

SUMÁRIO

1.	COMENTARIOS INICIAIS	4
2.	REFERÊNCIAS TÉCNICAS	4
3.	MEMORIAL DESCRITIVO DO PROJETO DA SUBESTAÇÃO	4
3.1.	CARACTERÍSTICAS GERAIS DA SUBESTAÇÃO DE ENTRADA E CONEXÃO	4
3.2.	SISTEMA DE ATERRAMENTO	4
3.3.	RAMAL DE LIGAÇÃO E DE ENTRADA	5
3.4.	MÓDULOS DE MEDIÇÃO	5
3.5.	MÓDULO DE PROTEÇÃO	6
3.6.	MÓDULOS DE TRANSFORMAÇÃO	7
3.7.	RESERVATÓRIO PARA LÍQUIDO ISOLANTE	8
4.	MATERIAIS E EQUIPAMENTOS	8
4.1.	DISJUNTOR GERAL	8
4.2.	TRANSFORMADOR DE POTENCIAL - PROTEÇÃO	8
4.3.	TRANSFORMADOR DE CORRENTE - PROTEÇÃO	9
4.4.	TRANSFORMADOR DE POTENCIAL ALIMENTAÇÃO DA PROTEÇÃO	9
4.5.	TRANSFORMADOR DE POTENCIAL ALIMENTAÇÃO SERVIÇOS AUXILIARES	10
4.6.	CHAVES SECIONADORAS	10
4.6.1	l. chave seccionadora geral	10
4.6.2	chave seccionadora do transformador	10
4.7.	TRANSFORMADOR PRÉDIO PRINCIPAL	11
4.8.	TRANSFORMADOR DOS SERVIÇOS AUXILIARES	11
4.9.	RAMAL DE ENTRADA	11
4.10.	. CIRCUITO DE SAÍDA DE BAIXA TENSÃO	12
4.10.	.3. Alimentador de baixa tensão transformador de 1000kVA	12
4.10.	.4. Alimentador de baixa tensão transformador de 500kVA	12
4.11.	. CABO DE EQUALIZAÇÃO DE ATERRAMENTO CONCESSIONARIA/ SUBESTAÇÃO	13
4.12.	. SISTEMA DE ATERRAMENTO	13
4.12.	.1. Eletrodo de Aterramento	13
4.12.	.2. Cabo de Aterramento	13
4.12.	.3. Caixa de Aterramento	14
4.12.	.4. Conexão Haste Cabo	14
4.13.	. ATERRAMENTO DE EQUIPAMENTOS E PARTES METÁLICAS	14
4.14.	. BUCHAS DE PASSAGEM	14
4.15.	. VENTILAÇÃO	14
4.16.	PORTA DE ACESSO AO INTERIOR DA SUBESTAÇÃO	14
4.17.	. PORTA PARA ENTRADA DE EQUIPAMENTOS	15

4.18.	GRADES DE PROTEÇÃO	15
4.19.	RELÉ DE PROTEÇÃO SECUNDÁRIA	.15
4.20.	CAIXAS DE PASSAGEM PARA CABOS DE MÉDIA TENSÃO	15
4.21.	INTERLIGAÇÃO DOS COMPONENTES ELÉTRICOS DE MÉDIA TENSÃO	16
4.22.	SISTEMA DE ILUMINAÇÃO E TOMADAS	16
4.23.	DUTOS E PERFILADOS.	16
4.23.5.	Sistema de iluminação e tomadas	16
4.23.6.	Dutos do sistema de proteção e medição da concessionária	17
4.24.	PLATAFORMA	.17
4.25.	EPI E EPC'S	.17
4.26.	COMBATE A INCÊNDIO	.17
4.27.	PLACAS DE ADVERTÊNCIA	.17

1. COMENTÁRIOS INICIAIS

Este memorial descritivo tem por objetivo detalhar as características construtivas da subestação de potência de 1500kVA a ser implantada no Centro Cultural Usina do Gasômetro, localizada à Av Pres Joao Goulart, 551 - bairro Centro Histórico, na cidade de Porto Alegre, RS, CEP 90010-120, cuja finalidade é conectar o consumidor à rede de média tensão da concessionária no nível de tensão de 13,8kV.

2. REFERÊNCIAS TÉCNICAS

- ✓ NT.002.EQTL Fornecimento de energia elétrica e tensão primária;
- ✓ NBR 7117 Medição de resistividade e determinação da estratificação do solo;
- ✓ NBR 15749 Sistemas de aterramento de subestações Requisitos;
- ✓ NBR 13231 Proteção contra incêndio em Subestações Elétricas.
- ✓ NBR 14039 Instalações Elétrica de Média tensão de 1,0kV a 36,2kV
- ✓ NBR 5410 Instalações Elétricas de baixa tensão
- ✓ NBR 5419 Proteção de estruturas contra descargas atmosféricas

1. PROJETOS E ESTUDOS

Para a aprovação dos projetos junto à concessionára será encaminhada a documentação abaixo relacionada:

- ✓ Termo de responsabilidade referente à manutenção da subestação;
- ✓ Estudo de seletividade, representação e ajustes do relé;
- ✓ Projeto da subestação de entrada e conexão;
- ✓ Memorial descritivo do projeto da subestação de entrada e conexão;
- ✓ Projeto do sistema de aterramento com memorial descritivo;
- ✓ Projeto de malha de aterramento;

3. MEMORIAL DESCRITIVO DO PROJETO DA SUBESTAÇÃO

3.1. CARACTERÍSTICAS GERAIS DA SUBESTAÇÃO DE ENTRADA E CONEXÃO

A subestação de entrada será do tipo abrigada pé direito de 3,5 metros, com ramal de entrada subterrâneo, além disso, a instalação não é parte integrante da edificação pelo fato do acesso à parte interna da subestação ser pelo lado de fora da Edificação.

3.2. SISTEMA DE ATERRAMENTO

Antecedendo os trabalhos de construção, foram realizadas medições das características do solo cuja finalidade é fornecer dados para o dimensionamento do subsistema de aterramento.

As medições foram realizadas seguindos as prescrições técnicas da norma NBR 7117 de 19.07 e o projeto do sistema de aterramento realizado seguindo as prescrições técnicas da NBR 15751 de 01.07.2013

Também foram observadas as prescrições técnicas definidas pela concessionária local para a construção do sistema de aterramento.

3.3. RAMAL DE LIGAÇÃO E DE ENTRADA

Tendo em vista que a rede da concessionária se encontra do lado oposto da rua será utilizado um poste auxiliar existente instalado dentro da propriedade do consumidor para ancorar o ramal de ligação e fazer a travessia da via pública garantido as alturas minímas definidas pela legislação de trânsito e NBR 14039.

O ramal de entrada será do tipo subterrâneo, e é composto por um circuito com 04 cabos de 35mm², classe 25kV, EPR 105, e um cabo de cobre nú 70mm², um dos cabos isolados será um cabo reserva

O cabo de cobre nú de 70mm² fará a equalização de potencial entre os aterramentos da subestação e o aterramento da concesssionária.

Todos os componentes a serem instalados na derivação da rede da concessionária para proteção e seccionamento serão de responsabilidade da concessionária.

Os dutos de encaminhamento do ramal de ligação serão do tipo galvanizado a fogo de diâmetro nominal de 4" desde o poste auxiliar até o módulo de medição.

O eletroduto deverá ser amarrado ao poste através de arame galvanizado 12BWG, seguindo prescrições técnicas contidas no projeto.

Após a interligação do ramal de entrada à chave seccionadora geral localizada no poste auxiliar, o eletroduto do ramal de entrada deverá ser calafetado com massa de calafetar.

Os cabos do ramal de entrada poderão ser organizados após a saida do eletroduto mediante amarração com utilização de fio de cobre isolado de seção de 4mm².

Para facilitar o encaminhamento de cabos, junto ao poste, deverá ser instalada uma caixa de passagem, com dipositivo de selo e tampa metálica conforme orientações técnicas contidas no projeto.

3.4. MÓDULOS DE MEDIÇÃO

Este módulo abrigará os equipamentos de medição da concessionária (TC´s e TP´s) que serão responsáveis pela geração dos sinais de corrente e tensão para os medidores da concessionária.

Este módulo deverá ter cadeado e dispositivo de selo em dois pontos e será de acesso exclusivo da concessionária.

A parede de separação entre o módulo de medição e o módulo de proteção deverá ir até o teto.

Neste módulo serão instalados os seguintes equipamentos:

- ✓ Buchas de passagem cuja finalidade é dar continuidade ao circuito entre os módulos, fazendo a transposição das paredes.
 - Estas buchas serão fixadas em chapas de passagens instaladas na parede cuja finalidade é permitir a instalação e remoção das buchas de passagem com facilidade:
- ✓ Cavaletes de suporte dos sistemas de medição;
- ✓ Transformadores de corrente e de potencial que serão fornecidos pela concessionária;
- ✓ Cavalete para sustentação dos cabos de entrada;
- ✓ Isoladores de pedestal que suportarão os vergalhões de cobre;
- ✓ A interligação entre os equipamentos se fará por vergalhões de cobre de seção de 3/8" com conectores adequados para terminação, derivação e emendas.
- ✓ Todas as partes metálicas do módulo deverão ser interligadas ao sistema de aterramento da subestação bem como a carça dos equipamentos elétricos.
 - As interigações deverão ser realizadas com cabos de seção mínima de 25mm².
- ✓ As portas do módulo deverão ser construídas de forma que a parte móvel tenha dimensões mínimas de 2100x600mm.
- ✓ Nesta porta deverá ser instalado dispositivo para instalação de cadeado em um ponto e dispositivo para selo em dois pontos.
- ✓ A grade de proteção deverá ir até o teto.

A características das grades ser apresentada no item destinado a este fim.

3.5. MÓDULO DE PROTEÇÃO

A finalidade primodial do módulo de proteção é seccionar sob carga o sistema elétrico sempre que se verificar uma condição de falta.

Será instalado neste módulo:

- ✓ Chave seccionadora geral, de abertura sob carga, de corrente compatível com o sistema projetado, cuja finalidade é isolar o sistema elétrico da concessionária do sistema elétrico do consumidor;
- ✓ Transformador de potencial auxiliar que será responsável pelo fornecimento da energia para alimentação das tomadas e iluminação da subestação. Este

- transformador de potencial deverá ter potência mínima de 2000VA, com nível de tensão adequado às cargas. Neste caso terão tensão secundária de 220V, que é uma tensão comum em todas as regiões.
- ✓ Disjuntor de proteção geral, que será acionado pelo relé de proteção secundária que deverá ter nível de tensão, capacidade de interrupção e corrente nominais compatíveis com o sistema projetado e adequado às exigências da concessionária local;
- ✓ 01 transformador de potencial 13,8kV/110-220V, 1000VA, que será responsável pela alimentação do sistema de proteção;
- ✓ 01 transformador de potencial 13,8kV/110-220V, 2000VA, cuja finalidade será fornecer alimentação para os serviços auxiliares (tomadas e iluminação).
- √ 01 disjuntor a vácuo, 630A, classe 15kV, capacidade de interrupção de 350MVA, cuja finalidade é abrir o circuito sob carga em caso de falta ou por necessidade do acessante.
- ✓ 03 transformadores de corrente de 50:5A, 15kV que fornecerão o sinal de corrente para proteção.
- ✓ A porta de acesso à parte interior deste módulo deverá ter dois dipositivos de sêlo e um dispositivo instalação de cadeado;
- ✓ A grade de proteção deverá ir até o teto e deverão ser interligados ao sistema de aterramento:
- ✓ As paredes de separação entre os módulos deverão ir até o teto e deverá ter buchas de passagem para a transposição das paredes e dar continuidade ao circuito elétrico quando aplicável;
- ✓ Na porta da grade deverá ser fixada placa de adevertência 'PERIGO DE MORTE-ALTA TENSÃO";
- ✓ Próximo ao punho de acionamento deverá ser fixada placa de advertência com os dizeres "NÃO ACIONAR ESTA CHAVE SOB CARGA":
- ✓ Os punhos de acionamento das chaves seccionadoras deverão ser interligados ao sistema de aterramento e deverão ser providos de dispositivo de bloqueio tipo kirk.

3.6. MÓDULOS DE TRANSFORMAÇÃO

Estes modulos abrigarão os transformadores que são equipamentos destinados a adequar os níveis de tensão a níveis utilizáveis.

Os módulos que abrigarão os transformadores terão paredes que irão até o teto e terão chapas com buchas de passagem para fazer a transposição das paredes e garantir a continuidade do circuito de média tensão.

Para esclarecimento:

- ✓ Cada cubículo terá uma chave seccionadora, abertura sob carga, 400A com base fusível, classe 15kV que isolará os transformadores do sistema de média tensão caso necessário e também fará a proteção dos equipamentos;
- ✓ O transformador de 1000kVA será responsável pela alimentação das cargas do prédio principal e o de 500kVA será responsável pela alimentação das cargas do Teatro Elis Regina
- ✓ Todos os transformadores terão a carcaça interligada ao sistema de aterramento através de cabo de cobre nú de seção mínima de 25mm²;
- ✓ O Neutro dos transformadores serão interligados ao sistema de aterramento através de um cabo de cobre nú de seção mínima de 50mm²
- ✓ Todas as partes metálicas como chapa de buchas e janelas tipo veneziana deverão ser interligadas ao sistema de aterramento com cabo de 25mm²;
- ✓ Os punhos de acionamento das chaves seccionadoras deverão ser interligados ao sistema de aterramento com cabo de 25mm² e deverão ser providos de dispositivo de bloqueio;
- ✓ As grades de proteção deverão ir até o teto e também deverão ser interligadas ao sistema de aterramento.

3.7. RESERVATÓRIO PARA LÍQUIDO ISOLANTE

Não se aplica, pois os transformadores são a seco.

4. MATERIAIS E EQUIPAMENTOS

4.1. DISJUNTOR GERAL

O disjuntor geral do módulo de proteção deverá ter as seguintes características técnicas:

✓ Classe de tensão: 15kV

✓ Corrente nominal: 630A

✓ Capacidade de interrupção: 350MVA (mínimo)

✓ Tipo de isolamento: Vácuo

- ✓ Montado sobre carro;
- ✓ Motorizado:
- ✓ Bobina de abertura:
- ✓ Bobina de fechamento.

4.2. TRANSFORMADOR DE POTENCIAL - PROTEÇÃO

✓ Potência térmica: 1000VA

✓ Classe de exatidão: 0,3P75

✓ Grupo de ligação: 1

✓ Tensão primária: 13,8kV

✓ Tensão secundária: 110-220V

✓ Relação de transformação: 125:1 - 63:1

✓ Frequência: 60HZ✓ NBI: 95kV mínimo

✓ Uso: Interno

✓ Material isolante: Resina Epoxi

4.3. TRANSFORMADOR DE CORRENTE - PROTEÇÃO

✓ Classe de exatidão: 10B200

✓ Corrente primária: 50A

✓ Corrente secundária: 5A

✓ Relação de transformação: 10:1

✓ Tensão nominal: 15kV✓ Corrente témica: 80xn

✓ Corrente dinâmica: 200xIn

✓ Fator térmico: 1,2xIn

✓ Frequência: 60HZ✓ NBI: 95kV mínimo

✓ Uso: Interno

✓ Material isolante: Resina Epoxi

4.4. TRANSFORMADOR DE POTENCIAL ALIMENTAÇÃO DA PROTEÇÃO

✓ Potência térmica: 2000VA

✓ Classe de exatidão: 0,3P75

✓ Grupo de ligação: 1

✓ Tensão primária: 13,8kV

✓ Tensão secundária: 110-220V

✓ Relação de transformação: 125:1 - 63:1

✓ Frequência: 60HZ

✓ NI: 95kV mínimo

✓ Uso: Interno

✓ Corrente dinâmica: 200xIn

✓ Fator térmico: 1,2xIn

✓ Frequência: 60HZ

✓ Material isolante: Resina Epoxi

4.5. TRANSFORMADOR DE POTENCIAL ALIMENTAÇÃO SERVIÇOS AUXILIARES

✓ Potência térmica: 2000VA✓ Classe de exatidão: 0,3P75

✓ Grupo de ligação: 2

✓ Tensão primária: 13,8/√3/kV
✓ Tensão secundária: 220V

✓ Relação de transformação: 36:1

✓ Frequência: 60HZ✓ NBI: 95kV mínimo

✓ Uso: Interno

✓ Corrente dinâmica: 200xIn

✓ Fator térmico: 1,2xIn✓ Frequência: 60HZ

✓ Material isolante: Resina Epoxi

4.6. CHAVES SECIONADORAS

4.6.1. CHAVE SECCIONADORA GERAL

✓ Corrente nominal: 400A

✓ Classe de tensão: 15kV

✓ NI: 95kV

√ Tipo: Abertura sob carga sem base fusível

✓ Proteção adicional: micro interruptor no eixo de acionamento

✓ Acessório: prolongador do acionamento e suporte para prolongador

4.6.2. CHAVE SECCIONADORA DO TRANSFORMADOR 1000KVA

✓ Corrente nominal: 400A

✓ Classe de tensão: 15kV

✓ NI: 95kV

✓ Tipo: Abertura sob carga com base fusível

✓ Acessório: prolongador do acionamento e suporte para prolongador

✓ Fusíveis tipo HH 63A

4.6.3. CHAVE SECCIONADORA DO TRANSFORMADOR 500KVA

✓ Corrente nominal: 400A

✓ Classe de tensão: 15kV

✓ NI: 95kV

√ Tipo: Abertura sob carga com base fusível

✓ Acessório: prolongador do acionamento e suporte para prolongador

✓ Fusíveis tipo HH 6A

4.7. TRANSFORMADOR PRÉDIO PRINCIPAL

✓ Potência Nominal: 1000kVA

✓ Tensão Primária: 13,8kV

✓ Tensão secundária: 220-127V

✓ Ligação: Dyn1

✓ Isolamento e refrigeração: a seco

✓ Impedância: 6,4%

4.8. TRANSFORMADOR DO TEATRO ELIS REGINA

✓ Potência Nominal: 500kVA

✓ Tensão Primária: 13.8kV

✓ Tensão secundária: 220-127V

✓ Ligação: Dyn1

✓ Isolamento e refrigeração: a seco

✓ Impedância: 6,4%

4.9. RAMAL DE ENTRADA

O ramal de entrada será composto de 4 cabos de 35mm², EPR105, isolados para 15kV e um cabo de cobre nú de 70mm², que fará a equalização da malha de aterramento da subestação e do cabo neutro do ramal de entrada que está conectado ao da concessionária. O cabo isolado terá as seguintes características:

✓ Seção do condutor: 35mm²

✓ Material: Cobre✓ Tipo: Isolado

✓ Isolamento: EPR105

✓ Classe: 15kV✓ Têmpera mole

✓ Classe de encordoamento 2

O cabo do aterramento terá as seguintes características

✓ Seção do condutor: 50mm²

✓ Material: Cobre✓ Tempera mole

✓ Classe de encordoamento 2

4.10. CIRCUITO DE SAÍDA DE BAIXA TENSÃO

4.10.4. ALIMENTADOR DE BAIXA TENSÃO TRANSFORMADOR DE 1000KVA

✓ Seção do condutor de fase: 240mm²

√ número de condutores por fase: 8 condutores

✓ Material: Cobre✓ Tipo: protegido✓ Isolamento: HEPR

✓ Classe: 1kV

✓ Têmpera mole

✓ Classe de encordoamento 5

✓ Cor preto

✓ Seção do condutor de neutro: 240mm²

√ número de condutores por fase: 4 condutores

✓ Material: Cobre✓ Tipo: protegido✓ Isolamento: HEPR

✓ Classe: 1kV✓ Tempera mole

✓ Classe de encordoamento 5

✓ Cor azul claro

4.10.5. ALIMENTADOR DE BAIXA TENSÃO TRANSFORMADOR DE 500KVA

✓ Seção do condutor de fase: 240mm²

✓ número de condutores por fase: 3 condutores

✓ Material: Cobre✓ Tipo: protegido✓ Isolamento: HEPR

✓ Classe: 1kV✓ Têmpera mole

- ✓ Classe de encordoamento 5
- ✓ Cor preto
- ✓ Seção do condutor de neutro: 240mm²
- √ número de condutores por fase: 3 condutores
- ✓ Material: Cobre✓ Tipo: protegido
- ✓ Isolamento: HEPR
- ✓ Classe: 1kV
- ✓ Têmpera mole
- ✓ Classe de encordoamento 5
- ✓ Cor Azul claro

4.11. CABO DE EQUALIZAÇÃO DE ATERRAMENTO CONCESSIONARIA/ SUBESTAÇÃO

O cabo de equalização terá as seguintes características

- ✓ Seção do condutor: 70mm²
- ✓ Material: Cobre
- ✓ Têmpera mole
- ✓ Classe de encordoamento 2

4.12. SISTEMA DE ATERRAMENTO

4.12.1. ELETRODO DE ATERRAMENTO

Hastes constituídas de núcleo sólido de aço carbono, revestida por camada uniforme de cobre eletrolítico (mínimo 254 microns) através do processo de eletrodeposição anódica, comprimento 6 metros, 5/8" (16mm).

4.12.2. CABO DE ATERRAMENTO

O sistema de aterramento da subestação será construído com condutor de cobre nú seção mínima de 50mm², tempera mole, enterrado a uma profundidade de 60cm, com as seguintes características:

✓ Seção do condutor: 50mm²

✓ Material: Cobre✓ Tempera mole

✓ Classe de encordoamento 2

4.12.3. CAIXA DE ATERRAMENTO

A Caixa de aterramento seguirá as prescrições técnicas do projeto e terá tampa metálica e terá as dimensões internas de 150x150x225mm (LxLxP).

4.12.4. CONEXÃO HASTE CABO

A conexão entre a haste de aterramento e o cabo de cobre será realizado por processo de aluminotermina (Solda exotérmica) de forma a eliminar a necessidade de manutenção da conexão.

4.13. ATERRAMENTO DE EQUIPAMENTOS E PARTES METÁLICAS

O aterrramento de parte metálicas será realizado seguindo a orientação abaixo:

- ✓ As partes metálicas e corpos metálicos dos equipamentos elétricos serão aterrados com condutor de cobre nú seção 25mm², têmpera mole;
- ✓ Para partes móveis poderá ser utilizada cordoalha de cobre seção mínima 25mm²
- ✓ A interligação do neutro do transformador ao sistema de aterramento se fará com condutor de cobre nú de seção mínima de 50mm².

4.14. BUCHAS DE PASSAGEM

As buchas de passagem a serem utilizadas para transpor as paredes serão buchas de passagem de porcelana ou epóxi, tipo interno/interno, com vergalhão condutor de seção minima de 7/16"(11mm), latão, classe 15kV.

4.15. VENTILAÇÃO

A ventilação dos módulos da subestação será feita por janela do tipo veneziana de dimensões de 1000 x 500mm, com tela de proteção em arame 0,8mm (20BWG) e malha de 5mm a 13 mm, conforme detalhes em projeto.

Todas as janelas deverão ser aterradas.

Adicionalmente será instalado um sistema de exaustão para aumentar a eficiência do sistema de ventilação.

O Exaustor terá diametro de 300mm e vazão de 2100m³/h.

4.16. PORTA DE ACESSO AO INTERIOR DA SUBESTAÇÃO

As portas de acesso serão metálicas, tipo veneziana, com dimensões mínimas de 2100x1200mm (AxL), e deverão ter placa com os dizeres "PERIGO DE MORTE-ALTA TENSÃO".

A porta deverá ser aterrada e entre a junção da porta e o marco deverá existir uma interligação com cabo de cobre flexível de 25mm².

4.17. PORTA PARA ENTRADA DE EQUIPAMENTOS

As portas para entrada de equipamentos serão metálicas, tipo veneziana, terão duas folhas de dimensões 2100x1200mm (AxL), e deverão ter placa com os dizeres "PERIGO DE MORTE-ALTA TENSÃO".

As portas deverão ser aterradas e entre a junção da porta e o marco deverá existir uma interligação com cabo de cobre flexível de 25mm².

4.18. GRADES DE PROTEÇÃO

Todas as grades de proteção deverão ser construídas com painéis metálicos de cantoneira de 1 1/2" x 1 1/2" x 3/16" com tela de arame 12BWG, malha de dimensão máxima de 10x10mm e deverão ir até o teto.

4.19. RELÉ DE PROTEÇÃO SECUNDÁRIA

O Sistema de proteção secundária será composto por um relé modelo URPE7104, de fabricação Pextron, que terá as seguintes particularidades:

- ✓ Sistema de alimentação dedicado através de um transformador de potencial de 1000VA conectado diretamente ao sistema de média tensão, instalado antes do disjuntor de proteção geral;
- ✓ Painel com no-break de potência de 1000VA, Trip capacitivo, botão liga, botão desliga, sinalização de ligado e desligado por sinaleiro verde e vermelho, relé de proteção URPE7104, Pextron, tomada para conexão do no-break ou by-pass caso o mesmo danifique.

O sistema de proteção realizará as seguintes funções ANSI:

- ✓ Função (50) Proteção instantânea de fase;
- ✓ Função (51) Proteção temporizada de fase;
- ✓ Função (50N) Proteção instantânea de neutro;
- ✓ Função (51N) Proteção temporizada de neutro;

4.20. CAIXAS DE PASSAGEM PARA CABOS DE MÉDIA TENSÃO

A caixa para encaminhamento de cabos de média tensão não deverá ser concretada no fundo e deverá ter 10cm de brita 1 para dreno.

Esta caixa se encontra detalhada no projeto.

4.21. INTERLIGAÇÃO DOS COMPONENTES ELÉTRICOS DE MÉDIA TENSÃO

As interligações entre os diversos componentes elétricos serão realizadas com vergalhão de cobre de seção 3/8" com terminações, emendas e derivações concêntricas.

Os vergalhões de cobre serão pintados nas seguintes cores:

- Fase A: Vermelho

- Fase B: Branco

- Fase C: Marron

- Neutro: Azul-claro

4.22. SISTEMA DE ILUMINAÇÃO E TOMADAS

A subestação terá um sistema auxiliar de tensão para alimentação do sistema de iluminação e de tomadas.

Esta tensão será fornecida por um TP auxiliar de 2000VA, conectado diretamente ao sistema de média tensão.

Este TP terá Tensão de entrada de 13,8 e tensão secundária de 220V.

Haverá um painel que fará distribuição e proteção dos circuitos.

O sistema de iluminação terá 3 luminárias herméticas com duas lâmpadas fluorescente 2x40W

O sistema de iluminação de emergência terá três luminárias com duas lâmpadas de led de 20W. Este sistema terá autonomia de 4 horas.

Também está previsto duas janelas para iluminação natural de dimensões de 1500x500mm.

4.23. DUTOS E PERFILADOS

Para os encaminhamentos dos circuitos serão utilizados os materiais abaixo relacionados:

4.23.5. SISTEMA DE ILUMINAÇÃO E TOMADAS

Para realização da distribuição pelo teto dos circuitos de iluminação e tomadas serão utilizados perfilados 38x38mm para a sustentação das luminárias e encaminhamentos de circuitos ao longo dos pontos de fixação.

No teto os tirantes serão fixados utilizando-se chumbadores do tipo CB com estojo, todos para tirante de 1/4".

Os perfilados serão sustentados por gancho tipo C curto.

Para distribuição dos alimentadores pelas paredes serão utilizados eletrodutos galvanizados de seção de 1"

fixados por abraçadeiras tipo D, cunha, fixadas com bucha S-8.

4.23.6. DUTOS DO SISTEMA DE PROTEÇÃO E MEDIÇÃO DA CONCESSIONÁRIA

Para encaminhamentos dos condutores do sistema de medição e proteção serão utilizados eletrodutos de 1 1/2".

Apenas no interior da parte selada será permitido a utilização de conduletes.

Após a parte selada os dutos deverão ser encaminhados até as caixas de medição e proteção apenas por conexões rosqueáveis.

4.24. PLATAFORMA

Abaixo da caixa de medição será instalada uma bancada articulada de dimensão de 500x500mm cuja finalidade é servir de mesa para colocação de notebook pela equipe da concessionária.

4.25. EPI E EPC'S

A subestação terá os seguintes EPI's/EPC's:

- ✓ Luvas de borracha com proteção de raspas para uso em 15kV;
- ✓ Tapetes de borracha para manobra de seccionadoras e disjuntores para classe de tensão de 15kV, dimensão 1000x500mm.

4.26. COMBATE A INCÊNDIO

Próximo à porta de entrada da subestação deverá ser instalado um extintor tipo CO2, 6kg devendo ser devidamente sinalizado.

4.27. PLACAS DE ADVERTÊNCIA

Deverão ser fixadadas placas de advertência com os dizeres " PERIGO DE MORTE-ALTA TENSÃO":

- √ Na porta de acesso principal da subestação
- ✓ Em todas as grades de todos os cubículos.

CHAVE CON	Л CARGA".			