

Modelling of Pulsating Postflashover Compartment Fires

Charles Fleischmann & Po-Hao (Andy) Pan

"Tell me a fact and I'll learn. Tell me the truth and I'll believe. But tell me a story and it will live in my heart forever." Indian Proverb

What is this story about

- 2001 Experiments Ee Yii
 - Post-flashover fire temperatures
 - Wanted to develop a simple model for compartments with wall vent and ceiling vent
 - Wanted to validate his model
 - Unexpected happened

What is this pulsing

Yii's experiments really detailed

- Thermocouple trees
- Vent flows
- Mass loss

Vent sizes

	Roof Opening Diameter						
Door Opening	0 mm	150 mm	250 mm	300 mm	350 mm	400 mm	
Door 1 H: 450mm W: 250mm	(D1R0)	(D1R150)	(D1R250)	(D1R300)		(D1R400)	
Door 2 H: 250mm W: 250mm		(D2R150)	(D2R250)	(D2R300)			
Door 3 H: 125mm W: 250mm			(D3R250)	(D3R300)	(D3R350)		

Obvious Pulsing Fires

Not so obvious pulsing

Modelling pulsating fire

- 1. Po-Hao (Andy) Pan -Masters research project
- 2. Modelled Yii's experiments in FDS
- 3. Original work in FDS5
- 4. Delay
- 5. Work extended with FDS6

FDS Setup

- Domain large enough to capture the external flames
- Specified heat release rate for the fire.
- No attempt to model the fire
- Thermal properties carefully modelled.
- 25 frames/second for videos

Fire curves based on mass loss rate

Typical pulsing in FDS

Pulsing near the limits

Quantative Results

	Pulse Frequency					
	(Pulses/min)					
		FDS6	FDS5			
	Experiment	Simulation	Similation			
Experiment #	Frequency	Frequency	Frequency			
D1R250	CF	CF	CF			
D2R150	48	53	CF			
D2R250	54	47	56			
D2R300	55	48	64			
D3R250	64	FI	72			
D3R300	(57) DD	FI	72			
D3R350	FI	FI	FI			

CF – continuous flame in wall vent

DD – difficult to distinguish

FI – only inflow thru wall vent

Conclusions

- FDS6 can model pulsing behaviour
- Pulsing frequencies are within 20% of experimental results
- Yii's work could be more comprehensively modelled including analysing the compartment temperatures and vent flows?
- Beyond the specified heat release used in this study, future work could look at predicting the heat release rate from the pool fire.