TRƯỜNG THPT QUẢNG OAI

ĐỀ KIỂM TRA CUỐI KỲ I - NĂM HỌC 2023-2024

ĐỀ CHÍNH THỰC (Đề có <mark>03</mark> trang)

MÔN: TOÁN - Lớp: 11

Thời gian làm bài: 90 phút, không kể thời gian phát đề

I. TRẮC NGHIỆM

Câu 1. Cho $\sin \alpha = \frac{2}{3}, \frac{\pi}{2} < \alpha < \pi$. Tính $\cos \alpha$?

A.
$$\cos \alpha = \frac{-\sqrt{5}}{3}$$
. **B.** $\cos \alpha = \frac{\sqrt{5}}{3}$. **C.** $\cos \alpha = \frac{-\sqrt{3}}{3}$. **D.** $\cos \alpha = \frac{\sqrt{3}}{3}$.

B.
$$\cos \alpha = \frac{\sqrt{5}}{3}$$
.

C.
$$\cos \alpha = \frac{-\sqrt{3}}{3}$$

D.
$$\cos \alpha = \frac{\sqrt{3}}{3}$$

Câu 2. Biểu thức $\sin\left(a + \frac{\pi}{6}\right)$ được viết lại

A.
$$\sin\left(a + \frac{\pi}{6}\right) = \sin a + \frac{1}{2}$$
.

C.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a - \frac{1}{2}\cos a$$
.

B.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a + \frac{1}{2}\cos a$$
.

D.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{1}{2}\sin a - \frac{\sqrt{3}}{2}\cos a$$
.

Câu 3. Với α là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?

A.
$$\cos 2\alpha = \cos^2 \alpha + \sin^2 \alpha$$
.

C.
$$\cos 2\alpha = 2\cos^2 \alpha + \sin^2 \alpha$$
.

B.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
.

D.
$$\cos 2\alpha = 2\cos^2 \alpha - \sin^2 \alpha$$
.

Câu 4. Hàm số $y = \tan x$ có tập xác định là

A.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$$

C.
$$\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$$
.

B.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

$$\mathbf{D}. \,\, \mathbb{R}$$
 .

Câu 5. Cho các hàm số $y = \sin x$; $y = \cos(x + \pi)$; $y = \sin^2 x$; $y = 1 + 2\sin x$;

Có bao nhiều hàm số chẵn trong các hàm số trên?

Câu 6. Nghiệm của phương trình $\cos x = \frac{1}{2}$ là:

A.
$$x = \pm \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C.} \ \ x = \pm \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}.$$

B.
$$x = \pm \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$$
.

$$\mathbf{D.} \ \ x = \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}.$$

Câu 7. Phương trình $\sin\left(x + \frac{\pi}{3}\right) = 0$ có nghiệm là

A.
$$-\frac{\pi}{3}+k2\pi$$
, $k\in\mathbb{Z}$. **B.** $-\frac{\pi}{2}+k\pi$, $k\in\mathbb{Z}$. **C.** $\frac{\pi}{3}+k\pi$, $k\in\mathbb{Z}$. **D.** $-\frac{\pi}{3}+k\pi$, $k\in\mathbb{Z}$.

B.
$$-\frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$

C.
$$\frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$

D.
$$-\frac{\pi}{3}+k\pi, k\in\mathbb{Z}$$

Câu 8. Cho dãy số (u_n) xác định bởi $u_n = \frac{n+1}{2n-1}$ với $n \in \mathbb{N}^*$. Tìm số hạng u_3 .

Khẳng định nào sau đây đúng?

A.
$$u_3 = 2$$
.

B.
$$u_3 = \frac{4}{5}$$
.

C.
$$u_3 = \frac{5}{7}$$
.

D.
$$u_3 = 1$$
.

Câu 9. Cho cấp số cộng (u_n) có $u_1 = 2\sqrt{5}$ và công sai $d = \sqrt{5}$. Số hạng u_{12} bằng:

A.
$$11\sqrt{5}$$
.

B.
$$14\sqrt{5}$$
.

C.
$$12\sqrt{5}$$

D.
$$13\sqrt{5}$$

Câu 10. Cho cấp số cộng $\left(u_{n}\right)$, $n\in\mathbb{N}^{*}$, có số hạng tổng quát $u_{n}=1-3n$. Tổng của 10 số hạng đầu tiên của cấp số cộng bằng

$$\mathbf{A.} - 59048$$

B.
$$-310$$
.

$$C = 155$$

$$D. -59049$$
.

Câu 11. Dãy số cho bởi công thức nào dưới đây không phải là cấp số nhân?

A.
$$u_n = \frac{3^n}{2}$$
.

B.
$$u_n = \frac{2}{5^n}$$
. **C.** $u_n = (-1)^n$. **D.** $u_n = 3n + 2$.

C.
$$u_n = (-1)^n$$
.

D.
$$u_n = 3n + 2$$

Câu 12. Một bưu tá thống kê lại số bưu phẩm gửi đến một cơ quan mỗi ngày trong tháng 6/2022 trong bảng sau:

Số bưu phẩm	[20; 24]	[25; 29]	[30; 34]	[35; 39]	[40; 44]	
Số ngày	4	6	10	6	4	

Số trung bình của mấu số liêu là

C. 30.

D. 32.

Câu 13. Thời gian (phút) xem tivi mỗi buổi tối của một số học sinh được cho trong bảng sau:

Thời gian (phút)	[6,5;9,5)	[9,5;12,5)	[12,5;15,5)	[15,5;18,5)	[18,5; 21,5)	[21,5; 24,5)	[24,5;27,5)
Số học sinh	2	3	12	15	24	2	2

Số trung vị của mẫu số liệu ghép nhóm này là

A. 18,1.

B. 15,1.

C. 21.1.

D. 15.

Câu 14. Cho hình chóp tứ giác S.ABCD có đáy là hình thang (AD//BC). Gọi H là trung điểm AB. Giao tuyến của hai mặt phẳng (SHD) và (SAC) là:

- **A.** SI (I là giao điểm của HD và AC).
- **B.** SK (K là giao điểm của AB và CD).
- C. SO(O là giao điểm của AC và BD).
- **D.** *SA* .

Câu 15. Cho tứ diện ABCD. Khẳng định nào sau đây là đúng?

A. AB, CD chéo nhau.

B. AB, CD song song.

C. AD, BC cắt nhau.

D. AC, BD cắt nhau

Câu 16. Cho tứ diện ABCD. Gọi I, J, K lần lượt là trung điểm của AC, BC và BD. Giao tuyến của hai mặt phẳng (IJK) và (ABD) là đường thẳng

A. *KI* .

B. *KD* .

 \mathbf{C} . đi qua K và song song với AB.

D. *ID* .

Câu 17. Cho hình chóp S.ABCD có đáy là hình thang, AB // CD và AB = 2CD. Gọi M, N lần lượt là trung điểm SA và SB. Khẳng định nào sau đây là **đúng**?

A. AB//MC.

B. MD//NC.

 $\mathbf{C.}\ MN//AC$.

D. *MC*// *ND* .

Câu 18. Cho hình lập phương ABCD.A'B'C'D'. Chọn khẳng định đúng:

A. (ABCD)//(A'B'D').

B. (A'D'C)//(ABCD).

 $\mathbf{C}.\ (D'C'A)//(ABCD).$

D. (BCC'B')//(ABCD).

Câu 19. Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O. Gọi E, I, K lần lượt là trung điểm của các cạnh SB, BC, CD. Mặt phẳng nào sau đây song song với (SAD)

 \mathbf{A} . (EIK).

B. (*OEI*).

C. (*KOE*).

D. (*BEK*).

Câu 20. Cho tứ diện ABCD, G là trọng tâm ΔABD và M là điểm trên cạnh BC sao cho BM = 2MC. Đường thẳng MG song song với mặt phẳng $\mathbf{A.}$ (ACD). \mathbf{C} . (ABD). **B.** (*ABC*). **D.** (BCD). Câu 21. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Hỏi đường thẳng AD song song với mặt phẳng nào dưới đây? \mathbf{C} . (SAB). $\mathbf{A.}$ (SBC). **B.** (*SAD*). **D.** (*SDC*).

Câu 22. Cho hình chóp S.ABC có M,N lần lượt là trung điểm của SB,SC. Hỏi mặt phẳng (AMN) song song với đường thẳng nào sau đây?

B. *AB* .

C. *BC* .

D. *SA* .

Câu 23. Tính $\lim \frac{8n^2 + n - 2}{n^2}$.

B. 0.

C. −2.**D.** 8.

Câu 24. Tìm giới hạn $\lim \frac{2^{n+1} + 4^n}{3^n + 4^{n+1}}$.

A. $\frac{1}{2}$. **B.** $\frac{1}{4}$.

C. 0.

 \mathbf{D} . $+\infty$.

Câu 25. Kết quả $\lim \frac{\sqrt{4n^2-n+1}}{2-4n}$ là

B. -1.

C. 1.

D. 2.

Câu 26. Cho hai hàm số f(x) và g(x) xác định trên \mathbb{R} thỏa mãn $\lim_{x\to 2023} f(x) = -1$ và $\lim_{x\to 2023} g(x) = 2$. Giá trị của biểu thức $\lim_{x\to 2023} \left[2f(x) - g(x) \right]$ bằng

C. 4.

D. -4.

Câu 27. Giới hạn $\lim_{x\to +\infty} \frac{x-3}{x+2}$ bằng

A. 0. **B.** $\frac{-3}{2}$.

D. 1.

Câu 28. Cho $A = \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$. Kết quả của giới hạn trên là

A. 3			B. 2.			C. 1.			D. 2.					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28		

II. TỰ LUẬN

Câu 29. Cho cấp số nhân (u_n) có $u_2 = 4$, $u_5 = 32$. Tính giá trị của u_9 .

Câu 30. Tìm các giá trị của tham số k để $\lim \left(\sqrt{n^2 - 4n} - n + k^2\right) = 0$

Câu 31. Cho tứ diện ABCD, G là trọng tâm tam giác ABD và M là điểm trên cạnh BC sao cho BM = 2MC. Chứng minh đường thẳng MG song song với mặt phẳng (ACD).

TRƯỜNG THPT QUẨNG OAI

ĐÁP ÁN

ĐỀ KIỂM TRA CUỐI KỲ I - NĂM HỌC 2023-2024

MÔN: TOÁN - Lớp: 11

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Câu 1. Cho $\sin \alpha = \frac{2}{3}, \frac{\pi}{2} < \alpha < \pi$. Tính $\cos \alpha$?

$$\underline{\mathbf{A}} \cdot \cos \alpha = \frac{-\sqrt{5}}{3}$$
. $\mathbf{B} \cdot \cos \alpha = \frac{\sqrt{5}}{3}$. $\mathbf{C} \cdot \cos \alpha = \frac{-\sqrt{3}}{3}$. $\mathbf{D} \cdot \cos \alpha = \frac{\sqrt{3}}{3}$.

B.
$$\cos \alpha = \frac{\sqrt{5}}{3}$$
.

C.
$$\cos \alpha = \frac{-\sqrt{3}}{3}$$
.

D.
$$\cos \alpha = \frac{\sqrt{3}}{3}$$
.

$$\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \cos \alpha = -\sqrt{1 - \left(\frac{2}{3}\right)^2} = -\frac{\sqrt{5}}{3} \text{ (Vì } \frac{\pi}{2} < \alpha < \pi \text{ nên } \cos \alpha < 0 \text{)}$$

Câu 2. Biểu thức $\sin\left(a + \frac{\pi}{6}\right)$ được viết lại

$$\mathbf{A.} \sin \left(a + \frac{\pi}{6} \right) = \sin a + \frac{1}{2}.$$

$$\underline{\mathbf{B.}} \sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \sin a + \frac{1}{2} \cos a.$$

C.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a - \frac{1}{2}\cos a$$
.

D.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{1}{2}\sin a - \frac{\sqrt{3}}{2}\cos a$$
.

Công thức: $\sin(a+b) = \sin a \cdot \cos b + \cos a \cdot \sin b$.

$$\sin\left(a + \frac{\pi}{6}\right) = \sin a \cdot \cos\frac{\pi}{6} + \cos a \cdot \sin\frac{\pi}{6} = \frac{\sqrt{3}}{2}\sin a + \frac{1}{2}\cos a.$$

Câu 3. Với α là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?

A.
$$\cos 2\alpha = \cos^2 \alpha + \sin^2 \alpha$$
.

B.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
.

C.
$$\cos 2\alpha = 2\cos^2 \alpha + \sin^2 \alpha$$
.

D.
$$\cos 2\alpha = 2\cos^2 \alpha - \sin^2 \alpha$$
.

Lời giải

Công thức đúng là $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$.

Câu 4. Hàm số $y = \tan x$ có tập xác định là

A.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$$

$$\underline{\mathbf{B}}. \ \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

C.
$$\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$$
.

D.
$$\mathbb{R}$$
 .

Câu 5. Cho các hàm số $y = \sin x$; $y = \cos(x + \pi)$; $y = \sin^2 x$; $y = 1 + 2\sin x$;

Có bao nhiều hàm số chẵn trong các hàm số trên?

A. 4.

B. 2.

C. 1.

D. 3.

Lời giải

Ta có: - Hàm số $y = \sin x$ là hàm số lẻ.

- Hàm số $y = \cos(x + \pi)$ là hàm số chẵn vì,

Ta có
$$\forall x \in D \Rightarrow -x \in D$$
, và $f(-x) = \cos(-x + \pi) = -\cos(x) = \cos(x + \pi) = f(x)$.

- Hàm số $y = \sin^2 x$ là hàm số chẵn vì,

Ta có $\forall x \in D \Rightarrow -x \in D$, và $f(-x) = \sin^2(-x) = \sin^2(x) = f(x)$.

- Hàm số $y = 1 + 2\sin x$ là hàm số không chẵn không lẻ vì,

Ta có $\forall x \in D \Rightarrow -x \in D$, và $f(-x) = 1 + 2\sin(-x) = 1 - 2\sin x$.

Suy ra: $f(-x) \neq f(x)$ và $f(-x) \neq f(x)$, hàm số không chẵn không lẻ

Vậy có 2 hàm số chẵn trong các hàm số đã cho

Câu 6. Nghiệm của phương trình $\cos x = \frac{1}{2}$ là:

A.
$$x = \pm \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \pm \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$$
.

$$\underline{\mathbf{C}}_{\cdot} x = \pm \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}.$$

D.
$$x = \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

Lời giải

$$\cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}$$

Câu 7. Phương trình $\sin\left(x + \frac{\pi}{3}\right) = 0$ có nghiệm là

A.
$$-\frac{\pi}{3} + k2\pi$$
, $k \in \mathbb{Z}$. **B.** $-\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. **C.** $\frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$. $\underline{\mathbf{D}}$. $-\frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$.

B.
$$-\frac{\pi}{2}+k\pi, k\in\mathbb{Z}$$

C.
$$\frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

$$\underline{\mathbf{D}}_{\bullet} - \frac{\pi}{3} + k\pi, \ k \in \mathbb{Z}$$

$$\sin\left(x+\frac{\pi}{3}\right)=0 \Leftrightarrow x+\frac{\pi}{3}=k\pi \Leftrightarrow x=-\frac{\pi}{3}+k\pi, k\in\mathbb{Z}$$

Câu 8. Cho dãy số (u_n) xác định bởi $u_n = \frac{n+1}{2n-1}$ với $n \in \mathbb{N}^*$. Tìm số hạng u_3 .

Khẳng định nào sau đây đúng?

A.
$$u_3 = 2$$
.

B.
$$u_3 = \frac{4}{5}$$
.

C.
$$u_3 = \frac{5}{7}$$
.

D.
$$u_3 = 1$$
.

Lời giải

Chon B

Ta có
$$u_3 = \frac{3+1}{2 \cdot 3 - 1} = \frac{4}{5}$$
.

Câu 9. Cho cấp số cộng (u_n) có $u_1 = 2\sqrt{5}$ và công sai $d = \sqrt{5}$. Số hạng u_{12} bằng:

A. $11\sqrt{5}$.

B. $14\sqrt{5}$.

C. $12\sqrt{5}$

<u>D</u>. $13\sqrt{5}$

Lời giải

Ta có
$$u_n = u_1 + (n-1)d \Rightarrow u_{12} = 2\sqrt{5} + 11\sqrt{5} = 13\sqrt{5}$$
.

Câu 10. Cho cấp số cộng $\left(u_{n}\right)$, $n\in\mathbb{N}^{*}$, có số hạng tổng quát $u_{n}=1-3n$. Tổng của 10 số hạng đầu tiên của cấp số cộng bằng

A. -59048.

B. -310.

 \mathbf{C} . -155.

 $\mathbf{D.} - 59049$.

Lời giải

Chon C

Ta có
$$u_1 = 1 - 3.1 = -2$$
; $u_2 = 1 - 3.2 = -5 \Rightarrow d = u_2 - u_1 = (-5) - (-2) = -3$.

Và
$$u_{10} = 1 - 3.10 = -29$$

Vậy tổng của 10 số hạng đầu tiên của cấp số cộng là

$$S_{10} = \frac{\left(u_1 + u_{10}\right).10}{2} = \frac{\left(-2 + \left(-29\right)\right).10}{2} = -155.$$

Câu 11. Dãy số cho bởi công thức nào dưới đây không phải là cấp số nhân?

A.
$$u_n = \frac{3^n}{2}$$
.

B.
$$u_n = \frac{2}{5^n}$$
.

C.
$$u_n = (-1)^n$$
.

$$\underline{\mathbf{D}}. \ u_n = 3n + 2.$$

Lời giải

Chon D

Ta có:

 $u_n = \frac{3^n}{2}$ là số hạng tổng quát của cấp số nhân vì $\frac{u_{n+1}}{u_n} = 3$.

 $u_n = \frac{2}{5^n}$ là số hạng tổng quát của cấp số nhân vì $\frac{u_{n+1}}{u_n} = \frac{1}{5}$.

 $u_n = (-1)^n$ là số hạng tổng quát của cấp số nhân vì $\frac{u_{n+1}}{u_n} = -1$.

Câu 12. Một bưu tá thống kê lại số bưu phẩm gửi đến một cơ quan mỗi ngày trong tháng 6/2022 trong bảng sau:

Số bưu phẩm	[20; 24]	[25; 29]	[30; 34]	[35; 39]	[40; 44]
Số ngày	4	6	10	6	4

Số trung bình của mấu số liệu là

A. 30.

B. 31.

C. 30.

D. 32.

Lời giải

Do số bưu phẩm là số nguyên nên ta hiệu chỉnh lại

Số bưu phẩm	[19,5; 24,5)	[24,5; 29,5)	[29,5; 34,5)	[34,5; 39,5)	[39,5; 44,5)
Giá trị đại diện	22	27	32	37	42
Số ngày	4	6	10	6	4

Số trung bình của mẫu số liệu ghép nhóm là $\bar{x} = \frac{4.22 + 6.27 + 10.32 + 6.37 + 4.42}{30} = 32$.

Câu 13. Thời gian (phút) xem tivi mỗi buổi tối của một số học sinh được cho trong bảng sau:

Thời gian (phút)	[6,5;9,5)	[9,5;12,5)	[12,5;15,5)	[15,5;18,5)	[18,5; 21,5)	[21,5; 24,5)	[24,5;27,5)
Số học sinh	2	3	12	15	24	2	2

Số trung vị của mẫu số liệu ghép nhóm này là

A. 18,1.

B. 15,1.

C. 21.1.

D. 15.

Lời giải

Cỡ mẫu: n = 2 + 3 + 12 + 15 + 24 + 2 + 2 = 60.

Nhóm chứa trung vị: [15,5;18,5). Suy ra: $u_m = 15,5$ và $u_{m+1} = 18,5$.

Tần số của nhóm chứa trung vị: $n_m = 15$.

$$C = n_1 + n_2 + n_3 = 2 + 3 + 12 = 17$$
.

Vậy trung vị của mẫu số liệu ghép nhóm là: $M_e = 15,5 + \frac{\frac{60}{2} - 17}{15} \cdot (18,5 - 15,5) = 18,1$.

Câu 14. Cho hình chóp tứ giác S.ABCD có đáy là hình thang (AD//BC). Gọi H là trung điểm AB. Giao tuyến của hai mặt phẳng (SHD) và (SAC) là:

- **A.** SI (I là giao điểm của HD và AC).
- **B.** SK (K là giao điểm của AB và CD).
- C. SO (O là giao điểm của AC và BD).
- **D.** *SA* .

Lời giải

- + S là điểm chung thứ nhất của (SHD) và (SAC).
- + Gọi I là giao điểm của AC và HD nên $I \in AC$, $I \in HD$ do đó I là điểm chung thứ hai $\left(SHD\right)$ và $\left(SAC\right)$.

Vậy giao tuyến của hai mặt phẳng (SHD) và (SAC) là SI.

Câu 15. Cho tứ diện ABCD. Khẳng định nào sau đây là đúng?

A. AB, CD chéo nhau.

B. AB, CD song song.

C. AD, BC cắt nhau.

D. AC, BD cắt nhau

Lời giải

Do AB, CD hoặc AD, BC hoặc AC, BD là hai cạnh đối nhau của tứ diện ABCD nên chúng chỉ có thể chéo nhau.

Câu 16. Cho tứ diện ABCD. Gọi I,J,K lần lượt là trung điểm của AC,BC và BD. Giao tuyến của hai mặt phẳng (IJK) và (ABD) là đường thẳng

A. *KI* .

B. *KD* .

 $\underline{\mathbf{C}}$. đi qua K và song song với AB.

D. *ID* .

Lời giải

Ta có
$$\begin{cases} K \in (ABD) \cap (IJK) \\ IJ \subset (IJK) \\ AB \subset (ABD) \\ IJ \# AB \end{cases} \Rightarrow (ABD) \cap (IJK) = KM \# AB \# IJ.$$

Câu 17. Cho hình chóp S.ABCD có đáy là hình thang, AB // CD và AB = 2CD. Gọi M, N lần lượt là trung điểm SA và SB. Khẳng định nào sau đây là **đúng**?

 $\mathbf{A.} \ AB//MC$.

B. MD // NC.

C. MN // AC. **D.** MC // ND.

Lời giải

Các đáp án A, C sai vì các đường thẳng đó không đồng phẳng.

Đáp án D sai vì MC và ND cắt nhau.

Ta có MN là đường trung bình trong tam giác SAB.

$$\Rightarrow \begin{cases} MN // AB \\ MN = \frac{1}{2} AB \end{cases}.$$

$$\text{Mà} \begin{cases} CD // AB \\ CD = \frac{1}{2} AB \end{cases} \Rightarrow \begin{cases} MN // CD \\ MN = CD \end{cases}.$$

Suy ra MNCD là hình bình hành.

Vậy MD//NC.

Câu 18. Cho hình lập phương ABCD. A'B'C'D'. Chọn khẳng định đúng:

$$\underline{\mathbf{A}}$$
. $(ABCD)//(A'B'D')$.

B.
$$(A'D'C)//(ABCD)$$
.

C.
$$(D'C'A)//(ABCD)$$
.

D.
$$(BCC'B')//(ABCD)$$
.

Theo định nghĩa hình lập phương ta được kết quả.

Câu 19. Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O. Gọi E, I, K lần lượt là trung điểm của các cạnh SB, BC, CD. Mặt phẳng nào sau đây song song với (SAD)

A. (*EIK*).

B. (*OEI*).

 \mathbf{C} . (KOE).

D. (*BEK*).

Lời giải

ABCD là hình bình hành tâm O nên O là trung điểm của AC và $BD\,.$ Kết hợp giải thiết ta có:

OK //AD (do OK là đường trung bình của ΔACD) nên OK //(SAD).

 $OE \, / \! / \, SD$ (do OE là đường trung bình của ΔSBD) nên $OE \, / \! / \, \left(SAD\right).$

Và $OE \cap OK = \{O\}$ nên suy ra (KOE) // (SAD).

Câu 20. Cho tứ diện ABCD, G là trọng tâm ΔABD và M là điểm trên cạnh BC sao cho BM=2MC. Đường thẳng MG song song với mặt phẳng

 $\underline{\mathbf{A}}$. (ACD).

B. (ABC).

 \mathbf{C} . (ABD).

D. (*BCD*).

Lời giải

Gọi P là trung điểm AD

Xét (BCP):

Ta có:
$$\frac{BM}{BC} = \frac{BG}{BP} = \frac{3}{2} \Rightarrow MG//CP$$
.

$$\begin{cases} MG//\text{CP} \\ CP \subset (ACD) \Rightarrow \text{MG}//(ACD). \\ MG \not\subset (ACD) \end{cases}$$

Câu 21. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Hỏi đường thẳng AD song song với mặt phẳng nào dưới đây?

$$\underline{\mathbf{A}}$$
. (SBC).

$$\mathbf{C.}$$
 (SAB).

D.
$$(SDC)$$
.

Lời giải

$$\begin{cases} AD//BC \\ BC \subset (SBC) \end{cases} \Rightarrow AD//(SBC) .$$

Câu 22. Cho hình chóp S.ABC có M,N lần lượt là trung điểm của SB,SC. Hỏi mặt phẳng (AMN) song song với đường thẳng nào sau đây?

$$\mathbf{A}. \ SB$$
.

B.
$$AB$$
.

$$\underline{\mathbf{C}}$$
. BC .

Lời giải

Vì M,N lần lượt là trung điểm của SB,SC nên MN là đường trung bình của tam giác SBC. Từ đó suy ra MN//BC.

$$\begin{cases}
MN//BC \\
MN \subset (AMN)
\end{cases} \Rightarrow BC//(AMN).$$

Câu 23. Tính $\lim \frac{8n^2 + n - 2}{n^2}$.

B. 0.

 $C. -2.\underline{D}. 8.$

Lời giải

$$\lim \frac{8n^2 + n - 2}{n^2} = \lim \left(8 + \frac{1}{n} - \frac{2}{n^2} \right) = 8.$$

Câu 24. Tìm giới hạn $\lim \frac{2^{n+1} + 4^n}{3^n + 4^{n+1}}$.

A.
$$\frac{1}{2}$$

$$\underline{\mathbf{B}}_{\cdot} \frac{1}{4}$$
.

$$\mathbf{D}_{\bullet} + \infty$$
.

Lời giải

Ta có:
$$\lim \frac{2^{n+1} + 4^n}{3^n + 4^{n+1}} = \lim \frac{2 \cdot 2^n + 4^n}{3^n + 4 \cdot 4^n} = \lim \frac{2 \cdot \left(\frac{2}{4}\right)^n + 1}{\left(\frac{3}{4}\right)^n + 4} = \frac{2 \cdot 0 + 1}{0 + 4} = \frac{1}{4}$$
.

Câu 25. Kết quả $\lim \frac{\sqrt{4n^2-n+1}}{2-4n}$ là

C. 1.

D. 2.

Ta có
$$\lim \frac{\sqrt{4n^2 - n + 1}}{2 - 4n} = \lim \frac{\sqrt{n^2 \left(4 - \frac{1}{n} + \frac{1}{n^2}\right)}}{n\left(\frac{2}{n} - 4\right)} = \lim \frac{n\sqrt{4 - \frac{1}{n} + \frac{1}{n^2}}}{n\left(\frac{2}{n} - 4\right)} = \lim \frac{\sqrt{4 - \frac{1}{n} + \frac{1}{n^2}}}{\frac{2}{n} - 4} = \frac{-1}{2}.$$

Câu 26. Cho hai hàm số f(x) và g(x) xác định trên \mathbb{R} thỏa mãn $\lim_{x\to 2023} f(x) = -1$ và $\lim_{x\to 2023} g(x) = 2$. Giá trị của biểu thức $\lim_{x\to 2023} \left[2f(x) - g(x) \right]$ bằng

D. −4.

Ta có
$$\lim_{x\to 2023} \left[2f(x) - g(x) \right] = 2\lim_{x\to 2023} f(x) - \lim_{x\to 2023} g(x) = 2 \cdot (-1) - 2 = -4$$
.

Câu 27. Giới hạn $\lim_{x\to +\infty} \frac{x-3}{x+2}$ bằng

B. $\frac{-3}{2}$.

<u>D</u>. 1.

Lời giải

Ta có
$$\lim_{x \to +\infty} \frac{x-3}{x+2} = \lim_{x \to +\infty} \frac{1 - \frac{3}{x}}{1 + \frac{2}{x}} = 1$$
.

Câu 28. Cho $A = \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$. Kết quả của giới hạn trên là **A. 3. B.** 2.

Lời giải

D. 2.

Ta có $A = \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x - 1} = \lim_{x \to 1} (x + 2) = 1 + 2 = 3.$

1A	2B	3B	4B	5B	6C	7D	8B	9D	10C	11D	12D	13A	14A	15A
16C	17B	18A	19C	20A	21A	22 C	23D	24B	25A	26D	27 D	28A		

Cho cấp số nhân (u_n) có $u_2 = 4$, $u_5 = 32$. Tính giá trị của u_9 .

+) Ta có:
$$\begin{cases} u_2 = 4 \\ u_5 = 32 \end{cases} \Leftrightarrow \begin{cases} u_1 \cdot q = 4 \\ u_1 \cdot q^4 = 32 \end{cases} \Leftrightarrow \begin{cases} q^3 = 8 \\ u_1 = \frac{4}{q} \end{cases} \Leftrightarrow \begin{cases} q = 2 \\ u_1 = 2 \end{cases}.$$

+) Từ đó áp dụng công thức của số hạng tổng quát $u_n = u_1.q^{n-1}$, ta có: $u_9 = u_1.q^8 = 2.2^8 = 512$.

Tìm các giá trị của tham số k để $\lim \left(\sqrt{n^2 - 4n} - n + k^2\right) = 0$

Ta có
$$\lim \left(\sqrt{n^2 - 4n} - n + k^2\right) = \lim \frac{\left(\sqrt{n^2 - 4n} - \left(n - k^2\right)\right)\left(\sqrt{n^2 - 4n} + \left(n - k^2\right)\right)}{\left(\sqrt{n^2 - 4n} + \left(n - k^2\right)\right)}$$

$$= \lim \frac{n^2 - 4n - n^2 + 2k^2n - k^4}{\sqrt{n^2 + 4n} + (n - k^2)} = \lim \frac{2k^2n - 4n - k^4}{\sqrt{n^2 + 4n} + (n - k^2)} = \lim \frac{2k^2 - 4 - \frac{k^4}{n}}{\sqrt{1 + \frac{4}{n} + \left(1 - \frac{k^2}{n}\right)}} = k^2 - 2$$

Theo bài $\lim \left(\sqrt{n^2 - 4n} - n + k^2\right) = 0 \Rightarrow k^2 - 2 = 0 \Leftrightarrow k = \pm \sqrt{2}$

Cho tứ diện ABCD, G là trọng tâm tam giác ABD và M là điểm trên cạnh BC sao cho Câu 31. BM = 2MC. Chứng minh đường thẳng MG song song với mặt phẳng (ACD).

Lời giải

Gọi E là trung điểm AD.

Do G là trọng tâm $\triangle ABD$ nên: $\frac{BG}{RF} = \frac{2}{2}$ (1)

Mặt khác do $BM = 2MC \Rightarrow \frac{BM}{RC} = \frac{2}{3}$ (2)

Từ (1) và (2) \Rightarrow GM//EC, mà $EC \subset (ACD)$ nên MG//(ACD).