Exercises and outline solutions for MM101 tutorial in week 6

1. Evaluate the following limits.

(a)
$$\lim_{x \to -a} \frac{x^2 - a^2}{x + a}$$
; (b) $\lim_{a \to -x} \frac{x^2 - a^2}{x + a}$.

(a)
$$\lim_{x \to -a} \frac{x^2 - a^2}{x + a} = \lim_{x \to -a} \frac{(x + a)(x - a)}{x + a} = \lim_{x \to -a} (x - a) = -2a.$$

(b)
$$\lim_{a \to -x} \frac{x^2 - a^2}{x + a} = \lim_{a \to -x} (x - a) = 2x$$
.

2. Evaluate the following limits.

(a)
$$\lim_{x\to 0} \frac{\sin 7x}{x/6}$$
; (b) $\lim_{x\to 0} \frac{\tan x}{x}$.

(a)
$$\lim_{x \to 0} \frac{\sin 7x}{x/6} = 42 \lim_{x \to 0} \frac{\sin 7x}{7x} = 42.$$

(b)
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1.$$

3. The function f(x) satisfies $0 \le |f(x)| < |2x|$ for all $x \ne 0$. Prove that $\lim_{x \to 0} f(x) = 0$ using the ϵ - δ definition of the limit.

Given $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$. Then we have $0 < |x - 0| < \delta \implies 0 < |2x| < \epsilon$. But since $0 \le |f(x)| < |2x|$, we see that $0 < |x - 0| < \delta \implies 0 \le |f(x)| < \epsilon$, and thus that $\lim_{x \to 0} f(x) = 0$.

- 4. For each of the following:
 - (i) find the limit $l = \lim_{x \to a} f(x)$ for the given value of a; and
 - (ii) prove that it is the limit by finding, for an arbitrary $\epsilon > 0$, a suitable $\delta > 0$ such that $|f(x) l| < \epsilon$ whenever x satisfies $0 < |x a| < \delta$.

(a)
$$f(x) = 4x$$
, $a = \frac{2}{3}$; (b) $f(x) = 2x^2$, $a = 2$.

- (i) The limit is $l = \frac{8}{3}$. We require that $|4x \frac{8}{3}| < \epsilon$. Dividing by 4 yields $|x \frac{2}{3}| < \frac{\epsilon}{4}$. So the choice $\delta = \frac{\epsilon}{4}$ works.
- (ii) The limit is l=8. We require that $|2x^2-8|<\epsilon$, which is equivalent to $|x+2|<|x-2|<\epsilon/2$. If we require |x-2|<1 then -1< x-2<1, so -1+2< x<1+2, so 3< x+2<5, and so |x+2|<5. Thus, when |x-2|<1 we know that $|x^2-4|<5|x-2|$. Therefore, if we choose $\delta=\min\left(1,\frac{\epsilon}{10}\right)$ then $|x-2|<\delta\Longrightarrow |x^2-4|<\epsilon/2\Longrightarrow |2x^2-8|<\epsilon$, and the proof is done.