CMSC691 Optimization, VCU

Fall 2016, Assignment 3: Convex Optimization Problems

Due: Friday, November 4, at 11:59 PM. Submit via Blackboard under Assignments tab.

Total marks: 45 marks + 15 marks bonus.

1 Exercises

1. (5 marks + 5 marks bonus) Consider the optimization problem

$$\begin{array}{ll} \min & f_0(x_1,x_2) \\ \text{s.t.} & 2x_1+x_2 \geq 1 \\ & x_1+3x_2 \geq 1 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{array}.$$

For each of the following objective functions, give the set of optimal solutions and the corresponding optimal value. (Hint: Sketch the feasible region first, and then consider level sets of the objective function. A full proof of each solution is not needed, simply argue based on your sketch. You don't need to submit your sketch.)

- (a) (5 marks) $f_0(x_1, x_2) = x_1 + x_2$.
- (b) (5 marks bonus) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$.
- 2. (10 marks) Formulate the following problems as LPs. Below, you are given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. You do not need to put your LP into standard form. (Hint: Consider the epigraph form of optimization problems.)
 - (a) (5 marks) Minimize $||Ax b||_{\infty}$ (l_{∞} -norm approximation).
 - (b) (5 marks) Minimize $||Ax b||_1$ (l_1 -norm approximation).
- 3. (10 marks) Suppose you are given two disjoint sets of points in \mathbb{R}^n , $V = \{v^1, \dots, v^K\}$ and $W = \{w^1, \dots, w^L\}$. Formulate the following two problems as LP feasibility problems. (Note: The question asks for a *feasibility* problem, i.e. the objective function should be just the constant (say) 0.)
 - (a) (5 marks) Determine a hyperplane that separates the two sets, i.e. find $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ with $a \neq 0$ such that

$$a^T v^i < b, \quad i = 1, ..., K,$$
 $a^T w^i > b, \quad i = 1, ..., L.$

Note that we require $a \neq 0$, so you have to make sure your formulation excludes the trivial solution a=0,b=0. (Hint: The tricky part is ensuring $a \neq 0$. To do so, start by observing that since V and W are disjoint finite sets, they can be strictly separated, i.e. there exists (a,b) and $\epsilon>0$ such that $a^Tv^i\leq b-\epsilon$ and $a^Tw^i\geq b+\epsilon$. Why can we assume without loss of generality that (say) $\epsilon=1$?)

(b) (5 marks) Determine a sphere separating the two sets of points, i.e. find $x_c \in \mathbb{R}^n$ and $R \ge 0$ such that

1

$$\|v^{i} - x_{c}\|_{2} \le R, \quad i = 1, \dots, K,$$
 $\|w^{i} - x_{c}\|_{2} \ge R, \quad i = 1, \dots, L.$

(Here, x_c is the center of the sphere, and R is its radius.) (Hint: Your LP does not need to explicitly compute R.)

4. (5 marks) Give an explicit solution of the following QCQP, where $A \in S_{++}^n$ and $c \neq 0$:

$$\begin{aligned} & \min & c^T x \\ & \text{s.t.} & x^T A x \leq 1. \end{aligned}$$

(Hints: Observe that this is just optimizing a linear function over an ellipsoid centered at the origin. Thus, the optimal value is attained on the boundary of the ellipsoid (i.e. $x^TAx=1$). Here are some first steps to get you started: (1) Convert to an equivalent maximization problem. (2) Observe that since $A \succ 0$, there exists operator $A^{1/2}$ such that $A = A^{1/2}A^{1/2}$. Moreover, $A^{1/2}$ is symmetric. (3) Rewrite the constraint in terms of a new variable y you will introduce, so that the constraint becomes $\|y\|_2 = 1$. What now happens to the objective function?)

- 5. (5 marks + 5 marks bonus) Suppose $A: \mathbb{R}^n \mapsto S^m$ is affine, i.e. $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ for $A_i \in S^m$. Let $\lambda_1(x) \ge \lambda_2(x) \ge \dots \ge \lambda_m(x)$ denote the eigenvalues of A(x). Phrase the following problems as SDPs.
 - (a) (5 marks) Minimize the maximum eigenvalue $\lambda_1(x)$.
 - (b) (5 marks bonus) Minimize the condition number of A(x), subject to $A(x) \succ 0$. The condition number is defined as $\kappa(A(x)) = \lambda_1(x)/\lambda_m(x)$, with domain $\{x \mid A(x) \succ 0\}$. You may assume that $A(x) \succ 0$ for at least one x. (Hint: You need to minimize λ/γ , subject to $0 \prec \gamma I \preceq A(x) \preceq \lambda I$. Change variables to $y = x/\gamma, t = \lambda/\gamma, s = 1/\gamma$.)
- 6. (10 marks + 5 marks bonus) [Nes00, Par00] Sum-of-squares representation via LMIs. Consider polyonimal $p: \mathbb{R}^n \mapsto \mathbb{R}$ of degree 2k. The polynomial is called positive semidefinite (PSD) if $p(x) \geq 0$ for all $x \in \mathbb{R}^n$. A famous sufficient condition for p to be PSD is that it have form

$$p(x) = \sum_{i=1}^{r} q_i(x)^2,$$

for some polynomials q_i , with degree no more than k. A polynomial p with this "sum-of-squares" form is called SOS.

- (a) (5 marks) Let f_1, \ldots, f_s be all monomials of degree k or less. (Here, a monomial is defined as $1 x_1^{m_1} \ldots x_n^{m_n}$ for $m_i \in \mathbb{Z}_+$.) Show that p can be expressed as a positive semidefinite quadratic form $p = f^T V f$ with $V \in S_+^s$ if and only if p is SOS. Here, f is the vector whose ith entry is monomial f_i . (Hint: Use the Cholesky decomposition of V.)
- (b) (5 marks) Show that the condition $p = f^T V f$ is a set of linear equality constraints relating the coefficients of p and the matrix V. Why does this imply that determining whether p is SOS can be phrased as an SDP?
- (c) (5 marks bonus) Work out the linear matrix inequality conditions for SOS explicitly for the case where p is polynomial of degree four in two variables.

¹This is the standard definition of a monomial, and differs from the one we used when discussing geometric programs.