Lens having focal length *f*

the radius of the sphere is positive (negative) when its center is to the right (left) of the spherical surface that delimits one side of the lens: $R_1 > 0$, $R_2 < 0$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
 thin lens formula

where s_o is the distance between the object and the lens, s_i is the distance between the lens and the image, and f is the focal length

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
 lens maker's formula

n is the refractive index of the glass the lens is made of, and R_1 and R_2 are the radii of the two spherical surfaces delimiting the lens Compound lens composed of two lenses L_1 and L_2 having focal lengths f_1 and f_2 , respectively

the distance between the two lenses is d

the distance s_i between the second lens L_2 and the image is given by

$$s_i = \frac{f_2 d - \frac{f_1 f_2 s_o}{s_o - f_1}}{d - f_2 - \frac{f_1 s_o}{s_o - f_1}}$$