W01 - Examples

Events and outcomes

01

≡ Example - Coin flipping

Flip a fair coin two times and record both results.

- *Outcomes:* sequences, like *HH* or *TH*.
- *Sample space:* all possible sequences, i.e. the set $S = \{HH, HT, TH, TT\}$.
- *Events:* for example:
 - $A = \{HH, HT\} =$ "first was heads"
 - $B = \{HT, TH\} =$ "exactly one heads"
 - $C = \{HT, TH, HH\} =$ "at least one heads"

With this setup, we may combine events in various ways to generate other events:

- *Complex events:* for example:
 - $A \cap B = \{HT\}$, or in words:

"first was heads" AND "exactly one heads" = "heads-then-tails"

Notice that the last one is a *complete description*, namely the *outcome HT*.

• $A \cup B = \{HH, HT, TH\}$, or in words:

"first was heads" OR "exactly one heads" = "starts with heads, else it's tails-then-heads"

02

Exercise - Coin flipping: counting subsets

Flip a fair coin five times and record the results.

How many elements are in the sample space? (How big is S?)

How many events are there? (How big is \mathcal{F} ?)

```
Solution >
```

There are $2^5 = 32$ possible sequences, so |S| = 32.

To count the number of possible subsets, consider that we have 32 distinct items, and a subset is uniquely determined by the binary information – for each item – of whether it is in or out. Thus there are 2^{32} possibilities. So $|\mathcal{F}| = 2^{32}$.

Probability models

03

Example - Lucia is Host or Player

Problem: The professor chooses three students at random for a game in a class of 40, one to be Host, one to be Player, one to be Judge. What is the probability that Lucia is either Host or Player?

Solution:

- 1. **≡** Set up the probability model.
 - Label the students 1 to 40. Write *L* for Lucia's number.
 - *Outcomes*: assignments such as (H, P, J) = (2, 5, 8)These are ordered triples with *distinct* entries in 1, 2, ..., 40.
 - *Sample space: S* is the collection of all such distinct triples
 - *Events:* any subset of *S*
 - *Probability measure*: assume all outcomes are equally likely, so P[(i, j, k)] = P[(r, l, p)] for all i, j, k, r, l, p
 - In total there are $40 \cdot 39 \cdot 38$ triples of distinct numbers.
 - Therefore $P[(i,j,k)] = \frac{1}{40.39.38}$ for any *specific* outcome (i,j,k).
 - Therefore $P[A] = \frac{|A|}{40\cdot 39\cdot 38}$ for any event A. (Recall |A| is the *number* of outcomes in A.)
- $2. \Rightarrow$ Define the desired event.
 - Want to find *P*["Lucia is Host or Player"]
 - Define A = "Lucia is Host" and B = "Lucia is Player". Thus:

$$A = \big\{ (L,j,k) \mid \text{any } j,k \big\}, \qquad B = \big\{ (i,L,k) \mid \text{any } i,k \big\}$$

- So we seek $P[A \cup B]$.
- 3. **□** Compute the desired probability.
 - Importantly, $A \cap B = \emptyset$ (mutually exclusive). There are no outcomes in S in which Lucia is *both* Host and Player.
 - By *additivity*, we infer $P[A \cup B] = P[A] + P[B]$.
 - Now compute P[A].

- There are $39 \cdot 38$ ways to choose j and k from the students besides Lucia.
- Therefore $|A| = 39 \cdot 38$.
- Therefore:

$$P[A]$$
 $\gg \gg$ $\frac{|A|}{40 \cdot 39 \cdot 38}$ $\gg \gg$ $\frac{39 \cdot 38}{40 \cdot 39 \cdot 38}$ $\gg \gg$ $\frac{1}{40}$

- Now compute P[B]. It is similar: $P[B] = \frac{1}{40}$.
- Finally compute that $P[A] + P[B] = \frac{1}{20}$, so the answer is:

$$P[A \cup B] \gg P[A] + P[B] \gg \frac{1}{20}$$

04

\equiv Example - iPhones and iPads

Problem:

At Mr. Jefferson's University, 25% of students have an iPhone, 30% have an iPad, and 60% have neither.

What is the probability that a randomly chosen student has either iProduct? (Q1) What about both? (Q2)

Solution:

- 1. **□** Set up the probability model.
 - A student is chosen at random: an outcome is the chosen student.
 - *Sample space S* is the set of all students.
 - Write O = "has iPhone" and A = "has iPad" concerning the chosen student.
 - All students are equally likely to be chosen: therefore $P[E] = \frac{|E|}{|S|}$ for any event E.
 - Therefore P[O] = 0.25 and P[A] = 0.30.
 - Furthermore, $P[O^cA^c]=0.60$. This means 60% have "not iPhone AND not iPad".
- $2. \equiv$ Define the desired event.
 - Q1: desired event = $O \cup A$
 - Q2: desired event = OA
- 3. E Compute the probabilities.
 - We do not believe *O* and *A* are exclusive.
 - Try: apply inclusion-exclusion:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

- We know P[O] = 0.25 and P[A] = 0.30. So this formula, with given data, RELATES Q1 and Q2.
- Notice the complements in O^cA^c and try *Negativity*.
- Negativity:

$$P[(OA)^c] = 1 - P[OA]$$

DOESN'T HELP.

• Try again: *Negativity*:

$$P[(O^c A^c)^c] = 1 - P[O^c A^c]$$

• And De Morgan (or a Venn diagram!):

$$(O^cA^c)^c \gg \gg O \cup A$$

• Therefore:

$$P[O \cup A] \gg \gg P[(O^c A^c)^c]$$

$$\gg \gg 1 - P[O^c A^c] \gg \gg 1 - 0.6 = 0.4$$

- We have found Q1: $P[O \cup A] = 0.40$.
- Applying the RELATION from inclusion-exclusion, we get Q2:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

$$\gg \gg 0.40 = 0.25 + 0.30 - P[OA]$$

$$\gg \gg P[OA] = 0.15$$