находится в равновесии. Каким при этом может быть максимальный угол $\beta = AQD$, где прямая AQ параллельна составляющей вектора \vec{g} вдоль наклонной плоскости?

11 класс

11-1. Для поддержания в комнате постоянной температуры $T_x = 21^{\theta} \, C$ используется кондиционер. Температура наружного воздуха $T_{\scriptscriptstyle H} = 42^{\theta} \, C$. Насколько нужно увеличить мощность, потребляемую кондиционером от сети, чтобы после включения в комнате электрической лампы мощностью $P = 150 \, Bm$ температура не изменилась? Считайте, что кондиционер является идеальной тепловой машиной, работающей по обращенному циклу Карно.

11-2. На непроводящий гладкий стержень, изогнутый под прямым углом,

насажаны две бусинки равных масс m, несущие заряды противоположных знаков Q_1 и Q_2 . В начальный момент бусинки неподвижны и находятся на расстоянии d и 2d от угла. Отпустим их. Где окажется вторая бусинка в тот момент, когда "ближняя" бусинка доедет до вершины угла?

11-3. Найдите сопротивление между точками A и B в цепи, изображенной на рисунке. Сопротивление каждого из ребер составляет R . Цепь бесконечна в обе стороны.

11-4. Тонкий металлический стержень массой m и длиной l подвешен горизонтально на двух легких проводящих нитях длиной a. Система находится в однородном вертикальном магнитном поле индукции \vec{B} . По стержню протекает постоянный электрический ток I. Найти период малых колебаний стержня.

