ESTRUCTURA DE DATOS 1 Código ST0245

Laboratorio Nro. 2 Complejidad de algoritmos

Diego Alexander Múnera Tobon

Universidad Eafit Medellín, Colombia damunerat@eafit.edu.co

María Antonia Velasquez

Universidad Eafit Medellín, Colombia mavelasqur@eafit.edu.co

1.1) Complejidad Insertion Sort:

En vista de que el algoritmo para tamaños del arreglo[n] pequeños toma un tiempo casi despreciable (0.0 segundos), se calculará la complejidad para el peor caso, o sea cuando el array está organizado de menor a mayor.

$$T(n) = C1 * n$$

 $T(n) = (C2 + C3) * (N-1)$
 $T(n) = C4* (N-1) (N)/2$
 $T(n) = (C5 + C6)* ((N-1) (N)/2-1)$
 $T(n) = C8* (N-1)$
 $T(n) = C*(n^2)$
 $O(n) = O(n^2)$

Complejidad Merge Sort:

Tiempo de ejecución para un array de 9 elementos en desorden = 0.00901055 segundos.

$$T(n) = C1/2 + C2/2$$

 $T(n) = 2T(n/2)$
 $O(n) = nlog(n)$

3) Simulacro de preguntas de sustentación de Proyectos

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473

ESTRUCTURA DE DATOS 1 Código ST0245

Merge Sort:

3.3 ¿Sería viable?

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473

ESTRUCTURA DE DATOS 1 Código ST0245

Con base a lo resaltado por la gráfica, creemos que el algoritmo Insertion Sort no sería viable para aplicarlo en juegos ya que para estos necesitamos velocidades de renderización de los fotogramas muy altas y este código al crecer cuadráticamente en el tiempo nos dejaría con largas esperas tratándose de millones de elementos en n.

3.4 ¿Por qué?

El logaritmo que aparece en el algoritmo de Merge Sort se debe a que éste divide el array en sub-arrays y estos, si siguen siendo muy grandes, se dividen a su vez en sub-arrays. En otras palabras, el problema principal se divide en problemas alternos y estos de igual manera hasta que el problema sea resuelto y las soluciones alternas conformen la solución principal.

3.5¿Cómo?

Para arreglos grandes, Insertion Sort sería mas eficiente si el arreglo ya estuviese clasificado u ordenado, y esto se debe a que el algoritmo funciona más eficientemente de cualquier forma en arreglos pequeños.

4) Simulacro de Parcial

- 4.1: C
- **4.2**: B
- **4.3**: B
- **4.4**: A
- 4.5
 - **4.5.1**: D
 - **4.5.2**: A
- 4.6: Se tardará 100000 segundos
- **4.7:** Todas son verdaderas
- 4.8: A
- **4.9**: A
- 4.10: C
- 4.11: C
- 4.12: B
- 4.13: C
- 4.14: A

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627

Tel: (+57) (4) 261 95 00 Ext. 9473

