Anàlisi Complexa - Laboratori 7

Christian José Soler

28 de abril de 2016

1.	Sigui $\Omega \subset \mathbb{C}$ una	regió que conté	el disc unita	t tancat \mathbb{D} .	Sigui f ur	na funció	holomorfa en
	Ω tal que $f(z) \neq$	$0 \text{ per a } z \in \Omega \setminus \{0\}$	$\{0\}$ i a més $ f $	z(z) = 1 si	z = 1.		

- a) Proveu que existeixen $n \in \mathbb{N} \cup \{0\}$ i una funció holomorfa g en Ω tals que $g(0) \neq 0$ i $f(z) = z^n g(z)$.
- b) Demostreu que |g(z)| = 1 si $z \in \mathbb{D}$.
- c) Deduïu que existeix $\lambda \in \mathbb{C}$ amb $|\lambda| = 1$ tal que $f(z) = \lambda z^n$ si $z \in \mathbb{D}$.
- d) Es compleix la igualtat en c) per a tot $z \in \Omega$?
- 2. Sigui $f:\mathbb{D}\to\mathbb{D}$ una funció holomorfa tal que f(0)=0. Proveu que
 - a) $|f(z)| \leq |z|$ per tot $z \in \mathbb{D}$ i $|f'(0)| \leq 1$
 - b) Si a més, |f(z)|=|z| per algun $z\in\mathbb{D}\backslash\{0\}$ o bé |f'(0)|=1, aleshores $f(z)=\lambda z$ per alguna $\lambda\in\mathbb{C}$ amb $|\lambda|=1$.