Three Stats Pitfalls Facing the New Data Scientist

Sean Owen

Do I Know You?

- Apache Spark committer, PMC
- "Advanced Analytics with Spark"
- Recently: Director, Data Science @ Cloudera

Correlation is not causation. But then, what is causation?

Which Best-Fit Line Is Best?

lm(speed ~ dist, cars)

lm(dist ~ speed, cars)

Which Treatment is Better?

	Treatment A	Treatment B
Small Stones	93% (81/87)	87% (234/270)
Large Stones	73% (192/263)	69% (55/80)
	78% (273/350)	83% (289/350)

Now, Which Treatment is Better?

	Treatment A	Treatment B
Low Blood pH	93% (81/87)	87% (234/270)
High Blood pH	73% (192/263)	69% (55/80)
	78% (273/350)	83% (289/350)

Carburetors and Axle Ratio Uncorrelated

lm(drat ~ carb, mtcars)

... Except in Both Halves of the Data?

lm(drat ~ carb, mtcars[
 which(mtcars\$cyl >= 6),])

lm(drat ~ carb, mtcars[
 which(mtcars\$cyl < 6),])</pre>

3 Answers

Resolution: Causation

- Humans reason causally
- Data doesn't contain causal information
- Data correlations consistent with multiple causal models
- Correct inference requires adding causal model

One Consistent with Causal Knowledge

$$dist_i = \beta_0 + \beta_1 speed_i + \epsilon_i$$

Speed Distance

Controlling Confounders is Right

	Treatment A	Treatment B
Small Stones	93% (81/87)	87% (234/270)
Large Stones	73% (192/263)	69% (55/80)
	78% (273/350)	83% (289/350)

Controlling Mediators is Wrong

	Treatment A	Treatment B
Low Blood pH	93% (81/87)	87% (234/270)
High Blood pH	73% (192/263)	69% (55/80)
	78% (273/350)	83% (289/350)

Colliders Create Correlation

lm(drat ~ carb, mtcars)

Carburetors

Causation and do-Calculus

do-Calculus

$$P(Y|X) \neq P(Y|do(X))$$

Just because it's more often raining when you walk outside with an umbrella ...

... doesn't mean that you carrying an umbrella makes it more likely to be raining.

$$P(C|do(S)) = \sum_{t} P(C|do(S), t)P(t|do(S))$$

$$= \sum_{t} P(C|do(S), do(t))P(t|do(S))$$

$$= \sum_{t} P(C|do(S), do(t))P(t|S)$$

$$= \sum_{t} P(C|do(t))P(t|S)$$

$$= \sum_{s'} \sum_{t} P(C|do(t), s')P(s'|do(t))P(t|S)$$

$$= \sum_{s'} \sum_{t} P(C|t, s')P(s'|do(t))P(t|S)$$

$$= \sum_{s'} \sum_{t} P(C|t, s')P(s')P(t|S)$$

Conclusion

- Must bring causal info to data for proper interpretation
- Know common causal pitfalls!
- PGMs help reason about causal effects
- Do-calculus can clarify reasoning about intervention

Thank You

@sean_r_owen

