Álgebra III Recuperatorio del parcial 1

28 de junio de 2022

Notación: \mathbb{F} denota un cuerpo. Para una matriz A, $p_A(x)$ y $m_A(x)$ denotan, respectivamente, el polinomio característico y el polinomio minimal de A.

- 1. (a) Encontrar un polinomio $f \in \mathbb{F}[x]$ de grado ≤ 3 tal que f(-1) = 8, f(0) = 3, f(1) = 0 y f(2) = 5.
 - (b) Hallar m. c. d(f, f').
- 2. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal dada por

$$T(x_1, x_2, x_3, x_4) = (2x_1 + 4x_2 - 4x_4, 4x_1 - 2x_2 - 4x_3 + 4x_4, 4x_1 + 4x_2 - 2x_3 - 4x_4, 4x_1 - 4x_3 + 2x_4).$$

- (a) Encontrar los autovalores y los autoespacios asociados. ¿Es diagonalizable?
- (b) Calcular el polinomio minimal.
- 3. Sea $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ una matriz en bloque, con $A \in \mathbb{F}^{r \times r}$ y $B \in \mathbb{F}^{s \times s}$.
 - (a) Mostrar que $p_C(x) = p_A(x)p_B(x)$.
 - (b) Probar que $m_C(x)$ es el mínimo común múltiplo de $m_A(x)$ y $m_B(x)$.
 - (c) Mostrar que C es diagonalizable si y solo si A y B son diagonalizables.
- 4. Sea $A \in \mathbb{F}^{n \times n}$.
 - (a) Demostrar que $tr(P^{-1}AP) = tr(A)$ para toda matriz invertible P.
 - (b) Demostrar que si A es diagonalizable con autovalores $\lambda_1, \ldots, \lambda_n$ (contados con multiplicidad), entonces $\operatorname{tr}(A^k) = \lambda_1^k + \cdots + \lambda_n^k$ para todo $k \in \mathbb{N}$.
- 5. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si $f \in \mathbb{C}[x]$ es un polinomio tal que m. c. d(f, f') = 1, entonces f no tiene raíces repetidas.
 - (b) Existe una matriz $A \in \mathbb{R}^{2 \times 2}$ diagonalizable sobre \mathbb{R} tal que $A^2 + A + I = 0$.
 - (c) Si $A \in \mathbb{F}[x]^{n \times n}$ es una matriz con entrada polinómicas que satisface det $A \neq 0$, entonces A es invertible.
 - (d) Si $A \in \mathbb{R}^{n \times n}$ es nilpotente y diagonalizable, entonces A = 0.