```
In [5]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from bokeh.plotting import figure, output file, show
        from bokeh.layouts import row
        from bokeh.io import output_notebook
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from patsy import dmatrices
        import sklearn
        import sklearn.metrics
        from sklearn import ensemble
        from sklearn import linear model
        import warnings
        warnings.filterwarnings('ignore')
        output notebook()
        %matplotlib inline
```

(http://www.datsucgessfully loaded.

```
In [19]: import os
    os.chdir("/Users/anantkataria/Downloads")

In [22]: url = "winequality-white.csv"
    wine = pd.read_csv(url)

In [23]: wine.head(n=5)
Out[23]:
```

fixed acidity; "volatile acidity"; "citric acid"; "residual sugar"; "chlorides"; "free sulfur dioxide"; "total sulfur dioxide"; "density"; "pH"; "sulphates"; "alcohol"; "quality"

0	7;0.27;0.36;20.7;0.045;45;170;1.001;3;0.45;8.8;6
1	6.3;0.3;0.34;1.6;0.049;14;132;0.994;3.3;0.49;9
2	8.1;0.28;0.4;6.9;0.05;30;97;0.9951;3.26;0.44;1
3	7.2;0.23;0.32;8.5;0.058;47;186;0.9956;3.19;0.4
4	7.2;0.23;0.32;8.5;0.058;47;186;0.9956;3.19;0.4

```
In [24]: wine = pd.read_csv(url, sep=";")
wine.head(n=5)
```

Out[24]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	al
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	

In [26]: wine.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):
fixed acidity
                        4898 non-null float64
volatile acidity
                        4898 non-null float64
citric acid
                        4898 non-null float64
residual sugar
                        4898 non-null float64
chlorides
                        4898 non-null float64
free sulfur dioxide
                        4898 non-null float64
total sulfur dioxide
                        4898 non-null float64
density
                        4898 non-null float64
рН
                        4898 non-null float64
sulphates
                        4898 non-null float64
alcohol
                        4898 non-null float64
quality
                        4898 non-null int64
dtypes: float64(11), int64(1)
```

memory usage: 459.3 KB

In [27]: wine.describe()

Out[27]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	tot
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	ξ
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	13₄
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440

In [28]: wine.isnull().sum()

Out[28]: fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density рН 0 0 sulphates alcohol 0 quality 0 dtype: int64

In [29]: wine.rename(columns={'fixed acidity': 'fixed_acidity','citric acid'
 :'citric_acid','volatile acidity':'volatile_acidity','residual suga
 r':'residual_sugar','free sulfur dioxide':'free_sulfur_dioxide','to
 tal sulfur dioxide':'total_sulfur_dioxide'}, inplace=True)
 wine.head(n=5)

Out[29]:

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	tc
0	7.0	0.27	0.36	20.7	0.045	45.0	
1	6.3	0.30	0.34	1.6	0.049	14.0	
2	8.1	0.28	0.40	6.9	0.050	30.0	
3	7.2	0.23	0.32	8.5	0.058	47.0	
4	7.2	0.23	0.32	8.5	0.058	47.0	

```
In [30]: wine['quality'].unique()
Out[30]: array([6, 5, 7, 8, 4, 3, 9])
In [31]: wine.quality.value_counts().sort_index()
Out[31]: 3
                 20
         4
                163
         5
               1457
         6
               2198
         7
                880
         8
                175
         Name: quality, dtype: int64
In [32]: sns.countplot(x='quality', data=wine)
```

Out[32]: <matplotlib.axes. subplots.AxesSubplot at 0x10fff42d0>


```
In [33]: conditions = [
              (wine['quality'] >= 7),
              (wine['quality'] <= 4)</pre>
         rating = ['good', 'bad']
         wine['rating'] = np.select(conditions, rating, default='average')
         wine.rating.value counts()
```

Out[33]: average 3655 good 1060 bad 183

Name: rating, dtype: int64

```
In [34]: wine.groupby('rating').mean()
```

Out[34]:

fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_diox

rating

average	6.876060	0.277086	0.337877	6.797729	0.047740	35.9621
bad	7.180874	0.375984	0.307705	4.821038	0.050557	26.6338
good	6.725142	0.265349	0.326057	5.261509	0.038160	34.5504

```
In [35]: correlation = wine.corr()
   plt.figure(figsize=(12, 5))
   sns.heatmap(correlation, annot=True, linewidths=0, vmin=-1, cmap="R
   dBu_r")
```

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x126e3a2d0>

In [36]: correlation['quality'].sort_values(ascending=False)

```
Out[36]: quality
                                   1.000000
         alcohol
                                   0.435575
                                   0.099427
         Нq
         sulphates
                                   0.053678
         free_sulfur_dioxide
                                   0.008158
         citric acid
                                  -0.009209
         residual sugar
                                  -0.097577
         fixed acidity
                                  -0.113663
         total sulfur dioxide
                                  -0.174737
         volatile acidity
                                  -0.194723
         chlorides
                                  -0.209934
                                  -0.307123
         density
         Name: quality, dtype: float64
```

```
In [37]: bx = sns.boxplot(x="quality", y='alcohol', data = wine)
    bx.set(xlabel='Wine Quality', ylabel='Alcohol Percent', title='Alcohol percent in different wine quality types')
```



```
In [38]: bx = sns.boxplot(x="rating", y='sulphates', data = wine)
bx.set(xlabel='Wine Ratings', ylabel='Sulphates', title='Sulphates
in different types of Wine ratings')
```



```
In [39]: bx = sns.violinplot(x="rating", y='citric_acid', data = wine)
    bx.set(xlabel='Wine Ratings', ylabel='Citric Acid', title='Xitric_a
    cid in different types of Wine ratings')
```



```
In [40]: bx = sns.boxplot(x="rating", y='fixed_acidity', data = wine)
    bx.set(xlabel='Wine Ratings', ylabel='Fixed Acidity', title='Fixed
    Acidity in different types of Wine ratings')
```



```
In [42]: bx = sns.swarmplot(x="rating", y="pH", data = wine);
bx.set(xlabel='Wine Ratings', ylabel='pH', title='pH in different t
ypes of Wine ratings')
```



```
In [44]: sns.lmplot(x = "alcohol", y = "residual_sugar", col = "rating", dat
a = wine)
```

Out[44]: <seaborn.axisgrid.FacetGrid at 0x12c090510>

In []:

In []: