

PATENT

Docket No.: I9000.0058/P058

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

BEST AVAILABLE COPY

Marit Nilsen-Hamilton

Serial No.: 10/809,886

Group Art Unit: 1635

Filed: March 26, 2004

Examiner: Kimberly Chong

For: ALLOSTERIC PROBES AND

METHODS

Assistant Commissioner for Patents Washington, D.C. 20231

DECLARATION OF MARIT NILSEN-HAMILTON UNDER 37 CFR 1.131

Dear Sir:

- I, Marit Nilsen-Hamilton, declare and state as follows:
- 1. I am of legal age, and under no disability that prevents me from attesting to the following statements and information, which are based on my personal knowledge and observations or on my best information and belief.
 - 2. I reside at 1111 N. Hyland Avenue, Ames, Iowa 50014.
- 3. I am the sole inventor of the above-identified U.S. patent application (the "'886 application"), filed on March 26, 2004, as evidenced by the attached executed Declaration (Exhibit A).

Docket No.: I9000.0058/P058

- 4. I reviewed and understand the above-identified U.S. patent application including the currently pending claims and amendments (the "Claimed Invention").
- 5. I conceived of and reduced to practice the invention covered by the Claimed Invention prior to April 24, 2002. My reduction to practice of the Claimed Invention is evidenced by Exhibits B-D, which are summaries documenting work I directed and supervised. Specifically, Exhibits B-D are photocopies of handwritten notes, and electronic summaries of the handwritten notes, both created by my student who conducted experiments under my direction and supervision. Each of the experiments summarized in Exhibits B-D was conducted by my student under my direction and supervision prior to April 24, 2002, although the electronic summaries were printed after April 24, 2002. The actual dates that the experiments were conducted have been blanked out, as has any description not relevant to the conception of the Claimed Invention; however, the dates are all prior to April 24, 2002.
- 6. Exhibits B-D shows the results of an experiments involving CLAMP 609, which is a probe for binding a plurality of targets comprising an allosteric regulator linked to at least one regulated aptamer. Specifically, as noted in Exhibit D, CLAMP 609 includes an allosteric regulator, which is a nucleic acid molecule, linked to a regulated aptamer in cis configuration.

Docket No.: 19000,0058/P058

Serial No.: 10/809,886

increasingly able to bind ATP.

7. The experimental results described in Exhibits B-D show that binding the allosteric regulator with a first target enhances the binding of the at least one regulated aptamer to at least one second target. Specifically, as shown in Exhibits B-D, when neomycin binds the allosteric regulator of the CLAMP 609, the regulated aptamer is

8. Thus, Exhibits B-D show that, prior to April 24, 2002, the Claimed Invention was reduced to practice under my direction and supervision.

All statements made herein of my own knowledge are true, and all statements made on information and belief are believed to be true. All statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the above-identified patent.

Date: 927/06

Marit Nilsen-Hamilton

Serial No.: 10/809,886 Docket No.: 19000.0058/P058

EXHIBIT A

OCT 0 6 2006 Attomey Docket No. 19000.0058/P058 Declaration for Page Application First Named Inventor Marit Nilsen-Hamilton **English Language Declaration** COMPLETE IF KNOWN: Application No. 10/809,886-Conf. #7776 Submitted Submitted after initial Filing Date March 26, 2004 with initial filing (surcharge required Art Unit 1645 filina 37 CFR 1.16(e)) Examiner Not Yet Assigned As a below named inventor, I hereby declare that: My residence, mailing address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: ALLOSTERIC PROBES AND METHODS the specification of which is attached hereto OR was filed on 03/26/2004 as United States Application No. or PCT International Application No. 10/809,886 and was amended on (if applicable). I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the National or PCT International filing date of the continuation-in-part application. I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or (f), or 365(b) of any foreign applications(s) for patent, inventor's or plant breeder's rights certificate(s), or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent, inventor's or plant breeder's right certificate(s), or any PCT international application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s) Priority Certified Not Сору Claimed Attached YES NO (Number) (Country) (Filing Date) (Number) (Country) (Filing Date) (Number) (Country) (Filing Date) Additional prior foreign applications are listed on a supplemental data sheet attached hereto.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor	
Marit Nilsen-Hamilton	
Sole or first inventor's signature	Date
Main Nilsen Hameta	4204
Residence	
Ames, Iowa	
Citizenship Norway	
Mailing Address	
1111 N. Hyland Ave.	
Ames, Iowa 50014-4007	

STATE OF IOWA)
) ss
COUNTY OF STORY	•)

On this 2nd day of September, 2004, before me personally came Marit Nilsen-Hamilton, to me known to be the individual described in and who executed the foregoing instrument, and acknowledged execution of the same.

Serial No.: 10/809,886 Docket No.: 19000.0058/P058

EXHIBIT B

ACC II CLAME OCC. ATT	
TITLE: Column Affinity - CLAMP 609 on ATP Agarose in Neomycin Solution	DATE: C
PURPOSE: To test the effect of free neomycin on Neo/ATP-CLAMP 609 binding	EXP.# BK036
7 Bit Collins and	LEVI 14 DIVOZO

REAGENTS

DEPC treated water

Neo/ATP-CLAMP 609 (~ 0.5pmol/ul) BK035 (gcuuaauacgacucacuauaggccugggcgagaaguuuaggccuu ggguugggaagaaacuguggcacuucggugccagcaacce)

Neomycin Sepharose from BK001

ATP Agarose from Sigma No. A2767

MicroBioSpin Column from BioRad No. 732-6204

Neomycin from Sigma No. N-1876 Lot 90K0854 MW 908.9

Adenosine 5 Triphosphate (ATP) from Sigma No. A-3377 MW 551.1

Binding Buffer. 50mM Tris, 250mM NaCl, 5mM MgCl₂, pH 7.6

Binding Buffer (ATP columns): 1mM neomycin in Binding Buffer above

Elution Buffers: 10mM Neomycin or 10 mM ATP in Binding Buffer Fisher Scientific ScintiVerse Scintanalyzed Cocktail No. SX18-4

Packard TR1600 Liquid Scintillation Analyzer (1238 Molec Biol) - Protocol 3

STEP	SOLUTION	۷OL (ml)	TEMP (°C)	· Time Period (i
Make Column	Add 100ul either neomycin sepharose or ATP agarose to each column.	100ul	23	5min
Wash Column ^{##}	Equilibrate column by washing 10x with 100ul Binding Buffer, collecting 1ml.	1x1ml/fx	23	5min
Prepare sample	Add ~ 1pmol ³² P-CLAMP609 to DEPC water for each sample and preincubate.	20ul	85 23	1min 1min
Apply Sample	Apply sample to column.	18ul	23	30sec
Wash	Wash column 20x with 100ul Binding Buffer, collecting each 1ml.	2x1ml/fx	23	10min
Elution	Elute 10x with 100ul Elution Buffer, collecting each 100ul.	10x100ul/fx	23	10min
**Column Wash	Wash column 10X with 100ul Elution Buffer, then 10x with 100ul Binding Buffer, collecting each 1ml.	2x1ml/fx	23	10min
Analyze Fractions	Add 20ul each fraction to 5ml ScintiVerse and assay on liquid scintillator. Reserve 2ul of sample for total sample cpm count.	20ul in 5ml	23	112min

^{**}Column Washes only for ATP agarose column

DISCUSSION:

President de la constant de la const

The neomycin in the binding buffer apparently increased the effective ATP binding of CLAMP 609. In the first trial, 90% of the TCA precipitable counts bound to the neomycin sepharose and 17% were eluted from the ATP agarose (with only about 50% of the total radioactivity recovered from the column).** In the second trial, again about 90% bound to the neomycin sepharose and 35% bound to the ATP agarose, with much less radioactivity remaining in the column (about 80% recovered). This is a great improvement over the inital CLAMP 609 binding assays (BK033 & BK034) where less than 10% was shown to bind to the ATP agarose. Next this difference in binding must be directly compared in a single experiment with and without neomycin in the binding buffer.

**Note, the elution in the first trial with ATP was distributed over the entire elution series and was probab background. However, in the second trial there was a definite peak of CLAMP binding

INIT	DATE:	PRINTED:	May	13,	200

•	n Sepharose		dilution			Acid precip	itable
sample	value	value - bkg	factor	total com	%input	cpm	% total
input	14712.5	14672	9	132048		129407.0	100%
wash	387.5	347	50	17350	13.14%		09
wash	40.5	0	50	0	0.00%		
1	9017.5	8977	5	44885	33.99%	44885.0	34.899
2	7018.5	8978	5	34890	28,42%	34890.0	28.96%
3	3136	3095.5	5	15477.5	11.72%	15477.5	11.96%
4	1895	1854.5	5	9272.5	7.02%	9272.5	7.17%
5	1284.5	1244	5	6220	4.71%	6220.0	4.81%
6	874.5	834	5	4170	3.16%	4170.0	3.22%
7	573.5	533	. 5	2665	2.02%	2685.0	2.06%
8	413.5	373	5	1865	1.41%	1885.0	1.44%
9	309	268.5	5	1342.5	1.02%	1342.5	1.04%
10	298.5	256	.5	1280	0.97%	1280.0	0.98%
BKG		40.5					Eluted
acid Ins 98.0%	eldulo				106%	122068	94.33%

· ATP Aga sample	rose value	value - bkg	dilution factor	total cpmi	%input	Acid precip	
Input	21260.5	21220	9	190980	Mulbor	cpm	% total
wash	1028.5	986			25 244	187160.4	100%
wash			.50	49300	25.81%		0%
wasii	173.5		50	8650	3.48%		
1	289	248.5	5	1242.5	0.85%	1242.5	0.68%
· 2	589:5	559	5	2795	1.46%	2795	1.49%
3	853.5	813	. 5	4065	2.13%	4065	2.17%
4	780.5	740	5	3700	1.94%	3700	1.98%
5	667	626.5	5	3132.5	1.64%	3132.5	1.67%
8	728.5	. 888	5	3440	1.80%	3440	1.84%
7	. 719	678.5	5	3392.5	1.78%	3392.5	1.81%
8	686	645.5	5	3227.5	1.69%	3227.5	1.72%
9	683	642.5	5	3212.5	1.68%	3212.5	1.72%
10	592.5	552	5	2780	1.45%	2760	1.47%
BKG	•	40.5					Eluted
% acid In: 98.0%	soluble				48%	30968	16:55%

Neomyo	in Sephan	ose	dilution	•		Acid precip	itable
sample	value	value - bkg	factor	total cpm	%input	com .	% total
input	8283	8283	9	74547		73056.1	100%
wash	67.5	67.5	50	3375	4.53%		
wash	23.5	23.5	50	1175	1.58%		
. 1	2544.5	2544,5	5	12722.5	17.07%	12722.5	17.41%
2	2970.5	2970.5	· ` 5	14852.5	19.92%	14852.5	20.33%
. 3	2268	2268	. 5	11340	15.21%	11340.0	15.52%
4	.1453	1453	5	7265	9.75%	7265.0	9.94%
5	1196	1196	· 5	5980	8.02%	5980,0	8.19%
. 6	977.5	977.5	5	4887.5	6.56%	4887.5	6.69%
.7	608	608	_ 5	3040	4.08%	3040.0	4.18%
8	499	499	5	2495	3:35%	2495.0	3.42%
9	334.5	. 334.5	· 5	1672.5	2.24%	1672.5	2.29%
10	2 6 2.5	262.5	5	1312.5	1.76%	1312.5	1.80%
BKG 23.5			•			Eluted	
% acid in 98.0%	rsoluble				94%	65568	89.75%

ATP Aga	1038		dilution			Acid precip	itable
sample	value	value - bkg	factor	total cpm	%Input	cpm	% total
input	8184	8127.5	9	73147.5	•	71884.55	100%
wash	596	539.5	50	26975	36.88%	• • • • • • • • • • • • • • • • • • • •	0%
wash	171.5	115	50	5750	7.86%		
1	587.5	531	5	2655	3.63%	2655	3.70%
2	2057	2000.5	5	10002.5	13.87%	10002.5	13.95%
. 3	1423	1366.5	. 5	6832.5	9.34%	6832.5	9.53%
4	686.5	630	. 5	3150	4.31%	3150	4.38%
- 5	350.5	. 294	. 5	1470	2,01%	1470	
6	162.5	106	5	530	. 0.72%	. 530	0.74%
7	· 93.5	37	. 5	185	0.25%	185.	0.26%
. 8	67.5	11	5	55	0.08%	55	
. 9	56.5	0	. 5	0	0.00%	0	0.00%
. 10	57	0.5	5	2.5	0.00%	2.5	0.00%
BKG		58,5	-				Eluted
% acid in	soluble		•		79%	24883	34 71%

11. S#

· · ·

}-----

<u>.</u>...

<u>----</u> .

?motocol #: 3

TRWACE · www.

1 m 100 1 H . 1 1 1 1 1000 1110 1 T .

......

.

....

متتسميقه والمستقيم والمستقيم في في المستقيم والمستقيم المنافي المراوي والمراوي والمراوي المراوي المأتواني

<u>---,-</u>... CLAMP 609 binding to ATP get w/unlocking by morning

Neomycin Sepherose (new) for control ! ATP agarase (used)

Birding Buffer (New): 50 mM Tris, 250 mM Macl, 5 mM Mg Cl_, pH7.60

Binding Buffer (ATP): I'M neomycen in above / Elution Ruffer (New) +6 m M neonycin in -

Elition Buffer (ATP) :18 mM ATP in

Jold solns ≥ meed to make fresh

that Wash column 10x w/ 100ml Binding Buffer.

Add Unlander Double. Remove Zel - 20ml Box total court.

elneubote remaining sample I min @ 85°C, cool I min, add to column.

Wooh 70x w/100ml Birding Buffler, collecting each I ml.

Elute 10x 4/100 ul Elution Buffer, Alecting each 100 ul.

Aday 20 ml / for in 5 ml Scintivuse

* Forced drip-quick flow

* Columns still hot ofter elution

Control roul/roul

2-3 Washes welloodul

4-13 Elution roul/100ml

Control soul/soul

Washes roul/coone

Elution 20ml/100ml

27-28 Columback 2010/1000 ul

⇒ still low election from ATP column

Neonyein septenose

ATP againse

CLAMP 609 bridge to ATP gel - / unlocks CLAMP 609 (8402)

Neomycin sephanose (new) for control & ATP agerose (used)

(Nea) Briding Buffer: 50mM Tris, 250mM NECR, SMM MyCR, pH 7.6

(ATP) Has Birthing Biffer: [m.M. neomycin in I] Election Buffer (Neo): 10mM meony in in Elution Buffler (MP): 10 mM ATP in

Wash whem lox w/100 ul Binding Buffler. Add 2 ul RNA -> 20ul sample. Pernare 2 ul -> 20ul for total you. Incubate remaining sample \ min B 85°C, cool (min , add to column. Worth 20x W/ 10aul Binding Bubber, collecting each Int. Elute 10 x w/ 10 aul Elution Buffer, collecting each 100 ul. Assay 20ml/for in 5 mil Scintwerse

* Slower drip rate * Columns only slightly but after elution (~ 300 cpm)

roul/roul Controlopin 20ml/1000 ml 2-3 Worther 20 ml/100 ml 4-13 Elution rone/rone Control com 15-16 Column Prowastes 20,000 look rank/oome 17-18 Washes world. 19-28 Elution

29-30 Column Washes Tone 1000 ul

10 10 34

28

2.00

108.50

```
Protocol #: 3
                      Name: 32PMNH
Region A: LL-UL= 5.0-1700
Region B: LL-UL=50.0-1700
                                      0 \text{ Bkg} = 0.00
                                                      %2 Sigma=0.10
                             Ler=
                                      0 Bkg= 0.00
                                                      %2 Sigma=0.10
Region C: LL-UL= 0.0- 0.0
                                      0 \text{ Bkg} = 0.00
                              Lcr=
                                                      %2 Sigma=0.00
       2.00
                  QIP = SIS
Time =
 .S#
                CPMA
                          CPMB B:25%
       TIME
                                          SIS FLAG
        2,00 14712.5 11394.5
                                1.32 627.11
   1
              387.50
                       304.00
                                8.11 628.76
       2.00
                               28.01 381.93
   3
       2.00
               40.50
                        25.50
       2.00 9017.50 6926.50
                                1.70 818 68
1.97 553.75
   4
       2.00 7018.50 5178.00
   5
                                3.00 449.81
       2.00 3136.00 2218.00
   6
       2.00 1895.00 1422.00
   7
                                3.75 562.68
   8
       2.00 1284.50
                       872.50
                                4.79 428.33
       2.00
              874.50
                       559,00
                                5.98 405.60
   8
       2.00
              573.50
                       438.50
                                6.77 583.56
  10
  11
       2.00
              413.50
                       312.00
                                8.01 564.44
       2.00
              309.00
                       224.50
                                9.44 522.36
  12
       2.00
              296.50
                       202.50
                                9.94 459.84
  13
       2.00 21260.5 17039.0
                                1.08 679.43
  14
                       780.50
                                5.08 581.78
       2.00 1026.50
  15
              173.50
                       114.50 13.22 444.05
       2.00
  16
       2.00
              289.00
                       198.50
                               10.09 476.83
  17
  18
       2.00
              599.50
                       428.00
                                8.84 544.94
  19
       2.00
              853.50
                       621.50
                                5.67 561.07
       2.00
              780.50
                       594.50
                                5.80 602.36
  20
       2.00
              667.00
                       437.00
                                6.77 422.81
  21
              728.50
                       528.00
                                6.15 483.34
  22
       2.00
  23
       2.00
              719.00
                       521.00
                                6.20 516.21
  24
       2.00
              686.00
                       506.50
                                8.28 557.88
  25
       2.00
              683.00
                       562.00
                                5.97 690.32
 26
              592.50
                                8.38 700.70
       2.00
                       494.00
                                8.77 535.24
  27
                       437.00
       2.00
              623.00
```

81.00 15.71 495.06

```
5152942244
  Protocol #: 3
                       Name: 32PMNH
  Region A: LL-UL= 5.0-1700
                                                                   10:21
                              Ler=
                                      0
                                         Bkg= 0.00
                                                     %2 Sigma=0.10
Region B: LL-UL=50.0-1700
                              Ler=
                                      0
                                         Bkg= 0.00
 Region C: LL-UL= 0.0- 0.0
                                                     %2 Sigma=0.10
                              Lor=
                                      0
                                        Bkg= 0.00
                                                     %2 Sigma=0.00
         2.00
  Time =
                   QIP = SIS
         TIME
                 CPHA
                          CPMB B:25%
                                         SIS FLAG
         2.00 8283.00 6509.50
     1
                                1.75 616.07
     2
         2.00
                        44.00 21.32 570.14
                67.50
    3
         2.00
                23.50
                         10.50
                              43.64 239.08
         2.00 2544.50 1837.00
    4
                                3.30 482.79
    5
         2.00 2970.50
                      2130.00
                                3.06 532.72
        2.00 2268.00 1735.50
    6
                                3.39 584.36
```

7 2.00 1453.00 1134.50 4.20 640.96 8 2.00 1196.00 918.50 4.67 635.13 9 2.00 977.50 791.50 5.03 711.35 10 2.00 608.00 403.00 7.04 416.83 11 2.00 499.00 384.00 7.22 543.59 2.00 12 334.50 228,00 9.37 429.88 13 2.00 262.50 8184.00 185.50 8188.50 10.38 484.77 2.00 14 1.80 555.04 15 2.00 21.50 9.50 45.88 247.09 18 2.00 22.50 10.50 43.64 465.13 17 2.00 596.00 442.50 6.72 538.64 2.00 18 171.50 122,00 12.80 478.34 19 2.00 587.50 409.00 6.99 501.26 20 2.00 2057.00 1580.00 3.58 591.29 21 2.00 1423.00 1124.00 4.22 635.41 22 2.00 686.50 565.50 5.95 693.13 23 2.00 350.50 288.50 8.33 694,04 24 2.00 120.00 12.91 507.30 162.50 25 2.00 67.50 17.21 560.65 93.50 ٦6 2.00 67.50 43.00 21.57 490.62 47 2.00 56.50 41.50 21.95 501.46 28 2.00 57.00 38.50 22.79 496.97 48.50 20.31 452.02 29 2.00 77.50 30 2.00 39.50 23.50 29.17 291.04

Serial No.: 10/809,886 Docket No.: 19000.0058/P058

EXHIBIT C

TITLE: Column Affinity - Neomycin Unlocking of CLAMP 609 on ATP aga	rose DATE:
PURPOSE: To determine if neomycin binding can increase ATP binding a	[C_1]
of Neo/ATP-CLAMP 609; repeated three times	EXP.# BRUSS

REAGENTS

DEPC treated water

32P-Neo-uu-ATP-CLAMP 609 (~ 1.3pmol/ul)/BK037

(дсичавиасдасисасианаддесидддедадаадиниаддес ин

ggguugggaagaaacuguggcacuucggugccagcaaccc)

ATP Agarose from Sigma No. A2787

MicroBioSpin Column from BioRad No. 732-6204

Neomycin from Sigma No. N-1876 Lot 90K0854 MW 908.9

Adenosine 5'Triphosphate (ATP) from Sigma No. A-3377 MW 551.1

Binding Buffer. 50mM Tris, 250mM NaCl, 5mM MgCl₂, pH 7.6

Elution Buffer. 10mM ATP in Binding Buffer

Fisher Scientific ScintiVerse Scintanalyzed Cocktail No. SX18-4 Lot 994498 Packard TR1600 Liquid Scintillation Analyzer (1238 Molec Biol) - Protocol 3

STEP	SOLUTION	VOL. (ml)	TEMP (°C)	Time Period	
. Make Column	Layer 100ul of ATP agarose into micro b	oiospin column.	100ul	23	30sec
Wash Column	Equilibrate column by washing 10x with 100ul Binding Buffer, collecting 1ml.	± 1 mM neomycin	1ml	23	5min
Prepare Samples	~ 3pmol ³² P-CLAMP609 Binding buffer	± 1 mM neomycin	20ul	85 23	1min 1min
Apply Sample	Apply sample to column.		18ul	23	30sec
Wash	Wash 20x with 100ul Binding Buffer, collecting each 1ml.	± 1 mM neomycin	2x1ml/fx	23	5min
Elution	Elute 10x with 100ul Elution Buffer, collecting each 1ml.	± 1 mM neomycin	10x100ul/fx	23	10min
Column Washes	Wash column with 1ml Elution Buffer, the Buffer, collecting each 1ml.	en with 1ml Binding	2x1ml/fx	23	5min
Analyze Fractions	Add 20ul each fraction to 5ml ScintiVerse scintillator. Reserve 2ul of sample for total sample of	20ul in 5ml	23	64min	

DISCUSSION:

The addition of neomycin to the solutions increased binding to the ATP column from 9% to 28% of TCA precipitable counts in the first trial, from 25% to 59% in the second trial, and from 9% to 25% in the third trial. This suggests that neomycin binding is required in order for the ATP aptamer end of the CLAMP to be fully available for binding. However, the ATP binding is still very low compared to the neomycin binding attained, so other factors probably still reduce this binding, such as incomplete transcription or remaining interference within the CLAMP construct.

CL'AMP	A TTA no 606	garose	dilution				Acid preci	pitable
sample	value	velue - bkg	factor		total cpm	%input	срт	% total
input	11164	11142.5		9	100282.5		93262.7	100%
wesh	1380.5	1339		50	66950	86.8%		0%
wesh	199	177.5		50	8875	8.8%		
	1 372	350.5		5	1752.5	1.7%	1752.5	1,9%
	2 489.5	488		5	2340	2.3%	2340.0	2.5%
	3 349	327.5		5	1637.5	1:8%	1637.5	1.8%
	4 280.5	239		5	1195	1.2%	1195.0	1.3%
	5 120	98.5		5	492.5	0.5%	492.5	0.5%
	8 72.5	51		5	255	0.3%	255.0	0.3%
	7 53.5			5	180	0.2%	160.0	0.2%
	8 37	15.5		5	77.5	0.1%	77.5	0,1%
	9 39	17.5		5	87.5	0.1%	87.5	0.1%
11	-	15		5	75	0.1%	75.0	0,1%
		24.5						Stated

BKG	21.5		8	betu
% acid insoluble	93,0%	83.68%	8073	9

		-	dilution			Acid preci	pitable
semple_	value	value - bkg	factor	total cpm	%input	cpm	% total
input	11832	11811.5		106303.5	_	98862.26	1009
wash	1274.5	1254	50	62700	59%		09
wash	249	228.5	50	11425	10.75%		
	1 555	534,5	5	2672.5	2,51%	2672.5	2,709
:	1571.5	1551	5	7755	7.30%	7755	7.849
	1590	1569.5	5	7847.5	7,38%	7847.5	7.949
	4 1090	1069.5	5	5347.5	5,03%	5347.5	5,419
	5 482	441.5	5	2207.5	2.08%	2207.5	2.239
	152	131.5		657.5	0.82%	657.5	0.679
	7 131.5	111	5	555	0.52%	555	0.589
	8 64		5	217.5	0.20%	217.5	0.229
•	55.5	35		175	0.16%	175	0.189
10	55	34.5	5	172.5	0.16%	1725	0.179
BKG		20.5					Eluted
% acid in	solubie	93,0%			95.70%	· 27608	289

0.08 T		,,,,	t 1)			
0.06	/					
0.04 0.04	7	-/-				
0.04	/			···		
0.02	<i>L</i>		7	·		-
1			1			
0 T	1 2	3 4	5 6 action 10x1	7 8	ġ	10

CLAMP (909 on ATP	Agarose :	dilution			Acid preci	
sample	value	value - bkg	factor	total cpm	%input	cpm	% total
Input	8881	8858	9	79704		74124.72	100%
wash	1114	1089	50	54450	68%		0%
wash	218.5	193.5	50	9675	12.14%		
	1 303	278	5	1390	1.74%	1390	1.88%
	2 596	571	5	2855	3,58%	2855	3.85%
	3 311	286	5	1430	1.79%	1430	1.93%
	4 142.5	117.5	. 5	587.5	0.74%	587.5	0.79%
	5 91	66		330	0.41%	330	0.45%
	8 40.5	. 15,5	5	77.5	0.10%	77.5	0,10%
	7 41	18		80	0.10%	80	0.11%
	8 32		5	35	0.04%	35	0.05%
	9 25.5		5	2.5	0.00%	2.5	0.009
	0 42		-			85	0.119
BKG		25					Eluted
	e duble	93.0%			89.08%	6873	99

			Agarose - wil	dilution				Acid preci	pitable
semple	valu		value - bkg	factor		total cpm	%input	срт	% total
Input		1554	. 1507		8	13583		12613.59	1009
wash		114.5	67.5		50	3375	25%		09
wash		26.5	-20.5		50	-1025	-7.58%		
	1	52.5	5.5		5	27.5	0.20%	. 27.5	
	2	66.5	19.5		5	97.5	0.72%	97.5	0,779
	3	98			5	255	1.88%	255	2,029
	4	128			5	395	2,91%	395	3.139
	5	130			5	415	3.06%	415	3.299
	6	132.5			5	427.5	3.15%	427.5	3.399
	7	132			5	425	3.13%	425	3.379
	å	128.5	-		5	397.5	2,93%	397.5	3.159
	9	115.5			5	342.5	2,53%	342.5	2.729
	ŏ	118			5	355	2.62%	355	2.819
BKG .			47						Eluted
							40.400	2420	261

CLAMP	80	39 on ATP	Agerose	dilution				Acid preci	
sample		value	value - bkg	factor		total cpm	%input	cpm	% total
input		5477	5444.5		9	49000.5		45570.47	100%
wash		1013	980.5	5	٥	49025	100%		0%
wash		187		. 5	٥	7725	15.77%		
******	1	520.5			5	2440	4,98%	2440	5.35%
	ż	829			5	3982.5	8.13%	3982.5	8.74%
	3	602			5	2847.5	5.81%	2847.5	8.25%
	4	294.5			5	1310	2.87%	1310	2.87%
	5	152.5			5	600	1,22%	600	1.32%
	6	88			5	267.5	0.55%	267.5	0:59%
	7	51.5			5	95	0.19%	95	0.21%
	-	40			5	37.5	0.08%	37.5	0:08%
	8	30.5			5	-10		-10	-0.02%
	9 10				5	-125		-12.5	-0.03%
BKG			32.5						Eluted
% acid	ini	eduble	93.0%				139,40%	11558	25%

CLAMF	6 0	9 on ATP	Agarose - wit	neon dilutio	nycl n	n unlocking)	Acid preci	pitable
sample		value	value - bkg	factor		total cpm	%Input	cpm	% total
Input		4437.5	4401		9	39609		38836.37	100%
wash		859.5	823		50	41150	104%		. 0%
wash		197.5	161		50	8050	20,32%		
MASSIT		379.5	27.2		5	1715	4.33%	1715	4.86%
	2	1059			5	5112.5	12:91%	5112.5	13.88%
	3	1211	1174.5		5		14.83%	5872.5	15.94%
		1002.5			5		12.19%	4830	13.11%
	4				5		5.18%	2050	5.57%
	5	448.5	212	-	5			1090	2.96%
	8	254.5	7.1.1		5			650	1.76%
	7	166.5			5		0.97%		1.05%
	8	113.5			5			130	0.35%
	9	62.5						82.5	0.22%
	10	53	18.5		5	82.5	0.2170	02.3	. 0.22
			36.5						Eluted
BKG % acid	i ins	cluble	93.0%				179.55%	21918	50%

Unlooking effect of neomysin on CLAMP 609 ATP briding CLAMP 609 (BKO) 31 ATP against (used) Binding Buffer (ontil): 50 mM Tris, 250 mM Nace, 5 mM Mg Cl2, pH7.6 Building Buffer (unlocking): In M neonysin to 50-M Tris, 250-M NeCl, 5nM Myll2, pH7.6 Election Buffer: 10mM ATP, 50mM Trio, 250mM Nacl, 5mM Mcl2, pH 7.6 Election Buffer (unlocking) above plus In M neoningin whole return 10x of 100 ul Election Buffer, wheting Int. e) och column 10x v 1100 ul Binding Buffer, collecting I ml. Add 2nd FNA- raul sample (B.B. delutes). Permove Zul- 220cl for total you. elnewhole remaining sample I min 085°C, col I min, add to column. Wash 20x w/(00 al binding Buffer, collecting each I ml. Elute 10xw/100ml Elution Buffer, collecting each 100ml. Wosh column 10x w/100wh Elution Buffer, collecting Iml. wash column lox w/100 wl Binding Buffer w/o neomysin, sollecting Inl. Assay soul/be in 5ml Suntiverse. * columns only dightly let ofterwards Samples: Control 2011/2011 /9 simple 34 Washes 9% 5-14 Election 15-16 Clemn Waches 201/ 1000 ul Repeat exactly as above except neither election buffer contains neomypin Control - 25% Unlocking 59%. legest as above w/ elution buffer w/o neomycin Control 9% Unbriting 25%

```
10 Jan _ -3 14:20
                     Name:32PMNH
Protocol #: 3
Region A: LL-UL= 5.0-1700
                                                   %2 Sigma=0.10
                                    0
                                        Bkg= 0.00
                            Lcr=
Region B: LL-UL=50.0-1700
                                       Bkg= 0.00
                                                   %2 Sigma=0.10
                            Lcr=
                                    0
                                       Bkg= 0.00
                                                   %2 Sigma=0.00
Region C: LL-UL= 0.0- 0.0
                             Lcr=
                                    0
                  DIP = SIS
       2.00
                                       SIS FLAG
               CPMA
                        CPMB B:25%
 ·S#
       TIME
       2.00 11164.0 8355.50
                               1.55 544.96
  1
                       10.50 43.64 451.41
              21.50
       2.00
   2
       2.00 1360.50 1064.50
                               4.33 641,54
  . 3
                      129.50 12.43 398.68
 4
      : 2.00
              199.00
  . 5
       2.00
             372.00
                      258,00
                               8.80 529.43
                               7.33 557.94
              489.50
  6
       2.00
                      372.50
                      242.00
                              9.09 510.14
 :.7
       2.00
             349.00
                      178,50 10.59 518.90
       2.00
             260.50
  . 8
       2.00
              120.00
                       82.00 15.62 432.42
  - 9
       2.00
               72.50
                       53.50 19:33 641.54
  10
               53.50
                       30.50 25.61 427.76
       2.00
  11
               37.00
                       22.50 29.81 473.56
       2.00
 12
                       19.00 32.44 273.50
               39.00
       2.00
  13
                       16.00 35.36 436.39
               36.50
  14
       2.00
                        12.50 40.00 334.99
               26.50
 15
       2.00
                       22.50 29.81 415.56
 .16
               36.00
       2.00
                               1.49 599.53
       2.00 11832.0 8961.00
 .17
                             48.51 124.50
                         8.50
  18
       2.00
               20.50
                               4.58 523.71
                      951.50
       2.00 1274.50
  19
       2.00
              249.00
                      163.50
                              11.06 480.42
  20
                               7,02 543.77
21
       2.00
              555.00
                      406.00
 22
                               4,23 469,11
       2.00 1571.50
                     1116.50
                               4.08 566.B6
  23
       2.00 1590.00
                     1200.00
                               5.08 503.B1
       2.00 1090.00
                       774.50
  1.4
 ∵25
                      326.00
                               7.83 512.29
       2.00
              462.00
 : 26
       2.00
              152.00
                        95.50 14.47 386.64
                        95.50 14.47 521.19
  27
       2.00
              131.50
                        35.50 23.74 397.77
 . 28
       2.00
               64.00
                        38.50 22.79 535.36
       2.00
  29
               55.50
```

30.00 25.82 446.85

19.00 32.44 497.00

15.50 35.92 565.03

30

31

32

2.00

2.00

2.00

55.00

37.00

29.00

*

```
24 (2)
```

25

26

27

28

29

30

31

32

2.00

2.00

2.00

2.00

2,00

2.00

2.00

2,00

446.50

254,50

166.50

113.50

62.50

53.00

34,00

56.50

330.50

```
Protocol #: 3
                    Name:32PMNH
 Region A: LL-UL= 5.0-1700 Lcr=
                                   Ó
                                      Bkg= 0.00
                                                  %2 Sigma=0.10
Ö
                                      Bkg= 0.00
                                                  %2 Sigma=0.10
 Region C: LL-UL= 0.0- 0.0
                            Lcr≖
                                      Bkg= 0.00
                                                  %2 Sigma=0.00
 Time = 2.00
                  QIP = SIS
   S#
                CFMA
                        CPMB B:25%
                                      SIS FLAG
        2.00 5477.00 4327.00
    1
                             2.15 630.49
                     2.00
             602.00
294.50
                             6.52 631.53
9.51 539.05
                     470.5Q
   8
                     221.00
   9
       2.00
             152.50
                     112.00 13.36 572.09
              86.00
  10
       2.00
                      60.50 18.18 452.53
       2,00
              51.50
  11
                      31.50 25.20 464.95
  `2
                      22.00 30.15 315.86
       2.00
              40.QQ
  ∠3
       2.00
              30.50
                      15.00 36.51 318.22
  14
       2,00
              30.00
                      13.50 38.49 341.19
  15
       2.00
              24.00
                      14.00 37.80 378,88
  16
       2.00
              42.00
                      24.50 28.57 312.21
  17
       2.00 4437.50 3492.50
                             2.39 601.46
  18
       2.00
              36.50
                      24,00 28.87 460.09
  19
       2.00
             859.50
                     607.50
                             5.74 513.46
 20
       2.00
             197.50
                     150.50 11.53 569.37
 21
       2.00
             379.50
                     271.50
                             8.58 507.38
 22
       2.00 1059.00
                     782.50
                             5.06 534.56
 23
       2.00 1211.00
                     908.00
                             4.69 557.88
       2.00 1002,50
 24
                             5.33 524.97
                     705.00
```

7.78 501,70

180.50 10.53 542.42

120.50 12.88 492.37

79.00 15.91 501.40

40.00 22.36 448.20

35.00 23.90 487.85

18.50 32.88 398.72

41.50 21.95 491.40

31

32

2.00

2.00

76.00

68.00

53.50 19.33

44.00 21.32 510.19

```
09:44
                                                            Name: 32PMNH
Protocol #: 3
Region A: LL-UL= 5.0-1700
                                                                                                                                                           Sigma=0.10
                                                                                                                Bkg = 0.00
                                                                                 Ler=
Region B: LL-UL=50.0-1700
Region C: LL-UL= 0.0- 0.0
                                                                                 Lcr=
                                                                                                       Q
                                                                                                                Bkg= 0.00
                                                                                                                                                  %2
                                                                                                                                                           Sigma=0.10
                                                                                                                Bkg=0.00
                                                                                                       0
                                                                                                                                                  %2 Sigma=0.00
                                                                                 Lor=
                                                  QIP = SIS
Cime =
                       2.00
のはないとのでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、
                                                                                                                SIS FLAG
                                                                     CPMB
                                                                                    B:25%
                    TIME
                                            CPMA
                                                                                       1.67
                                   8881.00
                                                            7140.00
                                                                                                      685.52
                    2.00
                                                                                    44.72 424.10
                                          25.00
                                                                  10.00
                    2.00
        2
                                    1114.00
                                                                                       4.94 542.31
                                                               818.50
         3
                    2.00
                                                                                    11.08 529.52
                                      218.50
                                                                163.00
         4
                    2.00
                                                                                       8.06 625.26
                                      303.00
                                                               243.50
        5
                    2.00
                                                                                       8.51 675.09
                                       596.00
                                                               472.50
         6
                    2.00
                                                               227.00
                                                                                       9.39 551.88
        7
                    2.00
                                       311.00
                                                                  95.00
                                                                                    14.51.443.71
        8
                    2.00
                                       142.50
                                          91.00
                                                                  62.00 17.96 440.44
        9
                    2.00
                                          40.50
                                                                  23.50 29.17 345.52
                    2.00
    10
                                          41.00
                                                                  21.50 30.50 332.35
                    2.00
    11
                                          32.00
                                                                  19.50 32.03 360.76
     12
                    2.00
                                                                  12.00 40.82 552.16
                    2,00
                                          25.50
13
                                          42.00
                                                                  22.50
                                                                                    29.81
                                                                                                      351.20
    14
5
                    2.00
                                          28.50
                                                                  13.00
                                                                                    39.22
                                                                                                      532.13
                    2.00
                                          39.50
                                                                  20.50
                                                                                    31.23
                                                                                                      425.34
    18
                    2.00
     17
                    2.00
                                    1554.00
                                                            1151.00
                                                                                       4.17
                                                                                                       559.42
                                                                                    25.20
15.29
     18
19
                    2.00
2.00
                                                                  31.50
85.50
                                          47.00
                                                                                                       165.14
                                       114.50
                                                                                                       537.42
     20
                    2.00
                                          26.50
                                                                  16.50
                                                                                    34.82
                                                                                                       535.61
     21
                    2,00
                                          52.50
                                                                  31.00
                                                                                    25.40
                                                                                                       529.57
     22
                                          66.50
                                                                  47.00
                                                                                    20.63
                                                                                                       514.24
                    2,00
     23
                                                                                   16.78 565.60
                    2.00
                                                                  71,00
                                          98.00
     24
                                                                  83.00
                                                                                    15.52
                                                                                                       490.09
                     2.00
                                       126.00
     25
                     2,00
                                                                  90.50 14.87
                                                                                                       572.18
                                       130.00
     26
                                                                  84.00 15.43
                                                                                                      448.77
                    2.00
                                       132.50
                                       132.00
     27
                    2.00
                                                                  83.50
                                                                                    15.48
                                                                                                      407.11
                    2.00
     28
                                       126.50
                                                                   75.00
                                                                                    16.33
                                                                                                      420.04
                                       115.50
     29
                    2.00
                                                                   79.50 15.86
                                                                                                       521,63
     30
                    2.00
                                       118.00
                                                                  80.00 15.81
                                                                                                       553.93
```

597.11

Serial No.: 10/809,886 Docket No.: 19000.0058/P058

EXHIBIT D

2125767.01

TITLE: Native PAGE - Neomycin Effects on CLAMP Binding to Affinity Gels DATE: ^^/ PURPOSE: To test the effects of different neomycin concentrations on CLAMP EXP.# BK041 609 binding to affinity gels

REAGENTS

32P-Neo-uu-ATP-CLAMP 609 (~ 2pmol/ul)/ BK040

(gcuuaauacgacucacuauaggccugggcgagaaguuuaggcc uu ggguugggaagaaacuguggcacuucggugccagcaaccc)

Neomycin Sepharose from BK001

ATP Agarose from Sigma No. A2767

Neomycin from Sigma No. N-1876 Lot 90K0854 MW 908.9

Binding Buffer. 50mM Tris, 250mM NaCl, 5mM MgCl2, pH 7.6

Neomycin Solution: 10mM neomycin in Binding Buffer

Nondenaturing gel 5x loading dye (bromophenol blue and xylene cyanol FF dyes)

Nondenaturing 12% acrylamide gel, TBE Buffer, PAGE apparatus, Saran Wrap

Whatman Chromatography Paper No. 3003917, Gel Drying Film from Promega No. V7131

BioRad Model 583 Gel Dryer, Molecular Dynamics Storage Phosphor Screen & Cassette

Molecular Dynamics Phosphorimager Model 400A (2127 MBB)

STEP		VOL (ml)	TEMP (°C)	Tame Period		
	~ 4pmol ³² P- Neo/ATP-CLAMP 50mM Tris	± neomycin (0.1, 0.5, 1,	±neomycin-sepharose	8 ul	23	10min
Prepare Samples	250mM NaCl 5mM MgCl₂ pH 7.6	10 mM)	± ATP-agarose	0 41	25	
Load Gel	Add loading dye to a after sample 1 to ma	above and load samples ark lane 1.	on gel, skipping a well	10ul	23	5min
Run Gel	Run native PAGE el	ectrophoresis at 30mA/g	el	1 gel	23	1.5hr
Dry Gel						1hr
Expose to Screen	Wrap dried gel in plant overnight.	o dned gel in plastic wrap and place in phosphoimager cassette night.				18hr
Image	Record image on ph	<u></u>	<u> </u>			

DISCUSSION:

The image of this gel had background spots and the bands were less even, but affinity gel bound CLAMP was still visible retained in the wells. More CLAMP was visible in the free bands in the gel, possibly due to the lower ligand concentration of the affinity gels as compared to the derivatized microspheres. The most interesting results from this gel is seen in samples 7-11, where as neomycin concentration is increased. the bands of free CLAMP decrease in intensity, suggesting that ATP agarose binding increases. This reinforces the results from column affinity studies (BK036 & BK038) that showed the presence of free neomycin increasing the adenosine binding capacity of CLAMP 609.

> PRINTED: October 21, 2002 DATE:

09/28/2006	12:12	5152942244 			MARII NIL	SENHAMI	LIUN		PAGE 13
C:\DATA\	BK041B.GE	L , Rang	ge = 0	.01-900	.00 Cour	nts, 1	.00x		
4	Native PA	GE - CLAMP	609 bin	ding to off	inity gels			_1,800	* * **********************************
**************************************	10 %			•	. 6	Birdira B	ulker: Samt	Trie, 250	my Nice, Simmy ce.
	2004	rylamide gel	•) : 8.0 A		v			
		acrylamide			na Le To				
		porter		7 0	η ν.				
	· · · · · · · · · · · · · ·	TBE.		2.0		مرا خون	mophenol bu	ie i seg	Lene uponol FF
		amnonium p	irmelfete	0.14,			70bp	********	
	TE	ieo .		Tul	· · · · · · · · · · · · · · · · · · ·				
Ge #17010	Samplett	CLAMP 609	5xdy	Neo. Saple.	Alen Agy.	B.B.	B.B. Wes.	2.5-M 2.5-M	final [neonysi
	,	2.ul				6			0 . M
	a								
	B 1	2	2	2	-	4	_		0
	#3	2	<u></u>	2	_	3 275	WAS	0,4	0,1
	44	7	~ <u>-</u> -	2	_	235	07A	2	4.5
	(15	· · · · · · · · · · · · · · · · · · ·		<u></u>		3.8	d.2		81
<u> </u>				<u></u>			2		10

2 029**5**-1.8 2 2

Allow get to phymerize the . Run get @ 30mA for 1.5 hr. Dry w/i plastic membrane the @ 80°C. Expose to phosphoimagu screen overnight (18hr).

⇒ overloaded, spotty gel

\DATA\BK041B.GEL , Range = 0.01-900.00 Counts, 1.00x

Gd#17010

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.