<u>Topic Six: Rates and Equilibrium</u>

Lesson	Date	Lesson Type	Topic	Text Reference	Syllabus Reference
1	2/7	Theory	Revise Energy Changes and	12.1-12.5	13.10-
_	_, .	111001	Reaction Rates	13.3-13.4	13.13
2	2/7	Theory	Revise Factors Affecting	13.1-13.2	13.10-
			Reaction Rates		13.13
			School Holidays!!!!!!!		
3	21/7	Theory	Collision Theory	13.3-13.4	3.14-3.16
4	22/7	Theory	Collision Theory	13.3-13.4	3.14-3.16
5	23/7	Theory	Equilibrium	14.1	13.17-
					13.18
6	23/7	Theory	Equilibrium in Physical	14.2	13.18,
			Systems		13.21
7	25/7	Theory	Equilibrium Constants	14.3	13.19-
					13.20
8	28/7	Theory	Le Chatilier's Principle	14.4	3.21
9	29/7	Prac	Expt 37		3.L.1
10-11	30/7	Prac	Expt 38		3.L.2
12	1/8	Theory	Rates and Yield	14.4	3.20 c),
					3.22
13	4/8	Theory	Contact and Haber	14.5	3.23, 7.13
			Processes		
14	5/8		Revision		
15	6/8		Topic Test		

Energy Changes

• Use chapter 12 in your textbook to revise energy changes. Write brief notes and do review exercises and questions and problems.

Reaction Rates Revision

 Answer the following questions using chapter 13 of your textbook as a reference.

A. Reaction Rates

- 1. What are the two ways reaction rate can be determined?
- 2. From your answer to question 1, what are the two formulae that can be used to determine reaction rate?
- 3. List 5 ways that reaction rate can be increased.

B. Collision Theory

- 1. What are the two things required for a collision to lead to a chemical reaction?
- 2. What is activation energy?
- 3. Why doesn't methane spontaneously combust, despite the abundance of oxygen in the air?
- 4. In terms of the collision theory, explain each of the 5 ways that reaction rate is increased

C. Energy Profile Diagrams

- 1. Draw an energy profile diagram for an endothermic and an exothermic reaction and explain:
 - a) What is happening at each stage of the reaction
 - b) The significance of E_a and ΔH for each
- 2. Do review exercises and questions and problems.

Equilibrium

Many reactions are	As the	forward reaction pr	oceeds, the
concentration of	builds up whi	ich increases the ra	ate of the
reaction	. The rate of the for	ward reaction decre	eases as the
concentration of	decreases.		
Once the forward and rever	se rates are	, and the	
concentrations of the produ	cts and reactants are	e	, a reaction is
said to be in	·		
Note: The concentrations of equal.	of the reactants and t	he products are no	ot necessarily
A graph showing a reaction	that goes to comple	tion (all reactants u	ısed up).
Draw graphs to show an eq			cts.

- a) The concentration of reactants is greater than that of products,b) The concentration of products is greater than the concentration of reactants.

Chemical equilibrium exists only is a	system at		
·			
It is characterized by:			
1.			
2.			

Double arrows are used to signify the equilibrium situation eg:

- Explain why an automatic swimming pool chlorinator that maintains a constant chlorine concentration in the water, is not a true equilibrium system.
- Write the equation for the equilibrium that exists between oxygen and ozone in the upper atmosphere.

Read Text 14.1 and 14.2 Do RE 14.1

Equilibrium in Physical Systems

Use your textbook to formulate notes based on the two questions below.

1. Give an example of a vapour equilibrium for a liquid in a closed system, and briefly describe what is happening in the system. Include what happens with a temperature change.

2. Give two different examples of solution equilibrium (one molecular and one ionic). Describe briefly for each what is happening in the system including what happens with a temperature change.

Equilibrium Constants

The rate of a chemical reaction is to the			
of the reactants. In an equilibrium system, the rate of the	_		
is equal to the rate of the			
·			
The equilibrium constant (K) for the general equation:			
$aA + bB \leftrightarrow cC + dD$			
Is:			
K =			
Product concentrations are the numerator, and reactant concentrations are the denominator.			
 Write the equilibrium constant expression for the production of ammonia from nitrogen and hydrogen. 			
 If the equilibrium constant for the formation of ammonia at 470°C is 0.11 what is the equilibrium constant for the dissociation of ammonia into nitrogen and hydrogen? 	,		
Only the concentrations of species in the phase or			
are used.			
The equilibrium constant is specific to a particular system and is constant for a			

The equilibrium constant gives an indication of the	
High values suggest that products are in	_ than the
reactants ie. The equilibrium favors the	

• The K values for the ionisation of two weak acids are given:

$$CH_3COOH \leftrightarrow CH_3COO^- + H^+$$

 $HCN \leftrightarrow CN^- + H^+$

• Which is the stronger acid?

The equilibrium constant does NOT give any information about the _____ of the reaction.

Read Text 14.3 Do RE 14.3

Le Chatilier's Principle

Le Chatelier's Principle can be stated as:

"When a change is made to a chemical system in equilibrium, the system will adjust in such a way as to partially counteract the change."

To illustrate this, we will look at the equilibrium of NO₂ and N₂O₄ gases (refer to Expt 37).

$$2 \ NO_{2(g)} \leftrightarrow N_2O_{4(g)} \qquad \Delta \ H = -54 \ kJ \ / \ mol$$

4	T			4
	10	mn	ora	ture

The heat of reaction (ΔH) is required in order to will shift after adding or subtracting	_ which way an equilibrium
Adding heat will favour the reaction, in this c reaction. Taking heat out (cooling) will favour the	
Explain why this is the case in regards to Le Chatelier's princ	ciple.

Sketch a graph showing the concentrations of each gas when N_2O_4 is left in a closed container, and then after the mixture is heated. (NB The concentration of NO_2 is slightly higher than N_2O_4 when equilibrium has been reached at room temperature). Describe the observations at each point.

2. Pressure

If th	e pressure of a system at equilibrium is _			(or the volume	_),
this	will favour the formation of	mol	ecules.	Explain why this is the case	in
rega	ards to Le Chatelier's principle.				
	tch a graph as described previously, but ssure is increased after the system has re				
	What will happen if there are the sam reaction?	ie num	ber of	molecules on either side of th	ıe
3.	Concentration Change				
Des	cribe the effect of adding the following to	the ed	quilibriu	m system shown below:	
	$H_{2(g)} + I_{2(g)}$	↔ 2 F	-11 _(g)		
(i)	Adding HI	(ii)	Addin	g I ₂	
or li	reactions that involve more than quid added does not effect the substance or amount of _ ilibrium.		, bu	_ species, the amount of sol changes in concentration of does affect the	id a
Ref	er to Expt 38 to see the affect of adding a	acid or	base to	o some equilibrium reactions.	ı

	se: Predict the effect on the equilibrium and concentration of all species in regards equilibrium of silver solid and iron (III) ions with silver ions and iron (II) ions when:
(i)	Iron (III) chloride is added to the mixture
(ii)	Iron (II) sulfate is added to the mixture
(iii)	A strip of silver is added to the mixture
(iv)	Silver nitrate is added to the mixture
(v)	Something is added to the mixture that reacts with/absorbs the Fe (II) ions.
4. Ca	talyst
Explai	n why the addition of a catalyst will not affect a system already at equilibrium.

Read Text 14.4 Do R.E.14.4

Industrial Applications of Equilibrium

	dustrial processes that involve chemical equilibrium need to maximise, but minimise the
	ne Haber Process
pri	is is the process for the manufacture of Ammonia gas an important substance used in the production of is process is named after Fritz Haber, a German Chemist who won a nobel ze for his work in 1918.
ın	e reaction is as follows:
	e conditions of the reaction need to be carefully controlled in order to ensure at maximum
1.	Temperature: The reaction is exothermic, which means that
2.	Pressure: pressures increase the reaction rate by increasing the The yield is also increased as an increase in pressure shifts the equilibrium to the High pressures of atmospheres are used.
3.	Catalyst: The equilibrium itself is not affected by the addition of a catalyst, however the rate of attainment of equilibrium is significantly increased. In light of this, an catalyst is used along with tiny amounts of and
СО	elds of 30-40% are achieved under the above conditions. The ammonia is indensed under pressure and then separated. This removal of the ammonia so assists the forward reaction. How?
rel La	proximately 1000 tonnes of ammonia per day can be produced. The heat eased in this reaction maintains the catalyst temperature. rge amounts of energy are required for the compression of the ammonia gas. is energy is obtained from the reactions used to generate

** Use the table below to summarise the essential considerations of the Haber Process.

	Maximum Rate	Maximum Yield	Actual Conditions
Temperature			
Pressure			
Catalyst			
Product Removal			
Reactant Concentration			

Tr	ne Contact Process
	is process is almost exclusively used for the manufacture of
	e first step in this process involves the production of sulfur dioxide by burning uid sulfur according the following reaction:
Th	e sulfur dioxide is then oxidised to sulfur trioxide in the following reaction:
1.	Temperature: This reaction is, and so temperatures favour a high yield, but this results in a slow reaction rate. The actual process is carried out at At this temperature, the reaction occurs rapidly but does not go to completion. The yield is by cooling the gas mixture to and passing it over additional amounts of
2.	Pressure: High pressures would increase both rate and yield, but the temperature and catalyst adequately control these. Therefore the pressure is kept at approximately
3.	Catalyst: is used. This provides a satisfactory rate of reaction, but does not affect the equilibrium yield.
Th	e sulfur trioxide is then absorbed by 98% sulfuric acid to produce , which is effectively 99.5% sulfuric acid:

The oleum is diluted with water to produce 98% sulfuric acid:

This is the concentration of commercial concentrated sulfuric acid, which corresponds to approximately 18M.

Note: The sulfur trioxide cannot be directly added to water, as it is too difficult to handle.

** Use the table below to summarise the essential considerations of the Contact Process.

	Maximum Rate	Maximum Yield	Actual Conditions
Temperature			
Pressure			
Catalyst			
Product Removal			
Reactant Concentration			

^{*} Read pages 291 – 295

^{*} Do exercise 14.5

^{*} Read pages 345-349

^{*} Do exercise 16.4, Question 4