- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ?
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 > 0$ et $x_2 > x_1$.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur?
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 > 0$ et $x_2 > x_1$.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ? y(x,t) = f(x-ct)
- 2. Dessiner le profil aux instants $t_1>0$ et $t_2>t_1$. t_1 en rouge et t_2 en bleu.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 > 0$ et $x_2 > x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ? y(x,t) = f(x+ct)
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 > 0$ et $x_2 > x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ?
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 < 0$ et $x_2 < x_1$.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur?
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 < 0$ et $x_2 < x_1$.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ? y(x,t) = f(x-ct)
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 < 0$ et $x_2 < x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.

- 1. Quelle est l'expression mathématique de y(x,t) à tout instant t ultérieur ? y(x,t) = f(x+ct)
- 2. Dessiner le profil aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.
- 3. Retrouver l'évolution temporelle future aux points x = 0, $x_1 < 0$ et $x_2 < x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.

On donne l'évolution temporelle d'une onde en x = 0 sous la forme y(x = 0, t) = f(t). On suppose que cette onde se déplace sans déformation vers la droite à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ?
- 2. Dessiner l'évolution temporelle future aux points $x_1 > 0$ et $x_2 > x_1$.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$.

On donne l'évolution temporelle d'une onde en x=0 sous la forme y(x=0,t)=f(t). On suppose que cette onde se déplace sans déformation vers la gauche à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ?
- 2. Dessiner l'évolution temporelle future aux points $x_1 > 0$ et $x_2 > x_1$.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$.

On donne l'évolution temporelle d'une onde en x = 0 sous la forme y(x = 0, t) = f(t). On suppose que cette onde se déplace sans déformation vers la droite à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ? y(x,t) = f(t-x/c)
- 2. Dessiner l'évolution temporelle future aux points $x_1 > 0$ et $x_2 > x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.

On donne l'évolution temporelle d'une onde en x = 0 sous la forme y(x = 0, t) = f(t). On suppose que cette onde se déplace sans déformation vers la gauche à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ? y(x,t) = f(t+x/c)
- 2. Dessiner l'évolution temporelle future aux points $x_1 > 0$ et $x_2 > x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.

On donne l'évolution temporelle d'une onde en x=0 sous la forme y(x=0,t)=f(t). On suppose que cette onde se déplace sans déformation vers la droite à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ?
- 2. Dessiner l'évolution temporelle future aux points $x_1 < 0$ et $x_2 < x_1$.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$.

On donne l'évolution temporelle d'une onde en x=0 sous la forme y(x=0,t)=f(t). On suppose que cette onde se déplace sans déformation vers la gauche à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ?
- 2. Dessiner l'évolution temporelle future aux points $x_1 < 0$ et $x_2 < x_1$.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$.

On donne l'évolution temporelle d'une onde en x = 0 sous la forme y(x = 0, t) = f(t). On suppose que cette onde se déplace sans déformation vers la droite à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ? y(x,t) = f(t-x/c)
- 2. Dessiner l'évolution temporelle future aux points $x_1 < 0$ et $x_2 < x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.

On donne l'évolution temporelle d'une onde en x = 0 sous la forme y(x = 0, t) = f(t). On suppose que cette onde se déplace sans déformation vers la gauche à célérité constante c.

- 1. Quel est l'expression mathématique de y(x,t) pour toute abscisse x de la corde ? y(x,t) = f(t+x/c)
- 2. Dessiner l'évolution temporelle future aux points $x_1 < 0$ et $x_2 < x_1$. x = 0 en gris, x_1 en vert et x_2 en violet.
- 3. Retrouver le profil spatial de la corde aux instants $t_1 > 0$ et $t_2 > t_1$. t_1 en rouge et t_2 en bleu.