Dokumentation

Inhaltsverzeichnis

Inhalt

Inhaltsverz	eichnis	1
Bildverarbe	eitung:	2
Verwend	dung:	2
Methode	en:	2
def	start():	
		2
def	<pre>rotateMatrix(points, alphaDeg):</pre>	
		2
def	<pre>scaleMatrix(points, lambdaValue):</pre>	
		2
	mirrorMatrix (points, axis):	
		3
def	<pre>plotPoints(pointsList, newPointsList):</pre>	_
		3
	<pre>checkAndUseMatrix(pointsList):</pre>	1
	Jung:	
Methoden:		4
def	start():	_
•••••		4
def	<pre>encode(text, matrix):</pre>	,
1		+
aei	decode(text, invMatrix):	5
dof	keyGenerator(dim):	,
uel	keyGenerator (drm):	5
def	is square matrix(matrix):	_
	13_5quare_matrix(matrix).	5

Bildverarbeitung:

Verwendung:

- Starten des Python Scripts
 - o start() Methode wird aufgerufen
 - O User Input Felder fordern die benötigten Eingaben
 - o Ergebnis wird in einem extra Fenster per Plot dargestellt
 - Fenster schließen -> Script wird beendet
 - o Für neue Eingabe: Script neustarten

Methoden:

def start():

Übergabeparameter:

o keine

Rückgabewert:

o keiner

Funktion:

 startet das Programm, fordert die ersten benötigten User Inputs und ruft alle weiteren Methoden auf

```
def rotateMatrix(points, alphaDeg):
```

Übergabeparameter:

- o points (Liste von Punkten)
 - Form:

```
[[x1, y1], [x2, y2], ...]
```

o alphaDeg (Rotationswinkel in Grad)

Rückgabewert:

 Liste von Punkten welche rotiert wurde return newMatrix

Funktion:

o Übergebene Punkte Liste wird am übergebenen Winkel rotiert und zurückgegeben

def scaleMatrix(points, lambdaValue):

Übergabeparameter:

- o points (Liste von Punkten)
 - Form:

```
[[x1, y1], [x2, y2], ...]
```

lambdaValue (Skalierungswert)

Rückgabewert

o Liste von Punkten welche skaliert wurde

```
return newMatrix
```

Funktion:

 Übergebene Liste von Punkten wird mit dem übergebenen Wert skaliert und zurückgegeben

def mirrorMatrix(points, axis):

Übergabeparameter:

- o points (Liste von Punkten)
 - Form:

```
[[x1, y1], [x2, y2], ...]
```

 axis (Spiegelungsachse oder Wert des Winkels in Grad einer Ursprungsgeraden zur x-Achse)

Rückgabewert

Liste von Punkten welche gespiegelt wurde

```
return newMatrix
```

Funktion:

 Übergebene Liste von Punkten wird an der übergebenen Achse oder der Ursprungsgerade mit übergebenem Winkel zur x-Achse gespiegelt und zurückgegeben

def plotPoints(pointsList, newPointsList):

Übergabeparameter:

- o pointsList (originale Liste von Punkten)
 - Form:

- o newPointsList (verarbeitete Liste von Punkten)
 - Form:

Rückgabewert

o keiner, öffnet ein Fenster mit dem Plot

Funktion:

 Zwei übergebene Listen mit Punkten werden in einem Plot geplottet, welcher in einem neuen Fenster geöffnet wird

def checkAndUseMatrix(pointsList):

Übergabeparameter:

- o pointsList (originale Liste von Punkten)
 - Form:

```
[[x1, y1], [x2, y2], ...]
```

Rückgabewert

o veränderte Liste von Punkten

```
return newPointsList
```

Funktion:

 Fordert und validiert den User Input, um die übergebene Liste von Punkten zu bearbeiten und zurückzugeben

Hill Chiffre:

Verwendung:

- Starten des Python Scripts
 - o start() Methode wird aufgerufen
 - o User Input Felder fordern die benötigten Eingaben
 - Ergebnis wird in der Konsole geprintet (Matrix, Inverse, Verschlüsselter und Entschlüsselter Text)
 - o Für neue Eingabe: Script neustarten

Methoden:

def start():

Übergabeparameter:

o keine

Rückgabewert

o keiner

Funktion:

 Startet das Script und fordert über Userinput die benötigten Eingaben, ruft die weiteren Methoden auf und gibt zum Schluss das Ergebnis in der Konsole aus

def encode(text, matrix):

Übergabeparameter:

- o text (zu verschlüsselnder Text)
- o matrix (Matrix zum verschlüsseln)

Rückgabewert

o verschlüsselter Text

```
return encodedText
```

Funktion:

 Verschlüsselt den übergebenen Text mit der übergebenen Matrix nach dem Prinzip der Hill Chiffre mit dem druckbaren ASCII Zeichensatz und gibt den verschlüsselten Text zurück

def decode(text, invMatrix):

Übergabeparameter:

- o text (zu entschlüsselnder Text)
- o invMatrix (Inverse Matrix zum entschlüsseln)

Rückgabewert

o entschlüsselter Text

```
return decodedText
```

Funktion:

 Entschlüsselt den übergebenen Text mit der Inversen Matrix nach dem Prinzip der Hill Chiffre und gibt den entschlüsselten Text zurück

def keyGenerator(dim):

Übergabeparameter:

o dim (Dimension der zu generierenden quadratischen Matrix)

Rückgabewert

o Quadratische Matrix und deren Inverse

```
return K, K.inv mod(94)
```

Funktion:

Generiert eine quadratische Matrix und die zugehörige Inverse mit der übergebenen
Dimension, welche zur Verwendung mit der Hill Chiffre geeignet ist

def is_square_matrix(matrix):

Übergabeparameter:

o matrix (zu überprüfende Matrix)

Rückgabewert

o True oder False (Matrix gerade oder ungerade)

```
return rows == cols
```

Funktion:

 Überprüft, ob die gegebene Matrix quadratisch ist oder nicht und liefert das Ergebnis zurück