2023 METŲ PAGRINDINĖS SESIJOS MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	D	В	D	C	C	В	A	C	D

II dalis

11	S = 18 (arba 18)
12.1	$120^{\circ} \text{ (arba } \frac{2\pi}{3}\text{)}$
12.2	6
13.1	$a_1 = 18 \text{ (arba 18)}$
13.2	k = 19 (arba 19)
14.1	x = -2 (arba -2)
14.2	$x = \frac{\pi}{12} + \frac{\pi}{3}k, k \in \mathbb{Z} \text{ (arba } 15^{\circ} + 60^{\circ}k, k \in \mathbb{Z})$
14.3	$x = \pm \sqrt{\ln 2} \text{ (arba } \pm \sqrt{\ln 2} \text{)}$
15	1,5 karto (arba 1,5, arba $\frac{3}{2}$, arba $1\frac{1}{2}$)
16	$I = 1.10^{-5} \text{ W/m}^2 \text{ (arba } 10^{-5}, \text{ arba } \frac{1}{10^5}, \text{ arba}$ $\frac{1}{100000}, \text{ arba } 0,00001)$
17	120
18	$\left[\frac{3}{4}; 1\right]$ (arba $[0,75; 1]$, arba $0,75 \le y \le 1$)

 $^{^{\}hbox{\scriptsize (C)}}$ Nacionalinė švietimo agentūra, 2023 m.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		2	
	$640 \cdot 0.7 \cdot 0.85 \cdot 0.85 =$	1	Už bent vieną teisingai apskaičiuotą procentinį sumažėjimą (pvz., sudarant proporciją).
	= 323,68 (Eur). Ats.: 323,68 Eur.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20	Spicinumas ii atsanymas	5 5	v Ci dillillas
20.1		2	
20.1	$\begin{cases} 2 - 3x > 0, \\ 4 + x > 0; \end{cases}$	1	Už teisingai sudarytą nelygybių sistemą.
	$\begin{cases} x < \frac{2}{3}, \\ x > -4; \\ -4 < x < \frac{2}{3}. \end{cases}$	1	Už gautą teisingą atsakymą.
	Ats.: $x \in \left(-4, \frac{2}{3}\right)$ (arba $-4 < x < \frac{2}{3}$).		
20.2		3	
	$\log_{0,3}(2-3x) \ge \log_{0,3}(4+x),$ 2-3x \le 4+x,	1	Už teisingai sudarytą tiesinę nelygybę.
	$-4x \le 2,$ $x \ge -\frac{1}{2}.$	1	Už teisingai išspręstą tiesinę nelygybę.
	$\begin{cases} x \in \left(-4; \frac{2}{3}\right), \\ x \ge -\frac{1}{2}. \end{cases}$	1	Už gautą teisingą atsakymą.
	Arba		
	nubraižyta skaičių tiesė, pavaizduoti nelygybių sprendiniai ir pažymėta jų sankirta.		
	Ats.: $x \in \left[-\frac{1}{2}; \frac{2}{3} \right]$ (arba $-\frac{1}{2} \le x < \frac{2}{3}$).		

Užd.	Sprendimas ir atsakymas		Taškai	Vertinimas
21			8	
21.1			1	
	Ats.: $f'(x) = -3x^2 + 6x + 9$.		1	Už teisingą išvestinę.
21.2			3	
	$f'(x) = -3x^2 + 6x + 9 = 0,$		1	Už pasirinktą teisingą sprendimo būdą (pvz., funkcijos išvestinės prilyginimą nuliui)
	$x^2 - 2x - 3 = 0$,		1	Už teisingus kritinius
	x = -1 arba $x = 3$.			taškus.
	f'(x) = + $f(x) = -1$	3 x	1	Už gautą teisingą atsakymą.
	Ats.: $x \in (-\infty; -1), (3; +\infty)$.			
21.3			4	
	Kadangi $f'(3) = 0$, tai liestir $y = f(3) \Rightarrow y = 31$.	iės lygtis bus	1	Už gautą teisingą liestinės lygtį.
	I būdas $\int_{0}^{3} (31 - (-x^{3} + 3x^{2} + 9x + 4)) dx =$	II būdas $31 \cdot 3 - \int_{0}^{3} (-x^{3} + 3x^{2} + 9x + 4) dx =$	1	Už sudarytą teisingą apibrėžtinį integralą plotui apskaičiuoti.
	$\left = \left(\frac{x^4}{4} - x^3 - \frac{9x^2}{2} + 27x \right) \right _0^3 =$	$= 93 - \left(-\frac{x^4}{4} + x^3 + \frac{9x^2}{2} + 4x\right)\Big _0^3 =$	1	Už gautą teisingą pirmykštę funkciją.
	$= \frac{3^4}{4} - 3^3 - \frac{9 \cdot 3^2}{2} + 27 \cdot 3 =$ $= 33,75.$	$= 93 + \frac{3^4}{4} - 3^3 - \frac{9 \cdot 3^2}{2} - 4 \cdot 3 =$ $= 93 - 59,25 = 33,75.$	1	Už gautą teisingą atsakymą.
	Ats.: 33,75.			

Užd.	Sprendimas ir atsal	kymas		Taškai	Vertinimas
22				5	
22.1				2	
	Pagal Pitagoro teoremą: $BD^2 = DC^2 + CB^2 = 400,$ $BD = 20.$				Už teisingai apskaičiuotą įstrižainės <i>BD</i> ilgį.
	I būdas Trikampiai ABD ir BDC yra panašieji pagal tris kraštines: $\frac{AB}{BD} = \frac{BD}{DC} = \frac{AD}{BC},$ nes $k = \frac{25}{20} = \frac{20}{16} =$ $= \frac{15}{12} = 1,25.$	II būdas Trikampiai ABD ir BDC yra panašieji pagal dvi kraštines ir kampą tarp jų: $\angle ABD = \angle BDC$ (vidaus priešiniai, $DC \ AB$) ir $\frac{AB}{BD} = \frac{BD}{DC}, \text{ nes}$ $k = \frac{25}{20} = \frac{20}{16} = 1,25.$	III būdas Pagal atvirkštinę Pitagoro teoremą pastebime, kad trikampis ABD yra statusis: $AB^2 = AD^2 + BD^2,$ nes $25^2 = 15^2 + 20^2.$ Todėl $\angle ADB = 90^\circ.$ Trikampiai ABD ir BDC yra panašieji pagal du kampus: $\angle ADB = \angle BCD =$ $= 90^\circ,$ $\angle ABD = \angle BDC$	1	Už teisingą pagrindimą.
			(vidaus priešiniai, $DC AB $).		
22.2				3	
	I būdas				
	∠ADB = 90°, nes panašiųjų trikampių ABD ir BDC atitinkami kampai yra lygūs.	Pagal atvirkštinę Pitagoro teoremą pastebime, kad trikampis ABD yra statusis: $AB^2 = AD^2 + BD^2$, nes $25^2 = 15^2 + 20^2$. Todėl $\angle ADB = 90^\circ$.		1	Už teisingą pagrindimą, kad $\angle ADB = 90^{\circ}$.
	$\cos \angle BAD = \frac{AD}{AB} = \frac{15}{25} = \frac{3}{5}.$			1	Už teisingai apskaičiuotą kampo kosinuso reikšmę.
	$\overrightarrow{AB} \cdot \overrightarrow{AD} = 25 \cdot 15 \cdot \text{co}$ $\overrightarrow{AB} \cdot \overrightarrow{AD} = 25 \cdot 15 \cdot \frac{3}{5}$,		1	Už gautą teisingą atsakymą.
	Ats.: 225.				

1	Už teisingai pritaikytą kosinusų teoremą.
1	Už teisingai apskaičiuotą kampo kosinuso reikšmę.
1	Už gautą teisingą atsakymą.
	1

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		7	, , , , , , , , , , , , , , , , , , , ,
23.1		3	
	$V = \frac{x^2 \sqrt{3}}{4} \cdot h \Rightarrow 54 = \frac{x^2 \sqrt{3}}{4} \cdot h \Rightarrow h = \frac{216}{x^2 \sqrt{3}},$	1	Už teisingai išreikštą <i>h</i> per <i>x</i> .
	$S = S_{\underline{son.}} + 2S_{pagr.} = 3 \cdot h \cdot x + 2 \cdot \frac{x^2 \sqrt{3}}{4},$	1	Už teisingai sudarytą reiškinį viso paviršiaus plotui apskaičiuoti.
	$S(x) = 3 \cdot \frac{216}{x^2 \cdot \sqrt{3}} \cdot x + 2 \cdot \frac{x^2 \sqrt{3}}{4} = \frac{x^2 \sqrt{3}}{2} + \frac{216\sqrt{3}}{x}.$	1	Už teisingą pagrindimą.
23.2		2	
	$\left(\frac{x^2\sqrt{3}}{2} + \frac{216\sqrt{3}}{x}\right)' = x\sqrt{3} - \frac{216\sqrt{3}}{x^2},$	1	Už teisingai gautą išvestinę.
	$\frac{x^3\sqrt{3} - 216\sqrt{3}}{x^2} = 0 \Rightarrow x^3 = 216 \Rightarrow x = 6.$ Ats.: $x = 6$.	1	Už gautą teisingą atsakymą.
23.3		2	
20.0	$S'(x) = \underbrace{\begin{array}{c} S'(x) \\ S(x) \end{array}}_{X_{\min}}$	1	Už teisingą pagrindimą, kad $x = 6$ yra minimumo taškas.
	Funkcija $S(x)$ įgyja mažiausią reikšmę, kai $x=6$. $S_{\min} = S(6) = \frac{6^2 \sqrt{3}}{2} + \frac{216\sqrt{3}}{6} = 18\sqrt{3} + 36\sqrt{3} = 54\sqrt{3},$ todėl $S(x) \ge S(6)$ su visomis $x > 0$ reikšmėmis. Taigi $S(x) \ge 54\sqrt{3}$.	1	Už teisingą pagrindimą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24	•	4	
24.1		2	
	Įvykiui $X = 2$ yra palankios trys baigtys: $\mathbf{P}(X = 2) = \mathbf{P}(G \cap T \cap \overline{M}) + \mathbf{P}(G \cap \overline{T} \cap M) + \mathbf{P}(\overline{G} \cap T \cap M).$	1	Už teisingai išvardytas įvykiui $X = 2$ palankias baigtis arba už teisingai apskaičiuotą bent vienos baigties tikimybę.
	Yra žinoma, kad įvykiai <i>G</i> , <i>T</i> ir <i>M</i> yra nepriklausomi, todėl: $\mathbf{P}(X=2) = \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{1}{3} + \frac{3}{4} \cdot \frac{1}{5} \cdot \frac{2}{3} + \frac{1}{4} \cdot \frac{4}{5} \cdot \frac{2}{3} = \frac{13}{30}.$	1	Už teisingą pagrindimą.
24.2		2	
	$\mathbf{P}(X=1) = 1 - \mathbf{P}(X=0) - \mathbf{P}(X=2) - \mathbf{P}(X=3) = 1 - \frac{1}{60} - \frac{13}{30} - \frac{2}{5} = \frac{3}{20}.$	1	Už teisingai gautą <i>p</i> reikšmę (pvz., teisingai pritaikytos žinios apie elementariųjų įvykių tikimybių sumą).
	$\mathbf{E}(X) = 0 \cdot \frac{1}{60} + 1 \cdot \frac{3}{20} + 2 \cdot \frac{13}{30} + 3 \cdot \frac{2}{5} = 2\frac{13}{60}.$ $Ats.: \ \mathbf{E}(X) = 2\frac{13}{60}.$	1	Už gautą teisingą atsakymą.
	60		

Užd. 25	Sprendimas ir atsakymas	Taškai 3	Vertinimas
	Ç		
	$A \longrightarrow B$		
	I būdas		
	Pagal sinusų teoremą:	1	Už teisingai pasirinktą sprendimo būdą.
	$\frac{BC}{\sin \angle BAC} = \frac{AC}{\sin \angle ABC},$		sprendinio oudą.
	$\frac{4x}{\sin \angle BAC} = \frac{3x}{\sin \angle ABC},$		
	4 3	1	Už teisingai pritaikytą redukciją
	$\frac{4}{\sin \angle BAC} = \frac{3}{\sin(\angle BAC - 90^\circ)},$		arba kampų sumos (skirtumo)
	$\frac{4}{\sin \angle BAC} = \frac{3}{-\cos \angle BAC} \Rightarrow$		sinuso formulę.
	$\frac{1}{\sin \angle BAC} - \frac{1}{-\cos \angle BAC} \rightarrow$		
	$\frac{\sin \angle BAC}{\cos \angle BAC} = -\frac{4}{3} \Rightarrow \operatorname{tg} \angle BAC = -\frac{4}{3}.$	1	Už gautą teisingą atsakymą.
	Ats.: $tg \angle BAC = -\frac{4}{3}$.		
	II būdas	1	IIV Asisimasi masiminla
	Pagal trikampio ploto formulę teisinga lygybė:	1	Už teisingai pasirinktą sprendimo būdą.
	$\frac{1}{2}AC \cdot AB \sin \angle BAC = \frac{1}{2}BA \cdot BC \sin \angle ABC,$		ı
	$3x\sin \angle BAC = 4x\sin \angle ABC,$		
	$3\sin \angle BAC = 4\sin(\angle BAC - 90^\circ),$	1	Už teisingai pritaikytą
	$3\sin \angle BAC = -4\cos \angle BAC,$		redukciją.
	$\frac{\sin \angle BAC}{\cos \angle BAC} = -\frac{4}{3} \Rightarrow \operatorname{tg} \angle BAC = -\frac{4}{3}.$	1	Už gautą teisingą atsakymą.
	Ats.: $tg \angle BAC = -\frac{4}{3}$.		
	3		

2023 N	I. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UZDUOTI	ES VERTI	NIMO INSTRUKCIJA Pagrindinė sesija
	III būdas		
	D A B		
	$\angle DAC = 90^{\circ} - \angle ABC \Rightarrow \angle ACD = \angle ABC,$ $\cos \angle ABC = \cos \angle ACD = \frac{CD}{3x}$ ir $\sin \angle ABC = \frac{CD}{4x},$	1	Už teisingai pasirinktą sprendimo būdą (šiuo atveju už brėžinio papildymą ir teisingą bent vieną sin ∠ABC arba cos∠ABC išraišką).
	$tg \angle ABC = \frac{\sin \angle ABC}{\cos \angle ABC} = \frac{3}{4},$	1	Už gautą teisingą tg∠ABC reikšmę.
	$tg \angle BAC = tg(90^{\circ} + \angle ABC) = -ctg \angle ABC =$	1	Už gautą teisingą atsakymą.
	$= -\frac{1}{\operatorname{tg} \angle ABC} = -\frac{4}{3}.$ $Ats.: \operatorname{tg} \angle BAC = -\frac{4}{3}.$		
	Ats.: $tg \angle BAC = -\frac{4}{3}$.		

Užd. 26	Sprendimas ir atsakymas	Taškai 4	Vertinimas
	I būdas Sakykime, kad pirmasis geometrinės progresijos narys lygus x , tada teisinga lygybė: $(x+xq)\cdot 0.9 = xq^2$,	1	Už teisingai pasirinktą sprendimo būdą (nežinomųjų įvedimą ir sudarytą teisingą lygtį).
	$0.9x + 0.9xq = xq^{2}.$ Kadangi $x \neq 0$, tai $q^{2} - 0.9q - 0.9 = 0,$ $10q^{2} - 9q - 9 = 0,$	1	Už teisingai gautus lygties sprendinius <i>q</i> .
	q = 1,5 arba $q = -0,6$. q = -0,6 netinka, nes progresija yra didėjanti. Kai $q = 1,5$, tai teisinga nelygybė $x \cdot 1,5^2 - x \le 19$, $x \le 15,2$.	1	Už teisingai nustatytą x reikšmių intervalą.
	Kadangi x ir kiti progresijos nariai yra natūralieji skaičiai ir reikia rasti didžiausią galimą trečiojo nario reikšmę, perrenkame, pradėdami nuo didžiausio galimo pirmojo nario: $x = 15$, tai antrasis narys bus 22,5 (netinka); $x = 14$, tai antrasis narys bus 21, o trečiasis – 31,5 (netinka); $x = 13$, tai antrasis narys bus 19,5 (netinka); $x = 12$, tai antrasis narys bus 18, o trečiasis 27 (tinka).	1	Už gautą teisingą atsakymą.
	Ats.: 27. II būdas $b_1, b_2, b_3 \in N; q > 1; b_3 - b_1 \le 19;$	1	Už teisingai pasirinktą sprendimo būdą (nežinomųjų įvedimą ir sudarytą teisingą
	$b_3 = 0.9(b_1 + b_2),$ $b_1q^2 = 0.9b_1 + 0.9b_1q.$		lygtį).
	Kadangi $b_1 \neq 0$, tai $q^2 = 0.9 + 0.9q,$ $q^2 - 0.9q - 0.9 = 0,$ $q_{1,2} = \frac{0.9 \pm 2.1}{2} \Rightarrow q_1 = 1.5; q_2 = -0.6.$	1	Už teisingai gautus lygties sprendinius q .
	q = -0,6 netinka, nes progresija yra didėjanti. Tada galime perrinkti: 1; 1,5; (netinka); 2; 3; 4,5 (netinka); 3; 4,5; (netinka); 4; 6; 9 (tinka, bet tai dar ne didžiausia galima trečiojo nario reikšmė). Pastebime, kad pirmasis narys turi būti skaičiaus 4 kartotinis, todėl perrenkame	1	Už teisingai rastą bent vieną trijų natūraliųjų geometrinės progresijos narių aibę.

2023 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUO	TIES VERT	TINIMO INSTRUKCIJA Pagrindinė sesija
8; 12; 18 (tinka, bet tai dar ne didžiausia galima trečiojo nario reikšmė); 12; 18; 27 (tinka, bet ar tai didžiausia galima trečiojo nario reikšmė?); 16; 24; 36 (netinka, nes $b_3 - b_1 = 20 > 19$).		
$b_3 - b_1 \le 19$, $b_1(1,5^2 - 1) \le 19$, $b_1 \cdot 1,25 \le 19$, $b_1 \le 15,2$. Šią sąlygą tenkinanti didžiausia b_1 reikšmė yra 12, todėl $b_3 = 27$ yra didžiausia galima trečiojo nario reikšmė. Ats.: 27.	1	Už teisingą pagrindimą, kad $b_3 = 27$ yra didžiausia galima trečiojo nario reikšmė.
III būdas $b_1, b_2, b_3 \in N; q > 1; b_3 - b_1 \le 19;$ $b_3 = 0.9(b_1 + b_2),$ $b_1q^2 = 0.9b_1 + 0.9b_1q.$	1	Už teisingai pasirinktą sprendimo būdą (nežinomųjų įvedimą ir sudarytą teisingą lygtį).
Kadangi $b_1 \neq 0$, tai $q^2 = 0.9 + 0.9q,$ $q^2 - 0.9q - 0.9 = 0,$ $q_{1,2} = \frac{0.9 \pm 2.1}{2} \Rightarrow q_1 = 1.5; q_2 = -0.6.$	1	Už teisingai gautus lygties sprendinius <i>q</i> .
$b_3 - b_3 \cdot \left(\frac{3}{2}\right)^{-2} \le 19,$ $b_3 \le 34, 2.$	1	Už teisingai nustatytą b_3 reikšmių intervalą.
$b_1 = \frac{4}{9}b_3 \in \mathbb{N}$, todėl b_3 dalus iš 9, o kadangi $b_3 \leq 34,2$, tai didžiausia galima trečiojo nario reikšmė $b_3 = 27$, $b_2 = 18$, $b_1 = 9$ – tinka. Ats.: 27.	1	Už teisingą pagrindimą, kad $b_3 = 27$ yra didžiausia galima trečiojo nario reikšmė.

12 iš 12