SEMINAR 11

1) Give a necessary and sufficient condition for the vectors $v_1 = (a_1, b_1)$, $v_2 = (a_2, b_2)$ to form a basis for the \mathbb{R} -vector space \mathbb{R}^2 . What does this condition mean from geometrical point of view? Using the condition established, find infinitely many bases for \mathbb{R}^2 . Is there any basis of \mathbb{R}^2 for which the coordinates of a vector v = (x, y) are exactly x and y? Show that $v_1 = (1, 0)$ and $v_2 = (1, 1)$ form a basis of \mathbb{R}^2 and find the coordinates of v = (x, y) in this basis.

Homework: Formulate and solve a similar problem for the \mathbb{R} -vector space \mathbb{R}^3 .

- 2) Show that the vectors (1, 2, -1), (3, 2, 4), (-1, 2, -6) from \mathbb{R}^3 are linearly dependendent and find a dependency relation between them.
- 3) Determine the values of $a \in \mathbb{R}$ for which the vectors $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$ form a basis of \mathbb{R}^3 .

Homework: Which of the following systems of vectors from \mathbb{R}^3 :

- a) ((1,0,-1),(2,5,1),(0,-4,3));
- b) ((2, -4, 1), (0, 3, -1), (6, 0, 1));
- c) ((1,2,-1),(1,0,3),(2,1,1));
- d) ((-1,3,1),(2,-4,-3),(-3,8,2));
- e) ((1, -3, -2), (-3, 1, 3), (-2, -10, -2))

are bases for the \mathbb{R} -vector space \mathbb{R}^3 ?

4) Show that in the \mathbb{R} -vector space $M_2(\mathbb{R})$ the matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ E_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \ E_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

form a basis and determine the coordinates of $A=\begin{pmatrix} -2 & 3 \\ 4 & -2 \end{pmatrix}$ in this basis.

5) In the \mathbb{Q} -vector space \mathbb{Q}^3 we consider the vectors

$$a = (-2, 1, 3), b = (3, -2, -1), c = (1, -1, 2), d = (-5, 3, 4), e = (-9, 5, 10).$$

Does the following equality $\langle a, b \rangle = \langle c, d, e \rangle$ hold?

- 6) In the \mathbb{R} -vector space \mathbb{R}^4 one considers the subspaces:
- a) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 1, 0, 0), u_2 = (1, 0, 1, 1),$ $T = \langle v_1, v_2 \rangle$, with $v_1 = (0, 0, 1, 1), v_2 = (0, 1, 1, 0);$
- b) $S = \langle u_1, u_2, u_3 \rangle$, with $u_1 = (1, 2, -1, -2)$, $u_2 = (3, 1, 1, 1)$, $u_3 = (-1, 0, 1, -1)$, $T = \langle v_1, v_2 \rangle$, with $v_1 = (-1, 2, -7, -3)$, $v_2 = (2, 5, -6, -5)$:
- c) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 2, 1, 0), u_2 = (-1, 1, 1, 1),$
 - $T = \langle v_1, v_2 \rangle$, with $v_1 = (2, -1, 0, 1), v_2 = (1, -1, 3, 7).$
- d) (optional) $S = \langle u_1, u_2, u_3 \rangle$, cu $u_1 = (1, 2, 1, -2), u_2 = (2, 3, 1, 0), u_3 = (1, 2, 2, -3), T = \langle v_1, v_2, v_3 \rangle$, cu $v_1 = (1, 1, 1, 1), v_2 = (1, 0, 1, -1), v_3 = (1, 3, 0, -3).$

1

Find a basis and the dimension for each of the subspaces S, T, S + T and $S \cap T$.