

Hochfrequenztechnik Cheat Sheet

1. Allgemeines

Frequenz und Wellenlänge

Lichtgeschwindigkeit:
$$c = 299792458 \, m/s$$

 $F = \frac{c}{\lambda} \rightarrow \lambda = \frac{c}{E}$

2. (Wideband) Code Division Multiple Access

Signalspreizung

Direct Sequence CDMA.

Datenstrom wird bei Sender & Empfänger mit Spreizcode multipliziert. Mehrere Datenströme können im gleichen Frequenzband übertragen werden.

Das Spektrum des gespreizten Nutzsignals ist um ein vielfaches breiter, als das originäre Signal.

Formelzeichen

Spreizfaktor: SF

Processing Gain: PG

Chiprate: b_c

Nutzdatenrate: b,

Störabstand: SIR

Signalleistung: S

Anzahl der aktiven Signale in der Funkzelle: N

Mittlere Nutzenergie pro Bit: E_h

Rauschenergie pro Bit: N_0

 $PG = 10 \log SF dB$

 $SF = \frac{b_c}{b_n}$

 $SIR = \frac{S}{(N-1)\cdot S} = \frac{1}{1N-1}$

 $\frac{E_b}{N_0} = \frac{S/b_N}{((N-1)S)/b_c} = \frac{1}{N-1} \cdot \frac{b_c}{b_N} = SIR \cdot SF$

 $10 \cdot \log \left(\frac{E_b}{N_0} \right) = 10 \cdot \log(SIR) + PG dB$

 $N = \frac{b_C}{E_b/N_0 \cdot b_N} + 1$

3. Orthogonal Frequency Division Multiplexing

Formelzeichen Bandbreite: W

Anzahl der Unterträger: n

Breite der Unterträger: Brr+

Symboldauer: T_D

Zeitintervall: T_S Datensymbole: $D_0 \dots D_{-1}$

Grundfrequenz: f_G

Kanalfrequenz: f_{ν}

Abtastrate: f_A

Formeln

 $B_U = \frac{W}{a}$ $f_k = k \cdot f_G$ k ganzzahlig mit $-\frac{n}{2} \ge k \ge \frac{n}{2} - 1$

 $\Delta f = f_k - f_{k-1} = k \cdot f_G - (k-1) \cdot f_G = f_G$

4. Funkfelddämpfung

4.1. Allgemeines

Gewinn der Sendeantenne: G. Gewinn der Empfangsantenne: Ge

Sendeleistung: P_s

Empfangsleistung: Po

Funkfelddämpfung: a

Freiraumdämpfung: an

 $a = \frac{P_S}{P_e} = \frac{(4\pi l)^2}{\lambda^2 G_e G_S}$ als Faktor.

 $a = P_s - P_e = 20 \lg \frac{4\pi l}{r} - G_s - G_e$ in dB

 $a_0 = 20 \lg \frac{4\pi l}{l}$

4.2. Einwegausbreitung

Einwegeausbreitung

Übertragungsfunktion (Einwegausbreitung):

 $H(f) = a_1 e^{j\varphi_1} = a_1 e^{-j2\pi f \tau_1}$

Komplexe Amplitude der Übertragungsfunktion: $a_1 = \frac{4\pi a_1}{\lambda}$.

Phasenwinkel der Übertragungsfunktion: φ_1

 $|H(f)| = a_1$

Laufweg: $d_1 \tau_1 \cdot c$

Impulsantwort: $h(t) = a_1 \delta(t - \tau_1) + a_2 \delta(t - \tau_2)$ Phasendifferenz: $\Delta \varphi = 2n\pi$ mit $n \in \mathbb{N} \to \text{Feldstärke verdoppelt.}$ Phasendifferenz: $\Delta \varphi = (2n+1)\pi$ mit $n \in \mathbb{N} \to \text{Feldstärke ausgelöscht}$.

5. Verfügbarkeit und Zuverlässigkeit

5.2. Zuverlässigkeit

Die Zuverlässigkeit ist die Wahrscheinlichkeit, dass ein System innerhalb eines gegebenen Zeitabschnitts keinen Ausfall aufweist. Eine Messgröße für die Zuverlässigkeit ist der mittlere Abstand zwischen zwei Ausfällen, die Mean Time Between Failures (MTBF). Zusammen mit der mittleren Instandsetzungsdauer (Mean Time To Repair) ergibt sich:

 $V = \frac{MTBF}{MTBF + MTTR}$

6. Richtfunksysteme

7. Satelliten

Gravitationskonstante: $\gamma_s = 6,67 \cdot 10^{-11} Nm^2/kg^2$

Umlaufzeit: $T = 2\pi \sqrt{\frac{(R+H)^3}{\gamma_s M_E}}$

Bahngeschwindigkeit: $v_{sat} = 2\pi \frac{H+R}{T}$

Umlaufzeit Erde: $T \approx 1,4 h \left(1 + \frac{H}{6378 \text{ km}}\right)^{\frac{3}{2}}$