3.4 Images and inverse images

Definition 3.4.1 (Images of sets).

If $f: X \to Y$ is a function from X to Y, and S is a set in X, we define f(S) to be the set

$$f(S) := \{ f(x) : x \in S \};$$

this set is a subset of Y, and is sometimes called the image of S under the map f. We sometimes call f(S) the forward image of S to distinguish it from the concept of the inverse image $f^{-1}(S)$ of S, which is defined below.

Definition 3.4.5 (Inverse images).

If U is a subset of Y, we define the set $f^{-1}(U)$ to be the set

$$f^{-1}(U) := \{ x \in X : f(x) \in U \}.$$

In other words, $f^{-1}(U)$ consists of all the elements of X which map into U:

$$f(x) \in U \iff x \in f^{-1}(U).$$

We feel $f^{-1}(U)$ the inverse image of U.

Axiom 3.11 (Power set axiom).

Let X and Y be sets. Then there exists a set, denoted Y^X , which consists of all the functions from X to Y, thus

$$f \in Y^X \iff (f \text{ is a function with domain } X \text{ and range } Y).$$

Lemma 3.4.10

Let X be a set. Then the set

$${Y:Y \text{ is a subset of } X}$$

is a set.

Axiom 3.12 (Union).

Let A be a set, all of whose elements are themselves sets. Then there exists a set $\bigcup A$ whose elements are precisely those objects which are elements of the elements of A, thus for all objects x

$$x \in \bigcup A \iff (x \in S \text{ for some } S \in A).$$

Exercises

Exercise 3.4.1

Let $f: X \to Y$ be a bijective function, and let $f^{-1}: Y \to X$ be its inverse. Let V be any subset of Y. Prove that the forward image of V under f^{-1} is the same set as the inverse image of V under f; thus the fact that both sets are denoted by $f^{-1}(V)$ will not lead to any inconsistency.

Proof. Let U be the forward image of V under f^{-1} ,

$$U = \{ f^{-1}(y) : y \in V \}.$$

And let W be the inverse image of V under f,

$$W = \{x \in X : f(x) \in V\}.$$

We need to show that U = W which can be done by proving $x \in U \iff x \in W$.

First, consider an arbitrary $x \in U$. Since the range of f^{-1} is X, $x \in X$. And there exists exactly one $y \in V$ such that $x = f^{-1}(y)$. By definition of inverse, we have $f(x) = y \in V$. Therefore, $x \in W$.

Then, consider an arbitrary $x \in W$. Denote y = f(x). Then we have $x \in X$ and $y = f(x) \in Y$. By definition, $x = f^{-1}(y)$. Therefore, $x \in U$.

Thus,
$$x \in V \iff x \in U$$
. The statement has been proved.

Exercise 3.4.2

Let $f: X \to Y$ be a function from one set X to another set Y, let S be a subset of X, and let U be a subset of Y. What, in general, can one say about $f^{-1}(f(S))$ and S? What about $f(f^{-1}(U))$ and U?

1. $S \subseteq f^{-1}(f(S))$.

Proof. We need to show that $x \in S \implies x \in f^{-1}(f(S))$. Consider an arbitrary $x \in S$. Then $f(x) \in f(S)$. So $x = f^{-1}(f(x)) \in f^{-1}(f(S))$. $f^{-1}(f(S)) \subseteq S$ does not stand, see p.58 for a counterexample. Thus, in general, we have $S \subseteq f^{-1}(f(S))$.

2. $f(f^{-1}(U)) \subseteq U$.

Proof. We need to show that $y \in f(f^{-1}(U)) \implies y \in U$. Consider an arbitrary $y \in f(f^{-1}(U))$. Then there exists $x \in f^{-1}(U)$ such that f(x) = y. Since $x \in f^{-1}(U)$, by definition of inverse images, $f(x) = y \in U$. $U \subseteq f(f^{-1}(U))$ is not true, see p.58 for a counterexample. Thus, in general, we have $f(f^{-1}(U)) \subseteq U$.

If f is bijective, we have $S = f^{-1}(f(S))$ and $f(f^{-1}(U)) = U$.

Exercise 3.4.3

Let A, B be two subsets of a set X, and let $f: X \to Y$ be a function. Show that $f(A \cap B) \subseteq f(A) \cap f(B)$, that $f(A) \setminus f(B) \subseteq f(A \setminus B)$, $f(A \cup B) = f(A) \cup f(B)$. For the first two statements, is it true that the \subseteq relation can be improved to =?

1. $f(A \cap B) \subseteq f(A) \cap f(B)$.

Proof. We need to show that $y \in f(A \cap B) \implies y \in f(A) \cap f(B)$. Assume $y \in f(A \cap B)$, then there exists $x \in A \cap B$ such that y = f(x). $x \in A \cap B \iff (x \in A) \land (x \in B)$. $x \in A \implies y = f(x) \in f(A)$, $x \in B \implies y = f(x) \in f(B)$. So $(y \in f(A)) \land (y \in f(B))$. Therefore, $y \in f(A) \cap f(B)$.

The \subseteq relation cannot be improved to =. A counterexample: $A: \{0,1\}, B: \{1,2\}, f(0)=2, f(1)=1, f(2)=2.$

2. $f(A)\backslash f(B) \subseteq f(A\backslash B)$.

Proof. We need to show that $y \in f(A) \setminus f(B) \implies y \in f(A \setminus B)$. Assume $y \in f(A) \setminus f(B)$ which means $y \in f(A) \wedge y \notin f(B)$. Since $y \in f(A)$, there exists $x \in A$ such that f(x) = y. On the other hand, $y \notin f(B)$ so $x \notin B$ (otherwise we will have $y = f(x) \in B$). So there exists $(x \in A) \wedge (x \notin B) \iff x \in (A \setminus B)$ such that y = f(x). Thus, $y \in A \setminus B$.

The \subseteq relation cannot be improved to =. A counterexample: $A:\{1,2\}, B:\{2\}, f(1)=1, f(2)=1.$

3. $f(A \cup B) = f(A) \cup f(B)$.

Proof. We need to show that $y \in f(A \cup B) \iff y \in f(A) \cup f(B)$.

First, suppose $y \in f(A \cup B)$. Then there exists $x \in A \cup B$ such that y = f(x). $x \in A \cup B \implies (x \in A) \lor (x \in B)$. If $x \in A$, since y = f(x), $y \in f(A)$. If $x \in B$, since y = f(x), $y \in f(B)$. So $y \in f(A)$ or $y \in f(B)$. Thus, $y \in f(A) \cup f(B)$.

Then, suppose $y \in f(A) \cup f(B)$. If $y \in f(A)$, $\exists x \in A$ such that y = f(x). $x \in A \implies x \in A \cup B$. So $y \in f(A \cup B)$. Similarly, if $y \in f(B)$, we also conclude that $y \in f(A \cup B)$. Therefore, in both cases, we have $y \in f(A \cup B)$. Thus, $f(A \cup B) = f(A) \cup f(B)$.

Exercise 3.4.4

Let $f: X \to Y$ be a function from one set X to another set Y, and let U, V be subsets of Y. Show that $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$, that $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$, and that $f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$.

1. $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.

Proof. We need to show that $x \in f^{-1}(U \cup V) \iff x \in f^{-1}(U) \cup f^{-1}(V)$.

First, suppose $x \in f^{-1}(U \cup V)$. Then there exists $y \in U \cup V$ such that f(x) = y. If $y \in U$, $x \in f^{-1}(U)$. If $y \in V$, $x \in f^{-1}(V)$. So $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$. Thus, $x \in f^{-1}(U) \cup f^{-1}(V)$.

Then, suppose $x \in f^{-1}(U) \cup f^{-1}(V)$ which means $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$. If $x \in f^{-1}(U)$, then $\exists y \in U$ such that y = f(x). If $x \in f^{-1}(V)$, then $\exists y \in V$ such that y = f(x). So $y = f(x) \in U$ or $y = f(x) \in V$. So $y = f(x) \in U \cup V$. Thus, $x \in f^{-1}(U \cup V)$.

Thus, we have shown that $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.

2. $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.

Proof. We need to show that $x \in f^{-1}(U \cap V) \iff x \in f^{-1}(U) \cap f^{-1}(V)$.

First, suppose $x \in f^{-1}(U \cup V)$. Then $\exists y \in U \cap V$ such that y = f(x). Since $y \in U$, $x \in f^{-1}(U)$. Since $y \in V$, $x \in f^{-1}(V)$. And because $x \in f^{-1}(U)$ and $x \in f^{-1}(V)$, $x \in f^{-1}(U) \cap f^{-1}(V)$.

Then, suppose $x \in f^{-1}(U) \cap f^{-1}(V)$. Then there exists y = f(x) such that $y = f(x), y \in U$ and $y \in V$. So $y = f(x) \in U \cap V$. Thus, $x \in f^{-1}(U \cap V)$.

Thus,
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

 $3. \ f^{-1}(U\backslash V)=f^{-1}(U)\backslash f^{-1}(V).$

Proof. We need to show that $x \in f^{-1}(U \setminus V) \iff x \in f^{-1}(U) \setminus f^{-1}(V)$. First, suppose $x \in f^{-1}(U \setminus V)$. Then there exists $(y \in U) \land y \notin V$ such that f(x) = y. $y \in U \implies x \in f^{-1}(U)$. On the other hand, $x \notin f^{-1}(V)$ (otherwise $y = f(x) \in V$). So $(x \in f^{-1}(U)) \land (x \notin f^{-1}(V))$. Hence, $x \in f^{-1}(U) \setminus f^{-1}(V)$.

Then, suppose $x \in f^{-1}(U) \setminus f^{-1}(V)$ which means $x \in f^{-1}(U) \wedge x \notin f^{-1}(V)$. Since $x \in f^{-1}(U)$, there exists $y \in U$ such that y = f(x). And since $x \notin f^{-1}(V)$, we must have $y \notin V$. So there exists $y \in U \wedge y \notin V \iff y \in U \setminus V$ such that f(x) = y. Hence, $x \in f^{-1}(U \setminus V)$.

Thus,
$$f^{-1}(U\backslash V) = f^{-1}(U)\backslash f^{-1}(V)$$
.

Exercise 3.4.5

Let $f: X \to Y$ be a function from one set X to another set Y. Show that $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective. Show that $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.

1. $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective.

Proof. We need to show that $y \in f(f^{-1}(S)) = S \iff f$ is surjective. And for the LHS, we have proved in 3.4.2 that $f(f^{-1}(S)) \subseteq S$ not matter what kind of function f is. So it would be sufficient to show that $S \subseteq f(f^{-1}(S))$.

First, suppose f is surjective. We want to show that $y \in S \implies y \in f(f^{-1}(S))$. Since f is surjective and $S \in Y$, there must exist $x \in X$ such that f(x) = y. Because y = f(x) and $y \in S$, $x \in f^{-1}(S)$. Since $x \in f^{-1}(S)$ and y = f(x), $y \in f(f^{-1}(S))$.

Then, suppose $y \in S \implies y \in f(f^{-1}(S))$. We want to show that f is surjective. Assume f is not surjective. Then there exists y and $S \subseteq Y$, such that $y \in S$ and $\forall x \in X, \ f(x) \neq y$. Since $f^{-1}(S)$ is a subset of X, for all objects $x \in f^{-1}(S)$, $f(x) \neq y$. Thus, $y \notin f(f^{-1}(S))$, contradiction. Thus, f is surjective.

Thus, $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective.

2. $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.

Proof. We need to show that $f^{-1}(f(S)) = S \iff f$ is injective. For the LHS, it is not necessary to show that $S \subseteq f^{-1}(f(S))$ since we have proved in 3.4.2 that it stands generally. So we only need to show $f^{-1}(f(S)) \subseteq S$ for every $S \subseteq X \iff f$ is injective.

First, suppose f is injective. Assume $x \in f^{-1}(f(S))$. Then there exists $y \in f(S)$ such that y = f(x). Since $y \in f(S)$, there exists $x' \in S$ such that y = f(x'). And because f is injective, x = x'. Therefore, $x \in S$.

Next, suppose $x \in f^{-1}(f(S)) \implies x \in S$. Assume f is not injective. Then $\exists x, x' \in X, x \neq x'$ and f(x) = f(x') = y. Let S be $\{x'\}$. In this case, $y \in f(S)$ and $x \in f^{-1}(f(S))$. But $x \notin S$, contradiction. Hence, f is injective.

Thus, $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.

Exercise 3.4.6

Prove Lemma 3.4.10. (Hint: start with the set $\{0,1\}^X$ and apply the replacement axiom, replacing each function f with the object $f^{-1}(\{1\})$.)

Proof. Consider the set $\{0,1\}^X$ which is set of all functions that map from X to $\{0,1\}$. Denote $\{0,1\}^X$ as $\mathcal{P}(X)$. Let statement P(f,Y) be $Y=f^{-1}(\{1\})$ is a subset of X. For any f, there exists at most Y for which P(f,Y) is true. Then, by axiom of replacement, there exists a set $\{Y:P(Y) \text{ is true for some } f \in \mathcal{P}(X)\}$, such that for any object z,

 $z \in \{Y : P(Y) \text{ is true for some } f \in \mathcal{P}(X)\} \iff P(x,z) \text{ is true for some } f \in \mathcal{P}(X).$

So such a set Y exists and this is exactly the set of all the subsets of X. Thus, all the subsets of X is a set.

Exercise 3.4.7

Let X, Y be sets. Define a partial function from X to Y to be any function $f: X' \to Y'$ whose domain X' is a subset of X, and whose range Y' is a subset of Y. Show that the collection of all partial functions from X to Y is itself a set.

Proof. $\{0,1\}^X$ is the set of all subsets of X, $X' \in \{0,1\}^X$. Similarly, $Y' \in \{0,1\}^Y$. $Y'^{X'}$ for some $X' \in \{0,1\}^X$, $Y' \in \{0,1\}^Y$ is the set of all partial functions from X' to Y'. Using the union axiom to iterate over all $X' \in \{0,1\}^X$ and $Y' \in \{0,1\}^Y$ and obtain the set all partial functions.

Consider an arbitrary $Y_0 \in \{0,1\}^Y$. Let $Y_0^{X'}$ be the set consists of all the set in the form of $Y_0^{X'}$ where $X' \in \{0,1\}^X$. (For example, if $X = \{0,1\}$, $Y_0^{X'}$ would be $\{Y_0^{\{0\}}\}, Y_0^{\{1\}}, Y_0^{\{0,1\}}, \emptyset$.) So every element of $Y_0^{X'}$ is a set itself. Apply the union axiom, there exists $\bigcup Y_0^{X'}$ whose elements are the elements of the elements of $Y_0^{X'}$,

$$f \in \bigcup Y_0^{X'} \iff (f \in S \text{ for some } S \in Y_0^{X'}).$$

Every f in $\bigcup Y_0^{X'}$ is a partial function from Y_0 to some X' where $X' \in \{0,1\}^X$.

Then, generalize Y_0 . Let ${Y'}^{X'}$ be the set of all the sets in the form of $\bigcup {Y'}^{X'}$ where $Y' \in \{0,1\}^Y$. Every element of ${Y'}^{X'}$ is a set. By the union axiom, there exists $\bigcup {Y'}^{X'}$ whose elements are the elements of the elements of ${Y'}^{X'}$,

$$f \in \bigcup Y'^{X'} \iff (f \in S \text{ for some } S \in Y'^{X'}).$$

Therefore, every f is a partial function from some $Y' \in \{0,1\}^Y$ and $X' \in \{0,1\}^X$. Thus, $\bigcup Y'^{X'}$ is a set, and it is the collection of all partial functions from X to Y. \square

Exercise 3.4.8

Show that Axiom 3.5 can be deduced from Axiom 3.1, Axiom 3.4 and Axiom 3.12.

Proof. Consider the set consists of A and B, $\{A, B\}$. This set is a set of sets, by the union axiom, we have

$$x \in \bigcup \{A, B\} \iff x \in S \text{ for some } S \in \{A, B\}.$$

Define $A \cup B$ as $\bigcup \{A, B\}$. Check if $x \in A \cup B \iff x \in A$ or $x \in B$ stands.

Suppose $x \in A \cup B$. Then $x \in S$ for some $S \in \{A, B\}$. By Axiom 3.4, S = A or S = B. If S = A, $x \in A$. Otherwise, $x \in B$. So $x \in A$ or $x \in B$ as desired.

Suppose $x \in A$ or $x \in B$. Assume $x \in A$. Since $A \in \{A, B\}$, we have $x \in \bigcup \{A, B\} = A \cup B$. Similarly, if $x \in B$ we could also have $x \in \bigcup \{A, B\} = A \cup B$.

Thus, Axiom 3.5 has been deduced. \Box

Exercise 3.4.9

Show that if β and β' are two elements of a set I, and to each $\alpha \in I$ we assign a set A_{α} , then

$$\{x \in A_{\beta} : x \in A_{\alpha} \text{ for all } \alpha \in I\} = \{x \in A_{\beta'} : x \in A_{\alpha} \text{ for all } \alpha \in I\},$$

and so the definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Proof. Denote $\{x \in A_{\beta} : x \in A_{\alpha} \text{ for all } \alpha \in I\}$ as A and $\{x \in A_{\beta'} : x \in A_{\alpha} \text{ for all } \alpha \in I\}$ as A'. We need to show that A = A' by showing $x \in A \iff x \in A'$.

Suppose $x \in A$. Then $x \in A_{\beta}$ and $x \in A_{\alpha}$ for all $\alpha \in I$. Since $\beta' \in I$, $x \in A_{\beta'}$. So $x \in A'$. Similarly, we can show that if $x \in A'$, then $x \in A$. Thus, A = A'. The definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Exercise 3.4.10

Suppose that I and J are two sets, and for all $\alpha \in I \cup J$ let A_{α} be a set. Show that $(\bigcup_{\alpha \in I} A_{\alpha}) \cup (\bigcup_{\alpha \in J} A_{\alpha}) = \bigcup_{\alpha \in I \cup J} A_{\alpha}$. If I and J are non-empty, show that $(\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha}) = \bigcap_{\alpha \in I \cup J} A_{\alpha}$.

1.
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \cup \left(\bigcup_{\alpha \in J} A_{\alpha}\right) = \bigcup_{\alpha \in I \cup J} A_{\alpha}$$
.

Proof. Show that $x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cup (\bigcup_{\alpha \in J} A_{\alpha}) \iff x \in \bigcup_{\alpha \in I \cup J} A_{\alpha}$.

Suppose $x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cup (\bigcup_{\alpha \in J} A_{\alpha})$. Then $x \in \bigcup_{\alpha \in I} A_{\alpha}$ or $x \in \bigcup_{\alpha \in J} A_{\alpha}$. If $x \in \bigcup_{\alpha \in I} A_{\alpha}$, then $x \in A_{\alpha}$ for some α_{I} . If $x \in \bigcup_{\alpha \in J} A_{\alpha}$, then $x \in A_{\alpha}$ for some $\alpha \in J$. So $x \in A_{\alpha}$ for some $\alpha \in I$ or $\alpha \in J$. In other words, $x \in A_{\alpha}$ for some $\alpha \in I \cup J$. Therefore, $x \in \bigcup_{\alpha \in I \cup J} A_{\alpha}$.

Suppose $x \in \bigcup_{\alpha \in I \cup J} A_{\alpha}$. Then, $x \in A_{\alpha}$ for some $\alpha \in I \cup J$, which is equivalent to $x \in A_{\alpha}$ for some $\alpha \in I$ or some $\alpha \in J$. If $x \in A_{\alpha}$ for some $\alpha \in I$, we have $x \in \bigcup_{\alpha \in I} A_{\alpha}$. If $x \in A_{\alpha}$ for some $\alpha \in J$, we have $x \in \bigcup_{\alpha \in J} A_{\alpha}$. So $x \in \bigcup_{\alpha \in I} A_{\alpha}$ or $x \in \bigcup_{\alpha \in J} A_{\alpha}$. Hence, $x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cup (\bigcup_{\alpha \in J} A_{\alpha})$.

Thus,
$$(\bigcup_{\alpha \in I} A_{\alpha}) \cup (\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I \cup I} A_{\alpha}$$
.

2. If I and J are non-empty, show that $(\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha}) = \bigcap_{\alpha \in I \cup J} A_{\alpha}$.

Proof. Show that $x \in (\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha}) \iff x \in \bigcap_{\alpha \in I \cup J} A_{\alpha}$.

Suppose $x \in (\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha})$. Then we have $x \in A_{\alpha}$ for all the $\alpha \in I$ and $x \in A_{\alpha}$ for all the $\alpha \in I$. So $x \in A_{\alpha}$ for all the $\alpha \in I \cup J$. Therefore, $x \in \bigcap_{\alpha \in I \cup J} A_{\alpha}$.

Suppose $x \in \bigcap_{\alpha \in I \cup J} A_{\alpha}$. Then we have $x \in A_{\alpha}$ for all the $\alpha \in I \cup J$. So there must be $x \in A_{\alpha}$ for all the $\alpha \in I$ and $x \in A_{\alpha}$ for all the $\alpha \in J$. Therefore, $x \in (\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha})$.

Thus, if I and J are non-empty, show that $(\bigcap_{\alpha \in I} A_{\alpha}) \cap (\bigcap_{\alpha \in J} A_{\alpha}) = \bigcap_{\alpha \in I \cup J} A_{\alpha}$.

Exercise 3.4.11

Let X be a set, let I be a non-empty set, and for all $\alpha \in I$ let A_{α} be a subset of X. Show that

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$$

and

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha}).$$

This should be compared with de Morgan's laws in Propostition 3.1.27 (although one cannot derive the above identities directly from de Morgan's laws, as I could be infinite).

1.
$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (X \setminus A_{\alpha}).$$

Proof. We need to show that $x \in X \setminus \bigcup_{\alpha \in I} A_{\alpha} \iff x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$.

Suppose $x \in X \setminus \bigcup_{\alpha \in I} A_{\alpha}$. Then $x \in X$, and $x \notin A_{\alpha}$ for all the $\alpha \in A$. $x \in X$ is a universal statement so we can rewrite it as $x \in X$ for all $\alpha \in A$. So for all $\alpha \in A$, we have $x \in X$ and $x \notin A_{\alpha}$. Hence, $x \in \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$.

Suppose $x \in \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$. Then for all $\alpha \in A$ we have $x \in X$ and $x \notin A_{\alpha}$. Hence, $x \notin \bigcup_{\alpha \in I} A_{\alpha}$, otherwise there would exist some $\alpha \in I$ such that $x \in A_{\alpha}$ (contradiction). Therefore, $x \in X \setminus \bigcup_{\alpha \in I} A_{\alpha}$.

Thus,
$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (X \setminus A_{\alpha}).$$

2.
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha}).$$

Proof. We need to show that $x \in X \setminus \bigcap_{\alpha \in I} A_{\alpha} \iff x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$.

Suppose $x \in X \setminus \bigcap_{\alpha \in I} A_{\alpha}$. Then we have $x \in X$ and $x \notin \bigcap_{\alpha \in I} A_{\alpha}$. This statement has two parts: for all $\alpha \in A$, $x \in X$, and for some $\alpha \in A$, $x \notin A_{\alpha}$. We could weaken the first part: for some $\alpha \in A$, $x \in X$. Hence, $x \in X$ and $x \notin A_{\alpha}$ for some $\alpha \in A$. Therefore, $x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$.

Suppose $x \in \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$. Then $x \in X$ and $x \notin A_{\alpha}$ for some $\alpha \in A$. $x \in X$ does not depend on α , so if it is true for some $\alpha \in A$, it is true for all $\alpha \in A$. Assume $x \in \bigcap_{\alpha \in I} A_{\alpha}$. Then $x \in A_{\alpha}$ for all $\alpha \in A$. On the other hand, $x \notin A_{\alpha}$ for some $\alpha \in A$, there exists $\alpha \in A$. Contradiction. So $x \notin \bigcap_{\alpha \in I} A_{\alpha}$. Hence, $x \in X \setminus \bigcap_{\alpha \in I} A_{\alpha}$.

Thus,
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha}).$$