Collisions:

Une boule de billard de masse m = 0.3 kg et de rayon R = 2.5 cm se déplace sur une table horizontale que l'on confondra avec le plan xy. On confondra aussi la trajectoire du centre de masse de la boule avec l'axe des x, à l'instant t = 0, elle se trouve à $\vec{r}_{c,a} = (0,0,2.5)cm$. La vitesse de la boule est :

$$\vec{v}_{c,a} = (10, 0, 0) cm/s$$

Cette boule, qu'on notera boule a, rentre en collision avec une autre boule b identique immobile dont le centre de masse se trouve à :

$$\vec{r}_{c,b} = (50, 4, 2.5)cm$$

- a) À quel instant t_0 les deux boules rentrent en collision?
- b) Déterminer la position \vec{r}_p du point de contact entre les deux boules.
- c) Déterminer les vecteurs vitesse des deux boules après la collision si le coefficient de restitution $\epsilon = 0.9$ en négligeant les frottements entre les deux boules.

Réponses: a) 4.7s, b) $\vec{r}_p = (48.5, 2.0, 2.5)$ cm, c) $\vec{v}_a = (6.58, -4.56, 0.0)$ cm/s, $\vec{v}_b = (3.42, 4.56, 0.0)$ cm/s.

Effet Doppler:

Un policier immobile positionné à (x_0, y_0) =(10, 0) m pointe son radar de contrôle de vitesse vers une automobile qui circule dans la direction (u_x, u_y) =(-4/5, -3/5) avec une vitesse V. le radar émet une onde électromagnétique de fréquence $f_0 = 20 \, GHz$ vers l'automobile puis détecte l'onde réfléchie par l'automobile et calcule la différence de fréquence pour déduire la vitesse de l'automobile.

Déterminer la variation de fréquence Δf entre le signal électromagnétique reçue par le radar et le signal émise par le radar si l'automobile se trouve à la position $\vec{r}_a = (100,75)m$ et V=90 km/h.

On prendra la vitesse de la lumière $c = 3 \times 10^8 m/s$.

Réponse : $\Delta f = 3329 \, Hz$

Roulement et glissement :

Une boule pleine de masse m=2kg et de rayon R=0.1 m se déplace sur une table horizontale (plan xy) avec une vitesse linéaire initiale $\vec{v}_{c,0}=(0,10,0)$ m/s et une vitesse angulaire initiale $\vec{\omega}_0(30,0,0)$ rad/s. Sa position initiale (à l'instant t=0) est $\vec{r}_0=(3,1,0)$ m.

- (a) Déterminer la vitesse de glissement \vec{v}_{g0} initiale de la boule sur la table.
- (b) Déterminer l'instant t_l et la position \vec{r}_1 de la boule lorsqu'elle commence à rouler si le coefficient de frottement cinétique est $\mu_c = 0.5$. Prendre $g = 10 \ m/s^2$.

Réponse : $\vec{v}_{g0} = (0, 13, 0) \text{m/s}, t_1 = 0.743 \text{ s}, \vec{r}_1 = (3, 21.9, 0) \text{ m}$

