Intervalles de confiance

Définition 1. Soient Y une v.a. réelle et $\alpha \in]0, 1[$. On appelle quantile d'ordre α de Y le nombre q_{α} tel que

$$q_{\alpha} = \inf \{ y \in \mathbb{R} : F_Y(y) \ge \alpha \}.$$

Propriétés:

- 1. On a $\mathbb{P}(Y \leq q_{\alpha}) = F_Y(q_{\alpha}) \geqslant \alpha$. Si Y est une v.a. continue $F_Y(q_{\alpha}) = \alpha$.
- 2. Si Y est une v.a. continue la fonction q_{α} : $]0,1[\rightarrow \{x: f_Y(x)>0\}]$ est bijective et continue.
- 3. Si Y est une v.a. continue alors pour tout $0 \le \beta \le \gamma \le 1$:

$$\mathbb{P}(q_{\beta} < Y \le q_{\gamma}) = \mathbb{P}(Y \le q_{\gamma}) - \mathbb{P}(Y \le q_{\beta}) = \gamma - \beta.$$

- 4. Si f_Y est une fonction paire (= la loi de Y est symétrique autour de zéro, -Y a la même loi de Y) alors $q_{1-\alpha} = -q_{\alpha}$.
- 5. $q_{1/2}$ est la médiane. $q_{1/4}$ le premier quartile.

Problème

Une entreprise reçoit d'un de ses fournisseurs un lot de pièces qui doit "normalement" contenir une proportion $\theta \le 10\%$ de pièces défectueuses. L'entreprise voudrait, par examen d'un échantillon de taille n, décider entre $\theta \le 10\%$ et $\theta > 10\%$, sachant qu'elle acceptera le lot dans le premier cas et le rejettera dans le deuxième cas.

On définit

$$X_i = \left\{ \begin{array}{ll} 1 & \text{si la pièce prélevée est défectueuse }; \\ 0 & \text{sinon.} \end{array} \right.$$

 $X_1, ..., X_n$ sont n variables iid de loi de Bernoulli de paramètre θ qui composent l'échantillon \mathbf{X} . L'EMV est $\hat{\theta}_n = \overline{X}_n$ (égale à l'estimateur par méthode des moments).

Supposons n = 100 et que on observe $\overline{X}_n = 0.195$.

Question: Quelle décision l'entreprise doit prendre? Accepter ou rejeter le lot? Et, sur quel critère l'entreprise doit se baser pour prendre sa décision?

Définition 2. Soit $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ un modèle paramétrique. On dispose d'un échantillon $\mathbb{X} = (X_1, ..., X_n)$ de n v.a. $iid \sim \mathbb{P}_{\theta}$. Soient A_n et B_n deux statistiques. On dira que $[A_n, B_n]$ est un intervalle de confiance de niveau $1 - \alpha$ pour θ si

$$\mathbb{P}_{\theta}(A_n \le \theta \le B_n) = 1 - \alpha$$

pour tout $\theta \in \Theta$.

On dira que $[A_n, B_n]$ est un intervalle de confiance de niveau asymptotiquement égal à $1 - \alpha$ pour θ si

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(A_n \le \theta \le B_n) = 1 - \alpha$$

pour tout $\theta \in \Theta$.

Remarque: Dans les applications on utilise souvent les valeurs $\alpha = 0.05, 0.01$.

Exemple 3. Soit $X \sim \mathcal{N}(\mu, 1)$, $\mu \in \mathbb{R}$ notre modèle paramétrique. Soient ζ_{α} les quantiles de la v.a. Gaussienne standard (centrée et réduite). On pose $A_n = \overline{X}_n - \zeta_{\gamma}/\sqrt{n}$ et $B_n = \overline{X}_n - \zeta_{\beta}/\sqrt{n}$.

On veut déterminer β et γ dans [0,1] tels que $[A_n,B_n]$ soit un intervalle de confiance de niveau $1-\alpha$ pour μ .

La v.a. \bar{X}_n est une Gaussienne de moyenne μ et variance 1/n donc

$$\mathbb{P}(A_n \leqslant \mu \leqslant B_n) = \mathbb{P}(A_n \leqslant \mu, \mu \leqslant B_n) = \mathbb{P}(\overline{X}_n - \zeta_\gamma / \sqrt{n} \leqslant \mu, \mu \leqslant \overline{X}_n - \zeta_\beta / \sqrt{n})$$

$$= \mathbb{P}(\sqrt{n}(\overline{X}_n - \mu) \leqslant \zeta_\gamma, \zeta_\beta \leqslant \sqrt{n}(\overline{X}_n - \mu)) = \mathbb{P}(\zeta_\beta \leqslant \sqrt{n}(\overline{X}_n - \mu) \leqslant \zeta_\gamma)$$

$$= \mathbb{P}(\zeta_\beta \leqslant Z \leqslant \zeta_\gamma) = \mathbb{P}(Z \leqslant \zeta_\gamma) - \mathbb{P}(Z \leqslant \zeta_\beta)$$

où $Z \sim \mathcal{N}(0, 1)$. Par la définition des quantiles Gaussiens on a que $\mathbb{P}(\mathbb{Z} \leqslant \zeta_r) = r$ pour tout $r \in]0$, 1[et donc

$$1 - \alpha = \mathbb{P}(A_n \leqslant \mu \leqslant B_n) = \gamma - \beta$$

est la condition à imposer sur γ , β pour avoir un intervalle de confiance à niveau $1-\alpha$.

Remarque 4.

- Il existe un nombre infini des intervalles de confiance de niveau $1-\alpha$.
- Si $\beta \neq 0$ et $\gamma \neq 1$ on parlera d'un intervalle de confiance bilatérale.
- Si $\beta = 0$ $(\gamma = 1 \alpha)$ ou si $\gamma = 1$ $(\beta = \alpha)$ on parlera d'un intervalle de confiance unilatéral.
- Si $\beta = \alpha/2$ et $\gamma = 1 \alpha/2$ on parlera d'un intervalle de confiance bilatéral symétrique.
- Valeurs utiles de ζ_{α} : $\zeta_{1/2} = 0$, $\zeta_{0.9} = 1.28$, $\zeta_{0.9} = 1.645$, $\zeta_{0.975} = 1.96$, $\zeta_{0.995} = 2.58$.

Remarque 5. Dans le cas Gaussien où l'échantillon est tiré de la loi $\mathcal{N}(\mu, \sigma_0^2)$ avec variance σ_0^2 connue, les intervalles plus utilisé sont

• Les intervalles unilatéraux

$$\mathbb{P}(\mu \geqslant \bar{X}_n - \frac{\sigma_0}{\sqrt{n}}\zeta_{1-\alpha}) = \mathbb{P}(\mu \leqslant \bar{X}_n + \frac{\sigma_0}{\sqrt{n}}\zeta_{1-\alpha}) = 1 - \alpha;$$

• L'intervalle bilatérale symétrique:

$$\mathbb{P}(\bar{X}_n - \frac{\sigma_0}{\sqrt{n}}\zeta_{1-\alpha/2} \leqslant \mu \leqslant \bar{X}_n + \frac{\sigma_0}{\sqrt{n}}\zeta_{1-\alpha/2}) = 1 - \alpha.$$

Exemple 6. Reprenons le problème introductif. $X \sim \text{Ber}(\theta)$. L'EMV pour θ est \overline{X}_n . Par le TCL:

$$\frac{\sqrt{n}(X_n - \theta)}{\sqrt{\theta(1 - \theta)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Par la loi des grandes nombres $\overline{X}_n \xrightarrow{p.s.} \theta$ et donc par le lemme de continuité appliqué à la fonction $g(x) = \sqrt{x(1-x)}$ on a aussi

$$g(\overline{X}_n) = \sqrt{X_n(1 - X_n)} \xrightarrow{p.s.} \sqrt{\theta(1 - \theta)}.$$

On peut conclure par le lemme de Slutsky que

$$\frac{\sqrt{n}(X_n-\theta)}{\sqrt{X_n(1-X_n)}} = \frac{\sqrt{n}(X_n-\theta)}{\sqrt{\theta(1-\theta)}} \frac{\sqrt{\theta(1-\theta)}}{X_n(1-X_n)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Donc asymptotiquement l'intervalle de confiance symétrique bilatérale pour θ est donné par

$$\bar{X}_n - n^{-1/2} (\bar{X}_n (1 - \bar{X}_n))^{1/2} \zeta_{1 - \alpha/2} \leq \theta \leq \bar{X}_n + n^{-1/2} (\bar{X}_n (1 - \bar{X}_n))^{1/2} \zeta_{1 - \alpha/2}.$$

Application: Si on fixe $\alpha=0.05$. Pour la valeur observé de $\overline{X}_n=0.195$ (n=100) on a que l'intervalle de confiance trouvé dans l'exemple précèdent est

$$\theta \in [0.117, 0.273]$$

(vérifier). Ce qui permet de rejeter le lot avec niveau de confiance 95%.