Fourier Series Tutorial:

Fourier Series is a mathematical tool used to represent pariodic

function as a sum of sines and cosines. A periodic signal flt) with period

To an be expressed as:
$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jw_n t} = \sum_{n=-\infty}^{\infty} F_n e^{jnw_n t}$$

$$\omega_{\Omega} = \Omega \frac{2\pi}{T_{o}} = \Omega \omega_{o}$$

Fin are given by: $F_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(t) e^{-j w_n t} dt$

a) What is the input's fundamental frequency (w.)?

b) What is the Fourier Series coefficient (Fn)?

If $f(x)$ is a periodic function with period To, it can be expressed as:
$f(x) = Q_0 + \sum_{n=1}^{\infty} \left[Q_n \cos \left(\frac{2n}{T_0} n x \right) + b_n \sin \left(\frac{2n}{T_0} n x \right) \right]$
with $a = \frac{1}{T_0} \int_{T_0}^{T} f(x) dx$
for n ≠ 0
$A_n = \frac{2}{T_o} \int_{T_o} f(x) \cos\left(\frac{2n}{T_o} n x\right) dx$
τ. τ. τ.
$b_n = \frac{2}{T_0} \int_{T_0}^{T_0} f(x) \sin\left(\frac{2\pi}{T_0} nx\right) dx$
Example #3: 1
Example # 3:
-n o n 2n
Find an and bn.

Pick an	appropiate	value of	n, to she	ow that;	n = 1-	<u> </u>	1 +	
•					4	3 5	7	