```
import pandas as pd
from sklearn, tree import decision Tree Clarifier
import Skleam. tree as tree
import matplotlib.pyplot as plt
 df = pd. read_csv (' Content / drug 200.csv')
 df. head ()
 x'= df[['Age', 'Gender', 'BP', 'Cholestrol', 'Na_to_k']]
 X [015]
  Y = pd. get _dummies (X)
  X. head ()
  Y = of ['Drug']
  1 [0:5]
   from sklearn, model-selection import train_test_split
   x-trainset, x-testset, y-trainset, y-testset = train-test-gut
   (x, y, test-size=0.3, random_state=3)
   drug Tree = Decision Tree Classifier (criterion = "entropy",
    max-depth = 4)
    drug Tree
    dougtree fit (x-townset, y-toxainset)
    predTree = drugTree · predict (X-testset)
    print [pred Tree [0:5])
    print (y-textset [0:5])
     from Sklearn import metrics
     print ("DecisionTrees Acuracy!", metrics. accuracy (
      1 - text set, predtree),
     tree plot - tree (dougTree)
     plt. show ()
```

Page No. 5

	Experiment-3[Decision Tree Algorithm].		
	Sim: The aim of this experiment is to create and test a clarification model using the Decision Tree Algorithm to find a proper drug for a newpatient.		
	Dataset:		
	The dataset used for this experiment is 'drug200.csv'.		
	Objective: 1. Utilise the Decision tree Algorithm for classification. 2. Evaluate the accuracy of the model.		
	Procedure: one hot encoding		
	Import Necessary Libraries		
	Import the required libraries for data manipulation, model implementation evisualisation,		
2.	Get Data		
	load the dataset 'drug200, csv' into a pandas Dataframe.		
3.	Pre-processing Data		
	Extract feature matrix (x) and susponse vector (y) from the dataset.		
4.	Handle Categorical Variables		
	convert categorical variables into dummy variables to make them		
	Suitable for model training.		
5.	Torain-Test Split		
	Split the detest into training I testing sets to train the model on a subset of data and evaluate its performance on unseen data.		
	subset of data and evaluate its performance on unseen data.		
6.	Model Training		
	Train the decision tree classifier using the training data.		
7.	fredictions on Test set		
	Use the trained model to make predictions on the test set.		
	V Teacher's Signature :		

x[1] <=14.615 entropy = 1.929 samples = 140 Value = [16,11,11,33,69] entropy =0.0 samples = 69 value = [0,0,0,0,69] X[4] <=0.5. entropy=1.832 samples = 71 value = [16,11,11,33,0] entropy =0.0 samples = 23 X[8] <= 015 entropy = 0,811 value = [0,0,0,23,0] samples = 44 value = [0,0,11,33,0] entropy =0.01 Samples = 11 en fropy = 0.0 samples = 10 value = [0,0,0,0,0] value = [0,0,11,0,0] trans transfer of Decision m

Expt. No. 3	Page No6
Evaluation	·
Evaluate du accuracy of the model by comparing with actual values from the test set.	predicted values
Visualisation	
Visualize the decision tree model to une 8tructure and decision-making process	derstand its
Observations	
Provide observations or insights gathered performance metrics and visualisations	from the model's
Conclusion	
Conclusion: De cision Tree's Accuracy: 0.9833333	33333
Teacher's Signature	