

Aim: To extract raw signal and process it so that it is ready for medical use and application purpose.

INTRODUCTION

Electrocardiogram is a recording of the heart's electrical activity through repeated cardiac cycle.

Noises

- Baseline Wander Patient's breathing (0.15 to 0.3 Hz)
- Power Line Interference 50 Hz or 60 Hz
- Electrosurgical Noise Medical Apparatus (100 kHz to 1 MHz)
- Electromyrography Noise Due to Muscle Contractions
- Electrode contact noise -Contact between the electrode and the skin

STEPS INVOLVED IN ANALYSIS

- Preprocessing
- Feature Extraction
- Applications Fields
 - Disease Classification
 - Heart Rate calculation

 (\mathbf{R})

STAGES Pan Tompkin's Algorithm

BANDPASS FILTER

1. Low pass filter

• Remove frequency above 11 Hz

2. High pass filter

Remove frequency below 5Hz

Derivative

- Provides the QRS complex slope information.
- Enhances the QRS energy.

SQUARING

- Amplifies and makes the R wave of QRS complex positive.
- Suppresses P and T waves.

Moving window integration

- Reduce noise and high-frequency components in the signal.
- It smoothens the QRS complex.
- This step is crucial for accurate peak detection.

After applying these filters signal, preprocessing is done and signal is ready for peak detection

FEATURE EXTRACTION

- Thresholding Two distinct Thresholding.
- Threshold1 To be a signal peak.
- Threshold2 For search back (RR MISSED LIMIT = 166% RR AVERAGE2)
- Refractory period (200 ms)eliminates the possiblity of a false detection.

PEAK DETECTION

- Q,R,S peaks are detected as follows.
- These can be used to obtain the QRS width and the RR interval.

Disease Classification

Category	Criteria
Bradycardia	RR _t > 1.5s or AR _t > 1.2s
Tachycadia	AR _t < 0.6s
Premature Ventricular Contractions	$RR_t < 0.875ARt-2$ $QRS width > 0.12s$ $RR_t + RR_t = 2ARt-2$
Atrial Premature Beat	RRt-1 < 0.875ARt-2 QRS width normal RRt-1 + RR _t < 2ARt-2

RRt: RR interval

Average RR_t : Average RR interval, $AR_t = (RR_t + RR t - 1 + ... + RR t - 7)/8$

RESULTS

- The average heart rate and the disease is obtained.
- Average Heart rate is 65.9/min (60/RR)
- Disease Premature ventricular contraction.

Average heart rate: 65.9/min

There seems to be Premature ventricular contractions, 2 records in all have been found at time=12.5s 29.0s >>

INDIVIDUAL CONTRIBUTION

Rohit and Manish

Understanding and Implementation of filters, differentiators, integrators etc.

Bharat and Sujal

Implementation of thresholding and feature extraction part.

Amar and Shreyas

Disease classification and Heart beat calculation.

