海肾問起

- (1) Xn2 × なら、ある部分で (Xnx)にかたして. Xnx and × ととを3こてを示せ. (t-+: Brel-Cantelli の神哉と: ノート9)
- - (a) X, カメ なら (Xh) は コーシー到 in prob 2-33 ことを示せ
 - (h) (Xn)n かコーシー in plob. のとま、あるに1. X か存在し、 Xn プン となることを上X下の手"便ご示せ:
 - (i) 弱部(ある) (か); かる在 c?. P(|Xh;+1- Xh;|>2^{-j})<2^{-j} と2.生ることを示せ.
 - (ii) Xn; は a.s. z: 収ますることを示せ (E:-f: Boref Cantelli) 5042年完全 ×とよく、(Xは可述り)
 - (iii) X, P, X & It.
- (3)「(Xn), か一様「種の () ling sup Jixniza |Xn| dp → o」
 とお。

(Yn) か一様可積分なる. 5ch E[|Xn|] < co となることを示せ、

(4) Xnは草榴なない、2、 Xn トンX を移. 2nk主、Xn 4.5. X 2中あるをとすな.

- (5) Xn かx (二) 任意の部分が (Xng) (
- (b) Xn 中 X, Yn 上 Y g x 至.

 (a) Xn+Yn 下 X+Y 至于 (5)至用 u 2 包 a)

 (b) XnYn 下 XY 云示也 ((5)至用 u 2 包 a)
- (7) $(X_n)_n$: i.i.d. $Z^n = E[X_n] = \mu$, $U_n[X_n] = 6^2$ (rectified) or Z^n . $\hat{G}_n^2 := \frac{1}{h} \sum_{i=1}^n (X_i \overline{X}_n)^2 \xrightarrow{p} 6^2$ (figure Ext.
- (8) XFEFT:

(a)
$$\chi_n \xrightarrow{a.s.} 0 \implies \overline{\chi}_n \left(= \frac{1}{N} \sum_{i=1}^{N} \chi_i^2 \right) \xrightarrow{a.s.} 0$$

(b)
$$\chi_n \xrightarrow{L^p} 0 \implies \overline{\chi}_n \xrightarrow{L^p} 0$$

- (c) Xn かo ⇒ Xn かっと呼吸らないことを気がして
- $(d) \xrightarrow{\chi_n} \xrightarrow{p}_0 \implies \frac{\chi_n}{n} \xrightarrow{p}_0$
- (9) SCRdをコン1107+集合とお.
- (努 S よの からス 追経 Gu (4 es) とは、 任意の有限個の [4, --, しょ] C S に対し、 (Gu, --, Gu) か 多変量 正規合布 (2 紙 うこととお).

あ2つの PLの Gauss 追程 Gu, Gu Ali

(ii) $E[(G_u-G_v)^2] \leq E[(G_u-G_v)^2)$ ($G_u,v\in S$) $E[(G_u-G_v)^2] \leq E[(G_u-G_v)^2]$ ($G_u,v\in S$)

E[Sup Gu] = E[Sup Gu] Lts 24 pm Fe 3HZu8. (Slepian o) 不等則)

今 pd-1を Rd 上の単位球菌 (Sd-1= { | 1x11=1 | x ∈Rd }) と数.

(Ais) 1=i=d, 1=j=d を Ais か i.i.d. で N(0,1)に独ううらいい 付すり とする.

to3 he sol, vesol 1= +tl.

G(u,v) := WTA V

に移、一方じ、9,9'を独立な pd-値 r.v.と(、9~N(e,I),9~N(e,I) (多変量改建5本)

 $G'_{(u,v)} := U^{\mathsf{T}}g + V^{\mathsf{T}}g'$ $\mathcal{E}(t_2 \mathcal{E})$

 $\mathbb{E}\left[\sup_{(u,v)\in S^{d-1}\times S^{d-1}} G_{(u,v)}\right] \leq \mathbb{E}\left[\sup_{(u,v)\in S^{d-1}\times S^{d-1}} G_{(u,v)}\right]$

を示せ、また、

E[
$$||A||$$
] $\leq 2 \int d$

operator-horm

 $||A|| := \sup_{u \in S^{d-1}} u^T A u$
 $v \in S^{d-1}$

石木せ.

(10) (9) a 設定 Zi. Gaussian 第中不等到上)

(数) $P(\|A\| \ge 2 d + d) \le e^{-p} \left(-\frac{d^2}{2}\right)$ (d>0)

を示せ、(ランがは行うの作用事)ルム)

- (11) Xiをj.i.d., 対し負のr.v. とする. Mn= max Xi をする.
 - (a) $P(H_n > x) \leq n P(X_i > x)$ ((x) > 0) $\leq \overline{x} t$
 - (b) $\underset{n}{\underline{H}_{n}} \xrightarrow{\gamma_{0}} \iff nP(\chi_{i}>n) \longrightarrow o (n \rightarrow \infty)$ $\overleftarrow{\epsilon} \overrightarrow{\pi} \overset{\epsilon}{\underline{\tau}}.$