Fantasy Premier League Soccer Prediction Project

Ethan Chang and Flora Yuan

Research Motivation

- Sports-related
- Inspired by the 2022 World Cup
- Passion for soccer and fantasy leagues (I've lost a lot)

So we wanted to find a way to use ML models to find the best players to choose on Fantasy Teams

Introduction

- 1. Fantasy Soccer (football in Premier League England)
- **2.** Game:
 - o Draft a virtual team (11) before the season
 - Earn points based on real-life performance

The actual formula is a bit more complicated: some linear combination of time played, goals, assists, clean sheets, and more. 6 pointer per goal, 3 points per assist, 1 point per clean sheet, captain x2, etc.

3. Our Goal:

- Use player statistics and past data from 2021
- Predict who will perform the best in 2022-2023
 Season (ongoing) on aggregate and each week
- We backtest results to check in 2022-2023
- Data is updated each week (explain more)

Roadmap

Data Collection

Data Extrapolation

Machine Learning 04 Results

Data Collection and Cleaning

We want a dataset with each individual player in each gameweek

- Created datasets using joins and web scraping from <u>https://understat.com/league/EPL,</u>
 <u>https://www.spotrac.com/epl/,</u> and Github datasets
- For test data, we want to be able to use a player row of certain stats that we know and then predict fantasy scores.
- Cleaning:
 - Extract salary characters to turn into Euros
 - Remove duplicates during joins and extra spaces
 - Removing NaN's
 - Filtered players with terminated and null contracts (salaries > 0)
 - 25,000 rows → 10,000 rows for 2021

Ex. 2021 Data

Machine Learning (Feature Selection)

- Original Dataset: 36 columns = 36 variables
- Eliminate overfitting dropped variables that can influence outcome
 - Data is historic
 - Postdiction analysis We can't use future information to predict in backtesting
- Used Variance Threshold from sklearn.feature_selection
 - Dropped variables (assists, goals, cleansheets)
 - Removes all the low variance features (bad Indication)
 - Ordinal Encoder: unique category value integer value
 - Trained on remaining variables
 - 0.2 threshold = dropping 80%+ similar
 - Ended with 11 variables

```
var_thr = VarianceThreshold(threshold = 0.2)
var_thr.fit(X_train1)

var_thr.get_support()

array([ True,    True,    False,    True,    True,
```

X train1.info()

C <class 'pandas.core.frame.DataFrame'>
Int64Index: 10682 entries, 0 to 25484
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	position	10682 non-null	object
1	xР	10682 non-null	float64
2	own_goals	10682 non-null	int64
3	team_a_score	10682 non-null	int64
4	team_h_score	10682 non-null	int64
5	threat	10682 non-null	float64
6	transfers_balance	10682 non-null	int64
7	transfers_in	10682 non-null	int64
8	transfers_out	10682 non-null	int64
9	value	10682 non-null	int64
10	was_home	10682 non-null	bool
11	salary	10682 non-null	float64

X train 2021 data

position	XP	transiers_balance	transfers_in	transfers_out	varue	was_nome	tnreat	salary	team_a_score	team_n_score
MID						True	0.0	1820000.0		
FWD	2.0				55	False	19.0	2080000.0		
FWD	1.3				60	False	6.0	1560000.0		
DEF	1.0				40	False	0.0	280000.0		
GK	1.5					True	0.0	80000.0		
DEF	0.0	-839	48	887		True	0.0	429000.0		
GK	0.0	-7647	97	7744	54	True	0.0	5200000.0		
GK	8.0	-35410	32306	67716	54	True	0.0	3120000.0		
DEF	0.0	-1668	14	1682	44	True	0.0	3000000.0		
MID	4.8	3887	5788	1901		True	19.0	2080000.0		

Machine Learning (Models)

Some features were categorical – used OneHotEncoder KNN Neighbors performed the best of the models

- Used Grid-Search for KNN → neighbors = 16, metric = "manhattan"
- Error of 3.37

Linear Regressor

Error of 3.89

Ensemble Method – Stacker and Voting

- Stacker was better than voting
- Stacker RMSE was 3.19
- Voter RMSE was 3.35
- Hence, we chose to use stacker model for predictions

y_train.std()**2 - if we were to average the predicted points on the players, on average we get squared mean error of \sim 7.73

Backtesting and Results Analysis

Using our Stacker Model, we can backtest data throughout the current 2022-2023 season.

- 26 weeks/38 weeks played
- Map individual player point predictions and compare to Actual Total

We find that deviation in points is greater for week by week predictions (more volatile) than over entirety of 2022-2023 season so far.

```
DF_final["difference"].sum()/8546 = ~0.9611 \rightarrow absolute difference
```

However it is easier to more accurately get top performing players compared to getting the exact points of each week. Points are very volatile with outlier cases.

- Mo Salah scoring a hatrick against a weak opponent 3*6 = 18
- Our model predicts he will be a top performer but not necessarily with such high points

Df_final - 2022- 2023

	name	total_points	predicted_points	difference
1	Junior Stanislas	1	0.343730	0.656270
2	Armando Broja	1	1.913760	0.913760
5	Brennan Johnson	2	0.829961	1.170039
9	Fin Stevens	0	0.467828	0.467828
10	Brandon Austin	0	0.229094	0.229094
18248	James Justin	0	0.039556	0.039556
18251	Hugo Lloris	0	0.312156	0.312156
18252	Nick Pope	3	1.004712	1.995288
18254	Ryan Sessegnon	0	0.094469	0.094469
18258	Philip Billing	10	4.229407	5.770593
8546 rov	vs × 4 columns			

<u>Top Performing all Weeks (left - our prediction and right is actual)</u>

prediction and right is actuall						
index		name	index		name	
4347	Leandro Trossard		4099	Erling Haaland		
4102	Phil Foden		1984	Roberto Firmino		
4099	Erling Haaland		16860	Mohamed Salah		
	Solly March		4347	Leandro Trossard		
12170	Solly Warch		4102	Phil Foden		
9242	Erling Haaland		12178	Solly March		
9104	Marcus Tavernier		7626	Callum Wilson		
15349	Marcus Rashford		7818	Reiss Nelson		
1984	Roberto Firmino		3145	Marcus Rashford		
16860	Mohamed Salah		4575	James Maddison		

Results

We used the model to predict three things:

- Aggregate (predicted) top performers for 2022
 - o No room for transfers, best overall players
 - Use groupby("name")
- Best performers by position
 - More specified easier to form team
 - o Mask "position" == "DEF
- Predict for next gameweek (this case 27)
 - Data is scraped/published weekly

	name	predicted_	_points	▼
18056	Harry Kane		10.1078	25695463932
17392	Jason Steele		8.1000	23428228535
17437	Jack Harrison		8.0080	93579678642
17743	Kyle Walker-Pe	eters	7.88160	00843527725
18225	Alexis Mac Allis	ster	7.77337	47996567235
17606	Aaron Hickey		7.60337	31147790755
17993	Ben Davies		7.413	74205991279
17805	Kai Havertz		7.1393	329253621185
17508	Armel Bella-Ko	tchap	7.1026	82529893377
17688	Lewis Dunk		7.0731	55806563346
18218	Romain Perrau	ıd	7.0246	28246349321
17672	Gavin Bazunu		6.9237	68498439523
17636	Jan Bednarek		6.8926	57835317649
17610	Solly March		6.8312	85554807097
18242	Ethan Pinnock		6.7633	84546147829
17924	Adam Webster		6.56870	06792012275
17833	Ollie Watkins		6.5615	47329906484

Predicted Week 27

Aggregate Predicted Top

name				
Erling Haaland	5.971429			
Harry Kane	5.512500			
Mohamed Salah	5.066667			
Bukayo Saka	4.623214			
Kevin De Bruyne	4.183929			
Jack Butland	0.048148			
Marcus Bettinelli	0.047619			
Kristoffer Klaesson	0.042593			
Willy Caballero	0.039286			
Tom Heaton	0.012963			
Name: predicted_points,	Length:	325,	dtype:	float64

<u>Aggregate Predicted Top</u>

name	
Erling Haaland	7.464286
Harry Kane	6.357143
Kieran Trippier	6.153846
Marcus Rashford	5.962963
Mohamed Salah	5.777778
Lyle Taylor	0.000000
Scott Carson	0.000000
Brandon Williams	0.000000
Brandon Austin	0.000000
Tyler Roberts	0.000000

Applied Results: http://fantasy.premierleague.com/

<u>Aggregate Team</u>

Thank You!