Schularbeitsstoff für die 1. SCHULARBEIT:

Grenzwert einer Funktion: 2.13 - 2.23, 2.25

Einführung in die Differentialrechnung: 3.1 - 3.12

3.16 - 3.20 **Ableitung elementarer Funktionen:**

Faktor- & Summenregel: 3.23 - 3.43

3.47 - 3.49 **Produktregel:** Quotientenregel 3.46 - 3.58

Kettenregel 3.60, 3.66 - 69

Bestimme die Asymptoten der folgenden Funktionen:

a)
$$f(x) = \frac{2x^3 + 4x^2 - 10}{2x^2}$$

b)
$$f(x) = \frac{(10x^3+6)}{5x}$$

Berechne die erste Ableitung:

a)
$$f(x) = 13 \cdot (2x^3 - 5x) \cdot (7 - x^4 + 3x)$$
 b) $f(x) = \frac{(5x^2 - 2)^2}{2}$

b)
$$f(x) = \frac{(5x^2-2)^2}{2}$$

Bilde die erste Ableitung und vereinfache sie:

a)
$$y(a) = \sqrt{5a^2 + 3b^2}$$

a)
$$y(a) = \sqrt{5a^2 + 3b^2}$$
 b) $f(t) = A \cdot sin(\omega \cdot t + \phi)$

c)
$$f: y = \frac{e^{2x}}{x^2 - 3}$$

d)
$$f: y = x \cdot 2^x$$

f)
$$f: y = \ln \sqrt{\cos \sqrt{x}}$$

4) Wird ein Körper aus einer Höhe ho mit der Anfangsgeschwindigkeit vo senkrecht nach oben geworfen, kann die Höhe h zur Zeit t nach dem Abwurf durch folgende Funktion beschrieben werden: $h(t) = -\frac{g}{2} \cdot t^2 + v_0 \cdot t + h_0$ Ordne den angegebenen Gleichungen jeweils den ermittelten Zeitpunkt zu.

1	1/// 2	Α	Zeitpunkt, zu dem der Körper abgeworfen wird
	h'(t) = 0	В	Zeitpunkt, zu dem Körper auf dem Boden aufkommt
2	h(t) = 0	c	Zeitpunkt, zu dem der Körper die maximale Beschleunigung hat
	h(t) = 0	D	Zeitpunkt, zu dem der Körper die maximale Höhe erreicht

5) Zeige durch Nachrechnen, dass die beiden Funktionen f und g ihre lokalen Extrema (=Hochpunkt, Tiefpunkt oder Terrassenpunkt) an den gleichen Stellen besitzen.

$$f(x) = 0.5x^3 - 6x + 9$$
 $g(x) = \sqrt{0.5x^3 - 6x + 9}$

In welchem Punkten haben die Funktionen f(x) Tangenten, die zur Geraden g(x) parallel sind.

a)
$$f(x) = \frac{1}{2} \cdot e^x$$
 $g(x) = \frac{3x+1}{2}$
b) $f(x) = 1 + 3^{-x}$ $g(x) = \frac{3-2x}{10}$