1 Théorie

1.1 Fraction continues

1.1.1 Intuition

Intuitivement, une fraction continue est une expression — finie ou infinie — de la forme suivante 1 :

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

telle que $a_0 \in \mathbb{Z}$ et $a_i \in \mathbb{N}^*$ pour tout $i \in \mathbb{N}^*$. Toujours intuitivement, nous voulons affûbler cette fraciton continue d'une valeur. Si la fraction continue est finie, cette une bonne vieille fraciton, c'est à dire un élément du corps \mathbb{Q} ; si la fraction continue est infinie, on calcule d'abord a_0 , puis $a_0 + \frac{1}{a_1}$, puis $a_0 + \frac{1}{a_1 + \frac{1}{a_2}}$, et on continue une infinité de fois. La limite de la suite générée est la « valeur » de la fraction continue. Nous ferons sens plus précis de l'intuition dans la prochaine sous-section.

Les fractions continues émanent de la volonté d'approcher des réels irrationels par des fractions d'entiers. Par exemple, la fraction $\frac{103993}{33102}$ approche π avec une précision meilleure que le milliardième. Comment générer une telle fraction continue pour un réel irrationnel x? On part de l'identité x = x + |x| - |x| et l'on écrit

$$x = \lfloor x \rfloor + \frac{1}{\frac{1}{x - \lfloor x \rfloor}}.$$

On pose $x_0 = x$ et $x_1 = \frac{1}{x_0 - \lfloor x_0 \rfloor}$ (qui est bien défini par irrationalité de x) et l'on répète la première étape sur x_1 :

$$x = \lfloor x_0 \rfloor + \frac{1}{x_1} = \lfloor x_0 \rfloor + \frac{1}{\lfloor x_1 \rfloor + \frac{1}{\frac{1}{x_1 - \lfloor x_1 \rfloor}}}.$$

Comme le réel x est irrationnel, on peut répéter ce procédé indéfiniment. Nous construisons alors la suite d'éléments irrationnels de terme général

$$x_n = \frac{1}{x_{n-1} - \lfloor x_{n-1} \rfloor}, \quad \forall n \geqslant 1.$$

^{1.} Notez que nous ne nous autorisons que des 1 aux numérateurs.

On associe alors à l'irrationnel x la fraction continue $infinie^2$

$$\hat{x}_0 + \frac{1}{\hat{x}_1 + \frac{1}{\hat{x}_2 + \frac{1}{\hat{x}_3 + \dots}}},$$

où l'on a posé

$$\hat{x}_i = |x_i|$$

pour tout $i \in \mathbb{N}$. Fixons ces notations :

Notation 1.1. Soit $x \in \mathbb{R}$ un élément irrationel. Notons $x_0 = x$ puis

$$x_n := \frac{1}{x_{n-1} - \lfloor x_n \rfloor}, \quad \forall n \geqslant 1.$$

Par ailleurs, notons

$$\hat{x}_n := \lfloor x_n \rfloor, \quad \forall n \in \mathbb{N}.$$

Remarque 1.2. La méthode de construction d'une fraction continue finie pour un rationnel est la même : il faut simplement s'arrêter lorsque l'on tombe sur un \hat{x}_n vérifiant $\hat{x}_n = \lfloor \hat{x}_n \rfloor$. Cet algorithme termine (ref) et s'exécute plus simplement en utilisant... l'algorithme d'Euclide. Par ailleurs, réaffirmons que la fraction continue d'un irrationel (encore une fois, dans un sens qui sera précisé au prochain paragraphe) est forcément infinie.

1.1.2 Formalisation

Formellement, on peut définir ³ une fraction continue ainsi :

Définition 1.3 (Fraction continue). On appelle fraction continue toute suite non vide (finie ou infinie) $(a_i)_{i\in U} \in \mathbb{N}^{\mathbb{N}}$, $U \subset \mathbb{N}$, d'entiers qui vérifie

$$a_i \geqslant 1, \quad \forall i \in U \setminus \{0\}.$$

Cette suite est alors notée

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}.$$

^{2.} Lorsque nous aurons correctement défini la notion de fraction continue, cette fraction continue canoniquement associée à x sera notée \hat{x} .

^{3.} La définition mathématique est descriptive et non prescriptive.

Notation 1.4. Soit $x \in \mathbb{R}$ un élément irrationel. On note \hat{x} la fraction continue infinie canoniquement associée à x par la méthode exposée dans le premier paragraphe. Autrement dit, \hat{x} est la fraction continue donnée par la suite infinie (voir 1.1) $(\hat{x}_i)_{i \in \mathbb{N}}$).

Il est naturel d'associer à une fraction continue (finie ou infinie) une suite (finie ou infinie) de fractions « intermédiaires » appelées *réduites*. Pour n'avoir aucun problème de division par zéro, nous nous plaçons temporairement dans un corps de fractions rationnelles en $\mathbb N$ indeterminées.

Définition 1.5 (Réduites formelles). Soit $(X_i)_{i\in\mathbb{N}}$ une suite (infinie) d'indeterminées sur le corps \mathbb{Q} . On définit

$$[X_0] = X_0]$$

puis par récurrence

$$[X_1, \dots, X_n] = X_0 + \frac{1}{[X_1, \dots, X_n]}.$$

Ces éléments sont dans $\mathbb{Q}((X_i)_{i\in\mathbb{N}})$.

Définition 1.6 (Réduites d'une fraction continue). Distinguons les cas finis et infinis. Soit f une fraction continue.

- Si f est donnée par la suite finie (a_0, \ldots, a_n) , pour tout $k \in [0, n]$ on appelle k-ième réduite de f l'élément $[a_0, \ldots, a_k]$.
- Si f est donnée par la suite infinie $(a_i)_{i\in\mathbb{N}}$, pour tout $k\in\mathbb{N}$ on appelle k-ième réduite de f l'élément $[a_0,\ldots,a_k]$.

Exemple 1.7. Soit f la fraction continue infinie donnée par la suite $(1)_{i \in \mathbb{N}}$. La première réduite est [1] = 1, la deuxième est

$$[1,1] = 1 + \frac{1}{[1]} = 1 + \frac{1}{1},$$

la troisième est

$$[1,1,1] = 1 + \frac{1}{[1,1]} = 1 + \frac{1}{1 + \frac{1}{1}}.$$

Plus généralement, la k-ième réduite de f est de la forme

$$[1,1,\ldots,1] = 1 + \cfrac{1}{1 + \cfrac{1}{\cdots \cfrac{1}{1 + \cfrac{1}{1}}}}.$$

Remarquons que les réduites de toute fraction continue sont des éléments rationnels, ce même si la fraction continue est égale à \hat{x} pour un certain irrationel x. De fait, x n'est égal à aucune des réduites de \hat{x} . Mais en reprenant les notations 1.1, on a toutefois

$$x = [\hat{x}_1, \dots, \hat{x}_{n-1}, x_n], \quad \forall x \in \mathbb{N}. \tag{1}$$

Cette égalité sera cruciale dans notre algorithme de factorisation.

Même si les fractions continues finie restent des suites (déf. 1.3), leur représentation graphique permet de les voir trivialement comme des éléments du corps Q. En effet, en représentant

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

la fraction continue finie f associée à la suite finie (a_0, \ldots, a_n) , on peut la voir comme l'élément rationnel

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$
.

Cet élément n'est autre que sa dernière réduite $[a_0, \ldots, a_n]$ et on dit que f est égale à l'élément rationnel $[a_0, \ldots, a_n]$. Pour les fractions continues infinies, ce n'est pas aussi simple.

Définition 1.8. Soient l un réel et f une fraction continue donnée par la suite infinie $(a_i)_{i\in\mathbb{N}}$. On dit que f est égale à l ou que f converge vers l et l'on note f=l si la suite des réduits de f converge vers l. Si une fraction continue infinie est égale à un certain réel, on dit qu'elle converge.

Exemple 1.9 (Nombre d'or). On appelle nombre d'or et l'on note φ l'unique racine réelle positive du polynôme $X^2-X-1\in\mathbb{Z}[X]$. On a $\varphi=\frac{1+\sqrt{5}}{2}\simeq 1,618$. Comme

réelle positive du polynôme
$$X^2 - X - 1 \in \mathbb{Z}[X]$$
. On a $\varphi = \frac{1+\sqrt{3}}{2} \simeq 1,618$. Comme $\varphi^2 = \varphi + 1$ et que $\varphi \neq 0$, on a $\varphi = 1 + \frac{1}{\varphi} = 1 + \frac{1}{1 + \frac{1}{\varphi}}$. En réalité, φ est égal à une

fraction continue:

$$\varphi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}.$$

Dans quelle mesure une fraction continue converge-t-elle? Des raisonnements d'analyse élémentaire (**réf**) permettent de montrer que toute fraction continue infinie converge, et qu'elle converge vers un irrationnel!

Théorème 1.10. La fonction canonique

$$x \mapsto \frac{1}{\hat{x}_0 + \frac{1}{\hat{x}_1 + \frac{1}{\hat{x}_2 + \dots}}}$$

est une bijection entre l'ensemble des nombres réels irrationnels et des fractions continues infinies.

En particulier, un réel x et une fraction continue f sont égaux si, et seulement si, f est la fraction continue donnée par la suite $(\hat{x}_{i\in\mathbb{N}})$. Attention, les réels tout entier ne sont pas en bijection avec les fractions continues (finies ou infinies). En effet, un rationnel est égal (au sens donné dans les paragraphes précédents) à exactement deux fractions continues : si un rationnel est égal à $[a_0, \ldots, a_n]$, il est aussi égal à $[a_0, \ldots, a_n-1, 1]$ et n'est égal à aucune autre fraction continue (ref).

1.1.3 Irrationels quadratiques