```
DIALOG(R) File 351: Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.
015142478
            **Image available**
WPI Acc No: 2003-203005/200320
XRPX Acc No: N03-161717
  Digital signal processing method e.g. for video signals, involves
  determining minimum distance between two samples and between copies of
  one sample and other sample
Patent Assignee: CANON RES CENT FRANCE SA (CANO )
Inventor: HENRY F
Number of Countries: 028 Number of Patents: 005
Patent Family:
Patent No
             Kind
                   Date
                            Applicat No
                                           Kind
                                                  Date
                                                           Week
                                                20020527 200320 B
                  20021204 EP 2002291286
                                            Α
EP 1263236
              A2
              A1 20030321 FR 200112064
                                                20010918 200323
                                            Α
FR 2829858
                                                 20020528 200325
US 20030063804 A1 20030403 US 2002155227
                                            Α
                                                 20011026 200331
FR 2831729 A1 20030502 FR 200113922
                                            Α
                                                20020528 200335
JP 2003115766 A
                  20030418 JP 2002154594
                                            Α
Priority Applications (No Type Date): FR 200113922 A 20011026; FR 20016933
  A 20010528; FR 200112064 A 20010918
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                    Filing Notes
             A2 E 48 H04N-007/26
EP 1263236
   Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
   LI LT LU LV MC MK NL PT RO SE SI TR .
                     G06T-009/00
FR 2829858
             A1
                       G06K-009/36
US 20030063804 A1
                      H03M-007/30
FR 2831729 A1
                  121 H03M-007/36
JP 2003115766 A
Abstract (Basic): EP 1263236 A2
        NOVELTY - Extreme coordinates of area that encloses all the samples
    are determined on each axis of the coordinates of the coordinate
    system. Copies of a sample are obtained by translating the sample in
    different directions and according to a value which depends on the
    extreme coordinates. Minimum distance between two samples and between
    copies of the sample and other sample are determined.
        DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the
    following:
        (1) Encoded digital signal processing method;
        (2) Digital signal processing device;
        (3) Encoded digital signal processing device;
        (4) Data processing apparatus;
        (5) Information storage medium storing instructions for digital
    signal processing;
        (6) Information storage medium storing instruction for processing
    digital signal in encoded form;
        (7) Computer program for processing digital signal;
        (8) Computer program for processing digital signal in encoded form;
        (9) Digital signal encoding method;
        (10) Encoded digital signal transmission method;
        (11) Digital signal decoding method;
        (12) Digital signal encoding device;
        (13) Encoded digital signal transmitting device;
        (14) Digital signal decoding device;
        (15) Digital signal encoding program storage medium;
        (16) Digital signal decoding program storage medium;
```

(17) Digital signal transmitting program storage medium;

```
(18) Digital signal encoding program;
         (19) Digital signal transmitting program;
        (20) Digital signal decoding program;
        (21) Data set encoding method;
        (22) Data set decoding method;
        (23) Data set encoding device;
        (24) Data set decoding device;
        (25) Storage medium storing program for encoding data set;
        (26) Computer program for encoding data set;
        (27) Computer program for decoding data set;
        (28) Digital image processing device; and
        (29) Digital image processing program storage medium.
        USE - For processing digital signal such as images, video signal,
    audio signal, computer signals, signals output by facsimile, digital
    camera, digital camcorder, scanner, printer, photocopier, system of
    database management, and multi-dimensional signals.
        ADVANTAGE - Reduces the number of bits necessary for encoding
    samples of digital images, thereby improving the through-put.
        DESCRIPTION OF DRAWING(S) - The figure illustrates the algorithm of
    process of digital signal processing.
        pp; 48 DwgNo 10/21
Title Terms: DIGITAL; SIGNAL; PROCESS; METHOD; VIDEO; SIGNAL; DETERMINE;
  MINIMUM; DISTANCE; TWO; SAMPLE; COPY; ONE; SAMPLE; SAMPLE
Derwent Class: T01; W02; W04
International Patent Class (Main): G06K-009/36; G06T-009/00; H03M-007/30;
  H03M-007/36; H04N-007/26
International Patent Class (Additional): G06T-009/20; H03M-007/40;
  H04N-001/41; H04N-007/24; H04N-007/30; H04N-007/50
File Segment: EPI
Manual Codes (EPI/S-X): T01-J10D; T01-S03; W02-F07M; W04-P01A
```

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) No de publication :

2 829 858

(à n'utiliser que pour les commandes de reproduction)

(21) N° d'enregistrement national :

01 12064

(51) Int Ci7: G 06 T 9/00, H 04 N 7/50

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 18.09.01.

30) Priorité :

(71) Demandeur(s): CANON RESEARCH CENTRE FRANCE SA Société anonyme — FR.

Date de mise à la disposition du public de la demande : 21.03.03 Bulletin 03/12.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent tascicule

(60) Références à d'autres documents nationaux apparentés:

(72) Inventeur(s): HENRY FELIX.

(73) Titulaire(s) :

(74) Mandataire(s): RINUY SANTARELLI.

(54) PROCEDE ET DISPOSITIF DE TRAITEMENT D'UN SIGNAL NUMERIQUE.

L'invention conceme un procédé de traitement d'un signal numérique comportant des échantillons (a₁, a₂,..., a₉) représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique, caractérisé en ce qu'il comporte les étapes suivantes:

détermination parmi les coordonnées desdits échan-tillons des coordonnées extrêmes (L, R), (B, T) sur chaque

tillons des coordonnées extrêmes (L, R), (B, T) sur chaque axe de coordonnées (x, y) du repère,

- pour toutes les combinaisons possibles entre lesdits échantillons pris deux à deux, détermination d'une distance minimale parmi toutes les distances calculées suivant chaque axe entre, d'une part, la coordonnée d'un premier échantillon et, d'autre part, la coordonnée de chacun des éléments du groupe comprenant un second échantillon et des copies de ce second échantillon obtenues par translation dudit second échantillon suivant différentes directions et selon une valeur qui dépend des coordonnées extrêmes précédemment déterminées. précédemment déterminées.

5

15

20

25

La présente invention concerne un procédé de traitement d'un signal numérique comportant des échantillons représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique.

L'invention s'applique notamment dans le domaine des images.

L'invention s'applique de manière générale au cas d'un signal numérique qui n'est pas nécessairement une image et qui comporte un ensemble d'échantillons représentatifs de grandeurs physiques.

Ainsi, les signaux numériques concernés par l'invention peuvent être par exemple des signaux vidéo, des signaux sonores (musique, parole, ...), des signaux informatiques, des signaux issus d'un télécopieur, des signaux multidimensionnels (imagerie multi-bandes) ...

Lorsque l'on cherche à coder des échantillons d'un signal numérique, et plus particulièrement d'une image, les techniques conventionnelles de codage sont essentiellement basées sur l'approche qui consiste à prendre les échantillons formant l'image numérique selon un ordre prédéfini, par exemple ligne par ligne et de la gauche vers la droite, et à coder l'amplitude de ces échantillons.

Les échantillons du signal d'image concernés par le codage peuvent être les pixels dudit signal d'image.

Toutefois, des méthodes de décomposition des signaux numériques d'image du type décomposition en sous-bandes de fréquences sont largement utilisées aujourd'hui.

L'intérêt de ces méthodes réside dans le fait que l'on va chercher à concentrer dans une sous-bande prédéterminée, en l'occurrence la sous-bande de plus basse fréquence, le maximum d'informations. Cette sous-bande contient alors des coefficients qui constituent un sous-ensemble des échantillons de l'image numérique, ce sous-ensemble conservant les caractéristiques essentielles de l'image numérique.

Ainsi, les images numériques peuvent être, par exemple, décomposées en sous-bandes et l'amplitude des coefficients de chacune des sous-bandes est alors codée.

Dans ce cas, l'ordre de traitement des échantillons numériques est considéré comme implicite.

10

15

25

30

Il convient de noter que l'on peut choisir de ne coder que certains échantillons numériques parmi tous les pixels de l'image ou parmi tous les coefficients de sous-bande de l'image décomposée.

Par ailleurs, on peut vouloir adopter une démarche inverse de celle précédemment décrite lors du codage d'échantillons d'un signal numérique, par exemple d'image.

En effet, considérant que l'amplitude des échantillons numériques est implicite, c'est-à-dire qu'elle est plus ou moins conforme à un modèle prédéterminé, on va chercher à décrire un parcours parmi les échantillons numériques concernés du signal, ce parcours étant ensuite codé.

Afin que le codage soit effectué avec un débit minimum, il est nécessaire que la description du parcours parmi ces échantillons soit aussi compacte que possible.

Si l'on représente par exemple par des points les échantillons numériques d'un signal bidimensionnel dans un repère cartésien comportant deux axes de coordonnées, il est donc nécessaire que le parcours reliant tous ces points soit le plus court possible pour minimiser le nombre de bits nécessaires au codage.

En pratique, la description de ce parcours minimal passe par le calcul d'une distance entre tous les points pris deux à deux, cette distance se définissant à partir d'un vecteur reliant deux points.

Pour que le parcours à décrire parmi ces points soit minimal, on fait appel à des solutions connues du "problème du voyageur de commerce", problème bien connu en mathématiques. Selon ce problème, un voyageur de commerce doit parcourir un certain nombre de villes dans un ordre qui minimise la distance totale.

Dans le cas qui nous intéresse, des solutions à ce problème fournissent un parcours minimal joignant les points ou échantillons numériques considérés.

Cependant, pour résoudre ce problème, il faut préalablement définir 10 la notion de distance utilisée entre deux points.

Si l'on note M_1 et M_2 deux points de coordonnées respectives (x_1, y_1) et (x_2, y_2) dans un repère cartésien, V le vecteur de déplacement entre M_1 et M_2 ayant les coordonnées suivantes :

15

25

30

la distance d entre les points M_1 et M_2 , également appelée norme, est définie usuellement par l'un des trois types suivants :

$$d = \sqrt{vx^2 + vy^2} \text{ ou,}$$

$$d = max(|vx|, |vy|) \text{ ou,}$$

$$d = |vx| + |vy|.$$

Lorsque la distance a été sélectionnée, les solutions évoquées cidessus au "problème du voyageur de commerce" fournissent une liste de vecteurs V entre les différents points à parcourir suivant le parcours minimal retenu.

Les vecteurs retenus ayant donc une norme de faible valeur, on comprend que le codage du parcours retenu soit avantageux en terme de débit.

Toutefois, la Demanderesse s'est aperçue qu'il serait intéressant de trouver un nouveau procédé et un nouveau dispositif permettant de réduire davantage le nombre de bits nécessaires au codage d'échantillons d'un signal numérique.

Lors de la résolution de ce problème, la Demanderesse a trouvé de façon surprenante un nouveau procédé et un nouveau dispositif de traitement d'un signal numérique qui fournissent, pour chaque couple d'échantillons, la plus petite distance possible entre ces échantillons.

Ces nouveaux procédé et dispositif de traitement servent plus particulièrement de base à l'élaboration de nouveaux procédé et dispositif permettant de réduire le nombre de bits à coder dans le signal.

5

10

15

30

Cependant, de manière plus générale, les nouveaux procédé et dispositif de traitement trouvés par la Demanderesse peuvent être utilisés indépendamment pour d'autres applications.

La présente invention a ainsi pour objet un procédé de traitement d'un signal numérique comportant des échantillons a_1 , a_2 , ..., a_9 représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique, caractérisé en ce qu'il comporte les étapes suivantes:

- détermination parmi les coordonnées desdits échantillons des coordonnées extrêmes L, R, B, T sur chaque axe de coordonnées x, y du repère,

pour toutes les combinaisons possibles entre lesdits échantillons
 pris deux à deux, détermination d'une distance minimale parmi toutes les distances calculées suivant chaque axe entre, d'une part, la coordonnée d'un premier échantillon et, d'autre part, la coordonnée de chacun de éléments du groupe comprenant un second échantillon et des copies de ce second échantillon obtenues par translation dudit second échantillon suivant différentes
 directions et selon une valeur qui dépend des coordonnées extrêmes précédemment déterminées.

Corrélativement, l'invention a pour objet un dispositif de traitement d'un signal numérique comportant des échantillons $a_1, a_2, ..., a_9$ représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique, caractérisé en ce qu'il comporte :

- des moyens de détermination parmi les coordonnées desdits échantillons des coordonnées extrêmes L, R, B, T sur chaque axe de coordonnées x, y du repère,

- pour toutes les combinaisons possibles entre lesdits échantillons pris deux à deux, des moyens de détermination d'une distance minimale parmi toutes les distances calculées suivant chaque axe entre, d'une part, la coordonnée d'un premier échantillon et, d'autre part, la coordonnée de chacun des éléments du groupe comprenant un second échantillon et des copies de ce second échantillon obtenues par translation dudit second échantillon suivant différentes directions et selon une valeur qui dépend des coordonnées extrêmes précédemment déterminées.

10

15

20

30

Ainsi, en d'autres termes, on définit dans le repère un "cadre" contenant les échantillons considérés, on effectue par translation des "copies" de ce cadre de part et d'autre de celui-ci, de manière adjacente audit cadre, suivant différentes directions et on détermine la plus petite distance possible entre un premier échantillon du cadre et un second échantillon dudit cadre, ainsi qu'entre ce premier échantillon et les "copies" du second échantillon à l'intérieur des copies respectives du cadre.

On définit de la sorte un nouveau vecteur de déplacement W pour chaque couple d'échantillons ainsi traité et dont la norme est la plus petite qui soit. La norme des vecteurs W est en effet inférieure ou égale à celle des vecteurs de déplacement V du type décrit plus haut.

Selon une caractéristique, le procédé comporte une étape de détermination d'un parcours minimal entre les échantillons a₁, a₄, a₆, a₇, a₈, a₅, a₂, a₃, a₉ à partir des différentes distances minimales précédemment déterminées suivant chaque axe et pour toutes les combinaisons possibles de couples d'échantillons.

En ayant ainsi déterminé de nouveaux vecteurs de déplacement pour chaque couple d'échantillons considéré, on s'assure que le parcours minimal qui a été obtenu en appliquant à ces nouveaux vecteurs une solution connue au "problème du voyageur de commerce" sera inférieur ou égal à celui qui serait obtenu avec les vecteurs V précités et en utilisant la même solution.

Un parcours minimal ainsi raccourci conduit à des vecteurs de norme réduite qui sont donc plus avantageux à coder en terme de débit.

On notera que les nouveaux vecteurs de déplacement W peuvent être déterminés avant l'application de la solution précitée au "problème du voyageur de commerce" ou simultanément à la mise en œuvre de cette solution.

5

10

15

20

25

Selon une caractéristique, la valeur qui dépend des coordonnées extrêmes correspond sensiblement à la différence L-R, R-L, B-T, T-B entre la coordonnée maximale L, B et la coordonnée minimale R, T des échantillons sur chaque axe.

On adapte ainsi la translation aux dimensions de l'ensemble contenant les échantillons afin d'effectuer des copies d'échantillons au delà d'un "cadre" virtuel délimitant cet ensemble.

Selon une caractéristique, les copies du second échantillon sont effectuées dans les deux directions possibles de chaque axe et de chaque diagonale.

Selon une caractéristique, les vecteurs de déplacement obtenus à partir des échantillons consécutifs du parcours minimal sont codés.

Ces vecteurs sont ensuite transmis avec l'ordre dans lequel ils apparaissent dans le parcours minimal, ceci afin de pouvoir positionner les différents échantillons après décodage.

L'invention a également pour objet un procédé de traitement d'un signal numérique codé comportant une étape de réception de ce signal numérique codé, caractérisé en ce que ledit signal numérique codé comporte sous forme codée :

- une coordonnée d'un des échantillons dit initial dudit signal non codé qui a été obtenue suivant chaque axe d'un repère de coordonnées à n dimensions, où n est la dimension dudit signal,
- les coordonnées extrêmes L, R B, T sur chaque axe des échantillons dudit signal non codé,
- des vecteurs de déplacement W qui ont été obtenus chacun avant codage dudit signal à partir des échantillons consécutifs d'un parcours

minimal déterminé entre les échantillons du signal, ainsi que l'ordre de ces vecteurs dans le parcours.

Corrélativement, l'invention vise un dispositif de traitement d'un signal numérique codé comportant des moyens de réception de ce signal numérique codé, caractérisé en ce que ledit signal numérique codé comporte sous forme codée :

- une coordonnée d'un des échantillons dit initial dudit signal non codé qui a été obtenue suivant chaque axe d'un repère de coordonnées à n dimensions, où n est la dimension dudit signal.
- les coordonnées extrêmes L, R, B, T sur chaque axe des échantillons dudit signal non codé,

10

15

20

.25

30

- des vecteurs de déplacement W qui ont été obtenus chacun avant codage dudit signal à partir des échantillons consécutifs d'un parcours minimal déterminé entre les échantillons du signal, ainsi que l'ordre de ces vecteurs dans le parcours.

Le signal numérique reçu a été codé de façon avantageuse en terme de débit ce qui rend plus rapide la réception des données ainsi codées.

Après décodage des données, les coordonnées de chacun des échantillons du parcours minimal, suivant chaque axe, sont reconstituées en fonction des nouveaux vecteurs de déplacement, des coordonnées extrêmes et de la coordonnée de l'échantillon initial.

Ceci permet ainsi de reconstruire le signal d'image de manière tout aussi fiable que si toutes les amplitudes des échantillons avaient été transmises ou bien que si l'on avait transmis davantage d'informations en transmettant les vecteurs de déplacement V précités.

Selon une caractéristique, le procédé comporte une étape de détermination de la position des coordonnées reconstituées suivant chaque axe de chacun des échantillons du parcours par rapport aux coordonnées extrêmes des échantillons.

Le test effectué sur la position des coordonnées reconstituées permet de savoir si cette position est située à l'intérieur du "cadre" virtuel renfermant les échantillons d'origine ou en dehors.

=

5

10

15

20

25

30

Selon une caractéristique, lorsque cette position est en dehors du cadre, c'est-à-dire lorsque l'étape de détermination révèle que la position d'une coordonnée d'un échantillon suivant un axe se situe au-delà des coordonnées extrêmes sur ledit axe, ledit procédé comporte une étape d'ajustement de la position de ladite coordonnée.

Plus particulièrement, l'étape d'ajustement consiste à effectuer une translation de la position de la coordonnée suivant l'axe considéré et selon une valeur qui dépend des coordonnées extrêmes sur ledit axe et de la position de la coordonnée par rapport auxdites coordonnées extrêmes.

L'invention concerne également un appareil de traitement de données comportant un dispositif de traitement d'un signal numérique et/ou un dispositif de traitement d'un signal numérique codé tel que brièvement exposé ci-dessus.

Selon un autre aspect, l'invention vise aussi :

- un moyen de stockage d'informations lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique et/ou du procédé de traitement d'un signal numérique codé selon l'invention tel que celui exposé brièvement ci-dessus, et

- un moyen de stockage d'informations amovible, partiellement ou totalement, lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique et/ou du procédé de traitement d'un signal numérique codé selon l'invention tel que celui brièvement exposé cidessus.

Selon encore un autre aspect, l'invention vise un programme d'ordinateur chargeable dans un appareil programmable, comportant des séquences d'instructions ou portions de code logiciel pour mettre en œuvre des étapes du procédé de traitement d'un signal numérique et/ou du procédé de traitement d'un signal numérique codé de l'invention tel que brièvement exposé ci-dessus, lorsque ledit programme d'ordinateur est chargé et exécuté sur l'appareil programmable.

Les caractéristiques et avantages relatifs au dispositif de traitement d'un signal numérique et au dispositif de traitement d'un signal numérique codé, aux appareils de traitement de données, aux moyens de stockage d'informations et au programme d'ordinateur étant les mêmes que ceux exposés ci-dessus concernant le procédé de traitement d'un signal numérique et le procédé de traitement d'un signal numérique codé selon l'invention, ils ne seront pas rappelés ici.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui va suivre, faite en référence aux dessins annexés, sur lesquels :

10

15

20

25

- la figure 1 représente des échantillons d'un signal numérique bidimensionnel et leurs emplacements respectifs dans un repère cartésien ;
- la figure 2 est un exemple de réalisation d'un système montrant, d'une part, le traitement, le codage et la transmission d'un signal numérique dont les échantillons sont illustrés en figure 1 et, d'autre part, le décodage et le traitement du signal numérique décodé selon l'invention, permettant de reconstituer les échantillons du signal de la figure 1;
- la figure 3 est une vue d'un cadre virtuel C délimitant les échantillons de la figure 1 ;
- la figure 4 représente schématiquement un vecteur de déplacement de type V connu entre deux échantillons ;
- la figure 5 est une vue schématique représentant des copies du cadre C de la figure 3 de part et d'autre de celui-ci, dans les huit directions possibles;
- la figure 6 illustre un nouveau vecteur de déplacement obtenu entre un échantillon M_1 et une copie M'_2 d'un échantillon M_2 parmi les échantillons de la figure 1 ;
- les figures 7 et 8 représentent le parcours minimal obtenu et les vecteurs de déplacement associés entre les échantillons de la figure 1 respectivement avec et sans l'invention ;
- la figure 9 est un mode de réalisation d'un dispositif programmable mettant en œuvre l'invention ;

- la figure 10 est un algorithme de traitement d'un signal numérique à coder selon l'invention, mis en œuvre dans le dispositif de la figure 9,
- la figure 11 est un algorithme de traitement d'un signal numérique codé selon l'invention, mis en œuvre dans le dispositif de la figure 9.

Comme représenté à la figure 1, un signal numérique bidimensionnel, tel que par exemple un signal d'image, comporte plusieurs échantillons a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 qui sont par exemple ici des pixels représentés dans un repère cartésien d'axes de coordonnées x et y.

D'une manière générale, un signal d'image est une suite de mots numériques, par exemple des octets. Chaque valeur d'octet représente un pixel de l'image, ici à 256 niveaux de gris ou bien en couleur.

10

15

20

25

30

La taille de l'image ou d'un sous-ensemble de celle-ci représenté à la figure 1 est de 21 x 21 pixels.

Les pixels peuvent ainsi prendre les coordonnées qui vont des coordonnées (0,0) en bas à gauche aux coordonnées (20, 20) en haut à droite.

Les différents échantillons forment un ensemble noté G et sont matérialisés dans des cases hachurées, respectivement positionnées aux emplacements suivants : $a_1 = (17, 2)$, $a_2 = (1, 3)$, $a_3 = (3, 3)$, $a_4 = (16, 6)$, $a_5 = (1, 7)$, $a_6 = (16, 9)$, $a_7 = (17, 11)$, $a_8 = (18, 13)$, et $a_9 = (2, 20)$.

Il convient de noter que les échantillons peuvent alternativement être des coefficients de sous-bandes provenant d'une ou de plusieurs décompositions en sous-bandes de fréquence du signal d'image.

De telles méthodes de décompositions, par exemple du type transformée en ondelettes discrètes DWT (connu en terminologie anglosaxonne sous le terme "Discrete Wavelet Transform") sont largement connues et utilisées de nos jours.

Au lieu de coder l'ensemble de tous les échantillons avec leurs amplitudes et leurs coordonnées, la présente invention propose de définir, par l'intermédiaire de nouveaux vecteurs de déplacements, une suite des positions des échantillons de l'ensemble G et de la coder aux fins de transmission, comme on le verra ci-après.

-

5

10

20

25

On notera que les signaux numériques concernés par l'invention ne sont pas nécessairement bidimensionnels puisque l'invention s'applique par exemple à des signaux mono-dimensionnels tels que des signaux sonores ou encore à des signaux tridimensionnels tels que des signaux vidéo.

En référence à la figure 2 un mode de réalisation d'un dispositif de traitement selon l'invention est destiné à traiter et à coder un signal numérique dans le but de le compresser. Le dispositif de traitement est intégré dans un appareil, qui est par exemple un appareil photographique numérique, un caméscope numérique, un scanner, une imprimante, un photocopieur, un télécopieur, un système de gestion de base de données, ou encore un ordinateur.

Le dispositif selon l'invention comporte une source de signal 30, qui est ici un signal d'image IM comportant l'ensemble G des échantillons de la figure 1. De manière générale, la source de signal soit contient le signal numérique, et comporte par exemple une mémoire, un disque dur ou un CD-ROM, soit convertit un signal analogique en signal numérique, et est par exemple un caméscope analogique associé à un convertisseur analogique-numérique. La source d'image 30 génère une suite d'échantillons numériques représentant une image IM.

Une sortie de la source de signal 30 est reliée à un circuit 32 de détermination des coordonnées L, R, B, T des extrêmes du signal sur chaque axe de coordonnées x, y du repère.

Parmi les coordonnées de tous les échantillons de l'ensemble G, on détermine ainsi les coordonnées extrêmes L, R, B, T en recherchant les coordonnées du minimum et du maximum que le signal atteint sur chaque axe, à savoir :

L = min (x) R = max (x) B = min (y) T = max (y).

$$(x, y) \in G$$
 $(x, y) \in G$ $(x, y) \in G$ $(x, y) \in G$

Pour l'ensemble G, les coordonnées extrêmes sont :

30
$$L = 1$$
, $R = 18$, $B = 2$, $T = 20$.

Comme représenté sur la figure 3, la détermination des coordonnées extrêmes permet de définir un cadre virtuel C qui délimite au plus près l'ensemble G des échantillons.

De retour à la figure 2, le circuit 32 est relié en sortie à un circuit 34 qui va fournir de nouveaux vecteurs de déplacement W selon l'invention.

Pour ce faire, on définit préalablement la notion de distance à utiliser pour le calcul de la distance entre deux échantillons et l'on prendra, par exemple, la distance $d = max (|x_2 - x_1|), |y_2 - y_1|$ entre deux points M_1 et M_2 de coordonnées respectives x_1 , y_1 et x_2 , y_2 .

La détermination de ces nouveaux vecteurs nécessite de traiter tous les échantillons de l'ensemble G deux par deux.

10

20

25

Dans l'art antérieur, on cherche à calculer la distance entre les deux échantillons du couple (M₁, M₂) qui est en cours de traitement (figure 4).

Cette distance associe un réel positif au vecteur de déplacement V reliant M₁ et M₂ et est aussi appelée norme du vecteur V.

Selon l'invention, on va, dans un premier temps, considérer des "copies" du cadre C de la figure 3 effectuées de part et d'autre dudit cadre dans les huit directions possibles, ainsi que représenté sur la figure 5.

De cette façon, on réalise des "copies" des échantillons de l'ensemble G à l'intérieur des différentes "copies" du cadre.

Les "copies" d'échantillons sont obtenues par translation d'un échantillon considéré suivant les deux directions possibles pour chaque axe de coordonnées, suivant les diagonales et selon une valeur qui dépend des coordonnées extrêmes déterminées par le circuit 32.

Par exemple, cette valeur de translation correspond, pour l'axe x, à la différence entre la coordonnée maximale R et la coordonnée minimale L sur cet axe, ce qui donne pour les deux directions possibles les valeurs respectives R-L et L-R.

De même, sur l'axe y on trouve les valeurs T - B et B - T pour les 30 deux directions.

Ensuite, l'invention prévoit de calculer, pour un couple d'échantillons en cours de traitement, tel que celui de la figure 4, toutes les

distances entre M_1 et chacun des éléments du groupe comprenant M_2 et les "copies" de M_2 , à savoir M_2 , M_2 ,

La plus petite distance parmi toutes ces distances calculées est alors déterminée et l'on obtient ainsi, pour le couple M₁, M₂, le vecteur de déplacement W de coordonnées wx, wy.

On notera que les coordonnées du vecteur W s'écrivent :

$$wx = min(|x_2 - x_1|, |x_2 + L - R - x_1|, |x_2 - L + R - x_1|),$$

$$wy = min(|y_2 - y_1|, |y_2 + B - T - y_1|, |y_2 - B + T - y_1|),$$

où x₁, y₁ et x₂, y₂ sont respectivement les coordonnées de M₁ et

10 M₂.

15

20

25

30

5

On notera que les coordonnées du vecteur W fournies ci-dessus permettent de rechercher l'échantillon vers lequel le vecteur pointe ou une copie de cet échantillon parmi l'un des neuf "cadres" de la figure 5.

Ainsi, pour le couple d'échantillons M₁, M₂, le nouveau vecteur de déplacement W est représenté sur la **figure 6** et relie M₁ à une "copie" M'₂ de l'échantillon M₂. La "copie" M'₂ est plus proche de M₁ que M₂ et que toutes les autres "copies" M"₂, M"₂, M₂⁽⁴⁾, M₂⁽⁵⁾, M₂⁽⁶⁾, M₂⁽⁷⁾, M₂⁽⁸⁾.

Le vecteur W correspond à un déplacement virtuel vers un nouvel échantillon M'2 qui appartient à une "copie" du signal, obtenue par un décalage (translation) de R - L vers la droite (axe des x positifs).

De cette manière, le circuit 34 détermine, pour chaque couple d'échantillons de l'ensemble G, un nouveau vecteur de déplacement W.

Ces nouveaux vecteurs de déplacement pourraient être utilisés indépendamment du mode de réalisation dont la description va suivre.

Par exemple, lorsque l'on utilise une souris pour déplacer un curseur sur un écran de grandes dimensions d'un ordinateur ou d'un autre appareil électronique, il est nécessaire de déplacer la souris sur de relativement grandes distances, ce qui n'est pas toujours facile compte tenu du support sur lequel repose la souris.

Les nouveaux vecteurs W permettraient ainsi, par exemple, de réduire les déplacements de la souris en définissant un parcours plus rapide

entre les boutons de commande de la souris sur lesquels l'utilisateur doit cliquer.

Il serait ainsi possible, en déplaçant la souris dans un seul sens, de faire sortir le curseur à droite de l'écran et de le faire rentrer de façon quasiimmédiate à gauche sans avoir besoin de lui faire traverser tout l'écran et donc sans avoir besoin de déplacer la souris en conséquence.

De retour à la figure 2, le circuit 34 est relié en sortie à un circuit 36 qui va appliquer aux distances minimales précédemment calculées une des solutions connues au "problème du voyageur de commerce".

Des solutions à ce problème peuvent être trouvées dans l'article de R.E. Burkard et AL, "Well-solvable special cases of the TSP: a survey", SPEZIAL FORSCHUNGSBEREICH F003, Bericht n° 52, Dec. 1995.

10

15

20

Un exemple de méthode est également donné à l'adresse Internet http://itp.nat.uni-magdeburg.de/~mertens/TSP/node2.html.

Cette méthode est appelée "méthode par insertion" et repose sur l'idée principale qui est de construire d'abord un parcours comportant un sous-ensemble des échantillons à visiter.

Par exemple, on choisit trois échantillons au hasard et on les relie de la seule façon possible.

Ensuite, pour chaque échantillon non encore inséré, on va calculer entre quelles paires successives d'échantillons du parcours il s'insère le mieux (c'est-à-dire en augmentant le moins possible le parcours), ce qui représentera le coût de cet échantillon.

On insère alors dans le parcours l'échantillon de coût minimal. Ce processus est réitéré jusqu'à insertion de tous les échantillons.

On obtient ainsi un parcours dont la longueur est faible.

Il est à noter que ce parcours n'a pas nécessairement la plus petite distance qui soit, mais la solution obtenue est néanmoins satisfaisante.

Il convient de noter qu'il n'existe pas à l'heure actuelle de solution 30 garantissant un calcul de parcours minimal lorsque le nombre d'échantillons est élevé, et ce pour un temps de calcul raisonnable. Le circuit 36 va ainsi permettre d'obtenir un parcours ou chemin minimal entre les échantillons de l'ensemble G qui est représenté par une suite de vecteurs de déplacement du nouveau type et qui sont donc chacun, par définition, de norme réduite.

Les vecteurs W_i , i = 1 à 8, sont les suivants : (-1,4), (0,3), (1,2), (1,2), (1,-6), (0,-4), (2,0), (-1,-2).

5

10

15

20

25

30

Un dernier vecteur (-1, 1) sert à pointer sur le premier échantillon du parcours déjà identifié et donc il n'est pas nécessaire de le prendre en considération lors du codage.

Le parcours minimal s'écrit $a_1a_4a_6a_7a_8a_5a_2a_3a_9$ et sa longueur est de 26 pour la distance utilisée, alors que le parcours minimal obtenu sans l'invention, avec des vecteurs de déplacement de type V, s'écrit $a_1a_3a_2a_5a_9a_8a_7a_6a_4a_1$ et sa longueur est de 60.

Les figures 7 et 8 illustrent par l'intermédiaire des vecteurs de déplacement les parcours minimaux obtenus respectivement avec l'invention et avec les vecteurs de type V.

L'invention permet ainsi en quelque sorte d'élaborer un parcours ou chemin virtuel que l'on ne va pas chercher à décrire mais qui va permettre, par sa compacité, de réduire le nombre de bits nécessaires au codage du signal.

Bien que la détermination des vecteurs courts du nouveau type W (détermination d'une distance minimale entre deux échantillons et entre un échantillon et des "copies" de l'autre échantillon) ait été présentée comme étant indépendante des opérations réalisées par le circuit 36, il est possible de disposer d'un seul circuit réunissant les circuits 34 et 36.

Dans ce circuit unique, la détermination des vecteurs W se fait simultanément ou quasi-simultanément avec la résolution du "problème du voyageur de commerce".

De retour à la figure 2, le circuit 36 est relié en sortie à un circuit de codage entropique 38.

Préalablement, un échantillon initial de l'ensemble G avec ses coordonnées est sélectionné, par exemple a₁, puis est codé par le circuit 38.

Cet échantillon initial codé va être transmis au dispositif de traitement du signal numérique codé et il va servir, comme point de départ, pour déterminer les emplacements des autres échantillons de l'ensemble G dans le repère.

Le circuit 38 effectue également le codage entropique :

5

10

20

25

- des coordonnées extrêmes (L, R, B, T) de l'ensemble des échantillons G et
- des huit vecteurs de déplacements W_i , i=1 à 8, déterminés par les circuits 34 et 36 et qui décrivent le parcours minimal $a_1a_4a_6a_7a_8a_5a_2a_3a_9$ dans un ordre établi à partir de l'échantillon initial.

Il est possible de coder directement les coordonnées de chaque vecteur.

Cependant, si l'on souhaite diminuer la taille mémoire des données, il est préférable de coder la liste des vecteurs, par exemple en utilisant un codage de Huffman ou un codage arithmétique.

Le codage peut aussi comporter une étape préalable de quantification.

Les nouveaux vecteurs de normes réduites vont ainsi être codés de manière plus économique qu'auparavant.

Le circuit de codage est relié à un circuit 40 pour lui transmettre un fichier compressé contenant le signal d'image codé et, plus particulièrement, sous forme codée :

- les coordonnées en x et en y de l'échantillon initial a₁,
- les coordonnées extrêmes (L, R, B, T) et
- les vecteurs W_i, où i = 1 à 8, avec l'ordre dans lequel ils apparaissent dans le parcours à partir de l'échantillon initial.

Le circuit 40 mémorise et/ou transmet le fichier compressé vers un dispositif de traitement du signal numérique codé.

Ce dispositif de traitement reçoit les données codées puis effectue 30 à partir de celles-ci la reconstruction de l'image compressée. Il est à noter que si un codage entropique et/ou une décomposition en sous bandes ont été effectués au niveau du codeur, le dispositif de décodage effectuera les opérations inverses de celles du circuit de codage 38.

Après réception des données codées constitutives du signal codé, celles-ci subissent un décodage dans un circuit de décodage 42.

Le dispositif de traitement effectue ensuite, de manière générale, la reconstruction des emplacements ou positions des différents échantillons de l'ensemble G en fonction des coordonnées extrêmes dudit ensemble, des vecteurs W_i et des coordonnées de l'échantillon initial.

5

25

30

Plus particulièrement, le dispositif de traitement comporte un circuit 44 qui élabore la liste des vecteurs de déplacement W_i en fonction de l'ordre de ces vecteurs dans le parcours minimal à partir de l'échantillon initial a₁.

Le circuit 44 est relié en sortie à un circuit 46 de reconstitution des coordonnées des différents échantillons de l'ensemble G en fonction des coordonnées extrêmes L, R, B, T, de la liste des vecteurs W_i et des coordonnées de l'échantillon initial a₁.

Le détail des opérations effectuées par ce circuit sera abordé ultérieurement.

Le circuit 46 est relié à un circuit 48 d'utilisation des données 20 décodées, par exemple pour visualiser les positions des échantillons de l'ensemble G (image décodée).

En référence à la figure 9, est décrit un exemple d'appareil de traitement de données programmable 100 mettant en œuvre l'invention. Cet appareil est adapté à traiter un signal numérique et notamment à le coder.

Par ailleurs, cet appareil est également adapté à traiter un signal numérique codé et notamment à le décoder.

Selon le mode de réalisation choisi et représenté à la figure 9, l'appareil mettant en œuvre l'invention est par exemple un micro-ordinateur 100 connecté à différents périphériques, par exemple une caméra numérique 101 (ou un scanner, ou tout moyen d'acquisition ou de stockage d'image) reliée à une carte graphique et fournissant des données à coder.

L'appareil 100 comporte un bus de communication 102 auquel sont reliés :

- une unité centrale 103 notée CPU (microprocesseur),
- une mémoire morte 104, comportant un programme "Progr 1",
 pour le traitement et notamment le codage de données et un programme "Progr
 2" pour le traitement et notamment le décodage de données codées,
 - une mémoire vive 106, comportant des registres adaptés à enregistrer des variables modifiées au cours de l'exécution des programmes précités,
- un écran 108 permettant soit de visualiser les données à coder ou à décoder selon le cas soit de servir d'interface avec l'utilisateur qui pourra paramétrer certains modes de codage ou de décodage, à l'aide d'un clavier 110 ou de tout autre moyen, tel que par exemple une souris,
 - un disque dur 112,

15

25

30

- un lecteur de disquette 114 adapté à recevoir une disquette 116,
- une interface de communication 118 avec un réseau de communication 120 apte à transmettre des données numériques codées ou à recevoir des données codées et qui sont à décoder par le dispositif,
- une carte d'entrée/sortie 122 reliée à un microphone 124 (les 20 données à traiter selon l'invention constituent alors un signal audio).

Le bus de communication permet la communication entre les différents éléments inclus dans le micro-ordinateur 100 ou reliés à lui. La représentation du bus n'est pas limitative et, notamment, l'unité centrale est susceptible de communiquer des instructions à tout élément du micro-ordinateur 100 directement ou par l'intermédiaire d'un autre élément du micro-ordinateur 100.

Les programmes notés "Progr 1" et "Progr 2" permettant à l'appareil programmable de mettre en œuvre l'invention, peuvent être stockés par exemple en mémoire morte 104 (appelée ROM sur le dessin), comme représenté sur la figure 3. Selon une première variante, la disquette 116, tout comme le disque dur 112, peuvent contenir des données codées ou à coder ainsi que le code de l'invention qui, une fois lu par l'appareil 100, sera stocké

dans le disque dur 112. En seconde variante, les programmes pourront être reçus pour être stockés de façon identique à celle décrite précédemment par l'intermédiaire du réseau de communication 120.

Les disquettes peuvent être remplacées par tout support d'information tel que, par exemple, un CD-ROM ou une carte mémoire. De manière générale, un moyen de stockage d'information, lisible par un ordinateur ou par un microprocesseur, intégré ou non à l'apprareil, éventuellement amovible, mémorise un ou plusieurs programmes mettant en œuvre le procédé de traitement selon l'invention.

De manière plus générale, les programmes pourront être chargés dans un des moyens de stockage de l'appareil 100 avant d'être exécuté.

10

20

25

L'unité centrale 103 va exécuter les instructions relatives à la mise en œuvre de l'invention, instructions stockées dans la mémoire morte 104 ou dans les autres éléments de stockage. Lors de la mise sous tension, les programmes qui sont stockés dans une mémoire non volatile, par exemple la mémoire ROM 104, sont transférés dans la mémoire vive RAM 106 qui contiendra alors le code exécutable de l'invention, ainsi que des registres pour mémoriser les variables nécessaires à la mise en œuvre de l'invention.

L'appareil de traitement de données 100 précité pourrait également, de façon non limitative, être un appareil photographique numérique, une caméra numérique, un caméscope, un téléviseur, un magnétoscope, un télécopieur, un serveur, une imprimante ...

Il convient de noter que l'appareil de traitement de données comportant un dispositif de traitement d'un signal numérique à coder ou codé selon l'invention peut également être un appareil programmé.

Cet appareil contient alors le code du ou des programmes informatiques par exemple figé dans un circuit intégré à application spécifique (ASIC).

La **figure 10** illustre un algorithme comportant différentes 30 instructions ou portions de code correspondant à des étapes du procédé de traitement d'un signal numérique selon l'invention.

Le programme informatique noté "Progr 1" qui est basé sur cet algorithme est stocké dans la mémoire morte 104 de la figure 9 et, à l'initialisation du système, est transféré dans la mémoire vive 106.

Il est ensuite exécuté par l'unité centrale 103, ce qui permet ainsi de mettre en œuvre le procédé selon l'invention dans le dispositif de la figure 9.

Comme représenté sur la figure 10, une première étape de l'algorithme, notée E_1 , consiste à acquérir les points ou échantillons $a_1, a_2, \dots a_9$ constituant l'ensemble G et dont l'emplacement (positions représentées sur les figures 1 et 2) est à coder.

L'algorithme de la figure 10 comporte une étape suivante notée E_2 qui effectue un calcul des coordonnées extrêmes L, R, B et T parmi les coordonnées des échantillons de l'ensemble G, sur chaque axe de coordonnée x, y du repère.

10

20

25

30

Ce calcul a été décrit plus en détail lors de la description du circuit 15 32 de la figure 2.

Au cours de cette étape E₂, on procède également à un codage des coordonnées extrêmes ainsi déterminées.

L'étape suivante notée E₃ concerne la transmission des coordonnées extrêmes L, R, B, T qui ont été codées.

Il convient de noter que, selon une variante, les coordonnées extrêmes ainsi déterminées peuvent être transmises, une fois codées, avec d'autres données codées.

L'algorithme de la figure 10 comporte une étape suivante notée E₄ au cours de laquelle on procède au choix d'un emplacement dit initial, c'est-à-dire d'un échantillon initial de l'ensemble G et de sa position représentée par les coordonnées dans le repère x, y.

Cet échantillon initial que l'on a pris plus haut égal à a₁ est l'échantillon à partir duquel on va reconstruire au dispositif contenant le décodeur, grâce à l'invention, les autres emplacements ou positions des différents échantillons de l'ensemble G.

Au cours de cette étape E₄, on procède également à un codage de cet échantillon initial.

L'étape suivante E₅ prévoit de transmettre au dispositif contenant le décodeur les coordonnées de l'échantillon initial codé.

Là encore, cette étape de transmission peut être regroupée avec l'étape de transmission d'autres données.

De même, les opérations de codage prévues aux étapes E₂ et E₄ pourraient elles aussi être réunies avec le codage d'autres données.

5

10

20

25

30

Au cours de l'étape suivante notée E₆, on procède à la détermination de nouveaux vecteurs courts selon l'invention en traitant les échantillons de l'ensemble G par couple.

Plus précisément, pour chaque couple d'échantillons considéré, on calcule la distance entre ces deux échantillons ainsi que la distance entre l'un de ces échantillons, appelé premier échantillon, et chacune des "copies" de l'autre échantillon appelé second échantillon.

Les copies de ce second échantillon sont obtenues par translation du second échantillon suivant différentes directions, par exemple suivant les deux directions possibles de chaque axe et de chaque diagonale, et selon une valeur qui dépend des coordonnées extrêmes déterminées à l'étape E₂.

Plus précisément, cette dernière valeur correspond sensiblement pour chaque axe, à la différence entre la coordonnée maximale et la coordonnée minimale des échantillons sur l'axe considéré.

On procède ainsi sur l'axe x à deux translations d'une valeur égale à L - R et R - L pour les deux directions concernées et, suivant l'axe y, à deux translations d'une valeur correspondant à B - T et T - B dans les deux directions considérées.

Une fois que toutes les distances précédentes ont été calculées, on détermine parmi celles-ci la plus petite distance et on peut ainsi attribuer à cette dernière un nouveau vecteur de type W de norme réduite.

Cette étape est celle qui correspond aux opérations effectuées par le circuit 34 de la figure 2.

L'algorithme de la figure 10 comporte également une étape notée E₇ au cours de laquelle on détermine, de manière connue, un parcours minimal entre les échantillons a₁, a₂, ... a₉ de l'ensemble G, en utilisant les vecteurs

courts précédemment déterminés, c'est-à-dire les différentes distances minimales entre les coordonnées des échantillons considérés, suivant chaque axe et pour toutes les combinaisons possibles de couples d'échantillons.

Comme énoncé plus haut lors des opérations effectuées par le circuit 36 de la figure 2, le parcours minimal entre les échantillons est déterminé en utilisant une des solutions connues au problème mathématique du voyageur de commerce.

L'étape E_7 conduit aux vecteurs de type W_i où i=1 à 8 et dont les coordonnées ont été fournies plus haut.

Ces nouveaux vecteurs sont représentés sur la figure 7.

10

15

25

30

Au cours de l'étape suivante notée E_8 , on procède à la construction de la liste des vecteurs W_i dans l'ordre suivant lequel ils apparaissent sur le parcours minimal déterminé à l'étape E_7 , à partir de l'échantillon initial a_1 précédemment choisi.

Cette liste de vecteurs W établie à partir de l'échantillon initial a₁ va être utilisée au décodeur pour reconstituer les différentes coordonnées des échantillons de l'ensemble G et ainsi positionner ces échantillons à leurs emplacements respectifs.

L'étape suivante E₉ correspond à un codage entropique des vecteurs W_i de la liste précédemment établie à l'étape E₈, tel qu'effectué par le circuit de codage 38 de la figure 2.

L'étape E_{10} qui suit prévoit de transmettre les vecteurs ainsi codés dans l'ordre suivant lequel ils apparaissent dans la liste établie à l'étape E_8 , afin qu'ils puissent être utilisés à bon escient au dispositif contenant le décodeur.

Cette étape met fin à l'algorithme du procédé de traitement d'un signal numérique selon l'invention.

La figure 11 illustre un algorithme comportant différentes instructions ou portions de code correspondant à des étapes du procédé de traitement du signal numérique codé selon l'invention.

Le programme informatique noté "Progr 2" qui est basé sur cet algorithme est stocké dans la mémoire morte 104 de la figure 9 et, à l'initialisation du système, est transféré dans la mémoire vive 106.

Il est ensuite exécuté par l'unité centrale 103, ce qui permet ainsi de mettre en œuvre le procédé selon l'invention dans le dispositif de la figure 9.

Comme représenté à la figure 11, l'algorithme comporte une première étape, notée E₂₀, de réception des données codées constitutives du signal numérique codé selon l'algorithme de la figure 10.

Au cours d'une étape suivante notée E_{21} , on procède à un décodage des coordonnées extrêmes L, R, B, T qui ont été déterminées et codées à l'étape E_2 de l'algorithme de la figure 10.

Au cours de l'étape suivante E₂₂, on procède à un décodage des coordonnées de l'échantillon initial a₁ sélectionné à l'étape E₄ de l'algorithme de la figure 10.

Au cours de l'étape suivante notée E_{23} , un décodage entropique des vecteurs W_i déterminés à l'étape E_6 de l'algorithme de la figure 10 est effectué.

Au cours de l'étape suivante notée E₂₄, on établit la liste des vecteurs W_i suivant l'ordre dans lequel ces vecteurs apparaissent dans le parcours minimal à partir de l'échantillon initial a₁, grâce aux données transmises par le dispositif de traitement du signal numérique à coder.

Au cours de l'étape suivante notée E₂₅, le paramètre i représentatif du vecteur W_i concerné est fixé à 1.

Au cours de l'étape E_{26} , on procède au calcul des coordonnées de l'échantillon suivant à partir, d'une part, de l'échantillon précédent qui est, ici, l'échantillon initial et, d'autre part, du premier vecteur W_1 de la liste établie à l'étape E_{24} .

On notera les coordonnées du vecteur W_i considéré wx, wy et x_1 , y_1 les coordonnées de l'échantillon précédent.

Les coordonnées x2, y2 de l'échantillon suivant s'écrivent :

 $x_2 = x_1 + wx$

5

15

20

25

 $y_2 = y_1 + wy.$

Au cours de l'étape suivante notée E₂₇, on procède à un test sur la position de la coordonnée reconstituée x₂ suivant l'axe x de l'échantillon suivant par rapport aux coordonnées extrêmes L et R.

Suivant que x_2 est inférieur à L ou supérieur R, cela signifie que l'on se trouve dans la situation illustrée par la figure 6 où l'échantillon suivant reconstitué sort du cadre C illustré sur la figure 3.

Dans ce cas, l'étape E₂₇ est suivie d'une étape E₂₈ au cours de la quelle on ajuste la position de la coordonnée reconstituée suivant l'axe x, de manière adaptée selon que x₂ est inférieur à L ou supérieur à R.

Au contraire, lorsque x_2 est à la fois supérieur à L et inférieur à R, alors cela signifie que l'échantillon dont la position est reconstituée se situe bien dans le cadre C mentionné ci-dessus.

Les deux cas de figure qui viennent d'être décrits sont résumés par les formules ci-après :

Si
$$x_1 + wx < L$$
, $x_2 = x_1 + wx + R - L$
Si $x_1 + wx > R$, $x_2 = x_1 + wx - R + L$
Si $R > x_1 + wx > L$, $x_2 = x_1 + wx$

15

20

On constate ainsi que l'étape d'ajustement consiste à effectuer une translation de la position de la coordonnée suivant l'axe x selon une valeur qui dépend des coordonnées extrêmes sur cet axe.

Plus particulièrement, la valeur dépendant des coordonnées extrêmes correspond à la différence R-L ou L-R selon la position de la coordonnée de l'échantillon considéré par rapport aux coordonnées extrêmes.

Au cours d'une étape suivante E₂₉, on procède à un test sur la position de la coordonnée reconstituée y₂ suivant l'axe y de l'échantillon suivant par rapport aux coordonnées extrêmes T et B.

Lorsque le test pratiqué révèle que la coordonnée y₂ déterminée à l'étape E₂₆ est supérieure à T ou inférieure à B, alors l'étape E₂₉ est suivie d'une étape E₃₀, au cours de laquelle on procède à un ajustement de la position de cette coordonnée reconstituée selon l'axe y, de manière adaptée à la position de cette coordonnée par rapport aux coordonnées extrêmes T et B.

En effet, le résultat du test évoqué ci-dessus signifie que la coordonnée reconstituée de l'échantillon suivant se situe en dehors du cadre C illustré à la figure 3.

Au contraire, lorsque la coordonnée reconstituée y₂ est inférieure à T et supérieure à B, alors l'échantillon est l'un des échantillons de l'ensemble G et non une des "copies" de ces échantillons qui ont été faites uniquement pour améliorer le codage en terme de débit.

Les tests pratiqués sur la coordonnée y_2 pour déterminer sa position par rapport à celle des coordonnées extrêmes et les opérations effectuées au cours de l'étape d'ajustement sont résumées ci-après :

Si
$$y_1 + wy > T$$
, $y_2 = y_1 + wy + B - T$
Si $y_1 + wy < B$, $y_2 = y_1 + wy - B + T$
Si $T > y_1 + wy > B$, $y_2 = y_1 + wx$.

De façon analogue à ce qui a été dit ci-dessus concernant l'étape d'ajustement E_{28} , selon la position de la coordonnée y_2 par rapport aux coordonnées extrêmes B et T, on effectue une translation de cette coordonnée y_2 reconstituée à l'étape E_{26} d'une valeur B - T ou T - B selon le cas envisagé.

L'algorithme de la figure 11 comporte ensuite une étape E_{31} au cours de laquelle un test est pratiqué sur la valeur du paramètre i par rapport à la valeur N identifiant le dernier vecteur de la liste des vecteurs W_i .

Lorsque le résultat de ce test est négatif, alors l'étape E_{31} est suivie d'une étape E_{32} au cours de laquelle on incrémente le paramètre i d'une unité et l'on retourne à l'étape E_{26} précédemment décrite.

Au contraire, lorsque le résultat du test pratiqué à l'étape E_{31} est positif, alors on passe à une étape E_{33} au cours de laquelle les résultats obtenus lors des étapes précédentes sont rassemblés, permettant ainsi de reconstituer l'ensemble G comme représenté sur la figure 2.

Cette étape met fin à l'algorithme de la figure 11 et au traitement d'un signal numérique codé selon l'invention.

25

5

10

15

REVENDICATIONS

1. Procédé de traitement d'un signal numérique comportant des échantillons (a₁, a₂, ..., a₉) représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique, caractérisé en ce qu'il comporte les étapes suivantes:

5

- détermination parmi les coordonnées desdits échantillons des
 coordonnées extrêmes (L, R), (B, T) sur chaque axe de coordonnées (x, y) du repère,
 - pour toutes les combinaisons possibles entre lesdits échantillons pris deux à deux, détermination d'une distance minimale parmi toutes les distances calculées suivant chaque axe entre, d'une part, la coordonnée d'un premier échantillon et, d'autre part, la coordonnée de chacun des éléments du groupe comprenant un second échantillon et des copies de ce second échantillon obtenues par translation dudit second échantillon suivant différentes directions et selon une valeur qui dépend des coordonnées extrêmes précédemment déterminées.
- 2. Procédé selon la revendication 1, caractérisé en ce qu'il comporte une étape de détermination d'un parcours minimal (a₁, a₄, a₆, a₇, a₈, a₅, a₂, a₃, a₉) entre les échantillons à partir des différentes distances minimales précédemment déterminées suivant chaque axe et pour toutes les combinaisons possibles de couples d'échantillons.
 - 3. Procédé selon la revendication 2, caractérisé en ce que la détermination d'un parcours minimal entre les échantillons est réalisée en utilisant une des solutions au problème mathématique du voyageur de commerce.
- 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la valeur qui dépend des coordonnées extrêmes correspond sensiblement à la différence (L-R, R-L, B-T, T-B) entre la coordonnée maximale (L, B) et la coordonnée minimale (R, T) des échantillons sur chaque axe.

- 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les copies du second échantillon sont effectuées dans les deux directions possibles de chaque axe et de chaque diagonale.
- 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte une étape de codage des coordonnées extrêmes (L, R), (B, T) des échantillons.
- 7. Procédé selon la revendication 6, caractérisé en ce qu'il comporte une étape de transmission des coordonnées extrêmes (L, R), (B, T) des échantillons codées.
- 8. Procédé selon la revendication 2, caractérisé en ce qu'il comporte une étape de codage des vecteurs de déplacement (W) obtenus à partir des échantillons consécutifs du parcours minimal.
- 9. Procédé selon la revendication 8, caractérisé en ce que, pour un signal de dimension 2, les coordonnées wx, wy d'un vecteur de déplacement
 15 W sont fournies par les formules suivantes :

wx = min (
$$|x_2 - x_1|$$
, $|x_2 + L - R - x_1|$, $|x_2 - L + R - x_1|$),
wy = min ($|y_2 - y_1|$, $|y_2 + B - T - y_1|$, $|y_2 - B + T - y_1|$),

où x_1 , y_1 et x_2 , y_2 sont respectivement les coordonnées de deux échantillons successifs du parcours.

10. Procédé selon la revendication 8 ou 9, caractérisé en ce qu'il comporte une étape de transmission des vecteurs de déplacement (W) codés et de l'ordre de ces vecteurs dans le parcours entre les échantillons.

20

- 11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le signal numérique est un signal d'image.
- 25 12. Procédé de traitement d'un signal numérique codé comportant une étape de réception de ce signal numérique codé, caractérisé en ce que ledit signal numérique codé comporte sous forme codée :
 - une coordonnée d'un des échantillons dit initial dudit signal non codé qui a été obtenue suivant chaque axe d'un repère de coordonnées à n dimensions, où n est la dimension dudit signal,
 - les coordonnées extrêmes (L, R), (B, T) sur chaque axe des échantillons dudit signal non codé,

- des vecteurs de déplacement (W) qui ont été obtenus chacun avant codage dudit signal à partir des échantillons consécutifs d'un parcours minimal déterminé entre les échantillons du signal, ainsi que l'ordre de ces vecteurs dans le parcours.
- 13. Procédé selon la revendication 12, caractérisé en ce qu'il comporte les étapes suivantes de décodage :
 - de la coordonnée de l'échantillon initial,
 - des coordonnées extrêmes des échantillons,
 - des vecteurs de déplacement (W).

5

- 14. Procédé selon la revendication 13, caractérisé en ce qu'il comporte une étape de reconstitution des coordonnées de chacun des échantillons du parcours, suivant chaque axe, en fonction des vecteurs de déplacement (W), des coordonnées extrêmes des échantillons et de la coordonnée de l'échantillon initial.
- 15. Procédé selon la revendication 13 ou 14, caractérisé en ce qu'il comporte, après décodage, une étape d'élaboration d'une liste des vecteurs de déplacement (W) en fonction de l'ordre de ces vecteurs dans le parcours.
 - 16. Procédé selon la revendication 14, caractérisé en ce qu'il comporte une étape de détermination de la position des coordonnées reconstituées suivant chaque axe de chacun des échantillons du parcours par rapport aux coordonnées extrêmes des échantillons.
- 17. Procédé selon la revendication 16, caractérisé en ce que, lorsque l'étape de détermination révèle que la position d'une coordonnée d'un échantillon suivant un axe se situe au-delà des coordonnées extrêmes sur ledit axe, ledit procédé comporte une étape d'ajustement de la position de ladite coordonnée.
- 18. Procédé selon la revendication 17, caractérisé en ce que l'étape d'ajustement consiste à effectuer une translation de la position de la coordonnée suivant l'axe considéré et selon une valeur qui dépend des coordonnées extrêmes sur ledit axe et de la position de la coordonnée par rapport auxdites coordonnées extrêmes.

- 19. Procédé selon la revendication 18, caractérisé en ce que la valeur qui dépend des coordonnées extrêmes sur l'axe correspond sensiblement à la différence (L-R, R-L, B-T, T-B) entre la coordonnée maximale (L, B) et la coordonnée minimale des échantillons sur l'axe considéré.
- 20. Procédé selon l'un des revendications 17 à 19, caractérisé en ce que, pour un signal de dimension 2, l'étape d'ajustement de la position des coordonnées x_2 et y_2 obtenues à partir des coordonnées x_1 et y_1 de l'échantillon précédent sur le parcours est donnée par les formules suivantes :

Si
$$x_1 + wx < L$$
, $x_2 = x_1 + wx + R - L$
10 Si $x_1 + wx > R$, $x_2 = x_1 + wx - R + L$,
Si $y_1 + wy > T$, $y_2 = y_1 + wy + B - T$,

5

20

25

Si $y_1 + wy < B$, $y_2 = y_1 + wy - B + T$, où wx et wy sont les coordonnées du vecteur de déplacement W considéré.

- 21. Dispositif de traitement d'un signal numérique comportant des échantillons (a₁, a₂, ..., a₉) représentés chacun par une coordonnée sur chaque axe d'un repère à n dimensions, où n est la dimension dudit signal numérique, caractérisé en ce qu'il comporte :
 - des moyens de détermination parmi les coordonnées desdits échantillons des coordonnées extrêmes (L, R), (B, T) sur chaque axe de coordonnées (x, y) du repère,
 - pour toutes les combinaisons possibles entre lesdits échantillons pris deux à deux, des moyens de détermination d'une distance minimale parmi toutes les distances calculées suivant chaque axe entre, d'une part, la coordonnée d'un premier échantillon et, d'autre part, la coordonnée de chacun des éléments du groupe comprenant un second échantillon et des copies de ce second échantillon obtenues par translation dudit second échantillon suivant différentes directions et selon une valeur qui dépend des coordonnées extrêmes précédemment déterminées.
- 22. Dispositif selon la revendication 21, caractérisé en ce qu'il comporte des moyens de détermination d'un parcours minimal (a₁, a₄, a₆, a₇, a₈, a₅, a₂, a₃, a₉) entre les échantillons à partir des différentes distances minimales

précédemment déterminées suivant chaque axe et pour toutes les combinaisons possibles de couples d'échantillons.

23. Dispositif selon la revendication 22, caractérisé en ce que les moyens de détermination d'un parcours minimal entre les échantillons utilisent une des solutions au problème mathématique du voyageur de commerce.

5

10

15

- 24. Dispositif selon l'une des revendications 21 à 23, caractérisé en ce que la valeur qui dépend des coordonnées extrêmes correspond sensiblement à la différence (L-R, R-L, B-T, T-B) entre la coordonnée maximale (L, B) et la coordonnée minimale (R, T) des échantillons sur chaque axe.
- 25. Dispositif selon l'une des revendications 21 à 24, caractérisé en ce qu'il comporte des moyens de codage des coordonnées extrêmes (L, R), (B, T) des échantillons.
- 26. Dispositif selon la revendication 25, caractérisé en ce qu'il comporte des moyens de transmission des coordonnées extrêmes (L, R), (B, T) des échantillons codées.
- 27. Dispositif selon la revendication 22, caractérisé en ce qu'il comporte des moyens de codage des vecteurs de déplacement (W) obtenus à partir des échantillons consécutifs du parcours minimal.
- 28. Dispositif selon la revendication 27, caractérisé en ce qu'il comporte des moyens de transmission des vecteurs de déplacement (W) codés et de l'ordre de ces vecteurs dans le parcours entre les échantillons.
 - 29. Dispositif selon l'une des revendications 21 à 28, caractérisé en ce que le signal numérique est un signal d'image.
- 30. Dispositif de traitement d'un signal numérique codé comportant des moyens de réception de ce signal numérique codé, caractérisé en ce que ledit signal numérique codé comporte sous forme codée :
 - une coordonnée d'un des échantillons dit initial dudit signal non codé qui a été obtenue suivant chaque axe d'un repère de coordonnées à n dimensions, où n est la dimension dudit signal,
- les coordonnées extrêmes (L, R), (B, T) sur chaque axe des échantillons dudit signal non codé,

- des vecteurs de déplacement (W) qui ont été obtenus chacun avant codage dudit signal à partir des échantillons consécutifs d'un parcours minimal déterminé entre les échantillons du signal, ainsi que l'ordre de ces vecteurs dans le parcours.
- 31. Dispositif selon la revendication 30, caractérisé en ce qu'il comporte des moyens de décodage :
 - de la coordonnée de l'échantillon initial,
 - des coordonnées extrêmes des échantillons,
 - des vecteurs de déplacement (W).

5

15

20

25

- 32. Dispositif selon la revendication 31, caractérisé en ce qu'il comporte des moyens de reconstitution des coordonnées de chacun des échantillons du parcours, suivant chaque axe, en fonction des vecteurs de déplacement (W), des coordonnées extrêmes des échantillons et de la coordonnée de l'échantillon initial.
 - 33. Dispositif selon la revendication 31 ou 32, caractérisé en ce qu'il comporte des moyens d'élaboration d'une liste des vecteurs de déplacement (W) en fonction de l'ordre de ces vecteurs dans le parcours.
 - 34. Dispositif selon la revendication 32, caractérisé en ce qu'il comporte des moyens de détermination de la position des coordonnées reconstituées suivant chaque axe de chacun des échantillons du parcours par rapport aux coordonnées extrêmes des échantillons.
 - 35. Dispositif selon la revendication 34, caractérisé en ce qu'il comporte des moyens d'ajustement de la position d'une coordonnée d'un échantillon suivant un axe qui sont mis en œuvre lorsque les moyens de détermination révèlent que la position de ladite coordonnée se situe au-delà des coordonnées extrêmes sur ledit axe.
 - 36. Dispositif selon la revendication 35, caractérisé en ce que les moyens d'ajustement effectuent une translation de la position de la coordonnée suivant l'axe considéré et selon une valeur qui dépend des coordonnées extrêmes sur ledit axe et de la position de la coordonnée par rapport auxdites coordonnées extrêmes.

- 37. Dispositif selon la revendication 36, caractérisé en ce que la valeur qui dépend des coordonnées extrêmes sur l'axe correspond sensiblement à la différence (L-R, R-L, B-T, T-B) entre la coordonnée maximale (L, B) et la coordonnée minimale des échantillons sur l'axe considéré.
- 38. Appareil de traitement de données, caractérisé en ce qu'il comporte un dispositif de traitement d'un signal numérique selon l'une des revendications 21 à 29.

5

10

- 39. Appareil de traitement de données, caractérisé en ce qu'il comporte un dispositif de traitement d'un signal numérique codé selon l'une des revendications 30 à 37.
- 40. Moyen de stockage d'informations lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique selon l'une des revendications 1 à 11.
- 41. Moyen de stockage d'informations lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique codé selon l'une des revendications 12 à 20.
- 42. Moyen de stockage d'informations amovible, partiellement ou totalement lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique selon l'une des revendications 1 à 11.
- 43. Moyen de stockage d'informations amovible, partiellement ou 25 totalement lisible par un ordinateur ou un microprocesseur comportant des instructions de code d'un programme d'ordinateur pour l'exécution des étapes du procédé de traitement d'un signal numérique codé selon l'une des revendications 12 à 20.
- 44. Programme d'ordinateur chargeable dans un appareil programmable, caractérisé en ce qu'il comporte des séquences d'instructions ou des portions de code logiciel pour mettre en œuvre les étapes du procédé de traitement d'un signal numérique selon l'une des revendications 1 à 11,

lorsque ce programme d'ordinateur est chargé et exécuté par l'appareil programmable.

45. Programme d'ordinateur chargeable dans un appareil programmable, caractérisé en ce qu'il comporte des séquences d'instructions ou des portions de code logiciel pour mettre en œuvre les étapes du procédé de traitement d'un signal numérique codé selon l'une des revendications 12 à 20, lorsque ce programme d'ordinateur est chargé et exécuté par l'appareil programmable.

10

ž

5/11

Figure 5

Figure 6

7/11

İ

Figure 9

10/11

Figure 10

Figure 11

2829858

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche N° d'enregistrement national

FA 608040 FR 0112064

DOCU	MENTS CONSIDÉRÉS COMME PER	TINENTS Revendi	cation(s) ée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec Indication, en cas de besoi des parties pertinentes	n,		
А	REUSENS E ET AL: "NEW TECHNIQU SUBBAND/WAVELET TRANSFORM COEFF CODING APPLIED TO STILL IMAGE C PROCEEDINGS OF THE SPIE, SPIE, VA, US, no. 1771, 21 juillet 1992 (1992 pages 444-457, XP008003164	ICIENT OMPRESSION" BELLINGHAM,		G06T9/00 H04N7/50
Α	SUNDARARAGHAVAN P S: "THE UNIT PICKUP AND DELIVERY PROBLEM ON LOOP" OPSEARCH, OPERATIONAL RESEARCH INDIA, IN, vol. 4, no. 21, décembre 1984 (pages 209-226, XP008002948 ISSN: 0030-3887	A ONE-WAY SOCIETY OF		
A	SPIRA A ET AL: "Improved loss" compression of color-mapped impapproximate solution of the trasalesman problem" 2001 IEEE INTERNATIONAL CONFERINACOUSTICS, SPEECH, AND SIGNAL INTERNATIONAL CONFERENCE ON ACCIPECH, AND SIGNAL CONFERENCE ON ACCIPECH, AND SIGNAL PROCESSING. PROCEEDINGS, SALT LAKE CITY, UMAY 2001, pages 1797-1800 vol.3, XP002 2001, Piscataway, NJ, USA, IEE ISBN: 0-7803-7041-4	eges by an aveling ENCE ON PROCESSING.), 2001 IEEE DUSTICS, T, USA, 7-11		DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7) G06T
D,A	BURKARD R.E. ET AL.: "WELL-SO OF THE TSP: A SURVEY" janvier 1996 (1996-01), EINDH UNIVERSITY OF TECHNOLOGY, EIN NETHERLANDS XP001076666	OVEN		
<u> </u>	Date d'achèvement de la recherche			Examinateur
X:pa Y:pa at A:ar O:d P:dr	24 m	ai 2002	Pie	erfederici, A
CATÉGORIE DES DOCUMENTS CITÉS X: particulièrement pertinent à lul seul Y: particulièrement pertinent en combinalson avec un autre document de la même catégorie A: arrière-plan technologique O: divulgation non-écrite P: document Intercalaire		T: théorie ou principe à la base de l'invention E: document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D: cité dans la demande L: cité pour d'autres raisons &: membre de la même famille, document correspondant		