

					P	rinte	d Pa	ge: 1	of 2	,
				S	Subj	ect C	ode:	KE	E303	j
Roll No:										l

BTECH (SEM III) THEORY EXAMINATION 2021-22 **BASIC SIGNALS & SYSTEMS**

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO			
Q1(a)	(a) Define CT signals.						
Q1(b)	Define unit step, ramp and delta functions for CT						
Q1(c)	e) Define odd and even signal						
Q1(d)	Define line	ear and non-linear systems					
Q1(e)	Define time invariant and time varying systems						
Q1(f)	Define Static and Dynamic system						
Q1(g)	(g) Check whether the given system is causal and stable						
	y(n) = 3 x (n-2) + 3 x (n+2)						
Q1(h)	What is the Laplace transform of (a) e ^{-at} sin ωt u(t)						
Q1(i)							
	$y(t) = x^{2}(t)$. What are the frequency components in the output						
Q1(j)	Q1(j) Define the Fourier transform pair for continuous time signal.						

SECT	ION-B Attempt ANY THREE of the following Questions Marks (3X10=30)	CO					
Q2(a)	(i) Obtain the Fourier transform of $x(t) = e^{-at}u(t)$, $a > 0$.						
	(ii) Find the Laplace transform of signal u(t).						
	(iii) Find the Laplace transform of the signal.						
	$x(t) = -te^{-2t} u(t)$						
	(iv) List some properties of continuous-time Fourier transform						
Q2(b)	(i) What are the properties of convolution						
	(ii) Find the unit step response of the system given by						
	$h(t) = (1/RC) \cdot e^{-t/RC} u(t)$						
Q2(c)	(i) What is the transfer function of a system whose poles are at -0.3±j 0.4 and a zero at -0.2						
	(ii) Give the Existence of DTFT						
Q2(d)	Calculate the initial and final values of the functions $x_1(t)$, $x_2(t)$, whose Laplace transforms						
	are specified below:						
	(i) $X_1(s) = \frac{s+3}{s(s+1)(s+2)}$ with ROC R_1 : Re $\{s\} > 0$;						
	(ii) $X_2(s) = \frac{s+5}{s^3+5s^2+17s+13}$ with ROC R_2 : Re $\{s\} > -1$;						
Q2(e)	(i) What do you mean by state transition matrix? State and prove its properties						
	(ii) State and prove time shifting and differentiation properties of Z transform.						

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO				
Q3(a)	Determine if systems with the following impulse responses:							
	$(i) h(t) = \delta(t-2),$							
		$(t)-\delta(t-2),$						
	are invertible.							
- ` `	Calculate the inverse Laplace transform of right-sided sequences with the following transfer							
	functions:							
	V.(s) -	s+3						
	$A_1(3) = \frac{1}{3}$	$\frac{s+3}{s(s+1)(s+2)}$						

Printed Page: 2 of 2
Subject Code: KEE303
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 BASIC SIGNALS & SYSTEMS

Q4(a) Calculate the unilateral Laplace transform for the following functions:

(i) unit impulse function, x₁(t) = δ(t);
(ii) unit step function, x₂(t) = u(t)

Q4(b) Calculate the Fourier transform of the following functions:

(i) unit impulse sequence, x₁[k] = δ[k];
(ii) decaying exponential sequence, x₃[k] = p^ku[k] with | p| < 1.

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	Calculate the	he trigonometric CTFS coefficients of the periodic signal	x(t) defined	
	over one pe	eriod $T_0 = 3$ as follows:		
	x(t) =	$\begin{cases} t+1 & -1 \le t \le 1 \\ 0 & 1 < t < 2. \end{cases}$		
		x(t)		
Q5(b)	Calculate tl	he CTFS coefficients for the following signal		
	x(t) = 3	$+\cos\left(4t+\frac{\pi}{4}\right)+\sin\left(10t+\frac{\pi}{3}\right)$		

SECTION-C	SECTION-C Attempt ANY ONE following Question Marks (1X10=10)				
Q6(a) Consider to	he system				
	$= \frac{z^{-1} + \frac{1}{2}z^{-2}}{1 - \frac{3}{5}z^{-1} + \frac{2}{25}z^{-2}}$ (i) the impulse response (ii) the zero-state step response				
Q6(b) A signal has $X(s) =$	as Laplace transform $\frac{(s+2)}{(s^2+4s+5)}$				
Find the L	aplace transform Y(s), of the following signals $y(t) = t x(t) \text{(ii)} y(t) = e^{-t}x(t)$				

