- 6 AB=1 , $AC=\sqrt{3}$, $\angle BAC=\frac{\pi}{2}$ である直角三角形 ABC を考える。n を 2 以上の自然数とし , 辺 AB を n 等分して得られる点を A に近い方から順に $P_1,\,P_2,\,\cdots\,,\,P_{n-1}$ とする。A を P_0 , B を P_n とおくとき , 以下の問いに答えよ。
- (1) 三角形 $P_k C P_{k+1}$ $(0 \le k \le n-1)$ の内接円の半径を求めよ。
- (2) 三角形 $P_k C P_{k+1}$ $(0 \le k \le n-1)$ の内接円の面積の総和を S_n とする。

$$I_n = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{3 + \left(\frac{k}{n}\right)^2}$$

とおくと, $nS_n \leqq rac{3\pi}{4}I_n$ となることを示せ。また,極限 $\lim_{n o \infty}I_n$ を求めよ。

(3) 極限 $\lim_{n\to\infty} nS_n$ を求めよ。