III: Principal stresses and Failure Criteria

1: Principal Stresses

1.1: The Principal stresses: Max and Min

- The principal stresses σ_1 and σ_2 acts on the principal planes, which the **shear stress** is zero.
- They are orthogonal, σ_1 is oriented 90 degrees from σ_2 .
- The third principal stress acts in the out-of-plane direction which is zero in 2D.
- Usually, σ_1 is algebraically the max normal stress while σ_2 is the least.
- However the σ_2 maybe have large magnitudes when it is compressive (negative).
- · Principal planes are mutually inclined at 90 degrees.

1.2: The formula of the max and min

$$ullet \ \sigma_1 = (rac{\sigma_{xx} + \sigma_{yy}}{2}) + \sqrt{(rac{\sigma_{xx} - \sigma_{yy}}{2})^2 + au_{xy}^2}$$

$$ullet \ \sigma_2 = (rac{\sigma_{xx} + \sigma_{yy}}{2}) - \sqrt{(rac{\sigma_{xx} - \sigma_{yy}}{2})^2 + au_{xy}^2}$$

• The direction
$$heta$$
 can be defined as: $heta = rac{1}{2} an^{-1} rac{2 au_{xy}}{\sigma_{xx} - \sigma_{yy}}$

2: The third principal stress

- In 3-D situation, there is a σ_3 which is perpendicular to the σ_1 and σ_2 .
- In 2-D the σ_3 =0.

3: Maximum shear stress

$$ullet au_{max} = \sqrt{(rac{\sigma_{xx} - \sigma_{yy}}{2})^2 + au_{xy}^2}$$

- ullet When the maximum shear stress applied, thw normal stress can be defined as $\sigma_s=rac{\sigma_{xx}+\sigma_{yy}}{2}$
- The direction of the shear stress can be expressed as: (from the horizontal)

$$heta = rac{1}{2} an^{-1}(-(rac{\sigma_{xx}-\sigma_{yy}}{2 au_{xy}}))$$

• And the positive sign show the A/C while negative sign show the CW.

4: Relationship between principal stress and max shear stress

$$ullet au_{max} = rac{\sigma_1 - \sigma_2}{2}$$

• The degree between the principal stress plane and max shear stress plane is 45 degrees.

5: The Failure Criteria

5.1: Introduction

 Yield criteria for ductile material (some of the metal) and Fracture criteria for brittle material (stone and ceramic) and for other failure material like buckling it need other criteria.

5.2: Failure criteria for ductile material (yield)

5.2.1: Tresca criterion

- · Also known as the max shear stress criterion.
- $au_{max} = \frac{\sigma_Y}{2}$
- For σ_1 and σ_2 have different sign, taking $\sigma_1 > \sigma_2$:

$$au_{max} = rac{\sigma_1 - \sigma_2}{2}$$

• For σ_1 and σ_2 have same sign, taking $\sigma_1 > \sigma_2$:

$$au_{max} = rac{\sigma_1 - \sigma_3}{2} = rac{\sigma_1}{2}$$

• For Tresca criterion, we use the most severly stressed point to find the factor of safety:

$$n=rac{\sigma_Y/2}{ au_{max}}$$

5.2.2: **Von Mises Criterion

- Also known as distortion strain energy criterion.
- The Von Mises stress can be expressed as:

$$\sqrt{rac{1}{2}[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} = \sigma_Y$$

• And the factor of safety can be expressed as σ_Y /von mises stress

6: Failure criteria for brittle materials (fracture)

- According to the Rankine criterion, the fracture occurs when: $\sigma_{max} = \sigma_{ult}$, where the $\sigma_{max} = max(|\sigma_1|, |\sigma_2|, |\sigma_3|)$.
- · In this criterion:

$$n = rac{\sigma_{ult}}{\sigma_{max}}$$