PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-189010

(43)Date of publication of application: 10.07.2001

(51)Int.CI.

G11B 5/738 G11B 5/64

(21)Application number: 11-375476

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

28.12.1999

(72)Inventor: MAEDA TOMOYUKI

KIKITSU SATORU

ICHIHARA KATSUTARO

(54) MAGNETIC RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an intrasurface or perpendicular magnetic recording medium capable of improving the adhesion between a base layer and a magnetic layer when a magnetic film having an fct structure is used and excellent in performance characteristics.

SOLUTION: In the magnetic recording medium with a substrate 1, a base layer 21 formed on the substrate 1 and a magnetic layer 3 formed on the base layer 21, the base layer 21 comprises a bulk material having no deliquescency, e.g. {100} oriented NaCl type crystals, the lattice constant is 3.52-4.20 & angst; and the magnetic layer 3 comprises grains having an fct structure and contains a magnetic metal element and a noble metal element as principal components. The magnetic metal element is at least one selected from the group comprising Fe, Co and Ni and the noble metal element is at least one selected from the group comprising Pt, Pd, Au and Ir.

LEGAL STATUS

[Date of request for examination]

12.09.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

. [Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-189010 (P2001-189010A)

(43)公開日 平成13年7月10日(2001.7.10)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコー:*(参考)

G11B 5/738 5/64

G11B 5/738 5 D 0 0 6

5/64

審査請求 未請求 請求項の数12 〇L (全 12 頁)

(21)出顯番号

(22)出顧日

特顧平11-375476

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

平成11年12月28日(1999.12.28)

(72)発明者 前田 知幸

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 喜々津 哲

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(74)代理人 100058479

弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54) 【発明の名称】 磁気記録媒体

(57)【要約】

【課題】 fct構造を持つ磁性膜を用いた場合に、下 地層と磁性層との密着性を改善することができ、動作特 性に優れた面内または垂直磁気記録媒体を提供する。

【解決手段】 基板(1)と、基板(1)上に形成され た下地層 (21) と、下地層 (21) 上に形成された磁 性層(3)とを有する磁気記録媒体において、下地層 (21) はバルクで潮解性を示さない物質たとえば {1 00) 配向のNaCl型結晶からなり、かつその格子定 数が3.52~4.20Åであり、磁性層(3)は[c ι 構造を持つ結晶粒からなり、かつ磁性金属元素および 貴金属元素を主成分とし、磁性金属元素はFe、Coお よびNiからなる群より選択される少なくとも1種であ り、貴金属元素はPt、Pd、AuおよびIrからなる 群より選択される少なくとも1種である。

【特許請求の範囲】

【請求項1】 基板と、前記基板上に形成された下地層と、前記下地層上に形成された磁性層とを有する磁気記録媒体において、前記下地層はバルクで潮解性を示さない物質から構成されることを特徴とする磁気記録媒体。

【請求項2】 前記磁性層は「ct構造を持つ結晶粒からなり、かつ磁性金属元素および貴金属元素を主成分とし、前記磁性金属元素はFe、CoおよびNiからなる群より選択される少なくとも1種であり、前記貴金属元素はPt、Pd、AuおよびIrからなる群より選択される少なくとも1種であることを特徴とする請求項1記載の磁気記録媒体。

【請求項3】 前記下地層は、{100} 配向のNaC 」型結晶からなり、かつその格子定数が3.52~4. 20Åであることを特徴とする請求項1または2記載の 磁気記録媒体。

【請求項4】 前記下地層を構成するNaCl型結晶がCrN、NiO、TiO、VO、VNおよびVCからなる群より選択される少なくとも1種であることを特徴とする請求項3記載の磁気記録媒体。

【請求項5】 前記下地層は、 {100} 配向のCsCl型結晶からなり、かつその格子定数が2.49~3.00Åであることを特徴とする請求項1または2記載の磁気記録媒体。

【請求項6】 前記下地層は、{001} 配向のL10型構造または{001} 配向のL12型構造を有する金属間化合物からなり、かつその格子定数が3.52~4.20Aであることを特徴とする請求項1または2記載の磁気記録媒体。

【請求項7】 前記下地層と前記磁性層との間に {10 30 0} 配向の fc c結晶粒からなる第2の下地層を設けたことを特徴とする請求項1ないし6いずれか1項記載の磁気記録媒体。

【請求項8】 fcc結晶粒からなる前記第2の下地層の格子定数が3.52~4.20Åであることを特徴とする請求項7記載の磁気記録媒体。

【請求項9】 fcc結晶粒からなる前記第2の下地層が、Ag、Al、Au、Cu、Ir、Ni、Pt、Pd およびRhからなる群より選択される少なくとも1種を含有する元素、合金または化合物からなることを特徴とする請求項7または8記載の磁気記録媒体。

【請求項10】 前記下地層と前記磁性層との間に {100}配向のbcc結晶粒からなる第2の下地層を設けたことを特徴とする請求項1ないし6いずれか1項記載の磁気記録媒体。

【請求項11】 bcc結晶粒からなる前記第2の下地 層の格子定数が2.49~3.00Åであることを特徴 とする請求項10記載の磁気記録媒体。

【請求項12】 bcc結晶粒からなる前記第2の下地 層が、CrおよびFeからなる群より選択される少なく 50

とも1種を含有する元素、合金または化合物からなることを特徴とする請求項10または11記載の磁気記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に 適する磁性膜を備えた磁気記録媒体に関する。

[0002]

【従来の技術】近年のコンピュータの処理速度向上に伴って、情報の記録・再生を行う磁気記録装置(HDD)には高速・高密度化が要求されている。現在、HDDの記録方式としては、磁化が媒体面内方向に向いている面内記録方式が主流である。しかし、より一層の高密度化を考えると、磁化反転境界付近における減磁界が小さく、鋭い反転磁化が得られる垂直磁気記録の方が適している。また、近年磁気記録媒体で問題になってきている熱揺らぎ劣化に関しても、垂直媒体は面内記録媒体よりも膜厚を大きく設定することができるために劣化を低く抑えることができる。

【0003】従来、垂直磁化膜としては、CoCrPtをはじめとするCoCr系不規則合金磁化膜が主に研究されてきた。しかし、垂直媒体においても将来的には熱揺らぎ劣化が問題化することを考えると、従来のCoCr系よりも垂直磁気異方性の大きな材料が必要となってくる。その有力な候補として、Fe, CoおよびNiから選択される少なくとも1種の磁性元素と、<math>Pt, Pd, AuおよびIrから選択される少なくとも1種の研究が盛んに行われるようになってきている。特に、<math>fc t結晶構造を持つ規則合金であるFePt とCoPt は、それぞれ $T \times 10^7 erg/cc$ たおよび $4 \times 10^7 erg/cc$ とが知られている。

【0004】このように c 軸方向に大きな磁気異方性を持つ多結晶薄膜を面内または垂直磁気記録媒体に適用するには、各結晶粒を配向成長させる必要がある。一般的な磁気記録層の形成方法であるスパッタリングを用いて磁気記録層の配向を制御する有力な方法として、ある結晶性を持つ下地の上に磁性薄膜を積層する方法が挙げられる。これに加えて、磁性薄膜の成膜後および/または成膜中にアニールすることもある。

【0005】具体的には、{100}配向したMgO単結晶基板上に垂直磁化膜を堆積する方法や、ガラスなどの非晶質基板上に下地層としてMgO薄膜またはMgO薄膜とCrなどのシード層もしくはPtなどのバッファー層との積層膜を堆積し、その上に垂直磁化膜を堆積する方法が開示されている(特開平9-320847号公報)。

【0006】しかし、上記のような下地層を用いた場合、格子整合の悪さから下地層とその上の磁性層との間

に内部応力が発生しやすく、成膜中または磁気記録媒体 としての動作中の熱負荷により磁性層の付着力が低下 し、膜剥離が起こるという問題が発生している。

【0007】特に、MgOは磁性層との格子整合性の悪さに加えて、空気中の水分や二酸化炭素と反応して潮解性を示すため化学的にも不安定である。このため、MgOは基板および磁性層または他の下地層との密着性が著しく低下するという問題がある。

[0008]

【発明が解決しようとする課題】本発明の目的は、Fe Pt規則合金に代表されるfct構造を持つ磁性膜を用いた場合に、下地層と磁性層との格子整合の悪さに起因する内部応力のために膜剥離が発生しやすいという問題を解決し、動作特性に優れた面内または垂直磁気記録媒体を提供することにある。

[0009]

【課題を解決するための手段】本発明の磁気記録媒体は、基板と、前記基板上に形成された下地層と、前記下地層上に形成された磁性層と、前記磁性層上に形成された保護膜とを有する磁気記録媒体において、前記下地層 20はバルクで潮解性を示さない物質から構成されることを特徴とする。

【0010】本発明において、前記磁性層はfct構造を持つ結晶粒からなり、かつ磁性金属元素および貴金属元素を主成分とし、前記磁性金属元素はFe、CoおよびNiからなる群より選択される少なくとも1種であり、前記貴金属元素はPt、Pd、AuおよびIrからなる群より選択される少なくとも1種である。

【0012】本発明においては、前記下地層として、 {100}配向のCsCl型結晶からなり、かつその格 子定数が2.49~3.00Åであるものを用いてもよい。

【0013】本発明においては、前記下地層として、 {001}配向のL10型構造または{001}配向の L12型構造を有する金属間化合物からなり、かつその 格子定数が3.52~4.20Åであるものを用いても よい。

【0014】本発明においては、前記下地層と前記磁性層との間に {100}配向のfcc結晶粒からなる第2の下地層を設けてもよい。fcc結晶粒からなる前記第2の下地層の格子定数は3.52~4.20Åであることが好ましい。fcc結晶粒からなる前記第2の下地層としては、Ag、Al、Au、Cu、Ir、Ni、P

t、PdおよびRhからなる群より選択される少なくとも1種を含有する元素、合金または化合物からなるものが挙げられる。

【0015】本発明においては、前記下地層と前記磁性 層との間に {100} 配向の b c c 結晶粒からなる第2の下地層を設けてもよい。 b c c 結晶粒からなる前記第2の下地層の格子定数が2.49~3.00Åであることが好ましい。 b c c 結晶粒からなる前記第2の下地層としては、C r およびF e からなる群より選択される少なくとも1種を含有する元素、合金または化合物からなるものが挙げられる。

[0016]

【発明の実施の形態】以下、本発明をより詳細に説明する。

【0017】本発明において、基板としては、ガラス、セラミックスなどの非晶質または多結晶質の材料が用いられる。硬質の材料からなる基板本体に金属またはセラミックスなどを堆積したものを基板として用いてもよい。その他、Si、MgO、Al2O3等の単結晶基板を用いることができる。

【0018】本発明においては、基板上に下地層および 磁性層の薄膜が形成される。薄膜形成方法としては、真 空蒸着法、スパッタリング法、化学気相成長法、レーザ ーアブレーション法を用いることができる。下地層およ び/または磁性層の成膜の際に、基板を120~800 ℃に加熱すると、磁性層の規則化が進行して望ましい場合がある。基板を加熱する代わりに、基板にRFおよび /またはDC電力を投入するバイアススパッタ、基板へ のイオンや中性粒子の照射などを行ってもよい。これら の処理は成膜中だけでなく、成膜後または成膜前に行っ てもよい。

【0019】本発明において、磁性層はfct構造を持 つ結晶粒からなり、かつ磁性金属元素および貴金属元素 を主成分とするものが用いられる。前記磁性金属元素は Fe、CoおよびNiからなる群より選択される少なく とも1種であり、前記貴金属元素はPt、Pd、Auお よび1rからなる群より選択される少なくとも1種であ る。磁性層の特性向上のために、Ta、W、Mo、B等 の他の元素を添加してもよい。本発明において、磁性層 は磁性粒子間に非磁性体であるCェ等の金属またはSi Oz等の誘電体が存在する構成でもよい。本発明におい て、磁性層は特性の異なる2層以上の磁性層を積層させ たものでもよい。この場合、積層している磁性層間には 交換結合相互作用、静磁結合相互作用のいずれかまたは 両方が作用していてもよい。2層以上の磁性層間に1層 以上の非磁性層が存在していてもよい。このような磁性 層の構成は、システムが要求する磁気特性や製造プロセ スによって決定されるものである。

【0020】本発明の媒体を垂直磁気記録媒体として用 50 いる場合には、磁性結晶粒子はc軸が膜面垂直方向に配 向した f c t 構造をとる必要がある。ただし、この条件を全ての粒子が満たしている必要はなく、f c t 構造である粒子の割合は6割以上であればよく、8割以上であることがより好ましい。 c 軸配向性に関しては、配向軸の標準偏差が 1 0° 以内であればよく、5° 以内であることがより好ましい。

【0021】磁性層を構成する結晶粒子が規則化してい るかどうかは、一般的なX線回折装置で確認することが できる。(001)、(002)、(003) 面を表す ピークがそれぞれ観察できれば、fct構造が存在し、 かつ c 軸が膜面に垂直に配向しているといえる。 (00 1)、(002)、(003)面を表すピークの強度は 具体的にはバックグラウンドレベルに対して有意なピー クとして観察される強度であればよい。また、面内配向 を示す(111)のピークが観察されても、(00 1)、(002)、(003)面を表すピークがより大 きな強度(100倍以上)で観察できれば、c軸が膜面 に垂直に配向しているといえる。また、磁性粒子が10 n m程度に小さくなり、隣接粒子との間に結晶格子の相 関性(コヒーレンシー)が小さい場合、c軸が膜面に垂 20 直配向していてもX線回折ではアモルファスのように見 える場合もある。このような場合には透過型電子顕微鏡 (TEM) などによる微細構造観察を行うことで、c軸 の膜面垂直配向を確認することができる。

【0022】磁性層の膜厚は、システムの要求値によって決定されるが、一般的に200nmより薄いことが好ましく、50nmより薄いことがより好ましい。ただし、0.5nmより薄いと連続膜にならず、磁気記録媒体には適しない。

【0023】本発明において、下地層は磁性層の磁気記 30 録媒体としての機能を補強するために磁性層と基板との 間に挿入される薄膜である。下地層は1つの材料からな る層でもよいし、いくつかの層から構成される多層膜で あってもよい。下地層が上記の要件を満たしていれば、 必ずしも薄膜状である必要もない。

【0024】本発明において用いられる下地層は、バルクで潮解性を示さない物質から構成されている。下地層として潮解性を示す物質を用いた場合、下地層が空気中の水分を吸収するため、その部分での膜の密着性が著しく低下し、好ましくない。潮解性を示す物質としては、周期律表の1族および2族の金属元素およびその酸化物などが挙げられる。

【0025】ここで、fct構造の磁性層をc軸配向させるためには、格子整合性を考慮すれば、下地層としては磁性層と格子定数が近く、(100)面が磁性層と同じ構造をしているfcc結晶を{100}配向させるのが望ましい。しかし、単元素fcc金風は、ガラス基板や多結晶基板などの格子間隔に直接の対応がとれない基板に対して{100}配向を得るのが困難である。これに対して、本発明では特定の下地層を用いることにより 50

基板および磁性層の両方に対する良好な格子整合性を得ることに特徴がある。

【0026】本発明の1つの実施形態においては、下地 層が{100}配向のNaCI型結晶からなる薄膜から なっている。NaCl型結晶はガラス基板や多結晶基板 などの基板上で {100} 配向膜が得られやすく、かつ 格子が面心立方格子であるため磁性層を構成する結晶粒 子のc軸を膜面に対して垂直方向に配向させるのに有効 である。NaCI型結晶は、「ct規則合金結晶粒子か らなる磁性層との格子整合を考慮すると、一般式M-G (MはTi、Ta、V、Cr、Co、FeおよびNiか) らなる群より選択される少なくとも1種、GはB、C、 NおよびOからなる群より選択される少なくとも1種) で表される材料からなることが好ましい。具体的には、 NaCI型結晶をなす材料として、現状の技術で作製が 容易な、CrN、NiO、TiO、VO、VNおよびV Cなどが挙げられる。NaCl型結晶に1種以上の他の 元素が添加されていてもよい。磁性層の結晶配向性や磁 性層との格子整合性が満たされる限りにおいては、他の 元素が添加された結果として下地層がNaCI型とは異 なる結晶型をとってもよい。NaCI型結晶からなる下 地層の格子定数は3.52~4.20Åであることが好 ましい。

【0027】本発明の他の実施形態においては、下地層 が《100》配向のCSCI型結晶からなる薄膜からな っている。CsCl型結晶はガラス基板や多結晶基板な どの基板上で {100} 配向膜が得られやすく、かつそ の {100} 面が f c t 結晶の {001} 面と格子整合 し得るため磁性層を構成する結晶粒子のc軸を膜面に対 して垂直方向に配向させるのに有効である。CsCI型 結晶としては、CuPd、MnAI、NiAIなど、多 数のものが挙げられる。これらの物質は、バルク状態に おいてfct磁性層との格子整合が良好でfct磁性層 を垂直配向させるのに適している。種々の実験により、 これらの物質をスパッタリング等によって基板上に堆積 させた場合においても、バルク物質と同等の格子整合が 得られることが明らかになった。 CsC 1 結晶に 1 種以 上の他の元素が添加されていてもよい。磁性層の結晶配 向性や磁性層との格子整合性が満たされる限りにおいて は、CsCl結晶に他の元素が添加された結果としてC s C I 型とは異なる結晶型をとってもよい。 C s C I 型 結晶からなる下地層の格子定数は2. 49~3.00Å であることが好ましい。

【0028】本発明のさらに他の実施形態においては、下地層が {001}配向のL1o型構造または {001}配向のL1o型構造または {001}配向のL1o型構造または {001}配向のL1o型構造または {001}配向のL1o型構造を有する金属間化合物はガラス基板や多結晶基板などの基板上でそれぞれ {001}配

向膜または {100} 配向膜が得られやすく、かつ格子

が而心立方格子であるため磁性層を構成する結晶粒子の 。軸を膜面に対して垂直方向に配向させるのに有効であ る。このような金属間化合物からなる下地層の格子定数 は3.52~4.20Åであることが好ましい。

【0029】本発明においては、上記のNaCl結晶やCsCl結晶などからなる(第1の)下地層と磁性層との間に{100}配向のfcc結晶粒からなる第2の下地層を積層してもよい。基本的には、第1下地層/fcc第2下地層/fct磁性層の順に積層すればよい。ただし、各層間で良好な格子整合性を得ることが目的であるので、この目的が達成できる限りにおいては、各層の間に他の層(薄膜状でなくてもよい)が挿入されていてもよい。fcc結晶の{100}面はfct結晶の{001}面と幾何学的に同じ構造であり、第1の下地層によっておおむね配置が一致している原子サイトをfct磁性層の格子定数により近い格子定数を持つものにすることができる。

【0030】fcc結晶粒からなる第2の下地層と磁性 層との格子整合性を考えた場合、その格子定数は3.5 2~4.20Åであることが好ましい。この条件を満た 20 す物質は、バルク状態においてfct磁性層との格子整 合が良好でfct磁性層を垂直配向させるのに適してい る。具体的には、fcc結晶粒からなる第2の下地層と LT、Ag、Al、Au、Cu、Ir、Ni、Pt、P dおよびR hからなる群より選択される少なくとも1種 を含む元素、合金または化合物を用いることができる。 種々の実験により、これらの物質をスパッタリング等に よって第1の下地層上に堆積させた場合においても、バ ルク物質と同等の格子整合が得られることが明らかにな った。 「 c c 結晶に 1 種以上の他の元素が添加されてい 30 てもよい。磁性層の結晶配向性や磁性層との格子整合性 が満たされる限りにおいては、第2の下地層に他の元素 が添加された結果として「cc型とは異なる結晶型をと ってもよい。

【0031】本発明においては、上記のNaCl結晶やCsCl結晶などからなる(第1の)下地層と磁性層との間に{100}配向のbcc結晶粒からなる第2の下地層を積層してもよい。基本的には、第1下地層/bcc第2下地層/fct磁性層の順に積層すればよい。ただし、各層間で良好な格子整合性を得ることが目的であるので、この目的が遠成できる限りにおいては、各層の間に他の層(蔣膜状でなくてもよい)が挿入されていてもよい。図3に示すように、bcc結晶の{200}面とfct結晶の{001}面は格子整合することが可能である。したがって、第1の下地層によっておおむね配置が一致している原子サイトをfct磁性層の格子定数により近い格子定数を持つものにすることができる。

【0032】 bcc結晶粒からなる第2の下地層と磁性 層との格子整合性を考えた場合、その格子定数は2.4 9~3.00Åであることが好ましい。この条件を満た 50 す物質は、バルク状態において「c t 磁性層との格子整合が良好で「c t 磁性層を垂直配向させるのに適している。具体的には、b c c 結晶粒からなる第2の下地層として、C r およびド e からなる群より選択される少なくとも1種を含む元素、合金または化合物を用いることができる。種々の実験により、これらの物質をスパッタリング等によって第1の下地層上に堆積させた場合においても、バルク物質と同等の格子整合が得られることが明らかになった。b c c 結晶に1種以上の他の元素が添加されていてもよい。磁性層の結晶配向性や磁性層との格子整合性が満たされる限りにおいては、第2の下地層に他の元素が添加された結果としてb c c 型とは異なる結晶型をとってもよい。

【0033】本発明において、(第1の)下地層としてNaCI型結晶、CsCI型結晶、またはL10型構造もしくはL12型構造を有する金属間化合物のいずれを用いるかは、また第2の下地層としてfcc結晶またはbcc結晶のいずれを用いるかは、磁性層などの他の層の材料および形成方法に依存する。製造コストを考慮した場合、第2の下地層を用いないことが好ましい場合もある。

[0034]

【実施例】以下、本発明の実施例を図面を参照して説明する。以下の実施例においては、図1または図2に示す構造を有する磁気記録媒体を作製した。図1の磁気記録媒体は、基板1上に、下地層21、磁性層3、および保護層4を積層した構造を有する。図2の磁気記録媒体は、基板1上に、下地層21、第2の下地層22、磁性層3、および保護層4を積層した構造を有する。

【0035】作製した磁性層の微細構造はX線回折法を用いて評価した。図4に一例としてガラス基板/VO下地層/FePt磁性層からなる試料のX線回折プロファイルを示す。図4では、FePt(001)、(002)、(003)ピークが有意な強度で観測されている。このことから、FePt規則相が形成され、(001)配向していることがわかる。本発明に含まれる他の下地層を用いた場合にも同様にFePt規則相の(001)配向が確認された。

【0036】なお、第1および第2の下地層の(100)配向または(001)配向もX線回折法により確認できる。また、第1および第2の下地層の格子定数もX線回折評価により推定できる。

【0037】試料の密着性はJIS K5400-1990に規定されている粘着テープを用いた剥離試験(碁盤目テープ法)に準拠して以下のようにして評価した。試料面にカッターナイフで1mm間隔に桝目の数が10×10=100個となるように碁盤目状に切れ目を入れた後、粘着テープを貼り付け、消しゴムでこすってテープを完全に付着させた。テープを付着させてから1分後に、テープの一方の端を持って瞬間的に引き剥がした。

引き剥がした後の傷の状態を観察し、JISK5400 -1990と同様に評価点数を与えた。表1に傷の状態 に応じた評価点数の評価基準を示す。 【0038】 【表1】

11 50 11 50 11 1	<u>/ a</u>
評価点數	傷の状態
10	切り傷1本ごとが細く、両側が滑らかで、切り傷の交点と正方 形の一目一目にはがれがない。
8	切り傷の交点にわずかなはがれがあるが、正方形の一目一目に はがれがなく、欠損部の面積が全正方形面積の5%以内。
6	切り傷の両側および交点にはがれがあり、欠損部の面積は全正 方形面積の5~15%。
4	切り傷によるはがれの幅が広く、欠損部の面積は全正方形面積 の15~35%。
2	切り傷によるはがれの幅が評価点数4点のものよりも広く、欠 損部の面積は全正方形面積の35~65%。
0	切り傷によるはがれの幅が非常に広く、欠損部の面積は全正方 形面積の65%以上。

【0039】密着性と磁気記録媒体としての特性との関 係は以下のようにして調べた。例として2. 5インチガ ラス基板上に、DCスパッタリングにより、70nmの Cr下地層、15nmのCoCrPt磁性層、および1 0 n mのカーボン保護層を順次堆積したディスク試料を 作製した。その際、Cェ下地層の成膜前にガラス基板に 20 スパッタエッチング処理を施した。また、Cェ下地層の スパッタ圧力を 0.1~10 Paの範囲で変化させた。 スパッタエッチング処理の有無およびスパッタ圧力の違 いにより、密着性指標の異なる13個の試料を作製し た。これらの試料に対して、磁気ヘッドを接触摺動させ るコンタクトースタートーストップ (CSS) 実験を行 った。AEセンサーによる異常音発生と目視による検査 により、媒体が破壊されるまでの摺動回数を測定し、そ の対数値をCSS耐性とした。図5に密着性指標とCS S耐性との関係を示す。図5から、密着性指標8以上に 30 おいて、CSS動作に問題のない磁気記録媒体が得られ ることがわかった。

【0040】格子定数と密着性指標との関係は以下のようにして調べた。例としてガラス基板/VN第1下地層/第2下地層/FeNiPt磁性層/Pt保護層という構造の試料を作製した。ここで、第2の下地層として、「cc結晶であるPb、Pt、Ni、Ir、Auより複数の元素を選択して組成を変えることにより、格子定数を変えたものを形成した。これらの試料について、第2の下地層の格子定数と密着性指標(評価点数)との関係 40を調べた。図6にその結果を示す。この図から、「cc結晶からなる第2の下地層を用いる場合、その格子定数が3.52~4.20Åであれば、好ましい密着性(評価点数8点以上)が得られることがわかった。

【0041】また、ガラス基板/CrN第1下地層/第2下地層/FePtIr磁性層/Pt保護層という構造の試料を作製した。ここで、第2の下地層として、bcc結晶であるV、Cr、Feより複数の元素を選択して組成を変えることにより、格子定数を変えたものを形成した。これらの試料について、第2の下地層の格子定数 50

と密着性指標(評価点数)との関係を調べた。その結果、bcc結晶からなる第2の下地層を用いる場合、その格子定数が2.49~3.00Åであれば、好ましい密着性(評価点数8点以上)が得られることがわかった。

【0042】実施例1

下地層としてNaCl型結晶からなるものを用い、以下のようにして図1に示す磁気記録媒体を作製した。

【0043】ディスク状のガラス基板をマルチチャンバーのスパッタリング装置内に入れ、真空チャンバー内の圧力を2×10⁻⁵以下にして排気した後、0.67PaのAr雰囲気とし、RFスパッタリングにより10nmのNaCl型結晶からなる下地層を成膜した。次の真空チャンバー内で基板を500℃に加熱した状態で、DCスパッタリングにより50nmの磁性層を成膜した。次の真空チャンバー内でDCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0044】また、第1の下地層としてNaCl型結晶からなるもの、第2の下地層として「cc結晶またはbcc結晶からなるものを用い、以下のようにして図2に示す磁気記録媒体を作製した。

【0045】上記と同様にして、ガラス基板上にRFスパッタリングにより50nmのNaCl型結晶からなる第1の下地層を成膜し、DCスパッタリングにより100nmのfcc結晶からなる第2の下地層を成膜し、基板を500℃に加熱した状態でDCスパッタリングにより50nmの磁性層を成膜し、DCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0046】同様に、ガラス基板上にRFスパッタリングにより50nmのNaCl型結晶からなる第1の下地層を成膜し、DCスパッタリングにより50nmのbcc結晶からなる第2の下地層を成膜し、基板を500℃に加熱した状態でDCスパッタリングにより50nmの磁性層を成膜し、DCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0047】表2に使用した材料を示す。第1の下地層

としてMgOまたはTiB、第2の下地層としてPbまたはVを用いた試料は比較例である。

【0048】 X線回折によれば、 f c c 結晶または b c c 結晶の第2の下地層は (100) 配向しており、磁性 層は主として (001) 配向の f c t 構造をとっていることがわかった。また、作製した磁気記録媒体の磁気特性を V S M を 用いて評価した結果、全ての試料において、磁化容易方向が膜面に垂直な垂直磁化膜であることがわかった。

【0049】表2には密着性試験の評価点数を併記する。表2から第1の下地層または第1および第2の下地層として適切な材料を用いた試料では、良好な密着性が得られることがわかる。

[0050]

【表2】

137 2]				
基板	下地層1	下地層2	磁性層	評価点数
ガラス	MgO		FePt	2
ガラス	TIB		FePt	4
ガラス	0		FePt	8
ガラス	ИО		FePt	10
ガラス	TiO		FePt	10.
ガラス	٧C		FePt	- 8
ガラス	MgO	Cr	FeNIPt	4
ガラス	VN	Рb	FeNiPt	4
ガラス	VN	Рt	FeNIPt	8
ガラス	VN	Au	FeNiPt	10
ガラス	VN	1 r	FeNiPt	10
ガラス	VN	Ni	FeNiPt	1 0
ガラス	VN	Ag	FeNiPt	1 0
ガラス	VN	A 1	FeNiPt	1 0
ガラス	VN	Cu	FeNiPt	8
ガラス	VN	Rh	FeNiPt	8
ガラス	٧N	Рd	FeNiPt	. 8
ガラス	MgO	Cr	FePtlr	4
ガラス	CrN	V	FePtlr	6
ガラス	CrN	C r	FePtlr	8
ガラス	CrN	Fe	FePtlr	8

【0051】なお、VO、NiO、TiOを酸素を分圧で数%導入して反応性スパッタにより成膜した場合、VN、CrNを窒素を導入して反応性スパッタにより成膜した場合、VCをメタンなどの炭素源を導入して反応性スパッタにより成膜した場合にも表2と同様な結果が得40られた。

【0052】実施例2

下地層としてCsCl型結晶からなるものを用い、以下 のようにして図1に示す磁気記録媒体を作製した。

【0053】実施例1と同様にして、ディスク状のSi基板上にDCスパッタリングにより10nmのCsCl型結晶からなる下地層を成膜した。次の真空チャンパー内で基板を500℃に加熱した状態で、DCスパッタリングにより50nmの磁性層を成膜した。次の真空チャンパー内でDCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0054】また、第1の下地層としてCsCl型結晶からなるもの、第2の下地層としてfcc結晶またはbcc結晶からなるものを用い、以下のようにして図2に示す磁気記録媒体を作製した。

【0055】上記と同様にして、Si基板上にDCスパッタリングにより50nmのCsCl型結晶からなる第1の下地層を成膜し、DCスパッタリングにより100nmのfcc結晶からなる第2の下地層を成膜し、基板を500℃に加熱した状態でDCスパッタリングにより20 50nmの磁性層を成膜し、DCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0056】同様に、Si基板上にDCスパッタリングにより50nmのCsCl型結晶からなる第1の下地層を成膜し、DCスパッタリングにより50nmのbcc結晶からなる第2の下地層を成膜し、基板を500℃に加熱した状態でDCスパッタリングにより50nmの磁性層を成膜し、DCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0057】表3および表4に使用した材料を示す。第 1の下地層としてMgOまたはBaCd、第2の下地層 としてPbまたはEuを用いた試料は比較例である。

【0058】 X線回折によれば、fcc結晶またけしcc結晶の第2の下地層は(100)配向しており、磁性層は主として(001)配向のfct構造をとっていることがわかった。

【0059】表3および表4には密着性試験の評価点数を併記する。これらの表から第1の下地層または第1および第2の下地層として適切な材料を用いた試料では、良好な密着性が得られることがわかる。

[0060]

【表3】

基板	下地層 1	下地層2	磁性層	評価点数
Si	MgO		CoPt	4
Si	BaCd		CoPt	2
Si	AICo		CoPt	8
Si	AICu ₂ Zn		CoPt	8
Si	A I C u _z T i		CoPt	10
Si	AlFe		CoPt	8
Si	Allr		CoPt	10
Si	AlNi		CoPt	10
Si	AIRe		CoPt	10
Si	AlRh		CoPt	8
Si	CoFe		CoPt	8
Si	CoGa		CoPt	10
Si	Co ₂ MnSi		CoPt	8
Si	CoTi		CoPt	8
Si	CusSn		CoPt	8
Si	Cu,SnTi		CnPt	10
Si	CuZn		CoPt	10
Si	FeTi		CoPt	10
Si	Galr		CoPt	10
Si	GaRu		CoPt	8
Si	Mn,Si		CoPt	8
Si	MnV		CoPt	8
Si	OsSi		CoPt	10
Si	OsV		CoPt	10
Si	RhSi		CoPt	8
Si	RuSi		CoPt	8

[0061]

【表4】

			[204]	
基板	下地層 1	下地層2	磁性層	評価点数
Si	MgO	Рt	CoNiPt	4
Si	CuPd	Рb	CoNiPt	2
Si	CuPd	_ A 1	CoNiPt	10
Si	CuPd	Ag	CoNiPt	10
Si	CuPd	Au	CoNiPt	10
Si	CuPd	Cu	CoNiPt	8
Si	CuPd	I r	CoNiPt	8
Si	CuPd	Ni	CoNiPt	8
Si	CuPd	Рd	CoNiPt	1 O
Si	CuPd	Рt	CoNiPt	10
Si	CuPd	Rh	CoNiPt	10
Si	MgO	Cr	CoFePt	2
Si	MnAl	Εu	CoFePt	2
Si	MnAl	Cr	CoFePt	10
Si	MnAl	Fe	CoFePt	8

40

【0062】また、上記と同様な方法で第2の下地層の格子定数と密着性指標(評価点数)との関係を調べた結果、「cc結晶からなる第2の下地層では格子定数が3.52~4.20Å、bcc結晶からなる第2の下地層では格子定数が2.49~3.00Åであれば、好ましい密着性(評価点数8点以上)が得られることがわかった。

【0063】実施例3

下地層としてし10型構造またはし12型構造を有する金 風間化合物からものを用い、以下のようにして図1に示 50 す磁気記録媒体を作製した。

【0064】実施例1と同様にして、ディスク状の結晶 化ガラス基板上にDCスパッタリングにより10nmの 下地層を成膜した。次の真空チャンパー内で基板を50 0℃に加熱した状態でDCスパッタリングにより50n mの磁性層を成膜した。次の真空チャンパー内でDCスパッタリングにより2nmのPtからなる保護層を成膜 した。

【0065】また、第1の下地層としてL1o型構造またはL12型構造を有する金属間化合物からなるもの、

第2の下地層として「cc結晶またはbcc結晶からなるものを用い、以下のようにして図2に示す磁気記録媒体を作製した。

【0066】上記と同様にして、結晶化ガラス基板上に DCスパッタリングにより50nmの第1の下地層を成 膜し、DCスパッタリングにより100nmのfcc結 晶からなる第2の下地層を成膜し、基板を500℃に加 熱した状態でDCスパッタリングにより50nmの磁性 層を成膜し、DCスパッタリングにより2nmのPtからなる保護層を成膜した。

【0067】同様に、結晶化ガラス基板上にDCスパッタリングにより50nmの第1の下地層を成膜し、DCスパッタリングにより50nmのbcc結晶からなる第2の下地層を成膜し、基板を500℃に加熱した状態でDCスパッタリングにより50nmの磁性層を成膜し、

DCスパックリングにより2nmのPtからなる保護層を成膜した。

【0068】表5~表7に使用した材料を示す。第1の下地層としてMgOまたはPt3Sc、第2の下地層としてPbまたはEuを用いた試料は比較例である。

【0.069】 X線回折によれば、fcc結晶またはbcc結晶の第2の下地層は(100)配向しており、磁性層は主として(001)配向のfct構造をとっていることがわかった。

【0070】表5~表7には密着性試験の評価点数を併 記する。これらの表から第1の下地層または第1および 第2の下地層として適切な材料を用いた試料では、良好 な密着性が得られることがわかる。

[0071]

【表5】

基板	下地層 1	下地層2	磁性層	評価点数
結晶化ガラス	MgO		FePd	4
結晶化ガラス	Pt ₃ Sc		FePd	2
結晶化ガラス	Ag ₃ Mg		FePd	8
結晶化ガラス	AgPr		FePd	10
結晶化ガラス	AgPt _s		FePd	. 8
結晶化ガラス	AgTi		FePd	10
結晶化ガラス	AlPt;		FePd	8
結晶化ガラス	AuCu,		FePd	10
結晶化ガラス	Au _s P t		FePd	1 0
結晶化ガラス	AuV ₃		FePd	10
結晶化ガラス	Au ₃ Zn		FePd	8
結晶化ガラス	CdPt		FePd	8
結晶化ガラス	CdPt ₃		FePd	8
結晶化ガラス	CePd,		FePd	10
結晶化ガラス	Crlr,		FePd	8
結晶化ガラス	CrPd		FePd	10
結晶化ガラス	Cr ₂ Pt		FePd	- 8
結晶化ガラス	Cu ₃ Pd		FePd	8
結晶化ガラス	CuPt ₃		FePd	8
結晶化ガラス	Cu ₃ Pt		FePd	10
結晶化ガラス	ErPd ₃		FePd	10
結晶化ガラス	GaPt,		FePd	8
結晶化ガラス	Hfalr		FePd	8
結晶化ガラス	HfRh,		FePd	8
結晶化ガラス	HoPd,		FePd	· 8

[0072]

【表 6】

基板	下地層 1	下地層 2	磁性層	評価点数
結晶化ガラス	HoPt,		FePd	8
結晶化ガラス	IrMn,		FePd	8
結晶化ガラス	IrMn,		FePd	8
結晶化ガラス	IrNb		FePd	10
結晶化ガラス	Ir,Ta		FePd	8
結晶化ガラス	Ir ₃ Ti		FePd	10
結晶化ガラス	Ir,Ti,	·	FePd	10
結晶化ガラス	Ir,V		FePd	8
結晶化ガラス	l r V		FePd	8
結晶化ガラス	Ir,Zr		FePd	8
結晶化ガラス	MgPt,		FePd	1 0
結晶化ガラス	MnNi ₃		FePd	10
結晶化ガラス	MnPt ₃		FePd	8
結晶化ガラス	Mn ₃ P t		FePd	10
結晶化ガラス	Mn,Rh		FePd	8
結晶化ガラス	MoPt,		FePd	10
結晶化ガラス	PbPd,		FePd	8
結晶化ガラス	PbPt,		FePd	8
枯晶化ガラス	PdCr		FePd	10
結晶化ガラス	Pd ₃ Sn		FePd	10
結晶化ガラス	Pd₄Th		FePd	8
結晶化ガラス	Pd,Y		FePd	8
結晶化ガラス	PdZn		FePd	10
結晶化ガラス	Pt,Sn		FePd	8
結晶化ガラス	Pt,Y		FePd	10

[0073]

【表7】

基板	下地層1	下地層2	磁性層	評価点数
結晶化ガラス	PtZn		FePd	8
結晶化ガラス	Pt ₃ Zn		FePd	10
結晶化ガラス	Rh ₃ Ta		FePd	8
結晶化ガラス	Rh ₃ Th		FePd	10
結晶化ガラス	RhTi		FePd	8
結晶化ガラス	Rh,V		FePd	10
結晶化ガラス	Rh ₃ Zr		FePd	8
結晶化ガラス	TiPt,		FePd	10
結晶化ガラス	TiZn,		FePd	10
結晶化ガラス	VZn,		FePd	8
結晶化ガラス	MgO	Сг	FeNiPd	4
結晶化ガラス	AlTi	Рb	FeNiPd	2
結晶化ガラス	AlTi	ΛΙ	FeNiPd	10
結晶化ガラス	AlTi	Ag	FeNiPd	10
結晶化ガラス	AlTi	Aυ	FeNiPd	8
結晶化ガラス	AlTi	Cu	FeNiPd	8
結晶化ガラス	AlTi	Ir	FeNiPd	1 0
結晶化ガラス	AlTi	7	FeNiPd	8
結晶化ガラス	AlTi	Рd	FeNiPd	8
結晶化ガラス	AlTi	Рt	FeNiPd	8
結晶化ガラス	AlTi	Rh	FeNiPd	8
結晶化ガラス	MgO	Cr	FePdIr	4
結晶化ガラス	AuCu	Eu	FePdIr	2
結晶化ガラス	AuCu	C r	FePdlr	1 0
結晶化ガラス	AuCu	Fe	FePdIr	10

【0074】また、上記と同様な方法で第2の下地層の格子定数と密着性指標(評価点数)との関係を調べた結果、fcc結晶からなる第2の下地層では格子定数が

3.52~4.20Å、bcc結晶からなる第2の下地 層では格子定数が2.49~3.00Åであれば、好ま 50 しい密着性(評価点数8点以上)が得られることがわか

った。

[0075]

【発明の効果】以上詳述したように本発明によれば、FePt規則合金に代表される「ct構造を持つ磁性膜を用いた場合に、下地層と磁性層との密着性を改善することができ、動作特性に優れた面内または垂直磁気記録媒体を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る磁気記録媒体の一例を示す断而 図。

【図2】本発明に係る磁気記録媒体の他の例を示す断面図。

【図3】bcc {100} 面と fct {001} 面との

格子整合を表す模式図。

【図4】本発明の実施例におけるFePt機性層のX線 回折プロファイルを示す図。

【図5】本発明の実施例における密着性指標とCSS耐性との関係を示す図。

【図6】本発明の実施例における第2の下地層の格子定数と密着性指標の評価点数との関係を示す図。

【符号の説明】

1 …基板

21…下地層

22…第2の下地層

3…磁性層

4…保護層:

【図4】

フロントページの続き

(72)発明者 市原 勝太郎 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内

F ターム(参考) 5D006 BB01 BB07 CA01 CA05 CA06 DA03 DA08 FA09