Constructions

(Slide 22)

Address of A[o] > Address of A[i] >	Base addr of A (\$s3)
	8 x 4
Addes of A[8] >	

Unsigned Binon Integers (Slide 27)

$$010101 = 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 16 + 4 + 1 = 21$$

2's Complement Signed Integers

$$|00|0| = (-1) \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= -32 + 4 + 1 = -27$$

R-Format

	6	1	5	5	5	5	6	
	محدمط	2	رح	ct	۲5	shept	funct. Gele	
					\			
(4		↓	\downarrow		Ŋ		
Basic		ţ	irs+	Second	1	egister	Shift	
o pera		æ	gister		′ (dest. operan	amount	
ofm	str.		عاره	. \	end	powe	c) Call &	
(IfR	-)	•	speo	√			Shif	
ماا	ø)							1

add \$51,\$52,\$53	Select specific voion
	of the operation

Name	Register Number	Usage	Preserve on call?
\$zero	0	constant 0	n.a.
\$at	1	reserved for assembler	n.a.
\$v0 - \$v1	2-3	returned values	no
\$a0 - \$a3	4-7	arguments	yes
\$t0 - \$t7	8-15	temporaries	no
\$s0 - \$s7	16-23	saved values	yes
\$t8 - \$t9	24-25	temporaries	no
\$gp	28	global pointer	yes
\$sp	29	stack pointer	yes
\$fp	30	frame pointer	yes
\$ra	31	return addr	yes

_									
_	ор	rs	rt	rd	shamt	funct			
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits			
E	Example:	SU	\$+2,	\$50, (<i>,</i>				
	Since L-form	at J		for \$+2	1 Shamt	for Sll			
			nosed,						
C	i bas	R-forme	at (function	Code =	36)			
	٥٢ :	R-forma	at C	Lactor	حطرح	. 37)			
N	or: R-format (finction code = 37) Nor: R-format (finction code = 39)								
*)	mips d	es not	have	NOT 0 -> 1	oper	zho			
	nor b								
C	l wor «	p = N	or (=	i or	ϕ)				
		= 1	vot Ca)					
					J				
					\$ 500	o vister			
					(•	<u>J.</u>			

Example: (Page 84-textbook)

Assume that \$11 has base address of array A and \$52 Gresponds to h. The assignment give below:

A(300] = h+ A[300];

is compiled into:

lw \$to, [200 (\$t1) (I)
add \$to, \$52, \$to (R)
Sw \$to [200 (\$t1) (I)

What is the machine language ade?

6 5 5

_	op (s	CI	6	shant	finet.			
		()	رح	Constat (Ad				
;	35	9	- g	1200				
	0,	18	8	8	0	32		
	43	9	8	1200				

BEQ & BNE instructions

beg \$51, \$52, Label (If \$51 == \$52)
gate Label

bre \$51, \$52, Label (If \$51 £ \$52) 9020 Label

beg & bre = I-type U) Op=4 op=5

J-type

opcode Address
6 bits 26-bits

Alternative Code for Slide 44 (begin place of bre)

beg \$53, \$54, 1f-Part

Sub \$50, \$51, \$52

T Exit

U-Part: add \$50, \$51, \$52

Back

Slide 46

while (save[i] = =k)
$$i+=1$$
;
 $i \rightarrow 53 Base Add $\rightarrow 56
 $k \rightarrow 55

Store "Save [i]" in a repister

Address of Save Ci] = Address of + offset array some Address of Save Ci] = \$56 + 4 x i

[w sto = Menoy [\$56 + 4xi]

If no mult > sll by 2 bits

2 R-format

SLT Instruction

sit \$si, \$s2, \$s3

If (\$82 < \$83) the \$s1 = 1

SHi \$51, \$52, Godont

If (\$52 < Godont) then \$51=1

otherise \$51 = \$5

BLT Instruction

6lt \$51, \$52, label > pseudo instruction

if (\$51 < \$52) go to label

Pseudinctuctions: Assembly language, instructions that I not have a direct machine language equivalent.

During assembly -> assembler traslates each

Pseudo instruction into one or

more machine language

instructions

How to perfore blt?

SIT \$40, \$51, \$52 bre \$40, \$200, 1 (lf \$s1<\$s2 \$to = 1)

\$60:ene & or 1.

\$s1 = \$s2 \$s1 = \$s2 \$51<\$52