

Judit Szarvas, postdoc Infectious disease bioinformatics, March 2022

# Large-scale genomic surveillance of pathogens



#### Genomic surveillance

- Supplementing disease surveillance with genomics data
- One Health approach:
  - Human and livestock clinical samples whole-genome or amplicon sequencing
  - Environmental metagenomics



https://doi.org/10.1016/j.lanepe.2021.100210



#### Genomic surveillance

Published: 13 November 2017

### Towards a genomics-informed, real-time, global pathogen surveillance system

Jennifer L. Gardy ≥ & Nicholas J. Loman

Nature Reviews Genetics 19, 9–20 (2018) | Cite this article

COMMENT | 07 June 2018

## Pandemics: spend on surveillance, not prediction

Trust is undermined when scientists make overblown promises about disease prevention, warn Edward C. Holmes, Andrew Rambaut and Kristian G. Andersen.

Edward C. Holmes ☑ , Andrew Rambaut ☑ & Kristian G. Andersen ☑

#### Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens 8

Sharon J. Peacock<sup>1,2,3</sup>, Julian Parkhill<sup>3</sup>, Nicholas M. Brown<sup>4</sup>

O View Affiliations

First Published: 27 July 2018 | https://doi.org/10.1099/mic.0.000700



#### Genomic surveillance

The use of next generation sequencing for improving food safety: Translation into practice

Balamurugan Jagadeesan <sup>a</sup>  $\stackrel{>}{\sim} \boxtimes$ , Peter Gerner-Smidt <sup>b</sup>, Marc W. Allard <sup>c</sup>, Sébastien Leuillet <sup>d</sup>, Anett Winkler <sup>e</sup>, Yinghua Xiao <sup>f</sup>, Samuel Chaffron <sup>g</sup>, Jos Van Der Vossen <sup>h</sup>, Silin Tang <sup>l</sup>, Mitsuru Katase <sup>j</sup>, Peter McClure <sup>k</sup>, Bon Kimura <sup>l</sup>, Lay Ching Chai <sup>m</sup>, John Chapman <sup>n</sup>, Kathie Grant <sup>o</sup>  $\stackrel{>}{\sim} \boxtimes$ Show more  $\checkmark$ + Add to Mendeley  $\stackrel{>}{\sim}$  Share  $\stackrel{$\blacksquare}{\rightarrow}$  Cite

https://doi.org/10.1016/j.fm.2018.11.005

Get rights and content Under a Creative Commons license

Operational burden of implementing Salmonella Enteritidis and Typhimurium cluster detection using whole genome sequencing surveillance data in England: a retrospective assessment

Published online by Cambridge University Press: 02 July 2018

Piers Mook (D), Daniel Gardiner, Neville Q. Verlander, Jacquelyn McCormick, Martine Usdin, Paul Crook (D), Claire Jenkins and Timothy J. Dallman

Show author details >



#### Whole-genome sequencing projects for food safety

 National and international initiatives for WGS of foodborne bacteria Total Number of Sequences in the GenomeTrakr Database



First sequences uploaded in February 2013

https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-fast-facts

<sup>\*</sup> Other pathogens: Cronobacter, V. vulnificus, C. botulinum, and C. perfringens



#### **SNP-based phylogeny recap**



https://doi.org/10.1038/nrg.2017.88



#### **SNP-based phylogeny recap**





What if there is a long-time, ongoing outbreak?

- + Historical samples
- + Environmental samples

https://doi.org/10.1038/nrg.2017.88



#### Large-scale genomic surveillance design considerations

- Design a system for large-scale, cyclic analysis of sequencing data
- Reference-based:
  - Allow SNP-level resolution
- Homology reduction within the sets by clustering at *x* genomic threshold:
  - Connect samples that could be epidemiologically linked



#### Cyclic analysis of sequencing data

- Intermediate data and information kept between runs
- Eliminate need to re-compute for older samples



Pairwise distance calculation, clustering

https://doi.org/fmicb.2021.636608



#### Reference based

- Allow SNP-level resolution, without the maintenance of allelic-schemes
- Quality controlled references can be supplied by user, flexible for each analysis
- In theory, each sample would be matched to a very close reference, which is required for high resolution SNP analysis
- Divide the data into smaller sets:
  - divide and conquer approach: solve the problem in smaller data sets,
     reducing the complexity of it



#### Reference database supplied

- NCBI RefSeq complete bacterial genomes, with plasmids removed
- Homology reduced (usually to 99.0id%):
  - reference sequences, that are more similar to each other, are removed from the created template database



Sequences in sequence space





Pairwise distance calculation, clustering

https://doi.org/fmicb.2021.636608



#### Homology reduction within a set

- Clustering at 10 SNP threshold, keeping only one representative of the cluster
- Further reduce the computational burden by limiting the redundancy in the set
  - 25-40% of samples can be redundant in a set
- Connect samples that could be epidemiologically linked



Clustered isolates are placed back onto tree with an \*

8. marts 2022 DTU Fødevareinstituttet Large-scale genomic surveillance of pathogens



#### Listeria monocytogenes benchmarking



Timme et al. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ. 2017 Oct 6;5:e3893.

14



#### **Implementation**

- Python2/3, sqlite database
- Dependencies:
  - KMA
  - IQtree (maximum likelihood inference)
  - Neighbor (Neighbor-joining)
- Bacteria: <a href="https://bitbucket.org/genomicepidemiology/evergreen/src/COMPARE/">https://bitbucket.org/genomicepidemiology/evergreen/src/COMPARE/</a>
- Viruses (general use):
   <a href="https://bitbucket.org/jszarvas/viral-surveillance/src/master/">https://bitbucket.org/jszarvas/viral-surveillance/src/master/</a>



#### **Implementation**

#### Example command

```
vu_pipeline.py -b /home/user/project/coronaviruses \
-o /home/user/project/coronaviruses/analysis.7.43 \
-f /home/user/project/coronaviruses/input/coronavirus_data.iso \
-g /home/user/project/coronaviruses/input/coronavirus_metadata.tsv \
-d /home/user/project/coronaviruses/coronavirus.7.43.db
-r /home/user/project/coronaviruses/references/coronavirus_kma_7.43 \
-t 85.0 -ml -pairwise -ebi
```

#### Example input .iso

```
S000001 /path/to/read_01_1.fastq.gz,/path/to/read_01_2.fastq.gz
S000002 /path/to/read_02_1.fastq.gz,/path/to/read_02_2.fastq.gz
```

8. marts 2022 DTU Fødevareinstituttet Large-scale genomic surveillance of pathogens



#### **Implementation**

- Logging is printed to stdout, error messages to stderr
- Output files for each reference, that collected more than 2 samples
  - \*.newick: phylogenetic tree (dist and ml for neighbor-joining and maximum likelihood) with metadata appended to taxa labels
  - \*.nwk and \*.tsv: Microreact compatible output
  - \*.mat: phylip distance matrix for the non-redundant samples
  - \*.aln: optional multiple-alignment



#### **Exercise**

- 3 parts:
  - 1<sup>st</sup>: input files are prepared for you, and you need to write the job-script
  - 2<sup>nd</sup>: you need to create the correct input files, and run a second analysis cycle
  - 3<sup>rd</sup>: transfer the outputs from the two rounds to your computer and answer the questions



#### Other solutions

- K-mers and wgMLST:
  - https://www.ncbi.nlm.nih.gov/pathogens/about
- cgMLST:
  - https://pathogen.watch
- cgMLST, wgMLST, rMLST, etc:
  - https://enterobase.warwick.ac.uk/
- SNPs:
  - <a href="https://nextstrain.org/pathogens">https://nextstrain.org/pathogens</a>