Verilog crashcourse

Steffen Reith, Thorsten Knoll

- Introduction
- Synthesis tool: Yosys
- Verilog elements
- A few basic circuits in verilog
- 5 Selected features in verilog

Introduction

Introduction

Verilog wurde 1983/1984 zunächst als Simulationssprache entwickelt, von Cadence aufgekauft und 1990 frei gegeben.

Erste Standardisierung 1995 durch die IEEE (Verilog 95). Neuere Version IEEE Standard 1364–2001 (Verilog 2001).

- Syntax vergleichbar mit C (VHDL ist an ADA / Pascal angeleht) mit kompakten Code
- Verbreitet in Nordamerika und Japan (weniger in Europa)
- Kann auch als Sprache von Netzlisten verwendet werden
- Unterstützung durch Open-Source-Tools
- Die Mehrheit der ASICs wird in Verilog entwickelt.
- Weniger ausdruckstark als VHDL (Fluch und Segen)

Die Nähe zu C und Java führt evtl. zu Verwechselungen! Auch in Verilog können z.B. Zeilen, die eine kombinatorische Schaltung beschreiben vertauscht werden.

Verilog ist eine Hardwarebeschreibungssprache!

In diesem Abschnitt legen wir auf auf einen Subset von synthetisierbaren Sprachkonstrukten fest.

Ziel unserer Auswahl sind nicht kommerzielle Tools, sondern offene Entwicklungswerkzeuge wie OpenRoad¹ oder Toolchains für bekannte FPGAs, d.h. wir verwenden auch einige Sprachkonstrukte von SystemVerilog, die durch das Synthesewerkzeug yosys unterstützt werden.

¹https://theopenroadproject.org/

Literature

- Donald E. Thomas, Philip R. Moorby, Hardware Description Language, Kluwer Academic Publishers, 2002
- Blaine Readler, Verilog by example, Full Arc Press, 2011

Contributions, mentions and license

• This course is a translated, modified and 'markdownized' version of a Verilog crashcourse from Steffen Reith.

https://github.com/SteffenReith

• The initial rework (translate, modify and markdownize) was done by:

https://github.com/ThorKn

• The build of the PDF slides is done with pandoc:

https://pandoc.org/

• Pandoc is wrapped within this project:

https://github.com/alexeygumirov/pandoc-beamer-how-to

License:

GPLv3

Synthesis tool: Yosys

Synthesis tool: Yosys

Man sollte sich auch mit den Eigenheiten des Synthesetools beschäftigen! Das bekannte Open-Source-Synthesetool yosys schreibt dazu

Yosys is a framework for VerilogRTLsynthesis. It currently has extensive Verilog-2005 support and provides a ba- sic set of synthesis algorithms for various application do mains. Selected features and typical applications:

- Process almost any synthesizable Verilog-2005 design
- Converting Verilog to BLIF / EDIF/ BTOR / SMT-LIB /simple RTL Verilog / etc.
- .

Verilog elements

Structure of a verilog module

```
module module name (port list);
   // Definition der Schnittstelle
   Port - Deklaration
   Parameter - Deklaration
5
   // Beschreibung des Schaltkreises
   Variablen - Deklaration
   Zuweisungen
   Modul-Instanzierungen
10
   always - Bloecke
11
12
13
   endmodule
```

In modernem Verilog können Portliste und Portdeklaration zusammengezogen werden. // leitet einen Kommentar ein.

A few basic circuits in verilog

Combinational circuits

Sequential circuits

Selected features in verilog

Parameterized Hardware

The preprocessor

Yosys and Systemverilog