

ISO Certified

www.mockopedia.com

Probability, Permutation and Combination

Solution

1. Answer: (A)

Required probability = $\frac{4_{C_2}}{12_{C_2}} = \frac{4 \times 3}{12 \times 11} = \frac{1}{11}$

2. Answer: (B)

Ways to select 4 balls out of $16 = 16_{C_4}$ Ways to select one red balls = 5_{C_1} Ways to select two black balls = 6_{C_2}

Ways to select one blue balls = 5_{C_1}

∴ Required probability $=\frac{5_{C_1} \times 6_{C_2} \times 5_{C_1}}{16_{C_1}} = \frac{75}{364}$ 16_C

3.

Required probability = $\frac{9c_2}{20c_2} = \frac{9 \times 8}{20 \times 19} = \frac{18}{95}$

Answer: (C) 4.

Total no. of possible outcomes = 36Possibility of getting sum of 6 = 5 i.e. [(1,5), (2,4), (3,3), (4,2), (5,1)]So, required possibility = $\frac{5}{36}$

5. Answer: (A)

Quantity I:

Probability of not more than one person telling a lie = Probability of all telling the truth + probability of two person telling the

 $= P(A) \cdot P(B) \cdot P(C) + P(A) \cdot P(B) \cdot \overline{P(C)} +$ P(A). $\overline{P(B)}$. $P(C) + \overline{P(A)}$. P(B). P(C) $= 0.6 \times 0.4 \times 0.5 + 0.6 \times 0.4 \times 0.5 +$ $0.6 \times 0.6 \times 0.5 + 0.4 \times 0.4 \times 0.5$ = 0.12 + 0.12 + 0.18 + 0.08 = 0.5

Quantity II:

Probability of at least two persons lying with B being one of them

= Probability of all lying + Probability of two persons lying B being one of them

P(A).P(B).P(C).+ $P(A).\overline{P(B)}.\overline{P(C)}.+\overline{P(A)}.\overline{P(B)}.P(C)$ $0.4 \times 0.6 \times 0.5 + 0.6 \times 0.6 \times$ $0.5 + 0.4 \times 0.6 \times 0.5$ = 0.12 + 0.18 + 0.12 = 0.42

Quantity I > Quantity II

6. Answer: (B)

Probability that no one can solve the given

 $=\frac{2}{3} \times \frac{3}{5} \times \frac{1}{2} = \frac{1}{5}$

Probability that the question will be solved = 1 - probability that no one can solve the question

 $=1-\frac{1}{5}=\frac{4}{5}$

7. Answer: (B)

There are 4 possible cases

= (3 red) (1 red 2 green) (2 red 1 green) (3 green)

Required probability $= \frac{5c_3 + 5c_1 \times 4c_2 + 5c_2 + 4c_1 + 4c_3}{15c_3} = \frac{12}{65}$

8. Answer: (D)

Green balls = $2 \times \frac{4+5}{2} = 9$ Required probability = $\frac{4c_2}{18c_2} = \frac{12}{306} = \frac{2}{51}$

Answer: (A) mock test platform9.

 $P = \frac{3_{C_1} \times 5_{C_1}}{12_{C_2}} = \frac{5}{22}$

10. Answer: (A)

ertifie

Required probability

 $= \frac{13}{27} \times \frac{12}{26} + \frac{14}{27} \times \frac{13}{26} = \frac{13}{27}$ **Answer: (B)**

11.

Sum can be odd in two cases:

- 1. first card is odd numbered & second one
- 2. first card is even numbered & second one

Required probability = $\frac{13}{25} \times \frac{12}{24} + \frac{12}{25} \times \frac{13}{24}$ $=\frac{13}{25}$

12. Answer: (A)

Conditions for odd sum

1. First card is odd numbered and second one is even numbered $\Rightarrow \frac{16}{31} \times \frac{15}{30} = \frac{8}{31}$

ISO Certified

- 2. First card is even numbered and second is odd numbered $\Rightarrow \frac{15}{31} \times \frac{16}{30} = \frac{8}{31}$ Hence required probability $= \frac{8}{31} + \frac{8}{31} = \frac{16}{31}$
- 13. Answer: (D)

Odd sum is there when one card drawn is odd and another even.

∴ Required probability

$$= \left(\frac{13}{27} \times \frac{14}{26}\right) + \left(\frac{14}{27} \times \frac{13}{26}\right) = \frac{14}{27}$$

14. Answer: (E)

Probability of choosing basket $\rightarrow \frac{1}{2}$

Probability of choosing two orange $\rightarrow \frac{3c_2}{6c_2}$

Required probability = $\frac{1}{3} \times \frac{3_{C_2}}{6_{C_2}} = \frac{1}{15}$

15. Answer: (C)

Total letter in IMPORTANCE \rightarrow 10

Total letter in PORTABILITY → 11

Letters which is common in both words

⇒ IPORTA

So we choose a letter rather than these six

letters $\Rightarrow \frac{4}{10} = \frac{2}{5}$

16. Answer: (E)

Total number of mobiles = 12

Required cases = one honor 7x and one One

plus five or two One plus five

Required probability =
$$\frac{7c_1 \times 5c_1}{12c_2} + \frac{5c_2}{12c_2}$$

$$= \frac{7 \times 5}{66} + \frac{10}{66}$$

Keep in touch:

www.mockopedia.com

$$= \frac{45}{66} \\
= \frac{15}{22}$$

17. Answer: (C)

Total balls = x + 10

Probability of choosing 2 blue balls

$$= x_{C_2} \div^{x+10} C_2 = 0.125$$

ATQ,

$$\frac{x \times (x-1)}{(10+x) \times (9+x)} = \frac{125}{1000} = \frac{1}{8}$$

$$8(x^2 - x) = (10+x)(9+x)$$

$$8x^2 - 8x = 90 + 9x + 10x + x^2$$

$$7x^2 - 27x - 90 = 0$$

$$7x^2 - 42x + 15x - 90 = 0$$

- 7x(x-6) + 15(x-6) = 0(7x + 15)(x - 6) = 0
- 18. Answer: (C)

ATO. $\frac{X}{X+16} = \frac{1}{3} \\ 3X = X + 16$

- X = 8

 \therefore sum of red & blue balls = 8 + 6 = 14

Answer: (B) mock test platform

Total numbers of ways \rightarrow 7!

Favorable numbers of ways \rightarrow 5! \times 3!

Probability
$$\rightarrow \frac{5! \times 3!}{7!} = \frac{1}{7}$$

- 20. Answer: (D)
 - $\therefore \text{ Required probability} = \frac{7}{36} \times \frac{6}{35}$