

Microprocessor Supervisory Circuit

ADM809-5L/ADM809-5S

FEATURES

Specified over temperature
Low power consumption: 17 µA
Precision voltage monitor: 3 V, 5 V options
Reset assertion down to 1 V Vcc
30 ms minimum power-on reset
Logic low RESET output
Available in SOT-23 and SC70 packages

APPLICATIONS

Microprocessor systems Computers Controllers Intelligent instruments Automotive systems

GENERAL DESCRIPTION

The supervisory circuit of the ADM809-5L/ADM809-5S monitors the power supply voltage in microprocessor systems. It provides a reset output during power-up, power-down, and brownout conditions. On power-up, an internal timer holds reset asserted for 55 ms. This holds the microprocessor in a reset state until conditions have stabilized. The \overline{RESET} output remains operational with V_{CC} as low as 1 V. The ADM809-5L/ADM809-5S provide an active low reset signal (\overline{RESET}).

The reset comparator features built-in glitch immunity, making it immune to fast transients on $V_{\rm CC}$.

The ADM809-5L/ADM809-5S consume only 17 $\mu\text{A},$ making them suitable for low power, portable equipment.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL OPERATING CIRCUIT

TABLE OF CONTENTS

Features
Applications1
General Description
Functional Block Diagram
Typical Operating Circuit
Revision History
Specifications
Absolute Maximum Ratings4
ESD Caution4
REVISION HISTORY
REVISION HISTORY 10/08—Rev. A to Rev. B
10/08—Rev. A to Rev. B
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. B Updated Format
10/08—Rev. A to Rev. BUpdated FormatUniversalUpdated Outline Dimensions8Changes to Ordering Guide83/03—Rev. 0 to Rev. AUniversalAdded SC70 PackageUniversalChanges to Features1Changes to Specifications2Changes to Absolute Maximum Ratings2
10/08—Rev. A to Rev. BUpdated FormatUniversalUpdated Outline Dimensions8Changes to Ordering Guide83/03—Rev. 0 to Rev. AUniversalAdded SC70 PackageUniversalChanges to Features1Changes to Specifications2Changes to Absolute Maximum Ratings2Changes to Table I3

SPECIFICATIONS

 V_{CC} = full operating range, T_A = T_{MIN} to T_{MAX} , V_{CC} typical = 5 V for L models and 3.3 V for S models, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER SUPPLY					
Vcc Operating Voltage Range	1.0	3.3	5.5	V	$T_A = 0^{\circ}C$ to 150°C with 100 k Ω pull-down on output (Figure 10)
	1.2	3.3	5.5	V	$T_A = -40$ °C to +150°C with 22 k Ω external pull-up on output (Figure 13)
Supply Current		24	60	μΑ	V_{CC} < 5.5 V, ADM809-5L, T_A = -40°C to +150°C
		17	50	μΑ	V_{CC} < 3.6 V, ADM809-5S, T_A = -40°C to +150°C
RESET VOLTAGE THRESHOLD					
ADM809-5L	4.5		4.75	٧	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
ADM809-5L	4.40		4.86	٧	$T_A = 85^{\circ}C \text{ to } 150^{\circ}C$
ADM809-5S	2.85		3.00	٧	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
ADM809-5S	2.78		3.08	V	$T_A = 85^{\circ}C \text{ to } 150^{\circ}C$
RESET THRESHOLD TEMPERATURE COEFFICIENT		30		ppm/°C	
V _{CC} TO RESET DELAY		20		μs	$V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{ mV})$
RESET ACTIVE TIMEOUT PERIOD	30	55	80	ms	$T_A = -40^{\circ}\text{C to} + 150^{\circ}\text{C}$
RESET OUTPUT VOLTAGE					
RESET Output Voltage Low			0.3	٧	$V_{CC} = V_{TH}$ minimum, $I_{SINK} = 1.2$ mA, ADM809-5S
			0.4	٧	$V_{CC} = V_{TH}$ minimum, $I_{SINK} = 3.2$ mA, ADM809-5L
			0.3	٧	$V_{CC} > 1.0 \text{ V}$, $I_{SINK} = 50 \mu\text{A}$, $T_A = 0^{\circ}\text{C}$ to 150°C
					$V_{CC} > 1.2 \text{ V}, I_{SINK} = 50 \mu\text{A}, T_A = -40^{\circ}\text{C to} + 150^{\circ}\text{C}$
RESET Output Voltage High	0.8 V _{CC}			V	$V_{CC} > V_{TH}$ maximum, $I_{SOURCE} = 500 \mu A$
	V _{CC} – 1.5			V	$V_{CC} > V_{TH}$ maximum, $I_{SOURCE} = 800 \mu A$
JUNCTION TEMPERATURE	-40		+150	°C	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Rating
Vcc	−0.3 V to +6 V
RESET	$-0.3 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input Current	
Vcc	20 mA
Output Current	
RESET	20 mA
Rate of Rise, V _{CC}	100 V/μs
θ_{JA} Thermal Impedance	
SOT-23	270°C/W
SC70	146°C/W
Lead Temperature (Soldering, 10 sec)	300°C
Vapor Phase (60 sec)	215℃
Infrared (15 sec)	220°C
Storage Temperature Range	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	GND	Ground Reference for All Signals (0 V).
2	RESET	Active Low Logic Output. RESET remains low while V _{CC} is below the reset threshold, and remains low for
		55 ms (typical) after V _{CC} rises above the reset threshold.
3	V _{cc}	Supply Voltage Being Monitored.

Figure 4. Power Fail RESET Timing

Table 4. RESET Threshold Options

Model	RESET Threshold (V)
ADM809-5L	4.63
ADM809-5S	2.93

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Supply Current vs. Temperature (No Load)

Figure 6. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

Figure 7. ADM809-5L Power-Down Reset Delay vs. Temperature

Figure 8. ADM809-5S Power-Down Reset Delay vs. Temperature

Figure 9. Normalized Reset Voltage Threshold vs. Temperature

THEORY OF OPERATION INTERFACING TO OUTPUT OF OTHER DEVICES

The ADM809-5L/ADM809-5S are designed to integrate with as many devices as possible and, therefore, have an output dependent on V_{CC} . Because of this design approach, interfacing these devices to other devices is simplified.

ENSURING A VALID RESET OUTPUT DOWN TO $V_{cc} = 0 \text{ V}$

 $\frac{When}{RESET}$ no longer sinks current. A high impedance CMOS logic input connected to \overline{RESET} may, therefore, drift to undetermined logic levels. To eliminate this problem, a 100 k Ω resistor should be connected from $\frac{RESET}{RESET}$ to ground.

Figure 10. Ensuring a Valid \overline{RESET} Output Down to $V_{CC} = 0 V$

BENEFITS OF A VERY ACCURATE RESET THRESHOLD

In other microprocessor supervisory circuits, tolerances in supply voltages lead to an overall increase in RESET tolerance levels due to the deterioration of the RESET circuit power supply of the microprocessor. The possibility of a malfunction during a power failure is greatly reduced because the ADM809-5L/ADM809-5S can operate effectively even when there are large degradations of the supply voltages. Another advantage of the ADM809-5L/ADM809-5S series is its very accurate internal voltage reference circuit. These benefits combine to produce an exceptionally reliable voltage monitor circuit.

INTERFACING TO MICROPROCESSORS WITH MULTIPLE INTERRUPTS

In a number of cases, it is necessary to interface to many interrupts from different devices (for example, from thermal, attitude, and velocity sensors). The ADM809-5L/ADM809-5S can be easily integrated into existing interrupt-handling circuits (see Figure 13) or used as standalone devices.

Figure 11. Interfacing to Microprocessors with Multiple Interrupts

Figure 12. Alternative Application Circuit with Extra Decoupling

Figure 13. Additional Decoupling Can Be Achieved Using a 100 nF Capacitor Between V_{CC} and Ground

OUTLINE DIMENSIONS

Figure 14. 3-Lead Small Outline Transistor Package [SOT-23] (RT-3) Dimensions shown in millimeters

Figure 15. 3-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-3) Dimensions shown in millimeters

ORDERING GUIDE

	Reset		Branding		Package	Package
Model	Threshold (V)	Temperature Range	Information	Quantity (K)	Description	Option
ADM809-5LART-REEL	4.63	-40°C to +150°C	M9L	10	3-Lead SOT-23	RT-3
ADM809-5LART-REEL7	4.63	−40°C to +150°C	M9L	3	3-Lead SOT-23	RT-3
ADM809-5LARTZ-REEL ¹	4.63	-40°C to +150°C	M6Q	10	3-Lead SOT-23	RT-3
ADM809-5LARTZ-RL7 ¹	4.63	-40°C to +150°C	M6Q	3	3-Lead SOT-23	RT-3
ADM809-5LAKS-REEL	4.63	−40°C to +150°C	M9L	10	3-Lead SC70	KS-3
ADM809-5LAKS-REEL7	4.63	−40°C to +150°C	M9L	3	3-Lead SC70	KS-3
ADM809-5LAKSZ-REEL ¹	4.63	-40°C to +150°C	M6Q	10	3-Lead SC70	KS-3
ADM809-5LAKSZ-RL7 ¹	4.63	-40°C to +150°C	M6Q	3	3-Lead SC70	KS-3
ADM809-5SART-REEL	2.93	−40°C to +150°C	M9S	10	3-Lead SOT-23	RT-3
ADM809-5SART-REEL7	2.93	−40°C to +150°C	M9S	3	3-Lead SOT-23	RT-3
ADM809-5SARTZ-REEL ¹	2.93	−40°C to +150°C	M4C	10	3-Lead SOT-23	RT-3
ADM809-5SARTZ-RL7 ¹	2.93	-40°C to +150°C	M4C	3	3-Lead SOT-23	RT-3
ADM809-5SAKS-REEL	2.93	-40°C to +150°C	M9S	10	3-Lead SC70	KS-3
ADM809-5SAKS-REEL7	2.93	-40°C to +150°C	M9S	3	3-Lead SC70	KS-3
ADM809-5SAKSZ-RL ¹	2.93	-40°C to +150°C	M4C	10	3-Lead SC70	KS-3
ADM809-5SAKSZ-RL7 ¹	2.93	-40°C to +150°C	M4C	3	3-Lead SC70	KS-3

 $^{^{1}}$ Z = RoHS Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADM809JARTZ-REEL7 ADM809LARTZ-REEL7 ADM809MARTZ-REEL7 ADM809SARTZ-REEL7 ADM809RAKSZ-REEL ADM809JAKSZ-REEL7 ADM809TARTZ-REEL ADM809SAKSZ-REEL7 ADM809LARTZ-REEL ADM809LAKSZ-REEL7 ADM809-5SAKSZ-RL7 ADM809MARTZ-REEL ADM809ZARTZ-REEL7 ADM809RARTZ-REEL7 ADM809TAKSZ-REEL7 ADM809RAKSZ-REEL7 ADM809TAKSZ-REEL7 ADM809TARTZ-REEL7 ADM809-5LARTZ-RL7 ADM809-5SARTZ-RL7