

counting compositions of an integer

 ${\bf Canonical\ name} \quad {\bf Counting Compositions Of An Integer}$

Date of creation 2013-03-22 17:37:55 Last modified on 2013-03-22 17:37:55

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146)

Entry type Result
Classification msc 05-00
Defines composition

A composition of a nonnegative integer n is a sequence (a_1, \ldots, a_k) of positive integers with $\sum a_i = n$. Denote by C_n the number of compositions of n, and denote by S_n the set of those compositions. (Note that this is a very different - and simpler - concept than the number of partitions of an integer; here the http://planetmath.org/PartialOrderorder matters).

For some small values of n, we have

$$C_0 = 1$$

 $C_1 = 1$
 $C_2 = 2$ (2), (1, 1)
 $C_3 = 4$ (3), (1, 2), (2, 1), (1, 1, 1)

In fact, it is easy to see that $C_n = 2C_{n-1}$ for n > 1: each composition (a_1, \ldots, a_k) of n-1 can be associated with two different compositions of n

$$(a_1, a_2, \dots, a_k, 1)$$

 $(a_1, a_2, \dots, a_k + 1)$

We thus get a map $\varphi: S_{n-1} \times \{0,1\} \to S_n$ given by

$$\varphi((a_1, \dots, a_k), 0) = (a_1, \dots, a_k, 1)$$

 $\varphi((a_1, \dots, a_k), 1) = (a_1, \dots, a_k + 1)$

and this map is clearly injective. But it is also clearly surjective, for given $(a_1, \ldots, a_k) \in S_n$, if $a_k = 1$ then the composition is the image of $((a_1, \ldots, a_{k-1}), 0)$ while if $a_k > 1$, then it is the image of $((a_1, \ldots, a_{k-1}), 1)$. This proves that (for n > 1) $C_n = 2C_{n-1}$.

We can also figure out how many compositions there are of n with k parts. Think of a box with n sections in it, with dividers between each pair of sections and a chip in each section; there are thus n chips and n-1 dividers. If we leave k-1 of the dividers in place, the result is a composition of n with k parts; there are obviously $\binom{n-1}{k-1}$ ways to do this, so the number of compositions of n into k parts is simply $\binom{n-1}{k-1}$. Note that this gives even a simpler proof of the first result, since

$$\sum_{k=1}^{n} {n-1 \choose k-1} = \sum_{k=0}^{n-1} {n-1 \choose k} = 2^{n-1}$$