逻辑设计基础

Fundamentals of Logic Design

张春慨

School of Computer Science ckzhang@hit.edu.cn

Unit 3-3 Karnaugh Maps

- 开关函数的最简形式
 - 多变量卡诺图
 - ■填写卡诺图
 - ■卡诺图化简法

开关函数的最简形式

When a function is realized using AND and OR gates, the cost of realizing the function is directly related to the number of gates and gate inputs used.

开关函数的最简形式

$$F = \sum_{XYZ} (1,5,7) = x' y' z + xy' z + xyz$$

$$F = (x' y' z + xy' z) + xyz = y' z + xyz$$

$$F = (y'+xy)z = (y'+x)z$$

开关函数的最简形式

一个最简表达式中

- ① 逻辑门的数量最少
- ② 逻辑门的输入个数最少

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的.
- ■但最简表达式的实现代价是相同的(逻辑门的数量相同、输入变量的个数相同)

Unit 4 Karnaugh Maps

■ 开关函数的最简形式

- 多变量卡诺图
- ■填写卡诺图
- ▶卡诺图化简法

- ■卡诺图通常为正方形或矩形均匀分成2″个小格, 每个小格代表一个最小项。
- ■单元格对应的最小项按格雷码摆放
- ■任何两个相邻单元格对应的最小项只有一个变 量取值不同

1. 两变量 K. Map

F=f(AB)

	\overline{B}	В		
\overline{A}	$\overline{A}\overline{B}$	$\overline{A} B$		
\boldsymbol{A}	\overline{AB}	AB		
(a)				

2. 三变量 K. Map

$$F=f(ABC)$$

BC	00	01	11	10
0	0	1	3	2
1	4	5	7	6

3. 四变量 K. Map

F=f(ABCD)

AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

4. 五变量 K. Map

F=f(ABCDE)

CI AB	DE 000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

卡诺图的特征

• 卡诺图上几何相邻的最小项逻辑上也相邻。

• 几何相邻 { 相接

行或列首尾相接

•逻辑相邻—两个最小项中只有一个变量出现的形式不同

Unit 4 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图

- ■填写卡诺图
- ■卡诺图化简法

填写卡诺图

① 已知真值表

Truth Table

AB C	F
000	0 √
001	0 ✓
010	0 √
011	1√
100	0 ✓
101	1√
110	1√
111	1√

- ② 已知标准与或式:与项是最小项时,按最小项编号的位置直接填入。
- ③ 已知标准或与式

$$F = \Sigma m^3 (3, 5, 6, 7)$$

$$F = \Pi M^3 (0, 1, 2, 4)$$

填写卡诺图

$$F = AB + BC + AC$$

$$= AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

BC	00	01	11	10	
0	0	0	1	0	
1	0	1	1	1	

Example

$$F = (\overline{A \oplus B})(C+D)$$

$$= \overline{A \oplus B} + \overline{(C+D)}$$

$$= \overline{A}\overline{B}+AB+\overline{C}\overline{D}$$

$$\bar{A}\bar{B} = \underline{0000} + \underline{0001} + \underline{0010} + \underline{0011}$$

$$\mathbf{AB} = \underline{1100} + \underline{1101} + \underline{1110} + \underline{1111}$$

$$\bar{C}\bar{D} = 0000 + 0100 + 1000 + 1100$$

ABCE	00	01	11	10
00	1	1	1	1
01	1	0	0	0
11	1	1	1	1
10	1	0	0	0

$$\mathbf{F} = \mathbf{A} \oplus \mathbf{C} \cdot \mathbf{\overline{B}} (\mathbf{A}\mathbf{\overline{C}}\mathbf{\overline{D}} + \mathbf{\overline{A}}\mathbf{C}\mathbf{\overline{D}})$$

$$F = \overline{A \oplus C} + \overline{B} (A\overline{CD} + \overline{ACD})$$

$$= A \odot C + A \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D}$$

$$= AC + \overline{AC} + A\overline{BCD} + \overline{ABCD}$$

$$= \underline{1010} + \underline{1011} + \underline{1110} + \underline{1111} + \underline{0000} + \underline{0001} + \underline{0100} +$$

ABCE	00	01	11	10
00	1	1	0	1
01	1	1	0	0
11	0	0	1	1
10	1	0	1	1
I U				

④ 与项不是最小项的形式

与项不是最小项的形式,按邻接关系直接填入卡诺图。例如

$$P(A,B,C,D) = \overline{A}CD + ABD$$

先填 $\overline{A}CD$, 这是 \overline{A} , 这是 \overline{CD} ;

所以 $\overline{A}CD$ 处于第一第二行和第三列的交点上(二行一列)。

再填 ABD, 这是AB, 这是D。

所以ABD处于第三行和第二、第 三列的交点上(一行二列)。

$$\overline{A} CD = \overline{A} (B + \overline{B}) CD$$
$$= \overline{A} BCD + \overline{A} \overline{B} CD$$

例:将逻辑式 $P=B\overline{C}+\overline{BD}$ 填入卡诺图

先填 $B\overline{C}$,这是B,这是 \overline{C} ; $B\overline{C}$ 这一与项处于第二、 第三行和第一、第二列的交 点处(二行二列)。

再填 \overline{BD} ,这是 \overline{B} ,这是 \overline{D} 。 \overline{BD} 这一与项处于第一、第四行和第一、第四列的交点处(二行二列)。

例:将逻辑式 $P = \overline{B}C + AB\overline{D}$ 填入卡诺图

Properties of K. maps

基于卡诺图的逻辑运算

Properties of K. maps

ABO	C 00	01	11	10	BO	C 00	01	11	10
0	0	1	1	1	0	1	0	0	0
1	0	1	1	0	1	1	0	0	1
		F	ı		-		F		

Representation methods of logical function

K. map is an especially useful tool for simplifying and manipulating switching functions of three or four variables.

Unit 4 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- ■填写卡诺图
- 卡诺图化简法

卡诺图化简法

■图形法化简逻辑函数

$$F(A,B,C) = \overline{A}BC + ABC = BC(\overline{A} + A) = BC$$

卡诺图化简法

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

Step ①: 画圈

- a).将相邻为1的小方格圈在一起。 (小方格的个数必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

Adjacent:紧靠在一起的、行列首尾的、对称的

AB\	D 00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	1	1	0
•				

Step ②:每个圈代表一个与项

ゆう 变量取值相同 { **1**: 原变量 **0**:反变量

	D 00	01	11	10
AB \ 00	1)	0	0	1
01	0	0	0	0
11	0	0	0	0_
10	1	0	0	1

ABC	D 00	01	11 ,	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	1	1	0
·			4	

Step ③: 将所有的与项相加

$$F = \bar{A}\bar{C} + AC + \bar{B}\bar{D}$$

The two minimum solutions For F

从卡诺图中读取:

■ 最简与或式(AND-OR)

- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

Step ①: 画圈

- a).将相邻为0的小方格圈在一起。 (小方格的个数必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

Adjacent:紧靠在一起的、行列首尾的、对称的

AB C	D 00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1_	1	1
10	1	0	0	1
•				

Step ②:每个圈代表一个和项

AB	D 00	01	11	10
00	0	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0/
-				

\C]					
AB\	00	01	11	10	-
00	1	0	0	1	
01	1	1	1	1	
11	1	1_	1	1	
10	1	0	0	1	
•			4	>	

Step ③: 将所有的和项相乘

$$F = (A + C) \cdot (\overline{A} + \overline{C}) \cdot (B + D)$$

卡诺图化简法

从卡诺图中读取

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)

■ 最简与或非式(AND-OR-NOT)

Step ①:读 \overline{F} 的与或式

Method: same as Minimum AND-OR expression, but focus on "0"

Step ②:对F求反

进一步讨论——更多变量卡诺图

* 展开定理

一个n变量的逻辑函数可以对变量X_i展开为两个n-1 变量的逻辑函数

1.
$$f(x_1x_2...x_i...x_n)$$

$$= x_i \cdot f(x_1 x_2 \dots 1 \dots x_n) + \overline{x_i} \cdot f(x_1 x_2 \dots 0 \dots x_n)$$

.....对x_i展开为与或式

2.
$$f(x_1x_2...x_i...x_n)$$

=
$$[\bar{x}_i + f(x_1x_2...1...x_n)] \cdot [x_i + f(x_1x_2....0...x_n)]$$

·······对xi展开为或与式

进一步讨论——更多变量卡诺图

$F=f(x_1x_2x_3x_4x_5)$

\mathbf{X}_{4}	X ₅			
X_2X_3	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10
•	$x_1 = 0$			

X_4	X_5			
X_2X_3	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26
		\mathbf{x}_1	= 1	

 $F = \Sigma m(0,1,4,5,6,11,12,14,16,20,22,28,30,31)$

Example

F=C'F'+B'CD'F+ ACD'F+ A'BD'EF' + A'BDE'F' + ABC'DE'

卡诺图化简法

进一步讨论——

■ 带无关项的卡诺图化简

Example

A=1 (staff), A=0(not staff); B=1(female), B=0 (male); C=1(Has a ticket), C=0 (Has no ticket); F=1(enter), F=0 (no enter)

A	В	C	F
0	0	0	0
0	0	1	×
0	1	0	0
0	1	1	×
1	0	0	0
1	0	1	X
1	1	0	0
1	1	1	1

无关项——

不存在的或无意义的取值组合

Example

输入信号X为 8421BCD码, 设计组合逻辑电路, 当 X≥5, 输出 F=1。

$$F=A+BD+BC$$

ABCD	F	ABCD	F
0 0 0 0	0	1 0 0 0	1
0 0 0 1	0	1 0 0 1	1
0 0 1 0	0	1 0 1 0	X
0 0 1 1	0	1 0 1 1	X
0 1 0 0	0	1 1 0 0	X
0 1 0 1	1	1 1 0 1	X
0 1 1 0	1	1 1 1 0	X
0 1 1 1	1	1 1 1 1	X

设计一个能将4位 二进制数转换为余3码的电路

二进制数WXYZ	余三码 A B C D	二进制数 WXYZ	余三码 A B C D
0 0 0 0	0 0 1 1	1 0 0 0	1011
0 0 0 1	0 1 0 0	1 0 0 1	1 1 0 0
0 0 1 0	0 1 0 1	1 0 1 0	×
0 0 1 1	0 1 1 0	1011	×
0 1 0 0	0 1 1 1	1 1 0 0	×
0 1 0 1	1 0 0 0	1 1 0 1	×
0 1 1 0	1 0 0 1	1110	×
0 1 1 1	1 0 1 0	1111	×

A:

$$A=W+XZ+XY$$

B:

$$B = \overline{X}Z + \overline{X}Y + X\overline{Y}\overline{Z}$$

C:

$$C = \overline{Y}\overline{Z} + YZ$$

D:

$$D=\overline{Z}$$

Unit 4 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- ■填写卡诺图
- ■卡诺图化简法