A 2.0

Das gleichschenklige Dreieck ABC mit der Basis [BC] und der Höhe [AM] ist die Grundfläche der Pyramide ABCS mit der Spitze S. Der Punkt $D \in [AM]$ ist der Fußpunkt der Pyramidenhöhe [DS], die senkrecht auf der Grundfläche steht.

Es gilt: $\overline{AM} = 8 \text{ cm}$; $\overline{BC} = 10 \text{ cm}$; $\overline{AD} = 4.5 \text{ cm}$; $\overline{DS} = 8.5 \text{ cm}$.

Die untenstehende Zeichnung zeigt ein Schrägbild der Pyramide ABCS.

In der Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$; [AM] liegt auf der Schrägbildachse.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie das Maß des Winkels MAC.

[Ergebnis: $\angle MAC = 32,01^{\circ}$]

1 P

A 2.2 Punkte P_n liegen auf der Strecke [DS]. Die Winkel DAP $_n$ haben das Maß ϕ mit $\phi \in \,]\, 0^\circ;\, 62, 10^\circ \, [$.

Zeichnen Sie den Punkt P_1 und die Strecke $\left[AP_1\right]$ für $\phi=40^\circ$ in das Schrägbild zu A 2.0 ein.

A 2.3

Durch die Punkte P_n verlaufen zur Grundfläche ABC parallele Ebenen, die die Kanten der Pyramide ABCS in Punkten $E_n \in [AS]$, $F_n \in [BS]$ und $G_n \in [CS]$ und die Strecke [MS] in Punkten N_n schneiden. Die Dreiecke $E_nF_nG_n$ sind die Grundflächen von Pyramiden $E_nF_nG_nD$ mit der Spitze D.

Zeichnen Sie die Pyramide $E_1F_1G_1D$ und den Punkt N_1 in das Schrägbild zu A 2.0 ein.

A 2.4

Berechnen Sie die Längen der Strecken $[DP_n]$ und $[E_nN_n]$ in Abhängigkeit von ϕ .

[Ergebnisse:
$$\overline{DP_n}(\phi) = 4.5 \cdot \tan \phi \text{ cm}; \quad \overline{E_n N_n}(\phi) = (8 - 4.24 \cdot \tan \phi) \text{ cm}$$
]

A 2.4)
$$Skizze$$
:

Pn

A

DPn (ϕ) = 4,5 tan ϕ

Berechnung [EnN.] über Strahlensatz

mit Zentrum S.

[EnNn], [AM] liegen and Parallelen

[PnS], [DS] liegen and Strahl

mit PnS = DS - DPn

Gleichung: EnNn = DS - DPn

AM = DS

Change = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ
 \Rightarrow EnNn (ϕ) = 8,5 - 4,5 tan ϕ

Berechnen Sie das Volumen der Pyramide E₁F₁G₁D.

