CS614 – Date Warehousing Reference Short Notes for Mid Term Papers

Muhammad Faisal Dar MIT 4th Semester faisalgrw123@gmail.com

Difference between OLTP & DWH (page21)

OLTP	DWH
Primary key used	Primary key NOT used
No concept of Primary Index	Primary index used
May use a single table	Uses multiple tables
Few rows returned	Many rows returned
High selectivity of query	Low selectivity of query
Indexing on primary key (unique)	Indexing on primary index (non-unique)

What is a DWH? (page9)

A complete repository of historical corporate data extracted from transaction systems that is available for ad-hoc access by knowledge workers

Quantifying size of data (page 6)

1 MB	2^{20} or 10^6 bytes	Small novel – 31/2 Disk
1 GB	2^{30} or 10^9 bytes	Paper rims that could fill the back of a pickup van
1 TB	2^{40} or 10^{12} bytes	50,000 trees chopped and converted into paper and printed
2 PB	$1 \text{ PB} = 2^{50} \text{ or } 10^{15} \text{ bytes}$	Academic research libraries across the U.S.
5 EB	$1 \text{ EB} = 2^{60} \text{ or } 10^{18} \text{ bytes}$	All words <u>ever</u> spoken by human beings

Typical Applications of DWH (page27)

There are, and there can be many applications of a data warehouse. It is not possible to discuss all of them. Some representative applications are listed to be discussed as follows:

- Fraud detection
- o Profitability analysis
- o Direct mail/database marketing
- Credit risk prediction
- o Customer retention modeling
- Yield management
- o Inventory management

Fraud detection (page28)

- ❖ By observing data usage patterns
- ❖ People have typical purchase patterns
- Deviation from patterns
- Certain cities notorious for fraud
- Certain items bought by stolen cards
- Similar behavior for stolen phone cards

What are the goals of normalization? (page32)

- Eliminate redundant data.
- Ensure data dependencies make sense.

Five principal De-normalization Techniques (page43)

- 1) Collapsing Tables.
 - Two entities with a One-to-One relationship.
 - Two entities with a Many- to-Many relationship.
- 2) 2. Pre-Joining.
- 3) 3. Splitting Tables (Horizontal/Vertical Splitting).
- 4) 4. Adding Redundant Columns (Reference Data).
- 5) 5. Derived Attributes (Summary, Total, Balance etc).

Splitting Tables: Horizontal splitting (page46)

ADVANTAGE

- > Enhance security of data.
- > Organizing tables differently for different queries.
- ➤ Reduced I/O overhead.
- > Graceful degradation of database in case of table damage.
- Fewer rows result in flatter B- trees and fast data retrieval.

Issues of De-Normalization (page53)

- Storage
- Performance
- Maintenance
- Ease-of-use

OLAP: Facts & Dimensions (page65)

- ❖ FACTS: Quantitative values (numbers) or "measures." e.g., units sold, sales \$, Co, Kg etc.
- ❖ DIMENSIONS: Descriptive categories. e.g., time, geography, product etc.

OLAP FASMI Test (page 67)

Fast: Delivers information to the user at a fairly constant rate i.e. O(1) time. Most queries answered in less than 5 seconds.

Analysis: Performs basic numerical and statistical analysis of the data, pre-defined by an application developer or defined ad-hocly by the user.

Shared: Implements the security requirements necessary for sharing potentially confidential data across a large user population.

Multi-dimensional: The essential characteristic of OLAP.

Information: Accesses all the data and information necessary and relevant for the application, wherever it may reside and not limited by volume.

OLAP Implementations (page69)

- **1. MOLAP: OLAP** implemented with a multi-dimensional data structure.
- **2. ROLAP: OLAP** implemented with a relational database.
- **3. HOLAP: OLAP** implemented as a hybrid of MOLAP and ROLAP.
- **4. DOLAP: OLAP** implemented for desktop decision support environments.

Cube Operations (page71)

- Rollup: summarize data e.g., given sales data, summarize sales for last year by product category and region
- Drill down: get more details

e.g., given summarized sales as above, find breakup of sales by city within each region, or within Sindh

- Slice and dice: select and project e.g.: Sales of soft -drinks in Karachi during last quarter
- Pivot: change the view of data

Advantages of MOLAP (page74)

- ➤ Instant response (pre-calculated aggregates).
- ➤ Impossible to ask question without an answer.
- ➤ Value added functions (ranking, % change).

MOLAP Implementation Issues (page75)

Maintenance issue: Every data item received must be aggregated into every cube (assuming "to-date" summaries are maintained). Lot of work

Storage issue: As dimensions get less detailed (e.g., year vs. day) cubes get much smaller, but storage consequences for building hundreds of cubes can be significant. <u>Lot of space</u>

Scalability: Often have difficulty scaling when the size of dimensions becomes large. The breakpoint is typically around 64,000 cardinality of a dimension.

Partitioned Cubes (page 76)

- To overcome the space limitation of MOLAP, the cube is partitioned.
- One logical cube of data can be spread across multiple physical cubes on separate (or same) servers.
- The divide &conquer cube partitioning approach helps alleviate the scalability limitations of MOLAP implementation.
- Ideal cube partitioning is completely invisible to end users.
- Performance degradation does occur in case of a join across partitioned cubes.

Virtual Cubes (page77)

Used to query two dissimilar cubes by creating a third "virtual" cube by a join between two cubes.

- Logically similar to a relational view i.e. linking two (or more) cubes along common dimension(s).
- ❖ Biggest advantage is saving in space by eliminating storage of redundant information.

Why ROLAP? (page 78)

Issue of scalability i.e. curse of dimensionality for MOLAP

- Deployment of significantly large dimension tables as compared to MOLAP using secondary storage
- o Aggregate awareness allows using pre -built summary tables by some front -end tools.
- o Star schema designs usually used to facilitate ROLAP querying (in next lecture).

ROLAP Issues (page82)

- > Maintenance.
- > Non standard hierarchy of dimensions.
- ➤ Non standard conventions.
- > Explosion of storage space requirement.
- > Aggregation pit-falls.

HOLAP (page87)

- Target is to get the best of both worlds.
- HOLAP (Hybrid OLAP) allows co-existence of pre-built MOLAP cubes alongside relational OLAP or ROLAP structures.
- How much to pre -build?

How to simplify an ER data model? (page94)

Two general methods:

- De-Normalization
- Dimensional Modeling (DM)

The Process of Dimensional Modeling (page99)

Four Step Method from ER to DM

- 1. Choose the Business Process
- 2. Choose the Grain
- 3. Choose the Facts
- 4. Choose the Dimensions

Classification of Aggregation Functions (page 108)

How hard to compute aggregate from sub-aggregates?

Three classes of aggregates:

- (1) Distributive
- (2) Algebraic
- (3) Holistic

Not recording Facts (page109)

Transactional fact tables don't have records for events that don't occur

This has both advantage and disadvantage.

Advantage:

- > Benefit of sparsity of data
- > Significantly less data to store for "rare" events

Disadvantage

> Lack of information

Handling Multi-valued Dimensions? (page110)

One of the following approaches is adopted:

- Drop the dimension.
- Use a primary value as a single value.
- Add multiple values in the dimension table.
- Use "Helper" tables.

Step-4: Pros and Cons of Handling (page 115)

Option-1: Overwrite existing value

- > Simple to implement
- ➤ No tracking of history

Option-2: Add a new dimension row

- > Accurate historical reporting
- > Pre-computed aggregates unaffected
- > Dimension table grows over time

Option-3: Add a new field

- ➤ Accurate historical reporting to last TWO changes
- > Record keys are unaffected
- > Dimension table size increases

Types of Data Extraction (page120)

Logical Extraction

- **❖** Full Extraction
- Incremental Extraction

Physical Extraction

- Online Extraction
- Offline Extraction
- ❖ Legacy vs. OLTP

Logical Data Extraction (page 121)

Full Extraction

- > The data extracted completely from the source system.
- ➤ No need to keep track of changes.
- > Source data made available as-is w/o any additional information.

Incremental Extraction

- > Data extracted after a well defined point/event in time.
- Mechanism used to reflect/record the temporal changes in data (column or table).
- ➤ Sometimes entire tables off-loaded from source system into the DWH.
- ➤ Can have significant performance impacts on the data warehouse server.

Physical Data Extraction (page 122)

Online Extraction

- Data extracted directly from the source system.
- May access source tables through an intermediate system.
- Intermediate system usually similar to the source system.

Offline Extraction

- Data NOT extracted directly from the source system, instead staged explicitly outside the original source system.
- Data is either already structured or was created by an extraction routine.

Data Transformation (page 123)

Basic tasks

- I. Selection
- II. Splitting/Joining
- III. Conversion
- IV. Summarization
- V. Enrichment

Three Loading Strategies (page 127)

- Once we have transformed data, there are three primary loading strategies:
- Full data refresh with BLOCK INSERT or 'block slamming' into empty table.
- Incremental data refresh with BLOCK INSERT or 'block slamming' into existing (populated) tables.
- Trickle/continuous feed with constant data collection and loading using row level insert and update operations.

Why ETL Issues? (page 128)

- Things would have been simpler in the presence of operational systems, but that is not always the case
- Manual data collection and entry. Nothing wrong with that, but potential to introduces lots of problems
- Data is never perfect. The cost of perfection, extremely high vs. its value.

"Some" Issues

- Usually, if not always underestimated
- o Diversity in source systems and platforms
- Inconsistent data representations
- o Complexity of transformations
- o Rigidity and unavailability of legacy systems
- Volume of legacy data
- Web scrapping

Rigidity and unavailability of legacy systems (page 132)

- Very difficult to add logic to or increase performance of legacy systems.
- Utilization of expensive legacy systems is optimized.
- Therefore, want to off-load transformation cycles to open systems environment.
- This often requires new skill sets.
- Need efficient and easy way to deal with incompatible mainframe data formats.

Volume of legacy data (page 133)

- ❖ Talking about not weekly data, but data spread over years.
- ❖ Historical data on tapes that are serial and very slow to mount etc.
- ❖ Need lots of processing and I/O to effectively handle large data volumes.
- ❖ Need efficient interconnect bandwidth to transfer large amounts of data from legacy sources to DWH.

Web scrapping (page 134)

Lot of data in a web page, but is mixed with a lot of "junk".

Web scrapping Problems:

- Limited query interfaces
 - Fill in forms
- "Free text" fields
 - E.g. addresses
- Inconsistent output
 - i.e., html tags which mark interesting fields might be different on different pages.
- Rapid change without notice.

Beware of data quality (or lack of it) (page 135)

- o Data quality is always worse than expected.
- o Will have a couple of lectures on data quality and its management.
- o It is not a matter of few hundred rows.
- o Data recorded for running operations is not usually good enough for decision support.

ETL vs. ELT (page 135)

There are two fundamental approaches to data acquisition:

ETL:

Extract, Transform, Load in which data transformation takes place on a separate transformation server.

ELT:

Extract, Load, Transform in which data transformation takes place on the data warehouse server.

Lighter Side of Dirty Data (page146)

- Year of birth 1995 current year 2005
- Born in 1986 hired in 1985
- Who would take it seriously? Computers while summarizing, aggregating, populating etc.
- Small discrepancies become irrelevant for large averages, but what about sums, medians, maximum, minimum etc.?

Serious Problems due to dirty data (page 147)

- > Decisions taken at government level using wrong data resulting in undesirable results.
- > In direct mail marketing sending letters to wrong addresses loss of money and bad reputation.

3 Classes of Anomalies (page 148)

Syntactically Dirty Data

- Lexical Errors
- > Irregularities

Semantically Dirty Data

- ➤ Integrity Constraint Violation
- Business rule contradiction
- Duplication

Coverage Anomalies

- Missing Attributes
- Missing Records

Handling missing data (page 150)

- o Dropping records.
- o "Manually" filling missing values.
- o Using a global constant as filler.
- O Using the attribute mean (or median) as filler.
- o Using the most probable value as filler.

Key Based Classification of Problems (page 150)

- Primary key problems
- Non-Primary key problems

Primary key problems

- 1. Same PK but different data.
- 2. Same entity with different keys.
- 3. PK in one system but not in other.
- 4. Same PK but in different formats.

Non primary key problems

- 1. Different encoding in different sources.
- 2. Multiple ways to represent the same information.
- 3. Sources might contain invalid data.
- 4. Two fields with different data but same name.

Automatic Data Cleansing (page 152)

- 1) Statistical
- 2) Pattern Based
- 3) Clustering
- 4) Association Rules

Why data duplicated? (page 153)

A data warehouse is created from heterogeneous sources, with heterogeneous databases (different schema/representation) of the same entity.

The data coming from outside the organization owning the DWH can have even lower quality data i.e. different representation for same entity, transcription or typographical errors.

Problems due to data duplication (page 153)

Data duplication can result in costly errors, such as:

- False frequency distributions.
- Incorrect aggregates due to double counting.
- Difficulty with catching fabricated identities by credit card companies.

Need & Tool Support (page 156)

- > Logical solution to dirty data is to clean it in some way.
- > Doing it manually is very slow and prone to errors.
- > Tools are required to do it "cost" effectively to achieve reasonable quality.
- > Tools are there, some for specific fields, others for specific cleaning phase.
- > Since application specific, so work very well, but need support from other tools for broad spectrum of cleaning problems.

Basic Sorted Neighborhood (BSN) Method (page 157)

Steps 1: Create Keys

- Compute a key for each record in the list by extracting relevant fields or portions of fields
- Effectiveness of the this method highly depends on a properly chosen key

Step 2: Sort Data

➤ Sort the records in the data list using the key of step 1

Step 3: Merge

- Move a fixed size window through the sequential list of records limiting the comparisons for matching records to those records in the window
- ➤ If the size of the window is w records then every new record entering the window is compared with the previous w-1 records.

BSN Method: Selection of Keys (page 159)

Selection of Keys

- Effectiveness highly dependent on the key selected to sort the records middle name vs. last name,
- A key is a sequence of a subset of attributes or sub-strings within the attributes chosen from the record.
- The keys are used for sorting the entire dataset with the intention that matched candidates will appear close to each other.

BSN Method: Problem with keys (page160)

- Since data is dirty, so keys WILL also be dirty, and matching records will not come together.
- Data becomes dirty due to data entry errors or use of abbreviations.
- Solution is to use external standard source files to validate the data and resolve any data conflicts.

BSN Method: Equational Theory (page 162)

To specify the inferences we need equational Theory.

- Logic is NOT based on string equivalence.
- Logic based on domain equivalence.
- Requires declarative rule language.

Limitations of BSN Method (page 164)

BSN Method Limitations

- ➤ No single key is sufficient to catch all matching records.
- Fields that appear first in the key have higher discriminating power than those appearing after them.
- ➤ If NID number is first attribute in the key 81684854432 and 18684854432 are highly likely to fall in windows that are far apart.

Possible Modifications to BSN Method

- Increase w, the size of window
- Multiple passes over the data set

Orr's Laws of Data Quality (page 169)

- Law #1 "Data that is not used cannot be correct!"
- Law #2 "Data quality is a function of its use, not its collection!"
- Law #3 "Data will be no better than its most stringent use!"
- Law #4 "Data quality problems increase with the age of the system!"
- Law #5 "The less likely something is to occur, the more traumatic it will be when it happens!"

Total Quality Management (TQM) (page 169)

TQM approach is advocating the involvement of all employees in the continuous improvement process, the ultimate goal being the customer satisfaction.

Cost of Data Quality Defects (page 170)

Controllable Costs

- Recurring costs for analyzing, correcting, and preventing data errors

Resultant Costs

- Internal and external failure costs of business opportunities missed.

Equipment & Training Costs

Characteristics or Dimensions of Data Quality (page 172)

- > Accuracy
- Completeness
- Consistency
- > Timeliness
- > Timeliness
- Uniqueness
- > Interpretability
- > Interpretability
- > Interpretability

Data Quality Assessment Techniques (page 173)

- Ratios
- Min-Max

Simple Ratios

- Free-of-error
- Completeness
- Consistency

Min-Max

- Believability
- Appropriate Amount of Data

Min-Max

- Timeliness
- Accessibility

Data Quality Validation Techniques (page 176)

- Referential Integrity (RI).
- Attribute domain.
- Using Data Quality Rules.
- Data Histograming.

3 steps of Attribute Domain Validation (page 177)

- ➤ The occurrences of each domain value within each coded attribute of the database.
- > Actual content of attributes against set of valid values.
- Exceptions to determine cause and impact of the data quality defects.

------Wish U Best of L|U|C|K for EXAMS ------