Stock Return Prediction with CNN and Attention-based LSTM Models

LIU Xiaolin ZHANG Haoxiang ZHANG Puming

Underperform

- 19% made positive abnormal returns
- Annually underperform 10.3%
- What about computer?

Overview

Preprocessing **Data**

Deep Le Models

Deep Learning

Model Evaluation

04

Conclusion

O1 Preprocessing

Data Collection Normalization Pattern Recognition

Data Collection

- Download information from Bloomberg
- Focus on TESLA
- 6th or 10th day return as label

$$r_{i} = \frac{P_{(close,i)} - P_{(close,i-1)}}{P_{(close,i-1)}}$$

Data Collection

10 Variables

5 Fundamental5 Technical Indicators

Bloomberg

5+

Years

Starting from **2017**Most recent data

Preprocessing

Deep Learning Models

Evaluation

Pattern Recognition

Technical Patterns

- Intersection of MA(5) and MA(25)
- Golden cross & death cross

PreprocessingDeep Learning ModelsEvaluationConclusion

Data Collection

10 Variables

5 Fundamental5 Technical Indicators

Bloomberg

5+

Years

Starting from **2017**Most recent data

Preprocessing

Deep Learning Models

Evaluation

Data Collection

12 Features

5 Fundamental5 Technical Indicators2 Technical Patterns

Bloomberg

5+ Years

Starting from **2017**Most recent data

Preprocessing Deep Learning Models Evaluation Conclusion

Normalization

Min-Max Normalization

- The largest range: 150,048,598,784
- The smallest: 0.285

$$\hat{x} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Bound between [0,1]

Deep Learning Models

Convolutional Neural Network (CNN) Attention-based Long Short-Term Memory (LSTM)

CNN + MLP

- 5 days or 10 days as one observation
- $(1353 n_days, n_days, 5)$ input tensor flow

- Convo | Flatten | Dense
- MSE: 0.0004

Attention-Base LSTM

Long-Short Term Memory Model

- Better at handling long-term dependencies due to their ability to remember information for extended periods of time
- less susceptible to the vanishing gradient problem with the use of LSTM cell, which helps to preserve information over long sequences

Improvement: Attention Mechanism

 Inspired by biological phenomena and human perception: Instead of treating all information with equal importance, we focuses more on those important

Extract key features and ignore the redundant features

Model Architecture

Soft Attention

$$e_t = tanh(W_a[x_1, x_2, ..., x_T] + b)$$
 $\alpha_t = \frac{exp(e_t)}{\sum_{k=1}^{T} exp(e_k)}$

 W_{α} : Weight matrix reflecting the importance of each feature (trainable)

 α_t : Resulting weights

- Activation function: ReLU
- Optimization: Adam; Loss function: mean squared error
- Model Architecture: Attention LSTM(32) Dense(64) Dense(32) Dense(1)

Model Performance

MSE

Pure LSTM 0.0025 Attention LSTM 0.00049

Back Testing

Annualized return: 106%

Attention Mechanism improved the performance

Preprocessing

Deep Learning Models

Evaluation

Conclusion

Time Series Model

Build GARCH(1, 1) Model for Return

$$r_{t} = \mu + \epsilon_{t}$$

$$\epsilon_{t} = \sigma_{t} e_{t}$$

$$\sigma_{t}^{2} = \omega + \alpha \epsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

$$e_t \sim N(0,1)$$

Problem

The GARCH model hardly changes
Cannot follow the variation of stock return

O3 Model Evaluation

Trading Strategy

Intraday Long Only

Use previous 5 days' information to predict 6th day's return

If predicted return > 3%, go long position at Open price and close position at close price

Back Testing

Initial Capital: \$100,000

Trade exposure: 60% cash

Commission fee: 0.01%

Evaluation Criteria

Portfolio value Win rate

Preprocessing Deep Learning Models Evaluation Conclusion

04 Conclusion

Conclusion

Attention-LSTM

CNN

GARCH

Preprocessing Deep Learning Models Evaluation Conclusion

Q & A

Thank you!