Floating point: number range 4

Challenge 2

A floating point number is represented by a mantissa and an exponent. Both parts are always stored as two's complement numbers.

The number of bits allocated to the **exponent** affects the **range** of the numbers that can be represented.

If 5 bits are allocated to the mantissa and 3 bits are allocated to the exponent, what is the **smallest negative number** (the negative number that is closest to zero) that can be represented? Give you answer as a denary (base-10) number.

Floating point: number range 3

Challenge 2

A floating point number is represented by a mantissa and an exponent. Both parts are always stored as two's complement numbers.

The number of bits allocated to the **exponent** affects the **range** of the numbers that can be represented.

If 5 bits are allocated to the mantissa and 3 bits are allocated to the exponent, what is the **largest negative number** that can be represented? Give you answer as a denary (base-10) number.

Quiz:

STEM SMART Computer Science Week

<u>33</u>

Challenge 2

The binary number shown below is represented as a floating point number with a 10-bit mantissa and a 4-bit exponent. The mantissa and exponent are both stored using two's complement.

mar	ntissa	l									expor	nent		
1		0	0	0	0	1	0	1	0	0	0	1	0	1

Convert the floating point number into denary.

Quiz:

STEM SMART Computer Science Week

<u>33</u>

Floating point: normalisation

Challenge 2

mantissa	ex	ponent			
0.111010001	01	00			
	'				
mantissa	exp	ponent			
0.011101101	011	0			
mantissa	exp	exponent			
1.010011110	1111				
	'				
mantissa		exponent			
1.000000001		0110			

Quiz:

STEM SMART Computer Science Week

33

Challenge 2

The binary number shown below is represented as a **normalised floating point number** with an 8-bit mantissa and a 4-bit exponent. The mantissa and exponent are both stored using two's complement.

mantissa							expon	ent				
0		1	1	0	0	1	1	0	0	1	0	0

Convert the floating point number into denary.

Type your answer as a **signed decimal number** (e.g. +3.75) - do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week

<u>33</u>

Challenge 2

The binary number shown below is represented as a **normalised floating point number** with an 8-bit mantissa and a 4-bit exponent. The mantissa and exponent are both stored using two's complement.

man	mantissa							expo	nent			
1		0	0	1	0	1	0	0	1	1	1	1

Which of the following options shows the correct denary representation of the number?

-1.6875

-27648

-0.578125

Quiz:

STEM SMART Computer Science Week

<u>33</u>

Challenge 2

The binary number shown below is represented as a **normalised floating point number** with an 8-bit mantissa and a 4-bit exponent. The mantissa and exponent are both stored using two's complement.

mantissa							ехро	nent					
0		1	0	1	0	0	0	0	1	0	1	1	

Convert the floating point number into denary.

Type your answer as a **signed decimal number**, e.g. +3.75 - do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week

<u>33</u>

Floating point: denary to binary 1

Challenge 2

Convert the denary number $+\frac{5}{16}$ (or +0.3125 as a decimal) to binary, encoding the number as a **normalised floating point number** with an 8-bit mantissa and a 4-bit exponent. The mantissa and exponent use two's complement.

Type your answer as a 12-bit binary number with the binary point (e.g. 0.11100011101) - do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week

33

Floating point: denary to binary 2

Challenge 2

The denary number $-\frac{9}{64}$ (or -0.140625 as a decimal) has been converted to binary, and is held as a **normalised floating point number** with an 8-bit mantissa and a 4-bit exponent. The mantissa and exponent use two's complement.

Which of the following options shows the correct binary representation of the number?

	mantissa	exponent
	1.0111000	0010
	mantissa	exponent
	1.1101110	0000
	mantissa	exponent
	1.0111000	1110
	mantissa	exponent
	0.1001000	1110

All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except where otherwise stated.

STEM SMART Computer Science Week

Quiz:

Floating point: addition

Challenge 2

Select the correct result for the addition of binary numbers shown below. The representation used is **normalised** two's complement **floating point**, with **8 bits** for the mantissa and **4 bits** for the exponent.

		mantissa	exponent			
		01110110	0011			
+		01001011	0100			
	ma	ntissa	exponent			
	100	00110	0100			

\bigcirc	mantissa	exponent
	01000011	0101

mantissa	exponent
11000001	0111

mantissa	exponent
010000110	0100

