

SPECIFICATION FOR LCD Module KD018QQTBN009-RT

MODULE:	KD018QQTBN009-RT
CUSTOMER:	

REV	DESCRIPTION	DATE
1.0	FIRST ISSUE	2017.03.13

STARTEK	INITIAL	DATE
PREPARED BY		
CHECKED BY		
APPROVED BY		

CUSTOMER	INITIAL	DATE
APPROVED BY		

Part. No	KD018QQTBN009-RT	REV	V1.0	F	Page 1 of 31	
	普 夕 庆 方	上 #	日 / 北	古特小县	口 孙 文 △	

Revision History

Date	Rev. No.	Page	Summary
2017.03.13	V1.0	ALL	FIRST ISSUE
			601
			, and the second
			9
			3
		* *	
	0		
y			

Part. No	KD018QQTBN009-RT	REV	V1.0	ı	Page 2 of 31
	常备库存	长其	用供货	支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

Contents

*	Descript	ion				4
1.	Block [Diagram				5
2.	Outline	dimension				6
4.	LCD O	ptical Characteris	tics			9
	4.1 Option	cal specification				9
	4.2 Mpag	suring Condition				a
	4.3 Meas	suring Equipment				9
5 .	Electri	cal Characteristic	s			11
	5.1 Abso	olute Maximum Ratir	ng (Ta=25 \	/SS=0V)		11
	5.2 DC I	Electrical Characteris	stics		0,	11
	5.3 LED	Backlight Character	istics			12
6.	TP Fea	ture				14
	6.1 Cond	ditions of use and s	torage			14
	6.2 Elect	trical property				14
	6.3 Mech	hanical property				15
	6.4 Option	cal property		<u>></u>		15
7 .	AC Cha	aracteristic				16
	7.1 Disp	lay Parallel 8/16-bit	Interface Ti	iming Chara	cteristics (8080 system)	16
	7.2 Disp	lay Serial Interface	Timing Cha	racteristics	(3-line SPI system)	18
	7.3Displa	ay Serial Interface T	iming Char	acteristics (4-line SPI system)	19
			_			
	7.5 Rese	et Timing Characteri	stics			21
8.	LCD M	odule Out-Going	Quality Le	evel		23
	8.1 VISU	IAL & FUNCTION IN	SPECTION	STANDARD		23
	8.1.1 l	nspection conditions		•••••		23
	8.1.2 [Definition				23
	8.1.3 9	Sampling Plan				24
	8.1.4 (Criteria (Visual)				25
9.	Reliabil	ity Test Result				29
	9.1 Cond	dition				29
10	. Cautio	ons and Handling	Precaution	ns		30
	10.1 Har	ndling and Operating	the Modu	le		30
	10.2 Sto	rage and Transporta	tion			30
Γ		L/D040007731200 77	DE) /	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
	Part. No	KD018QQTBN009-RT	REV	V1.0	Page 3 of 31	

长期供货

Long Time supply

支持小量

NO MOQ

品种齐全

In Full Range

常备库存

Stock For Sale

* Description

This is a color active matrix TFT (Thin Film Transistor) LCD (liquid crystal display) that uses amorphous silico n TFT as a switching device. This model is composed of a Transmissive type TFT-LCD Panel, driver circuit, back-light unit. The resolution of a 1.77'TFT-LCD contains 128x168 pixels, and can display up to 65K/262K colors.

* Features

-Low Input Voltage: 3.3V(TYP)

-Display Colors of TFT LCD: 65K colors

-Interface: 8/16Bit MCU Interface

tures	ures								
Input Voltage: 3.3V(TYP)									
ay Colors of TFT LCD: 65K colors									
ace: 8/16Bit MCU Interface		,							
3-line/4-line Serial Inter	face								
General Information	Specification	- Unit	Note						
Items	Main Panel	Oilit	NOLE						
Display area(AA)	28.03(H)*35.04(V) (1.77inch)	mm	-						
Driver element	TFT active matrix	-	-						
Display colors	65K	colors	-						
Number of pixels	128(RGB)*160	dots	-						
Pixel arrangement	RGB vertical stripe	-	-						
Pixel pitch	0.219(H)*0.219(V)	mm	-						
Viewing angle	12:00	o'clock	-						
Controller IC	ST7735S	-	-						
Display mode	Transmissive/Normally White	-	-						
Operating temperature	-20∼ + 70	$^{\circ}$	-						
Storage temperature	-30∼+80	${\mathbb C}$	-						

* Mechanical Information

	Item	Min.	Тур.	Max.	Unit	Note
Modulo	Horizontal(H)		34.7		mm	-
Module size	Vertical(V)		46.7		mm	-
Size	Depth(D)		2.5		mm	-
	Weight		TBD	TBD	g	-

Part. No	KD018QQTBN009-RT	REV	V1.0	F	Page 4 of 31
	常备库存	长其	用供货	支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

1. Block Diagram

1200001.

Part. No	KD018QQTBN009-RT	REV	V1.0	1	Page 5 of 31	
	常备库存	长其	用供货	支持小量	品种齐全	

Stock For Sale

Long Time supply

NO MOQ

In Full Range

2. Outline dimension

_							
	Part. No	KD018QQTBN009-RT	REV	V1.0		Page 6 of 31	
-	常备库存		长其	月供 货	支持小量	品种齐全	
		Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

3. Input terminal Pin Assignment

NO.	SYMBOL	DISCRIPTION	I/O
1	LEDA	Anode pin of backlight	Р
2	LEDK1	Cathode pin OF backlight	Р
3	LEDK2	Cathode pin OF backlight	Р
4	NC	NC	
5	GND	Ground.	Р
6	VCI/VCC	Supply voltage(3.3V).	Р
7	IOVCC	Supply voltage(1.65-3.3V).	Р
8	IMO	MCU Parallel Interface Bus select IM0='0', 8-bit Parallel IM0='1', 16-bit Parallel	1
9	IM2	MCU Parallel Interface Bus and Serial Interface select IM2='1', Parallel Interface IM2='0', Serial Interface	
10	SPI4W	- SPI4W='0', 3-line SPI Enable SPI4W='1', 4-line SPI EnableIf Not Used, Please fix this Pin at DGND Level.	ı
11-26	DB15-DB0	DB[15:0] are used as MCU parallel interface data bus. DB0 is the serial input/output signal in serial interface mode. Fix to GND level when not in use	1/0
27	RD	Serves as a read signal and MCU read data at the rising edge. fix this pin at VCI or GND when not in use.	I
28	RS(SPI-SCL)	-Display data/command selection pin in parallel interfaceThis pin is used to be serial interface clock. DC='1': display data or parameter. DC='0': command dataIf not used, please fix this pin at VDDI or DGND.	I
29	RESET	This signal will reset the device and must be applied to properly initialize the chip.	I
30	cs	Chip select input pin ("Low" enable). fix this pin at VCI or GND when not in use.	I

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 7 of 31	
	常备库存	长 其	用供货	支持小量	品 种 齐 全	
	Stock For Sale	Long T	ime supply	NO MOO	In Full Range	

31	WR(SPI-RS)	 -Write enable in MCU parallel interface. - Display data/command selection pin in 4-line serial interface. - Second Data lane in 2 data lane serial interface. -If not used, please fix this pin at VDDI or DGND. 	1
32	YU	Touch panel Top Film Terminal	A/D
33	XL	Touch panel LIFT Glass Terminal	A/D
34	YD	Touch panel Bottom Film Terminal	A/D
35	XR	Touch panel Right Glass Terminal	A/D

150/15169A9.

1200001.

Part. No	KD018QQTBN009-RT	REV	V1.0	P	Page 8 of 31	
	堂 各 库 存	长 #	日 供 货	古持小量	品 种 齐 仝	

Stock For Sale

Long Time supply

NO MOQ

品 种 齐 全 In Full Range

4. LCD Optical Characteristics

4.1 Optical specification

Item		Symbol	Condition	Min.	Тур.	Max.	Unit.	Note
Contrast Ratio		CR	Θ=0	400	500			
Response	Rising	T_R	Normal viewing		2	4	10,3	
time	Falling	T _F	angle		6	12	msec	
Color gam	nut	S(%)			60		%	
		W _X		0.283	0.303	0.323		
	White	W _Y		0.305	0.325	0.345		
	Red	R _X		0.606	0.626	0.646		
Color Filter		R _Y		0.314	0.334	0.354		
Chromacicity		G _X		0.257	0.277	0.297		
	Green	G_Y		0.529	0.549	0.569		
		B _X		0.122	0.142	0.162		
	Blue	B _Y		0.102	0.122	0.142		
		ΘL		35	45			
	Hor.	ΘR	00	35	45			
Viewing angle		Θ	CR>10	35	45			
	Ver.	Θρ		10	20			
Option View D	irection							

4.2 Measuring Condition

■ Measuring surrounding: dark room

■ Ambient temperature: 25±2°C

■ 15min. warm-up time.

4.3 Measuring Equipment

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 9 of 31
常备库存		长其	用供货	支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

■ FPM520 of Westar Display technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics.

Note (1) Definition of Viewing Angle:

Note (2) Definition of Contrast Ratio (CR) : measured at the center point of panel

Part. No	KD018QQTBN009-RT	REV	V1.0	Page 10 of 31		
	常备库存	长期	用供货	支持小量	品种齐全	

Stock For Sale

5. Electrical Characteristics

5.1 Absolute Maximum Rating (Ta=25 VSS=0V)

Characteristics	Symbol	Min.	Max.	Unit
Digital Supply Voltage	VCC	-0.3	4.6	V
Digital interface supple Voltage	IOVCC	-0.3	4.6	V
Operating temperature	Top	-20	+70	${\mathbb C}$
Storage temperature	T _{ST}	-30	+80	$^{\circ}$

NOTE: If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

5.2 DC Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Note
Digital Supply Voltage	VCC	2.4	2.8	3.3	V	
Digital interface supple Voltage	IOVCC	1.65	1.8	3.3	V	
Normal mode Current consumption	IDD		2		mA	
Lavel input voltage	VIH	0.7IOVCC		IOVCC	V	
Level input voltage	VIL	GND		0.3IOVCC	V	
Lovel output valtage	Vон	0.8IOVCC		IOVCC	V	
Level output voltage	Vol	GND		0.2IOVCC	V	

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 11 of 31
	常备库存	长 其	用供货	支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

5.3 LED Backlight Characteristics

The back-light system is edge-lighting type with 2 chips White LED

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Forward Current	lF	35	40		mA	
Forward Voltage	VF		3.2		V	23
LCM Luminance	Lv	400			cd/m2	Note3
LED life time	Hr	50000		,0	Hour	Note1,2
Uniformity	AVg	80		0	%	Note3

Note (1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition:

Ta=25±3 ℃, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25℃ and IL=80mA. The LED lifetime could be decreased if operating IL is larger than 80mA. The constant current driving method is suggested.

	Part. No	KD018QQTBN009-RT	REV	V1.0		Page 12 of 31	
常备库存		长 期 供 货		支持小量	品种齐全		
Stock For Sale		Long T	Long Time supply		In Full Range		

NOTE 3: Luminance Uniformity of these 9 points is defined as below:

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Luminance Total Luminance of 9 points 9

Part. No	KD018QQTBN009-RT	REV	V1.0	I	Page 13 of 31
常备库存		长期供货		支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

6. TP Feature

6.1 Conditions of use and storage

Item	Value(condition)	Note	
Temperature range upon	Humidity: 20%~90% non dew,	In a simple substance	
operation	condensation -20°C~70°C	O	
Temperature range upon	Humidity: 20%~90% non	In a simple substance	
storage	dew, condensation -30°C~80°C	99	

6.2 Electrical property

Item	Value	Note
Maximum voltage	DC5V	
Resistance between terminals	X direction[Film side]:200-600Ω	
	Y direction [Glass side]:300-900Ω	
		Connect X + \sim X- and Y+ \sim Y-,
Insulation resistance	DC 25V 20MΩor above	apply 25VDC Between X and Y for
		perform measurements
Chattering	10 msec or below	
Rating	Voltage is DC 5V	

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 14 of 31
	常备库存	长其	长期供货		品种齐全
	Stock For Sale	Long T	Long Time supply		In Full Range

6.3 Mechanical property

Item	Item Performance		Note
Input method	Used of an exclu	sive pen or finger	
	Exclusive pen 60-100g or below		Operation and measurement with a pen must be carried out under the following tip conditions: Stylus pen material: POM(ployacetal).
Load upon operatio			Tip: Diameter 3.0mm, SR 0.8 mm
n	Finger	60-100g or below	Operations and measurement methods simula ted for a finger must be carried out under the following tip conditions. Material:Silicon rubber (Hardness: 30°Hs) T ip: Diameter 12.0 mm, SR 12.5mm
Surface hardness	Pencil hardness :	3H or above	It complies with the way of test method JIS K5400.

6.4 Optical property

Item	Performance	Note
Total light transmittance	80% or above	JIS K7105
Haze	5% or below	JIS K7136
Film specification	Polished type with hard coated	
0,	surface	

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 15 of 31
常备库存		长期供货		支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

7. AC Characteristic

7.1 Display Parallel 8/16-bit Interface Timing Characteristics (8080 system)

Signal	Symbol	Parameter	min	max	Unit	Description
DCV	tast	Address setup time	0	-	ns	
DCX	taht	Address hold time (Write/Read)	10	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
D[47.0]	tdst	Write data setup time	10	-	ns	
D[17:0],	tdht	Write data hold time	10	-	ns	For maximum CL 20nF
D[15:0], D[8:0],	trat	Read access time	-	40	ns	For maximum CL=30pF For minimum CL=8pF
D[8:0], D[7:0]	tratfm	Read access time	-	340	ns	FOI IIIIIIIIIIIIII CL=opr
<i>D[7.0]</i>	trod	Read output disable time	20	80	ns	

Note: Ta = -30 to 70 ℃, IOVCC=1.65V to 2.8V, VCI=2.6V to 3.3V, GND=0V

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 16 of 31	
常备库存		长 期 供 货		支持小量	品种齐全	
Stock For Sale Long Tim		ime supply	NO MOQ	In Full Range		

CSX timings:

Note: Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

Write to read or read to write timings:

Note: Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 17 of 31
常备库存		长其	用供货	支持小量	品种齐全

Stock For Sale

Long Time supply

NO MOQ

In Full Range

7.2 Display Serial Interface Timing Characteristics (3-line SPI system)

Signal	Symbol	Parameter	Min	Max	Unit	Description
	T _{CSS}	Chip select setup time (write)	15		ns	
	T _{CSH}	Chip select hold time (write)	15		ns	
CSX	T _{css}	Chip select setup time (read)	60		ns	
	T _{scc}	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	T _{SCYCW}	Serial clock cycle (Write)	66		ns	
	T _{SHW}	SCL "H" pulse width (Write)	15		ns	
SCL	T _{SLW}	SCL "L" pulse width (Write)	15		ns	
SCL	T _{SCYCR}	Serial clock cycle (Read)	150		ns	
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	
	T _{SLR}	SCL "L" pulse width (Read)	60		ns	
SDA	T _{SDS}	Data setup time	10		ns	
(DIN)	T _{SDH}	Data hold time	10		ns	
DOLIT	T _{ACC}	Access time	10	50	ns	For maximum CL=30pF
DOUT	Тон	Output disable time	15	50	ns	For minimum CL=8pF

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 18 of 31	
	常备库存	长 期	用供货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

7.3Display Serial Interface Timing Characteristics (4-line SPI system)

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 $^{\circ}\mathrm{C}$

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
	T _{CSS}	Chip select setup time (write)	15		ns	
	T _{CSH}	Chip select hold time (write)	15		ns	
CSX	T _{CSS}	Chip select setup time (read)	60		ns	
	T _{SCC}	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	T _{SCYCW}	Serial clock cycle (Write)	66		ns	urite command 9 data
	T _{SHW}	SCL "H" pulse width (Write)	15		ns	-write command & data
SCL	T _{SLW}	SCL "L" pulse width (Write)	15		ns	ram
SCL	T _{SCYCR}	Serial clock cycle (Read)	150		ns	-read command & data
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	ram
	T _{SLR}	SCL "L" pulse width (Read)	60		ns	Talli
D/CX	T _{DCS}	D/CX setup time	10		ns	
D/CA	T _{DCH}	D/CX hold time	10		ns	
SDA	T _{SDS}	Data setup time	10		ns	
(DIN)	T _{SDH}	Data hold time	10		ns	
DOUT	T _{ACC}	Access time	10	50	ns	For maximum CL=30pF
DOOT	T _{OH}	Output disable time	15	50	ns	For minimum CL=8pF

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 19 of 31
常备库存		长 期 供 货		支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

7.4 Parallel RGB Interface Timing Characteristics

Signal	Symbol	Parameter		MAX	Unit	Description
HSYNC,	T _{SYNCS}	VSYNC, HSYNC Setup Time	30	-	ns	
VSYNC	_					
ENABLE	T _{ENS}	Enable Setup Time	25	-	ns	
	T _{ENH}	Enable Hold Time	25	-	ns	
	PWDH	DOTCLK High-level Pulse Width	60	-	ns	
DOTCLK	PWDL	DOTCLK Low-level Pulse Width	60	-	ns	
DOTOLIK	T_{CYCD}	DOTCLK Cycle Time	120	-	ns	
	Trghr, Trghf	DOTCLK Rise/Fall time	-	20	ns	
DB T _{PDS} PD Data Setup T		PD Data Setup Time	50	-	ns	
DD	T_{PDH}	PD Data Hold Time	50	-	ns	

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 20 of 31	
	常备库存	长 其	用供货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

7.5 Reset Timing Characteristics

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=-30 ~ 70 ℃

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	-	us
RESX	TDT Poset cancel	Docat cancol	-	5 (Note 1, 5)	ms
	TRT Reset cancel			120 (Note 1, 6, 7)	ms

Notes:

- The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
 - 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
 - 4. Spike Rejection also applies during a valid reset pulse as shown below:

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 21 of 31
常备库存		长 期 供 货		支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

1203001: 5008

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 22 of 31	
	常备库存	长 其	用供货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

8. LCD Module Out-Going Quality Level

8.1 VISUAL & FUNCTION INSPECTION STANDARD

8.1.1 Inspection conditions

Inspection performed under the following conditions is recommended.

Temperature : 25±5°C

Humidity: 65%±10%RH

Viewing Angle: Normal viewing Angle.

Illumination: Single fluorescent lamp (300 to 700Lux)

Viewing distance:30-50cm

8.1.2 Definition

Zone A: Effective Viewing Area(Character or Digit can be seen)

Zone B: Viewing Area except Zone A

Zone C: Outside (Zone A+Zone B) which can not be seen after assembly by customer.)

Note:

As a general rule ,visual defects in Zone C can be ignored when it doesn't effect product function or appearance after assembly by customer.

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 23 of 31
常备库存		长 期 供 货		支持小量	品种齐全
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range

8.1.3 Sampling Plan

According to GB/T 2828-2003 ; , normal inspection, Class $\,$ II AQL:

Major defect	Minor defect	
0.65	1.5	

LCD: Liquid Crystal Display, TP: Touch Panel, LCM: Liquid Crystal Module

No	Items to be	Criteria	Classification of
	inspected		defects
		1) No display, Open or miss line	.
1	Functional defects	2) Display abnormally, Short	
'	Functional defects	3) Backlight no lighting, abnormal lighting.	
		4) TP no function	Major
2	Missing	Missing component	
3	Outline dimension	Overall outline dimension beyond the drawing	
3	Outline dimension	is not allowed	
4	Color tone	Color unevenness, refer to limited sample	
5	Soldering	Good soldering , Peeling off is not allowed.	Minor
ာ	appearance		Minor
6	LCD/Polarizer/TP	Black/White spot/line, scratch, crack, etc.	

	•
and '	
12	
y	

Part. No	KD018QQTBN009-RT	REV	V1.0	F	Page 24 of 31	
常备库存		长 其	月供货	支持小量	品种齐全	

Stock For Sale Lor

Long Time supply

NO MOQ

In Full Range

8.1.4 Criteria (Visual)

Number	Items	Criteria(mm)
1.0 LCD Crack/Broken NOTE: X: Length	(1) The edge of LCD broken	X Y Z
Y: Width Z: Height L: Length of ITO, T: Height of LCD	(2)LCD corner broken (3) LCD crack	Simply of the seal X

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 25 of 31	
	常备库存	长其	用供货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

Number	Items		Criteria (mm)				
2.0	Spot defect	① light dot (LCD	/TP/Polarizer b	lack/white	spot,	light dot, p	oinhole, dent,
	<u> </u>	stain)					1
		Zone	Ac	cep able	Qty		
	 	Size (mm)	Α	В		С	
		Ф≤0.10	Igno	re			
		0.10<Φ≤0.20	3(distance	≥ 10mm)			23
	X	0.20<Φ≤0.25	2			Ignor	
	1 0/ 10/2	Ф > 0.25	0			•	
	Ф=(X+Y)/2	②Dim spot(LCD	/TP/Polarizer di	m dot, ligh	nt leaka	ige、dark	spot)
		Zone	Ad	cceptable	Qty		
		Size (mm)	А	В		С	
		Ф≤0.1	Igno	re 💙			
		0.10<Φ≤0.20	3(distance≧ 10mm)			Ignore	
		0.20<Φ≤0.30	2				
		Ф > 0.30	0				
		③ Polarizer accid	ented spot		<u> </u>		1
		Zone	А	cceptable	Qty		
		Size (mm)	А	В		С	
		Φ≤0.2	Igno	ore			
		0.3<Φ≤0.5	2(distance	e≧10mm)		Ignore	
	A	Ф>0.5	0				
	Line defect	7					
	(LCD/TP			Acc	ceptable	e Qty	
_	/Polarizer	Width(mm)	Length(mm	А	В	С	
	black/white	Ф≤0.03	Igno e	Igno	ore		
	line, scratch, stain)	0.03 <w≤0.05< td=""><td>L≤3.0</td><td>N≤</td><td>2</td><td>Ignore</td><td></td></w≤0.05<>	L≤3.0	N≤	2	Ignore	
	,	0.05 <w≤0.08< td=""><td>L≤2.0</td><td>N≤</td><td>2</td><td>1</td><td></td></w≤0.08<>	L≤2.0	N≤	2	1	
		0.08 <w< td=""><td>Def</td><td>ine as spo</td><td>t defect</td><td></td><td></td></w<>	Def	ine as spo	t defect		
							I

Part. No	KD018QQTBN009-RT	REV	V1.0	F	Page 26 of 31	
	常备库存	长 其	用供货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

				Acceptable C	Qtv	
3.0	Polarizer Bubble	Zone Size (mm)	Α	В	С	
3.0	Bubble	Ф≤0.2	lgn	ore		
		0.2<Φ≤0.4	3(distance ≥ 10 m)		Ignoro	
		0.4<Φ≤0.6	2 Ignore		ignore	
		0.6<Ф	()		
4.0	SMT	According to IPC-A-610C class II standard . Function defect and missing part are major defect ,the others are minor defect.				

	1		
	Size Φ(mm)	Acceptable (Qty
	Size Φ(IIIII)	АВ	С
TP bubble/	Ф≤0.1	Ignore	
accidented	0.1<Φ≤0.25	3 (distance≧	Ignore
	0.25<Φ≤0.3	2	
spot	0.3<Ф	0	
	.		
Assembly	beyo	ond the edge of backlig	ht ≤0.15mm
deflection		0	

	oot:
150	3

Part. No	KD018QQTBN009-RT	REV	V1.0	Р	age 27 of 31	
	学 夕 庆 方	レ . 田	1 / 14	士柱小具	口孙文入	

	5.0	TP Related		1規律性
			Newton Ring	Newton Ring area>1/3 TP area NG Newton Ring area≤1/3 TP area
			9	OK 2.排規輸生
				似牛顿环
			TP corner	X Y Z Y
			broken X : length	$X \le 3.0 \text{mm}$ $Y \le 3.0 \text{mm}$ $Z < LCD$ thicknes Z
			Y : width Z : height	Circuitry broken is not allowed.
			TP edge broken	X Y Z
		0	X : length Y : width	X≤6.0mm Y≤2.0mm thicknes Z <lcd< td=""></lcd<>
		090	Z : height	* Circuitry broken is not allowed.
riteria	a (functiona	l items)		

Criteria (functional items)

Number	Items	Criteria (mm)
1	No display	Not allowed
2	Missing segment	Not allowed
3	Short	Not allowed
4	Backlight no lighting	Not allowed
5	TP no function	Not allowed

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 28 of 31	
	常备库存	长 期	月供 货	支持小量	品种齐全	
	Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

9. Reliability Test Result

9.1 Condition

ltem	Item Condition		Test Result	Note
Low Temperature Operating Life test	-20℃, 96HR	3ea	pass	-
Thermal Humidity Operating Life test	70℃90%RH, 96HR	3ea	pass	-
Temperature Cycle ON/OFF test	-20°C ↔ 70°C, ON/OFF, 20CYC	3ea	pass	(1)
High Temperature Storage test	80℃, 96HR	3ea	pass	-
Low Temperature Storage test	-30°C, 96HR	3ea	pass	-
ESD test	150pF, 330Ω, ±6KV(Contact)/± 8KV(Air), 5 points/panel, 10 times/point	3ea	pass	
Thermal Shock Resistance	The sample should be allowed to stand the following 5 cycles of operation: TSTL for 30 minutes -> normal temperature for 5 minutes -> TSTH for 30 minutes -> normal temperature for 5 minutes, as one cycle, then taking it out and drying it at normal temperature, and allowing it stand for 24 hours	3ea	pass	
Box Drop Test	Box Drop Test 1 Corner 3 Edges 6 faces, 66cm(MEDIUM BOX)		pass	-

Note (1) ON Time over 10 seconds, OFF Time under 10 seconds

	` '						
	Part. No	KD018QQTBN009-RT	REV	V1.0		Page 29 of 31	
•		常备库存 长期供货		支持小量	品种齐全		
		Stock For Sale	Long T	ime supply	NO MOQ	In Full Range	

10. Cautions and Handling Precautions

10.1 Handling and Operating the Module

- (1) When the module is assembled, it should be attached to the system firmly.
- Do not warp or twist the module during assembly work.
- (2) Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- (3) Note that polarizer is very fragile and could be easily damaged. Do not press or scratch the surface.
- (4) Do not allow drops of water or chemicals to remain on the display surface.
- If you have the droplets for a long time, staining and discoloration may occur.
- (5) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (6) The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane.
- Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static; it may cause damage to the CMOS ICS.
- (9) Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (10) Do not disassemble the module.
- (11) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (12) Pins of I/F connector shall not be touched directly with bare hands.
- (13) Do not connect, disconnect the module in the "Power ON" condition.
- (14) Power supply should always be turned on/off by the item 6.1 Power On Sequence &6.2 Power Off Sequence

10.2 Storage and Transportation.

- (1) Do not leave the panel in high temperature, and high humidity for a long time.
- It is highly recommended to store the module with temperature from 0 to 35 ℃ and relative humidity of less than 70%
- (2) Do not store the TFT-LCD module in direct sunlight.
- (3) The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- (4) It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module.
- In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- (5) This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.

Part. No	KD018QQTBN009-RT	REV	V1.0		Page 30 of 31	
	常备库存 Stock For Sale		月供货 ime supply	支持小量 NO MOQ	品 种 齐 全 In Full Range	

11. Packing

----TBD-----

Teolite 160 Mes.

1200001.

Part. No	KD018QQTBN009-RT	REV	V1.0	F	Page 31 of 31
	常备库存	长 其	用供货	支持小量	品种齐全

Stock For Sale

Long Time supply

NO MOQ

In Full Range