Regression metrics optimization

Metrics optimization: our plan

1) Regression

- MSE, (R)MSE, R-squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

2) Classification:

- Accuracy
- Logloss
- AUC
- Cohen's Kappa

RMSE, MSE, R-squared

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

How do you optimize them?

Just fit the right model!

RMSE =
$$\sqrt{\text{MSE}}$$
 $R^2 = 1 - \frac{MSE}{\frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2}$

RMSE, MSE, R-squared

Tree-based

```
XGBoost, LightGBM sklearn.RandomForestRegressor
```

Linear models

```
sklearn.<>Regression
sklearn.SGDRegressor
Vowpal Wabbit (quantile loss)
```

Neural nets

PyTorch, Keras, TF, etc.

Synonyms: L2 loss

Read the docs!

MAE

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

How do you optimize it?

Again, just run the right model!

MAE

Tree-based

```
XGBoost, LightGBM
sklearn.RandomForestRegressor
```

Linear models

```
sklearn.<>Regression
sklearn.SGDRegressor
Vowpal Wabbit (quantile loss)
```

Neural nets

PyTorch, Keras, TF, etc.

Synonyms: L1, Median regression

Read the docs!

MAE: optimal constant

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

MSPE and MAPE

MSPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2$$
 MAPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$

How do you optimize them?

Just run the right model!

MSPE (MAPE) as weighted MSE (MAE)

Sample weights

MSPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{y_i}\right)^2 \quad w_i = \frac{1/y_i^2}{\sum_{i=1}^{N} 1/y_i^2}$$

MAPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left|\frac{y_i - \hat{y}_i}{y_i}\right| \quad w_i = \frac{1/y_i}{\sum_{i=1}^{N} 1/y_i}$

- Use weights for samples (`sample_weights`)
 - And use MSE (MAE)

- Use weights for samples (`sample_weights`)
 - And use MSE (MAE)
 - Not every library accepts sample weights
 - XGBoost, LightGBM accept
 - Neural nets
 - Easy to implement if not supported

- Use weights for samples (`sample_weights`)
 - And use MSE (MAE)
 - Not every library accepts sample weights
 - XGBoost, LightGBM accept
 - Neural nets
 - Easy to implement if not supported
- Resample the train set
 - df.sample(weights=sample weights)
 - And use any model that optimizes MSE (MAE)

- Use weights for samples (`sample_weights`)
 - And use MSE (MAE)
 - Not every library accepts sample weights
 - XGBoost, LightGBM accept
 - Neural nets
 - Easy to implement if not supported
- Resample the train set
 - df.sample(weights=sample_weights)
 - And use any model that optimizes MSE (MAE)
 - Usually need to resample many times and average

RMSLE

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\hat{y}_i + 1))^2} =$$

= $\sqrt{MSE (\log(y_i + 1), \log(\hat{y}_i + 1))}$

Train:

Transform target:

$$z_i = \log(y_i + 1)$$

2. Fit a model with MSE loss

Test:

Transform predictions back:

$$\hat{y}_i = \exp(\hat{z}_i) - 1$$

Conclusion

1) Regression

- MSE, (R)MSE, R-squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

2) Classification:

- Accuracy
- Logloss
- AUC
- Cohen's Kappa