Real Analysis

Samuel Lindskog

February 28, 2025

Contents

1	The	e natural numbers		1	
		Peano axioms			
	1.2	Multiplication		2	
2	Set theory				
	2.1	Fundamentals		3	
	2.2	Functions		5	
3	Integers and rationals				
		The integers			
	3.2	The rationals		9	
	3.3	Absolute value and exponentiation		10	

1 The natural numbers

1.1 Peano axioms

Definition 1.1 (Peano axioms). Using ++ as the successor operation, the natural numbers are defined as follows:

- (a) 0 is a natural number.
- (b) If n is a natural number, then n + + is also a natural number.
- (c) For all natural numbers $n, n++\neq 0$.

Definition 1.2 (Addition of natural numbers). Let m be a natural number. 0 + m := m and (n + +) + m := (n + m) + +.

Proposition 1.3. There is only one zero, i.e. for $a \in \mathbb{N}$ if 0 + a = 0' + a = a, then 0 = 0'.

Proof: Suppose $0 \neq 0'$. Then 0 is a successor of 0' or 0' is a successor of 0. Because no successor of a natural number is 0, this is impossible.

Proposition 1.4. m+0=m.

Proof: Let $n \in \mathbb{N}$. $0+0 \coloneqq 0$, so by inductive hypothesis n+0 = n. $(n++)+0 \coloneqq (n+0)++$, and from the inductive hypothesis equals n++.

Lemma 1.5. For any natural numbers n and m, n + (m + +) = (n + m) + +.

Proof: Suppose $n, m \in \mathbb{N}$. 0 + (m++) := m++=(0+m)++. By inductive hypothesis n+(m++)=(n+m)++. From the definition of addition (n++)+(m++)=(n+(m++))++ and from the inductive hypothesis n+(m++)=(n+m)++ so we have

$$(n++) + (m++) = (n+(m++)) + +$$

= $((n+m)++) + +$
= $((n++)+m) + +$

Proposition 1.6 (Commutativity of addition). For $n, m \in \mathbb{N}$, n+m=m+n.

Proof: Let $n, m \in \mathbb{N}$. From proposition 1.4, 0 + m = m + 0, so by inductive hypothesis n + m = m + n. (n + +) + m = (n + m) + + and from inductive hypothesis this equals (m + n) + +. From lemma 1.5, this equals m + (n + +).

Proposition 1.7. If $a, b \in \mathbb{N}$ and a + b = a, then b = 0.

Proof: Suppose $a, b \in \mathbb{N}$ with a + b = a.

Proposition 1.8 (Associativity of addition). Let $a, b, c \in \mathbb{N}$. Then (a+b)+c=a+(b+c).

Proof: Suppose $a, b \in \mathbb{N}$. From here we utilize the definition of addition, and commutativity of addition for the rest of the proof. It follows that (a+b)+0=a+b=a+(b+0). By inductive hypothesis suppose (a+b)+c=a+(b+c) for $c \in \mathbb{N}$. Then

$$(a + b) + c + + = [(a + b) + c] + +$$

$$= [a + (b + c)] + +$$

$$= a + (c + b) + +$$

$$= a + [(c + c) + b]$$

$$= a + (b + c + c)$$

Proposition 1.9 (Cancellation law). Let $a, b, c \in \mathbb{N}$. Iff a + b = a + c, then b = c.

Proof: If 0+b=0+c then from the definition of addition b=c. By inductive hypothesis for any $n \in \mathbb{N}$, n+b=n+c. (n++)+b=(n+b)++ and (n++)+c=(n+c)++, so from the inductive hypothesis and the axioms of natural numbers, (n++)+b=(n++)+c. \square

Definition 1.10 (Positive natural number). A natural number n is said to be positive iff it is not 0.

Definition 1.11 (Ordering of natural numbers). Let $n, m \in \mathbb{N}$. We write $n \geq m$ or $m \geq n$ iff n = m + a for some $a \in \mathbb{N}$.

Proposition 1.12. If a or b are not zero, then $a + b \neq 0$.

Proof: Suppose $a, b \in \mathbb{N}$ with $b \neq 0$. If a = 0 then $a + b = 0 + b = b \neq 0$. If $a \neq 0$, because no natural number has zero as a successor it follows from the definition of addition that $a + b \neq 0$.

Proposition 1.13 (Trichotomy of order for natural numbers). Let $a, b \in \mathbb{N}$. Then exactly one of the following statements is true: a < b, a = b, a > b.

Proof: Suppose $a, b \in \mathbb{N}$ and a < b. Then for some $c \in \mathbb{N}$, a = b + c with $b \neq a$. If c = 0 then a = b, a contradiction. If b < a, then for some $d \in \mathbb{N}$, b = a + d with $a \neq b$. If d = 0 then a = b, a contradiction. Because b = b + d + c and $c, d \neq 0$, it follows from commutivity and propositions 1.12 and 1.3 that this is impossible. Therefore wlog if a < b then a is not greater than or equal to b. Suppose a = b. If a < b then a = b + c for some $c \in \mathbb{N}$ with $b \neq c$, a contradiction. Therefore wlog if a = b then a is not less than or greater than b.

Proposition 1.14 (Strong principle of induction). Let $m_0, m, m' \in \mathbb{N}$, and let P(x) be a property of arbitrary $x \in \mathbb{N}$. Suppose that for each $m \geq m_0$ the following implication holds:

$$(\forall m' \in [m_0, m), P(m')) \Rightarrow P(m).$$

Then we can conclude P(m) is true for all natural numbers $m \geq m_0$.

1.2 Multiplication

Definition 1.15 (Multiplication of natural numbers). Let m be a natural number. $0 \times m := 0$ and $(n + +) \times m := (n \times m) + m$.

Proposition 1.16. $m \times 0 = 0$.

Proof: From the definition of multiplication, $0 \times 0 = 0$. By inductive hypothesis suppose $m \times 0 = 0$. Then $(m + +) \times 0 = (m \times 0) + 0 = 0$.

Proposition 1.17. For $n, m \in \mathbb{N}$, $n \times (m++) = (n \times m) + n$.

Proof: Let $n, m \in \mathbb{N}$. $0 \times (m++) = 0 = (0 \times m) + 0$. By inductive hypothesis, $(n \times (m++)) = (n \times m) + n$. It follows that

$$(n++) \times (m++) = (n \times (m++)) + (m++)$$
$$= (n \times m) + n + (m++)$$
$$= (n \times m) + m + (n++)$$
$$= ((n++) \times m) + (n++)$$

Proposition 1.18. For $m \in \mathbb{N}$, 1m = m.

Proof: If $m \in \mathbb{N}$ $0 \times m = 0$. Then $(0 + +) \times m = 1 \times m = 0 + m = m$.

Lemma 1.19 (Commutativity of multiplication). Let $n, m \in \mathbb{N}$. Then $n \times m = m \times n$.

Proof: Let $n, m \in \mathbb{N}$. $0 \times m = m \times 0 = 0$. By inductive hypothesis, $n \times m = m \times n$. It follows from proposition 1.17 that

$$(n++) \times m = (n \times m) + m$$
$$= (m \times n) + m$$
$$= m \times (n++)$$

Proposition 1.20 (Distributive law). For any natural numbers a, b, c, we have a(b+c) = ab + ac.

Proof: TODO □

Proposition 1.21 (Associativity of multiplication). If $a, b, c \in \mathbb{N}$ then $(a \times b) \times c = a \times (b \times c)$.

Proof: TODO □

Proposition 1.22. If $a, b \in \mathbb{N}^+$, then $ab \neq 0$.

Proof: Let $a \in \mathbb{N}^+$. By proposition 1.18 1a = a and a is positive. By inductive hypothesis if $n \in \mathbb{N}^+$ then na is positive. n + + is a successor to n, and no successor of a natural number is zero, so n + + is positive. (n + +)a = na + a. Both na and a are positive and by proposition 1.12, na + a is positive and thus not zero.

Proposition 1.23. If a, b are natural numbers such that a < b, and c is positive, then ac < bc.

Corollary 1.24. Let $a, b, c \in \mathbb{N}$ such that ac = bc and c is non-zero. Then a = b.

Proposition 1.25 (Euclid's division lemma). Let n be a natural number, and let q be a positive number. Then there exist natural numbers m, r such that $0 \le r < q$ and n = mq + r.

Definition 1.26 (Exponentiation for natural numbers). Let $m \in \mathbb{N}$. $m^0 := 1$, and $m^{n++} = m^n \times m$.

2 Set theory

2.1 Fundamentals

Definition 2.1 (Axioms of sets).

- (a) (Sets are objects) If A is a set, then A is also an object. In particular, given two sets A and B, it is meaningful to ask whether A is also an element of B.
- (b) (Equality of sets) Two sets A and B are equal iff every element of A is an element of B and vice versa.
- (c) (Empty set) There exists a set known as the empty set, denoted \emptyset , which contains no elements. In other words, for all objects x we have $x \notin \emptyset$.
- (d) (Singleton sets) If a is an object, then there exists a set $\{a\}$ whose only element is a, i.e. for every object y we have $y \in \{a\}$ iff y = a. $\{a\}$ is referred to as a singleton set.
- (e) (Pairwise union) Given any two sets A and B, there exists a set $A \cup B$, called the union of A and B, which consists of all the elements which belong to A or B. In other words,

$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B).$$

- (f) (Axiom of specification) Let A be a set, and for each $x \in A$ let P(x) be a property pertaining to x. Then there exists a set $\{x \in A \mid P(x)\}$ whose elements are precisely the elements x in A for which P(x) is true.
- (g) (Replacement) Let A be a set. For any object $x \in A$ and any object y, suppose we have a property P(x,y) that is true for at most one y for each $x \in A$. Then

$$z \in \{y \mid P(x, y), x \in A\} \Leftrightarrow P(x, z).$$

- (h) (Infinity) There exists a set \mathbb{N} , whose elements are called natural numbers, as well as an object $0 \in \mathbb{N}$, and an object N + + assigned to every natural number $n \in \mathbb{N}$, such that the Peano axioms hold.
- (i) (Universal specification) DANGER Suppose for every object x we have a property P(x). Then there exists a set $\{x \mid P(x)\}$.
- (j) (Regularity). If A is a non-empty set, then there is at least one element x of A which is either not a set, or is disjoint from A.

(k) (Power set) Let X and Y be sets. Then there exists a set, denoted Y^X , which consists of all the functions from X to Y, thus

$$f \in Y^X \Leftrightarrow f$$
 is a function from X to Y.

(l) (Union) Let A be a set whose elements are all sets. Then there exists a set $\bigcup A$ defined

$$x \in \bigcup A = \{x \mid \exists S \in A, \ x \in S\}.$$

Remark. The axioms of set theory introduced, excluding universal specification, are known as the Zermelo-Fraenkel axioms of set theory.

Lemma 2.2 (Single choice). Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Proof: Suppose there does not exist any object x such that $x \in A$. Simultaneously $x \notin \emptyset$, so $x \in A \Leftrightarrow x \in \emptyset$ and $A = \emptyset$, a contradiction.

Definition 2.3 (Subset). Let A, B be sets. We say that A is a subset of B, denoted $A \subseteq B$, iff every element of A is also an element of B. We say that A is a proper subset of B, denoted $A \subseteq B$, if $A \subseteq B$ and $A \neq B$.

Theorem 2.4. Let A be a set. Then $\emptyset \subseteq A$. Proof: If $\emptyset \subseteq A$ then for all objects x,

$$x \in \emptyset \Rightarrow x \in A$$
.

П

This is vacuously true because there does not exist x such that $x \in \emptyset$.

Definition 2.5 (Intersection). The intersection $S_1 \cap S_2$ of two sets is the set

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}.$$

Definition 2.6 (Union). The union $S_1 \cup S_2$ of two sets is the set

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}.$$

Definition 2.7 (Disjoint). Two sets are disjoint if $A \cap B = \emptyset$.

Definition 2.8 (Difference set). If A and B are sets, the set $A \setminus B$ is the set A with any elements of B removed, i.e.

$$A \setminus B := \{x \mid x \in A \land x \notin B\}.$$

Proposition 2.9. Let A, B, C be subsets of set X.

- (a) (Minimal element) $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.
- (b) (Maximal element) $A \cup X = X$ and $A \cap X = A$.
- (c) (Identity) $A \cap A = A$ and $A \cup A = A$.
- (d) (Commutativity) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- (e) (Associativity) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- (f) (Distributivity) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (g) (Partition) $A \cup (X \setminus A) = X$ and $A \cap (X \setminus A) = \emptyset$.
- (h) (De Morgan Laws) $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Definition 2.10 (Ordered pair). If x and y are any objects, we define the ordered pair (x, y) to be a new object which consists of x as its "first component" and y as its "second component". Two ordered pairs x, y and x', y' are equal if

$$x = x', \quad y = y'.$$

Definition 2.11 (Cartesian product). Let A, B be sets. Then the cartesian product of A and B, written $A \times B$, is

$$A \times B = \{(a, b) | , a \in A, b \in B\}.$$

Definition 2.12 (Ordered *n*-tuple). Let *n* be a natural number. An ordered *n*-tuple $(x_i)_{1 \leq i \leq n}$ is a collection of objects x_i , one for every natural number *i* between 1 and *n*. Two ordered *n*-tuples $(x_i)_{1 \leq i \leq n}$ and $(y_i)_{1 \leq i \leq n}$ are said to be equal iff $x_i = y_i$ for all $1 \leq i \leq n$.

Definition 2.13 (*n*-fold Cartesian product). If $(X_i)_{1 \le i \le n}$ is an ordered *n*-tuple of sets, their Cartisian product $\prod_{i=1}^{n} X_i$ is defined

$$\prod_{i=1}^{n} X_i = \{(x_i)_{1 \le i \le n} \mid x_i \in X_i\}.$$

Definition 2.14 (Indexed family). If for each element $j \in J$ with $J \neq \emptyset$, there corresponds a set A_j , then

$$\mathcal{A} = \{A_i \mid j \in J\}.$$

Is called an indexed family of sets with J as the index set. If $J = \{1, 2, ..., n\}$ we may index the set similarly to sum notation.

Definition 2.15 (Union and intersection of indexed family). The union of all sets in an indexed family $\mathscr A$ with index set J is

$$\bigcup_{j \in J} A_j = \{ x \, | \, \exists A_j \in \mathscr{A}, \, x \in A_j \}.$$

The intersection of all sets in $\mathcal A$ is

$$\bigcap_{j \in J} A_j = \{ x \, | \, \forall A_j \in \mathscr{A}, \, x \in A_j \}.$$

Lemma 2.16 (Finite choice). Let $n \ge 1$ be a natural number, and for each natural number $1 \le i \le n$, let X_i be a non-empty set. Then there exists an n-tuple $(x_i)_{1 \le i \le n}$ such that $x_i \in X_i$ for all $1 \le i \le n$. In other words if each X_i is non-empty, then its n-fold cartesian product is nonempty.

Proof: Let $\mathscr{A} = \{A_i \mid 1 \leq i \leq n\}$ with $n \in \mathbb{N}$ be an indexed family of nonempty sets. It follows from lemma 2.2 that for each A_i , $1 \leq i \leq n$, there exists $a_i \in A_i$. Using this fact, define an ordered n-tuple $(a_i)_{1 \leq i \leq n}$.

2.2 Functions

Definition 2.17 (Relation). Let A, B be sets. A relation between A and B is an subset of $A \times B$.

Definition 2.18 (Equivalence relation). An equivalence relation on a set S is a relation such that for all $x, y, z \in S$, the relation satisfies the following properties:

- (a) (Reflexive property) xRx.
- (b) (Symmetric property) $xRy \Rightarrow yRx$.
- (c) (Transitive property) $xRy \wedge yRx \Rightarrow xRz$.

Definition 2.19 (Partition). A partition of a set S is a collection \mathscr{P} of nonempty subsets of S that are pairwise disjoint, and whose union is S, i.e.

- (a) $A = \bigcup \mathscr{P}$.
- (b) $\forall A, B \in \mathscr{P}, A \neq B \Rightarrow A \cap B = \emptyset.$

Definition 2.20 (Function). A function from A to B, denoted $f: A \to B$ is a nonempty relation $f \subseteq A \times B$ that satisfies the following properties:

(a) (Existence) $\forall a \in A, \exists b \in B, (a, b) \in f$.

(b) (Uniqueness) $(a, b) \in f \land (a, c) \in f \Rightarrow b = c$.

Set A is called the domain of f, and set B is called the codomain. The range of f is f(A), i.e. $\{b \in B \mid (a,b) \in f\}$.

Definition 2.21 (Equality of functions). Two functions $f: X \to Y$ and $g: X' \to Y'$ are equal if their domains and codomains are equal, and furthermore that f(x) = g(x) for all $x \in X$.

Definition 2.22 (Composition). Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that the codomain of f is the same set as the domain of g. Then the composition $g \circ f: X \to Z$ of the two functions g and f is the function defined by the formula

$$(g \circ f)(x) = g(f(x)).$$

Lemma 2.23. Let $f: Z \to W$, $g: Y \to Z$, and $h: X \to Y$ be functions. Then $f \circ (g \circ h) = (f \circ g) \circ h$.

Proof: $g \circ h$ is a function from X to Z, and $f \circ g$ is a function from $Y \to W$, so $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are functions from X to W. It follows from the definition of function composition that

$$(f \circ (g \circ h))(x) = f((g \circ h)(x))$$

$$= f(g(h(x)))$$

$$= (f \circ g)(h(x))$$

$$= ((f \circ g) \circ h)(x)$$

Definition 2.24 (Injective). A function $f: X \to Y$ is injective (one-to-one) if for $x, x' \in X$,

$$x \neq x' \rightarrow f(x) \neq f(x')$$

Definition 2.25 (Surjective). A function $f: X \to Y$ is surjective (onto) if

$$\forall y \in Y, \exists x \in X, f(x) = y.$$

Definition 2.26 (Bijective). A function is bijective (invertible) if it is injective and surjective.

Proposition 2.27. Let $f: A \to B$ and $g: B \to C$. Then

- (a) If f and g are surjective, then $g \circ f$ is surjective.
- (b) If f and g are injective, then $g \circ f$ is injective.
- (c) If f and g are bijective, then $g \circ f$ is bijective.

Lemma 2.28. If $f: X \to Y$ is bijective then f is invertible. In other words for all $y \in Y$ there exists a unique $x \in X$ denoted $f^{-1}(y)$ such that f(x) = y. Therefore the inverse of f, $f^{-1}: Y \to X$ exists and is defined

$$f^{-1}(y) = x.$$

Definition 2.29 (Identity function). A function defined on a set A that maps each element in A onto itself is called the identity function on A, and is denoted i_A .

Proposition 2.30. Let $f: A \to B$ be bijective. Then

- (a) $f^{-1}: B \to A$ is bijective.
- (b) $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Theorem 2.31. Let $f: A \to B$ and $g: A \to B$ be bijective. Then the composition $g \circ f: A \to C$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Definition 2.32 (Image). If $f: X \to Y$ is a function from X to Y, and $S \subseteq X$, we define the image of S under f, f(S) to be the set

$$f(S) = \{ f(x) \, | \, x \in S \}.$$

Definition 2.33 (Inverse image). If U is a subset of Y, we define the set $f^{-1}(U)$ to be the set

$$f^{-1}(U) = \{ x \in X \mid f(x) \in U \}.$$

We call $f^{-1}(U)$ the inverse image of U.

Proposition 2.34. If X, Y are sets and $f: X \to Y$ then $f(X) \subseteq Y$.

Proof: $y \in f(X)$ implies $y \in \{y \mid (x,y) \in f\}$ and f is a subset of $X \times Y$, so it follows from the definition of the cartesian product that $y \in Y$.

Lemma 2.35. Let X be a set. Then the set

$$\{Y \mid Y \subseteq X\}$$

Is a set.

Proof: Let X be a set and $A \subseteq X$ with $A \neq \emptyset$. Then there exists $p \in A$, and we can define a function $f: X \to A$ with $x \in X$ by

$$f(x) = \begin{cases} x \in A & f(x) = x \\ x \notin A & f(x) = p \end{cases}$$

Thus for all $a \in f(X)$, $a \in A$ or $a = p \in A$, so $f(X) \subseteq A$. Next, for all $x \in X$, $(x, f(x)) \in f(X)$. Because for all $a \in A$ we have $a \in X$ then for all $a \in A$, $(a, f(a)) = (a, a) \in f(X)$ so from the definition of an image $A \subseteq f(X)$. Thus A = F(X). From the power set axiom in definition 2.1,

$$\{f: X \to A \mid A \subseteq X \land A \neq \emptyset\} \subseteq X^X$$

From replacement, pairwise union, and singleton set axioms in definition 2.1, we can define a set P(X) that is the union of all images of functions in X^X , and $\{\emptyset\}$. As established above, all nonempty subsets of X are included in this set, and from proposition 2.34 all images of functions in X^X are subsets of X.

Definition 2.36 (Power set). For a set X, the set $\{Y \mid Y \subseteq X\}$ is called the power set of X, and is denoted P(X) or 2^X .

Definition 2.37 (Cardinality). We say that two sets X and Y have equal cardinality iff there exists a bijection $f: X \to Y$ from X to Y.

Proposition 2.38. Let X, Y, Z be sets.

- (a) X has equal cardinality with X.
- (b) If X has equal cardinality with Y, then Y has equal cardinality with X.
- (c) If X has equal cardinality Y and Y has equal cardinality with Z, then X has equal cardinality with Z

Proof:

Definition 2.39 (Cardinality n). Let n be a natural number. A set X is said to have cardinality n, if it has equal cardinality with $\{ \in \mathbb{N} \mid 1 \le i \le n \}$. In this case we say that X has n elements.

Lemma 2.40. Suppose that $n \ge 1$, and set X has cardinality n. Then X is non-empty, and if x is any element of X, then the set $X - \{x\}$ has cardinality n - 1.

Proposition 2.41. Let X be a set with some cardinality n. Then X cannot have any other cardinality, i.e. X cannot have cardinality m for any $m \neq n$.

Definition 2.42 (Finite set). A set is finite iff it has cardinality n for some natural number n; otherwise, the set is called infinte.

Theorem 2.43. The set of natural numbers is infinite.

3 Integers and rationals

3.1 The integers

Definition 3.1 (Integers). An integer is an expression of the form a-b, where a and b are natural numbers. Two integers are considered to be equal, a-b=c-d, iff a+d=c+b. The set of all integers is denoted \mathbb{Z} .

Remark. The use of - is purely notational (until subtraction is defined). a-b can be interpreted as an ordered pair in $\mathbb{N} \times \mathbb{N}$.

Definition 3.2 (Integer addition). The sum of two integers (a - b) + (c - d) is defined by the formula

$$(a-b) + (c-d) = (a+c) - (c+d)$$

Definition 3.3 (Integer multiplication). The product of two integers $(a - b) \times (c - d)$ is defined by the formula

$$(a-b) \times (c-d) = (ac+bd) - (ad+bc).$$

Remark. We may identify the integers with natural numbers by setting $n \equiv n - 0$. Definitions of equality and previously defined operations remain consistent with each other.

Proposition 3.4. If $a, b \in \mathbb{Z}$ and a + b = b then a = 0. *Proof:* prove

Lemma 3.5. Addition and multiplication are well defined.

Definition 3.6 (Negation of integers). If (a-b) is an integer, we define the negation -(a-b) to be the integer b-a.

Lemma 3.7 (Trichotomy of integers). Let x be an integer. Then either x is zero, equal to a positive natural number, or x negated is a positive natural number.

Definition 3.8 (Positive integer). If n is a positive natural number, we call n a positive integer, and -n a negative integer.

Proposition 3.9 (Integer laws for algebra). Let x, y, z be integers. Then the following identities hold:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = 0 + x = x$$

$$x + (-x) = 0$$

$$xy = yx$$

$$(xy)z = x(yz)$$

$$1x = x$$

$$x(y + z) = xy + xz$$

Proposition 3.10. If $a, b \in \mathbb{Z}$ with a, b > 0, then ab > 0.

Proof: If $a, b \in \mathbb{Z}$ with a, b > 0, then for some $x, y \in \mathbb{N}^+$, a = x - 0 and b = y - 0. Thus ab = (xy + 0) = (0 + 0) = xy - 0. Because $x, y \neq 0$, by proposition 1.22 xy > 0 so from the definition of a positive integer ab > 0.

Proposition 3.11. If $a, b \in \mathbb{Z}$ with a, b > 0, then a + b > 0.

Proof: If $a, b \in \mathbb{Z}^+$, then for some $x, y \in \mathbb{N}^+$ we have a = x - 0 and b = y - 0, so a + b = ((x + y) - 0). It follows from proposition 1.12 that x + y > 0 so from the definition of a positive integer, a + b > 0.

Proposition 3.12. If $x \in \mathbb{Z}$ with x = (a - b) then $-1 \cdot (a - b) = -(a - b)$. *Proof:* $-1 \cdot (a - b) = (0 - 1) \cdot (a - b) = (0a + b) - (a + 0b) = -(a - b)$.

Proposition 3.13 (Integers have no zero divisors). If a, b are integers such that ab = 0, then a = 0 or b = 0.

Corollary 3.14 (Cancellation law). If a, b, c are integers such that ac = bc and c is non-zero, then a = b.

Proof: Let $a,b,c \in \mathbb{Z}$ with $c = \neq 0$. If a = 0 it follows from proposition 3.13 that ac = 0 so bc = 0 and thus b = 0, so a = b. If $a \neq 0$, suppose to the contrary that $b \neq a$. It follows from proposition 3.4 that there exists $d \in \mathbb{Z}$ with $d \neq 0$ such that a + d = b. Using laws for algebra we see that ac = ac + dc. By proposition 3.13 $dc \neq 0$, a contradiction by proposition 3.4. Therefore a = b.

Definition 3.15 (Ordering of integers). Let $n, m \in \mathbb{Z}$. We say that n is greater than or equal to m and write $n \geq m$ or $m \leq n$ iff we have n = m + a for some natural number a. We say that n is strictly greater than m and write n > m or m < n iff $n \geq m$ and $n \neq m$.

3.2 The rationals

Definition 3.16 (Rational number). A rational number is an expression of the form a//b, where a and b are integers and $b \neq 0$. Two rational numbers are equal, a//b = c//d, iff ad = bc. The set of all rational numbers is denoted \mathbb{Q} .

Remark. We may indentify the rationals with natural numbers by setting $n//1 \equiv n$.

Definition 3.17 (Addition of rationals). If a//b and c//d are rationals, their sum is

$$(a//b) + (c//d) = (ad + bc)//(bd).$$

Definition 3.18 (Product of rationals). If a//b and c//d are rationals, their product is

$$(a//b) \cdot (c//d) = (ac)//(bd).$$

Definition 3.19 (Negation of rationals). The negation of a rational (a//b), denoted = (a//b) is

$$-(a//b) = (-a//b).$$

Definition 3.20 (Reciprocal of rationals). If x = a//b is a non-zero rational number, then the reciprocal of x^{-1} of x is defined

$$x^{-1} = b//a$$
.

Lemma 3.21. The sum, product, negation, and reciprocal operations on rational numbers are well-defined.

Proposition 3.22. The negation of the negation of $x \in \mathbb{Q}$ is x.

Proof: The negation of the negation of an integer x = (a - b) is - - (a - b) = -(b - a) = (a - b) so - - x = x. The negation of the negation of a rational number y = (c//d) is - - (c//d) = -(-c//d) = (- - c//d) = c//d.

Definition 3.23 (Quotient). The quotient of two rationals x and y with $y \neq 0$, denoted x/y, is

$$x/y = x \times y^{-1}$$
.

Definition 3.24 (Subtraction). The difference of two rationals x and y, denoted x - y, is defined

$$x - y = x + (-y).$$

Definition 3.25 (Positive rational number). A rational number x is said to be positive iff we have x = a/b for some positive integers a and b. It is said to be negative iff x = -y for some positive rational y.

Definition 3.26 (Ordering of rationals). Let $x, y \in \mathbb{Q}$. We say that x > y iff x - y is a positive rational number, and x < y iff x - y is a positive negative rational number. We write $x \ge y$ iff either x > y or x = y, and $x \le y$ iff either x < y or x = y.

Proposition 3.27. $x \in \mathbb{Q}$ is positive iff x > 0, and negative iff x < 0.

Proof: If x = a//b is a positive rational number then a, b > 0. Because 0 = 0//d for some $d \in \mathbb{N} \setminus \{0\}$, x - 0 = x + 0 = ad//bd = a//b and thus x > 0. If x > 0 then x - 0 is positive. Because 0 = 0//d for some $d \in \mathbb{N} \setminus \{0\}$ we have x - 0 = x + 0 = ad//bd = a//b, which is positive.

Proposition 3.28 (Laws of algebra for rationals). Let x, y, z be rationals. Then the following laws of algebra hold:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x + (-x) = 0$$

$$xy = yx$$

$$(xy)z = d(yz)$$

$$1x = x$$

$$x(y + z) = xy + xz$$

Proposition 3.29. -1x = -x.

Proof: If
$$x = a//b$$
 then $-1 \cdot x$ is $(-1//1) \cdot (a//b) = -1a//b$. From proposition 3.12, $-1a = -a$ so $-1a//b = -(a//b) = -x$.

Proposition 3.30. If $a, b \in \mathbb{Q}$ with a > 0 and b > 0 then a + b > 0.

Proof: Suppose $a, b \in \mathbb{Q}$ with a, b > 0. It follows from the definition of positive rational number that for some positive $x, y, z, w \in \mathbb{Z}$, a = x//y and b = z//w, so ab = xw + zy/yw. By proposition 3.10 xw, zy, yw > 0, so by 3.11, a + b > 0.

Lemma 3.31 (Trichotomy of rationals). Let x be a rational number. Then exactly one of the following three statements is true:

- (a) x = 0.
- (b) x is positive.
- (c) x is negative.

3.3 Absolute value and exponentiation

Definition 3.32 (Absolute value). If x is a rational number, the absolute value |x| of x is defined as follows:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Definition 3.33 (Distance). The distance between $x, y \in \mathbb{Q}$, sometimes denoted d(x, y), is

$$d(x,y) = |x - y|.$$

Proposition 3.34. For all $x \in \mathbb{Q}$, $|x| \geq 0$.

Proof: If $x \ge 0$ then |x| = x so $|x| \ge 0$. If x < 0 then |x| = -x. By proposition 3.27 x is negative. Therefore there exists $y \in \mathbb{Q}^+$ such that x = -y, so by proposition 3.22 -x = -y = y and -x is positive. By proposition 3.27, -x > 0.

Proposition 3.35 (Triangle inequality). For
$$x, y \in \mathbb{Q}$$
, $|x + y| \le |x| + |y|$.

Definition 3.36 (ϵ -closeness). Let $\epsilon > 0$ be a rational number, and let x, y be rational numbers. We say that y is ϵ -close to x iff $d(y, x) < \epsilon$.

Definition 3.37 (Exponentiation to a natural number). Let x be a rational number. To raise x to the power 0, we define $x^0 = 1$ and for all $n \in \mathbb{N}$, $x^{n+1} = x^n \times x$.

Definition 3.38 (Exponentiation to a negative number). Let x be a non-zero rational number. Then for any negative integer -n,

$$x^{-n} = 1/x^n.$$