In [49]: import pandas as pd
 import numpy as np
 import plotly.graph_objects as go
 from sklearn.model_selection import train_test_split
 import seaborn as sns
 import matplotlib.pyplot as plt

In [3]: df=pd.read_csv('Advertising.csv')

In [4]: df

Out[4]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [5]: df.shape

Out[5]: (200, 5)

In [6]: df.head()

Out[6]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

In [7]: df.tail() Out[7]: Unnamed: 0 TV Radio Newspaper Sales 195 196 38.2 3.7 13.8 7.6 196 197 94.2 4.9 9.7 8.1 197 198 177.0 9.3 6.4 12.8 198 199 283.6 42.0 66.2 25.5 199 200 232.1 8.6 8.7 13.4 In [8]: |df.describe Out[8]: <bound method NDFrame.describe of</pre> Unnamed: 0 TV Radio Newspaper S ales 0 1 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 2 3 17.2 45.9 9.3 69.3 3 4 151.5 41.3 58.5 18.5 4 5 180.8 10.8 58.4 12.9 195 196 38.2 3.7 13.8 7.6 196 197 94.2 4.9 8.1 9.7 197 198 177.0 9.3 6.4 12.8 25.5 198 199 283.6 42.0 66.2 199 200 232.1 8.6 8.7 13.4 [200 rows x 5 columns]> In [9]: |df.info Out[9]: <bound method DataFrame.info of</pre> Unnamed: 0 TV Radio Newspaper Sal es 0 1 230.1 37.8 69.2 22.1 1 2 44.5 39.3 45.1 10.4 2 3 17.2 45.9 69.3 9.3 151.5 58.5 18.5 3 4 41.3 4 5 180.8 10.8 58.4 12.9 196 38.2 195 3.7 13.8 7.6 94.2 196 197 4.9 8.1 9.7 197 198 177.0 9.3 6.4 12.8 198 199 283.6 42.0 66.2 25.5 199 200 232.1 8.6 8.7 13.4

[200 rows x 5 columns]>

```
In [10]: df.isnull().sum()
Out[10]: Unnamed: 0
                        0
         \mathsf{TV}
                        0
         Radio
                        0
                        0
         Newspaper
         Sales
         dtype: int64
In [11]: df.duplicated().sum()
Out[11]: 0
In [14]: fig.add_trace(go.Scatter(x=df['TV'], y=df['Sales'], mode='markers', marker=dic
         fig.update_layout(title='TV Sales', xaxis_title='TV', yaxis_title='Sales')
         fig.show()
```

```
In [18]: X = df.drop('Sales', axis=1)
```

In [21]: X

O-		T 24 '	1
	IT.	1 ノ 1	н
00		L .	J

	Unnamed: 0	TV	Radio	Newspaper
0	1	230.1	37.8	69.2
1	2	44.5	39.3	45.1
2	3	17.2	45.9	69.3
3	4	151.5	41.3	58.5
4	5	180.8	10.8	58.4
195	196	38.2	3.7	13.8
196	197	94.2	4.9	8.1
197	198	177.0	9.3	6.4
198	199	283.6	42.0	66.2
199	200	232.1	8.6	8.7

200 rows × 4 columns

Out[22]:

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [24]: Y=df[['Sales']]
Out[24]:
               Sales
                22.1
             1
                10.4
             2
                 9.3
             3
                18.5
             4
                12.9
            ...
                 ...
           195
                 7.6
           196
                 9.7
           197
                12.8
                25.5
           198
           199
                13.4
          200 rows × 1 columns
In [26]: X_train, X_test, Y_train,Y_test = train_test_split(X,Y,test_size = 0.20, rando
In [27]: | from sklearn.linear_model import LinearRegression
          # creating a Linear regression object
          lr = LinearRegression()
          lr
Out[27]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
In [28]: lr.fit(X_train, Y_train)
Out[28]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
In [31]: from sklearn import metrics
In [32]: print('Mean Absolute Error: ',metrics.mean_absolute_error(Y_predict,Y_test))
          Mean Absolute Error: 1.3617813502090275
```

[0.04441066 0.19656498 0.00357552]

```
In [45]: act_predict=pd.DataFrame({
        'Actual':y_test.values.flatten(),
        'Predict':y_predict.flatten()
})
act_predict.head(20)
```

Out[45]:

	Actual	Predict
0	11.3	10.017078
1	8.4	7.415322
2	8.7	7.005491
3	25.4	24.212379
4	11.7	12.066605
5	8.7	6.571338
6	7.2	13.115410
7	13.2	14.977876
8	9.2	11.040877
9	16.6	16.255128
10	24.2	23.042256
11	10.6	9.133528
12	10.5	10.344301
13	15.6	15.370656
14	11.8	11.569839
15	13.2	12.081157
16	17.4	18.576689
17	1.6	10.695014
18	14.7	16.040033
19	17.0	17.208418

```
In [46]: sns.lmplot(data=act_predict,x='Actual',y="Predict")
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x7f0edef0f790>

In [47]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

```
print("Mean_absolute_error:",mean_absolute_error(y_test,y_predict))
print("Mean_squared_error:",mean_squared_error(y_test,y_predict))
print("Squre_Mean_absolute_error:",np.sqrt(mean_absolute_error(y_test,y_predict)))
print("r2_score:",r2_score(y_test,y_predict))
```

```
In [38]:
```

sns.heatmap(df.corr(),annot=True)

Out[38]: <Axes: >


```
In [39]: sns.lmplot(data=df,x='Radio',y="Sales")
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x7f0ee3e01720>


```
In [40]: sns.lmplot(data=df,x='TV',y="Sales")
```

Out[40]: <seaborn.axisgrid.FacetGrid at 0x7f0ee11d7ee0>


```
In [41]: sns.lmplot(data=df,x='Newspaper',y="Sales")
```

Out[41]: <seaborn.axisgrid.FacetGrid at 0x7f0edefbca30>

In [50]: boxplot = df.boxplot(figsize = (5,5), rot = 90, fontsize= '8', grid = False)

