IAML: Optimization

Nigel Goddard School of Informatics

Semester 1

Outline

- Why we use optimization in machine learning
- ► The general optimization problem
- Gradient descent
- Problems with gradient descent
- Batch versus online
- Second-order methods
- Constrained optimization

Many illustrations, text, and general ideas from these slides are taken from Sam Roweis (1972-2010).

Why Optimization

- A main idea in machine learning is to convert the learning problem into a continuous optimization problem.
- Examples: Linear regression, logistic regression (we have seen), neural networks, SVMs (we will see these later)
- One way to do this is maximum likelihood

$$\ell(\mathbf{w}) = \log p(y_1, \mathbf{x}_1, y_2, \mathbf{x}_2, \dots, y_n, \mathbf{x}_n | \mathbf{w})$$

$$= \log \prod_{i=1}^n p(y_i, \mathbf{x}_i | \mathbf{w})$$

$$= \sum_{i=1}^n \log p(y_i, \mathbf{x}_i | \mathbf{w})$$

► Example: Linear regression

- ► End result: an "error function" E(w) which we want to minimize.
- e.g., $E(\mathbf{w})$ can be the negative of the log likelihood.
- Consider a fixed training set; think in weight (not input) space. At each setting of the weights there is some error (given the fixed training set): this defines an error surface in weight space.
- Learning == descending the error surface.
- ► If the data are IID, the error function E is a sum of error function E_i for each data point

Role of Smoothness

If *E* completely unconstrained, minimization is impossible.

All we could do is search through all possible values \mathbf{w} .

Key idea: If E is continuous, then measuring $E(\mathbf{w})$ gives information about E at many nearby values.

Role of Derivatives

- If we wiggle w_k and keep everything else the same, does the error get better or worse?
- ► Calculus has an answer to exactly this question: $\frac{\partial E}{\partial w_k}$
- So: use a differentiable cost function E and compute partial derivatives of each parameter
- ▶ The vector of partial derivatives is called the gradient of the error. It is written $\nabla E = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n})$. Alternate notation $\frac{\partial E}{\partial \mathbf{w}}$.
- It points in the direction of steepest error descent in weight space.
- Three crucial questions:
 - ▶ How do we compute the gradient ∇E efficiently?
 - Once we have the gradient, how do we minimize the error?
 - Where will we end up in weight space?

Numerical Optimization Algorithms

 Numerical optimization algorithms try to solve the general problem

$$\min_{\mathbf{w}} E(\mathbf{w})$$

- Most commonly, a numerical optimization procedure takes two inputs:
 - ▶ A procedure that computes E(w)
 - ▶ A procedure that computes the partial derivative $\frac{\partial E}{\partial w_i}$
- ► (Aside: Some use less information, i.e., they don't use gradients. Some use more information, i.e., higher order derivative. We won't go into these algorithms in the course.)

Optimization Algorithm Cartoon

Basically, numerical optimization algorithms are iterative.
 They generate a sequence of points

$$\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2, \dots$$

 $E(\mathbf{w}_0), E(\mathbf{w}_1), E(\mathbf{w}_2), \dots$
 $\nabla E(\mathbf{w}_0), \nabla E(\mathbf{w}_1), \nabla E(\mathbf{w}_2), \dots$

Basic optimization algorithm is

```
initialize \mathbf{w} while E(\mathbf{w}) is unacceptably high calculate \mathbf{g} = \nabla E Compute direction \mathbf{d} from \mathbf{w}, E(\mathbf{w}), \mathbf{g} (can use previous gradients as well...) \mathbf{w} \leftarrow \mathbf{w} - \eta \ \mathbf{d} end while return \mathbf{w}
```

A Choice of Direction

- ▶ The simplest choice **d** is the current gradient ∇E .
- It is locally the steepest descent direction.
- (Technically, the reason for this choice is Taylor's theorem from calculus.)

Gradient Descent

Simple gradient descent algorithm:

```
initialize \mathbf{w} while E(\mathbf{w}) is unacceptably high calculate \mathbf{g} \leftarrow \frac{\partial E}{\partial \mathbf{w}} w \leftarrow \mathbf{w} - \eta \ \mathbf{g} end while return \mathbf{w}
```

- η is known as the *step size* (sometimes called *learning rate*)
 - We must choose $\eta > 0$.
 - η too small \rightarrow too slow
 - η too large o instability

Effect of Step Size

Goal: Minimize

$$E(w) = w^2$$

▶ Take $\eta = 0.1$. Works well.

$$w_0 = 1.0$$

 $w_1 = \mathbf{w}_0 - 0.1 \cdot 2w_0 = 0.8$
 $w_2 = \mathbf{w}_1 - 0.1 \cdot 2w_1 = 0.64$
 $w_3 = \mathbf{w}_2 - 0.1 \cdot 2w_2 = 0.512$
...

 $w_{25} = 0.0047$

Effect of Step Size

► Take $\eta = 1.1$. Not so good. If you step too far, you can leap over the region that contains the minimum

$$w_0 = 1.0$$

 $w_1 = \mathbf{w}_0 - 1.1 \cdot 2w_0 = -1.2$
 $w_2 = \mathbf{w}_1 - 1.1 \cdot 2w_1 = 1.44$
 $w_3 = \mathbf{w}_2 - 1.1 \cdot 2w_2 = -1.72$
...
 $w_{25} = 79.50$

Finally, take $\eta = 0.000001$. What happens here?

"Bold Driver" Gradient Descent

Simple heuristic for choosing η which you can use if you're desperate.

```
initialize \mathbf{w},~\eta initialize e \leftarrow E(\mathbf{w});~\mathbf{g} \leftarrow \nabla E(\mathbf{w}) while \eta > 0  \mathbf{w}_1 \leftarrow \mathbf{w} - \eta \mathbf{g}   e_1 = E(\mathbf{w}_1);~\mathbf{g}_1 = \nabla E  if e_1 \geq e  \eta = \eta/2  else  \eta = 1.01\eta;~\mathbf{w} \leftarrow \mathbf{w}_1;~\mathbf{g} \leftarrow \mathbf{g}_1;~e = e_1  end while return \mathbf{w}
```

Finds a *local* minimum of E.

Batch vs online

So far all the objective function we have seen look like:

$$E(\mathbf{w}; D) = \sum_{i=1}^{n} E_i(\mathbf{w}; y_i, \mathbf{x}_i).$$

 $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)\}$ is the training set.

- Each term sum depends on only one training instance
- ► Example: Logistic regression: $E_i(\mathbf{w}; y_i, \mathbf{x}_i) = \log p(y_i | \mathbf{x}_i, \mathbf{w})$.
- The gradient in this case is always

$$\frac{\partial E}{\partial \mathbf{w}} = \sum_{i=1}^{n} \frac{\partial E_i}{\partial \mathbf{w}}$$

- ► The algorithm on slide 10 scans all the training instances before changing the parameters.
- ► Seems dumb if we have millions of training instances. Surely we can get a gradient that is "good enough" from fewer instances, e.g., a couple of thousand? Or maybe even from just one?

Batch vs online

Batch learning: use all patterns in training set, and update weights after calculating

$$\frac{\partial E}{\partial \mathbf{w}} = \sum_{i} \frac{\partial E_{i}}{\partial \mathbf{w}}$$

- ▶ **On-line** learning: adapt weights after each pattern presentation, using $\frac{\partial E_i}{\partial \mathbf{w}}$
- Batch more powerful optimization methods
- Batch easier to analyze
- On-line more feasible for huge or continually growing datasets
- On-line may have ability to jump over local optima

Algorithms for Batch Gradient Descent

Here is batch gradient descent. initialize \mathbf{w} while $E(\mathbf{w})$ is unacceptably high calculate $\mathbf{g} \leftarrow \sum_{i=1}^N \frac{\partial E_i}{\partial \mathbf{w}}$ $\mathbf{w} \leftarrow \mathbf{w} - \eta \ \mathbf{g}$ end while return \mathbf{w}

► This is just the algorithm we have seen before. We have just "substituted in" the fact that $E = \sum_{i=1}^{N} E_i$.

Algorithms for Online Gradient Descent

 Here is (a particular type of) online gradient descent algorithm

```
initialize \mathbf{w} while E(\mathbf{w}) is unacceptably high Pick j as uniform random integer in 1\dots N calculate \mathbf{g} \leftarrow \frac{\partial E_j}{\partial \mathbf{w}} \mathbf{w} \leftarrow \mathbf{w} - \eta \ \mathbf{g} end while return \mathbf{w}
```

- This version is also called "stochastic gradient ascent" because we have picked the training instance randomly.
- There are other variants of online gradient descent.

Problems With Gradient Descent

- Setting the step size η
- Shallow valleys
- Highly curved error surfaces
- ▶ Local minima

Shallow Valleys

Typical gradient descent can be fooled in several ways, which is why more sophisticated methods are used when possible. One problem:

- Gradient descent goes very slowly once it hits the shallow valley.
- ▶ One hack to deal with this is momentum

$$\mathbf{d}_t = \beta \mathbf{d}_{t-1} + (1 - \beta) \eta \nabla E(\mathbf{w}_t)$$

Now you have to set both η and β . Can be difficult and irritating.

Curved Error Surfaces

► A second problem with gradient descent is that the gradient might not point towards the optimum. This is because of curvature

- Note: gradient is the *locally* steepest direction. Need not directly point toward local optimum.
- Local curvature is measured by the Hessian matrix: $H_{ij} = \partial^2 E / \partial w_i w_j$.

Local Minima

If you follow the gradient, where will you end up? Once you hit a local minimum, gradient is 0, so you stop.

- Certain nice functions, such as squared error, logistic regression likelihood are *convex*, meaning that the second derivative is always positive. This implies that any local minimum is global.
- ► There is no great solution to this problem. It is a fundamental one. Usually, the best you can do is rerun the optimizer multiple times from different random starting points.

Advanced Topics That We Will Not Cover (Part I)

- Some of these issues (shallow valley, curved error surfaces) can be fixed
 - Some of these are second-order methods like Newton's method that use the second derivatives
 - Also there are fancy first-order methods like quasi-Newton methods (e.g., limited memory BFGS) and conjugate gradient
 - They are the state of the art methods for logistic regression (as long as there are not too many data points)
 - We will not discuss these methods in the course.
- Other issues (like local minima) cannot be easily fixed

Advanced Topics That We Will Not Cover (Part II)

- Sometimes the optimization problem has constraints
 - Example: Observe the points $\{0.5, 1.0\}$ from a Gaussian with known mean $\mu = 0.8$ and unknown standard deviation σ . Want to estimate σ by maximum likelihood.
 - Constraint: σ must be positive.
 - In this case to find the maximum likelihood solution, the optimization problem is

$$\max_{\mu,\sigma} \sum_{i=1}^2 \frac{1}{2\sigma^2} (x_i - \mu)^2$$
 subject to $\sigma > 0$

► There are ways to solve this (in this case: can be done analytically). We will not discuss them in this course.

Summary

- Complex mathematical area. Do not implement your own optimization algorithms if you can help it!
- Stuff you should understand:
 - How and why we convert learning problems into optimization problems
 - Modularity between modelling and optimization
 - Gradient descent
 - Why gradient descent can run into problems
 - Especially local minima
- Methods of choice: Fancy first-order methods (e.g., quasi-Newton, CG) for moderate amounts of data. Stochastic gradient for large amounts of data.