

Claims Listing

1. (original) A method of producing low-dust granules of polymer additives or polymer additive mixtures, wherein the granule-forming polymer additives are mixed together, the mixture is converted into a workable mass and pressed through an orifice, and the pre-shaped strand-like extruded mass is cooled and, while still in a workable state, formed into granules by rolling, impressing, cooling and comminuting.

2. (currently amended) A method according to claim 1, wherein there are mixed together as granule-forming polymer additives phenolic polymer additives of formula $\text{I}[[\cdot]]$

wherein, independently of one another, one of R₁ and R₂ is hydrogen, a substituent selected from the group C₁-C₁₈alkyl, phenyl, (C₁-C₄alkyl)₁₋₃phenyl, phenyl-C₁-C₃alkyl, (C₁-C₄alkyl)₁₋₃phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl and (C₁-C₄alkyl)₁₋₃C₅-C₁₂cycloalkyl or a group of partial formula $(A)[[\cdot]]$

wherein R_a is hydrogen or a substituent selected from the group C₁-C₄alkyl, halogen and sulfo; and the other is a substituent selected from the group C₁-C₁₈alkyl, phenyl, (C₁-C₄alkyl)₁₋₃phenyl, phenyl-C₁-C₃alkyl, (C₁-C₄alkyl)₁₋₃phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl and (C₁-C₄alkyl)₁₋₃C₅-C₁₂cycloalkyl or a group of partial formula (A) wherein R_a is as defined;

R₃ is hydrogen or methyl;

m is the number zero or 1; and

n is an integer from 1 to 4; wherein,

when n is the number 1,

m is zero or 1 and Y denotes

a monovalent substituent -O-Y₁ or -N(-Y₂)₂, wherein

Y_1 is C_5-C_{45} alkyl, C_3-C_{45} alkyl interrupted by at least one oxygen atom, C_5-C_{12} cycloalkyl, C_2-C_{12} alkenyl, a substituent of partial formula (B)

wherein R_b is hydrogen, C_1-C_8 alkyl, C_3-C_5 alkenyl or benzyl, a substituent of partial formula (C)

wherein R_c is hydrogen, C_1-C_{24} alkyl, C_5-C_{12} cycloalkyl or phenyl, a substituent of partial formula (D)

wherein one of R_d and R_e is hydrogen or methyl and the other is methyl, and R_f is hydrogen or C_1-C_{24} alkyl,
a substituent of partial formula (E)

wherein R_1 and R_2 are as defined above,

or a substituent of partial formula (F)

wherein R_g is hydrogen or C_1-C_{24} alkyl; and

Y_2 is hydroxy- C_2-C_4 alkyl; or,

when n is the number 2,

m is zero and Y is a bivalent group of partial formula (G)

wherein x is an integer from 2 to 20,
a bivalent group of partial formula (H)

wherein y is an integer from 1 to 30,
or a bivalent group of partial formula (I), (K) or (L)

wherein z is zero or an integer from two to ten; or,

when n is the number 3, m is zero and Y is a trivalent group of partial formula (M)

wherein R_h is $\text{C}_1\text{-C}_{24}$ alkyl or phenyl, or (N)

or,

when n is the number 4, m is zero and Y is the tetravalent group of partial formula

3. (currently amended) A method according to claim 1, wherein there are mixed together as granule-forming polymer additives phenolic polymer additives of formula I'') (I')

wherein, independently of one another, one of R₁ and R₂ is hydrogen or C₁-C₄alkyl and the other is C₃-C₄alkyl; x is zero (direct bond) or an integer from one to three; and Y is C₈-C₂₂alkoxy or a group of partial formula (I'A), (I'B) or (I'C)

wherein, independently of one another, one of R₁' and R₂' is hydrogen or C₁-C₄alkyl and the other is C₃-C₄alkyl; x is zero (direct bond) or an integer from one to three; y is an integer from two to ten and z is an integer from two to six.

4. (currently amended) A method according to claim 1, wherein the mixture of granule-forming polymer additives is converted into a workable mass in a heatable co-kneader-kneader.

5. (currently amended) A method according to claim 4[[1]], wherein the workable mass is extruded from the co-kneader-kneader through a circular nozzle or slot-shaped nozzle and the pre-shaped, strand-like mass is subjected to further processing.

6. (original) A method according to claim 1, wherein the plastic, pre-shaped mass is processed by squeeze rollers having a smooth and polished surface and then shaping rollers provided with embossing lines.

7. (original) A method according to claim 1, wherein the shaping rollers are provided with grooves.

8. (original) A method according to claim 1, wherein the transport and the cooling and solidification are carried out on a continuous steel belt.

9. (currently amended) A method according to claim 4[[1]], wherein the components of the granule-forming polymer additives are fed into the co-kneader-kneader in liquid or solid form or in molten form.

10. (original) A method according to claim 1, wherein the impressed product mat is comminuted to granule size in a sieve granulator.