Systèmes dynamiques Corrigé DM n°2

Basé sur la copie de Manh-Linh Nguyen

Perturbation des valeurs propres

1. On a

$$(A - \mu)(A - \lambda)[(A - \lambda)^{-1} - (A - \mu)^{-1}] = (A - \mu) - (A - \lambda) = (\lambda - \mu) \operatorname{id}_n,$$

d'où

$$(A - \lambda)^{-1}(A - \mu)^{-1} = \frac{(A - \lambda)^{-1} - (A - \mu)^{-1}}{\lambda - \mu}.$$
 (1)

2. Soient $\rho > \rho' > 0$ tels que $\overline{D}(\lambda, \rho) \cap \operatorname{sp}(A) = \overline{D}(\lambda, \rho') \cap \operatorname{sp}(A) = \{\lambda\}$. Alors $(z - A)^{-1}$ est bien défini, donc tous ses entrées sont holomorphes au voisinage de l'annulus $\{\rho' \leq |z - \lambda| \leq \rho\}$ (car elle sont des fonctions rationnelles). Il suit de la formule de Cauchy que

$$\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda}} (z - A)^{-1} dz = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda}, z'} (z - A)^{-1} dz.$$

3. Soient $\rho > \rho' > 0$ comme dans la partie 2. On a

$$\Pi_{\lambda}^{2} = \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} (z-A)^{-1} dz\right) \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} (w-A)^{-1} dw\right)
= \frac{1}{(2\pi i)^{2}} \iint_{\mathscr{C}_{\lambda,\rho} \times \mathscr{C}_{\lambda,\rho'}} (z-A)^{-1} (w-A)^{-1} dz dw
= \frac{1}{(2\pi i)^{2}} \iint_{\mathscr{C}_{\lambda,\rho} \times \mathscr{C}_{\lambda,\rho'}} \frac{(z-A)^{-1} - (w-A)^{-1}}{w-z} dz dw$$
(partie 1.)
$$= \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} \frac{dw}{w-z}\right) (z-A)^{-1} dz
+ \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} \frac{dz}{z-w}\right) (w-A)^{-1} dw.$$

Or $\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} \frac{dw}{w-z} = 0$ pour tout $z \in \mathscr{C}_{\lambda,\rho}$ et $\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho'}} \frac{dz}{z-w} = 1$ pour tout $w \in \mathscr{C}_{\lambda,\rho'}$ par la formule de Cauchy. Il suit que $\Pi_{\lambda}^2 = \Pi_{\lambda}$.

4. On rappelle que la différentielle du déterminant en $A \in GL_n(\mathbf{C})$ est

$$M_n(\mathbf{C}) \ni H \mapsto \det(A) \operatorname{tr}(A^{-1}H).$$

Ainsi, pour $d(z) = \det B(z)$, on a

$$d'(z) = \det B(z) \operatorname{tr}(B(z)^{-1} B'(z)) = d(z) \operatorname{tr}(B(z)^{-1} B'(z)).$$

5. Soit $B: \mathbb{C} \to M_n(\mathbb{C})$ définie par B(z) := z - A. Elle est holomorphe de dérivée $B'(z) = \mathrm{id}_n$. Soit N l'ordre d'annulation de $d(z) := \det B(z)$ en λ , qui est la même chose que $\dim_{\mathbb{C}} C_{\lambda,\mathbb{C}}$. On a

$$\operatorname{tr} \Pi_{\lambda} = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \operatorname{tr} \left((z - A)^{-1} \right) \, dz = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \operatorname{tr} \left(B(z)^{-1} B'(z) \right) = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \frac{d'(z)}{d(z)} \, dz$$

(partie 4.). Par la formule de Cauchy cette valeur est N. Observons que les entrées de $(z-\lambda)^N(z-A)^{-1}$ sont de la forme

$$\frac{(z-\lambda)^N}{d(z)}P(z), \qquad P \in \mathbf{C}[z].$$

Il suit que ces entrées sont holomorphes au voisinage de λ . Ainsi

$$(\lambda - A)^{N}(z - A)^{-1} = (\lambda - z)^{N}(z - A)^{-1} + \sum_{k=1}^{N} {N \choose k} (\lambda - z)^{N-k}(z - A)^{k-1}$$

a ses entrées holomorphes au voisinage de λ . En prenant ρ assez petit

$$(\lambda - A)^N \Pi_{\lambda} = \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,0}} (\lambda - A)^N (z - A)^{-1} dz = 0.$$

Il suit que l'image de Π_{λ} est contenue dans $C_{\lambda,\mathbf{C}}$. De **3.**, on sait que Π_{λ} est un projecteur. Comme rang $\Pi_{\lambda} = \operatorname{tr} \Pi_{\lambda} = N$, on a $\operatorname{Im} \Pi_{\lambda} = C_{\lambda,\mathbf{C}}$.

6. De **5.**, Π_{λ} fixe les vecteurs dans $C_{\lambda,\mathbf{C}}$. Soient $\lambda, \mu \in \operatorname{sp}(A), \lambda \neq \mu$ et $\rho > 0$ tels que $\overline{D}(\lambda, \rho) \cap \operatorname{sp}(A) = \{\lambda\}$, que $\overline{D}(\mu, \rho) \cap \operatorname{sp}(A) = \{\mu\}$ et que $\overline{D}(\lambda, \rho) \cap \overline{D}(\mu, \rho) = \emptyset$. On a

$$\Pi_{\lambda}\Pi_{\mu} = \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} (z-A)^{-1} dz\right) \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\mu,\rho}} (w-A)^{-1} dw\right)
= \frac{1}{(2\pi i)^2} \iint_{\mathscr{C}_{\lambda,\rho} \times \mathscr{C}_{\mu,\rho}} (z-A)^{-1} (w-A)^{-1} dz dw
= \frac{1}{(2\pi i)^2} \iint_{\mathscr{C}_{\lambda,\rho} \times \mathscr{C}_{\mu,\rho}} \frac{(z-A)^{-1} - (w-A)^{-1}}{w-z} dz dw$$
(partie 1.)
$$= \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\mu,\rho}} \frac{dw}{w-z}\right) (z-A)^{-1} dz
+ \frac{1}{2\pi i} \int_{\mathscr{C}_{\mu,\rho}} \left(\frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} \frac{dz}{z-w}\right) (w-A)^{-1} dw
= 0$$

par la formule de Cauchy. Ainsi les Π_{λ} , $\lambda \in \operatorname{sp}(A)$ sont les matrices des projecteurs spectraux complexes associés à A.

7. Les coefficients de $(z-A)^{-1}$ sont holomorphes au voisinages de $U \setminus \bigcup_{\lambda \in \operatorname{sp}(A) \cap U} \overline{D}(\lambda, \rho)$ pour ρ assez petit. Par la formule de Cauchy

$$\Pi_U := \sum_{\lambda \in \operatorname{sp}(A) \cap U} \Pi_{\lambda} = \sum_{\lambda \in \operatorname{sp}(A) \cap U} \frac{1}{2\pi i} \int_{\mathscr{C}_{\lambda,\rho}} (z - A)^{-1} dz = \frac{1}{2\pi i} \int_{\partial U} (z - A)^{-1} dz.$$

Comme U est compact, il existe un voisinage \mathscr{U} de A dans $M_n(\mathbf{C})$ tel que $\det(z-M)$ ne s'annule par sur ∂U pour tout $M \in \mathscr{U}$. Ainsi

$$\Pi_U(M) = \sum_{\lambda \in \operatorname{sp}(M) \cap U} \Pi_{\lambda}(M) = \frac{1}{2\pi i} \int_{\partial U} (z - M)^{-1} dz$$

définit une fonction à entrées holomorphes.

- 8. Pour $u \in C_{\lambda,\mathbf{R}}$, on a $\Pi_{\lambda}u = u$ (on peut voir u comme un vecteur dans \mathbf{C}^n , alors $u \in C_{\lambda,\mathbf{C}}$). De même, si $\mu \in \operatorname{sp}(A) \cap \mathbf{R}$ est différente de λ , on a $\Pi_{\lambda}u = 0$ pour tout $u \in C_{\mu,\mathbf{R}}$. Finalement si $\mu \in \operatorname{sp}(A) \setminus \mathbf{R}$ et $u \in C_{\mu,\overline{\mu}}$, il existera $v \in \mathbf{C}^n$ tel que $u + iv \in C_{\mu,\mathbf{C}}$ et $u iv \in C_{\overline{\mu},\mathbf{C}}$. Ainsi $\Pi_{\lambda}(u+iv) = \Pi_{\lambda}(u-iv) = 0$, d'où $\Pi_{\lambda}u = 0$. On a montré que les vecteurs propres réels généralisés de A sont envoyés sur les vecteurs réels. Ainsi l'image de \mathbf{R}^n par Π_{λ} est contenu dans \mathbf{R}^n , donc les entrées de Π_{λ} sont réelles.
- **9.** Dans **6.**, on a montré que $\Pi_{\lambda}\Pi_{\mu}=0$ si $\lambda\neq\mu$. Comme $\lambda\neq\overline{\lambda}$, on a

$$\Pi_{\lambda \overline{\lambda}}^2 = (\Pi_{\lambda} + \Pi_{\overline{\lambda}})^2 = \Pi_{\lambda}^2 + \Pi_{\overline{\lambda}}^2 = \Pi_{\lambda} + \Pi_{\overline{\lambda}} = \Pi_{\lambda,\overline{\lambda}}.$$

Soit $u \in C_{\lambda,\overline{\lambda}}$. Soit $v \in \mathbf{R}^n$ tel que $u + iv \in C_{\lambda,\mathbf{C}}$ et $u - iv \in C_{\overline{\lambda},\mathbf{C}}$. On a

$$\begin{split} \Pi_{\lambda,\overline{\lambda}}u &= \Pi_{\lambda}u + \Pi_{\overline{\lambda}}u \\ &= \frac{1}{2}\Pi_{\lambda}(u+iv) + \frac{1}{2}\Pi_{\lambda}(u-iv) + \frac{1}{2}\Pi_{\overline{\lambda}}(u+iv) + \frac{1}{2}\Pi_{\overline{\lambda}}(u-iv) \\ &= \frac{1}{2}(u+iv) + \frac{1}{2}\cdot 0 + \frac{1}{2}\cdot 0 + \frac{1}{2}(u-iv) \\ &= u. \end{split}$$

De même, si $\mu \in \operatorname{sp}(A) \setminus \mathbf{R}$ différente de λ et de $\overline{\lambda}$, on aura $\Pi_{\lambda,\overline{\lambda}}u = 0$ pour tout $u \in C_{\mu,\overline{\mu}}$. Si $\mu \in \operatorname{sp}(A) \cap \mathbf{R}$, on aura $\Pi_{\lambda,\overline{\lambda}}u = 0$ pour tout $u \in C_{\mu,\mathbf{R}}$. Avec le même argument comme celui dans $\mathbf{8}$, on voit que les entrées de $\Pi_{\lambda,\overline{\lambda}}$ sont réelles.

- 10. De 9., pour $\lambda \in \operatorname{sp}(A) \setminus \mathbf{R}$, $\Pi_{\lambda,\overline{\lambda}}$ est un projecteur d'image $C_{\lambda,\overline{\lambda}}$. Il suffit de montrer que le produit de deux matrices distinctes, choisies arbitrairement dans les matrices données, est 0.
 - **a.** Si $\lambda, \mu \in \operatorname{sp}(A) \cap \mathbf{R}$ et $\lambda \neq \mu$, on a bien $\Pi_{\lambda}\Pi_{\mu} = 0$ (6.).
 - **b.** Si $\lambda \in \operatorname{sp}(A) \cap \mathbf{R}$ et $\mu \in \operatorname{sp}(A)$ avec $\Im \mu > 0$, on a

$$\Pi_{\lambda}\Pi_{\mu,\overline{\mu}} = \Pi_{\lambda}\Pi_{\mu} + \Pi_{\lambda}\Pi_{\overline{\mu}} = 0.$$

c. Si $\lambda, \mu \in \operatorname{sp}(A) \cap \mathbf{R}$ avec $\Im \lambda > 0$ et $\Im \mu > 0$, on a

$$\Pi_{\lambda} \overline{\lambda} \Pi_{\mu,\overline{\mu}} = \Pi_{\lambda} \Pi_{\mu} + \Pi_{\lambda} \Pi_{\overline{\mu}} + \Pi_{\overline{\lambda}} \Pi_{\mu} + \Pi_{\overline{\lambda}} \Pi_{\overline{\mu}} = 0.$$

On en déduit le résultat.

Classification topologique des flots contractants

11. On fixe $A \in M_n^-(\mathbf{R})$. Soient $z_1, \dots, z_k \in \mathbf{C}$ les racines de

$$P(z) := \det(z - A) = z^n + a_1 z^{n-1} + \dots + a_n,$$

de multiplicités respectives m_1, \ldots, m_k . On fixe $\varepsilon > 0$ tels que les disques $\overline{D}(z_j, \varepsilon), j = 1, \ldots, k$ soient deux à deux disjoints et n'intersectent pas l'axe imaginaire. Alors pour $j = 1, \ldots, k$, P ne s'annule pas sur $\partial D(z_j, \varepsilon)$. On pose

$$\delta := \min_{1 \le j \le k} \min_{z \in \partial D(z_j, \varepsilon)} \frac{|P(z)|}{1 + \dots + |z|^{n-1}} > 0.$$

Soit \mathscr{U} un voisinage de A dans $M_n(\mathbf{R})$ tel que pour tout $B \in \mathscr{U}$, le polynôme caractéristique de B a pour la forme

$$\det(z - B) = Q(z) = z^n + b_1 z^{n-1} + \dots + b_n, \quad \forall 1 \le \ell \le n, \ |b_\ell - a_\ell| < \delta.$$

Par conséquent, pour tous $1 \le j \le k$ et $z \in \partial D(z_j, \varepsilon)$

$$|Q(z) - P(z)| \le \sum_{\ell=1}^{n} |b_{\ell} - a_{\ell}| |z|^{n-\ell} < \delta(|z|^{n-1} + \dots + 1) \le |P(z)|.$$

Il suit du théorème de Rouché que Q a m_j racines dans $D(z_j,\varepsilon)$ (compté avec multiplicité) pour chaque $j=1,\ldots,k$. Ce sont toutes les racines de Q en raison de degré. Ainsi, si $\lambda\in\operatorname{sp}(B)$, il existera $1\leq j\leq k$ tels que $|\Re\lambda-\Re z_j|\leq |\lambda-z_j|<\varepsilon$. Il suit que $\Re\lambda<\Re z_j+\varepsilon\leq -\alpha(A)+\varepsilon$. Donc

$$-\alpha(B) = \max_{\lambda \in \operatorname{sp}(B)} \Re \lambda < -\alpha(A) + \varepsilon < 0,$$

i.e. $\alpha(B) > \alpha(A) - \varepsilon$. De plus, supposons sans perde de généralité que que $\Re z_1 = \max_{1 \le j \le k} \Re z_j = -\alpha(A)$. Soit $\lambda_1 \in D(z_1, \varepsilon) \cap \operatorname{sp}(B)$, alors $|\Re \lambda_1 - \Re z_1| \le |\lambda_1 - z_1| < \varepsilon$. Il suit que

$$-\alpha(B) = \max_{\lambda \in \operatorname{sp}(B)} \Re \lambda \ge \Re \lambda_1 > \Re z_1 - \varepsilon = -\alpha(A) - \varepsilon,$$

i.e. $\alpha(B) < \alpha(A) + \varepsilon$. On conclut que $\mathscr{U} \subseteq M_n^-(\mathbf{R})$ et que pour tout $B \in \mathscr{U}$, $|\alpha(B) - \alpha(A)| < \varepsilon$. Ainsi, $M_n^-(\mathbf{R})$ est une partie ouverte de $M_n(\mathbf{R})$ et l'application $\alpha: M_n^-(\mathbf{R}) \to \mathbf{R}_{>0}$ est continue.

12. Soit $\|\cdot\|$ la norme euclidienne sur \mathbf{R}^n . Pour $A\in M_n^-(\mathbf{R}),$ on définit

$$\forall x \in \mathbf{R}^n, \qquad \|x\|_A := \sqrt{\int_0^\infty e^{2s\beta(A)} \|e^{sA}x\|^2 ds},$$
 (2)

qui est bien défini. En effet, soient $d \in]\beta(A), \alpha(A)[$ et C > 0 tels que

$$\forall x \in \mathbf{R}^n, \forall s \ge 0, \qquad \left\| e^{sA} x \right\| \le C e^{-ds} \left\| x \right\|.$$

Alors

$$\int_{0}^{\infty}e^{2s\beta(A)}\left\Vert e^{sA}x\right\Vert ^{2}\,ds\leq C^{2}\left\Vert x\right\Vert ^{2}\int_{0}^{\infty}e^{2s(\beta(A)-d)}\,ds=\frac{C^{2}\left\Vert x\right\Vert ^{2}}{2(d-\beta(A))}<+\infty.$$

De plus, (2) définit une norme. En effet, cette norme est induite par un produit scalaire $\langle\cdot,\cdot\rangle_A$ défini par

$$\forall x, y \in \mathbf{R}^n, \qquad \langle x, y \rangle_A = \int_0^\infty e^{2s\beta(A)} \left\langle e^{sA} x, e^{sA} y \right\rangle ds.$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel. Soit $x \in \mathbf{R}^n$ et $t \geq 0$, on a

$$\begin{split} \left\| e^{tA} x \right\|_{A} &= \sqrt{\int_{0}^{\infty} e^{2s\beta(A)} \left\| e^{(t+s)A} x \right\|^{2} \, ds} \\ &= \sqrt{\int_{t}^{\infty} e^{2(u-t)\beta(A)} \left\| e^{uA} x \right\|^{2} \, du} \\ &\leq \sqrt{e^{-2t\beta(A)} \int_{0}^{\infty} e^{2u\beta(A)} \left\| e^{uA} x \right\|^{2} \, du} \\ &= e^{-t\beta(A)} \left\| x \right\|_{A}. \end{split}$$

Montrons finalement que l'application

$$M_n^-(\mathbf{R}) \times \mathbf{R}^n \to \mathbf{R}_{\geq 0}, \qquad (A, x) \mapsto \|x\|_A^2$$

est continue. Fixons $A \in M_n^-(\mathbf{R}), x \in \mathbf{R}^n$ et $\varepsilon > 0$. Contrôlons tout d'abord le terme

$$\int_{M}^{\infty} e^{2s\beta(B)} \left\| e^{sB} y \right\|^{2} ds$$

pour M assez grand et (B, y) assez proche de (A, x).

La matrice e^A est hyperbolique, à valeur propres ayant module au plus $e^{-\alpha(A)}$. D'après le cours, on sait (en utilisant la forme normale de Jordan) qu'il existe une norme adaptée $\|\cdot\|'$ sur \mathbf{R}^n tel que $\||e^A\||' < e^{-d}$ (rappelons que $\alpha(A) > d > \beta(A)$). Si B est assez proche de A, on aura $\||e^B\||' < e^{-d}$. Posons

$$C_1 := \max_{\substack{0 \le \gamma \le 1 \\ \|y\|' = 1}} e^{\gamma d} \|e^{\gamma}y\|' > 0.$$

Pour $s \ge 0$, écrivons $s = m + \gamma$ avec $m \in \mathbb{N}$ et $\gamma \in [0,1[$. On a, pour tout y tel que ||y||' = 1 et tout $B \in M_n(\mathbb{R})$ assez proche de A

$$||e^{sB}y||' \le (|||e^{B}|||')^m ||e^{\gamma}y||' < e^{-md}C_1e^{-\gamma d} = C_1e^{-sd}.$$

Il suit que, pour tout B assez proche de A

$$\forall y \in \mathbf{R}^n, \quad \|e^{sB}y\|' \le C_1 e^{-sd} \|y\|'.$$

Finalement, soit $C_2 > 0$ tel que

$$\forall y \in \mathbf{R}^n, \qquad \|y\| \le C_2 \|y\|'.$$

Pour tout B assez proche de A est tout $y \in \mathbb{R}^n$

$$\begin{split} \int_{M}^{\infty} e^{2s\beta(B)} \left\| e^{sB} y \right\|^{2} \, ds &\leq C_{2}^{2} \int_{M}^{\infty} e^{2s\beta(B)} \left(\left\| e^{sB} y \right\|' \right)^{2} \, ds \\ &\leq C_{1}^{2} C_{2}^{2} \int_{M}^{\infty} e^{2s(\beta(B) - d)} \left\| y \right\|' \, ds \\ &= \frac{C_{1}^{2} C_{2}^{2} (\left\| y \right\|')^{2}}{2(d - \beta(B))} e^{2M(\beta(B) - d)}. \end{split}$$

(car $\beta(B) < d$). Soit \mathscr{U} un voisinage de A dans $M_n(\mathbf{R})$ tel que $d - \beta(B) \ge \rho$ pour tout $B \in \mathscr{U}$ et un certain $\rho > 0$ ne dépendant pas de B. Soit U un voisinage de x dans \mathbf{R}^n tel que $\|y\|' < 2 \|x\|'$ pour tout $y \in U$. On a

$$\forall M > 0, \forall (B, y) \in \mathscr{U} \times U, \quad \int_{M}^{\infty} e^{2s\beta(B)} \left\| e^{sB} y \right\|^{2} ds \leq \frac{2C_{1}^{2} C_{2}^{2} (\left\| x \right\|')^{2}}{\rho} e^{-2M\rho}.$$

On choisit $M_0 > 0$ tel que

$$\frac{2C_1^2C_2^2(\|x\|')^2}{\rho}e^{-2M_0\rho} < \frac{\varepsilon}{3}.$$

Pour tout $(B, y) \in \mathcal{U} \times U$, on a

$$\left| \int_{M_0}^{\infty} e^{2s\beta(B)} \left\| e^{sB} y \right\|^2 ds - \int_{M_0}^{\infty} e^{2s\beta(A)} \left\| e^{sA} x \right\|^2 ds \right| < \frac{2\varepsilon}{3}.$$

Quitte à choisir \mathcal{U} et U plus petit, on peut supposer que

$$\forall (s,B,y) \in \left[0,M_0\right] \times \mathscr{U} \times U, \quad \left|e^{2s\beta(B)} \left\|e^{sB}y\right\|^2 - e^{2s\beta(A)} \left\|e^{sA}x\right\|^2\right| < \frac{\varepsilon}{3M_0}.$$

Donc, pour (B, y) assez proche de (A, x)

$$\left| \int_0^{M_0} e^{2s\beta(B)} \left\| e^{sB} y \right\|^2 ds - \int_0^{M_0} e^{2s\beta(A)} \left\| e^{sA} x \right\|^2 ds \right| < \frac{\varepsilon}{3}.$$

On conclut alors que $\left| \|y\|_B^2 - \|x\|_A^2 \right| < \varepsilon$ si (B, y) est assez proche de (A, x). Autrement dit, l'application $(A, x) \mapsto \|x\|_A$ est continue.

13. Soit $A \in M_n^-(\mathbf{R})$, on a $\alpha(A) > 0$ et $\beta(A) > 0$. Il suit que pour tout $x \in \mathbf{R}^n \setminus \{0\}$ et tous $t > s \in \mathbf{R}$, on a

$$\left\|e^{tA}x\right\|_{A}=\left\|e^{(t-s)A}e^{sA}x\right\|_{A}\leq e^{(s-t)\beta(A)}\left\|e^{sA}x\right\|_{A}<\left\|e^{sA}x\right\|_{A},$$

i.e. la fonction $t \mapsto \|e^{tA}x\|_A$ est décroissante et continue. De 12., on a

$$\forall t \geq 0, \qquad \left\|e^{tA}x\right\|_{A} \leq e^{-t\beta(A)} \left\|x\right\|_{A}, \qquad \left\|e^{-tA}x\right\|_{A} \geq e^{t\beta(A)} \left\|x\right\|_{A}.$$

Ainsi

$$\lim_{t\to +\infty} \left\|e^{tA}x\right\|_A = 0, \qquad \lim_{t\to -\infty} \left\|e^{tA}x\right\|_A = +\infty.$$

Il exite un unique $\tau_A(x) \in \mathbf{R}$ tel que $\|e^{\tau_A(x)}x\|_A = 1$, i.e. $e^{\tau_A(x)}x \in S_A$.

14. Montrons que l'application $(A,x)\mapsto \tau_A(x)$ est continue de $M_n^-(\mathbf{R})\times (\mathbf{R}^n\setminus 0)$ dans \mathbf{R} . Soit $A_n\to A$ et $x_n\to x$. On pose $t_n:=\tau_{A_n}(x_n)$. Pour tout n, si $\|x_n\|_{A_n}\geq 1$, alors $t_n\geq 0$, donc $1=\left\|e^{t_nA_n}x_n\right\|_{A_n}\leq e^{-t_n\beta(A_n)}\left\|x_n\right\|_{A_n}$. Il suit que $t_n\leq \frac{\ln\|x_n\|_{A_n}}{\beta(A_n)}$. Si $0<\|x_n\|_{A_n}<1$, alors $t_n<0$, donc $1=\left\|e^{t_nA_n}x_n\right\|_{A_n}\geq e^{-t_n\beta(A_n)}\left\|x_n\right\|_{A_n}$. Il suit que $t_n\geq \frac{\ln\|x_n\|_{A_n}}{\beta(A_n)}$. Dans tous cas, on a

$$\forall n, \qquad |t_n| \le \frac{\left|\ln \|x_n\|_{A_n}\right|}{\beta(A_n)},$$

(valable même si $x_n = 0$), qui converge vers $\frac{|\ln|x||_A|}{\beta(A)}$ (en particulier, il est borné). Donc la suite $(t_n)_n$ admet au moins une valeur d'adhérence. Soit t une telle valeur. Alors $||e^{tAx}x|| = 1$. Par unicité de $\tau_A(x)$, on a nécessairement $t = \tau_A(x)$. Donc $\tau_A(x)$ est la seule valeur d'adhérence de la suite $(t_n)_n$. Ainsi $\tau_{A_n}(x_n) \to \tau_A(x)$ comme désiré.

La même preuve donne $\tau_{A_n}(x_n) \to -\infty$ si x = 0. Ainsi $(A, x) \mapsto \varphi(A)(x)$ est continue $M_n^-(\mathbf{R}) \times \mathbf{R}^n \to \mathbf{R}^n$.

15. En effet, $\varphi(A)(x) = e^{\tau_A(x)}e^{\tau_A(x)A}x$ pour tout $x \in \mathbf{R}^n \setminus \{0\}$, car $e^{\tau_A(x)A}x$ est déjà dans S_A . Soit $\psi(A): \mathbf{R}^n \to \mathbf{R}^n$ donnée par $\psi(A)(0) = 0$ et $\psi(A)(y) = e^{-(\ln\|y\|_A)A}h_A(y)$. Bien sûr, $\psi(A)$ est continue en tout point de $\mathbf{R}^n \setminus \{0\}$. De plus, pour $y \in \mathbf{R}^n \setminus \{0\}$ tel que $\|y\|_A < 1$, on a $-\ln \|y\|_A > 0$, donc

$$\|\psi(A)(y)\|_A \leq e^{\ln\|y\|_A\beta(A)}\, \|h_A(y)\|_A = \|y\|_A^{\beta(A)} \to 0$$

quand $y \to 0$. D'où la continuité de $\psi(A)$ en 0.

Soit $x \in \mathbf{R}^n \setminus \{0\}$. On a $\|\varphi(A)(x)\|_A = e^{\tau_A(x)} \|e^{\tau_A(x)A}\|_A = e^{\tau_A(x)}$, donc

$$\begin{split} \psi(A)(\varphi(A)(x)) &= e^{-(\ln\|\varphi_A(x)\|_A)A} h_A(\varphi_A(x)) \\ &= e^{-\tau_A(x)A} \left(\frac{\varphi_A(x)}{e^{\tau_A(x)}}\right) \\ &= e^{-\tau_A(x)A} \left(\frac{e^{\tau_A(x)}e^{\tau_A(x)A}x}{e^{\tau_A(x)}}\right) \\ &= x. \end{split}$$

De même, pour tout $y \in \mathbf{R}^n \setminus \{0\}$, on voit facilement que

$$\left\| e^{(\ln \|y\|_A)A} \psi(A)(y) \right\|_A = \|h_A(y)\|_A = 1,$$

donc $\tau_A(\psi(A)(y)) = \ln \|y\|_A$. Il suit que

$$\varphi(A)(\psi(A)(y)) = e^{\ln \|y\|_A} e^{(\ln \|y\|_A)A} \psi(A)(y)$$

$$= \|y\|_A h_A(y)$$

$$= y.$$

Donc $\varphi(A)$ est un homémorphisme. De plus, pour $x \in \mathbf{R}^n \setminus \{0\}$ et $t \in \mathbf{R}$

$$\left\| e^{(\tau_A(x) - t)A} e^{tAx} \right\|_A = 1,$$

donc $\tau_A(e^{tA}x) = \tau_A(x) - t$. Il suit que

$$\varphi(A)(e^{tA}x) = e^{\tau_A(x) - t}e^{(\tau_A(x) - t)A}e^{tA}x = e^{-t}e^{\tau_A(x)}e^{\tau_A(x)A}x = e^{-t}\varphi(A)(x).$$

Ainsi, $e^{-t}\varphi(A) = \varphi(A) \circ e^{tA}$ pour tout $t \in \mathbf{R}$.

16. Il suit de **15.** que $\varphi(A)$ est une conjugaison entre les flots e^{tA} et $e^{-t i d_n}$.

Stabilité structurelle des flots linéaires hyperboliques

17. On pose

$$\tilde{E}^{s}(A) := \left(\bigoplus_{\lambda \in \operatorname{sp}(A) \cap \mathbf{R}_{>0}} C_{\lambda, \mathbf{R}}\right) \oplus \left(\bigoplus_{\substack{\lambda \in \operatorname{sp}(A) \setminus \mathbf{R} \\ \Re \lambda > 0, \\ \Im \lambda > 0}} C_{\lambda, \overline{\lambda}}\right)$$

et

$$\tilde{E}^{u}(A) := \left(\bigoplus_{\lambda \in \operatorname{sp}(A) \cap \mathbf{R}_{<0}} C_{\lambda, \mathbf{R}}\right) \oplus \left(\bigoplus_{\substack{\lambda \in \operatorname{sp}(A) \setminus \mathbf{R} \\ \Re \lambda < 0, \\ \Re \lambda > 0}} C_{\lambda, \overline{\lambda}}\right).$$

Alors $\mathbf{R}^n = \tilde{E}^s(A) \oplus \tilde{E}^u(A)$. Posons $A_s := A|_{\tilde{E}^s(A)}$ et $A_u := A|_{\tilde{E}^u(A)}$. On obtient $A_s \in M^-_{m(A)}(\mathbf{R})$ et $-A_u \in M^-_{n-m(A)}(\mathbf{R})$. De $\mathbf{12}$, on a $\tilde{E}^s(A) \subseteq E^s(A)$ et $\tilde{E}^u(A) \subseteq E^u(A)$, donc $\mathbf{R}^n = E^s(A) + E^u(A)$. De plus, si $x \in E^s(A) \cap E^u(A)$, on peut écrit $x = x_s + x_u$ avec $x_s \in \tilde{E}^s(A)$ et $x_u \in \tilde{E}^u(A)$. Il suit que

$$e^{tA_u}x_u = e^{tA}x_u = e^{tA}x - e^{tA}x_s \xrightarrow[t \to +\infty]{} 0.$$

Or $\|x_u\|_{-A_u} \le e^{-t\beta(-A_u)} \|e^{tA_u}x_u\|_{-A_u} \to 0$ quand $t \to +\infty$, donc $\|x_u\|_{-A_u} = 0$, i.e. $x_u = 0$. De même, $x_s = 0$ et on conclut que x = 0. Il suit que $E^s(A) \cap E^u(A) = \{0\}$ et on a une somme directe

$$\mathbf{R}^n = E^s(A) \oplus E^u(A).$$

En particulier, $E^s(A) = \tilde{E}^s(A)$ et $E^u(A) = \tilde{E}^u(A)$.

- 18. Soit U un ouvert borné de $\{z \in \mathbf{C}, \Re z < 0\}$ qui contient $\operatorname{sp}(A) \cap \{z \in \mathbf{C}, \Re z < 0\}$. En utilisant les notations comme celles dans 7., on a $\pi_s(A) = \Pi_U(A)$. Le même argument avec le théorème de Rouché comme celui dans 11. nous donne un voisinage $\mathscr V$ de A dans $M_n(\mathbf{C})$ tel que pour tout $B \in \mathscr V$, on a $B \in \operatorname{Hyp}_n(\mathbf{R})$ et $\operatorname{sp}(B) \cap \{z \in \mathbf{C}, \Re z < 0\} \subseteq U$. Soit $\mathscr U$ un voisinage de A dans $M_n(\mathbf{R})$ tel que toute matrice $B \in \mathscr U$ appartienne aussi à $\mathscr V$. Alors $\Pi_U(B) = \pi_s(B) \in M_n(\mathbf{R})$ pour $B \in \mathscr U$, et $\Pi_U : \mathscr U \to M_n(\mathbf{R})$ définit une fonction continue, car elle est la restriction d'une fonction holomorphe. On en déduit que l'application $A \mapsto \pi_s(A)$ est continue de $\operatorname{Hyp}_n(\mathbf{R})$ dans $\mathscr L(\mathbf{R}^n)^2$. Même argument pour $A \mapsto \pi_u(A)$.
- 19. Soit \mathscr{U} comme dans 18. Puisque dim $E^s(M) = \operatorname{tr} \pi_s(M) \in \mathbf{N}$ et que $M \mapsto \pi_s(M)$ est continue, on a que $M \mapsto \dim E^s(M)$ est localement constante. Soit v_1, \ldots, v_r une base de $E^s(A)$. Alors pour tout M assez proche de A, on a que la famille $(\pi_s(M)v_i)_{i=1,\ldots,r}$ est libre (cette famille dépend continûment de M et vaut $(v_i)_{i=1,\ldots,r}$ pour M=A). Puisque dim $E^s(M) = \dim E^s(A)$ pour M assez proche de A, on a le résultat.

20. On fixe (u_1, \ldots, u_r) une base de $E^s(A)$, que l'on complète en une base (u_1, \ldots, u_n) de \mathbf{R}^n . Alors pour tout M proche de A, la famille

$$\beta(M) = (\pi_s(M)u_1, \dots, \pi_s(M)u_r, u_{r+1}, \dots, u_n)$$

reste libre, ainsi que la famille

$$\tilde{\beta}(M) = (M\pi_s(M)u_1, \dots, M\pi_s(M)u_r, u_{r+1}, \dots, u_n)$$

puisque M préserve $E^s(M)$ et est inversible. On note P(M) la matrice de $\beta(M)$ dans la base $\tilde{\beta}(M)$. Notons

$$P(M) = \begin{pmatrix} Q(M) & 0 \\ 0 & I_{n-r} \end{pmatrix}.$$

Alors par définition, la matrice de $q_s(M)M\pi_s(M)|_{E^s(A)}$ dans la base (u_1,\ldots,u_r) est donnée par Q(M). Il suffit donc de montrer que $M\mapsto Q(M)$ est continue. Ceci sera vrai si $M\mapsto P(M)$ l'est. Or on a (en identifiant les bases $\beta(M), \tilde{\beta}(M)$ avec les matrices les représentant dans la base canonique de \mathbf{R}^n)

$$P(M) = \beta(M)\tilde{\beta}(M)^{-1},$$

ce qui conclut puisque les applications $M \mapsto \beta(M)$, $\tilde{\beta}(M)$ sont continues, et l'inversion est continue $\mathrm{GL}(n,\mathbf{R}) \to \mathrm{GL}(n,\mathbf{R})$.

21. Pour $M \in \mathcal{U}$, les valeurs propres de $M|_{E^s(M)}$ ont parties réelles négatives, celles de \widetilde{M} aussi. On définit $\widetilde{\Phi}_s : \mathcal{U} \times E^s(A) \to E^s(A)$ par

$$\forall (M, x_s) \in E^s(A), \qquad \widetilde{\Phi}_s(M, x_s) := \varphi(A)^{-1} \circ \varphi(\widetilde{M})(x_s)$$

où l'homéomorphisme $\varphi(B): E^s(A) \to E^s(A)$ est défini dans **15.** pour chaque $B \in \mathscr{L}(E^s(A))$ ayant seulement les valeurs propres de partie réelle négative. Alors $\widetilde{\Phi}_s(M,\cdot) = \varphi(A)^{-1} \circ \varphi(\widetilde{M})$ est un homéomorphisme (en particulier, $\widetilde{\Phi}_s(A,\cdot) = \mathrm{id}_{E^s(A)}$). Soient $M \in \mathscr{U}$, $t \in \mathbf{R}$ et $x_s \in E^s(A)$. On a

$$\varphi(A)(e^{tA}\widetilde{\Phi}_s(M,x_s)) = e^{-t}\varphi(A)(\widetilde{\Phi}_s(M,s)) = e^{-t}\varphi(\widetilde{M})(x_s) = \varphi(\widetilde{M})(e^{t\widetilde{M}}x_s).$$

Il suit que

$$e^{tA}\widetilde{\Phi}_s(M,x_s) = \varphi(A)^{-1} \circ \varphi(\widetilde{M})(e^{t\widetilde{M}}x_s) = \widetilde{\Phi}_s(M,e^{t\widetilde{M}}x_s).$$

22. En remplaçant A par -A dans **21.** (et choissisant \mathscr{U} plus petit si nécessaire), on peut supposer que pour chaque $M \in \mathscr{U}$, $\pi_u(M)|_{E^u(A)} : E^u(A) \to E^u(M)$ soit un isomorphisme d'inverse $q_u(M)$ et qu'il existe un application continue $\widetilde{\Phi}_u : \mathscr{U} \times E^u(A) \to E^u(A)$ vérifiant

$$\forall (M, t, x_u) \in \mathscr{U} \times \mathbf{R} \times E^u(A), \qquad e^{tA} \widetilde{\Phi}_u(M, x_u) = \widetilde{\Phi}_u(M, e^{t\widehat{M}} x_u)$$

où $\widehat{M}=q_u(M)M\pi_u(M)|_{E^u(A)}$, telle que $\widetilde{\Phi}_u(M,\cdot):E^u(A)\to E^u(A)$ soit un homéomorphisme pour tout $M\in \mathscr{U}$ et que $\widetilde{\Phi}_u(A,\cdot)=\mathrm{id}_{E^u(A)}$. On définit alors

$$\Phi_s: \mathscr{U} \times \mathbf{R}^n \to E^s(A), \qquad (M, x) \mapsto \widetilde{\Phi}_s(M, q_s(M)\pi_s(M)x)$$

$$\Phi_u: \mathscr{U} \times \mathbf{R}^n \to E^u(A), \qquad (M, x) \mapsto \widetilde{\Phi}_u(M, q_u(M)\pi_u(M)x)$$

et

$$\Phi: \mathscr{U} \times \mathbf{R}^n \to \mathbf{R}^n, \qquad (M, x) \mapsto \Phi_s(M, x) + \Phi_u(M, x).$$

Pour chaque $M \in \mathcal{U}$, on note $\widetilde{\Psi}_s(M,\cdot): E^s(A) \to E^s(A)$ (resp. $\widetilde{\Psi}_u(M,\cdot): E^u(A) \to E^u(A)$) l'inverse de $\widetilde{\Phi}_s(M,\cdot)$ (resp. de $\widetilde{\Phi}_u(M,\cdot)$). Définissons

$$\Psi: \mathscr{U} \times \mathbf{R}^n \to \mathbf{R}^n, \quad (M, x) \mapsto \pi_s(M)\widetilde{\Psi}_s(M, x_s) + \pi_u(M)\widetilde{\Psi}_u(M, x_u)$$

où $x_s = \pi_s(A)x$ et $x_u = \pi_u(A)x$, qui est continue. De plus

$$\begin{split} \Psi(M,\Phi(M,x)) &= \Psi(M,\Phi_s(M,x) + \Phi_u(M,x)) \\ &= \pi_s(M) \widetilde{\Psi}_s(M,\Phi_s(M,x)) + \pi_u(M) \widetilde{\Psi}_u(M,\Phi_u(M,x)) \\ &= \pi_s(M) q_s(M) \pi_s(M) x + \pi_u(M) q_u(M) \pi_u(M) x \\ &= \pi_s(M) x + \pi_u(M) x \\ &= x \end{split}$$

et

$$\begin{split} &\Phi(M,\Psi(M,x))\\ &=\Phi_s(M,\Psi(M,x))+\Phi_u(M,\Psi(M,x))\\ &=\widetilde{\Phi}_s(M,q_s(M)\pi_s(M)\Psi(M,x))+\widetilde{\Phi}_u(M,q_u(M)\pi_u(M)\Psi(M,x))\\ &=\widetilde{\Phi}_s(M,q_s(M)\pi_s(M)\widetilde{\Psi}_s(M,x_s))+\widetilde{\Phi}_u(M,q_u(M)\pi_u(M)\widetilde{\Psi}(M,x_u))\\ &=\widetilde{\Phi}_s(M,\widetilde{\Psi}_s(M,x_s))+\widetilde{\Phi}_u(M,\widetilde{\Psi}(M,x_u))\\ &=x_s+x_u\\ &=x \end{split}$$

On conclut que $\Phi(M,\cdot): \mathbf{R}^n \to \mathbf{R}^n$ est un homéomorphisme pour tout $M \in \mathscr{U}$, et qu'on a une application continue $\mathscr{U} \to \operatorname{Homeo}(\mathbf{R}^n)$, $M \mapsto \Phi(M,\cdot)$ (la topologie sur $\operatorname{Homeo}(\mathbf{R}^n)$ est la topologie compacte-ouverte), car \mathscr{U} et \mathbf{R}^n sont localement compacts. De plus, $\Phi(A,\cdot) = \operatorname{id}_{\mathbf{R}^n}$. Finalement, soit $t \in \mathbf{R}$. On rappelle que

$$\widetilde{\Psi}_s(M, e^{tA}x_s) = e^{t\widetilde{M}}\widetilde{\Psi}_s(M, x_s), \qquad \widetilde{\Psi}_u(M, e^{tA}x_u) = e^{t\widehat{M}}\widetilde{\Psi}_u(M, x_u).$$

Pour tout $M \in \mathcal{U}$, les espaces $E^s(M)$ et $E^u(M)$ sont M-invariants, donc M commute avec les projecteurs $\pi_s(M)$ et $\pi_u(M)$. Il suit que

$$\begin{split} &\Psi(M,e^{tA}x)\\ &=\pi_s(M)\widetilde{\Psi}_s(M,\pi_s(A)e^{tA}x)+\pi_s(M)\widetilde{\Psi}_u(M,\pi_u(A)e^{tA}x)\\ &=\pi_s(M)\widetilde{\Psi}_s(M,e^{tA}x_s)+\pi_u(M)\widetilde{\Psi}_u(M,e^{tA}x_u)\\ &=\pi_s(M)e^{t\widetilde{M}}\widetilde{\Psi}_s(M,x_s)+\pi_u(M)e^{t\widehat{M}}\widetilde{\Psi}_u(M,x_u)\\ &=\pi_s(M)q_s(M)e^{tM}\pi_s(M)\widetilde{\Psi}_s(M,x_s)+\pi_u(M)q_u(M)e^{tM}\pi_u(M)\widetilde{\Psi}_u(M,x_u)\\ &=e^{tM}\pi_s(M)\widetilde{\Psi}_s(M,x_s)+e^{tM}\pi_u(M)\widetilde{\Psi}_u(M,x_u)\\ &=e^{tM}\Psi(M,x). \end{split}$$

Ainsi $e^{tA}\Phi(M,x)=\Phi(M,e^{tM}x)$, i.e. on a donc une conjugaison $\Phi(M,\cdot)$ entre les flots e^{tA} et e^{tM} , qui varie continuement en $M\in \mathscr{U}$ et $\Phi(A,\cdot)=\mathrm{id}_{\mathbf{R}^n}$. En autres termes, le flot e^{tA} est structurellement stable.

Applications : conjugaisons en famille

- **23.** On a discuté l'ouverture des \mathscr{U}_j , $j=0,\ldots,n$ dans **11.** Il reste à montrer leur connexité. Soit $I_j \in \mathscr{U}_j$ la matrice diag $[1,\ldots,1,-1,\ldots,-1]$ (j entrées sont 1). Toute matrice $M \in \mathscr{U}_j$ s'écrit $M = PHP^{-1}$, où $H = \text{diag}[A_1,\ldots,A_r,B_1,\ldots,B_s,C_1,\ldots,C_u,D_1,\ldots,D_v]$ telle que
 - a. Les A_k $(1 \le k \le r)$ sont les blocs de Jordan réels associés aux valeurs propres positives de M.
 - b. Les B_k $(1 \le k \le s)$ sont les blocs de Jordan complexes associés aux valeurs propres de partie réelle positive de M.

- c. Les C_k $(1 \le k \le u)$ sont les blocs de Jordan réels associés aux valeurs propres négatives de M.
- **d.** Les D_k $(1 \le k \le v)$ sont les blocs de Jordan complexes associés aux valeurs propres de partie réelle négative de M.
- **e.** La somme des tailles des A_k et B_k est m(A).
- **f.** det(P) > 0 (on peut remplacer P par -P si nécessaire).

L'ensemble $\operatorname{GL}_n^+(\mathbf{R})$ des matrices de déterminant positif est connexe par arcs, donc on peut trouver un chemin $p(t):[0,1]\to\operatorname{GL}_n^+(\mathbf{R})$ tel que p(0)=P et $p(1)=\operatorname{id}_n$. Trouvons maintenant un chemin dans \mathscr{U}_j reliant H à I_j .

a. Soit
$$1 \le k \le r$$
 et $A_k = \begin{bmatrix} \lambda & 1 \\ & \ddots & \\ & & \lambda \end{bmatrix}$, $\lambda > 0$. Le chemin

$$\forall t \in [0,1] \qquad a_k(t) := \begin{bmatrix} (1-t)\lambda + t & 1-t \\ & \ddots & \\ & & (1-t)\lambda + t \end{bmatrix}$$

relie $a_k(0) = A_k$ à $a_k(1) = \text{diag}[1, ..., 1]$. De plus, les valeurs propres de $a_k(t)$ (qui sont $(1-t)\lambda + t$) sont positives pour tout $t \in [0, 1]$.

b. Soit
$$1 \le k \le s$$
 et $B_k = \begin{bmatrix} Q & \mathrm{id}_2 \\ & \ddots & \\ & & Q \end{bmatrix}$, $Q = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $a > 0$, $b \ne 0$. Le chemin $q(t) := \begin{bmatrix} (1-t)a+t & -b(1-t) \\ b(1-t) & (1-t)a+t \end{bmatrix}$ relie $q(0) = Q$ à $q(1) = \mathrm{id}_2$. Ainsi, le chemin

$$\forall t \in [0,1] \qquad b_k(t) := \begin{bmatrix} q(t) & (1-t) \operatorname{id}_2 \\ & \ddots & \\ & & q(t) \end{bmatrix}$$

relie $b_k(0) = B_k$ à $b_k(1) = \text{diag}[1, ..., 1]$. De plus, les valeurs propres de $b_k(t)$ (qui sont $(1 - t)a + t \pm ib(1 - t)$) sont de partie réelle positive pour tout $t \in [0, 1]$.

c. De même, on peut trouver les chemins c_k reliant C_k à diag $[-1, \ldots, -1]$ $(1 \le k \le u)$ tel que les valeurs propres de $c_k(t)$ sont négatives pour tout $t \in [0, 1]$; et les chemins d_k reliant D_k à diag $[-1, \ldots, -1]$ $(1 \le k \le v)$ tel que les valeurs propres de $d_k(t)$ sont de partie réelle négative pour tout $t \in [0, 1]$.

Ainsi, on a un chemin

$$h := \operatorname{diag}[a_1, \dots, a_r, b_1, \dots, b_s, c_1, \dots, c_n, d_1, \dots, d_n] : [0, 1] \to \mathcal{U}_n$$

reliant h(0) = H à $h(1) = I_j$. En conséquence, on a une chemin

$$\forall t \in [0,1], \quad m(t) := p(t)h(t)p(t)^{-1} \in \mathscr{U}_t$$

reliant $m(0) = PHP^{-1} = M$ à $m(1) = I_i$ dans \mathcal{U}_i . Donc \mathcal{U}_i est connexe par arcs.

24. De **22.**, pour tout $s \in [0,1]$, il existe un voisinage $\mathcal{V}_s \subseteq \mathcal{U}_j$ de M(s) et une application continue $\Phi_s : \mathcal{V}_s \times \mathbf{R}^n \to \mathbf{R}^n$ telle que pour tout $s' \in [0,1]$ avec $M(s) \in \mathcal{V}_s$, on ait une conjugaison $\Phi_s(s',\cdot)$ entre les flots $e^{tM(s)}$ et $e^{tM(s')}$; et que $\Phi_s(s,\cdot) = \mathrm{id}_{\mathbf{R}^n}$.

Soient $0 = s_0 < s_1 < \dots < s_k = 1$ tels que pour chaque $1 \le k \le m$, $M([s_{k-1}, s_k]) \subseteq \mathcal{V}_k := \mathcal{V}_{s_{k-1}}$ (par compacité et connexité). On note $\Phi_k := \Phi_{s_{k-1}}$ pour $1 \le k \le m$. On définit une application continue

$$F_k: [s_{k-1}, s_k] \to \operatorname{Homeo}(\mathbf{R}^n), \quad s \mapsto \Phi_1(s_1, \cdot) \circ \cdots \circ \Phi_{k-1}(s_{k-1}, \cdot) \circ \Phi_k(s, \cdot).$$

pour chaque $1 \leq k \leq m$. Pour tout $(s,t) \in [s_{k-1},s_k] \times \mathbf{R}$, on a

$$\begin{split} F_k(s) \circ e^{tM(s)} &= \Phi_1(s_1,\cdot) \circ \cdots \circ \Phi_{k-1}(s_{k-1},\cdot) \circ \Phi_k(s,\cdot) \circ e^{tM(s)} \\ &= \Phi_1(s_1,\cdot) \circ \cdots \circ \Phi_{k-1}(s_{k-1},\cdot) \circ e^{tM(s_{k-1})} \circ \Phi_k(s,\cdot) \\ &\vdots \\ &= \Phi_1(s_1,\cdot) \circ e^{tM(s_1)} \circ \cdots \circ \Phi_k(s,\cdot) \\ &= e^{tM(s_0)} \circ \Phi_1(s_1,\cdot) \circ \cdots \Phi_1(s_1,\cdot) \\ &= e^{tA} \circ F_k(s). \end{split}$$

Or, pour $1 \le k \le m-1$, on a $\Phi_{k+1}(s_k) = \mathrm{id}_{\mathbf{R}}^n$, donc $F_k(s_k) = F_{k+1}(s_k)$. On peut définir donc une application continue $\Psi : [0,1] \times \mathbf{R}^n \to \mathbf{R}^n$ en posant $\Psi(s,x) := F_k(s)(x)$ lorsque $s_{k-1} \le s \le s_k$. De plus,

 $e^{tA}\Psi(s,x) = e^{tA}F_k(s)(x) = F_k(s)(e^{tM(s)}x) = \Psi(s,e^{tM(s)}x).$