

Training overview

We will cover the following topics

- GPU hardware overview
- GPU accelerated software examples
- GPU enabled libraries
- CUDA C programming basics
- OpenACC introduction
- Accessing GPU nodes and running GPU jobs on SDSC Comet

What is a GPU?

Accelerator

- Specialized hardware component to speed up some aspect of a computing workload.
- Examples include floating point co-processors in older PCs, specialized chips to perform floating point math in hardware rather than software.
 More recently, Field Programmable Gate Arrays (FPGAs).

Graphics processing unit

- "Specialist" processor to accelerate the rendering of computer graphics.
- Development driven by \$150 billion gaming industry.
- Originally fixed function pipelines.
- Modern GPUs are programmable for general purpose computations (GPGPU).
- Simplified core design compared to CPU
 - Limited architectural features, e.g. branch caches
 - Partially exposed memory hierarchy

Why is there such an interest in GPUs?

Moore's law

- Transistor count in integrated circuits doubles about every two years.
- Exponential growth still holds (see figure).
- However...

Trends since mid 2000s

- Clock frequency constant.
- Single CPU core performance (serial execution) roughly constant.
- Performance increase due to increase of CPU cores per processor.
- Cannot simply wait two years to double code execution performance.
- Must write parallel code.

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

Source:

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Why is there such an interest in GPUs?

 GPUs offer significantly higher 32-bit floating point performance than CPUs. Datacenter GPUs also offer significantly higher 64-bit floating point performance than CPUs.

Figures source: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Why is there such an interest in GPUs?

GPUs have significantly higher memory bandwidth than CPUs.

 Given power consumption, a fair comparison would be a single GPU to 2-socket CPU server.

Figures source: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Comparison of top X86 CPU vs Nvidia V100 GPU

Aggregate performance numbers (FLOPs, BW)	Dual socket Intel 8180 28-core (56 cores per node)	Nvidia Tesla V100, dual cards in an x86 server
Peak DP FLOPs	4 TFLOPs	14 TFLOPs (3.5x)
Peak SP FLOPs	8 TFLOPs	28 TFLOPs (3.5x)
Peak HP FLOPs	N/A	224 TFLOPs
Peak RAM BW	~ 200 GB/sec	~ 1,800 GB/sec (9x)
Peak PCIe BW	N/A	32 GB/sec
Power / Heat	~ 400 W	2 x 250 W (+ ~ 400 W for server) (~ 2.25x)
Code portable?	Yes	Yes (OpenACC, OpenCL)

A supercomputer in a desktop?

ASCI White (LLNL)

- 12.3 TFLOP/sec #1 Top 500, November 2001.
- Cost \$110 Million USD (in 2001!)

SDSC Comet

- 2.8 PFLOP/sec aggregate
- 36 nodes 2 x Nvidia K80
 5.5 TFLOP/sec DP, 16.4 TFLOP/sec SP (each node)
- 36 nodes 4 x Nvidia P100
 18.8 TFLOP/sec DP, 37.2 TFLOP/sec SP (each node)
- Cost \$25 Million USD (\$14 Million Hardware)

DIY 4 x Nvidia RTX 2080 box

- 1.3 TFLOP/sec DP
- 40.0 TFLOP/sec SP
- Cost ~ \$5 Thousand USD

GPU accelerated software

Examples from virtually any field

- Exhautive list on https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/
- Chemistry
- Life sciences
- Bioinformatics
- Astrophysics
- Finance
- Medical imaging
- Natural language processing
- Social sciences
- Weather and climate
- Computational fluid dynamics
- Machine learning, of course
- etc...

Machine learning and GPUs

Machine learning

- Estimate / predictive model based on reference data.
- Many different methods and algorithms.
- GPUs are particularly well suited for deep learning workloads

Deep learning

- Neural networks with many hidden layers.
- Tensor operations (matrix multiplications).
- GPUs are very efficient at these (4x4 matrix algebra is used in 3D graphics)
- Half-precision arithmetic can be used for many ML applications, at least for inference.
- ML frameworks provide GPU support (E.g. PyTorch, TensorFlow)

Quantum chemistry

Compute molecular properties from quantum mechanics (TeraChem code)

Molecular dynamics

Amber code: Atomistic simulations of condensed phase biomolecular systems

Cytochrome c oxidase enzyme

Yang, Skjevik, Han Du, Noodleman, Walker, Götz, BBA Bioenergetics 2016 (1857) 1594.

Molecular dynamics

Amber code: Atomistic simulations of condensed phase biomolecular systems

Amber 18 molecular dynamics software

Götz, Williamson, Xu, Poole, Le Grand, Walker, *J Chem Theory Comput* 2012 (8) 1542.

Le Grand, Götz, Walker, Comput Phys Comm 2013 (184) 374.

Salomon-Ferrer, Götz, Poole, Le Grand, Walker, *J Chem Theory Comput* 2012 (8) 1542.

What's the catch?

GPU vs CPU architecture

(a) CPU

ALU ALU

Control

ALU ALU

Cache

DRAM

(b) GPU

CPU

- Few processing cores with sophisticated hardware
- Multi-level caching
- Prefetching
- Branch prediction

GPU

- Thousands of simplistic compute cores (packaged into a few multiprocessors)
- Operate in lock-step
- Vectorized loads/stores to memory
- Need to manage memory hierarchy

GPU architecture

Nvidia GPU architecture in 2009

- Tesla T10, a server with early C1060 datacenter GPU
- Basic architecture is still the same

Multiprocessor

- SP compute cores
- DP compute core(s)
- Special function units
- Instruction cache
- Shared memory / data cache
- Handles many more threads than processing cores

A brief history of GPU computing

- 2003 First attempts to use GPUs for general computing.
 - Programmed as graphics primitives (heroic)
 - problems had to be expressed in terms of vertex coordinates, textures and shader programs.
 - Hardware lacking certain 'features' No random reads or writes etc.
- 2004 'Brook' programming language for GPUs.
- 2007 NVIDIA announce CUDA at SC07
 - Release GPUs with specific 'computational' features.
- 2008 OpenCL language ratified.
 - Mainly aimed at embedded devices but has features for GPU computation.
- 2010 CUDA Fortran language defined.
- 2011 OpenACC compiler directive language ratified.
 - Provides OpenMP like directives for use with GPUs.

GPU programming 'languages'

Brook

- First widely adopted programming model for general purpose GPU (GPGPU) programming
- Extends C with data-parallel constructs
- Concepts such as streams, kernels, reduction operators
- Easier to write AND faster than hand-tuned GPU code

CUDA – based on ideas of Brook

- Solution to run C seamlessly on GPUs (Proprietary, NVIDIA GPUs only)
- CUDA Toolkit contains compiler, math libraries, debugging and profiling tools
- Lots of code samples, programming guides and other documentation available
- De facto standard for high-performance code

OpenCL

Industry standard, works for Nvidia and AMD GPUs (and other devices)

GPU programming 'languages'

CUDA Fortran

- Supports CUDA extensions for Fortran.
- Implemented in Portland Group Compilers.

OpenACC

- OpenMP-like compiler directives language for C/C++ and Fortran.
- Designed to make porting to GPUs easy and quick.
- Full support by PGI Compilers and Cray compilers on Crays
- Partial support by GNU compilers (experimental since version 5.1)
- Also some less commonly used and experimental compilers

OpenMP

- Version 4.x includes accelerator and vectorization directives
- Works well with Intel Xeon Phi (and AVX512), not mature for GPUs, will not discuss here

Common GPU programming

- GPU Kernels executed on GPU but controlled from host CPU.
- Memory can be copied to and from CPU and GPU memory (synchronization is important)

```
__global___ void kernel( int *a, int dimx, int dimy )
{
    int ix = blockIdx.x*blockDim.x + threadIdx.x;
    int iy = blockIdx.y*blockDim.y + threadIdx.y;
    int idx = iy*dimx + ix;
    a[idx] = a[idx]+1;
}
```

```
global__ void kernel( int *a, int dimx, int dimy )

int ix = blockIdx.x*blockDim.x + threadIdx.x;
  int iy = blockIdx.y*blockDim.y + threadIdx.y;
  int idx = iy*dimx + ix;

a[idx] = a[idx]+1;
}
```

```
int main()
{
   int dimx = 16;
   int dimy = 16;
   int num_bytes = dimx*dimy*sizeof(int);

   int *d_a=0, *h_a=0; // device and host pointers

   h_a = (int*)malloc(num_bytes);
   cudaMalloc( (void**)&d_a, num_bytes );

   if( 0==h_a || 0==d_a )
   {
      printf("couldn't allocate memory\n");
      return 1;
   }
}
```

CUDA kernel

C program, calls CUDA kernel

```
cudaMemset( d a, 0, num bytes );
dim3 grid, block;
block.x = 4;
block.y = 4;
grid.x = dimx / block.x;
grid.y = dimy / block.y;
kernel<<<grid, block>>>( d a, dimx, dimy );
cudaMemcpy( h a, d a, num bytes, cudaMemcpyDeviceToHost );
for(int row=0; row<dimy; row++)</pre>
    for(int col=0; col<dimx; col++)</pre>
        printf("%d ", h a[row*dimx+col] );
    printf("\n");
free( h a );
cudaFree( d a );
return 0;
```

Hardware characteristics change across GPU models and generations

- Single precision / double precision floating point performance
- Memory bandwidth
- Number of compute cores and multiprocessors
- Number of threads that the hardware can execute
- Number of registers and cache size
- Available GPU memory, device / shared

Memory hierarchy needs to be explicitly managed

- CPU memory, GPU global / shared / texture / constant memory
- Unified memory helps, but the memory hierarchy still exists

Different hardware vendors work in different ways

Nvidia vs AMD

C870 - Nov 2006

- First 'programmable' Card
- Single Precision Only
- 1.5GB RAM

C1060 - Jun 2008

- DP / SP = 1/8
- 4GB RAM

C2050 - Nov 2010

- DP / SP = 1/2
- 3GB RAM

K10 - Jun 2012

- DP / SP = 1 / 24
- 2 GPUs on 1 board
- 4GB RAM per GPU

K20 - Nov 2012

- DP / SP = 1/3
- 5GB RAM

K80 - Nov 2014

- DP / SP = 1/3
- 2 GPUs per board
- 2 x 12GB RAM

K40 - Nov 2013

- DP / SP = 1/3
- 12GB RAM

M40 - Nov 2015

- DP / SP = 1/3
- 12 or 24GB RAM

P100 - Q2 2016

- DP / SP = 1/2
- 16GB RAM

V100 - Q2 2017

- DP / SP = 1/2
- 16 or 32GB RAM

	C2050	K10	K20	K40	K80	M40	P100	V100
#Multi Proc	14	8 (x2)	13	15	13 (x2)	24	56	80
SP Cores per MP	32	192	192	192	192	128	64	64
#Cores	448	1,536 (x2)	2,496	2,880	2,496 (x2)	3,072	3,584	5,120
Warp Size	32	32	32	32	32	32	32	32
DP Gflop/s	515	95 (x2)	1,170	1,680	1,455 (x2)	213	4,763	7,066

Nvidia GPU models

Nvidia compute capabilities determine features available on Nvidia GPUs

E.g. double precision support since version 1.3

Hardware Version 3.0 / 3.5 (Kepler I / Kepler II)

- •Tesla K20 / K20X / K40 /K80
- •Tesla K10 / K8
- •GTX-Titan / Titan-Black / Titan-Z
- •GTX770 / 780 / 780Ti
- •GTX670 / 680 / 690
- •Quadro cards supporting SM3.0 or 3.5

Hardware Version 2.0 (Fermi)

- •Tesla M2090
- •Tesla C2050/C2070/C2075 (and M variants)
- •GTX560 / 570 / 580 / 590
- •GTX465 / 470 / 480
- •Quadro cards supporting SM2.0

Hardware Version 7.0 (Volta V100)

- Titan-V
- V100

Hardware Version 6.1 (Pascal GP102/104)

- •Titan-XP [aka Pascal Titan-X]
- •GTX-1080TI / 1080 / 1070 / 1060
- •Quadro P6000 / P5000
- •P4 / P40

Hardware Version 6.0 (Pascal P100/DGX-1)

- Quadro GP100 (with optional NVLink)
- •P100 12GB / P100 16GB / DGX-1

Hardware Version 5.0 / 5.5 (Maxwell)

- •M4, M40, M60
- •GTX-Titan-X
- •GTX970 / 980 / 980 Ti
- •Quadro cards supporting SM5.0 or 5.5

What this means for your program

Threads

- Never write code with any assumption for how many threads it will use.
- Use functions (CUDA calls) to query the hardware configuration at runtime.
- Launch many more threads than processing cores.

Data types

Avoid using double precision where not specifically needed.

GPU programming languages

OpenCL

Industry standard, works for Nvidia and AMD GPUs (and other devices)

CUDA

- Proprietary, works only for Nvidia GPUs
- De-facto standard for high-performance code

OpenACC

- Accelerator directives for Nvidia and AMD
- Works with C/C++ and Fortran

OpenMP

- Version 4.x includes accelerator and vectorization directives
- Works well with Intel Xeon Phi (and AVX512), not mature for GPUs

Nvidia GPU computing universe

GPU Computing Applications											
Libraries and Middleware											
cuDNN TensorRT	cuFFT, cuBLAS, cuRAND, cuSPARSE		CULA MAGMA		Thrust NPP		VSIPL, SVM, Phy		, OptiX, Ray	MATLAB Mathematica	
Programming Languages											
С	C++		Fortran		Java, Pytho Wrapper	· I DIPACTI NI		mnute l		Directives g., OpenACC)	
CUDA-enabled NVIDIA GPUs											
_			VE/JETSON GX Xavier Gel		eForce 2000 Series		Quadro RTX Series		Т	Tesla T Series	
			IVE/JETSON GX Xavier						Т	esla V Series	
	Pascal Architecture (Compute capabilities 6.x)		egra X2	GeForce 10		es	Quadro P Series		Т	Tesla P Series	
Maxwell Ar (Compute cap	chitecture pabilities 5.x)	Tegra X1		GeForce 900 Series		Quadro M Series		Т	Tesla M Series		
	Kepler Architecture (Compute capabilities 3.x)		egra K1	GeForce 700 Series GeForce 600 Series			Quadro K Series		Т	Tesla K Series	
		EMBEDDED		CONSUMER DESKTOP, LAPTOP		PROFESSIONAL WORKSTATION			DATA CENTER		

Source: CUDA C programming guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Nvidia CUDA Toolkit

Obtain from https://nvidia.com/getcuda

Compiler

CUDA compiler (nvcc)

Development Tools

- Debugger (CUDA-gdbm CUDA-memcheck)
- Profiler (nvprof, nvvp)
- Nsight IDE for Eclipse and Visual Studio

Libraries

 cuBLAS, cuFFT, cuRAND, cuSPARSE, cuSolver, NPP, cuDNN, Thrust, CUDA Math Library, cuDNN

CUDA code samples

3 ways to use GPUs

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

GPU accelerated libraries

Ease of use

- GPU acceleration without in-depth knowledge of GPU programming
- "Drop-in"
- Many GPU accelerated libraries follow standard APIs
- Minimal code changes required

Quality

High-quality implementations of functions encountered in a broad range of applications

Performance

Libraries are tuned by experts

=> Use if you can – (do not write your own matrix multiplication)

GPU accelerated libraries

See https://developer.nvidia.com/gpu-accelerated-libraries

Deep Learning Libraries

GPU-accelerated library of primitives for deep neural networks

GPU-accelerated neural network inference library for building deep learning applications

Advanced GPU-accelerated video inference library

Signal, Image and Video Libraries

cuFFT GPU-accelerated library for Fast Fourier Transforms

NVIDIA Performance Primitives GPU-accelerated library for image and signal processing

NVIDIA Codec SDK High-performance APIs and tools for hardware accelerated video encode and decode

Linear Algebra and Math Libraries

cuBLAS

GPU-accelerated standard BLAS library

CUDA Math Library

GPU-accelerated standard mathematical function

cuSPARSE

GPU-accelerated BLAS for sparse matrices

NCCL

Parallel Algorithm Libraries

Collective Communications Library for scaling apps across multiple GPUs and nodes

nvGRAPH

GPU-accelerated library for graph analytics

Thrust

GPU-accelerated library of parallel algorithms and data structures

Partner Libraries

cuRAND

GPU-accelerated random number generation

cuSOLVER

Dense and sparse direct solvers for Computer Vision, CFD, Computational Chemistry, and Linear Optimization applications

GPU accelerated linear solvers for simulations and implicit unstructured methods

... and several others

GPU accelerated libraries

3 steps to using libraries

• Step 1: Substitute library calls with equivalent CUDA library calls

Step 2: Manage data locality

```
- with CUDA: cudaMalloc(), cudaMemcpy(), etc.- with CUBLAS: cublasSetVector(), cublasGetVector() etc.
```

Step 3: Rebuild and link the CUDA-accelerated library

```
nvcc myobj.o -l cublas
```

CUBLAS library example

```
// Perform SAXPY on 1M elements: y[]=a*x[]+y[]
saxpy(N, 2.0, d_x, 1, d_y, 1);
```

int N = 1 << 20;

```
int N = 1 << 20;
```

```
// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);
```

Add "cublas" prefix and use device variables

```
int N = 1 << 20;
                                                     Initialize CUBLAS
cublasCreate(&handle);
// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);
                                                    Shut down CUBLAS
cublasDestroy(handle);
```



```
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d_x, N*sizeof(float));
                                                     Allocate device
cudaMalloc((void**)&d_y, N*sizeof(float));
                                                         vectors
// Perform SAXPY on 1M elements: d y[]=a*d x[]+d y[]
cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);
cudaFree(d_x);
                                                     Deallocate device
cudaFree(d y);
                                                         vectors
cublasDestroy(handle);
```



```
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d_x, N*sizeof(float));
cudaMalloc((void**)&d y, N*sizeof(float));
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
                                                     Transfer data to GPU
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy (N, 2.0, d x, 1, d y, 1);
                                                     Read data back from
cublasGetVector(N, sizeof(y[0]), d y, 1, y, 1);
                                                            GPU
cublasFree(d_x);
cublasFree(d y);
cublasDestroy(handle);
```



```
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d x, N*sizeof(float));
cudaMalloc((void**)&d y, N*sizeof(float));
cublasSetVector(N, sizeof(x[0]), x, 1, d x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy (N, 2.0, d x, 1, d y, 1);
cublasGetVector(N, sizeof(y[0]), d y, 1, y, 1);
cublasFree(d x);
cublasFree(d y);
cublasDestroy(handle);
```

Nvidia CUDA

See https://developer.nvidia.com/cuda-zone

CUDA C

- Solution to run C seamlessly on GPUs (Nvidia only)
- De-facto standard for high-performance code on Nvidia GPUs
- Nvidia proprietary
- Modest extensions but major rewriting of code

CUDA Toolkit (free)

Contains CUDA C compiler, math libraries, debugging and profiling tools

CUDA Fortran

- Supports CUDA extensions in Fortran, developed by Portland Group Inc (PGI)
- Available in the PGI Fortran Compiler
- PGI is now part of Nvidia

Nvidia CUDA C basics

CUDA programming guide

See http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Good books to get started

Heterogeneous Computing

Processing Flow

Host

Processing Flow

Host

Device

Processing Flow

Host

Device

Unified memory

- Pool of managed memory that is shared between host and device
- Primarily productivity feature
- Memory copies still happen under the hood
- Available since CUDA 6 on Kepler architecture
- Page fault mechanisms supported since Pascal architecture

Kernel

- In CUDA, a kernel is code (typically a function), that can be executed on the GPU.
- The kernel code operates in lock-step on the multiprocessors of the GPU.
 (In so-called warps, currently consisting of 32 threads)

Thread

- A thread is an execution of a kernel with a given index.
- Each thread uses its index to access a subset of data (e.g. array) to operate on.

Block

- Threads are grouped into blocks, which are guaranteed to execute on the same multiprocessor.
- Threads within a thread block can synchronize and share data

Grid

- Thread blocks are arranged into a grid of blocks.
- The number of threads per block times the number of blocks gives the total number of running threads.

Threads, blocks, grids, warps Grids

Grids map to GPUs

Blocks

- Blocks map to the multiprocessors (MP)
- Blocks are never split across MPs
- Multiple blocks can execute simultaneously on an MP

Threads

- Threads are executed on stream processors (GPU cores)
- Warps are groups of threads that execute simultaneously, in lock-step (currently 32, not guaranteed to remain fixed).

CUDA built-in variables

 Following variables allow to compute the ID of each individual thread that is executing in a grid block.

Block indexes

- gridDim.x, gridDim.y, gridDim.z (unused)
- blockIdx.x, blockIdx.y, blockIdx.z
- Variables that return the grid dimension (number of blocks) and block ID in the x-, y-, and z-axis.

Thread indexes

- blockDim.x, blockDim.y, blockDim.z
- threadIdx.x, threadIdx,y, threadIdx.z
- Variables that return the block dimension (number of threads per block) and thread ID in the x-, y-, and z-axis.

Example in the figure is executing 72 threads

- (3×2) blocks = 6 blocks
- (4×3) threads per block = 12 threads per block

_global__ keyword

Function that executes on the device (GPU), must return void, and is called from host code.
 __global__ vector_add_kernel(int *a, int *b, int *c, int n) {
 int tid = threadIdx.x + blockDim.x * blockIdx.x;

```
int tid = threadIdx.x + blockDim.x *
int stride = blockDim.x * gridDim.x;
while (tid < n) {
        c[tid] = a[tid] + b[tid];
        tid += stride;
}</pre>
```

CUDA API handles device memory

- cudaMalloc(), cudaFree(), cudaMemcpy()
- Equivalent to C malloc(), free(), memcpy()
- cudaMemcpy() is used to transfer data between CPU and GPU memory.

CUDA kernel launch specification

 Triple angle bracket determines grid and block size (i.e. total number of threads) for kernel launch:

```
vector_add_kernel<<<dim3(bx,by,bz), dim3(tx,ty,tz)>>>(d_a, d_b, d_c, N);
```

CUDA memory hierarchy

- Host memory (x86 server)
- Device memory (GPU)

Device memory

- Global memory visible to all threads, slow
- Shared memory visible to all threads in a block, fast on-chip
- Registers per-thread memory, fast on-chip
- Local memory per-thread, slow, stored in Global Memory space
- Constant memory
 visible to all threads, read only, off-chip, cached
 broadcast to all threads in a half-warp (16 threads)

General CUDA programming strategy

Avoid data transfers between CPU and GPU

These are slow due to low PCI express bus bandwidth

Minimize access to global memory

Hide memory access latency by launching many threads

Take advantage of fast shared memory by tiling data

- Partition data into subsets that fit into shared memory
- Handle each data subset with one thread block
- Load the subset from global to shared memory using multiple threads to exploit parallelism in memory access
- Perform computation on data subset in shared memory (each thread in thread block can access data multiple times)
- Copy results from shared memory to global memory

CUDA Example: Matrix-matrix multiply

```
float* host A, host B, host C;
float* device A, device B, device C;
// Allocate host memory
host A = (float*) malloc(mem size A);
host B = (float*) malloc(mem_size_B);
host C = (float*) malloc(mem size C);
// Allocate device memory
cudaMalloc((void**) &device A, mem size A);
cudaMalloc((void**) &device_B, mem_size_B);
cudamalloc((void**) &device C, mem size C);
// Set up the initial values of A and B here.
```


CUDA Example: Matrix-matrix multiply - 2

```
// copy host memory to device
cudaMemcpy(device A, host A, mem size A, cudaMemcpyHostToDevice);
cudaMemcpy(device B, host B, mem size B, cudaMemcpyHostToDevice);
// setup execution parameters
dim3 threads(BLOCK SIZE, BLOCK SIZE);
dim3 grid(WC / threads.x, HC / threads.y);
// execute the kernel
matrixMul<<< grid, threads >>>(device C, device A, device B, WA, WB);
// copy result from device to host
cudaMemcpy(host C, device C, mem size C, cudaMemcpyDeviceToHost);
// Free host and device memory
```

CUDA Example: Matrix-matrix multiply kernel

CUDA Example: Matrix-matrix multiply kernel

```
global void matrixMul( float* C, float* A, float* B, int wA, int wB)
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK SIZE * wB;
// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;
```

CUDA Example: Matrix-matrix multiply kernel – 2

```
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
    a \le aEnd;
    a += aStep, b += bStep) {
 // Declaration of the shared memory array As
 // store the sub-matrix of A
   shared float As[BLOCK SIZE] [BLOCK SIZE];
 // Declaration of the shared memory array Bs
 // store the sub-matrix of B
  shared float Bs[BLOCK_SIZE][BLOCK_SIZE];
 // Load the matrices from device memory
  // to shared memory; each thread loads
 // one element of each matrix
 AS(ty, tx) = A[a + wA * ty + tx];
 BS(ty, tx) = B[b + wB * ty + tx];
 // Synchronize to make sure the matrices are loaded
   syncthreads();
```


CUDA Example: Matrix-matrix multiply kernel – 3

```
// Multiply the two matrices together;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < BLOCK SIZE; ++k)
    Csub += AS(ty, k) * BS(k, tx);
  // Synchronize to make sure that the preceding
  // computation is done before loading two new
  // sub-matrices of A and B in the next iteration
   syncthreads();
  Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK SIZE * by + BLOCK SIZE * bx;
C[c + wB * ty + tx] = Csub;
```

CUDA Example: Matrix-matrix multiply summary

Summary

- We made use of a variety of CUDA features including
- 2D grids and blocks
- Shared memory
- Thread synchronization

Note

- In reality we would not write a matrix-matrix multiplication function
- The CUDA implementation of BLAS is highly optimized for GPUs

Directive based programming

OpenACC

- See https://www.openacc.org
- Open standard for expressing accelerator parallelism
- Designed to make porting to GPUs easy, quick, and portable
- OpenMP-like compiler directives language
 - If the compiler does not understand the directives, it will ignore them.
 - Same code can work with or without accelerators.
- Fortran and C
- Full support by PGI compilers and Cray compilers on Crays
- Partial support by GNU compilers (experimental since version 5.1)
- Also some less commonly used and experimental compilers

OpenMP

- See https://www.openmp.org
- Not mature for GPUs, will not discuss here

Directive based programming

PGI Community Edition

- See https://developer.nvidia.com/openacc-toolkit
- Community Edition is free
- PGI Accelerator Fortran / C / C++ compilers
- PGI 2018 supports
 - OpenACC 2.6 for Nvidia GPIs
 - OpenACC 2.6, CUDA Fortran, OpenMP 4.5 for Multicore CPUs
- Pgprof performance profiler
- GPU-enabled libraries
- OpenACC code samples

A simple OpenACC exercise: SAXPY

SAXPY in C

SAXPY in Fortran

```
void saxpy(int n,
           float a,
           float *x,
           float *restrict y)
#pragma acc kernels
  for (int i = 0; i < n; ++i)
   y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy(1 << 20, 2.0, x, y);
```

```
subroutine saxpy(n, a, x, y)
  real :: x(:), y(:), a
  integer :: n, i
!$acc kernels
 do i=1,n
   y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy
! Perform SAXPY on 1M elements
call saxpy (2**20, 2.0, x d, y d)
```

OpenACC directives syntax

Fortran

!\$acc directive [clause [,] clause] ...]
Often paired with a matching end directive
surrounding a structured code block
!\$acc end directive

kernels CONStruct

```
!$acc kernels [clause ...]
  structured code block
!$acc end kernels
```

C

#pragma acc directive [clause [,] clause] ...]
Often followed by a structured code block

kernels CONStruct

```
#pragma acc kernels [clause ...]
{ structured code block }
```

Clauses

```
if( condition )
async( expression )
or data clauses
```


OpenACC directives syntax

and present_or_copy[in|out], present_or_create, deviceptr.

Data clauses

```
Allocates memory on GPU and copies data from host to GPU when entering region and copies data to the host when exiting region.

Copyin ( list ) Allocates memory on GPU and copies data from host to GPU when entering region.

Copyout ( list ) Allocates memory on GPU and copies data to the host when exiting region.

Create ( list ) Allocates memory on GPU but does not copy.

Data is already present on GPU from another containing data region.
```

SDSC SAN DIEGO
SUPERCOMPUTER CENTER

OpenACC example: Jacobi iteration

Iteratively converges to correct value (e.g. Temperature), by computing new values at each point from the average of neighboring points.

- · Common, useful algorithm
- Example: Solve Laplace equation in 2D: $\Delta \varphi(x,y) = 0$

OpenACC example: Jacobi iteration

```
while ( error > tol && iter < iter max )</pre>
                                                                   Iterate until converged
  error=0.0;
                                                                    Iterate across matrix
  for ( int j = 1; j < n-1; j++) {
                                                                         elements
    for(int i = 1; i < m-1; i++) {</pre>
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                                                                    Calculate new value
                              A[j-1][i] + A[j+1][i]);
                                                                      from neighbors
      error = max(error, abs(Anew[j][i] - A[j][i]);
                                                                   Compute max error for
                                                                        convergence
  for ( int j = 1; j < n-1; j++) {
                                                                     Swap input/output
    for( int i = 1; i < m-1; i++ ) {</pre>
                                                                           arrays
      A[j][i] = Anew[j][i];
  iter++;
```



```
while ( error > tol && iter < iter max )</pre>
  error=0.0;
                                                                 Execute GPU kernel for
                                                                      loop nest
  #pragma acc kernels
  for ( int j = 1; j < n-1; j++) {
    for(int i = 1; i < m-1; i++) {
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                             A[j-1][i] + A[j+1][i]);
      error = max(error, abs(Anew[j][i] - A[j][i]);
                                                                 Execute GPU kernel for
                                                                      loop nest
  #pragma acc kernels
  for ( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {</pre>
      A[j][i] = Anew[j][i];
  iter++;
```


Compiler output

```
pqf90 -acc -ta=nvidia -Minfo=accel -o jacobi-pqf90-acc-v1.x jacobi-acc-v1.f90
laplace:
     44, Generating copyout (anew (1:4094,1:4094))
         Generating copyin(a(0:4095,0:4095))
     45, Loop is parallelizable
     46, Loop is parallelizable
         Accelerator kernel generated
         Generating Tesla code
         45, !$acc loop gang ! blockidx%y
         46, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
         49, Max reduction generated for error
     57, Generating copyin (anew (1:4094,1:4094))
         Generating copyout(a(1:4094,1:4094))
     58, Loop is parallelizable
     59, Loop is parallelizable
         Accelerator kernel generated
         Generating Tesla code
         58, !$acc loop gang ! blockidx%y
         59, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
```

SDSC Comet CPU: Intel Xeon E5-2680 v3 GPU: NVIDIA Tesla K80 (using single GPU)

Execution	Time (s)	Speedup
CPU 1 OpenMP thread	71	
CPU 2 OpenMP threads	41	1.73x
CPU 4 OpenMP threads	26	2.73x
CPU 6 OpenMP threads	24	2.96x
OpenACC GPU	501	0.05x FAIL

Speedup vs. 1 CPU core

Speedup vs. 6 CPU cores

```
! Activate profiling, then run again
export PGI ACC TIME=1
Accelerator Kernel Timing data
/server-home1/agoetz/UCSD_Phys244/2017/openacc-samples/laplace-2d/jacobi-acc-v1.f90
 laplace NVIDIA devicenum=0
  time(us): 89,612,134
                                                  22.5 seconds
..... <snip – some lines cut>
44: data region reached 2000 times
    44: data copyin transfers: 8000
       device time(us): total=22,587,486 max=2,898 min=2,799 avg=2,823
    52: data copyout transfers: 8000
       device time(us): total=20,278,262 max=2,612 min=2,497 avg=2,534
  57: compute region reached 1000 times
                                                       1.5 seconds
    59: kernel launched 1000 times
       grid: [128x1024] block: [32x4]
       device time(us): total=1,456,273 max=1,465 min=1,452 avg=1,456
       elapsed time(us): total=1,498,877 max=1,524 min=1,492 avg=1,498
  57: data region reached 2000 times
    57: data copyin transfers: 8000
       device time(us): total=22,664,227 max=2,902 min=2,802 avg=2,833
    63: data copyout transfers: 8000
       device time(us): total=20,278,000 max=2,618 min=2,498 avg=2,534
```

What went wrong?

 We spent all the time with data transfers between host and device

OpenACC example: Jacobi iteration – first attempt

Excessive data transfers

```
while ( error > tol && iter < iter max )</pre>
  error=0.0;
        A, Anew resident on host
                                    #pragma acc kernels
                             Copy'
                                            A, Anew resident on
                                               accelerator
                                      for ( int j = 1; j < n-1; j++) {
               These copies
                                        for( int i = 1; i < m-1; i++) {</pre>
              happen every
                                           Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
              iteration of the
                                                                   A[j-1][i] + A[j+1][i]);
                                           error = max(error, abs(Anew[j][i] - A[j][i]);
             outer while loop!
                                            A, Anew resident on
                             Copy
                                               accelerator
       A, Anew resident on host
```

OpenACC example: Jacobi iteration – second attempt

```
#pragma acc data copy(A), create(Anew)
while ( error > tol && iter < iter max ) {</pre>
  error=0.0;
#pragma acc kernels
  for( int j = 1; j < n-1; j++) {
    for (int i = 1; i < m-1; i++) {
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                            A[j-1][i] + A[j+1][i]);
      error = max(error, abs(Anew[j][i] - A[j][i]);
#pragma acc kernels
  for ( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {</pre>
      A[j][i] = Anew[j][i];
  iter++;
```

Copy A in at beginning of loop, out at end. Allocate Anew on accelerator

OpenACC example: Jacobi iteration – second attempt

SDSC Comet CPU: Intel Xeon E5-2680 v3 GPU: NVIDIA Tesla K80 (using single GPU)

Execution	Time (s)	Speedup
CPU 1 OpenMP thread	71	
CPU 2 OpenMP threads	41	1.73x
CPU 4 OpenMP threads	26	2.73x
CPU 6 OpenMP threads	24	2.96x
OpenACC GPU	5	4.8x

CPU Speedup vs.
1 CPU core

GPU Speedup vs.
6 CPU cores

More OpenACC

- OpenACC gives us more detailed control over parallelization
 - Via gang, worker, and vector clauses
 - Gang corresponds to block, shares resources such as cache, streaming multiprocessor etc)
 - Vector threads work in lockstep (warp)
 - Workers compute a vector, correspond to threads
- By understanding more about OpenACC execution model and GPU hardware organization, we can get higher speedups on this code
- By understanding bottlenecks in the code via profiling, we can reorganize the code for higher performance

More OpenACC

Finding and exploiting parallelism in your code

- (Nested) for loops are best for parallelization
- Large loop counts needed to offset GPU/memcpy overhead
- Iterations of loops must be <u>independent</u> of each other
 - To help compiler: restrict keyword (C), independent clause
- Compiler must be able to figure out sizes of data regions
 - Can use directives to explicitly control sizes
- Pointer arithmetic should be avoided if possible
 - Use subscripted arrays, rather than pointer-indexed arrays.
- Function calls within accelerated region must be inlineable.

More OpenACC

Tips and Tricks

- (PGI) Use time option to learn where time is being spent
 -ta=nvidia, time
- Eliminate pointer arithmetic
- Inline function calls in directives regions
 (PGI): -Minline or -Minline=levels:N
- Use contiguous memory for multi-dimensional arrays
- Use data regions to avoid excessive memory transfers
- Conditional compilation with **OPENACC** macro

36 Nvidia K80 GPU nodes

- 2 x 12-core Intel Xeon E5-2680 v3 (Haswell) CPUs
- 128 GB RAM
- 2 x K80 GPUs on each node
- Each K80 = 2 GPUs => 4 GPUs per node
- 12 GB RAM per GPU

36 Nvidia P100 GPU nodes

- 2 x 14-core Intel Xeon E5-2680 v4 (Broadwell) CPUs
- 128 GB RAM
- 4 x P100 GPUs on each node
- 16 GB RAM per GPU

User guide: https://www.sdsc.edu/support/user_guides/comet.html

Login

\$> ssh agoetz@comet.sdsc.edu

Last login: Tue Aug 2 15:45:49 2016 from 137.110.219.183

Rocks 6.2 (SideWinder)

Profile built 16:44 08-Feb-2016

Kickstarted 17:18 08-Feb-2016

Checking available queues

agoetz@comet-1n2	:~> qsta	at -q					
Queue	Memory	CPU Time	Walltime	Node	Run	Que Lm	State
compute			48:00:00	72	387	404	E R
debug			00:30:00	4	0	0	E R
shared			48:00:00	1	381	65	ER
gpu			48:00:00	4	18 2	239	ER
gpu-shared			48:00:00	1	28	13	ER
large-shared			48:00:00	1	8	4	ER
monitor					0	0	ER
maint					0	0	ER
					82	2 725	

GPU queues

- gpu (entire nodes with 4 GPUs)
- gpu-shared (individual GPUs)

The GPU nodes can be accessed via either the "gpu" or the "gpu-shared" partitions.

```
#SBATCH -p gpu
Or
#SBATCH -p gpu-shared
```

In addition to the partition name (required), the type of gpu (optional) and the individual GPUs
are scheduled as a resource.

```
#SBATCH --gres=gpu[:type]:n
```

GPUs will be allocated on a first available, first schedule basis, unless specified with the [type] option, where type can be k80 or p100 (type is case sensitive).

```
#SBATCH --gres=gpu:4 #first available gpu node

#SBATCH --gres=gpu:k80:4 #only k80 nodes

#SBATCH --gres=gpu:p100:4 #only p100 nodes
```

For example, on the "gpu" partition, the following lines are needed to utilize all 4 p100 GPUs:

```
#SBATCH -p gpu
#SBATCH --gres=gpu:p100:4
```

 Users should always set --ntasks-per-node equal to 6 x [number of GPUs] requested on all k80 "gpu-shared" jobs, and 7 x [number of GPUs] requested on all p100 "gpu-shared" jobs".
 For instance, to request 2 x P100 GPUs:

```
#SBATCH -p gpu-shared
#SBATCH --ntasks-per-node=14
#SBATCH --gres=gpu:p100:2
```

Example job submission scripts are in /share/apps/examples/GPU

Charging SUs

GPU SUs = [(Number of K80 GPUs) + (Number of P100 GPUS)*1.5] x (wallclock time)

 Load CUDA module and check Nvidia CUDA C compiler (available CUDA versions: 6.5, 7.0 (default), 7.5, 8.0, 9.2)

```
[agoetz@comet-30-03 ~]$ module load cuda

[agoetz@comet-30-03 ~]$ nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2015 NVIDIA Corporation

Built on Mon_Feb_16_22:59:02_CST_2015

Cuda compilation tools, release 7.0, V7.0.27
```

Load PGI module and check PGI C compiler

```
[agoetz@comet-30-03 ~]$ module load pgi
[agoetz@comet-30-03 ~]$ pgcc --version

pgcc 17.5-0 64-bit target on x86-64 Linux -tp haswell

PGI Compilers and Tools

Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
```


Interactive access to GPU nodes

This reservation is active on 01/24/2020 from 1 pm to 6 pm

Check available GPUs using Nvidia system management interface

Other jobs may already be running on shared GPU nodes.

- The nodes of the shared GPU queue are configured for the CUDA runtime to use only the requested number of GPUs.
- Check environment variable CUDA_VISIBLE_DEVICES for the GPU that has been assigned to you.

CUDA Toolkit Samples

Install CUDA Toolkit code samples (does not require GPU node access)

```
[agoetz@comet-31-16 ~]$ cuda-install-samples-7.0.sh ./ Copying samples to ./NVIDIA_CUDA-7.0_Samples now... Finished copying samples.
```

Explore CUDA Toolkit samples – great resource!

Compile CUDA Toolkit samples

```
[agoetz@comet-31-16 NVIDIA_CUDA-7.0_Samples]$ make -j 6
make[1]: Entering directory `/home/agoetz/NVIDIA_CUDA-
7.0_Samples/0_Simple/simpleMultiCopy'
/usr/local/cuda-7.0/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode
arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode
arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode
arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode
arch=compute_52,code=compute_52 -o simpleMultiCopy.o -c simpleMultiCopy.cu
```


CUDA Toolkit Samples

- Compilation takes a while, executables will reside in sub directory bin/x86_64/linux/release/
- Can also compile individual examples, e.g. deviceQuery, which prints information on available GPUs

```
[agoetz@comet-31-16 NVIDIA CUDA-7.0 Samples]$ cd 1 Utilities/deviceQuery
[agoetz@comet-31-16 deviceQuery]$ make
/usr/local/cuda-7.0/bin/nvcc -ccbin g++ -I../../common/inc -m64
                                                                   -gencode arch=com
[agoetz@comet-31-16 deviceQuery]$ ./deviceQuery
./deviceQuery Starting...
 CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla K80"
  CUDA Driver Version / Runtime Version
                                                 8.0 / 7.0
  CUDA Capability Major/Minor version number:
                                                 3.7
  Total amount of global memory:
                                                 11440 MBytes (11995578368 bytes)
  (13) Multiprocessors, (192) CUDA Cores/MP:
                                                 2496 CUDA Cores
  GPU Max Clock rate:
                                                 824 MHz (0.82 GHz)
                                                 2505 Mhz
 Memory Clock rate:
```

CUDA Toolkit

Matrix multiplication example

```
agoetz@comet-30-11:~>cd NVIDIA_CUDA-7.0_Samples/0_Simple/
agoetz@comet-30-11:~/NVIDIA_CUDA-7.0_Samples/0_Simple>./matrixMul/matrixMul

[Matrix Multiply Using CUDA] - Starting...

GPU Device 0: "Tesla K80" with compute capability 3.7

MatrixA(320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 231.28 GFlop/s, Time= 0.567 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
```

Matrix multiplication example with CUBLAS

```
agoetz@comet-30-11:~/NVIDIA_CUDA-7.0_Samples/0_Simple>./matrixMulCUBLAS/matrixMulCUBLAS [Matrix Multiply CUBLAS] - Starting...

GPU Device 0: "Tesla K80" with compute capability 3.7

MatrixA(320,640), MatrixB(320,640), MatrixC(320,640)

Computing result using CUBLAS...done.

Performance= 952.24 GFlop/s, Time= 0.138 msec, Size= 131072000 Ops

Computing result using host CPU...done.

Comparing CUBLAS Matrix Multiply with CPU results: PASS
```


