

B.Tech. Information Technology Question Bank

Course Outcomes:

- CO1 Apply the concept of probability in random variables. (K3)
- CO2 Apply the basic rules of continuous random variables. (K3)
- CO3 Understand the basic concepts of Statistics. (K2)
- CO4 Derive the inference for various problems using testing of hypothesis in large samples (K3)
- $\ensuremath{\mathrm{CO5}}$ Solve the problems related to testing of hypothesis in small samples (K3)

 $Knowledge\ Level:\ K1-Remember,\ K2-Understand,\ K3-Apply,\ K4-Analyze\ \&\ K5-Evaluate.$

	UNIT I	B. L
	PART A	
Q.1	State Forgetfulness property for Geometric distribution.	K1
Q.2	Define Probability function for Binomial distribution.	K1
Q.3	Define a discrete random variable with an example.	K1
Q.4	State the Properties of cdf $F(x)$.	K1
Q.5	Prove that the sum of two independent Poisson variates is a Poisson variate.	K1
Q.6	The mean and variance of a Binomial distributed are 4 and $\frac{4}{3}$ respectively. Find $P(X \ge 1)$ If $n = 6$	K2
Q. 7	If X is a Poisson variate such that $E(X^2) = 6$ find $E(X)$.	K2
Q.8	Find the MGF for binomial distribution	K2
Q.9	Derive Poisson Distribution As A Limiting Case of Binomial Distribution:	К3
Q.10	Eight coins are tossed simultaneously. What is the probability of getting atmost 2 heads?	К3
Q.11	If the probability of success on each trail is 0.25, after how many trials can we expect first success?	К3
Q.12	Write down the probability mass function of the Poisson distribution which is approximately equivalent to $B(100, 0.02)$	К3
Q.13	An experiment succeeds twice as often as it fails. Find the chance that in the next 4 trials, there shall be atleast one success.	К3
Q.14	If the probability that a person will believe a rumor is 0.75, find the probability that the 8 th person to hear the rumor will be the 5 th person to believe it.	К3
Q.15	If the probability that a target is destroyed on any one shot is 0.5, then find the probability that it would be destroyed on sixth attempt.	К3
	PART B	
Q.1	If the probability of the applicant passing the road test for driving license is 0.8. find the probability that the applicant finally pass the road test on the fourth trial.	K2

Q.2	A machine manufacturing screws is known to produce 5% defective. In a random sample of 15 screws, what is the probability that there are (i) exactly 3 defectives (ii) Not more than 3 defectives?	K2
	a) The number of monthly breakdown of a computer is random variable having a	
	poisson distribution with mean equal to 1.8. Find the probability that this	
	computer will function for a month	
	i) Without a breakdown	
Q.3	ii) With only one breakdown and	K2
	iii) With atleast one breakdownb) The Number of monthly break down of a computer is a RV having a Poisson	
	distribution with mean 1.8. Find the probability that this computer will function for a month with only one breakdown	
Q.4	Out of 2000 families with 4 children each, Find how many family would you	К3
	expect to have i) at least one boy ii) 2 boys iii) 1 or 2 girls iv) no girls. State the reproductive (or additive) property of independent Poisson r.v.s. Hence	
Q.5	find the probability of 5 or more telephone calls arriving in 9 minute period in a hospital reception counter, if the telephone calls that are received at the rate of 2 every 3 minutes follow a Poisson distribution'	K3
	PART C	
Q.1	Find the moment generating function of Poisson distribution. Hence find its mean and variance.	K2
Q.2	Find the moment generating function of binomial distribution and hence find its mean and variance.	K2
	A Random variable x has the following probability distribution	
	X 0 1 2 3 4 5 6 7	
	$P(X) = 0$ $k = 2k = 2k = 3k = k^2 = 7k^2 + k$	
	(i) Find the value of k	
Q.3	(ii) Evaluate $P(X < 6)$, $P(X \ge 6)$ and $P(0 < X < 5)$	K2
Ų.S	(iii) Determine the distribution function of X	KΖ
	(iv) Find $P(1.5 < X < 4.5/X > 2)$ and	
	(v) What is the smallest value of n for which $P(X \le n) > \frac{1}{2}$	
	(vi) Find $E(3X-4)$, $Var(3X-4)$	
	The Probability function of an infinite series is given by	
	$P(X = x) = \frac{1}{2^{j}}, \ j = 1, 2, 3,$	
Q.4	 (i) Verify that P(X) is really a probability mass function. (ii) Find Mean and Variance (iii) P[X is even] (iv) P[X ≥ 5] P[X is divisible by 5] 	К3
0.5	An iregular 6-faced dice is such that the probability that it gives 3 even numbers	17.0
Q.5	in 5 throws is twice the probability that it gives 2 even numbers in 5 throws.	K3

How many sets of exactly 5 trails can be expected to give no even number out of 2500 sets?

	UNIT II	B. L
	PART A	
Q.1	Define probability law of Gamma distribution and Write down any two characteristics of Gamma distribution	K1
Q.2	Define Gaussian distribution and write the properties of Normal distribution	K1
Q.3	Define a continuous Random variable with an example.	K 1
Q.4	Test whether $f(x) = \begin{cases} x , & -1 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$ can be the probability density function of a continuous random variable?	K2
Q.5	A continuous R.V follows the probability law $f(x) = Ax^2$, $0 \le x \le 1$ Determine A and the probability that X lies 0.2 & 0.5.	K2
Q.6	Check whether $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$, $-\infty < x < \infty$ is a probability density function.	K2
Q.7	If X is a Poisson variate such that $2 P(X = 2) = P(X=1)$ find $P(X = 0)$	K2
Q.8	A continuous Random variable X has PDF $f(x) = \{kx^4, -1 \le x \le 0, \text{ then find the value of k}\}$	K2
Q.9	Find distribution function of the random variable X which has probability density function $f(x) = \begin{cases} 6x^2(1-x) & 0 < x < 1 \\ 0, & Otherwise \end{cases}$	K3
Q.10	Derive MGF, Mean and variance of Gamma distribution.	К3
Q.11	The length of time (in minutes) that a certain lady speaks on the telephone is a random variable specified by the p.d.f $f(x) = Ae^{-x/5}$, $x > 0$. Evaluate A. Find the probability that the number of minutes she talks on the phone is (i) more than 10 minutes (ii) less than 5 minutes (iii) Between 5 and 10 minutes.	К3
Q.12	The life time of a component measured in hours is Weibull distribution with parameter $\alpha = 0.2$ and $\beta = 0.5$. Find the mean life time of the component.	К3
Q.13	Establish the memoryless property of Exponential Distribution. And define (a) Reliability (b) Hazard function.	К3
Q.14	Suppose the life of 2 batteries in an automobile is exponentially distributed with parameter $\lambda = 0.01$ days. What is the probability that the battery will last more than 1200 days which has already served for 1000 days?	K3

Q.15	Suppose the length of life of an appliance has an exponential distribution with mean 10 years. What is the probability that the average life time of a random sample of the appliances is at least 10.5 years?	К3
	PART B	
Q.1	The CDF of a continuous Random variable X is given by $F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le \frac{1}{2} \\ 1 - \frac{3}{25}(3 - x)^2, & \frac{1}{2} \le x \le 3 \\ 1, & x > 3 \end{cases}$ Then (i) Find PDF of X (ii) Evaluate $P[x \le 1]$ (iii) $P[\frac{1}{3} \le x \le 4]$	K2
Q.2	If the density function of a continuous R.V X is given by $f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 \le x \le 2 \\ a(3-x), & 2 \le x \le 3 \\ 0. & \text{otherwise} \end{cases}$ then (i) Find the value of a (ii)Find the cumulative distribution function of X	K2
Q.3	(i) Find the moment generating function of exponential distribution and hence find its mean.(ii) Describe in detail about Erlang and Gamma distribution with suitable examples.	K2
Q.4	a) The length of time a person speaks over phone follows exponential distribution with mean 1/6. What is the prob. that the person will talk for (i) more than 8 min. (ii) between 4 and 6 min.? b) In a certain city the daily consumption of electric power in millions of Kilowatt hours can be treated as random variable X having Gamma distribution with parameter $\lambda = 1/2$ and $\alpha = 3$ If the power plant of this city; has a daily capacity of 12 million kilowatt hours, then what is the probability that this power supply will be inadequate of any given day.	К3
Q.5	a) An analog signal received at a defector (measured in microvolts) may be modeled as a Gaussian random variable N (200,256) at a fixed point in time. What is the probability that the signal exceed 240 microvolts? What is the probability that the signal is larger than 240 microvolts, given that it is larger than 210 microvolts? b) An electrical firm manufactures light bulbs that have a life, before burn-out that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that bulb burns between 750 and 830 hours.	K3
Q.1	The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$ (i) What is the probability that the repair time exceeds 2 hours?	K2

	(ii) what is the probability that a repair takes at least 10 hours given that its duration exceeding 9 hours?	
	1) Let X be a random variable of the time to failure (in minutes) of a component having weibull distribution with parameters $\alpha = \frac{1}{5}$, $\beta = \frac{1}{3}$. Find the	
Q.2	(a) Expected time the component will last(b) The probability that the component will fail is less than 10 hours.	K2
	2) If the life X (if years) of the certain type of cars has Weibull distribution with $\beta = 2$. Find the value of the parameter α , given that probability that the life of car exceeds 5 years is $e^{-0.25}$. For these values of α and β find the mean and	
	variance.	
Q.3	 1) Find mean and variance of gamma distributions If the time T to failure of the component follows a Weibull distribution with 2) parameters α and β. Find the hazard rate or conditional failure rate at time 't' of the component. 	K2
Q.4	Local authorities in a certain city install 10,000 electric lamps in a street of a city. If the lamps have average life of 1000 burning hours with standard deviation 200 hours, how many lamps might be expected to be failed (i) in the first 800 hours (ii) between 800 and 1200 burning hours (iii) after 1200 burning hours.	K3
Q.5	The life length X of an electronic component follows an exponential distribution. There are 2 processes by which the component may be manufactured. The expected life length of the component is 100 h, if process I is used to manufacture, while it is 150 h if process II is used. The cost of manufacturing a single component by process I is Rs 10, while it is Rs 20 for process II. Moreover if the component lasts less than the guaranteed life of 200 h, a loss of Rs 50 is to be borne by the manufacturer. Which process is advantageous to the manufacturer?	K3

	UNIT III	B. L
	PART A	
Q.1	Define Arithmetic Mean and Median. Also determine the median from the	K2
۷.1	following data. 8,10,5,9,12,11.	112
Q.2	List out the uses of measure of dispersion.	K1
Q.3	Write short notes on "skewness" and "Kurtosis".	K1
Q.4	The mean marks scored by 100 students was found to be 40. Later on, it was discovered that a score of 53 was misread as 83. Find the correct mean.	K2
Q.5	An analysis of the monthly wages gives the following results	К3

										ı				
								F	irm A		Frim	В		
		N	o. of	work	ers				500		600			
		Varia		of di wage		itioi	n of	81 100						
			A	vera	ige			R	s. 186	5	Rs. 1'	75		
	In which	n firm is	there	grea	ater v	aria	bility i	n indi	ividua	ıl wages				
Q.6	Define o	orrelation	on co	effic	ient a	nd	write it	s proj	pertie	s. And al 5, 13), (-		d the		K2
Q.7	State the	e equatio	on of	two	regres	ssio	n lines.							K1
Q.8	Define r	ank cor	relatio	on co	effici	ient	and its	prop	erties	•				K1
Q.9	Two Re values o			ation	s are	5 x	- y =	22, 6	4x – 4	45y = 24	What	are the	e mean	К3
Q.10	Define l correlati	_			State	(i)	the two	equa	ations	of regre	ssion	lines, (ii) two	K1
Q.11	If the correlati								d Y	is 0.5. V	Vhat	would	be the	К3
Q.12	If the eccorrelati							+2y =	= 5an	d 2x +3y	y = 8	then fi	nd the	K3
Q.13	The first four moments of a distribution about the value 4 of the variable are – 1.5, 17, 30 and 108. Find the moments about mean, β_1 and β_2 . Find the moments about the point $x = 2$										re –	К3		
Q.14	$\sum X^2 = 5$	$55, \sum Y^2$ the value	= 133	$5, \sum 2$	XY =	83	Find th	e equ	ation	obtained of the lin and value	es of 1	regressi	on and	K3
Q.15		e the co								lowing d 5.	ata, n	= 10, \	$\sum X^2 =$	К3
	C-11-	4 - 41 - IV	1 D			C	PAR			~ f~ 41. ~	C_ 11			
Q.1	T (Class interval) – 9			– 19	20 –		s for the $30-39$		1ng dai 0 – 49	a	K2
	<u> </u>	Frequen	<u> </u>	0		40		20		0	10)		
	a) Find t			levia		of th		wing	data					
	f	2	6		3 12		7			5 2	6	\dashv		
Q.2	b) Obtai		1	or the		owi	·	uency	y distr		-			K2
		x = 0	-10	10	- 20	20	0 - 30	30 -	- 40	40 – 50				
	<u> </u>	y 5	•	8		10		4		3				

		I the fi β_2 , γ_1			omen	ts abo	out th	e me	ean o	f the	dist	ribu	tion	and	alsc	fin	β_1						
Q.3	X		2.0		2.5		3.0		3.5		4.0		4.5			5.0		K2					
	f		5		38		65		92		70		4	0		10							
		compe		s in a	mus	ical to	est we	ere ra	ankec	l by 1	three	judį	ges .	A, B	, and	l C	in the						
	Raı	nked b	yА	1	6 5		10)	3	2		4	9)	7		8						
Q.4	I ├ ──	nked b		3	5	8	4		7	10)	2	1	-	6		9	K3					
		nked b	•	6	4	9	8		1	2		3		0	5		7						
		ng ranl coach t						uss	whic	n pa	irs o	f jud	lges	hav	e th	e no	earest						
	·+····	equati						obta	ined	in a o	corre	latio	n a	naly	sis is	as							
Q.5	follo	ows: 3	X + 12	2Y = 1	19; 3	3Y+9	X = 4	ŀ6 .	Obtai	n the	e cor	relat	ion	coef	fficie	ent c	of X	K3					
	and	Y and	the m	ean v	alues	s of X																	
	Colo	1ata 4	h o V o	al Do	044004	,,,					a fo	, +h a	f_11		d.								
							1										20	***					
Q.1		ırks ab																K2					
		quenc		<u> </u>																			
								coem	icien	l Ior	ine i	10110	wın	g pa	1r 01	vai	ues						
Q.2	01 X	x							59		60		60		62.		7	K2					
		$\frac{y}{y}$			38		38		39						44								
	Find	<u> </u>	ınk co	rrelat	ion c	oeffic	cient 1	from	the f	ollo	wing	data	ì.		<u> </u>								
	x		65	17	1	65		68		70		72		67		74	.]	***					
Q.3																		K2					
	У		70	7	4	68		69		70		65		69		65							
	The	equat	ion of	two	regr	essio	n line	s ar	e 3 <i>x</i>	+12	y=1	9 ai	ıd	9 <i>x</i> +	3y=	46	then						
	find																						
0.4	a.	The	value	of th	ne con	relati	on co	effic	cient.									K3					
7. 7	b	. Mea	an valı	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
										· · ·	1 0	•											
			_				_	ressi	on of	yıel	a ot	rice	(y)	on v	vater	(x)	Irom						
	l ——		-	uic i	lonov	vilig																	
0.5			1 12		18	24	30		36	42	4	-8						VΛ					
Ç.S	i			_	- 60	6.2	7.2	2 8	8.0	8.7	8	.4						Λ4					
The equation of two regression lines are $3x+12y=19$ and $9x$ find a. The value of the correlation coefficient. b. Mean values of x and y. c. If the variance of x is 9, find σ_y Obtain the equation of the line of regression of yield of rice (y) or the data given in the following table. Water in Inches(x) 12 18 24 30 36 42 48																							
	Esti	imate t	he mo	st pr	obabl	le yie	ld of	rice	for 40) inc	hes o	of wa	ater.										
<u> </u>	<u> </u>																						

	UNIT IV	B. L
0.1	PART A State the principle of least squeres?	K1
Q.1	State the principle of least squares? What is the error committed, when fitting a straight line of the form y = a + bx for	
Q.2	the observed values $(x_i, y_i, I = 1, 2,n)$?	K2
Q.3	Write the normal equations of exponential curve.	K1
Q.4	Define sampling distribution and explain types of errors in sampling.	K1
Q.5	Define Type I and Type II errors. Write producer's and consumer's risk in the context of testing of hypothesis.	K1
Q.6	Define null hypothesis and alternate hypothesis.	K1
Q.7	What do you mean by critical and acceptance regions?	K1
Q.8	What is the critical value of z at two tailed at 5% and 1% level of significance?	K1
Q.9	Define level of significance.	K1
Q.10	Define a residual	K1
Q.11	Define one tailed and two tailed tests.	K1
Q.12	A coin is tossed 144 times and person gets 80 heads. Can you say that the coin is unbiased one?	К3
Q.13	Write down the confidence limits for μ .	К3
Q.14	A sample of 900 items has the mean 3.4 and S. D. 2.61. Can the sample be regarded as drawn from a population with mean 3.25 at 5% level of significance	К3
Q.15	A random sample of 500 pineapples was taken form a large consignment and 65 were found to be bad. Find the percentage of bad pineapples in the consignment.	К3
	PART B	
	a) Find the curve $y = ae^{bx}$ for the following data:	
	X 0 5 8 12 20	
	Y 3.0 1.5 1.0 0.55 0.18	
Q.1	Fit the power curve of the form $y = ax^b$ for the following data:	K2
Q.1		112
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	y: 7.1 27.8 62.1 110 161	
Q.2	In a large city, 20% of a random sample of 900 school boys are brilliant. In another city B, 18.5% of a random sample of 1600 school boys are brilliant. Is the different	K2
	between the proportion significant?	
	In a random sample of 400 students of university teaching department, it was found that 300 students failed in the examination. In another random sample of	
	500 students of the affiliated college, the no. of failures in the same examination	
Q.3	was found to be 300. Find out whether the proportion of failures in the university	K2
	teaching department is significantly greater than the proportion of failures in the	
	university teaching department and affiliated colleges taken together.	
Q.4	A random sample of 10 boys had the following 1.Q.'s of 70,	К3
<u> </u>	120,110,101,88,83,95,98,107,100. To these data support the assumption of a	

b) Two random sample of size 1600 and 2000 of farms gave a yield of 2000kg and 2050kg respectively. The variance of the farms in country may be taken as 100kg. Examine whether the two samples differ significantly in the yield. PART C a) Fit a second degree parabola $y = a + bx + cx^2$ to the following data by the method of best squares:		:	mean of L.				able ra	nge in w	hich most of the	
Description of the new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The standard deviation of a random sample of 1000 is found to be 2,6 and the population of standard deviation 0.5 inches? The standard deviation of a random sample of 1000 is found to be 2,6 and the						ulbs were	tested	for leng	th of life and the	
1 100 61 hours 40 hours 2 200 63 hours 46 hours b) Two random sample of size 1600 and 2000 of farms gave a yield of 2000kg and 2050kg respectively. The variance of the farms in country may be taken as 100kg. Examine whether the two samples differ significantly in the yield. PART C		Sample	Size	Me	ean	S.D				
b) Two random sample of size 1600 and 2000 of farms gave a yield of 2000kg and 2050kg respectively. The variance of the farms in country may be taken as 100kg. Examine whether the two samples differ significantly in the yield. PART C a) Fit a second degree parabola $y = a + bx + cx^2$ to the following data by the method of best squares: x -3 -2 0 3 4 y 18 10 2 2 5 A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches resp		1	+	_		40 hou	ırs			
and 2050kg respectively. The variance of the farms in country may be taken as 100kg. Examine whether the two samples differ significantly in the yield. PART C a) Fit a second degree parabola $y = a + bx + cx^2$ to the following data by the method of best squares:	Q.5	2	200	63	hours	46 hou	ırs			K3
a) Fit a second degree parabola $y = a + bx + cx^2$ to the following data by the method of best squares: x -3 -2 0 3 4 y 18 10 2 2 5 A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?		and 2050k	g respective	ly. Th	e varianc	e of the f	arms in	country	may be taken as	
PQ.1 Method of best squares: x										
Q.1 A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?			_	-	y = 0	a+bx+c	x^2 to th	ne follo	wing data by the	
Q.1 A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? D) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?		method of l	1		2			1 4	1	
A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?										
A manufacturer of electric bulbs, according to a certain process, find the standard deviation of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave a standard deviation of 95 hours. Is the manufacturer justified in changing the process? a) Explain the procedure for testing of hypothesis. And hence, the fatality rate of typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the	0.1		У	18	10	2	2	5		K2
typhoid is believed to be 17.26 per cent. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? Q.2 b) The manufacturing form claim that its brand A product out sells the brand B product by 8%, it found that 42 out of sample of 200 persons prefer brand A and 18 out of another sample of 100 persons prefer brand B. Test whether 8% difference is valid claim. (a) In a referendum submitted to the students to the body at a University, 850 men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the	V.1	standard de process, if a adopting a	eviation of the the new process	ne life cess re s, a san	of lamps sults in a nple of 1:	to be 100 smaller v 50 bulbs g	hours. variation gave a s	He want in the litandard	s to change the ife of lamps. In	KΣ
men and 560 women voted. 500 men and 320 women voted favourably. Does this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the	Q.2	typhoid is befrom typho Can you comb) The man product by 18 out of a	pelieved to be id were treat onsider the hour facturing to 8%, it found nother samp	ted in sospital form c d that a	6 per cental metropole of the first self-self-self-self-self-self-self-self-	it. In a cerolitan hos? its brand sample o	tain yea pital an A produ f 200 po	ar 640 pa d only 6. uct out se ersons pr	atients suffering 3 patients died. ells the brand B refer brand A and	K2
this indicate a significant difference of opinion between men and women on this matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is at least 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the		(a) In a refe	erendum sub	mitted	l to the st	udents to	the bod	ly at a U1	niversity, 850	
matter at 1% level of significance? (b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the		men and 56	60 women vo	oted. 5	00 men a	and 320 w	omen v	oted fav	ourably. Does	
(b) A trucking firm is suspicious of the claim that the average life time of certain tires is atleast 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the		this indicat	e a significa	nt diff	erence of	opinion 1	oetweer	n men an	d women on this	
(b) A trucking firm is suspicious of the claim that the average life time of certain tires is at least 28,000 kms. To check the claim, the firm puts 40 of these tires on its trucks and get a mean life time of 27,463 kms with a standard deviation of 1,348 kms. Draw a conclusion about a trucking firm suspicious is confirmed or not at 1% level of significance. The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the		matter at 19	% level of si	gnifica	ance?					
Q.4 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the	Q.3	tires is atleatits trucks a 1,348 kms.	ast 28,000 k and get a me Draw a con	ms. To ean life elusio	o check the character of the character o	ne claim, `27,463 k	the firm	n puts 40 h a stand	of these tires on dard deviation of	K2
population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the		The means	of two large	e samp	oles of 10	00 and 20)00 mer	mbers are	e 67.5 inches and	
population of standard deviation 2.5 inches? The standard deviation of a random sample of 1000 is found to be 2.6 and the	0.4	68.0 inches	s respectivel	y. Car	the sam	ples be re	egarded	as draw	n from the same	К3
The standard deviation of a random sample of 1000 is found to be 2.6 and the	.	population	of standard	deviat	ion 2.5 in	ches?				-20
	Q.5	The standar	rd deviation	of a ra	andom sa	mple of 1	000 is f	found to	be 2.6 and the	K3

samples to be independent, find whether the two samples could have come from populations with the same standard deviation.

					UNIT V					B. L			
Λ1	D.C11	 1	. 1 -		PART A	<u> </u>				TZ 1			
Q.1 Q.2	Define small What is degr			n in t test	for diffe	rence of	f means?			K1 K1			
Q.2 Q.3	What are the						i ilicalis:			K1			
Q.4	Mention any									K1			
Q.5	Write the use	es of F	F – distri	bution						K1			
Q.6	Give two uses / applications of χ^2 distributions												
Q.7	What is the t				the signi	ficance	of the dif	ference b	between the	K2			
Q.8	State the important properties of t'-distribution. Define "Attributes". Write down the value of x for 2x2 contingency table a b c d How many independent constraints are in a pxq contingency table? Two independent samples of sizes 8 and 7 contained the following values: Sample I 19 17 15 21 16 18 16 14												
Q.9													
	Write down	the va	lue of x	for 2x2 c	ontingen	cy table	;						
Q.10	a l)								K2			
Q.11	How many i	ndepe	ndent co	nstraints	are in a p	oxq con	tingency	table?		K1			
	**************************************					•			lues:				
	Sample I	19	17	15	21	16	18	16	14	l			
Q.12	Sample II	15	14	15	19	15	18	16		K2			
	Examine if t	he dif	ference b	etween t	he means	s is sign	ificant.						
Q.13	The means of the sum of the sum of the sum of the sum of the same normal same normal same normal same same same same same same same same	the squ 3.73 re	uares of espective	deviation	from the	eir respe	ctive me	ans is eq	ual to	К3			
Q.14	Distinguish b	netwee	en experi	mental a	nd extrar	eous va	riables.			K2			
Z.T.	A random sa							gives a sa	mple mean				
Q.15	of 42 and sta 44.	-					_	•	*	K3			
					PART B	3							
	a) The 9 item and 51. Does mean 47.5?		-			_							
Q.1	b) In one sar squares of th and in anoth sum of the se is 120.5. Exa	ne devi er sam quares	iations on the of 1 is of the d	f the sam 2 observa eviations	ple value ations fro s of the sa	es from om anoth	the samp ner norma alues from	le mean all populars le populars le the sar	is 102.4 ition, the nple mean	K2			
Q.2	The nicotine Sample I Sample II					of toba				K2			

	Is the diffe					w						
	1000 stud											
	economic					can yo	<u>u</u> draw fr	om t	ne tollov	ving	data?	
	Economi			evel								
Q.3	condition				Low							K2
Q.5	Rich	460)		140							112
	Poor	240)		160							
Q.4	A random like to hav of their pro	e a scho	ool near Test the	this re	sidency hesis th	y. 200 n	nen and 3	325 w	omen w	ere ir	n favour	K3
	a) Two rand	dom san	nples ga	ave the	follow	ing res	ults:					
	5	Sample	Size		ample l	Mean		of Sq	uares of	Devi	ation fro	
		1	10	1:			90					
		2	12	14	4		108					
	Test wheth	ner the s	amples	come	from th	e same	normal p	popul	ation.			
Q.5	b) Two Inc	depende	nt samp	oles fro	om norr	nal pop	ulations	with	equal va	rianc	es gave	K3
	the follow	ing:						_				
	Sample Size Mean S.D											
	1	16	16			2.5						
	2	12		24.9		2.8						
	Is the diffe	erence b	etween	the m	eans sig	gnificar	ıt	•				
						RT C						
	Two resea	rchers I	and O	analy			echnique	s wh	ile ratino	o the	student	
	level. Can						-			_	Stadent	
	Research		Below		mal	Above			Total	110.	1	
Q.1	P		40	33	mai	25	2	us	100		-	K_2
	Q		10 89	60		44	10		200		-	
	Total		126	93		69	12		300			
				L				:				
	The follow	_	_				inds for a	parti	cular sp	are p	art in a	
	shop was f	tound to	vary fi	rom da	y to day	y.						
	Days:		Mon	Tues	We	nd.	Thu	T E	ˈri	Sa	<u>, </u>	
Q.2	Number of	of	124	125	110		120		26	11:		K2
	demands	<i>J</i> 1	124	123	110	,	120	1	20	111		
	Test the hy	mothod	a that t	h	har of	norta d	mandad	door	not don	and a	n tha	
		-	is mai n	ne nun		parts ut	illallucu	uoes	пот аерс	zna o	n uic	
	day of the		• , ,	1 1	1.1 1		C 4		C 1 '	1 1	C	
	In an inves	_							=		1	
	different s				_	sults ar	e got. Dis	scuss	the relat	ion b	etween	
	the health	and the	ir socia	l status	5.							
		ogial at	otus	Door	Dich	То	to1					
		ocial st	atus	Poor	Rich	То	ıaı					
Q.3	Health Balow no			120	20	1 5	1					K
Ų.J	Below no	ormai		130	20	150						
Ų.J				102	108 210		10					
Q. 3	Normal	•		2.4	0 -	4.0	2					
Q. .3	Above no Total	ormal		24 256	96 224	120 480						

Q.4	Below are given the gain in weights (in lbs) of pigs fed of two diets A and B.											
	Diet A	25	32	30	34	24	14	32	24	30	31	
	Diet B	44	34	22	10	47	31	40	30	32	35	K3
	Test if the two diets differ significantly as regards their effect on increase in weight.											
Q.5	A total number of 3759 individuals were interviewed were interviewed in a public opinion survey on a political proposal. Of them 1872 were men and the rest women. A total of 2257 individuals were in favor of the proposal and 917 were opposed to it. A total of 243 men were undecided and 442 women were opposed to the proposal. Do you justify or contradict the hypothesis that there is no association between sex and attitude?											K3

Staff Incharge HoD

(S.P. Lavanya) (Dr R. Raju)