CE407 Güvenli Programlama Hafta-1

Yazar: Dr. Ã-ÄŸr. Üyesi UÄŸur CORUH

$\dot{\mathbf{I}}\mathbf{\dot{\varsigma}indekiler}$

- '	<u>- سا</u>	407 GÃ ¹ /4venli Programlama	1
1	1.1	Hafta-1	1
		1.1.1 Outline	2
1	1.2	Uygulama Koruma Planı (Application Protection Plan)	2
		1.2.1 1. Kod Bölme (Split)	2
		1.2.2 2. Kod DoÄŸrulama (Measure)	2
		1.2.3 3. Zamanlama (Time)	2
		1.2.4 4. Protokol İzleme (Monitor)	2
1	1.3	~	3
		1.3.1 1. Vir $\tilde{\mathbf{A}}^{1}$ /slerin $\tilde{\mathbf{A}}$ –zellikleri	3
		1.3.2 2. Virüs Türleri	3
		1.3.3 3. Virüs Karşı Ã-nlemleri	3
1	1.4	$G\tilde{A}^{1/4}$ venlik Modelleri ve Sald $\ddot{A}\pm r\ddot{A}\pm A\ddot{A}\ddot{Y}a\tilde{A}$ $ (Attack Trees)$	3
		1.4.1 1. Saldırı Ağacı Nedir?	3
		1.4.2 2. Maliyet Modelleme	3
1	1.5		4
		1.5.1 1. Dinamik Analiz (Dynamic Analysis)	4
		1.5.2 2. Statik Analiz (Static Analysis)	4
		1.5.3 3. Program DÃ ¹ / ₄ zenleme (Editing Phase)	4
1	1.6	Güvenli İletişim Hedefleri	4
1	1.7	Haftanın Özeti ve Gelecek Hafta	4
		1.7.1 Bu Hafta:	4
		1.7.2 Gelecek Hafta:	5

Şekil Listesi

Tablo Listesi

1 CE407 GÃ¹/₄venli Programlama

1.1 Hafta-1

1.1.0.1 Ders PlanÄ \pm ve İletiÅŸim, Güvenli Programlama ve Bilgisayar Virüsleri İndir PDF¹, DOCX², SLIDE³, PPTX⁴

 $^{^{1}}$ ce407-week-1.tr_doc.pdf

 $^{^2{\}rm ce407\text{-}week\text{-}1.tr_word.docx}$

³ce407-week-1.tr_slide.pdf

⁴ce407-week-1.tr_slide.pptx

1.1.1 Outline

- GÃ¹/₄venli Programlama ve Bilgisayar VirÃ¹/₄sleri
- Uygulama Koruma Planı
 - Kod Bölme
 - Kod DoÄŸrulama
 - Zamanlama
 - Protokol İzleme
- Bilgisayar Virüsleri
 - VirÃ⁴⁄slerin Özellikleri
 - − Virüs Türleri
 - Virüs Karşı Ã-nlemleri
- Saldırı AÄŸaçları ve Güvenlik Modelleri
- Saldırı Yöntemleri
- Güvenli İletiÅŸim Hedefleri

1.2 Uygulama Koruma Planı (Application Protection Plan)

1.2.1 1. Kod Bölme (Split)

1.2.1.1 Teorik Açıklama: Kod bölme, güvenilmeyen ortamda yürütülen iÅŸlemleri güvenilir bir ortama taşıma yöntemidir. Bu sayede güvenlik açıkları minimize edilir.

1.2.1.2 Uygulama:

• **Uygulama:** Bir istemci-sunucu modelinde şifreleme işlemlerini istemci yerine sunucuda gerçekleÅŸtiren bir sistem kurun. Bu, kritik iÅŸlemleri gù⁄4venli ortamda yù⁄4rù⁄4tmek için kullanılır.

1.2.2 2. Kod DoÄŸrulama (Measure)

1.2.2.1 Teorik A $\tilde{\mathbf{A}}$ $\tilde{\mathbf{A}}$ $\tilde{\mathbf{A}}$ $\tilde{\mathbf{A}}$ tklama: G $\tilde{\mathbf{A}}$ ¹4venilmeyen bir siteye ya da cihaza "Do $\ddot{\mathbf{A}}$ $\ddot{\mathbf{Y}}$ ru kodu mu $\tilde{\mathbf{A}}$ $\tilde{\mathbf{A}}$ $\ddot{\mathbf{A}}$ ## **1.2.2.2** Uygulama:

• Uygulama: Bir uygulamanın çalıÅŸma sırasında belirli matematiksel problemlere do-ÄŸru ve hızlı yanıt verip vermediÄŸini kontrol eden bir sistem geliÅŸtirin. Bu sistem, doÄŸruluÄŸu kanıtlayamazsa iÅŸlem yapmaz.

1.2.3 3. Zamanlama (Time)

1.2.3.1 Teorik A $\tilde{\mathbf{A}}$ $\tilde{\mathbf{S}}$ $\tilde{\mathbf{A}}$ \pm klama: G $\tilde{\mathbf{A}}$ 4 venilmeyen bir sistemde, i $\tilde{\mathbf{A}}$ $\tilde{\mathbf{Y}}$ lem yap $\tilde{\mathbf{A}}$ \pm lmas $\tilde{\mathbf{A}}$ \pm gereken bir zorluk hesaplat $\tilde{\mathbf{A}}$ \pm l $\tilde{\mathbf{A}}$ \pm r ve belirli bir zaman dilimi i $\tilde{\mathbf{A}}$ $\tilde{\mathbf{S}}$ erisinde cevap beklenir. Bu teknik, sald $\tilde{\mathbf{A}}$ \pm rganlar $\tilde{\mathbf{A}}$ \pm n analiz i $\tilde{\mathbf{A}}$ $\tilde{\mathbf{S}}$ in yeterli zaman $\tilde{\mathbf{A}}$ \pm bulmas $\tilde{\mathbf{A}}$ \pm n $\tilde{\mathbf{A}}$ \pm engeller.

1.2.3.2 Uygulama:

• **Uygulama:** Bir "Zaman Temelli Soru-Cevap" uygulaması oluÅŸturun. Belirli bir sù⁄4re içinde cevap alınmazsa oturum sonlandırılsın.

1.2.4 4. Protokol İzleme (Monitor)

1.2.4.1 Teorik Açıklama: Veri transferi sırasında protokol akışını izleyerek, olası güvenlik açıklarını veya kötü niyetli iÅŸlemleri tespit ederiz.

1.2.4.2 Uygulama:

• **Uygulama:** Bir web sunucusunda yapılan HTTP isteklerini izleyen bir log sistemi oluÅŸturun. Şù4pheli istekler algılandığında kullanıcıyı engelleyin.

1.3 Bilgisayar VirÃ¹/₄sleri

1.3.1 1. VirÃ¹/₄slerin Ã-zellikleri

- Uyuma Durumu (Dormant): Virā¹/₄/₈ bir sā¹/₄/₁re sessiz kalabilir, algä±lanmaktan kaā§ä±nä±r.
- Yayılma (Propagation): Yeni dosyalara veya sistemlere bulaşır.
- Tetikleme (Triggering): Virüsün harekete geÃŞeceÄŸi zamanı belirleyen olay.
- Eylem (Action): Zararlı iÅŸlem yapılır, bu genellikle "payload" denir.

1.3.1.1 Uygulama:

• **Uygulama:** Bir simülasyon oluÅŸturun. Virüs uyuma durumunda beklesin, belirli bir tarihte etkinleÅŸip bir dosya silme iÅŸlemi yapsın.

1.3.2 2. VirÃ¹/₄s TÃ¹/₄rleri

- Program/Dosya Virüsü: Program dosyalarına bulaşır.
- Makro Virüsü: Word/Excel belgelerine bulaşır ve belge açıldığında çalışır.
- Boot Sektörü Virüsü: Sabit diskin önyükleme sektörüne bulaşır, bilgisayar baÅŸlatıldığında çalışır.

1.3.2.1 Uygulama:

• **Uygulama:** Farklı virù⁄4s tù⁄4rlerinin nasıl çalıÅŸtığını gösteren bir simù⁄4lasyon oluÅŸturun. Her virù⁄4s tù⁄4rù⁄4 farklı tetikleyicilerle harekete geçsin.

1.3.3 3. Virüs Karşı Ã-nlemleri

- İmza Tabanlı Tespit (Signatures): Virüsün bilinen kod parçalarına dayalı tespit yöntemidir.
- **Åžifreleme:** Virüslerin kodlarının ÅŸifrelenmesi, imza tespitine karşı koruma saÄŸlar.

1.3.3.1 Uygulama:

• **Uygulama:** Şifrelenmiş bir virüs simülasyonu oluÅŸturun. Virüs kodu her çalıÅŸtırıldığır farklı bir anahtar ile ÅŸifrelenmiÅŸ olsun.

1.4 Gývenlik Modelleri ve Saldırı AÄŸaçları (Attack Trees)

1.4.1 1. Sald $\ddot{A}\pm r\ddot{A}\pm A\ddot{A}\ddot{Y}ac\ddot{A}\pm Nedir$?

SaldÄ \pm rÄ \pm aÄŸacÄ \pm , bir saldÄ \pm rganÄ \pm n bir hedefe ulaÅŸma stratejilerini anlamamÄ \pm zÄ \pm saÄŸlayan bir yapÄ \pm dÄ \pm r. Bu model, gývenlik açÄ \pm klarÄ \pm nÄ \pm görselleÅŸtirerek saldÄ \pm rÄ \pm lara karÅŸÄ \pm etkili savunmalar geliÅŸtirilmesine yardÄ \pm mcÄ \pm olur.

1.4.1.1 Uygulama:

• **Uygulama:** Basit bir saldırı aÄŸacı oluÅŸturun. Ã-rneÄŸin, bir web uygulamasında SQL enjeksiyonundan baÅŸlayarak, veritabanına eriÅŸime kadar olan adımları modelleyin.

1.4.2 2. Maliyet Modelleme

Her sald $\ddot{A}\pm r\ddot{A}\pm ad\ddot{A}\pm m\ddot{A}\pm n\ddot{A}\pm n$ bir maliyeti vard $\ddot{A}\pm r$. Bu maliyetler sald $\ddot{A}\pm rgan\ddot{A}\pm n$ hedefe ula $\ddot{A}\ddot{Y}-mas\ddot{A}\pm n\ddot{A}\pm z$ orla $\ddot{A}\ddot{Y}t\ddot{A}\pm rmak$ i $\ddot{A}\sin$ hesaplanabilir. Bir sald $\ddot{A}\pm r\ddot{A}\pm a\ddot{A}\ddot{Y}ac\ddot{A}\pm nda$, maliyetler her bir d $\ddot{A}^1\ddot{A}\ddot{Y}\ddot{A}^1\ddot{A}$ me atan $\ddot{A}\pm r$ ve en az maliyetli yol hesaplan $\ddot{A}\pm r$.

1.4.2.1 Uygulama:

• **Uygulama:** Bir saldırı aÄŸacında her adımın maliyetini hesaplayan bir simülasyon geliÅŸtirin. En düşük maliyetle hedefe ulaÅŸmayı simüle edin.

1.5 Saldırı Yöntemleri (Attack Methods)

1.5.1 1. Dinamik Analiz (Dynamic Analysis)

Bir program $\ddot{A}\pm n$ \tilde{A} \ddot{a} \ddot{A} \ddot{a} \ddot{A} \ddot{a}

1.5.1.1 Uygulama:

• **Uygulama:** Bir yazılımın çalıÅŸma zamanında hangi iÅŸlevlerin çaÄŸrıldığını izleyen ve bu iÅŸlevlerin hangi girdilerle tetiklendiÄŸini gösteren bir izleyici oluÅŸturun.

1.5.2 2. Statik Analiz (Static Analysis)

Bir program $\ddot{A}\pm n$ kaynak kodu veya derlenmi $\ddot{A}\ddot{Y}$ halinin analiz edilmesi i $\ddot{A}\ddot{Y}$ lemidir. Bu analiz ile potansiyel g \tilde{A}^{1} 4venlik a \tilde{A} 8 $\ddot{A}\pm k$ lar $\ddot{A}\pm b$ elirlenir.

1.5.2.1 Uygulama:

• **Uygulama:** Bir disassembler kullanarak, basit bir programın derlenmiÅŸ kodunu analiz edin ve zayıf noktaları tespit edin.

1.5.3 3. Program DÃ¹/₄zenleme (Editing Phase)

Bir sald $\ddot{A}\pm rgan$, yaz $\ddot{A}\pm l\ddot{A}\pm m\ddot{A}\pm n$ i \tilde{A} § i \ddot{A} Ÿleyi \ddot{A} Ÿini anlad $\ddot{A}\pm ktan$ sonra, lisans denetimlerini devre d $\ddot{A}\pm \ddot{A}$ Ÿ $\ddot{A}\pm b\ddot{A}\pm rakmak$ veya k $\ddot{A}\pm s\ddot{A}\pm tlamalar\ddot{A}\pm kald\ddot{A}\pm rmak$ i \tilde{A} §in program $\ddot{A}\pm d\tilde{A}^4$ zenleyebilir.

1.5.3.1 Uygulama:

• **Uygulama:** Lisans denetimini atlamak için bir programın ikili dosyasını dù⁄4zenleyin. Hangi kısıtlamaların kaldırıldığını izleyin.

1.6 Gývenli İletiÅŸim Hedefleri

- Karşılıklı Kimlik DoÄŸrulama: İletiÅŸime giren iki tarafın birbirini doÄŸrulaması.
- Anahtar İptali: Geçersiz anahtarların iptal edilmesi.
- $Y\tilde{A}^{1}/4$ ksek Performans: $G\tilde{A}^{1}/4$ venli ileti $A\ddot{Y}$ imde $h\ddot{A}\pm z$ ve $d\tilde{A}^{1}/4\ddot{A}\ddot{Y}\ddot{A}^{1}/4k$ gecikme $s\tilde{A}^{1}/4$ resi esast $\ddot{A}\pm r$.

1.6.0.1 Uygulama:

• Uygulama: İki tarafın karşılıklı olarak birbirini doÄŸrulamasını saÄŸlayan basit bir kimlik doÄŸrulama protokolü oluÅŸturun.

1.7 Haftanın Ã-zeti ve Gelecek Hafta

1.7.1 Bu Hafta:

- Uygulama Koruma Planı
- Bilgisayar VirÃ¹/₄sleri ve TÃ¹/₄rleri
- Saldırı AÄŸaçları ve Güvenlik Modelleri
- Saldırı Yöntemleri ve Güvenli İletiÅŸim Hedefleri

1.7.2 Gelecek Hafta:

- Veri GývenliÄŸi
- Kriptografik Teknikler
 Uygulamalı Åžifreleme

1. Hafta-Sonu