体論 (第11回)の解答

問題 11-1 の解答

(1) について.

$$L^{H_3} = \{ x \in L \mid \sigma(x) \quad (\forall \sigma \in H_3) \}$$
$$= \{ x \in L \mid \sigma_3(x) = x \}.$$

 $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \in L (a, b, c, d \in \mathbb{Q})$ に対して、

$$x = \sigma_2(x)$$
 \iff $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6}$
 \iff $b = d = 0$
 \iff $x \in \mathbb{Q}(\sqrt{3}).$

従って $L^{H_3} = \mathbb{Q}(\sqrt{3})$.

(2) $\sigma \in G$ に対して、

$$\sigma(\sqrt{6}) = \sqrt{6} \iff \sigma \in \Psi(\mathbb{Q}(\sqrt{6}))$$

に注意する. ここで,

$$\sigma_1(\sqrt{6}) = \sqrt{6}, \quad \sigma_2(\sqrt{6}) = -\sqrt{6}, \quad \sigma_3(\sqrt{6}) = -\sqrt{6}, \quad \sigma_4(\sqrt{6}) = \sqrt{6},$$

なので、 $\Psi(\mathbb{Q}(\sqrt{6})) = H_4$. これより, $L^{H_4} = \Phi(\Psi(\mathbb{Q}(\sqrt{6}))) = \mathbb{Q}(\sqrt{6})$.

問題 11-2 の解答

 $\beta=\sqrt{2-\sqrt{2}}$ と置く.問題 10-3 より, L/\mathbb{Q} は 4 次ガロア拡大で, $\sigma(\alpha)=\beta$ を満たす $\sigma\in \mathrm{Gal}(L/\mathbb{Q})$ を取れば, $\mathrm{Gal}(L/\mathbb{Q})=<\sigma>$ が成り立つ. $G(L/\mathbb{Q})$ は σ で生成される位数 4 の巡回群であるから,部分群は次の 3 つ.

$${ \{ \mathrm{Id}_L \}, \quad <\sigma^2 >, \quad G(L/\mathbb{Q}). }$$

このうち $\{ \mathrm{Id}_L \}$ は L, $G(L/\mathbb{Q})$ は \mathbb{Q} に対応する. また

$$\sqrt{2} = \alpha^2 - 2 \in L$$

より $\mathbb{Q}(\sqrt{2})\subseteq L$. よって $L^{<\sigma^2>}=\mathbb{Q}(\sqrt{2})$. 以上より L/\mathbb{Q} の中間体は次の 3 つである.

$$\mathbb{Q}$$
, $\mathbb{Q}(\sqrt{2})$, L .

copyright ⓒ 大学数学の授業ノート

問題 11-3 の解答

対偶を証明する. つまり, 有限次ガロア拡大 L/\mathbb{Q} に対して,

$$L \not\subseteq \mathbb{R} \Longrightarrow [L:\mathbb{Q}]$$
 は偶数

を示す. $\alpha \in L$ をとり, f(x) を α の $\mathbb Q$ 上の最小多項式とする. $f(x) \in \mathbb R[x]$ より

$$0 = \overline{f(\alpha)} = f(\bar{\alpha}).$$

ただし, \bar{x} は x の複素共役を表す. 従って $\bar{\alpha}$ は α の $\mathbb Q$ 上共役であるから $\bar{\alpha}\in L$ となる. このこと から

$$\tau:L\to L\;(\alpha\mapsto\bar\alpha)$$

が定義できる. $\tau \in \operatorname{Gal}(L/\mathbb{Q})$ であり, $\tau^2 = \operatorname{Id}_L$. また $L \not\subseteq \mathbb{R}$ より $\tau \neq \operatorname{Id}_L$. 従って τ の位数は 2 であり, $\operatorname{Gal}(L/\mathbb{Q})$ の位数は偶数となる. 従って $[L:\mathbb{Q}]$ は偶数である.