

LU3EE199

TD et TP de Filtrage analogique

Un Amplificatuer Opérationnel Parfait (A.O.P.) est un amplificateur différentiel dont les impédances d'entrée et le gain sont infinis. La sortie vaut : $v_s = G(v_+ - v_-)$

Pour avoir $v_s \neq \infty$ (ou $\pm V_{alim}$), il faut que $v_+ = v_-$. De plus les impédances d'entrée étant infinies, les courants d'entrée i+ et i- sont nuls.

Préparation du TD

On peut montrer que la fonction de transfert du montage ci-contre est $H(p) = 1 + \frac{R_2}{R_1} \ .$

Il faudra également réviser la forme canonique et les réponses fréquentielles des systèmes du 2eme ordre en fonction des paramètres caractéristiques de la forme canonique.

Exercice n°1

- 1- Calculer la fonction de transfert H(p) du montage.
- 2- Mettre cette fonction de transfert sous la forme canonique. calculer le taux d'amortissement ζ et la pulsation naturelle ω_N .
- **3-** On posera $C_0 = \frac{1}{R_0 \omega_0}$ et on notera $p_n = \frac{p}{\omega_0}$. Exprimer H, en fonction de p_n , puis ζ et ω_N en fonction de ω_0 , m et q.
- 4- On considère le montage suivant :

LU3EE199 Filtrage analogique

dans lequel on a $\omega_0 = 2\pi 10^3 \, rad \, / \, s$ et:

 m_1 =0.3826 et q_1 =2.6131, ce qui donne la fonction de transfert : $H_1(p_n) = \frac{1}{p_n^2}$

 $H_1(p_n) = \frac{1}{p_n^2 + 0.7653 p_n + 1}$

m₂=0.9238 et q₂ =1.0823, ce qui donne la fonction de transfert : $H_2(p_n) = \frac{1}{2}$

 $H_2(p_n) = \frac{1}{p_n^2 + 1.8477 p_n + 1}$

Calculer ζ et ω_N de chacun des étages, et en vous aidant du cours, la réponse fréquentielle de chacun d'eux puis de la totalité du montage.

Exercice n°2

Un filtre possède une fonction de transfert $H(p_n) = H_1(p_n) \cdot H_2(p_n) \cdot H_3(p_n)$ où

$$H_1(p_n) = 1 + 0.15 p_n^2$$

$$H_2(p_n) = \frac{1}{1 + 0.1 p_n}$$

$$H_3(p_n) = \frac{1}{1 + 0.8 p_n + p_n^2}$$

Tracer les réponses fréquentielles (uniquement le gain) des 3 étages du filtre, puis la réponse du filtre total.

TD n° 2 Filtres prototypes

Exercice n°1

Soit le prototype de filtre suivant :

- 1- Quelle est la fonction de transfert $H(p_n)$ de ce prototype?
- 2- Tracer sa réponse fréquentielle $|H(\omega_n)|$. Donner le gain de référence de ce prototype.
- 3- Calculer les valeurs des composants d'un filtre Passe bas atténuant de 3 dB maximum les fréquences inférieures à 30 kHz. Comme le générateur a une impédance de sortie de 50 Ω , on choisira 50 Ω comme impédance de référence. Tracer sa réponse fréquentielle $|H(\omega)|$.
- **4-** Par transposition du prototype précédent, établir le schéma électrique du filtre Passe Haut normalisé. Calculer sa fonction de transfert H'(p_n). Tracer sa réponse fréquentielle et donner son gain de référence.
- 5- Calculer les valeurs des composants d'un filtre Passe Haut atténuant de 3 dB maximum les fréquences supérieures à 100 kHz. On prendra là aussi 50 Ω comme impédance de référence. Tracer sa réponse fréquentielle $|H'(\omega)|$

Exercice n°2: filtres de Butterworth (ou Maximally Flat)

Le cahier des charges d'un filtre définit le plus souvent le comportement de son gain $G(\omega)=|H(\omega)|$. C'est la raison pour laquelle de nombreux prototypes de filtres sont caractérisés dans un premier temps par l'allure de leur réponse fréquentielle. La réponse d'un filtre de Butterworth est calculée pour être la plus plate possible dans la bande passante.

On a montré en cours que le gain d'un filtre de Butterworth normalisé à -3dB avait alors la forme suivante :

$$|H(\omega_n)|^2 = \frac{1}{1+(\omega_n)^{2n}}$$
 avec n=ordre du filtre

- 1- Que signifie dans la phrase précédente "... normalisé à -3dB... "
- 2- On désire réaliser un filtre de Butterworth qui atténue de 3 dB maximum jusqu'à 15.9 kHz et qui atténue de 40 dB à partir de 31.8 kHz. Tracer le gabarit de ce filtre. Normaliser ce gabarit. Déterminer l'ordre minimum du filtre. Vous utiliserez 2 méthodes : a-directement à partir de la réponse fréquentielle donnée ci-dessus, b- à partir des réponses fréquentielles données dans les tableaux de prototypes (Tableaux de Sallen-Key)
- **3-** A partir de sa réponse fréquentielle données ci-dessus, calculer la fonction de transfert normalisée $H(p_n)$ du prototype nécessaire pour réaliser le filtre désiré.

LU3EE199 Filtrage analogique		

Filtrage analogique en Haute Fréquence

On désire réaliser un filtre passe bande pour un réseau sans fil WIFI. A de telles fréquences, il est impossible d'utiliser des amplificateurs opérationnels. Pour cette raison on n'utilise que des structures passives. De plus la puissance disponible à ces fréquences est en général très faible. La norme GSM prévoit que les téléphones doivent être capable de fonctionner avec une puissance disponible de -100dBm ce qui correspond à 0.1 pW . . . Pour cette raison on évite d'utiliser des résistances qui dissiperaient une partie de l'énergie. Finalement, les filtres utilisés en hyperfréquence ne sont constitués que de condensateurs et d'inductances (voir les tableaux ci dessous). Le filtre que l'on désire réaliser doit laisser passer les signaux de fréquences comprise entre 2401 MHz et 2488 MHz. De plus, les fréquences en dehors de la bande de fréquences [2.25 GHz ; 2.6 GHz] devront être atténuées d'au moins un facteur 50. Enfin, dans la bande passante, le filtre ne devra pas atténuer de plus de 0.5 dB. Ce filtre sera connecté en entrée/sortie sur une impédance de 50 Ω , qui sera utilisée comme impédance de référence.

- 1 Tracer le gabarit du filtre passe bande.
- 2- Tracer le gabarit du filtre passe bas normalisé associé.
- 3- Quel filtre prototype doit-on utiliser?
- 4- Tracer le schéma du filtre passe bas normalisé associé. Donner les valeurs normalisées des composants. Tracer le schéma électrique du filtre passe bande. Déterminez les valeurs des composants du filtre.
- 5- Tracer la réponse fréquentielle de ce filtre.

Structure générale des filtres

Filtres de Butterworth

Valeurs des coefficients Butterworth pour les filtres normalisés (impédance et fréquence).

Filtres symétriques

 $g_0=g_{n+1}=1$

n /8	81	8 2	g ₃	84	81	84	87	Sa	8.	810
2	1.414	1.414								-
3	1.000	2.000	1.000						1	
4	0.7654	1.848	1.848	0.7654						
5	0.6180	1.618	2.000	1.618	0.6180					
6	0.5176	1.414	1.932	1.932	1.414	0.5176				
7	0.4450	1.247	1.802	2.000	1.802	1.247	0.4450			
8	0.3902	1.111	1.663	1.962	1.962	1.663	1.111	0.3902	100	
9	0.3473	1.000	1.532	1.879	2.000	1.879	1.532	1.000	0.3473	
10	0.3129	0.9080	1.414	1.782	1.975	1.975	1.782	1.414	0.9080	0.312

Filtres asymétriques (filtres dont l'impédance de l'une des extrémités est soit nulle soit infinie). $g_0 = I \qquad g_{n+1} = \infty$

n/8	g ₁	81	83	84	gs	84	87	g,	g,	gio	g 11
1	1.0000	-		77							
2	0.7071	1.4142	200		*			1 3	1		
3	0.5000	1.3333	1.5000	00							
4	0.3827	1.0824	1.5772	1.5307	00						
5	0.3090	0.8944	1.3820	1.6944	1.5451	000					1
6	0.2588	0.7579	1.2016	1.5529	1.7593	1.5529	00				
7	0.2225	0.6560	1.0550	1.3972	1.6588	1.7988	1.5576	049			
8	0.1951	0.5776	0.9370	1.2588	1.5283	1.7287	1.8246	1.5607	00		
			0.8414						1.5628	•	
			0.7626							1.5643	-

Filtres de Chebychev

n	gl	g2 .	g 3	g4	g5	в6	g7	gB	69	g10
1	0.6986	1.0000								
2	1.4029	0.7071	1.9841							
3	1.5963	1.0967	1.5963	1.0000						
4	1.6703	1.1926	2.3661	0.8419	1.9841		V 1			
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000			1	
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841	0		
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000		
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841	THE STATE OF THE S
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000
ó	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842
1	1.7572	1.2743	2.6809	1.3759	2.7488	1.3879	2.7488	1.3759	2.6809	1.274
2	1.7594	1.2760	2.6848	1.3784	2.7551	1.3925	2.7628	1.3886	2.7349	1.353
3	1.7610	1.2772	2.6878	1.3802	2.7596	1.3955	2.7714	1.3955	2.7596	1.380
4	1.7624	1.2783	2.6902	1.3816	2.7629	1.3976	2.7771	1.3997	2.7730	1.392
15	1.7635	1.2791	2.6920	1.3826	2.7654	1.3991	2.7811	1.4024	2.7811	1.399

Ondulation en bande passante : 1 dB

Filtres symétriques go = 1

n	gl	g2	g3	gl	85	g6	g7	g8	89	g10
1	1.0177	1.0000								
2	1.8219	0.6850	2.6599		1					
-3	2.0236	0.9941	2.0236	1.0000	1		- 67			
4	2.0991	1.0644	2.8311	0.7892	2.6599					
5	2.1349	1.0911	3.0009	1.0911	2.1349	1.0000				
6	2.1546	1.1041	3.0634	1.1518	2.9867	0.8101	2.6599			
7	2.1664	1.1116	3.0934	1.1736	3.0934	1.1116	2.1664	1.0000		
8	2.1744	1.1161	3.1107	1.1839	3.1488	1.1696	2.9685	0.8175	2.6599	
9	2.1797	1.1192	3.1215	1.1897	3.1747	1.1897	3.1215	1.1192	2.1797	1.0000
10	2.1836	1.1213	3.1286	1.1933	3.1890	1.1990	3.1738	1.1763	2.9824	0.8210
1	2.1865	1.1229	3.1338	1.1957	3.1980	1.2041	3.1980	1.1957	3.1338	1.1229
15	2.1887	1.1241	3.1375	1.1974	3.2039	1.2073	3.2112	1.2045	3.1849	1.1796
3	2.1904	1.1250	3.1403	1.1987	3.2081	1.2094	3.2192	1.2094	3.2081	1.1987
ú	2.1917	1.1257	3.1425	1.1996	3.2112	1.2108	3.2245	1.2123	3.2207	1.2073
15	2.1928	1.1263	3.1442	1.2004	3.2135	1.2119	3.2282	1.2142	3.2282	1.2119

Ondulation en bande passante : 2 dB

n	g1	g2	g3	gli	g5	g6	g7	g8	g 9	g10
1	1.5296	1.0000						Access to the second		
2	2.4881	0.6075	4.0957				0			
3	2.7107	0.8327	2.7107	1.0000		1				1
4	2.7925	0.8806	3.6063	0.6819	4.0957	1				
5	2.8310	0.8985	3.7827	0.8985	2.8310	1.0000				
6	2.8521	0.9071	3.8467	0.9393	3.7151	0.6964	4.0957			1
7	2.8655	0.9119	3.8780	0.9535	3.8780	0.9119	2.8655	1.0000		1
8	2.8733	0.9151	3.8948	0.9605	3.9335	0.9510	3.7477	0.7016	4.0957	!
9	2.8790	0.9171	3.9056	0.9643	3.9598	0.9643	3.9056	0.9171	2.8790	1.000
0	2.8831	0.9186	3.9128	0.9667	3.9743	0.9704	3.9589	0.9554	3.7619	0.704
1	2.8863	0.9195	3.9181	0.9682	3.9834	0.9737	3.9834	0.9682	3.9181	0.919
2	2.8886	0.9203	3.9219	0.9693	3.9894	0.9758	3.9967	0.9740	3.9701	0.957
3	2.890h	0.9209	3.9247	0.9701	3.9936	0.9771	1.0048	0.9771	3.9936	0.970
4	2.8919	0.9214	3.9269	0.9707	3.9967	0.9781	4.0101	0.9791	4.0062	0.975
5	2.8930	0.9218	3.9287	0.9712	3.9990	0.9788	4.0139	0.9803	4.0139	0.978

Ondulation en bande passante : 3dB

n	gl	g2	g3	gl	85	g6	g7	κß	89	g10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.9953 3.1013 3.3487 3.4389 3.4817 3.5045 3.5182 3.5277	1.0000 0.5339 0.7117 0.7483 0.7618 0.7625 0.7745 0.7760 0.7771 0.7778 0.7784 0.7789 0.7792	5.8095 3.3487 4.3471 4.5381 4.6061 4.6386 4.6575 4.6692 4.6768 4.6825 4.6825 4.6896 4.6919 4.6938	1.0000 0.5920 0.7618 0.7929 0.8039 0.8089 0.8118 0.8136 0.8147 0.8156 0.8166	5.8095 3.4817 4.4641 4.6386 4.6990 4.7272 4.7425 4.7523 4.75631 4.7631 4.7664 4.7689	1.0000 0.6033 0.7723 0.8018 0.8118 0.8164 0.8189 0.8204 0.8214 0.8222 0.8227	5.8095 3.5182 4.4990 4.6692 4.7523 4.7664 4.7751 4.7808 4.7847	1.0000 0.6073 0.7760 0.8051 0.8191 0.8194 0.8229 0.8238	5.8095 3.5340 4.51825 4.6825 4.7381 4.7631 4.7766 4.7847	1.0000 0.6091 0.7778 0.8067 0.8162 0.8204 0.8227

Filtres de Chebychev (suite)

n	gl	g2	g3	g ^l 4	g5	g6	87	gR	89	g10
1	0.0960	1.0000								
2	0.4488	0.4077	1.1007						1000	7
3	0.6291	0.9702	0.6291	1.0000	PARTIT	AND THE	1			100
14	0.7128	1.2003	1.3212	0.6476	1.1007					
5	0.7563	1.3049	1.5773	1.3049	0.7563	1.0000			100	
6	0.7813	1.3600	1.6896	1.5350	1.4970	0.7098	1.1007		1	5.00
7	0.7969	1.3924	1.7481	1.6331	1.7481	1.3924	0.7969	1.0000	25173	46.4
8	0.8072	1.4130	1.7824	1.6833	1.8529	1.6193	1.5554	0.7333	1.1007	
9	0.8144	1.4270	1.8043	1.7125	1.9057	1.7125	1.8043	1.4270	0.8144	1.0000
10	0.8176	1.4369	1.8192	1.7311	1.9362	1.7590	1.9055	1.6527	1.5817	0.7446
11	0.8234	1.4442	1.8298	1.7437	1.9554	1.7856	1.9554	1.7437	1.8298	1.4442
12	0.8264	1.4497	1.8377	1.7527	1.9684	1.8022	1.9837	1.7883	1.9293	1.669
13	0.8287	1.4540	1.8437	1.7594	1.9777	1.8134	2.0014	1.8134	1.9777	1.759
14	0.8305	1.4573	1.8483	1.7644	1.9845	1.8214	2.0132	1.8290	2.0048	1.8029
15	0.8320	1.4600	1.8520	1:7684	1.9897	1.8272	2.0216	1.8394	2.0216	1.8272

Ondulation en bande passante : 0,1 dB

n	gl	82	g3	g4	g5	g6	g7	gβ	89	g10
1	0.3052	1.0000	37							
2	0.8430	0.6220	1.3554		200		e			
3	1.0315	1.1474	1.0315	1.0000						
4	1.1088	1.3061	1.7703	0.8180	1.3554			50 E 6		75
5	1.1468	1.3712	1.9750	1.3712	1.1468	1.0000		Similar M	Trans.	
6	1.1681	1.4039	2.0562	1.5170	1.9029	0.8618	1.3554		1-10 Tell	
7	1.1811	1.4228	2.0966	1.5733	2.0966	1.4228	1.1811	1.0000		
8	1.1897	1.4346	2.1199	1.6010	2.1699	1.5640	1.9444	0.8778	1.3554	
9	1.1956	1.4425	2.1345	1.6167	2.2053	1.6167	2.1345	1.4425	1.1956	1.0000
10	1.1999	1.4481	2.1444	1.6265	2.2253	1.6418	2.2046	1.5821	1.9628	0.8853
11	1.2031	1.4523	2.1515	1.6332	2.2378	1.6559	2.2378	1.6332	2.1515	1.4523
12	1.2055	1.4554	2.1566	1.6379	2.2462	1.6646	2.2562	1.6572	5.5500	1.5912
13	100000000000000000000000000000000000000	1.4578	2.1605	1.6414	2.2521	1.6704	2.2675	1.6704	2.2521	1.6414
14		1.4596	2,1636	1.6441	2.2564	1.6745	2.2751	1.6786	2.2696	1.6648
15	100 A	1.4612	2.1660	1.6461	2.2598	1.6776	2.2804	1.6839	2.2804	1.6776

Ondulation en bande passante : 0,2 dB

n	<i>p</i> ,1	g?	g3	gli	g5	p.6	g7	68	R9	g10
1	0.4342	1.0000								
2	1.0378	0.6745	1.5386							
3	1.2275	1.1525	1.2275	1.0000						
4	1.3028	1.2844	1.9761	0.8468	1.5386		l			
5	1.3394	1.3370	2.1660	1.3370	1.3394	1.0000				
6	1.3598	1.3632	2.2394	1.4555	2.0974	0.8838	1.5386			
7	1.3722	1.3781	2.2756	1.5001	2.2756	1.3781	1.3722	1.0000		
B	1.3804	1.3875	2.2963	1.5217	2.3413	1.4925	2.1349	0.8972	1.5386	
9	1.3860	1.3938	2.3093	1.5340	2.3728	1.5340	2.3093	1.3938	1.3860	1.0000
10	1.3901	1.3983	2.3181	1.5417	2.3904	1.5536	2.3720	1.5066	2.1514	0.9034
11	1.3931	1.4015	2.3243	1.5469	2.4014	1.5646	2.4014	1.5469	2.3243	1.4015
12	1.3954	1.4040	2.3289	1.5505	2.4089	1.5713	2.4176	1.5656	2.3856	1.5136
13	1.3972	1.4059	2.3323	1.5532		1.5758	2.4276	1.5758	2.4140	1.5532
14	1.3986	1.4073	2.3350	1.5553		1.5790	2.4342	1.5821	2.4294	1.5714
15	1.3997	1.4085	2.3371	1.5569	2.4207	1.5813	2.5388	1.5862	2.4388	1.5813

Filtres de Cauer d'ordre 3

Ondulation en bande passante Amax = 1 dB

ω_{r}	A min	c ₁	c ₂	L ₂	ω ₂	C3
1.295	50	1.570	0.805	0.613	1.424	1.570
1.484	25	1.688	0.497	0.729	1.660	1.688
1.732	30	1.783	0.322	0.812	1.954	1.783
2.048	35	1.852	0.214	0.865	2.324	1.852
2.418	40	1.910	0.145	0.905	2.762	
2.856	45	1.965	0.101	0.929	3.279	1.965
ω,	A	L	L ₂	c ₂	ω2	L ₃

Ondulation en bande passante $A_{max} = 0.5 dB$

ωr	A	c ₁	c ⁵	L ₂	ω.2	c ₃
1.416	20	1.267	0.536	0.748	1.578	1.267
1.636	25	1.361		0.853		1.361
1.935	30	1.425	0.226		2.189	1.425
2.283	35	1.479	0.152	0.976	2.600	1.479
2.713	40	1.514	0.102	1.015	3.108	1.514
ωr	A	L ₁	L ₂	c ²	ω2	L ₃

Ondulation en bande passante $A_{max} = 0.1 dB$

ωr	A min	c ₁	c ⁵	L ₂	ω2	c3
1.756	20	0.850	0.290	0.871	1.986	0.850
2.082	25	0.902	0.188	0.951		0.902
2.465	30	0.941	0.125	1.012	2.813	0.941
2.921	35	0.958	0.837	1.057	3.362	0.958
3.542	40	0.988	0.570	1.081	4.027	0.988
ωr	A	L	r ⁵	c ₂	ω 2	L ₃

Filtres de Cauer d'ordre 5

Ondulation en bande passante Amax = 1 dB

ωr	Amin	c ₁	c ₂	L ₂	ω2	C ₃	C ₄	L	ωμ	C ₅
1.145	35	1.783	0.474	0.827	1.597	1.978	1.487	0.488	1.174	1.276
1.217	40	1.861	0.372	0.873	1.755	2.142	1.107	0.578	1.250	1.427
1.245	45	1.923	0.293	0.947	1.898	2.296	0.848	0.684	1.313	1.553
1.407	50	1.933	0.223	0.963	2.158	2.392	0.626	0.750	1.459	
1.528	55	1.976	0.178	0.986	2.387	2.519	0.487	0.811	1.591	1.732
1.674	60	2.007	0.141	1.003	2.660	2.620				1.807
1.841	65	2.036			2.952	2.703	THE STATE OF THE S		1.920	1.873
2.036	70	2.056	0.890	1.028	3.306	2.732	0.239		2.117	1.928
ωr	¥.	4	L ₂	c ⁵	ω_2	L3	L	Ch	ω	L

Ondulation en bande passante $A_{max} = 0.5 dB$

ωr	A	c ₁	,c2	L ₂	ω ₂	c ₃	C ₁₄	L ₄	ω,	C ₅
1.186	35	1.439	0.358	0.967	1.700	1.762	1.116	0.600	1.222	1.026
1.270	40	1.495	0.279	1.016	1.878	1.880	0.840	0.696	1.308	1.114
1.369	45	1.530	0.218	1.063	2.077	1.997	0.627	0.795	1.416	1.241
1.481	50	1.563	0.172	1.099	2.300	2.113	0.482	0.875	1.540	1.320
1.618	55	1.559	0.134	1.140	2.558	2.188	0.369	0.949	1.690	1.342
1.782	60	1.603	0,108	1.143	2.847	2.248	0.291	0.995	1.858	1.449
1.963	65	1.626	0.860	1.158	3.169	2.306	0.230	1.037	2.048	1.501
2.164	70	1.624	0.679	1.178	3.536	2.319	0.182	1.078	2.258	1.521
ωs	A	L	r ⁵	c ⁵	ω ₂	L ₃	L ₄	C ₄	ω 4	L ₅

Ondulation en bande passante Amax = 0,1 dB

ω ,	A	cı	c ⁵	r ⁵	ω 2	C3	C ₄	L ₁₄	ω 4	C ₅
1.309	35	0.977	0.230	1.139	1.954	1.488	0.742	0.740	1.350	0.701
1.414	40	1.010	0.177	1.193	2.176	1.586	0.530	0.875	1.468	0.766
1.540	45	1.032	0.140	1.228	2.412	1.657	0.401	0.968	1.605	0.836
1.690	50	1.044	0.1178	1.180	2.682	1.726	0.283	1.134	1.765	0.885
1.860	55	1.072	0.0880	1.275	2.985	1.761	0.241	1.100	1.942	0.943
2.049	60	1,095	0.0699	1.292	3.328	1.801	0.192	1.148	2.130	0.988
2.262	65	1.108	0.0555		3.712	1.834	0.151	1.191	2.358	1.022
2.512	70	1.112	0.0440	1.319	4.151	1.858	0.119	1.225	2.619	1.044
ω,	A	L	L ₂	c ₂	(N) 2	L ₃	L	Сц	ω	L ₅

Filtres à capacités commutées et universels

Exercice n°1

On considère le montage suivant où les interrupteurs sont commutés en opposition de phase par le signal d'horloge H pendant une durée légèrement inférieure à la demi-période de H pour éviter les problèmes de recouvrement.

- 1- Montrer que ce montage est équivalent à une résistance dont la valeur dépend de la fréquence f_e de l'horloge H.
- **2-** On ajoute à la sortie un condensateur C' pour faire un filtre passe-bas.

Déterminer l'équation de récurrence qui lie v_s à v_e .

- 3- En déduire la réponse fréquentielle du filtre ainsi que sa fréquence de coupure à -3 dB.
- **4-** Calculer la fréquence de coupure du filtre R-C' où R est la résistance équivalente à la capacité commutée d'entrée C.
- 5- A quelle condition les 2 circuits sont ils équivalents?
- 6- Tracer la réponse à un échelon dans le cas ou C = C'.

Exercice n°2

On désire synthétiser un filtre passe-bas de Chebycheff d'ordre 4 avec une ondulation de 1 dB dans la bande passante et une fréquence de référence de 500 Hz. Sa fonction de transfert normalisée $H(p_n)$ est :

$$H(p_n) = \frac{1}{(1 + 0.2828 p_n + 1.0136 p_n^2)(1 + 2.4113 p_n + 3.5791 p_n^2)}$$

Pour cela on utilise un circuit LTC1060 (voir documentation) avec une fréquence d'horloge de 100 kHz. Le diviseur de fréquence du circuit est imposé à 100. Ce filtre ayant un diagramme de filtre universel (le même circuit permet de faire différentes natures de filtres). Calculer les résistances nécessaires ainsi que le schéma de montage du composant.

Synthèse de filtres Actifs

Exercice n°1: filtre passe bas

On désire réaliser un filtre passe bas dont l'ondulation dans la bande passante de 0 à 1 kHz ne dépasse 1 dB. Il doit, par ailleurs, rejeter de 30 dB les fréquences au-delà de 1.8 kHz.

- 1- Tracer le gabarit du filtre. Déterminer les ordres des filtres prototypes de Butterworth, Chebycheff et Cauer nécessaire permettant de respecter le gabarit.
- 2- Choisir le prototype qui permet d'avoir le moins de composant passif en vue de le réaliser sous la forme d'un filtre de Sallen-Key.
- **3-** Tracer et calculer les éléments du filtre de Sallen-Key en choisissant comme résistance de normalisation R_0 = 10 k Ω .
- 4- Exprimer la fonction de transfert de chacun des étages. Donner leur amortissement.
- 5- Tracer sa réponse fréquentielle.

Exercice n°2 : filtre passe haut

On désire réaliser un filtre passe haut de Cauer de fréquence de coupure à -1 dB égale à 2 kHz. Il doit couper de 25 dB les fréquences inférieures à $1.1 \, \text{kHz}$.

- 1- Tracer le gabarit du filtre passe haut et du filtre passe bas normalisé associé.
- 2- Déterminer à l'abaque l'ordre du filtre de Cauer nécessaire.
- **3-** Tracer le filtre réalisant cette fonction. Calculer les composants en choisissant comme résistance de normalisation R_0 = 10 k Ω .
- 4- Tracer approximativement sa réponse fréquentielle.

Exercice n°3: filtre passe bande

On désire construire un filtre passe bande de Butterworth. Il doit laisser passer les composantes de fréquences de 905 Hz à 1105 Hz avec une atténuation maximum de 3 dB, et atténuer de 20 dB au minimum les fréquences en deçà de 800 Hz et au-delà de 1250 Hz.

- 1- Tracer le gabarit du filtre passe bande et du filtre passe bas normalisé associé.
- 2- Déterminer, à l'aide des abaques et par le calcul, l'ordre minimum du filtre.
- 3- Tracer approximativement la réponse fréquentielle du filtre passe bande correspondant.
- **4-** Dessiner le schéma électrique du filtre passe bande de Sallen-Key correspondant. Calculer les valeurs des composants le constituant. On prendra $100 \Omega < R_0 < 100 \text{ k}\Omega$.

TP: Filtres à capacités commutées

La préparation de ce TP sera notée en début de séance. La préparation porte sur les questions en italique. Les commentaires, réflexions, interrogations sont les bienvenues et ne pourront qu'augmenter la valeur de cette préparation.

On veut réaliser un filtre passe-bas dont le gain vaut au minimum -3dB pour les signaux de fréquence inférieure à 250Hz et qui atténue d'au moins 20 dB les signaux de fréquence supérieure à 500 Hz.

- 1°) Tracer le gabarit de ce filtre, en déduire le prototype et l'ordre correspondant. On choisira le filtre en considérant que la déformation du signal engendré par ce filtre dans la bande passante doit être minimale.
- 2°) On désire synthétiser ce filtre à l'aide de capacités commutées. On utilisera un circuit MF10 (composant compatible avec le LTC1060 dont la documentation est en annexe).

En vous aidant de la définition des filtres présentée à partir de la page 10 de la notice du LT1060, déterminer le mode de fonctionnement qui permet de synthétiser un filtre passebas le plus simple possible et avec le moins de résistances externes.

3°) Calcul et réalisation du filtre.

Les résistances de contre réaction directe des AOP (de la 'sortie' au -) seront de 10 k Ω , et le diviseur sera choisit égal à 100.

Calculer la fréquence d'horloge f_e pour que la fréquence de normalisation soit égale à 250Hz.

Tracer le schéma de câblage sans oublier de préciser la valeur des tensions à appliquer sur les pattes 6, 7, 8, 9, 12, 13, 14 et 15. On choisira une alimentation symétrique de +/-7.5 V.

Câbler le filtre sur les plaquettes, relever la réponse fréquentielle et tracer le diagramme de Bode correspondant (amplitude seulement). Comparez-la à la réponse fréquentielle prévue. Observer l'allure du signal de sortie en zoomant dessus et commenter.

5°) Augmenter lentement la fréquence du signal jusqu'à 100 kHz tout en observant le signal s(t). Que se passe-t-il autour des fréquences multiples de 25 kHz. Expliquer le phénomène observé.

On peut prévoir ce phénomène en modélisant le comportement du système à capacité commutée comme suit. Avant de filtrer le signal d'entrée, le système échantillonne le signal d'entrée e(t) à la fréquence de découpage f_e .

Le signal à l'entrée du filtre est donc en fait le signal $e_e(t)$:

$$e_e(t)=e(t)\sum_{-\infty}^{+\infty}\delta(t-nT_e)$$
 , où $\delta(t)$ est la distribution de Dirac

Calculer la transformée de Fourier $E_e(f)$ du signal $e_e(t)$.

Le signal e(t) s'écrit e(t)=cos($2\pi ft$). Tracer $E_e(f)$ puis le signal $S_e(f)$ obtenu après filtrage pour $f=f_e+\delta f$ puis $f=2f_e+\delta f$, avec $\delta f=10$ Hz. Conclure.

 6°) On veut maintenant réaliser un filtre passe-bas ayant les mêmes caractéristiques mais coupant à 2.5 kHz plutôt qu'à 250Hz.

Comment peut-on faire?

Faire la modification correspondante, relever la réponse fréquentielle du nouveau filtre et la tracer.

		MF10		