1. Basic Enumeration

The Twelvefold Way

f: N→M . |N|=n |M| = Melements elements any f injection surjection of N of M m" distinut distinut distinguishable distinut identical distinut identical identical identicou

Balls-into-Bins It hads are put into m bins injection				
	balls/bin	wnrestricted	*	>1
unordered	n distinct balls m distinct bins.	M _v .	(W-v) ;	
	n identical balls, m distinct bins	$\binom{N+M-I}{M-I}$	$\binom{m}{n}$	$\frac{\binom{n-j}{m-i}}{}$
	n distinut balls. M identical bins		<u>1{m≥n</u> }	
	n identical balls, m identical bins		1{m≥n3	

¹ 鸽巢原徙 (Pigeon hole)

Sum rule:
$$|SUT| = |S| + |T|$$
, for dispiral set S,T . $S \cap T = \emptyset$

Product rule: $|S \times T| = |S| \cdot |T|$, for any set S . T . Caterian Reject bijection rule: $|S| = |T|$, if \exists bijection $f: S \rightarrow T$

Tuple: $[m] = \{1, 2, ..., m\}$
 $\{1, 2, ..., m\}$
 $\{1, 3, ..., m\}$
 $\{1, 4, 5, ..$

Injection:
$$\pi = (f(1), f(2), \dots, f(n))$$

$$\pi \in [m]^n \text{ of } \underline{\text{distinut elements}} \quad (沒有兩个環接劃了)$$

$$\underline{(m)}_n = m \cdot (m-1) \cdot \dots \cdot (m-n+1) = \frac{m!}{(m-n)!} \quad n-\text{per}$$
Subsets
$$[n] = \{1, 2, \dots, 3\}$$

⇒ 2th]

 $[2]^n = [2]^n = 2^n$

power set $2^{[n]} = \{S \mid S \subseteq [n]\}$ $|2^{[n]}| = 2^n$ (1, 2, --, n) SE[n]

a string of n bits $1 = \chi_{s}$

 $[n] = \{1, 2, \dots, n\}$

$$\frac{2^{[n]}}{2^{[n]}} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2^{[n]} & 1 + 2^{[n]} \\ \end{array} \right\} = \left\{ \begin{array}{l} 2$$

(2) $f(n) = |2^{[n]}|$

$$\begin{array}{c}
N(N-1)\cdots(N-k+1) \\
\text{(1)}
\end{array}$$

$$\begin{array}{c}
\text{(2)} \# \text{ of permutations of a } k-sol, \\
k(k-1)\cdots 1.
\end{array}$$

$$\begin{array}{c}
\text{(N)} = \frac{N(N-1)\cdots(N-k+1)}{k(k-1)\cdots 1} = \frac{N!}{k!(N-k)!}$$

$$(2) \# \text{ of permutations of a k-set},$$

$$k(k+1) - \cdots 1,$$

$$k(k+$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \frac{n(n-1) - \cdots (n-k+1)}{k(k-1) \cdots 1} = \frac{n!}{k!(n-k)!}$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ k \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix}$$

= \mathbb{R} \mathbb{R} \mathbb{R} Binomial Theorem; $(+\chi)^n = \sum_{k=0}^n \binom{n}{k} \chi^k$ $(HX)^{n} = (HX) - \cdots (HX)$ # of Xk; choose k factors out of n. 几块铁台维以下人面从至为有一块铁(满取) ②KT人有人可以全手的目(unrestricted)。 (1) K-composition of n., a k-tuple (x_1, \dots, x_k) s.t. $(x_1 + \dots + x_k = n)$ $(x_i \in \mathbb{Z}^+)$ # of k-compositions of no (n-1) $\Phi\left(\underbrace{(\chi_1,\chi_2,...,\chi_k)}\right) = \left\{ \underbrace{\chi_1,\chi_1 + \chi_2,\chi_1 + \chi_2 + \chi_3}_{\chi_1}, ..., \underbrace{\chi_1 + \chi_2 + \chi_3}_{\chi_3}, ..., \underbrace{\chi_1 + \chi_2 + \chi$ $\begin{cases} k-\text{composition of } n \end{cases} \xrightarrow{1-1 \text{ correspondence}} \left(\begin{cases} 1, 2, -; \frac{n-1}{2} \end{cases}\right) \xrightarrow{\chi_i \in \mathcal{H}^{t}}$

Weak K-composition of 11: a k-tuple (χ_1, \dots, χ_k) s.t. $\chi_1 + \chi_2 + \dots + \chi_k = n$. $\chi_i \in \mathbb{N}$ $(\chi_1+1)+(\chi_2+1)+\dots+(\chi_k+1)=N+k$ # of weak k-composition of n Multisets 多元集 K-Jubset of S: "K-combination of S without repetition" $\{1, 2, 3\}$. Who reposition: $\{1, 2\}, \{1, 7\}, \{2, 7\}$ and seek we reposition: $\{1, 1\}, \{2, 2\}, \{7, 7\}$ multiset M of S {1,27, {2,33 m: S→IN multiplicity (主教) of xeS, (m(x)): # of repetitions of x in M $k \triangleq |M| = \sum_{x \in S} m(x),$ (Set): bit vector (0, 1, 1, 0, ---) k-multiset of S multiset: int vector (0,2,4,1,--.) K-combination of S with repetition ((K)): # of K multisets on an N-set $\binom{\mathsf{N}-\mathsf{I}}{\mathsf{U}+\mathsf{K}-\mathsf{I}} = \binom{\mathsf{K}}{\mathsf{U}+\mathsf{K}-\mathsf{I}}$ weak k-composition

k-multiset on $S = \{x_1, \dots, x_n\}$ $m(x_1) + m(x_2) + \dots + m(x_n) = k$ $m(x_i) \ge 0$ Binomial -> Multinomial. 二顶 孝婉 (n) # of permutations of a multiset on k elements of size n with multiplicition mi,..., mk, (mi+...+mk=n) Λ, M1: M2! --- Mk! # of assignment of n distinct books to K distinut bing k!(n-k): with the i-th bin recoving, Mi balls $(\chi_1 + \chi_2 + \cdots + \chi_k) \cdot \cdots (\chi_1 + \chi_2 + \cdots + \chi_k)$ n TR n halls are put into m bins jujection Balls-into-Bins surjection balls/bin unrestricted n distinct balls Μ¦ M^{n} m! {m (m-n) ! m distinut bins. $\binom{\mathsf{N}+\mathsf{M}-\mathsf{I}}{\mathsf{M}-\mathsf{I}}$ n identical balls. (m) (n) m distinut bins unordered & n distinut bouls. = { N 2 E { K } Sn2 MJ <u>1</u>{m≥n } m identical bins n identical balls $\sum_{k} b^{k}(v)$ 1{n>n? Pm(n) m identical bins ¹ 确集原建(Pigeon hole) n块设备给上下人:composition n个人上K条配。portition.ofas

Partition of (a Set) $P = \{A_1, \dots, A_k\}$ is a partition of S: $\frac{A_{i} + \phi}{A_{i} \cap A_{j}} = \phi \quad \text{(disjoint.)}$ · AIUAZ U. · UAK = S $\{k\}$: # of k-partition of an n-set. 第二型Stirling数 → 无闭式解 total # ef partitions. $\sum_{k=1}^{11} \{ n \ge a \} B_n$ Bell number {1,2,..., n-1, n} $\frac{\text{Recoul}}{k}, \sqrt{\binom{n}{k} - \binom{n-1}{k-1} + \binom{n-1}{k}}$ $\begin{cases} n \\ k \end{cases}; \qquad \begin{cases} \underbrace{\{n\}}_{k} \text{ is not a partition block} \qquad \begin{cases} n-1 \\ k \end{cases} \cdot k, \\ \underbrace{\{n\}}_{k} \text{ is a partition block} \qquad \begin{cases} n-1 \\ k-1 \end{cases} \end{cases}$ $\Rightarrow \begin{cases} n \\ k \end{cases} = \begin{cases} n-1 \\ k-1 \end{cases} + k \cdot \begin{cases} n-1 \\ k \end{cases}$ (surjection) $f: [n] \xrightarrow{\text{on-to}} [n]$ i.e. $\forall i \in [m]$. $f'(\{i\}) \neq \phi$ (f-(fif), f-(faf), ..., f-(fmf)) ordered m-partition of n ① partition: $\{n\}$ \Rightarrow $m! \{n\}$: # of surjections $[n] \rightarrow [m]$

Partition of a Number # of partition of n into & parts pk(n) N=7. {7}. k=1 81,6 3 {2,53, {3,43 {1,1,5} {1,2,4} [1,3,3] {2,2,3} {1,11,49, {1,1,2,3}, {1,2,2,2,} 31,1,1,1,37, \$1,1,1,2,23 7 {1, 1, 1, 1, 1, 2} { [, 1, 1, 1, 1, 1, 1] $P_k(n)$ Integral solutions to $\begin{cases} \chi_1 + \dots + \chi_k = V_1 \\ \chi_1 > \chi_2 > \dots > \chi_k > 1 \end{cases}$ wlog 7. Case 1: $\underline{\chi_{k=1}} \mapsto (\chi_1, ..., \chi_{k-1}) \not\supseteq (n-1) \, \overline{m-1} \, (k-1) - partition.$ Case a: $\frac{\chi_{k}>1}{\sum_{k}}$ $\longrightarrow (\chi_{i-1}, \dots, \chi_{k-1}) \not = (n-k) \overline{m} - \gamma_{k-1}$ partition, > Pk(n)= Pk-(n-1) + Pk(n-K) Composition $\Rightarrow \begin{cases} \frac{\chi_1 + \dots + \chi_k = N}{\chi_1 \ge 1} \end{cases}$ (ordered) $\frac{P_{k}(n)}{\sum_{1 \geq J_{2} \geq \cdots \geq J_{k} \geq 1}} \rightarrow \begin{cases} \chi_{1} + \cdots + \chi_{k} = n \\ \chi_{1} \geq J_{2} \geq \cdots \geq J_{k} \geq 1 \end{cases}$ (unordered) partition Troposition.