Tree Width (PACE 2016 & 2017)

1805006 - Tanjeem Azwad Zaman 1805008 - Abdur Rafi 1805010 - Anwarul Bashir Shuaib 1805019 - MD Rownok Zahan Ratul 1805030 - Md Toki Tahmid

Basic Concepts and Problem Definition

1805006 - Tanjeem Azwad Zaman

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

General Terminology / Definitions

- Given a graph G, with vertex set V(G) and edge set E(G)
- In our context, Decomposition *T* is
 - Another graph-like <u>Structural Representation of G</u>, where
 - Each node in T corresponds to <u>a subset of V(G)</u> -> known as "Bag"s
- A valid decomposition must have some other properties

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

Tree Decomposition

A tree decomposition is represented as: $\mathscr{T}=(T, \{X_t\}_{t \in V(t)}),$ where

<u>Formal</u>	<u>Simplified</u>
T is a tree	T is a tree
$\forall t in V(T), \mathbf{X}_t \in \mathbf{V(G)}$	each bag (corresponding to a tree node) is a subset of V(G)
And the following 3 properties hold:	
1. $\bigcup_{t \in V(T)} X_t = V(G)$	Every vertex of G is in at least 1 bag of T
2. \forall (u,v) \in E(G) , there exists a node t in T , s.t both u and v belong to \mathbf{X}_t	For all edges in E(G), there is at least 1 bag in T that has both endpoints of the edge
3. \forall u \in $V(G)$, the set $T_u = \{t \in V(T) : u \in X_t\}$	All bags that contain any specific vertex of G, make a connected subtree in T

Example

Example 2. For all edges, at least 1 bag has both endpoints. Eg: (g,e)

Example 3. All bags with a specific vertex will form a connected subtree

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

"Nice Tree" Decomposition

A tree decomposition where

- The root and leaf bags are empty. $X_{root} = \emptyset$, $X_{leaf} = \emptyset$
- Each *non-leaf node*, t is one of three types:

1. Introduce node:	
has 1 child t', where $X_t = X_t$, $U \{v\}$ for v not in X_t ,	A node with one child, and has an extra vertex not included in its child
2. Forget Node:	
1 child t', where $X_t = X_{t'} \setminus \{v\}$ for a v in $X_{t'}$	A node with one child and a vertex less than its child
3. Join Node:	
2 children t_1 , t_2 such that $X_1 = X_{11} = X_{12}$	A node with two childs, both identical to itself

Introduce

Why "Nice Tree" Decomposition?

Lemma: Given a graph G and its tree decomposition $\mathcal{T} = (T, \{X_t\}_{t \in V(t)})$, one can compute a nice tree decomposition in

- **Time**: $O(k^2 \cdot max(|V(T)|, V|(G)|)$
- **Width**: at most k
- # of nodes: at most O(k|V(G)|)

Thus, nice tree decompositions have the following pros, among many more:

- 1. **Conducive to DP:** Problems on graphs can be broken down into smaller subproblems corresponding to nodes of the decomposition.
- 2. **Real-World Applications:** Discussed later
- 3. **Standard Form:** Easier to work with when designing algorithms

Also a tree decomposition!!

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

Tree Width

Width of a bag: (Size of the bag) - 1

Width of a tree: Maximum of the widths of its bags

Tree-Width of a graph: Minimum width among all tree decompositions of the graph

Example:

Bags:

$$\boldsymbol{X_1} = \{b,c\}, \, \boldsymbol{X_2} = \{b,c,g\}, \, \boldsymbol{X_3} = \{b,g,a\}, \, \boldsymbol{X_4} = \{c,g,e\}, \, \boldsymbol{X_5} = \{g,f,e\}, \, \boldsymbol{X_6} = \{e,d,c\}, \, \boldsymbol{X_6}$$

Bag widths:

size of $|X_1| = 2$, so width of $X_1 = 1$.

Similarly widths of X_2 , X_3 , X_4 , X_5 , X_6 are all 2

Width of the tree = $\max (1,2,2,2,2,2) = 2$

Topics To Cover

- General terminology
- Tree Decompositions
- Nice Tree Decompositions
- Tree Width
- Our Problem Definition
 - Optimization version
 - Decision Version

Problem Definition

Optimization version:

Given an arbitrary graph, find its tree width

*(i.e. minimum width among all possible tree decompositions)

** in most practical cases, the decomposition itself that gives the tree width is needed.

• Decision Version:

Given an arbitrary graph and a positive integer k, is the tree-width of the graph **at most k**?

The Tree-Width Problem is NP-Complete

Reductions to/from Hard Problems

1805019

NP-Completeness of Computing Treewidth

Decision Problem:

Given, G(V,E), does G has a treewidth at most k?

- NP-Completeness proved in 1987
 - "Complexity of Finding Embeddings in a k-Tree"
 - Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski

Required Definitions

K-Chordal Graphs

Block-Contiguous Elimination Scheme

Minimum Cut Linear Arrangement (MCLA)

Reduction $MCLA \leq_{p} Treewidth$

Intuition Behind the Proof

Intuition Behind the Proof

Formal Proof

Construction of Bipartite Graph

Input: G (V,E)

Output: G' (A U B, E')

Construction Rule:

Defining Nodes:

- a. $\forall (x) \in V$, add $\Delta(G)+1$ vertices in A as A_x and $\Delta(G)+1$ -deg(x) vertices in B as B_x
- b. \forall (e) ϵ E, add 2 vertices to B denoted by B_e

Defining Edges:

- a. All vertices of A_x are adjacent to all vertices of B_x
- b. All vertices of A_x are adjacent to all of B_e if x is incident to e

Example Bipartite Construction

Example Bipartite Construction

Example Bipartite Construction

The Relation Between G and G'

Existing Algorithms & Experimental Results

Exponential Exact, Approximation & Randomized

118030

	Exact Algorithms	
Positive-instance driven dynamic programming for treewidth Hisao Tamaki	 Based on minimal separators and potential maximal cliques 	2nd in PACE 2017: Exact Track
Jdrasil: A Modular Library for Computing Tree Decompositions <u>Max Bannach, Sebastian</u> <u>Berndt, and Thorsten Ehlers</u>	 Supports parallel processing Incorporate both heuristics and approximation algorithms too. 	3rd in PACE 2017: Exact Track

Approximate /	Algorithms
---------------	------------

Finding all leftmost
separators of size <= k

Belbasi & Fürer (2021b)

Runs in $2^{6.755k} \cdot O(n \log n)$ n)

Approximation Ratio: 5K+1

Focuses on improving the exponential value related to "K" by finding

An Improved Parameterized Algorithm for Treewidth (2022)Tuukka Korhonen, Daniel

<u>Lokshtanov</u>

Runs in $2^{O(k^2)}n^{O(1)}$ Approximation ratio: $(1 + \varepsilon)k [\varepsilon \in (0, 1)]$

First improvement on the dependency on k in algorithms for treewidth since the $2^{O(k^3)}n^{O(1)}$ time algorithm given by **Bodlaender and Kloks** [ICALP 1991]

Algorithm Selected For Implementation

Positive-instance driven dynamic programming for treewidth (Hisao Tamaki)

Separator of Graph

A vertex set S ⊆V(G) is a separator of G if its removal increases the number of connected components of G

Potential Maximal Clique

- 1. Find minimal triangulation G' of graph G
- 2. Find a vertex set which induces a maximal clique in G'
- 3. This will be a potential maximal clique in G

If these objects can be listed in polynomial time for a class of graphs, the treewidth and the minimum fill-in are polynomially tractable for these graphs.

<u>Positive-Instance Driven Algorithm:</u> Driven by positive instances of dynamic programming, leading to efficient performance on benchmark instances.

<u>Handling of Subproblems:</u> Deals with subproblems through the novel use of auxiliary structures called O-blocks, leading to a binary recurrence that offers practical running time bounds

Existing Algorithms & Experimental Results

Heuristic & Meta-Heuristic

1805008

Flow-Cutter-2017

- 2nd place in pace 2017
- ??

Chordal Supergraph

 A chordal supergraph of G is a chordal graph G' defined on the same set of vertex, where G is a subgraph of G'

Example image

Perfect Elimination Ordering

- An ordering of the vertex set of an undirected graph
- Neighbor of vertex v_i forms a clique in the graph induced by itself and the vertex appearing later
- Chordal graphs always have a perfect elimination ordering and can be determined in polynomial time??
- A tree decomposition of a graph can be constructed in polynomial time given a chordal supergraph and its perfect elimination ordering
- Example??

Relevance?

- Given an undirected graph and elimination order, we can construct the chordal supergraph and so, get the tree decomposition
- Commonly used algorithms try to guess the elimination order
- An approach to do so is called nested dissection

Guessing Elimination Order

- One approach is called nested dissection
- It consists of
 - Finding a small balanced separator
 - Placing these nodes at the end of elimination order
 - Removing the separator from the graph to get 2 sides
 - Run recursively on both sides

Core FlowCutter Algorithm

- A novel method to compute balanced graph cuts with minimum cut size
- Utilizes max flow min cut
- Considers unit flow
 - All edges have unit capacity
 - Flow through an edge can be either 0 or 1
- If the min cut is balanced then stop
- Otherwise suppose the source side have more nodes
- In this case we add new sources
- Among them, one is outside the source side, called the piercing node
- The piercing node is added to ensure that we get a new cut

Core FlowCutter Algorithm

Choosing Piercing Node

- 2 heuristics
 - Primary heuristic to select candidates of piercing nodes
 - Secondary heuristic to select among the candidates

Primary Heuristic

- Avoid augmenting path
 - If there is a non saturated path from the piercing node to any of the sink node, then making it a source will result in increase of net flow, thus increase in cut size
 - So we avoid such nodes to prevent increase in cut size
- If it is not possible, then choose any

Secondary Heuristic

- If there are multiple candidates available from primary heuristics, then consider 2 distance
- From piercing node to original source, ds
- From piercing node to original sink, dt
- Maximize dt ds
- Why ??

Use in Calculating Treewidth

- We try to determine an elimination order of an undirected graph
- From an elimination order we can determine a chordal supergraph, from which we can determine tree decomposition in polynomial time
- The width of the decomposition depends on how minimum the chordal graph, found from the elimination order is.

Finding an elimination order

- One commonly used method is called nested dissection
- We first find a small balanced separator. This is where core FlowCutter algorithm is utilized
- We remove the separator from the graph
- The algorithm recursively continues on both sides.

Theoretical and Real-world Applications

1805010 - Anwarul Bashir Shuaib

Applications of Bounded Treewidth Graphs

- Many NP-hard problems can be solved in polynomial time for the class of bounded treewidth graphs. Some examples include:
 - Hamiltonian path
 - Network reliability
 - Graph coloring
 - Independent Set problem
- Some of the real-world applications include:
 - Identifying clusters in network analysis
 - Query optimization in database systems
 - Constraint Satisfaction Problems (CSP)
 - Dependencies and resource allocation in project planning
 - Game theory

- NP-hard for general graphs
- For trees, this can be done in O(n) time
- Dynamic programming -
 - Take MIS including v

$$W^{+}[v] = w(v) + \sum_{u \in C_{v}} W^{-}[u]$$

Take MIS excluding v

$$W^{-}[v] = \sum_{u \in C_v} \max\{W^{-}[u], W^{+}[u]\}$$

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14 22	8	11 8	3	16 14	46 38

h	i	d	С	е	а	j	g	f	b	r
2										

h	i	d	С	е	а	j	g	f	b	r
2	7									

h	i	d	С	е	а	j	g	f	b	r
2	7	4								

	h	i	d	С	е	а	j	g	f	b	r
Taken ————————————————————————————————————	2	7	4 9								

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9						

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14					

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14 22					

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14 22	8	11 8	3	16 14	46 38

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14 22	8	11 8	3	16 14	46 38

Maximum-Weighted Independent Set

h	i	d	С	е	а	j	g	f	b	r
2	7	4 9	4	9	14 22	8	11 8	3	16 14	46 38

- Nodes = cities, Edges = roads
- Two participants -
 - A robber can using edges
 - Some number of cops can fly to nodes
- Everytime a cop is allowed to move, the robber can move to other vertices
- Cops win by trapping the robber; the robber wins by evading capture.

Concept:

The treewidth of a graph G is at most k iff k+1 cops can win the game.

- 3-Coloring problem is Fixed Parameter Tractable (FPT) parameterized by treewidth
- Create a "nice tree decomposition" of the graph G
- Can be solved by keeping track of a table for each bag

 $S[dfg, \{rbg\}] = \text{true}$, since both e and h can be colored red without conflict bdg bd abd bdg dfg cdf cd join dfg bdg dg forget introduce dfg efg fgh

- For each bag and all possible coloring (3^{tw}, where tw=3), check if the vertices in the descendent nodes can be assigned any colors without conflict
- Start from the leaves, assign colors in bottom-up manner
- Check if the *S[root, c]* is true for any assignment of *c*
- If yes, the graph is 3-colorable, else not.
- Overall complexity: O(3^{tw})*n

References

- 1. https://www.cs.cmu.edu/~odonnell/ Algorithms for bounded treewidth
- https://math.mit.edu/~apost/courses/18.204-2016/18.204 Gerrod Voigt final paper.pdf Survey Paper on Recent Findings in Treewidth
- 3. https://courses.engr.illinois.edu/cs374/fa2020/ Maximum weighted independent set in a tree

Thank You

