MA207 Short Notes

Aditya Byju

Course Professor: Prof. Ronnie Sebastian Ref: Prof's slides
All the world's a differential equation, and the men and women are merely variables!

Differential Equations - 2

September 2021

Contents

Power series	3
Taylor series and analytic functions	5
Legendre polynomials	6
More complicated ODE's	11
Some classical ODE's and their solutions	12
Bessel equation	12
Fourier series	15
Heat equation	17
Wave equation	20
Laplace equation	22

Power series

• For real numbers $x_0, a_0, a_1, a_2, \ldots$, an infinite series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

is called a power series in $x - x_0$ with center x_0

• For a real number x_1 , if the limit:

$$\lim_{N \to \infty} \sum_{n=0}^{N} a_n (x_1 - x_0)^n$$

exists and is finite, then we say the power series converges at the point $x = x_1$. In this case, the value of the series at x_1 is, by definition, the value of the limit.

- If the series does not converge at x_1 , that is, either the limit does not exist, or it is $\pm \infty$, then we say the power series diverges at x_1 . Also, a power series always converges at its center $x = x_0$.
- radius of convergence (R): for any power series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

exactly one of these statements is true:

- the power series converges ony for $x = x_0$ (here R = 0)
- the power series converges for all values of x (here $R = \infty$)
- there is a positive number $0 < R < \infty$ such that the power series converges if $|x x_0| < R$ and diverges if $|x x_0| > R$
- Ratio test: assume that there is an integer N such that for all $n \ge N$ we have an $a_n \ne 0$ Also assume the following limit exists:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

and denote it by L. Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is $R=\frac{1}{L}$.

• **Def:** Suppose we are given a sequence $\{a_n\}_{n\geq 1}$. For every $k\geq 1$ define:

$$b_k = \sup_{n \ge k} \{a_n\}$$

We know $\{b_k\}_{k\geq 1}$ is a decreasing sequence, and hence we define $\limsup\{a_n\}$ as:

$$\lim \sup\{a_n\} = \lim_{n \to \infty} b_n$$

Similarly, we define $\liminf \{a_n\}$, by replacing sup by inf in the above definition.

- For a sequence $\{a_n\}_{n\geq 1}$, the limit may not exist. However, the lim sup and liminf always exist (possibly $+\infty$ or $-\infty$)
- **Theorem:** Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers. Then $\lim_{n\to\infty} a_n$ exists if and only if $\lim\sup a_n=\liminf a_n$. Further, if $\lim_{n\to\infty} a_n$ exists, then

$$\limsup \{a_n\} = \liminf \{a_n\} = \lim_{n \to \infty} a_n$$

- Root test: let $\limsup\{|a_n|^{1/n}\}=L$. Then radius of convergence of the power series $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ is R=1/L.
- **Theorem:** Let R > 0 be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x x_0)^n$, then the power series converges (absolutely) for all $x \in (x_0 R, x_0 + R)$. The open interval $(x_0 R, x_0 + R)$ is called the interval of convergence of the power series.
- **Theorem:** let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. We assume R > 0. We define a function $f: (x_0 R, x_0 + R) \to \mathbb{R}$ by:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

This function satisfies the following properties:

- f is infinitely differentiable $\forall x \in (x_0 R, x_0 + R)$
- the successive derivatives of f can be computed by differentiating the power series term-by-term, that is:

$$f'(x) = \sum_{n=0}^{\infty} na_n (x - x_0)^{n-1}$$

- $f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1) \dots (n-k+1) a_n (x-x_0)^{n-k}$
- the power series representing the derivatives $f^{(n)}(x)$ have same radius of convergence R
- we can determine the coefficients a_n (in terms of derivatives of f at x_0) as:

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$

– we can also integrate the function $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ term-wise, that is, if $[a, b] \subset (x_0 - R, x_0 + R)$, then:

$$\int_{a}^{b} f(x)dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$$

- power series representation of f in an open interval I containing x_0 is unique, that is, if:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} b_n (x - x_0)^n$$

for all $x \in I$, then $a_n = b_n$ for all n

— if:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = 0$$

for all $x \in I$, then $a_n = 0$ for all n

• Power series representation of some familiar functions:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty$$

$$sin(x) = \sum_{0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$$

$$(1-x)^{-1} = \sum_{0}^{\infty} x^{n} , \quad -1 < x < 1$$

$$\cos(x) = \sum_{0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} , \quad -\infty < x < \infty$$

$$\sinh(x) = \sum_{0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} , \quad -\infty < x < \infty$$

$$\cosh(x) = \sum_{0}^{\infty} \frac{x^{2n}}{(2n)!} , \quad -\infty < x < \infty$$

• If $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, $g(x) = \sum_{n=0}^{\infty} b_n (x-x_0)^n$ have radii of convergence R_1 and R_2 respectively, then:

$$c_1 f(x) + c_2 g(x) = \sum_{n=0}^{\infty} (c_1 a_n + c_2 b_n)(x - x_0)^n$$

has radius of convergence $R \ge \min\{R_1, R_2\}$ for $c_1, c_2 \in \mathbb{R}$. Further, we can multiply the series as if they are polynomials, that is:

$$f(x)g(x) = \sum_{n=0}^{\infty} c_n(x - x_0)^n$$
; $c_n = a_0b_n + a_1b_{n-1} + \dots + a_nb_0$

it also has radius of convergence $R \ge \min \{R_1, R_2\}$.

Taylor series and analytic functions

• Let f(x) be infinitely differentiable at x_0 . The Taylor series of f at x_0 is defined as the power series:

$$TS f|_{x_0} = \sum_{0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

- Suppose f(x) is infinitely differentiable at x_0 and Taylor series of f at x_0 converges to f(x) for all x in some open interval around x_0 , then f is called analytic at x_0 . Thus if f is analytic, then there is an interval I around x_0 where f is given by a power series in I.
- Polynomials e^x , sin(x) and cos(x) are analytic at all $x \in \mathbb{R}$. f(x) = tan(x) is analytic at all x except $x = (2n+1)\pi/2$, where $n = \pm 1, \pm 2, \ldots$
- If f(x) and g(x) are analytic at x_0 , then $f(x) \pm g(x)$, f(x)g(x) and f(x)/g(x) (if $g(x_0) \neq 0$) are analytic at x_0
- If f(x) is analytic at x_0 and g(x) is analytic at $f(x_0)$, then $g(f(x)) = (g \circ f)(x)$ is analytic at x_0
- If a power series $\sum_{0}^{\infty} a_n(x-x_0)^n$ has radius of convergence R>0, then the function $f(x)=\sum_{0}^{\infty} a_n(x-x_0)^n$ is analytic at all points $x\in(x_0-R,x_0+R)$
- Theorem: let:

$$F(x) = \frac{N(x)}{D(x)}$$

be a rational function, where N(x) and D(x) are polynomials without any common factors, that is they do not have any common (complex) zeros. Let $\alpha_1, \ldots, \alpha_r$ be distinct complex zeros

of D(x). Then F(x) is analytic at all x except at $x \in \{\alpha_1, \ldots, \alpha_r\}$. If x_0 is different from $\{\alpha_1, \ldots, \alpha_r\}$, then the radius of convergence R of the Taylor series of F at x_0 :

$$TS F|_{x_0} = \sum_{n=0}^{\infty} \frac{F^{(n)}(x_0)}{n!} (x - x_0)^n$$

is given by:

$$R = \min\{|x_0 - \alpha_1|, |x_0 - \alpha_2|, \dots, |x_0 - \alpha_r|\}$$

• Existence theorem: if p(x) and q(x) are analytic functions at x_0 , then every solution of:

$$y'' + p(x)y' + q(x)y = 0$$

is also analytic at x_0 , and therefore any solution can be expressed as:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

If R_1 is the radius of convergence of Taylor series of p(x) at x_0 , R_2 is the radius of convergence of Taylor series of q(x) at x_0 , then radius of convergence of y(x) is at least $\min(R_1, R_2) > 0$

• The standard form of an ordinary differential equation (ODE) is:

$$y'' + p(x)y' + q(x)y = 0$$

- Steps for series solution of linear ODE:
 - write ODE in the standard form y'' + p(x)y' + q(x)y = 0
 - choose x_0 at which p(x) and q(x) are analytic. If boundary conditions at x_0 are given, choose the center of the power series as x_0 .
 - find the minimum of radii of convergence of Taylor series of p(x) and q(x) at x_0
 - let $y(x) = \sum_{0}^{\infty} a_n(x-x_0)^n$, compute the power series for y'(x) and y''(x) at x_0 and substitute these onto the ODE
 - set the coefficients of $(x-x_0)^n$ to zero and find recursion formula
 - from the recursion formula, obtain (linearly independent) solutions $y_1(x)$ and $y_2(x)$. The general solution then looks like $y(x) = a_1y_1(x) + a_2y_2(x)$
- initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain
- Bessel's equation:

$$x^2y'' + xy' + (x^2 - v^2)y = 0$$

Legendre polynomials

• Legendre equation:

$$(1-x^2)y'' - 2xy' + p(p+1)y = 0$$
, where p is a real number

• The two independent solutions of the Legendre equation are:

$$y_1(x) = a_0 \left[1 - \frac{p(p+1)}{2!} x^2 + \frac{p(p+1)(p-2)(p+3)}{4!} x^4 - \dots \right]$$

$$y_2(x) = a_1 \left[x - \frac{(p-1)(p+2)}{3!} x^3 + \frac{(p-1)(p+2)(p-3)(p+4)}{5!} x^5 - \dots \right]$$

If $p \in \{0, 2, 4, ...\} \cup \{-1, -3, -5, ...\}$ then $y_1(x)$ is a polynomial function. $y_2(x)$ is an odd function. If $p \in \{1, 3, 5, ...\} \cup \{-2, -4, -6, ...\}$ then $y_2(x)$ is a polynomial function. Thus, if p is an integer then exactly one solution is a polynomial and the other is an infinite power series.

• The general solution (of the Legendre equation):

$$y(x) = a_0 y_1(x) + a_1 y_2(x)$$

is called a Legendre function. If p = m is an integer, then precisely one of y_1 or y_2 is a polynomial, and it is called the m^{th} Legendre polynomial $P_m(x)$. For $m \ge 0$ note that $P_m(x)$ is a polynomial of degree m. It is an even function if m is even and an odd function if m is odd.

- \bullet A vector space (V) is a set equipped with two operations:
 - addition:

$$v + w, v, w \in V$$

- scalar multiplication:

$$cv, c \in \mathbb{R}, v \in V$$

A vector space V has a dimension, which may not be finite

• Let V be a vector space over \mathbb{R} (not necessarily finite-dimensional). A bilinear form on V is a map:

$$\langle,\rangle:V\times V\to\mathbb{R}$$

which is linear in both coordinates, that is:

$$\langle au + v, w \rangle = a \langle u, v \rangle + \langle v, w \rangle$$

$$\langle u, av + w \rangle = a \langle u, v \rangle + \langle u, w \rangle$$

for $a \in \mathbb{R}$ and $u, v \in V$

- An inner product on V is a bilinear form on V which is:
 - symmetric: $\langle v, w \rangle = \langle w, v \rangle$
 - positive definite: $\langle v, v \rangle \geq 0$ for all v and $\langle v, v \rangle = 0$ iff v = 0

A vector space with an inner product is called an inner product space.

- In an inner product space V, two vectors u and v are orthogonal if $\langle v, v \rangle = 0$. More generally, a set of vectors forms an orthogonal system if they are mutually orthogonal.
- A set $\{v_i\}_{i \in I} \subset V$ is called a basis if the vectors in it are:
 - linearly independent i.e., $\sum_{j=1}^{m} a_j v_{i_j} = 0 \implies a_j = 0$
 - they span V, i.e., every w can be written as $w = \sum_{j=1}^{m} a_j v_{ij}$

An orthogonal basis is an orthogonal system which is also a basis.

• Consider the vector space \mathbb{R}^n with coordinate-wise addition and scalar multiplication. The rule:

$$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n)\rangle = \sum_{i=1}^n a_i b_i$$

defines an inner product on \mathbb{R}^n . The standard basis $\{e_1,\ldots,e_n\}$ is an orthogonal basis of \mathbb{R}^n .

• Lemma: suppose V is a finite dimensional inner product space, and e_1, \ldots, e_n is an orthogonal basis. Then for any $v \in V$:

$$v = \sum_{i=1}^{n} \frac{\langle v, e_i \rangle}{\langle e_i, e_i \rangle} e_i$$

- **Lemma:** In a finite-dimensional inner product space, there always exists an orthogonal basis. This result is not necessarily true in infinite-dimensional inner product spaces. For infinite dimensional vector spaces, we can only talk of a maximal orthogonal set. A subset $\{e_1, e_2, \ldots\}$ is called a maximal orthogonal set for V if:
 - $-\langle e_i, e_j \rangle = \delta_{ij}$
 - $-\langle v, e_i \rangle = 0$ for all i iff v = 0
- Def: for a vector v in an inner product space, we define the norm or length of the vector v as:

$$||v|| = \langle v, v \rangle^{1/2}$$

It satisfies the following three properties:

- $||0|| = 0 \text{ and } ||v|| > 0 \text{ if } v \neq 0$
- $||v + w|| \le ||v|| + ||w||$
- ||av|| = |a| ||v||

for all $v, w \in V$ and $a \in \mathbb{R}$

• Pythagoras theorem: for orthogonal vectors v and w in any inner product space V:

$$||v + w||^2 = ||v||^2 + ||w||^2$$

More generally, for any orthogonal system $\{v_1, \ldots, v_n\}$:

$$||v_1 + \ldots + v_n||^2 = ||v_1||^2 + \ldots + ||v_n||^2$$

• The set of all polynomials in the variable x is a vector space denoted by $\mathscr{P}(x)$. The set $\{1, x, x^2, \ldots\}$ is an infinite basis of the vector space $\mathscr{P}(x)$. $\mathscr{P}(x)$ carries an inner product defined by:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

We are integrating over finite interval [-1,1] which ensures that the integral is finite. The norm of a polynomial is by definition $\langle f,f\rangle$:

$$||f|| = \left(\int_{-1}^{1} f(x)f(x)dx\right)^{1/2}$$

• **Derivative-transfer:** if f(1)g(1) = f(-1)g(-1), then:

$$\int_{-1}^{1} g \frac{df}{dx} = -\int_{-1}^{1} f \frac{dg}{dx}$$

• Theorem: since $P_m(x)$ is a polynomial of degree m, it follows that:

$$\{P_0(x), P_1(x), P_2(x), \ldots\}$$

is a basis of the vector space of polynomials $\mathscr{P}(x)$. We have:

$$\langle P_m, P_n \rangle = \int_{-1}^1 P_m(x) P_n(x) dx = \begin{cases} 0, & \text{if } m \neq n \\ \frac{2}{2n+1}, & \text{if } m = n \end{cases}$$

i.e., Legendre polynomials form an orthogonal basis for the vector space $\mathcal{P}(x)$ and:

$$||P_n(x)||^2 = \frac{2}{2n+1}$$

• Rodrigues' formula for Legendre polynomials P_n :

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

- Let $f_i(x)$ (for $i \geq 0$) be a collection of non-zero polynomials. Assume that $f_i(x)$ has degree i. Then $\{f_0(x), f_1(x), \dots, f_n(x)\}$ is a basis for the vector space consisting of polynomials of degree < n.
- A function f(x) on [-1,1] is square-integrable if:

$$\int_{-1}^{1} f(x)g(x)dx < \infty$$

For instance, polynomials, continuous functions, piecewise continuous functions are square-integrable. The set of all square-integrable functions on [-1,1] is a vector space and is denoted by $L^2([-1,1])$. For square-integrable functions f and g, we define their inner product by:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

• Legendre polynomials form a maximal orthogonal set in $L^2([-1,1])$. This means that a square-integrable function which is orthogonal to all Legendre polynomials is necessarily the constant function "0". We can expand any square-integrable function f(x) on [-1,1] in a series of Legendre polynomials:

$$\sum_{n=0}^{\infty} c_n P_n(x), \quad c_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle} = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx$$

This is called the Fourier-Legendre series (or simply the Legendre series) of f(x).

• **Theorem:** The Fourier-Legendre series of $f(x) \in L^2([-1,1])$ given by:

$$\sum_{n=0}^{\infty} c_n P_n(x), \quad c_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle} = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx$$

converges in L^2 norm to f(x), that is:

$$||f(x) - \sum_{n=0}^{m} c_n P_n(x)|| \rightarrow 0 \text{ as } m \rightarrow \infty$$

• Legendre expansion theorem: if both f(x) and f'(x) have at most a finite number of jump discontinuities in the interval [-1,1], then the Legendre series converges to:

$$\frac{1}{2}(f(x_{-}) + f(x_{+})), \text{ for } -1 < x < 1$$

 $f(-1_+), \text{ for } x = -1$

 $f(1_{-}), \text{ for } x = 1$

In particular, the series converges to f(x) at every point of continuity x

• Least square approximation theorem: Suppose we want to approximate $f \in L^2([-1,1])$ in the sense of least square by polynomials p(x) of degree $\leq n$, that is, we want to find a polynomial p(x) which minimizes:

$$I = \int_{-1}^{1} [f(x) - p(x)]^{2} dx$$

Then the minimizing polynomial is precisely the first n+1 terms of the Legendre series of f(x), i.e.:

$$c_0 P_0(x) + \ldots + c_n P_n(x)$$
, where $c_k = \frac{2k+1}{2} \int_{-1}^1 f(x) P_k(x) dx$

- Steps to solve a second order linear ODE using power series:
 - given an ODE of the type

$$F_0(x)y'' + F_1(x)y' + F_2(x)y = 0$$
 ...(1)

first convert it to the standard form

$$y'' + \frac{F_1(x)}{F_0(x)}y' + \frac{F_2(x)}{F_0(x)}y = 0 \quad \dots (2)$$

Let

$$p(x) := \frac{F_1(x)}{F_0(x)}$$
 and $q(x) := \frac{F_2(x)}{F_0(x)}$

- now find the set:

$$U := \{x_0 \in \mathbb{R} \mid p(x), q(x) \text{ are analytic at } x_0\}$$

- By the existence theorem, for every $x_0 \in U$, there will exist two independent solutions to the above ODE, call them $y_1(x)$ and $y_2(x)$, such that both of them will be analytic in an interval I around x_0
- To find the solutions in a neighborhood of x_0 , set $y(x) = \sum_{n \geq 0} a_n (x x_0)^n$ into the ODE (1) or (2) and get recursive relations involving the a_n . Note that when you do this, the coefficient functions $(p(x), q(x), F_0(x), ...)$ have to be written as power series in $x x_0$. Note that the recursive relation you get, will be same, irrespective of whether you choose equation (1) or (2)
- Thus, depending on the situation, you may want to choose (1) or (2). For example, for the Legendre equation, in the open interval (-1,1) around $x_0 = 0$, the equation (1) looks like

$$(1 - x^2)y'' - 2xy' + p(p+1)y = 0$$

while (2) looks like

$$y'' - 2\left(\sum_{n\geq 0} x^{2n+1}\right)y' + p(p+1)\left(\sum_{n\geq 0} x^{2n}\right)y = 0$$

In this case it is clear that, we should choose 1, as it will be easier to work with.

More complicated ODE's

• Def: consider the second-order linear ODE in standard form

$$y'' + p(x)y' + q(x)y = 0$$
 ...(1)

Then:

- $-x_0 \in \mathbb{R}$ is called an ordinary point of (1) if p(x) and q(x) are analytic at x_0
- $-x_0 \in \mathbb{R}$ is called regular singular point if x_0 is not an ordinary point and both $(x-x_0) p(x)$ and $(x-x_0)^2 q(x)$ are analytic at x_0 If x_0 is regular singular then there are functions b(x) and c(x) which are analytic at x_0 such that:

$$p(x) = \frac{b(x)}{(x - x_0)}$$
 and $q(x) = \frac{c(x)}{(x - x_0)^2}$

- If $x_0 \in \mathbb{R}$ is not ordinary or regular singular, then we call it irregular singular
- Cauchy-Euler equation:

$$x^2y'' + b_0xy' + c_0y = 0$$
, where $b_0, c_0 \in \mathbb{R}$

x = 0 is a regular singular point, since we can write the ODE as:

$$y'' + \frac{b_0}{x}y' + \frac{c_0}{x^2}y = 0$$

All $x \neq 0$ are ordinary points. Assume x > 0. Note that $y = x^r$ solves the equation iff:

$$r(r-1) + b_0 r + c_0 = 0$$

 $\iff r^2 + (b_0 - 1) r + c_0 = 0$

Let r_1 and r_2 denote the roots of this quadratic equation. Then:

- if the roots $r_1 \neq r_2$ are real, then x^{r_1} and x^{r_2} are two independent solutions
- if the roots $r_1 = r_2$ are real, then x^{r_1} and $(\log x)x^{r_1}$ are two independent solutions
- if the roots are complex (written as $a \pm ib$), then $x^a \cos(b \log x)$ and $x^a \sin(b \log x)$ are two independent solutions
- **Theorem:** consider the ODE:

$$x^2y'' + xb(x)y' + c(x)y = 0$$
 ...(1)

where b(x) and c(x) are analytic at 0. Then x = 0 is a regular singular point of the ODE. Then (1) has a solution of the form:

$$y(x) = x^r \sum_{n>0} a_n x^n$$
, $a_0 \neq 0$, $r \in \mathbb{C}$...(2)

The solution (2) is called Frobenius solution or fractional power series solution. The power series $\sum_{n\geq 0} a_n x^n$ converges on $(-\rho,\rho)$, where ρ is the minimum of the radius of convergence of b(x) and c(x). We will consider the solution y(x) in the open interval $(0,\rho)$.

• Indicial equation: An indicial equation, also called a characteristic equation, is a recurrence equation obtained during application of the Frobenius method of solving a second-order ordinary differential equation

- While solving an ODE around a regular singular point by the Frobenius method, the cases encountered are:
 - roots not differing by an integer. The second root is also of the form:

$$y(x) = x^{r_2} \sum_{n \ge 0} a_n(r_2) x^n$$

- repeated roots. The second root is given by:

$$y(x) = \sum_{n>0} a'_n(r_2)x^{n+r_2} + \sum_{n>0} a_n(r_2)x^{n+r_2} \log x$$

- roots differing by a positive integer. The second root is given by:

$$y(x) = \sum_{n>0} A'_n(r_2)x^{n+r_2} + \sum_{n>0} A_n(r_2)x^{n+r_2} \log x$$

The larger root always yields a fractional power series solution. In the first case, the smaller root also yields a fractional power series solution. In the second and third cases, the second solution may involve a log term.

Some classical ODE's and their solutions

- The classical ODE's are:
 - Euler equation: $\alpha x^2 y'' + \beta x y' + \gamma y = 0$
 - Bessel equation: $x^2y'' + xy' + (x^2 v^2)y = 0$
 - Laguerre equation: $xy'' + (1-x)y' + \lambda y = 0$
- For all $p \ge 1$, the Gamma function is defined as:

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt$$

•

$$\Gamma(p+1) = p\Gamma(p) \quad \Rightarrow \quad \Gamma(p) = \frac{\Gamma(p+1)}{p}$$

$$\lim_{p \to 0} \Gamma(p) = \lim_{p \to 0} \frac{\Gamma(p+1)}{p} = \pm \infty$$

$$\Gamma(1/2) = \sqrt{\pi} \approx 1.772$$

Bessel equation

• Bessel equation is the second-order linear ODE:

$$x^2y'' + xy' + (x^2 - v^2)y = 0, \quad p > 0 \quad \dots (1)$$

its solutions are called Bessel functions. Since x = 0 is a regular singular point of (1), we get a Frobenius solution, called Bessel function of first kind. The second linearly independent solution of (1) is called Bessel function of second kind.

• Bessel function of first kind of order p:

$$J_p(x) = \sum_{n \ge 0} \frac{(-1)^n}{n! \Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+p}, \quad x > 0$$

• Second solution of the Bessel equation linearly independent of $J_p(x)$:

$$J_{-p}(x) = \left(\frac{x}{2}\right)^{-p} \sum_{n>0} \frac{(-1)^n}{n! \Gamma(n-p+1)} \left(\frac{x}{2}\right)^{2n}, \quad x > 0$$

- If $p \notin \{0, 1, 2, ...\}$, $J_p(x)$ and $J_{-p}(x)$ are the two independent solutions of the Bessel equation. If $p \in \{0, 1, 2, ...\}$, then $J_{-p}(x) = (-1)^p J_p(x)$. Thus in this case the second solution is not $J_{-p}(x)$.
- Bessel's identities:

$$\frac{d}{dx}[x^{p}J_{p}(x)] = x^{p}J_{p-1}(x)$$

$$\frac{d}{dx}[x^{-p}J_{p}(x)] = -x^{-p}J_{p+1}(x)$$

$$J'_{p}(x) + \frac{p}{x}J_{p}(x) = J_{p-1}(x)$$

$$J'_{p}(x) - \frac{p}{x}J_{p}(x) = -J_{p+1}(x)$$

$$J_{p-1}(x) - J_{p+1}(x) = 2J'_{p}(x)$$

$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_{p}(x)$$

- Spherical Bessel functions arise in solving wave equations in spherical coordinates
- An algebraic function is any function y = f(x) that satisfies an equation of the form:

$$P_n(x)y^n + P_{n-1}(x)y^{n-1} + \ldots + P_1(x)y + P_0(x) = 0$$

for some n, where each $P_i(x)$ is a polynomial. Any function which can be constructed using algebraic functions is called an elementary function.

- Liouville theorem: $J_{m+\frac{1}{2}}(x)$'s are the only Bessel functions which are elementary functions
- Sturm separation theorem: if $y_1(x)$ and $y_2(x)$ are linearly independent solutions of:

$$y'' + P(x)y' + Q(x)y = 0$$

P, Q continuous on (a, b). Then:

- $-y_1(x)$ and $y_2(x)$ have no common zero on (a,b)
- between any two successive zeros of $y_1(x)$, there is exactly one zero of $y_2(x)$ and vice versa
- Theorem: let q(x) be continuous on the interval (α, β) . Let u(x) be a non-trivial solution of u'' + q(x)u = 0 on finite interval $[a, b] \subset (\alpha, \beta)$. Then u(x) has at most finite number of zeros in [a, b]. Hence if u(x) has infinitely many zeros on $(0, \infty)$, then the set of zeros of u(x) are not bounded.
- **Theorem:** let u(x) be a non-trivial solution of u'' + q(x)u = 0 If q(x) < 0 in (a, b) and continuous then u(x) has at most one zero in (a, b)
- **Theorem:** let u(x) be a non-trivial solution of u'' + q(x)u = 0. Let q(x) be continuous and q(x) > 0 for all $x > x_0 > 0$. If $\int_{x_0}^{\infty} q(x)dx = \infty$, then u(x) has infinitely many zeroes on $(0, \infty)$.

- **Theorem:** any Bessel function has infinitely many zeros on $(0, \infty)$
- Corollary: let $Z^{(p)}$ be the set of zeros of Bessel function $J_p(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded
- Sturm comparison theorem: let y(x) be a non-trivial solution of:

$$y'' + q(x)y = 0$$

and z(x) be a non-trivial solutions of:

$$z'' + r(x)z = 0$$

where q(x) > r(x) > 0 are continuous, then y(x) vanishes at least once between any two consecutive zeroes of z(x)

• **Theorem:** Substituting $u(x) = \sqrt{x}y(x)$ in Bessel equation, we get Bessel equation in normal form $(p \ge 0)$:

$$u'' + q(x) = 0$$
, $q(x) = 1 + \frac{1 - 4p^2}{4x^2}$

Now for different values of p:

- $-p < 1/2 \Rightarrow$ between any two roots of $\alpha cos(x) + \beta sin(x)$ there is a root of $y_p(x)$
- $p = 1/2 \Rightarrow x_2 x_1 = \pi$
- $-p > 1/2 \Rightarrow$ between any two roots of $y_p(x)$ there is a root of $\alpha cos(x) + \beta sin(x)$
- **Theorem:** if p < 1/2 then the sequence of differences of roots of u, $x_{n+1} x_n$ is increasing and tends to π . Similarly, we can prove that if p > 1/2 then the sequence of difference of roots of u is decreasing and tends to π .
- **Def:** for a scalar a, the scaled Bessel functions $J_p(ax)$ are solutions of:

$$x^2y'' + xy' + (a^2x^2 - p^2)y = 0$$

known as scaled Bessel equation

• **Def:** an inner product on functions on [0, 1] by:

$$\langle f, g \rangle = \int_0^1 x f(x) g(x) dx$$

This is similar to the previous inner product except that f(x)g(x) is now multiplied by x and the interval of integration is from 0 to 1. We call a function on [0,1] square integrable with respect to this inner product if:

$$\int_0^1 x f^2(x) dx < \infty$$

The multiplying factor x is called a weight function.

• **Theorem:** fix $p \ge 0$. Let $Z^{(p)} = \{\lambda_{p,1}, \lambda_{p,2}, \ldots\}$ denote the set of zeroes of $J_p(x)$ on $(0, \infty)$. Then the set of scaled Bessel functions:

$$\{J_n(\lambda_{n,1}), J_n(\lambda_{n,2}), \ldots\}$$

form an orthogonal family with respect to the above inner product, i.e., $\langle J_p(\lambda_{p,k}x), J_p(\lambda_{p,l}x) \rangle =$

$$\int_{0}^{1} x J_{p}(\lambda_{p,k} x) J_{p}(\lambda_{p,l} x) dx = \begin{cases} \frac{1}{2} [J_{p+1}(\lambda_{p,k})]^{2}, & \text{if } k = l \\ 0, & \text{if } k \neq l \end{cases}$$

• **Theorem:** fix $p \geq 0$ and $Z^{(p)} = \{\lambda_{p,1}, \lambda_{p,2}, \ldots\}$ be zeroes of $J_p(x)$ on $(0, \infty)$. Any square-integrable function f(x) on [0,1] can be expanded in a series of scaled Bessel functions $J_p(\lambda_{p,n}x)$ as:

$$f(x) = \sum_{n>1} c_n J_p(\lambda_{p,n} x)$$

where

$$c_n = \frac{2}{[J_{p+1}(\lambda_{p,n})]^2} \int_0^1 x f(x) J_p(\lambda_{p,n} x dx)$$

This is Fourier-Bessel series of f(x) for parameter p.

• Fourier-Bessel series converges to f(x) in norm, i.e.:

$$\left| \left| f(x) - \sum_{n=1}^{m} c_n J_p(\lambda_{p,n} x) \right| \right| \text{ converges to 0 as } m \to \infty$$

• Bessel expansion theorem: assume f and f' have at most a finite number of jump discontinuities in [0, 1], then the Bessel series converges for 0 < x < 1 to:

$$\frac{f(x_-) + f(x_+)}{2}$$

At x = 1, the series always converges to 0 for all f. At x = 0, if p = 0 then it converges to $f(0_+)$. At x = 0, if p > 0 then it converges to 0.

Fourier series

- A Boundary value problem (BVP) is a system of ordinary differential equations with solution and derivative values specified at more than one point
- An eigen value is each of a set of values of a parameter for which a differential equation has a non-zero solution (an eigenfunction) under given conditions
- Nonzero solutions for an eigenvalue λ are called λ -eigenfunction, or eigenfunction associated with λ
- Solving an eigenvalue problem means finding all its eigenvalues and associated eigenfunctions
- **Theorem:** the eigenvalue problem:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(L) = 0$

has infinitely many positive eigenvalues:

$$\lambda_n = \frac{n^2 \pi^2}{L^2}, \quad n = 1, 2, \dots$$

with associated eigenfunctions:

$$y_n(x) = \sin \frac{n\pi x}{L}, \quad n = 1, 2, \dots$$

there are no other eigenvalues

• **Theorem:** the eigenvalue problem:

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(L) = 0$

has an eigenvalue $\lambda_0 = 0$ with eigenfunction $y_0 = 1$, and infinitely many positive eigenvalues:

$$\lambda_n = \frac{n^2 \pi^2}{L^2}, \quad n = 1, 2, \dots$$

with associated eigenfunctions:

$$y_n(x) = \cos\frac{n\pi x}{L}, \quad n = 1, 2, \dots$$

there are no other eigenvalues

• **Theorem:** the eigenvalue problem:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(L) = 0$

has infinitely many positive eigenvalues:

$$\lambda_n = \frac{(2n+1)^2 \pi^2}{4L^2}, \quad n = 1, 2, \dots$$

with associated eigenfunctions:

$$y_n(x) = \sin\frac{(2n+1)\pi x}{2L}, \quad n = 1, 2, \dots$$

there are no other eigenvalues

• **Def:** we say two integrable unctions f and g are orthogonal on an interval [a,b] if:

$$\int_{a}^{b} f(x)g(x)dx = 0$$

More generally, we say functions $\phi_1, \phi_2, \dots, \phi_n, \dots$ (finite or infinitely many) are orthogonal on [a, b] if:

$$\int_{a}^{b} \phi_{i}(x)\phi_{j}(x)dx = 0 \quad \text{whenever} \quad i \neq j$$

• Considering the vector space of functions on [a, b], the inner product on it is defined as:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

- $L^2[a,b]$ is the subspace of those functions satisfying $\langle f,g\rangle<\infty$
- Theorem: let $f \in L^2[-L, L]$. Consider the series:

$$F_f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

which is called the Fourier series of f on [-L, L]. Here:

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

and for n > 0:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) dx cos \frac{n\pi x}{L} \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(x) dx sin \frac{n\pi x}{L}$$

The above series converges to f in the L^2 -norm, that is:

$$\lim_{N \to \infty} \left\| f - a_0 - \sum_{n=1}^{N} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \right\| = 0$$

- **Def:** a function f on [a, b] is said to be piecewise smooth if:
 - f has atmost finitely many points of discontinuity
 - -f'(0) exists and has at most finitely many points of discontinuity
 - $-f(x_0^+) = \lim_{x \to x_0^+} f(x)$ and $f'(x_0^+) = \lim_{x \to x_0^+} f'(x)$ exists if $a \ge x_0 < b$
 - $-f(x_0^-) = \lim_{x \to x_0^-} f(x)$ and $f'(x_0^-) = \lim_{x \to x_0^-} f'(x)$ exists if $a < x_0 \ge b$
- **Theorem:** let f(x) be a piecewise smooth function on [-L, L]. Then the Fourier series:

$$F_f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

of f converges to:

$$F_f(x) = \begin{cases} \frac{1}{2} [f((-L)^+) + f(L^-)], & x = -L, L \\ \frac{1}{2} [f(x^+) + f(x^-)], & x \in (-L, L) \end{cases}$$

Therefore, at every point x of continuity of f, the Fourier series converges to f(x). If we re-define f(x) at every point of discontinuity x as $\frac{1}{2}[f(x^+) + f(x^-)]$ then the Fourier series represents the function everywhere. Thus two functions can have same Fourier series.

• Suppose we have an orthogonal set $\{\phi_1, \phi_2, \ldots\}$ which has the following property. For every function f we have a series $\sum_{i \geq 1} a_i \phi_i$ which converges to f, that is:

$$\lim_{n \to \infty} ||f - \sum_{i=1}^{n} a_i \phi_i|| = 0$$

then we say that the set $\{\phi_1, \phi_2, \ldots\}$ is a normed basis for V. Note that this is different from the notion of basis, where we need that every vector should be written as a finite linear combination of the basis vectors. The the coefficient of ϕ_n in the expansion of f is given by:

$$a_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}$$

Heat equation

- A partial differential equation (PDE) is an equation involving u and the partial derivatives of u. The order of the PDE is the order of the highest partial derivative of u in the equation.
- Examples of some famous PDEs:
 - $-u_t k^2(u_{xx} + u_{yy}) = 0$: two dimensional heat equation, order 2. Here u is a function of three variables
 - $-u_{tt}-c^2(u_{xx}+u_{yy})=0$: two dimensional wave equation, order 2. Here u is a function of three variables.

- $-u_{xx}+u_{yy}=0$: two dimensional Laplace equation, order 2. Here u is a function of two variables
- $-u_{tt} + u_{xxxx} = 0$: Beam equation, order 4. Here u is a function of two variables.
- Let ${\mathscr S}$ denote a space of functions. A differential operator is a map $D:{\mathscr S}\to{\mathscr S}$
- A differential operator is said to be linear if it satisfies the condition:

$$D(u+v) = D(u) + D(v)$$

heat equation, wave equation, Laplace equation and Beam equation are linear PDEs.

• The general form of first order linear differential operator in two variables x, y is:

$$L(u) = A(x,y)u_x + B(x,y)u_y + C(x,y)u$$

The general form of first order linear differential operator in three variables x, y, z is:

$$L(u) = Au_x + Bu_y + Cu_z + Du$$

where coefficients A, B, C, D and f are functions of x, y and z. The general form of second order linear PDE in two variables x, y is:

$$L(u) = Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu$$

where coefficients A, B, C, D, E, F and f are functions of x and y.

• Classification of second order linear PDE: consider the linear differential operator L on functions in two variables:

$$L = A \frac{\partial^2}{\partial x^2} + 2B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F$$

where A, \ldots, F are functions of x and y. To the operator L we associate the discriminant $\mathbb{D}(x, y)$ given by:

$$\mathbb{D}(x,y) = A(x,y)C(x,y) - B^{2}(x,y)$$

The operator L is said to be:

- elliptic at (x_0, y_0) , if $\mathbb{D}(x_0, y_0) > 0$
- parabolic at (x_0, y_0) , if $\mathbb{D}(x_0, y_0) = 0$
- hyperbolic at (x_0, y_0) , if $\mathbb{D}(x_0, y_0) < 0$
- Two dimensional Laplace operator, $\delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is elliptic in \mathbb{R}^2 , since $\mathbb{D} = 1$
- One dimensional heat operator (there are two variables, t and x), $H = \frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2}$ is parabolic in \mathbb{R}^2 , since $\mathbb{D} = 0$
- One dimensional wave operator (there are two variables, t and x), $\square = \frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial x^2}$ is hyperbolic in \mathbb{R}^2 , since $\mathbb{D} = -1$
- For the Tricomi operator, $T = \frac{\partial^2}{\partial x^2} + x \frac{\partial^2}{\partial y^2}$, the discriminant $\mathbb{D} = x$. Hence T is elliptic in the half-plane x > 0, parabolic on the y-axis and hyperbolic in the half-plane x < 0
- **Def:** let L be a linear differential operator. The PDE Lu = 0 is called homogeneous and the PDE Lu = f, $(f \neq 0)$ is non-homogeneous.
- Principle 1: if u_1, \ldots, u_N are solutions of Lu = 0 and c_1, \ldots, c_N are constants, then $\sum_{i=1}^N c_i u_i$ is also a solution of Lu = 0. In general, space of solutions of Lu = 0 contains infinitely many independent solutions and we may need to use infinite linear combinations of them.

- Principle 2: Let L be a differentiable operator of order n. Assume:
 - $-u_1, u_2, \ldots$ are infinitely many solutions of Lu=0
 - the series $w = \sum_{i \geq 1} c_i u_i$ with c_1, c_2, \ldots constants, converges to a function, which is differentiable n times
 - term by term partial differentiation is valid for the series, that is, $Dw = \sum_{i \geq 1} c_i Du_i$, where D is any partial differentiation of order \geq order of L

Then w is again a solution of Lu = 0.

• Principle 3 (for non-homogenous PDE): if u_i is a solution of $Lu = f_i$, then:

$$w = \sum_{i=1}^{N} c_i u_i$$

with constants c_1 , is a solution of $Lu = \sum_{i=1}^{N} c_i f_i$

• The formal solution of IBVP:

$$u_t = k^2 u_{xx}, \quad 0 < x < L, \ t > 0$$

 $u(0,t) = 0, \quad t \ge 0$
 $u(L,t) = 0, \quad t \ge 0$
 $u(x,0) = f(x), \quad 0 \le x \le L$

is:

$$u(x,t) = \sum_{n=1}^{\infty} \alpha_n e^{\left(\frac{-n^2\pi^2k^2}{L^2}t\right)} sin\frac{n\pi x}{L}$$

where:

$$f(x) = \sum_{n=1}^{\infty} \alpha_n \sin \frac{n\pi x}{L}$$
 is the Fourier series of f on $[0, L]$

that is:

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

• Theorem: let f(x) be continuous and piecewise smooth on [0, L]. Let $f(x) = \sum_{n=1}^{\infty} \alpha_n \sin \frac{n\pi x}{L}$ with $\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$ be the Fourier series of f on [0, L]. Then the IBVP:

$$u_t = k^2 u_{xx}, \quad 0 < x < L, \ t > 0$$

 $u(0,t) = 0, \quad t \ge 0$
 $u(L,t) = 0, \quad t \ge 0$
 $u(x,0) = f(x), \quad 0 \le x \le L$

has a solution:

$$u(x,t) = \sum_{n=1}^{\infty} \alpha_n e^{\left(\frac{-n^2 \pi^2 k^2}{L^2}t\right)} sin \frac{n\pi x}{L}$$

Here u_t and u_{xx} can be obtained by term-wise differentiation for t > 0

• The formal solution of IBVP:

$$u_t = k^2 u_{xx}, \quad 0 < x < L, \ t > 0$$

 $u_x(0,t) = 0, \quad t > 0$
 $u_x(L,t) = 0, \quad t > 0$
 $u(x,0) = f(x), \quad 0 \le x \le L$

is:

$$u(x,t) = \sum_{n=0}^{\infty} \alpha_n e^{(\frac{-n^2\pi^2k^2}{L^2}t)} cos \frac{n\pi x}{L}$$

where:

$$S(x) = \sum_{n=0}^{\infty} \alpha_n sin \frac{n\pi x}{L}$$
 is the Fourier series of f on $[0, L]$

that is:

$$\alpha_0 = \frac{1}{L} \int_0^L f(x) dx$$

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$

• Theorem: let f(x) be continuous and piecewise smooth on [0,L]; f'(0)=f'(L)=0. Let $S(x)=\sum_{n=0}^{\infty}\alpha_n\cos\frac{n\pi x}{L}$ be the Fourier series of f on [0,L]. Then the IBVP:

$$u_t = k^2 u_{xx}, \quad 0 < x < L, \ t > 0$$

 $u_x(0,t) = 0, \quad t > 0$
 $u_x(L,t) = 0, \quad t > 0$
 $u(x,0) = f(x), \quad 0 \le x \le L$

has a solution:

$$u(x,t) = \sum_{n=0}^{\infty} \alpha_n e^{\left(\frac{-n^2\pi^2k^2}{L^2}t\right)} cos \frac{n\pi x}{L}$$

Here u_t and u_{xx} can be obtained by term-wise differentiation for t > 0

Wave equation

• **Theorem:** consider the wave equation with initial and boundary values (Dirichlet conditions) given by:

$$u_{tt} = k^{2}u_{xx}, \quad 0 < x < L, \ t > 0$$

$$u(0,t) = u(L,t) = 0, \quad t > 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L$$

$$u_{t}(x,0) = g(x), \quad 0 \le x \le L$$

The formal solution of the above problem is:

$$u(x,t) = \sum_{n>1} \left(\alpha_n cos \left(\frac{kn\pi}{L} t \right) + \frac{\beta_n L}{kn\pi} sin \left(\frac{kn\pi}{L} t \right) \right) sin \frac{n\pi x}{L}$$

where:

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \text{ and}$$
$$\beta_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx$$

• **Theorem:** let f and g be continuous and piecewise smooth functions on [0, L] such that f(0) = f(L) = 0. Then the problem given by (Dirichlet conditions):

$$u_{tt} = k^2 u_{xx}, \quad 0 < x < L, \ t > 0$$

$$u(0,t) = u(L,t) = 0, \quad t \ge 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L$$

$$u_t(x,0) = g(x), \quad 0 \le x \le L$$

has an actual solution, which is given by:

$$u(x,t) = \sum_{n>1} \left(\alpha_n cos \left(\frac{kn\pi}{L} t \right) + \frac{\beta_n L}{kn\pi} sin \left(\frac{kn\pi}{L} t \right) \right) sin \frac{n\pi x}{L}$$

where:

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$
 and
$$\beta_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx$$

• **Theorem:** consider the wave equation with initial and boundary values (Neumann conditions) given by:

$$u_{tt} = k^{2}u_{xx}, \quad 0 < x < L, \ t > 0$$

$$u_{x}(0,t) = u_{x}(L,t) = 0, \quad t > 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L$$

$$u_{t}(x,0) = g(x), \quad 0 \le x \le L$$

The formal solution of the above problem is:

$$u(x,t) = \beta_0 t + \alpha_0 + \sum_{n \ge 1} \left(\alpha_n \cos\left(\frac{kn\pi}{L}t\right) + \frac{\beta_n L}{kn\pi} \sin\left(\frac{kn\pi}{L}t\right) \right) \sin\frac{n\pi x}{L}$$

where:

$$\alpha_0 = \frac{1}{L} \int_0^L f(x) dx \qquad \alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \text{ and}$$

$$\beta_0 = \frac{1}{L} \int_0^L g(x) dx \qquad \beta_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx$$

• **Theorem:** let f and g be continuous and piecewise smooth functions on [0, L]. Then the problem given by (Neumann conditions):

$$u_{tt} = k^{2}u_{xx}, \quad 0 < x < L, \ t > 0$$

$$u_{x}(0,t) = u_{x}(L,t) = 0, \quad t \ge 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L$$

$$u_{t}(x,0) = g(x), \quad 0 \le x \le L$$

has an actual solution, which is given by:

$$u(x,t) = \beta_0 t + \alpha_0 + \sum_{n \ge 1} \left(\alpha_n \cos\left(\frac{kn\pi}{L}t\right) + \frac{\beta_n L}{kn\pi} \sin\left(\frac{kn\pi}{L}t\right) \right) \sin\frac{n\pi x}{L}$$

where:

$$\alpha_0 = \frac{1}{L} \int_0^L f(x) dx \qquad \alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \text{ and}$$

$$\beta_0 = \frac{1}{L} \int_0^L g(x) dx \qquad \beta_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx$$

Laplace equation

• **Theorem:** consider the Laplace equation with initial and boundary values (Dirichlet conditions) given by:

$$u_{xx} + u_{yy} = 0$$
, $0 < x < a$, $0 < y < b$
 $u(0, y) = u(a, y) = 0$, $0 \le y \le b$
 $u(x, 0) = f(x)$, $0 \le x \le a$
 $u(x, b) = 0$

The formal solution of the above problem is:

$$u(x,y) = \sum_{n>1} \left(\alpha_n \sin\left(\frac{n\pi x}{a}\right) + \sinh\left(\frac{n\pi (b-y)}{a}\right) / \sinh\left(\frac{n\pi b}{a}\right) \right)$$

where:

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

• **Theorem:** let f be continuous and piecewise smooth function on [0, a] such that f(0) = f(a) = 0. Consider the Laplace equation with the boundary values (Dirichlet conditions):

$$u_{xx} + u_{yy} = 0$$
, $0 < x < a$, $0 < y < b$
 $u(0, y) = u(a, y) = 0$, $0 \le y \le b$
 $u(x, 0) = f(x)$, $0 \le x \le a$
 $u(x, b) = 0$

The solution to the above problem is given by:

$$u(x,y) = \sum_{n>1} \left(\alpha_n \sin\left(\frac{n\pi x}{a}\right) + \sinh\left(\frac{n\pi (b-y)}{a}\right) / \sinh\left(\frac{n\pi b}{a}\right) \right)$$

where:

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

• Theorem: consider the Laplace equation with boundary values (Neumann conditions) given by:

$$u_{xx} + u_{yy} = 0$$
, $0 < x < a$, $0 < y < b$
 $u_x(0, y) = u_x(a, y) = 0$, $0 \le y \le b$
 $u(x, 0) = f(x)$, $0 \le x \le a$
 $u(x, b) = 0$, $0 \le x \le a$

The formal solution of the above problem is:

$$u(x,y) = \alpha_0 \left(\frac{-1}{b}y + 1\right) + \sum_{n \ge 1} \left(\alpha_n \cos\left(\frac{n\pi x}{a}\right) + \sinh\left(\frac{n\pi(b-y)}{a}\right) / \sinh\left(\frac{n\pi b}{a}\right)\right)$$

where:

$$\alpha_0 = \frac{1}{L} \int_0^L f(x) dx$$
 $\qquad \qquad \alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$

• **Theorem:** let f be continuous and piecewise smooth function on [0, a]. Consider the Laplace equation with the boundary values (Neumann conditions):

$$u_{xx} + u_{yy} = 0$$
, $0 < x < a$, $0 < y < b$
 $u_x(0, y) = u_x(a, y) = 0$, $0 \le y \le b$
 $u(x, 0) = f(x)$, $0 \le x \le a$
 $u(x, b) = 0$, $0 \le x \le a$

The solution to the above problem is given by:

$$u(x,y) = \alpha_0 \left(\frac{-1}{b}y + 1\right) + \sum_{n>1} \left(\alpha_n \cos\left(\frac{n\pi x}{a}\right) + \sinh\left(\frac{n\pi(b-y)}{a}\right) / \sinh\left(\frac{n\pi b}{a}\right)\right)$$

where:

$$\alpha_0 = \frac{1}{L} \int_0^L f(x) dx$$
 $\qquad \alpha_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$

• Laplace operator in polar coordinates:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

• Theorem: consider the differential equation:

$$u_{tt} = k^2 (u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta}), \quad k > 0$$

in the disc $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < R^2\}$, with initial conditions:

$$u(r, \theta, 0) = f(r, \theta)$$
 and $u_t(r, \theta, 0) = g(r, \theta)$

where f and g are smooth functions in the disc, and boundary condition $u(R, \theta, t) = 0$. This differential equation with the given initial and boundary conditions has a solution given by:

$$u(r, \theta, t) = \sum_{n \ge 0, i \ge 1} \left(A_{n,i} \cos(n \theta) \cos(\mu_{n,i} t) + B_{n,i} \sin(n \theta) \cos(\mu_{n,i} t) + A_{n,i} \sin(\mu_{n,i} t$$

$$C_{n,i}\cos(n\theta)\sin(\mu_{n,i}t) + D_{n,i}\sin(n\theta)\sin(\mu_{n,i}t)$$
 $J_n(\mu_{n,i}r)$

where:

$$A_{n,i} = \frac{\langle f, J_n(\mu_{n,i} r) \cos(n \theta) \rangle}{\langle J_n(\mu_{n,i} r) \cos(n \theta), J_n(\mu_{n,i} r) \cos(n \theta) \rangle}$$

$$B_{n,i} = \frac{\langle f, J_n(\mu_{n,i} r) \sin(n \theta) \rangle}{\langle J_n(\mu_{n,i} r) \sin(n \theta), J_n(\mu_{n,i} r) \sin(n \theta) \rangle}$$

$$C_{n,i} = \frac{1}{\mu_{n,i}} \frac{\langle g, J_n(\mu_{n,i} r) \cos(n \theta) \rangle}{\langle J_n(\mu_{n,i} r) \cos(n \theta), J_n(\mu_{n,i} r) \cos(n \theta) \rangle}$$

$$D_{n,i} = \frac{1}{\mu_{n,i}} \frac{\langle g, J_n(\mu_{n,i}r) \sin(n\theta) \rangle}{\langle J_n(\mu_{n,i}r) \sin(n\theta), J_n(\mu_{n,i}r) \sin(n\theta) \rangle}$$

 \bullet For non-homogenous equations, first make a substitution for u and then try to find suitable solutions