

WHAT IS CLAIMED IS:

1. An electronic instrument comprising:
a memory device; and
strobe signal lines through which a first
output strobe signal and a second output strobe
signal are transmitted in synchronism with output
data from said memory device in the data output
operation, the first and second output strobe
signals being in complementary relation to each
other.
2. The electronic instrument as claimed
in claim 1, wherein said memory device has a strobe
output buffer that generates the first and second
output strobe signals based on a predetermined
signal, the first and second output strobe signals
being supplied from said strobe output buffer to
said strobe signal lines when the output data is
output from said memory device.

30

3. The electronic instrument as claimed
in claim 1, wherein the first and second output
strobe signals have different levels in a preamble
time which is a time period before a head of a cross
point train of the first and second output strobe
signals, the head of the cross point corresponding
to a start of a strobe period of the first and

24

second output strobe signals.

5

4. The electronic instrument as claimed
in claim 3, wherein the first and second output
strobe signals have different levels in a 'postamble'
time which is a time period after a cross point of
10 the first and second output strobe signals which
cross point corresponds to an end of a strobe period
of the first and second output strobe signals.

15

5. The electronic instrument as claimed
in claim 3, wherein the levels of the first and
second output strobe signals in the preamble time
20 are set by use of a read command as a trigger.

25

6. The electronic instrument as claimed
in claim 3, wherein the levels of the first and
second output strobe signals in the preamble time
are set a predetermined time before a first output
data item is output.

30

7. The electronic instrument as claimed
35 in claim 6, wherein transistors of said memory
device which transistors drive the strobe signal
lines are controlled to be in a off state in a

25

waiting time period.

5

8. The electronic instrument as claimed
in claim 1, wherein each of cross points of the
first and second output strobe signals is set at an
edge trigger point of a corresponding one of output
10 data items.

10

15

9. The electronic instrument as claimed
in claim 1, wherein each of cross points of the
first and second output strobe signals is set at a
center point of a corresponding one of output data
items.

20

25

30

10. An electronic instrument comprising:
a memory device; and
strobe signal lines through which a first
input strobe signal and a second input strobe signal
are transmitted in synchronism with input data
supplied to said memory device in the data input
operation, the first and second input strobe signals
being in complementary relation to each other.

35

9
8 11. The electronic instrument as claimed
in claim 10, wherein said memory device has a strobe

26

input buffer that receives the first and second
input strobe signals transmitted through said strobe
signal lines and generates, based on the first and
second input strobe signals, a strobe clock signal
5 used to settle input data items supplied to said
memory device.

10

~~10~~ 12. The electronic instrument as claimed
in claim ~~10~~, wherein the first and second input
strobe signals have different levels in a preamble
time which is a time period before a head of a cross
15 point train of the first and second input strobe
signals, the head of the cross point corresponding
to a start of a strobe period of the first and
second input strobe signals.

20

~~10~~ 11 13. The electronic instrument as claimed
in claim ~~12~~, wherein the first and second input
strobe signals have different levels in a postamble
time which is a time period after a cross point of
the first and second input strobe signals which
cross point corresponds to an end of a strobe period
of the first and second input strobe signals.

30

~~10~~ 12 14. The electronic instrument as claimed
35 in claim ~~12~~, wherein the levels of the first and
second input strobe signals in the preamble time are
set by use of a write command as a trigger.

13
15. The electronic instrument as claimed
in claim 10, wherein the levels of the first and
second input strobe signals in the preamble time are
set a predetermined time before a first input data
5 item is received.

10 14
16. The electronic instrument as claimed
in claim 15, wherein transistors of a unit supplying
the input data to said memory device which
transistors drive the strobe signal lines are
controlled to be in a off state in a waiting time
15 period.

20
17. The electronic instrument as claimed
in claim 10, wherein each of cross points of the
first and second input strobe signals is set at an
edge trigger point of a corresponding one of input
data items.

25

30
18. The electronic instrument as claimed
in claim 10, wherein each of cross points of the
first and second input strobe signals is set at a
center point of a corresponding one of input data
items.

35

28

EAS2300-2556650

Sub A 3

19. An electronic instrument comprising:
a memory device; and
strobe signal lines through which a first
output strobe signal and a second output strobe
signal are transmitted in synchronism with output
data from said memory device in a data output
operation and a first input strobe signal and a
second input strobe signal are transmitted in
synchronism with input data supplied to said memory
device in a data input operation, the first and
second output strobe signals being in complementary
relation to each other, the first and second input
strobe signals being in complementary relation to
each other.

15

16
20. The electronic instrument as claimed
in claim 19, said memory device comprises:

a strobe output buffer that generates the
first and second output strobe signals based on a
predetermined signal, the first and second output
strobe signals being supplied from said strobe
output buffer to said strobe signal lines when the
output data is output from said memory device; and
a strobe input buffer that receives the
first and second input strobe signals transmitted
through said strobe signal lines and generates,
based on the first and second input strobe signals,
a strobe clock signal used to settle input data
items supplied to said memory device.

35

17

21. The electronic instrument as claimed

29

00022900 202005250

15

in claim 19, wherein the first and second output strobe signals have different levels in a first preamble time which is a time period before a head of a cross point train of the first and second
5 output strobe signals, the head of the cross point corresponding to a start of a strobe period of the first and second output strobe signals, and wherein the first and second input strobe signals have different levels in a second preamble time which is
10 a time period before a head of a cross point train of the first and second input strobe signals, the head of the cross point corresponding to a start of a strobe period of the first and second input strobe signals.

15

18

17 22.

20 The electronic instrument as claimed in claim 21, wherein the first and second output strobe signals have different levels in a first postamble time which is a time period after a cross point of the first and second output strobe signals which cross point corresponds to an end of a strobe
25 period of the first and second output strobe signals, and wherein the first and second input strobe signals have different levels in a second postamble time which is a time period after a cross point of the first and second input strobe signals which
30 cross point corresponds to an end of a strobe period of the first and second input strobe signals.

35

19

18 23. The electronic instrument as claimed in claim 22, wherein said strobe signal lines

30

includes output strobe signal lines through which the first and second output strobe signals and input strobe signal lines through which the first and second input strobe signal lines, said output strobe
5 signal lines and said input strobe signal lines being separated from each other, wherein when an even number of consecutive output data items are output, the levels of the first and second output strobe signals are controlled in a waiting time
10 period to be maintained at the same levels as in the first postamble time, and wherein when an even number of consecutive input data items are supplied, the levels of the first and second input strobe signals are controlled in a waiting time period to
15 be maintained at the same levels as in the second postamble time.

20

20
24. The electronic instrument as claimed in claim *22*, wherein said strobe signal lines includes output strobe signal lines through which the first and second output strobe signals and input
25 strobe signal lines through which the first and second input strobe signal lines, said output strobe signal lines and said input strobe signal lines being separated from each other, wherein when an odd number of consecutive data output items are output,
30 the levels of the first and second output strobe signals are controlled in a waiting time period to be maintained at the same levels as in the first postamble time and then restored at the start of the second preamble time in the next data read operation.

35

31

GPO:200-26506-600

Jubilat

25. A semiconductor memory device provided in an electronic instrument having clock lines through which complementary clock signals are transmitted to be used for synchronization of a data output operation for said semiconductor memory device, and strobe signal lines through which a first output strobe signal and a second output strobe signal are transmitted to be used to settle output data from said semiconductor memory device in 10 the data output operation, the first and second output strobe signals being in complementary relation to each other, said semiconductor memory device comprising:

15 a data output buffer that outputs the output data from a memory bank; and
a strobe output buffer that generates the first and second output strobe signals based on a predetermined signal, the first and second output strobe signals being supplied from said strobe 20 output buffer to said strobe signal lines when the output data is output from said data output buffer.

25

26. A semiconductor memory device provided in an electronic instrument having clock lines through which complementary clock signals are transmitted to be used for synchronization of a data input operation for said semiconductor memory device, and strobe signal lines through which a first input strobe signal and a second input strobe signal are transmitted to be used to settle input data supplied to said semiconductor memory device in the data 30 input operation, the first and second input strobe signals being in complementary relation to each other, said semiconductor memory device comprising:
35

a strobe input buffer that receives the first and second input strobe signals transmitted through said strobe signal lines and generates a strobe clock signal based on the first and second input strobe signals; and

a data input buffer that receives input data items supplied to said semiconductor memory device, the input data items being settled by using the clock strobe signal generated by said input strobe buffer.

10 strobe buffer.

15 27. A semiconductor memory device
provided in an electronic instrument having clock
lines through which complementary clock signals are
transmitted to be used for synchronization of a data
output operation and a data input operation for said
20 semiconductor memory device, and strobe signal lines
through which a first output strobe signal, a second
output strobe signal, a first input strobe signal
and a second input strobe signal are transmitted to
be used to settle output data from said memory
25 device in the data output operation and to settle
input data supplied to said semiconductor memory
device, the first and second output strobe signals
being in complementary relation to each other, the
first and second input strobe signals being in
30 complementary relation to each other, said memory
device comprising:

a data output buffer that outputs the output data from a memory bank;

35 a strobe output buffer that generates the
first and second output strobe signals based on a
predetermined signal, the first and second output
strobe signals being supplied from said strobe

output buffer to said strobe signal lines when the output data is output from said data output buffer;

5 a strobe input buffer that receives the first and second input strobe signals transmitted through said strobe signal lines and generates a strobe clock signal based on the first and second input strobe signals; and

10 a data input buffer that receives input data items supplied to said semiconductor memory device, the input data items being settled by using the clock strobe signal generated by said input strobe buffer.

15

60629072656600