一、填空题(每空1分,共26分)

题号	空【1】答案	空【2】答案	空【3】答案
1	集中式	分布式	/
2	停止 CPU 访内	周期挪用	DMA 和 CPU 交替访内
3	刷新存储器	显示控制器	/
4	电气特性	功能特性	时间特性
5	选择通道	数组多路通道	字节多路通道
6	符号位	数值域 (尾数)	/
7	容量	位扩展法	字扩展法
8	控制存储器	地址转移逻辑	微命令寄存器
9	指数	对阶	/
10	顺序寻址	跳跃寻址	指令计数器

二、选择题 (每题 2 分, 共 30 分)

题号	答案										
1	C	2	В	3	C	4	A	5	A	6	D
7	C	8	В	9	A	10	В	11	В	12	A
13	В	14	В	15	В	/	/	/	/	/	/

三、综合题(共 44 分)

1、解: (7分)

(1)

- ∵ 刷新所需带宽=分辨率×每个像素点 颜色深度×刷新速率
- ∴ 1024×1024×4B×96=393216KB/s=384MB/s (1分)

刷存总带宽应为 384MB/s÷60/100=640 MB/s(2分)

- (2) 为达到这样高的刷存带宽,可采取 如下技术措施:
- ① 使用高速的 DRAM 芯片组成刷存; (1 分)
- ② 刷存采用多体交叉结构; (1分)
- ③ 刷存至显示控制器的内部总线宽度由 32 位提高到 64 位或 128 位; (1分)
- ④ 刷存采用双端口存储器结构,将刷新端口与更新端口分开。(1分)

2、解: (9分)

"ADD R₁, (R₂)"指令的指令周期流程图如图 A-01 所示。(9 分)

3、解: (6分)

在 PCI 总线体系结构中, 桥起着重要作用:

- (1) 它连接两条总线, 使总线间相互通信。(2分)
- (2) 桥是一个总线转换部件,可以把一条总线的地址空间映射到另一条总线的地址空间上,从而使系统中任意一个总线主设备都能看到同样的一份地址表。(2分)
 - (3) 利用桥可以实现总线间的猝发式传送。(2分)

4、解: (6分)

- (1) 操作码字段为 6 位,可指定 $2^6 = 64$ 种操作,即 64 条指令。(2 分)
- (2) 单字长(32) 二地址指令,用于访问存储器。(2分)
- (3) 一个操作数在源寄存器 (共 16 个),另一个操作数在存储器中(由变址寄存器内容 + 偏移量决定),所以是 RS 型指令。(2 分)

5、解: (9分)

- (1) 由于主存地址码给定 18 位,所以最大空间为 2^{18} =256K,主存的最大容量为 256K。现在每个模块板的存贮容量为 32KB,所以主存共需 256KB/32KB=8 块板。(2分)
- (2) 每个模块板的存贮容量为 32KB,现用 $4K\times 4$ 位的 SRAM 芯片。每块板 采用位并联与地址串联相结合的方式:即用 2 片 SRAM 芯片拼成 $4K\times 8$ 位(共 8 组),用地址码的低 12 位($A_0\sim A_{11}$)直接接到芯片地址输入端,然后用地址码的高 3 位($A_{14}\sim A_{12}$)通过 3: 8 译码器输出分别接到 8 组芯片的片选端。共 $8\times 2=16$ 个 S RAM。(3 分)
- (3) 根据前面所得,共有 8 个模板,每个模板上有 16 片芯片,故主存共需 8 ×16=128 片芯片(SRAM)。(2 分)

CPU 选择各模块板的方法是:各模块板均用地址码 $A_0 \sim A_{14}$ 译码,而各模块的选择用地址码最高三位 A_{17} , A_{16} , A_{15} 通过 3:8 译码器输出进行选择。(2分)

6、解: (7分)