

Yale Hackathon 2025: Alice & Bob

Kate Saltovets¹, Daniel Huffman¹, Aiden Mains¹, Saimonth Muñoz¹, Nikolas Cruz¹

¹Lehigh University

Overview

O1
Wigner Functions

Understanding and generation of Wigner Functions for Fock States, Coherent States, and Cat States.

02 Density Matrix

Reconstruction of the density matrix from the Wigner Function.

03 Shaping the Fit

Simulation of noisy data with Gaussian Noise.

O4 Denoising

Corrections of background noise.

The Wigner Function

We know the distinction between Classical Mechanics and Quantum Mechanics is the quantization of energy. Heisenberg's Uncertainty Principle also tells us that one cannot know both the position and momentum of a particle with complete precision. The Wigner Function allows us to visualize quantum states in phase space, allowing for negative probability values that reflect non-classical behavior.

Computation and Visualizations

Fock States

Coherent States

Cat States

Dissipative Cat State

Reconstruction from Wigner Data

Fidelity Versus Sigma

Wigner estimated from p

Gaussian Noise on Fock State

Denoising and Normalizing Vacuum State

Denoising and Normalizing Cat State

Denoising and Normalizing Fock State

Thank you!

