

ES_CMT453x 系列勘误手册 V1.1.0

目录

1	甚	助误列表	3
2	並	蓝牙功能(BLE)	4
	2.1	系统时钟使用 HSE	4
	2.2	使用蓝牙协议栈时 EXTI4_12 中断	4
	2.3	LSI 毛刺异常	4
3	N	系统时钟控制(RCC)	5
	3.1	RCC_LSCTRL 寄存器使用注意	5
	3.2	RCC_AHBPRST 的 ADCRST 位异常	5
4	N.	系统缓存管理(CACHE)	5
	4.1	总线访问特殊代码逻辑时,存在取指令异常	5
5	ſŧ	低功耗通用异步接收器(LPUART)	5
	5.1	使用 LSI 32K 作为时钟源时使用 9600 波特率传输和字节唤醒异常	5
6	昪	串行外设接口(SPI)	6
	6.1	SPI 接口	6
	6	5.1.1 SPI 波特率设置	6
	6	6.1.2 从模式 CRC 校验	6
	6	5.1.3 使用蓝牙协议栈时,SPI1 中断中断不能响应	6
7	12	2C 接口	6
	7.1	, , , , , , , , , , , , , , , , , , ,	
8	抄	按键检测(KEYSCAN)	7
	8.1	KEYSCAN 睡眠的 RETENTION 电压要求	7
9	衣	芯片丝印及版本说明	7
10	D 別	饭本历史	7
1:	1	声明	9

1 勘误列表

表 1-1 勘误概述

	芯片版本				
	B版	С	D		
	, , , ,	版	版		
章节 2: 蓝牙功能	章节 2.1: 系统时钟使用 HSE		•	•	•
<u>早月2: </u>	章节 2.2: 使用蓝牙协议栈时 EXTI4_12 中断			•	•
(BLE)	章节 2.3: LSI 毛刺异常		•	•	/
章节 3: 复位和时钟控	章节 3.1: RCC_LSCTRL 寄存器使用注意			•	•
制(RCC)	章节 3.2: RCC_AHBRST 的 ADCRST 位异常				•
章节 4: 4 系统缓存管	章节 4.1: 总线访问特殊代码逻辑时,存在取指令异常			,	,
理 (CACHE)	早 4.1: 总线切		/	/	
章节5: 低功耗通用异	章节 5.1: 使用 LSI 32K 作为时钟源时使用 9600 波特率传输和字节唤醒				
步接收器(LPUART)	<u>异常</u>				
		章节 6.1.1: SPI 波特率设置	•	•	•
章节 6: 串行外设接口	章节 6.1: SPI 接	章节 6.1.2: 从模式 CRC 校验	•	•	•
(SPI)	旦	章节 6.1.2: 使用蓝牙协议栈时, SPI1 中断中断不			
		能响应	•		
章节7: I2C 总线接口	节 7: I2C 总线接口 章节 7.1: 异常信号干扰			•	•
章节8:按键检测	章节 8.1: 进入 Sleep 模式,存在部分芯片不能通过 KEYSCAN 唤醒				
(KEYSCAN)	字 1 0.1;	•			

注:"/"表示该版本不涉及; "●"表示改版本涉及此勘误描述

2 蓝牙功能 (BLE)

2.1 系统时钟使用 HSE

描述

当启用蓝牙协议栈功能时,HSE 32M 作为系统时钟速度不满足性能需求。

解决方法

需要启用蓝牙协议栈功能时,不能选用 HSE 直接作为系统时钟,选择 HSI 作为系统时钟。

2.2 使用蓝牙协议栈时 EXTI4 12 中断

描述

当启用蓝牙协议栈功能时,协议栈会重新配置 EXTI4_12 中断,导致用户代码在启动过程的 EXTI4_12 中断配置不生效。

解决方法

需要启用蓝牙协议栈功能时,协议栈初始化会配置 EXTI4_12 中断并使用 EXTI11 的中断功能,用户需要在协议栈初始化完成后,再配置此中断,并在中断处理函数里添加 EXTI11 的清除标记位处理。

2.3 LSI 毛刺异常

描述

B和C版芯片当VCCRF供电超过3V,存在LSI有毛刺风险,此毛刺有导致蓝牙协议栈唤醒异常风险。

解决方法1

VCCRF 供电不高于 3V。推荐方式是 VCC 经过二极管降压后连 VCCRF,如下参考图。推荐的二极管型号是 BAV21W,BZT52C3V6 和 BAP1321。

解决方法 2

使用 LSE 作为低速时钟源。

解决方法3

使用D版本芯片。

3 系统时钟控制 (RCC)

3.1 RCC LSCTRL 寄存器使用注意

描述

Sleep 模式唤醒后,如果先操作寄存器 RCC_CFG 寄存器则导致 RCC_LSCTRL 寄存器被恢复默认值。

解决方法

Sleep 模式唤醒后, 先写入 RCC_LSCTRL 寄存器, 之后再操作 RCC_CFG 寄存器。

3.2 RCC AHBPRST 的 ADCRST 位异常

描述

置位 RCC AHBPRST 寄存器的 ADCRST 位不能正确复位 ADC 模块。

解决方法

需要复位 ADC 模块时,手动给所有的 ADC 模块寄存器赋默认值。

4 系统缓存管理(CACHE)

4.1 总线访问特殊代码逻辑时,存在取指令异常

描述

B 版芯片在执行特殊指令顺序(代码逻辑)时,存在取指令异常。表现为内核停止运行,此时 SWD 接口可以访问接口 JTAG IDCODE 但是不能访问芯片内核 ID。

解决方法

更换到D版本芯片。

5 低功耗通用异步接收器(LPUART)

5.1 使用 LSI 32K 作为时钟源时使用 9600 波特率传输和字节唤醒异常

描述

当 LPUART 使用 32K 作为时钟源时,由于时钟频率对波特率不能整除,导致波特率有偏差,导致唤醒时字节判断不对,从而不能唤醒。

解决方法1

需要使用LSI作为LPUART时钟源时,把LSI校准到32.768K使用。

解决方法 2

使用 LSE 作为 LPUART 时钟源。

6 串行外设接口(SPI)

- 6.1 SPI 接口
- 6.1.1 SPI 波特率设置

描述

SPI 主模式且开启 CRC 校验功能, 当 SPI 时钟频率大于 8MHz 时, CRC 校验异常。

解决方法

SPI 主模式且开启 CRC 校验功能, SPI 时钟频率不大于 8MHz。

6.1.2 从模式 CRC 校验

描述

SPI 工作在从模式并且已经使能了 CRC 校验,即使 NSS 引脚为高电平,只要 SPI 接收到时钟信号,仍然会进行 CRC 计算

解决方法

在使用 CRC 校验前, 先将 CRC 数据寄存器清空, 以便主从设备 CRC 校验保持同步

6.1.3 使用蓝牙协议栈时, SPI1 中断中断不能响应

描述

开启蓝牙协议栈时,使用了 ROM 的中断向量表,此中断向量表没有把 SPI1 的中断回调函数映射出来,导致不能调用。

解决方法

使用 DMA 接收或者使用 SPI2 模块。

7 I2C 接口

7.1 异常信号干扰

描述

I2C 在工作过程,SCL 和 SDA 在通讯过程中可能受到毛刺干扰,造成通讯异常。

解决方法

使用 IO 软件模拟 I2C。

8 按键检测(KEYSCAN)

8.1 KEYSCAN 睡眠的 retention 电压要求

描述

睡眠模式下,KEYSCAN 要求提高 retention 电压,否则芯片存在不能通过 KEYSCAN 和 EXTI3 功能唤醒的风险。

解决方法

提高 retention 电压值,寄存器配置: *(uint32_t*)0x40007014 = 0x000000814。使用此配置后睡眠电流将增加 200nA。

9 芯片丝印及版本说明

10 版本历史

日期	版本	修改
2022/09/26	V1.0.0	初始版本
2023/02/19	V1.1.0	1. 更新新模板。
		2. 增加 RCC 的 LSI 毛刺和 ADC 复位异常描述。
		3. 增加总线访问特殊代码逻辑时,存在取指令异常。

4. 增加 LSI 30K 作为 LPUART 时钟源时使用 9600 波特率传输异
常和唤醒异常。
5. 增加硬件 I2C 受异常信号干扰导致异常。
增加 KEYSCAN 的睡眠 retention 电压需要使用默认值。

11 声明

免责声明

深圳市华普微电子股份有限公司保留在不另行通知的情况下,更改产品以提升其可靠性、功能或设计的权利。本公司亦不承担因使用此处所述产品或电路而引致的任何责任。

关于涉及生命维持设备的应用

深圳市华普微电子股份有限公司的产品并不适用于生命维持设备、装置或系统,因为这些产品的故障可能会导致人身伤害。使用或销售本产品作上述用途的客户须自行承担风险,并同意就因使用或销售不当而引致的任何损害,向本公司作出全面赔偿。

联系方式

深圳市华普微电子股份有限公司

地址:深圳市南山区西丽街道万科云城三期8栋A座30层

电话: +86-0755-82973805 邮箱: <u>sales@hoperf.com</u> 网址: <u>http://www.hoperf.cn</u>