Mobile IP

Problem

- Jak przenieść hosta z sieci do sieci?
- "Dodatkowe" wymagania:
 - komunikacja z przenoszonym hostem ma być cały czas możliwa -
 - nomadic != mobile
 - zmiany konfiguracyjne na urządzeniach (zarówno końcowych, jak i pośredniczących) mają być minimalne
 - przeniesienie nie może wymagać interwencji administratora

"Tradycyjny" Internet

- Adresy IP służą do dwóch celów:
 - identyfikacja hosta,
 - identyfikacja sieci, do której host jest połączony.
- Routing bazuje na prefiksach adresów IP przypisywanych hostom końcowym
- Zmiana miejsca podłączenia do sieci wymaga zmiany adresu IP na topologicznie poprawny lub dostosowania tablicy routingu

Zmiana adresu IP

- Wada: konieczność zerwania połączeń realizowanych np. przez TCP
- Problem ze znalezieniem przeniesionego hosta
 - można rejestrować się na nowo w DNS, ale to rozwiązanie jest zbyt wolne

Zmiana lub dodanie ścieżek

- Konieczność dodania ścieżki do hosta na routerach pośredniczących
- Konieczność uruchomienia mechanizmu proxy ARP na routerze wyjściowym z "nowej" sieci

Wymagania stawiane Mobile IP (RFC 2002 → RFC 3220 → RFC 3344)

- Kompatybilność:
 - współpraca ze wszystkimi protokołami warstwy 2, z którymi współpracuje "zwykłe" IP,
 - brak konieczności dokonywania zmian w istniejących hostach oraz routerach,
 - możliwość komunikacji systemów mobilnych z "tradycyjnymi".
- Przezroczystość:
 - brak konieczności zmiany adresów IP na hostach mobilnych,
 - możliwość kontynuowania komunikacji po zmianie umiejscowienia hosta.
- Wydajność, skalowalność:
 - jak najmniej dodatkowych komunikatów,
 - możliwość obsługi na skalę ogólnoświatową.
- Bezpieczeństwo:
 - autentykacja komunikatów konfiguracyjnych.

Terminologia

- Home Network (HN): sieć domowa mobilnego hosta
- Home Agent (HA): router w sieci domowej pełniący funkcję agenta Mobile IP
- Foreign Network (FN): sieć, do której mobilny host został przeniesiony
- Foreign Agent (FA): router w sieci FN pełniący funkcję agenta Mobile IP
- Mobile Node (MN): host mogący zmieniać miejsce podłączenia do sieci
- Corresponding Node (CN): host komunikujący się z MN (może także być mobilny)

Jak realizuje się Mobile IP?

- Skąd CN wie, że ma przesłać pakiet w stronę HA?
- Skąd HA wie, że ma przechwycić pakiet kierowany do MN?
- Skąd HA wie, do kogo ma przekazać przechwycony pakiet?
- Skąd FA wie, że dany MN jest do niego podłączony?
- Skąd MN wie o istnieniu HA i FA?

Jak realizuje się Mobile IP?

- Skąd CN wie, że ma przesłać pakiet w stronę HA?
 - CN tego nie wie, wiedzą to routery
 - routery wiedzą, gdzie jest HN hosta MN
 - do przesłania pakietu w stronę HN zawierającej HA stosowany jest "zwykły" routing
- Skąd HA wie, że ma przechwycić pakiet kierowany do MN?
 - HA jest o tym informowany przez MN w procesie **rejestracji**
- Skąd HA wie, do kogo ma przekazać przechwycony pakiet?
 - HA jest o tym informowany przez FA w procesie rejestracji
- Skąd FA wie, że dany MN jest do niego podłączony?
 - FA jest o tym informowany przez MN w procesie **rejestracji**
- Skąd MN wie o istnieniu HA i FA?
 - dowiaduje się o tym za pomocą procedury wykrywania agenta

Wykrywanie agenta

Procedura wykrywania agenta

- Agent Mobile IP periodycznie wysyła ogłoszenia o swoim istnieniu
- MN nasłuchuje na te ogłoszenia i wnioskuje, czy jest w HN, czy w (jakiejś) FN
- MN czyta COA (care-of address) z ogłoszenia agenta
 - COA jest adresem IP, na którym kończy się tunel (po stronie FN)
- MN może "przyspieszyć" ogłoszenie agenta przez rozgłoszenie odpowiedniego komunikatu

Ogłoszenie o istnieniu agenta

• Realizowane jako rozszerzenie IRDP (ICMP Router Discovery)

. (6)							
version (4) header len	type of service	total length					
identif	ication	flags fragment offset					
time to live = 1	protocol = ICMP	header checksum					
	source address (adres agen	ta)				
C	lestination address (255.25	55.255.255	lub 224.0.0.1)				
type (9)	code		checks	um			
number of addresses	address entry size		advertisemen	t lifetime			
	router a	ddress 1					
	preferenc	ce level 1					
	router a	ddress 2					
	preference	ce level 2					
type (16)	length = 6+4N	sequence number					
maximum regis	stration lifetime	flags: R,B,H,F,M,G,V reserved					
care-of address 1							
	care-of a	ddress 2					
m.							
type (19)	length	prefix length 1 prefix length 2					
			-				

Ogłoszenie o istnieniu agenta Realizowane jako rozszerzenie IRDP version (4) header len type of service total length identification time to live = 1 protocol = ICMP header checksum source address (arres agenta) destination address (255.255.255 lub 224.0.0.1) checksum number of addresses address entry size advertisement lifetime router address 1 router address 2 preference level 2 type (16) length = 6+4Nsequence number flags: R,B,H,F,M,G,V maximum registration lifetime reserved care-of address 1 care-of address 2 type (19) length prefix length 1 prefix length 2

Ogłoszenie o istnieniu agenta • Realizowane jako rozszerzenie IRDP version (4) header len type of service total length fragment offset protocol = ICMP header checksum source address (adres agenta) destination address (255.255.255 lub 224.0.0.1) number of addresses address entry size advertisement lifetime router address 1 preference level 1 router address 2 preference level 2 type (16) length = 6+4N sequence number maximum registration lifetime flags: R,B,H,F,M,G,V care-of address 1 care-of address 2 type (19) prefix length 1 prefix length 2 length

Ogłoszenie o istnieniu agenta

• Realizowane jako rozszerzenie IRDP

version (4)	header len	type of service	total length				
	identification		flags fragment offset				
time to I	time to live = 1 protocol =		header checksum				
		source address ((adres agen	adres agenta)			
	C	lestination address (255.25	55.255.255	lub 224.0.0.1)			
type	(9)	code		checks	sum		
number of	addresses	address entry size		advertiseme	nt lifetime		
		router a	ddress 1				
		preference	ce level 1				
		router a	ddress 2				
		preference	ce level 2				
type	(16)	length = 6+4N	sequence number				
max	imum regis	stration lifetime	flags: R,B,H,F,M,G,V reserved				
		care-of a	ddress 1				
		care-of a	ddress 2				
type	(19)	length	prefix	length 1	prefix length 2		
71							

Procedura wykrywania agenta

- Jeżeli adres źródłowy pakietu zawierającego ogłoszenie agenta pokrywa się z adresem HA danego MN lub (bardziej ogólnie) prefiks adresu źródłowego odpowiada prefiksowi adresu MN, to MN znajduje się w HN
 - jeśli powrócił do sieci domowej, to zwalnia dotychczasowe powiązania (ang. bindings)

Procedura wykrywania agenta

Jeżeli prefiks ogłaszanego adresu agenta nie zgadza sie

z prefiksem adresu MN, to MN przyjmuje, że jest w FN i przechodzi do procedury rejestracji

Procedura wykrywania agenta

- Jeżeli MN przestaje odbierać ogłoszenia agentów (upłynie czas lifetime ostatniego ogłoszenia), może spróbować wysłania komunikatu Agent Solicitation
- Jeżeli wysyłanie komunikatów *Agent Solicitation* nie pomaga, to:
 - MN sprawdza, czy jest w HN poprzez wysłanie ICMP echo request do routera domyślnego w HN
 - odpowiedź routera oznacza, że jesteśmy w HN; możliwe, że HA został wyłączony lub uległ awarii
 - jeśli router nie odpowiada, MN zakłada, że jest w FN i próbuje uzyskać care-of address (koniec tunelu, COA) do wykorzystania w procedurze rejestracji
 - przez DHCP,
 - $\bullet \ \ z \ wprowadzonej \ "ręcznie" \ konfiguracji.$
 - w tym przypadku koniec tunelu znajduje się na MN

Procedura wykrywania agenta

- Problem: w jaki sposób MN może wykryć przeniesienie pomiędzy "bezagentowymi" FN?
 - rozwiązanie 1: Śledzenie transmisji na warstwie 4
 - "urwanie" wszystkich transferów oznacza konieczność uzyskania nowego COA itd.
 - rozwiązanie 2: Przełączenie karty sieciowej w tryb promiscuous i śledzenie pakietów IP pojawiających się na łączu
 - jeśli nie pojawiają się adresy źródłowe z sieci COA, to trzeba go wymienić
- Problem: w jaki sposób MN ma znaleźć domyślny router w "bezagentowej" FN?
 - brak wiadomości router/agent advertisement,
 - brak informacji z DHCP,
 - zakaz wysyłania zapytań ARP z domowym adresem IP,
 - rozwiązanie: w przypadku posiadania co-located COA można wysłać zapytanie ARP z COA jako adresem źródłowym

Rejestracja

Procedura rejestracji

- Inicjowana jest przez MN każdorazowo po wykryciu przeniesienia do innej FN (lub z powrotem do HN)
- Podstawowy cel: poinformowanie HA o dostępności MN
- Przebieg procedury rejestracji zależy od tego, gdzie ma się kończyć tunel pomiędzy HA a FN *
 - MN rejestruje się w HA bądź to za pośrednictwem FA, bądź bezpośrednio (korzysta z co-located care-of address)

Żądanie rejestracji

• Wysyłane w pakiecie UDP na port 434

Wysylatic w pakiecie obi na port 454						
version (4) header len	type of service	total length				
identif	identification		fragment offset			
time to live	protocol = UDP		header checksum			
	source addres	s (adres MN	1)			
	destination address (adres	s FA, HA lub	224.0.0.11)			
sourc	e port		destination port = 434			
len	gth		checksum			
type (1)	flags: S,B,D,M,G,V		lifetime			
	home address	dla danego N	4N			
	adre	s HA				
	C	DA				
	identif	ication				
type (32)	length		Security Parameter Index			
Security Pa	rameter Index					
authenticator						
		J				

Żądanie rejestracji

• Wysyłane w pakiecie UDP na port 434

version (4)	header len	type of service	total length					
	identif	ication	flags	fragment offset				
time t	to live	protocol = UDP		header checksum				
		source addres	s (adres MN	1)				
		destination address (adres	s FA, HA lub	224.0.0.11)				
	source	e port	destination port = 434					
	len	gth		checksum				
type	(1)	flags: S,B,D,M,G,V		lifetime				
	home address dla danego MN							
	adres HA							
	COA							
	identification							
type	(32)	length		Security Parameter Index				
	Security Pa	rameter Index						
authenticator								
			J					

Żądanie rejestracji Wysyłane w pakiecie UDP na port 434 version (4) header len type of service total length fragment offset protocol = UDP time to live header checksum source address (adres MN) destination address (adres FA, HA lub 224.0.0.11) source port destination port = 434 length checksum flags: S,B,D,M,G,V lifetime type (1) home address dla danego MN adres HA identification Security Parameter Index authenticator

Przetwarzanie żądania rejestracji

- HA po odebraniu żądania rejestracji przekazanego przez FA:
 - sprawdza, czy żądanie rejestracji jest poprawne i uprawnione
 - jeśli nie, to je odrzuca i wysyła registration reply z odpowiednim kodem błędu
 - uaktualnia powiązania
 - tworzy lub zamyka tunel
 - generuje odpowiedź (registration reply) i wysyła ją do FA
- FA sprawdza poprawność odpowiedzi, modyfikuje ją i przekazuje do MN
- w razie odrzucenia żądania MN może próbować "poprawić" błąd
 - np. wysyła nowe żądanie z mniejszym lifetime

Jak MN może "zdalnie" poznać HA?

- Założenie: MN zna swój adres domowy i długość prefiksu HN
- Jeżeli MN nie ma skonfigurowanego adresu HA, może wysłać żądanie rejestracji wstawiając w miejsce adresu HA skierowany broadcast do HN
- Żądanie takie dotrze do wszystkich agentów obecnych w HN i zostanie odrzucone
- Odpowiedź odrzucająca żądanie rejestracji zawiera adres źródłowy odrzucającego agenta
- FA przekazuje do MN informację o odrzuceniu żądania
- MN pobiera adres agenta z przekazanej odpowiedzi i formułuje nowe żądanie z unicastowym adresem HA

Przetwarzanie żądania rejestracji

• Flaga "S" oznacza "save existing bindings"; dokładniejsza interpretacja jest dokonywana w połączeniu z innymi polami:

COA	lifetime	S	Znaczenie
!= home addr.	>0	0	nadpisz dotychczasowe powiązania
!= home addr.	>0	1	dodaj nowe powiązanie
!= home addr.	0	1	usuń wyspecyfikowane powiązanie
== home addr.	0	*	usuń wszystkie powiązania
== home addr.	>0	*	MN jest uszkodzony

 Flaga "B" oznacza, że do zarejestrowanego urządzenia mają być przekazywane pakiety broadcastowe pojawiające się w HN

Przetwarzanie żądania rejestracji

- HA registration request flags: S,B,D,M,G,V
- Flaga "D" oznacza, że MN sam dokonuje dekapsulacji, czyli jest końcem tunelu, a więc korzysta z co-located COA
 - ma to znaczenie szczególnie w przypadku przekazywania broadcastów.
- Flaga "M" oznacza, że MN oczekuje, że skonstruowany tunel będzie korzystał z tzw. "minimal encapsulation"; flaga "G" oznacza żądanie enkapsulacji GRE (Generic Routing Encapsulation)
- Flaga "V" oznacza żądanie kompresji nagłówków TCP (van Jacobson)

Wymuszanie rejestracji

 Flaga "F" oznacza, że ogłaszający się agent pełni funkcję FA dla danej sieci

- Flaga "R" informuje hosty, że muszą rejestrować się za pośrednictwem FA
 - to nie znaczy, że nie mogą korzystać z co-located COA tyle że FA musi brać udział w rejestracji
 - w takim wypadku po rejestracji FA pełni funkcję "zwykłego" routera; nie kończy tunelu
 - cel: np. billing ISP sprawdza, czy dany MN jest jego klientem
 - funkcjonalność ta ma sens, jeśli ISP jest w stanie blokować pakiety, które wyszły z MN zarejestrowanego bez pośrednictwa FA

Optymalizacja

Jak zapobiec częstym zmianom powiązań przez MN?

 Problem: MN znajduje się np. na styku kilku komórek sieci bezprzewodowej

- rzeczywisty zasięg przekaźników kształtem nie odpowiada sześciokątom
- zasięg przekaźników może nawet zmieniać się w czasie

• MN może zmieniać punkty przyłączenia do sieci nawet nie ruszając się z miejsca

 MN po zmianie punktu przyłączenia na nowo się rejestruje

Jak zapobiec częstym zmianom powiązań przez MN?

- Rozwiązanie "spoza Mobile IP": połączyć sąsiednie komórki na warstwie 2 (za pomocą mostków)
 - komórki organizowane są w tzw. konfederacje
 - wewnątrz konfederacji realizowany jest handover na warstwie 2
 - osobne konfederacje wykorzystują inne pasma, co utrudnia MN komunikowanie się jednocześnie przez dwie konfederacje
 - MN mimo zmiany komórki nie zmienia FN, więc nie przechodzi ponownej rejestracji
- często stosowane rozwiązanie

Jak zapobiec częstym zmianom powiązań przez MN?

- Rozwiązanie z Mobile IP: przechowywanie wielu powiązań przez HA
 - MN tworzy powiązanie dla każdej komórki
 - pakiety IP przeznaczone dla MN są przez HA przekazywane osobno dla każdego powiązania
 - może się zdarzyć, że do MN dotrze więcej, niż jedna kopia pakietu; z tym ma sobie radzić warstwa 4
 - wada: implementacja tej funkcjonalności jest opcjonalna (HA może, ale nie musi obsługiwać wielokrotnych powiązań)
 - jeśli nie obsługuje, to nadpisuje ostatnie
- Rzadko stosowane, przydatność problematyczna

Jak działa routing do/z MN?

- Przypadek 1: MN w HN, pakiety $CN \rightarrow MN$, $MN \rightarrow CN$
 - prosta sytuacja: zwykły routing IP

Optymalizacja zmiany FA

- Cel: zapobieganie utracie pakietów przy zmianie FA
- Przy okazji "stary" FA jest informowany, kiedy może zwolnić zasoby

Dlaczego nie source routing?

- Mogłoby być tak:
 - MN w pakietach do CN stosowałby opcje Record Route oraz Loose Source Route
 - CN odwracałby kolejność routerów w liście i odpowiadał z wykorzystaniem lepszej ścieżki
- A jest...
 - wiele implementacji IP nie stosuje się do wymagania odnośnie odwracania ścieżki
 - pakiety IP z opcjami są przez routery przetwarzane znacznie mniej efektywnie (nawet 10:1)
 - takie podejście jest wystawione na ataki przez podszycie
 - łatwo jest sfabrykować pakiet IP z jakimś COA i fałszywą listą adresów

Odbieranie broadcastów przez MN

- MN z co-located COA:
 - broadcasty są powtarzane jeśli MN ustawił bit B w żądaniu rejestracji
 - pakiety takie są tunelowane tak, jak unicastowe
- MN z COA na FA:
 - konieczny jest dodatkowy etap enkapsulacji
 - HA opakowuje broadcast w pakiet IP(HA)→IP(MN)
 - tak opakowany broadcast przesyła tunelem

Wysyłanie broadcastów przez MN

- Broadcasty lokalne przeznaczone dla FN są po prostu rozgłaszane
- Broadcasty lokalne przeznaczone dla HN są tunelowane do HA (przez MN bądź przez FA)
- Broadcasty skierowane do sieci HN mogą być tunelowane lub przesyłane "normalnie"
 - UWAGA: broadcasty skierowane są często usuwane przez routery znajdujące się na trasie do sieci docelowej

Wysyłanie i odbieranie multicastów przez MN

- Wysyłanie może być realizowane tak, jak w przypadku broadcastów (tunel do HA) lub bezpośrednio do FN
 - z wykorzystaniem co-located COA
- Odbieranie wymaga periodycznego wysyłania pakietów IGMP
 - pakiety te mogą być:
 - tunelowane do HA,
 - wysyłane do routerów w FN z co-located COA,
 - wysyłane do routerów w FN z wykorzystaniem adresu domowego.

Tunelowanie

- Datagram IP przeznaczony dla MN jest opakowywany w inny datagram
- Tunel jest z punktu widzenia "wewnętrznego" datagramu pojedynczym łączem
 - "wewnętrzny" TTL jest zmniejszany o 1,
 - "zewnętrzny" TTL jest niezależny od "wewnętrznego"
 - problem: pętla routingu zawierająca tunel "zneutralizuje" mechanizm usuwania krążących pakietów i dodatkowo spowoduje "pakowanie w nieskończoność"

Opcje enkapsulacji w tunelu Mobile IP

- IPinIP zapakowanie datagramu w nowy datagram
- Minimal encapsulation dodanie nowego nagłówka pomiędzy oryginalny nagłówek IP i pole danych
- Generic Routing Encapsulation (GRE) wykorzystanie wieloprotokołowego mechanizmu tunelowania

IPinIP

version (4)	header len	type of service	total length			
identification			flags	fragment offset		
time t	to live	protocol = IPinIP (4)	header checksum			
		source add	dress (HA)			
	destination address (COA)					
version (4)	header len	type of service	total length			
	identif	ication	flags	fragment offset		
time t	time to live protocol header checksum					
source address (CN)						
destination address (MN home address)						

dane

- IPinIP zapakowanie całego datagramu w nowy datagram
 - wewnętrzny pakiet niezmieniony (z wyj. TTL)
- dodany zewnętrzny nagłówek
 ze starego nagłówka kopiowane tylko ToS
 Obsługa tunelowania IPinIP przez agentów jest wymagana
- Eliminacja prostych pętli jest możliwa
 - jeśli adres źródłowy pakietu jest równy adresowi "wejściowemu" tunelu lub adresowi "wyjściowemu" tunelu, to pakiet nie jest dodatkowo pakowany

Minimal Encapsulation

version (4)	header len	type	e of service	total length			
	identification		flags	fragment offset			
time t	time to live		tocol = 55	header checksum			
	source address (HA)						
destination address (COA)							
prot	ocol	S	reserved	header checksum			
destination address (MN home address)							
source address (CN)							

dane

- Minimal encapsulation dodanie nowego nagłówka pomiędzy oryginalny nagłówek IP i pole danych
 - wiąże się to także z modyfikacją nagłówka
 total length,

 - Protocol,
 - Adresy.
 - dodatkowy nagłówek przenosi informacje wymagane do odtworzenia oryginalnego nagłówka po drugiej stronie tunelu
 Eliminacja prostych pętli jak w przypadku IPinIP

GRE

- Polega na dodaniu zewnętrznego nagłówka oraz dodatkowego nagłówka GRE
 - pakiety "rosną" sporo,
 - obsługuje nie tylko IP,
 - posiada mechanizm eliminacji rekursywnego tunelowania (pętli routingu zawierających tunel).

Optymalizacja – c.d.

Micro-mobility

- Istnieje szereg mechanizmów pozwalających na przekazywanie MN (handover) wewnątrz domeny (tzw. foreign domain) bez konieczności przesyłania komunikatów kontrolnych "na drugą stronę Internetu"
 - Cellular IP,
 - HAWAII,
 - Hierarchical Mobile IP (HMIP).

Mobile IP Proxy

- Problem: obsługa Mobile IP wymaga od MN posiadania odpowiedniego oprogramowania
- Rozwiązanie: wiele hostów MN reprezentowane przez proxy
- Zaleta: brak konieczności instalowania dodatkowych pakietów na hostach końcowych
- Wada: bardziej złożona autentykacja

Mobile IPv6

Routing Header

- Identyfikowany przez wartość 43 w poprzedzającym nagłówku
- Funkcjonalnie podobny do opcji Loose Source Routing oraz Record Route w IPv4
- Składa się z następujących pól:
 - next header oznaczenie następnego nagłówka
 - wykorzystuje także wartości oznaczające protokół warstwy 4 w IPv4 (RFC 1700)
 - hdr ext len zawiera długość nagłówka w jednostkach 8-oktetowych, bez pierwszych 8 oktetów
 - routing type identyfikator wariantu
 - segments left ilość punktów pośrednich, przez jakie pakiet musi przejść
 - type-specific data pole o zmiennej długości; format zdeterminowany jest przez pole routing type
 - cały nagłówek musi mieć długość N*8 oktetów

Destination Options Header

- Identyfikowany przez wartość 60 w poprzedzającym nagłówku
 - jeśli występuje, musi być pierwszy
- Składa się z następujących pól:
 - next header oznaczenie następnego nagłówka
 - wykorzystuje także wartości oznaczające protokół warstwy 4 w IPv4 (RFC 1700)
 - hdr ext len zawiera długość nagłówka w jednostkach 8-oktetowych, bez pierwszych 8 oktetów
 - options pole o długości N*8-2 oktetów
 - cały nagłówek musi mieć długość N*8 oktetów

IPSec

- Standard IETF dotyczący zabezpieczenia sieci IPv4 oraz IPv6
 - definiuje dwa protokoły (dla IPv4):
 - ESP (encapsulating security payload):
 - szyfrowanie zawartości pakietu
 - autentykacja
 - AH (authentication header)
 - autentykacja
 - w IPv6 obsługa IPSec jest wymagana
 - nagłówek Authentication,
 - nagłówek Encapsulating Security Payload.
- Problem: dystrybucja kluczy

Co wnosi IPv6?

- Dużo adresów
 - Mobile IPv6 działa tylko na co-located COA uzyskiwanym za pomocą autokonfiguracji
- Mniejsze wymagania w stosunku do przetwarzania opcji
 - w szczególności Routing Header musi być przetwarzany tylko przez "zainteresowane" routery (wyznaczone przez adres docelowy)
 - host, który odebrał pakiet z nagłówkiem Routing Header nie musi wysyłać odpowiedzi z analogicznym nagłówkiem
- Authentication Header
 - na razie nie na wiele się przydaje (brakuje standardowego mechanizmu dystrybucji kluczy), ale wymaganie obsługi AH pozwoli na przejście do optymalizowanego routingu, gdy taki mechanizm powstanie
- Ogłaszanie zmian COA (binding update)
 - przesyłane do HA i niektórych CN
 - taki CN musi przechowywać wszystkie dane potrzebne do utworzenia tunelu (tzw. Security Association)
 - komunikat binding update jest przesyłany wewnątrz nagłówka Destination Options
 - podobnie binding request oraz binding acknowledge

HMIPv6

- MAP: mobility anchor point
 - odwzorowuje RCOA na LCOA
- RCOA: regional care-of address
- LCOA: link care-of address
- Przy zmianie łącza MN informuje o tym wyłącznie MAP
 - HA jest informowany o zmianie MAP
- Zalety:
 - LCOA może być ukryty
 - możliwy jest bezpośredni routing pomiędzy hostami na tym samym łączu
 - mała ilość zmian przy zmianie łącza
 - można korzystać z adresacji prywatnej
- Problemy:
 - decentralizacja zabezpieczeń (różne MAPy realizują autentykację)
 - MN wpływają na zawartość tablic routingu
 - MN musi mieć "świadomość" korzystania z HMI.
 - przesyłanie komunikatów służących do zmiany tablic routingu przez łącza bezprzewodowe

Źródła

- J. D. Solomon, Mobile IP: The Internet Unplugged, Prentice Hall 1998
- J. Schiller, Mobile Communications, Addison-Wesley 2000
- R. Wattenhofer, Mobile Computing
- RFC 3344: IP Mobility Support for IPv4
- RFC 3753: Mobility Related Terminology
- RFC 3775: Mobility Support in IPv6
- RFC 2003: IP Encapsulation within IP
- RFC 2004: Minimal Encapsulation within IP
- RFC 4140: Hierarchical Mobile IP Version 6

KONIEC		