Teoría de los números II - semestre 2020-2

En las clases anteriores se vio cómo acotar a H_n y también cómo encontrar valores muy cercanos a él. Las aproximaciones se hicieron con el uso de la función $\ln(n)$ y con la constante de Euler. Ahora se dará lugar a estudiar cómo se pueden usar estas propiedades de los armónicos para evaluar otras funciones aritméticas, que generalmente son muy inestables, y por lo mismo no es fácil describir su comportamiento en determinados intervalos. En el primer caso se trata de acotar la función suma de divisores, es decir, la función aritmética $\sigma(n)$ usada en la teoría de números.

Teorema

$$\sigma(n) \ll n \ln(n)$$
.

Demostración

La ruta de la prueba será demostrar primero que $\sigma(n) \le n \ln(n) + n$, para toda n, y de esto se tendrá que $\sigma(n) \ll n \ln(n) + n$. En segundo lugar, si mostramos que $n \ln(n) + n \ll n \ln(n)$, entonces por la transitividad de \ll , obtendremos que $\sigma(n) \ll n \ln(n)$.

1) Ahora pasamos a la primera parte, demostrar que $\sigma(n) \le n \ln(n) + n$, para toda n, y para esto se requiere considerar las siguientes propiedades de los divisores de un entero.

Dado un número n y un divisor d de n, entonces $\frac{n}{d}$ también es un divisor de n. Esto nos dice que para los divisores $d_1 = 1, d_2, d_3, \dots, d_m = n$ de n se tienen sus complementos

$$\frac{n}{1}, \frac{n}{d_2}, \frac{n}{d_3}, \dots, \frac{n}{n},$$

que finalmente son los mismos divisores d_i pero escritos de diferente manera y en otro orden. Con estos elementos se propone que

¹Por ejemplo, tomemos si n = 8, sus divisores son d = 1, 2, 4, 8, pero también se pueden ver cómo $\frac{8}{1} = 8$,

 $[\]frac{8}{2} = 4$, $\frac{8}{4} = 2$, $\frac{8}{8} = 1$.

$$\sigma(n) = \sum_{d|n} d = \sum_{d|n} \frac{n}{d}$$
, y esto implica que $\sigma(n) = \sum_{d|n} \frac{n}{d}$

y como la suma corre en d, entonces $\sigma(n) = n \sum_{d|n} \frac{1}{d}$ y de esto $\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

Y si consideramos una suma que no esté restringida a correr sólo en los divisores de n, sino que puede desarrollarse para todos los enteros menores o iguales que n, entonces se tiene que

$$\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d} \le \sum_{d=1}^{n} \frac{1}{d} = H_n.$$

Para el lado derecho de la expresión anterior podemos aplicar las cotas obtenidas anteriormente, es decir, que $H_n - 1 < \ln(n)$, o lo que es equivalente $H_n < \ln(n) + 1$. Así, llegamos a que:

$$\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d} \le \sum_{d=1}^{n} \frac{1}{d} = H_n \le \ln(n) + 1$$

y por tanto $\frac{\sigma(n)}{n} \le \ln(n) + 1$, o de manera equivalente $\sigma(n) \le n \ln(n) + n$, que es lo que se quería demostrar, en la parte inicial. En consecuencia $\sigma(n) \ll n \ln(n) + n$

2) Ahora pasamos a la segunda parte de la demostración, que es la de probar que $n \ln(n) + n \ll n \ln(n)$. Recordemos que para este caso tenemos que encontrar una constantes C y una N tales que $n \ln(n) + n \le n \ln(n) \cdot C$, para toda n > N.

Así, considérese que para $n \ge 3$ se tiene que $1 \le \ln(n)$, y de esto que $n \le n \ln(n)$, pero después de sumar en ambos lados $n \ln(n)$ se obtiene que:

$$n\ln(n) + n \le 2 n\ln(n).$$

Si suponemos que para el lado derecho $2n\ln(n) \le Cn\ln(n)$ para alguna C, entonces $0 \le C n\ln(n) - 2n\ln(n)$, y por tanto $0 \le (C-2)n\ln(n)$. De esto último tenemos que para C=3 siempre se cumple, considerando que $n \ge 3$. Con esto último tenemos que $2n\ln(n) \ll n\ln(n)$, y por lo tanto $n\ln(n) + n \ll n\ln(n)$, que es lo que se quería demostrar para la segunda parte.

_

²Aquí tenemos que C = 3 y N = 3son las constantes requeridas.

Finalmente, por la transitividad de las dos partes³ llegamos a que $\sigma(n) \ll n \ln(n)$.

CDMX 15 de abril de 2020

³ Es decir, $\sigma(n) \ll n \ln(n) + n$ y $n \ln(n) + n \ll n \ln(n)$.