PhD Bootcamp: Linear Algebra

Bongjung Sung

August 16, 2023

Outline

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- 5 Vector Calculus & Matrix Calculus
- 6 Some Useful Tools for Matrix Calculations

Definition 1 (Field)

A field is a set F equipped with two binary operations, called addition and multiplication. A binary operation maps a value in $F \times F$ to a unique element in F. Addition and multiplication is denoted by + and \cdot , and satisfy the following properties.

- a + (b+c) = (a+b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- \bullet a+b=b+a and $a\cdot b=b\cdot a$.
- There exist two distinct elements 0 and 1 such that a+0=a and $a\cdot 1=a$ for any $a\in F.$
- \bullet For any $a \in F$, there exists a unique element in F , denoted by -a , such that a+(-a)=0.
- For any $a \in F \setminus 0$, there exists a unique element in F, denoted by a^{-1} , such that $a \cdot a^{-1} = 1$.
- $\bullet \ \, \text{For} \,\, a,b,c\in F \text{, it holds that} \,\, a\cdot (b+c) = a\cdot b + a\cdot c \,\, \text{and} \,\, (a+b)\cdot c = a\cdot c + b\cdot c.$
- Consider \mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{C} with usual addition and multiplication.
- ullet \mathbb{R} , \mathbb{Q} and \mathbb{C} are field but \mathbb{N} and \mathbb{Z} are not.

Vector Space

Definition 2 (Vector Space)

A vector space V over a field F is a non-empty set with two binary operations, vector addition and scalar multiplication. The vector addition assigns two elements in V, say u and v, to a unique element w in V, denoted by u+v. The scalar multiplication assigns $a\in F$ and $u\in V$ to au in V. These two operations satisfy the following properties :

- $\bullet \ \text{ For any } u,v,w\in V \text{, } u+(v+w)=(u+v)+w.$
- For any $u, v \in V$, u + v = v + u.
- There exists $0 \in V$, called a nonzero vector, such that v + 0 = v for any $v \in V$.
- For each $v \in V$, there exists a unique vector -v in V such that v + (-v) = 0.
- a(bv) = (ab)v for any $a, b \in F$ and $v \in V$.
- For $1 \in F$, 1v = v for all $v \in V$.
- (a+b)v = av + bv for all $a, b \in F$ and $v \in V$.
- a(v+u) = av + au for all $a \in F$ and $v, u \in V$.

Definition 3 (Subspace)

The subset $W \subseteq V$ for a vector space V over F is a subspace of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Definition 4 (Linear Combination & Span)

For vectors v_1,\ldots,v_n in a vector space V over F, we say $a_1v_1+\cdots+a_nv_n$ is a linear combination of v_1,\ldots,v_n for $a_1,\ldots,a_n\in F$. For nonempty set S of V, we denote the set of all linear combinations of the vectors in S by $\mathrm{span}(S)$. For convenience, we define $\mathrm{span}(\emptyset)=\{0\}$. If $W=\mathrm{span}(S)$, then we say S generates or spans W.

Definition 5 (Basis)

Suppose $\beta \subset V$. β is called linearly dependent if there exist a finite number of vectors $v_1, \ldots, v_n \in \beta$ and scalars c_1, \ldots, c_n , not all zero, such that

$$c_1v_1 + \dots + c_nv_n = 0.$$

Otherwise, β is linearly independent. If linearly independent subset β of V generates $W \subset V$, then β is a basis for W. If β is finite, then we say W is finite-dimensional and define its dimension by the cardinality of β .

 \bullet We consider only finite-dimensional vector space V.

Theorem 1

Let V be a vector space over a field F. For a subset β of V, β is a basis for V if and only if each element in V can be uniquely expressed as a linear combination of vectors of β , i.e., for each $v \in V$ and $\beta = \{v_1, \ldots, v_n\}$, there exist unique scalars $c_1, \ldots, c_n \in V$ such that $v = c_1v_1 + \cdots c_nv_n$.

Theorem 2

Let V be a vector space over a field F. If V is generated by a finite set S, then some subset of S is a basis for V. Hence, V has a finite basis.

Theorem 3

Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n-m vectors such that $L \cup H$ generates V.

August 16, 2023

Corollary 1

Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Corollary 2

Let V be a vector space with dimension n.

- ullet Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- ullet Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- ullet Every linearly independent subset of V can be extended to a basis for V.

Theorem 4

Let W be a subspace of a finite-dimensional vector space V. Then, W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, W = V.

August 16, 2023

Definition 6

For a vector space V over F, the inner product is a map $<,>:V\times V\mapsto F$ such that

- $\bullet < cx+z, y> = c < x, y> + < z, y> \text{ for any } c \in F \text{ and } x, y, z \in V.$
- \bullet $\overline{\langle x,y \rangle} = \langle y,x \rangle$.
- $\bullet < x, x > \ge 0$ and the equality holds only when x = 0.

A vector space equipped with an inner product is called an inner product space. If < v, w >= 0 for $v, w \in V$, then v and w are orthogonal. If all elements in the subset S of V are mutually orthogonal, then we say S is orthogonal. The norm induced by an inner product $<\cdot,\cdot>$ is a map $||\cdot||:V\mapsto \mathbb{R}$ defined by $||x||=\sqrt{< x,x>}.$

Theorem 5 (Gram-Schdmit Process)

Let V be an inner product space and $S=\{w_1,\ldots,w_n\}$ be a linearly independent subset of V. Define $S'=\{v_1,\ldots,v_n\}$, where $v_1=w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle v_j, w_k \rangle}{||v_j||^2} v_j$$

for $2 \le k \le n$. Then S' is an orthogonal set of nonzero vectors such that span(S) = span(S').

 \bullet As a consequence of Theorem 5, any finite-dimensional vector space V has an orthogonal basis.

Linear Map & Matrix

- \bullet As a consequence of Theorem 5, any finite-dimensional vector space V has an orthogonal basis.
- Suppose V and W are finite-dimensional vector spaces over F. Then, the map $T:V\mapsto W$ is linear if $T(c_1v_1+v_2)=c_1T(v_1)+v_2$
- Every linear map between finite-dimensional vector spaces has a matrix representation.
- If $\{\beta_1, \dots, \beta_n\}$ and $\{\gamma_1, \dots, \gamma_m\}$ are ordered bases for V and W, respectively, then for each $i = 1, \dots, n$, there exist unique scalars g_{i1}, \dots, g_{im} in F such that

$$T(\beta_i) = \sum_{j=1}^m g_{ij} \gamma_j.$$

- Then, we can identify T with a matrix $G = (g_{ij})$.
- Conversely, matrix can be viewed as a linear map. From now on, we restrict our vector space to \mathbb{R}^d over \mathbb{R} . We write the space of all real $m \times n$ matrix by $\mathbb{R}^{m \times n}$. Then, it is straightforward to see that for $X \in \mathbb{R}^{m \times n}$, X can be viewed as a linear map that maps \mathbb{R}^n to \mathbb{R}^m .

Linear Map & Matrix

Definition 7 (Column Space & Kernel)

Suppose $X\in\mathbb{R}^{n\times p}$. Then, the column space of X, C(X), is the linear subspace of \mathbb{R}^n spanned by columns of X. The rank of X, $\mathrm{rank}(X)$, is the dimension of C(X). The kernel of X, $\ker(X)$, is the set of all vectors $v\in\mathbb{R}^p$ such that Xv=0. The nullity of X is the dimension of $\ker(X)$.

Definition 8 (Null Space)

The null space of X, null(X), is the set of all vectors $v \in \mathbb{R}^n$ such that $v^{\top}X = 0$.

Linear Map & Matrix

Theorem 6 (Rank-Nullity Theorem)

For $X \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(X) + \operatorname{nullity}(X) = p$.

Corollary 3

For any $X \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(X) = \operatorname{rank}(X^{\top})$.

Theorem 7

For $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$, $rank(AB) \leq \min\{rank(A), rank(B)\}$.

• We call matrix $X \in \mathbb{R}^{n \times p}$ is of full-rank if $\operatorname{rank}(X) = p$.

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- 5 Vector Calculus & Matrix Calculus
- 6 Some Useful Tools for Matrix Calculations

Definition 9 (Transpose)

Suppose $X=(x_{ij})\in\mathbb{R}^{m\times n}$. Then, the transpose of X, denoted by X^{\top} , is defined to be a matrix in $\mathbb{R}^{n\times m}$ such that $(X^{\top})_{ij}=x_{ji}$. If m=n and $X^{\top}=X$, we call X is symmetric.

• We denote the set of all real symmetric $d \times d$ matrix by \mathbb{S}^d .

Definition 10 (Trace)

Suppose $X=(x_{ij})\in\mathbb{R}^{n\times n}$. Then, the trace of X, denoted by $\operatorname{tr}(X)$, is the sum of diagonal entries of X, i.e., $\operatorname{tr}(X)=\sum_{i=1}^n x_{ii}$.

- For $X \in \mathbb{R}^{n \times m}$ and $Y \in \mathbb{R}^{m \times n}$, $\operatorname{tr}(XY) = \operatorname{tr}(YX)$.
- Show that there does not exist $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$ such that $AB BA = I_n$.

Definition 11 (Determinant)

Suppose $X=(x_{ij})\in\mathbb{R}^{n\times n}$. If n=2, then the determinant of X, denoted by $\det(X)$, is

$$\det(X) = x_{11}x_{22} - x_{12}x_{21}.$$

If $n \geq 3$,

$$\det(X) = \sum_{j=1}^{n} (-1)^{i+j} x_{ij} \det M_{ij},$$

where M_{ij} is a $(n-1) \times (n-1)$ submatrix of X by omitting ith row and jth column of X.

Definition 12 (Inverse)

For $X \in \mathbb{R}^{n \times n}$, X^{-1} is an inverse of X in $\mathbb{R}^{n \times n}$ if $X^{-1}X = XX^{-1} = I_n$. If X has an inverse, then X is called invertible or non-singular.

Theorem 8

Suppose $X \in \mathbb{R}^{n \times n}$. Then, X is invertible if and only if $det(X) \neq 0$. Also, X is invertible if and only if rank(X) = n.

Theorem 9

Suppose $X=(x_{ij})\in\mathbb{R}^{n\times n}$ is invertible. Then, its inverse X^{-1} is Y^{\top} , where $Y=(y_{ij})$ is defined by

$$y_{ij} = (-1)^{i+j} \det M_{ij} / \det X.$$

and M_{ij} is a $(n-1) \times (n-1)$ minor matrix of X by omitting ith row and jth column of X.

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- 5 Vector Calculus & Matrix Calculus
- 6 Some Useful Tools for Matrix Calculations

Projection Matrix

Definition 13

For $P \in \mathbb{R}^{n \times n}$, P is a projection matrix if $P^2 = P$.

Definition 14

For a projection matrix $P \in \mathbb{R}^{n \times n}$, P is orthogonal if Py and (I-P)y are orthogonal for $y \in \mathbb{R}^n$.

Theorem 10

The rank of projection matrix is equivalent to the trace of it.

Projection Matrix

- Suppose $X \in \mathbb{R}^{n \times p}$. and assume $n \geq p$ and X is of full-rank.
- Then, $P_X = X(X^\top X)^{-1} X^\top$ is a projection matrix onto C(X).
- Observe that $P_X y = y$ for all $y \in C(X)$. Also, $P_X^2 y = P_X y$ for any $y \in \mathbb{R}^n$.
- Show that P is an orthogonal projection matrix if and only if $P^{\top}(I-P)=0$. Deduce that P is an orthogonal matrix if and only if P is symmetric.
- Let $P_X^\perp=I-P_X$. Then, P_X^\perp is a projection matrix onto $\mathcal{N}=\operatorname{null}(X).$ Also, $P_X^\perp P_X=0.$
- For every $y \in \mathbb{R}^n$, there uniquely exist $u \in C(X)$ and $v \in \mathcal{N}$ such that y = u + v.

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- 5 Vector Calculus & Matrix Calculus
- 6 Some Useful Tools for Matrix Calculations

Eigendecomposition

Definition 15 (Eigenvalue & Eigenvector)

For $X\in\mathbb{R}^{n\times n}$, $\lambda\in\mathbb{C}$ is an eigenvalue of X if there exists a nonzero eigenvector $v\in\mathbb{C}$ such that $Xv=\lambda v$.

• Alternative definition of eigenvalue is that the eigenvalue is a solution of $det(X - tI_n) = 0$.

Definition 16 (Diagonalizable matrix)

For $X\in\mathbb{R}^{n\times n}$, X is diagonalizable if there exist an invertible matrix $Q\in\mathbb{R}^{n\times n}$ and a diagonal matrix $D\in\mathbb{R}^{n\times n}$ such that $X=QDQ^{-1}$. We call such a decomposition as an eigendecomposition.

• For any $X \in \mathbb{S}^d$, X has an eigendecomposition and $X = Q\Lambda Q^\top$, where Λ is a diagonal matrix with all diagonal entries being eigenvalues of X and Q is an orthogonal matrix whose columns are corresponding eigenvectors.

Positive (Semi)Definite Matrix

Definition 17 (Positive (Semi)Definite Matrix)

A matrix $X \in \mathbb{S}^d$ is called positive semidefinite if

$$v^{\top} X v \ge 0$$

for all nonzero vector $v \in \mathbb{R}^d$ and positive definite if the equality is strict.

- One can show that $X \in \mathbb{S}^d$ is positive (semi) definite if and only if all eigenvalues of X are strictly positive (nonnegative).
- Furthermore, one can show that if $X \in \mathbb{R}^{n \times p}$ for $n \geq p$, $X^{\top}X$ is positive definite if and only if $\operatorname{rank}(X) = p$.

Definition 18

For $X \in \mathbb{R}^{m \times n}$, the left singular values of X are eigenvalues of XX^{\top} and the left singular vectors are corresponding eigenvectors. Similarly, the right singular values of X are eigenvalues of $X^{\top}X$ and the right singular vectors are corresponding eigenvectors.

Theorem 11 (SVD)

For $X \in \mathbb{R}^{m \times n}$, suppose X has rank r. there exist $U \in \mathbb{R}^{m \times n}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$ such that

$$X = U\Sigma V^{\top}$$

and $U^{\top}U = I_n$, $V^{\top}V = VV^{\top} = I_n$ and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)$, where $\sigma_1^2 \geq \dots \geq \sigma_r^2$'s are nonzero right singular values of X.

• Using SVD, one can construct $\tilde{X} \in \mathbb{R}^{n \times r}$ such that \tilde{X} is of full-rank and $C(\tilde{X}) = C(X)$.

Outline

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- Vector Calculus & Matrix Calculus
- Some Useful Tools for Matrix Calculations

Vector Calculus

• Suppose $f:\mathbb{R}^d\mapsto\mathbb{R}$. Then, the gradient of f at $x=(x_1,\ldots,x_d)\in\mathbb{R}^d$ is defined by

$$\mathrm{grad} f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right),$$

provided that all the stated partial derivatives exist.

ullet The Hessian matrix of f at $x=(x_1,\ldots,x_d)\in\mathbb{R}^d$ is defined by

$$\mathsf{Hess} f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}.$$

Examples of Vector Calculus

- $\bullet \ \, \text{For} \,\, A \in \mathbb{R}^{d \times d}, \, \text{suppose} \,\, f(x) = x^\top A x. \,\, \text{Then,} \,\, \text{grad} f(x) = (A + A^\top) x \,\, \text{and} \,\, \text{Hess} f(x) = A + A^\top. \,\, \text{In case} \,\, A \in \mathbb{S}^d, \,\, \text{grad} f(x) = 2A x \,\, \text{and} \,\, \text{Hess} f(x) = 2A.$
- Suppose $f(x) = \log\left(\frac{\exp\left(\beta^{\top}x\right)}{\left(1+\exp\left(\beta^{\top}x\right)\right)^2}\right)$. Then, $\operatorname{grad} f(x) = \beta 2\frac{\exp\left(\beta^{\top}x\right)}{1+\exp\left(\beta^{\top}x\right)}\beta$ and $\operatorname{Hess} f(x) = -2\frac{\exp\left(\beta^{\top}x\right)}{\left(1+\exp\left(\beta^{\top}x\right)\right)^2}\beta\beta^{\top}$.
- Suppose $f(x) = \log\left(1 + x^{\top}x\right)$. Then, $\operatorname{grad} f(x) = 2x/(1 + x^{\top}x)$ and $\operatorname{Hess} f(x) = 2/(1 + x^{\top}x) \cdot I_d 4/(1 + x^{\top}x)^2 \cdot xx^{\top}$.

Matrix Calculus

• Suppose $f: \mathbb{R}^{d \times d} \mapsto \mathbb{R}$. Then, the gradient of f at $X = (x_{ij}) \in \mathbb{R}^{d \times d}$ is defined by

$$\nabla f(X) = (\frac{\partial f}{\partial x_{ij}}),$$

provided that all the stated partial derivatives exist.

• There are various ways to define the Hessian matrix of f. Viewing f as a function of d^2 entries, one can define the Hessian matrix of f as usual in vector calculus or using a tensor (Kronecker Product).

Examples of Matrix Calculus

- Suppose $f(X) = \log \det(X)$. Then, $\nabla f(X) = (X^{-1})^{\top}$. If f is defined on \mathbb{S}^d , note that $\nabla f(X) = m(X^{-1})$, where $m(X) = 2X \operatorname{diag}(X)$.
- Suppose $f(X)=\operatorname{tr}(AX)$. Then, $\nabla f(X)=A$. If $X\in\mathbb{S}^d$, $\nabla f(X)=m(A)$.
- $\begin{array}{l} \bullet \ \, \mathsf{Suppose} \,\, f(X) = \sum \mathsf{eig}\,(X). \ \, \mathsf{Then}, \, \nabla f(X) = I. \,\, \mathsf{Also, if} \,\, f(X) = \prod \mathsf{eig}(X), \\ \nabla f(X) = \mathsf{det}(X) \left(X^{-1}\right)^\top. \,\, \mathsf{If} \,\, X \in \mathbb{S}^d, \, \nabla f(X) = \mathsf{det}(X) m(X^{-1}). \end{array}$

Outline

- Vector Space & Subspace
- Matrix Operations
- Projection Matrix
- 4 Eigendecomposition & Singular Value Decomposition (SVD)
- 5 Vector Calculus & Matrix Calculus
- 6 Some Useful Tools for Matrix Calculations

Matrix Inverse identity

Consider the matrix

$$X = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

where A and D are square matrices of appropriate size.

Theorem 12

Suppose D is invertible. Then, X is invertible if and only if D's Schur's complement $A-BD^{-1}C$ is also invertible. Furthermore,

$$det(X) = det(D)det(A - BD^{-1}C).$$

Corollary 4

Suppose D is invertible. If X is invertible, then

$$X^{-1} = \left[\begin{array}{ccc} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{array} \right]$$

August 16, 2023

Matrix Inverse for Positive Definite Matrix

Theorem 13

Suppose $\Sigma \in \mathbb{R}^{p \times p}$ is symmetric and

$$\Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^\top & \Sigma_{22} \end{array} \right].$$

Then, Σ is positive definite if and only if Σ_{22} and its Schur's complement $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^{\mathsf{T}}$ are positive definite.

Application of Matrix Inverse Identity

Suppose

$$Y = \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right], \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^\top & \Sigma_{22} \end{array} \right] \right).$$

ullet Show that the conditional distribution of $Y_1|Y_2$ is

$$\mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(Y_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^{\top}).$$

Woodbury's Formula

Theorem 14 (Matrix Determinant Lemma)

Suppose A is invertible, and u and v are column vectors. Then,

$$det(A + uv^{\top}) = (1 + v^{\top}A^{-1}u)det(A).$$

Theorem 15 (Generalization of Matrix Determinant Lemma)

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and $U, V \in \mathbb{R}^{n \times k}$. Then,

$$det(A + UV^{\top}) = det(A)det(I_k + V^{\top}A^{-1}U).$$

Also, if $W \in \mathbb{R}^{k \times k}$ is invertible,

$$\det(A + UWV^\top) = \det(A)\det(W)\det(W^{-1} + V^\top A^{-1}U).$$

Theorem 16 (Woobury's Formula)

Suppose $A \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times k}$, $C \in \mathbb{R}^{k \times k}$, and $V \in \mathbb{R}^{k \times n}$. Then,

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1},$$

provided that all the stated inverses exist.

Kronecker Product

Definition 19

Suppose $A=(a_{ij})\in\mathbb{R}^{m\times n}$ and $B=(b_{ij})\in\mathbb{R}^{p\times q}$. Then, the Kronecker product $A\bigotimes B$ is the $pm\times nq$ block matrix defined by

$$A \bigotimes B = \left[\begin{array}{ccc} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{array} \right].$$

Properties of Kronecker Product

- $A \otimes (B+C) = A \otimes B + A \otimes C$, $(A+B) \otimes C = A \otimes C + B \otimes C$.
- For $c \in \mathbb{R}$, $(cA) \bigotimes B = A \bigotimes (cB) = c(A \bigotimes B)$.
- $(A \bigotimes B)^{\top} = A^{\top} \bigotimes B^{\top}.$
- $(A \bigotimes B)(C \bigotimes D) = (AC) \bigotimes (BD)$.
- $\bullet \ \operatorname{vec}(AYB^{\top}) = (B \bigotimes A) \operatorname{vec}(Y).$

Application of Kronecker Product : one-factor ANOVA

- Suppose $y_{ij} \stackrel{\text{ind}}{\sim} \mathcal{N}(\theta_j, \sigma^2)$, where $\sigma^2 > 0$ is unknown, $i = 1, \dots, r$, and $j = 1, \dots, p$.
- Observe that the given model can be also written as

$$Y = \begin{bmatrix} y_{11} & \cdots & y_{1p} \\ \vdots & \ddots & \vdots \\ y_{r1} & \cdots & y_{rp} \end{bmatrix} = \begin{bmatrix} \theta_1 & \cdots & \theta_p \\ \vdots & \ddots & \vdots \\ \theta_1 & \cdots & \theta_p \end{bmatrix} + E, \tag{1}$$

where the entries of $r \times p$ matrix E are random samples from $\mathcal{N}(0, \sigma^2)$.

- Express the model in (1) using y = vec(Y), e = vec(E), and Kronecker product.
- Using the model in form of Kronecker product, derive the OLS estimate of $\theta = (\theta_1, \dots, \theta_p)^\top$.
- Deduce the fitted values of y and residuals from your OLS estimate.