Prakash Kotecha
Debasis Maharana & Remya Kommadath
Department of Chemical Engineering
Indian Institute of Technology Guwahati

Outline

- ➤ Differential Evolution (DE)
- Difference-vector based mutation
- Recombination operators
- ➤ Variants of DE
- Detailed working of DE with an example
- ➤ Preliminary comparison of algorithms

Journal of Global Optimization

December 1997, Volume 11, <u>Issue 4</u>, pp 341–359 | <u>Cite as</u>

Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces

Authors Authors and affiliations

Rainer Storn, Kenneth Price

Article

Around 13,000 publications (Scopus, Dec 2019)

<u>Journal of Global Optimization</u>

December 1997, Volume 11, <u>Issue 4</u>, pp 341–359 | <u>Cite as</u>

Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces

Authors Authors and affiliations

Rainer Storn, Kenneth Price

Article

- Stochastic population based technique.
- Each solution is known as genome/chromosome.
- Each chromosome undergoes mutation followed by recombination.

- Selection of better solutions is performed only after the generation of all trial vectors.
- >Greedy selection is performed between target and trial vectors.

Difference-vector based mutation

➤ Donor vector (V) of a chromosome (X_i) is created as

$$V = X_{r_1} + F\left(X_{r_2} - X_{r_3}\right)$$

F Scaling factor, a constant between 0 and 2

 r_1, r_2, r_3 Random solutions $r_1, r_2, r_3 \in \{1, 2, 3, ..., N_p\}$ and $r_1 \neq r_2 \neq r_3 \neq i$

- Target vector is not involved in mutation.
- Total 4 vectors are involved in the mutation of a target vector and hence $N_p \ge 4$.

Recombination: Binomial (uniform) crossover

- Performed to increase the diversity
- Creation of trial vector can be

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

- crossover probability p_{c}
- randomly selected variable location $\delta \in \{1, 2, 3, ..., D\}$ δ
- random number between 0 and 1
- ith variable of trial vector
- jth variable of donor vector
- jth variable of target vector
- $\triangleright \delta$ ensures that at least one variable is obtained from the donor vector
- Probability for crossover (p_c) is generally high
- High p_c results in more variables from donor

Recombination: Binomial (uniform) crossover

- Performed to increase the diversity
- Creation of trial vector can be

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

- crossover probability p_{c}
- randomly selected variable location $\delta \in \{1, 2, 3, ..., D\}$ δ
- random number between 0 and 1
- ith variable of trial vector
- jth variable of donor vector
- jth variable of target vector
- $\triangleright \delta$ ensures that at least one variable is obtained from the donor vector
- Probability for crossover (p_c) is generally high
- High p_c results in more variables from donor

Illustration of binomial crossover

$$\delta = 4$$
 and $p_c = 0.8$

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

Illustration of binomial crossover

$$\delta = 4$$
 and $p_c = 0.8$

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

Bounding of offspring

Selection

- Evaluate the fitness function of all offspring (f_U) .
- Population is updated using greedy selection.

$$\left\{ egin{aligned} X_i &= U_i \ f_i &= f_{U_i} \end{aligned}
ight\} if f_{U_i} < f_i \end{aligned}$$

X and f remains the same if $f_{U_i} > f_i$

Greedy selection is performed only after the generation of offspring by all solutions.

Pseudocode of DE

```
Inputs: Fitness function, lb, ub, N<sub>p</sub>, T, F, p<sub>c</sub>
1. Initialize a random population (P)
                                                                                                                      In one iteration, \#FE = N_n
2. Evaluate fitness (f) of P \leftarrow FE = N_p
                                                                                                                      For T iterations, \#FE = N_p + N_pT
    for t = 1 to T
       for i = 1 to N_p
                                                                                                                       V = X_{r_1} + F(X_{r_2} - X_{r_3})
            Generate the donor vector (V<sub>i</sub>) using mutation
                                                                                                   Generation
            Perform crossover to generate offspring (U;)
                                                                                                              u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \text{ or } j = \delta \\ x^{j} & \text{if } r > p_{c} \text{ and } j \neq \delta \end{cases}
        end
        for i = 1 to N_p
            Bound U;
                                                                                                     Selection
            Evaluate the fitness (f_{U_i}) of U_i \leftarrow FE = 1
                                                                                                                               \left. \begin{array}{l} X_i = U_i \\ f_i = f_{U_i} \end{array} \right\} if \ f_{U_i} < f_i 
            Perform greedy selection using f_{U_i} and f_i to update P
        end
   end
```

Exponential crossover

- \triangleright Randomly choose an integer (n) between 1 and D.
- Copy the nth variable from donor as nth variable of trial vector.
- For the subsequent variables, generate a random number between 0 and 1, till $r > p_c$.
- \triangleright If $r \le p_c$, copy the variable from donor to trial vector.
- \triangleright If r > pc, copy the remaining variables from target to trial vector.

Illustration of exponential crossover

Mutation strategies (DE/x/y/z)

➤DE: Differential Evolution

x: Vector to be mutated

>y: number of difference vectors (random solutions) required for mutation

>z: type of crossover scheme to be used (can be either exponential or binomial crossover)

Strategy	Expression for donor vector	Minimum N _p
DE/rand/1	$V = X_{r_1} + F\left(X_{r_2} - X_{r_3}\right)$	4
DE/best/1	$V = X_{best} + F\left(X_{r_1} - X_{r_2}\right)$	3
DE/rand/2	$V = X_{r_1} + F(X_{r_2} - X_{r_3}) + F(X_{r_4} - X_{r_5})$	6
DE/best/2	$V = X_{best} + F(X_{r_1} - X_{r_2}) + F(X_{r_3} - X_{r_4})$	5
DE/target-to-best/1	$V = X_i + F(X_{best} - X_i) + F(X_{r_1} - X_{r_2})$	3

Working of DE: Sphere function

Consider min
$$f(x) = \sum_{i=1}^{4} x_i^2$$
; $0 \le x_i \le 10$, $i = 1, 2, 3, 4$

$$f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

Decision variables: x_1 , x_2 , x_3 and x_4 and dimension D = 4

Step 1: Fix the population size, number of generation, crossover probability, scaling factor

$$N_p = 5$$
, $T = 10$, $p_c = 0.8$, $F = 0.85$

Step 2: Generate random solutions within the domain of the decision variables

$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 81 \\ 140 \\ 35 \\ 102 \\ 78 \end{bmatrix}$$

Working of DE: first solution

Step 3: Generate 4 random integers between 1 and N_p

Let
$$r_1 = 4$$
 $r_2 = 2$ $r_3 = 3$ $\delta = 1$

Step 4: Determine donor vector (Mutation)

Let
$$r_1 = 4$$
 $r_2 = 2$ $r_3 = 3$ $\delta = 1$

ep 4: Determine donor vector (Mutation)

$$V_1 = X_4 + F(X_2 - X_3)$$

$$= \begin{bmatrix} 2 & 1 & 4 & 9 \end{bmatrix} + 0.85 \times (\begin{bmatrix} 3 & 1 & 9 & 7 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix})$$

$$= \begin{bmatrix} 2 & 1 & 4 & 9 \end{bmatrix} + \begin{bmatrix} 2.55 & -1.7 & 6.8 & 1.7 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix}$$

$$V = X_{r_1} + F(X_{r_2} - X_{r_3})$$

$$= \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix}$$

$$V = X_{r_1} + F(X_{r_2} - X_{r_3})$$

$$= \begin{bmatrix} 4.55 & -0.7 & 10.8 & 10.7 \end{bmatrix}$$

Step 5: Generate D random numbers

Let
$$r = [0.3 \ 0.9 \ 0.2 \ 0.6]$$

$$p_c = 0.8, F=0.85$$

$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix} \quad f = \begin{bmatrix} 81 \\ 140 \\ 35 \\ 102 \\ 78 \end{bmatrix}$$

$$V = X_{r_1} + F\left(X_{r_2} - X_{r_3}\right)$$

DE: first solution

Step 6: Determine trial vector

j	Target Vector	Donor Vector	r	$(r \leq p_c)$	δ≠j	δ =j	Trial Vector
1	4	4.55	0.3	✓	-	-	4.55
2	0	-0.7	0.9	×	√	×	0
3	1	10.8	0.2	✓	-	_	10.8
4	8	10.7	0.6	✓	-	-	10.7

$$p_c = 0.8, F = 0.85, \delta = 1$$

$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix} f = \begin{bmatrix} 81 \\ 140 \\ 35 \\ 102 \\ 78 \end{bmatrix}$$

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

Step 7: Check bounds, bound if violates

$$U_1 = [4.55 \ 0 \ 10.8 \ 10.7] \rightarrow U_1 = [4.55 \ 0 \ 10 \ 10]$$

$$\longrightarrow$$
 $U_1 =$

$$J_1 = [4.55 \ 0 \ 10 \ 10]$$

$$0 \le x_i \le 10$$

$$x = lb$$
 if $x < lb$
 $x = ub$ if $x > ub$

First iteration

Value of r_1 , r_2 , r_3 , r, δ for first iteration

$$V = X_{r_1} + F(X_{r_2} - X_{r_3})$$
 $p_c = 0.8, F = 0.85$

i	Target (P)	r ₁	\mathbf{r}_2	\mathbf{r}_3	Donor (V)	r	δ	Trial (U)
1	[4 0 1 8]	4	2	3	[4.55 -0.7 10.8 10.7]	[0.3 0.9 0.2 0.6]	1	[4.55 0 10 10]
2	[3 1 9 7]	5	1	3	[4.4 -0.55 8 5.55]	[0.3 0.2 0.6 0.4]	4	[4.4 0 8 5.55]
3	[0 3 1 5]	4	2	1	[1.15 1.85 10.8 8.15]	[0.2 0.5 0.4 0.3]	4	[1.15 1.85 10 8.15]
4	[2 1 4 9]	5	3	2	[-1.55 3.7 1.2 1.3]	[0.8 0.3 0.6 0.2]	1	[0 3.7 1.2 1.3]
5	[1 2 8 3]	2	4	1	[1.3 1.85 11.55 7.85]	[0.7 0.5 0.9 0.2]	3	[1.3 1.85 8 7.85]

Step 8: Evaluate the fitness of bounded trial vectors

$$U = \begin{bmatrix} 4.55 & 0 & 10 & 10 \\ 4.4 & 0 & 8 & 5.55 \\ 1.15 & 1.85 & 10 & 8.15 \\ 0 & 3.7 & 1.2 & 1.3 \\ 1.3 & 1.85 & 8 & 7.85 \end{bmatrix} \qquad f_U = \begin{bmatrix} 220.70 \\ 114.16 \\ 171.17 \\ 16.82 \\ 130.73 \end{bmatrix}$$

$$f_U = \begin{bmatrix} 220.70 \\ 114.16 \\ 171.17 \\ 16.82 \\ 130.73 \end{bmatrix}$$

$$u^{j} = \begin{cases} v^{j} & \text{if } r \leq p_{c} \ OR \ j = \delta \\ x^{j} & \text{if } r > p_{c} \ AND \ j \neq \delta \end{cases}$$

$$f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

DE: Greedy selection of first iteration

• Step 9: After each iteration, perform greedy solution and update population

$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 81 \\ 140 \\ 35 \\ 102 \\ \hline 78 \end{bmatrix}$$

$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 1 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 81 \\ 140 \\ 35 \\ 102 \\ \hline 78 \end{bmatrix} \qquad U = \begin{bmatrix} 4.55 & 0 & 10 & 10 \\ 4.4 & 0 & 8 & 5.55 \\ 1.15 & 1.85 & 10 & 8.15 \\ 0 & 3.7 & 1.2 & 1.3 \\ 1.3 & 1.85 & 8 & 7.85 \end{bmatrix} \qquad f_U = \begin{bmatrix} 220.70 \\ 114.16 \\ 171.17 \\ 16.82 \\ 130.73 \end{bmatrix}$$

$$f_U = \begin{bmatrix} 220.70 \\ 114.16 \\ 171.17 \\ 16.82 \\ 130.73 \end{bmatrix}$$

Population for next iteration
$$P = \begin{bmatrix} 4 & 0 & 1 & 8 \\ 4.4 & 0 & 8 & 5.55 \\ 0 & 3 & 1 & 5 \\ 0 & 3.7 & 1.2 & 1.3 \\ 1 & 2 & 8 & 3 \end{bmatrix} \quad f = \begin{bmatrix} 81 \\ 114.16 \\ 35 \\ 16.82 \\ 78 \end{bmatrix}$$

DE: Satisfaction of termination criterion

min
$$f(x) = \sum_{i=1}^{4} x_i^2$$
; $0 \le x_i \le 10$, $i = 1, 2, 3, 4$

After the completion of 10 iterations

$$P = \begin{bmatrix} 0 & 4.18 & 1.2 & 0 \\ 0 & 3.51 & 1.2 & 0 \\ 0 & 3 & 1.2 & 1.65 \\ 0 & 3.10 & 1.2 & 1.40 \\ 0 & 3.68 & 1.2 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} 18.89 \\ 13.73 \\ 13.15 \\ 13.02 \\ 15.01 \end{bmatrix}$$

The minimum value of the function is **0**

Comparison between TLBO, PSO and DE

	TLBO	PSO	DE
Phases	Teacher, Learner	No phases (Position and velocity update)	No phases (Mutation and crossover)
Convergence	Monotonic	Monotonic (with g _{best} & p _{best})	Monotonic
Parameters	Population size, termination criteria	Population size, termination criteria, w, c ₁ and c ₂	Population size, termination criteria, P _c , F
Generation of new solution	Using other solutions, mean and best solution (part of population)	Using velocity vector, p _{best} and g _{best} (need not be the part of population)	Using other solutions (best solution is part of population)
Solution update in an iteration	Twice	Once	Once
Selection	Greedy	Always accept new solution into the population (μ, λ)	Greedy
#FE	$N_p + 2N_pT$	$N_p + N_p T$	$N_p + N_pT$

Further reading

- ➤ Differential Evolution A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, **Journal of Global Optimization**, 11, 341, 1997
- ► JADE: Adaptive Differential Evolution With Optional External Archive, **IEEE Transactions on Evolutionary Computation**, 13(5), 945-958, 2009
- ➤ Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization, **IEEE**Transactions on Evolutionary Computation, 13(2), 398-417, 2009
- ➤ Recent advances in differential evolution An updated survey, **Swarm and Evolutionary Computation**, 27, 1-30, 2016
- Differential evolution with multi-population based ensemble of mutation strategies, **Information Sciences**, 329, 329-345, 2016
- Review of Differential Evolution population size, **Swarm and Evolutionary Computation**, 32, 1-24, 2017

Thank You!!!