实验操作:中文医学短文本分类

宗辉, 李作峰

意义

- •了解词向量和TF-IDF的概念。
- •基于Sklearn+JupyterNotebook, 学会机器学习模型的基本使用。
- · 能够训练模型解决医学临床中的自然语言处理问题(如文本分类等)。
- •基于Pyramid+Docker,将模型搭建为网页应用。

实验目标

•成功搭建自己的AI应用

实验介绍

在本次实验中,我们给定事先定义好的15种类别和一系列中文临床短文本的描述语句,要求返回每一条输入短文本的具体类别。如:

No.	Category	No.	Category
1	Addictive Behavior	9	Laboratory Examinations
2	Age	10 Life Expectancy	
3	Allergy Intolerance	11	Organ or Tissue Status
4	Compliance with Protocol	12	Pharmaceutical Substance or Drug
5	Consent	13	Risk Assessment
6	Diagnostic	14	Smoking Status
7	Disease	15	Therapy or Surgery
8	Enrollment in other studies		

ID	输入(筛选标准)	输出(类别)
s1	年龄>80 岁	Age
s2	近期颅内或椎管内手术史	Therapy or Surgery
s 3	血糖<2.7mmol/L	Laboratory Examinations

实验数据

- 数据特点: 自由文本格式, 短文本, 非结构化, 中文, 医学相关。
- ・训练数据8000条:

category	sentence	
Diagnostic	(2)若伴便秘者符合罗马IV功能性便秘诊断标准,若伴夜尿症者符合夜尿症的诊断标准;	0
Therapy or Surgery	(1) 患者拟行急症手术;	1
Enrollment in other studies	c) 在过去6个月内参加过I、II期临床试验或者3个月内参加过III、IV期临床试验;	2
Risk Assessment	4. 身高體重指數(BMI)>=25得病人	3
Consent	5.愿意参与该研究并配合调查者;	4

・ 测试数据2000条:

	sentence
0	1.符合脓毒症诊断Sepsis 3.0版标准;
1	1) 符合WHO对不孕症的诊断标准;
2	3. 肿瘤直径 ≥8mm且≤30mm;
3	8.合并其他运动可能加重的神经、肌肉、骨骼肌、风湿性疾病;
4	2. 符合国际疾病分类 (ICD-10) 编码 J21 的毛细支气管炎诊断标准。

训练数据类别&数目:

	category	count
0	Addictive Behavior	196
1	Age	638
2	Allergy Intolerance	430
3	Compliance with Protocol	294
4	Consent	874
5	Diagnostic	794
6	Disease	1177
7	Enrollment in other studies	358
8	Laboratory Examinations	755
9	Life Expectancy	101
10	Organ or Tissue Status	258
11	Pharmaceutical Substance or Drug	578
12	Risk Assessment	442
13	Smoking Status	33
14	Therapy or Surgery	1072

实验环境

•实验平台: Anaconda3, JupyterNotebook, Python3, Docker

已经预装好

• 所需python包: pandas, numpy, codecs, scikit-learn==0.21, jieba, wordcloud, cornice, xlrd, pickle5, joblib, scipy

pip install -r requirements.txt

词向量-TFIDF

- TF-IDF全称Term Frequency Inverse Document Frequency,是一种文本特征提取算法,由两部分组成。
- 词频(TF): 文本中各个词的出现频率统计, 是词语出现的次数除以该文件的总词语数。
- 逆文档频率(IDF):是文档频率(DF)的倒数,DF是出现某词语的文档数除以总文档数。

- TF-IDF可通过scikit-learn计算。
- 按词频排序,选取前1000个词, 显示如右所示。

机器学习-分类模型

- 逻辑回归, Logistic Regression
- 支持向量机, Support Vector Machine
- K近邻算法, K Nearest Neighbors
- 朴素贝叶斯, Naive Bayes
- 神经网络, Neural network

以上模型实现的代码,均在对应的Jupyter Notebook中

神经网络

• 超参数

- 学习率(learning rate)
- 权值初始化(Weight Initialization)
- 网络层数(Layers)
- 单层神经元数(Units)

输入层 (1000神经元)

- 随机梯度算法(SGD)
 - 迭代期(Epoch)
 - 批大小(mini-batch)

动手操作-一共三个步骤

https://github.com/zonghui0228/cn_med_text_class

➤ 下载git仓库:

git clone https://github.com/zonghui0228/cn_med_text_class

- ➤ 基于JupyterNotebook,训练机器学习分类器模型 KNN,LR, NB, SVM任选其一
- ➤ 基于Docker,搭建pyramid使用界面

docker run -it -d -p 6543:6543 zonghui0228/cn_med_text_class

动手操作-步骤1,下载github项目

- ➤ 在桌面上建立一个文件夹命名为experiment。
- ➤ 进入文件夹,按住shift,点击鼠标右键,选择Open Powershell Window here。
- ➤ 输如命令,从github下载实验相关文件。
 git clone https://github.com/zonghui0228/cn_med_text_class
- 产在powershell window中输入下述命令,按照python依赖包。
 pip install -r requirements.txt

动手操作-步骤2,训练自己的模型

- ➤ 在powershell window中输如 jupyter notebook,会弹出网页的编辑界面。
- → 进入notebooks文件夹,选择一个模型文件如
 (logistic_regression.ipynb),点开,按照操作步骤运行,训练机器学习模型。
- ➤ 输如命令,从github下载实验相关文件。

git clone https://github.com/zonghui0228/cn_med_text_class

动手操作-步骤3,创建自己的AI网页应用

- ➤ 通过WinSCP+puttty进入服务器,创建文件夹model,并将刚才训练好的三个模型文件移动到该文件夹下。
- ➤ 通过docker启动基于pyramid搭建的网页应用。

 docker run -it -d -p 6543:6543 zonghui0228/cn_med_text_class

这个地方更改为任意端口数字

这是容器id,通过docker ps -a查询

> 将自己的模型文件加载进去。

docker cp ./ CONTAINER_ID:/home/zonghui/mynginx/myproj/myproj/views/model/mymodel

➤ 在window中打开网页,输入 http://jp:6543/index

这个地方是服务器的ip地址,通过ifconfig命令查看

这与上面的数字同步