FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E05

EXERCICE N°1 Méthode de Horner : découverte

Nous allons apprendre à factoriser rapidement l'expression développée réduite de certaines fonctions polynomiales du troisième degré.

Le principe

Soit α ; a; b et c des nombres réels

1) Développez et réduisez l'expression $(x-\alpha)(ax^2+bc+c)$ afin de vérifier que $(x-\alpha)(ax^2+bc+c) = ax^3 + (b-\alpha a)x^2 + (c-\alpha b)x - \alpha c$

C'est sur cette égalité qu'est basée la méthode.

Par identification:

$$a=A$$
 ;
 $B=b-\alpha a$ ou plutôt $b=B+\alpha a$;
 $C=c-\alpha b$ ou plutôt $c=C+\alpha b$ et
 $D=-\alpha c$ ou plutôt $D+\alpha c=0$

Par conséquent si on connaît Ax^3+Bx^2+Cx+D et α , on peut trouver ax^2+bx+c en suivant le schéma suivant :

La méthode sur un exemple

Remarque n°1. ça marche si on arrive à trouver \alpha (on parle alors de racine évidente) Une bonne astuce est donnée dans la vidéo : décomposer \(D \) en facteurs premiers et les tester ainsi que leur oppposé.

On applique

2) On se donne la fonction polynomiale f définie pour tout réel x par :

$$f(x) = 2x^3 - 7x^2 - 17x + 10$$

Calculez f(-2) et déduisez-en une factorisation de f(x).

3) À l'aide de ce qui précède factorisez complètement f(x)

EXERCICE N°2 Méthode de Horner: utilisation

On donne g la fonction définie pour tout réel x par $g(x) = x^3 + x^2 - 10x + 8$

- 1) Calculez g(1).
- 2) En déduire la résolution dans \mathbb{R} de l'équation g(x) = 0.

EXERCICE N°3 Méthode de Horner : en python

```
def horner(coef_poly,alpha):
    """coef_poly = [A,B,C,D] pour Ax^3+Bx^2+Cx+D"""
    coef_facteur = [coef_poly[0]]
    for place in range(1,4):
        coef_facteur.append(alpha*coef_facteur[-1]+coef_poly[place])
    return coef_facteur
```

Utilisez la fonction <u>horner</u> pour résoudre l'équation $x^3 + 2x^2 - 11x - 12 = 0$ sachant que -1 est une solution.