Unsupervised Data Mining: From Batch to Stream Mining Algorithms

Prof. Dr. Stefan Kramer

Johannes Gutenberg University

Mainz

Outline

- Interval-based methods
- Kernel density estimation
- Tree-based methods

Acknowledgements

• J. Siekiera

Histogram Estimators

Motivation

- Given:
 lengths of
 eruptions
 of Old
 Faithful
 Geysir in min
- Goal: How are data distributed?
- Assumptions:
 Data are governed
 by some probability distribution
- Use density to describe the distribution of the data

```
[4.37, 3.87, 4.00, 4.03, 3.50, 4.08, 2.25, 4.70, 1.73, 4.93, 1.73, 4.62, 3.43, 4.25, 1.68, 3.92, 3.68, 3.10, 4.03, 1.77, 4.08, 1.75, 3.20, 1.85, 4.62, 1.97, 4.50, 3.92, 4.35, 2.33, 3.83, 1.88, 4.60, 1.80, 4.73, 1.77, 4.57, 1.85, 3.52, 4.00, 3.70, 3.72, 4.25, 3.58, 3.80, 3.77, 3.75, 2.50, 4.50,]
```

Eruptionslängen des Old Faithful Geysir

Density

- \bullet X: real-valued random variable and a, b \in R
- f(x): density of X
- It must hold that $\int_{-\infty}^{\infty} f(x) dx = 1$
- $P(a < X < b) = \int_{a}^{b} f(x)dx = F(b) F(a)$

Histograms

N: number of instances in total

 $B_k = [t_k, t_{k+1})$: interval with k in N_0

 N_k : number of instances in interval B_k

$$\hat{f}(x) = \frac{n_k}{N(t_{k+1} - t_k)}$$
 for x in B_k

If interval width fixed, set $(t_{k+1}-t_k) = h$

Choice of Origin t₀ Affects Result

$$h = 0.5$$
 $t_0 = 1.5$

$$h = 0.5$$
 $t_0 = 1.3$

Choice of Interval Width h Affects Results

h determines level of granularity

$$h = 0.17$$
 $t_0 = 1.6$

One has to avoid too general structure and overfitting. Considerations about optimal h.

Summary Histograms

- Good for the presentation of onedimensional data
- Fast calculation
- No continuous function obtained
- Dependency on the position of the origin

Kernel Density Estimators

Kernel Density Estimator (KDE)

- Place each instance into the center of a function
- Choose a continuous density K
- Sum up all individual functions

Kernel Density Estimators

$$\hat{f}_K(x) = \frac{1}{Nh} \sum_{i=1}^{N} K(\frac{x - x_i}{h}) \text{ with } \int_{-\infty}^{\infty} K(x) dx = 1$$

- K(x) defines the form of the densities
- h defines the width
- $\hat{f}_{k}(x)$ inherits continuity and differentiability

Observations

Problem

- In regions with fewer data
 - higher noise
 - larger h required
- In regions with more data
 - less noise
 - smaller h required

Variable Kernel Method

• $d_{i,k}=|x_i-x_k|$: distance of x_i to the k-next point x_k

$$\hat{f}_K(x) = \frac{1}{Nh} \sum_{i=1}^N \frac{1}{d_{i,k}} K(\frac{x - x_i}{h d_{i,k}})$$

- Width of kernel depends on distance of given data
- K determines contribution of local densities
- Advantage: very accurate estimator
- Disadvantage: computationally intensive

Categorization of Models

Parametric models

- probability distributions assumed
- model specified except for parameters
- strongly dependent on model assumptions

Non-parametric models

- Example: kernel density estimation
- Independent of assumed distribution

• Semi-parametric models

Density Trees

Density Trees

- Idea: decision tree as a basis for an estimator
- Analogously to classification and regression trees
- Advantages:
 - automatic feature selection
 - processing of heterogeneous data
 - Interpretability

Let

- l: leaf of a tree
- V_I: minimal d-dimensional volume of leaf l

$$\hat{f}(x) = \frac{|l|}{NV_l}$$