EE7207 Week 10

Self-Supervised Learning

What is self-supervised learning

Supervised Learning

Self-supervised Learning

- Self-supervised learning is a machine learning technique where a model trains itself to learn from unlabeled data by generating labels automatically.
- This approach transforms unsupervised problems into supervised ones by auto-generating labels, allowing the model to learn from vast amounts of unlabeled data.

Why do we need self-supervised learning

High Cost of Labelled Data

Traditional learning methods heavily rely on labeled data, which is expensive and time-consuming to obtain.

Lengthy Data Preparation Lifecycle

The process of preparing labeled data for machine learning models involves cleaning, filtering, annotating, and restructuring data, making it a lengthy process.

Self-supervised learning addresses these challenges by allowing models to learn complex patterns from unlabeled data efficiently, making it a valuable technique in machine learning for various applications like computer vision and natural language processing

Two types of self-supervised learning

Discriminative Modeling

 Discriminative models focus on learning the decision boundary between classes, aiming to distinguish different categories or classes of data.

Strength:

- Effective at distinguishing between classes or categories.
- Can achieve better performance with less data for classification tasks.

Weakness:

- Do not provide insights into the underlying data distribution.
- Cannot generate new samples from the learned distribution.

BERT

Generative Modeling

• Generative models aim to learn the underlying probability distribution of the data to generate new samples that resemble the training data. Suitable for tasks like text generation and image synthesis.

Strength:

- Can generate new samples resembling the training data.
- Provide insights into the underlying structure and distribution of the data.
- Useful for tasks beyond classification like data generation and imputing missing data.

Weakness:

- Typically have more parameters and are computationally expensive.
- Might require more data to converge to a meaningful model.

GPT

BERT – <u>Bidirectional Encoder Representation from Transformers</u>

Encoders-only: BERT is made up of layers of encoders of the Transformers model

- BERTBASE
 - 12 encoder layers
 - 12 attention heads
 - 110M parameters
- BERTLARGE
 - 24 encoder layers
 - 16 attention heads
 - 340M parameters

Training task 1: Masked Language Model

- Randomly select words in a sentence and replaced by [MASK].
- BERT is asked to predict the masked word given the left and right context.

Training task 2: Next Sentence Prediction

- Learning relationships between sentences
- 50% of the time, select the actual next sentence
- 50% of the time, select a random sentence from the text

How to use BERT to solve problems

Pretrain BERT • Masked Word Prediction • Next Sentence Prediction

Can achieve better performance with less labelled data

How to finetune

Source of image: https://arxiv.org/abs/1908.05620

Epochs

https://www.youtube.com/@HungyiLeeNTU

10 12 14 16 18 20

MNLI fine-tune

RTE fine-tune

MRPC scratch SST-2 fine-tune

SST-2 scratch

Which tasks is BERT good at

Tasks requiring a deep understanding of bidirectional context

- Sentiment analysis
- Text classification
- Neural machine translation
- Named entity recognition (NER)
- Question answering

Potential issue with finetuning

- Still highly depending on labelled data
- Usually perform badly on related tasks not directly finetuned on

GPT is very ambitious to try to avoid the necessity for fine-tuning on each specific task and leverage on prompt engineering and zero-shot learning

- prompt engineering: providing detailed and specific inputs to the model
- zero-shot learning: expecting models to perform tasks without explicit training on them

GPT – <u>Generative Pre-trained Transformer</u>

Decoders-only: GPT is made up of layers of decoders of the Transformers model, where the input data is directly fed into the decoder without prior transformation by an encoder

- GPT2
 - Released by OpenAI in 2019
 - 1.5 billion parameters
- GPT3
 - Released by OpenAI in 2020
 - 175 billion parameters
- GPT4
 - Released by OpenAI in 2023
 - Rumored to contain 1.76 trillion parameters

Training task: next token prediction

- Uni-directional
- Autoregressive
- Causal language model
- Look back at previous words to predict the next token
- Trained specifically for text generation

How to use GPT

- Handle specific tasks with prompts
- Zero-shot learning: perform a specific task given an instruction and input
 - Considered a very hard problem, even for humans

Prompt Classify the text into positive, neutral or negative:

Text: This movie is awesome!

Classification:

Response Positive

Few-shot learning

- One-shot learning: one example is included in the context
- Few-shot learning: multiple examples are included in the context

No parameters in GPT are updated

Prompt Classify the text into positive, neutral or negative:

Text: This movie is awesome!

Classification: Positive

Text: Lot of silly plot holes in the film.

Classification: Negative

Text: This movie was obscenely obvious and predictable.

Classification: Negative

Text: This movie has great style and fantastic visuals!

Classification:

Response Positive

Which tasks is GPT good at

Tasks requiring text generation and context-based responses, such as

- Text generation, where the model generates coherent and contextually relevant text given a prompt or initial input.
- Dialogue systems and chatbots, where GPT generates responses based on the conversation history. GPT's ability to produce contextually relevant responses makes it suitable for creating engaging conversational agents.

Auto-encoder

Reconstruction error = reconstructed – original

How to use auto-encoder – Dimensionality reduction

- Dimensionality reduction
- Representation learning / feature extractor
 - Categorical feature embedding
 - Numeric feature embedding

How to use auto-encoder – Anomaly detection

- Autoencoders are used to replicate the input dataset
- A reconstruction error is generated upon prediction
- Higher the reconstruction error, higher the possibility of the data point being an anomaly

Denoising autoencoder

- Sometimes autoencoder just memories inputs
- Denoising autoencoder
 - Introduced by Yan LeCun in 1987
 - Add noise to the input, train the autoencoder to reconstruct the input from a corrupted version
 - Why is it useful?
 - Force model not just to memories inputs
 - Extract the most important features
 - Learn a more robust representation of the data

Diffusion model is a type of autoencoder

side view, contemporary painting, fast braush works, photo style, pink hair, a tattooed happy woman with

Photo of smallest cat Wearing a red coat and a white sweater are getting on the bus(standing and walking on both

Abstract ethereal sculpturework, a grandiose butterfly made from an aesthetically-pleasing arrangement of

A traditional Chinese painting, portrait of a woman, background, waterfall in the middle, rolling mountains, three-distance method, Chinese calligraphy

Forward and Reverse Process

Forward Process (Add Noise)

Reverse Process (Denoise)

Another angle of looking at this: gradient descent on input images

What does denoise module do

What does denoise module do

Text to image

Classifier-Free Guidance

Auto-encoder!

Overall framework for text-to-image generator

