Von der Korrelation zur Regression

Gegeben Sie wollen eine Zufallsvariable Y erklären, wobei Sie die Werte von X=x auf einer Regressionslinie kennen:

- ullet Für jede Standardabweichung σ_X , für die x über dem Durschnittswert μ_X liegt, steigt Y um ρ Standardabweichungen σ_Y über dem Durchschnittswert μ_Y .
- \bullet ρ ist die Korrelation von X und Y.

Die Formel für die Regressionsgeraden ergibt sich dann folgendermaßen:

$$\left(rac{Y-\mu_Y}{\sigma_Y}
ight)=
ho\left(rac{x-\mu_X}{\sigma_X}
ight)$$

Die Formel für die Regressionsgerade können wir wie folgt umschreiben:

$$Y = \mu_Y +
ho \left(rac{x - \mu_X}{\sigma_X}
ight) \sigma_Y$$

- ullet Bei einer Korrelation von 1 würden wir eine Steigerung um eine Standardabweichung von Y vorhersagen, gegeben, dass sich X um eine Standardabweichung verändert
- lacktriangle Bei einer Korrelation von 0 würden wir den Durchschnitt μ_Y vorhersagen
- **★** Bei einer Korrelation <0 würden wir eine Reduktion anstatt einer Steigerung vorhersagen

Auf unser Beispiel übertragen:

- **★** Korrelationskoeffizent positiv, aber < 1
- lacktriangle Lehrevaluationsergebnisse liegen näher an den durchschnittlichen μ_X und sind nicht nur abhängig von der Attraktivität des Dozenten/der Dozentin x
- → Regression zur Mitte: Die individuellen, möglicherweise sehr extremen Lehrevaluationsergebnisse werden im Gesamtverlauf ausgeglichen und bewegen sich zu den durchschnittlichen Lehrevaluationsergebnissen.

Wenn Sie die Regressionsgerade auf Grundlage der Korrelation und ihren bisherigen Erkenntnissen ihrem Streudiagramm hinzufügen möchten, so müssen Sie die Formel des linearen Modells etwas umschreiben:

$$y=\alpha+\beta x$$
mit der Steigung $\beta=\rho\frac{\sigma_y}{\sigma_x}$ und dem Achsenabschnitt $\alpha=\mu_y-\beta\mu_x$

In R sieht dies folgendermaßen aus:

```
mu_x <- mean(used_evals$bty_avg)
mu_y <- mean(used_evals$score)
sd_x <- sd(used_evals$bty_avg)
sd_y <- sd(used_evals$score)
rho <- cor(used_evals$bty_avg, used_evals$score)

beta <- rho * sd_y / sd_x
alpha <- mu_y - beta*mu_x</pre>
```


Zum selben Ergebnis gelangen wir mit der Regressionsgeraden berechnet nach der Methode der kleinsten Quadrate (in rot dazu):

- ◆ Korrelation und Steigung der Regressionsgeraden haben immer das gleiche Vorzeichen
- **Jedoch:** Diese müsssen nicht immer den gleichen Wert haben (siehe Berechnung 2 Folien vorher)
- ♣ Die Regressionsgerade ist der beste lineare erwartungstreue Schätzer
 - ★ Was bedeutet dies genau?

Lineare Regression

Lineares Modell

- ◆ Durch die lineare Regression k\u00f6nnen wir Zusammenh\u00e4nge zwischen verschiedenen Variablen aufdecken und gleichzeitig f\u00fcr andere Faktoren kontrollieren
- lacktriangle "Lineare Modelle" werden so genannt, weil der bedingte Erwartungswert einer Variablen Y sich ergibt aus einer Linearkombination bekannter Größen

Wenn wir die Lehrevaluationsergebnisse verwenden können wir die N verfügbaren Attraktivitätseinschätzungen als x_1, \ldots, x_n schreiben und dann die N Evaluationsergebnisse durch folgendes Modell erklären:

$$Y_i = eta_0 + eta_1 x_i + arepsilon_i, \, i = 1, \dots, N$$

- $+ x_i$ ist hierbei die Einschätzung der Attraktivität der Dozenten/Dozentinnen
- + Y_i ist das (zufällige) Lehrevaluationsergebnis, welches wir erklären wollen
- **+** Annahmen:
 - lacktriangle Die ε_i sind unabhängig voneinander mit Erwartungswert 0
 - \bullet ε ist normal verteilt
 - lacktriangle Die Standardabweichung σ hängt nicht von i ab.

Lineares Modell

Lineare Modelle werden häufig verwendet:

- **◆** Die Koeffizienten von linearen Modellen sind direkt interpretierbar
- **★** Beispiel Lehrevaluationsergebnisse:
 - ◆ Das Lehrevaluationsergebnis steigt je attraktiver ein Dozent/eine Dozentin eingeschätzt wird
 - ullet ε fängt hierbei die Varianz in den Lehrevaluationsergebnissen auf
 - ullet In arepsilon stecken alle zusätzlichen Faktoren, welche die Lehrevaluationsergebnisse mit beeinflussen, aber in unserem Modell nicht gesondert enthalten sind
 - ♣ Bspw: Das Geschlecht, Alter, Rethorikfähigkeiten, eingesetzte didaktische Mittel ...

Kleinste Quadrate Schätzer

In unserem Modell wollen wir die Lehrevaluationsergebnisse vorhersagen. Hierfür benötigen wir eine Abschätzung der β s.

Um dies zu erreichen verwenden wir die Methode der kleinsten Quadrate. Hierbei wird versucht eine Regressionsgerade zu finden, welche den Abstand zwischen den einzelnen Datenpunkten und der Regressionsgeraden minimiert. Wir können dies mathematisch wie folgt darstellen, wobei RSS für die residual sum squares (Residuenquadratsumme) steht:

$$RSS = \sum_{i=1}^n \left\{Y_i - \left(eta_0 + eta_1 x_i
ight)
ight\}^2$$

Kleinste Quadrate Schätzer

In unserem Modell wollen wir die Lehrevaluationsergebnisse vorhersagen. Hierfür benötigen wir eine Abschätzung der β s.

Um dies zu erreichen verwenden wir die Methode der kleinsten Quadrate. Hierbei wird versucht eine Regressionsgerade zu finden, welche den Abstand zwischen den einzelnen Datenpunkten und der Regressionsgeraden minimiert. Wir können dies mathematisch wie folgt darstellen, wobei RSS für die residual sum squares (Residuenquadratsumme) steht:

$$RSS = \sum_{i=1}^n \left\{Y_i - \left(eta_0 + eta_1 x_i
ight)
ight\}^2$$

lacktriangle Die geschätzten Werte, welche die RSS minimieren bezeichnen wir mit \hat{eta}_0 und \hat{eta}_1

Kleinste Quadrate Schätzer

Schätzung

Wir können in R das lineare Modell mittels der Funktion 1m berechnen:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

wobei Y_i das Lehrevaluationsergebnis des Dozenten und x_i dessen Attraktivität ist:

```
schätzer <- lm(score ~ bty_avg, data = used_evals)</pre>
```

- **★** Mit der Tilde ~ (Alt Gr + +-Taste) zeigen wir der Funktion 1m:
 - **★** Links der ~: Variable, die wir vorhersagen wollen
 - **★** Rechts der ~: Variable(n), die wir für die Vorhersage verwenden
 - lacktriangle R fügt automatisch einen Achsenabschnitt eta_0 hinzu (falls Sie ein Modell *ohne* Achsenabschnitt berechnen möchten müssen Sie folgendes schätzen:
 - Im(score ~ bty_avg + 0, data = used_evals)

Schätzung

Um mehr über unsere Schätzung zu erfahren können wir die Funktion summary verwenden:

```
summary(schätzer)
```

```
Call:
lm(formula = score ~ bty avg, data = used evals)
Residuals:
   Min 10 Median 30 Max
-1.9246 - 0.3690 \quad 0.1420 \quad 0.3977 \quad 0.9309
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5348 on 461 degrees of freedom
Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
```

Das Modell:

$$\hat{y} = eta_0 + eta_1 x$$
 $Lehrevaluation = eta_0 + eta_1 * btyavg$
 $Lehrevaluation = 3.880 + 0.067 * btyavg$

Das Modell:

$$\hat{y} = eta_0 + eta_1 x$$
 $Lehrevaluation = eta_0 + eta_1 * btyavg$
 $Lehrevaluation = 3.880 + 0.067 * btyavg$

Interpretation der Koeffizienten:

- lacktriangle Achsenabschnitt (eta_0) ist das durchschnittliche Lehrevaluationsergebnis, bei der die Attraktivität auf 0 eingeschätzt wurde
 - ◆ Mathematische Interpretation jedoch keine praktische Interpretation, da Attraktivität nicht mit 0 bewertet werden kann (Skala von 1 bis 10)
- **◆** Der Koeffizient für die Attraktivität (β_1) ist 0.067
 - **◆** Positiver Zusammenhang zwischen Attraktivität und Lehrevaluationsergebnis
 - **◆** Gleiches Vorzeichen wie Korrelation, jedoch unterschiedliche Werte
 - lacktriangle Korrelation ightarrow Stärke des linearen Zusammenhangs

Dozenten mit einer Einheit höheren Attraktivität haben im Durchschnitt eine um 0.067 Einheiten bessere Lehrevaluation

- ➡ Wir sprechen bei der Interpretation des Koeffizienten der Attraktivitätsvariablen nur von einer Assoziation zwischen Attraktivität und Lehrevaluationsergebnis, nicht von einer kausalen Interpretation
- ◆ Folgende Einschätzung wäre falsch: Eine um eine Einheit höhere Attraktivität führt zu einer um 0.067 Einheiten besseren Lehrevaluation
- **★** Es könnte durchaus sein, dass es weitere Variablen gibt, die sowohl die Attraktivität des Dozenten, als auch die Lehrevaluation beeinflussen, z.B. das Alter.
 - ◆ Nur weil zwei Variablen stark miteiander korrelieren bedeutet dies nicht, dass eine zur anderen führt.
- \rightarrow Korrelation ist nicht gleich Kausalität

Dozenten mit einer Einheit höheren Attraktivität haben im Durchschnitt eine um 0.067 Einheiten bessere Lehrevaluation

- ◆ Wir sprechen bei der Interpretation des Koeffizienten der Attraktivitätsvariablen nur von einer Assoziation zwischen Attraktivität und Lehrevaluationsergebnis, **nicht** von einer kausalen Interpretation
- ◆ Folgende Einschätzung wäre falsch: Eine um eine Einheit höhere Attraktivität führt zu einer um 0.067 Einheiten besseren Lehrevaluation
- **★** Es könnte durchaus sein, dass es weitere Variablen gibt, die sowohl die Attraktivität des Dozenten, als auch die Lehrevaluation beeinflussen, z.B. das Alter.
 - ◆ Nur weil zwei Variablen stark miteiander korrelieren bedeutet dies nicht, dass eine zur anderen führt.

\rightarrow Korrelation ist nicht gleich Kausalität

★ Weiterhin sprechen wir von einer Erhöhung der Lehrevaluationsergebnisse von im Durchschnitt 0.067 Einheiten

Die Funktion 1m

- **◆** Die geschätzten Koeffizienten sind Zufallsvariablen
- ◆ Diese Zufallsvariablen haben eine Verteilung
- **◆** Die t-Statistik (t value) und p-Werte (Pr(>|t|)) basieren auf der Annahme, dass ε normalverteilt ist
- **◆** Dadurch ergibt sich für die t-Statistik:
 - $\hat{\beta}_0/\hat{\mathrm{SE}}(\hat{\beta}_0)$ und $\hat{\beta}_1/\hat{\mathrm{SE}}(\hat{\beta}_1)$ folgen einer **t-Verteilung** mit N-p Freiheitsgraden
 - lacktriangledown p ist die Anzahl an Parametern in unserem Modell (in unserem Fall p=2)
 - lacktriangle die p-Werte testen ob $eta_0=0$ bzw. ob $eta_1=0$
 - lacktriangle Für große N nähert sich die t-Verteilung der Normalverteilung an

Schätzer sind Zufallsvariablen

Für jedes Lehrevaluationsergebnis können wir eine Vorhersage treffen (\hat{Y}), gegeben unserer Regressionsgeraden und dem bekannten Wert der Attraktivität des Dozenten/der Dozentin (x):

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Beachten Sie, dass \hat{Y} eine Zufallsvariable ist, für welche Sie den Standardfehler bestimmen können. Wenn wir nun annehmen, dass die Standardfehler normalverteilt sind, so können wir Konfidenzintervalle für \hat{Y} bilden.

In ggplot2 können wir diese Konfidenzintervalle um \hat{Y} auch zeichnen (wir nutzen hier geom_smooth (method = "lm"))

Schätzer sind Zufallsvariablen

```
used_evals %>% ggplot(aes(bty_avg, score)) +
  geom_point() +
  geom_smooth(method = "lm")
```


Schätzer sind Zufallsvariablen

Durch die R Funktion predict können die vorhergesagten Werte unserer Schätzung durch 1m für jeden Punkt ausgegeben werden.

```
used_evals %>%
  mutate(Y_hat = predict(lm(score ~ bty_avg, data = .))) %>%
  ggplot(aes(bty_avg, Y_hat)) +
  geom_line()
```


In dieser Vorlesung nutzen wir Pakete des tidyverse Universums um unsere Datenanalyse durchzuführen. Jedoch sind sehr viele Funktionen in R nicht teil des tidyverse, wie z.B. die lm Funktion um eine lineare Regression durchzuführen.

Durch das Paket broom und deren Funktionen tidy, glance und augment können wir die Ergebnisse von Funktionen wie lm in das uns bekannte tidyverse überführen.

1 (Intercept) 3.88 0.076 51.0 2 bty_avg 0.067 0.016 4.09

2 bty_avg

Die Funktion tidy gibt die Ergebnisse aus 1m als Dataframe wieder:

```
library(broom)
library (janitor)
schätzer <- lm(score ~ bty_avg, data = used_evals)</pre>
tidy(schätzer) %>%
 mutate_if(is.numeric, round, digits = 3) %>%
  clean_names()
# A tibble: 2 × 5
  term estimate std error statistic p value
  <chr> <dbl> <dbl> <dbl> <dbl>
```

0

Hier können wir auch andere Informationen wie Konfidenzintervalle ausgeben lassen:

Multiple lineare Regression

Einführung

- ◆ Statt nur eine erklärende Variable ins Modell aufzunehmen können auch mehrere erklärende Variablen hinzugenommen werden, bspw. könnten wir ein Modell schätzen mit:
 - Alter (nummerisch)
 - Geschlecht (kategorisch)

Bekommen ältere oder jüngere Dozenten/innen bessere Lehrevaluationen und unterscheidet sich dies nach Geschlecht?

Deskriptive Analysen

★ Korrelationskoeffizient für Alter und Lehrevaluation

```
used_evals %>%
  summarize(cor(score, age)) %>%
  pull()
```

```
[1] -0.107032
```

Explorative Grafiken

```
used_evals %>%
  ggplot(aes(x = age, y = score, color = gender)) +
  geom_point() +
  labs(x = "Alter", y = "Lehrevaluationsergebnis", color = "Geschlecht") +
  geom_smooth(method = "lm", se = FALSE)
```


Multiple lineare Regression

```
basismodell <- lm(score ~ age + gender, data = used_evals)
tidy(basismodell) %>%
  mutate_if(is.numeric, round, digits = 3) %>%
  clean_names()
```

Multiple lineare Regression

```
basismodell <- lm(score ~ age + gender, data = used_evals)
tidy(basismodell) %>%
  mutate_if(is.numeric, round, digits = 3) %>%
  clean_names()
```

- **◆** Ein um ein Jahr älterer Dozent/Dozentin hat im Durchschnitt eine um 0.009 Einheiten schlechtere Lehrevaluation (age)
 - **★** Signifikant auf dem 1% Signifikanzniveau
- **★** Männliche Dozenten haben im Durchschnitt eine um 0.191 Einheiten bessere Lehrevaluation (gendermale)
 - **◆** Signifikant auf dem 1% Signifanzniveau

Interaktionsmodell

Gibt es unterschiedliche Effekte für Männer und Frauen über das Alter hinweg? Wie könnte das gemessen werden?

Interaktionsmodell

Gibt es unterschiedliche Effekte für Männer und Frauen über das Alter hinweg? Wie könnte das gemessen werden?

Unsere explorative Grafik deutet zwei unterschiedliche Kurveverläufe an. Durch ein Interaktionsmodell können wir dem Phänomen Rechnung tragen

Interaktionsmodell

Gibt es unterschiedliche Effekte für Männer und Frauen über das Alter hinweg? Wie könnte das gemessen werden?

Unsere explorative Grafik deutet zwei unterschiedliche Kurveverläufe an. Durch ein Interaktionsmodell können wir dem Phänomen Rechnung tragen

```
interaktionsmodell <- lm(score ~ age * gender, data = used_evals)
tidy(interaktionsmodell, conf.int = TRUE) %>%
  mutate_if(is.numeric, round, digits = 3) %>%
  clean_names()
```

Interpretation der Koeffizienten

- + Frauen bilden hier die Basisgruppe, da in unserer kategorischen Variable gender female vor male kommt und damit automatisch als Basisgruppe deklariert wird
- **◆** Der Achsenabschnitt ist hier *nur* für Frauen
 - **★** Entspricht der roten Linie im vorherigen Schaubild
 - **★** Steigung der roten Linie ist -0.018 im vorherigen Schaubild
- ★ Männer werden hier als Vergleich zu den Frauen berechnet.
 - lacktriangle Achsenabschnitt für Männer \rightarrow 4.833 0.446 = 4.437
 - lacktriangle Steigung im vorherigen Schaubild für Männer wäre dann entsprechend \rightarrow -0.018 + 0.014 = -0.004

Interpretation der Koeffizienten

In einer Tabelle zusammengefasst bedeutet dies:

Geschlecht Achsenabschnitt Steigung

Frauen	4.833	-0.018
Männer	4.437	-0.004

Interpretation der Koeffizienten

In einer Tabelle zusammengefasst bedeutet dies:

Geschlecht Achsenabschnitt Steigung

Frauen 4.833 -0.018 Männer 4.437 -0.004

Das heißt die Lehrevaluationsergebnisse sind im Durchschnitt bei älteren Frauen pro Lebensjahr um -0.018 Einheiten schlechter, bei Männern nur um -0.004 Einheiten.

→ Das Alter ist bei Frauen im Durchschnitt mit einem **höheren negativen Effekt** auf die Lehrevaluationsergebnisse assoziiert.

Aufteilen der Stichprobe

Anstatt einen Interaktionsterm einzuführen können Sie die Stichprobe auch aufteilen:

```
split1 <- lm(score ~ age, data = filter(used_evals, gender=="female"))
split2 <- lm(score ~ age, data = filter(used_evals, gender=="male"))

#Alternativ
used_evals %>%
group_by(gender) %>%
do(tidy(lm(score ~ age, data = .), conf.int = TRUE)) %>%
mutate_if(is.numeric, round, digits = 3) %>%
clean_names()
```

Aufteilen der Stichprobe

Anstatt einen Interaktionsterm einzuführen können Sie die Stichprobe auch aufteilen:

Die Koeffizienten sind die Selben wie wir sie beim Interaktionsmodell erhalten haben

Falls Sie mit den Werten aus der Regression weiterarbeiten möchten können Sie auch für unterschiedliche Gruppen einzelne Regressionen durchführen lassen. Hier hilft ihnen der do-Befehl aus dem broom Paket:

```
used_evals %>%
  group_by(gender) %>%
  do(tidy(lm(score ~ age, data = .), conf.int = TRUE))
```

Diesen Dataframe können wir anschließend nach den Regressionskoeffizienten von Interesse filtern und uns nur die Spalten ausgeben lassen, welche uns interessieren:

```
used_evals %>%
  group_by(gender) %>%
  do(tidy(lm(score ~ age, data = .), conf.int = TRUE)) %>%
  filter(term == "age") %>%
  select(gender, estimate, conf.low, conf.high)
```

Multiple lineare Regression

Es besteht auch die Möglichkeit unterschiedliche Regressionsspezifikationen mit dem Paket modelsummary einander gegenüberzustellen.

Code für die Verwendung von modelsummary, wobei die jeweiligen Modelle auf den vorherigen Folien berechnet und unter den entsprechenden Namen abgespeichert wurden.

```
library(modelsummary)
modelsummary(list(basismodell, interaktionsmodell, split1, split2))
```

(1,2,1,2,2,2,4)	Model 1	Model 2	Model 3	Model 4
(Intercept)	4.484	4.883	4.883	4.437
	(0.125)	(0.205)	(0.210)	(0.165)
age	-0.009	-0.018	-0.018	-0.004
	(0.003)	(0.004)	(0.005)	(0.003)
gendermale	0.191	-0.446		
	(0.052)	(0.265)		
age × gendermale		0.014		
		(0.006)		
Num.Obs.	463	463	195	268
R2	0.039	0.051	0.070	0.006
R2 Adj.	0.035	0.045	0.066	0.002
AIC	738.5	734.5	320.7	415.4
BIC	755.1	755.2	330.5	426.2
Log.Lik.	-365.263	-362.264	-157.342	-204.712
F	9.338	8.288	14.598	1.564
RMSE	0.53	0.53	0.55	0.52