Appendix A Nonrigid affine correction

One way to estimate a correction matrix $J = M \setminus \tilde{M}$ generalizes the solution for the rigid affine correction given above. The strategy is to break M into column-triples. Each column-triple is a stack of rotation matrices scaled by morph weights. Let $\mathbf{m}_{f_{k,x}}^{\mathsf{T}}, \mathbf{m}_{f_{k,y}}^{\mathsf{T}} \in M$ be the x and y projections in frame f as given by column-triple k. As in the rigid affine correction, in a properly structured motion matrix M these vectors should have equal norm and be orthogonal:

$$\forall_{f,k} \left[\|\mathbf{m}_{f_{k,x}}\| = \|\mathbf{m}_{f_{k,y}}\| \right] \wedge \left[\mathbf{m}_{f_{k,x}}^{\mathsf{T}} \mathbf{m}_{f_{k,y}} = 0 \right]. \tag{1}$$

Morever, their projections onto vectors from other column triples should also have equal norm (because all column-triples have the same rotations):

$$\forall_{f,k,j} \left[\mathbf{m}_{f_{k,x}} \mathbf{m}_{f_{j,x}} = \mathbf{m}_{f_{k,y}} \mathbf{m}_{f_{j,y}} \right] \wedge \left[\mathbf{m}_{f_{k,x}}^{\top} \mathbf{m}_{f_{j,y}} = 0 \right]. \tag{2}$$

This yields a system of equations

$$\forall_{f,k,j} \left(\operatorname{vec}(\mathbf{m}_{f_{k,x}} \mathbf{m}_{f_{j,x}}^{\top} - \mathbf{m}_{f_{k,y}} \mathbf{m}_{f_{j,y}}^{\top}) \right)^{\top} \operatorname{vec} \mathbf{H}_{k,j} = 0, \tag{3}$$

$$\forall_{f,k,j} \left(\text{vec}(\mathbf{m}_{f_{k,x}} \mathbf{m}_{f_{i,y}}^{\mathsf{T}}) \right)^{\mathsf{T}} \text{vec} \mathbf{H}_{k,j} = 0.$$
 (4)

Now recall that each $\mathbf{H}_{k,i}$ is the outer product of two column-triples in (\mathbf{J}^{-1}) , e.g.,

$$\mathbf{H}_{k,j} = (\mathbf{J}^{-1})_{\text{cols}(3k-2,3k-1,3k)} (\mathbf{J}^{-1})_{\text{cols}(3j-2,3j-1,3j)}^{\mathsf{T}}.$$
 (5)

Consequently, the matrix

$$\mathbf{H} \doteq \begin{bmatrix} \mathbf{H}_{1,1} & \cdots & \mathbf{H}_{1,K} \\ \vdots & \ddots & \vdots \\ \mathbf{H}_{K,1} & \cdots & \mathbf{H}_{K,K} \end{bmatrix} = (\mathbf{J}^{-1})^{(3K,3)} (\mathbf{J}^{-1})^{(3K,3)\top}$$
(6)

should be symmetric with rank 3. Let $\mathbf{V}\Lambda\mathbf{V}^{\mathsf{T}} \overset{\mathrm{EIG_3}}{\longleftarrow} \mathbf{H}$ be a truncated decomposition of \mathbf{H} using its three largest eigenvalues and their associated eigenvectors. Then the desired correction is $(\mathbf{J}^{-1}) = (\mathbf{V}\sqrt{\Lambda})^{(3K,3)}$.

Although formally "correct," this procedure is of limited use because in order to express eqns. (3-4) in terms of \mathbf{J}^{-1} we must make the substitution $\mathbf{m}_{f_{k,x}}^{\mathsf{T}} \to \tilde{\mathbf{m}}_{f_{x}}^{\mathsf{T}}(\mathbf{J}^{-1})_{\operatorname{cols}(3k-2,3k-1,3k)}$, which makes the constraints on all $\mathbf{H}_{k,j}$ nearly identical. Consequently the linear system is rank-deficient, because the number of unknowns in \mathbf{H} grows as $O(K^4)$ (or $O(K^3)$ if one only considers $j=\{k,k+1\}$) while the number of true unknowns in \mathbf{J}^{-1} grows as $O(K^2)$. In practice, there are enough constraints to support a usable estimate of the first three columns of \mathbf{J}^{-1} . We can therefore calculate the first column-triple of $\hat{\mathbf{M}}$, project $\tilde{\mathbf{M}}$ into the 3K-3 dimensional space orthogonal to this, and repeat the procedure to get the next column triple of $\hat{\mathbf{M}}$. A generalized SVD solution for factoring \mathbf{H} without explicitly computing its elements (thereby avoiding the rank-deficient division) requires some extra pages to explain and therefore will be published separately.