comparing independent means

- confidence intervals
- hypothesis tests

Dr. Mine Çetinkaya-Rundel Duke University

work hours and educational attainment

from the 2010 GSS

less than high school	10%
high school	47%
junior college	8%
bachelor's	22%
graduate	13%

	highest degree	hours
	bachelor	55
2	bachelor	45
3	junior college	45
• • •		
1172	high school	40

work hours and educational attainment

another look

	\bar{x}	s	n
coll	41.8	15.14	505
no coll	39.4	15.12	667

Estimate how much more (or less) college graduates work, on average, than those without a college degree in the US.

parameter of interest

Average difference between the number of hours worked per week by **all** Americans with a college degree and those without a college degree.

 $\mu_{coll} - \mu_{no\ coll}$

point estimate

Average difference between the number of hours worked per week by **sampled**Americans with a college degree and those without a college degree.

$$\bar{x}_{coll} - \bar{x}_{no\ coll}$$

estimating the difference between independent means

point estimate ± margin of error

$$(\bar{x}_1 - \bar{x}_2) \pm z^* SE_{\bar{x}_1 - \bar{x}_2}$$

Standard error of difference between two independent means:

$$SE_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Conditions for inference for comparing two independent means:

- Independence:
 - ✓ within groups: sampled observations must be independent
 - random sample/assignment
 - ▶ if sampling without replacement, n < 10% of population
 - ✓ between groups: the two groups must be independent of each other (non-paired)
- 2. Sample size/skew: Each sample size must be at least 30 ($n_1 \ge 30$ and $n_2 \ge 30$), larger if the population distributions are very skewed.

Estimate, using a 95% confidence interval, how much more (or less) college graduates work, on average, than those without a college degree in the US.

$$(X_{coll} - X_{no coll}) \pm z * SE =$$

$$= (41.8 - 39.4) \pm 1.96 | 15.14^{2} + 15.12^{2} | 505 + 667 | 667$$

$$= 2.4 \pm 1.96 \times 0.89$$

$$= 2.4 \pm 1.74$$

$$= (0.66, 4.14)$$
makes sense?

	\bar{x}	\boldsymbol{s}	n
coll	41.8	15.14	505
no coll	39.4	15.12	667

testing for a difference between independent means

null hypothesis: no difference

$$H_0: \mu_1 - \mu_2 = 0$$

• alternative hypothesis: some difference $H_A: \mu_1 - \mu_2 \neq 0$

$$H_A: \mu_1 - \mu_2 \neq 0$$

same conditions and SE as the confidence interval

Evaluate whether these data provide convincing evidence that the average number of hours worked by college graduates is different than those without a college degree in the US.

$$\bar{x}_{coll} - \bar{x}_{no\ coll} = 2.4 \qquad (\bar{\chi}_{coll} - \bar{\chi}_{no\ coll}) \sim \mathcal{N}(mean = 0, SE = 0.89)$$

$$SE = 0.89$$

$$\mathcal{L}_{0}: \mu_{coll} - \mu_{no\ coll} = 0$$

$$\mathcal{L}_{0}: \mu_{coll} - \mu_{no\ coll} = 0$$

$$\mathcal{L}_{0}: \mu_{coll} - \mu_{no\ coll} \neq 0$$

$$\mathcal{L}_{0}: \mu_{coll} - \mu_{no\ coll} + \mu_{no\ coll} \neq 0$$

$$\mathcal{L}_{0}: \mu_{coll} - \mu_{no\ coll} + \mu_{no\ coll$$

Interpret the p-value (0.7%) in context of the data and the hypotheses.

p-value = P(observed or more extreme statistic | H₀ true)

a difference of 2.4 in either direction hours per week

there is no difference between the average number of hours worked by those with and without a college degree

If there is no difference between the average number of hours worked by those with and without a college degree, there is a 0.7% chance of obtaining random samples of 505 college and 667 non-college graduates where the average difference between their weekly work hours is at least 2.4 hours.

summary

- independent means
- \blacktriangleright most often $H_0: \mu_1 \mu_2 = 0$
- new formula for SE (everything else the same)

$$SE_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$