Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Automata, Languages and Computation

Chapter 5 : Context-Free Grammars and Languages

Master Degree in Computer Engineering
University of Padua
Lecturer: Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

- Context-free grammars : we consider devices defining structures more complex than regular languages
- 2 Parse trees: tree representation of a derivation
- 3 CFGs and ambiguity : some strings might have more than one parse tree
- Relation with regular languages: CFGs can simulate FAs or regular expressions

Informal example of CFL

```
Let L_{pal} = \{ w \mid w \in \Sigma^*, w = w^R \}, also called the language of all
palindrome strings
```

```
Example: (ignore case, spaces, and punctuation characters)
"Madam I'm Adam" is a palindrome;
```

"A man, a plan, a canal, Panama!" is a palindrome

Informal example of CFL

Let $\Sigma = \{0,1\}$ and assume L_{pal} is a regular language

Let n be the constant from the pumping lemma. We pick $w = 0^n 10^n \in L_{pal}, \ w \geqslant n$

Let w = xyz be such that $y \neq \epsilon$ and $|xy| \leqslant n$

If k = 0, $xz \notin L_{pal}$: the number 0's to the left of 1 is smaller than the number of 0's to its right

Informal example of CFL

We inductively define L_{pal}

Base ϵ , 0, and 1 are palindrome strings

Induction

If w is a palindrome strings, then 0w0 and 1w1 are also palindrome strings

Nothing else is a palindrome string

CFG example

CFGs are a formalism for recursively defining languages such as L_{pal} , using rewriting rules

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

P is a variable representing strings of a language. In this grammar *P* is also the initial symbol

Compare variables with recursive functions in programming languages

Definition

A context-free grammar (CFG for short) is a tuple

$$G = (V, T, P, S)$$

where

- V is a finite set of variables (also called nonterminals)
- T is a finite set of terminal symbols, representing the language alphabet
- P is a finite set of **productions** having the form $A \to \alpha$, where A (head, or left-hand side) is a variable and α (body or right-hand side) is a string in $(V \cup T)^*$
- S is a variable called initial symbol

Example

A CFG for palindrome strings is

$$G_{pal} = (\{P\}, \{0,1\}, A, P)$$

with

$$A = \{P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}$$

Compact notation

Usually, productions with a common head are grouped together

Example: Productions $A \to \alpha_1$, $A \to \alpha_2$, ..., $A \to \alpha_n$ can be written in a more compact notation

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$$

Test

Define a CFG for each of the following languages

Derivation

In order to generate strings using a CFG, we define a binary relation \Rightarrow over $(V \cup T)^*$, called rewrites

Let
$$G=(V,T,P,S)$$
 be a CFG, $A\in V$, $\{\alpha,\beta\}\subset (V\cup T)^*$. If $A\to \gamma\in P$ then

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

and we say that $\alpha A\beta$ derives in one step $\alpha \gamma \beta$

If G is understood from the context, we use the simplified notation

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Derivation

We define $\stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow

Base Let
$$\alpha \in (V \cup T)^*$$
. Then $\alpha \stackrel{*}{\Rightarrow} \alpha$

Induction If
$$\alpha \stackrel{*}{\Rightarrow} \beta$$
 and $\beta \Rightarrow \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$

We often write derivations by indicating all of the intermediate steps

Leftmost derivation

In derivations, we can avoid the choice of variables to be rewritten if we stick to some canonical derivation form

The relation \Rightarrow always rewrites the leftmost variable with some production

We also use the reflexive and transitive closure of \Rightarrow , written \Rightarrow , \Rightarrow and call it leftmost derivation

Example

Leftmost derivation of a * (a + b00):

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E \underset{lm}{\Rightarrow} a * (E) \underset{lm}{\Rightarrow} a * (E + E)$$

$$\underset{lm}{\Rightarrow} a * (I + E) \underset{lm}{\Rightarrow} a * (a + E) \underset{lm}{\Rightarrow} a * (a + I) \underset{lm}{\Rightarrow} a * (a + I0)$$

$$\underset{lm}{\Rightarrow} a * (a + I00) \underset{lm}{\Rightarrow} a * (a + b00)$$

We conclude that $E \stackrel{*}{\Rightarrow} a * (a + b00)$

Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Rightmost derivation

The relation \Rightarrow always rewrites the rightmost variable with the body of a production

We use the reflexive and transitive closure of \Rightarrow , written $\stackrel{*}{\underset{rm}{\Rightarrow}}$, called rightmost derivation

Example

Rightmost derivation:

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E + E) \underset{rm}{\Rightarrow} E * (E + I)$$

$$\Rightarrow E * (E + I0) \underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00)$$

$$\Rightarrow E * (I + b00) \underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow} I * (a + b00)$$

$$\Rightarrow a * (a + b00)$$

We conclude that
$$E \stackrel{*}{\Rightarrow} a * (a + b00)$$

Notation for CFGs

We use the following conventions

- a, b, c, . . . terminal symbols
- A, B, C, ... variables (nonterminal symbols)
- u, v, w, x, y, z terminal strings
- X, Y, Z terminal or nonterminal symbols
- $\alpha, \beta, \gamma, \ldots$ strings over terminal or nonterminal symbols

Language generated by a CFG

Let G = (V, T, P, S) be some CFG. The **generated language** of G is

$$L(G) = \{ w \in T^* \mid S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

that is, the set of all strings in T^* that can be derived from the start symbol

L(G) is a **context-free language**, or CFL for short

Example: $L(G_{pal})$ is a CFL

Test

Consider the language L of all strings over "(" and ")" where parentheses are always well balanced (assume $\epsilon \notin L$)

for the following CFG

$$G = (\{S\}, \{(,)\}, P, S)$$

specify the set P such that L(G) = L

produce a derivation for string

$$W = (()(()))$$

$$S \xrightarrow{b} (s) \xrightarrow{b} (s) \xrightarrow{b} (()s) \xrightarrow{b} (()(s)) \xrightarrow{b} (()(()))$$