Announcements & Such

- Black Roots.
- Administrative Stuff
 - HW #4 resubs are still being graded. Stay tuned...
 - HW #6 is due Thurs. Final HW assignment! *LMPL Proofs*.
 - Next week, I *will* be holding lectures. I will use them for both review, and for some interesting "logic beyond 12A" topics.
- Today: Chapter 6 Natural Deductions in LMPL
 - Introduction and Elimination rules for the quantifiers.
 - Sequents and Theorems (SI/TI) for the quantifiers.
 - Lots of proofs in LMPL!
- **Next**: Two-Place predicates (*i.e.*, *binary relations*) "L2PL".

The Rule of ∃-Elimination: Some Background

- It is useful to think of an existential claim $\lceil (\exists v) \phi v \rceil$ as a *disjunction* which asserts that the predicate expression ϕ is satisfied by *at least one* object in the domain (*i.e.*, that the disjunction $\lceil \phi a \lor (\phi b \lor (\phi c \lor ...)) \rceil$ is true).
- In this way, we would expect the elimination rule for \exists to be similar to the elimination rule for \lor . That is, we'd expect the \exists E rule to be similar to the \lor E rule. Indeed, this is the case. It's best to start with a simple example.
- Consider the following *legitimate* elimination of an existential claim:

Problem is: $(\exists x)(Fx\&Gx) + (\exists x)Fx$

 $(1) (\exists x)(Fx\&Gx)$

(2) Fa&Ga

(3) Fa

 $(4) \quad (\exists x) Fx$

(5) (3x)Fx

Premise

Assumption

2 &E

3 **3**I

1,2,4 3E

The Rule of ∃-Elimination: II

- To derive a sentence \mathscr{P} using the $\exists E$ rule (with some existential sentence $\lceil (\exists v) \phi v \rceil$), we must first *assume* an *instance* $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$.
- If we can deduce \mathscr{P} from this assumed instance $\phi \tau using$ $generalizable\ reasoning$ then we may infer $\mathscr{P}\ outright$.
- It is because our reasoning from the *instance* $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$ to \mathscr{P} does not depend on our choice of constant τ (i.e., that our reasoning from $\phi \tau$ to \mathscr{P} is *generalizable*) that makes this inference valid.
- When our reasoning is generalizable in this sense, it's as if we are showing that \mathscr{P} can be deduced from *any* instance $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$.
- As such, this is just like showing that \mathscr{P} can be deduced from *any disjunct* of the disjunction $\lceil \phi a \lor (\phi b \lor (\phi c \lor \ldots)) \rceil$. And, this is just like \lor E reasoning (except that \exists E only requires *one* assumption).

The Rule of ∃-Elimination: III

• Here's an *il*legitimate "∃-Elimination" step:

 $x_{A}(x_{E})$ 2 3 2,3 Ga (3) Fa (4) Fa&Ga 2,3 (5) (3x)(Fx&Gx) 4 31(6) (3x)(Fx&Gx)1,2

1,3,5 **3E** NO!!

Premise

Premise

2,3 &1

Assumption

- This is *not* a valid inference: $(\exists x)Fx$, $Ga \not\models (\exists x)(Fx \& Gx)!$
- So, what went wrong here? The problem is that the inference to $(\exists x)(Fx \& Gx)$ at line (5) does *not* use *generalizable* reasoning.
- We can *not* legitimately infer ' $(\exists x)(Fx \& Gx)$ ' at line (5) from an arbitrary instance $\lceil F\tau \rceil$ of $(\exists x)Fx$. We must assume 'Fa' in *particular* at line (3) in order to deduce ' $(\exists x)(Fx \& Gx)$ ' at line (5).

The Rule of ∃-Elimination: Official Definition

 \exists -**Elimination**: If $\lceil (\exists v) \phi v \rceil$ occurs at i depending on a_1, \ldots, a_n , an instance $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$ is *assumed* at j, and \mathscr{P} is inferred at k depending on b_1, \ldots, b_u , then at line m we may infer \mathscr{P} , with label 'i, j, k \exists E' and dependencies $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_u\}/j$:

$$a_1,\ldots,a_n$$
 (i) $(\exists v)\phi v$
 \vdots
 j (j) $\phi \tau$ Assumption
 \vdots
 b_1,\ldots,b_u (k) \mathscr{P}
 \vdots
 $\{a_1,\ldots,a_n\}\cup\{b_1,\ldots,b_u\}/j$ (m) \mathscr{P} i, j, k $\exists E$

Provided that *all four* of the following conditions are met:

- τ (in $\phi \tau$) replaces *every* occurrence of ν in $\phi \nu$. [avoids fallacies]
- τ *does not occur in* $\lceil (\exists v) \phi v \rceil$. [generalizability]
- τ *does not occur in* \mathscr{P} . [generalizability]
- τ does not occur in any of b_1, \ldots, b_u , except (possibly) $\phi \tau$ itself. [generalizability]

The Rule of ∃-Elimination: Nine Examples

• Here are 9 examples of proofs involving all four quantifier rules.

1.
$$(\exists x) \sim Fx \vdash \sim (\forall x)Fx$$

2.
$$(\exists x)(Fx \to A) \vdash (\forall x)Fx \to A$$

3.
$$(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)[(\exists y)Gy \rightarrow Fx]$$

4.
$$(\exists x)[Fx \to (\forall y)Gy] \vdash (\exists x)(\forall y)(Fx \to Gy)$$

5.
$$A \vee (\exists x) Fx \vdash (\exists x) (A \vee Fx)$$

6.
$$(\exists x)(Fx \& \sim Fx) \vdash (\forall x)(Gx \& \sim Gx)$$

7.
$$(\forall x)[Fx \rightarrow (\forall y) \sim Fy] \vdash \sim (\exists x)Fx$$

8.
$$(\forall x)(\exists y)(Fx \& Gy) \vdash (\exists y)(\forall x)(Fx \& Gy)$$

9.
$$(\exists y)(\forall x)(Fx \& Gy) \vdash (\forall x)(\exists y)(Fx \& Gy)$$

$$[p. 203, I. # 19 \Rightarrow]$$

[
$$p. 203$$
, I. # 20 \Leftarrow]

[
$$p$$
. 203, II. # 2 \Leftarrow]

$$[p. 203, I. # 12 \Rightarrow]$$

[other direction]

Proof of (1)

Problem is: $(\exists x) \sim Fx + \sim (\forall x)Fx$

2 3 2 2,3 1,2

 $(1) (\exists x) \sim Fx$

 $(2) (\forall x) Fx$

(3) ~Fa

(4) Fa

(5) Λ

(6) A

(7) $\sim (\forall x) Fx$

Premise

Assumption

Assumption

2 AE

3,4 ~E

1,3,5 **JE**

2,6 ~1

Proof of (2)

Problem is: $(\exists x)(Fx \rightarrow A) \vdash (\forall x)Fx \rightarrow A$

2 3 2

 $(1) (\exists x)(\mathsf{F} x \rightarrow \mathsf{A})$

 $(2) (\forall x) Fx$

(3) Fa→A

(4) Fa

(6) A

(7) $(\forall x)Fx \rightarrow A$

Premise

Assumption

Assumption

2 AE

3,4 →E

1,3,5 **JE**

2,6 →

Proof of (3)

Problem is: $(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)((\exists y)Gy \rightarrow Fx)$

2

3

1

1,3

1,2

1

(1) $(\forall x)(\forall y)(Gy \rightarrow Fx)$

(2) (3y)Gy

(3) Gb

 $(4) (\forall y)(Gy \rightarrow Fa)$

(5) Gb→Fa

(6) Fa

(7) Fa

(8) (∃y)Gy→Fa

(9) $(\forall x)((\exists y)Gy \rightarrow Fx)$

Premise

Assumption

Assumption

1 **YE**

4 ∀E

5,3 →E

2,3,6 **3E**

2,7 →

8 AI

Proof of (4)

Problem is: $(\exists x)(Fx \rightarrow (\forall y)Gy) \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$

2 3 2,3

(1) $(\exists x)(\mathsf{Fx} \rightarrow (\forall y)\mathsf{Gy})$

(2) $Fa \rightarrow (\forall y)Gy$

(3) Fa

 $(4) (\forall y)Gy$

(5) Gb

(6) Fa→Gb

(7) $(\forall y)(Fa \rightarrow Gy)$

(8) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

(9) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

Premise

Assumption

Assumption

2,3 →E

4 **V**E

3,5 →

9 AI

1,2,8 **3E**

Proof of (5)

Problem is: $A \vee (\exists x) Fx + (\exists x) (A \vee Fx)$

22566

6 5

(1) $A_{\vee}(\exists x)Fx$

(2) A

(3) A_VFa

 $(4) (\exists x)(A \lor Fx)$

(5) (3x)Fx

(6) Fa

(7) A√Fa

 $(x_{4} \rightarrow A)(x_{5})$

 $(9) (\exists x)(A \lor Fx)$

(10) $(\exists x)(A \lor Fx)$

Premise

Assumption

2 \

IE E

Assumption

Assumption

6 VI

7 3I

5,6,8 **3E**

1,2,4,5,9 VE

Proof of (6)

Problem is: $(\exists x)(Fx\&\sim Fx) \vdash (\forall x)(Gx\&\sim Gx)$

 $(1) (\exists x)(Fx\&\sim Fx)$

(2) Fa&~Fa

(3) ~Gb

(4) ~Fa

(5) Fa

(6) A

(7) ~~Gb

(8)Gb

(9)Gb

(10) ~Gb

(11) Gb&~Gb

 $(12) (\forall x)(Gx\&\sim Gx)$

 $(13) (\forall x)(Gx\&\sim Gx)$

Premise

Assumption

Assumption

2 &E

2 &E

4,5 ~E

3,6 ~1

7 DN

Assumption

9,6 ~1

8,10 &1

11 ∀I

1,2,12 **3E**

Proof of (7)

Problem is: $(\forall x)(Fx \rightarrow (\forall y) \sim Fy) \vdash \sim (\exists x)Fx$

2

1,3

1,3

1,3

1,2

 $(1) \quad (\forall x)(\mathsf{Fx} \rightarrow (\forall y) \sim \mathsf{Fy})$

(2) (3x)Fx

(3) Fa

(4) Fa→(∀y)~Fy

(5) (∀y)~Fy

(6) ~Fa

(7) Λ

Λ (8)

(9) $\sim (\exists x) Fx$

Premise

Assumption

Assumption

1 ∀E

4,3 →E

5 AE

6,3 ~E

2,3,7 3E

2,8 ~1

Proof of (8)

Problem is: $(\forall x)(\exists y)(Fx\&Gy) + (\exists y)(\forall x)(Fx\&Gy)$

(1) (∀x)(∃y)(Fx&Gy)
(2) (∃y)(Fa&Gy)
(3) Fa&Gb
(4) (∃y)(Fc&Gy)
(5) Fc&Gd
(6) Fc
(7) Fc
(8) Gb
(9) Fc&Gb
(10) (∀x)(Fx&Gb)
(11) (∃y)(∀x)(Fx&Gy)
(12) (∃y)(∀x)(Fx&Gy)

Premise
1 VE
Assumption
1 VE
Assumption
5 &E
4,5,6 JE
3 &E
7,8 &I
9 VI
10 JI
2,3,11 JE

Proof of (9)

Problem is: $(\exists y)(\forall x)(Fx\&Gy) \vdash (\forall x)(\exists y)(Fx\&Gy)$

 $(1) (\exists y)(\forall x)(\mathsf{Fx\&Gy})$

 $(2) (\forall x)(Fx\&Gb)$

Fa&Gb (3)

(4) (3y)(Fa&Gy)

(5) $(\exists y)(Fa\&Gy)$ 1,2,4 $\exists E$

(6) $(\forall x)(\exists y)(Fx\&Gy)$ 5 $\forall I$

Premise

Assumption

2 AE

IE 8

Two LMPL Extensions of Sequent Introduction

- Here are two additions to our list of SI sequents:
- (QS) One can infer $\lceil (\forall x) \sim \phi x \rceil$ from (the *logically equivalent* sentence) $\lceil \sim (\exists x) \phi x \rceil$, and *vice versa*; and, that one can infer $\lceil (\exists x) \sim \phi x \rceil$ from (the *logically equivalent*) $\lceil \sim (\forall x) \phi x \rceil$, and *vice versa*.

$$(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x; \text{ and, } (\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x \tag{QS}$$

(AV) One can infer a *closed* LMPL sentence ψ from (the *logically equivalent* sentence) ψ' , and *vice versa*, where ψ and ψ' are *alphabetic variants*. Two formulas are *alphabetic variants* if and only if they differ *only* in a (conventional) choice of individual *variable* letters (*not* kosher for constants!). *E.g.*, ' $(\forall x)Fx$ ' and ' $(\forall y)Fy$ ' are (closed) *alphabetic variants*, because they differ *only* in which individual variable ('x' or 'y') is used, but they have the same *logical* (*i.e.*, *syntactical*) *structure*.

$$\psi \dashv \vdash \psi'$$
 (AV)

Our (New) Official List of Sequents and Theorems (see pp. 123, 204, and 206)

$$A \vee B$$
, $\sim A \vdash B$; or; $A \vee B$, $\sim B \vdash A$ (DS) $A \rightarrow B \dashv \vdash \sim A \vee B$ (Imp)

$$A \to B, \sim B \vdash \sim A$$
 (MT) $\sim (A \to B) \dashv \vdash A \& \sim B$ (Neg-Imp)

$$A \vdash B \rightarrow A$$
 (PMI) $A \& (B \lor C) \dashv \vdash (A \& B) \lor (A \& C)$ (Dist)

$$\sim A \vdash A \rightarrow B$$
 (PMI) $A \lor (B \& C) \dashv \vdash (A \lor B) \& (A \lor C)$ (Dist)

$$A \vdash \sim \sim A$$
 (DN⁺) $\land \vdash A$ (EFQ, or \land E)

$$\sim (A \& B) \dashv \vdash \sim A \lor \sim B \qquad \text{(DEM)} \qquad A * B \vdash B * A \qquad \text{(Com)}$$

$$\sim (A \vee B) \dashv \vdash \sim A \& \sim B$$
 (DEM) $\sim \sim A * \sim \sim B \dashv \vdash A * B$ (SDN)

$$\sim (\sim A \vee \sim B) \dashv \vdash A \& B \qquad (DEM) \qquad A * B \dashv \vdash \sim \sim A * B \dashv \vdash A * \sim \sim B \qquad (SDN)$$

$$\sim (\sim A \& \sim B) \dashv \vdash A \lor B \qquad (DEM) \qquad \qquad \vdash A \lor \sim A \qquad (LEM)$$

$$(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x \qquad (QS) \qquad (\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x \qquad (QS)$$

$$\psi \dashv \vdash \psi'$$
 (AV)

In (Com), '*' can be any binary connective *except* ' \rightarrow '. In (SDN), '*' can be *any* binary connective. In (AV), ψ must be *closed*, and ψ' must be an *alphabetic variant* of ψ .

The Value of (QS) — Its Four Simplest Instances

1 (1) $(\forall x) \sim Fx$ Premise 1 (1) $\sim (\exists x) Fx$ Premise 2 (2) $(\exists x) Fx$ Ass 2 (2) Fa Ass 3 (3) Fa Ass 2 (3) $(\exists x) Fx$ 2 3	(∀x)~Fx + ~(3x)Fx			~(∃x)Fx + (∀x)~Fx				
1 (4) ~Fa 1 \forall E 1,2 (4) Λ 1,3 ~E 1,3 (5) Λ 4,3 ~E 1 (5) ~Fa 2,4 ~I 1,2 (6) Λ 2,3,5 \exists E 1 (6) $(\forall$ x)~Fx 5 \forall I 1 (7) ~ $(\exists$ x)Fx 2,6 ~I (5) ~Fx 5 \forall I	3 1 1,3	(2) (3) (4) (5) (6)	(∃x)Fx Fa ~Fa Λ	Ass Ass 1 ∀E 4,3 ~E 2,3,5 ∃E	2	(2)(3)(4)(5)	Fa (∃x)Fx Λ ~Fa	Ass 2

(∃x)~Fx + ~(∀x)Fx			~(∀x)Fx + (∃x)~Fx		
1 2 3 2 2,3 1,2	 (1) (∃x)~Fx (2) (∀x)Fx (3) ~Fa (4) Fa (5) Λ (6) Λ (7) ~(∀x)Fx 	Premise Ass Ass 2 ∀E 3,4 ~E 1,3,5 ∃E 2,6 ~I	1 $(1) \sim (\forall x)Fx$ Premise 2 $(2) \sim (\exists x) \sim Fx$ Ass 3 $(3) \sim Fa$ Ass 3 $(4) (\exists x) \sim Fx$ 3 $\exists I$ 2,3 $(5) \Lambda$ $2,4 \sim E$ 2 $(6) \sim \sim Fa$ $3,5 \sim I$ 2 $(7) Fa$ $6 DN$ 2 $(8) (\forall x)Fx$ $7 \forall I$ 1,2 $(9) \Lambda$ $1,8 \sim E$ 1 $(10) \sim \sim (\exists x) \sim Fx$ $2,9 \sim I$ 1 $(11) (\exists x) \sim Fx$ $10 DN$		

Three Examples Involving the LMPL SI Extension (QS)

• Here are three examples of proofs involving SI (QS):

1.
$$\sim (\forall x) \sim Fx \vdash (\exists x) Fx$$

$$[p. 207, #7 \Leftarrow]$$

2.
$$\sim (\exists x)(Fx \& Gx) \lor (\exists x) \sim Gx, (\forall y)Gy \vdash (\forall z)(Fz \rightarrow \sim Gz) [p. 205, ex. 1]$$

3.
$$(\forall x)Fx \rightarrow A \vdash (\exists x)(Fx \rightarrow A)$$

Proof of (1)

- 1 (1) $\sim (\forall x) \sim Fx$ Premise
- 2 (2) $\sim (\exists x) Fx$ Assumption
- 2 (3) $(\forall x) \sim Fx$ 2 SI (QS)
- 1,2 (4) \land 1,3 \sim E
 - 1 (5) $\sim \sim (\exists x) Fx$ 2, 4 $\sim I$
 - 1 (6) $(\exists x)Fx$ 5 DN

Proof of (2)

1	(1)	$\sim (\exists x)(Fx \& Gx) \lor (\exists x) \sim Gx$	Premise
2	(2)	$(\forall y)Gy$	Premise
3	(3)	$\sim (\exists x) (Fx \& Gx)$	Assumption
3	(4)	$(\forall x) \sim (Fx \& Gx)$	3 SI (QS)
3	(5)	\sim (Fa & Ga)	4 ∀E
3	(6)	$\sim Fa \vee \sim Ga$	5 SI (DeM)
3	(7)	$Fa \rightarrow \sim Ga$	6 SI (Imp)
3	(8)	$(\forall z)(Fz \rightarrow \sim Gz)$	7 ∀I
9	(9)	$(\exists x) \sim Gx$	Assumption
10	(10)	$\sim Ga$	Assumption
2	(11)	Ga	2 ∀E
2,10	(12)	人	10, 11 \sim E
2,10	(13)	$(\forall z)(Fz \rightarrow \sim Gz)$	12 SI (EFQ)
2,9	(14)	$(\forall z)(Fz \rightarrow \sim Gz)$	9, 10, 13 ∃E
1,2	(15)	$(\forall z)(Fz \rightarrow \sim Gz)$	$1, 3, 8, 9, 14 \vee E$

Proof of (3)

Problem is: $(\forall x)Fx \rightarrow A \vdash (\exists x)(Fx \rightarrow A)$

9

(1) $(\forall x)Fx \rightarrow A$

(2) $\sim (\forall x)Fx \vee A$

(3) $\sim (\forall x) Fx$

(4) $(3x)\sim Fx$

(5) ~Fa

(6) Fa→A

 $(7) (\exists x)(Fx \rightarrow A)$

 $(8) (\exists x)(Fx \rightarrow A)$

(10) Fa→A

 $(11) (\exists x)(Fx \rightarrow A)$

(12) $(\exists x)(Fx \rightarrow A)$

Premise

1 SI (Imp)

Assumption

3 SI (QS)

Assumption

5 SI (PMI)

IE 6

4,5,7 3E

Assumption

9 SI (PMI)

10 JI

2,3,8,9,11 VE

The Value of (AV)

• Here are the two simplest instances of (AV):

(∀x)Fx ⊦ (∀y)Fy			(∃x)Fx + (∃y)Fy		
1 (1) (∀x)Fx 1 (2) Fa 1 (3) (∀y)Fy	Premise 1 ∀E 2 ∀I	1 2 2 1	(1) (3x)Fx (2) Fa (3) (3y)Fy (4) (3y)Fy	Premise Ass 2 3I 1,2,3 3E	

• Here's an (AV)-aided proof of the following sequent

$$(\forall x)Fx, (\forall y)Fy \rightarrow (\forall y)Gy \vdash (\forall z)Gz$$

1 (1) $(\forall x)Fx$ Premise

2 (2) $(\forall y)Fy \rightarrow (\forall y)Gy$ Premise

1 (3) $(\forall y)Fy$ 1 SI (AV)

1,2 (4) $(\forall y)Gy$ 2,3 \rightarrow E

1,2 (5) $(\forall z)Gz$ 4 SI (AV)