1. Цель лабораторной работы

Изучить способы предварительной обработки данных для дальнейшего формирования моделей.

2. Задание:

Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи: устранение пропусков в данных; кодирование категориальных признаков; нормализацию числовых признаков.

3.процесс выполнения работы

#Импортирование необходимых библиотек

```
In [16]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn.impute
import sklearn.preprocessing
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

In [17]:

```
pd. set_option("display.width", 70)
```

In [18]:

```
data = pd.read_csv(r"C:\Users\asus\Desktop\iu5\MMO\lab2\LA_Metro_BikeSharing_CLEANED_2016quater3-202
```

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3444: Dt ypeWarning: Columns (4) have mixed types. Specify dtype option on import or set low_m emory=False.

```
exec(code_obj, self.user_global_ns, self.user_ns)
```

In [19]:

```
data. shape
```

Out[19]:

```
(1250835, 16)
```

In [20]:

data.head()

Out[20]:

	trip_id	duration	start_time	end_time	bike_id	trip_route_category	plan_duration	passh
0	1912818	3	07/07/2016 4:17	07/07/2016 4:20	6281	Round Trip	30	Mc
1	1919661	33	07/07/2016 6:00	07/07/2016 6:33	6281	Round Trip	30	Mc
2	1933383	5	07/07/2016 10:32	07/07/2016 10:37	5861	Round Trip	365	А
3	1940317	7	07/07/2016 12:51	07/07/2016 12:58	6674	Round Trip	0	
4	1943980	9	07/07/2016 13:50	07/07/2016 13:59	6108	One Way	30	Мс
4								>

In [21]:

data. dtypes

Out[21]:

trip_id	int64
duration	int64
start_time	object
end_time	object
bike_id	object
trip_route_category	object
plan_duration	int64
passholder_type	object
bike_type	object
start_station	int64
end_station	int64
start_lat	float64
start_lon	float64
end_lat	float64
end_lon	float64
taxicab_distance	float64
dtype: object	

3.1. Обработка пропусков в данных

```
In [22]:
```

```
data features = list(zip(
# признаки
[i for i in data.columns],
zip(
  # типы колонок
  [str(i) for i in data.dtypes],
  # проверим есть ли пропущенные значения
   [i for i in data.isnull().sum()]
)))
# Признаки с типом данных и количеством пропусков
data features
```

Out[22]:

```
[('trip id', ('int64', 0)),
 ('duration', ('int64', 0)),
('start_time', ('object', 0)),
 ('end_time', ('object', 0)),
 ('bike_id', ('object', 0)),
 ('trip_route_category', ('object', 0)),
 ('plan_duration', ('int64', 0)),
 ('passholder_type', ('object', 4585)),
 ('bike type', ('object', 0)),
 ('start_station', ('int64', 0)),
 ('end_station', ('int64', 0)),
 ('start_lat', ('float64', 0)),
 ('start_lon', ('float64', 0)),
 ('end_lat', ('float64', 0)),
 ('end_lon', ('float64', 0)),
 ('taxicab_distance', ('float64', 0))]
```

Устранение пропусков

```
In [23]:
```

```
# Доля (процент) пропусков
[(c, data[c].isnull().mean()) for c in data.columns]
```

Out[23]:

```
[('trip id', 0.0),
 ('duration', 0.0),
 ('start_time', 0.0),
 ('end time', 0.0),
 ('bike_id', 0.0),
 ('trip_route_category', 0.0),
 ('plan_duration', 0.0),
 ('passholder_type', 0.003665551411657013),
 ('bike type', 0.0),
 ('start_station', 0.0),
 ('end station', 0.0),
 ('start_lat', 0.0),
 ('start_lon', 0.0),
 ('end_lat', 0.0),
 ('end lon', 0.0),
 ('taxicab distance', 0.0)]
```

In [24]:

Удаление колонок, содержащих пустые значения data.dropna(axis=1, how='any')

Out[24]:

	trip_id	duration	start_time	end_time	bike_id	trip_route_category	plan_duratio
0	1912818	3	07/07/2016 4:17	07/07/2016 4:20	6281	Round Trip	31
1	1919661	33	07/07/2016 6:00	07/07/2016 6:33	6281	Round Trip	31
2	1933383	5	07/07/2016 10:32	07/07/2016 10:37	5861	Round Trip	36:
3	1940317	7	07/07/2016 12:51	07/07/2016 12:58	6674	Round Trip	1
4	1943980	9	07/07/2016 13:50	07/07/2016 13:59	6108	One Way	31
1250830	172219113	7	9/30/2021 23:41	9/30/2021 23:48	19544	One Way	
1250831	172219114	13	9/30/2021 23:34	9/30/2021 23:47	19819	One Way	31
1250832	172219218	25	9/30/2021 23:26	9/30/2021 23:51	17317	One Way	31
1250833	172219313	7	9/30/2021 23:50	9/30/2021 23:57	19998	One Way	
1250834	172222121	57	9/30/2021 23:24	10/01/2021 0:21	5940	One Way	31
1250835 rows × 15 columns							
4							

In [25]:

Удаление колонок с высоким процентом пропусков (боле data. dropna (axis=1, thresh=730)

Out[25]:

	trip_id	duration	start_time	end_time	bike_id	trip_route_category	plan_duratio
0	1912818	3	07/07/2016 4:17	07/07/2016 4:20	6281	Round Trip	31
1	1919661	33	07/07/2016 6:00	07/07/2016 6:33	6281	Round Trip	31
2	1933383	5	07/07/2016 10:32	07/07/2016 10:37	5861	Round Trip	36:
3	1940317	7	07/07/2016 12:51	07/07/2016 12:58	6674	Round Trip	1
4	1943980	9	07/07/2016 13:50	07/07/2016 13:59	6108	One Way	31
1250830	172219113	7	9/30/2021 23:41	9/30/2021 23:48	19544	One Way	
1250831	172219114	13	9/30/2021 23:34	9/30/2021 23:47	19819	One Way	31
1250832	172219218	25	9/30/2021 23:26	9/30/2021 23:51	17317	One Way	31
1250833	172219313	7	9/30/2021 23:50	9/30/2021 23:57	19998	One Way	
1250834	172222121	57	9/30/2021 23:24	10/01/2021 0:21	5940	One Way	31
1250835 rows × 16 columns							
4	4						•
4							

```
In [26]:
```

```
data.isnull().sum()
Out [26]:
                           0
trip_id
duration
                           0
start time
                           0
end_time
                           0
bike id
                           0
trip_route_category
                           0
plan_duration
                           0
passholder_type
                        4585
bike_type
                           0
start station
                           0
end_station
                           0
start lat
                           0
start_lon
                           0
end lat
                           0
end lon
                           0
                           0
taxicab distance
dtype: int64
In [27]:
cols with na temp = [ 'passholder type']
In [28]:
data_drop = data[cols_with_na_temp].dropna()
data_drop. shape
Out[28]:
(1246250, 1)
In [29]:
def plot_hist_diff(old_ds, new_ds, cols):
    for c in cols:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax. title. set_text('\Pi o \pi e - ' + str(c))
        old ds[c].hist(bins=40, ax=ax, density=True, color='green')
        new ds[c].hist(bins=40, ax=ax, density=True, color='blue', alpha=0.5)
        plt.show()
```

In [30]:

plot_hist_diff(data, data_drop, cols_with_na_temp)

3.2. Кодирование категориальных признаков

In [31]:

trip=data["trip_route_category"].dropna().astype(str)
trip.value_counts()

Out[31]:

One Way 999145
Round Trip 194808
Monthly Pa 26402
Walk-up 18762
One Day Pa 7192
Annual Pas 4526

Name: $trip_route_category$, dtype: int64

In [32]:

```
le=sklearn.preprocessing.LabelEncoder()
type_le = le.fit_transform(trip)
print(np.unique(type_le))
le.inverse_transform(np.unique(type_le))
```

 $[0 \ 1 \ 2 \ 3 \ 4 \ 5]$

Out[32]:

```
array(['Annual Pas', 'Monthly Pa', 'One Day Pa', 'One Way', 'Round Trip', 'Walk-up'], dtype=object)
```

In [33]:

```
trip_one_hot=pd.get_dummies(trip)
trip_one_hot.head()
```

Out[33]:

	Annual Pas	Monthly Pa	One Day Pa	One Way	Round Trip	Walk-up
0	0	0	0	0	1	0
1	0	0	0	0	1	0
2	0	0	0	0	1	0
3	0	0	0	0	1	0
4	0	0	0	1	0	0

In [34]:

```
trip_one_hot[trip_one_hot["One Way"]==1].head()
```

Out[34]:

	Annual Pas	Monthly Pa	One Day Pa	One Way	Round Trip	Walk-up
4	0	0	0	1	0	0
6	0	0	0	1	0	0
8	0	0	0	1	0	0
10	0	0	0	1	0	0
11	0	0	0	1	0	0

3.3. Нормализацию числовых признаков.

In [35]:

```
import scipy.stats as stats
```

In [36]:

```
def diagnostic_plots(df, variable):
   plt.figure(figsize=(15,6))
   plt.subplot(1, 2, 1)
   df[variable].hist(bins=30)
   plt.subplot(1, 2, 2)
   stats.probplot(df[variable], dist="norm", plot = plt)
   plt.show()
```

In [37]:

```
data_clean = data.dropna()
data_clean.info()
data_clean.hist(figsize=(20, 20))
plt.show()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1246250 entries, 0 to 1250834
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype				
		104605011					
0	trip_id	1246250 non-null	int64				
1	duration	1246250 non-null	int64				
2	start_time	1246250 non-null	object				
3	end_time	1246250 non-null	object				
4	bike_id	1246250 non-null	object				
5	trip_route_category	1246250 non-null	object				
6	plan_duration	1246250 non-null	int64				
7	passholder_type	1246250 non-null	object				
8	bike_type	1246250 non-null	object				
9	start_station	1246250 non-null	int64				
10	end_station	1246250 non-null	int64				
11	start_lat	1246250 non-null	float64				
12	start_lon	1246250 non-null	float64				
13	end_lat	1246250 non-null	float64				
14	end_lon	1246250 non-null	float64				
15	taxicab_distance	1246250 non-null	float64				
$1+\cdots$ $CA(\Gamma)$ $1+CA(\Gamma)$ $1+\cdots$ $CA(\Gamma)$							

dtypes: float64(5), int64(5), object(6)

memory usage: 161.6+ MB

In [46]:

diagnostic_plots(data_clean, 'trip_id')

In [40]:

```
data_clean['trip_id_log'] = np. log(data_clean['trip_id'])
diagnostic_plots(data_clean, 'trip_id_log')
```

C:\Users\asus\AppData\Local\Temp/ipykernel_2344/1555149951.py:1: SettingWithCopyWarn ing:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_log'] = np. log(data_clean['trip_id'])

In [42]:

```
data_clean['trip_id_reciprocal'] = 1 / (data_clean['trip_id'])
diagnostic_plots(data_clean, 'trip_id_reciprocal')
```

C:\Users\asus\AppData\Local\Temp/ipykernel_2344/3592647394.py:1: SettingWithCopyWarn ing:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_reciprocal'] = 1 / (data_clean['trip_id'])

In [43]:

```
data_clean['trip_id_expl'] = data_clean['trip_id'] ** (1/1.5)
diagnostic_plots(data_clean, 'trip_id_expl')
```

 $\label{local-Temp} C: \Users\asus\AppData\Local\Temp/ipykernel_2344/3759703456. py:1: SettingWithCopyWarning: \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_expl']=data_clean['trip_id']**(1/1.5)

In [44]:

```
data_clean['trip_id_exp2'] = data_clean['trip_id']**(2)
diagnostic_plots(data_clean, 'trip_id_exp2')
```

 $\label{local-Temp} C: \Users\asus\AppData\Local\Temp/ipykernel_2344/530966480. py:1: SettingWithCopyWarning: \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_exp2'] = data_clean['trip_id']**(2)

In [47]:

```
data_clean['trip_id_exp3'] = data_clean['trip_id']**(0.333)
diagnostic_plots(data_clean, 'trip_id_exp3')
```

C:\Users\asus\AppData\Local\Temp/ipykernel_2344/3811952672.py:1: SettingWithCopyWarn ing:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_exp3'] = data_clean['trip_id']**(0.333)

In [48]:

```
data_clean['trip_id_boxcox'], param = stats.boxcox(data_clean['trip_id'])
print('Оптимальное значение \lambda = \{\}'.format(param))
diagnostic_plots(data_clean, 'trip_id_boxcox')
```

C:\Users\asus\AppData\Local\Temp/ipykernel_2344/4007994848.py:1: SettingWithCopyWarn ing:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data_clean['trip_id_boxcox'], param = stats.boxcox(data_clean['trip_id'])

Оптимальное значение λ = 20.049273258656413

In []: