2019-10-22

Опр (унитарного пространства)

$$U$$
 - в.п. над $\mathbb C$

$$U \times U \rightarrow ()$$

1.
$$(u+v, w) = (u, w) + (v, w) \quad \forall u, v, w \in U$$

 $(\lambda v, w) = \lambda(v, w) \quad \forall \lambda \in C, \quad v, w \in U$

$$2. \ (u, \ v) = \overline{(v, \ u)}$$

3.
$$(u, u) \ge 0$$

4.
$$(u, u) = 0 \Rightarrow u = 0$$

Пример

$$\begin{array}{c|c}
R^n & C^n \\
(x,y) = \sum x_i y_i & (x,y) = \sum x_i \overline{y_i}
\end{array}$$

$$e_1, ..., e_n$$
 - базис

$$\Gamma_e = \{(e_i, \ e_j)\}_{i,j}$$
 - матрица грамма

$$(u,v) = [u]_e^T \Gamma_e \overline{[v]}_e$$

$$\Gamma_f = M_{e \to f}^T \Gamma_e \overline{M}_{e \to f}$$

$$|(u,v)| < ||u|| \cdot ||v||, \quad ||u|| = \sqrt{(u, u)}$$

$$||tu + v||^2 = t^2 ||u|| + t((u, v) + (v, u)) + ||v||^2$$

$$Re(u, v) \le ||u||^2 ||v||^2$$

$$(u, v) = |(u, v)| \cdot z| \Rightarrow |z| = 0$$

$$\operatorname{Re}(\frac{1}{z}u, v) \le \|\frac{1}{z}u\|^2 \|v\|^2 = \|u\| \|v\|$$

Напоминание:
$$\|\lambda u\| = \sqrt{(\lambda u,\ \lambda u)} = \sqrt{\lambda \overline{\lambda}(u,u)} = |\lambda|\,\|u\|$$

$$\operatorname{Re} \frac{1}{z}(u, v) = \operatorname{Re} |(u, v)| = |(u, v)|$$

Доказали КБШ

Опр

V - в.п. над К

$$V^* = L(V, k)$$

Пример

 $v \in V$ - евклидово пр-во (унитарное)

$$\varphi_v(w) = (w, v) \quad \varphi_v : V \to \mathbb{R}(\mathbb{C})$$

Хотим доказать: $\varphi \in V^* \Rightarrow \exists! v \in V : \varphi = \varphi_v$

Док-во

 $e_1,...,e_n$ - OHB V

$$v = \sum \lambda_i e_i$$

Нужно $\forall w \in V \quad (w, \ v) = \varphi(w),$ т.к. φ - линейный функционал

$$\Leftrightarrow \forall j \quad (e_j, \ v) = \varphi(e_j)$$

$$(e_j, \sum \lambda_i e_i) = \sum_i \overline{\lambda}_i (e_j, e_i)$$

Опр

 $A \in M_n(\mathbb{C})$

 $A^* = \overline{A}^T$ - сопряженная матрица

Свойства

1.
$$A^{**} = A$$

$$2. \ (\lambda A)^* = \overline{\lambda} A *$$

3.
$$(A+B)^* = A^* + B^*$$

4.
$$(AB)^* = B^*A^*$$

5.
$$(A^{-1})^* = (A^*)^{-1}$$

y_{TB}

V - унитарное пр-во, $L \in L(V)$, $u \in V$ $\varphi_n(v) = (Lv, \ u) \in V^*$ $\Rightarrow (Lv, \ u) = (v, \ w_u)$ $\exists ! w_u \in V : \quad (v, \ u) = (v, \ w_u)$

 $u \to w_u$

Утверждается, что отображение линейно

Док-во

$$\begin{aligned} &(\mathrm{Lv},\,\mathrm{u}) = (\mathrm{v},\,\mathrm{w}_u) \ | \ &(\mathrm{Lv},\,\mathrm{u} + \mathrm{u}') = (\mathrm{Lv},\,\mathrm{u}) + (\mathrm{Lv},\,\mathrm{u}') = \\ &(\mathrm{Lv},\,\mathrm{u}') = (\mathrm{v},\,\mathrm{w}_{u'}) \ | = (\mathrm{u}\,\,\mathrm{w}_u) + (v,\,\,w_{u'}) = (v,\,\,w_u + w_{u'}) = (v,\,\,w_{u+u'}) \\ &(Lv,\,\,\lambda u) = \overline{\lambda}(Lv,\,\,u) = \overline{\lambda}(v,\,\,w_u) = (v,\,\,\lambda w_u) \\ &= w_{\lambda u} \\ &L^*u = w_u \quad (Lv,\,\,u) = (v,\,\,L^*u) \end{aligned}$$

Опр

 L^* - эрмитов сопряженный оператор

Свойства

1.
$$L^{**} = L$$

$$(L^*v, u) = (v, L^{**}u)$$

$$(L^*v, u) = \overline{(u, L * v)} = \overline{(Lu,)} = (v, Lu)$$

$$\Rightarrow L^{**}u = Lu \quad \forall u \in V$$
Почему так? $(v, w) = (v, w') \quad \forall v \Rightarrow w = w'$

$$(v, w - w') = 0$$

$$v = w - w'$$

$$\|w - w'\|^2 = 0$$

$$\Rightarrow w - w' = 0$$
2. $(\lambda L)^* = \overline{\lambda}L^*$

$$(\lambda L)v, u) = (v, (\lambda L)^*u)$$

$$(\lambda L)v, u) = (\lambda \cdot Lv, u) = \lambda(Lv, u) = \lambda(v, L^*u) = (v, \overline{\lambda}L^*u)$$

3.
$$(L+L')^* = L^* + L'^*$$
 аналогично

4.
$$(LNv,\ u)=(v,\ (LN)^*u)$$

$$(LNv,\ u)=(v,\ N^*L^*u)\ \text{и то же, что делали раньше}$$

5.
$$[L]_e^* = [L^*]_e$$
, если е - ОНБ
$$Le_i = \sum a_{li}e_l \quad [L]_e = \{a_{ij}\}$$

$$Le_j = \sum b_{kj}e_k \quad [L]_e = \{b_{kj}\}$$

$$(Le_i, e_j) = (e_i, L^*e_j)$$

$$= a_{ij} = \bar{b}_{ij}$$

Опр

$$A\in M_n(\mathbb{C})$$
 A - унитаная, если $A^*A=E$ $U_n=\{A\in M_n(\mathbb{C}): (\text{то что сверху})\}$

Док-во (что это группа по умножению)

$$A^*A = R B^*B = E$$
 \Rightarrow $(AB)^*AB = B^*\underbrace{A^*A}_{=E}B = E$
$$(A^{-1})^*A^{-1} \stackrel{?}{=} E$$

$$\Leftrightarrow (A^{-1})^* = A$$

$$\Leftrightarrow (A^*)^{-1} = (A^{-1})^{-1}$$

Докажем, что любая унитарная матрица обратима и модуль определителя равен единице

$$A^*A = E$$

$$\overline{\det A} \cdot \det A = 1$$

$$|\det A|^2 = 1$$

$\underline{\mathbf{y}_{\mathrm{TB}}}$

$$L \in L(V)$$

Следующие условия равносильны:

1.
$$||Lv|| = ||v|| \quad \forall v$$

2.
$$(Lv, Lu) = (v, u) \quad \forall v, u$$

3.
$$[L]_e \in U_n$$
, *e* - ортонорм.

4.
$$L^*L = id_V$$

И оператор, удовлетворяющий этим условиям называется "унитарным" (в евклидовом случае называется "ортогональным")

Док-во

 $(4 \Rightarrow 2)$:

$$(v, \underset{=(v,u)}{L^*Lu}) = (Lv, Lu)$$

 $(2 \Rightarrow 4)$:

$$(v, L^*Lu) = (Lv, Lu) = (v, u)$$

По заклинанию $L^*L = \mathrm{id}_V$

y_{TB}

1.
$$|\det L| = 1$$

2. Если L - унитарный,
$$Lv = \lambda v \underset{v \neq 0}{\Rightarrow} |\lambda| = 1$$

3.
$$Lv = \lambda v$$
 $Lu = \mu u$ $\lambda \neq \mu \Rightarrow (u, v) = 0$

Док-во

1 и 2:

$$||v|| = ||Lv|| = ||\lambda v|| = |\lambda|||v||$$

3:

$$(u, L^*v) = (u, \overline{\lambda}v) = \lambda(u, v)$$

$$(u, L^*v) = (Lu, v) = (\mu u, v) = \mu(u, v)$$

Хотим доказать: $Lv = \lambda v \Rightarrow L^*v = \overline{\lambda}v$

$$v = L^*Lv = L^*(\lambda v) = \lambda L^*v$$

Делим на λ и туда переносится $\overline{\lambda}$