

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120107704

FCC REPORT (WIFI)

Applicant: GNJ Manufacturing Inc.

Address of Applicant: 205 Ansin Blvd Hallandale Beach, FL 33009, USA

Equipment Under Test (EUT)

Product Name: Smart phone-BOOK II series

Model No.: CAPHG28-01

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG28-01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Dec., 2014

Date of Test: 30 Dec., 2014 to 05 Jan., 2015

Date of report issued: 05 Jan., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	05 Jan., 2015	Original

Prepared by: Date: 05 Jan., 2015

Report Clerk

Reviewed by: Date: 05 Jan., 2015

Project Engineer

Project No.: CCIS141000900RF

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2 5.3	GENERAL DESCRIPTION OF E.U.T	
	5.3 5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5 6.6	POWER SPECTRAL DENSITY	_
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	68
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(3)	Pass	
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247(d)	Pass	
Spurious Emission	15.205/15.209	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc.
Address of Applicant:	205 Ansin Blvd Hallandale Beach, FL 33009, USA
Manufacturer/ Factory:	GNJ Manufacturing Inc. china
Address of Manufacturer / Factory:	4/F, Blk A, No.48 Industrial Park, ZhongKai HiTech Zone, HuiZhou City, GuangDong Province, China

5.2 General Description of E.U.T.

Smart phone-BOOK II series
CAPHG28-01
2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
5MHz
Direct Sequence Spread Spectrum (DSSS)
Orthogonal Frequency Division Multiplexing(OFDM)
1Mbps, 2Mbps, 5.5Mbps, 11Mbps
6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Up to 150Mbps
Internal Antenna
1.1 dBi
Model: ODL-017 Input:110-240V AC,50/60Hz 0.2A Output:5V DC MAX 1A
Rechargeable Li-ion Battery DC3.7V-3300mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS14120107704

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14120107704

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	НР	8447D	CCIS0003	04-01-2014	04-01-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.1 dBi.

6.2 Conducted Emission

Test Deguirement	FCC Part 15 C Section 15 20	7				
Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average					
	0.15-0.5	66 to 56*	Average 56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details	;				
Test mode:	Refer to section 5.3 for details	;				
Test results:	Passed		_			

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 1077RF Condition

Job. no : Smart phone : CAPHG28-01 EUT Model Test Mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

Remark

Freq			Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	₫₿	₫₿	dBu₹	dBu∜	₫B	
0.165	44.74	0.25	10.77	55.76	65.21	-9.45	QP
0.165	24.08	0.25	10.77	35.10	55.21	-20.11	Average
0.226	39.75	0.25	10.75	50.75	62.61	-11.86	QP
0.325	20.26	0.26	10.73	31.25	49.57	-18.32	Average
0.330	36.56	0.26	10.73	47.55	59.44	-11.89	QP
0.396	18.49	0.25	10.72	29.46	47.95	-18.49	Average
0.444	31.64	0.27	10.74	42.65	56.98	-14.33	QP
0.444	17.68	0.27	10.74	28.69	46.98	-18.29	Average
4.049	26.81	0.29	10.89	37.99	56.00	-18.01	QP
4.049	14.37	0.29	10.89	25.55	46.00	-20.45	Average
9.603	32.24	0.25	10.92	43.41	60.00	-16.59	QP
10.452	19.91	0.25	10.94	31.10	50.00	-18.90	Average
	MHz 0.165 0.165 0.226 0.325 0.330 0.396 0.444 0.444 4.049 4.049 9.603	MHz dBuV 0.165 44.74 0.165 24.08 0.226 39.75 0.325 20.26 0.330 36.56 0.396 18.49 0.444 31.64 0.444 17.68 4.049 26.81 4.049 14.37 9.603 32.24	MHz dBuV dB 0.165 44.74 0.25 0.165 24.08 0.25 0.26 39.75 0.25 0.325 20.26 0.26 0.330 36.56 0.26 0.396 18.49 0.25 0.444 31.64 0.27 0.444 17.68 0.27 0.444 17.68 0.27 4.049 26.81 0.29 4.049 14.37 0.29 9.603 32.24 0.25	MHz dBuV dB dB 0.165 44.74 0.25 10.77 0.165 24.08 0.25 10.77 0.266 39.75 0.25 10.75 0.325 20.26 0.26 10.73 0.330 36.56 0.26 10.73 0.396 18.49 0.25 10.72 0.444 31.64 0.27 10.74 4.049 26.81 0.29 10.89 4.049 14.37 0.29 10.89 9.603 32.24 0.25 10.92	MHz dBuV dB dB dBuV 0.165 44.74 0.25 10.77 55.76 0.165 24.08 0.25 10.77 35.10 0.226 39.75 0.25 10.75 50.75 0.325 20.26 0.26 10.73 31.25 0.330 36.56 0.26 10.73 47.55 0.396 18.49 0.25 10.72 29.46 0.444 31.64 0.27 10.74 42.65 0.444 17.68 0.27 10.74 28.69 4.049 26.81 0.29 10.89 37.99 4.049 14.37 0.29 10.89 25.55 9.603 32.24 0.25 10.92 43.41	MHz dBuV dB dB dBuV dBuV 0.165 44.74 0.25 10.77 55.76 65.21 0.165 24.08 0.25 10.77 35.10 55.21 0.226 39.75 0.25 10.75 50.75 62.61 0.325 20.26 0.26 10.73 31.25 49.57 0.330 36.56 0.26 10.73 47.55 59.44 0.396 18.49 0.25 10.72 29.46 47.95 0.444 31.64 0.27 10.74 42.65 56.98 0.444 17.68 0.27 10.74 28.69 46.98 4.049 26.81 0.29 10.89 37.99 56.00 4.049 14.37 0.29 10.89 25.55 46.00 9.603 32.24 0.25 10.92 43.41 60.00	MHz dBuV dB dB dBuV dBuV dB 0.165 44.74 0.25 10.77 55.76 65.21 -9.45 0.165 24.08 0.25 10.77 35.10 55.21 -20.11 0.226 39.75 0.25 10.75 50.75 62.61 -11.86 0.325 20.26 0.26 10.73 31.25 49.57 -18.32 0.330 36.56 0.26 10.73 47.55 59.44 -11.89 0.396 18.49 0.25 10.72 29.46 47.95 -18.49 0.444 31.64 0.27 10.74 42.65 56.98 -14.33 0.444 17.68 0.27 10.74 28.69 46.98 -18.29 4.049 26.81 0.29 10.89 37.99 56.00 -18.01 4.049 14.37 0.29 10.89 25.55 46.00 -20.45 9.603 32.24 0.25

Line:

Trace: 13

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Job. no : 1077RF EUT : Smart phone Model : CAPHG28-01 Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	₫B	₫B	dBu₹	₫BuV	₫B	
1	0.155	25.91	0.27	10.78	36.96	55.74	-18.78	Average
2	0.160	44.96	0.27	10.78	56.01	65.47	-9.46	QP
3	0.175	24.52	0.27	10.77	35.56	54.72	-19.16	Average
2 3 4 5 6 7	0.185	41.25	0.28	10.77	52.30	64.24	-11.94	QP
5	0.226	38.04	0.27	10.75	49.06	62.61	-13.55	QP
6	0.385	33.14	0.28	10.72	44.14	58.17	-14.03	QP
7	0.396	20.71	0.28	10.72	31.71	47.95	-16.24	Average
8 9 10	0.516	14.43	0.28	10.76	25.47	46.00	-20.53	Average
9	3.293	27.69	0.27	10.91	38.87	56.00	-17.13	QP
10	3.491	14.30	0.28	10.90	25.48	46.00	-20.52	Average
11	10.452	31.56	0.31	10.94	42.81	60.00	-17.19	QP
12	10.564	18.91	0.31	10.93	30.15	50.00	-19.85	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

-	Ma	aximum Conduct	Limit(dBm)	5 4		
Test CH	802.11b	802.11b 802.11g 802.11n(H20) 802.11n(H40)				Result
Lowest	16.02	13.36	13.39	12.00		
Middle	16.15	13.72	13.68	11.99	30.00	Pass
Highest	16.03	13.48	13.87	12.43		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.4:2003 and KDB558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

T		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.24	15.92	17.20	35.52		
Middle	10.24	15.92	16.48	35.68	>500	Pass
Highest	10.24	15.92	16.88	35.52		

T (01)		99% Occupy		D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.96	16.48	17.60	35.84		
Middle	12.96	16.48	17.60	35.84	N/A	N/A
Highest	12.88	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 31.DEC.2014 15:12:03

Lowest channel

Date: 31.DEC.2014 16:14:56

Middle channel

Date: 31.DEC.2014 16:00:38

Highest channel

Date: 31.DEC.2014 15:13:15

Lowest channel

Date: 31.DEC.2014 15:24:41

Middle channel

Date: 31.DEC.2014 16:02:21

Highest channel

Date: 31.DEC.2014 15:17:36

Lowest channel

Date: 31.DEC.2014 15:22:46

Middle channel

Date: 31.DEC.2014 16:03:01

Highest channel

Test mode: 802.11n(H40)

Date: 31.DEC.2014 15:18:38

Lowest channel

Date: 31.DEC.2014 15:20:55

Middle channel

Date: 31.DEC.2014 16:04:49

Highest channel

99% **OBW**

Test mode: 802.11b

Date: 31.DEC.2014 15:11:16

Lowest channel

Date: 31.DEC.2014 15:59:23

Middle channel

Date: 31.DEC.2014 16:00:56

Highest channel

Date: 31.DEC.2014 15:13:37

Lowest channel

Date: 31.DEC.2014 15:24:01

Middle channel

Date: 31.DEC.2014 16:01:48

Highest channel

Date: 31.DEC.2014 15:16:56

Lowest channel

Date: 31.DEC.2014 15:23:02

Middle channel

Date: 31.DEC.2014 16:03:18

Highest channel

Test mode: 802.11n(H40)

Date: 31.DEC.2014 15:19:08

Lowest channel

Date: 31.DEC.2014 15:20:08

Middle channel

Date: 31.DEC.2014 16:04:18

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.4:2003 and KDB558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

- . 011		Power Spec		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	6.21	0.57	0.61	-4.81		
Middle	6.40	1.73	1.86	-2.43	8.00	Pass
Highest	6.32	1.03	1.03	-4.46		

Test plot as follows:

Date: 31.DEC.2014 15:10:56

Lowest channel

Date: 31.DEC.2014 15:59:10

Middle channel

Date: 31.DEC.2014 16:01:15

Highest channel

Date: 31.DEC.2014 15:14:14

Lowest channel

Date: 31.DEC.2014 15:23:45

Middle channel

Date: 31.DEC.2014 16:01:32

Highest channel

Test mode: 802.11n(H20)

Date: 31.DEC.2014 15:16:37

Lowest channel

Date: 31.DEC.2014 15:23:21

Middle channel

Date: 31.DEC.2014 16:03:38

Highest channel

Test mode: 802.11n(H40)

Date: 31.DEC.2014 15:19:32

Lowest channel

Date: 31.DEC.2014 15:19:54

Middle channel

Date: 31.DEC.2014 16:04:03

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer F.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Date: 31.DEC.2014 14:59:45

Lowest channel

Highest channel

Date: 31.DEC.2014 16:16:17

802.11g

Date: 31.DEC.2014 15:00:53

Lowest channel

Date: 31.DEC.2014 15:04:29

Highest channel

802.11n(H20)

Date: 31.DEC.2014 15:01:27

Lowest channel

Date: 31.DEC.2014 15:03:40

Highest channel

802.11n(H40)

Date: 31.DEC.2014 15:02:07

Lowest channel

Date: 31.DEC.2014 15:02:50

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup: Limit:	Frequency Above 1GHz Frequency Above 1	GHz	RBW 1MHz 1MHz Limit (dBuV/ 54.0 74.0	0	Remark Peak Value Average Value Remark Average Value Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier				
Test Instruments:	Refer to section	5.6 for details			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Model : CAPHG28-01
Test mode : B-L MODE
Power Rating : AC120V/60Hz
Environment

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK

				Cable Loss			100,000,000	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone : CAPHG28-01 Model Test mode : B-L MODE Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

2

 	Read	Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBuV	dB/m	₫B	₫₿	dBuV/m	dBu∀/m	dB		
2390,000 2390,000									

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart phone : CAPHG28-01 EUT Model Test mode : B-H MODE Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Test Engineer: Carey REMARK : Huni:55%

- INCOTA	un .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∀	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483, 500 2483, 500		27.52 27.52			54.30			Peak Average

Page 39 of 69

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart phone : CAPHG28-01 EUT Model Test mode : B-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

1 2

A.	. 47								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
	2483.500	20.11	27.52	5.70	0.00	53.33	74.00	-20.67	Peak
	2483.500	8.94	27.52	5.70	0.00	42.16	54.00	-11.84	Average

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone : CAPHG28-01 : G-L MODE EUT Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK

CINTAIL/	TV .								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	₫B	dBu∜/m	dBu∀/m	₫B	
1 2	2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart phone : CAPHG28-01 EUT Model Test mode : G-L MODE Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey REMARK :

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
2	2390,000 2390,000	19.29 8.89	27.58 27.58	5.67 5.67	0.00	52.54 42.14	74.00 54.00	-21.46 -11.86	Peak Average

Test channel: Highest

Horizontal:

Site : 3m chamber Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart phone : CAPHG28-01 EUT Model Test mode : G-H MODE

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

>mrsi/		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	₫B	
	2483, 500 2483, 500								

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart phone : CAPHG28-01 : G-H MODE EUT Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

.man		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483, 500 2483, 500	26.43 9.51	27.52 27.52	5.70 5.70	20.000	59.65 42.73		1000	Peak Average

802.11n (H20)

Test channel: Lowest

Horizontal:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone
Model : CAPHG28-01
Test mode : N20-L MODE
Power Rating : AC120V/60Hz
Environment : Test 200

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey REMARK :

mun.	41								
	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000				0.00				Peak Average

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart phone : CAPHG28-01 EUT Model Test mode : N20-L MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

asment's			Antenna			Limit	 Remark
	MHz	dBuV		dB	dBuV/m		
1 2	2390, 000 2390, 000				53, 83 42, 55		Peak Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone : CAPHG28-01 EUT Model Test mode : N20-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

	Freq		ReadAntenna Level Factor				Limit Line		
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		27.52 27.52					-16.09 -11.80	Peak Average
3	2485.117 2485.117	27.11 8.77		5.70 5.70	0.00			-13.67 -12.01	Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone
Model : CAPHG28-01
Test mode : N20-H MODE
Power Rating : AC120V/60Hz
Environment : Target EV

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

3.7	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq		Factor					Limit	Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBu∜/m	dB	
483.500 483.500			5.70 5.70					Peak Average

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone
Model : CAPHG28-01
Test mode : N40-L MODE
Power Rating : AC120V/60Hz
Environment : Total For

Environment : Temp:25.5°C Test Engineer: Carey Huni:55%

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	d₿	dB	dBuV/m	dBuV/m	dB	
1 2	2390, 000 2390, 000								

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart phone : CAPHG28-01 EUT Model Test mode : N40-L MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

mun.		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	₫₿	
1 2	2390,000 2390,000					57.42 43.16			Peak Average

Test channel: Highest Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone : CAPHG28-01 : N40-H MODE EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Carey

Huni:55%

REMARK

THE III		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	₫₿	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500	The state of the s	27.52 27.52			60.76 41.54			Peak Average

Page 51 of 69

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart phone : CAPHG28-01 EUT Model Test mode : N40-H MODE Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: Carey REMARK : Huni:55%

nam:	<i>v</i> :								
	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2483,500		27.52	5.70			74.00		Peak

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Date: 31.DEC.2014 18:27:56

30MHz~25GHz

Middle channel

Date: 31.DEC.2014 18:28:18

30MHz~25GHz

Highest channel

Date: 31.DEC.2014 18:28:41

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 31.DEC.2014 18:29:13

30MHz~25GHz

Middle channel

Date: 31.DEC.2014 18:29:38

30MHz~25GHz

Highest channel

Date: 31.DEC.2014 18:30:07

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 31.DEC.2014 18:30:31

30MHz~25GHz

Middle channel

Date: 31.DEC.2014 18:30:54

30MHz~25GHz

Highest channel

Date: 31.DEC.2014 18:31:24

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 31.DEC.2014 18:31:51

30MHz~25GHz

Middle channel

Date: 31.DEC.2014 18:32:16

30MHz~25GHz

Highest channel

Date: 31.DEC.2014 18:32:37

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205		
Test Method:	ANSI C63.4:200	03			
Test Frequency Range:	9KHz to 25GHz				
Test site:	Measurement D	istance: 3m			
Receiver setup:					
. 1000.101	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above 10112	Peak	1MHz	10Hz	Average Value
Limit:					
	Freque		Limit (dBuV/		Remark
	30MHz-8	+	40.0		Quasi-peak Value
	88MHz-21		43.5		Quasi-peak Value
	216MHz-9 960MHz-		46.0 54.0		Quasi-peak Value Quasi-peak Value
			54.0		Average Value
	Above 1	GHz	74.0		Peak Value
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the substitute of the emission of the EUT have 10dB	at a 3 meter of the position was set 3 meter which was mountained to determine to the antennent and the rota table maximum reactiver system and width with sion level of the collection of the would be reported to the position of the collection of the would be reported to the position of the would be reported to the test of the test of the position of the would be reported to the position of the p	amber. The softhe highests away from the highests away from the tried from one the maximum cal polarizations in the EU awas turned was turned was turned was turned thing. Was set to Paximum Hard EUT in peasesting could borted. Otherwas the re-tested	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. The was arranged and was to be stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees

Below 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

: Smart phone : CAPHG28-01 EUT Model Test mode : WIFI MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Carey REMARK :

Huni:55%

EMAKK									
	Freq		Antenna Factor						
_	MHz	dBu∜	dB/m	₫B	dB	dBu√/m	dBuV/m	dB	
1	56.197	35.82	12.95	0.66	29.79	19.64	40.00	-20.36	QP
2	62.651	39.61	11.63	0.72	29.76	22.20	40.00	-17.80	QP
3	94.428	38.43	12.75	0.93	29.55	22.56	43.50	-20.94	QP
4	157.559	49.47	8.58	1.33	29.15	30.23	43.50	-13.27	QP
5	316.589	42.20	13.28	1.83	28.49	28.82	46.00	-17.18	QP
6	359.186	43.66	14.40	1.97	28.60	31.43	46.00	-14.57	QP

: 3m chamber Site

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

: Smart phone : CAPHG28-01 EUT Model : WIFI MODE Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

EMARK	:								
	Freq		Antenna Factor				Limit Line		
-	MHz	dBuV	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1	44.120	34.61	13.56	0.55	29.87	18.85	40.00	-21.15	QP
2	60.280	41.29	12.69	0.69	29.77	24.90	40.00	-15.10	QP
3	92.139	40.97	12.33	0.92	29.56	24.66	43.50	-18.84	QP
4	158,668	47.77	8.61	1.33	29.14	28.57	43.50	-14.93	QP
2 3 4 5	186.441	35.56	10.24	1.37	28.93	18.24	43.50	-25.26	QP
6	631.688	30.27	18.57	2.73	28.84	22.73	46.00	-23.27	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.58	31.53	8.90	40.24	46.77	74.00	-27.23	Vertical	
4824.00	47.14	31.53	8.90	40.24	47.33	74.00	-26.67	Horizontal	
Test mode: 80				Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.57	31.53	8.90	40.24	36.76	54.00	-17.24	Vertical	
4824.00	37.54	31.53	8.90	40.24	37.73	54.00	-16.27	Horizontal	

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.97	31.58	8.98	40.15	47.38	74.00	-26.62	Vertical
4874.00	45.33	31.58	8.98	40.15	45.74	74.00	-28.26	Horizontal
Test mode: 8	02.11b		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.42	31.58	8.98	40.15	36.83	54.00	-17.17	Vertical
4874.00	35.74	31.58	8.98	40.15	36.15	54.00	-17.85	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.97	31.69	9.08	40.03	46.71	74.00	-27.29	Vertical
4924.00	46.69	31.69	9.08	40.03	47.43	74.00	-26.57	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.93	31.69	9.08	40.03	36.67	54.00	-17.33	Vertical
4924.00	36.03	31.69	9.08	40.03	36.77	54.00	-17.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	(MHz) Level (dBuV) Factor (dB/m) 4824.00 45.20 31.53 4824.00 47.12 31.53			nel: Lowest		Remark: Pea	Remark: Peak		
Frequency (MHz)	Level	Factor	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.20	31.53	8.90	40.24	45.39	74.00	-28.61	Vertical	
4824.00	47.12	31.53	8.90	40.24	47.31	74.00	-26.69	Horizontal	
	4824.00 47.12 31.53 est mode: 802.11g			Test channel: Lowest					
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage		
Test mode: 86 Frequency (MHz)	02.11g Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	nnel: Lowest Preamp Factor (dB)	Level (dBuV/)	Remark: Ave Limit Line (dBuV/m)	over Limit (dB)	Polar.	
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.25	31.58	8.98	40.15	46.66	74.00	-27.34	Vertical
4874.00	45.26	31.58	8.98	40.15	45.67	74.00	-28.33	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.48	31.58	8.98	40.15	36.89	54.00	-17.11	Vertical
4874.00	35.96	31.58	8.98	40.15	36.37	54.00	-17.63	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.58	31.69	9.08	40.03	45.32	74.00	-28.68	Vertical
4924.00	45.30	31.69	9.08	40.03	46.04	74.00	-27.96	Horizontal
Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.02	31.69	9.08	40.03	34.76	54.00	-19.24	Vertical
4924.00	35.88	31.69	9.08	40.03	36.62	54.00	-17.38	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.00	31.53	8.90	40.24	46.19	74.00	-27.81	Vertical
4824.00	45.46	31.53	8.90	40.24	45.65	74.00	-28.35	Horizontal
Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.12	31.53	8.90	40.24	36.31	54.00	-17.69	Vertical
4024.00	30.12	31.33	0.30	70.27	00.01	07.00	17.00	Voitioai

Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.75	31.58	8.98	40.15	46.16	74.00	-27.84	Vertical
4874.00	46.06	31.58	8.98	40.15	46.47	74.00	-27.53	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.86	31.58	8.98	40.15	36.27	54.00	-17.73	Vertical
4874.00	36.73	31.58	8.98	40.15	37.14	54.00	-16.86	Horizontal

Test mode: 8	02.11n(H20)		Test char	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.27	31.69	9.08	40.03	47.01	74.00	-26.99	Vertical	
4924.00	44.75	31.69	9.08	40.03	45.49	74.00	-28.51	Horizontal	
Test mode: 8	02.11n(H20)		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.94	31.69	9.08	40.03	37.68	54.00	-16.32	Vertical	
4924.00	34.37	31.69	9.08	40.03	35.11	54.00	-18.89	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	45.86	31.53	8.90	40.24	46.05	74.00	-27.95	Vertical
4844.00	45.26	31.53	8.90	40.24	45.45	74.00	-28.55	Horizontal
						Remark: Average		
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Test mode: 80 Frequency (MHz)	02.11n(H40) Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 8	02.11n(H40)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.98	31.58	8.98	40.15	46.39	74.00	-27.61	Vertical
4874.00	45.30	31.58	8.98	40.15	45.71	74.00	-28.29	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.31	31.58	8.98	40.15	35.72	54.00	-18.28	Vertical
4874.00	35.24	31.58	8.98	40.15	35.65	54.00	-18.35	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	45.72	31.69	9.08	40.03	46.46	74.00	-27.54	Vertical
4904.00	43.65	31.69	9.08	40.03	44.39	74.00	-29.61	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage	
F	Read	A 4	Cabla	Dracos			0	
Frequency (MHz)	Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Factor	Loss	Factor			Limit	Polar.

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.