E-Commerce (Target) Sales Dataset ANALYSIS

By:

Name: Sagar Gupta

E-mail: krishanasagar406@gmail.com

Liked In: https://www.linkedin.com/in/sagar-gupta087/

Qualification: BCA Undergraduate (2021 -2024)

GitHub Link: https://github.com/Sagar-Gupta008/Python-and-SQL-Project/tree/main

1. Data Collection and Cleaning:

- Gather the Target E-Commerce sales dataset.
- Clean and preprocess the data to handle missing values, inconsistencies, and outliers.

2. Exploratory Data Analysis (EDA):

- Conduct descriptive statistics to summarize the dataset.
- Visualize key metrics using graphs and charts (e.g., sales trends over time, product categories performance, geographical sales distribution).
- Identify patterns and correlations within the data.

3. Sales Performance Analysis:

- Analyze sales performance across different product categories, regions, and time periods.
- Identify best-selling products and categories.

4. Customer Analysis:

• Segment customers based on their purchasing behavior and analyze Customer Retention Rates.

5. SQL Integration:

- Use SQL queries to extract and manipulate data from the database.
- Perform complex joins, aggregations, and subqueries to derive insights.
- Store and retrieve analysis results efficiently.

6. Reporting and Visualization:

- Create interactive visualizations using Python libraries (e.g., Matplotlib, Seaborn).
- Summarize key findings and present actionable insights.

WHAT IS SQL?

- SQL (Structured Query Language) is a standardized programming language used for managing and manipulating relational databases.
- It is designed for querying, updating, and managing data stored in relational database management systems (RDBMS).

WHAT IS PYTHON

- Python is a high-level, interpreted programming language known for its simplicity, readability, and versatility. It was created by Guido van Rossum and first released in 1991.
- Python emphasizes code readability with its clear and concise syntax, which allows developers to write less code to accomplish tasks compared to many other programming languages.

DATASET SCHEMA

Loading the Dataset to Python in the form of Data Frames

```
import pandas as pd
import mysql.connector
import os

# List of CSV files and their corresponding table names
csv_files = [
    ('customers.csv', 'customers'),
    ('orders.csv', 'orders'),
    ('sellers.csv', 'sellers'),
    ('products.csv', 'products'),
    ('geolocation.csv', 'geolocation'),
    ('payments.csv', 'payments'),
    ('order_items.csv', 'order_items')# Added payments.csv for specific handling
]
```

```
# Connect to the MySQL database
conn = mysql.connector.connect(
    host='localhost',
    user='root',
    password='27104720A',
    database='ecommerce'
)
cursor = conn.cursor()
```

```
# Folder containing the CSV files
folder path = 'D:\Python and Sql Project'
def get sql type(dtype):
    if pd.api.types.is integer dtype(dtype):
        return 'INT'
    elif pd.api.types.is float dtype(dtype):
        return 'FLOAT'
    elif pd.api.types.is_bool_dtype(dtype):
        return 'BOOLEAN'
    elif pd.api.types.is datetime64 any dtype(dtype):
        return 'DATETIME'
    else:
        return 'TEXT'
for csv file, table name in csv files:
    file path = os.path.join(folder path, csv file)
    # Read the CSV file into a pandas DataFrame
    df = pd.read csv(file path)
    # Replace NaN with None to handle SQL NULL
    df = df.where(pd.notnull(df), None)
```

```
print(f"Processing {csv file}")
print(f"NaN values before replacement:\n{df.isnull().sum()}\n")
# Clean column names
df.columns = [col.replace(' ', '_').replace('-', '_').replace('.', '_') for col in df.columns]
# Generate the CREATE TABLE statement with appropriate data types
columns = ', '.join([f'`{col}` {get_sql_type(df[col].dtype)}' for col in df.columns])
create table query = f'CREATE TABLE IF NOT EXISTS `{table name}` ({columns})'
cursor.execute(create table query)
   # Insert DataFrame data into the MySQL table
   for , row in df.iterrows():
       # Convert row to tuple and handle NaN/None explicitly
       values = tuple(None if pd.isna(x) else x for x in row)
       sql = f"INSERT INTO `{table_name}` ({', '.join(['`' + col + '`' for col in df.columns])}) VALUES ({', '.join(['%s'] * len(row))})"
       cursor.execute(sql, values)
   # Commit the transaction for the current CSV file
   conn.commit()
# Close the connection
conn.close()
```

Debugging: Check for NaN values

Processing customers.csv	
NaN values before replacement:	:
customer_id 0	
customer_unique_id 0	
<pre>customer_zip_code_prefix 0</pre>	
customer_city 0	
customer_state 0	
dtype: int64	
Processing orders.csv	
NaN values before replacement:	:
order_id	
customer_id	
order_status	
order_purchase_timestamp	
order_approved_at	16
order_delivered_carrier_date	178
order_delivered_customer_date	296
order_estimated_delivery_date	
dtype: int64	
Processing sellers.csv	
NaN values before replacement:	:
seller_id 0	
seller_zip_code_prefix 0	
seller_city 0	
seller_state 0	
dtype: int64	
Processing products.csv	
NaN values before replacement:	:
product_id	0
product category	610
product_name_length	610
product description length	610
product_photos_qty	610
product_weight_g	2
product_length_cm	2
product_height_cm	2
product_width_cm	2
dtype: int64	

Output

```
Processing geolocation.csv
NaN values before replacement:
geolocation_zip_code_prefix
geolocation lat
geolocation lng
geolocation city
geolocation state
dtype: int64
Processing payments.csv
NaN values before replacement:
order id
payment_sequential
payment type
payment installments
payment value
dtype: int64
Processing order items.csv
NaN values before replacement:
order id
order item id
product id
seller id
shipping_limit_date
price
freight value
dtype: int64
```

Establishing Connection Between Python and SQL

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import mysql.connector
db=mysql.connector.connect(host="localhost",
                          username="root",
                          password="27104720A",
                          database="ecommerce")
cur=db.cursor()
```

BASIC QUESTIONS

Q1 List all unique cities where customers are located.

```
query="""select distinct customer_city from customers"""

cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data)
df.head(10)
```

	0
0	franca
1	sao bernardo do campo
2	sao paulo
3	mogi das cruzes
4	campinas
5	jaragua do sul
6	timoteo
7	curitiba
8	belo horizonte
9	montes claros

Q2 Count the number of orders placed in 2017.

```
query="""select count(order_id) from orders where year(order_purchase_timestamp)=2017"""
cur.execute(query)
data=cur.fetchall()
print('The total number of orders placed in 2017 are:',data[0][0])
```

The total number of orders placed in 2017 are: 45101

Q3 Find the total sales per category.

```
query="""select upper(products.product_category) as category,round(sum(payments.payment_value),2) as sales
from products join order_items
on products.product_id=order_items.product_id
join payments
on payments.order_id=order_items.order_id
group by category"""

Category Sales

PERFUMERY 506738.66

1 FURNITURE DECORATION 1430176.39
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Category','Sales'])
df
BED TABLE BATH 1712553.67
```

	Category	Sales	
0	PERFUMERY	506738.66	
1	FURNITURE DECORATION	1430176.39	
2	TELEPHONY	486882.05	
3	BED TABLE BATH	1712553.67	
4	AUTOMOTIVE	852294.33	
69	CDS MUSIC DVDS	1199.43	
70	LA CUISINE	2913.53	
71	FASHION CHILDREN'S CLOTHING	785.67	
72	PC GAMER	2174.43	
73	INSURANCE AND SERVICES	324.51	
74 r	74 rows × 2 columns		

Q4 Calculate the percentage of orders that were paid in installments.

```
query="""select round((sum(case when payment_installments>=1 then 1
else 0 end)) / count(*)*100,3) from payments;"""

cur.execute(query)
data=cur.fetchall()
print("The percentage of orders that were paid in installments is:",data[0][0],'%')
```

The percentage of orders that were paid in installments is: 99.998 %

Q5 Count the number of customers from each state.

```
query="""select customer_state,count(customer_id)
from customers group by customer state"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['State','No. of customers'])
#plotting the data
plt.figure(figsize=(9,5))
x=df['State']
y=df['No. of customers']
plt.bar(x,y)
plt.xticks(rotation='vertical')
plt.xlabel('Sates')
plt.ylabel('No. of Customers')
plt.title('Customers By Sates')
plt.show()
```


INTERMEDIATE QUESTIONS

Q1 Calculate the number of orders per month in 2018.

```
query="""select monthname(order_purchase_timestamp),count(order_id)
from orders where year(order_purchase_timestamp)=2018
group by monthname(order purchase timestamp)"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Month','Count Orders'])
df
#plotting the data
plt.figure(figsize=(9,5))
o=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October"]
ax=sns.barplot(x=df['Month'],y=df['Count Orders'],data=df,order=o,color='cyan')
ax.bar label(ax.containers[0])
plt.xticks(rotation='vertical')
plt.title('Orders By Months In year 2018')
plt.show()
```


Q2 Find the average number of products per order, grouped by customer city.

```
query="""with count per order as
(select orders.order_id,orders.customer_id,
count(order_items.order_id) as OC
from orders join order items
on orders.order_id=order_items.order_id
group by orders.order id, orders.customer id)
select customers.customer city,
round(avg(count_per_order.OC),2) as Avg_Orders from
customers join count per order
on customers.customer_id=count_per_order.customer_id
group by customers.customer city order by Avg Orders desc"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Customer_city','Avg_Orders'])
df.head(10)
```

	Customer_city	Avg_Orders
0	padre carvalho	7.00
1	celso ramos	6.50
2	datas	6.00
3	candido godoi	6.00
4	matias olimpio	5.00
5	cidelandia	4.00
6	curralinho	4.00
7	picarra	4.00
8	morro de sao paulo	4.00
9	teixeira soares	4.00

Q3 Calculate the percentage of total revenue contributed by each product category.

```
query="""select upper(products.product_category) as category,
round(sum(payments.payment_value)/(select sum(payment_value) from payments)*100,2)
as Percentage sales
from products join order_items
on products.product_id=order_items.product_id
join payments
on payments.order_id=order_items.order_id
group by category
order by Percentage_sales desc;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Category','Percentage_Sales'])
df.head()
```

	Category	Percentage_Sales
0	BED TABLE BATH	10.70
1	HEALTH BEAUTY	10.35
2	COMPUTER ACCESSORIES	9.90
3	FURNITURE DECORATION	8.93
4	WATCHES PRESENT	8.93

Q4 Identify the correlation between product price and the number of times a product has been purchased.

```
import numpy as np
                                              The correlation between product price and
query="""SELECT products.product_category,
                                              the number of times a product has been purchased is:
count(order_items.product_id) as Count_orders,
                                                -0.10631514167157562
round(avg(order items.price),2) as Avg Price
from products join order_items
on products.product id=order items.product id
group by products.product category;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Category','Count_orders','Avg_Price'])
#calculating the correlation between Count_orders and Avg_Price
arr1=df['Count orders']
arr2=df['Avg Price']
corr=np.corrcoef([arr1,arr2])
print('The correlation between product price and \nthe number of times a product has been purchased is:\n',corr[0][1])
```

Q5 Calculate the total revenue generated by each seller, and rank them by revenue.

```
query="""select *, dense_rank() over(order by Revenue desc) as rnk from
(select order items.seller id,
round(sum(payments.payment_value),2) as Revenue from
order_items join payments
on payments.order_id=order_items.order_id
group by order items.seller id) as A;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Seller ID','Revenue','Rank'])
df=df.head()
#plotting the data
plt.figure(figsize=(9,5))
ax=sns.barplot(x=df['Seller_ID'],y=df['Revenue'],data=df,color='orange')
ax.bar label(ax.containers[0])
plt.xticks(rotation='vertical')
plt.title('TOP 5 Sellers Based on Revenue')
plt.show()
```


ADVANCED QUESTIONS

Q1 Calculate the moving average of order values for each customer over their order history.

```
query="""select customer id, order purchase timestamp, payment,
avg(payment) over(partition by customer id order by order purchase timestamp
rows between 2 preceding and current row) as Moving Avg
from
(select orders.customer id, orders.order purchase timestamp,
payments.payment value as payment from
payments join orders
on payments.order id=orders.order id) as A;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Customer id','Order purchase timestamp','Payments','Moving Avg'])
df
```

	Customer_id	Order_purchase_timestamp	Payments	Moving_Avg
0	00012a2ce6f8dcda20d059ce98491703	2017-11-14 16:08:26	114.74	114.739998
1	000161a058600d5901f007fab4c27140	2017-07-16 09:40:32	67.41	67.410004
2	0001fd6190edaaf884bcaf3d49edf079	2017-02-28 11:06:43	195.42	195.419998
3	0002414f95344307404f0ace7a26f1d5	2017-08-16 13:09:20	179.35	179.350006
4	000379cdec625522490c315e70c7a9fb	2018-04-02 13:42:17	107.01	107.010002
103881	fffecc9f79fd8c764f843e9951b11341	2018-03-29 16:59:26	71.23	27.120001
103882	fffeda5b6d849fbd39689bb92087f431	2018-05-22 13:36:02	63.13	63.130001
103883	ffff42319e9b2d713724ae527742af25	2018-06-13 16:57:05	214.13	214.130005
103884	ffffa3172527f765de70084a7e53aae8	2017-09-02 11:53:32	45.50	45.500000
103885	ffffe8b65bbe3087b653a978c870db99	2017-09-29 14:07:03	18.37	18.370001
103886 rows × 4 columns				

Q2 Calculate the cumulative sales per month for each year.

```
query="""select *, round(sum(Sales) over(order by Years, Months), 2)
as Cumulative Sales from
(select year(orders.order_purchase_timestamp) as Years,
month(orders.order_purchase_timestamp) as Months,
round(sum(payments.payment value),2) as Sales from
orders join payments on
orders.order_id=payments.order_id
group by Years, Months
order by Years, Months) as a;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Years','Months','Sales','Cumulative Sales'])
df
```

	Years	Months	Sales	Cumulative Sales
0	2016	9	252.24	252,24
1	2016	10	59090.48	59342.72
2	2016	12	19.62	59362.34
3	2017	1	138488.04	197850.38
4	2017	2	291908.01	489758.39
5	2017	3	449863.60	939621.99
6	2017	4	417788.03	1357410.02
7	2017	5	592918.82	1950328.84
8	2017	6	511276.38	2461605.22
9	2017	7	592382.92	3053988.14
10	2017	8	674396.32	3728384.46

Q3 Calculate the year-over-year growth rate of total sales.

```
query="""with b as (select *,lag(Current_Year_Sales,1) over(order by years) as
Previous Year Sales from
(select year(orders.order purchase timestamp) as Years,
round(sum(payments.payment value),2) as Current Year Sales from
orders join payments on
orders.order id=payments.order id
group by Years
order by Years) as a)
select Years,
round(((Current_Year_Sales-Previous_Year_Sales)/Previous_Year_Sales)*100,2)
as Year over Year Growth from b;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Years','Year_over_Year_Growth'])
df
```

	Years	Year_over_Year_Growth
0	2016	NaN
1	2017	12112.7
2	2018	20.0

Q4 Calculate the retention rate of customers, defined as the percentage of customers who make another purchase within 6 months of their first purchase

```
query="""with a as(select customers.customer id,
min(orders.order purchase timestamp) as first order from
customers join orders on
customers.customer id=orders.customer id
group by customers.customer id),
b as(select a.customer id,
count(distinct orders.order purchase timestamp) as next order
from a join orders on
a.customer id=orders.customer id
and first order<orders.order purchase timestamp
and orders.order purchase timestamp<date add(first order, interval 6 month)
group by a.customer id)
select 100*(count(distinct a.customer id)/count(distinct b.customer id))
as Customer Retention Rate
from a left join b on
a.customer id=b.customer id;"""
                                                 The retention rate of customers is: (None,)
cur.execute(query)
data=cur.fetchall()
print('The retention rate of customers is:',data[0])
```

Q5 Identify the top 3 customers who spent the most money in each year.

```
query="""select Years, customer id, Payment, rnk
from
(select year(orders.order_purchase_timestamp) as Years,
orders.order id,
orders.customer id,
round(sum(payments.payment value),2) as Payment,
dense rank() over(partition by year(orders.order purchase timestamp)
order by sum(payments.payment value) desc)
as rnk from orders join payments on
orders.order id=payments.order id
group by year(orders.order purchase timestamp),
orders.customer id, orders.order id) as a
where rnk<=3;"""
cur.execute(query)
data=cur.fetchall()
df=pd.DataFrame(data,columns=['Years','Customer ID','Payments','Rank'])
#plotting the data
plt.figure(figsize=(9,5))
ax=sns.barplot(x=df['Customer ID'],y=df['Payments'],data=df,hue=df['Years'])
ax.bar label(ax.containers[0])
plt.xticks(rotation='vertical')
plt.title('Top 3 customers who spent the most money in each year')
plt.show()
```


FUTURE SCOPE OF PROJECT

1. Advanced Predictive Modeling:

• Develop more sophisticated machine learning models to predict future sales, customer behavior, and inventory needs.

2. Real-Time Data Analysis:

• Implement real-time data processing and analysis pipelines to monitor sales and customer behavior in real-time.

3. Integration with Business Intelligence Tools:

• Integrate the analysis with BI tools such as Tableau or Power BI for more interactive and dynamic visualizations.

4. Enhanced Customer Segmentation:

• Use clustering algorithms (e.g., K-means, DBSCAN) and advanced segmentation techniques to create more granular customer segments.

5. Recommendation Systems:

• Develop personalized recommendation systems using collaborative filtering, content-based filtering, or hybrid methods.

6. Sentiment Analysis and Text Mining:

• Analyze customer reviews, feedback, and social media mentions to understand customer sentiment and preferences.

