In this section, an academic example for which neither KKLO nor PEBO is applicable, but it is solvable via our new [KKL+PEB]O design.

Proposition 6: Consider the system

$$\dot{x}_1 = -x_1^3 + e^{x_3}
\dot{x}_2 = -x_2 + x_1^2 + \sin x_1
\dot{x}_3 = (x_1^2 + 1)^{-1} + x_1 u
y = x_1.$$
(31)

The following facts hold.

F3 The system does not admit a KKLO nor a PEBO.

F4 The system admits a [KKL+PEB]O, namely

$$\dot{\xi}_1 = -\xi_1 + y^2 + \sin y \tag{32}$$

$$\dot{\xi}_2 = uy + (y^2 + 1)^{-1} \tag{33}$$

$$\dot{\hat{\Theta}} = \gamma \psi (Y - \psi \hat{\Theta}) \tag{34}$$

$$\hat{x}_2 = \xi_1 \tag{35}$$

$$\hat{x}_3 = \xi_2 + \ln \hat{\Theta},\tag{36}$$

where $\gamma > 0$ is an adaptation gain, and Y and ψ are obtained via LTI filtering as

$$Y = \frac{\alpha p}{p + \alpha} [y] + \frac{\alpha}{p + \alpha} [y^3]$$

$$\psi = \frac{\alpha}{p + \alpha} [e^{\xi_2}], \ \psi(0) > 0$$
(37)

with $p:=\frac{d}{dt}$, and $\alpha>0$ is a [KKL+PEB]O that ensures

$$\lim_{t \to \infty} |\hat{x}_i(t) - x_i(t)| = 0, \ i = 2, 3.$$

Модель Simulink:

Оригинальная модель:

Наблюдатель:

Подмодели:

Подмодель ошибки:

<u>Графики вектора</u> состояния x:

Выход у:

x_2 оригинальной модели:

$\widehat{x_2}$ наблюдателя

x_3 оригинальной модели:

$\widehat{x_3}$ наблюдателя

График ошибки для x_2

График ошибки для x_3

