Methods for Applied Mathematics

Homework 7 (Due: Oct 28, 2005)

Wenhao Wang CAM program

Exercises 2.9

29. Proof: To prove it, we will use the following two results:

1. Let $1 \leq p < \infty$ and q be its conjugate exponent $(q = \infty \text{ if } p = 1)$, then

$$L_p[0,1]^* = L_q[0,1]$$

in the sense that for any $F \in L_p[0,1]^*$, there exists unique $g \in L_q[0,1]$ such that

$$F(f) = \int_0^1 f(x)g(x)dx, \ \forall f \in L_p[0,1].$$

(This is a remark in class.)

2. Let X be a NLS, $x_n, x \in X$ and $x_n \rightharpoonup x$ weakly, then

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

(Please refer to Appendix 1, 2 to see the proofs.)

Since for any $f \in L_2[0,1]$, according to Hölder's inequality, we have

$$||f||_1 \le ||f||_2 ||1||_2 = ||f||_2 < \infty,$$

which means $f \in L_1[0,1]$. So $L_2[0,1] \subset L_1[0,1]$ is a linear subspace. Let $A_k = \{f \in L_2[0,1] : ||f||_2 \le k\}$ for all $k \in \mathbb{N}$, then we will have

$$L_2[0,1] = \bigcup_{k=1}^{\infty} A_k.$$

And we will show that: (i) A_k is closed in $L_1[0,1]$; (ii) $A_k^{\circ} = \emptyset$.

(i). Let $\{f_n\} \subset A_k$ and $f_n \to f \in L_1[0,1]$ in the sense of $L_1[0,1]$, which means $||f_n - f||_1 \to 0$. So $\{f_n\}$ is bounded. Since $\{f_n\} \subset A_k \subset L_2[0,1]$

which is a separable and reflexive Banach space (since $L_2[0,1]^{**} = L_2[0,1]^* = L_2[0,1]$), according to **Corollary 2.34**, there is some subsequence $\{f_{n_k}\} \subset \{f_n\}$ and $g \in L_2[0,1]$ such that $f_{n_k} \rightharpoonup g$ weakly in $L_2[0,1]$, which means for any $h \in L_2[0,1]^* \cong L_2[0,1]$, we have

$$\int_0^1 h(x) f_{n_k}(x) dx \longrightarrow \int_0^1 h(x) f(x) dx.$$

Since $L_1[0,1]^* \cong L_\infty[0,1] \subset L_2[0,1]$, so we have

$$\int_0^1 h(x) f_{n_k}(x) dx \longrightarrow \int_0^1 h(x) f(x) dx \qquad \forall h \in L_1[0, 1]^*,$$

which means $f_{n_k} \rightharpoonup g$ weakly in $L_1[0,1]$. Since $||f_n - f||_1 \to 0$, so we also have $f_{n_k} \rightharpoonup f$ weakly in $L_1[0,1]$. According to the uniqueness of weak limit, we have f = g. And since $f_{n_k} \rightharpoonup g$ weakly in $L_2[0,1]$, so we have

$$||f||_2 = ||g||_2 \le \liminf_{k \to \infty} ||f_{n_k}||_2 \le k,$$

so $f \in A_k$ which means A_k is closed in $L_1[0,1]$.

(ii). For any $f \in A_k$ and any $\varepsilon > 0$, we let $f_{\varepsilon}(x) = f(x) + \frac{\varepsilon}{4\sqrt{x}}$. Then we have

$$||f_{\varepsilon}||_1 \le ||f||_1 + \int_0^1 \frac{\varepsilon}{4\sqrt{x}} dx = ||f||_1 + \frac{\varepsilon}{2} < \infty,$$

which means $f_{\varepsilon} \in L_1[0,1]$. And we have

$$||f_{\varepsilon} - f||_1 = \int_0^1 \frac{\varepsilon}{4\sqrt{x}} dx = \frac{\varepsilon}{2} < \varepsilon,$$

which means $f_{\varepsilon} \in B(f, \varepsilon)$ in the sense of $L_1[0, 1]$. However,

$$||f_{\varepsilon}||_{2} \ge ||f_{\varepsilon} - f||_{2} - ||f||_{2} \ge \left(\int_{0}^{1} \left(\frac{\varepsilon}{4\sqrt{x}}\right)^{2} dx\right)^{\frac{1}{2}} - k = \infty,$$

which means $f_{\varepsilon} \in A_k$. So $f \in A_k^{\circ}$. Since $f \in A_k$ is arbitrary, so $A_k^{\circ} = \emptyset$ in $L_1[0,1]$.

Therefore, we have $L_2[0,1] = \bigcup_{k=1}^{\infty} A_k$, where $(\overline{A_k})^{\circ} = A_k^{\circ} = \emptyset$, which means A_k is nowhere dense in $L_1[0,1]$, so $L_2[0,1]$ is of the first category in $L_1[0,1]$.

32. Proof: For any $f \in Y^*$, $T^*f \in X^*$, since $x_n \to x$ weakly in X, so we have

$$|f(Tx_n) - f(Tx)| = |(T^*f)(x_n) - (T^*f)(x)| \to 0 \quad (n \to \infty),$$

which means $Tx_n \rightharpoonup Tx$ weakly in Y.

A weakly sequentially continuous linear operator $T:X\to Y$ must be bounded.

Proof: First, we will show that $f \circ T \in X^*$ for any $f \in Y^*$.

Let $x_n, x \in X$, $x_n \to x$, then we also have $x_n \to x$ weakly in X. Since T is weakly sequentially continuous, so $Tx_n \to Tx$ weakly in Y. So $f(Tx_n) \to f(Tx)$, which means $f \circ T$ is continuous on any point $x \in X$. So $f \circ T \in X^*$.

Then we will show that $TB(0,1) \subset Y$ is bounded, where B(0,1) is the unit ball in X.

Since $f \circ T \in X^*$ for any $f \in Y^*$, so $(f \circ T)^{-1}(-1,1)$ is a neighborhood of $0 \in X$, which means $\exists r > 0$ such that $B(0,r) \subset (f \circ T)^{-1}(-1,1)$. So we have $f(TB(0,r)) \subset (-1,1)$. Since both of T and f are linear, we have

$$f(TB(0,1)) \subset (-\frac{1}{r}, \frac{1}{r}).$$

Since Y^* is complete, we can use the principle of uniform boundedness for $\{[Tx]\}_{x\in B(0,1)}\subset Y^{**}$. So we have

$$\sup_{\|x\|<1}|[Tx](f)|=\sup_{\|x\|<1}|f(Tx)|=\sup_{y\in TB(0,1)}|f(y)|\leq \frac{1}{r}<\infty, \forall f\in Y^*$$

So

$$||T|| = \sup_{\|x\| < 1} ||Tx||_Y = \sup_{\|x\| < 1} ||[Tx]||_{Y^{**}} < \infty,$$

which means $T \in B(X, Y)$.

33. Proof: First, we will show that $\forall x \in X$, x has a unique expression: x = m + n where $m \in M, n \in N$. Suppose x has another expression: x = m' + n' where $m' \in M, n' \in N$, then we have $m - m' = n' - n \in M \cap N = \{0\}$,

so m = m', n = n', which means the expression: x = m + n is unique. So P is well defined.

Then we will show that $P: X \longrightarrow X$ is linear. For any $x_1 = m_1 + n_1, x_2 = m_2 + n_2 \in X$, $\lambda \in \mathbb{R}$ where $m_1, m_2 \in M, n_1, n_2 \in N$, we have

$$P(x_1 + x_2) = P((m_1 + m_2) + (n_1 + n_2)) = m_1 + m_2 = P(x_1) + P(x_2)$$

and

$$P(\lambda x_1) = P(\lambda m_1 + \lambda n_1) = \lambda m_1 = \lambda P(x_1),$$

which means $P: X \longrightarrow X$ is linear.

Then we will show that: $P \in B(X, X) \iff M, N$ are closed.

" \Longrightarrow ": If $P \in B(X,X)$, let $\{x_n\} \subset M$, and $x_n \to x \in X$, then $x_n = Px_n \to Px \in M$, which means M is closed.

Let $\{y_n\} \subset N$, and $y_n \to y \in X$, then $Py_n = 0$ and so $Py = \lim_{n \to \infty} Py_n = 0$. So $y = y - Py \in N$ which means N is closed.

" $\Leftarrow=$ ": If M, N are closed in X. Since X is a Banach space, according to **Theorem 2.25 (Closed Graph Theorem)**, we only need to show that $P: X \longrightarrow X$ is a closed operator.

Let
$$x_n, x \in X$$
, $x_n \to x$, $Px_n \to y \in X$. Then $x = y + (x - y)$,

where
$$y = \lim_{n \to \infty} Px_n \in M$$
 and $x - y = \lim_{n \to \infty} (x_n - Px_n) \in N$

since $\{Px_n\} \subset M$, $\{x_n - Px_n\} \subset N$ and M, N is closed. So we have Px = y, which means P is a closed operator. So $P \in B(X, X)$.

34. Proof: First, we will show that $\{||T_n||\}$ is bounded.

Since for any $x \in X$, $\{T_n x\}$ is a Cauchy sequence in Y, so there exists $N_x \in \mathbb{N}$ such that

$$||T_n x - T_m x|| < 1 \text{ when } n, m > N_x.$$

Let $M_x = \max\{\|T_1x\|, \|T_2x\|, \cdots, \|T_{N_x}x\|, \|T_{N_x+1}x\|+1\}$, then we have $\|T_nx\| \le M_x$ for all $n \in \mathbb{N}$. So $\sup_{n \in \mathbb{N}} \|T_nx\| \le M_x < \infty$. Since X is a Banach space, according to the principle of uniform boundedness, we have $\sup_{n \in \mathbb{N}} \|T_n\| < \infty$, which means $\{\|T_n\|\}$ is bounded.

If Y is also a Banach space, there exists $Tx \in Y$ such that $T_nx \to Tx, \forall x \in X$. So for any $x, y \in X, \lambda \in \mathbb{R}$, we have

$$T(x+y) = \lim_{n \to \infty} T_n(x+y) = \lim_{n \to \infty} T_n x + \lim_{n \to \infty} T_n y = Tx + Ty,$$

and

$$T(\lambda x) = \lim_{n \to \infty} T_n(\lambda x) = \lambda \lim_{n \to \infty} T_n x = \lambda T x,$$

which means $T: X \longrightarrow Y$ is linear. And

$$||Tx|| = ||\lim_{n \to \infty} T_n x|| = \lim_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n|| ||x||,$$

which means $||T|| \le \liminf_{n\to\infty} ||T_n|| < \infty$. So $T \in B(X,Y)$.

40. Proof: (1). Show that if $f_n \rightharpoonup f$ weakly in C[a, b], then $\{f_n\}$ is pointwise convergent.

For any $t \in [a, b]$, we define $F_t : C[a, b] \to \mathbb{R}$ as $F_t(x) = x(t)$, $\forall x \in C[a, b]$. Obviously, F_t is linear, and we have

$$|F_t(x)| = |x(t)| \le ||x||_C$$

which means $F_t \in C[a,b]^*$, $\forall t \in [a,b]$. Since $f_n \rightharpoonup f$ weakly in C[a,b], so we have

$$f_n(t) = F_t(f_n) \to F_t(f) = f(t),$$

which means $\{f_n\}$ is pointwise convergent.

(2). Show that if $f_n \rightharpoonup f$ weakly in $C^1[a,b]$, then $\{f_n\}$ is convergent in C[a,b].

For any $t \in [a, b]$, we define $F_t : C^1[a, b] \to \mathbb{R}$ as $F_t(x) = x(t)$, $\forall x \in C^1[a, b]$. Obviously, F_t is linear, and we have

$$|F_t(x)| = |x(t)| \le ||x||_{C^1},$$

which means $F_t \in C^1[a,b]^*$, $\forall t \in [a,b]$. Since $f_n \rightharpoonup f$ weakly in $C^1[a,b]$, so we have

$$f_n(t) = F_t(f_n) \to F_t(f) = f(t),$$

and $\{||f_n||_{C^1}\}$ is bounded since $\{f_n\}$ is weakly convergent, which means there exists M > 0 such that

$$\sup_{t \in [a,b]} |f'_n(t)| \le ||f_n||_{C^1} < M, \forall n \in \mathbb{N}.$$

Since $f \in C^1[a, b]$, so f is uniformly continuous on [a, b], which means $\forall \varepsilon > 0, \exists \delta_1 > 0$, such that

$$|f(t') - f(t'')| < \frac{\varepsilon}{3}, \ \forall t', t'' \in [a, b] \text{ when } |t' - t''| < \delta_1.$$

Let $\delta = \min\{\frac{\varepsilon}{3M}, \delta_1\}$. We can construct a partition $\{t_i\}_{i=1}^m$ of [a, b] which is

$$a = t_0 < t_1 < t_2 < \dots < t_m = b$$

such that $|t_i - t_{i-1}| < \delta$, $\forall i = 1, 2, \dots, m$.

Since $f_n(t) \to f(t)$, $\forall t \in [a, b]$, and the partition $\{t_i\}_{i=1}^m$ has finite points, so there exists $N \in \mathbb{N}$, when n > N, we have

$$|f_n(t_i) - f(t_i)| < \frac{\varepsilon}{3}, \ \forall i = 0, 1, \dots, m.$$

Then when n > N, for any $t \in [a, b]$, $\exists i \in \{1, 2, \dots, m\}$ such that $t \in [t_{i-1}, t_i]$. According to Lagrangian mean value theorem, we have

$$|f_n(t) - f(t)| \leq |f_n(t) - f_n(t_i)| + |f_n(t_i) - f(t_i)| + |f(t_i) - f(t)|$$

$$\leq |f'_n(\xi_t)| \cdot |t - t_i| + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \qquad \text{(where } \xi_t \in [t, t_i])$$

$$\leq M \cdot \frac{\varepsilon}{3M} + \frac{2\varepsilon}{3} = \varepsilon$$

which means $f_n(t) \rightrightarrows f(t)$ on [a,b], where " \rightrightarrows " means uniform convergence. So $\sup_{t \in [a,b]} |f_n(x) - f(x)| = ||f_n - f||_C \to 0$, which means $f_n \to f$ in C[a,b].

This conclusion will not be true if [a,b] is replaced by \mathbb{R} , which is:

there exists a sequence $\{f_n\} \subset C^1(\mathbb{R}), f_n \rightharpoonup f \in C^1(\mathbb{R})$ weakly, but $f_n \nrightarrow f$ in $C(\mathbb{R})$.

Counterexample: Let

$$f_n(x) = g(\frac{x}{n} - n) = e^{-(\frac{x}{n} - n)^2}, \text{ where } g(x) = e^{-x^2}, n \in \mathbb{N},$$

then $g, f_n \in C^1(\mathbb{R})$, $\sup_{x \in \mathbb{R}} |g'(x)| = \sup_{x \in \mathbb{R}} |2xe^{-x^2}| < \infty$, and we have

$$f_n(x) = e^{-(\frac{x}{n} - n)^2} \longrightarrow 0, \ (n \to \infty, \forall x \in \mathbb{R})$$

and

$$\sup_{x \in \mathbb{R}} |f'_n(x)| = \sup_{x \in \mathbb{R}} |\frac{1}{n} g'(\frac{x}{n} - n)| = \frac{1}{n} \sup_{x \in \mathbb{R}} |g'(x)| \to 0 \ (n \to \infty).$$

So $f_n \rightharpoonup 0 \in C^1(\mathbb{R})$ weakly, but

$$||f_n||_C = \sup_{x \in \mathbb{R}} |f_n(x)| = \sup_{x \in \mathbb{R}} e^{-(\frac{x}{n} - n)^2} = 1,$$

which means $f_n \nrightarrow 0$ in $C(\mathbb{R})$.

Appendix

1. Let $1 \leq p < \infty$ and q be its conjugate exponent $(q = \infty \text{ if } p = 1)$, then

$$L_p[0,1]^* = L_q[0,1];$$

Proof: (1)When 1 .

For any $g \in L_q[0,1]$, we define $F_g: L_p[0,1] \to \mathbb{R}$ as

$$F_g(f) = \int_0^1 f(x)g(x)dx, \ \forall f \in L_p[0,1].$$

Obviously, $F_g: L_p[0,1] \to \mathbb{R}$ is linear and we have

$$|F_g(f)| = |\int_0^1 f(x)g(x)dx| \le ||f||_p ||g||_q,$$

which means $||F_g|| \le ||g||_q < \infty$. So $F_g \in L_p[0,1]^*$. Since $g \in L_q[0,1]$ is arbitrary, we have $L_q[0,1] \subset L_p[0,1]^*$.

On the other hand, for any $F \in L_p[0,1]^*$, there exists some $g \in L_q[0,1]$ such that $F = F_g$ as defined above.

Since $\chi_{[0,t)} \in L_p[0,1]$, which is the characteristic function of [0,t), let $u(t) = F(\chi_{[0,t)})$. Then we will show that u(t) is an absolutely continuous function on [0,1].

Let $\{[a_i, b_i]\}_{i=1}^n$ is a finite collection of disjoint intervals in [0, 1], and put $\varepsilon_i = \text{sign}(u(b_i) - u(a_i))$, then we have

$$\sum_{i=1}^{n} |u(b_i) - u(a_i)| = \sum_{i=1}^{n} \varepsilon_i (u(b_i) - u(a_i)) = F(\sum_{i=1}^{n} \varepsilon_i (\chi_{[0,b_i)} - \chi_{[0,a_i)}))$$

$$\leq ||F|| ||\sum_{i=1}^{n} \varepsilon_i (\chi_{[0,b_i)} - \chi_{[0,a_i)})||_p$$

$$\leq ||F|| \sum_{i=1}^{n} ||\chi_{[a_i,b_i)}||_p$$

$$= ||F|| \sum_{i=1}^{n} (b_i - a_i)^{\frac{1}{p}}$$

which means u(t) is an absolutely continuous function on [0,1]. By the Lebesgue fundamental theorem of calculus, we have

$$u(t) = u(0) + \int_0^t u'(x)dx,$$

where $u(0) = F(\chi_{\emptyset}) = F(0) = 0$. If we let g(x) = u'(x), we have

$$F(\chi_{[0,t)}) = \int_0^t f(x)dx = \int_0^1 \chi_{[0,t)}g(x)dx = F_g(\chi_{[0,t)}).$$

Since F is linear, so

$$F(f) = F_g(f)$$
 for any simple function f .

Let f be any bounded function on [0,1], there exists uniformly bounded sequence of simple function $\{f_n\}$ such that $f_n \to f$ a.e. in [0,1] and so $f_n \to f$ in $L_p[0,1]$. By Lebesgue dominated convergence theorem, we have

$$F(f) = \lim_{n \to \infty} F(f_n) = \lim_{n \to \infty} \int_0^1 f_n(x)g(x)dx = \int_0^1 f(x)g(x)dx = F_g(f).$$

Therefore, the formula above is true for any bounded function on [0, 1].

Then we will show that $g \in L_q[0,1]$. Consider a family of bounded functions defined by

$$f_n(x) = \left\{ \begin{array}{ll} \operatorname{sign}(g(x))|g(x)|^{q-1} & \text{if } |g(x)| \le n; \\ 0 & \text{if } |g(x)| > n. \end{array} \right\}$$

Then f_n is measurable and bounded, so $F(f_n) = F_g(f_n)$. And $|f_n(x)|^p \to |g(x)|^q$ a.e. x in [0,1]. So we have

$$\int_0^1 |f_n(x)|^p dx = \int_0^1 |f_n(x)| |f_n(x)|^{\frac{1}{q-1}} dx$$

$$\leq \int_0^1 |f_n(x)| |g(x)| dx = \int_0^1 f_n(x) g(x) dx = F_g(f_n)$$

$$= F(f_n) \leq ||F|| ||f_n||_p = ||F|| (\int_0^1 |f_n(x)|^p dx)^{\frac{1}{p}},$$

which means

$$\left(\int_0^1 |f_n(x)|^p dx\right)^{\frac{1}{q}} \le ||F||.$$

Since $|f_n(x)|^p \to |g(x)|^q$ a.e. $x \in [0,1]$, by Fatou's Lemma, we have

$$||g||_{q} = \left(\int_{0}^{1} |g(x)|^{q} dx\right)^{\frac{1}{q}}$$

$$= \left(\int_{0}^{1} \lim_{n \to \infty} |f_{n}(x)|^{p} dx\right)^{\frac{1}{q}}$$

$$\leq \lim \inf_{n \to \infty} \left(\int_{0}^{1} |f_{n}(x)|^{p} dx\right)^{\frac{1}{q}}$$

$$\leq ||F|| < \infty,$$

which means $g \in L_q[0,1]$, and so $F_g \in L_p[0,1]^*$.

Finally, we will show that $F = F_g$. Since all measurable and bounded functions are dense in $L_p[0,1]$, and $F, F_g \in L_p[0,1]^*$, $F(f) = F_g(f)$ for any measurable and bounded function f. So $F = F_g$.

(2) When p = 1, we can show in the similar way that $L_1[0, 1]^* = L_{\infty}[0, 1]$.

2. Let X be a NLS, $x_n, x \in X$ and $x_n \rightharpoonup x$ weakly, then

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

Proof: Since $x_n \to x$ weakly, then for any $f \in X^*$, we have $f(x_n) \to f(x)$. So

$$|f(x)| = |\lim_{n \to \infty} f(x_n)| = \lim_{n \to \infty} |f(x_n)| \le \liminf_{n \to \infty} ||f|| ||x_n||,$$

which means

$$||x|| = \sup_{\|f\|=1} |f(x)| \le \sup_{\|f\|=1} (\liminf_{n \to \infty} ||f|| ||x_n||) = \liminf_{n \to \infty} ||x_n||.$$