# Microscopy and Cell Structure Chapter 3

## 3.3 Morphology of Prokaryotic Cells

Shapes Arrangements

#### Prokaryotic Cell Shape & Arrangement

- Two types most common:
  - Coccus: spherical
  - Bacillus: cylindrical/Rod
    - > Short rods sometimes called coccobacillus

# When bacteria reproduce, they often remain adhered to one another

# Bacillus (pl. bacilli)



# Streptobacillus



## Coccus (pl. cocci)





Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



### streptococci

#### (a) Chains

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



### staphylococci

#### (b) Packets

## Streptococcus



## **Diplococcus**



Neisseria gonorrhoeae





#### Prokaryotic Cell Shape & Arrangement

- Two types most common:
  - Coccus: spherical
  - <u>Bacillus</u>: cylindrical/Rod
    - Short rods sometimes called coccobacillus
- Most prokaryotes divide by binary fission
  - Cells often stick together following division to form characteristic groupings



Chains



# Spiral bacteria

Vibrio (pl. Vibrios)

- Spirillum (pl. Spirilla)

Spirochete(pl. Spirochetes)

# Spiral bacteria Vibrio





# Spiral bacteria Spirillum





# Spiral bacteria Spirochete





#### Pleomorphic

vary in their shape

pleo: many

morphic: shape

### Prokaryotic cells

- Cell envelope
- Cytoplasm
- Nucleoid

# Cell envelope of prokaryotic cells

- -Cytoplasmic membrane
- -Cell wall
- -Capsule/Slime layer



#### Cytoplasmic membrane or plasma membrane



### Cytoplasmic Membrane

- Lipid bilayer
- Hydrophobic, fatty acids
  - Middle of membrane
- Hydrophilic, Glycerol bonded to phosphate
  - Ester bond
  - Faces inside & out cell
- Integral & Peripheral proteins



Copyright: Pearson- Baumen Microbiology for Public Health

## Permeability of Cytoplasmic Membrane

- Cytoplasmic membrane is <u>selectively</u> <u>permeable</u>
  - O<sub>2</sub>, CO<sub>2</sub>, N<sub>2</sub>, small hydrophobic molecules, and water pass freely
  - Some cells facilitate water passage with aquaporins
  - Other molecules must be moved across membrane via transport systems
- Cell wall prevents cell from bursting



## 3.5 The Cell Wall of Prokaryotic Cells

#### Cell Wall

- Maintain cell shape!!!
- Protect against osmotic shock
  - Hypotonic solution: cell will not lyse
  - Hypertonic solution: cell will not shrivel up Plasmolysis!!
- I. Differentiate between **species**
- II. Affect pathogenicity
- III. Anchor the flagella

#### Osmosis





(a) (b)

#### **Osmosis**



#### Osmosis

#### **Hypotonic solution**

#### Water flows in



Cytoplasmic membrane is forced against cell wall.

(a)

#### **Hypertonic solution**



Cytoplasmic membrane pulls away from cell wall.

(b)

#### Bacterial Cell Walls - Peptidoglycan

- Major component of <u>bacterial cell wall</u>!!
- Composed of repeating sugars( disaccharides)
  - NAG = N-Acetyl glucosamine
  - NAM= N-Acetylmuramic acid

 The peptidoglycan chains are held together by a short protein composed of only 4 amino acids









#### Bacterial Cell Walls - Peptidoglycan

#### **Gram Negative**

at least two layers:
 LPS and peptidoglycan



#### **Gram Positive**

 thicker, primarily one layer of peptidoglycan



### 3.5 The Cell Wall of Prokaryotic Cells







#### Cell Wall

Gram positive bacteria vs.

Gram negative bacteria

### Why is this important?

- —Penicillin (and other antibiotics) interfere with the peptide cross-linking!!
- —Differences in cell walls are the basis for the gram stain

# Gram Negative Cell Wall

- -Periplasmic Space
- High Concentration of LPS (Lipopolysaccharides) in Outer Membrane

# LPS (Lipopolysaccharides)

**Lipid A component is TOXIC** 

# Other things about the Gram (-) outer membrane!!!

• The outer membrane of gram (-) bacteria acts as a protective barrier. It is a major permeability barrier.

 Prevents many drugs like penicillin from getting to the thin peptidoglycan layer.

• Gram (-) bacteria are less sensitive to many medications.

# Effects of Penicillin and Lysozyme

#### Penicillin

- Interferes with the <u>synthesis of peptide linkages</u> between the peptidoglycan chains
- More effective against gram positive cells
- Most Gram Negative are protected by outer membrane (EXCEPTIONS TO THIS!!)

#### Lysozyme

- Found in saliva, tears, mucus
- Breaks the bond between NAG-NAM
- Only affects gram positives!!!

|                                      | Gram-Positive                                           | Gram-Negative                                           |  |  |
|--------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|
| Color of Gram-Stained Cell           | Purple                                                  | Pink                                                    |  |  |
| Representative Genera                | Bacillus, Staphylococcus, Streptococcus                 | Escherichia, Neisseria, Pseudomonas                     |  |  |
| Distinguishing Structures/Components |                                                         |                                                         |  |  |
| Peptidoglycan                        | Thick layer                                             | Thin layer                                              |  |  |
| Teichoic acids                       | Present                                                 | Absent                                                  |  |  |
| Outer membrane                       | Absent                                                  | Present                                                 |  |  |
| Lipopolysaccharide (endotoxin)       | Absent                                                  | Present                                                 |  |  |
| Porin proteins                       | Absent (unnecessary because there is no outer membrane) | Present; allow molecules to pass through outer membrane |  |  |
| General Characteristics              |                                                         |                                                         |  |  |
| Sensitivity to penicillin            | Generally more susceptible (with notable exceptions)    | Generally less susceptible (with notable exceptions)    |  |  |
| Sensitivity to lysozyme              | Yes                                                     | No                                                      |  |  |

### **Gram Stain**

Flood smear with <u>primary</u> <u>stain</u>

Rinse and flood with iodine, mordant that stabilizes the dye in the cell

Rinse and briefly add alcohol a <u>decolorizing agent</u>, to remove dye complex from Gram-negative cells

Rinse and flood smear with counterstain that adds a different color to Gramnegative cells

| Steps in Staining                   | State of Bacteria                                                        | Appearance |    |
|-------------------------------------|--------------------------------------------------------------------------|------------|----|
| 1 Crystal violet<br>(primary stain) | Cells stain purple.                                                      |            |    |
| 2 lodine<br>(mordant)               | Cells remain purple.                                                     |            |    |
| 3 Alcohol<br>(decolorizer)          | Gram-positive cells remain purple; Gram-negative cells become colorless. |            |    |
| 4 Safranin<br>(counterstain)        | Gram-positive cells remain purple; Gram-negative cells appear pink.      |            |    |
| (a)                                 |                                                                          |            | Wh |

# Bacterial Cell Surface - Glycocalyx

• **Gel-like layer** outside the cell wall that either protects the cell or allows it to attach to a surface

#### Capsule

- Composed of organized repeating units of organic chemicals
- Firmly attached to cell surface
- May prevent bacteria from being recognized by host

### Slime layer

- Loosely attached to cell surface
- Water-soluble
- Sticky layer allows prokaryotes to attach to surfaces





### Cell attachments

Flagella (flagellum)

Fimbriae (fimbria)/ Pili (pilus)

# Flagella & Archaella

- Structure that assists in swimming in Bacteria and Archaea
  - long, thin appendages (15–20 nm wide)
  - Archaella are half the diameter of bacterial flagella (10–13 nm)
- arrangements:
  - monotrichous/polar: one flagella
  - Amphitrichous: two or more
  - Lophotrichous: one at both ends
  - Peritrichous: all around the periphery

#### **Peritrichous**





#### Monotrichous (polar)



1,

# Flagellum composed of 3 Parts

#### Filament

- length of flagella
- composed of protein flagellin

### Hook-base

to which flagella is attached

### Basal body

provides for spinning movement. Axel and Wheel movement



### Pili

- <u>Pili</u> (singular: <u>pilus</u>) are shorter and thinner than flagella
- Types that allow surface attachment also called <u>fimbriae</u>
- Twitching motility and gliding motility involve pili
- <u>Sex pilus</u> used to join bacteria for a type of DNA transfer



• a: @Dennis Kunkel/SPL/Science Source; b: Source: Harley W. Moon/U.S. Department of Agricultur

# Gliding Motility

- Bacteria only; no Archaea
- Slower and smoother than swimming
- Movement typically occurs away from colony.
- Requires surface contact
- proteins)

# Mycoplasma gliding <a href="https://youtu.be/RiBfycQ0eUM">https://youtu.be/RiBfycQ0eUM</a>



### Directional Movement

Taxis: directed movement in response to chemical or physical gradients

- chemotaxis: response to chemicals
- phototaxis: response to light
- aerotaxis: response to oxygen
- osmotaxis: response to ionic strength
- hydrotaxis: response to water
- magnetotaxis:

### Movement



#### (a) Peritrichous



## 3.7 Internal Components of Prokaryotic Cells

- Inclusions & Vesicles
- Endospores
- Chromosome
- Ribosomes

### Chromosome and Plasmids

- Chromosome: a single, circular double-stranded DNA molecule
- The **Nucleoid:** a gel-like region
- Plasmids: extra circular chromosomal DNA
  - usually encode for:
    - Antibiotic resistance



### Ribosomes

Translate mRNA into Proteins

-70S In Bacteria

Vs

-80S In Eukaryotic Cells



# Svedberg units

- a term that reflects the relative size and density of the molecules.
- In that term, the "S" (for Svedberg) is a unit used to indicate how fast particles settle when spun at very high speeds in an ultracentrifuge
- The faster a particle moves toward the bottom, the higher the S value and the greater the size and density.

### Inclusions & Vesicles

Many types of storage granules (starch, phosphate, lipid, sulfur)

### Inclusions & Vesicles

 Inclusions function as energy reserves, carbon reservoirs, and/or have special functions.



- Gas Vesicles confer buoyancy in planktonic cells
  - Impermeable to water and solutes

### Metachromatic granules

- known as Volutin
- They are composed of polyphosphate, RNA & proteins
- Their main function is to supply phosphate for nucleic acid synthesis, cell division, energy metabolism and as a source of phosphorous for nutrition

# **Endospores**

- Survival structures to endure unfavorable growth conditions
- Ideal for dispersal via wind, water, or animal gut
- Present only in some grampositive bacteria, (e.g., Bacillus and Clostridium)





# Endospores







# A sporofied bacterium

can germinate back to the vegetative state

# Microscopy

- Microscopy reveals two fundamental cell types:
- Prokaryotic cells (Bacteria, Archaea)
  - Smaller size gives high surface area to low volume
    - Facilitates rapid uptake of nutrients, excretion of wastes
    - Allows rapid growth
  - Disadvantages include vulnerability to threats including predators, parasites, and competitors
- Eukaryotic cells (Eukarya)
  - Larger, more complex, many cellular processes take place in membrane-bound compartments
  - Defined by the presence of a nucleus

#### Relative sizes

- 1 meter (m)= 1000000000, 10<sup>9</sup> nanometer
  - 1 nanometer(nm) =  $10^{-9}$  meters
- 1 meter= 1000000, 10<sup>6</sup> micrometer
  - 1 micrometer( $\mu$ m) =10<sup>-6</sup> meters
- 1 micrometer =1000, 10<sup>3</sup> nanometer
  - 1 nanometer =  $10^{-3} \mu m$
- Angstrom (A): one ten –billionth of a meter

### Macro → Micro



# Macro → Micro





Magnifies the image, usually 10-fold (10×).

Specimen stage

Condenser lens

Focuses the light.

Iris diaphragm lever

Controls the amount of light that enters the objective lens.

#### Objective lens

A selection of lens options provides different magnifications. The total magnification is the product of the magnifying power of the ocular lens and the objective lens.

Light source

#### Rheostat

Controls the brightness of the light.

# Electron microscope

- Transmission EM (TEM):
   Beam of electrons passes through specimen or scatters
  - Depends on density of region: dark areas are dense
  - Thin-sectioning used to view internal details, but process can distort cells



- <u>Scanning EM (SEM)</u>: beam of electrons scans over surface of specimen
  - Used to observe surface details
  - Surface coated with thin film of metal





# Transmission Electron Microscopy

#### To see structures inside of cells





# Scanning Electron Microscopy

- -Surface Structures
- Produces a 3D effect

