HBase

Theory and Practice of a Distributed Data Store

Pietro Michiardi

Eurecom

Introduction

Why yet another storage architecture?

Relational Databse Management Systems (RDBMS):

- Around since 1970s
- Countless examples in which they actually do make sense

The dawn of Big Data:

- Previously: ignore data sources because no cost-effective way to store everything
 - ★ One option was to prune, by retaining only data for the last N days
- Today: store everything!
 - Pruning fails in providing a base to build useful mathematical models

Batch processing

• Hadoop and MapReduce:

- Excels at storing (semi- and/or un-) structured data
- Data interpretation takes place at analysis-time
- Flexibility in data classification

Batch processing: A complement to RDBMS

- Scalable sink for data, processing launched when time is right
- Optimized for large file storage
- Optimized for "streaming" access

Random Access:

- Users need to "interact" with data, especially that "crunched" after a MapReduce job
- This is historically where RDBMS excel: random access for structured data

Column-Oriented Databases

Data layout:

- Save their data grouped by columns
- Subsequent column values are stored contiguously on disk
- ► This is substantially different from traditional RDBMS, which save and store data by row

Specialized databases for specific workloads:

- Reduced I/O
- ▶ Better suited for compression → Efficient use of bandwidth
 - Indeed, column values are often very similar and differ little row-by-row
- Real-time access to data

Important NOTE:

- HBase is not a column-oriented DB in the typical term
- HBase uses an on-disk column storage format
- Provides key-based access to specific cell of data, or a sequential companies

Column-Oriented and Row-Oriented storage layouts

Figure: Example of Storage Layouts

RDBMS are still relevant

- Persistence layer for frontend application
- Store relational data
- Works well for a limited number of records

Example: Hush

- Used throughout this course
- URL shortener service

Let's see the "scalability story" of such a service

Assumption: service must run with a reasonable budget

• Few thousands users: use a LAMP stack

- Normalize data
- Use foreign keys
- Use Indexes

Figure: The Hush Schema expressed as an ERD

Find all short URLs for a given user

- JOIN user and shorturl tables
- Use the WHERE clause to select the given user

Stored Procedures

- Consistently update data from multiple clients
- Underlying DB system guarantees coherency

Transactions

- Make sure you can update tables in an atomic fashion
- ▶ RDBMS → Strong Consistency (ACID properties)
- Referential Integrity

Scaling up to tens of thousands of users

- Increasing pressure on the database server
- Adding more application servers is easy: they share their state on the same central DB
- CPU and I/O start to be a problem on the DB

Master-Slave architecture

- Add DB server so that READS can be served in parallel
- Master DB takes all the writes (which are fewer in the Hush application)
- Slaves DB replicate Master DB and serve all reads (but you need a load balancer)

Scaling up to hundreds of thousands

- READS are still the bottlenecks
- Slave servers begin to fall short in serving clients requests

Caching

- Add a caching layer, e.g. Memcached or Redis
- Offload READS to a fast in-memory system
- → You lose consistency guarantees
- Cache invalidation is critical for having DB and Caching layer consistent

Scaling up more

- WRITES are the bottleneck
- ► The master DB is hit too hard by WRITE load
- Vertical scalability: beef up your master server
- → This becomes costly, as you may also have to replace your RDBMS

SQL JOINs becomes a bottleneck

- Schema de-normalization
- Cease using stored procedures, as they become slow and eat up a lot of server CPU
- Materialized views (they speed up READS)
- ▶ Drop secondary indexes as they slow down WRITES

• What if your application needs to further scale up?

Vertical scalability vs. Horizontal scalability

Sharding

- Partition your data across multiple databases
 - Essentially you break horizontally your tables and ship them to different servers
 - ★ This is done using fixed boundaries
 - → Re-sharding to achieve load-balancing
- → This is an operational nightmare
- Re-sharding takes a huge toll on I/O resources

Non-Relational DataBases

They originally do not support SQL

- ▶ In practice, this is becoming a thin line to make the distinction
- One difference is in the data model
- Another difference is in the consistency model (ACID and transactions are generally sacrificed)

Consistency models and the CAP Theorem

- Strict: all changes to data are atomic
- Sequential: changes to data are seen in the same order as they were applied
- Causal: causally related changes are seen in the same order
- Eventual: updates propagates through the system and replicas when in steady state
- Weak: no guarantee

Data model

- How the data is stored: key/value, semi-structured, column-oriented, ...
- How to access data?
- Can the schema evolve over time?

Storage model

- In-memory or persistent?
- How does this affect your access pattern?

Consistency model

- Strict or eventual?
- This translates in how fast the system handles READS and WRITES [2]

Physical Model

- Distributed or single machine?
- How does the system scale?

Read/Write performance

- Top-down approach: understands well the workload!
- Some systems are better for READS, other for WRITES

Secondary indexes

- Does your workload require them?
- Can your system emulate them?

Failure Handling

- How each data store handle server failures?
- Is it able to continue operating in case of failures?
 - ★ This is related to Consistency models and the CAP theorem
- Does the system support "hot-swap"?

Compression

- Is the compression method pluggable?
- What type of compression?

Load Balancing

Can the storage system seamlessly balance load?

Atomic read-modify-write

- Easy in a centralized system, difficult in a distributed one
- Prevent race conditions in multi-threaded or shared-nothing designs
- Can reduce client-side complexity

Locking, waits and deadlocks

- Support for multiple client accessing data simultaneously
- Is locking available?
- Is it wait-free, hence deadlock free?

Impedance Match

"One-size-fits-all" has been long dismissed: need to find the perfect match for your problem.

Database (De-)Normalization

Schema design at scale

- A good methodology is to apply the DDI principle [8]
 - ⋆ Denormalization
 - ★ Duplication
 - Intelligent Key design

Denormalization

Duplicate data in more than one table such that at READ time no further aggregation is required

Next: an example based on Hush

- How to convert a classic relational data model to one that fits HBase
- This example will be covered in the LAB session 3

Figure: The Hush Schema expressed as an ERD

- shorturl table: contains the short URL
- click table: contains click tracking, and other statistics, aggregated on a daily basis (essentially, a counter)
- user table: contains user information
- URL table: contains a replica of the page linked to a short URL, including META data and content (this is done for batch analysis purposes)

Figure: The Hush Schema expressed as an ERD

- user table is indexed on the username field, for fast user lookup
- shorturl table is indexed on the short URL (shortId) field, for fast short URL lookup

Figure: The Hush Schema expressed as an ERD

- shorturl and user tables are related through a foreign key relation on the userId
- URL table is related to shorturl table with a foreign key on the URL id
- click table is related to shortur1 table with a foreign key on the short URL id
- NOTE: a web page is stored only once (even if multiple users link on to it) but each users maintain separate statistics.

Table: shorturl		
Row Key:	shortId	
Family:	data:	Columns: url, refShortId, userId, clicks
	stats-daily: [ttl: 7days]	Columns: YYYYMMDD, YYYYMMDD\x00 <country-code></country-code>
	stats-weekly: [ttl: 4weeks]	Columns: YYYYWW, YYYYWW\x00 <country-code></country-code>
	stats-monthly: [ttl: 12months]	Columns: YYYYMM, YYYYMM\x00 <country-code></country-code>

Table: url		
Row Key:	MD5(url)	
Family:	data: [compressed]	Columns: refShortId, title, description
	content: [compressed]	Columns: raw

Table: user-shorturl		
Row Key:	username\x00shortId	
Family:	data:	Columns: timestamp

Table: user		
Row Key:	username	
Family:	data:	Columns: credentials, roles, firstname, lastname, email

- shorturl table: stores each short URL, usage statistics (various time-ranges in separate column-families with distinct *TTL* settings)
 - Note the dimensional postfix appended to the time information
- url table: stores the downloaded page, and the extracted details
 - This table uses compression

FURECOM

Table: shorturl		
Row Key:	shortld	
Family:	data:	Columns: url, refShortId, userId, clicks
	stats-daily: [ttl: 7days]	Columns: YYYYMMDD, YYYYMMDD\x00 <country-code></country-code>
	stats-weekly: [ttl: 4weeks]	Columns: YYYYWW, YYYYWW\x00 <country-code></country-code>
	stats-monthly: [ttl: 12months]	Columns: YYYYMM, YYYYMM\x00 <country-code></country-code>

Table: url		
Row Key:	MD5(url)	
Family:	data: [compressed]	Columns: refShortId, title, description
	content: [compressed]	Columns: raw

Table: user-shorturl		
Row Key:	username\x00shortld	
Family:	data:	Columns: timestamp

Table: user		
Row Key:	username	
Family:	data:	Columns: credentials, roles, firstname, lastname, email

- user-shorturl table: this is a lookup table (basically an index) to find all shortIDs for a given user
 - Note that this table is filled at insert time, it's not automatically generated by HBase

user table: stores user details

Example: Hush - RDBMS vs HBase

Same number of tables

- Their meaning is different
- click table has been absorbed by the shorturl table
- statistics are stored with the date as the key, so that they can be accessed sequentially
- ► The user-shorturl table is replacing the foreign key relationship, making user-related lookups faster

Normalized vs. De-normalized data

- Wide tables and column-oriented design eliminates JOINs
- Compound keys are essential
- Data partitioning is based on keys, so a proper understanding thereof is essential

The backdrop: BigTable

- GFS, The Google FileSystem [6]
- ▶ Google MapReduce [4]
- ▶ BigTable [3]

What is BigTable?

- BigTable is a distributed storage system for managing structured data designed to scale to a very large size
- BigTable is a sparse, distributed, persistent multi-dimensional sorted map

What is HBase?

- Essentially it's an open-source version of BigTable
- ▶ Differences listed in [5]

Tables, Rows, Columns, and Cells

The most basic unit in HBase is a column

- Each column may have multiple versions, with each distinct value contained in a separate cell
- One or more columns form a row, that is addressed uniquely by a row key

A table is a collection of rows

All rows are always sorted lexicographically by their row key

```
hbase(main):001:0> scan 'table1'
ROW
                             COLUMN+CELL
row-1
                              column=cf1:, timestamp=1297073325971 ...
row-10
                              column=cf1:, timestamp=1297073337383 ...
row-11
                              column=cf1:, timestamp=1297073340493 ...
row-2
                              column=cf1:, timestamp=1297073329851 ...
                              column=cf1:, timestamp=1297073344482 ...
row-22
                              column=cf1:, timestamp=1297073333504 ...
row-3
                              column=cf1:, timestamp=1297073349875 ...
row-abc
7 row(s) in 0.1100 seconds
```


Tables, Rows, Columns, and Cells

Lexicographical ordering of row keys

- Keys are compared on a binary level, byte by byte, from left to right
- This can be thought of as a primary index on the row key!
- Row keys are always unique
- Row keys can be any arbitrary array of bytes

Columns

- Rows are composed of columns
- Can have millions of columns
- Can be compressed or tagged to stay in memory

Tables, Rows, Columns, and Cells

Column Families

- Columns are grouped into column families
- → Semantical boundaries between data
 - Column families and columns stored together in the same low-level storage file, called an HFile
 - Defined when table is created
 - Should not be changed too often
 - The number of column families should be reasonable [WHY?]
 - Column family name composed by printable characters

References to columns

- Column "name" is called qualifier, and can be any arbitrary number of bytes
- ► Reference: family:qualifier (also called the column key)

Tables, Rows, Columns, and Cells

A note on the NULL value

- In RDBMS NULL cells need to be set and occupy space
- ▶ In HBase, NULL cells or columns are simply not stored

A cell

- Every column value, or cell, is timestamped (implicitly or explicitly)
 - This can be used to save multiple versions of a value that changes over time
 - ★ Versions are stored in decreasing timestamp, most recent first
- Cell versions can be constrained by predicate deletions
 - ★ Keep only values from the last week

Tables, Rows, Columns, and Cells

Access to data

- ► (Table, RowKey, Family, Column, Timestamp) → Value
- SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>
- ► The first SortedMap is the table, containing a List of column families
- ► The families contain another SortedMap, representing columns and a List of value, timestamp tuples

A note on consistency:

- Row data access is atomic and includes any number of columns
- ► There is no further guarantee or transactional feature spanning multiple rows
- → HBase is strictly consistent

Automatic Sharding

Region

- This is the basic unit of scalability and load balancing
- ▶ Regions are contiguous ranges of rows "stored together" → they are the equivalent of range partitions in sharded RDBMS
- Regions are dynamically split by the system when they become too large
- Regions can also be merged to reduce the number of storage files

Regions in practice

- Initially, there is one region
- System monitors region size: if a threshold is attained, SPLIT
 - ★ Regions are split in two at the middle key
 - ★ This creates roughly two equivalent (in size) regions

Automatic Sharding

Region Servers

- Each region is served by exactly one Region Server
- Region servers can serve multiple regions
- The number of region servers and their sizes depend on the capability of a single region server

Server failures

- Regions allow for fast recovery upon failure
- ► Fine-grained Load Balancing is also achieved using regions as they can be easily moved across servers

Storage API

No support for SQL

- CRUD operations using a standard API, available for many "clients"
- Data access is not declarative but imperative

Scan API

- Allows for fast iteration over ranges of rows
- Allows to limit the number and which column are returned
- Allows to control the version number of each cell

Read-modify-write API

- HBase supports single-row transactions
- Atomic read-modify-write on data stored in a single row key

Storage API

Counters

- Values can be interpreted as counters and updated atomically
- Can be read and modified in one operation
- → Implement global, strictly consistent, sequential counters

Coprocessors

- These are equivalent to stored-procedures in RDBMS
- Allow to push user code in the address space of the server
- Access to server local data
- Implement lightweight batch jobs, data pre-processing, data summarization

HBase implementation

Data Storage

- Store files are called HFiles
- Persistent and ordered immutable maps from key to value
- Internally implemented as sequences of blocks with an index at the end
- ▶ Index is loaded when the HFile is opened and kept in memory

Data lookups

- Since HFiles have a block index, lookup can be done with a single disk seek
- First, the block possibly containing a given lookup key is determined with a binary search in the in-memory index
- Then a block read is performed to find the actual key

Underlying file system

Many are supported, usually HBase deployed on top of HDFS

HBase building blocks

HBase implementation

WRITE operation

- First, data is written to a commit log, called WAL (write-ahead-log)
- Then data is moved into memory, in a structure called memstore
- ► When the size of the memstore exceeds a given threshold it is flushed to an HFile to disk

• How can HBase write, while serving READS and WRITES?

- Rolling mechanism
 - new/empty slots in the memstore take the updates
 - ★ old/full slots are flushed to disk
- Note that data in memstore is sorted by keys, matching what happens in the HFiles

Data Locality

- Achieved by the system looking up for server hostnames
- Achieved through intelligent key design

HBase building blocks

HBase implementation

Deleting data

- Since HFiles are immutable, how can we delete data?
- ► A delete marker (also known as *tombstone marker*) is written to indicate that a given key is deleted
- During the read process, data marked as deleted is skipped
- Compactions (see next slides) finalize the deletion process

READ operation

- Merge of what is stored in the memstores (data that is not on disk) and in the HFiles
- The WAL is never used in the READ operation
- Several API calls to read, scan data

HBase building blocks

HBase implementation

Compactions

- Flushing data from memstores to disk implies the creation of new HFiles each time
- ightarrow We end up with many (possibly small) files
- → We need to do housekeeping [WHY?]

Minor Compaction

- Rewrites small HFiles into fewer, larger HFiles
- This is done using an n-way merge¹

Major Compaction

- Rewrites all files within a column family or a region in a new one
- Drop deleted data
- Perform predicated deletion (e.g. delete old data)

HBase: a glance at the architecture

Master node: HMaster

- Assigns regions to region servers using ZooKeeper
- Handles load balancing
- Not part of the data path
- Holds metadata and schema

Region Servers

- ► Handle READS and WRITES
- Handle region splitting

Architecture

Seek vs. Transfer

Fundamental difference between RDBMS and alternatives

- B+Trees
- Log-Structured Merge Trees

Seek vs. Transfer

- Random access to individual cells
- Sequential access to data

B+ Trees

Dynamic, multi-level indexes

- Efficient insertion, lookup and deletion
- Q: What's the difference between a B+ Tree and a Hash Table?
- ► Frequent updates may imbalance the trees → Tree optimization and re-organization is required (which is a costly operation)

Bounds on page size

- Number of keys in each branch
- Larger fanout compared to binary trees
- Lower number of I/O operations to find a specific key

Support for range scans

- Leafs are linked and represent an in-order list of all keys
- No costly tree-traversal algorithms required

LSM-Trees

Data flow

- Incoming data is first stored in a logfile, sequentially
- Once the log has the modification saved, data is pushed in memory
 - ★ In-memory store holds most recent updates for fast lookup
- When memory is "full", data is flushed in a store file to disk, as a sorted list of key → record pair
- At this point, the log file can be thrown away

How store files are arranged

- Similar idea of a B+ Tree, but optimized for sequential disk access
- All nodes of the tree try to be filled up completely
- Updates are done in a rolling merge fashion
 - The system packs existing on-disk multi-page blocks with in-memory data until the block reaches full capacity

LSM-Trees

Clean-up process

- As flushes take place over time, a lot of store files are created
- Background process aggregates files into larger ones to limit disk seeks
- \blacktriangleright All store files are always sorted by key \rightarrow no re-ordering required to fit new keys in

Data Lookup

- Lookups are done in a merging fashion
 - ★ First lookup in the in-memory store
 - ★ If miss, the lookup in the on-disk store

Deleting data

- Use a delete marker
- When pages are re-written, deleted markers and keys are eventually dropped
- Predicate deletion happens here

B+ Tree vs. LSM-Trees

B+ Tree [1]

- Work well when there are not so many updates
- The more and the faster you insert data at random locations the faster pages get fragmented
- Updates and deletes are done at disk seek rates, rather than transfer rates

LSM-Tree [7]

- Work at disk transfer rate and scale better to huge amounts of data
- Guarantee a consistent insert rate
 - They transform random into sequential writes
- Reads are independent from writes
- Optimized data layout which offers predictable boundaries on disk seeks

Overview

Figure: Overview of how HBase handles files in the filesystem

Overview

HBase handles two kinds of file types

- One is used for the WAL
- One is used for the actual data storage

Who does what

- ▶ HMaster
 - ★ Low-level operations
 - ★ Assigns region servers to key space
 - ★ Keeps metadata
 - Talks to ZooKeeper
- ► HRegionServer
 - ★ Handles the WAL and HFiles
 - ★ These files are divided in to blocks and stored into HDFS
 - ★ Block size is a parameter

Overview

General communication flow

- A client contacts ZooKeeper when trying to access a particular row
- ▶ Recovers from ZooKeeper the server name that host the -ROOTregion
- Using the -ROOT- information the client retrieves the server name that host the .META. table region
 - ★ The .META. table region contains the row key in question
- Contact the reported .META. server and retrieve the server name that has the region containing the row key in question

Caching

 Generally, lookup procedures involve caching row key locations for faster subsequent lookups

Overview

Important Java Classes

- HRegionServer handles one or more regions and create the corresponding HRegion object
- When an HRegion object is opened it creates a Store instance for each HColumnFamily
- Each Store instance can have:
 - ★ One or more StoreFile instances
 - ★ A MemStore instance
- ▶ HRegionServer has a shared HLog instance

Write Path

External client insert data in HBase

- ▶ Issues an HTable.put (Put) request to HRegionServer
- ► HRegionServer hands the request to the HRegion instance that matches the request [Q: What is the matching criteria?]

How the system reacts to a write request

- Write data to the WAL, represented by the HLog class
 - ★ The WAL stores HLogKey instances in a HDFS SequenceFile
 - ★ These keys contain a sequence number and the actual data
 - In case of failure, this data can be used to replay not-yet-persisted data
- Copy data in the MemStore
 - ★ Check if MemStore size has reached a threshold
 - ★ If yes, launch a flush request
 - * Launch a thread in the HRegionServer and flush MemStore data to an HFile

HBase Files

- What and where are HBase files (including WAL, HFile,...) stored?
 - HBase has a root directory set to "/hbase" in HDFS
 - Files can be divided into:
 - ★ Those that reside under the HBase root directory
 - ★ Those that are in the per-table directories
- /hbase
 - ▶ .logs
 - ▶ .oldlogs
 - ▶ .hbase.id
 - .hbase.version
 - ▶ /example-table

HBase Files

- /example-table
 - ▶ .tableinfo
 - ▶ .tmp
 - ▶ "...Key1..."
 - ★ .oldlogs
 - * .regioninfo
 - * .tmp
 - ★ colfam1/
- colfam1/
 - ▶ "....column-key1..."

HBase: Root-level files

.logs directory

- WAL files handled by HLog instances
- Contains a subdir for each HRegionServer
- Each subdir contains many HLog files
- ▶ All regions from that HRegionServer share the same HLog files
- .oldlogs directory
 - When data is persisted to disk (from Memstores) log files are decommissioned to the .oldlogs dir
- hbase.id and hbase.version
 - Represent the unique ID of the cluster and the file format version

HBase: Table-level files

- Every table has its own directory
 - tableinfo: stores the serialized HTableDescriptor
 - This include the table and column family schema
 - .tmp directory
 - Contains temporary data

HBase: Region-level files

- Inside each table dir, there is a separate dir for every region in the table
 - ► The name of each of this dirs is the MD5 hash of a region name
 - ★ Inside each region there is a directory for each column family
 - ★ Each column family directory holds the actual data files, namely HFiles
 - ★ Their name is just an arbitrary random number
 - Each region directory also has a .regioninfo file
 - ★ Contains the serialized information of the HRegionInfo instance

Split Files

- Once the region needs to be split, a splits directory is created
 - This is used to stage two daughter regions
 - ★ If split is successful, daughter regions are moved up to the table directory

HBase: A note on region splits

- Splits triggered by store file (region) size
 - Region is split in two
 - Region is closed to new requests
 - .META. is updated
- Daughter regions initially reside on the same server
 - Both daughters are compacted
 - Parent is cleaned up
 - .META. is updated

 Master schedules new regions to be moved off to other servers

HBase: Compaction

- Process that takes care of re-organizing store files
 - Essentially to conform to underlying filesystem requirements
 - Compaction check when memstore is flushed
- Minor and Major compactions
 - Always from the oldest to the newest files
 - Avoid all servers to perform compaction concurrently

Figure: A set of store files showing the minimum compaction threshold

HFile format

- Store files are implemented by the HFile class
 - Efficient data storage is the goal
- HFiles consist of a variable number of blocks
 - Two fixed blocks: info and trailer
 - index block: records the offsets of the data and meta blocks
 - ▶ Block size: large → sequential access; small → random access

Figure: The HFile structure

HFile size and HDFS block size

- HBase uses any underlying filesystem
- In case HDFS is used
 - HDFS block size is generally 64MB
 - This is 1,024 times the default HFile block size (64 KB)
 - → There is no correlation between HDFS block and HFile sizes

The KeyValue Format

- Each KeyValue in the HFile is a low-level byte array
 - It allows for zero-copy access to the data

Format

- Fixed-length preambule indicates the length of the key and value
 - ★ This is useful to offset into the array to get direct access to the value, ignoring the key
- Key format
 - Contains row key, column family name, column qualifier...
 - [TIP]: consider small keys to avoid overhead when storing small data

61 / 100

Figure: The KeyValue Format

The Write-Ahead Log

Main tool to ensure resiliency to failures

 Region servers keep data in-memory until enough is collected to warrant a flush

WAI

What if the server crashes or power is lost?

WAL is a common approach to address fault-tolerance

- Every data update is first written to a log
- Log is persisted (and replicated, since it resides on HDFS)
- Only when log is written, client is notified a successful operation on data

The Write-Ahead Log

Figure: The write path of HBase

WAL records all changes to data

- Can be replayed in case of server failure
- If write to WAL fails, the whole operations has to fail

The Write-Ahead Log

Write Path

- ► Client modifies data (put (), delete (), increment ())
- Modifications are wrapped into a KeyValue object
- ▶ Objects are batched to the corresponding HRegionServer
- Objects are routed to the corresponding HRegion
- Objects are written to WAL and in the MemStore

Read Path

HBase uses multiple store files per column family

- These can be either in-memory and/or materialized on disk
- Compactions and clean-up background processes take care of store files maintenance
- Store files are immutable, so deletion is handled in a special way

The anatomy of a get command

- HBase uses a QueryMatcher in combination with a ColumnTracker
- First, an exclusion check is performed to filter skip files (and eventually tombstone labelled data)
- Scanning data is implemented by a RegionScanner class which retrieves a StoreScanner
- StoreScanner includes both the MemStore and HFiles
- Read/Scans happen in the same order as data is saved

Region Lookups

- How does a client find the region server hosting a specific row key range?
 - ► HBase uses two special catalog tables, -ROOT- and .META.
 - ► The -ROOT- table is used to refer to all regions in the .META. table
- Three-level B+ Tree -like operation
 - Level 1: a node stored in ZooKeeper, containing the location (region server) of the -ROOT- table
 - Level 2: Lookup in the -ROOT- table to find a matching meta region
 - Level 3: Retrieve the table region from the .META. table

Region Lookups

• Where to send requests when looking for a specific row key?

This information is cached, but the first time or when the cache is stale or when there is a miss due to compaction, the following procedure applies

Recursive discovery process

- ► Ask the region server hosting the matching .META. table to retrieve the row key address
- ▶ If the information is invalid, it backs out: asks the ¬ROOT- table where the relevant .META. region is
- ▶ If this fails, ask ZooKeeper where the -ROOT- table is

Region Lookups

Key Design

Concepts

- HBase has two fundamental key structures
 - Row key
 - Column key
- Both can be used to convey meaning
 - Because they store particularly meaningful data
 - Because their sorting order is important

Concepts

Logical vs. on-disk layout of a table

- Main unit of separation within a table is the column family
- The actual columns (as opposed to other column-oriented DB) are not used to separate data
- Although cells are stored logically in a table format, rows are stored as linear sets of the cells
- Cells contain all the vital information inside them

Concepts

Logical Layout (Top-Left)

- Table consists of rows and columns
- Columns are the combination of a column family name and a column qualifier
- \rightarrow <cf name: qualifier> is the column key
 - Rows have a row key to address all columns of a single logical row

Folding the Logical Layout (Top-Right)

- The cells of each row are stored one after the other
- Each column family are stored separately
- ightarrow On disk all cells of one family reside on an individual StoreFile
- HBase does not store unset cells
- → Row and column key is required to address every cell

Versioning

- Multiple versions of the same cell stored consecutively, together with the timestamp
- Cells are sorted in descending order of timestamp
- → Newest value first

KeyValue object

- The entire cell, with all the structural information, is a KeyValue object
- ► Contains: row key, <column family: qualifier> → column key, timestamp and value
- Sorted by row key first, then by column key

Physical Layout (Lower-Right)

- Select data by row key
 - ★ This reduces the amount of data to scan for a row or a range of rows
- Select data by row key and column key
 - This focuses the system on an individual storage file
- Select data by column qualifier
 - Exact lookups, including filters to omit useless data

Summary of key lookup properties

Tall-Narrow vs. Flat-Wide Tables

Tall-Narrow Tables

- Few columns
- Many rows

Flat-Wide Tables

- Many columns
- Few rows

Given the query granularity explained before

- → Store parts of the cell data in the row key
- Furthermore, HBase splits at row boundaries
- → It is recommended to go for Tall-Narrow Tables

Tall-Narrow vs. Flat-Wide Tables

Example: email data - version 1

- You have all emails of a user in a single row (e.g. userID is the row key)
- There will be some outliers with orders of magnitude more emails than others
- → A single row could outgrow the maximum file/region size and work against split facility

Example: email data - version 2

- Each email of a user is stored in a separate row (e.g. userID:messageID is the row key)
- On disk this makes no difference (see the disk layout figure)
 - If the messageID is in the column qualifier or the row key, each cell still contains a single email message
- → The table can be split easily and the query granularity is more fine-grained

Partial Key Scans

Partial Key Scans reinforce the concept of Tall-Narrow Tables

- From the email example: assume you have a separate row per message, across all users
- If you don't have an exact combination of user and message ID you cannot access a particular message

Partial Key Scan solves the problems

- Specify a start and end key
- The start key is set to the exact userID only, with the end key set at userID+1
- → This triggers the internal lexicographic comparison mechanism
 - ★ Since the table does not have an exact match, it positions the scan at: <userID>:<1owest-messageID>
 - The scan will then iterate over all the messages of an exact user, parse the row key and get the messageID

Partial Key Scans

- Composite keys and atomicity
 - Following the email example: a single user inbox now spans many rows
 - It is no longer possible to modify a single user inbox in one atomic operation

 If this is acceptable or not, depends on the application at hand

Stream processing of events

- E.g. data coming from a sensor, stock exchange, monitoring system ...
- Such data is a time series → The row key represents the event time
- → HBase will store all rows sorted in a distinct range, namely regions with specific start and stop keys

Sequential monotonously increasing nature of time series data

- All incoming data is written to the same region (and hence the same server)
- → Regions become HOT!
- Performance of the whole cluster is bound to that of a single machine

Solution to achieve load balancing: Salting

- We want data to be spread over all region servers
- This can be done, e.g., by prefixing the row key with a non-sequential number

Salting example

```
byte prefix = (byte) (Long.hashCode(timestamp) % <number of
region servers>);
byte[] rowkey = Bytes.add(Bytes.toBytes(prefix),
Bytes.toBytes(timestamp));
```

- Data access needs to be fanned out across many servers
- Use multiple threads to read for I/O performance: e.g. use the Map phase of MapReduce

Solution to achieve load balancing: Field swap/promotion

- Move the timestamp filed of the row key or prefix it with another field
 - ★ If you already have a composite row key, simply swap elements
 - ★ Otherwise if you only have the timestamp, you need to promote another field
- The sequential, monotonously increasing timestamp is moved to a secondary position in the row key

- You can only access data (especially time ranges) for a given swapped or promoted field (but this could be a feature)
- + You achieve load balancing

- Solution to achieve load balancing: Randomization
 - byte[] rowkey = MD5(timestamp)
 - This gives you a random distribution of the row key across all available region servers

- Less than ideal for range scans
- Since you can re-hash the timestamp, this solution is good for random access

Summary

MapReduce Integration

Introduction

- In the following we review the main classes involved in reading and writing data from/to an underlying data store
- For MapReduce to work with HBase, some more practical issues have to be addressed
 - E.g.: creating an appropriate JAR file inclusive of all required libraries

Refer to [5], Chapter 7 for an in-depth treatment of this subject

Figure: Main MapReduce Classes

InputFormat

It is responsible for two things

- Splits input data
- Returns a RecordReader instance
 - ★ Defines a key and a value object
 - ★ Provides a next() method to iterate over input records

Figure: InputFormat hierarchy

$InputFormat \rightarrow TableInputFormatBase$

- Implement a full turnkey solution to scan an HBase table
 - Splits the table into proper blocks and hand them to the MapReduce process
- Must supply a Scan instance to interact with a table
 - Specify start and stop keys for the scan
 - Add filters (optional)
 - Specify the number of versions

Mapper

- Each record read using the RecordReader is processed using the map() method
- The Mapper reads specific types of input key/value pairs, but emit possibly another type

Figure: The Mapper hierarchy

$Mapper \rightarrow TableMapper$

- TableMapper class enforces:
 - The input key to the mapper to be an ImmutableBytesWritable type
 - ▶ The input value to be a Result type
- A handy implementation is the IdentityTableMapper
 - ► This is the equivalent of an identity mapper

OutputFormat

Used to persist data

- Output written to files
- Output written to HBase tables
 - ★ This is done using a TableRecordWriter

Figure: The OutputFormat hierarchy

$OutputFormat \rightarrow TableOutputFormat$

- This is the class that handles the key/valu pairs and writes them to their final destination
 - Single instance that takes the output record from each reducer subsequently
- Details
 - Must specify the table name when the MR job is created
 - ► Handles buffer flushing implicitly (autoflush option is set to false)

MapReduce Locality

- How does the system make sure data is placed close to where it is needed?
 - This is done implicitly by MapReduce when using HDFS
 - When MapReduce uses HBase things are a bit different

How HBase handles data locality

- Shared vs. non-shared cluster
- ► HBase store its files on HDFS (HFiles and WAL)
- HBase servers are not restarted frequently and they perform compactions regularly
- → HDFS is smart enough to ensure data locality
 - ★ There is a block placement policy that enforces local writes
 - ★ The data node compares the server name of the writer with its own
 - ★ If they match, the block is written to the local filesystem
- ► Just be careful about region movements during load balancing or server failures

Table Splits

- When running a MapReduce job that reads from an HBase table you use the TableInputFormat
 - Overrides getSplits() and createRecordReader()
- Before a job is run, the framework calls getSplit() to determine how the data is to be separated into chunks
 - ► TableInputFormat, given the Scan instance you define, divide the table at region boundaries
 - ightarrow The number of input splits is equal to all regions between the start and stop keys

Table Splits

- When a job starts, the framework calls createRecordReader() for each input split
 - It iterates over the splits and create a new TableRecordReader with the current split
 - ► Each TableRecordReader handles exactly one region, reading and mapping every row from the region's start and end keys

Data locality

- Each split contains the server name hosting the region
- ► The framework checks the server name and if the TaskTracker is running on the same machine, it will run it on that server
- ► The RegionServer is colocated with the HDFS DataNode, hence data is read from the local filesystem
- TIP: Turn off speculative execution!

References I

- [1] B+ tree.
 http://en.wikipedia.org/wiki/B%2B_tree.
- [2] Eric Brewer. Lessons from giant-scale services. In In IEEE Internet Computing, 2001.
- [3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data.

In Proc. od USENIX OSDI, 2006.

[4] Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: Simplified data processing on large clusters.
In Proc. of ACM OSDI, 2004.

References II

- [5] Lars George. HBase, The Definitive Guide. O'Reilly, 2011.
- [6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proc. of ACM OSDI, 2003.
- [7] Patrick O'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O'Neil.

The log-structured merge-tree (lsm-tree). 1996.

References III

[8] D. Salmen.

Cloud data structure diagramming techniques and design patterns.

```
https://www.data-tactics-corp.com/index.php/component/jdownloads/finish/22-white-papers/68-cloud-data-structure-diagramming, 2009.
```

