北京邮电大学 2023—2024 学年第一学期

《离散数学(下)》期末考试试题(A卷)

重制: Yokumi

考 一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按照监考 试 教师指定座位就坐。

注 二、书本、参考资料、书包等物品一律放到考场指定位置。

意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪 事 或作弊行为者,按相应规定严肃处理。

四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。

- \neg suppose that A={2,3,6,9,10,12,14,18,20} and R is the partial order relation defined on A where xRy means x is a divisor of y.
- a) Draw the Hasse diagram for R.
- b) Find all maximal elements.
- c) Find all minimal elements.
- d) Find lub($\{3,10\}$).

项

e) Find $glb(\{14,10\})$.

_,

- (1) Let (G,*) be a group and define $f: G \to G$ by $f(a) = a^{-1}$. Is f an isomorphism, justify your answer.
 - (2) Find all of the normal subgroups of $Z2 \times Z3$.

$$\exists \text{. Let } H = \begin{matrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}$$
 be a parity check matrix;

- a) Determine the (3,6) group code $eH: B^3 \to B^6$.
- b) Find the minimal distance of eH.
- c) How many errors will eH detect?
- d) Suppose $x_t = 000111$, compute the syndrome of x_t .

四、

- a) When graph G is an undirected graph without self-loops, with |V|=6 and |E|=16, then graph G is an __ graph.
- b) the total degree of the W_8 is ____.
- c) There is a circuit with a length of $\underline{}$ in bipartite graphs $K_{3,3}$.

- d) There are _____ connected components in the above graph.
- e) It is known that an undirected graph G contains 16 edges, with 3 vertices having a degree of 4 and 4 vertices having a degree of 3. The degree of all other vertices are less then 3. The number of vertices contained in Figure G is at least_____.

五、

- a) Draw an Euler diagram with odd edges and even vertices.
- b) Does the graph have a Hamilton circuit? If so, find such a path. If not, give an argument to show why no such path exists.

六、Use Dijkstra's Algorithm to find the shortest path length between the vertices A and G in this weighted graph (show process).

七、Use Kuratowski's Theorem to determine whether the given graph is planar.

 π . Find the maximal flow for the network N given in following figure. And find a minimun cut of this network (Draw the initial situation labeled situation of each flow).

+. Find the solution to the recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$ for $n \ge 3$ with initial conditions $a_0 = 1$, $a_1 = 0$, $a_2 = 2$.

+--. Use generating functions to solve the recurrence relation $a_k = 3a_{k-1} + 4^{k-1}$, $k \ge 0$, with the initial condition $a_0 = 2$.

+=. Use Prime's algorithm to design a minimum cost communications network connecting all the computers represented by the graph in the next figure.

