Homework 2: Stochastic learning: Stochastic Gradient Descent

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

As formative assessment, submit the solutions to Exercise 1.2, 1.3, and 1.4.

Exercise 1. $(\star\star\star)$ ¹Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$h_w(x) = \operatorname{sign}\left(w^{\top}x\right) \tag{1}$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right) \tag{2}$$

Let the hypothesis class is

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$
 (3)

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$, it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$ where

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda ||w||_{2}^{2}$$
(4)

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n.

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

 ± 1 means either -1 or +1, $\mathbb{R}_{+}:=(0,+\infty)$, and $\left\Vert x\right\Vert _{2}:=\sqrt{\sum_{\forall j}\left(x_{j}\right)^{2}}$ for the Euclidean distance.

¹We use standard notation

Do the following:

1. Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (4) is convex.

Hint: You may use Proposition 12 from Handout 2: Elements of convex learning problems.

- 2. Show that the loss $\ell(w, z)$ for $\lambda = 0$ (4) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}.$
 - **Hint:** You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 yw_2^\top x \le 1 yw_1^\top x$, and then take cases $1 yw_2^\top x > \text{or} < 0$ and $1 yw_1^\top x > \text{or} < 0$ to deal with the max.
- 3. Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

4. Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathcal{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$
 (5)

The formulas in your algorithm should be implemented for the above learning problem and tailored to 1, 3, and 4.

- 5. Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.

- (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (5).
- (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
#
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <- (z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} < c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```