

#### 1º Teste

29 de outubro de 2016 - Duração: 2 horas

ATENÇÃO: QUALQUER FRAUDE DETETADA NESTA PROVA IMPLICARÁ A REPROVAÇÃO NO CORRENTE ANO LETIVO NESTA UNIDADE CURRICULAR E SERÁ PARTICIPADA AO CONSELHO EXECUTIVO PARA PROCEDIMENTO DISCIPLINAR.

I

Considere o seguinte problema (P) de Programação Linear

Max 
$$F = -2x + y - z$$
  
s.a  $2x + 2y - z \le 10$   
 $x + 3y - z \ge 5$   
 $x, y, z \ge 0$ 

a) Sabendo que a solução ótima é  $(x^*, y^*, z^*) = (0, 5, 0)$ , escreva o quadro ótimo do Simplex para este problema.

#### (1,5)

$$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3/4 & -1/2 \\ -1/4 & 1/2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1/3 \\ 1 & -2/3 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 0 \\ 1/2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 0 \\ 3/2 & -1 \end{bmatrix}$$

**b)** Admita que o termo independente da 1ª restrição passou a ser  $\theta$ , com  $\theta \in \Re$ . Determine para que valores do parâmetro  $\theta$ , o problema paramétrico e o problema original (P) apresentam a mesma base ótima.

(1,5)

II

Considere o problema (Q) de Programação Linear Inteira

??? 
$$G = -2x - 3y - 3z$$
  
s.a  $5x + 7y + z \le 35$   
 $4x + 9y + 2z \le 23$   
 $x, y, z \ge 0$  e inteiros

cuja árvore de pesquisa correspondente à sua resolução pelo método Branch & Bound se começou a esboçar:



a) Indique justificando, se a função objetivo deste problema é de maximização ou de minimização.

(0,5)

b) Escreva a formulação do subproblema PL4.

(0,5)

c) Indique justificando, se é possível identificar uma solução ótima para o problema inteiro (Q) com a exploração atual da árvore.

Indique ainda um limite (superior ou inferior) para o valor ótimo do subproblema PL4 por forma a que a resolução do problema inteiro (Q) usando o algoritmo Branch & Bound não necessite de qualquer ramificação adicional. Justifique a sua resposta.

(1,0)



#### 1º Teste

29 de outubro de 2016

### III

Considere o seguinte quadro do Simplex correspondente a um determinado problema de PL de maximização, com 2 restrições  $\leq$ , sendo  $F_1$  e  $F_2$  as variáveis de folga, correspondentes à  $1^{\underline{a}}$  e à  $2^{\underline{a}}$  restrição, respetivamente.

Sabe-se ainda que na formulação do problema, os coeficientes da variável Y na 1ª e na 2ª restrição são respetivamente  $16/(16-\alpha)$  e  $\alpha/(\alpha-16)$  e que os coeficientes da variável Z na 1ª e na 2ª restrição são respetivamente  $4/(16-\alpha)$  e  $4/(\alpha-16)$ , com  $\alpha \neq 16$ .

|   | Х   | Υ | Z | F <sub>1</sub> | F <sub>2</sub> | TI    |
|---|-----|---|---|----------------|----------------|-------|
|   |     |   |   |                | 1              |       |
| Z | -2  | 0 | 1 | - α <b>/</b> 4 | - 4            | 4 - α |
| F | 2-α | 0 | 0 | 9α/4           | 2α+4           | 23+α  |

| Assinale com um <b>X</b> as <b>afirmações verdadeiras</b> . <u>A indicação de afirmações falsas será penalizada!</u> |
|----------------------------------------------------------------------------------------------------------------------|
| Para $\alpha = 3$ a solução anterior é ótima e degenerada.                                                           |
| Para $\alpha = 1$ a solução anterior é ótima e única.                                                                |
| Para $0 \le \alpha \le 3$ a solução anterior é ótima.                                                                |
| Para $0 \leq \alpha \leq 2$ a solução anterior é ótima.                                                              |
| X = 0                                                                                                                |
|                                                                                                                      |
| Para $\alpha$ = -1 a solução anterior não é ótima e na próxima iteração entra F1 e sai Z.                            |
| Para $\alpha$ = -1 a solução anterior não é ótima e na próxima iteração entra F2 e sai Y.                            |
| Para $\alpha$ = -1 a solução anterior não é ótima e na próxima iteração entra F1 e sai Y.                            |
| Para $\alpha$ = 2 a solução anterior é ótima e é a única solução básica ótima.                                       |
| Para $\alpha = 0$ o coeficiente de X na $2^{\underline{a}}$ restrição da formulação do problema é igual a $1/2$ .    |
|                                                                                                                      |

(2,0)

A empresa *MinhoSopra* vai efetuar obras de ampliação do Parque eólico do Alto Minho, instalando aerogeradores em 2 novos subparques situados respetivamente em Valença e Paredes de Coura.

A energia diária gerada por cada aerogerador depende do diâmetro das suas pás e da velocidade média do vento nesse dia. Sabe-se que nesta região do país em 2/3 dos dias do ano o vento sopra a uma velocidade média de 25 Km/h, e nos restantes dias sopra a uma velocidade média de 40 Km/h.

Na tabela seguinte apresenta-se a quantidade diária de energia produzida por cada aerogerador que venha a ser instalado, bem como o seu custo de instalação, expresso em unidades monetárias (u.m.).

| Diâmetro das pás | Velocidade média do vento | Energia diária produzida | Custo de instalação |  |
|------------------|---------------------------|--------------------------|---------------------|--|
| (m)              | (Km/h)                    | (Kwh)                    | (u.m.)              |  |
| 50               | 25                        | 1000                     | 80                  |  |
| 30               | 40                        | 1150                     |                     |  |
| 80               | 25                        | 1200                     | 95                  |  |
| 80               | 40                        | 1500                     | 95                  |  |
| 100              | 25                        | 1350                     | 125                 |  |
| 100              | 40                        | 1700                     | 125                 |  |

Com a instalação dos aerogeradores, a empresa pretende vir a produzir anualmente um mínimo de energia de  $70 \times 10^6$  Kwh no subparque de Valença e  $50 \times 10^6$  Kwh no subparque de Paredes de Coura.

Por razões contratuais com a empresa fornecedora dos aerogeradores, o total de aerogeradores com pás de 100 m instalados deverá ser múltiplo de três. Além disso, questões ambientais exigem que, por cada três aerogeradores deste tipo (pás de 100 m de diâmetro) instalados no Parque eólico do Alto Minho, deverão ser instalados cinco aerogeradores com pás de 50 m de diâmetro.

a) Formule um modelo de Programação Linear que ajude a empresa a planear as obras de ampliação que minimizam o custo de instalação.

(2,0)

**b)** Admita que a empresa fornecedora dos aerogeradores aplica a seguinte política de desconto aos aerogeradores com pás de 100 m de diâmetro instalados num subparque:

"todas as unidades instaladas acima de 10, terão um custo unitário de instalação de 110 u.m., mantendo-se o custo inicial de 125 u.m. para as restantes". Altere a formulação anterior de acordo com esta nova restrição.

(1,0)



#### 2º Teste

16 de dezembro de 2016 - Duração: 90 min

ATENÇÃO: QUALQUER FRAUDE DETETADA NESTE TESTE IMPLICARÁ A REPROVAÇÃO NO CORRENTE ANO LETIVO NESTA UNIDADE CURRICULAR E SERÁ PARTICIPADA AO CONSELHO DIRETIVO PARA PROCEDIMENTO DISCIPLINAR.

T

- **1 -** Considere um sistema de filas de espera M/M/1 e admita que em média, o intervalo de tempo entre chegadas consecutivas de clientes ao sistema é de 4 minutos . Sabe-se ainda que, a probabilidade do sistema se encontrar vazio é de 25%.
- a) Determine a taxa média de serviço do sistema.

(0,5)

Nota: Se não resolveu a alínea a), assuma que a taxa de serviço deste sistema é de 18 clientes por hora.

**b)** Determine o número médio de clientes a aguardarem pelo seu atendimento.

(0,9)

- **c)** Admita que no sistema foi implementada uma disciplina de <u>prioridades absolutas</u> no atendimento. Sabese que 10% dos clientes que procuram o sistema são da 1ª classe de prioridade, 20% dos clientes são da 2ª classe de prioridade e os restantes são clientes não prioritários.
- i) Caraterize estatisticamente, o processo de chegada dos clientes não prioritários ao sistema de espera.
   Justifique a sua resposta.

(8,0)

ii) Determine o tempo médio que um cliente da 1ª classe de prioridade permanece no sistema.

(0,8)

**2 -** Considere o sistema de filas de espera que se esquematiza a seguir. Os clientes vindos do exterior, dirigem-se ao setor A segundo um processo Poissoniano com taxa média igual a 12 clientes por hora.



Admita que nos setores A e B as filas são do tipo M/M/s e que no setor C existe um único servidor ao serviço, cujo atendimento é composto por quatro tarefas com durações independentes. Sabe-se que a duração de cada tarefa segue uma distribuição Uniforme[0; 1] minutos.

a) Determine o número médio de clientes que se encontram no setor C.

(1,0)

b) Determine o tempo médio de permanência de um cliente no sistema total.

(1,0)

(0,5)

Se X ~ Exponencial(
$$\lambda$$
), então  $F_X(x) = 1 - e^{-\lambda x}$ ,  $x \ge 0$   
Se X ~ Poisson(m), então  $P(X = k) = \frac{e^{-m}.m^k}{k!}$ ,  $k = 0,1,2,...$   
Fórmula de Pollaczek-Khintchine:  $L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)}$ 

Fórmula de Pollaczek-Khintchine: 
$$L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)}$$

|   | Setor  | Setor  |  |
|---|--------|--------|--|
|   | Α      | В      |  |
| L | 2,0000 | 2,8889 |  |
| W | 0,1666 | 0,2407 |  |

II

Considere uma Fila de Espera com um único servidor, cujo processo de chegadas é Poissoniano de média 8 clientes por hora. Admita que a duração do atendimento de um cliente (em minutos) é adequadamente descrita pela função densidade de probabilidade, que se esquematiza em seguida:



- a) Assumindo que a fila se começa a formar às 9h, proceda à geração dos instantes de chegada dos primeiros dois clientes, usando os NPA's U[0;1] seguintes: 0,1526 0,8925 0,7481 0,2923 0,011 0,4027 Apresente os seus resultados no formato hh, decimal em vez de hh:mm:ss. (1,0)
- b) Determine o tempo de serviço dos primeiros dois clientes. Utilize os NPA's U[0;1]: 0,4413 0,8898 0,7723 0,0235 0,5432 0,7024 0,4005 0,8479 (1,0)
- c) Determine o instante em que o 2º cliente termina o seu atendimento e o tempo total que o servidor está desocupado nos primeiros 20 minutos de funcionamento do sistema.



### 2º Teste

16 de dezembro de 2016

III

Considere o problema de decisões sequenciais representado pela seguinte Árvore de Decisão, cujos valores terminais representam lucros (u.m.):



Determine o valor da probabilidade  $\,p\,$  por forma a que a decisão A e uma outra decisão sejam igualmente recomendáveis. Apresente todos os cálculos que efetuar.

(2,5)