Partial Derivatives of Vector-valued Functions

Vector-valued functions. Consider a general vector-valued function $f: \mathbb{R}^m \to \mathbb{R}^n$:

$$f(x) = \begin{pmatrix} f^{1}(x) \\ f^{2}(x) \\ \vdots \\ f^{m}(x) \end{pmatrix} \text{ where } x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

and $f^i: \mathbb{R}^n \to \mathbb{R}$ for all i = 1, ..., m. These real-valued functions $f^1, ..., f^m$ are called components of the vector-valued function f.

As an example, you could think of the constraint function G(x).

Partial derivatives of f. As stated in the textbook, we adopt the convention that when the argument of a function is a column vector, the vector of partial derivatives is a row vector, and vice versa.¹

1. Differentiate the component function f^i with respect to x.

$$f_x^i(x) = \begin{pmatrix} f_1^i(x) & \dots & f_n^i(x) \end{pmatrix}$$

The subscript j denotes the partial derivative with respect to x_j for j = 1, ..., n.

2. Differentiate the vector-valued function f with respect to x_i .

$$f_j(x) = \begin{pmatrix} f_j^1(x) \\ f_j^2(x) \\ \vdots \\ f_j^m(x) \end{pmatrix}$$

3. Differentiate the vector-valued function f with respect to x.

$$f_x(x) = \begin{pmatrix} f_x^1(x) \\ f_x^2(x) \\ \vdots \\ f_x^m(x) \end{pmatrix} = \begin{bmatrix} f_1^1(x) & \dots & f_n^1(x) \\ f_1^2(x) & \dots & f_n^2(x) \\ \vdots & \ddots & \vdots \\ f_1^m(x) & \dots & f_n^m(x) \end{bmatrix}.$$

¹Other books may adopt differnt conventions.

Examples.

Example 1. Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}^4$:

$$f(x) = \begin{pmatrix} f^{1}(x) \\ f^{2}(x) \\ f^{3}(x) \\ f^{4}(x) \end{pmatrix} = \begin{pmatrix} x_{1}^{2} + x_{2}^{3} \\ x_{1} + x_{2} \\ x_{1}^{2} - x_{2}^{2} \\ 2x_{1}x_{2} \end{pmatrix}, where \ x = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

We could calculate $f_x^1(x)$, $f_1(x)$ and $f_x(x)$.

(i) f^1 is a real-valued function and x is a vector, so $f_x^1(x)$ belongs to case 1.

$$f_x^1(x) = \begin{pmatrix} f_1^1(x) & f_2^1(x) \end{pmatrix} = \begin{pmatrix} 2x_1 & 3x_2^2 \end{pmatrix}$$

(ii) f is a vector-valued function and x_1 is a scalar, so $f_1(x)$ belongs to case 2.

$$f_1(x) = \begin{pmatrix} f_1^1(x) \\ f_1^2(x) \\ f_1^3(x) \\ f_1^4(x) \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 1 \\ 2x_1 \\ 2x_2 \end{pmatrix}$$

(iii) f is a vector-valued function and x is a vector, so $f_x(x)$ belongs to case 3.

$$f_x(x) = \begin{bmatrix} f_1^1(x) & f_2^1(x) \\ f_1^2(x) & f_2^2(x) \\ f_1^3(x) & f_2^3(x) \\ f_1^4(x) & f_2^4(x) \end{bmatrix} = \begin{bmatrix} 2x_1 & 3x_2^2 \\ 1 & 1 \\ 2x_1 & -2x_2 \\ 2x_2 & 2x_1 \end{bmatrix}.$$

Example 2. Consider the following function $f: \mathbb{R}^n \to \mathbb{R}$:

$$f(x) = -wx$$
, where $w = \begin{pmatrix} w_1 & \dots & w_n \end{pmatrix}$ and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

We want to calculate f_x and f_{xw} .

Solution. f is a real-valued function and x is a vector, so $f_x(x)$ belongs to case 1. Then we have

$$f_x(x) = \begin{pmatrix} f_1(x) & \dots & f_n(x) \end{pmatrix} = \begin{pmatrix} -w_1 & \dots & -w_n \end{pmatrix}$$

 $f_x(x)$ is a vector-valued function and w is a vector, so $f_{xw}(x)$ belongs to case 3. Here, the function f_x is a row vector and w is also a row vector. So by the convention we adopt, the rows and columns in case 3 need to be switched.

$$f_{xw}(x) = \begin{pmatrix} \frac{\partial(-w_1)}{\partial w} & \dots & \frac{\partial(-w_n)}{\partial w} \end{pmatrix} = \begin{bmatrix} \frac{\partial(-w_1)}{\partial w_1} & \dots & \frac{\partial(-w_n)}{\partial w_1} \\ \frac{\partial(-w_1)}{\partial w_2} & \dots & \frac{\partial(-w_n)}{\partial w_2} \\ \vdots & \ddots & \vdots \\ \frac{\partial(-w_1)}{\partial w_n} & \dots & \frac{\partial(-w_n)}{\partial w_n} \end{bmatrix} = \begin{bmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{bmatrix} = -I.$$

Remark. $F_{xw}(x^*, w) = -I$ in Example 8.4 Part I follows similarly.

Remark. In some books, they adopt the convention that vectors are viewed as column matrices. So the vector-valued function is written as $f: \mathbb{R}^m \to \mathbb{R}^n$:

$$f(x) = \begin{pmatrix} f^1(x) & f^2(x) & \dots & f^m(x) \end{pmatrix} \text{ where } x = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}.$$