Machine Learning Guidelines

9 k-nearest neighbor classifier

S.no.		
1	Basic definitions	Reference [2], Chapter 1, page 1-5
2	Hypothesis space and inductive bias	Reference [2], Chapter 2, section 2.1 - 2.4
3	Bayes optimal classifier and Bayes error, Naive Bayes classifier	Reference [2], Chapter 6, section 6.1, 6.2, 6.7, 6.9
4	Curse of dimensionality, dimensionality reduction, feature scaling, feature selection methods	Reference[3] Page 33-35 Reference [1], Chapter 10,
5	Linear regression with one variable, linear regression with multiple variables	Reference [1], Chapter 7, page 194-205
6	Gradient Descent	https://medium.com/analytics-vidhya/linear-regression-with-gradient-descent-derivation-c10685ddf0f4 1.
		https://towardsdatascience.co m/introduction-to-logistic- regression-66248243c148 2.
		https://medium.com/@shiny_j ay/ml-regularization- 79a081666fbc
		3. https://medium.com/@qempsi l0914/courseras-machine-
7	logistic regression, over-fitting, regularization. performance evaluation metrics, validation methods	learning-notes-week3- overfitting-and-regularization- partii-3e3f3f36a287
8	Decision trees	Reference [2], Chapter 8, page 52 - 60, 63 - 66
	1	Reference [2], Chapter 8, page

231-233

perceptron, multilayer perceptron, neural networks, back-Reference [2], Chapter 4, page 10 propagation algorithm 81-99 Reference [1], Chapter 7, section 7.3 Reference [3], 11 Support Vector Machine (SVM), Kernel functions Chapter 6, page 292 Approaches for clustering, distance metrics, K-means Reference [3], Chapter 9, page clustering, expectation maximization, hierarchical 424-426 Reference [1], Chapter 12 clustering 8, section 8.1, 8.5 https://www.kdnuggets.com/2 020/05/model-evaluation-13 performance evaluation metrics metrics-machine-learning.html https://www.analyticsvidhya.co m/blog/2021/05/4-ways-toevaluate-your-machinelearning-model-cross-validation-14 validation methods techniques-with-python-code/

- 1. Flach, P. (2015). Machine Learning: The Art and Science of Algorithms that Make Sense of Data.
- 2. Mitchell, T.M. (2017). Machine Learning. McGraw Hill Education.

Additional References:

3. Christopher & Bishop, M. (2016). Pattern Recognition and Machine Learning. New York: Springer-Verlag