Project 1: Data Warehouse / OLAP System

CSE 601: Data Mining and Bioinformatics

AVIJEET MISHRA (AVIJEETM@BUFFALO.EDU) UB#:50169242

PRITHVI GOLLU INDRAKUMAR (PGOLLUIN@BUFFALO.EDU) UB#:50169089

DEPT OF COMPUTER SCIENCE, UNIVERSITY AT BUFFALO

Contents

IntroductionIntroduction	2
PART 1: Implement your data warehouse schema in the Oracle system	2
DataWarehouse Schema	3
PART 3: OLAP and Statistical Operations	6
PART 3: Knowledge Discovery	14
Conclusion	17

Introduction

We have designed and developed a data warehouse based on the logical data model named "BioStar" which deals with biomedical data described in the paper "BioStar models of clinical and genomic data for biomedical data warehouse design". This data warehouse incorporates the datasets of the biomedical field for the study of human diseases.

PART 1: Implement your data warehouse schema in the Oracle system.

The given data was cleaned as per requirement and converted to .xlsx format for importing it into the data warehouse. The six data spaces clinical data space, sample data space, microarray data space, proteomic data space, experiment data space, and gene data space was efficiently modeled in the data warehouse.

Each data space was created using the following tables.

1. Clinical data space

Tables: patient, disease, diagnosis, drug, druguse, testresult, clinicaltest and patientsample

2. Sample data space

Tables: clinicalsample, geneticmarker, geneticscreen, biochemassay, assayresult, sampleanatomy and anatomyterm

3. Microarray and proteomic data space

Tables: mrnaexpression, arrayprobe, genesequence and measurementunit

4. Gene data space

Tables: genecluster, clustermaster, goterm, goannotation, genesequence, genepromoter, promoter, proteininteract, genedomain and domainmodel

5. Experiment data space

Tables: experimentmaster, project, platform

DataWarehouse Schema

Clinical data space

• Sample data space

• Microarray and proteomic data space

Gene data space

• Experiment data space

The multi-dimensional view of all these 6 data spaces was captured using the "BioStar Schema".

Optimization: We have also used few connector tables as an enhancement to Biostar schema to increase optimization. All tables have a primary key or multiple primary key pairs. Also the tables are linked using primary key and foreign key constraints. So by creating indexes on the fields in the tables, instead of using Linear Search which on an average requires N/2 block accesses, we use other searching techniques such as Binary Search which has log2 N block accesses. Creating an index on a field in a table creates another data structure which holds the field value, and pointer to the record it relates to. The index structure is then sorted, allowing Binary Searches to be performed on it, there by optimizing query retrieval. We implemented the data warehouse schema in the Oracle Sql Developer system and populated it with the provided data sets.

By cleaning the data and storing only the relevant fields, we have made sure that during a query, the database is accessed only once. That is by using primary index, in a single go all the required data is being retrieved. Though the OLAP layer adds an additional amount of complexity.

PART 2: OLAP and Statistical Operations

The OLAP and statistical operations was implemented on top of the Oracle database in C# using Microsoft Visual Studio as a platform. All the queries are made dynamic by using dropdown list and checkboxes, i.e. we can select the constraints in the queries such as the disease name, go_id dynamically which is then queried from the data warehouse.

Below is the list of queries along with its Sql code and its output as shown by the UI.

1: List the number of patients who had "tumor" (disease description), "leukemia" (disease type) and "ALL" (disease name), separately.

The Time Complexity of this query is O(log(m). log(n)), where m and n represent number of tuples in disease and diagnosis respectively. Here it is Log because we have used indexes which reduces the complexity form m to log m.

Query: SELECT b.description Disease, count(a.P_ID) Patients FROM diagnosis a, disease b

WHERE a.ds_id = b.ds_id AND b. description = 'tumor' GROUP BY b.description

UNION

SELECT b.type, count(a.P_ID) FROM diagnosis a ,disease b WHERE a.ds_id = b.ds_id AND b.type = 'leukemia' GROUP BY b.type

UNION

SELECT b.name, count(a.P_ID) FROM diagnosis a, disease b WHERE a.ds_id = b.ds_id AND b.name = 'ALL' GROUP BY b.name

2: List the types of drugs which have been applied to patients with "tumor".

The Time Complexity of this query is O(log(m).log(n)), where m and n represent number of tuples in druguse and diagnosis respectively.

Query: SELECT DISTINCT type FROM drug WHERE DR_id IN (SELECT a.dr_id FROM druguse a WHERE a.p_id IN (SELECT DISTINCT b.p_id FROM diagnosis b, disease c WHERE b.ds_id = c.ds_id AND c.description = 'tumor'))

3: For each sample of patients with "ALL", list the mRNA values (expression) of probes in cluster id "00002" for each experiment with measure unit id = "001".

Query: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN (SELECT s_id FROM patientsample WHERE p_id IN(SELECT s_id FROM patientsample WHERE s_id IN(SELECT s_id

p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name = 'ALL'))))

AND pb_id IN (SELECT pb_id FROM arrayprobe WHERE u_id IN (SELECT u_id FROM genecluster WHERE cl_id = '00002')) AND mu_id = '001'

Select Disease Name ALL		ALL v
Selec	ct Cluster Id	2 ~
Selec	ct Measure Unit	1 Run Query
mRN	A values [Expression	onl
	EXP ^	^'',
)	36	
	102	
	142	
	42	
	42 115	
	115	Expressions Found:325
	115 179	Expressions Found:325
	115 179 177	Expressions Found:325
	115 179 177 133	Expressions Found:325
	115 179 177 133 26	Expressions Found:325

4: For probes belonging to GO with id = "0012502", calculate the t statistics of the expression values between patients with "ALL" and patients without "ALL".

Query1: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name =

'ALL'')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0012502 '))

Query2: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name != 'ALL'')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0012502'))

156996	and patients wit	hout the disease.		
Go_ld	12502 ~	Disease A	LL v	Run Query
xpress	sion of patients v	vith the disease	Expression	of patients without the disease
	37		> 23	
	150		140	
	191		196	
	81		40	
	24		130	
	20		30	
	185		52	T-Test value is: -1.00712677667839
	167		47	
	176		195	
	151		84	
	81		127	
	36		179	
	115		98	
	127		175	
	G	V		

5: For probes belonging to GO with id="0007154", calculate the F statistics of the expression values among patients with "ALL", "AML", "Colon tumor" and "Breast tumor".

Query1: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name = 'ALL'')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0007154'))

Query2: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name = 'AML'')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0007154'))

Query3: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name = 'Colon tumor'')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0007154'))

Query4: SELECT exp FROM mrnaexpression WHERE s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN(SELECT s_id FROM patientsample WHERE p_id IN(SELECT p_id FROM diagnosis WHERE ds_id IN(SELECT ds_id FROM disease WHERE name = 'Breast tumor'''')))) AND pb_id IN(SELECT pb_id FROM arrayprobe WHERE u_id IN(SELECT u_id FROM goannotation WHERE go_id = '0007154'))

☑ ALL	☑ AML	☑ Breast Tumor		
□ Flu	☑ Colon Tumor	☐ Giloblastome		
io ld: 7	′154	Run Query		

6: For probes belonging to GO with id="0007154", calculate the average correlation of the expression values between two patients with "ALL", and calculate the average correlation of the expression values between one "ALL" patient and one "AML" patient.

Query1: SELECT d.p_id, mn.exp FROM mrnaexpression mn, clinicalsample cs, patientsample ps, patient p, diagnosis d WHERE mn.s_id = cs.s_id AND cs.s_id = ps.s_id AND ps.p_id = p.p_id AND p.p_id = d.p_id AND d.ds_id IN (SELECT ds_id FROM disease WHERE name = 'ALL') AND mn.pb_id IN (SELECT ap.pb_id FROM arrayprobe ap,genesequence gs,goannotation ga WHERE ap.u_id = gs.u_id AND gs.u_id = ga.u_id AND ga.go_id = '0007154') ORDER by d.p_id, mn.pb_id

Project 1: Data Warehouse / OLAP System

Query2: SELECT d.p_id, mn.exp FROM mrnaexpression mn, clinicalsample cs, patientsample ps, patient p, diagnosis d WHERE mn.s_id = cs.s_id AND cs.s_id = ps.s_id AND ps.p_id = p.p_id AND p.p_id = d.p_id AND d.ds_id IN (SELECT ds_id FROM disease WHERE name = 'AML') AND mn.pb_id IN (SELECT ap.pb_id FROM arrayprobe ap,genesequence gs,goannotation ga WHERE ap.u_id = gs.u_id AND gs.u_id = ga.u_id AND ga.go_id = '0007154') ORDER by d.p_id, mn.pb_id

			Expression values of patient having disease 1:				Expression values of patient having disease 2:			
			PID	EXP	٨		PID	EXP	٨	
Go ld:	7154 ~)	765	99		>	304	126		
			765	89			304	125		
			765	175			304	80		
			765	38			304	155		
Disease 1:	ALL		765	128			304	199		
	ALL		765	91			304	135		
			765	113			304	181		
			765	182			304	77		
Disease 2:	AML v		765	65			304	138		
			765	3		304	304	119	_	
			765	7			304	75		
Run Qu	OF!		765	142			304	127	_	
Null Qu	CI y		765	153	▽		304	89	~	

PART 3: Knowledge Discovery

By utilizing the data warehouse, OLAP operations and statistical operations such as T-statistic and correlation, we are able to gain knowledge about the informative genes for any particular disease. This can be used to classify if new patients have the disease or not.

1: Given a specific disease, find the informative genes.

To find the informative genes, first we found the list of patients who have the disease and those who don't have it. Then for each gene, we calculated T- statistics for the expression values which was available in table mRNAExpression between both the lists. Based on the P-value (smaller than 0.01), we segregated the genes as informative. Here informative genes for the disease "ALL" has been calculated. The user can dynamically select which disease he wants to calculate the informative genes.

Query1: SELECT ap.u_id, mn.exp FROM mrnaexpression mn INNER JOIN arrayprobe ap ON mn.pb_id=ap.pb_id WHERE mn.s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN (SELECT s_id FROM patientsample WHERE p_id IN (SELECT p_id FROM diagnosis WHERE ds_id IN (SELECT ds_id FROM disease WHERE name = 'ALL'))))ORDER BY ap.u_id";

Query2: SELECT ap.u_id, mn.exp FROM mrnaexpression mn INNER JOIN arrayprobe ap ON mn.pb_id=ap.pb_id WHERE mn.s_id IN (SELECT s_id FROM clinicalsample WHERE s_id IN (SELECT s_id FROM patientsample WHERE p_id IN (SELECT p_id FROM diagnosis WHERE ds_id IN (SELECT ds_id FROM disease WHERE name!='ALL'))))ORDER BY ap.u_id";

The informative genes for the user selected disease are displayed along with the UID's and expression values from patients with and without the disease as shown below.

Project 1: Data Warehouse / OLAP System

2: Use informative genes to classify a new patient.

The informative genes obtained from the previous section is used to classify whether new patients have the disease or not. For this we get UID and expression values from mRNAExpression table of patients who have the disease and patients who don't. Then we calculate the correlation between the new patients and each patient in the previously collected lists based on their expression values for UID's which represent the informative genes. This gives us 2 lists of correlation: 1 between new patient and patients who have the disease and another between new patient and patients who do

not have the disease. T-Statistics is carried out on these 2 lists and if the obtained p-value is smaller than 0.01 then the new patient is classified as "has disease".

Query1: SELECT patient.p_id, ap.u_id, mn.exp FROM mrnaexpression mn INNER JOIN arrayprobe ap ON mn.pb_id=ap.pb_id INNER JOIN (SELECT a.s_id, b.p_id FROM clinicalsample a, patientsample b WHERE a.s_id = b.s_id AND b.p_id IN (SELECT p_id FROM diagnosis WHERE ds_id IN (SELECT ds_id FROM disease WHERE name = 'ALL'))) patient ON mn.s_id = patient.s_id AND ap.u_id IN glob.dataglob.UID) ORDER BY patient.p_id,ap.u_id

Query2: SELECT patient.p_id, ap.u_id, mn.exp FROM mrnaexpression mn INNER JOIN arrayprobe ap ON mn.pb_id=ap.pb_id INNER JOIN (SELECT a.s_id, b.p_idn FROM clinicalsample a, patientsample b WHERE a.s_id = b.s_id AND b.p_id IN (SELECT p_id FROM diagnosis WHERE ds_id IN (SELECT ds_id FROM disease WHERE name != 'ALL'))) patient ON mn.s_id = patient.s_id AND ap.u_id IN glob.dataglob.UID) ORDER BY patient.p_id,ap.u_id

Here glob.dataglob.UID is a variable which has the list of UID's of informative genes.

Here except for Patient 2 all other patients have been classified as has "ALL" disease based on the informative genes obtained.

Knowledge Discovery

Classification of new patients for disease selected: Colon tumor based on the information genes obtained.

Conclusion

We have efficiently implemented a biomedical data warehouse and an OLAP layer which carries out many OLAP and Statistical operations. Using these we were able to gain knowledge about the informative genes for any particular disease and classify if new patients have the disease or not. Also by data cleaning, indexing and efficient UI, we have optimized query retrieval.