CS492D: Diffusion Models and Their Applications

Assignment 7 Session

JUIL KOO

Fall 2024 KAIST

Introduction

In Assignment 7, we will implement **Flow Matching**, a novel generative model that offers straighter sampling trajectories than diffusion models.

Flow Matching for Generative Modeling, Lipman et al., ICLR 2023.

Introduction

The skeleton code and instructions are available at:

https://github.com/KAIST-Visual-AI-Group/Diffusion-Assignment7-Flow

Introduction

Assignment 7 builds on your implementation of Assignment 2 (DDIM-CFG). Refer to the `README.md` for details on which files need to be copied.

Important Notes

- Assignment 7 is due on Dec 13th (Friday).
- Late submission will incur 20% penalty for each late day!
- Please carefully check the README of each assignment.
- Missing items in your submission will also incur penalties.

Notations

Diffusion Models [Generation: $T \rightarrow 0$]

- x_0 : A sample from the data distribution.
- x_T : A sample from the reference (base) distribution.

Flow Matching [Generation: $0 \rightarrow 1$]

- x_1 : A sample from the data distribution.
- x_0 : A sample from the reference (base) distribution.

Diffusion Models

Flow Matching

 $p_{\mathbf{0}}$

 p_{T}

 p_1

 $p_{\mathbf{0}}$

Flow and Vector Fields

- A flow $\phi_t(x)$ is a time dependent mapping function, which is similar to the forward pass of diffusion models: $x_t = \phi_t(x)$.
- The derivative of $\phi_t(x)$ w.r.t t is called a vector field $u_t(\phi_t(x)) = \frac{d\phi_t(x)}{dt}$.

Probability Paths

A vector field $u_t(\phi_t(x))$ is said to generate a probability path p_t if its flow $\phi_t(x)$ satisfies the equation below:

$$p_t(\mathbf{x}) = [\phi_t]_* p_0(\mathbf{x}) = p_0(\phi_t^{-1}(\mathbf{x})) \det \left| \frac{\partial \phi_t^{-1}}{\partial \mathbf{x}}(\mathbf{x}) \right|$$

Flow Matching

$$\mathcal{L}_{FM} = \mathbb{E}_{t, \mathbf{x}_t \sim p_t} [\|[v_{\theta}(\mathbf{x}_t, t) - u_t(\mathbf{x}_t)\|]^2$$

However, we do not know how p_t and u_t look like. The vector field u_t that generates the probability path p_t is not unique.

https://www.peterholderrieth.com/blog/2023/The-Fokker-Planck-Equation-and-Diffusion-Models/

Conditional Flow Matching

Since the groundtruth vector field $u_t(x_t)$ is unknown, we define p_t and u_t per sample, i.e., $p_{t|1}(x_t|x_1)$ and $u_{t|1}(x_t|x_1)$, where $x_1 \sim p_1$.

$$\mathcal{L}_{FM} = \mathbb{E}_{t, \mathbf{x}_t \sim p_t} [\|[v_{\theta}(\mathbf{x}_t, t) - u_t(\mathbf{x}_t)\|]^2$$

$$\mathcal{L}_{CFM} = \mathbb{E}_{t, \mathbf{x}_t \sim p_{t|1}} \left[\left\| \left[v_{\theta}(\mathbf{x}_t, t) - u_{t|1}(\mathbf{x}_t | \mathbf{x}_1) \right] \right\|^2$$

Conditional $p_{t|1}$ and $u_{t|1}$

While the conditional probability paths $p_{t|1}$ and vector fields $u_{t|1}$ can be arbitrarily chosen, we adopt the simplest one, which is based on Gaussian distributions:

• Conditional probability path $p_{t|1}$:

$$p_{t|1}(\boldsymbol{x}_t|\boldsymbol{x}_1) = \mathcal{N}(\mu_t(\boldsymbol{x}_1), \sigma_t^2(\boldsymbol{x}_1)\boldsymbol{I})$$

• Conditional flow map ϕ_t :

$$\phi_t(\mathbf{x}_t|\mathbf{x}_1) = \mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1)\mathbf{x}_t$$

• Conditional vector field u_t :

$$u_t(x_t|x_1) = \frac{\sigma'_t(x_1)}{\sigma_t(x_1)} (x_t - \mu_t(x_1)) + \mu'_t(x_1)$$

Special Instance of FM: Straight Path

- Given a flow map $\phi_t(\mathbf{x}_t|\mathbf{x}_1) = \mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1)\mathbf{x}_t$, we set $\mu_t(\mathbf{x}_1) = t\mathbf{x}_1$ and $\sigma_t(\mathbf{x}_1) = 1 (1 \sigma_{min})t$.
- This results in a simple interpolation between x_1 and x_t :

$$\phi_t(\mathbf{x}_t|\mathbf{x}_1) = (1 - (1 - \sigma_{min})t)\mathbf{x}_t + t\mathbf{x}_1.$$

Diffusion

OT

Special Instance of FM: Straight Path

$$\mathcal{L}_{CFM} = \mathbb{E}_{t, x_t \sim p_{t|1}} \left[\left\| \left[v_{\theta}(\mathbf{x}_t, t) - u_{t|1}(\mathbf{x}_t | \mathbf{x}_1) \right\|^2 \right] \right.$$

$$= \mathbb{E}_{t, x_1, x_0} \left[\left\| v_{\theta}(\mathbf{x}_t, t) - (\mathbf{x}_1 - (1 - \sigma_{min}) \mathbf{x}_0) \right\|^2 \right]$$

Diffusion

OT

Task 0

Before starting the assignment, copy and paste your implementation of

- `2d_plot_ddpm_todo/network.py` and
- `image_ddpm_todo/network.py` from Assignment 2.

Task 1: Flow Matching with Swiss-Roll

As done in Assignment 1, 2, and 6, you will first implement FM and test it in a simple Swiss-Roll 2D distribution.

Task 1: Flow Matching with Swiss-Roll

Complete the functions `compute_psi_t()` and `step()` in `fm.py`.

```
def compute_psi_t(self, x1, t, x):
   Compute the conditional flow psi_t(x \mid x_1).
   Note that time flows in the opposite direction compared to DDPM/DDIM.
   As t moves from 0 to 1, the probability paths shift from a prior distribution p_0(x)
   to a more complex data distribution p_1(x).
   Input:
       x1 (`torch.Tensor`): Data sample from the data distribution.
       t (`torch.Tensor`): Timestep in [0,1).
       x (`torch.Tensor`): The input to the conditional psi_t(x).
   Output:
        psi_t (`torch.Tensor`): The conditional flow at t.
   t = expand t(t, x1)
   ####### TODO #######
   # DO NOT change the code outside this part.
   # compute psi_t(x)
   psit = x1
   ##########################
   return psi_t
```

Task 2: Image Generation with FM

As done in Assignments 2 and 6, we will sample images using FM with a CFG setup.

Task 2: Image Generation with FM

Finish implementing `sample()` and `get_loss()` functions to work with a CFG setup.

```
def get_loss(self, x1, class_label=None, x0=None):
   The conditional flow matching objective, corresponding Eq. 23 in the FM paper.
   batch_size = x1.shape[0]
   t = self.fm_scheduler.uniform_sample_t(batch_size).to(x1)
   if x0 is None:
       x0 = torch.randn_like(x1)
   ####### TODO #######
   # DO NOT change the code outside this part.
   # Implement the CFM objective.
   if class_label is not None:
       model_out = self.network(x1, t, class_label=class_label)
       model_out = self.network(x1, t)
    loss = x1.mean()
   ######################
   return loss
```

What to Submit

Include the following items into a PDF file: {NAME}_{SID}.pdf.

Task 1

- Loss curvature screenshot
- Chamfer distance results of FM sampling with 50 inference steps.
- Visualization of FM sampling.

Task 2

- FID score result obtained with the CFG scale of 7.5.
- At least 8 images generated by Flow Matching.

What to Submit

Create a single ZIP file {NAME}_{SID}.zip including:

The PDF file, formatted according to the guideline;

Your implemented code.

Your score will be deducted by 10% for each missing item.

Please check carefully!

Grading

You will receive up to 20 points from this assignment.

For Task 1, you will receive:

- 10 points: Achieve CD lower than 40.
- 5 points: Achieve CD between 40 and 60.
- 0 points: Otherwise.

Grading

You will receive up to 20 points from this assignment.

For Task 2, you will receive:

- 10 points: Achieve FID between 30 with CFG=7.5.
- 5 points: Achieve FID between 30 and 50 with CFG=7.5.
- 0 points: Otherwise.

Thank You