VECTOR LEVEL-I

1.	OA and OB are two (A) \angle BOA = 90° (C) \angle BOA < 90°	o vectors	s such that	(B) ∠E	B = OA+ 2OB BOA > 90° ° ≤ ∠BOA ≤ 90		1		
2.	If \vec{b} and \vec{c} are two $\vec{a} \times (\vec{b} \times \vec{c}) = (x^2 - 2x + (A) x = 1)$ (C) $y = \pi$	non-collii 6)o+(sin	near vectors solvy) \ddot{c} , then the	point (B) y	(x,y) lies on	and			
3.	The scalar $\vec{a} \cdot \{ \vec{b} + \vec{c} \} \times (A) = 0$				(C) [a b c]	(D) No	one of these		
4.	If â, b, c are three us angle between the equals	vectors,	â, b̂; b̂, ĉ and	lĉ,â re		en cos	$\theta_1 + \cos\theta_2 + \cos\theta_3$		
	(A) 3	(B) - π	-3	(C)	1	(D)	-1		
5.	If angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then angle between $2\vec{a}$ and $-3\vec{b}$ is								
	(A) π/3	(B)	-π/3	(C)	2π/3	(D)	-2π/3		
6.	The vectors $2\hat{i} - m\hat{j} + (A)$ all real m (C) m = -1/2	-3mƙ ar	nd $(1+m)\hat{i}-2r$	(B) m	nclude an acut < -2 or m > -1 $\in [-2, -1/2]$		for		
7.	$ \vec{a} = 3$, $ \vec{b} = 4$, $ \vec{c} = 5$ such that each is perpendicular to sum of the other two, then $ \vec{a} + \vec{b} + \vec{c} =$								
	(A) 5√2	(B) $\frac{5}{\sqrt{2}}$	-	(C) 10	$\sqrt{2}$	(D) 5 _{\(\sigma\)}	√3		
8.	If \vec{x} and \vec{y} are two v	and \vec{y} are two vectors and ϕ is the angle between them, then $\frac{1}{2} \vec{x}-\vec{y} $ is equal to							
	(A) 0	(B) $\frac{\pi}{2}$		(C) si	$n\frac{\phi}{2}$	(D) co	$\cos \frac{\phi}{2}$		
9.	If $\vec{u} = \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k})$, then								
	(A) u is unit vector (C) u = 2a		, ,	(B) u =	= a + i + j + k one of these				
10.	Let \hat{a} and \hat{b} be two unit vectors such that $\hat{a} + \hat{b}$ is also a unit vector. Then the angle between \hat{a} and \hat{b} is								
	(A) 30° (C) 90°			(B) 60 (D) 12					

(C) z is the HM between
$$|\vec{b}|$$
 and $|\vec{c}|$

(D)
$$z = |\vec{b}| + |\vec{c}|$$

Let ABCDEF be a regular hexagon and $\overrightarrow{AB}=\vec{a}, \ \overrightarrow{BC}=\vec{b}, \ \overrightarrow{CD}=\vec{c}$ then \overrightarrow{AE} is 20.

(A)
$$\vec{a} + \vec{b} + \vec{c}$$

(B)
$$\vec{a} + \vec{b}$$

(C)
$$\vec{b} + \vec{c}$$

(D)
$$\vec{c} + \vec{a}$$

The number of unit vectors perpendicular to vectors $\vec{a} = (1,1,0)$ and $\vec{b} = (0,1,1)$ is 21.

(B) Two

(D) Infinite

If \hat{p} and \hat{d} are two unit vectors and θ is the angle between them, then 22.

(A)
$$\frac{1}{2} \left| \hat{\mathbf{p}} - \hat{\mathbf{d}} \right|^2 = \sin \frac{\theta}{2}$$

(B)
$$\hat{p} \times \hat{d} = \sin\theta$$

(C)
$$\frac{1}{2}(\hat{p} - \hat{d})^2 = 1 - \cos\theta$$

(D)
$$\frac{1}{2}(\hat{p} - \hat{d})^2 = 1 - \cos 2\theta$$

The value of k for which the points A(1, 0, 3), B(-1, 3,4), C(1, 2, 1) and 23. D(k, 2, 5) are coplanar is

$$(2)^{2}$$

24. If
$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$$
 and the vectors $A = (1, a, a^2), B = (1, b, b^2), C = (1,c,c^2)$ are

non - coplanar, then the value of abc will be

$$(A) -1$$

(B) 1

(D) None of these

Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$, $c\hat{i} + c\hat{j} + b\hat{k}$ lie in 25. a plane, then c is

- (A) the arithmetic mean of a and b
- (B) the geometric mean of a and b
- (C) the harmonic mean of a and b
- (D) equal to zero

26. The unit vector perpendicular to the plane determined by P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1) is

(A)
$$\frac{i+2j+k}{\sqrt{6}}$$

(B)
$$\frac{i-j+2k}{\sqrt{6}}$$

(C)
$$\frac{2i+j+k}{\sqrt{6}}$$

(D) None of these

If $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$ are non-coplanar vectors then $\frac{\overrightarrow{A}.\overrightarrow{B} \times \overrightarrow{C}}{\overrightarrow{C} \times \overrightarrow{A}.\overrightarrow{B}} + \frac{\overrightarrow{B}.\overrightarrow{A} \times \overrightarrow{C}}{\overrightarrow{C}.\overrightarrow{A} \times \overrightarrow{B}}$ is equal to 27.

$$(A)$$
 3

28. of	If the vector $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ (a \neq b \neq c \neq 1) are coplanar, then the value								
	$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$	is equal to							
	(A) 1 (C) 2		(B) 0 (D) None of these						
29.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a}.\vec{b}$ =0 and $\vec{a}+\vec{b}=\vec{c}$. Then								
	(A) $ \vec{a} ^2 + \vec{b} ^2 = \vec{c} ^2$		(B) $ \vec{a} ^2 = \vec{b} ^2 + \vec{c} ^2$						
	(C) $\left \vec{b} \right ^2 = \left \vec{a} \right ^2 + \left \vec{c} \right ^2$		(D) None of these						
30.	The points with position (A) $a = -40$	sition vector 60i + 3j, 4 (B) a = 40	10i – 8j and ai –52j a (C) a = 20	re collinear if (D) none of these.					
31.	Let \hat{a} and \hat{b} be two unit vectors such that $\hat{a} + \hat{b}$ is also a unit vector. Then the angle between \hat{a} and \hat{b} is								
	(A) 30°	(B) 60°	(C) 90°	(D) 120°					
32.	If vectors $ax\hat{i} + 3\hat{j} - 5\hat{k}$ and $x\hat{i} + 2\hat{j} + 2ax\hat{k}$ make an acute angle with each other, for all $x \in R$, then a belongs to the interval								
	(A) $\left(-\frac{1}{4},0\right)$	(B) (0, 1)	$(C)\left(0,\frac{6}{25}\right)$	(D) $\left(-\frac{3}{25},0\right)$					
33.	A vector of unit magnitude that is equally inclined to the vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$ and $\hat{i} + \hat{k}$ is;								
	(A) $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$		(B) $\frac{1}{\sqrt{3}}(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$						
	(C) $\frac{1}{\sqrt{3}} \left(\hat{i} + \hat{j} + \hat{k} \right)$		(D) none of these						
34.	Let a, b, c be three distinct positive real numbers. If $\bar{p}, \bar{q}, \bar{r}$ lie in plane, where								
	$\vec{p} = a\hat{i} - a\hat{j} + b\hat{k}$, $\vec{q} = \hat{i} + \hat{k}$ and $\vec{r} = c\hat{i} + c\hat{j} + b\hat{k}$ then b is								
	(A) A.M of a, c (C) the H.M of a, c		(B) the G.M of a, c (D) equal to c						
85.	The scalar $\vec{A} \cdot \{ (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C}) \}$ is equal to								
36.	If \vec{a} , \vec{b} , \vec{c} are unit coplanar vectors, then the scalar triple product $\left[2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a}\right]$ is equal to								
37.	The area of a parallelogram whose diagonals represent the vectors $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ is								
	(A) $10\sqrt{3}$		(B) $5\sqrt{3}$						
	(C) 8		(D) 4						

- If the vertices of a tetrahedron have the position vectors $\vec{0}$, $\hat{i} + \hat{j}$, $2\hat{j} \hat{k}$ and $\hat{i} + \hat{k}$ then the 17. volume of the tetrahedron is
 - (A) 1/6

(C) 2

- (B) 1 (D) none of these
- \vec{A} = (1, -1, 1), \vec{C} = (-1, -1, 0) are given vectors; then the vector \vec{B} which satisfies $\vec{A} \times \vec{B} = \vec{C}$ 18. and $\overrightarrow{A}.\overrightarrow{B} = 1$ is _____
- If \vec{a} , \vec{b} , \vec{c} are given non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{2}$, then the angle 19. between a and c is
- Vertices of a triangle are (1, 2, 4) (3, 1, -2) and (4, 3, 1) then its area is______ 20.
- A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is 21.

LEVEL-III

- 1. If \bar{a} , \bar{b} , \bar{c} are coplanar vectors and \bar{a} is not parallel to \bar{b} then $(\bar{c} \times \bar{b}) \cdot (\bar{a} \times \bar{b}) \bar{a} + (\bar{a} \times \bar{c}) \cdot (\bar{a} \times \bar{b}) \bar{b}$ is equal to
 - (A) $\left(\bar{a} \times \bar{b}\right) \cdot \left(\bar{a} + \bar{b}\right) \bar{c}$

(B) $(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{b}) \overline{c}$

(C) $(\overline{a} \times \overline{b}) \cdot (\overline{a} - \overline{b}) \overline{c}$

- (D) none of these
- The projection of $\hat{i} + \hat{j} + \hat{k}$ on the line whose equation is $\vec{r} = (3 + \lambda) \hat{i} + (2\lambda 1)\hat{j} + 3\lambda\hat{k}$, λ 2. being the scalar parameter is;
 - (A) $\frac{1}{\sqrt{14}}$

(B)6

(C) $\frac{6}{\sqrt{14}}$

- (D) none of these
- If \vec{p} , \vec{q} are two non-collinear and non-zero vectors such that $(b-c)\vec{p} \times \vec{q} + (c-a)\vec{p} + (a-b)\vec{q} = 0$ 3. where a, b, c are the lengths of the sides of a triangle, then the triangle is
 - (A) right angled
- (B) obtuse angled
- (C) equilateral
- (D) isosceles

L-I

- 1. В
- Α 3.
- С 5.
- 7. Α
- С 9.
- В 11.
- С 13.
- В 15.
- 17. Α
- С 19. В 21.
- 23. D
- В 25.
- В 27. 29. Α
- D 31.
- С 33.
- 35. 0
- 37. В
- L-II
- 1. Α
- 3. В
- 5. Α
- 7. Α
- D 9.
- С 11.
- 13. D
- 17. Α
- 19. $\theta = \pi/3$

- 2.
- Α 4. D
- 6. В
- 8.
- 10. D
- 12. В 14. Α
- 16. Α
- 18. Α
- С 20.
- č 22.
- 24. Α
- С 26.
- Α 28. 30. Α
- С 32.
- С 34.
- 36.
- 0 38. Α

- 15. Α

- 2. В
- 4. С
- 6. Α
- В 8.
- 10. С
- D 12.
- 14. В
- 16. D
- 18. K
- 20. $5\sqrt{5/2}$

21.
$$-\frac{\hat{J}+\hat{K}}{\sqrt{2}}$$
 ON $\frac{\hat{J}-\hat{K}}{\sqrt{2}}$

L-III

1. 3. C 2. C