Quantifying the association between Antarctic atmospheric river characteristics and their impacts using extreme-value statistics

James Butler¹, Michelle Maclennan², Jon McAuliffe^{1,3}, Fernando Pérez¹ ¹Department of Statistics, UC Berkeley; ²Department of Atmospheric and Oceanic Sciences, CU Boulder; ³The Voleon Group

butlerj@berkeley.edu

Method

Motivation

Atmospheric rivers (ARs) have extreme impacts on the Antarctic ice sheet (AIS)

> 10% of AIS yearly snowfall budget (Wille et al. 2021)

Extreme temperatures/anomalies (Wille et al. 2022, 2024)

Impacts are highly variable across storms... any associations between storm characteristics (pressure, wind, moisture, etc.) with extreme landfalling impacts?

Project Goals

Open catalog of AR events with variable info (inc. tutorials, software tools, docs)

Statistical associations with extreme impacts

Building a Catalog of AR Events

Tabular dataset of landfalling storms with custom characteristics and impacts

pandas

Dataset

Model $Q_{Y|X}(\tau) = X'\beta(\tau)$

τth quantile of impact **Y**

Linear quantile regression models

quantiles of an outcome variable as a

linear combination of predictors

Vector of regression coefficients for τ th quantile

Signs of coefficients convey direction of association between characteristics and quantiles of impact variable

Inference

among ARs with

Dimension-adjusted order

 $(1-\tau)n/d \ge 30$

 $(1-\tau)n/d < 30$

Central

 $\hat{\beta}(\tau) \rightsquigarrow \mathcal{N}(\beta, \Sigma)$

Koenker (2005)

 $\leadsto Z_{\infty}$

Extremal

Chernozhukov (2011)

Exploratory Data Analysis

Contour plots of bivariate kernel density estimates comparing pairs of characteristics (columns) with relevant impacts (rows); correlation computed using Spearman's rho

Takeaways

Preliminary Results

Coef. 95% Confidence Intervals, Temp. Anomaly				
	τ = 0.5	$\tau = 0.9$	$\tau = 0.99$	
V10m	[0.36, 0.45]	[0.16, 0.29]	[-0.43, 1.28]	
IWV	[-0.23, -0.17]	[-0.22, -0.09]	[-0.36, 1.47]	
CLA	[0.20,0.29]	[0.20, 0.43]	[-0.56, 1.34]	
South	[-0.40, -0.30]	[-0.58, -0.42]	[-0.39, 1.41]	
SLP	[0.04, 0.11]	[0.03, 0.12]	[-0.36, 1.45]	

Coef. 95% Confidence Intervals, Snowfall					
	$\tau = 0.5$	$\tau = 0.9$	$\tau = 0.99$		
V10m	[0.07, 0.11]	[0.11, 0.17]	[0.06, 1.18]		
IWV	[0.08, 0.11]	[0.16, 0.22]	[-0.02, 0.95]		
CLA	[0.85, 0.92]	[1.07, 1.21]	[-0.04, 0.96]		
South	[-0.02, 0.02]	[-0.01, 0.04]	[0.04, 1.20]		
SLP	[-0.04, -0.02]	[-0.04, -0.01]	[0.36, 1.57]		

95% CIs for coefficients in quantile regression fits for different impact variables and different quantiles. Central inference used for τ = 0.5. 0.9, extremal inference used for τ = 0.99. All variables standardized; no multiplicity adjustments performed

Conclusions and Next Steps

No significant associations between variables and extreme 2m temperature anomalies

extreme snowfall **Future Work**

More variables (850 hPa wind, pressure of cyclone, etc.)

Positive associations between

10m poleward wind, southernmost

latitude, min. Landfalling SLP, and

regional variations

Explore Make code, catalog, routines public and documented

In the meantime... check out this walkthrough detailing the current version of the catalog!

References

Characteristics

More flexible

modelling

approaches

Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., et al. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126, e2020JD033788. Wille, J.D., Favier, V., Jourdain, N.C. et al. (2022). Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun Earth

Wille, J. D., et al. (2024). The Extraordinary March 2022 East Antarctica "Heat" Wave. Part I: Observations and Meteorological Drivers. J. Climate, 37, 757–778. Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454,

Koenker, R. (2005). Quantile Regression. Cambridge University Press. Victor Chernozhukov and Iván Fernández-Val (2011). Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks, The Review of Economic Studies, Volume 78, Issue 2, Pages 559–589.

Funding

JB was funded by a combination of NSF Award Number 1745640 and the Two Sigma PhD Fellowship