Rapport nº 1 MT12

Alexandre BALLET et Simon LAURENT

Printemps 2016

Table des matières

1	Série de Fourier	2
2	Étude de fonctions	12
3	Phénomène de Gibbs	17
	3.1 Démonstration	17
	3.2 Approximations de Fourier	18
	3.3 Explication du phénomène	21
	3.3.1 Contexte	21
	3.3.2 Analyse Mathématique	21
4	Application des série de Fourier	2 5
	4.1 La corde pincée	25
	4.2 La corde frappée	25
5	Equation de la chaleur	26
6	Compléments	27
	6.1 Finance	27
	6.2 Informatique	27

1 Série de Fourier

- 1. f est 2π périodique, impaire et vaut $f(x) = 1, x \in [0, \pi]$
 - (a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i):

$$b(1) = 1.273240$$

$$b(6) = -0.000000$$

$$b(2) = 0.000000$$

$$b(7) = 0.181891$$

$$b(3) = 0.424413$$

$$b(8) = 0.000000$$

$$b(4) = 0.000000$$

$$b(9) = 0.141471$$

$$b(5) = 0.254648$$

$$b(10) = 0.000000$$

(b) Série de Fourier

FIGURE 1.1 – Courbe de la fonction f.

(c) Graphe original et ses dix premières approximations

FIGURE 1.2 – Courbe de la fonction f.

(d) Richesse fréquentielle du signal

FIGURE 1.3 – Richesse du signal f.

2. f est 2π périodique, impaire et vaut $f(x)=x, x\in [0,\pi]$

(a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i) :

$$b(1) = 2.000000$$

$$b(6) = -0.3333333$$

$$b(2) = -1.000000$$

$$b(7) = 0.285714$$

$$b(3) = 0.666667$$

$$b(8) = -0.250000$$

$$b(4) = -0.500000$$

$$b(9) = 0.222222$$

$$b(5) = 0.400000$$

$$b(10) = -0.200000$$

(b) Série de Fourier

FIGURE 1.4 – Courbe de la fonction f.

(c) Graphe original et ses dix premières approximations

FIGURE 1.5 – Courbe de la fonction f.

(d) Richesse fréquentielle du signal

FIGURE 1.6 – Richesse du signal f.

3. f est 2π périodique, paire et vaut $f(x) = x, x \in [0, \pi]$

(a) Coefficients de Fourier

Les b(i) étant nuls. On obtient ainsi les coefficients suivants pour les a(i) :

$$a(1) = 1.273240$$

$$a(6) = -0.0000000$$

$$a(2) = 0.000000$$

$$a(7) = 0.025984$$

$$a(3) = 0.141471$$

$$a(8) = 0.000000$$

$$a(4) = 0.000000$$

$$a(9) = 0.015719$$

$$a(5) = 0.050930$$

$$a(10) = 0.000000$$

avec
$$a(0) = 3.141593$$

(b) Série de Fourier

FIGURE 1.7 – Courbe de la fonction f.

(c) Graphe original et ses dix premières approximations

FIGURE 1.8 – Courbe de la fonction f.

(d) Richesse fréquentielle du signal

FIGURE 1.9 – Richesse du signal f.

4. f est 2π périodique, paire et vaut $f(x) = x^2, x \in [0, \pi]$

(a) Coefficients de Fourier

Les b(i) étant nuls. On obtient ainsi les coefficients suivants pour les a(i) :

$$a(1) = -4.000000$$

$$a(6) = 0.111111$$

$$a(2) = 1.000000$$

$$a(7) = -0.081633$$

$$a(3) = -0.444444$$

$$a(8) = 0.062500$$

$$a(4) = 0.250000$$

$$a(9) = -0.049383$$

$$a(5) = -0.160000$$

$$a(10) = 0.040000$$

avec
$$a(0) = 6.579736$$

(b) Série de Fourier

FIGURE 1.10 – Courbe de la fonction f.

(c) Graphe original et ses dix premières approximations

Figure 1.11 – Courbe de la fonction f.

(d) Richesse fréquentielle du signal

FIGURE 1.12 – Richesse du signal f.

5. f est 2π périodique, impaire et vaut $f(x) = x(\pi + |x|), x \in [-\pi, \pi]$

(a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i) :

$$b(1) = 2.546479$$

$$b(6) = 0.000000$$

$$b(2) = 0.000000$$

$$b(7) = 0.007424$$

$$b(3) = 0.094314$$

$$b(8) = -0.000000$$

$$b(4) = -0.000000$$

$$b(9) = 0.003493$$

$$b(5) = 0.020372$$

$$b(10) = -0.000000$$

(b) Série de Fourier

FIGURE 1.13 – Courbe de la fonction f.

(c) Graphe original et ses dix premières approximations

Figure 1.14 – Courbe de la fonction f.

(d) Richesse fréquentielle du signal

FIGURE 1.15 – Richesse du signal f.

2 Étude de fonctions

1.

$$f(x) = (\sin x)^{1/3}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle est composée d'une fonction sinus, ce qui la rend impaire. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt{0} = 0$. Elle est donc continue.

FIGURE 2.1 – Courbe de la fonction f.

Sa dérivée est

$$f'(x) = \frac{1}{3} cosx(sin x)^{-2/3}$$

Elle admet une asymptote verticale en 0 et n'est donc pas continue. La fonction f est continue mais non dérivable sur $(-\pi;\pi)$.

$$f(x) = (\sin x)^{4/3}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt[3]{0} = 0$. Elle est donc continue.

FIGURE 2.2 – Courbe de la fonction f.

Sa dérivée est

$$f'(x) = \frac{4}{3}\cos x(\sin x)^{1/3}$$

Elle n'admet pas d'asymptote et est donc continue. La fonction f est continue et dérivable, donc régulière.

$$f(x) = \begin{cases} \cos x & , si \quad x > 0 \\ -\cos x & , si \quad x \le 0 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi; \pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = 1$ et $f(0^-) = -1$. Elle n'est donc pas continue en 0.

FIGURE 2.3 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} -\sin x & , si \quad x > 0 \\ \sin x & , si \quad x \le 0 \end{cases}$$

La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

$$f(x) = \begin{cases} \sin x & , si \quad x > 0 \\ -\sin 2x & , si \quad x \le 0 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi; \pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = 0$. Elle est donc continue.

FIGURE 2.4 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} \cos x & , si \quad x > 0 \\ -2\cos 2x & , si \quad x \le 0 \end{cases}$$

La fonction f est continue et dérivable par morceaux, donc régulière par morceaux.

$$f(x) = \begin{cases} (\sin x)^{1/5}, & \text{si } x < \pi/2 \\ -\cos x, & \text{si } x \ge \pi/2 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt{0} = 0$ et $f(\pi/2) = 0$ et $\lim_{\substack{x \to \pi/2 \\ x < \pi/2}} f(x) = 1$. Elle est continue en 0 mais pas en $\pi/2$, elle est donc continue par morceaux.

FIGURE 2.5 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} \frac{1}{5}\cos x (\sin x)^{1/5} & , si \quad x < \pi/2\\ \sin x & , si \quad x \ge \pi/2 \end{cases}$$

La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

3 Phénomène de Gibbs

3.1 Démonstration

Soit f la fonction 2π -périodique et impaire telle que f(x) = 1 sur $[0; \pi]$.

Nous allons montrer que

$$S_{f(x)} = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2k-1)}{2k-1}$$

Nous savons que $S_{f(x)} = \sum_{n=0}^{\infty} b_n sinnx$, car f est impaire. Or,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sinnx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} f(x) sinnx + \frac{1}{\pi} \int_{0}^{\pi} f(x) sinnx$$

$$= -\frac{1}{\pi} \int_{-\pi}^{0} sinnx + \frac{1}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} sinnx + \frac{1}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{2}{\pi} \left[\frac{-cosnx}{k} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left(-\frac{cosn\pi}{n} + \frac{1}{n} \right)$$

$$= \frac{2}{\pi} \left(-\frac{cosn\pi}{n} + \frac{1}{n} \right)$$

D'où

$$\begin{split} S_{f(x)} &= \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1 - cosn\pi}{n} sinnx \\ &= \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1 - (-1)^n}{n} sinnx \\ &= \frac{2}{\pi} \sum_{npair}^{\infty} \frac{1 - (-1)^n}{n} sinnx + \frac{2}{\pi} \sum_{nimpair}^{\infty} \frac{1 - (-1)^n}{n} sinnx \\ &= \frac{4}{\pi} \sum_{nimpair}^{\infty} \frac{sinnx}{n} \\ &= \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{sin(2k-1)x}{2k-1} \quad , \text{ où } n = 2k-1 \, , \, k \in \mathbb{R} \end{split}$$

3.2 Approximations de Fourier

1. Approximation pour n = 2

FIGURE 3.1 – Courbe de la fonction f pour n = 2.

2. Approximation pour n = 5

FIGURE 3.2 – Courbe de la fonction f pour n=5.

3. Approximation pour n = 10

FIGURE 3.3 – Courbe de la fonction f pour n = 10.

4. Approximation pour n = 20

FIGURE 3.4 – Courbe de la fonction f pour n = 20.

5. Approximation pour n = 60

FIGURE 3.5 – Courbe de la fonction f pour n = 60.

On remarque donc qu'au voisinage d'une discontinuité une bosse apparait. Or quand n augmente cette dernière subsiste de part et d'autre d'une discontinuité. Plaçons nous alors à droite du point de discontinuité 0 par exemple. On note que lorsque n augmente, le point en lequel il y a un pic s'approche de 0, mais la hauteur reste constante. Nous allons essayer d'expliquer ce phénomène dans la partie suivante.

3.3 Explication du phénomène

3.3.1 Contexte

Soit f la fonction 2π -périodique et impaire telle que f(x) = 1 sur $[0; \pi]$.

On note que la fonction présente une discontinuité en tout point multiple de π . La limite à droite et la limite à gauche en ces points vaut +1 et -1. De plus en dehors de ces points la fonctions est continue. Nous avons donc une fonction continue par morceau et sa dérivée l'est également. Ainsi on peut dire que f est C^1 par morceaux

3.3.2 Analyse Mathématique

Application du Théorème de Dirichlet

Comme f est impaire on a donc:

$$S_{f(x)} = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{2k-1}$$
, où $k \in \mathbb{R}$

Pour une fonction C^1 par morceaux, le théorème de Dirichlet nous indique quel est la limite de ces sommes partielles. Si l'on considère un point de continuité de la fonction, ces sommes partielles vont converger vers f(x). Ainsi au point de discontinuité (x = 0), la limite de ces sommes partielles va être la demi-somme entre la limite à droite et la limite à gauche de la valeur de la fonction au point considéreré. Ici, la demi-somme vaut 0:

$$S_{f(x)} = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{2k-1} \Big|_{x=0} = \frac{1}{2} [+1 + (-1)] = 0$$

En particulier, sur un tel point la limite ne vaut pas la valeur du signal f(0) = 1, alors que la demi-somme vaut 0

On s'intéresse par la suite au comportement au voisinage du point de discontinuité.

Comportement au voisinage d'un point de discontinuité

Étudions la somme partielle $S_p(x)$:

Calculons sa dérivée afin d'établir son tableaux de variations.

Comme
$$\frac{d}{dt}sin((2k-1)x) = (2k-1)cos((2k-1)x)$$
 on déduit que

$$\frac{d}{dt}S_p(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \cos((2k-1)x)$$

Ensuite on pose:

$$cos((2k-1)x) = Re[e^{i(2k-1)x}]$$
 et $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$

On déduit l'expression suivante :

$$\begin{cases} \frac{d}{dt}S_p(x) = \frac{2}{\pi} \frac{\sin(2kx)}{\sin(x)} &, \text{ pour } t \neq 0\\ \frac{d}{dt}S_p(x) = \frac{4}{\pi} &, \text{ par calcul direct} \end{cases}$$

Par intégration on doit obtenir une expression explicite de $S_p(x)$. Or comme somme de sinus elle s'annule en x=0 on prend donc cette primitive qui s'annule en 0:

$$S_p(x) = \frac{2}{\pi} \int_0^x \frac{\sin(2pu)}{\sin(u)} du$$

Afin d'étudier la fonction $S_p(x) = \frac{2}{\pi} \int_0^x \frac{\sin(2pu)}{\sin(u)} du$ on dresse son tableau de variation. Cherchons les valeurs qui annulent cette dérivé.

Soit $x \in [0, \pi]$ tels que $S_p'(x) = \frac{d}{dt}S_p(x) = \frac{2}{\pi}\frac{\sin(2pu)}{\sin(u)} = 0$. On obtient les zéros de la dérivé suivants :

$$sin(2px) = 0 \iff 2px = 0[\pi]$$

Donc pour $x \in]0, \pi[$

$$S_{p}'(x) = 0 \iff x \in \left\{ \frac{\pi}{2p}, \frac{2\pi}{2p}, ..., \frac{(2p-1)\pi}{2p} \right\}$$

D'où la racine la plus proche à droite de x=0 est $x_1=\frac{\pi}{2p}$. On va par la suite étudier les variations de $S_p(x)$ au voisinage de ce point :

x	($rac{\pi}{2p}$	$\frac{2\pi}{2p}$
$S_p'(x)$		+ 0 -	0
$S_p(x)$		$0 \qquad \qquad m_{1,p}$	$m_{2,p}$

Ce qui correspond à la courbe 3.2

Valeur et amplitude de la bosse de Gibbs

Valeur du maximal local:

$$m_{1,p} = S_p(\frac{\pi}{2p}) = \frac{2}{\pi} \int_0^{\frac{\pi}{2p}} \frac{\sin(2pu)}{\sin(u)} du$$

On effectue le changement de variable suivant : v=2pu, ce qui donne :

$$m_{1,p} = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(v)}{\sin(\frac{v}{2p})} \frac{dv}{2p}$$

Après transformation on obtient :

$$m_{1,p} = \frac{2}{\pi} \int_0^{\pi} \frac{\sin v}{v} \frac{1}{\frac{\sin(\frac{v}{2p})}{\frac{v}{2p}}} dv$$

Par ailleurs on sait que:

$$\begin{cases} \lim_{p \to +\infty} \frac{v}{2p} \to 0\\ \lim_{h \to 0} \frac{\sinh}{h} = 1 \end{cases}$$

On cherche donc la limite suivante :

$$\lim_{p \to +\infty} m_{1,p} = \frac{2}{\pi} \lim_{p \to +\infty} \int_0^{\pi} \frac{\sin v}{v} \frac{1}{\frac{\sin(\frac{v}{2p})}{\frac{v}{2p}}} dv$$

On fait rentrer la limite à l'intérieur de l'intégrale car f est C^1 :

$$\frac{2}{\pi} \lim_{p \to +\infty} \int_0^{\pi} \frac{\sin v}{v} \frac{1}{\frac{\sin(\frac{v}{2p})}{\frac{v}{2p}}} dv = \frac{2}{\pi} \int_0^{\pi} \lim_{p \to +\infty} \left[\frac{\sin v}{v} \frac{1}{\frac{\sin(\frac{v}{2p})}{\frac{v}{2p}}} \right] dv$$

D'après les points ???? on a le résultat suivant :

$$\frac{2}{\pi} \int_0^{\pi} \lim_{p \to +\infty} \left[\frac{\sin v}{v} \frac{1}{\frac{\sin(\frac{v}{2p})}{\frac{v}{2p}}} \right] dv = \frac{2}{\pi} \int_0^{\pi} \frac{\sin v}{v} dv$$

Conclusion

A partir de ce point nous pouvons calculer numériquement le résultat suivant :

$$\frac{2}{\pi} \int_0^{\pi} \frac{\sin v}{v} dv = 1.18 = 1 + 0.18$$

La bosse dépasse donc toujours la valeur 1 de la fonction au voisinage de 0 d'une quantité incompressible 0.18. L'amplitude de la bosse est donc toujours supérieur à 0.18 pour notre fonction.

La généralisation de notre fonction (non abordé ici) montre que la bosse de Gibbs a une hauteur proportionnelle à une amplitude du saut de discontinuité. Ce coefficient de proportionnalité universel est appelé coefficient de Wilbraham Gibbs est vaut 9% du saut.

4 Application des série de Fourier

- 4.1 La corde pincée
- 4.2 La corde frappée

5 Equation de la chaleur

6 Compléments

6.1 Finance

6.2 Informatique

Comme le disait Jean de la Fontaine dans sa fable :

Rien de sert de courir, il faut partir à point.