CPS-NBADatabase 2

Francesco Caldivezzi: 2037893

Andrea Pasin: 2041605

Harjot Singh: 2053081

Università degli Studi di Padova

Presentation Outline

Dataset and Ontology	03
Conventions and Data Ingestion	06
The Infrastructure	09
SPARQL Queries	13
Live Demo	20
Questions	21

Our Dataset

- 01 It's about NBA
- Built by **merging** two different datasets together:
 - **Games** stats
 - Players, Arenas, Appearances stats
- 1t's an **Open** Dataset, with data from **Kaggle.com**

The **Ontology**

URI Conventions

We used **conventions** to have uniform **URIs**:

01 CommonPrefix

https://www.dei.unipd.it/Database2/CPS-NBA

CommonPrefix/
[ClassName | ObjectPropertyName | DataPropertyName]

https://www.dei.unipd.it/Database2/CPS-NBA/**Player**

CommonPrefix/
[ClassName | ObjectPropertyName | DataPropertyName]#
InstanceIdentifier

https://www.dei.unipd.it/Database2/CPS-NBA/Person#20544

Data Ingestion

To avoid inconsistencies and respect the maximum import size of **GraphDB** as well as avoid using more than **7 GB** of RAM for the serialization process:

01

We **rejected** data containing not defined values like: NULL, NA, null, na, "empty" etc..

We implemented a **batch serialization** up to 200'000 triples for the "appearance.ttl" file.

```
Home Insert Draw Page Layout Formulas Data

Cut Calibri (Body) 12 \wedge A \wedge

Paste Format B I \vee \wedge \wedge

A1 \wedge \wedge

A B C D E F

GAME_DATE_EST,GAME_ID,...,PTS_home,...

2 2003 10-24,...,....
```

```
# -----
# Serialize at blocks
# -----
if ( index % BLOCK_SERIALIZATION_SIZE == 0 ):
    ...
    helper. serialize (graph, serialization_path)
    ...
```


The Web-App

We created a **Web-App** to interact with data. Through the Web-App it's possible to issue **queries** and dynamically **visualize data**

Front-end

The Front-end is developed by means of Flutter, an open-source framework to develop cross-platform applications

Back-end: proxy and dispatcher

A very simple proxy and dispatcher server is created by means of Python to answer the clients' requests

Back-end: database

GraphDB has been used to store data

Containerized with Docker

We used **Docker** to separate the Database and the Server following a "production approach". A **docker-compose** file has been created to setup everything automatically

How it Works

Here we present a schema that illustrates how everything works. The server acts both as a **proxy** forwarding query requests to GraphDB and as a **dispatcher** providing the application resources

Querying GraphDB

Through our Web-App it's possible to issue queries to our GraphDB database. We analyzed how queries are **formatted** according to http. We implemented a basic tool for **syntax highlighting** through RegExes. These features could be added in the future as Flutter libraries

```
▼ Request Headers
                                              View source
  Accept: application/x-sparqlstar-results+json, application/sparql-results+json; q=0.9, */*; q=0.8
  Accept-Encoding: gzip, deflate, br
  Accept-Language: en-US,en;q=0.9,it-IT;q=0.8,it;q=0.7
  Connection: keep-alive
  Content-Length: 132
  Content-Type: application/x-www-form-urlencoded; charset=UTF-8
  Host: localhost:8080
  Origin: http://localhost:8080
  Referer: http://localhost:8080/
  sec-ch-ua: "Google Chrome"; v="107", "Chromium"; v="107", "Not=A?Brand"; v="24"
  sec-ch-ua-mobile: ?0
  sec-ch-ua-platform: "Linux"
  Sec-Fetch-Dest: empty
  Sec-Fetch-Mode: cors
  Sec-Fetch-Site: same-origin
 User-Agent: Mozilla/5.0 (X11: Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/5
 37.36
Form Data
              view source view URL-encoded
        # Example of a query
        SELECT * WHERE{
  query: ?s ?p ?o .
        LIMIT 100
  infer: true
  sameAs: true
  limit: 1001
  offset: 0
```

```
1 # Example of a query
2 SELECT * WHERE{
3 ?s ?p ?o .
4 }
5 LIMIT 100
```


Dynamic Charts

We provided a set of 12 queries for which charts will be displayed. These charts are built **dynamically** and if the GraphDB database changes, these charts will reflect the changes

01

Custom queries

In the main page it's possible to issue custom queries and the result set will be provided as output

02

Pre-defined queries

By means of the pre-defined queries, we provided charts to better visualize data. These charts are built dynamically

Most interesting Queries

03

3 points vs 2 Points during seasons

aim: find how many 3 points attempts and how many 2 points attempts were scored during all seasons.

07

NBA Ranking

aim: retrieve the ranking of a specific NBA season.

08

How Players' Height/Weight affects the ranking

aim: retrieve the average height and weight of the players of the club with the highest number of won matches and the club with the lowest number of won matches.

11

Comparison between two teams in each season

aim: get the results of the matches between Miami and Chicago of every season.

12

Team analysis

aim: get the list of all the international players who have played in the winning team of season 2015.

Our Most Complex Queries

```
SELECT (MAX (?totalWins) AS ?winner) (MIN (?totalWins) AS ?loser) {
         SELECT ?nickname (SUM(?wins) AS ?totalWins) WHERE {
               SELECT ?nickname (SUM(?winHome) AS ?wins) WHERE {
                  ?game base:hasHomeClub ?homeClub ;
                        base:matchDate ?matchDate ;
                        base:winHome ?winHome .
                   ?homeClub base:nickname ?nickname .
                   FILTER(?matchDate >= "2010-10-27" ^^xsd:date && ?matchDate <= "2011-06-12" ^^xsd:date)
               } GROUP BY (?nickname)
            UNION
08.4
                                                                                 winner
                                                                                                   loser
               SELECT ?nickname (SUM(1 - ?winHome) AS ?wins) WHERE
                                                                            "73"^^xsd:integer
                                                                                             "17"^^xsd:integer
                  ?qame base:hasAwayClub ?awayClub ;
                        base:matchDate ?matchDate ;
                        base: winHome ? winHome .
                  ?awayClub base:nickname ?nickname .
                  FILTER(?matchDate >= "2010-10-27" ^^xsd:date && ?matchDate <= "2011-06-12" ^^xsd:date)
               } GROUP BY (?nickname)
         GROUP BY ?nickname
```


08.B

Our Most Complex Queries

```
SELECT ?nickname ?totalWins WHERE {
      SELECT ?nickname (SUM(?wins) AS ?totalWins) WHERE {
            SELECT ?nickname (SUM(?winHome) AS ?wins) WHERE {
               ?game base:hasHomeClub ?homeClub ;
                     base:matchDate ?matchDate ;
                     base:winHome ?winHome .
               ?homeClub base:nickname ?nickname .
               FILTER(?matchDate >= "2010-10-27"^^xsd:date && ?matchDate <= "2011-06-12"^^xsd:date)
            }GROUP BY(?nickname)
                                                                                   nickname
                                                                                                         totalWins
         UNION
                                                                                                   "17"^^xsd:integer
                                                                             "Timberwolves"
            SELECT ?nickname (SUM(1 - ?winHome) AS ?wins) WHERE {
               ?game base:hasAwayClub ?awayClub ;
                     base:matchDate ?matchDate ;
                                                                                                   "73"^^xsd:integer
                                                                             "Mavericks"
                     base: winHome ? winHome .
               ?awayClub base:nickname ?nickname .
               FILTER(?matchDate >= "2010-10-27"^^xsd:date && ?matchDate <= "2011-06-12"^^xsd:date)
            }GROUP BY(?nickname)
      GROUP BY ?nickname
   { 08.A }
  FILTER (?totalWins IN (?winner , ?loser))
```


Our Most Complex Queries

```
PREFIX base: <https://www.dei.unipd.it/Database2/CPS-NBA/>
     PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
     SELECT ?nicknameTeam ?totalWins (AVG(?height) AS ?heightAvg) (AVG(?weight) AS ?weightAvg) WHERE
        ?player base:playedFor ?team ;
                base:startYear "2010"^^xsd:gYear ;
                base:height ?height;
                base:weight ?weight .
        ?team base:nickname ?nicknameTeam .
08.0
           08.B
        FILTER (?nickname = ?nicknameTeam)
      GROUP BY ?nicknameTeam ?totalWins
```

	nicknameTeam \$	totalWins \$	heightAvg 💠	weightAvg \$
1	"Timberwolves"	"17"^^xsd:integer	"199.93433"^^xsd:float	"99.887436"^^xsd:float
2	"Mavericks"	"73"^^xsd:integer	"200.99867"^^xsd:float	"98.852806"^^xsd:float

References

01

All the icons are provided by https://www.flaticon.com/free-icons/

02

All the animations are provided by https://lottiefiles.com/

03

Other images (at slides 4 and 10) have clickable links pointing to their corresponding resources or websites of their owners

