Algorithm Design and Analysis

David N. JANSEN, Bohua ZHAN 组

算法设计与分析

詹博华,杨大卫

This week's content

这馬的内容

- Today Wednesday:
 - Recap Simple Sort Algorithms
 - Chapter 6: Heapsort and Priority Queues
 - Exercises
- Tomorrow Thursday:
 - Exercise solutions
 - Chapter 7: Quicksort
 - Chapter 8: Linear sorting

• 今天周三:

- 复习简单的排序算法
- 第6章: 堆排序,优先队列
- 练习
- 明天周四:
 - 练习题解答
 - 第7章: 快速排序
 - 第8章: 线性时间排序

Recap

What is an algorithm?

• 什么是算法?

Recap

- Algorithm := sequence of instructions that transform input into output 把输入转换成输出的计算步骤的序列
- Big-O Notation: describe asymptotic rate of growth of functions
 大O记号: 描写函数的渐近的增长速度
- Divide and Conquer: a method to construct algorithms
 divide a problem into smaller problems and solve every one recursively
- Recurrence 递归式: describe runtime of a divide-and-conquer algorithm

Simple Sort Algorithms

简单的排序算法

Simple Sort Algorithms 简单的排序算法

Insertion Sort:

The first part of the array is already sorted. To extend that part, insert an additional element in the correct place.

Selection Sort:

The first part of the array already contains the smallest elements in order.

To extend that part, find the smallest remaining element and append it to the sorted elements.

插入排序:

数组的第一部分已经排序的。 为了延长这个部分, 在正确的位置插入一个附加元素。

• 选择排序:

数组的第一部分已包含 最小的元素按顺序。 为了延长这个部分, 找到剩余的最小元素, 并将其附加到已排序的元素中。

Insertion Sort

INSERTION-SORT(array A)

```
j–1 ≤ A.length \land
A[1 ... j–1] is sorted
```

```
for j := 2 to A.length
key = A[j]
i = j - 1
while i > 0 and A[i] > key
A[i+1] = A[i]
i = i - 1
A[i+1] = key
```

A[1 ... *j*] is sorted

 $j \leq A.length \land$

Insertion Sort

```
j–1 ≤ A.length \land
A[1 ... j–1] is sorted
```

```
j \le A.length \land
 A[1 ... j] is sorted
```

```
j–1 ≤ A.length ∧ A[1 ... j–1] is sorted
```

```
INSERTION-SORT(array A)
j=2
while j \leq A.length
      key = A[j]
      i = j - 1
       while i > 0 and A[i] > key
             A[i+1] = A[i]
             i = i - 1
      A[i + 1] = key
      j = j + 1
```

 $0 \le i \le j-1 \le A.length \land$ $A[1 ... i] \text{ is sorted } \land$ $\langle key, A[i+2 ... j-1] \rangle \text{ is sorted}$

Loop Invariant

- Initialisation: Need to prove: When the loop starts, the loop invariant holds.
- Maintenance: Need to prove: If the loop invariant (and the loop condition) hold at the beginning of the loop iteration, then the invariant holds at the end of the loop iteration.
- Termination: Use the loop invariant (and the negation of loop condition) to prove any property required after the loop.

循环不变式

- 初始化:需要证明:循环开始的时候,不变式为真。
- 保特:需要证明: 如果某次迭代之前不变式(和循环条件) 为真, 那么这次迭代之后它仍为真。

终止:使用循环不变式 (和循环条件的否定) 证明任何循环后的要求。

Insertion Sort: Loop Invariant

• Loop invariant for insertion sort: At the beginning of an iteration, $j-1 \le A.length \land A[1 ... j-1]$ is sorted.

- Initialisation: When the loop starts (j = 2), $1 \le A.length \land A[1 ... 1]$ is sorted.
- Maintenance: If at beginning of an iteration, $j-1 \le A.length \land A[1 ... j-1]$ is sorted, then at end of the iteration $j \le A.length \land A[1 ... j]$ is sorted (before j = j+1).
- Termination: At the end of the last iteration (j = n), A[1 ... n] is sorted.

Selection Sort

SELECTION-SORT(array A)

```
A[1 \dots j-1] is sorted 
 \land no element of 
 A[j \dots n] is smaller
```

```
for j := 1 to A.length-1

min = j

for i = j+1 to A.length

if A[i] < A[min]

min = i

Swap A[j] and A[min]
```

 $A[1 \dots j-1]$ is sorted \land no element of $A[j \dots n]$ is smaller $\land A[min]$ is minimal in $A[j \dots i-1]$

```
A[1 ... j] is sorted \land no element of A[j+1 ... n] is smaller
```

Runtime analysis of selection sort

- n = A.length
- Outer loop runs n-1 times.
- Inner loop runs n-1, n-2, ..., 2, 1 times = $n(n-1)/2 = (n^2 n)/2$ times total.
- Therefore, the whole algorithm is in $\Theta(n^2)$.
- Even if the array is already sorted, the loops are not left early.
 Slower than insertion sort!

Heapsort

推排序

Heap

十 住

- Array that can be viewed as a nearly complete binary tree
- root node is A[1]
- children of A[i] are A[2i] and A[2i+1] (if 2i and $2i+1 \le A.heap$ -size, resp.)
- parent of A[i] is $A[\lfloor i/2 \rfloor]$ (if i > 1)
- A.length = allocated size of array
 A.heap-size = number of elements in heap

- 数组, 可以看成一个近似的完全二叉树
- 根结点是 A[1]
- A[i] 的孩子结点是 A[2i] 和 A[2i+1]
 (如果 2i 和 2i+1 ≤ A.heap-size)
- *A[i]* 的父结点 *A*[[*i*/2]] (*i* > 1 的话)
- A.length = 数组的分配大小 A.heap-size = 堆中的元素数

Heap

上 住

Max-Heap, Min-Heap

use max-heaps for sorting, they satisfy the max-heap property:

$$A[PARENT(i)] \ge A[i]$$
 if $i > 1$

- (Root of contains the largest node.)
- use min-heaps for min-priority queues, they satisfy the min-heap property:

```
A[PARENT(i)] \ge A[i] if i > 1
```

最大堆,最小堆

- 使用最大堆可以排序,最大堆满足最大堆性质:
 - $A[PARENT(i)] \ge A[i]$ 如果 i > 1
- (最大堆的根保存最大的结点。)
- 使用最小堆可以实现最小优先队列,最小堆满足最小堆性质:

 $A[PARENT(i)] \leq A[i]$ 如果 i > 1

Max-Heap

大堆

Operations on Max-Heaps

最大堆的操作

- Max-Heapify:
 correct one error in a max-heap
 Running time: O(log n)
- Build-Max-Heap: build a heap from an unordered array Running time: O(n)
- HEAPSORT:
 sort an array using a heap
 Running time: O(n log n)

- MAX-HEAPIFY:
 更正最大堆中的一个错误
 运行时间: O(log n)
- BUILD-MAX-HEAP:
 从无序数组构造最大堆运行时间: O(n)
- HEAPSORT:
 使用最大堆对数组进行排序
 运行时间: O(n log n)

- correct an error at A[i]
- Precondition: children A[2i] and A[2i+1] are correct max-heaps
 (i.e. all their descendants satisfy the max-heap property),
 A[i] may be too small.
- Postcondition: A[i] is a correct maxheap.

- 更正最大堆中 A[i] 的错误
- 先条件:孩子结点 *A*[2*i*] 和 *A*[2*i*+1] 是正确的最大堆 (他们的子孙结点都满足 最大堆性质) 但是可能 *A*[*i*] 小于他的孩子结点。
- 后条件: A[I] 是正确的最大堆。

Find the largest of A[i], $A[\ell]$, A[r]

MAX-HEAPIFY

```
Max-Heapify (A, i)
\ell = LEFT(i) 1/l = 2i
r = RIGHT(i) 1/r = 2i + 1
if l \leq A.heap-size and A[\ell] > A[i]
       largest = \ell
       largest = i
else
if r \le A.heap-size and A[r] > A[largest]
       largest = r
if largest ≠ i
       Exchange A[i] with A[largest]
       Max-Heapify(A, largest)
```

 $A[i], A[\ell],$

A[r]中找到最大的

元素

- build a heap from an unordered array
- Idea:
 - 1-element trees are correct heaps
 - use Max-Heapify to construct heaps from smaller correct ones
 - repeat constructing heaps
 until A[1] is root of a correct heap

- 从无序数组构造最大堆
- 主意:
 - 1个元素的树是正确的堆
 - 使用 MAX-HEAPIFY 从较小的正确堆构造堆
 - 重复建造堆直到 A[1]

4 1 3 2 16 9 10 14 8 7

A.length = 10

Build-Max-Heap(A) A.heap-size = A.length**for** i = PARENT(A.length) //[A.length / 2]

A[i+1], ..., A[A.length] are roots of correct max-heaps.

MAX-HEAPIFY(A, i)

A[i+1], ..., A[A.length]都是正确的最大堆的根。

A.length is even 偶数

A.length is odd 奇数

downto 1

- Loop invariant: A[i+1], ..., A[A.length] are roots of correct max-heaps.
- Initialisation: The loop invariant holds because the nodes A[[A.length / 2]+1], ..., A[A.length] have no children.
- Maintenance: Max-Heapify(A, i) ensures that A[i] becomes a correct max-heap.
- Termination: A[1] is a root of a correct max-heap. \Rightarrow The whole heap is correct.

- 循环不变式: *A[i*+1], ..., *A[A.length*] 都是正确的最大堆的根。
- 初始化:循环不变式为真
 因为结点 A[[A.length / 2]+1], ...,
 A[A.length] 没有孩子结点。
- 保特: Max-Heapify(*A*, *i*) 确保 *A*[*i*] 成为正确的最大堆。
- 终止: A[1] 是正确的最大堆的根。
 - ➡整个最大堆是正确的。

Running Time

- How many calls to MAX-HEAPIFY including recursive calls?
 - $i = \lfloor n/4 \rfloor + 1, ..., \lfloor n/2 \rfloor$: no recursive calls
 - $i = \lfloor n/8 \rfloor + 1, ..., \lfloor n/4 \rfloor$: at most 1 recursive call
- (Max-Heapify contains no loops, so time is in O(calls to Max-Heapify).)

运行时间

Running Time

运行时间

• How many calls to Max-Heapify including recursive calls?

Running Time

运行时间

- How many calls to Max-Heapify including recursive calls?
 - overall upper bound:

$$\sum_{h=1}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{h+1}} \right] h = O(n \frac{1}{2} \sum_{h=1}^{\lfloor \lg n \rfloor} \frac{h}{2^h}) = O(n)$$

Note:
$$\sum_{h=1}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \le \sum_{h=1}^{\infty} \frac{h}{2^h} =: p$$
, then $p = \frac{1}{2} \sum_{h=1}^{\infty} \frac{h-1}{2^{h-1}} + \frac{1}{2^{h-1}} = \frac{1}{2^{h-1$

HEAPSORT

sort an array using a heap

• 使用最大堆对数组进行排序

- Idea:
 - 1. use Build-Max-Heap to construct a heap
 - 2. repeatedly remove the largest element (= the root of the heap) and correct the heap with Max-HEAPIFY

Result of Build-Max-Heap

Result of Build-Max-Heap

Remove largest element 移开最大的元素

Remove largest element 移开最大的元素

Heap is correct

大能工E有用出了

Remove largest element

移开最大的元素

Remove largest element 移开最大的元素

Remove largest element 移开最大的元素

61

Heap is correct

大住 IE 何用台勺

62

Remove largest element

移开最大的元素

Remove largest element

移开最大的元素

A.heap-size = 7A.length =

A.heap-size = 7 A.length = 10

10

Heap is correct

大自工E有用自匀

Remove largest element

移开最大的元素

Remove largest element

移开最大的元素

A.heap-size = 6A.length = 10

9

10

14

16

A.heap-size = 6 A.length = 10

Heap is correct

推正傾的

Remove largest element

移开最大的元素

Remove largest element

移开最大的元素

A.heap-size = 5A.length =

Correct error in heap 纠正堆内的错误

A.heap-size = 5 A.length = 10

8

Heap is correct

扩展 IE 有用 出了

Remove largest element

移开最大的元素

Remove largest element

移开最大的元素

A.heap-size = 4A.length = 10

Heap is correct

大住 IE 有用 出了

Remove largest element

移开最大的元素

Remove largest element

移开最大的元素

A.heap-size = 3A.length =

Heap is correct

才能 IE 有用 出了

A.heap-size = 3 A.length = 10

8 9 10

Remove largest element

移开最大的元素

A.heap-size = 3 A.length = 10

7 8 9 10

Remove largest element

移开最大的元素

A.heap-size = 2A.length = 10

7 8 9 10

Heap is correct

才能 IE 有用 出了

A.heap-size = 2 A.length = 10

7 8 9 10

Remove largest element 移开最大的元素

A.heap-size = 1 A.length = 10

3 4 7 8 9 10

Finished!

A.heap-size = 0A.length = 10

1 2 3 4 7 8 9 10 14

HEAPSORT

A[1], ..., A[i] is a correct max-heap. A[i+1], ..., A[A.length] contains the largest elements of A in order. i = A.heap-size.

HEAPSORT(A)
BUILD-MAX-HEAP(A)

for i = A.length downto 2

Exchange A[1] with A[i] A.heap-size = A.heap-size - 1MAX-HEAPIFY(A, 1)

 A[1], ..., A[i] 是

 正确的最大堆。

 A[i+1], ..., A[A.length]

 按顺序保存

 A的最大的元素。

 i = A.heap-size。

Running Time

- n = A.length
- HEAPSORT first calls Build-Max-Heap, which takes time O(n).
- Then it calls n-1 times Max-HEAPIFY; these calls take time $O(\log (n-1) + \log (n-2) + ... + \log 1) = O(\log (n-1)!) = O(n \log n)$.

运行时间

Running Time

运行时间

• The call to Max-Heapify after removing this node from the heap takes time ...:

Priority Queues

优先队列

Priority Queue

运行时间

- Examples:
 - scheduling of printer jobs
 - work with deadlines:
 need to handle urgent business
 before less urgent one
- Need queue where one job can overtake another
- priority: high priority = handle first

Priority Queue

- use heap data structure to store priority queue
- need additional operations:
 - HEAP-EXTRACT-Max: find the job with the highest priority and remove it from the queue.
 - HEAP-INCREASE-KEY: increase the priority of some waiting job
 - Max-Heap-Insert: add a new job to the priority queue

优先队列

Extract Maximum

- In a heap, the maximum is always the root

 → easy to find
- To remove the maximum, one needs to replace it by some other entry (and correct the heap property)
 - ⇒ similar to one step in HEAPSORT

HEAP-EXTRACT-MAX

Extract Maximum

- In a heap, the maximum is always the root
 → easy to find
- To remove the maximum, one needs to replace it by some other entry (and correct the heap property)
 - ⇒ similar to one step in HEAPSORT
- Running time: $O(1 + \log n) = O(\log n)$

Increase Key

- Sometimes priorities change.
- A max-heap priority queue can increase the priority.
- Idea: if the new priority is too large (violates the max-heap property), exchange the node with its parent.
- (Max-Heapify can be used to decrease priority.)

HEAP-INCREASE-KEY

```
HEAP-INCREASE-KEY(A, i, key) // changes the priority of A[i] to key if key < A[i] error "new key is smaller than current key" A[i] = key while i > 1 and A[PARENT(i)] < A[i] Exchange A[i] with A[PARENT(i)] i = PARENT(i)
```

Increase Key

- Sometimes priorities change.
- A max-heap priority queue can increase the priority.
- Idea: if the new priority is too large (violates the max-heap property), exchange the node with its parent.
- Running time: $O(\log n)$ because the loop may go through all ancestors of A[i].

Insert a new job

Idea to insert a new job:
 First insert the job with priority -∞,
 then increase priority to actual value using HEAP-INCREASE-KEY.

MAX-HEAP-INSERT

```
MAX-HEAP-INSERT(A, key) // adds a new entry with priority key if A.length \le A.heap-size error "The heap storage is full" A.heap-size = A.heap-size + 1 A[A.heap-size] = -\infty HEAP-INCREASE-KEY(A, A.heap-size, key)
```

Insert a new job

- Idea to insert a new job:
 First insert the job with priority -∞,
 then increase priority to actual value using HEAP-INCREASE-KEY.
- Running time: only few operations in addition to HEAP-INCREASE-KEY, so the runtime is in $O(\log n)$.

Exercises

练之

4.3-7

- Using the master method in Section 4.5, you can show that the solution to the recurrence T(n) = 4T(n/3) + n is $T(n) = \Theta(n^{\log_3 4})$. Show that a substitution proof with the assumption $T(n) \le cn^{\log_3 4}$ fails. Then show how to subtract off a lower-order term to make a substitution proof work.
- 使用4.5节中的主方法,可以证明
 T(*n*) = 4*T*(*n*/3) + *n* 的解为
 T(*n*) = Θ(*n*^{log₃ 4})。说明基于假设 *T*(*n*) ≤ *cn*^{log₃ 4} 的代入法不能证明这一结论。然后说明如何通过减去一个低阶项完成代入法证明。

4.3-9

Solve the recurrence

$$T(n) = 3T(\sqrt{n}) + \lg n$$

by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.

• 使用改变变量的方法求解归式

$$T(n) = 3T(\sqrt{n}) + \lg n$$

你的解应该是渐近紧确的。不必担心数值是否是整数。

6.4-1

• Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array $A = \langle 5, 13, 2, 25, 7, 17, 20, 8, 4 \rangle$.

参照图6-4的方法,说明HEAPSORT在数组A = 〈5,13,2,25,7,17,20,8,4〉
 上的操作过程。

Emergency Queue

Assume that the priority queue in an hospital emergency ward is implemented using heaps. Draw the heap that results after each of the steps on the following slide.

急诊室队列

假设医院急诊病房中的优先级队列是使用堆来实现的。绘制每个下一张幻灯片上步骤后的结果堆。

Emergency Queue

急诊室队列

- 1. Patient A arrives with urgency 7.
- 2. Patient B arrives with urgency 3.
- 3. Patient C arrives with urgency 5.
- 4. The doctor calls one patient for treatment.
- 5. Patient D arrives with urgency 8.
- 6. The doctor calls one patient for treatment.
- 7. Patient E arrives with urgency 4.
- 8. Patient B leaves the hospital without treatment.
- 9. The urgency of patient E changes to 6.
- 10. The doctor calls one patient for treatment.
- 11. The doctor calls one patient for treatment.

- 1. 病人 A 到达记者们,紧急度7。
- 2. 病人 B 到达记者们,紧急度3。
- 3. 病人 C 到达记者们,紧急度5。
- 4. 医生叫一个病人来治疗。
- 5. 病人 D 到达记者们,紧急度8。
- 6. 医生叫一个病人来治疗。
- 7. 病人 E 到达记者们,紧急度4。
- 8. 病人 B 未经治疗就出院了。
- 9. 病人 E 的紧急度增加到6。
- 10. 医生叫一个病人来治疗。
- 11. 医生叫一个病人来治疗。