1. Pression cinétique, modèle du choc élastique

Il pleut sur une fenêtre de $2m^2$ de surface. Cette pluie frappe la fenêtre de façon régulière selon un angle α constant de 30° par rapport à la verticale. La densité D est de 800 gouttes par m^3 , une goutte ayant toujours une vitesse $v=2m.s^{-1}$ et une masse m=0,1g.

On suppose que les gouttes rebondissent de façon élastique sur la vitre.

- 1. Combien de gouttes rebondissent sur la vitre en 1s ?
- 2. Quelle est la pression crée par ces gouttes? On donnera une réponse littérale puis numérique. Comparer à la pression atmosphérique.

Rep :1)1600gouttes ; 2) P_{gouttes}=0,16 Pa

Solution

1. Les gouttes arrivant sur la vitre de surface $S=2m^2$ sont contenues dans le volume V de base S et de génératrice de longueur $\Delta \vec{L} = \vec{v} \Delta t$ correspondant à la distance parcourue pendant Δt .(voir schéma ci-contre)

D'où
$$V = S \times h = S \times v \times \sin \alpha \times \Delta t$$

Le nombre de gouttes arrivant est $N_S = V \times D = S \times v \times \sin \alpha \times \Delta t \times D$

AN:
$$N_s = \frac{2 \times 2 \times 1}{2} \times 800 = 1600 \text{ gouttes / seconde}$$

2. On calcule la contribution à la force exercée par une goutte entrant en collision avec S pendant l'intervalle de temps Δt . On sait que cette force à l'origine de la pression est orthogonale à la surface.

On muni l'espace d'un repère $R(O, \overrightarrow{u_x}, \overrightarrow{u_y})$. On suppose le choc en O. Le choc étant élastique le module de la vitesse est conservé.

Avant le choc la vitesse de la goutte est : $\vec{v} = v \sin \alpha \vec{u_x} - v \cos \alpha \vec{u_y}$ (voir schéma cicontre)

Après le choc sa vitesse de la goutte est : $\vec{v}' = -v \sin \alpha' \vec{u}_x - v \cos \alpha' \vec{u}_y$

On applique la $2^{\text{ème}}$ loi de Newton à la goutte sur l'intervalle de temps Δt . Pendant cet intervalle de temps, elle subit la force $\overrightarrow{F}_{vitre \to goutte} = -\overrightarrow{F}_{goutte \to vitre} = -\overrightarrow{F}_{goutte \to vitre} \overrightarrow{u}_x$ orthogonale à la surface S

d'où
$$m \frac{(\vec{v}' - \vec{v})}{\Delta t} = \vec{F}_{vitre \to goutte} = -F_{goutte \to vitre} \vec{u}_x$$

d'où par projection sur les axes :

$$m \frac{\left(-v \sin \alpha' - v \sin \alpha\right)}{\Delta t} = -F_{goutte \to vitre} (1)$$

$$m\frac{\left(-v\cos\alpha'--v\cos\alpha\right)}{\Delta t}=0 (2)$$

De la relation (2) on tire : $\alpha = \alpha'$

Puis de la relation (1):
$$F_{goutte \to vitre} = \frac{2 m v \sin \alpha}{\Delta t}$$

En tenant compte de la contribution de toutes les gouttes sur l'intervalle de temps Δt :

$$F_{tot} = N_S \times F_{goutte \to vitre} = S v \sin \alpha D \Delta t \times \frac{2 m v \sin \alpha}{\Delta t} = 2 m S v^2 \sin \alpha^2 D$$

La pression est la force exercée par unité de surface :
$$P_{gouttes} = \frac{F_{tot}}{S} = 2 m v^2 \sin \alpha^2 D$$

AN:
$$P_{gouttes} = 2 \times 0.1.10^{-3} \times 2^{2} \times (\frac{1}{2})^{2} \times 800 = 0.16 Pa$$

La pression atmosphérique étant de l'ordre de 10⁵ Pa cette contribution est négligeable.

2. Travail reçu par un gaz parfait pour différents chemins suivis

On considère deux moles de dioxygène, gaz supposé parfait, que l'on peut faire passer réversiblement de l'état initial A (P_A, V_A, T_A)

à l'état final B ($P_B = 3 P_A$, V_B , $T_B = T_A$) par trois chemins distincts:

Chemin C_1 : transformation isotherme;

Chemin C₂: transformation représentée par une droite en diagramme de Clapeyron (P, V);

Chemin C₃: transformation composée d'une isochore puis d'une isobare.

Représenter les trois chemins en diagramme de Clapeyron.

Calculer dans chaque cas les travaux mis en jeu en fonction de T_A . A.N.: $T_A = 300 \text{ K}$

<u>Réponses:</u> $W_1 = 2 R T_A \ln 3 = 5,48.10^3 J$; $W_2 = 8 R T_A / 3 = 6,65.10^3 J$; $W_3 = 4 R T_A = 9,98.10^3 J$.

Solution

Chemin C₁:

 $\delta W_1 = -Pext dV = -P dV = -2RT_A dV/V d'où$:

$$W_{1} = \int_{V_{A}}^{V_{B}} -2RT_{A} \frac{dV}{V} = -2RT_{A} \int_{V_{A}}^{V_{B}} \frac{dV}{V} = -2RT_{A} [\ln V]_{V_{A}}^{V_{B}} = -2RT_{A} \ln \left(\frac{V_{B}}{V_{A}}\right) \qquad P_{B} = 3P_{A}$$

or
$$V_A = \frac{2RT_A}{P_A}$$
 et $V_B = \frac{2RT_A}{3P_A}$ d'où $\frac{V_B}{V_A} = \frac{1}{3}$

d'où : $W_1 = 2RT_A \ln 3$

Chemin C_2 :

 $\delta W_2 = -Pext dV = -P dV d'où$:

 $W_2 = \int_0^{\infty} -P \, dV = +$ Aire sous la courbe car le volume diminue d'où :

$$W_{2} = P_{A}(V_{A} - V_{B}) + (V_{A} - V_{B}) \frac{(3P_{A} - P_{A})}{2} = (V_{A} - V_{B})(P_{A} + P_{A}) = (\frac{2RT_{A}}{P_{A}} - \frac{2RT_{A}}{3P_{A}})(2P_{A}) = 2RT_{A} \frac{(3-1)}{3} \times 2RT_{A} + \frac{(3-1)}$$

$$W_2 = \frac{8}{3} R T_A$$

Chemin C₃:

 $\delta W_3 = -Pext dV = -P dV d'où$:

 $W_3 = \int_{0}^{\infty} -P \, dV = +$ Aire sous la courbe car le volume diminue d'où :

$$W_3 = 3P_A(V_A - V_B) = 3P_A(\frac{2RT_A}{P_A} - \frac{2RT_A}{3P_A}) = 3 \times 2RT_A\frac{(3-1)}{3}$$
 d'où : $W_3 = 4RT_A$

3. Bain marie

Un œuf à température ambiante est plongé dans l'eau bouillante.

- 1) Quel est le signe du transfert thermique Q pour le système formé de l'œuf? Que se passe-t-il microscopiquement?
- 2) Quel est le signe du transfert thermique Q' entre l'œuf et l'eau pour le système formé de l'eau ? Quelle relation y a-t-il entre Q et Q' ?

Solution

- 1 L'œuf reçoit un transfert Q > 0. Microscopiquement, les molécules d'eau ont une agitation thermique plus importante que les atomes ou molécules constituant la coquille. Lors de chocs, les molécules d'eau leur transmettent de l' E_C microscopique : La température de l'œ uf augmente.
- 2 L'eau a fourni le transfert thermique à l'œuf : Q' < 0. Les 2 transferts sont opposés : Q' = Q : Seuls les points de vue sont différents.

4. Transformation adiabatique

Un gaz est contenu dans un récipient aux parois calorifugées, délimité par un piston mobile horizontal. Par un raisonnement intuitif, répondre aux questions suivantes :

- 1) Le gaz subit une compression. Que dire de son énergie interne?
- 2) Et dans le cas d'une détente?

Solution

- 1) Le gaz s'échauffe bien qu'il ne reçoive pas de transfert thermique. En supposant que l'on peut utiliser le modèle du GP, on en déduit que son énergie interne augmente.
- 2) Le gaz se refroidit, l'énergie interne diminue.

5. Ordres de grandeur des capacités thermiques des liquides et des gaz

On constate que pour augmenter la température d'1 g d'eau liquide de 1°C, il faut fournir un transfert thermique de 4,18 J.

- 1) En déduire la capacité thermique massique c de l'eau liquide, puis sa capacité thermique molaire C_m.
- 2) En considérant l'air comme un GP diatomique, on montre que sa capacité thermique molaire à volume constant est $C_{Vm}' = (\frac{5}{2}R)J \ mol^{-1}K^{-1}$, en déduire sa capacité thermique massique c_V' .
- 3) Comparer les ordres de grandeurs.

<u>Données</u>: M (H₂O) = 18 g.mol⁻¹. M(air) = 29 g.mol⁻¹.

Solution

1) Pour une phase condensée indilatable, incompressible : $dU = \delta Q$, car $\delta W = 0$ (V=cste).

Or
$$c = \frac{dU}{dT} = \frac{\delta Q}{dT}$$
 Ainsi: $c = 4,180 J.g^{-1}.K^{-1} = 4,180 kJ.kg^{-1}.K^{-1} = 4180 J.kg^{-1}.K^{-1}$

De plus, ; Donc : $C_m = c M$; $AN : C_m = 75.2 \text{ J.mol}^{-1} K^{-1}$.

2) GP diatomique :
$$C_{Vm}' = (\frac{5}{2}R) = 20,7 J \, mol^{-1} K^{-1}$$
. $c_V = \frac{C_{Vm}'}{M} = \frac{5R}{2M} = 0,714 J \, g^{-1} K^{-1} = 714 J \, kg^{-1} K^{-1}$

3) <u>CCl</u>: La capacité thermique de l'eau liquide est 6 fois plus élevée que la capacité thermique de l'air. Il faut 6 fois plus d'énergie pour élever d'une même quantité la température de l'eau, par rapport à celle nécessaire pour l'air.

La capacité thermique de l'eau est particulièrement élevée à cause des liaisons hydrogènes.

6. Influence du chemin de transformation

Une mole d'oxygène se détend d'un état A de volume $V_A = 10L$ et de température $T_A = 25$ °C à état C de volume $V_C = 50L$ et de température $T_C = 100$ °C.

- 1). Déterminer les pressions P_A et P_C des états respectifs A et C
- 2) Représenter dans le diagramme de Clapeyron la transformation si la détente s'effectue:
 - (a) Par un chauffage isochore (état B) suivi d'une détente isotherme
 - (b) Par une détente isotherme (état D) suivie d'un chauffage isochore.
- 3) Calculer le travail et le transfert thermique échangés par l'oxygène au cours des transformations (a) et (b).

Données:
$$C_{vm} = \frac{5}{2} R J.K^{-1}.mol^{-1}$$
; $R = 8,314 \text{ JK}^{-1}.mol^{-1}$; $T(K) = \theta \text{ }^{\circ}\text{C} + 273,15$.

Solution

1)
$$P_A = \frac{RT_A}{V_A} = \frac{8,314 \times 298,15}{10.10^{-3}} = 2,48.10^5 Pa$$
; $P_C = \frac{RT_C}{V_C} = \frac{8,314 \times 373,15}{50.10^{-3}} = 0,62.10^5 Pa \approx 4 P_A$

2) Chemin (a)
$$P_B = \frac{RT_C}{V_A} = \frac{8.314 \times 373.15}{10.10^{-3}} = 3.10.10^5 Pa \approx 5 P_A$$

État A
 État B
 État C

$$P_A = 2,48 \text{ bar}$$
 $V = \text{cste} = V_A$
 $P_B = 3,10 \text{ bar}$
 $T = \text{cste} = T_C$
 $P_C = 0,62 \text{ bar}$
 $T_A = 298,15K$
 $T_B = 373,15K$
 $T_C = 373,15K$
 $V_A = 10L$
 $V_C = 50L$

Chemin (b)
$$P_D = \frac{RT_A}{V_C} = \frac{8,314 \times 298,15}{50.10^{-3}} = 3,10.10^5 Pa$$

3) $A \rightarrow B$

$$W_{AB} = 0J$$
, $Q_{AB} = \Delta U_{AB} = \frac{5}{2}R(T_B - T_A)$
AN: $Q_{AB} = \frac{5}{2} \times 8,314(100 - 75) = 1,56 kJ$

AN:
$$Q_{AB} = \frac{5}{2} \times 8,314(100-75) = 1,56 \, kJ$$

$B \rightarrow C$

$$\delta W_{PC} = -P dV = -RT_C dV/V$$

$$W_{BC} = -RT_C \ln \frac{V_C}{V_A}$$
. AN:

$$W_{BC} = -8,314 \times 373,15 \ln \frac{50}{10} = -4,99 \, kJ$$

$$W_{BC} = -8,314 \times 373,15 \ln \frac{50}{10} = -4,99 \, kJ$$
 . $\Delta U_{BC} = 0 = W_{BC} + Q_{BC}$ donc $Q_{BC} = -W_{BC} = 4,99 \, kJ$

$$W_{AD} = -R T_A \ln \frac{V_B}{V_A} \cdot \text{AN} : W_{AD} = -8,314 \times 298,15 \ln \frac{50}{10} = -3,99 \, kJ \quad Q_{AD} = -W_{AD} = 3,99 \, kJ$$

$$D \to C \quad W_{DC} = 0 J \quad Q_{DC} = \Delta U_{DC} = \frac{5}{2} R (T_C - T_A) \cdot \text{AN} : \quad Q_{AB} = \frac{5}{2} \times 8,314 (100 - 75) = 1,56 \, kJ$$

D
$$\rightarrow$$
 C $W_{DC} = 0 J$, $Q_{DC} = \Delta U_{DC} = \frac{5}{2} R(T_C - T_A)$. AN: $Q_{AB} = \frac{5}{2} \times 8,314(100 - 75) = 1,56 kJ$

Le travail et le transfert thermique dépendent du chemin suivi mais pas la somme (1er principe vérifié)