Have I lost my Marbles?

Unit 2 - Lab 3

Directions: Follow along with the slides and answer the questions in **BOLDED** font in your journal.

Some background...

- Let's assume we have a bag of 100 marbles.
- There are 23 blue marbles, and the rest are green .
- What is the probability of selecting one blue marble from this bag?
- In this lab, we will be *estimating* **probabilities** by drawing marbles from the bag and recording our responses.

But wait! I didn't bring a bag of marbles...

- No problem! You can simulate one in RStudio!
- Let's first create a vector for just the blue marbles

```
blue <- rep("blue", times = 23)</pre>
```

• What do you think the rep() function does?

Finishing up the bag

- Create a vector for the green marbles on your own.
 - Write down your command in your DS Journal.
- Next, combine the blue and green vectors into one new vector and name it marbles.
- Write down your command in your DS Journal.

Now we can create our first sample!

• If we just want to draw ONE marble out, we can run the following code:

```
sample1 <- sample(x = marbles, size = 1)</pre>
```

- What color marble did you draw?
- If we wanted a sample of 10 marbles instead of just one, how could we revise the code?
- Run your revised code and write down the sample of 10 marbles in your DS Journal.

But wait!

- We can select marbles one after the other, or put the marble back into the bag each time we draw.
- Within the sample() function, there is an option called replace, which we can set to either TRUE or FALSE.

To replace or not

Let's take a sample of 150 marbles. Use the replace option - first set it equal to FALSE, and then try
it with TRUE.

```
sample(x = marbles, size = 150,
    replace = FALSE)
```

- What happens when replace = FALSE? Why do you think this happened?
- What happens when replace = TRUE? Which is better for this scenario?

Back to those 10 marbles...

- Rerun your code for the sample size of 10 (don't forget to create a new name for this sample maybe sample2?) and include the replace argument and write down the sample in your DS Journal.
- What percent of the 10 marbles were blue?

$$Estimated Probability = \frac{\#ofBlueMarbles}{\#ofTotalDraws}$$

• How does your answer compare to your neighbor's?

Sample probability vs. theoretical probability

- How does your answer from the previous slide compare to the theoretical probability of selecting a blue marble?
- Let's run our code a few more times, but instead of just drawing 10 marbles from our bag, let's draw out 1000.
- Obviously, we don't want to write out all 1000 marble colors, so we can simply tally up the number of blue marbles that our sample produced by using the tally() function.

Sample probability vs. theoretical probability

- In your sample of 1000, how many marbles were blue? What is your estimated probability?
- As a class, report your estimated probabilities. Examine them and make a guess about which value was the *typical* estimated probability.
- Note: The estimated probabilities are all close to the theoretical probability.
- The larger the sample size, n, the closer the estimated probability will be to the theoretical.

For future study...

• How would you design a simulation to find the probability that a second marble is blue?