Angewandte Mathematik Weitere Analysis-Themen

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Einführungsfilme

@igs

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- Weitere Differentialrechnung
- Weitere Integralrechnung

univ

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- Weitere Differentialrechnung
- Weitere Integralrechnung

Angewandte Mathematik für die Informatik - SS2022

Kartesische Koordinatensysteme

• Geradliniges, orthogonales Koordinatensystem in n Dimensionen (Fokus auf n=2,3,4), mit n orthonormalen Basisvektoren \mathbf{e}_i , sowie Ursprung \mathbf{o}

$$\mathbf{e}_i \cdot \mathbf{e}_j = 0, \quad \|\mathbf{e}_i\| = \|\mathbf{e}_j\| = 1 \quad i \neq j$$

Punkte als Linearkombination von Basisvektoren

Polarkoordinaten

- Darstellung (krummlinig) von Punkten in n Dimensionen über n-1 Rotationswinkel θ_i sowie Abstand r (hinsichtlich Referenzachsen und Pol)
- \blacksquare Beschreibung einer Richtung, z.B. in Ebene in 2D nur über einen Winkel θ

Angewandte Mathematik für die Informatik - SS2022

Umrechnung in 2D

- Annahme: Ursprung/Pol sowie Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (2D) $x = r \cdot \cos \theta$, $y = r \cdot \sin \theta$
- Kartesische Koordinaten zu Polarkoordinaten (2D)

$$r = \sqrt{x^2 + y^2}$$
, $\theta = \arctan \frac{y}{x}$ $x > 0$

- Für r = 0 Winkel nicht bestimmt
- Winkel $\theta + 2\pi k$, $k \in \mathbb{Z}$ beschreiben den gleichen Punkt
- Erweiterung auf alle Quadranten mittels Funktion: atan2(x,y)

Kugelkoordinaten

- Position in 3D über Distanz r vom Ursprung, sowie (Azimut)-Winkel φ und (Zenit)-Winkel θ
- Position auf Kugel über zwei Richtungen

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

Angewandte Mathematik für die Informatik – SS2022

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

 $\tau_p = r \sin \theta$

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

$$x_p = \tau_p \cos \varphi$$

Angewandte Mathematik für die Informatik – SS2022

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

 x_p φ τ_p

$$x_p = r \sin \theta \cos \varphi$$

 $\tau_{p} = r \sin \theta$ $\frac{z}{\theta}$ $\frac{z}{x_{p}}$ $\frac{z}{y_{p}}$ $\frac{z}{y_{p}}$

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

 $\tau_n = r \sin \theta$

 $y_p = r\sin\theta\sin\varphi$

Angewandte Mathematik für die Informatik – SS2022

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Polarkoordinaten zu kartesische Koordinaten (3D)
- Gegeben: θ , φ , r

$$x = r\cos\varphi\sin\theta$$

$$y = r \sin \varphi \sin \theta$$

$$z = r \cos \theta$$

- Annahme: Ursprung/Pol, Achsen identisch
- Kartesische Koordinaten zu Polarkoordinaten (3D)
- Gegeben: x, y, z

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$z = r \cos \theta$$

$$\Rightarrow \theta = \arccos \frac{z}{r}$$
 $r > 0$

Angewandte Mathematik für die Informatik – SS2022

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Kartesische Koordinaten zu Polarkoordinaten (3D)
- Gegeben: x, y, z

$$x = r\cos\varphi\sin\theta$$

$$y = r \sin \varphi \sin \theta$$

$$\frac{y}{x} = \frac{r \sin \varphi \sin \theta}{r \cos \varphi \sin \theta} = \frac{\sin \varphi}{\cos \varphi}$$

- Annahme: Ursprung/Pol, Achsen identisch
- Kartesische Koordinaten zu Polarkoordinaten (3D)
- Gegeben: x, y, z

$$x = r \cos \varphi \sin \theta$$

$$y = r \sin \varphi \sin \theta$$

$$\frac{y}{x} = \frac{r \sin \varphi \sin \theta}{r \cos \varphi \sin \theta} = \tan \varphi$$

Angewandte Mathematik für die Informatik – SS2022

Umrechnung in 3D

- Annahme: Ursprung/Pol, Achsen identisch
- Kartesische Koordinaten zu Polarkoordinaten (3D)
- Gegeben: x, y, z

$$x = r\cos\varphi\sin\theta$$

$$y = r \sin \varphi \sin \theta$$

$$\frac{y}{r} = \frac{r \sin \varphi \sin \theta}{r \cos \varphi \sin \theta} = \tan \varphi$$

$$\Rightarrow \varphi = \arctan \frac{y}{x}$$

z θ x φ y y y

- Annahme: Ursprung/Pol, Achsen identisch
- Kartesische Koordinaten zu Polarkoordinaten (3D)
- Gegeben: x, y, z

$$r = \sqrt{x^2 + y^2 + z^2}$$
 $r, x > 0$

$$\varphi = \arctan(y/x)$$

$$\theta = \arccos(z/r)$$

Angewandte Mathematik für die Informatik – SS2022

2D Rotationsmatrix

lacktriangle Rotation um den Ursprung mit Winkel heta (gegen den Uhrzeigersinn), Abbildung $\mathbf{p} \rightarrow \mathbf{p}'$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{R}(\theta)\mathbf{p}$$

$$\mathbf{p}_1 = (0,1)$$

 $\mathbf{p}_2' = \left(0, \sqrt{2}\right)$

2D Rotationsmatrix - Herleitung

• Eine Variante der Herleitung:

$$x = \cos \varphi$$
 $x' = \cos(\varphi + \theta)$
 $y = \sin \varphi$ $y' = \sin(\varphi + \theta)$

$$x' = \cos(\varphi + \theta) = \cos\varphi\cos\theta - \sin\varphi\sin\theta$$
$$y' = \sin(\varphi + \theta) = \sin\varphi\cos\theta + \cos\varphi\sin\theta$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\varphi\cos\theta - \sin\varphi\sin\theta \\ \sin\varphi\cos\theta + \cos\varphi\sin\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Angewandte Mathematik für die Informatik – SS2022

11

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- Weitere Differentialrechnung
- Weitere Integralrechnung

Maksträtk

Parametrische Abbildungen

• Abbildungen $f: \mathbb{R}^n \to \mathbb{R}^m$ können in Parameterdarstellung (als Parametrisierung) angegeben werden, mit Parametern t_i

$$f(t_1,...,t_n) = (x_1(t_1,...,t_n),...,x_m(t_1,...,t_n))^T$$

Von besonderem Interesse sind Kurven in 2D und 3D

$$f(t) = (x(t), y(t))^T$$

$$f(t) = (x(t), y(t))^{T} \qquad f(t) = (x(t), y(t), z(t))^{T}$$

sowie Oberflächen in 3D

$$f(s,t) = (x(s,t), y(s,t), z(s,t))^{T}$$

Angewandte Mathematik für die Informatik – SS2022

Parametrisierung - Beispiele

Darstellung von Linien in 2D

$$y = kx + d$$

(Lineare Funktion)

$$\binom{n_x}{n_y}^I \binom{x}{y} + c = 0$$

$$\mathbf{n} \cdot \mathbf{x} + c = 0$$

(Implizite Form)

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \end{pmatrix} + t \begin{pmatrix} d_x \\ d_y \end{pmatrix}$$

$$\mathbf{x} = \mathbf{p} + t\mathbf{d}$$

(Parameterform)

@igs

Parametrisierung – Beispiele

Darstellung von Ebenen in 3D

$$z = ax + by + c$$

(Lineare Funktion)

$$\begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}^T \begin{pmatrix} x \\ y \\ z \end{pmatrix} + c = 0$$

$$\mathbf{n} \cdot \mathbf{x} + c = 0$$
 (Implizite Form)

 $\mathbf{a} \neq \lambda \mathbf{b}$

Parametrisierung - Beispiele

Darstellung von Linien in 3D

$$\{(x, y, z) \in \mathbb{R}^3 : \{(x, y, z) \in \mathbb{R}^3 :$$

$$\frac{x - p_x}{d_x} = \frac{y - p_y}{d_y} = \frac{z - p_z}{d_z} \}$$

$$\mathbf{n}_1 \cdot \mathbf{x} + c_1 = 0 \land$$

$$\mathbf{n}_2 \cdot \mathbf{x} + c_2 = 0 \}$$

 $d_x, d_y, d_z \neq 0$

$$\mathbf{n}_2 \cdot \mathbf{x} + c_2 = 0$$

 $\mathbf{n}_1 \neq \lambda \cdot \mathbf{n}_2$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} + t \begin{pmatrix} d_x \\ d_y \\ d_z \end{pmatrix}$$

$$\mathbf{x} = \mathbf{p} + t\mathbf{c}$$

(Symm. Gleichung) (Schnitt zweier Ebenen) (Parameterform)

Parametrisierung – Beispiele

Darstellung von Kreisen in 2D

$$y = c_{y} + \sqrt{r^{2} - (x - c_{x})^{2}}$$

$$y = c_{y} - \sqrt{r^{2} - (x - c_{x})^{2}}$$

$$(x - c_{x})^{2} +$$

$$(x - c_{x})^{2} +$$

$$(y - c_{y})^{2} - r^{2} = 0$$

$$y = c_{y} + r \cdot \sin t$$

$$(x-c_x)^2 + (y-c_y)^2 - r^2 = 0$$

$$x = c_x + r \cdot \cos t$$
$$v = c_x + r \cdot \sin t$$

(Funktionsgleichungen)

(Implizite Form)

(Parameterform)

Angewandte Mathematik für die Informatik – SS2022

Parameterdarstellung von Kurven

- Eine stetige Abbildung $\gamma: [a,b] \to \mathbb{R}^n$ wird Parameterdarstellung einer stetigen Kurve in \mathbb{R}^n genannt
- Diese hat den Anfangspunkt $\gamma(a)$ und Endpunkt $\gamma(b)$; sie ist geschlossen wenn $\gamma(a) = \gamma(b)$
- Eine (offene/geschlossene) Kurve ist eine Jordankurve, wenn $\gamma(t) \neq \gamma(t')$ für $a < t < t' \le b$ (keine Schnittpunkte)

(keine Jordankurve)

Parameterdarstellung von Kurven

 Für eine Kurve können unterschiedliche Parameterdarstellungen existieren; die Durchlaufgeschwindigkeiten können sich unterscheiden

$$\gamma(t) = (x(t), y(t))$$

$$\gamma_{1}(t) = \left(t^{3}, \frac{1}{4}(t^{3} - 1)^{2} + 1\right)$$

$$t \in \left[\sqrt[3]{-3}, \sqrt[3]{3}\right]$$

$$\gamma_{1}(0.5) = (0.125, 1.191...)$$

$$\gamma_{2}(t) = \left(t, \frac{1}{4}(t - 1)^{2} + 1\right)$$

$$t \in \left[-3, 3\right]$$

$$\gamma_{2}(0.5) = (0.5, 1.0625)$$
Angewandte Mathematik für die Informatik – SS2022

Tangentialvektor

 $\|\mathbf{t}(\tau)\| = 1$

- Eine stetige Kurve mit differenzierbarer Parameter-darstellung $\gamma\colon [a,b] \to \mathbb{R}^n$ wird glatt genannt, wenn alle Teilfunktionen $\gamma_i(.)$ in [a,b] differenzierbar sind und $\dot{\gamma}(\tau) = \left(\gamma_1'(\tau), \ldots, \gamma_n'(\tau)\right) \neq (0,\ldots,0) \quad \forall \, \tau \in [a,b]$
- Für eine geschlossene Kurve gelte zusätzlich $\dot{\gamma}(a) = \dot{\gamma}(b)$
- Der Tangentialvektor an Stelle $\gamma(\tau)$ ist gegeben durch $\mathbf{t}(\tau) = \dot{\gamma}(\tau) / \|\dot{\gamma}(\tau)\|$ mit $\|\dot{\gamma}(\tau)\| = \sqrt{\sum_{i=1}^{n} \left(\gamma_i'(\tau)\right)^2}$
- Der Tangentialvektor hat (euklidische) Länge von 1

Angewandte Mathematik für die Informatik – SS202

Tangentialvektor – Beispiel

• Kreis in 2D um Punkt $\mathbf{c} = (c_x, c_y)^T$ mit Radius r

$$\gamma(t) = \begin{pmatrix} c_x + r \cdot \cos t \\ c_y + r \cdot \sin t \end{pmatrix}$$
 (Parameter form)

$$\dot{\gamma}(t) = \begin{pmatrix} -r \cdot \sin t \\ r \cdot \cos t \end{pmatrix} \qquad \qquad \left\| \dot{\gamma}(t) \right\| = \sqrt{r^2 \sin^2 t + r^2 \cos^2 t} = r$$

$$\Rightarrow \mathbf{t}(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$$

$$\left\|\mathbf{t}(t)\right\| = \sqrt{\sin^2 t + \cos^2 t} = 1$$

Angewandte Mathematik für die Informatik – SS2022

20

Bogenlänge einer Kurve

• Die Länge einer stetigen Kurve in \mathbb{R}^n mit differenzierbarer Parameterdarstellung γ im Intervall [a,b] ist gegeben als:

$$L = \int_{a}^{b} ||\dot{\gamma}(t)|| dt = \int_{a}^{b} \left(\sum_{i=1}^{n} (\gamma_{i}'(t))^{2} \right)^{\frac{1}{2}} dt$$

Insbesondere für den Spezialfall $\gamma(t) = (t, f(t))$ in \mathbb{R}^2

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(t)\right)^2} dt$$

Angewandte Mathematik für die Informatik – SS202

Bogenlänge einer Kurve – Herleitung

Betrachtung in 2D – Annäherung durch Polygonzug

$$L \approx \sum_{i=1}^{n} \Delta s_{i} = \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2} + \Delta y_{i}^{2}} = \sum_{i=1}^{n} \sqrt{\left(x'\left(\tilde{t}_{i}\right)\Delta t\right)^{2} + \left(y'\left(\hat{t}_{i}\right)\Delta t\right)^{2}}$$
$$= \sum_{i=1}^{n} \sqrt{x'\left(\tilde{t}_{i}\right)^{2} + y'\left(\hat{t}_{i}\right)^{2}} \Delta t \qquad \qquad \tilde{t}_{i}, \hat{t}_{i} \in \left[t_{i}, t_{i} + \Delta t\right]$$

$$L = \lim_{n \to \infty, \Delta t \to 0} \sum_{i=1}^{n} \sqrt{x' (\tilde{t}_{i})^{2} + y' (\hat{t}_{i})^{2}} \Delta t$$

$$= \int_{a}^{b} (x'(t)^{2} + y'(t)^{2})^{\frac{1}{2}} dt$$

$$= \int_{a}^{b} ||\dot{\gamma}(t)|| dt$$

$$\Delta x_{i}$$

$$\Delta x_{i}$$

$$\Delta x_{i}$$

@igs

Angewandte Mathematik für die Informatik – SS2022

22

Bogenlänge einer Kurve - Beispiele

■ Bestimmung des Kreisumfangs über Parameterdarstellung, für $0 \le t \le 2\pi$

$$\gamma(t) = (c_x + r \cdot \cos t + c_y + r \cdot \sin t)^T$$

$$L = \int_0^{2\pi} (r^2 \sin^2 t + r^2 \cos^2 t)^{\frac{1}{2}} dt = r \int_0^{2\pi} 1 \cdot dt = 2\pi r$$

Bestimmung des Viertelkreisbogens mittels Funktion

$$f(x) = \sqrt{r^2 - x^2}$$
 $0 \le x \le r$ (uneigentliches Integral)

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx = \lim_{c \to r} \int_{0}^{c} \sqrt{1 + \left(\frac{-x}{\sqrt{r^{2} - x^{2}}}\right)^{2}} dx$$

Angewandte Mathematik für die Informatik – SS2022

Bogenlänge einer Kurve – Beispiele

 Bestimmung des Kreisumfangs über Parameterdarstellung, für $0 \le t \le 2\pi$

$$\gamma(t) = (c_x + r \cdot \cos t + c_y + r \cdot \sin t)^T$$

$$L = \int_0^{2\pi} (r^2 \sin^2 t + r^2 \cos^2 t)^{\frac{1}{2}} dt = r \int_0^{2\pi} 1 \cdot dt = 2\pi r$$

Bestimmung des Viertelkreisbogens mittels Funktion

$$f(x) = \sqrt{r^2 - x^2}$$
 $0 \le x \le r$ (uneigentliches Integral)

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^{2}} dx = \int_{0}^{r} \sqrt{\frac{r^{2} - x^{2}}{r^{2} - x^{2}}} + \frac{x^{2}}{r^{2} - x^{2}} dx =$$

Angewandte Mathematik für die Informatik - SS2022

Bogenlänge einer Kurve – Beispiele

 Bestimmung des Kreisumfangs über Parameterdarstellung, für $0 \le t \le 2\pi$

$$\gamma(t) = (c_x + r \cdot \cos t + c_y + r \cdot \sin t)^T$$

$$L = \int_0^{2\pi} (r^2 \sin^2 t + r^2 \cos^2 t)^{\frac{1}{2}} dt = r \int_0^{2\pi} 1 \cdot dt = 2\pi r$$

Bestimmung des Viertelkreisbogens mittels Funktion

$$f(x) = \sqrt{r^2 - x^2} \qquad 0 \le x \le r \qquad \text{(uneigentliches Integral)}$$

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx = \int_{0}^{r} \sqrt{\frac{r^2 - x^2}{r^2 - x^2} + \frac{x^2}{r^2 - x^2}} dx = r \int_{0}^{r} \frac{1}{\sqrt{r^2 - x^2}} dx$$

$$= r \arcsin\left(\frac{x}{r}\right)\Big|_{0}^{r} = r \arcsin(1) - r \arcsin(0) = r$$

Bogenlänge einer Kurve – Beispiele

■ Bestimmung des Kreisumfangs über Parameterdarstellung, für $0 \le t \le 2\pi$

$$\gamma(t) = (c_x + r \cdot \cos t + c_y + r \cdot \sin t)^T$$

$$L = \int_0^{2\pi} (r^2 \sin^2 t + r^2 \cos^2 t)^{\frac{1}{2}} dt = r \int_0^{2\pi} 1 \cdot dt = 2\pi r$$

Bestimmung des Viertelkreisbogens mittels Funktion

$$f\left(x\right) = \sqrt{r^2 - x^2} \qquad 0 \le x \le r \qquad \text{(uneigentliches Integral)}$$

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx = \int_{0}^{r} \sqrt{\frac{r^2 - x^2}{r^2 - x^2} + \frac{x^2}{r^2 - x^2}} dx = r \int_{0}^{r} \frac{1}{\sqrt{r^2 - x^2}} dx$$

$$= r \arcsin\left(\frac{x}{r}\right)\Big|_{0}^{r} = r \arcsin(1) - r \arcsin(0) = r \frac{\pi}{2} - 0 = \frac{\pi r}{2}$$

Angewandte Mathematik für die Informatik - SS2022

23

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- Weitere Differentialrechnung
- Weitere Integralrechnung

universite

Archimedische Spirale

 Pfad des Endpunkts eines konstant wachsenden Strahls, rotierend mit konstanter Winkelgeschwindigkeit

$$\gamma(\theta) = (a \cdot \theta \cdot \cos \theta \quad a \cdot \theta \cdot \sin \theta)^T \quad \theta > 0, a \in \mathbb{R}^+$$

Angewandte Mathematik für die Informatik – SS2022

24

Schraubenlinie

 Pfad des Endpunkts eines Strahls konstanter Länge, rotierend mit konstanter Winkelgeschwindigkeit, und stetig wachsender Höhe

$$\gamma(\theta) = (a \cdot \cos \theta \quad a \cdot \sin \theta \quad b \cdot \theta)^T \quad \theta \in \mathbb{R}, a, b \in \mathbb{R}^+$$

Angewandte Mathematik für die Informatik – SS2022

Zykloide

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einer Ebene abrollt (Rollkurve)

$$\gamma(\theta) = (a(\theta + \sin \theta) \quad a(1 + \cos \theta))^T \quad \theta > 0, a \in \mathbb{R}^+$$

Zykloide

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einer Ebene abrollt (Rollkurve)

$$\gamma(\theta) = \begin{pmatrix} a(\theta + \sin \theta) \\ a(1 + \cos \theta) \end{pmatrix}$$

 $\theta > 0, a \in \mathbb{R}^+$

@igs

Angewandte Mathematik für die Informatik – SS2022

.5

Zykloide

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einer Ebene abrollt (Rollkurve)

$$\gamma(\theta) = \begin{pmatrix} a(\theta + \sin \theta) \\ a(1 + \cos \theta) \end{pmatrix} = a \begin{pmatrix} \theta \\ 1 \end{pmatrix} + \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix} \theta > 0, a \in \mathbb{R}^+$$

@igs

Angewandte Mathematik für die Informatik – SS2022

5 14

Zykloide

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einer Ebene abrollt (Rollkurve)

$$\gamma(\theta) = \begin{pmatrix} a(\theta + \sin \theta) \\ a(1 + \cos \theta) \end{pmatrix} = a \begin{pmatrix} \theta \\ 1 \end{pmatrix} + \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix} \quad \theta > 0, a \in \mathbb{R}^+$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Brachistochrone

 Pfad auf dem ein Massepunkt in kürzester Zeit vom Start- zum tieferen Endpunkt gelangt (nur Gravitation)

$$\gamma(\theta) = (a(\theta - \sin \theta) \quad a(-1 + \cos \theta))^T \quad \theta > 0, a \in \mathbb{R}^+$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Kardioide

• Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

$$\gamma(\theta) = (2a(1-\cos\theta)\cos\theta \quad 2a(1-\cos\theta)\sin\theta)^T$$

 $0 \le \theta < 2\pi, \alpha \in \mathbb{R}^+$

• Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

$$\gamma(\theta) = (2a(1-\cos\theta)\cos\theta \quad 2a(1-\cos\theta)\sin\theta)^T$$

$$0 \le \theta < 2\pi, a \in \mathbb{R}^+$$

$$0 \le \theta < 2\pi, a \in \mathbb{R}^+$$
Angewandte Mathematik für die Informatik – SS2022

Angewandte Mathematik für die Informatik – SS2022

Kardioide

• Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

 $\gamma(\theta) = (2a(1-\cos\theta)\cos\theta \quad 2a(1-\cos\theta)\sin\theta)^T$ $0 \le \theta < 2\pi, a \in \mathbb{R}^+$

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

$$\gamma(\theta) = (2a(1 - \cos \theta) \cos \theta \quad 2a(1 - \cos \theta) \sin \theta)^{T}$$

$$0 \le \theta < 2\pi, a \in \mathbb{R}^{+}$$

Angewandte Mathematik für die Informatik – SS2022

Kardioide

@igs

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

• Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

Angewandte Mathematik für die Informatik – SS2022

Kardioide

• Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

 $\gamma(\theta) = (2a(1-\cos\theta)\cos\theta \quad 2a(1-\cos\theta)\sin\theta)^T$ $0_8 \le \theta < 2\pi, a \in \mathbb{R}^+$ 16 18 20 32 30 26

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

Kardioide

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

 $\gamma(\theta) = (2a(1-\cos\theta)\cos\theta \quad 2a(1-\cos\theta)\sin\theta)^T$ $0_8 \le \theta < 2\pi, a \in \mathbb{R}^+$ $10 \quad 0_8 \le \theta < 2\pi$ $10 \quad 0_8 \le \theta < 2\pi$

 Pfad eines Punktes am Rand eines Rades, welches gleichmäßig auf einem 2. Rad gleichen Radius rollt

$$\gamma(\theta) = (2a(1 - \cos \theta)\cos \theta \quad 2a(1 - \cos \theta)\sin \theta)^{T}$$
$$0 \le \theta < 2\pi, a \in \mathbb{R}^{+}$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Lemniskate

 Schleifenförmige Kurve in der Ebene, in der Form einer liegenden Acht (bzw. Unendlichzeichen ∞)

$$(x^2 + y^2)^2 - 2a^2(x^2 - y^2) = 0,$$
 $a \in \mathbb{R}^+$

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- **Weitere Differentialrechnung**
- Weitere Integralrechnung

Angewandte Mathematik für die Informatik - SS2022

Extrema Multivariater Funktionen

- Gegeben: skalare multivariate Funktion $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^n$
- Funktion f hat in \mathbf{x}_0 ein lokales Maximum genau dann wenn $f(\mathbf{x}) \le f(\mathbf{x}_0)$ für alle \mathbf{x} in einer Umgebung von \mathbf{x}_0
- Wenn $\forall \mathbf{x} \in D : f(\mathbf{x}) \leq f(\mathbf{x}_0)$, ist \mathbf{x}_0 ein globales Maximum
- Definitionen analog für Jokales/globales Minimum

 $f(x,y) = \sin x \cdot \cos y$

Tangentialebene

• Funktion $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^2$ sei in einem Punkt $\mathbf{x}_0 \in D$ stetig und partiell differenzierbar, dann ist die Tangentialebene bei \mathbf{x}_0 gegeben als

$$z = g(x, y) = f(\mathbf{x}_0) + \frac{\partial f}{\partial x}(\mathbf{x}_0)(x - x_0) + \frac{\partial f}{\partial y}(\mathbf{x}_0)(y - y_0) = ax + by + c$$

Tangentialhyperebenen

• Für eine Funktion $f:D\to\mathbb{R},D\subseteq\mathbb{R}^n$ erhalten wir allgemeiner eine Tangentialhyperebene bei \mathbf{x}_0 als

$$g(\mathbf{x}) = g(\mathbf{x}_0 + \Delta \mathbf{x}) = f(\mathbf{x}_0) + \frac{\partial f}{\partial x_1}(\mathbf{x}_0) \Delta x_1 + \dots + \frac{\partial f}{\partial x_n}(\mathbf{x}_0) \Delta x_n$$

mit
$$\Delta x_i = x_i - x_{0,i}$$
 und $\Delta \mathbf{x} = (\Delta x_1, ..., \Delta x_n)$

- Funktion g ist die Linearisierung von f in \mathbf{x}_0
- Man bezeichnet einen Term df als totales Differential (im Gegensatz zu den partiellen Ableitungen)

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Delta x_i$$

Angewandte Mathematik für die Informatik – SS202

Innere und Stationäre Punkte

- Ein Punkt $\mathbf{x}_0 \in D \subseteq \mathbb{R}^n$ ist ein innerer Punkt, wenn dieser nicht auf dem Rand δD liegt
- Eine Funktion $f:D\to\mathbb{R}$ sei differenzierbar in \mathbf{x}_0 und habe dort ein Extremum, dann gilt

$$\nabla f(\mathbf{x}_0) = \mathbf{0} = (0,0,\ldots,0)^T$$

- Ein solcher Punkt wird stationärer Punkt von f genannt
- Anschaulich: in stationären Punkten ist die Tangentialebene waagerecht (insbesondere $D \subseteq \mathbb{R}^2$)
- Bedingung ist wiederum notwendig, aber noch nicht hinreichend (Definitheit der Hesse-Matrix prüfen)

Angewandte Mathematik für die Informatik - SS2022

32

Hesse-Matrix

■ Eine Funktion $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$ sei zweimal stetig differenzierbar; in der (symmetrischen) $n \times n$ Hesse-Matrix werden alle zweiten partiellen Ableitungen gesammelt

$$\mathbf{H}_{f} = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i,j} = \begin{pmatrix} \frac{\partial^{2} f}{\partial^{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial^{2} x_{2}} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial^{2} x_{n}} \end{pmatrix}$$

Angewandte Mathematik für die Informatik – SS2022

Definitheit von Matrizen

- Eine symmetrische, reelle $n \times n$ Matrix **A** ist:
 - Positiv definit, wenn $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$
 - Positiv semidefinit, wenn $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$
 - Negativ definit, wenn $\mathbf{x}^T \mathbf{A} \ \mathbf{x} < 0$
 - Negativ semidefinit, wenn $\mathbf{x}^T \mathbf{A} \mathbf{x} \le 0$
 - Indefinit, falls weder negativ noch positiv semidefinit
- Beispiel:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \text{ ist positiv definit, da}$$

$$\begin{pmatrix} a \\ b \end{pmatrix}^{T} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 2a^{2} - 2ab + 2b^{2} = \frac{(2a - b)^{2} + 3b^{2}}{2} > 0$$

24

Definitheit über Eigenwerte

- Über die Eigenwerte einer Matrix kann Definitheit entschieden werden.
- Die Eigenwerte λ einer Matrix \boldsymbol{A} werden über das charakteristische Polynom berechnet:

$$\det(\lambda I - A) = 0$$

- Mit den Eigenwerten λ_i und I der Einheitsmatrix
- Die Matrix ist
 - Positiv definit: $\lambda_i > 0$

positiv semidefinit: $\lambda_i \geq 0$

- Negativ definit: $\lambda_i < 0$ negativ semidefinit: $\lambda_i \leq 0$
- Ansonsten indefinit

Angewandte Mathematik für die Informatik – SS2022

Definitheit über Eigenwerte

Beispiel:

$$\mathbf{A} = \begin{bmatrix} 2 & -4 \\ -4 & 10 \end{bmatrix}$$

$$\det(\lambda I - A) = 0$$

$$\det\begin{bmatrix} \lambda - 2 & -4 \\ -4 & \lambda - 10 \end{bmatrix} = 0$$

$$(\lambda - 2)(\lambda - 10) - (-4)(-4) = 0$$

$$\lambda^2 - 12\lambda + 4 = 0$$

A symmetrisch &

$$\begin{array}{c} \lambda_1 = 6 - \sqrt{32} \\ \lambda_2 = 6 + \sqrt{32} \end{array} \} \quad > 0 \quad \rightarrow \quad \text{positiv definit}$$

Angewandte Mathematik für die Informatik – SS2022

ini

Art eines Extremums

- Die Krümmung einer multivariaten Funktion kann über die Hesse-Matrix untersucht werden
- Sei x₀ ein Extremum einer multivariaten Funktion f Ist die Hesse-Matrix an dieser Stelle ausgewertet:
 - ${f -}$ Positiv definit, dann findet sich an ${f x}_0$ ein lokales Minimum
 - Negativ definit, dann findet sich an \mathbf{x}_0 ein lokales Maximum
 - ${f -}$ Indefinit, dann handelt es sich bei ${f x}_0$ um einen Sattelpunkt
- Ist diese semidefinit, dann ist so keine Aussage möglich
- Die Definitheit kann z.B. über Vorzeichen der Eigenwerte oder die Hauptminoren untersucht werden

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiele

Art der lokalen Extrema der Funktion

$$f(x, y, z) = (x-2)^{2} + (y-1)^{2} + (z+1)^{2}$$

Suche nach stationären Punkten

$$\nabla f = (2(x-2) \quad 2(y-1) \quad 2(z+1))^T = \mathbf{0} \Leftrightarrow (x, y, z) = (2, 1, -1)$$

Hesse-Matrix ist für die gewählte Funktion konstant (allgemein würde am Punkt (2,1,-1) ausgewertet werden)

$$\mathbf{H}_f = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\mathbf{H}_f = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ invariation positive assume, ein lokales Minimum vor (in diesem Falle sogar ein globales Minimum) Matrix ist positiv definit, somit liegt

Angewandte Mathematik für die Informatik - SS2022

Rechenbeispiele

Art der lokalen Extrema der Funktion

- Suche nach stationären Punkten $\nabla f = (x^2 - 1 + y^2 \quad 2xy)^T = \mathbf{0} \Leftrightarrow (x, y) = (0, \pm 1) \lor (\pm 1, 0)$
- Hesse-Matrix an Punkten (0,±1) und $(\pm 1,0)$ auswerten

$$\mathbf{H}_f = \begin{pmatrix} 2x & 2y \\ 2y & 2x \end{pmatrix}$$

$$\mathbf{H}_f \left(1, 0 \right) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\mathbf{H}_{f}(1,0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \qquad \mathbf{H}_{f}(-1,0) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \qquad \mathbf{H}_{f}(0,\pm 1) = \begin{pmatrix} 0 & \pm 2 \\ \pm 2 & 0 \end{pmatrix}$$

$$\mathbf{H}_f \left(0, \pm 1 \right) = \begin{pmatrix} 0 & \pm 2 \\ \pm 2 & 0 \end{pmatrix}$$

Positiv definit ⇒ lokales Minimum •

Negativ definit \Rightarrow lokales Maximum • Indefinit \Rightarrow Sattelpunkte •

Jacobi-Matrix

• Eine vektorwertige Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$, sei stetig differenzierbar; in der $m \times n$ Jacobi-Matrix werden alle ersten partiellen Ableitungen gesammelt

$$\mathbf{J}_{f} = \left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i=1,\dots,m,j=1,\dots,n} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \dots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \dots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix}$$

(für m = 1 ist dies der transponierte Gradient)

@igs

Angewandte Mathematik für die Informatik - SS2022

Multivariates Newton-Verfahren

- Verfahren bei differenzierbaren Funktionen $f: \mathbb{R} \to \mathbb{R}$ $x_{n+1} = x_n - (1/f'(x_n)) \cdot f(x_n)$
- Verfahren für differenzierbare Funktionen $f: \mathbb{R}^k \to \mathbb{R}^k$ $\mathbf{x}_{n+1} = \mathbf{x}_n - \left(\mathbf{J}_f\left(\mathbf{x}_n\right)\right)^{-1} f\left(\mathbf{x}_n\right)$
- Um die Invertierung der Matrix zu vermeiden, wird über die Lösung eines Gleichungssystems vorgegangen

$$\mathbf{J}_{f}(\mathbf{x}_{n})\Delta\mathbf{x}_{n} = -f(\mathbf{x}_{n})$$
$$\mathbf{x}_{n+1} = \mathbf{x}_{n} + \Delta\mathbf{x}_{n}$$

(das Gleichungssystem wird in jedem Schritt z.B. mit einem numerischen Verfahren gelöst)

Angewandte Mathematik für die Informatik – SS2022

Anwendungsbeispiel

 Bestimmung der Winkel von Armen eines Roboters oder virtuellen Avatars bei gegebener Position (sowie evtl. Rotation) des Endeffektors

Angewandte Mathematik für die Informatik - SS2022

42

Multivariate Kettenregel

- Für differenzierbare Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ $(f \circ g)' = f'(g(x)) \cdot g'(x)$
- Für differenzierbare Funktionen $\gamma: [a,b] \to \mathbb{R}^n$, $t \to (x_1(t), \dots, x_n(t))^T = \mathbf{x}(t)$, sowie $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{x} = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) = f(\mathbf{x})$ $\frac{d(f \circ \gamma)}{dt}(\mathbf{x}(t)) = \frac{\partial f}{\partial x_1}(\mathbf{x}(t)) \frac{dx_1}{dt}(t) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{x}(t)) \frac{dx_n}{dt}(t) = \nabla f \cdot \frac{d\mathbf{x}}{dt}$
- In der Physik wird oft eine verkürzte Schreibweise verwendet, z.B. für die Fälle n=1,2

$$\frac{df}{dt} = \frac{df}{dg} \frac{dg}{dt}$$

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiel

■ Änderung einer Funktion f(x(t), y(t)) (z.B. Temperatur einer Platte) entlang einer Kurve $\gamma(t) = (t, t^2)$

$$\frac{d(f \circ \gamma)}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$f(x, y) = 6 - 0.05(x^2 + y^2)$$

$$\frac{\partial f}{\partial x} = -0.1x$$

$$\frac{\partial f}{\partial y} = -0.1y$$

$$\frac{dx}{dt} = 1$$

$$\frac{dy}{dt} = 2t$$

$$f(x,y) = 6 - 0.05(x^2 + y^2)$$

$$\frac{dy}{dt} = 2t$$

$$f(x,y) = 6 - 0.05(x^2 + y^2)$$

Angewandte Mathematik für die Informatik – SS2022

44

Rechenbeispiel

• Änderung einer Funktion f(x(t), y(t)) (z.B. Temperatur einer Platte) entlang einer Kurve $\gamma(t) = (t, t^2)$

$$\frac{d(f \circ \gamma)}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$f(x, y) = 6 - 0.05(x^2 + y^2)$$

$$\frac{\partial f}{\partial x} = -0.1x$$

$$\frac{\partial f}{\partial y} = -0.1y$$

$$\frac{dx}{dt} = 1$$

$$\frac{dy}{dt} = 2t$$

$$f(x,y) = 6 - 0.05(x^2 + y^2)$$

$$\frac{dy}{dt} = 2t$$

$$f(x,y) = 6 - 0.05(x^2 + y^2)$$

Angewandte Mathematik für die Informatik – SS202

Rechenbeispiel

• Änderung einer Funktion f(x(t), y(t)) (z.B. Temperatur einer Platte) entlang einer Kurve $\gamma(t) = (t, t^2)$

$$\frac{d\left(f\circ\gamma\right)}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \qquad \qquad f\left(x,y\right) = 6 - 0.05\left(x^2 + y^2\right)$$

$$\frac{\partial f}{\partial x} = -0.1x \qquad \frac{\partial f}{\partial y} = -0.1y \qquad \frac{dx}{dt} = 1 \qquad \frac{dy}{dt} = 2t$$

$$\frac{d\left(f\circ\gamma\right)}{dt} = -0.1t - 0.2t^3 \qquad \frac{d\left(f\circ\gamma\right)}{dt}(1) = -0.3$$

$$\frac{d}{dt}\left(6 - 0.05\left(t^2 + \left(t^2\right)^2\right)\right) = -0.1t - 0.2t^3$$
Angewandte Mathematik für die Informatik - SS2022

Inhalt

- Koordinatensysteme
- Parametrische Abbildungen
- Weitere Funktionen
- Weitere Differentialrechnung
- Weitere Integralrechnung

Kurvenintegral 1. Art

- Gegeben sei die Kurve $\gamma\colon [a,b]\to\mathbb{R}^k$, sowie die skalare Funktion $f\colon\mathbb{R}^k\to\mathbb{R}$
- Durch Unterteilung der Kurve in Teilstücke und Auswertung der Funktion innerhalb dieser erhalten wir wieder eine Riemannsumme

$$S = \sum_{i=1}^{n} f(\gamma(t_i)) \Delta s_i$$

Für die Längen der Teilstücke gilt

$$\Delta s_{i} = \left\| \gamma \left(t_{i} \right) - \gamma \left(t_{i} + \Delta t \right) \right\| = \left\| \gamma' \left(\tilde{t}_{i} \right) \right\| \Delta t$$

Angewandte Mathematik für die Informatik – SS2022

45

Kurvenintegral 1. Art

Schließlich erhalten wir über Grenzwertbildung

$$I = \lim_{\Delta t \to 0, n \to \infty} \sum_{i=1}^{n} f(\gamma(t_i)) \| \gamma'(t_i) \| \Delta t = \int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| dt = \int_{C} f ds$$

- Für k=2 ist dies anschaulich die (vorzeichenbehaftete) Fläche zwischen der Kurve in der xy-Ebene und dem Graphen der skalaren Funktion
- Für f(x) = 1 ergibt das Integral die Länge der Kurve
- Bei einer geschlossenen Kurve schreibt man speziell: $\oint f ds$

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiel

Kurvenintegral 1. Art im Intervall [0, 3/4]

$$\gamma(t) = \left(\cos t + \sin t + \frac{4}{3}t^{3/2}\right)^{t} \qquad f(x, y, z) = x^{2} + y^{2}$$

$$\|\gamma'(t)\| = \sqrt{\sin^{2} t + \cos^{2} t + 4t}$$

$$\int_{a}^{b} \left(\left(x(t)\right)^{2} + \left(y(t)\right)^{2}\right) \sqrt{\sin^{2} t + \cos^{2} t + 4t} dt$$

$$\int_{a}^{b} \left(\cos^{2} t + \sin^{2} t\right) \sqrt{\sin^{2} t + \cos^{2} t + 4t} dt$$

$$\int_{0}^{3/4} \sqrt{1 + 4t} dt = \frac{1}{4} \frac{2}{3} (1 + 4t)^{3/2} \Big|_{0}^{3/4} = \frac{1}{6} (8 - 1) = \frac{7}{6}$$

Angewandte Mathematik für die Informatik – SS2022

univers innsbru

Kurvenintegral 2. Art

- Gegeben sei die Kurve $\mathbf{r}:[a,b] \to \mathbb{R}^k$, sowie die vektorwertige Funktion $\mathbf{f}:\mathbb{R}^k \to \mathbb{R}^k$ (d.h. ein Vektorfeld)
- Integration der Tangentialkomponenten der Vektoren des Vektorfeldes entlang der Kurve:

$$I = \int_{C} \mathbf{f} d\mathbf{s} = \int_{a}^{b} \mathbf{f} (\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \cdot \|\mathbf{b}\| \cdot \cos \theta$

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiele

Kurvenintegrale 2. Art

$$\gamma_1(t) = (\cos t - \sin t)^T - \gamma_1'(t) = (-\sin t - \cos t)^T \qquad t \in [0, \pi]$$

$$I = \int_{0}^{\pi} (y(t) - x(t)) \cdot (-\sin t \cos t) dt$$
$$= \int_{0}^{\pi} (\sin t - \cos t) \cdot (-\sin t \cos t) dt$$
$$= -\int_{0}^{\pi} \sin^{2} t + \cos^{2} t dt = -\int_{0}^{\pi} 1 dt = -\pi$$

Angewandte Mathematik für die Informatik – SS2022

49

Rechenbeispiele

Kurvenintegrale 2. Art

$$\gamma_{2}(t) = (1-2t \quad 0)^{T} \qquad \gamma_{2}'(t) = (-2 \quad 0)^{T} \qquad t \in [0,1]$$

$$I = \int_{0}^{1} (y(t) - x(t)) \cdot (-2 \quad 0) dt$$
$$= \int_{0}^{1} (0 \quad 2t - 1) \cdot (-2 \quad 0) dt$$
$$= \int_{0}^{1} 0 dt = 0$$

Angewandte Mathematik für die Informatik – SS202

Rechenbeispiele

Kurvenintegrale 2. Art

$$\gamma_1(t) = (\cos t - \sin t)^T - \gamma_1'(t) = (-\sin t - \cos t)^T - t \in [0, \pi]$$

$$I = \int_{0}^{\pi} (x(t) \quad y(t)) \cdot (-\sin t \quad \cos t) dt$$
$$= \int_{0}^{\pi} (\cos t \quad \sin t) \cdot (-\sin t \quad \cos t) dt$$
$$= \int_{0}^{\pi} -\cos t \sin t + \sin t \cos t dt = \int_{0}^{\pi} 0 dt = 0$$

Angewandte Mathematik für die Informatik – SS2022

51

Rechenbeispiele

Kurvenintegrale 2. Art

$$\gamma_2(t) = \begin{pmatrix} 1 - 2t & 0 \end{pmatrix}^T \qquad \gamma_2'(t) = \begin{pmatrix} -2 & 0 \end{pmatrix}^T \qquad t \in [0, 1]$$

$$I = \int_{0}^{1} (x(t) \quad y(t)) \cdot (-2 \quad 0) dt$$

$$= \int_{0}^{1} (1 - 2t \quad 0) \cdot (-2 \quad 0) dt$$

$$= \int_{0}^{1} -2 + 4t dt = -2t + 2t^{2} \Big|_{0}^{1} = -2 + 2 = 0$$

Angewandte Mathematik für die Informatik – SS202

Kurvenintegral 2. Art in Gradientenfeldern

- Es sei Funktion $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^k$ das Gradientenfeld einer skalaren Funktion $g: \mathbb{R}^k \to \mathbb{R}$, somit also $\mathbf{f} = \nabla g$
- Gemäß der Kettenregel erhalten wir

$$\frac{d}{dt}g(\mathbf{r}(t)) = \nabla g(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \mathbf{f}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$$

In diesem Falle gilt für das Kurvenintegral 2. Art:

$$I = \int_{a}^{b} \mathbf{f}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} \frac{d}{dt} g(\mathbf{r}(t)) dt = g(\mathbf{r}(b)) - g(\mathbf{r}(a))$$

Es ist somit unabhängig vom Weg

■ Insbesondere gilt in diesem Falle auch $\oint \mathbf{f} d\mathbf{r} = 0$

Angewandte Mathematik für die Informatik – SS2022

53

Anwendungsbeispiel

 Bei konstanter Kraft und linearer Verschiebung ist physikalische Arbeit gegeben als Skalarprodukt

$$W = \mathbf{f} \cdot \mathbf{r} \qquad (Arbeit = Kraft \times Weg)$$

 Ist der Weg nicht linear und/oder die Kraft nicht konstant entlang des Weges berechnet man

Einige Hilfreiche Weblinks

 Freie Lehrmaterialien im gemeinnützigen LibreTexts Projekt, gestartet durch die UC Davies:

https://math.libretexts.org/Bookshelves

 Kostenpflichtiger Service mit Materialien und Beispielproblemen:

https://brilliant.org/

Angewandte Mathematik für die Informatik – SS2022

Angewandte Mathematik für die informatik – 552022

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022