Calculus Problem Book: Form V and Form VI

S. Chu

Contents

Prefa	ace	5
Chap	oter 1. Functions and Other Miscellaneous Content	7
1.	Number Systems	7
2.	Working with Inequalities	7
3.	Polynomials	7
4.	Trigonometric Functions	7
5.	Miscellaneous	7
Chap	oter 2. Limits and Continuity	9
1.	Intuitive Notion	9
2.	Epsilon and Delta	9
3.	Continuity	9
4.	Intermediate Value Theorem	9
Chap	oter 3. The Derivative	11
1.	Limit Definition and Properties of the Derivative	11
2.	Tangent Line Problem	11
3.	Higher Order Derivatives	11
4.	Power Rule and others	11
5.	Implicit Differentiation	11
Chap	oter 4. Applications of the Derivative	13
1.	Related Rates	13
2.	Mean Value Theorem	13
3.	Maximums and Minimums	13
4.	Optimization and Graphing	13
Chap	oter 5. The Integral	15
1.		15
2.	Riemann Sums	15
3.	Riemann Integrable	15
4.	Properties of the Integral	15
Chap	oter 6. The Fundamental Theorem of Calculus	17
1.	Anti-Derivatives	17
2.	FTC part I	17
3.	F F 7 7	17
4.	Functions Defined by an Integral	17
5.	Integral as Accumulator	17
6.	Probability Distributions	17

4 CONTENTS

Chapter 7. Logarithms and Exponentials	19
Chapter 8. Methods of Integration 1. U Substitution 2. Integration by Parts 3. Method of Partial Fractions 4. Trigonometric Substitutions 5. Improper Integrals	21 21 21 21 21 21
Chapter 9. Differential Equations	23
Chapter 10. Applications of Integration	25
Chapter 11. Infinite Series	27
Chapter 12. Conics, Parametric Equations, Polar Coordinates	29
Chapter 13. Vectors and the Geometry of \mathbb{R}^3	31
Chapter 14. Vector Valued Functions	33
Chapter 15. The Partial Derivative and Function of Several Variables	35
Chapter 16. The Gradient and the Method of Lagrange Multipliers	37
Chapter 17. The Derivative of maps from $\mathbb{R}^n \to \mathbb{R}^m$	39
 Chapter 18. Longer Problem Sets Working with Parameters and the Derivative 1. An Algorithm to Find Roots 2. Efficient Foraging 3. When is Venus Bright in the Sky? 4. Rainbows 5. Constructing the Demand Curve 6. The Shape of Bee Hive Cells 7. The Art Gallery Problem 8. Getting to π using Integration by Parts 9. Predicting Peak Oil 10. SIR: A Model for the Spread of Infectious Disease 11. Modeling Air Resistance 12. A Model for Combat 13. A Model for Relationships 	41 42 42 42 42 42 42 42 42 42 42 42 42 42
Chapter 19. Answers	43
Bibliography	45

Preface

The following short booklet contains a collection of problems with solutions that roughly follow the topics typically covered in the calculus sequence for Form V and Form VI mathematics classes at Ethical Culture Fieldston School. The hope is to provide a book of problems of varying difficulty that will provide non-routine exercises as well as to record general themes and approaches to tackling these types of problems in general. Ideally these problems can be useful to all courses that cover these topics. Problems are roughly categorized by difficulty level and notated via *, **, or *** in increasing difficulty. We have adopted problems from memory, and from years of working with the material. The following references were consulted for problems as well as other considerations such as narrative structure in introducing various topics and thematic development of the material. [FGI96], [Pat04], [Pis14], [more later].

Functions and Other Miscellaneous Content

1. Number Systems

Exercise 1 Sets and Types of Numbers

Set $A \subset B$ iff every element of A in also in B. Set $A \supset B$ iff every element of B is also in A and two sets are equal iff both $A \supset B$ and $A \subset B$.

2. Working with Inequalities

3. Polynomials

Exercise 2 Polynomials I

Let $f(x) = x^2 - 3$ and $g(x) = x^3 - 2x$. Both f and g are polynomials. You can form new polynomials by adding, subtracting, multiplying, and composing.

- (1) Find (f+g)(x)
- (2) Find (f-2g)(x)
- (3) Find $(f \cdot g)(x)$
- (4) Find $f \circ g(x)$
- (5) Explain why (f/g)(x) is not a polynomial.

solution 2

* Exercise 3 Defining Polynomials

A polynomial f has the general form $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n$, where $n \in \mathbb{Z}$ and $a_i \in \mathbb{R}$. Show that adding, subtracting, or multiplying two polynomials always results in a polynomial. Explain why this is not the case for division.

solution 3

Exercise 4 Polynomials II

A function f is even if and only if f(x) = f(-x) for all x in its domain. A function is odd if and only if f(-x) = -f(x) for all x in its domain.

- (1) Give an example of an even polynomial.
- (2) Give an example of an odd polynomial.

4. Trigonometric Functions

5. Miscellaneous

Limits and Continuity

- 1. Intuitive Notion
- 2. Epsilon and Delta
- * Exercise 5 Dirichlet Function

The Dirichlet function D is define as $D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Two sets of numbers are *not seperable* if it is impossible to find an open interval around an element from one set that contains only elements from that set and not the other. Rational numbers and irrational numbers are not separable. Use this to argue that $\lim_{x \to a} D(x)$ does not exist for any value of a. solution 5

3. Continuity

* Exercise 6 A Bounded Function around Zero

Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x)| \leq |x|$ for all x in the domain of f. Prove that f is continuous at x = 0.

solution 6

* Exercise 7 Some Points Don't Move That Much

Let $f:[0,1] \to [0,1]$ be a function such that $|f(x)| \le |x|$ for all x in the domain of f. Prove that f is continuous at x = 0.

solution 7

4. Intermediate Value Theorem

The Derivative

1. Limit Definition and Properties of the Derivative

Exercise 8 Introducing a Discontinuity

Let f(x) = |x|. Use the limit definition of the derivative to show that $f'(x) = \frac{|x|}{x}$. Show using the definition of continuity how the derivative

2. Tangent Line Problem

3. Higher Order Derivatives

4. Power Rule and others

* Exercise 9 Unit Circle and Sine

Let $P = (\cos \theta, \sin \theta)$. Use similar triangles to calculate an approximation for $\frac{\Delta y}{\Delta \theta}$ and explain how this shows what the derivative of $f(x) = \sin(x)$ is. Do the same for $g(x) = \cos(x)$ by looking at $\frac{\Delta x}{\Delta \theta}$.

solution 9

5. Implicit Differentiation

Applications of the Derivative

- 1. Related Rates
- 2. Mean Value Theorem
- 3. Maximums and Minimums
- 4. Optimization and Graphing

The Integral

- 1. Series
- 2. Riemann Sums
- 3. Riemann Integrable
- 4. Properties of the Integral

The Fundamental Theorem of Calculus

- 1. Anti-Derivatives
 - 2. FTC part I
 - 3. FTC part 2
- 4. Functions Defined by an Integral
 - 5. Integral as Accumulator
 - 6. Probabilty Distributions

Logarithms and Exponentials

Methods of Integration

- 1. U Substitution
- 2. Integration by Parts
- 3. Method of Partial Fractions
- ${\bf 4.} \ \, {\bf Trigonometric \ Substitutions}$
 - 5. Improper Integrals

Differential Equations

Applications of Integration

Infinite Series

Conics, Parametric Equations, Polar Coordinates

Vectors and the Geometry of \mathbb{R}^3

Vector Valued Functions

The Partial Derivative and Function of Several Variables

The Gradient and the Method of Lagrange Multipliers

The Derivative of maps from $\mathbb{R}^n \to \mathbb{R}^m$

Longer Problem Sets

Working with Parameters and the Derivative

In this exploration we will work with derivative to find tangent lines to a curve. We will also introduce working with parameters and see how this gives us a set of tools to solve more complex problems. We will end by using our skill with parameters to explore a little bit of the early history of Calculus by taking a look at Descartes' Method of Normals and Fermat's Method of Adequality.

First Let's Look at Tangent Lines to a Parabola.

- (1) Let $f(x) = x^2 + 1$ and point C(0, -2). Find the equation of the two lines that pass through C and are tangent to f.
- (2) Let C vary its position along the y-axis. Let C(0,k). Find the equations of the two lines that pass through C and are tangent to f. Notice your solutions will be in terms of the parameter k.
- (3) Lastly, let's generalize and let C be any point in the plane C(h, k). What are the equations of the two lines that pass through C and are tangent to f, in terms of the parameters h and k?
- (4) Notice this gives you the equations for the lines through any point in the plane that are tangent to the given parabola. Demonstrate the ease with which you can find these lines that are tangent to the parabola, by find them for P(5,3) and Q(3,-5).
- (5) What do these equations tell you about the family of lines tangent to f? How is this different than just looking at f'(x)?

Descartes' Method Of Normals.

- 1. An Algorithm to Find Roots
 - 2. Efficient Foraging
- 3. When is Venus Bright in the Sky?
 - 4. Rainbows
- 5. Constructing the Demand Curve
 - 6. The Shape of Bee Hive Cells
 - 7. The Art Gallery Problem
- 8. Getting to π using Integration by Parts
 - 9. Predicting Peak Oil
- 10. SIR: A Model for the Spread of Infectious Disease
 - 11. Modeling Air Resistance
 - 12. A Model for Combat
 - 13. A Model for Relationships

Answers

Exercise 2
blah blah
Exercise 6
blah blah
Exercise 6
blah blah
Exercise 7
blah blah
Exercise 8
$Exercise \ 9$
blah blah

Bibliography

- [FGI96] Fomin, Genkin, and Itenberg. *Mathematical Circles (Russian Experience)*. Vol. 7. Mathematical World. American Mathematical Society, 1996.
- [Pat04] Patrick. Introduction to Counting and Probability. 2nd. AoPS Inc., 2004.
- [Pis14] Hossein Pishro-Nik. Introduction to Probability, Statistics, and Random Processes. Kappa Research, 2014.