TD N°1

Exercice 0 : on a un rectangle de largeur x et de longueur y, et on veut calculer la diagonale du rectangle. Ecrivez un programme qui permet de lire la longueur et la largeur au clavier, puis il calcule la diagonale.

Exercice 1: on a une variable de type entier et de taille 2 bytes (16 bits). On veut extraire le signe de la valeur soit positif soit négatif. Sachant que si le $16^{\text{ème}}$ bit est mis à 1 ça veut dire que la valeur est négative. Ecrivez un programme qui affiche le signe.

Exercice 2 : on a une valeur entière codée sur 1 byte et on veut afficher sa représentation binaire sans l'utilisation d'une fonction spéciale. Ecrivez un programme qui permet d'afficher la représentation binaire d'une variable d'un byte.

Exercice 3 : supposant qu'on a créé un protocole de communication dédié pour transmettre un byte à travers un module radio. Le byte transmis contient trois informations relatives (trois états) à trois actionneurs comme illustré dans la figure ci-dessous (Figure 1), où les trois premiers bits contiennent la valeur du $1^{\rm er}$ actionneur, les trois seconds contiennent la valeur du $2^{\rm ème}$ actionneur et les deux derniers contiennent la valeur du $3^{\rm ème}$ actionneur.

bit	0	1	2	3	4	5	6	7
act	Actionneur 1			Actionneur 2			Actionneur 3	
val	06			80			02	

Figure 1. Structure du byte envoyé à travers le réseau.

Ecrivez un programme pour extraire les trois valeurs des trois états à partir du byte transmis et mettez chaque valeur dans une variable (et affichez le contenu). On peut lire le byte transmis au clavier pour simuler le processus (exemple : 210).

NB. Le but de ce protocole consiste à optimiser le temps de transmission et le tampon (mémoire) (nombre de bytes).

Exercice 4 : on reprend l'exercice précédent et on modifie la valeur du deuxième actionneur. Ecrivez un programme qui remplace la valeur du deuxième actionneur.

Exercice 5 : on reprend l'exercice 2 et on sauvegarde la représentation binaire dans une variable de type entier (e.g. si on a une valeur 8 on sauvegarde 1000 dans une variable de type entier).