COMPLEMENTOS DE MATEMÁTICA I MATEMÁTICA DISCRETA

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

MATCHING

DEFINICIÓN

Un matching en un grafo G es un conjunto de aristas (no bucles) que no tienen extremos en común. $M \subset E(G)$. Un vértice que es extremo de una arista que está en M matching se dice que está saturada por M o M-saturada. Un matching perfecto en un grafo G es un matching que satura todas los vértices de G.

EJEMPLO

DEFINICIÓN

Un matching maximal M en un grafo G es matching que al agregar cualquier arista de G que no está en M deja de ser un matching en G. Un matching es máximo si es un matching cuyo cardinal es máximo entre todos los otros matching de G.

- Si un matching es máximo, es maximal.
- Dar un matching en P_n que sea maximal y no máximo.

EJEMPLO

matching maximal

matching perfecto

DEFINICIÓN

Dado un matching M en un grafo G, un camino es camino M-alternante si alterna entre aristas en M y aristas en E(G) – M.Un camino M-alernante es M-aumentante si sus extremos son distintos y no están M-saturados.

EJEMPLO

EJEMPLO

EJEMPLO

Camino M-aumentante P y el matching $M\triangle E(P)$:

THEOREM (BERGE)

un matching M en un grafo G es máximo si y sólo si G no tiene camino M-aumentante.

PROOF.

MATCHING EN GRAFOS BIPARTITOS

Asignación de trabajos a personas...

Dado G[X, Y] buscamos un matching en G que sea incidente en todo vértice de X. Decimos que un tal matching satura X.

THEOREM (HALL)

Un grafo bipartito G[X, Y] tiene un matching que sature X si y sólo si

$$|N(S)| \ge |S|$$
 para todo $S \subset X$.

PROOF.

COROLARIO

Todo grafo bipartito k-regular ($k \ge 1$) tiene un matching perfecto.

PROOF.

RELACIÓN ENTRE MATCHING Y CUBRIMIENTO

DEFINICIÓN

Un cubrimiento de aristas por vértices de un grafo G es un conjunto F de vértices de manera que toda arista de G tiene (al menos) un extremo en F.

OBSERVACIÓN

Si F es un cubrimiento y M es un matching en G entonces $|M| \leq |F|$.

EJEMPLO

Llamemos con $\beta(G)$ al cardinal de un cubrimiento por vértices de mínimo cardinal. Entonces,

- $\beta(K_n) = n 1$
- $\beta(K_{n,m}) = \min\{n, m\}$
- $\beta(C_n) = \lceil \frac{n}{2} \rceil$
- $\beta(P_n) = \lfloor \frac{n}{2} \rfloor$
- $\beta(W_n) =$

Si $\alpha'(G)$ es el cardinal de un matching de máximo cardinal en G tenemos que:

 $\beta(G) = \min\{|F| : F \text{ cubrimiento de } G\} \ge \max\{|M| : M \text{ matching en } G\} = \alpha'(G)$

THEOREM (KONIG-EGERVARY (1931))

Si G es bipartito entonces $\beta(G) = \alpha'(G)$.

PROOF.

RELACIÓN ENTRE CONJUNTOS ESTABLES Y CUBRIMIENTOS POR VÉRTICES

S es un cubrimiento por vértices de G si y sólo si \overline{S} es un conjunto estable.

Otro ejemplo:

PROPOSICIÓN

Sea G grafo con |V(G)| = n y $S \subset V(G)$. S es un conjunto estable en G si y sólo si $\overline{(S)}$ es un cubrimiento por vértices de G. Además, $\alpha(G) + \beta(G) = n$.

$$\bullet \ \beta(K_n) = n-1 \quad \alpha(K_n) = 1$$

•
$$\beta(K_{n,m}) = \min\{n,m\}$$
 $\alpha(K_{n,m}) = \max\{n,m\}$

•
$$\beta(C_n) = \lceil \frac{n}{2} \rceil$$
 $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$

•
$$\beta(P_n) = \lfloor \frac{n}{2} \rfloor$$
 $\alpha(P_n) = \lceil \frac{n}{2} \rceil$

•
$$\beta(W_n) = \lceil \frac{n}{2} \rceil + 1$$
 $\alpha(W_n) = \lfloor \frac{n}{2} \rfloor$