

Mean-shift

Advanced Computer Vision Methods Exercise 2

Visual Cognitive Systems Laboratory, Faculty of Computer and Information Science, University of Ljubljana

Mean-shift: idea

Method for mode seeking in prob. density function

- We can calculate probability in each point and take the maximum
 - Slow approach
- We do not need to calculate probability in each point
- Start in some point and continue in the direction of a gradient

Mean-shift: iterative mode seeking

Mean-shift: equation

 Iteration to calculate new position (calculate twice: for X and Y direction)

$$x^{(k+1)} = \frac{\sum_{i=1}^{N} x_i w_i g\left(\left\|\frac{x^{(k)} - x_i}{h}\right\|^2\right)}{\sum_{i=1}^{N} w_i g\left(\left\|\frac{x^{(k)} - x_i}{h}\right\|^2\right)}$$

Kernel derivative: g(x) = -k'(x)

Function value in x_i : w_i

Bandwidth (size of kernel): h

 x_i represents coordinates within the window:

-2	-1	0	1	2
-2	-1	0	1	2
-2	-1	0	1	2
-2	-1	0	1	2
-2	-1	0	1	2

-2	-2	-2	-2	-2
-1	-1	-1	-1	-1
0	0	0	0	0
1	1	1	1	1
2	2	2	2	2

For X direction

For Y direction

Mean-shift: kernels

$$g(x) = -k'(x)$$

Robert Collins CSE598G

Kernel-Shadow Pairs

Given a convolution kernel H, what is the corresponding mean-shift kernel K? Perform change of variables $r=||x_i-x||^2$ Rewrite $H(x_i-x) => h(||x_i-x||^2) => h(r)$.

Then kernel K must satisfy

$$h'(r) = -c k(r)$$

Biweight — Epanechnikov

Tracker design

Frame 1

Frame 2

Frame t

Given ground-truth

bounding box

Tracking algorithm: initialize tracker

Tracking algorithm:

- 1.) Localize the target
- 2.) Update visual model

Implement tracker a separate class

- Inherits basic Tracker class (in ex2_utils.py)
- See how NCC tracker is implemented (ncc_tracker_example.py)

Mean-shift: tracker

Frame 1: initialization

Histogram extraction kernel and Mean-shift kernel are dependent

Example: if histogram is extracted with epanechnikov kernel,

Mean-shift should use uniform kernel (see previous slide: kernel-shadow pair)

Mean-shift: tracker

Frame t+1: target localization

Target position in previous frame

Apply Mean-shift iterations:

Extract histogram pusing kernel (see previous slide)

Calculate weights:
$$v = \sqrt{\frac{q}{p + eps}}$$

 w_i = Backproject within extracted patch using weights v

New position using Mean-shift equation

$$x^{(k+1)} = \frac{\sum_{i=1}^{N} x_{i} w_{i} g\left(\left\|\frac{x^{(k)} - x_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{N} w_{i} g\left(\left\|\frac{x^{(k)} - x_{i}}{h}\right\|^{2}\right)}$$

Mean-shift: tracker

Frame t+1: model update

- Try different alphas and report your observations.
- Is it necessary to always update the model?
 - Try setting alpha to 0 and see if performance improves somewhere

Mean-shift: code material

- Some functions have been given to you:
 - f = generate responses 1()
 - histogram = extract histogram (image, bins, weights)
 - projection = backproject histogram(image, histogram)
 - kernel = create epanechnik kernel(w, h, sigma)
 - patch, inliers = get patch(image, center, size)
- Implement the Mean-shift tracker within Tracker class:
 - Initialize / update tracker
- To test the Mean-shift tracker use the test script run_tracker.py

Mean-shift: tips & tricks

- Additional ideas: try different color spaces
 - RGB, HSV, YCbCr, Lab
- Think about efficiency when implementing
 - Do not use for loops
 - Use matrix operations
 - Use meshgrid function
- Implementation details are very important
 - Despite its simplicity, Mean-shift can reach decent performance (with quite low computational cost)

