Collaborative Filtering

Learning Portfolio 7

Collaborative Filtering

Collaborative filtering is a technique used in Recommender Systems, so that past similar preferences of users inform future preferences. It works by displaying the preferences of each user in a vector. The similarity between users is measured as cosine similarity. Computed cosine similarity in turn can be used as weights for the ratings of other users to predict a rating for a certain user.

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	0	3	0	3	0
User 2	4	0	0	2	0
User 3	0	0	3	0	0
User 4	3	0	4	0	3
User 5	4	3	0	4	0

Collaborative Filtering: Limitations and Mitigations

Limitation	Possible Mitigation		
Grey Sheep Problem	Prediction of ratings using metadata		
Black Sheep Problem	Prediction of ratings using metadata		
Matrix sparsity	Predict ratings based on actions taken (e.g. views)		
Matrix size	Batch training, Gradient accumulation		
Subgroup overrepresentation	Monitoring		
Bootstrapping	Use average rating for new user/item		

Building a collaborative filtering model

Building a collaborative filtering model from scratch

```
class DotProductBias(Module):
   def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user factors = Embedding(n users, n factors)
        self.user bias = Embedding(n users, 1)
        self.movie factors = Embedding(n movies, n factors)
        self.movie_bias = Embedding(n_movies, 1)
        self.v range = v range
   def forward(self, x):
        users = self.user factors(x[:,0])
        movies = self.movie factors(x[:,1])
        res = (users * movies).sum(dim=1, keepdim=True)
        res += self.user bias(x[:,0]) + self.movie bias(x[:,1])
        return sigmoid range(res, *self.y range)
model = DotProductBias(len(dls.classes['user']), len(dls.classes['title']), 50)
learn = Learner(dls, model, loss func=MSELossFlat())
learn.fit one cycle(5, 5e-3, wd=0.1)
```


Building a collaborative filtering model

Using fastAI classes

```
learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))
learn.fit_one_cycle(5, 5e-3, wd=0.1)
```

```
learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5), layers=[100,50]) learn.fit_one_cycle(5, 5e-3, wd=0.1)
```


Kontakt

Fabian Leuk

12215478 fabian.leuk@student.uibk.ac.at

