Lecture 6: Linearized Airplane Dynamics and Stability

Textbook Sections 8.3, 8.4, & 11.3

Dr. Jordan D. Larson

- Rigid-body aerospace vehicle model: 6-DOF differential equations
 - Complicated
 - Module focus: airplane

- Rigid-body aerospace vehicle model: 6-DOF differential equations
 - Complicated
 - Module focus: airplane
- First analysis: trim of airplane
 - Define trim states and inputs for airplane for steady-flight

- Rigid-body aerospace vehicle model: 6-DOF differential equations
 - Complicated
 - Module focus: airplane
- First analysis: trim of airplane
 - Define trim states and inputs for airplane for steady-flight
- Second analysis: linearization of simplified conventional airplane dynamics
 - Stability frame
 - Coordinated flight: $\bar{\beta} = 0$
 - Wings-level flight: $\bar{\phi}=0$

- Rigid-body aerospace vehicle model: 6-DOF differential equations
 - Complicated
 - Module focus: airplane
- First analysis: trim of airplane
 - Define trim states and inputs for airplane for steady-flight
- Second analysis: linearization of simplified conventional airplane dynamics
 - Stability frame
 - Coordinated flight: $\bar{\beta} = 0$
 - Wings-level flight: $\bar{\phi}=0$
- Airplane: linearized, time-invariant state equation:
 - States: u, α , β , p, q, r, ϕ , θ
 - Inputs: δ_a , δ_e , δ_r , T
 - Perturbed form with leading Δ's
 - Output equation not addressed as depends on use of dynamics

6-DOF Airplane EOMs

• 6-DOF airplane EOMs:

$$\begin{bmatrix} X - g \sin \theta \\ Y + g \cos \theta \sin \phi \\ Z + g \cos \theta \cos \phi \\ L \\ M \\ N \end{bmatrix} = \begin{bmatrix} \dot{u} + qu \sin \alpha - ru \tan \beta \\ \dot{u} \tan \beta + \dot{\beta}u \sec^2 \beta + ru - pu \sin \alpha \\ \dot{u} \sin \alpha + \dot{\alpha}u \cos \alpha + pu \tan \beta - qu \\ \dot{p} + \frac{l_{zz} - l_{yy}}{l_{xx}} qr - \frac{l_{xz}}{l_{xx}} (\dot{r} + pq) \\ \dot{q} + \frac{l_{xx} - l_{zz}}{l_{yy}} pr - \frac{l_{xz}}{l_{yy}} (r^2 - p^2) \\ \dot{r} + \frac{l_{yy} - l_{xx}}{l_{zz}} pq - \frac{l_{xz}}{l_{zz}} (\dot{p} - qr) \end{bmatrix}$$
(1)

Decouple for Straight, Wings-Level, Coordinated Flight

• For $\dot{\psi}=\bar{\phi}=\bar{\beta}=0$, : decouple into linearized longitudinal and lateral-directional EOMs using trim and perturbed states, forces, moments

$$\begin{bmatrix} \bar{X} + \Delta X - g \sin(\bar{\theta} + \Delta \theta) \\ \bar{Z} + \Delta Z + g \cos(\bar{\theta} + \Delta \theta) \cos \Delta \phi \end{bmatrix} = \begin{bmatrix} \Delta \dot{u} + \Delta q (\bar{u} + \Delta u) \sin \Delta \alpha \\ \Delta \dot{u} \sin \Delta \alpha + \Delta \dot{\alpha} (\bar{u} + \Delta u) \cos \Delta \alpha - \Delta q (\bar{u} + \Delta u) \end{bmatrix}$$
(2)

$$\begin{bmatrix} \bar{Y} + \Delta Y + g \cos \bar{\theta} \sin \Delta \phi \\ \bar{L} + \Delta L \\ \bar{N} + \Delta N \end{bmatrix} = \begin{bmatrix} \Delta \dot{\beta} \bar{u} \sec^2 \Delta \beta + \bar{u} (\Delta r) \\ \Delta \dot{p} - \frac{l_{xz}}{l_{xx}} \Delta \dot{r} \\ \Delta \dot{r} - \frac{l_{xz}}{l_{zz}} \Delta \dot{p} \end{bmatrix}$$
(3

Linearized Trigonometric Funcations

Using trigonometric addition formulas and small angle approximation:

$$\sin(\bar{a} + \Delta a) = \sin \bar{a} \cos \Delta a + \cos \bar{a} \sin \Delta a = \sin \bar{a} + \cos \bar{a} \Delta a \tag{4}$$

$$\cos(\bar{a} + \Delta a) = \cos \bar{a} \cos \Delta a - \sin \bar{a} \sin \Delta a = \cos \bar{a} - \sin \bar{a} \Delta a \tag{5}$$

• For $\theta, \, \phi, \, \alpha, \, \beta, \, \bar{\phi} = \bar{\alpha} = \bar{\beta} = \mathbf{0}$ already assumed

Linearized Trigonometric Funcations

• Using trigonometric addition formulas and small angle approximation:

$$\sin(ar{a}+\Delta a)=\sinar{a}\cos\Delta a+\cosar{a}\sin\Delta a=\sinar{a}+\cosar{a}\Delta a$$

$$\cos(\bar{a} + \Delta a) = \cos \bar{a} \cos \Delta a - \sin \bar{a} \sin \Delta a = \cos \bar{a} - \sin \bar{a} \Delta a \tag{5}$$

• For θ , ϕ , α , β , $\bar{\phi} = \bar{\alpha} = \bar{\beta} = 0$ already assumed

$$\begin{bmatrix} \bar{X} + \Delta X - g \sin \bar{\theta} - g \cos \bar{\theta} \Delta \theta \\ \bar{Z} + \Delta Z - g \sin \bar{\theta} \Delta \theta \\ \bar{M} + \Delta M \end{bmatrix} = \begin{bmatrix} \Delta \dot{u} + \Delta q (\bar{u} + \Delta u) \Delta \alpha \\ \Delta \dot{u} \Delta \alpha + \Delta \dot{\alpha} (\bar{u} + \Delta u) - \Delta q (\bar{u} + \Delta u) \\ \Delta \dot{q} \end{bmatrix}$$
(6)

$$\begin{bmatrix} \bar{Y} + \Delta Y - g \cos \bar{\theta} \Delta \phi \\ \bar{L} + \Delta L \\ \bar{N} + \Delta N \end{bmatrix} = \begin{bmatrix} \Delta \dot{\beta} \bar{u} + \Delta r \bar{u} \\ \Delta \dot{p} - \frac{l_{xz}}{l_{xx}} \Delta \dot{r} \\ \Delta \dot{r} - \frac{l_{xz}}{l_{zz}} \Delta \dot{p} \end{bmatrix}$$
(7)

(4)

Further Linearization

• Eliminate higher-order terms of perturbations and separate out perturbation terms:

$$\begin{bmatrix} \bar{X} - g \sin \bar{\theta} \\ \bar{Z} \\ \bar{M} \end{bmatrix} + \begin{bmatrix} \Delta X \\ \Delta Z \\ \Delta M \end{bmatrix} + \begin{bmatrix} -g \cos \bar{\theta} \\ -g \sin \bar{\theta} \\ 0 \end{bmatrix} \Delta \theta = \begin{bmatrix} \Delta \dot{u} \\ \bar{u} \Delta \dot{\alpha} - \bar{u} \Delta q \\ \Delta \dot{q} \end{bmatrix}$$
(8)

$$\begin{bmatrix} \bar{Y} \\ \bar{L} \\ \bar{N} \end{bmatrix} + \begin{bmatrix} \Delta Y \\ \Delta L \\ \Delta N \end{bmatrix} + \begin{bmatrix} -g\cos\bar{\theta} \\ 0 \\ 0 \end{bmatrix} \Delta \phi = \begin{bmatrix} \Delta \dot{\beta}\bar{u} + \Delta r\bar{u} \\ \Delta \dot{p} - \frac{l_{xz}}{l_{xx}}\Delta \dot{r} \\ \Delta \dot{r} - \frac{l_{xz}}{l_{zz}}\Delta \dot{p} \end{bmatrix}$$
(9)

Straight Steady-Flight Conditions

$$ar{X} - g \sin ar{ heta} = 0$$
 $ar{Y} = 0$
 $ar{Z} + g \cos ar{ heta} = 0$
 $ar{L} = 0$
 $ar{M} = 0$
 $ar{N} = 0$

• Due to $\vec{\omega}_{S/N} = 0$

Linearized Models

• Using matrices and states:

$$\begin{bmatrix} \Delta X \\ \Delta Z \\ \Delta M \end{bmatrix} + \begin{bmatrix} -g\cos\bar{\theta} \\ -g\sin\bar{\theta} \\ 0 \end{bmatrix} \Delta\theta + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \bar{u} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta\alpha \\ \Delta g \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \bar{u} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta\dot{u} \\ \Delta\dot{\alpha} \\ \Delta\dot{q} \end{bmatrix}$$
(11)

$$\begin{bmatrix} \Delta Y \\ \Delta L \\ \Delta N \end{bmatrix} + \begin{bmatrix} -g\cos\bar{\theta} \\ 0 \\ 0 \end{bmatrix} \Delta\phi - \begin{bmatrix} 0 & 0 & \bar{u} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta\beta \\ \Delta\rho \\ \Delta r \end{bmatrix} = \begin{bmatrix} \bar{u} & 0 & 0 \\ 0 & 1 & -\frac{l_{XZ}}{l_{XX}} \\ 0 & -\frac{l_{XZ}}{l_{XX}} & 1 \end{bmatrix} \begin{bmatrix} \Delta\dot{\beta} \\ \Delta\dot{\rho} \\ \Delta\dot{r} \end{bmatrix}$$
(12)

General Airplane Modeling Principle

• Perturbed aerodynamic and propulsive forces and moments modeled as two sets

$$\begin{bmatrix} \Delta X \\ \Delta Z \\ \Delta M \end{bmatrix} = \begin{bmatrix} X_{\dot{u}} & X_{\dot{\alpha}} & X_{\dot{q}} \\ Z_{\dot{u}} & Z_{\dot{\alpha}} & Z_{\dot{q}} \\ M_{\dot{u}} & M_{\dot{\alpha}} & M_{\dot{q}} \end{bmatrix} \begin{bmatrix} \Delta \dot{u} \\ \Delta \dot{\alpha} \\ \Delta \dot{q} \end{bmatrix} + \begin{bmatrix} X_{u} & X_{\alpha} & X_{q} \\ Z_{u} & Z_{\alpha} & Z_{q} \\ M_{u} & M_{\alpha} & M_{q} \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta \alpha \\ \Delta q \end{bmatrix} + \begin{bmatrix} X_{\delta_{e}} & X_{T} \\ Z_{\delta_{e}} & Z_{T} \\ M_{\delta_{e}} & M_{T} \end{bmatrix} \begin{bmatrix} \Delta \delta_{e} \\ \Delta T \end{bmatrix}$$
(13)

$$\begin{bmatrix} \Delta Y \\ \Delta L \\ \Delta N \end{bmatrix} = \begin{bmatrix} Y_{\dot{\beta}} & Y_{\dot{p}} & Y_{\dot{r}} \\ L_{\dot{\beta}} & L_{\dot{p}} & L_{\dot{r}} \\ N_{\dot{\beta}} & N_{\dot{p}} & N_{\dot{r}} \end{bmatrix} \begin{bmatrix} \Delta \dot{\beta} \\ \Delta \dot{p} \\ \Delta \dot{r} \end{bmatrix} + \begin{bmatrix} Y_{\beta} & Y_{p} & Y_{r} \\ L_{\beta} & L_{p} & L_{r} \\ N_{\beta} & N_{p} & N_{r} \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \end{bmatrix} + \begin{bmatrix} Y_{\delta_{a}} & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}} \\ N_{\delta_{a}} & N_{\delta_{r}} \end{bmatrix} \begin{bmatrix} \Delta \delta_{a} \\ \Delta \delta_{r} \end{bmatrix}$$
(14)

- Coefficients of perturbed states and inputs inside matrices: stability and control derivatives
- · Correspond to Jacobian partial derivative terms about trimmed steady-flight

Stability and Control Derivative Assumption

- Derivatives generally change with airplane's trim conditions, typically calculate tables of derivatives at many steady-flight conditions
 - Use wind tunnels tests, flight tests, and/or computational fluid dynamics (CFD)

Stability and Control Derivative Assumption

- Derivatives generally change with airplane's trim conditions, typically calculate tables of derivatives at many steady-flight conditions
 - Use wind tunnels tests, flight tests, and/or computational fluid dynamics (CFD)
 Methods for determining derivatives from data fall under discipline of airplane systems.
- Methods for determining derivatives from data fall under discipline of airplane system identification
 - Often uses tools in optimal parameter estimation: topic addressed in later courses

Stability and Control Derivative Assumption

- Derivatives generally change with airplane's trim conditions, typically calculate tables
 of derivatives at many steady-flight conditions
 - Use wind tunnels tests, flight tests, and/or computational fluid dynamics (CFD)
- Methods for determining derivatives from data fall under discipline of airplane system identification
 - Often uses tools in optimal parameter estimation: topic addressed in later courses
- Course: linearized dynamics derivation for airplanes assume following stability and control derivatives dominate perturbed forces and moments:

$$\begin{bmatrix} \Delta X \\ \Delta Z \\ \Delta M \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & Z_{\dot{\alpha}} & 0 \\ 0 & M_{\dot{\alpha}} & 0 \end{bmatrix} \begin{bmatrix} \Delta \dot{u} \\ \Delta \dot{\alpha} \\ \Delta \dot{q} \end{bmatrix} + \begin{bmatrix} X_u & X_{\alpha} & 0 \\ Z_u & Z_{\alpha} & Z_q \\ M_u & M_{\alpha} & M_q \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta \alpha \\ \Delta q \end{bmatrix} + \begin{bmatrix} 0 & X_T \\ Z_{\delta_e} & Z_T \\ M_{\delta_e} & M_T \end{bmatrix} \begin{bmatrix} \Delta \delta_e \\ \Delta T \end{bmatrix}$$
(15)

$$\begin{bmatrix} \Delta Y \\ \Delta L \\ \Delta N \end{bmatrix} = \begin{bmatrix} Y_{\beta} & Y_{p} & Y_{r} \\ L_{\beta} & L_{p} & L_{r} \\ N_{\beta} & N_{p} & N_{r} \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \end{bmatrix} + \begin{bmatrix} 0 & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}} \\ N_{\delta_{a}} & N_{\delta_{r}} \end{bmatrix} \begin{bmatrix} \Delta \delta_{a} \\ \Delta \delta_{r} \end{bmatrix}$$
(16)

Perturbed Forces and Moments Substitution

• Substitute for assumed perturbed aerodynamic and propulsive forces & moments:

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & Z_{\dot{\alpha}} & 0 \\
0 & M_{\dot{\alpha}} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \dot{u} \\
\Delta \dot{\alpha} \\
\Delta \dot{q}
\end{bmatrix} +
\begin{bmatrix}
X_{u} & X_{\alpha} & 0 \\
Z_{u} & Z_{\alpha} & Z_{q} \\
M_{u} & M_{\alpha} & M_{q}
\end{bmatrix}
\begin{bmatrix}
\Delta u \\
\Delta \alpha \\
\Delta q
\end{bmatrix} +
\begin{bmatrix}
0 & X_{T} \\
Z_{\delta_{e}} & Z_{T} \\
M_{\delta_{e}} & M_{T}
\end{bmatrix}
\begin{bmatrix}
\Delta \delta_{e} \\
\Delta T
\end{bmatrix}$$

$$+
\begin{bmatrix}
-g \cos \bar{\theta} \\
-g \sin \bar{\theta} \\
0
\end{bmatrix}
\Delta \theta +
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & \bar{u} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta u \\
\Delta \alpha \\
\Delta q
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & \bar{u} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\Delta \dot{u} \\
\Delta \dot{\alpha} \\
\Delta \dot{q}
\end{bmatrix}$$
(17)

$$\begin{bmatrix} Y_{\beta} & Y_{p} & Y_{r} \\ L_{\beta} & L_{p} & L_{r} \\ N_{\beta} & N_{p} & N_{r} \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \end{bmatrix} + \begin{bmatrix} 0 & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}} \\ N_{\delta_{a}} & N_{\delta_{r}} \end{bmatrix} \begin{bmatrix} \Delta \delta a \\ \Delta \delta r \end{bmatrix}$$

$$+ \begin{bmatrix} -g \cos \bar{\theta} \\ 0 \\ 0 \end{bmatrix} \Delta \phi - \begin{bmatrix} 0 & 0 & \bar{u} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \end{bmatrix} = \begin{bmatrix} \bar{u} & 0 & 0 \\ 0 & 1 & -\frac{l_{xz}}{l_{xx}} \\ 0 & -\frac{l_{xz}}{l_{xx}} & 1 \end{bmatrix} \begin{bmatrix} \Delta \dot{\beta} \\ \Delta \dot{p} \\ \Delta \dot{r} \end{bmatrix}$$

$$(18)$$

Combining Matrices and Rearranging

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \bar{u} - Z_{\dot{\alpha}} & 0 \\ 0 & -M_{\dot{\alpha}} & 1 \end{bmatrix} \begin{bmatrix} \Delta \dot{u} \\ \Delta \dot{\alpha} \\ \Delta \dot{q} \end{bmatrix} = \begin{bmatrix} X_u & X_{\alpha} & 0 & -g \cos \bar{\theta} \\ Z_u & Z_{\alpha} & \bar{u} + Z_q & -g \sin \bar{\theta} \\ M_u & M_{\alpha} & M_q & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta \alpha \\ \Delta q \\ \Delta \theta \end{bmatrix} + \begin{bmatrix} 0 & X_T \\ Z_{\delta_e} & Z_T \\ M_{\delta_e} & M_T \end{bmatrix} \begin{bmatrix} \Delta \delta_e \\ \Delta T \end{bmatrix}$$

$$(19)$$

$$\begin{bmatrix} \bar{u} & 0 & 0 \\ 0 & 1 & -\frac{l_{xz}}{l_{xx}} \\ 0 & -\frac{l_{xz}}{l_{xx}} & 1 \end{bmatrix} \begin{bmatrix} \Delta \dot{\beta} \\ \Delta \dot{p} \\ \Delta \dot{r} \end{bmatrix} = \begin{bmatrix} Y_{\beta} & Y_{p} & Y_{r} - \bar{u} & -g \cos \bar{\theta} \\ L_{\beta} & L_{p} & L_{r} & 0 \\ N_{\beta} & N_{p} & N_{r} & 0 \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \\ N_{\delta a} & N_{\delta_{r}} \end{bmatrix} + \begin{bmatrix} 0 & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}} \\ N_{\delta_{a}} & N_{\delta_{r}} \end{bmatrix} \begin{bmatrix} \Delta \delta_{a} \\ \Delta \delta_{r} \end{bmatrix}$$
(20)

Using Small Angles

• Recall for small angles:

$$\Delta \dot{\theta} = \Delta q \tag{21}$$

$$\Delta \dot{\phi} = \Delta p + \tan \bar{\theta} \Delta r \tag{22}$$

Using Small Angles

• Recall for small angles:

$$\Delta \dot{\theta} = \Delta q \tag{21}$$

$$\Delta \dot{\phi} = \Delta p + \tan \bar{\theta} \Delta r$$
 (22)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \bar{u} - Z_{\dot{\alpha}} & 0 & 0 \\ 0 & -M_{\dot{\alpha}} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta \dot{u} \\ \Delta \dot{\alpha} \\ \Delta \dot{q} \\ \Delta \dot{\theta} \end{bmatrix} = \begin{bmatrix} X_u & X_{\alpha} & 0 & -g\cos\bar{\theta} \\ Z_u & Z_{\alpha} & \bar{u} + Z_q & -g\sin\bar{\theta} \\ M_u & M_{\alpha} & M_q & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta \alpha \\ \Delta q \\ \Delta \theta \end{bmatrix} + \begin{bmatrix} 0 & X_T \\ Z_{\delta_e} & Z_T \\ M_{\delta_e} & M_T \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta_e \\ \Delta T \end{bmatrix}$$
(23)

$$\begin{bmatrix} \bar{u} & 0 & 0 & 0 \\ 0 & 1 & -\frac{l_{xz}}{l_{xx}} & 0 \\ 0 & -\frac{l_{xz}}{l_{xx}} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta \dot{\beta} \\ \Delta \dot{\rho} \\ \Delta \dot{r} \\ \Delta \dot{\phi} \end{bmatrix} = \begin{bmatrix} Y_{\beta} & Y_{p} & Y_{r} - \bar{u} & -g \cos \bar{\theta} \\ L_{\beta} & L_{p} & L_{r} & 0 \\ N_{\beta} & N_{p} & N_{r} & 0 \\ 0 & 1 & \tan \bar{\theta} & 0 \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta \rho \\ \Delta r \\ \Delta \phi \end{bmatrix} + \begin{bmatrix} 0 & Y_{\delta_{r}} \\ L_{\delta_{a}} & L_{\delta_{r}} \\ N_{\delta_{a}} & N_{\delta_{r}} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta_{a} \\ \Delta \delta_{r} \end{bmatrix}$$
(24)

Inverse matrices on left side: linearized longitudinal rigid airplane dynamics

$$\begin{bmatrix}
\Delta \dot{u} \\
\Delta \dot{\alpha} \\
\Delta \dot{q} \\
\Delta \dot{\theta}
\end{bmatrix} = \begin{bmatrix}
X_{u} & X_{\alpha} & 0 & -g\cos\bar{\theta} \\
\frac{Z_{u}}{\overline{u}-Z_{\alpha}} & \frac{Z_{\alpha}}{\overline{u}-Z_{\alpha}} & \frac{\overline{u}+Z_{q}}{\overline{u}-Z_{\alpha}} & -\frac{g}{\overline{u}-Z_{\alpha}}\sin\bar{\theta} \\
M_{u} + M_{\dot{\alpha}}\frac{Z_{u}}{\overline{u}-Z_{\dot{\alpha}}} & M_{\alpha} + M_{\dot{\alpha}}\frac{Z_{\alpha}}{\overline{u}-Z_{\dot{\alpha}}} & M_{q} + M_{\dot{\alpha}}\frac{\overline{u}+Z_{q}}{\overline{u}-Z_{\dot{\alpha}}} & -M_{\dot{\alpha}}\frac{g}{\overline{u}-Z_{\dot{\alpha}}}\sin\bar{\theta} \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
\Delta u \\
\Delta \alpha \\
\Delta q \\
\Delta \theta
\end{bmatrix} + \begin{bmatrix}
0 & X_{T} \\
\frac{Z_{\delta_{\theta}}}{\overline{u}-Z_{\dot{\alpha}}} & \frac{Z_{T}}{\overline{u}-Z_{\dot{\alpha}}} \\
M_{\delta_{\theta}} + M_{\dot{\alpha}}\frac{Z_{\delta_{\theta}}}{\overline{u}-Z_{\dot{\alpha}}} & M_{T} + M_{\dot{\alpha}}\frac{Z_{T}}{\overline{u}-Z_{\dot{\alpha}}} \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{\theta} \\
\Delta T
\end{bmatrix}$$
(25)

Linearized Lateral-Directional Dynamics

Linearized lateral-directional rigid airplane dynamics:

$$\begin{bmatrix}
\Delta \dot{\beta} \\
\Delta \dot{p} \\
\Delta \dot{r} \\
\Delta \dot{\phi}
\end{bmatrix} = \begin{bmatrix}
\frac{Y_{\beta}}{\bar{u}} & \frac{Y_{p}}{\bar{u}} & \frac{Y_{r}}{\bar{u}} - 1 & \frac{g}{\bar{u}} \cos \bar{\theta} \\
L_{\beta}^{*} & L_{p}^{*} & L_{r}^{*} & 0 \\
N_{\beta}^{*} & N_{p}^{*} & N_{r}^{*} & 0 \\
0 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\Delta \beta \\
\Delta p \\
\Delta r \\
\Delta r
\end{bmatrix}$$

$$+ \begin{bmatrix}
0 & \frac{Y_{\delta_{r}}}{\bar{u}} \\
L_{\delta_{a}}^{*} & L_{\delta_{r}}^{*} \\
N_{\delta_{a}}^{*} & N_{\delta_{r}}^{*}
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{a} \\
\Delta \delta_{r}
\end{bmatrix}$$

$$(26)$$

Linearized Lateral-Directional Dynamics (continued)

$$L_{\bullet}^* = \frac{L_{\bullet} + N_{\bullet} \frac{l_{xz}}{l_{zz}}}{1 - \frac{l_{xz}^2}{l_{xz}l_{zz}}} \tag{27}$$

$$N_{\bullet}^* = \frac{N_{\bullet} + L_{\bullet} \frac{I_{XZ}}{I_{ZZ}}}{1 - \frac{I_{XZ}^2}{I_{XZ}}} \tag{28}$$

- For = β , p, r, δ_a , δ_r
- Due to coupling of L and N for non-zero I_{xz}
- If $I_{xz}=0$, then $L_{\bullet}^*=L_{\bullet}$ and $N_{\bullet}^*=N_{\bullet}$

• Derivation results in two sets of fourth-order LTI state-space systems

- Derivation results in two sets of fourth-order LTI state-space systems
- May form EOMs using v & w states instead of β & α

- Derivation results in two sets of fourth-order LTI state-space systems
- May form EOMs using v & w states instead of β & α
- Extended to fifth-order systems by including:
 - Perturbed altitude, Δh : perturbed longitudinal state
 - Perturbed yaw, $\Delta \psi$: perturbed lateral-directional state

- Derivation results in two sets of fourth-order LTI state-space systems
- May form EOMs using v & w states instead of β & α
- Extended to fifth-order systems by including:
 - Perturbed altitude, Δh : perturbed longitudinal state
 - Perturbed yaw, $\Delta \psi$: perturbed lateral-directional state
- For wings-level, coordinated steady-flight:

$$\Delta \dot{h} = \sin \bar{\theta} \Delta u + \bar{u} \cos \bar{\theta} \left(\Delta \theta - \Delta \alpha \right) \tag{29}$$

$$\Delta \dot{\psi} = \sec \bar{\theta} \Delta r \tag{30}$$

No direct control derivatives

Acceleration at Some Position on Vehicle

Important output sometimes used in output equation
 Acceleration vector at some position along rigid airplane:
 \$\vec{p}_S = [x_p \ y_p \ z_p]\$ in stability frame coordinates

Acceleration at Some Position on Vehicle

- Important output sometimes used in output equation
 Acceleration vector at some position along rigid airplane:
 \$\vec{p}_S = [x_p \ y_p \ z_p]\$ in stability frame coordinates
- In general:

$$\vec{a}_{p} = \dot{\vec{v}}_{S} + [\vec{\omega}_{S/N}]_{\times} \vec{v}_{S} + [\vec{\alpha}_{S/N}]_{\times} \vec{p}_{S} + [\vec{\omega}_{S/N}]_{\times} [\vec{\omega}_{S/N}]_{\times} \vec{p}_{S}$$
(31)

Acceleration at Some Position on Vehicle

- Important output sometimes used in output equation Acceleration vector at some position along rigid airplane: $\vec{p}_S = [x_p, y_p, z_p]$ in stability frame coordinates
- In general:

$$\vec{a}_{p} = \vec{v}_{S} + [\vec{\omega}_{S/N}]_{\times} \vec{v}_{S} + [\vec{\alpha}_{S/N}]_{\times} \vec{p}_{S} + [\vec{\omega}_{S/N}]_{\times} [\vec{\omega}_{S/N}]_{\times} \vec{p}_{S}$$
(31)

• Linearizing, $\bar{\beta}=$ 0, & $\bar{\phi}=$ 0:

$$\begin{bmatrix}
\Delta a_{p,x} \\
\Delta a_{p,y} \\
\Delta a_{p,z}
\end{bmatrix} = \begin{bmatrix}
\Delta \dot{u} + \bar{w} \Delta q + z_p \Delta \dot{q} - y_p \Delta \dot{r} \\
\Delta \dot{v} + \bar{u} \Delta r - \bar{w} \Delta p + x_p \Delta \dot{r} - z_p \Delta \dot{p} \\
\Delta \dot{w} - \bar{u} \Delta q + y_p \Delta \dot{p} - x_p \Delta \dot{q}
\end{bmatrix}$$
(32)

• Used for output equation for accelerometer placed at \vec{p}

Linearized Longitudinal Model

• Fourth-order linearized longitudinal dynamics for rigid airplanes:

$$\begin{bmatrix}
\Delta \dot{u} \\
\Delta \dot{\alpha} \\
\Delta \dot{q} \\
\Delta \dot{\theta}
\end{bmatrix} = \begin{bmatrix}
X_{u} & X_{\alpha} & 0 & -g \cos \bar{\theta} \\
\frac{Z_{u}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{\bar{u} + Z_{q}}{\bar{u} - Z_{\dot{\alpha}}} & -\frac{g}{\bar{u} - Z_{\dot{\alpha}}} \sin \bar{\theta} \\
M_{u} + M_{\dot{\alpha}} \frac{Z_{u}}{\bar{u} - Z_{\dot{\alpha}}} & M_{\alpha} + M_{\dot{\alpha}} \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} & M_{q} + M_{\dot{\alpha}} \frac{\bar{u} + Z_{q}}{\bar{u} - Z_{\dot{\alpha}}} & -M_{\dot{\alpha}} \frac{g}{\bar{u} - Z_{\dot{\alpha}}} \sin \bar{\theta} \\
0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
\Delta u \\
\Delta \alpha \\
\Delta q \\
\Delta \theta
\end{bmatrix} + \begin{bmatrix}
0 & X_{\delta_{T}} \\
\frac{Z_{\delta_{e}}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{Z_{\delta_{T}}}{\bar{u} - Z_{\dot{\alpha}}} \\
M_{\delta_{e}} + M_{\dot{\alpha}} \frac{Z_{\delta_{e}}}{\bar{u} - Z_{\dot{\alpha}}} & M_{\delta_{T}} + M_{\dot{\alpha}} \frac{Z_{\delta_{T}}}{\bar{u} - Z_{\dot{\alpha}}}
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{e} \\
\Delta \delta_{T}
\end{bmatrix}$$
(33)

Linearized Longitudinal Model

• Fourth-order linearized longitudinal dynamics for rigid airplanes:

Longitudinal Modes and Stability

$$\begin{bmatrix} \Delta \dot{u} \\ \Delta \dot{\alpha} \\ \Delta \dot{q} \\ \Delta \dot{\theta} \end{bmatrix} = \begin{bmatrix} X_{u} & X_{\alpha} & 0 & -g \cos \bar{\theta} \\ \frac{Z_{u}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{\bar{u} + Z_{q}}{\bar{u} - Z_{\dot{\alpha}}} & -\frac{g}{\bar{u} - Z_{\dot{\alpha}}} \sin \bar{\theta} \\ M_{u} + M_{\dot{\alpha}} \frac{Z_{u}}{\bar{u} - Z_{\dot{\alpha}}} & M_{\alpha} + M_{\dot{\alpha}} \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} & M_{q} + M_{\dot{\alpha}} \frac{1}{\bar{u} - Z_{\dot{\alpha}}} & -M_{\dot{\alpha}} \frac{g}{\bar{u} - Z_{\dot{\alpha}}} \sin \bar{\theta} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta \alpha \\ \Delta q \\ \Delta \theta \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & X_{\delta_{T}} \\ \frac{Z_{\delta_{e}}}{\bar{u} - Z_{\dot{\alpha}}} & \frac{Z_{\delta_{T}}}{\bar{u} - Z_{\dot{\alpha}}} \\ M_{\delta_{e}} + M_{\dot{\alpha}} \frac{Z_{\delta_{e}}}{\bar{u} - Z_{\dot{\alpha}}} & M_{\delta_{T}} + M_{\dot{\alpha}} \frac{Z_{\delta_{T}}}{\bar{u} - Z_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \Delta \delta_{e} \\ \Delta \delta_{T} \end{bmatrix}$$

• Note: $\Delta w \approx \bar{u} \Delta \alpha$ may be substituted:

$$M_{\alpha} = \bar{u}M_{w}, \qquad Z_{\alpha} = \bar{u}Z_{w}, \qquad M_{\dot{\alpha}} = \bar{u}M_{\dot{w}}$$
 (34)

19/44

(33)

Longitudinal Modes

- Conventionally two oscillatory modes that dominate responses in longitudinal plane:
 - Short-period mode
 - Phugoid mode
 - Derived from Greek words, phuge and eidos, for "flight-like"

Longitudinal Modes

- Conventionally two oscillatory modes that dominate responses in longitudinal plane:
 - Short-period mode
 - Phugoid mode
 - Derived from Greek words, phuge and eidos, for "flight-like"
- Phugoid a.k.a. long-period mode:
 - Typically oscillatory though may separate into two real modes for some airplanes

Longitudinal Modes

- Conventionally two oscillatory modes that dominate responses in longitudinal plane:
 - Short-period mode
 - Phugoid mode
 - Derived from Greek words, phuge and eidos, for "flight-like"
- Phugoid a.k.a. long-period mode:
 - Typically oscillatory though may separate into two real modes for some airplanes
- Recall from Lyapunov stability theory: airplane longitudinally stable if and only if both modes stable
 - · Real part of eigenvalues of state matrix negative
 - Modes in left-half of complex plane, i.e. LHP

Short-Period Mode Approximation

• Approximated by assuming $\bar{ heta}=0$ and $\Delta u=0$

Short-Period Mode Approximation

- Approximated by assuming $\bar{\theta} = 0$ and $\Delta u = 0$
- Second-order short-period mode approximation as characteristic polynomial:

$$\phi_{S-P}(\lambda) = \lambda^2 + \left(-\frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_q - M_{\dot{\alpha}} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right) \lambda + \left(M_q \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_{\alpha} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right)$$
(35)

Short-Period Mode Approximation

- Approximated by assuming $\bar{\theta} = 0$ and $\Delta u = 0$
- Second-order **short-period mode approximation** as characteristic polynomial:

$$\phi_{S-P}(\lambda) = \lambda^2 + \left(-\frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_q - M_{\dot{\alpha}} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right) \lambda + \left(M_q \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_{\alpha} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right)$$
(35)

• Primarily affects $\Delta \alpha$ and short-term behavior of $\Delta \theta$

Short-Period Mode Approximation

- Approximated by assuming $\bar{\theta} = 0$ and $\Delta u = 0$
- Second-order short-period mode approximation as characteristic polynomial:

$$\phi_{S-P}(\lambda) = \lambda^2 + \left(-\frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_q - M_{\dot{\alpha}} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right) \lambda + \left(M_q \frac{Z_{\alpha}}{\bar{u} - Z_{\dot{\alpha}}} - M_{\alpha} \frac{\bar{u} + Z_q}{\bar{u} - Z_{\dot{\alpha}}} \right)$$
(35)

- Primarily affects $\Delta \alpha$ and short-term behavior of $\Delta \theta$
- Airplane design: balance desire for high natural frequency, i.e. quick response to input, but also heavy damping, i.e. little overshoot
 - Increasing short-period damping done through SAS called pitch damper

• Approximated by assuming $\bar{\theta}=0,\,\Delta\dot{lpha}=\Delta\dot{q}=0$

- Approximated by assuming $\bar{\theta}=0$, $\Delta\dot{\alpha}=\Delta\dot{q}=0$
- Second-order phugoid mode approximation as characteristic polynomial

$$\phi_{L-P}(\lambda) = \lambda^2 + \left(-X_u + X_\alpha \frac{Z_u M_q - M_u(\bar{u} + Z_q)}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right) \lambda + \left(g \frac{Z_u M_\alpha - Z_\alpha M_u}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right)$$
(36)

- Approximated by assuming $\bar{\theta}=0$, $\Delta\dot{\alpha}=\Delta\dot{q}=0$
- Second-order phugoid mode approximation as characteristic polynomial

$$\phi_{L-P}(\lambda) = \lambda^2 + \left(-X_u + X_\alpha \frac{Z_u M_q - M_u(\bar{u} + Z_q)}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right) \lambda + \left(g \frac{Z_u M_\alpha - Z_\alpha M_u}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right)$$
(36)

• Primarily affects Δu and long-term behavior $\Delta \theta$ or Δh

- Approximated by assuming $\bar{\theta} = 0$, $\Delta \dot{\alpha} = \Delta \dot{q} = 0$
- Second-order phugoid mode approximation as characteristic polynomial

$$\phi_{L-P}(\lambda) = \lambda^2 + \left(-X_u + X_\alpha \frac{Z_u M_q - M_u(\bar{u} + Z_q)}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right) \lambda + \left(g \frac{Z_u M_\alpha - Z_\alpha M_u}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right)$$
(36)

- Primarily affects Δu and long-term behavior $\Delta \theta$ or Δh
- Phugoid mode typically highly oscillatory, most applications require correction during flight, often manually, but corrections can be fatiguing for pilots if damping ratio too low
 - Use SAS with pitch feedback

- Approximated by assuming $\bar{\theta}=0,\,\Delta\dot{\alpha}=\Delta\dot{q}=0$
- Second-order phugoid mode approximation as characteristic polynomial

$$\phi_{L-P}(\lambda) = \lambda^2 + \left(-X_u + X_\alpha \frac{Z_u M_q - M_u(\bar{u} + Z_q)}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right) \lambda + \left(g \frac{Z_u M_\alpha - Z_\alpha M_u}{Z_\alpha M_q - M_\alpha(\bar{u} + Z_q)} \right)$$
(36)

- Primarily affects Δu and long-term behavior $\Delta \theta$ or Δh
- Phugoid mode typically highly oscillatory, most applications require correction during flight, often manually, but corrections can be fatiguing for pilots if damping ratio too low
 - Use SAS with pitch feedback
- Phugoid mode considered as gradual interchange of kinetic & potential energy through varying velocity & altitude

Linearized Lateral-Direction Model

Fourth-order linearized lateral-directional dynamics for rigid airplanes:

$$\begin{bmatrix}
\Delta \dot{\beta} \\
\Delta \dot{p} \\
\Delta \dot{r} \\
\Delta \dot{\phi}
\end{bmatrix} = \begin{bmatrix}
\frac{Y_{\beta}}{\bar{u}} & \frac{Y_{\rho}}{\bar{u}} & \frac{Y_{r}}{\bar{u}} - 1 & \frac{g}{\bar{u}} \cos \bar{\theta} \\
L_{\beta}^{*} & L_{p}^{*} & L_{r}^{*} & 0 \\
N_{\beta}^{*} & N_{p}^{*} & N_{r}^{*} & 0 \\
0 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\Delta \beta \\
\Delta p \\
\Delta r \\
\Delta \phi
\end{bmatrix} + \begin{bmatrix}
0 & \frac{Y_{\delta_{r}}}{\bar{u}} \\
L_{\delta_{a}}^{*} & L_{\delta_{r}}^{*} \\
N_{\delta_{a}}^{*} & N_{\delta_{r}}^{*} \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{a} \\
\Delta \delta_{r}
\end{bmatrix}$$
(37)

Linearized Lateral-Direction Model

Fourth-order linearized lateral-directional dynamics for rigid airplanes:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \dot{eta} \dot{eta} \ \dot{\Delta} \dot{\phi} \end{aligned} = egin{aligned} rac{Y_{eta}}{ar{u}} & rac{Y_{eta}}{ar{u}} & rac{Y_{eta}}{ar{u}} - 1 & rac{g}{ar{u}} \cos ar{ heta} \ \dot{\Delta} \dot{eta} \ \dot{\Delta} \dot{eta} \ \lambda \dot{eta} \ \lambda \dot{eta} & \lambda \dot{eta} \ \lambda \dot{eta} & \lambda \dot{eta} \ \lambda \dot{\phi} \end{aligned} = egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \Delta \beta \ \lambda \dot{eta} \ \lambda \dot{\phi} \end{aligned} \\ + egin{bmatrix} 0 & rac{Y_{\delta_{eta}}}{ar{u}} & \lambda \dot{eta} \ \lambda \dot{\delta}_{r} \ \lambda \dot{\delta}_{a} & \lambda \dot{\delta}_{r} \ \lambda \dot{\delta}_{r} \end{bmatrix} egin{aligned} egin{aligned} \Delta \delta a \ \lambda \dot{\delta}_{r} \end{bmatrix} \\ \lambda \dot{\delta} \dot{\delta} \dot{\delta} \dot{\delta} \dot{\delta} \dot{\delta} \dot{\delta} & \lambda \dot{\delta}_{r} \end{aligned} \end{bmatrix}$$

Note: $\Delta v \approx \bar{u}\Delta\beta$ may be substituted:

$$Y_{\beta} = \bar{u}Y_{\nu}, \qquad L_{\beta}^* = \bar{u}L_{\nu}^*, \qquad N_{\beta}^* = \bar{u}N_{\nu}^* \tag{38}$$

(37)

- Conventionally two purely exponential modes and one oscillatory mode that dominate responses in lateral-directional planes:
 - Roll mode: exponential
 - Dutch-roll mode: oscillatory
 - Spiral mode: exponential

- Conventionally two purely exponential modes and one oscillatory mode that dominate responses in lateral-directional planes:
 - Roll mode: exponential
 - Dutch-roll mode: oscillatory
 - Spiral mode: exponential
- For some airplanes: roll-spiral mode may combine into single oscillatory mode

- Conventionally two purely exponential modes and one oscillatory mode that dominate responses in lateral-directional planes:
 - Roll mode: exponential
 - Dutch-roll mode: oscillatory
 - Spiral mode: exponential
- For some airplanes: roll-spiral mode may combine into single oscillatory mode
- Motion corresponding to dutch-roll mode named for side-to-side motion
 - Alludes to dutch figure skaters using repetitive right-and-left skating on outer edge of skates to maintain speed

- Conventionally two purely exponential modes and one oscillatory mode that dominate responses in lateral-directional planes:
 - Roll mode: exponential
 - Dutch-roll mode: oscillatory
 - Spiral mode: exponential
- For some airplanes: roll-spiral mode may combine into single oscillatory mode
- Motion corresponding to dutch-roll mode named for side-to-side motion
 - Alludes to dutch figure skaters using repetitive right-and-left skating on outer edge of skates to maintain speed
- Recall from Lyapunov stability theory: airplane lateral-directionally stable if and only
 if all three modes stable
 - Real part of eigenvalues of state matrix negative
 - Modes in left-half of complex plane, i.e. LHP

Approximated by assuming pure rolling equation of motion

- Approximated by assuming pure rolling equation of motion
- First-order roll mode approximation as characteristic polynomial

$$\phi_R(\lambda) = \lambda - L_p^* \tag{39}$$

- Approximated by assuming pure rolling equation of motion
- First-order roll mode approximation as characteristic polynomial

$$\phi_R(\lambda) = \lambda - L_p^* \tag{39}$$

• Primarily affects short-term behavior of Δp

- Approximated by assuming pure rolling equation of motion
- First-order roll mode approximation as characteristic polynomial

$$\phi_{R}(\lambda) = \lambda - L_{p}^{*} \tag{39}$$

- Primarily affects short-term behavior of Δp
- Stability depends primarily on size of wing and tail surfaces

- Approximated by assuming pure rolling equation of motion
- First-order roll mode approximation as characteristic polynomial

$$\phi_R(\lambda) = \lambda - L_p^* \tag{39}$$

- Primarily affects short-term behavior of Δp
- Stability depends primarily on size of wing and tail surfaces
- Typically mode decays rapidly compared to other lateral-directional modes, albeit sometimes too quickly
 - Reducing roll mode time constant done through SAS called roll damper

• Approximated by assuming $ar{ heta}={f 0}$

- Approximated by assuming $\bar{\theta}=0$
- Second-order dutch-roll mode approximation as characteristic polynomial

$$\phi_{D-R}(\lambda) = \lambda^2 + \left(-N_r^* - \frac{Y_\beta}{\bar{u}}\right)\lambda + \left(N_\beta^* + N_r^* \frac{Y_\beta}{\bar{u}}\right)$$
(40)

- Approximated by assuming $\bar{ heta}=0$
- Second-order dutch-roll mode approximation as characteristic polynomial

$$\phi_{D-R}(\lambda) = \lambda^2 + \left(-N_r^* - \frac{Y_\beta}{\bar{u}}\right)\lambda + \left(N_\beta^* + N_r^* \frac{Y_\beta}{\bar{u}}\right)$$
(40)

• Primarily affects $\Delta \beta$, long-term behavior of Δp , short-term behavior of $\Delta \phi$

- Approximated by assuming $\bar{\theta}=0$
- Second-order dutch-roll mode approximation as characteristic polynomial

$$\phi_{D-R}(\lambda) = \lambda^2 + \left(-N_r^* - \frac{Y_\beta}{\bar{u}}\right)\lambda + \left(N_\beta^* + N_r^* \frac{Y_\beta}{\bar{u}}\right)$$
(40)

- Primarily affects $\Delta \beta$, long-term behavior of Δp , short-term behavior of $\Delta \phi$
- Airplane design: balance desire for high natural frequency, i.e. quick response to input, but also heavy damping, i.e. little overshoot
 - Increasing dutch-roll damping done through SAS called yaw damper
 - Roll damper can be used in parallel to increase effectiveness of yaw damper

• Approximated by assuming $\dot{\beta} = \dot{p} = \dot{r} = \bar{\theta} = Y_p = Y_r = 0$

- Approximated by assuming $\dot{\beta} = \dot{p} = \dot{r} = \bar{\theta} = Y_p = Y_r = 0$
- First-order spiral mode approximation as

$$\phi_{S}(\lambda) = \lambda + g \frac{L_{\beta}^{*} N_{r}^{*} - L_{r}^{*} N_{\beta}^{*}}{Y_{\beta}(L_{r}^{*} N_{\rho}^{*} - N_{r}^{*} L_{\rho}^{*}) + \bar{u}(L_{\beta}^{*} N_{\rho}^{*} - N_{\beta}^{*} L_{\rho}^{*})}$$
(41)

- Approximated by assuming $\dot{\beta} = \dot{p} = \dot{r} = \bar{\theta} = Y_p = Y_r = 0$
- First-order spiral mode approximation as

$$\phi_{S}(\lambda) = \lambda + g \frac{L_{\beta}^{*} N_{r}^{*} - L_{r}^{*} N_{\beta}^{*}}{Y_{\beta}(L_{r}^{*} N_{\rho}^{*} - N_{r}^{*} L_{\rho}^{*}) + \bar{u}(L_{\beta}^{*} N_{\rho}^{*} - N_{\beta}^{*} L_{\rho}^{*})}$$
(41)

• Primarily affects long-term behavior of $\Delta \phi$

- Approximated by assuming $\dot{\beta} = \dot{p} = \dot{r} = \bar{\theta} = Y_p = Y_r = 0$
- First-order spiral mode approximation as

$$\phi_{S}(\lambda) = \lambda + g \frac{L_{\beta}^{*} N_{r}^{*} - L_{r}^{*} N_{\beta}^{*}}{Y_{\beta}(L_{r}^{*} N_{\rho}^{*} - N_{r}^{*} L_{\rho}^{*}) + \bar{u}(L_{\beta}^{*} N_{\rho}^{*} - N_{\beta}^{*} L_{\rho}^{*})}$$
(41)

- Primarily affects long-term behavior of $\Delta \phi$
- Typically this mode decays slowly compared to other lateral-directional modes and may be unstable

- Approximated by assuming $\dot{\beta} = \dot{p} = \dot{r} = \bar{\theta} = Y_p = Y_r = 0$
- First-order spiral mode approximation as

$$\phi_{S}(\lambda) = \lambda + g \frac{L_{\beta}^{*} N_{r}^{*} - L_{r}^{*} N_{\beta}^{*}}{Y_{\beta}(L_{r}^{*} N_{\rho}^{*} - N_{r}^{*} L_{\rho}^{*}) + \bar{u}(L_{\beta}^{*} N_{\rho}^{*} - N_{\beta}^{*} L_{\rho}^{*})}$$
(41)

- Primarily affects long-term behavior of $\Delta \phi$
- Typically this mode decays slowly compared to other lateral-directional modes and may be unstable
- Airplane design characteristics affect spiral and dutch-roll modes in opposite ways
 - Increasing dihedral effect makes dutch-roll mode less stable and spiral mode more stable
 - Increasing directional stability makes dutch-roll mode more stable and spiral mode less stable
 - Often use roll/yaw SAS to sufficiently stabilize both spiral and dutch roll modes

Flying/Handling Qualities

 When designing aircraft, flying qualities, a.k.a. handling qualities, i.e. handling of aircraft by pilot, closely related to modal characteristics of aircraft

Flying/Handling Qualities

- When designing aircraft, flying qualities, a.k.a. handling qualities, i.e. handling of aircraft by pilot, closely related to modal characteristics of aircraft
- As pilots generally charged with performing various tasks or missions: flying qualities generally specified by airplane pilots according to following three subjective levels:
 - Level 1 (Good): Flying qualities clearly adequate for mission flight phase
 - Level 2 (Acceptable): Flying qualities adequate to accomplish mission flight phase, but some increase in pilot workload and/or degradation in mission effectiveness or both
 - Level 3 (Poor): Flying qualities such that airplane controlled safely, but pilot workload excessive and/or mission effectiveness inadequate or both

Flight Phase Categories

- Depend on three generalized flight phase categories:
 - Category A: nonterminal flight phases requiring rapid maneuvering, precision tracking, or highly accurate flight-path control
 - Category B: nonterminal flight phases normally accomplished using gradual maneuvers and without precision tracking, although accurate flight-path control may be required
 - Category C: terminal flight phases normally accomplished using gradual maneuvers and usually require accurate flight-path control

Flight Phase Categories

- Depend on three generalized flight phase categories:
 - Category A: nonterminal flight phases requiring rapid maneuvering, precision tracking, or highly accurate flight-path control
 - Category B: nonterminal flight phases normally accomplished using gradual maneuvers and without precision tracking, although accurate flight-path control may be required
 - Category C: terminal flight phases normally accomplished using gradual maneuvers and usually require accurate flight-path control
- For Level 3 flying qualities, Category A flight phases can be terminated safely and Category B and C flight phases can be completed

Airplane Classes

Another important part of assessing these flying qualities is by class of aircraft

Airplane Classes

- Another important part of assessing these flying qualities is by class of aircraft
- Airplanes generally classified:
 - Class I: Small, light airplanes
 - Class II: Medium-weight, low-to-medium maneuverability airplanes
 - Class III: Large, heavy, low-to-medium maneuverability airplanes
 - Class IV: High-maneuverability airplanes

Longitudinal Modal Characteristics

- Different flying quality levels and flight phase categories for different classes of airplanes
 - Phugoid mode requirements: period T for potentially unstable mode

Mode	Level	Category	Class	Characteristic(s)
Phugoid	1	All	All	$\zeta > 0.04$
	2	All	All	$\zeta > 0$
	3	All	All	<i>T</i> > 55 <i>s</i>
Short-Period	1	A and C	All	$0.35 \le \zeta \le 1.3$
		В	All	$0.3 \le \zeta \le 2.0$
	2	A and C	All	$0.25 \le \zeta \le 2.0$
		В	All	$0.2 \le \zeta \le 2.0$
	3	All	All	$0.15 \le \zeta$

Lateral-Directional Modal Characteristics

- Different flying quality levels and flight phase categories for different classes of airplanes
 - Spiral mode requirements: doubling of amplitude for potentially unstable mode
 - C and L denote carrier- or land-based airplanes

Mode	Level	Category	Class	Characteristic(s)
Roll	1	A and C	I, IV	$ au \leq$ 1.0 sec
			II, III	$ au \leq$ 1.4 sec
		В	All	$ au \leq$ 1.4 sec
	2	A and C	I, IV	$ au \leq$ 1.4 sec
			II, III	$ au \leq 3.0~{ m sec}$
		В	All	$ au \leq 3.0~{ m sec}$
	3	All	All	$ au \leq$ 10 sec
Spiral	1	Α	I, IV	Doubling amplitude ≥ 12 sec
-			II, III	Doubling amplitude ≥ 20 sec
		B and C	All	Doubling amplitude ≥ 20 sec
	2	All	All	Doubling amplitude ≥ 12 sec
	3	All	All	Doubling amplitude ≥ 4 sec
Dutch-Roll	1	Α	I, IV	$\zeta \omega_n \geq 0.35 \text{ rad/s}, \zeta \geq 0.19, \omega_n > 1.0 \text{rad/s}$
			II, III	$\zeta \omega_n \geq 0.35 \text{ rad/s}, \ \zeta \geq 0.19, \ \omega_n > 0.4 \text{ rad/s}$
		В	All	$\zeta \omega_n \geq 0.15 \text{ rad/s}, \zeta \geq 0.08, \omega_n > 0.4 \text{rad/s}$
		С	I, II-C, IV	$\zeta \omega_n \geq 0.15$ rad/s, $\zeta \geq 0.08$, $\omega_n > 1.0$ rad/s
			II-L, III	$\zeta \omega_n \geq 0.15 \text{ rad/s}, \ \zeta \geq 0.08, \ \omega_n > 0.4 \text{ rad/s}$
	2	All	All	$\zeta \omega_n \geq 0.05 \text{ rad/s}, \zeta \geq 0.02, \omega_n > 0.4 \text{rad/s}$
	3	All	All	$\zeta > 0.02, \omega_n > 0.4 \text{rad/s}$

Cooper-Harper Rating Scale

• Cooper-Harper Rating Scale (CHRS): another standard used by pilots and flight test engineers to rate flying qualities of airplane design

Cooper-Harper Rating Scale

Cooper-Harper Rating Scale (CHRS): another standard used by pilots and flight test engineers to rate flying qualities of airplane design

CHRS scale goes from 1 to 10 with lower numbers corresponding to better flying qualities

Pilot	Aircraft	Demand of Pilot	Overall
Rating	Characteristic		Assessment
1	Excellent,	Pilot compensation not a factor for	Good
	highly desirable	desired performance	
2	Good, negligible	Pilot compensation not a factor for	Good
	deficiencies	desired performance	
3	Fair, some mildly	Minimal pilot compensation required	Good
	unpleasant deficiencies	for desired performance	
4	Minor, but annoying	Desired performance requires moderate	Acceptable
	deficiencies	pilot compensation	
5	Moderately objectionable	Adequate performance requires	Acceptable
	deficiencies	considerable pilot compensation	
6	Very objectionable, but	Adequate performance requires	Acceptable
	tolerable deficiencies	extensive pilot compensation	
7	Major deficiencies	Adequate performance not attainable	Poor
		with maximum tolerable compensation	
8	Major deficiencies	Considerable pilot compensation is	Poor
		required for control	
9	Major deficiencies	Intense pilot compensation is	Poor
		required for control	
10	Major deficiencies	Control will be lost during some	Unacceptable
		portion of required operation	

Stability Augmentation Systems

- Stability augmentation systems (SAS) for airplanes typically designed for airplane controlled by pilot (subscript p on command)
 - Inherent modal stability or damping ratios not within suitable flying qualities for pilot

Stability Augmentation Systems

- Stability augmentation systems (SAS) for airplanes typically designed for airplane controlled by pilot (subscript *p* on command)
 - Inherent modal stability or damping ratios not within suitable flying qualities for pilot
- SAS used to augment airplane dynamics to achieve certain stability or damping ratios for airplane modes.

Stability Augmentation Systems

- Stability augmentation systems (SAS) for airplanes typically designed for airplane controlled by pilot (subscript *p* on command)
 - Inherent modal stability or damping ratios not within suitable flying qualities for pilot
- SAS used to augment airplane dynamics to achieve certain stability or damping ratios for airplane modes.
- SAS generally single-output feedback systems that use single gain term, K_●, which changes location of system poles

Root Locus Design Technique

- To choose value of K_•: use root locus plot
 - I.e. plot of roots of closed-loop characteristic polynomial in complex plane as function of \mathcal{K}_{ullet}

Root Locus Design Technique

- To choose value of K_{\bullet} : use **root locus** plot
 - I.e. plot of roots of closed-loop characteristic polynomial in complex plane as function of K_{\bullet}
- Example root locus:

Pitch Damper

- Pitch damper, $K_q(s)$: reduce damping ratio of short-period mode of airplane
 - Proportional gain, K_q , on pitch rate, Δq , subtracted from elevator deflection, $\Delta \delta_e$

Pitch Damper

- **Pitch damper**, $K_q(s)$: reduce damping ratio of short-period mode of airplane
 - Proportional gain, K_q , on pitch rate, Δq , subtracted from elevator deflection, $\Delta \delta_e$
- SAS designed using linearized plant:

Airplane SAS Intro

AoA SAS

- Angle of attack (AoA) SAS, $K_{\alpha}(s)$: increase frequency and stabilize short-period mode of airplane
 - Proportional gain, K_{α} , on angle of attack, α , subtracted from elevator deflection, δ_e

AoA SAS

- **Angle of attack (AoA) SAS**, $K_{\alpha}(s)$: increase frequency and stabilize short-period mode of airplane
 - Proportional gain, K_{α} , on angle of attack, α , subtracted from elevator deflection, δ_{α}
- Designed using linearized plant as:

Pitch SAS

- Pitch SAS: increase natural frequency and stabilize phugoid mode of airplane
 - Proportional gain, K_{θ} , on pitch, θ , subtracted from elevator deflection, δ_{e}

Pitch SAS

- Pitch SAS: increase natural frequency and stabilize phugoid mode of airplane
 - Proportional gain, K_{θ} , on pitch, θ , subtracted from elevator deflection, δ_{θ}
- Designed using linearized plant as:

Yaw Damper

• Yaw damper, $K_r(s)$: increase damping ratio of dutch-roll mode of airplane

$$K_r(s) = \frac{K_r s}{s + \omega_w} \tag{42}$$

- K_r: yaw damper gain
- ω_w: washout frequency
 - Turns off yaw damper for sustained turns: yaw rate not zero
 - Typically selected well below the dutch-roll natural frequency
 - Effect of first-order high-pass filter "washes out" yaw damper for $\omega < \omega_w$
- Subtracted from rudder deflection, δ_r

Yaw Damper

• Yaw damper, $K_r(s)$: increase damping ratio of dutch-roll mode of airplane

$$K_r(s) = \frac{K_r s}{s + \omega_w} \tag{42}$$

- K_r: yaw damper gain
- ω_w : washout frequency
 - Turns off yaw damper for sustained turns: yaw rate not zero
 - Typically selected well below the dutch-roll natural frequency
 - Effect of first-order high-pass filter "washes out" yaw damper for $\omega < \omega_w$
- Subtracted from rudder deflection, δ_r
- Designed using linearized plant as:

Roll Damper

- **Roll damper**, $K_p(s)$: roll mode time constant which primarily affects Δp
 - Uses proportional gain, K_p , on roll rate, p, subtracted from aileron deflection, δ_a
 - Can be used to increase effectiveness of yaw damper as Δp fed back

Roll Damper

- **Roll damper**, $K_p(s)$: roll mode time constant which primarily affects Δp
 - Uses proportional gain, K_p , on roll rate, p, subtracted from aileron deflection, δ_a
 - Can be used to increase effectiveness of yaw damper as Δp fed back
- Designed using linearized plant as:

Aileron-Rudder Interconnect

- Lateral-directional attitude control performed by two control surface deflections: strong coupling effects on dynamics
 - E.g. aileron deflections often cause undesirable excitation of dutch roll mode and/or adverse yawing moment, N_{δ_a}

Aileron-Rudder Interconnect

- Lateral-directional attitude control performed by two control surface deflections: strong coupling effects on dynamics
 - E.g. aileron deflections often cause undesirable excitation of dutch roll mode and/or adverse yawing moment, N_{δ_a}
- Many airplanes typically use some sort of aileron-rudder interconnect (ARI) to reduce effects

Simple Aileron-Rudder Interconnect

Select K_{ari} to cancel adverse yaw with rudder

Simple Aileron-Rudder Interconnect

- Select K_{ari} to cancel adverse yaw with rudder
- Force effective $N_{\delta_a} \approx 0$ by setting yawing moment due to rudder deflection equal to negative of yawing moment due to aileron deflection, i.e.

$$N_{\delta_r} \Delta \delta_r = -N_{\delta_a} \Delta \delta_a \tag{43}$$

Simple Aileron-Rudder Interconnect

- Select K_{ari} to cancel adverse yaw with rudder
- Force effective $N_{\delta_a} \approx 0$ by setting yawing moment due to rudder deflection equal to negative of yawing moment due to aileron deflection, i.e.

$$N_{\delta_r} \Delta \delta_r = -N_{\delta_a} \Delta \delta_a \tag{43}$$

$$\Delta \delta_r = -\frac{N_{\delta_a}}{N_{\delta_r}} \Delta \delta_a \tag{44}$$

$$K_{ari} = -\frac{N_{\delta_a}}{N_{\delta_a}} \tag{45}$$

Summary

- Airplane considered as dynamical system:
 - Trim analysis
 - Linearization
 - Modal analysis

End

Summary

- Airplane considered as dynamical system:
 - Trim analysis
 - Linearization
 - Modal analysis
- Conventionally has 5 modes
 - Phugoid
 - Short-period
 - Roll
 - Dutch-roll
 - Spiral

End

Summary

- Airplane considered as dynamical system:
 - Trim analysis
 - Linearization
 - Modal analysis
- Conventionally has 5 modes
 - Phugoid
 - Short-period
 - Roll
 - Dutch-roll
 - Spiral
- Modal characteristics:
 - Quantify design criteria and flying qualities
 - Can be adjusted with SAS

End