Midterm 1

Name:	
For each of the following statements,	
i. express the statement in terms of quantifiers, ($\boldsymbol{1}$	pt.)
ii. express the negation in terms of quantifiers, (1 p	t.)
iii. indicate whether the statement is true or false, (2 pt.)

iv. either prove or disprove the statement (3 pts. for logical correctness, 3 pts. for conventional writing.)

1. F	or a	all $k \in \mathbb{Z}$ there is an $\ell \in \mathbb{Z}$ s	such that $k\ell = 1$.		
	i.	statement in quantifiers:			
	ii.	negation in quantifiers:			
	iii.	the statement is:	true	false	(circle one)
	iv.	proof or disproof:			

٤.	1 nei	re is an $x \in \mathbb{R}$ such that x	$< y^2$ for all $y \in \mathbb{R}$.		
	i.	statement in quantifiers:			
	ii.	negation in quantifiers:			
	11.	negation in quantiners.			
	iii.	the statement is:	true	false	
	iv.	proof or disproof:			

3. Let	A, B, and C be sets. If A	$\subseteq B \subseteq C$, then (A)	$\cap B) \subseteq (A \cap C).$
i	. statement in quantifiers:		
ii	. negation in quantifiers:		
	. the statement is:	true	false
iv	. proof or disproof:		

. If <i>f</i>	$:A \to B \text{ and } g:B \to C \text{ ar}$	e injective, then g	$\circ f$ is injective.
i.	statement in quantifiers:		
ii.	negation in quantifiers:		
iii.	the statement is:	true	false
iv.	proof or disproof:		

If $f: A \to B$ is surjective ar	$ad g: B \to C$ is	injective, then $g \circ f : A \to C$ is b	ijective.
i. statement in quantifier	S:		
ii. negation in quantifiers:			
iii. the statement is:	true	false	
iv. proof or disproof:			

Bonus Question. (5 pts.)

6. Prove that $\lim_{x \to \infty} x^2 = \infty$.