Perhitungan Plat Lantai

Material

Mutu beton,

Kuat tekan beton,

Modulus elastisitas beton,

Tegangan leleh baja untuk tulangan lentur,

K =	350,00	kg/cm ²
$f_c' =$	29,05	MPa
Ec = 4700 * $\sqrt{\text{fc'}}$ =	25332	MPa
$f_y =$	360	MPa

Data Plat Lantai

Panjang bentang plat arah x,

Panjang bentang plat arah y,

Tebal plat lantai,

Kategori Plat lantai

		_
$L_x =$	2,10	m
$L_y =$	5,40	m
h =	250	mm
$L_y / L_x =$	2,57	

Satu Arah Karena Ly/Lx>2.0

Diameter rencana tulangan atas (daerah tumpuan) yang digunakan,

Diameter rencana tulangan atas yang digunakan,

Diameter rencana tulangan bawah yang digunakan,

Tebal bersih selimut beton,

Ø =	10	mm
Ø =	10	mm
Ø =	10	mm
t _s =	25	mm

• Pembebanan

→ Beban Mati (Dead Load)

Berat sendiri plat beton Berat spesi tebal 3cm Berat keramik / granit

Berat plafon & penggantung

Berat instalasi ME

Total beban mati,

→ Beban Hidup (*Live Load*)

Beban Orang & Perlengkapan

 $LL = 37,500 \text{ kN/m}^2$

→ Beban Ultimate Rencana

Beban rencana terfaktor,

$$Q_u = 1.2 * DL + 1.6 * LL = 67,838 kN/m^2$$

Momen Pada Plat

Momen rencana tumpuan (maksimum) plat,

Momen rencana lapangan (maksimum) plat,

$$M_{u} = 1/9 * Qu * Lx^2 =$$
 33,24 kNm/m $M_{u} = 1/11 * Qu * Lx^2 =$ 27,20 kNm/m

• Penulangan

Untuk : $f_c' \le 30 \text{ MPa}$,

Untuk : $f_c' > 30 \text{ MPa}$,

 $\beta_1 = 0.85 - 0.05 * (f_c' - 30) / 7 =$

Faktor bentuk distribusi tegangan beton,

 $\beta_1 = 0.85$

0.85

Rasio tulangan pada kondisi balance,

 $\rho_b = \beta_1^* 0.85 * f_c' / f_v * 600 / (600 + f_v) = 0.0364$

Faktor tahanan momen maksimum,

 $R_{\text{max}} = 0.75 * \rho_b * f_v * [1 - \frac{1}{2} * 0.75 * \rho_b * f_v / (0.85 * f_c')] =$

7,8784

0,90

Faktor reduksi kekuatan lentur,

Jarak tulangan terhadap sisi luar beton,

 $d_s = t_s + \varnothing / 2 =$

30,0 mm 220,0 mm

mm

Tebal efektif plat lantai,

Ditinjau plat lantai selebar 1 m,

→ Tulangan Tumpuan Atas (Tulang	n Negatif)			
Momen nominal rencana,		$M_n = M_u/\phi =$	36,934	kNm
Faktor tahanan momen,	$R_n = N$	$M_n * 10^{-6} / (b * d^2) =$	0,76310	
	R_n <	R_{max}	(OK)	
Rasio tulangan yang diperlukan :				
f	= 0.85 * f_c' / f_y * [1 - $\sqrt{1 - 2}$ *	R_n / ($0.85 * f_c$ ')] =	0,0022	
Rasio tulangan minimum,		$ ho_{min}$ =	0,0025	
Rasio tulangan yang digunakan,		ρ =	0,0025	
Luas tulangan yang diperlukan,	A _{s perlu tulang}	$_{an bawah} = \rho * b * d =$	550,00	mm ²
Jarak tulangan yang diperlukan,	S =	π / 4 * \varnothing ² * b / A_s =	143	mm
Jarak tulangan maksimum,		$s_{max} = 2 * h =$	500	mm
Jarak tulangan harus digunakan,		S =	143	mm
Diambil jarak tulangan :		s =	110	mm
Digunakan tulangan wiremesh,	Ø 10		110	
Luas tulangan terpakai,	A _{s Pasang}	$= \pi / 4 * \varnothing^2 * b / s =$	714	mm ²
	As _{Pasang} >	As _{Perlu}	(OK)	

→ Tulangan Atas (Wiremesh)			<u>-</u>		
Rasio tulangan minimum,			ρ_{min} =	0,0025	
Luas tulangan minimum,		A_{sPe}	$_{\text{erlu}} = \rho_{\text{min}} * b * d = $	550	mm ²
Jarak tulangan yang diperlukan,		$s = \pi$	$/ 4 * \varnothing^2 * b / A_s =$	143	mm
Jarak tulangan maksimum,			$s_{max} = 2 * h =$	500	mm
Jarak tulangan harus digunakan,			S =	143	mm
Diambil jarak tulangan :		\rightarrow	S =	90	mm
Digunakan tulangan wiremesh,	М	10	-	90	
Luas tulangan terpakai,		A _{s Pasang} =	$\pi / 4 * \varnothing^2 * b / s =$	873	mm ²
	As _{Pasang}	>	As _{Perlu}	(OK)	

Kontrol Lendutan						
Modulus elastis beton,	$E_c = 4700^* \sqrt{f_c'} = $	25332	МРа			
Modulus elastis baja tulangan,	E _s =	200000	MPa			
Beban merata (tidak terfaktor) pada plat,	$Q = Q_D + Q_L =$	44,031	N/mm			
Panjang bentang plat,	$L_x =$	2100	mm			
Batas lendutan maksimum yang diijinkan,	$L_x / 240 =$	8,750	mm			
Momen inersia brutto penampang plat,	$I_g = 1/12 * b * h^3 =$	1302083333	mm ³			
Modulus keruntuhan lentur beton,	$f_r = 0.7 * \sqrt{fc'} =$	3,772863634	МРа			
Nilai perbandingan modulus elastis,	$n = E_s / E_c =$	7,90]			
Jarak garis netral terhadap sisi atas beton,	$c = n * A_s / b =$	5,927	mm			
Momen inersia penampang retak yang ditransformasikan ke beton dihitung sbb. :						
	$I_{cr} = 1/3 * b * c^3 + n * A_s * (d - c)^2 =$	271699031	mm ⁴			
	$y_t = h / 2 =$	125	mm			
Momen retak :	$M_{cr} = f_r * I_g / y_t =$	39300663	Nmm			

Momen maksimum akibat beban (tanpa faktor beban): $M_a = 1 / 8 * Q * L_x^2 = 24272272$ Nmm Inersia efektif untuk perhitungan lendutan, $I_e = (M_{cr}/M_a)^3 * I_g + [1 - (M_{cr}/M_a)^3] * I_{cr} =$ 4645586039 mm^4 Lendutan elastis seketika akibat beban mati dan beban hidup : $\delta_{e} = 5 / 384 * Q * L_{x}^{4} / (E_{c} * I_{e}) =$ 0,095 mm $\rho = A_s / (b * d) =$ Rasio tulangan slab lantai: 0.0034 Faktor ketergantungan waktu untuk beban mati (jangka waktu > 5 tahun), nilai : 2,0 $\lambda = \zeta / (1 + 50 * \rho) =$ 1,7085 Lendutan jangka panjang akibat rangkak dan susut: $\delta_{g} = \lambda * 5 / 384 * Q * L_{x}^{4} / (E_{c} * I_{e}) =$ 0,162 mm $\delta_{tot} = \delta_{e} + \delta_{g} =$ Lendutan total, 0,257 mm $L_x/240$ Syarat: δ_{tot} ≤

<

0,257

8,750

AMAN (OK)