# A FIRST COURSE

#### IN

## **ANALYSIS**

## **MAT2006 Notebook**

#### Lecturer

Prof. Weiming Ni The Chinese University of Hongkong, Shenzhen

## Tex Written By

Mr. Jie Wang

The Chinese University of Hongkong, Shenzhen



# Contents

| Ackno | nowledgments                       | V11 |
|-------|------------------------------------|-----|
| Notat | tions                              | ix  |
| 1     | Week1                              | 1   |
| 1.1   | Wednesday                          | 1   |
| 1.1.1 | Introduction to Set                | 1   |
| 1.2   | Quiz                               | 5   |
| 1.3   | Friday                             | 6   |
| 1.3.1 | Proof of Schroder-Berstein Theorem | 6   |
| 1.3.2 | Connectedness of Real Numbers      | 10  |
| 2     | Week2                              | 13  |
| 2.1   | Wednesday                          | 13  |
| 2.1.1 | Review and Announcement            | 13  |
| 2.1.2 | Irrational Number Analysis         | 13  |
| 2.2   | Friday                             | 21  |
| 2.2.1 | Set Analysis                       | 21  |
| 2.2.2 | Set Analysis Meets Sequence        | 22  |
| 2.2.3 | Completeness of Real Numbers       | 23  |
| 3     | Week3                              | 27  |
| 3.1   | Tuesday                            | 27  |
| 3.1.1 | Application of Heine-Borel Theorem | 27  |
| 3.1.2 | Set Structure Analysis             | 28  |
| 3.1.3 | Reviewing                          | 30  |

# Acknowledgments

This book is taken notes from the MAT2006 in fall semester, 2018. These lecture notes were taken and compiled in LATEX by Jie Wang, an undergraduate student in Fall 2018. Prof. Weiming Ni has not edited this document.

#### Notations and Conventions

 $\mathbb{R}^n$ *n*-dimensional real space  $\mathbb{C}^n$ *n*-dimensional complex space  $\mathbb{R}^{m \times n}$ set of all  $m \times n$  real-valued matrices  $\mathbb{C}^{m \times n}$ set of all  $m \times n$  complex-valued matrices *i*th entry of column vector  $\boldsymbol{x}$  $x_i$ (i,j)th entry of matrix  $\boldsymbol{A}$  $a_{ij}$ *i*th column of matrix *A*  $\boldsymbol{a}_i$  $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all  $n \times n$  real symmetric matrices, i.e.,  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $a_{ij} = a_{ji}$  $\mathbb{S}^n$ for all *i*, *j*  $\mathbb{H}^n$ set of all  $n \times n$  complex Hermitian matrices, i.e.,  $\mathbf{A} \in \mathbb{C}^{n \times n}$  and  $\bar{a}_{ij} = a_{ji}$  for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of  $\boldsymbol{A}$ , i.e,  $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$  means  $b_{ji} = a_{ij}$  for all i,jHermitian transpose of  $\boldsymbol{A}$ , i.e,  $\boldsymbol{B} = \boldsymbol{A}^{H}$  means  $b_{ji} = \bar{a}_{ij}$  for all i,j $A^{\mathrm{H}}$ trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry  $e_i$ C(A)the column space of  $\boldsymbol{A}$  $\mathcal{R}(\boldsymbol{A})$ the row space of  $\boldsymbol{A}$  $\mathcal{N}(\boldsymbol{A})$ the null space of  $\boldsymbol{A}$ 

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$  the projection of  $\mathbf{A}$  onto the set  $\mathcal{M}$ 

#### Chapter 3

#### Week3

### 3.1. Tuesday

#### 3.1.1. Application of Heine-Borel Theorem

**Theorem 3.1** Let  $f(x) = \sum_{k=0}^{\infty} a_k x^k$  which converges in |x| < 1. If for every  $x \in [0,1)$ , there exists n(=n(x)) such that  $\sum_{n=1}^{\infty} a_k x^k = 0$ , then f is a polynomial, i.e., n does not depend on x.

*Proof.* Let  $E_N := \{x \in [0, \frac{1}{2}] \mid \sum_{k=N+1}^{\infty} a_k x^k = 0\}$ . It follows that

$$[0,\frac{1}{2}]=\bigcup_{N=1}^{\infty}E_N,$$

which implies that at least one  $E_N$  is uncountable, say,  $E_m$  is uncountable. (In particular,  $E_m$  is infinite)

Therefore, (B-W) there  $\exists$  a sequence  $x_1, x_2, ..., x_k, \cdots \rightarrow x_0 \in E_m$  as  $E_m$  is closed.

Hence,  $f(x) = a_0 + a_1 x + \cdots + a_m x^m$  holds for the sequence  $\{x_1, x_2, \dots\}$ . Hence we conclude the power series and the analytics function coincide each other:

$$f(x) \equiv a_0 + a_1 x + \dots + a_m x^m$$

**Proposition 3.1** Let g be analytic, i.e.,  $g(x) = b_0 + b_1 x + \cdots + b_n x^n + \cdots$  on (-1,1); and  $g(x_k) = 0$  for all  $k \ge 1$ , where  $\{x_k\} \to x_0$  (change 0 for simplicity). Then  $g \equiv 0$  on

$$(-1,1)$$
 (i.e.,  $b_0 = b_1 = \cdots = 0$ )

First, observe that g(0) = 0 due to continuity property.

At the same time,  $g(0) = b_0 = 0$ . It follows that

$$g(x) = x(b_1 + b_2x + \dots + b_nx^{n-1} +)$$

Note that

$$0 = g(x_k) = x_k(b_1 + b_2x_k + \dots + b_nx_k^{n-1} +)$$

Taking limit both sides, we derive  $b_1 = 0$ .

Hence, 
$$g(x) = x^2(b_2 + b_3x + \cdots)$$
 Note  $0 = g(x_k) = x_k^2(b_2 + b_3x + \cdots) \implies b_2 = 0$ .

We can show  $b_k = 0$  for  $\forall k$ . The remaining proof requires induction.

Now we talk about something mature for understanding.

#### 3.1.2. Set Structure Analysis

**Definition 3.1** [Nowhere Dense] A set  $\bf{\it B}$  is said to be **nowhere dense** if its closure  $\overline{\it B}$  contain no non-empty open set.

For example,

$$B = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\} \implies \overline{B} = B \bigcup \{0\},\$$

which contains no open set.

**Definition 3.2** [1st category] A set of **B** is said to be of 1st category if it can be written as the **union** of **finitely** many or **countably** many **nowhere** dense sets.

**Definition 3.3** [2rd category] A set is said to be of 2rd category if it is **not** of 1st category

**Theorem 3.2** — **Baire-Category Theorem.**  $\mathbb{R}$  is of 2rd category, i.e.,  $\mathbb{R}$  cannot be written as the union of countably many nowhere dense sets; or equivalently, if

 $\mathbb{R} = \bigcup_{n=1}^{\infty} A_n$ , then at least one  $A_n$  whose closure contains a non-empty set.

*Proof.* Assume  $\mathbb{R} = \bigcup_{n=1}^{\infty} A_n$  such that all  $A_n$ 's are nowhere dense. It follows that

$$\mathbb{R} \setminus \overline{A_1}$$
 is open.

We choose an open set  $N_1$  such that  $\overline{N_1} \subseteq \mathbb{R} \setminus \overline{A_1}$ . Since  $A_2$  is nowhere dense, we imply  $\overline{A_2}$  does not contain  $N_1$ , i.e.,  $N_1 \setminus \overline{A_2}$  is open; choose an open set  $N_2$  such that  $\overline{N_2} \subseteq N_1 \setminus \overline{A_2}$ .

 $A_3$  is nowhere dense, i.e.,  $\overline{A_3}$  contains no open set. Thus  $N_2 \setminus \overline{A_3}$  is non-empty open set; choose open set ...

Repeating this process, we obtain a sequence of nested sets  $\overline{N_1} \supseteq N_1 \supset \overline{N_2} \supset N_2 \cdots$ . The cantor's theorem implies that  $\bigcap_{k=1}^{\infty} \overline{N_k} \neq \emptyset$ .

On the other hand,  $\bigcap_{k=1}^{\infty} \overline{N_k} \subseteq \mathbb{R} \setminus \bigcup_{n=1}^{m} A_n$  for any finite m.

Therefore, 
$$\emptyset \neq \bigcup_{k=1}^{\infty} \overline{N_k} \subseteq \mathbb{R} \setminus \bigcup_{n=1}^{\infty} A_n = \emptyset$$

most continuous function is nowhere differentiable. converge pointwise review: sequence and series.

 $\mathbb{R}$  is of 2nd category, i.e., if  $\mathbb{R} = \bigcup_{n=1}^{\infty} A_m$ , then at least  $A_n$  whose closure contains a **non-empty** open sets; The theorem also holds if we replace  $\mathbb{R}$  by a **complete** metric space (essentially the same proof).

For  $\mathbb{R}$ , d(x,y) = |x - y|, so it is a metric space;  $\mathbb{Q}$  is also metric space.

The second example is  $\mathbb{R}^n$ , with  $d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$ .

The set of all bounded sequences, with  $d(\lbrace x_n \rbrace, \lbrace y_n \rbrace) = \sup\{ |x_i - y_i| \mid i = 1, 2, ... \}$ 

The set of all bounded continuous functions on  $\mathbb{R}$  (different domains), with  $d_1(f,g)=\sup\{|f(x)-g(x)|\ |\ x\in\mathbb{R}\}$ , or  $d_2(f,g)=(\int_0^1|f(x)-g(x)|^2\,\mathrm{d}x)^{1.2}$  Note that  $(\xi[0,1],d_1)$  is complete, and  $(\xi[0,1],d_2)$  is not complete. (exercise)

Different distance definition corresponds to different metric spaces.

Complete: all Cauchy sequence converge.

#### **Definition 3.4** [Metric Space]

•

•

•

To show that most continuous function is nowhere differentiable, we will apply the Baire Category Theorem on  $(\xi[0,1],d_1)$ 

#### 3.1.3. Reviewing

**Definition 3.5** [Sequence]  $f: \mathbb{N} \to \mathbb{R}$ , denoted as  $\{f(0), f(1), \ldots\}$  conventionally we denote it as  $x_1, x_2, \ldots$ 

**Definition 3.6** A number  $\alpha$  is the limit of  $\{x_1, x_2, \dots\}$  if  $\forall \epsilon > 0$ , there  $\exists N = N(\epsilon)$  such that  $|x_k - \alpha| < \epsilon$  for  $\forall k \geq N$ , denoted by  $\alpha_n \to \alpha$ 

#### **Definition 3.7**

$$\lim \inf_{k \to \infty} x_k := \lim_{n \to \infty} \inf_{k \ge n} x_k$$

which is the smallest limit point of the sequence

$$\limsup_{k\to\infty} x_k := \lim_{n\to\infty} \sup_{k>n} x_k$$

which is the largest limit point of the sequence.

A sequence always have liminf and limsup.

**Definition 3.8** [Partial Sum] The series  $\sum_i a_i$ , the partial sum are defined as:

$$s_n = a_1 + \cdots + a_n$$

the sum is defined as the limit of the partial sum,