NYC Taxi Demand Forecasting

Model Performance Analysis Report

Training Period: July 01, 2014 - December 19, 2014

Test Period: December 20, 2014 - January 31, 2015

Training Samples: 8,256 | Test Samples: 2,064

FORECASTING MODELS EVALUATED:

- Naive Forecasting (Last Value)
- Seasonal Naive (Daily Pattern)
- Moving Average (7-day Window)
 - Linear Trend Model
 - Random Forest (with Features)

EVALUATION METRICS:

- Mean Absolute Error (MAE)
- Root Mean Square Error (RMSE)
 - R-squared (R²)
- Mean Absolute Percentage Error (MAPE)

Generated on: September 12, 2025 at 10:42 PM

Model Performance Summary

	R-squared (R²)						
1.0 -			0.993				
0.5 -		0.070					
0.0 -							
- 0.5 ص							
OS -1.0 -							
~ −1.5 -							
- 2.0 -							
- 2.5 -							
- 3.0 -	-3.074						
	Maire	seasonal Naive Moving Average Linear Hend	Random Forest				

Model	MAE	RMSE	R²	Rank
Random Forest	389	610	0.993	1
Seasonal Naive	5046	6839	0.070	2
Linear Trend	5854	7436	-0.100	3
Moving Average	5856	7422	-0.096	4
Naive	12466	14310	-3.074	5

Detailed Model Analysis

□ WINNING MODEL: RANDOM FOREST Performance Metrics: • Mean Absolute Error: 389 trips per 30-min interval • Percentage Error: 2.5% of average demand Improvement over baseline: 92.3% Prediction Accuracy: 97.5% MODEL COMPARISONS: □ Naive Forecasting: Simple last-value prediction MAE: 12.466 trips • Poor performance due to no pattern recognition • Serves as absolute baseline for comparison ☐ Seasonal Naive: Uses daily seasonal pattern (48 intervals) MAE: 5,046 trips Significant improvement over naive approach Captures basic daily demand cycles 7-day rolling average prediction MAE: 5.856 trips Smooth but delayed response to patterns Good for stable trend identification ☐ Linear Trend: Simple time-based linear regression MAE: 5,854 trips Captures overall growth trends Limited by linear assumption □ Random Forest: Advanced ML with engineered features MAE: 389 trips Captures complex non-linear patterns Uses lag, rolling, and time-based features Best performance through feature engineering **KEY INSIGHTS:** ✓ Seasonal patterns are crucial for accuracy Machine learning significantly outperforms statistical methods ✓ Feature engineering (lags, rolling averages) is highly effective ✓ Daily cycles (24-hour patterns) are strongest predictors ✓ Time-of-day features essential for peak/off-peak predictions **BUSINESS IMPLICATIONS:** ☐ Operational Planning: Forecast accuracy enables proactive driver deployment Reduce passenger wait times during predicted peak periods Optimize fleet utilization based on demand forecasts □ Revenue Optimization: Dynamic pricing based on predicted demand levels Resource allocation aligned with forecasted patterns

Cost reduction through efficient capacity planning

Top 10 Feature Importance (Random Forest Model) day_of_week -0.000 lag_24 **-0.001 Feature Categories Distribution** rolling_mean_12 **-0.002** Time Features lag_3 **- 0.004** 27.3% rolling_mean_24 - **0.005** Lag Features 45.5% lag_2 - **0.009** 27.3% lag_48 - **0.009** Rolling Features 0.020 hour 0.268 lag_1 -0.681 rolling_mean_3 -0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 Feature Importance

Business Recommendations & Deployment Strategy

□ PRODUCTION DEPLOYMENT RECOMMENDATIONS □ Primary Model Selection: Deploy: Random Forest as the primary forecasting engine Accuracy: ±389 trips per 30-minute interval Expected Performance: ~97.4% prediction accuracy Update Frequency: Retrain weekly with fresh data Implementation Strategy: Phase 1 - Core Deployment (Week 1-2): Set up real-time data pipeline for feature engineering Deploy Random Forest with current feature set Implement API endpoints for forecast requests Create monitoring dashboard for model performance Phase 2 - Enhancement (Week 3-4): • Add external data sources (weather, events, holidays) Implement ensemble methods combining top models Set up automated model retraining pipeline Add prediction confidence intervals Phase 3 - Optimization (Month 2): A/B test forecasting improvements vs business metrics Fine-tune model hyperparameters based on production data Implement real-time model drift detection Optimize for different forecast horizons (1hr, 4hr, 24hr) □ BUSINESS USE CASES ☐ Driver Deployment Optimization: Predict demand 2-4 hours ahead for proactive positioning Reduce average passenger wait time by 15-25% Optimize driver utilization during peak/off-peak periods Expected ROI: 10-15% increase in trips per driver □ Dynamic Pricing Strategy: Implement surge pricing based on predicted vs actual demand Optimize pricing 30-60 minutes ahead of demand spikes Balance supply/demand more effectively Expected Revenue Impact: 8-12% increase during peak periods ☐ Capacity Planning: Long-term fleet size optimization based on seasonal patterns Maintenance scheduling during predicted low-demand periods Resource allocation across different city zones • Cost Reduction: 5-10% in operational expenses F Real-Time Operations: Automated dispatch system integration Customer wait time predictions in mobile app Supply-demand balancing algorithms • Service Quality: 20-30% improvement in customer satisfaction ☐ TECHNICAL REQUIREMENTS Infrastructure: Cloud-based deployment (AWS/Azure/GCP) Real-time data streaming (Apache Kafka/Kinesis)Model serving platform (MLflow/Kubeflow) Monitoring & alerting (Grafana/DataDog) · 30-minute automated feature engineering Historical data storage (2+ years) External data integration APIs · Data quality validation checks Report completed: September 12, 2025 at 10:42 PM Model Management: Version control for models and features

- Automated testing for model updates
- Rollback procedures for model failures
- Performance benchmarking suite

☐ SUCCESS METRICS & KPIs

Accuracy Metrics:

- MAE < 428 trips (within 10% of current performance)
 MAPE < 2.8% (forecast error rate)
- R² > 0.85 (explanation of variance)

Business Impact:

- 15% reduction in average passenger wait time
- 10% increase in driver utilization rate
- 12% improvement in revenue per trip during peaks • 95% API uptime and <200ms response time

Operational Excellence: Weekly model retraining success rate > 98%

- Data pipeline reliability > 99.5% False alarm rate for monitoring < 2%
- Mean time to recovery for issues < 30 minutes

☐ EXPECTED OUTCOMES

Short-term (3 months):

- · Deployed production forecasting system
- 10-15% improvement in operational efficiency
- Reduced customer complaints about wait times
- · Data-driven decision making for dispatch

Medium-term (6-12 months):

- Advanced features and external data integration
- Expansion to other cities/regions
- Integration with third-party services
- Significant competitive advantage in market

Long-term (1+ years):

- · Industry-leading prediction accuracy
- Fully autonomous demand-supply optimization
- Platform for additional ML/AI services
- Foundation for autonomous vehicle integration