LTAT.02.004 MACHINE LEARNING II

Multivariate normal distribution Direct applications

Sven Laur University of Tartu

Important properties of normal distributions

Closeness under marginalisation

Let $x_{\mathcal{I}} = (x_i)_{i \in \mathcal{I}}$ be a subvector determined by the coordinate set \mathcal{I} . Then $x_{\mathcal{I}}$ is distributed according to a multivariate normal distribution as long as the vector x comes form a multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$.

▶ Moment matching gives the parameters of the resulting distribution

$$egin{aligned} \mathbf{E}(oldsymbol{x}_{\mathcal{I}}) &= \mathbf{E}(oldsymbol{x})_{\mathcal{I}} = oldsymbol{\mu}_{\mathcal{I}} \ \mathbf{Cov}(oldsymbol{x}_{\mathcal{I}}) &= \mathbf{Cov}(oldsymbol{x})_{\mathcal{I} imes\mathcal{I}} = \Sigma[\mathcal{I},\mathcal{I}] \end{aligned}$$

Closeness under linear combinations

Linear combination $y = \alpha_1^T x_1 + \alpha_2^T x_2$ of independent multivariate normal distributions $x_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$ and $x_2 \sim \mathcal{N}(\mu_2, \Sigma_2)$ is also a multivariate normal distribution.

▶ Moment matching gives the parameters of the resulting distribution

$$\begin{split} \mathbf{E}(y) &= \boldsymbol{\alpha}_1^T \, \mathbf{E}(\boldsymbol{x}_1) + \boldsymbol{\alpha}_2^T \, \mathbf{E}(\boldsymbol{x}_2) = \boldsymbol{\alpha}_1^T \boldsymbol{\mu}_1 + \boldsymbol{\alpha}_2^T \boldsymbol{\mu}_2 \\ \mathbf{Var}(y) &= \mathbf{Cov}(\boldsymbol{\alpha}_1^T \boldsymbol{x}_1) + \mathbf{Cov}(\boldsymbol{\alpha}_2^T \boldsymbol{x}_2) \\ &= \boldsymbol{\alpha}_1^T \mathbf{Cov}(\boldsymbol{x}_1) \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2^T \mathbf{Cov}(\boldsymbol{x}_2) \boldsymbol{\alpha}_2 \\ &= \boldsymbol{\alpha}_1^T \Sigma_1 \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2^T \Sigma_2 \boldsymbol{\alpha}_2 \end{split}$$

▷ Closeness under linear combinations holds also for matrix combinations.

Closeness under conditioning

Let x and y be related random variables. Let $x|y_*$ denote the conditional distribution of x given that a random variable y has a fixed value y_* . Then $x|y_*$ is distributed according to a multivariate normal distribution provided that (x,y) comes form a multivariate normal distribution $\mathcal{N}((\mu_i),(\Sigma_{ij}))$

▶ Moment matching gives the parameters of the resulting distribution

$$\mathbf{E}(\boldsymbol{x}|\boldsymbol{y}_*) = \boldsymbol{\mu}_1 + \Sigma_{1,2}\Sigma_{2,2}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_2)$$
 $\mathbf{Cov}(\boldsymbol{x}|\boldsymbol{y}_*) = \Sigma_{1,1} - \Sigma_{1,2}\Sigma_{2,2}^{-1}\Sigma_{2,1}$

Motivating examples

Filtering and smoothing

Prediction of vector values

Prediction errors of different vector components can be correlated.

As a result combined model can outperform coordinatewise predictions.

Sensor fusion with Hidden Markov Models

A standard problem in robotics or machine perception is following.

- ▷ Several sensors measure a physical system
- hd Measurements are observable as $oldsymbol{y} \in \mathbb{R}^p$.
- hd Physical system has an hidden state $oldsymbol{x} \in \mathbb{R}^n$.
- \triangleright Physical system evolves linearly $x_{i+1} = Ax_i + w_i$.
- hd Measurements are linear from the state $oldsymbol{y}_i = Coldsymbol{x}_i + oldsymbol{v}_i$.
- \triangleright Distribution of error terms $oldsymbol{v}_i$ and $oldsymbol{w}_i$ is known.
- \triangleright Error terms v_i and w_i are independently drawn.

Kalman filter

As before we can consider the prior and filter densities

$$\pi[\boldsymbol{x}_i] = p[\boldsymbol{x}_i|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{i-1}]$$

$$f[\boldsymbol{x}_i] = p[\boldsymbol{x}_i|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_i] \propto \pi[\boldsymbol{x}_i] \cdot p[\boldsymbol{y}_i|\boldsymbol{x}_i]$$

A similar update logic assures that both distributions are normal distributions and that we can only compute the parameters of these normal distributions.

Smoothing and reverse Hidden Markov Model

- \triangleright We need likelihoods $\lambda[\boldsymbol{x}_i] = p[\boldsymbol{y}_{i+1}, \dots, \boldsymbol{y}_{n} | \boldsymbol{x}_i]$ for the smoothing.
- Likelihood propagation formula is analogous to the prior propagation.
- \triangleright We can define a reverse HMM such that the prior $\pi^*[x_i] \propto \lambda[x_i]$.
- ▶ The resulting HMM has reversed dynamics.
- \triangleright It turns out that all likelihoods $\lambda[m{x}_i]$ are normal distributions.
- \triangleright The posterior as product $\pi[x_i] \cdot \lambda[x_i] \cdot p[y_i|x_i]$ is also a normal distribution.

Motivating examples

Markov fields

Background model for digital images

In most images intensity of pixel is influenced only by its neighbours:

- > For simple textures the neighbourhood consist of four adjacent pixels.
- > For complex textures the the neighbourhood contains much more pixels.
- ▶ For homogenous textures the conditional probabilities are universal.
 - Generative repetitive patterns for textile and grass
- > For complex patterns conditional probabilities can be location dependent.
 - Generative patterns for human faces and fashion accessories

Random Markov Fields

Definition. Markov random field is specified by undirected graph connecting random variables X_1, X_2, \ldots such that for any node X_i

$$\Pr\left[x_i|(x_j)_{j\neq i}\right] = \Pr\left[x_i|(x_j)_{j\in\mathcal{N}(X_i)}\right]$$

where the set of neighbours $\mathcal{N}(X_i)$ is also known as *Markov blanket* for X_i .

Hammersley-Clifford theorem

The probability of an observation $x = (x_1, x_2, ...)$ generated by a Markov random field can be expressed in the form

$$\Pr\left[\boldsymbol{x}\right] = \frac{1}{Z(\omega)} \cdot \exp\left(-\sum_{c \in \mathsf{MaxClique}} \Psi_c(\boldsymbol{x}_c, \omega)\right)$$

where

- $\triangleright Z(\omega)$ is a normalising constant
- MaxClique is the set of maximal cliques in the Markov random field
- $hd \Psi_c$ is defined on the variables in the clique c

The formula implies that the distribution belongs to the exponential family.

Multivariate normal distribution belongs to the exponential family

Conditional Random Fields

Definition. Let X_1, X_2, \ldots and Y_1, Y_2, \ldots be random variables. The entire process is conditional random field if random variables Y_1, Y_2, \ldots conditioned for any sequence of observations x_1, x_2, \ldots form a Markov random field

$$\Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\neq i}] = \Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\in\mathcal{N}(Y_i)}]$$

where the set of neighbours $\mathcal{N}(Y_i)$ is a *conditional Markov blanket* for Y_i .

Image segmentation and sequence labelling

- \triangleright The input $m{x}$ is used to predict labels y_1, y_2, \ldots
- > A correct label sequence must satisfy possibly unknown restrictions.
- > These restrictions are captured by conditional random random field.

Consequences of Hammersley-Clifford theorem

- \triangleright Clique features Ψ_c can depend on $(y_i)_{i \in c}$, $(x_i)_{i=1}^{\infty}$
- ▷ Features can be defined as linear combination of vertex and edge features.
- \triangleright A vertex feature looks only variable y_i associated with the vertex.
- \triangleright An edge feature looks only variables y_i, y_j associated with the edge.

Markov fields with multivariate normal distributions

General form of the likelihood function

The celebrated Hammersley-Clifford theorem fixes the format in which the corresponding probability distribution must be sought:

$$p[\boldsymbol{x}|\omega] = \frac{1}{Z(\omega)} \cdot \exp\left(-\sum_{c \in \mathsf{MaxClique}} \Psi_c(\boldsymbol{x}_c, \omega)\right)$$

where

- $\triangleright \omega$ is a set of model parameters
- $\triangleright Z(\omega)$ is a normalising constant
- ▷ MaxClique is the set of maximal cliques in the Markov random field
- $\triangleright \Psi_c$ is defined on the variables x_i in the clique c.

Multivariate normal distribution as likelihood

If individual sub-potentials $\Psi_c({m x}_c,\omega)$ are quadratic forms then the energy

$$\Psi(oldsymbol{x}) = \sum_{c \in \mathsf{MaxClique}} \Psi_c(oldsymbol{x}_c, \omega)$$

is also a quadratic form and thus $p[x|\omega]$ is a multivariate normal distribution.

Sub-potentials are often fixed directly based on smoothness constraints

- \triangleright Intensities have bounded variance: $\Psi_e = \delta^2 x_{ij}^2$.
- \triangleright Intensity changes smoothly vertically: $\Psi_e = \beta(x_{i,j} x_{i+1,j})^2$.
- \triangleright Intensity changes smoothly horizontally: $\Psi_e = \alpha (x_{i,j} x_{i,j+1})^2$.

Toy example

Sub-potentials corresponding four edges are:

$$\Psi_1(x_1, x_2) = \alpha_1(x_1 - x_2)^2 = \alpha_1 x_1^2 - 2\alpha_1 x_1 x_2 + \alpha_1 x_2^2$$

$$\Psi_2(x_2, x_3) = \alpha_2(x_2 - x_3)^2 = \alpha_2 x_2^2 - 2\alpha_2 x_2 x_3 + \alpha_2 x_3^2$$

$$\Psi_3(x_3, x_4) = \alpha_3(x_3 - x_4)^2 = \alpha_3 x_3^2 - 2\alpha_3 x_3 x_4 + \alpha_3 x_4^2$$

$$\Psi_4(x_4, x_1) = \alpha_4(x_4 - x_1)^2 = \alpha_4 x_4^2 - 2\alpha_4 x_4 x_1 + \alpha_4 x_1^2$$

Sub-potentials corresponding to four vertices are $\Psi_i^*(x_i) = \delta_i^2 x_i^2$

Resulting potential function

$$\Psi(\boldsymbol{x}) = \boldsymbol{x}^T \begin{pmatrix} \alpha_1 + \alpha_4 + \delta_1^2 & -\alpha_1 & 0 & -\alpha_4 \\ -\alpha_1 & \alpha_1 + \alpha_2 + \delta_2^2 & -\alpha_2 & 0 \\ 0 & -\alpha_2 & \alpha_2 + \alpha_3 + \delta_3^2 & -\alpha_3 \\ -\alpha_4 & 0 & -\alpha_3 & \alpha_3 + \alpha_4 + \delta_4^2 \end{pmatrix} \boldsymbol{x}$$

and thus the covariance matrix Σ and mean μ can be computed by matching the shape of the multivariate normal density

$$p[\boldsymbol{x}|\boldsymbol{\mu}, \Sigma] \propto \frac{1}{\sqrt{\det \Sigma}} \cdot \exp\left(-\frac{1}{2} \cdot (\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

Motivating examples

Hidden Markov Model

- ▷ Inference of Hidden Markov models requires a lot of data.
- ▷ Continuous distributions are rarely compatible with belief propagation.

$$\pi_{X_i}(\boldsymbol{x}_i) \propto \int_{\boldsymbol{x}_{i-1}} \alpha[\boldsymbol{x}_{i-1}, \boldsymbol{x}_i] \cdot \lambda_{i-1}^*(\boldsymbol{x}_{i-1}) \cdot \pi_{X_{i-1}}(\boldsymbol{x}_{i-1}) d\boldsymbol{x}_{i-1}$$
$$\lambda_{X_i}(x_i) \propto \int_{\boldsymbol{x}_{i+1}} \alpha[\boldsymbol{x}_i, \boldsymbol{x}_{i+1}] \cdot \lambda_i^*(\boldsymbol{x}_i) \cdot \lambda_{X_{i+1}}(\boldsymbol{x}_{i+1}) d\boldsymbol{x}_{i+1}$$

> Family of normal distributions is compatible with belief propagation.

Background model for digital images

In most images intensity of pixel is influenced only by its neighbours:

- > For simple textures the neighbourhood consist of four adjacent pixels.
- > For complex textures the the neighbourhood contains much more pixels.
- ▶ For homogenous textures the conditional probabilities are universal.
 - Generative repetitive patterns for textile and grass
- > For complex patterns conditional probabilities can be location dependent.
 - Generative patterns for human faces and fashion accessories

Random Markov Fields

Definition. Markov random field is specified by undirected graph connecting random variables X_1, X_2, \ldots such that for any node X_i

$$\Pr\left[x_i|(x_j)_{j\neq i}\right] = \Pr\left[x_i|(x_j)_{j\in\mathcal{N}(X_i)}\right]$$

where the set of neighbours $\mathcal{N}(X_i)$ is also known as *Markov blanket* for X_i .

Hammersley-Clifford theorem

The probability of an observation $\boldsymbol{x}=(x_1,x_2,\ldots)$ generated by a Markov random field can be expressed in the form

$$\Pr\left[\boldsymbol{x}\right] = \frac{1}{Z(\omega)} \cdot \exp\left(-\sum_{c \in \mathsf{MaxClique}} \Psi_c(\boldsymbol{x}_c, \omega)\right)$$

where

- $\triangleright Z(\omega)$ is a normalising constant
- MaxClique is the set of maximal cliques in the Markov random field
- $hd \Psi_c$ is defined on the variables in the clique c

The formula implies that the distribution belongs to the exponential family.

Multivariate normal distribution belongs to the exponential family

Conditional Random Fields

Definition. Let X_1, X_2, \ldots and Y_1, Y_2, \ldots be random variables. The entire process is conditional random field if random variables Y_1, Y_2, \ldots conditioned for any sequence of observations x_1, x_2, \ldots form a Markov random field

$$\Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\neq i}] = \Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\in\mathcal{N}(Y_i)}]$$

where the set of neighbours $\mathcal{N}(Y_i)$ is a *conditional Markov blanket* for Y_i .

Image segmentation and sequence labelling

- \triangleright The input x is used to predict labels y_1, y_2, \ldots
- > A correct label sequence must satisfy possibly unknown restrictions.
- > These restrictions are captured by conditional random random field.

Consequences of Hammersley-Clifford theorem

- \triangleright Clique features Ψ_c can depend on $(y_i)_{i \in c}$, $(x_i)_{i=1}^{\infty}$
- ▷ Features can be defined as linear combination of vertex and edge features.
- \triangleright A vertex feature looks only variable y_i associated with the vertex.
- \triangleright An edge feature looks only variables y_i, y_j associated with the edge.

Going beyond naive Bayesian models

Complex causal models are often defined through Bayesian networks

- A complex processes is first split into sub-events
- ▷ Direct causal dependencies between sub-events are detected
- ▷ Causation mechanisms are characterised with probability tables

Strength and weaknesses of Bayesian networks

Strengths

- ▷ Bayesian networks are easy to interpret
- ▷ Bayesian networks are good for formalising fuzzy background knowledge
- ▷ Estimation of individual probability tables is tractable
- > There are tools for doing inference with Bayesian networks

Weaknesses

- ➤ You must know the causal structure of sub-events
- ▷ Identification of causal structure form data alone is very difficult
- ▷ It is notoriously difficult to model non-trivial causal dependencies
- > Standard inference procedures often do not have closed solutions

Belief propagation. Initialisation

- \triangleright We have a direct evidence $Y_i = y_i$ for each node Y_i .
- \triangleright The likelihood vector is infinite and captured by $\lambda_{Y_i} = \delta_{y_i}$.
- \triangleright The local likelihood $\lambda_i^*(x_i) = p[Y_i = y_i | x_i]$ is an infinite vector.
- ho The form $m{y}_i = Cm{x}_i + m{v}_i$ assures that $m{y}_i | m{x}_i$ is normal distribution.
- \triangleright The local likelihood λ_i^* has a finite description.

Prior propagation. Filtering

Prior propagation rule

$$\pi_{X_i}(\boldsymbol{x}_i) \propto \int_{\boldsymbol{x}_{i-1}} \alpha[\boldsymbol{x}_{i-1}, \boldsymbol{x}_i] \cdot \lambda_{i-1}^*(\boldsymbol{x}_{i-1}) \cdot \pi_{X_{i-1}}(\boldsymbol{x}_{i-1}) d\boldsymbol{x}_{i-1}$$

leads to a finite description because on the right is a normal distribution.

Likelihood propagation. Smoothing

Likelihood propagation rule

$$\lambda_{X_i}(x_i) \propto \int_{\boldsymbol{x}_{i+1}} \alpha[\boldsymbol{x}_i, \boldsymbol{x}_{i+1}] \cdot \lambda_{X_{i+1}}(\boldsymbol{x}_{i+1}) \cdot \lambda_i^*(\boldsymbol{x}_i) d\boldsymbol{x}_{i+1}$$

leads to a finite description because on the right is a normal distribution.