Krožnica v racionalni Bezierjevi obliki

Anja Kišek, Samo Kralj

11. januar 2019

1/5

Vsebina:

- Definicija racionalnih Bezierjevih krivulj
- Konstrukcija sklenjene krožnice s krivuljami stopnje 2,3,4
- Krožni loki v racionalni Bezierjevi obliki
- Kubični polkrogi

Racionalna Bezierjeva krivulja C(t) stopnje n v \mathbb{R}^d je projekcija polinomske Bezierjeve krivulje $\tilde{C}(t)$ stopnje n v \mathbb{R}^{d+1} na hiperravnino w=1, kjer je točka v \mathbb{R}^{d+1} označena z $\begin{bmatrix} x \\ w \end{bmatrix}$. Racionalna B. krivulja stopnje n je tako podana s predpisom

$$r(t) = \frac{\sum_{i=0}^{n} w_i b_i B_i^n(t)}{\sum_{i=0}^{n} w_i B_i^n(t)}$$

Racionalna krivulja C(t) = (X(t), Y(t)) lahko eksaktno opiše krožnico kot projekcijo krivulje $\tilde{C}(t) = (\tilde{X}(t), \tilde{Y}(t), W(t))$, ki leži na stožcu, na ravnino w = 1.

$$X(t)^2 + Y(t)^2 = 1$$

$$\left(\frac{\tilde{X}(t)}{W(t)}\right)^2 + \left(\frac{\tilde{Y}(t)}{W(t)}\right)^2 = 1$$

$$\tilde{X}(t)^2 + \tilde{Y}(t)^2 - W(t)^2 = 0$$

4/5

Bezierjeva krivulja kot sklenjena krožnica

Ali lahko krožnico zapišemo kot racionalno Bezierjevo krivuljo določene stopnje?

 Kvadratična krivulja: Ne Zlepek krožnih lokov s kontrolnimi točkami:

$$egin{aligned} ilde{P}_0 &= (cos(\phi), -sin(\phi), 1) \ ilde{P}_1 &= (1, 0, cos(\phi)) \ ilde{P}_2 &= (cos(\phi), sin(\phi), 1) \end{aligned}$$

Kubična krivulja: Ne