PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10239939 A

(43) Date of publication of application: 11.09.98

(51) Int. CI

G03G 15/01 G03G 15/01 G03G 21/14

(21) Application number: 09045915

(22) Date of filing: 28.02.97

(71) Applicant:

RICOH CO LTD

(72) Inventor:

NAGAI ETSUO

(54) COLOR IMAGE FORMING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To form a color image of high quality by switching a light beam with which an image is first written on a photoreceptor, out of plural light beams and adjusting an image writing start position in each color in a subscanning direction, so as to correct a color smear.

SOLUTION: A phase comparing circuit 64 is operated while an intermediate transfer reference signal is inputted from a mark sensor, so that the count value of a counter 63 is fetched at the time when a first line synchronizing signal is inputted from a synchronization detector, to obtain the phase difference between the intermediate transfer reference signal and a line synchronizing signal and output the phase difference to a memory selecting circuit 65. This memory selecting circuit 65 compares the result of the comparison of the phase comparing circuit 64 with a reference count value, to decide whether the phase difference between the intermediate transfer reference signal and the line synchronizing signal is the reference count value or more or not, so that it is chosen which of memories 66 and 67 has the image data of the first one-line out of the image data of one color in one picture from a

writing control IC, with the result of the decision. Thus, the light beam for first writing the image on the photoreceptor is switched.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-239939

(43)公開日 平成10年(1998) 9月11日

(51) Int.Cl. ⁶	識別記号	Fι		
G 0 3 G 15/01	1 1 2	G 0 3 G 15/01	1 1 2 A	
			Y	
21/14		21/00	372	

審査請求 未請求 請求項の数3 〇L (全 15 頁)

		水胞宣香	木前水 雨水項の数3 〇L (全 15 貝)
(21)出願番号	特顧平9-45915	(71) 出願人	
(22)出願日	平成9年(1997)2月28日		株式会社リコー 東京都大田区中馬込1丁目3番6号
		(72)発明者	永井 悦夫 東京都大田区中馬込1丁目3番6号・株式 会社リコー内
		(74)代理人	弁理士 樺山 亨 (外1名)

(54) 【発明の名称】 カラー画像形成装置

(57)【要約】

【課題】この発明は、副走査方向の画像書き込み開始位置のズレが大きくなり色ズレが生ずるという課題を解決しようとするものである。

【解決手段】 この発明は、中間転写基準信号とライン 同期信号との位相関係に応じて複数の光ビームのうち感 光体に最初に画像を書き込む光ビームを切り換えること により副走査方向の各色毎の画像書き込み開始位置を調整して色ズレを補正する補正手段63~65を備えたものである。

【特許請求の範囲】

【請求項1】複数の光ビームを発生する光ビーム発生手 段と、この光ビーム発生手段からの複数の光ビームを走 査する走査手段と、副走査方向に移動し前記走査手段か らの複数の光ビームで走査されて複数色分の画像が順次 に書き込まれることにより複数色分の静電潜像が順次に 形成される感光体と、前記光ビームを検出してライン同 期信号を発生するライン同期信号発生手段と、前記感光 体上の複数色分の静電潜像を現像して複数色のトナー像 とする複数の現像手段と、前記感光体上の複数色のトナ ー像が重ねて転写される中間転写体と、この中間転写体 上のマークを検出して中間転写基準信号を発生する中間 転写基準信号発生手段とを有し、この中間転写基準信号 発生手段からの中間転写基準信号に同期して各色の画像 形成動作を行い、前記ライン同期信号に同期して前記光 ビームを画像信号で変調して1ライン分ずつ画像の書き 込みを行うカラー画像形成装置において、前記中間転写 基準信号と前記ライン同期信号との位相関係に応じて前 記複数の光ビームのうち前記感光体に最初に画像を書き 込む光ビームを切り換えることにより副走査方向の各色 20 毎の画像書き込み開始位置を調整して色ズレを補正する 補正手段を備えたことを特徴とするカラー画像形成装 置。

【請求項2】請求項1記載のカラー画像形成装置において、前記複数色のうちの第1色の画像書き込み開始位置を基準とし、第2色以後の画像書き込み開始位置を調整して色ズレを補正することを特徴とするカラー画像形成装置。

【請求項3】請求項1記載のカラー画像形成装置において、副走査方向の画像有効領域を各光ビーム毎に切り換 30 えることにより不要なデータを削除することを特徴とするカラー画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複数の光ビームを発生する光ビーム発生手段及び中間転写体を有するカラー 複写機、カラープリンタ、カラーファクシミリ等のカラー画像形成装置に関する。

[0002]

【従来の技術】従来、カラー画像形成装置は、単一のレ 40 ーザ光源を用いてカラー画像を形成していた。このカラー画像形成装置では、感光体が回転駆動部による回転駆動で副走査方向に移動して帯電手段により一様に帯電され、単一のレーザ光源からの1本のレーザビームがポリゴンミラー等の走査手段で走査されて感光体の帯電された表面に照射されることにより、複数色分の画像が順次に書き込まれて複数色分の静電潜像が順次に形成される。この感光体上の複数色分の静電潜像は複数の現像手段により現像して複数色のトナー像となり、この感光体上の複数色のトナー像となり、この感光体上の複数色のトナー像が転写手段で中間転写体上に重ね 50

て転写されることによりフルカラー画像が形成される。 この中間転写体上のフルカラー画像は転写手段により給 紙装置から給送されてきた記録紙、OHPシートなどの

転写材に転写されて排出される。

2

【0003】ここに、走査手段はポリゴンモータ等により所定の回転数で回転駆動される。ライン同期信号発生手段は走査手段からの光ビームを所定の位置で検出してライン同期信号を発生し、このライン同期信号に同期してレーザビームが画像信号により変調されて1ライン分ずつ画像の書き込みが行われる。中間転写基準信号発生手段は中間転写体上のマークを所定の位置で検出して中間転写基準信号を発生し、感光体上に各色のトナー像を形成する各色の画像形成動作が中間転写基準信号に同期

【0004】このようなカラー画像形成装置では、高性 能が要求される場合には、走査手段の回転数、あるい は、画像信号の周波数を上げる必要がある。しかし、走 査手段の回転数や画像信号の周波数には限界があり、必 ずしも所望とする速度でカラー画像形成動作を行うこと ができなかった。そこで、複数のレーザ光源を持つマル チレーザ方式のカラー画像形成装置が提案されている。 【0005】このマルチレーザ方式のカラー画像形成装 置では、複数のレーザ光源からの複数本のレーザビーム がポリゴンミラー等の走査手段で走査されて感光体の帯 電された表面に照射されることにより、複数ライン分の 画像が同時に感光体に書き込まれる。ライン同期信号発 生手段は走査手段からの光ビームを所定の位置で検出し てライン同期信号を複数のレーザ光源から出射される複 数の光ビームに付き1個発生し、このライン同期信号に 同期して複数本のレーザビームが画像信号により変調さ れて複数ライン分の画像書き込みが同時に行われる。従 って、同時に感光体に書き込む情報量が増大するので、 走査手段の回転数や画像信号の周波数を低減することが でき、安定した画像を高速に形成することが可能にな る。

[0006]

して行われる。

【発明が解決しようとする課題】上記マルチレーザ方式 のカラー画像形成装置では、中間転写基準信号とライン 同期信号とが非同期であるので、レーザ光源の数が増加 するほど中間転写基準信号とライン同期信号との位相が 大きくずれる可能性があり、副走査方向の画像書き込み 開始位置のズレが大きくなって色ズレ(各色のトナー像 の位置ズレ)が生じ、カラー画像の劣化が生ずる。

【0007】本発明は、副走査方向の画像書き込み開始 位置を調整して色ズレを補正することでより高画質なカ ラー画像を形成することができ、色ズレを最小にするこ とができ、画質劣化条件を削除して画質を向上させるこ とができるカラー画像形成装置を提供することを目的と する。

[0008]

【課題を解決するための手段】上記目的を達成するた め、請求項1に係る発明は、複数の光ビームを発生する 光ビーム発生手段と、この光ビーム発生手段からの複数 の光ビームを走査する走査手段と、副走査方向に移動し 前記走査手段からの複数の光ビームで走査されて複数色 分の画像が順次に書き込まれることにより複数色分の静 電潜像が順次に形成される感光体と、前記光ビームを検 出してライン同期信号を発生するライン同期信号発生手 段と、前記感光体上の複数色分の静電潜像を現像して複 数色のトナー像とする複数の現像手段と、前記感光体上 10 の複数色のトナー像が重ねて転写される中間転写体と、 この中間転写体上のマークを検出して中間転写基準信号 を発生する中間転写基準信号発生手段とを有し、この中 間転写基準信号発生手段からの中間転写基準信号に同期 して各色の画像形成動作を行い、前記ライン同期信号に 同期して前記光ビームを画像信号で変調して1ライン分 ずつ画像の書き込みを行うカラー画像形成装置におい て、前記中間転写基準信号と前記ライン同期信号との位 相関係に応じて前記複数の光ビームのうち前記感光体に 最初に画像を書き込む光ビームを切り換えることにより 20 副走査方向の各色毎の画像書き込み開始位置を調整して 色ズレを補正する補正手段を備えたものであり、副走査 方向の画像書き込み開始位置を調整して色ズレを補正す ることができ、より高画質なカラー画像を形成すること

【0009】請求項2に係る発明は、請求項1記載のカラー画像形成装置において、前記複数色のうちの第1色の画像書き込み開始位置を基準とし、第2色以後の画像書き込み開始位置を調整して色ズレを補正するものであり、色ズレを最小にすることができる。

【0010】請求項3に係る発明は、請求項1記載のカラー画像形成装置において、副走査方向の画像有効領域を各光ビーム毎に切り換えることにより不要なデータを削除するものであり、画質劣化条件を削除して画質を向上させることができる。

[0011]

ができる。

【発明の実施の形態】本発明の一実施形態は、請求項1 ~3に係る発明の一実施形態であり、電子写真方式デジタルカラー複写機からなる電子写真方式デジタルカラー画像形成装置の一実施形態である。このカラー複写機は、電子写真プロセスにより転写材としての転写紙上に画像形成を行う電子写真方式画像形成部としてのカラープリンタと、原稿を走査してその画像を読み取ることにより複数色、例えば赤、青、緑の画像信号を得てこれをデジタル画像信号に変換する原稿読み取り手段としてのスキャナとを有する。

【0012】図4は上記カラープリンタの主な構成を示す。カラープリンタは、感光体11と、回転装置12と、中間転写体としての中間転写ベルト13と、露光手段としての書き込み装置14とを有する。感光体11

4 は、感光体ドラムを用いたが、感光体ベルトなどを用い

てもよい。また、中間転写ベルト13は中間転写ドラ ム、中間転写ローラなどの中間転写体を用いるようにし てもよい。

【0013】感光体11の回りには、感光体11を除電する徐電手段としての徐電ランプ(以下QLという)15、感光体11を一様に帯電する帯電手段としてのスコロトロンチャージャ(以下帯電チャージャという)16、感光体11の表面電位を検知する電位計17、感光

体11のトナー付着量(濃度)を光学的に検知する濃度 検知手段としてのフォトセンサ(以下Pセンサという) 18、感光体11をトナー像の転写前に徐電する転写前 徐電ランプ(以下PTLという)19、感光体11上の トナー像を中間転写ベルト13に転写する転写手段とし

トナー像を中間転写ベルト13に転写する転写手段としてのベルト転写チャージャ20、感光体11をクリーニングするクリーニング装置21が配置されている。

【0014】回転装置12は、感光体11上の各色分の静電潜像を現像して各色のトナー像とする複数の現像装置を保持し、例えば感光体11上の静電潜像を現像してブラックのトナー像とする現像装置22、感光体11上の静電潜像を現像してシアンのトナー像とする現像装置23、感光体11上の静電潜像を現像してマゼンタのトナー像とする現像装置24、感光体11上の静電潜像を現像してイエローのトナー像とする現像装置25を保持し、駆動手段としてのリボルバモータにより回転駆動されて複数の現像装置22~25を現像位置へ選択的に移動させる。

【0015】複数の現像装置22~25は、それぞれ現像動作時には現像位置にて現像スリーブ22a~25aが感光体11と対向し、現像スリーブ22a~25aが現像モータにより回転駆動されて現像装置22~25内の現像剤を感光体11と現像スリーブ22a~25aとの間の現像領域に搬送して感光体11上の静電潜像を現像する。リボルバホームポジションセンサ(以下リボルバHPセンサという)26は回転装置12が停止基準位置に位置したことを検知する。

【0016】中間転写ベルト13は、複数のローラ27~32に架け渡され、これらのローラ27~32のうちの所定のローラがドラムモータにより回転駆動されて中間転写ベルト13が回転する。中間転写ベルト13の内側には、感光体11上の各色のトナー像を各画面毎に中間転写ベルト13上に重ねて転写する画像重ね時の各色トナー像の位置合わせの基準となる基準マークが1個設けられる。

【0017】中間転写ベルト13の近傍には、中間転写ベルト13の回転方向に沿って、中間転写ベルト13上の基準マークを検知するマーク検知手段としてのベルトマークセンサ(以下マークセンサという)33、潤滑剤塗布ソレノイドのオンで中間転写ベルト13に当接して中間転写ベルト13上に潤滑剤を塗布する潤滑剤塗布装

20

6

置34、中間転写ベルト13上のカラー画像を転写紙に 転写する転写手段としての紙転写装置35、中間転写ベルト13をクリーニングして中間転写ベルト13上のト ・ナーを除去するクリーニング手段としてのベルトクリー ニング装置36が配置されている。

【0018】ベルトクリーニング装置36は、例えばクリーニングブレードからなるクリーニング部材などにより構成されてベルトクリーニング装置接離用ソレノイドのオン/オフにより中間転写ベルト13に対して接離され、中間転写ベルト13に当接した時に中間転写ベルト13上のトナーを除去する。紙転写装置35は中間転写ベルト13の最下部と対向して配置され、ベルトクリーニング装置36は紙転写装置35とベルト転写チャージャ20との間に配置される。ベルトクリーニング装置36は中間転写ベルトクリーニングソレノイドのオン/オフによって中間転写ベルト13と接離が可能になっており、潤滑剤塗布装置34は潤滑剤塗布ソレノイドのオン/オフにより中間転写ベルト13に対する潤滑剤塗布の可否が可能になっている。

【0019】中間転写ベルト13の周長は、A4横向きサイズ2枚分と各転写材間の間隔(各転写材間の搬送間隔)とを加えた長さとなっており、感光体11の周長の2倍の長さとなっている。感光体11の1回転でA4横向き1枚分のカラー画像が形成され、感光体11の2回転で中間転写ベルト13上に同一色にて2画面分の画像が転写される。

【0020】転写紙が搬送される搬送路において、紙転写装置35より上流側にはレジストローラ37が配置されて紙転写装置35より下流側には搬送ベルト38が配置され、この搬送ベルト38より下流側には定着ローラ 30及びこれに圧接される加圧ローラを有する定着装置が配置されている。搬送ベルト38と定着装置の定着ローラはメインモータにより回転駆動され、レジストローラ37はメインモータによりレジストクラッチを介して回転駆動される。レジストセンサ39は、レジストローラ37の手前で転写紙を検知する。レジストローラ37には複数の給紙装置のうち選択された給紙装置から転写紙が給送される。

【0021】図5は上記書き込み装置14の走査光学系を示す。書き込み装置14においては、複数のレーザビ 40 ームからなる光ビーム(以下単にビームという)を発生する光源部41から出射された複数のビームはシリンダレンズ42を介して走査手段としての回転多面鏡43に入射する。この回転多面鏡43に入射した各ビームは、回転多面鏡43の回転により走査され、f0レンズ44、トロイダルレンズ45からなる走査光学系及び折り返しミラー46を介して感光体11上を副走査方向のビームピッチPで同時に主走査方向に露光走査する。

【0022】回転多面鏡43はポリゴンモータにより回 転駆動され、図示しないライン同期信号発生手段として 50 の同期検知器はトロイダルレンズ45からのビームを感光体11の書き込み領域外における所定の位置で検出する。この同期検知器は光源部41からシリンダレンズ42、回転多面鏡43、f θ レンズ44、トロイダルレンズ45を介して入射する複数のビームを検出して該複数のビームに対して1個の出力信号をライン同期信号として出力する。

【0023】ここに、光源部41は、通常、例えば2個の半導体レーザからなる光源41a、41bが画像信号により駆動されることにより、画像信号に応じて変調された複数のビームを出射する。また、光源部41には副走査方向のビームピッチを調整するピッチ調整機構が設けられ、このピッチ調整機構により光源部41が回転されて副走査方向のビームピッチが調整される。光源部41においては、2個の半導体レーザからなる光源41a、41bから射出されたビームはコリメートレンズ41c、41dによりそれぞれ平行光とされ、アパーチャ部材(図示せず)のスリットを通ることにより所定の光束径に整形される。

【0024】これらのアパーチャ部材の一方からのビームは、1/2波長板41eにより偏光方向が90度回転させられ、ビーム合成手段としてのビーム合成プリズム41fの斜面で内面反射され、ビーム合成プリズム41fの偏光ビームスプリッタ面で反射されて基準となる他方のアパーチャ部材からのビームとその光軸近傍に合成される。

【0025】このビーム合成プリズム41fからの2本のビームは、主走査方向に所定角度 θ m隔てて射出され、半導体レーザ41aにおいてコリメートレンズ41 cとの光軸を主走査方向に僅かに偏心させることで光源部41を光軸回りに回転させることにより、2本のビーム間の射出角度の副走査角度成分が得られて副走査方向のビームピッチ調整がなされる。光源部41の回転角を α とすると、 $\Delta\theta$ s= θ m·sin α である。なお、光源41a、41bは、2個としたが、3個以上としてもよい。

【0026】図6は上記カラープリンタの制御部を示す。CPU47は制御プログラムの内容により演算等の処理を実行し、ROM48は制御プログラムを内蔵している。RAM49はデータの格納及び退避に用いられ、CPU47、ROM48及びRAM49はデータバス及びアドレスバスによって接続されている。シリアル通信コントローラ50は、上記スキャナの制御部とCPU47とのコマンドの送受信を行い、CPU47とはデータバス及びアドレスバスによって接続されている。

【0027】感光体11の露光制御を行う書き込み制御部としての書き込み制御IC51は、CPU47とはデータバス及びアドレスバスによって接続され、露光用LD制御ユニット52及び上記ポリゴンモータ43aと接続されて露光用LD制御ユニット52及びポリゴンモー

タ43aを制御する。露光用LD制御ユニット52は書き込み制御IC51からの入力信号により書き込み装置14内のLD41a、41bの点灯制御を行う。I/Oコントローラ53はCPU47の入出力制御を行う。CPU47、ROM48、RAM49、シリアル通信コントローラ50、書き込み制御IC51及びI/Oコントローラ53はカラープリンタの制御部を構成する。

【0028】定着装置54は上記定着ローラの表面温度を検知する定着サーミスタと、定着ローラを加熱する定着ヒータを有し、CPU47は定着サーミスタの温度検 10知信号をA/D変換してそのA/D変換値を元に定着ヒータ制御用のパルス幅変調(PWM)パルスを出力して定着ヒータをオン/オフ制御することにより定着ローラの表面温度を一定に制御する。

【0029】CPU47は高圧電源としてのパワーパックユニット55からフィードバックされる出力電圧をA/D変換して該A/D変換値を元にパワーパックユニット55へPWM信号を出力してパワーパックユニット55の出力電圧を制御する。パワーパックユニット55は、帯電チャージャ16、ベルト転写チャージャ20及 20び紙転写装置35に高電圧を印加すると共に帯電チャージャ16にグリッド電圧を印加し、現像装置22~25の現像スリーブ22a~25aにそれぞれ現像バイアス電圧を印加する。

【0030】電位計17を含む電位計回路56は感光体11の表面電位を検知し、電位計17の出力信号はCPU47のA/D入力端子に入力される。発光ダイオード及びフォトトランジスタからなるPセンサ18を含むPセンサ回路57は感光体11のトナー付着量(濃度)を光学的に検知し、Pセンサ18のフォトトランジスタ出30力信号はCPU47のA/D入力端子に入力される。CPU47はPセンサ18の発光ダイオード駆動回路にPWMパルスを出力して発光ダイオードの点灯制御を行う。

【0031】上記メインモータ58は転写材を搬送する転写材搬送系を回転駆動し、上記ドラムモータ59は感光体11及び中間転写ベルト13を回転駆動する。現像モータ60は、現像装置22~25の現像スリーブ22a~25aをそれぞれ回転駆動するためのモータであり、これらのモータはCPU47からそれぞれオン信号、速度を半分に落とすための半速信号及び、速度が目的速度に達したことを判断するためのロック信号が入力される。

【0032】リボルバモータ61は、CPU47から入力される4相出力信号により現像装置22~25を装備した回転装置12を回転させ、現像装置22~25のうち指定色の現像を行う現像装置を現像位置に停止させる。トナー補給モータ62は現像装置22~25内に各トナーカートリッジからブラック、シアン、マゼンタ、イエロー各色のトナーをそれぞれ補給し、CPU47は

Pセンサ18からの入力信号を元に感光体11上のブラック、シアン、マゼンタ、イエロー各色のトナー付着量に応じてトナー補給モータ62のオン時間を制御する。

【0033】画像重ね時の各トナー像の位置合わせの基準となる中間転写基準信号としてのマークセンサ33の出力信号は、タイミング的に厳しい精度が要求されるために、CPU47の割り込み端子に入力される。回転装置12の停止位置基準となるリボルバHPセンサ26の出力信号は、回転装置12の回転中にCPU47からリボルバモータ61への出力パルス(4相出力信号)を切り替えるというタイミング的に厳しい精度が要求されるために、CPU47の割り込み端子に入力される。

【0034】次に、この実施形態において、例えばA4 横向きサイズ(転写材搬送方向が短くなる向きのA4サ イズ)のフルカラー画像を例えば4画面分連続的に形成 する場合の基本シーケンスについて説明する。カラープ リンタにおいては、停止状態では、回転装置12は現像 色がブラックである現像装置22が現像位置に位置した 状態で停止しているものとする。カラープリンタの制御 部(以下プリンタ制御部という)は、システム制御部か らカラー画像形成開始(プリントスタート)の命令が来 ると、QL15とドラムモータ59をオンさせる。この ため、ドラムモータ59が回転して感光体11と中間転 写ベルト13を回転駆動し、感光体11がQL15によ り除電される。

【0035】プリンタ制御部は、感光体11上のQL15による除電開始位置が帯電チャージャ16の帯電を行う位置に到達した時に帯電チャージャ16をオンさせる。次に、プリンタ制御部は、感光体11上の帯電チャージャ16による帯電が開始された位置が現像位置に到達すると、パワーパックユニット55に現像バイアスをオンさせると同時に現像モータ60を回転させる。

【0036】また、プリンタ制御部は、感光体11上の 現像バイアスがオンしたときに現像位置に対向した位置 がベルト転写位置(感光体11上のトナー像を中間転写 ベルト13へ転写させる位置)に到達した時にベルト転 写チャージャ20をオンさせる。感光体11の回転開始 からここまでが感光体11の前回転となる。

【0037】同時に、中間転写ベルト13の回転により マークセンサ33が中間転写ベルト13上の基準マークを検知すると、マークセンサ33のマーク検知信号が中間転写基準信号としてCPU47の割込み端子に入力され、プリンタ制御部はプログラム上では割込み処理を行う。プリンタ制御部は、その割込み処理の中で第1画面1色目(ブラック)のスキャン開始コマンドを上記スキャナの制御部(以下スキャナ制御部という)へ送信する。

る。トナー補給モータ62は現像装置22~25内に各 【0038】スキャナ制御部は、プリンタ制御部から第 トナーカートリッジからブラック、シアン、マゼンタ、 1 画面 1 色日のスキャン開始コマンドを受信すると、ス イエロー各色のトナーをそれぞれ補給し、CPU47は 50 キャナに第1画面1色目の画像信号を得るための原稿読

30

10

み取りを行わせ、読み取った複数色(例えば赤、青、緑)の画像信号を第1画面1色目の画像信号に変換して プリンタ制御部に転送する。

【0039】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第1画面1色目の露光データ(書き込み装置14で半導体レーザを駆動して1色目の露光を行うためのデータ)に変換して露光用LD制御ユニット52は、書き込み制御IC51からの第1画面1色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第1画面1色目の画像を書き込むことにより第1画面1色目の静電潜像を形成させる。

【0040】プリンタ制御部は、第1画面1色目の現像を行う現像装置22の現像スリーブ22aの回転を現像モータ60に書き込み装置14の書き込み開始に先駆けて開始させる。現像装置22は、感光体11上の第1画面1色目の静電潜像が現像位置に来ると、この静電潜像の現像を開始して第1画面1色目のトナー像とする。

【0041】感光体11上の第1画面1色目のトナー像は、第1転写位置(ベルト転写位置)に来ると、ベルト転写チャージャ20により中間転写ベルト13上に転写される。スキャナは、第1画面1色目の画像信号を得るための原稿読み取りが終了すると、高速にホームポジションにリータンし、次の第2画面1色目(ブラック)の画像信号を得るための原稿読み取りの開始までホームポジションで待機する。

【0042】次に、プリンタ制御部は、第2画面1色目のスキャン開始コマンドをスキャナ制御部へ送信する。スキャナ制御部は、プリンタ制御部から第2画面1色目のスキャン開始コマンドを受信すると、スキャナに第2画面1色目の画像信号を得るための原稿読み取りを行わせ、読み取った複数色(例えば赤、青、緑)の画像信号を第2画面1色目の画像信号に変換してプリンタ制御部に転送する。

【0043】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第2画面1色目の露光データに変換して露光用LD制御ユニット52に 40出力する。露光用LD制御ユニット52は、書き込み制御IC51からの第2画面1色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第2画面1色目の画像を書き込むことにより第2画面1色目の静電潜像を形成させる。

【0044】1色目の現像を行う現像装置22の現像スリーブ22aは、第1画面1色目の静電潜像の現像終了後も停止せずに回転しており、書き込み装置14の書き込み中は回転している。現像装置22は、感光体11上の第2画面1色目の静電潜像が現像位置に来ると、この 50

静電潜像の現像を開始して第2画面1色目のトナー像と する。

【0045】感光体11上の第2画面1色目のトナー像は、第1転写位置(ベルト転写位置)に来ると、ベルト転写チャージャ20により中間転写ベルト13上に転写される。スキャナは、第2画面1色目の画像信号を得るための原稿読み取りが終了すると、高速にホームポジションにリータンし、次の第1画面2色目(シアン)の画像信号を得るための原稿読み取りの開始までホームポジションで待機する。

【0046】プリンタ制御部は、第2画面1色目の静電 潜像の現像が終了すると、2色目(シアン)の現像を行 う現像装置23が現像位置に来て停止するようにリボル バモータ61に回転装置12を回転させる。また、プリ ンタ制御部は、ベルトクリーニング装置接離用ソレノイ ド66にベルトクリーニング装置36を中間転写ベルト 13から離間させて中間転写ベルト13上の画像を消さ ないようにする。

【0047】その後、プリンタ制御部は、マークセンサ33が中間転写ベルト13上の基準マークを検知してCPU47の割込み端子にマークセンサ33からのマーク検知信号が中間転写基準信号として入力された時に割り込み処理に入って第1画面2色目(シアン)のスキャン開始コマンドをスキャナ制御部へ送信する。

【0048】スキャナ制御部は、プリンタ制御部から第 1画面2色目のスキャン開始コマンドを受信すると、ス キャナに第1画面2色目の画像信号を得るための原稿読 み取りを行わせ、読み取った複数色の画像信号をプリン タ制御部に第1画面2色目の画像信号に変換して転送す る。

【0049】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第1画面2色目の露光データに変換して露光用LD制御ユニット52に出力する。露光用LD制御ユニット52は、書き込み制御IC51からの第1画面2色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第1画面2色目の画像を書き込むことにより第1画面2色目の静電潜像を形成させる。

【0050】プリンタ制御部は、2色目の現像を行う現像装置23の現像スリーブ23aの回転を現像モータ60に書き込み装置14の書き込み開始に先駆けて開始させる。現像装置23は、感光体11上の第1画面2色目の静電潜像が現像位置に来ると、この静電潜像の現像を開始して第1画面2色目のトナー像とする。

【0051】感光体11上の第1画面2色目のトナー像は、第1転写位置に来ると、ベルト転写チャージャ20により中間転写ベルト13上の第1画面1色目のトナー像と同位置に第1画面1色目のトナー像と重ねて転写される。スキャナは、第1画面2色目の画像信号を得るた

めの原稿読み取りが終了すると、高速にホームポジションにリータンし、次の第2画面2色目(シアン)の画像信号を得るための原稿読み取りの開始までホームポジションで待機する。

【0052】次に、プリンタ制御部は、第2画面2色目のスキャン開始コマンドをスキャナ制御部へ送信する。スキャナ制御部は、プリンタ制御部から第2画面2色目のスキャン開始コマンドを受信すると、スキャナに第2画面2色目の画像信号を得るための原稿読み取りを行わせ、読み取った複数色の画像信号を第2画面2色目の画 10像信号に変換してプリンタ制御部に転送する。

【0053】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第2画面2色目の露光データに変換して露光用LD制御ユニット52に出力する。露光用LD制御ユニット52は、書き込み制御IC51からの第2画面2色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第2画面2色目の画像を書き込むことにより第2画面2色目の静電潜像を形成させる。

【0054】2色目の現像を行う現像装置23の現像スリーブ23aは、第1画面2色目の静電潜像の現像終了後も停止せずに回転しており、書き込み装置14の書き込み中は回転している。現像装置23は、感光体11上の第2画面2色目の静電潜像が現像位置に来ると、この静電潜像の現像を開始して第2画面2色目のトナー像とする。

【0055】感光体11上の第2画面2色目のトナー像は、第1転写位置に来ると、ベルト転写チャージャ20により中間転写ベルト13上の第2画面1色目のトナー像と同位置に第2画面1色目のトナー像と重ねて転写される。スキャナは、第2画面2色目の画像信号を得るための原稿読み取りが終了すると、高速にホームポジションにリータンし、次の第1画面3色目(マゼンタ)の画像信号を得るための原稿読み取りの開始までホームポジションで待機する。プリンタ制御部は、第2画面2色目の静電潜像の現像が終了すると、3色目(マゼンタ)の現像を行う現像装置24が現像位置に来て停止するようにリボルバモータ61に回転装置12を回転させる。

【0056】その後、プリンタ制御部は、マークセンサ 4033が中間転写ベルト13上の基準マークを検知してCPU47の割込み端子にマークセンサ33からマーク検知信号が入力された際に割り込み処理に入って第1画面3色目(マゼンタ)のスキャン開始コマンドをスキャナ制御部へ送信する。

【0057】スキャナ制御部は、プリンタ制御部から第 1画面3色目のスキャン開始コマンドを受信すると、ス キャナに第1画面3色目の画像信号を得るための原稿読 み取りを行わせ、読み取った複数色の画像信号を第1画 面3色目の画像信号に変換してプリンタ制御部に転送す 50 る。

【0058】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第1画面3色目の露光データに変換して露光用LD制御ユニット52に出力する。露光用LD制御ユニット52は、書き込み制御IC51からの第1画面3色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第1画面3色目の画像を書き込むことにより第1画面3色目の静電潜像を形成させる。

【0059】プリンタ制御部は、3色目の現像を行う現像装置24の現像スリーブ24aの回転を現像モータ60に書き込み装置14の書き込み開始に先駆けて開始させる。現像装置24は、感光体11上の第1画面3色目の静電潜像が現像位置に来ると、この静電潜像の現像を開始して第1画面3色目のトナー像とする。

【0060】感光体11上の第1画面3色目のトナー像は、第1転写位置に来ると、ベルト転写チャージャ20により中間転写ベルト13上の第1画面1色目のトナー像及び第1画面2色目のトナー像と同位置に第1画面1色目のトナー像及び第1画面2色目のトナー像と重ねて転写される。スキャナは、第1画面3色目の画像信号を得るための原稿読み取りが終了すると、高速にホームポジションにリータンし、次の第2画面3色目(マゼンタ)の画像信号を得るための原稿読み取りの開始までホームポジションで待機する。

【0061】次に、プリンタ制御部は、第2画面3色目のスキャン開始コマンドをスキャナ制御部へ送信する。スキャナ制御部は、プリンタ制御部から第2画面3色目のスキャン開始コマンドを受信すると、スキャナに第2画面3色目の画像信号を得るための原稿読み取りを行わせ、読み取った複数色の画像信号を第2画面3色目の画像信号に変換してプリンタ制御部に転送する。

【0062】プリンタ制御部はスキャナ制御部から転送されてきた画像信号を書き込み制御IC51に転送し、書き込み制御IC51がその画像信号を第2画面3色目の露光データに変換して露光用LD制御ユニット52に出力する。露光用LD制御ユニット52は、書き込み制御IC51からの第2画面3色目の露光データにより書き込み装置14内のLD41a、41bの点灯制御を行って感光体11に第2画面3色目の画像を書き込むことにより第2画面3色目の静電潜像を形成させる。

【0063】3色目の現像を行う現像装置24の現像スリーブ24aは、第1画面3色目の静電潜像の現像終了後も停止せずに回転しており、書き込み装置14の書き込み中は回転している。現像装置24は、感光体11上の第2画面3色目の静電潜像が現像位置に来ると、この静電潜像の現像を開始して第2画面3色目のトナー像とする。

【0064】感光体11上の第2画面3色目のトナー像

14

は、第1転写位置に来ると、ベルト転写チャージャ20 により中間転写ベルト13上の第2画面1色目のトナー 像及び第2画面2色目のトナー像と同位置に第2画面1 色目のトナー像及び第2画面2色目のトナー像と重ねて 転写される。

【0065】スキャナは、第2画面3色目の画像データ を得るための原稿読み取りが終了すると、高速にホーム ポジションにリータンし、次の第1画面4色目(イエロ -)の画像データを得るための原稿読み取りの開始まで ホームポジションで待機する。プリンタ制御部は、第2 画面3色目の静電潜像の現像が終了すると、4色目(イ エロー)の現像を行う現像装置25が現像位置に来て停 止するようにリボルバモータ61に回転装置12を回転 させる。

【0066】その後、プリンタ制御部は、マークセンサ 33が中間転写ベルト13上の基準マークを検知してC PU47の割込み端子にマークセンサ33からのマーク 検知信号が中間転写基準信号として入力された際に割り 込み処理に入って第1画面4色目のスキャン開始コマン ドをスキャナ制御部へ送信する。

【0067】スキャナ制御部は、プリンタ制御部から第 1画面4色目のスキャン開始コマンドを受信すると、ス キャナに第1画面4色目の画像データを得るための原稿 読み取りを行わせ、読み取った複数色の画像データを第 1 画面 4 色目の画像データに変換してプリンタ制御部に 転送する。

【0068】プリンタ制御部はスキャナ制御部から転送 されてきた画像データを書き込み制御IC51に転送 し、書き込み制御IC51がその画像データを第1画面 4色目の露光データに変換して露光用LD制御ユニット 52に出力する。露光用LD制御ユニット52は、書き 込み制御IC51からの第1画面4色目の露光データに より書き込み装置14内のLD41a、41bの点灯制 御を行って感光体11に第1画面4色目の画像を書き込 むことにより第1画面4色目の静電潜像を形成させる。 【0069】プリンタ制御部は、4色目の現像を行う現

像装置25の現像スリーブ25aの回転を現像モータ6 0に書き込み装置14の書き込み開始に先駆けて開始さ せる。現像装置25は、感光体11上の第1画面4色目 の静電潜像が現像位置に来ると、この静電潜像の現像を 開始して第1画面4色目のトナー像とする。

【0070】感光体11上の第1画面4色目のトナー像 は、第1転写位置に来ると、ベルト転写チャージャ20 により中間転写ベルト13上の第1画面1色目のトナー 像、第1画面2色目のトナー像及び第1画面3色目のト ナー像と同位置に第1画面1色目のトナー像、第1画面 2色目のトナー像及び第1画面3色目のトナー像と重ね て転写されて第1画面のフルカラー画像が形成される。 スキャナは、第1画面4色目の画像データを得るための 原稿読み取りが終了すると、高速にホームポジションに 50 写ベルト13から転写材へのフルカラー画像の転写)が

リータンし、次の第2画面4色目(イエロー)の画像デ ータを得るための原稿読み取りの開始までホームポジシ ョンで待機する。

【0071】次に、プリンタ制御部は、第2画面4色目 のスキャン開始コマンドをスキャナ制御部へ送信する。 スキャナ制御部は、プリンタ制御部から第2画面4色目 のスキャン開始コマンドを受信すると、スキャナに第2 画面4色目の画像データを得るための原稿読み取りを行 わせ、読み取った複数色の画像データを第2画面4色目 の画像データに変換してプリンタ制御部に転送する。

【0072】プリンタ制御部はスキャナ制御部から転送 されてきた画像データを書き込み制御IC51に転送 し、書き込み制御IC51がその画像データを第2画面 4 色目の露光データに変換して露光用LD制御ユニット 52に出力する。露光用LD制御ユニット52は、書き 込み制御IC51からの第2画面4色目の露光データに より書き込み装置14内のLD41a、41bの点灯制 御を行って感光体11に第2画面4色目の画像を書き込 むことにより第2画面4色目の静電潜像を形成させる。

【0073】4色目の現像を行う現像装置25の現像ス リーブ25aは、第1画面4色目の静電潜像の現像終了 後も停止せずに回転しており、書き込み装置14の書き 込み中は回転している。現像装置25は、感光体11上 の第2画面4色目の静電潜像が現像位置に来ると、この 静電潜像の現像を開始して第2画面4色目のトナー像と

【0074】感光体11上の第2画面4色目のトナー像 は、第1転写位置に来ると、ベルト転写チャージャ20 により中間転写ベルト13上の第2画面1色目のトナー 像、第2画面2色目のトナー像及び第2画面3色目のト ナー像と同位置に第2画面1色目のトナー像、第2画面 2色目のトナー像及び第2画面3色目のトナー像と重ね て転写されて第2画面のフルカラー画像が形成される。 スキャナは、第2画面4色目の画像データを得るための 原稿読み取りが終了すると、高速にホームポジションに リータンし、次の第3画面1色目(ブラック)の画像デ ータを得るための原稿読み取りの開始までホームポジシ ョンで待機する。

【0075】プリンタ制御部は、第2画面4色目の静電 潜像の現像が終了し、第2画面4色目のトナー像のベル ト転写(感光体11から中間転写ベルト13への転写) が終了すると、中間転写ベルト13上のフルカラー画像 を転写材に転写させるべく中間転写ベルト13上のフル カラー画像が中間転写ベルト13と紙転写装置35との 間の紙転写位置に到達する直前に紙転写装置35をオン させ、紙転写装置35が中間転写ベルト13上のフルカ ラー画像を転写材に転写させる。

【0076】プリンタ制御部は、第1画面のフルカラー 画像及び第2画面のフルカラー画像の二次転写(中間転 終了すると、1色目(ブラック)の現像を行う現像装置 22が現像位置に来て停止するようにリボルバモータ6 1に回転装置12を回転させる。

【0077】中間転写ベルト13から第1画面用転写材 及び第2画面用転写材への第1画面のフルカラー画像及 び第2画面のフルカラー画像の各転写は続けられ、第1 画面のフルカラー画像及び第2画面のフルカラー画像が それぞれ転写された第1画面用転写材及び第2画面用転 写材は、搬送ベルト38により定着装置まで搬送されて 定着装置により第1画面のフルカラー画像及び第2画面 10 のフルカラー画像がそれぞれ定着され、排紙トレイへ排 出される。

【0078】中間転写ベルト13の回転によりマークセ ンサ33が中間転写ベルト13上の基準マークを検知す ると、プリンタ制御部は、CPU47の割込み端子にマ ークセンサ33からマーク検知信号が中間転写基準信号 として入力された際にプログラム上で割り込み処理に入 ってその中で第3画面1色目(ブラック)のスキャン開 始コマンドをスキャナ制御部へ送信する。

【0079】スキャナ制御部は、プリンタ制御部から第 20 3画面1色目のスキャン開始コマンドを受信すると、ス キャナに第3画面1色目の画像データを得るための原稿 読み取りを行わせ、読み取った複数色の画像データを第 3 画面 1 色目の画像データに変換してプリンタ制御部に 転送する。

【0080】プリンタ制御部はスキャナ制御部から転送 されてきた画像データを書き込み制御IC51に転送 し、書き込み制御IC51がその画像データを第3画面 1色目の露光データに変換して露光用し口制御ユニット 52に出力する。露光用LD制御ユニット52は、書き 込み制御IC51からの第3画面1色目の露光データに より書き込み装置14内のLD41a、41bの点灯制 御を行って感光体11に第3画面1色目の画像を書き込 むことにより第3画面1色目の静電潜像を形成させる。

【0081】以下第3画面1色目の静電潜像の現像から 第4画面4色目のトナー像のベルト転写までの工程は上 述した第1画面1色目の静電潜像の現像から第2画面4 色目のトナー像のベルト転写までの工程と同様に行われ る。その後も第1画面のフルカラー画像及び第2画面の フルカラー画像の形成と同様に第3画面のフルカラー画 40 像及び第4画面のフルカラー画像の形成が行われる。

【0082】プリンタ制御部は、第4画面4色目の静電 潜像の現像が終了し、第4画面4色目のトナー像のベル ト転写が終了すると、中間転写ベルト13上のフルカラ -画像を転写材に転写させるべく中間転写ベルト13上 のフルカラー画像が中間転写ベルト13と紙転写装置3 5との間の紙転写位置に到達する直前に紙転写装置35 をオンさせ、紙転写装置35が中間転写ベルト13上の フルカラー画像を転写材に転写させる。

ング装置接離用ソレノイド66をオンさせてベルトクリ ーニング装置36を中間転写ベルト13に接触させるこ とによりベルトクリーニング装置36に中間転写ベルト 13のクリーニングを開始させる。

【0084】 プリンタ制御部は、第3画面のフルカラー 画像及び第4画面のフルカラー画像の二次転写が終了す ると、1色目(ブラック)の現像を行う現像装置22が 現像位置に来て停止するようにリボルバモータ61に回 転装置12を回転させる。その後、プリンタ制御部は、 ベルトクリーニング装置接離用ソレノイド66をオフさ せてベルトクリーニング装置36を中間転写ベルト13 から離間させる。さらに、プリンタ制御部はドラムモー タ59を制御して中間転写ベルト13の停止位置を制御 し、その後はこの実施形態は待機状態となる。

【0085】なお、この実施形態において、中間転写べ ルト13上の基準マークを中間転写ベルト13の回転方 向へ所定の間隔(例えば等間隔)をおいて2個設けるよ うにしてもよい。この場合、プリンタ制御部は、各色毎 に、中間転写ベルト13上の第1の基準マークのマーク センサ33による検知時を基準としてスキャン開始コマ ンドをスキャナ制御部へ送信することによりスキャナに 1 画面の画像データを得るための原稿読み取りを行わせ て中間転写ベルト13上の2画面のフルカラー画像のう ち最初に形成すべき1画面のフルカラー画像を形成さ せ、中間転写ベルト13上の第2の基準マークのマーク センサ33による検知時を基準としてスキャン開始コマ ンドをスキャナ制御部へ送信することによりスキャナに 他の1画面の画像データを得るための原稿読み取りを行 わせて中間転写ベルト13上の2画面のフルカラー画像 のうち後で形成すべき1画面のフルカラー画像を形成さ せるように制御することになる。

【0086】図1は上記露光用LD制御ユニット52の ビデオ信号生成回路を示す。カウンタ63は、上記同期 検知器からのライン同期信号によりクリアされて図示し ないクロック発生部からのクロックをカウントアップ し、そのカウント値を位相比較回路64へ出力する。位 相比較回路64は、上記マークセンサ33から中間転写 基準信号として入力されるマーク検知信号と上記同期検 知器からのライン同期信号との位相を比較する。

【0087】すなわち、位相比較回路64は、マークセ ンサ33から中間転写基準信号が入力されている時に動 作し、同期検知器から最初のライン同期信号が入力され た時点でカウンタ63のカウント値(カウンタ63のラ イン同期信号によるリセット直前のカウント値)を取り 込んむことにより中間転写基準信号とライン同期信号と の位相差を求めてメモリ選択回路65へ出力する。

【0088】メモリ選択回路65は、位相比較回路64 の比較結果(カウント値)を予め設定された基準カウン ト値と比較して中間転写基準信号とライン同期信号との 【0083】その後、プリンタ制御部はベルトクリーニ 50 位相差が基準カウント値以上であるか否かを判定し、そ

の判定結果により書き込み制御 I C 5 1 からの 1 画面 1 色分の画像データ(上記露光データ)のうちの最初の 1 ラインの画像データをラインメモリ 6 6 、 6 7 のどちらに入れるかを選択する。

【0089】ここに、ラインメモリ66、67は、それぞれA、B、Cの3ラインに分かれており、ラインメモリ66A~66C、67A~66Cからなる。同期検知器は半導体レーザ41a、41bからの2本のレーザビームを略同時に検知して感光体11に対する半導体レーザ41a、41bからの2本のレーザビームによる2ラ 10イン分の書き込みに付き1個のライン同期信号を出力するが、基準カウント値は2個のライン同期信号の間隔の略半分(略1ライン分の書き込みに要する時間)に相当する値に設定される。

【0090】メモリ選択回路65は、位相比較回路64の比較結果(カウント値)を基準カウント値と比較して中間転写基準信号とライン同期信号との位相差が基準カウント値より小さければ、書き込み制御IC51からの1画面1色分の画像データ(上記露光データ)のうちの1ライン目の画像データをラインメモリ66(66A~ 2066Cのいずれか)に格納し、2ライン目以後の画像データをラインメモリ67(67A~67Cのいずれか)、ラインメモリ66(66A~66Cのいずれか)、ラインメモリ67(67A~67Cのいずれか)というようにラインメモリ66、67に交互に格納する。

【0091】また、メモリ選択回路65は、位相比較回路64の比較結果(カウント値)を基準カウント値と比較して中間転写基準信号とライン同期信号との位相差が基準カウント値以上であれば、書き込み制御IC51か30らの1画面1色分の画像データ(上記露光データ)のうちの1ライン目の画像データをラインメモリ67(67A~67Cのいずれか)に格納し、2ライン目以後の画像データをラインメモリ66(66A~66Cのいずれか)、ラインメモリ67(67A~67Cのいずれか)、ラインメモリ66(66A~66Cのいずれか)、ラインメモリ66(66A~66Cのいずれか)、ラインメモリ66(66A~66Cのいずれか)というようにラインメモリ66、67に交互に格納する。

【0092】ラインメモリ66(66A~66C)からの画像データは制御回路68を介して変調回路69に入 40力され、変調回路69が入力画像データにより半導体レーザ41aを変調駆動する。ラインメモリ67(67A~67C)からの画像データは制御回路68を介して変調回路70に入力され、変調回路70が入力画像データにより半導体レーザ41bを変調駆動する。感光体11は、半導体レーザ41aからのレーザビームにより書き込まれるラインが半導体レーザ41bからのレーザビームにより書き込まれるラインより副走査方向の上流側となる。

【0093】従って、中間転写基準信号とライン同期信 50 択回路65は書き込み制御IC51からの2色目の画像

号との位相差が基準カウント値より小さければ、通常通り半導体レーザ41aからのレーザビームにより1ライン目が書き込まれてその副走査方向下流側にて半導体レーザ41bからのレーザビームにより2ライン目が書き込まれ、以後同様に半導体レーザ41a、41bからの2本のレーザビームにより副走査方向に沿って1ライン・ずつ交互に書き込まれる。

【0094】また、中間転写基準信号とライン同期信号との位相差が基準カウント値以上であれば、半導体レーザ41bからのレーザビームにより1ライン目が書き込まれてその副走査方向下流側にて半導体レーザ41aからのレーザビームにより2ライン目が書き込まれ、以後同様に半導体レーザ41b、41aからの2本のレーザビームにより副走査方向に沿って1ラインずつ交互に書き込まれる。

【0095】図2はラインメモリ66、67の動作タイミングを示す。この動作タイミングは書き込み制御IC51から1色目の画像データが入力される際には中間転写基準信号とライン同期信号との位相差が基準カウント値以上となっている場合であり、メモリ選択回路65は書き込み制御IC51からの1色目の画像データのうち1ライン目の画像データの書き込みW1をラインメモリ67Aに行う。次に、メモリ選択回路65は書き込み制御IC51からの1色目の画像データのうち2ライン目の画像データの書き込みW2をラインメモリ66Bに行う。

【0096】以後、メモリ選択回路65は、書き込み制御IC51からの1色目の3ライン目以降の画像データの書き込みW3、W4・・・をラインメモリ66、67に1ライン分ずつ交互に書き込み、かつ、ラインメモリ66にはラインメモリ66C→ラインメモリ66A→ラインメモリ66Bという順序で繰り返して1色目の画像データを1ライン分ずつ順次に書き込むと共に、ラインメモリ67にはラインメモリ67B→ラインメモリ67C→ラインメモリ67Aという順序で繰り返して1色目の画像データを1ライン分ずつ順次に書き込む。

【0097】また、メモリ選択回路65は、1色目の1ライン目以降の各ラインの画像データの読み出しR1、R2、R3・・・をラインメモリ67、66から交互に行い、かつ、ラインメモリ67についてはラインメモリ67A→ラインメモリ67B→ラインメモリ67Cという順字で繰り返して1色目の画像データを1ライン分ずつ順次に読み出すと共に、ラインメモリ66C→ラインメモリ66Aという順字で繰り返して1色目の画像データを1ライン分ずつ順次に読み出す。

【0098】書き込み制御IC51から2色目の画像データが入力される際には中間転写基準信号とライン同期信号との位相差が基準カウント値より小さく、メモリ選択回路65は書き込み制御IC51からの2色目の画像

きる。

20

データのうち1ライン目の画像データの書き込みW1を ラインメモリ66Aに行う。次に、メモリ選択回路65 は書き込み制御IC51からの1色目の画像データのう ち2ライン目の画像データの書き込みW2をラインメモ リ67Aに行う。

【0099】以後、メモリ選択回路65は、書き込み制 御IC51からの2色目の3ライン目以降の画像データ の書き込みW3、W4・・・をラインメモリ66、67 に1ライン分ずつ交互に書き込み、かつ、ラインメモリ 66にはラインメモリ66B→ラインメモリ66C→ラ インメモリ66Aという順序で繰り返して1色目の画像 データを1ライン分ずつ順次に書き込むと共に、ライン メモリ67にはラインメモリ67B→ラインメモリ67 C→ラインメモリ67Aという順序で繰り返して2色目 の画像データを1ライン分ずつ順次に書き込む。

【0100】また、メモリ選択回路65は、2色目の1 ライン目以降の各ラインの画像データの読み出しR1、 R2、R3・・・をラインメモリ66、67から交互に 行い、かつ、ラインメモリ66についてはラインメモリ 66A→ラインメモリ66B→ラインメモリ66Cとい う順序で繰り返して1色目の画像データを1ライン分ず つ順次に読み出すと共に、ラインメモリ67については ラインメモリ67A→ラインメモリ67B→ラインメモ リ67Cという順序で繰り返して2色目の画像データを 1ライン分ずつ順次に読み出す。

【0101】図3は図2に示すような動作タイミングの 時における中間転写マーク基準(感光体11上のマーク センサ33によるマーク検知時の書き込み位置)と各ラ インL1、L2・・・の書き込み位置を示したものであ る。従来は中間転写基準信号とライン同期信号との位相 30 差が基準カウント値以上であっても1色目の各ラインL 1、 L 2・・・を図3の破線で示すように副走査方向へ ずらさずに書き込んでいたが、本実施形態では中間転写 基準信号とライン同期信号との位相差が基準カウント値 以上であれば1色目の各ラインL1、L2・・・を図3 の実線で示すように副走査方向へずらせて書き込むの で、各色トナー像の副走査方向のずれを減少させること ができる。

【0102】すなわち、感光体11上に各色のトナー像 を形成する各色の画像形成動作をマークセンサ33から 40 の中間転写基準信号に同期して行うと共に、感光体 1 1 に同期検知器からのライン同期信号に同期して複数の光 源41a、41bからの複数のビームによる複数ライン 分ずつの書き込みを行う場合に、中間転写基準信号とラ イン同期信号との位相差を基準値(基準カウント値)比 較してその結果により複数の光源41a、41bのうち の書き込みを開始すべき光源(書き込み開始に使用する 光源)を各色毎に切り換えるので、各色毎に副走査方向 の画像書き込み開始位置を調整して色ズレを補正するこ とができ、より高画質なカラー画像を形成することがで 50

【0103】ところで、1色目の画像書き込みと2色目 の画像書き込みとで中間転写基準信号とライン同期信号 との位相比較結果が基準カウント値を境に近づいている 時に、1色目と2色目との一方だけ上述のように副走査

方向の画像書き込み開始位置をずらすと、副走査方向の 画像書き込み開始位置は色ズレが大きくなる方向に移動

してしまう。

【0104】そこで、図1に示すように、レジスタ71 10 は、書き込み制御IC51からメモリ選択回路65に入 力される画像データが第1色目の画像データであるか否 かを示す1色目信号が入力され、この1色目信号によ り、書き込み制御IC51からメモリ選択回路65に入 力される画像データが第1色目の画像データである時 に、位相比較回路64による中間転写基準信号とライン 同期信号との位相比較結果が記憶される。

【0105】メモリ選択回路65は、入力画像データが 1色目以外の画像データである時には、位相比較回路 6 4による中間転写基準信号とライン同期信号との位相比 較結果を基準カウント値と比較するだけでなくレジスタ 71に記憶されている位相比較結果とも比較し、レジス タ71に記憶されている位相比較結果と位相比較回路6 4の位相比較結果とを比較演算してその結果により、感 光体 1 1 上の各色の書き込み開始位置が副走査方向にず れないように書き込み制御IC51からの各色の画像デ ータのうちの最初の1ラインの画像データをラインメモ リ66、67のどちらに入れるかを選択し、2ライン目 以後の画像データについては上述と同様にラインメモリ 66、67るに交互に順次に入れる。

【0106】すなわち、メモリ選択回路65は、2色目 以降について、レジスタ71に記憶されている位相比較 結果と位相比較回路64の位相比較結果とを比較してそ の差が所定値より小さい時には、書き込み制御IC51 からの各色の画像データのうちの最初の1ラインの画像 データをラインメモリ66、67のどちらに入れるかを 上述のように選択せずに1色目の書き込み時と同じよう に選択し、2ライン目以後の画像データについては上述 と同様にラインメモリ66、67に交互に順次に入れ る。

【0107】また、副走査方向の画像有効領域はライン 毎に異なる場合がある。そこで、画像領域選択回路72 は位相比較回路64の位相比較結果及びレジスタ71内 の位相比較結果によりライン毎に画像有効領域を選択 し、制御回路68はラインメモリ66A~66C、67 A~7Cからの画像データを1ライン毎に画像領域選択 回路72の選択した画像有効領域だけ変調回路69、7 0へ送る。このため、画像有効領域外のノイズなどが制 御回路68で遮断されて変調回路69、70に入力され なくなり、ノイズなどの画像劣化条件が削除されて画質 が向上する。

【0108】このように、この実施形態は、請求項1に 係る発明の一実施形態であって、複数の光ビームを発生 する光ビーム発生手段としての光源部41と、この光ビ ーム発生手段41からの複数の光ビームを走査する走査 手段としての回転多面鏡43と、副走査方向に移動し前 記走査手段43からの複数の光ビームで走査されて複数 色分の画像が順次に書き込まれることにより複数色分の 静電潜像が順次に形成される感光体 11と、前記光ビー ムを検出してライン同期信号を発生するライン同期信号 発生手段としての同期検知器と、前記感光体11上の複 数色分の静電潜像を現像して複数色のトナー像とする複 数の現像手段としての現像装置22~25と、前記感光 体11上の複数色のトナー像が重ねて転写される中間転 写体としての中間転写ベルト13と、この中間転写体1 3上のマークを検出して中間転写基準信号を発生する中 間転写基準信号発生手段としてのマークセンサ33とを 有し、この中間転写基準信号発生手段33からの中間転 写基準信号に同期して各色の画像形成動作を行い、前記 ライン同期信号に同期して前記光ビームを画像信号で変 調して1ライン分ずつ画像の書き込みを行うカラー画像 形成装置において、前記中間転写基準信号と前記ライン 同期信号との位相関係に応じて前記複数の光ビームのう ち前記感光体11に最初に画像を書き込む光ビームを切 り換えることにより副走査方向の各色毎の画像書き込み 開始位置を調整して色ズレを補正する補正手段としての カウンタ63、位相比較回路64及びメモリ選択回路6 5を備えたので、副走査方向の書き込み開始位置を調整 して色ズレを補正することができ、より高画質なカラー 画像を形成することができる。

【0109】また、この実施形態は、請求項2に係る発明の一実施形態であって、請求項1記載のカラー画像形成装置において、前記複数色のうちの第1色の画像書き込み開始位置を基準とし、第2色以後の画像書き込み開始位置を調整して色ズレを補正するので、色ズレを最小にすることができ、精度良く色ズレ補正を行うことができる。

【0110】また、この実施形態は、請求項3に係る発明の一実施形態であって、請求項1記載のカラー画像形成装置において、副走査方向の画像有効領域を各光ビーム毎に切り換えることにより不要なデータを削除するの 40で、画質劣化条件を削除して画質を向上させることができる。なお、本発明は、上記実施形態に限定されるものではなく、例えばレーザ光源の代りに発光ダイオードなどの光源を用いるようにしてもよい。

[0111]

【発明の効果】以上のように請求項1に係る発明によれば、複数の光ビームを発生する光ビーム発生手段と、この光ビーム発生手段からの複数の光ビームを走査する走査手段と、副走査方向に移動し前記走査手段からの複数の光ビームで走査されて複数色分の画像が順次に書き込 50

まれることにより複数色分の静電潜像が順次に形成され る感光体と、前記光ビームを検出してライン同期信号を 発生するライン同期信号発生手段と、前記感光体上の複 数色分の静電潜像を現像して複数色のトナー像とする複 数の現像手段と、前記感光体上の複数色のトナー像が重 ねて転写される中間転写体と、この中間転写体上のマー クを検出して中間転写基準信号を発生する中間転写基準 信号発生手段とを有し、この中間転写基準信号発生手段 からの中間転写基準信号に同期して各色の画像形成動作 を行い、前記ライン同期信号に同期して前記光ビームを 画像信号で変調して1ライン分ずつ画像の書き込みを行 うカラー画像形成装置において、前記中間転写基準信号 と前記ライン同期信号との位相関係に応じて前記複数の 光ビームのうち前記感光体に最初に画像を書き込む光ビ ームを切り換えることにより副走査方向の各色毎の画像 書き込み開始位置を調整して色ズレを補正する補正手段 を備えたので、副走査方向の書き込み開始位置を調整し て色ズレを補正することができ、より高画質なカラー画 像を形成することができる。

【0112】請求項2に係る発明によれば、請求項1記載のカラー画像形成装置において、前記複数色のうちの第1色の画像書き込み開始位置を基準とし、第2色以後の画像書き込み開始位置を調整して色ズレを補正するので、色ズレを最小にすることができ、精度良く色ズレ補正を行うことができる。

【0113】請求項3に係る発明によれば、請求項1記載のカラー画像形成装置において、副走査方向の画像有効領域を各光ビーム毎に切り換えることにより不要なデータを削除するので、画質劣化条件を削除して画質を向上させることができる。

【図面の簡単な説明】

【図1】本発明の一実施形態における露光用LD制御ユニットのビデオ信号生成回路を示すブロック図である。

【図2】同実施形態におけるラインメモリの動作タイミ ングを示すタイミングチャートである。

【図3】図2の動作タイミング時における中間転写マーク基準と各ラインの書き込み位置を示図である。

【図4】上記実施形態におけるカラープリンタの概略を示す断面図である。

10 【図5】上記実施形態における書き込み装置の走査光学 系を示す斜視図である。

【図6】上記カラープリンタの制御部を示すブロック図である。

【符号の説明】

- 11 感光体
- 13 中間転写ベルト
- 33 マークセンサ
- 4 1 光源部
- 43 回転多面鏡
- 50 22~25 現像装置

24

6 3	カウンタ63
6 4	位相比較回路
6 5	メモリ選択回路

71 レジスタ

72 画像領域選択回路

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

