CMP 334 Practice Exam 1 (Spring 2019)

- 1 a) $0x9D7A \rightarrow 0b\ 1001\ 1101\ 0111\ 1010$
 - b) 0b 1101 0011 0110 1110 0111 \rightarrow 0xD36E7

```
c) 725<sub>10</sub>
                                             0b 1011010101<sub>2</sub>
      725 \cdot 2^{0}
                                         362 \cdot 2^{1}
                                                                            1.20
       362·21
                                         181·2<sup>2</sup>
                                                                           0.2^{1}
                                        90·2<sup>3</sup>
       181·2<sup>2</sup>
                                                                           1·2<sup>2</sup>
                             =
                                                                           0.5^{3}
        90.2^{3}
                             =
                                        45∙2⁴
        45·2<sup>4</sup>
                                          22·2<sup>5</sup>
                                                                           1.24
        22·2<sup>5</sup>
                                         11·2<sup>6</sup>
                                                                           0.25
                            =
         11.2^{6}
                                         5.2^{7}
                                                                          1·2<sup>6</sup>
          5.2^{7}
                                           2·2<sup>8</sup>
                                                                           1.2^{7}
          2.28
                                            1·2<sup>9</sup>
                                                                           0.5^{8}
                             =
           1·2<sup>9</sup>
                                             0.2^{10}
                                                                           1·29
```

- d) $0b1000111001 = 2^9 + 2^5 + 2^4 + 2^3 + 2^0 = 512 + 32 + 16 + 8 + 1 = 569_{10}$
- e) 1789_{10} = 0x6FD $1789 \cdot 16^{0}$ = $111 \cdot 16^{1}$ + $13 \cdot 16^{0}$ $111 \cdot 16^{1}$ = $6 \cdot 16^{2}$ + $15 \cdot 16^{1}$ $6 \cdot 16^{2}$ = $0 \cdot 16^{3}$ + $6 \cdot 16^{2}$

f)
$$0x25AE = 2.16^3 + 5.16^2 + 10.16^1 + 14.16^0$$

= $2.4096 + 5.256 + 10.16 + 14$
= $8192 + 1280 + 160 + 14$
= 9646_{10}

2 a) Give the truth table (with columns for each sub-formula) for: $(\overline{ac} + a\overline{bc}) \cdot (ab + b\overline{c})$.

а	b	С	ā	b	c	ac	а Б с	ac+abc	$(\overline{ac} + a\overline{bc})\cdot(ab + b\overline{c})$	ab+bc	ab	b <u>c</u>
0	0	0	1	1	1	1	0	1	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0	0
0	1	0	1	0	1	1	0	1	1	1	0	1
0	1	1	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0	0	0	0
1	0	1	0	1	0	0	1	1	0	0	0	0
1	1	0	0	0	1	0	0	0	0	1	1	1
1	1	1	0	0	0	0	0	0	0	1	1	0

b) Draw a circuit for: $(\overline{ac} + a\overline{bc}) \cdot (ab + b\overline{c})$.

- 3) Given: X = 0xD7 and Y = 0x4B,
 - a) Convert X and Y to 8-bit binary numbers.

X = 0b110101111 Y = 0b010010111

b) Compute the 8-bit sum X + Y of X and Y.

 $\begin{array}{c}
11010111 \\
\underline{01001011} \\
100100010
\end{array}$

c) Compute $\ddot{\mathbf{Y}}$ the 8-bit 2's complement of Y.

 $\begin{array}{c} \hline 01001011 \\ 10110100 \\ \hline 00000001 \\ 10110101 \\ \end{array}$

d) Compute the 8-bit difference X-Y of X and Y.

 $11010111 \\ 10110101 \\ 11110111 \\ 10001100$

e) Convert X+Y, Y, and, X-Y to hexadecimal.

0x22, 0xB5, 0x8C

f) What are the values of the condition flags upon computing X+Y?

ZNCV

g) What are the values of the condition flags upon computing X-Y?

h) T or F The unsigned 8-bit sum X+Y is honest.
i) T or F The signed 8-bit sum X+Y is honest.

j) T or \mathbb{F} The unsigned 8-bit difference X-Y is honest.

k) T or \mathbb{F} The signed 8-bit difference X-Y is honest.

- 4) Use the recipe for designing combinational circuits to design a circuit that determines if a 3 bit unsigned integer is prime. (Remember: an integer X is prime if, and only if, exactly 2 distinct positive numbers, 1 and X itself, divide X with a remainder of 0.)
 - a) Draw a black box for the circuit that specifies its inputs and output.

b) Formalize the informal semantics of this circuit with a truth table.

X ₂	X ₁	x ₀	x	is prime
0	0	0	0	0
0	0	1	1	0
0	1	0	2	1
0	1	1	3	1
1	0	0	4	0
1	0	1	5	1
1	1	0	6	0
1	1	1	7	1

c) Construct the boolean formula corresponding to the truth table.

$$\overline{\mathbf{x}}_{2}\mathbf{x}_{1}\overline{\mathbf{x}}_{0} + \overline{\mathbf{x}}_{2}\mathbf{x}_{1}\mathbf{x}_{0} + \mathbf{x}_{2}\overline{\mathbf{x}}_{1}\mathbf{x}_{0} + \mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$$

d) Draw the circuit corresponding to the boolean formula.

- **5** a) What does a multiplexer do? N selector inputs bits pick one of 2^N data inputs bits to output.
 - b) Draw the circuit for a **2-way** multiplexer.

c) Build (draw) a 4-way multiplexer using 1-bit multiplexers.

6) For each row in the following table, determine whether the assertion would hold if the indicated operation produced the indicated condition flag values.

operati	ion	flags	assertion	T / F
A + B	unsigned	ZNCV	result is honest	T
A - B	signed	ZNCV	result is honest	F
A - B	unsigned	ZNCV	result is honest	F
A + B	signed	ZNCV	result is honest	F
A - B	unsigned	ZNCV	A > B	T
A - B	signed	ZNCV	A < B	T
A - B	unsigned	ZNCV	A = B	F
A - B	signed	ZNCV	A > B	T
A - B	unsigned	ZNCV	A < B	F
A - B	signed	ZNCV	A ≥ B	F
A - B	unsigned	ZNCV	A ≤ B	T
A - B	signed	ZNCV	A = B	F
A - B	unsigned	ZNCV	A ≥ B	T
A - B	signed	ZNCV	A ≤ B	T