

Universidad Nacional Autónoma de México Facultad de Ciencias Cálculo I

т.... т

Tarea I

Elías López Rivera elias.lopezr@ciencias.unam.mx

Problema sobre conjuntos

Ejercicio 1

Dados conjuntos A y B demostrar lo siguiente:

$$i)$$
 $(A \cap B) \cap (A \setminus B) = \emptyset$

$$(ii)$$
 $A = (A \cap B) \cup (A \setminus B)$

iii)
$$A \cap B = A \setminus (A \setminus B)$$

Demostración.

- i) Procedamos por contradicción, es decir $\exists \lambda \in (A \cap B) \cap (A \setminus B)$, se sigue que $\lambda \in (A \cap B)$ y $\lambda \in (A \setminus B)$, que es lo mismo que $(\lambda \in A \text{ y } \lambda \in B)$ y $(\lambda \in A \text{ y } \lambda \notin B)$, por tanto $\lambda \in B \text{ y } \lambda \notin B$, una clara contradicción, por tanto $(A \cap B) \cap (A \setminus B) = \emptyset$.
- ii) Si $y \in A$, entonces tenemos dos casos:
- **1)** $y \in B$
- 2) $y \notin B$

Por tanto $(y \in A \ y \ y \in B)$ o $(y \in A \ y \ y \notin B)$, por tanto $y \in A \cap B$ o $y \in A \setminus B$, que es equivalente a $y \in (A \cap B) \cup (A \setminus B)$, se concluye que $A \subseteq (A \cap B) \cup (A \setminus B) \cdots$ (a)

Si $x \in (A \cap B) \cup (A \setminus B)$, entonces $x \in A \cap B$ o $x \in A \setminus B$, por tanto $(x \in A \lor x \in B)$ o $(x \in A \lor x \notin B)$, en cualquiera de los dos casos $x \in A$, concluimos que $(A \cap B) \cup (A \setminus B) \subseteq A \cdots b$)

De a) y b), se sigue que $(A \cap B) \cup (A \setminus B) = A$

iii) Tomemos $z \in A \setminus (A \setminus B)$, por tanto $z \in A$ y $z \notin A \setminus B$ por tanto $z \in A$ y $(z \notin A \text{ o } z \in B)$, como $z \in A$ se sigue que $z \notin A$ es falsa, por tanto necesariamente $z \in A$ y $z \in B$, que es lo mismo que $z \in A \cap B$, se concluye que $A \setminus (A \setminus B) \subseteq A \cap B \cdots d$)

Si tomamos $r \in A \cap B$, entonces $r \in A$ y $r \in B$, por tanto $A \cap B \subseteq A$

Finalmente si $s \in A \cap B$ entonces $s \in A$ y $s \notin A \setminus B$, ya que por el ejercicio **i**) $(A \cap B) \cap (A \setminus B) = \emptyset$, por tanto $s \in A \setminus (A \setminus B)$, lo que implica que $A \cap B \subseteq A \setminus (A \setminus B) \cdots$ **e**)

De d) y e) se sigue que $A \cap B = A \setminus (A \setminus B)$

Problemas sobre funciones

Ejercicio 2

Considere la función:

$$f: \mathbb{R} \to \{ y \in \mathbb{R} : -1 < y < 1 \}$$
$$x \to \frac{x}{\sqrt{x^2 + 1}}$$

Muestre que f es una biyección

Demostración.

Tomemos A,B conjuntos no vacios, decimos que $f:A\to B$ función, es invertible, si existe $g:B\to A$ función inversa, tal que $f\circ g=I_B$ y $g\circ f=I_A$, donde I_A e I_B representan la función identidad con dominio y codominio en A y B respectivamente

Lema

Sea $f: A \to B$ función, si f es invertible entonces f es biyectiva.

Demostración.

Tomemos que $g: B \to A$ función, es la inversa de f, luego sean $x_1, x_2 \in A$, tal que $f(x_1) = f(x_2)$, como ambos elementos estan en B y g es función significa que estos deben tener la misma imagen bajo g, pues a cada elemento del domino le corresponde un unico del contradominimo por tanto, $g(f(x_1)) = g(f(x_2))$, que es lo mismo que $g \circ f(x_1) = g \circ f(x_2)$, como $g \circ f = I_A$ y tanto x_1 como x_2 estan contenidos en A se sigue que $x_1 = I_A(x_1) = I_A(x_2) = x_2$, se concluye que f es inyectiva \cdots a)

Tomemos $y \in B$, como g es función, existe $x \in A$ tal que x = g(y), luego $y = I_B(y) = f \circ g(y) = f(x)$ por tanto f es suprayectiva \cdots b)

De \mathbf{a}) y \mathbf{b}) se sigue que f es una biyección.

Definimos la función:

$$g: \{y \in \mathbb{R}: -1 < y < 1\} \to \mathbb{R}$$
$$x \to \frac{x}{\sqrt{1 - x^2}}$$

g esta bien definida pues $-1 < y < 1 \implies y^2 < 1 \implies 1 - y^2 > 0$, ademas como el codominio de g es el dominio de f, y el dominio de g es codominio de f, la composición por ambos lados es posible, demostraremos que g es la inversa de f:

2)
$$f \circ g = I_{\{y \in \mathbb{R}: -1 < y < 1\}}$$

Dos funciones son iguales si y solo si su dominio, contradominio y regla de correspondencia coinciden, se tiene que $f \circ g : \{y \in \mathbb{R} : -1 < y < 1\} \rightarrow \{y \in \mathbb{R} : -1 < y < 1\}$, tiene el mismo dominio y contradominio que $I_{\{y \in \mathbb{R} : -1 < y < 1\}}$, luego, sea $x \in \{y \in \mathbb{R} : -1 < y < 1\}$:

$$f \circ g(x) = \frac{\frac{x}{\sqrt{1-x^2}}}{\sqrt{1+\frac{x^2}{1-x^2}}} = \frac{x}{\sqrt{1-x^2+x^2}} = \frac{x}{\sqrt{1}} = x = I_{\{y \in \mathbb{R}: -1 < y < 1\}}(x)$$

2)
$$g \circ f = I_{\mathbb{R}}$$

De la misma manera $g \circ f : \mathbb{R} \to \mathbb{R}$, por tanto esta función tiene el mismo dominio y codominio de $I_{\mathbb{R}}$, luego, sea $x \in \mathbb{R}$:

$$g \circ f(x) = \frac{\frac{x}{\sqrt{x^2 + 1}}}{\sqrt{1 - \frac{x^2}{x^2 + 1}}} = \frac{x}{\sqrt{1 + x^2 - x^2}} = \frac{x}{\sqrt{1}} = x = I_{\mathbb{R}}(x)$$

De 1) y 2) se sigue que f es invertible, por el lema antes decrito f es una biyección sobre el conjunto $\{y \in \mathbb{R} : -1 < y < 1\}$.

Ejercicio 3

Sea f una función tal que $f:A\to B$, endonde $E\subseteq A$ y $G\subseteq A$. Demuestra que:

- 1) $f(E \cup G) = f(E) \cup f(G)$.
- **2)** $f(E \cap G) \subseteq f(E) \cap f(G)$

Demostración.

- 1) Sea $y \in f(E) \cup f(G)$, entonces $y \in f(E)$ o $y \in f(G)$, tomemos ambos casos:
- i) $y \in f(E)$, se sigue que $\exists x \in E$, por tanto $x \in E \cup G$, tal que y = f(x), de lo anterior se sique que $y \in f(E \cup G)$
- ii) $y \in f(G)$, se sigue que $\exists r \in G$, por tanto $r \in E \cup G$, tal que y = f(r), de lo anterior se concluye que $y \in f(E \cup G)$

En ambos casos se tiene que $y \in f(E \cup G)$, por tanto $f(E) \cup f(G) \subseteq f(E \cup G) \cdots a$)

Sea $\lambda \in f(E \cup G)$, se sigue que $\exists m \in E \cup G$, por tanto $m \in E$ o $m \in G$, tal que $f(m) = \lambda$, veamos los dos casos:

- iii) Si $m \in E$, se sigue que $\lambda \in f(E)$, que implica que $\lambda \in f(E) \cup f(G)$
- iv) Si $m \in G$, se sigue que $\lambda \in f(G)$, que implica que $\lambda \in f(E) \cup f(G)$

Por tanto en cualquier caso $\lambda \in f(E) \cup f(G)$, se sique que $f(E \cup G) \subseteq f(E) \cup f(G) \cdots \mathbf{b}$

Por a) y b) se sigue que $f(E \cup G) = f(E) \cup f(G)$

2) Tomemos $z \in f(E \cap G)$, esto implica que $\exists t \in E \cap G$, por tanto $t \in G$ y $t \in E$, tal que f(t) = z, de lo anterior se sigue que $z \in f(E)$ y $z \in f(G)$, se concluye que $z \in f(E) \cap f(G)$, finalmente $f(E \cap G) \subseteq f(E) \cap f(G)$

Problemas sobre inducción

Ejercicio 4

Conjeture una fórmula para la suma de los primeros n números naturales:

$$1+3+\cdots+(2n-1)$$

y comprobar la conjetura por inducción matemática

Demostración.

$$1+3=4, 1+3+5=9, 1+3+5+7=16, \dots, \sum_{i=1}^{n} (2i-1)=n^2$$

Procedemos por inducción:

Base de Inducción

$$1 = 1^2$$

Hipótesis de Induccón

$$\exists\,k\in\mathbb{N},$$
tal que $\sum_{i=1}^{k}\left(2i-1\right)=k^{2}$

$$P(k) \implies P(k+1)$$

Aplicando H.I

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2(k+1) - 1 = k^2 + 2k + 1 = (k+1)^2$$

Por tanto:

$$\sum_{i=1}^{n} (2i - 1) = n^2 \quad \forall \, n \in \mathbb{N}$$

Ejercicio 5

Demuestra que:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n} \quad \forall \ n \ge 2, \ n \in \mathbb{N}$$

Demostración.

Utilizaremos el principio de inducción modificado:

Base de Inducción

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \sqrt{2} > \sqrt{2}$$

Hipótesis de Inducción

$$\exists \ k \in \mathbb{N}, \ k \ge 2: \sum_{i=1}^k \frac{1}{\sqrt{k}} > \sqrt{k}$$

$$P(k) \implies P(k+1)$$

Lema

$$\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1} \quad k \in \mathbb{N}$$

Demostración.

$$k \in \mathbb{N} \implies k > 0$$

$$\sqrt{k+1} > \sqrt{k}$$

$$\sqrt{k}\sqrt{k+1} > |k| = k$$

$$\sqrt{k}\sqrt{k+1} + 1 > k+1$$

$$\frac{\sqrt{k}\sqrt{k+1} + 1}{\sqrt{k+1}} > \frac{k+1}{\sqrt{k+1}}$$

$$\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

por tanto, aplicando la hipotesis de inducción y el lema:

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{k}} = \sum_{i=1}^{k} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$