

Fonte da imagem: https://cutt.ly/D4jVvQY

Sistema Binário

OBJETIVOS (continuação)

- → Compreender os conceitos do que seria a aritmética computacional:
 - Representação de números ✓;
 - Conversões entre bases √.
- → Como trabalhar com a aritmética não decimal ou aritmética binária ✓.
- → Aritmética Octal, Hexadecimal ✓.
- → Representação Numérica:
 - Binário mais significativo e menos significativo;
 - Conhecer os números fracionários na arquitetura de computadores;
 - Ser capaz de realizar a representação numérica computacional;
 - Forma dos complementos de 1 e de 2 de um número binário.
- → Divisão e Multiplicação.
- → Ponto Fixo e Ponto Flutuante.

Sistema Binário

Como Representar o Sistema Decimal

Já foram analisados e treinados alguns pontos relacionados as conversões de bases sem a vírgula, agora veremos essas conversões com o uso da vírgula binária.

Sistema Binário – Como Representar o Sistema Decimal

O sistema decimal é similar ao sistema binário, então, ambos são de valor posicional e cada dígito binário possui um valor próprio expresso pela potência de 2 na base "b".

Sistema Binário – Como Representar o Sistema Decimal

Vamos analisar a imagem:

Valores Posicionais	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	1 8			
Expoente de "b^"	2 ³	2 ²	2 ¹	2 0		2 ⁻¹	2 -2	2 -3			
	†	ļ	ļ	ļ		ļ	ļ	Ţ			
Valor Binário →	1	0	1	1	•	1	0	1			
	1				1			1			
	MSB	Vírgula Binária									
Valores posicionais de Base 2 ⇒ Binário com vírgula											

- → MSB (Most Significant bit): Posição mais à esquerda do bit binário mais significativo.
- → LSB (Less Significant bit): Posição mais à direita do bit binário menos significativo.

Sistema Binário – Como Representar o Sistema Decimal

O **ponto**, considerado a **v**írgula binária, possui a mesma função da vírgula decimal: separar a parte **inteira** do número de sua parte **fracionária**.

Valores Posicionais –	→	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
Expoente de "b^" -	→	2 ³	2 ²	2 ¹	2 ⁰		2-1	2 -2	2 -3
		Ţ	ļ	1	Ţ		1	ļ	ļ
Valor Binário –		1	0	1	1	•	1	0	1
		1				1			1
		MSB			Vír	gula Bi	nária		LSB
Valores posi	cionais	de Ba	se 2 =	⇒ Bina	ário co	m vír	gula		

Fonte: Adaptada pelo autor (2023)

→ À esquerda (MSB) da vírgula binária estão as potências de base 2 com expoente positivo (+) e início em "0".

→ À direita (LSB) da vírgula binária estão as potências de base 2 com expoente negativo (-) com início em "- 1", não existindo expoente em zero negativo.

Sistema Binário – Como Representar o Sistema Decimal

Para descobrir o número decimal equivalente ao binário (1011,101)₂ soma-se os resultados parciais de cada dígito pelo seu valor posicional (valor do expoente ou peso).

Valores Posicionais —	—	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$			
Expoente de "b^" —		2 ³	2 ²	2 ¹	2 ⁰		2-1	2-2	2-3			
		ţ	ļ	Ţ	ļ		ļ	ļ	Ţ			
Valor Binário —	→	1	0	1	1	•	1	0	1			
		1				1			1			
		MSB	Vírgula Binária LSE									
Valores posic	Valores posicionais de Base 2 ⇒ Binário com vírgula											

Fonte: Adaptada pelo autor (2023)

Passo 1 – Analisando os valores posicionais positivo e negativo em " $N = n * b^n$ " e convertendo para:

- → Valores positivo \Rightarrow 2³ = 8 | 2² = 4 | 2¹ = 2 | 2⁰ = 1
- \rightarrow Valores negativos \Rightarrow 2⁻¹ = ½ = 0,5 | 2⁻² = ½ = 0,25 | 2⁻³ = ½ = 0,125

Entendo o Passo 1:

Os expoentes positivos e negativos foram convertidos para a base 10 (decimal) separadamente.

Sistema Binário – Como Representar o Sistema Decimal

Passo 2 – Encontrar o valor de "N":

Valores Posicionais —	→	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$		
Expoente de "b^" —	→	2 ³	2 ²	2 ¹	2 ⁰		2-1	2 -2	2 -3		
		ļ	ļ	Ţ	Ţ		ļ	Ţ	ļ		
Valor Binário —	→ [1	0	1	1	•	1	0	1		
		1				1			1		
	r	VISB			Vír	gula Bir	nária		LSB		
Valores posicionais de Base 2 ⇒ Binário com vírgula											

Fonte: Adaptada pelo autor (2023)

 \Rightarrow N = n * b \land \Rightarrow 0 expoente poderá ser negativo (LSB), direita da vírgula, ou positivo (MSB), esquerda da vírgula.

$$\Rightarrow$$
 N = (1011.101)₂ = ((1 * 2³) + (0 * 2²) + (1 * 2¹) + (1 * 2⁰)) + ((1 * 2⁻¹) + (0 * 2⁻²) + (1 * 2⁻³)) =

$$\Rightarrow$$
 N = (1011.101)₂ = (8 + 0 + 2 + 1) + (0,5 + 0 + 0,125) =

$$\Rightarrow$$
 N = (1011,.101)₂ = 11 + 0,625 = 11,625

$$\Rightarrow$$
 N = (1011.101)₂ = (11,625)₁₀

Sistema Binário – Como Representar o Sistema Decimal

Treino 1:

→ Fazer a conversão de base 2 para base 10 do binário (101101.011)₂:

Valores Posicionais —	→									
Expoente de "b^" —	→									
Valor Binário —	→						•			
Soma dos Decimais —	→						•			
Resultante N = n * b^ —	+		0	valor	de "N"	é (45	,37	'5) ₁₀	•	
	MSB Vírgula Binária								LSB	
Valores posicionais de Base 2 ⇒ Binário com vírgula										

Resposta da resultante "N" = $(101101.011)_2$ = $(45,375)_{10}$

Sistema Binário – Como Representar o Sistema Decimal

Treino 1 – Cálculo desenvolvido:

→ Fazer a conversão de base 2 para base 10 do binário (101101.011)₂:

	MSB Vírgula Binária LSB									
Resultante N = n * b^		-	0 \	alo de	"N" é	(45,	3 7	'5) ₁₀		
Soma dos Decimais	32	0	8	4	0	1	•	0	0,25	0,125
Valor Binário	1	0	1	1	0	1	•	0	1	1
Expoente de "b^"	2 ⁵	24	2 ³	2 ²	2 ¹	2 º		2-1	2-2	2-3
Valores Posicionais	32	16	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

Calcular a resultante de base 10 para a conversão do Sistema Posicional:

 \Rightarrow N = n * b \land \Rightarrow O expoente poderá ser negativo (LSB), direita da vírgula, ou positivo (MSB), esquerda da vírgula.

$$\Rightarrow$$
 N = ((1*2⁵) + (0*2⁴) + (1*2³) + (1*2²) + (0*2¹) + (1*2⁰)) + ((0*2⁻¹) + (1*2⁻²) + (1*2⁻³)) =

$$\Rightarrow$$
 N = (32 + 0 + 8 + 4 + 0 + 1) + (0 + 0,25 + 0,125) =

$$\Rightarrow$$
 N = 45 + 0,375

$$\Rightarrow$$
 N = (101101.011)₂ = (45,375)₁₀

Sistema Binário

Adição Binária

Sistema Binário – Adição (soma) Binária

- → Os computadores realizam diversas operações aritméticas binárias, sendo a soma a operação aritmética mais importante.
- → Inicialmente trabalharemos apenas com dois valores binários na adição, mas o processo é **igual** aos números decimais.

Então, como seria fazer o mesmo para os sistemas de base 2, base 8 e base 16?

- → Nos computadores os números binários são representados por um conjunto de dispositivos de armazenamento ao qual chamamos de "flip-flops".
- → Cada símbolo está representado por **um** *bit*, então, um registrador de **seis** *bits* poderá armazenar valores binários até **seis** *bits*.
- → Nas operações com **dígitos na posição LSD**, *binário menos significativo*, o cálculo é iniciado pela primeira coluna.

Mas o que seriam "flip-flops"????

Sistema Binário – Adição (soma) Binária

Flip-Flops – Apenas para conhecimento

- → São circuitos digitais que pulsam, por exemplo: leds apagando e acendendo, conforme passa ou não uma corrente de sinal pelas portas lógicas.
- → Também são usados como uma **memória de um** *bit*, que por padrão inclui:
 - zero, um ou dois sinais de entrada;
 - um sinal de relógio;
 - um sinal de saída.
- → A pulsação ou mudança no sinal de relógio faz com que o flipflop mude ou retenha o sinal de saída pela porta lógica resultante.

Sistema Binário – Adição (soma) Binária

Compreendendo a Soma – Modelo Humano

- → Na primeira coluna a operação apresenta uma soma igual a 7 (6
 + 1);
- → Na segunda coluna, dígitos 7 + 6, são somados após a primeira coluna com resultado igual a 13 onde, o valor de 3 permanece na segunda coluna como resultado parcial, e tem-se a elevação de 1 para a terceira coluna, isso gera um "carry" ou "vai um" para a terceira coluna.
- → A terceira coluna recebe o "vai um" da segunda coluna, produzindo uma soma igual a "1 + 3 + 4 = 8".

	1		
	3	7	6
+	4	6	1
	8	3	7
		1	1

Sistema Binário – Adição (soma) Binária

15

- → Apesar dos mesmos passos da adição decimal serem seguidos em uma adição binária, por padrão temos cinco regras que precisam serem seguidas para obter a soma dos bits relacionado as posições em que se encontram:
 - \emptyset Regra $1 = 0 + 0 = 0 \Rightarrow$ Sem *vai um* para a coluna a esquerda.
 - i Para conhecimento: "0 + 0" na matemática avançada é igual a "1".
 - \emptyset Regra 2 e 3 = 1 + 0 ou 0 + 1 = 1 \Longrightarrow Sem *vai um* para a coluna a esquerda.
 - \emptyset Regra $4 = 1 + 1 = 0 \Rightarrow$ Com *vai um* para a coluna a esquerda.
 - \emptyset Regra 5 = 1 + 1 + 1 = 1 \Longrightarrow Com *vai um* para a próxima coluna a esquerda.

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO										
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.									
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.									
1+1+1=1	⇒	Com carry ou vai um para a próxima coluna/posição.									

Sistema Binário – Adição (soma) Binária

Exemplo – Somar $(1101)_2 + (1101)_2$ para uma melhor compreensão:

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO										
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.									
1 + 1 + 1 = 1	⇒	Com carry ou vai um para a próxima coluna/posição.									

		ENT	ΓIDO	DE L	EIT(JRA
Transporte	1	1		1-		Vai 1
Parcela		1	1	0	1	
_	+	1	1	0	1	
Soma	1	1	0	1	0	/

- \rightarrow Na **primeira** coluna temos **1 + 1 = 0**, regra 4, com vai um para a **segunda** coluna.
- → Na **segunda** coluna temos o "**vai um**" da primeira coluna ou "**1 + 0 + 0**", gerando um resultado de "**1**" sem transporte para a **terceira** seguinte, **regra 3**.
- \rightarrow Na **terceira** coluna temos **1 + 1 = 0**, regra 4, com vai um para a **quarta** coluna.
- → Na quarta coluna temos o "vai um" da terceira coluna ou "1 + 1 + 1", gerando um resultado de "1" com vai um para a quinta coluna, regra 5.
- → A quinta não existe, o valor será transportado para a linha do resultado.

Sistema Binário – Adição (soma) Binária

Treino 2:

→ Calcular a adição: (1100)₂ + (110)₂

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO										
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.									
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.									
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.									

Fonte: Adaptada pelo autor (2023)

		Soma de Binário base 2									
Carry ou Vai um											Decimal
Parcelas da Soma	+										
Resultado da Soma											

Resultado da adição: $(1100)_2 + (110)_2 = (XXXXX)_2 = (XX)_{10}$

Sistema Binário – Adição (soma) Binária

Treino 3:

 \rightarrow Calcular a adição: (11101100)₂ - (10010110)₂ = (XX)₂ = (XX)₁₀

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO									
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.								
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.								
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.								
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.								
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.								

Fonte: Adaptada pelo autor (2023)

		Soma de Binário base 2						Valor do		
Transporte ou Vai um										Decimal
Dawasias da Cama										
Parcelas da Soma	+									
Resultado da Soma										

Resultado da adição: $(11101100)_2 + (10010110)_2 = (XXXXX)_2 = (XX)_{10}$

Sistema Binário – Adição (soma) Binária

Treino 3:

→ Calcular a adição: 11001100₂ + 111011₂:

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO								
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.							
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.							

Fonte: Adaptada pelo autor (2023)

		Soma de Binário base 2						Valor do		
Transporte ou Vai um										Decimal
Davida da Carra										
Parcelas da Soma	+									
Resultado da Soma										

Resultado da adição: $(11001100)_2 + (111011)_2 = (XX)_2 = (XX)_{10}$

Sistema Binário – Adição (soma) Binária

Treino 4:

 \rightarrow Calcular a adição: 01011100₂ + 00111011₂

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO								
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.							
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.							
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.							

Fonte: Adaptada pelo autor (2023)

		Soma de Binário base 2							Valor do		
Transporte ou Vai um											Decimal
Dawada da Cama											
Parcelas da Soma	+										
Resultado da Soma											

Resultado da adição: $(01011100)_2 + (00111011)_2 = (XX)_2 = (XX)_{10}$

Sistema Binário – Adição (soma) Binária

Soma com Vírgula

Na soma de valores binários com vírgula é igual ao processo de soma sem vírgula com as mesmas regras da soma binária.

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						

Fonte: Adaptada pelo autor (2023)

Somar o binário	Somar o binário de base 2 com vírgula => (11,011) ₂ + (10,110) ₂										
Transporte ou Vai um				1	1,	1		1			Decimal
Parcelas da Soma					1	1	,	0	1	1	3,375 ₁₀
Transporte ou Vai um					0	0		1			
Parcelas da Soma	+				1	0	,	1	1	0	2,75 ₁₀
Somatória				1	1	0	,	0	0	1	6,125 ₁₀

A soma de $(11,011)_2 + (10,110)_2 = (110,001)_2$ ou $(6,125)_{10}$

Sistema Binário – Adição (soma) Binária

Treino 5:

Somar os binários com vírgula para $(0111,001)_2 + (111,111)_2$.

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						
1+1+1=1	⇒	Com carry ou vai um para a próxima coluna/posição.						

Fonte: Adaptada pelo autor (2023)

Somar o binário de	Somar o binário de base 2 com vírgula => (0111,001) ₂ + (111,111) ₂										
Transporte ou Vai um											Decimal
Parcelas da Soma			0	1	1	1	,	0	0	1	
Transporte ou Vai um											
Parcelas da Soma +				1	1	1	,	1	1	1	
Somatória											

A soma de $(11,011)_2 + (10,110)_2 = (110,001)_2$ ou $(6,125)_{10}$

Sistema Binário

Subtração Binária

Sistema Binário – Subtração Binária

- → Na subtração de dois valores binários o cálculo é parecido com a subtração decimal;
- → O minuendo nunca será menor que o subtraindo, para que não seja encontrado resultados negativos:
 - \emptyset Regra 01: $0-0=0 \Rightarrow$ Sem empréstimo de 1.
 - \emptyset Regra 02: 1 1 = 0 \Rightarrow Sem empréstimo de 1.
 - \emptyset Regra 03: 1 0 = 1 \Rightarrow Sem empréstimo de 1.
 - Regra 04: $0 1 = 1 \Rightarrow$ Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.

REC	REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO							
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.						
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.						
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.						
0-1=1	\Rightarrow	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.						

→ Agora o "Novo Minuendo" da coluna 4 é igual a "0" devido ao empréstimo para col

Sistema Binário – Subtração Binária

Entendo o Cálculo:

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO						
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.				
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.				
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.				
0 - 1 = 1	\Rightarrow	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.				

	Sentido de Leitura							
Empráctimos			2					
Empréstimos		0	Ø	2				
Minuendo	_	*	*	×	1	1		
Subtraindo		0	1	1	0	1		
Diferença								

Passo 1: Fazer os empréstimos necessários antes iniciar o cálculo:

- → Nas colunas 1 e 2, em laranja, o cálculo é simples, apenas uso da tabela.
- → Na coluna 3, em azul, será necessário fazer um empréstimo da coluna 4 para a coluna 3.
 - O Minuendo atual da coluna 4 e 3 serão anulados, e teremos na linha "Empréstimo" um novo minuendo com os valores de "0" para coluna 4 e o valor da base de "2" para a coluna 3.
- → Na coluna 4 precisamos "emprestar" da coluna 5 o valor da base "2" para a coluna 4.
- → A coluna 5, após o empréstimo para coluna 4, terá seu valor em "0".

Sistema Binário – Subtração Binária, entendo o Cálculo

Entendo o Cálculo:

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	⇒	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Fonte: Adaptada pelo autor (2023)

	Sentido de Leitura								
Empráctimos			2						
Empréstimos		0	Ø	2					
Minuendo	_	*	*	×	1	1			
Subtraindo		0	1	1	0	1			
Diferença		8	1	1	1	0			

Passo2: Fazer os cálculos conforme a tabela:

- \rightarrow Após as alterações faz-se os cálculos nas colunas 1 e 2 seguindo a tabela em suas regras onde: " $\mathbf{1} \mathbf{1} = \mathbf{0}$ " e " $\mathbf{1} \mathbf{0} = \mathbf{1}$ ", sem empréstimo.
- → Para as demais colunas 3 e 4 calcula-se a diferença, onde "2 1 = 1", exceção para a coluna 5 que aplicamos a primeira regra da tabela.
- \rightarrow A resultante será igual (1 1 1 0)₂, lembrando que zero à esquerda deverá ser anulado.

Sistema Binário – Subtração Binária

- → Até o momento foram demonstrados cálculos computacionais de 4 bits significativos.
- → A soma, subtração, divisão e multiplicação costumam serem realizados em grupos de 8 bits ou mais.
- → Se tivermos um grupo binário de 8 bits no subtraindo e 9 bits no minuendo acrescentase zeros (0) a esquerda do binário para que ambos tenham 9 bits, sendo válido como regra para outras formas de cálculos.

Exemplo ⇒ Calcular uma subtração com dos valores abaixo na calculadora e manualmente pela tabela:

- ⇒ Pela calculadora temos:
 - \odot 100110001₂ (9 bits) 10101101₂ (8 bits) = 10000100₂ ou 132₁₀

Sistema Binário – Subtração Binária – Exemplo de Cálculo

⇒ Pela tabela será necessário calcular em etapas/passos:

REC	REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.				
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.				
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.				
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.				

Fonte: Adaptada pelo autor (2023)

Empréstimo

Minuendo Subtraindo

Diferença

Verificando as colunas:

→ Temos 0 e 1 na terceira, quarta e oitava coluna, isso nos dará um pouco mais de trabalho, então precisamos calcular passo à passo a subtração.

Sistema Binário – Subtração Binária – Exemplo de Cálculo

⇒ Pela tabela será necessário calcular em etapas/passos:

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	\Rightarrow	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Fonte: Adaptada pelo autor (2023)

Empréstimo

Minuendo Subtraindo Diferença

Iniciando os cálculos:

→ Nas colunas 1 e 2 será aplicada as regras 1 e 2 da tabela, sem empréstimos ou empresta

1.

Sistema Binário – Subtração Binária – Exemplo de Cálculo

- 1. Nas colunas 3 e 4 temos **o minuendo em 0 e o subtraindo em 1**, isso impossibilita o empréstimo de valores entre as colunas.
- 2. Para resolver a questão, emprestamos da coluna 5 o valor de "base 2" para a coluna 4 e altera-se o valor da coluna 5 para "0", com isso anulamos o valor de "0" da coluna 4 que passa-se a valer "2".
- 3. Mas **colunas 3 e 4** ainda estão incompletas, será necessário que seja feito um processo de subdivisão do cálculo.

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Sistema Binário – Subtração Binária – Exemplo de Cálculo

- 4. Para a subdivisão do cálculo será necessário dividir pela metade o valor emprestado a coluna 4 pela coluna 5, que passará a ter um valor igual a "1".
- 5. A outra metade do binário da **coluna 4** será emprestada a **coluna 3** com o valor de "base 2" e anula-se o valor anterior que era de "0".
- 6. Com o empréstimo para a **coluna 3** já será possível continuar com o cálculo para obter o valor parcial da subtração, onde:
 - a) Para a coluna 4 aplica-se a regra 2;
 - b) Para a coluna 3 faz-se a subtração de "2 1 = 1".

Empréstimo							2	2		
Minuendo		1	0	0	1	0 *	₩	***	0	1
Subtraindo	-	0	1	0	1	0	1	1	0	1
Diferença		575 					0	1	0	0

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Sistema Binário – Subtração Binária – Exemplo de Cálculo

- 7. Na **coluna 5** será aplicado **regra 1**.
- 8. Na **coluna 6** será aplicado **regra 2**.
- 9. Na **coluna 7** será aplicado **regra 1**.

Empréstimo							2	2		
Minuendo		1	0	0	1	0 ※	X	×	0	1
Subtraindo	-	0	1	0	1	0	1	1	0	1
Diferença				0	0	0	0	1	0	0

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	⇒	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Sistema Binário – Subtração Binária – Exemplo de Cálculo

- 10. A coluna 8 está com seu minuendo em "0" e o subtraindo em "1", será necessário emprestar da coluna 9 o valor da "base = 2" para a coluna 8, que após o empréstimo, a coluna 9 para a ter o valor de "0" em seu minuendo, anulando o valor anterior de "1".
- 11. Com o empréstimo da coluna 9 já pode-se calcular a coluna 8 que será "2 1 = 1".
- 12. Na **coluna 9**, agora igual a "**0**" no minuendo e no subtraindo, aplica-se a **regra 1** e obtem-se o resultado final da subtração.

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Fonte: Adaptada pelo autor (2023)

Pela regra da matemática, 0 (zero) a esquerda de um número é desconsiderado

Sistema Binário – Subtração Binária – Exemplo de Cálculo

Valores finais do binário e do decimal:

- \rightarrow Em binário o valor de (10000100)₂.
- \rightarrow Em decimal o valor de (132)₁₀.

Pela regra da matemática, 0 (zero) a esquerda de um número é desconsiderado

Sistema Binário – Subtração Binária – Treino

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	\Rightarrow	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

	Subtração de Binário Base 2											Decimal
Transporte ou "vai um"												Base 10
Minuendo					1	1	0	1	1	0	1	109
Subtraindo	-					1	1	1	0	0	1	57
Diferença												

Bibliografia Básica

TANENBAUM, A. S. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013 (e-book).

MONTEIRO, M. A. Introdução à organização de computadores. 4. ed. Rio de Janeiro: LTC, 2002.

STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice-Hall, 2002.

Bibliografia Complementar

CORRÊA, A. G. D. [org.]. Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016 (e-book).

DELGADO, J.; RIBEIRO, C. Arquitetura de computadores. 5. ed. Rio de Janeiro: LTC, 2017 (e-book).

PAIXÃO, R. R. Arquitetura de computadores - PCs. São Paulo: Érica, 2014 (e-book).

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 (e-book).

WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo: Pearson Education do Brasil, 2018 (e-book).

Conteúdo elaborado por:

Prof. Ms. Celso Candido celsoc@unicid.edu.br

OneDrive: https://cutt.ly/Alunos_Unicid_Aulas

Fim da Apresentação