AI TechStack 2025 Week 4 Task

September 7, 2025

1 Cat and Dog Classification

Objective

Develop a classical machine learning pipeline to classify images of cats and dogs using Histogram of Oriented Gradients (HOG) for feature extraction and Decision Tree (DT) for classification.

Task Description

You are provided with a dataset of cat and dog images in the 'dataset' directory, with filenames starting with cat or dog (e.g., cat.1.jpg, dog.1.jpg). Implement a pipeline to:

- Extract HOG features from grayscale images resized to 128×128 pixels.
- Split the dataset into 80% training and 20% test sets, ensuring class balance.
- Train a Decision Tree classifier on the extracted features.
- Test your model and show result.

Use scikit-image for HOG feature extraction, scikit-learn for Decision Tree classification and data splitting, and numpy-matplotlib for data handling and visualization. Ensure the code supports adjustable parameters (e.g., HOG settings, train-test split ratio). Visualize sample results, including original images, HOG representations, and predicted labels.

Figure 1: Pipeline visualization: An original sample image (left) is processed to extract HOG features (middle), which are then classified by a Decision Tree to predict the label (right, shown as "Dog").

Steps to Follow

1. Data Preparation:

- Load images from the 'dataset'.
- Assign labels (0 for cat, 1 for dog) based on filenames.

2. HOG Feature Extraction:

- Extract HOG features using scikit-image with adjustable parameters.
- Store HOG features and visualizations for each image.

3. Train-Test Split:

• Split the dataset into 80% training and 20% test sets, using stratified sampling to maintain class balance.

4. Decision Tree Classification:

- Train a Decision Tree classifier on the training set's HOG features.
- Evaluate the model on the test set.

5. Evaluation and Visualization:

- Compute accuracy on the test set.
- Visualize sample original images, HOG representations, and predicted labels from the test set.

Improvements

Consider enhancements like:

- Using alternative classifiers (e.g., Random Forest, SVM) for improved accuracy.
- Adjusting HOG parameters (e.g., pixels_per_cell) to capture more detailed features.
- Implementing data augmentation or preprocessing to enhance robustness.

Evaluation and Submission

Submissions are evaluated based on test set accuracy and quality of the train-test split (e.g., class balance). Submit:

- Complete pipeline code (data loading, train-test split, HOG extraction, classification).
- Visualization of sample results (original images, HOG, and predicted labels).
- Brief report on approach, test accuracy, dataset split details, and any improvements.
- Summery of what you learn from HOG and DT.