Lecture 8: Quantitative Option Strategies

Marco Avellaneda G63.2936.001

Spring Semester 2009

Equity Options Markets

Single-name options

Electronic trading in 6 exchanges, cross-listing of many stocks, penny-wide bid ask spreads for many contracts

Index Options

S&P 500, NDX, Minis. Traded on the Chicago Mercantile Exchange. VIX options & futures trade in CME as well.

ETF Options

Most of the large ETFs are optionable. Traded like stocks in multiple exchanges. SPY, QQQQ, XLF are among the most traded options in the US.

Options Markets Halliburton (HAL) April 09

CALLS								PUTS							
Symbol	Last	Change I	Bid A	\sk	Volume	Open Int	Strike	Symbol	Last	Change	Bid	A	sk	Volume	Open Int
HALDA.X	12.65	0	11.15	11.3	0	0	5	HALPA.X	0.03	0	N/A		0.04	100	210
HALDU.X	8.5	0	8.65	8.85	2	2	7.5	HALPU.X	0.05	0	(0.01	0.06	1	2,237
HALDB.X	5.2	0	6.3	6.35	57	116	10	HALPB.X	0.15	0		0.1	0.12	25	3,775
HALDZ.X	4.2	0.15	4.05	4.15	20	944	12.5	HALPZ.X	0.4	0.12	(0.39	0.4	185	10,482
HALDC.X	2.31	0.1	2.3	2.33	220	4,942	15	HALPC.X	1.06	0.33		1.09	1.11	52	10,592
HALDP.X	1.11	0.18	1.09	1.11	495	8,044	17.5	HALPP.X	2.42	0.34	2	2.36	2.37	196	8,482
HALDD.X	0.43	0.05	0.42	0.44	57	10,693	20	HALPD.X	4.59	0	4	1.15	4.25	250	12,440
HALDQ.X	0.15	0.02	0.14	0.16	23	7,646	22.5	HALPQ.X	7.25	0		6.4	6.45	25	2,770
HALDE.X	0.05	0.01	0.05	0.06	13	4,060	25	HALPE.X	9.95	0		8.8	8.85	4	1,111
HALDR.X	0.03	0	0.01	0.03	8	5,784	27.5	HALPR.X	12.35	0	1	1.25	11.35	18	977
HALDF.X	0.01	1 0	N/A	0.02	20	8,399	30	HALPF.X	14.8	0	•	13.7	13.9	18	5,772
HALDS.X	0.04	1 0	N/A	0.04	1	1,698	32.5	HALPS.X	15.5	0	•	16.2	16.4	20	150
HALDG.X	0.08	1 0	N/A	0.04	2	1,470	35	HALPG.X	18.93	0	•	18.7	18.9	5	514
HALDT.X	0.02	1 0	N/A	0.04	9	604	37.5	HALPT.X	20.59	0	2	21.2	21.35	40	151
HALDH.X	0.02	1 0	N/A	0.03	10	1,593	40	HALPH.X	20.6	0	2	23.7	23.85	10	139
HALDV.X	0.02	1 0	N/A	0.02	4	2,805	42.5	HALPV.X	26.1	0	2	26.2	26.4	752	311
HALDI.X	0.02	1 0	N/A	0.02	1	623	45	HALPI.X	28.6	0	2	28.7	29	152	0
HALDW.X	0.02	1 0	N/A	0.02	1	245	47.5	HALPW.X	31.1	0	(31.2	31.4	52	13
HALDJ.X	0.02	1 0	N/A	0.02	7	733	50	HALPJ.X	24.55	0	(33.7	33.9	0	0
HALDX.X	0.04	1 0	N/A	0.02	10	324	52.5	HALPX.X	14.8	0	(36.2	36.4	0	0
HALDK.X	0.02	1 0	N/A	0.02	10	376	55	HALPK.X	19.1	0	(38.7	39	0	

HAL= \$16.36

Available expirations: Mar09, Apr09, Jul09, Oct09, Jan10, Jan11 2 front months, 2 LEAPS, quarterly cycle (*Jan cycle* for HAL).

Put-Call Parity

$$C - P = Se^{-dT} - Ke^{-rT}$$

Put-call parity holds for American options which are ATM, to within reasonable approximation.

CALLS			PUTS		(C-P	P+K*(1-r*40/252))/S d	_imp
HALDC.X	2.3	2.33	15 HALPC.X	1.09	1.11	0.988473167	7.26%
HALDP.X	1.09	1.11	17.5 HALPP.X	2.36	2.37	0.989451906	6.65%

Hal pays dividend of 9 cents at the end of Feb, May, Aug, Nov

There are no ex-dividend dates between now and April 20, 2009.

Option markets give an implied cost of carry for the stock (implied forward price), which may be different from the nominal cost of carry. This is due to stock-loan considerations.

DIA Options Apr 18, 2009

Symbol	Last		Change	Bid	A	Ask	Volume	OpenInt	STRIKE	Symbol	Last	Change	Bid	Ask		Volume	Open Int
DIHDX.X	N/A		(0	18.1	18.2	C			DIHPX.X	0.37		0.1		0.19	18	245
DIHDY.X		21	(0	17.3	17.4	2			DIHPY.X	0.39	0	0.1	7	0.22	105	370
DIHDZ.X		16.3	(0	16.3	16.4	1	93	52	DIHPZ.X	0.26	0.22	0.23	3	0.26	7	225
DIHDA.X	N/A			0	15.45	15.55	C	0	53	DIHPA.X	0.32	0.26	0.28	3	0.31	5	68
DIHDB.X	N/A			0	14.25	14.35	C	0	54	DIHPB.X	0.4	0.24	0.3	4	0.37	4	392
DIHDC.X	1	1.94	(0	13.45	13.55	4	14	55	DIHPC.X	0.42	0.38	0.4	1	0.44	25	765
DIHDD.X	1	2.35	0.1	7	12.55	12.65	40	22	56	DIHPD.X	0.51	0.46	0.49	9	0.52	20	870
DIHDE.X		10.3	0.4	7	11.6	11.75	10	48	57	DIHPE.X	0.61	0.53	0.59	9	0.62	72	414
DIHDF.X		8.6	(0	10.75	10.85	2	202	58	DIHPF.X	0.73	0.53	0.7	1	0.73	32	689
DIHDG.X		8.4	(0	9.85	9.95	33	3 211	59	DIHPG.X	0.86	0.54	0.83	3	0.87	18	658
DIHDH.X		8.4	1.3	5	9	9.1	48	206	60	DIHPH.X	1	0.75		1	1.02	165	11,734
DIJDI.X		7.7	1.2	2	8.15	8.3	1	162	61	DIJPI.X	1.21	0.75	1.1	7	1.2	61	510
DIJDJ.X		7.2	0.8	8	7.4	7.45	34	228	62	DIJPJ.X	1.43	0.9	1.38	3	1.4	41	916
DIJDK.X		6.7	1.6	5	6.6	6.7	137	282	63	DIJPK.X	1.65	0.94	1.6	1	1.63	108	1,347
DIJDL.X		6	1.0		5.9	5.95	60			DIJPL.X	1.93		1.89		1.91	305	1,138
DIJDM.X		5.25	1.4	1	5.2	5.25	102	825		DIJPM.X	2.27		2.19		2.21	583	1,735
DIJDN.X		4.55	1.3	2	4.5	4.6	69	1,142	66	DIJPN.X	2.64	1.21	2.5	2	2.56	213	1,919
DIJDO.X		3.96	1.2	5	3.9	4	134			DIJPO.X	3.05		2.9		2.95	450	2,115
DIJDP.X		3.4	1.0		3.35	3.4	343			DIJPP.X	3.46		3.5		3.4	217	2,505
DIJDQ.X		2.85	0.9	1	2.84	2.87	168	1,709	69	DIJPQ.X	3.8	1.85	3.8	3	3.9	116	1,688
DIJDR.X		2.41	0.8	2	2.37	2.4	399	9,896		DIJPR.X	4.54	1.61	4.3		4.4	144	2,829
DIJDS.X		1.92	0.6	4	1.94	1.98	117	,		DIJPS.X	5.14		4.9		5	51	3,035
DIJDT.X		1.58	0.58		1.57	1.6	262	,		DIJPT.X	5.6		5.5		5.65	7	2,528
DIJDU.X		1.27	0.8	5	1.25	1.29	215	,		DIJPU.X	6.28	2.37	6.2		6.35	22	1,580
DIJDV.X		1	0.4		0.99	1.02	235	,		DIJPV.X	7.1	2.05	6.9		7.05	2	1,253
DIJDW.X		0.78	0.3	3	0.77	0.79	182			DIJPW.X	7.8		7.7		7.85	29	1,292
DIJDX.X		0.6	0.10		0.58	0.61	26	,		DIJPX.X	10.3		8.5		8.65	29	1,008
DIJDY.X		0.44	0.14	4	0.44	0.47	27	,		DIJPY.X	9.5	2.36	9.4		9.5	5	943
DIJDZ.X		0.32	0.0		0.32	0.35	81	,		DIJPZ.X	10.65		10.3		10.4	4	1,290
DIJDA.X		0.26	0.09		0.24	0.26	140	,		DIJPA.X	11.83		11.		11.3	3	1,006
DIJDB.X		0.19	0.0		0.17	0.2	48	,		DIJPB.X	13.57		12.1		2.25	3	1,352
DIJDC.X		0.11		0	0.12	0.15	S	-, -		DIJPC.X	15.13		13.		13.2	26	5,989
DAVDD.X		0.1		0	0.09	0.12	92	,		DA VPD.X			14.		4.45	10	1,184
DAVDE.X		0.07	0.0		0.06	0.09	3			DAVPE.X			15.3		15.4	1	1,016
DAVDF.X		0.05	(0	0.05	0.08	23	•		DAVPF.X			16.3		16.4	3	843
DAVDG.X		0.04		0	0.03	0.07	11	,		DAVPG.X			17.		17.4	30	496
DAVDH.X		0.02		0	0.02	0.06	3			DAVPH.X			18.2		18.4	1	91
DAVDI.X		0.04		O N/A		0.05	10			DAVPI.X	21.78		19.2		9.35	3	305
DAVDJ.X		0.04		O N/A		0.05	8			DAVPJ.X	19.5		20.2		0.35	10	124
DAVDK.X		0.04		1 N/A		0.04	30			DAVPK.X			21.2		1.35	15	56
DAVDL.X		0.04		A/N C		0.04	30	_		DA VPL.X	16.95		22.		2.35	5	58
DAVDM.X		0.03	(A/N C		0.04	4	787	91	DAVPM.X	17.5	0	23.	2 2	3.35	2	78

Implied Dividend Yield for DIA April 18, 2009 Options

CALLS PUTS					(C-P+K*(1-r*40/252))/S d_imp			
DIJDP.X	3.35	3.4	68 DIJPP.X	3.3	3.4	0.995267636	2.98%	
DIJDQ.X	2.84	2.87	69 DIJPQ.X	3.8	3.9	0.994951292	3.18%	

Dividend Yield from Yahoo.com= 3.30%

Actual payments are approx 15 cents / month ~ \$1.80 ~ 2.60%

Step1 in understanding options markets: find the implied dividend from the market.

If the implied dividend is different from the nominal dividend then

- -- check for HTB if $d_{imp} > d_{nom}$
- -- check for dividend reductions if $d_{\it imp} < d_{\it nom}$

Calculation of d {nom}, d {imp}

$$d_{nom} = \frac{-1}{T} \ln \left(\frac{S - \sum_{i=1}^{n} D_i e^{-rT_i}}{S} \right)$$
 Dividend payment dates

$$d_{imp} = \frac{-1}{T} \ln \left(\frac{C_{atm} - P_{atm} + K_{atm} e^{-rT}}{S} \right)$$

Implied Volatility HAL April 09

CALLS								PUTS				
Symbol	Last Bid	Ask	IVOL	. D	elta	Strike	Symbol	Last	Bid As	sk IV	OL D	elta
HALDU.X	8.5	8.65	8.85 na		1.00	7.5	HALPU.X	0.05	0.01	0.06	211	0.00
HALDB.X	5.2	6.3	6.35	141	0.99	10	HALPB.X	0.15	0.1	0.12	144	-0.01
HALDZ.X	4.2	4.05	4.15	108	0.94	12.5	HALPZ.X	0.4	0.39	0.4	109	-0.05
HALDC.X	2.31	2.3	2.33	92.4	0.76	15	HALPC.X	1.06	1.09	1.11	93	-0.24
HALDP.X	1.11	1.09	1.11	85.1	0.36	17.5	HALPP.X	2.42	2.36	2.37	85	-0.63
HALDD.X	0.43	0.42	0.44	82.4	0.09	20	HALPD.X	4.59	4.15	4.25	84	-0.90
HALDQ.X	0.15	0.14	0.16	89.3	0.02	22.5	HALPQ.X	7.25	6.4	6.45	90	-0.97

DIA Volatility Surface, March 10 2009, 12:00 noon

These curves move and provide trading opportunities.

Many different trades possible

- -- Carry trades using options (implied dividend vs. actual dividend, HTB)
- -- Volatility surface trades (non-directional): trading different strikes on the same underlying asset
- -- historical vol vs implied vol
- -- Relative-value trades across names (non-directional)
 - -- single-name option versus fair-value
 - -- dispersion trading (index option versus components)
- -- Directional volatility trades (long vol/ short vol, etc)

Skewness

- -- For equities, the implied volatility curve is decreasing in the strike price around ATM
- -- The effect is more pronounced for indices and etfs than for single names

Mechanics of option trading

- -- Open position (long or short) and trade the stock so as to be delta-neutral.
- -- Adjust the Delta of the option as the stock/option prices move

$$dC = \frac{\partial C}{\partial t}dt + \frac{\partial C}{\partial S}dS + \frac{\partial C}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^{2} C}{\partial S^{2}}dS^{2} + \dots$$

$$P \& L \approx dC - \Delta dS + \Delta S r dt - \Delta S d dt - r C dt$$

$$= \left(\frac{\partial C}{\partial S} - \Delta\right) dS + \frac{\partial C}{\partial \sigma} d\sigma + \frac{S^2}{2} \frac{\partial^2 C}{\partial S^2} \left(\frac{dS^2}{S^2} - \sigma^2 dt\right)$$

$$- \left(\frac{\partial C}{\partial S} - \Delta\right) S (r - d) dt$$

$$+ \left(\frac{\partial C}{\partial t} + \frac{S^2 \sigma^2}{2} \frac{\partial^2 C}{\partial S^2} + (r - d) S \frac{\partial C}{\partial S} - r C\right) dt$$

$$\approx \frac{\partial C}{\partial \sigma} d\sigma + \frac{S^2}{2} \frac{\partial^2 C}{\partial S^2} \left(\frac{dS^2}{S^2} - \sigma^2 dt\right)$$

Book-keeping: profit/loss from a delta-hedged option position

$$P/L = \theta \cdot (n^2 - 1) + V \cdot d\sigma$$

or

$$P/L = \frac{1}{2}\Gamma \cdot \left(\frac{(dI)^2}{I^2} - \sigma^2 dt\right) + V \cdot d\sigma$$

1-day P/L for Long Call/Short Stock

(Constant volatility=16%)

$$P/L \approx \theta \cdot (n^2 - 1)$$

$$\theta$$
 = daily time - decay, $n = \frac{\text{percent index change}}{\text{expected daily volatility}}$

Assuming an implied volatility drop of 1%

Vol=15%

3.80 loss if stock does not move and volatility drops 1%

A closer look at the profit-loss due to a change in volatility

1% move in vol => 8% move in premium for a 6m ATM option

Measuring the Risk of a Portfolio (assuming delta neutrality)

Portfolio of options on N stocks n_{ij} contracts of option with underlying stock i, expiration T_i , volatility σ_{ij}

$$\Delta\Pi = \sum_{ij} n_{ij} \left(C(S_i + \Delta S_i, T_j, K_{ij}, \sigma_{ij} + \Delta \sigma_{ij}) - C(S_i, T_j, K_{ij}, \sigma_{ij}) - \frac{\partial C_{ij}}{\partial S_i} \Delta S_i \right)$$

$$= \sum_{ij} n_{ij} \left(C(S_i (1 + R^{S_i}, T_j, K_{ij}, \sigma_{ij}) + R^{\sigma_{ij}}) - C(S_i, T_j, K_{ij}, \sigma_{ij}) - \frac{\partial C_{ij}}{\partial S_i} S_i R^{S_i} \right)$$

Need to define a joint distribution of stock returns and volatility returns to calculate statistics of PNL

Factor Model

Consider only parallel vol shifts and use 30-day ATM volatilities

$$R^{S_i} = \sum_{k=1}^m \beta_{ik} F_k + \mathcal{E}_i$$

$$R^{\sigma_i} = \sum_{k=1}^m \gamma_{ik} F_k + \varsigma_i$$

Extract factors from PCA of augmented matrix

$$C_{ij} = \left\langle R^{S_i} R^{S_j} \right\rangle, \quad D_{ij} = \left\langle R^{S_i} R^{\sigma_j} \right\rangle, \quad E_{ij} = \left\langle R^{\sigma_i} R^{\sigma_j} \right\rangle$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{C} & \mathbf{D} \\ \mathbf{D}' & \mathbf{E} \end{pmatrix} \qquad \mathbf{M} \in R^{2N \times 2N}$$

Alternative Approach using ETFs

$$\frac{d\sigma_{i}}{\sigma_{i}} = \beta_{i} \frac{dS_{i}}{S_{i}} + \gamma_{i} \frac{d\sigma_{ETF(i)}}{\sigma_{ETF(i)}} + \varsigma_{i},$$

ETF(i) = ETF associated with stock i

Model the ATM volatility returns as a function of the stock return and changes in the volatility of the sector.

Conjecture: there are fewer systematic factors that explain volatility returns than in the case of stock returns. (m<20)

Possible project: do the PCA on the Nasdaq 100 optionable stocks analyzing the matrix **M** for this case.

Modeling the Volatility Skew

$$x = \ln(K/S)$$

$$\sigma_{imp}(x,t) = \sigma_{imp}(0,t) \cdot (1 + \gamma x + \delta x^2 + ...)$$

Proposition: Under reasonable assumptions on price process (stoch. vol),

If
$$\frac{d\sigma_{atm}}{\sigma_{atm}} = \beta \frac{dS}{S} + \varepsilon$$
Then
$$\gamma = \frac{\beta}{2}$$

Then
$$\gamma = \frac{\beta}{2}$$

Evolution of the slope of the 30-day implied volatility curve, 1996-2004

Evolution of ratio [slope/leverage coefficient] The ``roaring 90's''!

iots250 1.0 0.9 0.8 0.70.6 Fair value line (SV) $\gamma = \beta/2$ 0.4 01JAN97 01JUL97 01JAN98 01JUL98 01JAN99 01JUL99 01JAN00 01JUL00 01JAN01 01JUL01 01JAN02 01JUL02 01JAN03 01JUL03 01JAN04 01JUL04 01JAN05 date Avellaneda & Lee, 2005