March 29th, 2019

Remark. lim sup is the limit of sup. If sup is easy to calculate, find sup and take the limit.

Quiz 1 Solutions

#1. Given set A, int(A), A', determine whether the set is open or closed.

- (1) $A = \mathbb{N} \subset \mathbb{R}$. $int(A) = \emptyset$, $A' = \emptyset$, A is closed.
- (2) $\mathbb{Q} \subset \mathbb{R}$. $int(\mathbb{Q}) = \emptyset$, $\mathbb{Q}' = \mathbb{R}$, \mathbb{Q} is neither open nor closed.
- (3) $C = [0,1] \cup (2,3) \cap \{4\} \subset \mathbb{R}$. int $(C) = (0,1) \cup (2,3)$, $C' = [0,1] \cup [2,3]$, C is neither open nor closed.
- (4) $D = \bigcup_{n=1}^{\infty} \{(\frac{1}{n}, y) : 0 \le y \le 1\} \subset \mathbb{R}^2$. $\operatorname{int}(D) = \emptyset$, $D' = D \cup \{(0, y) : 0 \le y \le 1\}$, D is neither open nor closed. $(\because \operatorname{int}D \ne D, \overline{D} \ne D)$
- #2. Find a limit point of given set.
 - (1) $A = \mathbb{Q} \subset \mathbb{R}$. 0 is a limit point. (Directly follows from Archimedes' principle)
 - (2) $B = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$. 0 is a limit point of B. (Also directly follows from Archimedes')
 - (3) $C = \{2^{-n} + 3^{-m} : n, m \in \mathbb{N}\} \subset \mathbb{R}$. 0 is a limit point of C. Given $\epsilon > 0$, exists $N \in \mathbb{N}$ such that for $n, m \ge N$, $2^{-n} < \epsilon/2$, $3^{-m} < \epsilon/2$. Then $0 \ne 2^{-n} + 3^{-m} < \epsilon$.
- #3. True or False? If false, find a counterexample.
 - (1) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ True
 - (2) $\overline{A \cap B} = \overline{A} \cap \overline{B}$ False. Set A = (0, 1), B = (1, 2). Correct Statement: $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
 - (3) $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$ False. Set A = [0, 1], B = [1, 2]. Correct Statement: $\operatorname{int}(A) \cup \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$
 - (4) $int(A \cap B) = int(A) \cap int(B)$ **True**

Thm. $A \subset B \implies \overline{A} \subset \overline{B}$, $\operatorname{int}(A) \subset \operatorname{int}(B)$. **Proof**.

- We need to show $A' \subset B'$. Let $x \in A'$. $\Longrightarrow \forall \epsilon > 0, \ N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$. $\Longrightarrow \forall \epsilon > 0, N(x, \epsilon) \cap (B \setminus \{x\}) \neq \emptyset$ $\Longrightarrow x \in B'$.
- Let $x \in \text{int}(A)$ $\implies \exists \epsilon > 0, N(x, \epsilon) \subset A \implies N(x, \epsilon) \subset B \implies x \in \text{int}(B).$

Proof of (c). $A, B \subset A \cup B$ $\implies \operatorname{int}(A), \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$. Thus $\operatorname{int}(A) \cup \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$

Proof of (d). $A \cap B \subset A, B \implies \operatorname{int}(A, B) \subset \operatorname{int}(A), \operatorname{int}(B)$. Thus $\operatorname{int}(A \cap B) \subset \operatorname{int}(A) \cap \operatorname{int}(B)$ Suppose $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$. Then $\exists \epsilon_A, \epsilon_B > 0$ s.t. $N(x, \epsilon_A) \subset A, N(x, \epsilon_B) \subset B$. Take $\epsilon = \min\{\epsilon_A, \epsilon_B\}/2$. Then $N(x, \epsilon) \subset A, B$. Therefore $N(x, \epsilon) \subset A \cap B, x \in \operatorname{int}(A \cap B)$. **Example.** $A = \{(x, y) : x^2 + 2y^2 < 1\}$. $\operatorname{int}(A) = A, A' = \{(x, y) : x^2 + 2y^2 \le 1\}$.

Suppose $(x_0, y_0) \in A$. $x_0^2 + 2y_0^2 = 1 - \delta < 1$ for some $\delta > 0$. By symmetry, let $x_0, y_0 > 0$. From

$$(x_0 + \epsilon)^2 + 2(y_0 + \epsilon)^2 = x_0^2 + 2y_0^2 + \epsilon(2x_0 + 4y_0 + 3\epsilon) < 1$$

, we want $\epsilon(2x_0 + 4y_0 + 3\epsilon) < \delta$. Set $\epsilon < 1/10$. Then $\epsilon(2x_0 + 4y_0 + 3\epsilon) < \epsilon(2x_0 + 4y_0 + 3) < \delta$. Now set $\epsilon = \min\left\{\frac{1}{2(2x_0 + 4y_0 + 3)}, \frac{1}{100}\right\} > 0$.

Then $|x - x_0| < \epsilon$, $|y - y_0| < \epsilon$. $x_0^2 + 2y_0^2 < (x_0 + \epsilon)^2 + 2(y_0 + \epsilon)^2 < 1$. $N((x_0, y_0), \epsilon) \subset A$.

Interior points are limit points, and for the points (x_0, y_0) on the border, consider a sequence $(x_0 - 1/n, y_0 - 1/n)$. Then the elements are in A and they converge to (x_0, y_0) . Thus the border is also included in A'.

April 1st, 2019

 $\operatorname{int} A: x \in A \text{ s.t. } N(x,\epsilon) \subset A \text{ for some } \epsilon > 0.$

 $A': x \in \mathbb{R}^d \text{ s.t. } N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset \text{ for } \forall \epsilon > 0$

 $\overline{A}: x \in \mathbb{R}^d \text{ s.t. } N(x,\epsilon) \cap A \neq \emptyset, \forall \epsilon > 0, \overline{A} = A \cup A'$

Example. $A = [0, 1) \cup \{2\}$. $1 \in A', 2 \notin A', 2 \in \overline{A}$

Prop 2.3.3 $x \in A' \implies N(x, \epsilon) \cap (A \setminus \{x\})$ 는 무한집합이다.

 \mathbf{Proof} . 유한집합이라고 가정하자. $N(x,\epsilon)\cap (A\backslash\{x\})=\{x_1,\ldots,x_n\}$ 이라 할 수 있다. Set $\delta=\min\{\|x-x_i\|: \forall i\}$. Then $N(x,\delta)\cap (A\backslash\{x\})=\emptyset$. 모순.

그래서 사실은 공집합이 아닌 것으로 정의했지만 사실은 무한집합이다.

Remark. $A' \neq \emptyset \implies A$ 는 무한집합.

(대우) A가 유한집합이면 극한점이 존재하지 않는다. (2.2 보기 4)

(역) 거짓. $A = \{1, 2, \dots\}$ 이면 $A' = \emptyset$.

그러면 역이 언제 성립하나요? 다음 단원 내용!

Definition. Convergence in \mathbb{R}^d

Let $\langle x_n \rangle$ be a sequence in \mathbb{R}^d .

$$\lim_{n \to \infty} x_n = x \iff \forall \epsilon > 0, \exists N \text{ s.t. } (n \ge N \implies ||x_n - x|| < \epsilon)$$

Exercise. $x_n = (x_n^{(1)}, \dots), x = (x_n^{(1)}, \dots)$ 일 때, $x_n \to x \iff \forall i, x_n^{(i)} \to x_n^{(i)}$

Notation. $A \subset \mathbb{R}^d$; $\langle x_n \rangle$ is a sequence in $A \iff \forall n, x_n \in A$

Theorem 2.2.2

- (1) $x \in A' \iff \exists \langle x_n \rangle \text{ in } A \setminus \{x\} \text{ such that } x_n \to x$
- (2) $x \in \overline{A} \iff \exists \langle x_n \rangle \text{ in } A \text{ such that } x_n \to x$

Proof.

- (1) $(\Longrightarrow) x_n \in N\left(x,\frac{1}{n}\right) \cap (A\setminus\{x\})$ 이라 하자. (공집합이 아니므로 이러한 원소가 존재한다.) 그러면 $\|x_n-x\|<1/n$ 이므로 x_n 은 x 로 수렴한다. 그리고 $x_n\in A\setminus\{x\}$ 이므로 수열이 $A\setminus\{x\}$ 에 있다.
- (2) Left as exercise. Replace $A \setminus \{x\}$ with A.

Theorem 2.2.3. The following are equivalent.

- (1) F is closed.
- (2) $F' \subset F$.
- (3) $F = \overline{F}$
- (4) For a sequence $\langle x_n \rangle$ in F, $\lim_{n \to \infty} x_n = x \implies x \in F$.

Proof.

- $(1) \iff (3)$ (\overline{F} : smallest closed set containing F.)
- (2) ⇔ (3) 은 자명.
- $(1) \iff (4)$ by the above theorem. (Thm 2.2.2)

Applications.

(1) A' is closed.

Proof. We want to show that $(A')' \subset A'$.

We want to show: $x \in (A')' \implies x \in A'$.

(A') 이 공집합이면 자명. 공집합이 아니라고 가정하고...)

Given $\epsilon > 0$, $N(x,\epsilon) \cap (A' \setminus \{x\}) \neq \emptyset$. Take an element $y \in A'$ from this set. Now set $\delta = \min\{\|x-y\|, \epsilon - \|x-y\|\}$ then we have $N(y,\delta) \cap (A \setminus \{y\}) \neq \emptyset$. $(\because y \in A')$ $z \in N(y,\delta) \cap (A \setminus \{y\})$ 라 하자.

- (a) $z \in A \setminus \{y\} \subset A$.
- (b) $||x z|| \le ||x y|| + ||y z|| < ||x y|| + \delta \le \epsilon \ (z \in N(y, \delta))$
- (c) $||x z|| \ge ||x y|| ||y z|| > ||x y|| \delta \ge 0$ (By the choice of δ .) Thus $x \ne z$.

Therefore $z \in N(x, \epsilon)$ (by (b)), $z \in A \setminus \{x\}$ (by (a), (c)). $x \in A'$ since $N(x, \epsilon) \cap (A \setminus \{x\})$ is not empty.

(2) $A \subset \mathbb{R}$: closed and bounded $\implies \inf A = \min A$, $\sup A = \max A$. (Existence)

Proof. Let $\sup A = x \notin A$. $(\sup A \in A \cap \mathcal{B})$

Claim. $x \in A'$.

Proof of Claim. $\forall \epsilon > 0, N(x, \epsilon) = (x - \epsilon, x + \epsilon)$

 $x = \sup A$ 이므로 $x - \epsilon$ is not an upper bound.

 $\exists y \text{ such that } y \in (x - \epsilon, x)$

 $y \in N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$ 이므로 $x \in$ 극한점.

따라서 $x \in A' \subset A$ (closed set 이므로 Thm 2.2.3 (2)) 모순.

 $\sup A \in A$ 이므로 이 값이 최댓값이다.

2.3 유계집합과 코시수열

핵심: Thm 2.3.4, Thm 2.3.7

Definition. $\langle x_n \rangle$: 유계수열(bounded sequence) $\iff \exists M > 0 \text{ s.t. } ||x_n|| \leq M \text{ for all } n \in \mathbb{N}.$

Definition. $n_1 < n_2 < \cdots$: sequence in \mathbb{N} 이라 하자. $\langle x_{n_k} \rangle_{k=1}^{\infty} = (x_{n_1}, x_{n_2}, \dots)$ 를 $\langle x_n \rangle$ 의 부분수열(subsequence)이라 한다.

Theorem 2.3.4 (Bolzano-Weierstrass Theorem)

If $\langle x_n \rangle$ is bounded, there exists a convergent subsequence of $\langle x_n \rangle$.

Idea of Proof. Equivalent formulation for sets.

Definition. Set A is bounded $\iff \exists M > 0$ such that ||x|| < M for all $x \in A$.

Theorem 2.3.2 (Equivalent of 2.3.4) A가 유계이고 무한집합이면, $A' \neq \emptyset$.

Remark. $A' \neq \emptyset \implies A$: 무한집합.

역이 성립하기 위해서는 A가 유계라는 조건이 필요하다.

극한점이 중요한 이유는 계속 수열과 관련이 있기 때문이다.

Example. $A = \{1/n : n \in \mathbb{N}\}$ 을 고려하는 것은 수열 $x_n = 1/n$ 을 고려하는 것이나 마찬가지이다. 이 수열 x_n 이 x 로 수렴하는 것은 $A' = \{x\}$ 와 동치이다. (Hence the name "limit point")이로부터 $x \in A' \iff$ Exists a subsequence of $\langle x_n \rangle$ in $A \setminus \{x\}$ converging to x.

Proof of 2.3.2

(1) Lemma 2.3.1 축소구간정리 in \mathbb{R}^d .

B is a closed box in $\mathbb{R}^d \iff B = I_1 \times I_2 \times \cdots \times I_d$, where $I_i = [a_i, b_i]$ for $i = 1, \dots, d$. (I_i is a closed and bounded interval.)

$$B_1 \supset B_2 \supset \cdots \implies \bigcap_{n=1}^{\infty} B_n \neq \emptyset$$

 \mathbf{Proof} . 각 '좌표' I_i 별로 1차원 축소구간정리를 적용하면 된다.

(2) Divide and Conquer Strategy

B: Box 일 때, $\operatorname{diam}(B) = \sup\{\|x - y\| : x, y \in B\} = \sqrt{(a_1 - b_1)^2 + \dots + (a_d - b_d)^2}$ Claim. There exists closed boxes B_1, B_2, \dots s.t.

(a) $B_1 \supset B_2 \supset \cdots$

(b)
$$\operatorname{diam} B_n = \frac{1}{2^{n-1}} \operatorname{diam} B_1$$

(c) $B_n \cap A$: 무한집합

Proof. (Induction) n = 1; B_1 : 충분히 커서 $A \subset B_1$ 인 box 를 잡으면 된다.

Suppose we have B_1, \dots, B_n ; B_n 을 2^d 등분하면 적어도 하나는 A의 원소를 무한개 포함하고 있다. 그 집합을 B_{n+1} 으로 잡는다. (비둘기집의 원리)

이제 $x \in \bigcap_{n=1}^{\infty} B_n$ 으로 잡으면 (축소구간정리에 의해 잡을 수 있다) $x \in A'$. $(A' \neq \emptyset)$ $\because \forall \epsilon > 0$, $\operatorname{diam} B_n < \epsilon$ 인 $N \in \mathbb{N}$ 을 찾아 $n \geq N$ 일 때 부등식이 성립하도록 할 수 있다. 이러한 n 들에 대하여 $B_n \subset N(x,\epsilon)$. 그러면 $N(x,\epsilon) \cap (A \setminus \{x\}) \supset B_n \cap (A \setminus \{x\})$.

April 3rd, 2019

우리가 지금 2.3 을 하고 있는데, 2 가지 중요한 결과가 있어요.

Theorem 2.3.4 $\langle x_n \rangle$ 이 bounded 이면 수렴하는 부분수열을 갖는다. 1

Theorem 2.3.2 A가 유계인 집합이고 무한집합이면 극한점을 가진다. $A' \neq \emptyset$ 증명은 축소구간정리를 박스로 확장해가지고 분할 정복하면 된다.

Recall 2.3.3 $x \in A' \implies N(x, \epsilon) \cap (A \setminus \{x\})$ 는 무한집합이다.

Proof of 2.3.4. $A = \{x_1, x_2, \dots, x_n\}$ 라고 하면 이 집합은 유계이다. (수열이 유계이므로)

(1) *A*가 유한집합: 자명.

 $\exists x$ such that x appears infinitely many times in $\langle x_n \rangle$. (PHP) 이 경우에는 부분수열을 x, x, \ldots 로 잡으면 된다. 이는 수렴하는 부분수열이다.

(2) A가 무한집합²

 $A' \neq \emptyset$ 이므로 $\alpha \in A'$ 이라 하자.

Claim. $\exists n_1 < n_2 < \dots$ such that $||x_{n_k} - \alpha|| < 1/k$.

Proof. (첨자들이 증가하면서 가까워져야 한다는 것이 유일하게 tricky 한 부분이다. 귀납법을 사용하자.) k=1: $x_{n_1}\in N(\alpha,1)\cap (A\backslash \{\alpha\})$ 로 잡으면 된다.

 x_{n_1}, \cdots, x_{n_k} 를 잡았다고 가정: $N(\alpha, \frac{1}{k+1}) \cap (A \setminus \{\alpha\})$ 에서 $x_{n_{k+1}}$ 를 잡아야 하는데 이 집합은 무한집합이다. (Recall 2.3.3) 이 집합에서 첨자가 n_k 보다 큰 항이 반드시 존재하므로 그 중하나를 $x_{n_{k+1}}$ 이라 잡으면 된다.

따라서 $\lim_{k\to\infty} x_{n_k} = \alpha$ (Check as exercise)

Application. (Characterization of lim sup and lim inf)

 x_n 이 bounded 이면, $A = \{x : \exists \text{ subsequence of } x_n \text{ converging to } x\}$. 이 때 Theorem 2.3.4에 의해 $A \neq \emptyset$ 임을 증명하였다.

(1) A: closed and bounded $\implies \max(A), \min(A)$ 가 존재한다.

Proof. $B = \{x_1, x_2, \dots\}, C = \{\langle x_n \rangle \text{ 에 무한 번 나타나는 수} \}$ 로 잡자. $A = B' \cup C, C \subset B, C' \subset B'$ 임을 확인해보라! 이를 이용하면 $B' \cup C = (B' \cup C') \cup C = B' \cup (C' \cup C) = B' \cup \overline{C}$ 가 되어 닫힌집합의 합집합은 닫힌 집합이다. A는 closed and bounded 이다.

(2) $\limsup x_n = \max(A)$, $\liminf x_n = \min(A)$ (부분수열이 가질 수 있는 극한값들 중 가장 큰 값이 \limsup , 가장 작은 값이 \liminf)

¹증명이 가장 테크니컬 해요!

 $^{^{2}}$ 이제 2 이제 2 이제 2 이지 2 이지

Proof. Recall

$$\limsup x_n = \alpha \iff \begin{cases} \text{(i) } \forall \epsilon > 0, \exists N \text{ s.t } (n \ge N \implies x_n < \alpha + \epsilon) \\ \text{(ii) } \forall \epsilon > 0, x_n > \alpha - \epsilon \text{ for infinitely many } n \end{cases}$$

- (a) 부분수열 $\langle x_{n_k} \rangle \to \beta$ 이면 (i)에 의해 $k \geq N \implies x_{n_k} < \alpha + \epsilon$ 이 되어 $\beta \leq \alpha + \epsilon$. $\beta \leq \alpha$. 그러므로 $\max(A) \leq \alpha$ 이다.
- (b) $\forall \epsilon > 0$, (i), (ii)에 의해 $x_n \in (\alpha \epsilon, \alpha + \epsilon)$ 인 n 이 무한히 많다. 이 유계인 구간에 속하는 수열의 항들에 대해 부분수열을 잡아 (further subsequence) γ 로 수렴하도록 할 수 있다. (Theorem 2.3.4) 그러면 $\langle x_{m_k} \rangle \to \gamma \in [\alpha \epsilon, \alpha + \epsilon]$. 따라서 $\alpha \epsilon \leq \gamma \leq \max(A)$ 가 되어 $\alpha \leq \max(A)$.

따라서 $\max(A) = \alpha$.

Definition. $\langle x_n \rangle$: Cauchy Sequence $\iff \forall \epsilon > 0, \exists N \text{ s.t. } [m, n \geq N \implies ||x_m - x_n|| < \epsilon]$

Prop 2.3.6, Thm 2.3.8 $\langle x_n \rangle$: convergent $\iff \langle x_n \rangle$: Cauchy sequence³ Proof. (\implies) 자명. $||x_m - x_n|| \le ||x_m - \alpha|| + ||x_n - \alpha|| < \epsilon/2 + \epsilon/2 = \epsilon$ 인 $m, n \ge N$ 존재. (\iff) 수렴 값이 없는 상태에서 증명해야 한다. 먼저 수렴 값을 찾아보자.

(1) $\langle x_n \rangle$ is bounded.

Proof. $\exists N \text{ s.t. } ||x_m - x_n|| < 1 \text{ for all } m, n \ge N.$ Set $M = \max\{||x_1||, \dots, ||x_{N-1}||, ||x_N|| + 1\}. (||x_m|| < ||x_N|| + 1)$ 따라서 $||x_n|| \le M \text{ for all } n \in \mathbb{N}.$

- (2) There exists a subsequence $\langle x_{n_k} \rangle$ converging to some α . (Thm 2.3.4)
- (3) $\langle x_n \rangle$ converges to α .

Proof. $\epsilon > 0$ 에 대해,

- (a) 코시 수열의 성질에 의해 $\exists N_1$ s.t. $||x_m x_n|| < \epsilon/2$ for all $m, n \geq N_1$.
- (b) 부분수열이 α 로 수렴하므로 $\exists N_2 \text{ s.t. } ||x_{n_k} \alpha|| < \epsilon/2 \text{ for all } k \geq N_2.$

Let $N = \max\{N_1, N_2\}$. $n \ge N_1, n_N \ge n_{N_1} \ge N_1$ 이므로,

$$n > N \implies ||x_n - \alpha|| \le ||x_n - x_{n_N}|| + ||x_{n_N} - \alpha|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$$

³중간고사 전 까지 가장 중요한 정리.

Remark. 우리의 여정을 돌아보자.

- (1) Archimedes' Principle 을 가정하면
 Completeness Axiom ⇒ Monotone Convergence Theorem ⇒ 축소구간정리 ⇒
 Bolzano-Weierstrass Theorem ⇒ Cauchy Convergent Theorem⁴
 (Exercise) ⇒ Completeness Axiom
- (2) **Example**. X = C([0,1]). (Set of functions that are continuous in [0,1]) How would we define ||f g||? $\int_0^1 |f(x) g(x)| dx$? $\max\{|f(x) g(x)| : x \in [0,1]\}$? Only the second choice gives completeness for X.
- (3) Convergence Test without limit value. (Theorem 2.3.9) $\sum_{n=1}^{\infty} a_n \text{ is convergent } \iff \forall \epsilon > 0, \ \exists N \text{ s.t. } (n > m \geq N \implies |a_{m+1} + \cdots + a_n| < \epsilon)$ Proof. Trivial.

Definition. $\sum a_n$ is absolutely convergent $\iff \sum |a_n|$ is convergent

Theorem. An absolutely convergent series converges.

Proof. Suppose $\sum |a_n|$ converges. For $\forall \epsilon > 0$, there exists N such that $||a_{m+1}| + \cdots + |a_n|| < \epsilon$ for all $m, n \geq N$. Therefore, for $m, n \geq N$,

$$|a_{m+1} + \dots + a_n| < |a_{m+1}| + \dots + |a_n| < \epsilon$$

and $\sum a_n$ converges.

⁴In any metric spaces, this is the condition for completeness.

April 5th, 2019

Theorem. $\overline{A} \cup \overline{B} = \overline{A \cup B}$

Proof. (\subset) Trivial.

 $(\supset)\ A\subset\overline{A},\ B\subset\overline{B}\implies A\cup B\subset\overline{A}\cup\overline{B}\implies \overline{A\cup B}\subset\overline{\overline{A}\cup\overline{B}}=\overline{A}\cup\overline{B}.$ The closure of a closed set is itself.

6. (2)
$$a_n = \cos\sqrt{2019 + n^2\pi^2}$$

Consider $\delta > 0$, such that

$$(n\pi - \delta)^2 < 2019 + n^2\pi^2 < (n\pi + \delta)^2$$

 $-2n\pi < \frac{2019}{\delta} \pm \delta < 2n\pi$

We can find large enough N such that the above inequality holds for $n \geq N$.

Now we want $b_n = \sqrt{2019 + n^2 \pi^2}$ bounded by $n\pi \pm \delta$.

$$n \ge N, n \text{ even } \implies n\pi - \delta < b_n < n\pi + \delta$$

$$\implies 1 \ge a_n > 1 - \epsilon$$

$$n \ge N$$
, $n \text{ odd} \implies -1 \le a_n < -1 + \epsilon$

Problem 2.3.5

$$(1) \ x_{n+2} = \frac{x_n + x_{n+1}}{2}$$

(2)
$$x_{n+1} = x_n + x(-1)^n \frac{1}{3n+1}$$

Solution.

(1) Write $x_{n+2} - x_{n+1} = a(x_{n+1} - x_n)$ and observe that a = -1/2. Write as

$$x_n = x_{n-1} + \left(-\frac{1}{2}\right)^{n-2} (x_2 - x_1)$$

Then we have

$$x_n = x_2 + \sum_{k=1}^{n-2} \left(-\frac{1}{2}\right)^k (x_2 - x_1)$$

This series converges to $\frac{2x_2 + x_1}{3}$

(2) This is an alternating series. Write as

$$x_n = x_1 + \sum_{k=1}^{n-1} (-1)^k \frac{x}{3n+1}$$

By alternating series test, the second summation term converges, and the series converges to x_1 .

Since a converging sequence is a Cauchy sequence, x_1, x_2 can be any real number.

April 8th, 2019

Section 2.3: Bolzano-Weierstrass Theorem, Cauchy Convergent Theorem In section 2.4, we will be studying about Convergence Tests.

2.4 급수의 수렴판정

Cor 2.3.9. $\sum_{n=1}^{\infty} a_n$ is convergent $\iff s_n = \sum_{k=1}^n a_k, \langle s_n \rangle$ is convergent $\iff \langle s_n \rangle$ is Cauchy.

- (1) $\sum_{n=1}^{\infty} a_n$ is convergent $\implies \lim_{n\to\infty} a_n = 0$.
- (2) $\sum_{n=1}^{\infty} |a_n|$ is convergent $\implies \sum_{n=1}^{\infty} a_n$ convergent.

Theorem 2.4.3 (Comparison Test) Suppose $\sum b_n$ converges. If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, $\sum a_n$ converges.

ProofLet $M = \sum b_n$, $s_n = \sum_{k=1}^n a_k$. s_n is increasing and s_n is bounded by M. s_n is convergent by Monotone Convergence Theorem.

Theorem. Suppose sequences a_n, b_n satisfy $0 \le |a_n| \le b_n^5$ and $\sum b_n$ converges. Then $\sum a_n$ is convergent.⁶

Proof. By comparison test and absolute convergence.

Prop 2.4.4 (Root Test) Suppose $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$. If $\alpha < 1$, $\sum a_n$ converges. If $\alpha > 1$, $\sum a_n$ diverges.

- (1) $\alpha < 1$. Take $\epsilon > 0$ such that $\alpha < \alpha + \epsilon < 1$. Then there exists N such that $|a_n|^{1/n} < \alpha + \epsilon$ for all $n \ge N$. Therefore $|a_n| < (\alpha + \epsilon)^n$. Since $\alpha + \epsilon < 1$, $\sum (\alpha + \epsilon)^n$ converges. Apply the comparison test to see that $\sum a_n < \infty$.
- (2) $\alpha > 1$. Take $\epsilon > 0$ such that $\alpha > \alpha \epsilon > 1$. Then $|a_n|^{1/n} > \alpha \epsilon$ for infinitely many n. Then $|a_n| > (\alpha \epsilon)^n > 1$. Therefore $\lim a_n \neq 0$. $\sum a_n$ diverges.

Prop 2.4.5 (Ratio Test) Suppose $a_n \neq 0$. Let $\beta = \limsup |a_{n+1}/a_n|$, $\gamma = \liminf |a_{n+1}/a_n|$. If $\beta < 1$, $\sum a_n$ converges. If $\gamma > 1$, $\sum a_n$ diverges.

Proof.

Proof.

(1) $\beta < 1$. Take $\epsilon > 0$ such that $\beta < \beta + \epsilon < 1$. Then $\exists N$ s.t. $|a_{n+1}/a_n| < \beta + \epsilon$ for $n \ge N$. $\implies |a_n| = |a_N| |a_{N+1}/a_N| \cdots |a_n/a_{n-1}| < |a_N| (\beta + \epsilon)^{n-N}$. Set $b_n = |a_N| (\beta + \epsilon)^{n-N}$ and apply comparison test to see that $\sum a_n < \infty$.

⁵Note that this condition can fail for finitely many n.

 $^{^{6}}a_{n}$ may be a very complex expression, but we want b_{n} to be simple, an expression we know that it is convergent.

(2) $\gamma > 1$. Take $\epsilon > 0$ such that $\gamma > \gamma - \epsilon > 1$. Then $\exists N$ s.t. $|a_{n+1}/a_n| > \gamma - \epsilon$ for $n \geq N$. Then we see that $|a_n|$ is increasing for $n \geq N$. Thus a_n cannot converge to 0. $\sum a_n$ is divergent.

Remark. If the above limits (ratio, root) exist, elementary tests can be applied. But if the limits turn out to be 1, the test fails. (ND: Non-Deterministic) Check it for $\sum 1/n$, $\sum 1/n^2$. Also, these are weak tests. For most of the series, the limit is 1. Moreover...

Theorem 2.4.6 Suppose $a_n \neq 0$.

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf |a_n|^{\frac{1}{n}} \le \limsup |a_n|^{\frac{1}{n}} \le \limsup \left| \frac{a_{n+1}}{a_n} \right|$$

Thus if the root test works, ratio test also works.⁷

Proof. We only need to prove the last inequality.

Let $\beta = \limsup |a_{n+1}/a_n|$, $\forall \epsilon > 0$. $\Longrightarrow \exists N \text{ s.t. } |a_{n+1}/a_n| \leq \beta + \epsilon \text{ for } n \geq N$. Then if $n \geq N$, $|a_n| \leq |a_N| (\beta + \epsilon)^{n-N}$. (Similar to proof of 2.4.5) Then

$$|a_n|^{1/n} \le (\beta + \epsilon) \left(\frac{|a_n|}{(\beta + \epsilon)^N}\right)^{1/n}$$

and take \limsup on both sides, then $\limsup |a_n|^{1/n} \leq \beta + \epsilon$.

Example.
$$\langle a_n \rangle = \begin{cases} 1/2^n & n \text{ odd} \\ 1/2^{n-2} & n \text{ even} \end{cases}$$

Check that $\limsup |a_n|^{1/n} = 1/2 < 1$, and the series $\sum a_n$ converges by the root test.

But if we use the ratio test here, \limsup value is 2 and \liminf value is 1/8. The ratio test does not tell us anything about the convergence. Also note that the series converges to 2.

Prop 2.4.1 (Rearrangement) $a_n \geq 0.9$ Suppose a bijection $r : \mathbb{N} \to \mathbb{N}$ exists.

$$(1) \sum_{n=1}^{\infty} a_n = s \iff \sum_{n=1}^{\infty} a_{r(n)} = s$$

(2)
$$\sum_{n=1}^{\infty} = \infty \iff \sum_{n=1}^{\infty} a_{r(n)} = s$$

Proof.

(1) (\Longrightarrow) Let $t_n = \sum_{k=1}^n a_{r(k)}$. Then t_n is increasing and bounded by s. Thus t_n converges by MCT, and $\lim_{n \to \infty} t_n \le s$.

$$s_n = \sum_{k=1}^n a_k \le \sum_{n=1}^\infty a_{r(n)} = t = \lim t_n$$
. $(a_n \ge 0 \text{ was used here.})$
 (\Leftarrow) Use $r^{-1}(n)$.

⁷The limit for the ratio test is much easier to calculate than the root test. That's why we use the ratio test.

⁸The ratios are: $2, 1/8, 2, 1/8 \dots$

⁹This is the important condition.

(2) Contraposition of (1).

Prop 2.4.2 (Alternating Series Test) For a given sequence x_n , suppose the following holds.

- x_n is decreasing.
- $\lim x_n = 0$.

Then the series $\sum_{k=1}^{\infty} (-1)^{n-1} x_n$ is convergent.

Proof. Let $s_n = \sum_{k=1}^n (-1)^{k-1} x_k$. For m < n,

$$|s_n - s_m| = \left| (-1)^m x_{m+1} + \dots + (-1)^{n-1} x_n \right| = |x_{m+1} - x_{m+2} + \dots \pm x_n| \stackrel{(*)}{\in} [0, x_{m+1}]$$

$$(*): x_{m+1} - x_{m+2} + \dots + x_n = (x_{m+1} - x_{m+2}) + \dots + (x_{n-2} - x_{n-1}) + x_n \ge 0$$
$$= x_{m+1} - (x_{m+2} - x_{m+3}) - \dots - (x_{n-1} - x_n) \le x_{m+1}$$

Check for the case with last term -.

Now, $\forall \epsilon > 0$, find N such that $|x_n| < \epsilon$ for $n \ge N$. Then for $n > m \ge N$, $|s_n - s_m| \le x_{m+1} < \epsilon$. Thus $\langle s_n \rangle$ is a Cauchy sequence and the given series converges.

Example. $a_n = (-1)^{n-1}/n$. $\sum a_n$ converges by alternating series test and converges to log 2.

Remark. The rearrangement of the above example may not converge, or converge to a different value than log 2.

Exam: 1.1 - 2.6

After the midterms we will be covering functions and continuity.

Chapter 1 has been about \mathbb{R} , and in Chapter 2, we have talked about subsets of \mathbb{R}^n .

- 2.1: What is \mathbb{R}^n ? Vector Space, IPS, Metric Space, Normed Space...
- 2.2: Open, closed sets
- 2.3: Bounded sets and Cauchy sequences
- (2.4: Convergence Tests)
- 2.5: Compact Sets
- 2.6: Connect Sets

April 10th, 2019

2.5 Compact Set

Definition. $\{U_i : i \in I\}$ (*I* is the index set, $U_i \subset \mathbb{R}^d$) is called "family of sets".

- (1) $\{U_i : i \in I\}$ is a **cover** of $K \subset \mathbb{R}^d \iff K \subset \bigcup_{i \in I} U_i$.
- (2) $\{U_i : i \in I\}$ is a **open cover** $\iff U_i$ are open for $\forall i$.
- (3) $J \subset I$, $\{U_i : i \in J\}$ is called a **subcover** of $\{U_i : i \in I\} \iff K \subset \bigcup_{i \in J} U_i$.

Definition. $K \subset \mathbb{R}^d$ is **compact** \iff Any open cover of K has finite subcover.

Example.

- (1) \mathbb{N} is not compact. Set $U_k = (k 1/2, k + 1/2)$, then $\{U_k : k \in \mathbb{N}\}$ is a (open) cover of \mathbb{N} . But there are no finite subcover.
- (2) A = (0,1) is not compact. Set $U_k = (1/k,1)$, then because $\bigcup_{k=1}^{\infty} U_k = (0,1)$, $\{U_k : k \in \mathbb{N}\}$ is a (open) cover of A. But there are no finite subcover. $\bigcup_{i=1}^{m} U_{k_i} = U_{k_m} = (1/k_m,1)$, which cannot contain (0,1).
- (3) $A = \{a_1, a_2, \ldots, a_m\} \subset \mathbb{R}^d$ is compact. $\{U_i : i \in I\}$ be a cover of A. There exists $i_1, \ldots, i_m \in I$ such that $a_k \in U_{i_k}$ for $k = 1, \ldots, m$. Then $\{U_{i_1}, U_{i_2}, \ldots, U_{i_m}\}$ is a finite subcover of A.

Main Theorem: **Heine-Borel Theorem**

K is compact \iff K is bounded and closed.

Remark.

- (1) This is a part of Thm 2.5.4
- (2) Proof: Prop 2.5.1, Thm 2.5.2, Prop 2.5.3
- (3) Characterization of compact sets in $\mathbb{R}^{d,10}$

¹⁰ Compact Set 을 이 단순한 공간 안에서는 characterize 할 수 있다!

Proof.

 $(\Longrightarrow) (\text{Prop } 2.5.1)$

(1) Is K bounded?

Set $U_k = N(0, k)$. Then $\bigcup_{k=1}^{\infty} U_k = \mathbb{R}^d$. Thus $\{U_k : k \in \mathbb{N}\}$ is an open cover of K. There exists a finite subcover U_{k_1}, \ldots, U_{k_m} $(k_1 < \cdots < k_m)$ of K. Then we have $K \subset \bigcup_{i=1}^m U_{k_i} = U_{k_m} = N(0, k_m)$. Therefore K is bounded.

(2) Is K closed?

Suppose $x \in K^C$. Set $U_k = \{y : \|y - x\| > 1/k\}$. Then $\bigcup_{k=1}^{\infty} U_k = \mathbb{R}^d \setminus \{x\} \supset K$. (Open cover) There exists a finite subcover U_{k_1}, \ldots, U_{k_m} of K. $K \subset \bigcup_{i=1}^m U_{k_i} = U_{k_m}$. Therefore $K^C \supset U_{k_m}^C = \{y : \|y - x\| \le 1/k_m\} \supset N(x, 1/k_m)$. Thus K^C is open, K is closed.

 (\Longleftrightarrow)

(1) (Theorem 2.5.2) Closed box is compact.

 $B = I_1 \times \cdots \times I_d$, $I_i = [a_i, b_i]$. Let $\{U_i : i \in I\}$ is an open cover of B.

(Contradiction) Suppose there is no finite subcover of B.

Claim. There exists $B = B_1 \supset B_2 \supset \cdots$ (closed boxes) such that

- diam $(B_n) = \frac{1}{2^{n-1}} \operatorname{diam}(B_1)$
- There is no finite subcover of $\{U_i : i \in I\}$ covering B_n .

By Lemma 2.3.1, there exists $x \in \bigcap_{n=1}^{\infty} B_n$. Since $x \in B$, $\exists U_i$ such that $x \in U_i$. Then $\exists \epsilon > 0$ such that $N(x, \epsilon) \subset U_i$.¹¹ Set $\frac{1}{2^{n-1}} \operatorname{diam}(B_1) < \epsilon$.

If $y \in B_n \implies ||x - y|| \le \operatorname{diam}(B_n) < \epsilon \implies y \in N(x, \epsilon)$. Then $B_n \subset N(x, \epsilon) \subset U_i$, contradiction.

(2) $K: compact, F \subset K, F \text{ is closed} \implies F: compact.$

Let $\{U_i : i \in I\}$ be an open cover of F. Then $\{U_i : i \in I\} \cup \{F^C\}$ is an open cover of K. Because K is compact, there exists a finite subcover of K. There are two cases.

- (a) $\{U_{i_1}, U_{i_2}, \dots, U_{i_m}\}$: This is already a finite subcover of F.
- (b) $\{U_{i_1}, U_{i_2}, \dots, U_{i_m}, F^C\}$: Since F^C does not cover F, U_{i_k} must cover F.
- (3) Closed and bounded set is compact.

Suppose K is bounded and closed. There exists a closed box B that contains K. Thus B is compact by (1), K is a closed subset of B. Then by (2), K is compact.

Theorem 2.5.2 가 가장 non-trivial 한 부분이다.

 $^{^{11}}n$ 이 충분히 크면 ball 안에 box 가 들어가고 box 는 U_i 안에 있다? Claim 의 2번째에 모순.

Theorem 2.5.4 The following are equivalent.

- (1) K is compact.
- (2) K is bounded and closed.
- (3) If A is an infinite subset of K, $\emptyset \neq A' \subset K$.
- (4) For a sequence $\langle x_n \rangle$ in K, there exists a convergent subsequence whose limit is in K.

Proof.

- $(1) \iff (2)$ by Heine-Borel Theorem.
- (2) \Longrightarrow (3) Suppose A is infinite and bounded. $(A \subset K)$ By Bolzano-Weierstrass, $A' \neq \emptyset$.

 $A' \subset A' \cup A = \overline{A} \subset K$. (\overline{A} is the smallest closed set containing $A, A \subset K$.)

- (3) \implies (4) Let $A = \{x_1, x_2, \dots\}$
 - (1) If A is finite, trivial. (Take a constant subsequence, which constant $\in K$.)
 - (2) If A is infinite, $x \in A' \subset K$ by (3). $(x \in A')$ by Thm 2.3.4)
- $(4) \implies (2)$
 - (1) K is bounded.

(Contradiction) Suppose K is not bounded. Then $\forall n \in \mathbb{N}$, there exists $x_n \in K$, $||x_n|| \ge n$. There are no convergent subsequences, contradiction.

(2) K is closed.

(Contradiction) Suppose K is not closed.

- (a) K: finite $\to K$: closed \to Contradiction.
- (b) K: infinite $\to K$: infinite and bounded $\stackrel{\text{B-W}}{\to} K' \neq \emptyset$

Note. $K' \subset K \iff K$: closed.

Then if K' is not a subset of K^{12} , there exists $x \in K' \setminus K$. Since $x \in K'$, there exists a sequence $\langle x_n \rangle$ in $K \setminus \{x\}$ (= K)¹³ converging to x. Thus for a subsequence of $\langle x_n \rangle$, its limit must be in K. But x is the only possible limit value. $x \in K$. Contradiction.

 $^{^{12}}$ Contraposition

 $^{^{13}}x\notin K$

April 12th, 2019

Problem 2.4.7 (바) $\sum \frac{1}{n^p - n^q} (0 < q < p)$ $0 < n^p - n^q \le n^p$ 이므로 $1/n^p \le 1/(n^p - n^q)$ 가 되어 $p \le 1$ 이면 발산한다.

충분히 큰 N에 대하여 $n \ge N$ 일 때마다 $n^p - n^q \ge n^p/2$ 가 되게 할수 있다. (이 때 $n^p/2 \ge n^q$ 이므로 $n^{p-q} \ge 2$ 가 되어 N 을 잡을 수 있다) 비교판정법에 의해 수렴한다.

Problem 2.7.12 Given $\langle a_n \rangle$ such that $\lim a_n = a$, show that $\sigma_n = \frac{a_1 + \cdots + a_n}{n}$ also converges to a.

Problem 2.7.13 r < 1, $||x_{n+2} - x_{n+1}|| \le r ||x_{n+1} - x_n||$. Show that $\langle x_n \rangle$ is a Cauchy sequence. **Proof.** $||x_{n+1} - x_n|| \le r^{n-1} ||x_2 - x_1|| = r^{n-1} A$, for $A \in \mathbb{R}$. Given $\epsilon > 0$, exists N such that for all $n \ge N$, $||x_{n+1} - x_n|| < Ar^{n-1} < \epsilon$. Then we have

$$m > n \ge N \Rightarrow ||x_n - x_m|| \le ||x_m - x_{m-1}|| + \dots + ||x_{n+1} - x_n||$$

 $\le ||x_{n+1} - x_n|| (1 + r + r^2 + \dots) < \frac{\epsilon}{1 - r}$

Remark. Counterexample for $||x_{n+2} - x_{n+1}|| < ||x_{n+1} - x_n||$. $x_n = \sum_{k=1}^n \frac{1}{k}$

Problem 2.7.14 $x_n \to x$, $A_k = \{x_i : i \ge k\}$. Show that $\bigcap_{k=1}^{\infty} \overline{A_k} = \{x\}$.

Proof. Given $\epsilon > 0$, there exists N such that $n \geq N \Rightarrow x_n \in (x - \epsilon, x + \epsilon)$. Either $x_n = x$, or $x_n \in (x - \epsilon, x + \epsilon) \setminus \{x\}$. Thus $x \in \overline{A_k}$ for all k. $\{x\} \subset \bigcap_{k=1}^{\infty} \overline{A_k}$.

For $y \in \mathbb{R} \setminus \{x\}$, we want to show that $y \notin \bigcap_{k=1}^{\infty} \overline{A_k}$. Then we want to find N such that $y \notin \overline{A_N}$. Since ||x - y|| > 0, set $\epsilon = \frac{1}{3} ||x - y||$. There exists N such that $||x_n - x|| < \epsilon$. Then $\forall x_n \notin N(y, \epsilon)$. $\overline{A_N} = \{x_N, x_{N+1}, \dots\}$, and y cannot be in $\overline{A_N}$. $\{x\}^C \subset \left(\bigcap_{k=1}^{\infty} \overline{A_k}\right)^C \Rightarrow \bigcap_{k=1}^{\infty} \overline{A_k} \subset \{x\}$.

Problem 2.7.15 $\sum a_n$ converges absolutely.

- (1) $\sum a_n^2$ **Proof.** $a_n^2 < |a_n|$ for large n. Converges by comparison test.
- (2) $\sum \frac{a_n}{1+a_n}$ **Proof.** Since $a_n \to 0$, exists N such that $n \geq N \Rightarrow |a_n| < 1/3$. Then for $n \geq N$, $|1+a_n| \geq 1-|a_n| > 2/3 > 1/3$, $1/|1+a_n| < 3$. We have $\left|\frac{a_n}{1+a_n}\right| < 3|a_n|$. Converges by comparison test.
- (3) $\sum \frac{a_n^2}{1+a_n^2}$ **Proof**. Trivial from 1, 2.

April 15th, 2019

K: compact \iff Exists an open cover of K that has *finite* subcover.

Theorem 2.5.4 (Heine-Borel) For \mathbb{R}^d , K: compact $\iff K$ is bounded and closed.

Theorem 2.5.5 (Cantor's Intersection Theorem)¹⁴

Given family of **compact** sets $\{K_i : i \in I\}$, for all **finite** $J \subset I$, $\bigcap_{i \in I} K_i \neq \emptyset$. Then

$$\bigcap_{i\in I} K_i \neq \emptyset$$

Proof. (Contradiction) $\bigcap_{i \in I} K_i = \emptyset \implies \bigcup_{i \in I} K^C = \mathbb{R}^d$. (Complement)

Take any K_a $(a \in I)$, then $K_a \subset \bigcup_{i \in I} K_i^C (= \mathbb{R}^d) \Longrightarrow \{K_i^C : i \in I\}$ is an open cover of K_a . Then there exists a finite subcover, $\{K_i^C : i \in J\}$ $(K_a$ is compact) Now we can write $K_a \subset \bigcup_{i \in J} K_i^C$. Take complement on both sides to get $K_a^C \supset \bigcap_{i \in J} K_i$. Then $K_a \cap \bigcap_{i \in J} K_i = \emptyset$, contradiction.

Remark. Let $K_i = [a_i, b_i]$ (Compact in \mathbb{R}) and set $K_1 \supset K_2 \supset \cdots$ \Longrightarrow For $J = \{j_1, \ldots, j_m\}$ $(j_1 < \cdots < j_m)$, $\bigcap_{i \in J} K_i = K_{j_m} \neq \emptyset$ $\Longrightarrow \bigcap_{i=1}^{\infty} K_i \neq \emptyset$ (축소구간정리)

2.6 Connected Set

p46-p47 (Section 2.2)

Definition. $X \subset \mathbb{R}^d$, $x \in X$. Define

$$N_X(x,r) = \{ y \in X : ||y - x|| < r \} = N(x,\epsilon) \cap X$$

Definition. $U \subset X$ is open in $X \iff x \in U, \exists \epsilon > 0$ such that $N_X(x, \epsilon) \subset U$.

Example.

- $U = \{3\}$. U is open in $X = \mathbb{N}$. $N_{\mathbb{N}}(3, 1/10) = 3 \subset U$. (But not open in \mathbb{R})
- For X = [0, 10], U = [0, 1). $x \in U$, N(x, 1 x) = (2x 1, 1), and this might not be subset of U. But

$$N_X(x, 1-x) = \begin{cases} (2x-1, 1) & (x > 1/2) \\ [0, 1) & (x \le 1/2) \end{cases}$$

For both cases $N_X(x, 1-x) \subset U$.

¹⁴축소구간정리의 가장 일반적인 형태

Prop 2.2.5 U is open in $X \iff U = X \cap V$ for some open set V in \mathbb{R}^d .

Remark. First example: $\{3\} = \mathbb{N} \cap (2.9, 3.1)$, Second example: $[0, 1) = [0, 10] \cap (-1, 1)$. Some references may write this definition as "relatively" open in X.

Proof of 2.2.5

 $(\Longrightarrow) \ x \in U, \ \exists \ \epsilon_x > 0 \ \text{such that} \ N_X(x, \epsilon_x) \subset U. \ \text{Select} \ V = \bigcup_{x \in U} N(x, \epsilon_x), \ \text{which is open.}^{15}$ Then we have $X \cap V = \bigcup_{x \in U} X \cap N(x, \epsilon_x) = \bigcup_{x \in U} N_X(x, \epsilon_x), \ \text{which is exactly equal to} \ U.$

$$(\Leftarrow)$$
 $x \in U = X \cap V \implies x \in V$. Thus $\exists \epsilon > 0$ such that $N(x, \epsilon) \subset V$. Then

$$N_X(x,\epsilon) = X \cap N(x,\epsilon) \subset X \cap V = U$$

Thus U is open in X.

Cor. U: open in $X, Y \subset X$. $\Longrightarrow U \cap Y$: open in Y.

Proof. $U = X \cap V \ (V: open) \implies U \cap Y = X \cap V \cap Y = V \cap (X \cap Y) = V \cap Y.$

Definition. $S \subset \mathbb{R}^d$: disconnected \iff There exists non-empty sets U, V such that

- (1) $U \cap V = \emptyset$
- (2) $U \cup V = S$
- (3) U and V are open in S

 $S \subset \mathbb{R}^d$: connected $\iff S$ is not disconnected.

Question. Find all $A \subset \mathbb{R}^d$ such that A is open and closed.

Proof. The only possible sets are $A = \emptyset$, \mathbb{R}^d .

If A is open and closed \implies A: open, A^C : open. Then $\mathbb{R}^d = A \cup A^C$, and \mathbb{R}^d is disconnected. But \mathbb{R}^d is connected. Contradiction if either A or A^C is empty.

Theorem. The following are equivalent for $S \subset \mathbb{R}$.

- (1) S is connected.
- (2) $\forall a, b \in S \text{ s.t. } a < b, \text{ and } c \in (a, b) \implies c \in S.$
- (3) S = [a, b] or [a, b) or (a, b] or (a, b) (a, b) can be $\pm \infty$

 $^{^{15}}N(x,\epsilon)$ is open and union of open sets are always open.

Remark. Prop 2.5.1 $(1' \iff 2')$ + Disscussion above $(2 \iff 3)$

Proof.

(1 \Longrightarrow 2) (Contradiction) Assume $a, b \in S, c \notin S$ for some a < c < b. Set $U = (-\infty, c) \cap S$, $V = (c, \infty) \cap S$. U, V are non-empty. $U \cap V = \emptyset$ and $U \cup V = S$. (Note that $c \notin S$) And U, V are open in S. (Prop 2.2.5) Then S is disconnected.

 $(2 \Longrightarrow 1)$ (Contradiction) Assume S is disconnected. There exists U, V that satisfy the definition of disconnected set. For $a \in U, b \in V$, (WLOG a < b). By $(2), [a, b] \subset S$.

Let $c = \sup([a, b] \cap U)$.

Case I) $c \in U$. Then $c \neq b \implies c \in [a, b) = Y \implies c \in U \cap Y$.

Since U is open in S and $Y \subset S \implies U \cap Y$ is open in Y. (Cor of 2.2.5)

 $\Longrightarrow \exists \epsilon > 0 \text{ such that } N_Y(c, \epsilon) \subset U \cap Y \subset U \cap [a, b].$

$$Y \cap N(c, \epsilon) = [a, b) \cap (c - \epsilon, c + \epsilon) \supset [c, b) \cap [c, c + \epsilon) = [c, \min\{b, c + \epsilon\})$$

Therefore, we have

$$[c, \min\{b, c+\epsilon\}) \subset N_Y(c, \epsilon) \subset U \cap [a, b]$$

and since c was the supremum, contradiction.

Case II) $c \in V$. Similarly, contradiction.

 $(2 \Longrightarrow 3)$ inf S = u, sup S = v. (If S is not bounded below, $u = -\infty$, if S is not bounded above, $v = \infty$). Then if $c \in (u, v) \implies c \in S$. There exists $a, b \in S$ such that $u \le a < c < b \le v$, meaning that S must be one of [u, v], [u, v), (u, v], (u, v).

 $(3 \Longrightarrow 2)$ Trivial.

¹⁶Always check! $a \in U, b \in V$.

April 17th, 2019

Definition. $S \subset \mathbb{R}^d$: disconnected \iff There exists non-empty sets U, V such that

- (1) $U \cap V = \emptyset$
- (2) $U \cup V = S$
- (3) U and V are open in S

Last time we characterized all connected sets of \mathbb{R} .

Theorem 2.6.2 Suppose $\{C_i : i \in I\}$ is a family of connected sets.¹⁷

$$\bigcap_{i \in I} C_i \neq \emptyset \implies \bigcup_{i \in I} C_i \text{ is connected}$$

Proof. (Routine) Assume $C = \bigcup_{i \in I} C_i$ is disconnected. C can be decomposed into 2 sets U, V (that satisfy condition (1), (2), (3) from the definition). Let

$$U_i = C_i \cap U, \quad V_i = C_i \cap V \quad (\forall i)$$

then U_i, V_i are open in C_i .¹⁸ Now U_i, V_i satisfy (2) and (3) for C_i . Since C_i is connected, (1) should not hold, in other words, either U_i or V_i must be \emptyset .

Define: $I_1 = \{i \in I : U_i = \emptyset, V_i = C_i\}, I_2 = \{i \in I : U_i = C_i, V_i = \emptyset\}.$ If $I_1 = \emptyset \implies I_2 = I \implies V_i = \emptyset$ ($\forall i$) $\implies V = \bigcup_{i \in I} V_i = \emptyset^{19}$, contradiction. Similarly if $I_2 = \emptyset$, contradiction.

Select $i_1 \in I_1, i_2 \in I_2$. Then $C_{i_1} = V_{i_1} \subset V$, $C_{i_2} = U_{i_2} \subset U$. Therefore $C_{i_1} \cap C_{i_2} = \emptyset$. Contradiction.

Example.

- (1) $x, y \in \mathbb{R}^d$, $[x, y] = \{tx + (1 t)y : t \in [0, 1]\}$ is connected. (Proof similar to Prop 2.6.1)
- (2) $N(x,r) = \bigcup_{y \in N(x,r)} [x,y]$ is connected by the theorem above. $(\bigcap_{y \in N(x,r)} [x,y] = \{x\} \neq \emptyset)$
- (3) $\mathbb{R}^d = \bigcup_{y \in \mathbb{R}^d} [0, y]$ is connected.
- (4) Convex sets are connected. $A = \bigcup_{y \in A} [x, y]$.

¹⁷활용 보다도 증명이 중요하니 꼭 기억해 두자.

 $^{^{18}}U$: open in X and $Y \subset X \implies U \cap Y$: open in Y.

¹⁹Check!

Definition. Set A is **convex** $\iff x, y \in A \implies [x, y] \subset A$.

Comment. Homework problem: Show that $S = \{(x, y) : xy > 1\}$ is open.

Proof. 1. Show that $N(z, \epsilon) \subset S$ for all $z \in S$.

2. Instead show that $F = \{(x, y) : xy \leq 1\}$ is closed.

Use Thm 2.2.3 (4). Let (x_n, y_n) be a sequence in F that converges to (x, y).

$$xy = \lim x_n \lim y_n = \lim x_n y_n \le 1 \implies (x, y) \in F$$

Example. $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$, define $A \times B \subset \mathbb{R}^{n+m}$ as

$$A \times B = \{(x, y) : a \in A, b \in B\}$$

If m = n = 1, $A \times B$ is a rectangular box in \mathbb{R}^2 .

If A, B is open/closed/compact/connected, $A \times B$ is open/closed/compact/connected.

Proof.

(1) (Open) $(a, b) \in A \times B$. There exists $\epsilon_1, \epsilon_2 > 0$ such that $N(a, \epsilon_1) \subset A$, $N(b, \epsilon_2) \subset B$. Choose $\epsilon = \min\{\epsilon_1, \epsilon_2\}$. If $(x, y) \in N((a, b), \epsilon) \subset \mathbb{R}^{n+m}$, we have

$$\epsilon^2 > \|(x,y) - (a,b)\|^2 = \|x - a\|^2 + \|y - b\|^2$$

 $||x-a|| < \epsilon < \epsilon_1 \text{ and } ||y-b|| < \epsilon < \epsilon_2. \ x \in A, y \in B.$

Therefore $(x, y) \in A \times B$, and $N((a, b), \epsilon) \subset A \times B$.

- (2) (Closed) (x_k, y_k) : sequence in $A \times B$. $(x_k \in A, y_k \in B)$ Suppose $(x_k, y_k) \to (x, y)$ $(x_k \to x, y_k \to y)$. Since A is closed and x_k is a sequence in A, $x \in A$. Similarly, $y \in B$. Thus $(x, y) \in A \times B$, and $A \times B$ is closed.
- (3) (Compact) A, B are closed and bounded. Closed is proven by (2). Since A, B are bounded, $\exists M_1, M_2$ such that $||a|| \leq M_1$, $||b|| \leq M_2$ for all $a \in A, b \in B$. For all $(a, b) \in A \times B$,

$$\|(a,b)\| = \sqrt{\|a\|^2 + \|b\|^2} \le \sqrt{M_1^2 + M_2^2}$$

Therefore $A \times B$ is bounded. Thus compact.

(4) (Connected) $a \in A \implies \{a\} \times B$ is connected. $b \in B \implies A \times \{b\}$ is connected. Proof. If the set is disconnected, exists $\{a\} \times U$, $\{a\} \times V$ such that splits B. Since $(A \times \{b\}) \cap (\{a\} \times B) = \{(a,b)\} \neq \emptyset$, $(A \times \{b\}) \cup (\{a\} \times B)$ is connected by Thm 2.6.2. Now fix $a \in A$, and define $C_b = (A \times \{b\}) \cup (\{a\} \times B)$. Then $\{C_b : b \in B\}$ is a family of connected sets, and $\bigcap_{b \in B} = \{a\} \times B \neq \emptyset$. $A \times B = \bigcup_{b \in B} C_b$ is connected by Thm 2.6.2.

²⁰Do not write as \mathbb{R}^{m+n} . Fist coordinate is *n*-dimension, second is *m*-dimension.

April 22nd, 2019

3. Continuous Functions

3.1 함수의 극한과 연속함수의 정의

특별한 언급이 없으면 다음과 같은 가정을 한다.²¹

$$f: X \to Y \quad (X \subset \mathbb{R}^m, Y \subset \mathbb{R}^n)$$

Definition. For $x_0 \in X'$, $\lim_{x \to x_0} f(x) = y_0 \iff$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } (\mathbf{0} < ||x - x_0|| < \delta \Rightarrow ||f(x) - y_0|| < \epsilon)$$

Remark. Why X'? $X = [0,1] \cup \{2\}$, consider f(x) = 2x on X. $\lim_{x\to 2} f(x)$ is nonsense.

Example.

(1)
$$f(x) = \begin{cases} x^2 & (x \neq 0) \\ 1 & (x = 0) \end{cases}$$
, $\lim_{x \to 0} f(x) = 0.^{22}$
For $\epsilon > 0$, set $\delta = \sqrt{\epsilon}$. Then $0 < |x - 0| < \delta \Rightarrow |f(x) - 0| = |x^2| < \delta^2 = \epsilon$.

(2)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$
. $(X = \mathbb{R} \setminus \{2\}, Y = \mathbb{R}, 2 \in X')$
For $\epsilon > 0$, set $\delta = \epsilon$. Then $0 < |x - 2| < \delta \Rightarrow |f(x) - 4| = |x - 2| < \delta = \epsilon$.

Prop 3.1.1 $f, g: X \to Y, x_0 \in X'^{23}$. If $\lim_{x \to x_0} f(x) = y_0$, $\lim_{x \to x_0} g(x) = z_0$, then

(1)
$$\lim_{x \to x_0} af(x) + bg(x) = ay_0 + bz_0$$

(2)
$$\lim_{x \to x_0} f(x)g(x) = y_0 z_0$$

(3)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{y_0}{z_0} (z_0 \neq 0)$$

연속을 3가지로 정의한다. 세 정의들이 서로 동치임을 이해하는 것이 중요하다.

Definition. Let $f: X \to Y$, $x_0 \in X$. f is **continuous** at $x_0 \iff$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } (\|x - x_0\| < \delta \Rightarrow \|f(x) - f(x_0)\| < \epsilon)$$

Remark. $|x - x_0| < \delta$ should be satisfied for $x \in X$. The 0 < condition is omitted here since the inequality holds trivially for x_0 .

²¹치역이 중요하지 공역은 뭐...

 $^{^{22}}$ 특별한 언급이 없으면 X=f 가 정의되는 곳, $Y=\mathbb{R}^n$ 으로 생각한다.

 $^{^{23}}$ 책에 X로 되어있는데 이는 오타.

- (1) $x_0 \in X'$: f is continuous at $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$.
- (2) $x_0 \in X \setminus X'$ (isolated point): f is continuous at x_0 .

Definition.

- (1) $A \subset X, f: X \to Y$. If f is continuous at x_0 for all $x \in A \implies f$ is continuous on A.
- (2) If f is continuous on $X \implies f$ is continuous.

Prop 3.1.3 The following are equivalent for $f: X \to Y$.

- (1) f: continuous at $x_0 \in X$.
- (2) If there exists a sequence $\langle x_n \rangle$ in X converging to $x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$.

Proof.

 $(1 \Longrightarrow 2)$ Given $\epsilon > 0$,

- (i) $\exists \delta > 0 \text{ s.t. } ||x x_0|| < \delta \implies ||f(x) f(x_0)|| < \epsilon$
- (ii) Since $x_n \to x_0$, $\exists N \text{ s.t. for } n \ge N \implies ||x_n x_0|| < \delta$.

Therefore, $n \ge N \implies ||x_n - x_0|| < \delta \implies ||f(x_n) - f(x_0)|| < \epsilon$.

(2 \Longrightarrow 1) (Contradiction) Suppose there exists $\epsilon_0 > 0$ such that no δ statisfies $||x - x_0|| < \delta \Longrightarrow$ $||f(x) - f(x_0)|| < \epsilon_0$. (i.e. For all $\delta > 0$, $\exists x \in X$ s.t. $||x - x_0|| < \delta$ and $||f(x) - f(x_0)|| \ge \epsilon_0$)

Thus for all $n \in \mathbb{N}$, there exists $x_n \in X$ s.t. $||x_n - x_0|| < 1/n$ and $||f(x_n) - f(x_0)|| \ge \epsilon_0$. $(\delta = 1/n)$ Then we have $\lim_{n \to \infty} x_n = x_0$, but $\lim_{n \to \infty} f(x_n) \ne f(x_0)$. Contradiction.

Definition. $f: X \to Y, A \subset X, B \subset Y$. Define

$$f(A) = \{ f(x) : x \in A \} \quad f^{-1}(B) = \{ x \in X : f(x) \in B \}$$

Remark.

- (1) $f(f^{-1}(B)) \subseteq B$ $y \in f(f^{-1}(B))$ then y = f(x) for some $x \in f^{-1}(B)$. Thus we have $x \in f^{-1}(B) \iff f(x) \in B$. $\therefore y = f(x) \in B$.
- (2) $f^{-1}(f(A)) \supseteq A$ Exercise.

Also remember the counterexamples where the equality does not hold. (1) doesn't hold if f is not surjective, (2) doesn't hold if f is not injective.

Theorem 3.1.5 The following are equivalent for $f: X \to Y$.

- (1) f is continuous on X.
- (2) B: open set in $Y \implies f^{-1}(B)$: open in X.
- (3) B: closed in $Y \implies f^{-1}(B)$: closed in X.

Proof. (2 \iff 3) Trivial. Check $f^{-1}(B^C)$.

(1 \Longrightarrow 2) Observation. f is continuous at $x_0 \iff \forall \epsilon > 0$, $\delta > 0$ s.t. $||x - x_0|| < \delta \implies$ $||f(x) - f(x_0)|| < \epsilon$. Re-write the last two inequality as $x \in N_X(x, \delta)$ and $f(x) \in N_Y(f(x_0), \epsilon)$. Then continuity condition is equivalent to

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } f(N_X(x,\delta)) \subset N_Y(f(x_0),\epsilon)$$

Now suppose $x_0 \in f^{-1}(B) \iff f(x_0) \in B$. Since B is open, there exists $\epsilon > 0$ s.t. $N_Y(f(x_0), \epsilon) \subset B$. Then there exists $\delta > 0$ s.t. $f(N_X(x_0, \delta)) \subset N_Y(f(x_0), \epsilon) \subset B$. Take f^{-1} on both sides. $N_X(x_0, \delta) \subset f^{-1}(f(N_X(x_0, \delta))) \subset f^{-1}(B)$. Thus $f^{-1}(B)$ is open in X.

 $(2 \Longrightarrow 1) \ x_0 \in X, \ f(x_0) \in Y.$ Given $\epsilon > 0$, $N_Y(f(x_0), \epsilon)$ is open in Y. By (2), $f^{-1}(N_Y(f(x_0), \epsilon))$ is open in X. Observe that this set always contains $x_0.$ Then $\exists \delta \text{ s.t. } N_X(x_0, \delta) \subset f^{-1}(N_Y(f(x_0), \epsilon)).$ Now take f on both sides. $f(N_X(x_0, \delta)) \subset f(f^{-1}(N_Y(f(x_0), \epsilon))) \subset N_Y(f(x_0), \epsilon).$ Thus f is continuous at $x_0.$

April 24th, 2019

연속함수의 기본적 성질

Prop 3.1.2 Suppose $f, g: X \to \mathbb{R}^n$ are continuous on X.

- (1) af + bg: continuous
- (2) (n = 1) fg: continuous
- (3) $\frac{f}{g}$: continuous $(g \neq 0 \text{ on } X)$

Proof. (2) Given $\epsilon > 0$, $\exists \delta_1$ s.t. $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \frac{\epsilon}{2|g(x_0)|+1}$, $\exists \delta_2$ s.t. $|x - x_0| < \delta_2 \implies |g(x) - g(x_0)| < \frac{\epsilon}{2(|f(x_0)| + \frac{\epsilon}{2|g(x_0)|+1})}$. Then we have

$$|f(x)g(x) - f(x_0)g(x_0)| = |f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))|$$

$$\leq |f(x)||g(x) - g(x_0)| + |g(x_0)||f(x) - f(x_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$$

Thus we have continuity.

Proof 2. By sequential definition, exists $\langle x_n \rangle \to x_0$ in X such that $f(x_n) \to f(x_0), g(x_n) \to g(x_0)$. Then we have $f(x_n)g(x_n) \to f(x_0)g(x_0)$.

Prop 3.1.4 Suppose we have two continuous functions $f: X \to Y$, $g: Y \to Z$. If f is continuous at $x_0 \in X$, and if g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Proof. Given $\epsilon > 0$, $\exists \delta_1 > 0$ s.t. $||y - f(x_0)|| < \delta_1 \implies ||g(y) - g(f(x_0))|| < \epsilon$. Also, $\exists \delta_2 > 0$ s.t. $||x - x_0|| < \delta_2 \implies ||f(x) - f(x_0)|| < \delta_1$. Now we automatically have $||g(f(x)) - g(f(x_0))|| = ||(g \circ f)(x) - (g \circ f)(x_0)|| < \epsilon$.

Remark. Suppose f: continuous X, g: continuous on Y (or on f(X)). Then $g \circ f$ is continuous on X.

Example.

- (1) Polynomials are continuous. Use continuity of f(x) = x.
- (2) $f(x) = \sqrt{x}^{24}$
- (3) $f(x) = \sqrt{x^4 + 1}$ is continuous.
- (4) $f(x) = \begin{cases} 1 & (x \in \mathbb{Q}) \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$ is not continuous.

Proof. $x_0 \in \mathbb{R}$. Suppose there exists a sequence $\langle x_n \rangle$ in \mathbb{Q} converging to x_0 . Then $\langle f(x_n) \rangle \to 1$. $(x_n = \lfloor nx_0 \rfloor/n)$ But there also exists a sequence $\langle x_n \rangle$ in $\mathbb{R} \backslash \mathbb{Q}$ converging to x_0 . Then $\langle f(x_n) \rangle \to 0$. $(x_n = \lfloor \sqrt{2}nx_0 \rfloor/\sqrt{2}n)$ f(x) cannot be continuous anywhere.

²⁴연속이지만 고른연속은 아닌 함수

3.2 최대최소정리와 중간값정리

Theorem 3.2.1 Suppose $f: X \to Y$ is surjective and X is compact. Then Y is compact.²⁵ **Proof**. Suppose $\{U_i: i \in I\}$ is an open cover of Y. $V_i = U_i \cap Y$ is an open set in Y, and $\{V_i: i \in I\}$ is also an open cover of Y. Consider $\{f^{-1}(V_i): i \in I\}$, which is an open cover of X.²⁶ Since X is compact, there exists a finite subcover $\{f^{-1}(V_i): i \in J\}$ $\{J \subset I\}$ of X. Then $\{V_i: i \in J\}$ is a finite subcover of Y.

$$Y = f(X) = f\left(\bigcup_{i \in J} f^{-1}(V_i)\right) = \bigcup_{i \in J} f(f^{-1}(V_i)) \subset \bigcup_{i \in J} V_i$$

We have a finite subcover of Y. Thus Y is compact.

Check. $\forall A \subset X$. f: surjective \implies , $f(f^{-1}(A)) = A$. f: injective \implies $f^{-1}(f(A)) = A$.

Remark.

- (1) $f: \mathbb{R}^m \to \mathbb{R}^n$, f: continuous. If $K \subset \mathbb{R}^m$ is compact, f(K) is compact. Set $f: K \to f(K)$.
- (2) Image of compact set is compact.

Cor 3.2.2 Suppose X is compact. $f: X \to \mathbb{R} \implies f$ has maximum and minimum. **Proof.** Set $f: X \to f(X)$, then f is surjective and f(X) is compact. Check that if $K \subset \mathbb{R}$, K: compact, then $\inf K$, $\sup K \in K$ and $\inf K = \min K$, $\sup K = \max K$.

Cor 3.2.4 (Extreme Value Theorem) If f is a continuous function defined on [a, b], f has a maximum and minimum.

Proof. [a, b] is compact.

Cor 3.2.3 Suppose X is compact and $f: X \to \mathbb{R}$ is continuous. If f(x) > 0 for all $x \in X$, then $\exists \delta > 0$ s.t. $f(x) \geq \delta > 0$ for all $x \in X$.

Proof. Let $\delta = \min f(X) = f(u) > 0$ for some u.

Remark. $X = [1, \infty), f(x) = 1/x$. (X is not compact.)

Cor 3.2.5 Suppose X is compact and $f: X \to Y$ is bijective and continuous. Then f^{-1} is continuous.

Check. $f: X \to Y$. $A \subset X, B \subset Y$. Image: f(A), pre-image: $f^{-1}(B)$. We must check if image of B on f^{-1} is equal to the pre-image of B. (Well-definedness!)

²⁵연속성이 필요없나?

²⁶Check at assignment 3.5.

April 26th, 2019

Assignment 3.5 #3: Check and remember.

(2)
$$f\left(\bigcap_{i\in\mathcal{I}}A_i\right)\subset\bigcap_{i\in\mathcal{I}}f(A_i)$$

Problem 3.1.2 $f: X \to \mathbb{R}^n$, $f(x) = (f_1(x), \dots, f_n(x))$ $(x \in X)$. The following are equivalent.

- (1) f is continuous at x.
- (2) For all $i, f_i : X \to \mathbb{R}$ is continuous at x.

Proof. (1 \Longrightarrow 2) $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $||y - x|| < \delta \implies ||f(y) - f(x)|| < \epsilon$. Then we have $||f_i(y) - f_i(x)|| \le ||f(y) - f(x)|| < \epsilon$, for any i.

 $(2 \Longrightarrow 1) \ \forall \epsilon > 0, \ \exists \ \delta > 0 \ \text{s.t.} \ \|x - y\| < \delta \implies \|f_i(x) - f_i(y)\| < \epsilon / \sqrt{n}. \ \text{Then}$

$$||x - y|| < \delta \implies ||f(x) - f(y)|| = \sqrt{\sum_{i=1}^{n} ||f_i(x) - f_i(y)||^2} < \sqrt{n \cdot \frac{\epsilon^2}{n}} = \epsilon$$

Prop 3.1.2 (3) f, g: continuous $\implies f/g$: continuous $(g \neq 0 \text{ on } X)$

Proof. $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. for all } x_0 \in X,$

$$|x - x_0| < \delta \implies |g(x) - g(x_0)| < \min\{\frac{1}{2} |g(x_0)|, \frac{1}{4} \frac{|g(x_0)|^2 \epsilon}{|f(x_0)| + 1}\}, |f(x) - f(x_0)| < \frac{1}{4} |g(x_0)| \epsilon.$$

$$\left| \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} \right| \le \frac{|g(x_0)| |f(x) - f(x_0)| + |f(x_0)| |g(x) - g(x_0)|}{|g(x)| |g(x_0)|} \\
\le \frac{|g(x_0)| \frac{1}{4} |g(x_0)| \epsilon + |f(x_0)| \frac{1}{4} \frac{|g(x_0)|^2 \epsilon}{|f(x_0)| + 1}}{\frac{1}{2} |g(x_0)|^2} < \frac{\frac{1}{4} |g(x_0)|^2 \epsilon + \frac{1}{4} |g(x_0)|^2 \epsilon}{\frac{1}{2} |g(x_0)|^2} = \epsilon$$

Example.
$$g(x) = \begin{cases} 0 & (x = 0, 1 \text{ or } x \in \mathbb{R} \setminus \mathbb{Q}) \\ 1/q & (x = p/q, \text{irreducible fraction}) \end{cases}$$

- (i) $x_0 \in \mathbb{Q} \cap (0,1)$ then $g(x_0) > 0$. Set $\epsilon = \frac{1}{2}g(x_0) > 0$. For all $\delta > 0$, $\exists y \in \mathbb{Q}^C \cap [0,1]$ s.t. $|y x_0| < \delta$, but $|g(y) g(x_0)| = g(x_0) \ge \epsilon$. Thus f is not continuous at x_0 .
- (ii) $x_0 \in \mathbb{Q}^C \cup \{0,1\}$. $g(x_0) = 0$. $\forall \epsilon > 0$, $\exists N \ge 1$ s.t. $1/N < \epsilon$. Then there are finitely many y such that $g(y) \ge 1/N$. $(\frac{1}{N}, \frac{1}{N-1}, \dots, \frac{1}{2}$ is finite) Let them be y_1, \dots, y_k and set $\delta = \min_{1 \le i \le k} |y_i x_0| > 0$. If $||y x_0|| < \delta$, then $0 \le g(y) < 1/N < \epsilon$. $|g(y) g(x_0)| = g(y) < \epsilon$.

Problem 3.5.1

(1)
$$f(x) = 0, f(\mathbb{R}) = \{0\}$$
 (closed)

(3)
$$f(x) = e^x$$
, $f(\mathbb{R}) = (0, \infty)$ (open)

April 29th, 2019

3.2 EVT & IVT

Theorem 3.2.1 Suppose $f: X \to Y$ is continuous and surjective.²⁷ If X is compact, Y is also compact.

Remark. $f: X \to Y$ continuous, $K \subset X$: compact $\Longrightarrow f(K)$: compact. Inverse does not hold. Consider $f(x) = \sin x$. Image is [0,1] (compact), but pre-image is \mathbb{R} (not bounded).

Definition. Function $f: X \to \mathbb{R}$ has **maximum** M if there exists $u \in X$ s.t. f(u) = M, and $\forall x \in X, f(x) \leq M$.

Cor 3.2.5 Suppose $f: X \to Y$ is continuous and bijective. If X is compact, $f^{-1}: Y \to X$ is continuous.²⁸

Proof. Let $f^{-1} = g : Y \to X$. For any open set U in X, it is enough to show that $g^{-1}(U)$ is open in Y. But $g^{-1}(U) = (f^{-1})^{-1}(U) = f(U)$. Check that $Y \setminus f(U) = f(X \setminus U)$. Since a closed subset of a compact set is compact, $Y \setminus f(U) = f(X \setminus U)$ is compact, and hence closed in \mathbb{R}^d . Then $f(U) = (Y \setminus f(U))^C \cap Y$ is open in Y.

Example. $f: X = \{0\} \cup (1,2) \to Y = [0,1)$. f(0) = 0, f(x) = x - 1 on (1,2). By definition, f is continuous on X. Consider f^{-1} . $f^{-1}(0) = 0$, $f^{-1}(x) = x + 1$ on (0,1). f^{-1} is not continuous.²⁹

Application. (Distance between sets) Define dist as follows.

$$A, B \subset \mathbb{R}^d$$
, $\operatorname{dist}(A, B) = \inf\{\|x - y\| : x \in A, y \in B\}$

Example. $A = \{(x, y) : x \le 0\}, B = \{(x, y) : xy \ge 1, x, y > 0\}. \operatorname{dist}(A, B) \le \|(0, n) - (\frac{1}{n}, n)\| = 1/n \text{ for all } n. \text{ Thus } \operatorname{dist}(A, B) = 0.$

Theorem. A: compact, B: closed. $A \cap B = \emptyset \implies \operatorname{dist}(A, B) > 0$.

Proof. $f: A \to \mathbb{R}, f(x) = \text{dist}(\{x\}, B) \ (x \in A).$

- (i) f(x) > 0 for all $x \in A$. $\therefore N(x, \epsilon) \subset B^C \text{ (open)} \implies \operatorname{dist}(\{x\}, B) \ge \epsilon > 0$.
- (ii) f: continuous, $b \in B$. For $x, y \in A$, $||x b|| \le ||x y|| + ||y b||$. Take infimum over $b \in B$. Then we have $f(x) \le ||x y|| + f(y)$. Similarly we have $f(y) \le ||x y|| + f(x)$. Hence $||f(x) f(y)|| \le ||x y||$. (Continuity follows easily by setting $\delta = \epsilon$)

²⁷Not necessarily. Adjust Y to be f(X).

²⁸Thm 3.1.5 was about the pre-image of an open set. In this corollary, we must show that the image of an open set is also open.

²⁹수학적으로 장난질 치는게 아니라 본질적인 의미가 있는 예시입니다.

Lipschitz Continuous: $||f(x) - f(y)|| \le k ||x - y||$ for some $k \ge 0$ (Set $\delta = \epsilon/k$ to show continuity)

Contraction: Lipschitz continuous and k = 1.

By Cor 3.2.3, $\exists \delta > 0$ s.t. $f(x) \geq \delta > 0$ for all $x \in A$. Then $\operatorname{dist}(A, B) \geq \delta > 0$.

Theorem 3.2.8 Suppose $f: X \to Y$ is continuous and surjective. If X is connected, Y is also connected.

Proof.³⁰ (Contradiction) Assume Y is disconnected. Then there exists non-empty sets U, V that are open in Y, and $U \cap V = \emptyset$, $U \cup V = Y$. Consider $f^{-1}(U), f^{-1}(V)$. We will show that X is disconnected. Since f is surjective, $f^{-1}(U), f^{-1}(V)$ are non-empty. Decomposition conditions can be checked easily, (use theorems from assignment) and openness holds by continuity.

Remark. Suppose $f: X \to Y$ is continuous. If $C \subset X$ is connected, f(C) is also connected.

Cor 3.2.9 Suppose $f: I \to \mathbb{R}$ is continuous where I is any interval of \mathbb{R} . Then f(I) is also an interval and hence connected.³¹

Cor 3.2.10 (Intermediate Value Theorem) Suppose $f:[a,b]\to\mathbb{R}$ is continuous. If α is in between f(a) and f(b), f(a) then $\exists c\in[a,b]$ s.t. $f(c)=\alpha$.

Proof. f([a,b]) is an **interval** (Cor 3.2.9) which includes f(a), f(b). Then it must include α .

Cor 3.2.11 Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Then f([a,b]) is a closed interval.

Proof. f([a,b]) is an interval (Cor 3.2.9) and compact (Thm 3.2.1).

Cor 3.2.12 Suppose $f:[a,b] \to [a,b]$ is continuous. Then $\exists c \in [a,b]$ s.t. f(c) = c. We call such c a fixed point.

Proof. Apply IVT on g(x) = x - f(x), set $\alpha = 0$. Then we have

$$g(a) = a - f(a) \le 0 = \alpha = 0 \le b - f(b) = g(b)$$

and the result follows directly.

Application. (Path-Connected Set)

Remark. $x, y \in \mathbb{R}^d \implies [x, y] = \{tx + (1 - t)y : 0 \le t \le 1\}$ (convex combination)

³⁰책과 약간 다릅니다. 책의 증명도 읽어보세요.

³¹이런 집합을 구간으로만 이해를 하면 우리가 아무것도 못 해요. 그런데 얘를 연결집합으로 이해하면 뭔가 할 것들이 생기고 여기서 중간값 정리가 바로 나오죠.

 $^{^{32}(}f(a) - \alpha)(f(b) - \alpha) < 0$

³³이 정리를 위해 달려온 것...

 $^{^{34}}$ 구간은 볼록집합임을 이용해도 α 를 포함함을 보일 수 있다.

Set $f:[0,1] \to [x,y]$ as f(t) = tx + (1-t)y. Then f is continuous. (Lipschitz continuity can be easily checked and f is surjective)

Definition. Let $a, b \in \mathbb{R}$, a < b. Suppose $f : [a, b] \to \mathbb{R}^d$ is continuous. Then f([a, b]) is called a **path**.

Remark. Define $f:[a,b] \to \mathbb{R}^3$ as $f(t) = (\sin t, \cos t, \frac{1}{1+t^2})$ (Parameterized curve) Also note that a path is compact and connected. ([a,b] is compact and connected)

Definition. $C \subset \mathbb{R}^d$ is called **path-connected** if for any $x, y \in C$, there exists a path in C connecting x and y.

Theorem. Path-connected \implies Connected

Proof. (Contradiction) Assume X is path-connected but disconnected. Then there exists sets U, V such that satisfy disconnectedness for X. Let $x \in U$, $y \in V$. From path-connected condition, there exists $f:[a,b] \to X$ s.t. f is continuous, f(a)=x, and f(b)=y. Let $Y=f([a,b])\subset X$. Then Y can be decomposed into $Y\cap U$ and $Y\cap V$. These two sets satisfy the disconnectedness condition, (check) hence Y is disconnected. But since paths are always connected, contradiction.

Remark. The converse of the above theorem is **false**. Consider $f(x) = \sin \frac{1}{x}$ (x > 0). Set $A = \{(x, \sin \frac{1}{x}) : x \in (0, 1)\} \subset \mathbb{R}^2$. A is a path and therefore connected.

But the problem arises when we consider \overline{A} . We can easily check that the closure of a connected set is connected. We can also check that $\overline{A} = A \cup \{(0,t) : t \in [-1,1]\}$, which is not path-connected.³⁵

³⁵We need a jump from x = 0 to x > 0...

May 1st, 2019

3.3 Uniform Continuity

Definition. $f: X \to Y$ is **uniformly continuous** $\iff \forall \epsilon > 0, \exists \delta > 0$ s.t. $x, y \in X$, $||x - y|| < \delta \implies ||f(x) - f(y)|| < \epsilon$.

Remark. $f: X \to Y$ is continuous at $x_0 \in X$ meant that $\forall \epsilon > 0, \exists \delta > 0$ s.t. $||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \epsilon$. In this definition, δ was a function of x_0 . But in the definition of uniform continuity, δ is only dependent of ϵ .

Example.

- (1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ (Not uniformly continuous) For $\epsilon = 1$, suppose we have $\delta > 0$. Set $x = 1/\delta + \delta/2$, $y = 1/\delta$. Then $|x - y| = \delta/2 < \delta$, but $|f(x) - f(y)| = |x^2 - y^2| = 1 + \delta^2/4 > \epsilon$.
- (2) $f:[0,1] \to \mathbb{R}$, $f(x) = x^2$ (Uniformly continuous & Lipschitz continuous)³⁶ Given $\epsilon > 0$, $\delta = \epsilon/2$. If $|x - y| < \delta$ then $|f(x) - f(y)| = |x + y| |x - y| < 2\delta = \epsilon$.
- (3) Lipschitz Continuity \Longrightarrow Uniform Continuity Suppose $\forall x, y \in X, \exists k > 0 \text{ s.t. } ||f(x) f(y)|| \leq k ||x y||$. Then set $\delta = \epsilon/k$ to show uniform continuity.
- (4) Lipschitz \Longrightarrow Uniform \Longrightarrow Continuous $f:[0,\infty)\to\mathbb{R},\ f(x)=\sqrt{x}.$
 - (a) Not Lipschitz continuous. $|f(x) f(y)| = \frac{|x-y|}{\sqrt{x} + \sqrt{y}} \le k |x-y|$ for all $x, y \in X$? Impossible.
 - (b) Uniform continuous. Set $\delta = \epsilon^2$. $|f(x) f(y)| = |\sqrt{x} \sqrt{y}| \le \sqrt{|x y|} < \sqrt{\delta} = \epsilon$

Theorem 3.3.1 (Heine's Theorem) Suppose $f: X \to Y$ is continuous. If X is compact, f is uniformly continuous.

Proof. Given $\epsilon > 0$, $x \in X$, $\exists \delta(x) > 0$ s.t. $||y - x|| < \delta(x) \implies ||f(y) - f(x)|| < \epsilon/2$.

Define $U_x = N(x, \delta(x)/2)$. Then $\{U_x : x \in X\}$ is a open cover of X. By compactness, there exists a finite subcover $\{U_{x_i}\}_{i=1}^n$. Set $\delta = \frac{1}{2}\min\{\delta(x_1), \ldots, \delta(x_n)\}$.

Suppose $||x-y|| < \delta$. For some $k, x \in U_{x_k}$, and then $y \in N(x_k, \delta(x_k))$. This is because

$$||x - x_k|| < \delta(x_k)/2$$
, $||y - x_k|| \le ||y - x|| + ||x - x_k|| < \delta + \delta(x_k)/2 < \delta(x_k)$

³⁶함수의 성질일 뿐만 아니라 domain 의 성질이기도 하다? Domain 도 중요한 역할을 한다.

Then we have

$$||f(x) - f(y)|| \le ||f(x) - f(x_k)|| + ||f(x_k) - f(y)|| < \epsilon/2 + \epsilon/2 = \epsilon$$

by continuity of f. Thus f is uniformly continuous.

Theorem 3.3.2 Suppose $f: X \to Y$ is uniformly continuous. If $\langle x_n \rangle$ is a Cauchy sequence in X, $\langle f(x_n) \rangle$ is also a Cauchy sequence.

Proof. Given $\epsilon > 0$, $\exists \delta > 0$ s.t. $||x - y|| < \delta \implies ||f(x) - f(y)|| < \epsilon$. For this δ , $\exists N$ s.t. $m, n \ge N \implies ||x_m - x_n|| < \delta$. Then we have

$$m, n \ge N \implies ||x_m - x_n|| < \delta \implies ||f(x_m) - f(x_n)|| < \epsilon$$

Remark. If $f: X \to Y$ is continuous, $\langle x_n \rangle \to x$ then $\langle f(x_n) \to f(x) \rangle$. In this case, $\langle x_n \rangle$, x must be in X, $\langle f(x_n) \rangle$, f(x) must be in Y.

Consider $f:(0,1)\to\mathbb{R}$, f(x)=1/x. $x_n=1/n$ converges, and is a Cauchy sequence. But $f(x_n)=n$ is not Cauchy. The limit value of $\langle x_n\rangle$ does not have to be in X for a uniform continuous function.

Definition. Suppose $f: X \to Y$ is continuous, $X \subset A, Y \subset B$. If $g: A \to B$ satisfies g(x) = f(x) for $x \in X$, and if g is continuous on A, we say that g is a **continuous extension** of f to A.

Example.

(1) $f:(0,1)\to\mathbb{R}, f(x)=x$.

Consider A = (0,2). g(x) = x on (0,2) is a continuous extension, h(x) = x on (0,1), h(x) = 1 on [1,2) is also a continuous extension.

Consider A = [0, 1]. Then g(0) = 0, g(1) = 1, g(x) = x on (0, 1) is a unique continuous extension of f.

(2) $f:(0,1) \to \mathbb{R}, f(x) = 1/x.$

Consider A = [0, 1). It is impossible to find a continuous extension.

Cor 3.3.3 Suppose $f: X \to Y$ is uniformly continuous. Then there exists a unique continuous extension of f to \overline{A} .³⁷

Proof. Take $x_0 \in \overline{X} \setminus X$. Set g(x) = f(x) for $x \in X$. Now for $g(x_0)$, recall that $x_0 \in \overline{X}$, so there exists a sequence $\langle x_n \rangle$ in X s.t. $x_n \to x_0$. Since $\langle x_n \rangle$ is convergent, $\langle x_n \rangle$ is Cauchy sequence and by Thm 3.3.2, $\langle f(x_n) \rangle$ is also a Cauchy sequence. Thus $\langle f(x_n) \rangle$ converges. Define $g(x_0)$ as the limit of $f(x_n)$.

 $^{^{37}}Y$ is assumed to be extended to \mathbb{R}^d .

Now we must check if $g(x_0)$ is well-defined. In other words: For any two sequence $\langle x_n \rangle$, $\langle y_n \rangle$ that converge to x_0 , does $f(x_n)$, $f(y_n)$ converge to the same value?

Consider $\langle z_n \rangle = x_1, y_1, x_2, y_2, \ldots$ It is trivial that $z_n \to x_0$. Since $\langle z_n \rangle$ is Cauchy, $\langle f(z_n) \rangle$ is also Cauchy by uniform continuity. Let its limit be γ . Then $\langle f(x_n) \rangle$, $\langle f(y_n) \rangle$ is a subsequence of $\langle f(z_n) \rangle$, thus they both must converge to γ . Uniqueness directly follows from this proof, and we can easily check that g is continuous.