• NMOS Cascode:

- > All Ms perfectly matched
- > All bodies connected to ground
 - M_1 - M_2 does not have body effect, but M_3 - M_4 does!
 - Makes hand analysis quite tedious
 - \Rightarrow Neglect body effect
- \triangleright All Ms operate with same V_{GS}
- ightharpoonup Define $\Delta V = V_{GS} V_{TN} = V_{GT}$
 - $\Delta V = Gate Overdrive$

> The reference current:

$$I_{REF} = \frac{V_{DD} - 2V_{GS}}{R} = \frac{k_{N}}{2}V_{GT}^{2} \quad (neglecting \ \lambda)$$

$$\gt V_{GS}$$
 and I_{REF} can be found $\Rightarrow I_0 = I_{REF}$

$$V_{G1} = V_{G2} = V_{GS} = V_{TN} + \Delta V$$

$$V_{G3} = V_{G4} = 2V_{GS} = 2(V_{TN} + \Delta V)$$

$$\triangleright V_{S4} = V_{D2} = V_{TN} + \Delta V$$

$$\Rightarrow$$
 $V_{GS2} = V_{DS2}$

$$\Rightarrow M_2$$
 can never enter linear region

$$\Rightarrow V_{0,min} = V_{DS2} + V_{DS4} = V_{TN} + 2\Delta V$$

- This can be quite significant, since V_{TN} is added to ΔV
 - Assuming $\Delta V \sim 0.1~V$ and $V_{TN} \sim 0.7~V$, $V_{0,min} \sim 0.8~V$, which is very large
 - This is one of the drawbacks of this simple cascode circuit (modified cascode doesn't have this problem)
- ► If V_0 drops below ($V_{TN} + 2\Delta V$), first M_4 enters linear region, and circuit performance starts to get affected
- For further drop in V_0 , M_2 also enters linear region, and the current mirror collapses!

\succ Calculation of R_0 :

Exact Equivalent

■ M_1 and M_3 diode-connected $\Rightarrow 1/g_{m1}$ and $1/g_{m3}$

• The left part of the circuit has no source

$$\Rightarrow$$
 $v_2 = 0 \Rightarrow g_{m2}v_2 = 0$

- ⇒ Leads to the simplified
 equivalent (now should
 look very familiar!)
- **By inspection**:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{02})$$
$$\approx g_{m4}r_{02}r_{04}$$

Can be huge!

Simplified Equivalent

• Double Cascode:

- > Can be implemented in both BJT & MOS
- ► In npn Double Cascode, another pair Q_5 - Q_6 stacked upon Q_3 - Q_4
 - Find $V_{0,min}$ and R_0
- ► In NMOS Double Cascode, another pair M_5 - M_6 stacked upon M_3 - M_4
 - Find $V_{0,min}$
 - $R_0 \approx g_{m6} r_{06} R_0 (R_0 \approx g_{m4} r_{02} r_{04})$
- \blacktriangleright Hence, show that double cascode in BJT offers absolutely no advantage in terms of R_0

- Low Value Current Source:
 - > Current thrust: Low-power circuits
 - ⇒ Increase in battery life
 - Figure 1 If bias current can be reduced from mA to μA, for the same power supply voltage, power drawn reduces by three orders of magnitude!
 - Normal CMs can also produce bias current in μ A range, however, the required resistance will be huge \Rightarrow uneconomical for ICs
 - Most common: Widlar Current Source
 - After its inventor Bob Widlar (father of op-amp)