### Benefits of integration and prior

Example: n = 10, y = 10 - uniform vs Beta(2,2) prior



### Benefits of integration and prior

Example: n = 10, y = 10 - uniform vs Beta(2,2) prior





Simulated data of g forces in a motorcycle accident



 Gaussian process is a hierarchical normal model with multivariate normal population prior, where the off-diagonal covariances are determined by similarity measure (in the this example distance)

$$y \sim \text{normal}(f(x), \sigma)$$
  
 $f \sim GP(0, K_1)$   
 $\sigma \sim \text{normal}^+(0, 1),$ 

 Gaussian process is a hierarchical normal model with multivariate normal population prior, where the off-diagonal covariances are determined by similarity measure (in the this example distance)

$$y \sim \text{normal}(f(x), \sigma)$$
  
 $f \sim GP(0, K_1)$   
 $\sigma \sim \text{normal}^+(0, 1),$ 

•  $K_1$  is a covariance matrix, defined by a covariance function, that has parameters lengthscale I and magnitude  $\sigma_f$ 

 Gaussian process is a hierarchical normal model with multivariate normal population prior, where the off-diagonal covariances are determined by similarity measure (in the this example distance)

$$y \sim \text{normal}(f(x), \sigma)$$
  
 $f \sim GP(0, K_1)$   
 $\sigma \sim \text{normal}^+(0, 1),$ 

- $K_1$  is a covariance matrix, defined by a covariance function, that has parameters lengthscale I and magnitude  $\sigma_f$
- Latent values *f* can be integrated out analytically, and the remaining marginal posterior is 3 dimensional

Plenty of data: the mode of th posterior can be representative



Plenty of data: the mode of th posterior can be representative











 More complex model, with time dependent residual variance exp(g(x))

$$y \sim \mathsf{normal}(f(x), \mathsf{exp}(g(x)))$$
  
 $f \sim GP(0, K_1)$   
 $g \sim GP(0, K_2)$ .

 More complex model, with time dependent residual variance exp(g(x))

$$y \sim \mathsf{normal}(f(x), \mathsf{exp}(g(x)))$$
  
 $f \sim GP(0, K_1)$   
 $g \sim GP(0, K_2)$ .

 Latent values can not be integrated out analytically, and the posterior is 270 dimensional

The mode of the posterior is not representative



#### Optimization overfits



#### Integration works well



### Benefits of better priors: logistic regression

$$y \sim \mathsf{Bernoulli}\left(\mathsf{logit}^{-1}(\alpha + \beta X)\right)$$

where  $\alpha$  is a scalar intercept, and  $\beta$  is a vector of coefficients

### Model selection is needed to avoid overfitting?

logistic regression: 30 **completely irrelevant** variables, 100 observations

### Model selection is needed to avoid overfitting?

logistic regression: 30 **completely irrelevant** variables, 100 observations



N(0,3) prior on each coefficient 1 variable



N(0,3) prior on each coefficient 2 variables



N(0,3) prior on each coefficient 3 variables



N(0,3) prior on each coefficient 30 variables



N(0,3) prior on each coefficient 30 variables



A weak prior on parameters can be a strong prior on predictions

 $N(0, \frac{1}{\sqrt{p}})$  prior on each coefficient 1 variable



 $N(0, \frac{1}{\sqrt{p}})$  prior on each coefficient 2 variables



 $N(0, \frac{1}{\sqrt{\rho}})$  prior on each coefficient 3 variables



 $N(0, \frac{1}{\sqrt{p}})$  prior on each coefficient 30 variables



 $N(0, \frac{1}{\sqrt{p}})$  prior on each coefficient 30 variables



Prior on predictions (almost) fixed when the model gets bigger

### Better priors, no overfitting

logistic regression: 30 **completely irrelevant** variables, 100 observations



### Many weak effects, wide prior on parameters

logistic regression: 30 **weakly relevant** variables, 100 observations, wide prior

### Many weak effects, wide prior on parameters

logistic regression: 30 **weakly relevant** variables, 100 observations, wide prior



### Many weak effects, better prior

logistic regression: 30 **weakly relevant** variables, 100 observations, better prior



### Correlating variables, wide prior on parameters

logistic regression: 30 **correlating relevant** variables, 100 observations

### Correlating variables, wide prior on parameters

logistic regression: 30 **correlating relevant** variables, 100 observations



### Correlating variables, better prior

logistic regression: 30 **correlating relevant** variables, 100 observations



### Benefits of integration and prior

- Integration helps to avoid overfitting
- Integration is not able to counter bad priors