Posi-Watt Demand Response Utilizing Thermal Storage for AirConditioning Systems of Large Scale Buildings and Factories

Akira YABE(Dr.) Yuka OGASAWARA Junya NISHI Shigenobu WATANABE iiESI Korea October 22, 2015

New Energy and Industrial Technology Development Organization (NEDO)

Technology Strategic Center

Renewable Energy/Energy System & Hydrogen Unit

Feed-in-Tariff has accelerated renewable energy penetration

TSC Energy system & Hydrogen Uni

■ Installation capacity of PV has surpassed 20GW at the end of FY2014 and are expected over 60GW in 2030.

PV installation > Off-peak demands

TSC Energy system & Hydrogen Unit

- PV shares 95% of certified capacity under FIT (82GW)
- PV installation is concentrated in specific regions.
- Certified capacity under FIT are greater than off-peak demands in these regions.

TSC Renewable Energy Un

<u>Trends on Renewable Energy in Japan</u>

- PVs have penetrated rapidly after introduction of Feed in Tariff (FIT) on July 2014.
- Installations of PVs have surpassed 20GW at the end of FY2014 and are expected over 60GW in 2030.
- PVs share 95% of certified capacity under FIT and are concentrated in specific areas such as Kyushu, Hokkaido and Tohoku. Approved capacity under FIT are greater than off-peak demands in these regions.
- We NEDO estimate around 10% of PVs generation would not be utilized because of generation suppression in off-peak periods when the installations of PVs reach70GW without any measures(listed in next page).

Issues on power grid caused by variable generations

TSC Energy system & Hydrogen Uni

Load and Generation Curves of California

CAISO Load, Wind & Solar Profiles – High Load Case January 2020

Source: California ISO

TSC Renewable Energy Ui

Future problem on power grid caused by variable generations

- Large amount of variable power generation may cause problems on power grid such as
 - i. Surplus power in daytime of off-peak period
 - hours to day time-domain
 - ii.Rapid variation of net load especially in evening time
 - ▶ 10 minutes to hours time-domain
 - iii.Lack of regulation and/or load following capacity in daytime on sunny day

▶ 10s seconds to hours time-domain

Measures against grid problem

- Generation management
 - Improvement of generation output forecast for variable generation
 - Generation suppression on light load
 - Improvement of thermal units' flexibility
- Demand side management
 - Improvement of thermal units' flexibility
 - Inter-regional operation of power grid
- Energy storage

Source: California ISO

Measures against issues on power grid

TSC Energy system & Hydrogen Unit

measures	Grid Side	Generation Side	Demand Side
Fluctuation reduction of variable generation		√	
Improvement of generation output forecast for variable generation	√		
Demand Response			√
Energy storage	√	✓	√
Generation suppression on light load		✓	
Improvement of thermal units' flexibility	√		
Inter-regional operation of power grid	√		

- The purpose of the project is to optimize power system operation.
- There are three key technologies to develop
- Technology 1: Forecasting of variable power generation of renewable energies from weather and demand such as
- Technology 2: Controlling by generation plan with combination of output control and storage battery adjustment
- Technology 3: Operation adjustment of large scale generators and batteries

Smart Community Demonstration Concept of Smart Community Development

TSC Renewable Energy Unit

Utilizing advanced ICT, a smart community is a new community which requires the participation of citizens and involves smart transportation, homes, office buildings and plants, while enabling the introduction of renewable energy.

Types and characters of energy storage technology

													'	
		Jnit	сар	acit	У		Energy		Cycle	Application range				
Method	Wh	4 × × 4	Facility cost (USD/kWh)	density Cycle li	Cycle life*3	Cycle life*3 efficiency*3	ility	Supply & Demand Ctrl.		d Ctrl.				
	100kWh	MWh	10MWh	100MW h	GWh	(335) (111)	(Wh/I) ^{※₃}		(%)	Stability	min	hr.	day	Mo.
Battery Storage						500-600 (NaS, past result in Japan) 1420* ^{2(VRFB)}	10-400	-4,500 ^(NaS) >10,000 ^(VRFB)	70-85 ^(NaS) 60-75 ^(VRFB)		•	•	•	
						900*2(Li-ion)		-10,000 ^(Li-ion)	85-98 ^(Li-ion)					
Hydrogenation (Power to Gas)						200-400	550-650	1,000-10,000	34-44(reconversion) 70(electrolysis) 80-90 ^{*4} (SOEC)			•	•	
LAES (Liquid Air Energy Storage)						400 (tankage •liquefaction)	>1,000		-70		0	•	•	
PHS (Pumped Hydro Storage)						510 ^{*2} 200-300 (Past result in Japan)	1-2	> 15,000	70-80	•	•	•	•	
CAES (Compressed Air Energy Storage)						119 ^{*1} (underground storage) 2,200 ^{*1} (tankage)	2-6	>10,000	41-75	Δ	0	•	•	•
Flywheel Energy Storage						9,600 ^{*1} -17,200 ^{*2}	20-80	20,000 – 1 millon	80-90		•	0		
SMES (Superconducting Magnetic Energy Storage)						700,000 (voltage sag compensation)	5-7	No record	75-80		•	0		
EDLC (Electric double- Layer Capacitor)						1,300,000 (voltage sag compensation)	10-20	>1 million	85-98		•			
Installation location : power generation facility side : grid side : economic effects are expected														

■ : Feasible □ : Feasible by R&D ● Applicable ○ Possibly applicable by R&D △ Partly applicable %1: Estimated from the total of DOE's demonstration projects %2: DOE/EPRI reports %3: IEC Whitepaper %4: Interviews with companies

Worldwide energy storage technology trends

Layer Capacitor)

TSC Renewable Energy Ur Method Energy storage technology trends worldwide [JP] Sodium sulfur (NaS) batteries have been commercialized as large scale batteries and introduced more than 100 places in Japan. Typical price is about 500-600 USD/kWh. [JP] Vanadium redox flow battery (VFRB, 60MWh) and lithium ion battery (LIB, 20MWh) for frequency regulation are being tested in Japan (Ministry of Economy, Trade and Industry). [JP] Development of Cost reduction technology for LIB and nickel metal hydride (NiMH) is being implemented (NEDO). The targets are set to 500€/kW(670USD/kW, for regulation)and 140€/kWh(170USD/kWh, for surplus **Battery Storage** generation), and they are expected to achieve. [US] New methods of sodium ion and flow batteries are under development in ARPA-E program. [US] Tesla Mortors plans to sell low price batteries for household use. [JP] NEDO has just started demonstration projects. [DE] Germany and the US are also conducting demonstration projects. Hydrogenation [EU] It has been demonstrated that generated hydrogen is mixed into the gas pipeline directly or via methanation (Power to Gas) without reconversion. [JP] Solid polymer type water electrolysis(SOEC), the only method to achieve high cycle efficiency, is being developed. **IAFS** [UK] LAES is developed in the UK. It uses existing mature components (liquefier, liquid air storage, power turbine), with proven performance, cost, lifetime. (Liquid Air Energy Storage) [JP] The method of using sea water in which the ocean is utilized as a lower reservoir is under operation in Okinawa. **PHS** But this method doesn't be disseminated, because a corrosion-resistant material is expensive. (Pumped Hydro Storage) [US] APRA-E plans to expand the R&D budget for developing power storage systems other than battery storage. [US] Large facilities with underground storage space are in operation in the US and Germany. PG&E is planning to **CAES** construct the large facilities of 300MW-10h(3GWh) in DOE project. (Compressed Air Energy [JP] The development and demonstration of tank storage (MW class) are considered (NEDO). Storage) [UK] Cryogenic energy storage method using liquid air(high density) in order to reduce cost has been developed. [JP] The target of 500€/kW is expected to achieved by using high-temperature superconductivity technology. Flywheel Energy [US] 100kW-25kWh*200units(20MW) systems for frequency regulation are in commercial operation. Storatge [US] ORNL in the US is developing a light and high-strength material. [JP] SMES using low temperature superconductivity technology has been commercialized for voltage sag **SMES** (Superconducting Magnetic Energy Storage) compensation. It has possibility to be used for frequency regulation if large capacity is realized. EDLC (Electric double-[JP] It is already applied for regenerative power storage in railways.

[JP] High energy density capacitor with CNT applied electrode was developed for automobile application (2010,NEDO).

Potential DR resources in Japan

			13C RE/Ellergy sy	Sterri & 112 Offic
Low-voltage customers	Heat pump	EV	Electric water heater	Total
(A) Number of machines	3.72M	0.056M	1.88M	5.65M
(B) Storing power[GW]	5.6 ((A)×1.5kW)	0.1 ((A)×2kW)	9.4 ((A)×5kW)	15
(C) DR resources: (B)×1/3[GW]	1.9	0.03	3.1	5

High-voltage customers	Turbo refrigerator	Reciprocating liquid chiller	Total
(A) Number of machines	0.006M	0.14M	0.15M
(B) Storing power[GW]	12.4 ((A)×2057kW)	28.2 ((A)×200kW)	41
(C) DR resources: (B)×1/3[GW]	1.0	2.4	3.4

Technological problems of DR for business & industrial use

- ◆Developments of heat pump devices which can control power fluctuation and maintain highly efficient operation at partial load
- Increase the amount of devices & improvement performance of devices for DR
- Dispatchable control of DR resources
- Technologies for supervisory control, operation and sensing

TSC RE / Energy system & H2 Unit

Composition

- □ Turbo refrigerator: 1,266kW×2
- \square Heat pump : 1,406kW×2
 - Heat storage water tanks 2,550m³
 - Ice storage tanks 218m³

- \Rightarrow Produce heat:40°C, cold:7°C
 - ⇒ Heat storage water tanks
 - \Rightarrow Use for air conditioning in this building.
 - X Supply the shortage: With turbo refrigerator
- Assumption: Heat & Electricity; 5,344kW COP=4
 - ⇒ The amount of electricity which can control power fluctuation:
 About 1,300kW
- Assumption: 1/3 of all power dissipation will available for DR
 - ⇒ NEDO Kawasaki Head Office has 600kW DR resources
 - ⇒ It corresponds to 400 heat pump type water heaters for home

Potential DR resources in Japan

TCC						
-/5/	REI	Eneray:	cuctom	Ω.	Ho	I Ini

Low-voltage customers	Heat pump	EV	Electric water heater	Total
(A) Number of machines	3.72M	0.056M	1.88M	5.65M
(B) Storing power[GW]	5.6 ((A)×1.5kW)	0.1 ((A)×2kW)	9.4 ((A)×5kW)	15
(C) DR resources : (B)×1/3[GW]	1.9	0.03	3.1	5

High-voltage customers	Turbo refrigerator	Reciprocating liquid chiller	Total
(A) Number of machines	0.006M	0.14M	0.15M
(B) Storing power[GW]	12.4 ((A)×2057kW)	28.2 ((A)×200kW)	41
(C) DR resources: (B)×1/3[GW]	1.0	2.4	3.4

Technological problems of DR for business & industrial use

◆Developments of heat pump devices which can control power fluctuation and maintain highly efficient operation at partial load

- Increase the amount of devices & improvement performance of devices for DR
- Dispatchable control of DR resources
- Technologies for supervisory control, operation and sensing

Direction of NEDO TSC's strategy

TSC Renewable Energy Unit

Generation side

- Household & Generation Utility
 - » It is important to develop storage systems which store surplus power of PV generation and utilize it basically for domestic electricity demands.
 - » It is also significantly important to explore various applications for load leveling; to explore smart system composed by generation, energy storage system and demand response.
 - » Batteries for electrical vehicle (EV) are supposed to be key devices for energy storage systems in houses.
- Generation utility
 - » Storage devices of 10s MWh class are required.

Grid side

» Variety of devices which are suitable for long duration and large capacity such as pumped hydro, liquid air and hydrogen should be developed.

TSC Renewable Energy Unit

- 1. Posi-Watt Demand Response would become to be strongly requested due to the rapid and large amount of increase of fluctuating renewable energy.
- 2. As for the tools of Posi-Watt Demand Response, heat pump systems for air-conditioning and hot water supply in houses and the car batteries for Electric Vehicles would not be enough.
- 3. Large scale Heat pump systems for the air-conditioning of large business building and the large scale factories would become very important as the Posi-Watt Demand Response for controlling the electricity demand.
- 4.Large Scale Advanced Heat Pump Syetem with flexible thermal output control would be seriously important for controlling the electricity demand.