814.1: mulhiraniable Function 09/27/21 Definition: A multivariable function (of n-variables w/ red values) is a function of: D & Contract # function's domain doing = domain of f ran(f) = & f(x) : x E dom(f)} NR: of ten, we want experiently state the domain of function given formulaically. We'll use " the domain" in that cases i.e. the set of all inputs we defined outputs given by the formula $\exists x: f(x,y) = x^2 - y^2 + y^2$ don (f) = S(x,y) ER2: x2y is defined? = \(\(\chi_{y}\) \(\in \mathbb{R}^2\) \(\chi_{y}^2\) \(\chi_{y}^2\ $Ex' + (v,y) = x^2 + y^2$ dom (f) = {(x,y): x2+y2 is defined} = { (x,y) & R2: x2-y2 # 0 = { (x,y): x # + y } = 8(x,y) = R2: 1x1 + 1413 Definition: The graph of a function f is graph(f) = 5 (x) f(x) : x & dom (f)3 Ex What is the shape of f(x,y)=[x2+y2+1 5 (x14):4 =x3} Sol: Setting == f(x,y) 7 = (x2+y2+1), i.e. 22= x2+y2+1 & ==0 (x) {(x,flx): x Edom(f)} Counted next page two-sheet hyporboloid

i.e. -x2-92+2221 & 240 1 bus-sheet hyper boloid graph (f) is the upper sheet of hyperboloid Question! How san we represent in a-space? compar map (alea level curves, or elevation Answer' Build a 2020 hyper bout parabolaid. 6- contour map of hyperbolic parabolaid 2-10 7=-20 Ex! The unit hypersphere is: 53 = 51x, y, z, t & R4: x2+y2+22+ t2=13 K 11141 The t-level sets look like! e-starts w/ point 5 mortex S sphere

No Notation: 以一 f(な):L f(x) > Las x > à \$ 14,2: hants & Continuity formal definition of himits be a funch point of down (1) & let at R of days (f). The LER when for for all a +x Edom (f) 1x-a168 implies Ifix il are go equalis Proposition (curve, Criterion): Let f be a function & a a winet point @ its domain um f(x)=L if conly if for all & dances Flt in dom(f) such that (s.t.) him +(t)= a we have ようot, lim f(r(t))=1. 6→0+ o Fay Ex! show him x^2-y^2 does not exist $(x,y) \rightarrow (0,0) x^2 + y^2$ $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ lab (t) = (at, bt) that him la,b(t) = <0,0> ne have f(la, (t)) = (at) = (bt)2 (at)2+ (bt)2 $\frac{(a^2-b^2)t^2}{(a^2+b^2)t^2} = \frac{a^2-b^2}{a^2+b^2} = \frac{\lim_{t\to 0} f(1-(t)) = \lim_{t\to 0} a^2-b^2}{b^2} = \frac{1}{a^2+b^2} = \frac{1}{a^$ 0-1 = -1, check him f(1 (t))=0 \ = -1 by the curred anterior (in f(x) does not exist.