Statistics 101C - Week 3 - Tuesday

Shirong Xu

University of California, Los Angeles shirong@stat.ucla.edu

October 12, 2024

How can we construct classifier?

Discriminative models

- Discriminative modeling studies the $\mathbb{P}(Y|X)$ or when $\mathbb{P}(Y|X) > 1/2$, does not care the distribution of $\mathbb{P}(X)$.
- Examples: Logistic regression (LR) and KNN

Generative models

- ullet Generative models studies the joint probability distribution $\mathbb{P}(oldsymbol{X},Y)$
- Examples: linear discriminant analysis and quadratic discriminant analysis

Estimate the Bayes Classifier

• Bayes Classifier: Let $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

$$f^*(\mathbf{x}) = \operatorname{sign}(\eta(\mathbf{x}) - 1/2)$$

Estimate the Bayes Classifier

• Bayes Classifier: Let $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

$$f^*(\mathbf{x}) = \mathsf{sign}(\eta(\mathbf{x}) - 1/2)$$

• **Implication**: If we know $\eta(x)$, we know the Best classifier.

Estimate the Bayes Classifier

• Bayes Classifier: Let $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

$$f^*(\mathbf{x}) = \operatorname{sign}(\eta(\mathbf{x}) - 1/2)$$

- **Implication**: If we know $\eta(x)$, we know the Best classifier.
- Both Generative and Discriminative models intend to estimate

$$\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$$

Recall: two main classes of classifiers

Discriminative models

- Discriminative modeling studies the $\mathbb{P}(Y|X)$
- Examples: Logistic regression (LR)

• General Steps of Discriminative models:

• Estimate the conditional probability

$$\widehat{\mathbb{P}}(Y=1|X)$$

The classifier can be constructed as

$$\mathsf{sign}(\widehat{\mathbb{P}}(Y=1|\boldsymbol{X})-1/2)$$

Generative models

Generative models

- ullet Generative models studies the joint probability distribution $\mathbb{P}(oldsymbol{X},Y)$
- Examples: linear discriminant analysis and quadratic discriminant analysis

• General Steps of Generative models:

- ullet Estimate the conditional probability $\widehat{\mathbb{P}}(oldsymbol{X}|Y=1)$ and $\widehat{\mathbb{P}}(Y=1)$
- The classifier can be constructed as

$$\widehat{P}(Y=1|\boldsymbol{X}) = \frac{\widehat{\mathbb{P}}(Y=1)\widehat{\mathbb{P}}(\boldsymbol{X}|Y=1)}{\widehat{\mathbb{P}}(Y=1)\widehat{\mathbb{P}}(\boldsymbol{X}|Y=1) + \widehat{\mathbb{P}}(Y=0)\widehat{\mathbb{P}}(\boldsymbol{X}|Y=0)}$$

Discriminant Analysis

- 1 Introduction
- 2 Linear and Quadratic Discriminant Analyses
- 3 LDA and QDA in practice

Basics: x is p-dimensional vector

1 multivariate linear function

$$f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta} + \beta_0$$

2 linear equation

$$\boldsymbol{x}^T\boldsymbol{\beta} + \beta_0 = 0$$

Basics: x is p-dimensional vector

1 multivariate linear function

$$f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta} + \beta_0$$

2 linear equation

$$\mathbf{x}^T \boldsymbol{\beta} + \beta_0 = 0$$

3 multivariate quadratic function

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{x}^T \boldsymbol{\beta} + \beta_0$$

4 multivariate quadratic equation

$$\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{x}^T \boldsymbol{\beta} + \beta_0 = 0$$

Basics of Generative models

- LDA and QDA are **generative models**, we need to consider the structure of $\mathbb{P}(X, Y)$
 - Model $\mathbb{P}(Y)$
 - Model $\mathbb{P}(\boldsymbol{X}|Y)$
- Once we obtain the estimated joint distribution $\widehat{\mathbb{P}}(Y)$ and $\widehat{\mathbb{P}}(X|Y)$
 - We can compute the conditional probability

$$\widehat{\mathbb{P}}(Y=1|X=x)$$

Construct the classifier:

$$\operatorname{sign}(\widehat{\mathbb{P}}(Y=1|\boldsymbol{X}=\boldsymbol{x})-1/2)$$

An alternative look

Let $k \in \{0,1\}$. We can develop an alternative formulation of $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x})$ from the definition of conditional probability.

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x}, Y = k)}{\mathbb{P}(\mathbf{X} = \mathbf{x})} = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}{\mathbb{P}(\mathbf{X} = \mathbf{x})}$$
$$= \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}{\sum_{k=0}^{1} \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k) \cdot \mathbb{P}(Y = k)}$$

- $\mathbb{P}(X = x)$ the marginal distribution
- $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x})$: given $\mathbf{X} = \mathbf{x}$ the probability that outcome Y = k.

Banknote Dataset

conterfeit	Length	Left	Right	Bottom	Top	Diagonal
0	214.70000	129.70000	129.30000	8.60000	9.60000	141.60000
0	215.40000	130.00000	129.90000	8.50000	9.70000	141.40000
0	214.90000	129.40000	129.50000	8.20000	9.90000	141.50000
0	214.50000	129.50000	129.30000	7.40000	10.70000	141.50000
0	214.70000	129.60000	129.50000	8.30000	10.00000	142.00000
0	215.60000	129.90000	129.90000	9.00000	9.50000	141.70000
0	215.00000	130.40000	130.30000	9.10000	10.20000	141.10000
0	214.40000	129.70000	129.50000	8.00000	10.30000	141.20000
0	215.10000	130.00000	129.80000	9.10000	10.20000	141.50000
0	214.70000	130.00000	129.40000	7.80000	10.00000	141.20000
1	214.40000	130.10000	130.30000	9.70000	11.70000	139.80000
1	214.90000	130.50000	130.20000	11.00000	11.50000	139.50000
1	214.90000	130.30000	130.10000	8.70000	11.70000	140.20000
1	215.00000	130.40000	130.60000	9.90000	10.90000	140.30000
1	214.70000	130.20000	130.30000	11.80000	10.90000	139.70000
1	215.00000	130.20000	130.20000	10.60000	10.70000	139.90000
1	215.30000	130.30000	130.10000	9.30000	12.10000	140.20000

Discriminant Analysis models $\mathbb{P}(Y|X)$ as follows:

• Step 1: Make assumptions on data structure

Discriminant Analysis models $\mathbb{P}(Y|X)$ as follows:

- Step 1: Make assumptions on data structure
 - Let $\pi_k = \mathbb{P}(Y = k)$ be the prior probability of category k = 0, 1

Discriminant Analysis models $\mathbb{P}(Y|X)$ as follows:

- Step 1: Make assumptions on data structure
 - Let $\pi_k = \mathbb{P}(Y = k)$ be the prior probability of category k = 0, 1
 - Suppose that $\mathbb{P}(\mathbf{X}=\mathbf{x}|Y=k)$ is a multivariate normal distribution with mean vector $\boldsymbol{\mu}_k$ and covariance matrix $\boldsymbol{\Sigma}_k$

Discriminant Analysis models $\mathbb{P}(Y|X)$ as follows:

- Step 1: Make assumptions on data structure
 - Let $\pi_k = \mathbb{P}(Y = k)$ be the prior probability of category k = 0, 1
 - Suppose that $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$ is a multivariate normal distribution with mean vector $\boldsymbol{\mu}_k$ and covariance matrix $\boldsymbol{\Sigma}_k$

Figure: Black ellipsoid: covariance structure of genuine group. Green ellipsoid: covariance structure of the counterfeit group

• $\mathbb{P}(X = x | Y = k)$ is a multivariate normal distribution with mean μ_k and covariance matrix Σ_k .

$$\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = k) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)\right),$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}, \boldsymbol{\mu}_k = \begin{pmatrix} \mu_{1,k} \\ \mu_{2,k} \\ \vdots \\ \mu_{p,k} \end{pmatrix}, \boldsymbol{\Sigma}_k = \begin{pmatrix} \sigma_{1,1,k}^2 & \sigma_{1,2,k}^2 & \cdots & \sigma_{2,2,k}^2 \\ \sigma_{2,1,k}^2 & \sigma_{2,2,k}^2 & \cdots & \sigma_{2,p,k}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1,k}^2 & \sigma_{p,2,k}^2 & \cdots & \sigma_{p,p,k}^2 \end{pmatrix}.$$

• Step 2: We use the Bayes' theorem to compute $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

• Step 2: We use the Bayes' theorem to compute $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

Question: What is the difference between Linear and Quadratic discriminant analyses?

• Step 2: We use the Bayes' theorem to compute $\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}), k = 0, 1.$

$$\mathbb{P}(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)}$$

Question: What is the difference between Linear and Quadratic discriminant analyses?

- Linear Discriminant Analysis (LDA) assumes that the classes have a common covariance matrix. In other words, that is $\Sigma=\Sigma_0=\Sigma_1$
- Quadratic Discriminant Analysis (QDA) does not assumes this. So, we have a covariance matrix Σ_0 for class 0 and Σ_1 for class 1.

Three Assumptions in LDA

Three Assumptions in LDA

1 Multivariate normal distribution for each group, that $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$ is multivariate normal

Three Assumptions in LDA

- 1 Multivariate normal distribution for each group, that $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$ is multivariate normal
- 2 They have different mean vectors

Three Assumptions in LDA

- 1 Multivariate normal distribution for each group, that $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = k)$ is multivariate normal
- 2 They have different mean vectors
- 3 Same covariance matrices

Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5 \\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5\\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

Conclusions we can make

1 Similar to the Bayes classifier, we classify to the most probable class using the posterior probability

Use LDA for classification

We make predictions using LDA as follows:

$$f_{LDA}(\mathbf{x}) = \begin{cases} 1, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} > 0.5\\ 0, & \text{if } \frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x}|Y=0)} \le 0.5 \end{cases}$$

Conclusions we can make

- 1 Similar to the Bayes classifier, we classify to the most probable class using the posterior probability
- 2 The decision boundary can be easily derived as

$$\frac{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1)}{\pi_1 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1) + \pi_0 \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)} = 1/2$$

$$\Leftrightarrow \log \frac{\pi_1}{\pi_0} + \log \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 1)}{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = 0)} = 0.$$

Decision boundary in LDA

A closer look at the decision boundary.

$$\log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | \boldsymbol{Y} = 1)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | \boldsymbol{Y} = 0)} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{0}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{0} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} (\mu_{1} + \mu_{0})^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) = 0.$$

Decision boundary in LDA

A closer look at the decision boundary.

$$\log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 1)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = 0)} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} \boldsymbol{\mu}_{1}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{1} + \frac{1}{2} \boldsymbol{\mu}_{0}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{0} = 0$$

$$\Leftrightarrow \log \frac{\pi_{1}}{\pi_{0}} + \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} (\mu_{1} - \mu_{0}) - \frac{1}{2} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) = 0.$$

The decision boundary can be written as (a linear equation)

$$\mathbf{x}^T C_1(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) + C_2(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = 0,$$

where
$$C_1(\mu_0, \mu_1, \Sigma) = \Sigma^{-1}(\mu_1 - \mu_0)$$
 and $C_2(\mu_0, \mu_1, \Sigma) = \log \frac{\pi_1}{\pi_0} - \frac{1}{2}(\mu_1 + \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)$.

Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability π_0 and π_1 .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where n_k is the number of observations in the training data set that belong to class.

Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability π_0 and π_1 .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where n_k is the number of observations in the training data set that belong to class.

• The means are estimated as

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{n_k} \sum_{i: y_i = k} \boldsymbol{x}_i, k = 0, 1$$

Parameter estimation in LDA

Thanks to the formulation of LDA, we can easily estimate its parameters.

• The prior probability π_0 and π_1 .

$$\widehat{\pi}_0 = \frac{n_0}{n_0 + n_1} \text{ and } \widehat{\pi}_1 = \frac{n_1}{n_0 + n_1},$$

where n_k is the number of observations in the training data set that belong to class.

The means are estimated as

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{n_k} \sum_{i: y_i = k} \boldsymbol{x}_i, k = 0, 1$$

The covariance matrices are estimated as

$$\widehat{\Sigma} = \frac{1}{n-2} \sum_{k=0}^{1} \sum_{i:v_i=k} (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k) (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k)^T$$

Quadratic Discriminant Analysis (QDA)

Three Assumptions in QDA

- 1 Multivariate normal distribution for each group, that $\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = k)$ is multivariate normal
- 2 They have different mean vectors
- 3 Different covariance matrices

Figure: Different covariance structures

Decision boundary in QDA

We follow a similar analysis of QDA as with LDA. After some algebra, we arrive to the following (interesting) equation:

$$\log \frac{\pi_1}{\pi_0} - \frac{1}{2} \mathbf{x}^T (\mathbf{\Sigma}_1^{-1} - \mathbf{\Sigma}_0^{-1}) \mathbf{x} + \mathbf{x}^T (\mathbf{\Sigma}_1^{-1} \boldsymbol{\mu}_1 - \mathbf{\Sigma}_0^{-1} \boldsymbol{\mu}_0) + \dots = 0$$

Conclusion

The decision boundary in QDA is a quadratic function

LDA vs QDA

The difference between LDA and QDA can be summarized as

- LDA is simpler than QDA. (LDA is a special case of QDA)
- QDA needs to estimate more parameters. One covariance matrix for each class.
- LDA is much less flexible than QDA, but this also means that it has low variance
- If the assumptions of LDA do not hold, then it can lead to poor estimates and so, a high bias.

Exercise: Prediction of counterfeit banknotes

conterfeit	Length	Left	Right	Bottom	Тор	Diagonal
0	214.70000	129.70000	129.30000	8.60000	9.60000	141.60000
0	215.40000	130.00000	129.90000	8.50000	9.70000	141.40000
0	214.90000	129.40000	129.50000	8.20000	9.90000	141.50000
0	214.50000	129.50000	129.30000	7.40000	10.70000	141.50000
0	214.70000	129.60000	129.50000	8.30000	10.00000	142.00000
0	215.60000	129.90000	129.90000	9.00000	9.50000	141.70000
0	215.00000	130.40000	130.30000	9.10000	10.20000	141.10000
0	214.40000	129.70000	129.50000	8.00000	10.30000	141.20000
0	215.10000	130.00000	129.80000	9.10000	10.20000	141.50000
0	214.70000	130.00000	129.40000	7.80000	10.00000	141.20000
1	214.40000	130.10000	130.30000	9.70000	11.70000	139.80000
1	214.90000	130.50000	130.20000	11.00000	11.50000	139.50000
1	214.90000	130.30000	130.10000	8.70000	11.70000	140.20000
1	215.00000	130.40000	130.60000	9.90000	10.90000	140.30000
1	214.70000	130.20000	130.30000	11.80000	10.90000	139.70000
1	215.00000	130.20000	130.20000	10.60000	10.70000	139.90000
1	215.30000	130.30000	130.10000	9.30000	12.10000	140.20000

- Length: length of banknote (mm)
- Left: length of left edge (mm)
- Right: length of right edge (mm)
- Top: distance from the image to top edge
- Bottom: distance from image to bottom
- Diagonal: length of diagonal (mm)
 - counterfeit: 1 means counterfeit and 0 means genuine

Exercise: Prediction of counterfeit banknotes using R

 Step 1: Loading the dataset and split the dataset into training set and testing set:

```
library(mclust)
# Load the data set.
data(banknote)
banknote$Status<-factor(banknote$Status,levels=c("genuine", "counterfeit"))
# Split into training and test data.
set.seed(123) # Set seed to reproduce results.
i <- 1:dim(banknote)[1]
# Generate a random sample.
i.train <- sample(i, 130, replace = F) # 130 samples are used for training
bn.train <- banknote[i.train,] # training dataset
bn.test <- banknote[-i.train,] # testing dataset</pre>
```

Step 2: Implement LDA and make prediction by LDA

Exercise: Prediction of counterfeit banknotes using R

Result:

• Conclusion: The prediction accuracy of LDA is (30+33)/70=0.9.

Exercise: Prediction of counterfeit banknotes using R

Implementation of QDA

Result:

• Conclusion: The prediction accuracy of LDA is (29+34)/70=0.9. No improvement is observed.