

Pamukkale Üniversitesi Bilgisayar Mühendisliği Evrimsel Hesaplama Ara Sınavı Cevap Kağıdı (12.11.2018)

Öğrenci Numarası: ______ Adı Soyadı: _____

Soru	1	2	3	Toplam
Puan	30	30	40	100
Not				

Tablo 1: Rastgele sayı listesi

1. Itasiger sayi iistosi												
0.5	0.0	0.25	0.7	0.1	1.0	0.95	0.65	0.85	0.15	0.6	1.0	0.4

- 1. Aşağıda belirtilen çaprazlama ve mutasyon işlemlerini yapınız.
 - (a) (10P) İkili temsilde verilen **1101100101** bireyini $P_m = 0.5$ olasılığı ile rastgele sayı listesini kullanarak mutasyona uğratın $(r \le P_m)$.

0011000100

(b) (10P) **1110110011** ve **0010111001** bit dizilerini rastgele sayı listesini kullanarak $P_c = 0.5$ olasılığı ile tek biçimli çaprazlama(uniform crossover) kullanarak çaprazlayın($r \le P_c$).

E_1	1	1	1	0	1	1	0	0	1	1		C_1	0	0	1	0	1	1	0	0	1	1
											Χ											
E_2	0	0	1	0	1	1	1	0	0	1		C_2	1	1	1	0	1	1	1	0	0	1

(c) (10P) [-5, +5] aralığında ve tamsayı temsilinde olan **4**, **-2**, **0**, **5**, **3**, **-1**, **0**, **-5** bireyini $P_m = 0.3$ olacak şekilde rastgele sıfırlama(random resetting) algoritmasına göre mutasyona uğratın $(r \le P_m)$.

4, **-2**, 0, **5**, 3, -1, 0, **1**

2. Aşağıda 8 şehrin birbirine olan uzaklıkları Tablo 2'de verilmiştir. Bu 8 şehir için gezgin satıcı problemi uygulanmak istenmektedir. Gezgin satıcı probleminde bir şehirden başlayıp, her şehire bir defa uğrayarak bütün şehirleri dolaşıp tekrar başlangıç şehire en kısa yoldan gelmek amaçlanmaktadır.

	1	2	3	4	5	6	7	8
1	0	8	15	12	7	7	2	20
2	8	0	4	13	5	2	7	3
3	15	4	0	9	20	15	5	6
4	12	13	9	0	11	13	7	13
5	7	5	20	11	0	17	8	18
6	7	2	15	13	17	0	13	10
7	2	7	5	7	8	13	0	16
8	20	3	6	13	18	10	16	0

Tablo 2: Komşuluk matrisi

(a) (10P) Permütasyon temsilindeki **21356847** ve **27531648** ebeveynlerini gezgin satıcı problemine göre uygunluk değerlerini(fitness) hesaplayın.

21356847 için **97** 27531648 için **86**

(b) (20P) Kenar çaprazlama(edge crossover) kullanarak seçilecek ilk rastgele değer 1 olacak şekilde çaprazlayın ve oluşan çocuğun uygunluk değerini(fitness) hesaplayın. Rastgele seçim yapmanız gerektiğinde değeri küçük olan elemanı seçin.

Eleman	Komşuluk
1	2, 3+, 6
2	1, 7+, 8
3	1+, 5+
4	6, 7, 8+
5	3+, 6, 7
6	1, 4, 5, 8
7	2+,4,5
8	2, 4+, 6

Seçenekler	Seçilen	Sebep	Kısmi Çözüm
hepsi	5	rastgele seçim	5
3,6,7	3	ortak kenar	53
1	1	tek değer	531
2,6	2	rastgele	5312
7,8	7	ortak kenar	53127
4	4	tek değer	531274
6,8	8	ortak kenar	5312748
6	6	tek değer	53127486

Uygunluk değeri: 97

- 3. Aşağıdaki tabloda 5 bireyin uygunluk(fitness) değerleri verilmiştir.
 - (a) (18P) Bu değerleri kullanarak uygunluk oranlı seçim(fitness proportional selection) ve rütbe seçimi(ranking selection) için seçilme olasılıklarını belirleyin.

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

Tablo 3: Secilme olasılıkları

Birey	Fitness	P_{FPS}	Rütbe	$P_{LR}(s=1.5)$	$P_{LR}(s=2)$				
A	7	0.35	4	0.3	0.4				
В	1	0.05	0	0.1	0				
С	4	0.2	2	0.2	0.2				
D	6	0.3	3	0.25	0.3				
E	2	0.1	1	0.15	0.1				
Toplam	20	1		1	1				

(b) (11P) Rütbe seçimi(ranking selection, S=2) olasılıklarını kullanarak stochastic universal sampling algoritmasına göre 4 adet ebeveyn seçilirse bunlar hangileri olur? $(r \in [0, \frac{1}{\lambda}])$

(c) (11P) Turnuva seçim(tournament selection) algoritmasında k=3 değerine göre 4 adet ebeveyn seçilirse bunlar hangileri olur?

- 1. adım: r=0.5 için ${f C},\,r=0$ için ${f A},\,r=0.25$ için ${f B}$
- 2. adım: r = 0.7 için \mathbf{D} , r = 0.1 için \mathbf{A} , r = 1.0 için \mathbf{E}
- 3. adım: r=0.95 için $\mathbf{E},\,r=0.65$ için $\mathbf{D},\,r=0.85$ için \mathbf{E}
- 4. adım: r=0.15 için $\mathbf{A},\,r=0.6$ için $\mathbf{C},\,r=1.0$ için \mathbf{E}
- Seçilenler: A, A, D, A