NeuralTree Models

A Differentiable Extension of Gradient Boosted Linear Trees

July 5, 2025

Introduction to NeuralTree

- Extension of Gradient Boosted Linear Trees (GBLT)
- Converts discrete (hard) splits into continuous (soft) splits
- Enables end-to-end training via backpropagation
- Initialized with pre-trained GBLT parameters, then fine-tuned
- Maintains interpretability through functional ANOVA decomposition
- Combines predictive power of tree ensembles with differentiability
- Mixture of experts (of linear models)

NeuralTree Model Architecture

Core Concepts

- Overall prediction is an ensemble of differentiable trees
- Each tree follows a depth-1 linear tree structure with soft splits
- Sigmoid function replaces hard decision boundaries
- Terminal nodes contain linear models
- Model is fully differentiable

Key Innovations

- Combines the interpretability of tree models with neural network differentiability
- Allows for gradient-based optimization of all model parameters
- Provides smooth decision boundaries while maintaining tree structure

Mathematical Foundation - Prediction Function

Overall Prediction Function

$$f(\mathbf{x}) = f_0 + \sum_{m=1}^{M} \gamma_m T_m(\mathbf{x})$$
 (1)

Components

- $\mathbf{x} = (x_1, x_2, \dots, x_d)$ Feature vector
- f₀ Baseline prediction (global mean)
- γ_m Weight of the *m*th tree
- T_m(x) Differentiable tree function: mixture of linear models

Ensemble Structure

- Similar to traditional gradient boosting
- Each tree adds a refinement to the model
- Weighted sum of tree outputs
- Trees are differentiable, unlike standard trees

Tree Computation and Soft Splits

Soft Split Function

$$s_m(\mathbf{x}) = \sigma(a_m \cdot (x_{j_m} - t_m)) \tag{2}$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function

Components

- x_{jm} Feature for splitting in tree m
- t_m Threshold parameter
- a_m Controls steepness of sigmoid (softness of split)

Hard vs. Soft Splits

- Hard split: Either left (0) or right (1) branch
- Soft split: Continuous value between 0 and 1
- When a_m is very large, approaches hard split
- When a_m is small, creates smoother transitions

/ 16

Terminal Linear Models

Left Branch Linear Model

$$g_m^{(L)}(\mathbf{x}) = \beta_{m0}^{(L)} + \sum_{i=1}^d \beta_{mi}^{(L)} x_i$$
 (3)

Right Branch Linear Model

$$g_m^{(L)}(\mathbf{x}) = \beta_{m0}^{(L)} + \sum_{i=1}^d \beta_{mi}^{(L)} x_i \quad (3) \qquad g_m^{(R)}(\mathbf{x}) = \beta_{m0}^{(R)} + \sum_{i=1}^d \beta_{mi}^{(R)} x_i \quad (4)$$

Tree Output Equation

$$T_m(\mathbf{x}) = (1 - s_m(\mathbf{x})) \cdot g_m^{(L)}(\mathbf{x}) + s_m(\mathbf{x}) \cdot g_m^{(R)}(\mathbf{x})$$
 (5)

Interpretation

The output is a weighted average of two linear models, with weights determined by the soft split function $s_m(\mathbf{x})$

Two-Stage Training Process

1. Initialization with GBLT

- Train standard Gradient Boosted Linear Tree model
- Extract parameters: split feature, threshold, terminal model coefficients, tree weights
- Use these parameters to initialize NeuralTree

2. Refinement via Backpropagation

- With differentiable soft splits, entire model becomes end-to-end differentiable
- Optimize all parameters using gradient-based optimization:
 - Sigmoid steepness parameter a_m
 - Threshold t_m
 - Linear model coefficients
 - Tree weights γ_m
- Fine-tune for improved predictive performance and robustness

Using NeuralTree in MoDeVa Framework

Training and Performance Assessment

```
# Train model
model_neut.fit(ds.train_x, ds.train_y)

# Create TestSuite for evaluation
from modeva import TestSuite
ts = TestSuite(ds, model_neut)

# View model performance
result = ts.diagnose_accuracy_table()
result.table
```

TestSuite Features

- Comprehensive performance evaluation
- Multiple metrics for regression or classification
- Tools for model comparison and analysis
- Integrates with interpretation methods

Interpretability through Functional ANOVA

Decomposition of Prediction Function

The overall prediction function $f(\mathbf{x})$ is decomposed into additive components:

$$f(\mathbf{x}) = f_0 + \sum_i f_i(x_i) + \sum_{i \leq i} f_{ij}(x_i, x_j) + \dots$$

Baseline: Global mean prediction

Main Effects: For each feature x_i

(8)

Interaction Effects: For feature pairs
$$(x_i, x_k)$$

re pairs
$$(x_j, x_k)$$
 $f_{ik}(x_i, x_k)$

 $f_i(x_i)$

 f_0

(6)

(7)

NeuralTree Implementation Process

- Initialize with GBLT
 Train GBLT model to get initial parameters
- ② Convert Hard Splits to Soft Splits
 Replace hard thresholds with sigmoid function $s_m(\mathbf{x}) = \sigma(a_m \cdot (x_{j_m} t_m))$
- **3** Compute Neural Tree Output $T_m(\mathbf{x}) = (1 s_m(\mathbf{x})) \cdot g_m^{(L)}(\mathbf{x}) + s_m(\mathbf{x}) \cdot g_m^{(R)}(\mathbf{x})$
- **3** Aggregate the Ensemble $f(\mathbf{x}) = f_0 + \sum_{m=1}^{M} \gamma_m T_m(\mathbf{x})$
- Refine via Backpropagation
 Optimize all parameters using gradient descent
- Apply Functional ANOVA
 Decompose prediction function for interpretability

Global Model Understanding

Feature Importance

Impact of features on predictions

```
result = ts.interpret_fi()
result.plot()
```

Importance Metrics

- Based on variance of marginal effects
- Normalized to sum to 1
- Higher values indicate stronger influence
- Accounts for feature scale differences

Effect Importance

Contribution of ANOVA components

```
result = ts.interpret_ei()
result.plot()
```

Global Effect Plots

Visualize feature relationships

```
# Main effect
result = ts.
   interpret_effects(
    features="hr")
result.plot()
```

Understanding Individual Predictions

Local Feature Importance

Feature impact for specific samples

```
result = ts.
    interpret_local_fi(
    sample_index=10,
    centered=True)
result.plot()
```

Local Effect Importance

Effect contribution for individuals

```
result = ts.
   interpret_local_ei(
   sample_index=10,
   centered=True)
result.plot()
```

Centering Options

Uncentered Analysis

(centered=False):

- Raw feature contributions
- Direct interpretation
- May have identifiability issues

Centered Analysis

(centered=True):

- Compares to population mean
- More stable interpretation
- Better for relative importance

Enforcing Domain Knowledge through Monotonicity

What is Monotonicity?

Ensures certain input features have consistently positive or negative effect on predictions

Examples of Monotonic Relationships

- In credit scoring, higher income → better credit ratings
- In medical risk assessment, increased risk factors → higher risk scores
- In pricing models, larger product quantities → higher total costs

Benefits of Constraints

- Aligns model with domain knowledge
- Makes model more reliable and trustworthy
- Prevents learning relationships that violate logical domain constraints
- Improves model behavior in sparse data regions

Implementing Monotonicity Constraints

Loss Function with Monotonicity

$$L(\theta) = I(\theta) + \gamma \sum_{i \in M} \max \left(0, -\frac{\partial \hat{y}}{\partial x_i}\right)^2$$
 (10)

reg_mono

Components

- $I(\theta)$ Base prediction loss
- γ Monotonicity penalty coefficient
- *M* Set of features that should be monotonic
- $\frac{\partial \hat{y}}{\partial x_i}$ Gradient of prediction w.r.t. feature i

Implementation in MoDeVa

- Specify monotonic features:
 - mono_increasing_list=()
- mono_decreasing_list=()Control strength with
- Start small, gradually increase
- Verify monotonicity holds for both main effects and interactions

15 / 16

Advantages of the NeuralTree Approach

Technical Benefits

- Differentiability
 End-to-end training capability
- Improved Performance Fine-tuning from GBLT initialization
- Interpretability
 Clear attribution through functional ANOVA

Practical Advantages

- Smoothness
 Soft splits create smoother decision boundaries
- Domain Knowledge Integration
 Through monotonicity constraints
- Local and Global Explainability
 Comprehensive interpretation tools

When to Use NeuralTree

Applications dealing with heterogeneous population through mixture of experts and interpretability while incorporating monotonicity constraints