Kapittel 11: Elektrokjemi

- Galvaniske celler
- Standard reduksjonspotensialer
- Cellepotensial, elektrisk arbeid og fri energi
- Cellepotensial vs konsentrasjon
- Batterier
- Korrosjon
- Elektrolyse
- Elektrolyseprosesser

www.ntnu.no \ TMT4110 Kjemi

Hva er elektrokjemi?

- Definert som:
 - "Studie av vekselsvirkningen mellom kjemisk og elektrisk energi"
- Elektrokjemiske reaksjoner muliggjør konvertering av kjemisk energi til elektrisk energi (eller motsatt)
- Overføring av elektroner
- · Redoks-reaksjoner
- Viktig i feks batterier, elektrolyseprosesser, korrosjon...

www.ntnu.no

Elektrokjemiske celler

- Oppløsning av Zn: $Zn(s) \rightarrow Zn^{2+} + 2 e^{-}$
- Utfelling av Cu: $Cu^{2+} + 2 e^{-} \rightarrow Cu (s)$

- Totalrx: $Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$
- Hva skjer om en Cu-stav settes i en Zn-løsning? NTNU

www.ntnu.no \ TMT4110 Kjemi

11.2 Standard reduksjonspotensial

- Totalreaksjonen kan deles i to halvreaksjoner
- Hver av disse har sitt potensiale/spenning og summen gir cellespenninga
- · Kan ikke måles direkte
- Standard hydrogenelektrode: Standardtilstand; P(H₂) = 1 atm, c = 1M
- Def: 2 H⁺ + 2e⁻ \rightarrow H₂ (ved de gitte betingelsene) $\varepsilon^o_{H^+ \to H_2} = 0$
- De andre halvcellereaksjonene er relativt til denne NB: Reduksjonspotensialer!

www.ntnu.no

Standard Reduction Potentials at 25°C (298 K) for Many Com	mon Half-react	ions		
Half-reaction	&° (V)	Half-reaction	%° (V)	
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40	
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34	
$\text{Co}^{3+} + \text{e}^- \rightarrow \text{Co}^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27	
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22	
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20	
$PbO_{2} + 4H^{+} + SO_{4}^{2-} + 2e^{-} \rightarrow PbSO_{4} + 2H_{2}O$	1.69	$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	0.16	
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00	
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^{-} \rightarrow Fe^{-}$	-0.036	-
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13	
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$Sn^{2+} + 2e^{-} \rightarrow Sn$	-0.14	
$PbO_{2} + 4H^{+} + 2e^{-} \rightarrow Pb^{2+} + 2H_{2}O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23	1
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35	1
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40	
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44	
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50	
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.73	
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76	
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18	
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66	
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23	
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.37	
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^{-} \rightarrow La$	-2.37	
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71	
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76	
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^{-} \rightarrow Ba$	-2.90	
$MnO_4^- + e^- \rightarrow MnO_4^{2}$	0.56	$K^+ + e^- \rightarrow K$	-2.92	-
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05	
$Cu^+ + e^- \rightarrow Cu$	0.52			i

Cellepotensial

- Den halvreaksjon med lavest potensial må reverseres (en reduksjon og en oksidasjon)
- Begge på reduksjonsform:

$$\varepsilon_{celle}^{o} = \varepsilon^{o}(katode) - \varepsilon^{o}(anode)$$

- Egentlig: Potensialene summeres når de skrives som reduksjon og oksidasjon
- Snus en reaksjon? Fortegnet endres
- Verdien uavhengig av # e⁻
- Galvanisk celle når $\varepsilon_{celle}^{o} > 0$

www.ntnu.no

11.3 Cellepotensial, elektrisk arbeid og fri energi

• Sammenheng mellom elektrokjemi og termodynamikk

$$emf = elektrisk potensial (V) = \frac{arbeid (J)}{ladning (C)}$$

$$\varepsilon = \frac{-u}{q}$$

hvor w = arbeid utført av systemet, q = ladning

$$-w = q\varepsilon$$

• I en reell spontan prosess: Noe energi tapes (varme, friksjon)

NTNU
Innovation and Creativity

www.ntnu.no

- Ladning av 1 mol e⁻: 96485 Coulomb pr mol e⁺ => q = nF
- Maksimalt arbeid (reversibelt) = Gibbs fri energi

$$w_{\rm max} = \Delta G$$

$$\Delta G = -q\varepsilon_{\rm max}$$

$$\Delta G = -nF\varepsilon_{\rm max}$$

• Standard betingelser:

$$\Delta G^o = -nF \varepsilon^o_{
m max}$$

- Ved likevekt: $\Delta G = 0$, $\epsilon = 0$
 - => ingen strøm

www.ntnu.no

10

11.4 Cellepotensial vs konsentrasjon

• Gitt rx: $a A + b B \rightarrow c C + d D$ $\Delta G = \Delta G^o + RT \ln(Q)$ hvor Q er reaksjonsbrøken

$$\Delta G^{o} = -nF\varepsilon^{o}$$
 og $\Delta G = -nF\varepsilon$

$$=> \boxed{\varepsilon = \varepsilon^o - \frac{RT}{nF} \ln(Q)}$$
 Nernst ligning

• Ved 25°C:

$$\varepsilon = \varepsilon^{o} - \frac{0.0591}{n} \log(Q)$$

www.ntnu.no

- En galvanisk celle vil spontant utlades inntil den når likevekt
- Når er en celle i likevekt?

$$\varepsilon = 0$$
, $\Delta G = 0$

$$\Delta G^{\circ} = -RT \ln K = -nF \varepsilon^{\circ}$$

$$\ln K = \frac{nF}{RT} \varepsilon$$

$$\ln K = \frac{nF}{RT} \varepsilon^{o}$$

$$\log K = \frac{n\varepsilon^{o}}{0.0591} \quad \text{ved } 25^{\circ}\text{C}$$

• Ingen kjemisk energi kan nå konverteres til elektrisk energi

www.ntnu.no

15

Batteri uten væskeelektrolytt

- Anode av Zn: $Zn \rightarrow Zn^{2+} + 2e^{-}$
- Katode av grafitt med MnO₂ og NH₄Cl: $NH_4^+ + 2 MnO_2 + 2e^- \rightarrow Mn_2O_3 + 2NH_3 + H_2O$
- $\varepsilon = \sim 1.5 \text{ V}$

- Alkali: NH_4Cl er byttet ut med KOH eller NaOH $Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$ 2 $MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$
- Varer lenger enn syrebaserte pga Zn-anoden korroderer mindre i basiske omgivelser

www.ntnu.no

PEMFC – Polymer electrolyte membrane eller Proton exchange membrane fuel cell

DMFC - Direkte metanol brenselcelle

MCFC - Flytende karbonat brenselcelle (Molten carbonate fuel cell)

PAFC - Fosforsyrebrenselcelle (Phosporic acid fuel cell)

AFC - Alkalisk brenselcelle

SOFC - Fast oksid brenselcelle (Solid oxide fuel cell)

rust = Fe2O3·nH2O med n varierende $4 \text{ Fe2+} + \text{O2(g)} + (4+2n)\text{H2O(l)} \rightarrow 2 \text{ Fe2O3·nH2O(s)} + 8\text{H+}$

=> Fe2+ vandrer fra anode-området til katode-området hvor det reagerer med O2.

11.7 Elektrolyse

- Galvanisk celle produserer strøm ut fra en spontan reaksjon
- Elektrolyse: Bruker elektrisk energi til å få en reaksjon til å gå!
 - => Tvinger kjemiske reaksjoner til å gå i motsatt retning av spontan rx
 - $=> \epsilon_0 < 0$
- · Praktisk nytte:
 - Lade batterier
 - Produsere metaller
 - Belegge med et metallbelegg
 - Skille ut metaller fra en blanding av flere ioner

www.ntnu.no

Elektrolyse av vann

- Trenger en god elektrolytt (tilsats av salt)
- Anode: $2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$
- Katode: $4H_2O + 4e^- \longrightarrow 2H_2 + 4OH^-$
- Totalrx: $6H_2O \longrightarrow 2H_2 + O_2 + 4OH^- + 4H^+$ $2H_2O \longrightarrow 2H_2 + O_2$
- $\epsilon^o = -2.06 \text{ V}$

www.ntnu.no

24

Oppsummering – dere skal kunne:

- Forskjellen på galvaniske celler og elektrolyseceller
 - hvorfor galvaniske celler/elektrolyseceller fungerer (reduksjonspotensialer og spenningsrekka)
 - hvordan de er bygd opp
 - sette opp reaksjonene som foregår
 - hvordan ioner og elektroner beveger seg
- Cellepotensial vs konsentrasjon => Nernst ligning
- Hvordan et batteri fungerer
- Hva korrosjon er og hvordan metaller kan beskyttes mot korrosjon
- Kjenne til de viktigste elektrolyseprosesser

www.ntnu.no