L 923

VC157

Pgs, Ts. VÜ LIÉM CHÍNH (Chá biện) Ts. PHẠM QUANG ĐƯNG Ths. HOA VĂN NGƯ

CẤU TẠO - LỰA CHỌN LẮP ĐẶT VÀ SỬ DỤNG

XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT

Pgs. Ts. VU LIEM CHINH (Ch., biện)
Ts. PHAM QUANG ĐƯNG, Ths. HO, VAN NGƯ

THANG MÁY

(CĂU TAO - LUA CHON - LÁP ĐẬT VÀ SỬ DỤNG)

NHÀ XUẬT BÀN KHOA HOC VÀ KÝ THUẬT HÀ NỘI - 2004

LOI NOI ĐÂU

Tháng mày là một thiết hi không thể thiếu được trong việc cấn được người và hàng hòa thra phương thống được trong việc tòa nhà các tàng chinh vị cáy thể khi xuất hiện đen này tháng mây luôn được nghiên van, cái tiến, học đại hòa để đặp từng như cầu ngày cáng cáo của hành khách.

From những năm gần đây nhiều nhà các tổng đã được vậy được vớn khaqt noên của đất nước và nhà đo thung máy, thung vướn nọi chung thưng mộc các người từ việng đã đáng và sẽ được sử dựng ngày cáng nhiều Do vày các hàng thưng này hưng đầu của thể giới đã có mặt ở nước từ.

Tuy nhiên so với các nước trong khu vực số lượng tháng máy được lạp đại ở nước tá chữa lớn và vẫn còn là thiết bị mới. Sự hiệu biệt vệ tháng máy với bạn nhiều trong các nhà chuyển môn, Nhật là vệ cấu tạo, lưa chọn, lập dạt sử dụng với hành tháng.

Xuất phát từ như cấu thực tế như trên cuốn sách nay về cũng cấp cho đọc giá: những kiến thức cơ bắn nhất về tháng máy chặ người.

Sách dùng làm giáo trình đảo tạo hoặc tại liệu tham kháo cho các vinh thên các ngành phi cơ khi có liên quan như kiến trúc, vày dùng đặn được,, và cũng có thể tại tài liệu có lợb cho người thiết kế, lạp đại và dùng, văn hành tháng

Cuốn xách do nhóm tạc giả thuộc họ non May cáy dụng khoa Cá diệu vày dụng trường Đại loc Xây dung hiện soạn và được phân công thực sau.

Pgs. Ts. Va Liem Chinh tehu bién) chương 8 và 4

Ts Pham Quang Dung chitong 2

Ths. How Van Ngu chiring I vo 5.

Do sách dựch in lần đầu, tại liệu tham khác với hạn chế nên chắc chặc không trành khối những sai sới. Chẳng tối rất mong nhận được và động gọi v kiến của họi đọi để có điệu kiến sửa vhữa, hổ sung và hoàn thiên họn.

Các thể giả xin chấn thành cấm cái sự đồng gọp của tập thể hà môn May vày dụng đặc biệt TV Trượng Quối Thành đã đọc và cho v kiến; các hạn đồng nghợp của các hẳng tháng máy trong qua trình hiện xoạn

Che me gio

§1. KHÁI NIÊM CHUNG VỀ THANG MÁY

Thang máy là một thiết bị chuyên dùng để vận chuyển người, hàng hóa, vật liệu, v.v. theo phương thẳng dúng hoặc nghiêng một góc nhỏ hơn 15° so với phương thẳng đứng theo một tuyến đã định sắn.

Thang máy thường được dùng trong các khách sạn, công sở, chung cư, bệnh viện, các đài quan sát, tháp truyền hình, trong các nhà máy, công xưởng, v.v. Đặc điểm vận chuyển bằng thang máy so với các phương tiện vận chuyển khác là thời gian của một chu kỳ vận chuyển bé, tần suất vận chuyển iớn, đóng mở máy liên tục. Ngoài ý nghĩa về vận chuyển, thang máy còn là một trong những yếu tố làm tăng vẻ đẹp và tiện nghi của công trình.

Nhiều quốc gia trên thế giới đã quy dịnh, đối với các tòa nhà cao 6 tầng trở lên đều phải được trang bị thang máy để đảm bảo cho người đi lại thuận tiện, tiết kiệm thời gian và tăng năng suất lao động. Giá thành của thang máy trang bị cho công trình so với tổng giá thành của công trình chiếm khoảng 6% đến 7% là hợp lý. Đối với những công trình đặc biệt như bệnh viện, nhà máy, khách sạn v.v., tuy số tầng nhỏ hơn 6 nhưng do yêu cầu phục vụ vẫn phải được trang bị thang máy.

Với các nhà nhiều tầng có chiều cao lớn thì việc trang bị thang máy là bắt buộc để phục vụ việc di lại trong tòa nhà. Nếu vấn đề vận chuyển người trong những tòa nhà này không được giải quyết thì các dự án xây dựng các tòa nhà cao tầng không thành hiện thực.

Thang máy là một thiết bị vận chuyển đòi hỏi tính an toàn nghiêm ngặt, nó liên quan trực tiếp đến tài sản và tính mạng con người, vì vậy, yêu cầu chung đối với thang máy khi thiết kế, chế tạo, lắp đặt, vận hành, sử dụng và sửa chữa là phải tuân thủ một cách nghiêm ngặt các yêu cầu về kỹ thuật an toàn được quy định trong các tiêu chuẩn, quy trình, quy phạm.

Thang máy chỉ có cabin đẹp, sang trọng, thông thoáng, êm dịu thì chưa đủ điều kiện để đưa vào sử dụng mà phải có đầy đủ các thiết bị an toàn, đảm bảo độ tin cậy như: diện chiếu sáng dự phòng khi mất diện, điện thoại nội bộ (Interphone), chuông báo, bộ hãm bảo hiểm, an toàn cabin (đối trọng), công tắc an toàn của của cabin, khóa an toàn của tầng, bô cứu hô khi mất điện nguồn v.v.

\$2. LICH SỬ PHÁT TRIỂN THANG MÁY

Cuối thế kỷ thú 19, trên thế giới mới chỉ có một vài hãng thang máy ra đời như OTIS; Schindler. Chiếc thang máy đầu tiên đã được chế tạo và đưa vào sử dụng của hãng thang máy OTIS (Mỹ) năm 1853. Đến năm 1874, hãng thang máy Schindler (Thụy Sĩ) cũng đã chế tạo thành công những thang máy khác. Lúc đầu bộ tời kéo chỉ có một tốc độ, cabin có kết cấu đơn giản, cửa tầng đóng mở bằng tay, tốc độ di chuyển của cabin thấp.

Đầu thế kỷ thứ 20, có nhiều hãng thang máy khác ra đời như KONE (Phần Lan). MISUBISHI, NIPPON ELEVATOR, ... (Nhật Bản), THYSEN (Đức) SABIEM (Ý)... đã chế tạo các loại thang máy có tốc độ cao, tiện nghi trong cabin tốt hơn và êm hơn.

Vào đầu những năm 1970, thang máy đã chế tạo đạt tới tốc độ 450m/ph, những thang máy chỏ hàng đã có tải trọng nâng tới 30 t đồng thời cũng trong khoảng thời gian này đã có những thang máy thủy lực ra đời. Sau một khoảng thời gian rất ngắn với tiến bộ của các ngành khoa học khác, tốc độ thang máy đã đạt tới 600m/ph. Vào những năm 1980, đã xuất hiện hệ thống điều khiển động cơ mới bằng phương pháp biến đổi diện áp và tần số VVVF (inverter). Thành tựu này cho phép thang máy hoạt động êm hơn, tiết kiệm được khoảng 40% công suất động cơ.

Đồng thời, cũng vào những năm này đã xuất hiện loại thang máy dùng động cơ diện cảm ứng tuyến tính.

Vào đầu những năm 1990, trên thế giới đã chế tạo những thang máy có tốc độ dat tới 750 m/ph và các thang máy có tính năng kỹ thuật đặc biệt khác.

§3. PHÂN LOẠI THANG MÁY

Thang máy hiện nay đã được thiết kế và chế tạo rất đa dạng, với nhiều kiểu, loại khác nhau để phù hợp với mục đích sử dụng của từng công trình.

Có thể phân loại thang máy theo các nguyên tắc và đặc điểm sau

- 1. Theo công dung (TCVN 5744 –1993) thang máy được phân thành 5 loại
- a) Thang máy chuyên chở người

Loại này chuyên để vận chuyển hành khách trong các khách sạn, công sở nhà nghi, các khu chung cu, trường học, tháp truyền hình v.v...

- b) Thang máy chuyên chỏ người có tính đến hàng đi kèm
- Loại này thường dùng cho các siêu thị, khu triển lãm v.v...
- c) Thang máy chuyên chở bệnh nhân

Loại này chuyên dùng cho các bệnh viện, các khu điều dưỡng,... Đặc điểm của nó là kích thước thông thủy cabin phải dù lớn để chứa băng ca (cáng) hoặc gường của bệnh nhân, cùng với các bác sĩ, nhân viên và các dụng cụ cấp cứu đi kèm. Hiện nay trên thế giới đã sản xuất theo cùng tiêu chuẩn kích thước và tải trọng cho loại thang máy này.

d) Thang máy chuyên chỏ hàng có người đi kèm

Loại này thường dùng trong các nhà máy, công xưởng, kho, thang dùng cho nhân viên khách sạn v.v., chủ yếu dùng để chở hàng nhưng có người đi kèm để phục vụ.

e) Thang máy chuyên chở hàng không có người đi kèm

Loại chuyên dùng để chở vật liệu, thức ăn trong các khách sạn, nha ăn tập thể v.v.. Đặc điểm của loại này là chỉ có điều khiến ở ngoài cabin (trước các của tầng), còn các loại thang khác nêu ở trên vừa điều khiến cả trong cabin và ngoài cabin.

Ngoài ra còn có các loại thang chuyên dùng khác nhu, thang máy cứu hỏa, chỏ ôtô v.v..

Hình 1.1. Thang máy điện có bộ tời đặt phía trên giếng thang:
a, b) Đắn động cabin bằng puly ma sát;
c) Đẫn động cabin bằng tang cuốn cáp.

- 2. Theo hệ thống dẫn động cabin
- a) Thang máy dẫn động điện (hình 1.1)

Loại này dẫn động cabin lên xuống nhờ động cơ điện truyền qua hộp giảm tốc tới puly ma sát hoặc tang cuốn cáp. Chính nhờ cabin được treo bằng cáp mà hành

Hình 1.2. Thang máy điện có bộ tời đặt phía dưới giếng thang:
a) Cáp treo trực tiếp vào đầm trên của cabin;
b) Cáp vòng qua đáy cabin.

trình lên xuống của nó không bị hạn chế. Ngoài ra còn có loại thang dẫn động

Hình 1.3. Thang máy thủy lực:

- a) Pittông đẩy trực tiếp từ đáy cabin;
- b) Pittông đẩy trực tiếp từ phía sau cabin;
- c) Pittông kết hợp với cáp gián tiếp đẩy từ phía sau cabin.

cabin lên xuống nhờ bánh răng thanh răng (Chuyên dùng để chở người phục vụ xây dựng các công trình cao tầng).

b) Thang máy thủy lực (bằng xylanh - pittông) (hình 1.3).

Dặc điểm của loại thang này là cabin được đẩy từ dưới lên nhờ pittông - xylanh thủy lực nên hành trình bị hạn chế. Hiện nay thang máy thủy lực với hành trình tối đa là khoảng 18 m, vì vậy không thể trang bị cho các công trình cao tầng, mặc dù kết cấu đơn giản, tiết điện giếng thang nhỏ hơn khi có cùng tải trọng so với dẫn động cáp, chuyển động êm, an toàn, giảm được chiều cao tổng thể của công trình khi có cùng số tầng phục vụ, vì buồng máy đặt ở tầng trệt.

- c) Thang máy khí nén
- 3. Theo vị trí đặt bộ tời kéo

Đối với thang máy điện

Thang máy có bộ tời kéo đặt phía trên giếng thang (hình 1. 1)

Thang máy có bộ tời kéo đặt phía dưới giếng thang (hình 1. 2).

Đối với thang máy dẫn động cabin lên xuống bằng bánh răng thanh răng thì bộ tời dẫn động đặt ngay trên nóc cabin.

Đối với thang máy thủy lực: buồng máy đặt tại tầng trệt (hình 1.3).

- 4. Theo hệ thống vận hành
- a) Theo mức độ tự động:
- loại nửa tự động;
- + loại tự động.
- b) Theo tổ hợp điều khiển:
- + điều khiển dơn;
- + điều khiển kép;
- + điều khiển theo nhóm.
- c) Theo vị trí điều khiển:
- + điều khiển trong cabin;
- + điều khiển ngoài cabin;
- + diều khiển cả trong và ngoài cabin.
- 5. Theo các thông số cơ bản

- a) Theo tốc độ di chuyển của cabin:
- + loại tốc độ thấp:

v < 1 m/s;

+ loại tốc độ trung bình: $v = 1 \div 2.5$ m/s;

+ loai tốc đô cao:

 $v = 2.5 \div 4 \text{ m/s};$

+ loại tốc độ rất cao:

v > 4 m/s.

b) Theo khối lượng vận chuyển của cabin:

+ loai nhỏ:

Q < 500 kg;

+ loại trung bình:

 $Q = 500 \div 1000 \text{ kg};$

+ loại lớn:

 $Q = 1000 \div 1600 \text{ kg};$

+ loại rất lớn

Q > 1600 kg.

- 6. Theo kết cấu các cụm cơ bản
- a) Theo kết cấu của bộ tời kéo:
- + bộ tời kéo có hộp giảm tốc;
- + bộ tời kéo không có hộp giảm tốc: thường dùng cho các loại thang máy có tốc độ cao (v > 2.5 m/s);
- + bộ tời kéo sử dụng động cơ một tốc độ, hai tốc độ, động cơ điều chinh vô cấp, động cơ cảm ứng tuyến tính (LIM linear Induction Motor);
- + bộ tời kéo có puly ma sát hoặc tang cuốn cáp để dẫn động cho cabin lên xuống.

Loại có puly ma sát (hình 1.1 a, b) khi puly quay kéo theo cáp chuyển động là nhờ ma sát sinh ra giữa rãnh ma sát của puly và cáp. Loại này đều phải có đối trong.

Loại có tang cuốn cáp (hình 1.1 c), khi tang cuốn cáp hoặc nhả cáp kéo theo cabin lên hoặc xuống. Loại này có hoặc không có đối trọng.

- b) Theo hệ thống cân bằng:
- + có đối trọng (hình 1.1a);
- + không có đối trọng (hình 1. 1c);
- + có cáp hoặc xích cân bằng dùng cho những thang máy có hành trình lớn;
- + không có cáp hoặc xích cân bằng.
- c) Theo cách treo cabin và dối trọng:
- + treo trực tiếp vào dầm trên của cabin (hình 1.1a);

- + có palăng cáp (thông qua các puly trung gian) vào dầm trên của cabin (hình 1.1b);
 - + đẩy từ phía dưới đáy cabin lên thông qua các puly trung gian.
 - d) Theo hệ thống của cabin:
 - + phương pháp đóng mở của cabin:
- đóng mở bằng tay. Khi cabin dùng đúng tầng thì phải có người ở trong hoặc ngoài của tầng mở và đóng của cabin và của tầng;
- đóng mở nửa tự động (bán tự động). Khi cabin dùng đúng tầng thì cửa cabin và cửa tầng tự động mở, khi đóng phải dùng bằng tay hoặc ngược lại.

Cả hai loại này thường dùng cho các thang máy chỏ hàng có người đi kèm, thang chỏ hàng không có người đi kèm hoặc thang máy dùng cho nhà riêng;

- đóng mở tự động: khi cabin dùng đúng tầng thì của cabin và của tầng tự động mở và đóng nhờ một cơ cấu đặt ở đầu của cabin. Thời gian và tốc độ đóng, mở điều chính được;
 - + theo kết cấu của của:
 - cánh cửa dạng của xếp lùa về một phía hoặc hai phía;
 - cánh của dạng tấm (panen) đóng, mở bản lề một cánh hoặc hai cánh.

Hai loại cửa này thường dùng cho thang máy chở hàng có người đi kèm hoặc không có người đi kèm. Hoặc thang máy dùng cho nhà riêng;

- cánh cửa dạng tấm (panen), hai cánh mở chính giữa lùa về hai phía. Đối với thang máy có tải trọng lớn, cabin rộng, cửa cabin có bốn cánh mở chính giữa lùa về hai phía (mỗi bên hai cánh). Loại này thường dùng cho thang máy có đối trọng đặt ở phía sau cabin;
- cánh cửa dạng tấm (panen), hai hoặc ba cánh mở một bên, lùa về một phía. Loại này thường dùng cho thang máy có đối trọng đặt bên cạnh cabin (thang máy chỏ bệnh nhân);
- cánh của đạng tấm (panen), hai cánh mở chính giữa lùa về hai phía trên và dưới (thang máy chở thức ăn);
- cánh cửa dạng tấm (panen), hai hoặc ba cánh mở lùa về một phía trên. Loại này thường dùng cho thang máy chở ôtô và thang máy chở hàng;
 - + theo số cửa cabin:
 - thang máy có một của;

- hai của đối xứng nhau;
- hai của vuông góc với nhau.
- e) Theo loại bộ hãm bảo hiểm an toàn cabin:
- + hãm tức thời, loại này thường dùng cho thang máy có tốc độ thấp đến 45 m/ph;
- + hãm êm, loại này thường dùng cho thang máy có tốc độ lớn hơn 45 m/ph và thang máy chỏ bệnh nhân.
 - 7. Theo vị trí của cabin và đối trọng giếng thang
 - a) Đối trọng bố trí phía sau (hình 1.4a).
 - b) Đối trọng bố trí một bên (hình 1.4b).

Hình 1.4. Mặt cát ngang giếng thang:

- a) Giếng thang có đối trọng bố trí phía sau;
- b) Giếng thang có đối trọng bố trí một bên.

Trong một số trường hợp đối trọng có thể bố trí ở một vị trí khác mà không cùng chung giếng thang với cabin.

- 8. Theo quỹ dạo di chuyển của cabin
- a) Thang máy thẳng đúng, là loại thang máy có cabin di chuyển theo phương thẳng đúng, hầu hết các thang máy đang sử dụng thuộc loại này.
- b) Thang máy nghiêng, là loại thang máy có cabin di chuyển nghiêng một góc so với phương thẳng đứng.
 - c) Thang máy zigzag, là loại thang máy có cabin di chuyển theo đường zigzag.

§4. KHÁI NIỆM VỀ KÝ HIỆU THANG MÁY

Thang máy được ký hiệu bằng các chữ và số, đựa vào các thông số cơ bản sau

+ Loai thang

Theo thông lệ quốc tế người ta dùng các chữ cái (Latinh) để ký hiệu như sau:

- thang chò khách: P (Passenger);
- thang chở bệnh nhân: B (Bed);
- thang chở hàng: F (Freight) v.v...:
- + Số người hoặc tải trọng | người, kg];
- + Kiểu mở cửa:
- mở chính giữa lùa về hai phía: CO (Centre Opening)
- mở một bên lùa về một phía: 2S (Single Side)...
- + Tốc độ [m/ph. m/s]:
- số tầng phục vụ và tổng số tầng của tòa nhà.
- + Hệ thống điều khiển
- + Hệ thống vận hành.

Ngoài ra, có thể dùng các thông số khác để bổ sung cho ký hiệu.

Ví dụ: P11 - CO - 90 - 11/14 - VVVF - Duplex.

Ký hiệu trên có nghĩa là: thang máy chở khách, tải trọng 11 người, kiểu mở của chính giữa lùa hai phía, tốc độ di chuyển cabin 90m/ph, có 11 điểm dùng phục vụ trên tổng số 14 tầng của tòa nhà, hệ thống điều khiển bằng cách biến đổi điện áp và tần số, hệ thống vận hành kép (chung).

CẤU TẠO THANG MÁY

§1. CẤU TẠO CHUNG VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA THANG MÁY

Thang máy có nhiều kiểu dạng khác nhau nhưng nhìn chung có các bộ phận chính sau: bộ tời kéo; cabin cùng hệ thống treo cabin, co cấu đóng mở của cabin và bộ hãm bảo hiểm; cáp nâng; đối trọng và hệ thống cân bằng; hệ thống ray dẫn hướng cho cabin và đối trọng chuyển động trong giếng thang; bộ phận giảm chấn cho cabin và đối trọng đặt ở đây giếng thang; hệ thống hạn chế tốc độ tác động lên bộ hãm bảo hiểm để dùng cabin khi tốc độ hạ vượt quá giới hạn cho phép; tù điện điều khiển cùng các trang thiết bị điện để điều khiển tự động thang máy hoạt động theo đúng chức năng yêu cầu và đảm bảo an toàn; của cabin và các của tầng cùng hệ thống khóa liên động.

Trên hình 2.1 là sơ đồ cấu tạo của loại thang máy chở người thông dụng nhất, dẫn động bằng tời điện với puly dẫn cáp bằng ma sát (gọi tắt là puly ma sát).

Bộ tời kéo 21 được đặt trong buồng máy 22 nằm ở phía trên giếng thang 15. Giếng thang 15 chay doc suốt chiều cao của công trình và được che chắn bằng kết cấu chiu lưc (gach, bêtông hoặc kết cấu thép với lưới che hoặc kính) và chỉ để các của vào giếng thang để lắp của tầng 7. Trên kết cấu chịu lực dọc theo giếng thang có gắn các ray dẫn hướng 12 và 13 cho đối trong 14 và cabin 18. Cabin và đối trong được treo trên hai đầu của các cáp nâng 20 nhờ hệ thống treo 19. Hệ thống treo có tác dung đảm bảo cho các nhánh cáp nâng riêng biết có đô căng như nhau. Cáp nâng được vất qua các rãnh cáp của puly ma sát của bộ tời kéo. Khi bộ tời kéo hoat động, puly ma sát quay và truyền chuyển động đến cáp nâng làm cabin và đối trong đi lên hoặc xuống dọc theo giếng thang. Khi chuyển động, cabin và đối trọng tưa trên các ray dẫn hướng trong giếng thang nhờ các ngàm dẫn hướng 16. Cửa cabin 4 và của tầng 7 thường là loại của lùa sang một hoặc hai bên và chỉ đóng mở được khi cabin dùng trước của tầng nhờ cơ cấu đóng mở của 3 đặt trên nóc cabin. Của cabin và của tầng được trang bị hệ thống khóa liên động và các tiếp điểm điện để đảm bảo an toàn cho thang máy hoạt động (thang không hoạt động được nếu một trong các của tầng hoặc của cabin chưa đóng hẳn; hệ thống khóa liên động đảm bảo đóng kín các cửa tầng và không mở được từ bên ngoài khi cabin không ở đúng vị trí cửa tầng; đối với loại cửa lùa đóng mở tư đông thì khi đóng hoặc mở của cabin, hệ thống khóa liên động kéo theo của tầng cùng đóng hoặc mỏ.) Tại điểm trên cùng và dưới cùng của giếng thang có đặt các cóng tắc hạn chế hành trình cho cabin.

Phần dưới của giếng thang là hố thang 10 để đặt các giảm chấn, 11 và thiết bị căng cáp hạn chế tốc độ 9. Khi hỏng hệ thống điều khiển, cabin hoặc đối trọng có thể đi xuống phần hố thang 10, vuọt qua công tắc hạn chế hành trình và tỳ lên giảm chấn 11 để đảm bảo an toàn cho kết cấu máy và tạo khoảng trống cần thiết dưới đáy cabin để có thể đảm bảo an toàn khi bảo dưỡng, điều chính và sửa chữa.

Bộ hạn chế tốc độ 2 được đặt trong buồng máy 22 và cáp của bộ hạn chế tốc độ 8 có liên kết với hệ thống tay đòn của bộ hãm bảo hiểm 17 trên cabin. Khi đứt cáp hoặc cáp trượt trên rãnh puly do không đủ ma sát mà cabin đi xuống với tốc độ vượt quá giá trị cho phép, bộ hạn chế tốc độ qua cáp 8 tác động lên bộ hãm bảo hiểm 17 để dùng cabin tựa trên các ray dẫn hướng trong giếng thang. Ở một số thang máy, bộ hãm bảo hiểm và hệ thống hạn chế tốc độ còn được trang bị cho cả đối trọng.

Hệ thống điều khiển thang máy là toàn bộ các trang thiết bị và linh kiện diện, điện tử, bán dẫn đảm bảo cho thang máy hoạt động theo đúng chức năng yêu cầu và đảm bảo an toàn.

Các loại hệ thống điều khiến đã được trình bày trong phần phân loại thang máy. Thang máy chỏ người thường dùng nguyên tắc điều khiển kết hợp cho năng suất cao (cùng một lúc có thể nhận nhiều lệnh điều khiển hoặc gọi tầng cả khi thang dùng và khi chuyển động). Các nút ấn trong cabin cho phép thực

Hình 2.1. Cấu tạo chung của thang máy chở người: 1. tủ điện điều khiển; 2. bộ han chế tốc độ; 3, cơ cấu đóng mở cửa; 4. cửa cabin; 5. sàn cabin; 6. sàn tầng; 7. cửa tầng; 8. cáp của bộ hạn chế tốc độ; 9. thiết bi căng cáp hạn chế tốc độ; 10. hố thang phía đưới tầng một; 11. giảm chấn; 12, 13. ray dẫn hướng cho đối trong và cabin; 14. đối trọng; 15. giếng thang; 16. ngàm dẫn hướng; 17. bộ hãm bảo hiểm; 18. cabin; 19. hệ thống treo; 20. cáp nâng; 21. bộ tời kéo; 22. buồng máy.

hiện các lệnh chuyển động đến các tầng cần thiết. Các nút ấn ở của tầng cho phép hành khách gọi cabin đến của tầng đang đúng. Các đèn tín hiệu ở của tầng và trong cabin cho biết trạng thái làm việc của thang máy và vị trí của cabin.

Hệ thống điện của thang máy bao gồm các mạch sau:

- 1. Mạch động lực: là hệ thống điều khiển cơ cấu dẫn động thang máy để dóng mỏ, đảo chiều động cơ dẫn động và phanh của bộ tời kéo. Hệ thống phải đảm bảo việc điều chính tốc độ chuyển động của cabin sao cho quá trình mỏ máy và phanh được êm dịu và dùng cabin chính xác.
- 2. Mạch điều khiến: là hệ thống điều khiển tầng có tác dụng thực hiện một chương trình điều khiển phức tạp, phù hợp với chức năng yêu cầu của thang máy. Hệ thống điều khiển tầng có nhiệm vụ: lưu trữ các lệnh di chuyển từ cabin, các lệnh gọi tầng của hành khách và thực hiện các lệnh di chuyển hoặc dùng theo một thứ tự ưu tiên nào đó; sau khi thực hiện xong lệnh điều khiển thì xóa bỏ; xác định và ghi nhận thường xuyên vị trí cabin và hướng chuyển động của nó. Tất cả các hệ thống điều khiển tự động đều dùng nút ấn.
- 3. Mạch tín hiệu: là hệ thống các đèn tín hiệu với các ký hiệu đã thống nhất hóa để báo hiệu trạng thái của thang máy, vị trí và hướng chuyển động của cabin.
- 4. Mạch chiếu sáng: là hệ thống đèn chiếu sáng cho cabin, buồng máy và hố thang.
- 5. Mạch an toàn: là hệ thống các công tắc, role, tiếp điểm nhằm dảm bảo an toàn cho người, hàng và thang máy khi hoạt động, cụ thể là: bảo vệ quá tải cho động cơ, thiết bị hạn chế tải trọng nâng; các công tắc hạn chế hành trình; các tiếp điểm tại của cabin, của tầng, tại hệ thống treo cabin và tại bộ hạn chế tốc độ, các role... Mạch an toàn tự động ngắt điện đến mạch động lực để dùng thang hoặc thang không hoạt động được trong các trường hợp sau:
 - mất điện, mất pha, đảo pha, mất đường tiếp dất...;
 - quá tải;
 - cabin vượt quá giới hạn đặt công tắc hạn chế hành trình;
- đút cáp hoặc tốc độ hạ cabin vượt quá giá trị cho phép (bộ hạn chế tốc độ và bộ hãm bảo hiểm làm việc);
 - một trong các cấp nâng chùng quá giới hạn cho phép;
 - của cabin hoặc một trong các của tầng chưa đóng hẳn.

Ngoài ra, đối với thang máy có của lùa đóng mở tự động, khi đóng của nếu gặp chương ngại vật thì của sẽ tự động mở ra và đóng lại. Thang máy chở người thường

được trang bị nút ấn cấp cứu phòng khi có hóa hoạn (khi ấn nút này, cabin hặ xuống tàng một và mở cửa).

§2. THIẾT BỊ CƠ KHÍ CỦA THANG MÁY

2.1. Các thiết bị cố định trong giếng thang

Cấu tạo giếng thang, các thông số và yêu cầu có bản đối với giếng thang, cách bố trí cabin và đối trọng trong giếng thang được giới thiệu ở chương 3 và chương 4. Các thiết bị cố định trong giếng thang gồm: hệ thống ray dẫn hướng; giảm chấn; bộ tời kéo và trang thiết bị điện; hệ thống hạn chế tốc độ và hệ thống các cửa tầng. Bộ tời kéo, hệ thống hạn chế tốc độ và các cửa tầng sẽ được giới thiệu ở các mục sau.

2.1.1. Ray dẫn hướng

Ray dẫn hướng dược lắp dặt dọc theo giếng thang để dẫn hướng cho cabin và dối trọng chuyển động dọc theo giếng thang. Ray dẫn hướng đảm bào cho cabin và dối trọng luôn nằm ở vị trí thiết kế của chúng trong giếng thang và không bị dịch chuyển theo phương ngang trong quá trình chuyển động. Ngoài ra ray dẫn hướng phải dù cứng vũng để giữ trọng lượng cabin và tải trọng trong cabin tựa lên dẫn hướng cùng các thành phần tải trọng động khí bộ hãm báo hiểm làm việc (trong trường hợp đứt cáp hoặc cabin đi xuống với tốc độ lớn hơn giá trị cho phép).

Hình 2.2. Ray dẫn hưởng: 1. ray; 2. tấm nối ray.

Ray dẫn hướng của thang máy chỏ hàng loại nhỏ có thể là thép góc (hình 2.2a) hoặc các thanh thép hình như thép chữ U, ống thép... Các loại thang máy khác thường dùng loại ray dẫn hướng chuyên dùng có độ chính xác chế tạo cao và các bề mặt tiếp xúc với ngàm dẫn hướng của cabin và đối trọng phải được mài nhắn (hình 2.2b). Các thông số và yêu cầu cơ bản đối với ray dẫn hướng đã được quy định rất chặt chế trong tiêu chuẩn.

Ray dẫn hướng gồm nhiều đoạn. Các đoạn ray được nối với nhau nhờ các tấm ốp phía sau ray và ngạnh định vị có gia công cơ khí để đảm bảo độ chính xác cần thiết (hình 2.2c). Tấm ốp và chân ray được liên kết với nhau bằng các bulông để đảm bào độ cứng vũng cho mối nối. Có thể dùng chính một đoạn ray để thay cho tấm ốp nối ray dẫn hướng. Chiều dài của toàn bộ ray dẫn hướng phải đảm bảo sao cho khi cabin hoặc đối trọng ở vị trí trên cùng hoặc dưới cùng thì các ngàm dẫn hướng cho cabin hoặc đối trong vẫn tỳ lên ray.

Ray phải được cố định chắc chắn vào kết cấu chịu lực của giếng thang. Các mố cố định ray cách nhau từ 1,5 m đến 3,5 m tùy theo tính toán. Trên hình 2.3 là kết cấu các mố cố định ray trong giếng thang. Đối với giếng thang có kết cấu chịu lực là thép thì có thể hàn hoặc bắt bằng bulông các bản mã của mố cố định với giếng thang (hình 2.3a, b). Đối với giếng thang làm bằng gạch và bêtông thì có thể chôn bulông hoặc dùng vít nở thép để bắt các bản mã của mố cố định ray (hình 2.3c, d). Phương án dùng vít nở được sử dụng phổ biến hơn. Các bản mã của mố cố định được hàn với nhau sau khi đã căn chính chính xác hoặc bắt bằng bulông với nhau qua các lỗ hình ôvan để có thể điều chính và tháo lắp để dàng.

Ray dẫn hướng được cố định với bản mã của mố bằng hai cách: dùng bulông bắt xuyên qua chân ray và bản mã hoặc dùng cóc kẹp ray trên bản mã (hình 2.2a, b). Cách cố định bằng cóc kẹp ray được sử dụng phổ biến hơn vì dễ lắp đặt và ray không bị cong do độ lún của tòa nhà mối xây dựng và do biến dạng khi thay đổi nhiệt đô.

Ray dẫn hướng dược lắp

Hình 2.3. Cố định ray trong giếng thang: 1. ray; 2. cóc kẹp ray; 3. vít nổ thép.

đặt ở hai bên cabin và đối trọng với độ chính xác cần thiết theo yêu cầu đặt ra trong tiêu chuẩn lắp đặt thang máy (độ thẳng, độ thẳng đứng của ray, khoảng cách các đầu ray...).

2.1.2. Giảm chấn

Giảm chấn được lắp đặt duới đáy hố thang để dùng và đỡ cabin và đối trọng trường hợp cabin hoặc đối trọng chuyển động xuống dưới vượt quá vị trí đặt công tắc hạn chế hành trình dưới cùng. Giảm chấn phải có độ cao đủ lớn để khi cabin hoặc đối trọng tỳ lên nó thì có đủ khoảng trống cần thiết phía dưới phù hợp với TCVN6395-1998 và TCVN6396-1998 cho người có trách nhiệm thực hiện việc kiểm tra, điều chỉnh, sửa chữa.

Loại giảm chấn cứng là một ụ tỳ làm bằng gố, bêtông hoặc thép có bọc đệm cao su. Loại này hiện nay rất ít dùng và, nếu có, chi dùng cho thang máy chỏ hàng

có tốc độ nhỏ trừ thang máy bênh viên.

Loai giảm chấn lò xo được dùng thông dụng cho các loại thang có tốc độ 0,5-1 m/s. Trên hình 2.4a là sơ đồ cấu tao của giảm chấn lò xo. Bô phân chính của nó là lò xo 1, phía trên có dĩa tỳ 2 và đệm cao su 3. Các ống dẫn 4 và 5 có tác dung giữ ổn dinh ngang cho lò xo. Vì cabin và đối trong đi xuống luôn tựa trên các ray dẫn hướng nên trong nhiều trường hợp người ta bỏ các ống dẫn 4 và 5. Đế 6 của giảm chấn được bắt với đẩy hố thang bằng bulông hoặc vít nờ.

Giảm chấn thủy lực là loại tốt nhất và thường dùng cho thang máy có tốc độ trên 1 m/s. Trên hình 2.4b là kết cấu của một loại giảm chấn thủy

Hình 2.4. Giảm chấn:

- a) Kiểu lò xo: 1. lò xo; 2. đĩa tỳ; 3. đệm cao su;
 4,5. ống dẫn; 6. để.
- b) Kiểu thủy lực: 1. đầu đỡ; 2. lò xo chịu nén;
- 3. pittông; 4. khoang chứa dầu; 5. xylanh; 6. lỗi; 7,8. lỗ dầu; 9. đai ốc; 10. lò xo.

lực. Phần dưới của giảm chấn là xylanh 5 có để được bắt với đáy hố thang bằng bulông. Tâm xylanh 5 có lõi 6, đầu dưới của lõi 6 cố định vào đáy xylanh còn đầu trên có đai ốc 9. Lõi 6 được lắp qua lỗ 7 của pittông 3 với khe hở cần thiết. Khi cabin tỳ lên đầu pittông 3, nó nén pittông 3 đi xuống và đầu trong xylanh 5 qua khe hở của lỗ 7 chảy vào trong pittông 3. Vì lõi 6 có hình côn nên khi pittông 3 đi xuống thì khe hở của lỗ 7 càng hẹp dần lưu lượng đầu chảy vào trong pittông 3 giảm và nó chịu được lực tỳ từ phía cabin lớn dần để đảm bảo quá trình dùng cabin được êm địu. Để tránh va đập trong thời điểm cabin bắt đầu tiếp xúc với pittông 3, trên đầu pittông có lắp đầu đố 1 tỳ lên lò xo chịu nén 2. Ngoài ra trên xylanh 5 có các lỗ 8 để đầu có thể tràn sang khoang 4 trong thời điểm đầu để giảm va đập và khi pittông đi xuống, nó sẽ bịt các lỗ 8 lại. Sau khi nhấc cabin lên, pittông 3 trở về vị trí ban đầu nhờ lò xo 10 tỳ lên đai ốc 9 ở đầu trên của lõi 6. Giảm chấn phải có nhấn hiệu ghi rỗ nơi chế tạo, tài trọng, riêng giảm chấn phải ghi thêm tốc độ đi xuống của pittông.

Giảm chấn phải có độ cúng và hành trình cần thiết sao cho gia tốc dùng cabin hoặc đối trọng không vượt quá giá trị cho phép được quy định trong tiêu chuẩn.

2.2. Cabin và các thiết bị liên quan

Cabin là bộ phận mang tải của thang máy. Cabin phải có kết cấu sao cho có thể tháo rời nó thành từng bộ phận nhỏ. Theo cấu tạo, cabin gồm hai phần: kết cấu chịu lực (khung cabin) và các vách che, trần, sàn tạo thành buồng cabin. Trên khung cabin có lắp các ngàm dẫn hướng, hệ thống treo cabin, hệ thống tay đòn và bộ hãm bảo hiểm, hệ thống của và cơ cấu đóng mỏ của.... Ngoài ra, cabin của thang máy chỏ người phải dảm bảo các yêu cầu về thông gió, nhiệt độ và ánh sáng.

2.2.1. Khung cahin

Trên hình 2.5 là khung chịu lực của cabin thang máy. Khung cabin gồm khung dứng l và khung nằm 2 liên kết với nhau bằng bulông qua các bản mã. Khung đứng cũng có thể tháo rồi thành dầm trên, dầm dưới và các thanh thép góc thẳng đứng. Các dầm trên và dầm dưới của khung đứng được làm từ hai thanh thép chữ U hàn lại và hai dầm này liên kết với các thanh thép góc thẳng đứng bằng bulông để tạo thành một khung khép kín hình chữ nhật. Khung nằm 2 tựa lên dầm dưới của khung đứng tạo thành sàn cabin. Dầm trên của khung đứng liên kết với hệ thống treo cabin 5 đảm bảo cho các sợi cáp riêng biệt treo cabin có độ căng như nhau. Nếu cabin có kích thước lớn thì khung đứng và khung nằm còn liên kết với nhau bằng các thanh giằng 8 để tăng độ cứng và khả năng chịu lực của khung. Các thanh thép hình dùng để làm khung cabin có thể là thép cán song chúng có trọng lượng

lớn. Hiện nay, các hãng sản xuất thang máy thường dùng thép hình chế tạo bằng phương pháp dập có trong lương nhe hon. Trên khung cabin có lắp hệ thống tay đòn 7 và các quả nêm 3 của bộ hãm bảo hiểm. Hệ tay đòn 7 liên hệ với cấp của hệ thống hạn chế tốc độ qua chi tiết 6 để tác động lên bộ hām bào hiểm dùng cabin tựa trên ray dẫn hướng khi tốc đô ha của cabin vươt quá giá tri cho phép.

Tại đầu các dầm trên và dầm dưới của khung đứng có lấp các ngầm dẫn hướng 4 để đảm bảo

Hinh 2.5. Khung cabin:

- 1. khung đứng; 2. khung nằm; 3. nêm; 4. ngàm dẫn hướng;
- hệ thống treo cabin; 6. tay đòn; 7. hệ tay đòn phanh;
 thanh giằng.

cho cabin chạy đọc theo ray dẫn hướng trong quá trình chuyển động.

2.2.2. Ngàm dẫn hướng

Ngàm dẫn hướng có tác dụng dẫn hướng cho cabin và đối trọng chuyển động dọc theo ray dẫn hướng và khống chế độ dịch chuyển ngang của cabin và đối trọng trong giếng thang không vượt quá giá trị cho phép. Có hai loại ngàm dẫn hướng: ngàm trượt (bạc trượt) và ngàm con lãn.

Ngàm trượt của các hãng thang máy khác nhau có kết cấu rất đa dạng. Loại ngàm trượt cho trên hình 2.6a là loại mà má trượt có thể tự lựa trên bề mặt tiếp xúc với ray dẫn hướng với sai số cho phép do chế tạo và lắp dặt ray. Má trượt I được lấp trong vò giữ I và có thể xoay trong vò I quanh trực thẳng đứng. Hiện nay má trượt thường được làm bằng chất dèo tổng hợp có ưu điểm là không ồn, chịu mài mòn tương đối tốt và giảm nhẹ yêu cầu về bôi tron các bề mặt ma sát. Khi má trượt mòn, có thể thay thế dễ dàng. Vỏ giữ I0 được lắp trong ống I1 và có thể xoay quanh trực nằm ngang của ống I1. Ngoài ra, nhờ tỳ lên lò xo I2 mà bac trượt cùng

vỏ giữ có thể dịch chuyển ngang sang phải. Độ nón của lò xo 3 được điều chính nhờ đai ốc 6. Đai ốc 5 lắp trong ống 4 dùng để điều chính khe hở theo phương ngang giữa vỏ 2 và ống 4. Ngàm trượt được bắt vào dầm trên của khung cabin bằng bulông. Nhược điểm của loại này là có cấu tạo phức tạp.

Hình 2.6. Ngàm trượt tự lựa:

a) Loại có lò xo: 1. má trượt; 2. vỏ; 3. lò xo; 4. ống; 5,6. đai ốc b) Loại không có lò xo: 1. thân ngàm; 2. má trượt; 3. tai giữ; 4. nắp; 5. vành cao su.

Ngàm trượt cho ở hình 2.6b có cấu tạo đơn giản hơn song má trượt vẫn có khả năng tự lựa và là loại được sử dụng phổ biến hơn. Thân ngàm I được cố định trên khung cabin nhờ bulông với các lỗ hình ôvan để có thể điều chỉnh khe hở giữa má trượt và mặt đầu của ray dẫn hướng. Trong thân ngàm I có rãnh để lấp vành cao su 5 ôm lấy má trượt 2 làm bằng chất đẻo tổng hợp. Nắp 4 có tác dụng che và giữ má trượt 2 cùng vành cao su 5 (nắp 4 được lắp với tai giữ 3 trên thân ngàm 1 bằng bulông).

Ngàm trượt thường dùng cho thang máy có tốc độ không lớn. Đối với các thang máy có tốc độ lớn người ta thường dùng ngàm con lăn cho phép giảm ma sát, giảm độ ồn và khả năng va đập khi cabin đi qua mối nối giữa các đoạn ray dẫn hướng.

Ngàm con lăn (hình 2.7) gồm ba con lăn lấp trên đế 8 qua các tay đòn, chốt xoay và lò xo. Con lăn 1 được đặt và tiếp xúc với mặt đầu của ray còn các con lăn

2 được đặt ở hai bên ray dẫn hướng. Hệ thống tay dòn, chốt xoay và lò xo có tác dụng luôn ép con lăn lên bề mặt ray và con lăn có thể dịch chuyển trong quá trình chuyển động do ray dẫn hướng có sai số khi chế tạo và lắp đặt. Tuy nhiên các con lăn bên chi được phép dịch chuyển không quá 1 mm và sau

Hình 2.7. Ngàm con lăn: 1,2. con lăn; 3. ổ bi; 4. trục; 5. đại ốc; 6. chốt; 7. để ngàm.

đó tay đòn lắp con lăn tỳ lên vấu cúng để khống chế độ dịch chuyển ngang của cabin. Độ dịch chuyển của con lăn I lấp ở đầu ray có thể cho phép lớn hơn. Con lăn thường được lắp với ổ bị và có nắp che kín, mặt lăn của con lăn có thể được bọc cao su hoặc phủ chất đèo.

2.2.3. Hệ thống treo cabin

Do cabin và đối trọng được treo bằng nhiều sợi cáp riêng biệt cho nên phải có hệ thống treo để đảm bảo cho các sợi cáp nâng riêng biệt này có độ căng như nhau. Trong trường hợp ngược lại, sợi cáp chịu lực căng lớn sẽ bị quá tải còn sợi cáp chùng sẽ trượt trên rãnh puly ma sát nên rất nguy hiểm. Ngoài ra, do có sợi chùng sợi căng nên các rãnh cáp trên puly ma sát sẽ bị mòn không đều. Vì vậy mà hệ thống treo cabin phải được trang bị thêm tiếp điểm điện của mạch an toàn để ngắt điện dùng thang khi một trong các sợi cáp chùng quá mức cho phép để phòng ngừa tai nạn. Khi đó, thang chì có thể hoạt động được khi đã điều chinh độ căng của

Hình 2.8. Hệ thống treo kiểu tay đòn:
1. chốt cố định đầu cáp; 2, 3, 4. hệ tay đòn; 5. công tắc hành trình;
6. cam tác động; 7. lò xo; 8. tai bắt công tắc.

các cáp như nhau. Hệ thống treo cabin được lấp với dầm trên của khung đứng trong hệ thống khung chịu lực của cabin. Có hai loại hệ thống treo: kiểu tay đòn và kiểu lò xo.

Trên hình 2.8 là hệ thống treo kiểu tay đòn với ba sợi cáp nâng (hình 2.8a) và với bốn sợi cáp nâng (hình 2.8b)

Khi có một cáp chùng, tay đòn lập tức nghiêng đi để điều chỉnh lực căng cáp song nếu cáp chùng quá giới hạn cho phép thì đầu tay đòn sẽ chạm vào tiếp điểm an toàn để ngắt mạch và thang không hoạt động được. Hệ thống treo kiểu tay đòn có khả năng điều chỉnh lực căng cáp một cách tự động với độ tin cậy cao. Nhược điểm của nó là khoảng cách giữa các sợi cáp lớn làm cáp nghiêng khi cabin ở vị trí

trên cùng, kích thước cồng kềnh và khó bố trí khi có nhiều sọi cáp nâng, cáp có thể bị xoay, xoắn trong quá trình làm việc. Các nhược điểm trên có thể khắc phục bằng cách dùng hệ thống treo kiểu lò xo. Các thang máy hiện đại thường dùng hệ thống treo kiểu lò xo, song phải thường xuyên điều chính độ nén của lò xo và đòi hỏi công nhân điều chính giầu kinh nghiệm và có trình độ cao.

Trên hình 2.9 là hệ thống treo kiểu lò xo với bốn sợi cáp. Các lò xo chịu nén và dăn ra khi cáp chùng để dàm bảo độ căng cần thiết, mặt khác, chúng còn có tác dụng giảm chấn. Độ nén của mỗi lò xo được diều chính bằng đai ốc phía dưới. Khi cáp bị chùng quá giới hạn cho phép thì đầu bulông 2 chạm vào tay dòn 3 để ngắt tiếp điểm diên 4.

Hình 2.9. Hệ thống treo kiểu lò xo:
1. bulông; 2. đai ốc; 3. tay đòn; 4. công tắc hành trình

Trong trường hợp cabin được treo bằng palăng cáp thì hệ thống treo phải đặt ở đầu cố định cáp phía trên và puly gắn trên khung cabin hoặc đối trọng phải có vỏ che để tránh tuột cáp khỏi rănh puly.

2.2.4. Buồng cabin

Buồng cabin là một kết cấu có thể tháo rời được gồm trần, sàn và vách cabin. Các phần này có liên kết với nhau và liên kết với khung chịu lực của cabin. Vật liệu làm buồng cabin thường là thép tấm (chế tạo bằng phương pháp dập) với các gân tăng cường để đảm bảo độ cúng và trọng lượng nhỏ. Ngoài ra, vách cabin có thể làm bằng gỗ, mica hoặc kính. Các kích thước của buồng cabin, độ dày và kích cỡ các bộ phận, các yêu cầu về độ bền, độ cứng, độ chống cháy và thẩm mỹ... được quy định chặt chế trong tiêu chuẩn.

Các yêu cầu chung đối với buồng cabin

- Trần, sàn và vách cabin phải kín, không có lỗ thủng. Trần và sàn cabin liên kết với khung cabin bằng bulông. Các bộ phận của buồng cabin liên kết với nhau bằng vít với các tấm nẹp hoặc bằng các chi tiết liên kết chuyên dùng. Riêng đối với một số thang máy chở hàng, vách cabin có thể làm bằng lưới thép có quy cách đúng với quy dịnh trong tiêu chuẩn.
- Phải đảm bảo độ bền, độ cứng cần thiết. Đặc biệt, trần cabin phải đủ cứng để lấp đặt các trang thiết bị và cơ cấu mở của trên nóc và chịu được lực tập trung tại điểm bất kỳ do người đứng trên nóc thực hiện công việc lấp đặt, sửa chữa và kiểm tra.
- Buồng cabin phải đảm bảo các yêu cầu về thông gió, thoát nhiệt và ánh sáng. Ngoài ra, trong buồng cabin phải có phương tiện liên lạc với bên ngoài (điện thoại hoặc chuông) trong trường hợp có sự cố; có của thoát hiểm...

Sàn cabin thường được chế tạo liền với khung nằm của cabin (xem mục 2.2.1) và có thể là loại sàn cứng hoặc sàn động. Loại sàn cứng là sàn được bắt cứng với khung nằm của khung cabin. Công dụng của sàn động là nhận biết lượng tải trọng có trong cabin và đóng mở mạch điều khiển theo chương trình đã cài đặt cho phù họp. Vì vậy mà sàn động có rất nhiều kiểu dáng tùy theo loại thang máy (loại điều khiển riêng biệt hay kết hợp, loại của đóng mở bằng tay hay đóng mở tự động, loại của quay hay của lùa...). Thang máy hiện nay thường là loại điều khiển kết hợp, của lùa đóng mở tự động. Loại này cho phép gọi tàng khi cabin đang chuyển động nếu lượng tải trọng trong cabin chưa đạt tới tải trọng danh nghĩa và không gọi tàng được nếu cabin đã dù tải (khoảng 90% tải trọng danh nghĩa và nếu thêm tải bằng trọng lượng một người thì sẽ bị quá tải). Khi đó lệnh gọi tàng chỉ có thể thực hiện được nếu cabin đã bớt tải. Trong trường hợp này, sàn cabin phải có đủ hai tiếp điểm để đóng mở các mạch diều khiển tương ứng, cụ thể là:

- tiếp diểm dàm bảo khi lượng tài trong cabin đạt 90% tài trọng danh nghĩa thì các lệnh gọi tầng từ bên ngoài sẽ mất tác dụng và chi thực hiện các lệnh điều khiển trong cabin;
- tiếp điểm đảm bảo khi cabin quá tải thì ngất mạch động lực và thang không hoạt động được, đèn tín hiệu báo quá tải sáng.

Kết cấu sàn cabin rất đa dạng. Nhìn chung, sàn động thường tựa trên hệ thống các tay đòn, lò xo hoặc đệm cao su cùng với các tiếp điểm để đảm bảo thực hiện đúng chức năng yêu cầu đối với từng loại thang.

Hiện nay, hệ thống các tay đòn, lò xo kể trên thường được thay thế bằng các đattric lực có cấu tạo đơn giản và độ tin cậy cao.

2.2.5. Hệ thống cửa cabin và cửa tầng

Của cabin và cửa tầng là những bộ phận có vai trò rất quan trọng trong việc đảm bảo an toàn và có ảnh hưởng lớn đến chất lượng, năng suất của thang máy.

Cửa cabin và cửa tầng thường làm từ thép tấm dập, hoặc khung thép bịt thép tấm, ốp gỗ, ốp phoocmica. Một số của thang máy chỏ hàng loại nhỏ có thể bịt bằng luối thép phần trên của cửa. Theo cách đóng mở có các loại cửa quay và cửa lùa (hình 2.10).

Cửa quay gồm các loại một cánh, hai cánh và bốn cánh (hình 1.10 a, b, c). Cửa quay thường dùng cho thang chỏ hàng, rất hãn hữu dùng cho thang chỏ người và thường đóng mỏ bằng tay.

Cửa lùa thường là loại của lùa ngang loại một cánh, hai cánh hoặc bốn cánh, lùa về một phía hoặc hai phía (hình 1.10 d, c, f, g). Loại của hai cánh lùa về một phía (hình 2.10f) và bốn cánh lùa về hai phía (hình 2.10g) có các cánh của lùa về mỗi phía chuyển động với hai tốc độ khác nhau. Loại của lùa thường đóng mở tự động hoặc nủa tự động. Ngoài ra, một số thang chở hàng dùng loại của lùa theo phương đứng.

Loại cửa quay thường lắp bản lề với khung của còn của lùa thường là loại cửa treo bằng con lăn chạy trên ray treo ở phía trên khung của và có dẫn hướng ở phía dưới khung của để đảm bảo cho cửa khỏi bị lắc. Các mép phía trong của cánh cửa phải lấp gioăng để đảm bảo kín khít khi đóng cửa.

Trên hình 2.11a là sơ đồ lắp cửa lùa theo

Hình 2.10. Cửa cabin và cửa tầng:
a, b, c). Cửa quay một, hai và bốn
cánh; d). Cửa lùa một cánh; c). Cửa
hai cánh lùa về hai phía; f). Cửa
hai cánh lùa về một phía; g). Cửa
bốn cánh lùa về hai phía với hai tốc
độ.

phương thẳng đúng. Hai bên cửa là các vòng cáp (hoặc xích) khép kín 3 lấp vòng qua các puly (hoặc đĩa xích) 4. Các cánh cửa 1 và 2 liên kết với cáp 3 như trên hình 2.11a để đảm bảo sự cân bằng của các cáp (cửa không tự tụt xuống do trọng lượng của nó) và khi dẫn động mở một cánh thì cánh kia cũng tự mở ra và ngược lại. Mép cửa có lắp gioăng 5 để đảm bảo kín khít.

Trên hình 2.11b là sơ đồ lắp của lùa ngang loại hai cánh đóng tự động nhờ đối trọng 2 và mở bằng tay. Đối trọng 2 treo cáp 3 qua pyly 4 nối với cánh của bên trái để tạo lực đóng của.

Hình 2.11. So đồ cửa lùa:

- a) Lùa theo phương đứng: 1,2. cánh cửa;3. vòng cáp; 4. puly; 5. gioăng
- b) Lùa theo phương ngang: 1. cánh cửa;2. đối trọng; 3. cáp; 4,5. puly; 6. vòng cáp.

Khi cánh của bên trái đóng thì cánh bên phải cũng đóng nhờ cách mắc với cáp 6 và puly 5 như trên hình 2.11b.

Các yêu cầu an toàn đối với hệ thống của gồm:

- đủ độ cứng vũng và độ bền. Cửa được lắp kín khít và có kích thước phù hợp với các quy dịnh trong tiêu chuẩn;
- của phải được trang bị hệ thống khóa của sao cho hành khách không thể tự mở của từ bên ngoài. Khi đóng của tầng, khóa này tự sập và chỉ có thể mở từ bên ngoài bằng dung cu chuyển dùng do người điều hành giữ;
 - của phải có khả năng chống cháy;
- loại của lùa, đóng mở tự động thì chi mở của bằng cơ cấu đóng mở của đặt trên nóc cabin ngay cả khi cabin dứng trước cửa tầng (hành khách không thể tự mở). Khi của dang đóng, nếu gặp chướng ngại vật thì của phải tự mở ra và sau đó lại tiếp tục đóng để tránh tình trạng người chưa vào hẳn trong cabin bị kẹt giữa của và cháy động cơ của cơ cấu đóng mở của;
- của phải có tiếp điểm điện an toàn để dảm bảo rằng thang máy chỉ có thể hoạt động được khi của cabin và tất cả các của tầng đã đóng kín và khóa đã sập.

Tùy theo loại của và phương pháp dẫn động đóng mở của mà trang bị loại khóa cho phù hợp. Trên hình 2.12 là một ví dụ trong những kết cấu khóa rất đa dạng của loại của tầng dùng cho thang máy chở hàng, đóng mở bằng tay (loại của quay).

Dẫn động cho các chốt 1 của khóa cửa (hình 2.12a) là bộ truyền bánh răng -

thanh rằng 2 cùng với tay nắm mở cửa, lò xo chịu nén 3 luôn đẩy các chốt I vào các lỗ chốt trên khung cửa tầng. Trên chốt có vấu 5 tỳ trên đầu tay đòn 4 để hành khách không mở được cửa khi cửa đã đóng hẳn. Lò xo 6 luôn kéo tay đòn 4 sang trái để chặn vấu 5 trên chốt cửa I (hình 2.12b). Trong trạng thái đóng, chốt cửa I nằm trong lỗ chốt trên khung cửa tầng và tỳ vào tiếp điểm điện an toàn 9 để chứng tỏ rằng cửa đã đóng hẳn và thang có thể hoạt động được. Khi cabin tiến đến cửa tầng, thanh đẩy 7 gấn trên cabin sẽ đẩy con lãn 8 cùng tay đòn 4 sang phải và đầu tay dòn 4 không còn chặn vấu 5 lại nữa để có thể mở cửa được bằng cách xoay tay nắm của khóa cửa. Nhược điểm của phương án này là khi cabin đang làm việc và vượt qua một cửa tầng nào đó nhưng không dừng ở cửa đó, người đứng ngoài cửa tầng có thể mở được cửa vào đúng thời điểm cabin đang vượt qua cửa. Có thể khắc phục nhược điểm này bằng cách thay thanh đẩy 7 bằng một nam châm điện từ và điều khiển sao cho nam châm chi có điện để đẩy tay đòn 4 sang phải tại cửa tầng mà cabin sẽ đừng còn khi vượt qua các cửa khác thì không có tiếp xúc với con lãn 8 (tay dòn 4 vẫn chăn đưới vấu 5).

Hình 2.12. Khóa cửa của cửa tầng, loại cửa quay, dùng cho thang máy chỏ hàng: 1. chốt khóa; 2. bộ truyền bánh răng - thanh răng; 3. lò xo; 4. tay đòn; 5. vấu; 6. lò xo; 7. thanh đẩy; 8. con lăn; 9. tiếp điểm điện.

Hầu hết các thang máy chở người hiện nay dùng loại cửa lùa, đóng mở cửa tự động nhờ cơ cấu đóng mở cửa riêng đặt trên nóc cabin. Phương án này có các ưu điểm sau: kết cấu đơn giản; tiện nghi; năng suất cao; làm việc an toàn và độ tin cậy cao (do cửa tầng được mở từ phía trong bằng cơ cấu đóng mở cửa trên cabin mà sẽ không xảy ra trường hợp của tầng mở khi cabin không ở dúng tầng có cửa mở).

Kết cấu của hệ thống cửa lùa cùng cơ cấu đóng mở cửa rất đa đạng đối với các hãng thang máy khác nhau song chúng có chung một nguyên lý làm việc. Trên hình 2.13, 2.14, 2.15 là sơ đồ cấu tạo của hệ thống cửa lùa đóng mở tự động của một số thang máy.

Cơ cấu đóng mở của được đặt trên nóc cabin (hình 2.13) gồm động cơ điện dào chiều 4; bộ truyền đai gồm các bánh dai 5, 8 và đai 7; hộp giảm tốc 3. Bánh

Hình 2.13. Hình chung của cơ cấu đóng mở cửa trên nóc cabin:
1, 9, 10. các công tắc hành trình và tiếp điểm điện; 2. khung cabin; 3. hợp giảm tốc; 4. động cơ điện đóng mở cửa; 5,8. các bánh đai; 6. cáp; 7, đai; 11. cần gạt; 12. cam chữ U để mở cửa tầng.

dai chủ động 5 lấp trên trực động cơ còn bánh đai bị động 8 lấp trên trực vào của hộp giảm tốc 3. Trên trực ra của hộp giảm tốc lấp cố định cần gạt 11 có con lăn ở phía cuối cần gạt. Khi động cơ dẫn động cần gạt quay ngược chiều kim đông hồ thì nó đẩy cánh của bên phải để mở ra và ngược lại. Ở cuối quá trình đóng và mở của, các công tắc hành trình 9 và 10 sẽ ngắt điện động cơ 4 để dùng cơ cấu.

Trên hình 2.14 là sơ đồ cấu tạo của hệ thống đóng mở tự động cửa cabin. Cánh của bên phải 25 và cánh cửa bên trái 30 được treo vào các xe con 9 nhờ các bulông 31 (có diều chính được).

Trên nóc cabin là cơ cấu dẫn động với cần gạt 20 (lấp trên trục ra của hộp giảm tốc) có con lăn 16 ở cuối cần gạt luôn tỳ vào vấu 18 gắn trên xe con bên phải. Trên cơ cấu có lấp các công tắc hành trình 17 và 19 để ngắt động cơ khi của đã đóng hoặc mở xong. Toàn bộ cơ cấu được lấp trên nóc cabin bằng các bulông có các giảm chấn 21.

Vấu 18 nối với lo xo chịu kéo 6, đầu kia của lò xo nối với khung cabin bằng các chi tiết 3, 4, 5 để có thể điều chỉnh lực căng của lò xo. Lắp cố định trên khung

cabin là tiếp điểm 11 với nắp 12 để kiểm soát trạng thái đóng của các cánh của (nếu các cánh cửa đóng hẳn sẽ tỳ vào tiếp điểm 11). Trên khung cabin còn lắp ray 28 có các puly 1 ở hai đầu để mắc cáp 2.

Một đầu cáp 2 được cố định trên xe con bên trái còn đầu kia cũng nối với xe con bên trái 9 để tạo thành vòng khép kín nhờ các chi tiết 7, 8, 29 để có thể điều chỉnh lực căng cáp 2. Nhánh dưới của cáp được nối với xe con bên phải nhờ tấm kẹp 26. Như vậy, nhánh trên của vòng cáp nối với xe con bên trái còn nhánh dưới với xe con bên phải, khi xe con bên phải đi sang phải thì đồng thời xe con bên trái đi sang trái (qua cáp 2) và ngược lại để mở và đóng cửa. Trên xe con bên phải và bên trái có lấp các chi tiết mở của tầng là các thanh thép hình chữ U 22 và 32. Khi cabin ở trước cửa tầng, các thanh thép chữ U này ôm lấy con lãn trên cửa tầng tương ứng để đóng hoặc mở cửa tầng cùng cửa cabin.

Hình 2.14. Sơ đồ cấu tạo hệ thống đóng mờ tự động cửa cabin:

1. puly; 2. cáp; 3, 4, 5. các chi tiết cố định và diều chỉnh lực căng lò xo; 6. lò xo chịu kéo; 7, 8, 29. các chi tiết cố định đầu cáp và điều chỉnh lực căng cáp; 9. xe con; 10. tay đòn; 11. tiếp điểm điện lắp trên khung cabin; 12. náp; 13. mặt tỷ trên xe con bên phải; 14, bulông; 15, đai ốc; 16. con lăn; 17, 19. công tắc hành trình; 18. vấu cố định lò xo trên xe con bên phải; 20. cần gạt; 21. giảm chấn đồ cơ cấu đóng mở cửa; 22,32. cam chữ U để mỏ cửa tầng; 23. các bánh xe của xe con; 24. chi tiết cố định cam vào xe con; 25, 30. cánh cửa cabin bên phải và bên trái; 26. tấm kẹp cáp vào xe con bên phải; 27. tay đòn; 28. ray chạy xe con; 31. bulông treo các cánh cửa vào xe con. 33. bánh cam.

Trên hình 2.14 là trạng thái đóng của các của cabin. Ở trạng thái này, tay đòn 10 có đầu bên trái lấp khóp với xe con bên trái, đầu bên phải của tay đòn 10 có mặt vát tỳ lên chi tiết 13 trên xe con bên phải và như vậy đầu phải của tay đòn 10 được nâng lên tỳ vào tiếp điểm 11 để chứng tỏ rằng cửa cabin đã đóng hẳn.

Trên bệ cố định của cơ cấu có lấp tay đòn 27 bằng khớp xoay với cánh tay đòn

bên phải ngắn hơn và đầu bên phải liên kết khớp với bánh cam 33 còn cánh tay dòn bên trái dài hơn và đầu bên trái có bulông 14, đai ốc 15 tỳ vào chi tiết 13 trên xe con bên phải để chặn xe con lại và không thể tự mở của được.

Khi cabin đến trước của tầng mà theo lệnh điều khiển nó dừng lại và mở của thì cơ cấu quay cần gạt 20 ngược chiều kim đồng hồ đồng thời quay bánh cam 33 làm dầu phải của tay đòn 27 hạ xuống còn đầu trái nâng lên không tỳ vào chi tiết 13 nữa. Quá trình mà bánh cam 33 dẫn động tay đòn 27 để nâng đầu trái của tay đòn xảy ra khi cần gạt 20 quay và ăn hết khe hờ. Khi đầu trái của tay đòn không còn tỳ để chặn chi tiết 13 nữa thì cần gạt 20 qua con lăn 16 tỳ vào vấu 18 trên xe con bên phải để mở của (lò xo 6 bị kéo căng). Khi của đã mở hẳn, công tắc hành trình 19 ngắt động cơ của cơ cấu đóng mở của. Trên hình 2.14 chi vẽ phần trên của của, phần dưới của cửa cũng có dẫn hướng đặt phía dưới nền cabin để đảm bảo cho của luôn ở vị trí thẳng đứng.

Khi thực hiện lệnh đóng của, cần gạt 2θ quay theo chiều kim đồng hồ song lực đóng của là lực căng của lò xo θ (nhiều loại thang máy khác dùng đối trọng). Cần gạt 2θ có tác dụng giữ cho tốc độ đóng của được đều.

Ở cuối quá trình đóng của, công tắc hành trình 17 ngắt động co của cơ cấu đóng mở của, đầu bên phải của tay đòn 10 tỳ lên mặt nghiêng của chi tiết 13 và được nâng lên tỳ vào tiếp điểm 11. Đầu trái của tay đòn 27 được hạ xuống để chặn vào chi tiết 13 trên xe con bên phải và của không thể tự mở được.

Trên hình 2.15 là sơ đồ cấu tao của hệ thống cửa tầng, mở tự động từ phía của cabin. Phần khung cửa gồm các thanh đứng 13 và dầm trên 12 dược cố dinh vào tường giếng thang. Trên dầm trên 12 lắp các thanh ray 4 cho các xe con 2 với các con lăn phía trên 8 và phía dưới 3 gắn trên xe con. Các

Hình 2.15. Sơ đồ cấu tạo hệ thống mở cửa tầng:
1. các cửa tầng; 2. xe con treo cửa tầng; 3, 8. con lần dưới và
trên của xe con; 4. ray chạy xe con; 5.tay đòn; 6. con lần; 7, 9.
tiếp điểm điện; 10. lấy khóa; 11. con lắn; 12, 13. dầm trên và
thanh đứng của khung cửa tầng; 14. con lãn; 15. tay đòn.

cánh cửa tầng l được treo phía dưới các xe con bằng bulông. Trên trục của con lăn phía trên δ của mỗi xe con có gắn tay đòn l5. Đầu dưới của tay đòn l5 có con lăn l4 lắp côngxôn trên đầu trục về phía cửa cabin sao cho khi cabin đứng trước cửa tầng thì các thanh thép hình chữ U l2 và l2 trên xe con của cửa cabin (xem hình l2.14) ôm lấy con lăn l4 để cửa tầng có thể đóng mở theo cửa cabin.

Tại phần trên của dầm 12 có lấp lẫy khóa 10 bằng khóp xoay, phía trên lẫy khóa 10 là tiếp điểm 9 và đầu lẫy khóa có con lặn 11. Giữa cửa là tiếp điểm 7.

Trên hình 2.15 là trạng thái đóng của các cánh của tầng. Trong trạng thái này, tiếp điểm 9 là tiếp điểm thường mở (mạch kín khi lẫy khóa 10 không tỳ vào tiếp điểm 9) và tiếp điểm 7 là tiếp điểm thường đóng (mạch kín khi tay đòn 5 tỳ vào tiếp điểm 7). Như vậy các tiếp điểm 7 và 9 đều làm kín mạch và có thể nhận lệnh điều khiển.

Khi mở cửa cabin, các thanh thép chữ U trên xe con của cửa cabin ôm lấy con lăn 14 của xe con bên phải và bên trái và đẩy chúng về hai phía. Đối với xe con bên phải, con lăn 14 được đẩy sang phải làm quay tay đòn 15 và đầu trên của tay đòn nâng lẫy khóa 10 lên để có thể mở cửa tầng. Trong suốt quá trình mở cửa, lẫy khóa 10 luôn tỳ vào tiếp điểm 9 làm hở mạch và con lăn 11 trên lẫy khóa 10 chạy dọc theo gờ trên của xe con. Tiếp điểm 7 làm hở mạch ngay sau khi bắt đầu mở cửa do tay đòn 5 hạ xuống không tỳ vào tiếp điểm 7 nữa khi mở cửa. Trong mạch điều khiển, các tiếp điểm 7 và 9 được mắc nối tiếp nên không thể điều khiển thang máy khi của còn đang mở.

Khi đóng cửa cabin, các thanh thép chữ U vẫn ôm lấy con lãn 14 để kéo theo cửa tầng. Khi đóng đến cuối hành trình, tay đòn 5 tựa lên con lăn 6 và đầu tay đòn nâng dần lên để tỳ vào tiếp điểm 7. Mặt khác, con lăn 11 không lăn trên gò trên của xe con nữa, duới tác dụng của trọng lượng con lăn 11 và của lẫy khóa 10, đầu bên phải của lẫy khóa sập xuống để chặn xe con đồng thời không tỳ vào tiếp điểm 9 nữa. Mạch điều khiển đã được nối kín và có thể thực hiện các lệnh điều khiển.

2.3. Hệ thống cân bằng trong thang máy

Đối trọng, cáp nâng, cáp điện, cáp hoặc xích cân bằng là những bộ phận của hệ thống cân bằng trong thang máy để cân bằng với trọng lượng cabin và tải trọng nâng. Việc chọn sơ đồ động học và trọng lượng các bộ phận của hệ thống cân bằng có ảnh hưởng lớn đến mômen tải trọng và công suất động cơ của cơ cấu dẫn động, đến lực căng lớn nhất của cáp nâng và khả năng kéo của puly ma sát.

Đối trọng là bộ phận đóng vai trò chính trong hệ thống cân bằng của thang máy. Đối với thang máy có chiều cao nâng không lớn, người ta chọn đối trọng sao

cho trọng lượng của nó cân bằng với trong lương cabin và một phần tải trong nâng, bỏ qua trong lương cáp nâng, cáp điện và không dùng cáp hoặc xích cân bằng. Khi thang máy có chiều cao nâng lớn, trong lương của cáp nâng và cáp điện là đáng kể nên người ta phải dùng cáp hoặc xích cân bằng để bù trừ lại phần trong lượng của cáp điện và cáp nâng chuyển từ nhánh treo cabin sang nhánh treo đối trọng và ngược lại khi thang máy hoat đông.

Hình 2.16. Đối trọng:
1. cáp nâng; 2. hệ thống treo; 3. ngàm dẫn hướng;
4. dầm trên; 5. thanh đứng; 6. quả đối trọng;
7. dầm đưới; 8. thép góc.

2.3.1. Đối trọng

Trọng lượng đối trọng có thể xác định theo công thúc:

$$D = C + \psi Q, \tag{2.1}$$

trong đó:

C - trong luong cabin;

Q- tải trong nâng danh nghĩa của thang máy;

 ψ - hệ số cân bằng.

Nếu trọng lượng dối trọng cân bằng hoàn toàn với trọng lượng cabin và tải trọng nâng ($\psi=1$) thì khi nâng hoặc hạ cabin đầy tải, động cơ của cơ cấu nâng chi cần khắc phục lực cản ma sát và lực quán tính, song khi cabin không tải thì động cơ phải khắc phục thêm lực cản đúng bằng tải trọng nâng danh nghĩa Q để hạ cabin (hoặc nâng đối trọng). Vì vậy mà người ta chọn đối trọng với hệ số cân bằng ψ sao cho lực cần thiết để nâng cabin đầy tải bằng lực để hạ cabin không tải. Phần trọng lượng không cân bằng khi nâng cabin đầy tải là (C+Q-D) và khi hạ cabin không tải là (D-C). Đối với thang máy có chiều cao nâng nhỏ, trọng lượng cáp nâng và cáp điện không đáng kể và có thể bỏ qua.

Như vậy ta có:

$$C + Q - D = D - C \tag{2.2}$$

Thay giá trị \mathcal{D} từ (2.1) vào biểu thúc (2.2) và rút gọn ta nhận được hệ số cân bằng $\psi = 0.5$.

Nếu thang máy luôn làm việc với tải trọng nâng danh nghĩa Q thì hệ số cân bằng hợp lý nhất nhu đã xác định ở trên là $\psi=0.5$. Trong các cư xá và công sở, đa số thang máy chỉ hoạt động với tải trọng nâng danh nghĩa Q vào những lúc cao điểm, còn phần lớn thời gian thang máy chỉ hoạt động với một hoặc hai người trong cabin cho nên để tiết kiệm năng lượng, có thể lấy hệ số cân bằng thấp hơn ($\psi=0.4$).

Đối trọng (hình 2.16a) là một khung đứng hình chữ nhật gồm dầm trên 4, dầm duối 7 và các thanh thép góc thẳng đứng 5 liên kết với dầm trên và dầm duối bằng bulông. Tại các đầu dầm trên và dầm duối có lấp các ngàm dẫn huống 3 để đối trọng có thể tựa và trượt trên ray dẫn hướng khi chuyển động. Dầm trên của đối trọng liên kết với hệ thống treo 2 để đảm bào cho các sợi cáp nâng I có độ căng như nhau. Trong thang máy, ngàm dẫn hướng cho đối trọng thường là ngàm trượt và hệ thống treo đối trọng thường là hệ thống treo kiểu lò xo. Các quả đối trọng được đặt khít trong khung đối trọng sao cho chúng không thể dịch chuyển trong khung và phía trên chúng là thanh thép góc 8 để giữ cho các quả đối trọng không bị xộc xệch. Các quả đối trọng thường làm bằng gang, đôi khi làm bằng bêtông cốt thép. Kích thước và trọng lượng mỗi quả đối trọng đã được tiêu chuẩn hóa. Trọng lượng tính toán của đối trọng bằng tổng trọng lượng các quả đối trọng và trọng lượng khung đối trọng.

Đối với thang máy có tải trọng nâng lớn thì đối trọng và cabin được treo bằng palăng cáp và khi đó dầm trên của khung đối trọng có các puly của hệ thống palăng cáp (hình 2.16b).

2.3.2. Xích và cáp cân bằng

Khi thang máy có chiều cao nâng trên 45 m hoặc trọng lượng cáp nâng và cáp điện có giá trị trên 0,1 Q thì người ta phải đặt thêm cáp hoặc xích cân bằng để bù trừ lại phần trọng lượng của cáp nâng và cáp điện chuyển từ nhánh treo cabin sang nhánh treo đối trọng và ngược lại khi thang máy hoạt động, đảm bảo mômen tải tương đối ổn định trên puly ma sát.

Xích cân bằng thường được dùng cho thang máy có tốc độ dưới 1,4 m/s. Đối với thang máy có tốc độ cao, người ta phải dùng cáp cân bằng và có thiết bị kéo căng cáp cân bằng để cáp không bị xoắn. Tại thiết bị kéo căng cáp cân bằng phải có tiếp điểm điện an toàn để ngắt mạch điều khiển của thang máy khi cáp cân bằng bị đứt hoặc độ dãn quá lớn và khi có sự cố với thiết bị kéo căng cáp cân bằng.

Có ba cách mắc cáp hoặc xích cân bằng trong hệ thống cân bằng (hình 2.17):

+ cabin - đối trong (C - D): cáp hoăc xích cân bàng mắc với cabin và đối trong. Khi cabin đi lên, trọng lương cáp nâng chuyển dần từ nhánh treo cabin sang nhánh

Hình 2.17. Số đồ các hệ thống cân bằng: a, b) Cabin - đối trọng (C-D); c). Cabin - giếng thang (C-GT); d) Đối trọng - giếng thang (D-GT); C - cabin; D - đối trọng; GT- giếng thang; CN - cáp năng; CD - cáp điện; X - xích cân bằng; CB - cáp cân bằng; KC - thiết bị kéo căng cáp cân bằng.

treo đối trọng thì trọng lượng cáp hoặc xích cân bằng chuyển dần từ nhánh treo đối trọng sang nhánh treo cabin và ngược lại để đảm bảo lực căng của các nhánh cáp nâng treo cabin và đối trọng luôn có giá trị ổn định (hình 2.17 a, b);

- + cabin giếng thang (C GT): cáp hoặc xích cân bằng mắc với cabin và giếng thang (hình 2.17c). Khi cabin chuyển động thì trọng lượng cáp hoặc xích cân bằng chi bù trừ cho nhánh cáp nâng treo cabin;
- + đối trọng giếng thang (D GT): cáp hoặc xích cân bằng mắc với đối trọng và giếng thang (hình 2.17d).

Khi cabin và đối trọng được treo bằng palăng cáp thì sơ đồ các hệ thống cân bằng ở hình 2.1 chỉ thay đổi cách mắc cáp nâng còn các cáp hoặc xích phía dưới của hệ thống cân bằng không đổi.

Nhiệm vụ của bài toán cân bằng là: với mỗi sơ đồ của hệ thống cân bằng, sau khi đã tính trọng lượng cabin, đối trọng, cáp nâng và cáp điện của cabin, ta phải tính trọng lượng cần thiết của mỗi mét cáp hoặc xích cân bằng để đảm bảo mômen tài ổn định trên puly ma sát khi thang máy làm việc.

2.3.3. Cáp nâng

Cáp được bện từ những sợi thép cacbon tốt có giới hạn bền kéo 1400 - 1800 N/mm². Các sợi thép được chế tạo bằng công nghệ kéo nguội có đường kính từ 0,5 đến 2-3 mm và được bện thành cáp bằng các thiết bị bện chuyên dùng.

Cấu tạo và các đặc tính của các loại cáp thép có thể tham khảo trong các tài

liệu chuyên ngành máy nâng-chuyển. Trong thang máy chỉ dùng loại cấp bện kép (cấp bện hai lớp) gồm các dánh I bện từ các sợi thép 2 và các dánh được bện quanh lõi 3 (hình 2.18a). Lõi cấp dùng trong thang máy thường là lõi day có ưu diểm là cấp mềm, dễ uốn cong và khả năng tự bôi tron tốt hon do lõi đay dễ ngấm dầu.

Cách bện cáp có ảnh hưởng lớn đến độ bền và độ bền lâu của cáp. Các loại cáp dược dùng làm cáp nâng trong thang máy có các cách bện sau:

Cáp bện xuối là cáp có các sợi thép trong dánh bện cùng chiều với chiều bện của các dánh quanh lõi (hình 2.18c). Các sợi thép tiếp xúc với nhau tương đối tốt nên loại này tương đối mềm và có tuổi thọ cao song dễ bị bung ra và xoắn lại, nhất là khi treo vật nâng trên một sợi cáp. Vì vậy cáp bện xuối có thể dùng vào việc nâng vật theo dẫn hướng như trong thang máy.

Cáp bện chéo là cáp có chiều bện của các sợi thép trong dánh ngược với chiều bện của các dánh quanh lỗi (hình 2.18d). Loại này có độ cúng lớn hơn loại bện xuôi song khó bị bung ra và xoắn lại.

Cáp bện hỗn hợp là cáp mà các sợi thép trong một số dánh được bện xuôi còn trong các dánh khác thì bện chéo. Loại này tuy khó chế tạo nhưng có ưu điểm của cả hai loại cáp bện xuôi và bện chéo.

Cáp có tiếp xúc điểm là loại có đường kính các sọi thép trong đánh bằng nhau, hai lớp sọi trong đánh có bước bện khác nhau nên giữa các sọi thép có tiếp xúc điểm với nhau (hình 2.18b). Do tiếp xúc điểm nên khi cáp bị uốn cong, các sọi thép đề lên nhau và giữa các sọi thép có ma sát làm chúng chóng mòn và dễ bị đứt tùng sọi.

Cáp có tiếp xúc đường (hình 2.18a) là loại cáp do những sợi thép có đường kính khác

Hình 2.18. Cáp bện kép:

a) Tiếp xúc đường; b) Tiếp xúc điểm; c) Bện xuôi; d) Bện chéo;

1. dánh cáp; 2. sợi thép trong dánh; 3. lõi cáp.

nhau bện thành dánh với các lớp bện có bước bện bằng nhau làm các sợi thép kề nhau tiếp xúc với nhau trên suốt chiều dài. Đường kính khác nhau của các sợi thép trong dánh tạo điều kiện cho chúng xếp đầy tiết diện cáp. Các sợi thép nhỏ và lớn trong dánh được sử dụng hợp lý vừa đảm bảo độ mềm của cáp vừa đảm bảo độ bền và độ bền lâu của cáp. Các sợi thép bên ngoài có đường kính lớn hơn để đảm bảo cho cáp lâu bị mòn và đứt trong quá trình làm việc.

Đặc điểm làm việc của cáp nâng trong thang máy là cáp luôn bị kéo căng ngay cả khi thang máy không làm việc. Do đó việc tính toán, chọn và sử dụng cáp đúng đắn theo các yêu cầu và quy định trong tiêu chuẩn là những yếu tố quyết định đến độ bền, độ bền lâu, độ an toàn và độ tin cậy của cáp nói riêng và của thang máy nói chung.

Cáp nâng được chọn theo điều kiện sau:

$$S_{\text{max}}.n \le S_{d}, \tag{2.3}$$

trong đó:

S_{max} - lực căng cáp lớn nhất trong quá trình làm việc của thang máy;

- Sư tải trọng phá hỏng cáp do nhà chế tạo xác định và cho trong bảng cáp tiêu chuẩn tùy thuộc vào loại cáp, đường kính cáp và giới hạn bền của vật liệu sợi thép bện cáp:
- n hệ số an toàn bền của cáp, lấy không nhỏ hơn giá trị quy định trong tiêu chuẩn, tùy thuộc vào tốc độ, loại thang máy và loại cơ cấu nâng.

Lực căng cáp lớn nhất được xác định khi cabin ở vị trí trên cùng hoặc dưới cùng và tùy thuộc vào sơ đồ của hệ thống cân bằng.

Công thức chung để xác định lực căng cáp lớn nhất là:

$$S_{\text{max}} = \frac{Q + C + \sum G_{\text{c}}}{a.n} \quad , \tag{2.4}$$

trong đó:

Q - tải trọng nâng danh nghĩa của thang máy;

C- trong lượng cabin;

- $\sum G_c$ tổng trọng lượng cáp nâng, cáp điện và cáp hoặc xích cân bằng (nếu có) trên nhánh treo cabin và khi cabin ở vị trí trên cùng hoặc dưới cùng;
- a bội suất palăng cáp treo cabin và đối trọng truồng hợp cabin và đối trọng treo trực tiếp trên các sợi cáp nâng (không dùng palăng cáp) thì a
 = 1;
- n số sợi cáp riêng biệt treo cabin và đối trọng, đối với thang máy chở người và chở hàng có người đi kèm thì $n \ge 2$ nếu dùng tang cuốn cáp và $n \ge 3$ nếu dùng puly ma sát.

Bán kính uốn cong và số lần uốn cong có ảnh hưởng lớn đến độ bền lâu của cáp. Vì vậy mà đường kính tang hoặc puly ma sát phải thỏa mãn điều kiện sau:

$$D \ge e.d,\tag{2.5}$$

trong đó:

D - dường kính tang hoặc puly ma sát tính đến tâm cáp;

- d đường kính cáp, xác định bằng thuốc cặp (xem hình 2.18b);
- e hệ số được tra theo bảng tiêu chuẩn tùy theo loại thang và tốc độ; e≥ 40 đối với thang máy chỏ người có tốc độ dưới 1,4 m/s và e≥ 45 đối với thang máy chỏ người có tốc độ trên 1,4 m/s.

Cáp hỏng chủ yếu do mỏi nên không xảy ra tức thời mà phát triển dần dần theo thời gian. Quá trình phá hỏng cáp là quá trình đứt dần từng sợi thép từ ngoài vào trong và có thể dễ dàng kiểm tra bằng mắt thường. Do đó trên cơ sở nghiên cứu và kinh nghiệm sử dụng mà người ta quy định số sợi đứt cho phép trên một bước bện, chưa đến giới hạn đó thì cáp vẫn làm việc an toàn. Chiều dài một nước bện được xác định theo quy tắc sau: đếm dọc theo trực cáp sao cho số dánh bằng đúng số dánh cáp có trên tiết diện ngang của cáp. Trên hình 2.18 c, d là chiều dài một bước bện của cáp có sáu dánh cáp trên tiết diện ngang.

Nếu lớp sọi thép ngoài cùng của cáp bị mòn thì tùy theo độ mòn mà số sọi đứt cho phép trên một bước bện của cáp phải lấy giảm đi và đã được quy định rất chặt chẽ trong tiêu chuẩn. Nếu độ mòn của các sọi thép ngoài cùng đạt 40% só với đường kính của nó thì phải thay cáp mặc dù các sọi thép chưa đứt.

Điều kiện cơ bản để đảm bảo độ tin cậy, độ an toàn và độ bền lâu của cáp là sử dụng cáp đúng theo tính toán và quy định trong tiêu chuẩn, thường xuyên và định kỳ kiểm tra, bảo dưỡng cáp, các chi tiết cố định đầu cáp phải đủ bền và có độ tin cậy cao.

Yêu cầu đối với chi tiết cố định đầu cáp là: chắc chắn, dễ kiểm tra, dễ tháo lắp thay thế, kết cấu đơn giản, dễ chế tạo, cáp không bị uốn đột ngột tại chỗ cố định đầu cáp. Trên hình 2.19 là các phương pháp cố định đầu cáp.

Đối với thang máy chỏ hàng, có thể dùng phương pháp tết cáp (hình 2.19 a) và dùng bulông chữ U (hình 2.19 b). Trong cả hai phương pháp này, cáp phải được

đỡ bằng vòng lót có rãnh là một cung tròn hoặc hình thang để tránh cho cáp khỏi bị uốn đột ngột và giảm ứng suất tiếp xúc. Phương pháp tết cáp được thực hiện bằng cách tháo bung đầu cáp và luồn các dánh của đầu cáp đã tháo vào thân cáp rồi dùng sợi thép cuốn ngoài một doạn bằng 20 - 25 lần đường kính

Hình 2.19. Cố định đầu cáp.

cáp. Phương pháp này tốn nhiều công sức và đòi hỏi người tết cáp phải có tay nghề cao để đảm bảo tết đúng kỹ thuật. Khi dùng bulông chữ U, tấm đệm ở phía các đai

Hình 2.20 Bộ tời kéo có hộp giảm tốc: a) Với puly ma sát; b) Với tang cuốn cáp.

ốc có rãnh hình thang hoặc tròn để ép cáp và được đặt về phía nhánh cáp làm việc còn đầu tự do của cáp được ép bằng bulông. Số lượng bulông kẹp cáp không ít hon 3 và chọn tùy theo đường kính cáp theo quy định trong tiêu chuẩn. Khoảng cách giữa các bulông kẹp cáp và chiều dài đầu cáp tự do không dưới sáu lần đường kính cáp.

Thang máy chỏ người thường áp dụng phương pháp cố định đầu cáp bằng ống côn (hình 2.19 c) và bằng khóa chêm (hình 2.19 d). Xỏ đầu cáp qua lỗ nhỏ của ống côn, tháo bung đầu cáp và cắt lõi cáp bẻ gập các sợi thép trong đánh và lau sạch dầu, rút cáp cho đầu cáp nằm trong ống côn rồi tiến hành đổ chì vào ống côn. Phương pháp cố định đầu cáp bằng ống côn là phương pháp chắc chắn và có độ tin cậy cao nhất song không tháo lấp, điều chình được. Phương pháp cố định đầu cáp bằng khóa chèm cho phép tháo lấp rất nhanh bằng tay mà không cần các dụng cụ chuyên dùng.

Các chi tiết cố định đầu cáp đã được tiêu chuẩn hóa. Khi sử dụng ta cần phải tính toán hoặc chọn theo đường kính và lực căng cáp, tuân thủ các yêu cầu và quy định trong tiêu chuẩn.

2.4. Bộ tời kéo

Tùy theo sơ đồ dẫn động mà bộ tời kéo của thang máy được đặt ở trong phòng máy dẫn động nằm ở phía trên, phía dưới hoặc nằm cạnh giếng thang.

Theo phương pháp dẫn động có bộ tời kéo dẫn động thủy lực và bộ tời kéo dẫn động điện. Bộ tời kéo dẫn động thủy lực thường chỉ dùng cho thang máy có chiều cao nâng không lớn. Bộ tời kéo dẫn động điện là loại thông dụng hơn cả và trong phần này ta chỉ xét loại này.

Bộ tời kéo dẫn động điện gồm loại có hộp giảm tốc và loại không có hộp giảm tốc.

Bộ tời kéo có hộp giảm tốc (hình 2.20) gồm động cơ điện, hộp giảm tốc, khóp nối, phanh và puly ma sát hoặc tang cuốn cáp. Bộ tới kéo có hộp giảm tốc thường chi dùng cho thang máy có tốc độ đanh nghĩa của cabin duới 1,4 m/s. Đối với thang máy chỏ hàng có tốc độ thấp (dưới 0,5 m/s) thì có thể dùng động cơ điện một tốc độ. Đối với các loại thang máy khác, người ta thường dùng bộ tời kéo có hộp giảm tốc với động cơ điện có hai tốc độ, đặc biệt trong các thang máy chỏ người hiện đại,

Hình 2.21 Bộ tời kéo không có hộp giảm tốc.

người ta thường dùng động cơ điện có thể điều chính tốc độ vô cấp để đảm bảo cho cabin chuyển động được êm dịu trong quá trình mở máy hoặc phanh và có độ dùng chính xác trước của tầng. Bộ tời kéo trong thang máy thường dùng hộp giảm tốc trục vít - bánh vít do có tỷ số truyền lớn, gọn nhẹ, làm việc êm và đỡ ồn.

Đối với thang máy có tốc độ lớn người ta thường dùng bộ tời kéo không có hộp giảm tốc (hình 2.21). Puly ma sát và bánh phanh được lắp trực tiếp với trực động cơ không qua bộ truyền. Loại này thường dùng động cơ điện một chiều có tốc độ quay nhỏ và được mắc theo hệ thống máy phát - động cơ, cho phép điều chỉnh vô cấp tốc độ quay của động cơ, đảm bảo cho cabin chuyển động êm dịu và dùng chính xác.

Hiện nay, bộ tời kéo với tang cuốn cáp (hình 2.20b) được sử dụng rất hạn chế và chỉ dùng cho thang máy chở hàng có chiều cao nâng không lớn và tải trọng nâng lớn. Tuy nhiên, vì một lý do nào đó mà không thể sử dụng đối trọng trong hệ thống truyền - dẫn động thang máy thì việc sử dụng bộ tời kéo với tang cuốn cáp là tất vếu.

Bộ tời kéo với puly ma sát (hình 2.20a và 2.21) được sử dụng rộng rãi trong hầu hết các loại thang máy do có các ưu điểm sau:

- do cáp treo cabin và đối trọng chi vắt qua các rãnh cáp của puly ma sát mà bộ tời kéo với puly ma sát có kích thước nhỏ gọn, không phụ thuộc vào chiều cao nâng của thang máy (kích thước của tang cuốn cáp phụ thuộc vào chiều cao nâng). Trong nhiều trường hợp, puly ma sát có thể lấp côngxôn trên trục ra của hộp giảm tốc nên quá trình tháo lấp dễ dàng, tốn ít công súc;
- làm việc an toàn do có thể treo cabin và đối trọng bằng nhiều sợi cáp riêng biệt không thể đứt cùng một lúc và khi cabin lên đến điểm trên cùng, nếu công tắc

dùng tầng và công tắc hạn chế hành trình bị hỏng thì đối trọng có thể tựa lên giảm chấn ở đáy hố thang, cáp chùng và trượt trên các rãnh của puly ma sát để đảm bảo an toàn.

Tuy nhiên, cáp làm việc với puly ma sát chóng bị mòn hơn so với tang cuốn cáp. Vì vậy, việc chăm sóc, bảo dưỡng và theo dối trạng thái mòn của cáp trong quá trình sử dụng thang máy có ý nghĩa rất lớn.

Tang cuốn cáp trong thang máy phải là tang có xẻ rãnh (loại rãnh sâu) và cuốn một lớp cáp. Cấu tạo và phương pháp tính toán tang cuốn cáp có thể tham khảo trong các tài liệu chuyên ngành về máy nâng - vận chuyển. Để đảm bảo độ bền và độ bền lâu của cáp, đường kính tang cuốn cáp phải thỏa mãn điều kiện (2.5). Số lượng các sọi cáp riêng biệt cuốn lên tang ít nhất là một sọi đối với thang máy chỏ hàng và ít nhất là hai sọi đối với thang máy chỏ người, chỏ hàng có người đi kèm. Các sọi cáp treo cabin và đối trọng được cuốn lên tang theo hai chiều ngược nhau. Khi các nhánh cáp treo đối trọng nhả ra khỏi tang để hạ đối trọng thì các nhánh cáp treo cabin cuốn vào các rãnh cáp vùa được giải phóng bởi cáp treo đối trọng để nâng cabin và ngược lại. Như vậy, trong quá trình làm việc các nhánh cáp treo cabin và đối trọng luôn nằm cạnh nhau và cuốn ngược chiều nhau trên tang. Trọng lượng đối trọng cân bằng với trọng lượng cabin và một phần tải trọng trong cabin dảm bảo cho mômen trên trực tang có giá trị nhỏ nhất và ổn định.

Hình 2.22. Các loại rãnh cáp của puly ma sát: a) Rãnh tròn; b) Rãnh tròn có xẻ dưới; c) Rãnh hình thang.

Khác với tang cuốn cáp, puly ma sát có các rãnh cáp riêng biệt mà không theo hình xoắn ốc. Mối sợi cáp riêng biệt được vắt qua một rãnh cáp trên puly ma sát và hai dầu của các sợi cáp được cố định với cabin và đối trọng thông qua hệ thống treo để đảm bảo cho các sợi cáp có độ căng nhu nhau. Số rãnh cáp trên puly ma sát ít nhất là 2 đối với thang máy chỏ hàng và ít nhất là 3 đối với thang máy chỏ người, chỏ hàng có người đi kèm. Đường kính của puly ma sát tính đến tâm cáp phải thỏa mãn điều kiện (2.5).

Hình dạng mặt cắt của rãnh cáp trên puly ma sát có ảnh hưởng lớn đến khả năng truyền lực bằng ma sát và tuổi thọ của nó. Có ba loại rãnh cáp: rãnh tròn, rãnh tròn có xẻ dưới và rãnh hình thang (hình 2.22).

Hệ số ma sát tính toán của loại rãnh tròn có xẻ dưới (hình 2.22b) được xác định theo công thức:

$$\mu = \mu_0 \frac{4 \left(\sin \frac{\gamma}{2} - \sin \frac{\alpha}{2}\right)}{\gamma - \alpha + \sin \gamma - \sin \alpha} , \qquad (2.6)$$

trong đó:

 μ_0 - hệ số ma sát giữa vật liệu cáp và rãnh puly.

Rãnh cáp tròn có hoặc không xẻ dưới thường được tính với góc tiếp xúc giữa cáp và bề mặt rãnh $\gamma = \pi$ và đây cũng là trường hợp khi rãnh cáp bị mòn.

Vậy hệ số ma sát tính toán của rãnh tròn có xẻ dưới khi $\gamma = \pi$ là:

$$\mu = \mu_0 \frac{4(1 - \sin\frac{\alpha}{2})}{\pi - \alpha - \sin\alpha} , \qquad (2.7)$$

Hệ số ma sát tính toán của loại rãnh tròn (hình 2.22a) là trường hợp góc $\alpha = 0$:

$$\mu = \mu_0 \frac{4}{\pi} \,, \tag{2.8}$$

Dối với rãnh hình thang (hình 2.22c), hệ số ma sát tính toán được xác định theo công thức:

$$\mu = \mu_0 \frac{1}{\sin \frac{\beta}{2}}, \qquad (2.9)$$

trong đó góc nghiêng β của hai thành bên rãnh cáp phải thỏa mãn điều kiện β > 2ρ , với ρ là góc ma sát giữa vật liệu cáp và rãnh puly (tg $\rho = \mu_0$), để đảm bảo cho cáp không bị kẹt trong rãnh puly.

Ngoài việc phải đảm bảo có hệ số ma sát tính toán cao, rãnh cáp của puly ma sát phải được kiểm tra theo ứng suất dập giữa cáp và rãnh puly.

Đối với loại rãnh tròn có xẻ dưới, ứng suất dập lớn nhất được tính toán theo công thức:

$$p_{\text{max}} = \frac{S}{D.d} \cdot \frac{8\cos\frac{\alpha}{2}}{\pi - \alpha - \sin\alpha} . \tag{2.10}$$

trong dó:

S - lực căng cáp lớn nhất trong quá trình làm việc;

D, d - đường kính puly ma sát tính đến tâm cáp và đường kính cáp.

Loại rãnh tròn không có xẻ dưới là trường hợp có $\alpha = 0$ và ứng suất dập lớn nhất là:

$$P_{\text{max}} = \frac{S}{D.d} \cdot \frac{8}{\pi} \,. \tag{2.11}$$

Từ công thức (2.7) và (2.10) ta thấy loại rãnh cáp tròn có xẻ dưới có hệ số ma sát tính toán càng lớn khi góc xẻ dưới α càng lớn song ứng suất dập cũng tăng làm cáp và rãnh cáp chóng mòn.

Kết quả nghiên cứu lý thuyết và thực nghiệm cho thấy puly ma sát có hệ số ma sát tính toán μ tăng dần với các rãnh cáp tròn, rãnh tròn có xẻ dưới, rãnh hình thang. Mặt khác, ứng suất dập cũng tăng dần tức tuổi thọ của cáp và puly ma sát giảm dần theo thứ tự các rãnh cáp trên. Một số puly ma sát có rãnh cáp phù chất dèo để tăng ma sát. Rãnh puly và cáp có độ cứng như nhau sẽ đảm bảo độ mòn ít nhất đối với cả cáp và rãnh puly.

Cáp nâng vòng qua rãnh cáp của puly ma sát với góc ôm θ (hình 2.23). Khi nâng cabin đầy tải, lực căng cáp của nhánh treo cabin là S_2 , nhánh treo đối trọng là S_1 và $S_2 > S_1$ Khi hạ cabin không tải thì $S_1 > S_2$ và trong cả hai trường hợp đều có lực vòng trên puly ma sát bằng hiệu của lực căng lớn trừ lực căng nhỏ của các nhánh cáp. Ta ký hiệu S_2 là lực căng lớn và S_1 là lực căng nhỏ không phụ thuộc vào việc chúng xuất hiện trên nhánh treo cabin hay đối trọng. Khi đó lực vòng $P = S_2 - S_1$. Động cơ của cơ cấu nâng, qua puly ma sát, phải khắc phục được lực vòng lớn nhất

Hình 2.23. So đồ xác định hệ số kéo của puly ma sát.

 P_{max} có thể xuất hiện trong quá trình làm việc. Khả năng truyền lực bằng ma sát để khắc phục lực vòng lớn nhất mà cáp không bị trượt trên rãnh puly gọi là khả năng kéo của puly ma sát.

Dể dàm bảo truyền lực bằng ma sát mà không xảy ra hiện tượng trượt cấp trên rãnh puly ma sát trong quá trình làm việc, điều kiện Óle phải được thỏa mãn:

$$\left(\frac{S_2}{S_1}\right)_{\text{max}} \le e^{\mu\theta} \,, \tag{2.12}$$

trong đó:

 θ - góc ôm của cáp lên puly ma sát, rad;

 μ - hệ số ma sát tính toán giữa cáp và rãnh puly, tính theo các công thúc (2.6) - (2.9).

Biểu thúc $e^{\mu\theta}$ được gọi là hệ số kéo của puly ma sát. Giá trị lớn nhất của tỷ số lực căng giữa các nhánh cáp trong thang máy $\left(\frac{S_2}{S_1}\right)_{\rm max}$ được xác định theo sơ đồ của hệ thống cân bằng của thang máy và giá trị này thường rơi vào một trong hai trạng thái sau:

- trạng thái thủ tải tĩnh: cabin ở điểm dùng thấp nhất và tải trọng chất trong cabin bằng tải trọng nâng khi thủ tải tĩnh;
- trạng thái làm việc của thang máy có kể đến lực quán tính khi phanh và mỏ máy: mỏ máy nâng cabin đầy tải từ vị trí dưới cùng; phanh cabin đầy tải hạ xuống vị trí dưới cùng; mỏ máy hạ cabin không tải từ vị trí trên cùng; phanh cabin không tải khi nâng cabin lên đến vị trí trên cùng.

Nếu điều kiện (2.12) không thòa mãn thì phải điều chính các thông số và kiểm tra lại. Cụ thể là:

- tăng góc ôm θ ;
- tăng hệ số ma sát tính toán μ bằng cách chọn vật liệu có hệ số ma sát μ_0 cao hơn hoặc chọn lại loại rãnh puly ma sát cho μ cao hơn:
- giảm tỷ số $\left(\frac{S_2}{S_1}\right)_{\rm max}$ bằng cách tính lại hệ thống cân bằng, giảm tốc độ và gia tốc của cabin.

Trong quá trình làm việc, động cơ dẫn động phải khắc phục lực vòng tính lớn nhất trên puly ma sát do sự chênh lực căng của các nhánh cáp treo cabin và đối trọng $P_{\text{max}} = (S_2 - S_1)_{\text{max}}$. Ngoài lực vòng tính lớn nhất P_{max} còn có các thành phần lực cản do ma sát giữa ngàm và ray dẫn hướng, lực cản không khí trong giếng thang khi cabin chuyển động (đối với thang máy có tốc độ cao). Các thành phần lực cản do ma sát và không khí có giá trị không đáng kể so với lực vòng tĩnh P_{max} nên khi tính công suất động cơ có thể tính đến bằng hệ số $k = 1,1 \div 1,2$ và do đó lực vòng tính toán $P = kP_{\text{max}} = k(S_2 - S_1)_{\text{max}}$.

Công suất cần thiết của động cơ dẫn động được xác định theo công thức:

$$N = \frac{P.\nu}{1000\eta}, \text{ kW}$$
 (2.13)

trong đó:

- v tốc đô danh nghĩa của thang máy, m/s;
- P luc vòng tính toán trên puly ma sát, N;
- η hiệu suất chung của bô tời kéo.

Mômen xoắn từ trục đông cơ được truyền tới truc vào của hôp giảm tốc nhờ khớp nối. Trong thang máy thường dùng khớp nối đàn hồi (hình 2.24). Nửa khóp phía động cơ 4 và nửa khóp phía hộp giảm tốc I được liên kết với nhau qua các bulông 3 để truyền mômen xoán. Để giảm va đập trong quá trình mở máy và phanh, đầu bulông 3 phía hôp giảm tốc được lắp các vòng đêm bằng cao su 2. Nửa khóp phía hộp giảm tốc 1 còn có tác dụng 1,4. các nửa khóp; 2. vòng cao su; 3. bulông. làm bánh phanh. Trong trường hợp các

Hình 2.24 Cấu tao khóp nối đàn hồi:

bulông 3 bị tuột, nửa khóp 1 đồng thời là bánh phanh lấp trên trục hộp giảm tốc vấn được phanh cúng lai để đảm bảo an toàn cho thang máy. Các thông số của khóp nối dàn hồi đã được tiêu chuẩn hóa. Khóp nối được chọn theo mômen xoắn tính toán cần truyền từ động cơ tới hộp giảm tốc.

Phanh dùng để dập tắt động năng của các khối lượng chuyển động khi dừng thang máy và giữ cabin và đối trọng ở trạng thái treo khi thang dùng.

Phanh dược chon theo mômen phanh sao cho nó có thể giữ cabin ở trạng thái treo trong quá trình thủ tải tĩnh:

$$M_{\rm ph} = \frac{P.D.\eta_{\rm o}}{2i} \cdot k_{\rm t},$$
 (2.14)

trong đó:

- P lưc vòng xuất hiện trên puly ma sát trong quá trình thủ tải tĩnh (cabin ở điểm dùng thấp nhất và tải trong chất trong cabin bằng tải trọng khi thủ tải tĩnh);
- D đường kính puly ma sát tính đến tâm cáp;
- $\eta_{\rm O}$ hiệu suất của hộp giảm tốc;
- i tỷ số truyền của hộp giảm tốc;
- kt hệ số an toàn phanh.

Trong thang máy thường dùng phanh hai má loại thường đóng với nguyên lý

phanh tự động: phanh thường đóng và mômen phanh được tạo nên do lực nén của lò xo; phanh mở do tác động của nam châm điện hoặc "con đẩy" điện - thủy lực được mắc cùng nguồn với mạch điện của động cơ; khi động cơ làm việc thì phanh mở còn khi ngắt điện động cơ hoặc mất điện thì phanh đóng.

Kết cấu của phanh hai má với hệ thống tay đòn rất đa dang. Trên hình 2.25 là sơ đồ cấu tao của loại phanh hai má được dùng thông dung nhất trong thang máy. Hệ thống tay đòn của phanh gồm các tay đòn 14 có các má phanh nằm ở hai phía của bánh phanh. Đầu dưới của mỗi tay đòn 14 liên kết khóp với vỏ hộp giảm tốc còn đầu trên của các tay đòn luôn bi ép về phía bánh phanh nhờ lò xo chiu nén 11 qua vít dẫn hướng 1 và các đai ốc tỳ ở hai đầu lò xo 2 và 3. Vít 1 được cấy vào thân phanh cố định 10 cho phép tháo mỗi tay đòn cùng má phanh một cách dễ dàng khi cần sửa chữa mà không cần tháo khớp phía dưới của tay đòn. Như vậy, lực ép của các má phanh lên bánh phanh để tao mômen phanh do lực nén các lò xo 11 gây nên. Điều chinh mômen phanh bằng cách vặn các đai ốc trên vít 1 để thay đổi lực nén lò xo 11.

Tại phần trên của phanh, các tay đòn hình tam giác 12 liên kết khớp với

Hình 2.25. Phanh hai má kiểu điện từ:
1. vít dẫn hướng; 2,3. các đai ốc; 4. tay đòn; 5. ụ tỳ; 6. chi tiết truyền lực ấn tay đòn; 7. phần ứng của nam châm; 8. cuộn dây của nam châm; 9. thanh dẩy; 10. thân phanh cố định; 11. lò xo chịu nén; 12. tay đòn tam giác; 13. vít cấy; 14. tay đòn phanh; 15. chốt.

phần thân phanh cố định 10, một đầu của tay đòn tam giác 12 tỳ vào thanh đẩy 9 của nam châm điện từ còn đầu kia tỳ vào vít 13 cấy trên tay đòn phanh 14. Khi mỏ phanh, nam châm điện từ có điện, phần ứng 7 được hút xuống và qua thanh đẩy 9 đẩy đầu trên của tay đòn tam giác 12 xuống, đầu dưới của tay đòn tam giác đẩy các vít cấy 13 trên tay đòn phanh để mỏ phanh. Hành trình phanh được điều chính bằng cách vặn các vít cấy 13 trên tay đòn phanh sau khi nói các ốc hãm vít cấy. Phía trên của nam châm điện từ là hệ thống tay đòn dùng để mỏ phanh bằng tay khi cần nâng hoặc hạ cabin bằng tay quay trong trường hợp mất điện. Tay đòn 4 liên kết khớp với ụ 5 lấp trên phần vỏ của nam châm điện từ. Khi ta nén tay đòn

4 xuống dưới, qua chi tiết 6 và phần ứng 7, thanh đẩy 9 được ấn xuống để mỏ phanh.

2.5. Thiết bị an toàn cơ khí

Thiết bị an toàn cơ khí trong thang máy có vai trò đảm bảo an toàn cho thang máy và hành khách trong trường hợp xảy ra sự cố như: đứt cáp, cáp trượt trên rãnh puly ma sát, cabin hạ với tốc độ vượt quá giá trị cho phép. Thiết bị an toàn cơ khí trong thang máy gồm hai bộ phận chính: bộ hãm bảo hiểm và bộ hạn chế tốc đô.

2.5.1. Bộ hãm bảo hiểm

Để tránh cho cabin roi tự do trong giếng thang khi đứt cáp hoặc hạ với tốc độ vượt quá giá trị cho phép, bộ hạn chế tốc độ tác động lên bộ hãm bảo hiểm để dùng và giữ cabin tựa trên các ray dẫn hướng. Cabin của tất cả các loại thang máy đều phải được trang bị bộ hãm bảo hiểm. Bộ hãm bảo hiểm cần được trang bị cho dối trọng trong trường hợp đối trọng nằm phía trên lối đi hoặc phần diện tích có người đứng.

Theo nguyên lý làm việc có các loại bộ hãm bảo hiểm tác động tức thời và bộ hãm bảo hiểm tác động êm (có độ trượt lớn). Bộ hãm bảo hiểm tác động tức thời được dùng cho thang máy có tốc độ dưới 0,71 m/s và theo cấu tạo của bộ phận công tác có bộ hãm bảo hiểm kiểu bánh cam và bộ hãm bảo hiểm kiểu nêm. Bộ hãm bảo hiểm kiểu bánh cam thường chi dùng cho thang máy chở hàng loại nhỏ.

Thang máy có tốc độ trên 1 m/s và thang máy bệnh viện thường được trang bị bộ hãm bảo hiểm tác động êm với bộ phận công tác là nêm hoặc má kẹp.

Theo sơ đồ dẫn động có bộ hãm bảo hiểm mắc với cáp nâng (cho thang máy dùng tang cuốn cáp) và bộ hãm bảo hiểm mắc với cáp của bộ hạn chế tốc độ (cho thang máy dùng puly ma sát).

Theo số lượng bề mặt tác động có loại tác động một bên (chỉ có bộ phận công tác ở một bên ray còn bên kia ray là ngàm cứng) và loại tác động hai bên (cả hai bên ray đều có cam hoặc nêm). Loại tác động hai bên được dùng phổ biến hơn.

2.5.1.1. Bộ hãm bảo hiểm tác động tức thời mắc với cáp nâng

Bộ hãm bảo hiểm tác động tức thời mắc với cáp nâng thường chi dùng cho thang máy chở hàng với tang cuốn cáp. Có nhiều phương án dẫn động và sau đây là những phương án diển hình nhất.

Trên hình 2.26 là sơ đồ cấu tạo bộ hãm bảo hiểm tác động tức thời kiểu bánh cam loại tác động một bên.

Trục 1 lấp với các gối trục gắn cứng trên khung cabin bằng ổ trượt. Trên hai đầu của trục 1 lấp cứng các bánh cam 2. Dưới tác dụng của lò xo 5, các bánh cam 2 cùng trục 1 luôn có xu hướng xoay quanh trục của nó để ép bánh cam vào ray dẫn hướng của thang máy. Phía bên kia ray, đối diện với bánh cam, là ngàm cứng gắn trên khung cabin. Khi bánh cam xoay, ép vào dẫn hướng thì nó sẽ cùng ngàm kẹp chặt lấy dẫn hướng để giữ cabin tựa trên ray dẫn hướng. Giữa trục 1 có

Hình 2.26 Bộ hãm bảo hiểm kiểu bánh cam, mắc với cáp nâng: 1. trục; 2. bánh cam; 3. tay đòn; 4. xích; 5. lò xo xoán.

gắn cứng tay đòn 3, đầu của tay đòn nối với cáp nâng cabin bằng xích 4. Khi cabin treo trên cáp nâng, cáp có độ căng và qua xích 4 kéo tay đòn 3 làm trục 1 xoay theo chiều ngược với chiều xoay của lò xo 5 và tạo ra khe hỏ giữa bánh cam và ray dẫn hướng để cabin có thể chuyển động bình thường. Khi đứt cáp nâng (hoặc khi cáp nâng chùng) thì xích 4 cũng chùng và lò xo 5 xoay trục 1 để ép bánh cam 2 vào ray dẫn hướng. Dưới tác dụng của lực ma sát giữa bề mặt bánh cam và ray, cabin đi xuống làm bánh cam tiếp tục xoay với điểm tiếp xúc có bán kính lớn dần cho đến khi đủ giữ cabin tựa trên các ray dẫn hướng. Hiện nay, loại bộ hãm bảo hiểm này ít dùng và chi dùng cho thang máy chỏ hàng loại nhỏ.

Trên hình 2.27 là sơ đồ nguyên lý của bô hãm bảo hiểm kiểu nêm mắc với cáp nâng và tác động một bên ray. Thiết bị treo cabin 3 có thể dịch chuyển lên, xuống so với dầm ngang của khung cabin. Khi cabin ở trạng thái treo, cáp nâng có độ căng kéo các tay đòn 4 làm các quả nêm ở đầu kia của tay đòn đi xuống để tạo khe hỏ giữa nêm và ray dẫn hướng và cabin có thể chuyển động bình thường. Khi đứt hoặc chùng cáp nâng, thiết bị treo cabin 3 dịch xuống dưới và các lò xo 5 kéo tay đòn 4 làm các quả nêm dịch lên trên trong vỏ của nó, đi hết khe hỏ và ép chặt vào ray dẫn hướng 7,

Hình 2.27. Sơ đờ nguyên lý bộ hãm bảo hiểm kiểu nêm, mắc với cáp nâng:
1. cabin; 2. cáp nâng; 3. thiết bị treo cabin;
4. tay đòn; 5. lò xo kéo; 6. quả nêm;
7. ray dẫn hướng cabin.

thực hiện quá trình tự nêm để hãm cabin tựa trên các ray dẫn hướng. Lực tự nêm xuất hiện khi quả nêm tiếp xúc với ray dẫn hướng và tăng đần dưới tác dụng của trọng lượng cabin. Lực tác dụng ban đầu để có tự nêm là do lò xo tác động với giá trị không lớn (lực kéo quả nêm khoảng 100 - 150 N).

Để đảm bảo khả năng tự nêm, quả nêm và các bề mặt tiếp xúc với quả nêm phải thỏa mãn các điều kiện:

$$tg\alpha \leq \frac{\mu_1 - \mu_2}{1 + \mu \mu_2} , \qquad (2.15)$$

và

$$\mu_1 > \mu_2$$

trong đó:

α - góc nghiêng của bề mặt quả nêm;

 μ_1 - hệ số ma sát giữa bề mặt quả nêm và ray dẫn hướng;

 μ_2 - hệ số ma sát giữa bề mặt nghiêng của quả nêm và bề mặt vỏ quả nêm.

Khả năng tự nêm sẽ tốt hơn nếu tăng μ_1 và giảm μ_2 . Nguyên lý tự nêm là nguyên lý của bộ hãm bảo hiểm tác

động tức thời. Loại này thường chỉ dùng cho thang máy có tốc độ danh nghĩa của cabin đến 0,71 m/s.

2.5.1.2. Bộ hãm bảo hiểm tác động tức thời mắc với bộ hạn chế tốc độ

Tất cả các loại thang máy có cơ cấu nâng dùng puly ma sát đều được trang bị bộ hãm bảo hiểm mắc với cáp của bộ hạn chế tốc độ. Sơ đồ nguyên lý đơn giản nhất của cách mắc này cho ở hình 2.28.

Ở chế độ làm việc bình thường, lò xo 8 kéo tay đòn 4 xuống để đảm bảo cho quả nêm 6 không tiếp xúc với ray dẫn hướng 7. Ự tỳ 10 đảm bảo khe hở cần thiết theo yêu cầu trong tiêu chuẩn giữa quả nêm và ray để cabin có thể chuyển động bình thường. Do đầu tay đòn 4 nối với cáp hạn chế tốc độ 3 mà khi cabin chuyển động, nó kéo theo

Hình 2.28. So đồ nguyên lý bộ hãm bảo hiểm kiểu nêm mắc với bộ hạn chế tốc độ: 1. cabin; 2. đầu nối cáp và tay đòn; 3. cáp của bộ hạn chế tốc độ; 4. tay đòn; 5. tay treo quả nêm; 6. quả nêm; 7. ray dẫn hướng; 8. lò xo kéo; 9. bộ hạn chế tốc độ; 10. u tỳ.

cáp 3 chuyển động và làm quay bộ hạn chế tốc độ 9.

Khi cabin hạ với tốc độ lớn hơn giá trị cho phép (khi đứt cáp nâng hoặc cáp bị trượt trên rãnh puly do không đủ ma sát), bộ hạn chế tốc độ cũng quay nhanh hơn và khi đạt tới số vòng quay tới hạn thì dùng lại làm cáp 3 cũng dùng theo. Do cabin vẫn tiếp tục đi xuống mà cáp 3 của bộ hạn chế tốc độ, qua đầu nối 2, tác động lên tay đòn 4, tay treo 5 và quả nêm 6 làm chúng có chuyển động tương đối di lên so với cabin. Quả nêm ăn hết khe hỏ với ray dẫn hướng và tiếp xúc với nó với lục tác động ban đầu không lớn. Cabin được dùng lại, tựa trên các ray dẫn hướng do lục tự nêm xuất hiện và tăng dần dưới tác dụng của trọng lượng cabin.

Trên hình 2.29 là sơ đồ cấu tạo của hệ thống dẫn động bộ hãm bảo hiểm kiểu nêm tác động túc thời của loại thang máy chỏ người.

Hình 2.29. So đò cấu tạo hệ thống dẫn động bộ hãm bảo hiểm kiểu nêm tác động tức thời:

cáp hạn chế tốc độ; 2. dầu nối cáp; 3. khóa kẹp cáp; 4, 6, 9. các tay đòn; 5. trục;
 tiếp điểm điện; 8. thanh đẩy; 10. quả nêm; 11. khung cabin; 12. vỏ quả nêm;
 13. dẫn hướng nêm; 14. ray dẫn hướng cabin; 15. vít chính.

Tại hai đầu của dầm trên của khung đứng cabin có lắp các trục 5. Trục 5 phía bên trái được gắn cứng với các tay đòn 4 và 6 còn trục 5 phía bên phải - với tay đòn 6 tại đầu trục. Tại phần giữa của trục 5 là các tay đòn 9 và tay treo các quả

nêm 10. Đầu tay đòn 4, qua đầu nối 2, liên kết với cáp I của bộ hạn chế tốc độ với các kẹp cáp 3. Các tay đòn 6 liên hệ với nhau qua thanh đẩy 8.

Khi cabin đi xuống với tốc độ lớn hơn giá trị cho phép thì bộ hạn chế tốc độ dùng cáp I, cabin vẫn tiếp tục đi xuống làm cáp I căng thêm và kéo tay đòn 4 và trục 5 phía bên trái quay theo chiều kim đồng hồ. Tay đòn 6 phía bên trái quay theo trục 5 và qua thanh đẩy 8, tay đòn 6 phía bên phải làm quay trục 5 phía bên phải theo chiều ngược với chiều kim đồng hồ. Như vậy, trục 5 ở phía bên trái và phía bên phải quay cùng và ngược chiều kim đồng hồ làm các tay đòn 9 nhấc lên kéo theo các quả nêm đi lên tiếp xúc với ray dẫn hướng 14 để thực hiện quá trình tự nêm ở cả hai bên ray. Thanh đẩy 8 dịch chuyển sẽ tác động vào công tác 7 để ngắt mạch điều khiển và dùng động cơ. Điều chỉnh chiều dài của thanh đẩy 8 để thay đổi khe hở giữa quả nêm và ray dẫn hướng nhờ khóp 15. Khi nâng cabin lên, lò xo trên thanh đẩy dịch nó sang phải và qua hệ thống tay đòn, các quả nêm hạ xuống để trở về vị trí ban đầu và cabin có thể chuyển động bình thường.

2.5.1.3. Bộ hām bảo hiểm tác động êm

Dối với thang máy có tốc độ cao, nếu dùng bộ hãm bảo hiểm tác động tức thời sẽ cho gia tốc dùng rất lớn gây ra lực quán tính lớn, không những ảnh hưởng đến kết cấu chịu lực của thang máy và của công trình mà còn ảnh hưởng đến hành khách trong cabin. Vì vậy mà thang máy có tốc độ danh nghĩa của cabin trên 1 m/s thường được trang bị bộ hãm bảo hiểm tác động êm (có độ trượt lớn) với mômen phanh không đổi. Trên hình 2.30 là sơ đồ cấu tạo của bộ hãm bảo hiểm tác động êm với mômen phanh không đổi.

Hình 2.30. Sơ đồ cấu tạo bộ hãm bảo hiểm tác động êm với mômen phanh không đối: 1,2. các tay đồn; 3. khốp; 4. trục; 5. lò xo nén; 6. đai ốc; 7. ụ tỳ; 8. ray dẫn hướng cabin; 9. quả nêm.

Bộ hãm bào hiểm gồm hai tay đòn l và l có thể xoay quanh khớp l gắn trên khung chịu lực của cabin. Trong trạng thái làm việc bình thường, giữa ray dẫn hướng l và các bề mặt chuyển động của quả nêm l và vỏ phanh có khe hỏ là l l Khe hỏ l có thể điều chính bằng cách vặn các đai ốc l trên trực l.

Lò xo 5 bị nén luôn tỳ hai đầu của nó để đẩy các tay đòn I và 2 ra. Các ụ tỳ 7 dùng để khống chế vị trí các tay đòn và đảm bảo cho các khe hỏ giữa nêm và vỏ phanh với ray dẫn hướng đều là δ .

Khi có sự cố, cáp của bộ hạn chế tốc độ dừng làm quả nêm 9 dừng theo song cabin vẫn tiếp tục di xuống nên quả nêm có chuyển động tương đối đi lên trong vỏ của nó, ăn hết các khe hỏ δ và ép vào ray dẫn hướng δ . Cấu tạo của quả nêm cho phép nó chi có thể chuyển động đi lên trong vỏ nêm với hành trình h (xem mặt cắt A - A hình 2.30) để đảm bảo lực nén của quả nêm vào ray dẫn hướng có giá trị nhất định. Khi có lực nén từ phía quả nêm vào ray dẫn hướng, tay đòn I và I xoay quanh khóp I theo chiều mũi tên trên hình I0.30 làm xuất hiện khe hỏ giữa tay đòn I1, I2 với các đai ốc I2 và tạo nên lọc nén không đổi trên bề mặt của ray dẫn hướng làm cabin dừng êm và có độ trượt trên ray.

Ngoài bộ hãm bảo hiểm có mômen phanh không đổi nêu trên, trong thang máy có tốc độ cao còn dùng loại bộ hãm bảo hiểm tác động êm với mômen phanh tăng dần. Kết cấu của bộ hãm bảo hiểm có mômen phanh không đổi nêu trên và nguyên lý, kết cấu của bộ hãm bảo hiểm có mômen phanh tăng dần có thể tham khảo trong các tài liệu chuyên ngành.

2.5.2. Bô han chế tốc đô

Khi cabin hạ với tốc độ vượt quá giá trị cho phép, bộ hạn chế tốc độ qua hệ thống tay đòn tác động lên bộ hãm bảo hiểm để dùng cabin tựa trên các ray dẫn hướng. Giá trị cho phép của tốc độ hạ cabin lấy tùy theo loại thang máy theo quy định trong tiêu chuẩn.

Khi cabin chuyển động, bộ hạn chế tốc độ cũng quay theo do cáp của bộ hạn chế tốc độ có liên hệ với các tay đòn của bộ hãm bảo hiểm gắn trên cabin. Cáp của bộ hạn chế tốc độ là một vòng khép kín, phía trên mắc với puly của bộ hạn chế tốc độ, phía dưới mắc với puly của thiết bị kéo căng (xem hình 2.28). Bộ hạn chế tốc độ được lắp đặt trong buồng nằm phía trên giếng thang còn thiết bị kéo căng được lấp đặt dưới hố thang (xem hình 2.1)

Thiết bị kéo căng có công dụng đảm bảo cho cáp của bộ hạn chế tốc độ không bị xoắn và có đủ độ căng để truyền lực bằng ma sát (khi chuyển động, nó làm bộ

hạn chế tốc độ quay theo). Sơ đồ cấu tao của loại thiết bi căng cáp han chế tốc đô thông dung nhất ở hình 2.31. Khung 7 được gắn cứng với ray dẫn hướng 3 của cabin. Dọc theo khung 7 có đối trong 5 với các ngàm dẫn hướng 8 tựa lên khung 7. Đối trong 5 treo vào truc của puly 1 để kéo căng cáp 2 của bô han chế tốc độ. Trên khung 7 có vấu 6 còn trên đối trọng 5 có công tắc 4 để khi đút cáp 2 hoặc hành trình của đối trong đi quá giới han do cáp 2 quá dẫn thì vấu 6 cham vào công tắc 4 để ngắt mạch điện điều khiển và đông cơ dẫn đông. Trong lương của đối trong 5 phải tao nên lực căng đủ lớn trên cấp 2 để khi cáp 2 chuyển đông theo cabin thì nó dẫn động cho bộ han chế tốc độ quay nhờ ma sát giữa cáp 2 và rãnh puly trên bộ hạn chế tốc đô. Một số thang máy còn sử dụng đối trong duới dang côngxôn để tao đô căng cần thiết cho cáp han chế tốc đô.

Bộ hạn chế tốc độ làm việc theo nguyên lý của phanh ly tâm: khi trục quay đạt tới số vòng quay tới hạn, các quả văng gắn trên trục sẽ tách ra xa tâm

Hình 2.31. Thiết bị căng cáp hạn chế tốc độ: 1. puly; 2. cáp hạn chế tốc độ; 3. ray dẫn hướng cabin; 4. tiếp điểm điện; 5. đối trọng; 6. vấu; 7. khung; 8. ngàm dẫn hướng.

quay dưới tác dụng của lực ly tâm và mắc vào các vấu cố định của vỏ phanh để dùng trục quay.

Theo vị trí của trục quay có bộ hạn chế tốc độ với trục quay nằm ngang và bộ hạn chế tốc độ với trục quay thẳng đúng, trong đó loại trục quay nằm ngang được dùng phổ biến hơn. Kết cấu của bộ hạn chế tốc độ rất đa dạng tùy theo hãng chế tạo song cùng có nguyên lý làm việc nêu trên. Trên hình 2.32 là sơ đồ kết cấu của một loại hạn chế tốc độ với trục quay nằm ngang.

Trục 16 được gắn cứng với vỏ 15 của bộ hạn chế tốc độ bằng đai ốc. Trên trục có lắp đĩa 1 cùng các puly 13 và 14 bằng ổ bị để chúng có thể quay tự do quanh trục 16. Trên đĩa 1 có các chốt 2 để lắp các quả văng 6. Các quả văng này liên hệ với nhau bằng thanh kéo 9 trên có lắp lò xo chịu nén 5. Lò xo 5 có một đầu tỳ lên vấu 4 gắn trên đĩa 1, đầu kia tỳ lên vòng đệm 7 và đai ốc 8 trên thanh kéo 9 để có thể điều chính độ nén của lò xo 5. Như vậy, do vấu 4 gắn cố định trên đĩa nên lò xo 5 luôn có xu hướng đẩy thanh kéo 9 sang trái để đầu các quả văng 6 không chạm vào các vấu cố định 3 trên vỏ 15 khi đĩa 1 cùng các puly 13 và 14 quay. Với tốc độ quay bình thường, ứng với tốc độ chuyển động danh nghĩa của cabin, đĩa 1 quay dễ dàng và các quả văng ở vị trí không chạm vào vấu 3 trên vỏ 15. Khi cabin

hạ với tốc độ vượt quá giới hạn cho phép, qua cáp hạn chế tốc độ vắt trên rãnh puly 14, dĩa 1 cũng quay nhanh và đạt tới số vòng quay tới han, lực ly tâm của các quả văng đủ lớn để ép lò xo 5 và tách các quả văng ra xa tâm quay làm đầu quả yặng mắc vào vấu 3 và đĩa 1 cùng puly 13, 14 dùng lai. Puly thường có rãnh cáp hình thang với hệ số ma sát tính toán cao nên khi nó dùng lai làm cấp han chế tốc độ vất qua rãnh puly dùng theo, cabin vẫn tiếp tục đi xuống nên cáp han chế tốc độ tác động lên hệ tay đòn lắp trên cabin để bộ hãm bảo hiểm hoạt động dùng cabin tua trên các ray dẫn hướng. Lực nén lò xo 5 càng lớn thì lực ly tâm cần thiết để tách các quả văng ra xa càng lớn. Vì vậy, có thể điều chỉnh lực nén lò xo 5 bằng cách văn đai ốc 8 để bộ hạn chế tốc độ làm việc chính xác với tốc độ quay cần thiết. Nếu lực nén lò xo quá nhỏ thì rất dễ xảy ra hiện tượng dùng ngẫu nhiên ngay cả khi cabin chuyển đông với tốc độ danh nghĩa. Vì vậy cần điều chinh lò xo sao cho bô han chế tốc độ hoạt động ứng với giá trị tốc độ quy định trong quy phạm cho từng loại thang máy. Việc điều chỉnh, kiểm tra và thủ nghiêm bộ han chế tốc đô do nhà chế tạo tiến hành và sau đó kẹp chì lại. Puly 13 có đường kính nhỏ dùng để thủ nghiêm, kiểm tra bộ hạn chế tốc độ. Nếu vắt cáp hạn chế tốc độ qua rãnh

của puly 13 thì khi cabin chuyển động với tốc độ danh nghĩa, bộ hạn chế tốc độ vẫn làm việc và tác động lên bộ hãm bảo hiểm để dùng cabin vì tốc độ quay của đĩa 1 vẫn đạt tới số vòng quay tới hạn do đường kính của puly 13 nhỏ.

Ngoài ra, người ta còn lắp vấu 10 xuyên qua vỏ 15 và trên vấu có lò xo 11 cùng chốt

Hình 2.32. Bộ hạn chế tốc độ:

1. đĩa; 2. chốt; 3. vấu cố định; 4. vấu tỳ; 5. lò xo nén;
6. quả văng; 7, 8. vòng đệm và đai ốc; 9. thanh kéo;
10. vấu di động; 11. lò xo; 12. chốt hãm; 13, 14. các puly;
15. vỏ bộ hạn chế tốc độ; 16. trục.

hấm 12. Trong điều kiện làm việc bình thường (cáp hạn chế tốc độ vắt qua puly 14, cabin chuyển động với tốc độ danh nghĩa), nếu ấn lên vấu 10 thì đầu quả văng mắc vào nó để dùng đĩa 1 cùng các puly 13, 14 (mặc dù số vòng quay của đĩa chưa đạt giá trị tới hạn và lực ly tâm chưa đủ lớn để tách quả văng ra xa). Khi đó nếu bộ hấm bảo hiểm làm việc để dùng cabin thì điều đó chứng tỏ rằng độ căng của cáp hạn chế tốc độ, hệ số ma sát tính toán giữa cáp và rãnh puly 14 đạt giá trị yêu cầu và hệ thống tay đòn cùng bộ hãm bảo hiểm làm việc bình thường.

CHON THANG MÁY

§1. KHÁI NIÊM CHUNG

Thang máy là thiết bị không thể thiếu trong các nhà cao tầng để vận chuyển người, hàng hóa... theo phương thẳng đứng, vì vậy việc lựa chọn thang máy phù hợp với mục đích sử dụng của ngôi nhà đóng vai trò rất quan trọng và thường được bắt đầu ngay từ khi thiết kế kiến trúc.

Lựa chọn thang máy không chi don thuần xem xét các vấn đề kỹ thuật mà còn phải xem xét cả các yếu tố kinh tế. Hiển nhiên càng nhiều thang máy có tải định múc lón, tốc độ định múc cao, hệ điều khiển hiện đại thì càng tạo điều kiện thuận lọi cho hành khách khi sử dụng như rút ngắn thời gian chờ đọi, giảm thời gian đi thang, êm dịu... Tuy nhiên với việc tăng số lượng và tính năng kỹ thuật, đặc biệt tốc độ định mức, một mặt dòi hỏi vốn đầu tư cho thang lớn, mặt khác làm tăng diện tích chiếm chỗ, tăng chi phí cho việc xây dựng giếng thang... Như vậy điều kiện thuận lọi cho hành khách và vốn đầu tư luôn là hai chi tiêu tỷ lệ nghịch với nhau. Quá trình lựa chọn thang máy chính là quá trình xác định số thang, tính năng kỹ thuật (tải, tốc độ định mức, phương pháp điều khiển...), các kích thước cơ bản của thang và vị trí đặt thang phù hợp với đặc điểm, mục đích sử dụng của tòa nhà với vốn đầu tư có thể chấp nhận được.

Đối với nhà sử dụng nhiều thang, bên cạnh việc chọn tính năng kỹ thuật còn phải bố trí chúng thành nhóm sao cho hợp lý để tận dụng năng suất tối đa của thang cũng như tạo thuận tiện cho hành khách.

Đối với các nhà cao tầng có lượng hành khách cần vận chuyển lớn người ta thường chia thang máy thành nhóm riêng phục vụ các phần khác nhau theo chiều cao của tòa nhà. Các thang máy ở các nhóm khác nhau có thể có tính năng kỹ thuật khác nhau, thường các thang phục vụ cho các tầng cao có tải và tốc độ định mức lớn hơn các thang phục vụ phần thấp hơn.

§2. CÁC NGUYÊN TẮC CHUNG KHI LỰA CHỌN THANG MÁY

2.1. Cơ sở lưa chọn

Như trên đã nêu, mục đích của việc lựa chọn thang máy là nhằm xác định một

cách hợp lý số lượng thang cùng tính năng kỹ thuật của nó cho tòa nhà được thiết kế xét cả về mặt kỹ thuật, mỹ thuật, lẫn kinh tế. Vì lý do đó khi chọn thang phải xét đến nhiều yếu tố và thường chọn nhiều phương án khác nhau rồi so sánh chúng để tìm ra phương án hợp lý nhất. Khi chọn thang, các yếu tố sau đây thường được xem là các yếu tố cơ bản và phải được xem xét đầy đủ:

- số tầng nhà thang máy cần phục vụ;
- khoảng cách sàn giữa các tầng;
- số dân cư sống trong tòa nhà (nếu là nhà ở) hoặc số nhân viên làm việc (nếu là nhà hành chính) hoặc số giường (nếu là khách sạn hoặc bệnh viện);
 - vi trí, đặc diểm mục đích của tòa nhà;
- các yêu cầu riêng biệt khác nếu có, như thang có người tàn tật, khuyết tật cùng dùng, thang có nhu cầu đặc biệt...

Thang máy hoặc hệ thống thang máy được chọn, tùy theo yêu cầu của khách hàng, nhà sản xuất có thể đáp ứng đầy đủ, song các thông số kỹ thuật sau phải được khẳng định:

- tải trọng định mức;
- tốc độ định mức;
- kích thước hình học của cabin;
- các đặc tính của thang khi chế tạo (kích thuớc thông thủy của tầng, hệ dẫn động, hệ điều khiển...);
- ngoài các yếu tố mang tính kỹ thuật nêu trên khi chọn còn phải chú ý đến tính mỹ thuật của thang như mầu sơn, vật liệu làm cabin, bố trí nội thất cabin, phương tiện và tiện nghi trong cabin.

Thang máy được quy định thuộc nhóm thiết bị có đòi hỏi nghiêm ngặt về kỹ thuật an toàn và phải định kỳ được bảo trì, bảo dưỡng nên khi chọn thang, chủ thang phải hết sức lưu ý đến tính an toàn khi sử dụng, đến người cung cấp thang, đặc biệt là đội ngũ kỹ thuật của hãng khi lấp đặt và bảo trì, bảo dưỡng sau lấp đặt.

2.2. Các chỉ tiêu khi chon thang

2.2.1. Khái niêm

Để thuận tiện cho việc chọn thang người ta phân các loại nhà theo mục đích sử dung thành các nhóm cơ bản sau:

- nhà hành chính:
- nhà ở:

- khách sạn;
- bênh viên.

Trong mỗi nhóm lại có thể được chia nhỏ để có thể chọn thang máy có tính năng kỹ thuật phù hợp hơn.

Ví dụ nhóm nhà hành chính có thể phân thành nhà hành chính thuần túy (cơ quan bộ, cơ quan hành chính sự nghiệp...) và nhóm nhà hành chính có kết hợp với sản xuất, nghiên cứu khoa học...

Dù các tòa nhà cũng như chủng loại thang là rất đa dạng, song mục đích việc chọn thang như trên đã nêu phải thỏa mãn được các yêu cầu vận chuyển đủ số lượng hành khách nào đó trong khoảng thời gian nhất định mà không phải chò đọi cũng như ở trong cabin thang quá lâu. Thực tế lượng hành khách cần vận chuyển lại thay đổi không theo quy luật nhất định, mà thay đổi theo những giờ khác nhau trong ngày tùy theo tính chất, đặc điểm, mục đích sử dụng của tòa nhà. Điểm chung của sự thay đổi này có những giờ cần vận chuyển nhiều hành khách được gọi là giờ cao điểm.

Tất nhiên giờ cao điểm với từng loại nhà cũng khác nhau. Ví dụ hình 3.1 trình bày đồ thị xác định tỷ lệ hành khách tại giờ cao điểm trong tòa nhà thương mại có giờ làm việc bắt đầu từ 9h sáng [3].

Việc phân tích dòng hành khách tại giờ cao điểm như sẽ thấy sau này là một bước không thể bỏ qua khi lựa chọn thang

Hình 3.1. Đồ thị tỷ lệ hành khách tại giờ cao điểm: 1. năng suất vận chuyển trong 5 ph; 2. năng suất vận chuyển trong 30 ph; 3. năng suất vận chuyển trong 1h.

máy song khả năng vận chuyển hành khách như nêu trên chưa phản ánh đầy đủ chất lượng phục vụ của thang được thể hiện bằng thời gian hành khách phải chờ đợi ở bến chính tại giờ cao điểm, nên khi chọn thang cả hai chi tiêu về khả năng vận chuyển (hay còn gọi là năng suất vận chuyển) và chất lượng phục vụ phải được phân tích đầy đủ để tìm được giải pháp hợp lý.

2.2.2. Năng suất vận chuyển hành khách

Việc xác định chính xác số lượng hành khách cần vận chuyển bằng thang máy (hoặc một nhóm thang máy) trong ngày cho tòa nhà nhìn chung là không thể thực

hiện được, vì vậy khi xác định năng suất vận chuyển hành khách để từ đó xác định tải trọng định mức của thang, người ta quy ước tính năng suất cần thiết của thang từ tỷ số i là tỷ số giữa số lượng lớn nhất hành khách cần vận chuyển trong năm phút tại giờ cao điểm và số lượng hành khách (hoặc chỗ) trong tòa nhà.

$$i = \frac{P_{5\text{max}}}{P} \ 100(\%) \tag{3.1}$$

trong đó:

i- mật độ dòng hành khách;

P_{5max}- số lượng hành khách lớn nhất cần vận chuyển trong 5ph tại giờ cao điểm;

P- tổng số dân cư (cho nhà ở) hoặc tổng số người làm việc (cho tòa nhà hành chính) hoặc tổng số giường (cho khách sạn hoặc bệnh viện).

Cũng có thể tính i theo số người cho một thang hoặc nhóm thang, khi đó:

$$i = \frac{P_{5\text{max}}}{P} \quad (\text{nguòi}) \tag{3.1a}$$

Giá trị của *i* phụ thuộc vào nhiều yếu tố như vị trí, quy mô, mục đích sử dụng của tòa nhà, đặc diểm các đối tượng cần vận chuyển, sự phân bố dòng hành khách tại các thời điểm khác nhau trong ngày...

Ở các nước tiên tiến, giá trị của *i* được nghiên cứu đầy đủ thông qua việc nghiên cứu dòng hành khách và được quy định trong các tiêu chuẩn thiết kế và cho dưới dạng % hoặc số người. Do nước ta chưa có tiêu chuẩn nên bảng 3.1 nêu giá trị thường gặp ở một số nước để tham khảo khi chọn sơ bộ thang.

Bảng 3.1. Giá tri đai lương i, %

Đặc điểm tòa nhà	Bungari	Mỹ	Nhật
Nhà hành chính			
- Thuần túy	20	12-18	20-25
 Có kết hợp hoạt động khác 	17	11-12	16-20
- Còn lại		10-11	11-15
Nhà ở			
- Nhà tập thể	4-8		
- Dinh thự		5-7	3,5-7
Khách sạn			
- Phục vụ ở	7-10	12-15	8-10
- Có trò chơi, dịch vụ khác			· 9-11

Ghi chú

Bệnh viện chọn tùy theo tính chất và mức độ hiện đại

Nhà có yêu cấu đặc biệt chọn theo yêu cấu riêng

Nếu i cho số người thì theo (3.1) để tính ra %.

2.2.3. Chất lượng phục vụ

Như trên đã nêu chất lượng phục vụ được thể hiện qua khoảng thời gian một hành khách phải chờ đợi ở bến chính.

Thời gian chờ đợi của hành khách phụ thuộc vào khoảng thời gian giữa hai lần đi và đến kế tiếp của thang máy tại bến chính trong giờ cao điểm. Để thấy rằng khoảng thời gian này không thể quá lâu vì sẽ gây khó chịu cho hành khách cũng như phiền phức cho người sử dụng, song cũng không thể quá ngắn vì sẽ làm tăng không cần thiết vốn đầu tư.

Giá trị của khoảng thời gian chờ đọi cũng không thể tính chính xác do dòng hành khách thay đổi.

Gọi giá trị trung bình của chu kỳ phục vụ của i thang là T_{tb} , ta có:

$$T_{\rm tb} = \frac{1}{\sum_{i=1}^{n} \frac{1}{T_i}}$$
, s (3.2)

trong đó:

n - số lượng thang đỗ tại bến chính;

 T_i - chu kỳ làm việc của thang máy thứ i là khoảng thời gian trung bình của thang bắt đầu từ bến chính đi lên phục vụ các lệnh từ tầng đầu tiên đến tầng cao nhất và quay trở về bến chính.

Trong truồng hợp các thang máy đỗ tại bến chính có tính năng kỹ thuật, kích thuốc hoàn toàn giống nhau, ta có:

$$T_{\rm tb} = \frac{T}{n} \tag{3.3}$$

Cũng giống như i, ở các nước giá trị của $T_{\rm tb}$ được quy định trong các tài liệu hướng dẫn khi chọn thang, nó phụ thuộc vào nhiều yếu tố đặc biệt là loại nhà, tốc độ, tải trọng định mức cũng như hệ điều khiển của thang.

Giá trị $T_{\rm tb}$ có thể tham khảo số liệu dưới đây

Khách san:

- chất lượng phục vụ tốt: nhỏ hơn 30 s;
- chất lượng phục vụ trung bình: từ 30 đến 40 s;
- chất lượng phục vụ thấp: từ 45 đến 60 s.

Nhà cơ quan hành chính:

- chất lương phục vụ tốt: nhỏ hơn 30 s;

- chất lượng phục vụ trung bình: từ 30 đến 35 s;
- chất lượng phục vụ thấp: từ 35 đến 50 s;

Nhà ở: từ 60 đến 90 s.

Bệnh viện:

- vân chuyển hành khách 45 s;
- vận chuyển bệnh nhân đến 120 s.

Nếu gọi khoảng thời gian hành khách phải chờ đợi ở bến chính $T_{\rm cd}$ thì có thể lấy $T_{\rm cd}=(0.55\div 1)~T_{\rm tb}$.

2.2.4. Chu kỳ làm việc của thang máy T

Chu kỳ làm việc của thang máy đóng vai trò quan trọng khi chọn thang và do phụ thuộc vào rất nhiều yếu tố đặc biệt là tốc độ, tải trọng định mức, độ cao lớn nhất cần chuyên chỏ, số tầng tòa nhà, phương thức điều khiển, tập quán, thời gian vào, ra của hành khách nên việc tính chính xác giá trị của T là rất khó khăn.

Có thể tính chu kỳ làm việc của thang như sau:

$$T = T_1 + T_2 + T_3 + T_4 \tag{3.4}$$

trong đó:

T₁ - thời gian hoạt động của thang máy;

 T_2 - thời gian đóng và mở cửa;

 T_3 - thời gian vào và ra của hành khách;

 T_4 - thời gian hao phí khác.

2.2.4.1. Xác định giá trị T₁

Ta có:

$$T_1 = t_a + t_1 \tag{3.5}$$

trong dó:

ta - thời gian tăng và giảm tốc;

 t1 - thời gian thang máy hoạt động với tốc độ định mức.

Thời gian t_a cũng như quãng đường tăng, giảm tốc S_a theo [7] có thể tính từ đồ thị tốc độ của thang máy (hình 3.2).

Hình 3.2. Đồ thị tốc độ của thang máy.

Từ đồ thị hình 3.2 để dàng tính được tốc độ định mức V và quãng đường gia tốc Sa

$$V = \int_{v}^{ta} a dt = a_{\text{max}} (t_{\text{a}} - t_{\text{o}})$$
 (3.6)

Suy ra
$$t_{\rm a} = \frac{V}{a_{\rm max}} + t_{\rm o} \tag{3.7}$$

$$S_{\rm a} = \frac{1}{2} V.t_{\rm a} \tag{3.8}$$

trong đó:

a, a_{max} - gia tốc và gia tốc lớn nhất,

to - thời gian trước và sau khi đạt gia tốc ổn định, giá trị to từ 0,7 đến 0,8 s;

ta - thời gian gia tốc.

Khi phục vụ trong tòa nhà ở chu kỳ làm việc của mình, thường thang máy không dùng ở tất cả các tầng theo thứ tự mà phụ thuộc vào nhu cầu của hành khách, do vậy khi tính giá trị T_1 , trên cơ sở thống kê và phân tích dòng hành khách, người ta đưa ra khái niệm số lần dùng xác suất trung bình f_x và theo nó là các khái niêm độ cao xác suất trung bình vận chuyển H, độ cao xác suất trung bình của tầng nhà S. Giá trị của f_x nhỏ hơn số tầng phục vụ và thường là số lẻ và chỉ có ý nghĩa khi tính chon thang.

Chú ý rằng giá trị f_x phụ thuộc vào sơ đồ phục vụ của thang theo phương đúng (xem bảng 3.4).

Khi xác định giá trị T_1 , người ta phân thành hai trường họp sau:

Trường hợp 1: $S < 2S_a$

Đây là trường hợp chiều cao xác suất trung bình của tầng nhà S thấp, thang máy chưa đạt đến tốc độ định mức đã phải dùng. Giá trị T_1 được tính theo:

$$T_1 = t_1 \cdot f_x$$

trong đó:

 t_1 - thời gian thang máy chạy. Theo [7] có:

$$t_1 = t_0 + \sqrt{t_0^2 + \frac{4S}{a_{\text{max}}}}$$
 (3.9)

Trường hợp 2: $S > 2 S_a$

Ngược với trường hợp trên, giá trị t_1 được tính theo:

$$t_1 = \frac{S_L}{V} \tag{3.10}$$

trong đó:

 $S_{\rm L}$ - chiều cao phục vụ kể từ bến chính

$$T_1 = t_1 + t_a \cdot f_x$$

$$T_1 = \frac{S_L}{V} + t_a \cdot f_x \tag{3.11}$$

Bảng 3.2 trình bày thời gian và quãng đường gia tốc của một số thang thông dụng.

Bảng 3.2. Thời gian và quãng đường gia tốc

Tốc độ	định mức	a = 1,0 m/	$/s^2$; $t_0 = 0.7s$				
m/ph	m/s	thời gian gia tốc r _a , s	quảng đường gia tố $^{m{c}}$ $S_{m{a}}$, m				
45	0,75	1,4	0,53				
60	1,0	1,7	0,83				
90	1,5	2,2	1,65				
105	1,75	2,45	2,14				
120	2,0	2,7	2,70				
150	2,5	3,2	4,00				
180	3,0	3,7	5,55				
210	3,5	4,2	7,35				
240	4,0	4,7	9,40				
300	5,0	5,7	14,25				

2.2.4.2. Xác định thời gian mở cửa T_2

Thời gian đóng và mở của phụ thuộc vào kích thước của, phương thức mở của (mở hướng tâm: CO hoặc mở một phía: S), chiều rộng hành lang dành cho thang máy... $G_{i\acute{a}}$ trị T_2 thường được lấy theo thống kê ví dụ như ở bảng 3.3.

Bảng 3.3. Thời gian đóng mở cửa, s

Mở hai phía hướng tâm CO, s	Mở trượt một phía S, s
3,7	4,7
4,0	
4,2	
4,4	6,2
	6,5
	3,7 4,0 4,2

Giá trị T_3 được tính:

$$T_2 = t_i \cdot F_x$$

trong đó:

t_i - thời gian một lần đóng mở của;

 $F_{\rm x}$ - tổng số lần dùng xác suất.

Giá trị F_x được phụ thuộc vào sơ đồ phục vụ của thang (xem bảng 3.4)

2.2.4.3. Xác định thời gian vào ra của hành khách T_3

Cũng như thời gian đóng mở của, thời gian mối lần vào ra của hành khách phụ thuộc nhiều vào kích thước của, số lượng hành khách... và cũng được tính theo công thức hoặc giá trị thống kê. Ví dụ theo [7] thời gian vào của mỗi hành khách là 0.8s còn thời gian ra t_2 được tính theo:

$$t_2 = k_1 r \sqrt[3]{f_{\mathbf{x}}} \,, \, \mathbf{s} \tag{3.12}$$

trong đó:

 k_1 - hệ số phụ thuộc vào cửa;

 f_x - số lần dùng xác suất trung bình.

Trong trường hợp thông thường có thể lấy giá trị thời gian vào ra cho một hành khách từ 2,2 đến 3s.

$$T_3 = (0.8 + k_1 \sqrt[3]{f_x}) r$$

trong đó:

r - số người thực tế trong thang

Hình 3.3. Đồ thị xác định thời gian vào và ra cho một khách cho nhà hành chính.

L - số người định mức của thang

Hình 3.3 là đồ thị xác định thời gian vào và ra cho mỗi hành khách của thang phụ thuộc vào kích thước của.

2.2.4.2. Xác định giá trị T_4

Trong quá trình làm việc ngoài các thời gian trên thường trong một chu kỳ làm việc của thang không thể tránh khỏi thời gian hao phí khác như sự chậm trễ của hành khách, sự cồng kềnh của hành lý mang theo... Kể đến các yếu tố này giá trị T_4 có thể được tính như sau:

$$T_4 = 0.1 (T_2 + T_3)$$

2.2.5. Trình tự xác định chu kỳ làm việc của thang

Bảng 3.4 [7] trình bày trình tự xác định chu kỳ làm việc của thang máy được bố trí theo các sơ đồ phục vụ khác nhau.

Sơ đồ I, II, IV bảng 3.4 là các trường hợp cố sự uu tiên phục vụ cho từng khu vực theo chiều cao của tòa nhà. Trong các sơ đồ này tại khu vực vận chuyển nhanh EZ (Express Zone) số bến phục vụ chỉ là một hoặc hai bến không kể bến chính. Sơ đồ III là các trường hợp bố trí thang máy cho các nhà cao tầng có chiều cao thấp và trung bình với số thang ít. Trong bảng, ngoài các ký hiệu đã biết, còn dùng thêm các ký hiệu sau:

- r_u , r_d số hành khách trong cabin (thường lấy 0,8 L) khi đi lên và đi xuống;
- n -số bến thang máy phục vụ không kể bến chính;
- $f_{\rm Lu}$, $f_{\rm Ld}$, $f_{\rm E}$, $F_{\rm x}$ số lần dùng xác suất tại khu vực thường, khi đi lên, đi xuống khu vực vận chuyển nhanh và tổng số lần dùng xác suất của các lần dùng;
 - $S_{\rm E}$, $S_{\rm L}$ chiều cao vận chuyển của khu vực tốc hành và khu vực thông thường;
 - S, $S_{\rm a}$ chiều cao xác suất của tầng và quãng đường gia tốc.

Bảng 3.5 [7] trình bày tra số lần dùng xác suất theo số tầng thang máy cần phục vụ.

2.3. Chọn sơ bộ tốc độ định mức của thang máy

Tốc độ định mức của thang máy một mặt có ảnh hưởng quyết định đến các chỉ tiêu nêu trên; mặt khác là một thông số ảnh hưởng lớn đến giá thành thang máy vì vậy cần phải được đặc biệt chú ý khi chọn thang.

Thông thường các thang máy được sản xuất có tốc độ định mức trong khoảng từ 0,40 đến 6 m/s, cá biệt có thang đến 9 m/s.

Bảng 3.4. Tính toán chu kỳ làm việc của thang

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sd dð phục vụ của thang máy	₹.≽	- +	=	= +0		7	\$ on
7 - 1 - 2 × × ×	c đại lướng n xác định	/			7 _S		3 35	00
	Tốc độ, m/s				Phụ thuộc vào t	ính năng kỹ thuật của	hang	
1	Số hành khách	`		_	Di lên: 'u	Di xuống: r _d	Di lên: r _u	Di xuống: /d
7	Số tầng phục vụ	1,1			Phu thuộc vào	tòa nhà và sơ đồ phục	'nλ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dùng xác suất tại khu vực thường (LC)	بي	$n\left\{1-\left(\frac{n-1}{n}\right)^r\right\}$	$n\left\{1-\left(\frac{n-1}{n}\right)^r\right\}-1$	$f_{LU} = n\left\{1 - \left(\frac{n-1}{n}\right)^{\Gamma U}\right\}$	$f_{Ld} = n \left\{ 1 - \left(\frac{n-1}{n} \right)^{rd} \right\}$	$f_{L_u} = n \left\{ 1 - \left(\frac{n-1}{n} \right)^{\Gamma_u} \right\} - 1$	$\left\{ L_{d} = n \left\{ 1 \cdot \left(\frac{n-1}{n} \right)^{r} d \right\} \cdot 1 \right\}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n dùng xác suất tại EZ	'n,	 	2	0	11117		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	số lần dùng xác suất	r_×	f. + fe	f. + fe	+ "7"	fLd	ינית + נית	a + fe
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g dường hoạt động xác suất, m	S	ĺ	S	تر د	S. S.	S	S. f. La
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			74 · 1/	1.1	1.16	14.16	14 - fLu	f1 · fLd
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7,	+	3 + 1ª · f.	νη - Β - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	SL + ra · fLa	$\frac{S_L}{V} + r_a \cdot f_{Lu}$	St + fa · fLd
T_2 $t_1 \cdot F_x$ T_3 Xem muc 22.3 T_4 $0.1(T_2 + T_3)$ T $T_1 + T_2 + T_3 + T_4$ T $T_1 + T_2 + T_3 + T_4$	Khu vực vận chuyển nhanh (£Z)		+ /a · fE	SE1+SE + 1a.fe	0		28 Z	1a · fe
T_3 Xem muc 223 T_4 0,1($T_2 + T_3$) T $T_1 + T_2 + T_3 + T_4$	i gian đóng mở của	72			f ₁ · F _x			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thời gian ra, vào	T_3			Xem muc 2.2	8		
$T = T_1 + T_2 + T_3 + T_4$ $\frac{300 r}{T}$	Thời gian hao phí	74			$0,1(T_2+T_3)$			
300 r T	Chu kỳ	7			$T_1 + T_2 + T_3 +$	74		
	suất vận chuyển trong 5 ph		B .	7		2)008	u+rd)	

Bảng 3.5. Số lần dừng xác suất

	_															
61	4,93	5,81	6,63	7,37	8,04	8,65	9,20	9,70	10,16	10,58	10,96	11,31	11,63	11,92	12,20	12,45
82	4,91	5,77	95'9	7,28	7,92	8,50	3,02	9,49	9,92	10,31	10,67	10,99	11,29	11,57	1,82	12,06
4	4,89	5,73	6,49	7,17	7,78	8,33	8,82	9,27	9,67	10,03	10,36	10,66	10,93	11,19	11,42	1,64
91	4,86	2,68	6,41	90'2	2,63	8,15	8,61	9,02	62'6	9,72	10,03	10,30	10,56	62'0	11,00	1,20
5	4,82	5,61	6,31	6,92	7,46	7,94	8,37	8,75	60'6	66,6	29'6	9,92	10,15	10,36	10,56	10,73
4	4,78	5,53	6,19	6,77	7,27	7,71	8,10	8,45	8,76	9,04	9,29	9,52	9,72	9,91	10,09	10,25
13	4,73	5,44	90'9	6,59	20'2	7,46	7,81	8,13	8,41	8,66	8,88	60'6	9,27	9,44	9,59	9,73
12	4,66	5,33	2,90	62'9	6,81	7,18	7,50	7,78	8,02	8,25	8,45	8,62	8,79	8,93	20'6	9,19
F	4,57	5,19	5,72	9,16	6,54	98'9	7,14	7,39	7,61	7,80	7,98	8,13	8,27	8,40	8,52	8,62
Ó.	4,46	5,03	5,50	2,90	6,23	6,51	6,76	6,97	7,16	7,33	7,48	19'2	7,73	7,84	7,94	8,03
6	4,33	4,84	5,25	5,59	5,88	6,13	6,33	6,52	6,67	6,81	6,94	7,05	7,15	7,24	7,32	7,40
. 80	4.16	4.60	4.96	5.25	5.49	5.70	5.87	6.02	6.15	626	6.36	6.45	6.53	6.61	6.67	6.73
7	3,95	4,33	4,62	4,86	5,05	5,22	5,36	5,47	5,58	2,67	5,75	5,82	5,88	5,94	5,99	6,03
9	3,69	3,99	4,22	4,41	4,56	4,69	4,79	4,88	4,96	5,03	5,08	τ. 4	ζ. 22	5,23	5,26	5,30
2	3,36	3,59	3,76	3,90	4,01	4,	4,17	4,23	4,29	4,33	4,38	4,41	4,45	4,47	4,50	4,52
4	2,95	3,11	3,22	3,31	3,38	3,44	3,49	3,53	3,56	3,59	3,62	3,64	3,66	3,68	3,70	3,71
3	2,44	2,53	2,59	2,64	2,68	2,71	2,74	2,76	2,78	2,79	2,80	2,82	2,83	2,84	2,84	2,85
0	1,80	1,83	1,86	188	1,89	1,90	191	192	1,92	193	1,93	194	1,94	\$	195	1,95
" "	2	ဖ	^	6 0	თ	9	F	5	ŧ	4	ŔΣ	9	4	8	6	20

Số lần dừng xác suất $f_x = n \{1 - (\frac{n-1}{n})\}$

n - số tầng thang máy cần phục vụ;

- n=k . L với k là hệ số tải trọng (thường lấy 0,8); L: tải trọng định mức (người)

Thang máy phục vụ tòa nhà càng cao đòi hỏi có V càng lớn. Có nhiều chi dẫn khi chọn tốc độ định mức thang, ví dụ có thể chọn sơ bộ tốc độ thang máy dựa vào bảng 3.6 và 3.7.

Với các tòa nhà đặc biệt cao có nhiều thang, phải bố trí thang thành nhóm (xem §4) để phục vụ cho các khu vực khác nhau của chiều cao nhà.., việc chọn sơ bộ có thể tham khảo ở bảng 3.8.

Tốc độ định mức, m/s Giới hạn chiều cao phục vụ, m 0.40 Ю 0.63 15 1,00 20 1,60 35 2,50 50 4,00 70 6,00 100

Bảng 3.6. Chọn sơ bộ tốc độ định mức của thang

&3. CHON THANG MÁY

3.1. Dai cương

Vì bài toán chọn thang máy có thể cho nhiều kết quả khác nhau nên quá trình chọn thang thường được tiến hành theo hai bước: chọn sơ bộ và đánh giá các kết quả để chọn được phương án hợp lý.

Bài toán chọn thang máy thường được đặt ra dưới dạng sau:

Biết các thông số của tòa nhà (xem $\S2$) và các yêu cầu khác (nếu có) phải chọn thang máy (hoặc nhiều thang máy) đáp ứng được nhu cầu đặt ra về khả năng vận chuyển trong 5 ph tại giờ cao điểm i, khoảng thời gian chờ đợi trung bình với giá đầu tư ít nhất có thể được.

Trong trường hợp chưa có số liệu đầy đủ về tòa nhà và các yêu cầu khác mà vẫn phải chọn thang phù hợp với yêu cầu đặt ra thì có thể tham khảo chi dẫn ở bảng 3.9.

Trong nhiều trường hợp với nhà cao tầng có lượng hành khách lớn, quá trình chọn thang không đơn giản, khi đó có thể sử dụng các chương trình chọn thang có sắn hoặc tham khảo thêm các nhà chuyên môn.

Dưới đây chi xin trình bày nguyên tắc chọn thang chỏ người cho các tòa nhà không quá phúc tạp.

Bảng 3.7. Chọn sơ bộ tốc độ thang máy chở người (BS 5655)

đặc điểm t	đặc điểm thang chiều cao tòa nhà, m								
loại thang máy	tốc độ định mức, m/s	nhà ở	cơ quan khách sạn nhỏ	cơ quan khách sạn loại lớn	bệnh viện nhà ở tập thể	nhà hàng			
	≤ 0,63	12	10		_				
Chế độ hoạt động nhẹ (ít hoạt động)	> 0,63 ≤ 1,00	20	20	_		_			
mię (it noạt dyng)	> 1,00 ≤ 1,60	35	30			_			
	≤ 0,63	15	<u> </u>						
Thang cho nhà ở	> 0,63 ≤ 1,00	20	_	_	-	_			
Thang cho hoạt động chung	≤ 0,63		12	-	12	_			
	1,00		20	20	_	_			
Thang dùng chung	1,60	_	30	30					
Thang cần vận	2,50			45	-				
chuyển nhanh	3,50	_		60	_				
	0,63	-	_		12	_			
Thang máy cho bệnh viện	1,00	_		_	25				
	1,60	_	_		40				
	0,25	-	_	_	-	8			
Thang chở hàng thông thường	0,63	_	_	-	-	15			
arong indong	1,00	_	_		_	25			
	0,25	-		_	_	10			
Thang chổ hàng loại nặng	0,63			_		20			
ioai nang	1,00			_	_	30			

Trình tự quá trình chọn thang được tiến hành như sau:

- 1. Phân tích đặc điểm đã cho của tòa nhà
- Chọn giá trị của năng suất vận chuyển i trong 5 ph tại giờ cao điểm và giá trị khoảng thời gian chờ đợi trung bình (xem mục 2.2.2, 2.2.3 và 3.2).
 - Bố trí sơ bộ sơ đồ phục vụ của thang.
 - 2. Tính toán chọn thang, xác định thông số thang
- 3. Kiếm tra, đánh giá phương án đã chọn cả về yêu cầu kỹ thuật, chỉ tiêu phục vụ và vốn đầu tư

4. Xác định phương án hợp lý

Sơ đồ các bước chọn thang được mô tả khái quát ở hình 3.4

Bảng 3.8. Chọn sơ bộ tốc độ thang máy cho nhà có chiều cao lớn

3.2. Tính chọn thang máy

Hiện có nhiều phương pháp tính chọn thang máy, song hay gặp là: tính chọn thang theo năng suất hoặc tra đồ thị hoặc bảng đã được thiết lập sắn.

Nội dung chính của phương pháp tính chọn thang theo năng suất vận chuyển là căn cứ vào sơ đồ phục vụ của thang, các chỉ tiêu tính toán (xem §3) chọn phù hợp tải trọng định mức của thang.

Hình 3.4. Sơ đồ giá trị chọn thang.

Uu điểm chính của phương pháp này là chủ động chọn thang khi không có sẵn bảng hoặc đồ thị, nhất là cho các tòa nhà thấp tầng.

Phương pháp chọn thang bằng hình thức tra bảng và đồ thị rất thuận tiện, tuy nhiên phụ thuộc nhiều vào tài liệu có sắn và trong nhiều trường hợp không đáp ứng được điều kiện cụ thể của bài toán đặt ra nhất là vốn đầu tư và đặc điểm của tòa nhà.

3.2.1. Tính chọn thang theo năng suất

Gọi P_{5max} là số hành khách vận chuyển tối đa trong 5 ph, ta có:

$$P_{5\text{max}} = (5.60) \sum_{i=1}^{n} \frac{L_i}{T_i} k$$
, người hay $P_{5\text{max}} = 300 \sum_{i=1}^{n} \frac{L_i}{T_i} k$, người (3.13)

trong đó:

 P_{5max} - số người tối đa thang vận chuyển trong 5 ph;

n - tổng số thang trong tòa nhà;

 L_i - tải trọng thang thứ i, người;

k - hệ số tải trọng, $k = 0.7 \div 0.8$ thường k = 0.8;

 T_i - chu kỳ làm việc của thang thứ i, s.

Trong thực tế do các thang bố trí theo cùng một nhóm có thông số kỹ thuật giống nhau nên:

$$P_{5\text{max}} = \frac{300}{T} k.L.n = \frac{300.r.n}{T}$$
 người (3.14)

Với r = k.L

Dựa vào (3.1) ta có:

$$P_{\text{5max}} \ge i.P \tag{3.15}$$

Suy ra
$$i.P \le \frac{300}{T} k.L.n \tag{3.16}$$

$$i.P \le \frac{300}{T} r.n \tag{3.16}$$

Suy ra

$$L \ge \frac{iP.\ T}{300.n.k} \tag{3.17}$$

$$\text{Hay} \qquad r \ge \frac{i.P.T}{300.n} \tag{3.17}$$

Chú ý đến (3.3) ta có:

$$L \ge \frac{i.P.T_{\text{tb}}}{300 \, k}, \quad \text{nguòi} \tag{3.18}$$

Hay
$$r \ge \frac{i.P.T_{\text{tb}}}{300}$$
, người (3.18)'

Dựa vào (3.18) hoặc (3.18)' chọn sơ bộ tải trọng định mức của thang. Sau đó dựa vào sơ đồ bố trí và tốc độ định mức của các thang đã chọn kiểm tra lại giá trị $T_{\rm tb}$.

Chú ý rằng (3.18) hoặc (3.18)' là bất đẳng thức nên bài toán có nhiều nghiệm giá trị L (hoặc r), và phải được chọn phù hợp với thông số có sắn của thang do các hãng sản xuất cung cấp.

3.2.2. Chọn thang máy theo bảng hoặc đồ thị

Thực chất của phương pháp này là từ đặc điểm của các tòa nhà tra các bảng hoặc các đồ thị để chọn thang. Các bảng hoặc các đồ thị này được lập dựa vào việc tính toán phân tích sự vận chuyển hành khách của thang theo nội dung đã trình bầy ở §3.

Các bảng hoặc đồ thị có thể cho trong tiêu chuẩn hoặc sự hướng dẫn của các hãng sản xuất thang.

Bảng 3.10, 3.11 và 3.12 hướng dẫn chọn thang cho các tòa nhà có chiều cao các tầng là 3,3m và số tầng từ 6 đến 18 tầng.

Bảng 3.13 hướng dẫn chọn thang cho các tòa nhà cao tầng, của hãng OTIS $(M\tilde{y})$.

Hình 3.5. So đồ phục vụ: S_1 , S_x - chiều cao phục vụ khi đi lên và xuống.

Đồ thị cho ở hình 3.6 và 3.7 hướng dẫn chọn thang cho các tòa nhà các hãng Mishumishi (Nhật).

3.2.3. Ví dụ chọn thang máy

Ví dụ 1. Chọn thang máy cho khách sạn 4 tầng 100 phòng (200 giường) với chiều cao mỗi tầng là 3,3m. Thang máy phục vụ hai chiều theo sơ đồ hình 3.5.

-Dựa vào đặc điểm của tòa nhà ta chọn

$$i = 12\%$$

 $T_{\text{tb}} = (30 \div 40) \text{ s.}$

- Theo (3.18) có:

$$r \ge \frac{i.P. \ T_{\text{tb}}}{300}$$

$$r \ge \frac{12 \cdot 200 \cdot 30}{300} = 2,4 \text{ người}$$

Hoăc

$$L \ge \frac{2.4}{0.8} = 3 \text{ nguòi.}$$

Thực tế thang có tải trọng định mức 3 người ít gặp mà thường từ 4 đến 6 người nên chọn thang từ 4 đến 6 người. Giả sử chọn thang NIPPON (Nhật) có mã hiệu

P - 6 - CO - 45 (thang máy có số người định mức là 6, mở của kiểu trung tâm (CO) với V = 45 m/ph).

Thông số của thang theo mã hiệu cụ thể như sau:

Số người định mức 6 người (hay 450 kg)

Tốc độ định mức 45 m/ph hay 0,75 m/s

Cửa có chiều rộng 800 mm và mở về hai phía (CO)

Gia tốc 0.8 m/s^2 ; thời gian $t_0 = 0.7 \text{ s.}$

Sau khi có thông số của thang tiến hành kiểm tra theo chu kỳ T của thang đã chọn (xem bảng 3.4).

Xác định T_1 . Theo sơ đồ có số tầng phục vụ không kể bến chính là 3.

Với L = 6 ta có r = 4.8

Số lần dùng xác suất khi đi lên

$$f_{\text{Lu}} = 3\left\{\left[1 - \left(\frac{n-1}{n}\right)^{r_{\text{u}}}\right]\right\} = 3\left[1 - \left(\frac{2}{3}\right)^{4,8}\right] = 2,572$$

Tương tự có số lần dùng xác suất khi đi xuống $f_{\rm Ld} = 2,572$

$$t_{\rm a} = \frac{l}{a} + t_{\rm o} = \frac{0.75}{0.8} + 0.7 = 1.64 \text{ s}$$

$$S_{\rm a} = \frac{1}{2}V.t_{\rm a} = \frac{1}{2}.0.75.1.64 = 0.614 \text{ m}$$

$$S = \frac{S_{\rm L}}{f_{\rm Lu}} = \frac{3.3 \cdot 3}{2.572} = 3.849$$

Với S_L chiều cao cần phục vụ

Do $S > 2S_a$ nên ta có:

Thời gian thang máy đi lên t_1

$$t_1 = \frac{S_L}{V} + t_a$$
. $f_{Lu} = \frac{9.9}{0.75} + 1.64$. 2.572 = 17.42 s

Tương tự có thời gian đi xuống $t_2 = 17,42$ s

$$T_1 = t_1 + t_2 = 34,84 \text{ s}$$

- Thời gian đóng mở của $T_{\mathbf{2}}$

Tra bảng 3.3 ứng với loại cửa CO có chiều rộng $800~\mathrm{mm}$ thời gian cho một lần đóng mở cửa là $3.7~\mathrm{s}$

$$T_2 = 2,572 \cdot 2 \cdot 3,7 = 19 \text{ s}$$

- Thời gian tiếp nhận hành khách T_3

$$T_3 = 0.8 r + r.k_1 \sqrt[3]{(f_{Lu} + f_{Ld})} = 0.8.4.8 + 1. \sqrt[3]{5.114} = 11.11 \text{ s}$$

- Thời gian hao phí khác T_4

$$T_4 = (T_2 + T_3) \cdot 0.1 = (19 + 11.11) \cdot 0.1 = 3.01 \text{ s}$$

- Chu kỳ làm việc của thang T

$$T = T_1 + T_2 + T_3 + T_4 = 34,84 + 19 + 11,11 + 3,01 = 67,961 \text{ s}$$

Kết luận. Như vậy nếu chọn một thang có thông số như đã nêu sẽ không thỏa mãn khoảng thời gian $T_{\rm tb}$; nếu chọn hai thang máy có thông số như đã nêu ta có:

$$T_{\rm tb} = \frac{T}{2} = \frac{67,96}{2} = 34,88 \text{ s}$$

Giá trị này thỏa mãn với $T_{\rm tb}$ yêu cầu là (30-40) s nên có thể chấp nhận được. Trong trường hợp yêu cầu khắt khe $T_{\rm tb} < 30$ s có thể chọn hai thang P6-CO-60, hay chọn thang tương tự song có tốc độ lớn hơn, khi đó chắc chắn sẽ thỏa mãn yêu cầu đặt ra song giá đầu tư sẽ lớn hơn.

Ví dụ 2. Chọn thang máy cho tòa nhà hành chính 10 tầng, với số người làm việc là 400 người và có chiều cao tầng 3,3m.

Việc chọn thang cho tòa nhà đã nêu có thể căn cứ vào bảng hoặc đồ thị, sau đó nếu cần tính kiểm tra sau khi có thông số của thang.

Bảng 3.9. Các số liệu tham khảo khi chọn thang cho tòa nhà thiết kế

Loại t	òa nhà	Thang chở người	Thang phục vụ
	Chỉ chả người	150-200 người cho một thang	
Cơ quan hành chính	Có kết hợp	200-280 người cho một thang	21000 m ² /thang
	Nhiều mục đích	250-300 người cho một thang	·
1.80	Chất lượng trung bình	80-100 hộ cho một thang	•
Nhà ở	Chất lượng cao	50-80 hộ cho một thang	
Bệnh viện	Bệnh viện thành phố	100-150 phòng cho một thang	160-180 phòng cho một thang

Bảng 3.10. Chọn thang máy chở người cho tỏa nhà từ 6 đến 9 tàng

	BS 5655 - Phần 6: 1990 8 người 10 người 13 người 16 người 21 người														
số	số	V, m/s				gười) kg		gười Okg		guði O kg		gười O kg			
tầng	thang		T _{tb} , s	i, người	T _{tb} , s	/, người	T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, ngườ			
	2	1,0	38	50		_	_		_	_	_	_			
	2	1,6	32	61	36	69	39	79	42	89	47	103			
6	3	1,0	5	75			_	_		_					
	3	1,6	21	91	24	103	26	120	28	135	32	157			
	2	1,6	35	55	39	61	43	71	46	80	_	_			
7	3	1,6	_	-	_	_	29	107	31	122	35	140			
	2	1,6	37	51	42	55	46	64		- 1	_				
8	3	1,6	_	-	_	_	31	97	35	111	38	132			
	3	1,6	_	-	_	_	33	93	36	105	40	123			
9	2	2,5	-	_	_	_	46	66	48	75		_			
	3	2,5	_		_	_	30	100	33	114	38	132			

Bảng 3.11. Chọn thang máy chở người cho tòa nhà từ 10 đến 14 tầng

			BS s	5655 Phần 6:	1990			
			13 ngườ	i1000 kg	16 người	1250 kg	21 ngườ	1600 kg
số tầng	số thang	V, m/s	T_{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, ngườ
	3	1,6	35	86	38	97	44	113
10	3	2,5	32	98	34	106	40	124
	4	2,5	24	126	26	141	29	165
	3	1,6	37	83	40	91	_	 -
11	3	2,5	34	92	36	100	43	118
	4	2,5	25	123	27	132	32	157
	3	3 2,5		88	38	95	44	112
	4	2,5	26	117	29	126	33	149
12	3	3,5	_	_	37	98	43	115
	4	3,5		· -	27	130	32	152
	3	2,5	36	84	40	91	46	106
	4	2,5	27	113	30	121	34	142
13	4	3,5	_	- 1	29	125	34	145
	5	3,5	_	-	23	156	27	182
	3	2,5	38	81	41	87		_
	4	2,5	28	109	31	116	36	135
14	4	3,5	_	-	30	120	35	140
	5	3,5	_	-	24	151	28	175

Bảng 3.12. Chọn thang máy chở người cho tòa nhà từ 15 đến 18 tầng

		•	BS S	5655 Phần 6:	1990			
			13 người	i 1000 kg	16 ngườ	i 1250 kg	21 ngườ	i 1600 kg
số tầng	số thang	V, m/s	T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người
	4	2,5	29	105	32	112	37	130
15	4	3,5	-	-	31	116	36	135
13	5	3,5	-	– .	25	146	29	168
	6	3,5	-	_	_	_	- 24	202
	4	2,5	30	102	33	108	39	125
16	4	3,5	-	-	32	113	38	130
ю	5 .	3,5	_	_	26	141	30	163
	6	3,5	_	_		_	25	195
	4	2.5	31	99	35	105	40	123
17	4	3,5	_	· 	33	110	39	127
17	5	3,5	-	_	26	137	31	157
	6	3,5	_	_	-	_	26	189
	4	3,5	-	_	34	107	40	124
18	5	3,5	_	_	27	134	32	153
	6	3,5	-	_	_	_	27	184

Bảng 3.13. Chọn thang máy chỏ người (theo hãng OTIS)

Số tầng	Số	<i>V</i> , m/s		người O kg		người Okg		người O kg		người O kg		người O kg
	thang		T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người
5	2	1,0	33	54	35	69	39	77				
	3	1,0	22	81	23	103	26	116	28	141	31	163
	2	1,6	30	60	32	75	36	83	39	101		
ļ	3	1,6	20	89	21	112	24	125	26	151	29	174
6	2	1,0	38	50								[
	3	1,0	25	75								
	2	1,6	32	61	36	69	39	79	ļ			
	3	1,6	21	91	24	103	26	120	28	135	32	157
7	2	1,6	35	55							* A	İ
	3	1,6	24	73	26	90	28	107	31	122	35	122
	4	1,6			ļ		22	131	24	156	28	180
8	2	1,6	37	51								
	3	1,6	26	71	28	87	31	97	35	112		
	4	1,6			l		24	126	27	149	30	171
9	3	1,6	27	65	30	80	33	93				
	4	1,6		1 :	23	106	26	115	- 29	136	33	155

Tiếp bảng 3.13

Số	tầng	Số	V, m/s	1	người O kg	•	người O kg	ł .	người 10 kg		nguði O kg	1	người O kg
		thang		T _{tb} , s	i, người	T _{to} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người	T _{tb} , s	i, người
	10	3	1,6	29	63	32	76	35	86				
1		4	1,6	22	84	24	101	28	109	31	129	35	147
		3	2,5			ĺ	1	32	98	34	106	†	
\Box	12	3	2,5					35	90	37	99		
1		4	2,5		\		1	25	120	28	139	33	156
1		3	4,0	ì		}		32	93	36	108	ļ	
		4	4,0		ĺ	[24	125	27	144	31	160
	15	4	2,5					27	111	31	128	36	142
	[4	4,0			ļ		26	116	30	133	35	147
]		5	4,0			İ		21	145	24	166	28	184
	- 1	6	4,0	ļ	1	ļ		18	174	20	199	24	220
	18	4	4,0					28	105	32	119		
	1	5	4,0	})		22	129	26	145	31	160
		6	4,0							21	173	25	190
	20	5	4,0					23	133	27	149	32	164
		6	4,0			ļ		1		22	178	27	195

Theo bảng 3.11 và bảng 3.13 có kết quả sau:

Bảng 3.14. Kết quả chọn thang theo bảng

Bảng	Số thang,	Tốc độ √,	dô V, 630		10 n	gườ i) kg		iguði Okg	I	gười O kg	21 n 1604	gười O kg
	chiếc	m/s	i	T _{tb}	<i>i</i>	T _{tb}	1	T _{tb}	1	T _{tb}	<i>;</i>	T _{tb}
	3.	1,6	_	-			86	35	97	38	113	44
3.11	3	2,5	_	_	ĺ -	i –	98	32	106	34	124	40
(BS)	4	2,5	_		-	-	126	24	141	26	165	29
	3	1,6	63	29	76	32	86	35	_	-	-	-
3.13	4	1,6	84	22	101	24	109	28	129	31	147	35
(OTIS)	3	2,5	_	_	–	[–	98	32	106	34	-	_

 $Ghi\ chú$. Giá trị i tính bằng số người, giá trị T_{tb} tính bằng giây

Bảng 3.15. Kết quả chọn thang theo đồ thị

	Giá trị cho i	một thang	Giá trị cho nhóm ba thang				
Loai thang	i ₁ , người	<i>T</i> ,s	/, người	T _{tb} , s			
P9 - CO - 90	24	90	72	30			
P9 - CO - 105	26	81	78	27			
P11 - CO - 105	28	95	84	32			
P13 - CO - 105	30	105	90	35			
P15 - CO - 105	31	112	93	38			

Từ số liệu đã có ở trên ta có thể xác định được thang theo yêu cầu kỹ thuật. Giả sử chọn i=18% (tức 72 người), $T_{\rm tb}=35$ s và với vốn đầu tư ít nhất có thể chọn nhóm ba thang P9-CO-90; P9-CO-105 (Nhật) hoặc P10-CO-96 (Europa OTIS)...

Sau khi có số liệu trên người chọn thang cần tính toán kiểm tra theo sơ đồ phục vụ của thang theo trình tự nêu ở bảng 3.4 và xác định vốn đầu tư cần có để có phương án hợp lý.

§4. NGUYÊN TẮC CƠ BẢN KHI BỐ TRÍ NHÓM THANG MÁY

Việc chọn và bố trí thang máy được thực hiện ngay từ khi thiết kế kiến trúc.

Trong các tòa nhà có số lượng thang máy phục vụ lớn, để nâng cao năng suất phục vụ việc bố trí thang máy theo nhóm là bắt buộc.

Việc bố trí thang máy theo nhóm phụ thuộc rất nhiều vào mục đích sử dụng của tòa nhà, tuy nhiên khi bố trí thang theo nhóm xét trên phương diện kỹ thuật và kinh tế cần phải tuân thủ một số nguyên tắc cơ bản sau:

- vị trí thang máy phải thuận tiện cho hành khách;
- các thang máy trong cùng một nhóm có tính năng kỹ thuật giống nhau;
- không được bố trí thang chỏ người và thang có mục đích khác (thang chỏ hàng, thang chỏ hàng có người đi kèm...) trong cùng một nhóm;
- khi số thang trong nhóm lớn hơn 3 thì phải bố trí thành hai hàng đối diện nhau, khoảng cách giữa hai hàng phải đủ rộng để cho hành khách đi đến thang, chiều rộng tối thiểu phải bằng 1,5 lần chiều sâu của giếng thang;
- số lượng bến phục vụ cho một hoặc một nhóm thang máy không quá lớn, tối đa bằng 25;
- khi cần bố trí thang (hoặc nhóm thang) phục vụ theo chiều cao của tòa nhà, các thang phục vụ tầng trên đi qua các tầng dưới chúng phải có tốc độ cao hơn các thang phục vụ tầng dưới.
- Hình 3.8 giới thiệu các phương án bố trí nhóm thang theo mặt bằng, hình 3.9 giới thiệu các phương án bố trí nhóm thang phục vụ theo chiều cao của tòa nhà.
- Hình 3.10 giới thiệu một phương án bố trí các nhóm thang cho tòa nhà có số tầng phục vụ là 60 tầng.

Chú ý rằng khoảng cách giữa hai dãy thang theo mặt bằng W_L phải chọn đủ rộng để đảm bảo thuận tiện cho hành khách song tối thiểu phải bằng một lần ruỗi chiều sâu của hố thang $W_{Lmin} = 1,5W_d$.

Hình 3.6. Chọn thang máy theo đồ thị cho nhà có chiều cao thấp và trung bình Điều kiện áp dụng: chiều cao tầng 3,3m; hệ số tái trọng 0,8.

Hình 3.7. Chọn thang máy chỏ người theo đồ thị cho nhà có chiều cao trung bình và lớn. Dièu kiện áp dụng: chiều cao tàng 3,3m; hệ số tài trọng 0,8.

Hình 3.8. Bố trí nhóm thang theo mặt bằng.

Hình 3.9. Bố trị nhóm thang phục vụ theo chiều cao.

Hình 3.10. Một phương án bố trí thang tại nhà cao tầng.

GIẾNG THANG

§1. KHÁI NIỆM

1.1. Giếng thang

Giếng thang là khoảng không gian được giới hạn bởi đáy hố giếng, vách bao quanh và trần giếng mà trong nó cabin của thang, đối trọng (nếu có) chuyển động theo phương thẳng đứng, đồng thời cũng là không gian để lấp đặt các thiết bị phục vụ riêng cho hoạt động của thang như giảm chấn, ray dẫn hướng hệ thống dây dẫn...

Giếng thang bao gồm hố giếng, phần giếng chính và đinh giếng.

Hố giếng hay còn gọi là hố thang là phần giếng thang phía dưới mặt sàn tầng dùng thấp nhất.

Phần giếng chính là khoảng không gian giới hạn bởi sàn dùng thấp nhất và sàn dùng cao nhất.

Đỉnh giếng là phần giếng thang trên cùng tính từ mặt sàn tầng dùng cao nhất đến trần giếng.

Trong xây dựng, để phục vụ thang máy hoạt động còn phải chú ý đến phòng (buồng) dành riêng cho lắp đặt máy và thiết bị được gọi là phòng máy. Đối với thang máy chỏ người dẫn động điện, buồng máy thường nằm trên đinh giếng, còn thang máy dẫn động thủy lực buồng máy lại thường nằm ở sàn tầng bến chính.

Ở nước ta các nội dung cho yêu cầu an toàn về cấu tạo lắp đặt thang máy trong đó có các yêu cầu về giếng thang đã được quy định trong TCVN 6395-1998 và 6395-1998 nên dưới đây chi nêu những nét cơ bản nhất có liên quan đến thiết kế và thi cóng giếng thang.

1.2. Các yêu cầu cơ bản khi thiết kế giếng thang

Khi thiết kế, thi công các giếng thang cần thỏa mãn các yêu cầu sau

- Bố trí vị trí đặt thang máy cũng như sự phân bố chúng theo nhóm sao cho thuận tiện nhất cho hành khách, nâng cao hiệu quả kinh tế cũng như thẩm mỹ của tòa nhà.
- Đảm bảo độ bền, độ cúng vũng của sàn, vách ngăn dưới tác dụng của các tải trọng không chỉ khi thang hoạt động bình thường mà ngay cả khi có sự cố.

- Đảm bảo độ chính xác kích thuốc hình học, độ nhẫn bề mặt của giếng, theo quy định trong tiêu chuẩn.
 - Không được sử dụng vật liệu dễ cháy, dễ bắt bụi bẩn khi xây dựng.
 - Thông gió, thoát nhiệt tốt.
 - Dễ thoát hiểm khi có sự cố xảy ra (ví dụ hỏa hoạn).

Để thực hiện yêu cầu trên có rất nhiều giải pháp kiến trúc khác nhau, song về nguyên tắc với thang chỉ để vận chuyển hành khách thường được bố trí không xa của ra vào chính ở tòa nhà. Tuy nhiên khi cần không gian rộng, thoáng để đón khách và tiếp nhận hành lý như khách sạn, nhà nghi... thì thang máy có thể bố trí xa hơn của chính. Khác với thang chỉ chở khách, thang kết hợp ngắm cảnh và chuyên chở khách lại thường được bố trí bên ngoài hoặc ở nơi có khả năng bao quát cảnh quan chung tốt nhất.

§2. KÍCH THƯỚC HÌNH HỌC CƠ BẢN VÀ ĐỘ CHÍNH XÁC KÍCH THƯỚC HÌNH HỌC

2.1. Các kích thước hình học cơ bản

Để đảm bảo thang máy hoạt động an toàn và tránh phải chi phí lớn nhằm đảm bảo kích thước khi lấp đặt, ngoài việc thỏa mãn các yêu cầu đặt ra trong các quy phạm về xây dựng, việc đảm bào các kích thước hình học của giếng thang là yêu cầu rất quan trọng khi thiết kế và thi công giếng thang.

Các kích thước hình học cơ bản của giếng thang bao gồm các kích thước của đình giếng, phần giếng chính, hố thang.

- Chiều cao đinh giếng Sh
- Chiều sâu giếng thang $W_{
 m d}$
- Chiều rộng giếng thang $W_{
 m W}$
- Chiều cao của tầng $E_{
 m h}$
- Chiều rộng cửa tầng $E_{\mathbf{W}}$
- Chiều cao thiết kế của tầng Oh
- Chiều rộng thiết kế của tầng $O_{\mathbf{W}}$
- Chiều cao sàn tầng $T_{\rm v}$
- Chiều sâu hố thang P_h .

Các kích thước hình học chủ yếu của buồng máy bao gồm

- Diện tích buồng (phòng) máy R_a
- Chiều rộng buồng máy Rw
- Chiều sâu buồng máy R_d
- Chiều cao buồng máy $R_{
 m h}$.

Ngoại trù kích thước chiều cao sàn tầng $T_{\rm V}$ phụ thuộc vào tòa nhà, các kích thước còn lại của giếng thang (hoặc một nhóm giếng thang) và buồng máy phụ thuộc vào đặc tính kỹ thuật của thang, như tốc độ, tải trọng định mức, kích thước cabin, phương pháp dẫn động và cách bố trí đối trọng.

Ở các nước phát triển yêu cầu kỹ thuật và kích thước hình học của giếng thang được quy định trong các tiêu chuẩn. Tuy nhiên ngoài các quy định chung, người thiết kế thường phải tham khảo các chỉ dẫn cụ thể của nhà sản xuất thang.

Ở nước ta, do chưa ban hành tiêu chuẩn riêng về giếng thang nên gây nhiều khó khăn cho người thiết kế kiến trúc cũng như quá trình chi đạo thi công. Để giúp người đọc có thể tham khảo, dưới đây xin giới thiệu một số kích thước hình học cơ bản của một số loại giếng thang máy chỏ người và chỏ hàng thường gặp đã được quy định trong tiêu chuẩn Anh BS 5655 phần 5 [2] (xem các hình từ 4.3 đến 4.8 và bảng 4.1 đến 4.5)

Bảng 4.1. Kích thước phục vụ cho việc lấp đặt thang máy có chế độ làm việc nhẹ

Trường hợp sử dụng: khách sạn, nhà cơ quan nhỏ, nhà riêng...

Của vào: của mở hai phía, hoặc của trượt.

Tốc độ:

a) Một tốc độ V = 0,50 m/s

b) Hai tốc độ V = 0,60 m/s và 1,00 m/s

c) Nhiều tốc độ V = 1,00 m/s và 1,60 m/s

Tải	Số lượng hành	Tốc	Kích	thước cabin	trong	Giế thang	٠ ا	Cửa	vào			Kíc	h thước buồng		iểu
trong	khách max	độ	Cw	Cd	C_{h}	W _w	₩ _d	E _w	E _h	P _h	s _h	Ra	R _w	R _d	R _h
kg	-	m/s	mm	mm	mm	mm	mm	mm	mm	mm	mm	m²	mm	mm	mm
400	5	0,50 0,63	1100	950	2200	1800	1600	800	2000	1400	3900	7,5 .	2200	3200	2300
	. 1	1,00								1500	4000				
	630 8 년	0,50 0,63	1100	1400	0000	1000	2100	800	2000	1400	4000	15	2500	3700	2600
630		1,00	1100		2200	1800	2100	800	2000	1700			2500	0,00	2000
		1,60				_					4200				
		0,50 0,63	4050	1400	2200	1900	2300	800	2000	1500	4000	15	2500	3700	2600
800	10 ()	1,00	1350	1400	2200	1900,	2000	000	2000	1700					
		1,60	1								4200				
	cl.	0,50 0,63	-	2200	1800	2600	800	2000	1500	4000	15	2500	4200	2600	
1000	1000 13 ()	1,00	1100	2100	2200	ЮОО	2000	800	1 1 1					<u> </u>	
		1,60	1							1700	4200			4200	2700

Chú ý. Các kích thước nêu trong bảng vẫn được áp dụng khi tốc độ thang nhỏ hơn giá trị đã cho.

Hình 4.1. Mặt cắt đứng giếng thang máy dẫn động điện.

Hình 4.2. Mặt cắt đứng giếng thang máy dẫn động thủy lực.

Hình 4.3. Kích thước trong cabin: $C_{\rm w}$ - chiều rộng; $C_{\rm d}$ - chiều sâu; $C_{\rm h}$ - chiều cao.

Hình 4.4. So đồ và kích thước giếng thang máy có chế độ làm việc nhợ.

Hình 4.5. Sơ đồ và kích thước giếng thang máy dẫn động diện công dụng chung.

Bảng 4.2. Kích thước phục vụ cho việc lấp đặt thang máy dẫn động điện công dụng chung

Trường hợp áp dụng: ngân hàng, cơ quan hành chính, khách sạn... Của vào: có thể của mở hai phía hoặc của trượt.

Tốc đô:

- a) Hai tốc độ V = 1,00 m/s
- b) Nhiều tốc độ V=1,00 m/s và 1,60 m/s

Tải	Số lượng hành khách	Tốc độ	l	ích thư ong ca		1	thang nin		vào	Hố giếng	Định giếng	Kích	thước	buồng	máy
trong	max		C _w	Ca	C_{h}	W _w	Wa	Ew	E _h	Ph	S _h	Ra	$R_{\mathbf{w}}$	R_{d}	R _h
kg		m/s	mm	mm	mm	mm	mm	mm	mm	mm	mm	m²	mm	mm	mm
630	8 (t	1,00	1100	1400	2200	1800	2100	800	2000	1700	4000	45	2500		
000	٠٠	1,60	1100	1400	2200	1600	2100	800	2000	1700	4200	15	2500	3700	2600
800	10 (= .	1.00	1350	1400	2200	1900	2300	800	2000	4700	4000	45	0500	0=00	
	ان کر ۔	1,60	1350	1400	2200	1900	2300	800	2000	1700	4200	15	2500	3700	2600
1000	13 (t	1,00	1600	1400	2300	2400	2300	1100	2100	1800	4200		2000	4000	0700
,,,,,,		1,60	1000	1400	2000	2400	2000	1100	2100		4200	20	3200	4900	2700
1250	16 (}	1,00	1050	1400	0000	0000	0000	4400	0400	4000					
1230	16 0	1,60	1950	1400	2300	2600	2300	1100	2100	1900	4400	22	3200	4900	2700
1600	a ct	1,00	1050	1750	0000	0500	2020		2400	4000					
IOUV	21 (\(\)	1,60	1950	1750	2300	2600	2600	1100	2100	1900	4400	25	3200	5500	2800

 $Chú \circ$ - Các kích thước nêu trong bằng vẫn có giá trị khi tốc độ nhỏ hơn giá trị đã cho.

Bảng 4.3. Kích thước phục vụ cho việc lắp đặt thang máy dẫn động điện tốc độ cao

Tái trọng	ng khách c	Tốc độ	l	thước ủa cab	-	giếng	thước thang in	Của	vào	Hố gi ến g	Đỉnh giếng		iich thươ uồng m	
	max	V	C _w	C_{d}	C _h	W _w	₩ _d	Ew	E _h	P _n	s_{h}	Ra	$R_{\mathbf{w}}$	R _d
kg	-	m/s	mm	mm	mm	mm	mm	mm	mm	mm	mm	m²	mm	mm
1000	E	2,5	1000	1400	0000	0400	0000	400	0.00	2800	9400			
ЮОО	1000 13 5	3,5	1600	1400	2300	2400	2300	1100	2100	3400	10400	20	3200	4900
1050	ac CF	2,5	40.50	4400	0000					2800	9500		1	
1250	16 (^L Z	3,5	1950	1400	2300	2600	2300	1100	2100	3400	10400	22	3200	4900
4000	c l	2,5	40.50		2222					2800	9700			
1600	600 21 (5	3.5	3,5	1/50	1750 2300 2600 2600	00 1100 2100	3400	10400	25	3200	5500			

Chú ý. Các kích thước nêu trong bảng vẫn có giá trị khi tốc độ nhỏ hơn giá trị đã cho.

⁻ Kích thước buồng máy là tối thiểu.

Hình 4.6. Sơ đò và kích thước giếng thang máy dẫn động điện tốc độ cao.

Bảng 4.4. Kích thước phục vự cho việc lắp đặt thang máy dất động điện chờ bệnh nhân

Trường hợp áp dụng: bệnh viện, nhà điều dưỡng... Cửa vào: có thể của mở hai phía hoặc cửa trượt. Tốc đờ

- a) Hai tốc độ V = 1,00 m/s và 0,63 m/s
- b) Nhiều tốc độ $V=100~\mathrm{m/s}$ và 1,60 m/s

Thang máy không có hộp số V = 2,50 m/s

Tải trọng	Số lượng hành	Tốc độ		cabin		than	g min		ı vào	Hố giếng	Đỉnh giếng	Không gian định		thước		_
	khách max	ν	$C_{\mathbf{w}}$	c_{d}	c _n	w _w	₩ _a	Ew	E _h	P _h	S _h	giếng U _h	Ra	R _w	R _d	R _h
kg		m/s	mm	mm	mm	mm	mm	mm	mm	mm	mm		m²	mm	mm	mm
1600	21 0	0,50 0,63 1,00	1400	2400	2300	2400	3000	1300	2100	1700	4600		25	2000	5500	0000
		1,60							2.00	1900	1000		25	3200	5500	2800
		2,50								3200						
1800	24 (}	0,50 0,63 1,00	1600	2400	2300	2400	3000	1300	2100	1700	4600		27	3200	5900	0000
	800 24 Ct						0000	1000		1900	4000	}	21	3200	5800	2900
		2,50								3200						
2000	26	0,50 0,63 1,00	1500	2700	2300	2400	3300	1300	2100	1800	4600	9700	27	3200	5800	2900
		1,60								1900	,550	3,00	_,	3200	3600	2900
1		2,50								3200		ĺ				
0505	33 Ct	0,50 0,63					3300			1800						
2500	33 (5)	1,00		2300	2700		1300	2100	1900	4600	ĺ	29	3500	5800	2900	
		1,60								2100						

Chú ý. Các kích thước nêu trong bảng vẫn có giá trị khi tốc độ nhỏ hơn giá trị đã cho.

Hình 4.8. Sơ đồ và kích thước giếng thang máy chỏ hàng tải trọng lớn.

Bdng 4.5. Kích thước phục vụ cho việc lắp đặt thang máy dẫn động điện chở hàng tải trọng lớn

	Tải	trọng	_		15	00	2	2000		3000		4000)	500	00
	Một tốc	độ, m	ı/s		0,	50		0,25							
	Hai tốc	độ, m	ı/s		0,	50 63 00		0,50 0, 6 3		0,25 0,50 0,63		0,25 0,50		0,2	
	Biến t	ốc, m/	s		1,0	00		1,00		0,63 1,00		0,50 0,63		0,5	
Tải	Số lượng hành	Tốc độ	Kích	thước cabin	trong		ng min	Cửa	vào	Hố giếng	Đỉnh giếng	Kích	thước	buồng	máy
trong	khách max	V	Cw	Ca	C_{h}	W _w	₩ _d	Ew	E _h	P _h	s_h	Ra	R _w	Ra	R _h
kg		m/s	mm	mm	mm	mm	mm	mm	mm	mm.	mm	m²	mm	mm	mm
		0,25			ļ					1500					
1500	20	0,50	1700	2000	2300	2600	2400	1700	2300	1700	4800	16	2600	4800	2700
		0,63 1,00								1800			; 		
	,	0,25								1500					
2000	26	0,50	1700	2500	2300	2600	2900	1700	2300	1700	4800	18	2600	5400	2900
		0,63 1,00								1800					
		0,25								1500					
2000	26	0,50	2000	2100	2300	2900	2500	2000	2300	1700	4800	19	2900	5000	2900
		0,63 1,00								1800			ļ		
	40	0,25	2000	3000	2300	3000	3400	2000	2300	1500	 			5900	2900
3000		0,50								1700	4800	25	3000		
		0,63 1,00								1800					,
		0,25								1500					ĺ
3000	40	0,50	2500	2400	2300	3500	2800	2500	2300	1700	4800	26	3500	5300	2900
		0,63 1,00								1800					
		0,25								1500					
4000	53	0,50	2500	3000	2500	3500	3400	2500	2500	1700	5200	40	4000	6200	2900
		0,63	-							1800					
		0,25					4000			1500			4.0		
5000	66	0,50	2500	3600	2500	3600	4000	2500	2500	1700	5200	46	4000	6800	2900
		0,63								1800					2900

 $\mathit{Chú}$ ý. Các số liệu cao trong bảng vẫn có giá trị khi tốc độ danh nghĩa nhỏ hơn tốc độ đã cho.

2.2. Đô chính xác kích thước hình học

Độ chính xác kích thước hình học là một yêu cầu quan trọng khi thiết kế và thi công giếng thang. Theo TCVN 6395-1998; TCVN 6396-1998 độ chính xác hình học của các kích thước cơ bản được xác định theo mặt cắt đứng và mặt cắt ngang bất kỳ (hình 4.9).

Giá trị sai lệch kích thước cho phép theo mặt cắt đúng nêu ở bảng 4.6 và theo mặt cắt ngang ở bảng 4.7.

Bảng 4.6. Giá trị sai lệch kích thước cho phép theo mặt đứng của giếng thang [1] so với kích thước danh nghĩa

	Giá trị sai lệch cho phép, mm					
Tên '	thang điện	thang thủy lực				
Sai lệch chiều sâu hố giếng	Không quá + 25	Không quá + 25				
Sai lệch chiều cao buồng định giếng	Không quá + 25	Không quá + 25				
Sai lệch chiều rộng do từ trục đối xúng về mỗi bên	Không quá + 25	Không quá + 25				
Sai lệch chiều cao	Không quá + 25	Không quá + 25				
Sai lệch vị trí trục đối xúng của mỗi của so với trục thẳng đúng ứng với tâm giếng thang	Không quá 10	Không quá 10				

Bảng 4.7. Giá trị sai lệch kích thước theo mặt cắt ngang [1] so với kích thước danh nghĩa

	Chiều cao giếng thang, m						
Tên	đến 30	trên 30 đến 60	trên 60 đến 90				
Sai lệch kích thuớc bên trong vách đo từ tâm giếng K, mm	<+25	<+30	<+50				
Sai lệch kích thước giữa hai đường chéo		<25					

§3. KẾT CẦU GIẾNG THANG

3.1. Vách, sàn, trần giếng thang

Khi thiết kế cũng như thi công giếng thang nói chung, vách, sàn, trần giếng thang nói riêng phải tham khảo các TCVN [1]. Nhằm đảm bảo chúng chịu được các tải trọng sinh ra khi thang hoạt động, trong các tòa nhà cao tầng, vách sàn trần thường được tạo thành từ bêtông, tuy nhiên trong một số trường hợp như giếng

Hình 4.9. Kích thước hình học và sai số tại mặt cắt đứng và mặt cắt ngang của giếng thang.

thang của thang máy ngắm cảnh, thang máy nhẹ, hoặc trong thiết kế cải tạo chúng có thể được tạo thành từ tường gạch xây, khung thép bao che kính...

Ngoài yêu cầu về bền, tin cậy, vách, sàn, trần giếng phải được tạo thành từ vật liệu chống cháy, ít bắt bụi bẩn. Khi thi công, ngoài việc đảm bảo kích thước hình học và độ chính xác của chúng (xem §2) còn phải đảm bảo độ phẳng nhấn bề mặt, nhất là vách thang có của tầng.

Trong trường hợp nhiều thang máy được lấp ở cùng một giếng thang, nếu khoảng cách nhỏ nhất giữa các bộ phận chuyển động (cabin hoặc đối trọng) của hai thang máy kề nhau nhỏ hơn 0,5m thì chúng phải được ngăn cách bằng vách ngăn trên suốt chiều cao trừ vi trí trổ liên thông cứu hô.

3.2. Đỉnh giếng

Yêu cầu quan trọng nhất khi thiết kế phần đinh giếng là đảm bảo khoảng không gian đinh giếng, đặc biệt khoảng không gian còn lại khi đối trọng hoặc cabin tỳ lên giảm chấn nén tận cùng để đề phòng việc va chạm của các chi tiết trên nóc cabin vào trần giếng. Vì vậy khi thiết kế một mặt người thiết kế phải tham khảo các yêu cầu về phần không gian đỉnh giếng của thang máy đã chọn, mặt khác cần kiểm tra khoảng không gian còn lại khi cabin hoặc đối trọng tỳ lên giảm chấn đã bị nén tận cùng.

Khoảng không gian còn lại phụ thuộc vào tốc độ của thang và được quy định chi tiết trong mục 4.6 của TCVN 6395-1998 và TCVN 6396-1998.

3.3. Hố giếng

Hố giếng được lắp đặt thiết bị giảm chấn, các công tắc điện phục vụ có công tác bảo dưỡng sửa chữa... vì vậy hai yêu cầu cơ bản khi thiết kế và thi công giếng thang là đảm bảo khoảng không gian hố giếng, đặc biệt khoảng không gian còn lại khi cabin tiếp xúc với giảm chấn ở vị trí nén tận cùng và yêu cầu khả năng chống thấm cũng như vệ sinh cao.

Cũng như đinh giếng khi thiết kế người thiết kế phải tham khảo kích thước hố giếng được quy định theo tính năng kỹ thuật của thang; khoảng không gian dưới cabin còn lại trong hố thang được quy định chi tiết trong TCVN 6395-1998; 6396-1998.

3.4. Buồng máy

Buồng máy là nơi dành riêng để lắp đặt cụm tời cùng các thiết bị kèm theo như: thiết bị điện điều khiển, hệ thống điều hòa, bộ hạn chế tốc độ, thiết bị an toàn chống cháy.

Khi thiết kế buồng máy (còn gọi là phòng máy) cần phải đảm bảo các yêu cầu sau:

- đủ độ bền cơ học, chịu được các tải trọng phát sinh khi thang máy hoạt động;
- kích thước tối thiểu cần thiết cho việc bố trí, lấp đặt và tổ chức vận hành an toàn;
 - thông thoáng, thoát nhiệt tốt;
 - không gây ồn quá quy định, đủ độ chiếu sáng:..;
 - thuận tiện cho quá trình lấp đặt và thay thế thiết bị.

Để đảm bảo độ bền cơ học, ngoài yêu cầu chung về xây dựng, cần chú ý khi thiết kế và thi công sàn phòng máy, vì nó chịu không chỉ tải trọng tĩnh mà cả tải động khi thang máy làm việc (xem mục 4 trong TCVN 6395-1998 và 6396-1998). Khi thiết kế và thi công sàn phải sử dụng vật liệu không tron trượt và đảm bảo khả năng chịu tải tối thiểu là $5000 N/m^2$ [5].

Ở một số buồng máy để thuận tiện cho việc vận chuyển thiết bị từ dưới lên hoặc luồn cáp điện có thể mở các lỗ hoặc cửa sập trên sàn với kích thước nhỏ nhất có thể được, song tất cả các lỗ này đều phải có gờ xung quanh với chiều cao tối thiểu 50mm.

Chiều cao thông thủy của buồng máy đo ở vị trí thấp nhất của trần đến sàn không được nhỏ hơn 1,8m và để chống bụi bẩn tường thường được làm nhắn (trát matit) các của của buồng máy có chiều rộng ít nhất là 0,6m chiều cao ít nhất là 1,8m và phải được mở ra ngoài. Kích thước mặt bằng của phòng máy phụ thuộc vào tính năng kỹ thuật cũng như cách bố trí cụm dẫn động của thang, song về nguyên tắc phải có các lối đi để khi theo dõi hoạt động cũng như bảo trì thang máy người thực hiện không phải bước qua các bộ phận chuyển động hoặc gây nguy hiểm khi qua lại.

Chiều rộng lối đi quanh khu vực truyền động tối thiểu phải bằng 0,5m, chiều rộng lối đi trước tủ điện tối thiểu phải bằng 0,7m.

Để tạo điều kiện thuận lọi khi lắp đặt, sửa chữa trần phòng đặt máy thường có dầm phụ để lắp thiết bị, điều này là bắt buộc nếu cần tháo lắp các cụm chi tiết có trọng lượng lớn hơn 1000N.

Do trong buồng máy được lấp đặt thiết bị điện và điều khiến, có yêu cầu khất khe về miền nhiệt độ làm việc ổn định từ +5°C đến + 40°C nên buồng máy phải được thiết kế thông thoáng và trong trường hợp cần thiết phải lấp điều hòa nhiệt độ.

3.5. Thông gió giếng thang

Giếng thang là phần được bao kín cao nhất của tòa nhà, trong nó có cabin và dối trọng chuyển động, vì vậy giếng thang phải được thông gió đầy đủ. Và không cho phép dùng nó để thông gió cho các phần khác không liên quan đến thang máy.

Lỗ thông gió trực tiếp ra ngoài hoặc qua buồng máy phải được bố trí ở khu vực đinh giếng và có tổng diện tích tối thiểu phải bằng 1% diện tích tiết diện ngang giếng thang.

LẮP ĐẶT, QUẢN LÝ, SỬ DỤNG VÀ BẢO TRÌ THANG MÁY

1. LẮP ĐẶT THANG MÁY

1.1. Khái niệm chung

Lắp đặt thang máy là quá trình tổ hợp các chi tiết, các cụm chi tiết, các bộ phận đã được chế tạo trong các nhà máy với công trình. Nó bao gồm lắp đặt phần cơ và phần diện trong buồng dặt máy, trong giếng thang và được tiến hành theo các bản vẽ, sơ đồ và quy trình công nghệ lấp dặt tại hiện trường của nhà chế tạo, phù hợp với tiêu chuẩn an toàn trong lấp đặt và sử dụng thang máy.

Đặc điểm công việc lấp dặt thang máy so với khi lấp dặt các thiết bị khác là phải thực hiện trong giếng thang với mặt bằng chật hẹp và độ cao lớn, nên đời hỏi phải tuân thủ một quy trình lấp đặt, kiểm tra và hiệu chính nghiêm ngặt để đảm bảo an toàn cho người và thiết bị trong và sau quá trình lấp đặt.

Tùy theo khả năng tổ chức và đội ngũ cán bộ kỹ thuật, công nhân lành nghề, thiết bị thi công của dơn vị lắp đặt và điều kiện thực tế của giếng thang, số tầng cần lắp đặt... dể chọn một phương pháp lắp đặt hợp lý.

Phương pháp cổ diển nhất thường được áp dụng lấp các thang máy có số tầng ít và không đòi hỏi đầu tư kỹ thuật nhiều là dùng giàn giáo cố dịnh lấp trong giếng thang. Đối với những dơn vị có nhiều kinh nghiệm và trình độ chuyên môn cao, có thể áp dụng các phương pháp khác như: dùng giàn giáo di động hoặc dùng ngay khung, sàn cabin của thang máy thay cho các loại giàn giáo khác. Khi áp dụng các phương pháp này dòi hỏi phải có các biện pháp an toàn tuyệt đối, công nhân phải được huấn luyện, đào tạo để có kiến thức chuyên môn nhất định.

Dù lấp đặt theo phương pháp nào thì nội dung công việc lấp đặt cũng bao gồm các phần việc sau:

- + công tác chuẩn bị trước khi tiến hành lắp đặt;
- + vận chuyển bộ tời kéo và các bộ phận, chi tiết lấp trong buồng đặt máy;
- + lấp ray dẫn hướng;
- + lấp khung sàn cabin, đối trọng và đây cáp lực;
- + lắp bộ hạn chế tốc độ và bộ hãm bảo hiểm an toàn cabin;

- + lắp của tầng, hộp nút gọi tầng, tín hiệu báo tầng và chiều chuyển động của cabin;
- + lắp cabin, đối trọng và các bộ phận liên quan đến cabin;
- + rải dây (đi dây) và đấu điện.

Vị trí thả dọi nên chọn cách mép sàn về phía trong của tầng khoảng 200-250mm (quả dọi không được chạm vào thành

Hình 5.1. Sơ đồ thả dây dọi

giếng và người đo không phải khó khăn và mất an toàn khi đo). Mỗi một tầng nên đo hai vị trí để tăng độ tin cậy, một vị trí ngang sàn tầng và một vị trí cách sàn tầng 1800 mm hoặc cách lanh tô của tầng chùng 300-400 mm. Khi đo nên kết hợp đo tất cả những thông số cần thiết cho việc khảo sát, kiểm tra và phần tính khối lượng xây dựng cần làm để có giếng thang theo đúng thiết kế của nhà sản xuất thang máy.

Dụng cụ đo chỉ cần thước lá. Trước khi tiến hành đo phải lập bảng ghi số liệu, có thể theo mẫu bảng sau.

Số tầng	Vị trí đo, mm	a ₁	a 2	<i>b</i> ₁	b ₂	с ₁	c2	H
1	Ngang sàn tầng	•			***************************************			
	Cách sàn 1800			· · · · · · · · · · · · · · · · · · ·				
2	Ngang sàn tầng		<u> </u>					
	Cách sàn 1800	· · · · · · · · · · · · · · · · · · ·	 				· · · · ·	
3	Ngang sàn tầng							
	Cách sàn 1800							
4	Ngang sàn tầng							
	Cách sàn 1800	<u></u>				1		· · · -
5	Ngang sàn tầng							
	Cách sàn 1800							
6	Ngang sàn tầng	,						
	Cách sàn 1800							
Dáy giếng	Ngang sàn tầng							P_{h}
	Cách sàn 1800					-		1
Đỉnh giếng	Ngang sàn tầng			}				s_{h}
	Cách sàn 1800							1

Bảng ghi số liệu khảo sát giếng thang

Dựa vào bảng số liệu trên để khẳng định các kích thước sau (hình 5.1 và hình 5.2).

Hình 5.2. Các thông số cần kiểm tra của giếng thang:
a) Mặt cắt đứng giếng thang; b) Mặt bằng tầng buồng máy; c) Tiết diện giếng thang.

Kích thước thông thủy của tiết diện giếng thang:

- chiều rộng: $W_W = a_{1min} + a_{2min}$;
- chiều sâu: $W_d = b_{1min} + b_{2min}$;
- chiều sâu đáy giếng: Ph;
- hành trình cabin: T;
- chiều cao đỉnh giếng: Sh.

Các sai số kích thước hình học của giếng thang phải phù hợp giá trị cho phép của tiêu chuẩn.

Kiểm tra buồng đặt máy

+ Kiểm tra kích thuốc hình học thông thủy: chiều rộng buồng máy $R_{\rm w}$, chiều dài buồng máy $R_{\rm d}$ và chiều cao buồng máy $R_{\rm h}$ (hình 5.2b).

Phải đặc biệt chú ý các kích thuớc này nếu bộ tời kéo đặt phía trên giếng thang thì vị trí buồng máy so với giếng thang đóng vai trò quan trọng vì nó liên quan đến vị trí lấp đặt từ điều khiển và các thiết bị khác trên buồng đặt máy.

- + Kiểm tra vị trí của ra vào, của sổ, quạt hút gió, điều hòa.
- + Kiểm tra vị trí cấp điện nguồn cho thang máy: điện động lực, điện chiếu sáng.
 - + Kiểm tra khả năng chịu lực của các dầm, sàn, độ chống thấm, lỗ kỹ thuật...
 - + Kiểm tra lần cuối và hiệu chỉnh thang.
 - + Kiểm định kỹ thuật an toàn và xin cấp giấy phép sử dụng thang máy.

1.2. Công tác chuẩn bị trước khi tiến hành lắp đặt

Công tác chuẩn bị đóng một vai trò quan trọng để dảm bảo đúng tiến độ lắp đặt. Công tác chuẩn bị bao gồm các công việc sau

1.2.1. Kiểm tra kích thước hình học của giếng thang

1.2.1.1. Muc dích

Mục dích kiểm tra giếng thang là để khẳng định sự phù hợp của các thông số hình học thực tế đo được so với các kích thước ghi trong bản vẽ lấp đặt của nhà chế tạo. Nếu chưa phù hợp thì phải có biện pháp xử lý trước khi tiến hành công việc lấp đặt.

Đối với các nước có nền công nghiệp xây dựng hiện đại và phát triển, có dây chuyền công nghệ xây dựng hoàn chinh thì các khâu khảo sát, tư vấn, thiết kế đã trở thành pháp lệnh. Do đó công việc kiểm tra kích thước hình học của giếng thang chỉ phục vụ cho công tác lấp đặt. Nhưng thực tế hiện nay ở Việt Nam có những công trình xây dựng xong mới bắt đầu trang bị thang máy thì các số liệu kiểm tra cũng đồng thời là số liệu khảo sát ban đầu để lựa chọn thang máy.

Khi tiến hành kiểm tra, tùy theo mức độ phúc tạp, chiều cao tòa nhà, địa điểm và vị trí giếng thang để dùng các dụng cụ và tài liệu kỹ thuật thích hợp.

Dụng cụ để kiểm tra có thể là: quả dọi, dây dọi, thước lá, thước dây, đinh, búa, máy kiểm tra độ thẳng đúng bằng thiết bị quang học, tia lade...

Tài liệu kỹ thuật là: bản vẽ kiến trúc và kết cấu của giếng thang, các hồ sơ kỹ

thuật của nhà chế tạo và các bản vẽ khác có liên quan tới cấu tạo của giếng thang.

1.2.1.2. Kiểm tra độ thẳng đứng của giếng thang

Thông thường dùng dọi để kiểm tra độ thẳng đúng của giếng thang là đơn giản và dảm bảo độ chính xác cần thiết.

- + Quả dọi: bằng thép hoặc gang, trọng lượng của quá dọi phải đủ để căng dây và không bị dao động trong khi đo kiểm tra các kích thước. Muốn vậy, quả dọi thường được bở vào trong thùng chất lỏng hoặc dùng quả đọi với khối lượng đủ lớn để không bị dao động do gió hoặc khi va chạm nhẹ vào dây dọi trong quá trình đo và kiểm tra.
 - + Dây dọi: dùng sợi thép mềm có đường kính từ 1 đến 2 mm.

Sơ đồ thả dọi có thể tùy theo kinh nghiệm của người khảo sát, có thể dùng một quả dọi thả từ trên xuống ở một vị trí nhất định nào đó cũng đủ để kiểm tra các kích thước cần thiết (hình 5.1).

1.2.2. Chuẩn bị mặt bằng và kho chứa thiết bị

1.2.2.1. Mặt bằng thi công

Mặt bằng thi công là mặt bằng giếng thang, trước các cửa tầng và lối di lại để vận chuyển vật tư, thiết bị phục vụ cho công việc lắp đặt. Khu vực này phải được rào chắn và có các biển hiệu theo quy định của công trường và phù hợp với tiêu chuẩn TCVN đã ban hành. Phải có đầy đủ điện chiếu sáng và điện phục vụ thi công.

1.2.2.2. Kho chứa thiết bị

Kho chứa thiết bị phải đảm bảo diện tích tối thiểu để chứa hết thiết bị, phụ thuộc vào loại thang, số lượng thang. Trong kho phải đầy đủ ánh sáng, đảm bảo khô ráo, phải được che kín để người ngoài không có thể quan sát được và có biện pháp phòng chống cháy.

Ở những địa diểm lấp nhiều thang máy cùng một thời điểm thì cần phải có nhà điều hành, thông tin, và xưởng kho tạm, nhà thay quần áo của công nhân,...

1.2.3. Lập phương án lắp đặt và tập kết thiết bị, dụng cụ thi công

1.2.3.1. Lập phương án lắp đặt

Cơ sở để lập phương án lắp đặt:

- + địa điểm và vị trí của giếng thang;
- + số thang cần lắp đặt và chủng loại thang;

- + chiều cao của giếng thang;
- + kết cấu của giếng thang: bêtông toàn khối, khung bêtông gạch xây chèn hay khung thép;
 - + thời gian cần hoàn thành lấp đặt và tiến độ thi công của công trình;
 - + nhân lực và thiết bị, dụng cụ sẵn có của đơn vị lấp đặt.

Lập phương án chủ yếu cho các công việc sau:

- + vận chuyển thiết bị từ kho ra khu vực giếng thang;
- + vận chuyển các thiết bị vào buồng đặt máy, đặc biệt khi bộ tời kéo đặt phía trên giếng thang;
 - + chọn phương án làm giàn giáo để lắp trong giếng thang.
 - 1.2.3.2. Tập kết thiết bị và dụng cụ lắp đặt

Trên cơ sở chọn phương pháp lấp đặt và dựa vào các thông số khác của thang máy để tập kết các thiết bị và dụng cụ đồ nghề thích hợp. Các thiết bị và dụng cụ đồ nghề gồm: thiết bị vận chuyển theo phương ngang và thiết bị vận chuyển theo phương đúng.

Thiết bị dùng vận chuyển theo phương ngang bao gồm:

- + xe nâng thủy lực;
- + các con lăn bằng thép.

Nếu vận chuyển trong nền nhà đã hoàn thiện cần phải có các tấm gỗ hoặc tấm thép lót sàn.

Thiết bị dùng để vận chuyển theo phương thẳng đứng bao gồm:

- + cần trục;
- + tời nâng (tời máy, tời quay tay);
- + kích:
- + palăng (palăng điện, palăng tay);
- + dây buộc, khóa cáp;

Vật tư và dụng cụ làm giàn giáo:

- + giàn giáo sắt chuyên dùng;
- + tấm gỗ dày tối thiểu 40mm;
- + gố làm thành đà giáo và kê máy;

- + đinh các loai;
- + cua:
- + dây chão.

Các vật tư thiết bị khác:

- + máy hàn điện, que hàn;
- + máy khoan bêtông, máy khoan sắt;
- + máy cắt sắt:
- + đèn khỏ;
- + kéo cắt cáp;
- + nivô, quả dọi, dây dọi, thước lá;
- + dây điện nguồn, dây điện chiếu sáng, bóng đèn, đui đèn, cầu dao ba pha, đồng hồ đo điên;
 - + kìm kẹp đầu cốt;
 - + dụng cụ đồ nghề cơ khí và điện cầm tay;
 - + bộ đàm nội bộ;
 - + các tấm chắn và biển bảo cấm vào khu vực đang thi công theo quy định.

Tất cả các thiết bị và dụng cụ phải tập kết tại địa điểm lắp đặt và kho tạm được bố trí tại hiện trường.

1.2.4. Tiếp nhận thiết bị thang máy

Thiết bị thang máy thông thường được vận chuyển đến chân công trình bằng xe côngtenno hoặc xe vận tải, do vậy, bắt buộc phải có thiết bị bốc xếp; xe nâng loại 1 đến 5 t hoặc cần trục để hạ thiết bị từ trên xe xuống, xe nâng kéo thủy lục.

1.2.4.1. Tổ chức tiếp nhân

Khi tiếp nhận thiết bị, bắt buộc phải mở tất cả các hòm và các kiện để kiểm kê chi tiết theo bảng kê của nhà cung cấp thang máy.

Thành phần tham gia tiếp nhận gồm:

- + đại diện bên cung cấp thang máy;
- + đại diện bên chủ đầu tư và sử dụng;
- + đại diện đơn vi lắp đặt;
- + đại diện cơ quan kiểm định chất lượng hàng hóa (VINACONTROL) và các

bên khác liên quan nếu có.

Trước khi mở các hòm và các kiện thang máy phải kiểm tra niêm phong, kẹp chì và tình trạng bên ngoài của nó. Nếu có trường hợp bất thường phải ghi ngay vào văn bản.

Khi kiểm kê cần lưu ý:

- + số lượng thiết bị, vật tư thực tế so với bảng kê gửi theo hàng (Parking list);
- + mã hiệu, các thông số cơ bản của các bộ phận quan trọng: bộ tời kéo, tủ điều khiển, cơ cấu đóng mở của, bộ hạn chế tốc độ, ...;
 - + tình trạng bên ngoài (móp méo, tróc xước, gãy...).

Sau khi kiểm kê phải đưa ngay vào kho để cất giữ và bảo quản.

1.2.4.2. Sắp xếp thiết bị trong kho

Các thiết bị phải được sắp xếp theo một trình tự nhất định, phù hợp với quy trình lắp đặt, dựa trên nguyên tắc: dễ thấy, dễ lấy. Những thiết bị, vật tư lắp sau thì để vào trước, vào phía trong kho, phải sắp xếp theo tùng loại, tùng bộ, tránh để chồng chéo lên nhau.

1.2.4.3. Lập biên bản sau khi kiểm kê

Sau khi kiểm kê xong, phải lập biên bản bàn giao thiết bị, tài liệu kỹ thuật cho đơn vị lắp đặt quản lý, bảo quản cho đến khi bàn giao đưa vào sử dụng.

Biên bản phải khẳng định và kết luận:

- + về số lượng thiết bị, vật tư đủ hay thiếu so với bảng kê chi tiết và so với thực tế cần đủ để lắp đặt hoàn chỉnh theo hồ sơ kỹ thuật;
 - + về tình trạng kỹ thuật và hình thúc bên ngoài.

Nếu thiếu hoặc hư hỏng thì trách nhiệm thuộc bên nào bên đó có kế hoạch và tiến độ cung cấp đầy đủ.

1.3. Lắp đặt thang máy

Quy trình lắp đặt tùy thuộc vào phương pháp lắp đặt đã chọn. Có thể lắp các cửa tầng trước sau đó mới lắp ray dẫn hướng hoặc ngược lại. Nhưng tất cả đều phải thực hiện các công việc sau

1.3.1. Những công tác cần làm trước khi tiến hành lắp đặt

Trên cơ sở bản vẽ lắp đặt do bên cung cấp thang bàn giao và tiêu chuẩn về an toàn trong lắp đặt - sử dụng thang máy TCVN 5744-1993. Tiêu chuẩn yêu cầu an toàn về cấu tạo và lắp đặt thang máy TCVN6395-1998 và TCVN 6396-1998.

Đại diện bên lắp đặt và bên xây dựng sẽ tiến hành nghiệm thu các phần sau

1.3.1.1. Nghiệm thu giếng thang

+ Kích thuốc thông thủy của giếng thang, theo hình 5.1 và hình 5.2.

Chú ý kiểm tra độ vuông góc của tiết diện giếng thang.

- + Dộ thẳng dúng của giếng thang. Theo tiêu chuẩn TCVN 6395-1998; TCVN 6396-1998 đối với giếng thang (xem bảng 4.3 đến 4.8 chương 4). Sai số phải nằm trong phạm vi cho phép. Nếu có những chỗ nhô ra quá quy định, bắt buộc phải loại trù để đạt được kích thước theo thiết kế, mới được phép bắt đầu công việc lắp đặt.
- + Kích thước đáy giếng thang P_h sau khi đã chống thấm, khả năng chịu tải của day giếng (theo bản vẽ hoàn công xây dựng).
 - + Kích thước dinh giếng thang Sh.
 - + Cốt từng sàn tầng sau khi đã hoàn thiện phần xây dựng.
- + Kích thước thông thủy của các tầng, chú ý vị trí của các cửa theo phương thẳng đúng và độ đồng tâm của cửa tầng.
- + Vị trí dầm để gá bản mã ray cabin và đối trọng (đối với giếng thang có kết cấu bằng khung bêtông và gạch xây chèn).

1.3.1.2. Nghiệm thu buồng đặt máy

- + Kích thước thông thủy của buồng đặt máy:
- chiều rộng Rw;
- chiều dài Rd;
- chiều cao Rh.

Nếu buồng máy đặt ở trên giếng thang cần phải chú ý vị trí tương đối giữa giếng thang và buồng đặt máy.

- + Kiểm tra sàn và dầm chịu lực (theo bản vẽ hoàn công của bên xây dựng). Chỉ được phép dua thiết bị và vật tư vào thi công và lắp đặt khi sàn và dầm đã đủ chịu tải theo thiết kế.
 - + Kiểm tra của ra vào (phải có khóa), của sổ, quạt hút gió hoặc điều hòa.
 - + Kiểm tra khả năng chống thấm, đột đo nước mưa.
 - + Kiểm tra các lỗ kỹ thuật để theo thiết kế.
 - + Kiểm tra lưới chống chuột chui vào buồng máy.

+ Kiểm tra lối lên buồng đặt máy phù hợp với TCVN 6395-1998 và TCVN 6396-1998.

1.3.1.3. Nghiệm thu phần điện nguồn và tiếp địa

- + Kiểm tra vị trí cấp điện nguồn và điện chiếu sáng, các thiết bị đóng ngắt điện (aptômat, cầu dao).
 - + Đo và kiểm tra kích thước dây dẫn của điện nguồn.
 - + Đo và kiểm tra điện áp giữa các pha.
 - + Đo và kiểm tra tiếp địa dùng riêng cho thang máy.

Sau khi đã đo và kiểm tra tất cả các phần đã nêu ở trên, các bên tham gia xác nhận và cùng ký vào biên bản bàn giao giếng thang cho bên lấp đặt.

1.3.2. Đưa bộ tời kéo, vật tư và thiết bị lên buồng đặt máy

Có hai phương án để có thể đưa bộ tời kéo, vật tư và thiết bị lên buồng đặt máy.

Phương án I

Dùng cần trục đưa lên sàn tầng mái và đưa vào buồng máy. Phương án chỉ thực hiện được khi cần trục có đủ tầm với để đưa bộ tòi và tủ điện điều khiển đến tận của của buồng đặt máy, đồng thời của phải đủ lớn để có thể đưa được máy vào, nếu không, việc đưa bộ tời kéo qua sàn mái vào buồng đặt máy sẽ rất phúc tạp, đặc biệt mặt sàn buồng đặt máy lại cao hơn sàn mái thì lại càng phúc tạp hơn.

Phương án II

Dùng palăng điện hoặc tòi điện, hoặc tòi quay tay để đưa bộ tòi kéo và các thiết bị vật tư lên buồng đặt máy qua giếng thang. Phương án này hoàn toàn chủ động và không phụ thuộc vào độ cao của buồng đặt máy. Sàn đặt máy khi đổ bêtông phải trừ lỗ để đưa bộ tòi kéo lên, kích thước lỗ tối thiểu phải đủ lớn (ít nhất 1050x1200), phụ thuộc vào từng thang.

1.3.3. Giàn giáo

Theo truyền thống trong lấp đặt thang máy, thường dùng giàn giáo để phục vụ cho công việc lấp đặt trong giếng thang.

Giàn giáo có thể là giàn giáo kim loại hoặc gỗ. Tùy theo kết cấu của giếng thang và khả năng cung ứng vật tư và dụng cụ thi công của đơn vị lắp đặt để chọn một trong hai loại trên.

Giàn giáo được đặt từ dưới lên, cứ cách một khoảng từ 2 đến 3 m có một sàn

thao tác. Sàn thao tác có thể bằng thép hoặc bằng gỗ, giữa các sàn có thang leo.

Khi lắp giàn giáo phải tính toán để có thể đúng thao tác tất cả các công việc trong giếng một cách dễ dàng, thuận tiện. Không mất ổn định, không ảnh hưởng tới vị trí các dây dọi và không phải dịch chuyển trong suốt cả quá trình lắp đặt.

Theo kinh nghiệm có thể bố trí giàn giáo theo hình 5.3.

Hình 5.3 Sơ đồ bắc giàn giáo trong giếng thang: 1. cột chống; 2. đà giáo.

Nếu giàn giáo bằng gố phải lưu ý đảm bảo độ cứng vũng và độ bền. Theo TCVN 5744-1993 giàn giáo phải chịu được tải trọng không dưới 2,5 kN trên một mét vuông sàn.

Cũng có thể dùng giàn giáo di động để lấp đặt trong giếng thang, nhưng phải hết sức chú ý có biện pháp an toàn lao động. Đặc biệt, những thang máy có hành trình lớn thì rất có hiệu quả, giảm được nhiều chi phí vật tư và nhân công.

1.3.4. Bảng dọi

Tùy theo phương án lắp đặt mà có các phương án làm bảng dọi khác nhau. Nhưng tất cả đều phải theo một nguyên tắc chung là dây dọi được dùng để làm chuẩn theo phương thẳng đứng để lấy dấu khoan lỗ vào dầm (vách) bêtông phục vụ cho công việc lắp bản mã ray cabin, ray đối trọng và lắp của tầng. Vật tư dùng

để thi công bảng dọi có thể là: những thanh thép định hình, những thanh gố hoặc tấm gỗ dán có độ dầy, độ cứng cần thiết.

Trên cơ sở các kích thước đã cho trong bản về lắp dặt của nhà chế tạo cung cấp, cụ thể khoảng cách giữa tâm ray cabin và ray đối trọng, giữa ray cabin và mép ngưỡng của cabin hay mép trong của ngưỡng cửa tầng để cố định những kích thước chuẩn trên bảng dọi. Hình 5.4 là bảng dọi cho loại thang có đối trọng đặt phía sau cabin, cửa cabin và của tầng mỏ chính giữa lùa về hai phía. Sau khi treo bảng dọi vào phía dưới sàn đặt máy, phải căn chinh các khoảng cách chính xác về các phía thành giếng thang, sao cho đảm bảo các khoảng cách lắp đặt an toàn. Khi các dây dọi đã hoàn toàn ổn định, có thể cố định các dây dọi vào khung đặt phía dưới đáy giếng thang.

Hình 5.4 Sơ đồ bảng dọi trong giếng thang:

A - khoảng cách từ mép ngưỡng cửa cabin đến thành trong của giếng thang; B- khoảng cách từ tâm ray cabin đến mép ngưỡng cửa cabin; C- khoảng cách giữa hai tâm ray cabin và đối trọng; D- khoảng cách giữa hai mép của bo cửa (chiều rộng thông thủy của cửa); E- khoảng cách giữa hai mép trong của ray đối trọng; G- chiều rộng cửa.

Công việc lấp dặt tiếp theo có thể tùy theo điều kiện thực tế ở công trường, thời tiết,... để chọn trình tự lấp tiếp theo vừa có hiệu quả cao, vừa an toàn.

Thông thường, ở các nước trên thế giới đều lắp các của tầng trước, sau đó mới lắp ray và các bộ phận còn lại trong giếng thang. Lắp theo trình tự này đảm bao an toàn hơn, tránh được những rủi ro cho người và thiết bị do những vật lạ rơi vào giếng thang. Nhưng ngược lại vì không gian giếng thang rất chật hẹp và bí, thiếu không khí nên ở Việt Nam vào những thời điểm nóng, oi và đặc biệt khi thi công hàn trong giếng thang thì rất có hại cho sức khỏe của công nhân. Vì vậy, cũng có thể lắp ray cabin và ray đối trọng trước sau đó mới lắp các của tầng, nhưng hết súc lưu ý phòng ngừa những rủi ro do các vật lạ rơi vào giếng thang. Muốn vậy phải

có các biện pháp an toàn trước khi thi công theo trình tự này.

1.3.5. Lắp cửa tầng

Thông thường lắp từ trên xuống và lắp hoàn chính từng của một (song phải trừ lại một của để đưa ray vào giếng thang và để lắp cabin).

Dung cụ chuẩn bị đầy đủ để lắp cho một của gồm: máy khoan bêtông, máy cắt kim loại, máy hàn, nivô, thuốc, đây dọi, quả dọi, dụng cụ cơ khí cầm tay.

Vật tư thang máy: ngưỡng của, bản mã, tấm kê, bo của, đầu cửa, tấm căn, đinh hàn, các chi tiết liên kết với công trình, bulông các loại.

Vật tư phụ: que hàn, thép lá, gỗ chèn...

1.3.5.1. Lắp ngưỡng (chân) cửa tầng

- + Lấy dấu để khoan lỗ bêtông vào dầm (vách) giếng thang. Trên cơ sở độ cao của sàn tầng đã hoàn thiện, định độ cao của ngưỡng của (thường cao hơn sàn tầng chùng 3-5 mm) để phòng khi lau chùi sàn nuớc không chảy vào giếng thang (hình 5.5).
 - + Khoan lo bêtông.
- + Lắp bản mã đỡ ngưỡng (chân) của tầng và siết chặt bulông liên kết.

+ Hàn tấm kê lên bản mã. Trước khi hàn phải sơ bộ kiểm tra

kích thước từ mép trong ngưỡng của tầng tới mép ngưỡng của cabin cách đều 25 mm (hình 5.6).

+ Lắp ngưỡng của vào tấm kê và siết chặt bulông. Trước khi siết chặt bulông cần phải kiểm tra độ thăng bằng và khe hở theo thiết kế.

Hinh 5.5:

lóp hoàn thiện bề mặt sàn tầng;
 ngưỡng cửa tầng;
 tấm kê;
 bản mã;
 bulông nỏ;
 vách giếng thang.

Hình 5.6. Khoảng cách giữa ngưỡng cửa cabin và cửa tầng:
1. sàn cabin; 2. ngưỡng cửa cabin; 3. ngưỡng cửa tầng.

1.3.5.2. Lắp bo cửa tầng

Bo cửa là bộ phận chuyển tiếp giữa thang máy với công trình để tạo ra một khung tranh hài hòa trước các của tàng. Nó vừa có ý nghĩa về trang trí nội thất vừa đóng vai trò của thiết bị. Vì vậy khi lấp đặt phải hết sức chú ý độ thẳng đứng đảm bảo cách đều cánh cửa tàng khi chuyển động suốt dọc cánh cửa là 5mm. Mặt khác khi cánh của mở ra hết phải phẳng đều.

Bo của được liên kết với khung bêtông hay khung thép hay khung tường gạch đặc của giếng thang bằng râu thép chò đã được đặt sắn khi thi công phần xây dựng giếng thang (phía trên và hai bên). Nếu chưa có thì phải khoan lỗ để liên kết với các chi tiết phụ của nhà cung cấp thang hay của đơn vị lắp đặt. Phía dưới được liên kết với ngưỡng của thường bằng bulông. Trình tự được thực hiện như sau

- + Tổ hợp bo của (có thể đã được tổ hợp từ nhà máy).
- + Đưa vào vị trí lắp đặt. Cố định tạm (có thể bằng giá đỡ tạm dựa vào ray dẫn hướng cabin).
 - + Kiểm tra kích thuốc và độ thẳng đúng của bo của theo cả hai phương.
 - + Siết chặt bulông liên kết giữa bo của và ngưỡng của tầng.
 - + Hàn cố định vào công trình.
 - + Chèn và chỉnh độ vát của bo (đối với bo có bề rộng lớn) (hình 5.7).

Hình 5.7 Liên kết giữa bo cửa với ngưỡng cửa tầng và vách giếng thang:
1. vách giếng thang; 2. liên kết giữa bo cửa và vách giếng; 3. bo cửa tầng; 4. ngưỡng cửa tầng; 5. cánh cửa tầng.

1.3.5.3. Lắp đầu cửa tầng

Đầu của làm nhiệm vụ treo và dẫn hướng cho các cánh của tầng khi có tác động từ của cabin truyền tới. Khi lấp cần chú ý độ thăng bằng theo phương ngang song với ngưỡng của tầng. Mặt khác ray dẫn hướng của đầu của phải nằm trong cùng mặt phẳng của rãnh dẫn hướng của ngưỡng cửa tầng. Trình tự được thực hiện như sau

- + Lấy dấu, khoan lỗ vào vách (dầm) bêtông.
- + Tổ hợp đầu của (có thể đã được tổ hợp từ nhà máy) và kiểm tra, siết chặt các bulông liên kết, đối trọng của cần phải kiểm tra và siết chặt một lần nữa trước khi cho vào ống dẫn hướng...
 - + Cố định tạm đầu của vào vị trí lắp đặt.
 - + Kiểm tra các kích thuốc và độ thăng bằng,...
 - + Cố định chặt đầu của với công trình.

1.3.5.4. Lắp cánh cửa tầng

Trước khi lắp của tầng, cần phải kiểm tra độ phẳng của cánh của. Cánh của có thể bị cong vênh do chế tạo hoặc do vận chuyển. Nếu kiểm tra phát hiện có cong vênh thì phải tiến hành nắn lại, đảm bảo phẳng mới được lắp vào. Việc lắp được thực hiện theo trình tự sau

- + Lắp để trượt vào cánh của.
- + Lắp cánh của vào bộ đầu của bằng bulông và đai ốc đã được cung cấp đi kèm. Cố định tạm thời và dùng các tấm căn để đệm và căn chinh sao cho:
- cách đều bo của khi đóng, mỏ một khoảng 5 mm với sai số cho phép là +1 và -2 mm;
- cách đều ngưỡng của khi đóng, mỏ
 một khoảng 5 mm với sai số cho phép là
 +1 và -2 mm;
- chỉnh bánh xe lệch tâm có khe hỏ so với ray dẫn hướng cách cửa là 0,5 mm (hình 5.8);
- lắp công tắc an toàm của cabin khi đóng gặp chương ngại vật.

1.3.6. Lắp ray cabin và ray đối trọng

Chất lượng lắp đặt ray cabin và ray

vệ chân cửa.

đối trọng đóng một vai trò quan trọng đến độ êm dịu của cabin trong quá trình chuyển động của thang máy bao gồm các công việc sau

+ Lấy dấu để khoan lỗ vào dầm (vách) bêtông

Hình 5.8 Cố định đầu cửa tầng và cánh cửa:

- giá lắp đầu cửa;
 bánh xe treo cánh cửa;
 dây dẫn hướng đầu cửa;
 giá treo cánh cửa;
 bánh xe lệch tâm;
 - 6. bulông treo cánh cửa; 7. bo cửa;8. cánh cửa; 9. để trượt cánh cửa;
- ngường cửa tàng; 11. tấm chắn bảo vệ chân cửa.

Khi lấy dấu phải chú ý kiểm tra độ chuẩn của dây dọi và phải chú ý mấy điểm sau:

- nếu trong bản vẽ lắp đặt của nhà chế tạo đã ghi vị trí để lắp bản mã thì chỉ việc kiểm tra so với thực tế giếng thang (đối với giếng thang có kết cấu bằng khung bêtông và gạch xây hoặc giếng thang bằng kết cấu thép), vị trí khoan lỗ tốt nhất là dúng với dầm bêtông. Nếu đúng vào phần tường gạch xây (đặc biệt là gạch rỗng) thì phải có biện pháp xử lý;
- trong trường hợp mà tại bản vẽ lắp đặt của nhà chế tạo chưa ghi vị trí lắp đặt bản mã, có nghĩa là chưa tính tới vị trí của bản mã thì bắt buộc đơn vị lắp đặt phải khảo sát và tính toán. Khi tính toán phải chú ý tới chiều dài tiêu chuẩn của ray theo thông lệ quốc tế là 5m, khi nối đầu với nhau có khớp âm dương và các lỗ để bắt tấm ốp phía sau lung ray nên phải tránh vị trí bản mã trùng vào chỗ nối ray.

		Chiều dài phần	Đường kính	Óng (sơ mi)	
Loại bulông	Chiều dài bulông	có ren a	chân bulông d	chiều dài L	đường kính D
M10	80	45	14,4	40	14,3
M12	100	50	17,5	50	17.3
M16	125	60	19,5	60	21,6

Hình 5.9. Kích thước hình học bulông nở.

Phải tuân thủ khoảng cách giữa hai bản mã theo thiết kế, vì nó đã được tính toán cho mỗi loại ray, cho mỗi loại thang. Nếu khoảng cách thực tế lớn hơn so với thiết kế thì sau một thời gian hoạt động của thang, ray sẽ bị biến dạng không dàn hồi, làm tăng khoảng cách giữa hai ray dẫn đến làm tăng khe hỏ giữa ray và bạc trượt dẫn hướng của cabin dẫn đến cabin sẽ bị lắc trong quá trình hoạt động hoặc khi mỏ cửa cabin (đặc biệt đối với cửa cabin mỏ lùa về một phía). Trình tự lắp đặt

bản mã được thực hiện như sau

- + Khoan lỗ bêtông và lắp bulông nở vào dầm (vách) giếng thang:
- chọn kích thước mũi khoan phù hợp với loại bulông nở được cấp;
- khoan lỗ vào dầm (vách) bêtông;
- cố định bulông nở vào dầm (vách) bêtông (dùng búa và ống dóng).

Kích thước hình học của bulông nở và ống đóng theo hình 5.9 và quy trình cố định theo hình 5.10.

Hình 5.10. Quy trình cố định bulông nở.

Hình 5.11. Cố định bản mã vào vách giếng thang: 1. vách giếng thang; 2. bản mã; 3. vòng đệm; 4. đai ốc; 5. bulông nò.

Hình 5.12. Liên kết giữa hai bản mã (ray cabin):

 vách giếng thang;
 bản mã cố định với giếng thang;
 bản mã gắn ray.

Hình 5.13. Liên kết giữa hai bản mã (ray đối trọng):

1. vách giếng thang; 2. bản mã cố định với giếng thang; 3. bản mã gá ray.

Hình 5.14. Sơ đồ lắp ray trong giếng thang: 1. dây treo; 2. bản nối ray; 3. ray; 4. bulông nối ray

Hình 5.15. Cố định ray vào bản mã: 1. ray; 2. bẹp ray; 3. bulông; 4. bản mã,

+ Lắp bản mã và cố định vào dầm (vách) giếng thang. Chú ý phải tẩy những chỗ nhô ra và phần vữa trát cho đến tận lớp bêtông bảo vệ. Dùng nivô lấy thăng bằng và siết chặt bulông (hình 5.11).

Đối với giếng thang bằng kết cấu thép thì hàn trực tiếp bản mã vào dầm của khung thép.

+ Lắp bản mã. Có thể thi công toàn bộ các bản mã gắn vào giếng thang như hình 5.12 và 5.13. Có thể thi công từ dưới lên hết giếng thang sau đó mới hàn tiếp các bản mã gắn ray vào bản mã vùa lấp xong. Nhưng cũng có thể hoàn thiện tùng đọt một từ dưới lên trên (phụ thuộc vào từng giếng thang một). Khi hàn hoặc bắt bulông giữa hai bản mã phải luôn luôn chú ý kiểm tra dây dọi và khoảng cách giữa hai ray (hình 5.16c).

+ Vận chuyển ray vào giếng thang

Trước khi đưa ray vào giếng thang, nên lấp sẵn tấm ốp nối ray vào đầu phía trên của ray. Khi vận chuyển ray vào giếng thang phải hết sức chú ý: chiều âm, dương của nối ray. Vì ray theo thông lệ quốc tế, chiều dài mỗi thanh là 5m, nên khi đã đưa ray vào trong giếng thang thì không thể đổi chiều để phù hợp khi nối ray mà muốn đổi chiều, phải đưa ra ngoài giếng thang (chỗ để đủ quay ray) mối thực hiện được.

+ Lấp ray

Trước khi tiến hành lấp ray, phải lấp dầm để đỡ giảm chấn và giảm chấn ở đáy giếng thang.

Dùng tời tay hoặc tời máy đặt trên sàn đặt máy để vận chuyển ray theo phương thẳng đúng, đua ray vào vị trí lắp đặt (hình 5.14).

Cố định ray vào bản mã, gá ray bằng các kẹp ray và bulông liên kết giữa kẹp ray và bản mã (hình 5.15).

Có hai phương pháp lắp ray

Lắp ray theo tuyến: có nghĩa là lắp xong tuyến ray phải của cabin, sau đó đến ray trái, rồi tiếp đến ray đối trọng (có bốn tuyến). Có thể lắp từ dưới lên hoặc từ trên xuống, nhưng thông thường lắp từ dưới lên.

Lắp theo từng đọt: có nghĩa là lắp hết bốn ray (hai ray cabin và hai ray đối trọng) một đọt, sau đó tiếp đọt hai, đọt ba và cứ thế cho đến hết. Phải thường xuyên kiểm tra dây dọi và các kích thước để đảm bảo khoảng cách giữa các ray.

Tại mối nối giữa hai ray, phải cố gắng giảm sự sai khác giữa hai đầu ray. Sai số tại các chỗ nối ray phải nằm trong phạm vi cho phép, có như vậy thì khi cabin di chuyển qua những chỗ nối ray sẽ không có tiếng kêu hoặc va đập nhẹ.

Loại ray	Biến dạng	
Ray cabin	0,2mm	
Ray đối trọng	0,4mm	

Hình 5.16. Biến dạng của ray tại chỗ nối: a) Biến dạng cạnh bên lưng ray; b) Biến dạng bề mặt đỉnh ray;

c) Khoảng cách giữa hai ray : A với sai số +2 và -0.

Tốc độ	30-60m/ph	90m/ph	105m/ph
Sai lệch S	0,03mm	0,02mm	0,02mm

Hình 5.17. Độ lệch cạnh bên chỗ nối ray .

- Độ sai lệch tại chỗ nối ray bị biến dạng: theo bề mặt dinh ray và cạnh bên lung ray như hình 5.16.
- Độ sai lệch phía trên bề mặt làm việc của ray tại chỗ nối, phụ thuộc tốc độ của thang (hình 5.17)

1.3.7. Lắp khung đối trọng và đối trọng

Lấp khung đối trọng phải tiến hành trước khi lắp khung cabin và cabin và được thực hiện như sau

- + Dùng gỗ kê khung đối trọng sao cho bề mặt trên của dầm dưới khung đối trọng ngang bằng với sàn giàn giáo (cùng độ cao với tầng trệt).
- + Vận chuyển khung đối trọng vào giếng thang, dùng tời hoặc palăng kéo khung đối trọng lên để đưa vào vị trí lấp đặt.
 - + Lắp các cụm bạc trượt trên và dưới.
 - + Lắp đối trọng:

- vận chuyển các quả đối trọng vào trước
 cửa tầng bằng xe nâng thủy lực;
- lắp các quả đối trọng vào khung (hình 5.18) (chỉ lắp một lượng vừa đủ để cân bằng với cabin và một phần tải trọng, còn lại sẽ lấp tiếp sau khi lắp xong cabin và khi hiệu chỉnh lần cuối).

1.3.8. Lắp cabin

- + Trước khi lấp cabin phải làm sàn thao tác để kê khung cabin và sàn cabin (ngang với sàn tầng trệt).
- + Đặt dầm dưới của khung cabin vào sản gỗ và căn chính tạm.
 - + Lắp gióng cabin.
 - + Lắp dầm trên của khung cabin.
 - + Lắp bạc trượt dẫn hướng.
- + Lắp sàn cabin và ngưỡng của cabin (thông thường đã được lắp từ nhà máy thành một khối), chú ý là khoảng cách giữa ngưỡng của cabin và ngưỡng của tầng là 25 mm.
 - + Lấp các thanh giằng giữa sàn cabin và gióng cabin.
 - + Lắp vách cabin.
 - + Lắp trần cabin.
 - + Lắp bảng điều khiển, quạt, đèn, tay vịn, camera, radio...

Trong quá trình lắp cabin nên kết hợp lắp xen kẽ với các công việc khác như: lắp cáp chịu lực, lắp bộ hạn chế tốc độ, bộ hãm bảo hiểm an toàn cabin (đối trọng).

1.3.9. Lắp bộ tời kéo ở buồng đặt máy

Thông thường bộ tời kéo đã được lấp hoàn chinh và đã được chạy thủ, cân bằng động tại nhà máy. Lắp đặt ở hiện trường là đưa bộ tời kéo vào đúng vị trí thiết kế lên bệ•tời.

+ Lấp bệ tời: tùy theo từng hãng sản xuất, bệ tời có thể dặt trực tiếp lên sản máy (sàn chịu lực) hoặc đặt lên dầm thép được gối lên hai đầu dầm của khung chịu lực của công trình.

Hình 5.18. Cách lắp quả đối trọng vào khung đối trọng.

Hầu hết các bộ tời đều đặt lên dầm thép, chỉ trù những thang máy có tải trọng và tốc độ bé thì đặt trực tiếp lên sàn máy chịu lực.

Trước khi lấp bệ tời, cần phải có xác nhận của bên xây dựng về sàn (dầm) chịu lực đã dủ điều kiện chất tải và đã thiết kế, thi công theo đúng yêu cầu.

Dàm thép làm bệ máy được làm từ thép hình, có tiết diện là I hoặc U và tối thiểu phải có hai dầm. Vì vậy, khi tổ hợp cần phải lưu ý bề mặt để đặt tời phải phẳng. Các sai số cho phép có thể tham khảo ở hình 5.19.

Hình 5.19. Sai số cho phép khi lắp bệ tời.

+ Lấp các bộ phận giảm chấn cách ly giữa bộ tời và dầm máy.

Yêu cầu cơ bản là lắp đúng vị trí chịu lực theo bản vẽ. Có những trường hợp cần phải phân biệt màu sắc hoặc ký hiệu để lấp đúng vị trí.

- + Dùng tời quay tay hoặc tời máy để nâng bộ tời kéo lên bệ tời.
- + Căn chinh: đây là công đoạn rất quan trọng. Nếu căn chinh không tốt ở công đoạn này, trước lúc cố định bộ tời vào bệ tời thì sau này muốn căn chinh lại (thêm) sẽ rất phúc tạp vì nếu không sẽ ảnh hưởng tới chất lượng hoạt động của thang máy.

Dùng dây dọi để kiểm tra vị trí của bộ tời kéo (puly chính và puly đổi hướng) so với tâm của ray cabin và ray đối trọng.

Cố định bằng bulông và hàn các thanh giằng giữa bệ tời và công trình, giữa các dầm của bệ tời, để đảm bảo độ ổn định và chống chuyển vị của bộ tời trong quá trình hoạt động. Công đoạn này được thực hiện sau khi đã lắp cáp chịu lực và căn chính lần cuối.

1.3.10. Lắp cáp chịu lực

Lắp cáp chịu lực của thang máy nghĩa là cố định đầu cáp vào dầm trên của khung cabin và dầm trên của khung đối trọng, sau khi cáp đã vòng qua puly ma sát

và các puly đổi hướng theo đúng sơ đồ mắc cáp của nhà chế tạo. Thực tế thường được thực hiện như sau

- + Để nguyên khung đối trọng ở vị trí tầng trêt và dùng tời kéo cabin lên tầng trên cùng và cao hơn mặt sàn một khoảng theo yêu cầu của nhà chế tạo (phụ thuộc vào tốc độ của thang máy). Cố định cabin ở vị trí an toàn.
- + Đo chiều dài thực tế của cáp và lấy dấu trên cáp (chú ý kiểm tra kiểu cố định đầu cáp) để cắt cáp đúng chiều dài cần thiết.
- + Cắt cáp: dùng kéo chuyên dùng để cắt cáp, trước khi cắt, phải dùng dây thép mềm buộc hai bên chỗ nhát cắt (cách chỗ cắt chừng 50 mm).
 - + Cố định đầu cáp vào thanh treo cáp: có hai cách cố định sau:
- dùng kẹp cáp: kẹp cáp do nhà chế tạo cung cấp và khoảng cách giữa các kẹp cáp được chi dẫn trong bản vẽ lấp đặt. Trường hợp không được chi dẫn có thể tham khảo theo hình 5.20a, hoặc theo TCVN 4244-1986;
- đổ babit: trước khi đổ babit phải tởi cáp, buộc cáp và bỏ vào cối hình côn liên kết với thanh treo cáp theo chỉ dẫn ở hình 5.20b.

Thi công tất cả các đầu cáp, sau đó cố định lần lượt từng sợi một. Để tránh nhầm lẫn khi cố định đầu cáp dẫn đến cáp bị chéo nhau, cần phải đánh dấu các lỗ theo một quy ước nhất định.

+ Cố định thanh treo cáp vào dầm trên của khung cabin và khung đối trọng. Cân bằng sức căng đều của các sợi cáp chịu lực.

1.3.11. Lắp bộ hạn chế tốc độ

Bộ hạn chế tốc độ có chúc năng rất quan trọng trong sử dụng an toàn thang máy. Vì vậy lấp đặt nó phải đảm bảo độ chính xác và an toàn cao.

- + Xác định vị trí lỗ cáp xuyên sàn theo bản vẽ. Lấy chuẩn từ trục cáp và tâm ray dẫn hướng.
 - + Lắp để và bộ hạn chế tốc độ vào vị trí.
- + Lắp thiết bị căng cáp bộ hạn chế tốc độ phía đáy giếng thang. Chú ý đảm bảo khoảng cách thông thủy kể từ đáy giếng tới phần dưới cùng của đối trọng, sao cho trong quá trình hoạt động của thang máy, khi cáp bị dẫn thì đối trọng không chạm đất.
- + Đo chiều dài dây cáp cần thiết theo thực tế để cắt dây cáp. Cách cắt cáp và cách cố định dây cáp vào hệ thanh truyền để điều khiến bộ hãm bảo hiểm cabin (đối trọng) giống như cáp chịu lực ở mục 1.3.10.

+ Kiểm tra, căn chính và cố định bộ hạn chế tốc độ bằng các bulông nở liên kết với sàn máy hoặc bằng hàn với kết cấu thép trong hệ khung, dầm của hệ tời hoặc công trình.

1.3.12. Rải và cố định dây đuôi trong giếng thang

Dây đuôi dược nối từ tử điều khiển (tử điện) ở buồng đặt máy với các thiết bị đi kèm với cabin. Khi cabin di chuyển thì dây đuôi cũng di chuyển theo, cần đảm bảo không bị xoắn hoặc cọ xát giữa các dây với nhau hoặc với các vật khác trong giếng thang. Trình tự được thực hiện như sau

+ Đo và xác định điểm cố định trung gian vào thành giếng của dây đuôi trong giếng thang. Điểm này được xác định như sau:

$$H = \frac{1}{2}T + 500 \text{ mm}.$$

trong đó:

- H khoảng cách tử sàn tầng trệt (điểm dừng dưới cùng) của cabin tới điểm cố định;
- T hành trình của cabin.
- + Cố định dây đuôi vào phần trên cùng giếng thang (phía dưới sàn đặt máy). Thông thường, cố định nhờ một thanh ngang gắn vào đoạn trên của ray. Khi cố định, cần phải kiểm tra độ dài của dây đủ để nối với tủ điều khiển đã được lấp đặt cố định tại buồng đặt máy, sau đó mới rải dây. Dây có thể rải bằng tay hoặc bằng

Hình 5.20a. Cố định cáp bằng kẹp cáp.

Hình 5.20b. Cố định cáp bằng cách đổ babit.

một thiết bị chuyên dùng (hình 5.21).

Để tránh sự cọ xát giữa các sọi dây đuôi với nhau, khi cabin ở vị trí tầng trên cùng thì phần võng xuống giữa các sọi phải cách nhau tối thiểu 50mm, đồng thời, để dây đuôi không bị gấp khúc thì khoảng cách tối thiểu giữa điểm nối cố định vào thành giếng và điểm nối với đáy cabin là 500-600 mm, (hình 5.22).

Hình 5.21. Dải dây cho đuôi.

Hình 5.22. Cố định dây đuôi trong giếng thang.

Khi cố định dây đuôi vào phía dưới đáy cabin, cần chú ý khoảng cách phần vống xuống của dây duôi khi cabin ở vị trí dùng tại tầng trệt (tầng dưới cùng) không được chạm vào đáy giếng thang mà phải cách ít nhất một khoảng là 300 mm.

1.3.13. Lắp các bộ phận còn lại trong giếng thang

+ Lắp công tắc hạn chế hành trình trên cùng và dưới cùng (cụm công tắc an toàn). Phụ thuộc vào tốc độ của thang máy mà cụm này có thể có 3 hoặc 4 công tắc và khoảng cách giữa các công tắc khác nhau, đồng thời vị trí lắp đặt của nó so với sàn tầng trên cùng và dưới cùng cũng khác nhau.

- + Lắp hệ thống công tắc dùng tầng chính xác, bao gồm phần lắp vào đầu cabin và vào ray dẫn hướng cabin hoặc thành giếng thang.
- + Lắp công tắc dùng (stop) ở đáy giếng thang dùng cho kiểm tra và sửa chứa dưới đáy giếng thang.
 - + Đi dây điều khiển gọi tầng và tín hiệu tầng.
 - + Đi dây điện thoại nội bộ (interphone).

1.3.14. Đấu điện

Đối với những thang máy đã được chế tạo phần điện ở mức độ hoàn thiện cao tại nhà máy, thì việc đấu điện rất đơn giản. Đấu điện tại hiện trường chỉ việc cắm các giác cắm theo màu sắc hoặc ký hiệu sẵn.

Nhưng cũng có những thang máy phải đấu điện tại hiện trường từ những dây và đầu cốt cấp theo. Trường hợp này, đấu điện rất phức tạp, đòi hỏi phải cấn thận, chính xác, tỷ mi.

Dụng cụ và vật tư phụ cần phải có để đấu dây là kìm cắt, kìm rút dây, tuôc nơ vit (loại dẹt, loại 4 chấu), mỏ hàn, đồng hồ đo điện vạn năng, kìm bóp đầu cốt thủy lực, băng dính, thiếc hàn, dây rút,...

Thông thường các nhà chế tạo đều cung cấp sơ đồ nguyên lý và sơ đồ đấu dây. Nhưng cũng có những nhà chế tạo không cung cấp sơ đồ đấu dây. Trong trường hợp này, bắt buộc phải thiết lập sơ đồ đấu dây trên cơ sở của sơ đồ nguyên lý.

Trước khi đấu điện cần phải:

- + kiểm tra dây dẫn;
- + đánh số dây;
- + kẹp đầu cốt: phải kẹp thật chặt và kiểm tra ngay sau khi kẹp.

Đấu điện: đấu ở buồng đặt máy, trong giếng thang (trên nóc cabin, trong cabin, các đầu của, các hộp gọi tầng, tín hiệu, chiếu sáng, an toàn, ...). đấu theo từng khối một, xong khối nào phải kiểm tra ngay khối đó.

§2. HIỆU CHỈNH THANG MÁY

Thang máy sau khi lắp đặt xong, phải có chuyên viên có trình độ chuyên môn cao kiểm tra lần cuối và hiệu chỉnh trước khi tổ chức kiểm định kỹ thuật an toàn.

Mục đích của việc kiểm tra lần cuối và hiệu chỉnh là xem xét lại tất cả các công việc lắp đặt phần cơ và phần điện, đồng thời hiệu chỉnh các thông số động học và các kích thước, khoảng cách khe hở giữa các chi tiết, các bộ phận phù hợp so với sơ đồ lắp đặt của nhà chế tạo cung cấp.

Dụng cụ cần thiết và vật tư phụ: ngoài những dụng cụ và vật tư phụ dùng để đấu điện cần phải trang bị thêm dụng cụ cơ khí cầm tay, thiết bị hiệu chỉnh (ampe kìm, tốc độ kế, máy đo dao động cầm tay chuyên dùng cho thang máy,...) và các tấm căn đệm.

Công tác kiểm tra lần cuối và hiệu chỉnh thường thực hiện theo các bước sau

- 1. Kiểm tra bên ngoài: trong buồng đặt máy, trong giếng thang, trong cabin.
- 2. Kiểm tra điện nguồn cung cấp cho thang máy.
- 3. Kiểm tra tiếp địa dành riêng cho thang máy, theo quy định của TCVN 6395-1998 và TCVN 6396-1998.
 - 4. Kiểm tra và cho thang máy chạy tốc độ chậm (tốc độ kiểm tra).
- 5. Kiểm tra đầu cửa tầng, đầu cửa cabin và căn chỉnh khóa liên động giữa cửa cabin và cửa tầng, khóa cửa tầng và các tiếp điểm của cửa tầng.
 - 6. Kiểm tra khóa kẹp cáp, đầu cáp, sức căng đều giữa các sơi cáp chiu luc.
- 7. Chỉnh phanh điện từ: điều chính khe hỏ của má phanh và bánh phanh, lực của lò xo.
- 8. Kiểm tra và hiệu chính bộ điều khiển động cơ, cho thang máy chạy tốc độ nhanh.
- 9. Kiểm tra dòng điện ở các chế độ tải trọng: không tải, 50%, 75% và 100% tải.
 - 10. Do độ chênh lệch giữa sàn cabin và sàn tầng (cả chiều lên và chiều xuống).
 - 11. Chỉnh độ dùng tầng chính xác.
 - 12. Chinh công tắc quá tải.
- 13. Kiểm tra và thủ bộ cứu hộ khi mất điện nguồn, đèn cứu hộ, chuồng báo khẩn cấp,...
 - 14. Chỉnh tốc độ đóng, mở cửa cabin và thời gian mở của.
 - 15. Chinh độ êm dịu của cabin khi khởi động, khi dùng tầng.
 - 16. Kiểm tra sự hoạt động của thang theo lệnh gọi trong và ngoài cabin.

§3. KIỂM ĐỊNH KỸ THUẬT AN TOÀN THANG MÁY

1. Mục dích của việc kiểm định thang máy

Kiểm tra các thông số và các điều kiện liên quan đến sự hoạt động an toàn của thang máy phù hợp với TCVN 5744-1993, TCVN 6395-1998 và TCVN 6396-1998.

Nếu những thông số và điều kiện không đảm bảo an toàn thì phải đình chi sử dụng để phục hồi, sửa chữa.

Những trường hợp bắt buộc phải kiểm định:

- + sau khi lắp đặt xong, trước lúc đưa thang máy vào sử dụng;
- + sau một thời gian hoạt động (khám nghiệm dịnh kỳ) tùy thuộc vào từng loại thang. Có thể từ 2-4 năm sử dụng;
 - + sau khi sửa chữa, có thay đổi các thông số cơ bản và các bộ phận chính.
- 2. Điều kiện và các thủ tục cần thiết để xin kiểm định và cấp giấy phép sử dụng thang máy
- + Thang máy đã được lắp đặt hoàn chính, đã được kiểm tra lần cuối và hiệu chính theo dúng các thông số của nhà chế tạo.
- + Đơn vị sử dụng (hay chủ đầu tư) phải có công văn đề nghị kiểm định kỹ thuật an toàn thang máy, gửi thanh tra nhà nước về an toàn lao động và trung tâm kiểm định kỹ thuật an toàn.
- + Phải có hồ sơ thang máy (thường do đơn vị lấp đặt lập, dựa trên cơ sở hồ sơ gốc của nhà chế tạo cung cấp).

Hồ sơ bao gồm:

- lý lịch thang máy;
- sơ đồ cơ;
- sơ đồ điện;
- hướng dẫn sử dụng và vận hành thang máy.
- + Thành phần tham gia và chứng kiến kiểm định: đại diện trung tâm kiểm định, chủ sử dụng (chủ dầu tư), đơn vị lấp dặt hoặc bảo trì. Trong một số trường hợp đặc biệt thì phải có đại diện của thanh tra nhà nước về an toàn lao động.
 - 3. Quy trình kiểm định

Quy trình kiểm định, do thanh tra nhà nước về an toàn lao động thuộc Bộ lao động thương binh và xã hội biên soạn, thống nhất trong cả nước, phù hợp với TCVN 5744-1993, TCVN 6395-1998 và TCVN 6396-1998.

- + Kiểm tra không tài: cho thang máy chạy không tải lên, xuống để đánh giá.
- + Kiểm tra bên ngoài: kiểm tra buồng đặt máy, bộ tời kéo, vị trí tủ điện, bộ hạn chế tốc độ, lối lên xuống buồng đặt máy.
 - + Kiểm tra các kích thuớc thông thủy ở đáy giếng thang: chiều sâu đáy giếng

P, bề rộng giếng thang W, bề sâu giếng thang D.

- + Kiểm tra nút dùng (stop) dùng cho kiểm tra và bảo dưỡng, thiết bị căng cáp của bộ hạn chế tốc độ và công tắc an toàn, khoảng sáng ở đáy giếng thang khi lò xo hoặc pittông thủy lực nén hết... Chiều cao đinh giếng OH. Chống thấm đáy giếng thang, buồng dặt máy.
- Thủ tải tĩnh: dưa cabin về diểm dùng thấp nhất. Chất tải theo quy định (200% tải trọng danh nghĩa đối với thang máy được dẫn động bằng puly ma sát, 150% tải trọng danh nghĩa đối với thang máy được dẫn động bằng tang cuốn cáp.), treo trong thời gian 10 ph. Chú ý là trước lúc chất tải phải tháo công tắc hạn chế tải trọng (chống quá tải).

Trong quá trình treo tải phải kiểm tra phanh điện tù, cáp và khả năng bám của cáp trên rãnh puly ma sát, biến dạng của kết cấu thép, các mối hàn, đầu kẹp cáp, đo độ lệch giữa sàn cabin và sàn tầng đang tiến hành thủ tải.

- + Thủ tải động: chất tải 110% tải trọng danh nghĩa, cho cabin chạy lên, xuống ba lần (chạy hết hành trình). Kiểm tra phanh điện tù, phát nhiệt của động cơ.
- + Kiểm tra độ dùng chính xác giữa sàn cabin và sàn tầng (ở tất cả sàn tầng mà cabin dùng) với chế độ tải trọng bằng 100% tải trọng danh nghĩa và ở chế độ không tải. Độ sai lệch phải nằm trong phạm vi cho phép theo TCVN 5744-1993, TCVN 6395-1998 và TCVN 6396-1998.
- + Thủ bộ hãm bảo hiểm trong trường hợp cabin vượt tốc, khi cabin đi xuống với tải theo quy định trong quy trình kiểm định. Kiểm tra vết hãm trên ray.
- + Thủ chuông báo, diện thoại nội bộ trong trường hợp có điện và mất điện. Thủ đèn cứu hộ trong cabin khi mất điện nguồn.
 - + Thủ bộ cứu hộ khi mất diện nguồn (nếu thang máy có trang bị).
- + Kiểm tra tốc độ danh nghĩa và tốc độ chậm dùng cho kiểm tra và bảo trì thang máy.
 - + Kiểm tra số lượng bản mã và khoảng cách giữa các bản mã theo thiết kế.
 - + Kiểm tra khóa của tầng (tất cả các của tầng).
 - + Thủ công tắc cứu hỏa.
 - + Thủ công tắc quá tải.

Cuối cùng, đại diện trung tâm kiểm định lập biên bản và thông qua trước tất cả các thành viên tham gia và chứng kiến.

§4. QUẨN LÝ SỬ DỤNG AN TOÀN THANG MÁY

Thang máy là một thiết bị vận chuyển người và hàng hóa trong các tòa nhà cao tầng, đòi hỏi nghiêm ngặt về kỹ thuật an toàn, vì vậy nhà nước đã ban hành các quy trình quy phạm trong trang bị, lấp đặt, quản lý sử dung.

4.1. Tổ chức quản lý

Chủ sử dụng thang máy căn cứ vào số lượng, loại thang và mục đích sử dụng của tòa nhà, căn cứ vào các hoạt động kinh doanh của đơn vị để tổ chức quản lý sử dụng an toàn và có hiệu quả.

Có thể tổ chức cả một đội, một tổ hay một vài cá nhân chịu trách nhiệm. Nhưng dù bất kỳ hình thức nào cũng phải cần

- 1. Xác định rõ họ tên của người chịu trách nhiệm chính, người thay thế khi vắng mặt để trực và giải quyết các sự cố bất thường xảy ra trong quá trình hoạt động của thang.
 - 2. Quản lý hồ sơ kỹ thuật của thang máy.
 - 3. Quy định rõ nơi để các loại chìa khóa, dụng cụ cứu hộ (đèn bin, thang,...).
- 4. Trên cơ sở hướng dẫn vận hành và sử dụng thang máy của nhà chế tạo hoặc của đơn vị lấp đặt cung cấp, biên soạn nội quy sử dụng phù hợp với tổ chức của đơn vị mình.
- 5. Quy định người chịu trách nhiệm liên hệ với các cơ quan chức năng khi cần thiết như phòng cháy chữa cháy, dịch vụ sửa chữa thang máy hay đơn vị bảo trì,...
- 6. Tổ chức cho người quản lý vận hành theo học các lớp bồi dưỡng nghiệp vụ chuyên môn do các cơ quan có đủ thẩm quyền tổ chức.
- 7. Lập các phương án xử lý khi có các sự cố xảy ra như hỏa hoạn, động đất, mất diện nguồn,...
- 8. Quy định chu kỳ và thời gian kiểm tra bảo dưỡng để duy trì tình trạng kỹ thuật tốt cho thang máy hoat động an toàn và tin cây.

4.2. Nhiệm vụ của người quán lý vận hành thang máy

1. Yêu cầu của người quản lý vận hành thang máy

Trong TCVN 5744-1993 điều 1.4 ghi rõ: người chịu trách nhiệm quản lý về sự hoạt động an toàn và người vận hành thang máy phải được huấn luyện cơ bản về nghiệp vụ mà mình đảm nhiệm, cụ thể

a) Hàng ngày phải mở và tắt máy (tùy theo thời gian quy định phục vụ) theo đúng quy trình của nhà chế tạc hay hướng dẫn của đơn vị lấp đặt. Đầu giờ, khí mở

thang máy, người quản lý phải vào trong cabin đi lên, xuống để kiểm tra toàn bộ thang. Nếu có hiện tượng khác thường thì phải dùng thang để xử lý. Khi kiểm tra có thể theo so đồ ở hình 5.23.

Hình 5.23. So đồ kiểm tra thang máy.

Khi tắt máy, bắt buộc phải kiểm tra để đảm bảo không có người ở trong cabin và nên đưa cabin về tầng trên cùng để tránh các trường hợp nước có thể chảy vào giếng thang do khi vệ sinh sàn tầng hay nước mua tràn vào.

- b) Bảo dưỡng sau ca làm việc: vệ sinh, lau chùi trong cabin và trước các cửa tầng (làm sạch các rãnh dẫn hướng của ngưỡng cửa cabin và ngưỡng cửa tầng). Cần phân rõ trách nhiệm giữa những công việc của người quản lý và của đơn vị bảo trì.
- c) Phát hiện những hiện tượng khác thường và kịp thời dùng thang (nếu thấy nguy hiểm), báo cáo lên phòng quản lý chức năng để xử lý. Ví dụ: cabin bị rung, lắc, giật mạnh; đèn chiếu sáng trong cabin không sáng; chuông gọi khẩn cấp không kêu; điện thoại nội bộ hỏng; cửa đóng, cửa rung, giật, hoặc va đập mạnh; dùng tầng không chính xác; có tiếng kêu lạ,...
 - d) Xử lý để đưa người ra khỏi cabin khi có sự cố.

Dù bất kỳ trường hợp sự cố nào, đầu tiên phải dùng điện thoại nội bộ (interphone) để liên lạc với người ở trong cabin và thông báo với họ bình tính chờ người đến mở của. Tránh hiện tượng tự động cậy của, đập của làm tổn thất đến thang máy và có thể gây nguy hiểm không thể lường trước được.

- 2. Các trường hợp xử lý
- a) Mất điện nguồn đột ngột
- + Nếu thang máy được trang bị bộ cứu hộ thì cabin sẽ tự động di chuyển với tốc độ chậm, thông thường về tầng gần nhất, tự động dùng đúng tầng và mở của để giải phóng người ra khỏi cabin.

Có

Kiểm tra tình trạng của thang:
cháy, ngập nước,... không?

Không

Cho thang chạy tốc độ chậm dùng tùng tầng (lên một lần, xuống một lần) để kiểm tra

Có

Có điều khác thường không?

Không

Dơn vị bảo trì hoặc dịch
vụ sửa chữa

Cho thang máy hoạt động

Hình 5.24. a) So đồ xử lý thang máy khi hỏa hoạn; b) So đồ xử lý thang máy sau khi hỏa hoạn.

- + Nếu thang máy được cung cấp một hệ thống máy phát điện dự phong khi mất điện nguồn, qua bộ chuyển mạch tự động thì thang máy tiếp tục hoạt động bình thường.
- + Nếu thang máy không được trang bị thiết bị cứu hộ hoặc máy phát dự phòng như đã nêu ở trên, hoặc được trang bị nhưng vì do một lý do nào dó mà chúng làm việc kém tin cậy hoặc hỏng thì phải kịp thời xử lý như sau: dùng chìa khóa chuyên dùng mỏ ngay cửa tầng gần nhất và quan sát rồi phán đoán xem cabin dang ở tầng nào. Đến ngay tầng đó mỏ cửa cabin để giải phóng người ra (nếu sàn cabin và sàn tầng không chênh lệch quá lớn, không gây mất an toàn khi người ra khỏi cabin). Trường hợp ngược lại, cửa cabin bị che kín bởi vách giếng thang hoặc khoảng hỏ quá bé không đủ diều kiện an toàn cho người ra khỏi cabin thì phải len buồng đặt máy xử lý.

Trình tự xử lý như sau:

- ngắt điện nguồn cung cấp cho thang máy;
- dùng vôlăng hay tay quay để quay tời theo chiều nào nhẹ hơn (tùy thuộc vào số người có trong cabin). Khi quay có thể nói phanh điện từ để đưa cabin về dùng đúng tầng;
 - dùng chìa khóa mỏ cửa tầng, cửa cabin để giải phóng người ra khỏi cabin;
 - đóng kín của cabin và của tầng bằng tay.
- b) Vẫn có diện nguồn nhưng vì một lý do nào đó mà cabin bị dùng đúng hoặc không đúng tầng nhưng cửa cabin không mở hoặc cabin chạy, dùng liên tục mà cửa cabin vấn không mở. Trong trường hợp này cần liên hệ với người ở trong cabin và thông báo với họ chờ để xử lý. Cách xử lý giống như trường hợp mất điện nguồn.
 - c) Trường hợp khi có hỏa hoạn thì xử lý theo sơ đồ hình 5.24.

§5. BẢO TRÌ KỸ THUẬT THANG MÁY

5.1. Khái niệm chung

Bảo trì kỹ thuật là tổng hợp các biện pháp kỹ thuật nhằm duy trì cho thang máy luôn ở trạng thái kỹ thuật tốt, đảm bảo an toàn và tin cậy trong quá trình sử dụng.

Cho đến nay, bảo trì các thiết bị, máy móc đã trở thành một việc làm thông lệ, cần thiết và có tính chất bắt buộc, đặc biệt đối với thang máy, đòi hỏi nghiêm ngặt về kỹ thuật an toàn trong sử dụng lại cần phải hết sức coi trọng. Nhiều quốc gia trên thế giới đã ban hành các quy trình, quy phạm có tính chất pháp lý để phục vụ các công việc nói trên. Ở Việt Nam, năm 1993 mới bắt đầu chính thức có các quy

trình, quy phạm để quản lý thang máy.

Nếu vì một lý do nào đó, không thường xuyên kiểm tra, chăm sóc, bảo trì thang máy thì rất có thể dến một thời điểm nào đó thang máy có thể xảy ra những sự cố nguy hiểm không thể lường trước được.

Thời gian sử dụng thang máy (tuổi thọ thang máy) theo quy định của nhiều quốc gia không thể dưới 10 năm, ví dụ: ở Nhật Bản không dưới 17 năm.

Để có thể duy trì tuổi thọ của thang máy như mong muốn, cần thiết phải kiểm tra, bảo dưỡng thường xuyên một cách nghiêm túc. Nếu không, dù thang máy siêu bền di chẳng nữa cũng không thể duy trì được thời gian sử dụng theo luật định. Mặt khác, có thể có những sự cố gây mất an toàn cho người sử dụng, gây hỏng hóc phải sửa chữa, thay thế dẫn đến chi phí sử dụng tăng hay nói cách khác là thiệt hại về kinh tế.

Quan niệm cho rằng, bình thường thang máy vẫn chạy tốt, không có trực trặc nên không cần bảo trì là hoàn toàn không đúng. Vì mục đích cuối cùng của việc kiểm tra, bảo trì là để phòng ngừa thang máy không xảy ra các sự cố hỏng hóc, gây mất an toàn và phải ngừng thang không theo ý muốn.

Theo TCVN thì chi sử dụng thang máy ở trạng thái kỹ thuật tốt và đã được cấp giấy phép sử dụng. Như vậy, phải đánh giá được trạng thái kỹ thuật của thang máy một cách thường xuyên. Bảo trì thang máy bao gồm các công việc kiểm tra và bảo dưỡng.

5.2. Kiểm tra kỹ thuật thang máy

5.2.1. Kiểm tra hàng ngày của thợ vận hành

Đầu giờ mở máy cho thang hoạt động, phải vào trong cabin đi lên, đi xuống ít nhất là một lần để kiểm tra tình trạng kỹ thuật của thang. Cần đánh giá tình trạng kỹ thuật khi khởi động và dùng thang.

Kiểm tra đánh giá các bộ phận sau

- + Hệ thống chiếu sáng trong cabin
- + Quat gió trong cabin
- + Bảng điều khiến trong cabin: các nút ấn chọn tầng; nút ấn đóng nhanh và mở nhanh trước khi của tự động đóng, mở; nút ấn chuông khi có sự cố; điện thoại nội bộ; đèn chiếu sáng khi mất điện nguồn; chuông quá tải; các tín hiệu khác nếu được trang bị.
 - + Đóng mở của cabin, công tắc an toàn của khi gặp chướng ngại vật (bằng tế

bào quang điện hay bằng công tắc điện)

- + Các của tầng
- + Độ dùng chính xác (sai lệch giữa sàn cabin và sàn của tầng)
- + Buồng đặt máy.

5.2.2. Kiểm tra kỹ thuật định kỳ

Chu kỳ kiểm tra kỹ thuật định kỳ có thể do nhà chế tạo hoặc do bộ ngành hoặc chủ sử dụng yêu cầu. Tùy thuộc vào chất lượng từng loại thang, từng nhà sản xuất, thời gian đã sử dụng, tình trạng kỹ thuật của thang, ... để định ra một chu kỳ hợp lý, qua đó có thể dự báo, phòng ngừa các sự cố kỹ thuật có thể xảy ra và các bộ phận phải thay thế trong thời gian tới. Trên cơ sở đó, chủ sử dụng có kế hoạch mua sắm vật tư, phụ tùng thay thế, đồng thời khẳng định được tình trạng kỹ thuật của thang.

Người kiểm tra định kỳ là người am hiểu sâu về chuyên môn và được sự ủy nhiệm của một cơ quan chuyên môn nào đó.

Nội dung công việc kiểm tra định kỳ

- . a) Kiểm tra trong buồng đặt máy
 - + Kiểm tra điện áp nguồn vào và các thiết bị đóng ngắt điện.
- + Kiểm tra các linh kiện, bộ phận trong tủ điều khiển: aptomat, côngtăcto, role, ăcquy, quạt làm mát...
 - + Kiểm tra phanh điện từ: khe hỏ má phanh, tình trạng đóng ngất.
- + Kiểm tra dầu trong hộp giảm tốc: mức dầu, chất lượng dầu hiện tại, độ kín khít ở các cổ trục.
 - + Kiểm tra rãnh puly ma sát.
- + Kiểm tra tình trạng của dây cáp chịu lực, tình trạng bề mặt, độ mòn, số sợi đút trong một bước cáp.
- + Bộ cam xích dùng tầng: tình trạng các tiếp điểm, cam, bộ truyền động vít me, bộ truyền xích (đối với các thang máy còn sử dụng bộ dùng tầng kiểu này).
 - + Kiểm tra bộ hạn chế tốc độ: tiếp điểm điện, dây cáp, lẫy cơ, lò xo.
 - + Kiểm tra độ ẩm, nhiệt độ trong buồng đặt máy.
 - b) Kiểm tra trong giếng thang

Vào trong nóc cabin, cho thang máy chạy ở tốc độ dùng cho kiểm tra. Đầu tiên

phải kiểm tra tình trạng các nút ấn điều khiển trên nóc cabin, sau đó mới tiến hành kiểm tra các bộ phận khác.

Kiểm tra tuần tự từ trên xuống

- + Cụm công tắc hạn chế hành trình trên, dưới: liên kết giữa giá lắp công tắc với ray, giữa công tắc và giá, tình trạng của công tắc.
 - + Mối liên kết giữa bản mã và vách (dầm) giếng thang.
- + Mối liên kết giữa ray và bản mã (giữa hai bản mã nếu có liên kết bằng bulông).
- + Các mối nối ray: tấm ốp và các bulông, các gờ tại chỗ nối của ray cabin và ray đối trọng.
- + Cố định đầu kẹp cáp treo chịu lực ở dầm trên cabin và đối trọng: kẹp cáp, chêm cáp, bề mặt lớp babit, bulông và đai ốc của các thanh treo cáp.
 - + Sức căng đều của các dây cáp chịu lực.
 - + Các giá lắp hệ thống tín hiệu dùng tầng: lá chắn phôtô, các tấm nam châm,...
- + Cụm liên kết giữa dây cáp của bộ hạn chế tốc độ với cabin, đối trọng: lò xo, kẹp cáp, công tắc an toàn khi bị chùng cáp treo đối trọng của bộ hạn chế tốc độ.
- + Hệ thống tay đòn (dây phanh) điều khiển bộ hãm bảo hiểm cabin, đối trọng: các khóp quay, công tắc an toàn, khe hở giữa nêm (con lăn) và ray.
- + Hệ thống cáp hoặc xích bù: các mối cố định xích hoặc cáp bù với cabin, dối trọng (giếng thang).
- + Các cụm bạc trượt dẫn hướng của cabin và đối trọng: khe hở giữa các má trượt với ray, bulông liên kết.
 - + Các cụm định vị và dẫn hướng cabin với khung cabin.
- + Thanh cam điều khiển các cụm công tắc hạn chế hành trình trên và dưới trong giếng thang.
- + Đầu cửa tầng. Các bánh xe treo cánh của; các bánh xe lệch tâm; tiếp điểm điện kín mạch của tầng; khóa của tầng; cụm khóa liên động với của cabin; dây cáp, kẹp cáp và đối trọng của tầng.
 - + Hộp đựng dầu bôi tron ray dẫn hướng cabin và đối trọng.
 - + Các dây điều khiển, dây đuôi, tín hiệu, hộp nối đầu dây.
 - + Cụm đối trọng của bộ hạn chế tốc độ: cụm puly, công tắc an toàn.
 - + Các tấm chắn an toàn: đầu cửa, chân cửa cabin, chân cửa tầng.

- + Công tắc quá tải.
- + Hệ thống giảm chấn của cabin và đối trọng, đặc biệt đối với loại giảm chấn bằng dầu: độ kín khít, lượng dầu, chất lượng dầu.
 - + Nút dùng (stop) ở gần đáy giếng cabin.
 - c) Kiểm tra trong cabin
 - + Hệ thống đèn chiếu sáng.
 - + Đèn cứu hộ dùng nguồn ăcquy hay pin khô khi bị mất điện nguồn.
 - + Hệ thống quạt thông gió hoặc điều hòa không khí.
 - + Chuông báo khẩn cấp (Emergency).
 - + Điện thoại nội bộ (Interphone)..
- + Bảng điều khiển trong cabin: nút ấn chọn tầng, nút ấn đóng và mỏ trước khi của tự động đóng và mỏ, nút ấn khi có sự cố, hộp thao tác của người vận hành hoặc khi sửa chữa, tín hiệu chiều lên xuống và chi thị dùng tầng của cabin.
- + Công tắc an toàn của cabin khi đóng gặp chướng ngại vật: tiếp điểm điện và tay đòn điều khiển, tế bào quang điện (photo sensor).
 - d) Kiểm tra ngoài tầng (ở tất cả các cừa tầng)
 - + Tín hiệu chiều lên xuống.
 - + Nút ấn gọi tầng.
 - + Khóa của tầng.
 - + Công tắc cứu hỏa (khóa chạy/ dùng ở tầng trệt).
 - + Các cánh của tầng khi đóng và mở của.

5.3. Bảo dưỡng thang máy

Bảo dưỡng thang máy phải được tiến hành thường xuyên và định kỳ. Cần phải phân rõ trách nhiệm công việc bảo dưỡng hàng ngày (sau ca làm việc) và bảo dưỡng định kỳ.

5.3.1. Bảo dưỡng hàng ngày

Bảo dưỡng hàng ngày do người quản lý thang máy thực hiện. Người quản lý thang máy phải thường xuyên có ý thức chăm sóc, bảo dưỡng ở những khu vực hay dây bẩn và có thể gây nguy hiểm cho thang máy, nhu khu vực trong cabin: lau chùi vách cabin, trần cabin, tay vịn, bảng điều khiển, cánh của cabin, rãnh dẫn hướng ở ngưỡng của cabin. Trước các của tầng: rãnh dẫn hướng của ngưỡng của tầng, cánh của tầng, các hộp gọi tầng.

5.3.2. Bảo dưỡng đinh kỳ

Bảo dưỡng định kỳ, thông thường phải nhờ một đơn vị chuyên môn có tư cách pháp nhân (giấy phép hành nghề) do thanh tra nhà nước về an toàn lao động cấp. Nếu đơn vị sử dụng tự làm thì phải có cán bộ, công nhân được đào tạo, hay đã qua các lớp bời dưỡng và được cấp chứng chỉ về lĩnh vực thang máy. Thời gian một chu kỳ bảo dưỡng do nhà chế tạo hoặc do bộ, ngành quy định. Trên cơ sở đó, chủ sử dụng lập kế hoạch bảo trì, để đảm bảo kế hoạch khai thác và sử dụng thang máy có hiệu quả, không làm ảnh hưởng đến quá trình kinh doanh và sử dụng.

Nội dung công tác bảo dưỡng định kỳ

- + Vệ sinh công nghiệp toàn bộ thang và kết hợp với kiểm tra (theo quy trình kiểm tra định kỳ): trong buồng đặt máy, trong giếng thang, trong cabin, trước các của tầng.
- + Dựa vào biên bản kiểm tra định kỳ và kết quả kiểm tra thực tế tại thời điểm bào dưỡng để căn chính những bộ phận, những chi tiết đã vượt quá quy định. Thay thế những chi tiết, những bộ phận kém tin cây.
- + Thay dầu hộp giảm tốc, dầu bối tron ray, bơm mỡ, tra dầu, mỡ vào những chỗ đã được quy định của nhà chế tạo (các khóp quay của phanh điện từ, bộ hạn chế tốc độ và hệ thống tay đòn điều khiển bộ hãm bảo hiểm cabin và đối trọng, các cổ trực...).

Kết thúc công việc bảo dưỡng, cần phải cho thang chạy ở các chế độ tải trọng khác nhau, các chế độ tốc độ để kiểm tra, theo dõi và chỉ khi không có vấn đề gì mối bàn giao cho người sử dụng.

TÀI LIỆU THAM KHẢO

- [1] Thang máy điện, thang máy thủy lực và băng tải chở người. Yêu cầu an toàn về cấu tạo và lấp đặt (TCVN 6395 - 1998; TCVN 6396 - 1998; TCVN 6397 - 1998; TCVN 4244 - 1986)
- [2] British standard BS 5655 Part 1 1988; Part 2 1988; Part 3 1989; Part 5 - 1989.
- [3] OTIS
 Passenger lift Planning Guide otis elevator 1991
- [4] International Standard ISO. 4190 1Third edition, masch 1995
- [5] G. Kh. Stremel Gruzopodemnye maschinery Moskva - shcola - 1980
- [6] Traffic CaculationTraffix 9. 1996
- [7] K. WantanabeTraffic analyses introductionSchindler Guide
- [8] N. Tchavushian Asansora i shaktni podemniki maschir Sofia - 1980
- [9] Japanese industrial standard.
 Size of car and hoistway of elevators Jis A. 4301-1983
- [10] Manual of elevator adjustment Nippon Elevator Mfg. Japan
- [11] Execution precedure Nippon Elevator Mfg. Japan
- [12] Lubomir Janovsky. Elevator mechanical design. Technical University of Prague 1994
- [13] George R. Strakosch.
- Vertical transportation. Elevators and Escalavators. A. Wiley. Interscience Publication 1982
- [14] WCVF. Elevator manual for installation and adjustment. Hyundai Elevator. Korea 1996.

MÚC LỰC

	as '	Trang
Lời	i nói đầu	. 3
	Chitong 1. KHÁI NIỆM CHUNG	
§1.	Khái niệm chung về thang máy	5
§2 .	Lịch sử phát triển thang máy	6
§3.	Phân loại thang máy	6
§4 .	Khái niệm về ký hiệu thang máy	13
	Chương 2. CẤU TẠO THANG MÁY	
§1.	Cấu tạo chung và nguyên lý hoạt động của thang máy	14
§2.	Thiết bị cơ khí của thang máy	17
	2.1. Các thiết bị cố định trong giếng thang	17
	2.2. Cabin và các thiết bị liên quan	20
	2.3. Hệ thống cân bằng trong thang máy	32
	2.4. Bộ tời kéo	39
	2.5. Thiết bị an toàn cơ khí	47
	Chương 3. CHỌN THANG MÁY	
§1.	Khái niệm chung	55
§2 .	Các nguyên tắc chung khi lựa chọn thang máy	55
	2.1. Cơ sở lựa chọn	55
	2.2. Các chỉ tiêu khi chọn thang	56
	2.3. Chọn sơ bộ tốc độ định mức của thang máy V	64
§3.	Chọn thang máy	67
	3.1. Đại cương	67
	3.2. Tính chọn thang máy	69
§4 .	Nguyên tắc cơ bản khi bố trí nhóm thang máy	78
	Chương 4. GIẾNG THẮNG	
§1.	Khái niệm	84
	1.1. Giếng thang	84
	1.2. Các yêu cầu cơ bản khi thiết kế giếng thang	84
§2 .	Kích thước hình học cơ bản và độ chính xác kích thước hình học	85
	2.1. Các kích thước hình học cơ bản	85

2.2. Độ chính xác kích thước hình học	
§3. Kết cấu giếng thang	98
3.1. Vách, sàn, trần giếng thang	98
3.2. Đinh giếng	98
3.3. Hổ giếng	100
3.4. Buồng máy	100
	100
3.5. Thông gió giếng thang	102
Chương 5. LẮP ĐẶT, QUẢN LÝ, SỬ DỤNG VÀ BẢO TRÌ THANG MÁY	
\$1. Lắp đặt thang máy	100
1.1. Khái niệm chung	103
1.2. Công tác chuẩn bị trước khi tiến hành lắp đặt	103
1.3. Lắp đặt thang máy	106
§2. Hiệu chỉnh thang máy	110
§3. Kiểm định kỹ thuật an toàn thang máy	128
§4. Quản lý sử dụng an toàn thang máy	129
4.1. Tổ chức quản lý	132
	132
4.2. Nhiệm vụ của người quản lý vận hành thang máy §5. Bảo trì kỹ thuật thang máy	132
5.1. Khái niệm chung	135
	135
5.2. Kiểm tra kỹ thuật thang máy	136
5.3. Bảo dưỡng thang máy	139
Tài liệu tham khảo	141

Pgs. Ts. VŨ LIÊM CHÍNH (Chủ biên), Ts. PHẠM QUANG DỮNG, Ths. HOA VĂN NGỮ

THANG MÁY

(CẤU TẠO - LỰA CHỌN - LẮP ĐẶT VÀ SỬ DỤNG)

Chịu trách nhiệm xuất bản:

Biên tập:

Pgs. Ts. TÔ ĐĂNG HẢI

NGUYỄN THỊ KHOÁI

LÊ THANH ĐỊNH

NGUYỄN THỊ KHOÁI

HƯƠNG LAN

Sửa chế bản:

Vē bìa:

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT

70 Trần Hung Đạo, Hà Nội

In 1000 cuốn, khổ 19 x 27cm, tại Xí nghiệp in 19 - 8 số 3 đường Nguyễn Phong Sắc - Nghĩa Tân - Cầu Giấy - Hà Nội. Giấy phép xuất bản số: 6 - 513, ngày 5 tháng 1 năm 2004 In xong và nộp lưu chiểu tháng 3 năm 2004.