· PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C01G 23/053, C01B 39/00, B01J 23/00	A1	(11) International Publication Number: WO 99/43616 (43) International Publication Date: 2 September 1999 (02.09.99)
 (21) International Application Number: PCT/IL (22) International Filing Date: 24 February 1998 ((71) Applicant (for all designated States except US):	ROTE 2, 770 acov, Neva (II	CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published With international search report.

(54) Title: A MODIFIED TITANIUM DIOXIDE AND A METHOD FOR ITS PREPARATION

(57) Abstract

The present invention relates to a titanium dioxide composition modified with urea in the stage of the titanium hydroxide precipitation from an aqueous solution. The aqueous solution, contains a mixture of dissolved sulfate salts, including titanyl sulfate, following a hydrothermal treatment of the precipitated titanium hydroxide in its mother liquor. The modification of said titanium dioxide is carried out with a basic silica sol in the stage of the formed titanium hydroxide or dried titanium dioxide. The titanium dioxide composition is characterized by an enhanced thermal and hydrothermal stability of the pore structure, a developped mesopore structure, a decreased sulfur content and a specific surface area formed by pores with a diameter up to 490 m²g⁻¹ for a calcined material at a temperature of 800 °C for 3 hours.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙĖ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A MODIFIED TITANIUM DIOXIDE AND A METHOD FOR ITS PREPARATION

The present invention relates to Titanium dioxide. More particularly, the invention relates to a novel modified Titanium dioxide and method for its preparation.

BACKGROUND OF THE INVENTION.

Titanium dioxide has been known to be produced by drying or calcining of Titanium hydroxide. There are various methods of producing Titanium hydroxide from different types of Titanium compounds.

Three crystalline forms of Titanium dioxide are known in the art: Anatase, Rutile and Brookite. Anatase or amorphus Titanium dioxide partially crystallized into Anatase, are commonly used as catalysts (for example see US Patent No. 4,388,288 and US Pat. No.4,422,958).

In most catalytic processes carried out in gas phase or liquid phase it is extremely viable to use catalysts with developed meso and macropore structure, which accounts for a high catalytic activity and for a high rate of reagents diffusion inside granules or shaped blocks of catalysts, and diffusion of reaction products outside the catalysts structure.

20 diffusion of reaction products outside the catalysts structure.

Mesopore structure is determined by the method of the active material precipitation from a solution and its subsequent treatment.

Macropore structure is determined mainly by the process of granulation or shaping.

25 Many catalytic processes are carried out under increased temperatures where Titanium dioxide undergoes shrinkage. Its active surface area is reduced and its activity is also decreased. Since the heat treatment will take a long period of time, the Titanium dioxide aging process leads to its structure transformation from Anatase to Rutile crystalline form, and these alterations cause a significant decrease in its catalytic activity. Since Titanium dioxide is quite an expensive material it is most desirable that such catalyst should possess a prolonged effective period of use.

- 1 -

5

10

In order to increase the thermal stability of Titanium dioxide, various additives were suggested. Thus, in order to increase its stability, when it is obtained from Titanium oxychloride by precipitation with an aqueous solution of ammonia at a pH of 7.8, at least one stabilizing agent is incorporated. Useful agents for this purpose may be selected from aluminium, sodium, potassium, calcium or other chlorides, nitrates and powdery silica. The criterion of thermal stability is based on the change in the specific surface area of a sample calcined at 575 degrees C for seven hours, compared with a sample calcined only for one hour at the same temperature (see French patent application No. 2,621,577 and European Patent Application No. 0311,515).

Several investigations were performed in the field of Titania/Silica mixed oxides preparation. The idea of this approach is a coprecipitation of titanium hydroxide and silicic acid,

Titania/Silica mixed oxides preparation and their use as supports for Nickel catalyst were described (Journal of Catalysis 105, p. 511-520 1987). As mentioned therein, a mixed oxide was precipitated from a mixture of TiCl₄ and SiCl₄.

Precipitation of titanyl sulfate in the presence of a powdery dry silica (SYLOID- -74) was carried out in order to prepare samples containing 20%, 40% and 80% by weight TiO2 and investigations with these precipitates as catalyst for selective catalytic reduction of NOx, were described in Applied Catalysis A, General 139, 1996, pages 175-187.

The method for the preparation of Titania-Silica mixed oxides with alkoxide sol-gel method was described in Journal of Catalysis, 153, p.165-176 (1995). As mentioned therein, tetra-isopropoxy-titanium and tetra-methoxysilicon were used as starting materials. Various titania-silica aerogels obtained by an alkoxide-sol-gel route, were prepared and tested in the reaction of epoxidation of olefins (Journal of Catalysis 153, 177-189, 1995),

- 2 -

5

10

20

25

Crystalline titanium silicates having specific adsorption and catalytic properties were described in literature (Advances in Catalysis, Vol. 41, 253-327, 1996).

The above brief review illustrates the importance attributed to the subject of obtaining a novel type of titanium dioxide.

It is an object of the present invention to provide a novel modified

Titanium dioxide and methods for its preparation. It is another object of
the present invention to describe various uses of the novel modified

Titanium dioxide.

10

15

20

25

5

BRIEF DESCRIPTION OF THE INVENTION

A novel titanium dioxide modified with urea in the stage of a titanium hydroxide precipitation from an aqueous solution containing a mixture of dissolved sulfate salts, including titanyl sulfate, following a hydrothermal—treatment of the precipitated hydroxide in its mother liquor and then modified with a basic silica sol in the stage of the formed titanium hydroxide or dried titanium dioxide, being characterized by a high catalytic activity, an enhanced thermal stability as measured by a specific surface area of up to 240 m²/g for a sample in which 15% of silicon (calculated as SiO₂) was introduced into the titanium hydroxide structure during the interaction with basic silica sol and calcined at 800°C for three hours. The above novel titanium dioxide composition is most useful as a catalyst in many fields such as photocatalyst and as a carrier in catalyst compositions for removal of organic materials present in air. A method for the preparation of the above modified titanium dioxide is also described.

30

٠,٠

DETAILED DESCRIPTION OF THE INVENTION

Modified titanium dioxide is prepared from two types of starting materials.

5 The first one is an aqueous solution containing a mixture of dissolved sulfate salts including titanium sulfate, having a pH up to 1.7.

The second one is titanium hydroxide or titanium dioxide prepared by any known method.

In the first case, titanium dioxide is prepared from titanium hydroxide 10 precipitated and hydrothermally treated in its mother liquor in the presence of urea and further modified with basic silica sol.

In the second case, titanium hydroxide or titanium dioxide in the form of dough, paste, or suspension, is brought to a pH in the range of 6.0-11 with urea or ammonia and then interacted with a basic silica sol.

The first type of starting materials includes solutions of a double salt ammonium titanyl sulfate (NH₄)₂TiO(SO₄)₂nH₂O, commercially produced as acid titanyl sulfate solution, for example UNITi 992 or a similar acid titanyl sulfate solution prepared with different titanium dioxides, or titanium hydroxides dissolved in sulfuric acid. In another case, for example the dried titanium hydrolysates commercially produced (UNITi 908TM, FINNTi S-230) can be dissolved in sulfuric acid with a concentration of about 70%, producing an acid titanyl sulfate solution.

Both commercial acid titanyl sulfate solution and a similar one prepared as described above, have to be partially neutralized to a maximum pH as mentioned above. These partially neutralized solutions contain a mixture of titanyl sulfate with other sulfate salts. Typical examples of these sulfate salts are: sodium sulfate, potassium sulfate, calcium sulfate, magnesium sulfate and ammonium sulfate. These partially neutralized solutions can be used as starting materials for the modified titanium dioxide preparation.

- 4 -SUBSTITUTE SHEET (RULE 26)

25

The solution of the above mentioned ammonium titanyl sulfate salt may be used as a starting material in its aqueous solution containing besides titanyl sulfate, ammonium sulfate, the pH of this solution being in the range of 0.7 to 0.9.

In contrast to the usual commercial titanium dioxides or similar products manufactured by known methods, the modified titanium dioxide produced from the first type of starting materials as mentioned above, is characterized by a specific combination of high surface area, an enhanced thermal and hydrothermal stability of the pore, a crystalline structure, a decreased sulfur content and a high catalytic activity.

Typical examples of the second type of starting materials are the intermediate products of titanium pigment UNITi 902[™] and final materials produced by FINNTi S-140[™] and FINNTi-150[™].

Titanium Hydroxide cake precipitated according to the European Patent

Application No. EP 0722905 A1 (after washing but without adding potassium hydroxide and phosphoric acid) as well as Titanium Hydroxide or Titanium Dioxide precipitated according to U:S. Patent No. 4,929,586 (before vanadyl oxalate addition) can be also used as a starting material of the second type.

The thermal stability of modified titanium dioxide produced from the second type of starting material is similar to that of modified titanium dioxides produced on the basis of the first type of starting material. The modified titanium dioxides produced on the basis of the second type of starting materials, are characterized by a decrease in the sulfur content compared with the starting materials.

Titanium dioxide possessing the above improved properties are unknown up to the present invention.

According to the present invention, two modifiers can be used during a particular procedure for producing the novel modified titanium dioxide.

These modifiers are urea and basic silica sol i.e. a colloidal solution of silica having a pH of above 7.0.

Urea is a known commercial product, which can be used either in a solid form or in an aqueous solution.

There are known silica sols colloids which contain particles of silica with a diameter in the range of 2-100 nm. The inner part of each particle, consists almost of dehydroxylated silica, while silicon atoms located on the outer part of each particle, are hydroxylated. Silica sols can be stable, if some cations compensate the negative charge of silica particles. Among the useful cations to be present, it should be mentioned sodium, potassium and ammonium. Commercial silica sols, prepared with any known procedure, usually with a cation exchange method, can be used as modifiers.

Such sols can also be prepared during the process of modified titanium dioxide preparation with any other known procedure.

Basic silica sol is used as a modifying agent for the formed titanium hydroxide or for the dry titanium dioxide. The titanium hydroxide is separated from the mother liquor and washed. The titanium hydroxide obtained in the form of a suspension, wet cake, or dried material, is treated with basic silica sol under conditions which exclude the coagulation of a sol. However, these conditions promote the reaction between hydroxylated silica particles of the sol and the hydroxylated surface of titanium hydroxide or titanium dioxide.

In case of using the second type of starting materials in the form of an aqueous suspension, wet cake or dough, it is mixed with an alkali constituent selected from urea, ammonia, sodium or potassium hydroxide, leading a titanium hydroxide or titanium dioxide having a pH in the range of 6.0 to 11.0. To the resulted mixture, a basic silica sol is introduced and a reaction occurs between the hydroxylated surface of silica particles and the hydroxylated surface of titanium hydroxide or titanium dioxide.

The process of the modified titanium dioxide preparation from the first type of starting material consists of the following steps:

- 6 -

5

10

15

20

25

a. preparing the initial sulfate solution;

5

10

20

25

30

b. precipitation of Titanium hydroxide from the above mentioned sulfate solution in the presence of urea followed by a hydrothermal treatment of the formed Titanium hydroxide in its mother liquor, also in the presence of urea as modifier;

- c. separation of the formed precipitated Titanium hydroxide and its washing;
- d. the dough, wet cake, or dried material, or the resulted water suspension of the formed precipitated Titanium hydroxide treatment with basic silica sol as the modificating agent;
- e. filtration of Titanium hydroxide and washing with water; and
- f. transformation of Titanium hydroxide into Titanium dioxide by a heating treatment.

The detailed description of the procedure for obtaining the modified titanium dioxide, using the first type of starting material is as follows:

In stage (a) an aqueous acid solution comprising titanyl sulfate is partially neutralized, thus producing a mixture of sulfate salts having a pH up to + 1.7 and preferably in the range of between 0.02 to 1,2. This neutralization is carried out with various alkali compounds such as sodium hydroxide, sodium carbonate, potassium carbonate or bicarbonate, an aqueous solution of ammonia, calcium compounds, etc. In case of the calcium compounds, an insoluble calcium sulfate is produced and preferably it has to be separated from the neutralized solution. The solution obtained can be used for titanium hydroxide precipitation, following a hydrothermal treatment (stage b) containing a mixture of titanyl sulfate and another dissolved sulfate salt. Generally, the solution has a concentration in the range of between 20 to 250 g/l titanium and preferably between 40-150 g/l (calculated as TiO2).

The above solution can be used directly in stage "b" in the presence of urea as modifier, or it can be maintained at a temperature in the range of between 20° to 70°C for a period between 0.3 - 300 hours.

The weight ratio between the quantity of urea added to the solution to the quantity of titanium dioxide present in the solution has to be in the range of between 0.3 to 11.0. Titanium dioxide precipitation takes place either during the urea addition, or during heating the solution to about 80° to 100°C. Although the duration of stage "b" is generally in the range of between 0.5 to 5 hours, the precipitation of titanium hydroxide is quicker. The main part of the above mentioned period is required for the hydrothermal treatment of the precipitated titanium hydroxide. The urea introduced into the sulfate solution reacts in the step of precipitation as well as in the process of hydrothermal treatment of the precipitated titanium hydroxide in its mother liquor. The duration of stage "b" depends on the titanyl sulfate content in the solution, the pH of the solution before urea addition, the amount of urea added and the temperature which prevails in the mixture.

15 The precipitated titanium hydroxide after being subjected to a hydrothermal treatment is separated from the mother liquor and washed (stage "c").

The titanium hydroxide produced after a thermal treatment at a temperature in the range of between 100°-250° C, is characterized by a high surface area, a developed mesopore structure and a decreased sulfur content. In order to improve the above properties and to enhance its thermal stability, it is necessary to use also a second modifier (stage "d"). For this purpose, titanium hydroxide in the form of a dough, wet cake, suspension or dried material, has to possess a pH in the range of 6.0 to 11.0 and preferably between 8 to 10. This adjustment may be carried out with urea, ammonia or their mixture introduced into the above mentioned dough, wet cake or suspension of the titanium hydroxide. Then, this titanium hydroxide is mixed with basic silica sol having a concentration of between 1% to 40% and preferably in the range of between 3% to 20% by weight calculated as SiO₂. The required quantity of silica sol has to be as a weight ratio of SiO₂ to TiO₂, in the range of between 0.01 to 0.30 and preferably between 0.05 to 0.15.

SUBSTITUTE SHEET (RULE 26)

5

10

20

25

The temperature during this stage of modification may be between the ambient one and the boiling point of the liquid phase. At the above conditions, an intensive chemical interaction of silica sol with titanium hydroxide takes place. The coagulation of silica sol into silica gel is avoided due to the high pH.

As a result of this interaction, and at a ratio between silica sol and titanium hydroxide of 0.1 by weight, substantially all the quantity of SiO2 present in the solution is consumed by the titanium hydroxide. When said ratio is above 0.13, some of the residual silica sol can be detected in the respective solution.

The result of the above interaction, when the ratio between the sol and titanium hydroxide is calculated on the weight ratio between SiO2 and TiO2 of about 0.1, substantially all the SiO2 from the solution is consumed by the titanium hydroxide. When the above ratio is above 0.13, some residual sol after the reaction can be detected in the solution.

The rate of interaction between the basic sol and hydroxylated surface of titanium hydroxide or titanium dioxide at ambient temperature is low, but increases when the temperature is also increased. It may be assumed that as a result of this interaction, some chemical bonds Ti - O - Si are formed and as a result, a reinforcement in the structure of the network occurred.

The modified titanium hydroxide can be used either in the form of a wet cake, or a suspension in the catalyst manufacture, or can be dried at a temperature between 100°C-250°C and after that calcined at about 500°C.

The modified titanium hydroxide obtained was analyzed by the following tests for the dry samples as well as for samples calcined at a temperature between 500°C to 900°C:

 determination of the specific surface area, using the so called "1 point method"

5

10

15

20

25

- specific surface area and specific adsorption pore volume, as determined

with a Coulter Instrument SA 3100, and

- the respective chemical analyses, carried out using the known tests.
- The catalytic activity of the titanium dioxide prepared according to the present invention used in the Claus process, was determined in a bench scale pilot plant, after mixing with an inert filler and the resulted dough conveyed through an extrusion, the wet extrudates being dried and calcined. The detailed procedure of this matter is described in our above mentioned copending patent application.

The titanium dioxide was also tested as a carrier of a catalyst used in the oxidation of organic impurities present in air.

The invention will be hereafter illustrated by a number of examples, being understood that these examples are presented only for a better understanding of the process, without imposing any limitation to the invention as covered by the appended Claims.

EXAMPLE 1.

15

20

25

30

An amount of 2 kg of solid ammonium titanyl sulfate containing about 20% of TiO2 and 27% water of crystallization, was dissolved in 4 l of demineralized water at room temperature during overnight, using a moderate stirring. The non-dissolved portion was separated by filtration. The resulted solution contained 80 g/l titanyl sulfate (calculated as TiO2) which corresponds to the formula of the respective double salt (NH4)TiO2(SO4) and an amount of ammonium sulfate. An amount of 175 g of urea was added to 500 ml of the solution, at room temperature and the resulted solution was heated and maintained at a temperature in the range of between 97°-102°C for about 3 hours. The precipitated Titanium hydroxide was separated from the mother liquor and washed with demineralized water. The resulted wet cake of titanium hydroxide was suspended in a basic silica sol, prepared from a commercial sodium

silicate solution as known in the art, the pH being increased to about 8.5 by treating with an aqueous solution of ammonia.

An amount of about 41 g of the basic sol was mixed with the titanium hydroxide cake, corresponding to a SiO2:TiO2 weight ratio of about 0.03. The mixture was maintained at about 90 °C for 30 minutes under a moderate stirring. The residual quantity of silicon in solution was negligible. The wet cake of titanium hydroxide was converted into titanium dioxide, by drying first at 110°C for about 2 hours and further at about 250°C for half hour. The properties of the product obtained are given in Table 1.

EXAMPLE 2.

5

10

15

The titanium dioxide was prepared as in Example 1, but the amount of the basic silica sol used corresponded to a weight ratio SiO2:TiO2 to 0.05 (as in Table 1). The data on the specific surface areas of the prepared sample and the respective thermal stability, compared with typical commercial titanium dioxide, are given in Table 1.

EXAMPLES 3 to 5.

- The first stage of titanium dioxide preparation, was based on a titanyl sulfate solution, having a composition similar to a commercial titanyl sulfate and sulfuric acid solution, known as "UNITi 992" produced by Kemira Pigments Inc. The solution (A) contained 9.5% by weight TiO2 and 37% by weight sulfuric acid was prepared as follows:
- An amount of 9.8 kg of a commercial titanium dioxide (hydrolysate) UNITi 908, having a loss on ignition of 19.6 by weight (at 1000°C), was dissolved in an amount of 43.8 kg of boiling sulfuric acid having a concentration of 70% by weight). After cooling, an amount of 1 l of this solution was diluted with an equal volume of demineralized water. The resulted solution having a concentration of 123 g/l TiO2, was used in the

Examples 3 to 5. The same solution, but with another content of titanium dioxide, was used in Examples 6 to 18.

In Examples 3 to 5, 1 l of acid titanyl sulfate solution, having a concentration of 123 g/l (calculated as TiO2) was gradually neutralized with 481 grams of an aqueous solution of ammonia, containing about 25% by weight of ammonia. The temperature of the starting solution was 22°C, but during the neutralization it increased to about 55°-65°C and maintained at this level with stirring, for about one hour. To the above solution, an amount of 780 ml of demineralized water was added and the resulted solution had a pH of 0.90. To the above mentioned solution, an amount of 409 g of urea was added and then heated to 98°C and maintained at this level for about two and half hours (see Table 2). The precipitated titanium hydroxide was separated from the mother liquor and washed with demineralized water. The resulted wet cake was divided in three portions, used in the Examples 3, 4 and 5. Each wet cake sample was diluted with demineralized water, obtaining a suspension which had a concentration of 10% (calculated as TiO2).

A basic silica sol was prepared as known in the art, but different cations were used for the sol stabilization; in Example 3: sodium, in Example 4: potassium and in Example 5: ammonium. In each Example, the amount of basic sol used, calculated as % of SiO2 to TiO2 was 10% (by weight). The three different basic silica sols were mixed separately with the above mentioned three samples of suspension and the resulted mixtures were heated to about 90°C and maintained at this temperature for about 1 hour. In each case, substantially all the quantities of silica were consumed by the titanium hydroxide. The resulted precipitates were separated from the liquid phase by filtration and converted into titanium dioxides by a thermal treatment at four different temperatures: 110°C, 500°C, 700°C and 900°C.

The conditions for the interaction of precipitated titanium hydroxides with basic sols, are described in Table 3 and the values of specific surface

5

10

15

20

25

areas are given in Table 4. Each type of basic silica sol (stabilized with sodium, potassium or ammonium) can act as stabilizer, but as can be noticed, with ammonium the stabilizing effect is higher than with sodium or potassium. Accordingly, the further experiments were carried out with basic silica sols stabilized with ammonium.

EXAMPLES 6 to 17.

5

10

15

In these Examples, the same acidic titanyl sulfate solution (solution A) as described in Examples 3 to 5, was used as a starting material but with a different dissolution before neutralization and also with a different extent of neutralization. The concentrations of the solutions before neutralization, were in the range of between 70 to 128 g/l TiO2. The pH values of the neutralized final diluted solutions were in the range of between 0.02 to 1.67. The final value for each Example as well as the respective conditions of precipitation are given in Table 2.

In the Examples 6 and 6A the neutralized solution was maintained at 50°C for 5 hours and 30 minutes before urea addition; in Example 15 the neutralized solution was maintained at 55°C for 8 hours after urea addition.

In Example 17, the acid titanyl sulfate solution was first neutralized with calcium carbonate reaching a pH of 0.09, then the formed calcium sulfate was filtered out. The final neutralization of the solution was carried out with ammonium bicarbonate, reaching a pH of 0.69 as shown Table 2. The conditions of the precipitated titanium hydroxides in the interaction with the basic sols are given in Table 3. As can be noticed, titanium hydroxide was treated with silica sol, both in suspension and also in a wet cake. The concentrations of sols were changed in a wide range from 3% to 20.6% by weight SiO2.

The properties of the modified titanium hydroxides are given in Tables 4, 8, 9, 10, 11, 12, 13, 14 and X-Ray diagrams for samples 6 and UNITi 908. As can be noticed from these Tables and X-Ray diagrams, modified titanium dioxides are characterized by a significant higher thermal and

SUBSTITUTE SHEET (RULE 26)

hydrothermal stability than the known titania and titania/silica mixed oxides.

The sample prepared in Example 12 was investigated with the EDAX method and the data regarding the respective compositions by weight at different points are presented below:

		TiO ₂	SiO ₂	CaO
	point 1	87.5	12.3	0.2
10	point 2	87.7	12.3	absent
	Bulk	87.8	12.1	0.1

As can be noticed there are slight variations from one point to another, but titanium and silicon are present in each point. No separate phases of TiO2 or SiO2 exist. The calcium presence results from an impurity in the sample.

EXAMPLE 18.

15

20

25

30

In this Example an acidic silica sol was introduced in a titanyl sulfate solution, neutralized with ammonia in an amount corresponding to 10% as SiO2 calculated on the TiO2 content in the solution, present as titanyl sulfate. The resulted solution was heated and the precipitation of titanium hydroxide took place in the presence of silica sol. The other conditions for titanium hydroxides precipitation are given in Table 2.

The effect of high thermal stability is also noticed from the attached X-Ray diagrams (Figures 1 and 2) in respect to Example 6 and compared with commercial TiO₂ (UNITi 908). After calcination at 950°C for 1 hour, sample 6 contains only anatase, at the same time commercial titanium dioxide UNITi 908 was converted only partially into rutile (about 60%).

A definite stabilizing effect can be detected also in this case, although it is less than with the same amount (10%) of the basic silica sol added to the titanium hydroxide under the conditions as described above (compare Examples 5 and 18 in the Tables 2 and 4.)

SUBSTITUTE SHEET (RULE 26)

EXAMPLE 19.

5

10

15

20

25

In this example, acid and basic silica sols were used and their modifying effects were compared. The criterion of effectiveness was the decrease in the specific surface area of the titanium dioxides as prepared in Examples 13 and 16. In all these experiments corresponding titanium hydroxides were introduced into silica sols having a concentration of 3% calculated as SiO2. In one experiment it was an acid sol and in another one, it was a basic sol stabilized with an ammonium cation. As can be noticed from Table 5, both the acid and the basic sols increase the stabilizing effect, but the basic sol provides a much higher stabilizing effect.

EXAMPLES 20-22.

In these Examples, the preparation of titanium dioxide with an enhanced thermal and hydrothermal stability according to the present invention was used and compared with a commercial titanium dioxide. In Examples 20 and 21, titanium hydrolysates (S-140 and S-150) as produced by KEMIRA PIGMENT OY (Finland) were used. In Example 22, a hydrolysate (UNITi 908) produced by KEMIRA PIGMENT (U.S.A.) was used. The beneficial effects of the method according to the present invention, are evident from the Tables 6, 7, 8 and 13.

This can be noticed also from the X-Ray diagrams (see Figures 1 and 3) for the sample 22 compared with the commercial titanium dioxide UNITi 908 calcined at 950°C for 1 hour. The modified titanium dioxide contains only initial crystaline anatase phase, once about 60% of the commercial titanium dioxide had been converted into rutile.

EXAMPLE 23.

In this Example it is demonstrated the effectiveness of the modified titanium dioxide as an active component used in the Claus catalyst.

- 15 -

The modified titanium dioxide as obtained in Example 1, was mixed with powdery silica N60 (produced by PPG) and an acid silica sol. The powdery silica was used as an inert filler and the silica sol was used as a binder component. The composition of this mixture, in weight percentage was as follows:

Modified titanium dioxide 24.9%

Powdery silica 64.6%, and

Silica sol (calculated as SiO2) 10.5%,

The mixture was granulated into extrudates with a diameter of 3.6 mm, dried at 110°C for two hours and then calcined at 400°C for three hours. The results with this catalyst tested in a bench scale pilot plant, using the known

conditions as used in the Claus process were as follows:

	I ne reaction	The catalytic activity (%)
15	H2S + SO ₂	100 *
	COS + H2O	100
	CS + H2O	98.

(*expressed the activity as shown by the conversion related to the equilibrium),

20

30

5

10

EXAMPLE 24

This Example shows that the modified titanium dioxide can be used also as a carrier for catalysts which is effective in the oxidation of organic compounds in a gas phase.

25 Two samples were prepared and tested in a laboratory unit for the catalytic oxidation of propane (3 mol.%) in air at 400°C, In the two cases titanium dioxide was doped with vanadium oxide.

The compositions of the catalysts and the results of the respective tests are given in Table 14. As can be noticed the titanium dioxide as prepared by the present invention, is useful as a catalyst carrier for organic impurities in air oxidation.

- 16 - SUBSTITUTE SHEET (RULE 26)

EXAMPLE 25.

An experiment was carried out, to show that the titanium dioxide according to the present invention can be successfully used as a photocatalyst for detecting organic impurities in water oxidation. The titanium hydroxide precipitated from a sulfate solution in the presence of urea and after washing was separated in the form of a wet cake containing 25% by weight TiO2 before the treatment with basic silica sol (as in Example 7).

The procedure of the testing consists in the use of a suspension of 0.15 - 0.30 grams, calculated as TiO2 placed in a bottle of 2 I. A quartz tube (internal diameter 1 cm and length 1 m) was used as a sun radiation reactor. Through this reactor and a bottle of water a stream containing 35 to 44 ppm of atrazine was pumped through.

A comparative test with a commercial titanium dioxide (P 25, as produced by Degussa) was used for photodegradation of organic impurities in water. As can be noticed from Table 16, the titanium dioxide according to the present invention can be useful also as a photocatalyst for this purpose.

20

5

10

15

25

TABLE 1:

Specific surface areas of titanium dioxides modified with urea

in the process of titanium hydroxides precipitation from a solution
of ammonium titanyl sulfate, following a hydrothermal treatment
in its mother liquor and then modified with basic silica sol.

		Specific	Quantity of	Spe	cific surface a	rea of samples
10		surface	introduced	trea	ted with basic	șilica sol, m ² g ⁻¹
	Example	area of	silica sol	Dried	After calcin	nation for 3 hours
	No.	TiO2 modified	calculated	sample	at a temper	rature of, °C
		with urea	as% SiO2 in			<u> </u>
		m² g ⁻¹	TiO2		500	, 700
15	1.	392	3	436	207	113
	2 .	399	5	448	283	144
	Commercial					
	TiO2					
	UNITi					
20	908	328 ^x			93 ^x	24 ^x

^{*}UNITi 908 was tested without treatment with basic silica sol.

25

TABLE 2:

Conditions of titanium hydroxides precipitation and hydrothermal
treatment in the presence of urea.

		Concentration of TiO2	pH of the	Weight	Duration of
	Example	in a solution neutralized	neutralized	ratio	heating,
	No.	with ammonia	solution	urea:TiO2	(hours)
10		as g/l			
	3-5	123	0.90	3.3	2.6
	6 and 6A	125	1.10	3.6	2.5
	7	128	0.80	2.0	2.5
	8-9	128	1.67	2.0	5.5
15	10	123	0.80	2.8	2.3
	11	70	0.97	2.9	3.5 —
	12-	123	0.84	3.6	4.0
	13	120	0.97	2.1	3.5
	14	126	0.02	10.3	3.0
20	15	122	0.92	3.6	2.3
	16	126	1.20	1.5	2.5
	17	91	0.69	2.63	2.2
	18	70	0.93	3.0	3.5

25

TABLE 3:

Conditions of titanium hydroxides interaction with basic silica sols.

	}	Concentration	Concentration	Cationic	Quantity of s	ilica sol
	Example	of titanium hydroxide	of silica sol,	form of	calculated as	% SiO2 in TiO2
	No.	in suspension	(as g/l SiO2)	silica sol	Introduced	Taken up
10		(as % TiO2)			in suspension	by titanium
					or in cake	hydroxide
	3	10	3.0	Na	10.0	9.9
	4	10	3.0	κ	10.0	9.9
	5	10	2.9	NH4	10.0	9.9
15	6	10	3.2	NH4	7.0	6.9
	6A	10	3.3	NH ₄	15.0	13.8
	7	10	3.0	NH4	2.0	2.0
	8	10	3.4	NH4	3.0	3.0
	9	10	3.4	NH4	7.0	6.0
20	10	wet cake	3.2	NH4	30.0	15.3
	11	12	3.3	NH4	10.0	10.7
	12	wet cake	20.6	NH4	16.5	13.4
	13	15	11.6	NH4	5.0	5.0

25

5

TABLE 4:

Specific surface areas of modified titanium dioxides.

5		Specific surface area, (m ² g ⁻¹)					
	Example	Modified	Modified Modified with urea and basic silica sol				
	No.	with urea	Dried at	Dried at calcined for 3 hours at			
		and dried	110°C	500°C	700°C	800°C	900°C
		at 110°C					
10	3	416	442			141	65
	4	416	434			139	65
	5	416	453	327	277	164	110
	6	424	470	285	170	116	
	6A	424	478	357	269	203	
15	7	393	393			53	28
	8	390	448		111	72	31
	9	390	450		170	119	56
	10	360		312		228	146
	11	403	429			142	81
20	12	406	430	367	269		2
	13	400	435	238	141		
	14	434					
	15	460	490				
	16	416					
25	17	402			;		
	18	365		234	115		
	(UNITi 908						
	Commercial		i				
	TiO2)		328	93	24		
30					L		<u> </u>

TABLE 5:

Comparison of modificatory effects of acid and basic silica sols.

5	Example No.	Specific surface area of original TiO2, (m ² g ⁻¹)	Type of silica	Quantity of silica sol, as % SiO2)	rface area (m ² g ⁻¹), ation for 3 h. ature of
				in TiO2	500°C	700°C
	13	400	acidic	8		107
	14	400	basic	5	242	145
10	15	416	acidic	4	155	62
	16	416	basic	4	230	. 123
	17	416	without		111	8

15 **TABLE 6**:

Commercial titanium dioxides modified with silica sol.

		The sample	Quantity	Concentration	Suspension	Quantity of silica s	ol as %
		of the TiO2	of used	of silica sol	or wet cake	SiO ₂ calculated o	n TiO ₂
20		used	TiO2	as % SiO₂	were treated	introduced	taken up
	Example		(grams)	in sol		in the suspension	by TiO2
	No.					or in the cake	
	20	S-140	200	3.1	suspension	7	
25	u	S-140	200	3.1	suspension	10	
	u	S-140	200	3.1	suspension	14	
	21	S-150	200	3.3	suspension	7	
	tt	S-150	200	3.3	suspension	10	
	22	UNITi 908	10	20.6	wet cake	15	13
		 		·			

TABLE 7:

Specific surface areas of commercial titanium dioxides modified with ammonium silica sols

		Quantity of	Spe	Specific surface area, m ² g ⁻¹			
		silca sol	Dried	Calcined for	or 3 hours a	t various te	mperatures:
	Example	as % SiO2	sample	500°C	700°C	800°C	900°C
10	No.	in TiO ₂		, <u>. </u>			
	20	none	329 ^x		16		
	II.	7			101	58	
	ec	10			119		
	ű	14		191	143	94 .	
15	21	7	290	234	102	90	
	u	10			126		ļ
	22	15		227	210	116	80
		none	328	93	24		

(* measured by a Coulter Instrument)

20

5

TABLE 8:

Hydrothermal stability of the modified titanium dioxides in comparison with known ones.

25

		Specific surface area (m ²⁺ g ⁻¹),
	Example	after steaming ^x during 5 hours
	No.	at 400°C
•	6	173
30	6 A	320
	21	132
	Commercial TiO2:	
UNITi 908		94
S-150		84

Note: * the steaming stream contained 90% by volume water vapors and 10% by volume air.

SUBSTITUTE SHEET (RULE 26)

TABLE: 9

Sulfur content of modified titanium dioxides

	1	Sulfur conte	nt, (% by weight)
	Example	Calculated	Calculated
	No.	as sulfur	as (SO4 ²⁻)
10	1	0.04	0.12
	5	0.24	0.72
	10	0.10	0.30
	22	0.07	0.21
	Commercial		
15	titanium dioxide	0.3-1.0	0.9-3.0

20

5

25

TABLE 10:

Specific surface area distribution on pore diameters of modified titanium dioxides in comparison with known ones.

5		Total	specific	Specific surface area formed by pores with					
		surfa	ace area	a diameter greater than:					
	Example				4.10 nm	3.5nm 3.3nm			3nm
		m²g¹¹	In % of	m²g ⁻¹	In % of	m²gʻ	In % of	m²g ⁻¹	In % of
			analogous		anaiogous		analogous		analogous
10		<u>'</u>	value for a		value for a		value for a	1 1	value for a
			commercial		commercial		commercial		commercia
			sample S-140		sample S-140		sample S-140		sample S-140
	Example 6								•
	TiO2before								
15	treating with					l	-		
	basic silica						ľ	{	
	sol	424	129	180	269	334	380	352	352
	TiO2 treated								
	with basic								
20	silica sol as		:						
	described in								
	Example 6	470	143	251	375	352	400	371	371
_	Example 6A								
	TiO2 treated							1 1	II
25	with basic								
	silica sol as	İ	:						
	described in								
	Example 6A	476	145	319	476	367	417	378	393
	Example 15								
30	TiO2 before					1			
	treating with							}	
	basic silica						ĺ		
	sol	490	149	182	272	242	275	259	270
	Commercial								
35	TiO2 -								
	UNITI-908	328	100	48	72	62	70	67	70
	Commercial								
	TiO2 S-140	329	100	67	100	88	100	96	100

Note: all the data listed in this Table were measured with Coulter Instrument SA 3100.

TABLE 11:

The adsorption pore volume distribution on pore diameters of modified titanium dioxides compared with known ones.

5								
	ſ	Adsorption pore volume formed by pores with diameter						
		tes	s than 100 nm	ore	ater than, 4.1 nm	greater than 3.5 nm		
		cc/1g	in % of analogous	cc/1g	In % of analogous	cc/1g	In % of analogous	
	Example .	_	value for commer-		value for commer-		value for commer-	
40	CABITIPIO :		cial sample S-140		cial sample S-140		cial sample S-140	
10_			Old Jumpio G 119		V.S. P. M. P. V.			
	Example 6	1						
	TiO2 before the							
	treatment with		4.47	0.23	110	0.41	. 178	
	basic silica sol	0.47	147	0.23	110	0.41	<u> </u>	
15	TiO2 treated							
	with basic silica							
	sol as described						470	
	in Example 6	0.52	163	0.31	148	0.41	178	
	Example 6 A			1				
20	TiO2 treated with	1					·	
	basic silica sol			1		1		
	as described in			1	•			
	Example 6 A	0.63	180	0.49	233	0.54	235	
٠	Example 15							
25	TIO2 before the			ļ		İ		
	treatment with	1		1		Ì	·	
	basic silica sol	0.56	160	0.36	171	0.40	174	
	Commercial TiO2				1		<u> </u>	
	UNITi- 908	0.32	.91	0.20	105	0.22	96	
30	Commercial TiO2					}		
	S-140	0.35	100	0.21	100	0.23	100	

Note: all the data listed in this Table were measured with Coulter Instrument SA 3100.

TABLE 12:

Comparison of thermal stability of the modified titanium dioxide prepared according to the present invention and a mixed titania-silica oxides as described in the US Patent 4,221,768

	-	prepared according propertion and calc		Samples as described in the US Par 4,221,768				
	500°C fo	or 3 hours		(calcined at 500°C for 3 hours)				
10		TiO2 content	Specific		TiO2 content	Specific		
	Example	of the sample,	surface	Example	of the sample	surface		
	No.	(% by weight)	area (m ² g ⁻¹)		(% by weight)	area{m ² g ⁻¹)		
	12	86	367	1	84	220		
				4	84	280		
15	5	90	327	6	91	230		

TABLE 13:

20

Specific surface areas of calcined titanium dioxide according to the present invention, compared with those described in the European Patent Applications Nos.: 0576120 and 0311515.

temperature °C duration, hours The present invention EP 057612	EP 03115115
**************************************	I.
Example 6 Example 10 Example 1	Example Q
575 1 229 360	93
575 7 210 350	85
30 800 3 116 228 65.6	

TABLE 14:

Comparison between structural indicators of calcined samples prepared according to the present invention and those described in

5 <u>the</u> <u>literature.</u>

	Prepared according to the present invention					Described in literature				
		Quantity				Quantity				_
10		of silicon			•	of silica	(
		introduced	Calcining con-	ditions	<u> </u>	in titania/	Calcining co	nditions	•	
		in the titania's			Specific	/ sifica		<u> </u>	Specific	
	Example	structure			surface	mixed			surface	References
		calculated	Temperature	Duration	area	oxides	Temperature	Duration	area	
15		as SiO2,%	°C	hours	(m²g ⁻¹)	(%)	°C	hours	(m²g ⁻¹)	
	5	9.9	700	3	277	20.0	600		85	Applied
	6	6.9	700	3	170					Catalysis
	8	3.0	700	3	111				Ì	A: General
	5	9.9	800	3	164					139(1996)
20	10	15.3	900	3	146					175-187
	6	6.9	500	3	285	25.0	500	2	213	Journal
	6 A	13.8	500	3	357					of
	12	14.0	500	3	367					catalysis
	21	7.0	500	3	234					105,511-520
25	22	15.0	500	3	227					(1987)

TABLE 15:

30 Catalytic oxidation of propane in air at 400°C.

	Number of samples from which titanium dioxide was taken	Quantity of vanadia introduced into TiO2 (% by weight)	Quantity of doped TiO2 in catalyst (% by weight)	Quantity of siliceous filler and binder in catalyst (% by weight)	Extent of oxidation, (%)
35	5	3	Doped titania as was used		100
	12	5	38	62	100

TABLE 16:

5 Photodegradation of atrazine in aqueous solutions

		<u>Duratio</u>	n of dec	<u>aradatio</u>	n, hours	
	Sample	0	1	2	3	
		Concer	ntration	of atrazi	ne in pom	į
10	Titanium hydroxide					
	from Example 7	35	28	23	17	
	P-25 (Degussa)	44	20		17	

15

20

25

CLAIMS:-

5

10

15

- 1. A novel titanium dioxide modified with urea in the stage of a titanium hydroxide precipitation from an aqueous solution containing a mixture of dissolved sulfate salts, including titanyl sulfate, following by a hydrothermal treatment of the precipitated hydroxide in its mother liquor and then modified with a basic silica sol in the stage of the formed titanium hydroxide or dried titanium dioxide, being characterized by a high catalytic activity, an enhanced thermal stability as measured by a specific surface area of up to 240 m²/g for a sample in which 15% of silicon (calculated as SiO₂) was introduced into the titanium hydroxide structure during the interaction with basic silica sol and calcined at 800°C for three hours.
- 2. The novel modified titanium dioxide according to Claim 1, possessing a developed mesopore structure, a decreased sulfur content, a high hydrothermal stability as measured by a specific surface area of up to 350 m²/g for the mentioned sample subjected to a hydrothermal treatment for five hours with a water vapor-air mixture containing 90% by volume of water vapor at 400°C.
- 3. The novel modified titanium dioxide according to Claims1 and 2, being characterized by a specific surface area of up to $520 \text{ m}^2/\text{g}$.
- 4. The novel modified titanium dioxide according to Claims 1 to 3, being characterized by a mesopore structure as measured by an adsorption pore volume formed by pores with a diameter less than 100 nm of up to 0.65 cc/g.
- The novel modified titanium dioxide obtained from a suspension, wet
 cake or dry hydrolysate of white titanium pigment and modified with a
 basic silica sol, being characterized by an enhanced thermal stability as

measured by a specific surface area of up to 125 m²/g for a sample in which 15% of silicon (calculated as SiO₂) was introduced into a titanium hydroxide structure during the interaction with basic silica sol and calcined at 800°C for three hours.

- 6. The novel modified titanium dioxide according to Claims 1 or 5, containing at least 1% silicon by weight (calculated as SiO₂), introduced into titanium dioxide or titanium hydroxide structure, during the interaction with basic silica sol.
- 7. The novel modified titanium dioxide according to Claims 1 and 5, containing a minimum sulfur content of 0.02%.
 - 8. A method for obtaining the novel modified titanium dioxide according to Claim 1, using a precipitated titanium hydroxide produced from an aqueous sulfate solution having an initial pH of up to 1.7 and comprising, besides titanyl sulfate, other compounds selected from sodium, potassium, ammonium, calcium and magnesium sulfates.
 - 9. The method for obtaining the novel modified titanium dioxide according to Claim 8, wherein the preferred pH of the above mentioned solution, comprising besides titanyl sulfate at least one of the above sulfates is in the range of between 0.02 to 1.2.
- 20 10. The method for obtaining the novel modified titanium dioxide according to Claim 8, wherein said titanium hydroxide is precipitated from a sulfate solution having a titanium content in the range of between 20 g/l to 150 g/l (calculated as TiO₂).
- 11. The method for obtaining the novel modified titanium dioxide
 25 according to Claim 1, wherein the amount of urea introduced in the sulfate solution is in the range of between 0.3 to 11 as weight ratio urea to titanium dioxide.
 - 12. The method for obtaining the novel modified titanium dioxide according to Claim 8, wherein said sulfate solution is maintained at a temperature in the range of between 0° to 70°C for at least half hour before or after urea introduction in the solution.

30

5

13. The method for obtaining the novel modified titanium dioxide according to Claim 8, wherein the titanium hydroxide is precipitated and subjected to a hydrothermal treatment in its mother liquor at a temperature in the range of between 70°C to 200°C for at least half hour.

- 5 14. The method for obtaining the novel modified titanium dioxide according to Claim 8, wherein the aqueous sulfate solution is obtained by dissolution of ammonium titanyl sulfate in water or in a sulfate solution.
 - 15. The method for obtaining the novel modified titanium dioxide according to Claims 5 to 8, wherein the titanium component present in the form of an aqueous suspension, a wet cake, a dough, or dry material, is treated for increasing the pH in the range of between 6.0 to 11, and preferably between 8.0 to 10.0 and then subjected to the modification with a basic silica sol.
 - 16. The method for obtaining the novel modified titanium dioxide according to Claim 15, wherein said pH adjustment is carried out by an alkali constituent, selected from urea, ammonia gaseous or aqueous solution, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydroxide or a mixture thereof.
- 20 17. The method for obtaining the novel modified titanium dioxide according to Claims 15 and 16, wherein said modification with basic silica sol is carried out at a temperature below the boiling point of the respective mixture.
- 18. The method for obtaining the novel modified titanium dioxide
 25 according to Claim 17, wherein the basic silica sol has a concentration in
 the range of between 1% to 40% by weight (calculated as SiO₂) and a
 pH above 7.0.
 - 19. The method for obtaining the novel modified titanium dioxide according to Claims 15 to 18, wherein the basic silica sol used, is in a weight ratio of SiO₂ to TiO₂ in the range of between 0.01 to 0.30.
 - 20. The novel modified titanium dioxide according to Claim 1, to be used as a catalyst in the Claus reaction, carbonyl sulfide or carbonyl

30

10

disulfide. hydrolysis, photocatalytic degradation of organic impurities in water and as a carrier for a catalyst useful in the oxidation of organic impurities present in gaseous streams.

5

10

15

20

25

30

33 -

BEST AVAILABLE COPY

X-Ray diagram for commercial Titanium Dioxide (UNITi908) calcined at 950C for 1hour

SUBSTITUTE SHEET (RULE 26)

X-Ray diagram for modified Titanium Dioxide(example 6) calciened at 950C for 1 hour

BEST AVAILABLE COPY

Figure

X-Ray diagram for modified Titanium Dioxide (example 22) calcined at 950C for 1 hour

BEST AVAILABLE COPY

Figure .

"INTERNATIONAL SEARCH REPORT

International application No. PCT/IL98/00090

IPC(6) US CL	SSIFICATION OF SUBJECT MATTER :C01G 23/053; C01B 39/00; B01J 23/00 : 502/349, 350; 423/610, 701, 702, 705, 713; 106/436 to International Patent Classification (IPC) or to both r			
B. FIEL	DS SEARCHED			
Minimum d	ocumentation searched (classification system followed	by classification symbols)		
U.S. :				
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
NONE				
Electronic d	lata base consulted during the international search (na	me of data base and, where practicable,	search terms used)	
NONE				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.	
Y	US 5,120,701 A (BRAND ET AL.) 09 LINE 50 - COLUMN 4, LINE 14.	9 JUNE 1992, COLUMN 2,	1, 2, 5, 6, 8-14, 18, 20	
A	US 4,176,089 A (CULL) 27 NOV ENTIRE DOCUMENT.	EMBER 1979, SEE THE	1, 2, 5, 6, 8-14, 18, 20	
A	US 4,977,127 A (RIKIMARU ET AL.) 11 DECEMBER 1990, SEE 1, 2, 5, 6, 8-14, THE ENTIRE DOCUMENT 18, 20			
Y	US 4,537,873 A (KATO ET AL.) 27 AUGUST 1985, SEE 1, 2, 5, 6, 8-14 COLUMN 3, LINES 9-20 18, 20			
Y	US 4,081,510 A (KATO ET AL.) COLUMN 4, LINES 34-45.) 28 MARCH 1978, SEE	1, 2, 5, 6, 8-14, 18, 20	
Y	US 5,718,878 A (ZHANG) 17 FEBRUARY 1998, COLUMN 2, 1, 2, 5, 6, 8-1 LINES 26-65.			
Furti	ner documents are listed in the continuation of Box C	. See patent family annex.		
• Sp	pecial categories of cited documents:	"T" later document published after the integrated and not in conflict with the app	ernational filing date or priority lication but cited to understand	
	becoment defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention	
	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	e claimed invention cannot be ared to involve an inventive step	
ci	ocument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other	"Y" document of particular relevance; th	e claimed invention cannot be	
•0• do	ecial reason (as specified) cument referring to an oral disclosure, use, exhibition or other cans	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	step when the document is h documents, such combination	
	ocument published prior to the international filing date but later than e priority date claimed	*&* document member of the same pater	at family	
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report	
21 MAY	1998	15 JUN 1998		
Commission Box PCT	mailing address of the ISA/US oner of Patents and Trademarks	Authorized officer		
1 -	on, D.C. 20231	Telephone No. (703) 308-0661		

*INTERNATIONAL SEARCH REPORT

International application No. PCT/IL98/00090

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. X Claims Nos.: 3, 4, 7, 15-17 AND 19 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
•
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)★