Dividir y Conquistar

Algoritmos y Estructuras de Datos II, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

11 de Junio de 2018

Dividir y conquistar

La resolución de un problema con D&C tiene tres partes:

- $f Oividir \ el \ problema \ en \ k \ subproblemas \ del \ mismo \ tipo, pero más chicos.$
- 2 Conquistar resolviendo los subproblemas, recursivamente o directamente (si son lo suficientemente fáciles o chicos).
- Ombinar las soluciones obtenidas para resolver el problema original.

Merge Sort

- 1 Dividir el arreglo en dos mitades.
- Conquistar Si los arreglos son de un elemento, ya están ordenados, sino, hacer recursión sobre ellos.
- **3 Combinar** Merge para obtener el arreglo ordenado a partir de las dos mitades ordenadas.

Dividir y conquistar

DC(X)

- Si X es suficientemente chico (o simple):
 - ADHOC(X)
- En caso contrario:
 - Descomponer X en subinstancias $X_1, X_2,...,X_k$
 - Para i desde 1 hasta k hacer
 - $Y_i = DC(X_i)$
 - ullet Combinar las soluciones Y_i para construir una solución ${\sf Y}$ para ${\sf X}$

Complejidad de funciones recursivas

Escribimos la complejidad de nuestro algoritmo por medio de la recurrencia:

$$T(n) = \begin{cases} aT\left(\frac{n}{c}\right) + f(n) & n > 1\\ \theta(1) & n = 1 \end{cases}$$

Donde:

- ullet a es la cantidad de subproblemas a resolver
- c es la cantidad de particiones, o sea $\frac{n}{c}$ es el tamaño de los subproblemas a resolver
- f(n) es el costo de todo lo que se hace en cada paso además de la recursión

¿Cómo calculamos la complejidad de un algoritmo recursivo?

¿Cómo calculamos la complejidad de un algoritmo recursivo?

Opción 1: Dibujar el arbol de llamadas recursivas, calcular cuanto demora cada nodo y sumar para todos los nodos.

¿Cómo calculamos la complejidad de un algoritmo recursivo?

Opción 1: Dibujar el arbol de llamadas recursivas, calcular cuanto demora cada nodo y sumar para todos los nodos.

Opción 2: Adivinar cuanto va a dar y probar por inducción que tiene esa complejidad a partir de la recurrencia.

¿Cómo calculamos la complejidad de un algoritmo recursivo?

Opción 1: Dibujar el arbol de llamadas recursivas, calcular cuanto demora cada nodo y sumar para todos los nodos.

Opción 2: Adivinar cuanto va a dar y probar por inducción que tiene esa complejidad a partir de la recurrencia.

Opción 3: Usar el Teorema Maestro, que me ahorra de hacer cuentas (porque ya las hizo el que demostró el teorema).

$$\begin{aligned} & \text{Tres casos: } T(n) = \\ & \begin{cases} \theta(n^{\log_c a}) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in O(n^{\log_c a - \varepsilon}) \\ \theta(n^{\log_c a} \log n) & \text{Si } f(n) \in \theta(n^{\log_c a}) \\ \theta(f(n)) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in \Omega(n^{\log_c a + \varepsilon}) \text{ y} \\ & \exists \delta < 1 \exists n_0 > 0 \text{ tal que } \forall n \geq n_0 \text{ se cumple } af\left(\frac{n}{c}\right) \leq \delta f(n) \end{aligned}$$

Ahora bien, ¿qué pasa cuando coinciden a y c? O sea, resolvemos cada uno de los subproblemas en los que particionamos el problema original

Ahora bien, ¿qué pasa cuando coinciden a y c? O sea, resolvemos cada uno de los subproblemas en los que particionamos el problema original $\log_c a = 1$ entonces...

Ahora bien, ¿qué pasa cuando coinciden a y c? O sea, resolvemos cada uno de los subproblemas en los que particionamos el problema original

 $\log_c a = 1$ entonces...

$$\begin{split} T(n) &= \\ \begin{cases} \theta(n) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in O(n^{1-\varepsilon}) \\ \theta(n \log n) & \text{Si } f(n) \in \theta(n) \\ \theta(f(n)) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in \Omega(n^{1+\varepsilon}) \text{ y} \\ & \exists \delta < 1 \exists n_0 > 0 \text{ tal que } \forall n \geq n_0 \text{ se cumple } af\left(\frac{n}{c}\right) \leq \delta f(n) \end{split}$$

Búsqueda en arreglo ordenado

- Dado un arreglo de elementos ordenados y un elemento perteneciente a él, se quiere encontrar la posición en la que está.
- Si n es la cantidad de elementos del arreglo, encontrar un algoritmo que resuelva el problema en un tiempo estrictamente menor a O(n)

Máximo

- Un arreglo de enteros *montaña* está compuesto por una secuencia estrictamente creciente seguida de una estrictamente decreciente.
- Suponemos que hay al menos un elemento menor y uno mayor que el máximo (las secuencias creciente y decreciente tienen al menos 2 elementos)
- Por ejemplo, el arreglo (-1, 3, 8, 22, 30, 22, 8, 4, 2, 1)
- Dado un arreglo montaña de longitud n, queremos encontrar al máximo. La complejidad del algoritmo que resuelva el problema debe ser $O(\log n)$

Subsecuencia de suma máxima

- Dada una secuencia de n enteros, se desea encontrar el máximo valor que se puede obtener sumando elementos consecutivos.
- Por ejemplo, para la secuencia (3, -1, 4, 8, -2, 2, -7, 5), este valor es 14, que se obtiene de la subsecuencia (3, -1, 4, 8).
- Si una secuencia tiene todos números negativos, se entiende que su subsecuencia de suma máxima es la vacía, por lo tanto el valor es 0.

Matriz creciente

Se tiene una matriz A de n*n números naturales, de manera que A[i,j] representa al elemento en la fila i y columna j $(1 \le i, j \le n)$. Se sabe que el acceso a un elemento cualquiera se realiza en tiempo O(1). Se sabe también que todos los elementos de la matriz son distintos y que todas las filas y columnas de la matriz están ordenadas de forma creciente (es decir, $i < n \Rightarrow A[i,j] < A[i+1,j]$ y $j < n \Rightarrow A[i,j] < A[i,j+1]$).

Implementar, utilizando la técnica de dividir y conquistar, la función:

está(in n: nat, in A: matriz(nat), in e: nat) \rightarrow bool

que decide si un elemento e dado aparece en alguna parte de la matriz. Se debe dar un algoritmo que tome tiempo estrictamente menor que $O(n^2)$. Notar que la entrada es de tamaño $O(n^2)$.

Oalcular y justificar la complejidad del algoritmo propuesto. Para simplificar el cálculo, se puede suponer que n es potencia de dos.

Ejercicio de parcial

Dado un árbol binario de números enteros, se desea calcular la máxima suma de los nodos pertenecientes a un camino entre dos nodos cualesquiera del árbol. Un camino entre dos nodos n_1 y n_2 está formado por todos los nodos que hay que atravesar en el árbol para llegar desde n_1 hasta n_2 , incluyéndolos a ambos. Un camino entre un nodo y sí mismo está formado únicamente por ese nodo. Suponer que el árbol está balanceado.

Ejercicio de parcial

Se pide dar un algoritmo $\operatorname{M\acute{a}XIMASUMACAMINO}(a:\operatorname{ab(int)}) \to \operatorname{int}$ que resuelva el problema utilizando la técnica de $\operatorname{Dividir} y$ $\operatorname{Conquistar}$, calculando y justificando claramente su complejidad. El algoritmo debe tener una complejidad temporal de peor caso igual o mejor que $O(n\log n)$ siendo n la cantidad de nodos del árbol.

Figura: Ejemplo de un camino de máxima suma en un posible ab(int). Resultado correcto: 50.

Ejercicio de parcial

Y... lo podremos hacer O(n)

Figura: wubalubadubdub

Final

• ¿Preguntas?

