Mathematics of Machine Learning

1 Introduction

- $-(X,Y) \in \mathcal{X} \times \mathcal{Y}$ with joint distribution P_0
- classification setting $\mathcal{Y} \in \{-1, 1\}$
- regression setting $\mathcal{Y} = \mathbb{R}$

Assumption 1. $\mathcal{X} \in \mathbb{R}^p$

- hypothesis $h: \mathcal{X} \to \mathcal{Y}$
- loss function $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- Classification setting
- misclassification error $l(h(x), y) = \begin{cases} 1 & \text{if } h(x) = y \\ 0 & \text{otherwise} \end{cases}$
- classifier h
- Regression setting
- squared error $l(h(x), y) = (h(x) y)^2$
- risk $R(h) = \int_{(x,y)\in\mathcal{X}\times\mathcal{Y}} l(h(x),y) dP_0(x,y)$

Fact. $R(h) = \mathbb{E}l(h(X), Y)$ for deterministic h

Setting 1. l misclassification error, R risk

- Bayes classifier h_0 minimises misclassification risk
- Bayes risk $R(h_0)$
- regression function $\eta(x) = \mathbb{P}(Y = 1 \mid X = x)$

Proposition 1.1. Bayes classifier h_0 , then $h_0(x) = \begin{cases} 1 & \text{if } \eta(x) > \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}$

Proof. $R(h) = \frac{1}{4}\mathbb{E}(Y - h(X))^2 = \frac{1}{4}\mathbb{E}(Y - \mathbb{E}(Y|X))^2 + \frac{1}{4}\mathbb{E}(\mathbb{E}(Y|X) - h(X))^2$

Setting 2. P_0 unknown

- training data (X_i, Y_i) — i.i.d. of (X, Y)

 $-R(\hat{h})$

Fact. $R(\hat{h}) = \mathbb{E}(l(h(X), Y) \mid X_1, Y_1, \dots, X_n, Y_n)$

- class \mathcal{H} of hypotheses

Example. (i) $\mathcal{H} = \{h : h(x) = \operatorname{sgn}(\mu + x^{\top}\beta)\}$

(ii) $\mathcal{H} = \{h : h(x) = \operatorname{sgn}(\mu + \sum \phi_j(x)\beta_j)\}$ with dictionary $\phi_i : \mathcal{X} \to \mathbb{R}$

Setting 3. sgn(0) = -1

– conditional expectation $\mathbb{E}(Z \mid W)$

Proposition 1.2.

- (i) Role of independence $\mathbb{E}(Z|W) = \mathbb{E}Z$
- (ii) Tower property $\mathbb{E}[\mathbb{E}(Z|W) \mid f(W)] = \mathbb{E}[Z \mid f(W)]$
- $\textbf{(iii)} \ \ \textbf{Taking out what is known} \ \mathbb{E}(f(W)Z|W) = f(W)\mathbb{E}(Z|W)$
- (iv) Conditional Jensen $\mathbb{E}(f(Z)|W) \geq f(\mathbb{E}(Z|W))$ f convex, f(Z) integrable
- empirical risk / training error $\hat{R}(h) = \frac{1}{n} \sum l(h(X_i), Y_i)$
- empirical risk minimiser (ERM) $\hat{h} \in \arg\min_{h \in \mathcal{H}} \hat{R}(h)$ (multiple minimiser)
- generalisation error $R(\hat{h})$
- $-h^* \in \arg\min_{h \in \mathcal{H}} R(h)$
- stochastic error / excess risk $R(\hat{h}) R(h^*)$ —— increase with complexity of \mathcal{H}
- approximation error $R(h^*) R(h_0)$ —— decrease with complexity of \mathcal{H}

Fact. $R(\hat{h}) - R(h_0) = excess \ risk + approximation \ error$

2 Statistical learning theory

Fact.
$$R(\hat{h}) - R(h^*) = \left(R(\hat{h}) - \hat{R}(\hat{h})\right) + \left(\hat{R}(\hat{h}) - \hat{R}(h^*)\right) + \left(\hat{R}(h^*) - R(h^*)\right)$$

- concentration inequalities

Fact (Markov's inequality). W non-negative, ϕ strictly increasing, then $\mathbb{P}(W \geq t) \leq \frac{\mathbb{E}\phi(W)}{\phi(t)}$

Fact (Chernoff bound). $\phi(t) = e^{\alpha t}$, $\alpha > 0$, then $\mathbb{P}(W \ge t) \le \inf_{\alpha > 0} e^{-\alpha t} \mathbb{E} e^{\alpha W}$

– sub-Gaussian with parameter σ —— $\mathbb{E} e^{\alpha(W-EW)} \leq e^{\frac{\alpha^2\sigma^2}{2}}$

Proposition 2.1. W sub-Gaussian with σ , then $\mathbb{P}(W \geq t) \leq e^{-\frac{t^2}{2\sigma^2}}$

Proof. Chernoff bound

Fact. W sub-Gaussian with σ , then

- (i) W sub-Gaussian with σ' for all $\sigma' \geq \sigma$
- (ii) -W sub-Gaussian with σ

Fact. $\mathbb{P}(|W - \mathbb{E}W| \ge t) \le 2e^{-\frac{t^2}{2\sigma^2}}$

Proposition 2.2. W_i independent, sub-Gaussian with σ_i , mean μ_i , then $\gamma^{\top}W$ sub-Gaussian with $\sqrt{\sum_i \gamma_i \sigma_i}$

Proof. expand

Fact. same setting, pick $\gamma = (1, ..., 1)$, then $\mathbb{P}(\sum_i (W_i - \mu_i) \ge t) \le \exp\left(-\frac{t^2}{2\sum_i \sigma_i^2}\right)$

Proposition 2.3. $W_i \mod 0$, sub-Gaussian with σ (non necessarily independent), then $\mathbb{E} \max_j W_j \leq \sigma \sqrt{2 \log(d)}$

Proof. $\exp(\alpha \mathbb{E} \max W_j) \leq \mathbb{E} \exp(\alpha \max W_j) \leq \sum \exp(\alpha W_j) \leq de^{\frac{\alpha^2 \sigma^2}{2}}$, then maximise over α

– Rademacher r.v. ϵ — take $\{-1,1\}$ with equal prob

Fact. Rademacher ϵ sub-Gaussian with $\sigma = 1$

Lemma 2.4 (Hoeffding's lemma). W mean 0, take values in [a, b], then W sub-Gaussian with $\sigma = \frac{b-a}{2}$

Proof. weaker result $\sigma = b - a$: consider independent W', conditional Jensen, Rademacher sub-Gaussian, $\mathbb{E}e^{\alpha W} \leq \mathbb{E}e^{\alpha\epsilon(W-W')} \leq \mathbb{E}e^{\alpha^2(W-W')^2/2} \leq \mathbb{E}e^{\alpha^2(b-a)^2/2}$

- symmetrisation argument

Fact (Hoeffding's inequality). W_i independent, mean 0, $a_i \leq W_i \leq b_i$ a.s., then $\mathbb{P}(\frac{1}{n} \sum_i W_i \geq t) \leq \exp\left(-\frac{2n^2t^2}{\sum_i (b_i - a_i)^2}\right)$

Theorem 2.5. \mathcal{H} finite, l take values in [0, M], then with probability at least $1 - \delta$, $R(\hat{h}) - R(h^*) \leq M\sqrt{\frac{2(\log |\mathcal{H}| + \log \frac{1}{\delta})}{n}}$

Proof. decomposition $R(\hat{h}) - R(h^*)$, then Hoeffding's inequality

 $-G(X_1, Y_1, \dots, X_n, Y_n) = \sup_{h \in \mathcal{H}} R(h) - \hat{R}(h)$

Fact. l takes values [0, M], then $G(x_1, y_1, \ldots, x_n, y_n) - G(x'_1, y'_1, x_2, y_2, \ldots, x_n, y_n) \leq \frac{M}{n}$

- $a_{j:k}$ ------ subsequence a_j, \ldots, a_k
- bound differences property: $f(w_1, ..., w_{i-1}, w_i, w_{i+1}, ..., w_n) f(w_1, ..., w_{i-1}, w_i', w_{i+1}, ..., w_n) \le L_i$

Theorem 2.6 (Bounded differences inequality). f bound differences property, W_i independent, then $\mathbb{P}(f(W_{1:n}) - \mathbb{E}f(W_{1:n}) \ge t) \le \exp\left(-\frac{2t^2}{\sum_i L_i^2}\right)$

 $\begin{cases} Proof. \ (D_i) \ \text{martingale difference wrt Doob martingale,} \ F_i(w_{1:i}) = \mathbb{E}(f(W_{1:n}|W_{1:i} = w_{1:i})) \\ A_i = \inf_{w_i} F_i(W_{1:(i-1)}, w_i) - \mathbb{E}(f(W_{1:n}|W_{1:i-1})) \\ B_i = \sup_{w_i} F_i(W_{1:(i-1)}, w_i) - \mathbb{E}(f(W_{1:n}|W_{1:i-1})) \end{cases}, \text{ then use } W_{(i+1:n)} \text{ independent to } W_i, \text{ then } \text{ Azuma-Hoeffding}$

- martingale sequence $(Z_i)_{i\geq 0}$ wrt $(W_i)_{i\geq 0}$ ——
 - (i) $\mathbb{E}|Z_i| < \infty$
 - (ii) $Z_i \sigma(W_{0:i})$ -measurable
 - (iii) $\mathbb{E}(Z_i|W_{0:(i-1)}) = Z_{i-1}$
- martingale difference sequence $D_i = Z_i Z_{i-1}$
- Doob martingale $Z_i = \mathbb{E}f(W_{1:n})|W_{1:i}$ martingale provided $\mathbb{E}|f(W_{1:n})| < \infty$

Lemma 2.7. (D_i) martingale difference sequence wrt (W_i) , $\mathbb{E}(e^{\alpha D_i}|W_{0:i-1}) \leq e^{\frac{\alpha^2 \sigma_i^2}{2}}$, then $\gamma^{\top}D$ sub-Gaussian with $\sqrt{\sum \gamma_i^2 \sigma_i^2}$

Proof. Tower property with
$$\sigma(W_{1:i})$$
 for $i = n - 1, n - 2, \dots, 1$

Theorem 2.8 (Azuma-Hoeffding). (D_i) martingale difference sequence wrt (W_i) , $\exists \sigma(W_{0:(i-1)})$ -measurable A_i, B_i , constant L_i st

(i)
$$A_i \leq D_i \leq B_i$$

(ii)
$$B_i - A_i \leq L_i$$

, then
$$\mathbb{P}\left(\sum_{i} D_{i} \geq t\right) \leq \exp\left(-\frac{2t^{2}}{\sum_{i} L_{i}^{2}}\right)$$

Proof. Hoeffding's Lemma conditionally on $W_{0:(i-1)}$, then lemma, then Gaussian tail bound

Setting 4. \mathcal{H} (possibly infinite) hypothesis class, l takes values in [0, M]

Fact.
$$R(\hat{h}) - R(h^*) \le (G - \mathbb{E}G) + \mathbb{E}G + \hat{R}(h^*) - R(h^*)$$

$$-Z_i = (X_i, Y_i)$$

$$- \mathcal{F} = \{(x, y) \mapsto -l(h(x), y) : h \in \mathcal{H}\}$$

Fact. $G = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum (f(Z_i) - \mathbb{E}f(Z_i))$

–
$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_i \epsilon_i f(Z_i)\right)$$
 —— ϵ_i i.i.d. Rademacher independent of $Z_{1:n}$

Intuition. capture how closely $f(Z_i)$ align with random label ϵ_i (dot product)

Theorem 2.9. \mathcal{F} class of real functions, Z_i i.i.d., then $\mathbb{E}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum(f(Z_i)-\mathbb{E}f(Z_i))\right)\leq 2\mathcal{R}_n(\mathcal{F})$

Proof.
$$Z_i'$$
 i.i.d. copy of Z_i , symmetrisation technique:
$$\sup \frac{1}{n} \sum f(Z_i) - \mathbb{E}f(Z_i) \le \mathbb{E}\left(\sup \frac{1}{n} \sum f(Z_i) - f(Z_i')|Z_{1:n}\right)$$

$$- \mathcal{F}(z_{1:n}) = \{ (f(z_1), \dots, f(z_n)) : f \in \mathcal{F} \}$$

- empirical Rademacher complexity $\hat{\mathcal{R}}(\mathcal{F}(z_{1:n})) = \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} f(z_{i})\right)$

$$-\hat{\mathcal{R}}(\mathcal{F}(Z_{1:n})) = \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i} \epsilon_{i} f(Z_{i}) \mid Z_{1:n}\right)$$

Fact. $\mathcal{R}_n(\mathcal{F}) = \mathbb{E}\hat{\mathcal{R}}(\mathcal{F}(Z_{1:n}))$

Theorem 2.10 (Generalisation bound based on Rademacher complexity). $\mathcal{F} = \{(x,y) \mapsto l(h(x),y)\}, \ l \ takes \ values \ in \ [0,M],$ then with probability at least $1 - \delta$, $R(\hat{h}) - R(h^*) \leq 2\mathcal{R}_n(\mathcal{F}) + M\sqrt{\frac{2\log(\frac{2}{\delta})}{n}}$

Proof. decomposition: $R(\hat{h}) - R(h^*) \leq (G - \mathbb{E}G) + \mathbb{E}G + \hat{R}(h^*) - R(h^*)$ Bounded differences inequality: $\mathbb{P}\left(G - \mathbb{E}G \geq \frac{t}{2}\right) \leq \exp\left(-\frac{t^2n}{2M^2}\right)$, Hoeffding's inequality: $\mathbb{P}\left(\hat{R}(h^*) - R(h^*) \geq \frac{t}{2}\right) \leq \exp\left(-\frac{t^2n}{2M^2}\right)$ $\mathcal{R}_n(\mathcal{F}) = \mathcal{R}_n(-\mathcal{F})$, so $\mathbb{E}G \leq 2\mathcal{R}_n(\mathcal{F})$, then $t = M\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$

Setting 5. classification setting, misclassification loss, $\mathcal{F} = \{(x,y) \mapsto l(h(x),y) : h \in \mathcal{H}\}$

Fact. $|\mathcal{F}(z_{1:n})| = |\mathcal{H}(x_{1:n})|$

Lemma 2.11.
$$\hat{R}(\mathcal{F}(z_{1:n})) \leq \sqrt{\frac{2\log|\mathcal{F}(z_{1:n})|}{n}} = \sqrt{\frac{2\log|\mathcal{H}(x_{1:n})|}{n}}$$

Proof. $\mathcal{F}' = \{f_1, \dots, f_d\}$ st $\mathcal{F}'(z_{1:n}) = \mathcal{F}(z_{1:n})$, $W_j = \frac{1}{n} \sum \epsilon_i f_j(z_i)$, then W_j sub-Gaussian with $\sigma = \frac{1}{\sqrt{n}}$, then apply max bound

Setting 6. \mathcal{F} class of functions $f: \mathcal{X} \mapsto \{a, b\}, \ \mathcal{F} \geq 2$

- \mathcal{F} shatters $x_{1:n} |\mathcal{F}(x_{1:n})| = 2^n$
- shattering coefficient $s(\mathcal{F}, n) = \max_{x_{1:n}} |\mathcal{F}(x_{1:n})|$
- VC dimension $VC(\mathcal{F}) = \sup\{n : s(\mathcal{F}, n) = 2^n\}$

Lemma 2.12 (Sauer-Shelah). $VC(\mathcal{F}) = d$, then $s(\mathcal{F}, n) \leq \sum_{i=0}^{d} {n \choose i} \leq (n+1)^d$

Proof. non-empty $Q \subset [n]$, stronger statement: at least $|\mathcal{F}(x_{1:n})| - 1$ non-empty Q st \mathcal{F} shatters x_Q , then induction on $|\mathcal{F}(x_{1:n})|$

Fact.
$$\mathcal{R}_n(\mathcal{F}) \leq \sqrt{\frac{2VC(\mathcal{F})\log(n+1)}{n}}$$

Setting 7. \mathcal{F} vector space of functions, $\mathcal{H} = \{h : h(x) = \operatorname{sgn}(f(x)), f \in \mathcal{F}\}$

Example. $\mathcal{X} = \mathbb{R}^p, \ \mathcal{F} = \left\{ x \mapsto x^\top \beta : \beta \in \mathbb{R}^p \right\}$