(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年6月30日(30.06.2005)

PCT

(10) 国際公開番号 WO 2005/060082 A1

(51) 国際特許分類7:

H02M 7/48

(21) 国際出願番号:

PCT/JP2004/018732

(22) 国際出願日:

2004年12月15日(15.12.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-418283

2003年12月16日(16.12.2003)

(71) 出願人 (米国を除く全ての指定国について): ダイキン 工業株式会社 (DAIKIN INDUSTRIES, LTD.) [JP/JP]; 〒5308323 大阪府大阪市北区中崎西2丁目4番12号 梅田センタービル Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 前田 敏行 (MAEDA, Toshiyuki) [JP/JP]; 〒5250044 滋賀県草津 市岡本町字大谷1000番地の2株式会社ダイキ ン空調技術研究所内 Shiga (JP). 巴 正信 (TOMOE, Masanobu) [JP/JP]; 〒5250044 滋賀県草津市岡本町字 大谷1000番地の2株式会社ダイキン空調技術 研究所内 Shiga (JP).
- (74) 代理人: 吉田 茂明, 外(YOSHIDA, Shigeaki et al.); 〒 5400001 大阪府大阪市中央区城見1丁目4番70号 住友生命OBPプラザビル10階 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,

/続葉有/

CURRENT SUPPLY CIRCUIT, MULTI-PHASE DRIVE CIRCUIT, CURRENT SUPPLY CIRCUIT DESIGN (54) Title: **METHOD**

(54) 発明の名称: 電流供給回路、多相駆動回路、電流供給回路設計方法

(57) Abstract: It is possible to reduce the loss in a current supply circuit including an inverter having a switching element. The dynamic loss of the IGBT element including a free wheel diode is proportional to the product of a turn-on loss and a switching frequency while the static loss is proportional to the product of a current flowing to the IGBT element and a saturation voltage between the collector and emitter. Even if the resistance of the IGBT element is increased by twice, the saturation voltage between the collector and the emitter is not increased by twice. Accordingly, the voltage and current given to the load are multiplied by 2 and 1/2, respectively, so that the powers given to the load are identical. Moreover, it is possible to reduce the static loss even if the dynamic losses are identical.

(57) 要約: スイッチング素子を有するインバータを含む電流供給回路での損失を低減する。フリーホイールダイオー ドを含むIGBT素子の動損失はターンオン損失と

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受領の際には再公開される。

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2005/060082 1 PCT/JP2004/018732

明細書

電流供給回路、多相駆動回路、電流供給回路設計方法技術分野

- [0001] この発明は多相電流を供給する技術に関する。 背景技術
- [0002] 図12は従来の電流供給技術を例示する回路図である。単相200V電源の交流電源1から実効値200Vの交流電圧が印加されたダイオードブリッジ21は全波整流を行って、平滑回路31を介してインバータ41に直流電圧Vdcを与える。インバータ41は、各相毎に耐圧600VのIGBT (Insulated Gate Bipolar Transistor)素子の2つの直列接続を有し、当該直列接続の接続点から各相毎の交流電流を三相モータM1へと出力する。
- [0003] インバータ41での損失を抑えるため、各IGBT素子のターンオン損失及びコレクタ・エミッタ間の飽和電圧を低減することが望まれている。これらの特性値はそれぞれIGBT素子の動損失及び静損失に影響を与えるからである。
- [0004] 一方、IGBT素子の微細構造の改善が世代の相違として分類されている。図13は第三世代、第四世代、第五世代のIGBT素子のうち、耐圧が600Vであるもののターンオン損失及びコレクタ・エミッタ間の飽和電圧Vce(sat)の関係を、それぞれグラフL3, L4, L5を以て示す。但しターンオン損失はパルス数及び電流で規格化して示している。世代が進むに連れ、両特性値間のトレードオフは存在するものの、両特性値は減少していることが解る。
- [0005] なお、このように世代が相違したIGBT素子の特性は例えば非特許文献1乃至3に示されており、ターンオン損失及びコレクタ・エミッタ間の飽和電圧に基づいたIGBT素子のターンオン損失については非特許文献4がある。また、空調機や冷却装置に用いられるモータの制御技術について特許文献1がある。またインバータ部とコンバータ部とをモジュール化する技術について特許文献2がある。
- [0006] 非特許文献1:森敏「最新のIPM化技術とその適用例」、パワーエレクトロニクス研究会第13回専門講習会テキスト、第38頁(1998)

非特許文献2:岩室憲幸、宮坂忠志、積康和「UシリーズIGBTモジュールの技術革新」、富士時報vol.75,No10,p555(2002)

非特許文献3: Junji Yamada, et al., "Low Turn-off Switching Energy 1200V IGBT Module"[online]、IEEE、[平成15年10月8日検索]、インターネット<

URL:http://www.ineltron.de/english/Low_turn_off_5th_genIGBT.pdf>

非特許文献4:「三菱パワーモジュールMOS活用の手引き」第46頁、[online]、三菱電機、[平成15年10月8日検索]、インターネットく

URL:http://www.semicon.melco.co.jp/semicon/html/pdf/ka0350a3.pdf>

特許文献1:特開昭60-249895号公報

特許文献2:特開2003-143871号公報

発明の開示

- [0007] しかし、新たな世代のIGBT素子の登場を待つまでもなく、各IGBT素子における損失を低減することの要求があることはもちろんである。
- [0008] 本発明はかかる要求に鑑み、IGBT素子を有するインバータを含む電流供給回路 での損失を低減する技術を提供することを目的としている。
- [0009] この発明にかかる電流供給回路は、交流200V系電源(1)に接続される倍電圧整流回路(22)と、各相毎に耐圧1200Vのスイッチング素子の2つの直列接続を有し、当該直列接続の接続点から各相毎の交流電流を出力する多相インバータ回路(42)とを備える。
- [0010] 例えば前記スイッチング素子はIGBT素子である。
- [0011] 望ましくは、前記倍電圧整流回路と前記多相インバータ回路とはモジュール化される。
- [0012] この発明にかかる多相駆動回路は、この発明にかかる電流供給回路と、前記多相 インバータ回路から電流が供給される多相400V用モータ(M2)とを備える。
- [0013] この発明にかかる電流供給回路設計方法は、所定の実効値電圧の交流電圧を入力して、多相の交流電流を所定の定格電力の多相負荷(M2)に出力する電流供給回路(22,32,42)を設計する方法である。前記電流供給回路は、各相毎にスイッチング素子の2つの直列接続を有し、当該直列接続の接続点から各相毎の前記交流

電流を出力する多相インバータ回路(42)を備える。

- [0014] そして当該方法の第1の態様では、(a)前記多相負荷の前記定格電力を前記実効 値電圧の2倍の電圧値で除して得られる電流値を前記多相インバータ回路の定格電 流値として設定するステップ(S21)と、(b)前記交流電圧を全波整流して得られる直 流電圧が前記多相インバータ回路に入力する場合に前記スイッチング素子に要求される第1の耐圧の2倍の第2の耐圧を有する前記スイッチング素子を、前記定格電流 値に基づいて選定するステップ(S25)とを備える。
- [0015] 例えば前記所定の実効値電圧の交流電圧は単相であり、前記電流供給回路は、 前記所定の実効値電圧の交流電圧を倍電圧整流して前記多相インバータ回路(42))に出力する倍電圧整流回路(22)を更に備える。
- [0016] また例えばスイッチング素子はIGBT素子である。
- [0017] この発明にかかる電流供給回路設計方法の第2の態様は、第1の態様にかかる電流供給回路設計方法であって、前記ステップ(b)において、前記インバータのスイッチング周波数(fsw)が高いほど、前記定格電流値におけるターンオン損失(Esw(on))が低い範囲において前記スイッチング素子が選定される。
- [0018] この発明にかかる電流供給回路設計方法の第3の態様は、第2の態様にかかる電流供給回路設計方法であって、前記ステップ(b)が(b-1)前記スイッチング素子について要求される動損失(Psw)と前記インバータのスイッチング周波数(fsw)とに基づいてターンオン損失(Esw(on)=Esw/2)を設定するステップと、(b-2)前記第2の耐圧を有し、前記定格電流値において前記ステップ(b-1)で設定された前記ターンオン損失とほぼ等しいターンオン損失を与える前記スイッチング素子を選定するステップとを有する。
- [0019] 例えば前記スイッチング素子はIGBT素子であって、前記ステップ(b)において、前記第1の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失(EL)に対する、前記第2の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失の増分(Δ Esw)を除数とし、前記第1の耐圧を有する前記IGBT素子の飽和電圧(VL)から当該飽和電圧に対する前記第2の耐圧を有する前記IGBT素子の飽和電圧の増分(Δ Vce)を引いた値(VL- Δ Vce)と、前記インバータの出力電流を正

弦波に換算した最大値(Icp)と、(π/16)との積を被除数とし、前記被除数を前記除数で除して得られる結果よりも、前記インバータのスイッチング周波数(fsw)が低い領域において、前記第2の耐圧を有する前記IGBT素子が選定される。

- [0020] あるいは前記電流供給回路が前記所定の実効値電圧の交流電圧を倍電圧整流して前記多相インバータ回路(42)に出力する倍電圧整流回路(22)を更に備える場合において、前記スイッチング素子はIGBT素子であって、前記ステップ(b)において、前記第1の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失(EL)に対する、前記第2の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失の増分(Δ Esw)の($2/\pi$)倍を除数とし、前記第1の耐圧を有する前記IGBT素子の飽和電圧(VL)から当該飽和電圧に対する前記第2の耐圧を有する前記IGBT素子の飽和電圧の増分(Δ Vce)を引いた値(VL- Δ Vce)と、前記インバータの出力電流を正弦波に換算した最大値(Icp)と、(1/8)との三者の積に対して、前記倍電圧整流回路(22)が有するダイオードーつ分の損失(Pd)を加えた値(Pd+(VL- Δ Vce)・Icp/8)を被除数とし、前記被除数を前記除数で除して得られる結果よりも、前記インバータのスイッチング周波数(fsw)が低い領域において、前記第2の耐圧を有する前記IGBT素子が選定される。
- [0021] この発明にかかる電流供給回路設計方法の第4の態様は、第2の態様にかかる電流供給回路設計方法であって、前記インバータのスイッチング周波数(fsw)が7kHz以下に設定される。
- [0022] 望ましくは、第1乃至第4の態様にかかる電流供給回路設計方法において、前記所定の実効値電圧は200Vであり、前記第1の耐圧は600Vである。
- [0023] 交流200V電源に基づいてインバータによって多相の交流電流を得る場合、この発明にかかる電流供給回路のように1200VのIGBT素子を採用することにより、損失を小さくすることができる。よってかかる電流供給回路を備える多相駆動回路においても損失を小さくすることができる。
- [0024] 倍電圧整流回路と多相インバータ回路とをモジュール化することにより、両者の間の配線はその周囲から高い耐圧を以て絶縁される。
- [0025] この発明にかかる電流供給回路の設計方法の第1の熊様によれば、IGBT素子の

耐圧を2倍にすることにより多相負荷に印加される電圧を2倍にすることができる。しかも定格電流値を半分とすることにより多相負荷の定格電力を逸脱させることはない。更に、IGBT素子はその耐圧が2倍となっても、コレクタ・エミッタ間の飽和電圧は2倍には達しないので、IGBT素子が第1の耐圧を有している場合と比較して、第2の耐圧を有している場合は、動損失(2Esw(on)・fsw/ π)が同じであっても静損失(Icp Vce(sat)/4)を低減するようにIGBTを選定することができる。

- [0026] この発明にかかる電流供給回路の設計方法の第2の態様によれば、IGBT素子の動損失($2Esw(on) \cdot fsw/\pi$)を低減することができる。
- [0027] IGBT素子はその耐圧が2倍となっても、コレクタ・エミッタ間の飽和電圧は2倍には達しない。よってこの発明にかかる電流供給回路設計方法の第3の態様によれば、IGBT素子が第1の耐圧を有している場合と比較して、第2の耐圧を有している場合は、動損失(2Esw(on)・fsw/ π)がほぼ同じであっても静損失(IcpVce(sat)/4)を低減できる。
- [0028] 現状のIGBT素子において、第1の耐圧を有するIGBT素子がステップ(a)で設定された定格電流値の2倍におけるターンオン損失よりも、第2の耐圧を有するIGBT素子がステップ(a)で設定された定格電流値におけるターンオン損失は0.4mJ/パルス以上大きくはならない。よってこの発明にかかる電流供給回路設計方法の第4の態様によれば、第1の耐圧を有するIGBTを採用する場合と比較して、第2の耐圧を有するIGBTを採用する場合は、動損失の増大分よりも静損失の低減分の方が大きく、IGBT素子の損失全体として低減される。
- [0029] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。

図面の簡単な説明

- [0030] [図1]耐圧が600V, 1200VであるIGBT素子のターンオン損失Esw(on)と、コレクタ・エミッタ間の飽和電圧Vce(sat)の関係を示すグラフである。
 - 「図2]高耐圧素子を採用した方が望ましい領域を示したグラフである。
 - [図3]高耐圧素子を採用した方が望ましい領域を示したグラフである。
 - [図4]高耐圧素子を採用した方が望ましい領域を示したグラフである。

「図5]高耐圧素子を採用した方が望ましい領域を示したグラフである。

[図6]本発明にかかる電流供給回路の設計方法を例示するフローチャートである。

「図7]本発明にかかるインバータを用いた電流供給技術を例示する回路図である。

[図8]三相倍電圧回路の構成を例示する回路図である。

[図9]モジュールの構造を示す断面図である。

「図10]本発明にかかる電流供給回路の設計方法を例示するフローチャートである。

[図11]高耐圧素子を採用した方が望ましい領域を示したグラフである。

[図12]従来の電流供給技術を例示する回路図である。

[図13]耐圧が600VであるIGBT素子のターンオン損失及びコレクタ・エミッタ間の飽和電圧Vce(sat)の関係を示すグラフである。

発明を実施するための最良の形態

[0031] A:本発明の基本的な考え方.

実施の形態の詳細な説明に入る前に、本発明の基本的な考え方を説明する。もちるん、当該考え方も、本発明の一部である。

[0032] (A1)IGBT素子の損失.

上述の非特許文献4によれば、IGBT素子の本体の総損失PQは静損失PSSと動損失PSWとの和であって式(1)の関係がある。但し、静損失PSSと動損失PSWとは、式(2)、(3)で示される。

[0033] [数1]

$$PQ = PSS + PSW \cdots (1)$$

[0034] [数2]

PSS= I cp · V ce(sat) ·
$$\frac{1}{2\pi} \int_{0}^{\pi} \sin^{2} x \cdot \frac{1 + \sin(x + \theta) \cdot D}{2} dx$$

= I cp · V ce(sat) · $\left(\frac{1}{8} + \frac{D}{3\pi} \cos \theta\right)$ ··· (2)

「0035] 「数3]

$$PSW = (Esw(on) + Esw(off)) \cdot fsw \cdot \frac{1}{2\pi} \int_{0}^{\pi} sin \times dx$$
$$= (Esw(on) + Esw(off)) \cdot fsw \cdot \frac{1}{\pi} \cdots (3)$$

- [0036] ここでIGBT素子の1パルス当たりのターンオンスイッチング損失Esw(on)、1パルス 当たりのターンオフスイッチング損失Esw(off)、IGBT素子のスイッチング周波数 (即ち 当該IGBT素子が採用されるインバータのキャリア周波数) fsw、出力電流の正弦波 に換算した最大値Icp、IGBT素子のコレクタ・エミッタ間の飽和電圧Vce(sat)、デューティD、出力正弦波の力率 $\cos\theta$ を導入した。
- [0037] 更に、IGBT素子に通常付加されるフリーホイールダイオードの静損失PDも考慮すると、IGBT素子全体の損失PAは式(4)で示される。但しフリーホイールダイオードの静損失PDは式(5)で示され、電流の最大値Icpが流れた場合の順電圧降下VECを導入した。

[0038] [数4]

$$PA = PQ + PD = PSS + PSW + PD \cdots (4)$$

[0039] [数5]

PD= I cp · Vec ·
$$\left(\frac{1}{8} - \frac{D}{3\pi} \cos \theta\right)$$
 ... (5)

- [0040] ターンオンスイッチング損失Esw(on)とターンオフスイッチング損失Esw(off)とは同程度であり、またIGBT素子のコレクタ・エミッタ間の飽和電圧Vce(sat)とフリーホイールダイオードの順電圧降下VECとは同程度であることが、経験的に解っているので、式(4)は式(6)のように表すことができる。
- [0041] [数6]

$$PA = \left(\frac{2}{\pi}\right) \cdot Esw(on) \cdot fsw + \left(\frac{1}{4}\right) \cdot Icp \cdot Vce(sat) \quad \cdots \quad (6)$$

[0042] そこで、本明細書では、改めて、式(6)の右辺第1項及び第2項をそれぞれIGBT

素子の動損失、静損失と称することにする。

[0043] (A2)負荷の定格電力とIGBT素子の耐圧.

ところで、インバータが電流を供給すべき負荷の仕事量は、その定格電力に比例する。換言すれば、定格電力が等しい二つの負荷からは、同程度の仕事量を得ることができる。例えば定格電圧200Vモータも、定格電圧400Vのモータも、定格電力が2kWという点で等しければ、定格の範囲内である限り、トルクと回転数との積を同程度にすることができる。つまり、要求される仕事量に対しては、当該仕事量を実現するための負荷の定格電圧については選択に自由度があることになる。

- [0044] ここで、式(6)の右辺第1項で表されるIGBTの動損失については、負荷の定格電 圧に依存しない。一方、同第2項で表されるIGBTの静損失については、負荷の定格 電圧に依存する。より具体的には、負荷に対して同じ仕事量が要求されるのであれ ば、電流値ICPは負荷の定格電圧に反比例し、よって静損失も負荷の定格電圧に 反比例する。
- [0045] 但し、このように負荷の定格電力が同じでも定格電圧が異なれば、当該負荷に電流を供給する電流供給回路の出力段、例えば多相インバータ回路の耐圧は異なる。上述の例で言えば、定格電圧200V(定格電力2kW)のモータを用いる場合には、インバータに採用されるIGBT素子は、その耐圧が600Vのものが採用される。よって定格電圧400V(定格電力2kW)のモータを用いる場合には、インバータに採用されるIGBT素子は、その耐圧が1200Vのものが採用されることになる。

[0046] (A3)静損失の改善.

上述のように、IGBT素子の静損失は負荷の定格電圧に反比例するので、負荷の定格電圧をk倍にした場合に採用されるIGBT素子(以下「高耐圧素子」とも称す)のコレクタ・エミッタ間の飽和電圧Vce(sat)がk倍未満であれば、IGBT素子の静損失は改善されることになる。そして高耐圧素子の動損失が、負荷の定格電圧が通常の場合に採用されるIGBT素子(以下「低耐圧素子」とも称す)のそれと等しいか小さい場合には、IGBT素子の全体の損失PAも改善されることになる。

[0047] もちろん、高耐圧素子の動損失が低耐圧素子のそれより大きくても、その増加分が 静損失の減少分で補償されれば、全体の損失PAも改善される。この静損失と動損失 とのトータルとしての損失低減については後述し、本節では高耐圧素子の動損失が 低耐圧素子のそれと等しく設定される場合について主として説明する。

- [0048] 図1は耐圧が600V、1200Vである種々のIGBT素子のターンオン損失Esw(on)と、コレクタ・エミッタ間の飽和電圧Vce(sat)の関係を示すグラフである。低耐圧素子のグラフL3, L4, L5はそれぞれ図13に示されたグラフと対応している。但しここでは電流値Icpの影響を盛り込むため、実効値20A(即ちIcp=28.2(A))の電流を流した場合のパルス一つ当たりのターンオン損失Esw(on)を示している。
- [0049] グラフH3, H5はそれぞれ第3世代、第5世代に属する高耐圧素子のグラフであり、耐圧が1200Vのものである。このグラフでは、負荷に流れる電流が低耐圧素子の半分であるとして、実効値10A(即ちIcp=14.1(A))の電流を流した場合のターンオン損失Esw(on)を示している。即ち、いずれのグラフも負荷の定格電力が約6.9kWである場合のパルス一つ当たりのターンオン損失Esw(on)を示している。
- [0050] 第三世代で高耐圧素子と低耐圧素子とを比較すると、例えばターンオン損失E sw(on)を1.12(mJ/pulse)に設定した場合には、低耐圧素子は飽和電圧Vce(sat)が2.3(V)のものを入手することができる。一方、高耐圧素子は飽和電圧Vce(sat)が2.9(V)のものを入手することができ、この特性値は低耐圧素子のものの2(=1200/600)倍には達していない。よって動損失を等しくしつつも静損失を改善するような高耐圧素子を入手し、損失が小さいインバータを構成することができる。
- [0051] 第五世代で高耐圧素子と低耐圧素子とを比較すると、例えばターンオン損失E sw(on)を0.56(mJ/pulse)に設定した場合には、低耐圧素子は飽和電圧Vce(sat)が1.35(V)のものを入手することができる。一方、高耐圧素子は飽和電圧Vce(sat)が2.4(V)のものを入手することができ、この特性値は低耐圧素子のものの2倍には達していない。よって動損失を等しくしつつも静損失を改善するような高耐圧素子を入手し、損失が小さいインバータを構成することができる。
- [0052] このように同じ世代で比較した場合には、IGBT素子の耐圧を大きくすることにより、 出力する電圧を大きくすることが可能となる。よって負荷の定格電力が一定であれば 、所望の仕事量を得るために出力すべき電流を小さくすることができ、IGBT素子の、 ひいては当該IGBT素子を採用したインバータの損失を低減することができる。よっ

て現状で入手可能な世代のIGBT素子においてインバータの損失を低減することが 可能であることはもちろん、過去の世代に属して安価となったIGBT素子を用いてもイ ンバータの損失を改善することが可能となる。

- [0053] 具体的には、式(6)に鑑みて考えれば以下のようにしてk=2の場合の高耐圧素子を選定できる。インバータにおいてIGBT素子について要求される動損失Pswとπ/2との積をインバータのスイッチング周波数fswで除した値をターンオン損失Esw(on)として設定する。また負荷の定格電力を電源の電圧実効値の2倍の電圧値で除して、高耐圧素子を採用したインバータの出力電流の実効値の最大値(インバータの定格電流:上述の例では10A)を求める。そしてインバータの定格電流において当該ターンオン損失とほぼ等しいターンオン損失を与える高耐圧素子を選定すればよい。
- [0054] (A4)動損失の改善による静損失増加の補償.
 - 式(6)の右辺第1項から理解されるように、IGBT素子の動損失はスイッチング周波数fswに比例する。よってもしも高耐圧素子としてその飽和電圧Vce(sat)が低耐圧素子は飽和電圧Vce(sat)の2倍以上のものを選定せざるを得なかったとしても、IGBT素子全体の損失PAは低減することができる。スイッチング周波数fswが十分に小さければ、静損失の多少の増加を補償するからである。
- [0055] 具体的にどの程度のスイッチング周波数fswであればIGBT素子全体の損失PAを低減できるかについては、選択された高耐圧素子が、低耐圧素子に対してターンオン損失Esw(on)及び飽和電圧Vce(sat)がどの程度上昇するかに依存することになる。これを示すために、以下ではある世代のIGBT素子(低耐圧素子)に対する、IGBT素子(高耐圧素子)のターンオン損失の増分ΔEsw及び飽和電圧の増分ΔVceが、IGBT素子全体の損失PAを低減できるスイッチング周波数fswにどのように影響を与えるかについて述べる。
- [0056] 式(6)から、負荷に同じ電力を供給する場合の低耐圧素子、高耐圧素子の損失PL, PHは、それぞれ式(7),(8)で表される。但し簡単のために高耐圧素子を用いたインバータは、低耐圧素子を用いたインバータと比較して、k=2倍の電圧を負荷に印加し、かつ1/k=1/2の電流を供給するものとする。但し、低耐圧素子のターンオン損失Esw(on)及び飽和電圧Vce(sat)をそれぞれEL, VLとした。

[0057] [数7]

$$PL = \left(\frac{2}{\pi}\right) \cdot EL \cdot fsw + \left(\frac{1}{4}\right) \cdot Icp \cdot VL \quad \cdots \quad (7)$$

「0058] 「数8]

$$PH = \left(\frac{2}{\pi}\right) \cdot (EL + \Delta ESW) \cdot fsw + \left(\frac{1}{4}\right) \left(\frac{Icp}{2}\right) \cdot (VL + \Delta Vce) \quad \dots (8)$$

[0059] よってPH<PLとなる条件は式(9)で表される。

[0060] 「数9]

$$\left(\frac{2}{\pi}\right) \cdot \Delta \operatorname{Esw} \cdot \operatorname{fsw} - \left(\frac{1}{8}\right) \cdot (\operatorname{VL} - \Delta \operatorname{Vce}) \cdot \operatorname{Icp} < 0$$

$$\therefore \operatorname{fsw} < \left(\frac{\pi}{16}\right) \cdot (\operatorname{VL} - \Delta \operatorname{Vce}) \cdot \operatorname{Icp} / \Delta \operatorname{Esw} \cdots (9)$$

[0061] 高耐圧素子についての両特性値のトレードオフは式(10)で近似される。例えば第三世代の高耐圧素子については式(10)の定数A, Bはそれぞれほぼ13.8, -2.3 9であり、第五世代の高耐圧素子については式(10)の定数A, Bはそれぞれほぼ5.62, -2.49である。

「0062] 「数10]

$$VL+\Delta Vce=A \cdot (EL+\Delta Esw)^{-8} \cdots (10)$$

[0063] 図2〜図5は式(9),(10)に基づいて、高耐圧素子を採用した方が望ましい領域を示したグラフである。図2及び図3は、いずれも第三世代について示している。また図4及び図5は、いずれも第五世代について示している。但し図2ではターンオン損失EL及び飽和電圧VLがそれぞれ1.30(mJ/pulse)及び2.20(V)である耐圧600VのIGBT素子Q1を選定し、図3ではターンオン損失EL及び飽和電圧VLがそれぞれ1.04(mJ/pulse)及び2.34(V)である耐圧600VのIGBT素子Q2を選定した場合を例示している。また図4ではターンオン損失EL及び飽和電圧VLがそれぞれ1.00(mJ/pulse)及び1.1(V)である耐圧600VのIGBT素子Q3を選定し、図5ではターン

オン損失EL及び飽和電EVLがそれぞれ0.54(mJ/pulse)及び1.40(V)である耐E600VのIGBT素子Q4を選定した場合を例示している。

- [0064] いずれの場合もインバータのスイッチング周波数fswが高いほど、ターンオン損失の増分 Δ Eswが小さい範囲において高耐圧素子が選定されることが望ましい。更に言えば、スイッチング周波数fswが高いほど、定格電流におけるターンオン損失Esw(on)が低い範囲において高耐圧素子が選定されることが望ましい。できればターンオン損失の増分 Δ Eswが負であれば(つまり低耐圧素子のターンオン損失ELよりも高耐圧素子のターンオン損失Esw(on)が小さければ)より望ましい。
- [0065] 但しスイッチング周波数fswが7kHz以下であれば、実質的には高耐圧素子のターンオン損失によらず、低耐圧素子を用いた場合よりも損失を小さくすることが可能である。理由は以下のとおりである。
- [0066] 図1に示されるように、第三世代の1200VのIGBT素子Z1のターンオン損失E sw(on)は2. 10mJ/パルスであり、これと同世代の600VのIGBT素子Q1とのターンオン損失との差がほぼ0. 8mJ/パルスである。またIGBT素子Z1及びこれと同世代の600VのIGBT素子Q2とのターンオン損失との差がほぼ1. 06mJ/パルスである。そしてIGBT素子Q1について示した図2にはターンオン損失の増分 Δ Eswが0. 8 mJ/パルス以下であり、かつスイッチング周波数fswが7kHzであれば、耐圧1200VのIGBT素子の方が損失が小さいことが示されている。またIGBT素子Q2について示した図3にはターンオン損失の増分 Δ Eswが1. 10mJ/パルス以下であり、かつスイッチング周波数fswが7kHzであれば、耐圧1200VのIGBT素子の方が損失が小さいことが示されている。
- [0067] 第五世代についても同様に、1200VのIGBT素子Z2のターンオン損失Esw(on)は 1.10mJ/パルスであり、これと同世代の600VのIGBT素子Q3とのターンオン損失との差がほぼ0.1mJ/パルスである。またIGBT素子Z2及びこれと同世代の600VのIGBT素子Q4とのターンオン損失との差がほぼ0.56(mJ/pulse)である。そしてIGBT素子Q3について示した図4にはターンオン損失の増分ΔEswがほぼ0.2mJ/パルス以下であり、かつスイッチング周波数fswが7kHzであれば、耐圧1200VのIGBT素子の方が損失が小さいことが示されている。またIGBT素子Q4について示した

図5にはターンオン損失の増分 Δ Eswが0.80mJ/パルス以下であり、かつスイッチング周波数fswが7kHzであれば、耐圧1200VのIGBT素子の方が損失が小さいことが示されている。

- [0068] 一般に冷媒を圧縮するために用いられるモータは、回転数やトルクの変更に対して 迅速な応答が求められはせず、また当該モータを含む冷媒圧縮機は覆われて用いられることが多いために騒音の問題も顕著ではない。よってインバータを安価に実現できる低いスイッチング周波数fswが採用される。例えば騒音対策が必要な用途に用いられるモータではそのスイッチング周波数は10kHz程度以上に選定される。一方、エアコン室外機は屋外に設置されかつ防音対策され、冷蔵庫では圧縮機がコイルで支持されるので、3kHz程度に設定される。従って、上記のように高耐圧素子を採用することは、冷媒圧縮機に採用されるモータに電流を供給するインバータにおいて特に有効である。
- 「0069 B:本発明の実施の形態の説明.

以下、本発明の実施の形態を空調機の圧縮機のモータに電流を供給するインバータを例に採って説明する。

[0070] (B-1)インバータの損失低減.

図6は本発明にかかる電流供給回路の設計方法を例示するフローチャートである。 電流供給回路の設計に先立ち、予め圧縮機に要求される能力に基づいてモータの 定格電力Gが設定されている。また、当該モータや、これに電流を供給するインバー タを含む空調機を駆動するために採用される、交流電源の実効値電圧Fも既知であ る。

[0071] まずステップS21において、モータの定格電力G及び交流電源の実効値電圧Fに 基づいて、インバータから供給される電流の実効値の最大値(インバータの定格電流)Imを求める。具体的には式(11)によって決定される。

[0072] [数11]

$$Im = G/F/k/\sqrt{3} \qquad \cdots (11)$$

[0073] ここで定数kはIGBT素子において選択可能な異なる耐圧の比であり、(A3)で用

- いられたkと一致させることが望ましい。例えば600V、1200VのIGBT素子が選択可能であれば、k=2である。
- [0074] 処理はステップS22に進み、インバータによるモータの制御での追従性等に基づいてスイッチング周波数fswが設定される。このステップは後述するように、実行されるたびにスイッチング周波数fswを下げる。
- [0075] 処理はステップS23に進み、スイッチング周波数fswが所定の最低値fswo以上であるか否かが判断される。最低値fswoは上記追従性が望ましい範囲に収まるように選定される。
- [0076] まずステップS23において肯定的判断がなされた場合について説明する。この場合には処理がステップS24に進み、低耐圧素子の損失PLよりも高耐圧素子の損失PHの方が小さいか否かが判断される。ステップS24では詳細は省略されているが、種々の低耐圧素子と種々の高耐圧素子との組み合わせでそれぞれの損失PL, PHの大小が判断される。
- [0077] ステップS24において肯定的な判断がなされれば、ステップS25に処理が進み、インバータを高耐圧素子で設計する。
- [0078] ステップS24において否定的な判断がなされれば、ステップS22に処理が戻る。上記「A:本発明の基本的な考え方.」における説明から理解されるように、スイッチング周波数fswが低い方が、高耐圧素子を用いた設計の可能性が高い(例えば図2、図3を参照)。従ってステップS22は実行されるたびに、設定するスイッチング周波数fswを下げる。その後再度ステップS23による判断が実行される。
- [0079] ステップS23において否定的判断がなされた場合には、ステップS26へと処理が進み、インバータを低耐圧素子で設計する。
- [0080] 以上のようにして、モータの定格電力G及び交流電源の実効値電圧Fに基づいて、インバータに採用するIGBT素子を適切に選択し、以てインバータの損失を低減することができる。
- [0081] 高耐圧素子を用いてインバータを設計する場合に採用すべき高耐圧素子が流しう る電流は、低耐圧素子を用いてインバータを設計する場合に採用すべき高耐圧素子 が流しうる電流よりも小さくなる。上述の例で言えば高耐圧素子が流しうる電流は低

耐圧素子が流しうる電流の半分となる。よってIGBT素子のチップ面積は狭くて済み、低コスト化に繋がるという利点もある。

- [0082] もちろん、高耐圧素子でインバータを設計する場合(ステップS25)のモータの定格電圧は、低耐圧素子でインバータを設計する場合(ステップS26)のモータの定格電圧のk倍であり、上述の例(高耐圧素子の耐圧が1200V、低耐圧素子の耐圧が600 Vの場合)には2倍となる。
- [0083] 図7は、上記のように設計されたインバータを用いた電流供給技術を例示する回路 図である。単相200V電源の交流電源1から実効値200Vの交流電圧が印加された ダイオードブリッジ(倍電圧用のコンデンサを含む)22は倍電圧整流を行って、平滑 回路32を介してインバータ42へ直流電圧Vdcを与える。インバータ42、各相毎に耐 圧1200VのIGBT素子の2つの直列接続を有し、当該直列接続の接続点から各相 毎の交流電流を三相モータM2へと出力する。
- [0084] 図7ではダイオードブリッジ22が倍電圧整流を行うためにコンデンサを有していることから、これよりも交流電源1側にリアクタ5を配置してチョークインプット型の整流を実現している。従って平滑回路32は平滑回路31とは異なり、リアクタを含んでいない。
- [0085] 実験によれば、ある定格電力のモータが、その定格近傍で3790Wの機械的出力が得られた場合、インバータ41よりもインバータ42の方が28.5Wの損失低減が見られた。またある定格電力のモータが、その定格近傍で2770Wの機械的出力が得られた場合、インバータ41よりもインバータ42の方が18.5Wの損失低減が見られた。
- [0086] 本発明は単相交流電源を採用する場合に適用される以外にも、三相交流電源を採用する場合にも適用可能である。図8は三相倍電圧回路の構成を例示する回路図である。図7に例示した回路と比較して、単相交流電源1及びを三相交流電源13に置換し、ダイオードブリッジ22をダイオードブリッジ23に置換した構成となっている。ダイオードブリッジ23も倍電圧整流を行うものであり、そのためにコンデンサを三個有している。かかる場合にも、平滑回路32を介してインバータ42に対して倍電圧整流された直流電圧が与えられる。よって本発明を適用し、高耐圧素子を採用したインバータ42を構成することにより、既述の効果を得ることができる。
- [0087] なお、ダイオードブリッジ22が倍電圧整流を行うことにより、全波整流を行うダイオ

ードブリッジ21よりも損失を低減することができる。これはダイオードブリッジ21では交流電源1から流れる電流が常に二つのダイオードを流れるのに対し、ダイオードブリッジ22では倍電圧整流を行うためのコンデンサを有しており、よって交流電源1から流れる電流の経路においてダイオードは1つしか存在しないからである。従ってダイオードで生じる損失についてみれば、ダイオードブリッジ22ではダイオードブリッジ21の半分しか損失が発生しないことになる。

- [0088] 上述の実験例に則して言えば、ある定格電力のモータが、その定格近傍で3790 Wの機械的出力が得られた場合、ダイオードブリッジ21よりもダイオードブリッジ22の方が25.7Wの損失低減が見られた。またある定格電力のモータが、その定格近傍で2770Wの機械的出力が得られた場合、ダイオードブリッジ21よりもダイオードブリッジ22の方が19.7Wの損失低減が見られた。
- [0089] このダイオードブリッジにおける損失について更に詳細に説明する。ダイオード1つ 当たりにおける電力損失Pdは、その順電圧降下Vfと、ダイオードブリッジからインバ ータへと出力される直流電流Idcとの積で見積もることができる。式(11)を考慮すれ ば、電力損失Pdは式(12)で計算される。

[0090] [数12]

$$Pd = Vf \cdot Idc$$

$$= Vf \cdot \frac{\sqrt{3}}{\sqrt{2}} \cdot Im$$

$$= G / (F \cdot k \cdot \sqrt{2}) \cdots (12)$$

- [0091] 全波整流を行うダイオードブリッジ21では、上述のように、交流電源1から流れる電流が常に二つのダイオードを流れるため、その電力損失は2Pdとして計算される。一方、倍電圧整流を行うダイオードブリッジ22では、上述のように、交流電源1から流れる電流の経路においてダイオードは1つしか存在しない。よって電力損失はPdとして計算される。
- [0092] 従って、ダイオードブリッジでの損失を考慮してIGBT素子として低耐圧素子を採用するか、高耐圧素子を採用するかの選択は、式(7),(8)の損失PL,PHを用いて説明すれば、PL+2PdとPH+Pdとのいずれが大きいかに基づくことになる。換言すれ

ば、式(13)が成立すれば高耐圧素子を、成立しなければ低耐圧素子を、それぞれ 選択すれば、ダイオードブリッジとインバータのそれぞれの損失の和を小さく設計す ることができる。

[0093] [数13]

- [0094] 図10は上記の判断を明確にしたフローチャートであり、図6に対応している。図10 のフローチャートは図6のフローチャートのステップS24をステップS24Dに置換した 構成を有しており、ステップS24Dでは式(13)に基づいた判断が行われている。
- [0095] 図11はダイオードブリッジとインバータの損失の和に鑑みて、高耐圧素子を採用した方が望ましい領域を示したグラフである。ここでは図3について説明した、ターンオン損失EL及び飽和電圧VLがそれぞれ1.04(mJ/pulse)及び2.34(V)である耐圧600VのIGBT素子を選定した場合を例示している。また順電圧降下Vfは1.5Vとして計算した。
- [0096] 曲線102よりも原点側に近い領域において、高耐圧素子を採用した方が低耐圧素 子を採用するよりも、ダイオードブリッジとインバータの損失を小さくすることができる。
- [0097] なお、比較のため、図3に示されたグラフを曲線101として再掲した。曲線101は曲線102よりも原点側に近い。つまり、ダイオードブリッジにおける損失を考慮すると、高耐圧素子を採用した方が低耐圧素子を採用するよりも損失を小さくできる領域は広がることがわかる。
- [0098] なお、ダイオードブリッジの損失を考慮すると、式(9)は式(14)のように修正される

[0099] [数14]

fsw<[Pd+
$$\frac{1}{8}$$
(VL- Δ Vce) • [cp]/ $\left[\left(\frac{2}{\pi}\right)$ • Δ Esw] ···(14)

- [0100] ここまでの説明ではインバータのスイッチング素子としてIGBT素子を例に採って説明したが、他のスイッチング素子を採用しても同様に本発明を適用することができる。
- [0101] また、交流電源1から得られる電圧は必ずしも実効値が200Vの場合には限られな

い。例えば実効値が200V-240Vの電源(本件において200V系電源と称す)に対して本発明を適用することができる。

[0102] (B-2)ダイオードブリッジとインバータとのモジュール化.

上述のように、インバータに高耐圧素子を用いる場合、流しうる電流値は小さくて済むという利点がある。しかしながら、低耐圧素子を用いたインバータよりも、高耐圧素子を用いたインバータの方が、入力電圧は高くなる。よってダイオードブリッジとインバータとの間の配線はその周囲から高い耐圧を以て絶縁されることが要求される。

- かかる観点から、ダイオードブリッジとインバータとはモジュールとして一体化される [0103] ことが望ましい。 図9は特許文献2で示されたモジュールの構造を示す断面図である 。電動機制御モジュール50内の電気部品は、上下にほぼ平行に配置されたプリント 基板62およびアルミ基板61に装着されている。プリント基板62およびアルミ基板61 の配線は、樹脂モールドされた電路板63によって接続される。電動機制御モジュー ル50のうちダイオードやパワートランジスタなどのパワー部品71(十数ワット以上の電 力を取り扱うもの)は、全てアルミ基板61にベアチップ実装されている。他方、マイク ロプロセッサ、ROM、各種インターフェイスなどを含むワンチップマイコンで構成され るモジュール内CPUは、他の電気部品による発熱やノイズから遮断すべきものであ るため、発熱量の大きなものが装着されないプリント基板62に装着されている。また、 発熱のない(または少ない)制御部品も、プリント基板62に装着されている。 モールド 材81は、パワー部品71やボンディングワイヤ73、その他のアルミ基板61上の部品を 覆う。 更にプリント基板62上の部品についてもモールド材81で覆っている。 ダイオー ドブリッジとインバータとがモジュール化されることは、高耐圧素子において特に効果 的であることは上述の通りである。
- [0104] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

請求の範囲

- [1] 交流200V系電源(1)に接続される倍電圧整流回路(22)と、 各相毎に耐圧1200Vのスイッチング素子の2つの直列接続を有し、当該直列接続 の接続点から各相毎の交流電流を出力する多相インバータ回路(42)と を備える電流供給回路。
- [2] 前記スイッチング素子はIGBT素子である、請求項1記載の電流供給回路。
- [3] 前記倍電圧整流回路と前記多相インバータ回路とはモジュール化される、請求項2 記載の電流供給回路。
- [4] 請求項2又は請求項3記載の電流供給回路と、 前記多相インバータ回路から電流が供給される多相400V用モータ(M2)と を備える、多相駆動回路。
- [5] 所定の実効値電圧の交流電圧を入力して、多相の交流電流を所定の定格電力の 多相負荷(M2)に出力する電流供給回路(22,32,42)を設計する方法であって、 前記電流供給回路は、各相毎にスイッチング素子の2つの直列接続を有し、当該 直列接続の接続点から各相毎の前記交流電流を出力する多相インバータ回路(42) を備え、
 - (a) 前記多相負荷の前記定格電力を前記実効値電圧の2倍の電圧値で除して得られる電流値を前記多相インバータ回路の定格電流値として設定するステップ(S21) と、
 - (b) 前記交流電圧を全波整流して得られる直流電圧が前記多相インバータ回路に入力する場合に前記スイッチング素子に要求される第1の耐圧の2倍の第2の耐圧を有する前記スイッチング素子を、前記定格電流値に基づいて選定するステップ(S25)と

を備える、電流供給回路設計方法。

[6] 前記所定の実効値電圧の交流電圧は単相であり、

前記電流供給回路は、前記所定の実効値電圧の交流電圧を倍電圧整流して前記 多相インバータ回路(42)に出力する倍電圧整流回路(22)を更に備える、請求項5 記載の電流供給回路設計方法。

- [7] 前記ステップ(b)において、前記インバータのスイッチング周波数(fsw)が高いほど、前記定格電流値におけるターンオン損失(Esw(on))が低い範囲において前記スイッチング素子が選定される、請求項5に記載の電流供給回路設計方法。
- [8] 前記ステップ(b)は、

(b-1)前記スイッチング素子について要求される動損失(Psw)と前記インバータのスイッチング周波数(fsw)とに基づいてターンオン損失(Esw(on)=Esw/2)を設定するステップと、

(b-2)前記第2の耐圧を有し、前記定格電流値において前記ステップ(b-1)で設定された前記ターンオン損失とほぼ等しいターンオン損失を与える前記スイッチング素子を選定するステップと

を有する、請求項7記載の電流供給回路設計方法。

- [9] 前記ステップ(b)において、前記インバータのスイッチング周波数(fsw)が高いほど、前記定格電流値におけるターンオン損失(Esw(on))が低い範囲において前記スイッチング素子が選定される、請求項6に記載の電流供給回路設計方法。
- [10] 前記ステップ(b)は、

(b-1)前記スイッチング素子について要求される動損失(Psw)と前記インバータのスイッチング周波数(fsw)とに基づいてターンオン損失(Esw(on)=Esw/2)を設定するステップと、

(b-2)前記第2の耐圧を有し、前記定格電流値において前記ステップ(b-1)で設定された前記ターンオン損失とほぼ等しいターンオン損失を与える前記スイッチング素子を選定するステップと

を有する、請求項9記載の電流供給回路設計方法。

[11] 前記スイッチング素子はIGBT素子であって、

前記ステップ(b)において、

前記第1の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失(EL)に対する、前記第2の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失の増分(ΔEsw)を除数とし、

前記第1の耐圧を有する前記IGBT素子の飽和電圧(VL)から当該飽和電圧に対

する前記第2の耐圧を有する前記IGBT素子の飽和電圧の増分(Δ Vce)を引いた値 (VL Δ Vce)と、前記インバータの出力電流を正弦波に換算した最大値(Icp)と、($\pi/16$)との積を被除数とし、

前記被除数を前記除数で除して得られる結果よりも、前記インバータのスイッチング 周波数(fsw)が低い領域において、前記第2の耐圧を有する前記IGBT素子が選定 される、請求項5記載の電流供給回路設計方法。

[12] 前記スイッチング素子はIGBT素子であって、

前記ステップ(b)において、

前記第1の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失(EL)に対する、前記第2の耐圧を有する前記IGBT素子の定格電流値におけるターンオン損失の増分(ΔEsw)の($2/\pi$)倍を除数とし、

前記第1の耐圧を有する前記IGBT素子の飽和電圧(VL)から当該飽和電圧に対する前記第2の耐圧を有する前記IGBT素子の飽和電圧の増分(Δ Vce)を引いた値(VL- Δ Vce)と、前記インバータの出力電流を正弦波に換算した最大値(Icp)と、(1/8)との三者の積に対して、前記倍電圧整流回路(22)が有するダイオードーつ分の損失(Pd)を加えた値(Pd+(VL- Δ Vce)・Icp/8)を被除数とし、

前記被除数を前記除数で除して得られる結果よりも、前記インバータのスイッチング 周波数(fsw)が低い領域において、前記第2の耐圧を有する前記IGBT素子が選定 される、請求項6記載の電流供給回路設計方法。

- [13] 前記インバータのスイッチング周波数(fsw)が7kHz以下に設定される、請求項11 記載の電流供給回路設計方法。
- [14] 前記所定の実効値電圧は200Vであり、前記第1の耐圧は600Vである、請求項5 に記載の電流供給回路設計方法。
- [15] 前記スイッチング素子はIGBT素子である、請求項5乃至請求項14のいずれか一つに記載の電流供給回路設計方法。

WO 2005/060082 PCT/JP2004/018732

[図2]

[図3]

[図6]

[図8]

4/6

5/6

[図10]

6/6

[図12]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018732

		CATION OF SUBJECT MATTER H02M7/48						
Acco	According to International Patent Classification (IPC) or to both national classification and IPC							
	FIELDS SE							
Mini	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H02M7/48							
	Jitsuyo Kokai Ji	e fields searched 1994–2005 1996–2005						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
C	DOCUMEN	ITS CONSIDERED TO BE RELEVANT						
Ca	tegory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
	Y	JP 2000-32773 A (Matsushita Industrial Co., Ltd.), 28 January, 2000 (28.01.00), (Family: none)	Electric	1-15				
	<pre>Y JP 10-150776 A (Matsushita E Co., Ltd.), 02 June, 1998 (02.06.98), (Family: none)</pre>		lectric Industrial	1-15				
	Y	JP 9-180895 A (Origin Electron 11 July, 1997 (11.07.97), (Family: none)	ic Co., Ltd.),	1-15				
	Further do	cuments are listed in the continuation of Box C.	See patent family annex.					
* "A"	document de	gories of cited documents: efining the general state of the art which is not considered cular relevance	"T" later document published after the inte date and not in conflict with the applica the principle or theory underlying the ir	tion but cited to understand				
"E"		cation or patent but published on or after the international	"X" document of particular relevance; the c considered novel or cannot be consid	laimed invention cannot be				
"L"	cited to esta	hich may throw doubts on priority claim(s) or which is blish the publication date of another citation or other in (as specified)	"Y" document of particular relevance; the considered to involve an inventive s					
"O" "p"	'O" document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family					
Date of the actual completion of the international search 28 February, 2005 (28.02.05)			Date of mailing of the international sear 26 April, 2005 (26.					
Name and mailing address of the ISA/ Japanese Patent Office			Authorized officer					
Facsimile No.			Telephone No.					

国際調査報告

A. 発明の履	属する分野の分類(国際特許分類(IPC))		,		
Int. C.I	H02M 7/48				
B. 調査を行	丁った分野				
	1つた分割				
	1 ⁷ H02M 7/48				
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2005年 日本国登録実用新案公報 1994-2005年 日本国実用新案登録公報 1996-2005年					
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)					
C. 関連する	ると認められる文献				
引用文献の		St. h.L. 7 on BENJA 1. we determine	関連する		
カテゴリー*			請求の範囲の番号		
Y	JP 2000-32773 A (松		1 - 15		
	28.01.2000 (ファミリ	リーなし)			
Y	JP 10-150776 A(松7 02.06.1998 (ファミリー		1 - 15		
Y	JP 9-180895 A (オリ 11.07.1997 (ファミリー		1 - 15		
□ C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
もの 「E」国際出版 以後にな 「L」優先権 日若し、 文献(5 「O」口頭に。	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 顧日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 顧日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献			
国際調査を完善	了した日 28.02.2005	国際調査報告の発送日 26.04.	2005		
	の名称及びあて先 国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 川端 修	3 V 8 7 1 8		
1	郵便番号100-8915 新壬代田区鷲が関三丁目4番3号	電話番号 03-3581-1101	内線 9956		