UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

HENRIQUE CORRÊA PEREIRA DA SILVA

RELATÓRIO 2

Relatório apresentado como requisito parcial para a obtenção de conceito na Disciplina de Concepção de Circuitos Integrados.

Orientador: Prof. Dr. Ricardo Augusto da Luz Reis

SUMÁRIO

1 INTRODUÇÃO	3
2 PROPOSTA	
3 ANÁLISE	
3.1 NAND2	
3.2 NOR2	
4 RESULTADOS	
4.1 Tabela	

1 INTRODUÇÃO

Neste relatório, construiremos leiautes e esquemáticos de células NAND2 e NOR2 e observaremos suas performances utilizando as seguintes métricas:

- 1. T_{lh}: tempo de subida do sinal;
- 2. T_{hl}: tempo de descida do sinal;
- 3. Tp_{lh}: tempo de propagação *low-high*;
- 4. Tp_{hl}: tempo de propagação *high-low*;
- 5. Tp_{médio}: tempo de propagação médio;
- 6. P_{média}: potência média das células;
- 7. P_{RMS}: potência *RMS* das células.

Além disso, será feita a análise *Layout versus Schematic* para cada célula a fim de verificar a funcionalidade do leiaute contra o esquemático. Mais detalhes sobre a implementação das portas lógicas e do circuito no Capítulo 2.

Figura 1.1: Circuito NAND2 a ser projetado.

Figura 1.2: Circuito NOR2 a ser projetado.

2 PROPOSTA

A proposta do relatório é construir e realizar a medição de métricas de implementações das portas lógicas NAND2 e NOR2 na tecnologia CMOS C35B4 da *Austria Microsystems*, utilizando valores de W_p e de W_n dessas respectivas portas conforme a Tabela 2.1. Além disso, o circuito também deverá seguir às seguintes especificações:

- VDD = 3.3 V;
- $1/f_1 = 10 \text{ ns};$
- $1/f_2 = 20 \text{ ns}$;
- $T_{rise} = 200 \, ps;$
- $T_{fall} = 200 \, ps$;
- $P1_{width} = 5 \text{ ns};$
- $P2_{width} = 10 \text{ ns}$.

Criados os leiautes, é obrigatório tanto o teste individual de cada um utilizando as ferramentas *DRC* e *LVS* quanto a extração das capacitâncias parasitas de cada implementação.

Tabela 2.1: Dimensões em cada implementação.

Implementação	\mathbf{W}_{p}	$\mathbf{W}_{\mathbf{n}}$
NAND2	3.0 µm	2.0 µm
NOR2	$4.0\mu m$	$1.0\mu m$

3 ANÁLISE

Neste capítulo abordaremos cada implementação do inversor e, no Capítulo 4, analisaremos os resultados e faremos algumas observações sobre o circuito simulado.

A Figura 3.1 mostra o esquemático de ambas portas estáticas CMOS que implementaremos.

Figura 3.1: Esquemático de ambas NOR2 e NAND2 em CMOS.

3.1 NAND2

A NAND2, como vista anteriormente na Aula Prática 3, possui transistores PMOS e NMOS dimensionados respectivamente em 3.0 μm e 2.0 μm, e, assim como na aula prática, as células projetadas tem 14 μm de altura num processo CMOS de substrato P⁻.

A Figura 3.2 mostra o esquemático da porta lógica na ferramenta *Virtuoso*, e a Figura 3.3 mostra o seu respectivo leiaute. O leiaute foi feito manualmente sem utilizar as ferramentas de automação e de simplificação do processo de criação de leiaute do *Virtuoso*.

Figura 3.2: Esquemático da NAND2

Os resultados da análise transiente desse circuito estão no Capítulo 4.

A Figura 3.4 mostra o esquemático do circuito na ferramenta *Virtuoso*, e a Figura 3.5 mostra o *waveform* da simulação transiente do circuito.

Figura 3.4: Esquemático da simulação da transiente da porta.

Figura 3.5: Waveforms da simulação transiente da porta. (a) united

(b) separated

3.2 NOR2

A NOR2, como vista anteriormente na Aula Prática 3, possui transistores PMOS e NMOS dimensionados respectivamente em 4.0 μm e 1.0 μm, e, assim como na aula prática, as células projetadas tem 14 μm de altura num processo CMOS de substrato P⁻.

A Figura 3.6 mostra o esquemático da porta lógica na ferramenta *Virtuoso*, e a Figura 3.7 mostra o seu respectivo leiaute. O leiaute foi feito manualmente sem utilizar as ferramentas de automação e de simplificação do processo de criação de leiaute do *Virtuoso*.

Figura 3.6: Esquemático da NOR2

Os resultados da análise transiente desse circuito estão no Capítulo 4.

A Figura 3.8 mostra o esquemático do circuito na ferramenta *Virtuoso*, e a Figura 3.9 mostra o *waveform* da simulação transiente do circuito.

and and and and and and and and and and

Figura 3.8: Esquemático da simulação da transiente da porta.

Figura 3.9: Waveforms da simulação transiente da porta.

(a) united

(b) separated

4 RESULTADOS

Neste capítulo abordaremos os resultados obtidos nas simulações.

4.1 Tabela

A Tabela 4.1 define os valores encontrados para cada uma das métricas temporais definidas no Capítulo Introdução para cada circuito, e a Tabela 4.2 define as métricas de energia para os mesmos ditos circuitos.

Tabela 4.1: Resultados temporais das simulações.

Porta	Tp_{HL}	Tp_{LH}	Tp _{médio}	T_{LH}	$T_{ m HL}$
NAND2	$2.096 \times 10^{-1} \text{ns}$	$2.163 \times 10^{-1} \text{ns}$	$2.129 \times 10^{-1} \text{ns}$	$3.836 \times 10^{-1} \text{ns}$	$3.342 \times 10^{-1} \text{ns}$
NOR2	$2.839 \times 10^{-1} \text{ns}$	$1.462 \times 10^{-1} \text{ns}$	$2.151 \times 10^{-1} \text{ns}$	$5.662 \times 10^{-1} \text{ ns}$	$2.057 \times 10^{-1} \text{ns}$

Tabela 4.2: Resultados de consumo de potência.

•••	P _{média}	P_{RMS}
NAND2	$5.594 \times 10^{-5} \mathrm{W}$	$2.641 \times 10^{-4} \mathrm{W}$
NOR2	$2.497 \times 10^{-5} \mathrm{W}$	$1.638 \times 10^{-4} \mathrm{W}$