

Teorema del Binomio.

- 1. Determine el término independiente, si es que existe, en el desarrollo de $\left(2x + \frac{1}{x^3}\right)^{20}$
- 2. Determine el o los términos centrales en el desarrollo de $\left(x + \frac{2}{\sqrt{x}}\right)^{17}$
- 3. Determine el término que contiene $\frac{x^{25}}{y}$ en el desarrollo de $\left(\frac{x^2y}{4} \frac{2x}{y}\right)^{17}$
- 4. Determine el término, si es que existe, que contiene a x^{10} en el desarrollo de $(x^5 3x^4)^8$
- 5. Determine el término independiente, si que existe, en el desarrollo de $(2x+1)\left(1+\frac{2}{x}\right)^{15}$
- 6. Determine el coeficiente de x, si es que existe, en el desarrollo de $\left(9x \frac{1}{\sqrt[3]{x}}\right)^{13}$
- 7. Determine el coeficiente de x^4 , si es que existe, en el desarrollo de $(1+x)(1-x)^n$
- 8. Determine el coeficiente de x^n , si es que existe, en el desarrollo de $(1-x+x^2)(1+x)^n$
- 9. Determine el coeficiente de x^5 , si es que existe, en el desarrollo de $(1+x+x^2)^{10}$
- 10. Determine si existen dos términos consecutivos con coeficientes iguales en el desarrollo de $(3x+2)^{19}$
- 11. Determine el coeficiente de ab, si es que existe, en el desarrollo de $\left(\frac{a^4}{b} + \frac{b^2}{a^7}\right)^{14}$
- 12. Sabiendo que los coeficientes que acompañan a x^7 y x^8 en el desarrollo de $(2 + \frac{x}{3})^n$ son iguales, determine el valor de n.
- 13. Sea $n \in \mathbb{N}$. Si el coeficiente que acompaña a x^3 es 70 en el desarrollo de $(1 + \frac{x}{2})^n$, encuentre el valor de n.
- 14. Si el término constante en el desarrollo de $x^2(3x^2 + \frac{k}{x})^8$ es 16.128, encuentre el valor de k.

15. Si se tiene que:

$$(2x^3 + \frac{b}{x})^8 = 256x^{24} + 3072x^{20} + \dots + kx^0 + \dots,$$

Encuentre el valor de b y k.

16. Encuentre el coeficiente que acompaña a x^{-1} en el desarrollo de $(x-1)^3(\frac{1}{x}+2x)^6$.