Report - HMM tutorial

Soufian SALIM

October 18, 2013

Abstract

Report on the October 9 tutorial course on R's HMM module.

1 Introduction

From the tutorial's PDF:

We will use from now the HMM package which is available from the CRAN repository available (http://cran.rstudio.com/). It contains the following functions:

- backward
- baumWelch
- dishonestCasino
- forward
- initHMM
- posterior
- simHMM
- \bullet viterbi
- viterbiTraining

The goal with this exercise is to verify some of the functions that are available, also to let you understand how all the pieces are working together.

2 Functions

2.1 HMMs_source

2.1.1 Description

Builds two HMMs, using initHMM; the states are "s1" and "s2", and the symbols "a", "b", and "c".

2.1.2 Code

```
1 HMMs_source <- function() {
      states <- c("s1", "s2")
obs <- c("a", "b", "c")
 3
 4
 5
      P1\_\mathbf{source} \leftarrow \mathbf{c}(1, 0)
      A1_source \leftarrow matrix(\mathbf{c}(0.1, 0.9, 0.6, 0.4), nrow=2, ncol=2, byrow=T)
 6
      B1_source \leftarrow matrix(c(0.1,0.3,0.6,0.4,0.2,0.4), nrow=2, ncol=3,
           byrow=T)
 8
9
      lambdal_source <- initHMM(states, obs, Pl_source, Al_source, Bl_
           source)
10
      P2_{-}source \leftarrow c(1, 0)
11
      A2_source <- matrix(c(0.4,0.6,0.8,0.2), nrow=2, ncol=2, byrow=T)
B2_source <- matrix(c(0.5,0.4,0.1,0.2,0.1,0.7), nrow=2, ncol=3,
12
13
           byrow=T)
14
      lambda2_source <- initHMM(states, obs, P2_source, A2_source, B2_
15
           source)
16
      return(list(m1 = lambda1_source, m2 = lambda2_source))
17
18 }
```

2.1.3 Results

Call this function, and check the values of source1_2 ;-HMMs_source()

HMMs_source() correctly returns two HMMs:

```
1 $m1
2 $m1$States
3 [1] "s1" "s2"
5 $m1$Symbols
6 [1] "a" "b" "c"
8 $m1$startProbs
9 s1 s2
10
   1 0
11
12 $m1$transProbs
13
     to
14 from s1 s2
15
   s1 0.1 0.9
    s2 0.6 0.4
16
17
18 $m1$emissionProbs
19
      symbols
20
  states a b
      s1 0.1 0.3 0.6
21
22
      s2\ 0.4\ 0.2\ 0.4
23
24
25 $m2
26 $m2$States
27 [1] "s1" "s2"
28
```

```
29 $m2$Symbols
30 [1] "a" "b" "c"
31
32 $m2$startProbs
33 s1 s2
34
   1 0
35
36 $m2$transProbs
37
      to
   from \quad s1 \quad s2
38
    s1 0.4 0.6
39
     s2 0.8 0.2
40
41
42 $m2$ emission Probs
43
         _{
m symbols}
44
   states a b
       s1 0.5 0.4 0.1
45
46
       s2 0.2 0.1 0.7
```

2.2 HMM_simu

2.2.1 Description

Returns a list of two elements: obs1 and obs2, each of them being a sequence of symbols produced using simHMM.

2.2.2 Code

```
1 HMM_simu <- function(hmm1, hmm2, T = 10){
2    return(list(obs1 = simHMM(hmm1, T)$observation, obs2 = simHMM(hmm2, T)$observation))
3 }</pre>
```

2.2.3 Results

Call this function, and check the values of train1_2;-HMM_simu(source1_2m1, source1_2m2, 1000)

The function returns a series of observations. The possible symbols match those of the HMM defined in HMMs_source():

2.3 logLikelihood

2.3.1 Description

Applies the forward algorithm and then ends with the computation of the likelihood of the observation sequence.

2.3.2 Code

```
logLikelihood <- function(hmm, obs){</pre>
      fwd <- forward (hmm, obs)
 3
      loglike = fwd[1, length(obs)]
 4
 5
 6
      for(i in 2:length(hmm$States)){
        \mathbf{t} = \text{fwd}[i, \mathbf{length}(obs)]
 8
 9
         if (\mathbf{t} > - \operatorname{Inf})
10
           log like = t + log(1 + exp(log like - t))
11
12
13
14
      return (loglike)
15 }
```

2.3.3 Results

 $\label{eq:calculate} \begin{array}{l} Calculate \ and \ display \ the \ four \ log-likelihoods \ P(O1-lambda1), \\ P(O1-lambda2), \ P(O2-lambda1) \ and \ P(O2-lambda2) \end{array}$

```
 \begin{array}{lll} 1 & P(O1 | lambda1) = & -51.71073 \\ 2 & P(O1 | lambda2) = & -60.70799 \\ 3 & P(O2 | lambda1) = & -51.70681 \\ 4 & P(O2 | lambda2) = & -57.3821 \\ \end{array}
```

2.4 HMM_new

2.4.1 Description

Initializes and returns two new models m1 and m2 with initHMM.

2.4.2 Code

2.5 Check_likelihood_BW

2.5.1 Description

Uses the Baum-Welch algorithm and train one HMM, given a sequence of observations, for 10 iterations, and prints the log-likelihood.

2.5.2 Code

```
checkLikelihoodBW <- function(hmm, obs){
hmm_new <- list(hmm=hmm, difference=0)

for(i in 1:10){
   hmm_new <- baumWelch(hmm_new$hmm, obs, 1)
   cat("Likelihood after iteration", i, ": ", logLikelihood(hmm_new$hmm, obs), "\n")
}

return(hmm_new)
}</pre>
```

2.5.3 Results

At each iteration, print the log-likelihood, check that it increases for each iteration. If not, something is wrong in your functions.

The log-likelihood correctly increases at each iteration:

```
Likelihood after iteration 1:
                                     -104.5332
  Likelihood after iteration 2 :
                                     -104.5329
3
  Likelihood after iteration 3:
                                     -104.5326
  Likelihood after iteration 4:
                                     -104.5322
  Likelihood after iteration 5:
                                     -104.5319
  Likelihood after iteration 6:
                                     -104.5317
  Likelihood after iteration 7
                                     -104.5314
  Likelihood after iteration 8
                                :
                                     -104.5312
  Likelihood after iteration 9 :
                                     -104.531
10 Likelihood after iteration 10:
                                     -104.5308
11
12
  (\ldots)
```

2.6 train_BW

2.6.1 Description

Trains two models from their respective training sequence and returns a list of the two HMMs: m1 and m2.

2.6.2 Code

```
train_BW <- function(training, N = 10) {
   hmms <- HMM_new()

hmm1 <- baumWelch(hmms$m1,
   training$obs1,</pre>
```

2.6.3 Results

Compare the original source models with the corresponding trained versions.

Common values:

```
$\frac{1}{2} \text{ states}{2} \text{ [1] "s1" "s2"}{3} \\
4 \text{ $Symbols}{5} \text{ [1] "a" "b" "c"}{6} \\
7 \text{ $startProbs}{8} \text{ s1 s2}{9 1 0}
```

Original source model:

```
1 $transProbs
 2
       to
 3
   from s1
 4
     s1 0.1 0.9
 5
     s2 0.6 0.4
 7
   \$emission Probs
 8
         _{
m symbols}
9
   states a b
       s1 0.1 0.3 0.6
10
11
       s2 \ 0.4 \ 0.2 \ 0.4
```

Trained model (10 iterations):

```
$transProbs
 2
 3
                 s1
     s1 0.5639968 0.4360032
 4
 5
     s2 0.3743099 0.6256901
 6
   $emissionProbs
 7
 8
          symbols
9
        s1 \ 0.1641866 \ 0.08025629 \ 0.75555710
10
11
        s2 \ \ 0.4012511 \ \ 0.53199452 \ \ 0.06675439
```

Discuss and explain your results.

Transition and emission matrices have changed after training to adjust better to the observed data. Given the set of observations, the Baum-Welch algorithm adjusted the probabilities at each iteration to converge towards the maximum likelihood estimate of the HMM parameters.

2.7 classify

2.7.1 Description

Displays the confusion matrix and returns the recognition rate, when using source 1_2 to generate N test samples of length T of each source and lambda 1_2 as classifiers.

2.7.2 Code

```
classify \leftarrow function(source1_2, model1_2, T = 10, N = 1) {
 1
 2
        true\_pos = false\_pos = true\_neg = false\_neg = 0
 3
        for (i in 1:(N / 2)) {
 4
 5
            test1_2 <- HMM_simu(source1_2$m1, source1_2$m2, T)
 6
            r <- list(
               \begin{array}{lll} & \text{olm1} = \log \text{Likelihood} \left( \, \text{model1} \, \_2\$\text{m1}, & \text{test1} \, \_2\$\text{obs1} \right), \\ & \text{olm2} = \log \text{Likelihood} \left( \, \text{model1} \, \_2\$\text{m2}, & \text{test1} \, \_2\$\text{obs1} \right), \end{array}
 8
 9
10
               o2m1 \,=\, \log Likelihood \, (\,model1\, \_2\$m1, \ test1\, \_2\$obs2\,)\,,
               o2m2 = logLikelihood (model1_2$m2, test1_2$obs2)
11
12
13
14
            if (r\$o1m1 > r\$o1m2)
15
                true\_pos = true\_pos + 1
16
            _{
m else}
17
               false_neg = false_neg + 1
            \begin{array}{l} \textbf{if} \quad (\,\text{r}\$\text{o}2\text{m}2\,>\,\text{r}\$\text{o}2\text{m}1\,) \\ \quad \text{true\_neg} \,=\, \text{true\_neg} \,+\,1 \end{array}
18
19
20
            _{
m else}
21
               false\_pos = false\_pos + 1
22
        }
23
24
        print (
25
           matrix (
26
               c(true_pos, false_neg, false_pos, true_neg),
27
               \mathbf{ncol} = 2,
               nrow = 2,
28
29
               byrow = TRUE,
               dimnames = list(
  c("is true", "is false"),
  c("found true", "found false")
30
31
32
33
34
35
36
37
        return (true_pos + true_neg) / N
38
```

2.7.3 Results

Confusion matrix:

	Found True	Found False
Is True	316	184
Is False	73	427

1 found true found false

```
2 is true 316 184
3 is false 73 427
```

Recognition rate:

743 recognized out of 1000 (74.3

2.8 Plot_Reco

2.8.1 Description

Computes and plot the curve which displays the evolution of the recognition rate according to the length of the observed test sequences. Scan a range of 10 values up to Tmax.

2.8.2 Code

```
Plot_Reco <- function(source1_2, model1_2, Tmax = 100, N = 1) {
 2
     reco_rate <- NULL
 3
     samples\_size <- 1:10 * (Tmax/ 10)
 4
 5
6
     \mathbf{for} \ (\mathtt{i} \ \mathtt{in} \ 1{:}10 \ * \ (\mathtt{Tmax}/\ 10)) \ \{
        reco_rate <- c(reco_rate, (classify(source1_2,
 7
                                        model1_2,
 8
 9
                                        N)) / N)
10
11
     plot(samples_size , reco_rate , type = "l", col = "blue", xlab = "
12
          Samples size", ylab = "Recognition rate")
13 }
```

2.8.3 Results

Figure 1: Recognition rate by sample size

2.9 Compare_States

2.9.1 Description

Compares the true sequence of states followed by a model and the one obtained from the Viterbi algorithm.

2.9.2 Code

```
Compare_States <- function(hmm, obs, states) {
   return(
          1 - length(
          Filter(identity, states != viterbi(hmm, obs))
          )
          / length(states)
          )
        }
}</pre>
```

2.9.3 Results

Simulate a sequence (states and observations), use the observation to look for the most probable path for this sequence using the source model. What is the percentage of correct assignments??

```
Correct proportion for M1 on O1 compared to Viterbi: 0.51
Correct proportion for M2 on O2 compared to Viterbi: 0.42
```

Would you consider that useful performance?

A result graviting around 50% is hardly useful.

Perform the same experiment but used the trained model instead of source model to do the alignment.

```
Correct proportion for M1 on O1 compared to Viterbi: 0.57
Correct proportion for M2 on O2 compared to Viterbi: 0.6
```

We note a significant improvement in results.

3 Attachments

The code described in this document can be found here: http://github.com/bolaft/signal_hmm