

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019Büchi-Automaten

Einführung

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

 V^{ω}

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

 V^{ω}

ist die Menge der unendlichen Wörter mit Buchstaben aus $\it V$.

w(n)

bezeichnet den n-ten Buchstaben in w und

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Ein Wort $w \in V^{\omega}$ heißt auch ω -Wort über V.

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Ein Wort $w \in V^{\omega}$ heißt auch ω -Wort über V.

Man kann ein unendliches Wort $w \in V^{\omega}$ auch als eine Funktion $w: IN \to V$, von den natürlichen Zahlen in das Alphabet auffassen.

Definition

Sei *V* ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Ein Wort $w \in V^{\omega}$ heißt auch ω -Wort über V.

Man kann ein unendliches Wort $w \in V^{\omega}$ auch als eine Funktion $w: IN \to V$, von den natürlichen Zahlen in das Alphabet auffassen.

Das leere Wort ε kommt nicht in V^{ω} vor.

auf unendlichen Wörtern

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

 $w_1 \dots w_i \dots$ mit $w_i \in K$ für alle i

auf unendlichen Wörtern

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2.

$$KJ = \{w_1 w_2 \mid w_1 \in K, w_2 \in J\}$$

auf unendlichen Wörtern

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2.

$$KJ = \{ w_1 w_2 \mid w_1 \in K, w_2 \in J \}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

auf unendlichen Wörtern

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2.

$$KJ = \{ w_1 w_2 \mid w_1 \in K, w_2 \in J \}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

auf unendlichen Wörtern

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2.

$$KJ = \{w_1 w_2 \mid w_1 \in K, w_2 \in J\}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

Manche Autoren benutzen $\lim(K)$ anstelle von K.

Definition

Sei $\mathcal{A}=(S,V,s_0,\delta,F)$ ein nicht deterministischer endlicher Automat.

Definition

Sei $A = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$:

$$s_{n+1} \in \delta(s_n, w(n))$$

Definition

Sei $A = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$:

$$s_{n+1} \in \delta(s_n, w(n))$$

Die von $\mathcal A$ akzeptierte ω -Sprache ist:

 $L^{\omega}(A) = \{ w \in V^{\omega} \mid \text{ es gibt eine Berechnungsfolge für } w \text{ mit unendlich vielen Finalzuständen } \}$

Definition

Sei $\mathcal{A} = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$:

$$s_{n+1} \in \delta(s_n, w(n))$$

Die von \mathcal{A} akzeptierte ω -Sprache ist:

 $L^{\omega}(A) = \{ w \in V^{\omega} \mid \text{ es gibt eine Berechnungsfolge für } w \text{ mit unendlich vielen Finalzuständen } \}$

Der einzige Unterschied zwischen Büchi-Automaten und (normalen) endlichen Automaten liegt in der Akzeptanzdefinition.

Die akzeptierte Sprache ist

$$\{a,b\}^*a^\omega$$

Die akzeptierte Sprache ist

$$(a^*b)^\omega$$

Die akzeptierte Sprache ist

$$(a^*b)^{\omega}$$

 $\{w \in \{a,b\}^{\omega} \mid b \text{ kommt unendlich oft vor in } w\}$

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Um $L^{\omega}(\mathcal{B}) \neq \emptyset$ zu zeigen muß man nur einen erreichbaren Endzustand $q_f \in F$ finden, der auf einer Schleife liegt.

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Um $L^{\omega}(\mathcal{B}) \neq \emptyset$ zu zeigen muß man nur einen erreichbaren Endzustand $q_f \in F$ finden, der auf einer Schleife liegt.

Wir nennen eine Menge L von ω -Wörtern ω -regulär, wenn es einen Büchi-Automaten \mathcal{A} gibt mit $L^{\omega}(\mathcal{A}) = L$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

1.
$$L^{\omega}(\mathcal{A}) \subseteq \vec{K}$$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in I\!\!N \mid s_n \in F\}$ unendlich ist.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathit{IN} \mid s_n \in F\}$ unendlich ist.

Für alle $n \in F_w$ gilt $s_n \in F$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathit{IN} \mid s_n \in F\}$ unendlich ist.

Für alle $n \in F_w$ gilt $s_n \in F$ $\Rightarrow w \downarrow (n) \in K$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in I\!\!N \mid s_n \in F\}$ unendlich ist.

Für alle $n \in F_w$ gilt $s_n \in F$ $\Rightarrow w \downarrow (n) \in K$. Also $w \in \vec{K}$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in IN \mid w \downarrow (n) \in K\}$ unendlich.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in IN \mid w \downarrow (n) \in K\}$ unendlich. Für jedes $n \in R_w$ gibt es eine Berechungsfolge $s_n = s_{n,1}, s_{n,2}, \ldots, s_{n,n}$ für $w \downarrow (n)$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in IN \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge

$$s_n = s_{n,1}, s_{n,2}, \dots, s_{n,n}$$
 für $w \downarrow (n)$.

Da A deterministisch ist, ist für jedes Paar $n, m \in R_w$ mit n < m s_n Anfangsstück von s_m .

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in IN \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge

$$s_n = s_{n,1}, s_{n,2}, \ldots, s_{n,n}$$
 für $w \downarrow (n)$.

Da \mathcal{A} deterministisch ist, ist für jedes Paar $n, m \in R_w$ mit n < m s_n Anfangsstück von s_m .

Zusammengesetzt erhalten wir eine unendliche

Berechnungsfolge *s* für *w*, die unendlich oft einen Endzustand durchläuft.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in IN \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge

$$s_n = s_{n,1}, s_{n,2}, \ldots, s_{n,n}$$
 für $w \downarrow (n)$.

Da \mathcal{A} deterministisch ist, ist für jedes Paar $n, m \in R_w$ mit n < m s_n Anfangsstück von s_m .

Zusammengesetzt erhalten wir eine unendliche

Berechnungsfolge *s* für *w*, die unendlich oft einen Endzustand durchläuft.

Also $w \in L^{\omega}(A)$.

und ihre regulären Mengen

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

► $L = L^{\omega}(A)$ für einen deterministischen Büchi-Automaten

und ihre regulären Mengen

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- ► $L = L^{\omega}(A)$ für einen deterministischen Büchi-Automaten
- ▶ es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

und ihre regulären Mengen

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- ► $L = L^{\omega}(A)$ für einen deterministischen Büchi-Automaten
- ▶ es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

und ihre regulären Mengen

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- ► $L = L^{\omega}(A)$ für einen deterministischen Büchi-Automaten
- ▶ es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

Beweis:

und ihre regulären Mengen

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- ► $L = L^{\omega}(A)$ für einen deterministischen Büchi-Automaten
- ▶ es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

Beweis:

Folgt direkt aus der Tatsache, daß für deterministische Automaten $\mathcal A$

$$L^{\omega}(\mathcal{A}) = \overrightarrow{L(\mathcal{A})}$$

gilt (vorangeganges Lemma).

 $L^{\omega}(N_{bfin}) = \{w \in \{a, b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor}\}$

 $L^{\omega}(N_{bfin}) = \{w \in \{a, b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor} \}$ $L(N_{bfin}) = \{w \in \{a, b\}^* \mid w \text{ endet auf a} \}.$

 $L^{\omega}(N_{bfin}) = \{w \in \{a, b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor} \}$ $L(N_{bfin}) = \{w \in \{a, b\}^* \mid w \text{ endet auf a} \}.$ $Lim(L(N_{bfin})) = \{w \in \{a, b\}^{\omega} \mid \text{ in } w \text{ kommt } a \text{ unendlich of vor} \}.$

 $L^{\omega}(N_{bfin}) = \{w \in \{a,b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor}\}$ $L(N_{bfin}) = \{w \in \{a,b\}^* \mid w \text{ endet auf a}\}.$ $Lim(L(N_{bfin})) = \{w \in \{a,b\}^{\omega} \mid \text{in } w \text{ kommt } a \text{ unendlich of vor}\}.$ Man sieht leicht, daß $L^{\omega}(N_{bfin}) \neq Lim(L(N_{bfin}))$

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$. Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b \dots ba^{k_i} \in K$.

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b\dots ba^{k_i} \in K$.

Wegen $L = \vec{K}$ folgt daraus auch $a^{k_1}ba^{k_2}b \dots ba^{k_i}b \dots \in L$

Korollar

Es gibt Sprachen $L \subseteq V^{\omega}$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$. Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^\omega \in L$. Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^\omega \in L$. So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b \dots ba^{k_i} \in K$. Wegen $L = \vec{K}$ folgt daraus auch $a^{k_1}ba^{k_2}b \dots ba^{k_i}b \dots \in L$ im Widerspruch zur Definition von L.

Sind L_1, L_2 ω -reguläre Sprachen und ist K eine reguläre Sprache, dann ist auch

1. $L_1 \cup L_2 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,
- 4. $V^{\omega} \setminus L_1 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,
- 4. $V^{\omega} \setminus L_1 \omega$ -regulär,
- 5. $L_1 \cap L_2 \omega$ -regulär.

Abschlossenheit unter ∪

Seien $A_i = (Q_i, V, s_0^i, \delta_i, F_i)$ für i = 1, 2 Büchi-Automaten und $L_i = L_i^{\omega}(A_i)$.

Abschlossenheit unter ∪

Seien $A_i = (Q_i, V, s_0^i, \delta_i, F_i)$ für i = 1, 2 Büchi-Automaten und $L_i = L_i^{\omega}(A_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Abschlossenheit unter ∪

Seien $A_i = (Q_i, V, s_0^i, \delta_i, F_i)$ für i = 1, 2 Büchi-Automaten und $L_i = L_i^{\omega}(A_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A} = (Q, V, s_0, \delta, F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

Abschlossenheit unter ∪

Seien $A_i = (Q_i, V, s_0^i, \delta_i, F_i)$ für i = 1, 2 Büchi-Automaten und $L_i = L_i^{\omega}(A_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A} = (Q, V, s_0, \delta, F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

$$egin{array}{lcl} Q & = & Q_1 \cup Q_2 \cup \{s_0\} \ \delta(q,a) & = & \delta_i(q,a) & ext{falls } q \in Q_i \ \delta(s_0,a) & = & \delta_1(s_0^1,a) \cup \delta_2(s_0^2,a) \ F & = & F_1 \cup F_2 & ext{} \end{array}$$

Abschlossenheit unter ∪

Seien $A_i = (Q_i, V, s_0^i, \delta_i, F_i)$ für i = 1, 2 Büchi-Automaten und $L_i = L_i^{\omega}(A_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A} = (Q, V, s_0, \delta, F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

$$egin{array}{lcl} Q & = & Q_1 \cup Q_2 \cup \{s_0\} \ \delta(q,a) & = & \delta_i(q,a) & ext{falls } q \in Q_i \ \delta(s_0,a) & = & \delta_1(s_0^1,a) \cup \delta_2(s_0^2,a) \ F & = & F_1 \cup F_2 & ext{} \end{array}$$

Man zeigt leicht, daß $L^{\omega}(A) = L_1 \cup L_2$.

Abgeschlossenheit unter Iteration

Der Automaten $\mathcal{B} = (Q_B, V, s_0^B, \delta_B, F_B)$ sei definiert durch:

$$\begin{array}{lll} Q_{B} & = & Q_{A} \\ s_{0}^{B} & = & s_{0}^{A} \\ \delta_{B}(q,a) & = & \delta_{A}(q,a) & \text{falls } q \in Q_{B} \\ \delta_{B}(q,\epsilon) & = & \{s_{0}^{B}\} & \text{falls } q \in F_{A} \\ F_{B} & = & \{s_{0}^{B}\} & \end{array}$$

Wir können annehmen, daß für alle $q \in F_A$ und alle $x \in \Sigma$ gilt:

$$s_0^A \not\in \delta_A(q,x).$$

Beispiel zur Komplementbildung

Beispiel zur Komplementbildung

 $L^{\omega}(N_{ba}) = \{ w \in \{a, b, c\}^{\omega} \mid \text{ nach jedem } a \text{ kommt ein } b \}$

Beispiel zur Komplementbildung

 $L^{\omega}(N_{ba}) = \{ w \in \{a, b, c\}^{\omega} \mid \text{ nach jedem } a \text{ kommt ein } b \}$

Die Abgeschlossenheit ω -regulärer Mengen unter Komplementbildung muss noch bewiesen werden.

(siehe Skriptum)

Zerlegungssatz

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

 JK^{ω}

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.