TD N° 1

Exercice 1 (Erreur quadratique moyenne)

La qualité d'un estimateur T_n se mesure par l'erreur quadratique moyenne (ou risque quadratique) notée MSE et définie par $MSE(T_n) = \mathbb{E}[(T_n - \theta)^2]$. Monter que $MSE(T_n) = \mathbb{V}[T_n] + (\mathbb{E}[T_n - \theta])^2$.

Remarque: entre deux estimateurs sans biais, le "meilleur" sera celui dont la variance est minimale (on parle d'efficacité).

Exercice 2 (Moyenne et variance empiriques)

Soit (X_1, \ldots, X_n) n copies i.i.d. d'une variable aléatoire X de moyenne μ et de variance σ^2 . La moyenne empirique est $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ et la variance empirique est $s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

- 1. Montrer $\mathbb{E}[\bar{X}] = \mu$ et $\mathbb{V}[\bar{X}] = \frac{\sigma^2}{n}$. En déduire que \bar{X} est un estimateur sans biais de μ (\bar{X} est la moyenne véritable dans la population).
- Montrer que s² = ¹/_n Σⁿ_{i=1} X²_i X̄² (formule développée de s²).
 Montrer que E[s²] = ⁿ⁻¹/_n σ². En déduire que s² n'est pas un estimateur sans biais de σ² (estimateur biaisé).

Remarque: la version empirique corrigée $s^{*2} = \frac{n}{n-1}s^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2$ est estimateur sans biais de la variance σ^2 .

Exercice 3 (EMV: loi de Poisson)

- 1. Écrire la fonction de probabilité de masse pour une variable aléatoire X suit une loi de Poisson de paramètre λ . Rappeler $\mathbb{E}[X]$ et $\mathbb{V}[X]$.
- 2. Supposons que le paramètre λ est inconnu. Soient X_1, \ldots, X_n , n copies i.i.d. de X. Déterminez l'estimateur du maximum de vraisemblance (EMV) de l'écart-type θ de la distribution de X. On rappelle que $\theta = \sqrt{\mathbb{V}[X]}$.

Exercice 4 (EMV: loi normale)

Soit (X_1, \ldots, X_n) un échantillon aléatoire d'une distribution normale (Gaussienne) dont la moyenne μ et la variance σ^2 sont inconnues.

- 1. Donner la fonction densité de probabilité d'une variable $X \sim \mathcal{N}(\mu, \sigma^2)$.
- 2. Déterminer les EMV de μ et σ^2 .
- 3. Déterminer l'EMV du quantile $q_{0,95}$ d'ordre 0.95 de la distribution de X, c'est-à-dire du point $q_{0,95}$ tel que $\mathbb{P}[X < q_{0.95}] = 0.95$. Indication : utiliser le quantile d'ordre 0.95 d'une distribution normale centrée réduite $z_{0.95} = 1,645$.

Exercice 5 (Théorème de Bayes: estimation bayésienne)

Soit $\mathcal{D}_n = (X_1, \dots, X_n)$ un échantillon aléatoire d'une distribution de Poisson de paramètre Λ . Mettons une distribution a priori sur Λ en supposant qu'elle suive une distribution Gamma de paramètre (p, α) , sa fonction de densité de probabilité s'écrit:

$$f_{\Lambda}(\lambda; p, \alpha) = \frac{\alpha^p}{\Gamma(p)} \lambda^{p-1} e^{-\alpha \lambda} \mathbb{1}_{\lambda > 0}$$

où $\Gamma(p) = (p-1)!$ (nous supposons ici que p est un entier positif).

- 1. Soit $x=(x_1,\ldots,x_n)$ une réalisation de l'échantillon \mathcal{D}_n . Calculer $f_{\Lambda|\mathcal{D}_n}(\lambda|x)$ la distribution a posteriori sur Λ . Indication : $f_{\Lambda|\mathcal{D}_n}(\lambda|x) \propto f_{\mathcal{D}_n|\Lambda}(x|\lambda)f_{\Lambda}(\lambda)$. 2. Définissons le maximum a posteriori (MAP) de Λ par :

$$\Lambda_{\mathrm{MAP}} = \operatorname*{argmax}_{\lambda \in]0, +\infty[} f_{\Lambda \mid \mathcal{D}_n}(\lambda \mid x).$$

Dériver une expression analytique de Λ_{MAP} sous le prior Gamma de paramètre (p, α) .