15.094J: Robust Modeling, Optimization and Computation

Lecture 13: Power of Robust Policies in Adaptive Optimization

Motivation

- RO is tractable
- But how much do we lose in performance?
- Is it worse for multistage optimization?

Stochastic Model

Two-stage Stochastic Optimization Model

Inventory Management

Stochastic Model

Two-stage Stochastic Optimization Model

```
\begin{aligned} \mathbf{zStoch} &= \min c^T x + \mathbb{E}[d^T y(b)] \\ &A x + B y(b) & \geq & b, \ \forall b \in \mathcal{U} \\ &x \in \mathbb{R}^n_+ \times \mathbb{Z}^p_+ \\ &y(b) \in \mathbb{R}^n_+ \times \mathbb{Z}^p_+ \end{aligned}
```

- Computationally intractable in general
- Two-stage problem is #P-hard [Dyer and Stougie (2001)]
- Multi-stage problem is PSPACE-hard [Dyer and Stougie (2001)]

Adaptive Optimization Model

Two-stage Adaptive Optimization Model

- Still computationally intractable in general
- Even approximating LO within an factor of O(log m) is NP-hard [Feige et al.'07]

Robust Optimization Model

- Computationally tractable
- But does it give a highly conservative solution?

Uncertainty Sets

Symmetry of *u*

 $\mathsf{sym}(b,\mathcal{U})$: minimum ratio of red and green segments

$$\operatorname{sym}(b,\mathcal{U}) = \max\{\alpha \mid b + \alpha \cdot (b - b') \in \mathcal{U}, \ \forall b' \in \mathcal{U}\}$$

$$\operatorname{sym}(\mathcal{U}) = \max_{b \in \mathcal{U}} \ \operatorname{sym}(b, \mathcal{U})$$

Example (s=1)

$$(ar{b}-\delta)\in\mathcal{U}\Leftrightarrow(ar{b}+\delta)\in\mathcal{U},\;orall\delta$$
 $ext{sym}(\mathcal{U})=1$

More Examples (s=1)

$$\mathsf{sym}(\mathcal{U}) = 1$$
 Hypercube $: ||b - ar{b}||_\infty \leq eta$

$$\mathsf{sym}(\mathcal{U}) = 1$$
 $oxedsymbol{ar{b}}$ Ellipsoid $: ||\Sigma(b - ar{b})||_2 \leq eta$

$$\operatorname{\mathsf{sym}}(\mathcal{U}) = \frac{1}{\sqrt{n}}$$

$$n = n$$

$$\mathsf{sym}(\mathcal{U}) = 1$$

$$\mathcal{U} = \left\{b \in \mathbb{R}^n_+: \left|rac{\sum_{i \in S} b_i - |S|\mu}{\sqrt{|S|}}
ight| \leq 2, \; orall S \subseteq N := \{1,\dots,n\}
ight\}$$

Translation Factor of *u*

Translation factor of
$$\mathcal{U},\;
ho(\mathcal{U}) = rac{||b_1||}{||b_0||}$$

Results: Robust Solutions

Stochastic (zStoch)

Adaptive (zAdapt)

$$egin{aligned} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ x, y(b) & \geq & 0 \end{aligned}$$

$$egin{aligned} \min c^T x + \max_b d^T y(b) \ & Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ & x, y(b) & \geq & 0 \end{aligned}$$

Theorem 1 Let
$$\rho = \rho(\mathcal{U})$$
 and $s = \text{sym}(\mathcal{U})$. Then,

$$\frac{z_{\mathsf{Rob}}}{z_{\mathsf{Stoch}}} \leq \left(1 + \frac{\rho}{s}\right)$$

• Assumption: E[b] = \overline{b} where \overline{b} is the point of symmetry

Our Results: Implications

Stochastic (zStoch)

Adaptive (zAdapt)

$$egin{aligned} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ x, y(b) & \geq & 0 \end{aligned}$$

$$egin{aligned} \min c^T x + \max_b d^T y(b) \ & Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ & x, y(b) & \geq & 0 \end{aligned}$$

Uncertainty Set (U) (RHS)	Stochasticity Gap zRob/zStoch	Adaptability Gap zRob/zAdapt
Symmetric (s=1)	(1+ <i>P</i>) ≤ 2	(1+ \(\rho \)) ≤ 2
General (1/n < s ≤ 1)	(1+ <i>ρ</i> /s)	(1+ <i>ρ</i> /s)

• Assumption: E[b] = \overline{b} where \overline{b} is the point of symmetry

Bounds for different Sets

$\mathcal{U}(\rho=1)$	$sym(\mathcal{U})$	Stochasticity Gap
	1	2
	$rac{1}{\sqrt{2}}$	$(1+\sqrt{2})$
	$\frac{1}{\sqrt{n}}$	$(1+\sqrt{n})$

Integer Variables

Stochastic (zStoch)

Adaptive (zAdapt)

$$egin{aligned} \min c^T x + \mathbb{E}[d^T y(b)] \ Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ x & \in & \mathbb{R}^n_+ imes \mathbb{Z}^p_+ \ y(b) & \in & \mathbb{R}^n_+ \end{aligned}$$

$$egin{aligned} \min c^T x + \max_b d^T y(b) \ & Ax + By(b) & \geq & b, \ orall b \in \mathcal{U} \ & x & \in & \mathbb{R}^n_+ imes \mathbb{Z}^p_+ \ & y(b) & \in & \mathbb{R}^n_+ imes \mathbb{Z}^p_+ \end{aligned}$$

Uncertainty Set (U) (RHS)	Stochasticity Gap zRob/zStoch	Adaptability Gap zRob/zAdapt
Symmetric (s=1)	$\lceil (1+\rho) \rceil = 2$	$\lceil (1+\rho) \rceil = 2$
General (1/n < s ≤ 1)	$\lceil (1+ ho/s) \rceil$	$\lceil (1+ ho/s) \rceil$

• Assumption: E[b] = \overline{b} where \overline{b} is the point of symmetry

Proof

Optimal Stochastic Solution: $x^*, y^*(b), \ \forall b \in \mathcal{U}$

Feasible Static Solution: $(\tau x^*, \tau y^*(b_0))$

$$A(\tau x^*) + B(\tau y^*(b_0)) \ge \tau b_0 \ge b, \forall b \in \mathcal{U}$$

Cost Analysis

$$z_{\mathsf{Rob}} \leq au(c^T x^* + d^T y^*(b_0))$$

$$egin{aligned} z_{\mathsf{Rob}} & \leq au(c^T x^* + d^T y^*(b_0)) \ | \ z_{\mathsf{Stoch}} = c^T x^* + \mathbb{E}_b[d^T y^*(b)] \end{aligned}$$

$$egin{align} Ax^*+By^*(b)&\geq b\ &\mathbb{E}_big[Ax^*+By^*(b)ig]&\geq \mathbb{E}_b[b]\ &Ax^*+B\mathbb{E}_b[y^*(b)]&\geq b_0 \end{gathered}$$

$$\mathbb{E}_b[y^*(b)]$$
 is a feasible solution for $b_0 \Rightarrow d^T y^*(b_0) \leq d^T \mathbb{E}_b[y^*(b)]$

$$z_{\mathsf{Rob}} \leq au \cdot z_{\mathsf{Stoch}} = \left(1 + rac{
ho}{s}
ight) z_{\mathsf{Stoch}}$$

Our Results: Cost, RHS uncertainty

Stochastic (zStoch)

$$egin{aligned} \min c^T x + \mathbb{E}_{(b,d)}[d^T y(b,d)] \ Ax + By(b,d) & \geq & b, \ orall (b,d) \in \mathcal{U} \ x, y(b,d) & \in & \mathbb{R}^n_+ \end{aligned}$$

Adaptive (zAdapt)

$$egin{aligned} \min c^T x + \max_{(b,d)} \ d^T y(b,d) \ & Ax + By(b,d) \ \geq \ b, \ orall (b,d) \in \mathcal{U} \ & x,y(b,d) \ \in \ \mathbb{R}^n_+ \end{aligned}$$

Uncertainty Set (U) (Cost and RHS)	Stochasticity Gap zRob/zStoch	Adaptability Gap zRob/zAdapt
Symmetric (s=1)		
General (1/n ≤ s ≤ 1)		

Assume: $E_{b,d}[(b,d)] = (\overline{b},\overline{d})$ where $(\overline{b},\overline{d})$ is the point of symmetry

Our Results: Cost, RHS uncertainty

Stochastic (zStoch)

Adaptive (zAdapt)

$$egin{aligned} \min c^T x + \mathbb{E}_{(b,d)}[d^T y(b,d)] \ Ax + By(b,d) & \geq & b, \ orall (b,d) \in \mathcal{U} \ x, y(b,d) & \in & \mathbb{R}^n_+ \end{aligned}$$

$$egin{aligned} \min c^T x + \max_{(b,d)} \ d^T y(b,d) \ & Ax + By(b,d) \ \geq \ b, \ orall (b,d) \in \mathcal{U} \ & x, y(b,d) \ \in \ \mathbb{R}^n_+ \end{aligned}$$

Uncertainty Set (U) (Cost and RHS)	Stochasticity Gap zRob/zStoch	Adaptability Gap zRob/zAdapt
Symmetric (s=1)	Ω(m)	$(1+\rho)^2 \le 4$
General (1/n ≤ s ≤ 1)	Ω(m)	$(1+\rho/s)^2$

Assume: $E_{b,d}[(b,d)] = (\overline{b},\overline{d})$ where $(\overline{b},\overline{d})$ is the point of symmetry

Multi-Stage Problems

Multi-Stage Stochastic Model

Static solution is not a good approximation

Fully-Adaptive Solution

- Requires optimal decision for each possible scenario
- Uncountable set of scenarios (typically)
- Suffers from the curse of dimensionality
- PSPACE hard to compute in general

Finitely Adaptive Solution

- Partition the scenarios into a small number of sets
- Compute a static solution for each set of scenarios in the partition
- Finite (small) number of solutions in each stage
- partition the scenarios according to the realized paths in the uncertainty network
- Number of paths is finite (small)
- In each stage k, compute a solution for each path from stage 1 to stage k
- For any path P, the solution is feasible for all possible parameter realizations on P

Performance of Finitely Adaptive Solution

Theorem 2 Let $\rho = \max \ \rho(\mathcal{U})$ and $s = \min \ \text{sym}(\mathcal{U})$ over all \mathcal{U} . Also, for all \mathcal{U} , let, $\mathbb{E}[b] \geq b_0$,

where b_0 is the point of symmetry of U. Then,

Cost of an optimal finitely adaptable solution
$$\leq \left(1 + \frac{
ho}{s}\right) z_{\mathsf{Stoch}}$$
 .

- Finitely Adaptive solution is a good approximation of the multistage stochastic problem
- Performance bound = 2 for uncertainty sets with symmetry = 1

Bounds for Multi-stage Problems

Uncertainty Set (U) (RHS)	Stochasticity Gap zRob/zStoch	Adaptability Gap zRob/zAdapt
Symmetric (s=1)	(1+ <i>P</i>) ≤ 2	(1+ \(\rho \)) ≤ 2
General (1/n< s ≤ 1)	(1+ <i>ρ</i> /s)	(1+ <i>ρ</i> /s)

Finitely Adaptive Solution: Multi-stage Adaptive Optimization Problem

Theorem 3 Consider the adaptive problem with both rhs and cost uncertainty, i.e., both b, d are uncertain. Let $\rho = \max \rho(\mathcal{U})$ and $s = \min \text{sym}(\mathcal{U})$ over all \mathcal{U} . Then,

Cost of an optimal finitely adaptable solution
$$\leq \left(1 + \frac{\rho}{s}\right)^2 z_{\mathsf{Adapt}}$$
.

- Finitely Adaptive solution is a good approximation of the multistage adaptive problem with both rhs and cost uncertainty
- Performance bound ≤ 4 for uncertainty sets with symmetry = 1
- Finitely adaptive solution is not a good approximation for the corresponding stochastic problem

Conclusions

- Choose uncertainty sets carefully
- Criteria: Tractability and Symmetry
- Finite Adaptability, which humans heuristically use is near optimal if the uncertainty set is symmetric, that is reasonable known unknowns