1. In the given figure, PQ is tangent to the circle centred at \vec{O} .If \angle AOB=95 $^{\circ}$, then the measure of \angle ABQ will be

- (a) 47.5°
- (b) 42.5°
- (c) 85°
- (d) 95°
- 2. (a) Two tangents TP and TQ are drawn to a circle with center \vec{O} from an external point T. prove that $\angle PTQ=2\angle OPQ$

 \mathbf{OR}

(b) In the given figure, a circle is inscribed in a quadrilaterals ABCD in which $\angle B=90^\circ$. If AD=7 cm,AB=20 cm and DS=3 cm, then find the radius of the circle

3. The discus throw is an event in which an athlete attempts to throw a disus, the athlete spins anti-clockwise around one and a half times through a circle, then release the throw, when released, the discus travels along tangent to the circular spin orbit.

In the given figure, AB is one such tangent to a circle of radius 75 cm. Point \vec{O} is center of the circle and \angle ABO=30°. PQ is parallel to OA

Based on above informtion:

- (a) find the length of AB.
- (b) find the length of OB.
- (c) find the length of PQ.

OR

find the length of PQ.

4. In the given figure, the quadrilateral PQRS circumscribes a circle. Here PA+CS is equal to:

(a) QR

- (b) PS
- (c) PR
- (d) PQ
- 5. In the given figure, \vec{O} is the center of the circle. AB and AC are tangents drawn to the circle from point A.If $\angle BAC=65^{\circ}$, then find the measure of $\angle BOC$.

6. In the given figure, \vec{O} is the center of the circle and QPR is a tangent to it at P. prove that $\angle \text{QAP} + \angle \text{APR} = 90^{\circ}$

7. In the givien figure, PT is a tangent at T to the circle with center \vec{O} .If \angle TPO=25 $^{\circ}$, then x is equal to:

- (a) 25°
- (b) 65°
- (c) 90°
- (d) 115°
- 8. In the given, TA is a tangent to the circle with center \vec{O} such that OT=4cm, \angle OTA=30°, then length of TA is:

- (a) $2\sqrt{3}$ cm
- (b) 2cm
- (c) $2\sqrt{2}$ cm
- (d) $\sqrt{3}$ cm
- 9. Two concentric circles are of radii $5\mathrm{cm}$ and $3\mathrm{cm}$. Find the length of the chord of the larger circle which touches the smaller circle