

Ap is parameterized by F(G) = (aun (G), buin (G)) on OE GE 2x : Area (D) - \in x &y = \in aear (E) b car(G) dG = \omegab \in car(G) dG = 7 at = (1+ (m (26)) dt =) at ab = (0+ = 1 m (26)) 27 G=0 Jab ((2x=0) + = (0-0)) = ab T 16,5: Curl and Binergeme Hoal: Define and study two new operations on vector fields. Defitier. The curl of a vector field on R3 is the vector field = determine $\frac{1}{\lambda_1} \frac{1}{\lambda_2} \frac{1}{\lambda_3} \frac{1}{\lambda_4} \frac{1}{\lambda_5} \frac{$ Ex. Compute curl (V) for $\sqrt{xy_1xy_2}, -y^2$ curl (V) = \sqrt{xv} = determinat $\sqrt{y_1}$ $\sqrt{y_2}$ $\sqrt{y_$ Coservation. If T= If is a conservative year field, then ToKx, 14, 12) and Curl(V) = TxV = determinat 1/2 /41 //21 (Converse to true) = (1=4-142,-(1x2-1zx), 1xx-1xy)= & by Claracuts theorem

