Multiple Regression

Lecture 07

Aims

- Understand When To Use Multiple Regression.
- Understand the multiple regression equation and what the betas represent.
- Understand Different Methods of Regression
 - Hierarchical
 - Stepwise
 - Forced Entry
- Understand How to do a Multiple Regression on PASW/SPSS
- Understand how to Interpret multiple regression.
- Understand the Assumptions of Multiple Regression and how to test them

What is Multiple Regression?

- Linear Regression is a model to predict the value of one variable from another.
- Multiple Regression is a natural extension of this model:
 - We use it to predict values of an outcome from several predictors.
 - It is a hypothetical model of the relationship between several variables.

Regression: An Example

- A record company boss was interested in predicting record sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and Downloads) in the week after release
- Predictor variables
 - The amount (in £s) spent promoting the record before release (see last lecture)
 - Number of plays on the radio (new variable)

The Model with One Predictor

Multiple Regression as an Equation

 With multiple regression the relationship is described using a variation of the equation of a straight line.

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + \varepsilon_i$$

b_0

- b_0 is the intercept.
- The intercept is the value of the Y variable when all Xs = 0.
- This is the point at which the regression plane crosses the Yaxis (vertical).

Beta Values

- b_1 is the regression coefficient for variable 1.
- b_2 is the regression coefficient for variable 2.
- b_n is the regression coefficient for n^{th} variable.

The Model with Two Predictors

Methods of Regression

Hierarchical:

 Experimenter decides the order in which variables are entered into the model.

Forced Entry:

All predictors are entered simultaneously.

• Stepwise:

 Predictors are selected using their semipartial correlation with the outcome.

Hierarchical Regression

- Known predictors (based on past research) are entered into the regression model first.
- New predictors are then entered in a separate step/block.
- Experimenter makes the decisions.

Hierarchical Regression

- It is the best method:
 - Based on theory testing.
 - -You can see the unique predictive influence of a new variable on the outcome because known predictors are held constant in the model.
- Bad Point:
 - Relies on the experimenter knowing what they're doing!

Forced Entry Regression

- All variables are entered into the model simultaneously.
- The results obtained depend on the variables entered into the model.
 - It is important, therefore, to have good theoretical reasons for including a particular variable.

Stepwise Regression I

- Variables are entered into the model based on mathematical criteria.
- Computer selects variables in steps.
- Step 1
 - SPSS looks for the predictor that can explain the most variance in the outcome variable.

Previous Exam

Difficulty

Variance explained (1.7%)

Exam Performance

Variance explained (1.3%)

Variance accounted for by Revision Time (33.1%)

Revision Time

Correlations

			First Year		
		Exam Mark	Exam	Difficulty of	Revision
		(%)	Grade	Question	Time
Exam Mark (%)	Pearson Correlation	1.000	.130**	113*	.575**
	Sig. (2-tailed)		.005	.014	.000
	N	474	474	474	474
First Year Exam Grade	Pearson Correlation	.130**	1.000	01	.047
	Sig. (2-tailed)	.005		^	.303
	N	474	474	474	474
Difficulty of Question	Pearson Correlation	113*	012	1.000	236**
	Sig. (2-tailed)	.014			.000
	N	474	474	474	474
Revision Time	Pearson Correlation	.575**	.047	236**	1.000
	Sig. (2-tailed)	.000	.303	.000	-
	N	474	474	474	474

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*} Correlation is significant at the 0.05 level (2-tailed).

Stepwise Regression II

• Step 2:

- Having selected the 1st predictor, a second one is chosen from the remaining predictors.
- -The *semi-partial correlation* is used as a criterion for selection.

Semi-Partial Correlation

- Partial correlation:
 - measures the relationship between two variables, controlling for the effect that a third variable has on them both.
- A semi-partial correlation:
 - Measures the relationship between two variables controlling for the effect that a third variable has on only one of the others.

Revision

Revision

Partial Correlation

Semi-Partial Correlation

ANDY FIELD

Semi-Partial Correlation in Regression

- The semi-partial correlation
 - Measures the relationship between a predictor and the outcome, controlling for the relationship between that predictor and any others already in the model.
 - It measures the unique contribution of a predictor to explaining the variance of the outcome.

Slide 21

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-10.863	3.069		-3.539	.000
	Revision Time	3.400	.222	.575	15.282	.000
2	(Constant)	-24.651	5.858		-4.208	.000
	Revision Time	3.371	.221	.570	15.241	.000
	First Year Exam Grade	.175	.063	.103	2.756	.006

a. Dependent Variable: Exam Mark (%)

Excluded Variables^c

					Partial		Collinearity Statistics
Model		Beta In	t	Sig.	Correlation		Tolerance
1	First Year Exam Grade	.103 ^a	2.756	.006		.126	.998
	Difficulty of Question	.024 ^a	.624	.533		.029	.944
2	Difficulty of Question	.024 ^b	.631	.528		.029	.944

a. Predictors in the Model: (Constant), Revision Time

b. Predictors in the Model: (Constant), Revision Time, First Year Exam Grade

C. Dependent Variable: Exam Mark (%)

Problems with Stepwise Methods

- Rely on a mathematical criterion.
 - Variable selection may depend upon only slight differences in the Semi-partial correlation.
 - These slight numerical differences can lead to major theoretical differences.
- Should be used only for exploration

Doing Multiple Regression

Doing Multiple Regression

Regression Statistics

Standardized Standardized Adjusted Studentized S.E. of mean predictions ✓ Deleted Studentized deleted -Distances Influence Statistics Mahalanobis Df<u>B</u>eta(s) ✓ Standardized DfBeta(s) ✓ Cook's Leverage values DfFit Prediction Intervals Standardized DfFit Co<u>v</u>ariance ratio Mean Individual 95 % Confidence Interval: Coefficient statistics Create coefficient statistics Create a new dataset Dataset name: RecordDiagnostics Write a new data file. File... Export model information to XML file Browse... ✓ Include the covariance matrix Continue Cancel Help

Residuals

Unstandardized

Linear Regression: Save

-Predicted Values

✓ Unstandardized

Regression Diagnostics

X

Output: Model Summary

Model Summary

				Std. Error		Change Statistics				
Model	R	R Square	Adjusted R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin-Watson
1	.578ª	.335	.331	65.9914	.335	99.587	1	198	.000	
2	.815	.665	.660	47.0873	.330	98.447	2	198	.000	1.950

- a. Predictors: (Constant), Advertising Budget (thousands of pounds)
- b. Predictors: (Constant), Advertising Budget (thousands of pounds), Attractiveness of Band, No. of plays on Radio 1 per week
- c. Dependent Variable: Record Sales (thousands)

R and R^2

- R
 - The correlation between the observed values of the outcome, and the values predicted by the model.
- \bullet R^2
 - Yhe proportion of variance accounted for by the model.
- Adj. *R*²
 - An estimate of R^2 in the population (*shrinkage*).

Output: ANOVA

ANOVA^c

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression Residual Total	433687.833 362264.167 1295952.0	1 198 199	433687.833 4354.870	99.587	.000 ^a
2	Regression Residual Total	361377.418 434574.582 1295952.0	3 196 199	287125.806 2217.217	129.498	.000 ^b

- a. Predictors: (Constant), Advertising Budget (thousands of pounds)
- b. Predictors: (Constant), Advertising Budget (thousands of pounds), Attractiveness of Band, No. of Plays on Radio 1 per Week
- c. Dependent Variable: Record Sales (thousands)

Analysis of Variance: ANOVA

The F-test

- -looks at whether the variance explained by the model (SS_M) is significantly greater than the error within the model (SS_R) .
- —It tells us whether using the regression model is significantly better at predicting values of the outcome than using the mean.

Output: betas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	134.140	7.537		17.799	.000	119.278	149.002
	Advertsing Budget (thousands of pounds)	.096	.010	.578	9.979	.000	.077	.115
2	(Constant)	-26.613	17.350		-1.534	.127	-60.830	7.604
	Advertsing Budget (thousands of pounds)	.085	.007	.511	12.261	.000	.071	.099
	No. of plays on Radio 1 per week	3.367	.278	.512	12.123	.000	2.820	3.915
	Attractiveness of Band	11.086	2.438	.192	4.548	.000	6.279	15.894

a. Dependent Variable: Record Sales (thousands)

How to Interpret Beta Values

Beta values:

the change in the outcome associated with a unit change in the predictor.

Standardised beta values:

 tell us the same but expressed as standard deviations.

Beta Values

- $b_1 = 0.087$.
 - So, as advertising increases by £1,
 record sales increase by 0.087 units.
- b_2 = 3589.
 - So, each time (per week) a song is played on radio 1 its sales increase by 3589 units.

Constructing a Model

$$y = b_0 + b_1 X_1 + b_2 X_2$$

Sales = 41124 + 0.087Adverts + 3589plays

£1 Million Advertising, 15 plays

Sales =
$$41124 + (0.087 \times 1,000,000) + (3589 \times 15)$$

$$=41124 + 87000 + 53835$$

$$=181959$$

Standardised Beta Values

- $\beta_1 = 0.523$
 - As advertising increases by 1 standard deviation, record sales increase by 0.523 of a standard deviation.
- $\beta_2 = 0.546$
 - When the number of plays on radio increases by 1 s.d. its sales increase by 0.546 standard deviations.

Interpreting Standardised Betas

 As advertising increases by £485,655, record sales increase by 0.523 × 80,699 = 42,206.

 If the number of plays on radio 1 per week increases by 12, record sales increase by 0.546 × 80,699 = 44,062.

Reporting the Model

TABLE 7.2 How to report multiple regression

	В	SE B	β
Step 1			
Constant	134.14	7.54	
Advertising Budget	0.10	0.01	.58*
Step 2			
Constant	-26.61	17.35	
Advertising Budget	0.09	0.01	.51*
Plays on BBC Radio 1	3.37	0.28	.51*
Attractiveness	11.09	2.44	.19*

How well does the Model fit the data?

- There are two ways to assess the accuracy of the model in the sample:
- Residual Statistics
 - Standardized Residuals
- Influential cases
 - Cook's distance

Standardized Residuals

- In an average sample, 95% of standardized residuals should lie between ± 2.
- 99% of standardized residuals should lie between ± 2.5.
- Outliers
 - Any case for which the absolute value of the standardized residual is 3 or more, is likely to be an outlier.

Cook's Distance

- Measures the influence of a single case on the model as a whole.
- Weisberg (1982):
 - Absolute values greater than 1 may be cause for concern.

Generalization

- When we run regression, we hope to be able to generalize the sample model to the entire population.
- To do this, several assumptions must be met.
- Violating these assumptions stops us generalizing conclusions to our target population.

Straightforward Assumptions

- Variable Type:
 - Outcome must be continuous
 - Predictors can be continuous or dichotomous.
- Non-Zero Variance:
 - Predictors must not have zero variance.
- Linearity:
 - The relationship we model is, in reality, linear.
- Independence:
 - All values of the outcome should come from a different person.

The More Tricky Assumptions

- No Multicollinearity:
 - Predictors must not be highly correlated.
- Homoscedasticity:
 - For each value of the predictors the variance of the error term should be constant.
- Independent Errors:
 - For any pair of observations, the error terms should be uncorrelated.
- Normally-distributed Errors

Multicollinearity

 Multicollinearity exists if predictors are highly correlated.

 This assumption can be checked with collinearity diagnostics.

VIF should be less than 10 (Myers, 1990)

Checking Assumptions about Errors

- Homoscedacity/Independence of Errors:
 - —Plot ZRESID against ZPRED.

- Normality of Errors:
 - Normal probability plot.

Slid

Regression Plots

Homoscedasticity: ZRESID vs. ZPRED

Scatterplot

Dependent Variable: Record Sales

Regression Standardized Predicted Value

Scatterplot

Dependent Variable: OUTCOME

Regression Standardized Predicted Value

Normality of Errors: Histograms

Histogram

Dependent Variable: Record Sales

Regression Standardized Residual

Histogram

Dependent Variable: OUTCOME

Regression Standardized Residual

Normality of Errors: Normal Probability Plot

Expected Cum Prob

Normal P-P Plot of Regression

Standardized Residual

Normal P-P Plot of Regression

Standardized Residual

Dependent Variable: Outcome

