Random Forests

Günter J. Hitsch February 21, 2017

```
library(data.table)
library(ggplot2)
library(ranger)
```

Data

As in the regression tree example, we use household-level private label share data aggregated at the year level.

```
load("./Data/PL_shares_annual.RData")
```

For easier interpretability, we convert income and the Zillow housing index to logs.

Using ranger

The ranger function will throw an error if it detects missing data values(NA). Hence, we first remove observations with missing values:

```
PL_shares_DT = PL_shares_DT[complete.cases(PL_shares_DT)]
```

Now estimate a random forest:

Options:

- num.trees specifies the number of trees to incorporate. When you first run the algorithm, use a small number to get a sense of how slow or fast the trees are grown (ranger will provide some corresponding output, unless you add the option verbose = FALSE). The default setting is num.trees = 500. In a final production run you may choose a larger number, maybe 1000 or more if time permits.
- Set a seed inside ranger to exactly replicate your previous results.
- The importance = "impurity" option allows you to later use the importance function (e.g. importance(fit)) to display the variable importance measures.

Note

Don't exclude variables inside a formula when using ranger! E.g., do not use

```
PL_share ~ . - household_code
```

Instead, exclude the variables directly from the data.table:

```
DT[, !c("var_1", "var_2"), with = FALSE]
```

Random forest prediction

Create a data.table with a range of Zillow index values.

```
predict_DT = data.table(log_zillow
                                       = seq(11, 14, 0.01),
                                       = 9.5,
                        log_income
                                       = 2012,
                        year
                        unemployed
                                       = FALSE,
                                       = "Graduated High School",
                        education
                        age
                        size
                                       = 2,
                        has_children
                                       = 1
                        female_head
                                       = FALSE,
                        marital_status = "Married",
                        race
                                       = "White",
                        hispanic_origin= "Hispanic")
```

Predict and graph the predicted private-label share vs. the Zillow index:

```
predict_ranger = predict(fit, data = predict_DT)
predict_DT[, predicted_share := predict_ranger$predictions]
```

```
ggplot(predict_DT, aes(x = log_zillow, y = predicted_share)) +
  geom_line(color = "purple", size = 1) +
  theme_bw()
```


Here we use only 25 trees in the prediction:

```
predict_ranger = predict(fit, data = predict_DT, num.trees = 25)
predict_DT[, predicted_share := predict_ranger$predictions]

ggplot(predict_DT, aes(x = log_zillow, y = predicted_share)) +
    geom_line(color = "purple", size = 1) +
    theme_bw()
```


pdf graphs

Predict a matrix with columns for each individual tree using the predict.all = TRUE option.

```
predict_ranger = predict(fit, data = predict_DT, predict.all = TRUE)
```

First, plot each individual tree.

Second, predict based on the average over the first i trees: