Artificial Intelligence I 2022/2023 Week 11 Tutorial and Additional Exercises

Evaluation of Clustering Algorithms

School of Computer Science

May 8, 2023

In this tutorial...

In this tutorial we will be covering

- Supervised and unsupervised clustering validation criteria.
- Silhouette coefficient.
- Classification-oriented validation criteria
- Similarity-oriented validation criteria.
- Cophenetic correlation coefficient.

Silhouette Coefficient

- Let $\mathbf{x}^{(i)}$ be an example in cluster C, and define
 - **1** a_i to be the average distance of $\mathbf{x}^{(i)}$ to all other examples in C, i.e.,

$$a_i := rac{\sum_{\mathbf{x} \in C, \mathbf{x}
eq \mathbf{x}^{(i)}} d(\mathbf{x}^{(i)}, \mathbf{x})}{(\text{no. of examples in cluster } C) - 1}.$$

② b_i to be the minimum of the average distance of $\mathbf{x}^{(i)}$ to examples in other clusters, i.e.

$$b_i := \min_{\substack{k=1,\dots,K\\C_k \neq C}} \frac{\sum_{\mathbf{x} \in C_k} d(\mathbf{x}^{(i)}, \mathbf{x})}{\text{no. of examples in } C_k}.$$

• The SC for $\mathbf{x}^{(i)}$ is defined as

$$s_i := \frac{b_i - a_i}{\max(a_i, b_i)}.$$

Silhouette Coefficient (continued)

• The SC of a cluster C is defined as

$$s_C := \frac{\sum_{\{i: \mathbf{x}^{(i)} \in C\}} s_i}{\text{no. of examples in cluster } C}.$$

 The SC of a clustering structure C with N examples is defined as

$$s_{\mathbf{C}} := \frac{\sum_{i=1}^{N} s_i}{N}.$$

Exercise 1

 Consider a dataset with 4 examples, clustered by an algorithm as

$$C_1 = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}, \qquad C_2 = \{\mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}.$$

The distance matrix for these examples is the following

	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	x ⁽⁴⁾
$x^{(1)}$	0	0.10	0.65	0.55
$x^{(2)}$	0.10	0	0.70	0.60
$x^{(3)}$	0.65	0.70	0	0.90
$x^{(4)}$	0.55	0.60	0.90	0

- Compute the SC for each point, for each cluster, and for the overall clustering structure $\mathbf{C} = \{C_1, C_2\}$.
- Comment on the suitability of examples assigned to C_1 .

Exercise 1: Solution

We first find the a_i's and the b_i's

$$a_1 = 0.1, a_2 = 0.1, a_3 = 0.9, a_4 = 0.9.$$

$$b_1 = 0.6, b_2 = 0.65, b_3 = 0.675, b_4 = 0.575.$$

We then find the SC of each example

$$s_1 = 0.8333, s_2 = 0.8461, s_3 = -0.25, s_4 = -0.3611.$$

We then find the SC of each cluster

$$s_{C_1} = 0.8397, s_{C_2} = -0.3055.$$

We then find the SC of the clustering structure

$$sc = 0.2670.$$

Classification-oriented validation criteria

- Consider a set of L different classes, clustered into K clusters.
- Precision of cluster i with respect to class j

$$precision(i,j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in cluster } i}$$

• Recall of cluster i with respect to class j

$$recall(i, j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in class } j}.$$

• F-measure of cluster i with respect to class j

$$F(i,j) := \frac{2 \cdot precision(i,j) \cdot recall(i,j)}{precision(i,j) + recall(i,j)}.$$

Classification-oriented validation criteria (continued)

• The *entropy* of cluster *i* is defined as

$$e_i := -\sum_{j=1}^{L} precision(i, j) \cdot \log_2(precision(i, j)).$$

• The total entropy of the set of clusters is defined as

$$e := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} e_i.$$

We want a low entropy.

Classification-oriented validity measures (continued)

• The *purity* of cluster *i* is defined as

$$p_i := \max_{j} precision(i, j).$$

• The overall purity of the set of clusters is defined as

$$p := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} p_i.$$

We want a high purity.

Exercise 2

• Consider the set with 10 examples and 3 classes, clustered into 3 clusters (classes and clusters are not the same)

Example	Class	Cluster	Example	Class	Cluster
$\mathbf{x}^{(1)}$	1	1	x ⁽⁶⁾	3	1
$x^{(2)}$	3	2	$x^{(7)}$	2	2
$x^{(3)}$	2	3	x ⁽⁸⁾	2	2
x ⁽⁴⁾	1	1	$x^{(9)}$	1	3
x ⁽⁵⁾	3	2	x ⁽¹⁰⁾	2	1

- Write down the confusion matrix.
- Compute the following
 - \bullet precision(1,3).
 - 2 recall(1,3).
 - \bullet F(1,3).
 - e_2 .

Exercise 2: Solution

• The confusion matrix is the following

	Cluster 1	Cluster 2	Cluster 3	Total
Class 1	2	0	1	3
Class 2	1	2	1	4
Class 3	1	2	0	3
Total	4	4	2	10

- We also compute the following
 - precision(1,3) = 1/4.
 - ② recall(1,3) = 1/3.
 - F(1,3) = 2/7.
 - $e_2 = 1.$
 - $p_2 = 1/2$.

Similarity-oriented validation criteria

- Consider a set of N examples of different classes, clustered into clusters.
- The ideal cluster similarity matrix is an N × N matrix whose ij-th element equals 1 if examples i and j are in the same cluster, and 0 otherwise.
- The *ideal class similarity matrix* is an $N \times N$ matrix whose ij-th element equals 1 is examples i and j are in the same class, and 0 otherwise.
- We can compute the correlation between these two matrices.
- We can also use binary similarity-based measures.

Binary similarity-based measures

- Consider a set of N examples of different classes, clustered into clusters and define the following
 - $f_{00} := \text{no.}$ of pairs having different class and different cluster.
 - ② $f_{01} := no.$ of pairs having different class and same cluster.
- The Rand statistic is defined as

Rand statistic =
$$\frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$
.

• The Jaccard coefficient is defined as

$$\textit{Jaccard coefficient} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}.$$

Exercise 3

 Reconsider the first five examples of the previous set with 3 classes, clustered into 3 clusters

Example	Class	Cluster
$x^{(1)}$	1	1
$x^{(2)}$	3	2
$x^{(3)}$	2	3
$x^{(4)}$	1	1
$x^{(5)}$	3	2

- Write down the ideal cluster similarity matrix and the ideal class similarity matrix.
- Compute the Rand statistic and the Jaccard coefficient.

Exercise 3: Solution

• The ideal cluster similarity matrix is the following

<u> </u>					
	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$
$\mathbf{x}^{(1)}$	1	0	0	1	0
$x^{(2)}$	0	1	0	0	1
$x^{(3)}$	0	0	1	0	0
x ⁽⁴⁾	1	0	0	1	0
$x^{(5)}$	0	1	0	0	1

• The ideal class similarity matrix is the following

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	x ⁽⁴⁾	$x^{(5)}$
$\mathbf{x}^{(1)}$	1	0	0	1	0
$x^{(2)}$	0	1	0	0	1
$x^{(3)}$	0	0	1	0	0
$x^{(4)}$	1	0	0	1	0
$x^{(5)}$	0	1	0	0	1

- We first compute the following
 - $f_{00} = 8.$
 - $f_{01} = 0.$

 - $f_{11} = 2$.
- Therefore, $Rand\ statistic = 1$.
- Also, *Jaccard coefficient* = 1.

Cophenetic correlation coefficient

- Consider a set of N examples, clustered by an agglomerative clustering algorithm.
- The cophenetic distance of examples i and j is the distance at which an agglomerative algorithm puts these examples in the same cluster.
- The cophenetic distance matrix is an N × N matrix whose ij-th element equals the cophenetic distance between examples i and j.
- Note that the cophenetic distance matrix is different from the distance matrix we studied last week.

Cophenetic correlation coefficient (continued)

- Let P_{i,j} denote the ij-th element of the cophenetic distance matrix P and D_{i,j} denote the ij-th element of a distance matrix D, for some choice of distance function.
- Let d denote the average of the non-zero elements of D and p denote the average of the non-zero elements of P.
- The cophenetic correlation coefficient is defined as

$$CPCC := rac{\displaystyle\sum_{\substack{i,j=1 \ i < j}}^{N} (D_{i,j} - d)(P_{i,j} - p)}{\displaystyle\sqrt{\displaystyle\sum_{\substack{i,j=1 \ i < j}}^{N} (D_{i,j} - d)^2 \sum_{\substack{i,j=1 \ i < j}}^{N} (P_{i,j} - p)^2}}.$$

Exercise 4

 Consider a set with 5 examples and the following distance matrix (for some choice of distance function).

	$x^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾
$x^{(1)}$	0	0.90	0.59	0.45	0.65
$x^{(2)}$	0.90	0	0.36	0.53	1.02
$x^{(3)}$	0.59	0.36	0	0.56	1.15
$x^{(4)}$	0.45	0.53	0.56	0	1.24
$x^{(5)}$	0.65	1.02	1.15	1.24	0

- Use single-linkage agglomerative clustering to cluster this set, and write down the resulting dendrogram.
- Using the dendrogram, write down the cophenetic distance matrix.
- Finally, compute the CPCC using the distance matrix and the cophenetic distance matrix.

Exercise 4: Solution

 We start with each example in its own cluster and calculate the distance matrix for these clusters.

	$\{x^{(1)}\}$	$\{x^{(2)}\}$	$\{x^{(3)}\}$	$\{x^{(4)}\}$	$\{\mathbf{x}^{(5)}\}$
$\{x^{(1)}\}$	0	0.90	0.59	0.45	0.65
$\{x^{(2)}\}$	0.90	0	0.36	0.53	1.02
$\{x^{(3)}\}$	0.59	0.36	0	0.56	1.15
$\{x^{(4)}\}$	0.45	0.53	0.56	0	1.24
$\{x^{(5)}\}$	0.65	1.02	1.15	1.24	0

- The closest clusters are $\{\mathbf{x}^{(2)}\}$ and $\{\mathbf{x}^{(3)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)}\}, \{\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}\}, \{\boldsymbol{x}^{(4)}\}, \{\boldsymbol{x}^{(5)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(3)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$
$\{x^{(1)}\}$	0	0.59	0.45	0.65
$\{\mathbf{x}^{(2)}, \mathbf{x}^{(3)}\}$	0.59	0	0.53	1.02
$\{x^{(4)}\}$	0.45	0.53	0	1.24
$\{x^{(5)}\}$	0.65	1.02	1.24	0

- The closest clusters are $\{\mathbf{x}^{(1)}\}$ and $\{\mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(4)}\}, \{\mathbf{x}^{(2)}, \mathbf{x}^{(3)}\}, \{\mathbf{x}^{(5)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(4)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(3)}\}$	$\{x^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(4)}\}$	0	0.53	0.65
$\{\mathbf{x}^{(2)},\mathbf{x}^{(3)}\}$	0.53	0	1.02
$\{x^{(5)}\}$	0.65	1.02	0

- The closest clusters are $\{\mathbf{x}^{(1)}, \mathbf{x}^{(4)}\}\$ and $\{\mathbf{x}^{(2)}, \mathbf{x}^{(3)}\}.$
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	$\{x^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	0	0.65
$\{x^{(5)}\}$	0.65	0

- The closest clusters are $\{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}\}$ and $\{x^{(5)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(5)}\}.$$

• Finally, we construct the dendrogram.

The dendrogram is the following:

• The cophenetic distance matrix is the following

	$x^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	$x^{(5)}$
$\mathbf{x}^{(1)}$	0	0.53	0.53	0.45	0.65
$x^{(2)}$	0.53	0	0.36	0.53	0.65
$x^{(3)}$	0.53	0.36	0	0.53	0.65
$x^{(4)}$	0.45	0.53	0.53	0	0.65
$x^{(5)}$	0.65	0.65	0.65	0.65	0

- We also compute d = 0.745 and p = 0.553.
- We finally compute CPCC = 0.7978.

Up next...

Optional Material

Optional Exercise 1

• Recall the formal definition of a distance metric.

Definition 1 (Distance metric)

A function $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *distance metric*, if and only if, for all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, the following hold:

- $f(\mathbf{x}, \mathbf{y}) = 0$, if and only if, $\mathbf{x} = \mathbf{y}$;
- $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$; and
- $(\mathbf{x}, \mathbf{z}) \leq f(\mathbf{x}, \mathbf{y}) + f(\mathbf{y}, \mathbf{z}).$
 - Show that cophenetic distance is a distance metric.
 - Hint: Argue in words instead of formulas.

Optional Exercise 1: Solution

- Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$ be arbitrary vectors and denote the cophenetic distance by $P(\cdot, \cdot)$. We have
 - If x = y, then they are in the same cluster from the start, and therefore P(x, y) = 0.
 If P(x, y) = 0, then the clusters of x and y are merged at distance 0, so x and y are in the same cluster from the start.
 But each vector starts in its own cluster, so this is only possible if x = y.
 - ② Assume that $P(\mathbf{x}, \mathbf{y}) = a$. This means that the clusters of \mathbf{x} and \mathbf{y} are merged at distance a. Clearly then, the clusters of \mathbf{y} and \mathbf{x} are also merged at distance a, and therefore $P(\mathbf{y}, \mathbf{x}) = a = P(\mathbf{x}, \mathbf{y})$.
 - 3 By definition, we have $P(\mathbf{x}, \mathbf{z}) \leq \max\{P(\mathbf{x}, \mathbf{y}), P(\mathbf{y}, \mathbf{z})\}$. Since the cophenetic distance is non-negative by definition, we also have $\max\{P(\mathbf{x}, \mathbf{y}), P(\mathbf{y}, \mathbf{z})\} \leq P(\mathbf{x}, \mathbf{y}) + P(\mathbf{y}, \mathbf{z})$. Thus, $P(\mathbf{x}, \mathbf{z}) \leq P(\mathbf{x}, \mathbf{y}) + P(\mathbf{y}, \mathbf{z})$.
- Therefore, cophenetic distance is a distance metric.

Any questions?

Until the next time...

Thank you for your attention!