1. Model analytics

For the general statisfical model of asset return (see am_standards) given by

$$(1) y = f(\psi) + \epsilon.$$

we define a series of analyses that inform financial modeling, interpretability, statistical estimation, hypothesis testing and performance evaluation.

The covariance matrix plays a primary role in the distibution of asset return:

(2)
$$\operatorname{Var}(y) = \Sigma$$
.

In practice, we analyze the estimated covariance matrix $\hat{\Sigma}$, but here we use Σ for simplicity. An asset model typically assumes some particular structure for Σ that suggests particular analyses to perform. We motivate different types of analyses for the various models in am_standards. (Coversions between the various models is often possible).

2. Analytics prototypes

```
Input: model with attributes
-- attribute : type (factor, graphical, etc)
-- attribute : estimation_window (start_date, end_data, freq)
-- attribute : method (pca, mtfa, glasso, etc)

Analytics for type = factor:
-- compute_signal -- arg : factor_id
-- compute_noise
-- compute_size
-- compute_size
-- compute_sixe
-- compute_skew
-- compute_meltup
-- compute_correlation
-- compute entropy
```

3. Factor model analytics

Consider the canonical factor model for which the covariance has the form

$$\Sigma = \Pi \Psi \Pi^{\top} + \Omega$$

with a diagonal, $q \times q$ postive definite matrix Ψ and a full rank $p \times q$ matrix Π with othogonal columns π_1, \ldots, π_q (i.e., $\langle \pi^k, \pi^\ell \rangle = 0$ for all $k \neq \ell$), and a symmetric positive definite matrix Ω with bounded eigenvalues (in dimension p).

It is important to undertand the evolution, over time, of both components in the decomposition of Σ above. In practice, some estimation procedure (e.g. PCA, see pca), will produce estimates of the triplet (Π, Ψ, Ω) which conforms to the standards in am standards. The following analytics help study the structure of (Π, Ψ, Ω)

The systematic risk component of the canonical factor model may be written as

(4)
$$\Pi \Psi \Pi^{\top} = \sigma_1^2 \pi^1 (\pi^1)^{\top} + \dots + \sigma_q^2 \pi^q (\pi^q)^{\top}$$

and we take $\sigma^2\pi\pi=(\sigma\pi)(\sigma\pi)^{\top}$ as a representative term letting $\eta=\sigma\pi\in\mathbb{R}^p$ which represents the product of the factor volatility σ times the factor exposures π . In practice, there is no way to estimate the σ and π separately, and we can write

(5)
$$\eta \eta^{\top} = c^2 \left(\frac{\eta}{c}\right) \left(\frac{\eta}{c}\right)^{\top}$$

for any $c \neq 0$ so that the variance is now identified as $\sigma^2 = c^2$ while $\pi = \frac{\eta}{c}$.

This motivates the analysis of the structure of the vector η to determine how to best model the individual components σ and π among other concerns.

Let $\eta = \sigma \pi \in \mathbb{R}^p$, the product of the factor volatility and exposure. We are interested in the evolution over time of the following quantities.

- Signal. Denoted by $m(\eta)$ and defined by

(6)
$$m(\eta) = \sum_{i=1}^{p} \eta_i / p \ge 0$$

where we flip the sign of η to ensure nonnegativity.

- Noise. Denoted by $s(\eta)$ and defined by

(7)
$$s(\eta) = \sqrt{\sum_{i=1}^{p} (\eta_i - m(\eta))^2 / p}.$$

- Exposure SNR. A signal-to-noise ratio defined by

(8)
$$SNR(\eta) = \frac{m(\eta)}{s(\eta)}.$$

- Size. Denoted by $z(\eta)$ and defined as a scaled length

(9)
$$z(\eta) = |\eta|/\sqrt{p} = \sqrt{\langle (\eta), \eta \rangle/p} = \sqrt{m^2(\eta) + s^2(\eta)}.$$

¹The inner product could be a weighted one but here we continue with the standard inner product.

- Skewness. Denoted by $k(\eta)$ and defined as

(10)
$$k(\eta) = \frac{\sum_{i=1}^{p} (\eta_i - m(\eta))^3 / p}{s^3(\eta)}$$

- Meltup. Denoted by $u(\eta)$ and defined as

(11)
$$u(\eta) = \sum_{i=1}^{p} \operatorname{sgn}(\eta_i)/p$$

- Correlation. Denoted by $\rho(\eta)$ and defined as

(12)
$$\rho(\eta) = \sum_{i \neq j} \eta_i \eta_j / (p^2 - p)$$

- Entropy. Denoted by $H(\eta)$ and defined as

(13)
$$H(\eta) = -\sum_{i=1}^{p} p_i(\eta) \log p_i(\eta)$$

for $p_i(\eta) = \phi(\eta)$ for some probability density ϕ (e.g. normal).

In particular, the size, signal and noise can all serve as a proxy for the factor variance, i.e., (one exception is when the signal $m(\eta)$ is close or equal to zero)

(14)
$$\eta \eta^{\top} = z^{2}(\eta) \left(\frac{\eta}{z(\eta)} \frac{\eta^{\top}}{z(\eta)} \right) = s^{2}(\eta) \left(\frac{\eta}{s(\eta)} \frac{\eta^{\top}}{s(\eta)} \right) = m^{2}(\eta) \left(\frac{\eta}{m(\eta)} \frac{\eta^{\top}}{m(\eta)} \right)$$
$$= \sigma^{2} \pi \pi^{\top}.$$

identifying the σ^2 with different quantities.

3.1. SSIM estimation. An SSIM estimate takes the form

(15)
$$\hat{\Sigma} = v^2 h h^{\top} + D \quad \text{where} \quad \sum_i h_i \ge 0, \quad |h| = 1.$$

There is no way in general to estimate the "sizes" of $v \in (0, \infty)$ and $h \in \mathbb{R}^p$ so a normalization such as |h| = 1 has to be selected. Alternatively we can take any,

(16)
$$\hat{\Sigma} = \left(\frac{v^2}{Z^2}\right) \eta \eta^\top + D \quad \text{where} \quad \sum_i \eta_i \ge 0, \quad |\eta| = Z.$$

A useful example would set Z equal to the average entry of h (hence, η has unit mean). Given a $p \times n$ return matrix Y (n observations of $y \in \mathbb{R}^p$) we take the sample covariance and correlation matrices

(17)
$$S = YY^{T}/n$$
 $C = V^{-1/2}SV^{-1/2}$ $V = diag(S)$.

Then we have the following models.

- The PCA covariance model takes h to be the eigenvector of S with largest eigenvalue \mathfrak{J}_1^2 and sets $v^2 = \mathfrak{J}_1^2$. Further, D = diag(S $-v^2hh^{\top}$).
- The PCA correlation model takes h to be the eigenvector of C with largest eigenvalue e_1^2 but sets $v^2 = s_1^2$ (any identity for s and s) and D as above.
- James-Stein PCA variation
- MTFA
- Graphical model.

4. Beta financial indicators

These can use the raw beta β or the market-cap beta $\beta^M = V^{-1/2}\beta$. The latter is more robust and theoretically consistent. It has

(18)
$$\beta_i^{\rm M} \propto \sqrt{\frac{\beta_i^2}{\sigma_{\rm M}^2 \beta_i^2 + \delta_i^2}}$$

in a strict single index model (SSIM).

- Mean beta.

$$m(\beta) = \sum_{i=1}^{p} \beta_i / p$$

- Beta dispersion.

$$d^2(\beta) = s^2(\beta)/m^2(\beta)$$

where
$$s^2(\beta) = \sum_{i=1}^{p} (\beta_i^2 - \mu(\beta))^2 / p$$
.

- Beta skewness.

$$k(\beta) = m_3(\beta)/s^2(\beta)$$

where
$$m_3(\beta) = \sum_{i=1}^{p} (\beta_i - \mu(\beta))^3 / p$$
.

- Melt up. (number positive minus number negative beta).

$$M(\beta) = \sum_{i=1}^{p} \operatorname{sign}(\beta_i) / p$$

- Average pairwise correlation. For a covariance matrix $\Sigma = (\Sigma_{ij})$,

$$\rho(\Sigma) = \sum_{i \neq j} \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii} \Sigma_{jj}}} / (p^2 - p)$$

We can also define the average pairwise correlation of Beta (or any factor β) as

$$\rho(\beta) = \sum_{i \neq j} \beta_i \beta_j / (p^2 - p)$$

which is roughy $\mu^2(\beta)$ for p large. Note that in a SSIM,

$$\rho(\beta^{\mathrm{M}}) = \rho(\Sigma).$$

– Entropy. Let ϕ be some probability density (e.g., normal). Let $p_i(\beta) = \phi(\beta_i)$.

$$H(\beta) = -\sum_{i=1}^{p} p_i(\beta) \log(p_i(\beta))$$

5. Nonbeta financial indicators

Portfolio variances.

- Market volatility. This is simply $\sigma_{\rm M}$ in model (??). In the estimated model this may be taken as v in (15), or for the version of (16) that assumes a unit-mean beta,

$$(19) vm(h).$$

- Portfolio volatility. For a portfolio w computed based on covariance Σ ,

$$\sqrt{w^{\top}\Sigma w}$$

is the volatility of w. Similarly for an estimated \hat{w} based on $\hat{\Sigma}$ (i.e., $\sqrt{\hat{w}^{\top}\Sigma\hat{w}}$). Then,

$$\sqrt{\hat{w}^{ op}\Sigma\hat{w}}$$

is the realized portfolio variance. (When Σ is not available an out-of-sample estimate may be used).

- Diversification index. For a portfolio w the following (Herfindahl) index measures diversification (variations are typically norms $||\cdot||$ of w),

$$HI(w) = \sum_{i=1}^{p} w_i^2.$$

A portfolio based purely on Σ (or $\hat{\Sigma}$) is the one with minimum variance, i.e.,

(20)
$$\min_{w} w^{\top} \Sigma w$$
$$\text{s.t. } w^{\top} e = 1$$
$$(w \ge 0)$$

for $\mathbf{e} = (1, \dots, 1)^{\top}$ and with the no short sales constraint $(w \geq 0)$ optional. The solution may be stated explitly in the SSIM $\Sigma = \sigma_{\mathrm{M}}^2 \beta \beta^{\top} + \Delta$.

$$w = \frac{\Delta^{-1}(e - \theta\beta)}{e^{\top}\Delta^{-1}(e - \theta\beta)}$$

where θ for the portolio allowing short sales is

(21)
$$\theta = \frac{\sum_{i=1}^{p} \beta_i / \delta_i^2}{1/\sigma_{\rm M}^2 + \sum_{i=1}^{p} \beta_i^2 / \delta_i^2}$$

and we replace $\sum_{i=1}^{p}$ with $\sum_{\theta \beta_i < 1}$ to obtain the solution with no short sales.

Figure 1. Beta dispersion (p = 512) vs a.p. correlation, skewness, melt up, entropy, minimum volatility (long short and long only), and minimum volatility portfolio Herfindahl index (long short and long only).

Figure 2. Sample scatter plots for covariance PCA. (p=512, n=128). Model $(d^2(\beta), \sigma_M, ave(\delta)) = (0.4, 16, 0.4)$.

Figure 3. Sample scatter plots for correlation PCA. (p=512, n=128). Model $(d^2(\beta), \sigma_M, ave(\delta)) = (0.4, 16, 0.4)$.

6. Empirics

- 1. High beta dispersion is a sign of financial stress.
- 2. Mean beta is mean-reverting (business cycles).
- 3. In crisis all correlations do not go to one (anti-Markowitz).
- 4. Melt-up and beta dispersion are associated with market bubbles.
- 5. Skewness, entropy, etc.

Figure 4. S&P 500 data from 1965-2019.

7. Regime models

- 8. Multi-index and graphical models
 - 9. Asset return distributions

A. Beta dispersion vs Skew, Melt up, Correlation, Entropy plots

Figure 5. Average pairwise correlation vs Beta dispersion (p=512). Top left: $(\sigma_M, ave(\delta)) = (16, 25)$. Top right: $(\sigma_M, ave(\delta)) = (25, 25)$. Bottom left: $(\sigma_M, ave(\delta)) = (16, 60)$. Bottom left: $(\sigma_M, ave(\delta)) = (25, 60)$. Volatility units are percent annualized.

Figure 6. Beta Skewness vs Beta dispersion (p = 512). Top left: ($\sigma_{\rm M}$, ave(δ)) = (16, 25). Top right: ($\sigma_{\rm M}$, ave(δ)) = (25, 25). Bottom left: ($\sigma_{\rm M}$, ave(δ)) = (16, 60). Bottom left: ($\sigma_{\rm M}$, ave(δ)) = (25, 60). Volatility units are percent annualized.

Figure 7. Beta Skewness vs Beta dispersion (p=512). Top left: $(\sigma_{\rm M}, ave(\delta))=(16,25)$. Top right: $(\sigma_{\rm M}, ave(\delta))=(25,25)$. Bottom left: $(\sigma_{\rm M}, ave(\delta))=(16,60)$. Bottom left: $(\sigma_{\rm M}, ave(\delta))=(25,60)$. Volatility units are percent annualized.

Figure 8. Beta dispersion vs Beta Meltup (p=512). Top left: $(\sigma_M, ave(\delta))=(16,25)$. Top right: $(\sigma_M, ave(\delta))=(25,25)$. Bottom left: $(\sigma_M, ave(\delta))=(16,60)$. Bottom left: $(\sigma_M, ave(\delta))=(25,60)$. Volatility units are percent annualized.