Start coding or $\underline{\text{generate}}$ with AI.

Calculate the Customer Life Time Value (CLTV)

RFM METHOD

```
import numpy as np
import pandas as pd
import time
import datetime as dt

df = pd.read_csv("/content/customer_purchases.csv")
```

df.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	
	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom	11.
	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom	
:	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom	
		040000	KNITTED UNION FLAG HOT WATER	^	12/1/2010	2 22	47050.0	United	

df['date'] = pd.DatetimeIndex(df['InvoiceDate']).date

```
recency_df = df.groupby(by='CustomerID', as_index=False)['date'].max()
recency_df.columns = ['CustomerID','LastPurshaceDate']
```

recent_date=recency_df.LastPurshaceDate.max()
print(recent_date)

2011-12-09

 $\label{lem:concy_df['Recency'] = recency_df['LastPurshaceDate'].apply(lambda x: (recent_date - x).days) \\ recency_df.head()$

	CustomerID	LastPurshaceDate	Recency	\blacksquare
0	12346.0	2011-01-18	325	ılı
1	12347.0	2011-12-07	2	
2	12348.0	2011-09-25	75	
3	12349.0	2011-11-21	18	
4	12350 0	2011-02-02	310	

Frequency

```
# Dropping duplicates
df1= df
df1.drop_duplicates(subset=['InvoiceNo', 'CustomerID'], keep="first", inplace=True)

# Calculating the frequency of purchases
frequency_df = df1.groupby(by=['CustomerID'], as_index=False)['InvoiceNo'].count()
frequency_df.columns = ['CustomerID', 'Frequency']
frequency_df.head()
```

```
CustomerID Frequency
## Monetary
df['TotalCost'] = df['Quantity'] * df['UnitPrice']
monetary_df = df.groupby(by='CustomerID',as_index=False).agg({'TotalCost': 'sum'})
monetary_df.columns = ['CustomerID','Monetary']
monetary_df.head()
        CustomerID Monetary
     0
            12346.0
                         0.00
                                ıl.
     1
            12347.0
                       163.16
     2
            12348.0
                       331.36
            12349.0
     3
                        15 00
```

Creating RFM Table
temp_df = recency_df.merge(frequency_df,on='CustomerID')
temp df.head()

25.20

12350.0

	CustomerID	LastPurshaceDate	Recency	Frequency	
0	12346.0	2011-01-18	325	2	11.
1	12347.0	2011-12-07	2	7	
2	12348.0	2011-09-25	75	4	
3	12349.0	2011-11-21	18	1	
4	12350.0	2011-02-02	310	1	

rfm_df = temp_df.merge(monetary_df,on='CustomerID')

```
# Using CustomerID as index
rfm_df.set_index('CustomerID',inplace=True)
rfm_df.head()
```

	LastPurshaceDate	Recency	Frequency	Monetary	\blacksquare
CustomerID					ıl.
12346.0	2011-01-18	325	2	0.00	
12347.0	2011-12-07	2	7	163.16	
12348.0	2011-09-25	75	4	331.36	
12349.0	2011-11-21	18	1	15.00	
12350.0	2011-02-02	310	1	25.20	

```
# Ranking the each metric R , F & M
rfm_df['R_rank'] = rfm_df['Recency'].rank( ascending=False)
rfm_df['F_rank'] = rfm_df['Frequency'].rank(ascending=True)
rfm_df['M_rank'] = rfm_df['Monetary'].rank(ascending=True)
rfm_df.head()
# normalizing each rank with Max rank
rfm_df['R_rank_norm'] = (rfm_df['R_rank']/rfm_df['R_rank'].max())*100
rfm_df['F_rank_norm'] = (rfm_df['F_rank']/rfm_df['F_rank'].max())*100
rfm_df['M_rank_norm'] = (rfm_df['F_rank']/rfm_df['M_rank'].max())*100
rfm_df['M_rank_norm'] = (rfm_df['F_rank']/rfm_df['M_rank'].max())*100
rfm_df['RFM_Score'] = 0.15*rfm_df['R_rank_norm'] + 0.28*rfm_df['F_rank_norm'] + 0.57*rfm_df['M_rank_norm']
rfm_df = rfm_df.round(0)
rfm_df.head()
```

LastPurshaceDate Recency Frequency Monetary R rank F rank M rank R

Segmenting customers based on RFM score

0 - 50 - Low valued customer

50 - 75 - Medium valued customer

76 - 100 - High valued customer

	LastPurshaceDate	Recency	Frequency	Monetary	R_rank	F_rank	M_rank	R
CustomerID								
12346.0	2011-01-18	325	2	0.0	169.0	1722.0	178.0	
12347.0	2011-12-07	2	7	163.0	4171.0	3560.0	3579.0	
12348.0	2011-09-25	75	4	331.0	1642.0	2809.0	3976.0	
4								•

#PREDECTIVE MODELLING

Q.2 Predective Modeling , Probabilistic Model

```
pip install lifetimes
```

```
Requirement already satisfied: lifetimes in /usr/local/lib/python3.10/dist-packages (0.11.3)
Requirement already satisfied: numpy>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from lifetimes) (1.23.5)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from lifetimes) (1.11.4)
Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from lifetimes) (1.5.3)
Requirement already satisfied: autograd>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from lifetimes) (1.6.2)
Requirement already satisfied: dill>=0.2.6 in /usr/local/lib/python3.10/dist-packages (from lifetimes) (0.3.7)
Requirement already satisfied: future>=0.15.2 in /usr/local/lib/python3.10/dist-packages (from autograd>=1.2.0->lifetimes) (0.18.3)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->lifetimes) (2023.3.pos
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas>=0.24.0->li
```

```
import lifetimes
import matplotlib.pyplot as plt

import matplotlib.pyplot as plt
features = ['CustomerID', 'InvoiceNo', 'InvoiceDate', 'Quantity', 'UnitPrice']
data_clv = df[features]
data_clv['TotalSales'] = data_clv['Quantity'].multiply(data_clv['UnitPrice'])
data_clv['InvoiceDate'] = pd.to_datetime(data_clv['InvoiceDate'])
print(data_clv.shape)
data_clv.head()
```

(25900,	6)
---------	----

	CustomerID	InvoiceNo	InvoiceDate	Quantity	UnitPrice	TotalSales	
0	17850.0	536365	2010-12-01 08:26:00	6	2.55	15.30	ıl.
7	17850.0	536366	2010-12-01 08:28:00	6	1.85	11.10	
9	13047.0	536367	2010-12-01 08:34:00	32	1.69	54.08	
21	13047.0	536368	2010-12-01 08:34:00	6	4.25	25.50	
25	13047.0	536369	2010-12-01 08:35:00	3	5.95	17.85	

```
summary = lifetimes.utils.summary_data_from_transaction_data(data_clv, 'CustomerID','InvoiceDate','TotalSales')
summary = summary.reset_index()
summary.head()
```



```
summary['frequency'].plot(kind='hist', bins=50)
plt.show()

# Display summary statistics
print(summary['frequency'].describe())
print("---")

# Calculate percentage of one-time buyers
one_time_buyers = round((sum(summary['frequency'] == 1) / len(summary)) * 100, 2)
print(f"Percentage of customers purchasing the item only once: {one_time_buyers}%")
```


mean 3.413541 std 6.674343 min 0.000000 25% 0.000000 50% 1.000000 75% 4.000000 max 145.000000

Name: frequency, dtype: float64

Percentage of customers purchasing the item only once: 19.62%

```
#Fitting the BG/NBD model
bgf = lifetimes. BetaGeoFitter (penalizer_coef=0.0)
bgf.fit(summary['frequency'], summary['recency'], summary['T'])
```

difetimes.BetaGeoFitter: fitted with 4372 subjects, a: 0.02, alpha: 55.62, b: 0.49, r: 0.84>

bgf.summary

	coef	se(coef)	lower 95% bound	upper 95% bound	\blacksquare
r	0.843025	0.026206	0.791661	0.894389	ılı
alpha	55.619383	2.088118	51.526671	59.712095	
а	0.021519	0.006381	0.009012	0.034026	
b	0.488673	0.176970	0.141812	0.835534	

summary['probability_alive'] = bgf.conditional_probability_alive (summary['frequency'], summary['T'])
summary.head()

	probability_alive	monetary_value	Т	recency	frequency	CustomerID	
ıl.	1.000000	0.000000	325.0	0.0	0.0	12346.0	0
	0.995966	22.993333	367.0	365.0	6.0	12347.0	1
	0.981687	97.253333	358.0	283.0	3.0	12348.0	2
	1.000000	0.000000	18.0	0.0	0.0	12349.0	3
	1.000000	0.000000	310.0	0.0	0.0	12350.0	4

 $from \ lifetimes.plotting \ import \ plot_probability_alive_matrix$

```
fig = plt.figure(figsize=(16, 10))
plot_probability_alive_matrix(bgf, cmap='plasma')
plt.show()
```



```
t = 30
summary['pred_num_txn'] = round(bgf.conditional_expected_number_of_purchases_up_to_time(t, summary['frequency'], summary['recency'], su
top_10_customers = summary.sort_values(by='pred_num_txn', ascending=False).head(10)
top_10_customers.reset_index(inplace=True)
top_10_customers
```

	index	CustomerID	frequency	recency	Т	monetary_value	probability_alive	р
0	1895	14911.0	145.0	372.0	373.0	45.236483	0.999791	
1	4042	17841.0	112.0	372.0	373.0	9.544821	0.999749	
2	330	12748.0	114.0	373.0	373.0	5.457982	0.999810	
3	2192	15311.0	90.0	373.0	373.0	43.113222	0.999760	
4	568	13089.0	82.0	367.0	369.0	44.713902	0.999610	

#checking the relationship between frequency and monetary_value
return_customers_summary = summary[summary['frequency']>0]
print(return_customers_summary.shape)
return_customers_summary.head()

(2991, 7)

	CustomerID	frequency	recency	Т	monetary_value	probability_alive	pred_nu
1	12347.0	6.0	365.0	367.0	22.993333	0.995966	
2	12348.0	3.0	283.0	358.0	97.253333	0.981687	
5	12352.0	6.0	260.0	296.0	-26.291667	0.991857	
9	12356.0	2.0	303.0	325.0	25.950000	0.983167	
11	12358.0	1.0	149.0	150.0	142.800000	0.957457	
4							>

#checking the relationship between frequency and monetary_value
return_customers_summary[['frequency','monetary_value']].corr()

	frequency	monetary_value	
frequency	1.000000	0.072713	ıl.
monetary_value	0.072713	1.000000	

return_customers_summary = return_customers_summary[return_customers_summary['monetary_value'] > 0]

ggf = lifetimes.GammaGammaFitter(penalizer_coef=0.001)
ggf.fit(return_customers_summary['frequency'], return_customers_summary['monetary_value'])

clifetimes.GammaGammaFitter: fitted with 2681 subjects, p: 2.23, q: 1.06, v: 5.24>

ggf.summary

	coef	se(coef)	lower 95% bound	upper 95% bound	\blacksquare
р	2.232904	0.095091	2.046526	2.419282	ıl.
q	1.061704	0.028088	1.006651	1.116757	
v	5.237124	0.274339	4.699419	5.774829	

summary = summary[summary['monetary_value']>0]
summary['exp_avg_sales'] = ggf.conditional_expected_average_profit(summary['frequency'],summary['monetary_value'])

summary.head()

	CustomerID	frequency	recency	Т	monetary_value	<pre>probability_alive</pre>	pred_nu
1	12347.0	6.0	365.0	367.0	22.993333	0.995966	
2	12348.0	3.0	283.0	358.0	97.253333	0.981687	
9	12356.0	2.0	303.0	325.0	25.950000	0.983167	
11	12358.0	1.0	149.0	150.0	142.800000	0.957457	
12	12359.0	5.0	324.0	331.0	1.380000	0.994694	
4							>

print(f"Expected Average Sales: {summary['exp_avg_sales'].mean()}")
print(f"Actual Average Sales: {summary['monetary_value'].mean()}")

Expected Average Sales: 40.26715887993627 Actual Average Sales: 38.419385969390525

		CustomerID	frequency	recency	Т	monetary_value	probability_alive	pred_
1	895	14911.0	145.0	372.0	373.0	45.236483	0.999791	
3	330	12748.0	114.0	373.0	373.0	5.457982	0.999810	
4	042	17841.0	112.0	372.0	373.0	9.544821	0.999749	
1	674	14606.0	88.0	372.0	373.0	10.123523	0.999697	
5	568	13089.0	82.0	367.0	369.0	44.713902	0.999610	
- 4								•

summary['manual_predicted_clv'] = summary['pred_num_txn'] * summary['exp_avg_sales']
summary.head()

	CustomerID	frequency	recency	Т	monetary_value	probability_alive	pred_nu
1	12347.0	6.0	365.0	367.0	22.993333	0.995966	
2	12348.0	3.0	283.0	358.0	97.253333	0.981687	
9	12356.0	2.0	303.0	325.0	25.950000	0.983167	
11	12358.0	1.0	149.0	150.0	142.800000	0.957457	
12	12359.0	5.0	324.0	331.0	1.380000	0.994694	
4							>

profit_margin = 0.05
summary['CLV'] = summary['predicted_clv'] * profit_margin
summary.head()

	CustomerID	frequency	recency	Т	monetary_value	probability_alive	pred_nu
1	12347.0	6.0	365.0	367.0	22.993333	0.995966	
2	12348.0	3.0	283.0	358.0	97.253333	0.981687	
9	12356.0	2.0	303.0	325.0	25.950000	0.983167	
11	12358.0	1.0	149.0	150.0	142.800000	0.957457	
12	12359.0	5.0	324.0	331.0	1.380000	0.994694	
4							•

the CLV for each customer for the next 30 days

summary['CLV'].describe()

2681.000000 count 1.263387 mean std 4.978443 0.005741 min 0.182682 25% 0.376245 50% 0.854357 75% 131.826949 max Name: CLV, dtype: float64