M347 TMA02 R2698663

Louis Botterill

07-01-2018

Question 1

1.a

 $x_1, x_2, ..., x_n$ are independent observations taken from a Pareto distribution with pdf

$$f(x|\beta) = \frac{\beta}{x^{\beta+1}}$$
 on $x > 1$; where $\beta > 0$

We can show the log-likelihood is as required as follows

Definition: Log-likelihood is defined as:

$$l(\theta) = log \ L(\theta) = \sum_{i=1}^{n} log \ f(x_i|\theta)$$

So we have

$$\begin{split} l(\beta) &= \sum_{i=1}^n \ \log \ \frac{\beta}{x_i^{\beta+1}} \\ l(\beta) &= n \ \log \ \beta + \sum_{i=1}^n \ \log \ \frac{1}{x_i^{\beta+1}} \\ l(\beta) &= n \ \log \ \beta - \sum_{i=1}^n \ \log \ x_i^{\beta+1} \\ l(\beta) &= n \ \log \ \beta - (\beta+1) \sum_{i=1}^n \ \log \ x_i \end{split}$$

1.b

Find $l'(\beta)$ and hence the candidate MLE

$$l'(\beta) = \frac{d}{d\beta}l(\beta) = d \left[\log \beta - (\beta + 1)\sum_{i=1}^{n} \log x_i\right]/d\beta$$
$$l'(\beta) = \frac{n}{\beta} - \sum_{i=1}^{n} \log x_i$$

Solving for the stationary point where $l'(\theta) = 0$

$$\frac{n}{\beta} - \sum_{i=1}^{n} \log x_i = 0$$

$$\frac{n}{\beta} = \sum_{i=1}^{n} \log x_i$$

So the candidate MLE is

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \log x_i}$$

(At this point $\hat{\beta}$ it is only a candidate MLE of β since we've not proved $\hat{\beta}$ is a maximum, it could be a saddle or minimum.)

1.c

We can confirm that $\hat{\beta}$ is indeed the MLE of β by showing that the stationary point of the function $l'(\beta)$ is a maximum. This occurs when the second derivative $l''(\beta) < 0$

$$l'(\beta) = n\beta^{-1} - \sum_{i=1}^{n} \log x_i$$

$$l''(\beta) = -n\beta^{-2} = -\frac{n}{\beta^2}$$

Since n > 0 (and $\beta > 0$), then $l''(\beta) < 0$, for all n, β

Hence,

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \log x_i}$$

is an MLE of β

1.d

Explain why $\hat{\beta} > 0$, as one would hope given that $\beta > 0$

We have found that the MLE $\hat{\beta}$ is defined as

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \log x_i}$$

where n > 0, positive (n = 0 would be a degenerate case)

and also x > 1, positive (from the definition of the distribution)

Definition: By definition of logarithms

$$ln(x > 1) > 0$$

and so the result of positive n times 1/sum of positive values is always positive, as required

Question 2

 $x_1, x_2 \dots x_n$ are independent observations taken from a Pareto distribution with pdf

$$f(x|\beta) = \frac{\beta}{x^{\beta+1}}$$
 ; on $x>1$ where $\beta>0$

$$l(\beta) = n \log \beta - (\beta + 1) \sum_{i=1}^{n} \log x_i$$

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \log x_i}$$

Given

$$E\{-l''(\beta)\} = \frac{n}{\beta^2}$$

and

The hypothesis test is: $H_0: \beta = 1$ against $H_1: \beta \neq 1$.

So $\beta_0 = 1$ and $\beta_1 \neq 1$

2.a

Obtain formulae for both Wald statistics, W_1 and W_2 , in terms of β (and n).

Definition: The Wald W_1 and W_2 statistics on parameter θ

$$W_{1} = (\theta_{0} - \hat{\theta})^{2} E \{-l''(\theta)\}_{\hat{\theta}}$$

$$W_{2} = (\theta_{0} - \hat{\theta})^{2} E \{-l''(\theta)\}_{\theta_{0}}$$

So we have

$$W_1 = (1 - \hat{\beta})^2 \frac{n}{\hat{\beta}^2}$$

$$W_2 = (1 - \hat{\beta})^2 \frac{n}{\beta_0^2} = n(1 - \hat{\beta}^2)$$

Using $\beta_0 = 1$

2.b

Show that the score statistic, S, can be written

$$S = (1 - \hat{\beta})^2 \frac{n}{\hat{\beta}^2}$$

Definition: The Score test statistic is defined as

$$S = \frac{\left\{l'(\theta_0)\right\}^2}{E\left\{-l''(\theta)\right\}_{|\theta_0}}$$

From question part 1.b

$$l'(\beta) = \frac{n}{\beta} - \sum_{i=1}^{n} \log x_i$$

$$l'(\beta_0 = 1) = \frac{n}{\beta_0} - \sum_{i=1}^n \log x_i = n - \sum_{i=1}^n \log x_i$$

$$E\{-l''(\beta)\}|_{\beta_0=1} = \frac{n}{\beta_0^2} = n$$

and

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \log x_i}$$

$$\sum_{i=1}^{n} \log x_i = \frac{n}{\hat{\beta}}$$

$$l'(\beta) = n - \frac{n}{\hat{\beta}}$$
$$l'(\beta) = n(1 - \frac{1}{\hat{\beta}})$$

$$(l'(\beta))^2 = (n - \frac{n}{\hat{\beta}})^2 = n^2(1 - \frac{1}{\beta})^2$$

$$S = n^2 \frac{(1 - \frac{1}{\hat{\beta}})^2}{n} = n(1 - \frac{1}{\hat{\beta}})^2$$

Which we can rewrite using

$$(1 - \frac{1}{\beta})^2 = (1 + \frac{1}{\beta^2} - \frac{2}{\hat{\beta}}) = \frac{1}{\hat{\beta}^2} (\hat{\beta}^2 + 1 - 2\hat{\beta}) = \frac{1}{\hat{\beta}^2} (1 - \hat{\beta})^2$$

 ${\bf Therefore}$

$$S = (1 - \hat{\beta})^2 \frac{n}{\hat{\beta}^2}$$

As required.

The common procedure to evaluate the tests and obtain the appropriate p-value would be:

- 1 Evaluate the Wald W_1, W_2 or Score S test statistic value, r say, using the previously derived test statistic formulae and observed sample data
- 2 Calculate the p-value from r using the appropriate asymptotic null distribution, in this case this is $\chi^2(d=1)$
 - The p-value is given by $p = P(Y \ge r)$, where $Y \sim \chi^2(1)$ and r is the observed value of 2log(LR) which in our case is approximated by our test statistics r
 - The p-value $P(X^2(d=1) \ge r)$ would be $1 P(\chi^2(d=1) < r)$ or 1-F(r) where F is the cdf of $\chi^2(d=1)$, the asymptotic null distribution

For example, if r was 3.84 we would find the p-value $=\chi_{d=1}^2(x \ge 3.84) = 1 - \chi_{d=1}^2(x < 3.84) = 1 - 0.95 = 0.05$ (this is the probability of getting a result at least this extreme, if the null hypothesis is true)

- 3 Decide whether to accept or reject the null hypothesis by comparing the p-value against a probability threshold α :
 - Lower p-values mean the test statistic value is more unlikely if the null hypothesis is true, so we have more evidence to reject the null hypothesis H_0 , so we might reject the null hypothesis as false, more readily.
 - Higher p-values mean the test statistic value is more likely if the null hypothesis is true, so we have less evidence to reject the null hypothesis H_0 , we might accept the null hypothesis as true, more readily.

The justification for the using the $\chi^2(d=1)$ is due to the fact that the asymptotic null distribution of the likelihood ratio (LR) test statistic approaches $\chi^2(d)$, where d is the degrees of freedom difference between the null and alternative hypothesis.

i.e. $2log(LR) \approx \chi^2(d)$, if the null hypothesis H_0 is true

(This approximation improves as the sample size n increases)

In our example, we have H_0 with zero free parameters so $d_0 = 0$ and H_1 with 1 free parameter β_1 so $d_1 = 1$. Therefore d = 1 in our case, since there is 1 degree of freedom difference between the null H_0 and alternative H_1 hypothesis. $d = d_1 - d_0 = 1 - 0 = 1$

So the $\chi^2(d=1)$ distribution is the correct distribution to use to compare with the test statistic of the observed sample data.

If however, we started out with a fixed-level test size in mind, a similar approach using the appropriate quantile of the same $\chi^2(d=1)$ distribution would be:

Compare the observed value of the test statistic r with the $\chi^2(1)$ distribution. Similarly, reject the null hypothesis H_0 if the observed value of the test statistic r is too large. For example, a fixed-level test of size $\alpha = 0.05$ will reject H_0 if the test statistic value r is greater than the $1 - 0.05 = 0.95^{th}$ -quantile of the $\chi^2(1)$ distribution, which has a value of 3.84.

Further detail (also for my revision/understanding purposes!)

- 1 Calculate the test statistic T from the observed values.
 - If the null hypothesis is true, these test statistics T approximate 2 log(LR) from the observed data. They are equivalent asymptotically to the likelihood ratio test, as the sample size grows large its asymptotic null distribution is $\chi^2(d)$
- 2 Use the appropriate $\chi^2(d)$ and find the critical value k to be compared with the test statistic.
 - $k = \chi_{1-\alpha}^2(d)$, where $\chi_{1-\alpha}^2$ denotes the $(1-\alpha)$ -quantile of the $\chi^2(d)$ distribution
 - An example would be for a test size p=0.05 we would find the 1-p=0.95 quantile of the $\chi^2(d)$ distribution
 - Where the p-value is the probability of observing data at least as extreme as those obtained, if the null hypothesis were true. Hence, p-value = $P(\chi(d)^2 \ge 2log(LR_0)|H_0 = true)$ where $log(LR_0)$ is the observed value of the log-likelihood ratio test statistic.
- 3 Compare the test statistic value r with the critical value k from the selected quantile of $\chi^2(d=1)$
 - If the test statistic is too large, reject the null hypothesis H_0
 - If the test statistic is not too large, we accept the null hypothesis H_0

Definition: The p-value is defined as

$$p = P(log(LR) \ge log(LR_0)|H_0 \ true)$$

The p-value is given by $p = P(Y \ge r)$, where $Y \approx \chi^2(d)$ and r is the observed value of $2 \log(LR)$ (in our case the value of the test statistic approximation thereof).

Question 3

3.a

Given

$$X_n = X + \frac{Z_n}{n^{1/2}}$$

and

$$E(Z_n^2) = cn^{\alpha}$$
; where $c > 0, \alpha \in \mathbb{R}$

Using Chebyshev's inequality, show that

$$P(|X_n - X| > \epsilon) \le \frac{c}{\epsilon^2 n^{1-\alpha}}$$

Definition: Chebyshev's inequality is defined as:

$$P(|X| \ge a) \le \frac{E(X^2)}{a^2}$$

So we have

$$P(|X_n - X| > \epsilon) = P(|\frac{Z_n}{n^{1/2}}| > \epsilon)$$

$$= P(|Z_n| > \epsilon n^{1/2})$$

$$\leq P(|Z_n| \ge \epsilon n^{1/2})$$

$$\leq \frac{E(Z_n^2)}{(\epsilon n^{1/2})^2} \text{ (using Chebyshev's inequality)}$$

$$= \frac{cn^{\alpha}}{(\epsilon n^{1/2})^2} = \frac{cn^{\alpha}}{\epsilon^2 n}$$

$$= \frac{cn^{\alpha}n^{-1}}{\epsilon^2} = \frac{cn^{\alpha-1}}{\epsilon^2}$$

$$P(|X_n - X| > \epsilon) = \frac{c}{\epsilon^2 n^{1-\alpha}}$$

Therefore we have shown that

$$P(|X_n - X| > \epsilon) \le \frac{c}{\epsilon^2 n^{1-\alpha}}$$

As required.

3.b

For what values of α does the argument in part (a) prove that X_n converges in probability to X?

We have

$$P(|X_n - X| > \epsilon) \le \frac{c}{\epsilon^2 n^{1-\alpha}}$$

We can conclude X_n tends to X by probability convergence (as $n \to \infty$) when

$$P(|X_n - X| > \epsilon) \to 0$$

$$\frac{c}{\epsilon^2 n^{1-\alpha}} \to 0$$

$$\frac{c}{\epsilon^2 n^{1-\alpha}} = \frac{c}{\epsilon^2} n^{\alpha - 1}$$

As $n \to \infty$ we require $n^{\alpha-1} \to 0$

 $n^k \to 0$ as $n \to \infty$ for k < 0 so for probability convergence we require

 $\alpha-1<0$, therefore when $\alpha<1$ we have $X_n\to X$ by probability convergence.

3.c

For the values of α identified in part (b), what other mode of convergence of X_n to X is assured (without any further calculations)?

We can use the rules of implication for convergence

Definition:

$$\{X_n \xrightarrow{ms} X\} \implies \{X_n \xrightarrow{p} X\} \implies \{X_n \xrightarrow{D} X\}$$

We have shown probability convergence in part 3.b

$$\{X_n \xrightarrow{p} X\} \implies \{X_n \xrightarrow{D} X\}$$

This implies also distribution convergence by the above definition of the implications of convergence.