Functions

Fractals

October 8, 2021

Contents

1	Introduction	1
	1.1 Defintions	1
	1.2 Existence of a Function	1
2	Combinations of Functions	2
	2.1 Domain and Range of a Composite Function	2
3		2
	3.1 Piecewise-Defined Function	2
4	Properties of Functions	2
	4.1 Odd and Even Functions	2
	4.2 Periodic Functions	2
5		2
	5.1 Existence of an Inverse Function	2

1 Introduction

1.1 Defintions

Defintion 1.1. A function f from a set X to a set Y is a relation that assigns to each element in set X exactly one element in set Y.

Defintion 1.2. The domain is the set of X (a.k.a. the input).

Defintion 1.3. The range is a subset of Y (a.k.a. the output).

1.2 Existence of a Function

Theorem 1 (Vertical Line Test). if you can draw a Vertical line that passes through more than one point of a relation on a grap, it's not a function, if you cannot, it's a function.

Example 1.1. what the domain and range of the function $f(x) = \sqrt{16 - x^2}$?

sloution Note that if a < 0, then \sqrt{a} is undefined for reals, Thus, $16 - x^2 \ge 0 \Rightarrow \boxed{-4 \le x \le 4}$ since $x^2 \ge 0$, we have that $0 \le 16 - x^2 \le 16$, so the range is $\boxed{0 \le y \le 4}$

2 Combinations of Functions

Theorem 2 (common function Combinations). The following are some common combinations of functions:

- Sum (f+g)(x) = f(x) + g(x)
- Difference (f-g)(x) = f(x) g(x)
- **Product** (fg)(x) = f(x)g(x)
- Quotient $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ where $g(x) \neq 0$
- Compostion $(f \circ g)(x) = f(g(x))$
- 2.1 Domain and Range of a Composite Function
- 3 Types of Functions
- 3.1 Piecewise-Defined Function
- 4 Properties of Functions
- 4.1 Odd and Even Functions
- 4.2 Periodic Functions
- 5 Inverse Functions
- 5.1 Existence of an Inverse Function