MODELLING AND SIMULATIONS

TRANSFER FUNCTIONS SUMUP

Transfer Function and Block Diagrams

The function H(s) is the transfer gain from U(s) to Y(s) or the (input to output), thus:

$$\frac{Y(s)}{U(s)} = H(s)$$

Transfer Function and Block Diagrams

The closed loop transfer function:

$$U_1(s) = R(s) - Y_2(s)$$

$$Y_2(s) = G_2(s)G_1(s)U_1(s)$$

$$Y_1(s) = G_1(s)U_1(s)$$

Where

$$Y_1(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}R(s)$$

Which is reffered to as the negative feedback, where positive feedback is:

$$Y_1(s) = \frac{G_1(s)}{1 - G_1(s)G_2(s)}R(s)$$

$$\frac{Y(s)}{R(s)} = \frac{G_1}{1 + G_2 G_1}$$
(c)

Example

MODELLING AND SIMULATIONS

FILTERING

Intro

- Useful book
 - **Discrete-time Signal Processing: International Version** Paperback International Edition, 2010

Topics of the lecture: Noise and Filtering

- Noise in the data can obstruct the information
- Some noise can be removed by filtering
 - A filter attenuates specific frequencies
- In order to do so:
 - The Noise frequency needs to be obtained
 - Through frequency analysis of the signal
 - Fourier analysis
 - Bode plot
- Filter design
 - Different types of filters
 - Pass bands
 - FIR/IIR
 - Butterworth...
- Practical session

Filtering and Noise

- Noise can obstruct the relevant data
- Noise can be caused by various things:
 - Poor performing sensors, vibrations, disturbances, signal noise...

Filtering and Noise

- The following signal is a delta pressure measurement sampled at 100 Hz
- Noise comes from the pressure transmitters sensitivity and the ΔP calculation

Filtering and Noise

- The signal is filtered using a low pass filter
- Signals application after filtering
 - Model identification
 - Feedback control
 - Plotting

Types of Filters

Low-pass filter tolerance scheme

Passband = Unity gain

Stopband = 0 gain

Transition is unconstrained

- Low-pass filter
 - Used to filter away high frequency response which is not relevant for model design or parameter estimation
 - Common type of filter in control design, to remove noise

- High-pass filter
 - Could be used in audio systems, to filter high frequencies from woofers

- Band-stop filter
 - Could be used to reject 50Hz or 60Hz signal from the power grid

- Band-pass filter
 - Used for datalink, where a frequency is used as a carry signal

Analog and Digital Filters

- Analog
 - Lowpass
 - $\omega_c = \frac{1}{R \cdot c}$

- Digital/software
 - $y[n] = x[n] \cdot b_0 + x[n-1] \cdot b_1 + x[n-2] \cdot b_2 \dots + x[n-N] \cdot b_N$
 - y[n] = y[n-1] ...
 - y[n] = y[n+2] ... can not be used "online"

FIR and IIR filters

- A **finite impulse response (FIR)** filter is a filter whose impulse response (or response to any finite length input) is of *finite* duration, because it settles to zero in finite time.
- A infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely
- Advantage/disadvantage The internal feedback in the IIR filter, reduces the order of the filter
 compared to a FIR filter, with the same design specs. The FIR filter have a constant group delay, rather
 the IIR filter have a filter delay dependent on the frequency of the signal.

FIR filters

FIR filters

FIR example

FIR filter Design

• Frequency response of a Nth-order casual FIR filter

$$H(e^{j\omega}) = \sum_{n=0}^{N} h[n]e^{-jn\omega}$$

IIR filters

Butterworth filter

$$|H_c(j\omega)|^2 = \frac{1}{1 + \left(\frac{j\Omega}{j\Omega_c}\right)^{2N}}$$

- The higher the frequency Ω the lower the gain and vice versa
 - Inherently it is a low pass filter
- The higher the N the sharper the cutoff becomes (see figure)
- For $N \Rightarrow \infty$ the gain becomes a rectangular function, i.e. **ideal filter**

Chebyshev Filters – Type 1

It has a **pass-band equiripple** and varies **monotonically** in the **stop-band** (type I)

Stop-band equiripple and monotonic in the pass-band (type II)

Magnitude-square function of **Type 1**:

$$|H_c(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 V_N^2 \left(\frac{\Omega}{\Omega_c}\right)}$$

Based on the Chebyshev polynomial $V_N(x)$,

$$V_N(x) = \cos(N\cos^{-1}x)$$

Elliptic filters

- Equiripple in the passband and the stopband
 - Preserved in DT using bilinear transformation
- The best that can be achieved for a given filter order N

i.e. for given values Ω_p , δ_1 and δ_2 the transition band $(\Omega_s - \Omega_p)$ is as small as possible The Magnitude square function of a Elliptic filter is:

$$|H_c(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 U_N^2(\Omega)}$$

Where $U_N(\Omega)$ is the Jacobian elliptic function

FIR vs. IIR short guide

	FIR	IIR
Computation vs. performance	- Often more computation for the same magnitude response as IIR	+ Less computation for a given magnitude response
Phase	+ Can have exactly linear phase + Other phase responses possi- ble	- Nonlinear phase leads to phase distortion of signal (distortion of "waveshape")
Stability	+ Guaranteed stability	- Must verify stability of final design; no guarantee of stability
Effect of limited number of bits for coefficients and math	+ Noise and errors are generally lower than for IIR	- More sensitive to quantization of coefficients and noise from rounding off calculations
Use of analog filter as model	- No direct conversion from an analog design to FIR (indirect methods exist)	+ Several methods for convert- ing analog designs (this is the most common "pencil and paper" design method)
Arbitrary filter specifications	+ Possible even when no analog equivalent is possible	- (Much) more difficult to produce arbitrary designs
Implementation	+ Straightforward implementa- tion; most DSP hardware sup- ports directly and efficiently	Large filters tend to be broken down into smaller stages; a bit more complicated than FIR For optimum performance, careful design of filter stages is necessary
Design	- Optimum designs require computer programs (no closed-form solutions) + Some design methods are fairly simple	+ Well-known design processes, can be done manually

Aliasing

Signals above $\frac{F_S}{2}$ are represented in DT as being in the range 0 to $\frac{F_S}{2}$

Aliasing

Example: 20 kHz sine signal

Sampled at 40 kHz and 33 kHz respectively

Aliasing

Sampling_of_sine.m

Example: 20 kHz sine signal

Sampled at 40 kHz and 33 kHz

At 33kHz aliasing produces a new 'aliased' signal, with a new frequency

Nyquist Frequency

 $\frac{F_s}{2}$, half of the sampling rate

Nyquist rate = the frequency above which we avoid aliasing

Thus we wish sampling frequency F_s , to be at least **two times the signal frequency to avoid aliasing**As was shown in the previous Matlab example.

Nyquist Frequency

 $\frac{F_s}{2}$, half of the sampling rate, 'Nyquist frequency or Folding rate' Nyquist rate = the frequency above which we avoid aliasing

Example:

Calculate the aliased frequency F_a

$$F_a = F - F_s \left| \frac{F + \left(\frac{F_s}{2}\right)}{F_s} \right|$$

Wrt. the example:

$$F = 20kHz$$
, $Fs = 33kHz$

$$-13kHz = 20 - 33\left[\frac{20 + \left(\frac{33}{2}\right)}{33}\right]$$

Choice of Filter

- Cut off frequency
 - System Bandwidth
- Order of filter
 - More noise reduction and smaller transition range both results in higher order
 - Online/offline? implementation in Software/Matlab/Simulink
 - If online, the processing capabilities must be able to process the data in real time.
 - If offline, there are less restriction to the processer.
 - Note If the filter is implemented as an analog filter, there are no such restrictions

FOURIER TRANSFORMS

Representation of sequences using Fourier transform

- Fourier transform is a generalization of the frequency response
 - For describing both signals and systems
- Mapping of signals into another 'domain'
- Convolution operation is mapped to multiplication

Computation of the DFT

The DFT is **comparing the sequence** x(n) and to the series of **sampled sinusoidal waves** to compare for **similarity**.

The DFT equation can be computed using the following equation:

$$X(k) = \sum_{n=0}^{N-1} x[n](W_N)^{kn}, \qquad k = 0, 1, ..., N-1$$

Where the **complex sinusoidal** $[n](W_N)^{kn}$ has the following form:

$$(W_N)^{kn} = \left(\cos\left(\frac{2\pi kn}{N}\right) - j \cdot \sin\left(\frac{2\pi kn}{N}\right)\right), \qquad k = 0, 1, \dots, N-1$$

DFT Example – Part 1

DFT - FFT

DFT is computationally heavy

Example:

1s interval of a sample, with $f_s = 8000Hz$ takes 128million addition operations and 256 million multiplication operations to compute the spectral X1, X2, X3, ...

FFT, 1960s

Same example takes ≈ 100000 addition operations and 200000 multiplication operations, ca. $\frac{1}{1000}$ reduction

SIGNAL ANALYSIS USING SPTOOL

Practical session: Open interactive digital signal processing tool

- Tool for signal processing in Matlab sptool
- SPTool, is a suite with four tools:
 - Signal Browser
 - Filter Design and Analysis Tool
 - FVTool
 - Spectrum Viewer.

Import signals

- Import signals
- Filter design
- Spectral analysis

- Import signals
- Filter design
- Spectral analysis

Spectral analysis

- Spectral analysis
 - Method There are different methods, use FFT in this course
 - Nfft resolution for the FFT plot.
 - Nwind size of the window
 - Window Window type.

- Spectral analysis
 - Method There are different methods, use FFT in this course
 - Nfft resolution for the FFT plot.
 - Nwind size of the window
 - Window Window type.

- Filter design
 - A link to the filter design toolbox

FILTER DESIGN USING FDATOOL

- Design of the filter
 - Response type
 - Design method
 - Filter order
 - Other options (this changes for differnet filter types)
- Observe the following characetristis of the filter
 - Magnitude/phase respons
 - Group delay
 - Passband/stopband ripple if any

- Design of the filter
 - Response type
 - Design method
 - Filter order
 - Other options (this changes for different filter types)
- Observe the following characteristic of the filter
 - Magnitude/phase response
 - Group delay
 - Passband/stopband ripple if any

• Apply the filter using SPTOOL

Apply the filter using SPTOOL

New filtered signal now appears in Signals

- Apply the filter using SPTOOL
- New filtered signal now appears in Signals
- Analyze spectrum of the filtered signal

