Title: METHOD AND DEVICE FOR DETERMINING AN EXPECTANCY RANGE FOR A FILLING LEVEL ECHO AND A FALSE ECHO

Page 2 Dkt: 235.032US1

IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method of determining at least one expectancy range for a filling level echo or a false echo generated by an ultrasonic or radar filling level measurement device, comprising the following process steps:

identifying at least one filling level echo or false echo from a first filling level envelope curve, the first filling level envelope curve having been generated at a first time;

identifying at least one second filling level echo or false echo from a second filling level envelope curve, the second filling level envelope curve having been generated at a second time different from the first time;

determining at least one expectancy range for a filling level echo or false echo in consideration of the temporal behavior of the identified at least one first filling level echo or false echo and of the identified at least second filling level echo or false echo;

sampling a filling level envelope curve currently received by the filling level measurement device by an analog-to-digital converter;

storing the echoes of the sampled filling level envelope curve including their echo data in an array of a predeterminable size;

processing the echo data stored in the array with image processing methods;

searching individual echoes in the current filling level envelope curve;

assigning the detected echoes to expectancy ranges determined in the past for a filling level echo or a false echo;

in the case that an echo is assigned to the expectancy range for the filling level, determining the filling level using said echo; and

when the array is occupied by echo data, determining a new expectancy range for echoes to be expected in the future.

2. (Original) The method according to claim 1, wherein the method further comprises: identifying at least one further filling level echo or false echo from at least one further filling

level envelope curve, said further filling level envelope curve having been generated at a further

Title: METHOD AND DEVICE FOR DETERMINING AN EXPECTANCY RANGE FOR A FILLING LEVEL ECHO AND A FALSE ECHO

Page 3 Dkt: 235.032US1

time different from the first time and the second time.

3. (Original) The method according to claim 1, wherein the at least one expectancy range is

cyclically determined in consideration of the temporal behavior of at least two past filling level

echoes or false echoes.

4. (Original) The method according to claim 1, wherein after each filling level envelope curve

newly received by the filling level measurement device, a new expectancy range is determined.

5. (Original) The method according to claim 1, wherein after n filling level envelope curves

newly received by the filling level measurement device, a new expectancy range is determined,

whereby applies $n \in \mathbb{IN}^*$.

6. (Cancelled)

7. (Currently Amended) The method according to claim 6 1, wherein, when the array is

occupied by echo data, the expectancy ranges for the filling level and the false echo are

determined in consideration of the echo data stored in the array in the past and representing the

filling level envelope curves, which echo data could have been assigned to a past expectancy

range.

8. (Currently Amended) The method according to claim $6 \underline{1}$, wherein the echo data is stored in

the array including the dimensions location, time and amplitude.

9. (Currently Amended) The method according to claim 6 1, wherein the expectancy ranges are

determined in that the echo data that could have been assigned to a past expectancy range, are

approximated with a functional progression, and a deviation measure is determined as compared

to said functional progression thus determined, from which a range width may be established for

the expectancy range to be determined.

Serial Number: 10/622,838

Filing Date: July 18, 2003

Title: METHOD AND DEVICE FOR DETERMINING AN EXPECTANCY RANGE FOR A FILLING LEVEL ECHO AND A FALSE ECHO

10. (Original) The method according to claim 9, wherein the functional progression is determined by means of a regression method, a polynomial interpolation method or an approximation method.

- 11. (Original) The method according to claim 9, wherein as the deviation measure, a multiple of the standard deviation of the echo data is determined as compared to the functional progression.
- 12. (Original) The method according to claim 11, wherein it is established by said multiple of the standard deviation with which probability an echo present in a future expectancy range may actually be assigned to this expectancy range.
- 13. (Original) The method according to claim 11, wherein from the gradient of the functional progression for the expectancy range of the filling level echo, the current change of the filling level is determined.
- 14. (Original) The method according to claim 13, wherein the size of the array in which the currently received filling level envelope curves are stored, is adapted to the current change of the filling level.
- 15. (Currently Amended) An evaluation-means evaluator for determining at least one expectancy range for a filling level echo or a false echo generated by a filling level measurement device, wherein the evaluator comprises:

the at least one expectancy range is determined in consideration of the temporal behavior of at least two past filling level echoes or false echoes.

means for identifying at least one filling level echo or false echo from a first filling level envelope curve, the first filling level envelope curve having been generated at a first time;

means for identifying at least one second filling level echo or false echo from a second filling level envelope curve, the second filling level envelope curve having been generated at a second time different from the first time;

means for determining at least one expectancy range for a filling level echo or false echo in consideration of the temporal behavior of the identified at least one first filling level echo or false echo and of the identified at least second filling level echo or false echo;

means for sampling a filling level envelope curve currently received by the filling level measurement device by an analog-to-digital converter;

means for storing the echoes of the sampled filling level envelope curve including their echo data in an array of a predeterminable size;

means for processing the echo data stored in the array with image processing methods;

means for searching individual echoes in the current filling level envelope curve;

means for assigning the detected echoes to expectancy ranges determined in the past for a filling level echo or a false echo;

means for determining the filling level using said echo in the case that an echo is assigned to the expectancy range for the filling level,; and

means for determining a new expectancy range for echoes to be expected in the future when the array is occupied by echo data.

- 16. (Currently Amended) The <u>evaluator</u> evaluation means according to claim 15, wherein the at least one expectancy range is cyclically determined in consideration of the temporal behavior of at least two past filling level echoes or false echoes which could have been assigned to past expectancy range.
- 17. (Currently Amended) The <u>evaluator</u> evaluation means according to claim 15, wherein the <u>evaluation means is equipped with further comprising</u> a memory, in which each currently received filling level envelope curve is stored after an analog-to-digital conversion with its echo data including the dimensions location, time and amplitude in an array of a predeterminable size.
- 18. (Currently Amended) The <u>evaluator</u> evaluation means according to claim <u>17</u> 15, wherein the evaluation means moreover comprises <u>further comprising</u> an image processing unit processing the echo data of the filling level envelope curves stored in the array and searching individual echoes present therein.

Title: METHOD AND DEVICE FOR DETERMINING AN EXPECTANCY RANGE FOR A FILLING LEVEL ECHO AND A FALSE ECHO

19. -20 (Canceled)

21. (Currently Amended) The <u>evaluator evaluation means</u> according to claim <u>17</u> 15, wherein the <u>means for determining at least one expectancy range evaluation means</u> is configured so as to determine the expectancy ranges for the filling level and the false echo in consideration of the

determine the expectancy ranges for the filling level and the false echo in consideration of the

echo data representative of the filling level envelope curves and stored in the array in the past,

which echo data could have been assigned to an expectancy range.

22. (Currently Amended) The evaluator evaluation means according to claim 21, wherein the

evaluation means comprises further comprising a signal processing unit determining the

expectancy ranges in that said processing unit approximates echo data with a functional

progression, which echo data has been assigned to a past expectancy range, and determines a

deviation measure of the echo data as compared to the functional progression thus determined.

23. (Currently Amended) The evaluator evaluation means according to claim 22, wherein the

signal processing unit determines the functional progression by means of a regression method, a

polynomial interpolation method or an approximation method.

24. (Currently Amended) The evaluator evaluation means according to claim 22, wherein the

signal processing unit determines a multiple of the standard deviation of the echo data as

compared to the functional progression, as the deviation measure.

25. (Currently Amended) The evaluator evaluation means according to claim 22, wherein the

size of the array that is stored in the memory of the evaluation unit, and in which the currently

received filling level envelope curves are stored, may be dynamically adapted to the current

change of the filling level, which change is represented by the gradient of the functional

progression.

Title: METHOD AND DEVICE FOR DETERMINING AN EXPECTANCY RANGE FOR A FILLING LEVEL ECHO AND A FALSE ECHO

- 26. (Currently Amended) The <u>evaluator</u> evaluation means according to claim 15, wherein the <u>evaluation</u> the recited means are is integrated in a filling level measurement device.
- 27. (Currently Amended) The <u>evaluator</u> evaluation means according to claim 15, wherein the <u>evaluation</u> the recited means <u>are</u> is spaced from a filling level measurement device, and is <u>are</u> in connection with the filling level measurement device via a data link.
- 28. (Currently Amended) A computer program for determining at least one expectancy range for a filling level echo or a false echo generated by an ultrasonic or radar filling level measurement device, with the computer program including instructions for eyelically determining the at least one expectancy range in consideration of the temporal behavior of at least two past filling level echoes or false echoes that could have been assigned to a past expectancy range. performing the following operation:

identifying at least one filling level echo or false echo from a first filling level envelope curve, the first filling level envelope curve having been generated at a first time;

identifying at least one second filling level echo or false echo from a second filling level envelope curve, the second filling level envelope curve having been generated at a second time different from the first time;

determining at least one expectancy range for a filling level echo or false echo in consideration of the temporal behavior of the identified at least one first filling level echo or false echo and of the identified at least second filling level echo or false echo;

sampling a filling level envelope curve currently received by the filling level measurement device by an analog-to-digital converter;

storing the echoes of the sampled filling level envelope curve including their echo data in an array of a predeterminable size;

processing the echo data stored in the array with image processing methods;
searching individual echoes in the current filling level envelope curve;
assigning the detected echoes to expectancy ranges determined in the past for a filling

level echo or a false echo;

in the case that an echo is assigned to the expectancy range for the filling level,

determining the filling level using said echo; and

when the array is occupied by echo data, determining a new expectancy range for echoes to be expected in the future.

29. (Cancelled)

(Previously Presented) A computer readable medium adapted to be directly loadable into 30. the memory of a computer and including instructions for carrying out the following process steps:

identifying at least one filling level echo or false echo from a first filling level envelope curve, the first filling level envelope curve having been generated at a first time;

identifying at least one second filling level echo or false echo from a second filling level envelope curve, the second filling level envelope curve having been generated at a second time different from the first time;

determining at least one expectancy range for a filling level echo or false echo in consideration of the temporal behavior of the identified at least one first filling level echo or false echo and of the identified at least second filling level echo or false echo;

sampling a filling level envelope curve currently received by the filling level measurement device by an analog-to-digital converter;

storing the echoes of the sampled filling level envelope curve including their echo data in an array of a predeterminable size;

processing the echo data stored in the array with image processing methods; searching individual echoes in the current filling level envelope curve; assigning the detected echoes to expectancy ranges determined in the past for a filling level echo or a false echo;

in the case that an echo is assigned to the expectancy range for the filling level, determining the filling level using said echo; and

when the array is occupied by echo data, determining a new expectancy range for echoes to be expected in the future.