

Optimal Transport for Label-Efficient Visible-Infrared Person Re-Identification

Jiangming Wang, Zhizhong Zhang^(⊠), Mingang Chen, Yi Zhang, Cong Wang, Bin Sheng, Yanyun Qu, and Yuan Xie^(⊠)

I. Introduction

Observation:

- The scale of VI-ReID datasets are relatively small
- Infrared data without color information is hard to label
- Expensive laboring efforts of annotation
- Visible ReID datasets have rich annotation information
- SOTA clustering-based UDA-ReID methods can generate reliable pseudo labels for popular visible ReID datasets

Question:

II. Methodology

The First Stage (If unsupervised):

■ Using clustering-based UDA-ReID method to generate reliable visible pseudo labels. In our paper, we adopt SpCL (Ge *et al.* NIPS, 2020) as pseudo label generator.

The Second Stage:

Discrepancy Elimination Network

A backbone network aims to reduce the modality gap. Let f_i^v , f_i^r denote the feature output of backbone F and D denote modality classifier:

$$\mathcal{L}_{ReID} = \mathcal{L}_{CE} + \mathcal{L}_{Tri},$$

$$\mathcal{L}_D = \max_{\mathbf{F}} \min_{\mathbf{D}} \mathbb{E}_{\mathbf{f}_i^v} \left[\log \left(1 - D(\mathbf{f}_i^v) \right) \right] + \mathbb{E}_{\mathbf{f}_i^r} \left[\log \left(1 - D(\mathbf{f}_i^r) \right) \right].$$

Optimal-Transport Label Assignment

■ An algorithm aims to transport unlabeled infrared samples to the generated visible pseudo classes. Let $P^r \in \mathbb{R}^{N_r \times N_p}$ denote softmax output of classifier for infrared data. We use P^r to act as cost measuring the difficulty of each data assigned to the identity:

$$\min_{\mathbf{Q}^r} \langle \mathbf{Q}^r, -\log(\mathbf{P}^r) \rangle + \frac{1}{\delta} KL(\mathbf{Q}^r | | \alpha \boldsymbol{\beta}^T).$$
s. t.
$$\begin{cases} \mathbf{Q}^r \mathbb{I} = \boldsymbol{\alpha}, \boldsymbol{\alpha} = \mathbb{I} \cdot \frac{1}{N_r}, \\ \mathbf{Q}^{rT} \mathbb{I} = \boldsymbol{\beta}, \boldsymbol{\beta} = \mathbb{I} \cdot \frac{1}{N_p}, \end{cases}$$

where $Q^r \in \mathbb{R}^{N_r \times N_p}$ represents the plan used for pseudo label assignment. The optimal solution Q^r can be achieved by the iteratively Sinkhorn-Knopp algorithm:

$$\forall i: \boldsymbol{\alpha}_i \leftarrow \left[(\boldsymbol{P}^r)^{\delta} \boldsymbol{\beta} \right]_i^{-1} \ \forall j: \boldsymbol{\beta}_j \leftarrow \left[\boldsymbol{\alpha}^T (\boldsymbol{P}^r)^{\delta} \right]_j^{-1},$$
$$\boldsymbol{Q}^r = \operatorname{diag}(\boldsymbol{\alpha}) (\boldsymbol{P}^r)^{\delta} \operatorname{diag}(\boldsymbol{\beta}).$$

Prediction Alignment Learning

A loss function aims to alleviate incorrect assignment. Let $S^v \in \mathbb{R}^{B \times N_p}$, $S^r \in \mathbb{R}^{B \times N_p}$ denote visible and infrared predictions. We firstly mix intra-/cross-modality prediction by self-attention then compute KL-divergence between them:

$$S^{vr} = \operatorname{softmax}(S^{v}(S^{r})^{T})S^{r},$$
 $S^{rr} = \operatorname{softmax}(S^{r}(S^{r})^{T})S^{r},$ $S^{rv} = \operatorname{softmax}(S^{r}(S^{v})^{T})S^{v}.$

 $\mathcal{L}_a^{vr} = KL(\mathbf{S}^v || \mathbf{S}^{vr}), \mathcal{L}_a^{rv} = KL(\mathbf{S}^{rv} || \mathbf{S}^{rr}), \quad \mathcal{L}_a = \lambda_a^{vr} \mathcal{L}_a^{vr} + \lambda_a^{rv} \mathcal{L}_a^{rv}.$

III. Experiments

Main results on SYSU-MM01 and RegDB

	Settings		SYSU	-MM01		RegDB				
	All Search		Indoor Search		Visible2Thermal		Thermal2Visible			
Type	Method	Venue	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP
UDA-ReID	$\mathrm{SSG}^{\ddagger}[9]$	ICCV'19	2.3	12.7	-	-	2.2	2.9	-	-
	$ECN^{\ddagger}[48]$	CVPR'19	8.1	5.0	-	-	1.9	3.2	-	-
	$D-MMD^{\dagger}[21]$	ECCV'20	12.5	10.4	19.0	15.4	2.2	3.7	2.0	3.6
	$\mathrm{MMT}^{\dagger}[11]$	ICLR'20	13.9	8.4	21.0	15.3	5.3	7.1	11.0	12.1
	$SpCL(UDA)^{\dagger}[12]$	NIPS'20	15.1	6.5	19.5	12.1	3.3	4.3	8.4	9.5
	$\mathrm{GLT}^{\dagger}[44]$	CVPR'21	7.7	9.5	12.1	18.0	2.9	4.5	6.3	7.6
USL-ReID	BUC [†] [17]	AAAI'19	8.2	3.2	12.5	6.0	4.7	4.5	8.8	6.0
	$SpCL(USL)^{\dagger}[12]$	NIPS'20	18.7	11.4	27.1	20.9	20.6	17.3	19.0	16.6
	$MetaCam^{\dagger}[36]$	CVPR'21	14.7	9.3	23.9	17.1	23.1	17.5	20.9	16.5
	$\mathrm{HCD}^{\dagger}[46]$	ICCV'21	18.0	17.9	24.4	28.8	10.8	12.3	12.4	13.7
SVI-ReID	JSIA-ReID[29]	AAAI'20	38.1	36.9	43.8	52.9	48.5	49.3	48.1	48.9
	Hi-CMD[3]	CVPR'20	34.9	35.9	-	-	70.9	66.0	-	-
	AGW[39]	TPAMI'21	47.5	47.7	54.17	63.0	70.1	66.4	70.5	65.9
	NFS[2]	CVPR'21	56.9	55.5	62.8	69.8	80.5	72.1	78.0	69.8
	LbA[24]	ICCV'21	55.4	54.1	58.5	66.3	74.2	67.6	72.4	65.5
	CAJL[37]	ICCV'21	69.9	66.9	76.3	80.4	85.0	79.1	84.8	77.8
	MPANet[35]	CVPR'21	70.6	68.2	76.7	81.0	83.7	80.9	82.8	80.7
USVI-ReID	H2H[16]	TIP'21	25.5	25.2	-	-	14.1	12.3	13.9	12.7
	Ours	-	29.9	27.1	29.8	38.8	32.9	29.7	32.1	28.6
SSVI-ReID	Ours	-	48.2	43.9	47.4	56.8	49.9	41.8	49.6	42.8

Ablation Study on SYSU-MM01

Order	Approach			All Search								
	Approach					USVI-	ReID		SSVI-ReID			
	$\mathcal{L}_{ ext{V-ReID}}$	\mathcal{L}_D	\mathcal{L}_a	OTLA	Rank-1	Rank-10	Rank-20	mAP	Rank-1	Rank-10	Rank-20	mAP
1	✓	-	-	-	12.62	41.91	57.27	12.73	12.25	46.49	62.24	14.66
2	✓	\checkmark	-	-	16.62	49.91	64.53	15.94	23.69	59.56	73.10	24.71
3	✓	-	\checkmark	-	12.65	42.39	57.03	12.81	13.86	46.67	61.87	14.72
4	✓	\checkmark	-	\checkmark	20.90	59.53	73.86	19.83	33.89	73.89	85.49	32.44
5	✓	-	\checkmark	\checkmark	19.64	61.16	77.31	19.74	36.31	77.31	86.93	34.66
6	√	\checkmark	\checkmark	\checkmark	29.98	71.79	83.85	27.13	48.15	85.30	92.64	43.86

Supervised Setting for \mathcal{L}_D and \mathcal{L}_a

Effects of Visible Source Domain

SYSU-MM01

8 SYSU-MM01

9 25

10 0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Epoch

8 PegDB

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Epoch

Epoch

(a) Label accuracy of SYSU-MM01 and RegDB

(b) OTLA time analysis of SYSU-MM01 and RegDB

(c) Infrared pseudo label distribution of SYSU-MM01