TRUSSES ANALYSIS

- Fundamentals of the Stiffness Method
- Member Local Stiffness Matrix
- Displacement and Force Transformation Matrices
- Member Global Stiffness Matrix
- Application of the Stiffness Method for Truss Analysis
- Trusses Having Inclined Supports, Thermal Changes and Fabrication Errors
- Space-Truss Analysis

2-Dimension Trusses

Fundamentals of the Stiffness Method

- Node and Member Identification
- Global and Member Coordinates

- Degrees of Freedom
 - •Known degrees of freedom D_3, D_4, D_5, D_6, D_7 and D_8
 - Unknown degrees of freedom D_1 and D_2

Member Local Stiffness Matrix

$$q'_{i} = \frac{AE}{L}d'_{i} - \frac{AE}{L}d'_{j}$$

$$q'_{j} = -\frac{AE}{L}d'_{i} + \frac{AE}{L}d'_{j}$$

$$\begin{bmatrix} q'_i \\ q'_j \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} d'_i \\ d'_j \end{bmatrix}$$

$$[q'] = [k'][d']$$
 -----(1)

$$[k'] = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Displacement and Force Transformation Matrices

$$\lambda_{x} = \cos \theta_{x} = \frac{x_{j} - x_{i}}{L} = \frac{x_{j} - x_{i}}{\sqrt{(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2}}}$$

$$\lambda_{y} = \cos \theta_{y} = \frac{y_{j} - y_{i}}{L} = \frac{y_{j} - y_{i}}{\sqrt{(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2}}}$$

• Displacement Transformation Matrices

$$d'_{i} = d_{ix} (\cos \theta_{x}) + d_{iy} (\cos \theta_{y})$$

$$d'_{j} = d_{jx} \cos \theta_{x} + d_{jy} \cos \theta_{y}$$

• Force Transformation Matrices

Member Global Stiffness Matrix

$$[q] = [T]^{\mathsf{T}}[q'] \qquad -----(3)$$

Substitute ($[q'] = [k'][d'] + [q'^F]$) into Eq. 3, yields the result,

$$[q] = (T)^{T}([k'][d'] + [q'^{F}]) = [T]^{T}[k'][T][d] + [T]^{T}[q'^{F}] = [k][d] + [q^{F}]$$

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} \lambda_{x} & 0 \\ \lambda_{y} & 0 \\ 0 & \lambda_{x} \\ 0 & \lambda_{y} \end{bmatrix} \underbrace{AE}_{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{x} & \lambda_{y} & 0 & 0 \\ 0 & 0 & \lambda_{x} & \lambda_{y} \end{bmatrix}$$

$$\begin{bmatrix} k \end{bmatrix} = \begin{array}{c|cccc} U & V & U & V \\ \hline U & \lambda_x \lambda_x & \lambda_x \lambda_y & -\lambda_x \lambda_x & -\lambda_x \lambda_y \\ \hline L & U & \lambda_y \lambda_x & \lambda_y \lambda_y & -\lambda_y \lambda_x & -\lambda_y \lambda_y \\ \hline -\lambda_x \lambda_x & -\lambda_x \lambda_y & \lambda_x \lambda_x & \lambda_x \lambda_y \\ V & -\lambda_y \lambda_x & -\lambda_y \lambda_y & \lambda_y \lambda_x & \lambda_y \lambda_y \end{array}$$

Application of the Stiffness Method for Truss Analysis

Equilibrium Equation:

$$[Q^{a}] = [K][D] + [Q^{F}]$$

Partitioned Form:

$$[Q_k] = [K_{11}][D_u] + [K_{12}][D_k] + [Q^F]$$
$$[D_u] = [K_u]^{-1} (([Q_k] - [Q^F]) - [K_{12}][D_k])$$

▶ Member Forces

$$\begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} d'_{i} \\ d'_{j} \end{bmatrix} + \begin{bmatrix} q'^{F}_{i} \\ q'^{F}_{j} \end{bmatrix}$$

$$\begin{bmatrix} \lambda_{x} & \lambda_{y} & 0 & 0 \\ 0 & 0 & \lambda_{x} & \lambda_{y} \end{bmatrix} \begin{bmatrix} d_{ix} \\ d_{iy} \\ d_{jx} \\ d_{jy} \end{bmatrix}$$

$$\begin{bmatrix} D_{ix} \\ D_{ix} \end{bmatrix}$$

$$\begin{bmatrix} \lambda_x & \lambda_y & 0 & 0 \ 0 & 0 & \lambda_x & \lambda_y \end{bmatrix} \begin{bmatrix} d_{iy} \ d_{jx} \ d_{jy} \end{bmatrix}$$

$$\begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{x} & \lambda_{y} & 0 & 0 \\ 0 & 0 & \lambda_{x} & \lambda_{y} \end{bmatrix} \begin{bmatrix} D_{ix} \\ D_{iy} \\ D_{jx} \\ D_{jy} \end{bmatrix} + \begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix}$$

$$\begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} \lambda_{x} & \lambda_{y} & -\lambda_{x} & -\lambda_{y} \\ -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{y} \end{bmatrix} \begin{bmatrix} D_{ix} \\ D_{iy} \\ D_{jx} \\ D_{jy} \end{bmatrix} + \begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix}$$

$$q'_{j} = rac{AE}{L} \left[egin{array}{cccc} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{y} \end{array}
ight] \left[egin{array}{c} D_{xi} \ D_{yi} \ D_{xj} \ D_{yj} \end{array}
ight] + q_{j}{}^{'F}$$

Member Forces

▶ Member Forces

Example 1

For the truss shown, use the stiffness method to:

- (a) Determine the **deflections** of the loaded joint.
- (b) Determine the **end forces** of each member and **reactions** at supports.

Assume EA to be the same for each member.

Member	λ_x	λ_{y}		
#1	-4/5 = -0.8	-3/5 = -0.6		
#2	-4/5 = -0.8	3/5 = 0.6		
#3	4/5 = 0.8	-3/5 = -0.6		

Member	λ_x	λ_y	λ_x^2	$\lambda_x \lambda_y$	λ_y^2
#1	-0.8	-0.6	0.64	0.48	0.36
#2	- 0.8	0.6	0.64	-0.48	0.36
#3	0.8	-0.6	0.64	-0.48	0.36

$$\begin{bmatrix} k \end{bmatrix}_1 = \frac{AE}{5} \begin{bmatrix} 0.64 & 0.48 & -0.64 & -0.48 \\ 0.48 & 0.36 & -0.48 & -0.36 \\ -0.64 & -0.48 & 0.64 & 0.48 \\ 4 & -0.48 & -0.36 & 0.48 & 0.36 \end{bmatrix}$$

$$[k]_{3} = \frac{AE}{5} \begin{bmatrix} 2 \\ -0.48 & 0.36 \\ 8 \end{bmatrix} \begin{bmatrix} 0.64 & -0.48 \\ -0.64 & 0.48 & 0.64 \\ 0.48 & -0.36 \end{bmatrix} \begin{bmatrix} -0.64 & 0.48 \\ 0.48 & -0.36 \\ -0.48 & 0.36 \end{bmatrix}$$

$$[K] = \frac{AE}{5} \begin{bmatrix} 1 \\ 1.92 & -0.48 \\ 2 & -0.48 & 1.08 \end{bmatrix}$$

$$[K] = \frac{AE}{5} \frac{1}{2} \begin{bmatrix} 1.92 & -0.48 \\ -0.48 & 1.08 \end{bmatrix}$$

$$\begin{bmatrix} Q_1 = -50 \\ Q_2 = -80 \end{bmatrix} = \frac{AE}{5} \begin{bmatrix} 1.92 & -0.48 \\ -0.48 & 1.08 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} = \begin{pmatrix} -250.65/AE \\ -481.77/AE \end{pmatrix}$$

Member	λ_x	λ_{v}
#1	-0.8	-0.6
#2	-0.8	0.6
#3	0.8	-0.6

Local

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

$$[q'_F]_1 = \frac{AE}{5} \begin{bmatrix} 0.8 & 0.6 & -0.8 & -0.6 \end{bmatrix} \begin{bmatrix} D_1 = -250.65/AE \\ D_2 = -481.77/AE \\ D_3 = 0.0 \\ D_4 = 0.0 \end{bmatrix}$$

$$= -97.9 \text{ kN (C)}$$

$$[q'_{F}]_{2} = \frac{AE}{5} \begin{bmatrix} 0.8 & -0.6 & -0.8 & 0.6 \end{bmatrix} \begin{bmatrix} D_{1} = -250.65/AE \\ D_{2} = -481.77/AE \\ D_{5} = 0.0 \\ D_{6} = 0.0 \end{bmatrix}$$

$$= +17.7 \text{ kN (T)}$$

17.7 kN
$$[q'_F]_3 = \frac{AE}{5} \begin{bmatrix} -0.8 + 0.6 + 0.8 & -0.6 \end{bmatrix} \begin{bmatrix} D_1 = -250.65/AE \\ D_2 = -481.77/AE \\ D_7 = 0.0 \\ D_8 = 0.0 \end{bmatrix}$$

$$= -17.7 \text{ kN (C)}$$

$$D_{1} = -250.65/AE$$

$$D_{2} = -481.77/AE$$

$$D_{7} = 0.0$$

$$D_{8} = 0.0$$

Member	λ_x	λ_{v}
#1	-0.8	-0.6
#2	-0.8	0.6
#3	0.8	-0.6

Check:

$$\Sigma_{F_{x'}} = 0: 17.7 + 17.7 + 50\cos 36.89 - 97.9\cos 73.78 - 80\cos 53.11 = 0, O.K$$

Example 2

For the truss shown, use the stiffness method to:

- (b) Determine the end forces of each member and reactions at supports.
- (a) Determine the **deflections** of the loaded joint.

The support *B* settles downward 2.5 mm. Temperature in member *BD* increase 20 °C. Take $\alpha = 12 \times 10^{-6}$ /°C, $AE = 8(10^3)$ kN.

Member	λ_x	λ_{y}		
#1	- 4/4 = - 1	0		
#2	-4/5 = -0.8	-3/5 = -0.6		
#3	0	-3/3 = -1		

Member	λ_{x}	λ_y	λ_x^2/L	$\lambda_x \lambda_y / L$	$\lambda_{\rm y}^2/L$
#1	-1	0	0.25	0	0
#2	- 0.8	-0.6	0.128	0.096	0.072
#3	0	-1	0	0	0.333

		-	_	3	
$[k]_1 = 8 \times 10^3$	1	0.25	0	-0.25	0
$[k] = 8 \times 10^3$	2	0	0	0	0
	3	-0.25	0	0.25	0
	4	0	0	0	0

$$[k]_2 = 8 \times 10^3$$

$$[k]_2 = 8 \times 10^3$$

$$\begin{bmatrix} 0.128 & 0.096 & -0.128 & -0.096 \\ 0.096 & 0.072 & -0.096 & -0.072 \\ -0.128 & -0.096 & 0.128 & 0.096 \\ 0.096 & -0.072 & 0.096 & 0.072 \end{bmatrix}$$

$$[k]_{3} = 8 \times 10^{3} \begin{bmatrix} 1 & 2 & 7 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0.333 & 0 & -0.333 \\ \hline 0 & 0 & 0 & 0 \\ 0 & -0.333 & 0 & 0.333 \end{bmatrix}$$

$$[K] = 8 \times 10^3 \frac{1}{2} \begin{bmatrix} 0.378 & 0.096 \\ 0.096 & 0.405 \end{bmatrix}$$

$$[Q] = [K][D] + [Q^{\mathrm{F}}]$$

Global:

$$\begin{bmatrix} Q_1 = -4 \\ Q_2 = -8 \end{bmatrix} = 8 \times 10^3 \begin{array}{c} \mathbf{1} \\ \mathbf{2} \\ \mathbf{2} \end{array} \begin{bmatrix} 0.378 & 0.096 \\ 0.096 & 0.405 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} + \begin{bmatrix} 1.92 \\ 1.44 \end{bmatrix} + \begin{bmatrix} -1.536 \\ -1.152 \end{bmatrix}$$

$$\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} -0.8514 \times 10^{-3} & \text{m} \\ -2.356 \times 10^{-3} & \text{m} \end{bmatrix}$$

Member	λ_{x}	$\lambda_{ m y}$
#1	-1	0
#2	- 0.8	-0.6
#3	0	-1

Local

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

$$[q'_{F}]_{1} = \frac{8 \times 10^{3}}{4} \begin{bmatrix} 1.0 & 0.0 & -1.0 & 0.0 \end{bmatrix} \begin{pmatrix} D_{1} = -0.8514 \times 10^{-3} \\ D_{2} = -2.356 \times 10^{-3} \\ D_{3} = 0.0 \\ D_{4} = 0.0 \end{pmatrix}$$

$$= -1.70 \text{ kN (C)}$$

$$[q'_{\rm F}]_2 = \frac{8 \times 10^3}{5} \begin{bmatrix} 0.8 & 0.6 & -0.8 & -0.6 \end{bmatrix} \begin{bmatrix} D_1 = -0.8514 \times 10^{-3} \\ D_2 = -2.356 \times 10^{-3} \\ D_5 = 0.0 \\ D_6 = -0.0025 \end{bmatrix} + \begin{bmatrix} -1.92 \end{bmatrix}$$

$$= -2.87 \text{ kN (C)}$$

$$[q'_{F}]_{3} = \underbrace{8 \times 10^{3}}_{3} \begin{bmatrix} 0.0 & 1.0 & 0.0 & -1.0 \end{bmatrix} \begin{bmatrix} D_{1} = -0.8514 \times 10^{-3} \\ D_{2} = -2.356 \times 10^{-3} \\ D_{7} = 0.0 \\ D_{8} = 0.0 \end{bmatrix}$$

$$= -6.28 \text{ kN (C)}$$

Member	$\cos \theta_{x}$	$\cos \theta_{y}$	$[q']_{\mathrm{m}}$
#1	-1	0	-1.70
#2	- 0.8	-0.6	-2.87
#3	0	-1	-6.28

Example 3

For the truss shown, use the stiffness method to:

- (a) Determine the end forces of each member and reactions at supports.
- (b) Determine the **displacement** of the loaded joint.

Take $AE = 8(10^3) \text{ kN}$.

-4	·,-3)	(-, -)	(
	Member	λ_x	λ_y
	#1	-4/5 =-0.8	-3/5 = -0.6
	#2	0	-3/3 = -1
	#3	4/5 = 0.8	-3/5 = -0.6
	#4	4/4 = 1	0
	#5	4/4 = 1	0

(0,0)

Member	λ_{x}	λ_{v}	λ_x^2/L	$\lambda_x \lambda_y / L$	λ_v^2/L
#1	-0.8	-0.6	0.128	0.096	0.072
#2	0	-1	0	0	0.333
#3	0.8	-0.6	0.128	-0.096	0.072

		1	2	3	4						
	1	0.128	0.096	-0.128	-0.096	5					
$[l_{7}] = 0103$	2	0.096	0.072	-0.096	-0.072	2					
$[k]_1 = 8x10^3$	3	-0.128	0.072	0.128	0.096	δ		1	2	7	8
	4	-0.096					1	0.128	-0.096	-0.128	0.096
		1	2.	5	6 [$[k]_3 = 8 \times 10^3$	2	-0.096	0.072	0.096	-0.072
	4 ([11]3 0210	7	-0.128	0.072 0.096	0.128	-0.096
$[k]_2 = 8 \times 10^3$	1	U	U	U	0		8				0.072
	2	0 0.3	333	0 -0	333)
	5	0 0 0.3 0	0	0	0						
	6	0 -0.3			333						28

Member	λ_{x}	λ_{v}	λ_x^2/L	$\lambda_{\rm x} \lambda_{\rm y} / L$	λ_v^2/L
#4	1	0	0.25	0	0
#5	1	0	0.25	0	0

		3	4	5	6	
	3	0.25	0	-0.25	0	
$[k]_4 = 8 \times 10^3$	4	0	0	0	0	
[11]4 0110	5	-0.25	0	0.25	0	
	6	0	0	0	0	-

$$[k]_{5} = 8 \times 10^{3} \begin{cases} 5 & 6 & 7 & 8 \\ 0.25 & 0 & -0.25 & 0 \\ 0 & 0 & 0 & 0 \\ -0.25 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$$

$$[K] = 8x10^{3} \frac{1}{5}$$

Global Stiffness Matrix

$$[k]_{1} = 8 \times 10^{3} \begin{array}{c} 1 \\ 2 \\ 0.128 \ 0.096 \\ 0.096 \ 0.072 \\ -0.096 \ 0.072 \\ -0.096 \ 0.072 \\ -0.096 \ 0.072 \\ 0.096 \$$

$$\begin{pmatrix} Q_1 = 4 \\ Q_2 = -8 \\ Q_5 = 0 \\ Q_7 = 0 \end{pmatrix} = 8 \times 10^3 \begin{array}{c} 1 \\ 0.256 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.128 \end{array} \begin{array}{c} 0.00 \\ 0.477 \\ 0.0 \\ 0.00 \\ 0.096 \\ -0.128 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.050 \\ 0.025 \\ 0.096 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} \begin{array}{c} 0.00 \\ 0.00$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_5 \\ D_7 \end{pmatrix} = \begin{pmatrix} 6.4426 \times 10^{-3} & m \\ -5.1902 \times 10^{-3} & m \\ 2.6144 \times 10^{-3} & m \\ 5.2288 \times 10^{-3} & m \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_5 \\ D_7 \end{pmatrix} = \begin{pmatrix} 6.4426 \times 10^{-3} & m \\ -5.1902 \times 10^{-3} & m \\ 2.6144 \times 10^{-3} & m \\ 5.2288 \times 10^{-3} & m \end{pmatrix}$$

Member forces

Member forces
$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

Member	λ_{ix}	λ_{iy}
#1	-0.8	-0.6
#2	0	-1

$$[q'_{F}]_{1} = \frac{8 \times 10^{3}}{5} \begin{bmatrix} 0.8 & 0.6 & -0.8 & -0.6 \end{bmatrix} \begin{pmatrix} D_{1} \\ D_{2} \\ 0 \\ 0 \end{pmatrix} + \begin{bmatrix} -4.8 \end{bmatrix}$$

$$= -1.54 \text{ kN (C)}$$

$$[q'_{F}]_{2} = \underbrace{8 \times 10^{3}}_{3} \begin{bmatrix} 0.0 & 1.0 & 0.0 & -1.0 \end{bmatrix} \begin{pmatrix} D_{1} \\ D_{2} \\ D_{5} \\ 0 \end{pmatrix} + \begin{bmatrix} 10.67 \\ D_{5} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_5 \\ D_7 \end{pmatrix} = \begin{pmatrix} 6.4426 \times 10^{-3} & m \\ -5.1902 \times 10^{-3} & m \\ 2.6144 \times 10^{-3} & m \\ 5.2288 \times 10^{-3} & m \end{pmatrix}$$

Member	λ_{x}	λ_{y}	
#3	0.8	-0.6	
#4	1	0	
#5	1	0	

$$[q'_F]_m = rac{AE}{L} \left[-\lambda_x - \lambda_y \lambda_x \lambda_x \right] \begin{vmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{vmatrix} + \left[q'^F \right]$$

$$[q'_F]_3 = \frac{8 \times 10^3}{5} \begin{bmatrix} -0.8 & 0.6 & 0.8 & -0.6 \end{bmatrix} \begin{pmatrix} D_1 \\ D_2 \\ D_7 \\ 0 \end{pmatrix}$$
= -6.54 kN (C)

$$[q'_F]_4 = \frac{8 \times 10^3}{4} \begin{bmatrix} -1.0 & 0.0 & 1.0 & 0.0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ D_5 \\ 0 \end{bmatrix}$$

= 5.23 kN (T)

$$[q'_F]_5 = \frac{8 \times 10^3}{4} \begin{bmatrix} -1.0 & 0.0 & 1.0 & 0.0 \end{bmatrix} \begin{bmatrix} D_5 \\ 0 \\ D_7 \\ 0 \end{bmatrix}$$
= 5.23 kN (T)

Member	λ_{x}	λ_y	[q']
#1	-0.8	-0.6	-1.54
#2	0	-1	-3.17
#3	0.8	-0.6	-6.54
#4	1	0	5.23
#5	1	0	5.23

Special Trusses (Inclined roller supports)

▶ Transformation Matrices

$$[q^*] = [T]^T[q']$$

$$\begin{pmatrix} q^*_3 \\ q^*_4 \\ q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \lambda_{ix} & 0 \\ \lambda_{iy} & 0 \\ 0 & \lambda_{jx} \\ 0 & \lambda_{jy} \end{pmatrix} \begin{pmatrix} q'_i \\ q'_j \end{pmatrix}$$

$$[T]^T$$

$$[\mathbf{T}] = [[\mathbf{T}]^{\mathbf{T}}]^{\mathbf{T}} = \begin{bmatrix} \lambda_{ix} & \lambda_{iy} & 0 & 0 \\ 0 & 0 & \lambda_{jx} & \lambda_{jy} \end{bmatrix}$$

$[k] = [T]^{T}[k'][T]$

$$\begin{bmatrix} k \end{bmatrix}_{m} = \begin{pmatrix} \lambda_{ix} & 0 \\ \lambda_{iy} & 0 \\ 0 & \lambda_{jx} \\ 0 & \lambda_{iy} \end{pmatrix} \underbrace{AE}_{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{ix} & \lambda_{iy} & 0 & 0 \\ 0 & 0 & \lambda_{jx} & \lambda_{jy} \end{bmatrix}$$

$$[k]_{\rm m} = \begin{array}{cccc} U_i & V_i & U_j & V_j \\ U_i & \lambda_{ix}\lambda_{ix} & \lambda_{ix}\lambda_{iy} & -\lambda_{ix}\lambda_{jx} & -\lambda_{ix}\lambda_{jy} \\ \lambda_{iy}\lambda_{ix} & \lambda_{iy}\lambda_{iy} & -\lambda_{iy}\lambda_{jx} & -\lambda_{iy}\lambda_{jy} \\ -\lambda_{jx}\lambda_{ix} & -\lambda_{jx}\lambda_{iy} & \lambda_{jx}\lambda_{jx} & \lambda_{jx}\lambda_{jy} \\ V_j & -\lambda_{jy}\lambda_{ix} & -\lambda_{jy}\lambda_{iy} & \lambda_{jy}\lambda_{jx} & \lambda_{jy}\lambda_{jy} \end{array}$$

Example 5

For the truss shown, use the stiffness method to:

- (b) Determine the **end forces** of each member and **reactions** at supports.
- (a) Determine the **displacement** of the loaded joint.

AE is constant.

Member 1:

$$\theta_{i} = 0,$$
 $\lambda_{ix} = \cos 0 = 1,$
 $\lambda_{ix} = \sin 0 = 0$
 $A_{ix} = \cos (-45^{\circ}) = 0.707,$
 $A_{iy} = \sin (-45^{\circ}) = -0.707$
 $A_{iy} = \sin (-45^{\circ}) = -0.707$

$$[q^*] = [T^*]^T[q'] + [T^*]^T[q'^F]$$

$$\begin{pmatrix} q_5 \\ q_6 \\ q_{3*} \\ q_{4*} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0.707 \\ 0 & -0.707 \end{pmatrix} \begin{pmatrix} q'_{i} \\ q'_{j} \end{pmatrix}$$

$$[T^*]^{T}$$

Member 1:

$$[k^*]_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0.707 \\ 0 & -0.707 \end{bmatrix} \underline{AE} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0.707 & -0.707 \end{bmatrix}$$

$$\begin{bmatrix} k^* \end{bmatrix}_1 = AE \begin{pmatrix} 5 & 6 & 3^* & 4^* \\ 0.25 & 0 & -0.1768 & 0.1768 \\ 0 & 0 & 0 & 0 \\ -0.1768 & 0 & 0.125 & -0.125 \\ 4^* & 0.1768 & 0 & -0.125 & 0.125 \end{pmatrix}$$

Member 2:

$$[k^*]_2 = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & -0.707 \\ 0 & -0.707 \end{bmatrix} \underline{AE} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -0.707 & -0.707 \end{bmatrix}$$

$$[k^*]_2 = AE \begin{bmatrix} 1 & 2 & 3^* & 4^* \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0.3333 & -0.2357 & -0.2357 \\ 3^* & 0 & -0.2357 & 0.1667 & 0.1667 \\ 4^* & 0 & -0.2357 & 0.1667 & 0.1667 \end{bmatrix}$$

$$[k]_{3} = \begin{bmatrix} 0.8 & 0 \\ 0.6 & 0 \\ 0 & 0.8 \\ 0 & 0.6 \end{bmatrix} \xrightarrow{AE} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0.8 & 0.6 & 0 & 0 \\ 0 & 0 & 0.8 & 0.6 \end{bmatrix}$$

$$[k]_3 = AE \begin{bmatrix} 5 & 6 & 1 & 2 \\ 0.128 & 0.096 & -0.128 & -0.096 \\ 0.096 & 0.072 & -0.096 & -0.072 \\ -0.128 & -0.096 & 0.128 & 0.096 \\ 2 & -0.096 & -0.072 & 0.096 & 0.072 \end{bmatrix}$$

Global Stiffness:

$$[k^*]_1 = AE \begin{bmatrix} 5 & 6 & 3^* & 4^* \\ 0.25 & 0 & -0.1768 & 0.1768 \\ 0 & 0 & 0 & 0 \\ -0.1768 & 0 & 0.125 & -0.125 \\ 4^* & 0.1768 & 0 & -0.125 & 0.125 \end{bmatrix}$$

$$[k^*]_2 = AE \begin{bmatrix} 1 & 2 & 3^* & 4^* \\ 0 & 0 & 0 & 0 \\ 0 & 0.3333 & -0.2357 & -0.2357 \\ 3^* & 0 & -0.2357 & 0.1667 & 0.1667 \\ 4^* & 0 & -0.2357 & 0.1667 & 0.1667 \end{bmatrix}$$

$$[K] = AE$$

$$[K] = AE$$

$$\begin{bmatrix} 5 & 6 & 1 & 2 \\ 0.128 & 0.096 & -0.128 & -0.096 \\ 0.096 & 0.072 & -0.096 & -0.072 \\ -0.128 & -0.096 & 0.128 & 0.096 \\ 2 & -0.096 & -0.072 & 0.096 & 0.072 \end{bmatrix}$$

$$[Q] = [K][D] + [Q^F]$$

$$\begin{pmatrix} Q_1 = 30 \\ Q_2 = 0 \\ Q_{3*} = 0 \end{pmatrix} = AE \begin{array}{c} \mathbf{1} \\ 0.128 & 0.096 \\ 0.096 & 0.4053 \\ 0 & -0.2357 \\ 0 & -0.2357 \\ 0.2917 \end{pmatrix} \begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix} = \frac{1}{AE} \begin{pmatrix} 352.5 \\ -157.5 \\ -127.3 \end{pmatrix}$$

Member	λ_{ix}	λ_{iy}	λ_{jx}	λ_{jy}
#1	1	0	0.707	-0.707
#2	0	-1	-0.707	-0.707
#3	0.8	0.6	0.8	0.6

Member Forces:

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

$$[q'_F]_1 = \underbrace{AE}_{4} \begin{bmatrix} -1 & 0 & 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ D_{3*} \\ 0 \end{bmatrix}$$
= -22.50 kN, (C)

$$[q'_F]_2 = \underbrace{AE}_{3} \begin{bmatrix} 0 & 1 & -0.707 & -0.707 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_{3*} \\ 0 \end{bmatrix}$$
= -22.50 kN, (C)

$$[q'_F]_3 = AE \begin{bmatrix} -0.8 & -0.6 & 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ D_1 \\ D_{246} \end{bmatrix}$$
= 37.50 kN, (T)

Member	$[q']_1$	$[q']_2$	$[q']_3$
Member Force (kN)	-22.50	-22.50	37.50

Example 6

For the truss shown, use the stiffness method to:

- (b) Determine the **end forces** of each member and **reactions** at supports.
- (a) Determine the **displacement** of the loaded joint. *AE* is constant.

$$[q^*] = [T^*]^T[q'] + [T^*]^T[q'^F]$$

$$\begin{pmatrix} q_5 \\ q_6 \\ q_{3^*} \\ q_{4^*} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0.707 \\ 0 & -0.707 \end{pmatrix} \begin{pmatrix} q'_{i} \\ q'_{j} \end{pmatrix}$$

$$[T^*]^T$$

$$[\mathbf{k}^*]_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0.707 \\ 0 & -0.707 \end{bmatrix} \underline{AE} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0.707 & -0.707 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{k}^* \end{bmatrix}_1 = AE \begin{bmatrix} \mathbf{5} & \mathbf{6} & \mathbf{3}^* & \mathbf{4}^* \\ 0.25 & 0 & -0.1768 & 0.1768 \\ 0 & 0 & 0 & 0 \\ -0.1768 & 0 & 0.125 & -0.125 \\ \mathbf{4}^* & 0.1768 & 0 & -0.125 & 0.125 \end{bmatrix}$$

$$[k^*]_2 = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & -0.707 \\ 0 & -0.707 \end{bmatrix} \frac{AE}{3} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -0.707 & -0.707 \end{bmatrix}$$

$$[k^*]_2 = AE \begin{vmatrix} 1 & 2 & 3^* & 4^* \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0.3333 & -0.2357 & -0.2357 \\ 3^* & 0 & -0.2357 & 0.1667 & 0.1667 \\ 4^* & 0 & -0.2357 & 0.1667 & 0.1667 \end{vmatrix}$$

$$\theta_{i} = \theta_{ij} = 0^{\circ}; \ \lambda_{ix} = \lambda_{jx} = \cos 0^{\circ} = 1,$$

$$\lambda_{iy} = \lambda_{jy} = \sin 0^{\circ} = 0$$

$$q'_{i} \qquad 1 \rightarrow q'_{j}$$

$$[k^*] = [T^T] \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} [T]$$

$$[k]_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{AE} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$[k]_4 = AE \begin{bmatrix} 1 & 2 & 7 & 8 \\ 0.25 & 0 & -0.25 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ -0.25 & 0 & 0.25 & 0 \\ 8 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Global:

$$[Q] = [K][D] + [Q^{\mathrm{F}}]$$

$$\begin{pmatrix} Q_1 = 30 \\ Q_2 = 0 \\ Q_{3*} = 0 \end{pmatrix} = AE \begin{bmatrix} 1 & 2 & 3* \\ 0.378 & 0.096 & 0 \\ 2 & 0.096 & 0.4053 & -0.2357 \\ 0 & -0.2357 & 0.4877 \end{pmatrix} \begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix} = \frac{1}{AE} \begin{pmatrix} 86.612 \\ -28.535 \\ -13.791 \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix} = \frac{1}{AE} \begin{pmatrix} 86.612 \\ -28.535 \\ -13.791 \end{pmatrix}$$

Member	λ_{ix}	λ_{iy}	λ_{jx}	λ_{jy}
#1	1	0	0.707	-0.707
#2	0	-1	-0.707	-0.707
#3	0.8	0.6	0.8	0.6

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yi} \end{bmatrix} + [q'^{F}]$$

$$[q'_F]_1 = \underbrace{AE}_{4} \begin{bmatrix} -1 & 0 & 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ D_{3*} \\ 0 \end{bmatrix}$$
= -2.44 kN, (C)

$$[q'_F]_2 = AE \begin{bmatrix} 0 & 1 & -0.707 & -0.707 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_{3*} \\ 0 \end{bmatrix}$$
= -6.26 kN, (C)

$$[q'_F]_3 = AE \begin{bmatrix} -0.8 & -0.6 & 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ D_1 \\ D_2 57 \end{bmatrix}$$
= 10.43 kN, (T)

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \end{pmatrix} = \frac{1}{AE} \begin{pmatrix} 86.612 \\ -28.535 \\ -13.791 \end{pmatrix}$$

Member	λ_{ix}	λ_{iy}	λ_{jx}	λ_{jy}
#4	1	0	1	0
#5	0.9899	-0.141	0.8	0.6

$$lacksquare [q'_F]_m = rac{AE}{L} igl[-\lambda_x \quad -\lambda_y \quad \lambda_x \quad \lambda_x igr] egin{bmatrix} D_{xi} \ D_{yi} \ D_{xj} \ D_{yj} \ \end{pmatrix} + igl[q'^F igr]$$

$$[q'_{F}]_{4} = AE \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} D_{1} \\ D_{2} \\ 0 \\ 0 \end{bmatrix}$$

$$= -21.65 \text{ kN, (C)}$$

$$[q'_F]_5 = \underbrace{AE}_{5} \begin{bmatrix} -0.9899 & 0.141 & 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} D_{3*} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

= 2.73 kN, (T)

Reactions:

Example 7

For the truss shown, use the stiffness method to:

- (b) Determine the **end forces** of each member and **reactions** at supports.
- (a) Determine the **displacement** of the loaded joint.

Take $AE = 8(10^3) \text{ kN}$.

Member 1:

$$\lambda_{ix} = \cos 73.74^{\circ} = 0.28,$$

 $\lambda_{iy} = \sin 73.74^{\circ} = 0.96$

$$[q^*] = [T^*]^T[q'] + [T^*]^T[q'^F]$$

$$\begin{pmatrix} q_{3*} \\ q_{4*} \\ q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 0.28 & 0 \\ 0.96 & 0 \\ 0 & 0.8 \\ 0 & 0.6 \end{pmatrix} \begin{pmatrix} q'_{i} \\ q'_{j} \\ T^*]^{T}$$

Member 2:

Member 4:

$$[k]_4 = 8 \times 10^3$$

$$\begin{bmatrix} 1 & 2 & 7 & 8 \\ 0.128 & -0.096 & -0.128 & 0.096 \\ -0.096 & 0.072 & 0.096 & -0.072 \\ -0.128 & 0.096 & 0.128 & -0.096 \\ 0.096 & -0.072 & -0.096 & 0.072 \end{bmatrix}$$

Member 5:

$$y \uparrow 6$$

$$5 \downarrow 5$$

$$\lambda_x = \cos 0^\circ = 1,$$

$$\lambda_y = \sin 0^\circ = 0$$

$$[k]_5 = 8 \times 10^3 \begin{bmatrix} 5 & 6 & 7 & 8 \\ 0.25 & 0 & -0.25 & 0 \\ 0 & 0 & 0 & 0 \\ -0.25 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Global:
$$[Q] = [K][D] + [Q^F]$$

$$\begin{pmatrix} Q_1 = 4 \\ Q_2 = -8 \\ Q_{3*} = 0 \\ Q_5 = 0 \end{pmatrix} = 8 \times 10^3 \begin{array}{c} 1 \\ 2 \\ 0.256 \\ 0.0 \\ 3^* \\ 5 \end{array} \begin{array}{c} 0.256 \\ 0.0 \\ 0.474 \\ -0.0336 \\ 0.17568 \\ -0.2 \\ 0.5 \end{array} \begin{array}{c} D_1 \\ D_2 \\ D_{3*} \\ D_5 \end{array}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \\ D_5 \end{pmatrix} = \begin{pmatrix} 1.988 \times 10^{-3} & m \\ -2.0824 \times 10^{-3} & m \\ 1.996 \times 10^{-4} & m \\ 7.984 \times 10^{-5} & m \end{pmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_{3*} \\ D_5 \end{pmatrix} = \begin{pmatrix} 1.988 \times 10^{-3} & m \\ -2.0824 \times 10^{-3} & m \\ 1.996 \times 10^{-4} & m \\ 7.984 \times 10^{-5} & m \end{pmatrix}$$

Member forces

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

Member	λ_{ix}	λ_{iy}	λ_{jx}	λ_{jy}
#1	0.28	0.96	0.8	0.6
#2	0.8	0.6	1	0

$$[q'_{F}]_{1} = \frac{8\times10^{3}}{5} \begin{bmatrix} -0.28 & -0.96 & 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} D_{3*} \\ 0 \\ D_{1} \\ D_{2} \end{bmatrix}$$

$$= 0.46 \text{ kN, (T)}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_3^* \\ D_5^* \end{pmatrix} = \begin{pmatrix} 1.988 \times 10^{-3} & m \\ -2.0824 \times 10^{-3} & m \\ 1.996 \times 10^{-4} & m \\ 7.984 \times 10^{-5} & m \end{pmatrix}$$

Member	λ_{ix}	λ_{iy}	λ_{jx}	λ_{jy}
#3	0	-1	0	-1
#4	0.8	-0.6	0.8	-0.6
#5	1	0	1	0

$$[q'_{F}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & \lambda_{x} & \lambda_{x} \end{bmatrix} \begin{bmatrix} D_{xi} \\ D_{yi} \\ D_{xj} \\ D_{yj} \end{bmatrix} + [q'^{F}]$$

$$[q'_F]_3 = \frac{8 \times 10^3}{3} \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_5 \\ 0 \end{bmatrix}$$

$$= -5.55 \text{ kN}$$

$$[q'_F]_4 = \frac{8 \times 10^3}{5} \begin{bmatrix} -0.8 & 0.6 & 0.8 & -0.6 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ 0 \\ 0 \end{bmatrix}$$

$$= -4.54 \text{ kN}$$

$$[q'_F]_5 = \frac{8 \times 10^3}{4} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 69 \end{bmatrix}$$

Space-Truss Analysis

Member Local Stiffness [k']:

$$[q'] = [k'][d'] + [q'^{F}]$$

$$= [k'][T][d] + [q'^{F}]$$

$$\begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} d'_{i} \\ d'_{j} \end{bmatrix} + \begin{bmatrix} q'^{F}_{i} \\ q'^{F}_{i} \end{bmatrix}$$

$$=\frac{EA}{L}\begin{bmatrix}1 & -1\\ -1 & 1\end{bmatrix}[T]\begin{bmatrix}d_{ix}\\d_{iy}\\d_{iz}\\d_{jx}\\d_{jy}\\d_{iz}\end{bmatrix}+[q^{\mathsf{F}}]$$

where,

$$[T] = \begin{bmatrix} \lambda_x & \lambda_y & \lambda_z & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_x & \lambda_y & \lambda_z \end{bmatrix}$$

Member Global Stiffness $[k_m]$:

$$[k_{\rm m}] = [T]^{\rm T}[k'] [T]$$

$$[k_m] = \begin{bmatrix} \lambda_x & 0 \\ \lambda_y & 0 \\ \lambda_z & 0 \\ 0 & \lambda_x \\ 0 & \lambda_y \\ 0 & \lambda_z \end{bmatrix} \underbrace{EA}_{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_x & \lambda_y & \lambda_z & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_x & \lambda_y & \lambda_z \end{bmatrix}$$

Global equilibrium matrix:

$$[Q] = [K][D] + [Q^{\mathrm{F}}]$$

Joint Load Unknown Displacement
$$Q_{I} = K_{I,I} K_{I,II} D_{u} + Q^{F_{I}}$$
Fixed End Forces
$$K_{II,I} K_{II,II} D_{u} + Q^{F_{I}}$$

Reaction

Support Boundary Condition

$$q_{iy}$$

$$q_{iy}$$

$$q_{jx}$$

$$q_{jy}$$

$$q_{jx}$$

$$\begin{bmatrix} q'_{i} \\ q'_{j} \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} d'_{i} \\ d'_{j} \end{bmatrix} + \begin{bmatrix} q'_{i}^{F} \\ q'_{j}^{F} \end{bmatrix}$$
ix

Example 6

For the truss shown, use the stiffness method to:

- (b) Determine the **end forces** of each member.
- (a) Determine the **deflections** of the loaded joint.

Take E = 200 GPa, A = 1000 m/m².

Member	λ_x	λ_y	λ_z
#1	-0.3578	+0.2683	-0.8944
#2	+0.3578	+0.2683	-0.8944
#3	+0.3578	-0.2683	-0.8944
#4	-0.3578	-0.2683	-0.8944

Member	λ_{x}	λ_y	λ_z
#1	-0.3578	+0.2683	-0.8944
#2	+0.3578	+0.2683	-0.8944
#3	+0.3578	-0.2683	-0.8944
#4	-0.3578	-0.2683	-0.8944

$$[k_{11}]_1 = \frac{AE}{L} \begin{bmatrix} 1 & 2 & 3 \\ +0.128 & -0.096 & +0.320 \\ -0.096 & +0.072 & -0.240 \\ +0.320 & -0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_1 = \frac{AE}{L} \begin{bmatrix} 1 & 2 & 3 \\ +0.128 & -0.096 & +0.320 \\ -0.096 & +0.072 & -0.240 \\ +0.320 & -0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_4 = \frac{AE}{L} \begin{bmatrix} 1 & 2 & 3 \\ -0.096 & +0.072 & +0.240 \\ -0.320 & +0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_4 = \frac{AE}{L} \begin{bmatrix} 1 & 2 & 3 \\ -0.096 & +0.072 & +0.240 \\ +0.096 & +0.072 & +0.240 \\ +0.096 & +0.072 & +0.240 \\ +0.320 & +0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_2 = \frac{AE}{L} \begin{bmatrix} 1 & 2 & 3 \\ +0.128 & +0.096 & +0.320 \\ +0.096 & +0.072 & -0.240 \\ -0.320 & -0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_4 = \frac{AE}{L} \begin{bmatrix} 2 & 1 \\ +0.128 & +0.096 & +0.020 \\ +0.096 & +0.072 & -0.240 \\ -0.320 & -0.240 & +0.80 \end{bmatrix}$$

$$[K_{1,1}]_4 = \frac{AE}{L} \begin{bmatrix} 2 & 3 \\ 0.512 & 0.0 & 0.0 \\ 0.0 & 0.288 & 0.0 \\ 0.0 & 0.0 & 3.2 \\ 78 \end{bmatrix}$$

Member Stiffness Matrix [k]_{6x6}

$$[k]_{m} = \begin{bmatrix} [k_{11}]_{3x3} & [k_{12}]_{3x3} \\ [k_{21}]_{3x3} & [k_{22}]_{3x3} \end{bmatrix}$$

$$[k_{11}]_3 = \frac{AE}{L} \begin{bmatrix} 1 \\ +0.128 & -0.096 & -0.320 \\ -0.096 & +0.072 & +0.240 \\ -0.320 & +0.240 & +0.80 \end{bmatrix}$$

$$[k_{11}]_4 = \frac{AE}{L} \begin{bmatrix} 1 \\ +0.128 & +0.096 & +0.320 \\ +0.096 & +0.072 & +0.240 \\ +0.320 & +0.240 & +0.80 \end{bmatrix}$$

$$[K_{I,I}] = \frac{AE}{L} \begin{bmatrix} 0.512 & 0.0 & 0.0 \\ 0.0 & 0.288 & 0.0 \\ 0.0 & 0.0 & 3.2 \end{bmatrix}$$

Global equilibrium matrix:

$$[Q] = [K][D] + [Q^{\mathrm{F}}]$$

Joint Load Unknown Displacement
$$Q_{I} = \begin{bmatrix}
K_{I,I} & K_{I,II} \\
K_{II,I} & K_{II,IH}
\end{bmatrix}$$
Fixed End Forces
$$Q^{F}_{I} = Q^{F}_{II}$$

Reaction

Support Boundary Condition

$$(AE/L) = (1x10^{-3})(200x10^{6})/(11.18) = 17.89x10^{3} \text{ kN}$$

$$\begin{bmatrix} 60 \\ -80 \\ 0.0 \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} 1 \\ 0.512 & 0.0 & 0.0 \\ 0.0 & 0.288 & 0.0 \\ 0.0 & 0.0 & 3.2 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} + \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$\begin{pmatrix} D_1 \\ D_2 \\ D_3 \end{pmatrix} = \frac{L}{AE} \begin{pmatrix} +117.2 \\ -277.8 \\ 0.0 \end{pmatrix} = \begin{pmatrix} 6.551 & mm \\ -15.53 & mm \\ 0.0 & mm \end{pmatrix}$$

Member	λ_{x}	λ_y	λ_z
#1	-0.3578	+0.2683	-0.8944
#2	+0.3578	+0.2683	-0.8944
#3	+0.3578	-0.2683	-0.8944
#4	-0.3578	-0.2683	-0.8944

Member forces:

$$[a_{j}]_{m} = \frac{AE}{L} \begin{bmatrix} -\lambda_{x} & -\lambda_{y} & -\lambda_{z} & \lambda_{x} & \lambda_{y} \end{bmatrix}$$

$$[q'_{j}]_{1} = \frac{AE}{L} \left[+0.3578 -0.2683 +0.8944 \right] \frac{L}{AE} \left[\begin{array}{c} 117.2 \\ -277.8 \\ 0.0 \end{array} \right]$$

$$= +116.5 \text{ kN} \quad (T)$$

Member	$\lambda_{_{X}}$	λ_{y}	λ_z
#1	-0.3578	+0.2683	-0.8944
#2	+0.3578	+0.2683	-0.8944
#3	+0.3578	-0.2683	-0.8944
#4	-0.3578	-0.2683	-0.8944

$$[q'_{j}]_{2} = \frac{AE}{L} \left[-0.3578 -0.2683 +0.8944 \right] \frac{L}{AE} \left[\begin{array}{c} 117.2 \\ -277.8 \\ 0.0 \end{array} \right] = +32.61 \text{ kN} \quad (T)$$

$$[q'_{j}]_{3} = \frac{AE}{L} \begin{bmatrix} -0.3578 & +0.2683 & +0.8944 \end{bmatrix} \frac{L}{AE} \begin{bmatrix} 117.2 \\ -277.8 \\ 0.0 \end{bmatrix} = -116.5 \text{ kN} \quad (T)$$

$$[q'_{j}]_{4} = \frac{AE}{L} \left[+0.3578 +0.2683 +0.8944 \right] \frac{L}{AE} \left[\begin{array}{c} 117.2 \\ -277.8 \\ 0.0 \end{array} \right] = -32.61 \text{ kN} \quad (T)$$

Member	$\lambda_{_{X}}$	λ_y	λ_z	$[q'_j]_{\mathrm{m}}$
#1	-0.3578	+0.2683	-0.8944	116.5
#2	+0.3578	+0.2683	-0.8944	32.6
#3	+0.3578	-0.2683	-0.8944	-116.5
#4	-0.3578	-0.2683	-0.8944	-32.6

