Московский физико-технический институт

Лабораторная работа по радиотехнике

№5 Генераторы синусоидальных колебаний с кварцевой стабилизацией частоты

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

1 Резонансный усилитель

1. Соберем схему на рис. 1.

Рис. 1: Схема резонанасного усилителя

Выход усилителя U_{out} , напряжение U_{out1} - выход цепи обратной связи. Они связаны соотношением:

$$\beta = \frac{U_{out1}}{U_{out}} = \frac{C_3}{C_3 + C_4} \approx \frac{1}{7}$$

Измерим потенциалы на всех электродах транзисторов. Определим токи эмиттеров I_{E1} , I_{E2} и крутизну транзисторов $S = I_C/U_T$.

T1:
$$U_{\rm B}=0,\ U_k=8,66V,\ U_{\rm 9}=-0.52V$$
T2: $U_{\rm B}=0,\ U_k=8,66V,\ U_{\rm 9}=-0.6V$

$$\boxed{U_{\rm B\ni}=0.65\ V}$$

$$\boxed{I_{k1}=50\ mkA} \ S_1=\frac{I_{k1}}{U_{\rm B\ni}}\approx 10^{-4} \ \boxed{I_{\rm 91}=475\ mkA,\ I_{\rm 92}=475\ mkA}$$

2. Подадим входной сигнал U_{in} от генератора. Изменяя частоту сигнала налюдаем переменное напряжение на выходе. Найдем резонанс.

$$f_p = 1.1 \ MGz$$

3. На резонансной частоте f_p снимем AЧX усилителя изменяя амплитуду $U_{m_{in}}$ от 10 до 500 мВ, занесем результат в таблицу 1. Построим график зависимости $K = U_{m_{out}}/U_{m_{in}}$ от амплитуды входного сигнала рис. 2.

U_{out} , mV	150	300	450	745	1460	2700	3388	3700
U_{in}, mV	10	20	30	50	100	200	300	500

Таблица 1: Зависимость U_{out} от U_{in}

Рис. 2: Зависимость $K(U_{in})$

4. Измерим резонансный коэффициент усиления для случая R=0, соединив накоротко эмиттеры у транзисторов.

$$U_{in} = 0.01 \ V \ U_{out=0,45 \ V}$$

$$K \approx 45$$

5. Снимем зависимость коэффициента усиления от частоты входного сигнала при амплитуде U_{min} , соответсвующей линейному участку АЧХ и занесем в таблицу 2. Построим эту зависимость рис. 3. Определим полосу пропускания $\Delta f_{0.7}$ и добротность $Q = f_p/\Delta f_{0.7}$.

$$\boxed{f_{\text{\tiny H}} = 1050 \; kGz, \quad f_{\text{\tiny B}} = 1100 \; kGz}$$

$$\boxed{Q = 1000}$$

ſ	f, kGz	400	500	700	900	1000	1050	1070	1100	1120	1150
ſ	U_{out} , mV	7.2	9.45	17	40	94	224	289	210	137	97.5

Таблица 2: Зависимость U_{out} от f

Рис. 3: Зависимость $U_{out}(f)$

2 Кварцевый генератор с использованием последовательного резонанса кварца

1. Замкнем цепь обратной связи как на рис. 4. Вместо кварца подключим резистор $R=300~\Omega.$ Измерим амплитуду выходнго колебания.

$$f \approx 1 \ MGz \ U_{out} \approx 25 \ mV$$

Рис. 4: Схема кварцевого генератора с использованием последовательного резонанса кварца

2. Включим между эмиттерами кварцевый резонатор вместо R. Измерим частоту колебаний. Чтобы возникли колебания пришлось увеличить емкость $C_1=100\div 120~pF$.

$$f \approx 1 \; MGz$$

3. Измерим добротность кварцевого резонатора.

Расстроим LC-контур, внесем $\Delta C = 13 \div 16 \ pF$

Без кварца: $\Delta f \approx 9~Gz$ С кварцем: $\Delta f_k \approx 26~Gz$

$$Q_k = \Delta f_k / \Delta f \cdot Q \approx 65000$$

4. Восстановим настройку контура в резонанс.

Определим электрические параметры кварцевого резонатора. Включим последователно с кварцем конденсатор $C_s=130\div 160~pF$, измерим изменение Δf_k .

$$\boxed{ \begin{aligned} C_k &= 2C_s \frac{\Delta f_k}{f_k} = 7.28 \ pF \\ \\ L_k &= \frac{1}{4\pi^2 f_k^2 C_k} = 3.47 \ \Gamma \mathrm{H} \end{aligned} } \\ \\ \boxed{ \begin{aligned} \rho_k &= \sqrt{L_k/C_k} = 21802.65 \ \Omega/m \\ \\ \hline \end{aligned} } \\ \boxed{ \begin{aligned} r_k &= \frac{\rho_k}{Q_k} = 0.36 \ \Omega \end{aligned} }$$

5. Исследуем стабильность частоты кварцевого генератора при изменении питающего напряжения $U_{\rm n2}$ от 8 до 12 В. Результаты внесем в таблицу 3 без кварца и таблица 4 с кварцем.

$U_{\pi 2}$, V	8	9	10	11	12
f, kGz	997.243	996.745	996.163	995.854	995.264
U_{out} , mV	28.96	32.55	36.42	40.45	45.78

Таблица 3: Без кварца

$U_{\Pi 2}, V$	8	9	10	11	12
f, MGz	1.000016	1.000017	1.000018	1.000017	1.000018
U_{out} , mV	20.3	23.5	26.2	28.5	29.6

Таблица 4: С кварцем

3 Кварцевый генератор с использованием кварца в качестве индуктивности

1. Соберем схему рис. 5

Измерим частоту колебаний генератора, рподстроив в резонанс LC-контур.

$$U_{out1} = 7.8 \ mV, \quad f \approx 980 \ kGz$$

Рис. 5: Схема кварцевого генератора с использованием кварца в качестве индуктивности

2. Измерим ход частоты колебаний генератора при изменении емкости конденсатора C_7 , подключив парралельно $430 \div 510 \ pF$.

$$f = 980.453 \ kGz$$

3. Исследуем стабильность частоты кварцевого генератора при изменении питающего напряжения $U_{\rm n2}$. Снимем зависимость частоты генератора от значений напряжения $U_{\rm n2}$ от 8 до 12 В. Результат в таблице 5.

$U_{\pi 2}$, V	8	9	10	11	12
f, MGz	1.000016	1.000017	1.000018	1.000017	1.000018
U_{out} , mV	20.3	23.5	26.2	28.5	29.6

Таблица 5: Стабильность частоты генератора