

Operating System

Revision 5 - General

14. A ______ is identified by an IP address concatenated with a port number.

The total time spent in the ready queue.

15.	Instead of starting a	new thread for eve	ry task to exe	cute concurrentl	y, the task can be passed to a	
	Thread pool	thread queue	process	dis	patcher	
16.	In multi-threaded pr	ogramming, data p	arallelism inv	olves the distrib	ution of tasks across multiple	
	cores.				-	
	True	<u>false</u>				
17.	A process in termina	ated state is waiting	g for I/O.			
	True	false				
18.	. In a process, the contains the dymanically allocaed variables.					
	Stack section	code section	n da	ata section	heap section	
19.	. Each process is represented in the operating system by a PCB.					
	<u>True</u>	false	e			
20.	. The PCB stores a list of ready processes.					
	True	<u>False</u>				
21.	In a process, the contains the global variables.					
	Stack section	code section	n <u>da</u>	ta section	heap section	
22.	A process is said to	be in	state if it is w	aiting for some e	event to occur.	
	Ready	waiting	ne	ew	running	
23.	A process in running	g state is performin	g I/O.			
	True		<u>False</u>			
24.	. In addressing, both sender and receiver processes must name each other.					
	Cluster	Symmetric		Asymmetri	ic Multicore	
25.	Kernel threads are s	upported and mana	ged directly l	by the operating	system.	
	<u>True</u> False					
26.	Mailbox is a process that can send messages to a mailbox.					
	Owner	Sender	U	<u>ser</u>	Receiver	
27.	is a synchronous version of the thread pool.					
	Implicit fork-join	Blocking se	end B	locking receive	Explicit fork-join	
28.	A scheduling queue	is a program in exe	ecution.			
	True		<u>False</u>			
29.	means	that if a process ter	minates, all o	of its children mu	ist be terminated as well.	
	Root termination Priority termin	Child termi ation	nation	Cascading	termination	
30.	It is a sequence of instruction, stored in hard disk.					
	Thread	Process		Program	Stack	
31.	A process control bl	lock contains inform	nation about	a specific proces	S.	
	True		False			
32.	In a process, the contains the temporary variables.					
	Stack section	code section	n da	ata section	heap section	

	q is zero					
50.	scheduling algorithm works best when the incoming processes are short with no specific					
	order 1) DD					
	a) FCFS b) RR					
	c) SJF d) priority					
51.	scheduling algorithm works best when the incoming processes are mix of long and short					
	with time requirement					
	a) FCFS b) RR					
5 0	c) SJF d) priority					
52.	A is the basic unit of CPU utilization.					
	DMA dispatcher thread PCB					
53.	contains processes waiting to execute on the CPU.					
	Device queue Ready queue Job queue wait queue					
54.	Kernel mode is privilege mode.					
	<u>True</u> False					
55.	involves the distribution of tasks across multiple cores.					
	Data parallelism					
	distribution					
56.	Threads in the same process share code section and data section.					
	<u>True</u> False					
57.	There can be multiple processes of a single program.					
	<u>True</u> False					
58.	In the many-to-one model, thread management is done by					
	The operating system Thread library RPC mechanism IPC mechanism					
59.	involves the distribution of data across multiple cores.					
	<u>Data parallelism</u> Task parallelism Data distribution Task distribution					
60.	A thread pool can adjust the number of threads in the pool.					
	Global dynamic state static					
61.	The number of processes currently in memory is known as the degree of multiprogramming. T					
62.	An I/O bound process is one that spends more of its time doing I/O than it spends doing computations. T					
63.	Each CPU core can run one process at a time. T					
64.	If there are more ready processes than cores, excess processes will have to wait until a core is free and can be rescheduled. T					
65.	5. As processes enter the system, they are put into a ready queue waiting to execute on a CPU. T					
66.	6. Parent process be placed in a wait queue while it awaits the child's termination. T					
67.	When the CPU switches to another process, the operating system performs a context switch. T					

M.A.S

<u>OS</u>

BIO - SW & General

M.A.S

69. Context switch is to save the current context of the current process in its PCB and load the saved context of the other process that is scheduled to run. T					
70. Child process may either share a subset of parent's resources or share all resources. T					
71. The parent process can't continues to execute concurrently with its child process. F					
72. The child process may has a duplicate address space of the parent process. T					
73. When process terminates, it asks the operating system to delete it by using the exit system call. T					
74. A child process may output data to its parent using thesystem call. (wait)					
75. Once a process is terminated, all of its resources are de-allocated by the operating system. T					
76. A parent process may terminate a child process using the system call. (abort)					
77. In symmetric addressing, only the sender process names the receiver process. F					
78. A direct communication link is associated with exactly two processes. T					
79. In A direct communication link, there exists exactly one link between each pair of processes. T					
80. In a direct communication, changing the identifier of a process requires examining all other process definitions. T					
81. In direct communication, the messages are sent to and received from mailboxes. F					
82. A mailbox is an object into which messages can be placed by processes and from which messages can be removed. T					
83. In indirect communication, a link is established by creating and sharing a mailbox. T					
84. In indirect communication, a link may be associated with more than two processes. T					
85method gives the lowest average waiting time for a specific set of processes.					
a) RR b) <u>SJF</u> c) Priority d) FCFS					
86 is appropriate for the jobs running in batch, where run times are known in advance.					
a) RR b) <u>SJF</u> c) Priority d) FCFS					
87. In, Job completion time must be known earlier, but it is hard to predict.					
a) RR b) <u>SJF</u> c) Priority d) FCFS					
88. Threads are cheaper to create than processes T					