Higher Category Theory

Assignment 8

Exercise 1

Proof. If $f: X \to Y$ is a homotopy equivalence of topological spaces, then there exists $g: Y \to X$ such that $gf \sim \mathrm{id}_X$ and $fg \sim \mathrm{id}_Y$. Suppose that $H: [0,1] \times X \to X$ is a homotopy between gf and id_X . Consider the composite

$$[0,1] \times |\operatorname{Sing}(X)| \to [0,1] \times X \stackrel{H}{\to} X$$

where the first map is given by the unit of the adjunction $|\cdot| \dashv \operatorname{Sing}$. By the naturality of adjunctions¹, the composite corresponds to $\operatorname{Sing}(H) : \Delta^1 \times \operatorname{Sing}(X) \to \operatorname{Sing}(X)$ under the adjunction. Hence we get $\operatorname{Sing}(g) \operatorname{Sing}(f) = \operatorname{Sing}(gf) \sim 1_{\operatorname{Sing}(X)}$. Similarly one also has $\operatorname{Sing}(f) \operatorname{Sing}(g) \sim 1_{\operatorname{Sing}(Y)}$. Thus $\operatorname{Sing}(f)$ is a Δ^1 -homotopy equivalence.

Exercise 2

Proof. (2) Define $f: C \to [0]$ to be the unique functor and $g: [0] \to C$ by sending 0 to ω on objects. Define a functor $h: [1] \times C \to C$ by sending

$$(1,a)\mapsto\omega$$
 and $(0,a)\mapsto a$

on objects (where $a \in \mathrm{Ob}(C)$), and

$$((0, a) \to (0, b)) \to (a \to b),$$

$$((1, a) \to (1, b)) \to \mathrm{id}_{\omega},$$

$$((0, a) \to (1, b)) \mapsto (a \to \omega)$$

So it suffices to take F = Sing, $G = |\cdot|$ and f = H above.

¹Given an adjunction $G \dashv F$ of functors and a morphism between objects $f: C \to D$, the naturality implies that

on morphisms. Note that $h_0 = 1_C$ and $h_1 = gf$. Thus taking nerves N(h) gives a Δ^1 -homotopy $N(g)N(f) \sim 1_{N(C)}$. Conversely since $fg = 1_{[0]}$ the construction is obvious. As a consequence, $N(f): N(C) \to \Delta^0$ is a Δ^1 -homotopy equivalence. It can be a J-homotopy equivalence: for example, take C = [0].

(3) Since $f: X \to Y$ is an equivalence of ∞ -categories, it is a J-homotopy equivalence. Hence $f_* \colon [S, X] \to [S, Y]$ is a bijection for any simplicial set S, which in turn gives a bijection $f_* \times 1_{[S,T]} \colon [S, X \times T] = [S, X] \times [S, T] \to [S, Y] \times [S, T] = [S, Y \times T]$. Therefore $f \times 1_T$ is a J-homotopy equivalence.

Exercise 3

Proof. (1) Suppose that $f: X \to Y$ is an *I*-homotopy equivalence and $g: U \to V$ is a retract of it. Namely we have the commutative diagram

$$\begin{array}{ccc}
U & \xrightarrow{s} & X & \xrightarrow{p} & U \\
\downarrow^g & & \downarrow^f & \downarrow^g \\
V & \xrightarrow{t} & Y & \xrightarrow{q} & V
\end{array}$$

with $ps = 1_U$ and $qt = 1_V$. Applying [T, -] to it (where $T \in \widehat{A}$ is any presheaf) yields a commutative diagram in **Set**:

$$[T, U] \xrightarrow{s_*} [T, X] \xrightarrow{p_*} [T, U]$$

$$\downarrow g_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow g_*$$

$$[T, V] \xrightarrow{t_*} [T, Y] \xrightarrow{q_*} [T, V]$$

where $p_*s_* = \text{id}$ and $q_*t_* = \text{id}$. Since f is an I-homotopy equivalence, f_* is a bijection. Note that $s_* = (f_*)^{-1}t_*g_*$ is injective, hence so is g_* . Similarly g_* is surjective because $q_* = g_*p_*(f_*)^{-1}$ is so. Therefore g_* is a bijection, which entails that g is an I-homotopy equivalence.

(2) Applying [T, -] to h = gf, we get $h_* = g_*f_*$, where T is an arbitrary presheaf on A. Since any two of f_* , g_* , h_* being bijective implies the third one being bijective, we have the proof.