Lecture 3: Advanced Strategic Form Games

Instructor: Fei Tan

Saint Louis University

Date: September 18, 2025

The Road Ahead

- 1. Probability Distributions
- 2. Mixed Strategy Nash Equilibrium
- 3. Comparative Statics
- 4. Rock-Paper-Scissors Game

Probability Distributions

A **probability distribution** is a set of events and the probability each event occurs **Examples**:

- Coin flip: P(Heads) = 1/2, P(Tails) = 1/2
- Die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- Roulette: P(Red) = 18/38, P(Black) = 18/38, P(Green) = 2/38

Connection to game theory: Mixed strategies are probability distributions over pure strategies. Why This Matters?

- We'll work with complex probabilities like $\frac{x}{x+y+z}$
- Need to verify whether expressions form valid probability distributions
- Foundation for solving multi-strategy games

Golden Rules of Probability Distributions

Rule 1: All events occur with probability ≥ 0

Rule 2: The sum of all probabilities equals 1

Four key implications:

- 1. **No probability > 1**: If some probability exceeded 1, others would need to be negative to sum to 1
- 2. **Complete specification**: Cannot leave gaps (e.g., "world ends tomorrow with probability 1/100")
- 3. **Solving for unknowns**: If probabilities sum to 1, unknown probability = 1 sum of known probabilities
- 4. Pure strategies are special cases: P(chosen strategy) = 1, P(all others) = 0

Example: Generalized Battle of Sexes

Payoff matrix with variables constraints: A > B > C and a > b > c

	Left	Right
Up	В, а	C, c
Down	C, c	A, b

Mixed strategy equilibrium:

- Player 1 plays Up with probability $\frac{b-c}{a+b-2c}$
- Player 1 plays Down with probability $\frac{a-c}{a+b-2c}$
- Player 2 plays Left with probability $\frac{A-C}{A+B-2C}$
- Player 2 plays Right with probability $\frac{B-C}{A+B-2C}$

Key insight: Each player's mixing probability depends on the opponent's payoffs!

Example: Generalized Prisoner's Dilemma

Payoff matrix with variable constraints: T > R > P > S and t > r > p > s

	Left (Cooperate)	Right (Defect)
Up (Cooperate)	R, r	S, t
Down (Defect)	T, s	Р, р

Variable meanings:

- **T/t** = Temptation (defect when opponent cooperates)
- **R/r** = Reward (mutual cooperation)
- **P/p** = Punishment (mutual defection)
- **S/s** = Sucker (cooperate when opponent defects)

Result: Unique pure strategy Nash equilibrium at (Down, Right) = (Defect, Defect)

Why No Mixed Strategy Equilibrium?

Strict dominance analysis:

- Down strictly dominates Up for Player 1 (T > R and P > S)
- Right strictly dominates Left for Player 2 (t > r and p > s)

Mixed strategy algorithm:

Setting Player 2 indifferent $ightarrow \sigma_{up}(r+p-s-t)=p-s$

- 1. Case 1: $r+p-s-t=0 \Rightarrow 0=p-s \Rightarrow$ Contradiction since p>s
- 2. Case 2: r+p-s-t<0 $ightarrow \sigma_{up}<0$ ightarrow Invalid probability
- 3. Case 3: r+p-s-t>0 $ightarrow \sigma_{up}>1$ ightarrow Invalid probability

Key insight: Strict dominance eliminates all mixed strategy possibilities

Support of Mixed Strategies

A strategy is in the support if it's played with positive probability (> 0)

Golden rule: All strategies in the support must yield equal expected utility in equilibrium.

- If one strategy was better, the player would use it exclusively (probability = 1)
- Indifference principle: Opponents make you indifferent among your support strategies

Important caveat: Equal expected utility is necessary but not sufficient

- Some strategies may yield equal expected utility but still not be played
- Multiple equilibria can exist with different support structures

Weak Dominance

If one player mixes among all strategies, the opponent **cannot** use weakly dominated strategies in equilibrium.

Take-or-Share Game:

	Take	Share
Take	0, 0	8, 4
Share	0, 8	4, 4

Analysis: If Player 2 mixes between Take and Share, Player 1 must choose Take:

- When P2 plays Take: P1 gets 0 from either Take or Share (tie)
- When P2 plays Share: P1 gets 8 from Take vs 4 from Share (Take wins)
- Take yields strictly higher expected utility → P1 never plays Share

Key insight: Mixing converts weak dominance into **strict dominance**, eliminating strategies and simplifying equilibrium calculations

Comparative Statics

Study of how changes in game parameters affect equilibrium outcomes

Four-step process:

- 1. Solve for the game's equilibria
- 2. Calculate the element of interest (probabilities, payoffs, outcomes)
- 3. Take the derivative with respect to the parameter
- 4. Analyze how parameter changes affect the element

Key insight: Game theory often produces counterintuitive results!

Example: Soccer Penalty Kicks

Kicker has perfect accuracy right, accuracy x (where 0 < x < 1) aiming left

	Goalie: Left	Goalie: Right	
Kicker: Left	0, 0	x, -x	
Kicker: Right	1, -1	0, 0	

Mixed Strategy Nash Equilibrium:

- Goalie dives left with probability $\frac{x}{1+x}$
- Kicker aims left with probability $\frac{1}{1+x}$

Comparative static: $\frac{d}{dx} \left(\frac{1}{1+x} \right) = -\frac{1}{(1+x)^2} < 0 \rightarrow$ As kicker's left accuracy improves, he kicks left less frequently!

Strategic interaction: Goalie anticipates kicker's improved left accuracy and guards left more → kicker exploits the now less-defended right side → improved accuracy paradoxically shifts play toward the strong side

Example: Volunteer's Dilemma

Two neighbors hear woman being attacked, must decide whether to call police. Woman's life worth 1, death worth 0; calling costs c where 0 < c < 1

	Call	Ignore	
Call	1-с, 1-с	1-c, 1	
Ignore	1, 1-c	0, 0	

Mixed Strategy Nash Equilibrium: Each player calls with probability 1-c

Comparative static: Probability no one calls = $c^2 o rac{d}{dc}(c^2) = 2c > 0$

Bystander effect: More potential helpers \rightarrow less help! Each assumes someone else will act, creating coordination failure (e.g. public goods provision) \rightarrow need clear assignment of responsibility

Example: Hawk-Dove Game

Two states decide whether to be aggressive (Hawk) or peaceful (Dove); v is the prize value and c is the cost of fighting.

	Dove	
Hawk	$rac{v}{2}-c,rac{v}{2}-c$	v,0
Dove	0, v	$\frac{v}{2}, \frac{v}{2}$

Equilibrium depends on parameters:

- If $rac{v}{2}>c$: Both play Hawk (war certain)
- If $\frac{v}{2} < c$: Pure strategy (Hawk, Dove) and (Dove, Hawk); Mixed strategy with $P({
 m Hawk}) = \frac{v}{2c}$

Comparative static: Probability of war = $\frac{v^2}{4c^2} \rightarrow \frac{d}{dc} \left(\frac{v^2}{4c^2} \right) = -\frac{v^2}{2c^3} < 0$

Paradox of peace: Higher war costs → lower probability of war!

Rock-Paper-Scissors Game

	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

Observations:

- Cyclical dominance: No pure strategy Nash equilibria
- Any two-strategy support is exploitable: Omitted third strategy beats both members of the support
- Exploitation gives the opponent a guaranteed positive payoff and forces the mixer to a negative expected payoff—impossible in symmetric zero-sum equilibrium
- Conclusion: Both players must mix over all three strategies with probability $\frac{1}{3}$ for each strategy

Generalized Rock-Paper-Scissors Game

	Rock	Paper	Scissors
Rock	0, 0	-x, x	у, -у
Paper	x, -x	0, 0	-z, z
Scissors	-у, у	z, -z	0, 0

Player 1's expected utilities (Player 2 uses $\sigma_{
m rock} + \sigma_{
m paper} + \sigma_{
m scissors} = 1$):

- ullet $EU_{
 m Rock} = -x\sigma_{
 m paper} + y\sigma_{
 m scissors}$
- $EU_{\mathrm{Paper}} = x\sigma_{\mathrm{rock}} z\sigma_{\mathrm{scissors}}$
- $EU_{\text{Scissors}} = -y\sigma_{\text{rock}} + z\sigma_{\text{paper}}$

Mixed Strategy Equilibrium:

- ullet Play Rock with probability $rac{z}{x+y+z}$ (from $EU_{ ext{Paper}}=EU_{ ext{Scissors}}$)
- ullet Play Paper with probability $rac{y}{x+y+z}$ (from $EU_{
 m Rock}=EU_{
 m Scissors}$)
- ullet Play Scissors with probability $rac{x}{x+y+z}$ (from $EU_{
 m Rock}=EU_{
 m Paper}$)

Counterintuitive Results

The probability of playing each strategy depends on the **other strategies' effectiveness**, e.g.

- Probability of Scissors = $\frac{x}{x+y+z}$ where x is Paper's advantage over Rock
- As Paper gets better at beating Rock (x increases), players use Scissors **more** often because opponents anticipate the increased Paper usage
- Numeric check (x=2, y=1, z=1): equilibrium weights = $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\}$ Paper's doubled effectiveness corresponds to doubling Scissors' weight.

Real-world application: Character selection in fighting video games

Mixed Strategies as Population Parameters

Alternative interpretation: Mixed strategies represent **population distributions** rather than individual randomization:

- Individual players choose pure strategies (e.g., always Rock)
- Random matchmaking pairs players from large population
- Mixed strategy equilibrium tells us population distribution needed for individual indifference, e.g. a Rock specialist's expected payoff when randomly matched:

$$EU_{ ext{Rock}} = 0 \cdot rac{z}{x+y+z} + (-x) \cdot rac{y}{x+y+z} + y \cdot rac{x}{x+y+z} = 0$$

Key insight: All specialists earn the same expected payoff (zero), so no individual wants to switch specializations

Result: Everyone plays pure strategies, yet the population achieves mixed strategy equilibrium proportions