

Politechnika Wrocławska

Sterownik do sygnalizacji świetlnej wykonany w oparciu o FPGA

Autor: Oskar Staniszewski 212499

Idea projektu

Celem projektu jest zaprogramowanie układu, który odpowiedzialny będzie za sterowanie sygnalizatorami świetlnymi na podanym skrzyżowaniu.

Tabela przejść

Sygnalizator\stan	STAN1	STAN2	STAN3	STAN4	STAN5	STAN6	NOC	OFF
1A	100	010	001	001	001	011	010	000
2A	001	001	001	011	100	010	010	000
1E	001	011	100	010	001	001	010	000
1 C	100	010	001	001	001	011	010	000
2C	001	001	001	011	100	010	010	000
1F	001	011	100	010	001	001	010	000

Opis sygnałów:

-światło zielone: "1 0 0"

-światło pomarańczowe: "0 1 0"

-światło pomarańczowe + czerwone: "0 1 1"

-światło czerwone: "0 0 1"

Maszyna stanów

Realizacja projektu

Układ sterownika zrealizuję przy użyciu następujących komponentów układu Spartan3E:

- -generator drgań (taktowanie zegarowe 50MHz)
- -wyświetlacz 7-segmentowy (moduł rozszerzeniowy)
- -dioda RGB (moduł rozszerzeniowy)

Wykonanie - VHDL

Do wykonania implementacji projektu należy zaprogramować:

- -automat stanów,
- -układy liczników,
- -multipleksery,
- -prescalery

Symulacja ISim

Implementacja - FPGA

Po procesie symulacji, który przebiegł zgodnie z oczekiwaniami, przy użyciu oprogramowania ISE Design Suite należy zaimplementować kod źródłowy na układ ewaluacyjny i zobaczyć efekty działania sterownika.

Implementacja wyświetlacza 7-seg

```
process (clk, digit) is
    begin
        if (clk'event and clk ='1') then
            case digit is
                when X"0" => seg <= "00000000";</pre>
                                                          --definicja cyfry 0
                when X"1" => seg <= "0110000";
                                                          --definicja cyfry 1
                when X"2" => seg <= "1101101";
                                                          --definicja cyfry 2
                when X"3" => seg <= "1111001";
                                                          --definicja cyfry 3
                when X"4" => seg <= "0110011";
                                                          --definicja cyfry 4
                when X"5" => seg <= "1011011";
                                                          --definicja cyfry 5
                when X"6" => seq <= "10111111";
                                                          --definicja cyfry 6
                when X"7" => seg <= "1110010";
                                                          --definicja cyfry 7
                when X"8" => seg <= "11111111";
                                                          --definicja cyfry 8
                when X"9" => seg <= "1110110"; --N
                when X"A" => seg <= "11101111";</pre>
                when X"B" => seg <= "11111110";--0
                when X"C" => seg <= "1001110";
                                                  process (sel, x) is
                when X"F" => seg <= "1000111";
                                                       begin
                when X"E" => seg <= "1001111";</pre>
                                                                 case sel is
                when others => seg <= "1000111";
                                                                      when "00" \Rightarrow digit \Leftarrow x(3 downto 0);
                --definicja litery E
                                                                           if sel ="00" then anodes <= "0001"; else null; end if;
            end case;
                                                                      when "01" \Rightarrow digit \Leftarrow x(7 downto 4);
        end if:
                                                                           if sel ="01" then anodes <= "0010"; else null; end if;
    end process;
                                                                      when "10" \Rightarrow digit \Leftarrow x(11 downto 8);
                                                                           if sel ="10" then anodes <= "0100"; else null; end if;
                                                                      when others \Rightarrow digit \leq x(15 downto 12);
                                                                           if sel ="11" then anodes <= "1000"; else null; end if;
                                                                 end case:
                                                        end process;
```


Implementacja prescalerów:

```
-----30 sec divider /sterowanie dayligh/-----
process(clk, reset)
    begin
        if reset='1' then
        clk div30s<=(others=>'0');
        elsif(clk'event and clk='1') then
            if clk div30s>="1011001011010000010111100000000" then
                clk div30s<=(others=>'0');
                if daylight>="110" and dzien='1' then
                    daylight <= "000";
                    dzien <= not dzien;
                elsif daylight>="010" and dzien='0' then
                    daylight <= "000";
                    dzien<= not dzien;
                else
                    daylight <= daylight + "01";
                end if:
            else
                clk div30s<=clk div30s+"01";
            end if:
        end if:
    end process;
```


Implementacja prescalerów:

```
----2 sec divider /sterowanie zmiana stanow/-----
process(clk, reset)
   begin
       if reset='1' then
       clk div2s<=(others=>'0');
        elsif(clk'event and clk='1') then
            if clk div2s>="10111111010111110000100000000" then
               clk div2s<=(others=>'0');
               cnt4 <= not cnt4;
                if (stan=stan2 or stan=stan4 or stan=stan6 or stan=noc or stan=off) then
                    cnt2<="00000";
               else
                   cnt2<=cnt2+"01"; --30s
               end if;
               if (stan=stan1 or stan=stan3 or stan=stan5 or cnt3>="10") then
                   cnt3<="00";
               else
                    cnt3<=cnt3+"01";--4s
               end if:
               if cnt1>="101" or dzien='0' then
                   cnt1<="000";
               else
                   cnt1<=cnt1+"01";
               end if:
            else
               clk_div2s<=clk_div2s+"01";
       end if:
    end process;
```


Prezentacja działania

Prezentacja działania

Prezentacja działania

Sygnalizator\stan	STAN1	STAN2	STAN3	STAN4	STAN5	STAN6	NOC	OFF
1A	100	010	001	001	001	011	010	000
2A	001	001	001	011	100	010	010	000
1E	001	011	100	010	001	001	010	000
1 C	100	010	001	001	001	011	010	000
2C	001	001	001	011	100	010	010	000
1F	001	011	100	010	001	001	010	000

XPower Analyzer

Dziękuję za uwagę

W przyszłości prototyp tego sterownika można rozszerzyć w zależności od skrzyżownia oraz od wymagań projektu.

