CS2040S Data Structures and Algorithms

On the importance of being balanced

Welcome!

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Announcements

Midterm: Monday March 6, 4pm (class time)

Location: MPSH 2A & 2B

Note: In person, pen and paper

Nota Bene: Please mark your calendar now.

Trees

On the importance of being balanced

- Height-balanced binary search trees
- AVL trees
- Rotations

Dictionary Interface

A collection of (key, value) pairs:

interface	IDictionary	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
Key	successor(Key k)	find next key > k
Key	predecessor(Key k)	find next key < k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Recap: Binary Search Trees

- Two children: v.left, v.right
- Key: v.key
- BST Property: all in left sub-tree < key < all in right sub-right

Binary Search Trees Heights

Height:

Number of edges on longest path from root to leaf.

Modifying Operations

- insert
- delete

Query Operations:

- search
- predecessor, successor
- findMax, findMin
- in-order-traversal

Operations take O(h) time

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

What is the largest possible height h?

- 1. $\theta(1)$
- 2. $\theta(\log n)$
- 3. $\theta(\operatorname{sqrt}(n))$
- 4. $\theta(n)$
- 5. $\theta(n^2)$

Operations take O(h) time

 $h \leq n$

What is the smallest possible height h?

- 1. $\theta(1)$
- 2. $\theta(\log n)$
- 3. $\theta(\operatorname{sqrt}(n))$
- 4. $\theta(n)$
- 5. $\theta(n^2)$

What is the smallest possible height h?

- 1. $\theta(1)$
- \checkmark 2. θ (log n)
 - 3. $\theta(\operatorname{sqrt}(n))$
 - 4. $\theta(n)$
 - 5. $\theta(n^2)$

Operations take O(h) time

Operations take O(h) time

$$n \le 1 + 2 + 4 + ... + 2^h$$

 $\le 2^0 + 2^1 + 2^2 + ... + 2^h < 2^{h+1}$

Operations take O(h) time

$$log(n) -1 \le h \le n$$

A BST is <u>balanced</u> if h = O(log n)

On a balanced BST: all operations run in O(log n) time.

Perfectly balanced:

Almost perfectly balanced:

Every subtree has (almost) the same number of nodes.

Not perfectly balanced:

Left tree has 6, right tree has 1.

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

How to get a balanced tree:

- Define a good property of a tree.
- Show that if the good property holds, then the tree is balanced.
- After every insert/delete, make sure the good property still holds. If not, fix it.

Step 0: Augment

Step 1: Define Balance Condition

Step 2: Maintain Balance

Step 0: Augment

In every node v, store height:

$$v.height = h(v)$$

Step 0: Augment

In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
    if (x < key)
        left.insert(x)
    else right.insert(x)
    height = max(left.height, right.height) + 1</pre>
```


Step 0: Augment

In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
  if (x < key)
       left.insert(x)
      else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```

Step 0: Augment

Step 1: Define Balance Condition

Step 2: Maintain Balance

AVL Trees [Adelson-Velskii & Landis 1962]

Step 1: Define Invariant

Key definition

– A node v is <u>height-balanced</u> if:

 $|v.left.height - v.right.height| \le 1$

AVL Trees [Adelson-Velskii & Landis 1962]

Step 1: Define Invariant

A node v is <u>height-balanced</u> if:

|v.left.height – v.right.height| ≤ 1

A binary search tree is <u>height balanced</u> if <u>every</u>
 node in the tree is height-balanced.

Is this tree height-balanced?

- 1. Yes
- 2. No
- 3. I'm confused.

Is this tree height-balanced?

- ✓1. Yes
 - 2. No
 - 3. I'm confused.

Is this tree height-balanced?

- 1. Yes
- 2. No
- 3. I'm confused.

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

- \Leftrightarrow h/2 < log(n)
- \Leftrightarrow 2^{h/2} < 2^{log(n)}
- \Leftrightarrow 2^{h/2} < n

Show: a height-balanced tree with height h has <u>at least</u> $n > 2^{h/2}$ nodes

Strategy:

Assume tree is height-balanced with height h.

Show that it has **at least** $n > 2^{h/2}$ nodes.

→ Since every height-balanced tree with height h has <u>at least</u> $n > 2^{h/2}$ nodes, we know that every height-balanced tree with n nodes has height h < 2log(n).

If height were bigger, it would need to have more nodes!

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Show:

$$n_h > 2^{h/2}$$

Note:

$$n_{h} > n_{h-1}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 4n_{h-4}$$

$$\geq 8n_{h-6}$$

How many times?

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2^1 n_{h-2}$$

$$\geq 2^2 n_{h-4}$$

$$\geq 2^{2}n_{h-4}$$
 $\geq 2^{3}n_{h-6}$

$$\geq ... \geq 2^k n_0$$

What is

Base case:

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 2^{h/2} n_0$$

Base case:

$$n_0 = 1$$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

Show:

$$n > 2^{h/2}$$

Show (induction):

$$\begin{split} F_n &= n^{th} \text{ Fibonacci number} \\ n_h &= F_{h+2} - 1 \cong \phi^{h+1}/\sqrt{5} - 1 \text{ (rounded to nearest int)} \\ h &\cong log(n) \ / \ log(\phi) \qquad \phi \cong 1.618 \\ h &\cong 1.44 \ log(n) \end{split}$$

Claim:

A height-balanced tree is balanced, i.e., has height h = O(log n).

AVL Trees [Adelson-Velskii & Landis 1962]

Step 0: Augment

Step 1: Define Balance Condition ← invariant

Step 2: Maintain Balance

It's good that we don't have to

Balance perfectly

AVL Trees [Adelson-Velskii & Landis 1962]

Step 2: Show how to maintain height-balance

Before insertion, balanced insert(37)

No longer balanced after insertion!

Need to rebalance!

Which nodes need rebalancing? (click all that apply)

- 2. 20
- 3. 11
- 4. 29
- 5. 32
- 6. 37
- 7. 65

ARCHIPELAGO

is open

Which nodes need rebalancing? (click all that apply) 1. 41 3 **✓**2. 20 65 3. 11 0 **✓**4. 29 29 5. 32 6. 37 7. 65

Trick to rebalance the tree

Tree rotation!

Tree Rotations

A < B < C < D < E

Rotations maintain ordering of keys.

⇒ Maintains BST property.

Tree Rotations

Wait....

What is a left rotation and what is a right rotation!?

The way to remember it

The root of the subtree moves right

Tree Rotations

The root of the subtree moves left

Rotations

```
right-rotate(v)
                         // assume v has left != null
    w = v.left
    w.parent = v.parent
    v.parent = w
    v.left = w.right
                                           W
    w.right = v
             W
```

Tree Rotations

rotate-right requires a left child rotate-left requires a right child

Tree Rotations

After insert:

Use tree rotations to restore balance.

Height is out-of-balance by 1