WQS EXTENSIONS AND RECENT WORK

Data type extensions

- New gWQS package includes capability for evaluating new data types/distributions:
 - Multinomial (generalized logits)
 - Poisson (count data)
 - Negative binomial (over-dispersed count data)
- Later extensions will include
 - Time-to-response data with censoring (e.g., Weibull distribution)
 - Stratification implementation for categorical variables
 - Allowance for interaction of WQS with continuous variable during estimation

Random subset WQS regression

- Two types of ensemble steps
 - Bootstrap sampling of <u>observations</u> with replacement
 - Random subset selection of <u>variables</u> (e.g., random set of 20 repeated 1000 times)

Allows for WQS regression to be extended to large number of variables – e.g., metabolomics

Extensions: Metabolomics

The methods of metabolomics are not only to understand traditional measures of **biological response** but also to analyze the **exposures** associated with those responses.

May be useful for

- Biomarker discovery
- Measuring a "mixture effect"

RS WQS regression seems to work well in high dimensions (Curtin et al 2018, under review)

Lagged WQS Regression

(Bello et al, Env Res, 2017)

Lagged WQS regression is a reverse DLM on an iteratively weighted WQS index.

Acceptable Concentration Region (ACR) models (Gennings et al 2018 ENV INT)

Incorporates the concept of **regulatory guideline values** into a nonlinear regression model

ACR model example

For single chemicals

le chemicals
$$d_{m}^{low} = \begin{cases} 1, & X_{m} < \delta_{m}^{low} \\ \exp\left[-\gamma_{m}^{low}\left(X_{m} - \delta_{m}^{low}\right)\right], & X_{m} \ge \delta_{m}^{low} \end{cases}$$

$$g(\mu_i) = \begin{cases} \beta_0 + \beta_1(1) + Z_i^T \theta, & X_i < \delta^{low} \\ \beta_0 + \beta_1(\exp\left[-\gamma^{low}\left(X_i - \delta^{low}\right)\right]) + Z_i^T \theta, & X_i \ge \delta^{low} \end{cases}$$

For mixtures

$$g(\mu_i) = \beta_0 + \beta_1 (d_1 \times d_2 \times ... \times d_M)^{\frac{1}{M}} + Z_i^T \gamma$$
$$= \beta_0 + \beta_1 MDF + Z_i^T \gamma$$

THANK YOU!