Differential equation 31^{st} January 2005

Definition 1. A differential equation (DE) is an equation which involves derivatives. An ordinary differential equation (ODE) is a differential equation in which there is exactly one independent variable. A partial differential equation (PDE) is one where there are at least two independent variables. The derivatives of an ODE are ordinary-, whereas those of a PDE are partial derivatives.

Consider a differential equation. The order of it is the order of the highest Definition 2. derivative appearing in it. Its degree is the degree of the highest ordered derivative therein. A primitive is a relation between the variables that involves n essential arbitrary constants, which gives rise to a differential equation of order n. The n constants are called essential if they cannot be replaced by a smaller number of constants.

Example 1. The differential equation $y''' + 3(y'')^2 + 2y' = \sin x$ is an ordinary differential equation of order 3 and degree one. The differential equation $(y'')^2 + (y')^3 + y = 2x$ is an ODE which has an order 2 and degree 2.

Problem 1. The problem of finding solutions of differential equations is essentially that of finding the primitive which gave rise to the equation.

Example 2. The differential equation
$$y''' = 0$$
 has a primitive $y = Ax^2 + Bx + C$, $y''' - 6y'' + 11y' - 6y = 0$ has $y = C_1e^{3x} + C_2e^{2x} + C_3e^x$, $y^2(y'')^2 + y^2 = r^2$ has $(x - C)^2 + y^2 = r^2$.

Definition 3. Existence theorems give conditions by which one could determine whether a differential equation is solvable. A particular solution of a differential equation is one obtained from the primitive by assigning definite values to the parameters, that is to say, the arbitrary constants. A singular solution is a solution which cannot be obtained from the primitive by any manipulation of the arbitrary constants. The primitive of a differential equation is usually called the general solution of the equation.

Definition 4. A differential equation is said to be variable separable if an integrating factor can be readily found. Such equation has the form

$$f_2(x) \cdot g_2(y) dx + f_2(x) \cdot g_1(y) dy = 0$$

Through the use of the integrating factor

$$\frac{1}{f_2(x) \cdot g_2(y)}$$

the primitive of this is then

$$\int \frac{f_1(x)}{f_2(x)} \, \mathrm{d} \, x + \int \frac{g_1(y)}{g_2(y)} \, \mathrm{d} \, y = C$$

A differential equation of the first order and first degree may be written in the Definition 5. form

$$M(x, y) dx + N(x, y) dy = 0$$

If this such equation admits a solution f(x, y, C) = 0 where C is an arbitrary constant, then there exist infinitely many integrating factors xi(x,y) such that $\xi(x,y)[M(x,y)dx + N(x,y)dy] = 0$ is exact, and there exist transformations of the variables which render the latter separated. But since no general rules exist for doing this, the use in practice is still somewhat limited.

δ

δ

Definition 6. A function f(x,y) is said to be homogeneous of degree n if

$$f(\lambda x, \lambda y) = \lambda^n f(x, y)$$

Note 1. The equation

$$(a_1x + b_1y + c_1) dx + (a_2x + b_2y + c_2) dy = 0$$

where $a_1b_2 - a_2b_1 = 0$, is reduced through the transformation

$$a_1 x + b_1 y = t$$
 and $dy = \frac{dt - a_1 dx}{b_1}$

to the form

$$P(x,t) dx + Q(x,t) dt = 0$$

Note 2. The equation

$$(a_1x + b_1y + c_1) dx + (a_2x + b_2y + c_2) dy = 0$$

where $a_1b_2 - a_2b_1 \neq 0$, is reduced through the transformation

$$x = x' + h$$
 and $y = y' + k$

in which x = h and y = k are the solutions of the equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ into the homogeneous form

$$(a_1x' + b_1y') dx' + (a_2x' + b_2y') dy' = 0$$

δ

Note 3. The equation of the form

$$y \cdot f(xy) dx + x \cdot g(xy) dy = 0$$

through the transformation

$$xy = z$$
, $y = \frac{z}{x}$, $dy = \frac{x dz - z dx}{x^2}$

into the form

$$P(x,y) d x + Q(x,z) d z = 0$$

which is variable separable.

§

Bibliography

Frank Ayres, Jr. Theory and problems of Differential Equations. Schaum's Outline Series, 1981(1952)