SEM and R $$^{\it Bill}$$ 2021-04-19

Contents

1	SEM and R						
2	Introduction 2.1 Definitions (Basic Concepts)	8					
3	2.4 Regression and path analysis						
4	Real data example (Multiple linear regression)						
5	SEM	17					

4 CONTENTS

SEM and R

This is the starting point.

Introduction

The following R codes and texts are from UCLA website "https://stats.idre.ucla.edu/r/seminars/rsem/" and I do not own the copyright of the R codes or texts. I wrote this R Markdown file for my own study purpose.

Given this consideration, please do NOT distribute this page in any way.

2.1 Definitions (Basic Concepts)

2.1.1 Observed variable

Observed variable: A variable that exists in the data (a.k.a item or manifest variable)

2.1.2 Latent variable

Latent variable: A variable that is constructed and does not exist in the data.

2.1.3 Exogenous variable

Exogenous variable: An independent variable either observed (X) or latent (ξ) that explains an engogenous variable.

2.1.4 Endogenous variable

Endogenous variable: A dependent variable, either observed (Y) or latent (η) that has a causal path leading to it.

2.1.5 Measurement model

Measurement model: A model that links obseved variables with latent variables.

2.1.6 Indicator (in a measurement model)

Indicator: An observed variable in a measurement model (can be exogenous or endogenous).

2.1.7 Factor

Factor: A latent variable defined by its indicators (can be exogenous or endogeous).

2.1.8 Loading

Loading: A path between an indicator and a factor.

2.1.9 Structural model

Structural model: A model that specifies casual relationships among exogeous variables to endogeous variables (can be observed or latent).

2.1.10 Regerssion path

Regression path: A path between exogeous and endogeous variables (can be observed or latent).

2.2 The path diagram

Circles represent latent variables. Squares represent observed indicators. Triangles represent intercepts or means. One way arrows represent paths. Two-way arrows represent either variances or covariances.

2.3 Lavaan syntax

 $\sim \mathbf{predict}$: used for regression of observed outcome to observed predictors (e.g., $y \sim x).$

= \sim indicator: used for latent variable to observed indicator in factor analysis measurement models (e.g., $f = \sim q + r + s$).

 $\sim \sim$ covariance: (e.g., $x \sim \sim x$).

 ~ 1 intercept or mean: (e.g., $x \sim 1$ estimates the mean of variable x).

1* fixes parameter or loading to one: (e.g., $f = \sim 1 * q$).

NA* free parameter or loading: used to override default marker method (e.g., $f = \sim NA*q$).

a* lables the parameter 'a': used for model constraints (e.g., $f = \sim a*q$).

2.4 Regression and path analysis

$$y_1 = b_0 + b_1 x_1 + \epsilon_1$$
$$y_1 = \alpha + \gamma_1 x_1 + \zeta_1$$

 x_1 single exogenous variable

 y_1 single endogenous variable

 b_0 , α_1 intercept of y_1 (alpha)

 b_1, γ_1 regression coefficient (gamma)

 $\epsilon_1,\,\zeta_1$ residual of y_1 (epsilon, zeta)

 ϕ variance or covariance of the exogenous variable (phi)

 ψ residual variance or covariance of the endogenous variable (psi)

Real data example (Simple linear regression)

3.1 Read the data into the R Studio environment.

It also calcuates the covariance matrix among all the variables in the data.

dat <- read.csv("https://stats.idre.ucla.edu/wp-content/uploads/2021/02/worland5.csv")
cov(dat)</pre>

```
motiv harm stabi ppsych ses verbal read arith spell
## motiv
        100 77
                    59
                         -25 25
                                    32 53
                                             60
## harm
         77 100
                    58
                         -25 26
                                    25 42
                                             44
                                                   45
## stabi
              58
                   100
                         -16 18
                                   27 36
                                             38
                                                   38
## ppsych -25 -25
                                 -40 -39
                   -16
                         100 -42
                                            -24
                                                 -31
           25
              26
                    18
                         -42 100
                                   40
## verbal
           32 25
                    27
                         -40 40
                                 100 56
                                                  48
## read
                    36
                         -39 43
                                   56 100
                                             73
                                                  87
           60 44
                         -24 37
## arith
                    38
                                   49 73
                                             100
                                                  72
## spell
                         -31 33
                                   48 87
                                            72
                                                  100
var(dat$motiv)
```

[1] 100

In the following, we conduct a simple linear regression.

 $sample\ variance-covariance\ matrix \hat{\sum} = \mathbf{S}$

```
m1a <- lm(read ~ motiv, data=dat)</pre>
(fit1a <-summary(m1a))</pre>
##
## Call:
## lm(formula = read ~ motiv, data = dat)
## Residuals:
       Min
                 1Q Median
                                   3Q
                                           Max
## -26.0995 -6.1109 0.2342 5.2237 24.0183
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.232e-07 3.796e-01 0.00
              5.300e-01 3.800e-02 13.95 <2e-16 ***
## motiv
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.488 on 498 degrees of freedom
## Multiple R-squared: 0.2809, Adjusted R-squared: 0.2795
## F-statistic: 194.5 on 1 and 498 DF, p-value: < 2.2e-16
library(lavaan)
#simple regression using lavaan
m1b <- '
 # regressions
   read ~ 1+ motiv
 # variance (optional)
   motiv ~~ motiv
fit1b <- sem(m1b, data=dat)</pre>
summary(fit1b)
## lavaan 0.6-8 ended normally after 14 iterations
##
##
                                                      ML
     Estimator
     Optimization method
                                                  NLMINB
##
     Number of model parameters
                                                       5
##
##
     Number of observations
                                                     500
##
## Model Test User Model:
##
                                                    0.000
##
   Test statistic
## Degrees of freedom
                                                       0
```

##									
##	Parameter Estimates:								
##									
##	Standard errors Standard								
##	Information Expected								
##	Information	saturated (h	1) model	S	tructured				
##									
##	Regressions:								
##		Estimat	e Std.E	rr z-value	P(> z)				
##	read ~								
##	motiv	0.53	0.0	38 13.975	0.000				
##									
##	Intercepts:								
##		Estimat	e Std.E	rr z-value	P(> z)				
##	.read	-0.00	0.3	79 -0.000	1.000				
##	motiv	0.00	0.4	47 0.000	1.000				
##									
##	Variances:								
##		Estimat	e Std.E	rr z-value	P(> z)				
##	motiv	99.80	0 6.3	12 15.811	0.000				
##	.read	71.76	6 4.5	39 15.811	0.000				

 $14 CHAPTER\ 3.\ REAL\ DATA\ EXAMPLE\ (SIMPLE\ LINEAR\ REGRESSION)$

Real data example (Multiple linear regression)

```
m2 <- '
 # regressions
  read ~ 1 + ppsych + motiv
# covariance
   ppsych ~~ motiv
fit2 <- sem(m2, data=dat)</pre>
summary(fit2)
## lavaan 0.6-8 ended normally after 34 iterations
##
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
     Number of model parameters
##
     Number of observations
                                                       500
## Model Test User Model:
##
##
     Test statistic
                                                     0.000
##
     Degrees of freedom
                                                         0
## Parameter Estimates:
## Standard errors
                                                  Standard
## Information
                                                  Expected
```

$16 CHAPTER\ 4.\ REAL\ DATA\ EXAMPLE\ (MULTIPLE\ LINEAR\ REGRESSION)$

##	Information	saturated	(h1)	model	St	ructured
##						
##	Regressions:					
##		Estima	ate	Std.Err	z-value	P(> z)
##	read ~					
##	ppsych	-0.3	275	0.037	-7.385	0.000
##	motiv	0.4	461	0.037	12.404	0.000
##						
##	Covariances:					
##		Estim	ate	Std.Err	z-value	P(> z)
##	ppsych ~~					
##	motiv	-24.	950	4.601	-5.423	0.000
##						
##	Intercepts:					
##		Estim	ate	Std.Err	z-value	P(> z)
##	.read	0.0	000	0.360	0.000	1.000
##	ppsych	-0.	000	0.447	-0.000	1.000
##	motiv	0.0	000	0.447	0.000	1.000
##						
##	Variances:					
##		Estim				P(> z)
##	.read		708			0.000
##	ppsych		800			0.000
##	motiv	99.8	800	6.312	15.811	0.000

\mathbf{SEM}

SEM and R