Esempio di applicazione dell'RSA

Alice deve inviare a Bob il proprio indirizzo, ma deve fare in modo che Lia (che controlla il canale di comunicazione) non ne venga a conoscenza. A questo proposito Alice e Bob decidono di utilizzare l'algoritmo RSA per proteggere la

loro comunicazione.

Mittente: Alice Destinatario: Bob

1. Generazione delle chiavi

Bob deve generare le chiavi di cifratura (k_{pub}) e decifratura (k_{pri}).

Scegliamo p = 5 e q = 11 (per semplicità prendiamo dei numeri piccoli)

$$n = p \cdot q = 5 \cdot 11 = 55$$

 $V = (p - 1) \cdot (q - 1) = 4 \cdot 10 = 40$

Determiniamo N_{pri} che non abbia fattori comuni con V, quindi con 40. Prendiamo ad esempio $N_{pri}=7$.

Determiniamo N_{pub} tale che $[(N_{pri} \cdot N_{pub}) \ (mod \ V)] = 1$ che equivale a cercare un multiplo di V che soddisfi la relazione seguente $[(n \cdot V + 1) \ (mod \ N_{pri})] = 0$ che mi permette di calcolare il valore di N_{pub} come $N_{pub} = (n \cdot V + 1)/N_{pri}$

Nel nostro caso:

$$\begin{split} & \left[(7 \cdot N_{\text{pub}}) \ (\text{mod } 40) \right] = 1 \\ & \text{ossia} \left[(n \cdot 40 + 1) \ (\text{mod } 7) \right] = 0 \\ & \text{ossia} \ n \cdot 40 + 1 = 7 \cdot N_{\text{pub}} \ \text{cioè} \ N_{\text{pub}} = (n \cdot 40 + 1)/7 \\ & \text{dove } n \ \text{\`e} \ \text{un qualunque numero intero positivo} \\ & \text{Se prendiamo } n = 4 \text{, allora } N_{\text{pub}} = 23 \end{split}$$

La coppia di chiavi generata da Bob è quindi la seguente:

$$K_{pub}(55,23)$$
 $K_{pri}(55,7)$

2. Cifratura del messaggio

Alice deve inviare il suo indirizzo a Bob; il messaggio è quindi: "via Roma". Ogni lettera è tradotta in binario (per esempio in codice ASCII).

V	01110110			
i	01101001			
a	01100001			
	00100000			
R	01010010			
О	01101111			
m	01101101			
a	01100001			

Messaggio in chiaro

La sequenza di bit è divisa in blocchi di g bit, in modo che g sia il più piccolo numero tale che $2^g \ge 55$; in questo caso g = 6.

Divisione in blocchi di 6 bit:

Poiché l'ultimo blocco in questo caso è di soli 4 bit (0001) aggiungiamo due zeri davanti (000001).

Blocco	In decimale	Cifratura del blocco con chiave (55,23)	Blocco cifrato in decimale	Blocco cifrato in binario	
011101	29	29 ²³ mod 55	24	011000	
100110	38	$38^{23} \mod 55$	37	100101	
100101	37	37 ²³ mod 55	53	110101	
100001	33	33 ²³ mod 55	22	010110	
001000	8	8 ²³ mod 55	17	010001	
000101	5	5 ²³ mod 55	15	001111	
001001	9	9 ²³ mod 55	14	001110	
101111	47	47 ²³ mod 55	38	100110	
011011	27	27 ²³ mod 55	48	110000	
010110	22	22 ²³ mod 55	33	100001	
000001	1	1 ²³ mod 55	1	000001	

Messaggio cifrato

3. Decifratura del messaggio

Messaggio cifrato

Blocco cifrato in binario	Blocco cifrato in decimale	Decifratura del blocco con chiave (55,7)	Blocco decifrato in decimale	Blocco decifrato in binario
011000	24	24 ⁷ mod 55	29	011101
100101	37	$37^7 \mod 55$	38	100110
110101	53	53 ⁷ mod 55	37	100101
010110	22	22 ⁷ mod 55	33	100001
010001	17	17 ⁷ mod 55	8	001000
001111	15	15 ⁷ mod 55	5	000101
001110	14	14 ⁷ mod 55	9	001001
100110	38	38 ⁷ mod 55	47	101111
110000	48	48 ⁷ mod 55	27	011011
100001	33	33 ⁷ mod 55	22	010110
000001	1	1 ⁷ mod 55	1	000001

Blocco decifrato

01110110	01101001	01100001	00100000	01010010	01101111	01101101	01100001
V	i	а		R	0	m	а

NOTA: Nell'ultimo ottetto, sono stati tolti 2 bit.