PHYSICS WORKSHEET - Torque Problems

Answer the following questions.

 A 10-kilogram mass is suspended from the end of a beam that is 1.2 meters long. The beam is attached to a wall. Find the magnitude and direction (clockwise or counterclockwise) of the resulting torque at point B. Hint: Remember that force is measured in newtons, not kilograms.

2. Two masses m_1 and m_2 are suspended on an ornament. The ornament is hung from the ceiling at a point which is 10 centimeters from mass m_1 and 30 centimeters from mass m_2 . If m_1 = 6 kg, what does m_2 have to be for the ornament to be in rotational equilibrium?

Answer Sheet:

1. A 10-kilogram mass is suspended from the end of a beam that is 1.2 meters long. The beam is attached to a wall. Find the magnitude and direction (clockwise or counterclockwise) of the resulting torque at point B. Hint: Remember that force is measured in newtons, not kilograms.

Answer: 117.6 N-m clockwise

2. Two masses m_1 and m_2 are suspended on an ornament. The ornament is hung from the ceiling at a point which is 10 centimeters from mass m_1 and 30 centimeters from mass m_2 . If m_1 = 6 kg, what does m_2 have to be for the ornament to be in rotational equilibrium?

Answer: $m_2 = 2$ kilograms