

Docket No.: 50246-068

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue of U.S. Patent 5,598,525

Issued January 28, 1997

To Robert M. Nally, et al.

Based on Serial No.: 376,919

Group Art Unit:

Filed: January 23, 1995

Examiner:

For: APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND
VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS

COMBINED DECLARATION AND POWER OF ATTORNEY
IN REISSUE APPLICATION

Box 7
Assistant Commissioner for Patents
Washington, DC 20231

Sir:

Cirrus Logic, Inc., Assignee of the entire interest in the above-identified patent, hereby
declares:

The post office address of Cirrus Logic, Inc. is stated below; and that

Cirrus Logic, Inc. verily believes that inventors Robert M. Nally of Plano, Texas and John
C. Schafer of Wylie, Texas are the original and first joint inventors of the invention entitled:
APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND VIDEO
DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS, described and
claimed in the U.S. Patent No. 5,598,525, filed January 23, 1995, and issued on January 28, 1997,
that Cirrus Logic, Inc. understands the content of the specification filed therein, that Cirrus Logic,

CIRRUSS LOGIC INC.

Inc. has reviewed and understands the content of the specification including the claims originally patented, as well as the claims referred to in this Declaration, that Cirrus Logic, Inc. does not know and does not believe the same was ever known or used in the United States of America before the invention thereof by said inventors, or patented or described in any printed publication in any country before their invention thereof or more than one year prior to the filing date of the application which matured into U.S. Patent No. 5,598,525; that the same was not in public use or on sale in the United States of America more than one year prior to said filing date to the best of Cirrus Logic, Inc.'s knowledge, information and belief, that the invention has not been patented or made the subject of an inventor's certificate issued before said filing date, in any country foreign to the United States of America on an application filed by Cirrus Logic, Inc. or Cirrus Logic, Inc.'s legal representatives or assigns more than twelve months prior to said filing date, that Cirrus Logic, Inc. acknowledges a duty to disclose information of which Cirrus Logic, Inc. is aware which is material to the examination of this application, and that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to the original application Serial No. 376,919, filed on January 23, 1995 by us or our legal representatives or assigns, except as follows: NONE

Our original U.S. Patent 5,598,525, issued January 28, 1997, which matured from said Serial No. 376,919, is believed to be wholly or partly inoperative by reason of the patentees claiming the invention imprecisely and with aspects of the invention recited only implicitly through error and without any deceptive intention.

That Applicants claims are wholly or partly inoperative by failure to assert claims of the following language:

1. A single integrated graphics and video controller adapted for driving a display sequentially comprising:
- an interface for receiving words of pixel data, each said word associated with an address buffer;
- circuitry for writing each said word of said pixel data received by said interface to a one of on-screen and off-screen memory areas of a frame buffer;
- circuitry for selectively retrieving, as data is provided for display, said words from said on-screen and off-screen areas;
- a first pipeline for substantially continuously processing words of graphics data retrieved from said frame buffer; and
- a second pipeline for processing words of video data retrieved from said frame buffer so that the video data is ready for display once a display raster scan reaches a display position of a window.
2. The controller of claim 1 and further comprising output selection circuitry for selecting for output between graphics data received from said first pipeline and data received from said second pipeline, said selection circuitry operable to:
- in a first mode, pass data from said first pipeline; and
- in a second mode, pass data from said second pipeline when said data corresponds to a selected display position of a display window.
3. The controller of claim 2 wherein said selection circuitry is further operable to:
- in a third mode, pass data from said second pipeline when said data corresponds to said selected display position of said display window and data from said first pipeline match a color key.
4. The controller of claim 3 wherein said selection circuitry is further operable in a fourth mode to pass data from said second pipeline when data from said first pipeline match a color key.
5. The controller of claim 1 wherein said circuitry for retrieving maintains a stream of graphics data to said first pipeline and provides video data to said second pipeline when a display raster scan reaches said display position of said window.
6. The controller of claim 1 and further comprising:
- a video port for receiving real-time video data; and
- circuitry for generating an address to said memory at which said real-time video data is to be stored.
7. The controller of claim 1 wherein said second pipeline includes a first first-in-first-out

memory for receiving data for a first display line of pixels in memory and a second first-in-first-out memory for receiving data from a second display line of pixels memory.

8. The controller of claim 7 wherein said first display line adjacent in memory to said second display line.

9. The controller of claim 7 wherein said output selection circuitry comprises:

an output selector for selecting between data from said second pipeline and data from said first pipeline in response to a selection control signal;

a register for maintaining a plurality of overlay control bits;

window position control circuitry for selectively generating a position control signal when a word of said data stream from said second pipeline falls within a display window;

color comparison circuitry for comparing words of said data stream from said first pipeline with a color key and for providing in response a color comparison control signal; and

a control selector for selectively providing a said selection control signal in response to said overlay control bits in said register and at least one of said position control and color comparison control signals.

10. The controller of claim 9 wherein said window position control circuitry comprises:

window position counters operable to increment from initial count values corresponding to a starting pixel of a display window as data representing each pixel in a display screen is pipelined through said overlay control circuitry;

screen position counters operable to count as data representing each pixel in said display screen is pipelined through said overlay control circuitry; and

comparison circuitry operable to compare a current count in said window position counters and a current count in said screen position counters and selectively generate said position control signal in response.

11. The controller of claim 9 wherein said color comparison circuitry comprises:

a color key register for storing bits composing said color key; and

a plurality of AND-gates for comparing said words of said graphics data stream with bits of said color key.

12. The controller of claim 1 wherein said interface includes a dual-aperture port.

13. A single integrated controller comprising:

circuitry for writing selectively, on a word by word basis, each word of received data into a selected one of on-screen and off-screen memory spaces of a frame buffer;

a first port for receiving video and graphics data, a word of said data received with an address of said memory spaces directing said word to be processed as a word of video data or a word of graphics data;

a second port for receiving real-time video data;

circuitry for generating an address associated with a selected one of said memory spaces for a word of said real-time video data;

circuitry for selectively retrieving said words of data on a word by word basis from said on-screen and off-screen memory spaces as data is rastered for driving a display in a sequential fashion;

a graphics backend pipeline for processing ones of said words of data representing graphics data retrieved from said frame buffer;

a video backend pipeline, separate from said graphics backend pipeline, for processing other ones of said words of data representing video data retrieved from said frame buffer, said circuitry for retrieving always rastering a stream of data from said frame buffer to said graphics backend pipeline and rastering video data to said video backend pipeline so that the video data is ready for display once a display raster scan reaches a display position of a window; and

output selector circuitry for selecting for output between words of data output from said graphics backend pipeline and words of data output from said video backend pipeline.

14. The controller of claim 13 wherein said output selector is further operable to select between graphics data output from a color look-up table and true color data output from said graphics pipeline.

15. The controller of claim 13 wherein said output selector is operable to:

in a first mode, pass only a word of data output from said graphics pipeline;

in a second mode, pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a word of data from said graphics pipeline when said display raster scan is in any other display position;

in a third mode, pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said display raster scan is in any other display position; and

in a fourth mode, pass a word of data from said video pipeline when said corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said corresponding word does not match said color key.

16. The controller of claim 13 wherein said video pipeline includes a first first-in-first-out memory for receiving a plurality of words of data for a first display line of pixels in memory and a second first-in-first-out memory for receiving a plurality of words of data for a second display line of pixels in memory.

17. The controller of claim 16 wherein said first display line is stored adjacent in memory to said second display line.

18. The controller of claim 13 wherein said output selector circuitry comprises:

a control selector having a plurality of control inputs coupled to a register, said register storing a plurality of overlay control bits;

window position control circuitry coupled to a first control input of said control selector, said window position control circuitry operable to selectively provide a first control signal to said first control input when a word of data being pipelined through said video pipeline falls within a display window;

color comparison circuitry operable to compare a word of data being pipelined through said graphics pipeline with a color key and provide in response a second control signal to a second control input of said control selector; and

wherein said control selector is operable to provide an output selection control signal in response to at least one of said first and second control signals and said overlay control bits being stored in said register.

19. The circuitry of claim 18 wherein said output selector circuitry further includes a third control input coupled to certain bits of said graphics pipeline, said output selector further operable to select between data on said respective video and graphics pipelines in response to said certain bits presented to said selector circuitry.

20. The circuitry of claim 18 wherein said window position control circuitry comprises:

a window x-position counter operable to count from a loaded x-position value in response to a video clock, said x-position counter reloading in response to display horizontal synchronization signal;

a window y-position counter operable to count from a loaded y-position value in response to said horizontal synchronization signal, said y-position counter reloading in response to a display vertical synchronization signal;

CRT position circuitry operable maintain counts corresponding to a current display pixel; and

comparison circuitry operable to compare current counts in said window counters with said current counts held in said CRT position circuitry and generate in response said first control signal.

21. The circuitry of claim 20 wherein said window position control circuitry further comprises an x-position register for holding said x-position value for loading into said x-position counter and a y-position register for holding said y-position value for loading into said y-position counter.

22. The circuitry of claim 13 wherein said color comparison circuitry comprises:

a color key register for storing a plurality of color key bits; and

a plurality of XNOR-gates each having at least one input coupled to a bit position in said color key register and at least one input coupled to said graphics data path.

23. The circuitry of claim 13 wherein said video pipeline comprises:

a first-in/first-out memory for receiving a first stream of words of data from said frame buffer;

a second first-in/first-out memory disposed in parallel with said first first-in/first-out memory for receiving a second stream of words of data from said frame buffer; and

interpolation circuitry for selectively generating an additional word of data by interpolating a word of said first stream and a word of second stream data output from said first and second first-in/first-out memories.

24. The controller of claim 13 wherein said first pore comprises a dual-aperture port.

25. A display system comprising:

a first backend pipeline for processing data;

a second backend pipeline for processing graphics data disposed in parallel to said first processing pipeline;

a multi-format frame buffer memory having on-screen and off-screen areas each operable to allow said frame buffer simultaneously store data in graphics and video formats;

a input port for receiving both graphics and video data, each word of said data associated with an address directing said word to be processed as either graphics or video data;

circuitry for writing a word of said playback data into a selected one of said areas of said multi-format memory;

memory control circuitry for controlling the transfer of data between said first backend pipeline

- and said frame buffer and between said second backend pipeline and said frame buffer; a display unit; and overlay control circuitry for selecting for output to said display unit between data provided by said first backend pipeline and data provided by said second backend pipeline.
26. The display system of claim 25 wherein said second backend pipeline includes:
- a first first-in-first-out memory for receiving first selected data;
 - a second first-in-first-out memory disposed in parallel to said first first-in-first-out memory for receiving second selected data;
 - interpolation data for generating additional data by interpolating data output from said respective first and second first-in-first-out memories.
27. The display system of claim 26 wherein said second backend pipeline further comprises color conversion circuitry for converting data received from said frame buffer in a video format to a graphics format.
28. The display system of claim 25 and further comprising a video front-end pipeline for inputting video data into a selected one of on-screen and off-screen spaces of said frame buffer comprising:
- a video data port for receiving video data from a real time data source;
 - input control circuitry for receiving framing signals associated with said real time data and generating corresponding addresses to said selected one of said spaces in response.
29. The display system of claim 28 wherein said video front-end pipeline further comprises encoding circuitry for packing said video data prior to storage in said selected one spaces.
30. The display system of claim 28 wherein said video front-end pipeline further comprising multiplexing circuitry for selecting between video data received through said video data port and data received from said dual aperture port.
31. The display system of claim 30 wherein said video end pipeline further comprises conversion circuitry for converting graphics data received through said dual-aperture port to a video format for storage in said selected one of said spaces.
32. The display system of claim 25 wherein said first backend pipeline processes playback video.
33. The display system of claim 25 wherein said input port comprises a dual-aperture input port.
34. A single integrated display data processing system comprising:

G E C T E R G R A F I C S
C O M P A C T

circuitry for writing data into an on-screen space of a frame buffer;

circuitry for writing data into an off-screen space of said frame buffer;

a video pipeline for processing data output from a selected one of said on-screen and off-screen spaces comprising:

- a first first-in-first-out memory for receiving selected data from said selected space;
- a second first-in-first-out memory disposed in parallel to said first first-in-first-out memory for receiving other selected data from said selected space; and
- an interpolator for generating additional data by interpolating data output from said respective first and second first-in-first-out memories;
- a graphics pipeline disposed in parallel to and separate from said video pipeline for processing data output from a selected one of said on-screen and off-screen spaces; and
- an output selector for selecting between data output from said video pipeline and data output from said graphics pipeline.

35. The system of claim 34 and further comprising selection control circuitry for generating an output control signal for controlling said output selector comprising:

- a control selector having a plurality of data inputs coupled to a register, said register for storing a plurality of overlay control bits; and
- color comparison circuitry operable to compare bits of data output from said graphics pipeline with a color key and provide in response a control signal to a control input of said control selector.

36. The system of claim 34 and further comprising window position control circuitry operable to provide a second control signal to a second control input of said control selector when data from said video pipeline falls within a display window.

37. A single integrated display controller comprising:

circuitry for selectively retrieving data from an associated multi-format frame buffer, the frame buffer having separate storage locations respectively operable for allowing simultaneously storing graphics and video data in said frame buffer;

- a first pipeline for processing words of graphics data selectively retrieved from said frame buffer; and

- a second pipeline, separate from the first pipeline, for processing words of video data selectively

retrieved from said frame buffer.

38. The controller of claim 37 wherein said first and second pipelines are disposed in parallel and concurrently process data.

39. The controller of claim 38 and further comprising output selection circuitry for selecting for output between graphics data received from said first pipeline and video data received from said second pipeline.

40. The controller of claim 37 wherein said frame buffer is partitioned into on-screen and off-screen areas, each of said on-screen and off-screen areas operable to allow the buffer to simultaneously store both graphics and video data.

41. The controller of claim 37 wherein said circuitry for selectively retrieving is operable to retrieve a substantially constant stream of graphics data from said frame buffer and provide said stream of graphics data to said first pipeline.

42. The controller of claim 41 wherein said circuitry for selectively retrieving is operable to retrieve at least one said word of video data from said frame buffer and provide said at least one word of said video data to said second pipeline, only when said display controller is generating a video display window.

43. A display controller for interfacing a multi-format frame buffer and a display device, the multi-format frame buffer having on-screen and off-screen areas each operable for allowing simultaneously storing both graphics and video pixel data in the frame buffer, said display controller comprising:

circuitry for selectively retrieving pixel data from a selected one of said on-screen and off-screen areas of said frame buffer;

a graphics backend pipeline for processing graphics data retrieved from said selected one of said areas of said frame buffer;

a video backend pipeline for processing video data retrieved from said selected one of said areas of said frame buffer; and

an output selector for selectively passing to said display device data received from said graphics or video backend pipelines.

44. The display controller of claim 43 wherein said circuitry for selectively retrieving is operable to retrieve at least one said word of video data from said frame buffer and provide said at least one said word of video data no said second pipeline only when said display controller is generating a video display window.

45. The display controller of claim 43 wherein said output selector is operable to:

in a first modes pass data from said graphics pipeline; and

in a second modes pass data from said video pipeline when a display position corresponding to a video display window has been reached.

46. The display window of claim 43 wherein said output selector is operable to:

in a first mode, pass data from said graphics pipeline; and

in a second mode, pass data from said video pipeline when a display position corresponding to a video display window has been reached and data from said graphics pipeline match a color key.

47. The display controller of claim 43 wherein said output selector is operable to:

in a first mode, pass data from said graphics pipeline; and

in a second mode, pass data from said video pipeline when data from said graphics pipeline matches a color key.

48. The controller of claim 42 in which graphics data is substantially continuously retrieved for a display while video data is retrieved only for the video display window.

That the failure to assert claims of this nature occurred without deceptive intention because Assignee, through arguments by opposing counsel in litigation and through an Initial Decision of an Administrative Law Judge at the Federal Trade Commission, became aware that the original patented claims could be misconstrued as indefinite or misconstrued to read on prior art.

We hereby revoke all prior powers of attorney and appoint the following attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

David L. Stewart, Reg. No. 37,578; Gene Z. Rubinson, Reg. No. 33,351; Eugene J. Molinelli, Reg. No. 42,901 of McDermott, Will & Emery; and

J.P. Violette, Reg. No. 33,042; Steven A. Shaw, Reg. No. 39,368; Dan A. Shifrin, Reg. No. 34,473 of Cirrus Logic, Inc.

All future correspondence connected therewith should be addressed to the following address:

David L. Stewart, Esq.
McDermott, Will & Emery
600 13th Street, N. W.
Washington, DC 20005-3096

The undersigned hereby declare that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

CIRRUS LOGIC, INC.

By: _____

Company Officer's Title: _____

Date: _____

SEARCHED INDEXED SERIALIZED FILED
FEB 20 1990 CIRCUIT PATENT OFFICE
RECEIVED
FEB 20 1990 CIRCUIT PATENT OFFICE

CERTIFICATE UNDER 37 CFR §3.73(b)

Applicant: Robert M. Nally, et al.
Application No.: 376,919 Filed: January 23, 1995
For: APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND
VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS
Cirrus Logic, Inc. a Corporation
(Name of Assignee) (Type of Assignee)

certifies that it is the assignee of the entire right, title and interest in the patent application identified above by virtue of:

A. An assignment from the inventor(s) of the patent application identified above. The assignment was recorded in the Patent and Trademark Office at Reel 7326, Frame 0692. That assignment is subject to a security interest in favor of the Bank of America National Trust and Savings as agent, dated August 29, 1996 and recorded at Reel 8113, Frame 0001.

OR

B. A chain of title from the inventor(s), of the patent application identified above, to the current assignee as shown below:

1. From: dls To:

The document was recorded in the Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached.

2. From: To:

The document was recorded in the Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached.

3. From: To:

The document was recorded in the Patent and Trademark Office at Reel , Frame , or for which a copy thereof is attached.

Additional documents in the chain of title are listed on a supplemental sheet.

Copies of assignments or other documents in the chain of title are attached.

The undersigned has caused a review to be made of all the documents in the chain of title of the patent application identified above and, to the best of undersigned's knowledge and belief, title is in the name of the assignee identified above.

The undersigned (whose title is supplied below) is empowered to act on behalf of the assignee.

I hereby declare that all statements made herein of my own knowledge are true, and that all statements made on information and belief are believed to be true; and further, that these statements are made with the knowledge that willful false statements, and the like so made, are punishable by fine or imprisonment, or both, under Section 1001, Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date:

Name:

Title:

Signature

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000

Docket No.: 50246-068

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue of U.S. Patent 5,598,525 :
Issued January 28, 1997 :
To Robert M. Nally, et al. :
Based on Serial No.: 376,919 : Group Art Unit:
Filed: January 23, 1995 : Examiner:

For: APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND
VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS

ASSIGNEE'S CONSENT TO REISSUE

Box 7
Assistant Commissioner for Patents
Washington, DC 20231

Sir:

In accordance with the provisions of 37 CFR 1.172, Cirrus Logic, Inc. Assignee of the entire interest of U.S. Patent 5,598,525 to Robert M. Nally et al., by virtue of an Assignment from the inventors to Cirrus Logic, Inc. dated January 23, 1995 and recorded at Reel 7326, Frame 0692, subject to a Security Agreement dated August 29, 1996 in favor of Bank of America National Trust and Savings as agent, recorded at Reel 8113, Frame 0001, does hereby consent to the filing of the accompanying Reissue Application.

In witness whereof the undersigned hereby sets his hand and seal.

Signature: _____

CIRRUS LOGIC, INC.

By: _____

Title: _____

Date: _____

CONFIDENTIAL
DO NOT DISTRIBUTE

Docket No.: 50246-068

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue of U.S. Patent 5,598,525

Issued January 28, 1997

To Robert M. Nally, et al.

Based on Serial No.: 376,919

Group Art Unit:

Filed: January 23, 1995

Examiner:

For: APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND
VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS

OFFER TO SURRENDER LETTERS PATENT

Box 7
Assistant Commissioner for Patents
Washington, DC 20231

Sir:

In accordance with the provisions of 37 CFR 1.178, the undersigned Assignee of the accompanying reissue application for the reissue of U.S. Letters Patent Number 5,598,525 for APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS granted on January

28, 1997, to Robert M. Nally, John C. Schafer and assigned to Cirrus Logic, Inc. of Fremont, California, by assignment of the entire interest, hereby offers to surrender said Letters Patent.

CIRRUS LOGIC, INC.

By: _____

Title: _____

Date: _____

RECORDED IN THE U.S. PATENT AND TRADEMARK OFFICE
AS AN ASSIGNMENT DOCUMENT
RECEIVED - 10/20/1997

Docket No.: 50246-068

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Reissue of U.S. Patent 5,598,525

Issued to Robert M. NALLY, et al.

Issue Date: January 28, 1997

Based on Serial No.: 376,919

Group Art Unit: None

Filed: January 23, 1995

Examiner: None

For: APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS

Honorable Commissioner of
Patents and Trademarks
Washington, D. C. 20231

LETTER REGARDING REISSUE APPLICATION

Sir:

A Reissue Application based on U.S. Patent 5,598,525 to Nally et al. accompanies this letter.

Litigation in two cases is relevant to this reissue application. They are:

IN THE MATTER OF CERTAIN VIDEO GRAPHICS
DISPLAY CONTROLLERS AND PRODUCTS CONTAINING
SAME, United States International Trade Commission
Investigation No. 337-TA-412, and

CIRRUS LOGIC, INC., VS. ATI TECHNOLOGIES,
INC., United States District Court for the Northern District of
California, San Francisco Division, Docket No. C-98-2700SI.

The ITC litigation has concluded with an INITIAL DETERMINATION and a subsequent NOTICE OF COMMISSION DETERMINATION NOT TO REVIEW THE BULK OF AN INITIAL DETERMINATION FINDING NO VIOLATION OF §337 OF THE TARIFF ACT OF

Reissue of U.S. Patent 5,598,525

1930. A copy of the initial determination and the commission determination are attached hereto as Exhibits 7 and 8 to the reissue application. In addition, certain pleadings in each of these actions are included for consideration as Exhibits 4, 5 and 6.

This reissue application is undertaken to make explicit what was previously implicit in a proper construction of the claim language. Furthermore, certain erroneous claim construction findings by the Administrative Law Judge of the ITC are clear in the attached Initial Determination. For example, the limitation "a first port" found in claim 13 does not suggest or imply any decoding of addresses.

The two year time period for submitting broadened claims has past, and it is believed that no broadening of any aspect of the claims is involved in this reissue application.

Applicant respectfully requests examination of the reissue application at this regardless of the pending litigation.

A Request for Reexamination is filed concurrently herewith. Applicant respectfully requests merger of this reissue application with the Reexamination, should a determination be made that a substantial new question to patentability exists. See MPEP 1442.02, last paragraph.

Please note that the documents provided from the International Trade Commission action include only the public versions of the documents, certain information having been redacted in accordance with normal ITC practice. The undersigned was not privy to the ITC action and does not have access to the unredacted versions.

The following documents are included as part of this submission:

1. A Reissue Application incuding a single column cut and paste version of specification of the patent sought to be reissued including changes made to the specification by two certificates of correction prior to this filing. Also, a cut and paste version of the claims and copies of the original drawings are included.
2. Certificate under 37 C.F.R. 3.73(b)--unsigned (Exhibit 1 to the Reissue Application).
3. Assignee's Consent to Reissue--unsigned (Exhibit 2).
4. Offer to Surrender Letters Patent--unsigned (Exhibit 3).
5. Complaint for Patent Infringement in Cirrus Logic, Inc. vs. ATI Technologies, Inc. from the United States District Court, Northern District of California, San Francisco, Docket No. C-98-2700SI (Exhibit 4).
6. Complaint under Section 337 of the Tariff Act of 1930 as amended (Exhibit 5).

Reissue of U.S. Patent 5,598,525

7. First amended complaint under Section 337 of the Tariff Act of 1930, as amended (Exhibit 6).

8. Public version of the initial determination in the United States International Trade Commission investigation No. 337-TA-412, in the matter of certain video graphics display controllers and products containing same (Exhibit 7).

9. Notice of Commission Determination not to review the bulk of an initial determination finding no violation of Section 337 of the Tariff Act of 1930 (Exhibit 8).

10. Citation of Documents under 37 C.F.R. 1.555 together with 21 documents for consideration by the Patent and Trademark Office.

Applicant respectfully requests that any unsigned document be provisionally accepted under 35 U.S.C. 26 pending submission of a signed document.

Accordingly, Applicant respectfully requests that the U.S. Patent & Trademark Office reissue U.S. Patent No. 5,598,525.

Respectfully submitted,

MCDERMOTT, WILL & EMERY

David L. Stewart
Registration No. 37,578

600 13th Street, N.W.
Washington, DC 20005-3096
(202) 756-8601 DLS:DLS
Date: August 13, 1999
Facsimile: (202) 756-8087

Docket No.: 50246-068

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue of U.S. Patent 5,598,525

Issued January 28, 1997

To Robert M. Nally, et al.

Based on Serial No.: 376,919

Group Art Unit:

Filed: January 23, 1995

Examiner:

For: **APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS**

**COMBINED DECLARATION AND POWER OF ATTORNEY
IN REISSUE APPLICATION**

Box 7
Assistant Commissioner for Patents
Washington, DC 20231

Sir:

Cirrus Logic, Inc., Assignee of the entire interest in the above-identified patent, hereby declares:

The post office address of Cirrus Logic, Inc. is stated below; and that

Cirrus Logic, Inc. verily believes that inventors Robert M. Nally of Plano, Texas and John C. Schafer of Wylie, Texas are the original and first joint inventors of the invention entitled: **APPARATUS, SYSTEMS AND METHODS FOR CONTROLLING GRAPHICS AND VIDEO DATA IN MULTIMEDIA DATA PROCESSING AND DISPLAY SYSTEMS**, described and claimed in the U.S. Patent No. 5,598,525, filed January 23, 1995, and issued on January 28, 1997, that Cirrus Logic, Inc. understands the content of the specification filed therein, that Cirrus Logic,

Inc. has reviewed and understands the content of the specification including the claims originally patented, as well as the claims referred to in this Declaration, that Cirrus Logic, Inc. does not know and does not believe the same was ever known or used in the United States of America before the invention thereof by said inventors, or patented or described in any printed publication in any country before their invention thereof or more than one year prior to the filing date of the application which matured into U.S. Patent No. 5,598,525; that the same was not in public use or on sale in the United States of America more than one year prior to said filing date to the best of Cirrus Logic, Inc.'s knowledge, information and belief, that the invention has not been patented or made the subject of an inventor's certificate issued before said filing date, in any country foreign to the United States of America on an application filed by Cirrus Logic, Inc. or Cirrus Logic, Inc.'s legal representatives or assigns more than twelve months prior to said filing date, that Cirrus Logic, Inc. acknowledges a duty to disclose information of which Cirrus Logic, Inc. is aware which is material to the examination of this application, and that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to the original application Serial No. 376,919, filed on January 23, 1995 by us or our legal representatives or assigns, except as follows: NONE

Our original U.S. Patent 5,598,525, issued January 28, 1997, which matured from said Serial No. 376,919, is believed to be wholly or partly inoperative by reason of the patentees claiming the invention imprecisely and with aspects of the invention recited only implicitly through error and without any deceptive intention.

That Applicants claims are wholly or partly inoperative by failure to assert claims of the following language:

1. A single integrated graphics and video controller adapted for driving a display sequentially comprising:

an interface for receiving words of pixel data, each said word associated with an address buffer;

circuitry for writing each said word of said pixel data received by said interface to a one of on-screen and off-screen memory areas of a frame buffer;

circuitry for selectively retrieving, as data is provided for display, said words from said on-screen and off-screen areas;

a first pipeline for substantially continuously processing words of graphics data retrieved from said frame buffer; and

a second pipeline for processing words of video data retrieved from said frame buffer so that the video data is ready for display once a display raster scan reaches a display position of a window.
2. The controller of claim 1 and further comprising output selection circuitry for selecting for output between graphics data received from said first pipeline and data received from said second pipeline, said selection circuitry operable to:

in a first mode, pass data from said first pipeline; and

in a second mode, pass data from said second pipeline when said data corresponds to a selected display position of a display window.
3. The controller of claim 2 wherein said selection circuitry is further operable to:

in a third mode, pass data from said second pipeline when said data corresponds to said selected display position of said display window and data from said first pipeline match a color key.
4. The controller of claim 3 wherein said selection circuitry is further operable in a fourth mode to pass data from said second pipeline when data from said first pipeline match a color key.
5. The controller of claim 1 wherein said circuitry for retrieving maintains a stream of graphics data to said first pipeline and provides video data to said second pipeline when a display raster scan reaches said display position of said window.
6. The controller of claim 1 and further comprising:

a video port for receiving real-time video data; and

circuitry for generating an address to said memory at which said real-time video data is to be stored.
7. The controller of claim 1 wherein said second pipeline includes a first first-in-first-out

memory for receiving data for a first display line of pixels in memory and a second first-in-first-out memory for receiving data from a second display line of pixels memory.

8. The controller of claim 7 wherein said first display line adjacent in memory to said second display line.
9. The controller of claim 7 wherein said output selection circuitry comprises:
 - an output selector for selecting between data from said second pipeline and data from said first pipeline in response to a selection control signal;
 - a register for maintaining a plurality of overlay control bits;
 - window position control circuitry for selectively generating a position control signal when a word of said data stream from said second pipeline falls within a display window;
 - color comparison circuitry for comparing words of said data stream from said first pipeline with a color key and for providing in response a color comparison control signal; and
 - a control selector for selectively providing a said selection control signal in response to said overlay control bits in said register and at least one of said position control and color comparison control signals.
10. The controller of claim 9 wherein said window position control circuitry comprises:
 - window position counters operable to increment from initial count values corresponding to a starting pixel of a display window as data representing each pixel in a display screen is pipelined through said overlay control circuitry;
 - screen position counters operable to count as data representing each pixel in said display screen is pipelined through said overlay control circuitry; and
 - comparison circuitry operable to compare a current count in said window position counters and a current count in said screen position counters and selectively generate said position control signal in response.
11. The controller of claim 9 wherein said color comparison circuitry comprises:
 - a color key register for storing bits composing said color key; and
 - a plurality of AND-gates for comparing said words of said graphics data stream with bits of said color key.
12. The controller of claim 1 wherein said interface includes a dual-aperture port.
13. A single integrated controller comprising:

circuitry for writing selectively, on a word by word basis, each word of received data into a selected one of on-screen and off-screen memory spaces of a frame buffer;

a first port for receiving video and graphics data, a word of said data received with an address of said memory spaces directing said word to be processed as a word of video data or a word of graphics data;

a second port for receiving real-time video data;

circuitry for generating an address associated with a selected one of said memory spaces for a word of said real-time video data;

circuitry for selectively retrieving said words of data on a word by word basis from said on-screen and off-screen memory spaces as data is rastered for driving a display in a sequential fashion;

a graphics backend pipeline for processing ones of said words of data representing graphics data retrieved from said frame buffer;

a video backend pipeline, separate from said graphics backend pipeline, for processing other ones of said words of data representing video data retrieved from said frame buffer, said circuitry for retrieving always rastering a stream of data from said frame buffer to said graphics backend pipeline and rastering video data to said video backend pipeline so that the video data is ready for display once a display raster scan reaches a display position of a window; and

output selector circuitry for selecting for output between words of data output from said graphics backend pipeline and words of data output from said video backend pipeline.

14. The controller of claim 13 wherein said output selector is further operable to select between graphics data output from a color look-up table and true color data output from said graphics pipeline.

15. The controller of claim 13 wherein said output selector is operable to:

in a first mode, pass only a word of data output from said graphics pipeline;

in a second mode, pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a word of data from said graphics pipeline when said display raster scan is in any other display position;

in a third mode, pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said display raster scan is in any other display position; and

in a fourth mode, pass a word of data from said video pipeline when said corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said corresponding word does not match said color key.

16. The controller of claim 13 wherein said video pipeline includes a first first-in-first-out memory for receiving a plurality of words of data for a first display line of pixels in memory and a second first-in-first-out memory for receiving a plurality of words of data for a second display line of pixels in memory.

17. The controller of claim 16 wherein said first display line is stored adjacent in memory to said second display line.

18. The controller of claim 13 wherein said output selector circuitry comprises:

a control selector having a plurality of control inputs coupled to a register, said register storing a plurality of overlay control bits;

window position control circuitry coupled to a first control input of said control selector, said window position control circuitry operable to selectively provide a first control signal to said first control input when a word of data being pipelined through said video pipeline falls within a display window;

color comparison circuitry operable to compare a word of data being pipelined through said graphics pipeline with a color key and provide in response a second control signal to a second control input of said control selector; and

wherein said control selector is operable to provide an output selection control signal in response to at least one of said first and second control signals and said overlay control bits being stored in said register.

19. The circuitry of claim 18 wherein said output selector circuitry further includes a third control input coupled to certain bits of said graphics pipeline, said output selector further operable to select between data on said respective video and graphics pipelines in response to said certain bits presented to said selector circuitry.

20. The circuitry of claim 18 wherein said window position control circuitry comprises:

a window x-position counter operable to count from a loaded x-position value in response to a video clock, said x-position counter reloading in response to display horizontal synchronization signal;

a window y-position counter operable to count from a loaded y-position value in response to said horizontal synchronization signal, said y-position counter reloading in response to a display vertical synchronization signal;

CRT position circuitry operable maintain counts corresponding to a current display pixel; and

comparison circuitry operable to compare current counts in said window counters with said current counts held in said CRT position circuitry and generate in response said first control signal.

21. The circuitry of claim 20 wherein said window position control circuitry further comprises an x-position register for holding said x-position value for loading into said x-position counter and a y-position register for holding said y-position value for loading into said y-position counter.

22. The circuitry of claim 13 wherein said color comparison circuitry comprises:

a color key register for storing a plurality of color key bits; and

a plurality of XNOR-gates each having at least one input coupled to a bit position in said color key register and at least one input coupled to said graphics data path.

23. The circuitry of claim 13 wherein said video pipeline comprises:

a first-in/first-out memory for receiving a first stream of words of data from said frame buffer;

a second first-in/first-out memory disposed in parallel with said first first-in/first-out memory for receiving a second stream of words of data from said frame buffer; and

interpolation circuitry for selectively generating an additional word of data by interpolating a word of said first stream and a word of second stream data output from said first and second first-in/first-out memories.

24. The controller of claim 13 wherein said first pore comprises a dual-aperture port.

25. A display system comprising:

a first backend pipeline for processing data;

a second backend pipeline for processing graphics data disposed in parallel to said first processing pipeline;

a multi-format frame buffer memory having on-screen and off-screen areas each operable to allow said frame buffer simultaneously store data in graphics and video formats;

a input port for receiving both graphics and video data, each word of said data associated with an address directing said word to be processed as either graphics or video data;

circuitry for writing a word of said playback data into a selected one of said areas of said multi-format memory;

memory control circuitry for controlling the transfer of data between said first backend pipeline

- and said frame buffer and between said second backend pipeline and said frame buffer; a display unit; and overlay control circuitry for selecting for output to said display unit between data provided by said first backend pipeline and data provided by said second backend pipeline.
26. The display system of claim 25 wherein said second backend pipeline includes:
- a first first-in-first-out memory for receiving first selected data;
 - a second first-in-first-out memory disposed in parallel to said first first-in-first-out memory for receiving second selected data;
- interpolation data for generating additional data by interpolating data output from said respective first and second first-in-first-out memories.
27. The display system of claim 26 wherein said second backend pipeline further comprises color conversion circuitry for converting data received from said frame buffer in a video format to a graphics format.
28. The display system of claim 25 and further comprising a video front-end pipeline for inputting video data into a selected one of on-screen and off-screen spaces of said frame buffer comprising:
- a video data port for receiving video data from a real time data source;
 - input control circuitry for receiving framing signals associated with said real time data and generating corresponding addresses to said selected one of said spaces in response.
29. The display system of claim 28 wherein said video front-end pipeline further comprises encoding circuitry for packing said video data prior to storage in said selected one spaces.
30. The display system of claim 28 wherein said video front-end pipeline further comprising multiplexing circuitry for selecting between video data received through said video data port and data received from said dual aperture port.
31. The display system of claim 30 wherein said video end pipeline further comprises conversion circuitry for converting graphics data received through said dual-aperture port to a video format for storage in said selected one of said spaces.
32. The display system of claim 25 wherein said first backend pipeline processes playback video.
33. The display system of claim 25 wherein said input port comprises a dual-aperture input port.
34. A single integrated display data processing system comprising:

circuitry for writing data into an on-screen space of a frame buffer;

circuitry for writing data into an off-screen space of said frame buffer;

a video pipeline for processing data output from a selected one of said on-screen and off-screen spaces comprising:

- a first first-in-first-out memory for receiving selected data from said selected space;
- a second first-in-first-out memory disposed in parallel to said first first-in-first-out memory for receiving other selected data from said selected space; and

an interpolator for generating additional data by interpolating data output from said respective first and second first-in-first-out memories;

a graphics pipeline disposed in parallel to and separate from said video pipeline for processing data output from a selected one of said on-screen and off-screen spaces; and

an output selector for selecting between data output from said video pipeline and data output from said graphics pipeline.

35. The system of claim 34 and further comprising selection control circuitry for generating an output control signal for controlling said output selector comprising:
- a control selector having a plurality of data inputs coupled to a register, said register for storing a plurality of overlay control bits; and
 - color comparison circuitry operable to compare bits of data output from said graphics pipeline with a color key and provide in response a control signal to a control input of said control selector.
36. The system of claim 34 and further comprising window position control circuitry operable to provide a second control signal to a second control input of said control selector when data from said video pipeline falls within a display window.
37. A single integrated display controller comprising:
- circuitry for selectively retrieving data from an associated multi-format frame buffer, the frame buffer having separate storage locations respectively operable for allowing simultaneously storing graphics and video data in said frame buffer;
 - a first pipeline for processing words of graphics data selectively retrieved from said frame buffer; and
 - a second pipeline, separate from the first pipeline, for processing words of video data selectively

retrieved from said frame buffer.

38. The controller of claim 37 wherein said first and second pipelines are disposed in parallel and concurrently process data.

39. The controller of claim 38 and further comprising output selection circuitry for selecting for output between graphics data received from said first pipeline and video data received from said second pipeline.

40. The controller of claim 37 wherein said frame buffer is partitioned into on-screen and off-screen areas, each of said on-screen and off-screen areas operable to allow the buffer to simultaneously store both graphics and video data.

41. The controller of claim 37 wherein said circuitry for selectively retrieving is operable to retrieve a substantially constant stream of graphics data from said frame buffer and provide said stream of graphics data to said first pipeline.

42. The controller of claim 41 wherein said circuitry for selectively retrieving is operable to retrieve at least one said word of video data from said frame buffer and provide said at least one word of said video data to said second pipeline, only when said display controller is generating a video display window.

43. A display controller for interfacing a multi-format frame buffer and a display device, the multi-format frame buffer having on-screen and off-screen areas each operable for allowing simultaneously storing both graphics and video pixel data in the frame buffer, said display controller comprising:

circuitry for selectively retrieving pixel data from a selected one of said on-screen and off-screen areas of said frame buffer;

a graphics backend pipeline for processing graphics data retrieved from said selected one of said areas of said frame buffer;

a video backend pipeline for processing video data retrieved from said selected one of said areas of said frame buffer; and

an output selector for selectively passing to said display device data received from said graphics or video backend pipelines.

44. The display controller of claim 43 wherein said circuitry for selectively retrieving is operable to retrieve at least one said word of video data from said frame buffer and provide said at least one said word of video data no said second pipeline only when said display controller is generating a video display window.

45. The display controller of claim 43 wherein said output selector is operable to:

in a first modes pass data from said graphics pipeline; and
in a second modes pass data from said video pipeline when a display position corresponding to a video display window has been reached.

46. The display window of claim 43 wherein said output selector is operable to:

in a first mode, pass data from said graphics pipeline; and

in a second mode, pass data from said video pipeline when a display position corresponding to a video display window has been reached and data from said graphics pipeline match a color key.

47. The display controller of claim 43 wherein said output selector is operable to:

in a first mode, pass data from said graphics pipeline; and

in a second mode, pass data from said video pipeline when data from said graphics pipeline matches a color key.

48. The controller of claim 42 in which graphics data is substantially continuously retrieved for a display while video data is retrieved only for the video display window.

That the failure to assert claims of this nature occurred without deceptive intention because Assignee, through arguments by opposing counsel in litigation and through an Initial Decision of an Administrative Law Judge at the Federal Trade Commission, became aware that the original patented claims could be misconstrued as indefinite or misconstrued to read on prior art.

We hereby revoke all prior powers of attorney and appoint the following attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

David L. Stewart, Reg. No. 37,578; Gene Z. Rubinson, Reg. No. 33,351; Eugene J. Molinelli, Reg. No. 42,901 of McDermott, Will & Emery; and

J.P. Violette, Reg. No. 33,042; Steven A. Shaw, Reg. No. 39,368; Dan A. Shifrin, Reg. No. 34,473 of Cirrus Logic, Inc.

All future correspondence connected therewith should be addressed to the following address:

David L. Stewart, Esq.
McDermott, Will & Emery
600 13th Street, N. W.
Washington, DC 20005-3096

The undersigned hereby declare that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

CIRRUS LOGIC, INC.

By: _____

Glenn C. Jones

Company Officer's Title: Vice President, Chief Financial Officer, Treasurer & Secretary

Date: 9/2/99