## Ejercicios Tema 3

Luis Sánchez Velasco

25 de marzo de 2017

## 1.

Una línea de transmisión posee los siguientes parámetros por unidad de longitud:  $L=0.3\mu H/m,~C=450pF/m,~R=5\Omega/m,~y~G=0.01S/m$ . Calcular la constante de propagación y la impedancia característica de esta línea a 880MHz. Recalcular estos parámetros en ausencia de pérdidas.

La constante de propagación en medios con perdidas se define como:

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$$

Donde sustituyendo por los valores dados en el ejercicio,  $L=0.3\mu H/m,\, C=450pF/m,\, R=5/m,\, y\, G=0.01S/m$  obtenemos:

$$\alpha = 0,226$$

$$\beta = 64.2$$

Y para el cálculo de la impedancia característica:

$$Z_0 = \sqrt{\frac{(R+j\omega L)}{(G+j\omega C)}} = 25.8 + 0.01j$$

Para el caso sin perdidas asumiremos R=G=0, por lo que la constante de propagación quedará como:

$$\gamma = j\omega\sqrt{LC} = 64j$$

y la impedancia característica:

$$Z_0 = \sqrt{\frac{L}{C}} = 25,8\Omega$$

## 2.

Una línea de transmisión sin perdidas de longitud  $0.3\lambda$  termina en una impedancia de carga,  $Z_L$ . Encontrar el coeficiente de reflexión en la carga, el SWR de la linea y la impedancia de entrada de la linea.  $(Z_0 = 75\Omega, Z_L = 40 + j20\Omega)$ .

Para calcular primeramente el coeficiente de reflexión, situaremos en la carta de Smith el punto  $z=\frac{40}{75}+\frac{20}{75}j\Omega$ , marcado con un '1' en al gráfica. Donde observando el ángulo y la fase de este punto, obtenemos:

$$\Gamma_L = 0.34e^{j2.45}$$

Para calcular el SWR haremos:

$$SWR = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \approx 2$$

Para calcular la impedancia a la entrada moveremos el punto '1'  $0.3\lambda$  hacia el generador, punto '2' y observaremos que lineas corta. En este caso:  $z_i = 0.94 + 0.7i$  que al denormalizar quedará como:  $Z_{in} = 67.5 + 52.5j$ .



Figura 1: Moviendo el punto  $0.3\lambda$ 

## 3.

Una línea de transmisión sin pérdidas de impedancia característica  $Z_0$  se termina con una impedancia de carga de 150 $\Omega$ . Si se mide una SWR en la línea de 1.6, encontrar los dos posibles valores para  $Z_0$ .

Aunque el enunciado nos dice que existen dos posible valor para  $Z_0$ , solo existe uno, ya que tanto la impedancia de carga, como la de la línea (sin pérdidas), son reales. Para resolverlo empezaremos evaluando la expresión del SWR:

$$SWR = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} = 1.6$$

Donde podemos resolver para  $|\Gamma_L|$ , obteniendo:

$$|\Gamma_L| = 0.23$$

Sabemos que al ser las dos impedancias puramente reales, el valor absoluto del coeficiente de reflexión será igual a su valor real, esto se puede observar en la expresión del coeficiente de reflexión en función de la impedancia de carga y la impedancia carcterística de la línea.

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

De donde podemos obtener  $Z_0$ , el cual resulta:

$$Z_0 = 93,9\Omega$$