Semilinear elliptic equations with a critical Sobolev exponent and a non-homogeneous term

Kazune Takahashi *

24 January 2015

1 概要

N を 3 以上の自然数とする。 $\Omega \subset \mathbb{R}^N$ を有界領域とする。p = (N+2)/(N-2) とする。 $f \in H^{-1}(\Omega)$ は、 $f \geq 0$ 、 $f \not\equiv 0$ をみたすとする。 $a,b \in L^\infty(\Omega)$ とする。 κ_1 を $-\Delta$ の Ω におけるディリクレ条件下での第 1 固有値とする。 $\kappa > -\kappa_1$ が存在して、 $a \geq \kappa$ となると仮定する。また、 $b \geq 0$ 、 $b \not\equiv 0$ と仮定する。 $\lambda \geq 0$ をパラメータとする。以下の方程式を考察する。

$$\begin{cases}
-\Delta u + au = bu^p + \lambda f & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(\(\beta\))_\(\lambda\)

定理 1.1. $(\spadesuit)_{\lambda}$ には minimal solution が存在する。

定理 1.2. $(\spadesuit)_{\lambda}$ には extremal solution が存在する。とくに、 $\lambda = \overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution が存在する。また、b>0 in Ω ならば、 $(\spadesuit)_{\lambda}$ の extremal solution は、 $\lambda = \overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution に限る。

定理 1.3. $0<\lambda<\overline{\lambda}$ とする。b は Ω 上のある点 x_0 で最大値 $M_1=\|b\|_{L^\infty}(\Omega)>0$ を達成するものと仮定する。 $r_0>0$ が存在し、 $\{|x-x_0|<2r_0\}\subset\Omega$ 、かつ、 $\{|x-x_0|<r_0\}$ 上

$$b(x) = M_1 - M_2 |x - x_0|^q,$$

$$a(x) = m_1 + m_2 |x - x_0|^{q'}$$

であると仮定する。ここで q,q'>0、 $M_2>0$ 、 $m_1>\kappa$ 、 $m_2\neq 0$ は定数である。さらに、以下の (i) - (iv) のいずれかの成立を仮定する。

- (i) $m_1 < 0$ 、かつ、 $N \ge 3$ 。
- (ii) $m_1 > 0$ 、かつ、N = 3, 4, 5。
- (iii) $m_1=0$ 、かつ、 $m_2<0$ 、かつ、 $N\geq 3$ 。
- (iv) $m_1 = 0$ 、かつ、 $m_2 > 0$ 、かつ、 $3 \le N < 6 + 2q'$ 。

このとき、 $(\spadesuit)_{\lambda}$ は、minimal solution \underline{u}_{λ} 以外の弱解 $\overline{u}_{\lambda} \in H_0^1(\Omega)$ をもつ。

 $(\spadesuit)_{\lambda}$ の minimal solution 以外の解 \overline{u}_{λ} を見出すために、以下の方程式 $(\heartsuit)_{\lambda}$ を考察する。

$$\begin{cases}
-\Delta v + av = b\left((v + \underline{u}_{\lambda})^{p} - (\underline{u}_{\lambda})^{p}\right) & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega
\end{cases} (\heartsuit)_{\lambda}$$

^{*} Graduate School of Mathematical Sciences, The University of Tokyo. Email: kazune@ms.u-tokyo.ac.jp

1.1 記号

ルベーグ空間を $L^q(\Omega)$ $(1 \leq q \leq \infty)$ と表記する。ソボレフ空間 $W^{1,2}(\Omega)$ を $H^1(\Omega)$ と表記する。トレースの意味で $u|_{\partial\Omega}=0$ が成立する $u\in H^1(\Omega)$ 全体を $H^1(\Omega)$ と表記する。ヘルダー空間を $C^{k+\alpha}(\Omega)$ $(k\in\mathbb{N},\ 0<\alpha<1)$ と表記する。コンパクト台を持つ Ω 上の C^∞ 級関数全体を $C_c^\infty(\Omega)$ と表記する。

ノルム空間 X のノルムを $\|\cdot\|_X$ と表記する。ノルム空間 X の双対空間を X^* と表記する。 $H^1_0(\Omega)^*$ を $H^{-1}(\Omega)$ と表記する。 $f\in H^{-1}$ の $u\in H^1_0(\Omega)$ への作用を $\langle f,u\rangle$ と表記する。 $H^1_0(\Omega)$ 上のノルム $\|\cdot\|_\kappa$ を、 $w\in H^1_0(\Omega)$ に対し、

$$||w||_{\kappa} = \left(\int_{\Omega} \left(|Dw|^2 + \kappa w^2\right) dx\right)^{1/2}$$

と定める。 $\kappa>-\kappa_1$ 、 Ω が有界領域であることにより、ポアンカレの不等式から $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムである。また、 $H^1_0(\Omega)$ 上のノルム $\|\cdot\|$ を、 $w\in H^1_0(\Omega)$ に対し、

$$||w|| = \left(\int_{\Omega} |Dw|^2 dx\right)^{1/2}$$

と定める。やはりポアンカレの不等式から $\|\cdot\|$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムであることがしたがう。

2 minimal solution の存在と性質

本節では、(♠)_{\(\lambda\)} の解のうち、minimal solution について取り扱う。まずは minimal solution を定義する。

記号 2.1. $\lambda > 0$ に対し、

$$S_{\lambda} = \{ u \in H_0^1(\Omega) \mid u \text{ it } (\spadesuit)_{\lambda} \text{ の弱解である } \}$$

と定める。

定義 2.2. $\underline{u}_{\lambda} \in S_{\lambda}$ が minimal solution であるとは、任意の $u \in S_{\lambda}$ に対し、 $\underline{u}_{\lambda} \leq u$ in Ω が成立することをいう。

記号 2.3. $(\spadesuit)_{\lambda}$ の minimal solution を \underline{u}_{λ} と表記する。

2.1 $H_0^1(\Omega)$ の原点付近における様子

minimal solution を調べる第一歩として、 $\lambda>0$ が十分小さいときに、 $(\spadesuit)_{\lambda}$ が弱解を持つことを、陰関数定理を用いて示す。

補題 2.4. 1. $\lambda_0 > 0$ と $H_0^1(\Omega)$ の原点の近傍 U が存在して、 $0 < \lambda \le \lambda_0$ に対し、 $(\spadesuit)_\lambda$ は U 内の唯一の弱解 u_λ をもつ。また、次が成立する。

$$||u_{\lambda}||_{H_0^1(\Omega)} \to 0 \ (\lambda \searrow 0).$$

2. さらに、 $f \in C^{\alpha}(\overline{\Omega})$ を仮定する。このとき、1. の弱解 u_{λ} は、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$ をみたし、次が成立する。

$$||u_{\lambda}||_{C^{2+\alpha}(\Omega)} \to 0 \ (\lambda \searrow 0).$$

証明. 1. $\Phi: [0,\infty) \times H_0^1(\Omega) \to H^{-1}(\Omega)$ を

$$\Phi(\lambda, u) = -\Delta u + au - b(u_+)^p - \lambda f \tag{2.1}$$

とする。 Φ の u についてのフレッシェ微分は、 $w \in H_0^1(\Omega)$ に対し、

$$\Phi_u(\lambda, u) \colon w \mapsto -\Delta w + aw - bp(u_+)^{p-1}w. \tag{2.2}$$

と書かれる。特に、

$$\Phi_u(0,0)w = -\Delta w + aw.$$

が成立する。 $a>-\kappa_1$ により、 $\Phi_u(0,0)\colon H^1_0(\Omega)\to H^{-1}(\Omega)$ は可逆である。ゆえに、陰関数定理より、 $\lambda_0>0$ と $H^1_0(\Omega)$ の原点の近傍 U が存在して、 $0<\lambda\leq\lambda_0$ に対し、 $\Phi(\lambda,u_\lambda)=0$ をみたす $u_\lambda\in U$ が唯一つ存在し、次をみたす。

$$\lim_{\lambda \searrow 0} \|u_{\lambda}\|_{H_0^1(\Omega)} = 0.$$

つまり、 u_{λ} は、以下の方程式の弱解である。

$$\begin{cases}
-\Delta u + au = b(u_+)^p + \lambda f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(2.3)

ここで $b(u_+)^p + \lambda f \ge 0$ であり、 $a > -\kappa_1$ であるから、強最大値原理により、 $u_{\lambda} > 0$ in Ω が成立する。よって、 u_{λ} は $(\spadesuit)_{\lambda}$ の U における唯一の弱解である。

2. $f \in C^{\alpha}(\overline{\Omega})$ のとき、 $\Phi \colon [0,\infty) \times C^{2+\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ を、(2.1) で定義する。以下、1. の証明と同様にすると、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$ と $\|u_{\lambda}\|_{C^{2+\alpha}(\Omega)} \to 0$ $(\lambda \searrow 0)$ が示される。

以下では基本的に、1. の結果を使用し、弱解の枠組みで議論する。2. の結果は、§7で使用する。

2.2 優解との関係

続いて、ある $\lambda = \hat{\lambda}$ で $(\spadesuit)_{\lambda}$ が優解をもつときに、 $0 < \lambda \le \hat{\lambda}$ で minimal solution が存在することを示す。

補題 2.5. $\hat{\lambda} > 0$ とする。以下をみたす $\hat{u} \in H_0^1(\Omega)$ が存在すると仮定する。

$$\begin{cases}
\Delta \widehat{u} + a\widehat{u} \ge b\widehat{u}^p + \widehat{\lambda}f & \text{in } \Omega, \\
\widehat{u} > 0 & \text{in } \Omega
\end{cases}$$
(2.4)

このとき、 $\lambda \in (0, \widehat{\lambda}]$ に対し、 $(\spadesuit)_{\lambda}$ の minimal solution \underline{u}_{λ} が存在する。また、 $\underline{u}_{\lambda} < \widehat{u}$ in Ω が成立する。

証明. $H^1_0(\Omega)$ の点列 $\{u_n\}_{n=0}^\infty$ を、次の通りに帰納的に定める。 $u_0\equiv 0$ とする。 u_n が定まっているときに、線形方程式

$$\begin{cases}
-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f & \text{in } \Omega, \\
u_{n+1} = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.5)

の唯一の弱解を $u_{n+1} \in H_0^1(\Omega)$ と定める。

(2.5) が唯一の弱解であることを確かめる。ソボレフ埋め込みにより、 $u_n \in H^1_0(\Omega) \subset L^{p+1}(\Omega)$ だから、 $u_n^p \subset L^{(p+1)/p}(\Omega) = L^{2N/(N+2)}(\Omega) \subset H^{-1}(\Omega)$ である。 $b \in L^\infty(\Omega)$ 、 $f \in H^{-1}(\Omega)$ より、 $bu_n^p + \lambda f \in H^{-1}(\Omega)$ である。 $a > -\kappa_1$ と合わせて、(2.5) には唯一の弱解が存在する。

ここで、次の事実を、n についての数学的帰納法を用いて証明する。

$$0 = u_0 < u_1 < \dots < u_n < \hat{u} \text{ in } \Omega. \tag{2.6}$$

n=0 のときは、 $\widehat{u}>0$ in Ω であることから、(2.6) が成立する。 $n\in\mathbb{N}$ とする。n における (2.6) の成立を仮定し、n+1 における (2.6) の成立を示す。

$$-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f,$$

$$-\Delta u_n + au_n = bu_{n-1}^p + \lambda f$$

の両辺を引くと、次が成立する。

$$-\Delta(u_{n+1} - u_n) + a(u_{n+1} - u_n) = b(u_n^p - u_{n-1}^p).$$

右辺は仮定により 0 以上である。ゆえに強最大値原理より、 $u_{n+1}>u_n$ in Ω である。また、

$$-\Delta \widehat{u} + a\widehat{u} > b\widehat{u}^p + \lambda f,$$

$$-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f$$

の両辺を引いて同様にすると、 $\hat{u}>u_{n+1}$ in Ω もしたがう。以上により、(2.6) は n+1 でも正しい。数学的帰納法により、任意の $n\in\mathbb{N}$ について (2.6) の成立が示された。

続いて、 $\{u_n\}$ が $H^1_0(\Omega)$ における有界列であることを示す。 u_{n+1} は (2.5) の弱解であるから、任意の $\psi \in H^1_0(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi)dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f\psi dx \tag{2.7}$$

 $\psi = u_{n+1}$ とすると、次が成立する。

$$\int_{\Omega} (|Du_{n+1}|^2 + a|u_{n+1}|^2) dx = \int_{\Omega} b u_n^p u_{n+1} dx + \lambda \int_{\Omega} f u_{n+1} dx.$$

ここで、右辺は、次の通りに評価される。

(右辺)
$$\leq \int_{\Omega} b\widehat{u}^{p+1} dx + \lambda \int_{\Omega} f\widehat{u} dx < \infty.$$
 (2.8)

ここで $\hat{u} \in H_0^1(\Omega) \subset L^{p+1}(\Omega)$ に注意した。また左辺について、

(左辺)
$$\geq \int_{\Omega} (|Du_{n+1}|^2 + \kappa |u_{n+1}|^2) dx = ||u_{n+1}||_{H_0^1(\Omega)}$$
 (2.9)

もわかる。 $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムである。したがって、(2.8) および (2.9) より、 $\{u_n\}$ は $H^1_0(\Omega)$ の有界列である。

ゆえに、必要ならば部分列をとることにより、 $u \in H^1_0(\Omega)$ が存在して、 $n \to \infty$ とすると、以下が成立する。

$$u_n \longrightarrow u$$
 weakly in $H_0^1(\Omega)$, (2.10)

$$u_n \longrightarrow u$$
 in $L^q(\Omega)$ $(q < p+1)$,

$$u_n \longrightarrow u \text{ a.e. in } \Omega.$$
 (2.11)

ここでuが $(\spadesuit)_{\lambda}$ の弱解であることを示す。(2.10)により、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

また、 $b \in L^{\infty}(\Omega)$ 、 $\widehat{u}, \psi \in H_0^1(\Omega) \subset L^{p+1}(\Omega)$ より、

$$|bu_n\psi| \leq b\widehat{u}^p|\psi|$$
 a. e. in Ω

の右辺は可積分である。(2.11)より、優収束定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(2.7) で $n \to \infty$ とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \lambda \int_{\Omega} f\psi dx.$$
 (2.12)

 $\psi \in H_0^1(\Omega)$ は任意であるから、 $u \in H_0^1(\Omega)$ は $(\spadesuit)_{\lambda}$ の弱解である。

最後に、u は $(\spadesuit)_{\lambda}$ の minimal solution であることを示す。 $\widetilde{u} \in H^1_0(\Omega)$ を $(\spadesuit)_{\lambda}$ の弱解とする。このとき、(2.6) と同様の議論により、 $\widetilde{u} > u_n$ in Ω が数学的帰納法で示される。 $n \to \infty$ として、 $\widetilde{u} \ge u$ in Ω となる。よって u は $(\spadesuit)_{\lambda}$ の minimal solution である。

補題 2.5 から、次の事実がしたがう。

補題 ${f 2.6.}$ 1. $\lambda_0>0$ が存在して、 $S_{\lambda_0}
eq\emptyset$ とする。このとき、 $0<\lambda<\lambda_0$ に対し、 $S_{\lambda}
eq\emptyset$ となる。

- 2. $\lambda>0$ とする。 $S_{\lambda}\neq\emptyset$ ならば、 $(\spadesuit)_{\lambda}$ には minimal solution $\underline{u}_{\lambda}\in S_{\lambda}$ が存在する。
- $3. \quad 0<\lambda_1<\lambda_2$ とする。 $S_{\lambda_1}
 eq\emptyset$ 、 $S_{\lambda_2}
 eq\emptyset$ ならば、 $\underline{u}_{\lambda_1}\in S_{\lambda_1}$ $\underline{u}_{\lambda_2}\in S_{\lambda_2}$ について、 $\underline{u}_{\lambda_1}<\underline{u}_{\lambda_2}$ in Ω が成立する。

4. 補題 2.4 における (\spadesuit) $_{\lambda}$ の弱解を u_{λ} とする。このとき、 $u_{\lambda} = \underline{u}_{\lambda}$ である。

証明. 1. $u_{\lambda_0} \in S_{\lambda_0}$ とする。 $\widehat{u} = u_{\lambda_0}$ とし補題 2.5 を適用すると結論が得られる。

- 2. $u_{\lambda} \in S_{\lambda}$ とする。 $\hat{u} = u_{\lambda}$ として補題 2.5 を適用すると、 $(\spadesuit)_{\lambda}$ の minimal solution \underline{u}_{λ} が得られる。
- 3. $\hat{u}=\underline{u}_{\lambda_2}$ として、補題 2.5 (2.6) を適用すると、 $\underline{u}_{\lambda_1}\leq\underline{u}_{\lambda_2}$ in Ω が得られる。

$$-\Delta \underline{u}_{\lambda_1} + a\underline{u}_{\lambda_1} = b\underline{u}_{\lambda_1}^p + \lambda_1 f,$$

$$-\Delta \underline{u}_{\lambda_2} + a\underline{u}_{\lambda_2} = b\underline{u}_{\lambda_2}^p + \lambda_2 f$$

の両辺を引くと、次が成立する。

$$-\Delta(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) + a(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) = b(\underline{u}_{\lambda_2}^p - \underline{u}_{\lambda_2}) + (\lambda_2 - \lambda_1)f.$$

右辺が 0 以上であること、および、 $a>-\kappa_1$ により、強最大値原理を用いると、 $\underline{u}_{\lambda_1}<\underline{u}_{\lambda_2}$ in Ω がしたがう。

4. $u_{\lambda} \in S_{\lambda}$ より、 $S_{\lambda} \neq \emptyset$ である。したがって、2. より、 $(\spadesuit)_{\lambda}$ は minimal solution \underline{u}_{λ} をもつ。よって、(2.12) で $u = \psi = \underline{u}_{\lambda}$ とおくと、以下が得られる。

$$\int_{\Omega} \left(|D\underline{u}_{\lambda}|^2 + a|\underline{u}_{\lambda}|^2 \right) dx = \int_{\Omega} b\underline{u}_{\lambda}^p dx + \lambda \int_{\Omega} f\underline{u}_{\lambda} dx. \tag{2.13}$$

ここで、minimal solution の $H_0^1(\Omega)$ ノルムが、 $\lambda \setminus 0$ のとき、0 に収束することを示す。

$$((2.13)\ \mathcal{O} 左辺) \geq \int_{\Omega} \left(|D\underline{u}_{\lambda}|^2 + \kappa |\underline{u}_{\lambda}|^2 \right) dx \geq C \left\| \underline{u}_{\lambda} \right\|_{H^1_0(\Omega)}^2.$$

中辺は $\|\underline{u}_{\lambda}\|_{\kappa}^{2}$ であり、 $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H_{0}^{1}(\Omega)}$ と同値であるから、C>0 は $\|\cdot\|_{H_{0}^{1}(\Omega)}$ の中身によらない定数であることに注意されたい。また、 $\underline{u}_{\lambda}\leq u_{\lambda}$ in Ω より、次がしたがう。

ここで、C',C''>0は、 $\|\cdot\|_{H^1_0(\Omega)}$ の中身によらない定数である。以上より、以下が成立する。

$$C \|u\|_{H_0^1(\Omega)} \le C' \|u_\lambda\|_{H_0^1(\Omega)}^{p+1} + C'' \|u_\lambda\|_{H_0^1(\Omega)}.$$

補題 2.4 より、 $\lambda \searrow 0$ のとき、 $\|u_{\lambda}\|_{H_0^1(\Omega)} \searrow 0$ が成立する。ゆえに、 $\|\underline{u}_{\lambda}\|_{H_0^1(\Omega)} \searrow 0$ となる。再び補題 2.4 によると、 $\lambda > 0$ が十分小さいとき、 u_{λ} は (\spadesuit) $_{\lambda}$ の唯一の弱解であった。したがってこのことは $u_{\lambda} = \underline{u}_{\lambda}$ を示している。

2.3 **解が存在する** λ **の有界性**

補題 2.4 により、 $\lambda > 0$ が存在して、 $(\spadesuit)_{\lambda}$ の解が存在する。補題 2.6 により、 $(\spadesuit)_{\lambda}$ の解が存在する λ が見つかれば、それより小さい λ については、 $(\spadesuit)_{\lambda}$ の解が存在する。そこで、 $(\spadesuit)_{\lambda}$ の解が存在する λ がどこまで大きくなるのかを調べる。そのために次の記号を置く。

記号 2.7. $\overline{\lambda} = \sup\{\lambda \geq 0 \mid S_{\lambda} \neq \emptyset\}$ と定める。

ここから先は、 $\overline{\lambda}<\infty$ を示すことを目標に議論を進める。その準備として、 $\lambda>0$ によらない $H^1_0(\Omega)$ の元 g_0 を用意する。

記号 2.8. $g_0 \in H_0^1(\Omega)$ を

$$\begin{cases}
-\Delta g_0 + ag_0 = f & \text{in } \Omega, \\
g_0 = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.14)

の唯一の弱解と定める。

q₀ について、次の補題を示す。

補題 2.9. 固有值問題

$$-\Delta \phi + a\phi = \mu b(g_0)^{p-1}\phi$$
 in Ω , $\phi \in H_0^1(\Omega)$

の第 1 固有値を μ_1 とする。このとき、 $\mu_1>0$ である。また、 μ_1 に付随する固有関数 ϕ_1 のうち、 $\phi_1>0$ in Ω をみたすものがある。

証明. μ_1 はレーリッヒ商により、

$$\mu_1 = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} \left(|D\psi|^2 + a|\psi|^2 \right) dx}{\int_{\Omega} b(g_0)^{p-1} \psi^2 dx}$$
(2.15)

と特徴付けられる。また、(2.15) の右辺の下限を達成する関数 $\phi \in H^1_0(\Omega)$ があるとすれば、 ϕ が μ_1 に付随する固有関数である。

(2.15) より、以下が成立する $H_0^1(\Omega)$ の点列 $\{\psi_n\}$ が存在する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx = 1, \tag{2.16}$$

$$\int_{\Omega} \left(|D\psi_n|^2 + a|\psi_n|^2 \right) dx \searrow \mu_1. \tag{2.17}$$

 $a>\kappa$ であるから、(2.17) の左辺は $\|\psi_n\|_\kappa^2$ 以下である。 $\|\cdot\|_\kappa$ は $\|\cdot\|_{H_0^1(\Omega)}$ と同値なノルムであるから、 $\{\psi_n\}$ は $H_0^1(\Omega)$ の有界列である。

ゆえに、必要ならば部分列をとることにより、 $\phi_1 \in H^1_0(\Omega)$ が存在して、 $n \to \infty$ とすると、以下が成立する。

$$\psi_n \longrightarrow \phi_1 \text{ weakly in } H_0^1(\Omega),$$
 (2.18)

$$\psi_n \longrightarrow \phi_1 \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (2.19)

$$\psi_n \longrightarrow \phi_1 \text{ a.e. in } \Omega.$$
 (2.20)

(2.18) より、 $H_0^1(\Omega)$ ノルムの弱下半連続性から、次が成立する。

$$\liminf_{n \to \infty} \|\psi_n\|_{H_0^1(\Omega)} \ge \|\phi_1\|_{H_0^1(\Omega)}.$$

ゆえに、(2.19) と合わせて、以下が成立する。

$$\mu_1 \ge \int_{\Omega} \left(|D\phi_1|^2 + a|\phi_1|^2 \right) dx.$$
(2.21)

また、ソボレフ埋め込み $H^1_0(\Omega)\subset L^{p+1}(\Omega)$ より、 $H^1_0(\Omega)$ の有界列 $\{\psi_n\}$ は $L^{p+1}(\Omega)$ の有界列である。したがって、 $\{\psi_n^2\}$ は $L^{N/(N-2)}(\Omega)$ の有界列である。よって、必要なら部分列をとると、 $\{\psi_n^2\}$ は $L^{N/(N-2)}(\Omega)$ の弱収束列となる。一方 (2.20) から、 $\{\psi_n^2\}$ は ϕ_1^2 に Ω 上ほとんどいたるところ収束する。したがって、次が成立する。

$$\psi_n^2 \longrightarrow \phi_1^2$$
 weakly in $L^{N/(N-2)}(\Omega)$.

 $g_0\in L^{p+1}(\Omega)$ より、 $b(g_0)^{p-1}\in L^{N/2}(\Omega)$ である。 $\left(L^{N/(N-2)}(\Omega)\right)^*\cong L^{N/2}(\Omega)$ より、次が成立する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx \xrightarrow{n \to \infty} \int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx. \tag{2.22}$$

(2.22) の証明は、[Wil96] の Lemma 2.13 によった。(2.21) と (2.22) により、次がしたがう。

$$\mu_1 \ge \frac{\int_{\Omega} \left(|D\phi_1|^2 + a|\phi_1|^2 \right) dx}{\int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx}.$$
 (2.23)

(2.15) により、(2.23) の不等号は実際には等号が成立する。すなわち、(2.15) の右辺の下限は $\phi_1 \in H^1_0(\Omega)$ により達成される。よって $\mu_1 > 0$ である。

(2.15) の右辺の形から、 ϕ_1 が (2.15) の右辺の下限を達成するならば、 $|\phi_1|$ も下限を達成する。すなわち、 $\phi_1 \geq 0$ in Ω となる第 1 固有関数がある。この ϕ_1 について、次が成立する。

$$-\Delta \phi_1 + a\phi_1 = \mu_1 b(g_0)^{p-1} \phi_1 \ge 0 \text{ in } \Omega.$$

ゆえに、強最大値原理により、 $\phi_1 > 0$ in Ω となる。

q₀を用いて、次の命題を証明する。

命題 2.10. $\overline{\lambda}$ を記号 2.7 のものとする。 $0 < \overline{\lambda} < \infty$ である。

証明. 補題 2.4 により、 $\lambda_0 > 0$ が存在し、 $0 < \lambda < \lambda_0$ に対して、 $(\spadesuit)_\lambda$ の解が存在する。ゆえに $\overline{\lambda} > 0$ である。そこで、 $\overline{\lambda} < \infty$ を示せば証明が完了する。

 $\lambda > 0$ は、 $S_{\lambda} \neq \emptyset$ をみたすものとする。 $u \in S_{\lambda}$ とし、 $v = u - \lambda g_0$ とする。このとき、次が成立する。

$$-\Delta v + av = bu^p > 0$$

したがって、強最大値原理より、v>0 in Ω である。つまり、 $u>\lambda g_0$ in Ω がしたがう。よって、以下が成立する。

$$-\Delta u + au \ge bu^p \ge b\lambda^{p-1}(g_0)^{p-1}u \text{ in } \Omega.$$
(2.24)

一方、補題 2.9 により、以下が成立する $\mu_1 > 0$ 、 $\phi_1 \in H_0^1(\Omega)$ 、 $\phi_1 > 0$ in Ω が存在する。

$$-\Delta\phi_1 + a\phi_1 = \mu_1 b(g_0)^{p-1} \phi_1 \text{ in } \Omega.$$
 (2.25)

そこで、 $(2.24) \times \phi_1 - (2.25) \times u$ を Ω 上積分すると、次を得る。

$$0 \ge (\lambda^{p-1} - \mu_1) \int_{\Omega} b(g_0)^{p-1} u \phi_1 dx.$$

ここで、 $b\geq 0$ in Ω 、 $b\not\equiv 0$ 、 $g_0,u,\phi_1>0$ in Ω であるから、右辺の積分は正である。ゆえに、 $\lambda^{p-1}-\mu_1\leq 0$ である。つまり、 $\lambda\leq \mu_1^{1/(p-1)}$ となる。 $\lambda>0$ は $S_\lambda\neq\emptyset$ をみたす任意の正の数であるから、 $\overline{\lambda}\leq \mu_1^{1/(p-1)}<\infty$ がしたがう。

証明 (定理 1.1). 命題 2.10 により、

2.4 minimal solution に関する線形化固有値問題

(♠)_λの minimal solution についての線形化固有値問題

$$-\Delta \phi + a\phi = \mu p b(\underline{u}_{\lambda})^{p-1} \phi \text{ in } \Omega, \quad \phi \in H_0^1(\Omega)$$
(2.26)

を考察する。特に第1固有値、第1固有関数について論ずる。

記号 2.11. $(\spadesuit)_{\lambda}$ の minimal solution $\underline{u}_{\lambda} \in S_{\lambda}$ に関する線形化固有値問題 (2.26) の第 1 固有値を $\mu_1(\lambda)$ とかく。

補題 2.12. $0 < \lambda < \overline{\lambda}$ とする。このとき、以下が成立する。

- 1. $\mu_1(\lambda) > 0$ である。また、 $\mu_1(\lambda)$ に付随する固有関数 ϕ_1 のうち、 $\phi_1 > 0$ in Ω をみたすものが存在する。
- 2. 任意の $\psi \in H_0^1(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} \left(|D\psi|^2 + a|\psi|^2 \right) dx \ge \mu_1(\lambda) \int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx. \tag{2.27}$$

証明. 1. 補題 2.9 と同様である。

2. $\mu_1(\lambda)$ のレーリッヒ商による特徴付け

$$\mu_1(\lambda) = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} \left(|D\psi|^2 + a|\psi|^2 \right) dx}{\int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx}$$
(2.28)

から (2.27) が成立する。

補題 2.12 から即座に、 $0 < \lambda < \overline{\lambda}$ ならば $\mu_1(\lambda) > 0$ であることがわかる。次の補題では、方程式 $(\spadesuit)_{\lambda}$ に着目し、 $\mu_1(\lambda)$ についてより多くの情報を引き出す。

補題 2.13. $0 < \lambda < \overline{\lambda}$ とする。このとき、 $\mu_1(\lambda) > 1$ である。

証明. $\hat{\lambda}$ を $0<\lambda<\hat{\lambda}<\overline{\lambda}$ をみたすものとする。 $z=\underline{u}_{\hat{\lambda}}-\underline{u}_{\lambda}$ とおく。補題 2.6.3 より、z>0 in Ω である。

$$\begin{split} -\Delta \underline{u}_{\widehat{\lambda}} + a\underline{u}_{\widehat{\lambda}} &= b\underline{u}_{\widehat{\lambda}}^p + \widehat{\lambda}f, \\ -\Delta \underline{u}_{\lambda} + a\underline{u}_{\lambda} &= b\underline{u}_{\lambda}^p + \lambda f \end{split}$$

の両辺を引いて、次を得る。

$$-\Delta z + az = b(\underline{u}_{\widehat{\lambda}}^p - \underline{u}_{\lambda}^p) + (\widehat{\lambda} - \lambda)f.$$

x > 0 に対し、 $x \mapsto x^p$ は下に凸であるから、次がしたがう。

$$\underline{u}_{\widehat{\lambda}}^p - \underline{u}_{\lambda}^p > p\underline{u}_{\lambda}^{p-1}(\underline{u}_{\widehat{\lambda}} - \underline{u}_{\lambda}) = p\underline{u}_{\lambda}^{p-1}z.$$

 $(\hat{\lambda} - \lambda)f \ge 0$ と合わせて、次を得る。

$$-\Delta z + az > bp \underline{u}_{\lambda}^{p-1} z \text{ in } \Omega. \tag{2.29}$$

 $\mu_1 = \mu_1(\lambda)$ とする。補題 2.12 より、 $\phi_1 > 0$ in Ω があって、

$$-\Delta\phi_1 + a\phi_1 = \mu p b \underline{u}_{\lambda}^{p-1} \phi_1 \text{ in } \Omega$$
 (2.30)

 $(2.29) \times \phi_1 - (2.30) \times z$ を Ω 上積分すると、

$$0 > (1 - \mu_1) p \int_{\Omega} b \underline{u}_{\lambda}^{p-1} \phi_1 z dx$$

となる。ここで、 $b\geq 0$ in Ω 、 $b\not\equiv 0$ 、 $\underline{u}_{\lambda},z,\phi_1>0$ in Ω であるから、右辺の積分は正である。ゆえに、 $1-\mu_1<0$ である。つまり $\mu_1>1$ である。

3 extremal solution の存在と一意性

本節では、 $(\spadesuit)_{\lambda}$ の extremal solution について考察する。 $\lambda = \overline{\lambda}$ における $(\spadesuit)_{\lambda}$ を考察する。

定義 3.1. $\bar{\lambda}$ を記号 2.7 のものとする。 $\lambda = \bar{\lambda}$ における $(\spadesuit)_{\lambda}$ の弱解を $(\spadesuit)_{\lambda}$ の extremal solution という。

3.1 extremal solution の存在

本小節では、 $(\spadesuit)_{\lambda}$ の extremal solution が存在することを示す。このために、まず以下の集合を考察する。

$$K = \{ \underline{u}_{\lambda} \in H_0^1(\Omega) \mid 0 < \lambda < \overline{\lambda} \}. \tag{3.1}$$

補題 3.2. (3.1) の K は $H_0^1(\Omega)$ の有界集合である。

証明. $g_0 \in H_0^1(\Omega)$ を記号 2.8 のものとする。 $v_\lambda = \underline{u}_\lambda - \lambda g_0$ と定める。すると、次が成立する。

$$-\Delta v_{\lambda} = \underline{u}_{\lambda} - \lambda g_0 \quad \text{in } \Omega.$$

ゆえに、 $\psi \in H_0^1(\Omega)$ とすると、次が成立する。

$$\int_{\Omega} (Dv_{\lambda} \cdot D\psi + av_{\lambda}\psi) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p \psi dx.$$

 $\psi = v_{\lambda}$ とおくと、次を得る。

$$\int_{\Omega} (|Dv_{\lambda}|^2 + a|v_{\lambda}|^2) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx.$$
(3.2)

ここで、次の事実を示す。任意の $\epsilon > 0$ に対し、C > 0 が存在し、任意の $s,t \geq 0$ に対し、次式が成立する。

$$(t+s)^{p} \le (1+\epsilon)(t+s)^{p-1}t + Cs^{p}. \tag{3.3}$$

まず、 $(t+s)^{p-1}s$ にヤングの不等式を用いる。q,r>1 は、 $q^{-1}+r^{-1}=1$ をみたすものとする。任意の $0<\widetilde{\epsilon}<1$ に対し、 $\widetilde{C}>0$ が存在し、次が成立する。

$$(t+s)^{p-1}s \le \widetilde{\epsilon} \left((t+s)^{p-1} \right)^q + \widetilde{C}s^r.$$

ここで q = p/(p-1) とおくと、r = p である。ゆえに、以下が成立する。

$$(t+s)^{p-1}s \le \widetilde{\epsilon}(t+s)^p + \widetilde{C}s^p$$

$$= \widetilde{\epsilon}(t+s)^{p-1}t + \widetilde{\epsilon}(t+s)^{p-1}s + \widetilde{C}s^p,$$

$$(t+s)^{p-1}s \le \frac{\widetilde{\epsilon}}{1-\widetilde{\epsilon}}(t+s)^{p-1}t + \frac{\widetilde{C}}{1-\widetilde{\epsilon}}s^p.$$

任意の $\epsilon>0$ に対し、 $\epsilon=\widetilde{\epsilon}/(1-\widetilde{\epsilon})$ となる $0<\widetilde{\epsilon}<1$ は存在する。この $\widetilde{\epsilon}$ に対し、 $C=\widetilde{C}/(1-\widetilde{\epsilon})$ とすると、次が成立する。 $(t+s)^{p-1}s\leq \epsilon(t+s)^{p-1}t+Cs^p.$

 $(t+s)^p=(t+s)^{p-1}s+(t+s)^{p-1}t$ より、(3.3) が得られる。以上の(3.3) の証明は [NS07] の Lemma 4.1 によった。 (3.2) の左辺を I とおく。(3.3) より、次式が成立する。

$$\int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx \le (1 + \epsilon) \int_{\Omega} b\underline{u}_{\lambda}^{p-1} v_{\lambda}^2 dx + C\lambda^p \int_{\Omega} bg_0^p v_{\lambda} dx. \tag{3.4}$$

ここで、補題 2.12.2、補題 2.13 から、次式を得る。

$$I \le \mu_1 p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx > p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx.$$

すなわち、次を得る。

$$\int_{\Omega} b(\underline{u}_{\lambda})^{p-1} v_{\lambda}^2 dx < \frac{I}{p} \tag{3.5}$$

また、 $g_0, v_\lambda \in H^1_0(\Omega) \subset L^{p+1}(\Omega)$ 、及び、ヘルダーの不等式、ソボレフの不等式から、次式を得る。

$$\int_{\Omega} b g_0^p v_{\lambda} dx \le \|b\|_{L^{\infty}(\Omega)} \|g_0\|_{L^{p+1}(\Omega)}^p \|v_{\lambda}\|_{L^{p+1}(\Omega)} \le C \|v_{\lambda}\|_{H_0^1(\Omega)} \le C' \|v_{\lambda}\|_{\kappa}. \tag{3.6}$$

ここでC, C' > 0 は λ によらない。

(3.2)、(3.5)、(3.6) から、次式がしたがう。

$$I \le \frac{1+\epsilon}{p} I + \overline{\lambda}^p C \|v_\lambda\|_{\kappa}.$$

 $\epsilon>0$ を $(1+\epsilon)/p<1$ となるよう小さくとれば、 $I\leq C \|v_\lambda\|_\kappa$ となる。ここで $I\geq \|v_\lambda\|_\kappa^2$ 、 $v_\lambda\not\equiv 0$ であるから、 $\|v_\lambda\|_\kappa\leq C$ である。 $\|\cdot\|_\kappa$ と $\|\cdot\|_{H^1_0(\Omega)}$ は同値であるから、 $\{v_\lambda\in H^1_0(\Omega)\mid 0<\lambda<\overline{\lambda}\}$ は $H^1_0(\Omega)$ の有界集合である。 v_λ の定め方から $\underline{u}_\lambda=v_\lambda+\lambda g_0$ であるため、次の式が成立する。

$$\|\underline{u}_{\lambda}\|_{H_0^1(\Omega)} \le \|v_{\lambda}\|_{H_0^1(\Omega)} + \overline{\lambda} \|g_0\|_{H_0^1(\Omega)}.$$

右辺は λ によらない定数で抑えられる。従って、(3.1)のKは、 $H^1_0(\Omega)$ の有界集合である。

 $\lambda \nearrow \overline{\lambda}$ のときの \underline{u}_{λ} の極限をとることで、 $(\spadesuit)_{\lambda}$ の extremal solution を構成する。

- 命題 3.3. 1. (♠) $_{\lambda}$ の extremal solution が存在する。 とくに、 $\lambda = \overline{\lambda}$ における (♠) $_{\lambda}$ の minimal solution $\underline{u}_{\overline{\lambda}}$ が存在する。
 - 2. $\lambda > 0$ とする。 $\lambda \nearrow \overline{\lambda}$ のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。
- **証明.** 1. 正の数の列 $\{\lambda_n\}_{n=0}^{\infty}$ は、 $\lambda_n \nearrow \overline{\lambda}$ をみたすものとする。 $u_n = \underline{u}_{\lambda_n}$ とかく。 u_n は $\lambda = \lambda_n$ における $(\spadesuit)_{\lambda}$ の 弱解であるから、任意の $\psi \in H^1_0(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n \psi) dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f \psi dx.$$
 (3.7)

補題 3.2 より、 $\{u_n\}$ は $H^1_0(\Omega)$ の有界列である。ゆえに、必要ならば部分列をとることにより、 $u\in H^1_0(\Omega)$ が存在して、 $n\to\infty$ とすると、以下が成立する。

$$u_n \longrightarrow u \text{ weakly in } H_0^1(\Omega),$$
 (3.8)

$$u_n \longrightarrow u$$
 in $L^q(\Omega)$ $(q < p+1)$,

$$u_n \longrightarrow u$$
 a. e. in Ω . (3.9)

u が $(\spadesuit)_{\lambda}$ の extremal solution であることを示す。(3.8) により、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n \psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

補題 2.6.3 と (3.9) により、 $u_n \leq u$ in Ω となる。とくに、u>0 in Ω である。また、 $b\in L^\infty(\Omega)$ 、 $u,\psi\in H^1_0(\Omega)\subset L^{p+1}(\Omega)$ より、

$$|bu_n^p\psi| \leq b\widehat{u}^p|\psi|$$
 a. e. in Ω

の右辺は可積分である。(3.9)より、優収束定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(3.7) で $n \to \infty$ とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \overline{\lambda} \int_{\Omega} f \psi dx.$$

 $\psi \in H_0^1(\Omega)$ は任意であるから、 $u \in H_0^1(\Omega)$ は $(\spadesuit)_\lambda$ の extremal solution である。すなわち、 $(\spadesuit)_\lambda$ の extremal solution が存在する。補題 2.5.2 より、特に $\lambda = \overline{\lambda}$ における $(\spadesuit)_\lambda$ の minimal solution $\underline{u}_{\overline{\lambda}}$ が存在する。

2. 補題 2.5.3 より、 $u_n = \underline{u}_{\lambda_n} < \underline{u}_{\overline{\lambda}}$ in Ω である。 $n \to \infty$ とすると、 $u \le \underline{u}_{\overline{\lambda}}$ in Ω を得る。 $u \in S_{\overline{\lambda}}$ であり、 $\underline{u}_{\overline{\lambda}}$ は $\lambda = \overline{\lambda}$ における (\spadesuit) $_{\lambda}$ の minimal solution であるから、 $u = \underline{u}_{\overline{\lambda}}$ である。したがって、 $n \to \infty$ のとき、 $\underline{u}_{\lambda_n} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。 $\{\lambda_n\}$ の任意性により、 $\lambda \nearrow \overline{\lambda}$ のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。

3.2 extremal solution の一意性

前小節では、 $(\spadesuit)_{\lambda}$ の extremal solution の存在を示した。本小節では、 $(\spadesuit)_{\lambda}$ の extremal solution が b>0 in Ω のとき は唯一つに限ることを示す。

鍵となるのは、(2.26) の第 1 固有値 $\mu_1(\lambda)$ である。補題 2.13 では、 $0 < \lambda < \overline{\lambda}$ において $\mu_1(\lambda) > 1$ となることを示した。 b > 0 in $\Omega \lambda = \overline{\lambda}$ において、この不等式が成立しなくなることを示す。

補題 3.4. λ_1, λ_2 は、

補題 3.5. 1. $\lambda \nearrow \overline{\lambda}$ のとき、 $\mu_1(\lambda) \searrow \mu_1(\overline{\lambda})$ である。

証明. 1. $\phi_1 \in H_0^1(\Omega)$ を、 $\mu_1(\overline{\lambda})$ に付随する $\phi_1 > 0$ in Ω をみたす固有関数とする。正の実数列 $\{\lambda_n\}_{n=0}^\infty$ を λ_n を、 λ_n $\nearrow \overline{\lambda}$ をみたすものとする。単調収束定理より、次式が成立する。

$$\int_{\Omega} bp(\underline{u}_{\lambda_n})^{p-1} \phi_1^2 dx \nearrow \int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx \quad (n \to \infty).$$

 $\{\lambda_n\}$ の任意性より、次式が成立する。

$$\int_{\Omega} bp(\underline{u}_{\lambda})^{p-1} \phi_1^2 dx \nearrow \int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx \quad (\lambda \nearrow \overline{\lambda}). \tag{3.10}$$

 $\epsilon > 0$ とする。(3.10) より、 $\delta > 0$ が存在し、 $0 < \overline{\lambda} - \lambda < \delta$ ならば、

$$0 < \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx} - \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\lambda})^{p-1} \phi_1^2 dx} < \epsilon \tag{3.11}$$

が成立する。ここで、 $\widetilde{\mu}(\lambda)$ を

$$\widetilde{\mu}(\lambda) = \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx}$$

と定めると、(3.11) は $0 < \widetilde{\mu}(\lambda) - \mu_1(\overline{\lambda}) < \epsilon$ と書き直される。(2.28) より、 $\mu_1(\lambda) \le \widetilde{\mu}(\lambda)$ である。補題 3.4 より $\mu_1(\overline{\lambda}) \le \mu_1(\lambda)$ である。したがって、 $0 < \overline{\lambda} - \lambda < \delta$ ならば、 $0 \le \mu_1(\lambda) - \mu_1(\overline{\lambda}) \le \widetilde{\mu}(\lambda) - \mu_1(\overline{\lambda}) < \epsilon$ となる。以上より、 $\lambda \nearrow \overline{\lambda}$ のとき、 $\mu_1(\lambda) \searrow \mu_1(\overline{\lambda})$ である。

2. 補題 2.13 および 1. より、 $\mu_1(\overline{\lambda}) \geq 1$ である。 $\mu_1(\overline{\lambda}) = 1$ を背理法を用いて示す。

 $\mu_1(\overline{\lambda})>1$ であると仮定する。 $\Phi\colon [0,\infty)\times H^1_0(\Omega)\to H^{-1}(\Omega)$ を (2.1) の通りに定める。(2.2) より、 $w\in H^1_0(\Omega)$ に対し

$$\Phi_u(\overline{\lambda}, \underline{u}_{\overline{\lambda}})w = -\Delta w + aw - bp(\underline{u}_{\overline{\lambda}})^{p-1}w.$$
(3.12)

となる。

ここで、
$$\Phi_u(\overline{\lambda}, \underline{u}_{\overline{\lambda}})$$
 が可逆であることを示す。 $f \in H^{-1}(\Omega)$ とする。

命題 3.6. b>0 in Ω と仮定する。 $(\spadesuit)_{\lambda}$ の extremal solution は、 $\lambda=\overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution $\underline{u}_{\overline{\lambda}}$ に限る。 **証明 (定理 1.2).** 命題 3.3.1 と命題 3.6 からしたがう。

4 second solution **の存在** 1 — 命題 4.4 **の**証明

4.1 second solution を求めるための方針

本節と次節で、定理 1.3 を証明する。本節と次節を通し、 $0<\lambda<\overline{\lambda}$ とする。方程式 $(\heartsuit)_{\lambda}$ を考察するために、以下の記号をおく。

記号 4.1. 1. $\mathbb{R} \times \mathbb{R} \times \Omega$ を定義域とする実数値関数 g,G を以下の通りに定める。

$$g(t, s, x) = b(x) ((t_{+} + s)^{p} - s^{p}) - at_{+},$$

$$G(t, s, x) = \int_{0}^{t_{+}} g(t, s, x) dt$$

$$= b(x) \left(\frac{1}{p+1} (t_{+} + s)^{p+1} - \frac{1}{p+1} s^{p+1} - s^{p} t_{+} \right) - \frac{1}{2} a(x) t_{+}^{2}.$$

$$(4.1)$$

 $g(v,\underline{u}_{\lambda},x)$ を $g(v,\underline{u}_{\lambda})$ と表記する。 $G(v,\underline{u}_{\lambda},x)$ を $G(v,\underline{u}_{\lambda})$ と表記する。

2. $I_{\lambda}: H_0^1(\Omega) \to \mathbb{R}$ を以下の通りに定める。

$$I_{\lambda}(v) = \frac{1}{2} \int_{\Omega} |Dv|^2 dx - \int_{\Omega} G(v, \underline{u}_{\lambda}) dx. \tag{4.3}$$

 I_{λ} のフレッシェ微分を I'_{λ} と表記する。

 $(\heartsuit)_{\lambda}$ の考察を始める前に、 $(\spadesuit)_{\lambda}$ と $(\heartsuit)_{\lambda}$ の関係、および、 $(\heartsuit)_{\lambda}$ と I_{λ} の関係を明らかにする。

補題 4.2. 1. 以下の(1),(2)は同値である。

- (1) (\spadesuit) $_{\lambda}$ の minimal solution \underline{u}_{λ} 以外の弱解 $\overline{u}_{\lambda} \in H_0^1(\Omega)$ が存在する。
- (2) $(\heartsuit)_{\lambda}$ の弱解 $v \in H_0^1(\Omega)$ が存在する。
- 2. $v \in H_0^1(\Omega)$ は (4.3) で定まる I_λ の臨界点であると仮定する。このとき、v は $(\heartsuit)_\lambda$ の弱解である。

証明. 1. $(1)\Rightarrow(2)$: $v=\overline{u}_{\lambda}-\underline{u}_{\lambda}$ とする。 \underline{u}_{λ} は $(\spadesuit)_{\lambda}$ の minimal solution であるから、 $v\geq 0$ in Ω である。そこで、

$$-\Delta \overline{u}_{\lambda} + a\overline{u}_{\lambda} = b\overline{u}_{\lambda}^{p} + \lambda f,$$

$$-\Delta \underline{u}_{\lambda} + a\underline{u}_{\lambda} = b\underline{u}_{\lambda}^{p} + \lambda f$$

の両辺を引くと、

$$-\Delta v + av = b\left((\underline{u}_{\lambda} + v)^p - \underline{u}_{\lambda}^p\right)$$

が得られる。この右辺は非負である。 $a \ge \kappa > -\kappa_1$ であるから、強最大値原理より、v > 0 in Ω である。以上より、 $v \in H^1_0(\Omega)$ は $(\heartsuit)_\lambda$ の弱解である。

(2)⇒(1): $\overline{u}_{\lambda} = v + \underline{u}_{\lambda}$ とすれば、 \overline{u}_{λ} は $(\spadesuit)_{\lambda}$ の弱解である。

2. I_{λ} は C^1 級であり、そのフレッシェ微分は、 $u \in H^1_0(\Omega)$ 、 $\psi \in H^1_0(\Omega)$ として、

$$I'_{\lambda}(u)\psi = \int_{\Omega} \left(Dv \cdot D\psi - g(v, \underline{u}_{\lambda})\psi\right) dx.$$

と表される。 $v \in H_0^1(\Omega)$ は I_{λ} の臨界点であるから、 $I'_{\lambda}(v) = 0$ である。すなわち、

$$\int_{\Omega} (Dv \cdot D\psi - g(v, \underline{u}_{\lambda})\psi) \, dx = 0 \tag{4.4}$$

が成立する。この $\psi \in H^1_0(\Omega)$ は任意であるから、 $v \in H^1_0(\Omega)$ は

$$\begin{cases}
-\Delta v + av = b\left((v_{+} + \underline{u}_{\lambda})^{p} - (\underline{u}_{\lambda})^{p}\right) & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega
\end{cases}$$
(4.5)

の弱解である。 $(v_+ + \underline{u}_{\lambda})^p - (\underline{u}_{\lambda})^p \geq 0$ in Ω 、 $a \geq \kappa > -\kappa_1$ より、強最大値原理から、v > 0 in Ω が従う。ゆえに $v \in H^1_0(\Omega)$ は $(\heartsuit)_{\lambda}$ の弱解である。

ここで次の記号を置く。

記号 4.3. $V \subset \mathbb{R}^N$ を領域とする。

$$S = \inf_{u \in H_0^1(V), u \neq 0} \frac{\|Du\|_{L^2(V)}^2}{\|u\|_{L^{p+1}(V)}^2}$$
(4.6)

と定める。

S は V には依存しないことが知られている。例えば [田中 08] の定理 2.31 (i) を参照されたい。次の 2 つの命題を証明することにより、定理 1.3 を証明する。

命題 4.4. $0 < \lambda < \overline{\lambda}$ とする。 $v \ge 0$ in Ω 、 $v_0 \ne 0$ 、かつ、

$$\sup_{t>0} I_{\lambda}(tv_0) < \frac{1}{NM_1^{(N-2)/2}} S^{N/2} \tag{4.7}$$

をみたす $v_0 \in H^1_0(\Omega)$ が存在することを仮定する。このとき、 $(\heartsuit)_\lambda$ の弱解 $v \in H^1_0(\Omega)$ が存在する。

命題 4.5. 定理 1.3 の仮定のもとで、 $v_0 \ge 0$ in Ω 、 $v_0 \ne 0$ 、および、(4.7) をみたす $v_0 \in H^1_0(\Omega)$ が存在する。

命題 4.4 の証明は本節、命題 4.5 の証明は次節でおこなう。

4.2 命題 4.4 の証明

本小節では、命題 4.4 の証明を与える。

まずは、以降の議論で使用する積分の極限について議論する。

記号 4.6. 関数 H, h, H', h', G', g' を以下の通りに定める。

$$H(t,s,x) = G(t,s,x) - \frac{1}{p+1}b(x)t_{+}^{p+1},$$

$$h(t,s,x) = g(t,s,x) - b(x)t_{+}^{p},$$

$$H'(t,s,x) = H(t,s,x) + \frac{1}{2}a(x)t_{+}^{2},$$

$$h'(t,s,x) = h(t,s,x) + a(x)t_{+},$$

$$G'(t,s,x) = G(t,s,x) + \frac{1}{2}a(x)t_{+}^{2},$$

$$g'(t,s,x) = g(t,s,x) + a(x)t_{+}.$$

 $H(v,\underline{u}_{\lambda},x)$ を $H(v,\underline{u}_{\lambda})$ と表記する。 $h(v,\underline{u}_{\lambda})$ 、 $H'(v,\underline{u}_{\lambda})$ 、 $h'(v,\underline{u}_{\lambda})$ 、 $G'(v,\underline{u}_{\lambda})$ 、 $g'(v,\underline{u}_{\lambda})$ も全て同様である。

補題 4.7. $v\in H^1_0(\Omega)$ とし、 $\{v_k\}_{k=0}^\infty$ を $H^1_0(\Omega)$ の有界列とする。 $k\to\infty$ のとき、 $v_k\to v$ ae $tin\Omega$ と仮定する。このとき、 $k\to\infty$ とすると、以下が成立する。

$$\int_{\Omega} H(v_k, \underline{u}_{\lambda}) dx \longrightarrow \int_{\Omega} H(v, \underline{u}_{\lambda}) dx, \tag{4.8}$$

$$\int_{\Omega} h(v_k, \underline{u}_{\lambda}) v_k dx \longrightarrow \int_{\Omega} h(v, \underline{u}_{\lambda}) v_k dx. \tag{4.9}$$

また、任意の $\psi \in H_0^1(\Omega)$ に対し、

$$\int_{\Omega} g(v_k, \underline{u}_{\lambda}) \psi dx \longrightarrow \int_{\Omega} g(v, \underline{u}_{\lambda}) \psi dx \tag{4.10}$$

が成立する。

証明. まず、(4.8) を証明する。 $\{v_k\}$ は $H^1_0(\Omega)$ の有界列で、v に Ω 上ほとんどいたるところ収束するから、必要ならば部分列をとることにより、 $k\to\infty$ とすると、以下が成立する。

$$v_k \longrightarrow v \text{ weakly in } H_0^1(\Omega),$$
 (4.11)

$$v_k \longrightarrow v \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (4.12)

$$v_k \longrightarrow v$$
 a. e. in Ω . (4.13)

$$\int_{\Omega} \frac{1}{2} a v_k^2 dx \xrightarrow{k \to \infty} \int_{\Omega} \frac{1}{2} a v^2 dx$$

がわかるので、(4.8)を示すためには、

$$\int_{\Omega} H'(v_k, \underline{u}_{\lambda}) dx \xrightarrow{k \to \infty} \int_{\Omega} H'(v, \underline{u}_{\lambda}) dx \tag{4.14}$$

を示せば十分である。以下 (4.14) を示す。 $t,s \ge 0$ のとき、次式が成立する。

$$H'(t,s,x) = b(x) \left(\frac{1}{p+1} (t+s)^{p+1} - \frac{1}{p+1} s^{p+1} - s^p t - \frac{1}{p+1} t^{p+1} \right)$$

$$\leq b(x) \left(\frac{1}{p+1} (t+s)^{p+1} - \frac{1}{p+1} s^{p+1} - \frac{1}{p+1} t^{p+1} \right)$$

$$\leq b(x) \int_0^t \left((\tau+s)^p - \tau^p \right) d\tau. \tag{4.15}$$

ここで、 $x \geq 0$ に対し、 $x \mapsto x^p$ は下に凸であるから、 $(\tau+s)^p - \tau^p \leq p(\tau+s)^{p-1}s$ である。さらに、

$$(\tau + s)^{p-1} \le (2\max\{\tau, s\})^{p-1} = 2^{p-1}\max\{\tau^{p-1} + s^{p-1}\} \le C(\tau^{p-1} + s^{p-1})$$

$$(4.16)$$

であるから、次が得られる。

$$H'(t,s,x) \le Cb \int_0^t (\tau^{p-1} + s^{p-1}) s d\tau \le Cb(t^{p-1}s + s^{p-1}t). \tag{4.17}$$

(4.17) の証明は、[NS07] の Lemma C.4 を参考にした。さらにヤングの不等式を適用すると、任意の $\epsilon>0$ に対し、C>0 が存在し、 $s,t\geq 0$ に対し、 $H'(t,s,x)\leq b(\epsilon t^{p+1}+Cs^{p+1})$ が成立する。ゆえに、次式が得られる。

$$|H'(v_k, \underline{u}_{\lambda}) - H'(v, \underline{u}_{\lambda})| \le b \left(\epsilon(v_{\epsilon})_{+}^{p+1} + \epsilon v_{+}^{p+1} + C \underline{u}_{\lambda}^{p+1} \right). \tag{4.18}$$

そこで、

$$W_{\epsilon,k} = \left(|H'(v_k, \underline{u}_\lambda) - H'(v, \underline{u}_\lambda)| - \epsilon b(v_k)_+^{p+1} \right)_+ \tag{4.19}$$

とおくと、 $k \to \infty$ のとき、 $W_{\epsilon,k} \to 0$ a. e. in Ω である。また、(4.18) より、 $|W_{\epsilon,k}| \le b \left(\epsilon v_+^{p+1} + C\underline{u}_\lambda^{p+1}\right)$ であり、この右辺は可積分である。したがって、優収束定理により、

$$\lim_{k \to \infty} \int_{\Omega} W_{\epsilon,k}(x) dx = 0$$

である。さて、 $\{v_k\}$ は $H^1_0(\Omega)$ の有界列であった。 $H^1_0(\Omega) \subset L^{p+1}(\Omega)$ のソボレフ不等式も考慮すると、

$$\int_{\Omega} b(v_k)_+^{p+1} dx \le C$$

をみたすkによらないC > 0が存在する。(4.19) より、

$$\int_{\Omega} |H(v_k, \underline{u}_{\lambda}) - H(v, \underline{u}_{\lambda})| \, dx \le \int_{\Omega} W_{\epsilon, k}(x) dx + \epsilon \int_{\Omega} b(v_k)_{+}^{p+1} dx$$

であるから、 $k \to \infty$ の上極限をとると、次式が得られる。

$$\limsup_{k \to \infty} \int_{\Omega} |H(v_k, \underline{u}_{\lambda}) - H(v, \underline{u}_{\lambda})| \, dx \le C\epsilon$$

C > 0 は k, ϵ によらず、 $\epsilon > 0$ は任意であるから、このことは

$$\lim_{k \to \infty} \int_{\Omega} |H(v_k, \underline{u}_{\lambda}) - H(v, \underline{u}_{\lambda})| \, dx = 0$$

と同値である。ゆえに (4.8) が成立する。以上の証明は、直接は [NS12] の Lemma~3.1 を参考にしているが、 [BL83] のアイデアを参考にした。

(4.9) も (4.8) と同様に証明される。(4.9) を示すためには、やはり

$$\int_{\Omega} h'(v_k, \underline{u}_{\lambda}) v_k dx \xrightarrow{k \to \infty} \int_{\Omega} h'(v, \underline{u}_{\lambda}) v dx$$

を示せば十分である。 $t,s \ge 0$ に対し、

$$h(t, s, x)t \le Cb(x)(t^p s + s^p t)$$

がしたがうため、(4.9) と同様に(4.8) も得られる。

最後に (4.10) を証明する。(4.11) より、

$$\int_{\Omega} av_k \psi dx \xrightarrow{k \to \infty} \int_{\Omega} av \psi dx$$

であるから、(4.10)を示すためには、

$$\int_{\Omega} g'(v_k, \underline{u}_{\lambda}) \psi dx \xrightarrow{k \to \infty} \int_{\Omega} g'(v, \underline{u}_{\lambda}) \psi dx$$

を示せば十分である。(4.15)、(4.16) と同様にすれば、 $s,t,r \ge 0$ に対し、次式がしたがう。

$$g'(t, s, x)r = b(x) ((t+s)^p - s^p) r \le Cb(x) (t^p r + s^p r).$$

ヤングの不等式を 2 回使用すると、 $\epsilon>0$ に対し、C,C'>0 が存在し、 $s,t,r\geq0$ に対し、

$$t^p r + s^p r \le \epsilon t^{p+1} + C r^{p+1} + s^p r \le \epsilon t^{p+1} + C' (r^{p+1} + s^{p+1})$$

が成立する。ゆえに、q' は

$$g'(t, s, x)r \le b\left(\epsilon t^{p+1} + C(r^{p+1} + s^{p+1})\right)$$

と評価される。したがって、次式が成立する。

$$|g'(v_k,\underline{u}_{\lambda})\psi - g'(v,\underline{u}_{\lambda})\psi| \le b\left(\epsilon(v_{\epsilon})_{+}^{p+1} + \epsilon v_{+}^{p+1} + C(\underline{u}_{\lambda}^{p+1} + |\psi|^{p+1})\right).$$

そこで、 $\widetilde{W}_{\epsilon,k}$ を

$$\widetilde{W}_{\epsilon,k} = \left(|g'(v_k, \underline{u}_{\lambda})\psi - g'(v, \underline{u}_{\lambda})\psi| - \epsilon b(v_k)_+^{p+1} \right)_{\perp}$$

と定める。以降は、(4.8)の証明と同様に、(4.10)が示される。

命題 4.4 を証明には、(PS) 条件を課さない峠の定理 [AR73] を使用する。その後、 I_{λ} の $(PS)_c$ 条件が必要となる。 I_{λ} の $(PS)_c$ 条件を調べる準備として、 I_{λ} についてのパレ・スメイル列が $H_0^1(\Omega)$ の有界列であることを証明する。

補題 4.8. $\{v_k\}_{k=0}^\infty$ は、 I_λ についてのパレ・スメイル列であると仮定する。すなわち、

- (i) $\{I_{\lambda}(v_k)\}$ は有界列。
- (ii) $I'_{\lambda}(v_l) \xrightarrow{k \to \infty} 0 \text{ in } H^{-1}(\Omega)_{\circ}$

と仮定する。このとき、 $\{v_k\}$ は $H_0^1(\Omega)$ の有界列である。

証明. (i) より、

$$\frac{1}{2} \left\| v_k \right\|^2 - \int_{\Omega} G(v_k, \underline{u}_{\lambda}) dx \le M \tag{4.20}$$

となる $k \in \mathbb{N}$ によらない M > 0 が存在する。 $\epsilon > 0$ とする。(ii) より、 $K \in \mathbb{N}$ が存在し、 $k \geq K$ 、 $\psi \in H^1_0(\Omega)$ に対し、

$$\int_{\Omega} (Dv_k \cdot D\psi) dx - \int_{\Omega} g(v_k, \underline{u}_{\lambda}) \psi dx \le \epsilon \|\psi\|_{H_0^1(\Omega)}$$

が成立する。 $\psi = v_k$ とすると、次式が得られる。

$$\|v_k\|^2 \ge \int_{\Omega} g(v_k, \underline{u}_{\lambda}) v_k dx - \epsilon \|v_k\|_{H_0^1(\Omega)}. \tag{4.21}$$

 $\alpha>0$ とする。(4.20)、(4.21) より、以下がしたがう。

$$\alpha M \ge \frac{\alpha}{2} \|v_k\|^2 - \alpha \int_{\Omega} G(v_k, \underline{u}_{\lambda}) dx$$

$$\ge \frac{\alpha - 2}{2} \|v_k\|^2 + \int_{\Omega} (g(v_k, \underline{u}_{\lambda}) v_k - \alpha G(v_k, \underline{u}_{\lambda})) dx - \epsilon \|v_k\|_{H_0^1(\Omega)}. \tag{4.22}$$

右辺の積分の中身を考察する。 $t,s \ge 0$ に対し、

$$g(t,s)t - \alpha G(t,s) = b\left((t+s)^p t - s^p t - \frac{\alpha}{p+1}(t+s)^{p+1} + \frac{\alpha}{p+1}s^{p+1} + \alpha s^p t\right) - a\left(t^2 - \frac{\alpha}{2}t^2\right)$$

である。ここで

$$F(t) = (t+s)^{p}t - \frac{\alpha}{p+1}(t+s)^{p+1}$$

のt=0のまわりの2次のテイラー多項式は、

$$s^{p}t + ps^{p-1}t^{2} - \frac{\alpha}{p+1}s^{p+1} - \alpha s^{p}t - \frac{\alpha p}{2}s^{p-1}t^{2}$$

と計算される。F の 3 階の導関数は、

$$F'''(t) = p(p-1)(p-2)(t+s)^{p-3}t + (3-\alpha)p(p-1)(t+s)^{p-2}$$

と計算される。テイラーの定理より、3次の剰余項 R_3 は、 $0 < \theta < 1$ を用いて、

$$R_3 = \frac{F'''(\theta t)}{3!}t^3 = \frac{t^3}{6} \left(p(p-1)(p-2)(\theta t + s)^{p-3}\theta t + (3-\alpha)p(p-1)(\theta t + s)^{p-2} \right)$$

とかける。以下では、 α を p に応じて定め、 $R_3 \geq 0$ となるようにする。p の値に応じて場合分けをする。

 $p \ge 2$ のとき: $\alpha = 3$ とすると、 $R_3 \ge 0$ が従う。

 $1 のとき:<math>\alpha = p + 1$ とすると、以下の通り $R_3 \ge 0$ が従う。

$$R_3 = \frac{t^3}{6}p(p-1)(\theta t + s)^{p-3} ((p-2)\theta t + (2-p)(\theta t + s))$$
$$= \frac{t^3}{6}p(p-1)(2-p)s(\theta t + s)^{p-3} \ge 0.$$

以上より、

$$g(t, s, x)t - \alpha G(t, s, x) = b \left(ps^{p-1}t^2 - \frac{\alpha p}{2}s^{p-1}t^2 + R_3 \right) - a \left(t^2 - \frac{\alpha}{2}t^2 \right)$$

$$\geq b \left(ps^{p-1}t^2 - \frac{\alpha p}{2}s^{p-1}t^2 \right) - a \left(t^2 - \frac{\alpha}{2}t^2 \right)$$

$$= \left(\frac{\alpha}{2} - 1 \right) \left(at^2 - bps^{p-1}t^2 \right)$$

と下から評価される。これを (4.22) に適用すると、 $a>\kappa$ 、及び、 $\|\cdot\|_{\kappa}$ と $\|\cdot\|_{H^1_0(\Omega)}$ が同値であることから、以下の式変形が進む。

$$\begin{split} \alpha M &\geq \frac{\alpha - 2}{2} \left(\left\| v_k \right\|^2 - \int_{\Omega} b p \underline{u}_{\lambda}^{p-1} v_k^2 dx + \int_{\Omega} a v_k^2 dx \right) - \epsilon \left\| v_k \right\|_{H_0^1(\Omega)} \\ &= \frac{\alpha - 2}{2} \left(1 - \frac{1}{\mu_1(\lambda)} \right) \left(\left\| v_k \right\|^2 + \int_{\Omega} a v_k^2 dx \right) \\ &\geq \frac{\alpha - 2}{2} \left(1 - \frac{1}{\mu_1(\lambda)} \right) \left\| v_k \right\|_{\kappa}^2 \\ &\geq \frac{\alpha - 2}{2} \left(1 - \frac{1}{\mu_1(\lambda)} \right) C \left\| v_k \right\|_{H_0^1(\Omega)}^2 - \epsilon \left\| v_k \right\|_{H_0^1(\Omega)}. \end{split}$$

C>0 はポアンカレの不等式から決まる k によらない定数である。 α の定め方から $\alpha>2$ 、補題 2.13 から $1-1/\mu_1(\lambda)>0$ であるから、結局 k>K に対し、

$$\alpha M \ge C' \|v_k\|_{H_0^1(\Omega)}^2 - \epsilon \|v_k\|_{H_0^1(\Omega)}$$

が成立する。ゆえに、 $\{v_k\}$ は $H_0^1(\Omega)$ の有界列である。

補題 4.8 を用いて、 I_{λ} の (PS)_c 条件を調べる。

補題 4.9. $0 < c < S^{N/2}/NM_1^{(N-2)/2}$ とする。このとき、 I_{λ} は $(PS)_c$ 条件をみたす。すなわち、次の条件 (i), (ii) をみたす $H_0^1(\Omega)$) の点列 $\{v_k\}_{k=0}^{\infty}$ は、収束する部分列をもつ。

- (i) $\lim_{k \to \infty} I_{\lambda}(v_k) = c_{\circ}$
- (ii) $I'_{\lambda}(v_k) \xrightarrow{k \to \infty} 0 \text{ in } H^{-1}(\Omega)_{\circ}$

証明. 仮定 (i), (ii) と補題 4.8 より、 $\{v_k\}$ は $H_0^1(\Omega)$ の有界列である。したがって、必要ならば部分列をとることにより、 $v \in H_0^1(\Omega)$ が存在し、 $k \to \infty$ とすると、以下が成立する。

$$v_k \longrightarrow v \text{ weakly in } H_0^1(\Omega),$$
 (4.23)

$$v_k \longrightarrow v \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (4.24)

$$v_k \longrightarrow v$$
 a. e. in Ω . (4.25)

(ii) より、任意の $\psi \in H_0^1(\Omega)$ に対し、

$$\int_{\Omega} (Dv_k \cdot D\psi) dx - \int_{\Omega} g(v_k, \underline{u}_{\lambda}) \psi dx = o(1) \quad (k \to \infty)$$

が成り立つ。(4.23) と補題 4.7 より、 $k \to \infty$ とすると、次式がしたがう。

$$\int_{\Omega} (Dv \cdot D\psi) dx - \int_{\Omega} g(v, \underline{u}_{\lambda}) \psi dx = 0.$$
(4.26)

つまり、 $v\in H^1_0(\Omega)$ は、 I_λ の臨界点である。よって補題 4.2.2 により、v は $(\heartsuit)_\lambda$ の弱解である。

$$I_{\lambda}(v) \ge 0 \tag{4.27}$$

であることを示す。(4.26) で $\psi = v$ とすると、

$$\int_{\Omega} |Dv| dx = \int_{\Omega} g(v, \underline{u}_{\lambda}) dx$$

という関係式が導かれる。ゆえに、

$$I_{\lambda}(v) = \frac{1}{2} \int_{\Omega} g(v, \underline{u}_{\lambda}) v dx - \int_{\Omega} G(v, \underline{u}_{\lambda}) dx$$

$$(4.28)$$

とわかる。そこで、 $t,s \ge 0$ 、 $x \in \Omega$ に対し、

$$\begin{split} \frac{1}{2}g(t,s,x)t - G(t,s,x) &= \frac{1}{2} \left(b \left((t+s)^p - s^p \right) at \right) t - \left(b \left(\frac{1}{p+1} (t+s)^{p+1} - \frac{1}{p+1} s^{p+1} - s^p t - \frac{1}{2} a t^2 \right) \right) \\ &= b \left(\frac{1}{2} \left((t+s)^p t - s^p t \right) - \left(\frac{1}{p+1} (t+s)^{p+1} - \frac{1}{p+1} s^{p+1} - s^p t \right) \right). \end{split}$$

を考える。

$$\alpha(t) = \frac{1}{2}(t+s)^{p}t - \frac{1}{p+1}(t+s)^{p+1}$$

の1次のテイラー多項式は、

$$\frac{1}{2}s^{p}t - \frac{1}{p+1}s^{p+1} - s^{p}t$$

である。 α の 2 階の導関数は、

$$\alpha''(t) = \frac{p(p-1)}{2}(t+s)^{p-2}t$$

と計算されるから、2次の剰余項は、 $0 < \theta < 1$ を用いて、

$$\frac{\alpha''(\theta t)}{2}t^2 = \frac{p(p-1)}{2}(\theta t + s)^{p-2}\theta t^3$$

と表すことができる。ゆえに、

$$\frac{1}{2}g(t, s, x)t - G(t, s, x) = b(x)\frac{p(p-2)}{2}(\theta t + s)^{p-2}\theta t^3 \ge 0$$

とわかる。(4.28) と合わせ、(4.27) が得られる。(4.27) は、本証明の最後で重要な役割を担う。

以下では、 $k\to\infty$ のとき $v_k\to v$ in $H^1_0(\Omega)$ であることを示す。これが示されれば、証明が完了する。 $w_k=v_k-v$ とおく。 $H^1_0(\Omega)$ の点列 $\{w_k\}_{k=0}^\infty$ について、以下が成立する。

$$w_k \longrightarrow 0$$
 weakly in $H_0^1(\Omega)$, (4.29)

$$w_k \longrightarrow 0 \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (4.30)

$$w_k \longrightarrow 0$$
 a.e. in Ω . (4.31)

(4.29) より、以下が成立する。

$$\int_{\Omega} |Dv_k|^2 dx = \int_{\Omega} |Dw_k^D v|^2 dx = \int_{\Omega} |Dv|^2 dx + \int_{\Omega} |Dw_k|^2 dx + o(1).$$

ここで、 $\widetilde{w}_k = (v_k)_+ - v$ とおく。v > 0 in Ω より、 $|\widetilde{w}_k| \leq |w_k|$ in Ω である。また、 $k \to \infty$ とすると、 $\widetilde{w}_k \to 0$ a.e. in Ω となる。ゆえに、ブレジス・リーブの補題 [BL83] より、次式が成立する。

$$\int_{\Omega} (v_k)_+^{p+1} dx = \int_{\Omega} v^{p+1} dx + \int_{\Omega} |\widetilde{w}_k|^{p+1} dx + o(1) \quad (k \to \infty).$$
 (4.32)

(4.32) と補題 4.7 より、次式が成立する。

以上より、k $\phi\infty$ のとき、 $w_k \to 0$ in $H^1_0(\Omega)$ である。すなわち、 $v_k \to v$ in $H^1_0(\Omega)$ である。これが示すべきことであった。

続いて、(PS)条件を課さない峠の定理の仮定がみたされていることを確認する。

補題 4.10. 以下の条件をみたす $\delta > 0$ 、 $\rho > 0$ が存在する。

$$\|v\|_{H^1_{\sigma}(\Omega)}$$
 をみたす $v \in H^1_{\sigma}(\Omega)$ に対し、 $I_{\lambda}(v) \ge \rho$ が成立する。 (4.33)

証明. $v \in H_0^1(\Omega)$ は任意のものとする。

$$\begin{split} I_{\lambda}(v) &= \frac{1}{2} \|v\|^2 - \int_{\Omega} G(v, \underline{u}_{\lambda}) dx \\ &= \frac{1}{2} \left(\int_{\Omega} \left(|Dv|^2 + av^2 \right) dx - \int_{\Omega} p b \underline{u}_{\lambda}^{p-1} v^2 dx \right) - \int_{\Omega} b \left(\frac{1}{p+1} (v + \underline{u}_{\lambda})^{p-1} - \frac{1}{p+1} \underline{u}_{\lambda}^{p+1} - \underline{u}_{\lambda}^p v - \frac{p}{2} \underline{u}_{\lambda}^{p-1} v^2 \right) dx. \end{split}$$

第1項を J_1 とおき、第2項の積分を J_2 とおく。補題2.12.2より、

$$J_1 \ge \frac{1}{2} \left(1 - \frac{1}{\mu_1(\lambda)} \right) \int_{\Omega} \left(|Dv|^2 + av^2 \right) dx \tag{4.34}$$

と下から評価される。補題 2.13 より、この括弧の中は正である。次に、 $t,s \ge 0$ に対し、 $\alpha(t) = (t+s)^{p+1}/(p+1)$ と定めると、 α の t=0 の周りの 2 次のテイラー多項式は、

$$\frac{1}{p+1}(t+s)^{p+1} + s^p t + \frac{p}{2}s^{p-1}t^2$$

である。 α の 3 階の導関数は $\alpha'''(t) = p(p-1)(t+s)^{p-2}$ であるから、3 次の剰余項

$$R_3 = \frac{1}{p+1}(t+s)^{p+1} - \frac{1}{p+1}(t+s)^{p+1} - s^p t - \frac{p}{2}s^{p-1}t^2$$
(4.35)

は、テイラーの定理より、 $0 < \theta < 1$ を用いて、

$$R_3 = \frac{\alpha'''(\theta t)}{3!}t^3 = \frac{p(p-1)}{6}(\theta t + s)^{p-2}t^3$$

とかける。この R_3 は、

$$R_3 \ge C(2\max\{t,s\})^{p-2}t^3 = C2^{p-2}(\max\{t^{p-2},s^{p-2}\})t^3 \ge C(t^{p-2}+s^{p-2})t^3 = C(t^{p+1}+s^{p-2}t^3)$$

と評価される。C>0 は $s,t\geq 0$ によらない。さらに、ヤングの不等式より、任意の $\epsilon>0$ に対し、C>0 が存在し、 $s,t\geq 0$ に対し、 $s^{p-2}t^3\leq \epsilon s^{p-1}t^2+Ct^{p+1}$ となる。ゆえに、 R_3 は

$$R_3 \le \epsilon s^{p-1} t^2 + C t^{p+1} \tag{4.36}$$

と評価される。(4.35) と(4.36) より、 J_2 の評価

$$J_2 \le \epsilon \int_{\Omega} b \underline{u}_{\lambda}^{p-1} v^2 dx + C \int_{\Omega} b v^{p+1} dx \tag{4.37}$$

が得られる。(4.37) の 2 つの項は、それぞれ補題 2.12.2、ソボレフ不等式より、

$$\int_{\Omega} b \underline{u}_{\lambda}^{p-1} v^2 dx \le \frac{1}{p\mu_1(\lambda)} \int_{\Omega} \left(|Dv|^2 + av^2 \right) dx,$$
$$\int_{\Omega} b v^{p+1} dx \le \|b\|_{L^{\infty}(\Omega)} \|v\|_{L^{p+1}(\Omega)}^{p+1} \le C \|v\|_{H_0^1(\Omega)}^{p+1}$$

と更に評価が進む。これらと (4.34) より、 $I_{\lambda}(v)$ は

$$I_{\lambda}(v) = J_1 - J_2 \ge C \int_{\Omega} (|Dv|^2 + av^2) dx - \epsilon C' \int_{\Omega} (|Dv|^2 + av^2) dx - C'' \|v\|_{H_0^1(\Omega)}^{p+1}$$

と下から評価される。必要ならば $\epsilon > 0$ を小さくすれば、次式が得られる。

$$I_{\lambda}(v) \ge C \int_{\Omega} \left(|Dv|^2 + av^2 \right) dx - C' \|v\|_{H_0^1(\Omega)}^{p+1} \le C \|v\|_{\kappa}^p - C' \|v\|_{H_0^1(\Omega)}^{p+1}.$$

 $\|\cdot\|_{\kappa}$ と $\|\cdot\|_{H^1_0(\Omega)}$ が同値なノルムであることを考慮すると、

$$I_{\lambda} \geq C'' |v|_{H_0^1(\Omega)}^2 - C' |v|_{H_0^1(\Omega)}^{p+1}$$

と導かれる。C'',C'>0 は v によらない。2< p+1 であるから、 $\delta>0$ を十分小さくとれば、 $\rho=C''\delta^2-C'\delta^{p+1}>0$ とできる。つまり、(4.33) が成立する。

命題 4.4 を証明する最後の準備として、次の補題を証明する。

補題 4.11.

証明.

(PS) 条件を課さない峠の定理を用いて、命題 4.4 を証明する。

証明 (命題 4.4).

5 second solution **の存在** 2 — **命題** 4.5 **の証明**

本節では、命題 4.5 を証明する。本節を通し、定理 1.3 の仮定をおく。必要ならば Ω を平行移動することにより、 $x_0=0$ としてよい。以降 $x_0=0$ とする。

5.1 タレンティー関数の考察

本小節では、命題 4.5 の証明の鍵となるタレンティー関数を考察する。命題 4.5 の v_0 は、タレンティー関数を加工することにより得られる。そこで本小節では、次小節で必要となる具体的計算を実行する。

まずは、タレンティー関数を定義する。

定義 5.1. タレンティー関数 $U: \mathbb{R}^N \to \mathbb{R}$ を

$$U(x) = \frac{1}{(1+|x|^2)^{(N-2)/2}}$$

と定める。

U について、以下の事実が知られている。

補題 5.2 ([Tal76]). タレンティー関数 U について、次式が成立する。

$$S = \frac{\|DU\|_{L^2(\mathbb{R}^N)}^2}{\|U\|_{L^{p+1}(\mathbb{R}^N)}^2}.$$
(5.1)

すなわち、(4.6) の右辺の下限は、 $V = \mathbb{R}^N$ のとき、U により達成される。

記号 5.3. Ω 上の cut off function η を、 $\eta \in C_c^{\infty}(\Omega)$ 、 $0 \le \eta \le 1$ in Ω 、 $\{|x| \le r_0\}$ 上 $\eta \equiv 1$ 、 $\{|x| \ge 2r_0\}$ 上 $\eta \equiv 0$ となるものとする。 $\epsilon > 0$ とする。 Ω 上の関数 $u_{\epsilon}, v_{\epsilon}$ を、

$$u_{\epsilon}(x) = \frac{\eta(x)}{(\epsilon + |x|^2)^{(N-2)/2}},$$
 (5.2)

$$v_{\epsilon}(x) = \frac{u_{\epsilon}(x)}{\left\|b^{1/(p+1)}u_{\epsilon}\right\|_{L^{p+1}(\Omega)}}$$

$$(5.3)$$

と定める。

さて、[BN83] の p. 444 より、次式が成立する。

$$||Du_{\epsilon}||_{L^{2}(\Omega)}^{2} = ||DU||_{L^{2}(\mathbb{R}^{N})}^{2} \epsilon^{-(N-2)/2} + O(1).$$
(5.4)

次に、 $\|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}^{2}$ を考察する。

$$\int_{\Omega} b u_{\epsilon}^{p+1} dx = \int_{\Omega} \frac{b(x) \eta(x)^{p+1}}{(\epsilon + |x|^2)^N} dx = O(1) + \int_{\{|x| < r_0\}} \frac{b(x)}{(\epsilon + |x|^2)^N} dx.$$

最左辺の積分をIとおく。ここでqとNの大小により場合分けをする。

q < N のとき:変数変換により、

$$I = \int_{\{|x| < r_0\}} \frac{M_1 - M_2 |x|^q}{(\epsilon + |x|^2)^N} dx = \frac{M_1}{\epsilon^{N/2}} \int_{\{|x| < r_0/\sqrt{\epsilon}\}} \frac{1}{(1 + |x|^2)^N} dx - \frac{M_2}{\epsilon^{(N-q)/2}} \int_{\{|x| < r_0/\sqrt{\epsilon}\}} \frac{|x|^q}{(1 + |x|^2)^N} dx$$

である。第1項の積分を $I_1(\epsilon)$ 、第2項の積分を $I_2(\epsilon)$ とおく。 $\epsilon \searrow 0$ のとき、 $I_1(\epsilon) \to \|U\|_{L^{p+1}(\Omega)}^{p+1}$ である。q < N であるから、 $I_2(\epsilon)$ は有限の値に収束する。

$$\left\|b^{1/(p+1)}u_{\epsilon}\right\|_{L^{p+1}(\Omega)}^{2} = \frac{M_{1}^{2/(p+1)}}{\epsilon^{(N-2)/2}}I_{1}(\epsilon)^{1/(p+1)} - \frac{M_{2}^{2/(p+1)}}{\epsilon^{(N-2)(N-q)/2N}}I_{2}(\epsilon)^{1/(p+1)} + O(1)$$

であるから、(5.4) および (5.1) より、

$$\lim_{\epsilon \searrow 0} \frac{\|Du_{\epsilon}\|_{L^{2}(\Omega)}^{2}}{\|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}^{2}} = \frac{\|DU\|_{L^{2}(\mathbb{R}^{N})}^{2}}{M_{1}^{2/(p+1)}\|U\|_{L^{p+1}(\mathbb{R}^{N})}^{2}} = \frac{S}{M_{1}^{2/(p+1)}}$$
(5.5)

と計算される。すなわち、次式がしたがう。

$$\|v_{\epsilon}\|^2 = \|Dv_{\epsilon}\|_{L^2(\Omega)}^2 = \frac{S}{M^{2/(p+1)}} + O(\epsilon^{(N-2)/2}).$$
 (5.6)

q = N のとき:極座標変換をすると、次式が得られる。

$$\int_{\{|x| \le r_0\}} \frac{|x|^q}{(\epsilon + |x|^2)^N} dx = \operatorname{vol}(S^{N-1}) \int_0^{r_0} \frac{r^N}{(\epsilon + r^2)^N} r^{N-1} dr = O(|\log \epsilon|).$$

ここで $\operatorname{vol}(S^{N-1})$ は半径 1 の (N-1) 次元球面の体積である。ゆえに、(5.5)、(5.6) が同様にしたがう。

q > N のとき:

$$\int_{\{|x| < r_0\}} \frac{|x|^q}{(\epsilon + |x|^2)^N} dx < \int_{\{|x| < r_0\}} |x|^{q - 2N} dx < \infty$$

であるから、最右辺はO(1)である。ゆえに、やはり(5.5)、(5.6)がしたがう。いずれの場合でも、

$$\left\| b^{1/(p+1)} u_{\epsilon} \right\|_{L^{p+1}(\Omega)}^{2} = O(\epsilon^{-(N-2)/2})$$
(5.7)

である。

次に、

$$\int_{\Omega} au_{\epsilon}^2 dx = O(1) + \int_{\{|x| < r_0\}} \frac{m_1 + m_2 |x|^{q'}}{(\epsilon + |x|^2)^{N-2}} dx$$

を考察する。 I_1, I_2 を

$$I_1 = \int_{\{|x| < r_0\}} \frac{1}{(\epsilon + |x|^2)^{N-2}} dx,$$

$$I_2 = \int_{\{|x| < r_0\}} \frac{|x|^{q'}}{(\epsilon + |x|^2)^{N-2}} dx$$

とおく。[BN83] の p. 444 より、次式が成立する。

$$I_1 = \begin{cases} O(\epsilon^{-(N-4)/2}) & (n \ge 5), \\ O(|\log \epsilon|) & (n = 4), \\ O(1) & (n = 3). \end{cases}$$

 I_2 を、N と q'+4 の大小で場合分けして計算する。

N > q' + 4 のとき:変数変換により、

$$I_2 = \frac{1}{\epsilon^{(N-q'-4)/2}} \int_{\{|x| < r_0/\sqrt{\epsilon}\}} \frac{|x|^{q'}}{(1+|x|^2)^{N-2}} dx$$

である。右辺の積分を $I(\epsilon)$ とおく。 N>q'+4 であるから、 $\epsilon \searrow 0$ のとき、 $I(\epsilon)$ は収束する。よって、 $I_1=O(\epsilon^{-(N-q'-4)/2})$ である。

N = q' + 4 のとき:極座標変換により、

$$I_2 = \operatorname{vol}(S^{N-1}) \int_0^{r_0} \frac{|x|^{N-4}}{(\epsilon + |x|^2)^{N-2}} r^{N-1} dr = O(|\log \epsilon|)$$

と計算される。

N < q' + 4 のとき:

$$I_2 < \int_{\{|x| < r_0\}} |x|^{q' - 2(N - 2)} dx < \infty$$

であるから、 $I_2 = O(1)$ である。

よって、 $\epsilon \setminus 0$ のときの I_2 の挙動は次の通りにまとめられる。

$$I_2 = \begin{cases} O(\epsilon^{-(N-q'-4)/2}) & (N > q'+4), \\ O(|\log \epsilon|) & (N = q'+4), \\ O(1) & (N < q'+4). \end{cases}$$

以上の結果と、(5.7)より、以下が成立する。

$$\begin{cases}
\int_{\Omega} av_{\epsilon}^{2} dx = O(1) + m_{1} I_{1}' + m_{2} I_{2}', \\
I_{1}' = \begin{cases}
O(\epsilon) & (N \ge 5), \\
O(\epsilon | \log \epsilon|) & (N = 4), \\
O(\epsilon^{1/2}) & (N = 3),
\end{cases} \\
I_{2}' = \begin{cases}
O(\epsilon^{1+q'/2}) & (N > q' + 4), \\
O(\epsilon^{(N-2)/2} | \log \epsilon|) & (N = q' + 4), \\
O(\epsilon^{(N-2)/2}) & (N < q' + 4).
\end{cases}$$
(5.8)

5.2 命題 4.5 の証明

本小節では、補題を積み重ね、命題 4.5 に証明を与える。

補題 5.4. $au_{\epsilon} = \|v_{\epsilon}\|^{2/(p-1)}$ とする。このとき、次式が成立する。

$$\lim_{\epsilon \searrow 0} I_{\lambda}(\tau_{\epsilon} v_{\epsilon}) = \frac{1}{N M_1^{(N-2)/2}} S^{N/2}. \tag{5.9}$$

証明. (5.3) より、

$$\int_{\Omega} b v_{\epsilon}^{p+1} dx = 1$$

であるから、 $t \ge 0$ に対し、次式が得られる。

$$I_{\lambda}(tv_{\epsilon}) = \frac{1}{2}t^{2} \|v_{\epsilon}\|^{2} - \frac{1}{p+1}t^{p+1} - \int_{\Omega} H(tv_{\epsilon}, \underline{u}_{\lambda}) dx.$$

したがって、次式が成立する。

$$I_{\lambda}(\tau_{\epsilon}v_{\epsilon}) = \frac{1}{N} \left(\left\| v_{\epsilon} \right\|^{2} \right)^{N/2} - \int_{\Omega} H(\tau_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda}) dx.$$

(5.6) より、以下がしたがう。

$$\lim_{\epsilon \searrow 0} \tau_{\epsilon} = \frac{S^{1/(p-1)}}{M_1^{2/(p+1)(p-1)}},$$

$$\lim_{\epsilon \searrow 0} \frac{1}{N} \left(\|v_{\epsilon}\|^2 \right)^{N/2} = \frac{1}{N M_1^{(N-2)/2}} S^{N/2}.$$

 $\epsilon \setminus 0$ のとき、 $\tau_{\epsilon}v_{\epsilon} \to 0$ a.e. in Ω である。ゆえに、補題 4.7 より、次式が成立する。

$$\lim_{\epsilon \searrow 0} \int_{\Omega} H(\tau_{\epsilon} v_{\epsilon}, \underline{u}_{\lambda}) dx = 0.$$

以上より、(5.9)を得る。

補題 5.5. $\sup_{t>0} I_{\lambda}(tv_{\epsilon})$ を達成する t>0 が存在する。

証明. 補題 4.11 より、 $t \to \infty$ のとき、 $I_{\lambda}(tv_{\epsilon}) \to -\infty$ となる。したがって、ある K > 0 が存在し、K < t においては、 $I_{\lambda}(tv_{\epsilon}) < 0$ となる。また、 $I_{\lambda}(0) = 0$ である。ゆえに、 $\sup_{t>0} I_{\lambda}(tv_{\epsilon}) = \sup_{t \in [0,K]} I_{\lambda}(tv_{\epsilon})$ となる。 $I_{\lambda}(tv_{\epsilon})$ は t についての連続関数であるから、 $\sup_{t>0} I_{\lambda}(tv_{\epsilon})$ を達成する t > 0 が存在する。

記号 5.6. 補題 5.5 の t を t_{ϵ} とかく。 $t_{\epsilon} > 0$ であり、次式が成立する。

$$I_{\lambda}(t_{\epsilon}v_{\epsilon}) = \sup_{t>0} I_{\lambda}(tv_{\epsilon}). \tag{5.10}$$

補題 5.7. $\epsilon_0 > 0$ と C > 0 が存在し、 $0 < \epsilon < \epsilon_0$ に対し、

$$\int_{\Omega} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda}) dx \ge C\epsilon^{(N-2)/4} \tag{5.11}$$

が成立する。

証明. まず、次式を背理法を用いて証明する。

$$\liminf_{\epsilon \searrow 0} t_{\epsilon} > 0.$$
(5.12)

(5.12) を否定し、 $\liminf_{\epsilon \searrow 0} t_{\epsilon} = 0$ であることを仮定する。 $s,t \geq 0$ に対し、 $G(s,t) \geq 0$ である。そこで、

$$I_{\lambda}(t_{\epsilon}v_{\epsilon}) = \frac{1}{2}t_{\epsilon}^{2} \|v_{\epsilon}\|^{2} - \int_{\Omega} G(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda}) dx \le \frac{1}{2}t_{\epsilon}^{2} \|v_{\epsilon}\|^{2}$$

$$(5.13)$$

において、 $\epsilon \setminus 0$ における下極限をとると、

$$\liminf_{\epsilon \to 0} I_{\lambda}(t_{\epsilon}v_{\epsilon}) \le 0 \tag{5.14}$$

がしたがう。一方で、(5.10) より $I_{\lambda}(t_{\epsilon}v_{\epsilon}) \geq I(\tau_{\epsilon}v_{\epsilon})$ であるから、補題 5.4 より、

$$\liminf_{\epsilon \searrow 0} I_{\lambda}(t_{\epsilon}v_{\epsilon}) \ge \lim_{\epsilon \searrow 0} I_{\lambda}(\tau_{\epsilon}v_{\epsilon}) = \frac{1}{NM_{1}^{(N-2)/2}} S^{N/2} > 0.$$
 (5.15)

(5.14) と (5.15) は同時に成立しない。よって、背理法により、(5.12) がしたがう。

さて、(5.12) と (5.7) より、 $\epsilon_0 > 0$ 、C > 0 が存在し、 $0 < \epsilon < \epsilon_0$ のとき、 $|x| < r_0$ に対し、

$$t_{\epsilon}v_{\epsilon}(x) = t_{\epsilon} \frac{\eta(x)}{(\epsilon + |x|^2)^{(N-2)/2} \|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}} \ge \frac{C\epsilon^{(N-2)/4}}{(\epsilon + |x|^2)^{(N-2)/2}}$$
(5.16)

が成立する。必要ならば $\epsilon_0>0$ を小さくとりなおし、 $\sqrt{\epsilon_0}< r_0$ が成立するとして良い。すると、 $|x|<\sqrt{\epsilon}$ に対し、

$$t_{\epsilon}v_{\epsilon}(x) \ge C_0 \epsilon^{-(N-2)/2} \tag{5.17}$$

となる。 $C_0 > 0$ は ϵ によらない。この C_0 について、

$$t_0 = C_0 \epsilon_0^{-(N-2)/2} \tag{5.18}$$

と定める。 $\underline{u}_{\lambda}>0$ in Ω であるから、 $\{|x|\leq\sqrt{\epsilon_0}\}$ における \underline{u}_{λ} の最小値より小さい正の数 s_0 が存在する。すなわち、 $|x|<\sqrt{\epsilon_0}$ に対し、

$$\underline{u}_{\lambda}(x) > s_0 \tag{5.19}$$

となる。

ここで、 $x \in \Omega$ 、 $t \ge t_0$ 、 $s \ge s_0$ に対し、

$$H'(t, s, x) \ge Cb(x)t^p \tag{5.20}$$

を成り立たせる t, s, x によらない定数 C > 0 が存在することを示す。 $s, t \ge 0$ に対し、

$$H'(t, s, x) = b(x) \left(\frac{1}{n+1} (t+s)^{p+1} - \frac{1}{n+1} t^{p+1} - \frac{1}{n+1} s^{p+1} - s^p t \right)$$

$$H'_s(t, s, x) = b(x) ((t+s)^p - s^p - ps^{p-1}t)$$

である。右辺はテイラーの定理より、 $0 < \theta < 1$ を用いて $p(p-1)(s+\theta t)^{p-2}t^2/2$ と表される。これは非負であるから、 $H'_s(t,s,x) \ge 0$ である。すなわち、H' は s についての増加関数である。したがって、 $s \ge s_0$ 、 $t \ge 0$ に対し、

$$H'(t, s, x) \ge H'(t, s_0, x)$$
 (5.21)

である。また、 $s \ge 0$ 、 $t \ge 0$ に対し、

$$H'(t, s, x) \ge H'(t, 0, x) = 0 \tag{5.22}$$

もわかる。ここでテイラーの定理より、

$$\frac{1}{n+1}(t+s_0)^{p+1} - \frac{1}{n+1}t^{p+1} = (t+\theta s_0)^p s_0$$

をみたす $0 < \theta < 1$ が存在する。ゆえに $t \ge t_0$ に対し、以下がしたがう。

$$H'(t, s_0, x) \ge b(x) \left((t + \theta s_0)^p s_0 - \frac{1}{p+1} s^{p+1} - s^p t \right)$$

$$\ge b(x) \left(t^p s_0 - \frac{1}{p+1} s^{p+1} - s^p t \right)$$

$$= t^p b(x) \left(s_0 - \frac{1}{p+1} \frac{1}{t^p} - s^p \frac{1}{t^{p-1}} \right)$$

$$\ge t^p b(x) \left(s_0 - \frac{1}{p+1} \frac{1}{t_0^p} - s^p \frac{1}{t_0^{p-1}} \right).$$

ここで最右辺の括弧の中が正となるよう、必要ならば $\epsilon_0>0$ を小さくとりなおす。 s_0 と C_0 は ϵ_0 によっているが、 $|x|<\sqrt{\epsilon_0}$ に対して (5.17) および (5.19) を成り立たせるために s_0 と C_0 は変更する必要がないことに注意されたい。(5.18) により、最右辺の括弧の中が正となるよう、 t_0 を大きくすることができる。以上により、 $t\geq t_0$ に対し、

$$H'(t, s_0, x) \ge Cb(x)t^p \tag{5.23}$$

が成立する。(5.21) と (5.23) より、 $t \ge t_0$ 、 $s \ge s_0$ に対し、(5.20) がしたがう。 (5.22)、(5.20)、(5.16) を順に使うと、 $0 < \epsilon < \epsilon_0$ に対し、以下が成立する。

$$\int_{\Omega} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda}) dx \ge \int_{\{|x| \le \sqrt{\epsilon}\}} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda}) dx$$

$$\ge C \int_{\{|x| \le \sqrt{\epsilon}\}} b(x) (t_{\epsilon}v_{\epsilon})^{p} dx$$

$$\ge C \int_{\{|x| \le \sqrt{\epsilon}\}} (M_{1} + M_{2}(\sqrt{\epsilon})^{q}) \left(\frac{\epsilon^{(N-2)/4}}{(\epsilon + |x|^{2})^{(N-2)/2}}\right)^{p} dx$$

$$\ge C \int_{\{|x| \le \sqrt{\epsilon}\}} \left(\frac{\epsilon^{(N-2)/4}}{(\epsilon + |x|^{2})^{(N-2)/2}}\right)^{p} dx$$

$$= C\epsilon^{(N-2)/4} \int_{\{|y| \le 1\}} \frac{1}{(1 + |x|^{2})^{(N+2)/2}} dx$$

$$\ge C\epsilon^{(N-2)/4}.$$

C>0 は ϵ によらない。所望の (5.11) が得られた。

証明 (命題 4.5). (5.10) より、以下が成立する。

$$\begin{split} \sup_{t>0} I_{\lambda}(tv_{\epsilon}) &= I_{\lambda}(t_{\epsilon}v_{\epsilon}) \\ &= \frac{1}{2}t_{\epsilon}^{2} \left\|v_{\epsilon}\right\|^{2} - \frac{1}{p+1}t_{\epsilon}^{p} - \int_{\Omega} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda})dx + \int_{\Omega} av_{\epsilon}^{2}dx \\ &\leq \sup_{t>0} \left(\frac{1}{2}t^{2} \left\|v_{\epsilon}\right\|^{2} - \frac{1}{p+1}t^{p+1}\right) - \int_{\Omega} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda})dx + \int_{\Omega} av_{\epsilon}^{2}dx \\ &= \frac{1}{N} \left(\left\|v_{\epsilon}\right\|^{2}\right)^{N/2} - \int_{\Omega} H'(t_{\epsilon}v_{\epsilon}, \underline{u}_{\lambda})dx + \int_{\Omega} av_{\epsilon}^{2}dx. \end{split}$$

ここで、最後の変形では、t>0の関数

$$\alpha(t) = \frac{1}{2}t^2 \|v_{\epsilon}\|^2 - \frac{1}{p+1}t^{p+1}$$

が、 $t = \|v_{\epsilon}\|^{2/(p-1)}$ において最大値をとることに注意した。(5.6)、(5.8)、補題 5.4、補題 5.7 により、 $\epsilon_0 > 0$ 、C, C' > 0 が存在し、 $0 < \epsilon < \epsilon_0$ に対し、

$$\sup_{t>0} I_{\lambda}(tv_{\epsilon}) \le \frac{1}{NM_1^{(N-2)/2}} S^{N/2} + \left(C\epsilon^{(N-2)/2} - C'\epsilon^{(N-2)/4} + m_1 I_1' + m_2 I_2' \right)$$
(5.24)

が成立する。ここで I_1' 、 I_2' は、(5.8) のものである。以下の条件を考える。

$$(5.24)$$
 の右辺の括弧の中が負となる $\epsilon > 0$ が存在する。 (5.25)

(5.25) が成立するならば、その ϵ を用いて $v_0=v_\epsilon$ とすると、 $v_0\geq 0$ in Ω 、 $v_0\not\equiv 0$ 、および (4.7) が成立する。すなわち、(5.25) は、命題 4.5 の帰結の十分条件である。以下、 m_1,m_2 の正負で場合分けして検証する。すべての $N\geq 3$ 、q'>0 に対し、 $\epsilon\searrow 0$ のとき $I_1'\gg I_2'$ であることに注意されたい。

- $(\mathrm{i}) \quad \underline{m_1 < 0 \text{ obs}} : \epsilon \searrow 0 \text{ obs} \ \epsilon^{(N-2)/2} \ll \epsilon^{(N-2)/4} \text{ volumes}, \ \mathrm{three} \ \mathrm{three} \ \mathrm{obs}, \ \mathrm{three} \ \mathrm{three} \ \mathrm{obs}, \ \mathrm{three} \ \mathrm{obs}, \ \mathrm{three} \ \mathrm{obs}, \ \mathrm{three} \ \mathrm{obs}, \$
- (ii) $\underline{m_1>0}$ のとき $I_1'\ll\epsilon^{(N-2)/4}$ となれば、(5.25) はみたされる。(5.8) より、N=3,4,5 であれば (5.25) はみたされる。

- (iii) $m_1 = 0$ 、 $m_2 < 0$ のとき:(i) と同様に、すべての $N \ge 3$ について、(5.25) はみたされる。
- (iv) $\underline{m_1=0,\ m_2>0\ old\ black}:\epsilon\searrow 0\ old\ black I_2'\ll \epsilon^{(N-2)/4}\ black blac$

$$1+\frac{q'}{2}>\frac{N-2}{4}$$

である。これを変形して、N < 2q' + 6 を得る。以上により、 $3 \le N < 2q' + 6$ のとき、(5.25) はみたされる。

証明 (定理 1.3). 命題 4.4 と命題 4.5 より成立する。

6 N > 6

7 N>6 かつ $\lambda>0$ が小さい場合

参考文献

- [AR73] Antonio Ambrosetti and Paul H. Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, Vol. 14, pp. 349–381, 1973.
- [BL83] Haïm Brézis and Elliott Lieb. A relation between pointwise convergence of functions and convergence of functionals. *Proc. Amer. Math. Soc.*, Vol. 88, No. 3, pp. 486–490, 1983.
- [BN83] Haïm Brézis and Louis Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. *Comm. Pure Appl. Math.*, Vol. 36, No. 4, pp. 437–477, 1983.
- [NS07] Yūki Naito and Tokushi Sato. Positive solutions for semilinear elliptic equations with singular forcing terms. J. Differential Equations, Vol. 235, No. 2, pp. 439–483, 2007.
- [NS12] Yūki Naito and Tokushi Sato. Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent. Ann. Mat. Pura Appl. (4), Vol. 191, No. 1, pp. 25–51, 2012.
- [Tal76] Giorgio Talenti. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), Vol. 110, pp. 353–372, 1976.
- [Wil96] Michel Willem. Minimax theorems. Progress in Nonlinear Differential Equations and their Applications,24. Birkhäuser Boston, Inc., Boston, MA, 1996.
- [田中 08] 田中和永. 変分問題入門 非線形楕円型方程式とハミルトン系. 岩波書店, 2008.

謝辞

本論文を書く際に、宮本 安人 准教授から的確なご指摘を頂きました。ここに感謝の意を表します。