МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Актуальные проблемы науки и техники-2015

Материалы VIII Международной научно-практической конференции молодых учёных

Tom I

Уфа Издательство УГНТУ 2015 УДК 69:72 ББК 38:85.11 А 43

Редакционная коллегия:

Исмаков Р. А. (ответственный редактор)

Назыров А. Д.

Ягубов Э. 3.

Авренюк А. Н.

Ариткулова А. М.

Ахмедзянов Д. А.

Бондаренко А. В.

Буренина И. В.

Лысенков А. В.

T D

Каретников Д. В.

Красильникова Ю. В.

Мазитов Р. М.

Мустафин Т. Р.

Солодовников А. В.

Писаренко К. Э.

Слесарева А. А.

Фархутдинов А. М.

Хайруллина Н. Г.

Цыбин С. С.

Миндиярова Э. Р. (ответственный за выпуск)

Репензент:

Баулин О. А., канд. техн. наук, доц. ФГБОУ ВПО УГНТУ

А 43 Актуальные проблемы науки и техники: материалы VIII Международной научно-практической конф. молодых учёных: в 3 т. /редкол.: Исмаков Р. А. и др. – Уфа: Изд-во УГНТУ, 2015.

Т. I / отв. ред. Р. А. Исмаков. – 376 с.

ISBN 978-5-7831-1295-9

Сборник подготовлен по материалам докладов и тезисов участников VIII Международной научно-практической конференции молодых учёных «Актуальные проблемы науки и техники-2015».

Участники конференции сделали предложения по использованию новой техники и технологии в индустрии нефти и газа: от разведки и добычи до выпуска и реализации конечной продукции. Сделан комплексный анализ ключевых проблем экономики и управления предприятиями нефтегазового комплекса и рекомендованы способы их преодоления.

Материалы публикуемого сборника адресуются специалистам в области нефтегазового дела на всех уровнях профессионального, а также послевузовского образования. Издание ориентировано на молодых ученых, аспирантов, магистрантов, студентов нефтегазовых вузов.

УДК 69:72 ББК 38:85.11

ISBN 978-5-7831-1295-9 (T. I) ISBN 978-5-7831-1294-2 © ФГБОУ ВПО «Уфимский государственный нефтяной технический университет», 2015

© Коллектив авторов, 2015

УДК 620.197.3

Г. Р. Хайдарова, Ю. К. Дмитриев, А. Н. Иванов

ПРИМЕНЕНИЕ ИНГИБИТОРА КОРРОЗИИ НА ОСНОВЕ ТРИЭТАНОЛАМИНА И ОРТОФОСФОРНОЙ КИСЛОТЫ В БУРОВЫХ РАСТВОРАХ

Уфимский государственный нефтяной технический университет, филиал в г. Стерлитамак

Коррозия является одним из определяющих факторов применения металлического оборудования и конструкций в промышленности [1, с.106], [2, с.52]. Так в нефтедобывающей отрасли коррозия трубопроводов снижает срок их эксплуатации до двух лет [3, с.48]. Это приводит не только к необходимости регулярно заменять и ремонтировать оборудование и увеличению себестоимости нефтедобычи и транспортировки нефти, но и к простоям оборудования в момент проведения ремонтных работ или аварийных ситуаций, вызванных коррозионным разрушением материала [4, с.70], [5, с.120].

В таких случаях наиболее эффективным средством борьбы с коррозией являются ингибиторы. Так называют химические соединения, позволяющие снижать скорость протекания определённого химического процесса или полностью его остановить [5, с. 120]. В данном случае говорят об ингибиторах коррозии, которые позволяют предотвратить разрушение металла в агрессивных средах. Могут быть различные механизмы защиты металла: образование специальной плёнки на его поверхности из самого ингибитора или продуктов его взаимодействия с металлом и его оксидами; изменение электрохимического потенциала системы металл-жидкость, что приводит к снижению скорости катодной или анодной коррозии и др. [6, с.147], [7, с.207].

Высокую антикоррозионную способность показывают органические азотсодержащие соединения, в частности третичные амины, которые подавляют коррозию вследствие адсорбции молекул ингибитора на поверхности металла [8, с.23], [9, с.33]. В связи с этим нами предло-

жен синтез ингибирующего состава на основе продуктов реакции триэтаноламина и ортофосфорной кислоты. Синтез проходил в течение 3 часов при интенсивном перемешивании, в ходе которого протекают следующие реакции:

 $(CH_2CH_2OH)_3N + H_3PO_4 \rightarrow (HO-CH_2CH_2)_2$ -NCH $_2CH_2OP(OH)_2O + H_2O$; $(CH_2CH_2OH)_3N + H_3PO_4 \rightarrow HO-CH_2CH_2$ -NH $(CH_2CH_2O)_2P(OH)O + 2H_2O$; $(CH_2CH_2OH)_3N + H_3PO_4 \rightarrow NH(CH_2CH_2O)PO + 3H_2O$; ЯМР I -спектр полученной смеси приведён на рис.1.

Рис. 1. ЯМР -спектр продуктов реакции триэтаноламина и фосфорной кислоты

Спектр ЯМР 1H, δ , м.д.: 2.64 т. (2H, 2CH₂), 2.67 т. (2H, CH₂), 2.69 т. (2H, 3CH₂), 2.85 к. (2H, CH₂), 2.96 т. (2H, 2CH₂), 3.64 дт. (2H, 2CH₂), 3.65 к. (2H, CH₂), 3.66 к. (2H, 2CH₂), 3.88 тд. (2H, CH₂), 4.21 дт. (2H, 3CH₂).

Данные электрохимического анализа ингибитора показывают, что синтезированный ингибитор эффективно защищает оборудование от сероводородной коррозии и не уступает существующим аналогам. Уже при небольших концентрациях продукт стал проявлять ингибирующие свойства. Оптимальной с экономической и технологической точек зрения является концентрация 0,6 мл ингибитора на 1000 мл среды, при которой защитный эффект составляет 92,9 %.

Список литературы

- 1. Даминев Р.Р. Исламутдинова А.А., Иванов А.Н., Хамзин И.Р. Синтез ингибирующего состава для предотвращения коррозии нефтепромыслового оборудования // Бутлеровские сообщения. 2015. T.43. №7. С. 106-111.
- 2. Исламутдинова А.А., Хайдарова Г.Р., Дмитриев Ю.К., Сидоров Г.М. Синтез ингибиторов коррозии на основе четвертичных аммониевых соединений и анализ защитных свойств // Современные проблемы науки и образования. -2015. N2 1. C.52.
- 3. Иванов А.Н., Исламутдинова А.А., Идрисова В.А. Исторический очерк о разработке ингибиторов коррозии на базе филиала УГНТУ в г. Стерлитамаке // Современные проблемы истории естествознания в области химии, химической технологии и нефтяного дела: материалы 14-й международной научной конференции, посвященной 75-летию

академика Академии наук Республики Башкортостан, профессора Д. Л. Рахматуллина. – Уфа: Изд-во УГНТУ. 2014. – С. 48-49.

- 4. Тимербаев Г.Г., Иванов А.Н., Исламутдинова А.А., Калимуллин Л.И. Синтез ингибитора кислотной коррозии на основе циклических азотсодержащих соединений // Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность: материалы Всероссийской научно-практической конференции с международным участием. Уфа: Изд-во УГНТУ. 2013. С. 70-71.
- 5. Даминев Р.Р., Исламутдинова А.А., Шаяхметов А.И., Гайдукова И.В. Ингибитор коррозии на основе трибутил 1-хлоризопропениламмонийхлорида и борной кислоты // Башкирский химический журнал. -2011.-T. 18. № 3. -C. 120-123.
- 6. Даминев Р.Р., Исламутдинова А.А., Гайдукова И.В. Разработка и исследование свойств ингибитора коррозии бактерицида на основе композиции диэтилдихлорпропенил-аммонийхлорида и борной кислоты // Башкирский химический журнал. -2011. -T. 18. № 3. -C. 147-151.
- 7. Даминев Р.Р., Голощапов А.П., Исламутдинова А.А., Мунасыпов А.М. Оценка токсичности азот: и фосфорсодержащего дезинфектанта: ингибитора коррозии с помощью биотестирования // Башкирский химический журнал. $2011. T. 18. \, \text{N}_{2}. \text{C}. 207-208.$
- 8. Исламутдинова А.А., Гайдукова И.В. Получение и защитные свойства ингибиторов коррозии на основе бор-, азотсодержащих соединений // В мире научных открытий. -2010. № 4-6. С. 23-24.
- 9. Исламутдинова А.А., Евдокимова А.С., Гайдукова И.В., Калимуллин Л.И. Защитные свойства ингибиторов коррозии на основе азотсодержащих и бор-, азотсодержащих соединений // Актуальные проблемы гуманитарных и естественных наук. 2010. Ne. C. 33-35.

УДК 665.753.4

Л. М. Файзуллина, В. М. Беляков, О. А. Баулин

ИССЛЕДОВАНИЕ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ ЛИНЕЙНЫХ АЛКАНОВ И ОЛЕФИНОВ

Уфимский государственный нефтяной технический университет, г. Уфа

Во многих промышленно развитых странах в последние годы произошли существенные изменения требований к качеству моторных топ-

Алфавитный указатель

Абельхаеров И. И., 105 Абрахманов Р. Н., 233 Абушаев Р. Ю., 190 Акдавлетов Р. Ф., 367 Александрова С. Ю., 337 Алипов Д. Е., 362 Антипина М. И., 78 Аубекеров Т. М., 205 Афанасьева М. А., 52 Ахматнуров Б. А., 257 Ахметов Р. Ф., 370 Бабаяров Д. С., 216 Бадикова А. Д., 62, 265 Байбуртли А. В., 286 Байгускарова Л. Ф., 270 Байкова Л. Р., 145, 169 Батталов Э. М., 288 Баулин О. А., 303 Бахтиярова А. И., 155 Баширов И. И., 244 Белова С. В., 189 Беляков В. М., 303 Биккузина Р. К., 317 Богомазова А. А., 307 Бойцова А. А., 206 Бойченко С. С., 218 Бондаренко А. В., 57, 90 Борисов И. М., 286 Буза А. О., 322 Буляккулов Р. А., 334 Ваганов Р. А., 322 Вахитова А. С., 270 Вершинин С. С., 367 Волкотрубов Д. А., 76 Воскобойников Г. М., 341 Габбасова А. В., 295 Габбасова И. М., 293 Гадельшина А. Р., 167 Гайсина Л. И., 295 Галиаскарова Р. А., 96 Галиева Г. Р., 249, 251 Галиева Р. Т., 145 Галикеев А. Р., 167 Галина И. Ф., 133 Галлямов В. М., 127 Ганеева Л. К., 149 Ганиев Д. А., 213

Ганиева И. М., 229, 231

Гареев А. С., 138 Гареев М. М., 179 Гарипова Л. И., 16 Гаррис Н. А., 172 Гатауллина А. Р., 275 Гафаров Ш. А., 44 Гиззатов А. А., 273, 293 Гильванова Э. М., 279, 290 Гильмутдинов А. Т., 271 Гирфатова Л. Г., 271 Глазков А. С., 133 Глик П. А., 308, 313 Голованов А. А., 239 Григорьев Е. С., 122, 125 Григорьева Н. Г., 256 Григорьева О. В., 328 Гу Юньцин, 175 Давлетшин Р. Ф., 49 Дарсалия H. M., 161 Дегтярёв Д. С., 78 Дезорцев С. В., 350 Денисламова Г. И., 22 **Денисов К. Ю., 267** Дмитриев Ю. К., 298, 301 Дмитриева А. С., 130 Долганова И. О., 221, 277 Дорогочинская В. А., 284 **Дударева** О. В., 73 Евдокимова А. С., 47 Емельянов В. В., 99 Емельянов М. И., 206 Еперов В. А., 153, 156 Еремеева А. М., 362 Ерёменко Б. А., 44 Жуков Д. А., 352 Зайнуллин Р. А., 352 Закирова Э. А., 156 Зейгман Ю. В., 34 Зинатшина А. В., 107 Зубаиров Э. Р., 147 Зырянова О. В., 331 Ибрагимов А. А., 273, 293, 295, 364 Иванов А. И., 182, 282 Иванов А. Н., 249, 251, 298, 301 Иванова Л. В., 343 Иванова Н. И., 177 Ивашкина Е. Н., 218, 228 Ивкин А. С., 331