Esercizi di MATEMATICA DISCRETA C.L. Informatica

1. Si consideri la struttura algebrica $(\mathbb{Z}, *)$, dove la legge di composizione interna * è definita come segue:

$$\forall x, y \in \mathbb{Z}, \ x * y = x - y + 3.$$

- (a) Stabilire se * è una legge associativa e/o commutativa
- (b) determinare l'eventuale elemento neutro della struttura algebrica $(\mathbb{Z},*)$
- (c) se la struttura algebrica (\mathbb{Z} ,*) ammette elemento neutro, determinare gli (eventuali) elementi di \mathbb{Z} che hanno inverso rispetto alla legge *
- (d) concludere se la struttura algebrica $(\mathbb{Z}, *)$ è un monoide o un gruppo (abeliano)
- (e) stabilire se \mathbb{N} è chiuso rispetto a * (data una struttura algebrica (A, \cdot) , si dice che un sottoinsieme K di A è chiuso rispetto a "·" se $\forall x, y \in K, x \cdot y \in K$)
- (f) stabilire se l'insieme $\mathbb P$ dei numeri pari è chiuso rispetto a *
- (g) stabilire se l'insieme D dei numeri dispari è chiuso rispetto a *
- (h) nel caso che $(\mathbb{Z},*)$ sia un gruppo, stabilire se $\mathbb{N}, \mathbb{P}, \mathbb{D}$ ne sono sottogruppi.
- 2. Si consideri la struttura algebrica (\mathbb{Z}, \bullet) , dove la legge di composizione interna \bullet è definita come segue:

$$\forall x, y \in \mathbb{Z}, \ x \bullet y = xy + x.$$

- (a) Stabilire se è una legge associativa e/o commutativa
- (b) determinare l'eventuale elemento neutro della struttura algebrica (\mathbb{Z}, \bullet)
- (c) se la struttura algebrica (\mathbb{Z}, \bullet) ammette elemento neutro, determinare gli (eventuali) elementi di \mathbb{Z} che hanno inverso rispetto alla legge \bullet

- (d) concludere se la struttura algebrica (\mathbb{Z}, \bullet) è un monoide o un gruppo (abeliano)
- (e) stabilire se N è chiuso rispetto a •
- (f) stabilire se l'insieme $\mathbb P$ dei numeri pari è chiuso rispetto a ullet
- (g) stabilire se l'insieme D dei numeri dispari è chiuso rispetto a •
- (h) nel caso che (\mathbb{Z}, \bullet) sia un gruppo, stabilire se \mathbb{N} , \mathbb{P} , \mathbb{D} ne sono sottogruppi.
- 3. Si consideri la struttura algebrica (\mathbb{Z}, \oplus) , dove la legge di composizione interna \oplus è definita come segue:

$$\forall x, y \in \mathbb{Z}, \ x \oplus y = x + y + 1.$$

- (a) Stabilire se \oplus è una legge associativa e/o commutativa
- (b) determinare l'eventuale elemento neutro della struttura algebrica (\mathbb{Z}, \oplus)
- (c) se la struttura algebrica (\mathbb{Z}, \oplus) ammette elemento neutro, determinare gli (eventuali) elementi di \mathbb{Z} che hanno inverso rispetto alla legge *
- (d) concludere se la struttura algebrica (\mathbb{Z}, \oplus) è un monoide o un gruppo (abeliano)
- (e) stabilire se \mathbb{N} è chiuso rispetto a \oplus
- (f) stabilire se l'insieme \mathbb{P} dei numeri pari è chiuso rispetto a \oplus
- (g) stabilire se l'insieme $\mathbb D$ dei numeri dispari è chiuso rispetto a \oplus
- (h) nel caso che (\mathbb{Z}, \oplus) sia un gruppo, stabilire se \mathbb{N} , \mathbb{P} , \mathbb{D} ne sono sottogruppi.