Meta-analysis of hundreds of seizure-related traits reveals putative modifiers of epilepsy resilience and susceptibility

ACKNOWLEDGMENTS

Gianna Durante
Purdue University
JAX Summer Student 2024

NSF Grant #2244034

JAX SSP Laura Muller Morgan Sanders

Mouse Phenome Database
Sejal Desai
Elissa Chesler

BRAINS: A CRASH COURSE

Figure 2.B) Visualization of morphology and laminar distribution of the main types of excitatory neurons within the neocortical microcircuit. From:

An Attempt at a Unified Theory of the Neocortical Microcircuit in Sensory Cortex

Original: https://www.frontiersin.org/articles/10.3389/fncir.2020.00040

- Excitatory and inhibitory neurons form microcircuits that are coupled to produce a whole brain
- Synchrony occurs when many microcircuits entrain to oscillate in the same phase
- Synchrony supports major brain functions
 - Sleep-wake transitions
 - Attention
 - Information gating

CC BY-SA 4.0 Bennett Max.

SEIZURES ARE PATHOLOGICAL HYPERSYNCHRONY

- Cause loss of consciousness and/or control of motor function
- Brains are complicated => Many kinds of seizures
- Combination of neuron autonomous and network factors

THE EPILEPSIES

- Family of syndromes characterized by unprovoked seizures
- Common and rare forms
- Genetic and acquired forms (~1000 genes implicated)

Epidemiology

- 1 in 26 Americans will develop epilepsy
- 1 in 150 American children are diagnosed
- 3.4 M worldwide prevalence
- 150k / year incidence

SYSTEMS ANALYSIS OF SEIZURE MODIFIER GENETICS

Goal: Identify modifier genes in mice that are predicted to act in human seizure gene networks

Rationale: Drug targets with (human) genetic support are 2.6x more likely to succeed in trials

SYSTEMS ANALYSIS OF SEIZURE MODIFIER GENETICS

Identification of Epilepsy Associated Loci Gene Network Mouse Epilepsy Studies

EXTENSIVE LEGACY DATA ON GENE NETWORK

Population	Measured Phenotype	Induction Method
AXBXA	•Latency to seizures •Threshold dosage	•Toxins •Visual stimulation
BXD	 Generalized seizure threshold (GST) Myoclonic jerk threshold (MJT) Audiogenic seizure severity Kindling 	Toxins (flurothyl, Pentylenetetrazol)Drug withdrawalAudio stimuliChanging Pressure
MDP	•GST •MJT	•Toxins (flurothyl) •Shock

• 127 phenotype measures in total

META-ANALYSIS REVEALS MANY PUTATIVE MODIFIERS

• 118 distinct loci at p < 1e-15

METASOFT meta-analysis

at The Jackson Laboratory

Mouse Phenome Database

SYSTEMS ANALYSIS OF SEIZURE MODIFIER GENETICS

NETWORK-BASED RANKINGS FOR IMPORTANCE TO EPILEPSY

CNS DEVELOPMENT AND SYNAPTIC FUNCTION ARE ENRICHED IN EPILEPSY INTERACTOME

REVIGO treemap of enriched processed

FUNCTIONAL SCORE CORRELATES WITH LOF TOLERANCE

functional score (binned)

FILTERING TO HIGH-QUALITY CANDIDATE GENES

Functional Candidates Gene Ranking

EXAMPLE LOCUS WITH STRONG FUNCTIONAL CANDIDATE

chr 12 position

FILTERING TO HIGH-QUALITY CANDIDATE VARIANTS

FILTERING TO HIGH-QUALITY CANDIDATE VARIANTS

Example locus on chr 1

CANDIDATE MODIFIERS PREDICTED TO DISRUPT TF BINDING SITES

Gene	Predicted Impact of Lower Expression
lgsf21	Inhibited GABAergic synapse differentiation and growth.
Cadps2	Decreased number parvalbumin-positive GABAergic interneurons
Dtna	Inhibited localization of GABA receptors
Itpk1	Modified activity-related response and altered synaptic plasticity
Tenm4	Inhibited neurite outgrowth and differentiation

CONCLUSIONS

- Shared genetic networks of epilepsy between artificial mouse models and human disease
- Downstream bioinformatics for potential drugs and highquality targets

PHILOSOPHICAL MUSINGS

- · Networks can reveal the convergence between human and mice
- Network analyses cope will false positives (can loosen stringent mapping criteria)
- Meta-analysis in "biobank scale" data reveals lots of loci

THANKS!

Interactome

Feature matrix

 Propagate annotation of disease gene to other genes in the genome

$$class(g) = sign\left(w_0 + \sum_{p \in P} A_{gp} w_p\right)$$