Of course. Here is a quick snapshot of the key formulas and concepts from the chapter on Pressure for your revision.

Key Concepts

- [cite_start]**Pressure Definition**: Pressure is the force acting per unit area[cite: 18, 21]. [cite_start]Its unit is the **Pascal (Pa)**, which is equal to one newton per square meter (N/m^2) [cite: 22].
- [cite_start]**Pressure and Area**: The effect of a force depends on the area over which it acts[cite: 8].
 - [cite_start]A large area decreases the pressure (e.g., skis on snow, wide tractor wheels)[cite:
 16, 25].
 - o [cite_start] A small area increases the pressure (e.g., sharp nails)[cite: 26].
- Liquid Pressure: The pressure in a liquid has several key properties:
 - [cite_start]It increases with **depth**[cite: 64].
 - o [cite_start]It increases with the **density** of the liquid[cite: 88].
 - [cite_start]It acts equally in all directions at a specific depth[cite: 66].
- [cite_start] Hydraulic Machines: These machines, like jacks and car brakes, use a liquid to transmit pressure[cite: 116, 147]. [cite_start] They work because liquids are almost incompressible[cite: 115]. [cite_start] They act as force multipliers, where a small force on a small area creates a large force on a larger area[cite: 127].
- [cite_start]**Dams**: Dam walls must be built **thicker at the bottom** because the water pressure is much greater at deeper levels[cite: 96, 101].

Key Formulas ÷

Pressure

[cite_start] $p=rac{F}{A}$ [cite: 19]

- **p** = Pressure (in Pa)
- \circ **F** = Force (in N)
- $\mathbf{A} = \text{Area (in } m^2)$
- Pressure in a Liquid

[cite_start] $\Delta p =
ho g \Delta h$ [cite: 176]

- ∘ **Δp** = Change in pressure (in Pa)
- \mathbf{p} = Density of the liquid (in kg/m^3)

• **g** = Gravitational field strength (in N/kg)

∘ **∆h** = Depth (in m)

• Hydraulic Machines

[cite_start] $F=f imes rac{A}{a}$ [cite: 126]

 \circ **F** = Output force (on the large piston)

• **f** = Input force (on the small piston)

∘ **A** = Area of the large piston

• **a** = Area of the small piston