Faculty of Information Technology, University of Moratuwa BSc. (Hons) in Information Technology IN 2320 - Computer Architecture B18 L2S2 - Assignment 3 (Take home)

184125T PERERA L.R.D 2/20/2021

I. Memory width= 32 bits Cache size= $512KB=2^9*2^{10}=2^{19}B$ Block size= $4B*4=16=2^4B$ Cache lines= Cache size/ Block size = $2^{19}/2^4$ = 2^{15}

II. In Associative Mapping

28	4
Tag	word

III. In Direct Mapping

13	15	4
Tag	Cache	Word

IV. Cache Lines=
$$2^{15}$$

#of sets= $2^{15}/2^3$
= 2^{12}

V. In Set Associative Mapping

16	12	4
Tag	Set	Word

VI. 0x B1AC95F9

Set Number = 2399

I. Stack based.

X = (A*B-C) + (A/C)

PUSH A

PUSH B

MUL

PUSH C

SUB

PUSH A

PUSH C

DIV

ADD

POP X

II. Accumulator based.

X=(A*B-C)+(A/C)

LOAD A

DIV C

STORE Y

LOAD A

MUL B

SUB C

SODC

ADD Y

STORE X

III. Memory- memory based.

$$X = (A*B-C) + (A/C)$$

DIV Y, A, C

MUL P, A, B

SUB P, P, C

ADD X, P, Y

IV. Register-Register based.

X=(A*B-C)+(A/C)

LOAD R1, A

LOAD R2, B

LOAD R3, C

DIV R4, A, C

MUL R5, A, B

SUB R6, R5, R3

ADD X, R6, R4

-6*9

The binary value of $9 \rightarrow 01001$

The binary value of $(-6) \rightarrow 00110$ (6)

2's complement operation

11001+1

11010

A	A	Q	Q-1	M
	00000	01001	0	11010
	00110	01001	0	11010
Circle 1	00011	00100	1	11010
	11101	00100	1	11010
Circle 2	11110	10010	0	11010
Circle 3	11111	01001	0	11010
	00101	01001	1	11010
Circle 4	00010	10100	1	11010
	11100	10100	1	11010
Circle 5	11110	01010	0	11010

Answer: 1111001010

Converting to the decimal \rightarrow 2's complement

0000110101+1

0000110110

54

 $[MAR] \leftarrow [PC]$ Transfer the address from the PC to MAR.

[MBR] \leftarrow [MBR] Read the memory into the MBR.

[IR]←[MDR] Copy the instruction from the MBR to the instruction register.

 $[PC] \leftarrow [PC]+1$ Program counter is incremented.

 $[MAR] \leftarrow IR$ (operand) Decode, then execute.

[MBR]← [MAR] Reading the memory.

AC← MBR Transfer to the Accumulator.

1. $P + Q: A \leftarrow A + B$

If Control function PVQ=1(Por Q), The content of AVB (the operation A or B) Copied into A.

