

Computer Networks

Router Architecture and Scheduling

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Router Architecture

Router architecture overview

Link layer:

e.g., Ethernet

- Using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- Goal: complete input port processing at 'line speed'
- Input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching fabrics

- Transfer packet from input link to appropriate output link
- Switching rate: rate at which packets can be transfer from inputs to outputs
 - Often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

Switching fabrics

- Transfer packet from input link to appropriate output link
- Switching rate: rate at which packets can be transfer from inputs to outputs
 - Often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- Three major types of switching fabrics:

Switching via memory

First generation routers:

- Traditional computers with switching under direct control of CPU
- Packet copied to system's memory
- Speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- Datagram from input port memory to output port memory via a shared bus
- Bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Crossbar, Clos networks, other interconnection nets initially developed to connect processors in multiprocessor computer architecture
- Multistage switch: nxn switch from multiple stages of smaller switches
- Exploiting parallelism:
 - Fragment datagram into fixed length cells on entry
 - Switch cells through the fabric, reassemble datagram at exit

Switching via interconnection network

- Scaling, using multiple switching "planes" in parallel:
 - Speedup, scaleup via parallelism
- Cisco CRS router:
 - Basic unit: 8 switching planes
 - Each plane: 3-stage interconnection network
 - up to 100's Tbps switching capacity

Cisco CRS router: https://nexstor.com/wp-content/uploads/2018/05/cisco-crs-1-multishelf-system-datasheet.pdf

Output port functions

Queuing, Buffer management and Scheduling

Input port queuing

- If switch fabric slower than input ports combined → queueing may occur at input queues
 - Queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: Queued datagram at front of queue prevents others in queue from moving forward

Output port contention: only one red datagram can be transferred. lower red packet is blocked

One packet time later: green packet experiences HOL blocking

Output port queuing

- Buffering required when datagrams arrive from fabric faster than link transmission rate
- Drop policy: which datagrams to drop if no free buffers?
- Scheduling discipline chooses among queued datagrams for transmission

How much buffering?

- Too much buffering will reduce packet loss, but can increase delays
 - Long RTTs: poor performance for real-time apps, sluggish TCP response
- RFC 3439 rule of thumb: average buffering equal to "typical" RTT times link capacity C
 - e.g., RTT = 250 msec, C = 10 Gbps link → 2.5 Gbit buffer
 - Delay-bandwidth product
- More recent recommendation: with N flows, buffering equal to

$$\frac{RTT.C}{\sqrt{N}}$$

Buffer Management

Abstraction: queue

Buffer management:

- Drop: which packet to add, drop when buffers are full
 - Tail drop: drop arriving packet
 - Priority: drop/remove on priority basis
- Marking: which packets to mark to signal congestion (i.e. ECN)

Packet Scheduling: FCFS

Packet scheduling:

deciding which packet to send next on link

- First come, first served
- Priority based
- Round robin
- Weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

also known as: First-infirst-out (FIFO)

Scheduling policies: Priority Based

Priority based scheduling:

- Arriving traffic classified, queued by class
 - Any header fields can be used for classification
- Send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Scheduling policies: round robin

Round Robin (RR) scheduling:

- Arriving traffic classified, queued by class
 - Any header fields can be
- Server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Scheduling policies: Weighted Fair Queueing

Weighted Fair Queuing (WFQ):

- Generalized Round Robin
- Each class i, has weight, w_i and gets weighted amount of service in each cycle:

$$\frac{w_i}{\sum_j w_j}$$

 Minimum bandwidth guarantee (per-traffic-class)

Summary

- □Router architecture, queuing and packet scheduling:
 - Router architecture
 - Input ports
 - High speed fabric
 - Out ports
 - Packet scheduling
 - FCFS
 - Priority based
 - Round robin
 - Weighted fair queuing