Modulo 01 Sinais e Sistemas

Ementa

- Sistemas lineares invariantes no tempo;
- Análise de Fourier para sinais e sistemas de tempo contínuo;
- Análise de Fourier para sinais e sistemas de tempo discreto;
- Caracterização de sistemas por meio da transformada de Laplace;
- A transformada Z.
- Amostragem de sinais;
- Modulação;

Bibliografia

Livro Texto

A.V. Oppenheim & A.S. Willsky (2010),
 Sinais e Sistemas (2ª. Edição) – Pearson

Leitura complementar

 B.P. Lathi (2007), Sinais e Sistemas Lineares (2ª. Edição Revisada) - bookman

Planejamento

Aula 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Data 03/03/15 06/03/15 10/03/15 13/03/15 17/03/15 20/03/15 24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15	ter sex ter	Apresentação da disciplina. 1.2 Transf. Temporais 1.3 - Exponenciais complexas; 1.4 - Impulso e degrau unitário 1.5 Sistemas de tempo contínuo e discreto; 1.6 Proprieades básicas de sistemas lineares Exercícios 2.1 Resposta ao impulso e convolução em tempo discreto; 2.2 Convolução em tempo contínuo 2.3 Propriedades de SLITs causais descritos por eq. Diferenciais/diferenças; 2.4 diagrams de blocos Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	1 1 1 1 2 2 2 2 1.2 4 3 4 4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	10/03/15 13/03/15 17/03/15 20/03/15 24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15	ter sex ter	1.3 - Exponenciais complexas; 1.4 - Impulso e degrau unitário 1.5 Sistemas de tempo contínuo e discreto; 1.6 Proprieades básicas de sistemas lineares Exercícios 2.1 Resposta ao impulso e convolução em tempo discreto; 2.2 Convolução em tempo contínuo 2.3 Propriedades de SLITs causais descritos por eq. Diferenciais/diferenças; 2.4 diagrams de blocos Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	1 1 2 2 2 1,2 4 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	13/03/15 17/03/15 20/03/15 24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 17/04/15 21/04/15	sex ter	Exercícios 2.1 Resposta ao impulso e convolução em tempo discreto; 2.2 Convolução em tempo contínuo 2.3 Propriedades de SLITs causais descritos por eq. Diferenciais/diferenças; 2.4 diagrams de blocos Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1 Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	1 2 2 2 1,2 4 3
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	17/03/15 20/03/15 24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15	ter sex ter sex ter sex ter sex ter sex ter sex ter	2.1 Resposta ao impulso e convolução em tempo discreto; 2.2 Convolução em tempo contínuo 2.3 Propriedades de SLITs causais descritos por eq. Diferenciais/diferenças; 2.4 diagrams de blocos Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1 Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	2 2 2 1,2 4 3
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	20/03/15 24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15	sex ter sex ter sex ter sex ter	2.3 Propriedades de SLITs causais descritos por eq. Diferenciais/diferenças; 2.4 diagrams de blocos Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1 Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	2 1,2 4 3 4
7 8 9 10 11 12 13 14 15 16 17 18 19 20	24/03/15 27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15 21/04/15	ter sex ter sex ter sex ter sex ter	Exercícios Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	2 1,2 4 3 4
8 9 10 11 12 13 14 15 16 17 18 19 20	27/03/15 31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15 21/04/15	sex ter sex ter sex ter	Prova 1 (30 pontos) 3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	1, 2 4 3 4
9 10 11 12 13 14 15 16 17 18 19 20	31/03/15 03/04/15 07/04/15 10/04/15 14/04/15 17/04/15 21/04/15	ter Sex ter Sex ter	3 Série de Fourier em tempo contínuo e discreto Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	4 3 4
10 11 12 13 14 15 16 17 18 19	03/04/15 07/04/15 10/04/15 14/04/15 17/04/15 21/04/15	sex ter sex ter	Feriado, não haverá aula 3 Série de Fourier em tempo contínuo e discreto 4.1Intergral de Fourier, 4.2: Transf. Fourier (TF) de sinais periódicos, 4.3 Prop. da TF em tempo contínuo	3 4
11 12 13 14 15 16 17 18 19 20	07/04/15 10/04/15 14/04/15 17/04/15 21/04/15	ter sex ter	3 Série de Fourier em tempo contínuo e discreto 4.1Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	4
11 12 13 14 15 16 17 18 19 20	10/04/15 14/04/15 17/04/15 21/04/15	sex ter	4.1Intergral de Fourier; 4.2: Transf. Fourier (TF) de sinais periódicos; 4.3 Prop. da TF em tempo contínuo	
12 13 14 15 16 17 18 19 20	14/04/15 17/04/15 21/04/15	ter		4
13 14 15 16 17 18 19 20	17/04/15 21/04/15		4.7 Sistemas caract per Eq. Dif. Lineares: Exercícios	
14 15 16 17 18 19 20	21/04/15	Sex	4.7 Sistemas caract por Eq. Dif. Lineares; Exercícios	5
15 16 17 18 19 20			5.1-5.2 Transformada de Fourier em tempo discreto; 5.3 Algumas propriedades	3,4,5
15 16 17 18 19 20		ter	Feriado, não haverá aula	3,4,5
16 17 18 19 20	24/04/15	sex		3,4,5,7
17 18 19 20	28/04/15	ter		3,4,5,7
17 18 19 20	01/05/15	Sex		7
18 19 20	05/05/15 08/05/15	ter	7.1 Teorema da amostragem; 7.2 Reconstrução; 7.3 Aliasing	
19 20	12/05/15	sex	8.1 Noção de sistemas de comunicação; 8.1, 8.3, 8.5: AM; 8.3 Multiplexação FDM; 8.5 PAM; 8.7 Noções de FM	8
20	15/05/15	ter	9.1 Transformada de Laplace (TL) bidirecional; 9.2 Algumas propriedades da RDC; 9.3 TL inversa Exercícios (GILSON)	3,4,5,7
	19/05/15	sex ter		3,4,5,7
21	22/05/15	sex	9.5 (Principais) propriedades da TL;	9
22	26/05/15	ter	9.7 Análise/Caract SLITs; 9.8 Diagrams em blocos; 9.9 TL unidirecional	9
23	29/05/15	sex	Exercícios	9
24	02/06/15	ter	10.1 Transformada Z (TZ) bidirecional; 10.2 Algumas prop. RDC; 10.3 TZ Inversa	10
27	05/06/15	Sex	Feriado, não haverá aula	10
25	09/06/15	ter	10.4 Cálculo geométrico da TF a partir da TZ; 10.5 propriedades da TZ 10.8 diagramas de blocos; 10.9 TZ unidireciona	10
26	12/06/15	sex	Exercícios	10
27	16/06/15	ter	Exercícios	10
28	19/06/15	sex	6.2 Representação Magnitude-fase (diagramas de Bode, DB); 6.5.1Sistemas de 1a. Ordem de tempo contínuo (DB)	6
29	23/06/15	ter	6.5.2 Sistemas 2a. Ordem de tempo contínuo; 6.5.3 DB para respostas em frequência racionais 6.6 Diagramas de Bo	
30	26/06/15	sex	Exercícios	6
31		ter	Prova 3 (35 pontos)	9,10,6
	30/06/15	sex		
	30/06/15 03/07/15 07/07/15	ter	Exame Especial	Tudo

Avaliações

Prova 1 27/03 30 ponto
--

Prova 2 19/05 35 pontos

Prova 3 30/06 35 pontos

Visão Geral

Grandes áreas

Instrumentação e Controle

Telecomunicações

Outras áreas ou aplicações

Processamento de voz

Reconhecimento Síntese Codificação Filtragem

Processamento de imagens

Medicina Indústria Laser

Áudio

Efeitos Restauração

Sinais Biomédicos

EEG ECG Ultrasom

Mercado Financeiro

predição

Alguns pré-requisitos do curso....

- Números complexos (representação cartesiana e polar)
- Frequência e fase de um sinal senoidal: representação, significado, unidades, identificação
- Solução de eq. diferenciais lineares de 1^a e
 2^a ordem (solução natural e forçada)

Sinais

Podemos dizer que sinal é uma abstração de qualquer quantidade mensurável que é uma função de uma ou mais variáveis independentes (por exemplo, tempo ou espaço) e que carrega informação da natureza de um fenômeno.

Exemplos:

- Tensão ou corrente em um circuito
- Vídeo e áudio
- Índice Bovespa
- Eletrocardiograma, Eletroencefalograma etc.
- Imagem Monocromática

Tensão em um circuito

Índice Bovespa

Eletrocardiograma

Sinal amostrado

Sistemas

H = transformação (sistema físico, modelo computacional)

Interesses:

- Caracterizar (identificar) o sistema para prever respostas a entradas diferentes
- Remover (filtrar) ruído dos sinais
- Extrair informações específicas dos sinais (ECG, voz, etc)
- Gerar novos sinais para modificar ou controlar certas características do sistema

Principais classes de sinais e sistemas

Tempo contínuo x discreto

Instantâneo x dinâmico

$$y = ax$$

Determinístico

Formas de ondas previsíveis

x estocástico

Formas de onda aleatórias (⇒ estatística)

linear

$$y = ax$$

x não linear

$$y = ax^3$$
$$y = ax + b$$

Variante x invariante, etc.

SLIT: Sistema (dinâmico, determinístico) Linear e Invariante no Tempo

Sistema linear (SL)

$$x \rightarrow H \rightarrow y = H(x)$$

Homegeneidade (proporcionalidade)

$$H(ax_1) = a \cdot H(x_1)$$

Aditividade

$$H(x_1 + x_2) = H(x_1) + H(x_2)$$

Princípio da Superposição

$$H(ax_1 + bx_2) = a \cdot H(x_1) + b \cdot H(x_2)$$

se e somente se

Sistema Linear: sse obedece ao princípio da superposição

Sistemas Físicos diferentes:
 entrada(s) → Transformação → saída(s)

Características comuns:
 modelos matemáticos análogos

Sistemas de 1^a. Ordem

 τ = constante de tempo

Modelos físico-matemáticos (2ª. Ordem)

$$x(t) = V_L + V_R + V_C$$

$$mas \begin{cases} y(t) = V_C \\ i = C \frac{dV_C}{dt} = C \frac{dy}{dt} \end{cases}$$

$$\therefore x(t) = L\frac{di}{dt} + Ri + y(t)$$

$$\therefore x(t) = L\frac{di}{dt} + Ri + y(t)$$

$$\dots x(t) = LC\frac{d^2y(t)}{dt^2} + RC\frac{dy}{dt} + y(t)$$

Resposta ao degrau

Resposta em freqüência

Sinais importantes em Sistemas LIT

 Senoides (com ou sem amortecimento exponencial)

Degrau unitário

Impulso

Duração
$$\rightarrow$$
 0

Amplitude $\rightarrow \infty$

Área \rightarrow 1

Cap. 1 – Sinais e Sistemas

1.1 – Sinais de tempo contínuo e de tempo discreto

Sinais Contínuos

- Normalmente podem ser escritos com uma função da variável t
- No curso procuraremos usar parêntesis para funções contínuas no tempo
- ightharpoonup Exemplo: x(t)
- t é variável independente contínua (conjunto dos reais).

Sinais Discretos

- Normalmente podem ser escritos com uma função da variável n
- No curso procuraremos usar colchetes para funções discretas no tempo
- ightharpoonup Exemplo: x[n]
- n é variável independente discreta (conjunto dos inteiros).

Variável independente

Não necessariamente o tempo

Bidimencional: imagens

Na disciplina: sinais unidimensionais de tempo contínuo ou discreto

1.1.2 Energia total (E_{∞}) e potência total (P_{∞})

Definições sem rigor no significado físico

contínuo

$$E_{\infty} \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

discreto

$$E_{\infty} \triangleq \lim_{N \to \infty} \sum_{n=-N}^{+N} |x[n]|^2 = \sum_{n=-\infty}^{+\infty} |x[n]|^2.$$

$$P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2$$

Potência e Energia de um Sinal

Sinais com energia total finita

$$ightharpoonup E_{\infty} < \infty$$

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$$

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} = 0$$

Potência e Energia de um Sinal

Sinais com energia total infinita

$$E_{\infty} = \infty$$

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} > 0$$

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} > 0$$

Exemplo: Potência e Energia de um Sinal

Considere o sinal

$$x(t) = \begin{cases} t, & 0 \le t \le 1 \\ 2 - t, & 1 \le t \le 2 \\ 0 & \text{caso contrário} \end{cases}$$

Calcule a energia

Exemplo: Potência e Energia de um Sinal

Solução:

Usando a definição de Energia, temos:

$$E = \int_0^1 t^2 dt + \int_1^2 (2 - t)^2 dt$$
$$= \frac{t^3}{3} \Big|_0^1 - \frac{1}{3} (2 - t)^3 \Big|_1^2$$
$$= \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Deslocamento no tempo

Atrasar e Adiantar um sinal no tempo

Deslocamento no tempo

Exemplo de sinal atrasado:

Deslocamento no tempo

Exemplo de sinal avançado:

Reflexão no tempo

Mudança de escala no tempo

Mudança de escala no tempo

Transformações (na variável independente)

$$x(t) \to x(\alpha t - t_0)$$
 $x[n] \to x[\alpha n - n_0]$

- Deslocamento no tempo:
 - Se $t_0 > 0$ ou $n_0 > 0$ então o sinal é deslocado para a direita (Atraso)
 - Se $t_0 < 0$ ou $n_0 < 0$ então o sinal é deslocado para a esquerda (Avanço)
- Mudança da escala/reflexão no tempo:
 - Se $|\alpha| > 1$ o sinal será linearmente comprimido
 - Se $|\alpha| < 1$ o sinal será linearmente estendido
 - ightharpoonup Se $\alpha < 0$ o sinal será refletido

Transformações da variável independente discreta

Exemplo: Transformações

Considere o sinal na figura abaixo:

Esboce:

$$y(t) = x(1 - t/2)$$

Exemplo: Transformações (Solução)

Considere o sinal na figura abaixo:

- 1) Trocar t por τ no sinal: $x(t) \to x(\tau)$
- 2) Encontrar o valor de t considerando, $\tau = 1 t/2$, ou seja: $t = -2\tau + 2$

$$t = \begin{cases} 4, & \text{para } \tau = -1 \\ 2, & \text{para } \tau = 0 \\ 0, & \text{para } \tau = 1 \\ -2, & \text{para } \tau = 2 \end{cases}$$

Exemplo: Transformações (Solução)

Considere o sinal na figura abaixo:

- 1) Trocar t por τ no sinal: $x(t) \to x(\tau)$
- 2) Encontrar o valor de t considerando, $\tau=1-t/2$, ou seja: $t=-2\tau+2$
- 3) Esboçar o eixo t transformado abaixo do eixo τ
- 4) Esboçar y(t)

Exemplo: Transformações (Solução)

Considere o sinal na figura abaixo:

- 1.4 Suponhamos que x[n] seja um sinal com x[n] = 0 para n < -2 e n > 4. Para cada um dos sinais dados a seguir, determine os valores de n para os quais os sinais são garantidamente iguais a zero.
 - (a) x[n-3]
 - (b) x[n+4]
 - (c) x[-n]
 - (d) x[-n+2]
 - (e) x[-n-2]

4

1.2.2 Sinais periódicos

Periódico com período T > 0: x(t) = x(t+T)

$$x(t) = x(t + mT),$$

$$m inteiro$$

- Também é periódico com 2T, 3T, ...
- Período fundamental: T_0 = menor período que satisfaz
- Sinal aperiódico: não satisfaz x(t) = x(t + mT)

1.2.2 Sinais periódicos

Tempo discreto

$$x[n] = x[n+mN], m, N = inteiros$$

(período fundamental: $N_0 = 3$)

1.2.3 Simetria de sinais

Simetria par

$$x[n] = x[-n]$$

Simetria ímpar

$$x[-n] = -x[n]$$

1.2.3 Simetria de sinais

Decomposição de um sinal qualquer

parte par (even) parte impar (odd)
$$x(t) = \mathcal{E}u\{x(t)\} + \mathcal{O}d\{x(t)\}$$

$$\frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)]$$

Ex. (tempo discreto)

1.3 Sinais senoidais e exponenciais

$$x(t) = Ce^{at}$$

Exponenciais reais (não oscilatórias): C, a = reais

crescente: a > 0

fenômenos instáveis

decrescente: a < 0

sistemas amortecidos

Sinais senoidais e exponenciais complexas periódicas

$$x(t) = Ce^{at}$$

$$C = 1, \ a = j\omega_0$$

$$x(t) = e^{j\omega_0 t}$$

$$x(t) = complexa$$

Pequena revisão...

Revisão: séries de Taylor

Aproximação polinomial de uma função analítica em

torno de um ponto "a"

$$f(x) = a_0 + a_1 \cdot (x - a) + a_2 \cdot (x - a)^2 + a_3 \cdot (x - a)^3 + \cdots$$

$$f(a) = a_0$$

$$f'(x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + \cdots$$
 $\therefore a_1 = f'(a)$

$$f''(x) = 2a_2 + 3 \times 2 \cdot a_3(x - a) + \cdots$$
 $\therefore a_2 = \frac{f''(a)}{2}$

$$f'''(x) = 2 \times 3 \cdot a_3 + 2 \times 3 \times 4 \cdot a_4(x - a) + \cdots$$

$$\therefore a_3 = \frac{f'''(a)}{2 \times 3}$$

Se
$$a = 0$$

$$f(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!} \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 \cdots$$

Revisão: exponencial complexa e fasores

Séries de Taylor

$$sen(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots$$

$$cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{j\omega t} = cos\omega t + j \cdot sen\omega t$$

 $e^{j\omega t}$ = fasor que gira com veloc. angular ω no sentido anti-horário

im

Revisão: interpretação geométrica

Revisão: fórmula(s) de Euler

Verifique que (EPC)*

$$e^{i\omega t} = \cos \omega t + i \cdot \sin \omega t$$
$$e^{-i\omega t} = \cos \omega t - i \cdot \sin \omega t$$

$$\cos \omega t = \frac{e^{i\omega t} + e^{-i\omega t}}{2}$$

$$\underline{i \cdot sen\omega t} = \frac{e^{i\omega t} - e^{-i\omega t}}{2}$$

Revisão: resultados úteis

Serão usadas corriqueiramente (simplificam passagens)

$$f(t) = A\cos\omega t = re\left\{Ae^{j\omega t}\right\}$$

se
$$f(t) = Ae^{j\omega t}$$
, então

$$f'(t) = j\omega \cdot Ae^{j\omega t} = j\omega \cdot f(t)$$

$$\text{derivar} \Rightarrow \text{multiplicar por } j\omega$$

$$\int f(t) dt = \frac{1}{j\omega} A e^{j\omega t} = \frac{f(t)}{j\omega}$$

integrar ⇒ dividir por *j*ω

Verifique os resultados acima

- 1.1 Expresse cada um dos seguintes números complexos na forma cartesiana (x + jy): $\frac{1}{2}e^{j\pi}$, $\frac{1}{2}e^{-j\pi}$, $e^{j\pi/2}$, $e^{-j\pi/2}$, e
- 1.2 Expresse cada um dos seguintes números complexos na forma polar $(re^{j\theta}, com \pi < \theta \le \pi): 5, -2, -3j,$ $\frac{1}{2} j\frac{\sqrt{3}}{2}, 1 + j, (1 j)^2, j(1 j), (1 + j)/(1 j),$ $(\sqrt{2} + j\sqrt{2})/(1 + j\sqrt{3}).$
 - 1.8 Expresse a parte real dos sinais a seguir na forma $Ae^{-at}\cos(\omega t + \phi)$ sendo A, a, ω e ϕ números reais com A > 0 e $-\pi < \phi \le \pi$:
 - (a) $x_1(t) = -2$
 - (b) $x_2(t) = \sqrt{2}e^{j\pi/4}\cos(3t + 2\pi)$
 - (c) $x_3(t) = e^{-t} \operatorname{sen}(3t + \pi)$
 - (d) $x_4(t) = je^{(-2+j100)t}$

Manipulação de exponenciais complexas Ex. 1.5 (p. 13)

$$x(t) = e^{j2t} + e^{j3t}$$

$$x(t) = e^{j2.5t} (e^{-j0.5} + e^{j0.5t})$$

$$x(t) = 2e^{j2,5t}\cos(0,5t)$$

$$|x(t)| = 2|\cos(0.5t)|$$

1.55 Usando os resultados do Problema 1.54, calcule cada uma das somas a seguir e expresse sua resposta na forma cartesiana (retangular):

(a)
$$\sum_{n=0}^{9} e^{j\pi n/2}$$

(b)
$$\sum_{n=-2}^{7} e^{j\pi n/2}$$

(c)
$$\sum_{n=0}^{\infty} (\frac{1}{2})^n e^{j\pi n/2}$$

(d)
$$\sum_{n=2}^{\infty} (\frac{1}{2})^n e^{j\pi n/2}$$

(e)
$$\sum_{n=0}^{9} \cos(\frac{\pi}{2}n)$$

(f)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \cos\left(\frac{\pi}{2}n\right)$$

1.3.1 Sinais senoidais e exponenciais complexas periódicas

$$x(t) = e^{j\omega_0 t}$$

 $x(t) = e^{j\omega_0 t}$ complexa e periódica

$$e^{j\omega_0 t} = e^{j\omega_0(t+T)} = e^{j\omega_0 t} \cdot e^{j\omega_0 T}$$

se
$$T=T_0=\frac{2\pi}{\omega_0},\ e^{j\omega_0T}=e^{j2\pi}=1$$
 ($T_0=$ período fundamental)

De forma similar,

se
$$T = k \cdot T_0$$
, $e^{j\omega_0 \cdot kT_0} = e^{j2k\pi} = 1$ (harmônicos: $k\omega_0$, $k=\pm 1, \pm 2, ...$)

Funções harmonicamente relacionadas: $\phi_k(t) = e^{jk\omega_0 \cdot t}$

$$\phi_{k}(t) = e^{jk\omega_{0}}$$

múltiplos inteiros de uma freqüência fundamental

Sinais exponenciais complexos gerais de tempo contínuo

$$x(t) = Ce^{\alpha t} \begin{cases} C = |C|e^{j\theta} \\ \alpha = r + j\omega \end{cases}$$

Então,

$$Ce^{\alpha t} = |C|e^{j\theta}e^{(r+j\omega)t}$$

$$= |C|e^{rt}e^{j(\omega t + \theta)}$$

$$= |C|e^{rt}\cos(\omega t + \theta) + j|C|e^{rt}\sin(\omega t + \theta)$$

$$x(t) = Ce^{\alpha t} \begin{cases} C = 1 \\ \alpha = j \end{cases}$$

$$x(t) = Ce^{\alpha t} \begin{cases} C = 1\\ \alpha = 0.05 + j2 \end{cases}$$

$$x(t) = Ce^{\alpha t} \begin{cases} C = 1 \\ \alpha = -0.05 + j2 \end{cases}$$

1.3.2 Senoide e exponenciais de tempo discreto

Notação geral usual:

$$x[n] = C\alpha^n$$

$$\uparrow \uparrow$$
complexos

Forma alternativa

$$x[n] = Ce^{\beta n},$$

$$\alpha = e^{\beta}$$

lacksquare C , lpha reais:

1.3.3 Periodicidade de exponenciais complexas de tempo discreto

 $e^{j\omega_0 t}$ e $e^{j\omega_0 n}$: Semelhanças e diferenças importantes

Propriedades em tempo contínuo:

$$e^{j\omega_0 t}$$

- 1) Sinais distintos para **quaisquer** valores diferentes de ω_0
- 2) Aumento de ω_0 , **sempre** aumenta a taxa de oscilação do sinal
- 3) Periódico para **qualquer** ω_0

Tempo discreto:

$$e^{j\omega_0 n}$$

diferenças!

1) Discreto: Sinais não distintos para qualquer ω_0

Sinais discretos: Considerar apenas o intervalo

$$0 \le \omega_0 < 2\pi$$
 ou $-\pi \le \omega_0 < \pi$

2) Discreto: variação da taxa de oscilação c/ ω_0

Taxa de oscilação de $e^{j\omega_0 n}$

aumenta para
$$0 \le \omega_0 < \pi$$

diminui para
$$\pi \leq \omega_0 < 2\pi$$
 ou $0 \leq \omega_0 < -\pi$

Fig. 1.27

3. Discreto: não é periódico para qualquer ω_0

■ Para $e^{j\omega_0 n}$ ser periódico com período N>0,

$$e^{j\omega_0(n+N)}=e^{j\omega_0 N}\cdot e^{j\omega_0 N}=1?$$

$$e^{j\omega_0 N}=1 \quad \text{se $\omega_0 N=2\pi\cdot m$}$$

$$\frac{\omega_0}{2\pi}=\frac{m}{N}, \ m\ e\ n=\text{inteiros}$$
 Deve ser um número racional

Caso contrário, $e^{j\omega_0 n}$ será aperiódico

Fig. 1.25

1.9 Determine se cada um dos sinais é ou não periódico. Se um sinal for periódico, especifique seu período fundamental.

(a)
$$x_1(t) = je^{j10t}$$

(b)
$$x_2(t) = e^{(-1+j)t}$$

(c) $x_3[n] = e^{j7\pi n}$

(c)
$$x_3[n] = e^{j7\pi n}$$

(d)
$$x_4[n] = 3e^{j3\pi(n+1/2)/5}$$

(e)
$$x_5[n] = 3e^{j3/5(n+1/2)}$$

Resumo

TABELA 1.1 Comparação dos sinais $e^{j\omega_0 t}$ e $e^{j\omega_0 n}$.

$e^{j\omega_0 t}$	$e^{j\omega_0 n}$
Sinais diferentes para valores diferentes de ω_0	Sinais idênticos para valores de ω_0 espaçados por múltiplos de 2π
Periódico para qualquer escolha de ω_0	Periódico somente se $\omega_0 = 2\pi m/N$ para valores inteiros de $N > 0$ e m
Frequência fundamental ω_0	Frequência fundamental* ω _n /m
Período fundamental	Período fundamental*
$\omega_0=0$: indefinido	$\omega_0 = 0$: indefinido
$\omega_0 \neq 0$: $\frac{2\pi}{\omega_0}$	$\omega_0 \neq 0$: $m\left(\frac{2\pi}{\omega_0}\right)$

^{*}Supõe que m e N não têm fatores em comum.

1.4 Impulso δ[n] unitário de tempo discreto

Usado para excitar/caracterizar sistemas LIT

1.4 Degrau u[n] unitários de tempo discreto

Usado para excitar/caracterizar sistemas LIT

Diferença finita de 1ª. ordem

$$\delta[n] = u[n] - u[n-1]$$

soma cumulativa

$$u[n] = \sum_{m=-\infty}^{n} \delta[m] = \sum_{k=0}^{\infty} \delta[n-k]$$

1.4 Degrau u(t) e impulso $\delta(t)$ unitário de tempo contínuo

Dificuldades formais nas descontinuidades

Delta de Dirac $\delta(t)$

 $\delta(t)$: limite da "seqüência" de funções, como:

Animação: http://en.wikipedia.org/wiki/Dirac delta function

Impulso unitário

$$\int_{-\infty}^{\infty} \delta(t) \cdot dt = 1$$
 área unitária amplitude infinita
$$\delta(t) = 0 \quad se \quad t \neq 0$$
 instantâneo

Propriedade da amostragem

$$x(t) \cdot \delta(t-\tau) =$$

$$x(\tau) \cdot \delta(t-\tau)$$

área ponderada

Digitalização de sinais analógicos

Discretização no tempo

Quantização da amplitude

16 bits \rightarrow 2¹⁶ = 64*1024 níveis

Teorema da amostragem...

Placas de som, interfaces USB, etc.

Processamento digital de sinais analógicos

Fundamentos de Sistemas

- Um sistema é um modelo matemático de um processo físico que relaciona o sinal de entrada (ou excitação) com um sinal de saída (ou resposta).
- Propriedades
 - Invertibilidade
 - Memória
 - Causalidade
 - Linearidade
 - Invariância no Tempo
 - Estabilidade

Sistema

Um sistema é visto como uma transformação (ou mapeamento) da entrada na saída. O qual pode ser representado como:

$$y = \mathbf{T}x$$

- T é o operador que representa alguma regra
- > x: entrada
- y: saída
 - ightharpoonup x|y representa tanto x(t)|y(t) quanto x[n]|y[n]

Sistema:

$$y = \mathbf{T}x$$

Sistema com uma entrada e uma saída (SISO):

Sistema com múltiplas entradas e saídas (MIMO):

1.5.2 – Diagramas de blocos

Representação c/ realimentação

$$i_1(t) = i(t) - i_2(t)$$

1.6.1 Sistemas com e sem memória

- Memória ↔ mecanismos de armazenamento de energia ou informação
- Sistema sem memória (instantâneo): saída num dado instante depende apenas da entrada naquele instante

$$y(t) = Rx(t)$$
 $y[n] = (2x[n] - x^2[n])^2$

Sistemas com memória em tempo contínuo (exemplos)

Memória: Exemplos em tempo discreto

Atrasador: y[n] = x[n-1]

$$x[n] \longrightarrow D \longrightarrow x[n-1] = y[n]$$

Combinação de entradas

$$y[n] = a_0 \cdot x[n] + a_1 \cdot x[n-1] + a_2 \cdot x[n-2]$$

Acumulador:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$= \sum_{k=-\infty}^{n-1} x[k] + x[n]$$

$$= y[n-1] + x[n]$$

$$x[n]$$
 $y[n]$
 $y[n-1]$
 $y[n]$

1.6.2 Sistemas inversos e invertibilidade

Invertível: entradas distintas levam a saídas distintas

Identificação de sistemas (análise por síntese), etc.

Exemplos

Mesma saída para entradas diferentes

$$y(t) = 10$$

Não invertível

1.6.3 Causalidade

- Sistema causal: saída, em qualquer instante, depende somente da entrada atual e/ou passadas
- Sistemas físicos (circuitos elétricos, sistemas mecânicos, etc.) são causais (não antecipativos)
- Sistema sem memória são causais
- Não causalidade: processamento off-line de sinais

Exemplos:

$$y[n] = x[-n]$$

$$\begin{cases} n > 0... \\ n < 0... \end{cases}$$
 Não causal

$$y(t) = x(t) \cos(t+1)$$

não envolve entradas futuras

Causal

1.6.5 Invariância no tempo

- Sistema invariante no tempo:
 - comportamento e características não variam ao longo do tempo
 - □ deslocamento de tempo na entrada → deslocamento idêntico na saída:

$$x[n] \longrightarrow H \longrightarrow y[n]$$

$$x[n-n_0] \longrightarrow H \longrightarrow y[n-n_0]$$

Exemplos

$$y(t) = \operatorname{sen}[x(t)]$$

$$\begin{cases} y_1(t) = \operatorname{sen}[x_1(t)] \\ y_1[t - t_0] = \operatorname{sen}[x_1(t - t_0)] \end{cases}$$

$$\begin{cases} x_2(t) = x_1(t - t_0) \\ y_2(t) = \text{sen}[x_2(t)] = \text{sen}[x_1(t - t_0)] \\ = y_1(t - t_0) \end{cases}$$

Invariante no tempo

$$y[n] = nx[n]$$

$$\begin{cases} y_1[n] = n \cdot x_1[n] \\ y_1[n - n_0] = (n - n_0) \cdot x_1[n - n_0] \end{cases}$$

$$\begin{cases} x_2[n] = x_1[n - n_0] \\ y_2[n] = n \cdot x_2[n] = n \cdot x_2[n - n_0] \end{cases}$$

$$y_2[n] \neq y_1[n - n_0]$$

Variante no tempo

1.6.4 Estabilidade

- Estabilidade: entradas limitadas → saídas limitadas
- Estabilidade → mecanismos de dissipação de energia
- Instabilidade → crescimentos ilimitados (reações em cadeia, populações sem predador, juros bancários, etc.) a partir de entradas limitadas

Exemplos

$$S_1: y(t) = tx(t)$$
 $t \text{ cresce ilimitadamente } \therefore \text{ instavel}$

$$S_2: y(t) = \frac{e^{x(t)}}{t}$$

y(t) Limitado para qualquer x(t) limitado

estável

Um sistema é chamado estável com entrada-limitada/saída-limitada (BIBO estável) se, para qualquer entrada limitada x:

$$|x| \leq k_x$$

a saída y correspondente é também limitada:

$$|y| \le k_y$$

sendo que, $k_x < \infty$ e $k_y < \infty$ e $k_x, k_y \in \mathbb{R}$

Exemplos

Determine se os seguintes sistemas são BIBO estáveis:

$$\triangleright y[n] = x[n]^2$$

$$\triangleright y[n] = x[-n]$$

$$\rightarrow y(t) = \operatorname{sen}(2\pi x(t))$$

$$y[n] = \frac{1}{11} \sum_{k=-5}^{5} x[n+k]$$

$$ightharpoonup y(t) = x(2t)$$

$$y[n] = nx[n+3]$$

$$y(t) = \frac{dx(t)}{dt}$$

Solução: $y[n] = x[n]^2$

- Usando a definição
 - Assuma a entrada finita: $|x[n]| < \infty$ ou $|x[n]| \le M$, sendo M é um número real finito.

Logo:

$$\begin{array}{rcl} y[n] &=& x[n]^2\\ |y[n]| &=& |x[n]^2|\\ |y[n]| &=& |x[n]|^2\\ |y[n]| &\leq& M^2\quad {\rm mas}\ M^2\ {\rm \acute{e}}\ {\rm tamb\acute{e}m}\ {\rm um}\ {\rm n\acute{u}mero}\ {\rm real}\ {\rm finito} \end{array}$$

▶ $|y[n]| \le M^2 \Rightarrow$ sistema estável.

1.6.6 Linearidade: aditividade e homogeneidade

Sistema Linear:

aditividade e homogeneidade

$$a \cdot x_1(t) + b \cdot x_2(t) \rightarrow H \rightarrow a \cdot y_1(t) + b \cdot y_2(t)$$

→ Propriedade da superposição

Exemplo 1.17

$$y(t) = tx(t)$$

$$x_1(t) \to y_1(t) = tx_1(t)$$

$$x_2(t) \to y_2(t) = tx_2(t)$$

 $x_3(t) = ax_1(t) + bx_2(t)$

$$y_3(t) = tx_3(t) = \dots$$

Exemplo 1.18

$$y(t)=x^2(t)$$

$$x_1(t) \to y_1(t) = x_1^2(t)$$

$$x_2(t) \to y_2(t) = x_2^2(t)$$

$$x_3(t) = x_1(t) + x_2(t) = \cdots$$

não linear

linear

Exemplo 1.19

$$y[n] = \Re\{x[n]\}$$

 $x_1[n] = r[n] + js[n]$
 $y_1[n] = r[n]$
 $x_2[n] = jx_1[n] = -s[n] + jr[n]$
 $y_2[n] = \Re\{x_2[n]\} = -s[n]$
 $y_2(t) \neq jy_1$

Não linear

Sistema linear invariante no tempo (SLIT)

$$x(t) \rightarrow SLIT \rightarrow y(t)$$

Conhecendo-se a resposta de um SLIT a uma entrada x(t), pode-se prever a resposta a outras entradas formadas por combinações lineares de x(t)

Reposta ao impulso (comentar)...

Problema 1.31

Exercício 1 - Propriedades

$$y(t) = 3x(3t+3)$$

Determine se o sistema descrito pela equação acima é:

- com memória,
- causal,
- invertível,
- linear
- invariante no tempo,
- estável

Exercício 1(solução): y(t) = 3x(3t+3)

ightharpoonup Memória - Para t=0, temos

$$y(0) = 3x(3)$$

ou seja, tem memória.

- Causal O sistema é antecipativo (depende de entradas futuras), portanto ele é não causal
- ▶ Invertibilidade Fazendo $\tau = 3t + 3$, temos

$$y\left(\frac{\tau}{3} - 3\right) = 3x(\tau)$$

$$\frac{1}{3}y\left(\frac{\tau}{3} - 3\right) = x(\tau)$$

ou seja, $x(t) = \frac{1}{3}y\left(\frac{t}{3} - 3\right)$ e gera valores únicos, logo o sistema é invertível

Exercício 1(solução): y(t) = 3x(3t + 3)

Linearidade - Temos

$$ax_1(t) \rightarrow y_1(t) = 3ax_1(3t+3)$$

$$bx_2(t) \rightarrow y_2(t) = 3bx_2(3t+3)$$

$$ax_1(t) + bx_2(t) \rightarrow y(t) = \underbrace{3(ax_1(3t+3) + bx_2(3t+3))}_{=y_1(t)+y_2(t)}$$

logo o sistema é linear.

Invariância no tempo - Temos

$$3x(3(t-t_0)+3) \neq 3x(3t-t_0+3)$$

logo o sistema é variante no tempo.

▶ Estabilidade - Supondo $x(t) \le M$, temos $y(t) \le 3M$, logo o sistema é estável.

Exercício 2 - Propriedades

$$y(t) = \int_{t}^{t+1} x(\tau - \alpha)d\tau$$

Determine se o sistema descrito pela equação acima é:

- com memória,
- causal
- invertível,
- linear
- invariante no tempo,
- estável

ightharpoonup Memória - Para t=0, temos

$$y(0) = \int_0^1 x(\tau - \alpha)d\tau = X(1 - \alpha) - X(-\alpha)$$

ou seja, tem memória.

Causalidade - Temos que

$$y(t) = \int_{t}^{t+1} x(\tau - \alpha)d\tau = X(t+1-\alpha) - X(t-\alpha)$$

para que seja causal, é preciso que:

$$t + 1 - \alpha \le t$$

$$\alpha > 1$$

▶ Invertibilidade - Fazendo $\nu = \tau - \alpha$

$$y(t) = \int_{t-\alpha}^{t-\alpha+1} x(\nu) d\nu$$

usando o Teorema Fundamental do Cálculo, temos:

$$y(t) = X(t - \alpha + 1) - X(t - \alpha)$$

logo,

$$\frac{dy(t)}{dt} = x(t - \alpha + 1) - x(t - \alpha)$$

que é invertível.

Linearidade - Temos

$$ax_1(t) \rightarrow y_1(t) = \int_t^{t+1} ax_1(\tau - \alpha)d\tau$$

$$bx_2(t) \rightarrow y_2(t) = \int_t^{t+1} bx_2(\tau - \alpha)d\tau$$

$$ax_1(t) + bx_2(t) \rightarrow y(t) = \int_t^{t+1} (ax_1(\tau - \alpha) + bx_2(\tau - \alpha))d\tau$$

$$y(t) = \int_t^{t+1} ax_1(\tau - \alpha)d\tau$$

$$+ \int_t^{t+1} bx_2(\tau - \alpha)d\tau$$

$$y(t) = y_1(t) + y_2(t)$$

logo o sistema é linear.

▶ Invariância - Fazendo $\nu = \tau - \alpha$

$$y(t) = \int_{t-\alpha}^{t-\alpha+1} x(\nu) d\nu$$

temos:

$$y(t)|_{t-t_0} = \int_{t-t_0-\alpha}^{t-t_0-\alpha+1} x(\nu)d\nu$$
$$y(t)|_{x(t-t_0)} = \int_{t-\alpha}^{t-\alpha+1} x(\nu-t_0)d\nu$$

Fazendo $\eta = \nu - t_0$, temos:

$$y(t)|_{x(t-t_0)} = \int_{t-t_0-\alpha}^{t-t_0-\alpha+1} x(\eta) d\eta$$

portanto, o sistema é invariante no tempo

▶ Estabilidade - Supondo $x(t) \leq M$, temos:

$$y(t) = \int_{t}^{t+1} x(\tau - \alpha) d\tau$$

$$|y(t)| = \left| \int_{t}^{t+1} x(\tau - \alpha) \right| d\tau$$

$$\leq \int_{t}^{t+1} |x(\tau - \alpha)| d\tau$$

$$\leq \int_{t}^{t+1} M d\tau$$

$$\leq M\tau|_{t}^{t+1} = M$$

portanto, o sistema é estável.

1.27 Neste capítulo, apresentamos diversas propriedades gerais dos sistemas. De modo particular, um sistema pode ou não ser:

- (1) Sem memória
- (2) Invariante no tempo
- (3) Linear
- (4) Causal
- (5) Estável

(a)
$$y(t) = x(t-2) + x(2-t)$$
 (3, 5)

(b)
$$y(t) = [\cos(3t)]x(t)$$
 (1, 3, 4, 5)

(c)
$$y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$$
 (3)

(d)
$$y(t) = \begin{cases} 0, & t < 0 \\ x(t) + x(t-2), & t \ge 0 \end{cases}$$
 (3, 4, 5)

(d)
$$y(t) = \begin{cases} 0, & t < 0 \\ x(t) + x(t-2), & t \ge 0 \end{cases}$$
 (3, 4, 5)
(e) $y(t) = \begin{cases} 0, & x(t) < 0 \\ x(t) + x(t-2), & x(t) \ge 0 \end{cases}$ (2, 3, 4, 5)

(f)
$$y(t) = x(t/3)$$
 (3,4)

(f)
$$y(t) = x(t/3)$$
 (3,4)
(g) $y(t) = \frac{dx(t)}{dt}$ (2,3,4)

1.28

- (1) Sem memória
- (2) Invariante no tempo
- (3) Linear
- (4) Causal
- (5) Estável

(a)
$$y[n] = x[-n]$$
 (2, 5)

(b)
$$y[n] = x[n-2] - 2x[n-8]$$
 (2, 3, 4, 5)

(c)
$$y[n] = nx[n]$$
 (3, 4)

(d)
$$y[n] = \mathcal{E}v[x[n-1]]$$
 (2, 5)

(e)
$$y(n) = \begin{cases} x[n], & n \ge 1 \\ 0, & n = 0 \\ x[n+1], & n \le -1 \end{cases}$$
 (3, 5)

(f)
$$y(n) = \begin{cases} x[n], & n \ge 1 \\ 0, & n = 0 \\ x[n], & n \le -1 \end{cases}$$
 (1, 3, 4, 5)

(g)
$$y[n] = x[4n+1]$$
 (3, 5)

Freqüência complexa e o plano s

$$x(t) = Ae^{rt} \cdot e^{j\omega_0 t} = Ae^{(r+j\omega_0)t}$$

amortecimento

Freqüência complexa

(amplitude crescente)

Frequência complexa e o plano s

$$x(t) = e^{rt} \cdot \cos(\omega_0 t) = \frac{1}{2} \left[e^{(r+j\omega_0)t} + e^{(r-j\omega_0)t} \right]$$

Esboce as formas de onda de x(t) para cada caso

$$\mathbf{X}_1(t) = e^{j(\pi/2)} \cdot e^{j\omega t}$$

$$\mathbf{x}_{1}(t) = e^{j(\pi/2)} \cdot e^{j\omega t}$$

$$\mathbf{x}_{1}(t) = e^{j(\omega t + \pi/2)}$$

$$x_1(t) = re\{\mathbf{x}_1\} = cos(\omega t + \pi/2)$$

 x_1 adiantado de 90º em relação a $cos(\omega t)$

$$x_1(t) = \cos(\omega t) \cdot \underbrace{\cos(\pi/2)}_{=0} - \operatorname{sen}(\omega t) \cdot \underbrace{\operatorname{sen}(\pi/2)}_{=1}$$

$$x_1(t) = -sen(\omega t)$$

Visualizando:

Manipulando fasores

Sistema linear incremental

Sistema linear: entrada nula → saída nula

$$y(t) = a \cdot x(t) + b$$

$$x_1(t) \Rightarrow y_1(t) = a \cdot x_1(t) + b$$

$$x_2(t) \Rightarrow y_2(t) = a \cdot x_2(t) + b$$

$$\therefore y_1(t) + y_2(t) = a \cdot x_1(t) + a \cdot x_2(t) + 2b$$

 $x_1(t) + x_2(t) \Rightarrow a \cdot [x_1(t) + x_2(t)] + b = a \cdot x_1(t) + ax_2(t) + b$

∴ não linear!

 $y(t) = a \cdot x(t) + b$ é linear incremental pois responde linearmente à diferença entre duas entradas