Signal Processing First

Lecture 4 **Spectrum Representation**

8/31/2003 © 2003. JH McClellan & RW Schafer

READING ASSIGNMENTS

- This Lecture:
 - Chapter 3, Section 3-1
- Other Reading:
 - Appendix A: Complex Numbers
 - Next Lecture: Ch 3, Sects 3-2, 3-3, 3-7 & 3-8

8/31/2003 © 2003. JH McClellan & RW Schafer

LECTURE OBJECTIVES

- Sinusoids with DIFFERENT Frequencies
 - SYNTHESIZE by Adding Sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

- SPECTRUM Representation
 - Graphical Form shows DIFFERENT Freqs

FREQUENCY DIAGRAM

Plot Complex Amplitude vs. Freq

8/31/2003 © 2003, JH McClellan & RW Schafer © 2003, JH McClellan & RW Schafer

Another FREQ. Diagram

8/31/2003 © 2003, JH McClellan & RW Schafer

MOTIVATION

- Synthesize Complicated Signals
 - Musical Notes
 - Piano uses 3 strings for many notes
 - Chords: play several notes simultaneously
 - Human Speech
 - Vowels have dominant frequencies
 - Application: computer generated speech

Sum of sinusoids?

8/31/2003 © 2003, JH McClellan & RW Schafer

Fur Elise WAVEFORM

8/31/2003

Speech Signal: BAT

- Nearly <u>Periodic</u> in Vowel Region
 - Period is (Approximately) T = 0.0065 sec

8/31/2003 © 2003, JH McClellan & RW Schafer

Euler's Formula Reversed

Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

8/31/2003

© 2003, JH McClellan & RW Schafer

INVERSE Euler's Formula

Solve for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

8/31/2003

© 2003, JH McClellan & RW Schafer

11

SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

$$A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$$

One has a positive frequency
The other has negative freq.
Amplitude of each is half as big

NEGATIVE FREQUENCY

- Is negative frequency real?
- Doppler Radar provides an example
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz ←→60 mph
 - +400Hz means towards the radar
 - -400Hz means away (opposite direction)
 - Think of a train whistle

8/31/2003 © 2003, JH McClellan & RW Schafer 12 8/31/2003 © 2003, JH McClellan & RW Schafer 13

SPECTRUM of SINE

Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$

$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

$$\frac{-1}{j} = j = e^{j0.5\pi}$$

- Positive freq. has phase = -0.5π
- Negative freq. has phase = $+0.5\pi$

8/31/2003 © 2003, JH McClellan & RW Schafer

GRAPHICAL SPECTRUM

EXAMPLE of SINE

AMPLITUDE, PHASE & FREQUENCY are shown

8/31/2003 © 2003, JH McClellan & RW Schafer 15

SPECTRUM ---> SINUSOID

Add the spectrum components:

What is the formula for the signal x(t)?

Gather (A,\omega,\phi) information

- Frequencies:
 - -250 Hz
 - -100 Hz
 - 0 Hz
 - 100 Hz
 - 250 Hz

- Amplitude & Phase
 - 4 -π/2
 - 7 +π/3 **←**
 - **1**0 **0**
 - 7 -π/3 **←**
 - $4 + \pi/2$

Note the conjugate phase

DC is another name for zero-freq component

DC component always has $\phi=0$ or π (for real x(t))

8/31/2003 © 2003, JH McClellan & RW Schafer 16 8/31/2003 © 2003, JH McClellan & RW Schafer 17

Add Spectrum Components-1

Add Spectrum Components-2

Simplify Components

$$x(t) = 10 +$$

$$7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$

$$4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

FINAL ANSWER

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

So, we get the general form:

8/31/2003

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

8/31/2003 © 2003, JH McClellan & RW Schafer 20

© 2003. JH McClellan & RW Schafer

2

Summary: GENERAL FORM

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

$$x(t) = X_0 + \sum_{k=1}^{N} \Re e \left\{ X_k e^{j2\pi f_k t} \right\}$$

$$X_k = A_k e^{j\varphi_k}$$

$$X_k = A_k e^{j\varphi_k}$$
Frequency = f_k

$$x(t) = X_0 + \sum_{k=1}^{N} \left\{ \frac{1}{2} X_k e^{j2\pi f_k t} + \frac{1}{2} X_k^* e^{-j2\pi f_k t} \right\}$$

8/31/2003 © 2003, JH McClellan & RW Schafer

Example: Synthetic Vowel

Sum of 5 Frequency Components

f_k (Hz)	X_k	Mag	Phase (rad)
200	(771 + j12202)	12,226	1.508
400	(-8865 + j28048)	29,416	1.876
500	(48001 - j8995)	48,836	-0.185
1600	(1657 - j13520)	13,621	-1.449
1700	4723 + j0	4723	0

Table 3.1: Complex amplitudes for harmonic signal that approximates the vowel sound "ah".

8/31/2003 © 2003, JH McClellan & RW Schafer 23

SPECTRUM of VOWEL

- Note: Spectrum has 0.5X_k (except X_{DC})
- Conjugates in negative frequency

SPECTRUM of VOWEL (Polar Format)

Vowel Waveform **◀** (sum of all 5 components)

Figure 3.11 Sum of all of the terms in (3.3.4). Note that the period is 10 msec, which equals $1/f_0$.

8/31/2003 © 2003, JH McClellan & RW Schafer 26

