COURSE DESIGN, DELIVERY AND ASSESMENT

Course Code and Title: AIL57 Machine Learning	Course Credits: 0:0:1
Laboratory	
CIE: 50 Marks	SEE: 50 Marks
Total No of Theory / Tutorial / Lab Hours/Self-Study: 0:0	0:14
Prepared by: Dr. Manasa S M	Date: 23/09/24
Reviewed by: Dr. Meeradevi AK	Date: 23/09/24

Prerequisites: mathematical formulas

SYLLABUS

Course Content

- 1. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find-S algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 4. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 5. Write a program to implement the naive Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Python ML library classes/API.
- 7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.
- 8. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 9. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
- 10. Implement and demonstrate the working of SVM algorithm for classification.

Suggested Learning Resources

Text Books:

1. Tom M Mitchell, "Machine Lerning", 1st Edition, McGraw Hill Education, 2017.

- 2. Nello Cristianini, John Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2013.
- 3. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Green Tea Press, 2015. (Available under CC-BY-NC license at http://greenteapress.com/thinkpython2/thinkpython2.pdf)

Course Contents and Laboratory Schedule for Lab

Lesson No/ Session No	Topics	No. of hours
1	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find-S algorithm to output a description of the set of all hypotheses consistent with the training examples.	2 hrs
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples	2 hrs
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	2 hrs
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	2 hrs
5	Write a program to implement the naive Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.	2 hrs
6	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Python ML library classes/API.	2 hrs
7	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.	2 hrs
8	Lab Test 1	
9	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.	2 hrs
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs	2 hrs
11	Implement and demonstrate the working of SVM algorithm for classification	2 hrs

Lesson No/ Session No	Topics	No. of hours
12	Write a program to Demonstrate RANDOM FOREST using the	
	dataset California housing price prediction	
13	Write a program to Demonstrate the working of the KNN. Use an IRIS data set	
14	Lab Test 2	

Course Outcomes:

At the end of the course the student will be able to:

- CO 1. Describe the working principles of Find-S and Candidate Elimination algorithms. (PO-1,2,3,5 PSO-1,2,3)
- CO 2. Demonstrate the working of various Classification algorithms with respect to training and test data sets. (PO-1,2,3,5 PSO-1,2,3)
- CO 3. Illustrate and analyze the principles of Supervised and unsupervised machine learning. (PO-1,2,3,5 PSO-1,2,3)

Mapping Course Outcomes with Programme Outcomes:

Course Outcomes	Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3		2								1	2	2
CO2	2	3	3		2								1	2	2
CO3	2	3	3		2								1	2	2

Course Assessment and Evaluation:

		What	To Whom	When/ Where (Frequency in the course)	Max Marks	Evidence Collected	Contribution to Course Outcomes
Dir	CIE	Lab Test		Once	20	Data Sheets	1,2 3
ect Ass	CIE			Continuous Evaluation	30	Record	1,2,3
ess me nt Met	SEE	Lab Examination	Students	End of Course (Executing 2 Programs)	50	Answer scripts	1,2,3
hod s	End of Course Survey			End of the course	-	Questionnaire	1,2,3 Effectiveness of Delivery of instructions & Assessment Methods

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

CIE and SEE evaluation:

S.No	Bloom's Category	Test1		Continuous Evaluation	Semester-End Examination
1	Remember	0	0	5	0
2	Understand	2	2	5	10
3	Apply	5	5	15	20
4	Analyze	0	0	0	0
5	Evaluate	0	0	0	0
6	Create	3	3	5	20

Evaluation of Lab for 50 marks:

Evaluatio	n of CIE	Evaluation	of Lab test	
Each lab session (12	30 marks			
lab sessions)	50 marks			
Total (Average of		Lab Test	20 marks	
marks evaluated for	30*12/12			
each lab session)				
Total	30 marks	Total	20 marks	
To	tal	50 m	arks	

Lab test Dates:

Review	Dates	Marks
Continuous Evaluation	Weekly	30
Lab Test	During 7 th Week and 13 th Week (Average of 2)	20