Quin-AD(OMe)-FMK M.Wt:389

FIGURE 1A

Quin-VAD(OMe)-FMK M.Wt:488; C24H19N4O6F

FIGURE 2

FIGURE 2A

HO₂Q

3/16

	Caspas	se 9	FIGURE 8
inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -ASA
0.005uM	-2.301	0	
0.01uM	-2	0	
.025uM	-1.602	0	100
.05uM	-1.301	0	
.1u M	-1	0	80
0. 5uM	-0.301	0	<u>5</u>
1uM	0	16.2	
2.5uM	0.3979	21.8	in hibition 40
5uM	0.6989	47.4	<u>.</u>
10uM	1	62	%
25uM	1.398	82.4	
50uM	1.6989	= 92.6	-3 -2 -1 20 0 1 3

log of conc. in uM

FIGURE 9

Caspase 8

inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -ASA
0.005uM 0.01uM .025uM .05uM .1uM 0.5uM 1uM 2.5uM 5uM 10uM 25uM 50uM	-2.301 -2 -1.602 -1.301 -1 -0.301 0 0.3979 0.6989 1 1.398 1.6989	0 0 0 0 4.7 5.5 21.1 45.5 73.6 96.8 99.8	120 100 80 60 40 20 log of conc. in uM

Caspase 1

inh conc	log of con	% inhib
.025uM .05uM .1uM 0.5uM 1uM 2.5uM	-1.602 -1.301 -1 -0.301 0 0.3979 0.6989	0 0 0 18.2 34.8 69.7
5uM 10uM 25uM 50uM	1.398 1.6989	100 100 100

Q-(C=O)-VD(OMe)-CH₂-ASA

FIGURE 11

Caspase 3

inh conc	og of con	% inhib
0.005uM 0.01uM .025uM .05uM .1uM 0.5uM 1uM 2.5uM 5uM 10uM 25uM	-2.301 -2 -1.602 -1.301 -1 -0.301 0 0.3979 0.6989 1 1.398 1.6989	0 2.3 9.1 6.4 29.3 45 74.8 91.5 98.2 100

$Q-(C=O)-VD(OMe)-CH_2-ASA$

Caspase 1

inh conc	log of con	% inhib
.0025uM	-2.602	3.14
.005uM	-2.301	2.6
.01uM	-2	1.4
.025uM	-1.602	10.3
.05uM	-1.301	8.3
.1uM	-1	23.7
0.5uM	-0.301	50.9
1uM	0	66.29
2.5uM	0.3979	90.3
5uM	0.6989	96.3
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

$Indole\text{-}(C=O)\text{-}VD(OMe)\text{-}CH_2\text{-}OPh$

Caspase 1

inh conc	log of con	% inhib
.0025uM	-2.602	16 3
.005uM	-2.301	19 4
.01uM	-2	22 6
.025uM	-1.602	42.86
.1uM	-1	44
0.5uM	-0.301	74
1uM	0	87 4
2.5uM	0.3979	97.1
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

FIGURE 13

$Melatonin-VD(OMe)-CH_2-OPh$

Bzl-Melatonin-VD(OMe)-CH2-OPh Caspase 1 inh conc log of con % inhib 0 0.0025uM -2.6020 -2.301 120 0.005uM 0.01uM -2 0 -1.602 0 .025uM -1.301 7.3 .05uM 80inhibition -1 26.8 .1uM -60 93.4 -0.3010.5uM 99.6 0 1uM 40 100 0.3979 2.5uM 100 0.6989 20 -5uM 100 10uM 1.398 100 25uM 1.6989 100 50uM 20-0 log of conc. in uM

FIGURE 15

Caspase 1 inh conc log of con % inhib 38.4 0.0025uM -2.602 -2.301 25.7 0.005uM 29.6 0.01uM -2 23 .025uM -1.602 44.3 .05uM -1.301 57.2 -0.3010.5uM 91.4 0 1uM 95 0.3979 2.5uM 0.6989 96.9 5uM

FIGURE 16

Caspase 1

inh conc	log of con	% inhib
0.0025uM	-2.602	0
0.005uM	-2.301	0
0.01uM	-2	0
.025uM	-1.602	0
.05uM	-1.301	0
.1uM	-1	20.7
0.5uM	-0.301	42.7
1uM	0	81.7
2.5uM	0.3979	100

0.6989

1.398

1.6989

5uM

10uM

25uM

50uM

100

100

100

100

TRP-VD(OCH₃)-CH₂-OPh · TFA

log of conc. in uM

FIGURE 17A

Caspase 9

inh cond	log of con	% inhib
.025uM	-1.602	33.6
.05uM	-1.301	43.9
.1uM	-1	58.7
0 5uM	-0.301	90.7
1uM	0	94.7
2.5uM	0.3979	100
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

Q-(C=O)-L-D-(OMe)-CH₂-F (the FMK)

FIGURE 17B

Caspase 9

inn cond	iog of con	a'o inhib	$Q-(C=O)-L-D-(OMe)-CH_2-F$ (the FMK)
.025uM	-1 502	25.7	
.05LN1	-1.301	37.3	
.tuM	-1	58.9	120
0 5uM	-0.301	88.9	
1uM	0	94.9	100
2.5uM	0.3979	96.1	6
5uM1	0.6989	100	inhibition 09
10uM	1	100	€ 60
25uM	1.3979	100	
50uM1	1.6979	100	% 40 20
			-2 -1 log of conc. in uM 1

FIGURE 18A

Caspase 9

conc	log of con	% inhib
.025uM	-1.602	47.3
.05uM	-1.301	64.4
.1uM	-1	81.2
.0.5uM	-0.301	97.8
1uM	0	99.5
2 5uM	0.3979	100
5uM 10uM	0.6989	100
25uM	1.3979	100
50uM	1.6979	100

$Q-(C=O)-V-D-(OCH_3)-CH_2-F$ (the FMK)

FIGURE 18B

Caspase 9

nn conc	og of con	% innib
025uM	-1.502	62.2
05uM	-1.301	76.3
1uM	-1	81.3
0 5uM	-0.301	99.1
1uM	0	100
2.5uM	0.3979	100
5uM	0.6989	100
25uM	1.3979	100
50uM	1.6979	100

$Q-(C=O)-V-D-(OCH_3)-CH_2-F$ (the FMK)

FIGURE 20

Caspase 3

inh conc	log of con	% inhib	Q-(C=O)-VD(OMe)-CH ₂ -SA
0.005uM 0.01uM .025uM .05uM .1uM 0.5uM 1uM 2.5uM 5uM 10uM 25uM	-2.301 -2 -1.602 -1.301 -1 -0.301 0 0.3979 0.6989 1 1.398 1.6989	0 0.57 2.8 18.3 32.4 54.7 87.8 97.6 99.7 100	120 100 80 60 40 20 20
			log of conc. in uM

$Q-(C=O)-L-D-CH_2-OPh$

Caspase 1

inn cond	log of con	% inhib
.025uM	-1.602	19
.05uM	-1 301	22
.1LM	-1.	19
0.5uM	-0 301	46.7
1uM	9	69.5
2 5aM	0 3979	92.7
5u1.1	0 5989	98 5
10411	•	87.3

FIGURE 22

Q-(C=O)-V-D-CH₂-OPh

Caspase 1

סתכם תחו	log of con	° _c innib
0251/1	-1 602	39 8
0561.1	-1.301	55.98
.1410	• •	67.2
0 5uM	-0 301	95.8
1uM	0	98.5
2 5uM1	0.3979	100
5cM	9896.0	100
10uM	1	100

12/16

FIGURE 25A

Non esterase treated Inhibitor D with Caspase 3

Q-(C=O)-L-D-(OMe)- $\mathrm{CH_2}$ -F

inh cond	log of con	% inhib
025uM 05uM 1uM 0 5uM 1uM 2 5uM 5uM 10uM 25uM	-1.602 -1.301 -1 -0.301 -0.3979 0.6989 -1	37.8 52 73 100 100 100 100 100
50uM	1.6979	100

FIGURE 25B

Esterase treated Innib tor D with Caspase 3

 $Q-(C=O)-L-D-(OMe)-CH_2-F$

inh cond	log of con	% inhib
9250M 9250M 950M 950M 950M 10M 250M 100M 250M	-1.602 -1.301 -1 -0.301 -0 -0.3979 -0.6989 -1 1.3979	38.2 68.9 80.7 97.6 96.6 96.2 100 100
50uM	1.6979	100

Esterase treated Inhibitor C with Caspase 1

inh conc	log of con	% inhib
.025uM 05uM .1uM	-1.602 -1.301 -1	40.1 54.9 73.2
0.5uM	-0.301	81.7
1uM	0	100
2.5uM	0.3979	100
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1.6979	100

 $Q-(C=O)-V-D-(OMe)-CH_2-F$

FIGURE 24

Esterase treated Inhibitor D with Casp 1

an conc	log of con	didni 🕃	Q-(C=O)-L-D-(OMe)-CH ₂ -F
025UM 056M 16M 0.5UM 2.5UM 50M 16UM 16UM 25UM	-1.602 -1.301 -1 -0.301 0.3979 0.6989 -1 1.3979 1.6979	33.8 63.4 85.2 95.2 100 100 100	est trtd ld w/ Casp 1 100 80 60 20 -2 -1 0 1 20
	•		log of conc. in uM

14/16 **FIGURE 26**

Q-LD-OPh

	J	
0.05.44	-1.301	5.5
0.12471	-1	11
C 5-M	-0.301	46
Luila	0	68
2.5.24	0.3979	86.8
5 44	0.6989	94.5
$C \cup H$	1	100
25 ° 4	1.3979	100
50 201	1.6989	100

Q-VD-OPh

Caspase 3 w/ IE .

inh conc	log of con	% inhib
.025uM	-1.602	31.85
.05uM	-1.301	47.1
.1uM	-1	59.2
0.5uM	-0.301	96.2
1uM	0	100
2.5uM	0.3979	100
5uM	0.6989	100
10uM	1	100
25uM	1.3979	100
50uM	1 699	100

Q-(C=O)-LD-CH₂-O-Ph

FIGURE 28

			IMPORTANT AMINO ACIDS	Acids		FIGURE	E 29
1) c=0 Hyn-ch2	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	00-0 H-0-0-H H-0-0-H	$H_{JN} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ ₀ τ - τ - τ - τ - τ - τ - τ - τ -	H2C CH2 H2C CH2 H2C CH2 H2C CH2	
Gycine (G1y)	L-Alonine (Ala)	L-Valine (Val)	l-Leucine (Leu)	L · Isoleucine (Ileu)	L - Phenylalanine (Phe)	L-Proline (Pro)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$\begin{array}{c} C = 0 \\ C = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₃ N ₀ C ₁ C ₁ C ₂ C ₁ C ₂ C ₁ C ₂ C ₃ C ₄ C ₄ C ₄ C ₅ C ₄ C ₅ C ₄ C ₅	9 N.E.
L · Serine (Ser)	L - Threoning (Thre)	L · Crsteine (Crs · SH)	l -Cystine [Cys-S-S-Cys]	tine S-Cys)	(- Methionine (Meth)	L - Tryplophan (Try)	OH L-Tyrosin e (Tyr)
00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$IIJ): C^0 \circ O \circ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₁ N - C - H CH ₂ CH ₂ CH ₃ CH ₄ CH
L-Aspartic acid (Asp)	L-Asparogine (Asp:NH2)	L · Giviamic acid (Glu)	L-Glutamine (Glu:NH ₂)			L-Arginine , (Arg)	L-Histidine (His)