Paper where functions presented:

Baskes, M.I., *Modified embedded-atom potentials for cubic materials and impurities*. Physical Review B (Condensed Matter), 1992. 46(5): p. 2727-42.

Papers that use these functions for pure Si:

Improved modified embedded-atom method potentials for gold and silicon

Ryu, S.; Weinberger, C.R.; Baskes, M.I.; Cai, W.

Modelling and Simulation in Materials Science and Engineering (2009) Vol.17, iss.7 075008

Swadener, J.G., M.I. Baskes, and M. Nastasi, *Stress-induced platelet formation in silicon: A molecular dynamics study*. Physical Review B, 2005. 72(20): p. 201202. (Slightly modified parameters)

Molecular dynamics simulation of silicon sputtering: Sensitivity to the choice of potential Thijsse, B.J.; Klaver, T.P.C.; Haddeman, E.F.C.

Applied Surface Science (Jun 15 2004) Vol.231-232, p.29-38

Macroscopic measure of the cohesive length scale: fracture of notched single-crystal silicon

Bailey, N.P.; Sethna, J.P.

Physical Review B (Condensed Matter and Materials Physics) (15 Nov. 2003) vol.68, no.20, p.205204-1-8

A modified embedded atom method study of the high pressure phases of silicon Badis, N; Feraoun, H; Aourag, H; Certier, M MATERIALS CHEMISTRY AND PHYSICS (MAY 26 2003) Vol.80, iss.2, p.405-40

Swadener, J.G., M.I. Baskes, and M. Nastasi, *Molecular dynamics simulation of brittle fracture in silicon*. Physical Review Letters, 2002. 89(8): p. 085503-1.

Relationship between the modified embedded-atom method and Stillinger-Weber potentials in calculating the structure of silicon Thijsse, B.J.

Physical Review B (Condensed Matter and Materials Physics) (15 May 2002) vol.65, no.19, p.195207/1-5

Baskes, M.I., *Calculation of the behaviour of Si ad-dimers on Si(001)*. Modelling and Simulation in Materials Science and Engineering, 1997. 5(2): p. 149-58.

COMPARISON OF SEMIEMPIRICAL POTENTIAL FUNCTIONS FOR SILICON AND GERMANIUM

COOK, SJ: CLANCY, P

PHYSICAL REVIEW B (APR 1 1993) Vol.47, iss.13, p.7686-7699

MEAM Parameters (eV, Å):

Reference Structure	Ec	a	α	Α	β_0	β1	β2	β3	t ₁	t_2	t_3	C_{max}	C_{min}	r_{cut}
Diamond	4.63	5.431	4.87	1.0	4.40	5.5	5.5	5.5	3.13	4.47	-1.80	2.8	2.0	4.3
Cubic														

f-partial electron density was not corrected as in Eq. 8d in 1992 PRB (legend=0 (DYNAMO), augt1=1 (LAMMPS))

Test results using DYNAMO:

				MEAM	
Diamond					
cubic	-4.629999993	potential	energy		eV/atom
	20.02393325	volume			$Å^3$
	10.86199973	X	period	2.352	NN distance (Å)
				5.431	a (Å)
0.001 uniform					
expansion	-4.629945268	potential	energy	97	Bulk modulus (GPa)
0.001 uniform					
compression	-4.629944909	potential	energy		
c_44 0.001					
shear	-4.62998088	potential	energy	76	Shear modulus (GPa)
$(c_11-c_12)/2$					
0.001 shear	-4.629987591	potential	energy	50	Shear modulus (GPa)
(100) surface	-4.228991933	potential	energy	1740	Surface energy (mJ/m ²)
64 atoms	10.862	y	period		$Y=Z=\{100\}$
(110) surface	-4.323324646	potential	energy	1412	Surface energy (mJ/m ²)
72 atoms	11.520890495	y	period		$Y = \{110\}$
	10.861999726	Z	period		$Z=\{100\}$
(111) surface	-4.47115444	potential	energy	1194	Surface energy (mJ/m ²)
144 atoms	11.52089024	y	period		$Y = \{110\}$
	13.30317783	Z	period		$Z=\{112\}$
0,0,2.217					2
displacement	-4.323938545	potential	energy	15.37	SF energy (mJ/m ²)
0,-1.920,1.109					2
displacement	-4.321851694	potential	energy	15.59	SF energy (mJ/m ²)
					Vacancy formation
Vacancy	-4.577182244	potential	energy	3.33	energy
MD 5 ps	299.9101	average	T		K
64 atoms	-53.49453	average	P		bar
	20.26985	average	V		$Å^3$
	_			_	Specific heat
	-4.587896	average	potential	0.156	(meV/atom/K)

	10.90628 350.0637 -32.25689 20.30939 -4.580097 10.91337	average average average average average average	period T P V potential period	13	Linear thermal expansion 10^{-6} K bar Å ³ ev/atom Å
β-tin	-4.316107485 9.999298406 10.84128723	potential x z	energy period	0.31 2.588 2.500 1.084	Energy relative to DC NN distance (Å) a (Å) c/a
bcc	-4.246460391 15.95199483	potential x	energy period	0.38 2.763 3.190	Energy relative to DC NN distance (Å) a (Å)
Simple cubic	-4.213845041 10.61223773	potential x	energy period	0.42 2.653 2.653	Energy relative to DC NN distance (Å) a (Å)
dimer	-2.473092215	potential	energy	2.16 2.448	Energy relative to DC NN distance (Å)
fcc	-4.130246995 16.59847758	potential x	energy period	0.50 2.934 4.150	Energy relative to DC NN distance (Å) a (Å)
hcp	-4.136108481 11.75578552 14.30825008	potential x	energy period	0.49 2.939 2.939 1.623	NN distance (Å) a (Å) c/a