Методы восстановления регрессии

Артем Бабенко

ВШЭ, 2015

Метод наименьших квадратов

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

 $Q(\alpha^*, X^{\ell})$ — остаточная сумма квадратов (residual sum of squares, RSS).

Метод максимума правдоподобия

Модель данных с некоррелированным гауссовским шумом:

$$y(x_i) = f(x_i, \alpha) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell.$$

Метод максимума правдоподобия (ММП):

$$L(arepsilon_1,\ldots,arepsilon_\ell|lpha) = \prod_{i=1}^\ell rac{1}{\sigma_i\sqrt{2\pi}} \exp\left(-rac{1}{2\sigma_i^2}arepsilon_i^2
ight)
ightarrow \max_lpha; \ -\ln L(arepsilon_1,\ldots,arepsilon_\ell|lpha) = \mathrm{const}(lpha) + rac{1}{2}\sum_{i=1}^\ell rac{1}{\sigma_i^2} ig(f(x_i,lpha)-y_iig)^2
ightarrow \min_lpha;$$

Теорема

Решения МНК и ММП, совпадают, причём веса объектов обратно пропорциональны дисперсии шума, $w_i = \sigma_i^{-2}$.

Содержание

- Многомерная линейная регрессия
 - Решение задачи наименьших квадратов
 - Сингулярное разложение
 - Регуляризация (гребневая регрессия)
 - Лассо Тибширани
- Метод главных компонент
 - Постановка задачи
 - Основная теорема
 - Решение задачи наименьших квадратов

Многомерная линейная регрессия

 $f_1(x), \ldots, f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

Функционал квадрата ошибки:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

Нормальная система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^{\mathsf{T}}(F\alpha - y) = 0,$$

откуда следует нормальная система задачи МНК:

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y$$
,

где $F^{\mathsf{\scriptscriptstyle T}}_{n \times n}F$ — ковариационная матрица набора признаков f_1,\ldots,f_n .

Решение системы:
$$\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y$$
.

Значение функционала:
$$Q(\alpha^*) = \|P_F y - y\|^2$$
,

где
$$P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$$
 — проекционная матрица.

Сингулярное разложение

Произвольная $\ell \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD):

$$F = VDU^{\mathsf{T}}$$
.

Основные свойства сингулярного разложения:

- lacktriangledown $\ell imes n$ -матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^{\mathsf{T}}V = I_n$, столбцы v_i собственные векторы матрицы FF^{T} ;
- ② $n \times n$ -матрица $U = (u_1, \dots, u_n)$ ортогональна, $U^{\mathsf{T}}U = I_n$, столбцы u_i собственные векторы матрицы $F^{\mathsf{T}}F$;
- ullet n imes n-матрица D диагональна, $D={
 m diag}(\sqrt{\lambda_1},\dots,\sqrt{\lambda_n})$, $\lambda_j\geqslant 0$ собственные значения матриц $F^{\mathsf{T}}F$ и FF^{T} .

Решение МНК через сингулярное разложение

Псевдообратная F^+ , вектор МНК-решения α^* , МНК-аппроксимация целевого вектора $F\alpha^*$:

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}};$$

$$\alpha^{*} = F^{+}y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{\mathsf{T}}y);$$

$$F\alpha^{*} = P_{F}y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{j=1}^{n} v_{j} (v_{j}^{\mathsf{T}}y);$$

$$\|\alpha^{*}\|^{2} = \|D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{i=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{\mathsf{T}}y)^{2}.$$

Проблема мультиколлинеарности

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ullet ответы на новых объектах $y' = F' \alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

- Регуляризация: $\|\alpha\| \to \min$;
- Преобразование признаков: $f_1, \ldots, f_n \to g_1, \ldots, g_m, \ m \ll n$;
- Отбор признаков: $f_1, \ldots, f_n \to f_{i_1}, \ldots, f_{i_m}, \ m \ll n$.

Регуляризация (гребневая регрессия)

Штраф за увеличение нормы вектора весов $\|\alpha\|$:

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{1}{2\sigma} \|\alpha\|^2,$$

где $au=rac{1}{\sigma}$ — неотрицательный параметр регуляризации.

Вероятностная интерпретация: априорное распределение вектора α — гауссовское с ковариационной матрицей σI_n .

Модифицированное МНК-решение (τI_n — «гребень»):

$$\alpha_{\tau}^* = (F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}}y.$$

Преимущество сингулярного разложения: можно подбирать параметр au, вычислив SVD только один раз.

Регуляризованный МНК через сингулярное разложение

Вектор регуляризованного МНК-решения $\alpha_{ au}^*$ и МНК-аппроксимация целевого вектора $F\alpha_{ au}^*$:

$$\alpha_{\tau}^* = U(D^2 + \tau I_n)^{-1}DV^{\mathsf{T}}y = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j + \tau} u_j(v_j^{\mathsf{T}}y);$$

$$F\alpha_{\tau}^* = VDU^{\mathsf{T}}\alpha_{\tau}^* = V\operatorname{diag}\left(\frac{\lambda_j}{\lambda_j + \tau}\right)V^{\mathsf{T}}y = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau} v_j(v_j^{\mathsf{T}}y);$$

$$\|\alpha_{\tau}^*\|^2 = \|D^2(D^2 + \tau I_n)^{-1}D^{-1}V^{\mathsf{T}}y\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j + \tau} (v_j^{\mathsf{T}}y)^2.$$

 $F\alpha_{\tau}^* \neq F\alpha^*$, но зато решение становится гораздо устойчивее.

Выбор параметра регуляризации au

Контрольная выборка: $X^k = (x_i', y_i')_{i=1}^k$;

$$F'_{k\times n} = \begin{pmatrix} f_1(x'_1) & \dots & f_n(x'_1) \\ \dots & \dots & \dots \\ f_1(x'_k) & \dots & f_n(x'_k) \end{pmatrix}, \quad y'_{k\times 1} = \begin{pmatrix} y'_1 \\ \dots \\ y'_k \end{pmatrix}.$$

Вычисление функционала Q на контрольных данных T раз потребует $O(kn^2 + knT)$ операций:

$$Q(\alpha_{\tau}^*, X^k) = \|F'\alpha_{\tau}^* - y'\|^2 = \left\|\underbrace{F'U}_{k \times n} \operatorname{diag}\left(\frac{\sqrt{\lambda_j}}{\lambda_j + \tau}\right)\underbrace{V^{\mathsf{T}}y}_{n \times 1} - y'\right\|^2.$$

Зависимость $Q(\tau)$ обычно имеет характерный минимум.

Лассо Тибширани — другой подход к регуляризации LASSO — Least Absolute Shrinkage and Selection Operator

$$\begin{cases} Q(\alpha) = \|F\alpha - y\|^2 \to \min_{\alpha}; \\ \sum_{j=1}^{n} |\alpha_j| \leqslant \varkappa; \end{cases}$$

- Задача по-прежнему выпукла;
- Отбирает признаки, более интерпретируемое решение.

Сравнение гребневой регрессии и Лассо

Задача диагностики рака (prostate cancer, UCI)

T.Hastie, R.Tibshirani, J.Friedman. The Elements of Statistical Learning. Springer, 2001.

Метод главных компонент: постановка задачи

$$f_1(x),\ldots,f_n(x)$$
 — исходные числовые признаки; $g_1(x),\ldots,g_m(x)$ — новые числовые признаки, $m\leqslant n$;

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j=1,\ldots,n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке x_1, \ldots, x_ℓ :

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\}, \{u_{js}\}}$$

Матричные обозначения

Матрицы «объекты-признаки», старая и новая:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}; \quad G_{\ell \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_\ell) & \dots & g_m(x_\ell) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$U_{n\times m} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \qquad \hat{F} = GU^{\mathsf{T}} \overset{\mathsf{XOTUM}}{\approx} F.$$

Найти: и новые признаки G, и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U},$$

Основная теорема метода главных компонент

Теорема

Если $m \leqslant \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы U — это с.в. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным с.з. $\lambda_1, \ldots, \lambda_m$, а матрица G = FU.

При этом:

- $oldsymbol{0}$ матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \mathsf{diag}(\lambda_1,\ldots,\lambda_m)$;
- **3** $U\Lambda = F^{\mathsf{T}}FU$; $G\Lambda = FF^{\mathsf{T}}G$;

Связь с сингулярным разложением

Если взять m = n, то:

- ② представление $\hat{F} = GU^{\mathsf{T}} = F$ точное и совпадает с сингулярным разложением при $G = V\sqrt{\Lambda}$:

$$F = GU^{\mathsf{T}} = V\sqrt{\Lambda}U^{\mathsf{T}}; \quad U^{\mathsf{T}}U = I_{m}; \quad V^{\mathsf{T}}V = I_{m}.$$

lacktriangle линейное преобразование U работает в обе стороны:

$$F = GU^{\mathsf{T}}; \quad G = FU.$$

Поскольку новые признаки некоррелированы ($G^{\mathsf{T}}G = \Lambda$), преобразование U называется декоррелирующим (или преобразованием Карунена–Лоэва).

Эффективная размерность выборки

Упорядочим с.з. $F^{\mathsf{T}}F$ по убыванию: $\lambda_1 \geqslant \ldots \geqslant \lambda_n \geqslant 0$.

Эффективная размерность выборки— это наименьшее целое *m*, при котором

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

 $\mathit{Критерий}$ « $\mathit{крутого}$ склона»: находим m : $\mathit{E}_{\mathit{m}-1}\gg \mathit{E}_{\mathit{m}}$:

Решение задачи НК в новых признаках

Заменим F на её приближение GU^{T} :

$$\|G\underbrace{U^{\mathsf{T}}\alpha}_{\beta} - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}.$$

Связь нового и старого вектора коэффициентов:

$$\alpha = U\beta; \qquad \beta = U^{\mathsf{T}}\alpha.$$

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{m} \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y);$$

$$G\beta^* = VV^{\mathsf{T}}y = \sum_{j=1}^m v_j(v_j^{\mathsf{T}}y);$$

Резюме в конце лекции

- Многомерная линейная регрессия сингулярное разложение
- Гребневая регрессия сингулярное разложение
- Метод главных компонент способ избавления от близких к 0 сингулярных чисел