Quantum Error Correction

Aaron Jarmusch, Ph.D. Student, University of Delaware CRPL <jarmusch@udel.edu>

QSEG 851: Advanced Topics in Quantum Information

Nature isn't classical...
and if you want to make a
simulation of nature,
you'd better make it
quantum mechanical

SS

- Richard P. Feynman (1982)

Programming on a Computer

Superposition – A qubit can be 0 and 1 at the same time, until you measure.

Entanglement – Two qubits become linked.

Decoherence – Info. leaks into the env where information stored behave more classically.

Classical Error Correction

3-bit repetition code - The idea is to repeat each bit multiple times.

Encoding

Decoding

0 -> 000

1-> 111

majority(a, b, c)

Corrects up to one **bit flip** on any of the three bits.

Scaling up the number of repeated bits can improve the error correction.

No-cloning theorem – quantum states cannot be perfectly copied

The **no-cloning theorem** prevents copying qubits for backup

... so classical error correction wouldn't work.

Qubit repetition codes

The **3-bit repetition code** can be used to encode a qubit.

Encoding

 $\alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle$

Option 1: Measure in

Option 2: Measure the parity of the standard basis states

Qubit repetition codes – **bit** flip error

 $\alpha|010\rangle + \beta|101\rangle$

This also doesn't work for 2 or more errors.

This doesn't cause the state to collapse so we have a chance to correct the qubit.

Qubit repetition codes – **bit** flip error

The **3-bit repetition code** can be used to encode a qubit.

Encoding

$$\alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle$$

We can't use this to detect phase flip errors

The **3-bit repetition code** can be used to encode a qubit.

Phase flip errors or a z gate transforms (+ to -) or (- to +)

Add Hadamard gates at the beginning and end

Without a phase flip error

The **3-bit repetition code** can be used to encode a qubit.

Allows us to detect a phase flip error

9-qubit Shor Code

9-qubit Shor Code

Timeline

First Experimental Quantum Error Correction

David G Cory, 1998

3-bit code for phase errors Andrew Steane

$$|b_1b_2b_3\rangle \longrightarrow e^{i[(-1)^{b_1}\theta_1+(-1)^{b_2}\theta_2+(-1)^{b_3}\theta_3]}|b_1b_2b_3\rangle$$

liquid state Nuclear Magnetic Resonance

D. Cory, Et. Al.. (1998)

Fault-Tolerant Quantum Computing

• **Fault-tolerance** – if only one component fails then the failure causes at most one error in each encoded block of qubits.

Timeline

Topological Codes

Topological Code – spread out information over a 2D or 3D grid of qubits, removing small local errors

(b) IBM's Heavy-hexagonal

(c) Google's Sycamore

Topological Qubits

Google Quantum Error Correction

Refs

- 1. A. A. Saki, M. Alam, and S. Ghosh, "Study of Decoherence in Quantum Computers: A Circuit-Design Perspective," arXiv preprint arXiv:1904.04323, 2019. [Online]. Available: https://arxiv.org/abs/1904.04323
- Cory, D. G., Price, M. D., Maas, W., Knill, E., Laflamme, R., Zurek, W. H., Havel, T. F., & Somaroo, S. S. (1998). Experimental quantum error correction. *Physical Review Letters*, 81(10), 2152–2155. https://doi.org/10.1103/PhysRevLett.81.2152
- 3. Khalid, A. (2023). A methods focused guide to quantum error correction and fault-tolerant quantum computation.
- 4. Delaney, R. D., Sletten, L. R., Cich, M. J., Estey, B., Fabrikant, M. I., Hayes, D., Hoffman, I. M., Hostetter, J., Langer, C., Moses, S. A., Perry, A. R., Peterson, T. A., Schaffer, A., Volin, C., Vittorini, G., & Burton, W. C. (2024). Scalable multispecies ion transport in a grid-based surface-electrode trap. *Physical Review X, 14*(4), 041028. https://doi.org/10.1103/PhysRevX.14.041028

