10-701 Cheat Sheet

Distributions

Gaussian: $\ln \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\};$ multinomial: $p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod \mu_k^{x_k}$, where only one of x_i is 1, and others are 0; binary: $\operatorname{Bern}(x|\mu) = \mu^x (1-\mu)^{1-x};$ binomial: $\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m},$ with expectation $N\mu$ and variance $\mu(1-\mu)$. (reduced to binary for N=1)

Non-Parametric

MaxLikelihood learning window will give you delta functions, which is a kind of over fitting. Use Leave-one-out cross validation for model selection. Idea: Use some of the data to estimate density; Use other part to evaluate how well it works. Pick the parameter that works best.

$$\begin{split} \log p(x_i|X\setminus\{x_i\}) &= \log\frac{1}{n-1}\sum_{j\neq i}k(x_i,x_j), \text{ the sum over all } \\ \text{points is } &\frac{1}{n}\sum_{i=1}^n\log\left[\frac{n}{n-1}p(x_i)-\frac{1}{n-1}k(x_i,x_i)\right] \text{ where } p(x) = \\ &\frac{1}{n}\sum_{i=1}^nk(x_i,x). \end{split}$$

why must we not check too many parameters? that you can overfit more; for a given dataset, a few particular parameter values might happen to do well in k-fold CV by sheer chance, where if you had a new dataset they might not do so well. Checking a reasonable number of parameter values makes you less likely to hit those "lucky" spots helps mitigate this risk.

Silverman's Rule for kernel size Use average distance from k nearest neighbors $r_i = \frac{r}{k} \sum_{x \in \text{NN}(x_i, k)} ||x_i - x||$.

Watson Nadaraya 1. estimate p(x|y=1) and p(x|y=-1); 2. compute by Bayes rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\frac{1}{my}\sum_{i=y}k(x_i,x)\cdot\frac{my}{m}}{\frac{1}{m}\sum_{i}k(x_i,x)}.$$
 3. Decision

houndars

$$p(y=1|x)-p(y=-1|x)=\frac{\sum_{j}y_{j}k(x_{j},x)}{\sum_{i}k(x_{i},x)}=\sum_{j}y_{j}\frac{k(x_{j},x)}{\sum_{i}k(x_{i},x)}$$
 Actually, we assume that $p(x-y)$ is equal to
$$1/m_{y}*\sum_{y}k(x_{i},x).$$
 Using this definition, we can see
$$p(x,-1)+p(x,1)=p(x|-1)p(-1)+p(x|1)p(1)=p(x).$$
 This can be incorporated into the regression framework in chap 6 of PRML. Where we define $f(x-x_{n},t\neq t_{n})=0$, and $f(x-x_{n},t=t_{n})=f(x-x_{n}).$ Using this definition, we can derive all the probabilities on this slide. (see my handwritten notes on chap 6 of PRML).

Regression case is the same equation.

kNN Let optimal error rate be p. Given unlimited **iid** data, 1NN's error rate is $\leq 2p(1-p)$.

Matrix Cookbook

$$\begin{split} & \frac{\partial \boldsymbol{x}^T \boldsymbol{a}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{a}^T \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{a} \\ & \frac{\partial \boldsymbol{a}^T \boldsymbol{X} \boldsymbol{b}}{\partial \boldsymbol{X}} = \boldsymbol{a} \boldsymbol{b}^T, \ \frac{\partial \boldsymbol{a}^T \boldsymbol{X}^T \boldsymbol{b}}{\partial \boldsymbol{X}} = \boldsymbol{b} \boldsymbol{a}^T, \ \frac{\partial \boldsymbol{a}^T (\boldsymbol{X}^T | \boldsymbol{X}) \boldsymbol{a}}{\partial \boldsymbol{X}} = \boldsymbol{a} \boldsymbol{a}^T \\ & W \in \boldsymbol{S}, \ \frac{\partial}{\partial \boldsymbol{s}} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s}) = -2 \boldsymbol{A}^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s}), \\ & \frac{\partial}{\partial \boldsymbol{x}} (\boldsymbol{x} - \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}) = 2 \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}), \\ & \frac{\partial}{\partial \boldsymbol{s}} (\boldsymbol{x} - \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}) = -2 \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}), \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{x}}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s})^T\boldsymbol{W}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s}) = 2\boldsymbol{W}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s}),\\ &\frac{\partial}{\partial \boldsymbol{A}}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s})^T\boldsymbol{W}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s}) = -2\boldsymbol{W}(\boldsymbol{x}-\boldsymbol{A}\boldsymbol{s})\boldsymbol{s}^T.\\ &\operatorname{Tr}(\boldsymbol{A}) = \sum_i \boldsymbol{A}_{ii}. \text{ For two equal sized matrices, } \operatorname{Tr}(\boldsymbol{A}^T\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}^T\boldsymbol{A}) = \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}^T) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}^T) = \sum_{i,j} \boldsymbol{A}_{ij}\boldsymbol{B}_{ij}.\\ &\operatorname{Tr}(\boldsymbol{A}) = \operatorname{Tr}(\boldsymbol{A}^T), \operatorname{Tr}(\boldsymbol{A}+\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{A}) + \operatorname{Tr}(\boldsymbol{B}). \text{ For square matricis,}\\ &\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}), \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = \operatorname{Tr}(\boldsymbol{C}\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{C}\boldsymbol{A}) \end{split}$$

Classifers and Regressors

(trace rotation).

Naive Bayes Conditionally independent:

 $P(x_1, x_2, \dots | C) = \prod_i P(x_i | C)$. One way to avoid divide by zero: add $(1, 1, \dots, 1)$ and $(0, 0, \dots, 0)$ to both classes. Learns $P(x_i | y)$ for Discrete $x_i - P(x_i | y) = \frac{\#D(X_i = x_i, Y = y)}{\#D(Y = y)}$

For smoothing, use $P(x_i|y) = \frac{\#D(X_i = x_i, Y = y) + k}{\#D(Y = y) + n_i k}$, where n_i is the number of different possible values for X_i (In practice problem set, Jing Xiang used k = 1?) Continuous x_i – Can use any PDF, but usually use Gaussian

 $P(x_i|y) = \mathcal{N}(\mu_{X_i|y}, \sigma^2_{X_i|y})$, where $\mu_{X_i|y}$ and $\sigma_{X_i|y}$ are, respectively, the average and variance of X_i for all data points where Y=y. The Gaussian distribution already provides smoothing.

Perceptron Produces linear decision boundaries. Classifies using $\hat{y} = X_{test} w + b \text{ Learns } w \text{ and } b \text{ by updating } w \text{ whenever}$ $y_i(w^Tx_i+b) \leq 0$ (i.e. incorrectly classified). Updates as $w \leftarrow w + x_i y_i, b \leftarrow b + y_i$ Repeat until all examples are correctly classified. w is some linear combination $\sum_i \alpha_i x_i (y_i * x_i)$ of data points, and decision boundary is the linear hyperplane $f(x) = w^T x + b$. Note that the perceptron is the same as stochastic gradient descent with a hinge loss function of $max(0, 1 - y_i [< w, x_i > +b])$ (we can't remove 1 in the loss function; otherwise we can set w, b = 0). Convergence of perceptron proof 1 Here we use a perceptron without b. Assume we have w^* that has margin γ $(\min(\boldsymbol{w}^*)^T y_i x_i = \gamma)$, and $\|\boldsymbol{w}^*\| = 1, \|x_i\| = 1$. We start from $\mathbf{w}_0 = 0$. Assume that we have made M mistakes. We have 1) $\boldsymbol{w}_{M} \cdot \boldsymbol{w}^{*} = (\boldsymbol{w}_{M-1} + y_{i}x_{i}) \cdot \boldsymbol{w}^{*} > \boldsymbol{w}_{M-1} \cdot \boldsymbol{w}^{*} + \gamma$. So we have $\boldsymbol{w}_M \cdot \boldsymbol{w}^* \geq M \gamma$.

2) $\mathbf{w}_{M} \cdot \mathbf{w}_{M} = (\mathbf{w}_{M-1} + y_{i}x_{i}) \cdot (\mathbf{w}_{M-1} + y_{i}x_{i}) = \mathbf{w}_{M-1} \cdot \mathbf{w}_{M-1} + 2y_{i}x_{i} \cdot \mathbf{w}_{M-1} + (y_{i}x_{i}) \cdot (y_{i}x_{i}) \leq \mathbf{w}_{M-1} \cdot \mathbf{w}_{M-1} + 1.$ So we have $\mathbf{w}_{M} \cdot \mathbf{w}_{M} < M$.

Combining them, using Cauchy-Schwarz, we have $M\gamma \leq \boldsymbol{w}_M \cdot \boldsymbol{w}^* \leq \|\boldsymbol{w}_M\| \|\boldsymbol{w}^*\| \leq \sqrt{M}$. So $M \leq 1/\gamma^2$. **proof 2** Let potential function $Q_i = \|\boldsymbol{w}_i\| - \boldsymbol{w}_i \cdot \boldsymbol{w}^*$, where i is the number of iterations. Assuming up to iteration i, we have M mistakes, so we have $Q_i \leq \sqrt{M} - M\gamma$. Clearly $Q_i \geq 0$ by Cauchy-Schwarz. So we have $\sqrt{M} - M\gamma \geq 0$.

Linear Regression For $y = \boldsymbol{\beta}^T \boldsymbol{x}$, $\boldsymbol{\beta}^* = (X^T X)^{-1} X^T \boldsymbol{y}$, where $X \in \mathbb{R}^{n \times d}$. If we add a regularizing term $\lambda \|\boldsymbol{\beta}\|^2$, $\boldsymbol{\beta}^* = (X^T X + \lambda I)^{-1} X^T \boldsymbol{y}$. Kernalized version of ridge regression: $\boldsymbol{\alpha}^* = (XX^T + \lambda I)^{-1} \boldsymbol{y}$, $\boldsymbol{\beta}^* = X^T \boldsymbol{\alpha}^*$.

Kernel

Kernel function $k(\boldsymbol{x}, \boldsymbol{x}') = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}')$ for some $\phi(\cdot)$. For a set of data points $\{\boldsymbol{x}_i\}$, we have Gram matrix (kernel matrix)

 $K_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$. A **necessary and sufficient** condition for being a valid kernel function: K always positive semidefinite. Proof: $\boldsymbol{\alpha}^T K \boldsymbol{\alpha} = \sum_{ij} \alpha_i \alpha_j K_{ij} = \sum_{ij} \alpha_i \alpha_j \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle = \langle \sum_i \alpha_i \phi(\boldsymbol{x}_i), \sum_j \alpha_j \phi(\boldsymbol{x}_j) \rangle \geq 0$.

Mercer's Theorem for any symmtric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable and satisfying $\int_{\mathcal{X} \times \mathcal{X}} k(x,x') f(x) f(x') \mathrm{d}x \mathrm{d}x' \geq 0$ for $f \in L_2(\mathcal{X})$, we have a feature space $\Phi(x)$ and $\lambda \geq 0$ that $k(x,x') = \sum_i \lambda_i \phi_i(x) \phi_i(x')$. new kernel from old ones Given kernels $k_1(x,x'), k_2(x,x'), ck_1(x,x'), f(x)k_1(x,x')f(x'), k_1(x,x') + k_2(x,x'), k_1(x,x')k_2(x,x')$ are new valid kernels. Proof: 1) write the kernel as the dot product of two vectors; 2) use Mercer's Theorem; 3) any Gram matrix derived from it is positive semidefinite. $k_1(x,x') - k_2(x,x')$ is invalid: let $k_1(x,x') = 1$ for x = x', and 0 otherwise, and $k_2(x,x') = 2k_1(x,x')$. The Gram matrix of new kernel is not PSD.

PSD matrices Products of two PSD matrices are not always PSD. Let A be 2×2 PSD, and B be diag(1,2). AB is not PSD (columns scaled differently). PSD's eigen decomposition $A = UDU^T$. $A^{m+1} = AA^m = UDU^T(UD^mU^T) = UD(U^TU)D^mU^T = UD^{m+1}U^T$. Any PSD is a covariance matrix Let x be a random vector with covariance I, PSD Q is the covariance matrix for $Q^{1/2}x$: $\cot(Q^{1/2}x) = Q^{1/2}\cot(x)Q^{1/2} = Q^{1/2}Q^{1/2} = Q$.

examples polynomial: $(\langle x, x' \rangle + c)^d, c \ge 0$. For c = 0, it's a polynomial having all terms of order d; for c > 0, it contains all terms of order up to d. **gaussian rbf** $\exp(-\lambda ||x - x'||^2)$. **laplacian rbf** $\exp(-\lambda ||x - x'||^2)$.

Convexity

Convex Sets

Definition: A set C is convex if the line segment between any two points in C lies in C, i.e. if for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

- Empty set \emptyset , single point x_0 , the whole space \mathbb{R}^n
- Hyperplane $\{x|a^Tx=b\}$, halfspaces $\{x|a^Tx\leq b\}$
- Euclidean balls $\{x|||x-x_c||_2 < r\}$
- Positive semidefinite marices $S^n_+ = \{A \in S^n | A \succeq 0\}$ (S^n is the set of symmetric $n \times n$ matrices)

Convexit preserving set operations:

- Translation $\{x + b | x \in C\}$
- Scaling $\{\lambda x | x \in C\}$
- Affine function $\{Ax + b | x \in C\}$
- Intersection $C \cap D$
- Set sum $C + D = \{x + y | x \in C, y \in D\}$

Convex Functions

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} f$, and θ with $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order conditions: Suppose f is differentiable. Then f is convex if and only if $\mathbf{dom} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Second-order conditions: Assume that f is twice differentiable. Then f is convex if and only if $\operatorname{\mathbf{dom}} f$ is convex and its Hessian is positive semidefinite: for all $x \in \operatorname{\mathbf{dom}} f$,

$$\nabla^2 f(x) \succeq 0$$

Strict convexity: Whenever $x \neq y$ and $0 < \theta < 1$, we have

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

Or

$$f(y) > f(x) + \nabla f(x)^T (y - x)$$

Or sufficient but not necessary condition:

$$\nabla^2 f(x) \succ 0$$

Strong convexity: There exists an m > 0 such that

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

Or

$$\nabla^2 f(x) \succeq mI$$

Convex function examples:

- Exponential. e^{ax} is convex on \mathbb{R} , for any $a \in \mathbb{R}$
- Powers. x^a is convex on \mathbb{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$
- Powers of absolute value. $|x|^p$ for $p \ge 1$ is convex on \mathbb{R}
- Logatithm. $\log x$ is concave on \mathbb{R}_++
- Norms. Every norm on \mathbb{R}^n is convex

- $f(x) = \max x_1, ..., x_n$ is convex on \mathbb{R}^n

Convexity preserving function operations Convex functions f(x), g(x)

- Nonnegative weighted sum: af(x) + bg(x)
- Pointwise maximum: $f(x) = \max f_1(x), ..., f_m(x)$
- Composition with affine function: f(Ax + b)
- Composition with nondecreasin convex function g: g(f(x))

Duality

primal problem (standard form):

 $\min f_0(x)$, s.t. $f_i(x) \leq 0$, i = 1, ..., m, $h_i(x) = 0$, i = 1, ..., p. Lagrangian: $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to R$.

dual for LP for standard LP $\min c^T x$, s.t.Ax = b, $x \succeq 0$, we have dual $\max -b^T \nu$, s.t. $A^T \nu - \lambda + c = 0$, $\lambda \succeq 0$. for inequality LP $\min c^T x$, s.t. $Ax \preceq b$, we have the dual problem $\max -b^T \lambda$, s.t. $A^T \lambda + c = 0$, $\lambda \succeq 0$.

SVM

primal form (hard margin problem, C is $+\infty$) $\min_{w,b} 1/2||w||^2$, s.t. $(w^Tx_i+b)y_i \geq 1$. Lagrangian

 $\partial_w L(w,b,\alpha) = w - \sum_i \alpha_i y_i x_i = 0, \partial_b L(w,b,\alpha) = \sum_i \alpha_i y_i = 0.$ dual form Plugging back, we have $\max -1/2 \sum_{ij} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$, with constraints $\sum_{i} \alpha_{i} y_{i} = 0$ and $\alpha_{i} \geq 0$. After solving this, we can preserve the input vectors that have associated $\alpha_i > 0$. These are support vectors. b can be solved using support vectors, since they satisfy the inequality tightly, why large margin Maximum robustness relative to uncertainty; soft margin problem with slack variables $\min_{w,b} 1/2||w||^2 + C \sum_i \xi_i$, s.t. $(w^T x_i + b)y_i \ge 1 - \xi_i$ and $\xi_i \geq 0$. A trivial solution (upper bound is number of samples) is $w = 0, b = 0, \xi_i = 1$. Lagrangian $L(w, b, \xi, \alpha, \eta) = 1/2 ||w||^2 - \sum_i \alpha_i [(w^T x_i + b) y_i + \xi - 1] - \sum_i \eta_i \xi_i.$ Minimize w.r.t. w, b, ξ , we have the third one $C - \alpha_i - \eta_i = 0$. dual form Plugging back, we have the same objective, with additional box constraints on $a_i \in [0, C]$. By limiting α_i , we set limit on each sample vector's impact on the decision boundary. Make the result more robust. When C is small, more errors made; C is large, converge to hard margin case. C regulates the size of $||w||^2$. Basically, as C increases, the margin becomes narrower. **kernel trick** by changing $\langle x_i, x_i \rangle$ by $k(x_i, x_i)$, we have kernelized nonlinear version. With increasing C, the boundaries becomes more and more wiggly. Increasing Callows for more nonlinearities. Decreases number of errors risk and loss $C \sum_{i} \xi_{i}$ can be reformulated as $C \max[0, 1 - y_i[\langle \overline{w}, x_i \rangle + b]$, without constraint.

 $L(w, b, \alpha) = 1/2||w||^2 - \sum_i \alpha_i [(w^T x_i + b)y_i - 1].$ Minimize

w.r.t. w, b, we have

are possible. optimally, the loss function should be 1 for $1-y_i[\langle w,x_i\rangle+b`0$, and 0 otherwise. Hinge loss function is a convex approximation of it.

 $\max[0, 1 - y_i]\langle w, x_i \rangle + b$ is hinge loss function. Other choices

logistic: $\log[1 + e^{-f(x)}]$, Huberized loss: 0 for f(x) > 1, $0.5(1 - f(x))^2$ for $f(x) \in [0, 1]$, and 0.5 - f(x) for f(x) < 0. Choosing a quadratic penality when ξ_i is small means we don't care small loss that much.

Copyright © 2013 Yimeng Zhang.