针对网络图片的优化方法效果比较分析报告

视频质量组实习生 张佳瑄

目录

一 、	实验目的	1
<u> </u>	实验设置	2
1.	数据集	2
2.	网络结构	3
3.	训练设置	3
三、	实验结果	4
1.	SGD与 Momentum	4
2.	Adagrad	4
3.	Adadelta	5
4.	RMSprop	6
5.	Adam	7
6.	adamax	8
四、	比较分析	9
1.	训练过程	9
2.	测试集表现 1	1
3.	验证集跳变原因探究 1	1
五、	结论 1	1

一、实验目的

在不同领域数据分布各不相同,所以,同一优化方法在不同数据集上,优化效果会有差异。本篇报告针对文字识别领域的网络图片数据,测试了各种优化器的表现,分析各种优化器在网络图片识别领域的特点,为后续实验做基础。

二、实验设置

1. 数据集

训练集:模拟网络图片生成数据集。使用 75 种字体,生成约 75 万张合成数据。为拟合网络图片分布,其中图片背景 3/5 为网络图片,1/5 为纯色图片,1/5 为白色背景。其中文本内容取随机语料,9/10 的文本为 1-10 个字符,1/10 为11-20 个字符的长文本。对生成图片加后处理,其中抽取 1/10 图片加入高斯噪声,1/20 加入椒盐噪声,字体阴影特效为 1/10,字体描边特效为 1/10。

示例:

测试集:

a. 泡泡真实数据(水平方向), 共 128087 张。

示例:

b. 阿里天池竞赛,淘宝图片,经筛查清洗后,共133787 张。 示例:

2. 网络结构

使用 CRNN 网络,将输入图片 resize 到 32*529,不足背景用黑色填充。输入识别网络,网络结构如下:

Туре	Configurations			
Transcription	-			
Bidirectional-LSTM	#hidden units:256			
Bidirectional-LSTM	#hidden units:256			
Map-to-Sequence	-			
Convolution	#maps:512, k:2 \times 2, s:1, p:0			
MaxPooling	Window: 1×2 , s:2			
BatchNormalization	-			
Convolution	#maps:512, k:3 \times 3, s:1, p:1			
BatchNormalization	-			
Convolution	#maps:512, k:3 \times 3, s:1, p:1			
MaxPooling	Window: 1×2 , s:2			
Convolution	#maps:256, k:3 \times 3, s:1, p:1			
Convolution	#maps:256, k:3 \times 3, s:1, p:1			
MaxPooling	Window: 2×2 , s:2			
Convolution	#maps:128, k:3 \times 3, s:1, p:1			
MaxPooling	Window: 2×2 , s:2			
Convolution	#maps:64, k:3 \times 3, s:1, p:1			
Input	W imes 32 gray-scale image			

3. 训练设置

训练环境: python2.7, cuda8.0, pytorch1.1.0, warpctc

具体代码与设置: http://gitlab.qiyi.domain/zhangjiaxuan_sx/paopao-

try/tree/master

三、实验结果

1. SGD 与 Momentum

由于数据集较为复杂,参数初始值和学习率选取困难,不能进行正常训练。 实验参数设置:

- a. SGD: optimizer=torch.optim.SGD(params, 1r=0.1); optimizer=torch.optim.SGD(params, 1r=0.01) optimizer=torch.optim.SGD(params, 1r=0.001)
- b. Momentum: optimizer=torch.optim.SGD(params, 1r=0.1, momentum=0.9); optimizer=torch.optim.SGD(params, 1r=0.01, momentum=0.9); optimizer=torch.optim.SGD(params, 1r=0.001, momentum=0.9)

2. Adagrad

对学习率加了约束,使用之前全部的累加梯度作为分母,随着训练次数增加,累计梯度上升,学习率下降。初期训练 loss 下降速度很快,且收敛速度较快,但 loss 收敛值较大。下图为训练 loss 下降图和在验证集上的准确率的变化图。

实验参数设置: optimizer=torch.optim. Adagrad (params, 1r=0.01)

3. Adadelta

Adadelta 对 Adagrad 做了改进,将累计梯度从全部变为一个窗口期的累计梯度,不再依赖全局学习率。使用 adadelta 优化器,尝试设置不同学习率,最后选择将 lr 设置为 0.01。由于 adadelta 优化器中,lr 并不表示学习率,而代表在 adadelta 被应用到参数更新之前对它缩放的系数。由于 lr 设置较小,所以训练收敛速度过慢,且训练后期 loss 下降缓慢,很难判断收敛时间。下图为训练 loss 下降图和在验证集上的准确率的变化图。

实验参数设置: optimizer=torch.optim. Adadelta (params, lr=0.01, rho=0.9, eps=1e-06)

4. RMSprop

RMSprop 在 RMSprop 基础上加了衰减系数,但仍依赖全局学习率。使用 RMSprop 优化器,首先选用 1r=0.001,训练中期出现 loss 为 inf 情况。减小学 习率后,重新训练。可以看到 RMSprop 收敛速度较快,且收敛到的 loss 也很低。下图为训练 loss 下降图和在验证集上的准确率的变化图。

实验参数设置: optimizer=torch.optim.RMSprop(params, lr=0.0001, alpha=0.99, eps=1e-06)

5. Adam

Adam 是带有动量的 RMSprop 优化器,利用梯度的一阶矩估计和二阶估计动态调整每个参数的学习率,并加入偏基矫正做无偏估计。使用 Adam 优化器,选取 1r=0.001。观察 loss 下降图,发现由于初期学习率过大,loss 在开始的短时间内下降过快,之后速度放缓,loss 逐渐下降,收敛速度较快,且收敛 loss 值较低,但是收敛过程不平稳,学习率变换不均。下图为训练 loss 下降图和在验证集上的准确率的变化图。

adam0.001_1

实验参数设置: optimizer=torch.optim.Adam(params, 1r=0.001, betas=(0.9, 0.999), eps=1e-06)

6. adamax

Adamax 是 Adam 优化算法的变体,对学习率的上限提供了更简单的范围。使用 Adam 优化器,选取 1r=0.01。可以看到使用 Adamax, loss 下降快,短时间就收敛到一个较小的值,下降过程平稳。下图为训练 loss 下降图和在验证集上的准确率的变化图。

adamax0.01

实验参数设置: optimizer=torch.optim. Adamax (params, 1r=0.01, betas=(0.9, 0.999), eps=1e-06)

四、比较分析

将各优化器效果做横向比较,分为训练过程表现比较和在测试集上识别率比较两个方面。

1.训练过程

Optimizer	学习率	收敛时间(h)	验证集准确率	训练1oss	paopao识别率	ali识别率
adagrad	0.01	30.92	64.0%	2.330447	22.9%	19.4%
adadelta	0.01	145. 23	47.4%	2.130619	16.7%	15.1%
rmsprop	0.0001	22.13	73.9%	0.344701	26.0%	25.5%
adam	0.001	23. 23	66.6%	0.997142	17.6%	19.0%
adamax	0.01	15.95	77.5%	0.490075	27.5%	26.8%

分析比较各优化器在训练过程中表现。

- a. 由于 SGD 和 Momentum 使用整个 batch 的数据计算梯度,对参数更新,所以选择合适的学习率和参数初始值较为困难,而复杂的网络图片(非稀疏数据)数据集更加剧了这个困难。
- b. Adagrad 可以根据全部累加梯度自适应调整学习率,但是在训练中后期,

梯度趋于 0, 会使得训练提前结束, 从表中也可以看出 Adagrad 收敛到的 loss 值约为 2.3 左右, 比较看来这个值偏大, 也验证了训练可能已经提前结束。

- c. 对于 Adagrad 的这个缺点, Adadelta 和 RMSprop 做了不同的改进。其中 Adadelta 将计算全部的累加梯度, 改为计算一个窗口期的梯度和 (实际 使用中利用类似 moving average 的方法实现), 有效避免了 Adagrad 中 让梯度被惩罚至 0。然而, 训练后期, 进入局部最小值区之后, AdaDelta 就会反复在局部最小值附近抖动, 无法挣脱出局部最小值, 这个在实验中也得到了验证:验证集上的准确率维持在较低水平。
- d. 对于 RMSprop 优化器,解决 Adagrad 提前停止的问题,采用了和 Adadelta 类似的方法,加入衰减系数,让梯度累积量每一回合衰减 一定比例,有效解决了 Adagrad 提早结束的问题,且收敛速度较快。
- e. 对于 Adam 和 Adamax 优化器,均是在调整学习率时加入了一阶矩估计和 偏基矫正,使得训练时参数变化更为平稳。并且,Adamax 对学习率上限 做了限制,相较于 Adam 的学习率变化更为稳定。

比较而言, Adadelta 收敛速度过慢且容易困在局部极值点, Adagrad 由于算法原因会提前结束训练, 故这类自适应优化器中, RMSprop 较优。在这类非稀疏的数据集下, Adam 没有 RMSprop 收敛效果好, 但是 Adamax 对于 Adam 的提升使其效果与 RMSprop 不相上下。

2.测试集表现

在两种测试集上,各优化器效果差别不大。在各优化器的横向比较中, RMSprop 和 Adamax 表现更优,对应模型在测试集上取得了较高的识别率。

3.验证集跳变原因探究

看数据的话,训练的 loss 是平滑的不存才跳变,所以我觉得跟下降算法无关。那就是生成的合成数据样式太多差距较大,bn 过小的话,抽样样本个体间差异较大,验证集 loss 和 accuray 会出现跳变。

五、结论

本篇报告通过一系列实验,比较了各优化器在网络图片数据集上的表现效果。 根据实验数据和结果分析,我们得出如下结论。

首先,SGD 和 Momentum 在网络图片这类复杂数据集上,很难找到合适的初始值和全局学习率,建议使用自适应优化器。而在自适应学习率的优化器中,RMSprop 和 Adamax 优化器训练过程平稳,收敛速度较快,且收敛 loss 值很低,

在两个测试集上识别率较高, 更适合本类数据集。

最后,优化器的效果与数据集有很大的关系,数据分布的稀疏性、凹凸性、 维度高低等都会影响优化器的效果。本篇报告针对网络图片识别的实验结果只是 提供借鉴,实际应用还是需要具体问题具体分析。