I(1)(3pts):

The number of neutrons is equal to the mass number minus the number of protons (i.e. the atomic number):

- 1) 13-5=8
- 2) 13-6=7
- 3) 14-7=7
- 4) 14-8=6

I(2)(3pts):

By $\rho = \frac{m}{V}$, we have $\rho \propto m_A$. Therefore, the larger the atomic mass, the larger the density. Hence, $\boxed{4}$ $\boxed{I_2$ has the largest density.

I(3)(3pts):

The number of electrons in a compound is equal to the sum of atomic numbers of atoms.

- 1) $2 \cdot 6 + 2 \cdot 1 = 14$
- 2) $7 + 3 \cdot 1 = 10$
- $\boxed{3)} \ 3 \cdot 8 = 24$
- 4) $7 + 2 \cdot 8 = 23$

I(4)(3pts):

Among the four option, only 2) has a symmetrical trigonal bipyramidal shape, which made the vector sum of dipole moments zero and cancelled the polorities.

I(5)(3pts):

- 1) True. Tracking the radioactivity of radioactive carbon nuclii in a fossil can deduce its age.
- 2) For example, diamond does not conduct electricity.
- 3) True. The variety of compounds is called carbohydrates.
- 4) True.

I(6)(3pts):

- 1) $2AgCl(s) \rightarrow 2Ag(s) + Cl_2(g)$ (photolytic decomposition)
- 2) $H_2SO_4(aq) + 2NaCl(aq) \rightarrow Na_2SO_4(aq) + 2HCl(g)$ (double displacement)
- 3) $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$ (thermal decomposition)

$$\boxed{4}$$
 $CH_4(g) + 3O_2(g) \to CO_2(g) + 2H_2O(g)$

I(7)(3pts):

1) Excessive water getting into the erythocrytes due to the difference in osmotic pressure makes them explode.

- 2) The water travel through the semi-permeable membrane so as to balance the osmotic pressure.
- 3) Is due to the saturated vapour pressure.
- 4) Due to the difference in osmotic pressure, water in cells are drew out to dilute the sea water which makes one feels thirstier.

II:

(1)(5pts): At the endpoint, excess Ag^+ ions react with CrO_4^{2-} ions to form reddish brown Ag_2CrO_4 precipitate.

(2)(5pts): The reaction is given by $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$.

Number of moles of $NaNO_3$ used= $0.1 \cdot \frac{100}{1000} = 0.01$ mol.

Therefore, the concentration of the diluted sample $=\frac{0.01}{\frac{50}{1000}}=0.2\ mol/L.$

Before the dilution, the concentration= $0.2 \cdot \frac{500}{100} = \boxed{1.0} \ mol/L$.

III(5pts for (a),(b) and 10pts for (c)):

The equations of combustion of methanol and ethanol are given:

$$CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$$

$$CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

Therefore, the heat of combustion of methanol is $394 + 2 \cdot 286 - 230 = 736 \approx \boxed{740} \ J/mol$.

That of ethanol is $2 \cdot 394 + 3 \cdot 286 - 312 = 1334 \approx \boxed{1300} \ J/mol$.

Let x be the weight fraction of methanol, i.e. the weight of methanol is $10x \ g$ and that of ethanol is $10(1-x) \ g$.

Then, the number of moles of them are $\frac{10x}{32}$ mol and $\frac{10(1-x)}{46}$ mol respectively.

The heat released during combustion= $736 \cdot \frac{10x}{32} + 1334 \cdot \frac{10(1-x)}{46} = 290 - 60x$.

Consider the temperature raised of the water, we have heat absorbed

$$=100 \cdot 4.2 \cdot 0.65 = 273.$$

Solving 290 - 60x = 273, we have $x \approx \boxed{0.28}$

IV(5pts for (a),(b) and 10pts for (c)):

(1): 1mL, i.e. $1 \cdot 1 = 1$ g of pure water contains $\frac{1}{16+2\cdot 1.0} \approx \boxed{0.056}$ mol of water molecules.

Moreover, the concentration of water is $\frac{0.056}{\frac{1}{1000}} = \boxed{56} \ mol/L$.

(2): Let x be the mass of $CuSO_4$ in the solution, consider the solubility, we have $\frac{x}{100-x} = \frac{40}{100}$, i.e. $x = \frac{200}{7}$.

Let y be the mass of hydrous crystal obtained, considering the percentage mass, $\frac{160}{160+5\cdot18}y = 0.64y$ of $CuSO_4$ and hence 0.36y of H_2O are removed from the solution.

Consider the solubility, we have $\frac{\frac{200}{7}-0.64y}{100-\frac{200}{20}-0.36y}=\frac{20}{100}$, i.e. $y\approx 25$ g.

(1): A: 5) (cumene).
During the air oxidation of cumene process, B: $\boxed{1}$, O_2 is required.
The product of the cumene process is phenol C: 8).
Substituting HNO_3 into benzene with H_2SO_4 catalyst gives nitrobenzene D: 13)
Reducing nitrobenzene gives aniline E: 16).
Diazotia sation of aniline gives $F: \boxed{14}$, which is unstable in high temperature
and will turn to phenol.
Neutralising phenol with NaOH gives G: 12).
The diazo coupling of F and G gives $H:[20)$.
(2): Reducing nitrobenzene requires $\boxed{1)}$ Sn, or Fe as the reducing agent.
(3): Positive ferric chloride test occurs with tested with phenol, where $\boxed{9)}$
and 20 contains one.
(4): Thermosetting resins are produced with Formaldehyde.
Note: Methanal is also accepted.
VI(2pts each):
$(1): \boxed{1} \text{ and } \boxed{6}.$

V(1pt each for (1) and 2pts for (2)-(4)):

- (2); 1)
- (3): The lead sulfide test is used to test the presence of S atom in amino acids. Among the five amino acids, 5 contains S.
- (4): The Xanthoproteic test is used to test the presence of benzene ring in amino acids. Among the five amino acids, 4 contains a benzene ring.
- (5): Let the five amino acids be A,B,C,D,E.

The dipetitides that can be formed are:

AA, AB, AC, AD, AE, BA, ..., ED, EE,

 $5 \cdot 5 = \boxed{25}$ in total.

(6): Denote A, B, and C as the cation, zwitterion and the anion.

The equilibria are:

$$A \iff B + H^+$$

$$B \iff C + H^+$$

And the equilibrium consants are $K_C = \frac{[B][H^+]}{[A]}$ and $K_C' = \frac{[C][H^+]}{[B]}$.

At the isoelectric point, we have [A]=[C] and hence $[H^+]=\sqrt{K_C\cdot K_C'}=\sqrt{10^{-12}}=10^{-6}$.

Therefore, pH= $-\log 10^{-6} = \boxed{6}$.

VII(2pts each):

(1): Glycerol

Note: Glycerin is also accepted.

(2): Let the soap be $R-COO^-$, then the molecular weight of the oil and fats is $3R+(6\cdot 12+6\cdot 16+5\cdot 1)=3R+173$.

Solving 3R + 173 = 323, we have R = 50.

Therefore, the molecular weight of the soap is $50 + 12 + 2 \cdot 16 + 1 = \boxed{95}$.