Colbyn's Exam #1 Corrections

Colbyn Wadman

September 28, 2020

Question #1

Question: Consider the angle θ in with measure -495° .

The problem with this question is that I was trying to be smart by simplifying -495° to 225° , so thereafter all of my subsequent work was using an angle coterminal to -495° . In this context, my mistake was equating co-terminal angles as being the same, but this only applies to the output of periodic functions where co-terminal angles **map to the same value**, but the arguments themselves represent different measures.

Question #1 (A)

Using the following relation:

$$x^{\circ} = \frac{x}{360}\tau \text{ rad} \tag{1}$$

I can express -495° in terms of turns (or τ) like so:

$$-495^{\circ} = \frac{-495}{360} \tau \text{ rad}$$

$$= -\frac{11}{8} \tau \text{ rad}$$

$$= -1\frac{3}{8} \tau$$
(2)

Since this angle is expressed in terms of turns, we have a intuitive idea about how the graph the given angle. I.e. because $-\frac{3}{8}$ can be considered a ratio of a circle, which is easy to picture, in the same manner that $\frac{3}{4}$ of a circle is easy to imagine, compared to e.g. $\frac{3}{2}$ half circles.

Therefore, I know that this angle makes one full revolution, and $-\frac{3}{8}$ of a revolution (going clockwise), which results in the following figure correctly drawn in the context of a -495° angle:

Question #1 (B)

Using the following relation:

$$x^{\circ} = \frac{x}{360} (2\pi) \text{ rad} \tag{3}$$

I can **correctly** express -495° degrees in terms of radians like so:

$$-495^{\circ} = \frac{-495}{360} (2\pi) \text{ rad}$$

$$= -\frac{11}{8} (2\pi) \text{ rad}$$

$$= -\frac{11}{4} \pi \text{ rad}$$
(4)

Answer: $-\frac{11}{4}\pi$ rad

Question #1 (C)

Question #3

This should have been correct, what happens is my brain frequently gets things mixed up, i.e. there was a disconnect between my internal thoughts and what manifested on paper. I know that sc(x) is the reciprocal of co(x), just as cs(x) is the reciprocal of sin(x), and that cot(x) is the reciprocal of tan(x), and furthermore in the context of the unit circle, that $sin(\theta)$ represents the y value, and that $cos(\theta)$ represents the x value.

Therefore, given the some P(-20,21) for θ :

$$r = \sqrt{x^2 + y^2} = 29$$

$$\sin(\theta) = \frac{y}{r} = \frac{21}{29}$$

$$\sec(\theta) = \frac{r}{x} = \frac{29}{-20} = -\frac{29}{20}$$
(5)

Answer: $\sin(\theta) = \frac{21}{29}$, $\sec(\theta) = -\frac{29}{20}$

Question #4

This was one of those questions where I wonder if I'm just dumb, or if it's legitimately a hard problem... Either way something I would have failed at regardless.

Information given:

- $\overline{FG} = 600 \mathrm{m}$
- $\angle EFH = 1.91^{\circ}$
- $\angle EGH = 2.67^{\circ}$

Solution:

$$\tan(2.67^{\circ}) = \frac{\overline{EH}}{x}$$

$$x = \frac{\overline{EH}}{\tan(2.67^{\circ})}$$

$$\tan(1.91^{\circ}) = \frac{\overline{EH}}{600 + x}$$

$$(600 + x)(\tan(1.91^{\circ})) = (600 + x)\frac{\overline{EH}}{600 + x}$$

$$(600 + x)(\tan(1.91^{\circ})) = \overline{EH}$$

$$(600 \cdot \tan(1.91^{\circ}) + x \cdot \tan(1.91^{\circ}) = \overline{EH}$$

$$600 \cdot \tan(1.91^{\circ}) = \overline{EH} - \overline{EH}\frac{\tan(1.91^{\circ})}{\tan(2.67^{\circ})}$$

$$600 \cdot \tan(1.91^{\circ}) = \overline{EH}(1 - \frac{\tan(1.91^{\circ})}{\tan(2.67^{\circ})})$$

$$\frac{600 \cdot \tan(1.91^{\circ})}{1 - \frac{\tan(1.91^{\circ})}{\tan(2.67^{\circ})}} = \overline{EH} \approx 70$$

During the exam I was stuck on the gap between G and H, in hindsight it all makes sense, i.e. just solve for \overline{GH} using an unknown value for \overline{EH} , since we can factor this quantity out in the ensuing expression for $\tan(1.91^\circ)$. Although this realization occurred after spending an hour or so on the problem, I suppose failing this question was inevitable.

Answer: $\overline{EH} \approx 70 \text{ m}$

Question #5

Question #6

Miscellaneous

Location: https://github.com/colbyn/exam-1-extra-corrections.