Doc. No.: FY-ACAD-33(a) Clause No.: 9.1	Shri Ramdeobaba College of Engineering and Management, Nagpur - 440 013		Iss. No.: 01 Rev. No.: 00 Date of Rev.: 01/01/2018
Department: Physics	Name of Internal Examination: Test-1 Session: 2020-21 Semester: II [AI&ML, Cyber Security]		Page 1/1
Course Code: PH	•	Date of Exam: 02-8	 8-2021
Course Name: Introduction to Quantum Computing		Timing: 1.00pm to 2.00pm	
Maximum Marks: 15		Duration: 1 Hrs	

Note: All questions are compulsory. Draw suitable diagrams.

Q.No.	Question	Marks	COs Mapped
1.	Show that: (i) Matrix multiplication respects scalar multiplication. (ii) Matrix multiplication relates to transpose. Use: $A = \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix}, c = 3.$	3	CO-1
2.	Find whether the set of vectors given by B, is linearly independent or not. $B = \{[1,2,3]^T, [3,0,2]^T, [1,-4,-4]^T\}.$	2	CO-1
3.	Given the operator matrix: $A = \begin{bmatrix} 3 & -2 \\ 7 & -6 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 7 & -6 \end{bmatrix}$. Two vectors are given. $V_1 = \begin{bmatrix} 2,7 \end{bmatrix}^T$ and $V_2 = \begin{bmatrix} 1,1 \end{bmatrix}^T$. Find whether the operator A is the eigen value operator of the given vector(s). Find the corresponding eigen values.		CO-1
4.	Define Tensor product. Show that tensor product is commutative. $A = \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix}.$	2	CO-1
5.	Why a single monochromatic wave cannot represent a particle in motion? Write the mathematical expression of a wave packet and explain how it represents the uncertainties found in the measurements in the quantum world. Give the principal involved.	2	CO-2
6.	A particle wave function is given as: $\psi = \text{Exp} \left[-i \left(5 \times 10^{-8} \right) x \right) \right]$. Find its (i) momentum, (ii) energy, (iii) wavelength, (iv) probability of finding it in the volume element of a region $0 < x < 1 \text{nm}$, $0 < y < 1.2 \text{nm}$, $1 < z < 2 \text{nm}$.	4	CO-2