ECE 231A Discussion 3

TA: Hengjie Yang

Email: hengjie.yang@ucla.edu

04/17/2020

Why data compression?

Goal of data compression: To design an "efficient" representation of the source such that it can be losslessly reconstructed from its representation.

Source-channel separation theorem: the above two-stage method is as good as any other method of transmitting information over a noisy channel if the source generates symbols from a finite alphabet and satisfies AEP.

Source code

Notation setup:

- 1. \mathcal{X} : a finite alphabet
- 2. \mathcal{D}_{+}^{*} : the set of finite-length strings of symbols from a D-ary alphabet.
- 3. $C: \mathcal{X} \to \mathcal{D}^*$: a source code that maps a r.v. $X \in \mathcal{X}$ to \mathcal{D}^*
- 4. $C(x) \in \mathcal{D}^*$: the codeword for $x \in \mathcal{X}$;
- 5. $\underline{l(x)}$: the length for codeword C(x), $x \in \mathcal{X}$

Nonsingular: A code is nonsingular if $\forall x, x' \in \mathcal{X}$, $\underline{C(x)} \neq \underline{C(x')}$.

Extension: The extension C^* of a code C is given by

$$C(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n).$$

Uniquely decodable: A code is uniquely decodable if C^* is nonsingular.

Instantaneous (prefix-free): No codeword is a prefix of any other codeword.

Examples of source codes

Let $\mathcal{X} = \{a, b, c, d\}$ and $\mathcal{D} = \{0, 1\}$.

Source code 1	Source code 2	Source code 3	Source code 4
$a \to 0$	$a \to 0$	$a \rightarrow 10$	$a \to 0$
$b \to 0$	$b \rightarrow 010$	$b \to 00$	$ \begin{array}{c} b \to 10 \\ c \to 110 \end{array} $
$c \to 0$	$c \rightarrow 01$	$c \rightarrow 11$	$c \rightarrow 110$
$d \to 0$	$d \rightarrow 10$	$d \rightarrow 110$	$d \rightarrow 1110$

Source code 1: singular, cannot reconstruct elements in \mathcal{X} .

Source code 2: nonsingular, but not uniquely decodable, e.g.,

Source code 3: uniquely decodable, but not prefix-free.

Source code 4: prefix-free.

Relationship of codes:

 $\mathsf{Prefix}\text{-}\mathsf{free}\ \mathsf{codes} \subseteq \mathsf{Uniquely}\ \mathsf{decodable}\ \mathsf{codes} \subseteq \mathsf{Nonsingular}\ \mathsf{codes} \subseteq \mathsf{All}\ \mathsf{codes}$

Kraft inequality for prefix-free (or uniquely decodable) codes

Theorem

For any prefix-free (or uniquely decodable) code over an alphabet of size D, the codeword lengths l_1, l_2, \ldots, l_m , $m = |\mathcal{X}|$, must satisfy

$$\sum_{i=1}^{m} D^{-l_i} \le 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a prefix-free (or uniquely decodable) code with these word lengths.

Proof(prefix-free): Assume the longest code length is l_{\max} . Then level l_i occupies $D^{l_{\max}-l_i}$ nodes at level l_{\max} . Due to prefix-free, all these nodes are disjoint. Hence, $\sum_{i=1}^m D^{l_{\max}-l_i} \leq D^{l_{\max}}$.

Implications:

- The class of uniquely decodable codes does not offer any further choices for the set of codeword lengths than the class of prefix-free codes.
- 2. H(X) is the fundamental limit of lossless data compression.

Proof of knows meguality (prefix free) Assure the largest code leighth is large

Discrete memoryless source and optimal codes

Discrete memoryless source: a finite alphabet \mathcal{X} with a fixed distribution $p(x), x \in \mathcal{X}$. For $(x_1, \dots, x_n) \in \mathcal{X}^n$, $p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i)$.

Expected length
$$L \triangleq \sum_{x \in \mathcal{X}} p(x) l(x)$$
 (Intuition: $\frac{1}{n} \sum_{i=1}^{n} l(x_i) \to L$)

Goal: Minimize expected length $L = \sum_{x \in \mathcal{X}} p(x) l(x)$ for prefix-free codes.

$$\begin{aligned} \min_{l(x), x \in \mathcal{X}} \quad & \sum_{x \in \mathcal{X}} p(x) l(x) \\ \text{s. t.} \quad & \sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1 \end{aligned}$$

Solution:
$$l^*(x) = -\log_D p(x)$$
 and $L^* = \sum_{x \in \mathcal{X}} p(x) l^*(x) = H_D(X)$.

Theorem: Given a source with distribution p(x), the expected length L of any prefix-free D-ary code satisfies

$$\underline{L} \ge \sum_{x \in \mathcal{X}} p(x) \log_D \frac{1}{p(x)} = \underline{H_D(X)}.$$

with equality iff $D^{-l(x)} = p(x)$.

Bounds on optimal code lengths

Theorem: Given a source with distribution p(x), the expected length L of the optimal prefix-free D-ary code satisfies

$$H_D(X) \le L < H_D(X) + 1$$

Expected codeword length per (source) symbol L_n

$$\underline{L_n} \triangleq \frac{1}{n} \sum_{x^n \in \mathcal{X}^n} p(x^n) l(x^n) = \frac{1}{n} \underline{\mathbb{E}[l(X_1, \dots, X_n)]}$$

Similarly, we can choose $l(\underline{x^n}) = \lceil \log_D \frac{1}{p(x^n)} \rceil$.

Theorem

The minimum expected codeword length per symbol satisfies

$$\frac{H(X_1,\ldots,X_n)}{n} \le \underline{L_n^*} \le \frac{H(X_1,\ldots,X_n)}{n} + \frac{1}{n}$$

Moreover, if X_1, \ldots, X_n is a stationary process,

$$\lim_{n\to\infty} L_n^* = \lim_{n\to\infty} \frac{H(X_1,\dots,X_n)}{n} = \underline{H(\mathcal{X})}.$$

Huffman coding and Shannon-Fano-Elias coding

Huffman coding:

- (i) achieve the minimum possible length for a given distribution p(x) and $H(X) \leq L < H(X) + 1$;
- (ii) If $\underline{D=2}$, combining the two least likely symbols into one symbol until we are finally left with one symbol.
- (iii) If $D \ge 3$, add "dummy" symbols with prob. 0 such that the number of symbols becomes 1 + k(D-1). Then we perform the Huffman coding.
- (iv) Cons: does not support encoding/decoding on the fly; complexity increases exponentially in length n

Shannon-Fano-Elias coding

- (i) A precursor of the arithemetic coding which achieves $H(X)+1 \leq L < H(X)+\underline{2};$
- (ii) Constructs a prefix-free code $|\bar{F}(x)|_{l(x)}$ using the modified CDF $\bar{F}(x) = \sum_{a < x} p(a) + \frac{1}{2}p(x)$ and round-off length $\overline{l(x)} = |\log \frac{1}{p(x)}| + 1$.

Remark:

- (i) These schemes require the knowledge of source distribution $p(x), x \in \mathcal{X}$.
- (ii) These schemes also assume all source symbols are i.i.d.

Arithmetic coding and Lempel-Ziv coding

Arithmetic coding:

- (i) Use a subinterval of the unit interval to represent a sequence of symbols.
- (ii) Pros: Encoding is sequential; adaptive if the source model (i.e., source distribution) changes over time.
- (iii) Cons: requires the knolwedge of source distribution $p_n(x)$ at each time n.

- (i) Algorithm: Parsing shortest phrases that have not occurred so far, then use a tree to map to $(P,{\cal C})$
- (ii) Example: string: ABBABBABBBAABABAA
- 3. Pros: LZ codes are universal codes that does not depend on the source distribution; can achieve asymptotic compression equal to $H(\mathcal{X})$.

Sliding-window LZ ABB ABB ABBB ABABA BA P: the difference hetween Xj in sticking window cool current symbol pesition X; (A,0) (0,B) $(U \cup I)$ (1, 3, 6)(1,4,2)しいいり ((1.3, 2) (1,2,2)

Tree - structured ABB ABBBBABABABA root o, (0,A) B BA (0, R) BB Αß BBA (4.A) APA (57 A) BAA (1, A)