	مسابقة في مادة الفيزياء
الاسم:	ما م
• [المدة: ساعة واحدة
ال، قم •	1221g -2021
,حر ے ،	

Cette épreuve est constituée de trois exercices obligatoires répartis sur deux pages.

<u>Les calculatrices non programmables sont autorisées.</u>

Premier exercice (6 pts) Détermination de la distance focale d'une lentille convergente

Le but de cet exercice est de déterminer, par construction géométrique, la distance focale d'une lentille (L). Le schéma ci-dessous représente, à l'échelle réelle, un objet lumineux AB, son image virtuelle A'B' donnée par (L) et l'axe optique x'x de (L).

1) Nature de (L)

 $\overline{(L)}$ est une lentille convergente. Pourquoi ?

2) Position de (L)

- a) Le centre optique O de (L) est l'intersection de la droite BB' avec l'axe optique x'x. Pourquoi?
- **b)** Reproduire, sur un papier millimétré et à l'échelle réelle, le schéma ci-dessus. Représenter alors, sur cette reproduction, la lentille (L).

3) Distance focale de (L)

- a) Un rayon issu de B et parallèle à l'axe optique rencontre la lentille au point I. Tracer, en le justifiant, la marche de ce rayon.
- **b)** Le rayon émergent correspondant à BI rencontre l'axe optique en un point particulier. Que représente ce point pour (L) ?
- c) En déduire la distance focale de (L).

Deuxième exercice (7 pts) Étude d'un circuit électrique

Lors d'une séance de laboratoire, on réalise le montage de la figure ci-contre dans lequel :

- (G) est un générateur qui maintient entre ses bornes une tension constante U_{PN} = 12 V.
- (A) est un ampèremètre de résistance négligeable.
- (R_1) est un conducteur ohmique de résistance $R_1 = 30 \Omega$.
- (R₂) est un conducteur ohmique de résistance R₂.
- (K) est un interrupteur.

(K) étant fermé, l'ampèremètre (A) affiche 0,6 A.

1) Détermination de la valeur de U_{BC}

- a) La tension aux bornes de (A) est nulle. Pourquoi?
- **b)** La tension aux bornes de (K) est nulle. Pourquoi?
- c) La tension U_{BC} vaut 12 V. Justifier.

2) Détermination de la valeur de R₂

- a) Déterminer la valeur de l'intensité I_1 du courant traversant (R_1) .
- **b)** En déduire la valeur de l'intensité I₂ du courant traversant (R₂).
- c) Montrer que la valeur de R_2 est 60Ω .

3) Résistance équivalente

Les deux conducteurs ohmiques (R_1) et (R_2) peuvent être remplacés par un conducteur ohmique (R) unique de résistance R, de façon que (A) affiche la même valeur I = 0,6 A.

- a) Parmi les valeurs suivantes (90 Ω ; 50 Ω ; 20 Ω), laquelle correspond à R? Pourquoi?
- b) Un appareil permet de mesurer directement la valeur de R. Nommer cet appareil.

Troisième exercice (7 pts) Force pressante

Un récipient contient une quantité d'eau de hauteur h = 30 cm. Au fond de ce récipient, on place une pièce de métal d'épaisseur négligeable et de surface S = 10 cm². Le récipient est posé sur une table horizontale comme le montre la figure ci-contre. L'eau dans le récipient est au repos.

On donne:

- pression atmosphérique : $P_{atm} = 75 \text{ cm de mercure}$;

masse volumique du mercure : $\rho_{Hg} = 13600 \text{ kg/m}^3$;

- masse volumique de l'eau : $\rho_{eau} = 1000 \text{ kg/m}^3$;

- g = 10 N/kg.

1) Pression à la surface de l'eau

- a) La surface libre de l'eau dans le récipient est plane et horizontale. Pourquoi ?
- b) Calculer, en pascals, la valeur de la pression en un point A de cette surface.

2) Pression au fond du récipient

- a) Calculer la pression exercée par l'eau en un point B de la pièce de métal.
- **b)** En déduire la valeur de la pression totale subie par B.

3) Représentation de la force pressante

- a) Calculer la valeur, F, de la force pressante \vec{F} subie par la pièce de métal.
- **b)** Donner la direction et le sens de \vec{F} .
- c) Représenter \vec{F} , au point B, à l'échelle : 35 N \leftrightarrow 1 cm.