INTRODUÇÃO À TRANSFORMADA WAVELET DISCRETA (DWT) EM CODIFICAÇÃO VISUAL

UFABC - ESTI019 - Codificação de Sinais Multimídia Profs. Celso S. Kurashima e Mário Minami

Sumário

- Conceitos de Transformada Wavelet
- Codificação por Subbandas
- Wavelet Haar
- Referências

Modelo geral de codificação de fonte

Modelo de codificação de imagem com transformada wavelet

Revisão Rápida:

▶ Transformada de Fourier

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{j\omega t}dt$$

- Perdemos a informação das variações temporais
- ► Uma opção para termos alguma informação temporal → STFT

ESTlo19 - Multimidia

Revisão Rápida

O plano tempo-frequência para a STFT é uniforme

Resolução constante

em todas as frequencias

Transformada Wavelet (WT) de Tempo Contínuo

- ► FT &STFT usam "wave" para analisar o sinal
- WT usa "wavelet com energia finita" para analisar o sinal
- O Sinal a ser analisado é multiplicado por uma função wavelet, a transformada é calculada para cada segmento
- A "largura" da resolução de análise muda com cada componente espectral

Transformada Wavelet Contínua (CWT)

- Wavelet: fução de limitada no tempo com média zero (possuibilita análise de sinais transientes)
- Utiliza a combinação de wavelets(funções base) para analisar funções arbitrárias
- Wavelet mãe \(\mathbb{\psi}(t)\): pelo escalamento e translação da wavelet mãe, obtemos as outras funções para a transformação (wavelet filha, \(\mathbb{\psi}_{a,b}(t)\))

$$\underline{\psi_{a,b}(t)} = \frac{1}{\sqrt{a}} \psi(\frac{t-b}{a})$$

CWT

Pelo produto interno da wavelet filha com f(t), calculamos o coeficiente wavelet

$$w_{a,b} = \langle \psi_{a,b}, f(t) \rangle = \int_{-\infty}^{\infty} \psi_{a,b} f(t) dt$$

A reconstrução f(t) com o coeficiente wavelet se dá com:

$$f(t) = \frac{1}{C_{\psi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w_{a,b} \psi_{a,b}(t) \frac{dadb}{a^2}$$

<u>CWT</u>

- Análise Adaptativa do sinal
 - -Em altas frequências, a janela é estreita, o valor de a deve ser pequeno
- Plano tempo-frequência da WT(Heisenberg)

multi-resolução:

Em frequências diferentes

análise com resolução variável

ESTlo19 - Multimidia

Janelas Gaussianas para S-Transform

Discrete Wavelet Transform (DWT) 13

- Vantagem sobre a CWT: reduz a complexidade computacional (separável nas freqs H & L)
- Produto interno de f(t) e parâmetros discretos de a & b

$$a = a_0^{-m}$$
, $b = nb_0 a_0^{-m}$ m, $n \in \mathbb{Z}$

► Se $a_0=2$, $b_0=1$, temos a wavelet

$$\psi_{m,n}(t) = a_0^{m/2} \psi(a_0^m t - nb_0)$$
 m, n \in Z
$$\psi_{m,n}(t) = 2^{m/2} \psi(2^m t - n)$$

Discrete Wavelet Transform

Os coeficientes da DWT

$$W_{m,n} = \langle f(t), \psi_{m,n}(t) \rangle = a_0^{m/2} \int f(t) \psi(a_0^m(t) - nb_0) dt$$

A reconstrução de f(t) a partir dos coeficientes da wavelet:

$$f(t) = \sum_{m} \sum_{n} w_{m,n} \psi_{m,n}(t)$$

ESTlo19 - Multimidia

Codificação em Subband

Para filtros com coeficientes reais, as soluções para a reconstrução perfeita, ou seja, $\hat{x}(n) = x(n)$, são:

$$\begin{cases} g_0(n) = (-1)^n h_1(n) \\ g_1(n) = (-1)^{n+1} h_0(n) \end{cases}$$

Ou

$$\begin{cases} g_0(n) = (-1)^{n+1} h_1(n) \\ g_1(n) = (-1)^n h_0(n) \end{cases}$$

Compressão por WT

Wavelet de Haar (a mais antiga e simples)

$$g[n] = 1/2$$
 para $n = -1$, o $h[o] = 1/2$, $h[-1] = -1/2$, $g[n] = 0$ c.c. $h[n] = 0$ c.c.

logo

$$x_{1,L}[n] = \frac{x[2n] + x[2n+1]}{2}$$

(Média de 2 pontos)

$$x_{1,H}[n] = \frac{x[2n] - x[2n+1]}{2}$$

(diferença de 2 pontos)

Transformada de Haar

- ▶ Dois passos
 - 1.Separação Horizontal
 - 2. Separação Vertical

2-D (Análise bidimensional)

Exemplo ilustrativo:

Transformada Haar

Passo 1:

Α	В	С	D
5.734			
			991

A+B	C+D	A-B	C-D
L		H	1

(0,0)	(0,1)	(0,2)	(0,3)
(1,0)	(1,1)	(1,2)	(1,3)
(2,0)	(2,1)	(2,2)	(2,3)
(3,0)	(3,1)	(3,2)	(3,3)

(0,0)	(0,1)	(0,2)	(0,3)
(1,0)	(1,1)	(1,2)	(1,3)
(2,0)	(2,1)	(2,2)	(2,3)
	(3,1)		

ESTlo19 - Multimidia

Transformada Haar

Passo 2:

Α	С
В	D
	E FIRE
L	Н

A+B	C+D	
LL	HL	
A-B	C-D	
LH	нн	

(0,0)	(0,1)	(0,2)	(0,3)
(1,0)	(1,1)	(1,2)	(1,3)
(2,0)	(2,1)	(2,2)	(2,3)
(3,0)	(3,1)	(3,2)	(3,3)

			-
(0,0)	(0,1)	(0,2)	(0,3)
(1,0)	(1,1)	(1,2)	(1,3)
(2,0)	(2,1)	(2,2)	(2,3)
(3,0)	(3,1)	(3,2)	(3,3)
		196	

Η

LH HH

3º nível

Exemplo:

20	15	30	20
17	16	31	22
15	18	17	25
21	22	19	18

35	50	5	10
33	53	1	9
33	42	-3	-8
43	37	-1	1

Imagem Original O

1ª separação horizontal

68	103	6	19
76	79	-4	-7
2	-3	4	1
-10	5	-2	-9

326	-38	6	19
16	-32	2	-7
2	-3	4	1
-10	5	-2	-9

1ª separação vertical

Resultado da DWT de 2º Nível

LL	HL
LH	нн

LL3	HL3	HL2	
LH3	ннз		HL
LH	1 2	HH2	
LH		Н	нн

Banco de Filtros da Wavelet Haar de 2 pontos

$$h_0 = \{\sqrt{2}/2, \sqrt{2}/2\} \quad h_1 = \{-\sqrt{2}/2, \sqrt{2}/2\}$$

$$g_0 = \{\sqrt{2}/2, \sqrt{2}/2\} \quad g_0 = \{\sqrt{2}/2, -\sqrt{2}/2\}$$

Banco de Filtros da Transformada Rápida Wavelet de Haar em 2 níveis (FWT)

Cálculos de Análise para uma FWT de 2 níveis com sinal 1D

Banco de Filtros de Síntese de FWT 2 níveis

Cálculos de Síntese para FWT 2 níves do exemplo 1D

Banco de Filtros de Análise FWT-2D

Decomposição (Análise) 2D por FWT-2D

Banco de Síntese FWT-2D

Nníveis e detalhes da DWT-2D em imagens

Exemplo de Aplicação da DWT-2D (Fast ou não) em imagens

37

SII019 - Multimic

Características da DWT 2D

- DWT é aplicada independentemente e descorrelaciona a imagem (tamanhos de escala), preservando a correlação espacial.
- ▶ DWT-1D = filtro passa-baixa (L) + passa-alta (H)
- Divide uma linha de pixels em duas sub-bandas,
- Cada banda contém metade do tamanho original da linha após downsampling.
- A aplicação dos filtros a imagens bidimensionais gera 4 sub-bandas (LL, LH, HL e HH)
- sub-banda LL é imagem original com menos resol.,
 com os detalhes filtrados nas outras sub-bandas.
- Bordas horizontal (LH), vertical (HL) e diagonal (HH) no tamanho da escala definido pela wavelet.

Referências

- [1] Kurashima, C. S., Capítulo da Disciplina ESTI019, "INTRODUÇÃO À TRANSFORMADA WAVELET DISCRETA (DWT) EM CODIFICAÇÃO VISUAL", 2017.
- [2] C.Gargour, M.Gabrea, V. Ramachandran, J.M.Lina, "A short introduction to wavelets and their applications," *Circuits and Systems Magazine, IEEE*, Vol. 9, No. 2. (05 June 2009), pp. 57-68.
- [3] R. C. Gonzales and R. E. Woods, Digital Image Processing. Reading, MA, Addison-Wesley, 2000.
- [4] Texto sobre a implementação do DWT no JPEG2000:
 - Christopoulos, C.; Skodras, A.; Ebrahimi, T., "The JPEG2000 still image coding system: an overview," in Consumer Electronics, IEEE Transactions on, vol.46, no.4, pp.1103-1127, Nov 2000 doi: 10.1109/30.920468
 - ► URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu mber=920468&isnumber=19895