ACE Models with the NLSY

William Howard Beasley (Howard Live Oak LLC, Norman)
Joseph Lee Rodgers (University of Oklahoma, Norman)
Kelly Meredith (University of Oklahoma, Norman)
David Bard (University of Oklahoma Health Sciences Center, OKC)

May 20, 2012

Abstract

We describe how to use the $\mathsf{NlsyLinks}$ package to examine various biometric models, using the $\mathsf{NLSY79}.$

Contents

1	Terminology	
2	Example: DF analysis with a Simple Outcome for Gen2 Subjects, Using a Package Variable	2
3	Example: DF analysis with a univariate outcome from a Gen2 Extract	5
4	Example: Multiple Group SEM of a Simple Outcome for Gen2 Subjects	6
A	Appendix: Creating and Saving R Scripts	8
В	Appendix: Installing the NlsyLinks Package	8
\mathbf{C}	Appendix: References	9
\mathbf{D}	Notes	9

//Note to team: Not only am I hoping to capitalize on all researchers initially interested in NLSY BG studies, I'm also hoping to attract a small slice of those that aren't initially interested in BG. If the vignette or articles are good, they should rank well among search engines for terms like "NLSY and R". Maybe some researchers using those terms (and not initially interested in BG) could stumble on the vignettes. If the examples are clear and are easy to run quickly, they may get interested in BG. Therefore, I'd like at least a few paragraphs explaining what BG is. This section is tentatively located in the appendix.

1 Terminology

This package considers both Gen1 and Gen2 subjects. **Gen1** refers to subjects in the original NLSY79 sample (http://www.bls.gov/nls/nlsy79.htm). **Gen2** subjects are the biological offspring of the Gen1 females -i.e., those in the NLSY79 Children and Young Adults sample (http://www.bls.gov/nls/nlsy79ch.htm). The NLSY97 is a third dataset that can be used for behavior genetic research (http://www.bls.gov/nls/nlsy97.htm), although this vignette focuses on the two generations in the NLSY79.

Standard terminology is to refer Gen2 subjects as 'children' when they are younger than age 15 (NSLY79-C), and as 'young adults' when they are 15 and older (NLSY79-YA); though they are the same respon-

dents, different funding mechanisms and different survey items necessitate the distinction. This cohort is sometimes abbreviated as 'NLSY79-C', 'NLSY79C', 'NLSY-C' or 'NLSYC'.

The **SubjectTag** variable uniquely identify NLSY79 subjects when a dataset contains both generations. For Gen2 subjects, the **SubjectTag** is identical to their CID (*i.e.*, C00001.00 -the ID assigned in the NLSY79-Children files). However for Gen1 subjects, the **SubjectTag** is their CaseID (*i.e.*, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 becomes 4300. The **SubjectTags** of her four children remain 4301, 4302, 4303, and 4304.

The **expected coefficient of relatedness** of a pair of subjects is typically represented by the variable R. Examples are: Monozygotic twins have R=1; dizygotic twins have R=0.5; full siblings (*i.e.*, those who share both biological parents) have R=0.5; half-siblings (*i.e.*, those who share exactly one biological parent) have R=0.25; adopted siblings have R=0.0. Other possibilities exist too. The font (and hopefully their context) should distinguish the variable R from the software R.

A subject's ExtendedID indicates their extended family. Two subjects will be in the same extended family if either: [1] they are Gen1 housemates, [2] they are Gen2 siblings, [3] they are Gen2 cousins (*i.e.*, they have mothers who are Gen1 sisters in the NLSY79), [4] they are mother and child (in Gen1 and Gen2, respectively), or [5] they are (aunt|uncle) and (niece|nephew) (in Gen1 and Gen2, respectively).

An **outcome variable** is directly relevant to the applied researcher; these might represent constructs like height, IQ, and income. A **plumbing variable** is necessary to manage BG datasets; examples are R, a subject's ID, and the date of a subject's last survey.

An ACE model is the basic biometrical model used by Behavior Genetic researchers, where the genetic and environmental effects are assumed to be additive. The three primary variance components are (1) the proportion of variability due to a shared genetic influence (typically represented as a^2 , or sometimes h^2), (2) the proportion of variability due to shared common environmental influence (typically c^2), and (3) the proportion of variability due to unexplained/residual/error influence (typically e^2).

The variables are scaled so that they account for all observed variability in the outcome variable; specifically: $a^2+c^2+e^2=1$. Using appropriate designs that can logically distinguish these different components (under carefully specified assumptions), the basic biometrical modeling strategy is to estimate the magnitude of a^2 , c^2 , and e^2 within the context of a particular model. For gentle introductions to Behavior Genetic research, we recommend Plomin (1990) and Carey (2003). For more in-depth ACE model-fitting strategies, we recommend Neale & Cardon (1992). //This paragraph may get moved to the yet-to-bewritten introduction that precedes the Terminology section.

The NLS Investigator (http://www.nlsinfo.org/investigator/) is the best way to obtain the NLSY79 and NLSY97 datasets. See our vignette dedicated to the NLS Investigator by typing vignette("NlsInvestigator") or by visiting http://cran.r-project.org/web/packages/NlsyLinks/.

Before starting the real examples, first verify that the NlsyLinks package is installed correctly. If not, refer to Appendix B.

```
> any(.packages(all.available=TRUE) == "NlsyLinks") #Should evaluate to TRUE.
[1] TRUE
```

- > require(NlsyLinks) #Load the package into the current session.
- > ?NlsyLinks #Open the package's documentation manual.

2 Example: DF analysis with a Simple Outcome for Gen2 Subjects, Using a Package Variable

The vignette's first example uses a simple statistical model and all available Gen2 subjects. The CreatePairLinksDoubleEntered function will create a data frame where each represents one pair of siblings, respective of order (*i.e.*, there is a row for Subjects 201 and 202, and a second row for Subjects 202 and 201). This function examines the subjects' IDs and determines who is related to whom (and by how much). By default, each row it produces has at least six values/columns: (i) ID for the older member of

the kinship pair: Subject1Tag, (ii) ID for the younger member: Subject2Tag, (iii) ID for their extended family: ExtendedID, (iv) their estimated coefficient of genetic relatedness: R, (v and beyond) outcome values for the older member; (vi and beyond) outcome values for the younger member.

A DeFries-Fulker (**DF**) Analysis uses linear regression to estimate the a^2 , c^2 , and e^2 of a univariate biometric system. The interpretations of the DF analysis can be found in Rodgers & Kohler (2005) and Rodgers, Rowe, & Li (1999). The steps are:

- 1. Use the NLS Investigator to select and download a Gen2 dataset.
- 2. Open R and create a new script (see Appendix A) and load the NlsyLinks package. If you haven't done so, first install the NlsyLinks package (see Appendix B).
- 3. Within the R script, load the linking dataset. Then select only Gen2 subjects. The 'Pair' version of the linking dataset is essentially a sparse matrix.
- 4. Load and assign the ExtraOutcomes79 dataset.
- 5. Specify the outcome variable name and filter out all subjects who have a negative value in this variable. The NLSY typically uses negative values to indicate different types of missingness (see 'Further Information' below).
- 6. Create a double-entered file by calling the CreatePairLinksDoubleEntered function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).
- 7. Use DeFriesFulkerMethod3 function (i.e., general linear model) to estimate the coefficients of the DF model.

```
> ### R Code for Example DF analysis with a simple outcome and Gen2 subjects
```

- > #Step 2: Load the package containing the linking routines.
- > require(NlsyLinks)
- > #
- > #Step 3: Load the LINKING dataset and filter for the Gen2 subjects
- > data(Links79Pair)
- > dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")</pre>
- > summary(dsLinking) #Notice there are 11,075 records.

ExtendedID	Subject1Tag	Subject2Tag	R
Min. : 2	Min. : 201	Min. : 202	Min. :0.250
1st Qu.: 3159	1st Qu.: 315901	1st Qu.: 315902	1st Qu.:0.250
Median : 6116	Median : 611901	Median : 611902	Median :0.500
Mean : 5937	Mean : 593989	Mean : 593991	Mean :0.417
3rd Qu.: 8511	3rd Qu.: 851103	3rd Qu.: 851104	3rd Qu.:0.500
Max. :12673	Max. :1267301	Max. :1267302	Max. :1.000
Relationshi	nPath		

RelationshipPath

Gen2Siblings:11075

> #

- > #Step 4: Load the OUTCOMES dataset and the linking dataset, and then examine the summary.
- > data(ExtraOutcomes79)
- > dsOutcomes <- ExtraOutcomes79 #'ds' stands for 'DataSet'
- > summary(dsOutcomes)

SubjectTag	SubjectID	Generation	MathStandardized
Min. : 201	Min. : 201	Min. :2	Min. : 65.00
1st Qu.: 310302	1st Qu.: 310302	1st Qu.:2	1st Qu.: 91.00
Median : 604607	Median : 604607	Median :2	Median : 100.00
Mean : 601313	Mean : 601313	Mean :2	Mean : 99.97
3rd Qu.: 876203	3rd Qu.: 876203	3rd Qu.:2	3rd Qu.: 110.00
Max. :1267501	Max. :1267501	Max. :2	Max. : 135.00
			NA's :2353.00
Waight	WaightEarlgalOTaOE	Waight Ctanda	rdirod

Weight WeightForAge19To25 WeightStandardized Min.: 75.0 Min.: 75.0 Min.: -2.768e+00

```
1st Qu.: 130.0
                 1st Qu.: 140.0
                                     1st Qu.:-7.059e-01
 Median : 155.0
                                     Median :-2.207e-01
                 Median : 165.0
      : 161.9
Mean
                  Mean
                       : 172.1
                                     Mean :-4.252e-11
 3rd Qu.: 186.0
                  3rd Qu.: 195.0
                                     3rd Qu.: 4.739e-01
Max.
       : 485.0
                  Max.
                         : 485.0
                                     Max.
                                            : 7.178e+00
NA's
       :3475.0
                 NA's
                        :6380.0
                                    NA's
                                           : 3.475e+03
WeightStandardizedForAge19To25
        :-2.772e+00
Min.
 1st Qu.:-6.879e-01
Median :-1.969e-01
Mean
       :-4.086e-11
 3rd Qu.: 4.905e-01
Max.
       : 7.489e+00
NA's
       : 6.380e+03
> #
> #Step 5: This step isn't necessary for this example, because Kelly Meredith already
      groomed the values. But if not if the negative values
      (which represent NLSY missing or skip patterns) still exist, then:
> dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA
> #Step 6: Create the double entered dataset.
> dsDouble <- CreatePairLinksDoubleEntered(</pre>
   outcomeDataset=dsOutcomes,
   linksPairDataset=dsLinking,
   outcomeNames=c('MathStandardized')
 )
> summary(dsDouble) #Notice there are 22,150=(2*11,075) records.
                                       {\tt ExtendedID}
                                                            R
 Subject1Tag
                    Subject2Tag
             201
                               201
                                                            :0.250
Min. :
                   Min. :
                                     Min. : 2
                                                     Min.
 1st Qu.: 315752
                   1st Qu.: 315752
                                     1st Qu.: 3158
                                                     1st Qu.:0.250
Median : 611901
                   Median : 611901
                                     Median: 6116
                                                     Median : 0.500
                                     Mean
                                            : 5937
Mean
       : 593990
                         : 593990
                   Mean
                                                     Mean
                                                             :0.417
 3rd Qu.: 851104
                                     3rd Qu.: 8511
                                                     3rd Qu.:0.500
                   3rd Qu.: 851104
 Max.
       :1267302
                          :1267302
                                            :12673
                   Max.
                                     Max.
    {\tt RelationshipPath~MathStandardized\_1~MathStandardized\_2}
 Gen2Siblings:22150
                      Min.
                            : 65.00
                                         Min. : 65.00
                      1st Qu.:
                                89.00
                                         1st Qu.:
                                                   89.00
                                98.00
                                         Median :
                      Median :
                                                   98.00
                      Mean : 98.29
                                         Mean : 98.29
                      3rd Qu.: 108.00
                                         3rd Qu.: 108.00
                      Max. : 135.00
                                         Max. : 135.00
                      NA's
                            :3791.00
                                         NA's
                                               :3791.00
> #
> #Step 7: Estimate the ACE components with a DF Analysis
> ace <- DeFriesFulkerMethod3(</pre>
     dataSet=dsDouble,
    oName_1="MathStandardized_1",
    oName_2="MathStandardized_2")
> ace
[1] "Results of ACE estimation: [show]"
                                          CaseCount
    ASquared
                 CSquared
                              ESquared
8.564351e-01 4.092574e-02 1.026392e-01 1.678400e+04
```

Further Information: If the different reasons of missingness are important, further work is necessary. For instance, some analyses that use item Y19940000 might need to distinguish a response of "Don't Know" (which is coded as -2) from "Missing" (which is coded as -7). For this vignette example, we'll assume it's safe to clump the responses together.

3 Example: DF analysis with a univariate outcome from a Gen2 Extract

The vignette's second example differs from the previous example in two ways. First, the outcome variables are read from a CSV (comma separated values file) that was downloaded from the NLS Investigator. Second, the DF analysis is called through the function AceUnivariate; this function is a wrapper around some simple ACE methods, and will help us smoothly transition to more techniques later in the vignette.

The steps are:

- 1. Use the NLS Investigator to select and download a Gen2 dataset. Select the variables 'length of gestation of child in weeks' (C03280.00), 'weight of child at birth in ounces' (C03286.00), and 'length of child at birth' (C03288.00), and then download the *.zip file to your local computer.
- 2. Open R and create a new script (see Appendix A) and load the NlsyLinks package.
- 3. Within the R script, load the linking dataset. Then select only Gen2 subjects.
- 4. Read the CSV into R as a data.frame using ReadCsvNlsy79Gen2.
- 5. Verify the desired outcome column exists, and rename it something meaningful to your project. It is important that the data.frame is reassigned (i.e., ds <- RenameNlsyColumn(...)). In this example, we rename column C0328800 to BirthWeightInOunces.
- 6. Filter out all subjects who have a negative BirthWeightInOunces value. See the 'Further Information' note in the previous example.
- 7. Create a double-entered file by calling the CreatePairLinksDoubleEntered function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).
- 8. Call the AceUnivariate function to estimate the coefficients.

```
> ### R Code for Example of a DF analysis with a simple outcome and Gen2 subjects
> #Step 2: Load the package containing the linking routines.
> require(NlsyLinks)
> #
> #Step 3: Load the linking dataset and filter for the Gen2 subjects
> data(Links79Pair)
> dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")
> #
> #Step 4: Load the outcomes dataset and the linking dataset, and then examine the summary.
> # Your path might be: filePathOutcomes <- 'C:/BGResearch/NlsExtracts/Gen2Birth.csv'
> filePathOutcomes <- file.path(path.package("NlsyLinks"), "extdata", "Gen2Birth.csv")
> dsOutcomes <- ReadCsvNlsy79Gen2(filePathOutcomes)
> summary(dsOutcomes)
```

SubjectTag	SubjectID	ExtendedID	Generation
Min. : 201	Min. : 201	Min. : 2	Min. :2
1st Qu.: 310302	1st Qu.: 310302	1st Qu.: 3103	1st Qu.:2
Median : 604607	Median : 604607	Median: 6045	Median :2
Mean : 601313	Mean : 601313	Mean : 6008	Mean :2
3rd Qu.: 876203	3rd Qu.: 876203	3rd Qu.: 8757	3rd Qu.:2
Max. :1267501	Max. :1267501	Max. :12675	Max. :2
SubjectTagOfMother	C0005300	C0005400	C0005700
Min. : 200	Min. :1.000	Min. :-3.000	Min. : -3
1st Qu.: 310300	1st Qu.:2.000	1st Qu.: 1.000	1st Qu.:1981
Median : 604600	Median :3.000	Median : 1.000	Median :1985
Mean : 601311	Mean :2.338	Mean : 1.489	Mean :1986
3rd Qu.: 876200	3rd Qu.:3.000	3rd Qu.: 2.000	3rd Qu.:1990
Max. :1267500	Max. :3.000	Max. : 2.000	Max. :2008
C0328000	C0328600	C0328800	

```
Min.
        :-7.00
                 Min. : -7.0
                                Min.
                                        :-7.00
 1st Qu.:37.00
                 1st Qu.: 99.0
                                 1st Qu.:18.00
 Median :39.00
                 Median :115.0
                                 Median :20.00
 Mean
       :33.51
                 Mean :103.9
                                 Mean
                                        :16.51
 3rd Qu.:39.00
                 3rd Qu.:128.0
                                  3rd Qu.:21.00
Max.
        :51.00
                Max.
                        :768.0
                                 Max.
                                         :48.00
> #Step 5: Verify and rename an existing column.
> VerifyColumnExists(dsOutcomes, "C0328800") #Should return '11' in this example.
> dsOutcomes <- RenameNlsyColumn(dsOutcomes, "C0328800", "BirthWeightInOunces")</pre>
> #Step 6: For this item, a negative value indicates the parent refused, didn't know,
      invalidly skipped, or was missing for some other reason.
      For our present purposes, we'll treat these responses equivalently.
> dsOutcomes$BirthWeightInOunces[dsOutcomes$BirthWeightInOunces < 0] <- NA
> #Step 7: Create the double entered dataset.
> dsDouble <- CreatePairLinksDoubleEntered(</pre>
   outcomeDataset=dsOutcomes,
   linksPairDataset=dsLinking,
   outcomeNames=c('BirthWeightInOunces')
 )
> #
> #Step 8: Estimate the ACE components with a DF Analysis
> ace <- AceUnivariate(</pre>
  method="DeFriesFulkerMethod3",
   dataSet=dsDouble,
   oName_1="BirthWeightInOunces_1",
   oName_2="BirthWeightInOunces_2"
 )
> ace
[1] "Results of ACE estimation: [show]"
    ASquared
                 CSquared
                              ESquared
                                           CaseCount
4.946710e-01 3.611714e-02 4.692118e-01 1.535600e+04
```

4 Example: Multiple Group SEM of a Simple Outcome for Gen2 Subjects

The example differs from the first one by the statistical mechanism used to estimate the components. The first example uses multiple regression to estimate the influence of the shared genetic and environmental factors, while this example uses structural equation modeling (SEM).

The CreatePairLinksSingleEntered function will create a data.frame where each row represents one unique pair of siblings, *irrespective of order*. Other than producing half the number of rows, this function is identical to CreatePairLinksDoubleEntered.

The steps are:

(Steps 1-5 proceed identically to the first example.)

6. Create a *single*-entered file by calling the CreatePairLinksSingleEntered function. At minimum, pass the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).

- 7. Declare the names of the manifest variables corresponding to the two members in each pair. Assuming the variable is called 'ZZZ' and the preceding steps have been followed, the variable 'ZZZ_1' corresponds to the first members and ZZZ_2' corresponds to the second members.
- 8. Create a GroupSummary data.frame, which identifies the R groups that should be considered by the model. Inspect the output to see if the groups show unexpected or fishy differences.
- 9. Create a data.frame with cleaned variables to pass to the SEM function. This data.frame contains only the three necessary rows and columns.
- 10. Estimate the SEM with the lavaan package. The function returns an S4 object, which shows the basic ACE information.
- 11. Inspect details of the SEM, beyond the ACE components. In this example, we look at the fit stats and the parameter estimates. The lavaan package has additional methods that may be useful for your purposes.

```
> ### R Code for Example lavaan estimation analysis with a simple outcome and Gen2 subjects
> #Steps 1-5 are explained in the vignette's first example:
> require(NlsyLinks)
> data(Links79Pair)
> dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")
> data(ExtraOutcomes79)
> dsOutcomes <- ExtraOutcomes79</pre>
> dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA
> #Step 6: Create the single entered dataset.
> dsSingle <- CreatePairLinksSingleEntered(outcomeDataset=dsOutcomes,</pre>
   linksPairDataset=dsLinking, outcomeNames=c('MathStandardized'))
> #Step 7: Declare the names for the two manifest variables.
> oName_1 <- "MathStandardized_1" #Stands for Manifest1
> oName_2 <- "MathStandardized_2" #Stands for Manifest2</pre>
> #Step 8: Summarize the R groups and determine which groups can be estimated.
> dsGroupSummary <- RGroupSummary(dsSingle, oName_1, oName_2)</pre>
> dsGroupSummary
      R Included PairCount O1Variance O2Variance O1O2Covariance Correlation
1 0.250
            TRUE
                      2719
                             169.1291
                                         207.0233
                                                        40.66048
                                                                    0.2172970
2 0.375
            TRUE
                       141
                              167.9943
                                         181.8788
                                                         40.67609
                                                                    0.2327024
3 0.500
            TRUE
                      5508
                             230.9663
                                         233.3492
                                                       107.59822
                                                                    0.4634764
                                                        63.00000
4 0.750
           FALSE
                         2
                             220.5000
                                         18.0000
                                                                    1.0000000
                             319.1948
                                         343.1169
5 1.000
            TRUE
                        22
                                                       277.58874
                                                                    0.8387893
 Determinant PosDefinite
     33360.38
                     TRUF.
2
     28900.07
                     TRUE
3
     42318.42
                     TRUE
4
         0.00
                    FALSE
5
     32465.62
                     TRUE
> #Step 9: Create a cleaned dataset
> dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_1, oName_2)
> #Step 10: Run the model
> ace <- AceLavaanGroup(dsClean)
[1] "Results of ACE estimation: [show]"
                 CSquared
    ASquared
                              ESquared
                                           {\tt CaseCount}
```

0.2136900 8390.0000000

0.6681874

0.1181227

- > #Notice the `CaseCount' is 8,292 instead of 16,588.
- > # This is because (a) one pair with R=.75 was excluded, and
- > # (b) the SEM uses a single-entered dataset instead of double-entered.

> #

- > #Step 11: Inspect the output further
- > require(lavaan) #Load the package to access methods of the lavaan class.
- > GetDetails(ace)

lavaan (0.4-14) converged normally after 60 iterations

Number of observations per group
1 2719
2 141
3 5508
4 22

Estimator	ML
Minimum Function Chi-square	454.560
Degrees of freedom	16
P-value	0.000

Chi-square for each group:

1	281.334
2	40.737
3	128.145
4	4.344

- > #Examine fit stats like Chi-Squared, RMSEA, CFI, etc.
- > fitMeasures(GetDetails(ace)) #'fitMeasures' is defined in the lavaan package.

baseline.chisq	pvalue	df	chisq
1498.116	0.000	16.000	454.560
tli	cfi	baseline.pvalue	baseline.df
0.927	0.706	0.000	4.000
aic	npar	unrestricted.logl	logl
136746.237	4.000	-68141.839	-68369.119
rmsea	bic2	ntotal	bic
0.114	136761.665	8390.000	136774.377
srmr	rmsea.pvalue	rmsea.ci.upper	rmsea.ci.lower
0.129	0.000	0.123	0.105

>

- > #Examine low-level details like each group's individual parameter estimates
- > # and standard errors. Uncomment the following line to view the entire
- > # output (which is roughly four PDF pages).
- > #summary(GetDetails(ace))

A Appendix: Creating and Saving R Scripts

TODO: write something here.

B Appendix: Installing the NlsyLinks Package

TODO: write something here.

C Appendix: References

Carey, Gregory (2002). Human Genetics for the Social Sciences. Sage.

Plomin, Robert (1990). Nature and nurture: an introduction to human behavioral genetics. Brooks/Cole Publishing Company.

Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. Behavior Genetics, 35 (2), 211-217.

Rodgers, Joseph Lee, Rowe, David C., & Li, Chengchang (1994). Beyond nature versus nurture: DF analysis of nonshared influences on problem behaviors. *Developmental Psychology*, 30 (3), 374-384.

Neale, Michael C., & Cardon, Lou R. (1992). *Methodology for genetic studies of twins and families*. Norwell, MA: Kluwer Academic Publishers. (Also see Neale & Maes: http://www.vipbg.vcu.edu/OpenMxFall09/NMbook05.pdf).

D Notes

This package's development was largely supported by the NIH Grant 1R01HD65865, "NLSY Kinship Links: Reliable and Valid Sibling Identification" (PI: Joe Rodgers; Vignette Construction by Will Beasley)