Question 1	1 / 1 point
What is the Basic Operation in the java code snippet shown below?	•
<pre>int[] v = new int[n]; for (int i = 0; i < n; i++) v[i] = i;</pre>	
comparison	
none of the above	
iteration	
✓ ● assignment	
Question 2 $\sum_{i=0}^{n} (n+1)$	0 / 1 point
$\Delta i=0$ ($i=1$) What is the closed form for the summation shown above?	
$n^2 + n - 2$	
$\Rightarrow n^2 + 2n + 1$	
$n^2 + 2n - 2$	
$n^2 - n$	
$n^2 + 2n$	
× • none of the above	
Question 3	1 / 1 point
Consider the algorithm shown below. What is the output if the input is $A[2,1,4,1,2]$?	
Algorithm Secret(A[0n-1]) //Input: An array A[0n-1] of n real numbers	
minval = A[0] $maxval = A[0]$ $for i = 1 + 0 - 1 - do$	
for $i = 1$ to $n-1$ do if $A[i] < minval$ $minval = A[i]$	
if A[i] > maxval maxval = A[i]	
return (maxval - minval)	
Note: a single = is used to indicate indicate assignment in the above algo.	
Answer: 3 🗸	
Question 4	1 / 1 point
$(43 + 6!)/14 \log 2$	
What is the big-oh efficiency class for the function shown above?	
$\bigcirc O(\log n)$	
$O(n^2)$	
$\bigcirc O(n \log n)$	
$O(n^3)$	
$\bigcirc O(2^n)$	
$\bigcirc O(n)$	
$\checkmark \bullet O(1)$	
$\bigcirc O(n!)$	
Question 5	1 / 1 point
What is the big-oh efficiency class for the algorithm shown below? Assume the input n is very large.	
i = 0 while $i < n$ do	
j = 0 $while j < i do$	
x = x + 2 $j = j + 1$	
// end of while j i = i + 1	
// end of while i $O(n^3)$	
$\bigcirc O(2^n)$ $\bigcirc O(n)$	
$\checkmark \circ O(n)$ $\checkmark \circ O(n^2)$	
$\bigcirc O(1)$ $\bigcirc O(n \log n)$	
$\bigcirc O(n \log n)$ $\bigcirc O(n!)$	
$O(n:)$ $O(\log n)$	