Kompaktowe reprezentacje binarne i modele generatywne

Jakub Zadrożny Promotor: dr Rafał Nowak

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

6 września 2019

Problem

Chmura punktów – N trójek współrzędnych (x, y, z), gdzie N – rozdzielczość chmury. Dalej zakładamy N = 2048.

Problem

Chmura punktów – N trójek współrzędnych (x,y,z), gdzie N – rozdzielczość chmury. Dalej zakładamy N=2048.

Zadanie

Chcemy efektywnie przechowywać i przetwarzać ogromne zbiory chmur punktów.

Problem

Chmura punktów – N trójek współrzędnych (x,y,z), gdzie N – rozdzielczość chmury. Dalej zakładamy N=2048.

Zadanie

Chcemy efektywnie przechowywać i przetwarzać ogromne zbiory chmur punktów.

Rozwiązanie na
iwne wymaga aż $2048\times 3\times 4B\approx 25KB$ pamięci na każdą ch
murę!

Rozwiązanie częściowe (1)

Reprezentacją danych nazywamy przyporządkowanie danym pewnego wektora $z \in \mathbb{R}^d$, na podstawie którego potrafimy je odtworzyć (bez dodatkowych informacji).

Rozwiązanie częściowe (1)

Reprezentacją danych nazywamy przyporządkowanie danym pewnego wektora $z \in \mathbb{R}^d$, na podstawie którego potrafimy je odtworzyć (bez dodatkowych informacji).

Do znalezienia reprezentacji posiadanych (i potencjalnie nowych) danych możemy posłużyć się **autoenkoderem**:

Rozwiązanie częściowe (2)

Używając autoenkodera z odpowiednio dobraną architekturą i funkcją kosztu, potrafimy znaleźć satysfakcjonującą reprezentację chmur punktów w 128-wymiarowej przestrzeni.

Rozwiązanie częściowe (2)

Używając autoenkodera z odpowiednio dobraną architekturą i funkcją kosztu, potrafimy znaleźć satysfakcjonującą reprezentację chmur punktów w 128-wymiarowej przestrzeni.

Uwaga

128-wymiarowa reprezentacja zajmuje 128 × 4B $\approx 0.5KB$ pamięci, co daje ok. 50-krotną skalę kompresji danych.

Przechowywanie i przetwarzanie danych w takiej reprezentacji pozwala rozwiązać podstawowy problem narzutu pamięciowego i obliczeniowego.

Chcielibyśmy jednak opracować model, który pozwoliłby na:

• generowanie nowych, nieistniejących do tej pory danych,

- generowanie nowych, nieistniejących do tej pory danych,
- w tym generowanie danych podobnych do pewnej zadanej chmury,

- generowanie nowych, nieistniejących do tej pory danych,
- w tym generowanie danych podobnych do pewnej zadanej chmury,
- gładkie interpolowanie pomiędzy obiektami (stwierdzenie co jest *pomiędzy* obiektem A i B),

- generowanie nowych, nieistniejących do tej pory danych,
- w tym generowanie danych podobnych do pewnej zadanej chmury,
- gładkie interpolowanie pomiędzy obiektami (stwierdzenie co jest *pomiędzy* obiektem A i B),
- tworzenie obiektów na bazie posiadanych chmur (np. sklejenie połowy obiektu A i połowy B).

Podejście probabilistyczne

Nowe założenie

Dane są obserwacjami zmiennej losowej x, której rozkład jest postaci

$$f_{\theta}(z,x) = f(z)f_{\theta}(x|z),$$

gdzie z jest dodatkową zmienną ukrytą, a θ parametrami rozkładu.

Podejście probabilistyczne

Nowe założenie

Dane są obserwacjami zmiennej losowej x, której rozkład jest postaci

$$f_{\theta}(z,x) = f(z)f_{\theta}(x|z),$$

gdzie z jest dodatkową zmienną ukrytą, a θ parametrami rozkładu.

Dodatkowo zakładamy, że

$$z \sim \mathcal{N}(0, I_d),$$

 $x|z \sim \mathcal{N}(\mu_x(z; \theta), \mu_\sigma(z; \theta)I_k),$

gdzie μ_x , μ_σ są skomplikowanymi obliczeniami parametryzowymi przez θ .

Zastosowanie do znalezienia reprezentacji

Reprezentacja: $f_{\theta}(z|x)$.

Rekonstrukcja: $\mu_x(z;\theta)$.

Zastosowanie do znalezienia reprezentacji

Reprezentacja: $f_{\theta}(z|x)$. Rekonstrukcja: $\mu_x(z;\theta)$.

Problem

Nie znamy prawdziwych parametrów θ , nie możemy nawet efektywnie wyliczyć ich MLE. Ponadto nie potrafimy wyznaczyć rozkładu $f_{\theta}(z|x)$.

Zastosowanie do znalezienia reprezentacji

Reprezentacja: $f_{\theta}(z|x)$. Rekonstrukcja: $\mu_x(z;\theta)$.

Problem

Nie znamy prawdziwych parametrów θ , nie możemy nawet efektywnie wyliczyć ich MLE. Ponadto nie potrafimy wyznaczyć rozkładu $f_{\theta}(z|x)$.

Rozwiązanie – autoenkoder wariacyjny

Wprowadzamy sparametryzowane przybliżenie rozkładu $f_{\theta}(z|x)$ i optymalizujemy dolne oszacowanie na prawdopodobieństwo wygenerowania obserwowanych danych (**ELBO**).

• Enkoder wyznacza parametry rozkładu normalnego $g_{\phi}(z|x)$ przybliżającego $f_{\theta}(z|x)$.

- Enkoder wyznacza parametry rozkładu normalnego $g_{\phi}(z|x)$ przybliżającego $f_{\theta}(z|x)$.
- \circ Z rozkładu $g_{\phi}(z|x)$ losuje się reprezentację z.

- Enkoder wyznacza parametry rozkładu normalnego $g_{\phi}(z|x)$ przybliżającego $f_{\theta}(z|x)$.
- \circ Z rozkładu $g_{\phi}(z|x)$ losuje się reprezentację z.
- \bullet Na podstawie wylosowanej z, dekoder wylicza $\mu_x(z;\theta)$, które przyjmowane jest za rekonstrukcję.

- Enkoder wyznacza parametry rozkładu normalnego $g_{\phi}(z|x)$ przybliżającego $f_{\theta}(z|x)$.
- \circ Z rozkładu $g_{\phi}(z|x)$ losuje się reprezentację z.
- \bullet Na podstawie wylosowanej z, dekoder wylicza $\mu_x(z;\theta)$, które przyjmowane jest za rekonstrukcję.

Enkoder: sieć neuronowa parametryzowana przez ϕ . Dekoder: sieć neuronowa parametryzowana przez θ .

Parametry ϕ oraz θ optymalizuje się wspólnie, wariantem metody SGD z funkcją kosztu będącą zmodyfikowanym ELBO (dostosowuje się je do różniczkowania po parametrach ϕ oraz do pracy z chmurami punktów).

Rekonstrukcje

Syntetyczne dane

Model z mieszanką gaussowską

Nowe założenie

Posiadane dane zostały wygenerowane przez mieszankę rozkładów o C komponentach z jednakowymi wagami.

Model z mieszanką gaussowską

Nowe założenie

Posiadane dane zostały wygenerowane przez mieszankę rozkładów o C komponentach z jednakowymi wagami.

Wprowadzamy dodatkową zmienną dyskretną y i zakładamy, że

$$f_{\theta}(x, y, z) = f(y)f(z|y)f_{\theta}(x|z)$$

oraz

$$y \sim \text{Cat}(1/C),$$

$$z|y \sim \mathcal{N}(\mu_y, I_d),$$

$$x|z \sim \mathcal{N}(\mu_x(z; \theta), \mu_\sigma(z; \theta)I_k),$$

gdzie $\mu_y \in \mathbb{R}^d$ są dowolnymi średnimi komponentów mieszanki.

Klasteryzacja

Przybliżamy $f_{\theta}(y,z|x)$ przez pewien rozkład $g_{\phi}(y,z|x)$ przy założeniu, że

$$g_{\phi}(y,z|x) = g_{\phi}(y|x)g_{\phi}(z|y,x),$$

gdzie $g_{\phi}(y|x)$ jest rozkładem dyskretnym, a $g_{\phi}(z|y,x)$ rozkładem normalnym.

Klasteryzacja

Przybliżamy $f_{\theta}(y,z|x)$ przez pewien rozkład $g_{\phi}(y,z|x)$ przy założeniu, że

$$g_{\phi}(y,z|x) = g_{\phi}(y|x)g_{\phi}(z|y,x),$$

gdzie $g_{\phi}(y|x)$ jest rozkładem dyskretnym, a $g_{\phi}(z|y,x)$ rozkładem normalnym.

Wtedy rozkład brzegowy $g_{\phi}(z|x)$ jest mieszanką gaussowską z wagami $g_{\phi}(y|x)$.

Klasteryzacja

Przybliżamy $f_{\theta}(y,z|x)$ przez pewien rozkład $g_{\phi}(y,z|x)$ przy założeniu, że

$$g_{\phi}(y, z|x) = g_{\phi}(y|x)g_{\phi}(z|y, x),$$

gdzie $g_{\phi}(y|x)$ jest rozkładem dyskretnym, a $g_{\phi}(z|y,x)$ rozkładem normalnym.

Wtedy rozkład brzegowy $g_{\phi}(z|x)$ jest mieszanką gaussowską z wagami $g_{\phi}(y|x)$.

Uwaga

Rozkład $g_{\phi}(y|x)$ możemy interpretować jako prawdopodobieństwa przynależności do każdego z klastrów. Przyporządkowując próbki do klastrów z największym prawdopodobieństwem otrzymujemy naturalny podział danych na podkategorie.

Przestrzeń reprezentacji

Klastry

Model z rozkładem Beta

Zakładamy, że

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_d \end{bmatrix}, \qquad z_i \sim \text{Beta}(0.01, 0.01),$$

a zmienne z_i są niezależne.

Model z rozkładem Beta

Zakładamy, że

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_d \end{bmatrix}, \qquad z_i \sim \text{Beta}(0.01, 0.01),$$

a zmienne z_i są niezależne.

Podobnie, niech $g_{\phi}(z|x)$ będzie iloczynem gęstości rozkładów Beta (α_i, β_i) , gdzie

$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix} = \rho_{\alpha}(x; \phi), \qquad \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} = \rho_{\beta}(x; \phi).$$

Histogram wartości zmiennej ukrytej

Reprezentacja binarna

Reprezentacją binarną nazywamy reprezentację, w której każdy wymiar zmiennej ukrytej przyjmuje wartość 0 lub 1.

Reprezentacja binarna

Reprezentacją binarną nazywamy reprezentację, w której każdy wymiar zmiennej ukrytej przyjmuje wartość 0 lub 1.

Obserwacja

Możemy uzyskać reprezentację binarną dla chmur punktów 3D zaokrąglając reprezentację wylosowaną z rokładu Beta do jedności (0 lub 1).

Reprezentacja binarna

Reprezentacją binarną nazywamy reprezentację, w której każdy wymiar zmiennej ukrytej przyjmuje wartość 0 lub 1.

Obserwacja

Możemy uzyskać reprezentację binarną dla chmur punktów 3D zaokrąglając reprezentację wylosowaną z rokładu Beta do jedności (0 lub 1).

W ten sposób uzyskujemy zaledwie 128-bitową reprezentację, gorszą od 128-wymiarowej ciągłej o niecałe 18%. Taka reprezentacja zajmuje tylko 4B, 32x mniej niż 128-wymiarowa reprezentacja ciągła i aż ok. 1500x mniej niż naiwna reprezentacja danych!

Rekonstrukcje binarne

