

mskPredicting Content Rating of YouTube Movie Trailers based on Comments

By ohuod almarshdi

Outline

- Problem statement & objectives
- Data Sources
- EDA and Feature Engineering
- Data pre-processing
- Model
- Results
- Next steps

Problem statement & objectives

 Can we use YouTube trailer text feature to predict the category of movies ratings using classification models?

Why YouTube?

- YouTube with unlimited upload capacity .
- You can find movies that have not yet been copyrighted and removed to watch.
- There's billions of hours of content to watch.

Data sources

- Movie IMDb
- YouTube Movie Trailer
- YouTube Trailer Comments

YouTube trailer

YouTube trailer Data

YouTube API

Movie YouTube dataset: 4147

comments dataset: 34657

Features Engineering

Transform Content Rating Classes into 3 categorize :

Adults

NC-17, TV-MA, X,R

Teenagers

PG, PG-13, TV-PG,TV-14

All Ages

TV-Y7,TV-Y,TV-G,M,G,GP


```
for txt in all_:
    sentences.append(txt.lower())
    tokenized = [t.lower().strip(":,.!?") for t in txt.split()]
    tokens.extend(tokenized)
    tokenizedSentences.append(tokenized)

hashtags = [w for w in tokens if w.startswith('#')]
ghashtags = [w for w in tokens if w.startswith('+')]
mentions = [w for w in tokens if w.startswith('0')]
links = [w for w in tokens if w.startswith('http') or w.startswith('www')]
```

Text cleaning

Remove

- non English words
- @ ,#,*,.?>/:;'\}[+-
- links and e-mails
- Emojis

Data pre-processing

Natural language data pre-processing

Model Name	score
Linear SVC	0.529280
Logistic Regression	0.538835
Multinomial NB	0.540759
Random Forest Classifier	0.526347
LSTM	0.530

Model selection

Preliminary Results

Multinomial NB

	precision	recall	f1-score	support
Teenagers	0.54	0.33	0.41	2813
all age	0.56	0.78	0.65	3337
Adults	0.00	0.00	0.00	193
avg / total	0.54	0.56	0.52	6343

 Multinomial Naive Bayes – Didn't work well for 3 classes

What we can do to improve?

Can we minimize the class number for balance?

- suitable for teenagers
- Not suitable for teenagers

Most common words in each

Model Name	score
Linear SVC	0.552269
Logistic Regression	0.563558
Multinomial NB	0.566523
Random Forest Classifier	0.555170
LSTM	0.567

Model selection

- LSTM
- Multinomial NB

Multinomial NB

Results	

	precision	recall	fl-score	support
Teenagers	0.56	0.29	0.38	2813
Adults	0.59	0.82	0.69	3530
avg / total	0.58	0.58	0.55	6343

• LSTM

الفيدير الثالي

'Aquaman' Official Extended Trailer (2018) | Jason Momoa, Amber Heard

Next steps

- Model with more comments and for more content ratings classes
- Work with video caption or transcript rather than comments