## Statistisches Data Mining (StDM) Woche 6



Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

oliver.duerr@zhaw.ch
Winterthur, 25 Oktober 2016

# No laptops, no phones, no problems





#### **Multitasking senkt Lerneffizienz:**

 Keine Laptops im Theorie-Unterricht Deckel zu oder fast zu (Sleep modus)

#### Overview of the semester

#### Part I (Unsupervised Learning)

- Dimension Reduction
  - PCA
- Similarities, Distance between objects
  - Euclidian, L-Norms, Gower,...
- Visualizing Similarities (in 2D)
  - MDS, t-SNE
- Clustering
  - K-Means
  - Hierarchical Clustering

#### Part II (Supervised Learning)

• ...







## Overview of classification (until the end to the semester)

#### **Classifiers**



#### K-Nearest-Neighbors (KNN)

Logistic Regression
Linear discriminant analysis
Classification Trees
Support Vector Machine (SVM)
Neural networks NN
Deep Neural Networks (e.g. CNN, RNN)

#### **Evaluation**



Cross validation
Performance measures
ROC Analysis / Lift Charts

#### - - -

## Theoretical Guidance / General Ideas

Bayes Classifier
Bias Variance Trade
off (Overfitting)



#### **Combining classifiers**

Bagging Boosting Random Forest

#### **Feature Engineering**

Feature Extraction Feature Selection



## Principal Idea Classification



#### Note:

To evaluate the performance a part of the labelled data not used to train the classifier but left aside to check the performance of the classifier to new data.

## Examples of Classification Task

 Is a given text e.g. tweet about a product positive, negative or neutral. Sentiment Analysis

"The movie XXX actually neither that funny, nor super witty" → Negative

- Churn in Marketing: Predict which customer wants to quit and offer them a discount
- Spam Detection
- Face detection. Image (array of pixels) → John

. . .

## K-Nearest-Neighbors in a nutshell

#### Idea of knn classification:

- Start with an observation x<sub>0</sub> with unknown class label
- Find the k training observations, that have the smallest distance to x<sub>0</sub>
- Use the majority class among the k neighbors as class label for x<sub>0</sub>



R functions to know

- From package "class": "knn"

# The effect of K



## The effect of K

KNN: K=1



KNN: K=100



Which k to use? Let's quantify the error / accuracy.

### Accuracy as performance measure

Sheed and with order of the state of the sta

Evaluate prediction accuracy on data

**Confusion Matrix:** 

|                 | PREDICTED CLASS |           |           |  |
|-----------------|-----------------|-----------|-----------|--|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No  |  |
|                 | Class=Yes       | a<br>(TP) | b<br>(FN) |  |
|                 | Class=No        | c<br>(FP) | d<br>(TN) |  |

For an ideal classifier the off-diagonal entries should be zero: c=0, b=0, or Accuracy=1

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy = 
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Simply count the # correct / all

### Types of Errors

- Training error or in-sample-error:
  - Error on data that have been used to train the model
- Test error or out-of-sample-error
  - Error on previously unseen records (out of sample)

#### **Overfitting phenomenon:**

 Model fits the training data well (small training error) but shows high generalization error

# "Perfect" Vs. "Simple" classifier





Which is better?

Check on a test-set (don't use all you labeled data to train)

## Cross validation of the "simple" classifier



Training set: 6/29=20% misclassification

Test set: 2/25=8% misclassification



#### Cross validation of the "Perfect" classifier



Training set: 0%misclassification





## Cross validation of the "Perfect" classifier





## Which one to use?

KNN: K=1



KNN: K=100



## What is the right level of complexity



## What is the right level of complexity



Example from ILSR

#### Occam's razor

- A more complex model performs always better on training data than a simpler model.
- Models should be evaluated on test data to determine the generalization error.
   If comparing performance on training data the model complexity should be taken into account (penalize for complexity).
- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

Make everything as simple as possible, but not simpler.

#### A. Einstein

# Logistic Regression



## Logistic Regression

- See also: ISLR chapter 4.3
- RKST chapter 6.2
- Example





Die bemannte Raumfähre Challenger explodierte 1986 nach dem Start, weil die Dichtungsringe an den Boostern nicht dicht hielten.

## Statistik & Challenger Desaster



- Am Tage des Starts war es kalt, 31°F.
- Bei den 23 bisherigen Flügen, gab es bei 7 Probleme mit den Dichtungen.

| Ambient temperature | Number of O-rings damaged | $\boldsymbol{\hat{p}}$ |
|---------------------|---------------------------|------------------------|
| 53°                 | 2                         | .33                    |
| 57°                 | 1                         | .16                    |
| 58°                 | 1                         | .16                    |
| 63°                 | 1                         | .16                    |
| 70°                 | 1                         | .16                    |
| 70°                 | 1                         | .16                    |
| 75°                 | 2                         | .33                    |



- Erhöhtes Risiko bei kleiner Temperatur?
- Starten ja oder nein? Was ist Ihre Meinung?

## Statistik & Challenger Desaster

• Die erfolgreichen Flüge enthalten auch Information.



## Modelling logistic regression

p(X) = Pr(Y = 1|X) Prob. for a O-ring to be defect at a given temperature X



Question: Why is  $p(X) = \beta_0 + \beta_1 X$  wrong?

## Modelling logistic regression

p(X) = Pr(Y = 1|X) Prob. for a O-ring to be defect at a given temperature X



**Frage:**  $z = \beta_0 + \beta_1 X$  mit  $\beta_1 < 0$  und  $\beta_0 = 0$  wie verläuft z und wie  $p(X) = [1 + exp(-z)]^{-1}$  für den ganzen Bereich (einzeichnen)

## Logistic Regression: Example challenger O-rings

Predict if O-Ring is broken, depending on temperature



## Logistic Regression (recap)

Predict if O-Ring is broken depending on temperature



How do we determine the parameters  $\beta$  of the model? M( $\beta$ )

## Determination to the parameters



#### Live Demo with RStudio

# Maximum Likelihood (one of the most beautiful ideas in statistics)

Likelihood / "probability" (often known) 
$$\hline M(\beta) \xrightarrow{} Data$$

Tune the parameter(s) β of the model M so that (observed) data is most likely

What's the likelihood of the data for log. regression...

# Ableitung Likelihood Funktion Tafel

## Likelihood: Probability of a single observation

Two data points Y=1 (failure) and Y=0 (OK)



For a given  $\beta$  the probability of this datapoint (Y=0) is 1 - 0.08 = 92%

Prob. of all data points is the product of the individual data points, (if iid).

## Likelihood: Probability of the training set



$$p_1(X) = P(Y = 1 \mid X) = (1 + e^{-(a \cdot x + b)})^{-1} = (1 + e^{-z})^{-1} = f(x)$$

Probability to find Y=1 for a given values X (single data point) and a, b

$$p_0(X) = 1 - p_1(X)$$
 Probability to find Y=0 for a given value X (single data point)

Likelihood (probability<sup>+</sup> of the training set given the parameters)

$$L(\beta_0, \beta_1) = \prod_{i \in All \ ones} p_1(x^{(i)}) * \prod_{i \notin All \ Zeros} p_0(x^{(j)})$$
 Let's maximize this probability

## Maximizing the Likelihood

Likelihood (prob of a given training set) want to maximized wrt. parameters

$$L(\beta_0, \beta_1) = \prod_{i \in All \ ones} p_1(x^{(i)}) * \prod_{i \notin All \ Zeros} p_0(x^{(j)})$$

Taking log (maximum of log is at same position)

$$-nJ(\beta) = L(\beta) = L(\beta_0, \beta_1) = \sum_{i \in All \ ones} \log(p_1(x^{(i)})) + \sum_{i \in All \ zeros} \log(p_0(x^{(i)})) = \sum_{i \in All \ Training} y_i \log(p_1(x^{(i)})) + (1 - y_i) \log(p_0(x^{(i)}))$$

Gradient Descent for Minimum of J

$$\beta_i " \leftarrow \beta_i - \alpha \frac{\partial J(\beta)}{\partial \beta_i} \bigg|_{\beta_i = \beta_i}$$



#### Generalization

Meso als ein Variable

$$2 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_4$$

$$p(\vec{x}) = [1 + e^{-(x_0^2 + \beta_1 x_1 + \dots + \beta_p x_p)]^T}$$
Off sobreist man and als Mellon)
$$\vec{x} = (x_0, x_1, \dots x_p)^T$$

$$\vec{\beta} = (\beta_0, \beta_1 \dots \beta_p)^T$$
Clans  $p(\vec{x}) = [1 + e^{-\vec{x}\vec{\beta}}]^{-T}$ 
Simbolised
$$x_1 \beta_1 \qquad \vec{x} = x_2 \beta_1$$

$$x_2 \beta_4 \qquad \vec{x} = x_3 \beta_1$$

$$x_4 \beta_4 \qquad \vec{x} = x_4 \beta_1$$

$$x_5 \beta_4 \qquad \vec{x} = x_5 \beta_1$$

$$x_6 \beta_5 \qquad \vec{x} = x_5 \beta_1$$

$$x_6 \beta_6 \qquad \vec{x} = x_5 \beta_1$$

$$x_7 \beta_7 \qquad \vec{x} = x_7 \beta_1$$

$$x_8 \beta_7 \qquad \vec{x} = x_7 \beta_1$$

$$x$$

## Interpretation

Interpretation (Ned Mese Vaiall)

$$\frac{p(x)}{1-p(x)} = \frac{\text{Nahrs. das Erziniss Staffinst}}{\text{W'let das es nist Staffinst}}$$

Rodds: Plank xnnen

$$\frac{p(x)}{p(x)} = \frac{p(x)}{p(x)}$$

=  $p(x)$ 

## Logistic Regression the mother of all neural networks

#### 1-D log Regression



$$z = \beta_0 + \beta_1 x$$

#### Multivariate Log.-Regression



$$z = \beta_0 + x_1 \beta_1 + x_2 \beta_2 = \beta^T x$$

$$p_1(x) = P(Y = 1 \mid X = x) = [1 + \exp(-\beta^T x)]^{-1} = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)} = f(\beta^T x)$$

## Logistic Regression in R (learning)

- Logistic regression in R using generalized linear models glm. Syntax like lm but need parameter **family=binomial**.
- default is factor

## Logistic Regression in R (prediction)

• Logistic regression in R using generalized linear models glm. Use type='response'

Result is the probability to belong to class 1 which is default = yes

## Feature engineering: Categorical Features



```
Example green, blue, red how to code?
> ############
> # Kategorical Variables
> y = c(0,0,0,1,1,1)
> x = c(0,1,2,0,1,2)
> fit = glm(y \sim x)
> model.matrix(fit)
  (Intercept) x
           1 0
           1 1
            1 2
attr(,"assign")
[1] 0 1
> fit = glm(y ~ as.factor(x))
> model.matrix(fit)
  (Intercept) as.factor(x)1 as.factor(x)2
1
```

## Normalisierung / Scaling



- Unterschiedliche Werte Bereiche
- Daten können Einheiten tragen

| Person | Körper Gewicht [kg] | Hirngewicht [g] | Schuhgrösse | Körper Länge [cm] |
|--------|---------------------|-----------------|-------------|-------------------|
| 1      | 75.1                | 1400            | 42          | 192               |
| 2      | 84.9                | 2029            | 47          | 189               |
| •••    | •••                 | •••             | •••         |                   |
| 150    | 50                  | 1780            | 39          | 173               |

- Beliebte Normierungen:
  - Z-Normierung: Danach einheitenlos, MW = 0, stddev = 1 (R: scale)
  - Quantil-Normalisierung: Alle Quantile der Verteilung gleich