Supervised Learning: Support Vector Machine (Linear SVM)

Binary Outcome

Plane can be described by a plane with a normal vector and a scalar b $w^Tx+b=0$, w^T (normal vector) is orientation and b (bias) is distance from origin (normal vector is like the opposite of slope, also has a length) Width of margin = 2/(||w||) or 2 divided by the length of the normal vector Goal we have to maximize 2/(||w||) == minimize((||w||)/2) With the constraints of plus class above -> $w^Tx+b >= 1$ With the constraints of minus class below -> $w^Tx+b <= -1$

This system can be solved by calculus, I will point you to resources if you want to see how

Dimension Reduction: t-distributed Stochastic Neighbor Embedding (t-SNE)

Pronounced: tis-knee

Primary purpose is for visualizing high parameter data It is a form of non-linear dimensionality reduction Pro: Retains both global and local data structure

Con: Computationally expensive

Con: Data point crowding in 2 dimensional space, sometimes may require clustering algorithm to see fine-grained boundaries between populations

((SEE PPT))

"The goal is to take a set of points in a high-dimensional space and find a faithful representation of those points in a lower-dimensional space, typically the 2D plane. The algorithm is non-linear and adapts to the underlying data, performing different transformations on different regions. Those differences can be a major source of confusion."

Differences Between and why choose which?

Naive Bayes, Gaussian Naive Bayes, Decision Trees, k-Nearest Neighbor, Support Vector Machines, Logistic Regression

http://www.dataschool.io/comparing-supervised-learning-algorithms/
Regression: the output variable takes continuous values. Classification: the output variable takes class labels. Regression: involves estimating or predicting a response. Classification: is identifying group membership.

Algorithm	Problem Type	Results Human Interpretab le	Average Predictive Accuracy	Training Speed	Prediction Speed	Performs well with small number of observatio ns?	Handles lots of irrelevant features well (separates signal from noise)?
Naive Bayes	Classificati on	Somewhat	Lower	Fast (excluding feature extraction_	Fast	Yes	Yes
Decision Trees	Classificati on/Regress ion	Somewhat	Lower	Fast (excluding feature extraction_	Fast	Yes	Yes
Random Forest	Classificati on/Regress ion	A little	Higher	Slow	Moderate	No	No
kNN	Classificati on/Regress ion	Yes	Lower	Fast	Depends on n	No	Yes unless too much noise
SVM	Classificati on	Somewhat	Lower	Fast	Fast	Yes	No
Logistic Regressio n	Classificati on	Somewhat	Lower	Fast	Fast	Yes	No
Neural Networks							