Содержание

1	Введение	2
	1.1 Литература	2
	1.2 Введение	
	1.3 Применение	
2	Дифферинциальные уравнения первого порядка	3
	2.1 Введение	3
	2.2 Метод изоклин	
	2.3 Теорема Пеано	
	Теорема Пеано	9
	Лемма Гронуолла	13
3	Уравнения в симметричной форме	16
4	Уравнения в полных дифф.	20
5	Системы дифф. уравнений	2 5
6	Условие Липшеца	28

1 Введение

1.1 Литература

Учебник Бибиков "Обыкновенные дифферинциальные уравнения" Филиппов - задачи "Методы интегрирования"

Каддинктон Ливенгсон "Обыкновенные дифференциальные уравнения" Яругии

1.2 Введение

$$F(x,y,y',y'',...,y^{(n)})=0$$

 x - неизвестная переменная $y=y(x)$ - неизвестная функция лалалалалала

Опр

Порядок уравнения - порядок старшей производной

Кроме того,
$$x = \frac{dx}{dt}$$
, $x^{(k)} = \frac{d^kx}{dt^k}$

1.3 Применение

- 1) механика
- 2) электротехника
- $\dot{Q} = kQ, \, Q = Q_0 e^{kt}$
- 4) упр. движением
- 5) биология, экология

Пример из биологии:

х - хищник

у - жертва

$$\begin{cases} \dot{x} = -ax + cxy \\ \dot{y} = by - dxy \end{cases}$$

$$a,b,c,d>0,\ x,y>0$$

2 Дифферинциальные уравнения первого порядка

2.1 Введение

$$(1)$$
 $\dot{x}=X(t,x)$ $X(t,x)\in C(G),$ G - обл, $G\subset\mathbb{R}^2$ Но чаше будем $\in C(D)$ $D\subset\mathbb{R}^2$

Опр

Решение (1) - функция $x=\mathbf{\phi}(t),\ t\in < a,b>:\ \dot{\mathbf{\phi}}(t)\equiv X(t,\mathbf{\phi}(t))$ на $<\!$ a,b>

- 1) $\forall t \in \langle a, b \rangle (t, \varphi(t)) \in D$
- $(2) \varphi(t)$ дифф на (a,b)
- 3) $\varphi(t)$ непр. дифф. (X- непр на D)

Опр

(2) Задача Коши - задача нахождения решения (1) $x=\varphi(t): \varphi(t_0)=x_0$ $((t_0,x_0)\in D)$

Геометрический смысл уравнения первого порядка - уравнение 1 задаёт поле направлений на множестве ${\bf G}$

Опр

График решения называется интегральной кривой

В каждой точке задано направление, которое совпадает с касательной в этой точке к интегральной кривой

$$\dot{\varphi}(t)|_{t=t_0} = X(t_0, x_0)$$

2.2 Метод изоклин

Опр

Изоклина - это кривая, на которой поле направлений постоянно

Уравнение изоклин X(t,x)=c, где c=const

$$\dot{x} = -\frac{t}{x} \left(x = \varphi(t) \right)$$

$$\begin{array}{l} -\frac{t}{x}=tg\alpha\\ x=-\frac{1}{c}t,\,c\neq0\\ c=1\,\left(\alpha=\frac{\pi}{4}\right)\,x=-t$$
 - уравнение изоклин $c=-1\,\left(\alpha=-\frac{\pi}{4}\right)\,x=t$ Решение задачи Коши $(1,\,1)$ - это $x=\sqrt{2-t^2}$ Решение задачи Коши $(1,-1)$ - это $x=-\sqrt{2-t^2}$

2.3 Теорема Пеано

(1)
$$\dot{x}=X(t,x),\,X\in C(D)$$
 $D=\{(t,x):|t-t_0|\leqslant ...\leqslant |x-x_0|\leqslant b\}$ (2) (t_0,x_0) По теореме Вейерштрасса $\exists M:\,|X(t,x)|\leqslant M\,\,\forall (t,x)\in D$ $h=min(a,\frac{b}{M})$ (Пеано) \exists реш. задачи К. (1), (2) $x=\varphi(t)$ опр-е на $[t_0-h,\,t_0+h]$ - отрезок Пеано

Опр

$$\{\varphi_k(t)\}_{k=1}^{\infty}, t \in [c, d]$$

- 1) $\varphi_k(t)$ равномерно ограничена на [c,d], если $\exists N: |\varphi_k(t)| \leqslant N$ $\forall k \in \mathbb{N}, \forall t \in [c,d]$
- 2) $\varphi_k(t)$ равностепенно непр на [c,d], если $\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall t_1, t_2 \in [c,d] \; |t_1 t_2| < \delta \to |\varphi_k(t_1) \varphi_k(t_2)| < \mathcal{E} \; \forall k \in \mathbb{N}$

(Арцелло - Асколи) $\varphi_k(t), k \in \mathbb{N}$, равномерно огр. и равностепенно непр на $[c,d] \to \exists$ подпосл $\varphi_{kj}(t): \varphi_{kj}(t) \overset{[c,d]}{\underset{j \to +\infty}{\Longrightarrow}} \varphi(t)$ 2019-09-12

Док-во

$$\begin{split} P &= [t_0, t+h] \\ d_k : t_0 &= t_0^k < t_1^k < \ldots < t_j^k < \ldots < t_{nk}^k = t_0 + h \\ \text{rank } d_k &= \lambda_k = \max_{0 \leqslant j \leqslant n_k - 1} (t_{j+1}^k - t_j^k) \end{split}$$

$$(3) \quad \lambda \underset{k \to +\infty}{\longrightarrow} 0$$

$$(4) \quad \begin{cases} \varphi_k(t_0) = x_0 \\ \varphi_k(t) = \varphi_k(t_j^k) + X(t_j^k, \varphi_k(t_j^k))(t-t_j^k) \end{cases}$$
- ломанные Эйлера

$\underline{\text{Лемма}}$ (1)

Определим $\varphi_k(t)$ и

$$|\varphi_k(t) - x_0| \leq M(t - t_0) \quad \forall t \in P \quad (5)$$

Замечание

$$(5) \Rightarrow t \in P \Rightarrow 0 \leqslant t - t_0 \leqslant h \Rightarrow$$
$$\Rightarrow |\varphi_k(t) - x_0| \leqslant M \cdot h \leqslant M \cdot \frac{b}{M} = b \quad (6)$$

Док-во (лемма 1)

Б.И.:
$$j = 0$$
 $t \in [t_0^k, t_1^k]$
$$\varphi_k(t) = x_0 + X(t_0, x_0) \cdot (t - t_0)$$

$$\Rightarrow |\varphi_k(t) - x_0| = |X(t_0, x_0)|(t - t_0) \leqslant M(t - t_0)$$
 И.П.: Пусть (5) - выпполняется $\forall t \in [t_0^k, t_j^k]$

$$\Rightarrow |\varphi_k(t_j^k) - x_0| \leqslant M(t_j^k - t_0) \leqslant b \Rightarrow (t_j^k, \varphi_k(t_j^k)) \in D$$

$$t_j^k \leqslant t < t_{j+1}^k$$

По (4) имеем:
$$|\varphi_k(t)| \leq |\varphi_k(t) - x_0| = |\varphi_k(t_j^k) - x_0| + |X(t_j^k, \varphi_k(t_j^k))|(t - t_j^k) \leq M(t_j^k - t_0) + M(t - t_j^k) = M(t - t_0)$$

Опр

(7)
$$\begin{cases} \psi_k(t) = X(t_j^K, \varphi_k(t^k)), & t_j^k \leqslant t \leqslant t_{j+1}^k \\ \varphi_k(t_{nk}^k) = X(t_{nk}^k, \varphi_k(t_{nk}^k)) \end{cases}$$

<u>Лемма</u> (2)

$$\varphi_k(t) = x_0 + \int_{t_0}^t \psi_k(\tau) d\tau \qquad (8)$$

Док-во

Б.И.:
$$j = 0$$
 $t \in [t_0^k, t_1^k]$
 $\varphi_k(t) = x_0 + X(t_0, x_0)(t - t_0) = x_0 + \int_{t_0}^t X(t_0, x_0) d\tau$
Пусть $[t \in [t_0^k, t_j^k] \Rightarrow \varphi_k(t_j^k) = x_0 + \int_{t_0}^{t_j^k} \psi_k(\tau) d\tau$
И.П.: $t \in [t_j^k, t_{j+1}^k]$
 $\Rightarrow \varphi_k(t) = \varphi(t_j^k) + X(t_j^k, \varphi_k(t_j^k))(t - t_j^k) =$
 $= x_0 + \int_{t_0}^{t_j^k} \psi_k(\tau) d\tau + \int_{t_0^k}^t X(t_j^k, \varphi_k(t_j^k)) d\tau = x_0 + \int_{t_0}^t \psi_k(\tau) d\tau$

<u>Лемма</u> (3)

 $\{\varphi_k(t)\}_{k=1}^\infty$ - равномерно огр., равностепенно непр. для $t\in P$

Док-во

По пункту (6)
$$|\varphi_k(t)| \leq |\varphi_k(t) - x_0| + |x_0| \leq b + |x_0| \quad \forall k \in \mathbb{N}$$

$$\mathcal{E} > 0 \quad \delta$$
 $|\bar{t} - \bar{t}| < \delta \quad (\bar{t}, \bar{t} \in P)$

$$|\varphi_k(\bar{t}) - \varphi_k(\bar{t})| = |\int_{\bar{t}}^{\bar{t}} \psi_k(\tau) d\tau| \leq |\int_{\bar{t}}^{\bar{t}} |\psi_k(t)| d\tau| \leq$$

$$\leq M\delta = \mathcal{E}$$

 \exists подпослед. $\{\varphi_k(t)\}_1^\infty$ $t \in P$

(9)
$$\varphi_k(t) \stackrel{P}{\underset{k \to +\infty}{\Longrightarrow}} \varphi(t)$$
 (тут должны быть k_m , но мы их не будем писать) $\varphi(t)$ - непр и $|\varphi(t) - x_0| \leqslant b$

Лемма (4)

(10)
$$\psi_k(t) \stackrel{P}{\underset{k \to +\infty}{\Longrightarrow}} X(t, \varphi(t))$$

Док-во (лемма 4)

$$X(t,x) \in C(D) \Rightarrow X(t,x) - \text{равном непр. на } D$$

$$\Rightarrow \forall \mathcal{E} > 0 \exists \delta > 0 : \forall (\overline{t},\overline{x}), (\overline{t},\overline{\overline{x}}) \in D$$

$$|\overline{t} - \overline{t}| < \delta, \quad |\overline{x} - \overline{x}| < \delta \Rightarrow$$

$$\Rightarrow |X(\overline{t},\overline{x}) - X(\overline{t},\overline{\overline{x}})| < \frac{\mathcal{E}}{2}$$
фикс $\mathcal{E} > 0 \Rightarrow \exists \delta > 0$

$$(12) \quad |X(t,\varphi(t)) - \psi_k(t)| \leqslant |X(t,\varphi(t)) - X(t,\varphi_k(t))| + |X(t,\varphi_k(t) - \varphi_k(t)|$$
из $(9) \quad \Rightarrow \exists k_1 : \forall k > k_1 \quad |\varphi_k(t) - \varphi(t)| < \delta \quad \forall t \in P$

$$\Rightarrow |\ldots| < \frac{\mathcal{E}}{2}$$

$$t = t_{nk}^k \Rightarrow |\ldots| = 0 \text{ по } (7)$$
Если $[t \neq t_{nk}^k \to \exists j \in \{0,1,\ldots,n_k-1\} : t \in [t_j^k, t_{j+1}^k)]$
И тогда $|\ldots| = |X(t,\varphi_k(t)) - X(t_j^k,\varphi_k(t_j^k))|$

$$\exists k_2 : \forall k > k_2 \quad \lambda_k < \min(\delta, \frac{\delta}{M}) \quad \text{(из } (3))$$

$$\Rightarrow (t - t_j^k) < (t_{j+1}^k - t_j^k) \leqslant \lambda_k < \delta$$

$$|\varphi_k(t) - \varphi_k(t_j^k)| \leqslant |\int_{t_j^k}^t |\psi_k(t)| \leqslant M(t - t_j^k) < M \frac{\delta}{M} = \delta$$

$$\Rightarrow |\ldots| < \frac{\mathcal{E}}{2} \text{ по } (11)$$

$$\Rightarrow \forall k > \max(K_1, k_2) \quad |X(t, \varphi(t)) - \psi_k(t)| < \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E} \text{ по } (12)$$

$$\varphi(t) = x_0 + \int_{t_0}^t X(\tau, \varphi(\tau)) d\tau \quad (13)$$

2 ДИФФЕРИНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Т.к. дифференцируема справа, то дифференцируема слева

$$t = t_0 : \varphi(t_0) = x_0$$

Дифф. (13):
$$\dot{\varphi}(t) = X(t, \varphi(t))$$

$$\Rightarrow \varphi(t)$$
- реш. задачи Коши (1), (2) $\quad t \in P$

2019-09-19

Напоминание

$$D$$
 - MH-BO

1.
$$\dot{x} = X(t, x)$$

$$2. (t_0, x_0) \in D$$

Опр

$$x=arphi(t)$$
 - реш. задачи Коши (1), (2), $t \in < a,b>$ единств. на $< a,b>$, если \forall другое реш. $x=\psi(t)$ З.К. (1), (2) $t \in < a,b>$ $arphi(t)\equiv arphi(t)$ на $< a,b>$

Теорема

В усл. теоремы Пеано, если решение $x=\varphi(t)$ - единств. на Р $(P=[t_0,t_0+h]), \ \text{то посл. ломанная Эйлера}$ $\varphi_k(t) \ \mathop{\Longrightarrow}_{h\to +\infty}^p \varphi(t)$

Док-во (От противного)

$$\exists \mathcal{E} > 0 : \forall k_0 \in \mathbb{N} \quad \exists k > k_0, \exists t \in P : |\varphi_k(t) - \varphi(t)| \geqslant \mathcal{E}$$
 $\Rightarrow \exists \{k_j\}_{j=1}^{\infty}, \quad \{t_j\}_{j=1}^{\infty} : k_{j+1} > k_j \text{ и } |\varphi_{k_j}(t_j) - \varphi(t_j)| \geqslant \mathcal{E} \quad (14)$
 $\{\varphi_{k_j}(t)\}_{j=1}^{\infty} - \text{посл. Л.Э.} \Rightarrow \pi/\text{послед } \{\varphi_{k_{jm}}(t)\}_{m=1}^{\infty} :$
 $\varphi_{k_{jm}}(t) \stackrel{P}{\underset{m \to +\infty}{\Rightarrow}} \psi(t)$
 $\Rightarrow \forall \mathcal{E} > 0 \exists k_{j_0} : \forall k_{j_m} > k_{j_0} \quad |\varphi_{k_{j_m}} - \psi(t)| < \mathcal{E} \quad (15)$
 $k_{j_m} > k_{j_0}$
 $|\varphi(t_{j_m}) - \psi(t_{j_m})| \geqslant |\varphi(t_{j_m}) - \varphi_{k_{j_m}}(t_{j_m})| - |\varphi_{k_{j_m}}(t_{j_m}) - \psi(t_{j_m})| > 0$
 $\Rightarrow \varphi(t_{j_m}) \neq \psi(t_{j_m}) - \text{против. с единственностью } \varphi(t) \text{ на } P$

Теорема (Пеано)

$$X \in C(G), \quad G_{\text{обл}} \subset \mathbb{R}^2$$

1.
$$\dot{x} = X(t, x)$$

2.
$$(t_0, x_0) \in G$$

$$\Rightarrow \exists h > 0 : \text{ на } [t_0 - h, t_0 + h] \text{ опред. решение з. K } (1), (2)$$
 $x = \varphi(t)$

Док-во

$$orall (t_0,x_0)\in G$$
 $\exists a>0,b>0$:
$$D=\{(t,x):|t-t_0|\leqslant a,|x-x_0|\leqslant b\}\subset G$$
 $\Rightarrow h=\min(a,\frac{b}{M}),$ где $M:$ $|X(t,x)|\leqslant M$ на D

Теорема (единственности)

$$\dot{x} = \sqrt[3]{x^2} \qquad x \equiv 0 \text{ - pem}$$

$$x = \left(\frac{t+c}{3}\right)^3$$

$$\exists \Delta>0: \ \ {
m peш}\ x=arphi(t): x_{01}=arphi(t_{01})$$
 - единств. на $[t_{01}-\Delta,t_{01}+\Delta]$ $\forall \Delta>0$ через т. (t_{02},x_{02}) проходит беск. много решений

Опр (1)

(1)
$$\dot{x} = X(t, x)$$
 $X \in C(G)$ $G \subset \mathbb{R}^2$

 $(t_0, x_0) \in G$ - точка единств. для (1), если

$$\exists \Delta > 0 : \text{ peii } (1)x = \varphi(t) \quad (x_0 = \varphi(t_0))$$

опред и единственно на $[t_0-\Delta,t_0+\Delta]$ вместо отрезка можно взять интервал

Опр (1')

$$(t_0,x_0)\in G$$
 - точка единств (1), если
$$\exists \Delta>0: \forall \delta: 0<\delta\leqslant \Delta \ {
m peiii}$$

$$x=arphi(t)$$
 - опред и ед-гл на $(t_0-\delta,t_0+\delta)$ $(x_0=arphi(t_0))$

Теорема

$$\exists \ x = \varphi(t)$$
- реш. з. К $(1)(2), \ \text{опред.}$ при $t \in < a, b >$

$$\forall t \in (a,b) \quad (t, \varphi(t))$$
 - точка ед-ти

$$\Rightarrow$$
 реш $x = \varphi(t)$ - ед-но на $< a, b >$

Док-во

$$\exists x=\psi(t)$$
 - другое. реш. З.К. (1), (2) $t \in \langle a,b \rangle$ $\exists t^* \in (a,b): \varphi(t^*) \neq \psi(t^*)$ $t^* \neq t_0$ (т.к $\varphi(t_0)=\psi(t_0)$) НУО $t^* > t_0$

$$u(t) = \varphi(t) - \psi(t)$$
 $O = \{t \in [t_0, t^*] : u(t) = 0\}$
 $O \neq \varnothing \quad (t_0 \in O)$
 O - замкн и огр
 $\exists t_1 \in [t_0, t^*) : \quad t_1 = \max O \quad (t_1 \in O)$
 $\Rightarrow \varphi(t_1) = \psi(t_1) \quad \varphi(t) \neq \psi(t) \quad \forall t \in (t_1, t^*]$
Ставим З.К $(t_1, \varphi(t_1) \quad \exists h > 0 :$
На $[t_1 - h, t_1 + h]$ опред. реш. $x = \widetilde{\varphi}(t) : \quad x_1 = \widetilde{\varphi}(t_1)$
 $\exists \Delta > 0 : \quad \Delta < \min(h, t_1 - a, t^* - t_1)$
 (t_1, x_1) - точка ед-ти $\Rightarrow \exists \Delta < \min(h, t_1 - a, t^* - t_1)$
 $\Rightarrow \text{ на } [t_1 - \Delta, t_1 + \Delta] \quad \widetilde{\varphi} \equiv \varphi(t) \equiv \psi(t)$

противореч с опред t_1

Лемма (Гронуолла)

$$u(t)\geqslant 0$$
, опред $t\in < a,b>$, $u(t)$ - непр на $< a,b>$ $\exists t_0\in (a,b), \quad c\geqslant 0, \quad L>0:$ $u(t)\leqslant c+L\left|\int_{t_0}^t u(\tau)d\tau\right| \quad \forall t\in < a,b>$ (3) $\Rightarrow u(t)\leqslant c\cdot e^{L|t-t_0|}$

Док-во

HYO
$$t \ge t_0$$

$$(3') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \le c + L \int_0^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \stackrel{?}{\Rightarrow} (4') \quad u(t)$$

$$(3') \quad u(t) \leqslant c + L \int_{t_0}^t u(\tau) d\tau \stackrel{?}{\Rightarrow} (4') \quad u(t) \leqslant c \cdot e^{L(t-t_0)}$$

$$u(t) \leqslant v(t)$$

$$\frac{d}{dt} (v(t) \cdot e^{-Lt}) = \dot{v}(t) e^{-Lt} + v(t)(-L)e^{-Lt} =$$

$$L \cdot e^{-Lt} (u(t) - v(t)) \leqslant 0$$

$$v(t)e^{-Lt} - \text{убыв.} \Rightarrow$$

$$v(t)e^{-Lt} \leqslant v(t_0)e^{-Lt_0} \Rightarrow$$

Следствие

Если
$$c=0$$
, то $u(t)\equiv 0$ на $< a,b>$

 $U(t) \leqslant v(t) \leqslant v(t_0) \cdot e^{L(t-t_0)} = c \cdot e^{L(t-t_0)}$

../../template/template

Напоминание

(1)
$$\dot{x} = X(t,x), \qquad X(t,x) \in C(G) \quad G_{\text{Of}_{\pi}} \subset \mathbb{R}^2$$

(2)
$$(t_0, x_0) \in G$$

Теорема

$$\exists \underbrace{V}_{\text{окр}}(t_0,x_0) \subset G: \quad \frac{\partial X}{\partial x} \in C(V(t_0,x_0))$$
 $\Rightarrow (t_0,x_0)$ - точка ед-ти

Следствие

$$X \in C(G), \quad \frac{\partial X}{\partial x} \in C(G) \Rightarrow G$$
 - обл ед-ти

Док-во

1.
$$\exists a > 0, b > 0$$
:

 $D = \{(t, x) : |t - t_0| \leq a, |x - x_0| \leq b\} \subset V(t_0, x_0) \subset G$
 $\Rightarrow \exists M : |X(t, x)| \leq M \quad \forall (t, x) \in D$
 $\exists L : \left| \frac{\partial X}{\partial x}(t, x) \right| \leq L \quad \forall (t, x) \in D$
 $h = \min(a, \frac{b}{M})$
 $\Rightarrow \exists \text{Реш}(1), (2) \quad x = \varphi(t), \quad x \in [t_0 - h, t_0 + h]$
 $\underline{\Delta = h}$
 $\exists x = \psi(t) - \text{реш}(1)2(0$

Докажем: оно определено на $[t_0 - h, t_0 + h]$ т.е

 $|\psi(t) - x_0| \leq b \quad \forall t : |t - t_0| \leq h$

от прот. $\exists \exists t^* : \begin{cases} |t^* - t_0| \leq h \\ |\psi(t^*) - x_0| > b \end{cases}$
 $t^* \neq t_0 \quad (\psi(t_0) = x_0) \quad \text{HyO } t^* > t_0$
 $v(t) = |\psi(t) - x_0| - b - \text{Hemp}$
 $v(t_0) = -b < 0$
 $v(t^*) > 0$

$$\Rightarrow$$
 на $[t_0,t_2]$ $|\psi(t)-x_0|\leqslant b$ $\dot{\psi}(t)=X(t,\psi(t)), \quad \psi(t_0)=x_0$ инт на $[t_0,t_2]$ $|\psi(t_2)-x_0|=\left|\int_{t_0}^{t_2}X(t,\psi(t))dt\right|\leqslant \int_{t_0}^{t_2}\left|X(t,\psi(t))\right|dt$ $\leqslant M\cdot(t_2-t_0)< M(t^*-t_0)\leqslant Mh\leqslant b$ Получим $|\psi(t_2)-x_0|< b$ - противореч: $t_2\in O$

2. $t \in [t_0 - h, t_0 + h]$ рисунок 1

$$f(s) = X(t, s\varphi(t) + (1 - S)\varphi(t)), \quad s \in [0, 1]$$

$$|s\varphi(t) + (1 - s)\psi(t) - x_0| \leq |s\varphi(t) - sx_0| + |(1 - s)\psi(t) - (1 - s)x_0| =$$

$$= s \left| \frac{\varphi(t) - x_0}{\leqslant b} \right| + (1 - s) \left| \frac{\psi(t) - x_0}{\leqslant b} \right| \leq b(s + (1 - s)) = b \Rightarrow$$

$$\Rightarrow f(s) \text{ опред. при } |t - t_0| \leq h$$

$$|X(t, \varphi(t)) - X(t, \psi(t))| = |f(1) - f(0)| = \exists \theta \in (0, 1)$$

$$= |f'(\theta)| = \left| \frac{\partial X}{\partial x} \right|_{x = s\varphi(t) + (1 - s)\psi(t)} \cdot \left| \frac{\partial x}{\partial s} \right|_{s = \theta} =$$

$$= \left| \frac{\partial X}{\partial x} \right|_{x = s\varphi(t) + (1 - s)\psi(t)} \cdot \left| \frac{\partial x}{\partial s} \right|_{s = \theta}$$

MTOT:
$$|X(t, \varphi(t)) - X(t, \psi(t))| \le L |\varphi(t) - \psi(t)|$$
 (5)

3.
$$\dot{\varphi}(t) = X(t, \varphi(t))$$

$$\dot{\psi}(t, \psi(t))$$

$$\dot{\varphi}(t) - \psi(t) = X(t, \varphi(t)) - X(t, \psi(t))$$

$$\text{Инт. } [t_0, t]$$

$$\varphi(t) - x_0 - (\psi(t) - x_0) = \int_t^t (X(\tau, \varphi(\tau)) - X(\tau, \psi(\tau))) d\tau$$

$$\Rightarrow |\varphi(t) - \psi(t)| \leqslant \left| \int_{t_0}^t |X(t, \varphi(\tau) - X(\tau, \psi(\tau))| \, d\tau \right| \leqslant$$

$$\leqslant \cdot \left| \int_{t_0}^t |\varphi(t\tau) - \psi(\tau)| \, d\tau \right| \stackrel{\text{J.f.}}{\Rightarrow} \varphi(t) = \psi(t) \quad \forall t : |t - t_0| \leqslant h$$

$$(u(t) = |\varphi(t) - \psi(t)| : u(t) \leqslant L \quad \left| \int_{t_0}^t u(\tau) d\tau \right|)$$

3 Уравнения в симметричной форме

Опр

$$(1)$$
 $M(x,y)dx+N(x,y)dy=0$ - ур. 1 порядка в симм. форме $M,N\in C(G)$ $G\subset \mathbb{R}^2$

Опр

ф-я
$$y=\varphi(x)$$
 $x\in < a,b>$ (или ф-я $x=\psi(y)$ $y\in < c,d>)$ наз. реш. (1), если подст в (1) получ. тождество Если $y=\varphi(x)$ - реш (1) $x\in < a,b>$ $M(x,\varphi(x))dx+N(x,\varphi(x))\varphi'(x)dx=0$ $y=\varphi(x)$ $x\in < a,b>$ - реш.(1) \Leftrightarrow (2) $M(x,\varphi(x))+N(x,\varphi(x))\varphi'(x)\equiv 0$ на $< a,b>$ $\Rightarrow y=\varphi(x)$ удовл. ур-нию если $N(x,\varphi(x))\neq 0$ на $< a,b>$ (3) $y'=-\frac{M(x,y)}{N(x,y)}$ аналог: $x=\psi(y)$ $y\in < c,d>$ - реш (1) \Leftrightarrow $M(\psi(y),y)\psi'(y)+N(\psi(y),y)\equiv 0$ на $< c,d>$ (2') и $x=\psi(y)$ уд. ур-нию (если $M(\psi(y),y)\neq 0$ на $< c,d>$) (3') $x'=-\frac{N(x,y)}{M(x,y)}$ $(x_0,y_0)\in G$ если $N(x_0,y_0)\neq 0$ $\Rightarrow \exists < a,b>: x_0\in (a,b)$ \exists реш $y=\varphi(x)$ (3) (и реш (1)) если $M(x_0,y_0)\neq 0$ $\Rightarrow \exists < c,d>: y_0\in (c,d)$ \exists реш $x=\psi(y)$ (3') (и реш (1)) если $M(x_0,y_0)=N(x_0,y_0)=0$ $\Rightarrow (x_0,y_0)$ - особая точка

Замечание

Если $\varphi(x)$ - реш, $\varphi(x)^{-1}$ =

Опр

$$u(x,y)\in C^1\quad (u:G\in\mathbb{R})$$
 интеграл (1), если
$$1)\quad \left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\neq 0\quad \forall \text{ обык. точки из }G\quad (x,y)$$

$$2)\quad (4)\to N(x,y)\frac{\partial u(x,y)}{\partial x}-M(x,y)\frac{\partial u(x,y)}{\partial y}\equiv 0 \text{ в }G$$
 $(N\frac{\partial u}{\partial x}-M\frac{\partial u}{\partial y}\equiv 0)$

Теорема (1)

$$y=arphi(x)$$
 - pem.(1) $x\in < a,b>$ $(x,arphi(x))$ - обыкн. точка для $\forall x\in < a,b>$ $u(x,y)$ - интеграл (1) в G $\Rightarrow u(x,arphi(x))=const$ $x\in < a,b>$

Док-во

$$y=arphi(x)$$
 - реш (1) $x\in < a,b> \Rightarrow$ $\Rightarrow arphi'(x)=-\dfrac{M(x,arphi(x))}{M(x,arphi(x))}$ $N(x,arphi(x)) \neq 0$ (если $N(...)=0$, то $\overset{(2)}{\Rightarrow}M(...)=0$ - против. усл) $\dfrac{d}{dx}u(x,arphi(x))=\dfrac{\partial u(...)}{\partial x}+\dfrac{\partial u(...)}{\partial y}\cdotarphi'(x)==\dfrac{\partial u(...)}{\partial x}+\dfrac{\partial u(...)}{\partial y}(-\dfrac{M(...)}{N(...)})=\dfrac{1}{N(...)}(N(...)\dfrac{\partial u(...)}{\partial x}-M(...)\dfrac{\partial u(...)}{\partial y})$

<u>Теорема</u> (1')

$$x = \psi(y)$$
 - peii (1) $y \in \langle c, d \rangle ...$

 $../../template/template \\ [2019-10-03]$

Напоминание

$$M(x,y)dx + N(x,y)dy = 0$$
 (1) $M,N \in C(G)$ $y = \varphi(x)$ - реш (1), $x \in (a,b) \Leftrightarrow$ $\Leftrightarrow M(x,\varphi(x)) + N(x,\varphi(x))\varphi'(x) \equiv 0$ на (a,b)

Опр

$$u(x,y) \in C^1(G)$$

Интл (1), если

- 1. хоть одна из $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ не 0 в \forall обыкн. точке G
- 2. $N \cdot \frac{\partial u}{\partial x} M \frac{\partial u}{\partial y} \equiv 0 \text{ B } G$ (4)

(5)
$$u(x,y) = u(x_0,y_0)$$
 $(x_0,y_0) \in G$ u - инт-л (1) в G

Teopeмa (2)

$$N(x_0, y_0) \neq 0 \Rightarrow$$

рав-во (5) разрешимо отн y: его решение

$$y = \varphi(x)$$
 опред на (a,b) $x_0 \in (a,b)$ $\varphi(x_0) = y_0$ $y = \varphi(x)$ непр дифф на (a,b) и явля реш ур (1)

Док-во

$$N(x_0,y_0) \neq 0 \Rightarrow N(x,y) \neq 0$$
 в нек. окр-ти $V(x_0,y_0)$ $\Rightarrow \frac{\partial u(x_0,y_0)}{\partial y} \neq 0$ (из (4): если $\frac{\partial u(x_0,y_0)}{\partial y} = 0$, то $\frac{\partial u(x_0,y_0)}{\partial x} = 0$)

Противореч. с тем, что (x_0, y_0) - обыкн

$$\Rightarrow \frac{\partial u(x,y)}{\partial y} \neq 0 \text{ в нек. окр } \widetilde{V}(x_0,y_0)$$

$$\Rightarrow \text{ теорема о неявн. функции } \exists y = \varphi(x) \text{ - реш } (5) : y_0 = \varphi(x_0)$$

$$\varphi(x) \text{ - непр дифф } x \in (a,b) \quad (x_0 \in (a,b))$$

$$u(x,\varphi(x)) = u(x_0,y_0) \text{ на } (a,b)$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \varphi'(x) = 0 \Rightarrow \varphi'(x) = -\frac{\frac{\partial u(x,\varphi(x))}{\partial x}}{\frac{\partial u(x,\varphi(x))}{\partial y}}$$

$$\text{в } (2) \ M(\ldots) + N(\ldots) \left(-\frac{\frac{\partial u(\ldots)}{\partial x}}{\frac{\partial u}{\partial y}(\ldots)}\right) =$$

$$= -\frac{1}{\frac{\partial u}{\partial x}(\ldots)} [N(\ldots) \frac{\partial u}{\partial x}(\ldots) - M(\ldots) \frac{\partial u(\ldots)}{\partial y}] \equiv 0 \text{ в } G$$

Теорема (2)

Следствие

$$(x_0, y_0)$$
 - обыкн точка G , то рав-во (5)

разреши. отн y или отн x и его реш - реш (1)

$$(M \neq 0$$
 или $N \neq 0)$

Опр

равн-во
$$u(x,y) = c$$
 - общ. инт-л (1)

Пример

$$xdx + ydy = 0$$

$$\underbrace{x^2 + y^2}_{u(x,y)} = c$$

4 Уравнения в полных дифф.

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

Опр

(1) - ур в полных дифф, если

$$\exists u(x,y): \quad du(x,y) = M(x,y)dx + N(x,y)dy \qquad (2)$$

$$((1): du = 0)$$

Теорема (1)

(1) - ур в полных дифф $\Rightarrow u(x,y)$ - инт-л (1)

Док-во

- 1. u(x, y) непр дифф.
- 2. $\frac{\partial u}{\partial x} = M$, $\frac{\partial u}{\partial y} = N$ (3)
- 3. $N \frac{\partial u}{\partial x} M \frac{\partial u}{\partial y} = N \cdot M M \cdot N \equiv 0$

Теорема

если
$$\exists \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x} \in C(G)$$
 (1) - ур. в полных дифф то $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ в G (4)

Док-во

(1) - ур в п. дифф
$$\Rightarrow \exists u(x,y)$$
 (2), (3)

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial N}{\partial x}$$

$$G = \{(x,y): \ a < x < b, c < y < d\}$$
 (m.6 $a = -\infty, \ c = -\infty$ $b = +\infty, \ d = +\infty$)

Теорема (3)

$$\exists \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x} \in C(G)$$

И вып
$$(4) \Rightarrow (1)$$
 - ур. в п. д.

Док-во

$$(x_{0}, y_{0}), (x, y) \in G$$

$$\forall t \in [x_{0}, x] \quad (t, y) \in G$$

$$\frac{\partial u(t, y)}{\partial x} = M(t, y) - \text{ инт от } x_{0} \text{ до } x$$

$$u(x, y) - u(x_{0}, y) = \int_{x_{0}}^{x} M(t, y) dt \qquad (5)$$

$$\forall t \in [y_{0}, y] \quad (x_{0}, y) \in G$$

$$\frac{\partial u(x_{0}, t)}{\partial y} = N(x_{0}, t) - \text{ инт от } y_{0} \text{ до } y$$

$$u(x_{0}, y) - \underbrace{u(x_{0}, y_{0})}_{\text{HYO} = 0} = \int_{y_{0}}^{y} N(x_{0}, t) dt \qquad (6)$$

$$u(x, y) = \int_{x_{0}}^{x} M(t, y) dt + \int_{y_{0}}^{y} N(x_{0}, t) dt \qquad (7)$$

Проверяем, что это та функция, которая нужна

$$\frac{\partial u(x,y)}{\partial x} = M(x,y)$$

$$\frac{\partial u(x,y)}{\partial y} = \frac{\partial}{\partial y} \int_{x_0}^x M(t,y)dt + N(x_0,y) = \int_{x_0}^x \frac{\partial M(t,y)}{\partial y}dt + N(x_0,y) =$$

$$= \int_{x_0}^x \frac{\partial N(t,y)}{\partial t}dt + N(x_0,y) = N(x,y) - N(x_0,y) + N(x_0,y)$$

Замечание (1)

$$u(x,y) = \int_{x_0}^{x} M(t,y_0)dt + \int_{y_0}^{y} N(x,t)dt$$
 (7')

$\underline{\mathbf{y}_{\mathbf{TB}}}$

$$du(x,y)=M(x,y)dx+N(x,y)dy$$
 Вып (4) G - односвяз.

$$\Rightarrow u(x,y) = \int_{\Gamma} M(x,y) dx + N(x,y) dy$$
 (8) - криволин. инт

 Γ - любая кривая, соед $(x_0, y_0), (x, y)$

Условие (4) гарантирует нам, что криволин. интеграл не зависит от кривой интегрирования

Замечание (2)

Прямоугольность области G не требуется по-существу, нужна только односвязность (отсутсвие дырок или возможность стянуть любой путь в точку)

Опр

(1)
$$\mu = \mu(x, y) \in C(G)$$
 $\mu(x, y) \neq 0 \quad \forall (x, y) \in G$

 μ - интегр мн-ль для (1), если

(9)
$$(\mu M)dx + (\mu N)dy = 0$$
 - ур. в п. д

$$\exists M, N, \mu \in C^1(G) \quad (G - \text{односвяз})$$

(9) - ур в п.д.
$$\Leftrightarrow \frac{\partial}{\partial y}(\mu M) = \frac{\partial}{\partial x}(\mu N)$$

$$\frac{\partial \mu}{\partial y}M + \mu \frac{\partial M}{\partial y} = \frac{\partial \mu}{\partial x}N + \mu \frac{\partial N}{\partial x}$$
 (1)

Частный случай 1

$$\underline{\mu = \mu(x)}$$

из (10):
$$\frac{d\mu}{dx}N = \mu(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$$

$$\frac{1}{\mu} \cdot \frac{d\mu}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} \tag{11}$$

$$N = f(x)$$

$$\frac{d\mu}{\mu} = f(x)dx$$

$$\mu = e^{\int f(x)dx}$$

$$\mu(x) = e^{\int_{x_0}^x f(t)dt}$$

Частный случай 2

$$\frac{\mu = \mu(y)}{\frac{1}{\mu} \frac{d\mu}{dy}} = \frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} \qquad (12)$$

$$M = g(y)$$

../../template/template 2019-10-10

Напоминание

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

$$\mu = \mu(x) \frac{1}{\mu}\mu' = \frac{1}{N}(M'_y - N'_x) (11)$$

$$u(x,y) = \int_{y_0}^{y} N(x,t)dt + \int_{x_0}^{x} M(t,y_0)dt (7')$$

Пример (важнейший)

(13)
$$y' = p(x)y + g(x) \qquad p(x), g(x) \in C(a, b)$$

$$(13') \qquad (p(x)y + g(x))dx - dy = 0 \qquad (x \not\equiv const)$$

$$\frac{1}{N}(M'_y - N'_x) = -1 \cdot (p(x) - 0) = -p(x)$$

$$\exists \mu = \mu(x) : \frac{d\mu}{\mu} = -p(x)dx$$

$$\mu(x) = e^{-\int_{x_0}^x p(s)ds} (p(x)y + g(x))dx - e^{-\int_{x_0}^x p(s)ds} dy = 0 \qquad (14)$$

Применяем к этому формулу 7' полагаем для простоты $y_0 = 0$

$$u(x,y) = -\int_0^y e^{-\int_{x_0}^x p(s)ds} dt + \int_{x_0}^x e^{-\int_{x_0}^x p(s)ds} \cdot g(t)dt$$

$$\underline{u(x,y) = -c}$$

$$-ye^{-\int_{x_0}^x p(s)ds} + \int_{x_0}^x e^{-\int_{x_0}^t p(s)ds} g(t)dt = -c$$

$$y = c \cdot e^{\int_{x_0}^x p(s)ds} + e^{\int_{x_0}^x p(s)ds} \int_{x_0}^x e^{-\int_{x_0}^t p(s)ds} g(t)dt \qquad (15)$$

3. Коши
$$(x_0, y_0)$$
 $(x_0 \in (a, b))$
$$\Rightarrow (15), \text{ где } c = y_0$$

$$(15') \qquad y = ce^{\int p(x)} + e^{\int p(x)dx} \int e^{-\int p(x)dx} g(x)dx$$

5 Системы дифф. уравнений

Опр

Система дифф уравнений, разрешенная относительно старших производных

(1)
$$\begin{cases} x_1^{(m_1)} = X_1(t, x_1, \dot{x_1}, ..., x_1^{(m_1-1)}, ..., x_k, \dot{x_k}, ..., x_k^{(m_k-1)}) \\ x_2^{(m_2)} = X_2(...) \\ ... \\ x_k^{(m_k)} = X_k(...) \end{cases}$$

$$n = \sum_{j=1}^{k} m_j$$

Опр

Peiii (1):
$$x_1 = \varphi_1(t), ..., x_k = \varphi_k(t)$$
 $t \in (a, b)$

$$X_j \in C(D) \quad D \subset \mathbb{R}^{n+1}$$

$$j=1,...,k$$

Подставили и получили тождество

Опр (Частный случай)

1.
$$k = 1$$

$$x^{(n)} = X(t, x, \dot{x}, \ddot{x}, ..., x^{(n-1)})$$
 (2)

2.
$$m_j = 1$$

$$\begin{cases} \dot{x_1} = X_1(t, x_1, ..., x_n) \\ ... \\ \dot{x_n} = X_n(t, x_1, ..., x_n) \end{cases}$$
 (3)

Система в нормальной форме или нормальная система В (2) замена

$$\begin{cases} x = x_1 \\ \dot{x} = x_2 \\ \dots \\ x^{(n-1)} = x_n \end{cases}$$
 (4)

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = x_{3} \\ \dots \\ \dot{x}_{n-1} = x_{n} \\ \dot{x}_{n} = X(t, x_{1}, \dots, x_{n}) \end{cases}$$
 (5)

B (3)
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ (3') $\dot{x} = X(t, x)$

(3') - система, записанная в векторной форме

Замечание

Будем рассматривать только системы в нормальной форме

З. Коши

для (1): при
$$t=t_0$$
:
$$\begin{cases} x_1-x_{1_0},\dot{x_1}=\dot{x}_{1_0},...,x_1^{(m_1-1)}=x_{1_0}^{(m_1-1)}\\ x_2=x_{2_0},...,x_2^{(m_2-1)}=x_{2_0}^{(m_2-1)}\\ x_k=x_{k_0},...,x_k^{(m_k-1)}=x_{k_0}^{(m_k-1)} \end{cases}$$
 для (2): при $t=t_0$ $x=x_0,\dot{x}=\dot{x}_0,...,x^{(n-1)}=x_0^{(n-1)}$ для (3): $t=t_0$: $x_1=x_{1_0},x_2=x_{2_0},...,x_n=x_{n_0}$

Замечание

сист (5) и ур (2)
$$\begin{cases} x_1 = \varphi_1(t) \\ x_2 = \varphi_2(t) \\ \dots \\ x_n = \varphi_n(t), \quad t \in (a,b) \end{cases}$$
 реш $x = \varphi(t)$ $t \in (a,b)$

Решения разные, но мы называем (5) и (2) эквивалентными

$$\varphi_1(t) = \varphi(t)$$

$$\varphi_2(t) = \dot{\varphi}(5)$$
...
$$\varphi_n(t) = \varphi^{(n-1)}(t)$$

Опр

Договоримся с обозначениями

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} - \text{ вектор}$$

$$|a| = \sqrt{a_1^2 + \ldots + a_n^2} - \text{ норма}$$

$$a^{(k)} = a^{\{k\}} - \text{ послед. векторов}$$

$$a^{(k)} \underset{k \to +\infty}{\to} a \Leftrightarrow a_j^{(k)} \underset{k \to +\infty}{\to} a \Leftrightarrow |a^{(k)} - a| \underset{k \to +\infty}{\to} 0$$

$$f(x_1, \ldots, x_m) = \begin{pmatrix} f_1(x_1, \ldots, x_m) \\ \vdots \\ f_n(x_1, \ldots, x_m) \end{pmatrix} \text{ вектор-функция}$$

$$\frac{\partial f}{\partial x_j} = \begin{pmatrix} \frac{\partial f_1}{\partial x_j} \\ \vdots \\ \frac{\partial f_n}{\partial x_j} \end{pmatrix}$$

$$u(t) = \begin{pmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{pmatrix} \Rightarrow \dot{u}(t) = \begin{pmatrix} \dot{u}_1(t) \\ \vdots \\ \dot{u}_n(t) \end{pmatrix}$$

$$u(t) - \text{ непр на } [a, b] \Rightarrow \int_a^b u(t) dt = \begin{pmatrix} \int_a^b u_1(t) dt \\ \vdots \\ \int_a^b u_n(t) dt \end{pmatrix}$$

$$\left| \int_a^b u(t) dt \right| \leqslant \left| \int_a^b |u(t)| dt \right|, \text{ если } b \geqslant a \quad \text{ здесь норма } |.|$$

$$\sum_{k=1}^\infty a^{(k)} = \begin{pmatrix} \sum_{k=1}^\infty a_1^{(k)} \\ \vdots \\ \sum_{k=1}^\infty a_n^{(k)} \end{pmatrix}$$

$$a^{(k)} = \begin{pmatrix} a_1^{(k)} \\ \ldots \\ a_k^{(k)} \end{pmatrix}$$

Признак Вейерштрасса работает.

$$\exists$$
 сх ряд $\sum_{k=1}^{\infty} b_k: \left|a^{(k)}(t)\right| \leqslant b_k \Rightarrow \sum_{k=1}^{\infty} u^{(k)}(t)$ сх равн и абс $\forall t \in \Omega$

Опр

(1)
$$\dot{x} = X(t, x)$$
 $X \in C(D), D \subset \mathbb{R}^{n+1}$

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \qquad X = \begin{pmatrix} X_1 \\ \dots \\ X_2 \end{pmatrix}$$

З.Коши (2) (t_0, x_0) Смысл геометрический и механический полностью совпадают с одномерным случаем

геом - поле направлений

мех - мгновенная скорость в точке и во времени

реш (1) ф-я
$$x = \varphi(t)$$
 $t \in (a, b)$ подст тожд в (1)

Теорема (Пеано)

$$D = \{(t,x): |t-t_0| \leqslant a, \ |x-x_0| \leqslant b\}$$

$$X(t,x) \in C(D)$$

$$\Rightarrow \exists M: \ |X(t,x)| \leqslant M \quad h = \min(a,\frac{b}{M})$$

$$\Rightarrow \exists \text{ реш } (1) \ x = \varphi(t) \qquad t \in [t_0-h,t_0+h]$$

$$(x_0 = \varphi(t_0)) \text{ доказывается аналогично одномерному сл.}$$

6 Условие Липшеца