Deep Learning Lab 5: Regularization

Chia-Hung Yuan & DataLab

Department of Computer Science, National Tsing Hua University, Taiwan

Regularization

 Regularization refers to techniques that improve the generalizability of a trained model

Outline

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Scikit-learn

- Scikit-learn is a free software machine learning library for the Python programming language
- It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy
- pip install scikit-learn / conda install scikit-learn

Learning Theory

- Learning theory provides a means to understand the generalizability of the model
- Model complexity plays a crucial role
 - Too simple: high bias and underfitting
 - Too complex: high variance and overfitting

Error Curves and Model Complexity

- It is relatively hard to observe the figures showed in the last slide, since normally we will never know the data distribution of ground truth
- Instead, we can get those information by observing the training and testing error

Error Curves and Model Complexity

 Although the error curve visualizes the impact of model complexity, the bias-variance tradeoff holds only when you have sufficient training examples

Learning Curves and Sample Complexity

 The bounding methods of learning theory tell us that a model is likely to overfit regardless of it complexity when the size of training set is small. The learning curves are a useful tool for understanding how much training examples are sufficient

Weight Decay

- A common regularization approach. The idea is to add a term in the cost function against complexity
 - Ridge Regression (L₂)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

LASSO (L₁)

$$\arg\min_{w,b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

Ridge Regression

A small value α drastically reduces the testing error.
 Nevertheless, it's not a good idea to increase α forever, since it will over-shrink the coefficients of w and result in underfitting

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

```
[Alpha = 0]
MSE train: 0.00, test: 19958.68

[Alpha = 1]
MSE train: 0.73, test: 23.05

[Alpha = 10]
MSE train: 1.66, test: 16.83

[Alpha = 100]
MSE train: 3.60, test: 15.16

[Alpha = 1000]
MSE train: 8.81, test: 19.22
```

LASSO

• An alternative weight decay approach that can lead to sparse w is the LASSO. Depending on the value of α, certain weights can become zero much faster than others

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

```
[Alpha = 0.00]
MSE train: 19.96, test: 27.20

[Alpha = 0.01]
MSE train: 19.96, test: 27.28

[Alpha = 0.10]
MSE train: 20.42, test: 28.33

[Alpha = 1.00]
MSE train: 26.04, test: 33.41

[Alpha = 10.00]
MSE train: 84.76, test: 83.77
```

Ridge vs LASSO

- Why is LASSO sparse?
 - Ridge Regression (L₂)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

• LASSO (L₁)

$$\arg\min_{w,b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

Initial weights

Ridge Regression

 $[1, 0.5, 1, 0.5] \rightarrow [0.5, 0.5, 0.5, 0.5]$

LASSO

[0.5, 0, 0.5, 0]

Ridge vs LASSO

Ridge vs LASSO

 LASSO can also be treated as a supervised feature selection technique when choosing a suitable regularization strength α to make only part of coefficients become exactly zeros

Validation

- Another useful regularization technique that helps us decide the proper value of hyperparameters
- The idea is to split your data into the training, validation, and testing sets and then select the best value based on validation performance
- NOTE: It is important that we should never peep testing data during training

Validation

```
[Degree = 1]
MSE train: 25.00, valid: 21.43, test: 32.09

[Degree = 2]
MSE train: 9.68, valid: 14.24, test: 20.24

[Degree = 3]
MSE train: 3.38, valid: 17.74, test: 18.63

[Degree = 4]
MSE train: 1.72, valid: 16.67, test: 30.98

[Degree = 5]
MSE train: 0.97, valid: 59.73, test: 57.02

[Degree = 6]
MSE train: 0.60, valid: 1444.08, test: 33189.41
```

Assignment

- In this assignment, you should train a model to predict if a shot can make under specific circumstance
 - **y_test** is hidden this time
 - Allow to use any model you have learned before to achieve the best accuracy
 - Select the best **3 features**, and show the accuracy with only those

Hint

- Preprocess the data to help your training
- Since you don't have y_test this time, you may need to split a validation set for checking your performance

Assignment

- Submit to iLMS with your ipynb (Lab05_{student_id}.ipynb) and y_pred.csv
- The notebook should contain
 - How you evaluate your model
 - All models you have tried and the result
 - Plot the error curve of your best model and tell if it is over-fit or not
 - The top-3 features you find and how you find it
 - A **brief report** what you do in this assignment
- Deadline: 2019-10-03(Thur) 23:59