1.

a)
$$0+1+2+3+4+5 = 15$$

b)
$$(2^{\circ})+(2^{1})+(2^{2})+(2^{3})+(2^{4})+(2^{5})=63$$

c)
$$(0 + 2^0) + (1 + 2^1) + (2 + 2^2) + (3 + 2^3) + (4 + 2^4) + (5 + 2^5) = 1 + 3 + 6 + 11 + 20 + 37 = 78$$

d)
$$n + n + ... + n = n * n = n^2$$

2.

n	5n	4n²	2 ⁿ⁻¹
0	0	0	0,5
1	5	4	1
2	10	16	2
3	15	36	4
4	20	64	8
5	25	100	16
6	30	144	32
7	35	196	64
8	40	256	128
9	45	324	256
10	50	400	512
12	60	576	2048
14	70	784	8192
16	80	1024	32768
18	90	1296	131072
20	100	1600	524288

*Momento em que 4n² é CAS para 5n;

3.

a)
$$2n^3 + n(n^2 - n - 1)$$

$$2n^3 + n^3 - n^2 - n$$

Complexidade O(n³)

b)
$$(n^2 + 2)/n$$

 $n^2/n + 2/n$

n

Complexidade O(n)

 $(n^2 - n)/2$

Complexidade O(n²)

^{*}Momento em que 2ⁿ⁻¹ é CAS para 4n².

```
d) n + n^2 \log n
Complexidade O(n<sup>2</sup> log n)
4.
a)
       L1. On
       L2. n \Theta(n) = O(n^2)
       L3. n^2n = O(n^3)
       L4. O(1)
                       //constante porque é uma atribuição normal
       O(n) + O(n^2) + O(n^3) = O(n^3)
b)
       L1. O(n)
       L2. n O(n) = O(n^2)
       L3. O(n<sup>2</sup>)
       L4. n^2 O(n) = O(n^3)
       L5. O(n<sup>3</sup>)
       O(n) + O(n^2) + O(n^2) + O(n^3) + O(n^3) = O(n^3)
c)
       inteiro max(inteiro: vet[n])
       L3. O(1)
       L4. O(n)
       L5. O(1)
       L6. O(1)
       Algoritmo XYZ
       L3. O(n)
       L4. O(1)
       L5. O(1)
       L7. O(1)
       L8. n O(n)
       L9. n O(n) = O(n^2)
       L10. n O(n^2) = O(n^3)
       L11. O(1)
       (7 * O(1)) + (2 * O(n)) + O(n^2) + O(n^3) = O(n^3)
5.
Para duas funções g(n) e f(n) temos que f(n) = \Theta(g(n)) \longleftrightarrow f(n) = \Omega(g(n)) e f(n) = \Omega(g(n))
O(g(n)).
f(n) = \Theta(g(n)) é a cota assintótica exata : c.f(n) é CAS para g(n);
f(n) = \Omega(g(n)) é a cota assintótica inferior : c.f(n) é CAS para g(n);
f(n) = O(g(n)) é a cota assintótica superior : c.g(n) é CAS para f(n).
```

- Sim, pois se o melhor caso é O(n log n), então ele representa o limite assintótico inferior (Ω (n log n)).
- 7.
- a) Complexidade de tempo representa o tempo necessário para a execução de um algoritmo; complexidade de espaço representa a memória necessária para a execução de determinado algoritmo.
- b) Complexidade pessimista trata-se de quando a solução do algoritmo se dá na última solução possível; complexidade média é a esperada, onde há um processamento médio para solução do algoritmo; quanto ao melhor caso, trata-se de quando o algoritmo encontra a solução na primeira iteração executada, gastando o mínimo de processamento.
- c) Separa-se a função dominante quanto às complexidades e ignora-se as demais.
- d) Número de elementos a ser processado.
- e) Ordem das funções conforme respectivos crescimentos CAS, Ω , Θ .
- f) Chama-se de Cota Assintótica Superior (CAS) uma função que cresce mais rapidamente que outra a partir de determinado momento.
- 8. O limite assintótico inferior representa o número mínimo de passos que o algoritmo irá executar para encontrar uma solução o qual indica o melhor caso do algoritmo; já o limite assintótico superior mostra como se dá o crescimento de determinado algoritmo, representando o "número máximo" (conhecido no momento) de passos a serem executados no pior caso do algoritmo em questão.