

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

• Summary of methodologies

Data Collection via SpaceX REST API;

Data wrangling with Pandas

Exploratory Data Analysis (EDA) with SQL

Data visualization with Matplotlib, Seaborn, Folium, Dash

Machine Learning, KNN, Logistic Regression, Decision Tree, SVM

Summary of all results

Investigative Exploratory Data Analysis and Data Visualizations

Interactive maps and dashboard

Best model accuracy

Introduction

Background and Context

The objective is to evaluate the viability of the new company Space Y to compete with Space X.

Problems

What are the characteristics of a successful landing

What are the relationships of the various variables that go into a mission

What will Space Y need in order to compete with Space X

Methodology

Executive Summary

- Data collection methodology:
 - Space X Rest API and scraping Falcon 9 wiki
- Perform data wrangling
 - Replacing null values, normalizing values, one hot encoding for classification
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

Data was requesting from Space X's REST API

Data was scraped from https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches

Data Collection – SpaceX API

 Space X REST API URL: api.spacexdata.com/v4/

 Transformed JSON into Dataframe using Pandas Python Library

Link

Data Collection - Scraping

- Send Request to wiki
- Insert Response into BeautifulSoup
- Find all tables
- Convert Data into Dataframe

Link

Data Wrangling

Missing values were replaced appropriately for analysis

Link

Data was Normalized for upcoming analysis

Categorical Attributes were converted to numeric for Classification

EDA with Data Visualization

In order to discover relationships scatterplots and barplots and lineplots were created

Link

EDA with SQL

- Retrieved unique Launch Site Names
- Retrieved 5 records where launch sites begin with the name 'CCA'
- Displayed the total payload carried by boosters for NASA CRS launches
- Displayed average payload carried by booster versions F9 v1.1
- · Retrieved the date for the first successful landing
- Retrieved the names of the boosters for successes that had payload between 4000 and 6000
- Summarized successful and failed missions
- Retrieved the names of the booster version which had carried the maximum payload
- Retrieved the 2015 records for failed landing outcomes
- Sorted the number of successful landings between 04-06-2010 and 20-03-2017

Build an Interactive Map with Folium

- Markers display launch sites
- Circles highlight areas around sites
- Marker Clusters depict groups of important sites
- Lines visualize distances between points.

Link

Build a Dashboard with Plotly Dash

Dashboard includes pie chart and scatter plot along with dropd down menu and range slider

Pie chart depicts the success vs failure for given launch site

Scatter chart indicates relationship between two variables

Drop down allows for visualizing specific metrics

Range slider allows for visualizing specific metrics

Link

Predictive Analysis (Classification)

Split data into training and testing set

Select Model

Use Grid Search Cross Validation for parameters

Compare Model Accuracy

URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Scatter point depicts relationship between Flight number and Launch Site

CCAF5 SLC 40 has many flights

Payload vs. Launch Site

Some launch sites may have better odds depending on Payload

VA4B did not see any payload greater than 10000

Success Rate vs. Orbit Type

Highest success rates:

- ES-L1
- GEO,
- HEO
- SSO

Flight Number vs. Orbit Type

Scatter point depicts relationship between Flight number and Orbit type

Some orbits see more flights compared to others

Payload vs. Orbit Type

Scatter point depicts relationship between Payload and Orbit type

Most payloads are not near maximum

Launch Success Yearly Trend

 Success rates picks up in 2013

 First three years had saw no success but perhaps laid foundation for future missions

All Launch Site Names

%sql SELECT DISTINCT Launch Site FROM SPACEXTABLE

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Unique Launch Sites

Launch Site Names Begin with 'CCA'

%sql SELECT DISTINCT Launch_Site FROM SPACEXTABLE

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attemp
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Find 5 records where launch sites begin with `CCA`

Total Payload Mass

%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Customer = 'NASA (CRS)'

```
SUM(PAYLOAD_MASS__KG_)
45596
```

Total payload carried by boosters from NASA

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1 and Average payload mass carried by booster version F9 v1.1.etc

First Successful Ground Landing Date

%sql SELECT MIN(Date) FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)'

MIN(Date)

2015-12-22

Dates of the first successful landing outcome on ground pad

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql SELECT Booster_Version FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)' AND PAYLOAD_MASS__KG__BETWEEN 4000 AND 6000

Booster_Version

F9 FT B1032.1

F9 B4 B1040.1

F9 B4 B1043.1

Names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

%sql SELECT Mission Outcome, COUNT(*) FROM SPACEXTABLE GROUP BY Mission Outcome

Mission_Outcome	COUNT(*)
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Total number of successful and failure mission outcomes

Boosters Carried Maximum Payload

F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1060.3

Names of the booster which have carried the maximum payload mass

2015 Launch Records

```
%sql SELECT Booster_Version, Launch_Site, substr(Date, 6,2) FROM SPACEXTABLE
WHERE substr(Date, θ,5) = '2015' AND Landing_Outcome = 'Failure (drone ship)'
```

Boos	ter_Version	Launch_Site	substr(Date, 6,2)
F	9 v1.1 B1012	CCAFS LC-40	01
47.504	9 v1.1 B1015	CCAFS LC-40	04

Failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%%sql SELECT Landing_Outcome, COUNT(Landing_Outcome) FROM SPACEXTABLE
WHERE Date BETWEEN '2010-06-04' AND '2017-03-20'
GROUP BY Landing_Outcome ORDER BY COUNT(Landing_Outcome) DESC

COUNT(Landing_Outcome)	Landing_Outcome
10	No attempt
5	Success (drone ship)
5	Failure (drone ship)
3	Success (ground pad)
3	Controlled (ocean)
2	Uncontrolled (ocean)
2	Failure (parachute)
1	Precluded (drone ship)

Ranking the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Launch Sites

Launch sites locations in Florida and California

Launch Outcomes

Green depicts success

Red shows failure

Launch Site Proximity

Launch site proximity, coastal and far from urban centres

Total Successful Launches By Site

Launch Site may have relationship with success rate

Best Launch Success for KSC LC-39A

76.9% success rate was the highest

Payload vs Outcome

More lower payload outcomes

Classification Accuracy

 KKN, Decision Tree, Logistic Regression and SVM were used

 Decision Tree had the highest classification accuracy

Confusion Matrix

Confusion tree only shows 1 misclassified instance

Conclusions

Payload, launch site, orbit are all considerations for success

KSC LC-39A had many launches

Lower payloads are more tried

Decision Tree Classifier was best model

Appendix

See GitHub for links

