Q1 and Q2.

As larger,
$$E[\hat{e}'] = (n-k)\sigma^2$$
, $E[\hat{s}'] = \sigma^2$

$$\hat{e}_1 = Y - X, \hat{p}_1 = Y - X, (X, X, J, X, Y)$$

$$E[C_1] = E[\hat{e}'\hat{e}] + E[\hat{s}'] \cdot 2k = (n+k)\sigma^2$$

$$= Y - X, (X, X, J, X, Y, (X, p_1, + x, p_2, + e))$$

$$= M_1(X, p_1, + e)$$

$$= M_1(X, p_1,$$

Q3. R-square:

Adjusted R-square:

Best model = intercept, x_dfy, x_svar, x_tms, x_infl2, x_svar2, x_tms2, x_tbl2

AIC:

Best model: x_dfy, x_tms, x_tbl, x_infl2, x_tms2

BIC:

Best model: x_dfy, x_dfy2

Mallow's CP

Best Model: x_dfy, x_tms, x_tbl, x_infl2, x_tms2

LOOCV:

Best model: x_dfy, x_tms, x_tbl, x_infl2, x_tms2

All code can be found on https://github.com/YuJu0819/quant-method in hw8 folder