SAML-D Baseline Model — Technical Report (v1)

1) Executive summary

- Goal. Build a leakage-safe, calibrated baseline to detect suspicious transactions in SAML-D (≈9.5M rows; prevalence ≈0.1%).
- **Approach.** Time-based split (70/15/15), engineered **past-only** behavioral features, gradient boosting (LightGBM) with heavy regularization + class weighting, and **post-training probability calibration** (isotonic) on validation.
- Headline results (Test set).
 - Ranking: ROC-AUC 0.9943 (pre-cal) / 0.9796 (post-cal).
 - Precision-Recall: PR-AUC 0.3043 (pre-cal) / 0.3006 (post-cal). With base rate ≈0.1%, that is roughly ~300× random.
 - o Calibration: ECE 0.0017 \rightarrow 0.0001; Brier 0.0037 \rightarrow 0.00085 after isotonic calibration.
 - Operational (Top-K): At top 0.50% of transactions, Precision ≈ 22% with Recall
 ≈ 92%. At top 0.05%, Precision ≈ 34% for a high-priority queue.
- **Readiness.** Suitable as a **production baseline**. Use **calibrated** scores for thresholds and volumes; monitor drift and recalibrate periodically.

2) Data & preprocessing

Columns available (post initial drop):

- Numeric: Sender_account, Receiver_account, Amount, Is_laundering, Year, Month, Day, Week.
- Categorical: Payment_currency, Received_currency, Sender_bank_location, Receiver_bank_location, Payment_type, (Laundering_type dropped for leakage avoidance).

Initial steps

- Dropped Time, Date.
- Constructed _date = to_datetime(Year, Month, Day) and sorted chronologically (critical for leakage-safe features).
- Casted dtypes for memory/perf.

Train prevalence.

• Train size: **6,661,223** rows; positives **6,774** \rightarrow **0.1017%**. Used scale_pos_weight \approx 982.4.

3) Feature engineering (leakage-safe)

Domain features

- log_amount = log1p(Amount)
- currency_mismatch = 1(Payment_currency ≠ Received_currency)
- country_mismatch and cross_border from sender/receiver locations

Historical behavior (computed using past rows only)

- Activity: sender_prev_txn_count, receiver_prev_txn_count, pair_prev_txn_count
- Magnitude: cumulative and average amounts: sender_prev_amount_sum/avg, receiver_prev_amount_sum/avg
- Cadence: sender_prev_gap_days, receiver_prev_gap_days
- Relationship breadth: sender_unique_receivers_prev, receiver_unique_senders_prev
- Deviation: amount_vs_sender_avg (= Amount / sender_prev_amount_avg, clipped)

Categoricals used as categoricals: Payment_currency, Received_currency, Sender_bank_location, Receiver_bank_location, Payment_type.

Explicit protections against leakage

- Raw entity IDs (Sender_account, Receiver_account) not used as model features; only used to build past-only aggregates.
- Laundering_type excluded (not available at inference).

4) Train/Validation/Test split

• **Time-based** by _date quantiles: **70% Train**, **15% Val**, **15% Test**. This simulates forward-in-time deployment and prevents look-ahead leakage.

5) Model & training

Model. LightGBM (LGBMClassifier) with strong regularization:

- learning_rate=0.03, n_estimators=5000 (with early stopping)
- num_leaves=64, max_depth=8, min_child_samples=2000
- subsample=0.8, colsample_bytree=0.7, reg_alpha=1.0, reg_lambda=5.0, max_bin=127
- scale_pos_weight≈982.4, random_state=42

Training dynamics.

- Early stopped at **3610** rounds.
- Validation AUC/PR steadily improved; no "1-tree" overfit pattern.

Calibration.

• **Isotonic** calibration fitted on **validation** predictions (cv='prefit'), then applied to test. Expect slight ROC dips (ties) but markedly better probability accuracy (ECE/Brier).

6) Evaluation results

6.1 Global metrics

Pre-calibration (LightGBM raw probabilities)

- Validation: ROC-AUC 0.9928, PR-AUC 0.2708, Brier 0.003322, ECE 0.001489
- Test: ROC-AUC 0.9943, PR-AUC 0.3043, Brier 0.003701, ECE 0.001701

Post-calibration (Isotonic on validation)

- Validation: ROC-AUC 0.9779, PR-AUC 0.2678, Brier 0.000737, ECE 0.000002
- Test: ROC-AUC 0.9796, PR-AUC 0.3006, Brier 0.000850, ECE 0.000105

Interpretation

- Ranking remains excellent (AUC ≈ 0.98–0.99).
- PR-AUC ≈ 0.30 vs random baseline ≈ prevalence (~0.1%) ⇒ roughly ~300× better than random in PR space.

Calibration improves dramatically post-isotonic (ECE ~10⁻⁴; Brier substantially lower).
 Use calibrated scores for thresholding and alert volume management.

6.2 Operational (Top-K) performance — Test set

Fractions are of all test transactions; k is the number of alerts. Metrics shown as **Precision** / **Recall**.

Slice	k	Pre-cal P / R	Post-cal P / R
0.05%	706	0.2890 / 0.1212	0.3399 / 0.1426
0.10%	1,412	0.3215 / 0.2698	0.3088 / 0.2591
0.25%	3,532	0.3199 / 0.6714	0.3213 / 0.6744
0.50%	7,064	0.2193 / 0.9204	0.2193 / 0.9204
1.00%	14,128	0.1110 / 0.9317	0.1111 / 0.9323

Workload example. At top 0.50% (k=7,064), Precision \approx 21.9% \Rightarrow ~1,550 TPs and ~5,514 FPs; Recall \approx 92% implies ~1,680 positives in the test split (\approx 0.12% prevalence). This is a strong primary work-queue operating point. At top 0.05%, Precision \approx 34% yields a compact "urgent" queue.

7) Recommended operating strategy

- Primary queue: Review top 0.50% of scores daily/weekly. Expect ≈22% precision with ≈92% recall.
- 2. **High-priority gueue:** Review **top 0.05%** for faster SLA; ~34% precision.
- 3. **Thresholds:** Use the **calibrated** score distribution and pick thresholds by fraction on **validation** (the code includes a helper to compute the cut-off for any target fraction).

4. **Analyst capacity guardrails:** Track alert volume and re-tune the fraction to keep queues stable.

8) Model risk & leakage controls

- Entity-ID memorization avoided: Raw Sender_account/Receiver_account excluded from features; only used to compute past-only aggregates.
- Laundering_type excluded.
- Time-based split prevents look-ahead leakage.
- Class-weighting (not oversampling) preserves the negative class distribution for validation/test.

9) Monitoring & maintenance

- Score calibration drift: Re-fit isotonic on the latest month/quarter; watch ECE and Brier.
- **Volume stability:** Monitor % of transactions above the operating threshold; keep it within capacity bands.
- Quality: Track PR-AUC, precision@K/recall@K, and case-closure outcomes (confirmed SARs, etc.).
- Data drift: Monitor base rate, amount distributions, new corridors/currencies.
- Retraining trigger: Significant ECE increase, precision@K drop, or base-rate shift.

10) Limitations & next steps

Limitations

- No explicit **time-window** features (e.g., 7d/30d counts) beyond cumulative stats.
- No graph/network features beyond simple pair counts.
- Calibration uses isotonic (piecewise constant), which can reduce ROC marginally via ties.

Next steps (low → medium effort)

- 1. **Windowed features** (7/30-day sender/receiver/pair volume and amount; distinct counterparties per window).
- 2. Cross-border nuances (region-risk embeddings; currency volatility flags).

- 3. **Graph signals** (in/out degree, PageRank, triadic closure) aggregated per account; feed into the same model.
- Alternative calibration (Platt/sigmoid) if preserving ROC is desirable while keeping good calibration.
- 5. **Periodic recalibration** and **champion/challenger** with CatBoost (ordered target encoding for categoricals).

11) Reproducibility notes

- **Split:** Time-based (70/15/15 by _date).
- Model: LightGBM LGBMClassifier with parameters listed in §5; early stopping at 3610 rounds.
- Imbalance: scale_pos_weight ≈ 982.4 computed from train class counts.
- Calibration: CalibratedClassifierCV(method='isotonic', cv='prefit') trained on validation predictions.
- **Key features:** See §3 list; raw IDs and Laundering_type excluded from features.
- Random seed: random_state=42.

12) Glossary (quick)

- ROC-AUC: Ranking quality over all thresholds.
- PR-AUC: Precision/Recall trade-off; more informative at extreme imbalance.
- Brier score: Mean squared error of probabilities; lower is better.
- **ECE (Expected Calibration Error):** Average gap between predicted probability and observed frequency; lower is better.

Appendix A: Data at a glance

- Rows / columns: 9,504,852 rows × 12 columns (≈870 MB in memory).
- Base rate: 9,873 suspicious / 9,504,852 total ⇒ 0.1039% (≈ 1 in 963 transactions).
- Key fields (raw): Time, Date, Sender_account, Receiver_account, Amount, Payment_currency, Received_currency, Sender_bank_location, Receiver_bank_location, Payment_type, Is_laundering, Laundering_type.
- **Split-ready time index:** _date = to_datetime(Year, Month, Day) used for chronological splitting and leakage-safe history features.

Payment type volume (all transactions)

ACH 2,008,807 · Credit card 2,012,909 · Debit card 2,012,103 · Cheque 2,011,419 · Cross-border 933,931 · Cash Withdrawal 300,477 · Cash Deposit 225,206.

Suspicious rate by payment type (share of transactions flagged suspicious; relative risk vs baseline in parentheses)

Cash Deposit: 0.6239% (6.01×)
Cash Withdrawal: 0.4440% (4.27×)
Cross-border: 0.2814% (2.71×)

• ACH: 0.0577% (0.56×)

Credit card: 0.0564% (0.54×)
Debit card: 0.0559% (0.54×)
Cheque: 0.0540% (0.52×)

Suspicious typologies (share within suspicious class)

Structuring 18.94% · Cash_Withdrawal 13.51% · Deposit-Send 9.57% · Smurfing 9.44% · Layered_Fan_In 6.64% · Layered_Fan_Out 5.36% · Stacked Bipartite 5.13% · Behavioural_Change_1 3.99% · Bipartite 3.88% · Cycle 3.87% · Fan_In 3.69% · Gather-Scatter 3.59% · Behavioural_Change_2 3.49% · Scatter-Gather 3.42% · Single_large 2.53% · Fan_Out 2.40% · Over-Invoicing 0.55%.

Amount distribution

- Suspicious: max 12,618,500, mean 40,588, min 15.82.
- Normal: max 999,962.19, mean 8,729.88, min 3.73.
- Suspicious mean is ~4.65× normal; suspicious maximum is >12× the normal maximum.
- Skewness: raw Amount skew 102.16 (extremely heavy-tailed); log1p(Amount) skew
 -1.01, supporting our use of log_amount.

Appendix B: EDA highlights & modeling implications

- 1. Extreme imbalance (0.1039%) → Evaluate with PR-AUC and top-K metrics; use class weighting (as implemented).
- Channel risk heterogeneity. Cash-related and cross-border channels carry 2.7–6.0× higher suspicious rates; ACH/cards/cheques are ~0.5× baseline. Implication: interactions like (channel × amount deviation), (channel × cross-border) can add lift.
- Magnitude & deviations matter. Suspicious amounts are much larger on average; deviation from an account's historical average (amount_vs_sender_avg) is informative.

- 4. **Cadence & relationships.** History counts, time gaps, and unique counterparties capture typological behaviors (e.g., fan-in/out, structuring, layering). Our past-only aggregates directly target these patterns.
- 5. **Typology mix.** A handful of patterns (e.g., **Structuring**, **Cash_Withdrawal**, **Deposit-Send**, **Smurfing**) account for >50% of suspicious cases; features tied to bursts, splitting, and network breadth are particularly valuable.
- 6. **Probability calibration.** Raw boosting scores ranked well but required calibration; isotonic reduced ECE to ~1e-4, stabilizing thresholds and alert volumes.
- 7. **Data quality notes.** Time/Date appear as strings in raw data; we derive a proper _date index. If hour-level ordering becomes available, add intra-day features (e.g., time-of-day spikiness) and use **temporal windows** (7/30-day) for finer control.

Appendix C: Quick reference table — payment types

Payment type	Total Tx	Suspicious Tx	Suspicious rate	Relative risk vs baseline
Cash Deposit	225,206	1,405	0.6239%	6.01×
Cash Withdrawal	300,477	1,334	0.4440%	4.27×
Cross-border	933,931	2,628	0.2814%	2.71×
ACH	2,008,807	1,159	0.0577%	0.56×
Credit card	2,012,909	1,136	0.0564%	0.54×
Debit card	2,012,103	1,124	0.0559%	0.54×

Cheque	2,011,419	1,087	0.0540%	0.52×
--------	-----------	-------	---------	-------

Conclusion. The baseline delivers **excellent ranking**, **strong lift in PR space**, and **near-perfect calibration** after isotonic scaling. It is suitable for deployment with a recommended operating band around **top 0.5%** (primary queue) and **top 0.05%** (urgent queue), with routine monitoring and periodic recalibration.