

STHA&B EPS(电器部分)维修手册

齿轮齿条式电动助力转向系统(EPS)检修

齿轮齿条式电动助力转向系统(EPS)检修

1、EPS 系统概述

EPS(Electric Power-assistant Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统和其他控制系统一样,是由传感器(扭矩转角传感器)、控制器(EPS 电子控制单元)、执行器(EPS 电机)以及相关机械部件组成。

1.1、EPS系统的功能:

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分: EPS 电子控制单元、扭矩及转角传感器、EPS 电机等。系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统通常由以下几部分组成: (a) 扭矩及转角传感器、(b) EPS 电子控制单元、(c) EPS 电机、(d) 相关机械结构。EPS 系统由 EPS 电机提供助力,助力大小由 EPS 电子控制单元实时调节与控制。根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

1.1.1、助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。EPS 的助力特性采用分段型助力特性。EPS 电机根据转向盘偏离方向施加助力转矩。以保证低速时转向轻便,高速时操作稳定并获得较好的路感。

1.1.2、回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。EPS 系统在机械转向机构的基础上,增加了 EPS 电机和减速机构。EPS 系统通过 EPS 电子控制单元对 EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转矩沿某一方向使转向轮返回到中间位置。

1.1.3、阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进行阻尼控制,增强驾驶员路感,改善车辆高速行驶情况下转向的稳定性。

2、EPS 系统与整车配线电气接口定义

图 2-1 EPS 线束端引脚定义(测试端视图) 表 2-1 EPS 电子控制单元板端引脚定义

Connector Type 连接暴类型	PIN 管脚	Function 功能	Min Current 最小电流	Max Current 最大电流	Signal Type 信号类型	Plating Material 镀层材料	Base Material 底材
EPP	1	0VBAT (KL31) EPP供电端负极	320mA	100A	电平信号,模拟信号	Ag	copper
电源正负极接插件	2	VBATT (KL30) EPP供电端正极	320mA	100A	电平信号,模拟信号	Ag	copper
	1	N/A					
	2	N/A					
	3	CAN1_H_BUS	40mA	100mA	CAN总线高电平, 数字信号	Tin	соррег
	4	CAN1_L_BUS	40mA	100mA	CAN总线低电平, 数字信号	Tin	copper
CAN / IG 接插件	5	VIGN(KL15) 点火线	5mA	15mA	电平信号,模拟信号	Tin	copper
接插件	6	N/A					
	. 7	N/A					
	8	CAN1_H_BUS	40mA	100mA	CAN总线高电平, 数字信号	Tin	copper
	9	CAN1_L_BUS	40mA	100mA	CAN总线低电平, 数字信号	Tin	copper
	10	N/A					ооррог

3、维护注意事项

3.1、电动助力转向器总成检修注意事项

(1) SRS气囊系统操作注意事项

本车配备有安全气囊(SRS),包括前排双安全气囊、侧安全气囊和侧安全气帘。如果不按正确的次序操作,可能会引起安全气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定要阅读安全气囊系统的注意事项。

(2) 本车电动助力转向系统带有主动回正控制功能、转角转速外发功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆四轮定位,并在台架上进行转向器转角信号标定(本车无SAS转角传感器,无需标定SAS传感器转角信号),并清除残器,

留故障码;若更换转向器,则需要根据车型进入对应的车型界面并写入对应的配置字(例如:STEB尊荣车型,则需要进入STEB车型界面写入STEB尊荣车型的配置字),标定、清除故障码、写入配置字流程如图3-1、3-2、3-3所示。注意:

转角信号标定前,禁止进行遥控驾驶操作, 否则可能会引起严重损坏故障;

用VDS进行标定操作时,手需离开转向盘,转向盘不能受外力的影响,否则可能会引起严重损坏故障:

配置字写入需要根据车型进入VDS相对应的车型界面,并选择相对应的配置字。若配置字选择不对,可能造型部分功能不匹配、手感不匹配等问题:

图3-1、转向器转角信号标定及故障码清除流程

图3-2、转向器配置字写入流程

图3-3、VDS转向器转角信号标定及配置字写入操作界面

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,EPS电子控制单元,EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
- ②移动电动助力转向器总成时,请勿拉拽线 束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
- ④断开转向管柱或者中间轴之前,车辆处于 断电状态。断开上述部件后,不要移动车轮。不 遵循这些程序会使某些部件在安装过程中定位不 准。
- ⑤转向盘打到极限位置的持续时间不要超过 5秒钟,否则可能会损坏助力电机。

3.2、故障排除表

故障排除表有助于找到故障的原因, 表中数

字表明了引起故障的可能顺序,请按顺序检查每一个零件。必要时,请修理或更换有故障的零件 或进行调整。

转向系统故障排除如表3-1所示。

表3-1 转向系统故障排查表

症状	可能原因	症状	可能原因
转向沉重	1)轮胎(充气不当) 2)前轮定位(不正确) 3)转向节(磨损) 4)转向管柱总成(有故	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨 损) 3)转向器(有故障)
	11 02117	异常噪声	1)减速机构(磨损) 2)转向节(磨损) 3)电动助力转向器总成(有 故障)
回位不足	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向管柱总成(弯曲) 4) 电动助力转向器总成 (有故障)	转向盘抖动	1) 电动助力转向器总成(有故障) 2)转向管柱总成(有故障)

3.3、一般故障检修信息

EPS指示灯

当启动车辆后,EPS指示灯会点亮,并保持 2~3秒后熄灭,此时说明EPS指示灯及系统运行正 常。车辆启动后,如果系统有任何问题,则故障 报警灯应持续显示,且伴随仪表文字提示"请检 查转向系统"和报警声音。

图3-4

4、转向盘及转向管柱的检修

四轮定位完成后,进行扭矩信号及转角信号标定。

5 EPS 系统自诊断及故障排除

5.1 诊断仪故障排除方法:

当 EPS 系统发生故障时,用 VDS 读取故障代码,根据 VDS 读出故障类型。

- 将 VDS 连接到汽车故障诊断接口。
 - ●按照 VDS 上的提示读出故障代码

对故障排查方法如下:

5.1.1 故障码故障排除方法

DTC	故障描述	故障分析	故障排除流程
C1B8417 C1B8416	诊断过压 诊断欠压	EPS 供电异常、EPS 控制单元内部故障	1. 测试 EPS 电源电压 (B-103 接插件) 是否异常,正常情况下 B-103 接插件的 2 号引脚电压与地之间应处于 14V (9~16V 之间属于正常) 左右,B-103 接插件的 1 号引脚与地间是否导通; 否: 2 2. EPS 控制单元故障
C1B8500	BUS OFF	记录总线 DTC,没有 其他记录可以关联 DTC	1、检查总线;
U1F0E87	前驱动电机控制模块 命令报文丢失	CAN 通信系统异常	1. 检查电机系统是否正常; 否; 2 2. 更换电机
U029D00	车速报文丢失	CAN 通信系统异常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否:2 2. EPS 控制单元故障
U029E00	轮速报文丢失	CAN 通信系统异常	1. 检查 ESP 系统是否异常,读取一下 ESP 和 EPB 系统的故障码情况,辅助判断;否:2 2. EPS 控制单元故障
U1F0A87	档位报文丢失	CAN 通信系统异常	1. 检查档位控制器是否异常;否:2 2. EPS 控制单元故障
U1F0B87	仪表报文丢失	CAN 通信系统异常	1. 检查仪表是否异常; 否: 2 2. EPS 控制单元故障
U1F0D29	转向模式无效	CAN 通信系统异常	1. 检查多媒体是否异常;否:2 2. EPS 控制单元故障
C1B1000	ESP 信号无效	CAN 通信系统异常	1. 检查 ESP 系统是否异常; 否; 2 2. EPS 控制单元故障
U1F0C29	全地形模式无效	CAN 通信系统异常	1. 检查前电机控制器是否异常;否:2 2. EPS 控制单元故障
U014787	发动机报文丢失	CAN 通信系统异常	1. 检查发动机是否异常 (针对燃油车); 否: 2 2. EPS 控制单元故障
U014729	发动机信号无效	发动机系统异常	1. 检查发动机是否异常 (针对燃油车); 否: 2 2. EPS 控制单元故障
C1B8600	控制器配置信息未写入	EPS 系统异常	1. 無要用诊断设备,对车辆写入配置(具体操作见下 BPS 配置操作规范),成功写入配置后,清除故障码,重新上下电后检查故障是否仍然存在;否: 2 2. BPS 控制单元故障
C1B9200 C1B9100	TAS Angle 未标定 TAS Angle Sensor 错	EPS 系统异常	1. 需要用诊断设备,对车辆按照要求标定转向 (具体操作见下 EPS 标定操作规范),成功标定后,
C1D3100	误 误		清除故障码,重新上电后检查故障是否仍然存在; 否: 2 2. EPS 控制单元故障
C1B8900	ECU EEPROM 数据移植 故障		
C1B8A00	ECU 车辆标定参数错误	EPS 系统异常	更换 EPS 总成
C1B8B00	ECU 内部电子故障	LI O 사사가 IT	X.17. 11. 0 125/94
C1B8C00	ECU 标定参数丢失故障		
C1B8D00	ECU 标定参数下载故障		

_		_	
C1B8E00	ECU 内部故障		
C1B8800	电机控制/助力监控故		
	障		
C1B9000	供电丢失	整车供电异常	检查 EPS 的供电端 (B-103 接插件) 线束是否
			异常
C1B8704	扭矩传感器故障	传感器异常	1. 检查 EPS 的扭矩转角传感器的线束和接插
			件是否完好; 否: 2 2. 更换 EPS 总成
C1B8800	电机控制 / 助力监控	电机异常	2. 文录 [1 0][5][4]
CIBOOO	故障	14707 n	1、检查电机;2、更换总成
C1B8F00	系统过热	EPS 自身电机或	1. 读取 EPS 模块数据流中的系统温度和 ECU 温
		ECU 温度过高	度,若温度过高(超过 90℃),则等待温度降
			低后,查看助力是否恢复正常,故障码是否可以成功清除;否:2
			2. 更换 EPS 总成
C1B9500	MPC 扭矩请求值错误	MPC 系统异常	1. 检查 MPC 系统; 否: 2
	(LKA)		2. 更换 EPS 总成
C1B9600	激活退出条件监控成	MPC 系统异常	1. 检查 MPC 系统; 否: 2
	立(LKA)		2. 更换 EPS 总成
U024687	MPC 报文丢失(LKA)	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
			2. 更换 EPS 总成
U024683	MPC 报文 Checksum or	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
	Counter 错误(LKA)		2. 更换 EPS 总成
U014087	BCM 电源状态报文丢失	CAN 通讯异常	1. 检查 BCM 系统是否异常; 否: 2
			2. 更换 EPS 总成
U024687	LKA 报文 0x316 丢失	CAN 通讯异常	1. 检查 MPC 系统; 否: 2
0170000	PD0 =1 =1 =1 +1 +1 =	#1 FF 6# 10	2. 更换 EPS 总成
C1B8600	EPS 配置错误	配置错误	1、重新配置; 2、更换总成
C1B9400	系统摩擦力检测异常	CAN 通讯异常	1、检查系统; 2、更换 BPS 总成

5.1.2 电源电压低、电源电压正极断路故障检查

电源电压故障检查						
步骤	诊断动作	标准值	是	否		
1	检查整车电压是否正常	10-16V	至步骤3	进行下步		
2	修复整车电压问题	是否完成	至步骤8			
3	检查 EPS B19-2 电压是否为 10-16V, B11-1 是否和地良 好导通	是否正常	至步骤 7	进行下步		
4	保险 F5/1 是否正常且保险安 装螺钉是否拧紧	是否导通	至步骤 6	进行下步		
5	更换保险, 拧紧螺钉	是否完成	至步骤 8			
6	检查 EPS 电源线束是否存在 其它短路或开路	是否正常	检修电源系 统	进行下步		
7	更换转向器总成	是否完成	进行下步			

8	使用诊断仪清理诊断故障代码	故障代码是否依然 存在	至步骤 1	系统 OK
---	---------------	----------------	-------	-------

5.1.3 扭矩、转角信号故障检查

扭矩传	扭矩传感器故障检查						
步骤	诊断动作	标准值	是	否			
1	检查扭矩信号(黑色 8Pin) 接插件和 EPS 电子控制单元 连接是否正常	是否正常	至步骤 3	进行下步			
2	固定好接插件	是否完成	至步骤 9				
3	扭矩传感器线束是否开路或 短路	是否正常	至步骤 5	进行下步			
4	修复线束故障	是否完成	至步骤 6				
5	更换转向器总成	是否正常	至步骤 6				
6	用诊断仪清理诊断故障代码	故障代码是否复位	至步骤 1	系统 OK			

5.1.4 其他信号线束检测

其它信号线束检查						
步骤	诊断动作	标准值	是	否		
1	系统自诊断过程	是否完成	进行下步	至步骤 4		
2	1.蓄电池负荷测试	电压是否在	进行下步	至步骤 5		
	2. 充电系统负荷测试	10~ <mark>16V</mark>				
3	1.退电至 OFF	是否正常	至步骤 6	至步骤 4		
	2.断开EPS 电子控制单元上的线束连					
	接器					
	3.检测 EPS 电子控制单元线束端 B32					
	与车身的通断					
4	检修自检电路	是否完成	至步骤 1	检修		
5	修复蓄电池或充电系统	是否正常	至步骤 10			
6	车速输入信号线束检查, 测线束阻	是否正常	进行下步	至步骤 9		
	值					
7	故障报警信号线束检查	是否正常	进行下步	至步骤 9		
8	CAN线线束检查	是否正常	至步骤 10	至步骤 9		
	拔下接插件 B32, 测线束端 B32-7、					
	B32-8 端电压					
	1.B32-7 与车身地电压是否始终在					
	2.5-3.5V					
	2.B32-8 与车身地电压是否始终在					
	1.5-2.5V	日本子类	\#\\			
9	更换线束	是否正常	进行下步			
10	使用诊断仪清理诊断故障代码	故障代码是	至步骤1	系统 OK		
		否复位				

5.2 转角标定和软件配置

5.2.1 转角标定

- 1) 转角标定前提:方向盘、转向管柱、转向器拆装更换或重做四轮定位后,都需要重新标定 EPS 系统的转角:
- 2) 标定注意事项:
- ① 胎压正常,正常负载状况,车辆由自身车轮支撑,仅司机一人必须坐于车内;
- ② 进入 EPS 系统标定前车辆已经完成四轮定位;
- ③ 车辆不能有明显震动,如不能关车门、关发动机罩等干扰,人手勿要操作方向盘或施加力矩在方向盘上:
- ④ 检查确认方向盘机械位置处于正中零点;
- ⑤ 以上条件均满足后,由标定人员点击 EPS 标定设备命令对 EPS 转角传感器进行标定操作;
- ⑥ 转角传感器数值(转角标定完成后以设备读取 EPS 内部角度为准,偏差范围 0±3°)
- ⑦ 标定完成后,清除 EPS 系统故障码,重新上下电,查看 EPS 系统是否存在故障码。

5.2.2、 软件配置

- 1) 软件配置前提:车辆的整个转向总成更换之后,需要对车辆的转向系统的软件重新进行配置。
- 2) 软件配置注意事项:
- ① 在整车更换转向总成,进行四轮定位,对车辆进行转角标定操作之后;
- ② 整车上电,勿要操作方向盘;
- ③ 通过诊断设备自带的软件应用(对更换过转向总成的售后车辆的转向参数进行配置的一个软件), 对车辆的转向系统进行配置:
- ④ 配置完成后,清除故障码,整车重新上下电,查看 EPS 系统是否正常。