Deep Learning

Introduction Series

Bryan Cardenas
Robert Jan Schlimbach
Caspar van leeuwen

High Performance Machine Learning Group

Prerequisites

Programming

R / Python

Statistics, Calculus

Machine Learning / Deep Learning

Parallel Computing

Plan for Today

01.

General Introduction to ML

Neural Network

Convolutional Neural Networks

02.

Profiling your Neural Networks

High Performance

Plan until Lunch

01. DL Introduction

Pytorch Intro

02. Hands-on: Fully connected

03. Recap

Coffee Break

04. CNN Theory

Hands-on: CNNs

LUNCH

SURF

What ML is *not*:

Mimicking human intelligence

Robotics

Deep Learning

What ML is *not*:

Mimicking human intelligence

Robotics

Deep Learning

ML is the study of algorithms that can improve through experience and by the use of data. It is seen as part of Artificial Intelligence

~ Wikipedia

Artificial Intelligence

Having computers to exert Intelligent behaviour

Artificial Intelligence

Having computers to exert Intelligent behaviour

Machine Learning

Perform tasks without Explicitly programmed from data

Artificial Intelligence

Having computers to exert Intelligent behaviour

Machine Learning

Perform tasks without Explicitly programmed from data

Deep Learning

Use deep neural networks

Why Machine Learning?

Think of a simple decision tree

Why Machine Learning?

Why Machine Learning?

Think of a *hard* decision tree

What is a dog?

Uncountable features that define a dog

We want an automatic way of learning these features

Driven by Data

Categories of Machine Learning

01.

Supervised

Learn from labels

Regression, Classification

02.

Unsupervised

Detect Patterns in the data

Clustering, Dimensionality Reduction

03.

Reinforcement

Learn from the environment

Control, gaming

02. Neural Networks

Biological Neuron

A neuron inhibits or excites a signal picked up from its receivers

Only fires if a threshold is reached and is connected to thousands of others.

Biological Neuron

A neuron inhibits or excites a signal picked up from its receivers

Only fires if a threshold is reached and is connected to thousands of others.

Humans have around 80 billion neurons and trillions of connections

Don't model the biological neuron **precisely**

Don't model the biological neuron **precisely**

- Inputs
- Bias
- Weights
- Dot product
- Non-linear activation

Don't model the biological neuron **precisely**

- Inputs
- Bias
- Weights
- Dot product
- Non-linear activation

Use a (deep) neural network to approximate an unknown function

 \hat{u}

Don't model the biological neuron **precisely**

- Inputs
- Bias
- Weights
- Dot product
- Non-linear activation

Use a (deep) neural network to approximate an unknown function

 \hat{u}

Don't model the biological neuron **precisely**

- Inputs
- Bias
- Weights
- Dot product
- Non-linear activation

Don't model the biological neuron **precisely**

- Inputs
- Bias
- Weights
- Dot product
- Non-linear activation
- Easy to compose and easy to vectorize
- Fits current compute paradigm

Binary Classification Task

Sigmoid

Limitations of Linear Single Layer Classifiers

XOR Problem

Limitations of Linear Single Layer Classifiers

XOR Problem

Possible Solutions

Add more layers (deep learning)

Map into another (higher dimensional) space

We need to be able to automatically extract features

Limitations of Linear Single Layer Classifiers

Universal Approximation Theorem

A neural network with a **single hidden layer** of **sufficient size**

Can approximate any continuous function

Universal Approximation Theorem

A neural network with a **single hidden layer** of **sufficient size**

Can approximate any continuous function

There exists a true function relating the inputs to the outputs

A neural network can approximate this function to arbitrary precision given sufficient layer size

The required layer size can be extremely large and grow rapidly with the dimensionality of the problem

Universal Approximation Theorem

A neural network with a **single hidden layer** of **sufficient size**

Can approximate any continuous function

There exists a true function relating the inputs to the outputs

A neural network can approximate this function to arbitrary precision given sufficient layer size

The required layer size can be extremely large and grow rapidly with the dimensionality of the problem

Use of multiple hidden layers makes the NN vector representation of your problem increasingly more abstract

- How do we train?
- Compute grows (almost) exponentially

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

- Very cheap to compute
- Piece-wise linear functions
- Dead neurons
 - Not differentiable at 0

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

Not using non-linearities leads to linear networks

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

- Very cheap to compute
- Piece-wise linear functions
- Dead neurons
 - Not differentiable at 0

Activation functions are applied to the out of each neuron (point-wise)

Simple derivative

Non-linear behaviour

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

Not using non-linearities leads to linear networks

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

- Very cheap to compute
- Piece-wise linear functions
- Dead neurons
- Not differentiable at 0

Activation functions are applied to the out of each neuron (point-wise)

Simple derivative

Non-linear behaviour

ReLU made our lives much easier and faster

Most commonly used activation

One of the reasons that enable NNs to encode highly abstract features is the use of **non-linear** activation functions.

Not using non-linearities leads to linear networks

- Probability Estimate
- Continuously differentiable
- Vanishing derivatives due to saturated neurons

- Very cheap to compute
- Piece-wise linear functions
- Dead neurons
- Not differentiable at 0

Activation functions are applied to the out of each neuron (point-wise)

Simple derivative

Non-linear behaviour

ReLU made our lives much easier and faster

Most commonly used activation

Many more! We can design our own!

During the **optimization** process

The NN learns to **encode** a **representation** that maps

During the **optimization** process

The NN learns to **encode** a **representation** that maps

During the **optimization** process

The NN learns to **encode** a **representation** that maps

During the **optimization** process

The NN learns to **encode** a **representation** that maps

During the **optimization** process

The NN learns to **encode** a **representation** that maps

During the **optimization** process

The NN learns to **encode** a **representation** that maps

the input to the output

Transform the input to a space where we are able to **separate** the features

Predicting Faces

During the **optimization** process

The NN learns to **encode** a **representation** that maps

the input to the output

A deep neural network **encodes** the **representation** in an increasingly abstract way

Neural Network Demo

Neural Network

- The output of previous layer is used as an input to the next layer
- The input layer is data input and the output is a prediction
- Anything in between is hidden
- Layers are represented as vectors
- Edges are matrices
- We train the weights

Neural Network Training

01.

Process your data

Define the data to be used Do we have labels?

02.

Define the Model

Define the layers and The forward propagation

03.

What function to optimize?

Define the function to approximate your desired solution

04.

How to evaluate the model?

Which metrics are going to tell us how well we are doing on unseen data?

01.

 $(x_1,\ldots,x_m),y$

01.

$$(x_1,\ldots,x_m),y$$

02.

$$f_{NN}(x_1,x_2,\ldots,x_n)$$

01.

$$(x_1,\ldots,x_m),y$$

02.

$$f_{NN}(x_1,x_2,\ldots,x_n)$$

03.

$$MSE \qquad \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

01.

 $(x_1,\ldots,x_m),y$

02.

 $f_{NN}(x_1,x_2,\ldots,x_n)$

03.

$$MSE \qquad \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

CE
$$-\sum_{i=1}^{ ext{output}} y_i \cdot \log \hat{y}_i$$

SURF

01.

 $(x_1,\ldots,x_m),y$

02.

 $f_{NN}(x_1, x_2, \dots, x_n)$

03.

 $MSE \qquad \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

CE $-\sum_{i=1}^{ ext{size}} y_i \cdot \log \hat{y}_i$

04.

Accuracy, F1-score, precision, recall

The loss function is used to bridge the gap between your neural network predictions and the true value

$$\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers
- Not suitable for classification problems

The loss function is used to bridge the gap between your neural network predictions and the true value

The loss function is used to bridge the gap between your neural network predictions and the true value

$$\frac{1}{N} \sum_{i=1} (y_i - \hat{y}_i)$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers
- Not suitable for classification problems

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers
- Not suitable for classification problems

$$-\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

- Suitable for multi-class problems
- Information theory foundation
- Not exactly the most stable loss

The loss function is used to bridge the gap between your neural network predictions and the true value

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers

 Not suitable for classification problems

$$-\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

- Suitable for multi-class problems
- Information theory foundation
- Not exactly the most stable loss

The loss function is used to bridge the gap between your neural network predictions and the true value

We optimize (minimize) the loss to tune the weights In the direction of biggest positive change

CE is easily composed with sigmoid Or Softmax activations!

CE and Softmax has better behaved gradients.

Non-linear behaviour

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers
- Not suitable for classification problems

$$-\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

- Suitable for multi-class problems
- Information theory foundation

Not exactly the most stable loss

The loss function is used to bridge the gap between your neural network predictions and the true value

We optimize (minimize) the loss to tune the weights In the direction of biggest positive change

CE is easily composed with sigmoid Or Softmax activations!

CE and Softmax has better behaved gradients.

Non-linear behaviour

CE is the negative log-likelihood

Most commonly used activation for classification

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Distance/statistical metric assumes a Gaussian prior
- Easy to understand, easy to Compute
- Prone to outliers
- Not suitable for classification problems

$$-\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

- Suitable for multi-class problems
- Information theory foundation

Not exactly the most stable loss

The loss function is used to bridge the gap between your neural network predictions and the true value

We optimize (minimize) the loss to tune the weights In the direction of biggest positive change

CE is easily composed with sigmoid Or Softmax activations!

CE and Softmax has better behaved gradients.

Non-linear behaviour

CE is the negative log-likelihood

Most commonly used activation for classification

Many more! We can design our own!

Stochastic Gradient Descent

01.
$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

01.
$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

02.
$$\nabla L(\mathbf{w}_j, b)$$

01.
$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

02.
$$\nabla L(\mathbf{w}_j, b)$$

Create batches of ${\it N}$ examples to propagate and compute $\nabla L({\bf w}_j,b)$

$$1. \qquad L(y,\hat{y}) = L(W,b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$1. \qquad \nabla L(\mathbf{w}_j,b)$$

$$1. \qquad \text{Create batches of N examples to propagate and compute } \nabla L(\mathbf{w}_j,b)$$

$$1. \qquad \mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j,b)$$

01.
$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

02.
$$\nabla L(\mathbf{w}_j, b)$$

Create batches of **N** examples to propagate

03. and compute
$$\nabla L(\mathbf{w}_j, b)$$

$$\mathbf{04.} \quad \mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j, b)$$

Learning Rate

Choice of learning rate critical SGD is the main engine behind training Many variations exist

01.
$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

02.
$$\nabla L(\mathbf{w}_j, b)$$

Create batches of N examples to propagate

03. and compute
$$\nabla L(\mathbf{w}_j,b)$$

$$\mathbf{04.} \quad \mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j, b)$$

Learning Rate

Choice of learning rate critical SGD is the main engine behind training Many variations exist

- Can be used with loss function that are not differentiable
- No Guarantee that we find the global optimum

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

- We need to compute the gradient for each layer
- Apply the chain rule
- This is backpropagation

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

- We need to compute the gradient for each layer
- Apply the chain rule
- This is **backpropagation**

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

- We need to compute the gradient for each layer
- Apply the chain rule
- This is **backpropagation**

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

- We need to compute the gradient for each layer
- Apply the **chain rule**
- This is backpropagation

$$\frac{\partial L(y, \hat{y})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{a}_i} \frac{\partial \mathbf{a}_i}{\partial \mathbf{w}_{i,j}}$$

- Weight decay
- Early stopping
- Batch Normalization

- Dropout prior
- Weight decay
- Early stopping
- Batch Normalization

The more weights we need to train, the more complex the model becomes and the sooner it starts to memorize, if we don't have enough data

- Dropout prior
- Weight decay
- Early stopping
- Batch Normalization

- Dropout prior
- Weight decay
- Early stopping
- Batch Normalization

- Dropout prior
- Weight decay
- Early stopping
- Batch Normalization

- Dropout prior
- Weight decay
- Early stopping
- Batch Normalization

Models always need regularization no matter how big

Not entirely understood how all these tricks amount to a more complex separating hyperplane

Optimizers

In what way should we change the weights?

03. ML Workflow

You need to know your data and your models well

Artificial Intelligence still heavily relies on human intelligence

Imbalanced Training set

Imbalanced Training set

Data normalization

A process to transform the input **data** in a **well-behaved** form

Open Datasets

Datasets

Find and use datasets or complete tasks. Learn more.

+ New Dataset

Help the community by creating and solving Tasks on datasets! Q Search 29,853 datasets Open Tasks Can we predict the possibility of a bo... **PUBLIC** Sort by: Hottest 0 Submissions · In Hotel booking demand Hotel booking demand 270 Visualize US Accidents Dataset Jesse Mostipak ♣ 10.0 1 File (CSV) 1 Task 12 Submissions · In US Accidents (3.0 million... Big Five Personality Test 134 What to watch on Netflix? Bojan Tunguz 4 Submissions · In Netflix Movies and TV Sh... ■ 159 MB ♣ 9.7 ■ 3 Files (CSV, other) The state that has the highest number... StartUp Investments (Crunchbase) 92 5 Submissions · In US Accidents (3.0 million r... ♣ 8.8 **1** File (CSV)

Processed, balanced, well-behaved and labelled datasets

tensorflow.org/datasets

kaggle.com/datasets

topepo.github.io/caret/data-sets.html

github.com/awesomedata/awesome-pu blic-datasets

Dataset Splitting

Network Evaluation

Choose an appropriate metric for your own problem
Always sanity check your model, is it better than a baseline?
An almost perfect classification score is always sketchy
Keep questioning the model, never trust it

Workflow

04. DL Frameworks

Do not compute your own gradients

How to train your NN

- Define neurons and layers
- Define loss function
- Forward propagate and compute loss
- Compute gradient
- Propagate backward
- Update weights

PyTorch and Modularity

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- o3. (NN) Module: A neural network layer, store the state and the weights of the neural network

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

Three Levels of Abstraction

- **01. Tensor:** imperative ndarray, possible to run on GPU/TPU
- **02.** (node) **Variable:** Node in the built computational graph; data, gradient storage
- **03.** (NN) **Module:** A neural network layer, store the state and the weights of the neural network

$$\hat{y} = g(\mathbf{W}_0 f(\mathbf{W}_1 \mathbf{x}))$$

Pytorch will helps us with

- Defining a dataset
- Automatic Gradient Computation
- Defining Neural Networks

- Optimization
 - Scheduling
- Distributing

General Training Structure

data loader model optimizer loss function

General Training Structure

data loader model optimizer

loss function

For every datapoint, y in data_loader

General Training Structure

data loader model

loss function

For every datapoint, y in data_loader optimizer.zero_grad()

General Training Structure

data loader

```
model
optimizer
loss function
For every datapoint, y in data_loader
optimizer.zero_grad()
prediction = model(datapoint)
```


General Training Structure

General Training Structure

General Training Structure

$$\mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j, b)$$

General Training Structure

data loader model optimizer

loss function

For every datapoint, y in data_loader
 optimizer.zero_grad()
 prediction = model(datapoint)
 loss = loss_function(prediction, y)
 loss.backward()
 optimizer.step()

$$\mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j, b)$$

```
for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)

    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
```


Define Neural Network

Input size of 2
One hidden layer of 8 nodes
1 output node (binary)

Define Neural Network

Input size of 2 One hidden layer of 8 nodes 1 output node (binary)

Learning rate = 0.01 Optimizer = Stochastic Gradient Descent Loss = Binary Cross Entropy

Define Neural Network

Input size of 2 One hidden layer of 8 nodes 1 output node (binary)

Learning rate = 0.01 Optimizer = Stochastic Gradient Descent Loss = Binary Cross Entropy

$$ext{Loss} = -\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

d_1 = [0.9, -0.2], y = 0 d_2 = [0.75, 0.6],y = 1

Define Neural Network

Input size of 2 One hidden layer of 8 nodes 1 output node (binary)

Learning rate = 0.01 Optimizer = Stochastic Gradient Descent Loss = Binary Cross Entropy

$$ext{Loss} = -\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

Thank You

High Performance Machine Learning Group

