Contents

Pı	Preface							
Ι	Preliminaries							
1	Mathematical preliminaries							
	1.1	Linear	algebra and differentiable calculus	3				
		1.1.1	Minimization of quadratic forms	3				
		1.1.2	Inverting a 2×2 matrix	4				
		1.1.3	Inverting matrices defined by blocks, matrix inversion lemma	4				
		1.1.4	Eigenvalue and singular value decomposition	6				
		1.1.5	Differential calculus	7				
	1.2	Conce	entration inequalities	7				
		1.2.1	Hoeffding's inequality	9				
		1.2.2	McDiarmid's inequality	12				
		1.2.3	Bernstein's inequality (\blacklozenge)	14				
		1.2.4	Expectation of the maximum	16				
		1.2.5	Estimation of expectations through quadrature (\blacklozenge)	17				
		1.2.6	Concentration inequalities for matrices $(\blacklozenge \blacklozenge)$	18				
2	Introduction to supervised learning							
	2.1	From	training data to predictions	22				
	2.2	Decisio	on theory	25				
		2.2.1	Loss functions	25				
		2.2.2	Risks	26				
		2.2.3	Bayes risk and Bayes predictor	27				
	2.3	Learni	ing from data	30				
		2.3.1	Local averaging	30				
		2.3.2	Empirical risk minimization	31				
	2.4	Statist	tical learning theory	33				
		2.4.1	Measures of performance	35				
		2.4.2	Notions of consistency over classes of problems	35				
	2.5	No fre	e lunch theorems (\spadesuit)	36				

ii CONTENTS

	2.6	Quest fo	r adaptivity	38
	2.7	Beyond	supervised learning	39
	2.8	Summar	y - book outline	40
3	Line	ear least	-squares regression	43
	3.1		tion	43
	3.2		uares framework	44
	3.3		v least-squares (OLS) estimator	45
	0.0		Closed-form solution	45
			Geometric interpretation	46
			Iumerical resolution	47
	3.4		al analysis of OLS	47
	3.5		sign setting	48
	0.0		tatistical properties of the OLS estimator	50
			Experiments	52
	3.6		ast-squares regression	53
	$\frac{3.7}{3.7}$	_	$\operatorname{bund}\left(lack ight)$	57
	3.8		design analysis	59
	3. 0		Saussian designs	61
			General designs $(\blacklozenge \blacklozenge)$	61
	3.9		l component analysis (\blacklozenge)	63
			on	65
	0.10	Concrasi		00
IJ	[G	enerali	zation bounds for learning algorithms	67
4	Em	nirical ri	sk minimization	69
Ť	4.1			
	1.1		ication of the risk	-70
		411 (Convex surrogates	70 71
			Convex surrogates	71
		4.1.2	Sonvex surrogates	71 72
		4.1.2 C 4.1.3 C	Convex surrogates	71 72 74
	4.2	4.1.2 C 4.1.3 C 4.1.4 F	Convex surrogates	71 72 74 76
	4.2 4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk min	Convex surrogates	71 72 74 76 80
	4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk mir Approxi	Convex surrogates	71 72 74 76 80 80
		4.1.2 C 4.1.3 C 4.1.4 F Risk mir Approxit Estimati	Convex surrogates	71 72 74 76 80 80 81
	4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk mir Approxit Estimati 4.4.1 A	Convex surrogates	71 72 74 76 80 80 81 82
	4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxit Estimati 4.4.1 A 4.4.2 F	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Celationship between risk and Φ-risk (♦♦) Conditional Φ-risk and Classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦)	71 72 74 76 80 80 81 82 83
	4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxi: Estimati 4.4.1 A 4.4.2 E 4.4.3 F	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Celationship between risk and Φ-risk (♦♦) Conditional Φ-risk and Classification calibration (♦)	71 72 74 76 80 80 81 82 83 84
	4.3 4.4	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxit Estimati 4.4.1 A 4.4.2 E 4.4.3 E 4.4.4 E	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Celationship between risk and Φ-risk (♦♦) Dimization decomposition Mation error On error Application of McDiarmid's inequality Casy case I: quadratic functions Casy case II: Finite number of models Ceyond finitely many models through covering numbers (♦)	71 72 74 76 80 81 82 83 84 85
	4.3	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxin Estimati 4.4.1 A 4.4.2 F 4.4.3 E 4.4.4 F Radema	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Collectionship between risk and Φ-risk (♦♦) Inimization decomposition Inimization error Inplication of McDiarmid's inequality Casy case I: quadratic functions Casy case II: Finite number of models Collection of McDiarmid's inequality Casy case II: Finite number of models Collection of McDiarmid's inequality Casy case II: Finite number of models Collection of McDiarmid's inequality Casy case II: Finite number of models Collection of McDiarmid's inequality Casy case II: Finite number of models Collection of McDiarmid's inequality	71 72 74 76 80 81 82 83 84 85 86
	4.3 4.4	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxit Estimati 4.4.1 A 4.4.2 E 4.4.3 E 4.4.4 E Radema 4.5.1 S	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and classification calibration calibration (♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and classification calibration ca	71 72 74 76 80 81 82 83 84 85 86 87
	4.3 4.4	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxi: Estimati 4.4.1 A 4.4.2 E 4.4.3 F 4.4.4 F Radema 4.5.1 S 4.5.2 I	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (71 72 74 76 80 81 82 83 84 85 86 87 89
	4.3 4.4	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxi: Estimati 4.4.1 A 4.4.2 E 4.4.3 E 4.4.3 E 4.4.4 E Rademan 4.5.1 S 4.5.2 L 4.5.3 E	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Celationship between risk and Φ-risk (♦♦) Inimization decomposition Inimization error In pplication of McDiarmid's inequality Casy case I: quadratic functions Casy case II: Finite number of models Ceyond finitely many models through covering numbers (♦) Cher complexity The product of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦)	71 72 74 76 80 81 82 83 84 85 86 87 89
	4.3 4.4	4.1.2 C 4.1.3 C 4.1.4 F Risk min Approxit Estimati 4.4.1 A 4.4.2 E 4.4.3 E 4.4.4 E Radema 4.5.1 S 4.5.2 I 4.5.3 E 4.5.4 F	Convex surrogates Geometric interpretation of the support vector machine (♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and classification calibration (♦) Conditional Φ-risk and Φ-risk (♦♦) Conditional Φ-risk and Φ-risk (71 72 74 76 80 81 82 83 84 85 86 87 89

CONTENTS

		4.5.6 E	xtensions and improvements	96					
	4.6	Model se	$\operatorname{lection}\left(lack ight)$	97					
		4.6.1 St	tructural risk minimization	98					
		4.6.2 Se	election based on validation set	99					
	4.7	Relations	ship with asymptotic statistics (\blacklozenge)	99					
	4.8		y)1					
5	Opt	imizatio	n for machine learning 10	3					
	5.1		ation in machine learning)3					
	5.2		descent)5					
		5.2.1 Si	implest analysis: ordinary least-squares)6					
			onvex functions and their properties	0					
			nalysis of GD for strongly convex and smooth functions 11						
			nalysis of GD for convex and smooth functions (\blacklozenge) 11	17					
		5.2.5 B	eyond gradient descent (\blacklozenge)	20					
		5.2.6 N	fon-convex objective functions (\blacklozenge)	22					
	5.3	Gradient	methods on non-smooth problems	23					
	5.4		ence rate of stochastic gradient descent (SGD)	27					
		5.4.1 St	trongly convex problems (\blacklozenge)	32					
			daptive methods (\blacklozenge)	34					
			ias-variance trade-offs for least-squares (\blacklozenge) 13						
		5.4.4 V	ariance reduction (\blacklozenge)	38					
	5.5	Conclusio	on	13					
6	Local averaging methods 145								
	6.1		${ m tion} \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$						
	6.2		eraging methods						
		6.2.1 L	inear estimators						
		6.2.2 P	artition estimators	18					
		6.2.3 N	earest-neighbors						
			adaraya-Watson estimator a.k.a. kernel regression (\blacklozenge) 15						
	6.3		"simplest" consistency analysis	53					
		6.3.1 F	ixed partition $\dots \dots \dots$						
			-nearest neighbor						
			Gernel regression (Nadaraya-Watson) (\blacklozenge) 16						
	6.4		l consistency (\blacklozenge)						
	6.5		$\operatorname{ty}\left(lack lack ight)$						
	6.6	Conclusio	on	57					
7	Ker	nel meth	nods 16	9					
	7.1		${ m tion} \ldots \ldots \ldots \ldots \ldots \ldots 17$	70					
	7.2	Represen	ter theorem	_					
	7.3	Kernels		73					
		7.3.1 L	inear and polynomial kernels	75					
		732 T	ranslation-invariant kernels on [0, 1]	77					

iv CONTENTS

		7.3.3 Translation-invariant kernels on \mathbb{R}^a	179
		7.3.4 Beyond vectorial input spaces (\blacklozenge)	183
	7.4	Algorithms	184
		7.4.1 Representer theorem	184
		7.4.2 Column sampling	185
		7.4.3 Random features	186
		7.4.4 Dual algorithms (•)	187
		7.4.5 Stochastic gradient descent (•)	188
		7.4.6 "Kernelization" of linear algorithms	188
	7.5	Generalization guarantees - Lipschitz-continuous losses	189
		7.5.1 Risk decomposition	190
		7.5.2 Approximation error for translation-invariant kernels on \mathbb{R}^d	192
	7.6	Theoretical analysis of ridge regression (\blacklozenge)	195
		7.6.1 Kernel ridge regression as a "linear" estimator	195
		7.6.2 Bias and variance decomposition (\blacklozenge)	196
		7.6.3 Relating empirical and population covariance operators	198
		7.6.4 Analysis for well-specified problems (♦)	200
		7.6.5 Analysis beyond well-specified problems (♦)	202
		7.6.6 Balancing bias and variance (\blacklozenge)	
	7.7	Experiments	204
	7.8	Conclusion	204
8	Spa		207
	8.1	Introduction	
		8.1.1 Dedicated proof technique for constrained least-squares	
		8.1.2 Probabilistic and combinatorial lemmas	
	8.2	Variable selection by the ℓ_0 -penalty	
		8.2.1 Assuming k is known	
		8.2.2 Estimating $k (\blacklozenge) \ldots \ldots \ldots \ldots$	
	8.3	Variable selection by ℓ_1 -regularization	
		8.3.1 Intuition and algorithms	
		8.3.2 Slow rates - random design	
		8.3.3 Slow rates - fixed design (square loss)	
		8.3.4 Fast rates (\blacklozenge)	
		8.3.5 Zoo of conditions $(\spadesuit \spadesuit)$	
		8.3.6 Random design (\blacklozenge)	
	8.4	Experiments	
	8.5	Extensions	229
	8.6		230
9	Ne	ural networks	233
J	9.1		233
	9.1		235
	0.4		236
			$230 \\ 237$
		J. Z. Z. Z. TWO UTHOU THICKI UTHOS WHO HOHIOGOHOTOY	401

CONTENTS

	9.2.3 Estimation error				 239
9.3	Approximation properties				 241
	9.3.1 Universal approximation property in one dimension				 242
	9.3.2 Infinitely many neurons and variation norm				 243
	9.3.3 Variation norm in one dimension				 244
	9.3.4 Variation norm in arbitrary dimension				 248
	9.3.5 Precise approximation properties				
	9.3.6 From the variation norm to a finite number of neurons (
9.4	Generalization performance for neural networks	-			
9.5	Relationship with kernel methods (\blacklozenge)				
	9.5.1 From a Banach space \mathcal{F}_1 to a Hilbert space \mathcal{F}_2 (\blacklozenge)				
	9.5.2 Kernel function $(\blacklozenge \blacklozenge)$				
	9.5.3 Upper-bound on RKHS norm $(\blacklozenge \blacklozenge)$				
9.6	Experiments				
9.7	Extensions				
9.8	Conclusion				
III S	Special topics				263
10 Enc	semble learning				265
	Averaging / bagging				
10.1	10.1.1 Independent datasets				
	10.1.2 Bagging				
10.9	2 Random projections and averaging				
10.2	10.2.1 Gaussian sketching				
	10.2.1 Gaussian sketching				
10.9	Boosting				
10.5					
	10.3.1 Problem set-up				
	10.3.2 Incremental learning				
	10.3.4 Adaboost				
	10.3.5 Greedy algorithm based on gradient boosting				
	10.3.6 Convergence of expected risk				
	10.3.7 Experiments				
10.4	4 Conclusion				
10.4	Conclusion		•	•	 290
11 Fro	om online learning to bandits				291
	First-order online convex optimization				 292
	11.1.1 Convex case				
	11.1.2 Strongly-convex case (\blacklozenge)				
	11.1.3 Online mirror descent (\blacklozenge)				
	11.1.4 Lower bounds $(\blacklozenge \blacklozenge)$				
11.2	2 Zero-th order convex optimization				
	11.2.1 Smooth stochastic gradient descent				

vi CONTENTS

		11.2.2	Stochastic smoothing (\blacklozenge)				303
		11.2.3	Extensions				307
	11.3		armed bandits				307
		11.3.1	Need for an exploration-exploitation trade-off				308
		11.3.2	"Explore-then-commit"				309
		11.3.3	Optimism in the face of uncertainty (\blacklozenge)				310
		11.3.4	Adversarial bandits (\blacklozenge)				313
	11.4	Conclu	asion				315
12	Ove	r-para	meterized models				317
			it bias of gradient descent				318
			Least-squares				318
			Separable classification				320
			Beyond convex problems (\blacklozenge)				325
	12.2		e descent				327
			The double descent phenomenon				327
			Empirical evidence				328
			Linear regression with Gaussian projections (♦)				329
	12.3		l convergence of gradient descent				334
			Mean field limits				335
			From linear networks to positive definite matrices				339
			Global convergence for positive definite matrices				340
			Special case of Oja flow				342
	12.4		regime and neural tangent kernels (\blacklozenge)				343
			ision				345
13	Stru	ıctured	d prediction				347
			category classification				348
	10.1		Extension of classical convex surrogates				348
			Generalization bound I: stochastic gradient descent				350
			Generalization bound II: Rademacher complexities (*).				352
	13.2		al set-up and examples				354
	10.2		Examples				355
			Structure encoding loss functions				357
	13.3		gate methods				358
	10.0	_	Score functions and decoding step				359
			Fisher consistency and calibration functions				
			Main surrogate frameworks				
	13 4		h/quadratic surrogates				360
	10.1		Quadratic surrogate				360
			Theoretical guarantees				361
			Linear estimators and decoding steps				362
			Smooth surrogates (\blacklozenge)				362
	13.5		nargin formulations				364
	10.0		Structured SVM	•	•	 •	365

CONTENTS vii

				365
	13.6	Genera		367
	13.7	_		368
				368
				369
	13.8	Conclu	sion	372
14	Pro	babilis	tic methods 3	3 73
	14.1	From e	empirical risks to log-likelihoods	373
		14.1.1	Conditional likelihoods	375
		14.1.2	Classical priors	375
				376
		14.1.4	On the relationship between MAP and MMSE (\blacklozenge)	377
	14.2	Discrin	minative vs. generative models	380
		14.2.1	Linear discriminant analysis and softmax regression	381
			$oldsymbol{v}$	381
		14.2.3		382
	14.3	Bayesia	an inference	383
		14.3.1		384
				385
	14.4	PAC-B	V	386
		14.4.1	•	386
				387
	14.5	Conclu	ısion	389
15				891
	15.1	Statist	ical lower bounds	392
		15.1.1	Minimax lower bounds	392
		15.1.2	Reduction to a hypothesis test	393
		15.1.3	Review of information theory	395
			V1 0	397
		15.1.5	Examples	400
				401
	15.2			404
			*	404
				406
	15.3	Lower	bounds for stochastic gradient descent (\blacklozenge)	409
	15 /	Conclu	gion	111