Astéroïdes

Comment déterminer la position d'un astéroïde à partir d'images prises depuis la terre dans l'objectif d'anticiper une potentielle collision ?

R**** *****

Candidat n°****

Coordonnées dans le ciel

Comment obtenir les coordonnées de cet astéoroïde ?

- Astéroïde Kalypso
- Télescope de l'observatoire de Haute Provence
- Coordonnées approximatives de l'image :23h54m00s -5°43′00″

Méthode générale

 Comparer l'image avec une image du même endroit sur laquelle on connaît les coordonnées de étoiles présentes

Identifier les étoiles communes dans les deux images

 Calculer les coordonnées de l'astéroïde à partir des coordonnées des étoiles communes

Obtenir des images de référence

Content					
DSS2-red: 98% of the sky					
	DSS2-blue: 45% of the sky				
	DSS2-infrared: 99% of the sky				
	Query Form				
Please enter a position in the <i>R.A.</i> and <i>Dec.</i> fields (J2000) OR an astronomical object name in the <i>Object Name</i> field. You can select an image size up to 1600 square arcminutes (2.5 Kbytes/square arcminute).					
Coordinates:	R.A. : (hh mm ss)	Dec. : (±dd mm ss)			
Coordinate System:	● J2000 ○ B1950				
Object Name:	(will be resolved by <u>Simbad</u> .)				
Image Size:	5 X (arcminutes) 5 Y (arcminutes)				
Survey	DSS-1 V				
Output format:	Download as FITS file ✓				
<u>Information on DSS output formats and MIME types</u> is available.					
	Retrieve image Reset input fields				

Digitized Sky Survey

Image provenant du DSS avec les étoiles qui la composent

15 arcmin

15 arcmin

<u>Full</u>	<u>USNO-A2.0</u>	<u>RAJ2000</u>	DEJ2000	<u>ACTflag</u>	<u>Mflag</u>	Bmag]
		<u>deg</u>	<u>deg</u>			mag	l
ΔΨ	ΔΨ	ΔΨ	ΔΨ	△▼	ΔΨ	ΔΨ	L
<u>1</u>	0825-20052631	358.651917	-05.702723			16.6	
2	0825-20052706	358.655539	-05.708775			19.1	
<u>3</u>	0825-20052859	358.666237	-05.732659			19.3	
4	0825-20053104	358.681325	-05.744900			19.1	
<u>5</u>	0825-20053162	358.684892	-05.740653			17.3	
<u>6</u>	0825-20053221	358.689120	-05.688481			19.6	
Z	0825-20053548	358.709023	-05.716823			16.4	
<u>8</u>	0825-20053748	358.718925	-05.689031			13.9	
9	0825-20053835	358.723037	-05.750117			19.5	
<u>10</u>	0825-20053848	358.723773	-05.713092			19.4	
<u>11</u>	0825-20053871	358.725106	-05.739373			20.1	
<u>12</u>	0825-20053944	358.728650	-05.713187			18.5	
<u>13</u>	0825-20053989	358.730698	-05.718353			18.2	
<u>14</u>	0825-20054026	358.732931	-05.707945			19.8	

plot the output

query using TAP/SQL

Comparaison des étoiles

Programme python

- En entrée :
 - Image avec l'astéroïde
 - Image de référence, sans l'astéroïde, dont on connaît la position des étoiles présentes

- En sortie:
 - Coordonnées de l'astéroïde

Programme python, 1^{re} méthode

Détection des étoiles dans les 2 images

 Identification des étoiles communes (avec la proportionnalité)

Calcul des coordonnées de l'astéroïde

Détection des étoiles

Exploitation des relations de proportionnalités

Fonctionnement

Exemple

Calcul des coordonnées

Avec 2 étoiles

Résultats avec la 1^{re} méthode

		Kalypso photo 1	Kalypso photo 2
Position calculée	Ascension droite	23h54m45s	23h54m44s
	Déclinaison	-5d43m01s	-5d43m09s
Éphémérides	Ascension droite	23h54m46s	23h54m45s
(Référence)	Déclinaison	-5d43m01s	5d43m10s
Différence	Ascension droite	01 s	01s
Difference	Déclinaison	<01s	01s

Limites de l'algorithme

Complexité très élevée

Ne fonctionne pas sur des images tournées

Programme python, 2^e méthode

Détection des étoiles dans les 2 images

• Identification des étoiles communes (avec des groupes de 3 étoiles)

Calcul des coordonnées de l'astéroïde

Groupes de 3 étoiles

Calcul d'angles

```
•
```

```
def calcul_angle(vect1, vect2):
    x1, y1 = vect1
    x2, y2 = vect2
    prod_scal = x1*x2 + y1*y2
    norme_vect1 = np.sqrt(x1**2 + y1**2)
    norme_vect2 = np.sqrt(x2**2 + y2**2)
    return np.arccos(prod_scal/(norme_vect1*norme_vect2))
```

Résultats avec la 2^e méthode

		Kalypso photo 1	Kalypso photo 2	Djopédia
Position calculée	Ascension droite	23h54m46s	23h54m45s	0h36m40s
	Déclinaison	-5d43m04s	5d43m02s	10h18m30s
Éphémérides (Référence)	Ascension droite	23h54m46s	23h54m45s	0h36m41s
	Déclinaison	-5d43m01s	5d43m05s	10h18m34s
Différence	Ascension droite	<01s	<01s	<01s
	Déclinaison	04s	03s	03s

Conclusion

 La 1^{re} approche fournit des résultats précis mais possède une complexité très élevée et ne fonctionne pas pour les images tournées

 La 2nd approche fournit des résultats aussi précis avec une complexité moins élevée

<u>Annexe</u>

for vect_ref_1 in vecteurs dans image 1:
 for vect_ref_2 in vecteurs dans image 2:

Coefficient proportionnalité 1 ← calcul du coefficient de proportionnalité entre vect_ref1 et vect_ref2

for vect1 in vecteurs dans image 1: for vect2 in vecteurs dans image 2:

Coefficient prop 2 ← calcul coefficient de proportionnalité entre vect1 et vect2 If Coefficient prop 2 égal à coefficent prop 1:

Rapport de proportionnalité :

A/D \rightarrow 1,483

B/C → 1,486