資料科學

Data Science

作業六 HW6

電機所 R11921038 江讀晉 2022/12/22

Problem. Image Classification with Convolutional Neural Networks

0. Problem

- Train CNN models to recognize handwritten digits (0~9).
- Dataset: MNIST-M, which contains 70k images of handwritten digits from "0" to "9".

1. Hyperparameter

Parameter	Value	
Number of epochs	num_epochs	50
Learning rate	Ir	0.001
Decay rate of learning rate	lr_gamma	0.911
Decay step of learning rate	lr_decay_step	1
Optimizer	Adam	
Momentum	momentum	0.95
Decay rate of weight	weight_decay	0.0005
Batch size of training dataloader	train_batch_size	256

Table 1. Configure of hyperparameter

超參數的選擇,目標是以在 50 個 epoch 內得到可行的結果。將 learning rate 設計為由 1x10⁻³ 降至 1x10⁻⁵,並計算對應的 lr_gamma 和 lr_decay_step,使其可以達到合理的遞減效果。此外, momentum 和 weight_decay 皆使用預設的參數,並無特別改動。Optimizer,從原本的 SGD 改為 同時使用 first 和 second momentum 的 Adam,一般來說,Adam 的效果會比 SGD 好。

2. Architecture of the model

ResNet18_modified((model): ResNet(

(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace=True)

(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

```
(layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Sequential(
    (0): Linear(in_features=128, out_features=64, bias=True)
    (1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (3): Linear(in_features=64, out_features=10, bias=True)
  )
)
```

Figure 1. Architecture of the model

3. Explanation of the design of the model

整體而言,我是以已定義好的 ResNet18 [1] 為藍本,並去除原本的 layer3 和 layer4(可以參考 Figure 2),並重新定義最後的 fully-connected layer,詳見前段的 Figure 1。如此一來,在這次作業所使用的 MNIST-M 資料集上可以維持不錯的 accuracy 之外也能得到較快的 training latency。

而 data preprocessing 的部分,無論是 training 或是 validation step,都是將原本的影像 resize 至 64×64 ,並進行 normalization。

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112		7×7, 64, stride 2				
			3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $	
conv4_x	14×14	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2 $	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	
	1×1		average pool, 1000-d fc, softmax				
FLO	OPs	1.8×10^9	3.6×10^{9}	3.8×10^9	7.6×10^9	11.3×10 ⁹	

Figure 2. layer3 和 layer4 為表格中 conv4_x 和 conv5_x [1] (此部分可以對照 Figure 1 的 depth of feature map)

4. Plot the learning curve during training (CrossEntropy Loss)

Figure 3. The curve of binary cross-entropy training loss

5. Plot the confusion matrix for validation set, and briefly explain the observation

Figure 4. The confusion matrix of the validation dataset (15000 instances in total) 從 Figure 3 confusion matrix 的 diagonal 項可以看出,在扣除掉預測錯誤的部分之後,label 為 1 的 test image 佔最多數,不過整體 10 個類別的資料量仍分佈平均。

至於深色部分,也就是 predicted label 和 true label 不一致的部分,單筆最大值不超過整體資料量的 0.1%,結果還算理想,但仍有進步的空間。比如,將 9 預測錯誤的資料數就達 30 筆以上,其中預測成 4 (15 筆)和 7 (12 筆)佔最多數,而將 7 預測為 9 的資料數也有 10 筆,這裡顯然是可以著手的地方。或許,改變 data augmentation 能夠改善這樣的問題。

Reference

[1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.