Gaussian Processes

Budjan, Haas, Klumpp, Reitze

Datum: 22. Februar 2019

Regression und Klassifikation

Regression und Klassifikation

▶ Stochastischer Prozess: $f: \Omega \times X \to Z$, $(\omega, x) \mapsto f_x(\omega)$ wobei $f_x(\omega)$ messbar in ω für alle $x \in X$.

- ▶ Stochastischer Prozess: $f: \Omega \times X \to Z$, $(\omega, x) \mapsto f_x(\omega)$ wobei $f_x(\omega)$ messbar in ω für alle $x \in X$.
- ▶ Anschaulich: Stochastischer Prozess ist Zufallsvariable mit Werten f_x in Funktionenraum

- ▶ Stochastischer Prozess: $f: \Omega \times X \to Z$, $(\omega, x) \mapsto f_x(\omega)$ wobei $f_x(\omega)$ messbar in ω für alle $x \in X$.
- Anschaulich: Stochastischer Prozess ist Zufallsvariable mit Werten f_x in Funktionenraum
- ▶ Ein Gaußscher Prozess ist ein stochastischer Prozess $(f_x)_{x \in X}$ wobei für jede endliche Teilmenge $Y \subset X$, $(f_x)_{x \in Y}$ multivariat normal verteilt ist.

- ▶ Stochastischer Prozess: $f: \Omega \times X \to Z$, $(\omega, x) \mapsto f_x(\omega)$ wobei $f_x(\omega)$ messbar in ω für alle $x \in X$.
- ▶ Anschaulich: Stochastischer Prozess ist Zufallsvariable mit Werten f_x in Funktionenraum
- ▶ Ein Gaußscher Prozess ist ein stochastischer Prozess $(f_x)_{x \in X}$ wobei für jede endliche Teilmenge $Y \subset X$, $(f_x)_{x \in Y}$ multivariat normal verteilt ist.
- ▶ Wird charakterisiert durch $m(x) = \mathbb{E}(f(x))$ und k(x, x') = Cov(f(x), f(x'))

Im Folgenden: $X = \mathbb{R}^d$ und m(x) = 0Beispiel für k: $k(x,y) = \exp\left(-\frac{(x-y)^2}{2\ell}\right)$

3 Beobachtungen eines Gausschen Prozess' mit dieser Kovarianzfunktion (I = 1)

3 Beobachtungen eines Gausschen Prozess' mit dieser Kovarianzfunktion (I = 1), bedingt auf die Datenpunkte (-5,0), (0,3), (7,-3)

Theorie zu Regression

Gemeinsame Verteilung für Datenpunkte (X, f(X)) und Testpunkte:

$$\begin{pmatrix} f(X) \\ f(X_*) \end{pmatrix} \sim \mathcal{N} \left(0, \begin{pmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{pmatrix} \right)$$

$$K(X,X)_{i,j}=k(X_i,X_j)$$

Bedingte Verteilung:

$$f(X_*)|f(X), X, X_* \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = K(X, X_*)K(X, X)^{-1}f(X)$$

$$\Sigma = K(X_*, X_*) - K(X_*, X)K(X, X)^{-1}K(X, X_*)$$

predict Algorithmus

Annahme:

$$y_i = f(x_i) + \varepsilon_i, \varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_n^2)$$

Inputs: X (inputs), y (targets), σ_n^2 (noise), K (covariance funtion), X_* (test input)

1
$$L = \operatorname{cholesky}(K(X, X) + \sigma_n^2 I)$$

2 $\alpha = \operatorname{solve}(L^\top, \operatorname{solve}(L, y))$
3 $\bar{f}(X_*) = K(X, X_*)^\top \cdot \alpha$
4 $v = \operatorname{solve}(L, K(X, X_*))$
5 $\overline{V}(\bar{f}(X_*)) = K(X_*, X_*) - v^\top v$

return: $\bar{f}(X_*)$, $\bar{V}(\bar{f}(X_*))$

predict Algorithmus

Annahme:

$$y_i = f(x_i) + \varepsilon_i, \varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_n^2)$$

Inputs: X (inputs), y (targets), σ_n^2 (noise), K (covariance funtion), X_* (test input)

1
$$L = \text{cholesky}(K(X, X) + \sigma_n^2 I)$$

2 $\alpha = \text{solve}(L^\top, \text{solve}(L, y))$
3 $\bar{f}(X_*) = K(X, X_*)^\top \cdot \alpha$
4 $v = \text{solve}(L, K(X, X_*))$
5 $\bar{V}(\bar{f}(X_*)) = K(X_*, X_*) - v^\top v$

return: $\bar{f}(X_*)$, $\overline{V}(\bar{f}(X_*))$

GPR

GPR\$new(X, y, noise, cov_func)

- R6 Klasse
- Methoden
 - ▶ \$predict
 - ▶ \$plot
 - \$plot_posterior_draws
 - \$plot_posterior_variance
- Unterklassen für häufig auftretende Kovarianzfunktionen, die lediglich Parametereingabe erfordern

Regression

Regression

Optimierung der Hyperparameter

Suchen Kovarianzfunktion, die beobachtete Daten am besten erklärt Methode: Maximiere Log-Likelihood der beobachteten Daten nach der Kovarianzfunktion k

fit()

fit(X, y, noise, cov_names)

- Gibt die beste Kovarianzfunktion mit optimalen Parametern zurück
- Nutzen Newton-Methode, optim()
- Error handling bei numerischen Problemen der Cholesky Zerlegung

Gewählte Kovarianzfunktion

The chosen covariance function is sqrexp

Optimierte Kovarianzfunktion

The optimal covariance function is polynomial

GP Classification

```
GPC$new(X, y, cov_fun, epsilon)
```

- R6 Klasse
- Methoden \$predict_class, \$plot
- Effizienz durch Vektorisierung

Klassifikation

Klassifikation

Simulation

Framework, um Qualität von GP Methoden für verschiedene Daten zu testen

- simulate_classification(func, limits, training_size)
- simulate_regression(func, limits, training_size)
- simulate_regression_gp(actual_cov, limits, training_size)

Simulation Beispiel

Shiny App