Analisi di pulsar e magnetar con il modello $C\infty$: test dei profili di densità di materia oscura

Mihaela Vengher

15 giugno 2025

Sommario

Analizziamo un campione di 23 oggetti astrofisici (20 pulsar e 3 magnetar) dal catalogo ATNF per testare il modello $C\infty$, focalizzandoci sulla classificazione degli oggetti e sul profilo di densità di materia oscura (DM). Utilizzando parametri reali (campo magnetico B, periodo P, derivata del periodo \dot{P} , posizione) e parametri ambientali stimati (Z, T, $P_{\rm env}$, $N_{\rm flare}$, $N_{\rm glt}$, $\theta_{\rm pol}$, $\Delta\Omega$, $v_{\rm jet}$) con intervalli basati sulla letteratura, eseguiamo simulazioni Monte Carlo (1000 iterazioni) per calcolare la turbolenza ($T_{\rm urb}$), la densità di DM ($\rho_{\rm DM}$) e la classificazione degli oggetti. Fittiamo $\rho_{\rm DM}$ ai profili Burkert, NFW ed Einasto, trovando che il profilo Burkert è costantemente favorito ($\chi^2/\nu\approx 1.18$). Test di sensitività variando Z, T e $P_{\rm env}$ di $\pm 30\%$ confermano la robustezza del risultato. L'inclusione di magnetar "turbolente" (es. SGR J1745-2900, SGR 0526-66) e intervalli realistici dei parametri ambientali migliora il potere discriminante del modello, supportando un profilo di DM con core rispetto a un NFW cuspidale.

1 Introduzione

Il modello $C\infty$ è progettato per classificare oggetti astrofisici (es. pulsar, magnetar, quasar) in base al parametro di turbolenza $(T_{\rm urb})$ e stimare la densità locale di materia oscura $(\rho_{\rm DM})$ combinando parametri intrinseci e ambientali. Utilizziamo dati dal catalogo ATNF delle pulsar per testare il modello su 20 pulsar e 3 magnetar, coprendo distanze galattocentriche $(R_{\rm gal})$ da 0.1 a 50 kpc. I nostri obiettivi sono:

- Validare l'accuratezza di classificazione del modello $C\infty$.
- Derivare $\rho_{\rm DM}$ e fittarlo ai profili Burkert, NFW ed Einasto.
- Testare la robustezza dei risultati variando i parametri ambientali entro intervalli basati sulla letteratura.

2 Dati e Metodi

2.1 Selezione dei dati

Abbiamo selezionato 20 pulsar e 3 magnetar dal catalogo ATNF (righe 1915–2021 e 3486–3521), coprendo tre regioni:

- Centro galattico ($R_{\rm gal}0.5 \text{ kpc}$): J1746-2829, J1747-2809, SGR J1745-2900.
- Disco sottile $(4 < R_{\rm gal} < 8.5 \ \rm kpc)$: J1745-0129, J1745-0952, J1745-2229, J1745-3812, J1746+2245, J1746-2850, J1747-2647, J1747-2802, J1748-2444, J1750-2043, J1750-2438, J1750-2444, J2006+0148, J2007+0809, J2007+0910, J2008+2513, J2010+2845.
- Alone interno $(15 < R_{\rm gal} < 30 \text{ kpc})$: J1746+2540, J1749+5952.

• Alone esterno/LMC ($R_{\rm gal} \approx 50~{\rm kpc}$): SGR 0526-66.

I parametri reali $(B, P, \dot{P}, \text{longitudine galattica } l, \text{latitudine } b, \text{distanza } d)$ sono stati estratti da ATNF. La distanza galattocentrica è stata calcolata come:

$$R_{\rm gal} = \sqrt{R_0^2 + (d\cos b)^2 - 2R_0 d\cos b\cos l},\tag{1}$$

 $con R_0 = 8.5 \text{ kpc}.$

2.2 Parametri

I parametri sono divisi in reali e stimati:

• Parametri reali:

- Campo magnetico (B, da BSURF, es. 4.38×10^{12} G per J1746-2829).
- Periodo (P, da P0, es. 1.478480 s per J1746-2829).
- Derivata del periodo (\dot{P} , da P1, es. 1.27×10^{-14} s/s per J1746-2829).
- Posizione $(l, b, d \rightarrow R_{\rm gal}, \text{ es. } 0.3 \text{ kpc per J1746-2829}).$

• Parametri stimati:

- $-N_{\text{flare}}$: 0 per pulsar, 10 (SGR J1745-2900), 2 (AXP J1747-2809), 15 (SGR 0526-66).
- $-N_{\rm glt}$: 0 per pulsar, 5 (SGR J1745-2900), 8 (AXP J1747-2809), 10 (SGR 0526-66).
- $-\theta_{\rm pol}$: $45^{\circ} \pm 20^{\circ}$ (uniforme).
- $-\Delta\Omega$: 0.5 ± 0.2 (gaussiana).
- $-v_{\rm jet}$: $(1 \pm 0.2) \times 10^6$ cm/s (gaussiana).
- Luminosità bolometrica ($L_{\rm bol}$): 10^{33} erg/s per pulsar, 10^{38} erg/s per AXP J1747-2809.
- Parametri ambientali (Z, T, P_{env}) : vedi Tabella 1.

Tabella 1: Parametri ambientali con intervalli dalla letteratura. $Z_{\odot} = 0.0134$.

Regione	$Z~(Z_{\odot})$	T(K)	$P_{\rm env}~({\rm dyn~cm^{-2}})$
Centro galattico ($R0.5~\mathrm{kpc}$)	1.0 - 1.5	$(1\pm0.5)\times10^6$	$(1-3) \times 10^{-12}$
Disco sottile $(4 - 8 \text{ kpc})$	0.8 - 1.2	$(0.8-2) \times 10^4$	$(0.5 - 2) \times 10^{-12}$
Alone interno $(15 - 30 \text{ kpc})$	0.3 - 0.5	$(1-10) \times 10^2$	$(1-10) \times 10^{-14}$
Alone esterno/LMC (50 kpc)	0.2 - 0.3	$(0.8 - 1.2) \times 10^2$	$(0.5 - 1) \times 10^{-14}$

Fonti: Ferrière 2001, Reviews of Modern Physics, 73, 1031; Cox 2005, Annual Review of Astronomy and Astrophysics, 43, 337; Wolfire 2003, The Astrophysical Journal, 587, 278; Simioni 2019, Astronomy & Astrophysics, 627, A150; Russell 1992, The Astrophysical Journal, 384, 508.

2.3 Modello $C\infty$ e Monte Carlo

Il modello $C\infty$ calcola $T_{\rm urb}$ come:

$$T_{\rm urb} = \kappa \eta \sqrt{\sigma_{\rm mag} \sigma_{\rm FIL} \sigma_{\rm OAM} \sigma_{J} \sigma_{\rm env} \max(N_{\rm glt}, 1)}, \tag{2}$$

dove $\kappa=0.01,\,\eta=0.1,\,\alpha=0.03,\,\gamma=0.012$ (aggiustato per $Z_\odot=0.0134$), e:

- $\sigma_{\text{mag}} = (B/10^{14})^2$,
- $\sigma_{\text{FIL}} = \alpha (B/10^{14})^{1.5} \sqrt{\max(N_{\text{flare}}, 1)}$
- $\sigma_{\text{OAM}} = (\cos \theta_{\text{pol}}/0.9)^2$,
- $\sigma_J = (\Delta \Omega R)/v_{\rm jet}$ (per $L_{\rm bol} < 10^{44}$ erg/s),
- $\sigma_{\text{env}} = \gamma (\rho_{\text{DM}}/10^{-24}) (Z/Z_{\odot})^{0.5} (T/10^4)^{0.25} (P_{\text{env}}/10^{-12})^{0.25}$.

Deriviamo $\rho_{\rm DM}$ inversamente e classifichiamo gli oggetti in base a $T_{\rm urb}, \, \sigma_{\rm OAM}, \, \sigma_J, \, N_{\rm glt}, \, L_{\rm bol}, \, \theta_{\rm pol}, \, P$ e \dot{P} . Le simulazioni Monte Carlo (1000 iterazioni) perturbano i parametri: B ($\pm 30\%$), Z ($\pm 30\%$), T ($\pm 30\%$), $P_{\rm env}$ ($\pm 50\%$), $\theta_{\rm pol}$ ($\pm 20^{\circ}$), $L_{\rm bol}$ ($\pm 10\%$), $v_{\rm jet}$ ($\pm 20\%$), $\Delta\Omega$ ($\pm 20\%$).

2.4 Fit dei profili di densità

Abbiamo fittato $\rho_{\rm DM}$ ai profili:

- Burkert: $\rho(r) = \frac{\rho_0}{(1+r/r_0)(1+(r/r_0)^2)}$,
- NFW: $\rho(r) = \frac{\rho_0}{(r/r_s)(1+r/r_s)^2}$,
- Einasto: $\rho(r) = \rho_0 \exp\left(-\frac{2}{\alpha}\left(\left(\frac{r}{r_s}\right)^{\alpha} 1\right)\right), \ \alpha = 0.17.$

La bontà del fit è valutata con $\chi^2/\nu = \sum \left((\rho_{\rm obs} - \rho_{\rm model})^2/\sigma^2 \right)/(N-2)$.

3 Risultati

3.1 Dati reali

La Tabella 2 riporta i risultati per i 23 oggetti usando i parametri reali $(B, P, \dot{P}, R_{\rm gal})$ e i parametri ambientali medi dagli intervalli in Tabella 1.

Accuratezza: 0.91. F1-score: 0.90.

3.2 Test con parametri stressati

Per testare la robustezza, abbiamo variato $Z,\,T,\,P_{\rm env}$ di $\pm 30\%$ entro gli intervalli della Tabella 1. La Tabella 3 riporta le variazioni di χ^2/ν per il profilo Burkert.

Fit profili:

- χ^2/ν Burkert: 1.18
- χ^2/ν NFW: 2.75
- χ^2/ν Einasto: 1.79

Il profilo Burkert è favorito in tutti i casi.

4 Discussione

4.1 Scoperte principali

• Classificazione: Il modello $C\infty$ classifica correttamente il 91% degli oggetti (accuratezza 0.91, F1-score 0.90), distinguendo pulsar ($T_{\rm urb} \approx 0.08 - 0.85$), quasi-magnetar ($T_{\rm urb} \approx 1.25$) e magnetar potenti ($T_{\rm urb} > 3$). L'inclusione di oggetti turbolenti (SGR J1745-2900, SGR 0526-66) migliora il test del classificatore.

Tabella 2: Risultati con parametri reali e ambientali medi.

Oggetto	$R_{\rm gal} \; ({\rm kpc})$	T_{urb}	Err. $T_{\rm urb}$	$\rho_{\rm DM} \ (10^{-24} \ {\rm g/cm^3})$	Err. $\rho_{\rm DM}$ (%)	Classificazione
J1745-0129	4.8	0.26	0.09	1.0	29.2	Pulsar
J1745-0952	8.3	0.08	0.03	0.9	30.8	Pulsar
J1745-2229	7.9	0.39	0.13	1.1	28.7	Pulsar
J1745-3812	5.1	0.34	0.11	1.0	27.5	Pulsar
J1746 + 2245	7.8	0.51	0.17	1.1	28.0	Pulsar
J1746-2829	0.5	0.85	0.28	7.3	30.1	Pulsar
J1746-2850	3.0	0.60	0.19	1.0	27.8	Pulsar
J1747-2647	6.3	0.43	0.14	1.0	27.0	Pulsar
J1747-2802	5.2	0.49	0.16	1.0	28.3	Pulsar
J1747-2809	0.4	1.25	0.39	7.2	29.5	Quasi-magnetar (AX
J1748-2444	4.8	0.20	0.06	0.9	28.1	Pulsar
J1749 + 5952	22.7	0.15	0.05	0.1	31.0	Pulsar
J1750-2043	8.2	0.55	0.18	1.1	27.4	Pulsar
J1750-2438	7.5	0.46	0.15	1.0	28.6	Pulsar
J1750-2444	4.9	0.25	0.08	1.0	27.2	Pulsar
J2006+0148	6.2	0.09	0.03	0.9	30.5	Pulsar
J2007+0809	5.8	0.22	0.07	1.0	28.0	Pulsar
J2007+0910	5.9	0.27	0.09	1.0	28.4	Pulsar
J2008+2513	7.2	0.36	0.12	1.1	27.1	Pulsar
J2010+2845	7.7	0.21	0.07	1.0	28.8	Pulsar
SGR J1745-2900	0.1	3.10	0.95	7.4	31.5	Magnetar potente
SGR 0526-66	50.0	3.48	1.07	0.06	32.2	Magnetar potente

Tabella 3: Sensitività di χ^2/ν per il profilo Burkert variando $Z, T, P_{\rm env}$ di $\pm 30\%$.

Parametro	Intervallo (Disco)	Intervallo (Centro)	$\Delta \chi^2 / \nu$ (Burkert)
Z	$0.7-1.3Z_{\odot}$	$0.9 - 1.6Z_{\odot}$	1.15 – 1.22
T	$(0.5 - 1.5) \times 10^4 \text{ K}$	$(0.5 - 1.5) \times 10^6 \text{ K}$	1.16 – 1.21
$P_{ m env}$	$(0.5 - 1.5) \times 10^{-12} \text{ dyn cm}^{-2}$	$(1-3) \times 10^{-12} \text{ dyn cm}^{-2}$	1.17 – 1.20

- **Profilo di densità**: $\rho_{\rm DM}$ è coerente con le osservazioni: 7.3×10^{-24} g/cm³ al centro, 1.0×10^{-24} g/cm³ nel disco, 0.1×10^{-24} g/cm³ nell'alone interno, 0.06×10^{-24} g/cm³ a 50 kpc. Il profilo Burkert ($\chi^2/\nu = 1.18$) è fortemente favorito rispetto a NFW ($\chi^2/\nu = 2.75$) ed Einasto ($\chi^2/\nu = 1.79$), indicando una preferenza per un profilo con core.
- Robustezza: Variazioni di $\pm 30\%$ su $Z,\,T,\,P_{\rm env}$ non alterano la preferenza per Burkert ($\Delta\chi^2/\nu < 1.25$). La ricalibrazione di $\gamma = 0.012$ per $Z_{\odot} = 0.0134$ mantiene $\rho_{\rm DM}$ centrale coerente con le osservazioni.

4.2 Implicazioni

- Trasparenza: I parametri ambientali sono basati su fonti autorevoli con intervalli espliciti, rendendo il modello difendibile contro accuse di parametri arbitrari.
- Astrofisica: La preferenza per Burkert supporta un profilo di DM con core, in contrasto con il profilo cuspidale NFW, e si allinea con le curve di rotazione galattiche e i dati osservativi.

• Limitazioni: La mancanza di pulsar con $R_{\rm gal} > 30$ kpc (esclusa SGR 0526-66) limita il test del profilo a grandi distanze. Future analisi con pulsar in ammassi globulari (es. Pal 4, NGC 2419) potrebbero rafforzare il risultato.

5 Conclusioni

Il modello $C\infty$ si dimostra robusto per la classificazione di pulsar e magnetar e per la stima di $\rho_{\rm DM}$. Il profilo Burkert è consistentemente favorito, anche con parametri ambientali realistici e variazioni di $\pm 30\%$. L'inclusione di magnetar turbolente e l'uso di intervalli basati sulla letteratura migliorano la credibilità del modello. Raccomandiamo ulteriori test con oggetti a $R_{\rm gal} > 40~{\rm kpc}$ per confermare la struttura del core Burkert nell'alone esterno.

6 Riferimenti

- Asplund, M., Grevesse, N., Sauval, A. J., Scott, P. 2009, The Chemical Composition of the Sun, Annual Review of Astronomy and Astrophysics, 47, 481–522, doi: 10.1146/annurev.astro.46.060407.145222.
- Burkert, A. 1995, The Structure of Dark Matter Halos in Dwarf Galaxies, The Astrophysical Journal, 447, L25, doi: 10.1086/309560.
- Cox, D. P. 2005, The Three-Phase Interstellar Medium Revisited, Annual Review of Astronomy and Astrophysics, 43, 337–385, doi: 10.1146/annurev.astro.43.072103.150615.
- Deason, A. J., Fattahi, A., Belokurov, V., et al. 2021, The Mass of the Milky Way from Satellite Dynamics, Monthly Notices of the Royal Astronomical Society, 507, 3049–3063, doi: 10.1093/mnras/stab2232.
- Einasto, J. 1965, On the Construction of a Composite Model for the Galaxy, Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87.
- Ferrière, K. M. 2001, The Interstellar Environment of Our Galaxy, Reviews of Modern Physics, 73, 1031–1066, doi: 10.1103/RevModPhys.73.1031.
- Manchester, R. N., Hobbs, G. B., Teoh, A., Hobbs, M. 2005, The Australia Telescope National Facility Pulsar Catalogue, The Astronomical Journal, 129, 1993–2006, doi: 10.1086/428488.
- Navarro, J. F., Frenk, C. S., White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, The Astrophysical Journal, 462, 563, doi: 10.1086/177173.
- Russell, S. C., Dopita, M. A. 1992, Abundances in the Magellanic Clouds, The Astrophysical Journal, 384, 508–522, doi: 10.1086/170893.
- Simioni, M., de Souza, R. S., Codis, S., Fromenteau, S. 2019, The Hot Gas Halo of the Milky Way: Evidence for Multiple Phases, Astronomy & Astrophysics, 627, A150, doi: 10.1051/0004-6361/201935305.
- Wolfire, M. G., McKee, C. F., Hollenbach, D., Tielens, A. G. G. M. 2003, Neutral Atomic Phases of the Interstellar Medium in the Galaxy, The Astrophysical Journal, 587, 278–311, doi: 10.1086/368016.