Level 2 E-training, week 7 Due to 23:59, Friday, 23 October 2020

Problem 1. Prove that the longest median of any triangle bisects the shortest side.

Problem 2. Let p be an odd prime number and x, a, b be integers coprime with p such that both x-1 and a-b are nonzero multiples of p. Prove that

(a)
$$p||\frac{x^{p}-1}{x-1}|$$

(a)
$$p||\frac{x^p-1}{x-1}$$

(b) $p||\frac{a^p-b^p}{a-b}$

Note: $p^k||m|$ means $p^k|m$ and p^{k+1} //m

Problem 3. Find all reals x satisfying the equation

$$\lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor = 28$$

Problem 4. Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have the same color.

Problem 5. For any circle γ and any point Y on the plane, we define $\mathcal{P}_{\gamma}(Y)$ as the power of the point Y with respect to γ . Now let Ω , Γ be two circles on the plane meeting at exactly two different points A, B and let ω be another circle on the plane passing through A and B. Show that $\frac{\mathcal{P}_{\Omega}(X)}{\mathcal{P}_{\Gamma}(X)}$ is constant over $X \in \omega$ (Naturally, we exclude $X \equiv A$ and $X \equiv B$).

Problem 6. Let $P = \{p^{2^k} | p \in \mathbb{P}, k \in \mathbb{N}_0\} = \{p_1 < p_2 < p_3 < \ldots\}$. Show that for any $n \in \mathbb{N}$ we have $\tau(p_1p_2\cdots p_n)=2^n$.

Problem 7. We say that a finite set S of points in the plane is balanced if, for any two different points A and B in S, there is a point C in S such that AC = BC, and we say that C is an equalizer of A, B. Suppose that S is a balanced set such that for any 3 different points $X, Y, Z \in \mathcal{S}$ the circumcenter of XYZ is not a point of \mathcal{S} . Show that every two points of \mathcal{S} have a unique equalizer.

Problem 8. Let x, y > 0. Prove that

$$1 + (x+y)^3 > 6xy\sqrt{x+y}$$