Petersson Inner Product of Binary Theta Series

A computational approach

Nicolas SIMARD

McGill University

September 17th, 2016

Motivation: Stark's remark

In the last paragraph of his well-known article "L-functions at s=1. II. Artin L-functions with Rational Characters", Stark makes the following remark :

An application of Theorem 1 gives

$$L'(0,\chi,H/\mathbb{Q})=\log\epsilon,$$

where ϵ is the real root of

$$x^3 - x - 1 = 0$$

Actually, it is easier to note that $L(1,\chi,H/\mathbb{Q})$ is the residue at s=1 of the zeta function of the real quadratic subfield of K. In any case,

$$\langle f, f \rangle = 3 \log \epsilon$$
.

Mobius transformations

Let $\mathcal H$ be the Poincaré upper-half plane. Recall that $GL_2(\mathbb R)_+$ acts on $\mathcal H$ via Mobius transformations :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

Definition

Let $N \ge 1$ and define the Hecke subgroup of level N as

$$\Gamma_0(\emph{N}) = \left\{ egin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | c \equiv 0 \pmod{N}
ight\}.$$

Level N modular forms with characters

Definition

Let $N \ge 1$ and $k \ge 0$ be integers and let χ be a Dirichlet character mod N. A modular form of weight k, level N and character χ is a holomorphic function

$$f:\mathcal{H}\longrightarrow\mathbb{C}$$

such that

$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^k f(z)$$

for all $z \in \mathcal{H}$ and all $\gamma \in \Gamma_0(N)$, which satisfies certain growth conditions at the cusps. The \mathbb{C} -vector-space of such modular forms is denoted

$$M_k(\Gamma_0(N),\chi)$$
.

q-expansion of modular forms

Every modular form f has a Taylor (or Fourier) expansion at infinity, called its q-expansion :

$$f(z) = \sum_{n=0}^{\infty} a_n q^n,$$

where $q = exp(2\pi iz)$. If

$$a_0(f) = 0$$

(at all cusps) *f* is called a *cusp form*. The space of cusp forms is denoted

$$S_k(\Gamma_0(N),\chi)$$
.

Example : weight k Eisenstein series

Let $k \ge 4$ be an even integer. Then the series

$$\sum_{m,n} \frac{1}{(mz+n)^k}$$

converges absolutely and defines a modular form in $M_k(\operatorname{SL}_2(\mathbb{Z}))$. After renormalization, the q-expansion of this Eisenstein series is

$$-\frac{B_k}{2k}+\sum_{n=1}^{\infty}\sigma_{k-1}(n)q^n:=G_k(z),$$

where

$$\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}.$$

Important non-example : weight 2 Eisenstein series

In level 1, there are no modular forms of weight 2. However, one can still define the weight 2 Eisenstein series as

$$G_2(z) = \frac{1}{8\pi\Im(z)} - \frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n.$$

It is an example of an *almost holomorphic* modular form of level 1 and weight 2.

Finite dimensionality of spaces of modular forms

Theorem

The space $M_k(\Gamma_0(N),\chi)$ is finite dimensional as a \mathbb{C} -vector-space.

Example

In level N = 1, we have

- $M_0(SL_2(\mathbb{Z})) = \mathbb{C}$.
- $M_2(SL_2(\mathbb{Z})) = 0$.
- $M_k(SL_2(\mathbb{Z})) = \mathbb{C}G_k \text{ for } 4 \le k \le 10.$
- $M_{12}(SL_2(\mathbb{Z})) = \mathbb{C}G_{12} \oplus \mathbb{C}\Delta$, where $\Delta \in S_{12}(SL_2(\mathbb{Z}))$.
- $\bigoplus_{k=0}^{\infty} M_k(SL_2(\mathbb{Z})) = \mathbb{C}[G_4, G_6].$

Petersson inner product

Let $f, g \in S_k(\Gamma_0(N), \chi)$ be two cusp forms. The Petersson inner product of f and g is defined as

$$\langle f,g\rangle = \int\!\int_{\Gamma_0(N)\backslash\mathcal{H}} f(x+iy)\overline{g(x+iy)}y^k \mathrm{d}\mu,$$

where

$$d\mu = \frac{dxdy}{y^2}$$

is the $SL_2(\mathbb{R})$ -invariant measure on \mathcal{H} . Note that the integral does not converge if neither f nor g is a cusp form.

A half-integral weight theta series

Consider the function

$$\theta(z) = \sum_{x \in \mathbb{Z}} q^{x^2} = 1 + 2q + 2q^4 + O(q^5).$$

Then

$$\theta(\gamma z) = \epsilon(cz + d)^{1/2}\theta(z),$$

for all $\gamma \in \Gamma_0(4)$ and some $\epsilon_{c,d} \in \{\pm 1, \pm i\}$.

Theta series attached to ideals

Let K be an imaginary quadratic field of discriminant D<-4 and let \mathcal{O}_K be its ring of integers. Fix an integer $\ell\geq 0$. To each integral ideal $\mathfrak a$ of K, one can attach the following theta series :

$$\theta_{\mathfrak{a}}^{(2\ell)}(z) = \theta_{\mathfrak{a}}(z) = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})}.$$

1. We have

$$\theta_{\mathfrak{a}} = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})} \in \textit{M}_{2\ell+1}(\Gamma_{0}(|\textit{D}|),\chi_{\textit{D}}),$$

where χ_D is the Kronecker symbol. If $\ell \neq 0$, then

$$\theta_{\mathfrak{a}} \in \textit{S}_{2\ell+1}(\Gamma_{0}(|\textit{D}|),\chi_{\textit{D}}).$$

1. We have

$$\theta_{\mathfrak{a}} = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})} \in \textit{M}_{2\ell+1}(\Gamma_0(|\textit{D}|),\chi_\textit{D}),$$

where χ_D is the Kronecker symbol. If $\ell \neq 0$, then

$$\theta_{\mathfrak{a}} \in \mathcal{S}_{2\ell+1}(\Gamma_0(|D|),\chi_D).$$

2. If $\lambda \in K^{\times}$, then

$$\theta_{\lambda \sigma} = \lambda^{2\ell} \theta_{\sigma}$$
.

So there are essentially h_K theta series attached to K.

1. We have

$$\theta_{\mathfrak{a}} = \sum_{x \in \mathfrak{a}} x^{2\ell} q^{N(x)/N(\mathfrak{a})} \in \textit{M}_{2\ell+1}(\Gamma_0(|\textit{D}|),\chi_\textit{D}),$$

where χ_D is the Kronecker symbol. If $\ell \neq 0$, then

$$\theta_{\mathfrak{a}} \in \mathcal{S}_{2\ell+1}(\Gamma_0(|D|),\chi_D).$$

2. If $\lambda \in K^{\times}$, then

$$\theta_{\lambda \sigma} = \lambda^{2\ell} \theta_{\sigma}$$
.

So there are essentially h_K theta series attached to K.

3. In general, the θ_{α} are *not* newforms.

Theta series attached to Hecke characters of K

Let I_K denote the group of fractional ideals of K. A Hecke character ψ of K of infinity type 2ℓ (and conductor 1) is a homomorphism

$$\psi: I_K \longrightarrow \mathbb{C}^{\times}$$

such that

$$\psi((\alpha)) = \alpha^{2\ell}, \quad \forall \alpha \in K^{\times}.$$

One can define

$$\theta_{\psi} = \sum_{\mathfrak{a} \subset \mathcal{O}_{\kappa}} \psi(\mathfrak{a}) q^{\textit{N}(\mathfrak{a})}.$$

1. We have

$$\theta_{\psi} \in M_{2\ell+1}(\Gamma_0(|D|), \chi_D),$$

where χ_D is the Kronecker symbol. If $\psi^2 \neq 1$, then

$$\theta_{\psi} \in \textit{S}_{2\ell+1}(\Gamma_{0}(|\textit{D}|),\chi_{\textit{D}}).$$

1. We have

$$\theta_{\psi} \in M_{2\ell+1}(\Gamma_0(|D|), \chi_D),$$

where χ_D is the Kronecker symbol. If $\psi^2 \neq 1$, then

$$\theta_{\psi} \in \textit{S}_{2\ell+1}(\Gamma_{0}(|\textit{D}|),\chi_{\textit{D}}).$$

2. The θ_{ψ} are newforms, so

$$\langle \theta_{\psi}, \theta_{\psi'} \rangle = 0$$

whenever $\psi \neq \psi'$.

1. We have

$$\theta_{\psi} \in M_{2\ell+1}(\Gamma_0(|D|), \chi_D),$$

where χ_D is the Kronecker symbol. If $\psi^2 \neq 1$, then

$$\theta_{\psi} \in \mathcal{S}_{2\ell+1}(\Gamma_0(|D|), \chi_D).$$

2. The θ_{ψ} are newforms, so

$$\langle \theta_{\psi}, \theta_{\psi'} \rangle = 0$$

whenever $\psi \neq \psi'$.

3. We have the identities

$$\theta_{\psi} = \frac{1}{\textit{w}_{\textit{K}}} \sum_{[\mathfrak{a}] \in \mathsf{Cl}_{\textit{K}}} \psi^{-1}(\mathfrak{a}) \theta_{\mathfrak{a}} \quad \text{ and } \quad \theta_{\mathfrak{a}} = \frac{\textit{w}_{\textit{K}}}{\textit{h}_{\textit{K}}} \sum_{\psi} \psi(\mathfrak{a}) \theta_{\psi}.$$

Stark's example

To obtain Stark's example, take

$$K = \mathbb{Q}(\sqrt{-23})$$

and let ψ be a non-trivial Hecke character of infinity type 0, i.e. a non-trivial character of the class group. Then

Stark's
$$f = \text{our } \theta_{\psi} \in M_1(\Gamma_0(23), \chi_{-23})$$
.

Some questions

Keeping Stark's example in mind, we have the following questions:

- Can we find explicit formulas for the Petersson inner product of those theta series (whenever it makes sense)?
- Can we efficiently compute it?
- Can we use those formulas/computations to study the arithmetic properties of those quantities?

Some questions

Keeping Stark's example in mind, we have the following questions:

- Can we find explicit formulas for the Petersson inner product of those theta series (whenever it makes sense)?
- Can we efficiently compute it?
- Can we use those formulas/computations to study the arithmetic properties of those quantities?

The main question is

Question

Can we p-adically interpolate those formulas for $\ell > 0$ and take the limit as $\ell \to 0$ p-adically to obtain the weight one case?

The case $\ell = 0$

Theorem

Let θ_{ψ} be a Hecke character of infinity type 0 and suppose that $\psi^2 \neq 1$. Then

$$\begin{split} \langle \theta_{\psi}, \theta_{\psi} \rangle &= -h_K \sum_{[\mathfrak{a}] \in \mathit{Cl}_K} \psi^2(\mathfrak{a}) \log (\mathfrak{I}(\tau_{\mathfrak{a}})^{1/2} |\eta(\tau_{\mathfrak{a}})|^2) \\ &= h_K \log \prod_{[\mathfrak{a}] \in \mathit{Cl}_K} (\mathfrak{I}(\tau_{\mathfrak{a}})^{1/2} |\eta(\tau_{\mathfrak{a}})|^2)^{-\psi(\mathfrak{a})^2}. \end{split}$$

Here,

$$\tau_{\mathfrak{a}} = \omega_2/\omega_1 \in \mathcal{H}$$

if $\mathfrak{a}=\mathbb{Z}\omega_1\oplus\mathbb{Z}\omega_2\subset\mathbb{C}$ is positively oriented ideal in K and

$$\eta(z) = \exp(2\pi i/24) \prod_{i=1}^{n} (1-q^n).$$

Petersson norm of the θ_{ψ} (with $\ell > 0$)

Theorem

Let ψ be a Hecke character of K of infinity type 2ℓ , where $\ell > 0$. Then

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \textit{h}_{\textit{K}}(|\textit{D}|/4)^{\ell} \sum_{[\mathfrak{a}] \in \textit{CI}_{\textit{K}}} \psi^{2}(\mathfrak{a}) \eth^{2\ell-1} \textit{G}_{2}(\mathfrak{a}).$$

Here,

$$\partial f = \frac{1}{2\pi i} \frac{\partial f}{\partial z} - \frac{k}{4\pi \Im(z)} f$$

is the Shimura-Mass differential operator, which preserves the graded algebra of almost holomorphic modular forms.

Petersson inner product of the theta series θ_a

Theorem

Let $\mathfrak a$ and $\mathfrak b$ be ideals of K and suppose $\ell > 0$. Then

$$\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle = \textit{C}_{\textit{K}}^{(2\ell)} \textit{N}(\mathfrak{b})^{2\ell} \sum_{\mathfrak{a}\mathfrak{b}^{-1}\mathfrak{c}^2 = \lambda_{\mathfrak{c}}\mathcal{O}_{\textit{K}}} \lambda_{\mathfrak{c}}^{2\ell} \eth^{2\ell-1} \textit{G}_{2}(\mathfrak{c}),$$

where

$$C_K^{(2\ell)} = 4(|D|/4)^{\ell}.$$

A few direct consequences of the formula

Corollary

For $\ell > 0$,

$$\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle = 0$$

whenever \mathfrak{a} and \mathfrak{b} are not in the same genus (i.e. the classes of \mathfrak{a} and \mathfrak{b} are distinct in the genus group Cl_K/Cl_K^2).

Corollary

For $\ell > 0$.

$$\langle \theta_{\mathfrak{ac}}, \theta_{\mathfrak{bc}} \rangle = N(\mathfrak{bc})^{2\ell} \langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle.$$

An arithmetic consequence

Let

$$\Omega_{\mathcal{K}} = rac{1}{\sqrt{4\pi |D|}} \left(\prod_{j=1}^{|D|-1} \Gamma\left(rac{j}{|D|}
ight)^{\chi_{D}(j)}
ight)^{w_{\mathcal{K}}/4h_{k}}$$

be the Chowla-Selberg period attached to *K*.

Corollary

For $\ell > 0$, the complex numbers

$$\frac{\langle \theta_{\psi}, \theta_{\psi} \rangle}{\Omega_{K}^{4\ell}} \quad \text{and} \quad \frac{\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle}{\Omega_{K}^{4\ell}}$$

are algebraic.

Formally obtaining the case $\ell = 0$ from the case $\ell > 0$

Strictly speaking, the formula

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \textit{h}_{\textit{K}}(|\textit{D}|/4)^{\ell} \sum_{[\mathfrak{a}] \in \textit{Cl}_{\textit{K}}} \psi^{2}(\mathfrak{a}) \eth^{2\ell-1} \textit{G}_{2}(\mathfrak{a}).$$

does not make sense for $\ell = 0$, since the expression

$$\partial^{-1} G_2$$

is not well-defined. However, we observe that

$$\partial_0 \log(\Im(z)^{1/2} |\eta(z)|^2) = -G_2(z),$$

SO

"
$$\partial^{-1} G_2(z) = -\log(\Im(z)^{1/2}|\eta(z)|^2)$$
"

and we *formally* obtain the case $\ell = 0$ from the case $\ell > 0$.

Computing ∂ⁿG₂

To compute

$$\partial^n G_2$$

we have the following formulas:

$$\partial G_2 = \frac{5}{6}G_4 - 2G_2^2 \quad \partial G_4 = \frac{7}{10}G_6 - 8G_2G_4 \quad \partial G_6 = \frac{400}{7}G_4^2 - 12G_2G_6.$$

For example,

$$\partial^3 G_2 = -48G_2^4 + 120G_4G_2^2 - 14G_6G_2 + 25G_4^2.$$

Class number 1 case

In this case,

$$\theta_{\mathcal{O}_K} = \theta_{\psi_0}$$

and we only need to compute

$$\langle \theta_{\mathcal{O}_K}, \theta_{\mathcal{O}_K} \rangle / \Omega_K^{4\ell} \in \overline{\mathbb{Q}}.$$

Class number 1 case

Computation of $\langle \theta_{\mathcal{O}_K}, \theta_{\mathcal{O}_K} \rangle / \Omega_K^{4\ell}$:

		l			
		1	2		
D	-7	2 ² 3	-2 ²		
	-8	-2	$-2^{2}5$		
	-11	-2^{2}	$-2^{3}5$		
	-19	$-2^23^{-1}13$	-2 ³ 71		
	-43	$-2^33^{-1}107$	-2 ⁴ 5647		
	-67	$-2^23^{-1}7^231$	$-2^35 \cdot 86629$		
	-163	$-2^33^{-1}150473$	-2 ⁴ 11 · 461681471		

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell = 0$

For ψ a non-trivial Hecke character of infinity type 0, the explicit formula in case $\ell=0$ gives

$$\langle \textit{f},\textit{f}\rangle = \langle \theta_{\psi},\theta_{\psi}\rangle = 3\log\varepsilon,$$

where

$$\varepsilon = \prod_{[\mathfrak{a}] \in CI_K} (\mathfrak{I}(\tau_\mathfrak{a})^{1/2} |\eta(\tau_\mathfrak{a})|^2)^{-\psi(\mathfrak{a})^2}$$

is the real root of

$$x^3 - x - 1$$

and generates the Hilbert class field of K.

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

In K, the prime 2 splits as

$$2\mathcal{O}_K = \mathfrak{p}_2\bar{\mathfrak{p}}_2$$

and

$$Cl_K=\{1,[\mathfrak{p}_2],[\bar{\mathfrak{p}}_2]\}.$$

Moreover, we have $\langle \theta_{\bar{\mathfrak{p}}_2}, \theta_{\mathcal{O}_K} \rangle = \overline{\langle \theta_{\mathfrak{p}_2}, \theta_{\mathcal{O}_K} \rangle}$, so we only care about

$$\langle \theta_{\mathfrak{p}_2}, \theta_{\mathcal{O}_K} \rangle$$
 and $\langle \theta_{\mathcal{O}_K}, \theta_{\mathcal{O}_K} \rangle$.

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

Consider the algebraic number

$$a(\ell) = \langle \theta_{\mathcal{O}_K}, \theta_{\mathcal{O}_K} \rangle / \Omega_K^{4\ell}.$$

For $\ell=1,2$ and 4, we find that $a(\ell)^3$ is a root of a monic cubic polynomial and generates the Hilbert class field over K.

Example

a(1) is a root of the polynomial

$$x^9 - 2816x^6 - 905216x^3 - 89915392$$
.

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

Consider the algebraic number

$$a(\ell) = \langle \theta_{\mathcal{O}_K}, \theta_{\mathcal{O}_K} \rangle / \Omega_K^{4\ell}.$$

For $\ell = 3, 6$ and 9, we find that $a(\ell)$ is a root of a cubic polynomial and generates the Hilbert class field over K.

Example

a(3) is a root of

$$x^3 - 6740x^2 - 169034720x - 1027491892288$$
.

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

A few computations of the Gramm matrix for this basis.

l	$det(\langle heta_{\mathfrak{a}_i}^{(2\ell)}, heta_{\mathfrak{a}_j}^{(2\ell)} angle)_{\mathfrak{a}_i, \mathfrak{a}_j \in Cl_K}/(\Omega_K^{4\ell})^3$		
1	$-2^{10}23$		
2	$-2^{14}19 \cdot 23 \cdot 619$		
3	$-2^{18}5^211 \cdot 23 \cdot 337 \cdot 27299$		
4	$-2^{22}7^223 \cdot 163 \cdot 2113 \cdot 117741979$		
5	$-2^{26}5^323 \cdot 229 \cdot 23761 \cdot 808991 \cdot 20338663$		
6	$-2^{30}5^211^213 \cdot 19 \cdot 23 \cdot 67^2101 \cdot 868697 \cdot 505912247899$		

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

Consider now the algebraic number

$$N(\psi,\ell) = \langle \theta_{\psi}, \theta_{\psi} \rangle / \Omega_K^{4\ell}$$

For $\ell=1,2,4$ and 5, the numbers $N(\psi_i,\ell)$, for $0 \le i \le 2$, are distinct and their cube are the three real roots of a monic cubic polynomial.

Example

The numbers $N(\psi_i, 1)^3$, for $0 \le i \le 2$, are the three roots of the irreducible polynomial

$$x^3 - 6966x^2 + 11569230x - 239483061$$
.

$$K = \mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell > 0$

Consider now the algebraic number

$$N(\psi,\ell) = \langle \theta_{\psi}, \theta_{\psi} \rangle / \Omega_K^{4\ell}$$

For $\ell=3,6$ and 9, one of the characters, say ψ_0 , the algebraic number $N(\psi_0,\ell)$ is an *integer*. For the two others, we find that their cube are the roots of a monic quadratic polynomial.

Example

We have

$$N(\psi_0, 3) = 5055 = 3 \cdot 5 \cdot 337$$

and $N(\psi_1,3)^3$ and $N(\psi_2,3)^3$ are the roots of

 $x^2 - 16287872873193x + 30021979248651078296845875$.

$$K=\mathbb{Q}(\sqrt{-23})$$
 (class number 3, one genus) : $\ell>0$

A few computations of the Gramm matrix for this basis.

l	$det(\langle heta_{\psi_i}, heta_{\psi_j} angle)_{1 \leq i,j \leq 3}/(\Omega_K^{4\ell})^3$		
1	$-3^{3}23$		
2	−3 ³ 19 · 23 · 619		
3	$-3^35^211 \cdot 23 \cdot 337 \cdot 27299$		
4	$-3^37^223 \cdot 163 \cdot 2113 \cdot 117741979$		
5	$-3^35^323 \cdot 229 \cdot 23761 \cdot 808991 \cdot 20338663$		
6	$-3^35^211^213 \cdot 19 \cdot 23 \cdot 67^2101 \cdot 868697 \cdot 505912247899$		

Example of computation for $K = \mathbb{Q}(\sqrt{-23})$: $N(\psi_0, 3)$

```
parisize = 4000000, primelimit = 500000
(13:14) gp > \r Thetapip.gp;
(13:14) gp > \r ../flunc/qhc.gp
(13:15) gp > \r ../flunc/qhlfun-eisender.gp;
(13:15) gp
```

1. Use Rankin-Selberg to prove that

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \frac{4h_k}{w_k} \sqrt{|D|} \frac{\Gamma(2\ell+1)}{(4\pi)^{2\ell+1}} L(\psi^2, 2\ell+1).$$

1. Use Rankin-Selberg to prove that

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \frac{4h_k}{w_k} \sqrt{|D|} \frac{\Gamma(2\ell+1)}{(4\pi)^{2\ell+1}} L(\psi^2, 2\ell+1).$$

Relate Hecke L-series to non-holomorphic Eisenstein series :

$$L(\psi^2, 2\ell+1) = \frac{1}{w_K} \sum_{[\mathfrak{a}] \in \mathrm{Cl}_K} \frac{\psi^2(\mathfrak{a})}{N(\mathfrak{a})^{4\ell-s}} G_{4\ell}(\mathfrak{a}, 1-2\ell).$$

1. Use Rankin-Selberg to prove that

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \frac{4h_k}{w_k} \sqrt{|D|} \frac{\Gamma(2\ell+1)}{(4\pi)^{2\ell+1}} L(\psi^2, 2\ell+1).$$

Relate Hecke L-series to non-holomorphic Eisenstein series :

$$L(\psi^2, 2\ell+1) = \frac{1}{w_K} \sum_{[\mathfrak{a}] \in \mathcal{C}|_K} \frac{\psi^2(\mathfrak{a})}{N(\mathfrak{a})^{4\ell-s}} G_{4\ell}(\mathfrak{a}, 1-2\ell).$$

3. Replace non-holomorphic Eisenstein series by derivatives of Eisenstein series :

$$\partial^{2\ell-1} G_2(z) = (-4\pi)^{1-2\ell} \frac{\Gamma(s+2\ell+1)}{\Gamma(s+2)} G_{4\ell}(z, 1-2\ell).$$

1. Use Rankin-Selberg to prove that

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \frac{4h_k}{w_k} \sqrt{|D|} \frac{\Gamma(2\ell+1)}{(4\pi)^{2\ell+1}} L(\psi^2, 2\ell+1).$$

Relate Hecke L-series to non-holomorphic Eisenstein series :

$$L(\psi^2, 2\ell+1) = \frac{1}{w_K} \sum_{[\mathfrak{a}] \in \mathcal{C}|_K} \frac{\psi^2(\mathfrak{a})}{N(\mathfrak{a})^{4\ell-s}} G_{4\ell}(\mathfrak{a}, 1-2\ell).$$

3. Replace non-holomorphic Eisenstein series by derivatives of Eisenstein series :

$$\partial^{2\ell-1} G_2(z) = (-4\pi)^{1-2\ell} \frac{\Gamma(s+2\ell+1)}{\Gamma(s+2)} G_{4\ell}(z, 1-2\ell).$$

4. Find $\langle \theta_{\mathfrak{a}}, \theta_{\mathfrak{b}} \rangle$ using $\langle \theta_{\psi}, \theta_{\psi} \rangle$.

What we would like to know

- 1. Can we explain what can be observed from the computations?
- 2. Can we say something about the Petersson inner product of non-cuspidal weight one theta series?

What we would like to know

- 1. Can we explain what can be observed from the computations?
- 2. Can we say something about the Petersson inner product of non-cuspidal weight one theta series?

But again, the main question remains

Question

Can we p-adically interpolate the formulas for $\ell > 0$ and take the limit as $\ell \to 0$ p-adically to obtain the weight one case?

Thank you!

Presentation available at: https://github.com/ NicolasSimard/Notes/tree/master/PANTS%20XXVI Code available at:

https://github.com/NicolasSimard/ENT
Notes available at:https://github.com/
NicolasSimard/Notes/tree/master/Theta%20Norm