SYDE 556/750

Simulating Neurobiological Systems Lecture 9: Analysing Representations

Chris Eliasmith

Nov 4, 2024

- ► Slide design: Andreas Stöckel
- ► Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Decoding Polynomials

Projection of the Neuron Space to PCA

A subspace of neuron activity being projected onto the first few principle component planes. Notice that the axis scales are different, capturing the size of the singular value.

LIF Tuning Curve Principal Components

ReLU Tuning Curve Principal Components

Reminder: Legendre Polynomials

$$\varphi_i(x) = \frac{1}{2^i} \sum_{k=0}^n {i \choose k}^2 (x-1)^{i-k} (x+1)^k$$

Modifying the Basis – Same Maximum Rate (I)

Modifying the Basis – Equidistant x-Intercepts (II)

Modifying the Basis – Limited *x*-Intercepts (III)

Modifying the Basis – Symmetric Tuning Curves (IV)

Gaussian Tuning Curve Principal Components

Gaussian vs LIF Singular Values

PCA of 2D Tuning Curves

PCA of 2D Tuning Curves

Combination of 2D Polynomials

2D Singular Values

2D and 4D singular values compared to the prediction of the multiset (i.e., number of cross terms).

Conclusions

- ► Can use **PCA** to find the basis functions underlying neural representations
- ► Singular values inversely proportional to noise sensitivity
- **Basis function shape** depends on
 - max firing rate distribution (a bit)
 - x-intercept distribution
 - ightharpoonup neuron response curve G[J]
- Finding optimal tuning curves for computing particular functions
 - ⇒ Full network optimization (must use gradient descent)

Image sources

Title slide

Maurice Denis: Homage to Cézanne, 1900

From Wikimedia.