

NUMERICAL SIMULATIONS OF TURBULENT FLOW USING RANS/ILES HIGH RESOLUTION METHOD

CENTRAL INSTITUTE ON AVIATION MOTORS NAMED AFTER P.I. BARANOV JOINT SUPERCOMPUTER CENTER OF THE RUSSIAN ACADEMY OF SCIENCES

Benderskiy L.A., Lyubimov D.A., Makarov A.Yu., Rybakov A.A.

01.06.2017

Description of solving problems

The development of competitive engines requires more accurate and more detailed description of the features of the currents in its elements

- Flow separation, unsteady flows, flows with mixing layers.
- Traditional RANS methods with models of turbulence poorly describe such types of flows.
- The use of RANS/ILES-methods allows to describe current flows and to obtain additional information about flow (pulsations of pressure, temperature, velocity, noise) as compared with RANS methods.
- The use of RANS/ILES methods requires the use of a detailed mesh and a small time step for the explicit resolution of vortices. To get results in a short time, super computers are required.

Air intake 1.5 -0.5 -0.5 -0.5

RANS/ILES HIGH RESOLUTION METHOD

Main features:

- Roe's flux difference splitting method.
- Monotonicity-preserving scheme MP9 [A. Suresh, H.T. Huynh, JCP 1997, V.136, P.83-99] with upwind 9th-order approximation in smooth regions for calculating flow parameters on cell faces. It makes possible to calculate supersonic flows with shocks without modification of the method.
- LES with implicit SGS-model (ILES): the scheme viscosity performs a function of a subgrid scale (SGS) model.
- In ILES region, the distance in dissipative term of Spalart–Allmaras turbulence model is changing:

$$\tilde{d} = d, d \le C_{ILES} \Delta_{MAX}$$
 $\nu_t = \nu_{tRANS}$ $\tilde{d} = 0, d > C_{ILES} \Delta_{MAX}$ $\nu_t = 0$

History of code development

Block structure

Scheme of parallelization

Theoretical model for speedup prediction

Real speed of data transfer

Real calculating time statistic

MPI realization in code

Expected theoretical effect

Sequential exchange

Speed tests on Intel Xeon

First result

Speed test on model grids

- 2 mpi rank on node (2xE5-2690)
- 16 treads on one rank (hyperheading)

Hypertreading test

- 2 mpi rank on node (2xE5-2697v3)
- 28 treads on one rank (hyperheading)
- 14 treads on one rank (with out hyperheading)
- 1.2-1.5x with hyperheading

Rank count test

- 2, 4, 8 mpi rank on one node (2xE5-2697v3)
- 56 treads on node (hyperheading)
- 1.6x for 4 mpi ranks on node

Speed tests on 2nd generation Intel Xeon Phi (KNL)

- One KNL have same speed as 2xE52697v3 with 2 mpi rank per node and is inferior in performance 1.6 times compared to one Xeon node with 4 mpi ranks for our task.
- Linear speedup for 20-60 nodes.

Propagation of a supersonic jet

Field of $\log |grad\rho|$

comparison with experiment

Supersonic business aircraft

Flow inside the air intake device

Examples of calculations

Supersonic jet from a rectangular nozzle

The geometry of the nozzle and comparison with experiment

The effect of turning the axes of the jet

Now:

- RANS/ILES high resolution code is parallelized for calculations on supercomputers
- The method is successfully used in fundamental studies of turbulence, acoustics and in solving the applied problem of modeling physical processes in aerospace engines

Planned:

- Improvement of the calculation method
- Increase the speed of code on modern processor architectures