Part 1: Finite Precision Implementation Issues

2024年5月4日 14:15

Part1-FinitePrecisionImplementationIssues

- Fixed point and floating point number representations
 - decimal number system

$$(456)_{10} = 4 \times 10^{2} + 5 \times 10^{1} + 6 \times 10^{0}$$

 $(3705.86)_{10} = 3 \times 10^{3} + 7 \times 10^{2} + 0 \times 10^{1} + 5 \times 10^{0} + 8 \times 10^{-1} + 6 \times 10^{-2}$

binary number system

$$(11001)_{2} = (2^{4})_{10} + (2^{3})_{10} + (2^{0})_{10}$$

$$2^{4} / (2^{0})_{20} = (16)_{10} + (8)_{10} + (1)_{10}$$

$$= (25)_{10}$$

$$(101.01)_{2} = (2^{2})_{10} + (2^{0})_{10} + (2^{-2})_{10}$$

$$= (4)_{10} + (1)_{10} + (0.25)_{10}$$

$$= (5.25)_{10}$$

two's complement

所有负数在当前位数下,正数部分取反加一

sign extension

Multiplication of 2 n-bit numbers gives a 2n bit product. when multiply positive and negative num together, first sign extent.

fixed point number

Dynamic range =
$$20log_{10} \left(\frac{largest number}{smallest positive number excluding 0} \right)$$

Precision = difference between 2 consecutive numbers

Examples:

Q0.15 format, precision = 2^{-15}

Q15.0 format, precision = 1

- floating point number
- o IEEE 754

focus on 32bit representation.

32-bit single precision format

exponent is biased by +127. that means if 127, fact exp is 0, if 130 fact is 3, if 126 fact is -1

Exponent:

Normal range 1 to $2^{E} - 2$ (1 to 254)

Special cases:

For 0 and denormalized numbers, exponent = 0 For $\pm \infty$ and NaNs, exponent = $2^E - 1$ (255)

denormalized number is very small number with exp 2^-126, that means leading integer is 0 rather than 1

- Quantization, truncation, and round-off
 - o quantizer

Typically, a quantizer is mid-tread (origin on tread of staircase)

- Number of quantizer levels = $2^n 1$
- Quantization step size $Q = \frac{V_{max} V_{min}}{2^n 1}$
- quantization error

Quantization error

Recall rounding results: Additive noise model: quantized output = input + quantization error [x(n)] = x(n) + e(n)

- The probability density function for *e*(*n*) is uniform from -*O*/2 to *O*/2
- mean of e(n) = 0
- maximum e(n) = Q/2
- mean square error = variance of $e(n) = O^2/12$
- root mean square error = std dev of e(n) = 0.29Q

Addition of uncorrelated noise sources:

- mean = η_1 + η_2
- variance = $\sigma_1^2 + \sigma_2^2$
- o signal to quantization noise ratio

Signal to Quantization Noise Ratio (SQNR)

- Range of input signal = $-V_{max}$ to V_{max}
- Signal variance = σ_v^2
- Quantization noise variance = σ_e^2

$$SQNR = 10 \log \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$

$$= 10 \log \left(\frac{\sigma_x^2}{Q^2/12}\right)$$

$$= 10 \log \left(\frac{3\sigma_x^2 2^{2n}}{V_{max}^2}\right)$$

$$= 6.02n + 4.77 + 20 \log(\sigma_x/V_{max})$$

SQNR can also be improved by over-sampling and low pass filtering. Doubling the sampling rate improves the SQNR by 3 dB.

Advantages and disadvantages of dithering

Advantge:

- Adding noise provides more information!
- Actually, averaging of output samples leads to removal of noise and more information

Disadvantage:

- Constant/slowly varying input signal is required for (averaging of) multiple similar samples
- · Otherwise, dithering increases output noise
- subtractive dithering
- o methods for word-length truncation

The probability of x(n) having any specific value is zero. The probability density function for e(n) is uniform.

Error analysis

- statistical properties of the error mean and variance 量化噪声分析复习
- o auto-correlation and power spectral density of zero-mean noise
- effect of input noise at the output of a system
- o addition of uncorrelated noise sources
- o output noise of an FIR filter
- quantization noise in cascaded systems
- o quantization noise model for IIR filter
- Finite word length effects [slides 108-126]
 - o coefficient quantization effect in FIR filter
 - o coefficient quantization effect in IIR filter

Part 2: Peripherals for DSP Applications

2024年5月4日 14:30

Part2-PeripheralsForDSPApplications

- Sampling
 - uniform/periodic sampling
 - Input sinusoid of frequency $f_0 + kf_s$ for any integer k $x_c(t) = \sin(2\pi(f_0 + kf_s)t)$
 - Same sampling frequency
 - · Same discrete-time output signal
 - \rightarrow f_0 and $f_0 + kf_s$ are indistinguishable after sampling

Nyquist sampling f_s>2B

d)
$$50 = f_0 + kf_s = (-25) + 75$$

So $f_0 = -25$, or it yields samples identical to 25 Hz

- sampling low-pass signals
- aliasing
- sampling band-pass signals

In general, for any integer m, sampling at

$$\frac{2f_c + B}{m+1} \le f_s \le \frac{2f_c - B}{m}$$

such that $f_s \ge 2B$, gives no aliasing

Regions of possible band-pass sampling rates

25

Peripherals

- amplifier
 - to adapt the dynamic range of ADC
- anti-aliasing filter cut high frequency noise
- o ADC
 - Sampling and quantization
- DAC
 - \bullet Converts the binary sample to the analog voltage
 - Holds the analog value until the next sample, thus producing a staircase waveform
- o reconstruction filter

Reconstruction filter

- · Also known as anti-imaging filter / smoothing filter
- Smoothens the staircase waveform
- Analog low-pass filter with cut-off frequency B
- Removes spectral copies but retains original spectrum
- In practical ADC, f_s is chosen greater than 2B to be able to separate spectral copies by the reconstruction filter
- o internal and external peripherals
- Analog to digital converters
 - o sample and hold circuit

- o counter ADC
 - through DAC compare ref V. one by one, very slow
- successive approximation ADC

 diabetemy complexity Office n
- dichotomy, complexity O(log n)dual slope integrating ADC
 - cuz analog components aging, use integral also slow, calc the time.
- o parallel (flash) ADC
 - fast, low resolution, need many space, for symmetric, divided by 17
- o sigma-delta ADC
 - 1. one bit quantizer
 - 2. differential ADC, introduce more low pass error since integrator is low pass filter.

Analysis of differentiation of the signal:

- Auto-correlation of $x_c(t)$ is $R(\tau) = E\{x_c(t)x_c(t-\tau)\}$
- Variance of $x_c(t)$ is $R(0) = \sigma_x^2$, variance of error is σ_1^2 SQNR₁ = $10 \log(\sigma_x^2/\sigma_1^2) = 10 \log(3\sigma_x^2 2^{2n}/V_{max_x}^2)$
- Differentiation $d(t) = x_c(t) x_c(t-T)$
- Variance of d(t) is $\sigma_d^2 = E\{[x_c(t) x_c(t-T)]^2\} = 2R(0) 2R(T)$ Variance of error is σ_2^2 , SQNR₂ = $10 \log(\sigma_d^2/\sigma_2^2)$
- If $\sigma_x/V_{max_x} = \sigma_d/V_{max_d}$ then SQNR₁ = SQNR₂, both quantizers perform equal, $\sigma_x/\sigma_1 = \sigma_d/\sigma_2$, or $\sigma_2 = \sigma_1(\sigma_d/\sigma_x)$
- If R(T) > R(0)/2 then $\sigma_d < \sigma_x$, the variance decreases = range of values decreases = better to quantize d(t)
- SQNR $10 \log(\sigma_x^2/\sigma^2)$ increases by $10 \log(\sigma_x^2/\sigma_d^2)$ dB

3 oversampling: 2 times of fs, half the omega frequency of input, double height, also have 3dB gain of SQNR, and higher R(T)

4 final result:

Consider only the signal:

No change in signal (differentiator cancels integrator)

Consider only the error:

Highpass error (differentiator)

Error is reduced because

- Highpass error $X_e(z) = (1 z^{-1})E(z)$
- Magnitude of frequency response $|H(e^{j\omega})| = 2\sin\frac{\omega}{2}$
- e(n) power spectral density = N

- $x_e(n)$ variance $\sigma_{x_e}^2 = \int \left(2\sin\frac{\omega}{2}\right)^2 N \frac{d\omega}{2\pi} = 2N$

•
$$x_e(n)$$
 variance after lowpass filter
$$\sigma_{x_e}^2 = \int_{-B}^{B} \left(2\sin\frac{\omega}{2}\right)^2 N \frac{d\omega}{2\pi} \approx \int_{-B}^{B} \omega^2 N \frac{d\omega}{2\pi} = \frac{B^3 N}{3\pi}$$
• 2 times sampling = B becomes half = $\sigma_{x_e}^2$ becomes 1/8

= 9dB more SQNR

67

3) Decimator

Converts from 1-bit to n-bits

$$x(n) \xrightarrow{\text{1 bit}} \xrightarrow{\text{lowpass}} \xrightarrow{n \text{ bits}} \xrightarrow{n \text{ bits}} x_d(n)$$
 $x(n) \xrightarrow{Mf_s \text{ sampling}} \xrightarrow{Mf_s \text{ sampling}} x_d(n)$

4) Block diagram of sigma-delta ADC

first-order sigma-delta ADC (red = analog, green = digital)

5) SQNR

Since any quantizer SQNR = 6.02n + ..., adding 1 bit resolution = 6dB more SQNR.

For oversampling:

 Each doubling of sampling = 3dB more SQNR = adding ½ bit

For oversampling and first order noise shaping:

 Each doubling of sampling = 9dB more SQNR = adding 3/2 bits

For oversampling and second order noise shaping:

- Each doubling of sampling = 15dB more SQNR = adding 5/2 bits
- Digital to analog converters
 - ladder DAC

- a_1 sees resistances 2R + 2R, so V_{ref} is halved
- $V_{ref}/2$ sees resistances R + R, so it is halved
- V_{ref}/4 sees resistances R + R, so it is halved
 :
- o first-order interpolation

First-order (linear) interpolation

- First-order interpolation = connects successive samples with straight-line segments
- Straight line = order one
- o sigma-delta based DAC

Sigma-delta based DAC

- Input upsampled to higher sampling frequency
- · Quantized by 1-bit quantizer
- *B*–1 LSBs = quantization error
- Loop subtracts quantization error from next sample
- · Downsampling not necessary since analog output
- Advantages: low-cost digital processing, simple analog filter
- Real time operations: Interrupts [slides 87-98]
 - o the sequence of events
 - o sources
 - o single-line interrupt
 - o multiple-line interrupt

84

- vectored interrupt
- Real-time operations: scheduling
 - o forbidden set

Time								
Stage	0	1	2	3	4	5	6	7
1	В	В					В	В
2			В		В			
3				В		В		

Two yellow boxes in stage 1 show that initiation at time 5 is forbidden.

Forbidden set = $\{0,1,2,5,6,7\}$ Stage 1 utilization = $\frac{1}{2}$ Maximum achievable throughput $\leq \frac{1}{4}$

o permissible sequence

Part 3: Advanced Arithmetic Hardware

2024年5月4日 14:30

Part3-AdvancedArithmeticHardware(2)

- Adder
 - rounding adder
 - half adder

Rounding adder

Each half adder needs 1 gate delay. The *N*-bit rounding adder needs *N* gate delays to complete. This is because the carry bit propagates from stage to stage.

carry look-ahead in rounding adder

Therefore, cascading of such blocks is possible. Carry-out takes 1 (to compute first p) + 3 (propagation through 3 gates) = 4 gate delays.

o full adder

Full Adder

Bitwise addition of two 2's complement numbers requires adding not only two input bits but also the carry bit.

o ripple carry adder

Computing each carry from valid inputs needs 2 gate delays. Therefore, computing c_3 needs 8 gate delays.

In general, an N stage ripple carry adder needs 2N gate delays to compute c_{N-1} .

o carry look-ahead adder

Instead of building this, we build this

Carry generation for 1 bit:

$$c_n = g_n + p_n \bullet c_{n-1}$$

 c_n needs 1 gate delay to compute g_n and p_n , plus 2 gate delays = 3 gate delays.

13

Carry generation for 3 bits:

$$c_n = g_n + p_n \bullet g_{n-1} + p_n \bullet p_{n-1} \bullet g_{n-2} + p_n \bullet p_{n-1} \bullet p_{n-2} \bullet c_{n-3}$$

 c_n still takes 3 gate delays.

Note that the gate delays will remain 3, 1, 1, 4 for c_n , g_n , p_n , and s_n for any number of bits n.

15

Carry generation for block carry look-ahead adder is the same as the bit-wise carry look ahead adder.

Note that the gate delays will remain 3, 2, 11, 9, 7, 5 for g_b , p_b , s_{n-1} to s_{n-4} for any number of blocks.

18

o carry select adder

o carry save adder

Only the carry bits for the last row ripple "horizontally".

pipelined adder

floating-point adder

__

- Multiplier [slides 37-51]
 - o integer-power-of-two multiplier
 - Booth multiplier
 - Wallace tree multiplier

31

Part 4: Algorithms and Architectures for VLSI

2024年5月4日 14:30

0

Part4-AlgorithmsArchitecturesForVLSI

- Algorithm strength reduction
 - fast Fourier transform

DFT is defined as
$$X(k)=X(z)|_{z=e^{j2\pi k/N}}=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N}$$
 for k = 0,1,..., N-1.

Direct computation of DFT requires N^2 complex multiply and N(N-1) complex add.

Therefore: $X(k) = X_0(k) + e^{-\frac{j2\pi k}{N}}X_1(k)$ This leads to a divide and conquer approach

This leads to a divide and conquer approach known as the decimation-in-time FFT:

Each N/2 point DFT requires $N^2/4$ complex multiply and N(N-2)/4 complex add. The "process" requires N complex multiply and N complex add. Overall, the structure needs N(N+2)/2 complex multiply and $N^2/2$ complex add.

Recursion: Compute each *N*/2 point DFT using two *N*/4 point DFTs, and so forth. FFT requires about (*N*/2)log*N* complex multiply and *N*log*N* complex add.

complex multiplication

Complex Multiplication

Multiply a given number a+jb with an input A+jB:

$$(a+jb)(A+jB) = (aA-bB) + j(aB+bA)$$
2 real add

Rewrite it as:

$$(aA - bB + bA - bA) + j(aB + bA + bB - bB)$$

= \{(a + b)A - b(A + B)\} + j\{b(A + B) + (a - b)B\}

Let c = a + b, d = a - b be precomputed, then:

3 real multiply
$$= \{cA - b(A + B)\} + j\{b(A + B) + dB\}$$
3 real add

data flow graph

Data flow graph:

Nodes = computations such as add, multiply Directed edges = data path between nodes, including any delay

In a data flow graph, nodes are labelled by computation time, and edges are labelled by no of delays.

Cutset: set of edges which, if removed, makes the graph disjoint

Feed-forward cutset: cutset with all forward direction edges

(4) D (3) A path of a graph begins at some node and ends at any node.

A loop of a graph begins and ends at the same node.

Loop bound of a loop = $\frac{\text{loop computation time}}{\text{no of delays in the loop}}$

Loop bound of the above loop = (1+3+4)/(0+1+0) = 8

Critical path of a graph is the longest computation time among all zero delay paths. Clock cycle is lower bounded by the critical path.

Critical path of the above graph = 4+4+1+3 = 12

Iteration bound is the maximum loop bound of a graph. Critical loop is the loop with the maximum loop bound.

In this graph: Iteration bound = 9 Critical loop = the left loop

Pipelining

Pipelining reduces the critical path and therefore increases the clock/sampling speed

latency and throughput

Pipelining option 2: fine-grain pipelining Let $T_M = 10$ gate delays, $T_A = 2$ gate delays

To achieve a critical path less than T_M , break the multiplier into two parts with processing times of 6 gate delays and 4 gate delays.

Pipelining reduces critical path by increasing latency. We now study techniques such as retiming that reduces critical path without increasing latency.

- FIR filters
- Retiming
 - cutset retiming

Pipelining option 3: retiming reduce the critical path using transposed form FIR structure

Critical path = $T_M + T_A$, independent of the length of the filter

This is better than other options, because latency is not increased, and it does not require additional latches.

o node retiming

Node Retiming

Consider a cutset around a node.

k=1 delay is added to the edges $3\rightarrow 2$ and $4\rightarrow 2$, and 1 delay is removed from the edge $2\rightarrow 1$, to obtain the retimed graph.

Critical path before retiming = 4 + 2 = 6 Critical path after retiming = 4 or 2 + 2 = 4 However, no of delays increases from 4 to 5.

- Pipelined recursive filters
 - first order filters

The input/output relationship for the above implementation is $y'(n) = ax(n-3) + bax(n-4) + b^2y'(n-2)$.

We have, $y(n) = ax(n) + by(n-1) = ax(n) + bax(n-1) + b^2y(n-2)$. Replacing n by n-3, we have $y(n-3) = ax(n-3) + bax(n-4) + b^2y(n-5)$. Latency = 3 (because of

It can be seen that y'(n) = y(n-3). the latch), throughput $\Rightarrow 1$

If the adder has a latch and the multiplier is a two-latch pipelined multiplier, the feed back loop would be three-latch pipelined. Thus, y(n-1) and y(n-2) should be removed for the computation to be possible.

$$n \to n-1$$

$$y(n) = ax(n) + by(n-1)$$

$$y(n-1) = ax(n-1) + by(n-2)$$

$$y(n) = ax(n) + bax(n-1) + b^{2}y(n-2)$$

$$y(n-2) = ax(n-2) + by(n-3)$$

$$y(n) = ax(n) + bax(n-1) + b^{2}ax(n-2) + b^{3}y(n-3)$$

higher order filters

P44 通过重构,把3个加法器减少到2个,类似于加法乘法结合律,减少运算符根据题目给的想使用多少latch的adder和multiplier,改写目标函数,进而实现电路

- Parallel processing
 - o polyphase parallel FIR filters

Polyphase Parallel FIR Filters

A length N FIR filter requires N multiply and N–1 add of delay less than the sampling period T:

$$Y(z) = X(z)H(z)$$
, where $X(z) = \sum x(n)z^{-n}$ etc.

The input 2-phase polyphase components are

$$X_0(z) = \sum x(2n)z^{-n}, X_1(z) = \sum x(2n+1)z^{-n}$$
 such that $X(z) = X_0(z^2) + z^{-1}X_1(z^2)$.

 $X_0(z)$ is the z-transform of even-numbered inputs x(2n). $X_1(z)$ is the z-transform of odd-numbered inputs x(2n+1).

- low complexity parallel FIR filters
- Unfolding

【转载】VLSI数字信号处理系统:展开 - 哔哩哔哩 (bilibili.com)

o algorithm

Algorithm for Unfolding

Systematic procedure for unfolding:

Step 1: For each node U in the original data flow graph, draw J nodes $U_0, U_1, ..., U_{J-1}$.

Original data flow graph:

Replicated data flow graph:

Step 2: For each edge $U \to V$ with m delays in the original data flow graph, draw J edges $U_i \to V_{(i+m)\%J}$ with

$$\left| \frac{i+m}{J} \right|$$
 delays for $i = 0, 1, ..., J-1$.

(% = mod or modulo, find the remainder.)

(L● J = floor, same as truncation.)

Edges without delay such as $A \rightarrow C$, $D \rightarrow C$ are unchanged.

Edge $C \rightarrow D$ has m = 9 delays. So, $C_0 \rightarrow D_{(0+9)\%2} = D_1$ has $\lfloor (0+9)/2 \rfloor = 4$ delays. $C_1 \rightarrow D_{(1+9)\%2} = D_0$ has $\lfloor (1+9)/2 \rfloor = 5$ delays.

6

Example 2:

Let J = 4.

Recall that $U_i \rightarrow V_{(i+m)\%J}$ with $\lfloor (i+m)/J \rfloor$ delays.

$$\left| \frac{i+m}{J} \right| = \left| \frac{i+37}{4} \right| = \begin{cases} 9 & i=0,1,2\\ 10 & i=3 \end{cases}$$

Example 3:

Let
$$J = 3$$
.
For $U_i o V_{(i+1)\%3}$, $\left[\frac{i+m}{J}\right] = \left[\frac{i+1}{3}\right] = \begin{cases} 0 & i = 0,1 \\ 1 & i = 2 \end{cases}$
For $V_i o W_{(i+6)\%3}$, $\left[\frac{i+m}{J}\right] = \left[\frac{i+6}{3}\right] = 2$
For $W_i o U_{(i+5)\%3}$, $\left[\frac{i+m}{J}\right] = \left[\frac{i+5}{3}\right] = \begin{cases} 1 & i = 0 \\ 2 & i = 1,2 \end{cases}$

Consists of 3 disjoint loops since gcd(12 delays, J=3) = 3.

properties

Properties of Unfolding

Unfolding preserves the number of delays in a graph, since:

$$\left|\frac{0+m}{J}\right| + \left|\frac{1+m}{J}\right| + \dots + \left|\frac{J-1+m}{J}\right| = m$$

Unfolding preserves precedence constraints of a system.

Unfolding of a loop with m delays leads to gcd(m,J) loops.

Each of these loops contains $m/\gcd(m,J)$ delays. Each of these loops contains $J/\gcd(m,J)$ copies of each node that appears in the original loop.

Unfolding a graph with iteration bound T_{∞} results in the new iteration bound JT_{∞} .

o applications

Applications of Unfolding

- · Sampling period reduction
 - Case 1: Longest node computation time is greater than the iteration bound
 - · Case 2: Iteration bound is not an integer
 - Case 3: Both case 1 and case 2
- · Parallel processing

Sampling Period Reduction

Example of case 1: Longest node computation time (for D) 4 > (0) (

Use *J* unfolding to change the iteration bound to $JT_{\infty} > 4$.

_.

parallel FIR filters

Parallel architecture:

In unfolding factor J parallel structures, since $T_c = JT_s$, a latch z^{-1} of 1 clock cycle produces an effective delay of J sampling periods, JT_s .

In the above structure, x(3n+2) passing through z^{-1} is delayed by 3 sampling periods, or becomes x(3n-1).

Since $T_s = 1/3$ T_c , the sampling frequency is tripled. Latency = 1 clock, throughput = 3 inputs/clock

- Parallel recursive filters [slides 79-92]
 - first order filters
 - higher order filters
- Folding [slides 93-105]
 - o folding an FIR filter
 - folding an IIR filter

75

Part 5: Programming and Architecture for Digital Signal Processor

2024年5月4日 14:30

Part5-ProgrammingArchitectureForDSP(1)

- Real-time processing on a DSP processor
 - sampling frequency consideration

Sample-by-sample processing

Figure 3.16 Detailed interrupt timing at each sampling interval for an I/O operation

Here we show the detailed sampling interval for sample-bysample processing mode.

Real-Time processing refers to the digital processing of data within the sampling interval.

DSP must finish processing within 1 sample interval, $T_{\rm S}$ Require 1 word FIFO, memory or register to hold incoming data

Block processing

Figure 3.17 Block processing of an input signal in a block of five samples

- · Collect N samples at a time
- Processing must finish within N sample period, NT
- Normally used in FFT, Compression
- Requires double or triple buffering to perform acquisition and processing
- T_p < N*T_s
 - A maximum block delay of 2NT_s

5

Double buffering

Advantage:

- Can process more data for some given T_s due to the reduced setup time
- Or use a higher F_s compared to the sampling approach

Disadvantage:

- More memory required
- More effort in programming
- Processing latency

6

DSP performance ratings

MIPS Rating

- MIPS = number of million MAC (multiply-accumulate) instructions per second
- TMS320C55x example: 120 MHz clock, 1 cycle/MAC (when fully pipelined), 2 parallel multiply-accumulator = 240 MIPS
- Other alternatives:

```
BIPS = billion instructions per second MOPS/BOPS = ... operations ... MFLOPS = ... floating point operations ...
```

- May not be suitable for signal processing algorithms where multiplication is not the limiting factor
- DSP selection [slides 15-25]
 - hardware platforms
 - fixed point versus floating point
 - TMS family
- TMS320C55x programming
 - memory map and registers

C55x Unified Memory Map

Program and data share the same memory

```
Program memory: 00_0000h
                                   00_0000h Data memory:
                 00 0001h
                              х
16M x 8 bit
                                            8M x 16 bit
                                   00_0001h23-bit address
                 00 0002h
                              y
24-bit address
                 00_0003h
                              Z
*(00\ 0001h) = x
                                            *(00 0001h)=yz
                 FF_FFFFh
                                   7F_FFFFh
                                            segmented
                             into 128 pages (7 msb bits)
                             page = 64K words (16 lsb bits)
```

- Registers to address data memory and I/O space: normally 16 bit (address within page), with X (extended) 23 bit (includes page address)
 - Auxiliary: AR0 to AR7
 - Coefficient data pointer (CDP), XCDP, used to address coefficient memory
 - Circular buffer registers
 - · Data page (DP), XDP
 - Peripheral data
 - · Stack pointer registers

MOV instructions

MOV src, dst

o memory addressing modes

Memory Addressing Modes in C55x

- Absolute (constant) addressing
- Direct (offset) addressing
- Indirect (pointer) addressing
- MAC instructions
- parallelism and pipelining
- FIR filtering

• TMS320C55x architecture

- o CPU [slides 76-82]
- o bus [slides 83-95]
- o arithmetic operations with conditions

Part 6: Design and Development Tools for Digital Signal Processors [all slides]

2024年5月4日 14:42

Part6-DesignAndDevelopmentToolsForDSPs(3)

- Development environments
- Debugging facilities
 - o code composer studio
- Assembly language tools
- C development tools

ref sheet

2024年5月7日 0:31

Reference Sheet