted to indicate that a valid write address is available on s_axi_csr_awaddr. The 10 GbE UDP Transmit Core asserts s_axi_csr_awready when it is ready to accept the address. The s_axi_csr_awvalid must remain asserted until the rising clock edge after the assertion of s_axi_csr_awready.
s_axi_csr_awready	Output	1	Write Address Ready: This output is asserted by the 10 GbE UDP Transmit Core when it is ready to accept the write address. The address is latched when s_axi_csr_awvalid and s_axi_csr_awready are high on the same cycle.
s_axi_csr_wdata	Input	32	Write Data: This data will be written to the address specified by s_axi_csr_awaddr when s_axi_csr_wvalid and s_axi_csr_ wready are both asserted. The value must be valid when s_axi_csr_wvalid is asserted and held until s_axi_csr_wready is also asserted.
s_axi_csr_wstrb	Input	4	Write Strobes: This signal when asserted indicates the number of bytes of valid data on s_axi_csr_wdata signal. Each of these bits, when asserted indicate that the corresponding byte of s_axi_csr_wdata contains valid data. Bit 0 corresponds to the least significant byte, and bit 3 to the most significant.
s_axi_csr_wvalid	Input	1	Write Valid: This signal must be asserted to indicate that the write data is valid for a write operation. The value on s_axi_csr_wdata is written into the register at address s_axi_csr_awaddr when s_axi_csr_wready and s_axi_csr_wvalid are high on the same cycle.
s_axi_csr_wready	Output		Write Ready: This signal is asserted by the 10 GbE UDP Transmit Core when it is ready to accept data. The value on s_axi_csr_wdata is written into the register at address s_axi_csr_awaddr when s_axi_csr_wready and s_axi_csr_wvalid are high on the same cycle, assuming that the address has already or simultaneously been submitted.
s_axi_csr_bresp	Output	2	Write Response: The core indicates success or failure of a write transaction through this signal, which is valid when s_axi_csr_bvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.
s_axi_csr_bready	Input	1	Write Response Ready: This signal must be asserted by the user logic when it is ready to accept the Write Response.

Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)				
Port	Direction	Width	Description	
s_axi_csr_bvalid	Output	1	Write Response Valid: This signal is asserted by the 10 GbE UDP Transmit Core when the write operation is complete and the Write Response is valid. It is held until s_axi_csr_bready is asserted by the user logic.	
s_axi_csr_araddr	Input	7	Read Address: Address used for read operations. It must be valid when s_axi_csr_arvalid is asserted and must be held until s_axi_csr_arready is asserted by the 10 GbE UDP Transmit Core.	
s_axi_csr_arprot	Input	3	Protection: These bits are ignored by the 10 GbE UDP Transmit Core.	
s_axi_csr_arvalid	Input	1	Read Address Valid: This input must be asserted to indicate that a valid read address is available on the s_axi_csr_araddr. The 10 GbE UDP Transmit Core asserts s_axi_csr_arready when it ready to accept the Read Address. This input must remain asserted until the rising clock edge after the assertion of s_axi_csr_arready.	
s_axi_csr_arready	Output	1	Read Address Ready: This output is asserted by the 10 GbE UDP Transmit Core when it is ready to accept the read address. The address is latched when s_axi_csr_arvalid and s_axi_csr_arready are high on the same cycle.	
s_axi_csr_rdata	Output	32	Read Data: This value is the data read from the address specified by the s_axi_csr_araddr when s_axi_csr_arvalid and s_axi_csr_arready are High on the same cycle.	
s_axi_csr_rresp	Output	2	Read Response: The 10 GbE UDP Transmit Core indicates success or failure of a read transaction through this signal, which is valid when s_axi_csr_rvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.	
s_axi_csr_rvalid	Output	1	Read Data Valid: This signal is asserted by the 10 GbE UDP Transmit Core when the read is complete and the read data is available on the s_axi_csr_rdata. It is held until s_axi_csr_rready is asserted by the user logic.	
s_axi_csr_rready	Input		Read Data Ready: This signal is asserted by the user logic when it is ready to accept the Read Data.	
irq	Output		Interrupt: This is an active High, edge type interrupt request output.	

3.2 AXI4-Stream Core Interfaces

The 10 Gigabit Ethernet UDP Transmit IP Core has the following AXI4–Stream Interface, which is used to transfer data streams.

3.2.1 Stream Data (DATAIO_PD) Interface

This interface is used to transfer the Ethernet stream through the output ports of the 10 Gigabit Ethernet UDP Transmit Core. Table 3–2 defines the ports in the Stream Data Interface. This interface is an AXI4–Stream Master and Slave Interface that is used to output the data to the Ethernet core. This AXI4–Stream bus is synchronous with Ethernet Clock (**coreclk_out**) input of the core. See the *AMBA AXI4–Stream Specification* for more details on the operation of the AXI4–Stream Interface.

Table 3-2: Stream Data (DATAIO_PD) Interface Port Descriptions						
Port	Direction	Width	Description			
axis_aclk	Input	1	Clock for core. Must come from Xilinx IP coreclk_out			
axis_aresetn	Input	1	Reset for core. Must come from resetdone_out from PCS/PMA IP Core			
s_axis_eth_tvalid	Input	1	Input data valid			
s_axis_eth_tready	Output	1	'1' when the core is ready to accept data			
s_axis_eth_tdata	Input	64	Data to be unpacked			
s_axis_eth_tkeep	Input	8	Tkeep for tdata. Must be FF till tlast= '1'			
s_axis_eth_tlast	Input	1	Tlast for tdata			
m_axis_tx_tvalid	Output	1	Tvalid going to Xilinx IP core.			
m_axis_tx_tready	Input	1	Tready going from Xilinx IP core to this one.			
m_axis_tx_tdata	Output	64	Tdata going to Xilinx IP core.			
m_axis_tx_tkeep	Output	8	Tkeep going to Xilinx IP core.			
m_axis_tx_tlast	Output	1	Tlast going to Xilinx IP core.			
m_axis_tx_tuser	Output	1	Tuser going to Xilinx core. Used to abort packets.			

3.3 I/O Signals

The I/O port/signal descriptions of the top level module of the 10 Gigabit Ethernet UDP Transmit Core are provided in Table 3–3..

Table 3–3: I/O Signals				
Port/Signal Name Type Direction Description				
Data Signals				
xilinx_core_rdy std_logic Input Signal from Xilinx IP core notifying user that core is ready to be used.				

Page 20

This page is intentionally blank

Chapter 4: Register Space

This chapter provides the memory maps and register descriptions for the register space of the **px_10ge_udp_tx**. The memory maps are provided in Table 4–1 through Table 4–3. Table 4–4 through Table 4–16 provide further details.

4.1

4.1 Memory Maps Upper Source MAC Lower Source MAC R/W Upper Bits of MAC source address R/W Lower Bits of MAC source address

Lower Source MAC	0X04	K/W	Lower Bits of MAC source address	
Table 4–1: Memory Map: Control Registers				
Register Name	Address (Base Address +)	Access	Description	
Upper Dest MAC	0x00 0x08	R/W	Upper bits of MAC destination address	
Lower Dest MAC	0x04 0x0C	R/W	Lower bits of MAC destination address	
IP Source	0x08 0x10	R/W	IP Source address	
IP Destination	0x0C 0x14	R/W	IP Destination address	
UDP Source Port	0x10 0x18	R/W	Bits 15:0 – UDP Source address /	
UDP Destination Port	0x14 0x18	R/W	Bits 15:0 – UDP Destination address	
Core Function Control	0x18 0x1C	R/W	Bit 0: Resetn Control Bit 1: Intake FIFO Enable/Reset Bit 2: Packet Creation Enable Bit 3: Packet Size Sel. 0=1k 1=8k Bit 4: Custom Packet Size Enable	

combined into one register

Table 4–2: Memory Map: Status Registers			
Register Name	Address (Base Address +)	Access	Description
TX Status	0x1C 0x20	R	Bit 0: xilinx_core_ready Bit 1: Counter Error Bit 2: State Machine Error
Intake FIFO Status	0x20 0x24	R	Bit 0: Intake FIFO Empty Bit 1: Intake FIFO Full Bits 16:2 – Intake FIFO Count
Outgoing FIFO Status	0x2 4 0x28	R	Bit 0: Intake FIFO Empty Bit 1: Intake FIFO Full Bits 16:2 – Intake FIFO Count

Table 4–3:	Table 4–3: Memory Map: Interrupt Enable/Status/Flag Registers				
Register Name	Address (Base Address +)	Access	Description		
Interrupt Enable Register	0x28 0x2C	R/W	Bit 0: xilinx_core_ready Bit 1: Intake FIFO Empty Bit 2: Intake FIFO Full Bit 3: Outgoing FIFO Empty Bit 4: Outgoing FIFO Full		
Interrupt Status Register	0x2G 0x30	R	Bit 0: xilinx_core_ready Bit 1: Intake FIFO Empty Bit 2: Intake FIFO Full Bit 3: Outgoing FIFO Empty Bit 4: Outgoing FIFO Full		
Interrupt Flag Register	0x30 0x3C	R/CLR	Bit 0: xilinx_core_ready Bit 1: Intake FIFO Empty Bit 2: Intake FIFO Full Bit 3: Outgoing FIFO Empty Bit 4: Outgoing FIFO Full		

Add section for

Upper Source Mac 0x00

Page 23

Lower Source Mac 0x04

Similar to Upper Dest MAC and Lower Dest MAC

4.2 Upper Dest MAC

This register is used to control the upper bits of the MAC destination address. This register is illustrated in Figure 4–1 and described in Table 4–4.

Figure 4-1: Upper Dest MAC

31 Ethernet MAC Address bits 47 → 16 0

Table 4–4: Upper Dest MAC (Base Address + 0x00) 0x08				
Bits	Bits Field Name Default Value Access Type			
31:0	MAC Address	0xFFFFFFF	R/W	MAC Address

4.3 Lower Dest MAC

This register is used to control the lower bits of the MAC destination address. This register is illustrated in Figure 4-2 and described in Table 4-5.

Figure 4-2: Lower Dest MAC

31 Reserved 16	15 Ethernet MAC Address bits 15 → 0	0
----------------	-------------------------------------	---

	Table 4–5: Lower Dest MAC (Base Address + 0x04) 0x0C				
Bits Field Name Default Value Access Type Description					
31:16	Reserved	N/A	N/A	Reserved	
15:0	MAC Address	0xFFFFFFF	R/W	MAC Address	

4.4 IP Source

This register is used to control the IP source address. This register is illustrated in Figure 4–3 and described in Table 4–6.

Figure 4–3: IP Source

31	IP Source Address	0
----	-------------------	---

Table 4–6: IP Source (Base Address + 0 x08) 0x10				
Bits	Field Name	Default Value	Access Type	Description
31:0	IP Source	0x00000000	R/W	IP Source Address

4.5 IP Destination

This register is used to control the upper bits of the IP destination address. This register is illustrated in Figure 4-4 and described in Table 4-7.

Figure 4-4: IP Destination

31	IP Destination Address	0
----	------------------------	---

Table 4–7: IP Destination (Base Address + 0x0C) _{0x14}				
Bits Field Name Default Value Access Type Description				
31:0	IP Destination	0x00000000	R/W	IP Destination Address

4.6 UDP Source Port UDP Destination and Source Port

This register is used to control the UDP source address. This register is illustrated in Figure 4-5 and described in Table 4-8.

Figure 4-5: UDP Source Port

31 Reserved 1	6 15 Source UDP Port	0
---------------	----------------------	---

Destination UDP Port

Table 4–8: UDP Source (Base Address + 0x10) 0x18							
Bits	•						
	UDP Destination		Туре				
31:16	Reserved	N/A 0x0000	N/AR/W	Reserved Destination UDP Port			
15:0	UDP Source	0x0000	R/W	UDP Source Port			

4.7 UDP Destination Port Combined in UDP Port Register

This register is used to control the UDP destination port. This register is illustrated in Figure 4–6 and described in Table 4–9.

Figure 4-6: UDP Destination Port

31 R	eserved 16	-15 s	ource UDP Port (
------	------------	------------------	------------------

Table 4–9: UDP Destination (Base Address + 0x14)						
Bits	Field Name	Default Value	Access Type	Description		
31:16	Reserved	N/A	N/A	Reserved		
15:0	UDP Destination	0x0000	R/W	UDP Destination Port		

4.8 Core Function Control

This register is used to control the functions of this core. This register is illustrated in Figure 4-7 and described in Table 4-10.

Figure 4-7: Core Function Control

	Table 4–10: Core Function Control (Base Address + 0x18) _{0x1C}								
Bits	Field Name	Default Value	Access Type	Description					
31:5	Reserved	N/A	N/A	Reserved					
4	Custom Size Enable	0	R/W	When enabled, packet size will be according to tlast of corresponding data or up to the maximum packet size: 1K or 8K.					
3	Packet Size Select	0	R/W	0 = 1K packet 1 = 8K packet					
2	Packet Creation Enable	0	R/W	Starts packet creation. Intake FIFO will continue to function.					
1	FIFO Enable	0	R/W	User intake FIFO Enable/Reset.					
0	Resetn Control	0	R/W	User-controllable core reset.					

4.9 TX Status

This register is used to show the transmit statistics. xilinx_core_rdy indicates that the Xilinx core is ready. Bit 1 shows any errors involving counting incoming data. This bit could indicate a counter overflow. Bit 2 indicates any error involving the state machine reaching an invalid state or condition. This register is illustrated in Figure 4–8 and described in Table 4–11.

Figure 4-8: TX Status

	Table 4–11: TX Status (Base Address + 0x1C) 0x20							
Bits	Bits Field Name Default Access Value Type		Description					
31:3	Reserved	N/A	N/A	Reserved				
2	sm_error	0x0000	R	State Machine Error: An error occured in the state machine logic.				
1	count_error	0	R	Count Error: An error occured with the counter.				
0	xilinx_core_rdy	0	R	TX_ready from Xilinx core.				

4.10 Intake FIFO Status

This register is used to show the status of the input FIFO. This register is illustrated in Figure 4–9 and described in Table 4–12.

Figure 4-9: Intake FIFO Status

	Table 4–12: Intake FIFO Status (Base Address + 0x20) 0x24							
Bits	Field Name Default Access Value Type			Description				
31:17	Reserved	N/A	N/A	Reserved				
16:2	Intake FIFO Count	0x0000	R	Intake FIFO count in bytes.				
1	Intake FIFO Full	0	R	Intake FIFO full.				
0	Intake FIFO Empty	0	R	Intake FIFO empty.				

4.11 Outgoing FIFO Status

This register is used to show the status of the outgoing FIFO. This register is illustrated in Figure 4-10 and described in Table 4-13.

Figure 4–10: Outgoing FIFO Status

	Table 4–13: Outgoing FIFO Status (Base Address + 0x24) 0x28							
Bits	Field Name	Default Value	Access Type	Description				
31:17	Reserved	N/A	N/A	Reserved				
16:2	Outgoing FIFO Count	0x0000	R	Outgoing FIFO count in bytes.				
1	Outgoing FIFO Full	0	R	Outgoing FIFO full.				
0	Outgoing FIFO Empty	0	R	Outgoing FIFO empty.				

4.12 Interrupt Enable Register

The bits in the interrupt enable register are used to enable (or disable) the generation of interrupts based on the condition of certain circuit elements, known as interrupt sources. When a bit in this register associated with a given interrupt source is High, an interrupt will be generated by the rising edge of that source's Interrupt Status Register bit (see Section 4.13). This register is illustrated in Figure 4–11 and described in Table 4–14.

Figure 4-11: Interrupt Enable Register

	Table 4–14: Interrupt Enable Register (Base Address + 0x28) 0x2C								
Bits			Access Type	Description					
31:5	Reserved	N/A	N/A	Reserved					
4	Outgoing FIFO Full	0	R/W	Interrupt enable for outgoing FIFO going full.					
3	Outgoing FIFO Empty	0	R/W	Interrupt enable for outgoing FIFO going empty.					
2	Intake FIFO Full	0	R/W	Interrupt enable for intake FIFO going full.					
1	Intake FIFO Empty	0	R/W	Interrupt enable for intake FIFO going empty.					
0	xilinx_core_rdy	0	R/W	Interrupt enable for xilinx_core_rdy.					

4.13 Interrupt Status Register

The Interrupt Status Register has read—only access associated with each interrupt condition. A status bit changes to '1' when the source interrupt occurs. When a status bit in this register changes to '1' the corresponding flag bit in the Interrupt Flag Register is set to '1'. A status bit in this register clears to '0' when that interrupt condition clears, whereas the associated flag bit in the Interrupt Flag Register remains at logic '1' until it is explicitly cleared by the user. Some of the interrupt sources are transient and so may not appear in the Interrupt Status Register at the time it is read. In such cases use the Interrupt Flag Register to see the interrupt conditions that have occurred. This register is illustrated in Figure 4–12 and described in Table 4–15.

Figure 4–12: Interrupt Status Register

	Table 4–15: Interrupt Status Register (Base Address + 0x2C) _{0x30}								
Bits	Bits Field Name Default Access Value Type			Description					
31:5	Reserved	N/A	N/A	Reserved					
4	Outgoing FIFO Full	0	R	Interrupt status for outgoing FIFO going full.					
3	Outgoing FIFO Empty	0	R	Interrupt status for outgoing FIFO going empty.					
2	Intake FIFO Full	0	R	Interrupt status for intake FIFO going full.					
1	Intake FIFO Empty	0	R	Interrupt status for intake FIFO going empty.					
0	xilinx_core_rdy	0	R	Interrupt status for xilinx_core_rdy going low.					

4.14 Interrupt Flag Register

The Interrupt Flag Register has read/clear access associated with each interrupt condition. When reset, this register has all bits set to '0' (cleared). Each flag bit in this register latches an interrupt occurrence. A '1' in any flag bit in this register indicates that an interrupt has occurred. Note that when any status bit in the Interrupt Status Register, changes to '1' the corresponding flag bit in this register will also be set to '1'. However, when a status bit in the Interrupt Status Register clears from '1' to '0', the corresponding latched flag bit in this register does not clear, but remains at '1'. To clear the flag bits, write '1's to the desired bits. The flags are not affected by the Interrupt Enable Register. This register is illustrated in Figure 4–13 and described in Table 4–16.

Figure 4–13: Interrupt Flag Register

	Table 4–16: Interrupt Flag Register (Base Address + 0x30) 0x34								
Bits	Bits Field Name Default Value		Access Type	Description					
31:5	Reserved	N/A	N/A	Reserved					
4	Outgoing FIFO Full	0	R/W	Interrupt flag for outgoing FIFO going full.					
3	Outgoing FIFO Empty	0	R/W	Interrupt flag for outgoing FIFO going empty.					
2	Intake FIFO Full	0	R/W	Interrupt flag for intake FIFO going full.					
1	Intake FIFO Empty	0	R/W	Interrupt flag for intake FIFO going empty.					
0	xilinx_core_rdy	0	R/W	Interrupt flag for xilinx_core_rdy going low.					

-	1 ^	Cia	ahit	Fther	44.4 1	IDD	Tugas	anit 1	Cama
1		(710	ran1t	Fther	net i	11)12	Irans	:m1† ($\alpha r \rho$

Page 36

This page is intentionally blank

Chapter 5: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the 10 Gigabit Ethernet UDP Transmit Core.

5.1 General Design Guidelines

The 10 Gigabit Ethernet UDP Transmit Core packetizes data for the Xilinx MAC Core.

5.2 Clocking

AXI4-Lite Clock: s_axi_csr_aclk

The **s_axi_csr_aclk** is used to clock the AXI4–Lite Control/Status Register (**s_axi_csr**) interface of the core.

AXI4-Stream Interface Clock: axis_aclk

This clock is used to clock the AXI4–Stream inputs and outputs of the core as well as clocking all the logic in the core.

5.3 Resets

Main resets: axis_aresetn, s_axi_csr_aresetn

This is an active low synchronous reset associated with the **axis_aresetn**. When asserted, all state machines in the core are reset, all FIFOs are flushed. All the control registers are cleared back to their initial default states using **s_axi_csr_aresetn**.

5.4 Interrupts

This core has an edge type (rising edge—triggered) interrupt output. It is synchronous with the <code>s_axi_csr_aclk</code>. On the rising edge of any interrupt signal, a one clock cycle wide pulse is output from the core on it's <code>irq</code> output. Each interrupt event is stored in two registers accessible on the <code>s_axi_csr</code> bus. The Interrupt Status Register always reflects the current state of the interrupt condition, which may have changed since the generation of the interrupt. The Interrupt Flag Register latches the occurrence of each interrupt, in a bit that retains its state until explicitly cleared.

5.4 Interrupts (continued)

The Interrupt flags can be cleared by writing '1' to the associated bit's location. All interrupt sources that are enabled (via the Interrupt Enable Register) are "OR ed" onto the **irq** output.

NOTE: All interrupt sources are latched in the interrupt flag register, even when an interrupt source is not enabled to create an interrupt.

NOTE: Because this core uses edge—triggered interrupts, the fact that an interrupt condition may remain active after servicing will not cause the generation of a new interrupt. A new interrupt will only be generated by another rising edge on an interrupt source.

5.5 Interface Operation

Control/Status Register Interface: This is the control/status register Interface. It is associated with the **s_axi_csr_aclk**. It is a standard AXI4–Lite type interface. See Chapter 4 for the control register memory map, for more details on the registers that can be accessed through this interface.

Stream Data (axis_eth) Interface: This interface is used to transfer input data streams. It is a standard AXI4–Stream Slave and Master Interface. For more details about this interface refer to Table 3–2.

5.6 Programming Sequence

The programming sequence for this core is as follows:

- 1) Take core out of reset by writing 0x1 to CSR reg 0x18.
- 2) Enable State machine by writing 0x05 to CSR reg 0x18.
- 3) Enable FIFO by writing 0x7 to CSR reg 0x18

Chapter 6: Design Flow Steps

6.1 Pentek IP Catalog

This chapter describes customization and generation of the 10 Gigabit Ethernet UDP Transmit Core. It also includes simulation, synthesis, and implementation steps that are specific to this core. This IP core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px_10ge_udp_tx_v1_0** as shown in Figure 6–1.

Figure 6-1: 10 Gigabit Ethernet UDP Transmit Core in Pentek IP Catalog

6.1 Pentek IP Catalog (continued)

When you select the **px_10ge_udp_tx_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 6–2). The core's symbol is the box on the left side.

Figure 6-2: 10 Gigabit Ethernet UDP Transmit Core IP Symbol

6.2 User Parameters

has_tkeep: If it is enabled the user can specify tkeep. If it is disabled the internal tkeep is set to all 1's.

6.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide – Designing with IP.*

6.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite.

Required Constraints

The XDC constraints are not provided with this core. The necessary constraints can be applied in the top level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

The maximum axis_aclk frequency for this IP core is 156.25 MHz while the AXI4-Lite interface clock (s axi csr aclk) frequency is 250 MHz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

6.5 Simulation

Figure 6-3: Setup Registers

Figure 6-4: Valid Data to Core

6.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide – Designing with IP.*