LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Schematic Diagram

Offset Nulling Circuit

TL/H/9341-7

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

,	LM741A	LM741E	LM741	LM741C
Supply Voltage	$\pm22V$	$\pm22V$	$\pm22V$	$\pm18V$
Power Dissipation (Note 1)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 V$	$\pm 30V$	$\pm30V$	$\pm 30 V$
Input Voltage (Note 2)	$\pm15V$	$\pm15V$	$\pm15V$	$\pm15V$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to $+125^{\circ}\text{C}$	0°C to +70°C	-55°C to $+125^{\circ}\text{C}$	0°C to +70°C
Storage Temperature Range	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$	$-65^{\circ}\text{C to} + 150^{\circ}\text{C}$	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$	-65°C to $+150^{\circ}\text{C}$
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
0 111 150 110 1 11 11 11		5 5		

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD Tolerance (Note 6) 400V 400V 400V 400V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM7	11A/LI	/LM741E LM741			ı	Units			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$\begin{aligned} T_{A} &= 25^{\circ}C \\ R_{S} &\leq 10 \text{ k}\Omega \\ R_{S} &\leq 50\Omega \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	mV mV
	$\begin{aligned} &T_{AMIN} \leq T_{A} \leq T_{AMAX} \\ &R_{S} \leq 50\Omega \\ &R_{S} \leq 10 \ k\Omega \end{aligned}$			4.0			6.0			7.5	mV mV
Average Input Offset Voltage Drift				15							μV/°C
Input Offset Voltage Adjustment Range	$T_A = 25^{\circ}C, V_S = \pm 20V$	±10				± 15			±15		mV
Input Offset Current	$T_A = 25^{\circ}C$		3.0	30		20	200		20	200	nA
	$T_{AMIN} \leq T_{A} \leq T_{AMAX}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							nA/°C
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μΑ
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		$M\Omega$
	$T_{AMIN} \le T_A \le T_{AMAX},$ $V_S = \pm 20V$	0.5									МΩ
Input Voltage Range	$T_A = 25^{\circ}C$							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V
Large Signal Voltage Gair	$ \begin{array}{l} T_A = 25^{\circ} C, R_L \geq 2 k\Omega \\ V_S = \pm 20V, V_O = \pm 15V \\ V_S = \pm 15V, V_O = \pm 10V \end{array} $	50			50	200		20	200		V/mV V/mV
	$\begin{split} &T_{AMIN} \leq T_{A} \leq T_{AMAX}, \\ &R_{L} \geq 2 k\Omega, \\ &V_{S} = \pm 20V, V_{O} = \pm 15V \\ &V_{S} = \pm 15V, V_{O} = \pm 10V \end{split}$	32			25			15			V/mV V/mV
	$V_S = \pm 5V, V_O = \pm 2V$	10									V/mV

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM741A/LM741E			LM741			LM741C			Units
- al ameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Onits
Output Voltage Swing	$\begin{aligned} V_S &= \pm 20V \\ R_L &\geq 10 k\Omega \\ R_L &\geq 2 k\Omega \end{aligned}$	±16 ±15									V
	$\begin{aligned} V_{S} &= \pm 15V \\ R_{L} &\geq 10 \ k\Omega \\ R_{L} &\geq 2 \ k\Omega \end{aligned}$				±12 ±10	±14 ±13		±12 ±10	±14 ±13		V
Output Short Circuit Current	$T_A = 25^{\circ}C$ $T_{AMIN} \le T_A \le T_{AMAX}$	10 10	25	35 40		25			25		mA mA
Common-Mode Rejection Ratio	$\begin{split} &T_{AMIN} \leq T_A \leq T_{AMAX} \\ &R_S \leq 10 \text{ k}\Omega, V_{CM} = \pm 12V \\ &R_S \leq 50\Omega, V_{CM} = \pm 12V \end{split}$	80	95		70	90		70	90		dB dB
Supply Voltage Rejection Ratio	$\begin{aligned} & T_{AMIN} \leq T_A \leq T_{AMAX}, \\ & V_S = \pm 20 \text{V to } V_S = \pm 5 \text{V} \\ & R_S \leq 50 \Omega \\ & R_S \leq 10 \text{ k} \Omega \end{aligned}$	86	96		77	96		77	96		dB dB
Transient Response Rise Time Overshoot	T _A = 25°C, Unity Gain		0.25 6.0	0.8 20		0.3 5			0.3 5		μs %
Bandwidth (Note 4)	T _A = 25°C	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/μs
Supply Current	T _A = 25°C					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$ $V_S = \pm 20V$ $V_S = \pm 15V$		80	150		50	85		50	85	mW mW
LM741A	$V_S = \pm 20V$ $T_A = T_{AMIN}$ $T_A = T_{AMAX}$			165 135							mW mW
LM741E	$V_S = \pm 20V$ $T_A = T_{AMIN}$ $T_A = T_{AMAX}$			150 150							mW mW
LM741	$V_S = \pm 15V$ $T_A = T_{AMIN}$ $T_A = T_{AMAX}$					60 45	100 75				mW mW

Note 1: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
$\theta_{ m jC}$ (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 2: For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 4: Calculated value from: BW (MHz) = 0.35/Rise Time(μ s).

Note 5: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 6: Human body model, 1.5 k Ω in series with 100 pF.

Connection Diagrams

Metal Can Package

TL/H/9341-2

Order Number LM741H, LM741H/883*, LM741AH/883 or LM741CH See NS Package Number H08C

Dual-In-Line or S.O. Package

TL/H/9341-3

Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See NS Package Number J08A, M08A or N08E

Ceramic Dual-In-Line Package

Order Number LM741J-14/883*, LM741AJ-14/883** See NS Package Number J14A

*also available per JM38510/10101

**also available per JM38510/10102

TL/H/9341-6

Order Number LM741W/883 See NS Package Number W10A

^{*}LM741H is available per JM38510/10101

Metal Can Package (H)
Order Number LM741H, LM741H/883, LM741AH/883, LM741CH or LM741EH
NS Package Number H08C

Small Outline Package (M) Order Number LM741CM NS Package Number M08A

Dual-In-Line Package (N) Order Number LM741CN or LM741EN NS Package Number N08E

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

Japan Ltd.
Tel: 81-043-299-2309
d. Fax: 81-043-299-2408

National Semiconductor