Lab 6

Goals-

Use simple algorithms for searching
Use simple algorithms for sorting

1. Create data files.

You will need at least four text files filled with random integer values. You don't need a large number of values. Around 20. This will just make testing easier. Create a file with a random collection of the values; 1, 2, 3, 4, 5, 6, 7, 8, & 9. Save it. Make 3 copies. In each copy put in a single value of 0; towards the beginning of one file, around the middle of another and towards the end of the third. Rename each as appropriate, i.e. early, middle, etc. Keep one without a 5.

2. Search for the target value (i.e. 0).

The book or the lecture has several examples of the code for searching algorithms. Implement one of them in a program that searches for a 5 in your data files. Compare the results. You cannot use binary search yet. Why?

3. Sort a set of values.

The book or the lecture has several examples of the code for sorting algorithms. Implement one of them in a program. Your program should write the sorted results into a file using a name the user provides. Sort all 4 input files and compare the results.

4. Search for the target value, redux.

Find an example of code for binary searching. Implement it in a program that searches for a 5 in your data file. Remember that you cannot use any of the original files, but need a sorted file.

NOTE: You can implement each as a separate program or create a single program giving the user the choice of which activity to perform.

Modular Grading

We are using modular grading. Each lab will be divided into specific modules. Each module will be graded pass/fail. It either works properly or it does not. 10% of every lab or assignment grade is style/comments or other elements of self-documenting code and clarity. Remember the labs are worth 10 points total.

Programming style- 1 point

Create the 4 necessary input files- 1 points

Implement and test the searching algorithm- 3 points

Implement and test the sorting algorithm - 3 points

Implement and test the binary search algorithm- 2 points