

氯气的性质

日期:	时间:	姓名:	
Date:	Time:	Name:	

1				1	
		Y			
,	3		B		

初露锋芒

许多家庭里都会备一些清洗液,在搞卫生的时候可以用来去除污垢,可为什么洁厕灵和84消毒液这两种我们洗厕所常用到的东西,合二为一造成了绝命毒杀呢?

洁厕灵里是盐酸,84 消毒液是次氯酸钠,二者混合产生氯气,严重时可致命,并且只需一滴就可发生反应。

化学反应如下: 2HCI+NaCIO→NaCI+CI2↑+H2O

氯气是一种有毒气体,它主要通过呼吸道侵入人体并溶解在黏膜所含的水分里,生成次氯酸和盐酸,对上呼吸道黏膜造成损伤:次氯酸使组织受到强烈的氧化;盐酸刺激黏膜发生炎性肿胀,使呼吸道黏膜浮肿,大量分泌黏液,造成呼吸困难。

症状轻时,氯气中毒的明显症状是发生剧烈的咳嗽。由食道进入人体的氯气会使人恶心、呕吐、胸口疼痛和腹泻。

症状重时,会发生肺水肿,使循环作用困难而致死亡。1L空气中最多可允许含氯气 1mg,超过这个量就会引起人体中毒。

应对:万一不小心出现中毒症状,请立即做两件事。

开窗: 通风

湿毛巾: 捂住口鼻

	1. 了解氯气的性质和用途
	2. 知道新制氯水的性质
学习目标	3. 掌握氯气的制法(实验室制法和工业制法)
&	4. 学习漂白粉的工业制备原理和工作原理
重难点	1. 氯气的性质和制法
	2. 新制氯水的成分
	3. 漂粉精的成分和工作原理

根深蒂固

一、氯气的物理性质

- 1. 氯气是 色、有毒、有刺激性气味的气体
- 2. 密度比空气大
- 3. 易液化 (液氯), 能溶于水 (氯水), 常温下 1 体积水可溶解 2 体积氯气

二、氯气的化学性质

氯原子最外层上有7个电子,在反应中易得到电子,氯气一般做强氧化剂,在化学反应中一般都表现出强氧化性,化学性质很活泼。

能与绝大多数的金属、许多的非金属直接化合,还能与许多化合物反应。

1. 与 H, 的反应:

工业上采用 H_2 包围 Cl_2 点燃,这样能够使有毒的价格高的 Cl_3 充分反应

2. 与金属的反应:

氯气能与大多数的金属化合而生成金属氯化物。由于氯气具有强氧化性,一般金属在加热后放入氯气中反应,能使金属在氯气中燃烧。当它与变价金属直接化合时,一般能形成该金属的高价态氯化物。

3. 与非金属的反应: 氯气能与多种非金属直接化合(如 S、P等)而生成非金属氯化物:

$$2P + 3Cl_2 \xrightarrow{\underline{h}\underline{k}} \rightarrow 2PCl_3$$
(无色液体)
 $2P + 5Cl_2 \xrightarrow{\underline{h}\underline{k}} \rightarrow 2PCl_5$ (白色固体)

- 4. 与水反应: 氯气在水中可以部分地发生反应,但反应进行得很缓慢,生成盐酸和次氯酸
- 5. 与碱的反应:

6. 与其他卤化物的反应: 氯气可以把溴、碘从它们的卤化物溶液中置换出来:

置换出的 Br, , I, 可以用 CCl4或苯等进行萃取富集, 颜色现象明显, 利于观察。

三、氯水的成分探究

 $Cl_2 + H_2O \rightleftharpoons HCl + HClO$

1. 次氯酸: 生成物 HClO 是弱酸,不稳定,见光易分解,具有很强的氧化性(Cl)。

次氯酸的强氧化性表现在:

- ①能氧化一些具有还原性的物质;
- ②能使有机色素分子(有色布条、石蕊、品红等)氧化而变成无色物质;
- ③具有杀菌消毒能力。常用于自来水的杀菌消毒。
- 2. 氯水成分:

三分		A 3	
四离			

3. 氯水的化学性质

由于氯水中含有多种成分,它与不同物质反应时,所起作用物质的主要成分不同。

- (1) 氯水的颜色: 黄绿色【】
- (2) 氯水中滴加石蕊溶液:溶液先变为红色【 】,后变无色【 】
- (3) 氯水中滴加 AgNO3 溶液:溶液中产生白色沉淀【 】

4. 久置氯水

久置氯水中,因 HClO 见光分解,促进了 Cl_2 和 H_2O 的反应,所以久置氯水的主要成分为盐酸,存在的微粒有 H^+ 、 Cl^- 、 H_2O 及由水电离出的少量 OH^- 。如不特别说明,一般所讲的氯水是新制氯水。氯水通常随配随用,如需储存备用,宜放在棕色瓶中并置于冷暗处避光保存。

- 5. 注意事项:
- (1) 组成认识 分子: Cl_2 、 H_2O 、HClO 离子: H^+ 、 Cl^- 、 ClO^- 、 OH^-

「酸性:稀HCl性质

(3) 性质认识 〈漂白性: HClO性质

氧化性: Cl,和HClO性质

四、氯气的制法和用途

- 1. 实验室制法
- (1) 实验原理:实验室常用强氧化剂如 MnO,、KMnO₄、KClO₃等和浓盐酸来制 Cl,

$$2KMnO_4 + 16HCl(液) \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 ↑ +8H_2O$$

$$KClO_3 + 6HCl(浓) \rightarrow KCl + 3Cl, ↑ +3H,O$$

或用浓 H₂SO 与固体食盐代替浓 HCl与 MnO₂ 反应来制取 Cl₂:

$$2$$
NaCl + 3 H₂SO₄($?$ x) + MnO₂ $\xrightarrow{\Delta}$ MnSO₄ + 2 NaHSO₄ + Cl₂ ↑ +2H₂O

- (2) 除杂质: 盛饱和食盐水的洗气瓶除 HCl 杂质
- (3) 干燥: 盛浓硫酸的洗气瓶除去水蒸气
- (4) 检验: Cl₂可用湿润的淀粉碘化钾试纸在瓶口检验,如果试纸变蓝,即说明 Cl₂已收集满
- (5) 收集: 向上排空气法或排饱和食盐水法
- (6) 尾气处理:注意多余的 Cl₂ 不能随便排入空气中,应通入 NaOH 溶液中将其吸收

$$Cl_2 + 2NaOH \longrightarrow NaCl + NaClO + H_2O$$

2. 工业制法:

电解饱和食盐水: $2NaCl + 2H_2O \xrightarrow{\text{ide}} 2NaOH + Cl_2 \uparrow + H_2 \uparrow$

电解熔融的氯化钠: 2NaCl(熔融)—^{通电} $\rightarrow 2Na + Cl$, 个

3. 用途: 制盐酸、漂白粉、农药、聚氯乙烯塑料、合成纤维、消毒、漂白等。

五、次氯酸和漂粉精

1. 次氯酸

次氯酸是一种不稳定的弱酸,容易分解放出氧气。当氯水受到日光照射时,次氯酸的分解速率加快。

思考:新制的氯水与久置的氯水在成分上有何不同?

用途: 次氯酸是一种很强的氧化剂,具有很强的杀菌消毒能力,能杀死水里的病菌,所以自来水常用氯液(1m³水里约通入2g氯气)来杀菌消毒。

次氯酸的强氧化性还能使某些染料和有机色素褪色,可用作棉、麻和纸张等物品的漂白剂。

但次氯酸不稳定,难以保存,而次氯酸盐比次氯酸要稳定,容易存放,故工业上将其制成盐——漂粉精来使用。

2. 漂粉精

(1)制取:工业上通常将Cl₂通入石灰乳制造漂粉精

思考: 为什么工业上通常用石灰乳跟氯气反应制消毒剂, 而不用烧碱跟氯气反应呢?

(2)漂白粉是混合物,主要成分为 CaCl₂和 Ca(ClO)₂,有效成分为 Ca(ClO)₂,它是白色粉末,可溶于水,在酸性溶液中,生成具有杀菌消毒和漂白作用的次氯酸:

工业上把氯气加工成漂粉精再消毒漂白,原因是: ①稳定不易分解②有利于贮存、运输等。

枝繁叶茂

考点 1	氯气	的	牛	质
7 /111	 >1K \ \	н 1	Щ.	ハソベ

- 例1: 氯气是一种化学性质很活泼的非金属单质,它具有较强的氧化性,下列叙述中不正确的是(
 - A. 红热的铜丝在氯气里剧烈燃烧,生成棕黄色的烟
 - B. 钠在氯气中燃烧, 生成白色的烟
 - C. 纯净的 H₂ 在 Cl₂ 中安静地燃烧,发出苍白色火焰,集气瓶口呈现白色烟雾
 - D. 氯气能与水反应生成次氯酸和盐酸, 久置氯水最终变成稀盐酸

变式 1: (多选)下列关于氯及其化合物的叙述中正确的是 ()

- A. 因为氯气有毒,有强氧化性,所以氯气可用于杀菌、消毒、漂白
- B. 常温下 1 体积水中能溶解 2 体积 Clo, 所以饱和氯水是浓溶液
- C. 氯气跟碱溶液的反应实质是 Cl₂ 和 H₂O 的反应
- D. 在使用漂白粉时,加入食醋可增强漂白作用

例 2: 将潮湿的 Cl₂通过甲后,再通过放有干燥红色布条的乙,红色布条不褪色。甲中试剂可能是(

①浓硫酸

②NaOH 溶液

③KI 溶液

④饱和食盐水

A. (1)(2)

B. (2)(3)

C. (1)(2)(3)

D. (1)(2)(3)(4)

考点 2: 氯水的成分探究

- **例 3:** 在氯水中存在多种分子和离子,在不同的反应中表现各自性质。下列现象和结论一致且正确的是(
 - A. 向氯水中加入有色布条, 一会儿有色布条褪色, 说明溶液中有 Cl2 存在
 - B. 溶液呈黄绿色, 且有刺激性气味, 说明有 Cl₂分子存在
 - C. 先加入盐酸酸化,再加入 AgNO3 溶液产生白色沉淀,说明溶液中有 Cl-存在
 - D. 加入 NaOH 溶液, 氯水黄绿色消失, 说明有 HCIO 分子存在

变式 1:	氯水的成分:	从宏观上看有_	\	_`		四种物质,	从微观上
看有 Cl ₂	分子、		、H ⁺ 、Cl ⁻ 、	、OH-	七种微粒。		
下表是验	验证饱和氯水□	中所含主要粒子的	的实验操作和实验现象	,请根据实	验要求将相应	立的操作和现象的	J标号填在
答案栏内	١.						

A	В	C		答案	
a. H ⁺	②在氯水中滴加紫色石蕊溶液 ③在氯水中滴加 AgNO3 溶液 ④将湿润的淀粉 KI 试纸置于氯水试	I. 有白色沉淀生成	a		
b. Cl ⁻		II. 试纸由白色变成蓝色	b		
c. Cl ₂ d. HClO		III. 品红由红色变成无色 IV. 滴入瞬间溶液显红色后褪色	c		
	剂瓶口上方 		d		

例 4: 用滴管将新制氯水慢慢滴入含酚酞的 NaOH 稀溶液中,当滴到最后一滴时红色突然褪色。试回答下列问题:

(1)	实验室保存饱和氯水的方法是	0

(2) 产生上述现象的原因可能有两种(简要文字说明):

①是由于______;

②是由于_____。

简述怎样用实验证明红色褪去的原因是①或者②: _______。

考点 3: 氯气的制备和性质实验

例 5: 用 MnO₂ 和浓盐酸制取纯净干燥的氯气,并让氯气与铜粉反应来制取纯净的无水 CuCl₂,装置如图所示:

请回答下列问题:

(1) 实验前检查整套装置的气密性的方法是	c
(a)	

- (2) A 中反应的化学方程式是_____。
- (3) B 中选用的试剂是
 , 其作用是
 ;

 C 中选用的试剂是
 , 其作用是
 。
- (4) D 中反应的化学方程式是 , 将此生成物

溶于少量水,得到 色溶液。

(5) E 中选用的试剂是______, 其作用是_______, 写出 E 中发

生反应的化学方程式:

变式 1: 已知 $KMnO_4$ 与浓盐酸在常温下反应也能产生 Cl_2 。若用下图所示的实验装置来制备纯净、干燥的氯气,并试验它与金属的反应。每个虚线框表示一个单元装置,其中有错误的是()

- A. 只有①和②处
- C. 只有②和③处
- B. 只有②处
- D. 只有②③④处

例 6: 实验室用下图所示装置制备氯气,并进行氯气性质实验,请回答下列问题:

(1) A 中加入, B 中加入	
烧瓶中发生的化学方程式为	
(2) C 中盛有紫色石蕊溶液,则 C 中的现象是	,对这种现
象的解释是	0
(3) D 中是 NaBr 溶液,发生的现象是	,反应的化
学方程式为	0
(4) E 中盛有 KI-淀粉的混合溶液,现象是	0
(5) F 中是 AgNO ₃ 溶液,现象是	,反应的化
学方程式是	0
(6) G 中为湿润的红色布条,现象是	,原因是
	_ o
(7) H中一般应盛有, 其作用是	<u></u>
的化学方程式为	

变式 1: 已知常温下氯酸钾与浓盐酸反应放出氯气,现按图示进行卤素的性质实验。玻璃管内装有分别滴有不同溶液的白色棉球,反应一段时间后,对图中制定部位颜色的描述中,正确的是表中的哪一项 ()

①~④的四种实验现象

选项	1)	2	3	4)
A	黄绿色	橙色	蓝色	白色
В	无色	橙色	紫色	白色
С	黄绿色	橙色	蓝色	无色
D	黄绿色	无色	紫色	白色

考点 4: 氯气的相关计算

(1) 在标准状况下可产生氯气多少升?

例 7: 实验室用 6.96g 二氧化锰跟 50g36.5%盐酸共热,问:

(2)如不考虑氯化氢挥发的损失,将反应后的溶液加水稀释到 250mL,取 25mL 跟足量的硝酸银溶液反应,可得沉淀多少克?
变式 1: 小明用 25.665g 的 MnO_2 和足量的浓盐酸共热制取 Cl_2 ,得到 Cl_2 的质量为 mg 。小红用 $100mL36.5\%$ 的浓盐酸(ρ =1.18g/cm³)和足量的 MnO_2 共热制取 Cl_2 ,得到 Cl_2 的质量为 ng 。在不考虑反应物的损耗的前提下, m 与 n 的大小关系是 m n(填">""<"或"="),其理由是:
·
例 8: 实验室制 Cl_2 的反应为: $4HCl(浓) + MnO_2 \xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2H_2O$ 下列说法中,错误的是()
A. 还原剂是 HCl,氧化剂是 MnO ₂
B. 每生成 1molCl ₂ ,转移电子的物质的量为 2mol C. 每消耗 1molMnO ₂ ,起还原剂作用的 HCl 消耗 4mol
D. 生成的 Cl ₂ 中,除含有一些水蒸气外,还含有 HCl 杂质
变式 1: 标准状况下 2.24L H_2 和 Cl_2 组成的混合气体,经光照后缓缓通入 100mL1mol/L NaOH 溶液中充分反应,
测得最终溶液中 NaClO 的浓度为 0.1mol/L (假设溶液体积不变,且不考虑水解),则原混合气体中 Cl_2 的体积
分数为(
例 9: 两种金属组成的合金 5.6g,与氯气完全反应,消耗氯气 7.1g,则合金的组成可能是() A. Cu 和 Zn B. Na 和 Mg C. Fe 和 Ca D. Cu 和 Fe
变式 1: 两种金属组成的合金 6.4g,与盐酸完全反应,消耗 0.2mol HCl,则合金的组成可能是() A. Cu 和 Zn B. Na 和 Mg C. Fe 和 Mg D. Cu 和 Fe

考点 5: 漂粉精的制备和性质

2 W	
例 10	: 洪灾过后,饮用水的消毒杀菌成为抑制大规模传染病爆发的有效方法之一。漂白粉是常用的消毒剂。
(1)	工业上将氯气通入石灰乳制取漂白粉,化学方程式为。
(2)	漂白粉的有效成分是(填化学式),它与次氯酸相比(稳定,不稳定)。
	漂白粉溶于水后,与空气中的 CO_2 作用,既产生有漂白、杀菌作用的次氯酸,化学方程式为:
	将漂白粉溶于适量水中,呈白色浊状物,静置沉降。取少量上层清夜,滴加几滴酚酞溶液,溶液先呈丝色,但随后溶液迅速褪色,说明漂白粉呈性,并具有性。
变式	1: 将 Cl ₂ 制成漂粉精的主要目的是 ()
	A. 增强漂白和消毒作用
	3. 使它转化为较稳定物质,便于保存和运输
	C. 使它转化为较易溶于水的物质
:	D. 增加氯的质量分数,有利于漂白、消毒
	2: 在新配制的 Ca(ClO) ₂ 溶液中加入品红试剂,溶液显红色。下列情况中,品红褪色最快的是()A. 将盛溶液的烧杯自然放置 B. 往溶液中滴加少量稀盐酸
	C. 通过饮料吸管往溶液中吹气
	D. 往溶液中滴加少量氢氧化钠溶液
变式	3: 市售"家用消毒液发生器"是以精盐和自来水为原料,通电时发生器内的电极板上产生大量气泡(同时依
	的气体充分与电解液接触),所制得的混合液具有强烈的杀菌能力,且不致对人体造成伤害,该发生器面
制消	毒液所涉及到的化学反应有
	1)2NaCl+2H2O
	$2Cl_2+2NaOH \rightarrow NaCl+NaClO+H_2O$
	$3H2+Cl2 \xrightarrow{\text{figs}} 2HCl$
	4 Cl ₂ +H ₂ O \rightleftharpoons HCl+HClO 5 2HClO $\xrightarrow{\text{£M}}$ 2HCl+O ₂ ↑
	A. ①④⑤ B. ①② C. ③④⑤ D. ②③④

瓜熟蒂落

1.	下列物质中,属于纯A. 漂粉精	净物的是 (B. 氯水		盐酸	D. 液氯	
2.	自来水厂常用氯气消 A. 酚酞溶液					
3.	关于 Cl_2 和 Cl -的说法 A. 都有毒 B. 加			定 C. 都能趴	艮金属钠反应 I) . 都呈黄绿色
4.	下列物质能使干燥的 ①氯气 ②液氯 ③ A. ①②③		放置的久置氯汞	水 ⑤盐酸 (6用盐酸酸化的漂 D . 346	
5.	下列说法中,不正确A. 干燥的氯气不能C. 漂粉精在工业上	漂白有色物质		B. 久置的氯水 D. 自来水生产		
	当不慎有大量氯气逸 的物质是 () A. NaOH			R度的某种物质的 NH ₃ •H ₂ O		E鼻子,最适宜采 fa ₂ CO ₃
7.	实验室制氯气的试管 A. 蒸馏水) D. 热的浓盐酸	Ê
8.	下列物质中,含有自 ①食盐溶液 ② A. ①②⑤	2)氯化氢溶液	③次氯酸钙	④液态氯4		k
9.	关于氯水的叙述,正A. 新制氯水中只含B. 新制氯水可使蓝C. 光照氯水有气泡D. 氯水放置数天后	· Cl ₂ 和 HClO 分子 色石蕊试纸变红后 产生,该气体为 Cl ₂	· !			
10.	实验室制氯气时有如 ①连接好装置,检查 ②缓缓加热,加快反 ③在烧瓶中加入 Mn ④往分液漏斗中加入 ⑤用向上排空气法收 ⑥用氢氧化钠溶液吸	至气密性 反应使气体均匀逸出 O2粉末 、浓盐酸,再缓缓滴 效集氯气)		
	A. 123456		6 C. (1)(3	94256 J	D. 143256	

				.2%。取 1g 该样品投入到 和后的溶液,所得的固体
质量为 () A. 3.73g	B. 4.00g	C. 4.50g	D. 7.45g	
20. 不用任何其他化 首先根据物理性质,	公学试剂,将氯水、碘化 的是氯水, 溶液。观察到溶;	比钾淀粉溶液、盐酸、 然后	硝酸银溶液鉴别出来,观察到溶液由	长的方法是 : 色变为 。如试管中
	引水的消毒杀菌成为抑制通入石灰乳[Ca(OH) ₂]制			漂白粉是常用的消毒剂。
(2)漂白粉溶于水	活,受空气中的 CO ₂	作用,即产生有漂白	、杀菌作用的次氯醛	俊 ,化学反应方程式为:
潮湿的 Cl ₂ 有无漂白	性。 MnO ₁ B and	的 C 干燥的 D 救 H;	NaOH 溶液	集),后试验干燥的 Cl ₂ 和 和 ** *
接,	是,最后接 应的化学方程式是 是,E装置的作。 是,B 瓶中的现 安装分液漏斗而不能使 散到空气中造成污染 入盐酸的量 便于添加液体 CI 挥发到空气中	接	1作用是 实说明起漂白作用的特 由叙述错误的是 (勿质是 () 漂粉精的化学方程式: ①

23. 下图是一个制取氯气并以氯气为原料进行某个特定反应研究的装置。

- (1) 实验开始时, 先点燃 A 处的酒精灯, 打开 K, 使 Cl₂充满整个装置, 再点燃 D 处酒精灯, 然后连接上 E 装置; E 处石蕊试液先变红然后渐变为无色,同时漏斗中的液面略有上升,则产生颜色变化的原因是(
 - a. 反应中产生 CO₂ 的缘故
- b. 反应中产生 HCl 的缘故
- c. 反应中产生 HCl 并有 Cl₂溶于水 d. 反应中同时有 CO₂、HCl 产生的缘故
- D 处反应的化学方程式为
- (2) 装置 C 的作用是
- (3) 若将 E 处中的液体改为澄清石灰水,反应过程中的现象为
 - a. 有白色沉淀产生
- b. 先生成白色沉淀而后沉淀消失
- c. 无明显现象
- d. 开始无沉淀, 然后产生白色沉淀
- (4) 当反应结束后关闭 K, 移去 A 处酒精灯,由于余热作用, A 处仍有 Cl₂产生,此时 B 中现象为 , B 的作用是
- (5) E 装置无法确认 D 处反应中有 CO2产生,为了证明 CO2的存在,要对 E 装置进行改变,下列装置符合要 求的是

(6) 本实验的目的是

(2) 氯气能使湿润的红色布条褪色。对于使红色布条褪色的物质,同学们的看法不一致,认为氯水中存在几种粒子都有可能。请你设计实验,得出正确结论。	在的
提出问题 氯水中何种物质能使湿润的红色布条褪色 收集资料 ①氯气有氧化性	
收集资料 ①氯气有氧化性	
②氯气与冷水反应生成盐酸和次氯酸	
③次氯酸具有强氧化性	
提出假设 ①	
②	
3	
④H ₂ O 使红色布条褪色	
验证假设 实验①把红色干布条放入充满氯气的集气瓶中,布条不褪色	
实验②	
实验③把红色布条放在水里,布条不褪色	
得出结论	