Enhanced Claim Verification System with Real Source Integration:

Algorithmic Design and Mathematical Framework

Technical Documentation

May 23, 2025

Abstract

This report presents a comprehensive technical analysis of an Enhanced Claim Verification System that integrates real-time source gathering with mathematical confidence scoring. The system employs multi-API source aggregation, domain credibility assessment, text analysis algorithms, and a sophisticated confidence calculation framework. Key innovations include weighted credibility scoring, hedging density analysis, source agreement quantification, and adaptive confidence boundaries.

Contents

1	Introduction	3
	1.1 System Architecture Overview	3
2	Source Evidence Data Structure	3
	2.1 Evidence Representation	3
3	Multi-Source Evidence Gathering	3
	3.1 Academic Source Integration	3
	3.2 Domain Credibility Assessment	4
	3.3 Web Source Integration	4
4	Text Analysis and Support Determination	5
	4.1 Claim Support Analysis	5
	4.2 Linguistic Indicator Sets	5
5	Enhanced Confidence Calculation Framework	5
	5.1 Mathematical Model	5
	5.2 Source Volume Mapping	6
	5.3 Weighted Credibility Calculation	6
	5.4 Agreement Score Calculation	6
	5.5 Hedging Density Analysis	6

	5.6 5.7 5.8	Final Confidence Computation	6 8 8
6	Clai	im Classification System	8
7	LLN	M Integration and Structured Reasoning	9
		Verification Prompt Template	9
8	Erro	or Handling and Robustness	9
	8.1 8.2	API Failure Management	9 10
9	Peri	formance Considerations	10
	9.1 9.2	API Rate Limiting	10 10
10	Syst	tem Integration Architecture	11
		Component Interaction Flow	11 11
11		perimental Validation	11
	11.1	Test Case Categories	11
12		itations and Future Enhancements	12
		Current Limitations	12 12
13	Con	nclusion	12
14		pendix: Implementation Details	13
		API Configuration Requirements	13 13

1 Introduction

The Enhanced Claim Verification System represents a significant advancement in automated fact-checking technology. Unlike traditional systems that rely solely on pre-existing knowledge bases, this implementation dynamically gathers evidence from multiple real-time sources and applies rigorous mathematical models to assess claim veracity and confidence levels.

1.1 System Architecture Overview

The system comprises four primary components:

- 1. Real Source Gatherer: Multi-API evidence collection
- 2. Confidence Calculator: Mathematical reliability assessment
- 3. Claim Verifier: LLM-based verification with structured reasoning
- 4. Evidence Analysis: Automated text analysis and source evaluation

2 Source Evidence Data Structure

2.1 Evidence Representation

Each piece of evidence is represented using a structured dataclass:

$$E = \{T, C, S, \text{Content}, U, \text{Title}, A, D, N\}$$
(1)

where:

$$T = \text{source_type} \in \{\text{academic, web, news, expert}\}\$$
 (2)
 $C = \text{credibility score} \in [0, 1]$ (3)

$$S = \text{supports claim} \in \{\text{True, False, None}\}$$
 (4)

$$U = \text{url (optional)} \tag{5}$$

$$A = author (optional) (6)$$

$$D = \text{publication_date (optional)} \tag{7}$$

$$N = \text{citation_count (optional)}$$
 (8)

3 Multi-Source Evidence Gathering

3.1 Academic Source Integration

The system integrates with Semantic Scholar API for academic evidence:

Algorithm 1 Academic Source Gathering

```
Require: query string q, limit \ell
Ensure: list of academic sources S_a
 1: Initialize S_a \leftarrow \emptyset
 2: params \leftarrow \{query : q, limit : \ell, fields : F\}
 3: response ← API CALL(semantic scholar, params)
 4: for each paper p in response.data do
       support \leftarrow ANALYZE TEXT SUPPORT(p.abstract, q)
 5:
       C_{base} \leftarrow 0.85 {High base credibility for academic}
 6:
 7:
       if p.\text{citationCount} > 100 \text{ then}
          C_{base} \leftarrow \min(0.95, C_{base} + 0.05)
 8:
 9:
       else if p.\text{citationCount} > 50 then
10:
          C_{base} \leftarrow \min(0.90, C_{base} + 0.03)
       end if
11:
       Create evidence e with calculated parameters
12:
       S_a \leftarrow S_a \cup \{e\}
13:
14: end for
15: return S_a
```

3.2 Domain Credibility Assessment

The system employs a tiered credibility scoring mechanism:

$$C_{domain}(d) = \begin{cases} [0.9, 1.0] & \text{if } d \in T_1 \text{ (Nature, Science, NEJM)} \\ [0.75, 0.89] & \text{if } d \in T_2 \text{ (Reuters, BBC, NPR)} \\ [0.55, 0.74] & \text{if } d \in T_3 \text{ (Wikipedia, CNN)} \\ [0.35, 0.54] & \text{if } d \in T_4 \text{ (Medium, Blogs)} \\ 0.75 & \text{if } d \text{ ends with .gov or .edu} \\ 0.50 & \text{otherwise (unknown domains)} \end{cases}$$
(9)

3.3 Web Source Integration

10: **return** S_w

Web sources are gathered via Serper API with domain-based credibility assessment:

```
Algorithm 2 Web Source Gathering with Credibility Assessment
Require: query q, limit \ell
Ensure: credibility-weighted source list S_w
 1: S_w \leftarrow \emptyset
 2: response \leftarrow SERPER SEARCH(q, \ell)
 3: for each result r in response.organic do
       C_{cred} \leftarrow \text{ASSESS DOMAIN CREDIBILITY}(r.\text{url})
       support \leftarrow ANALYZE\_TEXT\_SUPPORT(r.snippet, q)
 5:
       T_{source} \leftarrow \text{CLASSIFY\_SOURCE\_TYPE}(r.\text{url})
 6:
       Create evidence e with parameters
 7:
 8:
       S_w \leftarrow S_w \cup \{e\}
 9: end for
```

4 Text Analysis and Support Determination

4.1 Claim Support Analysis

The system analyzes text to determine support for claims using linguistic indicators:

```
Algorithm 3 Text Support Analysis
Require: text t, claim c
Ensure: support indicator s \in \{\text{True, False, None}\}
 1: t_{lower} \leftarrow \text{LOWERCASE}(t)
 2: c_{lower} \leftarrow \text{LOWERCASE}(c)
 3: W_c \leftarrow \text{EXTRACT KEYWORDS}(c_{lower}) \setminus \text{STOP WORDS}
 4: r_{score} \leftarrow \frac{|\{w \in W_c : w \in t_{lower}\}|}{|W_c|}
5: if r_{score} < 0.3 then
        return None {Insufficient relevance}
 7: end if
 8: I_{support} \leftarrow \text{count of support indicators in } t_{lower}
 9: I_{oppose} \leftarrow \text{count of opposition indicators in } t_{lower}
10: I_{uncertain} \leftarrow \text{count of uncertainty indicators in } t_{lower}
11: if I_{support} > I_{oppose} AND I_{support} > I_{uncertain} then
        return True
12:
13: else if I_{oppose} > I_{support} AND I_{oppose} > I_{uncertain} then
        return False
15: else
        return None
16:
17: end if
```

4.2 Linguistic Indicator Sets

The system employs three categories of linguistic indicators:

Support Indicators (I_s): {confirm, support, evidence shows, research indicates, proven, demonstrated, validates}

Opposition Indicators (I_o): {disprove, refute, contradict, false, debunked, no evidence, lacks evidence}

Uncertainty Indicators (I_u): {unclear, mixed evidence, conflicting, debate, controversial, inconclusive}

5 Enhanced Confidence Calculation Framework

5.1 Mathematical Model

The confidence calculation employs a weighted multi-component model:

$$Confidence = f(Evidence_Score, Tone_Score)$$
 (10)

where Evidence Score is computed as:

$$E_{score} = w_n \cdot N_{mapped} + w_c \cdot C_{weighted} + w_a \cdot A_{score}$$
 (11)

with default weights: $w_n = 0.25$, $w_c = 0.45$, $w_a = 0.30$

5.2 Source Volume Mapping

Source count is mapped using square root scaling for better distribution:

$$N_{mapped}(n) = \begin{cases} 0 & \text{if } n \le 0\\ 1 & \text{if } n \ge n_{max}\\ \frac{\sqrt{n}}{\sqrt{n_{max}}} & \text{otherwise} \end{cases}$$
 (12)

where $n_{max} = 8$ is the maximum effective source count.

5.3 Weighted Credibility Calculation

Credibility is calculated with higher weights for decisive sources:

$$C_{weighted} = \frac{\sum_{i=1}^{|S|} C_i \cdot W_i}{\sum_{i=1}^{|S|} W_i}$$
 (13)

where:

$$W_i = \begin{cases} 1.2 & \text{if source } i \text{ is decisive (supports/opposes)} \\ 1.0 & \text{if source } i \text{ is neutral} \end{cases}$$
 (14)

5.4 Agreement Score Calculation

The agreement score quantifies source consensus:

5.5 Hedging Density Analysis

Hedging words indicate uncertainty and reduce confidence:

$$H_{density} = \min\left(\frac{|W_h \cap W_t|}{|W_t|}, 0.15\right) \tag{15}$$

where W_h is the set of hedging words and W_t is the set of all words in the text.

Hedging Words Set (W_h) : {may, might, could, possibly, likely, suggest, appear, indicate, perhaps, probably, potentially, seems, unclear, uncertain, ambiguous, debatable} The tone score is calculated as:

$$T_{score} = 1.0 - H_{density} \tag{16}$$

5.6 Final Confidence Computation

The final confidence employs adaptive weighting based on evidence quality:

Final_Score =
$$\begin{cases} 0.8 \cdot E_{score} + 0.2 \cdot T_{score} & \text{if } n \geq 3 \text{ and } C_{weighted} > 0.7 \\ 0.7 \cdot E_{score} + 0.3 \cdot T_{score} & \text{if } n \geq 1 \text{ and } C_{weighted} > 0.5 \\ 0.5 \cdot E_{score} + 0.5 \cdot T_{score} & \text{otherwise} \end{cases}$$
(17)

Algorithm 4 Agreement Score Calculation

```
Require: source list S
Ensure: agreement score A \in [0, 1]
 1: n_{support} \leftarrow |\{s \in S : s.\text{supports\_claim} = \text{True}\}|
 2: n_{oppose} \leftarrow |\{s \in S : s.\text{supports\_claim} = \text{False}\}|
 3: n_{neutral} \leftarrow |\{s \in S : s.\text{supports\_claim} = \text{None}\}|
 4: n_{total} \leftarrow |S|
 5: n_{decisive} \leftarrow n_{support} + n_{oppose}
 6: if n_{decisive} = 0 then
        if n_{neutral} > 3 then
 8:
           return 0.4 {Many neutral sources suggest complexity}
 9:
10:
           return 0.5
11:
        end if
12: else if n_{support} \ge n_{oppose} then
        A \leftarrow \frac{n_{support}}{n_{total}}
if n_{support} > 0 AND n_{oppose} = 0 AND n_{support} \ge 2 then
13:
14:
           A \leftarrow \min(1.0, A + 0.1) {Consensus bonus}
15:
16:
        end if
17:
        return A
18: else
        A \leftarrow 0.3 - \frac{n_{oppose}}{n_{total}} \cdot 0.2
19:
        return \max(0.1, A) {Floor at 0.1}
20:
21: end if
```

5.7 Source Quality Bonus

High-quality sources receive additional weighting:

$$E_{score}^{final} = \begin{cases} \min(1.0, E_{score} + 0.05) & \text{if } |\{s \in S : C_s > 0.8\}| \ge 2\\ E_{score} & \text{otherwise} \end{cases}$$
 (18)

5.8 Confidence Boundaries

The final confidence percentage is bounded and interpreted:

Confidence Percentage =
$$\max(15, \min(95, |\text{Final_Score} \times 100|))$$
 (19)

Confidence Range	Interpretation
0-20%	Very Low - Highly unreliable
21- $40%$	Low - Questionable reliability
41- $60%$	Moderate - Ambiguous evidence
61-80%	High - Generally reliable
81 100%	Very High - Highly reliable

Table 1: Confidence Interpretation Boundaries

6 Claim Classification System

The system classifies claims into categories for optimized processing:

Algorithm 5 Claim Classification

Require: claim string c

Ensure: claim type T_c

- 1: $c_{lower} \leftarrow \text{LOWERCASE}(c)$
- 2: if c_{lower} contains {study, research, scientist, percent, data shows} then
- 3: return "Scientific/Statistical"
- 4: else if c_{lower} contains {said, stated, according to, quote, claimed} then
- 5: **return** "Quote/Statement"
- 6: else if c_{lower} contains {happened, occurred, when, date, year, during} then
- 7: **return** "Historical/Factual"
- 8: else if c_{lower} contains {health, medical, disease, treatment, cure} then
- 9: **return** "Health/Medical"
- 10: else if c_{lower} contains {will, going to, predict, future, forecast} then
- 11: **return** "Predictive/Future"
- 12: **else**
- 13: **return** "General Factual"
- 14: **end if**

7 LLM Integration and Structured Reasoning

7.1 Verification Prompt Template

The system uses a structured prompt template for consistent LLM analysis:

You are an expert fact-checker. Analyze the following claim and evidence.

CLAIM: {claim}

EVIDENCE FROM SOURCES: {evidence}

Your task:

- 1. Determine if the claim is TRUE, FALSE, or CAN'T SAY
- 2. Provide detailed reasoning
- 3. Consider source credibility and consistency

Guidelines:

- Use TRUE only if evidence strongly supports
- Use FALSE only if evidence clearly contradicts
- Use CAN'T SAY if evidence is mixed/insufficient
- Avoid excessive hedging unless genuinely uncertain

Response format:

VERDICT: [TRUE/FALSE/CAN'T SAY] REASONING: [Detailed analysis]

7.2 Verdict Extraction Algorithm

Algorithm 6 Verdict Extraction from LLM Response

Require: LLM response text R

Ensure: verdict $V \in \{\text{TRUE}, \text{FALSE}, \text{CAN'T SAY}\}$

- 1: $V \leftarrow$ "CAN'T SAY" {Default verdict}
- 2: **if** "VERDICT:" in R **then**
- 3: Extract line containing "VERDICT:"
- 4: $V_{text} \leftarrow \text{text after "VERDICT:" (uppercase)}$
- 5: if "TRUE" in V_{text} AND "FALSE" not in V_{text} then
- 6: $V \leftarrow \text{"TRUE"}$
- 7: **else if** "FALSE" in V_{text} then
- 8: $V \leftarrow \text{"FALSE"}$
- 9: end if
- 10: **end if**
- 11: return V

8 Error Handling and Robustness

8.1 API Failure Management

The system implements graceful degradation when APIs fail:

Algorithm 7 Robust Source Gathering

```
Require: claim c
Ensure: source list S (possibly empty)
 1: S \leftarrow \emptyset
 2: S_{academic} \leftarrow SEARCH SEMANTIC SCHOLAR(c)
 3: S \leftarrow S \cup S_{academic} Exception e
 4: LOG("Academic search failed: " + e)
 5: S_{web} \leftarrow \text{SEARCH WEB SERPER}(c)
 6: S \leftarrow S \cup S_{web} Exception e
 7: LOG("Web search failed: " + e)
 8: S_{expert} \leftarrow \text{SEARCH\_PERPLEXITY}(c)
 9: S \leftarrow S \cup S_{expert} Exception e
10: LOG("Expert analysis failed: " + e)
11: \mathbf{return} S
```

8.2 **Deduplication Logic**

Sources are deduplicated based on URL similarity:

```
Algorithm 8 Source Deduplication
```

```
Require: source list S
Ensure: unique source list S_{unique}
 1: seen urls \leftarrow \emptyset
 2: S_{unique} \leftarrow \emptyset
 3: for each source s in S do
       url key \leftarrow s.url or (s.title + s.content[: 50])
       if url key ∉ seen urls then
 5:
          seen urls \leftarrow seen urls \cup \{url key\}
 6:
           S_{unique} \leftarrow S_{unique} \cup \{s\}
 7:
       end if
 8:
 9: end for
10: return S_{unique}
```

Performance Considerations 9

9.1 API Rate Limiting

The system implements delays between API calls to respect rate limits:

$$Delay = \max(1.0, \frac{API_calls_per_minute}{60})$$
 (20)

9.2 Concurrent Processing

For batch verification, the system supports concurrent processing with controlled threading:

Algorithm 9 Batch Claim Verification

```
Require: claim list C = \{c_1, c_2, ..., c_n\}

Ensure: result list R = \{r_1, r_2, ..., r_n\}

1: R \leftarrow \emptyset

2: Initialize thread pool with max workers = 3

3: for i = 1 to n do

4: r_i \leftarrow \text{VERIFY\_CLAIM}(c_i)

5: Sleep(1.0) {Rate limiting} Exception e

6: r_i \leftarrow \text{CREATE\_ERROR\_RESULT}(c_i, e)

7: R \leftarrow R \cup \{r_i\}

8: end for

9: return R
```

10 System Integration Architecture

10.1 Component Interaction Flow

```
Input Claim \rightarrow Claim Classification \rightarrow Evidence Gathering \downarrow

LLM Analysis \leftarrow Evidence Formatting \leftarrow Source Assessment \downarrow

Verdict Extraction \rightarrow Confidence Calculation \rightarrow Final Result
```

Figure 1: System Component Interaction Flow

10.2 Data Flow Pipeline

The complete verification pipeline processes claims through multiple stages:

- 1. Input Processing: Claim normalization and classification
- 2. Source Gathering: Multi-API evidence collection with error handling
- 3. Credibility Assessment: Domain-based and content-based scoring
- 4. Evidence Analysis: Text analysis for claim support determination
- 5. LLM Verification: Structured reasoning with evidence synthesis
- 6. Confidence Calculation: Mathematical reliability assessment
- 7. **Result Compilation**: Comprehensive report generation

11 Experimental Validation

11.1 Test Case Categories

The system includes predefined test claims across multiple categories:

Category	Example Claims	
Scientific/Health	"Coffee reduces the risk of type 2 diabetes"	
Historical/Factual	"The Great Wall of China is visible from space"	
Medical/Safety	"Vaccines cause autism in children"	
Environmental	"Climate change is primarily caused by human activ-	
	ities"	
Quotes/Attribution	"Einstein said 'Imagination is more important than	
	knowledge'"	
Health/Nutrition	"Drinking 8 glasses of water per day is necessary"	
Cognitive Science	"The human brain only uses 10% of its capacity"	
Animal Behavior	"Goldfish have a 3-second memory span"	

Table 2: Test Claim Categories

12 Limitations and Future Enhancements

12.1 Current Limitations

- 1. Language Dependency: Currently optimized for English text analysis
- 2. API Dependency: System reliability depends on external API availability
- 3. Temporal Constraints: Knowledge cutoff limitations for recent events
- 4. **Domain Specificity**: Credibility assessments may not cover all specialized domains

12.2 Proposed Enhancements

- 1. Multi-language Support: Extend linguistic analysis to multiple languages
- 2. Caching Mechanisms: Implement intelligent caching for frequently verified claims
- 3. Real-time Updates: Integration with news feeds for temporal claim verification
- 4. **Domain Expansion**: Extended credibility databases for specialized fields
- 5. Machine Learning Integration: Training custom models for claim-specific analysis

13 Conclusion

The Enhanced Claim Verification System represents a sophisticated approach to automated fact-checking that combines real-time source gathering, mathematical confidence modeling, and structured AI reasoning. The system's multi-layered architecture ensures robustness while maintaining high accuracy through rigorous evidence evaluation and confidence quantification.

Key technical contributions include:

- Novel weighted confidence calculation framework
- Comprehensive domain credibility assessment
- Advanced hedging density analysis
- Real-time multi-source evidence integration
- Structured LLM reasoning with error handling

The mathematical frameworks presented provide a solid foundation for reliable claim verification while maintaining transparency in the decision-making process. The system's modular design facilitates future enhancements and adaptations to emerging verification challenges.

14 Appendix: Implementation Details

14.1 API Configuration Requirements

The system requires the following API keys for full functionality:

- OPENAI API KEY or GEMINI API KEY: LLM processing
- SEMANTIC SCHOLAR API KEY: Academic source gathering
- SERPER API KEY: Web search functionality
- PERPLEXITY API KEY: Expert analysis integration
- JINA API KEY: Optional content extraction

14.2 Configuration Parameters

Parameter	Default Value	Description
n_{max}	8	Maximum effective source count
w_n	0.25	Source volume weight
w_c	0.45	Credibility weight
w_a	0.30	Agreement weight
Hedging Cap	0.15	Maximum hedging penalty
Confidence Floor	15%	Minimum confidence score
Confidence Ceiling	95%	Maximum confidence score

Table 3: System Configuration Parameters