CURSO DE RASPBERRY PI

Introducción

Prof. Edwin Yllanes Cucho e.yllanescucho@gmail.com

8 de febrero de 2015

Indice de Contenidos

Materiales

- Raspberry Pi Model B+
- Fuente para Raspberry 5V-2A
- Caja de acrilico para Raspberry
- Memoria SD de 4GB
- WIFI para Raspberry
- 1 Protoboard
- cables de conexión
- leds
- resistencias
- botones
- ultrasonido

Model A

Figura: Model A

Model B

Figura: Model B

Comandos más usados

Algunos de los miles de comandos que existen en el mundo GNU-linux...

Comando	función	Uso	
man	manual	\$ man man	
ls	listing	\$ ls /home/pi	
cd	change directory	\$ cd	
mv	move	\$ mv carpeta1 carpeta2	
rm	remove	\$ rm archivo.txt	
rmdir	remove directory	\$ rmdir carpeta	
mkdir	make directory	\$ mkdir carpeta	
ср	сору	\$ cp archivo1.txt archivo2.txt	
find	find	\$ find archivo.txt	
locate	locate	\$ locate archivo.txt	

Cuadro: Comandos básicos

Figura: Editor Nano

Figura: a)Gpio b) Pinout

Descripción:

Bus	Nombre	Posición	MODE BCM
I ² C	SDA	Pin3	GPIO2
	SCL	Pin5	GPIO3
	ID₋SD	Pin27	ID_SD
	ID_SC	Pin28	ID_SC
SPI	MOSI	pin19	GPIO10
	MISO	pin21	GPIO9
	SCLK	pin21	GPIO11
	CE0	pin24	GPIO8
	CE1	pin26	GPIO7
UART	TX	pin8	GPIO14
	RX	pin10	GPIO15

- Instalar Win32DiskImager http://sourceforge.net/projects/win32diskimager/files/latest/download
- Instalar putty http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Conexión SSH

Abrir el programa putty y colocar la configuración siguiente:

Instalación y uso de Python

- \$ sudo apt-get install python-dev
- \$ sudo apt-get install python-setuptools
- \$ sudo easy_install -U distribute
- \$ sudo apt-get install python-pip
- \$ sudo pip install rpi.gpio

\$ python

```
edwin@Machine:~
 File Edit View Search Terminal Help
[edwin@Machine ~]$ python
Python 3.4.2 (default, Jan 12 2015, 11:38:40)
[GCC 4.9.2 20141224 (prerelease]] on linux
Type_"help", "copyright", "credits" or "license" for more information.
>>>
```


\$ print("Hello World!!!")

```
edwin@Machine:~
 File Edit View Search Terminal Help
[edwin@Machine ~]$ python
Python 3.4.2 (default, Jan 12 2015, 11:38:40)
[GCC 4.9.2 20141224 (prerelease)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello World!!!")
Hello World!!!
>>>
```


Uso de GPIO y Python

Figura: Pinout B+

Código

Descargar el código fuente desde la siguiente página: https://github.com/eyllanesc/Raspberry-Course

Leds

Figura: Circuito para el encendido de Led

Código

```
import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

state = True

while True:
    GPIO.output(18, True)
    time.sleep(1)
    GPIO.output(18, False)
    time.sleep(1)
```


Pulsadores

Figura: Circuito para el uso de pulsadores

Código

```
import RPi.GPIO as GPIO #import GPIO library
import time #import time for managed time

GPIO.setmode(GPIO.BCM)

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)#GPIO 18 como entrada

while True:
   input_state = GPIO.input(18) #leemos la entrada
   if input_state == False: #si esta en nivel bajo
        print('Butto Pressed') #imprime esto
   time.sleep(0.2) #tiempo muerto
```


Toggling

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
switch_pin = 18
led_pin = 23
GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(led_pin, GPIO.UT)
led_state = False
old_input_state = True # pulled-up
while True:
    new_input_state == GPIO.input(switch_pin)
    if new_input_state == False and old_input_state == True:
    led_state = not led_state
    old_input_state == not led_state
    old_input_state == false and old_input_state
```


Ultrasonido

Figura: Conexión

Código

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
TRTG = 23
ECHO = 24
print "Distance Measurement In Progress"
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)
GPIO.output (TRIG, False)
print "Waiting For Sensor To Settle"
time.sleep(2)
GPIO.output (TRIG, True)
time.sleep(0.00001)
GPIO.output (TRIG, False)
while GPIO.input (ECHO) ==0:
  pulse_start = time.time()
while GPIO.input (ECHO) ==1:
  pulse end = time.time()
pulse_duration = pulse_end - pulse_start
distance = pulse duration * 17150
distance = round(distance, 2)
print "Distance: ", distance, "cm"
GPIO.cleanup()
```


- \$ sudo apt-get install python-serial
- \$ sudo usermod -a -G tty pi
- \$ sudo usermod -a -G dialout pi

Raspberry Pi Camera Board

Instalación:

- \$ sudo apt-get updata && sudo apt-get upgrade
- \$ sudo raspi-config

Instalación de OpenCV

\$ sudo apt-get install python-opency python-scipy python-numpy python-pip

- \$ sudo apt-get update
- \$ sudo apt-get install apache2 php5 php5-mysql mysql-server

A high-level language, primarily intended for numerical computations.

- \$ sudo apt-get install octave
- \$ octave

Gracias Por su Atención!!!

Consultas a: e.yllanescucho@gmail.com