Bài 1 Tín hiệu và hệ thống rời rạc

1.1 KHÁI NIỆM TÍN HIỆU VÀ HỆ THỐNG

1.1.1 KHÁI NIỆM VÀ PHÂN LOẠI TÍN HIỆU

a. Khái niệm tín hiệu

- Tín hiệu là biểu hiện vật lý của thông tin
- ✓ Tín hiệu được biểu diễn một hàm theo một hay nhiều biến số độc lập.
- Ví dụ về tín hiệu:
- ✓ Tín hiệu âm thanh, tiếng nói là sự thay đổi áp suất không khí theo thời gian
- ✓ Tín hiệu hình ảnh là hàm độ sáng theo 2 biến không gian
 và thời gian
- ✓ Tín hiệu điện là sự thay đổi điện áp, dòng điện theo thời
 gian

b. Phân loại tín hiệu

- Theo các tính chất đặc trưng:
- ✓ Tín hiệu xác định & tín hiệu ngẫu nhiên
 - > Tín hiệu xác định: biểu diễn theo một hàm số
 - Tín hiệu ngẫu nhiên: không thể dự kiến trước hành vi
- ✓ Tín hiệu tuần hoàn & tín hiệu không tuần hoàn
 - ➤ Tín hiệu tuần hoàn: x(t)=x(t+T)=x(t+nT)
 - >Tín hiệu không tuần hoàn: không thoả tính chất trên
- ✓ Tín hiệu nhân quả & không nhân quả
 - ➤ Tín hiệu nhân quả: x(t)=0 : t<0
 - Tín hiệu không nhân quả: không thoả tính chất trên

- ✓ Tín hiệu thực & tín hiệu phức
 - > Tín hiệu thực: hàm theo biến số thực
 - >Tín hiệu phức: hàm theo biến số phức
- ✓ Tín hiệu năng lượng & tín hiệu công suất
 - ➤ Tín hiệu năng lượng: 0<E<∞</p>
 - ➤ Tín hiệu công suất: 0<P<∞</p>
- ✓ Tín hiệu đối xứng (chẵn) & tín hiệu phản đối xứng (lẻ)
 - ➤ Tín hiệu đối xứng: x(-n)=x(n)
 - ➤ Tín hiệu phản đối xứng: -x(-n)=x(n)

Theo biến thời gian:

- ✓ Tín hiệu liên tục: có biến thời gian liên tục
- ✓ Tín hiệu rời rạc: có biến thời gian rời rạc

Theo biến thời gian và biên độ:

	Tín hiệu tương tự (analog)	Tín hiệu rời rạc (lấy mẫu)	Tín hiệu lượng tử	Tín hiệu số
Biên độ	Liên tục	Liên tục	Rời rạc	Rời rạc
Thời gian	Liên tục	Rời rạc	Liên tục	Rời rạc

1.1.2 KHÁI NIỆM VÀ PHÂN LOẠI HỆ THỐNG

Khái niệm hệ thống

Hệ thống đặc trưng toán tử T làm nhiệm vụ biến đổi tín hiệu vào x thành tín hiệu ra y

- Các hệ thống xử lý tín hiệu:
- ✓ Hệ thống tương tự: Tín hiệu vào và ra là tương tự
- ✓ Hệ thống rời rạc: Tín hiệu vào và ra là rời rạc
- ✓ Hệ thống số: Tín hiệu vào và ra là tín hiệu số

1.3 TÍN HIỆU RỜI RẠC

1.3.1 BIỂU DIỄN TÍN HIỆU RỜI RẠC

Tín hiệu rời rạc được biểu diễn bằng một dãy các giá trị với phần tử thứ n được ký hiệu x(n).

Tín hiệu liên tục
$$x_a(t)$$
 Lấy mẫu $t = nT_s$ Tín hiệu rời rạc $x_s(nT_s) \equiv x(n)$ $T_s=1$

Với $\mathbf{T_s}$ – chu kỳ lấy mẫu và \mathbf{n} – số nguyên

✓ Tín hiệu rời rạc có thể biểu diễn bằng một trong các dạng: hàm số, dãy số & đồ thị.

* Hàm số:
$$\mathbf{x}(\mathbf{n}) = \begin{cases} (0.5)^{\mathbf{n}} : 0 \le \mathbf{n} \le 3 \\ 0 : \mathbf{n} \text{ còn lại} \end{cases}$$

$$\mathbf{x}(\mathbf{n}) = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \right\}$$

↑ - Gốc thời gian n=0

1.2.2 MỘT SỐ DÃY RỜI RẠC CƠ BẢN

Dãy xung đơn vị:

$$\delta(n) = \begin{cases} 1: n = 0 \\ 0: n \text{ còn lại} \end{cases}$$

Dãy nhảy bậc đơn vị:

$$u(n) = \begin{cases} 1: n \ge 0 \\ 0: n < 0 \end{cases}$$

Dãy chữ nhật:

$$rect_N(n) = \begin{cases} 1: \mathbf{N} - \mathbf{1} \ge n \ge 0 \\ 0: n \text{ còn lại} \end{cases}$$

❖ Dãy dốc đơn vị:

$$r(n) = \begin{cases} n: n \ge 0 \\ 0: n < 0 \end{cases}$$

* Dãy hàm mũ thực:

$$e(n) = \begin{cases} a^n : n \ge 0 \\ 0 : n < 0 \end{cases}$$

❖ Dãy sin:

$$s(n) = \sin(\omega_0 n)$$

1.2.3 CÁC PHÉP TOÁN TRÊN TÍN HIỆU

Cho 2 dãy:
$$x_1(n) = \{1, 2, 3 \} x_2(n) = \{2, 3, 4 \}$$

a. Cộng 2 dãy:

Cộng các mẫu 2 dãy với nhau tương ứng với chỉ số n

$$\boldsymbol{x}_{1}(\boldsymbol{n}) + \boldsymbol{x}_{2}(\boldsymbol{n}) = \left\langle 3, 5, 7 \right\rangle$$

b. Nhân 2 dãy:

Nhân các mẫu 2 dãy với nhau tương ứng với chỉ số n

$$x_1(n)x_2(n) = \{2,6,12\}$$

1.2.3 CÁC PHÉP TOÁN TRÊN TÍN HIỆU

Cho dãy:
$$x(n) = \{1, 2, 3\}$$

c. Dich: $x(n) \rightarrow x(n-n_o)$

n₀>0 – dịch sang phải

n₀<0 – dịch sang trái

$$x(n-1) = \{1,2,3\}; x(n+1) = \{1,2,3\}$$

d. Gập tín hiệu: x(n) ->x(-n)

Lấy đối xứng qua trục tung

$$x(n) = \{1, 2, 3\} \Rightarrow x(-n) = \{3, 2, 1\}$$

1.2.4 NĂNG LƯỢNG VÀ CÔNG SUẤT TÍN HIỆU

a. Năng lượng dãy x(n):

$$\boldsymbol{E}_{x} = \sum_{\boldsymbol{n}=-\infty}^{\infty} |\boldsymbol{x}(\boldsymbol{n})|^{2}$$

Nếu ∞>**E**_x>**0** thì x(n) gọi là tín hiệu năng lượng

b. Công suất trung bình dãy x(n):

$$P_{x} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=-N}^{N} |x(n)|^{2}$$

Nếu ∞>**P**_x>**0** thì x(n) gọi là tín hiệu công suất <u>Ví dụ 1.2.1:</u> Cho y(n) = u(n) tín hiệu trên là công suất, năng lượng?

y(n)- công suất

$$\mathbf{E}_{y} = \sum_{n=-\infty}^{\infty} |y(n)|^{2} = \sum_{n=0}^{\infty} |u(n)|^{2} = \infty$$

$$P_{y} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=0}^{N} |u(n)|^{2} = \lim_{N \to \infty} \frac{N+1}{(2N+1)} = \frac{1}{2}$$