EE 452 – Power Electronics Design, Fall 2021 Homework 1

Due Date: Monday October 11th 2021, 11:59pm

Instructions. You must scan your completed homework assignment into a pdf file, and upload your file to the Canvas Assignment HW#1 page by the due date/time above. All pages must be gathered into a single file of moderate size, with the pages in the correct order. Set your phone or scanner for basic black and white scanning. You should obtain a file size of hundreds of kB, rather than tens of MB. I recommend using the "Tiny Scanner" app. Please note that the grader will not be obligated to grade your assignment if the file is unreadable or very large.

Problem 1. Analysis and design of a buck-boost converter: A buck-boost converter is illustrated in Fig. 1(a), and a practical implementation using a transistor and diode is shown in Fig. 1(b).

Figure 1: Buck-boost converter for Problem 1: (a) ideal converter circuit, (b) implementation using MOSFET and diode.

- (a) Find the dependence of the equilibrium output voltage V and inductor current I on the duty ratio D, input voltage V_g , and load resistance R. You may assume that the inductor current ripple and capacitor voltage ripple are small.
- (b) Plot your results of part (a) over the range $0 \le D \le 1$.
- (c) Dc design: For the specifications below: ¹

•
$$V_g = 15 \text{ V}, \quad V = -12 \text{ V}, \quad R = 4 \Omega, \quad f_s = 200 \text{ kHz}$$

(i) Find D and I

¹Recall we define the ripple magnitudes, Δi and Δv , as the peak-to-average value (not peak-to-peak).

- (ii) Calculate the value of L that will make the peak inductor current ripple Δi equal to ten percent of the average inductor current I.
- (iii) Choose C such that the peak output voltage ripple Δv is 0.1 V.
- (d) Sketch the transistor drain current waveform $i_T(t)$ for your design of part (c). Include the effects of inductor current ripple, and label numerical values and axes. What is the peak value of $i_T(t)$? Also sketch $i_T(t)$ for the case when L is decreased such that Δi is 50% of I. What happens to the peak value of i_T in this case?
- (e) Sketch the diode current waveform $i_D(t)$ for the two cases of part d.

Problem 2. The boost converter illustrated in Fig. 2 operates with the following conditions:

•
$$V_g = 3.3 \text{ V}, \quad V = 5 \text{ V}, \quad f_s = 500 \text{ kHz}$$

All elements are ideal, and the converter operates in steady state with small inductor current ripple and small capacitor voltage ripple.

Figure 2: Boost converter for Problem 2.

- (a) What is the duty cycle?
- (b) Sketch the waveform of the MOSFET drain-to-source voltage, v_{DS} .
- (c) Find the dc component of the voltage waveform in Part b.