Б.В. Москвин, кандидат техн. наук, доцент; В.Д. Гришин, кандидат техн. наук, доцент; К.Г. Колесников, кандидат техн. наук, доцент

КОМПЛЕКСНАЯ МОДЕЛЬ ОПТИМИЗАЦИИ ТЕХНОЛОГИИ УПРАВЛЕНИЯ ОПЕРАЦИЯМИ ОБСЛУЖИВАНИЯ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ УПРАВЛЕНИЯ КОСМИЧЕСКИМИ АППАРАТАМИ

Рассматривается подход к построению комплексной модели, включающей автоматную модель с конечным множеством состояний и модель типа сеть Петри, предназначенной для анализа и оптимизации технологии управления операциями в автоматизированных системах управления космическими аппаратами (АСУ КА).

Ключевые слова: технология управления операциями, автоматные модели с конечным множеством состояний, конечный автомат с дискретным временем, маркированная сеть Петри, последовательность срабатывания переходов на сети Петри.

Возрастание сложности и масштабности задач, решаемых военно-техническими системами, повышение требований к качеству их функционирования, рост технологической сложности процессов, вызванные потребностями военной практики, тесно связаны с решением одной из центральных системно-кибернетических проблем исследования сложных систем любой материальной природы — проблемой управления. Повышение оперативности и качества управления военно-техническими системами достигается, как правило, на основе совершенствования технологии управления операциями, связанными с обеспечением целевого назначения систем. В последние годы в этих целях интенсивно развиваются математические методы моделирования, позволяющие выявлять потенциальные, предельно достижимые характеристики систем и на этой основе совершенствовать процессы управления.

Процесс управления космическими аппаратами в АСУ КА можно структурировать с использованием понятия комплекса операций, который обладает определенной структурой, допускающей различные варианты проведения операций, и ресурсами, необходимыми для проведения операций (ресурсы могут использоваться различными способами). Тогда формализованное представление технологии управления достигается на основе разработки формальных математических моделей, описывающих особенности проведения комплекса операций управления. В качестве математического аппарата, используемого для управления процессом выполнения операций, в последние годы широко применяются автоматные модели с конечным множеством состояний и сети Петри.

Множество технологических операций управления обозначим через $D=\{d_q,\ q=1,...,Q_o\}.$ Каждой операции d_q в момент времени $t\in T$ однозначно сопоставляется вектор $x_q(t)=(x_{Iq}(t),\ x_{2q})^{\rm T}$, характеризующий состояние операции. Здесь $x_{Iq}(t)$ – компонента вектора, описывающая степень выполнения операции d_q в момент времени t; x_{2q} – компонента вектора, описывающая значение состояния, при котором операция d_q полагается выполненной. Управление операцией осуществляется с использованием входного воздействия $u_q(t)$, принимающего значения из $\{0,1\}$; если $u_q(t)=1$, то изменение состояние операции разрешается. Управление $u_q(t)$ может принимать значение 1 только в том случае, когда предшествующие для d_q операции (в соответствии с технологией управления) выполнены, и $u_q(t)=0$ в противном случае. Выходной сигнал $y_q(t)$ свидетельствует о выполнении операции d_q ; $y_q(t) \in \{0,1\}$, причем $y_q(t)=1$, если d_q выполнена, и $y_q(t)=0$, если d_q не выполнена.

Наряду с множеством технологических операций D рассматривается множество привлекаемых к выполнению операций ресурсов R; $R = \{r_m, m=1,...,M\}$. Будем полагать, что для выполнения операции d_q используется один вид ресурса r_m . При этом под «видом ресурса» r_m может пониматься какой-либо комплексный ресурс, состоящий из нескольких. Потребность операций в ресурсах описывается функцией $a: D \times R \to R^l_+$, где R^l_+ – подмножество неотрицательных действительных чисел; $a(d_q,r_m)$ характеризует длительность использования ресурса r_m при выполнении операции d_q . Как правило, множества D и R конечны, в этом случае функцию (a) можно характеризовать матрицей $A = \{a_{qm}\}$ размерности $N \times M$, где $a_{qm} = a(d_q,r_m)$.

В качестве модели, позволяющей описывать выполнение отдельной операции, будем рассматривать конечный автомат с дискретным временем. Тогда число тактов n_q выполнения операции d_q можно определить как $n_q = \text{Max Cell}[a_{qm}/\tau]$, где $\tau - \text{шаг}$ дискретизации времени на интервале моделирования $T = [t_o, t_f]$; Cell — функция округления до ближайшего целого. В этом случае компоненты состояния операции на k-м шаге $x_q(k) = (x_{1q}(k), x_{2q})^{\text{т}}$ можно интерпретировать соответственно: $x_{1q}(k)$ — число тактов, прошедших с начала выполнения операции; x_{2q} — число тактов, необходимых для выполнения операции, $x_{2q} = n_q$. В момент окончания выполнения операции $(x_{1q}(k) = x_{2q})$ выходная функция y_q принимает значение 1 и остается равной 1 до конца моделирования, что позволяет идентифицировать множество выполненных операций.

Таким образом, модель выполнения отдельной операции может быть представлена в виде конечного автомата второго рода, задаваемого пятеркой (U,Y,X,p,h), где U — множество управлений; Y — множество выходных сигналов; X — множество состояний; p — переходная функция; h — функция выходов.

Изменение состояния $x_a(k) = (x_{1a}(k), x_{2a})^{\mathrm{T}}$ описывается функцией p:

$$x_{1q}(k) = p(x_{1q}(k-1), u_q(k)),$$

причем

$$x_{1q}(k) = \left\{ egin{array}{ll} 0, & ext{если } u_q(k) = 0, \\ x_{1q}(k-I) + I, & ext{если } u_q(k) = 1 \text{ и } x_{1q}(k-I) < n_q, \\ n_q, & ext{если } x_{1q}(k-I) = n_q. \end{array}
ight.$$

Изменение выхода $y_q(k)$ описывается функцией $h;\ y_q(k)=h(x_q(k)),\$ где $\ h(x_q(k))-$ выходная функция:

Технология управления представляет собой взаимосвязанный комплекс операций. Выше была рассмотрена модель выполнения отдельной операции. Взаимосвязь различных операций в комплексе предлагается описывать на основе управляемых временных сетей Петри, формально задаваемых пятеркой $P=(D,\,S,\,I,\,E,\,m_o)$. Здесь D- множество операций (в сети Петри интерпретируется как множество позиций); S- множество переходов (позволяет описывать взаимосвязь операций и синхронизировать выполнение операций по параллельным ветвям графа, описывающего технологию выполнения операций); I- функция входов, $I: D \times S \rightarrow \{0,1\}; E-$ функция выходов, $E: S \times D \rightarrow \{0,1\}; m_o-$ вектор начальной маркировки (начальное состояние операций).

Изменение состояния операции (наличие маркера в соответствующей позиции) описывается рассмотренной автоматной моделью, в соответствии с которой маркер на выходе (yq(k)=1) появляется с запаздыванием на определенное число тактов. Это связано с фактом завершения выполнения операции. Управление на сети P заключается в выборе перехода для запуска из множества S+(i) — выходных (альтернативных) переходов позиции $i \in S$. Основой

такого выбора является анализ множества достижимых из m_o маркировок и тех маршрутов, которые ведут к финальным (позволяющим выполнить необходимый состав операций) маркировкам $\{m_f\}$.

Любой маршрут из начального состояния операций, описываемого маркировкой m_o , в конечное состояние комплекса операций, которому соответствует множество маркировок $\{m_f\}$, описывается последовательностью срабатывания переходов $w_i = (s_{i1}, s_{i2}, ..., s_{iL})$. Выбор определенной последовательности w_i представляет собой управление на сети Петри, причем каждой последовательности w_i из конечного множества W допустимых последовательностей срабатывания переходов (последовательностей, которые обеспечивают переход из m_o в m_f) соответствуют свои качественные показатели F(w) выполнения комплекса операций, такие, например, как время выполнения, количество привлекаемых средств и другие. Тогда задача оптимального управления выполнением комплекса операций эквивалентна задаче поиска оптимальной последовательности срабатывания переходов w^* на сети Петри и имеет вид

$$w^* = \text{arg Opt } F(w), w \in W,$$

- где W множество последовательностей срабатывания переходов, обеспечивающих выполнение комплекса операций;
 - Opt оператор выбора оптимального значения функции F(w), характеризующей некоторое качество выполнения операций.

Представленный подход к построению комплексной модели управления операциями отражает развитие параллельных процессов, которые могут иметь место в некоторых технологиях выполнения операций. Он также позволяет оперативно (в ходе моделирования) учитывать прогнозируемое состояние ресурсов, технических средств и с учетом этих состояний выбирать рациональные способы управления операциями и достижения финальных состояний комплекса.

Список используемых источников

- 1. Технология системного моделирования / Е.Ф. Аврамчук, А.А. Вавилов, С.В. Емельянов и др. М.: Машиностроение, 1988. 520 с.
 - 2. Питерсон Дж. Теория сетей Петри и моделирование систем. М.: Мир, 1984. 264 с.