Algorithms of Information Security: Cryptographic Protocols

Faculty of Information Technology Czech Technical University in Prague

November 10, 2022

Interactive proof system.

- Interactive proof system.
- Zero knoweledge proof protocol.

Squares and square roots.

- We have a function $x \mapsto x^2 \mod n$ and its inverse is a function $y \mapsto \sqrt{x} \mod n$.
- An integer b is a square root of a modulo n, if

$$b^2=a(\bmod n).$$

• Let $a \in \mathbb{Z}$ and $n \in N$. We say that a is a quadratic residue modulo n if there exists $b \in N$ such that $b^2 = a \pmod{n}$. Otherwise, we say that a is a quadratic nonresidue.

Quadratic residues.

- We partition Z_n^st into two parts.
 - $QR_n = \{a \in Z_n^* \mid a \text{ is a quadratic residue modulo } n\}$.
 - $QNR_n = Z_n^* QR_n$.
- QR_n is the set of quadratic residues modulo n.
- ullet QNR_n is the set of quadratic non-residues modulo n.

Facts. Let n=pq, where p and q are different odd primes.

- Every $a \in QR_n$ has exactly four square roots in Z_n^* .
- Exactly $(p-1)\cdot (q-1)/4$ of the elements of Z_n^* are quadratic residues.

For an odd prime p holds:

- Every $a \in QR_p$ has exactly two square roots in Z_p^* .
- Exactly 1/2 of the elements of Z_p^* are quadratic residues.

Protocol Feige-Fiat-Shamir.

- The Feige-Fiat-Shamir protocol is based on the difficulty of computing square roots modulo composite numbers.
- Alice chooses n = pq, where p and q are distinct large primes.
- Next she picks a quadratic residue $v \in QR_n$.
- Finally, Alice chooses s to be the smallest square root of $v^{-1}(\bmod n)$.
 - Note. Note that if v is a quadratic residue, then so is $v^{-1} \pmod{n}$.
- ullet Next, she publishes n and v and keeps s as her private secret.

A simplified one-round FFS protocol.

- Alice chooses random $r \in \mathbb{Z}_n^*$. Next, compute $x = r^2 \pmod{n}$ and send x to Bob.
- Bob chooses a random $b \in \{0,1\}$ and sends b to Alice.
- Alice computes $y = rs^b \pmod{n}$ and sends y to Bob.
- If b=0, Bob checks if $x=y^2 \pmod n$. If b=1, Bob checks if $x=y^2v \pmod n$.

Protocol Feige-Fiat-Shamir (FFS).

We make three claims for the FFS protocol.

- (Completeness) When both Alice and Bob are honest, Bob's check always succeeds.
- (Soundness) If Eve attempts to impersonate Alice without knowing her secret, Bob's check will fail with probability at least 1/2.
- (Zero knowledge) Anything that Eve can compute while
 interacting with Alice in the FFS protocol can also be
 computed without Alice's involvement. Specifically, if Eve can
 find Alice's secret s after running the FFS protocol, then she
 could have found s without ever talking to Alice.

Protocol FFS. Completeness.

When both parties are honest, Bob checks

$$x = y^2 v^b (\bmod n)$$

and succeeds because

$$y^2v^b=(rs^b)^2v^b=r^2(s^2v)^b=x(v^{-1}v)^b=x(\ \mathrm{mod}\ n).$$

- We will look at the two cases separately:
 - b = 0: Then y = r a $y^2 = r^2 = x \pmod{n}$.
 - b=1: Then $y=rs \pmod n$ and $s^2=v^{-1} \pmod n$, so

$$y^2v = r^2s^2v = r^2(v^{-1}v) = r^2 = x \pmod{n}.$$

Protocol FFS. Soundness.

- Theorem. Suppose Eve does not know the square root of v^{-1} . Then Bob's verification fails with probability at least 1/2.
- Proof. To successfully fool Bob, Eva must come up with x in step 1 and y in step 3 satisfying $x=y^2v^b\pmod{n}$.
- In the 1st step, Eve sends x even before Bob chooses b. So she does not know what value of b to expect.
- When Eve receives b, she responds by sending the value of y_b to Bob.

Protocol FFS. Soundness.

We consider two cases.

- Case 1. There exists at least one $b \in \{0,1\}$ for which y_b does not satisfy $x = y^2 v^b \pmod{n}$. We know that each of the possibilities b = 0 or b = 1 occurs with probability 1/2, that is, Bob's verification fails with probability at least 1/2 as desired.
- Case 2. y_0 and y_1 both satisfy the verification equation, so $x=y_0{}^2(\bmod{n})$ and $x=y_1{}^2v(\bmod{n})$. Then we can solve these equations for v^{-1} and get

$$v^{-1} = y_1^2 x^{-1} = y_1^2 y_0^{-2} \pmod{n}.$$

Then $y_1y_0^{-1} \pmod{n}$ is the square root of v^{-1} . Since Eve would be able to calculate both y_0 , and y_1 , then she would also be able to calculate the square root of v^{-1} , which contradicts the assumption that she doesn't "know" the square root of v^{-1} .

Protocol FFS. Successful cheating with probability 1/2.

We note that it is possible for Eva to cheat with a probability of success of 1/2.

- She guesses the bit b, that Bob sends her in step 2 and generates the pair (x,y).
- If she guesses b=0, then she chooses $x=r^2 \pmod n$ and $y=r \pmod n$, just like Alice would have done.
- If she guesses b=1, then she chooses y arbitrarily and $x=y^2v \pmod n$.

She proceeds to send x in step 1 and y in step 3.

Bob accepts the pair (x, y), if Eve guesses b correctly, which happens with probability 1/2.

- We now consider the case where an honest Alice interacts with a dishonest Eve who pretending to be Bob, or simply a dishonest Bob who wants to capture Alice's secret.
- Alice would like to be sure that her secret is protected if she follows the protocol, no matter what Eve (or Bob) does.
- What does Eva know at the end of the protocol?

- Suppose, that Eva sends b=0 in step 2.
- Then she ends up with a pair (x, y), where y is a random number and x is its square modulo n.
- Neither of these numbers depend in any way on Alice secret s, so Eva gets no direct information about s.
- It is also useless for Eve to try to find s by other means, since she can calculate such pairs herself without involving Alice.
- If such pairs allowed her to find the square root of v^{-1} , then she would already be able to calculate square roots, which contradicts the assumption that finding square roots modulo n is difficult.

- Suppose, that Eva sends b=1 in step 2.
- Now she ends up with the pair (x,y), where $y=rs \pmod n$ and $x=r^2 \pmod n$.
- While y might seem to give information about s, observe that y sitself is just a random element of Z_n^* . This is because r is random and the mapping $r \to rs \pmod{n}$ is one-to-one for all $s \in Z_n^*$. Hence, as r ranges through all possible values, so does $y = rs \pmod{n}$.
- Eva learns nothing from x that she could not have computed herself knowing y, for $x = y^2v \mod n$.
- Again, all she ends up with is a random number (in this case y) and the quadratic residue x, which she can compute knowing y.

- In both cases, Eva ends up with information she could have calculated without interacting with Alice.
- So if Eve could have discovered Alice's secret by talking to Alice, she could have done it herself, which contradicts the assumption for calculating square roots.
- Alice's protocol releases zero knowledge about her secret.

- The basic version of the Fiat-Shamir protocol can be generalized, and the Feige-Fiat-Shamir identification Protocol (FSS) is a small modification of such a generalization.
- The FFS protocol involves identifying an entity by proving knowledge of a secret using a zero-knowledge proof. The protocol does not reveal any partial information regarding the secret identification values of A.
- It requires limited computation (a small fraction of that required by RSA), and is thus suitable for applications with low-power processors (eg, 8-bit smart card microprocessors).

Algorithm 1 Feige-Fiat-Shamir identification protocol

 $SUMMARY.\ A$ proves knowledge of s to user B in t iterations of the 3-pass protocol.

1. Selection of system parameters. The trusted center T, after choosing two secret primes p and q each congruent to 3 modulo 4, publishes a common modulus n=pq to all users, such that n is computationally infeasible to factorize. The integers k and t are defined as security parameters.

Algorithm 2 Feige-Fiat-Shamir identification protocol

- 2. Selection of per-user parameters. Each entity A does the following.
 - It selects k random integers s_1, s_2, \ldots, s_k in the range $1 \leq s_i \leq n-1$, and k random bits b_1, \ldots, b_k . (For technical reasons, required $gcd(s_i, n) = 1$, but this is almost certainly guaranteed since otherwise the number n can be factorized.)
 - Compute $v_i = (-1)_i^b \cdot (s_i^2)^{-1} \mod n$ for $1 \le i \le k$.
 - A identifies itself by non-cryptographic means (e.g. ID card) T, with which it subsequently registers the public key $A:(v_1,\ldots,v_k;n)$, while only A knows its private key (s_1,\ldots,s_k) and n. This completes the one-time setup phase.

Algorithm 1 Feige-Fiat-Shamir identification protocol

3. Protocol messages. Each of t rounds has three messages as follows.

$$A \to B : x(= \pm r^2 \bmod n) \tag{1}$$

$$A \leftarrow B : (e_1, \dots, e_k), e \in \{0, 1\}$$
 (2)

$$A \to B : y (= r \cdot \prod_{e_j = 1} s_j \bmod n) \tag{3}$$

Algorithm 1 Feige-Fiat-Shamir identification protocol

- 4. Protocol actions. The following steps are performed t times; B accepts the identity of A if all t iterations succeed. Assume that B has the authentic public key of $A: (v_1, \ldots, v_k; n)$; otherwise, the certificate can be sent in message (1).
 - A selects a random integer $r, 1 \le r \le n-1$, and a random bit b; calculates $x = (-1)^b \cdot r^2 \mod n$ and sends x (witness) to B.
 - B sends A (the challenge), a random k-bit vector (e_1, \ldots, e_k) .
 - A calculates and sends B (answer) $y = r \cdot \prod_{j=1}^k s_j^{e_j} \mod n$ (the product of r with s_j determined by the challenge).
 - B calculates $z=y^2\cdot\prod_{j=1}^kv_j^{e_j}$ mod n, and verifies that $z=\pm x$ and $z\neq 0$ (this rules out the adversary's success by choosing r=0).

Example. Apply the Feige-Fiat-Shamir identification protocol if we know that the trusted center T has chosen the following secret primes: p=683 and q=811. We know that k=3 and t=1 and suppose A chose 3 the following random integers: $s_1=157, s_2=43215$ and $s_3=4646$ and 3 random bits $b_1=1, b_2=0$ and $b_3=1$. Next, suppose that r=1279, b=1 and we know that B will send A the following random vector (0,0,1).

Solution. We know that the trusted center T has chosen the following primes: p=683 and q=811. First, we check whether the primes p and q are each congruent 3 modulo 4. Both primes satisfy the given condition. The trusted center T had to publish n=pq=553913, while the prime numbers p and q were not published by the trusted center T. Further, we know that k=3 and t=1 and suppose that A has selected 3 following random integers: $s_1=157, s_2=43215$ and $s_3=4646$ and 3 random bits $b_1=1, b_2=0$ and $b_3=1$. We need to check if $\gcd(s_i,n)=1$, for $1\leq i\leq 3$. The given condition is satisfied by s_1,s_2 and s_3 .

Compute
$$v_i = (-1)_i^b \cdot (s_i^2)^{-1} \mod n$$
 for $1 \le i \le 3$.
$$v_1 = (-1)^1 \cdot (157^2)^{-1} = 441845 \mod 553913$$

$$v_2 = (-1)^0 \cdot (43215^2)^{-1} = 338402 \mod 553913$$

$$v_3 = (-1)^1 \cdot (4646^2)^{-1} = 124423 \mod 553913$$

- The public key of A is $(v_1, v_2, v_3; n)$, i.e. (441845, 338402, 124423; 553913).
- The private key of A is (s_1, s_2, s_3) i.e. (157, 43215, 4646).

We have only t=1 iteration which has three messages in the following form.

$$A \to B : x (= \pm r^2 \bmod n) \tag{1}$$

$$A \leftarrow B : (e_1, \dots, e_3), e \in \{0, 1\}$$
 (2)

$$A \to B : y (= r \cdot \prod_{j=1}^{n} s_j \mod n)$$
 (3)

- We know that A chose r=1279 and the random bit b=1 further calculates $x=(-1)^b\cdot r^2 \mod n$. So $x=(-1)^1\cdot 1279^2 \mod 553913$ and we send x=25898 to user B.
- Suppose B sends A the following random 3-bit vector (0,0,1).
- A calculates and sends $B: y = r \cdot \prod_{j=1}^k s_j^{e_j} \mod n$ i.e. $y = r \cdot s_3 \mod n = 403104$.
- B calculates $z = y^2 \cdot v_3 \mod n = 25898$ and accepts the identity A, since z = +x and $z \neq 0$.

- The Guillou-Quisquater (GQ) identification scheme is an extension of the Fiat-Shamir protocol.
- It allows a reduction in both the number of messages exchanged and memory requirements for user secrets and, like Fiat-Shamir, is suitable for applications in which the claimant has limited power and memory.
- It involves three messages between a claimant A whose identity is to be corroborated, and a verifier B.

Algorithm 2 Guillou-Quisquater (GQ) identification protocol

SUMMARY. A proves its identity (via knowledge of s_A) to B in a 3-pass protocol.

- 1. Selection of system parameters.
 - An authority T, trusted by all parties with respect to binding identities to public keys, selects secret random RSA-like primes p and q yielding a modulus n=pq. (As for RSA, it must be computationally infeasible to factor n.)
 - T defines a public exponent $v \geq 3$ with $\gcd(v,\phi) = 1$ where $\phi = (p-1)(q-1)$, and computes its private exponent $s = v^{-1} \mod \phi$.
 - System parameters (v, n) are made available (with guaranteed authenticity) for all users.

Algorithm 3 Guillou-Quisquater (GQ) identification protocol

- 2. Selection of per-user parameters.
 - Each entity A is given a unique identity I_A , from which (the redundant identity) $J_A = f(I_A)$, satisfying $1 < J_A < n$, is derived using a known redundancy function f.
 - T gives to A the secret (accreditation data) $s_A = (J_A)^{-s} \mod n$.
- 3. Protocol messages. Each of t rounds has three messages as follows (often t=1).
 - $A \rightarrow B: I_A, x = r^v \mod n$
 - $A \leftarrow B : e$ (where $1 \le e \le v$)
 - $A \to B : y = r \cdot s_A^e \mod n$

Algorithm 3 Guillou-Quisquater (GQ) identification protocol

- 4. Protocol actions. A proves its identity to B by t executions of the following; B accepts the identity only if all t executions are successful.
 - A selects a random secret integer r (the commitment), $1 \le r \le n-1$, and computes (the witness) $x=r^v \mod n$.
 - A sends to B the pair of integers (I_A, x) .
 - B selects and sends to A a random integer e (the challenge), $1 \le e \le v$.
 - A computes and sends to B (the response) $y = r \cdot s_A{}^e$ mod n.
 - B receives y, constructs J_A from I_A using f (see above), computes $z=J_A{}^e\cdot y^v \mod n$, and accepts A's proof of identity if both z=x and $z\neq 0$. (The latter precludes an adversary succeeding by choosing r=0.)

Example. Consider a Guillou-Quisquater (GQ) identification protocol between Alice and Bob with primes p=569, q=739 and v=54955, t=1 and Alice's redundant identity is $J_A=34579$. Describe the communication between Alice and Bob if she chooses r=65446 and the challenges e=38980.

Solution. Next, we look at the Guillou-Quisquater (GQ) identification protocol with artificially created (small) parameters and t=1.

- 1. First, the authority T selects the primes p=569 and q=739 and calculates n=pq=420491.
 - Next, T chooses the public exponent v=54955 and calculates $\phi=(p-1)(q-1)=419184$. Then it calculates its private exponent $s=v^{-1} \mod \phi=233875$.
 - The system parameters are (v,n), i.e. (54955,420491), are made available to all users.

- Assume that the redundant identity of A is $J_A = 34579$.
 - Next, T gives A the secret $s_A = (J_A)^{-s} \mod n = 403154$.
- 3. Protocol messages. Each of t rounds has three messages as follows.

$$A \to B: I_A, \ x = r^v \bmod n \tag{1}$$

$$A \leftarrow B : e \text{ (where } 1 \le e \le v)$$
 (2)

$$A \to B : y = r \cdot s_A^e \mod n \tag{3}$$

- 4. A chooses a random secret integer r=65446 and calculates $x=r^v \mod n=89525$.
 - A sends B a pair of integers $(I_A, 89525)$.
 - B sends A a random integer (challenge) e = 38980.
 - A calculates and sends B (answer) $y = r \cdot s_A{}^e \mod n = 83551$.
 - B computes $z = J_A{}^e \cdot y^v \mod n = 89525$ and accepts an identity proof from A, because z = x.

- Schnorr identification protocol is an alternative to the Fiat-Shamir and GQ protocols. Its security is based on the intractability of the discrete logarithm problem.
- The basic idea is that A proves knowledge of a secret a (without revealing it) in a time-variant manner (depending on a challenge e), identifying A through the association of a with the public key v via A's authenticated certificate.

Algorithm 4 Schnorr identification protocol

 $\overline{SUMMARY}$. A proves its identity to B in a 3-pass protocol.

- 1. Selection of system parameters.
 - A suitable prime p is selected such that p-1 is divisible by another prime q. (Discrete logarithms modulo p must be computationally infeasible e.g., $p \approx 2^{1024}, q \ge 2^{160}$.)
 - An element β is chosen, $1 \leq \beta \leq p-1$, having multiplicative order q. (For example, for α generator mod $p, \beta = \alpha^{\frac{(p-1)}{q}} \mod p$.)
 - Each party obtains an authentic copy of the system parameters (p,q,β) and the verification function (public key) of the trusted party T, allowing verification of T's signatures $S_T(m)$ on messages m. (S_T involves a suitable known hash function prior to signing, and may be any signature mechanism.)
 - A parameter t (e.g., $t \ge 40$), $2^t < q$, is chosen (defining a security level 2^t).

Algorithm 4 Schnorr identification protocol

- 2. Selection of per-user parameters.
 - Each entity A is given a unique identity I_A .
 - A chooses a private key $a, 0 \le a \le q-1$, and computes $v = \beta^{-a} \mod p$.
 - A identifies itself by conventional means (e.g., passport) to T, transfers v to T with integrity, and obtains a certificate $cert_A = (I_A, v, S_T(I_A, v))$ from T binding I_A with v.
- 3. Protocol messages. The protocol involves three messages.
 - $A \to B : cert_A, \ x = \beta^r \mod p$ (2)
 - $A \leftarrow B : e$ (where $1 \le e \le 2^t < q$)
 - $A \rightarrow B : y = ae + r \mod q$

Algorithm 4 Schnorr identification protocol

- 4. Protocol actions. A identifies itself to verifier B as follows.
 - A selects a random r(the commitment), $1 \le r \le q-1$, computes (the witness) $x = \beta^r \mod p$, and sends (2) to B.
 - B authenticates A's public key v by verifying T's signature on $cert_A$, then sends to A a (never previously used) random e (the challenge), $1 \le e \le 2^t$.
 - A checks $1 \le e \le 2^t$ and sends B (the response) $y = ae + r \mod q$.
 - B computes $z = \beta^y v^e \mod p$, and accepts A's identity provided z = x.

Example. Consider a Schnorr identification protocol between Alice and Bob with primes p=48731 and $q=443,~\alpha=6$ and t=8 and Alice's private key is a=357. Describe the communication between Alice and By Bob if she chooses r=274 and he challenges e=129.

Solution. Let's look at Schnorr's identification protocol with artificially created (small) parameters from the example.

- First, the authority T selected a prime number p=48731, where p-1 is divisible by another prime number q=443.
- The generator mod 48731 is $\alpha=6$ and β is calculated as $\beta=\alpha^{\frac{(p-1)}{q}}$ mod p=11444.
- The system parameters are (p, q, β) , i.e. (48731, 443, 11444).
- We choose t = 8.

- 2. A chooses the private key a=357 and computes $v=\beta^{-a} \mod p=7355$.
- 3. Protocol messages. The protocol involves three messages.

$$A \to B : cert_A, \ x = \beta^r \bmod p$$
 (1)

$$A \leftarrow B : e \text{ (where } 1 \le e \le 2^t < q) \tag{2}$$

$$A \to B : y = ae + r \bmod q \tag{3}$$

- 4. A picks a random r=274 and calculates $x=\beta^r \mod p=37123$ and sends to user B.
 - B sends A and a random challenge e = 129.
 - A sends B (response) $y = ae + r \mod q = 255$.
 - B computes $z=\beta^y v^e \mod p=37123$ and accepts the identity of A provided that z=x.

Shamir's (t, n) Threshold Scheme

- In 1979, Israeli cryptanalyst Adi Shamir proposed a threshold scheme for sharing secrets between n parties that allows sharing in such a way that
 - ullet t and more users are enough to restore the secret
 - ullet of no t-1 or fewer users can obtain any secret information.
- The basic idea of Shamir's (t,n) thresholding scheme is that t points define a polynomial of degree t-1 (ie, 2 points are enough to define a straight line and 3 points to define a parabola, etc.).

Shamir's (t,n) Threshold Scheme

Example. In Shamir's (3,5) scheme for p=17, Alice, Bob and Charles were given the following (x_i,y_i) values: (1,8),(3,10),(5,11). Compute the corresponding Lagrangian interpolation polynomial and determine the secret.

Solution. Let's calculate the Lagrange interpolation polynomial using the following formulas:

$$F(x) = \sum_{i=1} y_i l_i(x) \mod p$$

$$l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j} \mod p$$

$$l_1 = \frac{x - 3}{1 - 3} \cdot \frac{x - 5}{1 - 5} = \frac{x^2 - 8x + 15}{8} \mod 17$$

$$l_2 = \frac{x - 1}{3 - 1} \cdot \frac{x - 5}{3 - 5} = \frac{x^2 - 6x + 5}{-4} \mod 17$$

$$l_3 = \frac{x - 1}{5 - 1} \cdot \frac{x - 3}{5 - 2} = \frac{x^2 - 4x + 3}{5 - 2} \mod 17$$

$$p(x) = \sum_{k=1}^{3} y_k l_k(x)$$

$$p(x) = 8 \cdot \frac{x^2 - 8x + 15}{8} + 10 \cdot \frac{x^2 - 6x + 5}{-4} + 11 \cdot \frac{x^2 - 4x + 3}{8}$$

$$p(x) = \frac{1}{8} (8x^2 - 64x + 120 - 20x^2 + 120x - 100 + 11x^2 - 44x + 33)$$

$$= \frac{1}{8} (-x^2 + 12x + 53)$$

$$= 15(-x^2 + 12x + 53)$$

$$= (-15x^2 + 180x + 795)$$

$$= 2x^2 + 10x + 13 \mod 17$$

Finally we have the following polynomial

$$p(x) = 2x^2 + 10x + 13 \mod 17,$$

then the secret is 13.

Example. You need to set up a Shamir (2,30) scheme for p=101. Alice and Bob shared the following values: (1,13) and (3,12). Another person received (2,*), but the part marked * is unreadable. What is the correct value of *?

Solution. Consider a polynomial in the general form $ax + b \mod 101$. The polynomial has degree 1. We need 2 values to find the secret of b. We substitute the known values of Alice and Bob and get:

$$b + a = 13 \mod 101$$

 $b + 3a = 12 \mod 101$.

Written in matrix form

$$\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} 13 \\ 12 \end{pmatrix} \mod 101$$

The solution is:

$$\binom{b}{a} = \binom{\frac{27}{2}}{\frac{-1}{2}} \mod 101$$

We know, that $\frac{1}{2} = 51 \mod 101$. Then

$$b = 27 \cdot (\frac{1}{2}) \mod 101 = 27 \cdot (51) \mod 101 = 64 \mod 101.$$

Similarly,

$$a = -51 \mod 101$$
.

We have the following polynomial:

$$64 - 51x \mod 101$$
.

The third value is then the evaluation of this polynomial at x=2, which is 63.

Example. There are four people in the room and we know that exactly one of them is a spy. The other three people share secrets using Shamir's (2,3) scheme over \mathbb{Z}_{11} . The spy randomly chose his share. The four pairs are $P_1=(1,7), P_2=(3,0), P_3=(5,10)$ a $P_4=(7,9)$. Find out which pair was created by a spy.

Solution. The indicated shares correspond to the following equations (for the polynomial ax + b):

$$7 = a + b \mod 11$$

 $0 = 3a + b \mod 11$
 $10 = 5a + b \mod 11$
 $9 = 7a + b \mod 11$

From the first two equations we have a=2 and b=5, but this solution does not apply to the third and fourth equations. Therefore, the spy must be either a person with P_1 or P_2 . We further see that from the first and third equations we have a=9 and b=9. Further, we see that this solution does not apply to the fourth equation. Therefore, a spy is a person with a share of P_1 .