Estrategias para detección y recuperación de interbloqueos

Adaptación (ver referencias al final)

Vector de recursos existentes

	R_{1}	R_2	R_3	R_4
E =	4	2	3	1

Matriz de asignaciones actuales

	R_{1}	R_2	R_3	R_{4}
<i>C</i> =	0	0	1	0
C —	2	0	0	1
	0	1	2	0

Vector de recursos disponibles

	R ₁	R_2	R_3	R_4
A =	2	1	0	0

	$R_{_{1}}$	R_{2}	$R_{_{3}}$	R_4
R =	2	0	1	0
Λ –	1	0	1	0
	2	1	0	0

Cada recurso está asignado o está disponible

$$\sum_{i=1}^{n} C_{ij} + A_j = E_j$$

- Sean A y B dos vectores.
 - La relación $A \leq B$ indica que **cada** elemento de A es menor o igual al elemento correspondiente de B.
 - $A \leq B$ si y solo si $A_i \leq B_i$ para $1 \leq i \leq m$
 - m es total de recursos de tipo i.

- C_{ij} es el número de instancias del recurso j que están actualmente asignadas al proceso P_i .
- C_{ij} número de instancias del recurso j que desea el proceso P_i .

- 1. Buscar un proceso P_i tal que $R \le A$
 - R la i-ésima fila de R (vector fila)

• En este ejemplo:

- La fila $R_3 = [2, 1, 0, 0]$ cumple la condición
- Proceso encontrado: P_3

Vector de recursos disponibles

	R_{1}	R_{2}	R_3	$R_{_{4}}$
A =	2	1	0	0

	$R_{_{1}}$	R_2	R_{3}	R_{4}
_	2	0	1	0
. -	1	0	1	0
	2	1	0	0

A =

- 2. Si se encuentra el proceso, sumar la *i-ésima* fila de *C* a *A*
- En este punto P_3 se ejecuta y devuelve todos los recursos.
- Se marca P_3 como proceso completado.
- En este ejemplo:
 - La fila $C_3 = [0, 1, 2, 0]$
 - Se suma $C_3 + A$
 - Nuevo valor de A = [2, 2, 2, 0]

Vector de recursos disponibles

R_{1}	R_2	$R_{\overline{3}}$	$R_{_{4}}$
2	1	0	0

Matriz de asignaciones actuales

R_1	R_{2}	R_3	R_{4}
0	0	1	0
2	0	0	1
0	1	2	0

A =

1. Proceso se repite en busca de otro procesos P_i tal que $R \leq A$

En este ejemplo:

- La fila $R_2 = [1, 0, 1, 0]$ cumple la condición. La primera también pero elegí esa.
- Proceso encontrado: P_2

Vector de recursos disponibles

R_1	R_2	R_3	R_{4}
2	2	2	0

	R_{1}	R_2	R_3	R_{4}
R =	2	0	1	0
п —	1	0	1	0
	2	1	0	0

- 2. Si se encuentra el proceso, sumar la *i-ésima* fila de *C* a *A*
- En este punto P_2 se ejecuta y devuelve todos los recursos.
- Se marca P_2 como proceso completado.
- En este ejemplo:
 - La fila $C_2 = [2, 0, 0, 1]$
 - Se suma $C_2 + A$
 - Nuevo valor de A = [4, 2, 2, 1]

Vector de recursos disponibles

R_{1}	R_{2}	$R_{\overline{3}}$	$R_{\overline{4}}$
2	2	2	0

Matriz de asignaciones actuales

R_1	R_{2}	R_3	R_{4}
0	0	1	0
2	0	0	1
0	1	2	0

1. Proceso se repite en busca de otro procesos P_i tal que $R \leq A$

$$A =$$

Vector de recursos disponibles

R_{1}	R_2	R_3	R_4
4	2	2	1

- En este ejemplo:
 - La fila $R_1 = [2, 0, 1, 0]$ cumple la condición.
 - Proceso encontrado: P_1

	R_{1}	R_{2}	$R_{\overline{3}}$	R_{4}
D —	2	0	1	0
R =	1	0	1	0
	2	1	0	0

A =

- 2. Si se encuentra el proceso, sumar la *i-ésima* fila de *C* a *A*
- En este punto P_1 se ejecuta y devuelve todos los recursos.
- Se marca P_1 como proceso completado.
- En este ejemplo:
 - La fila $C_1 = [0, 0, 1, 0]$
 - Se suma $C_1 + A$
 - Nuevo valor de A = [4, 2, 3, 1]

Vector de recursos disponibles

R_{1}	R_2	R_3	R_{4}
4	2	2	1

Matriz de asignaciones actuales

R_1	R_{2}	R_3	R ₄
0	0	1	0
2	0	0	1
0	1	2	0

- Todos los procesos se ejecutaron y el sistema no entró en interbloqueo.
 - Todos los procesos se marcaron como completados.
- Si al final de ejecutar el algoritmo, quedan procesos sin marcar, dichos procesos **están interbloqueo**.

- Al principio todos los procesos están sin marcar
 - 1. Buscar un proceso desmarcado P_i para el que la i-ésima fila de R sea menor o igual A.
 - 2. Si P_i se encuentra, sumar la i-ésima fila de C a A, marcar el proceso y regresar al paso No. 1.
 - 3. Si P_i no se encuentra, el algoritmo termina y los proceso no marcados están en interbloqueo.

Recuperación de interbloqueo

Expropiación

- Quitar temporalmente un recurso asignado a un proceso y entregarlo a otro proceso.
- No es un procedimiento simple.
- Depende del tipo de recurso.
- Se debe elegir correctamente cuál proceso se suspende para quitar con facilidad un recurso

Recuperación de interbloqueo

Retroceso

- Establecer (guardar) puntos de comprobación de manera periódica.
- Guardar estados del sistema para poder devolverse en caso de un interbloqueo.
- Tomar una instantánea del sistema en un momento dado.
- Guardar la imagen de memoria
- Guardar el estado del recurso: qué recursos están asignados al proceso.
- Se mantiene las instantáneas (no sobrescribir)
- Detección de interbloqueo devolver a un estado anterior y reasignar recursos para evitar la situación de interbloqueo.

Recuperación de interbloqueo

Eliminar procesos

- La estrategia más cruda y simple
- Romper el ciclo: eliminar procesos que estén en un ciclo de interbloqueo
- Elegir un proceso que se pueda eliminar sin efectos dañinos para el sistema
- P. Ej.: proceso que agrega un 1 a un registro en una BD (NO)

Referencias

 Tanenbaum, A. S. (2009). Detección y recuperación de un interbloqueo. In Sistemas Operativos Modernos (3rd ed., pp. 442–448). Pearson Educación.