

**NIST NCSTAR 1**

Federal Building and Fire Safety Investigation  
of the World Trade Center Disaster

**Final Report on the Collapse of  
the World Trade Center Towers**



**National Institute of  
Standards and Technology**  
Technology Administration  
U.S. Department of Commerce



**NIST NCSTAR 1**

Federal Building and Fire Safety Investigation  
of the World Trade Center Disaster

# **Final Report on the Collapse of the World Trade Center Towers**

September 2005



U.S. Department of Commerce  
*Carlos M. Gutierrez, Secretary*

Technology Administration  
*Michelle O'Neill, Acting Under Secretary for Technology*

National Institute of Standards and Technology  
*William Jeffrey, Director*

Disclaimer No. 1

Certain commercial entities, equipment, products, or materials are identified in this document in order to describe a procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or equipment are necessarily the best available for the purpose. Nor does such identification imply a finding of fault or negligence by the National Institute of Standards and Technology.

Disclaimer No. 2

The policy of NIST is to use the International System of Units (metric units) in all publications. In this document, however, units are presented in metric units or the inch-pound system, whichever is prevalent in the discipline.

Disclaimer No. 3

Pursuant to section 7 of the National Construction Safety Team Act, the NIST Director has determined that certain evidence received by NIST in the course of this Investigation is "voluntarily provided safety-related information" that is "not directly related to the building failure being investigated" and that "disclosure of that information would inhibit the voluntary provision of that type of information" (15 USC 7306c).

In addition, a substantial portion of the evidence collected by NIST in the course of the Investigation has been provided to NIST under nondisclosure agreements.

Disclaimer No. 4

NIST takes no position as to whether the design or construction of a WTC building was compliant with any code since, due to the destruction of the WTC buildings, NIST could not verify the actual (or as-built) construction, the properties and condition of the materials used, or changes to the original construction made over the life of the buildings. In addition, NIST could not verify the interpretations of codes used by applicable authorities in determining compliance when implementing building codes. Where an Investigation report states whether a system was designed or installed as required by a code provision, NIST has documentary or anecdotal evidence indicating whether the requirement was met, or NIST has independently conducted tests or analyses indicating whether the requirement was met.

Use in Legal Proceedings

No part of any report resulting from a NIST investigation into a structural failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a; as amended by P.L. 107-231).

**National Institute of Standards and Technology National Construction Safety Team Act Report 1  
Natl. Inst. Stand. Technol. Natl. Constr. Sfty. Tm. Act Rpt. 1, 298 pages (September 2005)  
CODEN: NSPUE2**

U.S. GOVERNMENT PRINTING OFFICE  
WASHINGTON: 2005

---

For sale by the Superintendent of Documents, U.S. Government Printing Office  
Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250  
Mail: Stop SSOP, Washington, DC 20402-0001

**NATIONAL CONSTRUCTION SAFETY TEAM FOR THE FEDERAL  
BUILDING AND FIRE SAFETY INVESTIGATION OF THE WORLD TRADE  
CENTER DISASTER**

---

|                                           |                                                                                                         |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------|
| S. Shyam Sunder, Sc.D. (NIST)             | Lead Investigator                                                                                       |
| Richard G. Gann, Ph.D. (NIST)             | Final Report Editor; Project Leader, Project 5: Reconstruction of Thermal and Tenability Environment    |
| William L. Grosshandler, Ph.D. (NIST)     | Associate Lead Investigator; Project Leader, Project 4: Investigation of Active Fire Protection Systems |
| H.S. Lew, Ph.D., P.E. (NIST)              | Co-Project Leader, Project 1: Analysis of Building and Fire Codes and Practices                         |
| Richard W. Bukowski, P.E. (NIST)          | Co-Project Leader, Project 1: Analysis of Building and Fire Codes and Practices                         |
| Fahim Sadek, Ph.D. (NIST)                 | Project Leader, Project 2: Baseline Structural Performance and Aircraft Impact Damage Analysis          |
| Frank W. Gayle, Ph.D. (NIST)              | Project Leader, Project 3: Mechanical and Metallurgical Analysis of Structural Steel                    |
| John L. Gross, Ph.D., P.E. (NIST)         | Co-Project Leader, Project 6: Structural Fire Response and Collapse Analysis                            |
| Therese P. McAllister, Ph.D., P.E. (NIST) | Co-Project Leader, Project 6: Structural Fire Response and Collapse Analysis                            |
| Jason D. Averill (NIST)                   | Project Leader, Project 7: Occupant Behavior, Egress, and Emergency Communications                      |
| J. Randall Lawson (NIST)                  | Project Leader, Project 8: Fire Service Technologies and Guidelines                                     |
| Harold E. Nelson, P.E.                    | Fire Protection Engineering Expert                                                                      |
| Stephen A. Cauffman (NIST)                | Program Manager                                                                                         |

National Construction Safety Team

This page intentionally left blank.

## CONTRIBUTORS TO THE INVESTIGATION

---

### **NIST TECHNICAL STAFF**

|                   |                       |                   |
|-------------------|-----------------------|-------------------|
| Mohsen Altafi     | Jeffrey Fong          | Max Peltz         |
| Robert Anleitner  | Glenn Forney          | Lisa Petersen     |
| Elisa Baker       | William Fritz         | Rochelle Plummer  |
| Stephen Banovic   | Anthony Hamins        | Kuldeep Prasad    |
| Howard Baum       | Edward Hnetkovsky     | Natalia Ramirez   |
| Carlos Beauchamp  | Erik Johnsson         | Ronald Rehm       |
| Dale Bentz        | Dave Kelley           | Paul Reneke       |
| Charles Bouldin   | Mark Kile             | Michael Riley     |
| Paul Brand        | Erica Kuligowski      | Lonn Rodine       |
| Lori Brassell     | Jack Lee              | Schuyler Ruitberg |
| Kathy Butler      | William Luecke        | Jose Sanchez      |
| Nicholas Carino   | Alexander Maranghides | Raymond Santoyo   |
| Sandy Clagett     | David McColskey       | Steven Sekellick  |
| Ishmael Conteh    | Chris McCowan         | Michael Selepak   |
| Matthew Covin     | Jay McElroy           | Thomas Siewert    |
| Frank Davis       | Kevin McGrattan       | Emil Simiu        |
| David Dayan       | Roy McLane            | Monica Starnes    |
| Laurean DeLauter  | George Mulholland     | David Stroup      |
| Jonathan Demarest | Lakeshia Murray       | Laura Sugden      |
| Stuart Dols       | Kathy Notarianni      | Robert Vettori    |
| Michelle Donnelly | Joshua Novosel        | John Widmann      |
| Dat Duthinh       | Long Phan             | Brendan Williams  |
| David Evans       | William Pitts         | Maureen Williams  |
| Richard Fields    | Thomas Ohlemiller     | Jiann Yang        |
| James Filliben    | Victor Ontiveros      | Robert Zarr       |
| Tim Foecke        | Richard Peacock       |                   |

### **NIST EXPERTS AND CONSULTANTS**

|                  |
|------------------|
| Vincent Dunn     |
| Steven Hill      |
| John Hodgens     |
| Kevin Malley     |
| Valentine Junker |

*Contributors to the Investigation*

---

**DEPARTMENT OF COMMERCE AND NIST INSTITUTIONAL SUPPORT**

---

|                       |                       |                         |
|-----------------------|-----------------------|-------------------------|
| Michele Abadia-Dalmau | James Hill            | Karen Perry             |
| Kellie Beall          | Verna Hines           | Sharon Rinehart         |
| Arden Bement, Jr.     | Kathleen Kilmer       | Michael Rubin           |
| Audra Bingaman        | Kevin Kimball         | Rosamond Rutledge-Burns |
| Sharon Bisco          | Thomas Klausning      | John Sanderson          |
| Phyllis Boyd          | Donna Kline           | Hratch Semerjian        |
| Marie Bravo           | Fred Kopatich         | Sharon Shaffer          |
| Craig Burkhardt       | Kenneth Lechter       | Elizabeth Simon         |
| Paul Cataldo          | Melissa Lieberman     | Jack Snell              |
| Virginia Covahey      | Darren Lowe           | Michael Szwed           |
| Deborah Cramer        | Mark Madsen           | Kelly Talbott           |
| Gail Crum             | Ronald Meininger      | Anita Tolliver          |
| Jane Dana             | Romena Moy            | Joyce Waters            |
| Sherri Diaz           | Michael Newman        | Teresa Vicente          |
| Sandra Febach         | Gail Porter           | Dawn Williams           |
| Susan Ford            | Thomas O'Brian        |                         |
| James Fowler          | Nualla O'Connor-Kelly |                         |
| Matthew Heyman        | Norman Osinski        |                         |

**NIST CONTRACTORS**

---

**Applied Research Associates, Inc.**

|                     |                    |                   |
|---------------------|--------------------|-------------------|
| Steven Kirkpatrick* | Marsh Hardy        | Claudia Navarro   |
| Robert T. Bocchieri | Samuel Holmes      | Brian D. Peterson |
| Robert W. Cilke     | Robert A. MacNeill | Justin Y-T. Wu    |

**Baseline, Inc.**

Martin Klain

**Computer Aided Engineering Associates, Inc.**

|                |                   |
|----------------|-------------------|
| Peter Barrett* | Daniel Fridline   |
| Michael Bak    | James J. Kosloski |

**DataSource, Inc.**

John Wivaag

**GeoStats, Inc.**

Marcello Oliveira

Contributors to the Investigation**Gilsanz Murray Steficek LLP**

Ramon Gilsanz

**Hughes Associates, Inc.**

|                |              |                   |
|----------------|--------------|-------------------|
| Ed Budnick*    | Matt Hulcher | John Schoenrock   |
| Mike Ferreira* | Alwin Kelly  | Steven Stregé     |
| Mark Hopkins   | Chris Mealy  | Karen Dawn Tooren |

**Independent Contractors**

|                |                   |               |
|----------------|-------------------|---------------|
| Ajmal Abbasi   | David Sharp       | Kaspar Willam |
| Eduardo Kausel | Daniele Veneziano |               |
| David Parks    | Josef Van Dyck    |               |

**Isolatek International, Inc.**

Paulette Kaminski

**John Jay College**

Norman Groner

**Leslie E. Robertson Associates, R.L.L.P.**

|                     |                   |
|---------------------|-------------------|
| William J. Faschan* | William C. Howell |
| Richard B. Garlock* | Raymond C. Lai    |

**National Fire Protection Association**

Rita Fahey\*  
 Norma Candeloro  
 Joseph Molis

**National Research Council, Canada**

Guylene Proulx\*  
 Amber Walker

**NuStats, Inc.**

|                  |                  |               |
|------------------|------------------|---------------|
| Johanna Zmud*    | Christopher Frye | Della Santos  |
| Carlos Arce      | Nancy McGuckin   | Robert Santos |
| Heather Contrino | Sandra Rodriguez |               |

Contributors to the Investigation**Rolf Jensen & Associates, Inc.**

|            |               |             |
|------------|---------------|-------------|
| Ray Grill* | Tom Brown     | Bob Keough  |
| Ed Armm    | Duane Johnson | Joseph Razz |

**Rosenwasser/Grossman Consulting Engineers, P.C.**

Jacob Grossman\*  
 Craig Leech  
 Arthur Seigel

**Science Applications International Corporation**

|                 |                   |                |
|-----------------|-------------------|----------------|
| John Eichner*   | Pamela Curry      | Mark Madara    |
| Cheri Sawyer*   | John DiMarzio     | Walter Soverow |
| Lori Ackman     | Heather Duvall    | Paul Updike    |
| Marina Bogatine | Mark Huffman      | Yvonne Zagadou |
| Sydel Cavanaugh | Charlotte Johnson |                |
| Kathleen Clark  | Michael Kalmar    |                |

**Simpson Gumpertz & Heger Inc.**

|                  |                 |                   |
|------------------|-----------------|-------------------|
| Mehdi Zarghamee* | Ron Hamburger   | Wassim I. Naguib  |
| Glenn Bell       | Frank Kan       | Rasko P. Ojdrovic |
| Said Bolourchi   | Yasuo Kitane    | Andrew T. Sarawit |
| Daniel W. Eggers | Atis Liepins    | Pedro Sifre       |
| Ömer O. Erbay    | Michael Mudlock |                   |

**S. K. Ghosh Associates, Inc.**

|                |              |  |
|----------------|--------------|--|
| S. K. Ghosh*   | Dave Fanella |  |
| Analdo Derecho | Xumei Liang  |  |

**Skidmore, Owings & Merrill, LLP**

Bill Baker  
 Bob Sinn  
 John Zils

**Teng & Associates, Inc.**

Shankar Nair

**Underwriters Laboratories, Inc.**

|                  |               |               |
|------------------|---------------|---------------|
| Fred Hervey*     | Mark Izydorek | William Joy   |
| Joseph Treadway* | Aldo Jimenez  | John Mammoser |

Contributors to the Investigation**University at Buffalo, The State University of New York**

Andrew Whitaker\*

Andrei Reinhorn

Joshua Repp

**University of Chicago Survey  
Lab**

Virginia Bartot

Martha van Haitsma

**University of Colorado**

Dennis Miletic

**University of Michigan**

Jamie Abelson

**Wiss, Janney, Elstner Associates, Inc.**

Ray Tide\*

Jim Hauck

Conrad Paulson

**COOPERATING ORGANIZATIONS****American Airlines**

Desmond Barry

Morgan Heyer

**The Boeing Company**

Marlene Nelson

**Blanford Land Development  
Corporation**

Lisa Lickman

Ron Lickman

John Sandy

**Carr Futures, Inc.**

David Mangold

**City of New York Fire  
Department**

Alexandra Fisher

Allen S. Hay

**Federal Bureau of  
Investigation**

Kenneth Marr

**Hugo Neu Schnitzer East**

Robert Kelman

Steve Shinn

Frank Manzo

**Laclede Steel**

David McGee

**Marsh & McLennan  
Companies**

Thomas Gress

Michael Lyons

**Metal Management Northeast, Inc.**

Michael Henderson

Alan Ratner

John Silva

**National Commission on Terrorist Attacks Upon the United States**

Madeline Blot

Sam M. W. Casperson

George L. Delgrossio

Daniel Marcus

James Miller

Catherine S. Taylor

Contributors to the Investigation

---

**New York City Law Department**

|                  |                   |
|------------------|-------------------|
| Lawrence S. Kahn | Rachel Relkin     |
| Jay L. Cohen     | Joanna Weiss      |
| Gary Shaffer     | George C. D. Duke |

|                      |
|----------------------|
| Katherine Winningham |
| Jessie Levine        |

**New York City Police Department**

Michael F. Healey

**The Port Authority of New York and New Jersey**

|              |                 |
|--------------|-----------------|
| James Begley | Jeffrey Gertier |
| Saroj Bhol   | Frank Lombardi  |
| Gerry Gaeta  | Alan Reiss      |

Nancy Seliga

**Siemens**

Steven Shamash  
John Farrington  
Robert Salamone

**Silverstein Properties**

**Simpson, Thacher & Bartlett LLP**

Jamie Gamble

**Structural Engineers Association of New York**

Ed DiPaolo

**Wachtell, Lipton, Rosen & Katz**

Marc Wolinsky  
Andrew Cheung

**United Air Lines**

John Midgett  
Norvis Huezo

**Williams & Connolly LLP**

Philip Sechler

---

\*Principal Investigator/Key Contact

## DEDICATION

---

On the morning of September 11, 2001, Americans and people around the world were shocked by the destruction of the World Trade Center (WTC) in New York City and the devastation of the Pentagon near Washington, D.C., after large aircraft were flown into the buildings, and the crash of an aircraft in a Pennsylvania field that averted further tragedy. Four years later, the world has been changed irrevocably by those terrorist attacks. For some, the absence of people close to them is a constant reminder of the unpredictability of life and death. For millions of others, the continuing threats of further terrorist attacks affect how we go about our daily lives and the attention we must give to homeland security and emergency preparedness.

Within the construction, building, and public safety communities, there arose a question pressing to be answered: How can we reduce our vulnerability to such attacks, and how can we increase our preparedness and safety while still ensuring the functionality of the places in which we work and live?

This Investigation has, to the best extent possible, reconstructed the response of the WTC towers and the people on site to the consequence of the aircraft impacts. It provides improved understanding to the professional communities and building occupants whose action is needed and to those most deeply affected by the events of that morning. In this spirit, this report is dedicated to those lost in the disaster, to those who have borne the burden to date, and to those who will carry it forward to improve the safety of buildings.

*Dedication*

---

This page intentionally left blank.

## ABSTRACT

---

This is the final report on the National Institute of Standards and Technology (NIST) investigation of the collapse of the World Trade Center (WTC) towers, conducted under the National Construction Safety Team Act. This report describes how the aircraft impacts and subsequent fires led to the collapse of the towers after terrorists flew jet fuel laden commercial airliners into the buildings; whether the fatalities were low or high, including an evaluation of the building evacuation and emergency response procedures; what procedures and practices were used in the design, construction, operation, and maintenance of the towers; and areas in current building and fire codes, standards, and practices that warrant revision. Extensive details are found in the 42 companion reports. The final report on the collapse of WTC 7 will appear in a separate report.

Also in this report is a description of how NIST reached its conclusions. NIST complemented in-house expertise with private sector technical experts; accumulated copious documents, photographs, and videos of the disaster; established baseline performance of the WTC towers; performed computer simulations of the behavior of each tower on September 11, 2001; combined the knowledge gained into a probable collapse sequence for each tower; conducted nearly 1,200 first-person interviews of building occupants and emergency responders; and analyzed the evacuation and emergency response operations in the two high-rise buildings.

The report concludes with a list of 30 recommendations for action in the areas of increased structural integrity, enhanced fire endurance of structures, new methods for fire resistant design of structures, enhanced active fire protection, improved building evacuation, improved emergency response, improved procedures and practices, and education and training.

**Keywords:** Aircraft impact, building evacuation, emergency response, fire safety, human behavior, structural collapse, tall buildings, wind engineering, World Trade Center.

Abstract

---

This page intentionally left blank.

## TABLE OF CONTENTS

---

|                                                                                                                                   |              |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| National Construction Safety Team for the Federal Building and Fire Safety Investigation of the World Trade Center Disaster ..... | iii          |
| Contributors to the Investigation.....                                                                                            | v            |
| Dedication.....                                                                                                                   | xi           |
| Abstract.....                                                                                                                     | xiii         |
| List of Figures.....                                                                                                              | xxi          |
| List of Tables .....                                                                                                              | xxv          |
| List of Acronyms and Abbreviations .....                                                                                          | xxvii        |
| Preface .....                                                                                                                     | xxix         |
| Executive Summary.....                                                                                                            | XXXV         |
| <br><b>Part I: September 11, 2001 .....</b>                                                                                       | <br><b>1</b> |
| <br><b>Chapter 1</b>                                                                                                              |              |
| <b>New York City's World Trade Center .....</b>                                                                                   | <b>1</b>     |
| 1.1 The Origination.....                                                                                                          | 1            |
| 1.2 The World Trade Center Complex .....                                                                                          | 2            |
| 1.2.1 The Site.....                                                                                                               | 2            |
| 1.2.2 The Towers.....                                                                                                             | 5            |
| <br><b>Chapter 2</b>                                                                                                              |              |
| <b>The Account of World Trade Center 1 .....</b>                                                                                  | <b>19</b>    |
| 2.1 8:46:30 a.m. EDT.....                                                                                                         | 19           |
| 2.2 The Aircraft.....                                                                                                             | 20           |
| 2.3 The Immediate Damage .....                                                                                                    | 20           |
| 2.4 The Jet Fuel.....                                                                                                             | 24           |
| 2.5 8:47 a.m. to 9:02 a.m. EDT.....                                                                                               | 24           |
| 2.6 9:02:59 a.m. EDT.....                                                                                                         | 27           |
| 2.7 9:03 a.m. to 9:57 a.m. EDT.....                                                                                               | 27           |
| 2.8 9:58:59 a.m. EDT.....                                                                                                         | 32           |
| 2.9 9:59 a.m. to 10:28 a.m. EDT.....                                                                                              | 32           |
| 2.10 The Outcome.....                                                                                                             | 34           |

*Table of Contents*

---

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>Chapter 3</b>                                                  |           |
| <b>The Account of World Trade Center 2 .....</b>                  | <b>37</b> |
| 3.1 8:46:30 a.m. EDT.....                                         | 37        |
| 3.2 9:02:59 a.m. EDT.....                                         | 38        |
| 3.3 The Immediate Damage.....                                     | 38        |
| 3.4 The Jet Fuel.....                                             | 42        |
| 3.5 9:03 a.m. to 9:36 a.m. EDT.....                               | 42        |
| 3.6 9:36 a.m. to 9:58 a.m. EDT.....                               | 44        |
| 3.7 The Outcome.....                                              | 45        |
| <b>Chapter 4</b>                                                  |           |
| <b>The Toll .....</b>                                             | <b>47</b> |
| <b>Part II: Reconstructing the Disaster.....</b>                  | <b>49</b> |
| <b>Chapter 5</b>                                                  |           |
| <b>The Design and Construction of the Towers .....</b>            | <b>51</b> |
| 5.1 Building and Fire Codes .....                                 | 51        |
| 5.2 The Codes and the Towers.....                                 | 52        |
| 5.2.1 The New York City Building Code.....                        | 52        |
| 5.2.2 Pertinent Construction Provisions .....                     | 53        |
| 5.2.3 Tenant Alteration Process.....                              | 54        |
| 5.3 Building Design .....                                         | 55        |
| 5.3.1 Loads .....                                                 | 55        |
| 5.3.2 Aircraft Impact .....                                       | 55        |
| 5.3.3 Construction Classification and Fire Resistance Rating..... | 55        |
| 5.3.4 Compartmentation .....                                      | 56        |
| 5.3.5 Egress Provisions .....                                     | 57        |
| 5.3.6 Active Fire Protection .....                                | 61        |
| 5.4 Building Innovations.....                                     | 64        |
| 5.4.1 The Need for Innovations.....                               | 64        |
| 5.4.2 Framed Tube System.....                                     | 64        |
| 5.4.3 Deep Spandrel Plates.....                                   | 64        |
| 5.4.4 Uniform External Column Geometry .....                      | 65        |
| 5.4.5 Wind Tunnel Test Data to Establish Wind Loads .....         | 65        |
| 5.4.6 Viscoelastic Dampers .....                                  | 65        |

*Table of Contents*

|                                                                                                                           |           |
|---------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.4.7 Long-Span Composite Floor Assemblies .....                                                                          | 66        |
| 5.4.8 Vertical Shaft Wall Panels.....                                                                                     | 66        |
| 5.5 Structural Steels .....                                                                                               | 67        |
| 5.5.1 Types and Sources.....                                                                                              | 67        |
| 5.5.2 Properties.....                                                                                                     | 67        |
| 5.6 Fire Protection of Structural Steel.....                                                                              | 69        |
| 5.6.1 Thermal Insulation .....                                                                                            | 69        |
| 5.6.2 Use of Insulation in the WTC Towers.....                                                                            | 69        |
| 5.7 Concrete .....                                                                                                        | 75        |
| 5.8 The Tenant Spaces .....                                                                                               | 75        |
| 5.8.1 General .....                                                                                                       | 75        |
| 5.8.2 Walls.....                                                                                                          | 76        |
| 5.8.3 Flooring .....                                                                                                      | 76        |
| 5.8.4 Ceilings.....                                                                                                       | 76        |
| 5.8.5 Furnishings .....                                                                                                   | 76        |
| <b>Chapter 6</b><br><b>Reconstruction of the Collapses.....</b>                                                           | <b>81</b> |
| 6.1 Approach.....                                                                                                         | 81        |
| 6.2 Development of the Disaster Timeline .....                                                                            | 82        |
| 6.3 Learning from the Visual Images .....                                                                                 | 84        |
| 6.4 Learning from the Recovered Steel .....                                                                               | 86        |
| 6.4.1 Collection of Recovered Steel .....                                                                                 | 86        |
| 6.4.2 Mechanical and Physical Properties.....                                                                             | 88        |
| 6.4.3 Damage Analysis.....                                                                                                | 89        |
| 6.5 Information Gained from Other WTC Fires .....                                                                         | 91        |
| 6.6 The Building Structural Models.....                                                                                   | 92        |
| 6.6.1 Computer Simulation Software .....                                                                                  | 92        |
| 6.6.2 The Reference Models.....                                                                                           | 92        |
| 6.6.3 Building Structural Models for Aircraft Impact Analysis .....                                                       | 94        |
| 6.6.4 Building Structural Models for Structural Response to Impact Damage and Fire and Collapse Initiation Analysis ..... | 97        |
| 6.7 The Aircraft Structural Model .....                                                                                   | 105       |
| 6.8 Aircraft Impact Modeling .....                                                                                        | 107       |
| 6.8.1 Component Level Analyses.....                                                                                       | 107       |
| 6.8.2 Subassembly Impact Analyses .....                                                                                   | 108       |

*Table of Contents*

---

|                                                                                                          |     |
|----------------------------------------------------------------------------------------------------------|-----|
| 6.8.3 Aircraft Impact Conditions.....                                                                    | 108 |
| 6.8.4 Global Impact Analysis.....                                                                        | 109 |
| 6.9 Aircraft Impact Damage Estimates.....                                                                | 112 |
| 6.9.1 Structural and Contents Damage .....                                                               | 112 |
| 6.9.2 Validity of Impact Simulations .....                                                               | 116 |
| 6.9.3 Damage to Thermal Insulation .....                                                                 | 119 |
| 6.9.4 Damage to Ceiling System .....                                                                     | 120 |
| 6.9.5 Damage to Interior Walls and Furnishings.....                                                      | 120 |
| 6.10 Thermal Environment Modeling.....                                                                   | 121 |
| 6.10.1 Need for Simulation .....                                                                         | 121 |
| 6.10.2 Modeling Approach.....                                                                            | 121 |
| 6.10.3 The Four Cases .....                                                                              | 126 |
| 6.10.4 Characterization of the Fires .....                                                               | 127 |
| 6.10.5 Global Heat Release Rates .....                                                                   | 130 |
| 6.11 Data Transfer .....                                                                                 | 131 |
| 6.12 Thermal Mapping .....                                                                               | 131 |
| 6.12.1 Approach .....                                                                                    | 131 |
| 6.12.2 The Fire-Structure Interface .....                                                                | 131 |
| 6.12.3 Thermal Insulation Properties .....                                                               | 132 |
| 6.12.4 FSI Uncertainty Assessment.....                                                                   | 133 |
| 6.12.5 The Four Cases.....                                                                               | 138 |
| 6.12.6 Characterization of the Thermal Profiles.....                                                     | 141 |
| 6.13 Measurement of the Fire Resistance of the Floor System .....                                        | 141 |
| 6.14 Collapse Analysis of the Towers .....                                                               | 143 |
| 6.14.1 Approach to Determining the Probable Collapse Sequences .....                                     | 143 |
| 6.14.2 Results of Global Analysis of WTC 1 .....                                                         | 144 |
| 6.14.3 Results of Global Analysis of WTC 2 .....                                                         | 145 |
| 6.14.4 Events Following Collapse Initiation .....                                                        | 146 |
| 6.14.5 Structural Response of the WTC Towers to Fire without Impact or Thermal<br>Insulation Damage..... | 146 |
| 6.14.6 Probable WTC 1 Collapse Sequence.....                                                             | 150 |
| 6.14.7 Probable WTC 2 Collapse Sequence.....                                                             | 151 |
| 6.14.8 Accuracy of the Probable Collapse Sequences.....                                                  | 152 |
| 6.14.9 Factors that Affected Building Performance on September 11, 2001 .....                            | 154 |

Table of Contents

|                                                                                |            |
|--------------------------------------------------------------------------------|------------|
| <b>Chapter 7</b>                                                               |            |
| <b>Reconstruction of Human Activity .....</b>                                  | <b>155</b> |
| 7.1 Building Occupants.....                                                    | 155        |
| 7.1.1 Background .....                                                         | 155        |
| 7.1.2 The Building Egress System .....                                         | 155        |
| 7.1.3 The Evacuation—Data Sources.....                                         | 157        |
| 7.1.4 Occupant Demographics .....                                              | 158        |
| 7.1.5 Evacuation of WTC 1.....                                                 | 158        |
| 7.1.6 Evacuation of WTC 2.....                                                 | 160        |
| 7.2 Emergency Responders.....                                                  | 163        |
| 7.2.1 Data Gathered.....                                                       | 163        |
| 7.2.2 Operation Changes following the WTC 1 Bombing on February 26, 1993 ..... | 164        |
| 7.2.3 Responder Organization.....                                              | 166        |
| 7.2.4 Responder Access.....                                                    | 169        |
| 7.2.5 Communications.....                                                      | 170        |
| 7.2.6 The Overall Response .....                                               | 172        |
| 7.3 Factors That Contributed to Enhanced Life Safety.....                      | 172        |
| 7.3.1 Aggregate Factors.....                                                   | 172        |
| 7.3.2 Individual Factors.....                                                  | 172        |
| <b>Part III: The Outcome of the Investigation .....</b>                        | <b>173</b> |
| <b>Chapter 8</b>                                                               |            |
| <b>Principal Findings .....</b>                                                | <b>175</b> |
| 8.1 Introduction.....                                                          | 175        |
| 8.2 Summary.....                                                               | 175        |
| 8.3 Findings on the Mechanisms of Building Collapse .....                      | 179        |
| 8.3.1 Summary of Probable Collapse Sequences .....                             | 179        |
| 8.3.2 Structural Steels.....                                                   | 180        |
| 8.3.3 Aircraft Impact Damage Analysis .....                                    | 182        |
| 8.3.4 Reconstruction of the Fires.....                                         | 183        |
| 8.3.5 Structural Response and Collapse Analysis .....                          | 185        |
| 8.4 Findings on Factors Affecting Life Safety.....                             | 186        |
| 8.4.1 Active Fire Protection .....                                             | 186        |
| 8.4.2 Evacuation .....                                                         | 188        |
| 8.4.3 Emergency Response .....                                                 | 191        |

*Table of Contents*

---

|                        |                                                                                                        |            |
|------------------------|--------------------------------------------------------------------------------------------------------|------------|
| 8.5                    | Findings on Operational Codes, Standards, and Practices .....                                          | 194        |
| 8.5.1                  | General .....                                                                                          | 194        |
| 8.5.2                  | Structural Safety .....                                                                                | 195        |
| 8.5.3                  | Fire Safety .....                                                                                      | 196        |
| 8.6                    | Future Factors That Could Have Improved Life Safety .....                                              | 199        |
| 8.6.1                  | Building Performance Factors .....                                                                     | 200        |
| 8.6.2                  | Human Performance Factors .....                                                                        | 200        |
| <b>Chapter 9</b>       |                                                                                                        |            |
| <b>Recommendations</b> | .....                                                                                                  | <b>201</b> |
| 9.1                    | Building Regulations .....                                                                             | 201        |
| 9.2                    | NIST's Recommendations for Improving the Safety of Buildings, Occupants, and Emergency Responders..... | 202        |
| 9.2.1                  | Group 1. Increased Structural Integrity .....                                                          | 205        |
| 9.2.2                  | Group 2. Enhanced Fire Endurance of Structures .....                                                   | 208        |
| 9.2.3                  | Group 3. New Methods for Fire Resistant Design of Structures.....                                      | 211        |
| 9.2.4                  | Group 4. Improved Active Fire Protection.....                                                          | 213        |
| 9.2.5                  | Group 5. Improved Building Evacuation .....                                                            | 214        |
| 9.2.6                  | Group 6. Improved Emergency Response.....                                                              | 218        |
| 9.2.7                  | Group 7. Improved Procedures and Practices .....                                                       | 220        |
| 9.2.8                  | Group 8. Education and Training .....                                                                  | 222        |
| 9.3                    | Next Steps .....                                                                                       | 223        |

**Appendix A**  
**National Construction Safety Team Act****Appendix B**  
**World Trade Center Investigation Publications****Appendix C**  
**Subject Index of Supporting Investigation Reports**

## LIST OF FIGURES

---

|                                                                                                                                                                                                                                                         |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure P-1. The eight projects in the federal building and fire safety investigation of the WTC disaster.....                                                                                                                                           | xxi |
|                                                                                                                                                                                                                                                         |     |
| Figure 1-1. The World Trade Center in Lower Manhattan.....                                                                                                                                                                                              | 3   |
| Figure 1-2. Lower Manhattan and the World Trade Center towers.....                                                                                                                                                                                      | 4   |
| Figure 1-3. Tower floor plans with column numbers. ....                                                                                                                                                                                                 | 7   |
| Figure 1-4. Perimeter column/spandrel assembly and floor structure.....                                                                                                                                                                                 | 8   |
| Figure 1-5. Plan of the 96 <sup>th</sup> floor of WTC 1 showing the core and tenant spaces. ....                                                                                                                                                        | 9   |
| Figure 1-6. Schematic of composite floor truss system.....                                                                                                                                                                                              | 10  |
| Figure 1-7. Schematic of a hat truss. ....                                                                                                                                                                                                              | 11  |
| Figure 1-8. Photograph of insulated WTC trusses.....                                                                                                                                                                                                    | 12  |
| Figure 1-9. Schematic of the three-tier elevator system.....                                                                                                                                                                                            | 14  |
| Figure 1-10. Orientation of the three stairwells. ....                                                                                                                                                                                                  | 16  |
| Figure 1-11. Views of typical WTC office floors.....                                                                                                                                                                                                    | 17  |
| Figure 1-12. A WTC trading floor.....                                                                                                                                                                                                                   | 17  |
|                                                                                                                                                                                                                                                         |     |
| Figure 2-1. Simulated impact of American Airlines Flight 11 with WTC 1.....                                                                                                                                                                             | 19  |
| Figure 2-2. Aircraft entry hole on the north side of WTC 1, photographed 30 s after impact. ....                                                                                                                                                        | 21  |
| Figure 2-3. South face damage of WTC 1 with key aircraft component locations marked.....                                                                                                                                                                | 22  |
| Figure 2-4. Simulation of cumulative aircraft impact damage to floors 93 through 98 in WTC 1.....                                                                                                                                                       | 23  |
| Figure 2-5. Representation of exterior views of the fires on the four faces of WTC 1 from 8:47 a.m. to about 9:02 a.m. ....                                                                                                                             | 25  |
| Figure 2-6. Firefighters on the scene at about 9:07 a.m. ....                                                                                                                                                                                           | 27  |
| Figure 2-7. Representation of exterior views of the fires on the four faces of WTC 1 from about 9:38 a.m. to 9:58 a.m. ....                                                                                                                             | 28  |
| Figure 2-8. Steel surface temperatures on the bottom chords of fire-exposed trusses, uninsulated and insulated with 3/4 in. of BLAZE-SHIELD DC/F.....                                                                                                   | 29  |
| Figure 2-9. Temperature dependence of yield strength of structural steel as a fraction of the value at room temperature. ....                                                                                                                           | 30  |
| Figure 2-10. Simulated temperatures of two adjacent trusses (left) and two adjacent perimeter columns (right) exposed to the fires in WTC 1.....                                                                                                        | 30  |
| Figure 2-11. Temperature contours (°C) on the top and bottom faces of the concrete slab (96 <sup>th</sup> floor, WTC 1) at 100 min after impact. A portion of the concrete slab on the north face (top) was damaged by the impact of the aircraft. .... | 31  |

*List of Figures*

---

|                                                                                                                                          |     |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2–12. South face of WTC 1 at 10:23 a.m., showing inward buckling (in inches) of perimeter columns.....                            | 33  |
| Figure 3–1. Imminent impact of United Airlines Flight 175 with WTC 2.....                                                                | 38  |
| Figure 3–2. South face damage of WTC 2 with key aircraft component locations marked.....                                                 | 39  |
| Figure 3–3. Simulation of aircraft impact damage to the 78 <sup>th</sup> through 83 <sup>rd</sup> floors in WTC 2.....                   | 40  |
| Figure 3–4. Representation of exterior views of the fires on the four faces of WTC 2 at about 9:20 a.m.....                              | 43  |
| Figure 3–5. Photograph of WTC 2 tilting to the southeast at the onset of collapse.....                                                   | 45  |
| Figure 4–1. The WTC site on September 17, 2001.....                                                                                      | 47  |
| Figure 5–1. Fire Command Desk in WTC 1, as seen from a mezzanine elevator, looking west.....                                             | 61  |
| Figure 5–2. Schematic of sprinkler and standpipe systems.....                                                                            | 63  |
| Figure 5–3. Diagram of floor truss showing viscoelastic damper.....                                                                      | 66  |
| Figure 5–4. Ratio of measured yield strength ( $F_y$ ) to specified minimum yield strength for steels used in WTC perimeter columns..... | 69  |
| Figure 5–5. Irregularity of coating thickness and gaps in coverage on SFRM-coated bridging trusses.....                                  | 71  |
| Figure 5–6. Thermal insulation for perimeter columns.....                                                                                | 72  |
| Figure 5–7. Temperature-dependent concrete properties.....                                                                               | 75  |
| Figure 5–8. A WTC workstation.....                                                                                                       | 76  |
| Figure 6–1. 9:26:20 a.m. showing the east face of WTC 2.....                                                                             | 85  |
| Figure 6–2. Close-up of section of Figure 6–1.....                                                                                       | 86  |
| Figure 6–3. Examples of a WTC 1 core column (left) and truss material (right).....                                                       | 88  |
| Figure 6–4. WTC 1 exterior panel hit by the fuselage of the aircraft.....                                                                | 88  |
| Figure 6–5. WTC 1 exterior panel hit by the nose of the aircraft.....                                                                    | 89  |
| Figure 6–6. Structural model of the 96 <sup>th</sup> floor of WTC 1.....                                                                 | 95  |
| Figure 6–7. Model of the 96 <sup>th</sup> floor of WTC 1, including interior contents and partitions.....                                | 95  |
| Figure 6–8. Multi-floor global model of WTC 1, viewed from the north.....                                                                | 96  |
| Figure 6–9. Multi-floor global model of WTC 2, viewed from the south.....                                                                | 96  |
| Figure 6–10. Finite element model of an exterior truss seat.....                                                                         | 98  |
| Figure 6–11. Vertical displacement at 700 °C.....                                                                                        | 98  |
| Figure 6–12. ANSYS model of 96 <sup>th</sup> floor of WTC 1.....                                                                         | 99  |
| Figure 6–13. Finite element model of the Boeing 767-200ER.....                                                                           | 105 |

*List of Figures*

|                                                                                                                                                               |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 6-14. Pratt & Whitney PW4000 turbofan engine model. ....                                                                                               | 106 |
| Figure 6-15. Boeing 767-200ER showing the jet fuel distribution at time of impact. ....                                                                       | 106 |
| Figure 6-16. Calculated impact on an exterior wall by a fuel-laden wing section. ....                                                                         | 107 |
| Figure 6-17. Response of a tower subassembly model to engine impact. ....                                                                                     | 108 |
| Figure 6-18. Side view of simulated aircraft impact into WTC 1, Case B. ....                                                                                  | 110 |
| Figure 6-19. Column damage levels. ....                                                                                                                       | 112 |
| Figure 6-20. Case B damage to the slab of floor 96 of WTC 1. ....                                                                                             | 112 |
| Figure 6-21. Case B simulation of response of contents of 96 <sup>th</sup> floor of WTC 1. ....                                                               | 113 |
| Figure 6-22. Combined structural damage to the floors and columns of WTC 1, Case A. ....                                                                      | 114 |
| Figure 6-23. Combined structural damage to the floors and columns of WTC 1, Case B. ....                                                                      | 114 |
| Figure 6-24. Combined structural damage to the floors and columns of WTC 2, Case C. ....                                                                      | 115 |
| Figure 6-25. Combined structural damage to the floors and columns of WTC 2, Case D. ....                                                                      | 115 |
| Figure 6-26. Observed and Case A calculated damage to the north face of WTC 1. ....                                                                           | 117 |
| Figure 6-27. Schematic of observed damage (top) and Case A calculated damage (lower) to the north face of WTC 1. ....                                         | 118 |
| Figure 6-28. Schematic of observed damage (above) and Case C calculated damage (right) to the south face of WTC 2. ....                                       | 118 |
| Figure 6-29. Ceiling tile system mounted on the shaking table. ....                                                                                           | 120 |
| Figure 6-30. Eight floor model of WTC 1 prior to aircraft impact. ....                                                                                        | 122 |
| Figure 6-31. Fire test of a single workstation. ....                                                                                                          | 123 |
| Figure 6-32. Interior view of a three-workstation fire test. ....                                                                                             | 124 |
| Figure 6-33. Rubblized workstations. ....                                                                                                                     | 124 |
| Figure 6-34. Three-workstation fire test, 2 min after the start. ....                                                                                         | 125 |
| Figure 6-35. Measured and predicted heat release rate from the burning of three office workstations. ....                                                     | 125 |
| Figure 6-36. Upper layer temperatures on the 94 <sup>th</sup> floor of WTC 1, 15 min after impact. ....                                                       | 127 |
| Figure 6-37. Direction of simulated fire movement on floors 94 and 97 of WTC 1. ....                                                                          | 128 |
| Figure 6-38. Predicted heat release rates for fires in WTC 1 and WTC 2. ....                                                                                  | 130 |
| Figure 6-39. Simple bar dimensions (in.). ....                                                                                                                | 134 |
| Figure 6-40. Tubular column dimensions (in.). ....                                                                                                            | 134 |
| Figure 6-41. Truss Dimensions (in.). ....                                                                                                                     | 135 |
| Figure 6-42. SFRM-coated steel components prior to a test. ....                                                                                               | 135 |
| Figure 6-43. Finite element representation of the insulated steel truss (blue), the SFRM (violet), and the ceiling (red). ....                                | 136 |
| Figure 6-44. Comparison of numerical simulations with measurements for the steel surface temperature at four locations on the top chord of a bare truss. .... | 137 |

List of Figures

---

|                                                                                                                                                                           |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 6-45. Comparison of numerical simulations with measurements for the temperature of the steel surface at four locations on the top chord of an insulated truss..... | 137 |
| Figure 6-46. Temperatures (°C) on the columns and trusses of the 96 <sup>th</sup> floor of WTC 1 at 6,000 s after aircraft impact, Case B. ....                           | 139 |
| Figure 6-47. Temperatures (°C) on the columns and trusses of the 81 <sup>st</sup> floor of WTC 2 at 3,000 s after aircraft impact, Case D. ....                           | 139 |
| Figure 6-48. Frames from animation of the thermal response of columns on the 96 <sup>th</sup> floor of WTC 1, Case A.....                                                 | 140 |
|                                                                                                                                                                           |     |
| Figure 7-1. Simulated impact damage to 95 <sup>th</sup> floor of WTC 1, including stairwells, 0.7 s after impact.....                                                     | 156 |
| Figure 7-2. Simulated impact damage to WTC 2 on floor 78, 0.62 s after impact.....                                                                                        | 156 |
| Figure 7-3. Observations of building damage after initial awareness but before beginning evacuation in WTC 1. ....                                                        | 161 |
| Figure 7-4. Observations of building damage from tenant spaces in WTC 2.....                                                                                              | 162 |
| Figure 7-5. Location of the radio repeater. ....                                                                                                                          | 165 |
| Figure 7-6. Timing of FDNY unit arrivals. ....                                                                                                                            | 166 |
| Figure 7-7. Fire Command Board located in the lobby of WTC 1.....                                                                                                         | 168 |

## LIST OF TABLES

---



---

|             |                                                                                                |        |
|-------------|------------------------------------------------------------------------------------------------|--------|
| Table P-1.  | Federal building and fire safety investigation of the WTC disaster.....                        | xxx    |
| Table P-2.  | Public meetings and briefings of the WTC Investigation.....                                    | xxxiii |
| Table E-1.  | Topics of NIST recommendations for improved public safety in tall and high-risk buildings..... | xliv   |
| Table 1-1.  | Use of floors in the WTC towers. ....                                                          | 5      |
| Table 2-1.  | Locations of occupants of WTC 1. ....                                                          | 26     |
| Table 3-1.  | Tenants on impact floors in WTC 2.....                                                         | 39     |
| Table 3-2.  | Location of occupants of WTC 2. ....                                                           | 42     |
| Table 4-1.  | Likely locations of WTC decedents at time of impact.....                                       | 48     |
| Table 5-1.  | Specified steel grades for various applications. ....                                          | 67     |
| Table 5-2.  | Types and locations of SFRM on fire floors. ....                                               | 74     |
| Table 5-3.  | Floors of focus. ....                                                                          | 78     |
| Table 6-1.  | Times for major events on September 11, 2001.....                                              | 84     |
| Table 6-2.  | Indications of major structural changes up to collapse initiation.....                         | 87     |
| Table 6-3.  | Measured and calculated natural vibration periods (s) for WTC 1.....                           | 93     |
| Table 6-4.  | Summary of aircraft impact conditions.....                                                     | 108    |
| Table 6-5.  | Input parameters for global impact analyses.....                                               | 109    |
| Table 6-6.  | Values of WTC fire simulation variables.....                                                   | 126    |
| Table 6-7.  | Summary of insulation on steel components. ....                                                | 136    |
| Table 6-8.  | Regions in WTC 1 in which temperatures of structural steel exceeded 600 °C. ....               | 141    |
| Table 6-9.  | Regions in WTC 2 in which temperatures of structural steel exceeded 600 °C. ....               | 141    |
| Table 6-10. | Comparison of global structural model predictions and observations for WTC 1, Case B. ....     | 153    |
| Table 6-11. | Comparison of global structural model predictions and observations for WTC 2, Case D. ....     | 153    |

*List of Tables*

---

This page intentionally left blank.

## LIST OF ACRONYMS AND ABBREVIATIONS

---

### Acronyms

|        |                                                |
|--------|------------------------------------------------|
| AA     | American Airlines                              |
| ARA    | Application Research Associates                |
| ASTM   | ASTM International                             |
| BOCA   | Building Officials and Code Administrators     |
| BPS    | Building Performance Study                     |
| FCD    | Fire Command Desk                              |
| FDNY   | The Fire Department of the City of New York    |
| FDS    | Fire Dynamics Simulator                        |
| FEMA   | Federal Emergency Management Agency            |
| FSI    | Fire Structure Interface                       |
| IBC    | International Building Code                    |
| LERA   | Leslie E. Robertson Associates                 |
| NFPA   | National Fire Protection Association           |
| NIST   | National Institute of Standards and Technology |
| NYC    | New York City                                  |
| NYPD   | New York City Police Department                |
| NYS    | New York State                                 |
| PANYNJ | The Port Authority of New York and New Jersey  |
| PAPD   | Port Authority Police Department               |
| SFRM   | sprayed fire-resistive material                |
| SGH    | Simpson Gumpertz & Heger, Inc.                 |
| SOM    | Skidmore, Owings and Merrill                   |
| UA     | United Airlines                                |
| USC    | United States Code                             |
| WSHJ   | Worthington, Skilling, Helle and Jackson       |
| WTC    | World Trade Center                             |
| WTC 1  | World Trade Center 1 (North Tower)             |

## PREFACE

---

### **Genesis of This Investigation**

Immediately following the terrorist attack on the World Trade Center (WTC) on September 11, 2001, the Federal Emergency Management Agency (FEMA) and the American Society of Civil Engineers began planning a building performance study of the disaster. The week of October 7, as soon as the rescue and search efforts ceased, the Building Performance Study Team went to the site and began its assessment. This was to be a brief effort, as the study team consisted of experts who largely volunteered their time away from their other professional commitments. The Building Performance Study Team issued its report in May 2002, fulfilling its goal "to determine probable failure mechanisms and to identify areas of future investigation that could lead to practical measures for improving the damage resistance of buildings against such unforeseen events."

On August 21, 2002, with funding from the U.S. Congress through FEMA, the National Institute of Standards and Technology (NIST) announced its building and fire safety investigation of the WTC disaster. On October 1, 2002, the National Construction Safety Team Act (Public Law 107-231), was signed into law. (A copy of the Public Law is included in Appendix A). The NIST WTC Investigation was conducted under the authority of the National Construction Safety Team Act.

The goals of the investigation of the WTC disaster were:

- To investigate the building construction, the materials used, and the technical conditions that contributed to the outcome of the WTC disaster.
- To serve as the basis for:
  - Improvements in the way buildings are designed, constructed, maintained, and used;
  - Improved tools and guidance for industry and safety officials;
  - Recommended revisions to current codes, standards, and practices; and
  - Improved public safety.

The specific objectives were:

1. Determine why and how WTC 1 and WTC 2 collapsed following the initial impacts of the aircraft and why and how WTC 7 collapsed;
2. Determine why the injuries and fatalities were so high or low depending on location, including all technical aspects of fire protection, occupant behavior, evacuation, and emergency response;
3. Determine what procedures and practices were used in the design, construction, operation, and maintenance of WTC 1, 2, and 7; and
4. Identify, as specifically as possible, areas in current building and fire codes, standards, and practices that warrant revision.

List of Acronyms and Abbreviations

---

WTC 2      World Trade Center 2 (South Tower)

WTC 7      World Trade Center 7

**Abbreviations and Conversion Factors**

|     |                           |                                                                          |
|-----|---------------------------|--------------------------------------------------------------------------|
| °C  | degrees Celsius           | $T \text{ (}^{\circ}\text{C)} = 5/9 [T \text{ (}^{\circ}\text{F)} - 32]$ |
| °F  | degrees Fahrenheit        |                                                                          |
| ft  | feet                      |                                                                          |
| gal | gallon                    | $1 \text{ gal} = 3.78 \times 10^{-3} \text{ m}^3$                        |
| GJ  | gigajoule                 |                                                                          |
| GW  | gigawatt                  |                                                                          |
| in. | inch                      |                                                                          |
| kg  | kilogram                  |                                                                          |
| kip | 1,000 lb                  |                                                                          |
| ksi | 1,000 lb/in. <sup>2</sup> |                                                                          |
| lb  | pound                     | $1 \text{ lb} = 0.453 \text{ kg}$                                        |
| m   | meter                     | $1 \text{ m} = 3.28 \text{ ft}$                                          |
| μm  | micrometer                |                                                                          |
| min | minute                    |                                                                          |
| MJ  | megajoule                 |                                                                          |
| MW  | megawatt                  |                                                                          |
| psi | pounds per square inch    |                                                                          |
| s   | second                    |                                                                          |
| T   | temperature               |                                                                          |

Preface

NIST is a nonregulatory agency of the U.S. Department of Commerce's Technology Administration. The purpose of NIST investigations is to improve the safety and structural integrity of buildings in the United States, and the focus is on fact finding. NIST investigative teams are authorized to assess building performance and emergency response and evacuation procedures in the wake of any building failure that has resulted in substantial loss of life or that posed significant potential of substantial loss of life. NIST does not have the statutory authority to make findings of fault nor negligence by individuals or organizations. Further, no part of any report resulting from a NIST investigation into a building failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a, as amended by Public Law 107-231).

### Organization of the Investigation

The National Construction Safety Team for this Investigation, appointed by the then NIST Director, Dr. Arden L. Bement, Jr., was led by Dr. S. Shyam Sunder. Dr. William L. Grosshandler served as Associate Lead Investigator, Mr. Stephen A. Cauffman served as Program Manager for Administration, and Mr. Harold E. Nelson served on the team as a private sector expert. The Investigation included eight interdependent projects whose leaders comprised the remainder of the team. A detailed description of each of these eight projects is available at <http://wtc.nist.gov>. The purpose of each project is summarized in Table P-1, and the key interdependencies among the projects are illustrated in Fig. P-1.

**Table P-1. Federal building and fire safety investigation of the WTC disaster.**

| Technical Area and Project Leader                                                                                | Project Purpose                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis of Building and Fire Codes and Practices; Project Leaders: Dr. H. S. Lew and Mr. Richard W. Bukowski    | Document and analyze the code provisions, procedures, and practices used in the design, construction, operation, and maintenance of the structural, passive fire protection, and emergency access and evacuation systems of WTC 1, 2, and 7.                  |
| Baseline Structural Performance and Aircraft Impact Damage Analysis; Project Leader: Dr. Fahim H. Sadek          | Analyze the baseline performance of WTC 1 and WTC 2 under design, service, and abnormal loads, and aircraft impact damage on the structural, fire protection, and egress systems.                                                                             |
| Mechanical and Metallurgical Analysis of Structural Steel; Project Leader: Dr. Frank W. Gayle                    | Determine and analyze the mechanical and metallurgical properties and quality of steel, weldments, and connections from steel recovered from WTC 1, 2, and 7.                                                                                                 |
| Investigation of Active Fire Protection Systems; Project Leader: Dr. David D. Evans; Dr. William Grosshandler    | Investigate the performance of the active fire protection systems in WTC 1, 2, and 7 and their role in fire control, emergency response, and fate of occupants and responders.                                                                                |
| Reconstruction of Thermal and Tenability Environment; Project Leader: Dr. Richard G. Gann                        | Reconstruct the time-evolving temperature, thermal environment, and smoke movement in WTC 1, 2, and 7 for use in evaluating the structural performance of the buildings and behavior and fate of occupants and responders.                                    |
| Structural Fire Response and Collapse Analysis; Project Leaders: Dr. John L. Gross and Dr. Therese P. McAllister | Analyze the response of the WTC towers to fires with and without aircraft damage, the response of WTC 7 in fires, the performance of composite steel-trussed floor systems, and determine the most probable structural collapse sequence for WTC 1, 2, and 7. |
| Occupant Behavior, Egress, and Emergency Communications; Project Leader: Mr. Jason D. Averill                    | Analyze the behavior and fate of occupants and responders, both those who survived and those who did not, and the performance of the evacuation system.                                                                                                       |
| Emergency Response Technologies and Guidelines; Project Leader: Mr. J. Randall Lawson                            | Document the activities of the emergency responders from the time of the terrorist attacks on WTC 1 and WTC 2 until the collapse of WTC 7, including practices followed and technologies used.                                                                |



**Figure P-1. The eight projects in the federal building and fire safety investigation of the WTC disaster.**

#### National Construction Safety Team Advisory Committee

The NIST Director also established an advisory committee as mandated under the National Construction Safety Team Act. The initial members of the committee were appointed following a public solicitation. These were:

- Paul Fitzgerald, Executive Vice President (retired) FM Global, National Construction Safety Team Advisory Committee Chair
- John Barsom, President, Barsom Consulting, Ltd.
- John Bryan, Professor Emeritus, University of Maryland
- David Collins, President, The Preview Group, Inc.
- Glenn Corbett, Professor, John Jay College of Criminal Justice
- Philip DiNenno, President, Hughes Associates, Inc.

*Preface*

---

- Robert Hanson, Professor Emeritus, University of Michigan
- Charles Thornton, Co-Chairman and Managing Principal, The Thornton-Tomasetti Group, Inc.
- Kathleen Tierney, Director, Natural Hazards Research and Applications Information Center, University of Colorado at Boulder
- Forman Williams, Director, Center for Energy Research, University of California at San Diego

This National Construction Safety Team Advisory Committee provided technical advice during the Investigation and commentary on drafts of the Investigation reports prior to their public release. NIST has benefited from the work of many people in the preparation of these reports, including the National Construction Safety Team Advisory Committee. The content of the reports and recommendations, however, are solely the responsibility of NIST.

### **Public Outreach**

During the course of this Investigation, NIST held public briefings and meetings (listed in Table P-2) to solicit input from the public, present preliminary findings, and obtain comments on the direction and progress of the Investigation from the public and the Advisory Committee.

NIST maintained a publicly accessible Web site during this Investigation at <http://wtc.nist.gov>. The site contained extensive information on the background and progress of the Investigation.

### **NIST's WTC Public-Private Response Plan**

The collapse of the WTC buildings has led to broad reexamination of how tall buildings are designed, constructed, maintained, and used, especially with regard to major events such as fires, natural disasters, and terrorist attacks. Reflecting the enhanced interest in effecting necessary change, NIST, with support from Congress and the Administration, has put in place a program, the goal of which is to develop and implement the standards, technology, and practices needed for cost-effective improvements to the safety and security of buildings and building occupants, including evacuation, emergency response procedures, and threat mitigation.

The strategy to meet this goal is a three-part, NIST-led, public-private response program that includes:

- A federal building and fire safety investigation to study the most probable factors that contributed to post-aircraft impact collapse of the WTC towers and the 47-story WTC 7 building, and the associated evacuation and emergency response experience.
- A research and development (R&D) program to (a) facilitate the implementation of recommendations resulting from the WTC Investigation, and (b) provide the technical basis for cost-effective improvements to national building and fire codes, standards, and practices that enhance the safety of buildings, their occupants, and emergency responders.

**Table P-2. Public meetings and briefings of the WTC Investigation.**

| Date                  | Location          | Principal Agenda                                                                                                                                                                         |
|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 24, 2002         | New York City, NY | Public meeting: Public comments on the <i>Draft Plan</i> for the pending WTC Investigation.                                                                                              |
| August 21, 2002       | Gaithersburg, MD  | Media briefing announcing the formal start of the Investigation.                                                                                                                         |
| December 9, 2002      | Washington, DC    | Media briefing on release of the <i>Public Update</i> and NIST request for photographs and videos.                                                                                       |
| April 8, 2003         | New York City, NY | Joint public forum with Columbia University on first-person interviews.                                                                                                                  |
| April 29–30, 2003     | Gaithersburg, MD  | NCST Advisory Committee meeting on plan for and progress on WTC Investigation with a public comment session.                                                                             |
| May 7, 2003           | New York City, NY | Media briefing on release of <i>May 2003 Progress Report</i> .                                                                                                                           |
| August 26–27, 2003    | Gaithersburg, MD  | NCST Advisory Committee meeting on status of the WTC investigation with a public comment session.                                                                                        |
| September 17, 2003    | New York City, NY | Media and public briefing on initiation of first-person data collection projects.                                                                                                        |
| December 2–3, 2003    | Gaithersburg, MD  | NCST Advisory Committee meeting on status and initial results and release of the <i>Public Update</i> with a public comment session.                                                     |
| February 12, 2004     | New York City, NY | Public meeting on progress and preliminary findings with public comments on issues to be considered in formulating final recommendations.                                                |
| June 18, 2004         | New York City, NY | Media/public briefing on release of <i>June 2004 Progress Report</i> .                                                                                                                   |
| June 22–23, 2004      | Gaithersburg, MD  | NCST Advisory Committee meeting on the status of and preliminary findings from the WTC Investigation with a public comment session.                                                      |
| August 24, 2004       | Northbrook, IL    | Public viewing of standard fire resistance test of WTC floor system at Underwriters Laboratories, Inc.                                                                                   |
| October 19–20, 2004   | Gaithersburg, MD  | NCST Advisory Committee meeting on status and near complete set of preliminary findings with a public comment session.                                                                   |
| November 22, 2004     | Gaithersburg, MD  | NCST Advisory Committee discussion on draft annual report to Congress, a public comment session, and a closed session to discuss pre-draft recommendations for WTC Investigation.        |
| April 5, 2005         | New York City, NY | Media and public briefing on release of the probable collapse sequence for the WTC towers and draft reports for the projects on codes and practices, evacuation, and emergency response. |
| June 23, 2005         | New York City, NY | Media and public briefing on release of all draft reports for the WTC towers and draft recommendations for public comment.                                                               |
| September 12–13, 2005 | Gaithersburg, MD  | NCST Advisory Committee meeting on disposition of public comments and update to draft reports for the WTC towers.                                                                        |
| September 13–15, 2005 | Gaithersburg, MD  | WTC Technical Conference for stakeholders and technical community for dissemination of findings and recommendations and opportunity for the public to make technical comments.           |

- A dissemination and technical assistance program (DTAP) to (a) engage leaders of the construction and building community in ensuring timely adoption and widespread use of proposed changes to practices, standards, and codes resulting from the WTC Investigation and the R&D program, and (b) provide practical guidance and tools to better prepare facility owners, contractors, architects, engineers, emergency responders, and regulatory authorities to respond to future disasters.

The desired outcomes are to make buildings, occupants, and first responders safer in future disaster events.

*Preface*

---

**National Construction Safety Team Reports on the WTC Investigation**

This report covers the WTC towers, with a separate report on the 47-story WTC 7. Supporting documentation of the techniques and technologies used in the reconstruction are in a set of companion reports that provide more detailed documentation of the Investigation findings and the means by which these technical results were achieved. As such, they are part of the archival record of this Investigation. The titles of the full set of Investigation publications are listed in Appendix B.

## EXECUTIVE SUMMARY

---

### **E.1 GENESIS OF THIS INVESTIGATION**

On August 21, 2002, the National Institute of Standards and Technology (NIST) announced its building and fire safety investigation of the World Trade Center (WTC) disaster.<sup>1</sup> This WTC Investigation was then conducted under the authority of the National Construction Safety Team (NCST) Act, which was signed into law on October 1, 2002. A copy of the Public Law is included in Appendix A.

The goals of the investigation of the WTC disaster were:

- To investigate the building construction, the materials used, and the technical conditions that contributed to the outcome of the WTC disaster after terrorists flew large jet-fuel laden commercial airliners into the WTC towers.
- To serve as the basis for:
  - Improvements in the way buildings are designed, constructed, maintained, and used;
  - Improved tools and guidance for industry and safety officials;
  - Recommended revisions to current codes, standards, and practices; and
  - Improved public safety

The specific objectives were:

1. Determine why and how WTC 1 and WTC 2 collapsed following the initial impacts of the aircraft and why and how WTC 7 collapsed;
2. Determine why the injuries and fatalities were so high or low depending on location, including all technical aspects of fire protection, occupant behavior, evacuation, and emergency response;
3. Determine what procedures and practices were used in the design, construction, operation, and maintenance of WTC 1, 2, and 7; and

---

<sup>1</sup> NIST is a nonregulatory agency of the U.S. Department of Commerce. The purpose of NIST investigations is to improve the safety and structural integrity of buildings in the United States, and the focus is on fact finding. NIST investigative teams are authorized to assess building performance and emergency response and evacuation procedures in the wake of any building failure that has resulted in substantial loss of life or that posed significant potential of substantial loss of life. NIST does not have the statutory authority to make findings of fault nor negligence by individuals or organizations. Further, no part of any report resulting from a NIST investigation into a building failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a, as amended by P.L. 107-231).

*Executive Summary*

---

4. Identify, as specifically as possible, areas in current building and fire codes, standards, and practices that warrant revision.

**E.2 APPROACH**

To meet these goals, NIST complemented its in-house expertise with an array of specialists in key technical areas. In all, over 200 staff contributed to the Investigation. NIST and its contractors compiled and reviewed tens of thousands of pages of documents; conducted interviews with over a thousand people who had been on the scene or who had been involved with the design, construction, and maintenance of the WTC; analyzed 236 pieces of steel that were obtained from the wreckage; performed laboratory tests, measured material properties, and performed computer simulations of the sequence of events that happened from the instant of aircraft impact to the initiation of collapse for each tower.

Cooperation in obtaining the resource materials and in interpreting the results came from a large number of individuals and organizations, including The Port Authority of New York and New Jersey and its contractors and consultants; Silverstein Properties and its contractors and consultants; the City of New York and its departments; the manufacturers and fabricators of the building components; the companies that insured the WTC towers; the building tenants; the aircraft manufacturers; the airlines; the public, including survivors and family members; and the media.

The scarcity of physical evidence that is typically available in place for reconstruction of a disaster led to the following approach:

- Accumulation of copious photographic and video material. With the assistance of the media, public agencies and individual photographers, NIST acquired and organized nearly 7,000 segments of video footage, totaling in excess of 150 hours and nearly 7,000 photographs representing at least 185 photographers. This guided the Investigation Team's efforts to determine the condition of the buildings following the aircraft impact, the evolution of the fires, and the subsequent deterioration of the structure.
- Establishment of the baseline performance of the WTC towers, i.e., estimating the expected performance of the towers under normal design loads and conditions. The baseline performance analysis also helped to estimate the ability of the towers to withstand the unexpected events of September 11, 2001. Establishing the baseline performance of the towers began with the compilation and analysis of the procedures and practices used in the design, construction, operation, and maintenance of the structural, fire protection, and egress systems of the WTC towers. The additional components of the performance analysis were the standard fire resistance of the WTC truss-framed floor system, the quality and properties of the structural steels used in the towers, and the response of the WTC towers to the design gravity and wind loads.
- Simulations of the behavior of each tower on September 11, 2001, in four steps:
  1. The aircraft impact into the tower, the resulting distribution of aviation fuel, and the damage to the structure, partitions, thermal insulation materials, and building contents.
  2. The evolution of multi-floor fires.

Executive Summary

3. The heating and consequent weakening of the structural elements by the fires.
4. The response of the damaged and heated building structure, and the progression of structural component failures leading to the initiation of the collapse of the towers.

For such complex structures and complex thermal and structural processes, each of these steps stretched the state of the technology and tested the limits of software tools and computer hardware. For example, the investigators advanced the state-of-the-art in the measurement of construction material properties and in structural finite element modeling. New modeling capability was developed for the mapping of fire-generated environmental temperatures onto the building structural components.

The output of the four-step simulations was subject to uncertainties in the as-built condition of the towers, the interior layout and furnishings, the aircraft impact, the internal damage to the towers (especially the thermal insulation for fire protection of the structural steel, which is colloquially referred to as *fireproofing*), the redistribution of the combustibles, and the response of the building structural components to the heat from the fires. To increase confidence in the simulation results, NIST used the visual evidence, eyewitness accounts from inside and outside the buildings, laboratory tests involving large fires and the heating of structural components, and formal statistical methods to identify influential parameters and quantify the variability in analysis results.

- Combination of the knowledge gained into probable collapse sequences for each tower,<sup>2</sup> the identification of factors that contributed to the collapse, and a list of factors that could have improved building performance or otherwise mitigated the loss of life.
- Compilation of a list of findings that respond to the first three objectives and a list of recommendations that responds to the fourth objective.

### **E.3 SUMMARY OF FINDINGS**

**Objective 1: Determine why and how WTC 1 and WTC 2 collapsed following the initial impacts of the aircraft.**

- The two aircraft hit the towers at high speed and did considerable damage to principal structural components (core columns, floors, and perimeter columns) that were directly impacted by the aircraft or associated debris. However, the towers withstood the impacts and would have remained standing were it not for the dislodged insulation (fireproofing) and the subsequent multi-floor fires. The robustness of the perimeter frame-tube system and the large size of the buildings helped the towers withstand the impact. The structural system redistributed loads from places of aircraft impact, avoiding larger scale damage upon impact. The hat truss, a feature atop each tower which was intended to support a television antenna, prevented earlier collapse of the building core. In each tower, a different combination of impact damage and heat-weakened structural components contributed to the abrupt structural collapse.

<sup>2</sup> The focus of the Investigation was on the sequence of events from the instant of aircraft impact to the initiation of collapse for each tower. For brevity in this report, this sequence is referred to as the "probable collapse sequence," although it includes little analysis of the structural behavior of the tower after the conditions for collapse initiation were reached and collapse became inevitable.

Executive Summary

- In WTC 1, the fires weakened the core columns and caused the floors on the south side of the building to sag. The floors pulled the heated south perimeter columns inward, reducing their capacity to support the building above. Their neighboring columns quickly became overloaded as columns on the south wall buckled. The top section of the building tilted to the south and began its descent. The time from aircraft impact to collapse initiation was largely determined by how long it took for the fires to weaken the building core and to reach the south side of the building and weaken the perimeter columns and floors.
- In WTC 2, the core was damaged severely at the southeast corner and was restrained by the east and south walls via the hat truss and the floors. The steady burning fires on the east side of the building caused the floors there to sag. The floors pulled the heated east perimeter columns inward, reducing their capacity to support the building above. Their neighboring columns quickly became overloaded as columns on the east wall buckled. The top section of the building tilted to the east and to the south and began its descent. The time from aircraft impact to collapse initiation was largely determined by the time for the fires to weaken the perimeter columns and floor assemblies on the east and the south sides of the building. WTC 2 collapsed more quickly than WTC 1 because there was more aircraft damage to the building core, including one of the heavily loaded corner columns, and there were early and persistent fires on the east side of the building, where the aircraft had extensively dislodged insulation from the structural steel.
- The WTC towers likely would not have collapsed under the combined effects of aircraft impact damage and the extensive, multi-floor fires that were encountered on September 11, 2001, if the thermal insulation had not been widely dislodged or had been only minimally dislodged by aircraft impact.
- In the absence of structural and insulation damage, a conventional fire substantially similar to or less intense than the fires encountered on September 11, 2001, likely would not have led to the collapse of a WTC tower.
- NIST found no corroborating evidence for alternative hypotheses suggesting that the WTC towers were brought down by controlled demolition using explosives planted prior to September 11, 2001. NIST also did not find any evidence that missiles were fired at or hit the towers. Instead, photographs and videos from several angles clearly showed that the collapse initiated at the fire and impact floors and that the collapse progressed from the initiating floors downward, until the dust clouds obscured the view.

**Objective 2: Determine why the injuries and fatalities were so high or low depending on location, including all technical aspects of fire protection, occupant behavior, evacuation, and emergency response.**

- Approximately 87 percent of the estimated 17,400 occupants of the towers, and 99 percent of those located below the impact floors, evacuated successfully. In WTC 1, where the aircraft destroyed all escape routes, 1,355 people were trapped in the upper floors when the building collapsed. One hundred seven people who were below the impact floors did not survive. Since the flow of people from the building had slowed considerably 20 min before the tower collapsed, the stairwell capacity was adequate to evacuate the occupants on that morning.

---

*Executive Summary*

- In WTC 2, before the second aircraft strike, about 3,000 people got low enough in the building to escape by a combination of self-evacuation and use of elevators. The aircraft destroyed the operation of the elevators and the use of two of the three stairways. Eighteen people from above the impact zone found a passage through the damaged third stairway (Stairwell A) and escaped. The other 619 people in or above the impact zone perished. Eleven people who were below the impact floors did not survive. As in WTC 1, shortly before collapse, the flow of people from the building had slowed considerably, indicating that the stairwell capacity was adequate that morning.
- About 6 percent of the survivors described themselves as mobility impaired, with recent injury and chronic illness being the most common causes; few, however, required a wheelchair. Among the 118 decedents below the aircraft impact floors, investigators identified seven who were mobility impaired, but were unable to determine the mobility capability of the remaining 111.
- A principal factor limiting the loss of life was that the buildings were one-third to one-half occupied at the time of the attacks. NIST estimated that if the towers had been fully occupied with 20,000 occupants each, it would have taken just over 3 hours to evacuate the buildings and about 14,000 people might have perished because the stairwell capacity would not have been sufficient to evacuate that many people in the available time. Egress capacity required by current building codes is determined by single floor calculations that are independent of building height and does not consider the time for full building evacuation.
- Due to the presence of assembly use spaces at the top of each tower (Windows on the World restaurant complex in WTC 1 and the Top of the World observation deck in WTC 2) that were designed to accommodate over 1,000 occupants per floor, the New York City Building Code would have required a minimum of four independent means of egress (stairs), one more than the three that were available in the buildings. Given the low occupancy level on September 11, 2001, NIST found that the issue of egress capacity from these places of assembly, or from elsewhere in the buildings, was not a significant factor on that day. It is conceivable that such a fourth stairwell, depending on its location and the effects of aircraft impact on its functional integrity, could have remained passable, allowing evacuation by an unknown number of additional occupants from above the floors of impact. If the buildings had been filled to their capacity with 20,000 occupants, the required fourth stairway would likely have mitigated the insufficient egress capacity for conducting a full building evacuation within the available time.
- Evacuation was assisted by participation in fire drills within the previous year by two-thirds of survivors and perhaps hindered by a Local Law that prevented employers from *requiring* occupants to practice using the stairways. The stairways were not easily navigated in some locations due to their design, which included “transfer hallways,” where evacuees had to traverse from one stairway to another location where the stairs continued. Additionally, many occupants were unprepared for the physical challenge of full building evacuation.
- The functional integrity and survivability of the stairwells was affected by the separation of the stairwells and the structural integrity of stairwell enclosures. In the impact region of WTC 1, the stairwell separation was the smallest over the building height—clustered well

*Executive Summary*

---

within the building core—and all stairwells were destroyed by the aircraft impact. By contrast, the separation of stairwells in the impact region of WTC 2 was the largest over the building height—located along different boundaries of the building core—and one of three stairwells remained marginally passable after the aircraft impact. The shaft enclosures were fire rated but were not required to have structural integrity under typical accidental loads: there were numerous reports of stairwells obstructed by fallen debris from damaged enclosures.

- The active fire safety systems (sprinklers, smoke purge, fire alarms, and emergency occupant communications) were designed to meet or exceed current practice. However, with the exception of the evacuation announcements, they played no role in the safety of life on September 11 because the water supplies to the sprinklers were damaged by the aircraft impact. The smoke purge systems operated under the direction of the fire department after fires were not turned on, but they also would have been ineffective due to aircraft damage. The violence of the aircraft impact served as its own alarm. In WTC 2, contradictory public address announcements contributed to occupant confusion and some delay in occupants beginning to evacuate.
- For the approximately 1,000 emergency responders on the scene, this was the largest disaster they had even seen. Despite attempts by the responding agencies to work together and perform their own tasks, the extent of the incident was well beyond their capabilities. Communications were erratic due to the high number of calls and the inadequate performance of some of the gear. Even so, there was no way to digest, test for accuracy, and disseminate the vast amount of information being received. Their jobs were complicated by the loss of command centers in WTC 7 and then in the towers after WTC 2 collapsed. With nearly all elevator service disrupted and progress up the stairs taking about 2 min per floor, it would have taken hours for the responders to reach their destinations, assist survivors, and escape had the towers not collapsed.

**Objective 3: Determine what procedures and practices were used in the design, construction, operation, and maintenance of WTC 1 and WTC 2.**

- Because of The Port Authority's establishment under a clause of the United States Constitution, its buildings were not subject to any state or local building regulations. The buildings were unlike any others previously built, both in their height and in their innovative structural features. Nevertheless, the actual design and approval process produced two buildings that generally were consistent with nearly all of the provisions of the New York City Building Code and other building codes of that time that were reviewed by NIST. The loads for which the buildings were designed exceeded the New York City code requirements. The quality of the structural steels was consistent with the building specifications. The departures from the building codes and standards identified by NIST did not have a significant effect on the outcome of September 11.
- For the floor systems, the fire rating and insulation thickness used on the floor trusses, which together with the concrete slab served as the main source of support for the floors, were of concern from the time of initial construction. NIST found no technical basis or test data on which the thermal protection of the steel was based. On September 11, 2001, the minimum

---

*Executive Summary*

specified thickness of the insulation was adequate to delay heating of the trusses; the amount of insulation dislodged by the aircraft impact, however, was sufficient to cause the structural steel to be heated to critical levels.

- Based on four standard fire resistance tests that were conducted under a range of insulation and test conditions, NIST found the fire rating of the floor system to vary between 3/4 hour and 2 hours; in all cases, the floors continued to support the full design load without collapse for over 2 hours.
- The wind loads used for the WTC towers, which governed the structural design of the external columns and provided the baseline capacity of the structures to withstand abnormal events such as major fires or impact damage, significantly exceeded the requirements of the New York City Building Code and other building codes of the day that were reviewed by NIST. Two sets of wind load estimates for the towers obtained by independent commercial consultants in 2002, however, differed by as much as 40 percent. These estimates were based on wind tunnel tests conducted as part of insurance litigation unrelated to the Investigation.

#### **E.4 RECOMMENDATIONS**

The tragic consequences of the September 11, 2001, attacks were directly attributable to the fact that terrorists flew large jet-fuel laden commercial airliners into the WTC towers. Buildings for use by the general population are not designed to withstand attacks of such severity; building regulations do not require building designs to consider aircraft impact. In our cities, there has been no experience with a disaster of such magnitude, nor has there been any in which the total collapse of a high-rise building occurred so rapidly and with little warning.

While there were unique aspects to the design of the WTC towers and the terrorist attacks of September 11, 2001, NIST has compiled a list of recommendations to improve the safety of tall buildings, occupants, and emergency responders based on its investigation of the procedures and practices that were used for the WTC towers; these procedures and practices are commonly used in the design, construction, operation, and maintenance of buildings under normal conditions. Public officials and building owners will need to determine appropriate performance requirements for those tall buildings, and selected other buildings, that are at higher risk due to their iconic status, critical function, or design.

The topics of the recommendations in eight groups are listed in Table E-1. The ordering does not reflect any priority.

The eight major groups of recommendations are:

- Increased Structural Integrity: The standards for estimating the load effects of potential hazards (e.g., progressive collapse, wind) and the design of structural systems to mitigate the effects of those hazards should be improved to enhance structural integrity.
- Enhanced Fire Endurance of Structures: The procedures and practices used to ensure the fire endurance of structures should be enhanced by improving the technical basis for construction classifications and fire resistance ratings, improving the technical basis for standard fire resistance testing methods, use of the “structural frame” approach to fire resistance ratings,

---

*Executive Summary*

and developing in-service performance requirements and conformance criteria for sprayed fire-resistive material.

- **New Methods for Fire Resistant Design of Structures:** The procedures and practices used in the fire resistant design of structures should be enhanced by requiring an objective that uncontrolled fires result in burnout without local or global collapse. Performance-based methods are an alternative to prescriptive design methods. This effort should include the development and evaluation of new fire resistive coating materials and technologies and evaluation of the fire performance of conventional and high-performance structural materials.
- **Improved Active Fire Protection:** Active fire protection systems (i.e., sprinklers, standpipes/ hoses, fire alarms, and smoke management systems) should be enhanced through improvements to design, performance, reliability, and redundancy of such systems.
- **Improved Building Evacuation:** Building evacuation should be improved to include system designs that facilitate safe and rapid egress, methods for ensuring clear and timely emergency communications to occupants, better occupant preparedness for evacuation during emergencies, and incorporation of appropriate egress technologies.
- **Improved Emergency Response:** Technologies and procedures for emergency response should be improved to enable better access to buildings, response operations, emergency communications, and command and control in large-scale emergencies.
- **Improved Procedures and Practices:** The procedures and practices used in the design, construction, maintenance, and operation of buildings should be improved to include encouraging code compliance by nongovernmental and quasi-governmental entities, adoption and application of egress and sprinkler requirements in codes for existing buildings, and retention and availability of building documents over the life of a building.
- **Education and Training:** The professional skills of building and fire safety professionals should be upgraded through a national education and training effort for fire protection engineers, structural engineers, architects, and building regulatory and fire service personnel.

The recommendations call for action by specific entities regarding standards, codes and regulations, their adoption and enforcement, professional practices, education, and training; and research and development. Only when each of the entities carries out its role will the implementation of a recommendation be effective.

The recommendations do not prescribe specific systems, materials, or technologies. Instead, NIST encourages competition among alternatives that can meet performance requirements. The recommendations also do not prescribe specific threshold levels; NIST believes that this responsibility properly falls within the purview of the public policy setting process, in which the standards and codes development process plays a key role.

NIST believes the recommendations are realistic and achievable within a reasonable period of time. Only a few of the recommendations call for new requirements in standards and codes. Most of the recommendations deal with improving an existing standard or code requirement, establishing a standard

---

*Executive Summary*

for an existing practice without one, establishing the technical basis for an existing requirement, making a current requirement risk-consistent, adopting or enforcing a current requirement, or establishing a performance-based alternative to a current prescriptive requirement.

NIST strongly urges that immediate and serious consideration be given to these recommendations by the building and fire safety communities in order to achieve appropriate improvements in the way buildings are designed, constructed, maintained, and used and in evacuation and emergency response procedures—with the goal of making buildings, occupants, and first responders safer in future emergencies.

NIST also strongly urges building owners and public officials to (1) evaluate the safety implications of these recommendations to their existing inventory of buildings and (2) take the steps necessary to mitigate any unwarranted risks without waiting for changes to occur in codes, standards, and practices.

NIST further urges state and local agencies to rigorously enforce building codes and standards since such enforcement is critical to ensure the expected level of safety. Unless they are complied with, the best codes and standards cannot protect occupants, emergency responders, or buildings.

## Executive Summary

**Table E-1. Topics of NIST recommendations for improved public safety in tall and high-risk buildings.**

| Recommendation Group                                | Recommendation Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible Community |                        | Relation to 9/11 Outcome |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|--------------------------|
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Application           | Unrelated <sup>b</sup> |                          |
| Increased Structural Integrity                      | Prevention of progressive collapse and failure analysis of complex systems<br>Estimation of wind loads and their effects on tall buildings<br>Allowable tall buildings sway                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓ ✓ ✓ ✓ ✓             | ✓ ✓ ✓ ✓ ✓              | ✓ ✓ ✓ ✓ ✓                |
| Enhanced Fire Endurance of Structures               | Fire resistance rating requirements and construction classification<br>Fire resistance testing of building components and extrapolation of test data to qualify untested building components<br>In-service performance requirements and inspection procedures for sprayed fire-resistant material (SFRM or spray-on fireproofing)<br>“Structural frame” approach (structural members connected to columns carry the higher fire resistance rating of the columns)                                                                                                                             | ✓ ✓ ✓ ✓ ✓             | ✓ ✓ ✓ ✓ ✓              | ✓ ✓ ✓ ✓ ✓                |
| New Methods for Fire Resistant Design of Structures | Burnout without partial or global (total) structural collapse in uncontrolled building fires<br>Performance-based design and retrofit of structures to resist fires<br>New fire-resistant coating materials, systems, and technologies<br>Evaluation of high performance structural materials under conditions expected in building fires                                                                                                                                                                                                                                                     | ✓ ✓ ✓ ✓ ✓             | ✓ ✓ ✓ ✓ ✓              | ✓ ✓ ✓ ✓ ✓                |
| Improved Active Fire Protection                     | Performance and redundancy of active fire protection systems to accommodate the greater risks associated with tall buildings<br>Advanced fire alarm and communication systems that provide continuous, reliable, and accurate information on life safety conditions to manage the evacuation process.<br>Advanced fire/emergency control panels with more reliable information from the active fire protection systems to provide tactical decision aids<br>Improved transmission to emergency responders, and off-site or black box storage, of information from building monitoring systems | ✓ ✓ ✓ ✓ ✓             | ✓ ✓ ✓ ✓ ✓              | ✓ ✓ ✓ ✓ ✓                |

## Executive Summary

| Recommendation Group              | Recommendation Topic                                                                                                                                                                                                         | Responsible Community              | Application | Relation to 9/11 Outcome |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|--------------------------|
|                                   |                                                                                                                                                                                                                              |                                    |             | Unrelated <sup>b</sup>   |
| Improved Building Evacuation      | Public education and training campaigns to improve building occupants' preparedness for evacuation                                                                                                                           | All Tall Buildings                 | ✓           | ✓                        |
|                                   | Tall building design for timely full building emergency evacuation of occupants                                                                                                                                              | Selected Other High-Risk Buildings | ✓           | ✓                        |
|                                   | Design of occupant-friendly evacuation paths that maintain functionality in foreseeable emergencies                                                                                                                          | Education & Training               | ✓           | ✓                        |
|                                   | Planning for communication of accurate emergency information to building occupants                                                                                                                                           | R&D/Further Study                  | ✓           | ✓                        |
|                                   | Evaluation of alternative evacuation technologies, to allow all occupants equal opportunity for evacuation and to facilitate emergency response access                                                                       | Adoption & Enforcement             | ✓           | ✓                        |
|                                   | Fire-protected and structurally hardened elevators                                                                                                                                                                           | Standards, Codes, Regulations      | ✓           | ✓                        |
| Improved Emergency Response       | Effective emergency communications systems for large-scale emergencies                                                                                                                                                       | Practices                          | ✓           | ✓                        |
|                                   | Enhanced gathering, processing, and delivering of critical information to emergency responders                                                                                                                               |                                    | ✓           | ✓                        |
|                                   | Effective and uninterrupted operation of the command and control system for large-scale building emergencies                                                                                                                 |                                    | ✓           | ✓                        |
| Improved Procedures and Practices | Provision of code-equivalent level of safety and certification of as-designed and as-built safety by nongovernmental and quasi-governmental entities                                                                         |                                    | ✓           | ✓                        |
|                                   | Egress and sprinkler requirements for existing buildings                                                                                                                                                                     |                                    | ✓           | ✓                        |
|                                   | Retention and off-site storage of design, construction, maintenance, and modification documents over the entire life of the building; and availability of relevant building information for use by responders in emergencies |                                    | ✓           | ✓                        |
|                                   | Design professional responsibility for innovative or unusual structural and fire safety systems                                                                                                                              |                                    | ✓           | ✓                        |
| Education and Training            | Professional cross training of fire protection engineers, architects, structural engineers, and building regulatory and fire service personnel.                                                                              |                                    | ✓           | ✓                        |
|                                   | Training in computational fire dynamics and thermosstructural analysis                                                                                                                                                       |                                    | ✓           | ✓                        |

a. If in place, could have changed the outcome on September 11, 2001.  
b. Would not have changed the outcome, yet is an important building and fire safety issue that was identified during the course of the investigation.

Executive Summary

---

This page intentionally left blank.