Vignesh M - TM1 (Assignment - 4)

Date: 01/11/2022

Team ID: PNT2022TMID38676

```
import numpy as np
import seaborn as sns
sns.set()
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder,MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.cluster import KMeans
from sklearn.metrics import classification_report,accuracy_score,f1_score,hamming_import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

1.Download the dataset

2.Load the dataset into the tool

```
In [45]: df = pd.read_csv("Mall_Customers.csv")
          df.head(10)
Out[45]:
             CustomerID Gender
                                  Age
                                       Annual Income (k$)
                                                           Spending Score (1-100)
          0
                       1
                                                                              39
                            Male
                                    19
                                                       15
                            Male
                                    21
                                                        15
                                                                              81
          2
                       3 Female
                                                       16
                                    20
                                                                               6
          3
                          Female
                                    23
                                                                              77
                                                        16
          4
                         Female
                                    31
                                                       17
                                                                              40
          5
                          Female
                                                        17
                                                                              76
          6
                       7 Female
                                    35
                                                       18
                                                                               6
          7
                          Female
                                    23
                                                        18
                                                                              94
          8
                       9
                                                       19
                                                                               3
                            Male
                                    64
                          Female
                                    30
                                                        19
                                                                              72
In [46]:
          df.drop(['CustomerID'],axis=1,inplace=True)
          df.head(10)
```

Out[46]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40
5	Female	22	17	76
6	Female	35	18	6
7	Female	23	18	94
8	Male	64	19	3
9	Female	30	19	72

3. Perform below visualizations

3.1) Univariate Analysis


```
In [48]: sns.boxplot(df['Age'],orient='w')
```

Out[48]: <AxesSubplot:xlabel='Age'>

In [49]: sns.countplot(x='Gender',data=df)

Out[49]: <AxesSubplot:xlabel='Gender', ylabel='count'>

In [50]: sns.histplot(df['Annual Income (k\$)'], kde=True)

Out[50]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Count'>


```
In [51]: sns.histplot(df['Spending Score (1-100)'], kde=True)
```

Out[51]: <AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Count'>

3.2) Bi- Variate Analysis

```
In [52]: sns.barplot(x='Age',y='Annual Income (k$)',data=df)
Out[52]: <AxesSubplot:xlabel='Age', ylabel='Annual Income (k$)'>
```


In [53]: sns.lineplot(x='Spending Score (1-100)', y='Annual Income (k\$)', data=df)
Out[53]: <AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Annual Income (k\$)'>


```
In [54]: sns.scatterplot(x='Annual Income (k$)',y='Age',hue='Gender',data=df)
```

Out[54]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Age'>

3.3) Multi-Variate Analysis

In [55]: sns.pairplot(data=df[["Gender", "Age", "Annual Income (k\$)", "Spending Score (1-100)"

In [56]: sns.heatmap(df.corr(),annot=True)

Out[56]: <AxesSubplot:>

4.Perform descriptive statistics on the dataset.

[57]:	df.des	<pre>df.describe()</pre>							
57]:	Age		Annual Income (k\$)	Spending Score (1-100)					
	count	200.000000	200.000000	200.000000					
	mean	38.850000	60.560000	50.200000					
	std	13.969007	26.264721	25.823522					
	min	18.000000	15.000000	1.000000					
	25%	28.750000	41.500000	34.750000					
	50%	36.000000	61.500000	50.000000					
	75%	49.000000	78.000000	73.000000					
	max	70.000000	137.000000	99.000000					

5.Check for Missing values and deal with them

6. Find the outliers and replace them outliers

```
sns.boxplot(df['Annual Income (k$)'], orient='h')
In [59]:
```

Out[59]:

<AxesSubplot:xlabel='Annual Income (k\$)'>


```
sns.boxplot(df['Annual Income (k$)'], orient='h')
In [60]:
```

Out[60]:

<AxesSubplot:xlabel='Annual Income (k\$)'>


```
In [61]:
         q = df['Annual Income (k$)'].quantile(q=[0.75,0.25])
         iqr=q.iloc[0]-q.iloc[1]
         lower = q.iloc[1] - 1.5*iqr
         upper = q.iloc[0] + 1.5*iqr
         df['Annual Income (k$)'] = np.where(df['Annual Income (k$)']>upper,upper,np.where(
         sns.boxplot(df['Annual Income (k$)'], orient='h')
```

<AxesSubplot:xlabel='Annual Income (k\$)'> Out[61]:


```
In [62]: sns.boxplot(df['Spending Score (1-100)'], orient='h')
Out[62]: <AxesSubplot:xlabel='Spending Score (1-100)'>
```


7. Check for Categorical columns and perform encoding.

```
In [63]: l_en = LabelEncoder()
    df['Gender'] = l_en.fit_transform(df['Gender'])
    df.head(10)
```

Out[63]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15.0	39
	1	1	21	15.0	81
	2	0	20	16.0	6
	3	0	23	16.0	77
	4	0	31	17.0	40
	5	0	22	17.0	76
	6	0	35	18.0	6
	7	0	23	18.0	94
	8	1	64	19.0	3
	9	0	30	19.0	72

8. Scaling the data

```
In [64]: scaler = MinMaxScaler()
    scaled_data = scaler.fit_transform(df)
    scaled_data[1:1]

Out[64]: array([], shape=(0, 4), dtype=float64)
```

9. Perform any of the clustering algorithms

```
In [65]: from sklearn.cluster import KMeans
         km = KMeans(algorithm='elkan',n_init=100, max_iter=3000)
         res = km.fit_predict(scaled_data)
         array([3, 3, 7, 7, 7, 7, 6, 7, 2, 7, 6, 7, 5, 3, 7, 3, 2, 7, 3, 3,
Out[65]:
                6, 3, 6, 3, 6, 3, 6, 7, 2, 7, 2, 3, 6, 7, 6, 7, 6, 7, 6, 3, 2, 7,
                6, 7, 6, 7, 7, 7, 6, 3, 7, 2, 6, 2, 6, 2, 7, 2, 2, 3, 6, 6, 2, 3,
                6, 6, 3, 7, 2, 6, 6, 6, 2, 3, 6, 3, 7, 6, 2, 3, 2, 6, 7, 2, 6, 7,
                7, 6, 6, 3, 2, 6, 7, 3, 6, 7, 2, 3, 7, 6, 2, 3, 2, 7, 6, 2, 2, 2,
                2, 7, 1, 3, 7, 7, 6, 6, 6, 6, 3, 1, 4, 0, 1, 4, 5, 0, 2, 0, 5, 0,
                1, 4, 5, 4, 1, 0, 5, 4, 1, 0, 1, 4, 5, 0, 2, 4, 1, 0, 5, 0, 1, 4,
                1, 4, 5, 4, 5, 4, 6, 4, 5, 4, 5, 4, 5, 4, 1, 0, 5, 0, 5, 0, 1, 4,
                2, 0, 2, 0, 1, 4, 5, 4, 1, 0, 1, 0, 1, 4, 1, 4, 5, 4, 1, 4, 1, 0,
                5, 0])
In [66]: df1 = pd.DataFrame(scaled_data, columns = df.columns)
         df1.head(10)
```

Out[66]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1.0	0.019231	0.000000	0.387755
	1	1.0	0.057692	0.000000	0.816327
	2	0.0	0.038462	0.008493	0.051020
	3	0.0	0.096154	0.008493	0.775510
	4	0.0	0.250000	0.016985	0.397959
	5	0.0	0.076923	0.016985	0.765306
	6	0.0	0.326923	0.025478	0.051020
	7	0.0	0.096154	0.025478	0.948980
	8	1.0	0.884615	0.033970	0.020408
	9	0.0	0.230769	0.033970	0.724490

10. Add the cluster data with the primary dataset

```
df1['Cluster'] = pd.Series(res)
In [67]:
           df1.head(10)
Out[67]:
              Gender
                          Age Annual Income (k$) Spending Score (1-100) Cluster
                  1.0 0.019231
                                          0.000000
                                                                 0.387755
                      0.057692
                                          0.000000
                                                                 0.816327
                                                                                3
                  1.0
           2
                  0.0 0.038462
                                          0.008493
                                                                 0.051020
                                                                                7
                  0.0 0.096154
                                          0.008493
                                                                 0.775510
                                                                                7
                  0.0 0.250000
                                          0.016985
                                                                 0.397959
                  0.0 0.076923
                                          0.016985
                                                                 0.765306
                                                                                7
           6
                                                                                6
                  0.0
                     0.326923
                                          0.025478
                                                                 0.051020
                  0.0 0.096154
                                          0.025478
                                                                 0.948980
                                                                                7
           8
                  1.0 0.884615
                                          0.033970
                                                                 0.020408
                                                                                2
                  0.0 0.230769
                                          0.033970
                                                                 0.724490
           df1['Cluster'].unique()
In [68]:
          array([3, 7, 6, 2, 5, 1, 4, 0])
Out[68]:
          df1['Cluster'].value_counts()
```

```
Out[69]: 6 37
7 34
2 29
3 24
4 22
1 19
0 18
5 17
Name: Cluster, dtype: int64
```

11. Split the data into dependent and independent variables

```
# independent variable
In [70]:
           X = df1.iloc[:,0:4]
           X.head(10)
Out[70]:
              Gender
                          Age Annual Income (k$) Spending Score (1-100)
           0
                  1.0 0.019231
                                          0.000000
                                                                  0.387755
                  1.0 0.057692
                                           0.000000
                                                                  0.816327
           2
                  0.0 0.038462
                                          0.008493
                                                                  0.051020
                  0.0 0.096154
                                           0.008493
                                                                  0.775510
                  0.0 0.250000
                                           0.016985
                                                                  0.397959
                  0.0 0.076923
                                           0.016985
                                                                  0.765306
           6
                  0.0 0.326923
                                           0.025478
                                                                  0.051020
                  0.0 0.096154
                                           0.025478
                                                                  0.948980
                  1.0 0.884615
                                           0.033970
                                                                  0.020408
                  0.0 0.230769
                                           0.033970
                                                                  0.724490
           # dependent variable
In [71]:
           y = df1.iloc[:,4:]
           y.head(10)
Out[71]:
              Cluster
           0
                   3
                   3
           2
                   7
                   7
           4
                   7
           6
                   6
           8
                   2
```

12. Split the data into training and testing

Out[72]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	116	0.0	0.865385	0.424628	0.428571
	67	0.0	0.961538	0.280255	0.479592
	78	0.0	0.096154	0.331210	0.520408
	42	1.0	0.576923	0.203822	0.357143
	17	1.0	0.038462	0.050955	0.663265
	5	0.0	0.076923	0.016985	0.765306
	127	1.0	0.423077	0.475584	0.959184
	105	0.0	0.057692	0.399151	0.418367
	48	0.0	0.211538	0.212314	0.418367
	66	0.0	0.480769	0.280255	0.500000

In [73]: X_test.head(10)

Out[73]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
58	0.0	0.173077	0.263270	0.510204
40	0.0	0.903846	0.195329	0.346939
34	0.0	0.596154	0.152866	0.132653
102	1.0	0.942308	0.399151	0.591837
184	0.0	0.442308	0.713376	0.387755
198	1.0	0.269231	1.000000	0.173469
95	1.0	0.115385	0.382166	0.520408
4	0.0	0.250000	0.016985	0.397959
29	0.0	0.096154	0.118896	0.877551
168	0.0	0.346154	0.611465	0.265306

In [74]: y_train.head(10)

	Cluster
116	6
67	6
78	7
42	2
17	3
5	7
127	0
105	7
48	7
66	6
	67 78 42 17 5 127 105 48

```
In [75]: y_test.head(10)
```

Out[75]:		Cluster
	58	7
	40	6
	34	6
	102	2
	184	1
	198	5
	95	3
	4	7
	29	7
	168	1

13.Build the Model

```
In [76]: # classification algorithm
  classifier_model = SVC(decision_function_shape='ovo')
```

14. Train the Model

```
In [77]: classifier_model.fit(X_train,y_train.values.flatten())
Out[77]: SVC(decision_function_shape='ovo')
```

15.Test the Model

16. Measure the performance using Evaluation Metrics

```
In [79]:
         print('Classification Report: ')
         print(classification_report(y_test, pred_y))
         Classification Report:
                       precision
                                   recall f1-score
                                                      support
                    0
                            1.00
                                      1.00
                                               1.00
                                                            6
                    1
                            1.00
                                     0.83
                                               0.91
                                                            6
                    2
                                     1.00
                                               0.95
                                                            9
                            0.90
                    3
                            1.00
                                     1.00
                                               1.00
                                                            4
                    4
                           1.00
                                     1.00
                                               1.00
                                                            5
                    5
                                     0.80
                                               0.89
                                                            5
                           1.00
                    6
                            1.00
                                     1.00
                                               1.00
                                                           11
                            0.93
                                     1.00
                                               0.97
                                                           14
             accuracy
                                               0.97
                                                           60
                            0.98
                                      0.95
                                               0.96
                                                           60
            macro avg
                                      0.97
                                               0.97
                                                           60
         weighted avg
                            0.97
         print('Confusion Matrix: ')
In [80]:
         sns.heatmap(confusion_matrix(y_test,pred_y))
         Confusion Matrix:
         <AxesSubplot:>
Out[80]:
                                                      - 14
                                                      - 12
                                                      - 10
                                                      8
         5
         9
              0
                                              7
                                     5
                                          6
In [81]: print('F1 Score: ',f1_score(y_test,pred_y, average='weighted'))
         F1 Score: 0.9657091177962321
In [82]:
         # Hamming loss gives the fraction of labels that are incorrectly predicted
         print('Hamming Loss: ',hamming_loss(y_test,pred_y))
         print('Accuracy: ',accuracy_score(y_test,pred_y))
In [83]:
```

Accuracy: 0.966666666666667