Прикладная Криптография: Симметричные криптосистемы Абсолютная и Семантическая стойкость (Акт 2)

Макаров Артём МИФИ 2020

Эквивалентные определения абсолютной стойкости

Теорема 1.4. Пусть E = (E, D) - шифр Шеннона на (K, M, C). Рассмотрим вероятностный эксперимент для равномерно распределённой $\mathbf{k} \in_R K$.

Тогда E — абсолютно стойкий тогда и только тогда, когда для произвольного предиката $\phi\colon C \to \{0,1\}$ и $\forall m_0, m_1 \in M$ $\Pr[\phi(E(\pmb{k},m_0)=1]=\Pr[\phi(E(\pmb{k},m_1))=1]$

Иными словами: при использовании произвольного предиката на шифртекстах абсолютно стойкого шифра злоумышленник не получает информации об открытом тексте.

Плохие новости

Теорема 1.7 (Шеннона). Пусть E = (E, D) шифр Шеннона на (K, M, C). Если E — абсолютно стойкий, то

- $|K| \ge |M|$
- $H(\mathbf{k}) \geq H(\mathbf{m}), \mathbf{k} \in_{R} K, \mathbf{m} \in_{R} M$

Простое объяснение — невозможно получить равномерно распределённую случайную величину длины m, используя детерминированный алгоритм над равномерно распределённой случайной величиной длины n < m.

Иными словами, для шифрования 1 Gb данных **любым** абсолютно стойким шифром потребуется ключ размера как минимум 1 Gb.

Вычислимый шифр

Вычислимый шифр на (K, M, C) – пара **эффективных** алгоритмов E = (E, D), где $E: K \times M \to C$ – вероятностная функция зашифрования, $D: K \times C \to M$ – функция расшифрования.

- Обозначим процедуры зашифрования как $c \stackrel{R}{\leftarrow} E(k,m)$.
- Обозначим выбор **равномерно распределённого ключа** как $k \overset{R}{\leftarrow} K$.

При этом $\forall k \in K, m \in M, c \stackrel{R}{\leftarrow} E(k, m), m' \leftarrow D(k, c) \Pr[m = m'] = 1$ (свойство корректности).

Семантическая стойкость

Пусть E = (E, D) - вычислимый шифр на (K, M, C).

Теорема 1.3 \Rightarrow E – абсолютно стойкий, если $\forall \phi: C \rightarrow \{0,1\}$, $\mathbf{k} \in_R K$ – равномерно распределённый и выполняется $\Pr[\phi(E(\mathbf{k},m_0)=1]=\Pr[\phi(E(\mathbf{k},m_1))=1]$

Ослабим свойство абсолютной стойкости: вместо требования равенства вероятностей потребуем чтобы их разность не превосходила величину ϵ : $|\Pr[\phi(E(\pmb{k},m_0)=1]-\Pr[\phi(E(\pmb{k},m_1))=1]| \leq \epsilon$

Понятие игры

- Игра состоит из двух сторон **противника** A (**Adversary**) и **претендента** (**Challenger**), моделируемые **эффективными** алгоритмами. При этом алгоритм A вероятностный
- Входом игры называется некоторая величина b
- Ход игры атакующий и претендент обмениваются сообщениями согласно некоторому фиксированному протоколу
- Результатом игры называется некоторая величина b^\prime

Понятие игры на различимость, определения

- Входом игры называется случайное число $b \in \{0,1\}$, неизвестное для атакующего, определяющего эксперимент
- Экспериментом ($\operatorname{Exp} b$) называется «режим» претендента при его общении с атакующим
- Ход игры атакующий и претендент обмениваются сообщениями согласно некоторому фиксированному протоколу
- **Цель игры** атакующий пытается угадать число b (угадать эксперимент)
- **Результатом** игры называется число $b' \in \{0,1\}$ выход алгоритма A

Игра: семантическая стойкость (одноразовое использование ключа)

Для E = (E, D) - вычислимого шифра на (K, M, C) и противника A определим два эксперимента, Exp. 0 и Exp. 1 следующим образом:

Игра: семантическая стойкость (одноразовое использование ключа)

- Претендент выбирает $k \stackrel{R}{\leftarrow} K$
- Противник выбирает сообщения $m_0, m_1 \in M$ одинаковой длины
- Претендент вычисляет $c \stackrel{\scriptscriptstyle K}{\leftarrow} E(k,m_b)$ и отправляет противнику
- Противник возвращает бит $b' \in \{0,1\}$ как результат игры

Игра: семантическая стойкость (одноразовое использование ключа)

Пусть W_b - событие того, что b'=1 в эксперименте b.

Преимуществом (Advantage) противника A против алгоритма E в игре на семантическую стойкость есть величина:

$$SSadv[A, E] = |Pr[W_0] - Pr[W_1]|$$

Семантическая стойкость (одноразовое использование ключа)

Шифр E - (одноразово) **семантически стойкий**, если для всех эффективных противников A величина $SSadv[A, E] < \epsilon$ – **пренебрежимо малая величина**

Иными словами – вычислительно невозможно отличить шифррексты различных сообщений

Семантическая стойкость

- «Ослабленная» версия абсолютной стойкости: только эффективные противники и разность вероятностей расшифрования в заданные сообщения не превосходит ϵ .
- Позволяет использовать короткие ключи

Примеры:

- Одноразовый блокнот семантически стойкий шифр
- Одноразовый блокнот переменной длины семантически стойкий шифр
- Шифр подстановки не семантически стойкий шифр

Построение атаки на семантическую стойкость

Пусть A — алгоритм позволяющий получить наименее значимый бит (LSB) открытого текста через шифртекст $\mathbf{c} \leftarrow E(k,m)$. Тогда $\mathbf{E} = (E,D)$ — не семантически стойкий шифр.

ightharpoonupПостроим эффективный алгоритм B, позволяющий выиграть игру на семантическую стойкость.

- Генерация двух сообщений m_0, m_1 с различным наименее значимым битом
- Получение шифртекста c для одного из сообщений
- Передача шифртекста на вход алгоритма A
- Получение наименее значимого бита отрытого текста, определение эксперимента. <

Построение атаки на семантическую стойкость

Пусть A — алгоритм позволяющий получить наименее значимый бит (LSB) открытого текста через шифртекст $c \leftarrow E(k,m)$. Тогда E = (E,D) — не семантически стойкий шифр.

$$SSadv[B, E] = |Pr[W_0] - Pr[W_1]| = |1 - 0| = 1$$

Доказательства сведением (Reduction proof)

Пусть $\mathbf{E}=(E,D)$ - вычислимый семантически стойкий шифр на (K,M,C). Тогда $\mathbf{E}'=(E',D')$: $\begin{cases} (c_0,c_1)=E'(k,m)=c||c;c=E(k,m)\\ D'(k,(c_0,c_1))=D(k,c_0) \end{cases}$ семантически стойкий шифр.

ightharpoonup От противного. Пусть E' - не семантически стойкий шифр. Тогда \exists противник A: $SSadv[A, E'] \ge e$, где e — не пренебрежимо малая величина.

Построим эффективный алгоритм B для игры против семантической стойкости шифра E с использованием алгоритма A, показав тем самым что E — не семантический стойкий ⇒ противоречие ⇒ E' — семантический стойкий. \triangleleft

Доказательства сведением (Reduction proof)

Пусть $\mathbf{E}=(E,D)$ - вычислимый семантически стойкий шифр на (K,M,C). Тогда $\mathbf{E}'=(E',D')$: $\begin{cases} (c_0,c_1)=E'(k,m)=c||c;c=E(k,m)\\ D'(k,(c_0,c_1))=D(k,c_0) \end{cases}$ семантически стойкий шифр.

 $SSadv[A, E'] \ge e$, где e – не пренебрежимо малая величина.

Атака на восстановление сообщений: имея зашифрованное сообщение $c \leftarrow E(k,m), m \in M$, восстановить сообщение m, с вероятностью больше 1/|M|.

Опишем игру на восстановление сообщений.

- Претендент вычисляет $m \overset{R}{\leftarrow} M, k \overset{R}{\leftarrow} K, c \overset{R}{\leftarrow} E(k,m)$ и отправляет c противнику.
- Противник возвращает m' как результат игры.

Пусть W – событие, при котором m'=m.

Преимуществом алгоритма A против шифра E при атаке на восстановление сообщений является величина

$$MRadv[A, E] = \left| Pr[W] - \frac{1}{|M|} \right|$$

Шифр E называется стойким к атаке на восстановление сообщений, если $\forall A$ величина $\mathrm{MRadv}[A,\mathrm{E}]<\epsilon$, где ϵ - пренебрежимо малая величина.

Теорема 1.8. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление сообщений

⊳ Покажем, что атака на восстановление сообщений даёт атаку на семантическую стойкость.

Пусть A — эффективный алгоритм. Обозначим p — вероятность выиграть игру на восстановление сообщений для алгоритма A:

$$MRadv[A, E] = \left| p - \frac{1}{|M|} \right|.$$

Построим эффективный алгоритм B для игры на семантическую стойкость простив алгоритма E, для которого

$$MRadv[A, E] \leq SSadv[B, E].$$

Теорема 1.8. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление сообщений

Построим алгоритм B. Алгоритм B генерирует два сообщения m_0 и m_1 и оправляет их претенденту в игре на семантическую стойкость. Претендент отвечает шифртекстом c одного из сообщений, которых алгоритм B пересылает алгоритму A, получая восстановленное сообщение m'. Если $m'=m_0$ то выводит b'=0, иначе b'=1.

Теорема 1.8. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление сообщений

Теорема 1.8. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление сообщений

Для b=0,1 пусть p_b - вероятность того, что алгоритм B выдаст значение b'=1, при шифровании сообщения m_b . Тогда $\mathrm{SSadv}[B,\mathrm{E}]=|p_0-p_1|$. С другой стороны, если c есть зашифрование m_0 то вероятность $p_0=p$ (Вероятность выиграть игру на восстановление для A). Если же c есть зашифрование m_1 , то $p_1=\Pr[m_1=m']=1/|M|$. Следовательно

$$SSadv[B, E] = |p_1 - p_0| = \left| \frac{1}{|M|} - p \right| = MRadv[A, E]$$

⇒ атака на восстановление сообщений даёт атаку на семантическую стойкость. <

Восстановление битов сообщения

Пусть E = (E, D) шифр на (K, M, C). $M = \{0,1\}^L$. Пусть par(m) - произвольный предикат, вычисляющий 1 бит информации об открытом тексте по шифртексту (Например функция вычисления чётности сообщения $m \in M$).

Определим игру на восстановление битов.

- Претендент вычисляет $m \overset{R}{\leftarrow} M, k \overset{R}{\leftarrow} K, c \overset{R}{\leftarrow} E(k,m)$ и отправляет c противнику.
- Противник возвращает $b' \in \{0,1\}$ как результат игры.

Пусть W – событие, при котором b' = par(m).

Преимуществом алгоритма A против шифра E при атаке на восстановление битов является величина

$$PARadv[A, E] = |Pr[W] - 1/2|$$

Восстановление битов сообщения

Пусть E = (E, D) шифр на (K, M, C). $M = \{0,1\}^L$. Пусть par(m) – функция вычисления чётности сообщения $m \in M$.

Шифр E называется **стойким к восстановлению битов**, если величина $PARadv[A, E] < \epsilon$, где ϵ – пренебрежимо малая величина.

Вычисление индивидуальных битов сообщений

Теорема 1.9. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление битов сообщения (Атака на восстановление битов сообщения даёт атаку на семантическую стойкость)

ightharpoonup Построим эффективный алгоритм B для игры на семантическую стойкость простив алгоритма E, для которого

$$PARadv[A, E] = \frac{1}{2}SSadv[B, E].$$

Вычисление индивидуальных битов сообщений

Теорема 1.9. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление битов сообщения (Атака на восстановление битов сообщения даёт атаку на семантическую стойкость)

Противник B генерирует сообщения $m_0, m_1 \leftarrow m_0 \oplus (0^{L-1}1)$ и отправляет претенденту, получая шифртекст c, который он передаёт алгоритму A. После получения значения b'' если $b'' = par(m_0)$ то $b' = ar(m_0)$

Вычисление индивидуальных битов сообщений

Теорема 1.9. Если шифр E = (E, D) семантически стойкий на (K, M, C), то он стойкий к атаке на восстановление битов сообщения (Атака на восстановление битов сообщения даёт атаку на семантическую стойкость)

Пусть A: PARadv $[A, E] = \epsilon$, т.е. вероятность угадать чётность есть $\frac{1}{2} + \epsilon$.

Для b=0,1 пусть p_b - вероятность того, что алгоритм B выдаст значение b'=1. Тогда $SSadv[B, E]=|p_1-p_0|=2\epsilon=PARadv[A, E]$.

$$p_0 = \frac{1}{2} + \epsilon$$
 (верная чётность m_0), $p_1 = 1 - p_0 = \frac{1}{2} - \epsilon$ (неверная чётность m_1).

⇒ атака на восстановление даёт атаку на семантическую стойкость. <

Семантическая стойкость (альтернативная формулировка)

Теорема 1.10. (обобщение 1.9) Пусть задана игра на семантическую стойкость для алгоритма A против шифра E = (E, D) на (K, M, C). Определим $SSadv^*[A, E] = \left| Pr[W] - \frac{1}{2} \right|$, где W - событие, при котором b' = b. Тогда $SSadv[A, E] = 2 * SSadv^*[A, E]$

⊳доказательство аналогично Теореме 1.9. <</p>

Выводы

- Модель абсолютно стойкого шифра делает его сложно применимым в практическом смысле
 - Требуется размер ключа равный размеру сообщения
 - Невозможно добиться стойкости при переменной длине сообщений
- Семантически стойкий шифр ослабленная модель абсолютно стойкого шифра, пригодная для практического применения
 - Стойкость к восстановлению сообщений
 - Стойкость к восстановлению битов сообщений
- Игровая модель модель, позволяющая вводить определения стойкости для криптографический примитивов
 - Доказательства стойкости методом сведения (reduction)
 - Построение атак через моделирование игры