Notes on Geometric and Topological Aspects of Coxeter Groups and Buildings

Jesse Cobb

Table of Contents

1.	Coxeter Group	2
	1.1. Geometric Reflection Groups	
	1.2. Definition of a Coxeter Group	
	1.3. Right-angled Coxeter groups	
	1.4. Weyl groups	!
	Some combinatorial theory of Coxeter groups	
3.	The Tits representation	. 11
4.	The basic construction of a geometric realisation	. 15
5.	The Davis complex	. 19
6.	Buildings as unions of apartments	. 28
7.	Buildings as chamber systems	. 29

1. Coxeter Group

1.1. Geometric Reflection Groups

1.1.1. **Remark**

 \mathbb{S}^n denotes the *n*-dimensional unit sphere, \mathbb{E}^n denotes the *n*-dimensional Euclidean space, and \mathbb{H}^n denotes the *n*-dimensional Hyperbolic space.

 \mathbb{X}^n denotes any of the previously mentioned n-dimensional spaces.

1.1.2. Example: Finite Dihedral Group

Given two reflections, s_1 and s_2 , offset by an angle of $\frac{\pi}{m}$ across the lines l_1 and l_2 respectively, we find

$$D_{2m} = \left\langle s_1, s_2 \mid s_1^2 = s_2^2 = \left(s_1 s_2 \right)^m = 1 \right\rangle$$

such that s_1s_2 is a rotation by $\frac{2\pi}{m}$. This induces a tessellation on \mathbb{S}^1 by 2m closed intervals, \mathbb{E}^1 by 2m unbounded sectors, or on the unit disc with 2m bounded sectors. D_{2m} can also be seen as the isometry group of a regular m-gon with a vertex v being on the intersection of l_1 with \mathbb{S}^1 and an edge drawn from v bisected by l_2 .

By letting $s=s_1$ and $r=s_1s_2$ we get the standard presentation

$$D_{2m} = \langle s, r \mid r^m = s^2 = 1, rs = sr^{-1} \rangle.$$

1.1.3. Example: Infinite Dihedral Group

Let s_1 and s_2 be the reflection of \mathbb{E}^1 (real line) over 0 and 1 respectively. Note that s_1s_2 is a translation by 2 units. Note that

$$D_{\infty} = \langle s_1, s_2 \mid s_1^2 = s_2^2 = (s_1 s_2)^{\infty} = 1 \rangle$$

is the infinite dihedral group. Note this can also be thought of like a finite dihedral group with the angle between the reflections to be approaching zero such that the reflections are parallel.

1.1.4. Definition: Polytopes and links

A convex polytope $P=P^n\subseteq\mathbb{X}^n$ is a convex compact intersection of a finite number of closed half-spaces in \mathbb{X}^n , with nonempty interior. A linke of a vertex v, $\operatorname{link}(v)$, is the (n-1)-dimensional spherical polytope obtained from the intersection of P with a small sphere around v. A convex polytope P is simple if, for every vertex v of P, $\operatorname{link}(v)$ is a simplex.

1.1.5. Example: Convex polygon

If n=2 then for a convex polytope $P\subseteq \mathbb{X}^2$ a link link(v) is a closed interval in \mathbb{S}^1 (a spherical 1-simplex) equal to the interior angle at v.

1.1.6. Definition: Fundamental Domain

Let G act on a topological space X by homeomorphisms. A fundamental domain is a closed, connected subset C of X such that $Gx \cap C \neq \emptyset$ for all $x \in X$ and $Gx \cap C = \{x\}$ for x in the interior of C. C is a strict fundamental domain if $Gx \cap C = \{x\}$ for every $x \in C$, in other words C contains exactly one point from each G-orbit.

1.1.7. Example: Fundamental Domain of D_{∞}

Note [0,1] is a strict fundamental domain for the action of D_{∞} on \mathbb{E}^1 .

1.1.8. Theorem

Let $P=P^n$ be a simple convex polytope in \mathbb{X}^n , where $n\geq 2$. Let $\left\{F_i\right\}_{i\in I}$ be the collection of codimension-1 faces of P^n , with each face F_i supported by the hyperplane \mathcal{H}_i . Suppose for all $i\neq j$, if $F_i\cap F_j\neq\emptyset$ then the dihedral angle between F_i and F_j is $\frac{\pi}{m_{ij}}$ for some integer $m_{ij}\geq 2$. Put $m_{ii}=1$ for every $i\in I$, and $m_{ij}=\infty$ if $F_i\cap F_j=\emptyset$. For each $i\in I$, let s_i be the isometric reflection of \mathbb{X}^n across the hyperplane \mathcal{H}_i . Let F_i be the group generated by the set of reflections $\{s_i\}_{i\in I}$. Then

1. the group W has presentation

$$W = \left\langle s_i \mid \left(s_i s_j \right)^{m_{ij}} = 1 \forall i, j \in I \right\rangle;$$

- 2. the group W is a discrete subgroup of $\mathrm{Isom}(\mathbb{X}^n)$;
- 3. the convex polytope P is a strict fundamental domain for the action of W on \mathbb{X}^n , and the action of W induces a tessellation of \mathbb{X}^n by copies of P.

1.1.9. Definition: Geometric reflection Group

A group W is a geometric reflection group if W is either a finite dihedral group, an infinite dihedral group, or is as in the statement of the previous <u>theorem</u>. A geometric reflection group W acting on \mathbb{X}^n is spherical, Euclidean or hyperbolic as \mathbb{X}^n is, respectively, \mathbb{S}^n , \mathbb{E}^n , \mathbb{H}^n .

1.1.10. Example: Triangle groups

For a tuple of integers (p,q,r), where $2 \le p \le q \le r$, there exists a triangle with interior angles $\frac{\pi}{p}, \frac{\pi}{q}, \frac{\pi}{r}$. Note this triangle can exist in spherical, Euclidean, or hyperbolic space as its sum is respectively greater than, equal to, or less than π . Note

$$W(p,q,r) = \left\langle s_1, s_2, s_3 \ | \ s_1^2 = s_2^2 = s_3^2 = (s_1s_2)^p = (s_2s_3)^q = (s_3s_1)^r = 1 \right\rangle.$$

1.2. Definition of a Coxeter Group

1.2.1. Definition: Coxeter System

Let I be a finite indexing set and let $S = \{s_i\}_{i \in I}$. Let $M = (m_{(ij)_{i,j \in I}})$ be a matrix such that:

- $m_{ii} = 1$ for all $i \in I$;
- $m_{ij} = m_{ji}$ for all $i, j \in I$;
- $m_{ij} \in \{2, 3, 4, ...\} \cup \{\infty\}$ for all distinct $i, j \in I$.

Then M is a Coxeter matrix. The associated Coxeter group $W=W_M$ is defined by the presentation

$$W = \langle S \mid (s_i s_j)^{m_{ij}} = 1, \forall i, j \in I \rangle.$$

The pair (W, S) is a Coxeter system and the set S is a Coxeter generating set for W.

1.2.2. **Remark**

Coxeter groups may have multiple distinct generating sets such that a Coxeter group's presentation is not unique.

1.2.3. Remark

Some definitions allows for Coxeter Systems (W, S) in which S is an infinite generating set.

1.3. Right-angled Coxeter groups

1.3.1. Definition: Right-angled Coxeter System

Let (W,S) be a Coxeter System with associated Coxeter matrix $M=\left(m_{ij}\right)_{i,j\in I}$. (W,S) is right-angled, and W is a right-angled Coxeter group if, for all distinct $i,j\in I$, we have $m_{ij}\in\{2,\infty\}$.

1.3.2. Remark

Note that if $m_{ij} = 2$ then $s_i s_j = s_j s_i$.

1.3.3. Example: Coxeter Group, Not Geometric Reflection Group

Consider the following group

$$W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^2 = 1 \rangle \approx (C_2 \times C_2) * C_2.$$

Note W is not a geometric reflection group.

1.4. Weyl groups

1.4.1. Definition: Root System

A finite collection Φ of vectors in \mathbb{R}^n satisfying that Φ spans \mathbb{R}^n and $\alpha \in \Phi$ then $\mathbb{R}\alpha \cap \Phi = \{\alpha, -\alpha\}$. For each $\alpha \in \Phi$, let $\mathcal{H}_\alpha = \mathcal{H}_{-\alpha}$ be the hyperplane through the origin which is orthogonal to α , and let $s_\alpha = s_{-\alpha}$ be the isometric reflection in \mathcal{H}_α . Then s_α swaps α and $-\alpha$, and the axioms for Φ ensure that $s_\alpha(\beta)$ is in Φ for all $\beta \in \Phi$, and that all compositions of reflections $s_\alpha s_\beta$ have finite order. It is also required (only for crystallographic restriction) that for any $\alpha, \beta \in \Phi$ the projection of β onto α must be an integer or half-integer multiple of α .

1.4.2. Definition: Weyl Group

The Weyl Group of a root system Φ is the group $W=W(\Phi)$ generated by the set of reflections $\{s_{\alpha} \mid \alpha \in \Phi\}$. It can be proved that W is a finite Coxeter group, with Coxeter generating set given by a subset of the reflections $\{s_{\alpha} \mid \alpha \in \Phi\}$.

1.4.3. Example: Weyl Group A_2

Let
$$\Phi=\{\pm\alpha,\pm\beta,\pm(\alpha+\beta)\}$$
 such that $W=W(\Phi)$ is generated by s_{α},s_{β} since
$$s_{\alpha+\beta}=s_{\alpha}s_{\beta}s_{\alpha}=s_{\beta}s_{\alpha}s_{\beta}.$$

1.4.4. Remark

 D_{2m} is a Weyl group if and only if $m \in \{2, 3, 4, 6\}$.

1.4.5. Definition: Crystallographic Restriction (Coxeter Matrix)

A Coxeter matrix $M=(m_{ij})$ satisfies the crystallographic restriction if $m_{ij} \in \{2,3,4,6,\infty\}$ for $i \neq j$. If the crystallographic restriction is satisfied for a Coxeter group then it is the Weyl group for some Kac-Moody group.

2. Some combinatorial theory of Coxeter groups

2.0.1. Notation

In contrast to a group product such as $s_1 \cdots s_n$, a word in S written as a finite sequence of elements of S, $(s_1, ..., s_n)$.

2.0.2. Definition: Word Length

The word length of some $g \in G$ with respect to the generating set S is

$$\ell_S(g) = \min\{n \in \mathbb{N} \mid \exists s_1, ..., s_n \in S \text{ such that } g = s_1 \cdots s_n\}$$

and $\ell_S(1)=0$. If $\ell_S(g)=n\geq 1$ and $g=s_1\cdots s_n$ then $(s_1,...,s_n)$ is variously called a reduced expression, reduced word, or a minimal word for g. The word metric on G with respect to S is given by

$$d_S(g,h) = \ell_S(g^{-1}h).$$

2.0.3. Remark

Note that $d_S(hg, hg') = d_S(g, g')$.

2.0.4. Definition: Cayley Graph

A Cayley graph Cay(G, S) has vertex set G and edges given by $\{(g, gs) \mid g \in G, s \in S\}$. Note since S is a generating set the graph is connected.

2.0.5. Remark

G acts on $\mathrm{Cay}(G,S)$ on the left by graph automorphisms, preserving edge labels. Also note that gsg^{-1} is the unique group element that flips the edge $\{g,gs\}$ since $s\in S$ is an involution.

2.0.6. Remark

The <u>word metric</u> extends directly to the path metric; the distance between two vertices on $\mathrm{Cay}(G,S)$ where each edge is a unit length. This equivalence is found by observing $d_S(g,h)=\ell_S(g^{-1}h)$ is trivially the shortest path from $e\to g^{-1}h$. Now if g acts on $\mathrm{Cay}(G,S)$ on the left we have that this same path is now from $g\to h$. As a graph automorphisms we have that this is the shortest path.

2.0.7. Lemma

There is an epimorphism $\varepsilon:W\to\mathbb{Z}_2$ induced by $\varepsilon(s)=1$ for all $s\in S$.

2.0.8. Corollary

Each $s \in S$ is an involution in the group W.

2.0.9. Lemma

If (W,S) is even, then for each $i \in I$, there is an epimorphism $\varepsilon_i : W \to \mathbb{Z}_2$ induced by $\varepsilon(s_i) = 1$ and $\varepsilon(s) = 0$ for all $s \in S \setminus \{s_i\}$.

2.0.10. Corollary

If (W, S) is an even Coxeter system, the elements of S are pairwise distinct group elements in W.

2.0.11. Corollary

In a Coxeter system (W, S), the elements of S are pairwise distinct involutions in W.

2.0.12. Definition: Simple Graph

Every edge must have distinct end points (no self-loops) and there should only exist at most one edge between an two distinct vertices.

2.0.13. Corollary

Let (W,S) be a Coxeter system. Then $\mathrm{Cay}(W,S)$ is a connected simple graph.

Proof: Note by <u>previous corollary</u> we have that $1 \notin S$ since 1 is not an involution and therefore no self-loops can exist in Cay(W, S). Also note by another <u>previous corollary</u> that all elements in S are pairwise dinstinct group elements/involutions and therefore at most one edge may exist between two vertices. Therefore Cay(W, S) is simple.

2.0.14. Definition: Pre-Reflection System

Let X be a connected simple graph that G acts on by graph automorphisms and let $R \subseteq G$ such that

- 1. each $r \in R$ is an involution;
- 2. R is closed under conjugation, that is, for all $g \in G$ and all $r \in R$, we have $grg^{-1} \in R$;
- 3. R generates G;
- 4. for every edge e in X there exists a unique $r_e \in R$ which flips e, that is, r_e swaps the two end points of e;
- 5. for every $r \in R$ there is at least one edge e in X which is flipped by r.

(X,R) is a pre-reflection system for a group G and for each $r \in R$, the wall H_r is the set of midpoints of edhes which are flipped by r.

2.0.15. Lemma

Let (W, S) be any Coxeter system. Let X = Cay(W, S) and let

$$R = \{wsw^{-1} \mid w \in W, s \in S\}.$$

Then (X, R) is a pre-reflection system.

Proof: By the <u>previous corollary</u> we have that Cay(W,S) is a connected simple graph. Note that wsw^{-1} flips $\{w,ws\}$ and no other group element flips this edge.

2.0.16. Definition: Reflection System

A pre-reflection system (X,R) is a reflection system if in addition for every $r \in R$ we have that $X \setminus H_r$ has exactly two components. Then R is the set of reflections.

2.0.17. Definition: Deletion Condition

If $(s_1, ..., s_k)$ is a word in S with $\ell(s_1 ... s_k) < k$, then there are indices i < j such that

$$s_1 \cdots s_k = s_1 \cdots \hat{s_i} \cdots \hat{s_i} \cdots \hat{s_i} \cdots s_k$$

where $\hat{s_i}$ means we delete this letter.

2.0.18. Definition: Exchange Condition

If $(s_1,...,s_k)$ is a reduced expression for $w \in W$, the for any $s \in S$, either $\ell(sw) = k+1$, or there is an index i such that

$$w = ss_1 \cdots \hat{s_i} \cdots s_k.$$

2.0.19. Theorem

Suppose a group W is generated by a set of distinct involutions S. Then the following are equivalent:

- 1. The pair (W, S) is a Coxeter system.
- 2. If X = Cay(W, S) and $R = \{wsw^{-1} \mid w \in W, s \in S\}$, then (X, R) is a reflection system.
- 3. The pair (W, S) satisfies the deletion condition.
- 4. The pair (W, S) satisfies the exchange condition.

2.0.20. Lemma

Suppose a group W is generated by a set of distinct involutions S. Let $X = \operatorname{Cay}(W,S)$ and let $R = \{wsw^{-1} \mid w \in W, s \in S\}$. Let $(s_1,...,s_k)$ be a word in S with associated sequence $(r_1,...,r_k)$ of elements of R. If $r_i = r_j$ for some $1 \le i < j \le k$, then in the group W,

$$s_1 \cdots s_k = s_1 \cdots \hat{s_i} \cdots \hat{s_j} \cdots s_k.$$

Proof: Let $r=r_i=r_j$ and for $1\leq p\leq k$ let $w_p=s_1\cdots s_p$. Let γ be the associated path in X, so γ has successive vertices $1,w_1,...,w_k$. Now apply r to the subpath of γ from $w_i\to w_{j-1}$. The image is the path from $w_{i-1}\to w_j$. The new path generated is given by

$$(s_1, ..., s_{i-1}, s_{i+1}, ..., s_{j-1}, s_{j+1}, ..., s_k).$$

2.0.21. Lemma

With the same assumptions as in the <u>previous lemma</u> for each $r \in R$ we have that $X \setminus H_r$ has at most two connected components.

2.0.22. Lemma

Assume that (W,S) is a coxeter system. Then for all $w \in W$ and $r \in R$, any word for w crosses H_r the same number of times mod 2.

2.0.23. Corollary

Let (W,S) be a Coxeter system, let $X=\mathrm{Cay}(W,S)$ and let

$$R = \{wsw^{-1} \mid w \in W, s \in S\}.$$

Then (X, R) is a reflection system.

2.0.24. Corollary

If $\underline{s} = (s_1, ..., s_k)$ is a word in S with associated reflections $(r_1, ..., r_k)$, then \underline{s} is a reduced expression if and only if r_i are pairwise distinct.

2.0.25. Definition: Braid Move

Let $s,t\in S$ be distinct involutions and let m_{st} is the order of st in W. If m_{st} is finite, a braid move on a word in S swaps a subword (s,t,s,...) containing m_{st} letters with a subword (t,s,t,...) containing m_{st} letters.

2.0.26. Theorem: Tits

Suppose a group W is generated by a set of distinct involutions S and the exchange condition holds. Then

- 1. a word $(s_1,...,s_k)$ in S is reduced if and only if it cannot be shortened by a sequence of
 - deleting a subword $(s, s), s \in S$, or
 - carrying out a braid move;
- 2. two reduced expressions in S represent the same group element $w \in W$ if and only if they are related by a finite sequence of braid moves.

2.0.27. Example: Pre-Reflection System

 $D_\infty \rtimes \mathbb{Z}_2$

2.0.28. Remark

 $B_3 = \langle a, b \mid aba = bab \rangle$ is torsion free.

3. The Tits representation

3.0.1. Theorem: Tits Representation

Let I be a finite indexing set, let $S=\left\{s_i\right\}_{i\in I}$ and let $M=\left\{m_{ij}\right\}_{i,j\in I}$ be a Coxeter matrix. Let

$$W = \left\langle S \mid \left(s_i s_j\right)^{m_{ij}} = 1, \forall i, j \in I \right\rangle$$

be the associated Coxeter group. Then there is a faithful representation

$$\rho: W \to \mathrm{GL}_n(\mathbb{R}),$$

where n = |S| = |I|, such that:

- for each $i \in I, \rho(s_i) = \sigma_i$ is a linear involution with fixed set a hyperplane;
- for all $i \neq j$, the product $\sigma_i \sigma_j$ has order m_{ij} .

3.0.2. Example: Tits Representation

Let $I = \{1, ..., n\}$ and let $\{e_1, ..., e_n\}$ be a basis for V, an n-dimensional vector space over \mathbb{R} . Define the symmetric bilinear form

$$B\!\left(e_i,e_j\right) = \begin{cases} -\cos\!\left(\frac{\pi}{m_{ij}}\right) & m_{ij} < \infty \\ -1 & m_{ij} = \infty \end{cases}.$$

Note $B(e_i, e_i) = 1$ and $B(e_i, e_j) \le 0$ if $i \ne j$. Consider the following

$$H_i = \{v \in V \mid B(e_i, v) = 0\}$$

$$\sigma_i(v) = v - 2B(e_i, v)e_i.$$

Note σ_i swaps e_i and $-e_i$, fixes H_i , $\sigma_i^2=\mathrm{id}$, and that σ_i preserves the bilinear form B.

3.0.3. Proposition

- 1. The product $\sigma_i \sigma_j$ has order m_{ij} for all distinct $i, j \in I$.
- 2. The map $s_i \mapsto \sigma_i$ extends to a homomorphism $\rho: W \to \mathrm{GL}(V)$.

3.0.4. Corollary

Let (W,S) be a Coxeter system. Then the selements of S are pairwise distinct involutions of W.

3.0.5. Corollary

Let (W, S) be a Coxeter sustem with Coxeter matrix $M = (m_{ij})$. Then for all distinct $i, j \in I$, the product $s_i s_j$ has order m_{ij} in W.

3.0.6. Proposition

 ρ is faithful.

3.0.7. Definition: Chamber of Tits Representation

The chamber C associated to the Tits representation is a the subset of V^* given by

$$C = \{ \varphi \in V^* \mid \varphi(e_i) \ge 0, \forall i \in I \}.$$

This chamber is the "simplicial cone" cut out by the hyperplanes H_i^* .

We define the iterior of C as

$$\mathring{C} = \mathrm{interior}(C) = \{\varphi \in V^* \mid \varphi(e_i) > 0, \forall i \in I\}.$$

3.0.8. Theorem

Let $w \in W$, If $w\mathring{C}$. If $w\mathring{C} \cap \mathring{C} \neq \emptyset$, then w = 1.

3.0.9. Definition: Tits Cone

The Tits cone of W is the subset of V^* given by $\bigcup_{w \in W} wC$.

3.0.10. Corollary

A Coxeter group W may be identified with a discrete subgroup of $\mathrm{GL}_n(\mathbb{R})$.

3.0.11. Corollary

Coxeter groups and their subgroups are linear.

3.0.12. Theorem: Selberg's Lemma

Finitely generated linear groups are virtually torsion-free.

3.0.13. Theorem: Malcev's Theorem

Finitely generated linear groups are residually finite.

The Tits representation Weyl groups -3.0

3.0.14. Corollary

Coxeter groups are virtually torsion-free and residually finite.

3.0.15. Definition: Reducible/Irreducible

A Coxeter system (W,S) is reducible if $S=S'\sqcup S''$ with S' and S'' nonempty, such that $m_{ij}=2$ for all $s_i\in S'$ and $s_i\in S''$. A Coxeter system (W,S) is irreducible if it is not reducible.

3.0.16. Remark

A reducible Coxeter group $W = \langle S' \rangle \times \langle S'' \rangle$ is a clear direct product of generated groups.

3.0.17. Theorem

Suppose (W, S) is irreducible and n = |S|. Then we have:

- 1. The bilinear form B is positive definite if and only if W is finite. In this case, W is a spherical geometric reflection group generated by the set $S = \{s_i\}$ of reflections in the codimension-1 faces of a simplex in \mathbb{S}^{n-1} , with s_i the reflection in face F_i , so that faces F_i and F_j meet at dihedral angle $\frac{\pi}{m}$.
- 2. The bilinear form B is positive semidefinite of corank 1 if and only if W is a Euclidean geometric reflection group. In this case, W is generated by the set $S = \{s_i\}$ of reflections in the codimension-1 faces of either
 - if n=2, an interval in \mathbb{E}^1 (this is the case $W=D_{\infty}$);
 - if n > 3, a simplex in \mathbb{E}^{n-1} , with s_i the reflection in the codimension-1 face F_i , so that faces F_i and F_j meet at dihedral angle $\frac{\pi}{m_{ij}}$.

3.0.18. Definition: Coxeter Polytope

Let W be a finite Coxeter group. A Coxeter polytope for W is the convex hull of the W-orbit on V^* of a point $x \in \mathring{C}$.

3.0.19. Definition: Special Subgroup

For each $T \subseteq S$, the special subgroup W_T of W is $W_T = \langle T \rangle$. If $T = \emptyset$, we define W_\emptyset to be the trivial group. Note these subgroups are also called (standard) parabolic subgroups or visual subgroups.

3.0.20. Notation

If $J \subseteq I$ then $W_J = \langle s_j \mid j \in J \rangle$.

THE TITS REPRESENTATION WEYL GROUPS — 3.0

3.0.21. Theorem

Let (W, S) be a Coxeter system.

- 1. The pair (W_T, T) is a Coxeter system for each $T \subseteq S$.
- 2. For all $T \subseteq S$ and $w \in W_T$, we have $\ell_T(w) = \ell_S(w)$, and any reduced expression for w uses only letters in T. Hence $\mathrm{Cay}(W_T,T)$ embeds isometrically as a convex subgraph of $\mathrm{Cay}(W,S)$.
- 3. If $T,T'\subseteq S$, then $W_T\cap W_{T'}=W_{T\cap T'}$ and $\langle W_T,W_{T'}\rangle=W_{T\cup T'}.$
- 4. The map $T \mapsto W_T$ is a bijection

 $\{\text{subsets of }S\} \longrightarrow \{\text{special subgroups of }W\}$

which preserves the partial order given by inclusion.

4. The basic construction of a geometric realisation

4.0.1. Definition: Abstract Simplicial Complex

An abstract simplicial complex consists of a set V, possibly infinite, called the vertex set, and a collection X of finite subsets of V, such that

- 1. $\{v\} \in X$ for all $v \in V$;
- 2. if $\Delta \in X$ and $\Delta' \subseteq \Delta$, then $\Delta' \in X$.

An element of X is called a simplex. If Δ is a simplex and $\Delta' \subseteq \Delta$ then Δ' is a face of Δ .

 Δ is a k-simplex if dim $\Delta = |\Delta| - 1 = k$.

The k-skeleton $X^{(k)}$ is the union of all simpleces of dimension at most k (note this is a simplicial complex).

The dimension of a simplicial complex X is $\dim X = \max\{\dim(\Delta) \mid \Delta \in X\}$.

X is pure if all its maximal simplicies have the same definition.

4.0.2. Example: Standard n-simplex Δ^n

The standard *n*-simplex, Δ^n , is the convex hull of (n+1) points $(1,...),...,(0,...,1) \in \mathbb{R}^{n+1}$.

4.0.3. Remark

If X is a simplicial cell complex and $\Delta \subseteq X^{(0)}$ then $\Delta \in X$ if and only if Δ spans a copy of Δ^n in X.

4.0.4. Definition: Mirror Structure

Let (W, S) be any Coxeter system and let X be a connected, Hausdorff topological space. A mirror structure on X over S is a collection $(X_s)_{s \in S}$ where each X_s is a nonempty, closed subset of X. For each $s \in S$, we call X_s the s-mirror of X.

4.0.5. Notation

Define $S(x) \coloneqq \{s \in S \mid x \in X_s\}.$

4.0.6. Remark

We define a relation \sim on $W \times X$ by

$$(w,x) \sim (w',x')$$
 if and only if $x = x' \wedge w^{-1}w' \in W_{S(x)}$

where W_T is the special subground $\langle T \rangle$. Note W is a Coxeter group and X is some connect, Hausdorff, topological space.

4.0.7. Definition: Basic Construction

The basic construction is the quotient

$$\mathcal{U}(W,X) = W \times X/\sim$$

equipped with the quotient topology (where W is equipped with the discrete topology). [w,x] is the equvialence class of $(w,x) \in \mathcal{U}(W,X)$.

 $wX = \{w\} \times X$ is called a chamber. Note there is an embedding $X \to wX, x \mapsto [w, x]$.

4.0.8. Lemma

We have that $\mathcal{U}(W,X)$ is a connected topological space.

4.0.9. Definition: Locally Finite

We say $\mathcal{U}(W,X)$ is locally finite if for every $[w,x]\in\mathcal{U}(W,X)$ there is an open neighborhood of [w,x] which meets only finitely many chambers.

4.0.10. Lemma

The following are equvialent

- 1. The basic construction $\mathcal{U}(W,X)$ is locally finite.
- 2. For all $x \in X$, the special subgroup $W_{S(x)}$ is finite.
- 3. For all $T \subseteq S$ such that W_T is infinite, $\bigcap_{x \in T} X_t = \emptyset$.

4.0.11. Lemma

The fundamental chamber X is a strict fundamental domain for the action W on $\mathcal{U}(W,X)$. Hence $\mathcal{U}(W,X)/W$ is the Hausdorff space X.

4.0.12. Lemma

The stabiliser in W of $[w,x] \in \mathcal{U}(W,X)$ is $wW_{S(x)}w^{-1}$. In particular, up to conjugacy every point stabiliser subgroup of W.

Proof: Consider the following

$$\begin{split} \mathrm{Stab}_W([w,x]) &= \{ w' \in W \mid w' \cdot (w,x) \sim (w,x) \} \\ &= \{ w' \in W \mid (w'w,x) \sim (w,x) \} \\ &= \left\{ w' \in W \mid (w'w)^{-1}w \in W_{S(x)} \right\} \\ &= \left\{ w' \in W \mid w^{-1}w'w \in W_{S(x)} \right\} \\ &= wW_{S(x)}w^{-1}. \end{split}$$

4.0.13. Lemma

The space $\mathcal{U}(W,X)$ is Hausdorff.

4.0.14. Definition: Properly Discontinuous

Let G be a discrete group and let Y be a Hausdorff space. An action by homeomorphisms of G on Y is properly discontinuous if

- 1. the quotient Y/G is Hausdorff;
- 2. for all $y \in Y$, the group $G_u = \operatorname{Stab}_G(y)$ is finite;
- 3. for all $y \in Y$, there is an open neighborhood U_y of y which is stabilised by G_y such that $gU_y \cap U_y = \emptyset$ for all $g \in G \setminus G_y$.

4.0.15. Lemma

The W-action on $\mathcal{U}(W,X)$ is properly discontinuous if and only if $W_{S(x)}$ is finite for every $x \in X$.

4.0.16. Theorem: Vinberg

Let (W,S) be any Coxeter system. Suppose W acts by homeomorphisms on a connected Hausdorff space Y such that every $s \in S$, the fixed point set Y^s of s is nonempty. Suppose further that X is a connected Hausdorff space iwth mirror structure $(X_s)_{s \in S}$. Then if $f: X \to Y$ is a continuous map such that $f(X_s) \subseteq Y^s$ for all $s \in S$, there is a unique extension of f to a W-equivariant map $\tilde{f}: \mathcal{U}(W,X) \to Y$ given by

$$\tilde{f}([w,x]) = w \cdot f(x).$$

4.0.17. Theorem

Let $X=P^n$ be a simple convex polytope in \mathbb{X}^n for $n\geq 2$, with codimension-1 faces $\{F_i\}_{i\in I}$. Assume that if $i\neq j$ and $F_i\cap F_j\neq \emptyset$, then the dihedral angle between F_i and F_j is $\frac{\pi}{m_{ij}}$ where $m_{ij}\in\{2,3,\ldots\}$ is finite. Put $m_{ii}=1$ and $m_{ij}=\infty$ if $F_i\cap F_j=\emptyset$.

Let $S=\left\{s_i\right\}_{i\in I}$ and let (W,S) be the Coxeter system with Coxeter matrix $\left(m_{ij}\right)_{i,j\in I}$. Define a mirror structure on X by $X_{s_i}=F_i$. For each $i\in I$, let $\overline{s}_i\in \mathrm{Isom}(\mathbb{X}^n)$ be the reflection in F_i . Let \overline{W} be the subgroup of $\mathrm{Isom}(\mathbb{X}^n)$ generated by the set \overline{s}_i . Then

- 1. there is an isomorphism $\varphi: W \to \overline{W}$ induced by $s_i \mapsto \overline{s}_i$;
- 2. the induced map $\mathcal{U}(W, P^n) \to \mathbb{X}^n$ is a homeomorphism;
- 3. the Coxeter group W acts properly discontinuously on \mathbb{X}^n with strict fundamental domain P^n , hence W is a discrete subgroup of $\mathrm{Isom}(\mathbb{X}^n)$ and \mathbb{X}^n is tessellated by copies of P^n .

4.0.18. Definition: Atlas

A n-dimensional topological manifold M^n has an \mathbb{X}^n -structure if it has an atlas of charts $\{\psi_\alpha:U_\alpha\to\mathbb{X}^n\}_{\alpha\in A}$ such that

- $(U_{\alpha})_{\alpha \in A}$ is an open cover of M^n ;
- each ψ_{α} is a homeomorphism onto its image;
- for all $\alpha, \beta \in A$ the map

$$\psi_{\beta} \circ \psi_{\alpha}^{-1} : \psi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \psi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is the restriction of an element of $\mathrm{Isom}(\mathbb{X}^n).$

In particular an \mathbb{X}^n -structure turns M^n into a smooth Riemannian manifold. We will use the following

- An \mathbb{X}^n -structure on M^n induces one on its universal cover \widetilde{M}^n .
- There is a developing map $D:\widetilde{M}^n \to \mathbb{X}^n$ given by analytic continuation along paths.
- If M^n is metrically complete, D is a covering map.

5. The Davis complex

5.0.1. Notation

The Davis complex generated by the Coxeter system (W, S) is denoted by $\Sigma = \Sigma(W, S)$.

5.0.2. Definition: Spherical Subsets and Spherical Special Subgroup

A subset $T \subseteq S$ is a **spherical** if the special subgroup W_T is finite, in which case we say that W_T is a **spherical** special subgroup (this is due to W_T acting naturally on a sphere if it is irreducible).

5.0.3. Remark

Finite irreducible Coxeter systems are classified.

5.0.4. Definition: Nerve

The nerve of (W,S), denoted L=L(W,S), is the simplicial complex with a simplex σ_T for each $T\subseteq S$ such that $T\neq\emptyset$ and W_T is finite.

Note this is a simplicial complex (although it encludes the empty simplex).

5.0.5. Example: Nerve of Triangle Group

If W is the (3,3,3)-triangle group we have

$$W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (us)^3 = 1 \rangle.$$

Then the nerve L is a triangle with vertices s, t, u with no interior since W is infinite.

5.0.6. Remark

For a given Euclidean or hyperbolic geometric reflection group W with strict fundamental domain P the nerve L can be identified with the boundary of P^* (the dual polytope of P).

5.0.7. Example: Right-angled Defining Graph

Let Γ be a finite simple graph with vertex set $S = V(\Gamma)$ and edge set $E(\Gamma)$. Then we have

$$\begin{split} W_{\Gamma} &= \left\langle S \mid s^2 = 1, \forall s \in S, st = ts \Longleftrightarrow \{s,t\} \in E(\Gamma) \right\rangle \\ &= \left\langle S \mid s^2 = 1, \forall s \in S, (st)^2 = 1 \Longleftrightarrow \{s,t\} \in E(\Gamma) \right\rangle \end{split}$$

is the associated right-angled Coxeter group. Γ is called the defining graph of W_{Γ} .

Note that if S has no spherical subsets T with |T| > 2 then $L(W_{\Gamma}, S) = \Gamma$.

5.0.8. Definition: Flag Complex

A simplicial complex L is a flag complex if a finite nonempty set of vertices T in L spans a simplex in L if and only if any two elements of T span an edge in L.

5.0.9. Lemma

If (W, S) is a right-angled Coxeter system, then L(W, S) is a flag complex.

Proof: Suppose $T \subseteq S, T \neq \emptyset$ and any two vertices in T are connected by an edge in L. Then $W_T \approx (C_2)^{|T|}$ is finite, so T is spherical and σ_T is in L.

5.0.10. Definition: Chamber of Davis Complex

The chamber K is the cone on the barycentric subdivision L' of the nerve L=L(W,S). For each $s\in S$, define $K_s\subset K$ to be the closed star in L' of the vertext s.

5.0.11. Lemma

For all $x \in K$, the set $S(X) = \{s \in S \mid x \in K_s\}$ is spherical, so each $W_{S(x)}$ is finite. Moreover, the collection $\{S(x) \mid x \in K\}$ is exactly the collection of spherical subsets of S.

5.0.12. Example: Chamber of Polytope

Let W be a Euclidean or hyperbolic geometric reflection group with fundamental domain P and let P^* be its dual polytope. Then $L=\partial P^*$ such that $L'=(\partial P^*)'=(\partial P)'$. Thus K is the cone on the barycentric subdivision of ∂P . The mirrors are the barycentric subdivisions of the codimension-1 faces of P.

5.0.13. Definition: Davis Complex (Basic Construction)

The **Davis complex** $\Sigma = \Sigma(W, S)$ is the basic construction

$$\Sigma = \mathcal{U}(W, K) = W \times K / \sim$$

where the chamber K with mirror structure $\left(K_{s}\right)_{s\in S}$ is as before.

5.0.14. Corollary

The Davis complex $\Sigma = \mathcal{U}(W,K)$ is connected, Hausdorff, and locally finite. The W-action on Σ is properly discontinuous with quotien K, and all point stabilisers are conjugates of finite special subgroups of W.

5.0.15. Theorem

The Davis complex $\Sigma = \Sigma(W, S)$ is contractible.

5.0.16. Definition

For $w \in W$ define

$$\begin{split} & \text{In}(w) = \{s \in S \mid \ell(ws) < \ell(w)\} \\ & = \{s \in S \mid \text{a reduced expression for } w \text{ can end in } s\} \\ & \text{Out}(w) = \{s \in S \mid \ell(ws) > \ell(w)\}. \end{split}$$

Since $\ell(ws) = \ell(w) \pm 1$, we have $S = \text{In}(w) \sqcup \text{Out}(w)$.

5.0.17. Proposition

For all $w \in W$, $\operatorname{In}(w)$ is a spherical subset, that is, $W_{\operatorname{In}(w)}$ is finite.

5.0.18. Lemma

Suppose there is a $w_0 \in W$ such that $\ell(w_0 s) < \ell(w_0)$ for all $s \in S$. Then W is finite.

5.0.19. Lemma

Let $T\subseteq S$ and suppose w is a minimal length element in the left coset wW_T . Then any $w'\in wW_T$ can be written as w'=wa' where $a'\in W_T$ is such that $\ell(w')=\ell(w)+\ell(a')$. Moreover, each coset wW_T contains a unique element of minimal length.

5.0.20. Lemma

The chamber K is contractible, and for all spherical $T \subseteq S$, the union of mirrors

$$K^T = \bigcup_{t \in T} K_t$$

is contractible.

5.0.21. Lemma

The chamber K defined previously is the geometric realisation of the post $\{T\subseteq S\mid W_T \text{ is finite}\}$ order by inclusion.

THE DAVIS COMPLEX

WEYL GROUPS — 5.0

5.0.22. Corollary

The chamber K defined previously is the geometric realisation of the poset $\{W_T \mid T \subseteq S \text{ and } W_T \text{ is finite}\}$ ordered by inclusion.

5.0.23. Theorem

We can identify the Davis complex Σ with the geometric realisation of the poset

$$\{wW_T \mid w \in W, T \subseteq S \text{ and } W_T \text{ is finite}\},\$$

ordered by inclusion.

5.0.24. Theorem

We can identify the (barycentric subdivision of the) Coxeter complex with the geometric realisation of the poset

$$\{wW_T \mid w \in W, T \subseteq S\},\$$

ordered by inclusion.

5.0.25. Theorem

The Davis complex Σ may be identified with the CW complex which has 1-skeleton $\mathrm{Cay}(W,S)$, and a cell with vertex set $U\subseteq W$ whenever $U=wW_T$ for some $w\in W$ and $T\subseteq S$ with W_T finite.

5.0.26. Lemma

The Davis complex Σ is simply connect.

5.0.27. Definition: Polyhedral Complex

A **polyhedral complex** is a finite-dimensional CW complex in which each n-cell is metrised as convex polytope in \mathbb{X}^n (the same \mathbb{X} for each cell), and the restrictions of the attaching maps to codimension-1 faces are isometries. A polyhedral complex is spherical, Euclidean or hyperbolic as \mathbb{X}^n is \mathbb{S}^n , \mathbb{E}^n , or \mathbb{H}^n , respectively.

5.0.28. Definition: Geodesic Space

For $x,y\in X$ a geodesic from x to y is a map γ from $[a,b]\subseteq\mathbb{R}$ to X so that $\gamma(a)=x,\gamma(b)=y$ and $d(\gamma(t),\gamma(t'))=|t-t'|$ for all $i,t'\in[a,b]$. (X,d) is a geodesic space if every pair of points in X is connected by a geodesic.

5.0.29. Theorem

If a connected polyhedral complex X has finitely many isometry types of cells, then X is a complete geodesic space.

5.0.30. Theorem

When equipped with the piecewise Euclidean metric determined by $\underline{d}=(d_s)_{s\in S}$ as below, $\Sigma=\Sigma(\underline{d})$ is a complete CAT(0) space.

 \underline{d} is a sequence where $d_s>0$. Let $\rho_T:W_T\to O(|T|,\mathbb{R})$ for any finite W_T where $\rho_T(t)$ is the hyperplane H_t with unit normal vector $e_t.$ H_t and $H_{t'}$ meet at dihedral angle $\frac{\pi}{m}$ where $\langle t,t'\rangle\approx D_{2m}.$ Let the chamber

$$C_T = \{ x \in \mathbb{R}^n \mid \langle x, e_t \rangle \ge 0, \forall t \in T \}.$$

There exists a unique point $x_T=x_{T(\underline{d})}$ in the interior of C_T such that $d(x_T,H_t)=d_t>0$ for all $t\in T$. Each cell is metrised with vertex set wW_T .

5.0.31. Definition: Comparison Triangle

Let [xy] be the geodesic segment from x to y is the geodesic space (X, d). Given a geodesic triangle

$$\Delta = [x_1x_2] \cup [x_2x_3] \cup [x_3x_1]$$

in X, there is a comparison triangle

$$\overline{\Delta} = [\overline{x}_1 \overline{x}_2] \cup [\overline{x}_2 \overline{x}_3] \cup [\overline{x}_3 \overline{x}_1]$$

with $d_X(x_i,x_j)=d_{\mathbb{E}^2}(\overline{x}_i\overline{x}_j)$ for any $i\neq j$. For any $p\in \left[x_ix_j\right]$ there is a unique comparison point $\overline{p}\in \left[\overline{x}_i\overline{x}_j\right]$ such that $d_X(x_ip)=d_{\mathbb{E}^2}(\overline{x}_i\overline{p})$.

5.0.32. Definition: CAT(0)

A geodesic space (X, d_X) is CAT(0) if for every geodesic triangle Δ in X, and all points $p, q \in \Delta$,

$$d_X(p,q) \le d_{\mathbb{R}^2}(\overline{p},\overline{q}).$$

Similarly a geodesic is CAT(-1) if

$$d_X(p,q) \leq d_{\mathbb{H}^2}(\overline{p},\overline{q})$$

or CAT(1) if

$$d_X(p,q) \leq d_{\mathbb{S}^2}(\overline{p},\overline{q}).$$

5.0.33. Theorem

Let X be a complete CAT(0) space. Then we have the following properties:

- 1. The space X is uniquely geodesic.
- 2. The space X is contractible.
- 3. Suppose a group G acts on X by isometries. Let H be a subgroup of G and write X^H for the fixed set of H in X. If X^H is nonempty then X^H is convex. In particular, since closed, convex subsets of complete CAT(0) spaces are complete CAT(0) spaces, every nonempty fixed set X^H is contractible by (2).
- 4. (Bruhat-Tits fixed point theorem). If a group G acts on X by isometries and G has a bounded orbit, then $X^G \neq \emptyset$. In particular, for every finite subgroup $H \leq G$, we have $X^H \neq \emptyset$, and so X^H is contractible by (3).
- 5. If a group G acts properly discontinuously and cocompactly by isometries on X then the word problem and the conjugacy problem are both solvable for G.

5.0.34. Corollary

Let (W,S) be a Coxeter system and $\Sigma=\Sigma(W,S)$ be the associated Davis complex, equipped with a $\mathrm{CAT}(0)$ metric.

- 1. The complex Σ is contractible.
- 2. If $H \leq W$ is finite, then Σ^H is nonempty and contractible, and there is an element $w \in W$ and a spherical subset $T \subseteq S$ such that $H \leq wW_Tw^{-1}$.
- 3. The word and conjugacy problems for W are solvable.

5.0.35. Theorem: Cartan-Hadamard theorem for CAT(0) spaces

Let X be a complete, connected geodesic metric space. If X is locally CAT(0) then the universal cover of X is CAT(0).

5.0.36. Theorem: Gromov link condition

If X is a piecewise Euclidean polyhedral complex then X is locally CAT(0) if and only if for every vertex v of X, the link of v in X is CAT(1).

5.0.37. Lemma

In Σ , the link of the vertex v=1 is L, with each simplex σ_T of L metrised as the simplex Δ_T in $\mathbb{S}^{|T|-1}$ with the vertex set $\{e_t\}_{t\in T}$ (L is a nerve).

5.0.38. Theorem

Suppose all simplices of a simplicial complex Δ are metrised as right-angled spherical simplices. Then Δ is CAT(1) if and only if Δ is flag.

5.0.39. Definition: Cube Complex

A cube complex is a Euclidean polyhedral complex in which each cell is metrised as Euclidean cube.

5.0.40. Corollary

If W_Γ is right-angled, $\Sigma=\Sigma_\Gamma$ can be metrised as a ${\rm CAT}(0)$ cube complex.

5.0.41. Theorem

Suppose a simplicial complex Δ is metrised as a spherical simplicial complex in which all edge lengths are $\geq \frac{\pi}{2}$. Then Δ is CAT(1) if and only if Δ is a metric flag complex.

5.0.42. Theorem

There exists a piecewise hyperbolic structure on Σ which is $\mathrm{CAT}(-1)$ if and only if there is no subset $T\subseteq S$ such that either

- 1. W_T is an Euclidean geometric reflection group of dimension ≥ 2 ; or
- 2. (W_T, T) is reducible with $W_T = W_{T'} \times W_{T''}$ and $W_{T'}$ and $W_{T''}$ both infinite.

5.0.43. Definition: Word Hyperbolic

W is word hyperbolic if there exists $\delta > 0$ so that every geodesic triangle Δ in $\mathrm{Cay}(W,S)$ is δ -thin, meaning that the δ -neighborhood of any two sides of Δ contains the third. Word hyperbolic groups are sometimes also called Gromov hyperbolic groups.

5.0.44. Theorem

Let (W, S) be a Coxeter system. If W is word hyperbolic then

- 1. W has no $\mathbb{Z} \times \mathbb{Z}$ subgroup;
- 2. *W* has a solvable word and conjugacy problem;
- 3. W satisfies a linear "isoperimetric inequality"; and
- 4. W is automatic and biautomatic.

5.0.45. Corollary

If $W=W_\Gamma$ is right-angled then W_Γ is word hyperbolic if and only if Γ has no empty squares.

5.0.46. Corollary

Let (W, S) be a Coxeter system. The following are equivalent:

- 1. The group W is word hyperbolic.
- 2. The group W has no $\mathbb{Z} \times \mathbb{Z}$ subgroup.
- 3. There is no subset $T \subseteq S$ such that (1) and (2) in <u>previous theorem</u> holds.
- 4. The complex Σ admits a piecewise hyperbolic metric which is CAT(-1).

5.0.47. Definition: Classifying Space

A classifying space for a group G, denoted BG, is an aspherical CW complex with fundamental group G. It is also called an **Eilenberg-MacLane space** or a K(G,1). The universal cover of BG, denoted EG, is called a **universal space** for G.

5.0.48. Theorem

Let (W,S) be a Coxeter system with nerve L, chamber K and Davis complex Σ . Then

$$\begin{split} H^i(W;\mathbb{Z}W) &\cong H^i_c(\Sigma) \\ &\cong \bigoplus_{w \in W} H^i\big(K,K^{\mathrm{Out}(w)}\big) \\ &\cong \bigoplus \big\{ \big(\mathbb{Z}W^T \otimes H^i\big(K,K^{S-T}\big) \mid T \subseteq S,T \text{ is spherical} \big\} \\ &\cong \bigoplus \big\{ \big(\mathbb{Z}W^T \otimes \overline{H^{i-1}}(L-\sigma_T) \mid T \subseteq S,T \text{ is spherical} \big\}. \end{split}$$

5.0.49. Definition: Universal Space

Let G be a discrete group. A CW complex X together with a proper, cocompact, cellular G-action is a universal space for proper G-actions, denoted $\underline{E}G$, if for all finite subgroups H of G, the fixed set X^H is contractible.

5.0.50. Theorem

For any discrete group G, an EG exists and is unique up to G-homotopy, and

$$H^*(G;\mathbb{Z}G)=H_c^*(\underline{E}G).$$

THE DAVIS COMPLEX

WEYL GROUPS — 5.0

5.0.51. Proposition

If a discrete group G acts properly discontinuously and cocompactly on an acyclic CW complex X then

$$H^*(G;\mathbb{Z}G)=H^*_c(X).$$

5.0.52. Corollary

The Davis complex $\Sigma = \Sigma(W,S)$ is a finite-dimensional $\underline{E}W$. Moreover, W acts properly discontinuously and cocompactly on Σ , and Σ is acyclic (since it is contractible).

6. Buildings as unions of apartments

6.0.1. Definition: Building

Let (W, S) be a Coxeter system. A **building** of type (W, S) is a simplicial complex Δ which is a union of subcomplexes called **apartments**, with each apartment being a copy of the Coxeter complex for (W, S). The maximal simplices in Δ are called its **chambers**, and the following axioms hold:

- 1. Any two chambers are contained in acommon aparment.
- 2. If A and A' are any two apartments, there is an isomorphism $A \to A'$ which fixes $A \cap A'$ pointwise.

6.0.2. Remark

A building may be the union of more than one collection of subcomplexes.

6.0.3. Remark

Am generalised m-gon is the same thing as a building of type D_{2m} . Where a generalised m-gon is a connected bipartite graph with girth 2m (shortest circuit) and diameter m (the maximal distance between two veritices).

7. Buildings as chamber systems

7.0.1. Definition: Chamber System

Let I be a finite set. A set C, whose elements are called chambers, is a chamber system over I if each $i \in I$ determines an equivalence relation on C, denoted \sim . We say that chambers x and y are i-adjacent if $x \sim y$, and that they are adjacent if $x \sim y$ for some $i \in I$.

7.0.2. Definition: Gallery

A sequence of chambers $\gamma=(c_0,...,c_k)$ is a chamber if c_{j-1} is adjacent to c_j and $c_{j-1}\neq c_j$. γ is of type $(i_1,...,i_k)$ where $c_{j-1}\underset{i_j}{\sim} c_j$.

7.0.3. Definition: J-residue

For any $J \subseteq I$ a J-residue is a J-connected component of C that is a maximal subset of C such that each pair of chambers in this subset is connected by a gallery with type a tuple of indexes in J.

Note that $\{i\}$ -residue is an i-panel.

7.0.4. Definition: W-valued distance function

W-valued distance function is a map

$$\delta: C \times C \to W$$

such that for all reduced words $\left(s_{i_1},...,s_{i_k}\right)$ and all $x,y\in C$, the following holds: $\delta(x,y)=s_{i_1}\cdots s_{i_k}$ if and only if there is a gallery from x to y in C of type $(i_1,...,i_k)$.

7.0.5. Definition: Building

Let (W, S) be a Coxeter system with $S = \{s_i \mid i \in I\}$. A building of type (W, S) is a chamber system Δ over I which is equipped with a W-valued distance function, and is such that each panel has at least two chambers.

A building is thick if each panel has at least three chambers, and thin if each panel has exactly two chambers.

7.0.6. Proposition

Let (W,S) be a Coxeter system and let Δ be a building of type (W,S), with W-valued distance function $\delta:\Delta\times\Delta\to W$. Then

- 1. Δ is connected;
- 2. δ maps onto W;
- 3. for all $x, y \in \Delta$, we have $\delta(x, y) = \delta(y, x)^{-1}$;
- 4. for all $x, y \in \Delta$, we have $\delta(x, y) = s_i$ if and only if $x \sim y$ and $x \neq y$;
- 5. if $x, y \in \Delta$ with $x \neq y$, and $x \sim y$ and $x \sim y$, then i = j; and
- 6. if $(s_{i_1},...,s_{i_k})$ is reduced in (W,S), then for all chambers x and y there is at most one gallery of type $(i_1,...,i_k)$ from x to y.

7.0.7. Definition: Minimal Gallery

A gallery in Δ is minimal if there is no shorter gallery between its end points.

7.0.8. Lemma

A gallery of type $(i_1,...,i_k)$ is minimal if and only if the word $(s_{i_1},...,s_{i_k})$.

7.0.9. Proposition

If $J\subseteq I$, then every J-residue is a building of type (W_J,J) .

7.0.10. Definition: W-isometric embedding

For any subset $X \subseteq W$, a map $\alpha: X \to \Delta$ is a W-isometric embedding if, for all $x, y \in X$,

$$\delta(\alpha(x), \alpha(y)) = x^{-1}y.$$

An apartment is any image of W under a W-isometric embedding.

7.0.11. Proposition

For any proper subset $X \subsetneq W$, any W-isometric embedding $\alpha: X \to \Delta$ extends to a W-isometric embedding of W.

7.0.12. Theorem

Let Δ be a building, so that its apartments are copies of some basic construction $\mathcal{U}(W,X)$.

- 1. If Δ is a spherical building (its apartments are spheres tiled by the action of W) then Δ is a CAT(1) space.
- 2. If Δ is a Euclidean or affine building (its apartments are Euclidean spaces tiled by the action of W) then Δ is a CAT(0) space.
- 3. If Δ is a hyperbolic building (its apartments are hyperbolic spaces tiled by the action of W) then Δ is a $\mathrm{CAT}(-1)$ space.
- 4. If the apartments of Δ are Davis complexes, then Δ can be equipped with a piecewise Euclidean metric such that it is a CAT(0) space.
- 5. If the apartments of Δ are Davis complexes, and W is word hyperbolic, then Δ can be equipped with a piecewise hyperbolic metric such that it is a CAT(-1) space.

7.0.13. Definition: Graph Product

Let Γ be a finite simple graph with vertex set S and edge set $E(\Gamma)$. For each $s \in S$, let G_s be a nontrivial group. The graph product of the family $\{G_s\}_{s \in S}$ over Γ is the group G_Γ which is the quotient of the free product of the groups G_s by the normal subgroup generated by the commutators

$$\{[g_s, g_t] : g_s \in G_s, g_t \in G_t \text{ and } \{s, t\} \in E(\Gamma)\}.$$

That is, the graph G_{Γ} is generated by the vertex groups G_s , with G_s and G_t commuting in G_{Γ} if and only if S_t and S_t are adjacent vertices. Graph products of groups are sometimes called graph groups.

7.0.14. Theorem: Green

If $g=g_{1_i}\cdots g_{i_k}$ and $g'=g'_{i_1}\cdots g'_{i_k}$ are reduced expressions for $g,g'\in G_\Gamma\setminus\{1\}$, then g=g' in the group G_Γ if and only if one can get from one expression to the other by "shuffling", that is, using relations of the form $\left[g_{i_i},g_{i_{i+1}}\right]=1$.