Examen - session 2

Durée 2h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

1 Analyse

Exercice 1. Question de cours Soit $\Gamma = ([a,b], \phi)$ un arc paramétré dans \mathbb{R}^n de classe \mathcal{C}^1 et $V : \mathbb{R}^n \to \mathbb{R}^n$ un champ de vecteurs continu.

- 1. Qu'appelle-t-on circulation de V le long de Γ ?
- Soit $\theta: [c,d] \to [a,b]$ un C^1 -difféomorphisme et $\psi = \phi \circ \theta$.
 - 2. Quelle relation y a-t-il entre la circulation de V le long de $\Gamma' = ([c,d], \psi)$ et la circulation le long de Γ ?
 - 3. Le-démontrer.

Exercice 2. Question de cours Soit E un espace vectoriel de dimension finie et soient u, v deux vecteurs de E.

- 1. Donner la définition d'une norme $\|\cdot\|$ sur E.
- 2. Montrer que

$$|||u|| - ||v||| \le ||u - v||$$
.

Indication: on pourra montrer dans un premier temps que $||u|| \le ||v-u|| + ||v||$

Exercice 3. Soit D le domaine borné du plan délimité par la droite y = 2x et la parabole $y^2 = 4x$.

- 1. Calculer l'aire de D.
- 2. Calculer l'intégrale $\iint_D (y-x) dx dy$.
- 3. Soit C une courbe paramétrée décrivant le bord orienté positivement de D (de sorte à laisser D sur sa gauche).
 - (a) Déterminer une expression possible pour C.
 - (b) Calculer la circulation du champs de vecteur $(u, v) \mapsto (v^2, uv)$ le long de C de manière directe.
 - (c) Calculer la circulation du champs de vecteur $(u,v)\mapsto (v^2,uv)$ le long de C avec l'aide de la formule de Green-Riemann.

Exercice 4. Soit $f(x,y) = |4x^2 + 9y^2 - 8x + 36y + 39|$.

- 1. Déterminer les réels a_1, a_2, c_1, c_2 et b tels que $f(x, y) = |a_1(x c_1)|^2 + a_2(y c_2)^2 b|$.
- 2. Étudier la continuité f. Sur quel ensemble f est-elle \mathcal{C}^{∞} ? Justifier la réponse.
- 3. Donner les points de minimum de f sur \mathbb{R}^2 . Indiquer aussi la nature de ces points (minimum global ou local).
- 4. Calculer le gradient et la Hessienne de f en les points de \mathbb{R}^2 pour lesquels ces quantités sont bien définies.
- 5. Déterminer alors le(s) point(s) critique(s) de f donner leur nature (minimum/maximum, local/global, point selle,...).

2 Probabilité

Exercice 5. Un étudiant tente désespérément de passer son examen de HLMA410. On suppose qu'il a une probabilité $p \in]0,1[$ de réussite à chaque essai. On suppose que les essais sont indépendants et on note N le nombre d'essais nécessaires pour qu'il valide cet unité d'enseignement (UE).

- 1. (a) Donner la loi de N et calculer $\mathbb{P}(N > 2)$.
 - (b) La moyenne de N existe-t-elle? Si oui la calculer (on demande le détail du calcul, pas uniquement le résultat).
- 2. Soit $Z = \min\{3, N\}$.
 - (a) La moyenne de Z existe-t-elle? Si oui la calculer.
 - (b) La variance de Z existe-t-elle? Si oui la calculer.