Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga Département de Mathématiques et Informatique A. U. 2020-2021 Filière: SMA/SMI Module: Analyse 1 Responsable: N. Mrhardy

$\underline{\text{TD}} \ \underline{\text{n}^{\circ}3}$: Limite et Continuité

Exercice 1.

Déterminer les limites suivantes, lorsque celles-ci existent:

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$
(d) $\lim_{x \to 0^+} E\left(\frac{1}{x}\right)$, (e) $\lim_{x \to +\infty} e^{x - \sin x}$,

Exercice 2.

Etudier la continuité des fonctions suivantes:

$$f: x \mapsto (x - E(x))^2$$
, $g: x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$

Exercice 3.

Soit la fonction f définie par

$$f(x) = \sqrt{x}\cos\left(\frac{1}{x}\right) - \frac{1}{1-x}$$

Déterminer où elle est définie, où elle est continue, et la prolonger par continuité, quand c'est possible, là où elle n'est pas définie.

Exercice 4.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue telle que: $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$. Montrer que f admet un minimum.

Exercice 5.

Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et telle que f(0) = f(1). Montrer qu'il existe $c \in \left[0,\frac{1}{2}\right[$ tel que

$$f(c) = f\left(c + \frac{1}{2}\right)$$

Exercice 6.

Soit f continue sur I = [a, b] à valeurs dans [a, b] contractante de rapport k. On choisit un point quelconque $a_0 \in I$ et on définit la suite (a_n) par

$$a_1 = f(a_0); \quad a_{n+1} = f(a_n)$$

- (1) Montrer que a_n est de Cauchy et en déduire qu'elle est convergente.
- (2) Montrer que la limite ℓ de $(a_n)_n$ est l'unique point fixe de f c-à-d $\ell = f(\ell)$

Exercice 7. $(Extrait\ d'examen\ SN\ 2017/2018)$

Soit f la fonction définie par

$$f(x) = \frac{\ln(x)}{\ln(x) + 1}$$

- (1) Déterminer le domaine de définition de f puis calculer les limites sur ses bornes.
- (2) La fonction f est-elle prolongeable par continuité en 0? Si oui donner son prolongement en 0.
- (3) Montrer directement que f est strictement monotone sur $\left]\frac{1}{e}, +\infty\right[$. (sans utiliser la dérivée).
- (4) En déduire que f est bijective de $\left]\frac{1}{e}, +\infty\right[$ sur un intervalle J que l'on précisera puis déterminer f^{-1} .

Exercice 8.

Soit A une partie non vide de \mathbb{R} . Pour x réel, on pose

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Exercice 9.

Soit f continue sur \mathbb{R}^+ à valeurs dans \mathbb{R} admettant une limite réelle quand x tend vers $+\infty$. Montrer que f est uniformément continue sur \mathbb{R}^+ .