Primer parcial de Lógica

Mayo 2008

Indicaciones generales

- La duración del parcial es de tres (3) horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: 40 puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y número de estudiante, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (10 puntos)

Considere el alfabeto $\Sigma = \{a, e, i, o, u, (,)\}$ la siguiente definición inductiva de Δ :

 $1.a \in \Delta$ $2.\text{Si } w \in \Delta$, entonces $ewu \in \Delta$ $3.\text{Si } \{w, w'\} \subseteq \Delta$, entonces $o(w)i(w') \in \Sigma$

Pregunta *. ¿La palabra o(a)i(a) pertenece al lenguaje Δ ? Justifique.

- 1. Tomando en cuenta que la definición de Δ es libre, defina por recursión primitiva una función $F: \Delta \longrightarrow \{1, 2, 3\}^*$ que cambia cualquier vocal por 1, '(' por 2 y ')' por 3.
- 2. Recuerde que el recorrido de F es el conjunto $\{F(w): w \in \Delta\}$. Defina inductivamente un conjunto B que sea ese recorrido.
- 3. Pruebe por inducción que toda palabra de B es la imagen de alguna palabra de Δ por la función F. Es decir,

$$(\bar{\forall}\alpha \in B)(\bar{\exists}w \in \Delta)F(w) = \alpha.$$

Ejercicio 2 (8 puntos)

Pregunta *. ¿Es cierto que $p_0 \models p_1$? Justifique.

Indique cuáles de las siguientes afirmaciones son correctas y justifique su respuesta.

1. Para cualquier par de proposiciones φ y ψ ,

$$\models \neg(\varphi \land \psi) \to (\neg\varphi \land \psi) \lor (\varphi \land \neg\psi)$$

2. Para cualquier par de proposiciones φ y ψ ,

$$\models (\varphi \lor \psi) \land \neg (\varphi \land \psi) \to (\neg \varphi \land \psi) \lor (\varphi \land \neg \psi)$$

Ejercicio 3 (8 puntos)

Pregunta *. Sea $\varphi \in PROP$. Defina $\vdash \varphi$.

Construya una derivación que justifique el siguiente juicio.

$$\vdash (\varphi \to \sigma) \land (\psi \to \sigma) \to (\neg \neg \varphi \lor \psi) \to \sigma.$$

Ejercicio 4 (14 puntos)

Pregunta *. Defina cuando un conjunto Γ es consistencia maximal.

Considere el siguiente conjunto de proposiciones.

$$\Gamma = \{ p \to q \land r, \qquad r \to s \land t, \qquad u \to p \}.$$

Considere además el conjunto de todas las proposiciones de Γ negadas.

$$\overline{\Gamma} = \{ \neg \varphi : \varphi \in \Gamma \}.$$

Indique si las afirmaciones siguientes son correctas o no. Justifique en cada caso.

- 1. $\mathsf{Cons}(\Gamma)$ es consistente maximal.
- 2. Hay un conjunto de fórmulas proposicionales Δ tal que $\mathsf{Cons}(\Gamma) \cap \mathsf{Cons}(\Delta) = \emptyset$.
- 3. Hay una valuación vtal que $(\bar{\forall}\varphi\in\Gamma)v(\varphi)=0$
- 4. $\overline{\Gamma}$ es consistente.