Part 1 Demultiplexing | BIO 622

Jared Galloway

Part 1

2.

	Filename	Read
	$1294_{S}1_{L}008_{R}1_{0}01.fastq.gz$	Read 1
1.	$1294_{S}1_{L}008_{R}2_{0}01.fastq.gz$	Index 1
	$1294_{S}1_{L}008_{R}3_{0}01.fastq.gz$	Index 2
Ì	$1294_{S}1_{L}008_{R}4_{0}01.fastq.gz$	Read 2

Figure 1: Distribution of average quality score R1

Figure 2: Distribution of average quality score R2

Due to the first two biological reads – for both R1 and R2 – are quite low $\approx < 36$, I would set the cutoff for 37, to make sure we are getting high quality biological reads.

To find the total number of N's within the two index reads, I used the following bash command

zcat emp_files/1294_S1_L008_R[2-3]* | awk 'NR%4==2' | grep N | wc -l > countN_Index.txt

Figure 3: Distribution of average quality score R3

Figure 4: Distribution of average quality score R4