CS 6160 Cryptology Lecture 3: One-Way Functions

Maria Francis

September 8, 2020

Introduction to One-Way Functions

- One-way Functions (OWF) are easy to compute, difficult to invert.
- One-way Permutation (OWP) permutes elements as well.
- A Trapdoor Permutation (TDP) is an OWP that has a secret, once you know the secret you can invert the OWP easily.
- Existence of OWFs are not known! Their existence (trivially!) implies P = NP.
- In fact, we do not yet know how to prove "If P ≠ NP then OWFs exist"!

Motivation

The existence of one-way functions (owf) is arguably the most important problem in computer theory.

-Leonard Levin

- Fundamental tool in cryptography used in authentication and crypto applications.
- The idea is to make it cheap for legitimate users and prohibitively expensive for malicious users.
- We will also see that the existence of one-way function implies the existence of Pseudorandom generators, Pseudorandom functions, Bit commitment schemes, Digital signatures, MACs, Symmetric key encryption schemes secure against CCA2.

OWFs

A function $f: \{0,1\}^* \to \{0,1\}^*$ is one way if it satisfies:

- 1. \exists poly-time algorithm which computes f(x) correctly \forall x. (\Rightarrow
- 2. \forall PPT algorithm A,

$$Pr[f(z) = y : x \leftarrow^{R} \{0,1\}^{k}; y = f(x); z \leftarrow A(y,1^{k})] \le negl(k),$$

where \leftarrow^R means randomly chosen and k is the security parameter.

Note :k has a unary representation – base-1 system where N is rep. by repeating 1 N times.

- x is randomly chosen from kbit numbers,
- That is, in polynomial in k time Eve has negl. probability of finding ANY preimage of f(x).

OWPs

A function f is a OWP if it is a OWF and a permutation, i.e. f

- 1. satisfies all requirements of a OWF and
- 2. is a permutation, i.e. it is a one-one onto function from a set to itself

A function f is a TDP if it is a OWP and given certain information f can be inverted in PPT.

An attempt at formally defining TDP

A function f is a TDP if

- 1. it satisfies the requirements for OWP and
- 2. there exists a poly-time algorithm I, some constant c and a string t_k s.t. for all large enough k, $|t_k|$ is at most $O(k^c)$ and for any $x \in \{0,1\}^k$, $I(f(x),t_k) = z$ where f(x) = f(z).

More useful definition of TDP and possible candidates for TDP will be discussed when we study RSA.

Candidate for OWF:Integer Multiplication

- We focus on number theoretic candidates for now.
- For OWPs and TDPs, all examples that we know are number theoretic. For OWFs, there are other candidates.
- Function $f: \mathbb{P}_k * \mathbb{P}_k \to X$, where \mathbb{P}_k is the set of k-bit primes and X is the set of 2 * k-bit numbers.
- Not a permutation!
- Consider f(p,q) = n where n = p * q.
- Only seeing n, there is no known poly-time algorithm A s.t. A(n) outputs p', q' such that p' * q' = n.
- Note that by unique factorization theorem, either p'=p, q'=q or p'=q, q'=p.

Candidate for OWF:Integer Multiplication

Integer multiplication is a OWF: time tested conjecture and the most common assumption in crypto!

- Why not test all numbers from 2 to \sqrt{n} Here n is a 2k bit length number, the algo runs in $O(2^k)$.
- How do we make use of one way functions?
- This means to break X we need to be able to factor large integers easily which seems $highly\ unlikely$.

Candidate for OWP:Modular Exponentiation

- The modular exponentiation function $f_{p,g}(x) = g^x \text{mod} p$, where p is a prime, is a OWP.
- We have, $\mathbb{Z}_n = \{0, \dots, n-1\}$.
- Ex: Show that

$$\mathbb{Z}_n^* = \{x : x \in \mathbb{Z}_n \text{ and } \gcd(x, n) = 1\}$$

is a multiplicative group.

- \mathbb{Z}_n^* is the set of elements in \mathbb{Z}_n that are relatively prime to n.
- $-0\notin\mathbb{Z}_n^*$.
- If n=p, a prime, then $\mathbb{Z}_p^*=\mathbb{Z}_p\setminus\{0\}$.

More number theory facts

- Fermat's Little Theorem: For any prime p and $x \in \mathbb{Z}_p^*$,

$$x^{p-1} \equiv 1 \bmod p.$$

- Note that for any $a \in \mathbb{Z}_p^*$, the smallest x for which $a^x \equiv 1 \mod p$ is the order of a in \mathbb{Z}_p^*
- There may be elements in \mathbb{Z}_p^* with order less than p-1.
- But we have:For prime p, \mathbb{Z}_p^* has at least ONE element g with order p-1.
- Such elements are called generators. Why?
- $\{g^1,g^2,\ldots,g^{p-1}\}=\mathbb{Z}_p^*$ Verify!

Modular Exponentiation as a OWP

- Back to $f_{p,g}(x) = g^x \text{mod} p$, where p is a k-bit prime, g a generator of \mathbb{Z}_p^* and $x \in (\mathbb{Z}_p \setminus \{0\} = \mathbb{Z}_p^*)$.
- g is a generator so we have a permutation from \mathbb{Z}_p^* to \mathbb{Z}_p^* .
- Claim: Computing $y = g^x \text{mod} p$ can be done in poly-time $(O(k^3))$ by repeated squaring!
- The inverse problem is: given $g^x = y \mod p$, g, p, y find x. Discrete Log Problem, a hard problem
- Thus $f_{p,g}$ is a OWP. No trapdoor known to make inverting easy, so not a TDP

Overview of RSA as TDP

- RSA function $f_{n,e}(x) = x^e \mod n$, n is the product of two primes $p, q, x \in \mathbb{Z}_n^*$, $e \in \mathbb{Z}_{\varphi(n)}^*$.
- What is $\varphi(n)$? Euler Totient/phi Function: It is the number of positive integers less than n and relatively prime to n, i.e. \gcd w.r.t. n is 1
- That implies $|\mathbb{Z}_n^*| = \varphi(n)!$
- For a prime p, $\varphi(p)=p-1$ and n=pq implies $\varphi(n)=(p-1)*(q-1)=n-(p+q-1)$ (only for p,q primes!)

Theorem (Euler's Theorem)

For any positive integer n and any $a \in \mathbb{Z}_n^*$, $a^{\varphi(n)} \equiv 1 \mod n$.

A general version of Fermat's!

RSA function as TDP

- For RSA function f, e is always chosen to be in $\mathbb{Z}_{\varphi(n)}^*$ $\Rightarrow \gcd(e, \varphi(n)) = 1$ and e has an inverse mod $\varphi(n)$!
- Ex: Show that there exist an inverse d for $e \mod m$, $ed \equiv 1 \mod m$ iff $\gcd(e, m) = 1$
- Consider $c = f_{n,e}(x) = x^e \mod n$, how to get back x?

$$c^d = (x^e)^d \mod n = x^{ed} \mod n$$

$$= x^{1+l(\varphi(n)} \mod n, l \in \mathbb{N}$$

$$= x^1 \cdot (x^{\varphi(n)} \mod n)^l \mod n$$

$$= x \mod n \quad \text{(by Euler's theorem)}.$$

RSA function as TDP

- $x \in \mathbb{Z}_n^*$ and \mathbb{Z}_n^* is a group, so any power of x is in the group, $\Rightarrow f(x) = x^e \mod n$ is also in \mathbb{Z}_n^* , f is a permutation in \mathbb{Z}_n^* .
- Public values: n, e and the method to obtain $f_{n,e}(y)$ for some y, c is known.
- Private: x, p, q, d
- Here base is secret and exponent is public, in modular exponentiation exponent is secret, base is public!
- How to invert?
 - ▶ If you know how to factor n, then $\varphi(n) = (p-1)(q-1)$ is known and then finding d is easy! No PPT algo for that.
 - ▶ Other methods that directly try to compute $\varphi(n)$ or d are just as hard.
- Knowing the factoring is the secret information making f a TDP.