·7

8

1

2

1

2

3

CLAIMS

We claim:

1. A method of performing network packet filtering, said method

comprising:

preprocessing a set of rules to generate a set of rule ranges along N dimensions;

searching said rule ranges along said N dimensions in parallel to generate N sets

of possible rules along said N dimensions;

logically combining said N sets of possible rules to generate a final set of possible rules; and

applying said final set of possible rules.

- 2. The method as claimed in claim 1 further comprising: generating a rule bit vector for each rule range along each of said N dimensions;
- 3. The method as claimed in claim 1 further comprising:
 generating a search structure for each set of rule ranges along each of said N
 dimensions;
- 1 4. The method as claimed in claim 3 wherein one of said search 2 structures comprises a look-up table.

9.

1	5.	The method as claimed in claim 3 wherein one of said search
2	structures comprises	a tree search structure.
	•	·
1		
XX	\widetilde{A}	The most and an eleismed in plains 1 substitution with Carlotte
V1 / \	6.	The method as claimed in claim 1 wherein applying said final set
2	of possible rules com	prises selecting a highest priority rule in said final set of possible
3	rules.	
1	7.	The method as alaimed in claim 1 wherein applying said final set
1		The method as claimed in claim 1 wherein applying said final set
2	of possible rules com	prises applying all rules in said final set of possible rules.
	•	
1	8.	The method as claimed in claim 1 wherein each of said N sets of
2	nossible rules compri	se a rule bit vector that specifies a set of rules that may apply.
_	possible rules compil	se a rule on vector that specifies a set of rules that may appry.

logically ANDed together to produce a final bit vector of rules that apply.

The method as claimed in claim 8 wherein said rule bit vectors are

2

3

1

2

3

10. The method as claimed in claim 9 wherein applying said final set of possible rules comprises selecting a highest priority rule in said final set of possible rules.

A method of pre-processing a set of rules for processing incoming 1 11. 2 data units, said incoming data units having a set of N dimensions to examine, said method 3 comprising: dividing each of said N\dimensions into a contiguous set of rule ranges; 4 5 assigning each of said rule ranges a range identifier; and 6 creating a search structure for each of said N dimensions that organizes said rule 7 ranges along each dimension such that an incoming data unit may be quickly 8 classified into one of said rule ranges.

- 12. The method as claimed in claim 11 wherein said range identifier comprises a rule bit vector that specifies a set of rules that may apply to incoming data units that fall within the associated rule range.
- 13. The method as claimed in claim 12 wherein said rule bit vectors are logically ANDed together by a rule processor to produce a final bit vector of rules that apply.

2

18.

structures comprises a tree search structure.

1	14. Т	The method as claimed in claim 13 wherein said rule processor
	•	
2	selects a highest priority	y rule in said final set of possible rules.
1	15. Т	The method as claimed in claim 11 wherein said range identifier
2	comprises an index valu	ue.
	·	
1	16. T	The method as claimed in claim 15 wherein said index values are
2	used by a rule processor	r to index into a N\dimensional look-up table for a final rule.
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	17. 7	The method as claimed in claim 11 wherein one of said search
2	structures comprises a l	ook-up table.
	1	
		`\

The method as claimed in claim 11 wherein one of said search

1	19. A method of processing incoming data units, said incoming data		
2	units having a set of N dimensions to examine, said method comprising:		
3	searching N search structures for said N dimensions in parallel to classify		
4	incoming data units into a matching rule range along each of said N		
5	dimensions;		
6	logically combining said N matching rule ranges to generate a final set of possible		
7	rules; and		
8	applying said final set of possible rules.		
1	20. The method as claimed in claim 19 wherein each rule range		
2	comprises a range identifier.		
_			
1	21. The method as claimed in claim 20 wherein said range identifier		
2	comprises a rule bit vector that specifies a set of rules that may apply to incoming data		
3	units that fall within the associated rule range.		
1	22. The method as claimed in claim 21 wherein said step of logically		
2	combining said N matching rule ranges comprises logically ANDing together said rule bi		
3	vectors to produce a final set of possible rules.		

1 23. The method as claimed in claim 22 wherein said applying said 2 final set of possible rules comprises selecting a highest priority rule in said final set of 3 possible rules. 1 24. The method as claimed in claim 20 wherein said range identifier 2 comprises an index value. 1 25. The method as claimed in claim 20 wherein said index values are 2 used to index into a N dimensional look-up table for a final rule. 1 26. The method as claimed in claim 19 wherein one of said N search 2 structures comprises a look-up table. 1 27. The method as claimed in claim 19 wherein one of said search 2 structures comprises a tree search structure.

Addin