PSAT & YBIGTA 신용불량자

김수진, 안세훈, 유건욱, 이용하, 이정현

7 주제 설명

2 데이터

3 EDA

4 Random Forest

1 주제 설명

목적

공식 신용 기록이 없거나 부족한 사람들을 위해

대체 신용 정보를 이용함으로써

보다 합당한 대출 가능 여부 예측을 돕기 위함

Target Data

이번 대출 받았을 때 연체했니?

1

밀리지 않고 꼬박꼬박 잘 **상환**했니?

0

신용도 평가

1

상환이력정보

현재 연체 보유 여부 및 과거 채무 상환 이력

2

신용형태정보

신용거래종류, 신용거래형태 (상품별 건수, 활용비중)

3

현재부채수준

채무 부담 정보 (대출 및 보증 채무 등)

신용거래기간

신용거래 거래 기간 (최초/최근 개설로부터 기간)

2 데이터

데이터 개요

Data sets (총 7개의 세트)

Train

application_train
bureau
bureau_balance
credit_card_balance
installments_payments
POS_CASH_balance
previous_application

적게는 28만개부터 많게는 1300만개의 다양한 OBS 수

&

총 220여개의 변수

application_test

Variable

총 변수 : 205

application_{train|test}.csv — SK_ID_CURR

	변수명	변수 설명
	TARGET	Target Variable
	SK_ID_CURR	대출 ID
대출 관련 변수	AMT_CREDIT	신용도
	AMT_GOODS_PRICE	담보
개인 정보 관련 변수	AMT_ANNUITY	연금
	NAME_INCOME_TYPE	소득
	NAME_FAMILY_STATUS	가족 형태
	DAYS_BIRTH	나이(생일)
	CNT_CHILDREN	자녀 수
	FLAG_MOBIL	휴대폰

Variable

총 변수 : 205

bureau / bureau_balance.csv — SK_ID_CURR / BUREAU_ID

	변수명	변수 설명
과거 신용도 관련 변수	CREDIT_ACTIVE	과거 신용 정보 상태
	AMT_CREDIT_SUM	현재 대출 상한선
	AMT_CREDIT_SUM_DEPT	현재 부채 상태
	CREDIT_TYPE	신용도 종류
과거 신용도 잔액 관련 변수	MONTHS_BALANCE	잔액 관련 개월 수
	STATUS	월별 잔액

POS_CASH_balance.csv — SK_ID_CURR / SK_ID_PREV

현금 대출 관련 변수	CNT_INSTALMENT_FUTURE	과거 신용 잔액
언급 네물 원인 인구	SK_DPD	월별 연체 일수

Variable

총 변수 : 205

credit_card_balance.csv — SK_ID_CURR / SK_ID_PREV

	변수명	변수 설명
신용 카드 관련 변수	AMT_DRAWINGS_CURRENT	월별 출금 금액
	AMT_INST_MIN_REGULARITY	최소 할부금
	AMT_PAYMENT_CURRENT	월별 카드값
	MT_PAYMENT_TOTAL_CURRENT	누적 카드값

previous_application.csv — SK_ID_CURR / SK_ID_PREV

과거 대출 관련 변수	NAME_CONTRACT_TYPE	과거 대출 상품 종류
	AMT_APPLICATION	대출 신청액
	AMT_CREDIT	대출액
	NFLAG_MICRO_CASH	소액 금융 대출
	RATE_INTEREST_PRIVILEGED	이자율 비율

Variable

총 변수 : 205

installments_payments.csv — SK_ID_CURR / SK_ID_PREV

	변수명	변수 설명
할부 상환 관련 변수	NUM_INSTALMENT_NUMBER	할부 개월 표시
	DAYS_INSTALMENT	상환 예정 일자
	DAYS_ENTRY_PAYMENT	상환 일자
	AMT_INSTALMENT	할부금액
	AMT_PAYMENT	상환금액

Target

Binary data

: 0과 1을 factor처리 함.

Unbalanced Data

: 목표 값이 심하게 unbalanced 되어있다

Target

Unbalanced Data 처리

- 1 Sample 조정
 - Oversampling
 - <u>Undersampling</u>
 - Synthetic Samples(SMOTE)

- **2** Model 조정
 - Penalized-SVM
 - Penalized-LDA

NA Imputation

기준 1

NA값이 극소수(1% 이하)인 경우

각각 변수의 **median**으로 대체 **기준 2** NA값이 50% 이상인 경우

변수제거

1

bureau.csv

previous_application.csv

AMT_DOWN_PAYMENT RATE_INTEREST_PRIMARY

RATE_DOWN_PAYMENT RATE_INTEREST_PRIVILEGED

installment_payments.csv

DAYS_INSTALMENT
DAYS_ENTRY_PAYMENT

AMT_INSTALMENT
AMT_PAYMENT

OVERED_TOTAL

= AMT_INSTALMENT - AMT_PAYMENT

OVERED_COUNT

 $= (IF ["OVERED_TOTAL"] > 0] = 1)$

: 연체 여부와 연체 금액으로 압축 가능하다고 판단

3 EDA

CNT_CHILDREN

: 아이들의 수

> table(balanced2\$CNT_CHILDREN)

0 1 2 3 4 5 6 8 9 11 12 49728 14702 6460 958 96 12 3 1 4 1 1

AMT_INCOME_TOTAL

: 소득

> summary(balanced2\$AMT_INCOME_TOTAL)

Histogram of balanced2\$DAYS_BIRTH/360

Min. 1st Qu. Median Mean 3rd Qu. Max. 26550 112500 157500 171677 202500 117000000

DAYS_BIRTH

: 나이

balanced2\$DAYS_BIRTH/360

DAYS_EMPLOYED

: 현재 직장 근속연수

```
> summary(balanced2$DAYS_EMPLOYED)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-16429 -2687 -1233 58618 -335 365243
```

```
ind = (balanced2$DAYS_EMPLOYED==36524월)
balanced2$DAYS_EMPLOYED[ind] <= NaN
##DAYS_EMPLOYED_FLAG 만들
balanced2$DAYS_EMPLOYED_FLAG <- 0
balanced2$DAYS_EMPLOYED_FLAG[ind]<- 1
balanced2$DAYS_EMPLOYED_FLAG <- as.factor(balanced2$DAYS_EMPLOYED_FLAG)
```

CNT_FAM_MEMBERS

: 가족의 수

> table(balanced2\$CNT_FAM_MEMBERS)

1 2 3 4 5 6 7 8 10 11 13 14 15404 36956 12629 5970 891 94 12 3 2 3 1 1

OBS_30_CNT_SOCIAL_CIRCLE

: 친인척 중 연체한 사람 수

> summary(balanced2\$0BS_30_CNT_SOCIAL_CIRCLE)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 0.00 1.57 2.00 30.00

Histogram of balanced2\$OBS_30_CNT_SOCIAL_CIRCLE

DAYS_LAST_PHONE_CHANGE

: 마지막으로 휴대폰 바꾼 날

```
> summary(balanced2$DAYS_LAST_PHONE_CHANGE)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-4121 -1634 -906 -1023 -317 0
```


bureau / bureau_balance.csv

IC	ogg	ıe	ae	taı	IS
	99				

Frequency (%)	Count	Value
66.6%	669674	Closed
33.0%	331291	Active
0.4%	4370	Sold
0.0%	3	Bad debt

bureau / bureau_balance.csv

AMT_CREDIT_SUM

Numeric

Mean	369970
Minimum	0
Maximum	170100000
Zeros (%)	3.8%

Quantile statistics

Minimum	0
5-th percentile	13500
Q1	54000
Median	134420
Q3	333000
95-th percentile	1350000
Maximum	170100000
Range	170100000
Interquartile range	279000

bureau / bureau_balance.csv

AMT_CREDIT_SUM_DEBT

Numeric

Mean	133400
Minimum	-2014800
Maximum	170100000
Zeros (%)	61.1%

Quantile statistics

Minimum	-2014800
5-th percentile	0
Q1	0
Median	0
Q3	23638
95-th percentile	615930
Maximum	170100000
Range	172110000
Interquartile range	23638

installment_payments.csv

```
ins["OVERED_TOTAL"].describe().astype(int)
Out[24]:
         count
                   1270913
                    -1984
         mean
                    84217
         std
         min
                  -3195000
         25%
         50%
         75%
                  2602348
         max
         Name: OVERED_TOTAL, dtype: int32
          ins["OVERED_TOTAL"].quantile(0.025)
         -63282.69899999999
         ins["OVERED_TOTAL"].quantile(0.975)
Out[39]:
         74186.97299999947
```

```
In [40]: ins["OVERED_TOTAL"].hist(bins=10, grid=False)
Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x19e241739b0>
```


installment_payments.csv

```
In [12]: ins["OVERED_COUNT"].hist(bins=15, grid=False)
Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1c08ed570b8>
```


4 Modeling

CART tree

Classification and Regression Tree

- ___ Decision Tree의 일종으로 분류나 회귀 예측모형
- Gini Index를 통해 분류됨
- ─ 이진 트리
- Full model 형성 후 pruning

CART tree

기준:

DAYS_BIRTH

CODE_GENDER

AMT_GOODS_PRICE

NAME_EDUCATION_TYPEHigher_education

F1-score: 0.5662452

- ___ Decision Tree를 여러 번 만들어서 결과 값의 최빈값 사용
- Train set에 과적합 방지
- OOB error으로 모델 평가

전처리

CODE_GENDER

NAME_EDUCATION_TYPE

OCCUPATION_TYPE

NAME_TYPE_SUITE

NAME_FAMILY_STATUS

WEEKDAY_APPR_PROCESS_START

NAME_INCOME_TYPE
NAME_HOUSING_TYPE
ORGANIZATION_TYPE

범주형 변수는 one-hot encoding 진행

전처리

CONTRACT_TYPE OWN_CAR OWN_REALITY

Factor가 두개인 범주형 변수는 0과 1로 표기

Number of trees(ntree): 500 No. of variables at each split(mtry): 12

Obs: 5000개 중 NA가 없는 1727개 사용됨

F1-score: 0.7069943

fit_rf

Number of trees(ntree): 500 No. of variables at each split(mtry): 12

Obs: 5000개 중 NA가 없는 4926개 사용됨

predictions_rf 0 1 0 1740 816 1 741 1629

fit_rf

F1-score: 0.6766355

다음주

THANK YOU

신용불량자