| 1. 1        | Medzi výhody hypervodičov oproti supravodičom nepatrí:                               |
|-------------|--------------------------------------------------------------------------------------|
| a) nižšie   | náklady na prevádzku                                                                 |
| b) vyššia   | pracovná teplota                                                                     |
| c) možno    | osť dosiahnutia hypervodivosti aj pôsobením tlaku                                    |
|             |                                                                                      |
| 2. F        | Fermiho eneria pre kovy je                                                           |
| a) energi   | a najvyššej hladiny, na ktorej sa nachádza atóm                                      |
| b) energ    | ia najvyššej hladiny, na ktorej sa nachádza elektrón pri nulovej absolútnej teplote. |
| c) energi   | a najvyššej hladiny, na ktorej sa nachádza elektrón pri izbovej teplote.             |
|             |                                                                                      |
| 3. k        | Konduktivita kovov (merná elektrická vodivosť):                                      |
| a) s rastú  | cim obsahom nečistôt rastie                                                          |
| b) s rasti  | úcim obsahom nečistôt klesá                                                          |
| c) nezávi   | sí od koncentrácie prímesí                                                           |
|             |                                                                                      |
| 4. <i>A</i> | Alkalické kovy sú                                                                    |
| a) chemi    | cky najreaktívnejšie                                                                 |
| b) minim    | álne reaktívne                                                                       |
| c) chemi    | cky inertné                                                                          |
|             |                                                                                      |
| 5. F        | Pre vodiče platí:                                                                    |
| a) pokles   | s vodivosti s rastom teploty.                                                        |
| b) vzrast   | vodivosti s rastom teploty.                                                          |
| c) rast vo  | divosti po istú hodnotu teploty potom je vodivosť záporná.                           |
|             |                                                                                      |
| 6. \        | /zájomné pôsobenie medzi elektrónmi susedných atómov má za následok                  |
| a) že ich   | energetické hladiny sa štiepia a vytvárajú energetické pásma.                        |
| b) že ich   | energetické hladiny sa štiepia a vytvárajú tým bodové poruchy.                       |
| c) že ich   | energetické hladiny sa neštiepia a tým zabraňujú prechodu medzi orbitálmi.           |

7. Vodiče sú materiály, u ktorých vodivosť sprostredkovaná

| a) pohybom protónov.                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| b) pohybom atómov.                                                                                                                                                                                                                                                                                                                            |  |  |
| c) pohybom elektrónov.                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                               |  |  |
| 8. Zohrievanie vodičov pri vysokých hodnotách prúdov je spôsobené v dôsledku toho, že:                                                                                                                                                                                                                                                        |  |  |
| a) elektróny získajú časť energie jadra atómu.                                                                                                                                                                                                                                                                                                |  |  |
| b) elektróny pokračujú vo svojom pohybe bez zmeny energie.                                                                                                                                                                                                                                                                                    |  |  |
| c) elektróny odovzdávajú časť svojej energie, čím sa zvyšujú tepelné kmity mriežky.                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                               |  |  |
| 9. Na vzniku chemickej väzby sa podieľa energetické pásmo                                                                                                                                                                                                                                                                                     |  |  |
| a) zakázané.                                                                                                                                                                                                                                                                                                                                  |  |  |
| b) valenčné.                                                                                                                                                                                                                                                                                                                                  |  |  |
| c) vnútorné.                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                               |  |  |
| 10. Supravodivosť je                                                                                                                                                                                                                                                                                                                          |  |  |
| a) rapídny pokles rezistivity niektorých kovov, zliatin a keramík pri podkritickej teplote                                                                                                                                                                                                                                                    |  |  |
| b) rapídny pokles korózivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule                                                                                                                                                                                                                                        |  |  |
| b) rapidity polics korozivity mektoryen kovov, zhatin a keranik pri tepiote blizkej k absolutilej nale                                                                                                                                                                                                                                        |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                               |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule                                                                                                                                                                                                                                      |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí                                                                                                                                                                                                        |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro                                                                                                                                                                                   |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina                                                                                                                                                              |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina                                                                                                                                                              |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina  c) železo a kremík                                                                                                                                          |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina c) železo a kremík  12. Merná elektrická vodivosť (konduktivita) charakterizuje schopnosť materiálu:                                                         |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina c) železo a kremík  12. Merná elektrická vodivosť (konduktivita) charakterizuje schopnosť materiálu: a) viesť elektrické napätie                             |  |  |
| c) rapídny pokles konduktivity niektorých kovov, zliatin a keramík pri teplote blízkej k absolútnej nule  11. Medzi diamagnetiká patrí  a) zlato a striebro  b) kyslík a platina c) železo a kremík  12. Merná elektrická vodivosť (konduktivita) charakterizuje schopnosť materiálu: a) viesť elektrické napätie b) znižuje elektrický odpor |  |  |

| a) supravodivosť                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--|--|
| b) konduktivita                                                                                                       |  |  |
| c) hypervodivosť                                                                                                      |  |  |
|                                                                                                                       |  |  |
| 14. Hladiny dovolených energetických pásiem sú oddelené:                                                              |  |  |
| a) hladinami zakázaných energií.                                                                                      |  |  |
| b) vodivostnými hladinami.                                                                                            |  |  |
| c) valenčnými hladinami.                                                                                              |  |  |
|                                                                                                                       |  |  |
| 15. Klasická elektrónová teória kovov popisuje:                                                                       |  |  |
| a) elektrickú vodivosť kovov na základe existencie voľne pohyblivých atómov                                           |  |  |
| b) elektrickú vodivosť kovov na základe existencie voľne pohyblivých elektrónov                                       |  |  |
| c) elektrickú vodivosť kovov na základe existencie voľne pohyblivých fotónov                                          |  |  |
|                                                                                                                       |  |  |
| 16. Supravodivý stav nastane, ak sú splnené 3 podmienky supravodivosti, pričom pre intenzitu magnetického poľa platí: |  |  |
| a) intenzita magnetického poľa je nižšia ako kritická intenzita Hk                                                    |  |  |
| b) intenzita (resp. indukcia) magnetického poľa je vyššia ako kritická intenzita Hk                                   |  |  |
| c) intenzita magnetického poľa je rôzna od kritickej intenzity Hk                                                     |  |  |
|                                                                                                                       |  |  |
| 17. Kritické magnetické pole HC je magnetické pole, po ktorého prekročení dochádza                                    |  |  |
| a) nedochádza k zmene supravodivého stavu                                                                             |  |  |
| b) k magnetickej levitácii supravodiča                                                                                |  |  |
| c) k strate supravodivých vlastností                                                                                  |  |  |
|                                                                                                                       |  |  |
| 18. U hypervodičov dochádza pri znižovaní teploty a zvyšovaní čistoty materiálu k:                                    |  |  |
| a) zachovaniu koncentrácie nosičov náboja od prímesí                                                                  |  |  |
| b) poklesu rezistivity (merneho elektrického odporu)                                                                  |  |  |
| c) nárastu rezistivity (merneho elektrického odporu)                                                                  |  |  |

S rastom teploty pohyblivosť elektrónov v kovoch:

| a) rastie                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------|--|--|
| b) nemení sa                                                                                           |  |  |
| c) klesá                                                                                               |  |  |
|                                                                                                        |  |  |
| 19. Vodiče sú materiály, u ktorých dochádza k prenosu elektrického prúdu, pričom                       |  |  |
| a) dochádza k pozorovateľným chemickým zmenám.                                                         |  |  |
| b) nedochádza k žiadnym pozorovateľným chemickým zmenám                                                |  |  |
| c) spravidla dochádza k posuvu mriežkových rovín materiálu.                                            |  |  |
|                                                                                                        |  |  |
| 20. S rastom tlaku sa šírka zakázaného pásma                                                           |  |  |
| a) zužuje.                                                                                             |  |  |
| b) nemení.                                                                                             |  |  |
| c) rozširuje.                                                                                          |  |  |
|                                                                                                        |  |  |
| 21. U kovov pri nulovej absolútnej teplote je pravdepodobnosť obsadenia energetických hladín pre W>WF: |  |  |
| a) P(W) = 1                                                                                            |  |  |
| b) P(W) = 0                                                                                            |  |  |
| c) P(W) = 0,5                                                                                          |  |  |
|                                                                                                        |  |  |
| 22. Valenčné pásmo alkalických kovov:                                                                  |  |  |
| a) je neúplne obsadené                                                                                 |  |  |
| b) je prázdne                                                                                          |  |  |
| c) je plne obsadené                                                                                    |  |  |
|                                                                                                        |  |  |
| 23. Podľa Mathiessenovho pravidla je možné rezistivitu kovov s malým množstvom prímesí vyjadriť ako:   |  |  |
| a) súčin zvyškovej rezistivity danej koncentráciou prímesí a rezistivity závislej na teplote           |  |  |
| b) podiel zvyškovej rezistivity danej koncentráciou prímesí a rezistivity závislej na teplote          |  |  |
| c) súčet rezistivity danej koncentráciou prímesí a rezistivity závislej na teplote                     |  |  |
|                                                                                                        |  |  |
| 24. Pomer kritického prúdu IC a prierezu S supravodiča sa nazýva                                       |  |  |

a) kritická prúdová plocha b) kritický prúdový objem c) kritická prúdová hustota 25. Klasická elektrónová teória opisuje elektrickú vodivosť na základe a) predpokladu, že voľný elektrón ľubovoľnej pohybovej energie je riadený zákonmi vlnovej mechaniky. b) existencie voľných pohyblivých elektrónov, ktoré sa pohybujú usmernene pri pôsobení vonkajšieho elektrického poľa. c) existencie fotónov, ktoré spôsobia vznik elektrického prúdu, ak dôjde k zmene polarizácie vonkajšieho elektrického poľa. 26. Rezistivita kovov (merný elektrický odpor): a) s rastúcim obsahom nečistôt rastie b) ostáva konštantná c) s rastúcim obsahom nečistôt klesá 27. Šírka zakázaného pásma v pásmovom modeli tuhej látky a) nemá vplyv na vodivosť materiálu b) určuje typ vodivosti materiálu c) je vymedzená termodynamickou rovnováhou 28. Supravodivosť bola prvý krát pozorovaná v roku 1911 u a) cínu b) medi c) ortuti 29. Supravodič je látka, ktorá pri určitej teplote a) mení svoju kryštalickú štruktúru

b) zvýši svoj odpor dvojrádovo

c) skokovo stráca elektrický odpor o niekoľko rádov

| 30. Pri zrážkach elektrónov s iónmi mriežky                                         |  |  |
|-------------------------------------------------------------------------------------|--|--|
| a) elektróny odovzdávajú časť svojej energie, čím sa zvyšujú tepelné kmity mriežky. |  |  |
| b) elektróny pokračujú vo svojom pohybe bez zmeny energie.                          |  |  |
| c) elektróny získajú časť energie, čo spôsobí nárast prúdu.                         |  |  |
|                                                                                     |  |  |
| 31. Šírka zakázaného pásma tuhej látky                                              |  |  |
| a) je konštantná pre všetky materiály pri izbovej teplote                           |  |  |
| b) prejavuje sa iba v stave energetickej rovnováhy                                  |  |  |
| c) je závislá od štruktúry materiálu                                                |  |  |
|                                                                                     |  |  |
| 32. Celkové straty v magnetických materiáloch sa delia na                           |  |  |
| a) hysterézne (magnetizačné) straty, straty vírivými prúdmi a zvyškové straty       |  |  |
| b) ohmické straty, Jouleove straty a kapacitné straty                               |  |  |
| c) impulzné straty, indukčné straty a ohmické straty                                |  |  |
|                                                                                     |  |  |
| 33. Teplota, pri ktorej prechádza materiál do supravodivého stavu, sa nazýva        |  |  |
| a) supravodivá teplota                                                              |  |  |
| b) prechodová teplota                                                               |  |  |
| c) kritická teplota                                                                 |  |  |
|                                                                                     |  |  |
| 34. Ak je šírka zakázaného pásma materiálu ΔWz 1,5 eV – 2,5eV, hovoríme o:          |  |  |
| a) izolantoch                                                                       |  |  |
| b) vodičoch                                                                         |  |  |
| c) polovodičoch                                                                     |  |  |
|                                                                                     |  |  |
| 35. Vypudzovanie magnetického poľa z vnútra supravodiča sa nazýva                   |  |  |
| a) Meissnerov jav                                                                   |  |  |
| b) supravodivosť                                                                    |  |  |
| c) Coopererov jav                                                                   |  |  |
|                                                                                     |  |  |
| 36. Vodivostné pásmo                                                                |  |  |

| a) predstavuje súbor energetických pásiem elektrónov uvoľnených z chemických väzieb                      |  |  |
|----------------------------------------------------------------------------------------------------------|--|--|
| b) súbor energetických pásiem elektrónov charakterizujúci vodiče                                         |  |  |
| c) súbor energetických pásiem atómov v tuhom stave                                                       |  |  |
|                                                                                                          |  |  |
| 37. U ktorých dvoch kovov sa prejavuje hypervodivosť:                                                    |  |  |
| a) hliník, berýlium                                                                                      |  |  |
| b) hliník, striebro                                                                                      |  |  |
| c) platinové kovy                                                                                        |  |  |
|                                                                                                          |  |  |
| 38. S rastúcim tlakom rezistivita kovov (merný elektrický odpor):                                        |  |  |
| a) ostáva rovnaká                                                                                        |  |  |
| b) klesá                                                                                                 |  |  |
| c) stúpa                                                                                                 |  |  |
|                                                                                                          |  |  |
| 39. Medzi podmienky potrebné na vznik supravodivosti nepatrí:                                            |  |  |
| a) podkritická teplota                                                                                   |  |  |
| b) podmienka geometrických rozmerov supravodiča                                                          |  |  |
| c) podkritická intenzita magnetického poľa                                                               |  |  |
|                                                                                                          |  |  |
| 40. Magneticky tvrdé ferity sa používajú                                                                 |  |  |
| a) pri konštrukcii motorov s vysokou účinnosťou                                                          |  |  |
| b) v mikrovlnnej technike                                                                                |  |  |
| c) v telekomunikačnej technike                                                                           |  |  |
|                                                                                                          |  |  |
| 41. Magneticky mäkké kovy a zliatiny sa vyznačujú                                                        |  |  |
| a) širokou hysteréznou slučkou, malou hodnotou maximálnej magnetickej indukcie a veľkou<br>koercitivitou |  |  |
| b) úzkou hysteréznou slučkou, veľkou hodnotou maximálnej magnetickej indukcie a malou koercitivitou      |  |  |

c) širokou hysteréznou slučkou a malou hodnotou maximálnej magnetickej indukcie

42. Anizotropia magnetických vlastností znamená, že

- a) určitá časť kryštalitov sa orientuje rovnobežne do smeru plastickej deformácie
- b) dochádza k zmene geometrických rozmerov telesa z magnetického materiálu po jeho vložení do magnetického poľa
- c) magnetovateľnosť je závislá na kryštalografickom smere
  - 43. Vonkajšie magnetické pole je príčinou dvoch základných dejov:
- a) pohybu doménových stien a natáčania vektorov magnetizácie domén
- b) natáčania polárnych dielektrík a ich orientácie proti smeru pôsobenia elektrickej indukcie
- c) vytvorenia elektrostatického poľa a pohybu kladných dier
  - 44. Ferity sa používajú
- a) pre magnetické zámky, magnetické gumené tesnenia, membrány reproduktorov
- b) pri konštrukcii slúchadiel, mikrofónov, krokových motorčekov analógových hodiniek
- c) pre jadrá vysokofrekvenčných cievok a transformátorov
  - 45. Krivka prvotnej magnetizácie je
- a) charakteristika feromagnetika pri jeho stacionárnom magnetovaní z odmagnetovaného stavu (H = 0, B = 0) až do nasýtenia
- b) charakteristika dielektrika pri jeho stacionárnom magnetovaní z odmagnetovaného stavu (H = 0, B = 0) až do nasýtenia
- c) charakteristika paramagnetika pri jeho stacionárnom magnetovaní z odmagnetovaného stavu (H = 0, B = 0) až do nasýtenia
  - 46. Závislosti magnetickej indukcie B od intenzity magnetického poľa H sa nazývajú aj
- a) Prechodové charakteristiky
- b) Fázové prechody
- c) Magnetizačné krivky
  - 47. Hysterézna slučka feromagnetických materiálov predstavuje závislosť
- a) prúdu I na napätí V
- b) magnetickej indukcie B od frekvencie f
- c) magnetickej indukcie B od magnetickej intenzity H

| 48. Žiadne dve susedné domény v štruktúre feromagnetických materiálov sa nedotýkajú bezprostredne, ale sú oddelené |
|--------------------------------------------------------------------------------------------------------------------|
| a) Weissovou stenou                                                                                                |
| b) Curieho stenou                                                                                                  |
| c) Blochovou stenou                                                                                                |
|                                                                                                                    |
| 49. Javom magnetická hysterézia sa označuje:                                                                       |
| a) zaostávanie zmien elektrickej indukcie za zmenami intenzity magnetického poľa                                   |
| b) zaostávanie zmien magnetizácie, resp. magnetickej indukcie za zmenami intenzity magnetického poľa               |
| c) zaostávanie zmien elektrickej indukcie za zmenami intenzity elektrického poľa                                   |
|                                                                                                                    |
| 50. Relatívna permeabilita feromagnetika je závislá od:                                                            |
| a) elektrickej inzenzity a rezistivity                                                                             |
| b) elektrickej kapacity a hustoty materiálu                                                                        |
| c) intenzity magnetického poľa a teploty                                                                           |
|                                                                                                                    |
| 51. Dielektrické straty závisia                                                                                    |
| a) od napätia, frekvencie, relatívnej permitivity a elektrickej vodivosti                                          |
| b) od druhej mocniny napätia, relatívnej permitivity a činiteľa dielektrických strát                               |
| c) od druhej mocniny napätia, od frekvencie, relatívnej permitivity a činiteľa dielektrických strát                |
|                                                                                                                    |
| 52. Elektrická vodivosť u kovov s rastom teploty                                                                   |
| a) klesá                                                                                                           |
| b) nemení sa                                                                                                       |
| c) stúpa                                                                                                           |
|                                                                                                                    |
| 53. V nehomogénnych tuhých dipólových izolantoch sa okrem iného vyskytuje polarizácia                              |
| a) spontánna                                                                                                       |
| b) migračná                                                                                                        |
| c) Iónová                                                                                                          |

| 54. Ohrev dielektrika po jeho vložení do striedavého elektrického poľa je spôsobený: |  |  |
|--------------------------------------------------------------------------------------|--|--|
| a) činnými stratami reálneho izolantu                                                |  |  |
| b) zvyškovou vodivosťou                                                              |  |  |
| c) dielekrickými stratami                                                            |  |  |
|                                                                                      |  |  |
| 55. Zakázané pásmo je:                                                               |  |  |
| a) najvyššie obsadené pásmo pri nulovej absolútnej teplote                           |  |  |
| b) pásmo, v ktorom sa nemôžu elektróny vyskytovať                                    |  |  |
| c) pásmo, v ktorom sa elektróny vyskytujú, ak absorbujú dostatok energie             |  |  |
|                                                                                      |  |  |
| 56. Medzi feromagnetické materiály patria:                                           |  |  |
| a) chróm, vanád a ich oxidy                                                          |  |  |
| b) meď, hliník a ich zliatiny                                                        |  |  |
| c) železo, kobalt, nikel a ich zliatiny                                              |  |  |
|                                                                                      |  |  |
| 57. Migračná polarizácia je typická pre:                                             |  |  |
| a) kvapalné izolanty                                                                 |  |  |
| b) plynné izolanty                                                                   |  |  |
| c) viacvrstvové izolanty                                                             |  |  |
|                                                                                      |  |  |
| 58. Závislosť konduktivity (elektrickej vodivosti) plynných izolantov od napätia je  |  |  |
| a) lineárne rastúca                                                                  |  |  |
| b) charakterizovaná troma rozdielnymi oblasťami                                      |  |  |
| c) nemenná                                                                           |  |  |
|                                                                                      |  |  |
| 59. Spontánna polarizácia je typická pre:                                            |  |  |
| a) všetky dielektriká                                                                |  |  |
| b) feromagnetiká                                                                     |  |  |
| c) feroelektriká                                                                     |  |  |
|                                                                                      |  |  |

| CO. Manustial & language it.                                                                                                                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 60. Magnetické kompozity                                                                                                                                                                                                    |  |  |
| a) sa vyznačujú kombináciou magnetických vlastností a veľkého elektrického odporu                                                                                                                                           |  |  |
| b) sú tvorené feromagnetickou alebo ferimagnetickou látkou s nosným médiom (roztoky prírodných alebo syntetických živíc)                                                                                                    |  |  |
| c) sa vyznačujú širokou hysteréznou slučkou, zvyčajne sú mechanicky tvrdé                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                             |  |  |
| 61. Šírka zakázaného pásma (🏿 Wz) izolantov je                                                                                                                                                                              |  |  |
| a) < 3 eV                                                                                                                                                                                                                   |  |  |
| b) > 0,7 eV                                                                                                                                                                                                                 |  |  |
| c) > 3 eV                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                             |  |  |
| 62. Elektrická vodivosť izolantov je priamo úmerná                                                                                                                                                                          |  |  |
| a) počtu nosičov nábojov, náboju a pohyblivosti nábojov                                                                                                                                                                     |  |  |
| b) počtu nosičov nábojov a náboju                                                                                                                                                                                           |  |  |
| c) počtu nosičov nábojov a intenzite elektrického poľa                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                             |  |  |
| 63. Feromagnetické látky sa po prekročení (Curieho) feromagnetickej teploty stávajú                                                                                                                                         |  |  |
| a) paramagnetikom                                                                                                                                                                                                           |  |  |
| b) ferimagnetikom                                                                                                                                                                                                           |  |  |
| c) diamagnetikom                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                             |  |  |
| 64. Veľkosť dielektrických strát v nepolárnych kvapalných izolantoch závisí:                                                                                                                                                |  |  |
| on verkost dielektrickyon strat v nepolarnyon kvapanyon izolantoon zavisi.                                                                                                                                                  |  |  |
| a) od stupňa čistoty izolačnej kvapaliny                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                             |  |  |
| a) od stupňa čistoty izolačnej kvapaliny                                                                                                                                                                                    |  |  |
| a) od stupňa čistoty izolačnej kvapaliny b) od termickej aktivácie iónov izolačnej kvapaliny                                                                                                                                |  |  |
| a) od stupňa čistoty izolačnej kvapaliny b) od termickej aktivácie iónov izolačnej kvapaliny                                                                                                                                |  |  |
| a) od stupňa čistoty izolačnej kvapaliny b) od termickej aktivácie iónov izolačnej kvapaliny c) od koncentrácie dipólových koloidných častíc                                                                                |  |  |
| a) od stupňa čistoty izolačnej kvapaliny b) od termickej aktivácie iónov izolačnej kvapaliny c) od koncentrácie dipólových koloidných častíc 65. Charakteristická veľkosť relatívnej permitivity pre plynné dielektriká je: |  |  |

| 66. Elektronegatívne plyny majú                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) veľkú elektrickú pevnosť                                                                                                                                    |
| b) malú elektrickú pevnosť                                                                                                                                     |
| c) veľkú elektrickú vodivosť                                                                                                                                   |
|                                                                                                                                                                |
| 67. Intenzita magnetického poľa, ktorá je potrebná, aby po predchádzajúcej magnetizácii do nasýtenia poklesla magnetická indukcia na nulovú hodnotu, sa nazýva |
| a) indukcia nasýtenia Bs                                                                                                                                       |
| b) relatívna permeabilita μr                                                                                                                                   |
| c) koercivita Hc                                                                                                                                               |
|                                                                                                                                                                |
| 68. Suscebtibilita a relatívna permeabilita sú v prípade feromagnetického materiálu                                                                            |
| a) nízke a nezávislé od teploty a magnetického poľa                                                                                                            |
| b) nezávislé od teploty a magnetického poľa                                                                                                                    |
| c) vysoké, silne závisle od teploty a intenzity magnetického poľa                                                                                              |
|                                                                                                                                                                |
| 69. Magnetický moment atómového jadra je                                                                                                                       |
| a) veľmi veľký v porovnaní s momentom elektrónov                                                                                                               |
| b) porovnateľný s momentom elektrónov                                                                                                                          |
| c) veľmi malý v porovnaní s momentom elektrónov                                                                                                                |
|                                                                                                                                                                |
| 70. Z fyzikálneho hľadiska možno dielektrické straty rozdeliť na tri hlavné druhy:                                                                             |
| a) vodivostné, polarizačné, ionizačné                                                                                                                          |
| b) termické, materiálové, rezonančné                                                                                                                           |
| c) izolačné, väzbové, prudové                                                                                                                                  |

71. Povrchová vodivosť tuhých izolantov je výraznejšia ak povrch izolantu je

a) nezmáčavý

c) nezáleží na zmáčavosti

b) zmáčavý

| 72. Vznik domén je spojený so snahou magnetickej látky                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|
| a) znížiť vlastnú magnetickú energiu                                                                                                  |
| b) zvýšiť vlastnú magnetickú energiu                                                                                                  |
| c) zachovať si vlastnú magnetickú energiu bez zmeny                                                                                   |
|                                                                                                                                       |
| 73. Makroskopickou mierou polarizovateľnosti je                                                                                       |
| a) relatívna permitivita                                                                                                              |
| b) elektrická pevnosť                                                                                                                 |
| c) elektrická vodivosť                                                                                                                |
|                                                                                                                                       |
| 74. Medzi polarizáciou a elektrickým poľom vo foferoelektriku je                                                                      |
| a) lineárne rastúca závislosť                                                                                                         |
| b) nie je závislosť                                                                                                                   |
| c) nelineárne rastúca závislosť                                                                                                       |
|                                                                                                                                       |
| 75. Ktorá polarizácia sa vyskytuje pri frekvenciách viditeľného svetla a je dôležitá pre spektrálnu analýzu:                          |
| a) medzivrstvová (migračná)                                                                                                           |
| b) spontánna (samovoľná)                                                                                                              |
| c) rezonančná                                                                                                                         |
|                                                                                                                                       |
| 76. Ettignshausenov jav je                                                                                                            |
| a) vznik priečneho rozdielu teplôt vo vzorke polovodiča, ak ňou prechádza elektrický prúd a<br>súčasne sa nachádza v magnetickom poli |
| b) vznik priečneho rozdielu teplôt vo vzorke polovodiča, ak ňou prechádza magnetické pole                                             |
| c) vznik napätia vo vzorke polovodiča, ak ňou prechádza magnetické pole                                                               |
|                                                                                                                                       |
| 77. Medzi magneticky mäkké materiály patra                                                                                            |
| a) liatinové magnety                                                                                                                  |
| b) neodýmiové magnety (NdFeB)                                                                                                         |
| c) technicky čisté železo, ocele                                                                                                      |
|                                                                                                                                       |

| a) na izoláciu vodivých telies                                           |  |
|--------------------------------------------------------------------------|--|
| b) ako dielektriká                                                       |  |
| c) na tienenie elektromagnetického poľa                                  |  |
|                                                                          |  |
| 79. Vložením diamagnetického materiálu do magnetického poľa sa toto pole |  |
| a) oslabuje                                                              |  |
| b) neovplyvňuje                                                          |  |
| c) zosilňuje                                                             |  |
|                                                                          |  |
| 80. Polárne kvapalné izolanty majú polarizáciu                           |  |
| a) elektrónovú a dipólovú                                                |  |
| b) dipólovú a iónovú                                                     |  |
| c) elektrónovú a iónovú                                                  |  |
|                                                                          |  |
| 81. Polarizačná zložka dielektrických strát vzniká                       |  |
| a) vplyvom jednosmerného elektrického poľa v polárnych dielektrikách     |  |
| b) vplyvom jednosmerného elektrického poľa v nepolárnych dielektrikách   |  |
| c) len vplyvom striedavého elektrického poľa v polárnych dielektrikách   |  |
|                                                                          |  |
| 82. Medzi magneticky mäkké materiály patria                              |  |
| a) oxidy MnO a NiO                                                       |  |
| b) zliatina AlNiCo a zliatina FeCrCo                                     |  |

83. Spinový magnetický moment ms je vyvolaný

## a) rotáciou elektrónov okolo ich osí

c) ocele a zliatiny FeCo

78. Izolanty sú využívané najmä

- b) neúplne obsadenými vnútornými orbitálmi
- c) rotáciou elektrónov okolo jadra
  - 84. Medzi najväčšie výhody kremíka patrí:

a) vlastnosť vytvárať elektronické prvky s vysokou pohyblivosťou nosičov náboja v porovnaní s inými polovodičmi b) odolnosť voči tvorbe oxidu SiO2, ktorý znemožňuje realizovať fotoloitografické postupy c) schopnosť tvorby oxidu SiO2, ktorý umožňuje realizovať fotoloitografické postupy 85. Medzi paramagnetiká patrí a) kyslík a platina b) železo a kremík c) zlato a striebro 86. Podmienkou vzniku lavínového javu je a) dostatočná koncentrácia atómov b) dostatočná hrúbka hradlovej vrstvy c) čo najlepšia adhézia priechodu PN 87. Hodnota magnetickej indukcie, ktorá zostane vo feromagnetiku po znížení intenzity magnetického poľa na nulu je a) indukcia nasýtenia Bs b) remanentná indukcia Br c) relatívna permeabilita µr 88. Medzi polarizáciou dielektrika a intenzitou elektrického poľa a) je nepriamoúmerný vzťah b) je úmerný vzťah c) nie je žiaden vzťah 89. Difúzia vedie k: a) vytváraniu teplotných alebo koncentračných nerovností b) vyrovnaniu koncentrácií a/alebo teplôt c) vzniku teplotných a koncentračných gradientov

90. Bohrov magnetón je

- a) priemernou kvantovou jednotkou magnetického momentu
- b) najväčšou kvantovou jednotkou magnetického momentu
- c) najmenšou kvantovou jednotkou magnetického momentu
  - 91. Dielektrické straty závisia od:
- a) teploty, napätia, frekvencie, permitivity a stratového činiteľa
- b) teploty, hrúbky izolantu, vlhkosti, permitivity a stratového činiteľa
- c) kapacity, vlhkosti, permitivity a stratového činiteľa
  - 92. Ak Wk je väčšie ako Wp, na styku kov polovodič N,
- a) ohmický kontakt
- b) vznikne PN prechod
- c) antihradlová vrstva
  - 93. Remanencia feromagnetických materiálov Br je definovaná ako
- a) elektrická indukcia poľa pri nulovej teplote okolitého prostredia
- b) magnetická indukcia pri nulovej intenzite magnetického poľa po predchádzajúcej magnetizácii do nasýtenia
- c) intenzita magnetického poľa, ktorá je potrebná, aby po predchádzajúcej magnetizácii do nasýtenia poklesla magnetická indukcia na nulovú hodnotu
  - 94. Z VA charakteristiky plynných izolantov vyplýva, že v oblasti nasýteného prúdu je prúd
- a) nezávislý od napätia
- b) s napätím lineárne rastie
- c) s napätím lineárne klesá
  - 95. Podmienkou pre tunelový prieraz PN prechodu
- a) je dostatočne tenká hradlová vrstva
- b) ionizácia nosičov nábojov v priepustnom smere
- c) je dostatočne hrubá hradlová vrstva

| 96. V nepolárnych kvapalných izolantoch sa vyskytuje len elektrónová polarizácia, preto je veľkosť relatívnej permitivity spravidla |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| a) ~ 2,5                                                                                                                            |  |
| b) ~ 0                                                                                                                              |  |
| c) ~ 1                                                                                                                              |  |
|                                                                                                                                     |  |
| 97. Medzi primárne magnetické vlastnosti patria                                                                                     |  |
| a) susceptibilita a koercivita                                                                                                      |  |
| b) nasýtená magnetická polarizácia Js a Curieho teplota Tc                                                                          |  |
| c) magnetická indukcia a permeabilita                                                                                               |  |
|                                                                                                                                     |  |
| 98. Straty v magnetických materiáloch sú sprevádzené                                                                                |  |
| a) v dôsledku nesprávneho použitia                                                                                                  |  |
| b) nárastom relatívnej permeability                                                                                                 |  |
| c) oteplením materiálu                                                                                                              |  |
|                                                                                                                                     |  |
| 99. Magneticky mäkké materiály majú                                                                                                 |  |
| a) Hc väčšie ako 1 500 A/m a je ich ťažké zmagnetizovať                                                                             |  |
| b) Hc menšie ako 800 A/m a je ich ťažké zmagnetizovať                                                                               |  |
| c) Hc menšie ako 800 A/m a možno ich ľahko zmagnetizovať aj odmagnetizovať                                                          |  |
|                                                                                                                                     |  |
| 100. Rovnica elektrickej neutrality vo vlastnom polovodiči hovorí, že:                                                              |  |
| a) koncentrácia dier je rovná koncentrácii voľných elektrónov                                                                       |  |
| b) koncentrácia voľných elektrónov je omnoho väčšia ako koncentrácia dier                                                           |  |
| c) koncentrácia dier je omnoho väčšia ako koncentrácia voľných elektrónov                                                           |  |
|                                                                                                                                     |  |
| 101. U elektroluminiscenčného javu následkom pôsobenia elektrického poľa dochádza k                                                 |  |
| a) vyžarovaniu elektrónov                                                                                                           |  |
| b) vyžarovaniu iónov                                                                                                                |  |
| c) vyžarovaniu EMG žiarenia                                                                                                         |  |
|                                                                                                                                     |  |

## 102. V silných EP existuje

- a) samostatná elektrická vodivosť
- b) samostatná aj nesamostatná elektrická vodivosť
- c) nesamostatná elektrická vodivosť
  - 103. Pohyblivosť molekúl v polárnych kvapalinách
- a) súvisí s viskozitou a teplotou
- b) súvisí s frekvenciou a teplotou
- c) nesúvisí s teplotou
  - 104. Dielektrické materiály sa používajú pre
- a) konštrukciu kondenzátorov
- b) konštrukciu transformátorov
- c) konštrukciu kondenzátorov a cievok
  - 105. Ak je PN priechod polarizovaný v závernom smere,
- a) šírka hradlovej vrstvy sa zmenšuje
- b) tvar PN priechodu sa vychyľuje v smere vzniknutého magnetického poľa
- c) šírka hradlovej vrstvy sa zväčšuje
  - 106. Podľa veľkosti stratového čísla sa
- a) hodnotí miera polarizácie dielektrika
- b) posudzujú dielektrické straty izolantu
- c) hodnotí schopnosť izolantu viesť elektrický prúd
  - 107. Dielektrická susceptibilita je definovaná ako
- a) konštanta úmernosti medzi elektrickým poľom E a vzdialenosťou elektród
- b) konštanta úmernosti medzi napätím a kapacitou
- c) konštanta úmernosti medzi elektrickým poľom E a indukovanou dielektrickou hustotou polarizácie P

- 108. Názov "diera" v teórii polovodičov predstavuje
- a) porucha kryštálovej mriežky, na ktorej mieste sa nachádzal atóm polovodiča
- b) priestor, v ktorom sa nachádzal elektrón, neobsadenú kovalentnú väzbu
- c) priestor, ktorý vznikne v okolí elektrónu, ktorý sa nachádza vo vodivostnom pásme
  - 109. Elektrický odpor prechodu PN pri zapojení v závernom smere sa
- a) zmenší, obvodom prechádza veľký prúd tvorený iba menšinovými voľnými nosičmi náboja
- b) zmenší, obvodom prechádzajú len majoritné nosiče náboja
- c) zväčší, obvodom prechádza veľmi malý zvyškový prúd
  - 110. V nepolárnych kvapalných izolantoch sa vyskytuje
- a) len iónová polarizácia, typická pre kvapaliny
- b) len elektrónová polarizácia
- c) elektrónová i iónová polarizácia
  - 111. Fotonapäťový (fotovoltický) jav je definovaný ako vznik
- a) rozdielu koncentrácie nosičov náboja vplyvom magnetického poľa
- b) mikrovlnových kmitov pripojením jednosmerného napätia
- c) elektrického napätia v dôsledku ožiarenia (osvetlenia)
  - 112. V slabých EP existuje
- a) nesamostatná elektrická vodivosť
- b) samostatná elektrická vodivosť
- c) samostatná aj nesamostatná elektrická vodivosť
  - 113. Po vložení dielektrika alebo izolantu do elektrického poľa sa v tomto materiáli určitá časť energie premieňa na neužitočné teplo. Táto energia sa nazýva:
- a) relatívna permitivita
- b) Jouleove straty
- c) dielektrické straty

- 114. Waldenov zákon hovorí, že
- a) súčin elektrickej vodivosti a viskozity je približne konštantný
- b) súčin viskozity a počtu polarizovaných častíc je približne konštantný
- c) súčin viskozity a pohyblivosti je približne konštantný
  - 115. Zatavenie dotovacieho materiálu na polovodičovej platničke je typické pre
- a) iónovú implantáciu
- b) zliatinovú technológiu
- c) epitaxnú technológiu
  - 116. Hlavným parametrom dielektrických materiálov je
- a) relatívna permeabilita
- b) relatívna permitivita
- c) relatívna reaktancia
  - 117. V iónových kryštalických látkach sa vyskytuje polarizácia
- a) elektrónová a iónová relaxačná
- b) elektrónová a spontánna
- c) elektrónová a iónová pružná
  - 118. Ktorá z možností najlepšie charakterizuje plazmové naprašovanie
- a) kladné ióny, ktoré vzniknú tlejivým výbojom, bombardujú terčík a vyrážajú z neho atómy naprašovacieho materiálu
- b) voľné elektróny urýchľované elektromagnetickým poľom vyrážajú materiál terčíka
- c) epitaxia iónov naprašovaných na terčík
  - 119. Polarizácia ktorého druhu má najrýchlejší priebeh (najkratšiu dobu trvania):
- a) relaxačná
- b) pružná
- c) medzivrstvová

| 120.                                                       | Heteroepitaxia je                                                                  |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| a) rast vrstvy rovnakého zloženia ako substrát             |                                                                                    |  |  |  |
| b) výroba mono                                             | okryštálov z kvapalnej aj tuhej fázy                                               |  |  |  |
| c) rast vrstvy r                                           | ozdielneho zloženia ako substrát                                                   |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 121.                                                       | Minoritnými nosičmi náboja v polovodiči typu P sú                                  |  |  |  |
| a) diery                                                   |                                                                                    |  |  |  |
| b) elektróny aj                                            | diery, zúčastňujúce sa na vodivosti približne rovnakou mierou                      |  |  |  |
| c) elektróny                                               |                                                                                    |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 122.                                                       | S rastúcou teplotou relatívna permitivita polárnych kvapalín:                      |  |  |  |
| a) v určitom in                                            | tervale rastie                                                                     |  |  |  |
| b) nemení sa                                               |                                                                                    |  |  |  |
| c) lineárne kles                                           | á                                                                                  |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 123.                                                       | V prípade nepolárnych kvapalných izolantov vznikajú pri pôsobení elektrického poľa |  |  |  |
| a) ióny disociá                                            | ciou molekúl a nečistôt                                                            |  |  |  |
| b) nevznikajú id                                           | óny ani elektróny                                                                  |  |  |  |
| c) ióny disociác                                           | iou vlastných molekúl                                                              |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 124.                                                       | Príprava východzieho materiálu pre výrobu polovodičových čipov zahŕňa              |  |  |  |
| a) naparovanie                                             | a naprašovanie prímesí                                                             |  |  |  |
| b) elektromagnetické odlučovanie nečistôt z kvapalnej fázy |                                                                                    |  |  |  |
| c) chemické a fyzikálne metódy čistenia                    |                                                                                    |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 125.                                                       | Segregačný koeficient je daný                                                      |  |  |  |
| a) rozdielom ko                                            | oncentrácie prímesí v tuhej a kvapalnej fáze                                       |  |  |  |
| b) pomerom koncentrácie prímesí v tuhej a kvapalnej fáze   |                                                                                    |  |  |  |
| c) súčinom koncentrácie prímesí v tuhej a kvapalnej fáze   |                                                                                    |  |  |  |
|                                                            |                                                                                    |  |  |  |
| 126.                                                       | Aká je závislosť relatívnej permitivity od teploty u nepolárnych kvapalín?         |  |  |  |

a) lineárne rastúca b) nezávisí od teploty c) lineárne klesajúca 127. Curieho - Weissov zákon hovorí, že relatívna permitivita feroelektrík s rastom teploty a) exponenciálne rastie b) hyperbolicky klesá c) lineárne klesá 128. Schottkyho priechod vzniká spojením a) polovodiča a izolantu b) kovového a polovodičového materiálu c) dvoch kovových materiálov 129. Donory sú spravidla a) prvky mocenstvom nižším, ako mocenstvo základného polovodiča b) prvky zo I. skupiny periodickej tabuľky prvkov c) prvky mocenstvom vyšším, ako mocenstvo základného polovodiča 130. Remanentnú indukciu Br možno zrušiť a) stacionárnym magnetovaním z odmagnetovaného stavu (H = 0, B = 0) až do nasýtenia b) opačne orientovaným magnetickým poľom s intenzitou rovnajúcou sa intenzite koercitívneho poľa Hc c) planárnou technológiou 131. V slabom elektrickom poli dochádza u izolantov a) k vodivosti samostatnej (ionizácia a uvoľnenie elektrónov) b) k vodivosti nesamostatnej c) k prierazu 132. Mesa technológia je tvorená kombináciou

| a) epitaxnej a difúznej metódy -potom sa zmenilo na epitaxnu technologiu |                                                                                                                     |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| b) povrchovej a objemovej planárnej metódy                               |                                                                                                                     |  |  |
| c) difúznej a zliatinovej metódy -vznikol takto                          |                                                                                                                     |  |  |
|                                                                          |                                                                                                                     |  |  |
| 133.                                                                     | Jednotkou relatívnej permitivity je:                                                                                |  |  |
| a) F                                                                     |                                                                                                                     |  |  |
| b) bezrozmer                                                             | ná veličina                                                                                                         |  |  |
| c) F/m                                                                   |                                                                                                                     |  |  |
|                                                                          |                                                                                                                     |  |  |
| 134.                                                                     | Polarizácia ktorého druhu nastáva bez strát energie:                                                                |  |  |
| a) relaxačná                                                             |                                                                                                                     |  |  |
| b) pružná                                                                |                                                                                                                     |  |  |
| c) ionizačná                                                             |                                                                                                                     |  |  |
|                                                                          |                                                                                                                     |  |  |
| 135.                                                                     | Podmienkou tunelového javu na PN prechode je                                                                        |  |  |
| a) vysoké nap                                                            | ätie pri prechode prúdu                                                                                             |  |  |
| b) dostatočno                                                            | e hrubá hradlová vrstva                                                                                             |  |  |
| c) tenká hrad                                                            | lová vrstva                                                                                                         |  |  |
|                                                                          |                                                                                                                     |  |  |
| 136.<br>mom                                                              | Pre polarizáciu ktorého druhu je charakteristický vznik indukovaného dipólového entu na makroskopické vzdialenosti: |  |  |
| a) relaxačná                                                             |                                                                                                                     |  |  |
| b) medzivrstv                                                            | ová (migračná)                                                                                                      |  |  |
| c) pružná                                                                |                                                                                                                     |  |  |
|                                                                          |                                                                                                                     |  |  |
| 137.                                                                     | V nepolárnych kvapalných izolantoch sa vyskytuje iba:                                                               |  |  |
| a) medzivrstv                                                            | ová polarizácia                                                                                                     |  |  |
| b) rezonančná polarizácia                                                |                                                                                                                     |  |  |
| c) elektrónová polarizácia                                               |                                                                                                                     |  |  |
|                                                                          |                                                                                                                     |  |  |
| 138.                                                                     | Reálne izolanty                                                                                                     |  |  |

- a) neobsahujú voľné nosiče náboja
- b) obsahujú pomerne určité množstvo voľných nosičov náboja bez vplyvu na elektrickú vodivosť
- c) obsahujú určité množstvo nosičov nábojov, preto majú merateľnú rezistivitu resp. konduktivitu
  - 139. Coulombov zákon hovorí, že veľkosť sily medzi dvoma bodovými nábojmi je
- a) nepriamo úmerná veľkosti súčinu nábojov a nepriamo úmerná druhej mocnine vzdialenosti medzi nimi
- b) nepriamo úmerná veľkosti súčinu nábojov a priamo úmerná druhej mocnine vzdialenosti medzi
- c) priamo úmerná veľkosti súčinu nábojov a nepriamo úmerná druhej mocnine vzdialenosti medzi nimi
  - 140. V silnom elektrickom poli dochádza u izolantov
- a) k vodivosti vplyvom disociácie nečistôt
- b) k vodivosti samostatnej (ionizácia a uvoľnenie elektrónov)
- c) k vodivosti nesamostatnej
  - 141. Teplota nasýtenia prímesových polovodičov je:
- a) teplota, pri ktorej sú všetky prímesi ionizované
- b) teplota, pri ktorej dochádza k prudkému zníženiu vodivosti polovodiča
- c) teplota, pri ktorej sa začínajú na vodivosti podieľať aj lokalizované elektróny a diery vlastného polovodiča
  - 142. S rastom teploty elektrická vodivosť kvapalných izolantov
- a) rastie, lebo rastie pohyblivosť a exponenciálne narastá koncentrácia
- b) rastie, lebo sa zvyšuje viskozita a stupeň disociácie častíc
- c) klesá, lebo častejšie dochádza k zrážkam voľných nosičov nábojov
  - 143. Aká je závislosť relatívnej permitivity od frekvencie u nepolárnych kvapalín
- a) lineárne rastúca
- b) nezávisí od frekvencie
- c) nelineárne rastúca



| b) obsahuje urč                                                                      | tité množstvo voľného náboja, a je teda má konštantnú zvyškovú vodivosť                   |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| c) obsahuje urč<br>zanedbateľnou                                                     | ité množstvo voľného náboja, avšak pre nízku koncentráciu prispieva k vodivosti<br>mierou |  |  |  |
| 150.                                                                                 | Paschenov zákon hovorí, že prierazné napätie plynných izolantov závisí                    |  |  |  |
| a) od súčinu tla                                                                     | a) od súčinu tlaku plynu a vzdialenosti medzi elektródami                                 |  |  |  |
| b) od súčinu fre                                                                     | ekvencie a vzdialenosti medzi elektródami                                                 |  |  |  |
| c) od vlhkosti a                                                                     | teploty                                                                                   |  |  |  |
| 151.                                                                                 | Polarizácia ktorého druhu má pomalý priebeh:                                              |  |  |  |
| a) relaxačná                                                                         |                                                                                           |  |  |  |
| b) pružná                                                                            |                                                                                           |  |  |  |
| c) rezonančná                                                                        |                                                                                           |  |  |  |
|                                                                                      |                                                                                           |  |  |  |
| 152.                                                                                 | Dielektrické straty v nepolárnych izolantoch sú len                                       |  |  |  |
| a) vodivostné                                                                        |                                                                                           |  |  |  |
| b) vodivostné a                                                                      | polarizačné                                                                               |  |  |  |
| c) ionizačné                                                                         |                                                                                           |  |  |  |
|                                                                                      |                                                                                           |  |  |  |
| 153.                                                                                 | V jednosmernom elektrickom poli sú dielektrické straty zapríčinené predovšetkým           |  |  |  |
| a) elektrickou v                                                                     | odivosťou dielektrika                                                                     |  |  |  |
| b) vysokými frekvenciami                                                             |                                                                                           |  |  |  |
| c) rôznymi druhmi polarizácií                                                        |                                                                                           |  |  |  |
|                                                                                      |                                                                                           |  |  |  |
| 154.                                                                                 | Seebeckov jav je:                                                                         |  |  |  |
| a) magnetostril                                                                      | ccia v polovodiči, ak v ňom existuje teplotný gradient                                    |  |  |  |
| b) vznik termomagnetického poľa v polovodičoch                                       |                                                                                           |  |  |  |
| c) vznik termoelektrického napätia v látke, pozdĺž ktorej existuje teplotný gradient |                                                                                           |  |  |  |
|                                                                                      |                                                                                           |  |  |  |
| 155.                                                                                 | Závislosť vektora polarizácie od intenzity elektrického poľa vo feroelektrikách je        |  |  |  |
| a) nelineárna                                                                        |                                                                                           |  |  |  |

b) bez výrazných zmien c) lineárne rastúca 156. Technológia MESA využíva v svojom procese a) epitaxiu z kvapalnej fázy b) iónovú implantáciu c) difúziu a legovanie 157. Indukovaný dipólový moment častice závisí na a) polarizovateľnosti b) relatívnej permitivite c) vodivosti 158. Relatívna permitivita a) je makroskopická veličina charakterizujúca schopnosť viesť elektrický prúd u izolantu b) závisí od magnetickej indukcie c) vyjadruje schopnosť materiálu polarizovať sa 159. Vyberte správne tvrdenie: intenzita elektrického poľa priechodu PN a) ak kladnú svorku zdroja pripojíme k polovodiču typu N a zápornú svorku k polovodiču typu P potom sa zväčší b) ak kladnú svorku zdroja pripojíme k polovodiču typu P a zápornú svorku k polovodiču typu N potom sa zväčší c) ak kladnú svorku zdroja pripojíme k polovodiču typu N a zápornú svorku k polovodiču typu P potom sa zmenší 160. Unipolárne tranzistory pracujú na princípe ovplyvňovania a) iba majoritných nosičov náboja b) majoritných a minoritných nosičov náboja c) iba minoritných nosičov náboja

Ionizačná krivka je závislosť činiteľa dielektrických strát (tg delta)

161.

## a) od napätia pre tuhý izolant obsahujúci dutinky b) na teplote pre kvapalný izolant c) na teplote pre tuhý izolant 162. Elektronegatívne plyny majú schopnosť zachytávať na svojich a) atómoch elektróny b) molekulách elektróny c) atómoch ióny 163. Hallov jav je využívaný na a) k realizácii polovodičových chladiacich článkov b) priamu premenu tepelnej energie na elektrickú c) meranie intenzity magnetického poľa 164. Vákuové naparovanie je vytváranie tenkých vrstiev odparovaním vyhrievaného materiálu a) v inertnom vákuu b) vo vysokom vákuu c) v inertnej atmosfére

Pri zapojení PN priechodu v závernom smere obvodom prúd

Elektrická vodivosť u vlastných polovodičov s rastom teploty

Ionizačná krivka je v technickej praxi využívaná na

165.

a) prechádza

c) neprechádza

166.

167.

b) rastie, ak rastie napätie

a) posúdenie kvality izolácie elektrických strojov

b) posúdenie úrovne ionizácie kvapalného izolantu

c) posúdenie elektrickej pevnosti vzduchu



- b) ťahaním z kelímka
  c) pásmovým tavením
  174. Čo sú majoritné nosiče náboja v n-type polovodiča?
  a) elektróny a kladné diery
  b) elektróny
  c) kladné diery
  - 175. Bipolárne tranzistory využívajú pre svoju činnosť
- a) iba majoritné nosiče náboja

a) dotovaním

- b) majoritné a minoritné nosiče náboja
- c) iba minoritné nosiče náboja
  - 176. Bipolárne tranzistory využívajú
- a) jeden priechod PN
- b) tri priechody PN
- c) dva priechody PN
  - 177. Rekombinácia nosičov náboja v polovodičoch je
- a) sprevádzaná vyžiarením kvanta energie
- b) stav, kedy dochádza k posunu kryštalografických rovín
- c) sprevádzaná absorpciou žiarenia
  - 178. Seebeckov jav je možné vyjadriť ako
- a) pohlcovanie alebo vyžarovanie tepla na prechode dvoch rozdielnych polovodičov alebo polovodiča a kovu pretekanom prúdom
- b) vznik termoelektrického napätia v látke pozdĺž ktorej existuje teplotný gradient
- c) uvoľňovanie elektrónov z väzieb kryštálovej mriežky silným elektrickým poľom
  - 179. Aké hodnoty rezistivity vykazujú pri izbovej teplote extrémne čisté polovodiče?

a) vysoké, vysokú vodivosť b) vysoké, nízku vodivosť c) nízke, vysokú vodivosť 180. Ohyb energetických hladín na Schottkyho prechode závisí a) množstva voľných elektrónov b) od výstupných prác elektrónov c) od teploty 181. Majoritnými nosičmi náboja v polovodičoch typu N sú a) elektróny aj diery, zúčastňujúce sa na vodivosti približne rovnakou mierou b) elektróny c) diery 182. Ktoré tvrdenie je správne: a) pohyblivosť elektrónov je rovnaká ako pohyblivosť dier b) pohyblivosť elektrónov je menšia ako pohyblivosť dier c) pohyblivosť elektrónov môže byť aj vyše rádovo väčšia ako pohyblivosť dier 183. Elektrónový prúd v polovodiči tečie voči dierovému prúdu a) rovnakým smerom b) smer závisí od typu polovodiča c) opačným smerom 184. Ak je prechod PN zapojený v závernom smere, a) obvodom prechádza prúd zapríčinený pohybom majoritných nosičov náboja b) obvodom prechádza veľmi malý prúd tvorený iba menšinovými voľnými nosičmi náboja c) obvodom prechádza veľmi veľký prúd 185. Polovodiče, v ktorých sa uvoľňujú elektróny ionizáciou donorov, sú nazývané a) polovodiče typu N

| b) vlastné polovodiče                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| c) polovodiče typu P                                                                                                                            |  |  |  |
|                                                                                                                                                 |  |  |  |
| 186. Účinnosť čistenia monokryštálu zónovou rafináciou sa zvyšuje                                                                               |  |  |  |
| a) počtom prechodov zóny                                                                                                                        |  |  |  |
| b) použitím kyslíkovej atmosféry                                                                                                                |  |  |  |
| c) rýchlosťou vyťahovania zárodku z taveniny                                                                                                    |  |  |  |
|                                                                                                                                                 |  |  |  |
| 187. V prípade, že sa minimum vodivostného pásma a maximum valenčného pásma nachádza pri rovnakej hybnosti elektrónu, budeme polovodič nazývať: |  |  |  |
| a) priamy                                                                                                                                       |  |  |  |
| b) intrinzický                                                                                                                                  |  |  |  |
| c) nepriamy                                                                                                                                     |  |  |  |
|                                                                                                                                                 |  |  |  |
| 188. Seebeckov jav je používaný napríklad                                                                                                       |  |  |  |
| a) na priamu premenu tepelnej energie na elektrickú                                                                                             |  |  |  |
| b) na stabilizáciu prúdu                                                                                                                        |  |  |  |
| c) k realizácii polovodičových chladiacich článkov                                                                                              |  |  |  |
|                                                                                                                                                 |  |  |  |
| 189. Pohybom dier v polovodiči vzniká takzvaný dierový prúd. Vodivosť spôsobená dierami sa nazýva                                               |  |  |  |
| a) vodivosť typu N                                                                                                                              |  |  |  |
| b) vodivosť typu PIN                                                                                                                            |  |  |  |
| c) dierová vodivosť                                                                                                                             |  |  |  |
|                                                                                                                                                 |  |  |  |
| 190. Termoelektrické napätie pripadajúce na jednotkový rozdiel teploty sa nazýva                                                                |  |  |  |
| a) Boltzmannova konštanta                                                                                                                       |  |  |  |
| b) Seebeckov koeficient                                                                                                                         |  |  |  |
| c) Hallova konštanta                                                                                                                            |  |  |  |
|                                                                                                                                                 |  |  |  |
| 191. Ktorá je pracovná oblasť polovodičov?                                                                                                      |  |  |  |
| a) oblasť slabej ionizácie prímesí                                                                                                              |  |  |  |

- b) oblasť úplnej ionizácie prímesí
- c) oblasť vlastnej vodivosti polovodiča
  - 192. Polovodičové diódy využívajú
- a) tri priechody PN
- b) dva priechody PN
- c) jeden priechod PN
  - 193. V intrinzickom (vlastnom) polovodiči platí, že
- a) koncentrácia dier je rovná koncentrácii voľných elektrónov
- b) koncentrácia dier je omnoho väčšia ako koncentrácia voľných elektrónov
- c) koncentrácia voľných elektrónov je omnoho väčšia ako koncentrácia dier
  - 194. Nato, aby nosiče náboja vstrekované emitorovým prechodom do bázy rekombinovali skôr, než dosiahnu kolektorový prechod tranzistora, musí byť
- a) vrstva bázy dostatočne hrubá
- b) vrstva bázy dostatočne tenkááááááá
- c) vrstva kolektora dostatočne tenká
  - 195. Ideálny vlastný (intrinzický) polovodič:
- a) má rovnomernú koncentráciu prímesí
- b) neobsahuje žiadne poruchy kryštálovej mriežky
- c) je dotovaný prímesami
  - 196. Magnetorezistenčný (Gaussov) jav je
- a) závislosť rezisitivity polovodičov od indukcie MG poľa kolmého na vektor prúdovej hustoty
- b) závislosť rezisitivity polovodičov od teploty
- c) závislosť rezisitivity polovodičov od prúdovej hustoty
  - 197. U kremíkových monokryštálov sa kvôli vysokej reaktivite používa
- a) argónová alebo vákuová atmosféra

- b) kyslíková alebo dusíková atmosféra c) chlórová alebo vodíková atmosféra 198. Princíp Zónovej rafinácie spočíva a) vo vyťahovaní zárodku monokryštálu z taveniny b) v pohybe roztavenej zóny pozdĺž ingotu jedným smerom c) v bombardovaní monokryštálu vysokoenergetickými časticami 199. Vnútorný fotoelektrický jav možno definovať ako a) absorpciu energie dopadajúceho žiarenia voľnými nosičmi náboja kryštálu polovodiča b) emisiu fotónov v dôsledku dopadajúcich voľných nosičov náboja c) uvoľnenie elektrónov látky z valenčného do vodivostného pásma v dôsledku jej ožiarenia 200. Klasickú zliatinovú (legovaciu) metódu je možné charakterizovať ako: a) zatavenie dotovacieho materiálu na polovodičovej platničke, čím vznikne PN priechod b) vytváranie tenkých vrstiev odparovaním vyhrievaného materiálu vo vysokom vákuu c) dodávanie iónov, ktoré sú potrebné na rozprašovanie terčíkového materiálu z iónového zdroja 201. Príčinou usmerňujúceho javu na PN prechode sú a) majoritné nosiče náboja b) minoritné nosiče náboja c) kladné a záporné Ióny 202. Difúzia vedie k a) vyrovnaniu merných hmotností
- 203. Ak je segregačný koeficient nečistoty v polovodiči menší ako 1, potom:a) väčšina prímesí ostáva v kvapalnej fáze
- b) prímesi v monokryštále polovodiča sa vo vzorke rozdelia homogénne

b) vyrovnaniu koncentrácií a/alebo teplôt

c) zmene hustoty bázového prúdu a zosilneniu

- c) koniec vzorky čistejší ako jeho ostatná časť 204. Vonkajší fotoelektrický jav možno definovať ako a) emisiu fotónov v dôsledku dopadajúcich voľných nosičov náboja b) absorpciu energie dopadajúceho žiarenia voľnými nosičmi náboja kryštálu polovodiča c) výstup elektrónov z látky v dôsledku jej ožiarenia 205. Fotoelektrický jav možno definovať ako a) emisiu fotónov v dôsledku dopadajúcich voľných nosičov náboja b) uvoľňovanie nosičov náboja pohltením energetického kvanta dopadajúceho žiarenia c) emisiu fotónov v dôsledku dopadajúcich viazaných nosičov náboja 206. Vákuové naparovanie je a) fyzikálna metóda depozície tenkých vrstiev b) fyzikálna metóda depozície polymérnych vrstiev c) fyzikálna metóda depozície hrubých vrstiev 207. Cieľom technológie výroby monokryštálov je dosiahnutie a) čo najväčších monokryštálov s izotópnou kryštalografickou orientáciou b) čo najväčších monokryštálov s maximálnou čistotou bez porúch s definovanou kryštalografickou orientáciou
- c) čo najmenšej zrnitosti materiálu, ktorá sa však dosahuje len použitím veľmi nízkych teplôt
  - 208. Poruchy kryštálovej mriežky polovodičových súčiastok dobu života minoritných nosičov náboja
- a) skracujú
- b) neovplyvňujú
- c) predlžujú
  - 209. Podstata zosilnenia tranzistora spočíva v tom, že majoritné nosiče náboja, ktoré sú do bázy vstrekované malým emitorovým napätím,
- a) sa stávajú minoritnými nosičmi a pohybujú sa ku kolektoru prevážne difúziou

- b) sa stávajú majoritnými nosičmi a pohybujú sa ku kolektoru prevážne driftovaním c) vplyvom vysokého segregačného koeficientu začnú anihilovať s minoritnými nosičmi náboja
  - 210. Epitaxia je spôsob vytvárania monokryštalických tenkých vrstiev z
- a) plynnej alebo kvapalnej fázy na monokryštálových podložkách
- b) taveniny skla na monokryštálových podložkách
- c) tuhej fázy na monokryštálových podložkách
  - 211. Hrúbku hradlovej vrstvy (ochudobnená oblasť) PN priechodu
- a) možno ovládať vonkajším elektrickým poľom
- b) nemožno ovládať tepelným prúdom
- c) nemožno ovládať pretekajúcim prúdom
  - 212. Pri výrobe monokryštálu vyťahovaním z taveniny:
- a) zárodok kryštálu rotuje, ale tavenina je bez pohybu
- b) rotuje zárodok kryštálu v smere rotácie taveniny
- c) rotuje zárodok kryštálu proti smeru rotácie taveniny
  - 213. Difúzny prúd
- a) nie je nikdy vždy sprevádzaný driftovým prúdom
- b) je vždy sprevádzaný ohmickým (driftovým) prúdom
- c) je identický pojem ako driftový prúd
  - 214. Epitaxia z plynnej fázy využíva transportné a iné chemické reakcie pri
- a) podtlaku
- b) vysokom tlaku
- c) atmosférickom tlaku
  - 215. Ak Wk je menšie ako Wp, na styku kov polovodič P, ohmický kontakt antihradlová vrstva
- a) antihradlová vrstva

| b) vznikne PN    | prechod                                                                                    |
|------------------|--------------------------------------------------------------------------------------------|
| c) ohmický ko    | ntakt                                                                                      |
| 216.             | Katódové naprašovanie je realizované                                                       |
| a) v chlórovej   | atmosfére pri vysokom tlaku, a nízkom napätí a nízkej energii častíc                       |
| b) v inertnej a  | tmosfére pri nízkom tlaku, vysokom napätí a vysokej energii častíc                         |
| c) v inertnej at | mosfére pri vysokom tlaku vysokom napätí a vysokej energii častíc                          |
| 217.             | V okolí PN priechodu bez prítomnosti vonkajšieho elektrického poľa sa nachádza             |
| a) vrstva zakáz  | aných Fermiho energií                                                                      |
| b) vrstva ochu   | dobnená o voľné nosiče náboja                                                              |
| c) vrstva oboh   | atená o voľné nosiče náboja                                                                |
| 218.             | Proces výroby monokryštálu Czochralského metódou prebieha v                                |
| a) intrinzickej  | atmosfére vlastného polovodiča                                                             |
| b) inertnej atr  | nosfére alebo pod ochrannou taveninou vo vákuovej alebo tlakovej nádobe                    |
| c) inertnej atm  | nosfére s vysokou koncentráciou SiO2                                                       |
| 219.             | Výhodou iónovej implantácie je                                                             |
| a) umiestnenie   | e všetkých vývodov v jednej rovine                                                         |
| b) nízka cena p  | použitej technológie                                                                       |
| c) možnosť pr    | enikania iónov cez vrstvu SiO2                                                             |
| 220.             | Objemové monokryštály sa po vyrobení členia na plátky, takzvané                            |
| a) wafle         |                                                                                            |
| b) buffre        |                                                                                            |
| c) wafre         |                                                                                            |
| 221.<br>techno   | Povrchová koncentrácia dopujúcich atómov zabudovaných pomocou difúznej<br>ológie závisí na |
| a) intenzite ele | ektrického poľa a stratového činiteľa dopujúcej látky                                      |

- b) čistote a rovinnosti substrátu, ako aj na izolačných vlastnostiach
- c) type, teplote a tlaku dopantov a na teplote substrátu
  - 222. Efektívna hmotnosť elektrónov a dier je:
- a) rýchlosť vztiahnutá na intenzitu elektrického poľa
- b) pomer hmotnosti voľnýcvh nosičov náboja a náboja elektrónu
- c) koeficient úmernosti medzi vonkajšou silou pôsobiacou na časticu a jej stredným zrýchlením
  - 223. Molekulárna epitaxia je
- a) vytváranie veľmi tenkých viaczložkových vrstiev naparovaním zväzkami atómov alebo molekúl pri veľmi vysokom tlaku pracovnej atmosféry
- b) ultravákuové vytváranie veľmi tenkých viaczložkových vrstiev naparovaním zväzkami atómov alebo molekúl
- c) depozícia vrstvy rozdielneho zloženia ako substrát
  - 224. Termická oxidácia je
- a) parazitný rast oxidu kremíka pri tvorbe polovodičových vrstiev
- b) technológia vytvárania vrstvy natívneho oxidu kremíka
- c) fyzikálna metóda depozície oxid-nitridových vrstiev
  - 225. Zenerov jav sa uskutočňuje
- a) tunelovaním elektrónov
- b) tunelovaním viazaných iónov
- c) tunelovaním prímesových atómov
  - 226. Výhodou epitaxie je
- a) možnosť plynulo meniť koncentráciu donorových alebo akceptorových prímesí
- b) možnosť plynulo meniť hĺbku leptania materiálu polovodiča
- c) vysoká rýchlosť vytvárania vysokočistých monokryštálov
  - 227. Epitaxia je
- a) rast monokryštalickej polovodičovej vrstvy na monokryštalickej podložke

| b) spôsob odstraňovania vrstiev substraktívnou metódou |                                                                                                   |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| c) metóda výroby monokryštalických ingotov             |                                                                                                   |  |
|                                                        |                                                                                                   |  |
| 228.<br>elektrio                                       | Veličina, ktorá je definovaná ako rýchlosť elektrónov vztiahnutá k intenzite kého poľa sa nazýva: |  |
| a) pohyblivosť                                         | elektrónov                                                                                        |  |
| b) difúzne napa                                        | atie                                                                                              |  |
| c) kontaktný po                                        | otenciál                                                                                          |  |
|                                                        |                                                                                                   |  |
| 229.                                                   | Supravodivosť je pokles rezistivity niektorých kovov a zliatin pri teplote:                       |  |
| a) blízkej 0°C                                         |                                                                                                   |  |
| b) nad 273,15°                                         | C                                                                                                 |  |
| c) podkritickej <sub>l</sub>                           | ore daný materiál                                                                                 |  |
|                                                        |                                                                                                   |  |
| 230.                                                   | Nosičmi náboja v supravodivom stave sú                                                            |  |
| a) Schrieferove                                        | páry                                                                                              |  |
| b) Bardeenove                                          | páry                                                                                              |  |
| c) Cooperove p                                         | páry                                                                                              |  |
|                                                        |                                                                                                   |  |
| 231.                                                   | Na základe pásmovej štruktúry materiály rozlišujeme ako                                           |  |
| a) vodiče a nev                                        | odiče                                                                                             |  |
| b) polovodivé,                                         | vodivé a supravodivé                                                                              |  |
| c) vodiče, polovodiče a izolanty                       |                                                                                                   |  |
|                                                        |                                                                                                   |  |
| 232.                                                   | Diamagnetické latky majú magnetickú susceptibilitu k                                              |  |
| a) (k >> 0)                                            |                                                                                                   |  |
| b) (k < 0)                                             |                                                                                                   |  |
| c) (k > 0)                                             |                                                                                                   |  |
|                                                        |                                                                                                   |  |
| 233.                                                   | Ak je šírka zakázaného pásma materiálu ΔWz > 3eV, hovoríme o:                                     |  |
| a) polovodičocl                                        | n                                                                                                 |  |

| b) izolantoch                 |                                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|
| c) vodičoch                   |                                                                                                                     |
|                               |                                                                                                                     |
| 234.                          | Relatívna permeabilita μr paramagnetických materiálov je                                                            |
| a) μr < 1                     |                                                                                                                     |
| b) μr > 1                     |                                                                                                                     |
| c) μr ~ 0                     |                                                                                                                     |
|                               |                                                                                                                     |
| 235.                          | Medzi hlavné materiálové charakteristiky magnetických materiálov patrí:                                             |
| a) magnetická                 | susceptibilita, resp. relatívna permeabilita                                                                        |
| b) relatívna pe               | rmitivita                                                                                                           |
| c) merná elekt                | rická vodivosť                                                                                                      |
|                               |                                                                                                                     |
| 236.<br>k prud                | Hranicou bezpečnej vlhkosti pre elektroizolačné systémy, nad ktorou dochádza<br>lkým zmenám vlastností izolantu, je |
| a) 50% vlhkost                | <u>.</u>                                                                                                            |
| b) 70% vlhkost                | f                                                                                                                   |
| c) 60% vlhkost                | f                                                                                                                   |
|                               |                                                                                                                     |
| 237.                          | V prípade kvapalných izolantov existuje oblasť nesamostatnej vodivosti                                              |
| a) v oblasti ná               | razovej ionizácie                                                                                                   |
| b) v silných ele              | ektrických poliach                                                                                                  |
| c) slabých elel               | ktrických poliach                                                                                                   |
|                               |                                                                                                                     |
| 238.                          | Magnetostrikcia je                                                                                                  |
| a) zmena vodi                 | vých vlastností telesa z magnetického materiálu po jeho vložení do magnetického poľa                                |
| b) zmena skup                 | enstva telesa z magnetického materiálu po jeho vložení do magnetického poľa                                         |
| c) zmena geor<br>magnetického | metrických rozmerov telesa z magnetického materiálu po jeho vložení do<br>o poľa                                    |
| 239.                          | Curieho teplota je teplota, ktorej prekročením sa magnetické materiály stávajú                                      |
| a) feromagnet                 | ickými                                                                                                              |

# b) paramagnetickými

- c) diamagnetickými
  - 240. Medzi paramagnetické materiály patria:
- a) zlato a striebro
- b) hliník a platina
- c) oxidy železa
  - 241. Polarizačná zložka dielektrických strát existuje pri pôsobení
- a) jednosmerného i striedavého napätia
- b) jednosmerného napätia
- c) striedavého napätia v polárnych dielektrikách
  - 242. Teplotnú závislosť u feromagnetík vyjadruje
- a) Curieho Weissov zákon
- b) Fickov zákon
- c) Faradayov zákon
  - 243. Veľkosť relatívnej permitivity závisí od
- a) frekvencie, kvality vyhotovenia napájacích obvodov a kontaktného odporu
- b) teploty, frekvencie, kvality vyhotovenia napájacích obvodov
- c) charakteru polarizačných procesov, teploty, frekvencie
  - 244. Curieho teplota je teplota, pri ktorej
- a) sa dosahuje supravodivosť
- b) dochádza k zmene magnetickej orientácie materiálu
- c) sa magnetické materiály stávajú paramagnetickými
  - 245. Magnetizačná krivka pozostáva z
- a) výstupnej charakteristiky a krivky poslednej magnetizácie
- b) zaťažovacej krivky a prechodovej charakteristiky

### c) krivky prvotnej magnetizácie a hysteréznej slučky

a) diamagnetizmus

b) paramagnetizmus

| 246.                                                                                                                       | Magneticky tvrdé materiály majú                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| a) Hc menšie                                                                                                               | ako 800 A/m a je ich ťažké zmagnetizovať                                        |  |
| b) Hc väčšia                                                                                                               | ako 1 500 A/m a je ich ťažké zmagnetizovať                                      |  |
| c) Hc menšie                                                                                                               | ako 1 500 A/m a možno ich ľahko zmagnetizovať aj odmagnetizovať                 |  |
|                                                                                                                            |                                                                                 |  |
| 247.                                                                                                                       | Nosičmi náboja v prípade reálnych izolantov sú                                  |  |
| a) voľné ióny                                                                                                              | (kladné aj záporné) a voľné elektróny                                           |  |
| b) iba voľné e                                                                                                             | elektróny                                                                       |  |
| c) voľné ióny                                                                                                              | (len záporné) a voľné elektróny                                                 |  |
|                                                                                                                            |                                                                                 |  |
| 248.                                                                                                                       | Polarizácia dielektrických materiálov je využívaná pre konštrukciu              |  |
| a) prístrojov pre meranie dielektrických strát izolantov, pričom polarizácia je iba nežiadúci jav v<br>reálnych izolantoch |                                                                                 |  |
| b) kondenzá                                                                                                                | torov                                                                           |  |
| c) kondenzát                                                                                                               | orov a indukčných tlmiviek                                                      |  |
|                                                                                                                            |                                                                                 |  |
| 249.                                                                                                                       | Vložením paramagnetického materiálu do magnetického poľa sa toto pole           |  |
| a) zosilňuje                                                                                                               |                                                                                 |  |
| b) oslabuje                                                                                                                |                                                                                 |  |
| c) neovplyvň                                                                                                               | uje                                                                             |  |
|                                                                                                                            |                                                                                 |  |
| 250.                                                                                                                       | V polárnych kvapalných izolantoch sa vyskytujú straty                           |  |
| a) iba vodivo                                                                                                              | stné                                                                            |  |
| b) vodivostn                                                                                                               | é a polarizačné                                                                 |  |
| c) iba polarizačné                                                                                                         |                                                                                 |  |
|                                                                                                                            |                                                                                 |  |
| 251                                                                                                                        | Nenulová magnetizácia i hez prítomnosti vonkajšieho magnetického poľa sa nazýva |  |

### c) spontánny magnetizmus

| 252.                                                                                       | Paramagnetické látky majú magnetickú susceptibilitu k:                           |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| a) k > 0                                                                                   |                                                                                  |  |
| b) k = 0                                                                                   |                                                                                  |  |
| c) k < 0                                                                                   |                                                                                  |  |
|                                                                                            |                                                                                  |  |
| 253.                                                                                       | Polarizačné dielektrické straty sú zapríčinené:                                  |  |
| a) oneskorovan                                                                             | ím pohybu nosičov náboja prímesí za zmenami intenzity elektrického poľa          |  |
| b) oneskorovar                                                                             | ním pohybu voľných elektrických nábojov za zmenami intenzity elektrického poľa   |  |
| c) oneskorovar                                                                             | ním pohybu viazaných elektrických nábojov za zmenami intenzity elektrického poľa |  |
|                                                                                            |                                                                                  |  |
| 254.                                                                                       | Curieho zákon vyjadruje vplyv                                                    |  |
| a) remanencie                                                                              | na magnetizáciu paramagnetík                                                     |  |
| b) teploty na m                                                                            | nagnetizáciu paramagnetík                                                        |  |
| c) magnetickej                                                                             | indukcie na magnetizáciu paramagnetík                                            |  |
|                                                                                            |                                                                                  |  |
| 255.                                                                                       | Pre ktoré dve látky je typická magnetická susceptibilita k >> 0                  |  |
| a) diamagnetic                                                                             | ké a paramagnetické                                                              |  |
| b) feromagneti                                                                             | cké a ferimagnetické                                                             |  |
| c) feromagnetické a paramagnetické                                                         |                                                                                  |  |
|                                                                                            |                                                                                  |  |
| 256.                                                                                       | Ionizačná krivka sa používa na                                                   |  |
| a) určenie stup                                                                            | ňa polarizácie izolantu                                                          |  |
| b) posúdenie k                                                                             | vality izolácie elektrických strojov                                             |  |
| c) stanovenie odolnosti voči ionizácii izolantu                                            |                                                                                  |  |
|                                                                                            |                                                                                  |  |
| 257.                                                                                       | Dielektrické straty izolantov predstavujú elektrickú energiu, ktorá:             |  |
| a) sa prejavuje                                                                            | zmenou dielektrických vlastností                                                 |  |
| b) sa spotrebuje na kompenzáciu polarizačných pochodov pri vlastnej rezonančnej frekvencii |                                                                                  |  |
| c) sa za jednotku času premení na iný druh energie                                         |                                                                                  |  |

258. Currieho teplota je teplota typická pre: a) feroelektrické a feromagnetické látky b) nepolárne izolanty c) diamagnetické látky 259. V slabých elektrických poliach sú u reálnych izolantov voľnými nosičmi nábojov spravidla a) voľné elektróny vznikajúce disociáciou prímesí a nečistôt b) voľné ióny, vznikajúce disociáciou, resp. aktiváciou častíc prímesí a nečistôt c) voľné nosiče nábojov neexistujú 260. Polarizácia dielektrika z makroskopického hľadiska závisí na a) dipólovom momente a relatívnej permitivite b) dipólovom momente a objeme dielektrika c) veľkosti elektrického poľa 261. Straty v magnetických materiáloch vznikajú a) v dôsledku nesprávneho použitia b) iba pri Curieho teplote c) pri procese premagnetovania magnetických materiálov v striedavom poli 262. V dipólových kvapalných izolantoch sa vyskytujú: a) vodivostné a polarizačné dielektrické straty b) iba vodivostné dielektrické straty c) iba polarizačné dielektrické straty Ktorej technológii odpovedá výroba feritov, kedy sa postupne namiešajú namleté 263. práškové suroviny, ktoré sa lisujú a vypaľujú? a) hrubovrstvonej technológii b) technológiam výroby keramických materiálov c) planárnej technológii



a) elektronegatívne plynné izolanty

c) polárne kvapalné izolanty -malo by byť že pre nepolarne

b) kvapalné a plynné izolanty

270. Vzťah medzi izolantom a dielektrikom je nasledovný: a) izolant a dielektrikum sú rovnaké označenia toho istého materiálu b) každé dielektrikum je súčasne izolantom, avšak nie každý izolant je dielektrikom c) každý izolant je súčasne dielektrikom, avšak nie každé dielektrikum je izolantom 271. Dielektrické materiály sú využívané najmä pre a) izoláciu vodivých častí b) realizáciu dielektrík kondenzátorov c) kompenzáciu dielektrických strát 272. Pružná polarizácia predstavuje posunutie viazaného kladného náboja a) v smere elektrického poľa b) nezáleží na smere elektrického poľa, nakoľko viazaný kladný náboj ostáva v stabilnej polohe c) proti smeru elektrického poľa 273. V nepolárnych tuhých izolantoch sa vyskytuje polarizácia a) elektrónová b) elektrónová a dipólová c) spontánna 274. Pre feroelektriká je typická a) elektrónová pružná polarizácia b) doménová štruktúra c) iónová relaxačná štruktúra 275. V nepolárnych kvapalných izolantoch sa vyskytujú iba: a) polarizačná dielektrické straty b) tepelné straty c) vodivostné dielektrické straty

| 276.                                                            | V jednosmernom i striedavom EP sú straty zapríčinené predovšetkým                  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| a) výskytom ele                                                 | a) výskytom elektrónov                                                             |  |  |
| b) elektrickou                                                  | vodivosťou dielektrika                                                             |  |  |
| c) polarizáciou                                                 | dielektrika                                                                        |  |  |
|                                                                 |                                                                                    |  |  |
| 277.                                                            | Ak je uhol zmáčavosti menší ako 90°, tuhý izolant má                               |  |  |
| a) nezmáčavý p                                                  | povrch                                                                             |  |  |
| b) zmáčavý po                                                   | vrch                                                                               |  |  |
| c) povrch nevo                                                  | divý                                                                               |  |  |
|                                                                 |                                                                                    |  |  |
| 278.                                                            | Vzácne plyny sú charakteristické tým, že sú                                        |  |  |
| a) chemicky ne                                                  | stabilné                                                                           |  |  |
| b) chemicky na                                                  | jreaktívnejšie                                                                     |  |  |
| c) chemicky in                                                  | ertné                                                                              |  |  |
|                                                                 |                                                                                    |  |  |
| 279.                                                            | Minoritnými nosičmi náboja v polovodičoch typu N sú                                |  |  |
| a) diery                                                        |                                                                                    |  |  |
| b) elektróny                                                    |                                                                                    |  |  |
| c) elektróny aj                                                 | diery, zúčastňujúce sa na vodivosti približne rovnakou mierou                      |  |  |
|                                                                 |                                                                                    |  |  |
| 280.                                                            | Elektrická pevnosť vzduchu s rastúcou koncentráciou vody                           |  |  |
| a) klesá                                                        |                                                                                    |  |  |
| b) nemení sa                                                    |                                                                                    |  |  |
| c) stúpa                                                        |                                                                                    |  |  |
|                                                                 |                                                                                    |  |  |
| 281.                                                            | Hodnota prúdu ideálnej V-A charakteristiky PN priechodu v závernom smere závisí na |  |  |
| a) koncentrácii minoritných nosičov náboja                      |                                                                                    |  |  |
| b) koncentrácii majoritných nosičov náboja                      |                                                                                    |  |  |
| c) kryštalografickej orientácii a hrúbke základového polovodiča |                                                                                    |  |  |
|                                                                 |                                                                                    |  |  |
| 282.                                                            | Kondenzátor je elektronická súčiastka, ktorá slúži na                              |  |  |

283. PN priechod v závernom smere je charakteristický tým, že a) elektróny sa pohybujú z N do P a diery z P do N b) elektróny sa pohybujú z P do N a diery z N do P c) elektróny sa pohybujú z N do P a diery z N do P 284. Diódový jav je a) usmerňujúci jav na PN priechode, keď je pripojené jednosmerné napätie b) usmerňujúci jav na PN priechode, keď je pripojené striedavé napätie c) usmerňujúci jav na P alebo N polovodiči, kedy je napätie usmernené do jedného smeru 285. Izolanty sú látky, ktorých hlavnou vlastnosťou je: a) schopnosť klásť veľký odpor elektrickému prúdu b) schopnosť klásť veľký odpor elektrickému prúdu a magnetickému poľu c) schopnosť indukovať magnetické pole 286. Pri Curieho teplote dochádza: a) k zániku doménovej štruktúry b) k zániku elektrónových dipólov c) k neutralizácii elektrických nábojov 287. Vodivostné pásmo sa v pásmovom modeli tuhej látky nachádza a) pod zakázaným pásmom b) pod valenčným pásmom

V striedavom EP sú straty zapríčinené okrem vodivosti aj

a) usmernenie signálu

c) zosilnenie signálu

c) nad zakázaným pásmom

288.

a) polarizáciou

b) uchovávanie elektrickej energie

| b) výskytom elektrónov            |                                                                                                    |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------|--|
| c) výskytom iónov                 |                                                                                                    |  |
|                                   |                                                                                                    |  |
| 289.                              | PN priechod využívajú kapacitné diódy                                                              |  |
| a) v závernom                     | smere                                                                                              |  |
| b) v priepustno                   | m smere                                                                                            |  |
| c) v móde lavín                   | ového prierazu                                                                                     |  |
|                                   |                                                                                                    |  |
| 290.                              | Hallov jav sa prejavuje                                                                            |  |
| a) vznikom Hall                   | ovho napätia na vodiči v smere toku prúdu                                                          |  |
| b) vytvorením r                   | magnetickej indukcie v smere toku prúdu                                                            |  |
| c) vznikom Hal<br>do ktorého je v | lovho napätia na vodiči v smere kolmom na smer prúdu a smer magnetického poľa,<br>rodič vložený    |  |
|                                   |                                                                                                    |  |
| 291.                              | Polárne tuhé dielektriká                                                                           |  |
| a) <b>nie sú vhod</b> r           | né pre vysoké frekvencie                                                                           |  |
| b) sú vhodné p                    | re všestranné použitie z pohľadu frekvencie                                                        |  |
| c) sú vhodné pr                   | re vysoké frekvencie                                                                               |  |
|                                   |                                                                                                    |  |
| 292.                              | PN priechod v priepustnom smere vznikne, ak pripojíme                                              |  |
| a) striedavé na                   | pätie                                                                                              |  |
| b) k polovodiču                   | ı typu N záporný pól zdroja a k polovodiču typu P kladný pól zdroja                                |  |
| c) k polovodiču                   | typu P záporný pól zdroja a k polovodiču typu N kladný pól zdroja                                  |  |
|                                   |                                                                                                    |  |
| 293.<br>veľkost                   | Podľa Coulombovho zákona vyjadruje relatívna permitivita vplyv prostredia na sily pôsobiacej medzi |  |
| a) dipólovými d                   | loménami                                                                                           |  |
| b) doménami                       |                                                                                                    |  |
| c) nábojmi                        |                                                                                                    |  |
|                                   |                                                                                                    |  |
| 294.                              | Relaxačná polarizácia je:                                                                          |  |
| a) rýchleho prie                  | ebehu                                                                                              |  |

| b) l                   | b) bezstratová |                                                              |  |
|------------------------|----------------|--------------------------------------------------------------|--|
| c) p                   | oomalého p     | riebehu                                                      |  |
|                        |                |                                                              |  |
|                        | 295.           | S rastom teploty u feroelektrík relatívna permitivita:       |  |
| a) p                   | oo dosiahnu    | itie Curieho teploty lineárne klesá                          |  |
| b) l                   | ineárne kle    | sá                                                           |  |
| c) r                   | najprv stúpa   | a a po dosiahnutí Curieho teploty klesá                      |  |
|                        |                |                                                              |  |
|                        | 296.           | Majoritnými nosičmi náboja v prímesovom polovodiči typu P sú |  |
| a) c                   | diery          |                                                              |  |
| b) v                   | voľné ióny     |                                                              |  |
| c) e                   | elektróny      |                                                              |  |
|                        |                |                                                              |  |
|                        | 297.           | Činiteľ dielektrických strát je daný:                        |  |
| a) s                   | súčtom činn    | ej a jalovej zložky prúdu                                    |  |
| b) r                   | rozdielom č    | innej a jalovej zložky prúdu                                 |  |
| c) p                   | omerom či      | nnej a jalovej zložky prúdu                                  |  |
|                        |                |                                                              |  |
|                        | 298.           | Difúzia je opísaná                                           |  |
| a) F                   | Fickovymi z    | ákonmi                                                       |  |
| b) 9                   | Schrödinger    | rovou rovnicou                                               |  |
| c) (                   | Ohmovym z      | ákonom                                                       |  |
|                        |                |                                                              |  |
|                        | 299.           | Spontánna polarizácia:                                       |  |
| a) je bezstratová      |                |                                                              |  |
| b) je stratová         |                |                                                              |  |
| c) nezávisí na teplote |                |                                                              |  |
|                        |                |                                                              |  |
|                        | 300.           | PN priechod v závernom smere vznikne, ak zapojíme            |  |

b) k polovodiču typu P záporný pól zdroja a k polovodiču typu N kladný pól zdroja

a) k polovodiču typu N záporný pól zdroja a k polovodiču typu P kladný pól zdroja

- c) striedavé napätie 301. Zenerove diódy sú využívané na a) stabilizáciu napätia -naisto b) zosilňovanie signálov c) usmerňovanie striedavého napätia 302. Coehnovo pravidlo hovorí, že koloidné častice sa budú nabíjať a) kladne, ak ich vodivosť je menšia ako vodivosť kvapalného izolantu b) záporne, ak ich vodivosť je väčšia ako vodivosť kvapalného izolantu c) kladne, ak ich permitivita je väčšia ako permitivita kvapalného izolantu 303. Teplota vyčerpania prímesí polovodičov je: a) teplota, pri ktorej sa začínajú na vodivosti podieľať aj lokalizované elektróny a diery vlastného polovodiča b) teplota, pri ktorej dochádza k prudkému zníženiu vodivosti polovodiča c) teplota pri, ktorej sú všetky prímesi ionizované 304. Polovodiče, v ktorých voľné nosiče elektrického náboja vznikajú ionizáciou akceptorových prímesí, sú nazývané a) polovodiče typu P b) vlastné polovodiče c) polovodiče typu N
- 305. Činnosť Zenerovej diódy v závernom smere je podmienená a) nízkym napätím
- b) dostatočne úzkou hradlovou vrstvou
- c) vysokou teplotou
  - 306. Vznik Hallovho napätia je zapríčinený
- a) rovnomerným rozložením náboja vplyvom pôsobenia magnetického poľa
- b) nerovnomerným rozložením náboja vplyvom pôsobenia magnetického poľa

c) teplotným gradientom vplyvom pôsobenia magnetického poľa 307. Diódový jav vzniká za určitých podmienok na styku a) polovodiča s kovom b) kovu a dielektrika c) polovodiča a dielektrika 308. Elektrónová polarizácia sa vyskytuje: a) iba u polárnych dielektrík b) iba u feroelektrík c) u všetkých dielektrík 309. Tranzistor pozostáva a) z 1 PN priechodu b) z 3 PN priechodov c) z 2 PN priechodov 310. Pojmom "diera" je označovaný a) vakancia v štruktúre polovodiča b) uzlový bod v kryštálovej mriežke, kde sa nachádza prímesový atóm c) neobsadený stav elektrónom v čiastočne zaplnenom valenčnom pásme polovodiča 311. Aby tranzistor pracoval ako zosilňovač, musí byť emitorový priechod zapojený a) v priepustnom smere b) na smere zapojenia nezáleží, nakoľko súčiastka má 2 PN priechody c) v závernom smere 312. U prímesových polovodičov sa na prenose náboja podieľajú v závislosti na type polovodiča a) ionizované akceptory alebo ionizované donory

b) ionizované dipóly

### c) prevažne elektróny, resp. diery vlastného polovodiča

| 313.              | Typickým znakom planárnej technológie je:                                        |
|-------------------|----------------------------------------------------------------------------------|
| a) vytvorenie p   | prvkov a ich vývodov v jednej rovine                                             |
| b) možnosť um     | iestnenia puzdier BGA                                                            |
| c) použitie tech  | nnológie CoB (Chip on Board)                                                     |
|                   |                                                                                  |
| 314.              | Difúznu technológiu je možné charakterizovať ako:                                |
| a) dodávanie ić   | onov, ktoré sú potrebné na rozprašovanie terčíkového materiálu z iónového zdroja |
| b) zatavenie do   | otovacieho materiálu na polovodičovej platničke, čím vznikne PN priechod         |
|                   | tnú aplikáciu atómov na selektovaný povrch substrátu v plynnom, kvapalnom alebo  |
| pevnom skupe      | nstve                                                                            |
| 315.              | Výhodou molekulárnej epitaxie je                                                 |
|                   | nonokryštalických ingotov presného zloženia                                      |
| •                 | presné ovládanie hustoty a zloženia prúdu atómov, resp. molekúl                  |
| -                 | y nenáročné vytváranie objemových monokryštálov                                  |
| c) teelinologies  | y ficharoche vyevarame objemovyom monokrystarov                                  |
| 316.              | Elektrónová polarizácia dielektrík je:                                           |
| a) pružná         |                                                                                  |
| b) migračná       |                                                                                  |
| c) relaxačná      |                                                                                  |
|                   |                                                                                  |
| 317.              | Dielektrické straty v polárnych izolantoch sú                                    |
| a) vodivostné a   | a polarizačné                                                                    |
| b) ionizačné      |                                                                                  |
| c) len vodivostné |                                                                                  |
|                   |                                                                                  |
| 318.              | Majoritnými nosičmi náboja v polovodiči typu P sú                                |
| a) elektróny      |                                                                                  |

b) elektróny aj diery, zúčastňujúce sa na vodivosti približne rovnakou mierou

## c) diery

| 319.                             | Ak Wk je väčšie ako Wp, na styku kov – polovodič P,                           |  |
|----------------------------------|-------------------------------------------------------------------------------|--|
| a) ohmický ko                    | ntakt                                                                         |  |
| b) antihradlov                   | á vrstva                                                                      |  |
| c) vznikne PN                    | prechod                                                                       |  |
|                                  |                                                                               |  |
| 320.                             | Donor je prímes, ktorá                                                        |  |
| a) pôsobí ako                    | eliminátor porúch kryštálovej mriežky v polovodiči                            |  |
| b) odovzdáva                     | elektrón                                                                      |  |
| c) prijíma elek                  | trón                                                                          |  |
|                                  |                                                                               |  |
| 321.                             | U nepolárnych izolantov vlastný izolant                                       |  |
| a) môže disoc                    | iovať na ióny v malej miere                                                   |  |
| b) nemôže dis                    | ociovať na ióny                                                               |  |
| c) obsahuje voľné nosiče nábojov |                                                                               |  |
|                                  |                                                                               |  |
| 322.                             | Polovodičové súčiastky, v ktorých dochádza k prúdovému zosilneniu sa nazývajú |  |
| a) diódy                         |                                                                               |  |
| b) rezistory                     |                                                                               |  |
| c) tranzistory                   |                                                                               |  |
|                                  |                                                                               |  |
| 323.                             | Ak Wk je menšie ako Wp, na styku kov – polovodič N,                           |  |
| a) antihradlová vrstva           |                                                                               |  |
| b) ohmický ko                    | ntakt                                                                         |  |
| c) vznikne PN prechod            |                                                                               |  |
|                                  |                                                                               |  |
| 324.                             | Tranzistorový jav                                                             |  |
| a) je usmerňuj                   | úci jav na PN priechode,                                                      |  |

b) je termomagnetický jav v polovodičoch

c) zosilňujúci jav v polovodičoch

325. Peltierov jav je možné vyjadriť ako a) vznik termoelektrického napätia v látke pozdĺž ktorej existuje teplotný gradient b) pohlcovanie alebo vyžarovanie tepla na prechode dvoch rozdielnych polovodičov alebo polovodiča a kovu pretekanom prúdom c) uvoľňovanie elektrónov z väzieb kryštálovej mriežky silným elektrickým poľom 326. V priepustnom smere PN priechodu je orientácia priloženého napätia voči difúznemu napätiu a) protismerná b) zhodná c) nezávislá 327. Kontaktný potenciál vzniká: a) vodivým spojením dvoch rozličných kovov b) pripojením zdroja elektrického napätia na PN priechod c) vodivým spojením dvoch materiálov s rovnakými Seebeckovymi koeficientmi 328. Produktom Czochralského metódy výroby monokryštálu je a) ingot b) wafer c) whisker 329. Ak je PN priechod polarizovaný v priamom smere, a) šírka hradlovej vrstvy sa zmenšuje b) šírka hradlovej vrstvy sa zväčšuje c) tvar PN priechodu sa vychyľuje v smere vzniknutého magnetického poľa 330. Pohyblivosť voľných nosičov náboja v polovodiči je definovaná ako: a) pomer koncentrácie nosičov náboja a intenzity elektrického poľa b) pomer rýchlosti a elektrickej intenzity

c) súčin akceptorovej energie a efektívnej hmotnosti nosičov náboja

- 331. Pri výrobe monokryštálu Czochralského metódou používame: a) technický kyslík v komore s taveninou b) vodné roztoky daného polovodičového materiálu c) inertné plyny alebo vákuum v komore s taveninou 332. Dielektrické materiály sú používané pre: a) konštrukciu rezistorov b) konštrukciu transformátorov c) konštrukciu kondenzátorov 333. Homoepitaxia je a) rast vrstvy rozdielného zloženia ako substrát b) rast vrstvy rovnakého zloženia ako substrát c) výroba monokryštálov z kvapalnej aj tuhej fázy 334. Základnou črtou planárnej technológie je, a) že je to najjednoduchšia metóda prípravy PN priechodov b) že všetky kontakty sú na jednej rovine c) že je fotolitografický proces
  - 335. PN priechod je polarizovaný v závernom smere, ak pre minoritné nosiče náboja platí, že
- a) elektróny aj diery navzájom rekombinujú v hradlovej oblasti, čím dochádza k nárastu celkového prúdu
- b) elektróny z polovodiča typu N smerujú do polovodiča typu P a zároveň diery z polovodiča typu P smerujú do polovodiča typu N
- c) elektróny z polovodiča typu P smerujú do polovodiča typu N a zároveň diery z polovodiča typu N smerujú do polovodiča typu P
  - 336. Donorom je u kremíkových polovodičov prvok
- a) z 5. skupiny

c) z 3. skupiny 337. Ako sa zapájajú PN priechody bipolárneho tranzistora? a) oba PN priechody sa zapájajú závernom smere smere b) jeden PN priechod sa zapája v smere priepustnom, druhý v smere závernom c) oba PN priechody sa zapájajú v priepustnom smere 338. Kapacitu PN prechodu využívajú polovodičové prvky a) varikapy b) tranzistory c) termočlánky 339. Podmienkou pre vznik tunelového prierazu je: a) podkritická šírka hradlovej vrstvy b) minimálna driftová rýchlosť nosičov náboja c) minimálna pohyblivosť nosičov náboja 340. PN priechody sú tvorené napríklad: a) zónovou tavbou b) Czochralského metódou c) epitaxnou technológiou

b) zo 4. skupiny

341.

a) elektróny z polovodiča typu N smerujú do polovodiča typu P, a zároveň diery z polovodiča typu P smerujú do polovodiča typu N

PN priechod je polarizovaný v priamom smere ak pre majoritné nosiče náboja platí:

- b) elektróny aj diery navzájom rekombinujú v hradlovej oblasti, čím dochádza k nárastu celkového prúdu
- c) elektróny z polovodiča typu P smerujú do polovodiča typu N, a zároveň diery z polovodiča typu N smerujú do polovodiča typu P

- 342. Metóda, pri ktorej je zárodok monokryštálu upevnený na ťahacom hriadeli, priložený k tavenine v kremennom tégliku, pomaly vyťahovaný a rotovaný proti smeru rotácie taveniny, sa nazýva:
- a) Bridgemanova metóda
- b) zónová rafinácia
- c) Czochralského metóda