Konsep dan Teknik Data Mining

Data Preprocessing

Mengapa Data Diproses Awal?

- Data dalam dunia nyata kotor
 - Tak-lengkap: nilai-nilai atribut kurang, atribut tertentu yang dipentingkan tidak disertakan, atau hanya memuat data agregasi
 - Misal, pekerjaan=""
 - Noisy: memuat error atau memuat outliers (data yang secara nyata berbeda dengan data-data yang lain)
 - Misal, Salary="-10"

Mengapa Data Diproses Awal?

- Tak-konsisten: memuat perbedaan dalam kode atau nama
 - Misal, Age="42" Birthday="03/07/1997"
 - Misal, rating sebelumnya "1,2,3", sekarang rating "A, B, C"
 - Misal, perbedaan antara duplikasi record
- Data yang lebih baik akan menghasilkan data mining yang lebih baik
- Data preprocessing membantu didalam memperbaiki presisi dan kinerja data mining dan mencegah kesalahan didalam data mining.

Mengapa Data Kotor?

- Ketaklengkapan data datang dari
 - Nilai data tidak tersedia saat dikumpulkan
 - Perbedaan pertimbangan waktu antara saat data dikumpulkan dan saat data dianalisa.
 - Masalah manusia, hardware, dan software
- Noisy data datang dari proses data
 - Pengumpulan
 - Pemasukan (entry)
 - Transmisi

Mengapa Data Kotor?

- Ketak-konsistenan data datang dari
 - Sumber data yang berbeda
 - Pelanggaran kebergantungan fungsional

Mengapa Pemrosesan Awal Data Penting?

- Kualitas data tidak ada, kualitas hasil mining tidak ada!
 - Kualitas keputusan harus didasarkan kepada kualitas data
 - Misal, duplikasi data atau data hilang bisa menyebabkan ketidak-benaran atau bahkan statistik yang menyesatkan.
 - Data warehouse memerlukan kualitas integrasi data yang konsisten
- Ekstraksi data, pembersihan, dan transformasi merupakan kerja utama dari pembuatan suatu data warehouse. Bill Inmon

Pengukuran Kualitas Data Multidimesi

- Kualitas data dapat diakses dalam bentuk:
 - Akurasi
 - Kelengkapan
 - Konsistensi
 - Ketepatan waktu
 - Kepercayaan
 - Nilai tambah
 - Penafsiran
 - Kemudahan diakses
 - Kategori luas:
 - Hakekat, kontekstual, bisa direpresentasikan, dan mudah diakses

Tugas Utama Pemrosesan Awal Data

- Pembersihan data (data yang kotor)
 - Mengisi nilai-nilai yang hilang,
 menghaluskan noisy data, mengenali atau menghilangkan outlier, dan memecahkan ketak-konsistenan
- Integrasi data (data heterogen)
 - Integrasi banyak database, banyak kubus data, atau banyak file
- Transformasi data (data detail)
 - Normalisasi dan agregasi

Tugas Utama Pemrosesan Awal Data

- Reduksi data (jumlah data yang besar)
 - Mendapatkan representasi yang direduksi dalam volume tetapi menghasilkan hasil analitikal yang sama atau mirip
- Diskritisasi data (kesinambungan atribut)
 - Bagian dari reduksi data tetapi dengan kepentingan khusus, terutama data numerik

Bentuk-Bentuk Dari Pemrosesan Awal Data

Pembersihan Data

- Kepentingan
 - "Pembersihan data adalah salah satu dari 3 problem terbesar dalam data warehousing"—Ralph Kimball
 - "Pembersihan data adalah problem nomor 1 dalam data warehousing"—DCI survey
- Tugas pembersihan data
 - Mengisi nilai-nilai yang hilang
 - Mengenali outliers dan menghaluskan noisy data
 - Memecahkan redundansi yang disebabkan oleh integrasi data

Pembersihan Data

- Memperbaiki ketak-konsitenan data, US=USA?
 - Menggunakan rujukan eksternal
 - Mendeteksi pelanggaran kendala
 - -Misal, kebergantungan fungsional

Data Hilang

- Data tidak selalu tersedia
 - Misal, banyak tuple atau record tidak memiliki nilai yang tercatat untuk beberapa atribut, seperti customer income dalam data sales
- Hilangnya data bisa karena
 - Kegagalan pemakaian peralatan
 - Ketak-konsistenan dengan data tercatat lainnya dan karenanya dihapus
 - Data tidak dimasukkan karena salah pengertian
 - Data tertentu bisa tidak dipandang penting pada saat entry

Data Hilang

- Tidak mencatat history atau tidak mencatat perubahan data
- Kehilangan data perlu disimpulkan

Bagaimana Menangani Data Hilang?

- Mengabaikan tuple atau record: mudah tetapi tidak efektif, dan merupakan metoda terakhir
 - Biasanya dilakukan saat label kelas hilang
 - Tidak efektif bila persentasi dari nilai-nilai yang hilang per atribut sungguh-sungguh bervariasi.
- Mengisi nilai-nilai yang hilang secara manual:
 - Paling baik
 - Membosankan
 - Paling mahal biayanya
 - Tak mungkin dilakukan dalam banyak hal!

Bagaimana Menangani Data Hilang?

- Mengisi nilai-nilai yang hilang secara otomatis menggunakan:
 - Suatu konstanta global: misal, "unknown", "Null", atau suatu kelas baru?!
 - Suatu pola yang memuat "unknown" atau "Null" adalah buruk
 - Gunakan rata-rata atribut
 - Pengempisan data ke mean/median
 - Rata-rata atribut untuk seluruh sampel yang masuk kedalam kelas yang sama
 - Lebih cerdas, dan suatu metoda yang baik

Bagaimana Menangani Data Hilang?

- Nilai yang paling mungkin: berbasis inferensi seperti regresi, rumus bayesian, atau pohon keputusan
 - Klasifikasi untuk mendapatkan nilai yang paling mungkin
 - Suatu metoda yang baik dengan beberapa overhead
- Menggunakan suatu nilai untuk mengisi nilai yang hilang bisa membiaskan data, nilai bisa salah
- Nilai yang paling mungkin adalah yang terbaik
- Gunakan informasi yang paling banyak dari data yang ada untuk memprediksi

Noisy Data

- Noise: error acak atau variansi dalam suatu variabel terukur
- Nilai-nilai atribut tak benar mungkin karena
 - Kegagalan instrumen pengumpulan data
 - Problem pemasukan data
 - Problem transmisi data
 - Keterbatasan teknologi
 - Ketak-konsistenan dalam konvensi penamaan
- Problem data lainnya yang memerlukan pembersihan data
 - Duplikasi record
 - Data tak lengkap
 - Data tidak konsisten

Noisy Data: Menghilangkan Outlier

Noisy Data: Penghalusan

Bagaimana Menangani Noisy Data?

- Metoda Binning:
 - Pertama urutkan data dan partisi kedalam (kedalaman yang sama) bin-bin
 - Kemudian noisy data itu bisa dihaluskan dengan ratarata bin, median bin, atau batas bin.
- Clustering
 - Medeteksi dan membuang outliers
- Inspeksi kombinasi komputer dan manusia
 - Mendeteksi nilai-nilai yang mencurigakan dan memeriksa dengan manusia(misal, berurusan dengan outlier yang mungkin)

Bagaimana Menangani Noisy Data?

- Regresi
 - Menghaluskan dengan memasukkan data kedalam fungsi regresi

Metoda Binning: Diskritisasi Sederhana

- Membagi range kedalam N interval dengan ukuran yang sama: grid seragam
- Jika A dan B masing-masing adalah nilai terendah dan tertinggi dari atribut, lebar interval akan menjadi : W = (B A)/N.
- Kebanyakan langsung, tetapi outlier mendominasi presentasi
- Data Outlier dan menyimpang tidak ditangani dengan baik.

Metoda Binning: Diskritisasi Sederhana

- Partisi kedalaman sama (frekuensi):
 - Membagi range kedalam N interval, masing-masing memuat jumlah sampel yang hampir sama
 - Penskalaan data yang baik
 - Penanganan atribut yang bersifat kategori bisa rumit.

Metoda Binning Untuk Penghalusan Data

- Data terurut untuk harga (dalam dollar): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- Partisi kedalam bin dengan kedalaman yang sama (misal, dalam bin-3):
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- Haluskan dengan rata-rata bins:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29

Metoda Binning Untuk Penghalusan Data

• Penghalusan dengan batas bin:

- Bin 1: 4, 4, 4, 15

- Bin 2: 21, 21, 25, 25

- Bin 3: 26, 26, 26, 34

Analisis Cluster

Regresi

Inspeksi Komputer dan Manusia-Penghalusan

- Inspeksi kombinasi komputer dan manusia
 - Suatu ambang yang diberikan user
 - Komputer mendeteksi seluruh potensi outlier yang dikaitkan dengan ambang
 - Manusia menentukan outlier sesungguhnya

- Integrasi data:
 - Mengkombinasikan data dari banyak sumber kedalam šuatu simpanan terpadu
- Integrasi skema
 - Mengintegrasikan metadata dari sumber-sumber berbeda
- Pendeteksian dan pemecahan konflik nilai data
 - Untuk entitas dunia nyata yang sama, nilai-nilai atribut dari sumber-sumber berbeda adalah berbeda
 - Alasan yang mungkin: representasi berbeda, skala berbeda, misal berat bisa dalam pound atau kilogram

- Problem: integrasi skema heterogen
- Nama-nama tribut berbeda

cid	name	byear
1	Jones	1960
2	Smith	1974
3	Smith	1950

Customer-ID	state
1	NY
2	CA
3	NY

• Unit berbeda: Sales dalam \$, sales dalam Yen, sales dalam DM

- Problem: integrasi skema heterogen
- Skala berbeda: Sales dalam dollar versus sales dalam sen dollar

• Atribut turunan: Annual salary versus monthly salary

cid	monthlySalary
1	5000
2	2400
3	3000

cid	Salary
6	50,000
7	100,000
8	40,000

- Problem: ketak-konsistenan karena redundansi
- Customer dengan customer-id 150 punya 3 anak dalam relation1 dan 4 anak dalam relation2

cid	numChildren
1	3

cid	numChildren
1	4

• Komputasi annual salary dari monthly salary dalam relation1 tak cocok dengan atribut "annual-salary" dalam relation2

cid	monthlySalary
1	5000
2	6000

cid	Salary
1	60,000
2	80,000

Penanganan Redundansi Dalam Integrasi Data

- Data redundan sering terjadi saat integrasi dari banyak database
 - Atribut yang sama bisa memiliki nama berbeda dalam database berbeda
 - Atribut yang satu bisa merupakan suatu atribut "turunan" dalam tabel lainnya, misal, annual revenue
- Data redundan mungkin bisa dideteksi dengan analisis korelasi
- Integrasi data hati-hati dari banyak sumber bisa membantu mengurangi/mencegah redundansi dan ketak-konsistenan dan memperbaiki kecepatan dan kualitas mining

Penanganan Redundansi Dalam Integrasi Data

- Suatu atribut adalah redundan jika atribut tersebut bisa diperoleh dari atribut lainnya
- Analisis korelasi

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

- Rata-rata A adalah $\overline{A} = \frac{\sum A}{A}$
- Deviasi standard A adalah $\sigma_A = \sqrt{\frac{\sum (A \overline{A})^2}{n-1}}$
- $R_{A,B} = 0$: A dan B saling bebas
- $R_{A,B} > 0$: A dan B berkorelasi positip $A \uparrow \leftrightarrow B \uparrow$
- $R_{A,B} < 0$: A dan B berkorelasi negatif $A \downarrow \leftrightarrow B \uparrow$

Transformasi Data

- Penghalusan: menghilangkan noise dari data
- Agregasi: ringkasan, konstruksi kubus data
- Generalisasi: konsep hierarchy climbing
- Normalisasi: diskalakan agar jatuh didalam suatu range kecil yang tertentu
 - Normalisasi min-max
 - Normalisasi z-score
 - Normalisasi dengan penskalaan desimal
- Konstruksi atribut/fitur
 - Atribut-atribut baru dibangun dari atribut-atribut yang ada

Transformasi Data: Normalisasi

Normalisasi min-max

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

• Normalisasi z-score (saat Min, Max tak diketahui)

$$v' = \frac{v - mean_A}{stand _dev_A}$$

Normalisasi dengan penskalaan desimal

$$v' = \frac{v}{10^{j}}$$
 dimana j adalah integer terkecil sehingga Max(| v' |)<1

Strategi Reduksi Data

- Suatu data warehouse bisa menyimpan terabytes data
 - Analisis/menambang data kompleks bisa membutuhkan waktu sangat lama untuk dijalankan pada data set komplit (tak efisien)
- Reduksi data
 - Mengurangi ukuran data set tetapi menghasilkan hasil analitis yang sama (hampir sama)
- Strategi reduksi data
 - Agregasi kubus data
 - Reduksi dimensionalitas—menghilangkan atribut tak penting
 - Kompresi data
 - Reduksi Numerosity reduction—mencocokkan data kedalam model
 - Diskritisasi dan pembuatan konsep hierarki

Agregasi Kubus Data

- Level terendah dari suatu kubus data
 - Data agregasi data untuk suatu individu entitas yang diminati
 - Misal, suatu customer dalam suatu DW phone calling.
- Banyak level agregasi dalam kubus data
 - Pengurangan ukuran data yang diurusi berikutnya
- Rujukan level yang sesuai
 - Menggunakan representasi terkecil yang cukup untuk memecahkan tugasnya
- Query yang berkaitan dengan agregasi informasi harus dijawab menggunakan kubus data, bila mungkin

Agregasi Kubus Data

Reduksi Dimensionalitas

- Fitur seleksi(i.e., attribute subset selection):
 - Memilih sekumpulan fitur minimum sedemikian hingga distribusi peluang dari kelas berbeda bila nilai-nilai fitur tersebut diberikan adalah sedekat mungkin dengan distribusi asli bila nilai-nilai diberikan pada seluruh fitur
 - Mengurangi jumlah pola dalam pola, lebih mudah dipahami
- Metoda heuristik(due to exponential # of choices):
 - Seleksi step-wise forward
 - Eliminasi step-wise backward
 - Kombinasi seleksi forward dan eliminasi backward
 - Induksi pohon keputusan

Contoh Induksi Pohon Keputusan

Himpunan atribut awal:

{A1, A2, A3, A4, A5, A6}

----> Reduksi himpunan atribut: {A1, A4, A6}

Fitur Seleksi Metoda Heuristik

- Ada sebanyak 2^d sub-fitur yang mungkin dari d fitur
- Beberapa fitur seleksi metoda heuristik:
 - Fitur tunggal terbaik dibawah asumsi fitur bebas: pilih dengan uji berarti.
 - Fitur seleksi step-wise terbaik:
 - Fitur tunggal terbaik dipilih pertama kali
 - Lalu kondisi fitur terbaik untuk yang pertama...
 - Fitur eliminasi step-wise:
 - Secara berulang-ulang menghilangkan fitur yang buruk
 - Kombinasi fitus seleksi dan eliminasi terbaik:
 - Branch and bound optimal:
 - Menggunakan fitur eliminasi dan backtracking

Kompresi Data

- Kompresi string
 - Ada banyak teori dan algoritma yang telah diselaraskan dengan baik
 - Biasanya lossless
 - Tetapi hanya manipulasi terbatas yang mungkin tanpa perluasan
- Kompresi audio/video
 - Biasanya kompresi lossy, dengan penghalusan progresif
 - Kadang-kadang fragmen kecil dari sinyal bisa direkonstruksi tanpa rekronstruksi keseluruhan
- Urutan waktu bukanlah video
 - Biasanya pendek dan bervariasi lambat menurut waktu

Kompresi Data

Transformasi Wavelet

• Discrete wavelet transform (DWT): pemrosesan sinyal linier, analisis multiresolusional

- Pendekatan terkompres: menyimpan hanya suatu bagian kecil dari yang terkuat dari koefisien wavelet
- Mirip dengan Discrete Fourier transform (DFT), tetapi kompresi lossy yang lebih baik, dilokalisasi dalam ruang

Transformasi Wavelet

• Metoda:

- Panjang, L, haruslah suatu integer pangkat 2 (diisi dengan 0, bila diperlukan)
- Setiap transformasi memiliki 2 fungsi: penghalusan dan beda
- Diterapkan pada pasangan data, yang menghasilkan
 2 set data dari panjang L/2
- Memakai 2 fungsi secara rekursif, sampai panjang yang diinginkan tercapai

DWT Untuk Kompresi Citra

Low Pass High Pass

Analisis Komponen Utama

- Diberikan N vektor data dari k-dimensi, cari vektorvektor ortogonal $c \le k$ yang paling baik digunakan untuk menyajikan data
 - Himpunan data asli dikurangi menjadi himpunan yang memuat N vektor-vektor data pada komponen utama c (mengurangi dimensi)
- Setiap vektor data adalah suatu kombinasi linier dari vektor-vektor komponen utama c
- Berlaku hanya untuk data numerik
- Digunakan ketika jumlah dimensi besar

Analisis Komponen Utama

Reduksi Numerositi

- Metoda parametrik
 - Misalkan data sesuai dengan suatu model, taksir parameter-parameter model, simpan hanya parameter-parameter tersebut, dan buang datanya (kecuali outlier yang mungkin)
 - Model-model log-linear: dapatkan nilai-nilai pada suatu titik dalam ruang m-D sebagai perkalian atas ruang bagian marginal yang sesuai
- Metoda non-parametrik
 - Tidak memandang model
 - Keluarga utama: histogram, clustering, sampling

Model Regresi dan Log-linier

- Regresi linier: Data dimodelkan agar masuk kedalam suatu garis lurus
 - Sering menggunakan metoda least-square agar memenuhi garis tersebut
- Regresi ganda: memungkinkan suatu variabel respon Y untuk dimodelkan sebagai suatu fungsi linier dari vektor fitur multidimensional
- Model log-linear: mendekati distribusi peluang multidimensional diskrit

Analisa Regresi dan Model log-linier

- Regresi linear: $Y = \alpha + \beta X$
 - 2 parameter , α dan β yang menentukan garis tersebut dan akan ditaksir menggunakan data yang dimiliki.
 - Menggunakan kriteria least squares untuk nilai-nilai yang diketahui dari Y1, Y2, ..., X1, X2,
- Regresi ganda: Y = b0 + b1 X1 + b2 X2.
 - Berbagai fungsi nonlinier bisa ditransformasikan ke regresi linier.

• Model log-linear:

- Tabel multi-way dari peluang gabungan didekati dengan suatu perkalian dari tabel-tabel orde lebih rendah.
- Peluang: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

- Teknik reduksi data populer
- Membagi data kedalam ember-ember dan menyimpan rata-rata (jumlah) untuk setiap ember
- Bisa dibangun secara optimal dalam satu dimensi menggunakan pemrograman dinamis
- Terkait dengan problem kuantisasi

• Contoh:

```
Dataset: 1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12
Histogram: (range, count, sum) (1-2,12,16), (3-6,8,36), (7-9,6,48), (10-12,6,66)
```

- Histogram lebar sama
 - Membagi domain dari suatu atribut kedalam k interval dengan ukuran sama
 - Lebar interval = (Max Min)/k
 - Secara komputasi mudah
 - Problem dengan skew data dan outliers

• Contoh:

```
Dataset: 1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12
Histogram: (range, count, sum) (1-3,14,22), (4-6,6,30), (7-9,6,48), (10-12,6,66)
```

- Histogram kedalaman sama
 - Membagi domain dari suatu atribut kedalam k interval, masing-masing interval memuat jumlah record yang sama
 - Variabel lebar interval
 - Komputasinya mudah

• Contoh:
Dataset: 1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12
Histogram: (range, count, sum) (1,8,8), (2-4,8,22), (5-8,8,52), (9-12,8,84)

Clustering

- Mempartisi data set kedalam cluster-cluster, dan bisa hanya menyimpan representasi cluster
- Bisa sangat efektif jika data di-cluster tetapi tidak jika data "dirusak"
- Bisa memiliki clustering hierarki dan bisa disimpan didalam struktur pohon indeks multi-dimensional
- Ada banyak pilihan dari definisi clustering dan algoritma clustering.

Sampling

- Memungkinkan suatu algoritma mining untuk dijalankan dalam kompleksitas yang berpotensi sublinier terhadap ukuran data
- Pilih suatu perwakilan subset dari data tersebut
 - Sampling acak sederhana bisa memiliki kinerja yang sangat buruk bila ada skew
- Kembangkan metoda-metoda sampling adaptif
 - Stratifikasi sampling:
 - Dekati persentasi dari masing-masing kelas (atau subpopulasi yang diminati) dalam database keseluruhan
 - Digunakan dalam hubungannya dengan skewed data
- Sampling bisa tidak mengurangi I/O database (halaman pada suatu waktu).

Sampling

Sampling

Raw Data

Cluster/Stratified Sample

Reduksi Hierarki

- Gunakan struktur multi resolusi dengan derejat reduksi berbeda
- Clustering hierarkikal sering dilakukan tetapi cenderung mendefinisikan partisi data sets ketimbang "cluster"
- Metoda paramaterik biasanya tidak dapat diuji untuk representasi hierarkikal
- Agregasi hierarkikal
 - Suatu pohon indeks hierarkikal membagi suatu data set kedalam partisi-partisi dengan memberi nilai range dari beberapa atribut
 - Setiap partisi bisa dipandang sebagai suatu ember
 - Jadi suatu pohon indeks dengan agregasi yang disimpan pada setiap node adalah suatu histogram hierarkikal

Diskritisasi

- Konsep sama dengan histogram
- Membagi domain dari suatu atribut numerik kedalam interval-interval.
- Menggantikan nilai atribut dengan label untuk interval.
- Contoh:
 - Dataset (age; salary):(25;30,000),(30;80,000),(27;50,000),(60;70,000),(50;55,000),(28;25,000)
 - Dataset diskrit(age, discretizedSalary):
 (25,low),(30,high),(27,medium),(60,high),
 (50,medium),(28,low)

Diskritisasi

- 3 tipe dari atribut:
 - Nominal nilai-nilai dari sekumpulan tak berurut
 - Ordinal nilai-nilai dari suatu himpunan terurut
 - Continuous bilangan-bilangan riil
- Diskritisasi:
 - Membagi range dari suatu atribut kontinu kedalam interval-interval

- Beberapa algoritma klasifikasi hanya menerima atribut kategorikal.
- Mengurangi ukuran data dengan diskritisasi
- Menyiapkan data untuk analisis lebih lanjut

Diskritisasi dan Konsep Hierarki

Diskritisasi

 Mengurangi jumlah nilai-nilai dari atribut kontinu yang diberikan dengan membagi range atribut kedalam interval-inteval. Label-label interval kemudian bisa digunakan untuk menggantikan nilai-nilai data sesungguhnya

Konsep hierarki

 Mengurangi data melalui pengumpulan dan penggantian konsep level rendah (seperti nilai-nilai numerik untuk numerik usia) dengan konsep level lebih tinggi (seperti muda, middle-aged, atau senior)

Diskritisasi dan Konsep Hierarki Pembuatan Data Numerik

- Binning
- Analisis Histogram
- Analisis Clustering
- Diskritisasi berbasis entropy
- Segmentasi dengan partisi alami

Diskritisasi Berbasis Entropi

- Diberikan suatu himpunan sampel S, jika S dipartisi kedalam 2 interval S1 dan S2 menggunakan batas T, entropi setelah partisi adalah $E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$
- Batas yang meminimisasi fungsi entropi atas seluruh batas-batas yang mungkin dipilih sebagai suatu diskritisasi biner.
- Proses ini secara rekursif diterapkan pada partisi yang diperoleh sampai suatu kriteria penghentian ditemukan, misal, $Ent(S) E(T,S) > \delta$
- Percobaan-percobaan menunjukkan bahwa bahwa diskritisasi ini bisa mengurangi ukuran data dan memperbaiki akurasi klasifikasi

Segmentasi Dengan Partisi Alami

- Suatu kaidah 3-4-5 sederhana bisa digunakan untuk memecah data numerik kedalam interval "alami" yang relatif seragam.
 - Jika suatu interval memuat 3, 6, 7 atau 9 nilai-nilai berbeda pada digit paling berarti, partisi range tersebut menjadi 3 interval dengan lebar sama
 - Jika suatu interval memuat 2, 4, atau 8 nilai-nilai berbeda pada digit paling berarti, partisi range tersebut kedalam 4 interval
 - Jika suatu interval memuat 1, 5, atau 10 nilai-nilai berbeda pada digit paling berarti, partisi range kedalam 5 interval

Contoh Kaidah 3-4-5

Pembuatan Konsep Hierarki Untuk Data Kategorikal

- Spesifikasi dari suatu urutan parsial dari atribut secara eksplisit pada level skema oleh user atau pakar
 - street<city<state<country</pre>
- Spesifikasi dari suatu bagian dari suatu hierarki dengan pengelompokan data secara eksplisit
 - {Urbana, Champaign, Chicago}<Illinois
- Spesifikasi dari suatu himpunan atribut.
 - Sistem secara otomatis membangun urutan parsial dengan menganalisa jumlah nilai-nilai berbeda
 - Misal, street < city <state < country</p>
- Spesifikasi dari hanya suatu himpunan parsial dari atribut
 - misal, hanya street < city, bukan lainnya

Pembuatan Konsep Hierarki Otomatis

- Beberapa konsep hierarki bisa secara otomatis dibangun berdasarkan pada analisis dari jumlah nilai-nilai berbeda per atribut dalam data set yang diberikan
 - Atribut dengan nilai-nilai paling berbeda diletakkan pada level terbawah dari hierarki
 - Catatan: Pengecualian—weekday, month, quarter, year

Pembuatan Konsep Hierarki Otomatis

