Thermodynamics

notes

Torosian Nikolas

$\mathrm{June}\ 18,\ 2023$

Contents

1	Energy 1.1 Special esoteric energy				1 1	
2						
3	Special Volume					
4	pro	properties of clean solutions in thermodynamix by Katsap				
	4.1	hydra	ted/dehydrated steam	EXAMPLE1	2	
		4.1.1	Υδρατμοι 20 %		2	
					2	
	4.2			$\texttt{EXAMPLE2} \dots \dots \dots$	2	
			* ·		2	
					2	
					2	
					2	
	4.3			EXAMPLE3	3	
				$N(t)/m^2 = [MPa] \dots \dots$	3	
		4.3.2		= 76,7 °C		
E	1 a+	low of	thormodynamiy by V	Cataon	3	
Э	1st law of thermodynamix by Katsap					
	5.2	mass/	volume supply		4	

1 Energy

1.1 Special esoteric energy

$$\bar{u} = \frac{U}{m} \left[\frac{J}{kg} \right],$$

$$m = mass$$

$$U = energy$$
(1)

2 density

$$p = \frac{m}{V} \tag{2}$$

3 Special Volume

Opposite of density

$$\bar{v} = \frac{m}{V} \tag{3}$$

- 4 properties of clean solutions in thermodynamix by Katsap
- 4.1 hydrated/dehydrated steam

EXAMPLE1

- 4.1.1 Υδρατμοι 20~%
- 4.1.2 Πιεση

150 kPa

1. solution EXAMPLE1

Απο πίνακες πρεπει να τα βρίσκω όλα . . .

για να μπορέσω να τα βρώ θέλω τον σωστό πίνακα.....

D ειδικός όγκος υπολογίζεται ως εξής:
$$\upsilon = (1-x) \cdot \upsilon_f + x \cdot \upsilon_g \Leftrightarrow \upsilon = (1-0,20) \cdot 0,001053 \; \frac{m^3}{kg} + 0,20 \cdot 1,1594 \; \frac{m^3}{kg} \Leftrightarrow \upsilon = 0,2327 \; \frac{m^3}{kg}$$
 Dμοίως, η ειδική ενθαλπία υπολογίζεται από τη σχέση:
$$h = (1-x) \cdot h_f + x \cdot h_g \Leftrightarrow \upsilon = (1-0,20) \cdot 467,13 \; \frac{kJ}{kg} + 0,20 \cdot 2.693,1 \; \frac{kJ}{kg} \Leftrightarrow h = 912,32 \; \frac{kJ}{kg}$$

4.2 coolant enthalpy

EXAMPLE2

- 4.2.1 20 kg (R134a)
- 4.2.2 air composition 85%
- 4.2.3 heated at 90 °C
- 4.2.4 constant pressure 1MPa
 - 1. solution EXAMPLE2
 - (a) go to tables
 - (b) find all needed stuff $u_f, ..., h_f$
 - (c) solve the God damn thing by:
 - i. plugin the values
 - ii. u and h have the same general equation. (see example1)
 - (d) x is always the (%) given in the known states of the system.
 - (e) go in the P/H diagram and cross-find special enthalpy h_2
 - (f) solve the easyest equation $\Delta(H) = \Delta(h) \cdot m$
- 4.3 overheated steam

EXAMPLE3

- **4.3.1** Pressure $P_g = 1.5 [(MNt)/m^2] = [MPa]$
- 4.3.2 degrees Of Heating $\Theta = 76.7$ °C
 - 1. solution EXAMPLE3
 - (a) degrees Of Heating == Θ °C \uparrow + T_{sat} (°C) at 1,5 MPa
 - (b) Linear interpolation for T1 and T2 at P_g , where $P_g \in \{P1 < P < P2\}$ (γραμμική παρεμβολή)
 - (c) find the mean value T $(T_n T_{n-1})/n$
 - (d) for h
 - i. calculate h for P1 and P2 in the respective for T Where T1< T=°C ↑+ T(°C) 1,5 MPa <T2
 - ii. compute the lin. interpolation for h at T (see (1.))

$$h_g = h_{g1} - \frac{p - p_1}{p_2 - p_1} \cdot (h_{g1} - h_{g2}) \Rightarrow$$

- 5 1st law of thermodynamix by Katsap
- 5.1 dencity and special volume

ial volume
$$d = \frac{1}{u}$$
 where $u = \frac{V}{m}$
$$= \frac{\dot{V}}{\dot{m}}$$
 (4)

5.2 mass/volume supply