Завдання 1 з премету Спецкурс для ОМ-3

Коломієць Микола

6 травня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	4
3	Завдання 3	5
4	Завдання 4	6
5	Завдання 5	8
6	Завдання 6	9
7	Завдання 7	11
8	Завдання 8	12
9	Завдання 9	13
10	Завдання 10	14

Завдання

Нехай C — непорожня замкнена опукла підмножина гільбертового простору H. Доведіть, що

$$||P_C x - P_C y||^2 \le ||x - y||^2 - ||(x - P_C x) - (y - P_C y)||^2, \ \forall x, y \in H$$

Розв'язання:

$$||P_C x - P_C y||^2 = ||P_C x - x - P_C y + y + x - y||^2 =$$

$$||x - y - ((x - P_C x) - (y - P_C y))||^2 =$$

$$= ||x - y||^2 - 2(x - y, (x - P_C x) - (y - P_C y)) + ||(x - P_C x) - (y - P_C y)||^2$$

Порівняємо з правою частиною нерівності:

$$||x-y||^{2} - 2(x - y, (x - P_{C}x) - (y - P_{C}y)) + ||(x - P_{C}x) - (y - P_{C}y)||^{2} \le$$

$$||x-y||^{2} - ||(x - P_{C}x) - (y - P_{C}y)||^{2}$$

$$||(x - P_{C}x) - (y - P_{C}y)||^{2} \le (x - y, (x - P_{C}x) - (y - P_{C}y))$$

$$||(x - P_{C}x) - (y - P_{C}y)||^{2} = ((x - P_{C}x) - (y - P_{C}y), (x - P_{C}x) - (y - P_{C}y)) =$$

$$= (x - y, (x - P_{C}x) - (y - P_{C}y)) - (P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y))$$

$$(x - y, (x - P_{C}x) - (y - P_{C}y)) - (P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y)) \le$$

$$(x - y, (x - P_{C}x) - (y - P_{C}y))$$

$$(P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y)) \stackrel{?}{\geq} 0$$

$$(P_{C}x - P_{C}y, (x - P_{C}x) - (y - P_{C}y)) =$$

$$(P_{C}x - P_{C}y, x - y) - (P_{C}x - P_{C}y, P_{C}x - P_{C}y) =$$

$$= (P_{C}x - P_{C}y, x - y) - ||P_{C}x - P_{C}y||^{2} \stackrel{?}{\geq} 0$$

Якщо застосувати другий пункт теореми 2 з лекції 2 при

$$1)z = P_C x, x = x, y = P_C y, 2)z = P_C y, x = y, y = P_C x$$
: Отримаємо:

$$(P_C x - x, P_C y - P_C x) \ge 0, (P_C y - y, P_C x - P_C) \ge 0$$

І якщо складемо їх отримаємо нашу нерівеість:

 $(P_C x - P_C y, x - y) \ge \|P_C x - P_C y\|^2$, що і завершує доведення.

Завдання

Нехай $\{e_n\}_{n\in \mathbb{N}}$ — зліченна ортонормована система елементів гільбертового простору H та

C = з.л.о. $\{e_n\}$. Доведіть, що

$$P_C x = \sum_{n=1}^{\infty} (x, e_n) e_n, x \in H$$

Розв'язання:

Нехай $x \in H$. Тоді розклад вектора $P_C x$ можна записати так

$$P_{C}x = \sum_{n=1}^{\infty} (P_{C}x, e_{n})e_{n} = \sum_{n=1}^{\infty} (P_{C}x - x + x, e_{n})e_{n} =$$

$$= \sum_{n=1}^{\infty} ((P_{C}x - x, e_{n}) + (x, e_{n}))e_{n} = \sum_{n=1}^{\infty} (P_{C}x - x, e_{n})e_{n} + \sum_{n=1}^{\infty} (x, e_{n})e_{n}$$

C - з.л.о., тобто він і замкнений і лінійний і очевидно $e_n \in C$.

Тоді за теоремою 4 другої лекції $(P_C x - x, e_n) = 0$

$$P_C x = \sum_{n=1}^{\infty} \underbrace{(P_C x - x, e_n)}_{0} e_n + \sum_{n=1}^{\infty} (x, e_n) e_n = \sum_{n=1}^{\infty} (x, e_n) e_n$$
 Доведено

Завдання

Доведіть, що для гіперплощини $L=\{y\in H: (x_0,y)=c\}(x_0\neq 0,c\in \mathbb{R})$

R) проекція $P_L x$ обчислюється за формулою

$$P_L x = x - ((x_0, x) - c) \frac{x_0}{\|x_0\|^2}$$

Розв'язання:

Розглянемо скаларний добуток:

$$(x-P_Lx,x_0)=(x_0,x-P_Lx)|*x_0$$
 $(x-P_Lx,x_0)x_0=(x-P_Lx)(x_0,x_0)=x_0(x_0,x-P_Lx)$ $(x-P_Lx)\|x_0\|^2=x_0(x_0,x-P_Lx)=x_0((x_0,x)-(x_0,P_Lx))$ За визначенням $P_Lx\in L$, а отже $(x_0,P_Lx)=c$ $(x-P_Lx)\|x_0\|^2=x_0((x_0,x)-c)\|*rac{1}{\|x_0\|^2}$ $(x-P_Lx)=((x_0,x)-c)rac{x_0}{\|x_0\|^2}$ Звідси отримуєм, що $P_Lx=x-((x_0,x)-c)rac{x_0}{\|x_0\|^2}$, доведено

Завдання

Нехай С — непорожня замкнена опукла підмножина гільбертового простору $H,x\in H\setminus\!\! C.$

Доведіть, що $\exists p \in H \setminus \{0\}$ такий, що

$$\sup_{y \in C} (p, y) < (p, x)$$

Розв'язання:

Повне доведення:

 ${\cal C}$ замкнена множина отже замість \sup можна інтерпритувати умову як

$$\forall y \in C, \exists p \in H \backslash \{0\} \quad (p, y) < (p, x)$$

Доведення проводимо від супротивного. Нехай $\exists y \in C$ такий що

$$\forall p \in H \setminus \{0\} \quad (p, y) \ge (p, x)$$
$$(p, y) - (p, x) = (p, y - x) \ge 0$$
$$(-p, y - x) \le 0$$

Подивившись на теорему 2 другої лекції (а саме на її другий пункт) стає очевидно, що за -p варто взяти P_Cx-x . Тоді отримаємо

$$(P_Cx-x,y-x)=(P_Cx-x,y-P_Cx+P_Cx-x)=$$
 $=(P_Cx-x,y-P_Cx)+(P_Cx-x,P_Cx-x)\leq 0$ За теоремою 2 з лекції 2 (пункт 2) $(P_Cx-x,y-P_Cx)\geq 0$ $(P_Cx-x,P_Cx-x)=\|P_Cx-x\|^2>0$ адже $x\in H\backslash C, x\neq P_Cx$ Доведено

Швидке доведення:

Покладемо $p=x-P_Cx \neq 0$. Для довільного $y \in C$ з теореми 2 другої лекції (пункт 2) маємо $\forall y \in C$

$$0 \ge (x-P_Cx,y-P_Cx) = (p,y-x+p) = (p,y-x) + \|p\|^2.$$
 $(p,y)-(p,x)+\|p\|^2 \le 0, \|p\|^2 \ge 0 \Rightarrow (p,y) \le (p,x), \|p\|^2 > 0$ Отже $\sup_{y \in C}(p,y) < (p,x)$, що і треба було довести.

Завдання

Нехай С — непорожня опукла підмножина гільбертового простору $H, \dim H < +\infty, x \in H \backslash C.$ Доведіть, що $\exists p \in H \backslash \{0\}$ такий, що

$$\sup_{y \in C} (p, y) \le (p, x)$$

Розв'язання:

Нехай $x\in H\backslash C$. За теоремою Хана-Банаха про розділення, існує неперервний лінійний функціонал $f:H\to R$ та дійсне число α , такі що

$$f(y) \le \alpha < f(x), \forall y \in C$$

Оскільки Н має скінченну розмірність, з теореми Ріса випливає, що

$$\exists p \in H : f(z) = (p, z), \forall z \in H$$

Тоді отримаємо: $(p,y) \leq \alpha < (p,x)$. Отже $\sup_{y \in C} (p,y) \leq (p,x)$

Завдання

Нехай C,D — непорожні замкнені опуклі підмножини H такі, що $C\cap D=\emptyset$ і D обмежена. Доведіть, що $\exists p\in H\backslash\{0\}$ такий, що

$$\sup_{y \in C} (p, y) < \inf_{x \in D} (p, x)$$

Розв'язання:

Для доведення даного твердження ми використаємо принцип роздільності Гансена-Банаха, який стверджує, що для будь-яких непорожніх замкнених опуклих множин A,B з таким, що $A\cap B=\emptyset$, існує гіперплощина, яка розділяє A та B, тобто існує $p\in H\backslash 0$ та $c\in R$, такі що $(p,x)\leq c<(p,y)$ для будь-яких $x\in A$ та $y\in B$.

Застосуємо цей принцип до множин C та $\operatorname{conv}(D)$, де $\operatorname{conv}(D)$ позначає опуклу оболонку множини D, тобто найменшу опуклу множину, яка містить D. Зауважимо, що $\operatorname{conv}(D)$ є замкненою та обмеженою опуклою множиною, оскільки D є замкненою та обмеженою. Далі, оскільки $C \cap D = \emptyset$, то $C \cap \operatorname{conv}(D) = \emptyset$. Отже, за принципом роздільності Гансена-Банаха, існує

 $p\in Hackslash 0$ та $c\in R$, такі що $(p,x)\leq c<(p,y)$ для будь-яких $x\in C$ та $y\in {\rm conv}(D).$

Залишилося показати, що $\sup_{y\in C}(p,y)<\inf_{x\in D}(p,x)$. Для цього зауважимо, що $\inf_{x\in D}(p,x)\leq\inf_{x\in\operatorname{conv}(D)}(p,x)$. Оскільки D є замкненою та обмеженою, то $\operatorname{conv}(D)$ також є замкненою та обмеженою. Тому, згідно з теоремою про існування інфімуму, існує точка $z\in\operatorname{conv}(D)$, така що $\inf_{x\in\operatorname{conv}(D)}(p,x)=(p,z)$. З іншого боку, $\sup_{y\in C}(p,y)\leq(p,w)$ для будь-якої точки $w\in H$, оскільки C є підмножиною H. Зокрема, $\sup_{y\in C}(p,y)\leq(p,z)$. Але з принципу роздільності Гансена-Банаха $(p,x)\leq c<(p,y)$ для будь-яких $x\in C$ та $y\in\operatorname{conv}(D)$. Тому, вибравши будь-яку точку $y\in\operatorname{conv}(D)$, отримаємо $(p,z)>c\geq(p,x)$ для будь-якої точки $x\in C$, тобто $\sup_{y\in C}(p,y)<\inf_{x\in D}(p,x)$. Цим доведено твердження.

Завдання

Нехай C — опукла підмножина гільбертового простору. Доведіть, що наступні умови рівносильні:

- 1. С слабко секвенційно замкнена множина.
- 2. C замкнена множина.
- 3. С слабко замкнена множина.

Завдання

Нехай C,D — непорожні підмножини H такі, що $C\cap D=\emptyset.$

- 1. Якщо припустити, що множина $C-D=c-d:c\in C, d\in D$ опукла та замкнена, то $\exists p\in H\backslash\{0\}$ такий, що $\sup_{y\in C}(p,y)<\inf_{x\in D}(p,x).$
- 2. Якщо припустити, що $\dim H < +\infty$, множина C-D опукла, то $\exists p \in H \ \{0\} \ \text{такий, що} \sup_{y \in C} (p,y) \leq \inf_{x \in D} (p,x).$

Завдання

Нехай $C_1\subseteq C_2\subseteq ...$ — неспадна послідовність непорожніх опуклих замкнених множин гільбертового простору. Покладемо $C=cl(\bigcup_{n=1}^\infty C_n)$ і нехай $x\in H$. Доведіть, що $P_{C_n}x\to P_Cx$.

Завдання

Нехай $C_1 \subseteq C_2 \subseteq ...$ — незростаюча послідовність опуклих замкнених множин гільбертового простору.

Припустимо що $\bigcap\limits_{n=1}^{\infty}C_{n}\neq\emptyset$ і нехай $x\in H.$ Доведіть, що $P_{C_{n}}x\rightarrow P_{C}x.$