Analysis II, Sample Test 2

1. Determine the global extreme values of the following functions:

a)
$$f(x) = 1 + e^{2x^2 - x^4}$$
 $(x \in \mathbb{R})$ b) $f(x) = \ln(e^x - x)$ $(x \in \mathbb{R})$ c) $f(x) = \sin(\pi \cdot \sin x)$ $\left(x \in \left[-\frac{\pi}{2}, \pi\right]\right)$

- 2. a) We have a square and a disc on the plane so that the sum of their area is 1 m². When will the sum of their perimeter be the smallest?
- 2. b) We have a square and a disc on the plane so that the sum of their perimeter is 1 m. When will the sum of their area be the largest?
- **3.** Determine the following limits:

a)
$$\lim_{x \to 0} \frac{x - \sin x}{4x^4 + x^3}$$
 b) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$ c) $\lim_{x \to 0+} x^{\arctan x}$ d) $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$

- **4.** Let a) $f(x) = \sqrt[3]{1+x}$ $(x \in \mathbb{R})$ b) $f(x) = \arctan x$ $(x \in \mathbb{R})$.
 - i) Find the third Taylor-polynomial $T_3(x)$ centered at 0 and at 1.
 - ii) Estimate the error of approximation $f(x) \approx T_3(x)$ for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
 - a-iii) Approximate $\sqrt[3]{2}$ by means of $T_3(1)$, $\sqrt[3]{3}$ by means of $T_3(2)$, and estimate the errors.
 - b-iii) Approximate $\frac{\pi}{4}$ = arctan 1 by means of $T_3(1)$, and estimate the error.
- 5. Discuss and sketch the graph of the functions:

a)
$$f(x) = \ln(x^2 + 2x + 2)$$
 $(x \in \mathbb{R})$ b) $f(x) = \frac{x^3 + x}{x^2 - 1}$ $(x \in \mathbb{R} \setminus \{-1, 1\})$

6. Find the integrals:

a)
$$\int e^{8x+5} - 6(x-1)^{100} + \frac{x+9}{1+9x^2} dx$$
 b) $\int \tan x \cdot \sqrt{1 + \ln(\cos x)} dx$
c) $\int \frac{1-x^4 + (1+\arctan x)^{100}}{1+x^2} dx$ d) $\int \sin^5 x dx$
e) $\int \sin^3 x \cdot \cos^{100} x, dx$ f) $\int \sin^4 x \cdot \cos^6 x dx$