Teorema 5.7.1

Sea A una matriz de $n \times n$. Entonces A es invertible si y sólo si $\nu(A) = 0$.

Demostración

De acuerdo con el teorema de resumen [teorema 5.4.6, partes i) y ii)], A es invertible si y sólo si la única solución al sistema homogéneo $A\mathbf{x}=\mathbf{0}$ es la solución trivial $\mathbf{x}=\mathbf{0}$. Pero según la ecuación (5.7.1), esto significa que A es invertible si y sólo si $N_A=\{\mathbf{0}\}$. Así, A es invertible si y sólo si $\nu(A)=\dim N_A=0$.

(D)

Definición 5.7.2

Imagen de una matriz

Sea A una matriz de $m \times n$. Entonces la **imagen** de A, denotada por imA, está dada por

$$imA = \{y \in \mathbb{R}^m : Ax = y \text{ para alguna } x \in \mathbb{R}^m\}$$
 (5.7.2)

Teorema 5.7.2

Sea A una matriz de $m \times n$. Entonces la imagen de A imA es un subespacio de \mathbb{R}^m .

Demostración

Suponga que \mathbf{y}_1 y \mathbf{y}_2 , están en imA. Entonces existen vectores \mathbf{x}_1 y \mathbf{x}_2 en \mathbb{R}^n tales que $\mathbf{y}_1 = A\mathbf{x}_1$ y $\mathbf{y}_2 = A\mathbf{x}_2$. Por lo tanto,

$$A(\alpha \mathbf{x}_1) = \alpha A \mathbf{x}_1 = \alpha \mathbf{y}_1 \ \ \mathbf{y} \ \ A(\mathbf{x}_1 + \mathbf{x}_2) = A \mathbf{x}_1 + A \mathbf{x}_2 = \mathbf{y}_1 + \mathbf{y}_2$$

por lo que $\alpha \mathbf{y}_1$ y $\mathbf{y}_1 + \mathbf{y}_2$ están en imA. Así, del teorema 5.2.1, imA es un subespacio de \mathbb{R}^m .

Defi

Definición 5.7.3

Rango de una matriz

Sea A una matriz de $m \times n$. Entonces el **rango** de A, denotado por $\rho(A)$, está dado por

$$\rho(A) = \dim \operatorname{im} A$$

Se darán dos definiciones y un teorema que facilitarán en cierta medida el cálculo del rango.

Definición 5.7.4

Espacio de los renglones y espacio de las columnas de una matriz

Si A es una matriz de $m \times n$, sean $\{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m\}$ los renglones de A y $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ las columnas de A. Entonces se define