Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Cinétique et application du Principe Fondamental de la

Dynamique

Sciences Industrielles de l'Ingénieur

Application

Application – Régulateur centrifuge

C. Gamelon & P. Dubois

Savoirs et compétences :

On considère le mécanisme de la figure ci-contre, qui représente le régulateur centrifuge utilisé dans la direction assistée « DIRAVI » de CITROËN. Ce système, dont la fréquence de rotation est liée à la vitesse du véhicule, agit sur un circuit hydraulique et permet de faire varier l'assistance en fonction de la vitesse. Considérons uniquement le rotor (S_1) et la masselotte (S_2) représentés schématiquement ci-dessous.

- (S_1) est en liaison pivot d'axe $(O_1, \overrightarrow{z_0})$ avec (S_0) .
- (S_2) est en liaison pivot d'axe $(O_2, \overrightarrow{x_1})$ avec (S_1) .
- $(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta_1.$
- $(\overrightarrow{y_1}, \overrightarrow{y_2}) = (\overrightarrow{z_1}, \overrightarrow{z_2}) = \theta_2.$
- $\overrightarrow{O_0G_1} = h_1 \overrightarrow{z_0}$. $\overrightarrow{O_0O_2} = d_1 \overrightarrow{z_0} + L_1 \overrightarrow{y_1}$.

Pour chacun des solides S_i on note m_i la masse, $I_{G_i}(S_i)$ =

$$\begin{pmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{pmatrix}_{B_i}.$$

On note $E = \{S_1, S_2\}$. Une vue 3D de la masselotte est donnée ci-dessous.

Question 1 *Indiquer, sans développer de calculs, quelles* sont les particularités des matrices d'inertie des solides (1) et (2). Afin de ne pas trop alourdir les calculs, on suppose constantes les vitesse de rotation $\dot{\theta}_1$ et $\dot{\theta}_2$.

Question 2 Discuter de la pertinence de ces hypothèses. Vous pourrez éventuellement les remettre en cause.

Question 3 Déterminer :

- le torseur dynamique $\{\delta(S_1/R_0)\}\$ en O_1 ;
- le torseur dynamique $\{\delta(S_2/R_0)\}\$ en O_2 .

Question 4 Déterminer $\delta(O_2, 2/0) \cdot \overrightarrow{x_2}$.

Question 5 Comment pourrait-on déterminer le torseur dynamique $\{\delta(E/R_0)\}\ en\ O_2$?

Question 6 Donner une méthode qui permettrait d'obtenir le couple moteur nécessaire à la mise en mouvement du régulateur.

Pour mettre en mouvement le régulateur on réalise une montée en vitesse de 0 à 2000 tours par minute en 0,5 seconde. On reste ensuite à vitesse constante. On donne le résultats de deux simulation permettant de calculer le couple nécessaire à la mise en mouvement du régulateur : la première sans frottement dans la liaison entre S_1 et S_2 (couple maximal 0.46 Nm), une seconde avec frottement (couple maximal 0.1 Nm).

Question 7 Commenter ces résultats.

1

