DOCUMENT-BASED CHINESE QA

ZHANG CHEN

方法: ESIM模型

- BiLSTM分别对问题和句子进行contextual encoding
- 用attention矩阵进行问题和句子的交互
- 将交互后的表示再输入到一层BiLSTM中
- 对问题和句子的表示进行average pooling和 max pooling
- 将pooling结果输入到全连接中进行二分类

Xu et al. Enhanced LSTM for natural language inference. ACL2017

方法: 输入

- 使用综合语料上预训练的中文词向量
 - https://github.com/Embedding/Chinese-Word-Vectors
- 尝试了**词向量和字向量**两种细粒度的表示
 - 字: 以字符为单位分词,得到~8000个字
 - 词: 使用jieba分词,得到>80000个词

方法:解决标签不平衡

- ■数据集标签不平衡
 - 训练集94.8%标签为0,验证集95.68%标签为0
 - 使用Cross Entropy Loss训练不动,Accuracy稳定在"全预测为0"的水平
- 从Loss的角度平衡标签: 使用Focal Loss
 - 对容易分类的负例进行down weighting,聚焦于数量少而难分类的正例
 - alpha为权重因子,我们取0.5; gamma为调节参数,我们取2

$$L_{fl} = -\alpha (1 - \hat{y})^{\gamma} y \log \hat{y} - (1 - \alpha) \hat{y}^{\gamma} (1 - y) \log (1 - \hat{y})$$

方法: 尝试数据增强

- 使用CMRC2018阅读理解数据集尝试data augmentation
 - 文本来源和问题形式与我们的任务相近,猜测使用更多的数据能提升模型效果
 - 拆成answer sentence selection的形式加入到训练集,正例~10k,负例~100k
 - 尝试"只加正例"和"同时加正负例"两种形式

实验

	Precision	Recall	$\mathbf{F1}$	MAP	MRR
All-0	0.00	0.00	0.00	25.30	25.81
BERT-base	77.99	89.33	83.27	93.73	93.83
ESIM (Word)	70.02	38.32	49.53	81.72	81.96
ESIM (Char)	67.64	77.57	72.27	90.33	90.48
ESIM (Char + DA Pos)	47.90	77.62	59.28	87.78	87.95
ESIM (Char + DA All)	67.25	75.59	71.18	89.18	89.34

- "全预测为0" baseline: MAP和MRR能达到25
- BERT baseline: 使用谷歌预训练的中文bert-base和官方run_classifier.py脚本跑的,MAP和MRR达到93

实验

	Precision	Recall	$\mathbf{F1}$	MAP	MRR
All-0	0.00	0.00	0.00	25.30	25.81
BERT-base	77.99	89.33	83.27	93.73	93.83
ESIM (Word)	70.02	38.32	49.53	81.72	81.96
ESIM (Char)	67.64	77.57	72.27	90.33	90.48
ESIM (Char + DA Pos)	47.90	77.62	59.28	87.78	87.95
ESIM (Char + DA All)	67.25	75.59	71.18	89.18	89.34

- 字向量 + ESIM + Focal Loss达到MAP 90.33 MRR 90.48, 仅比BERT低3个点
 - 传统的序列模型也能接近预训练语言模型的表现
- 字向量表现远高于词向量
 - 原因:分词准确性的制约;字向量适合中文的word-level matching

实验

	Precision	Recall	F 1	MAP	MRR
All-0	0.00	0.00	0.00	25.30	25.81
BERT-base	77.99	89.33	83.27	93.73	93.83
ESIM (Word)	70.02	38.32	49.53	81.72	81.96
ESIM (Char)	67.64	77.57	72.27	90.33	90.48
ESIM (Char + DA Pos)	47.90	77.62	59.28	87.78	87.95
ESIM (Char + DA All)	67.25	75.59	71.18	89.18	89.34

- 暴力Data Augmentation不可取
 - 两种方式表现均降
 - 存在数据分布的gap,需要更精细的数据增强方法

谢谢!