FIT3158 Business decision modelling - \$2 2022

Dashboard / My units / FIT3158_S2_2022 / Assessments / Quiz Week 10

Started on Friday, 7 October 2022, 12:16 PM

State Finished

Completed on Friday, 7 October 2022, 12:30 PM

Time taken 13 mins 53 secs

Grade 1.00 out of 1.00 (100%)

The standard error measures the

 \bigcirc a. variability in the dependent variable around the fitted regression function.

b. variability in the actual data around the fitted regression function.

o. variability in the X values.

O d. variability in the independent variable around the fitted regression function.

The correct answer is: variability in the actual data around the fitted regression function.

Error sum of squares (ESS) is computed as

$$\begin{array}{c} \bigcirc \text{ b. } \\ \sum_{i=1}^n (\hat{Y}_i \text{-} Y_i) \end{array}$$

$$\circ$$
 c.
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$\bigcirc \text{ d. } \sum_{i=1}^n (\hat{Y}_i \text{-} Y_i)^2$$

Your answer is correct.

The correct answer is:

$$\frac{n}{\sum_{n=1}^{\infty}}$$

$$\sum_{i=1}^{\infty} (Y_i - Y_i)^{-1}$$

How is mean absolute deviation calculated?

- \bigcirc a. $\sum_{i} \frac{(Y_{i} \hat{Y}_{i})^{2}}{n}$
- \bigcirc b. $\sum_{i} \frac{|Y_{i} \hat{Y}_{i}|^{2}}{n}$
- \bigcirc c. $\sum_{i} \frac{(Y_{i} \hat{Y}_{i})}{n}$

Your answer is correct.

The correct answer is:

$$\sum_{i} \frac{|Y_{i} - \hat{Y}_{i}|}{n}$$

The r correlation coefficient

- o a. gives the proportion of the variation of one variable that is predictable from the other variable.
- o b. measures the strength and the direction of a linear relationship between two variables.
- O c. measures the variability in the actual data around the fitted regression function.
- Od. can take any value between 0 and 1.

The correct answer is: measures the strength and the direction of a linear relationship between two variables.

Suppose that we calculate the four-period moving average of the following time series:

t	1	2	3	4	5	6
y_t	17	27	22	16	25	13

The centred moving average for period 4 is:

- a. 21.5
- b. 20.75
- oc. 19
- od. 22.5

Δ	time-series	which ha	s no significan	t unward or	downward	trend is	referred to a	26
$\overline{}$	tillie selles	willCillia	3 HO SIGHIHOUH	t upwaiu oi	uowiiwaiu	ti ci iu is	referred to a	ao

- a. non-stationary.
- b. static.
- oc. stationary.
- d. non-moving.

The correct answer is: stationary.

Based on the following regression output, what is the equation of the regression line?

Regression Statistics					
Multiple R	0.99313				
R Square	0.98630			7	
Adjusted R Square	0.98238			10	
Standard Error	2.94802		0	8	
Observations	10				
ANOVA		6			
	<u>df</u>	SS	MS	F	Significance F
Regression	2	4379.182	2189.591	251.943	0.0000
Residual	7	60.836	8.691		
Total	9	4440.017			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	14.169	3.856	3.674	0.008	5.050
X Variable 1	0.985	0.114	8.607	0.000	0.714
X Variable 2	0.995	0.057	17.498	0.000	0.860

- \bigcirc a. \acute{Y}_{i} = 0.995 + 14.169 X_{1i} + 0.985 X_{2i}
- \bigcirc b. \acute{Y}_{i} = 3.856 + 0.114 X_{1i} + 0.057 X_{2i}
- \circ c. \acute{Y}_{i} = 14.169 + 0.114 \acute{X}_{1i} + 0.057 \acute{X}_{2i}
- \odot d. \acute{Y}_{i} = 14.169 + 0.985 X_{1i} + 0.995 X_{2i}

The correct answer is: \dot{Y}_{i} = 14.169 + 0.985 X_{1i} + 0.995 X_{2i}

A technique that analyzes past behavior of a time series variable to predict the future is referred	d to as
a. an extrapolation model.	~
 b. a past performance model. 	
oc. a regression model.	
O d. a seasonal model.	
The correct answer is: an extrapolation model.	
Regression analysis is a modeling technique	
a. for analyzing the relationship between dependent and independent variables.	✓
 b. that assumes all data is normally distributed. 	
o. for capturing uncertainty in predicted values of Y.	
od. for examining linear trend data only.	
The correct answer is: for analyzing the relationship between dependent and independent variables.	
■ Quiz Week 9	
Jump to	\$
	Quiz Weeks 11 and 12 ▶