Árvores Binárias IV

18/11/2024

Ficheiro ZIP

- Está disponível no Moodle um ficheiro ZIP de suporte aos tópicos de hoje
- O tipo abstrato MAX-Heap binária, que permite instanciar filas com prioridade (Priority-Queues)

Sumário

- Recap
- Filas com prioridade "Priority Queues"
- Binary Heaps "Amontoados Binários"
- O TAD MIN-Heap
- O TAD MAX-Heap
- O algoritmo Heap-Sort
- Exercícios / Tarefas

Recapitulação

ABP – Altura depende da ordem de inserção

ABP – Altura – Inserção em ordem aleatória

- Inserir muitos elementos numa ordem aleatória
- Árvore aprox. equilibrada!!

ABP – Após muitos apagamentos

- Remover muitos elementos, numa ordem qualquer
- Árvore perde alguma "simetria" !!
- Consequência ?
- Mais difícil procurar alguns elementos do que outros

Manter as árvores equilibradas em altura

- Esforço computacional das operações habituais sobre ABPs depende do comprimento do caminho a partir da raiz da árvore
- Evitar que uma ABP tenha uma altura "exagerada", para assegurar um bom "comportamento" – Altura ε O(log n)
- O que fazer ?
- Assegurar que, para cada nó, a altura das suas duas subárvores não é "muito diferente" – Critério de equilíbrio

Fator de equilíbrio de um nó

Quando fazer? / Como fazer?

- Assegurar o critério de equilíbrio sempre que se adiciona ou remove um nó : F = -1, 0, +1
- Reposicionar nós / subárvores quando falha : F = -2, +2
- MAS, manter o critério de ordem da ABP!!
- 4 tipos de operações de rotação
- Apenas trocas de ponteiros
- Basta fazer a verificação / reposicionamento ao longo do caminho entre a raiz e um nó que tenha sido "alterado" – traceback

Árvore AVL – Inserir + Equilibrar, se necessário

- Após adicionar o nó 3, o fator de equilíbrio do nó 1 é 2, e esse nó falha o critério de equilíbrio
- Nó 1 é reposicionado

Árvore AVL – Inserir + Equilibrar, se necessário

Filas com Prioridade – PQ – Priority Queues

PQ – Fila com prioridade

- Coleções
 - Inserir e apagar elementos; que elemento apagar ?

- STACK : Apagar o último elemento inserido (pop)
- QUEUE : Apagar o primeiro elemento (dequeue)

operation	argument	return value
insert	Р	
insert	Q	
insert	Ε	
remove max	;	Q
insert	X	
insert	Α	
insert	M	
remove max	;	X
insert	Р	
insert	L	
insert	Ε	
remove max	;	Р

- PRIORITY QUEUE : Apagar o elemento de maior (ou menor) prioridade
 - Items devem ser comparáveis!!

PQ – Array não-ordenado vs array ordenado

operation	argument	return value	size	(tents derec							tents lered				
insert	Р		1	Р							Р						
insert	Q		2	Р	Q						Р	Q					
insert	Ε		3	Р	Q	Ε					Ε	Р	Q				
remove max		Q	2	Р	E						Ε	Р					
insert	X		3	Р	Ε	X					Ε	Р	Χ				
insert	Α		4	Р	Ε	X	Α				Α	Ε	P	Χ			
insert	М		5	Р	Ε	Χ	Α	М			Α	Ε	M	Р	X		
remove max		Χ	4	Р	Ε	M	Α				Α	Ε	M	Р			
insert	Р		5	Р	Ε	M	Α	Р			Α	Ε	M	P	Р		
insert	L		6	Р	Ε	M	Α	Р	L		Α	Ε	L	M	Р	Р	
insert	Ε		7	Р	Ε	M	Α	Р	L	Ε	Α	Ε	Ε	L	M	Р	
remove max		Р	6	Е	М	Α	P	L	Ε		Α	Ε	Ε	L	М	Р	
			sequer														

PQ – Eficiência computacional

Binary Heaps – "Amontoados" Binários

Binary Heaps – "Amontoados Binários"

- Usados para representar filas com prioridade usando árvores binárias completas
- Com um critério de ordem/prioridade particular
- Elementos da heap habitualmente armazenados por níveis, num array
- Acesso aos filhos e ao pai de um nó através de índices
- Não são utilizados ponteiros !!
- Eficiência !!

Binary Heaps – Operações habituais

- Adicionar um elemento
- Consultar o elemento de maior/menor prioridade
- Apagar o elemento de maior/menor prioridade

• ...

Não há acesso aleatório!!

Árvore binária completa

[Sedgewick & Wayne]

• Árvore binária perfeitamente equilibrada, com a possível exceção do último nível, que tem os nós (folhas) "ancorados à esquerda"

Árvore binária completa

- A altura de uma árvore binária completa com n nós é floor(log₂ n)
 - A altura aumenta apenas quando n = 2^k

Árvore binária completa

- Nº de folhas = ceil(n / 2)
- Nº de nós que não são folhas = floor(n / 2)

Filas com Prioridade – Critérios de ordem

- MIN-HEAP: O valor/chave de um nó não é superior ao do seus filhos
- A sequência de valores em qualquer caminho da raiz da árvore até uma folha é não-decrescente
- MAX-HEAP: O valor/chave de um nó não é inferior ao do seus filhos
- A sequência de valores em qualquer caminho da raiz da árvore até uma folha é não-crescente
- Podem existir elementos/chaves repetidos!

São MAX-HEAPS?

[Levitin]

- Armazenar de modo contíguo, da esquerda para a direita, num array
- LeftChild(i) = 2 x i + 1, se existir
- RightChild(i) = 2 x (i + 1), se existir
- Parent(i) = (i 1) div 2, se i > 0

Eficiência computacional

Consultar o elemento de maior/menor prioridade O(1)

- Adicionar um elemento
 O(log n)
 - Pode ser necessário reorganizar a heap
- Apagar o elemento de maior/menor prioridade O(log n)
 - Pode ser necessário reorganizar a heap
- No pior caso, é necessário percorrer o caminho mais longo definido na heap!!

O TAD MIN-Heap

MIN-Heap — Cabeçalho da estrutura de dados

```
// The heap data structure
struct _Heap {
  void** array;
  int capacity;
  int size;
  compFunc compare;
  printFunc print;
```

MIN-Heap — Construtor & Destrutor

```
// The type for MinHeap structures
typedef struct Heap MinHeap;
// The type for item comparator functions
typedef int (*compFunc)(const void* p1, const void* p2);
// The type for item printer functions
typedef void (*printFunc)(void* p);
   CREATE/DESTROY
MinHeap* MinHeapCreate(int capacity, compFunc compF, printFunc printF);
void MinHeapDestroy(MinHeap** pph) ;
```

MIN-Heap — Getters

```
GETTERS
int MinHeapCapacity(MinHeap* ph);
int MinHeapSize(MinHeap* ph);
int MinHeapIsEmpty(MinHeap* ph);
int MinHeapIsFull(MinHeap* ph);
void* MinHeapGetMin(MinHeap* ph);
```

MIN-Heap – Inserir & Remover

```
MODIFY
void MinHeapInsert(MinHeap* ph, void* item);
void MinHeapRemoveMin(MinHeap* ph);
  CHECK/VIEW
int MinHeapCheck(MinHeap* ph);
void MinHeapView(MinHeap* ph);
```

O TAD MAX-Heap

MAX-Heap — Construtor

```
MaxHeap* MaxHeapCreate(int capacity, compFunc compF, printFunc printF) {
  MaxHeap* h = (MaxHeap*)malloc(sizeof(MaxHeap)); // alloc heap header
  if (h == NULL) abort();
  h->array = (void**)malloc(capacity * sizeof(void*)); // alloc array
  if (h->array == NULL) {
    free(h);
    abort();
  h->capacity = capacity;
  h \rightarrow size = 0;
  h->compare = compF;
  h->print = printF;
  return h;
```

MAX-Heap — Destrutor

```
void MaxHeapDestroy(MaxHeap** pph) {
   MaxHeap* ph = *pph;
   if (ph == NULL) return;
   free(ph->array);
   free(ph);
   *pph = NULL;
}
```

MAX-Heap — Getters

```
int MaxHeapCapacity(const MaxHeap* ph) { return ph->capacity; }
int MaxHeapSize(const MaxHeap* ph) { return ph->size; }
int MaxHeapIsEmpty(const MaxHeap* ph) { return ph->size == 0; }
int MaxHeapIsFull(const MaxHeap* ph) { return ph->size == ph->capacity; }
void* MaxHeapGetMax(const MaxHeap* ph) {
  assert(!MaxHeapIsEmpty(ph));
  return ph->array[0];
```

MAX-Heap – Funções para indexação

```
// n is the index of a node (n in [0, size[).
// _child(n, 1) is the index of the first child of node n, if < size.</pre>
// _child(n, 2) is the index of the second child of node n, if < size.
static inline int _child(int n, int c) { return 2 * n + c; }
// _parent(n) is the index of the parent node of node n, if n>0.
static inline int _parent(int n) {
  assert(n > 0);
  return (n - 1) / 2;
```

Adicionar um elemento

- Novo elemento é adicionado após o último
- Se o seu valor for maior do que o valor do seu progenitor, trocar esses dois elementos
- Proceder do mesmo modo, em direção à raiz, até se verificar o critério de ordem

[Sedgewick & Wayne]

MAX-Heap — Adicionar e (re-)posicionar

```
void MaxHeapInsert(MaxHeap* ph, void* item) {
 assert(!MaxHeapIsFull(ph));
  // start at the first vacant spot (just after the last occupied node)
  int n = ph->size;
  while (n > 0) {
  int p = parent(n);
   // if item not larger than parent, then we've found the right spot!
   if (ph->compare(item, ph->array[p]) <= 0) break;</pre>
    // otherwise, move down the item at node p to open up space for new item
    ph->array[n] = ph->array[p];
    // update
   n = p; // p is the new vacant spot
  ph->array[n] = item; // store item at node n
  ph->size++;
```

Remover o maior

- O valor do último elemento substitui o valor da raiz, e o último elemento é removido
- Se o novo valor da raiz for menor do que o valor do maior dos seus filhos, trocar esses dois elementos
- Proceder do mesmo modo com o elemento trocado, até se verificar o critério de ordem sink down

[Sedgewick & Wayne]

MAX-Heap – Remover e reorganizar

```
void MaxHeapRemoveMax(MaxHeap* ph) {
  assert(!MaxHeapIsEmpty(ph));
  ph->size--; // NOTE: we're decreasing the size first!
  int n = 0; // the just emptied spot... must fill it with largest child
  while (1) {
    // index of first child
    int max = _child(n, 1); // first child (might not exist)
    if (!(max < ph->size)) break; // if no second child, stop looking
    // if second child is larger, choose it
    if (ph->compare(ph->array[max + 1], ph->array[max]) > 0) {
      max = max + 1;
```

MAX-Heap – Remover e reorganizar

```
// if largest child is not larger than last, stop looking
 if (!(ph->compare(ph->array[max], ph->array[ph->size]) > 0)) break;
  // move largest child to fill empty _parent spot
  ph->array[n] = ph->array[max];
 n = max; // now, the largest child spot was just emptied!
// move last element to emptied spot
ph->array[n] = ph->array[ph->size];
// mark last element as vacant
ph->array[ph->size] = NULL;
```

A Estratégia Transform-and-Conquer

T&C – Alternativa de resolução?

T&C – Transformar a instância original

T&C – Executar um algoritmo alternativo

T&C – E obter uma solução

UA - Algoritmos e Complexidade Joaquim Madeira 46

T&C – Obter solução para instância original

A estratégia Transform-and-Conquer

- Objetivo: baixo custo computacional! Menor complexidade computacional!
- 1º passo: Transformação
- Modificar a instância dada, para que seja mais fácil / eficiente resolver o problema proposto
- 2º passo : Conquista
- Resolver a instância modificada e obter a sua solução, e transformá-la (se necessário) na solução desejada para a instância original

O Algoritmo Heap-Sort

0	1					n – 2	n – 1
7	2	•••	•••	•••	•••	4	3

Reposicionar o maior

dos não ordenados

7	2	•••	•••	•••	•••	4	3
0	1					n – 2	n - 1

MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••

1 troca

Transformação

Reposicionar o maior dos não ordenados

0	1					n – 2	n – 1
7	2	•••	•••	•••	•••	4	3

MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO	•••

1 troca

1 troca

•••

Transformação

n-2 n-1

4

...

3

Reposicionar o maior dos não ordenados

Reposicionar o maior dos não ordenados

MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO	•••
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••

•••

...

1 troca

1 troca

- Objetivo: baixo custo computacional!
- Como obter o sucessivamente o maior elemento de um conjunto, sem manter totalmente ordenado esse conjunto de elementos ?
- Solução : usar uma representação alternativa MAX-HEAP
- E não usar espaço de memória adicional, apenas o array dado

Heap-Sort – Ordenar usar usando T&C

```
Dado um array de n elementos

Construir uma MAX-HEAP // In-place, sem usar memória adicional!

Repetir (n – 1) vezes

Levar o maior elemento da MAX-HEAP para a posição final // 1 TROCA

Reorganizar os elementos não ordenados para MAX-HEAP // 1 x fixHeap
```

Heap-Sort – Construir MAX-HEAP – Ordem?

Heap-Sort — Construir MAX-HEAP in-place

fixHeap() - Reposicionar o elemento a[index]

```
void fixHeap( int a[], int index, int n ) {
       int child;
       for( int tmp = a[index]; leftChild(index) < n; index = child ) {
                                                                            // The largest
               child = leftChild(index);
               if( child != (n - 1) \&\& a[child + 1] > a[child] ) child++;
                                                                            // child
               if( tmp < a[child] ) a[index] = a [child];</pre>
                                                                            // moves up,
                                                                            // if needed
               else break;
       array[index] = tmp;
                                      // Final position
```

Heap-Sort

```
void heapSort( int a[], int n ) {
     heapBottomUp(a, n); // Construir MAX-HEAP
     for( int i = n - 1; i > 0; i-- ) {
           swap(&a[0], &a[i]); // Posição final
           fixHeap(a, 0, i); // Só a[0] pode
                                 // necessitar de ser
                                 // reposicionado!!
```

Heap-Sort – Eficiência Computacional

- A construção inicial da MAX-HEAP é realizada uma única vez !
- E tem ordem de complexidade O(n)
- Qual é a ordem de complexidade da fase de ordenação do array ?
- Em que é necessário reposicionar a (nova) raiz em MAX-HEAPs de tamanho decrescente ?
- $O(n \log_2 n)$
- A ordem de complexidade do algoritmo Heap-Sort é então

$$O(n) + O(n \log_2 n) = O(n \log_2 n)$$

Exercícios / Tarefas

Exercício 1 – Verdadeiro ou Falso

Uma árvore AVL é uma árvore binária equilibrada em altura em que, para cada nó, as alturas das suas duas subárvores são obrigatoriamente iguais.

Uma **árvore AVL** é uma árvore binária equilibrada em altura em que, para cada nó, as alturas das suas duas subárvores diferem, **sempre**, de uma unidade.

Uma árvore AVL é uma árvore binária equilibrada em altura em que, para cada nó, as alturas das suas duas subárvores podem diferir de mais do que uma unidade.

Exercício 2 – Escolha múltipla

O array armazena, por níveis, os elementos de uma árvore binária.

0	1	2	3	4	5	6	7	8	9	10	
10	6	9	2	5	7	8	0	1	3	4	

- a) A subárvore esquerda da raiz tem 7 elementos.
- b) O elemento de valor 0 é o filho esquerdo do elemento de valor 2.
- c) A árvore binária representa uma MAX-Heap.
- d) Todas estão corretas.

Exercício 3 – Escolha múltipla

O array armazena, por níveis, os elementos de uma árvore binária.

0	1	2	3	4	5	6	7	8	9	10	11
1	3	2	8	4	7	6	5	9	11	10	12

- a) A subárvore direita da raiz tem 4 elementos.
- b) O elemento de valor 12 é o filho esquerdo do elemento de valor 10.
- c) A árvore binária representa uma MIN-Heap.
- d) Todas estão corretas.

Exercício 4 — Transformar numa MAX-HEAP

 Usando o algoritmo heapBottomUp, reorganize os elementos de array de modo a formarem uma MAX-HEAP

0	1	2	3	4
7	2	6	4	3

Exercício 5 — Heap-Sort — Ordenar o array

Ordene o array usando o algoritmo Heap-Sort

0	1	2	3	4
7	2	6	4	3

Exercício 6 – Heap-Sort – Ordenar o array

Ordene o array usando o algoritmo Heap-Sort

0	1	2	3	4	5
2	9	7	6	5	8