Creating Planner Portfolios with Predictive Models

Isabel Cenamor

icenamor@inf.uc3m.es www.plg.inf.uc3m.es/∽icenamor

26 de Septiembre del 2015

Directores: Tomás de la Rosa Fernando Fernández

Índice

- 1 Introducción
- 2 Motivación
- Definición
- 4 Objetivos
- 5 Desarrollo
- 6 Resultados
- 7 Conclusiones y Trabajos Futuros

Planificación Automática

Planificación Automática

Consiste en un conjunto de procesos que se realizan para obtener un plan de actuación para resolver una determinada tarea de planificación

Donde la definición de la tarea de planificación esta compuesta por:

Dominio

Consiste en un conjunto de predicados y un conjunto de acciones para moverse de un estado a otro

Problema

Consiste en la definición de unos estados inicial y final, donde cada uno de ellos deben ser válidos

Planificación de Tareas

Introducción

Ejemplo: "El mundo de los bloques"

Estado Inicial encima (A,B) en-mesa(C), en-mesa(B) brazo-libre libre(A), libre (C)

¿Cómo se soluciona?

A través de los Planificadores Automáticos, que generan un plan.

Plan

Un conjunto ordenado de acciones que transcurren desde el estado inicial hasta el estado final (meta)

Solución

- quitar (A,B)
- dejar(A)
- levantar(C)
- poner(C,B)

Planificadores Automáticos

- Se tratan de unos sistemas que generan planes a partir de un dominio y un problema
- Hay independientes del dominio, específicos del dominio y configurables
- Existe un lenguaje común (PDDL Planning Domain Definition Language)
- Desde 1998 se organiza una competición de planificadores (IPC International Planning Competition - actualmente se han celebrado 8 competiciones)

Planificador Dominio + → Algoritmo Problema Plan

Motivación

- Siempre hay un ganador en cada competición
- Sin embargo, no tiene porque ser el mejor ni en todos los dominios, ni en todos los problemas

Solución

La combinación de planificadores es una buena idea, ya que aporta más diversidad y puede mejorar el rendimiento de un sólo planificador.

Portfolio de Planificadores

Portfolio de Planificadores

Definición

Dado un conjunto de planificadores, $\{p_1,\ldots,p_n\}$, y un tiempo de ejecución máximo, T, un portfolio de planificadores puede ser definido como una secuencia de m tuplas tal que $< p_1, t_1 >, \ldots, < p_m, t_m >$, donde $p_i \in \{p_1,\ldots,p_n\}$ y $\sum_{j=1}^m t_j = T$.

uducción Motivación **Definición** Objetivos Desarrollo Resultados Conclusiones y Trabajos Futuros

Tipos

- Estáticos: tienen la misma configuración para todos los dominios y problemas
- Dinámicos: tienen distinta configuración
 - Por Dominio: tienen la misma configuración dentro del mismo dominio
 - Por Problema: saber cuál es la combinación de planificadores que resuelven el problema

Aproximaciones	Configuration
FDSS	Estática
PbP	Dinámica por Dominio
Nuestra Aproximación	Dinánica por Problema

| Caratiana: 4...

Objetivos

- Configurar un portfolio usando Aprendizaje Automático (Modelos predictivos)
- Aprender esos modelos en base a dos criterios:
 - Si un determinado planificador encuentra solución

 El tiempo que va a tardar en encontrar dicha solución

Metodología

A través de un proceso de minería de datos.

Dominios Problemas Resultados

Análisis de las propiedades

Transformación de los datos

Extracción de conocimiento

- 1. ¿Qué planificadores resuelven este problema?
- 2. ¿ Cuánto tiempo va a tardar un planificador en resolverlo?

Metodología II

Análisis de las propiedades

- Caracterización de la tarea de planificación
 Características:
 - Problema y Dominio
 - Información de ejecución de los planificadores
 - Heurísticas

Extracción de conocimiento

- Creación de distintos modelos predictivos
- Selección de planificadores en función de las métricas de la competición

Transformación de los datos

- Limpieza de características
- Separación de datos en función de objetivos
- Técnicas de selección de características

Evaluació

- Dividiendo el conjunto de datos inicial en dos partes
- Evaluando con un dominio individual
- Participando en la competición

Metodología III

Explotación

- Uso de los mejores modelos aprendidos
- Estrategias de configuración
- Asignación de tiempo a cada componente

Resultados I

Resultados en Sequential Satisficing track en calidad.

-	IBa2	IBa	Mercury	MIPlan	Jasper	Uniform	Cedalion	Max
Tetris	4,0	6,3	14,4	7,5	9,5	11,5	3,2	14,6
Barman	16,4	16,3	13,9	16,5	19,8	17,8	16,8	19,8
Cave	7,0	7,0	3,0	7,0	8,0	7,0	7,0	8,0
Childsnack	15,0	15,3	0,0	18,2	0,0	1,2	0,7	18,5
Citycar	6,9	7,3	4,0	4,7	8,9	12,7	7,7	19,4
Floortile	18,2	15,2	2,0	4,1	2,0	1,5	8,0	19,3
Hiking	18,0	18,7	16,5	18,1	17,2	17,0	18,7	19,0
Maintenance	16,7	16,8	5,1	16,6	9,3	9,4	14,2	16,8
Openstacks	5,1	3,6	19,7	9,1	17,3	10,8	17,1	19,7
Parking	5,3	1,7	15,6	11,1	12,9	9,7	4,3	19,9
Thoughtful	15,7	13,8	0,0	11,2	0,0	0,0	0,0	17,1
Transport	7,0	9,9	20,0	0,0	7,6	9,2	5,1	20,0
Visitall	13,3	14,2	19,9	8,2	15,2	19,6	19,5	19,9
GED	17,4	16,7	19,0	17,7	17,3	15,7	15,0	19,0
Total	166,2	162,7	153,0	150,0	144,9	143,3	137,3	251,0

Resultados II

Resultados en Sequential Satisficing track en problemas resueltos.

	IBa2	IBa	Mercury	MIPlan	Jasper	Uniform	Cedalion	Max
Tetris	5	9	11	17	12	8	4	20
Barman	20	20	20	20	20	20	20	20
Cave	7	7	8	3	7	7	7	8
Childsnack	20	20	0	0	2	19	1	20
Citycar	9	10	13	5	14	5	8	20
Floortile	20	16	2	2	2	5	9	20
Hiking	20	20	20	18	20	20	20	20
Maintenance	17	17	11	7	12	17	15	20
Openstacks	6	4	19	20	14	10	19	20
Parking	7	2	19	20	12	15	6	20
Thoughtful	19	15	0	0	0	12	0	20
Transport	13	20	10	20	17	0	11	20
Visitall	15	16	20	20	20	10	20	20
GED	20	20	20	20	20	20	20	20
Total	198	196	173	172	172	168	160	268

Conclusiones

Introducción

- Caracterización de la tarea de planificación a través de un conjunto nuevo de características
- Selección de un conjunto adecuado de planificadores utilizando Pareto dominancia, considerando varias métricas que se usan en las competiciones
- Selección de los mejores modelos predictivos de un conjunto de algoritmos basados en árboles de decisión, reglas, maquinas de vector de soporte, etc (31 en clasificación y 18 en regresión)
- Creación de un conjunto de estrategias para incrementar la eficiencia de los modelos predictivos utilizados
- 5 Explotación de cada una de las fases en un portfolio

Trabajos Futuros

- Estudiar las caracteristicas creadas considerando la relevancia y diferenciación entre problemas del mismo tamaño
- Aprendizaje durante la ejecución de los planificadores para mejorar el rendimiento
- Creación de estrategias automáticamente por tarea de planificación
- Configuraciones eficientes cuando el tiempo máximo a repartir es mucho menor

¡Gracias por su atención!

Isabel Cenamor
 icenamor@inf.uc3m.es
www.plg.inf.uc3m.es/~icenamor

