МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.1.3 ОПРЕДЕЛЕНИЕ C_p/C_v ПО СКОРОСТИ ЗВУКА В ГАЗЕ

Авторы: Идрисов Сергей Б04-306

Введение

Цель работы:

- 1. измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу;
- 2. определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{\mu}{RT}c^2. \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\lambda/2$$
,

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad \dots, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}, \quad (4)$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (5)

Из (3) и (5) имеем:

$$f_{1} = \frac{c}{\lambda_{1}} = \frac{c}{2L}n, \quad f_{2} = \frac{c}{\lambda_{2}} = \frac{c}{2L}(n+1) = f_{1} + \frac{c}{2L}, \quad \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_{1} + \frac{c}{2L}k. \tag{6}$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка

Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 . Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2: Установка для изучения зависимости скорости звука от температуры

Ход работы

Эксперимент 1

$L_{\mathrm{TP}}, \mathrm{MM}$	T_k, K
800 ± 1	297.9

Таблица 1: Параметры установки 1

Т,К	k	f_p , Гц	$f_{k+1}-f_1$, Гц	$\Delta f k$	Δf^2	k^2
297.9	1	199	199	199	39601	1
	2	451	252	504	63504	4
	3	667	468	1404	219024	9
	4	872	673	2692	452929	16
	5	1096	897	4485	804609	25
	6	1305	1106	6636	1223236	36
	7	1525	1326	9282	1758276	49
	8	1735	1536	12288	2359296	64
	9	1952	1753	15777	3073009	81
<>	5	1089.111111	912.222222	5918.555556	1110387.111	31.66666667
308.5	1	203	203	203	41209	1
	2	458	255	916	65025	4
	3	672	469	2016	219961	9
	4	890	687	3560	471969	16
	5	1110	907	5550	822649	25
	6	1330	1127	7980	1270129	36
	7	1552	1349	10864	1819801	49
	8	1772	1569	14176	2461761	64
	9	1992	1789	17928	3200521	81
<>	5	1108.777778	928.3333333	7021.444444	1152558.333	31.66666667
318	1	226	226	226	51076	1
	2	464	238	476	56644	4
	3	682	456	1368	207936	9
	4	903	677	2708	458329	16
	5	1126	900	4500	810000	25
	6	1351	1125	6750	1265625	36
	7	1574	1348	9436	1817104	49
	8	1798	1572	12576	2471184	64
	9	2022	1796	16164	3225616	81
<>	5	1127.333333	926.444444	6022.666667	1151501.556	31.66666667
332	1	207	207	207	42849	1
	2	474	267	534	71289	4
	3	696	489	1467	239121	9
	4	923	716	2864	512656	16
	5	1150	943	4715	889249	25
	6	1379	1172	7032	1373584	36
	7	1608	1401	9807	1962801	49
	8	1836	1629	13032	2653641	64
	9	2065	1858	16722	3452164	81
	5	1148.666667	964.6666667	6264.444444	1244150.444	31.66666667

Рис. 3: Зависимость частоты резонанса от его номера

$$k_1 = \frac{\langle \Delta f * k \rangle - \langle \Delta f \rangle \langle k \rangle}{\langle \Delta f \rangle^2 - \langle \Delta f^2 \rangle} = \frac{5918.555556 - 912.2222222 * 5}{1186160.5921 - 1110387.111} = 200 \pm 10$$

$$k_2 = \frac{7021.444444 - 928.33333333 * 5}{861802.1588 - 1152558.333} = 210 \pm 10$$

$$k_3 = \frac{6022.666667 - 926.4444444 * 5}{858298.4851 - 1151501.556} = 210 \pm 10$$

$$k_4 = \frac{6264.444444 - 964.6666667 * 5}{930581.649155 - 1244150.444} = 220 \pm 10$$

$$b = \frac{1}{9} \sqrt{\frac{31.66666667 - 25}{1186160.5921 - 1110387.111} - 40000} = 10$$

c/2L	с, м/с
200	320 ± 10
210	330 ± 10
210	330 ± 10
220	350 ± 10

$$\gamma \approx \frac{29 \cdot 10^{-3}}{8.31 \cdot 320} \cdot 330^2 \approx 1.2 \pm 0.1$$

Эксперимент 2

Длина трубы изначально $T_{\mathrm{rp}} = 570 \pm 5$ мм

f, Гц	k	ΔL , mm	$L_{ m pes},{ m mm}$	$L_{\text{pes}} * k$	$L_{\rm pes}^2$	k^2
2000	1	31	31	31	961	1
	2	116	85	170	7225	4
	3	206	175	525	30625	9
<>	2	117.6666667	97	242	12937	4.666666667
3000	1	6	6	6	36	1
	2	63	57	114	3249	4
	3	121	115	345	13225	9
	4	176	170	680	28900	16
	5	233	227	1135	51529	25
<>	3	119.8	115	456	19387.8	11
4000	1	33	33	33	1089	1
	2	55	22	44	484	4
	3	92	59	177	3481	9
	4	123	90	360	8100	16
	5	149	116	580	13456	25
	6	165	132	792	17424	36
	7	180	147	1029	21609	49
	8	206	173	1384	29929	64
<>	4.5	125.375	96.5	549.875	11946.5	25.5

Таблица 2: Воздух

$$k_1 = \frac{242 - 194}{12937 - 9409} = 72 \pm 10 \cdot 10^{-3}$$

$$k_2 = \frac{456 - 345}{19387.8 - 13225} = 55.5 \pm 7 \cdot 10^{-3}$$

$$k_3 = \frac{549.875 - 434.25}{11946.5 - 9.312.25} = 25 \pm 10 \cdot 10^{-3}$$

Рис. 4: Зависимость длины резонанса от его номера для воздуха

с, м/с	γ
288	0.97
333	1.3
200	0.47

Таблица 3: Показатель γ для воздуха

$$k_1 = \frac{197.6666667 - 166}{4.6666 - 4} = 59.5 \pm 0.5 \cdot 10^{-3}$$
$$k_2 = \frac{375.6 - 311.4}{11 - 9} = 39.6 \pm 0.5 \cdot 10^{-3}$$
$$k_3 = \frac{524.4285714 - 409.1428572}{20 - 16} = 28.8 \pm 0.5 \cdot 10^{-3}$$

f, Гц	k	ΔL , mm	$L_{ m pes},{ m mm}$	$L_{\text{pes}} * k$	$L_{ m pes}^2$	k^2
2000	1	42	42	42	1764	1
	2	112	70	140	4900	4
	3	179	137	411	18769	9
<>	2	111	83	197.6666667	8477.666667	4.666666667
3209	1	56	56	56	3136	1
	2	113	57	114	3249	4
	3	150	94	282	8836	9
	4	190	134	536	17956	16
	5	234	178	890	31684	25
<>	3	148.6	103.8	375.6	12972.2	11
4290	1	36	36	36	1296	1
	2	70	34	68	1156	4
	3	98	62	186	3844	9
	4	134	98	392	9604	16
	5	161	125	625	15625	25
	6	199	163	978	26569	36
	7	234	198	1386	39204	49
	4	133.1428571	102.2857143	524.4285714	13899.71429	20

Таблица 4: CO_2

с, м/с	γ
238	1
254	1.1
247	1.1

Таблица 5: Показатель γ для CO_2

Рис. 5: Зависимость длины резонанса от его номера для воздуха

Вывод

Мы научились измерять показатель адиабаты через скорость звука с помощью резонансных пиков зависимости амплитуды принимаемого сигнала при прохождении в закрытом пространстве от расстояния, проходимого звуком в одну сторону из-за появления стоячих волн, результаты эксперимента совпали с табличными значениями. Был уточнен метод получения скорости звука в углекислом газе.