Probabilités - 3 IF

TD 3: Variables aléatoires discrètes.

16 h

Rappel de cours

On considère un univers Ω discret avec une distribution de probabilité \mathbb{P} . Une **variable aléatoire discrète** X sur Ω est une fonction

$$X:\Omega \to \mathbb{N}$$
 "entiere"
$$\mathbb{R} \text{ "reelle"}$$

$$E \text{ "qualitative"}$$

Elle permet d'écrire plus efficacement des événements, on note "X=k" l'événement

$$X^{-1}(\{k\}) = \{\omega \in \Omega \mid X(\omega) = k\}$$

L'espérance d'une variable aléatoire X correspond à la valeur moyenne obtenue pour un grand nombre de tirages indépendants. On la calcule en pondérant les valeurs possibles de X par leur probabilité:

$$\mathbb{E}[X] = \sum_k \mathbb{P}[X = k] \cdot k$$

La variance de X est l'écart moyen à l'espérance pour un grand nombre de tirages indépendants. On la calcule comme un espérance :

$$\mathrm{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

= $\mathbb{E}[X]^2 - \mathbb{E}[X^2]$

16 10

Exercice 1:

Un minibus-navette peut recevoir jusqu'à 5 passagers par voyage. La compagnie de transport accepte au maximum 6 réservations par voyage, chaque passager devant avoir une réservation. L'expérience antérieure a permis d'évaluer que 25 % des personnes effectuant une réservation ne se présentent pas au départ du voyage. Tous les passagers sont supposés agir indépendamment les uns des autres.

On suppose que 6 réservations ont été faites.

16h20

1. Quelle est la probabilité qu'au moins un passager ayant réservé ne se présente pas au

départ? (
$$10^{\circ}$$
)
But chaque passager, deux possibilités : $\{P,A\}$, $P[P] = 0.75$.

 \rightarrow empérience de Bernoulli, de paramètres $p = 0.75$.

 $\Omega = \{P,A\}^{6}$, on note X le nombre de passagers présents ou départ. 6 expériences de Bernoulli indépendantes de paramètre 0.75 .

 X suit une la binomiale : $X \sim \mathcal{D}(6,0.75)$.

 $P[X < 6] = 1 - P[X = 6] = 1 - 0.75^{6} = 0.82$

2. Quel est le nombre moyen de passagers se présentant au départ ? ($^{\prime}$) 16h 30

$$\times N \mathcal{B}(6, 0.75)$$
 done $E[X] = 6 \times 0.75 = 4,5$

3. Quel est le nombre moyen de personnes transportées ?

$$E[Y] = \sum_{k=0}^{5} k \cdot P[Y=k] = \sum_{k=0}^{5} k \cdot P[X=k] + 5 \cdot P[X=6]$$

$$= E[X] - P[X=6]$$

$$= 4.5 - 0.18$$

$$= 4.32$$

16h 45 Exercice 2:

Soit X une variable aléatoire suivant une loi de Poisson $P(\lambda)$ avec $\lambda > 0$, c'est-à-dire telle que

$$\mathbb{P}[X = k] = C(\lambda) \frac{\lambda^k}{k!}$$

Cette loi est utilisée notamment pour modéliser les phénomènes de files d'attentes, par exemple X est le nombre de requêtes sur un serveur informatique par minutes.

16h 50

1. Expliciter $C(\lambda)$ en fonction de λ .

expliciter
$$C(\lambda)$$
 en fonction de λ .

$$\sum_{k=0}^{+\infty} \mathbb{P}\left[x=k\right] = 1 \quad \text{donc} \quad C(\lambda) \underbrace{\sum_{k=0}^{+\infty} \frac{\lambda^{k}}{k!}}_{e^{\lambda}} = 1$$

$$et \quad C(\lambda) = e^{-\lambda}.$$

16h 55

2. Calculer la fonction génératrice de X, $G_X(s) = \mathbb{E}\left[s^X\right]$.

$$G_{x}(s) = \mathbb{E}\left(s^{x}\right) = \sum_{k \geq 0}^{i} \mathbb{P}\left[x = k\right] s^{k}$$

$$= \sum_{k \geq 0}^{i} e^{-\lambda} \frac{\lambda^{k} s^{k}}{k!}$$

$$= e^{-\lambda} \times \sum_{k \geq 0}^{i} \frac{(\lambda s)^{k}}{k!}$$

$$= e^{\lambda(s-1)}$$

$$= e^{\lambda(s-1)}$$

17h

3. En remarquant que $G_X'(1)=\mathbb{E}[X]$ et que $G_X''(1)=\mathbb{E}[X(X-1)]$, en déduire $\mathbb{E}[X]$ puis Var[X].

$$G'_{\mathsf{x}}(s) = \lambda e^{\lambda s} \cdot e^{-\lambda} = \lambda e^{\lambda(s-1)}$$
 et $\mathbb{E}[\mathsf{x}] = \lambda$
 $G''_{\mathsf{x}}(s) = \lambda^2 e^{\lambda(s-1)}$ et $\mathbb{E}[\mathsf{x}^2] - \mathbb{E}[\mathsf{x}] = \lambda^2$

donc
$$\forall \alpha (x) = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

$$= (\lambda^2 + \lambda) - \lambda^2$$

$$= \lambda$$

17^ho5 Exercice 3:

On cherche à analyser le résultat d'un problème d'optimisation. Le programme de résolution a un probabilité p de converger vers la valeur cherchée. On note X le nombre d'essais nécessaires pour obtenir m succès. On suppose que les essais sont indépendants.

Pour tout $k \in \mathbb{N}$ déterminer la probabilité que X = k. Quel est le nombre moyen d'essais à effectuer pour obtenir m succès ?

$$\times$$
 suit une loi de Pascal de paramètres (m_1p) -
$$\mathbb{E}[X] = \frac{m(n-p)}{p}$$

Exercice 4:

4. 8 5 (y = 1 : x = 1

Soit X une variable aléatoire à valeurs dans $\{-1,0,1\}$ telle que $\mathbb{P}[X=-1]=\frac{1}{3}$, $\mathbb{P}[X=0]=\frac{1}{2}$ et $\mathbb{P}[X=1]=\frac{1}{6}$. Proposer un algorithme de simulation de X. On supposera qu'on sait simuler une variable aléatoire de loi uniforme sur [0,1].