Introduction

Institutional Perspective of Financial System

Stocks

Characteristics

Sources of returns

Calculation of returns

Determinants of returns

Key params of returns

Fixed Income

Term-structure

Default risk

Derivatives

Forwards & Futures

No-Arbitrage Principle

Options

Call option

Put option

Factors affecting derivatives' prices

The confusing & fancy terms

Types of options by exercise

Leverage

Put-Call Parity

Overview of Derivatives

Securitization

Introduction

1. Institutional Perspective of Financial System

- Financial markets: equity, fixed income (debt), credits, derivatives
- <u>Financial intermediaries</u>: banks, insurance companies, pension funds, mutual funds, investment banks, venture capital, asset management firms, information providers, ...
- <u>Financial infrastructure</u>: trading rules, contract enforcement, account system, capital requirements, ...
- Governmental organizations: IMF, World Bank, Federal Reserve System, BIS, SEC, ...

2. Stocks

- Characteristics
 - o **Equity claim** / Residual claim
 - ◆ = the right to claim the profit of a company after all prior obligations have been paid
 - Limited liability
 - = the liability of a business owner/investor cannot exceed his/her investments in the company
- Sources of returns
 - Dividends
 - ♦ = distribution of a portion of the company's earnings
 - o Capital gains
 - = profits gained on the sale of the investment
- Calculation of returns
 - o Buy at t = 0 and pay P_0 . Sell at t = T and receive P_T and dividend D_T .
 - Percentage return

$$r_T = \frac{P_T + D_T - P_0}{P_0}$$

Log return

$$r_T = \ln \frac{P_T + D_T}{P_0}$$

- Determinants of returns
 - o Firm-specific condition
 - → management, productivity, earning, growth-potential, market-liquidity, ...
 - o Market condition
 - ♦ ∋ market indices (volatility, volume, ...)
 - e.g. Nasdaq, SP500, DAX, FTSE, ...
 - o **Economic** condition
 - ♦ ∋ macro vars
 - e.g. GDP growth, inflation, unemployment, business cycles, liquidity, interest rates, ...
- Key params of returns
 - o Patterns in the cross-section
 - value (∋ value & growth)
 - size (small vs large)
 - momentum (low vs high)
 - Time series behavior
 - time-varying expected returns
 - ◆ predictability
 - ♦ stochastic volatility
 - **♦** ...

3. Fixed income

- = debt instruments (mostly bonds)
- = fixed, pre-determined stream of cash flows in the future
- Params
 - Coupon payments
 - Principal amount
 - Maturity time
 - Sinking fund obligations
 - o ...
- Term-structure / Yield-curve
 - o = interest rates / bond yields vs maturities
 - Primary shapes
 - Upward sloping
 - = "normal"
 - long-term yields > short-term yields
 - → expansionary econ
 - Downward sloping
 - = "inverted"
 - Short-term yields > long-term yields
 - → recessionary econ
 - ◆ Flat
 - → market is uncertain about future direction of econ
- Corporate bonds vs Treasury bonds
 - o Key: default risk
 - o Credit spread: diff in yields
 - Corporate bonds

- ◆ Cheaper
- Higher yields
- Probability of default
 - Varies over time
 - Varies across firms of diff credit qualities (e.g. countries, industries, guarantees, ...)

4. Derivatives

Forward & Futures

Forwards	Futures
Obligation to buy an asset	Obligation to buy an asset
at some specific time (i.e. maturity)	with a gradual price settling (daily)
at some specific price	until maturity
Can be privately negotiated	Highly standardized
OTC	exchange
High counterparty risk	High liquidity
(i.e. one party may default)	(i.e. can be traded whenever)

No-Arbitrage Principle

- ◆ = There is **NO risk-free profit** in financial markets
- e.g. simple portfolio

- A receives a forward contract from B
- At time t: A goes short to C & receives S(t) (i.e. spot price)
- A puts S(t) into the bank & receives interest till time T

- At time *T* (i.e. maturity date): *A* receives the asset & gives *F* to *B*.
- A's net position = $S(t)e^{r(T-t)} F$
 - 1. If $S(t)e^{r(T-t)} > F$: go along with the forward contract & make riskless profit
 - 2. If $S(t)e^{r(T-t)} < F$: short the forward contract & make riskless profit
- HOWEVER, jokes on you! This will never happen since other investors will smell this fresh meat and come to take a bite of it.
 Price will automatically adjust to eliminate such riskless profit! (macro)
- Eventually, A ends up with $S(t)e^{r(T-t)} = F$.

Options

- o Call Option
 - = the **right** to **buy** an asset for an agreed amount at a specific time
 - ♦ Params
 - Exercise/**Strike price**: the agreed amount (*E*)
 - **Expiry**: the specific time
 - **Underlying**: the particular asset (*S*: asset price)
 - Payoff function: return on the option

$$\max(S - E, 0)$$

- 1. $S > E \rightarrow \text{let's do this}$
- 2. $S < E \rightarrow \text{nahh let's chill}$

Put Option

- = the **right** to **sell** an asset for an agreed amount at a specific time
- ♦ Payoff function

$$max(E - S, 0)$$

- Factors affecting derivatives' prices:
 - ♦ Vars: S & t
 - ◆ Params: interest rate, E, volatility (= a measure of #fluctuations in S)
 (i.e. a measure of randomness)
- The confusing & fancy terms
 - **Premium**: the amount paid for the contract
 - ◆ Intrinsic value: the payoff that would be received if the underlying is at its current level when the option expires
 - ◆ **Time value**: any value that the option has above its intrinsic value
 - In the money: an option with positive intrinsic value
 - Out of the money: an option with no intrinsic value
 - At the money: a call/put with a strike ≈ current asset level
 - ◆ **Long position**: a positive amount of a quantity
 - Short position: a negative amount of a quantity
 - **Writing options**: The writer of an option promises to deliver the underlying asset, if the option is a call or buy the asset if the option is a put. The writer receives the premium but faces obligations in the future.
 - The purchaser faces a <u>limited downside</u> of initial premium but an <u>unlimited upside</u>.
 - The writer faces a <u>limited upside</u> of guaranteed payment but an unlimited downside.
 - Clearing houses: register & settle options on the deposit of a margin by the writers (default risk)
 - ◆ **Initial margin**: the amount deposited at the initiation of the contract.
- o Types of Options by exercise
 - **European Options**: exercise only permitted at expiry

- ◆ American Options: exercise permitted at any time before expiry
- Bermudan Options: exercise permitted on specified dates / in specified periods

Leverage

- = expectation to get a significantly higher payoff for a small investment
- e.g.
 - Today is 2020/04/08. The price of Microsoft's stock is \$163.49.
 - The cost of a \$165 call option with expiry 2020/04/15 is \$10.
 - You would like to profit off the expectation that the stock price will rise dramatically within this week. You have two choices:
 - 1. Buy the stock
 - You buy the stock at \$163.49 on 2020/04/08.
 - The stock price becomes \$180 on 2020/04/15.
 - Your return on investment will be: $\frac{180-163.49}{163.49} = 10.10\%$
 - 2. Buy the call
 - You buy the call at \$10 on 2020/04/08.
 - The stock price becomes \$180 on 2020/04/15.
 - Your return on investment will be: $\frac{180-165-10}{10} = 50\%$
- ♦ Downside: the risk of facing 100% loss
- ◆ Hedging: the offsetting of the writer's risk of writing a highly-leveraged contract by buying other related contracts

Put-Call Parity

- ◆ On day t, you buy an European call option with a strike of E and an expiry of T, and you write an European put option with the same values.
- ◆ You now hold a portfolio of a long call & a short put with:

Today (at
$$t$$
): $C - P = S(t) - Ee^{-r(T-t)}$
Future (at T): $\max(S(T) - E, 0) - \max(E - S(T), 0) = S(T) - E$

 = the equality of CF is independent of the future (i.e. it holds at any time up to expiry)

Overview of Derivatives

- Equity Derivatives
 - ♦ ∋ stock options, index futures, futures options, ...
- Fixed-Income Derivatives
 - ♦ ∋ caps/floors, swaps, swaptions, ...
- Credit Derivatives
 - ♦ ∋ credit swap, collateralized loan obligations, ...
- Other Derivatives
 - ♦ ∋ FX, weather (wait what?), exotics, ...

5. Securitization

- = the procedure where a person merge various financial assets into one group to form a new marketable financial instrument
- e.g. MBS, CDO, asset-backed debt, ...