

Prefix Sum

Arnar Bjarni Arnarson September 21, 2025

School of Computer Science Reykjavík University

 $\bullet \ \ {\rm We \ have \ an \ array} \ A \ {\rm of \ size} \ n.$

- ullet We have an array A of size n.
- ullet Given i, j, we want to answer:

- ullet We have an array A of size n.
- Given i, j, we want to answer:
 - $\max(A[i], A[i+1], \dots, A[j-1], A[j])$

- We have an array A of size n.
- Given i, j, we want to answer:
 - $\max(A[i], A[i+1], \dots, A[j-1], A[j])$
 - $\min(A[i], A[i+1], \dots, A[j-1], A[j])$

- We have an array A of size n.
- ullet Given i, j, we want to answer:
 - $\max(A[i], A[i+1], \dots, A[j-1], A[j])$
 - $\min(A[i], A[i+1], \dots, A[j-1], A[j])$
 - $sum(A[i], A[i+1], \dots, A[j-1], A[j])$

- We have an array A of size n.
- Given i, j, we want to answer:
 - $\max(A[i], A[i+1], \dots, A[j-1], A[j])$
 - $\min(A[i], A[i+1], \dots, A[j-1], A[j])$
 - sum(A[i], A[i+1], ..., A[j-1], A[j])
- We want to answer these queries efficiently, or in other words, without looking through all elements.

- We have an array A of size n.
- ullet Given i, j, we want to answer:
 - $\max(A[i], A[i+1], \dots, A[j-1], A[j])$
 - $\min(A[i], A[i+1], \dots, A[j-1], A[j])$
 - sum(A[i], A[i+1], ..., A[j-1], A[j])
- We want to answer these queries efficiently, or in other words, without looking through all elements.
- Sometimes we also want to update elements.

 $\bullet\,$ Let's look at range sums on a constant array

- Let's look at range sums on a constant array
- How do we support these queries efficiently?

- Let's look at range sums on a constant array
- How do we support these queries efficiently?
- \bullet Simplification: only support queries of the form $\operatorname{sum}(0,j)$

- Let's look at range sums on a constant array
- How do we support these queries efficiently?
- \bullet Simplification: only support queries of the form $\operatorname{sum}(0,j)$
- Notice that sum(i, j) = sum(0, j) sum(0, i 1)

• So we're only interested in prefix sums

- So we're only interested in prefix sums
- ullet But there are only n of them...

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1						

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1					

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8				

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16			

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21		

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

 \bullet O(n) time to preprocess

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- O(n) time to preprocess
- ullet O(1) time each query

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- O(n) time to preprocess
- ullet O(1) time each query
- Can we support updating efficiently?

- So we're only interested in prefix sums
- ullet But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- O(n) time to preprocess
- O(1) time each query
- Can we support updating efficiently? No, at least not without modification

• This works on any invertible function.

- This works on any invertible function.
- If we want the product we can store the products and use $\mathrm{mul}(i,j) = \mathrm{mul}(0,j)/\mathrm{mul}(0,i-1).$

- This works on any invertible function.
- If we want the product we can store the products and use $\mathrm{mul}(i,j) = \mathrm{mul}(0,j)/\mathrm{mul}(0,i-1).$
- This also works for multidimensional arrays, but the math is more involved.

- This works on any invertible function.
- If we want the product we can store the products and use $\mathrm{mul}(i,j) = \mathrm{mul}(0,j)/\mathrm{mul}(0,i-1).$
- This also works for multidimensional arrays, but the math is more involved.
- We let $sum(x_i, x_j, y_i, y_j)$ denote the query for the sum from x_i to x_j along the x-dimension, and the same for y.

- This works on any invertible function.
- If we want the product we can store the products and use $\operatorname{mul}(i,j) = \operatorname{mul}(0,j)/\operatorname{mul}(0,i-1)$.
- This also works for multidimensional arrays, but the math is more involved.
- We let $sum(x_i, x_j, y_i, y_j)$ denote the query for the sum from x_i to x_j along the x-dimension, and the same for y.
- Then the formula becomes

$$sum(x_i, x_j, y_i, y_j) = sum(0, x_j, 0, y_j)$$

$$- sum(0, x_{i-1}, 0, y_j)$$

$$- sum(0, x_j, 0, y_{i-1})$$

$$+ sum(0, x_{i-1}, 0, y_{i-1})$$

query(1, 3, 3, 4)

query(1, 3, 3, 4)

query(0, 3, 0, 4)

query(1, 3, 3, 4)

query(0, 3, 0, 4)

query(0, 4, 0, 2)

query(1, 3, 3, 4)
query(0, 3, 0, 4)

query(0, 4, 0, 2)

query(0, 0, 0, 4)

