Week 2 Worksheet Identical Particles

Jacob Erlikhman

August 30, 2025

Exercise 1. *Griffiths 5.5a.* Write down the hamiltonian for two noninteracting identical particles in the infinite square well. Write down the ground states for the three cases: distinguishable, fermions, bosons. Recall that the one-particle wavefunctions are

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right),\,$$

with energies $E_n = n^2 \pi^2 \hbar^2 / 2ma^2$.

Exercise 2. *Griffiths 5.9*. In Exercise 1, we ignored spin (or at least supposed that the particles are in the same spin state).

- a) Do it now for particles of spin 1/2. Construct the four lowest-energy configurations, and specify their energies and degeneracies.
 - *Hint*: Recall that the *total* state vector for a boson (resp. fermion) must be symmetric (resp. antisymmetric). If a boson or fermion state vector is a product of two vectors (e.g. a spatial state vector and a spin state vector), can these components be symmetric, anti-symmetric, or both?
- b) Do the same for spin 1. *Hint*: You can do this without having to use any Clebsh-Gordan coefficients!

Exercise 3. (Bonus/Challenge) Symmetries of Many-Particle States.

a) Consider a system of two identical particles. Define the operator P_{12} via

$$P_{12}|a\rangle|b\rangle = |b\rangle|a\rangle$$
.

Show that $P_{12}^2 = 1$, the identity operator, and that the eigenvalues of P_{12} are ± 1 . Thus, show that its eigenvectors are either totally symmetric or antisymmetric. We call P_{12} a **permutation operator**. In this case, there are only two such operators: P_{12} and $P_{12}^2 = 1$.

b) Generalize part (a) to systems of three identical particles. You should find that you have *six* permutation operators (note that the identity is a permutation operator). Assuming the hamiltonian is invariant under each of these operators, is there a complete set of common eigenvectors?

Worksheet 2 2

- c) Griffiths 5.8. In the situation of (b), suppose that the particles have access to three distinct one-particle states, $|a\rangle$, $|b\rangle$, and $|c\rangle$. For example, $|abc\rangle$ is an allowed state, as is $|aaa\rangle$. How many states can be constructed if they are (i) bosons or (ii) fermions?
- d) Suppose we have a single-particle fermion state $|\alpha\rangle$ and a single-particle bosonic state $|\beta\rangle$. Just like for the harmonic oscillator, we can define **creation operators** C_{α}^{\dagger} and a_{β}^{\dagger} , such that given any state $|\psi\rangle$,

$$C_{\alpha}^{\dagger} | \psi \rangle = | \alpha \psi \rangle$$

 $a_{\beta}^{\dagger} | \psi \rangle = | \beta \psi \rangle$.

The operators C_{α}^{\dagger} and a_{β}^{\dagger} have the following properties. You don't need to prove them.

$$C_{\alpha} |\alpha \psi\rangle = |\psi\rangle$$

$$a_{\beta} |\beta \psi\rangle = |\psi\rangle$$

$$C_{\alpha} |0\rangle = a_{\beta} |0\rangle = 0$$

$$C_{\alpha}^{\dagger} C_{\alpha}^{\dagger} = 0$$

$$\{C_{\alpha}, C_{\alpha'}^{\dagger}\} \equiv C_{\alpha} C_{\alpha'}^{\dagger} + C_{\alpha'}^{\dagger} C_{\alpha} = \delta_{\alpha \alpha'} 1$$

$$\{C_{\alpha}^{\dagger}, C_{\alpha'}^{\dagger}\} = 0$$

$$[a_{\beta}, a_{\beta'}^{\dagger}] = \delta_{\beta \beta'} 1$$

$$[a_{\beta}^{\dagger}, a_{\beta'}^{\dagger}] = 0,$$

where $|0\rangle$ denotes a state with no particles at all. To what extent is a bound pair of fermions equivalent to a boson?

Hint: Use the symmetries of many-particle states and the (anti-)commutation relations of the creation/annihilation operators constructed in parts (a)-(d). What algebra must the creation/annihilation operators for the bound pair satisfy?

e) **Challenge.** Prove the properties given in (d).

Hints: It may be useful to use the notation $\sim \alpha$ for the α "orbital" being *unoccupied*. To show the first relation for C_{α} , try to first show that $C_{\alpha} |\alpha\rangle = |0\rangle$. For the anti-commutator relations, consider separately the cases $\alpha \neq \alpha'$ and whether the α or α' orbitals are occupied.