Proposal for Final Project UCB Data Analytics Bootcamp

HOURLY ELECTRIC FORECASTS FOR ELECTRIC GRIDS IN THE U.S.

PREPARED BY:
Shandiz
Andrew DeVries
Dipesh Manandhar
Josh Bode
October 14, 2018

TABLE OF CONTENTS

TOPIC AND RATIONALE	. 2
DATASETS	. 2
SCREEN SHOTS OF THE DATA	3
Map of electric systems in US	. 3
Historical actual data	. 3
Historical Day Ahead Forecast Data (Our competition)	. 4
Weather station characteristics and locations	. 4
PROJECT WORKFLOW	5
SCALING STRATEGY	5
TEAM MEMBER ROLES	. 6

TOPIC AND RATIONALE

The objective for this project is to take multiple years of historical hourly demand data for multiple electric system in the US, analyze the historical patterns, and develop predictive models to forecast the hourly demand for the next and week.

The electric market is a \$350 billion business per year in the U.S. alone. The hourly forecasts are critical because they drive infrastructure investments and market prices spike when demand is high and available capacity is low. Currently, each electric system (aka balancing authority) develop its own forecast. Both the historical actual and forecast hourly data is publicly available via and API.

Electric demand is highly sensitive to weather, hour of day (occupancy schedule), day of week, and season. The weather varies by location but so does the weather sensitivity. Weather sensitivity is driven by the penetration of air conditioning, electric heating, and the mix of industrial/commercial facilities. As a result, the model will be different for each of the locations.

DATASETS

Data	Description	Link		
Map of electric systems	Lat/long for all the major US electric grids	https://www.eia.gov/realtime_grid/#/status?end=20181013T13		
Historical actual data by operating system	SystemDateHourMW (demand)	https://www.eia.gov/opendata/qb.php?cat egory=2122628		
Historical forecast data by operating system	SystemDateHourMW (demand)	https://www.eia.gov/opendata/qb.php?cat egory=2122627		
Weather station locations and characteristics	 Name and IDs Location, including lat/lon Dates for which weather station data is available 	https://www1.ncdc.noaa.gov/pub/data/noa a/isd-history.csv		
Historical weather data	 Station Date and hour Temperature (dry and wet bulb) Humidity Precipitation (rain/snow) 	https://www1.ncdc.noaa.gov/pub/data		

	Wind direction and speed
Forecast weather data	 Nearest station Date and hour Forecasted hourly temperature
	(7 days of forecast data)

SCREEN SHOTS OF THE DATA

MAP OF ELECTRIC SYSTEMS IN US

HISTORICAL ACTUAL DATA

HISTORICAL DAY AHEAD FORECAST DATA (OUR COMPETITION)

4		В	С	D	E	F	G	Н		J	K
1	USAF	WBAN	STATION N	CTRY	STATE	ICAO	LAT	LON	ELEV(M)	BEGIN	END
2	7018		WXPOD 70				0	0		20110309	
3	7026		WXPOD 70				0	0		20120713	
4	7070		WXPOD 70				0	0		20140923	
5	8260		WXPOD82				0	0		20090101	
6	8268		WXPOD82				32.95	65.567		20100519	
7	8307	99999	WXPOD 83	AF			0	0	8318	20100421	20100421
8	8411	99999									20160217
9	8414	99999	XM18							20160216	20160217
10	8415	99999	XM21							20160217	20160217
11	8418	99999	XM24							20160217	20160217
12	10000	99999	BOGUS NO	NO		ENRS				20010927	20051231
13	10010	99999	JAN MAYE	NO		ENJA	70.933	-8.667	9	19310101	20181009
14	10013	99999	ROST	NO						19861120	19880105
15	10014	99999	SORSTOKK	NO		ENSO	59.792	5.341	48.8	19861120	20181009
16	10015	99999	BRINGELA	NO			61.383	5.867	327	19870117	20081231
17	10016	99999	RORVIK/R	NO			64.85	11.233	14	19870116	19910806
18	10017	99999	FRIGG	NO		ENFR	59.98	2.25	48	19880320	20050228
19	10020	99999	VERLEGEN	NO			80.05	16.25	8	19861109	20181009
20	10030	99999	HORNSUN	NO			77	15.5	12	19850601	20181009
21	10040	99999	NY-ALESU	NO		ENAS	78.917	11.933	8	19730101	20140523
22	10050	99999	ISFJORD R	SV			78.067	13.633	9	19310103	20051109
23	10060	99999	EDGEOYA	NO			78.25	22.817	14	19730101	20181009
24	10070	99999	NY-ALESU	SV			78.917	11.933	7.7	19730106	20181009
25	10071	99999	LONGYEAF	SV			78.217	15.583	37	20050210	20050210
26	10080	99999	LONGYEAF	SV		ENSB	78.246	15.466	26.8	19750929	20181009
27	10090	99999	KARL XII O	SV			80.65	25	5	19550101	20181009
28	10100	99999	ANDOYA	NO		ENAN	69.293	16.144	13.1	19310103	20181009
29	10110	99999	KVITOYA	SV			80.067	31.5	10	19861118	20181009

PROJECT WORKFLOW

SCALING STRATEGY

- Phase 1 Build out one location using static data
- Phase 2 Run analysis for multiple systems
- Phase 3 Automate pulling of updated historical data, forecast weather, and models

Phase 4 – Convert into an app that automatically updates periodically
 Initial visualization will be in Python and Tableau. If time permits, build out site.

TEAM MEMBER ROLES

Task	Key Steps	Team Member
Data engineering	 Download all historical demand Download historical weather data – 100 station in US for 5 years (in locations) 	DipeshShandiz
	 Download the historical forecast demand data 	Andrew
	 Standardize the time zone and daylight saving time issues 	 Dipesh/Shandiz/Andrew
	 Produce feature for different weather metrics, day of week, etc. 	Josh
Data Analysis	Historical data analysis high station	Andrew
	analysis/visualization Cluster analysis for weather	Shandiz
	Cluster analysis for weatherCluster analysis of peak day shape	Dispesh
	Machine learning modelPrediction using machine	Josh/Dispesh/Shandiz/Andrew
	learning model Accuracy metrics for our	Josh/Dispesh/Shandiz/Andrew
	models versus competitor models	Josh
Outputs	Historical analysis	AndrewJosh
	 Model validation plots 	30311
	(predicted v actual)Predicted demand by date hour and location	Team effort
	 Maps showing where demand 	Andrew/Josh
	is highest and close it is to capacity	Josh/Dispesh
	 Plots comparing the accuracy our predictions to the competition 	
Scaling and Automation	 Fully automate all aspects of data pulls 	
Automation	 Schedule data extraction using the API's 	

- Schedule update to the machine learning models Deploy