C.CAATCGCCCGGTGCGGTGCAGGGTCTCGGGCTAGTCATGCCGTCCCCGTCTCGGAGAC 'IGCAGACTAAACCAGTCATTACTTGTTTCAAGAGCGTTCTGCTAATCTACACTTTTATTTTC TGGATCACTGGCGTTATCCTTCTTGCAGTTGGCATTTGGGGCAAGGTGAGCCTGGAGAATTA CTTTTCTCTTTTAAATGAGAAGGCCACCAATGTCCCCTTCGTGCTCATTGCTACTGGTACCG TCATTATTCTTTTGGGCACCTTTGGTTGTTTTGCTACCTGCCGAGCTTCTGCATGGATGCTA AAACTGTATGCAATGTTTCTGACTCTCGTTTTTTTGGTCGAACTGGTCGCTGCCATCGTAGG ATTTGTTTTCAGACATGAGATTAAGAACAGCTTTAAGAATAATTATGAGAAGGCTTTGAAGC AGTATAACTCTACAGGAGATTATAGAAGCCATGCAGTAGACAAGATCCAAAATACGTTGCAT TGTTGTGGTGTCACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT TCCTAAGAGTTGCTGTAAACTTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA ATGAAGGTTGTTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA ATTTCCTTTGGAGTTGCTTCCTTCCAACTGATTGGAATCTTTCTCGCCTACTGCCWCTCTCG TGCCATAACAAATAACCAGTATGAGATAGTGTAACCCAATGTATCTGTGGGCCTATTCCTCT CTACCTTTAAGGACATTTAGGGTCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG GTAGACCTAAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT TCAATCAAGATGTATGTTTGCTATGTTCTAAGTCCACCTTCTATCCCATTCATGTTAGATCG TTGAAACCCTGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAAATGAAGT

FIGURE 2

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902
><subunit 1 of 1, 245 aa, 1 stop, 1 unknown
><MW: -1, pI: 8.36, NX(S/T): 1

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNVPF
VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN
NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ
RDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

CCCACGCGTCCGGCGCCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCGCCGCCGCCCCCCCCCCCCCCCCGGGGGCCCGGGAGGTAGAGAAAGTCAGT GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGCTTGAGGGATCTGAAGAGGGTTCCTAGAAGAGGGT GTTCCCTCTTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGTCGCCCTTCTGAGGAGGCT GCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGATGACAGTGTTGACACCCAACAGCAACAGCCGAGAACAGTG CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT GGCAGTAATACGGACTCTTGTAGATAAGTAAGTATCTGACTCACGGTCACCTCCAGTGGAAT GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTC 'TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107</pre>

<subunit 1 of 1, 231 aa, 1 stop

<NX(S/T): 0

MEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQTVEKER GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEI RSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

FIGURE 7

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTT CTTGTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAAATGCTCTTTTGGGT GCTAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAG ACATCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCC AGAATGTCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGT CTACAGAGAACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTC CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTGGAGGTCGCCTTGCA ATCGTTGGAGGGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAG ACGGGACATGAAAGCTTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA ACTTGGCAGATCCAGTAAAGGTAATTGAAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCA GACATCAAACAACAATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAA TAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTGCATGGACCACGCTCTAACAA GTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTG TCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA TCCCAAGGCAGTGTGACTCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGAT TTCAAGAACACCTCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGA TCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTG CTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT ATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATG ATCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTT AAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406

><subunit 1 of 1, 319 aa, 1 stop

><MW: 35227, pI: 8.97, NX(S/T): 3

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLT ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLD KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK AELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

GCGGGCTGTTGACGCCGCTGCG<u>ATG</u>GCTGCCTGCGAGGGCAGGAGAAGCGGAGCTCTCGGTT CCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGGCCCCTTGGGCCGTCGCCACCACT GTAGTCATGTACCCACCGCCGCCGCCGCCCCCTCATCGGGACTTCATCTCGGTGACGCTGAG CTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGGCGCGCTCGTGCTGGAGGAAATGGA AGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTCCTCCTTGCCTTTCTGCTTTTCTGT GGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGTCTTACCAG CTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTCGTCACAGAAGACACAA AGACACATCCAGCGGGGACCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA ATCCGCAGAGGACAGTCATCAGCTGGAGGGGAGCGGTGATCGAGCCTGAGCAGGGCACCGAG CTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG AAGGATACCGCAAGTTTGCATGGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCCTTCAGT GAGTGGTTTGGCCTCGGTCTCACACTGATCGACGCGCTGGACACCATGTGGATCTTGGGTCT GAGGAAAGAATTTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG TGGACGTCAACCTGTTTGAGAGCACGATCCGCATCCTGGGGGGGCTCCTGAGTGCCTACCAC CTGTCTGGGGACAGCCTCTTCCTGAGGAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGC CTTCAGAACACCATCCAAGATTCCTTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACC CGCCACGGTGGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGG GAGCTCTCCCGTCTCACAGGGGATAAGAAGTTTCAGGAGGCAGTGGAGAAGGTGACACAGCA CATCCACGGCCTGTCTGGGAAGAAGGATGGGCTGGTGCCCATGTTCATCAATACCCACAGTG GCCTCTTCACCCACCTGGGCGTATTCACGCTGGGCGCCAGGGCCGACAGCTACTATGAGTAC CTGCTGAAGCAGTGGATCCAGGGCGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA AGCCATCGAGGGTGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTTTG TGGGGGAGCTTGCCCACGGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCA GCTCATGGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCG TGCACTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGG CACAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGCTGGGAGATTCTGCAGAGCTTCAGCCGATTCACACGGGTCC CCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAGGGAC AAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTCCGATGA CCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCTGCCTATCT GGACCCCTGCC<u>TAG</u>GGTGGATGGCTGCTGGTGTGGGGACTTCGGGTGGGCAGAGGCACCTTG CTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGGCAACCGCCAAGTGGCCCAGGCT CTGAACTGGCTCTGGGCTCCTCGTCTCTGCTTTAATCAGGACACCGTGAGGACAAGTGA GGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGCCTCCGCCTGCTTCCTC CAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCGACCA GAGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAGTGGACAGCCCAGGGTGCAGC TCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAAGGGTCTGGAGGGGCTGCCGTGA CTCCAGAGGCCTGAGGCTCCAGGGCTGGCTCTGGTGTTTACAAGCTGGACTCAGGGATCCTC CTGGCCGCCCGCAGGGGGCTTGGAGGGCTGGACGGCAAGTCCGTCTAGCTCACGGGCCCCT CCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAGTTGATTTGCTCTAACCGCAA

FIGURE 10

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529

><subunit 1 of 1, 699 aa, 1 stop

><MW: 79553, pI: 7.83, NX(S/T): 0

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPHRDFISVTLSFGESYDN
SKSWRRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE
IAGLKPANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT
KRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQGTPVHLNY
RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEEA
RKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI
PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK
KDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT
HLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHGLPASHMELAQELMETCYQ
MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPETVESLFYLYRVTGDRKYQDWG
WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFLLFSDDPNLLSLD
AYVFNTEAHPLPIWTPA

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCTAGGCCCGGAGGCCGGCCGGCCGGCTGCGAGCGCCTGCCCCATGCGCCGC CGCCTCTCCGCACGATGTTCCCCTCGCGGAGGAAAGCGGCGCAGCTGCCCTGGGAGGACGGC AGGTCCGGGTTGCTCTCCGGCGGCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGC CTGCCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGG CCGCCCCTGAGCACTGGGAAGAAGACGCATCCTGGGGCCCCCACCGCCTGGCAGTGCTGGT GCCCTTCCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGA GCAGGAAGAAGATCCGGCACCACATCTACGTGCTCAACCAGGTGGACCACTTCAGGTTCAAC CGGGCAGCGCTCATCAACGTGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCAT GCACGACGTTGACCTGCTCCCTCTCAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGC CCTTCCACGTGGCCTCCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGC ATCCTGCTGCTCCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGG ${\tt CTGGGGCCGCGAGGACGAGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCC}$ GCCCTCGGGAATCACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGCGG CCTGCACTGTCCTCAACATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTC AGCTGAGCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGA CAAGGCCTCAGGTCGTGGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA ·AGCTACGCAATTGCAGCCACCCGGCCGCCAAGGCAGGCTTGGGCTGGGCCAGGACACGTGGG GGACCCCCCTGCCTTCCTGCTCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGG TAGTGGGGAGGCTGAACAGGACAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCC

FIGURE 12

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531</pre>

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR GQGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKI RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL NIMLDCDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

FIGURE 14

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862
<subunit 1 of 1, 73 aa, 1 stop
<MW: 7879, pI: 7.21, NX(S/T): 0
MLLLTLLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQ
PRGEGEKVGDG</pre>

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 15

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCGCAGCGGACAAAG GAGCATGTCCGCGCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGG GCCCGCGCGCTCCTGCCCGCCCGGGCTCCGGGGCGCCCGCTAGGCCAGTGCGCCGCCG GCCGCCGCTGTTGCCGCCTCTCGCTGTTAGCGCTGCTCGCGCTGCTGGGAGGCGGCGCG GCGGCGCGCGCGCCGCCGCCGCCGCTGCAAGCACGATGGGCGCCCCGAGGGGCTGGC AGGGCGCGGCGCCGAGGGCAAGGTGGTGTGCAGCAGCCTGGAACTCGCGCAGGTCCT GCCCCCAGATACTCTGCCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCG AGCTGAAGAATGGCTCATTTTCTGGGTTAAGTCTCCTTGAAAGATTGGACCTCCGAAACAAT CTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGACTGTCATCTCTAAAAAGATTGGATCT GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAATCTGGTTC GGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCG TCATTACGGTCTTTGGAATTCCAGACTGAGTATCTTTTGTGTGACTGTAACATACTGTGGAT GCATCGCTGGGTAAAGGAGAACATCACGGTACGGGATACCAGGTGTGTTTATCCTAAGT CACTGCAGGCCCAACCAGTCACAGGCGTGAAGCAGGAGCTGTTGACATGCGACCCTCCGCTT GAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTGTTTGAAGGAGACAGCCT TCCTTTCCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTTGTGGTATCAGGATG GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAAC TGCTCCTTGATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTG GGGCTGTCATGTCCAGACCAAACGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAG AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAAGGTGACTTCAGATGG CCCAGAACATTGGCAGGCATTACTGCATATCTGCAGTGTACGCGGAACACCCCATGGCAGTGG GATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGCT TTTGGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTAT ATGTTTAATCAGATGCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC TTACACTGTGGAAGCAGCCAACTTTTCTGACAAAATGGATGTTATATTTGTGGCAGAAATGA TTGAAAAATTTGGAAGATTTACCAAGGAGGAAAAATCAAAAGAGCTAGGTGACGTGATGGTT GAGCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCT ACTGGCTTCACGGGGATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGG ACTTTCGGATTATGGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGT GCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT AAGACTATTTACAGT<u>TAA</u>ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAACCTTATTA AAAGATTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTTGCTACTGTTTTAAAGAAAACTA ACCAGGAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTGCCTTTGATTCCCTTT CTTCACATAAAAATATCAGAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACT GATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATCATGAGCCTTTGGCACTGC ATCAAAATTTTTGGCAGAAAACACAAATATGTCATATATCTTTTTTAAAAAAAGTATTTCA TTGAAGCAAGCAAAATGAAAGCATTTTTACTGATTTTTAAAATTGGTGCTTTAGATATATTT GACTACACTGTATTGAAGCAAATAGAGGAGGCACAACTCCAGCACCCTAATGGAACCACATT TTTTTCACTTAGCTTTCTGTGGGCATGTGTAATTGTATTCTCTGCGGTTTTTAATCTCACAG TTGAATGAATGAACGAAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLTCDPPLELPSFYMTP
SHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 17

FIGURE 18

 ${\tt MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT}$ ${\tt EQLEAEREKMLLAKGSQKS}$

Signal peptide:

amino acids 1-21

FIGURE 19

 $\mathtt{CTGTCGTCTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTTC$ CAAGTGTGGCTTAATCCGTCTCCACCACCAGATCTTTCTCCGTGGATTCCTCTGCTAAGACC GCTGCCATGCCAGTGACGGTAACCCGCACCACCATCACAACCACCACGACGTCATCTTCGGG CCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACAGCCCCTGGGTCTCCTTCGC CTGCTGCAGCTGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCTAGCGTGGCGCCCTGGAC GGGGTCCATGGGCAACTGGTCCATGTTCACCTGGTGCTTCTGCTTCTCCGTGACCCTGATCA TCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCC ATCACCTTCGCCTGCTATGCGGCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCAC CTATGTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCCGCCACCTTCTTCT CCTGCATCGCGTGTGTGGCTTACGCCACCGAAGTGGCCTGGACCCGGGCCCGGCCCGGCGAG ATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCCTG CATCATCTTCGCGTTCATCAGCGACCCCAACCTGTACCAGCACCAGCCGGCCCTGGAGTGGT GCGTGGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGG GAGTGCACCAACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTGGCCTTGCTGTC TGTCCTCCTCTATGCCACCGCCCTTGTTCTCTGGCCCCCTCTACCAGTTCGATGAGAAGTATG GCGGCCAGCCTCGGCGCTCGAGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGT GCCTGGGACCGCCGACTGGCTGTGGCCATCCTGACGCCATCAACCTACTGGCGTATGTGGC TGACCTGGTGCACTCTGCCCACCTGGTTTTTGTCAAGGTCTAAGACTCTCCCAAGAGGCTCC CGTTCCCTCTCCAACCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCC CAATTCCTTGCACTCTAACCAGTTCTTGGATGCATCTTCTTCCTTTCCTTTTCCTCTTGCTGT TTCCTTCCTGTGTTGTTTTTTTTGCCCACATCCTGTTTTCACCCCTGAGCTGTTTCTCTTTTT CTTTTCTTTCTTTTTTTTTTTTTTAAGACGGATTCTCACTCTGTGGCCCAGGCTGGAG TGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCC CCCAGCCTCCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTT TTCCACTCTTCTTTTTCTCATCTCTTTTCTGGGTTGCCTGTCGGCTTTCTTATCTGCCTGT CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCCATGCCACAGCCCC CCAAGGGGCCCCATTGCCAAAGCATGCCTGCCCACCCTCGCTGTGCCTTAGTCAGTGTGTAC GTGTGTGTGTGTGTTTTGGGGGGTGGGGGGTGGGTAGCTGGGGATTGGGCCCTCTTTCT ATTTGGAGGTCAGTAATTTCCAATGGGCGGGAGGCATTAAGCACCGACCCTGGGTCCCTAGG ${\tt CCCCGCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAGAATTTTTGCCAGGCTTACAGAACAC}$ CCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCATCCCAACTATTCT CTGTGGTATGAAAAAG

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727</pre>

<subunit 1 of 1, 322 aa, 1 stop

<MW: 35274, pI: 8.57, NX(S/T): 1

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIAATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPIPFPSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

GAACGTGCCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGT CTTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGAC GCCTGGCCAGCCTATGCATTTTTAAGAAATTATTCTGTATTAGGTGCTGTGCTAAACATTGGGCACTACAGTGA CCAAAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAG ACCATTATTACTCACTATGACTAAGGGTCACAAATGGGGTACGTTGATGGAGGGTGATTTGTTAAGAGACTACA GAGGGAGACAGACTACCAAGAGGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAA CTGAGAAAATAGCATGGGATTGGAGGAGGCTGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGG GCTTGAGAAAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTA GGTCTTATCAACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTA GATGGGACAGTGGTGGTGATGCAAAGGAAAGAGGTCAGGAAGCAGGGCCAGACGTGGGGAGAAGGTGTGGGG TTTGGTTTCCATCTTGCCGAGTCTGCCGGAATGTGGATGGGAAGACCAAGAGGAGGAGCAAGGGGCAGAGGGGA CGTGGTTCTTCATTTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTG CTTCTCGGGGCCTGTCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCT GGTATGGGCATGTTAGGGGGAAGGTCATTGCTGTCAGAGGGGCACTGACTTTCTAATGGTGTTACCCAAGGTGA ATGTTGGAGACACAGTCGCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCC AGGTCCTCCCTGCATGGTATGCAGCCCCTCCCATGTTTCTGGCCACTTTGTCCTTTCTCCTCCCGTTTGCACAT $\tt CCCTTTGGAACTGTTTCCTGTGAGTACATGCTGGGGTCTCCCCTTTCTTCCCTTGCTCAGGTGAATCTCAGCCC$ CTTCTCCCACCCAAAGGTTCACATGGATCCTAACTACTGCCACCCTTCCACCTCCCTGCACCTGTGCTCCCTGG CCTGGTCCTTTACCAGGCTTCTCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACC AAGCCTACCGCCATGGCCCAGGGCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGAGCAAGCCGAGTGACTC ACCTGCTGCCCTGGAATCAGCCTTTTCCTCCTATTCAGACCTCAGCGAGGGCGAACAAGAGGCTCGCTTTGCAG ACTGATGACTCCTATGATGAGGACTTTGCTGGGGGAATGGACACAGACATGGCTGGGCAGCTGCCCCTGGGGCC GCACCTCCAGGACCTGTTCACCGGCCACCGGTTCTCCCGGCCTGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCC ACTGCTCACAGACCGTGTCCCCAGACACCCTGTGCTCTAGTCTGTGCAGCCTGGAGGATGGGTTGTTGGGCTCC CCGCGGAGGAGGAGCCCCCTGCAAGGACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCTGGGAACGG CAGCGGCAAGCCTCTGACCTGGCCTCTTCTGGGGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACA $\texttt{G}\underline{\textbf{TGA}}\texttt{CCCACATGATGCCTGGCAGTGGCATGCATCCCCCGGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTG}$ TGCATGAAAGTGTTTGGAGAGGAGGCAGGGGTGGGCTGGGGCGCATGTCCTGCCCCCACTCCCGGGGCTTGC $\tt CGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACAGCTGTGGCAGACAGTGATGTTCATGTTCTTAAAATGCCA$ CACACACATTTCCTCCTCGGATAATGTGAACCACTAAGGGGGTTGTGACTGGGCTGTGAGGGTGGGGTGGGA GGGGGCCCAGCCACCCTCCCCATGCCTCTCTCTCTCTGCTTTTCTCTCACTTCCGAGTCCATGTG GAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGGGGCCCTGGGCCCTTTCCCAACCCCTCCTAGGATG TGCGGGCAGTGTGCTGGCGCCTCACAGCCAGCCGGGCTGCCCATTCACGCAGAGCTCTCTGAGCGGAGGTGGA AGAAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTTCTTCTAGAGAGGGCCACAAGAGGGCCACAGG ${\tt GCCCCAGGCTGTTAATGCCCACGTAGTGGAGGCCTCTGGCAGATCCTGCATTCCAAGGTCACTGGACTGT}$ ACGTTTTTATGGTTGTGGGAAGGGTGGGTTGTAGAATTAAGGGCCTTGTAGGCTTTGGCAGGTAAGAGGGC ATTTAAGAATTTGTTTTATTAAATTAATATAAAAATCTTTGTAAATCTCTAAAA

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS LAWSFTRLLHPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSY SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSSLCSLEDGLLGSPARLASQLLGDE LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGCACCCTCCTGCTCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGA CAGATTCCTTTCAGACAGGACAACTGTGATATTTCAGTTCCTGATTGTAAATACCTCCTAAG CCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTTCTTCATCTGCAAAATGGGCATAA AAGCCTACAATGTTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTTATTCACTTCT ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACAACACAGAACATTGCAGAAGTTT TTAAAACAATGGAAAATAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAA GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTTGAATCTACCCAACAA CAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGAGCATTCTTTGGGCAGTCTAA AACCCACATCTACCATTTCCACAAGCCCTCCCTTGATCCATAGCTTTGTTTCTAAAGTGCCT TGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACC TGCTCTGTCTTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATA ACAGTTCCATTACAGTTAGCATCCTCTCTTCAGAACCAACTTCTCCATCTGTGACCCCCTTG ATAGTGGAACCAAGTGGATGGCTTACCACAAACAGTGATAGCTTCACTGGGTTTACCCCTTA TCAAGAAAAAACAACTCTACAGCCTACCTTAAAATTCACCAATAATTCAAAACTCTTTCCAA ATACGTCAGATCCCCAAAAAGAAAATAGAAATACAGGAATAGTATTCGGGGCCATTTTAGGT GCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAAC GGATTCATTTTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA ATGCACCGGAACCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAAT GATTCAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACC ${\tt TCCACTTCGTACTTCTGTA} \underline{{\tt TAG}} {\tt AACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTA}$ · · CATCCTAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTGGAT TTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATT TGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAAGATT TCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAATTCTAAA ACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAAGATTGCAT TTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAGAG GACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTC TAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA CAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT TCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTAATATATCTTAGGCTTCAA TTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

FIGURE 24

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732</pre>

><subunit 1 of 1, 334 aa, 1 stop

><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI
TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA
PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE
PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL
GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNDSA
MPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC AGCCCGAAGATTCACTATGCTGAAAATCGCCTTCAATACCCCTACCGCCGTGCAAAAGGAGG AGGCGCGGCAAGACGTGGAGGCCCTCCTGAGCCGCACGGTCAGAACTCAGATACTGACCGGC AAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT CTTAGGCCTTTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTTACAAGTACT TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTGATTCTGAGGATCCTGCA AATTCCCTTCGTGGAGGAGGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGA GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAG CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTTGCTGGGGAACTGC TATCTGATGCCCCTCAATACTTCTATTGTTATGCCTCCAAAAAATCTGGTAGAGCTCTTTGG CAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTAGTTGCTG AAGTCCTTCCGCCTTCGTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAA ATGCTGGAAGATTAGACACTTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAGT **AA**GAGGCAACAGATAGAGTGTCCTTGGTAATAAGAAGTCAGAGATTTACAATATGACTTTAA CATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTACTCTATTGCTTATGCTTT AAAAAAAGGAAAAAAAAAAAACTACTAACCACTGCAAGCTCTTGTCAAATTTTAGTTTAAT TGGCATTGCTTGTTTTTGAAACTGAAATTACATGAGTTTCATTTTTTCTTTGCATTTATAG GGTTTAGATTTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC GTGGAGCAATTTTAAAATTTGAAATATTTTAAATTGTTTTTGAACTTTTTGTGTAAAATATA TCAGATCTCAACATTGTTGGTTTCTTTTGTTTTTCATTTTGTACAACTTTCTTGAATTTAGA AATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAATT AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTTAGGTTGTATGAATTCTACAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF
ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIA
IIDVPVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASG
RYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR
HFPNEFIVETKICQE</pre>

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGGGGGCAGCCCAGCCCAGAGCCCCGGGCACCAGCACGGACTCTCT $\mathtt{CTTCCAGCCCAGGTGCCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTACGCC}$ AAGGAACTGGTCCTGGGGGCACCATGGTTTCGGCGGCAGCCCCCAGCCTCCTCATCCTTCTG TTGCTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCCGCTCTGTGCCCCTGAAGGCCACGTT CCTGGAGGATGTGGCGGTAGTGGGGAGGCCGAGGCTCGTCGGCCTCCCCCGAGCCTCC CGCCACCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACAACCCTGGGG GGCCCATCACCCCCCACCAACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT GCTGATTGCTGTGGTGGGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCA TCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC GTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGTGAGGTCCCCGACAGAGCCCC CGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATCTTGGCCG CCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATG GGGACATGGGGTCCCAGTGGAGACACCAGAGGCGCAGGAGGAGCCGTGCTCAGGGGTCCTTG AGGGGGCTGTGGCCGGTGAGGGCCAAGGGGAGCTGGAAGGGTCTCTCTTGTTAGCCCAG GAAGCCCAGGGACCAGTGGGTCCCCCGAAAGCCCCTGTGCTTGCAGCAGTGTCCACCCCAG TGTCTAACAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCC TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGA - GGAATCTTACCAAGTGCCATCATCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC ACAGCTCCCCTGACAAAGTGAGGGAGGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCC CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACA GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGG TGGCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGGTATAGGGCATTTAAATCCTC TCAAGCGCTCTCCAAGCACCCCCGGCCTGGGGGTGAGTTTCTCATCCCGCTACTGCTGCTGG GATCAGGTTGAATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG GCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGAAGGGTTTCTGACG CCCAGCCTGGAGCAGGGGGCCCTGGCCACCCCCTGTTGCTCACACATTGTCTGGCAGCCTG ${\tt TGTCCACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCT}$ CTGGCAGGAGGTCCTCTCCCCCATCCCTCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

FIGURE 28

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852</pre>

><subunit 1 of 1, 283 aa, 1 stop

><MW: 29191, pI: 4.52, NX(S/T): 0

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL SPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP TRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE GOGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 29

GGGAGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGGCACAGAGACGCAGAGCAAGGGCG AAGTTCCAGGGGCCCCTGCCTGCCTGCTGGCCCTCTGCCTGGCCAGTGGGGAGGCTGG CCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGGAGGCCCTTGGACATGGCCTGGGAGACGCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCCAATGGAGGGCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGGCAGCAGTGGCAGCAGTGGTGACAACAACAATGGCAGCAGCAGTGG TGGCAGCAGCAGTGGCAGCAGTGGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACC .CGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCA GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA AGCTCTCGCATCCCGTGACCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACT CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212</pre>

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

FIGURE 31

GACCGGTCCTCCGGTCCTGGATGTGCGGACTCTGCTGCAGCGAGGGCTGCAGGCCCGCCGGGCGGTGCTCACC GTGCCCTGGCTGGTGGAGTTTCTCTCTTTGCTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTT ${\tt CACTCTCCTGCTGCGCCTGCACCGGAGCTTGGTGTTGTCGCAGGAGAGTGAGGGGAAG{\color{red} {\bf ATG}TGTTTCCTGAACA}}$ GAGGGTCCCTCATATGCCTTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTTGGACAATGCGCCTGTGGTGGA CCAGCAGCTGCTCTACACCTGCTGCCCCTACATCGGAGAGCTCCGGAAACTGCTCGCTTCGTGGGTGTCAGGCA GTAGTGGACGGAGTGGGGGCTTCATGAGGAAAATCACCCCCACCACTACCACCAGCCTGGGAGCCCAGCCTTCC CAGACCAGCCAGGGCCCAGGCCCCAGGCCTTTTTCCACAACCAGCCGCCCTCCTTGCGCCGGAC CGTAGAGTTCGTGGCAGAAAGAATTGGATCAAACTGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGG TGCGCCAGGCAGAGTCACTTCTCCAAGAGCAGCTGGTGACACAGGGAGAGGGAAGGGGGGAGACCCAGCCCAGCTG TTGGAGATCTTGTGTTCCCAGCTGTGCCCTCACGGGGCCCAGGCATTGGCCCTGGGGCGGGAGTTCTGTCAAAG GAAGAGCCCTGGGGCTGTGCGGGCGCTGCTTCCAGAGGAGACCCCGGCAGCCGTTCTGAGCAGTGCAGAGAACA GTGAAAGCAGCAGTGAGTCGCACACTTCGAGCCCAGGGTCCTGAACCTGCTGCCCGGGGGGAGCGGAGGGGCTG CTCCCGCGCCTGACGTGCTCTCCTTGGCCGTGGGGCCACGGGACCCTGACGAGGGAGTCTCCCCAGAGCATCTG GAACAGCTCCTAGGCCAGCTGGGCCAGACGCTGCGGTGCCGCCAGTTCCTGTGCCCACCTGCTGAGCAGCATCT GGCAAAGTGCTCTGTGGAGTTAGCTTCCCTCCTCGTTGCAGATCAAATTCCTATCCTAGGGCCCCCGGCACAGT CCGGTTCCGCTGCAGCTGCTGAGCCCAAGAAATGTGGGGCTTCTGGCAGACACAAGGCCAAGGGAGTGGGA GCAGCCTCCACCAGGCCCAGTGGCCAGGGGACTTTGCTGAAGAATTAGCAACACTGTCTAATCTGTTTCTAGCC GAGCCCCACCTGCCAGAACCCCAGCTAAGAGCCTGTGAGTTGGTGCAGCCAAACCGGGGCACTGTGCTGGCCCA GAGCTAGGGCTGAGAAGTGGCCCTGCCTTGGGCATTGCACCAGAACCCTGGACCCCGCCTCACGAGGAGGCCC AAGTGCCCAATGCAGACCCTCACTGGTTGGGGTGTAGCTGGGTCTACAGTCAGACTTCCTGCTCTAAGGGTGTC ACTGCCTGGCATCCCACCACGCGAATCCTAGAGGAAGGAGAGTTGGCCTGATTTGGGATTATGGCAGAAAAGTC GGCTTGTCAACACAGAATTCAAGCCTCATTTGCTATCCCAGCATCTCTTAAAACTTTGTAGTCTTGGAATTCAT GACAGAGGCAAATGACTCCTGCTTAACTTATGAAGAAAGTTAAAACATGAATCTTGGGAGTCTACATTTTCTTA TCACCAGGAGCTGGACTGCCATCTCCTTATAAATGCCTAACACAGGCCGGGTCTGGTGGCTCATGCCTGTAATC CCAGCACTTTGAGAGGCCTGAGGTCGGCGGACTGCCTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGC AAAACCCCATCTCTACTAAAAAATAAAAAATTATTAGCTGGGCATGGTGGTGTGTGCCTGTAATCCCAGCTACT CAGGAGGATGAGGCAGGAGACCTGCTTGAACCTGGAGGTGGAGGTTGCAGTGAGCCGAGGTCGCACCACTGCAC AACCTGACTTTCCCCCTGTACCTTCAGCCCCTGTGCAGGTAGTAACCTCTTGAGACCTCTCCCTGACCAGGGAC TCCCCACACGATGGCTCCTGCAATCTGCCACAGCTCTGGGGCGTGTCCTGTAGGGAAAGGCCCTGTTTTCCCTG AGGCGGGGCTGGGCTTGTCCATGGGTCCGCGGAGCTGGCCGTGCTTGGCGCCCTGGCGTGTGTCTAGCTGCTTC TTGCCGGGCACAGAGCTGCGGGGTCTGGGGGGCACCGGGAGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCT GTCTCTTAACCGACACCCTGAGGTGCTCCTGAGATGCTGGGTCCACCCTGAGTGGCACGGGGAGCAGCTGTGGC CGGTGCTCCTTCYTAGGCCAGTCCTGGGGAAACTAAGCTCGGGCCCTTCTTTGCAAAGACCGAGGATGGGGTGG GTGTGGGGGACTCATGGGGAATGGCCTGAGGAGCTACGTGTGAAGAGGGCGCCGGTTTGTTGGCTGCAGCGGCC TGGAGCGCCTCTCTCCTGAGCCTCAGTTTCCCTTTCCGTCTAATGAAGAACATGCCGTCTCGGTGTCTCAGGGC TATTAGGACTTGCCCTCAGGAAGTGGCCTTGGACGAGCGTCATGTTATTTTCACAACTGTCCTGCGACGTTGGC CTGGGCACGTCATGGAATGGCCCATGTCCCTCTGCTGCGGGACGTCGCGGTCGGGAGTGCGCAGACGCC GGGCCAGACGTGCGCCTGGGGGTGAGGGGGGGGCCCCGGGAGGGCCTCACAGGAAGTTGGGCTCCCGCACCAC CAGGCAGGGCGGCCGCCGCCGCCGCCACCCCCCGGGGGCCGGTAGACAAAGTGGAAGTCGCGCT TGGGCTCGCTGCGCAGCAGGTAGCCCTTGATGCAGTGCGGCAGCGCGTCGTCCGCCAGCTGGAAGCAGCGCCCG TCCACCAGCACGAACAGCCGGTGCGCCT

FIGURE 32

MCFLNKLLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC
CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTTSLGAQPSQTSQGLQAQLAQAFFHNQPP
SLRRTVEFVAERIGSNCVKHIKATLVADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL
CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL
IRREVKAAVSRTLRAQGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 89-93

Casein kinase II phosphorylation site. amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

FIGURE 33

TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTG AAGACTCTCTGCTTTTGCCACAGCAGTTCCTGCAGCTTCCTTGAGGTGTGAACCCACATCCC TGCCCCCAGGGCCACCTGCAGGACGCCGACACCTACCCCTCAGCAGACGCCGGAGAGAAATG AGTAGCAACAAGAGCAGCGGTCAGCAGTGTTCGTGATCCTCTTTGCCCTCATCACCATCCT CATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTGCGGGGCCGTA GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCATTCTCGGC AACAAGACACTGCCCTCTCGGTGCCACCAGTGTGTGATTGTCAGCAGCTCCAGCCACCTGCT CCACCACTGGCTACTCAGCTGATGTGGGCAACAAGACCACCTACCGCGTCGTGGCCCATTCC AGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAACCGGACCCCTGAAACCGTGTT AGCGAGCGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGG CAATTTGACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGAGAAGTCTCATTCGTGGTT GAGCACAGGCTGGTTTACCATGGTGATCGCGGTGGAGTTGTGTGACCACGTGCATGTCTATG GCATGGTCCCCCCAACTACTGCAGCCAGCGGCCCCGCCTCCAGCGCATGCCCTACCACTAC TACGAGCCCAAGGGGCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGCAAGGG CAACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTATGGCA TCACCTTCTCCCACCCCTCCTGGACC<u>TAG</u>GCCACCCAGCCTGTGGGACCTCAGGAGGGTCAG AGGAGAAGCAGCCTCCGCCCAGCCGCTAGGCCAGGGACCATCTTCTGGCCAATCAAGGCTTG CTGGAGTGTCTCCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC TGGGGAATCTGTTGGCGAATCAGGGATTTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTTC TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGGTATTTCTGAGTCAATCTG AGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCCA ATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTG CCCCTCAATTTCCAGCACCAGAAAGAGAGATTGTGTGGGGGTAGAAGCTGTCTGGAGGCCC GGCCAGAGAATTTGTGGGGTTGTGGAGGTTGTGGGGGCGGTGGGGAGGTCCCAGAGGTGGGA GGCTGGCATCCAGGTCTTGGCTCTGCCCTGAGACCTTGGACAAACCCTTCCCCCTCTCTGGG CACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCACCTCCCCTACAA GTGCCCTCGGGTCTGTCCCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCT CAGCTCTTTGGGGGGTCTGGGGTGACCTCCCCACCTCCTGGAAAACTTTAGGGTATTTTTGC GCAAACTCCTTCAGGGTTGGGGGACTCTGAAGGAAACGGGACAAAACCTTAAGCTGTTTTCT TAGCCCCTCAGCCAGCTGCCATTAGCTTGGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCT CTAGCAGGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGGCTGCCCCTTTGTCTGGAGTCA CTGGGGGCTTCCGAGGGTCTCCCTCGACCCTCTGTCGTCCTGGGATGGCTGTCGGGAGCTGT ATCACCTGGGTTCTGTCCCCTGGCTCTGTATCAGGCACTTTATTAAAGCTGGGCCTCAGTGG GGTGTGTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA GGCTGGAGGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGGTGATGGGTGG GGGCGGTGACTGCCCCAGACTTGGTTTTGTAATGATTTGTACAGGAATAAACACACCTACGC

FIGURE 34

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL GNKTLPSRCHQCVIVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH SSVFRVLRRPQEFVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM RQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCT GGGGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATAC CGTCTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCC ${ t TGGCGGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACC} { t ATG} { t CTGCGTGGGACGATGACGGCGTGGAGAG}$ GAATGAGGCCTGAGGTCACACTGGCTTGCCTCCTAGCCACAGCAGGCTGCTTTGCTGACTTGAACGAGGTC CCTCAGGTCACCGTCCAGCCTGCGTCCACCGTCCAGAAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGA ACCTCCAAGGATGAATGTAACCTGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCC TCATCACCCACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGTGGCCCGG ATGCCTGCGGGGGCTGTGGCCAGCGTGCCAGCCACTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGT CCCAGGTCCGGTACAGCGTCAAACAAGAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGG AACCTCCAGATTGTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCA GGAAGTGAAAACCTCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCT ACCCCCCAGAGGCCCAAACCATCATCGTCACCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATC ${\tt CCACCCCACGGGTCACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAG}$ CAACCTCCTCATCGACACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGC AGCCCGGGGCAGCGGTCATCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAG CTGGTCATCCCCTGGGGCCAGAGTGCCAAGCTTACCTGTGAGGTGCGTGGGAACCCCCCGCCCTCCGTGCTGTG GCTGAGGAATGCTGTGCCCCTCATCTCCAGCCAGCGCCTCCGGCTCTCCCGCAGGGCCCTGCGCGTGCTCAGCA TGGGGCCTGAGGACGAAGGCGTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAG CTGCGGACCTCCAGGCCAAGCATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCCTGT ATCACCCTCCAAACTCGGCAACCCTGAGCAGATGCTGAGGGGGCAACCGGCGCTCCCCAGACCCCCAACGTCAG TGGGGCCTGCTTCCCCGAAGTGTCCAGGAGAGAGGGGGCAGGGGGCTCCCGAGGCTCCCATCATCCTCAGC TCGCCCCGCACCTCCAAGACAGACTCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCC AATCCTCTACTATGTGGTGAAACACCGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGCATTC CAGCCAACCAGCACCGCCTGACCTCACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTAC AACTGTGCGGGAGAGGGCCAGACAGCCATGGTCACCTTCCGAACTGGACGGCGCCCAAACCCGAGATCATGGC GCCTCTCCCCCCAGAAGCTCCCGACAGGCCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACCTGG ATTCCCCGTGGGAATGGTGGGTTCCCAATCCAGTCCTTCCGTGTGGAGTACAAGAAGCTAAAGAAGTGGGAGA CTGGATTCTGGCCACCAGCGCCATCCCCCATCGCGGCTGTCCGTGGAGATCACGGGCCTAGAGAAAGGCACCT GTGTCGGGCTACAGCGGTCGCGTGTACGAGAGGCCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAA TGAGACCACCATCATGCTCAAGTGGATGTACATCCCAGCAAGTAACAACAACACCCCAATCCATGGCTTTTATA ${ t TCTATTATCGACCCACAGACAGTGACAATGATAGTGACTACAAGAAGGATATGGTGGAAGGGGACAAGTACTGG$ CACTCCATCAGCCACCTGCAGCCAGAGACCTCCTACGACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAG CGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCTCGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCC CAACTCTGGCCCCACCACAGCCGCCCCTTCCTGAAACCATAGAGCGGCCGGTGGGCACTGGGGCCATGGTGGCT CGCTCCAGCGACCTGCCCTATCTGATTGTCGGGGTCGTCCTGGGCTCCATCGTTCTCATCATCGTCACCTTCAT CCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACATACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTC CACCCTCCTGCCCGTATACTATGGTGCCATTGGGAGGACTCCCAGGCCACCAGGCCAGTGGACAGCCCTACCTC AGTGGCATCAGTGGACGGGCCTGTGCTAATGGGATCCACATGAATAGGGGCTGCCCCTCGGCTGCAGTGGGCTA CCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAGCAGCAGAGTGACACCAGCAGCCTGCTGAGGC AGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATCACGAGGGGTCCCAAGTCTAGCCCGGACGAG GGCTCTTTCTTATACACACTGCCCGACGACTCCACTCACCAGCTGCTGCAGCCCCATCACGACTGCTGCCAACG ${\tt CCAGGAGCAGCCTGCTGTGGGCCAGTCAGGGGTGAGGAGGCCCCCGACAGTCCTGTCCTGGAAGCAGTGT}$ GGGACCCTCCATTTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTGCCAGTTGAAGAGGTGGACAGTCCTGAC TCCTGCCAAGTGAGTGGAGGAGACTGGTGTCCCCAGCACCCCGTAGGGGCCTACGTAGGACAGGAACCTGGAAT ${\tt GCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCTTTTGAAACACCACCTCTCACAATT{\tt {\it TAG}}{\tt GCAGAAGCTGATA}}$ CATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCACCTAACAGGAGTCACCCAGGAA AGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCTGGGGCCTCTGCAGTGGCAGGCGAGGCTGCAGGAGGC CCACAGATAAGCTGGCAAGAGGAAGGATCCCAGGCACATGGTTCATCACGAGCATGAGGGAACAGCAAGGGGCA CGGTATCACAGCCTGGAGACACCCACACAGATGGCTGGATCCGGTGCTACGGGAAACATTTTCCTAAGATGCCC ATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAATCAATAATCCGTGGCAACA TATCTCTGTAAAAACAAACACTGTAACTTCTAAATAAATGTTTAGTCTTCCCTGTAAAA

FIGURE 36

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPP ${\tt RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL}$ ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLQ IVNASQEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGQSL ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA AVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQRLRLS RRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSK LGNPEQMLRGQPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSSPRTSKTDSYELVWRPR HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE GQTAMVTFRTGRRPKPEIMASKEQQIQRDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASE TSVYVTWIPRGNGGFPIQSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRV RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNT PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVM ICETKARKSSGOPGRLPPPTLAPPOPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL IIVTFIPFCLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA CANGIHMNRGCPSAAVGYPGMKPQQHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPK SSPDEGSFLYTLPDDSTHQLLQPHHDCCQRQEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG PPCCLGLVPVEEVDSPDSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGGTCGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTC CCAGGCTCCCGCGCCCACCCCCGCGCAACATGCAGCCCACGGGCCGCGAGGGTTCCCGCGC GCTCAGCCGGCGTATCTGCGGCGTCTGCTGCTCCTGCTACTGCTGCTGCTGCTGCGGCAGC CCGTAACCCGCGCGGGGCCCCCGGGCGCCCCCAGAGCCCTCTCCACGCTGGGCTCCCCCAGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCACTACGCCAGG TGGACGCCACAATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGT GGGTGCCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACTCGAGCTT GTGACCTCAGCTGAAGGTCTGAACAGCTCTCAAAAGCTGGCCTCATTGGCGTGNAGGG TGGTCACTCACTGGACAGCAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCT ACCTGACACTTACCTTCACCTGCAGTACACCATGGGCAGAGTTCCACCAAGTTCAGACAC CACATGTACACCAACGTCAGCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGAGTTGAA CCGCCTGGGCATGATGATAGATTTGTCCTATGCATCGGACACCTTGATAAGAAGGGTCCTGG TTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGACACT GTCCATGGGGGTGCTGCAGTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTTTG ACCACATCAGGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACT -GGCCGGTTCCCTCAGGGGCTGGAGGATGTGTCCACATACCCAGTCCTGATAGAGGAGTTGCT GAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTGTCCTTCGTGGAAACCTGCTGCGGGTCT TCAGACAAGTGGAAAAGGTGAGAGAGGGGGAGGCGCAGAGCCCCGTGGAGGTTT CCATATGGGCAACTGAGCACATCCTGCCACTCCCACCTCGTGCCTCAGAATGGACACCAGGC TACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCT CCCCATACCTTGTTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTC TGC<u>TGA</u>CACAGTCGGTCCCCGCAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCCT AGTTCATTCACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

FIGURE 38

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817

><subunit 1 of 1, 487 aa, 1 stop, 2 unknown

><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS ALTTPGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ TSLDRLRDGLVGAQFWSASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS QKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTCSTPWAESSTKFRHHMYTNVSGLT SFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNLLNVPDDILQL LKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV STYPVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCH SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA ${\tt TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGC} \underline{{\tt ATG}}$ AAGCTCTTATCTTTGGTGGCTGTTGGTCGGGTGTTTTGCTGGTGCCCCCAGCTGAAGCCAACAA GAGTTCTGAAGATATCCGGTGCAAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGCTGTGCGAGTGCAGGTACGAGGAGCGCAG ACATGGCCTTCCTGATGCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAA CTGCACAATGAGGAGGAGAATGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG GGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGCCCAGCAGCGGTGGAAGCTGC AGGTGCAGGAGCAGCGGAAGACAGTCTTCGATCGGCACAAGATGCTCAGC<u>TAG</u>ATGGGCTGG TGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGG CTACTTCTCCCTTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTT CTCCCTAACTTTAGAAATGTTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCT ATGGAGACATTCGAGGCGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTCTTG CCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCA GGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTG GTTCTTATCACCACCTCCCTCCCAGCCCCGGCGCCTCAGCCCCAGCCCCAGCTCCAGCCCTG AGGACAGCTCTGATGGGAGAGCTGGGCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGA AGCTGGTGTTCGCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACT CTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCCTCTCCCCAGTGTC CACAGTCACTGAGCCAGACGGTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAA CACCACAGCCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGA GAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATCATTAAATTG TTTTATTTCTCTCA

FIGURE 40

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278</pre>

<subunit 1 of 1, 183 aa, 1 stop

<MW: 20574, pI: 6.60, NX(S/T): 3

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM PVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE QLHNEEENEDARSMAAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

FIGURE 41

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCG ${\tt ATGCGGAGCAAGGATTCGTCCTGCTGCTGCTCCTACTGGCCGGGTGCTGATGGTGGAGAGCTCACAGATCGG}$ CAGTTCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGGAGACGCCTGGTCAGGCCGCCAATCGAT CTGCGGGCATGTACCAAGGACTGGCATTCGGCGGCAGTAAGAAGGGCCAAAAACCTGGGGCAGGCCTACCCTTGT AGCAGTGATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTG TCGGAGAAAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCCCAGTACCCGCTGCAATAATGGCATCTGTA TCCCAGTTACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCAC GGTCATTACTCAAACCATGACTTGGGATGGCAGAATCTAGGAAGACCACACACTAAGATGTCACATATAAAAGG GCATGAAGGAGACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTGCTGTGCTCGTCATTTCTGGACCA AAATCTGCAAACCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAA ATTTTCCAGCGTTGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGC ${\tt CAGACTCCATGTGTGTCAGAAAATT} \underline{{\tt TGA}} {\tt TCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTAT}$ ${\tt TTAATGCATTATAGCATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAA}$ TATAGATGATCACAAAAAGGGAGAAAAGAAAACATGAACTGAATAGATTAGAATGGGTGACAAATGCAGTGCAGC CAGTGTTTCCATTATGCAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACA AGCACACAGTGGAAATTACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGAGGTTTC CTTCAGATTGCTGATTGCTTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATA CTCCTAGAATAACTTGTTATACAATAGGTTCTAAAAATAAAATTGCTAAACAAGAAATGAAAACATGGAGCATT AAGAAAAAAATCAGTCAATATTTCCAAATAATTGCAAAATAATGGCCAGTTGTTTAGGAAGGCCTTTAGGAAGA TGATACAAGACAAAAACAGTTCCTTCAGATTCTACGGAATGACAGTATATCTCTCTTTATCCTATGTGATTCCT GCTCTGAATGCATTATTTTTCCAAACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATT TTCACAGATGGCAAAAAATTTAAAGATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCT ATAGAGACTTAAGCTGGATCTGTACTGCACTGGAGTAAGCAAGAAAATTGGGAAAACTTTTTCGTTTGTTCAGG TTTTGGCAACACATAGATCATATGTCTGAGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTC TAAATGAATATCTGCATGGGATTTGCTATCATAATATTTACTATGCAGATGAATTCAGTGTGAGGTCCTGTGTC CGTACTATCCTCAAATTATTTATTTTATAGTGCTGAGATCCTCAAATAATCTCAAATTTCAGGAGGTTTCACAAA ATGTACTCCTGAAGTAGACAGAGTAGTGAGGTTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCAT CGGTTAAAAAATATAAGTAGGATAACTTGTAAAACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAAT $\tt TCTTTGAAACCACTTTACTACTTTTTTTAAACTTAACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATA$ AAAGGTTATCTTATAGTCGTGACTTTAAACTTTTGTAGACCACAATTCACTTTTTAGTTTTCTTTTACTTAAAT CCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAGAGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCA ACTTCCCACATATATTTACTAAGATGATTAAGACTTACATTTTCTGCACAGGTCTGCAAAAACAAAAATTATAA ACTAGTCCATCCAAGAACCAAAGTTTGTATAAACAGGTTGCTATAAGCTTGTGAAATGAAAATGGAACATTTCA ATCAAACATTTCCTATATAACAATTATTATATTTACAATTTGGTTTCTGCAATATTTTTCTTATGTCCACCCTT TTAAAAATTATTATTTGAAGTAATTTATTTACAGGAAATGTTAATGAGATGTATTTTCTTATAGAGATATTTCT TACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGACTTTGTAATTTAGGAAAAATGTATAATAAGATAA

FIGURE 42

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNN GICIPVTESILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRS SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS SKARLHVCQKI

Signal peptide:

amino acids 1-25

FIGURE 43

GTGTTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAACATCACGTTTTTAAAAATTGATT TAGCTGCATTTATTTAGTCAGTTTTCATTGCATAGTAATATTTTCATGTAGTATTTTCTAAG TTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTGAAAATACTTG ATGTGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGAGGATTTGTTCTTTTATCCCCCT TTTAAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACA TCACCAGCTCCCAGATTTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACC CCAAGTACACAGCAGAATAGTACAAGTCACCCTACAACTACTACTTCTTGGGACCTCAAGCC CCCAACATCCCAGTCCTCAGTCCTCAGTCTTGACTTCAAATCTCAACCTGAGCCATCCC CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGTTCCTCCT CCTGGTTTGGAGTCCTTTCCTTCCCAGGCAAAACTTCGAGAATCAACACCTGGAGACAGTCC CTCCACTGTGAACAAGCTTTTGCAGCTTCCCAGCACGACCATTGAAAATATCTCTGTGTCTG TCCACCAGCCACAGCCCAAACACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAG ATCCCAGCTTCTGCAGTGGAAATGCCTGGTTCAGCAGATGTCACAGGATTAAATGTGCAGTT TGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTCTGAATTTGGATCAGCTCCAAGCAGTG AAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAATACA TCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTG CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACC AGAGTTCTGTGCATAACAGGATCCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCA CAGCAAGCTACTCTTGTCATGGCTGGTGCCAACCAAACAGAGGAAGAGGATAGCTCACGTGA ${\tt TGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT} \underline{{\tt TAA}} {\tt AAAGCAGCCCTTTTGCTTTTTTGT}$ TTTTGGACCAGGTGTTGGCTGTGGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGT GGTGGTCTCATATTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCAT TTTAAAGATGCTTGGGCCAGGCGGGGTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCC AAGGCAGGCAGATTGCCCAAGCTCAGGAGTTTGAGACCACCCTGGGCAACATGGTGAAACTC TGTCTCTACTAAAATACGAAAAACTAGCCGGGTGTGGTGGCGGCGCGCGTGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCC GTCTGAAAAGA

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQQTLDSKYSSKLLLSWLVPTKQRKRIAHVMWKTPVGQWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGGCTGGGCGGGGCC<u>ATG</u>GCGCTGCCATCCCGAATCCTGCT TTGGAAACTTGTGCTTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG ACGCGGGCTGTACACCTGCAACCTGCACCATCACTACTGCCACCTCTACGAGAGCCTGGCC GTCCGCCTGGAGGTCACCGACGGCCCCCCGGCCACCCCGCCTACTGGGACGGCGAGAAGGA GGTGCTGGCGGTGGCGCGCGCGCCCTTCTGACCTGCGTGAACCGCGGGCACGTGT GGACCGACCGCACGTGGAGGAGGCTCAACAGGTGGTGCACTGGGACCGGCAGCCGCCCGGG GTCCCGCACGACCGCGCGGACCGCCTGCTGGACCTCTACGCGTCGGGCGAGCGCCGCGCCTA CGGGCCCTTTTTCTGCGCGACCGCGTGGCTGTGGGCGCGGATGCCTTTGAGCGCGGTGACT TCTCACTGCGTATCGAGCCGCTGGAGGTCGCCGACGAGGGCACCTACTCCTGCCACCTGCAC CACCATTACTGTGGCCTGCACGAACGCCGCGTCTTCCACCTGACGGTCGCCGAACCCCACGC GGAGCCGCCCCCGGGGCTCTCCGGGCAACGCTCCAGCCACAGCGGCGCCCCAGGCCCAG ACCCCACACTGGCGCGCCGCCACAACGTCATCAATGTCATCGTCCCCGAGAGCCGAGCCCAC TTCTTCCAGCAGCTGGGCTACGTGCTGGCCACGCTGCTCTTCATCCTGCTACTGGTCAC TGTCCTCCTGGCCGCCGCGGGGCGCGGGGGGTACGAATACTCGGACCAGAAGTCGGGAA AGTCAAAGGGGAAGGATGTTAACTTGGCGGAGTTCGCTGTGGCTGCAGGGGACCAGATGCTT TACAGGAGTGAGGACATCCAGCTAGATTACAAAAACAACATCCTGAAGGAGAGGGCGGAGCT GGCCCACAGCCCCTGCCTGCCAAGTACATCGACCTAGACAAAGGGTTCCGGAAGGAGAACT CTCGGGGCATCTCCTGATGCTCCGGGGCTCACCCCCCTTCCAGCGGCTGGTCCCGCTTTCCT GGAATTTGGCCTGGGCGTATGCAGAGGCCGCCTCCACACCCCTCCCCCAGGGGCTTGGTGGC AGCATAGCCCCCACCCCTGCGGCCTTTGCTCACGGGTGGCCCTGCCCACCCCTGGCACAACC AAAATCCCACTGATGCCCATCATGCCCTCAGACCCTTCTGGGCTCTGCCCGCTGGGGGCCTG AAGACATTCCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAAACTGGGGTCAGCCTCA GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCGGGGGCTGGGAGATGTTCCTGGAGGA GGACACTCCCATCAGAACTTGGCAGCCTTGAAGTTGGGGTCAGCCTCGGCAGGAGTCCCACT CCTCCTGGGGTGCTGCCACCAAGAGCTCCCCCACCTGTACCACCATGTGGGACTCCAG GCACCATCTGTTCTCCCCAGGGACCTGCTGACTTGAATGCCAGCCCTTGCTCCTCTGTGTTG CTTTGGGCCACCTGGGCTGCACCCCTTCTCTCTCCCATCCCTACCCTAGCCTTG GGACTCTGCCTGGGCTGGAGTCTAGGGCTGGGGCTACATTTGGCTTCTGTACTGGCTGAGGA CAGGGGAGGGAGTGAAGTTGGTTTGGGGTGGCCTGTGTTGCCACTCTCAGCACCCCACATTT AAAAA

FIGURE 46

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618</pre>

<subunit 1 of 1, 341 aa, 1 stop

<MW: 38070, pI: 6.88, NX(S/T): 1

MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAFERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAEPHAEPPPRGSPGNGSSHSGAPGPDPTLARGHNVINVIVPESRAHFFQQLGYVLATL
LLFILLLVTVLLAARRRRGGYEYSDQKSGKSKGKDVNLAEFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDLDKGFRKENCK

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

CGCCGGAGGCAGCGGCGTGGCGCAGCGGCGACATGCCCGTTGTCTCAGAGGACGACTTT CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC ACTGCTTGAGAAGCTGCTGGACCGCCCCCCCCCGGCCCCCTGGCCTGCAGAGGCCCGAGGACCGCTTCT GTGGCACATACATCATCTTCTTCAGCCTGGGCATTGGCAGTCTACTGCCATGGAACTTCTTT ATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCCACCGGGGA GGACCCTGAGGGCTCAGACATCCTGAACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCG TGCCCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATC CGTGTCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA GGTGGACACTTCCTCCTGGACCCGTGGTTTTTTTTGCGGTCACCATTGTCTGCATGGTGATCC TCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCATGACCGGCTCCTTTCCTATG AGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCGTGGCCTC ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG CCACCATCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGTCCAGGCTGGAGTATGCC AGGTACTACATGAGGCCTGTTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCA GGACTCCCTCAGTGCCCCTTCGGTGGCCTCCAGATTCATTGATTCCCACACACCCCCTCTCC GCCCCATCCTGAAGAAGACGGCCAGCCTGGGCTTCTGTGTCACCTACGTCTTCTTCATCACC AGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCTCACT GTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCCTGTACAACTTTGCTGACCTAT GTGGCCGGCAGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAAGGCGCTCCCAGGG TTCGTGCTCCTCCGGACCTGCCTCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGT CCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGTACCCCGCACTCCTCAGCTCCCTGCTGG GGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTAAGATTGTGCCCAGG GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGGG $\tt CTCAGCCTGCTCCTGGTGCACCTCATC\underline{TAG}{AAGGGAGGACACAAGGACATTGGTG}$ CTTCAGAGCCTTTGAAGATGAGAAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCC GTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAACAGAACACT CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACAGCTGATGGTTA ACATTCCACCTTCTTCTAGCCCTTCAAAGATGCTGCCAGTGTTCGCCCTAGAGTTATTACA AAGCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCT GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGA AGTCCCCTGGCATGGTCAGTCCTCAGGCCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT GCGGGTGAACAACTGCCCACTAACCAGACTGGAAAACCCAGAAAGATGGGCCTTCCATGAAT GCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG TTTTCAAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC GTATTCAAAAA

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGI
GSLLPWNFFITAKEYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

FIGURE 49

GACAGTGGAGGGCAGTGGAGAGGACCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCA TCTCCCACCGAGAGTCATGGCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCC TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGC ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAATCGGACCCT GAAGCCCCAGAGGGTGATTGTGGTTGGCGCTGGTGTGGCCGGGCTGGTGGCCGCCAAGGTGC TCAGCGATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATC TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCCATGCCCAG CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGCTCAACCTGACCAAGTTCACCC AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG AAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGA CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGG $\tt CGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATATCTTCTCGGGGAGGGGAACCTGAGC$ $\tt CGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTT$ CGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGCGACAGACTCCAGTACAGCCGCATCGTGG $\tt GTGGCTGGGACCTGCTGCCGCGCGCGCTGCTGAGCTCGCTGTCCGGGCTTGTGCTGTTGAAC$ GCGCCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC CCCGGCGCGGAATCTGAAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGG CGGTGAAGCGCATCACCTTCTCGCCGCCGCCGCCACATGCAGGAGGCGCTGCGGAGG $\tt CTGCACTACGTGCCGGCCACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGA$. .GCACATTGAAGGCGGCCACTCAAACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGC CGCGCGAGGGCGCGCTGCTGGCCTCGTACACGTGGTCGGACGCGGCGGCAGCGTTCGCC GGCTTGAGCCGGGAAGAGGCGTTGCGCTTGGCGCTCGACGACGTGGCGGCATTGCACGGGCC TGTCGTGCGCCAGCTCTGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACA GCCAGGGTGGCTTTGTGGTACAGCCGCCGGCGCTCTGGCAAACCGAAAAGGATGACTGGACG GTCCCTTATGGCCGCATCTACTTTGCCGGCGAGCACACCGCCTACCCGCACGGCTGGGTGGA GACGGCGGTCAAGTCGGCGCTGCGCCGCCATCAAGATCAACAGCCGGAAGGGGCCTGCAT CGGACACGGCCAGCCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGG GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCTCCAGTCCAAGG CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCATTAAAGTATTTTCGGAAAAA

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRIL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:

amino acids 1-21

FIGURE 51

AAGAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGATGCGGCCCCCTCGCAGGGTCTGAATTT CCTGCTGCTGTTCACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCT GCATCCTGACATTTGGAGCTGCCATCTTCTTGTGGCTGATCACCAGACCTCAACCCGTCTTACCTCTTCTTGAC CTGAACAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAG TTGCTGCTTCTCAGATGCCAAGACTATGTATGAGGTTTTCCAAAGAGGACTCGCTGTCTGACAATGGGCCCT GCTTGGGATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTAC CTGGGTTCCTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAG GCCAGAGTGGATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGG GACCAGAAGCCATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACACCCCCAAAAGGCA TTGGTGCTGATAGGGAATGTAGAGAAAGGCTTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTTGA TGATGACCTGAAGCAAAGAGGGGAGAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCA AAGAGCACTTCAGAAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACA GGTGACCCCAAAGGAGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGA ATGAAGACTTTGAAGCCCACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAA GTATCATCAGGCATGATAGTTTCTGGGACAAGCTCATCTTTGCAAAGATCCAGGACAGCCTGGGCGGAAGGGTT CGTGTAATTGTCACTGGAGCTGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCA GGTGTATGAAGCTTATGGTCAAACAGAATGCACAGGTGGCTGTACATTTACATTACCTGGGGACTGGACATCAG GTCACGTTGGGGTGCCCCTGGCTTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTG AATAATGAAGGAGGTCTGCATCAAGGGTACAAACGTGTTCAAAGGATACCTGAAGGACCCTGAGAAGACACA GGAAGCCCTGGACAGTGATGGCTGGCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGA TCATCGACCGTAAAAAGAACATTTTCAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAAGATAGAAAATATC TACAACAGGAGTCAACCAGTGTTACAAATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGT GGTTCCTGACACAGATGTACTTCCCTCATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCC GAACAGGTCAAAGCCATTTTTCTTCATCCAGAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAA ATAAGGTACTTAAGTACCTGCCGGCCCACTGTGCACTGCTTGTGAGAAAATGGATTAAAAACTATTCTTACATT TGTTTTGCCTTTCCTCCTATTTTTTTTAACCTGTTAAACTCTAAAGCCATAGCTTTTGTTTTATATTGAGACA TATAATGTGTAAACTTAGTTCCCAAATAAATCAATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCT ${\tt ACCTTAATACTATTAGTAACCACAAGTTCAAGGGTCAAAGGGACCCTCTGTGCCTTCTTTGTTTTGTGATA}$ AACATAACTTGCCAACAGTCTCTATGCTTATTTACATCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGA AAAACTGCTTACAATTCATGTTTTCTAGCCACTCCACAAACCACTAAAATTTTAGTTTTAGCCTATCACTCATG TCAATCATATCTATGAGACAAATGTCTCCGATGCTCTTCTGCGTAAATTAAATTGTGTACTGAAGGGAAAAGTT TGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATATCTGACTTGGGAGTATTAAAAATTGGGTCTATGAC ATACTGTCCAAAAGGAATGCTGTTCTTAAAGCATTATTTACAGTAGGAACTGGGGAGTAAATCTGTTCCCTACA GTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACAGGTGGGCCCAGTGAACTTTTCCAGTAAATGAAG ATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCCTTGGATTAGAGTTCCTGCTCTACCTTACCCACAGATAA CACATGTTGTTTCTACTTGTAAATGTAAAGTCTTTAAAATAAACTATTACAGATAAAAAA

FIGURE 52

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775</pre>

<subunit 1 of 1, 739 aa, 1 stop

<MW: 82263, pI: 7.55, NX(S/T): 3

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 53

GGAGGCGGAGCCGCGAGCCGGGCCGAGCAGTGAGGGCCCTAGCGGGGCCCGAGCGGG CCCGGGGCCCCTAAGCCATTCCTGAAGTCATGGGCTGGCCAGGACATTGGTGACCCGCCAAT CCGGT<u>ATG</u>GACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGG AGCTGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA GACAGGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACA CTCGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCC CTAGGCCGCCTGGAGCCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGTCCTGGACGTAGA GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATG AGGCCCGGGAGCAGGCCGGGGCATCCATGTCATTGTCCTCAACCAGGCCACGGGCCACGTG ATGGCAAAACGTGTGTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCT CAACATGGTAGCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACC TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGGCAGCCAGGCTGGCCCTGCCCTGGGC TGGAGGGACACATGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTC TAAGTCACCTGCCCTCTCTTCCTGGGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGA GCTCAGCAGAAGAGGCAGAGTGCCACTGGGCAGACACAGAGCTGAACCGTCGCCGCCGCGC TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGA GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAG GGAACCGACCCAATTACCTGTACAGGATGCTGCGCTCTCTGCTTTCAGCCCAGGGGGTGTCT CCTCAGATGATAACAGTTTTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT GTTTGGTCTGAGGGGCATCCAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGC ACTACAAGGCCAGCCTCACTGCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGGTT ACTGGAGGAGGATĠACAGCCTGTACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACA CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCTGGGCTGGGCTGGGTGCTC AGGAGGTCCTTGTACAAGGAGGAGCTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGA TTGGGACATGTGGATGCCGGACGACACGCCGGGGCCGAGAGTGCATCATCCCTGACG TTTCCCGATCCTACCACTTTGGCATCGTCGGCCTCAACATGAATGGCTACTTTCACGAGGCC TACTTCAAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGCTCAGGAATGTGGACAGTCT GAAGAAGAAGCTTATGAAGTGGAAGTTCACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACC ACAGCAAGAACCCTTGTGAAGACTCTTTCCTGCCAGACACAGAGGGCCACACCTACGTGGCC TTTATTCGAATGGAGAAAGATGATGACTTCACCACCTGGACCCAGCTTGCCAAGTGCCTCCA TATCTGGGACCTGGATGTGCGTGGCAACCATCGGGGCCTGTGGAGATTGTTTCGGAAGAAGA ACCACTTCCTGGTGGTGGGGGTCCCGGCTTCCCCCTACTCAGTGAAGAAGCCACCCTCAGTC TCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTAGGGGGCTGGGGCTACCTTGTTTTAACA TGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCCCTGCTCCAACACCCCGTTCCTGAGTT AAAAGTCTATTTATTTACTTCCTTGTTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTACG ATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCACTTTCCAGGCCTGGCTCAGAATCTA ACCTATTATTGACTGTCCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCCTGGATTTC TTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGGCTCTTACTCAGGAAACTGCTGTGCC GACACTGGACCAGGCCTCCTCAGCCTTCTCTTTGTCCAGATTTCCAAAGCTGGATAAGTT

FIGURE 54

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185

><subunit 1 of 1, 660 aa, 1 stop

><MW: 75220, pI: 6.76, NX(S/T): 0

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEA
REQGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRRRFCSKVEGYGSVCSCKDPTPIEFSPDPLPDNKVLNVPVAVIAGN
RPNYLYRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEQT

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 55

CGGACGCGTGGGCTGCTGGTGGGAAGGCCTAAAGAACTGGAAAGCCCACTCTCTTGGAACCACCACA CCTGTTTAAAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAA TAAAGGAGGCAGA**ATG**GATGATTTCATCTCCATTAGCCTGCTGTCTCTGGCTATGTTGGTGGGATG TTACGTGGCCGGAATCATTCCCTTGGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTT TTGGGTGCTGGCCTTCTCTGTGGAACTGCTCTGGCAGTCATCGTGCCTGAAGGAGTACATGCCCTTT ATGAAGATATTCTTGAGGGAAAACACCACCAAGCAAGTGAAACACATAATGTGATTGCATCAGACAA ATTGGTGTTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGGTAACTCCCATG TGCATTCTACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGGTCT GGTTGTCCATGCTGCAGCTGATGGTGTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTC CAGTTAATTGTGTTTGTGGCAATCATGCTACATAAGGCACCAGCTGCTTTTGGACTGGTTTCCTTCT TGATGCATGCTGGCTTAGAGCGGAATCGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACC AGTTATGTCCATGGTGACATACTTAGGACTGAGTAAGGGCAGTAAAGAAGCCCTTTCAGAGGTGAAC GCCACGGGAGTGGCCATGCTTTTCTCTGCCGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCC GGAAGTGGCAGCCTGGTTCTGGGTTGCCTCATCCTCTCATCCTGTCAGTAGGACACCAGCAT<u>TAA</u> ATGTTCAAGGTCCAGCCTTGGTCCAGGGCCGTTTGCCATCCAGTGAGAACAGCCGGCACGTGACAGC TACTCACTTCCTCAGTCTCTCTCTCCCCTTGCGCATCTCTACATGTATTCCTAGAGTCCAGAGGGG AGGTGAGGTTAAAACCTGAGTAATGGAAAAGCTTTTAGAGTAGAAACACATTTACGTTGCAGTTAGC TATAGACATCCCATTGTGTTATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTAA CCCTATTCTCAGGGAAGATGGAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAA GCTACTTTATCCATTGATTTTTAACATGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCC ACATGCGTTGATGGAAGGTCATAGCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGG GATTAGGGTCAGGAAAATGATAGCAAGACACATTGAAAGCTCTCTTTATACTCAAAAGAGATATCCA TTGAAAAGGGATGTCTAGAGGGATTTAAACAGCTCCTTTGGCACGTGCCTCTCTGAATCCAGCCTGC ${\tt CATTCCATCAAATGGAGCAGGAGGAGGTGGGAGGAGCTTCTAAAGAGGTGACTGGTATTTTGTAGCAT}$ TCCTTGTCAAGTTCTCCTTTGCAGAATACCTGTCTCCACATTCCTAGAGAGGAGCCAAGTTCTAGTA GTTTCAGTTCTAGGCTTTCCTTCAAGAACAGTCAGATCACAAAGTGTCTTTGGAAATTAAGGGATAT TAAATTTTAAGTGATTTTTTGGATGGTTATTGATATCTTTGTAGTAGCTTTTTTTAAAAGACTACCAA AATGTATGGTTGTCCTTTTTTTTTTTTTTTTTTTTTTTAATTATTTCTCTTAGCAGATCAGCAATC - CCTCTAGGGACCTAAATACTAGGTCAGCTTTGGCGACACTGTGTCTTCTCACATAACCACCTGTAGC AAGATGGATCATAAATGAGAAGTGTTTGCCTATTGATTTAAAGCTTATTGGAATCATGTCTCTTGTC TCTTCGTCTTTTCTTTGCTTTTCTTAACTTTTCCCTCTAGCCTCTCCTCGCCACAATTTGCTGCT TACTGCTGGTGTTAATATTTGTGTGGGATGAATTCTTATCAGGACAACCACTTCTCGAACTGTAATA ATGAAGATAATATCTTTATTCTTTATCCCCTTCAAAGAAATTACCTTTGTGTCAAATGCCGCTT TGTTGAGCCCTTAAAATACCACCTCCTCATGTGTAAATTGACACAATCACTAATCTGGTAATTTAAA TTCAAAACACATTACACTAAGGGGGAACCAAGACTAGTTTCTTCAGGGCAGTGGACGTAGTAGTTTG GGATCAGCAGCTGTGGAAATAAAGCTTGTGAGCCCTCTGCTGGCCACAGTGAGGAAAGTAGCACAAA TAGGATACAGTTGTATGTAGTCATTGGCAACAATTGCATACAATTTTACTACCAAGAGAAGGTATAG TATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCTGACTGGTGTGAGACTTGAGGTTTTC CAGATTGTAGTGTCAAAAAAA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQ
IGNSHVHSTDDPEAARSSNSKITTTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK
APAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLILSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGCGCCTCGTAGCGGGCCCCCGGATCCC $\tt CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAG{\color{red} ATG}{\color{blue} ATG}{\color{blue} ATG}{\color{blue} GCTTGG}$ GAAACGGGCGTCGCAGCATGAAGTCGCCGCCCCTCGTGCTGGCCGCCCTGGTGGCCTGCATC ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGAT AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC CACAACTTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAA TAACATCACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGA GGAATTACGGCAGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAG AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG TGAGGAGCGAATAGAAGAGGTCACCAAAAAGGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA GTGAAAACAACGACCAGAGACAGCCGCCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG GTCCCAGACACCAGCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAG AGGAAACCAATGAGATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG CCAGGCCGGGAGCAGGTGGTAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGCCGG AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA TGGAGGCCCTGAGCGAGACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCT GCCGGGGAAGGGAAACCAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA . TGAAGCAGAATCTGAGACAGACAAGCAGCCCTGGCAGGGAATGACAGAAACATAGATG TTTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGG AATCATACACTCTGAATTGAACTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTA TGA

FIGURE 58

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKR
QVEKEETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

FIGURE 59

 $\mathsf{GGATG}\mathsf{CAGAAAGCCTCAGTGTTGCTCTTCCTGGCCTGGGTCTGCTTCCTCTTCTACGCTGGCATTGCCCTCTTC$ CCTGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTGTTGGTGC TGATAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTA $\verb|CCCTTCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATC| \\$ TCAGGTTGACCCTCCTACCACCATGCAGCGCCTCAAGGCCCTCACCACTGGCTCACTGCCTACCTTTATTG ATGCTGGTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGG CGTGTAGTCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCAAAGCTTTCTTCTTCCC ATCCTTCAATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTG GTGAATGGGACGTGCTGATTGCTCACTTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCT GAAATGGCCAAGAAACTTAGCCAGATGGACCAGGTGATCCAGGGGACTTGTGGAGCGTCTGGAGAATGACACACT GCTGGTAGTGGCTGGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGGACAGTGAGCTGGAGGTCTCAG CTGCTCTCTTTCTGTATAGCCCCACAGCAGTCTTCCCCAGCACCCCACCAGAGGAGCCAGAGGTGATTCCTCAA GTTAGCCTTGTGCCCACGCTGGCCTGCTGCTGGGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGC TGAGCTATTCTCAGGGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCA ATGCTCAGCAGGTGTCCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCAT GACACTGCCGACTGTGATTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGG TCTCAGTGGGCAATATCCCCAGGCTTTCCATTCTGCCCTCTACTCCTGACACCTGTGGCCTGGGGCCTGGTTGG GGCCATAGCGTATGCTGGACTCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGCTGTGGCTG TTTCCCATCCTGGGCCCGTCCTGTTACTCCTGCTGTTTCGCTTGGTGTTCTTCTCTCTGATAGTTTTGTTGT GCCAGCTGCTTCCACCTAAGCTACTCACAATGCCCCGCCTTGGCACTTCAGCCACAACAAACCCCCCACGGCAC AATGGTGCATATGCCCTGAGGCTTGGAATTGGGTTGCTTTTATGTACAAGGCTAGCTGGGCTTTTTCATCGTTG AGAATTTATGGTATGGAGCTTGTGTGGCGGCGCTGGTGGCCCTGTTAGCTGCCGTGCGCTTGTGGCTTCGCCGC TATGGTAATCTCAAGAGCCCCGAGCCACCCATGCTCTTTGTGCGCTGGGGACTGCCCCTAATGGCATTGGGTAC TGCTGCCTACTGGGCATTGGCGTCGGGGGCAGATGAGGCTCCCCCCCGTCTCCGGGTCCTGGTCTCTGGGGCAT CCATGGTGCTGCCTCGGGCTGTAGCAGGGCTGGCTGCTTCAGGGCTCGCGCTGCTGCTCTGGAAGCCTGTGACA GTGCTGGTGAAGGCTGGGGCAGGCGCTCCAAGGACCAGGACTGTCCTCACTCCCTTCTCAGGCCCCCCACTTC TCAAGCTGACTTGGATTATGTGGTCCCTCAAATCTACCGACACATGCAGGAGGAGTTCCGGGGCCGGTTAGAGA GGACCAAATCTCAGGGTCCCCTGACTGTGGCTGCTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACA GCCCTCACCCTGTTGGCCTTCCCACTTCTGCTGTTGCATGCGGAGCGCATCAGCCTTGTGTTCCTGCTTCTGTT TCTGCAGAGCTTCCTTCTCCTACATCTGCTTGCTGCTGGGATACCCGTCACCACCCCTGGTCCTTTTACTGTGC CATGGCAGGCAGTCTCGGCCTCGATGGCCACAGACCTTCTACTCCACAGGCCACCAGCCTGTCTTT CCAGCCATCCATTGGCATGCAGCCTTCGTGGGATTCCCAGAGGGTCATGGCTCCTGTACTTGGCTGCCTGTTT GCTAGTGGGAGCCAACACCTTTGCCTCCCACCTCTTTTGCAGTAGGTTGCCCACTGCTCCTGCTCTGGCCTT TCCTGTGTGAGAGTCAAGGGCTGCGGAAGAGACAGCAGCCCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCC GAGGAGGAGGAGCCACTGATGGAGATGCGGCTCCGGGATGCGCCTCAGCACTTCTATGCAGCACTGCTGCA GCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTCTGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCA GGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATATTTGAGGCTGTGGGCTTCATTGTGAGCAGCGTG GGACTTCTCCTGGGCATAGCTTTGGTGATGAGAGTGGATGGTGCTGTGAGCTCCTGGTTCAGGCAGCTATTTCT GGCCCAGCAGAGGTAGCCTAGTCTGTGATTACTGGCACTTGGCTACAGAGAGTGCTGGAGAACAGTGTAGCCTG GCCTGTACAGGTACTGGATGATCTGCAAGACAGGCTCAGCCATACTCTTACTATCATGCAGCCAGGGGCCGCTG ACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTATGATCCCTAACTCCTGATTTGGATGCAT CTGAGGGACAAGGGGGGGGTCTCCGAAGTGGAATAAAATAGGCCGGGCGTGGTGACTTGCACCTATAATCCCA GCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCAAGACCAGCCTGTGGAACATAACAAGA CCCCGTCTCTACTATTTAAAAAAAAGTGTAATAAAATGATAATAT

FIGURE 60

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809</pre>

<subunit 1 of 1, 1089 aa, 1 stop

<MW: 118699, pI: 8.49, NX(S/T): 2

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGPGSLPWGSQGKPGACW MASRFSRVVLVLIDALRFDFAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSQ VDPPTTTMQRLKALTTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLF PGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWDVLIAHFLGVDHCGHKHGPHHPEM AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ QVSRFLHTYSAATQDLQAKELHQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELQQFLRG ARAMCIESWARFSLVRMAGGTALLAASCFICLLASQWAISPGFPFCPLLLTPVAWGLVGAIA YAGLLGTIELKLDLVLLGAVAAVSSFLPFLWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLA VFFSDSFVVAEARATPFLLGSFILLLVVQLHWEGQLLPPKLLTMPRLGTSATTNPPRHNGAY ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP RAVAGLAASGLALLLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQE EFRGRLERTKSQGPLTVAAYQLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLLLFLOSFL LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWHAAFVGFPEGHGS CTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP LMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHLMVWKVFAPKFIFEAVG FIVSSVGLLLGIALVMRVDGAVSSWFROLFLAOOR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

FIGURE 61

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCCTTGGGGGACGGCAGTTCCCTGT GTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**ATG**T TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGT CCTGACAGCTCCAGAGAGAGAGAGAGACCCTTCCTGTTTCCATGCAACAA TATACTCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCC CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGT ACACGTGGAGTCCTTCGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTG CCAGGACTTTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTG CCCATATCTATTACCGTGTTTCTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCA CGTTGGCAAAGAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAA GATTCTTTGTGCCTGCTGAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGAT TCTAAAATTTCTCATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAA TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAAGAGAGGAGGTGAAACATTTAG GGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCT CTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGA ATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGG CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCA CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGATCCCC AAACTGGCAGGCTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAG CCTTCTGAGGGGGTCTCGGAGAGGGGGTCTTCTATCTAGACTCTATGAGGAGCCGGC TCCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGT TATATGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAAC AAGTGAGTCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGT TTGTCAGTGTCTGTGAGAATTACTTATTTCTTTTTCTCTATTCTCATAGCACGTGTGTGATTG GTTCATGCATGTAGGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGT TGTTCTATGCAGAGAAAGCAGTCAATAAATGTTTGCCAGACTGGGTGCAGAATTTATTCAGG TGGGTGT

FIGURE 62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815</pre>

<subunit 1 of 1, 442 aa, 1 stop

<MW: 49932, pI: 4.55, NX(S/T): 5

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFD
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGGCGGACGCGTGGGCGGGGTCTCTGCGGGGGAGACGCCAGCCTGCG TCTGCCATGGGGCTCGGGTTGAGGGGCTGGGGACGTCCTCTGCTGACTGTGGCCACCGCCCT GATGCTGCCGTGAAGCCCCCGCAGGCTCCTGGGGGGCCCAGATCATCGGGGGCCACGAGG TGACCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGGCCAACATCACTGCGGA GGCTTCCTGCTGCGAGCCCGCTGGGTGGTCTCGGCCGCCCACTGCTTCAGCCACAGAGACCT TGTTTGGCATCGATGCTCTCACCACGCACCCCGACTACCACCCCATGACCCACGCCAACGAC ATCTGCCTGCTGCGGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGGCTGCTGAGGCT TCGTGTCTGACTTTGAGGAGCTGCCGCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC CCGGACGTCTGCAACAGCTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGCAG $\mathsf{TGGGGACAGCCACAGACGGGGCTTCTGCTCGGCCGACTCCGGAGGGCCCCTGGTGTGCAGGA$ ACCGGGCTCACGGCCTCGTTTCCTTCTCGGGCCTCTGGTGCGGCGACCCCAAGACCCCCGAC GTGTACACGCAGGTGTCCGCCTTTGTGGCCTGGATCTGGGACGTGGTTCGGCGGAGCAGTCC CCAGCCGGCCCCTGCCTGGGACCACCAGGCCCCCAGGAGAAGCCGCCTGAGCCACAACCT TGCGGCATGCAAATGAGATGGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG AAGCCTGATGTTCAGGGTTGGGGTGGGACGGCAGCGGTGGGGCACACCCATTCCACATGCA

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845</pre>

><subunit 1 of 1, 283 aa, 1 stop

><MW: 30350, pI: 9.66, NX(S/T): 2

MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDIC LLRLNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD VCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCRNRAHGLVSFSGLWCGDPKTPDVY TQVSAFVAWIWDVVRRSSPQPGPLPGTTRPPGEAA

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGCTGGTGCAGCAAGCTCCGCGCCGACTCCGGACGCCTGACGCCTGA ${\tt CGCCTGTCCCCGGCCGGC}$ AGCCGCTACCTGCTGCCGCTGTCGGCGCTGGGCACGGTAG CAGGCGCCGCGTGCTGCTCAAGGACTATGTCACCGGTGGGGCTTGCCCCAGCAAGGCCACC ATCCTGGGAAGACGGTCATCGTGACGGCCCCAACACAGGCATCGGGAAGCAGACCGCCTT GGAACTGGCCAGGAGAGGGCAACATCATCCTGGCCTGCCGAGACATGGAGAAGTGTGAGG CGGCAGCAAAGGACATCCGCGGGGAGACCCTCAATCACCATGTCAACGCCCGGCACCTGGAC TTGGCTTCCCTCAAGTCTATCCGAGAGTTTGCAGCAAAGATCATTGAAGAGGAGGAGCGAGT GGACATTCTAATCAACAACGCGGGTGTGATGCGGTGCCCCCACTGGACCACCGAGGACGGCT TCGAGATGCAGTTTGGCGTTAACCACCTGGGTCACTTTCTCTTGACAAACTTGCTGCTGGAC AAGCTGAAAGCCTCAGCCCCTTCGCGGATCATCAACCTCTCGTCCCTGGCCCATGTTGCTGG GCACATAGACTTGACGACTTGAACTGGCAGACGAGGAAGTATAACACCAAAGCCGCCTACT GCCAGAGCAAGCTCGCCATCGTCCTCTTCACCAAGGAGCTGAGCCGGCGGCTGCAAGGCTCT GGTGTGACTGTCAACGCCCTGCACCCCGGCGTGGCCAGGACAGAGCTGGGCAGACACACGGG CATCCATGGCTCCACCTTCTCCAGCACCACACTCGGGCCCATCTTCTGGCTGCTGGTCAAGA GCCCCGAGCTGGCCGCCCCAGCCCAGCACATACCTGGCCGTGGCGGAGGAACTGGCGGATGTT TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA GGTGGCCCGGAGGCTTTGGGCTGAAAGTGCCCGCCTGGTGGGCTTAGAGGCTCCCTCTGTGA ${\tt GGGAGCAGCCCTCCCCAGA}$ ${\tt TAA}$ ${\tt CCTCTGGAGCAGATTTGAAAGCCAGGATGGCGCCTCCAG}$ ACCGAGGACAGCTGTCCGCCATGCCCGCAGCTTCCTGGCACTACCTGAGCCGGGAGACCCAG GACTGGCGGCCGCATGCCCGCAGTAGGTTCTAGGGGGCGGTGCTGGCCGCAGTGGACTGGC CTGCAGGTGAGCACTGCCCCGGGCTCTGGCTGGTTCCGTCTGCTGCCAGCAGCAGGGGAG AGGGGCCATCTGATGCTTCCCCTGGGAATCTAAACTGGGAATGGCCGAGGAGGAAGGGGCTC TGTGCACTTGCAGGCCACGTCAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTTCCAAGGTGC TCCGTGAAGAGCATGGGCAAGTTGTCTGACACTTGGTGGATTCTTGGGTCCCTGTGGGACCT TGTGCATGCATGGTCCTCTGAGCCTTGGTTTCTTCAGCAGTGAGATGCTCAGAATAACTG CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGGG GGTGTTTGCTGAGGGCTTCCTGTGCCAGAGCCCAGCCAGAGAGCCAGGTGCAGGTGTCATCCC GAGTTCAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAGCTGCTGCTACAGGACCTGGGA TTGCCTGGGACTCCCACCTTCCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC TTGCTCATTT

FIGURE 66

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35932, pI: 8.45, NX(S/T): 1

MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLDKLKASAPSRIINLSSLAHVAGHIDFDD LNWQTRKYNTKAAYCQSKLAIVLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW AESARLVGLEAPSVREQPLPR

Signal peptide:

amino acids 1-17

FIGURE 67

 ${\tt GAAGTTCGCGAGCGCTGGC} \underline{{\tt ATG}} {\tt TGGTCCTGGGGGCGCGCTGCTGCTGGCGGTGCTG}$ GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGAC CAGCGTGGCGCGCCCTGGCGCCCGAGCGCCGGCTGCTGGGGCTGCTGAGGCGGTACCTGC GAGGATTCAACAACCCCTGTGGCTAACCCTCTGCTTGCATTACTCTCATCAAACGCCTGCA GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGG ATGGCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGG GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTT TCAGAGAGTCACTGGCTCTGCCATCACTGACCTGTACAGCCCCAAACGGCTCTTTTCTCTCA CAGGGGATGACTGCTTCCAAGTTGGCAAGGTGGCCTATGACATGGGGGATTATTACCATGCC ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAGACAGA GGATGAGGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAA ATGTTTCGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGG ATGGCCAGGAATGTCTTGAAATATGAAAGGCTCTTGGCAGAGAGCCCCAACCACGTGGTAGC TGAGGCTGTCATCCAGAGGCCCAATATACCCCACCTGCAGACCAGAGACACCTACGAGGGGC TATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTAGCCTCTACTGTTCCTAT GAGACCAATTCCAACGCCTACCTGCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACCTGGA GCCCTACATTGCTCTCTACCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC TTGCAGAACCATGGCTACAGAGGTCAGTGGTGGCATCAGGGGAGAAGCAGTTACAAGTGGAG TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAA CCACCGCATTGCTGCCCTCACAGGCCTTGATGTCCGGCCTCCCTATGCAGAGTATCTGCAGG TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATGCTACGTCACCAAGC GGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA ATGCAGCACTGTTTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGACAGTGACACACTTCAT GCTGGCTGTCCTGGTGGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG TGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTAGGAGAGAAAA AGCAGAGCAGCCTCCTGGAAGAAGGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGC AAGGGAGAGGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAA AGTTCAGATACTCTCTGTTGGGAACAGGACATCTCAACAGTCTCAGGTTCGATCAGTGGGTC TTTTGGCACTTTGAACCTTGACCACAGGGACCAAGAAGTGGCAATGAGGACACCTGCAGGAG GGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGCAGCCCAAG CAGGGAGTGTCCCCCTCCCAGAAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTTT TTTAAGTTGAAAACAACTTTCTTTTCTTTTTGTATGATGGTTTTTTAACACAGTCATTAAAA ATGTTTATAAATCAAAA

FIGURE 68

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEARL RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRAGNVSCALS LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDTYEGLCQTLGS QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ RSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAEYLQVVNYGIG GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW NLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAG GAAGCCACCAGACTCCACGGTGTGGGGCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGGCC ACGAGCGCTGGCTGAGGGACCGAGCCGGAGAGCCCCGGAGCCCCGTAACCCGCGCGGGGAG TGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGGCCCTGGTCCT GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCC TGGCTCCAGCCATCATCCTCATCCTCGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGT GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGAT CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG ACTTCCTGAACGACAACATTCGAAGAGGAATTGAGAACTACTATGATGATCTGGACTTCAAA AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG GAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACA CCTGCTGCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGAC AAGGAGCGTTTCAGTGTGCAGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCAT CTGGTTCATGGACAACTACACCATCATGGCGTGCATCCTCCTGGGCATCCTGCTTCCCCAGT TCCTGGGGGTGCTGCTGCTGTGCATCACCCGGGTGGAGGACATCATCATGGAGCAC ATGCTGCTTGTGCTACCCCAATTAGGGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC TGGGATAGCACCTCTCAGTCAACATCGTGGGGCTGGACAGGGCTGCGGCCCCTCTGCCCACA - .CTCAGTACTGACCAAAGCCAGGGCTGTGTGTGCCTGTGTGTAGGTCCCACGGCCTCTGCCTC $\tt CCCAGGGAGCAGAGCCTGGGCCTCCCCTAAGAGGCTTTCCCCGAGGCAGCTCTGGAATCTGT$ GAGCCTGAGGCTCTGCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCAA GGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGAAGG GCATCTGGGGAAGGGCAGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGC CTCTTCTCAGCCTCCCAGGTGCCTTGAGCCCTCTTGCAAGGGCGGCTGCTTCCTTGAGCCTA GTTTTTTTTTACGTGATTTTTGTAACATTCATTTTTTTGTACAGATAACAGGAGTTTCTGAC TAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCTTCCCCCAACCAGTTTGTTAA

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863</pre>

><subunit 1 of 1, 294 aa, 1 stop

><MW: 33211, pI: 5.35, NX(S/T): 3

MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA ${\tt CACCTGGGAAG} \underline{\textbf{ATG}} \texttt{GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACC}$ TTGATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGA AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC TCAGTGCCATGCGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACC GTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAA GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATC CGCATGGACACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCA AGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTG ATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTC CCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTC AGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC TCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCA GGACGTGGTGAAAGCTGCAGTGGCTGCTGTCTCTCCAGAAGAATTCATGGTCCTGTTGG ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG GCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTT TTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCA - GTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTAC ACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGAT GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC ACTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTG AAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCC AGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAG GGAAGGCTGGGTCCCAGCTGGGAGTATGGGTGTGAGCTCTATAGACCATCCCTCTCTGCAAT CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881</pre>

><subunit 1 of 1, 484 aa, 1 stop

><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAM REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL GAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEAL RPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSIL LPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 73

GAGCGAAC<u>ATG</u>GCAGCGCGTTGGCGGTTTTGGTGTCTCTGTGACCATGGTGGTGGCGCTG AGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT CTCCAACTGCATAGACAGTGTCGTTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC AAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTTGCCATGGTGGATTTTT ATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAACTTTCATCAACTTT CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTTCAGC TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATATTAGAGTGATTAGACCCC CAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTTGGCTGTATTTGGTGGACTTGTGTAT CTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTGGATGGGCTTTTGCAGCTTTGTG TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCACCATATGCCC ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAAGCCCAGTTTGTA GCTGAAACACACATTGTTCTTCTGTTTAATGGTGGAGTTACCTTAGGAATGGTGCTTTTATG GACTTGTTGTATTATTCTTCAGTTGGATGCTCTCTATTTTTAGATCTAAATATCATGGCTAC CCATACAGCTTTCTGATGAGTTAAAAAGGTCCCAGAGATATATAGACACTGGAGTACTGGAA ATTGAAAAACGAAAATCGTGTGTGTTTGAAAAGAAGAATGCAACTTGTATATTTTGTATTAC CTCTTTTTTCAAGTGATTTAAATAGTTAATCATTTAACCAAAGAAGATGTGTAGTGCCTTA ACAAGCAATCCTCTGTCAAAATCTGAGGTATTTGAAAATAATTATCCTCTTAACCTTCTCTT CCCAGTGAACTTTATGGAACATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAA CTACTACTTTGTTTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGAT TTTATATTGCCTTATCCAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCC TGTTACAGATAACTACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTAT ACTTTACGCATCTTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATG GAACACCATTCTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTT TCTCTAAATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAA GATTTCAGATTCATCCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATA TAGCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG GAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCCGTCTCTACTAAAAATAT AAAAATTAGCTGGGTGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC GAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCCACTGCACTCC

FIGURE 74

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFR RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEG SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 75

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCCTGCTCTGCTAGGGAGA GAACGCCAGAGGGGGGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCGA<u>TG</u>CTA CTGCTGTGGGTGTCGCTGCCAGCCTTGGCGCTGCCGGTACTGGCCCCCGGAGCAGGGGA GCAGAGGCGGAGAGCCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATG GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAG ACACGTGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGC AGCAATGTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAG ATCCAAATTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTT GGGAAACTGGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAG AGATGTTGCTTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGA CTAAAGTCAGAGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGA AAGGAAGCAATTAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCC TTACCCTTCACCATCTTCTGGAGAAAATTTTGGATCTTCAACATTTCACACATCTCTTTATT GGCTTGAAAAAGTGTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATG CACCCTGTAGATTATTACTCTTCTTATACAAAAAACTGCACTGGAAGATTTACAAAAAAAGA AATTAAGAATATTAGAGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTG AAATTATTTTGGCCCTTCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCA GACCATGGAGAGCTGGCCATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAG TGCACATGTTCCGCTTTTGATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATG TGGTTTCTCTTGTGGATATTTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAG AACCTGAGTGGATACTCTTTGTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGT CAAAAACCTGCATCCACCCTGGATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCA CCTACATGCTTCGAACTAACCACTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTG CCTCAACTCTTTGATCTTTCCTCGGATCCAGATGAATTAACAAATGTTGCTGTAAAATTTTCC AGAAATTACTTATTCTTTGGATCAGAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTG CTTCTGTCCACCAGTATAATAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAT TATTCAAACGTTATAGCAAATCTTAGGTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTA $\mathsf{TGAAAA\mathsf{TGCAATTGATCAGTGGCTTAAAACCCATATGAA\mathsf{TCCAAGAGCAGTT}$ GTTTAAAAATAGTGTTCTAGAGATACATATAAATATATTACAAGATCATAATTATGTATTTT ·AAATGAAACAGTTTTAATAATTACCAAGTTTTGGCCGGGCACAGTGGCTCACACCTGTAATC CCAGGACTTTGGGAGGCTGAGGAAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC CAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCGCGGTGGTGCACA CCTATAGTCTCAGCTACTCAGAGGCTGAGGCAGGAGGATCGCTTGAACCCGGGAGGCAGCAG TTGCAGTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGAGACTGTGTCGC TATTTTAAGATAAAATGCCAATGATTATAAAATCACATATTTTCAAAAAATGGTTATTATTTA GGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTATCAAAAGGATTGAAGCAAATACTGTA ACAGTTATGTTCCTTTAAATAATAGAGAATATAAAATATTGTAATAATATGTATCATAAAAT

FIGURE 76

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885</pre>

<subunit 1 of 1, 536 aa, 1 stop

<MW: 61450, pI: 9.17, NX(S/T): 7

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQLDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIG
QNYSNVIANLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC**ATG** GCCTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACT GGTTGCCATGCTGCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG TGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGAT GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCA CAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTC ATCCTTGGAGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGA CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGG GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTCCTGCTCATCC CAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTC TCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGT ATGTG**TGA**AGAACCAGGGGCCAGAGCTGGGGGGGGGGGGGTCTGTGAAAAACAGTGGACAG CACCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGTGTCAGAAGGTGCTGCTGAGG ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGGGCTAGTGTAACAGCATG CAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTC CCCTGCCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGG ATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACATCCCACTG ACTGACCCTCTGTGATCAAAGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGG GGATGGGAAGGAGAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCC TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCC AGACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

FIGURE 78

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886</pre>

><subunit 1 of 1, 230 aa, 1 stop

><MW: 24549, pI: 8.56, NX(S/T): 1

MASLGLQLVGYILGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVF FILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCS SQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

FIGURE 80

MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSE TRQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRFP

Signal peptide:

FIGURE 81

FIGURE 82

MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVP LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS

Signal peptide:

FIGURE 83

TCGCGGGAGGCTTCCCCGCGCCGCCGCCGCCCCGCTCCCCGGCACCAGAAGTTCCTCT $\tt GCGCGTCCGACGGCGAC\underline{ATG}GGCGTCCCCACGGCCCTGGAGGCCGGCAGCTGGCGCTGGGGA$ TCCCTGCTCTTCGCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTCAAGGTCGC CACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCCTCACCTGCAGGCTCT TGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTACCGCAGCTCGAGG GGCGAGGTGCAGACCTGCTCAGAGCGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA CCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTGGCTCAGCGCCACGGGC TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGCGCAACCTGACCCTGCTG GATAGCGGCCTCTACTGCTGCCTGGTGGTGGAGATCAGGCACCACCACTCGGAGCACAGGGT ACCCATCCTCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC CTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATGGACAGCAACATTCAAGGGATTGAAAACC CCGGCTTTGAAGCCTCACCACCTGCCCAGGGGATACCCGAGGCCAAAGTCAGGCACCCCCTG TCCTATGTGGCCCAGCGGCAGCCTTCTGAGTCTGGGCGGCATCTGCTTTCGGAGCCCAGCAC CCCCCTGTCTCCTCCAGGCCCCGGAGACGTCTTCTTCCCATCCCTGGACCCTGTCCCTGACT GGCAGGTGCATTTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTC CCTCCCTCCTGCTCTGGGCTCAGATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTC TGGATGCTACATGGGGATGCTGGACGGCTCAGCCCCTGTTCCAAGGATTTTGGGGTGCTGAG ATTCTCCCCTAGAGACCTGAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA GTCTCAGAACGTCCAGCCCTTCAGCAGCTCTCGTTCTGAGACATGAGCCTTGGGATGTGGCA GCATCAGTGGGACAAGATGGACACTGGGCCACCCTCCCAGGCACCAGACACAGGGCACGGTG GAGAGACTTCTCCCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTC ACCTTCCCCAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAAT CTGGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTAC ATATTGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCAATCTGAGGCCAGGACAG GTGGAGAGGGGCACCTGCCCCCCCCCCCCCCCCTACTCCCACTGCTCAGCGCGGGCC ATTGCAAGGGTGCCACACAATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCGGGAT

FIGURE 84

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897</pre>

><subunit 1 of 1, 311 aa, 1 stop

><MW: 33908, pI: 6.87, NX(S/T): 6

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK GHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLESASD HHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSSQ DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGIENPGFEAS PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

FIGURE 85

TTCCCCGCGTTCTCTTTCCACCTTTCTCTTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCC TTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGG CTCCGCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTC AGACATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACT TGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGT TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATG CTGTCCCAAGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCC $\mathsf{CGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC$ AACCTGCCCGAACCAGGCTGCCCAGCACCCCTCCCACTGCCAGACTCCTGCTGCCAAGCCT GCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTG AGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAGAGAGGCCCGGGCACCCCAGC CCCCACTGGCCTCAGCGCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAG GCAGCACAACTGTCAAGATCGTCCTGAAGGAAACATAAGAAAGCCTGTGTGCATGGCGGG AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTG CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT ACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAA GCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCT CGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGG CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG AGAGGTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGA AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCAC GAAGGTCACTGGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGA CAAAGTGACCAAGACATAACAAAGACC<u>TAA</u>CAGTTGCAGATATGAGCTGTATAATTGTTGTT

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902</pre>

><subunit 1 of 1, 451 aa, 1 stop

><MW: 49675, pI: 7.15, NX(S/T): 1

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED SVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV KDEETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPG AEGHGQSRQSDQDITKT

Signal peptide:

FIGURE 87

FIGURE 88

 ${\tt MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLA} \\ {\tt TLQEAATTQENVAWRKNWMVGGEGGASGRSP}$

Signal peptide:

FIGURE 89

CAGGAGAGAAGCCACCCCCACCCCGCCTCCAAAGCTAACCCTCGGGCTTGAGGGGAAGA GGCTGACTGTACGTTCCTTCTACTCTGGCACCACTCTCCAGGCTGCC<u>ATG</u>GGGCCCAGCACC CCTCTCCTCATCTTGTTCCTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCAGCACCACCT TGTGGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACC AGAGTAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAG GTGGCAGAGAGGGGGGGGGGGCACTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGA TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGT TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTAC GATATGGTGACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCG ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG TGTTAGATGGGACACAGATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTT GCCATGGCTGCCCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCA GCTGGTATATGGTGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTG GTGAGATGGAGAACACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGAC AGCTCAGTATTCCCAGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACAT CGACCTGGTAGCTGATGAGGAAGGTCTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGC ACTTGTGTCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACACCA TGTCCCAGAGAGATGCTGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAA CACCCGTCCTGCCAGTCGGGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCC CTGAACGGCAGCACTCCCTTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTAT AACCCCCGAGAACGCCAGCTCTATGCCTGGGATGATGGCTACCAGATTGTCTATAAGCTGGA GATGAGGAAGAAGAGGAGGAGGTT<u>TGA</u>GGAGCTAGCCTTGTTTTTTGCATCTTTCTCACTC CCATACATTTATATTATCCCCACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAG TTGTGGCTCAAATCCTCTATATTTTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTT TCATACGGAACTCCAGATCCTGAGTAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATG TTCCCTCCTGCTCCTGCCCCATGTCAACAATTTCAGGCTAAGGATGCCCCAGACCCAGG GCTCTAACCTTGTATGCGGGCAGGCCCAGGGAGCAGCAGCAGTGTTCTTCCCCTCAGAGTG TCAGTGTCCTGAGGAACAGGACTTTCTCCACATTGTTTTGTATTGCAACATTTTGCATTAAA AAAAAAAAAAAAAAAAAAA

FIGURE 90

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46038, pI: 6.50, NX(S/T): 2

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKM LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR RNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRL RDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQLIKFHLAN RTVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ QWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAG AGCCTCTCCGTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTTCTCTCTAATCCAT CCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGG $\tt CTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTT$ GGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGGAGGACGCAGCATTCTCCTGTTCCTGTC TCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGG TCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGG ACAAAACTGGTGAAGGATTCTATTGCGGAGGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCA TCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTT GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTG TGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATG ${\tt CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGA}$ GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTG GCATTGTTGGACTGAAGATTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGAC TGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGAC TCTGGATCCAGAGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATA GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCT TCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTG GCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGAGGAGGAGTACGTGACTTTGTCTCCCG ATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGT TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTG TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCC ATAGTCATCTGCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGC AATCCCAGAGACAAGCAACAGTGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGG GATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCC AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCG TCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGC TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTA AAAAA

FIGURE 92

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMH
GLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLS
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 93

GCGATGGTGCCCCGGTGGCGGTGCCGCGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCA C<u>ATG</u>AGGAGCCTGCCGAGCCTGGGCGGCCTGTTGTGCTGCGCCGCCGCCGCCGCCG CCGTCGCCTCAGCCGCCGCGGGGAATGTCACCGGTGGCGGGGGGGCCGCGGGGCAGGTG GACGCGTCGCCGGGCCCCGGGTTGCGGGGCGAGCCCAGCCACCCCTTCCCTAGGGCGACGGC TCCCACGGCCCAGGCCCCGAGGACCGGGCCCCCGCGCCCACCGTCCACCCCTGGCTG CGACTTCTCCAGCCCAGTCCCCGGAGACCACCCCTCTTTGGGCGACTGCTGGACCCTCTTCC ACCACCTTTCAGGCGCCGCTCGGCCGCCGACCACCCCTCCGGCGGCGGAACGCACTTC GACCACCTCTCAGGCGCCGACCAGACCCGCGCGCCCACCCTTTCGACGACCACTGGCCCGG CGCCGACCACCCTGTAGCGACCACCGTACCGGCCCCACGACTCCCCGGACCCCCGACCCCC GATCTCCCCAGCAGCAGCAACAGCAGCGTCCTCCCCACCCCACCTGCCACCGAGGCCCCCTC TTCGCCTCCTCCAGAGTATGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCT GCAACCAGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGCTTCACTGTGAAACC TGCAAAGAGGGCTTTTACCTAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCC ${\tt ACATGGAGCTCTCAGCATACCGTGCAACAGGT{\tt TAA}}$ ${\tt GCAACAGAGGGTGGAACTGAAGTT{\tt TATT}}$ TTATTTTAGCAAGGGAAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTTAAACAAAG GAGGATGAGGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTATATGT TATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAG AGTCGCCAATTTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAAATTATTGAAGAAT AAATCTGCTTTCTGGAAGGGCTTTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTT ATGTTTATTAATATACCATTGGAGTTTGAGGAAATTTGTTGTTTGGTTTATTTTTCTCTCTA ATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGGGGTACCCTAATTTA TTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTGAGACCAAAAG TAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTGGAGGTAATTTAATCTAGTGGA ATAATGTACTGTTATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCT TATGTGAGGCACTTGGCTTTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT AATGAAAAAATAATGACAGGTTATACTCAGTGTAACCTGGGTATAACCCAAGATCTGCTGC CACTTACGAGCTGTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGTTTCTTCTCAAG GTTGTTGTGAAGATTAAATGAGTTGATATATATAAAATGCCTAGCACATGTCACTCAATAAA TTCTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGA ACTTTTAGCTCCTTGACAAAGAAGTGCTTTATACTTTAGCACTAAATATTTTAAATGCTTTA TAAATGATATTATACTGTTATGGAATATTGTATCATATTGTAGTTTATTAAAAATGTAGAAG AGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCGGGTGGAT CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCACAGTGAAACCCCGTCTCTACTAAA AATACAAACAAATTAGCTGGGCGTGGTGGCACACCCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGAATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCGCCACT

FIGURE 94

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952

><subunit 1 of 1, 258 aa, 1 stop

><MW: 25716, pI: 8.13, NX(S/T): 5

MRSLPSLGGLALLCCAAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTS TTSQAPTRPAPTTLSTTTGPAPTTPVATTVPAPTTPRTPTPDLPSSSNSSVLPTPPATEAPS SPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYTSGLCQPCDCSP HGALSIPCNR

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

TGCGGCGCAGTGTAGACCTGGGAGGATGGGCGGCCTGCTGCTGCTGCTTTTCTGGCTTTTGG
TCTCGGTGCCCAGGCCCAGGCCGTGTGGTTGGGAAGACTGGACCCTGAGCAGCTTCTTGGG
CCCTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTGCCATGGAGAAGGACATGAA
GAACGTCGTGGGGGTGGTGACCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTC
AGCACGGGCTGGGAGGGTGTACCAGAGTGTCATGGACCTGATAAAGCGAAACTCCGGATGG
GTGTTTGAGAATCCCTCAATAGGCGTGCTGGAGCTCTTGGGTGCTGCCACCAACTTCAGAGA
CTATGCCATCATCTTCACTCAGCTGGAGTTCGGGGACGCCTTCAACACCGTGGAGCTGT
ACAGTCTGACGGAGACAGCCAGGAGGCCATGGGGCTCTTCACCAAGTGGAGCAGAGC
CTGGGCTTCCTGTCACAGTAGCAGGCCCAGCTGCAGAAGGACCTCACCTGTGCTCACAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGGATGGCGCCCACAGGGTCCTGTGACCTCGGCCA
GTGTCCACCCACCTCGCTCAGCGGCTCCCGGGGCCCCACAGGTCCTGAAAAAAGCGATTC
CACAGCA

FIGURE 96

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT LTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

FIGURE 97

 $\mathtt{AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC}$ CCTGCTCTGGGGGGGGGGGGGGGGGAGGACAGACAAGTAAACTGCTGACGATGCAGAGTT CCGTGACGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTTCTCCTACCCCTCGCAT GGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCCAATACAGA CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACC GATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGA AGAAGTGATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAA ACATCACCGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAG GCACCCTGGAGTCCGGCTGCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAG GGGACACCCCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCAC CCGCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTC AGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTAC CCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGG AAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATG CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGGCCTGACCCTGTGCCCC TCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGA ATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC AGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGGAGCTGGAGCCACAGCCCTG GTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAATCGGCAAG GCCAGCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCAGCCT CTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAGCT TCTGCCCGCTCCTCAGTGGGGGAAGGAGACTCCAGTATGCATCCCTCAGCTTCCAGATGGT GAAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCC ACAGA<u>TGA</u>GAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGA GAAGTCAGAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACT ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAAT

FIGURE 98

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDG
TVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRS
CRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

FIGURE 99

FIGURE 100

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404</pre>

<subunit 1 of 1, 170 aa, 1 stop</pre>

<MW: 19457, pI: 9.10, NX(S/T): 0

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features:

Signal peptide:

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC AGCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCCTCCAGGCCATGAGGATTCTGCAGTTAA TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGGTTCGAG TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG GGCGACGCTCATCGCCCCCAGATGGCTCCTGACAGCCCACTGCCTCAAGCCCCGCTACA TAGTTCACCTGGGGCAGCACCACCTCCAGAAGGAGGGGGGCTGTGAGCAGACCCGGACAGCC ACTGAGTCCTTCCCCCACCCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGA CATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC TCTCCTCACGCTGTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCC AGCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCA GAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGG AAGGGGGCAAGGACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTT CAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACAC GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAAT<u>TAG</u>ACTGGACCCA CCCACCACAGCCCATCACCCTCCATTTCCACTTGGTGTTTGGTTCCTGTTCACTCTGTTAAT AAGAAACCCTAAGCCAAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATG CTGTCACTTAATAATCAACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTT GAAATATTGTGACTCTGGGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 102

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405</pre>

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27466, pI: 8.87, NX(S/T): 4

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAH CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTM VCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site. amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

FIGURE 104

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406</pre>

<subunit 1 of 1, 222 aa, 1 stop

<MW: 25794, pI: 6.24, NX(S/T): 1

MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD KSYQDAVLEDIFKKNDHDGDGFISPKEYNVYQHDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins

amino acids 202-214, 195-214

FIGURE 105

FIGURE 106

 ${\tt MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL}\\ {\tt ETCNARHGGSRL}$

Signal peptide:

FIGURE 107

CAAGCAGGTCATCCCCTTGGTGACCTTCAAAGAGAAGCAGAGGGGCAGAGGTGGGGGGCAC AGGGAAAGGGTGACCTCTGAGATTCCCCCTTTTCCCCCAGACTTTGGAAGTGACCCACCATG GGCTCAGCATCTTTTTGCTCCTGTGTGTTCTTGGGCTCAGCCAGGCAGCCACACCGAAGATT TTCAATGGCACTGAGTGTGGGCGTAACTCACAGCCGTGGCAGGTGGGGCTGTTTGAGGGCAC CAGCCTGCGCTGCGGGGTGTCCTTATTGACCACAGGTGGGTCCTCACAGCGGCTCACTGCA CAGATCCGGCACAGCGGCTTCTCTGTGACCCATCCCGGCTACCTGGGAGCCTCGACGAGCCA CGAGCACGACCTCCGGCTGCGCGCTGCCCGTCCGCGTAACCAGCAGCGTTCAAC CCCTGCCCTGCCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGGC ATCACCAACCACCACGGAACCCATTCCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT CTCCCATGCCACCTGCCATGGTGTGTATCCCGGGGAGAATCACGAGCAACATGGTGTGTGCAG GCGGCGTCCCGGGGCAGGATGCCTGCCAGGGTGATTCTGGGGGCCCCCTGGTGTGTGGGGGA GTCCTTCAAGGTCTGGTGTCCTGGGGGTCTGTGGGGCCCTGTGGACAAGATGGCATCCCTGG $\mathtt{AGTCTACACCTATATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAAC\underline{\mathbf{TGA}}\mathtt{C}$ CTGTTTCCTCCACCTCCACCCCCACCCCTTAACTTGGGTACCCCTCTGGCCCTCAGAGCACC AATATCTCCTCCATCACTTCCCCTAGCTCCACTCTTGTTGGCCTGGGAACTTCTTGGAACTT TAACTCCTGCCAGCCCTTCTAAGACCCACGAGCGGGGTGAGAGAGTGTGCAATAGTCTGGA ATAAATATAAATGAAGGAGGGGCAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLCVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLLRLRLPVRVTSSV QPLPLPNDCATAGTECHVSGWGITNHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC AGGVPGQDACQGDSGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

FIGURE 109

GCGGCCACACGCAGCTAGCCGGAGCCCGGACCAGGCGCCTGTGCCTCCTCGTCCCTCGC ${\tt CGCGTCCGCGAAGCCTGGAGCCGGGGGAGCCCCGCGCTCGCC} {\color{blue} {\tt ATG}} {\tt TCGGGCGAGCTCAGCA}$ ACAGGTTCCAAGGAGGGAAGGCGTTCGGCTTGCTCAAAGCCCGGCAGGAGAGGAGGCTGGCC GAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAGAACCTTCCAGAAAA GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGCGAGATTGACC TGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTGGAGATGAAG AAGATGATCTCAGAGGTGACAGGAGGGGTCAGTGACACTATATCCTACCGAGACTTTGTGAA CATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATGTTTGAAGGAAAAGCCA GGACCCCGCCTGGACTCCCAGCCTTCCCACCCCATACCTCCCGATCTTGCTGCCCTT TCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTAAAGGGGGCTCTGGGTCGGGGAATCC TGAGCCTTGGGTCCCCTCCTCTCTTCCCTCCTTCCCCGCTCCCTGTGCAGAAGGGCTG ATATCAAACCAAAAACTAGAGGGGGCAGGGCCAGGGCAGGGAGGCTTCCAGCCTGTGTTCCC CTCACTTGGAGGAACCAGCACTCTCCATCCTTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTTGGAGTAGGGACAAGG CTGCAGGGCCTCTTTCGGGTTTCCTTGGACAGTGCCATGGTTCCAGTGCTCTGGTGTCACCC CATCCTCAGTGATGTGAAGGTGGGAAGGAAAGGAGCTTGGCATTGGGAGCCCTTCAAGAAGG CGTGCAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGCTTCGGAGGCAGAAGTGAGGCCTG GGGTTTGGGGGGAAAGGTCAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGAC CAGGATGGGAGAATGAGGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFDLN NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVLKLVM MFEGKANESSPKPVGPPPERDIASLP

FIGURE 111A

CGCGCTCCCGCGCGCCTCCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCA GGAGCGGGCCCTGCACACC<u>ATG</u>GCCCCGGGTGGGCAGGGGTCGGCGCCGCCGTGCGCGCC CGCCTGGCGCTGGCGCTGGCGAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCTGCCC CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGGCTGGGCCTCCGCGCGGTTC CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATATCACCAGGATC ACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGT CAGCGTCATCGAGAGGGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA AGAATAAGCTGCAAGTCCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTA GATTTGAGTGAAAACCAGATCCAGGGGATCCCGAGGAAGGCGTTCCGCGGCATCACCGATGT GAAGAACCTGCAACTGGACAACAACCACATCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC TGCGCGATTTGGAGATCCTTACCCTCAACAACAACATCAGTCGCATCCTGGTCACCAGC TTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACTCCAACCACCTCTACTGCGACTG CCACCTGGCCTGGCTCTCGGATTGGCTGCGACAGCGACAGTTGGCCAGTTCACACTCT GCATGCCTCTGTGCATTTGAGGGGCTTCAACGTGGCGGATGTGCAGAAGAAGGAGTACGTG TGCCCAGCCCCCACTCGGAGCCCCCATCCTGCAATGCCAACTCCATCTCCTGCCCTTCGCC CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTTGATGGAGATTCCTGCCA ACTTGCCGGAGGGCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA TATTGCTCCAGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACA AGATCACCGAGATTGCCAAGGGACTGTTTGATGGGCTGGTGTCCCTACAGCTGCTCCTC AATGCCAACAGATCAACTGCCTGCGGGTGAACACGTTTCAGGACCTGCAGAACCTCAACTT GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTTCGCCCCTCTGCAGT CCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCTG GCCGACTACCTCCAGGACAACCCCATCGAGACAAGCGGGGCCCGCTGCAGCAGCCCGCGCCG ACTCGCCAACAAGCGCATCAGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGG ATTACCGCAGCAGGTTCAGCAGCGAGTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTCGC TGTGAGGGCACGATTGTGGACTGCTCCAACCAGAAGCTGGTCCGCATCCCAAGCCACCTCCC TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA TCTTCAAGAAGTTGCCCAACCTGCGGAAAATAAATCTGAGTAACAATAAGATCAAGGAGGTG ··· CGAGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT GGAGACCGTGCACGGCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGA GTAACTTGATCAGCTGTGTGAGTAATGACACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTG TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGCCTTCACCACGCTTGTCTCCCT GTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCAACTGCCACCTGGCCTGGCTCGGCA AGTGGTTGAGGAAGAGGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTC AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAG TAGCTGCCAGCTGAGCCCGCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGAT GCAGCAACAAGGGGCTCCGCGCCCTCCCCAGAGGCATGCCCAAGGATGTGACCGAGCTGTAC CTGGAAGGAAACCACCTAACAGCCGTGCCCAGAGAGCTGTCCGCCCTCCGACACCTGACGCT TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACATGTCTC ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAAC GGGCTGCGGTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGG ACTGCAGTCTTCGGTGGCTGTCGGAGTGGGTGAAGGCGGGGTACAAGGAGCCTGGCATCGCC CGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCACCCCAACCCACCGCTT CGTGCAAGAATAACGGGACATGCACCCAGGACCCTGTGGAGCTGTACCGCTGTGCCTCCCC

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCA GCATGGAGGCACCTGCCACCTGAGTGACAGCCACAAGGATGGGTTCAGCTGCTCCTGCCCTC TGGGCTTTGAGGGCCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA AACAATGCCACCTGCGTGGACGGGATCAACAACTACGTGTGTATCTGTCCGCCTAACTACAC AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTCTGTCAGCATG AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGTCCCTGGCTACAGCGGG AAGCTCTGTGAGACAGACAATGATGACTGTGTGGCCCACAAGTGCCGCCACGGGGCCCAGTG CGTGGACACAATCAATGGCTACACATGCACCTGCCCCCAGGGCTTCAGTGGACCCTTCTGTG AACACCCCCCACCCATGGTCCTACTGCAGACCAGCCCATGCGACCAGTACGAGTGCCAGAAC GGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGCTGCCCACCAGGCTTCGCCGG CCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTGGAACTGG CCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC GGCATCCTTCTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGT GCGGCTGGTCTATGACAGCCTGAGTTCCCCTCCAACCACGTGTACAGTGTGGAGACAGTGA ATGATGGGCAGTTTCACAGTGTGGAGCTGGTGACGCTAAACCAGACCCTGAACCTAGTAGTG CCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTCTCCGCCTTGCGCCAGGGCACGG ACCGGCCTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAG GACTTCAAGGCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGT GTGCAAGCACGGCCTGTGCCGCTCCGTGGAGAAGGACAGCGTGGTGCGAGTGCCGCCCAG GCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGGGACCCCTGCCTCGGCCACAGATGCCAC CATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCCGAGGGCTATGGAGG GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCATG GGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGC GAGCACTGCCAACAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCA GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGCT GTGGGCCCCAGTGCTGCCAGCCCACCCGCAGCAAGCGGCGGAAATACGTCTTCCAGTGCACG GACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGCCTCGCGTGTTC CTAAGCCCCTGCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCC ATGTGGGACCCCCTGGTGATTCAGCATGAAGGAAATGAAGCTGGAGAGGAAGGTAAAGAAGA AAAAA

FIGURE 112

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN AERLDLDRNNITRITKMDFAGLKNLRVLHLEDNQVSVIERGAFQDLKQLERLRLNKNKLQVL PELLFQSTPKLTRLDLSENQIQGIPRKAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEIL TLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTVGQFTLCMAPVHL RGFNVADVQKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV EIRLEQNSIKAIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAK GLFDGLVSLQLLLLNANKINCLRVNTFQDLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHL AQNPFVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFS SECFMDLVCPEKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPN LRKINLSNNKIKEVREGAFDGAASVQELMLTGNQLETVHGRVFRGLSGLKTLMLRSNLISCV SNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLGKWLRKRR IVSGNPRCQKPFFLKEIPIQDVAIQDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGLR ALPRGMPKDVTELYLEGNHLTAVPRELSALRHLTLIDLSNNSISMLTNYTFSNMSHLSTLIL SYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWL SEWVKAGYKEPGIARCSSPEPMADRLLLTTPTHRFQCKGPVDINIVAKCNACLSSPCKNNGT CTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGFEGQR CEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAKCIPL DKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDTINGYTCTCPQGFSGPFCEHPPPMV · LLQTSPCDQYECQNGAQCIVVQQEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRP QANISLQVATDKDNGILLYKGDNDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHS VELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGTDRPLGGF HGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC DQEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHISD QGEPYCLCQPGFSGEHCQQENPCLGQVVREVIRRQKGYASCATASKVPIMECRGGCGPQCCQ PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

FIGURE 114

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMN YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGT CATGTGTTAAAAACGCCAAGCTGAATATATCATGCCCCTATTAAAACTTGTACATGGCTCCC CATTGGTTTTTGGAGAAAAGTTCAAGCTTTTTACCTTGGTGTCTGCCTGTATCCCAGTGTTC AGGCTGGCTAGACGGCGGAAGAAGATCCTATTTTACTGTCACTTCCCAGATCTGCTTCTCAC CAAGAGAGATTCTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA CCACAGGCATGCCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTAAGGAA ACATTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAG CTTTGACTCAGTTGTTCCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGC TGCTCTCCATCAACAGATACGAAAGGAAGAAAATCTGACTTTGGCACTGGAAGCCCTAGTA CAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAGAGGGTTCATCTGATCGTGGCAGGTGG TTATGACGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC AGTCCGACCTTGGCCAGTATGTGACCTTCTTGAGGTCTTTCTCAGACAAACAGAAAATCTCC CTCCTCCACAGCTGCACGTGTGTGCTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCC TCTGGAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGT CCATTGACCACAGTGTCACAGGGTTTCTGTGTGAGCCTGACCCGGTGCACTTCTCAGAAGCA AGTGAAGGAAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACCAAAC TGCTGGTATAATCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACC CTTGAGTCTTGAATGTGAGCCACTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAA AACCATGTCTTTTATGCTATAATCATTCCAAATTTTGCCAGTGTTAAGTTACAAATGTGGTG TCATTCCATGTTCAGCAGAGTATTTTAATTATATTTTCTCGGGATTATTGCTCTTCTGTCTA TAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTAAGTGTGTATCATTATCAA AGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAAT CATAGCGAGAGTGCTCTGTATTTTTTTAAGATAATTTGTATTTTTGCACACTGAGATATAA TAAAAGGTGTTTATCATAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLD
DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

 ${\tt GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACC} \underline{{\tt ATG}} {\tt TTGGACTTCGCGATCTT}$ CGCCGTTACCTTCTTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGAC AAGCTGCAGGAATTCCAGGGATTACTCCAACTGAAGAAAAAGATGGTAATCTTCCAGATATT GTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTGCATGAGAGATATGGGCCTGTGGT $\tt CTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTACTGAAGCAGC$ ATATCAATCCCAATAAGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTAT CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAATTGTATGAAAATGGTGT GACTGATTCTCTGAAGAGTAACTTTGCCCTCCTCCTAAAGCTTTCAGAAGAATTATTAGATA ATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAAGATGATCAGGAAGTCATTCG CTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAGGCTTTCTAGATGGGTCAC TTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTC CTTAGTACAAGGGAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGG CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGGCAATCTGTTTTTTAACCACCTCTGAA GAAGTTCAAAAAAATTATATGAAGAGATAAACCAAGTTTTTGGAAATGGTCCTGTTACTCC AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACTGCCA AACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATT CCTAGAGAGACCCTCGTCCTTTATGCCCTTGGTGTGGTACTTCAGGATCCTAATACTTGGCC ATCTCCACACAAGTTTGATCCAGATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCT CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTTGCATATATGGTGACCACA GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAGGGACAGGTTATTGA AACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGAT AT**TAA**AATTTTATACATTTAAAATCATTGTTAAATTGATTGAGGAAAACAACCATTTAAAAA AAATCTATGTTGAATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTAC TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

FIGURE 120

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT EMALFVTVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

TCCCGGACCCTGCCGCCCTGCCACTATGTCCCGCCGCTCTATGCTGCTTGCCTGGGCTCTCC
CCAGCCTCCTTCGACTCGGAGCGGCTCAGGAGACAGAAGACCCGGCCTGCTGCAGCCCCATA
GTGCCCCGGAACGAGTGGAAGGCCCTGGCATCAGAGTGCGCCCAGCACCTGAGCCTGCCCTT
ACGCTATGTGGTGGTATCGCACACGGCGGGCAGCAGCTGCAACACCCCCGCCTCGTGCCAGC
AGCAGGCCCGGAATGTGCAGCACTACCACATGAAGACACTGGGCTGGTGCGACGTGGCTAC
AACTTCCTGATTGGAGAAGACGGGCTCGTATACGAGGGCCGTGGCTGGAACTTCACGGGTGC
CCACTCAGGTCACTTATGGAACCCCATGTCCATTGGCATCAGGCTTCATGGGCAACTACATGG
ATCGGGTGCCCACACCCCAGGCCATCCGGGCAGCCCAGGGTCTACTGGCCTGCGGTGTGGCT
CAGGGAGCCCTGAGGTCCAACTATGTGCTCAAAGGACACCGGGATGTGCAGCGTACACTCTC
TCCAGGCAACCAGCTCTACCACCTCATCCAGAATTGGCCACACTACCGCTCCCCCTGAGGCC
CTGCTGATCCGCACCCCCATTCCTCCCATGGCCAAAAAACCCCACTGTCTCCTCCCAAAAAAGATGTAGCTC

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL IQNWPHYRSP

Signal peptide:

amino acids 1-20

FIGURE 123

GACTCGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG ATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCC CGGGTGCCTCGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCT CCTAGGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCC CGAACCACAGCCCCCACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTAC TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAA TGGGACCTTCAGCGTCCACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC TCGTGCCCCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTC GCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCT GGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTAT CGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATC TGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCTGCCCATGC ACGAGGAGATGCCAAGTGGGGCCAGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCCAAGTG CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGGCT TGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTT CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGGGAGATTTCATCAGTGTGGACAGCCTG TCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGGGC CAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCCTGAGCCCCTTGTCGTGTGCTGAGCATG GCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTC CAGCCAGGCCACCCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATT GCTGATGGCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCC ACAGCCCATCCGCGTGCTGTGTCCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAG CATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCC CGGATCTGGATGGCGCCCCCTCTCAGCAGCGGGCACGGGTGGGGCCGGGCCGGGCCGCAGA GAAACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTT GCCCCGGGGCA

FIGURE 124

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521</pre>

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR RTSLCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPY YPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCCCA GGCAGGGCTGATTCTTGGGCGGAGGAGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTTAAAG GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCACAGAAT TGGTGGAAGTGTGCGCGCCGCCGCCGCCGTCGCTCCTGCAGCGCTGTCGACCTAGCCGCTAG CATCTTCCCGAGCACCGGGATCCCGGGGTAGGAGGCGCGAGCGCGGGCGAGCACCAGCCCAGCC GGCTGCGGCTGCCCACACGGCTCACCATGGGCTCCGGGCGCCGGGCGCTGTCCGCGGTGCCG GCCGTGCTGCTGGTCCTCACGCTGCCGGGGCTGCCCGTCTGGGCACAGAACGACACGGAGCC CATCGTGCTGGAGGGCAAGTGTCTGGTGGTGTGCGACTCGAACCCGGCCACGGACTCCAAGG GCTCCTCTCCCCCGCTGGGGATATCGGTCCGGGCGGCCAACTCCAAGGTCGCCTTCTCG GCGGTGCGGAGCACCACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATCATTTACTT GAAAAGGAATTTACAGTTTCAGTTTTCACGTGATTAAAGTCTACCAGAGCCAAACTATCCAG GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTTGCGGGGGACAAAGATGTTAC TCGTGAAGCTGCCACGAATGGTGTCCTGCTCTACCTAGATAAAGAGGATAAGGTTTACCTAA AACTGGAGAAAGGTAATTTGGTTGGAGGCTGGCAGTATTCCACGTTTTCTGGCTTTCTGGTG TTCCCCCTATAGGATTCAATTTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG AGTTATTGGAAGATCATTTTTTCATCATTGGATTGATGTCTTTTATTGGTTTCTCATGGGTG GATATGGATTCTAAGGATTCTAGCCTGTCTGAACCAATACAAAATTTCACAGATTATTTGTG TGTGTCTGTTTCAGTATATTTGGATTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTA ACAGTCAAAAGCTGTCTGCAAGACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGT TACAGATGTGGAATTTTATTTGTTTAGTTTTAAAAGACTGGCAACCAGGTCTAAGGATTAGA AAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG AAAACTTGGATTTTTTTTTTCAGTAACTGGTATTATGTTTTCTCTTAAAATAAGGTAATGAA GAATGCTTCATAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATT TTCTAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAG TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGC $\tt TCCGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT$ TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTGCCTTAACTCTTTAAATTGTA TATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCAATAT TTAATATATGTTAAAAAA

FIGURE 126

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGI SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSF HVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG GWQYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

FIGURE 127

FIGURE 128

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF GIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKW GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN FLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 129

CGGCAACCAGCCGCCGCCACCACCGCTGCCACTGCCGCCCTGCCGGGGCCATGTTCGCTCTGGGCTTGCCCTTC TTGGTGCTCTTGGTGGCCTCGGTCGAGAGCCATCTGGGGGTTCTGGGGGCCCAAGAACGTCTCGCAGAAAGACGC CGAGTTTGAGCGCACCTACGTGGACGAGGTCAACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGA CCCGCAACAGGACAGAGGGCGTGCGTGTCTCTGTAACGTCCTGAACAAGCAGAAGGGGGCGCCGTTGCTGTTT GTGGTCCGCCAGAAGGAGGCTGTGGTGTCCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTCAGCGCAAGTA CCTCTACCAAAAAGTGGAACGAACCCTGTGTCAGCCCCCACCAAGAATGAGTCGGAGATTCAGTTCTTCTACG TGGATGTGTCCACCCTGTCACCAGTCAACACCCACATACCAGCTCCGGGTCAGCCGCATGGACGATTTTGTGCTC AGGACTGGGGAGCAGTTCAGCTTCAATACCACAGCAGCACCACCAGTACTTCAAGTATGAGTTCCCTGAAGG CGTGGACTCGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGGATGTGC TGTGTCCTGTCTATGACCTGGACAACAACGTAGCCTTCATCGGCATGTACCAGACGATGACCAAGAAGGCGGCC ATCACCGTACAGCGCAAAGACTTCCCCAGCAACAGCTTTTATGTGGTGGTGGTGGTGAAGACCAAAGCCAAAGC CTGCGGGGGCTCCCTGCCTTTCTACCCCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCC TGTCAGTGCTGGTGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATATTT CTCTCCTTTTACCTGCTGACCGTCCTCCTGGCCTGCTGGGAGAACTGGAGGCAGAAGAAGAAGACCCTGCTGGT GGCCATTGACCGAGCCTGCCCAGAAAGCGGTCACCCTCGAGTCCTGGCTGATTCTTTTCCTGGCAGTTCCCCTT ATGAGGGTTACAACTATGGCTCCTTTGAGAATGTTTCTGGATCTACCGATGGTCTGGTTGACAGCGCTGGCACT GGGGACCTCTCTTACGGTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAG CTCTGTGGAGGAGGATGACTACGACATTGACCGACATCGATTCCGACAAGAATGTCATTCGCACCAAGCAAT ACCTCTATGTGGCTGACCTGGCACGGAAGGACAAGCGTGTTCTGCGGAAAAAGTACCAGATCTACTTCTGGAAC ATTGCCACCATTGCTGTCTTATGCCCTTCCTGTGGTGCAGCTGGTGATCACCTACCAGACGGTGGTGAATGT ACATCCTCAGCAACCTGGGGTACATCCTGCTGGGGCTGCTTTTCCTGCTCATCATCCTGCAACGGGAGATCAAC CACAACCGGGCCCTGCTGCGCAATGACCTCTGTGCCCTGGAATGTGGGATCCCCAAACACTTTGGGCTTTTCTA ${\tt TCCAGTTTGACACATCGTTCATGTACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCG}$ GACATCAACGCCAGCGCCTACAGTGCCTACGCCTGCCTGGCCATTGTCATCTTCTTCTCTGTGCTGGGCGTGGT CTTTGGCAAAGGGAACACGGCGTTCTGGATCGTCTTCTCCATCATCACATCATCGCCACCCTGCTCCTCAGCA CGCAGCTCTATTACATGGGCCGGTGGAAACTGGACTCGGGGGATCTTCCGCCGCATCCTCCACGTGCTCTACACA GACTGCATCCGGCAGTGCAGCGGGCCGCTCTACGTGGACCGCATGGTGCTGCTGGTCATGGGCAACGTCATCAA CTGGTCGCTGCCTATGGGCTTATCATGCGCCCCAATGATTTCGCTTCCTACTTGTTGGCCATTGGCATCT GCAACCTGCTCCTTTACTTCGCCTTCTACATCATCATGAAGCTCCGGAGTGGGGAGAGGATCAAGCTCATCCCC CTGCTCTGCATCGTTTGCACCTCCGTGGTCTGGGGCTTCGCGCTCTTCTTCTTCTTCCAGGGACTCAGCACCTG GCAGAAAACCCCTGCAGAGTCGAGGGAGCACAACCGGGACTGCATCCTCCTCGACTTCTTTGACGACCACGACA TCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCTGTGGGGGATGAGTCCCAGCACCGCTGCCCAGCACTGGATG GCAGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCTGGGACAGCCATGGGGTGGCATGGAACCTTGCAGCTGCC CTCTGCCGAGGAGCAGGCCTGCTCCCCTGGAACCCCCAGATGTTGGCCAAATTGCTGCTTTCTTCTCAGTGTTG ${\tt CCCCATTTCATGCCTTGCATTTTTGCCCGTCCTCCCCACAATGCCCCAGCCTGGGACCTAAGGCCTCTTTTTT$ CCTCCCATACTCCCACTCCAGGGCCTAGTCTGGGGCCTGAATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTT GCCAGCTGGTGCCAGACTTTTGGTGCTAAGGCCTGCAAGGGGCCTGGGGCAGTGCGTATTCTCTTCCCTCTGAC TTCAGAGGTCACCTCTTCATCCCATCAGCTCCCAGACTGATGCCAGCACCAGGACTGGAGGAGAAGCGCCTCA CCCCTTCCCTTCCTTTCCAGGCCCTTAGTCTTGCCAAACCCCAGCTGGTGGCCTTTCAGTGCCATTGACAC TGCCCAAGAATGTCCAGGGGCAAAGGAGGGATGATACAGAGTTCAGCCCGTTCTGCCTCCACAGCTGTGGGCAC $\verb|CCCAGTGCCTACCTTAGAAAGGGGCTTCAGGAAGGGATGTGCTGTTTCCCTCTACGTGCCCAGTCCTAGCCTCG|\\$ TACCTATGAAACCTTGGAGTTTACAAAGAATTGCCCCAGCTCTGGGCACCCTGGCCACCCTGGTCCTTGGATCC AATGTGTTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGGAGATGAGGTGGGTCTGGATCTTT TCAAAAAAAAAAAAA

FIGURE 130

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659

><subunit 1 of 1, 832 aa, 1 stop

><MW: 94454, pI: 6.94, NX(S/T): 12

MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPEGVDSVI
VKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYGSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALECGIPKHFGLFYAMGTALM
MEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAESREHNRDCILLDFFDDHDIWHFLSSIA

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTG ACC<u>ATG</u>GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGC CCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACC TGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCA GGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAG GGCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATG GACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG CCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCC CTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACTCGGATCTTCGAT TCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGG CTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGCACCAGCCTTGACCACGCCCTGGAGAGGAC CTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTG CCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGTCCCTAGAGCCTATCCACCTGGCA GAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGTGATGT GCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCT ACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG TGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCAC CAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCC CACGTTGTGTATCAGCTCCTGAGCCTGAGCCTGAGGATGGGGTAGAGGGGGAGAGCCTTCCA GGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACA TCCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGT GAAGTCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGAT TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCA TTGATGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACA GAAGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA - GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGA AGCTGGTGGGGCCAGGCCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGA - GTGATGCCACCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCC AGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCTCAGGTTCT CCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGGAGGTGCACACC GCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGTGGAGGCCCAGGA TACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTGCACACCCCGCCAAGACCATG GCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGCCAGTGGGCACGGTCCCTACAGC TTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGCGCCTCCAGACTCTCAATGGTTC CCATGCCTACCTCGCCCTGCATTGGGTGGAGCCACGTGAACACATAATCCCCGTGG TGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGATCGTGTGTCGCTGCAAC GTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCACGAAGCTGTCGGC AGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTCATTTTCACCC ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCTGAAGGCG ACTGTC<u>TGAATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC</u> CTGGGAGAGAGCCCAGCACCCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCAT CTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAAC TTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCA

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSG

KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP

HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRL

GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE

NLKVLYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN

SHGEDYAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH

VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCE

VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTE

GTFGLDWEPDSGHVRLRLCKNLSYEAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERV

MPPPKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTA

QSLQGAQPGDTYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF

TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNV

EGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLILIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

 $\verb|CCGGGGAC| \textbf{ATG} | \texttt{AGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCAA}|$ GAAAAATTTTTTGGGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTTTAGACAATGA AGATGATGAAATGCAACACAATGAAGGGCAAGAACGGAGCAGTAATAACTTCAACTACGGGG CAGCACTGGGAAAGGCGTGAGGCGGCCGCCGTTTGGCTGAATGCAGGCATCCATTCCCGAG AGTGGATCTCCCAGGCCACTGCAATCTGGACGCCAAGGAAGATTGTATCTGATTACCAGAGG GATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGGCCAATCC TGATGGATATGTGTATACTCAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATC CTGGAAGCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTGCAGGAAAG GGAGCCAGCGACAACCCTTGCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGA GGTGAAATCAGTGGTAGATTTCATCCAAAAACATGGGAATTTCAAGGGCTTCATCGACCTGC ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCAAAAAGGCCCCAGATGCC GAGGAACTCGACAAGGTGGCGAGGCTTGCGGCCAAAGCTCTGGCTTCTGTGTCGGGCACTGA GTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGG CGTATGACAACGCCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGC TTCCTCCTGCCAGCTAACCAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGGCTGAAGAC ${\tt CATCATGGAGCATGTGCGGGACAACCTCTAC} {\color{red}{TAG}} {\color{red}{GCGATGGCTCTGTCTACATTTAT}}$ TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTTTCCTACCTGTGTGAG CGTGTGTCCTGGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTG AGCATCACCCCTTCCTGGGTGGCATGTCTCTCTCTCTCACTTTTTTAGAACCAAAGAACATC TGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGCCAGTGACCTTGCTCTGGTGGCACT $\tt GTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTTCCTTTAATTTC$ TCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAG -GTCTCTCCCTCCTCTCTGTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCC CAGGCTGGAGTGTGATGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCA ATTCTCCTGCCTCAGCCTCTTGAGTAGCTTGGTTTATAGGCGCATGCCACCATGCCTGGCTA ATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCCA ACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTGAGCCACTG TGCCGGGCCCGTCCCTCCTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCAC ACCAGGATGCCGGAGGGGATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAA GTGACCATCTAAATTGCAGGATGGTGAAATTATCCCCATCTGTCCTAATGGGCTTACCTCCT CTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTACAGGTCCTAAATCACTCAT CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGTGTATCCTGTGTT TCTGTCTATTTTGTATCCTGGACCACAAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCT TTGTTTTTTTGCTTTTACCAAACATGTCTGTAAATCTTAACCTCCTGCCTAGGATTTGTACA

FIGURE 134

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWI
SQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGACAGGGCAGGAGAAGAGAGACCTGCAAAGACATATTTTGTTCCAAA**ATG** GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC CCCGGCCAATGCCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTGCCTCAC AGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACC CCGAGTCAGAACATCTTCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCT AAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGC AAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCA ACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTT GTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTT TGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGG GTGGATACAGAGCTGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT CTTTGTCCTCCCTAGCAAGGGCAAGATGAGGCAACTGGAACAGGCCTTGTCAGCCAGAACAC TGATAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCC ATTTCTGCCTCCTACAATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGA CAAAAATGCTGATTTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCC ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCCACTGAGGCCACAGCAGCTACCACCAAG TTCATAGTCCGATCGAAGGATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCT GATGATGATTACAAATAAAGCCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCA CTAAATCCTAGGTGGGAAATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAA CAAACCACATCCCTCTTTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTG GCAGGGATGCCACTTCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCC AACACCCATTAACCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATG GGATGTTGCTGGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAAC CCAGGTTAGGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT AAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:

amino acids 1-20

FIGURE 137

Principle of the

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGC CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAG CCTTTATCTCTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAG TCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGC AGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTTGCATTTAGAAGCTGCAACAAATTCC AATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCA GCGTGACCTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG ATCAGCACAGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA CTCTGAGTCCAGCACACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAGCACAC CCTCCAGTGGGGCCAGCACAGTCACCAACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGC ACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGA GTCTAGCACACTCTCCAGTGGGGCCAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCA GTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCC ACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCCAG CACAACCTCCAGTGGGGCCAGCACAGCCACTCTGAGTCCAGAACGACCTCCAATGGGG CTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCAGCACAGCCACCAAC TCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACGAC CTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCA CAGCCACCAACTCTGACTCCAGCACACCTCCAGTGGGGCCGGCACAGCCACCAACTCTGAG TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCCAG TGGGGCCAACACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCCA CCAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGC ACAACCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACCAACCTCCAGTGGGGC TAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCACCAACT $\tt CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACC$ TCCAGTGGGGCCAACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAAC AGCCTGGTGGGTCCCTGGTGCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCG -GCCGTGGGGCTCTTTGCTGGGCTCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACAC CTTTAACACAGCTGTCTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAG GGAATCATGGAGCCCCCACAGGCCCAGGTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTA CCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACC TTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATATTGCTCATTTAGCTAAGAAATAA CTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTCCATCTGGCATTCAAAA AAAAAAAAAAAAA

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTC CCAGCAATATGCATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTTCTGCTACTGGGGGCC CTGTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGG GCTGAGCAATGCAGAGAGAGAGGTGGGCAAGGCCCTGGATGGCATCAACAGTGGAATCACGC ATGCCGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGC AAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGAT CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAAGCTTGGCCATGGGGTCAACAACG $\tt CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCAC$ CAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCATGCTGCTGACCAGGCTGG AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGCCAGGCCAGGCCGGAAGGAGC TGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGG GGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCA TGCCCTAAACTGGCATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC ATGACCTGGAGGGGTTGGGGGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTG GGATTTGTGAATAAACTTGATACACCA

FIGURE 140

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675</pre>

><subunit 1 of 1, 247 aa, 1 stop

><MW: 25335, pI: 7.00, NX(S/T): 0

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQN AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 141

CTCCGGGTCCCCAGGGGCTGCCCGGGCCGGCCTGGCAAGGGGGACGAGTCAGTGGACACTCCAGGAAGAGCGG $\verb|CCCCGCGGGGGGGGGGGCGTGACCCTGACTCACTCCAGGTCCGGAGGCGGGGCCCCCGGGGCGACT| \\$ CGGGGGCGGACCGCGGGGGGGGGGCTGCCGCCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACC GCCGCCTCGGCCACCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCAGCCGCCGCCTCCGACCTGGGCGC TCAGCCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCC CAGTAGCAACCTCAGCTTCCTGCCAGGCGGGGAGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAGAAAC AGCAGTGCAGCTTCAAGGGCAAGGACCCACAGCGCGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGC GGCAGTCACCTGTTCACCTGTGGCACAGCAGCCTTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCAC CCTGGCAAGGGACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGGCCGTTGTCCCTTCGACCCGAATTTCA AGTCCACTGCCCTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCC ATCTCGCGGAGCCAAAGCCTTCGCCCCACAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGT GGCCTCAGCCTACATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCG AGACTGGCCAGGAATTTGAGTTCTTTGAGAACACCATTGTGTCCCGCATTGCCCGCATCTGCAAGGGCGATGAG TGGCTTCCCCTTCAACGTGCTGCAGGATGTCTTCACGCTGAGCCCCAGGCCCCAGGACTGGCGTGACACCCTTT GATGTGCAGAGAGTCTTCAGCGGCCTCTACAAGGAGGTGAACCGTGAGACACAGCAGTGGTACACCGTGACCCA $\tt CCCGGTGCCCACACCCCGGCCTGGAGCGTGCATCACCAACAGTGCCCGGGAAAGGAAGATCAACTCATCCCTGC$ AGCTCCCAGACCGCGTGCTGAACTTCCTCAAGGACCACTTCCTGATGGACGGCCAGGTCCGAAGCCGCATGCTG CTGCTGCAGCCCCAGGCTCGCTACCAGCGCGTGGCTGTACACCGCGTCCCTGGCCTGCACCACCACCTACGATGT CCTCTTCCTGGGCACTGGTGACGGCCGGCTCCACAAGGCAGTGAGCGTGGGCCCCCGGGTGCACATCATTGAGG ${\tt AGCTGCAGATCTTCTCATCGGGACAGCCCGTGCAGAATCTGCTCCTGGACACCCACAGGGGGCTGCTGTATGCG}$ GCCTCACACTCGGGCGTAGTCCAGGTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACTGCCTCCT CGCCCGGGACCCCTACTGTGCTTGGAGCGGCTCCAGCTGCAAGCACGTCAGCCTCTACCAGCCTCAGCTGGCCA TCTTTTGTACCAACAGGGGAGAAGCCATGTGAGCAAGTCCAGTTCCAGCCCAACACAGTGAACACTTTGGCCTG CCCGCTCCTCCAACCTGGCGACCCGACTCTGGCTACGCAACGGGGCCCCCGTCAATGCCTCGGCCTCCTGCCACGTGCTACCCACTGGGGGACCTGCTGCTGGTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAG ${\tt GAGGGCTTCCAGCAGCTGGTAGCCAGCTACTGCCCAGAGGTGGTGGAGGACGGGGTGGCAGACCAAACAGATGA}$ GGGTGGCAGTGTACCCGTCATTATCAGCACATCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGGTG TTCTTGCTCTACCGGCACCGGAACAGCATGAAAGTCTTCCTGAAGCAGGGGGAATGTGCCAGCGTGCACCCCAA $^{\circ}$ ACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCCGGGGGCCCGAGTCTTCACTGAGTCAGAGAAGAGGCCACTC AGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTGTGCCCCCGGCCCCGGGTCCGCCTTGGCTCGGAGATCCG TCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAACACGACCGTGGTGCCCGGCCCTTGGGAGCCTTGGAGC CAGCTGGCCTGCTCCCAGTCAAGTAGCGAAGCTCCTACCACCCAGACACCCCAAACAGCCGTGGCCCCAGA GGTCCTGGCCAAATATGGGGGCCTGCCTAGGTTGGTGGAACAGTGCTCCTTATGTAAACTGAGCCCTTTGTTTA GTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGGTTGTCTGAGACAGAGTTGGAAACCCTCACCAA CTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGCCCTGTCTCACTGCAGATTCAGGACCAGCTTG CAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCCCGACCCAACTCCTGGACCTTTCCAGCCTG TATCAGGCTGTGGCCACACGAGAGGACAGCGCGAGCTCAGGAGAGATTTCGTGACAATGTACGCCTTTCCCTCA GAATTCAGGGAAGAGTGTCGCCTGCCTTCCTCCGTTGTTGCGTGAGAACCCGTGTGCCCCTTCCCACCATAT ACCCTCCATCCCTCACCTTCCTCCACTCTAAGGGATATCAACACTGCCCAGCACAGGGGCCCTGAATTTATGTG GTTTTTATACATTTTTTAATAAGATGCACTTTATGTCATTTTTTAATAAAGTCTGAAGAATTACTGTTTAAAAA AAAAAA

FIGURE 142

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLLLLLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCP
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPE
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSG
LYKEVNRETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVR
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVNASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSM
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKR
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSVV

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 143A

CTAAGCCGGAGGATGTGCAGCTGCGGCGGCGCCGGCTACGAAGAGGACGGGGACAGGCGCCGTGCGAACCG AGCCCAGCCAGCCGGAGGACGCGGGCAGGGCGGGACGGGACTCGTCTGCCGCCGCCGTCGTCGCCGT CGTGCCGGCCCGCGTCCCCGCGCGAGCGGGAGGAGCCGCCGCCACCTCGCGCCCGAGCCGCCGCTAGCGCG CCTCGCGGCGCTAGGGCGGCTGGCCTCCGTGGGCGGGGCAGCGGGCTGAGGGCGCGCGGAGCCTGCGGCGGC AGCGTGCTGCTCGGGCTCGTGCTGGGCTTCGTGCTGGCCTCGCGGCTCCTGCCCCGGGCTTCCGAGCTGAA GCGAGCGGGCCCACGCCCCCCGAGGGCTGCCGGTCCGGGCAGGCGGCGGCTTCCCAGGCCGGCG GGGCGCGCGGTGCGCGCGGGGCGCAGCTCTGGCCGCCCGGCTCGGACCCAGATGGCGGCCCGCGCGACAGA AACTTTCTCTTCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATG GTCCAAGACAATTCCTGGGAAAGTTCAGTTCTTCTCAAGTGAGGGTTCTGACACATCTGTACCAATTCCAGTAG TGCCACTACGGGGTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGAC CACTACTTGGACAAGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAA GAAAACTGGCCCTGGAGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTT CGGAGAATGGTGCCGCACATTGGCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGGAAG GTGTGTCCGGAGGTTTGCAGGGGTGCAGTGTCTGGTCTTATGAGATGCGGCAGCTTTTTTATGAGAATTACG AGCAGAACAAAAAGGGGTACATTAGAGATCTCCATAACAGTAAAATTCACCAAGCTATCACATTACACCCCAAC AAAAACCCACCCTACCAGTACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCAC AATACAGCTGCACCGCGAAATTGTCCTGATGAGCAAATACAGCAACACAGAAATTCATAAAGAGGACCTCCAGC GGAAAATACTTGTATTCGGCAGTTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTT GGACGACATTGTCATGCAGGTCATGGAGATGATCAATGCCAACGCCAAGACCAGAGGGGCGCATCATTGACTTCA AAGAGATCCAGTACGGCTACCGCCGGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTGCTTCTG TACAAAAAGCACAAAGGGAAGAAAATGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAA TGTCCTTTCTCTCAAACTCCCTGAAGAAGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAA CCCAAAGATAAAAGATAAACATACTGATTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGATTTATGGGAAA CTTTGAGAAGACGTGTCTTATCCCCAATCAGAACGTCAAGCTCGTGGTTCTGCTTTTCAATTCTGACTCCAACC $\tt CTGACAAGGCCAAACAAGTTGAACTGATGAGAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTG$ $\verb|CCTGTGTCTGGAGAGTTTTCAAGAGCCCTGGCCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCT| \\$ CTTCTTCTGCGACGTCGACCTCGTGTTTACTACAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCC AACAAATATATTTTCCAATCATCTTCAGCCAGTATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGAC AACCATTTTGCCTTTACTCAGAAAACTGGCTTCTGGAGAAACTATGGGTTTTGGCATCACGTGTATTTATAAGGG $^{ ext{-}}$ AGATCTTGTCCGAGTGGGTGGCTTTGATGTTTCCATCCAAGGCTGGGGGCTGGAGGATGTGGACCTTTTCAACA AGGTTGTCCAGGCAGGTTTGAAGACGTTTAGGAGCCAGGAAGTAGGAGTAGTCCACCTCCACCATCCTGTCTTT TGTGATCCCAATCTTGACCCCAAACAGTACAAAATGTGCTTGGGGTCCAAAGCATCGACCTATGGGTCCACCCA GCAGCTGGCTGAGATGTGGCTGGAAAAAAATGATCCAAGTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGA TGATCAGTTTTTGAAGTCCGTATACAAGGATATATTTTACAAGTGGTTTTCTTACATAGGACTCCTTTAAGATT GAGCTTTCTGAACAAGAAGGTGATCAGTGTTTGCCTTTGAACACATCTTCTTGCTGAACATTATGTAGCAGACC TGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTTTTTAAAAAAATGTTTTCTTTTGAGACCCTTTG CTCCAGTCCTATGGCAGAAAACGTGAACATTCCTGCAAAGTATTATTGTAACAAAACACTGTAACTCTGGTAAA AAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATAGCTGTTTCATCATTGTCTTCAGGAGAGCT GTTCTTTTTTGAGACGGAGTCTCACTCTGTTACCCAGGCTGGAATGCAGTGGCGCAATCTTGGCTCACTTTAA $\verb|CCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCCGAGTAGCTGGGATTACAGGCACACCACC| \\$ TTAAAGCAAGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCGTGGTAGTTCATTCGGCCTAAATAG ACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTTCTTTAAAGGGTAAAATATTAA TGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACTGAAACATACACACATACACCCT TATTTGCAGTAAACCGATCTCCAAAGATTTCCTTTTGGAAACGCTTTTTCCCCTCC

FIGURE 143B

TTAATTTTATATTCCTTACTGTTTTACTAAATATTAAGTGTTCTTTGACAATTTTGGTGCTCATGTGTTTTGG GGACAAAAGTGAAATGAATCTGTCATTATACCAGAAAGTTAAATTCTCAGATCAAATGTGCCTTAATAAATTTG TTTTCATTTAGATTTCAAACAGTGATAGACTTGCCATTTTAATACACGTCATTGGAGGGCTGCGTATTTGTAAA TAGCCTGATGCTCATTTGGAAAAAATAAACCAGTGAACAATATTTTTCTATTGTACTTTTCGAACCATTTTGTCT CATTATTCCTGTTTTAGCTGAAGAATTGTATTACATTTGGAGAGTAAAAAACCTTAAACACGAAAAAA

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEG
SDTSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCT ACGGACGACGCCTATGAAGCCCTTAGTCCTTCTAGTTGCGCTTTTTGCTATGGCCTTCGTCTG TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA CAAGTTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATC TAACTCTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTA CACATGGAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACA TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCAC CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCT CAGGTGAAACTGCGATAGÀAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAAT GATGACATTTTGAAAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGA CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCC TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCA GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGTAATTC TAGATCTAAACTCTATGAATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAG CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA _AAAGTTTATTAAACAATAATATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGA TTTAAGCAAACTGCATTTTTTCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTAT AAAAATATTTTCTATTGTAGTTCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACA ATTTTCATATGCACTAAAAACCTAATTTAAAATTAAAATTTTGGTTCAGGAAAAAA

FIGURE 146

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864

><subunit 1 of 1, 350 aa, 1 stop

><MW: 39003, pI: 5.59, NX(S/T): 1

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG ACCTCCAAATCATCCATCCACCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACA ${\tt GGAATATCC} \underline{\textbf{ATG}} {\tt GCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACA}$ GTGGCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGGAGGACGCCGTGTTCT CCTGCTCCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAG TTCCATGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACA GTATCGAGGGAGAACTGAGTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTCTAAGGC TAAAAAACATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTAC GATGAGGAGGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTTCCTCATTTCCAT ${\tt CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGC}$ CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCA GATGGGTACAGCCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT ATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG AGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGT GCCCTGTGTGGTGTTGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCA GGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACG CAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAA ACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAA GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGACGTGGAC AAAATGTAGGGTGGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACAATGTG ACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCAC ATTCAATCCCCATTTTATCAGCCTCCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCC CTGCTGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGA GGAAAAGGGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA<u>TGA</u>GACAGAGAAGACCCTG CTTAAAGGGCCCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGC CCCAGCTTCCTCTCCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGC TGAGGTTCTTCTGCCCTGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGAT TGGCCTGACCCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCA CATTAGGTTTAGTTTGTGAAAACTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCC CAGGCTCCTCATTTGCTAGTCACGGACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGA CAACGAATGTGAATCATGCTTGCAGGTTTGAGGGCACAGTGTTTGCTAATGATGTTTTTTA TATTATACATTTTCCCACCATAAACTCTGTTTGCTTATTCCACATTAATTTACTTTTCTCTA TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTTGTGAGGCTCAAAGAATAAAGAG GAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG AAAACAGAAGAAGAAGGAAAACTACAGGTCCATATCCCTCATTAACACAGACACAAAAA TTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTAAAGATGATATATAAACTACT CAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAATATCAACCAGTGTAATT

FIGURE 148

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALC
GVVMGMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

CCTTCACAGGACTCTTCATTGCTGGTTGGCAATGTATCGGCCAGATGTGGTGAGGGCTA GGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTC CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAA TTACTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTT CTAACAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAA TCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGG AGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAG ATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTA TTGCTGCGGAACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAG AAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGAATGGGAGTCATCGCTGT GGAGCAACCTTAATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAA GAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGG GTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCT CTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGA TGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAA ATGATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT AGAAGGAAAAACAGATGCATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTA GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAG CCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC<u>TA</u> TTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC TGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATA ATACAATATTACATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTTGTCAGAATTTTTGAC TTGTTGACATAAATTTGTAATGCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTC TAAGAAGAAAAATCCCCTACATTTTATTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGT GGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACAGCAGAATACCAATC TCCTTATTTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTG ACCTATAATAATTATACAAACTTCATGCAATGTACTTGTTCTAAGCAAATTAAAGCAAATAT TTATTTAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

FIGURE 150

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871

><subunit 1 of 1, 423 aa, 1 stop

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD
KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICR
FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL
GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG
VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDV
MFVTGFGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGD
SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA CAGCCTGAGATCTTGGGGATCCCTCAGCCTAACACCCACAGACGTCAGCTGGTGGATTCCCG $\tt CTGCATCAAGGCCTACCCACTGTCTCC\underline{ATG} \tt CTGGGCTCTCCCTGCCTTCTGTGGCTCCTGGC$ CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCCTCAAGACTTTGAAGAAGAGGAGG CAGATGAGACTGAGACGGCGTGGCCGCCTTTGCCGGCTGTCCCCTGCGACTACGACCACTGC AGGACTCTCCAGCCCGCCCAGCCGCCCGACCCGCCGCGCATGGGAGAAGTGCGCATTGCGG CCGAAGAGGGCCGCGCAGTGGTCCACTGGTGTGCCCCCTTCTCCCCGGTCCTCCACTACTGG $\tt CTGCTGCTTTGGGACGGCAGCGAGGCTGCGCAGAAGGGGCCCCCGCTGAACGCTACGGTCCG$ ACGAGGCCGGGGCAAGCCGCGTGCCCCAGGCTGGAGGAGAGGGCCCTCGAGGGGGCCGACATC CCTGCCTTCGGGCCTTGCAGCCGCCTTGCGGTGCCGCCCAACCCCCGCACTCTGGTCCACGC GGCCGTCGGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT ${\tt GCCTGCGCGATCGCTGGGGCTGCCCGCGCCGAGCCGCCGAGCCGCAGGGGGCGCTC} {\color{red} {\tt TGA}}$ AAGGGGCCTGGGGCATCTCGGGCACAGACAGCCCCACCTGGGGCGCTCAGCCTGGCCCCCG GCTCCAGGGCCACGGCGGAGTCATGGTTCTCAGGACTGAGCGCTTGTTTAGGTCCGGTACTT

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874</pre>

><subunit 1 of 1, 238 aa, 1 stop

><MW: 25262, pI: 6.44, NX(S/T): 1

MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL AVPPNPRTLVHAAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCC CCCAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGC $\tt TTCTCCCTTACGGGGCTCACA{\color{red} ATG} GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCT$ CTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTTGGCAGTTTCTGCTTGGA TGAGGGACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTC ATTTTGACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTTGCTGTTTTCCTTATCAT TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACT TTGGAAGTTTGCTTGTCATTTTCTGTGTAGAACTGGCTTTGTGGCGTTTGGACATATGAACAG GAACTTATGGTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTA GCTGTGGAGTAGTATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGAT TCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGA CCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGC AGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACC ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC CTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCC TGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAG GAGTTA<u>TAA</u>AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATT TTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACA CCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCAC CACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC ${ t CTGTGTATGACTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTC}$ CGCATCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTT CTACCAACTAGTATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA AATATTGGTGACTACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAA GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAA TCTGTATAATTCAGTCGATTTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAA ATTTGTCCTGTATAGCATCATTATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGT CCTGGGCTTATATTACACATATAACTGTTATTTAAATACTTAACCACTAATTTTGAAAATTA CCAGTGTGATACATAGGAATCATTATTCAGAATGTAGTCTGGTCTTTAGGAAGTATTAATAA GAAAATTTGCACATAACTTAGTTGATTCAGAAAGGACTTGTATGCTGTTTTTCTCCCAAATG AAGACTCTTTTTGACACTAAACACTTTTTAAAAAGCTTATCTTTGCCTTCTCCAAACAAGAA GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTTCTTTTTCTCCAGAAAAAT ${ t GCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATTCTTTGTTTTATTTCACTGATTA$ GAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTATTTCTCAGAATATGGAA AGAAAATTAAAATGTGTCAATAAATATTTTCTAGAGAGTAA

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880</pre>

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPV
VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ
WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF
PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL
YYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCC CCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAG ACCGGGAGGATCACAGAGCCAGCATGTTACAGGATCCTGACAGTGATCAACCTCTGAACAGC CTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGAT CCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGG TGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAG CTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTT CCCCGAAGGCCTGCAGTGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAG ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTC TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCCCCGT GTGGTGGGTGGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGA CAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGCAGCCCACT GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGC AGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAA CCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGA TGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA GGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGA TGATGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCC CTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGGCTGCGG GGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG CCCTGCCCACCTGGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCC CTCTGCCCACAGCCTCAGCATTTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCC AGCATCCCAGGGAGAGACACCAGCCCACTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAA GGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGG CTGGAGAGGAAAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTA CTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTT ACCTACTGTTGTCATTGTTATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCT CTGGCAAAAAAAAAAA

FIGURE 156

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

GAGCTCCCTGGTGACAGTCTGTGGCTGAGCATGGCCCTCCCAGCCCTGGGCCCTGGACCCCTGGAGCCTCCTGGG CCAGGGTCAGATACTATGCAGGGGATGAACGTAGGGCACTTAGCTTCTTCCACCAGAAGGGCCTCCAGGATTTT GACACTCTGCTCCTGAGTGGTGATGGAAATACTCTCTACGTGGGGGCTCGAGAAGCCATTCTGGCCTTGGATAT CCTTTAAGAAGAAGACAATGAGACACAGTGTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCAT $\tt CTCTACACCTGCGGCACCTTCGCCTTCAGCCCTGCTTGTACCTTCATTGAACTTCAAGATTCCTACCTGTTGCC$ CATCTCGGAGGACAAGGTCATGGAGGGAAAAGGCCCAAAGCCCCTTTGACCCGCTCACAAGCATACGGCTGTCT TGGTGGATGGGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACACTG CATCGCGGGTGGCTAGAGTCTGCAAGAATGACGTGGGCGGCGAAAAGCTGCTGCAGAAGAAGTGGACCACCTTC CTGAAGGCCCAGCTGCTCTGCACCCAGCCGGGGCAGCTGCCCTTCAACGTCATCCGCCACGCGGTCCTGCTCCC CGCCGATTCTCCCACAGCTCCCCACATCTACGCAGTCTTCACCTCCCAGTGGCAGGTTGGCGGGACCAGGAGCT CTGCGGTTTGTGCCTTCTCTCTTGGACATTGAACGTGTCTTTAAGGGGAAATACAAAGAGTTGAACAAAGAA ACTTCACGCTGGACTACTTATAGGGGCCCTGAGACCAACCCCCGGCCAGGCAGTTGCTCAGTGGGCCCCTCCTC AATCTGGCGTGGAGTATACACGGCTTGCAGTGGAGACAGCCCAGGGCCTTGATGGGCACAGCCATCTTGTCATG TACCTGGGAACCACCACAGGGTCGCTCCACAAGGCTGTGGTAAGTGGGGACAGCAGTGCTCATCTGGTGGAAGA GCTTCTCAGGAGGTGTCTGGAGGGTGCCCCGAGCCAACTGTAGTGTCTATGAGAGCTGTGTGGACTGTGTCCTT GCCCGGGACCCCACTGTGCCTGGGACCCTGAGTCCCGAACCTGTTGCCTCCTGTCTGCCCCCCAACCTGAACTC $\tt CTCAGAGCCGCCGCAAATCATTAAAGAAGTCCTGGCTGTCCCCAACTCCATCCTGGAGCTCCCCTGCCCCCAC$ $\tt CTGTCAGCCTTGGCCTCTTATTATTGGAGTCATGGCCCAGCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAA$ TGGCTCCTCTTGCTGATAGTGCAGGATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTTT CCCCGGGAGCATGTGAAGGTCCCGTTGACCAGGGTCAGTGGTGGGGCCCCTGGCTGCCCAGCAGTCCTACTG GCCCCACTTTGTCACTGTCACTGTCCTTTTGCCTTAGTGCTTTCAGGAGCCCTCATCATCCTCGTGGCCTCCC ${\tt CATTGAGAGCACTCCGGGCTCGGGGCAAGGTTCAGGGCTGTGAGACCCTGCGCCCTGGGGAGAAGGCCCCGTTA}$ AGCAGAGAGCAACACCTCCAGTCTCCCAAGGAATGCAGGACCTCTGCCAGTGATGTGGACGCTGACAACAACTG GCGGCCCAAGCACAGCCCTGACTAGGATGACAGCAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTG CTACTCTGCATCACTGATGACACTCAGCAGGGTGATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTAC $\cdot \texttt{CAAGCACATGAGCTCTCTAACAGGGTGGGGGCTACCCCCAGACCTGCTCCTACACTGATATTGAAGAACCTGGA}$ GAGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTCCAGAAACACAGTGTTTCAAGAGACCCTAAAAAACCTGC CTGTCCCAGGACCCTATGGTAATGAACACCAAACATCTAAACAATCATATGCTAACATGCCACTCCTGGAAACT ${\tt CCACTCTGAAGCTGCCGCTTTGGACACCAACACTCCCTTCTCCCAGGGTCATGCAGGGATCTGCTCCCTGC}$ TTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTCTTTCCTGAAGTCTGACCACCTTTCTTCTTGCTTCA GTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGGCAGGGGTAATCTGAGCCTTCTTCACTCCTTTACC $\tt CTAGCTGACCCCTTCCCCCTCCCTTTTCCTTTGTTTTGGGATTCAGAAAACTGCTTGTCAGAGACTG$ TTTATTTTATTAAAAATATAAGGCTTAAAAAAA

FIGURE 158

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166</pre>

><subunit 1 of 1, 761 aa, 1 stop

><MW: 83574, pI: 6.78, NX(S/T): 4

MALPALGLDPWSLLGLFLFQLLQLLLPTTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLLSGDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVLAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVDADNNCLGTEVA

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAG TGAGC<u>ATG</u>GCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTCTCCCTGGGGTCCTGCTC TCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGAG GTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCTTGCA TGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC ATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATA GTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGC CATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTC CAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTG ATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAA GGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGT GGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTAT GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGC CAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGA ATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA CTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCG GGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGCCCCATGGTGGGGGATCCCTCTCTT GGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCAGTT AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT ACAAGTCCGCGGCAGTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAG CGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTA TGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGC TCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGT GGGGCCAGAAAGGTGAAGGAGACA<u>TAA</u>GGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGG GCGATGTCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTC TAGTTATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGC CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTG TCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCCTGCCCC TACTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGTTTCTGTTT TGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCAGGGC CGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCACAGTGAGCTCCT TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAAAATAAAAGTTTACA GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169</pre>

><subunit 1 of 1, 523 aa, 1 stop

><MW: 59581, pI: 8.68, NX(S/T): 1

MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP
FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHF
LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV
FRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWF
INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP
EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ
NSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK
SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT
LGTLWLCGKLLGMAVWWLRGARKVKET

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

CTCCATCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCT GGCTGCAGCCCTCCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCA ACTGCTGTCACTGCCATGCCCAAGGAGGAGGGAACTGCAGTGACAGCAGGAGTAAGAGT GGGAGGCAGGACAGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGC AGACTATCAGGGTGCCGGCGGTGAGAATCCAGGGGAGAGGGGGGGAAACAGAAGAGGGGCAGA AGACCGGGGCACTTGTGGGTTGCAGAGCCCCTCAGCC<u>ATG</u>TTGGGAGCCAAGCCACACTGGC TACCAGGTCCCCTACACAGTCCCGGGCTGCCCTTGGTTCTGGTGCTTCTGGCCCTGGGGGCC GGGTGGGCCCAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGGAGTGCCTGGTGGTCTGTGA GCCTGGCCGAGCTGCTGCAGGGGGGGCCCCGGGGGAGCCCCTGGGCCCCCTGGGC GAGTGGCATTTGCTGCGGTCCGAAGCCACCACCATGAGCCAGCAGGGGAAACCGGCAATGGC ACCAGTGGGCCATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGC CTCTGGCTCCTTCGTAGCCCCTGTCCGGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGG TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCC TTTGCCAATGATCCTGACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGA CCCTGGGGACCGAGTGTCTCTGCGCCTGCGTCGGGGGGAATCTACTGGGTGGTTGGAAATACT CAAGTTTCTCTGGCTTCCTCATCTTCCCTCTCTGAGGACCCAAGTCTTTCAAGCACAAGAAT CCAGCCCCTGACAACTTTCTTCTGCCCTCTCTTGCCCCAGAAACAGCAGAGGCAGGAGAGAG ACTCCCTCTGGCTCCTATCCCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAA CTCCCAGCCACCTGCATCTGTTCCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTTGGCA AGAAGGAAGATCTGCACTACTTTGCGGCCTCTGCTCCTCCGGTTCCCCCACCCCAGCTTCCT GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAG ATGGACAAGCCTCAGCGTACCCTGCAGGCTTCTTCCTGTGAGGAAAGCCAGCATCACGGATC TCAGCCAGCACCGTCAGAAGCTGAGCCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCAC GGCTGTCCTTCTATGCTGGATCCCAGATGGACTCTGGCCCTTACCTCCCCACCTGAGATTAG GGTGAGTGTTTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG ACCATGGAAAACATCGATAACCATGCATCCTCTTGCTTGGCCACCTCCTGAAACTGCTCCAC TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTCTTTTCTCCTGAT GGCCCAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT AGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGATCGGGTGTTACAGGTACAAGTAGGTA TGTTGCAGAGGAAAATAAATATCAAACTGTATACTAAAATTAAAAA

FIGURE 162

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180</pre>

><subunit 1 of 1, 205 aa, 1 stop

><MW: 21521, pI: 7.07, NX(S/T): 1

MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY SFRFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRG NLLGGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 163

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCCAGC CTCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCAT GAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGGGGGCGAGCGTCAGGCCGAGGCTGACC GGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACT GGATCCAGCATCCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAA GGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTGTACTGG GAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG CTCTACTTCACTTGGCTGGTGTTTGACTGGAACACCCCAAGAAAGGTGGCAGGAGGTCACA GTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGA AGACACACCACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATG GGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG CATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTTGAGGGAGTACC TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAAT GGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCC TGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATG GAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTC GAGGAGGCTCCTGGGGCCGATGGGTCCAGAAGAGTTCCAGAAATACATTGGTTTCGCCCC ATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCA .AGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAG CAAGACATCGACCTGTACCACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCA GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTAAATTTGGAAGTGTCA AAAAAAAAAAAAAAAA

FIGURE 164

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184</pre>

><subunit 1 of 1, 388 aa, 1 stop

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRS
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRS
QWVRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSM
PGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDK
HKTKFGLPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

FIGURE 165

GGGCGGGGATGGGGGCCGGGGCGCGCGCGCCCCACTCGCTGAGGCCCCGACGCAGGGCCGGGCCGGGCCCC $\tt CGGCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGACCTTGTGCCTT$ $\tt GGACGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCCCTGCTGGCCTTCCTGAAGA$ CCCAGTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTG GAGCCAACTGGTCATGCTGCTGGAGTGGTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAG ATGTGTGAGCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCAT CGGCTGGACGTGGTACTTTCTGGAGATTGTGTTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACACCGTGGTCG AAGGGCTGAGGCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGACGCGCTTCACG GAGACCAAGCACCGCGTTAGCATGGAGGTGGCGGCTGCTAAGGGGCTTCCTGTCCTCAAGTACCACCTGCTGCC GCGGACCAAGGGCTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGA ACTTCAGAGGAAACAAGAACCCGTCCCTGCTGGGGATCCTCTACGGGAAGAAGTACGAGGCGGACATGTGCGTG AGGAGATTTCCTCTGGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGA GAAGGACGCGCTCCAGGAGATATATAATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGC CGTGGACCTCCTGAACTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTTGTCTTGGGCGTC TTTGCCAGCGGATCACCTCTCCTGATCCTGACTTTCTTGGGGTTTGTGGGGAGCAGCTTCCTTTGGAGTTCGCAG ACTGATAGGAGAATCGCTTGAACCTGGGAGGTGGAGATTGCAGTGAGCTGAGATGGCATCACTGTACTCCAGCC TGAAGATGGTACCTTGAGATTTTTCAGGCTAATGAAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCAT TGGCCACAGCTGATGAAAAACAGTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCA GAGATCCACACCTAGATATTTCATAATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCA ACTTATCTTGTTCAAAGGATCTTTGATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGAT AGTGGGATGAACACTGTTGAAGGCAAAACCTTCAACTGTAATTATTGGACTTTTGAGTCTTAGATGGTCCTGAC CTCTTTGTCTTCAGGGACAGTTTTTCAATTTAATCCCTAATAACAATTAGTCAAGCTTCCTTGACCTGTAGGAA ATTTGGGGTCAGGCTGATCTCAAACTCCTGAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGAT TGCAGGCGTGAGCCACTGCGCCTGGCCGGAATTTCTTTTTAAGGCTGAATGATGGGGGCCCAGGCACGATGGCTC ${\tt AGACGTGTTAGCCAGGCTGGTCTCGATCTCCTGACCTCAAGTGACCACCTGCCTCAGCCTCCCAAAGTACTGGG}$ - AGACAGGGTCTTGTTCTGTTGCCCAGGCTGGAGTACAGTGGCACAGTCTTGGCTCACTGCAGCCTCGACCTCCT TTTTTGTATTTTTTGTGGAGACAGCATTTCACCATGATGCCCAGGCTGGTCTTGAACTCCTGAGCTCAAGTGAT CTGCCTGCTTCAGCCTCCCAAAGTGCTGGGATTACAGACATGAGCCACTGCACCTGGCAAACTCCCAAAATTCA ACACACACACAAAAAACCACCTGATTCAAAATGGGCAGAGGGGCCGGGTGTGGCCCCAACTACCAGGGAGAC TGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTGCAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCC TGGACAACAGAGTGAGACCCTGTCTC

FIGURE 166

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213</pre>

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

GCCACCAGGCATATTCATCTTTGTGTGTGTTTTTTCTTTTGCTTTAGCACTGGGGCACTTCTT GATAGCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTT TTCTCTAACCTGGCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAA AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGT ACATGTGGTGTTCTCTTGTCGTTCCTGTAATGTGGTATGCCATGGGGTCTTTGCACAAGCCT TTCCTCTTTGGCTGGACACTGTTCCCTGCCCCCCCCATACTCTTCCTACTTAATATGTAGTC ATCCTGCAGATTTCAACTCATCTTTCTCCAGGGATCCTGGCCTGACAGAATCTCAT CTTGTTTAATGCTCTCATAAGACCACTTGTTTCCCTTTTTGCAGCACTTGCCACTCAGTTGTA TCTTTATGTGCGTTGTGTTGTATGGGTTGTGTCTGTTCCCCAGAATGCCCAGCTCTGAGC CATGTTTTAGAGACTAAATGGAGGAGGGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCA GATGGTGTAGGGCCCAGCATTGTAAATTCACACGTTGACTGTGCTTGTGAATTATCTGGGGA TGCAGGTCCTGATTCAGTAGGCCCAGGTTGGGCATCTCTAACAACTCCCACGTGATGCTGA TGCTGGTCCTATGAACTATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGC TCAAGACTAGCCTGGCCAACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTG GGCATGGTGGCACATGCCTGTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG AACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC AGAGTGAGACTCTATGTCCAAAAAAAAAAAAA

FIGURE 168

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234
><subunit 1 of 1, 143 aa, 1 stop
><MW: 15624, pI: 9.58, NX(S/T): 0
MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRR
EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS
GPCPPGQLHCTCGVLLSFL

Important features of the protein: Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCAC ATTAAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGT CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCAC ACCGTCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTC ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTA GCTGCGGCTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGAT**TGA**CAAGCCCGAAGATTT CATAGGCGATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGG CTAACCTTTTCATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGG AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT TATGTGACAGGACTTGCATTCTCCTGGAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA GGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGC ATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGGAAGGGCTGCCGATGGCGCATGACACT CGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTG AAGGGCAACTGCAGGCCGATGCTCATCAGCCAGGCAGCAGCCAAAATCTGCGATCACCAG CCAGGGCCAGCCGTCTGGGAAGGAGCAAAGTGACCATTTCTCCTCCCCTCCTTCCCTC TGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATG GCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCTGTGCG AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCT CAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGT TCAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAAATTTGAAACCCCAAA TCCAAACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATG CCAACATTTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTG GCCAACATGGTGAAACCCCTGTCTCTACTAAAAATACAAAAAACTAGCCAGGCATGGTGGT GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGT GAAGGAGGCTGAGACAGGAGAATCACTTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA AAAAATAAAAAAAGAATTATGGTTATTTGTAA

FIGURE 170

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277

><subunit 1 of 1, 109 aa, 1 stop

><MW: 11822, pI: 8.63, NX(S/T): 0

MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA

SPCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTCACGTGACCTGTCACTGCCTC CCGCCGCTCTGCCCGCGCCATGACCCAGCCGGTGCCCCGGCTCTCCGTGCCCGCCGCGCT GGCCCTGGGCTCAGCCGCACTGGGCGCCGCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGT GCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGG CAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGAC CCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACCTGGCGCGGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCC CTGGCCTGGCCTGGCGCTGCCCGCGGACGGGCGCGTGGTGACCTGCGAGGTGGACGCGCA GCCCCGGAGCTGGGACGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCC GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGC GACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGAT CTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGAC

FIGURE 172

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282
><subunit 1 of 1, 262 aa, 1 stop
><MW: 28809, pI: 8.80, NX(S/T): 1</pre>

MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL
PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCGCAGCCGCTACCGCCGCTGCAGCCGCTTTCCGCGGCCTGGGCCTCTCGCCGTCA GC<u>ATG</u>CCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCAC CATCTTTTCTTTGGCACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACG ACAAATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGGAAAGGCTTCAATGAAGGGCTGTGG GAGATCCAGAACCCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAG CGAGGCCCCGAGGCCAACCCCGCCGACGCAGTGACGCTGACGAGGACGATGAGGACCGGG GGGTCATGGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA GACTCAGACAAGAGTAGCGACAACAGTGGCCTGAAGAGGGAAGACGCCTGCGCTAAAGATGTC GGTCTCGAAACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCT GGCGCCGTCAGCCTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGG TCTGTGAAGAAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGG GCGGAAACCGAAGCCTGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG TGGACCGCATCAGTGAGTGGAAGCGCGGGGACGAGGCGCGAGCTGGAGGCCCGG CGGCGGCGAGAGCAGGAGGAGGAGCTGCGGCGCCTGCGGGAGCAGGAGAAGGAGGAGAAGGA GCGGAGCGCGAGCGGCCGACCGCGGGGAGGCTGAGCGGGCAGCGGCGGCAGCAGCGGG ACGAGCTCAGGGAGGACGATGAGCCCGTCAAGAGCGGGGACGCAAGGGCCGGGGCCGGGGT GAAGAAGCCGCAGTCCTCAAGCACAGAGCCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGAG TGCGGCCCGAGGAGAAGCAACAAGCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC GAGGGCTTCTCGATGGACAGGAAGGTAGAGAAGAAGAAGAGCCCTCCGTGGAGGAGAAGCT GCAGAAGCTGCACAGTGAGATCAAGTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGT GCCTGAATGCCCTAGAGGAGCTGGGAACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAAC ACAGACGTGGTGGCCACCTTGAAGAAGATTCGCCGTTACAAAGCGAACAAGGACGTAATGGA GAAGGCAGAAGTCTATACCCGGCTCAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGG TGCAGAAAGTGAACAAGGCTGGGATGGAGAAGGAGAAGGCCGAGGAGAAGCTGGCCGGGGAG - GAGCTGGCCGGGGAGGAGGCCCCCCAGGAGAAGGCGGAGGACAAGCCCAGCACCGATCTCTC AGCCCCAGTGAATGGCGAGGCCACATCACAGAAGGGGGGAGAGCGCAGAGGACAAGGAGCACG AGGAGGTCGGGACTCGGAGGGGCCAAGGTGTGGCTCCTCTGAAGACCTGCACGACAGC GTACGGGAGGGTCCCGACCTGGACAGGCCTGGGAGCGACCGGCAGGAGCGCGAGAGGGCACG GGGGGACTCGGAGGCCCTGGACGAGGAGAGC**TGA**GCCGCGGGCAGCCAGGCCCAGCCCCGC CCGAGCTCAGGCTGCCCTCTCCTTCCCCGGCTCGCAGGAGCAGAGCAGAGCAGAACTGTGGG TCCAACCAACATGAAATGACTATAAACGGTTTTTTAATGA

FIGURE 174

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61, NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYD
KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRG
VMAVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSE
EENSESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPV
AMARSASSSSSSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEV
DRISEWKRRDEARRRELEARRRREQEEELRRLREQEKEEKERRERADRGEAERGSGGSSGD
ELREDDEPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRV
RPEEKQQAKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC
LNALEELGTLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAV
QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE
EGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATAAATT ${\tt AACACCATTTGAAAGAGAACATTGTTTTCATC} \underline{{\tt ATG}} {\tt AATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAA}$ GCAAAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTGGGTT CACATCTTTCTACTCAGTCTGGTTGACTTAAACAAAAATTTTAAGAAGATTTATTGGCCTGCTGCAAAGGAACG GGTGGAATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCT ATAACAAAACTCACATATATGTGTGTGGAACTGGAGCATTTCATCCAATATGTGGGTATATTGATCTTGGAGTC TACAAGGAGGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCC TCAGCAGCCTTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAG ATACTGCATTCACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTCAGAGCACTAC TGGCTCAATGGAGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAAATATA $\tt TTTCTTCTTTCGTGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTT$ GTAAGAATGATGTAGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGC TGAAAGAATCCTGTAGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTGT ${\tt ATAGCATGGCTGACATCAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTG}$ CAGTATGATGGGAGAATTCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTC CACCCGAGATTTTCCAGATGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAG TTGCAGGAGGACCAACGTTCAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATT GCAGAAGATGGCCAGTACGATGTAATGTTTCTTGGAACAGACATTGGAACTGTCCTCAAAGTTGTCAGCATTTC ACATGGAATTGTCTCTGAAGCAGCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCAC AGATGCGACACTTATGGGAAAGCTTGCGCAGACTGTTGTCTTGCCAGAGACCCCTACTGTGCCTGGGATGGAAA TGCATGCTCTCGATATGCTCCTACTTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCA CCCAGTGCTGGGACATCGAAGACAGCATTAGTCATGAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTT AACTCAACCTTTCTGGAATGTATACCTAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGA TGAGCATCGAGAGGAGTTGAAGCCCGATGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGC AGAAGAAGGATTCTGGGATGTATTACTGCAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACT TTGAATGTCATTGAGAATGAACAGATGGAAAATACCCAGAGGGCAGAGCATGAGGAGGGCCAGGTCAAGGATCT ATTGGCTGAGTCACGGTTGAGATACAAAGACTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGT ACTGCGAACAGATGTGGCACAGGGAGAAGCGGAGACAGAGAAACAAGGGGGGCCCAAAGTGGAAGCACATGCAG ${ t GAAATGAAGAAACGAAATCGAAGACATCACAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACG{ t T}{ t AG}{ t T}{ t T}{ t T}{ t C}{ t T}{ t C}{ t C$ TTCTACTTAATTTAAAGAAAAGAATTCCTTACCTATAAAAACATTGCCTTCTGTTTTTGTATATCCCTTATAGTA ATTCATAAATGCTTCCCATGGAGTTTTGCTAAGGCACAAGACAATAATCTGAATAAGACAATATGTGATGAATA -TAAGAAAGGGCAAAAAATTCATTTGAACCAGTTTTCCAAGAACAAATCTTGCACAAGCAAAGTATAAGAATTAT $\verb|CCTAAAAATAGGGGGTTTACAGTTGTAAATGTTTTATGTTTTGGGAATTTATTGTCATGTAAATAGTT|\\$ GAGCTAAGCAAGCCCCGAATTTGATAGTGTATAAGGTGCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTT ACCATGCAGTTGTGCTATGTTCTTATGAACAGATATATCATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGA ATAAGAGGTCAGACAAATTAAGACAACTCCCATTATCAACAGGAACTTTCTCAGTGAGCCATTCACTCCTGG TTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCTATTGACTAGTCAGGAGTAACAGGTTCACAGAGA TTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAAACATAATGATGTATAATGCATCCTGATGGGAAGG CATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCATAAATTCTGGCTTTGGGGAAAACTCATATCC CTGCCAATTTGTAATTCATCTGTTAAAAAAAATCTAGATTATAACAAACTGCTAGCAAAATCTGAGGAAACATA AATTCTTCTGAAGAATCATAGGAAGAGTAGACATTTTATTATATCCAATGATATTTCAGTATATATTTCTCT TTGTGATTATATTTGAGTGAATAGGAGAAAACAATATATAACACACAGAGAATTAAGAAAATGACATTTCTGGG GÁGTGGGGATATATATTTGTTGAATAACAGAACGAGTGTAAAATTTTAACAACGGAAAGGGTTAAATTAACTCT CAATAAATAAGCCTGCTACATGT

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEE
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARRQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN
KGGPKWKHMQEMKKKRNRRHHRDLDELPRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATCCTGGAGCATGCCCACCGCGGGGAGCAG ACAACCTCCCAGGTAAGCTGGGAGCAAGACCTGAAGCTGTTTCTTCAGGAGCCTGGTGTATTTTCCCCCACCCC AGAGTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGG CATCGGGTGAGGTGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGAT AGTTAAGAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTCTTGTTGCTTCCTAGTTCTGTAGC CCCAGGTAAGGGAGTGACTTAACCTCTCTGGACTTCAATTTCCTCATCACTAAAGTAGGGCCAATAATAGCACC GCCCCACAGTATTTCCACCCACCCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGAGGCGG CAGCAGGCTTCAGAGCGGGGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGC ACAGGTGAGCCAGGTGAAGGGGGCTGCCCGGCTGGCCCTGCTGCAGGGGGCTTGGCTTAGATGTGGAGCGCTGGC TGAAGCCAGCCATGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGGCTCAGTGAGGCTCGGCTGTCCCAG AGGGACCTCTCTCCAACCGCTGAGGATGCTGAGCTTTCTGACTTTGAGGAATGTGAGGAGACGGGAGAGCTCTT TGAGGAGCCTGCCCCCAAGCCCTGGCCACGAGGGCCCTCCCCTGCCCTGCACACGTGGTATTTCGCTATCAGG TGGGTCAAGGCTCGGAACCAGCACGGCGAGGTAGGCTTTGTCCCTGAGCGATATCTCAACTTCCCGGACCTCTC CCTCCCAGAGAGCAGCCAAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGT ACAGCTACACCGGACAGAGTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCACTCATCCGTCTGCTGCCCCGGGCC CAAGATGGAGTAGATGACGGCTTCTGGAGGGGGAGAATTTGGGGGCCGTGTTGGGGTCTTCCCCTCCTGCTGGT GGAAGAGCTGCTTGGCCCCCAGGGCCACCTGAACTCTCTGACCCTGAACAGATGCTGCCGTCCCCTTCTCCTC CTGGACTTCCCTGGGTTCCTGGACATGATGGCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCCGCCGGC TAAAGCCCCGGATCCTGGCCACCCAGATCCCCTCACC<u>TGA</u>AGGCCAGGGAAGCCTTGACCCCCAGTGATGCTGC TGTCCCTATCTTCAAGCTGTCAGACCACCATCAATGATCCAGAGCAACACAGCCAAAAGCTGGAATCGCCCT TATTTCCACCCTCACCTCCAAGGGTGGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTT TGCCTGAAATCTCTGGGGCTGGAAACCATCCATCAAGGTCTCTAGTAGTTCTGGCCCACCTCTTTCCCCACCCT GGCTCCATGACCCACCCCACTCTGGATGCCAGGGTCACTGGGGTTGGGCTGGGGAGAGGAACAGGCCTTGGGAA TCAGGAGCTGGAGCCAGGATGCGAAGCAGCTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACG AAGGCCAGGCCAGGGCCTCTTGTGCTAAGAGGGCAGGGGGCCTACGGTGCTATTGCTTTAGGGGCCCA CCACGGGCAGGGCCTGCTCCAGCTGCCACGCTCTATCATATGGAGCGAGGTGTTGGGGAAGGCGGGGCAGGC AGCCTGTTGCAGGCAGGGGAAGGAGAAGAGACTGAGGGGCTGTGACCTCTCCTGAGGCCCCCAGCCTGAGACTG TGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTCAGCTGGGGGGGAGTGCTGTCCAGTGGAGGGGAGGGCTTTCA CGCCCACCCACCCTGCCTGCCAGCTGGTAGTCCATCAGCACAATGAAGGAGACTTGGAGAAGAGGAAGAA * TAACACTGTTGCTTCCTGTTCAAGCTGTGTCCAGCTTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCA ${\tt CCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGCAGTTTACTCTGGGGGTTCAGGGAGCCGAAAGGCTTAAA}$ TAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCATTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTG CTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGGTCAACAATGAGAGACCAGGAGTAGGTCCTATCAGTG CCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGCAGTCCCGGCTGTGTTTTCCTACCTGGTGATCAGAA CAGTGTTGGCTCTGCAGAAGCTCTGGGGTTCCCTTCAAGTGCACGAGGGGTTAGGCTGCTGTCCCTGAGTCCTC ${\tt CCTGCCTTGGGCTGCCCTCCCCCAGACCCCTGACCACCCCTGGGTCCTGTCCCCCACCAGAGCCCCAGCTCCT}$ GTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCTTCTCAATGTGTGTCACCCGGAACCTGGGAG GGGAGGGAACACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTGGCCCTCCCCTCTGACCAGGGACATCCTGA GTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTCAGATTGTGGGGCACATTGTGTAGCCTGA CTTCTGCTGGAGCTCCCAGTCCAGGAGGAAAGAGCCAAGGCCCACTTTTGGGATCAGGTGCCTGATCACTGGGC CCCCTACCTCAGCCCCCTTTCCCTGGAGCACCTGCCCCACCAGAGAACACAGTGGTCTCCCCTGTC CGGGGGCGCTTTTTCCTTCCTTGGAGCGTCCCTGACGGACAAGTGGAGGCCTCTTGCTGCGGCTGCAATGGAT GCAAGGGGCTGCAGAGCCCAGGTGCACTGTGTGATGATGGGAGGGGGGCTCCGTCCTGCAGGCTGGAGGTGGCAT TTCAGCATGCTCCTTAAAACCCCAGAAGCCCCAATTTCCCCCAAGCCCCATTTTTTCTTGTCTTATCTAATAAA CTCAATATTAAG

FIGURE 178

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW
VKARNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPPAKAPDPGHPDPLT

FIGURE 179A

AGAAGGCAGAGACAGGGCACAGAAGCGGCCCAGACAGAGTCCTACAGAGGGAGAGGCCAGAGAAGCTGCA GAAGACACAGGCAGGGAGAGACAAAGATCCAGGAAAGGAGGGCTCAGGAGGAGGTTTGGAGAAGCCAGACCCC TGGGCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTT TGCCTCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTTCCAAAGCTAGGGTGTGGAGGAC $\tt TTGGTGCCCTAGACGGCCTCAGTCCCTGCCAGCTGCAGTACCAGTGCC{\color{red} \underline{ATG}} TCCCAGACAGGCTCGCATCCCGG$ GAGGGGCTTGGCAGGGCGCTGGCTGGGGGAGCCCAACCCTGCCTCCTGCTCCCATTGTGCCGCTCTCCTGGC TGGTGTGGCTGCTTCTGCTGCCTCTCTCTCCTGCCCTCAGCCCGGCTGGCCAGCCCCCTCCCCCGGGAG ${\tt CCGCTTGCAGGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGCTGA}$ GGCTGAACTCCACCTCCAGCCCCTGGAGGGAGGCACCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTAC GCCGGAAGAGTCCTGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGGCCCCAGA CCCCGAAGAGCCCAAGCGCTTTGCTTCACTGAGTAGATTTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGC CAAGCATCCGCAATCCTGTCAGCTTGGTGGTGACTCGGCTAGTGATCCTGGGGTCAGGCGAGGGGGCCCCAA GTGGGGCCCAGTGCTGCCCAGACCCTGCGCAGCTTCTGTGCCTGGCAGCGGGGCCTCAACACCCCTGAGGACTC ${\tt GGGCCCTGACCACTTTGACACAGCCATTCTGTTTACCCGTCAGGACCTGTGTGGAGTCTCCACTTGCGACACGC}$ TGGGTATGGCTGATGTGGGCACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCTCCAG TCAGCCTTCACTGCTCCTCATGAACTGGGTCATGTCTTCAACATGCTCCATGACAACTCCAAGCCATGCATCAG TTTGAATGGGCCTTTGAGCACCTCTCGCCATGTCATGGCCCCTGTGATGGCTCATGTGGATCCTGAGGAGCCCT GGTCCCCCTGCAGTGCCCGCTTCATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCA GAGGCTCCATTGCATCTGCCTGTGACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTT CGGGCCCGACTCACGCCATTGTCCACAGCTGCCGCCCCTGTGCTGCCCTCTGGTGCTCTGGCCACCTCAATG GCCATGCCATGTGCCAGACCAAACACTCGCCCTGGGCCGATGGCACACCCTGCGGGCCCGCACAGGCCTGCATG GGTGGTCGCTGCCTCCACATGGACCAGCTCCAGGACTTCAATATTCCACAGGCTGGTGGCTGGGGTCCTTGGGG ${\tt ACCATGGGGTGACTGTCGGACCTGTGGGGGTGTCCAGTTCTCCTCCCGAGACTGCACGAGGCCTGTCCCAGGCCTGTCCCAGGCCTGTCCCAGGCCTGTCCCAGGCCTGTCCCAGGCCTGTCAGGCCTGTCCAGGCCTGTCAGGCCTGCAGGCCTGTCAGGCCTGTCAGGCCTGTCAGGCCTGCAGGCCTGCAGGCCTGTCAGGCCTGCAGGCCTGCAGGCCTGTCAGGCCTGTCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGAGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCTGCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCTGCAGGCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCA$ CCCGGAATGGTGGCAAGTACTGTGAGGGCCGCCGTACCCGCTTCCGCTCCTGCAACACTGAGGACTGCCCAACT ${ t GGCTCAGCCCTGACCTTCCGCGAGGAGCAGTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCC}$ ${\tt GGGCACTGGGCTACTACTATGTGCTGGAGCCACGGGTGGTAGATGGGACCCCCTGTTCCCCGGACAGCTCCTCG}$ GTCTGTGTCCAGGĠCCGATGCATCCATGCTGGCTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTG ${\tt CATGGTGTGCGGAGGGGACGGTTCTGGTTGCAGCAGCAGCAGTCAGGCTCCTTCAGGAAATTCAGGTACGGATACA}$. ATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTATGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCACAGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTACAGCGGGGCCACTGCAGCCTCAGAGACACTGTCAGGCC AGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACGCCCCACTCCCCAGGACTGGCTGCACCGAAGAGCACA ${\tt GATTCTGGAGATCCTTCGGCGGCGCCCCTGGGCGGGCAGGAAA} \underline{{\tt TAA}} {\tt CCTCACTATCCCGGCTGCCCTTTCTGGG}$ CACCGGGGCCTCGGACTTAGCTGGGAGAAAGAGAGAGCTTCTGTTGCTGCCTCATGCTAAGACTCAGTGGGGAG GGGCTGTGGGCGTGAGACCTGCCCTCCTCTCTGCCCTAATGCGCAGGCTGGCCCTGCCCTGGTTTCCTGCCCT TATTTAGCACCAGGGAAGGGACAAGGACTAGGGTCCTGGGGAACCTGACCCCTGACCCCTCATAGCCCTCACC ATGTGTGTGTGCTTATGTATGAGGTACAACCTGTTCTGCTTTCCTCTGAATTTTATTTTTTGGGAAAAGA TTTTTTTGAGACAGAATCTCGCTCTGTCGCCCAGGCTGGAGTGCAATGGCACAATCTCGGCTCACTGCATCCTC ${\tt CCAGCTAATTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTCACCAGGGCTGGAATGATTTCAGCT}$ CACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGAGATTATAGGCAC $\tt CTACCACCACGCCCGGCTAATTTTGTATTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCTCG$ AACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCC TGGCCACGCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGCTCTTGAAC TCCTGACCTCAGGTAATCGACCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCACGCCCGG TACATATTTTTAAATTGAATTCTACTATTTATGTGATCCTTTTGGAGTCAGACAG

FIGURE 179B

FIGURE 180

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASLLPSARLASPLPREEEIV FPEKLNGSVLPGSGAPARLLCRLQAFGETLLLELEQDSGVQVEGLTVQYLGQAPELLGGAEP GTYLTGTINGDPESVASLHWDGGALLGVLQYRGAELHLQPLEGGTPNSAGGPGAHILRRKSP ASGQGPMCNVKAPLGSPSPRPRRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA AAKAFKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHF DTAILFTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHD NSKPCISLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL PVTFPGKDYDADRQCQLTFGPDSRHCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCG PAQACMGGRCLHMDQLQDFNIPQAGGWGPWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKY CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCK LTCQARALGYYYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDG SGCSKQSGSFRKFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTL MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT PSTPRPTPQDWLHRRAQILEILRRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

FIGURE 181

CAGCAGTGGTCTCTCAGTCCTCTAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCATG CAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCC AAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCT AATTGTCCTGTTTTGGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACA TGGAGCACACTTCTACAGCAATGGAGAGAGAAGAAGATTTACATGGAAATTGATCCTGTG ACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTT TAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGA TTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACC ACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA TTTTCTTAAAAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATC CCACTCTAATATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTT AGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTG AAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGT CGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATA GCATGCTGGGGAGGGTCTAATAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT AATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCT CTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCACC AAAAAAAAAAAAAAA

FIGURE 182

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727</pre>

><subunit 1 of 1, 317 aa, 1 stop

>< MW: 37130, pI: 5.18, NX(S/T): 3

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY

DMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT

QIKVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI

NPTLISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY

TENGIEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWV

ARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACTGGCTCCGGCTGCACCTGAGGAGCGCGTGACCCCGAGGGCCCCAGGGAGCTGCC CGGCTGGCCTAGGCAGCCGCACC<u>ATG</u>GCCAGCACGGCCGTGCAGCTTCTGGGCTTCCT GCTCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGA TGTGTGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCC GCGCCTGCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCAAGGGCACACCCGCCAAGACC CTCCTGGACCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGA AGTTTGAGATTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGT GGCACCCTGCTTTGCCTGTCCTGCCAGGACGAGGCACCCTACAGGCCCTACCAGGCCCCGCC CAGGGCCACCACGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAG ACAATCGGGCCCCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG AATGGAGGCAGGGTTCCAGCACAAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATA ATGTGAATGCGAGGAAATGTCTTTAGAGCACAGGGACAGAGGGGGAAATAAGAGGAGGAGAA TTATGTGGGTGATTTGATAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGT

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL FILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ DEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG CAGGCGGCAGGGCGGCCAGGATCATGTCCACCACCACATGCCAAGTGGTGGCGTTCCT CCTGTCCATCCTGGGGCTGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCC AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC GTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGC CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCC TGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC AACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGT GTCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCG GCATGGGTGGGATGCTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTG GGCTGGGTCGCTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGG CCTGGCACCAGAAGAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTG CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAACAAGAAG ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTA TGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAACTCCCGGAGAGCTCACCCAAAA AACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGC CTCGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCC ACCATAAAACAGCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTAT ATTTTGATGATTTAGACAGACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTA CTGCTGTTTGAATTTTGTCTCCCCACCCCAACTTGGCTAGTAATAAACACTTACTGAAGAA GAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTG TGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTG CTGTTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAG TTAAGTCCTAAATATAGTTAAAATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGA AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTTGACATTGTCT ATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCCATGAAAAGCTCACACCTGTAATC CTAGCACTTTGGGAGGCTGAGGAGGAAGGATCACTTGAGCCCAGAAGTTCGAGACTAGCCTG GGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCATGGTG GCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGG TCCTGTCTAAAAAAATAAAAAATAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA ACTAATTCTTTAA

FIGURE 186

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTE DEVQSYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCG GAGTCCAGCTGGCTAAAACTCATCCCAGAGGATAATGGCAACCCATGCCTTAGAAATCGCTG GGCTGTTTCTTGGTGGTGTTGGAATGGTGGGCACAGTGGCTGTCACTGTCATGCCTCAGTGG AGAGTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTGAAAACTTCTGGGAAGGACTGTG GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGG CTCTTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGCTGCTTCCGTGATGTCCTTC TTGGCTTTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAA GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGC TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT GTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCT GATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACA GATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCG AGCGTCTACTCCAGAAGTCAGTATGTGTATGTTGTGTATGTTTTTTAACTTTACTATAAAGC CATGCAAATGACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTA CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAA GCTATTTCAGCAGAATGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAAT TTGTTTTCTAAGGTGGTTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCT AAAGACTGCATTATTTTACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAG TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTG AAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGA AGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTG TTTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTTATCCTCTTCTCCCAGAGGCTTTTTTT TTCTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCA AACTGCTTTTCCAGGGCTATACTCAGAAGAAAAGATAAAAGTGTGATCTAAGAAAAAGTGATG GAAATCATATGTATGGATATATTTTAATAAGTATTTGAGTACAGACTTTGAGGTTCATC ACAAAAAAGTTGTCCTTTGAGAACTTCACCTGCTCCTATGTGGGTACCTGAGTCAAAATTG TCATTTTTGTTCTGTGAAAAATAAATTTCCTTCTTGTACCATTTCTGTTTAGTTTTACTAAA ATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAAACTGACAATCCAATTTGA AAGTTTGTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTTGCTTTATACATTTATA TTAATAAATTGTACATTTTTCTAATT

FIGURE 188

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735</pre>

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGI IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 189

TCGCCATGCCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGGTG AATGGCCTGGTCTCCTGTGCCCTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACAGCAT CGTGGTGGCCCAGGTGGTGTGGGAGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC AGATGCAGTGCAAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGGCTGCACGT GCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACCTTGCTGGGGC CAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCCGCCTGGTGCTCACCTCTGGGA TTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGACGGCGCATGCCATC ATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGGAGCTGGGGGCCTCCCT GCCCCTCGGGGGGTCCCAGGCCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCCT GCCATCTCTCGGGGGCCCTCTGAGTACCCTACCAAGAATTACGTCTGACGTGGAGGGGAATG GGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAGTGCCCAACAGCTTTGGGATGGGTT CGTACCTTTTGTTTCTGCCTCCTGCTATTTTTCTTTTGACTGAGGATATTTAAAATTCATTT GAAAACTGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTTCTCACCCTTGG ATGATGGAGCCAAAGAGGGGATGCTTTGAGATTCTGGATCTTGACATGCCCATCTTAGAAGC TGTCCCCAAGAGTTCCTGCTGCTGCTGGGGGCTGGGCTTCCCTAGATGTCACTGGACAGCTG CCCCCCATCCTACTCAGGTCTCTGGAGCTCCTCTCTTCACCCCTGGAAAAACAAATCATCTG TTAACAAAGGACTGCCCACCTCCGGAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACG TCCACCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCCCCACCTCCAACACTGCACC CTTCTGCCCTGCCCCCTCGTCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATG TTTTGTTAGTGCA

FIGURE 190

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736

><subunit 1 of 1, 220 aa, 1 stop

><MW: 23292, pI: 8.43, NX(S/T): 0

MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSGIV FVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP SGGSQGPSHYMARYSTSAPAISRGPSEYPTKNYV

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTCTAGACTCAAAAGGCTTCCACGTTCTACATCTTG AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATGGCATTTTATCCC TTGCAAATTGCTGGGCTGGTTCTTGGGTTCCTTGGCATGGTGGGGACTCTTGCCACAACCCT TCTGCCTCAGTGGTGGAGTATCAGCTTTTGTTGGCAGCAACATTATTGTCTTTGAGAGGCTC TTGCTCTCCTTGATCGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA GGCTCTAACGAGAGGGCCAAAGCATACCTTCTGGGAACTTCAGGAGTCCTCTTCATCCTGAC GGGTATCTTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTTCTACA ACCCAGCCATCCACATAGGTCAGAAACGAGAGCTGGGAGCAGCACTTTTCCTTGGCTGGGCA AGCGCTGCTGTCCTTCATTGGAGGGGGTCTGCTTTGTGGATTTTGCTGCTGCAACAGAAA ${\tt ATACGACAATGCTTAGTAAGACCTCCACCAGTTATGTC} {\color{red}{\textbf{TAA}}} {\color{blue}{\textbf{TGCCTCCTTTTGGCTCCAAGT}}$ ATGGACTATGGTCAATGTTTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA GAACTTGCTTTATGTCTAGATTTACATTGATACGAAAGTTTCAATTTGTTACTGGTGGTAGG AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG GACCCAATCGCTGCTCCAATTTTCATATTCTAAATTCAAGTATACCCATAATCATTAGCAAG TGTACAATGATGGACTACTTATTACTTTTTGACCATCATGTATTATCTGATAAGAATCTAAA GTTGAAATTGATATTCTATAACAATAAAACATATACCTATTCTA

FIGURE 192

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737
><subunit 1 of 1, 173 aa, 1 stop
><MW: 18938, pI: 9.99, NX(S/T): 1
MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER
AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDFYNPAIHIGQKRELGAALFLGWASAAVL
FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHTDKRRNTTMLSKTSTSYV

Important features of the protein:
Transmembrane domains:
amino acids 31-51, 71-90, 112-133

N-glycosylation site. amino acids 161-164

FIGURE 193

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739
><subunit 1 of 1, 85 aa, 1 stop
><MW: 9232, pI: 7.94, NX(S/T): 0
MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN</pre>

Signal peptide:

ECHLCTESLKSNGRVQFLHDGSC

amino acids 1-19

FIGURE 195

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742</pre>

><subunit 1 of 1, 148 aa, 1 stop

><MW: 17183, pI: 8.77, NX(S/T): 0

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFL GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD EDSAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCCGCGGAAGTGCCCGAGGGGCCCGCGATGGAGCTGGGGGAGCCGGGCGCTC ${\tt GGTAGCGCGGCGAGGCAGGCGCC} \underline{\textbf{ATG}} \\ \texttt{ACCCTGATTGAAGGGGTGATGAGGTGAC}$ CGTCCTTTTCTCGGTGCTTGCCTGCCTTCTGGTGCTGGCCCTTGCCTGGGTCTCAACGCACA CCGCTGAGGGCGGGGACCCACTGCCCAGCCGTCAGGGACCCCAACGCCATCCCAGCCCAGC GAGACACAGAGCTCAAGCTGCACAGCCAGAGCCCAGCACGGGGTTCACAGCAACACCGCCAG CCCCGGACTCCCCGCAGGAGCCCCTCGTGCTACGGCTGAAATTCCTCAATGATTCAGAGCAG GTGGCCAGGGCCTGGCCCACGACACCATTGGCTCCTTGAAAAGGACCCAGTTTCCCGGCCG GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCTGG GCAGCCTTCACCTCCCAACTGCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC CCAAATCCCCCCTGCCCGGGGTCCGAGCCCGGCCCCTCCGGGCTGGAAATCGGCAGCCT GCTGCTGCCCCTGCTGCTGCTGCTGCTGCTGCTGCTACCGGC CCTTCTTTCCCCTGACCGCCACTCTGGGCCTGGCCGGCTTCACCCTGCTCCTCAGTCTCCTG ${\tt GCCTTTGCCATGTACCGCCCG}$ GGACCTTGCTCCCGCGCGCGGGGGGGGGCTGCTGCCCAGGCCCGCCTCTCCGGCCTG CCTCTTCCCGCTGCCCTGGAGCCCAGCCCTGCGCGGAGGACTCCCGGGACTGGCGGAGG CCCCGCCTGCGACCGCGGGGCTCGGGGCCACCTCCCGGGGCTGCTGAACCTCAGCCCGCA CTGGGAGTGGGCTCCTCGGGGTCGGGCATCTGCTGTCGCTGCCTCGGCCCCGGGCAGAGCCG GGCCGCCCGGGGGCCCGTCTTAGTGTTCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC AAAAAAA

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVLRLKFLNDSEQVARAWPHDT IGSLKRTQFPGREQQVRLIYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS EPGPSGLEIGSLLLPLLLLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

FIGURE 200

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746</pre>

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN NWVEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGCTGTCAGCCCTGCTTGACTGAGAACCCA CCAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGGAAAGAACACCTGAG AATTTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC TTGGGGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGC TGTTGGCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCA ACCCATGTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGAC CTGTTGCATTTGGCAAGTTCTAGCAACATGCTCCTAAGGAAGCGATACAGGCACAGACCATG CAGACTCCAGTTCCTCCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGCGATGT GAAGCCAGGTACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGC TGCTGGTGGCCGTGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTĞGG AGCTACCGCCTCATCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCCAAAGAGGGGACTGGGG GGCTGATGAGGACGGGGGGGTGTCTGAAGAAGAGGGGTTGACCCCGTTCAGCCTGGACCCAC GTGGCCTCCAGGAGGCACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGG TTTCCATGATGAGGCCTGGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGC TCTGCTCTCAGCGAATATGTGGCCAGGCTGGAGGGGGGTGAAGTTACTCAGGAGCAACAAGAG GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCT TCATGGATGCCCACTGCGAGTGCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCT GGTGACAGGAGCCGAGTGGTATCTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTA TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAAC CTTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCCATAAGCCCCCATCAGGAGCCCTGTG GTGCCCGGAGAGGTGGTGGCCATGGACAGACATTACTTCCAAAACACTGGAGCGTATGACTC TCTTATGTCGCTGCGAGGTGGTGAAAACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGTG GCTCTGTTGAAATCCTTCCCTGCTCTCGGGTAGGACACATCTACCAAAATCAGGATTCCCAT GTCATTCAAAGAAACCTTCTACAAGCATAGCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGA AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG TTTCTGGCTAATGTCTACCCTGAGCTGTACCCATCTGAACCCAGGCCCAGTTTCTCTGGAAA GCTCCACACACTGGACTTGGGCTCTGTGCAGACTGCCAGGCAGAAGGGGACATCCTGGGCT GTCCCATGGTGTTGGCTCCTTGCAGTGACAGCCGGCAGCAACAGTACCTGCAGCACCAGC GATTCTTCAGAACTGCACGAGGAAGGCCTGGCCATCCACCAGCAGCACTGGGACTTCCAGG AGAATGGGATGATTGTCCACATTCTTTCTGGGAAATGCATGGAAGCTGTGGTGCAAGAAAAC AATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAGCCCGCCAGCAGTGGCGATTTGACCA GATAAATGCTGTGGATGAACGA<u>TGA</u>ATGTCAATGTCAGAAGGAAAAGAGAATTTTGGCCATC AAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATTTCATGAAGCTGATCCTTTTGTGT GTGTGCTCCTTGTGTTAGGAGAGAAAAAGCTCTATGAAAGAATATAGGAAGTTTCTCCTTT TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760</pre>

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCACAGCTGAGGAAGACCTCAGACATGGA TGCCCCTCCCACCGCCTGCTCAGGGCTCTTCATCCTCCCCTCGAACCCCACCAGCCCCAGCC CACCCCAGCCACCCCATCAGGCTTTGAGGAGGGCCGCCCTCATCCCAATACCCCTGGGCT ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGATGGAGGGGACCCCAACTCTGCCAATCCCGG ATTTCTGGACTATGGTTTTGCAGCCCCTCATGGGCTCGCAACCCCCAACCCCAACTCAGACT CCATGCGAGGTGATGGAGATGGGCTTATCCTTGGAGAGGCACCTGCCACCCTGCGGCCATTC CTGTTCGGGGGCCGTGGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC GACGCAGACCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGAGCCAGCAGCCACTGACA GACCTGTCCCCGGCTGGAGTCACTGTGCTGGGGGCCTTCGGGGACTCACCTACCCCACCCC TGACCATGAGGAGCCCCGAGGGGGACCCCGGCCTGGGATGCCCCACCCCAAGGGGGCTCCAG CCTTCCAGTTGAACCGGTGAGGGCAGGGCAATGGGATGGGAGGGCAAAGAGGGAAGGCAAC CTCCCACAGCCCCTGGCCCTCCCAAGGGGGCTGGACCAGCTCCTCTCTGGGAGGCACCCTTC CTTCTCCCAGTCTCTCAGGATCTGTGTCCTATTCTCTGCTGCCCATAACTCCAACTCTGCCC TCTTTGGTTTTTCTCATGCCACCTTGTCTAAGACAACTCTGCCCTCTTAACCTTGATTCCC CCTCTTTGTCTTGAACTTCCCCTTCTATTCTGGCCTACCCCTTGGTTCCTGACTGTGCCCTT TCCCTCTCCCCGGGATTCCCCTGGTGAATCTGTGATGCCCCCAATGTTGGGGTGCAGCC AAGCAGGAGGCCAAGGGCCGGCACAGCCCCCATCCCACTGAGGGTGGGGCAGCTGTGGGGA GCTGGGGCCACAGGGGCTCCTGCCCCTTGCACACCACCCGGAACACTCCCCAGCC CCACGGGCAATCCTATCTGCTCGCCCTCCTGCAGGTGGGGGCCTCACATATCTGTGACTTCG GGTCCCTGTCCCCACCCTTGTGCACTCACATGAAAGCCTTGCACACTCACCTCCACCTTCAC AGGCCATTTGCACACGCTCCTGCACCCTCTCCCCGTCCATACCGCTCCGCTCAGCTGACTCT TGGTCAGCGTTTCCTGCACACTTTACCTCTCATGTGCGTTTCCCGGCCTGATGTTGTGGTGG GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGGCTCCTTGGGCCCTCATCGGTCATGG TCTCGTCCCATTCCACACCATTTGTTTCTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA TCACCCTGAGGGCTCCCCCTTGGGAATGGGGTAGTGAGGCCCCAGACTTCACCCCCAGCCCA CTGCTAAAATCTGTTTTCTGACAGATGGGTTTTGGGGAGTCGCCTGCTGCACTACATGAGAA TCTGTGTGTGTGCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCCTTCCCAGCCT CCCTTTGGGCCTCCCTAACTCCACCTAGGCTGCCAGGGACCGGAGTCAGCTGGTTCAAGGCC CCTCCCTCCTTCCACTCTCCTTCCTTTTGCTTCCCTGCCCTTTCCCCCTCCTCAGGTT GTGATATATTTTTGTATTATCTCTTTCTTCTTCTTGTGGTGATCATCTTGAATTACTGTG GGATGTAAGTTTCAAAATTTTCAAATAAAGCCTTTGCAAGATAA

FIGURE 204

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

FIGURE 206

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398
><subunit 1 of 1, 121 aa, 1 stop
><MW: 12073, pI: 4.11, NX(S/T): 0
MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG
PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 207

CGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTGA ACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGCGCTGCTCACCGACTGGAGC GACGACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA CCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGAAGATGTACTTCC CCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAAC ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCCTAAGTAGCCC CCAGAGGCGCTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGG CGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAG GCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGCTCCCCGCCTTCCAC CTGGCTGTCATCGGGTAGGGCGGGGCCGTGGGTTCAGGGGCGCACCACTTCCAAGCCTGTGT GGTGAGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGCTCCCGA GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAG GTCTCCGACCTCAGCTGGAGGCGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCC ACCCCATCCCAGGTCTGTGGTCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCC ATGGAGGGGCTGACTGCCCCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGC AGATCAGTGGGGGCACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCAC CTCTGCAACCACACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGG CCTGGGACACACAGAGCCACCCCGGCCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA AGGGGTGCTCGTAAGCCAACACCAGCGTGCCGCGCCTGCACACCCTTCGGACATCCCAGGC ACGAGGGTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGAGGCCT GGGGCCCCCAGGGAGGGAGGCAGGGGGGGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCC CCGCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGCTGAGTGTCTCAAGCAGCACTGACAGCAGCTGGGCCTGCCCCAGGGCAAC GTGGGGGGGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTGCTGC GAGGGAATGGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAGCTGCGGGA TGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399</pre>

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK ELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGAGGACAATGGAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCT CCTCACGTGTGAGCTGCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG GTGCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCC ACTGAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCA TAGCATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGA CACACTACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTG AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGAT CAACAGCCTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCG TAATTCAGATTCATCTCCTCCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAGAACATG CACAGATACCAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAG TGGTATGAAAGAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAG CTTTGGCAATTTACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCC TGAATCAGAAGGAAAGACTCCAAAGGTGGAACTCTGACTTCCCTTGGAACTACATATGGCC AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAG ACACACGCGCACACACACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTCTC CATACTCTGTAAGCCCATCTGTAACACACCTAGATCAAGGCTTTAAGAGACTCACTGTGATG CCTCTATGAAAGAGAGGCATTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGT TTGTATACTGCACATGACTTACACACACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGT TGAAACTCTACCTTCTTTCATAAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGG ATGGTTTTAAACACCTTTGTGAAATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC CCTGAACTCAGCAGAAATAGACCATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCC TATGTAAATCAACAACCTGCATAATAAATAAAAGGCAATCATGTTATA

FIGURE 210

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401</pre>

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIG FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI ESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNF CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGG GACGCGGCGGCGGCGGCGACTGCAGTGGCTGGACGATGGCAGCGTCCGCCGGAGCCGGG GCGGTGATTGCAGCCCCAGACAGCCGGCGCGCTGGCTGGTGGTGGTGCTGGCGGCGCGCTTGG GCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAA ${ t ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC}$ TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCGTTTTTCCACTACTC CCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAG ACCTTGACAAGAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGGCACC TATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTA TGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGGCATAGTTACTG CTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAA AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGC TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACC AGGGCCCAGTCATATATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAAC AAGTCAGAGTCTGTGGTGTATGCGGATATCCGAAAGAAT<u>TAA</u>GAGAATACCTAGAACATATC CTCAGCAAGAAACCAAACTGGACTCTCGTGCAGAAATGTAGCCCATTACCACATGT AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAAGATGTGT ACAAAGGATATGTATAAATATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGA TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGCTGTTTTTTGTACTTTTTT AGGTCATTTACAATTGGGAGATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTG CCTTAATGGAGACAATAGCAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAG GGCTTAAGACTGATTAGTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA AAATGTGTCATATCAATTTCTGGATTCATAATAGCAAGATTAGCAAAGGATAAATGCCGAAG GTCACTTCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTT GAGAACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

FIGURE 212

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510

><subunit 1 of 1, 269 aa, 1 stop

><MW: 29082, pI: 9.02, NX(S/T): 3

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSG
GHHSDKINKSESVVYADIRKN

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

 ${\tt GCCGGCTGTGCAGAGACGCC}$ CCCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCGGGCTGCCGCC TCTCGGCCACGGCTGGGTCGGGGCCTCGGGCTGGGGCTGGCGCTCGGGGTGAAGC TGGCAGGTGGGCTGAGGGGCGCGGCCCGGCGCGCCCCGACCCTGAGGCG TCGCCTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCGTGGTCTCCGCAGACCCCGGC GCCGCCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCAGCCGCGACCTGCTGCACAGGA TCAAGGATGAGGTGGCCACCGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTC TGGTCAGAAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGT TATGCGAATTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAG CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCGAATTCCCAGAAAAAGAA TATGAAGGTGAAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCATTTAAGTGGAATTCG TCATTATGAAAAGGACATAAAAAAGGTGAAAGAAGAGAAAGCTTATAAAGCCTTGAAGATGA TGAAAGAGAATGTTGCATTTGAGCAAGAAAAAGGAAGGCAAAAGTAATGAAAAGAATGATTTT ACTAAATTTAAAACAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAA AAAGAATGATTTTGAACAAGGCGAATTATATTTGAGAGAAAAGTTTGAAAATTCAATTGAAT CCCTAAGATTATTTAAAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTGTATTCA CTATATGCAGAAAATATTCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAACGAGC CAGTGATTTACAATAGAGCAAGG**TAA**ATGAATACCTTCTGCTGTCTAGCTATATCGCATC TTAACACTATTTTATTAATTAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGC TGTTTATAAAGTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLGLALGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

 $\tt AGGCTGGTGGGAAGAAGCCGAG\underline{ATG}GCGGCAGCCAGCGTGGGGCAACCCGGCTGCTCCTGC$ TCTTGCTGATGGCGGTAGCAGCGCCCAGTCGAGCCCGGGGCAGCGGCCGGGCCGGGACT ${\tt GGTGCGCGAGGGCTGGGGCGGAGGTCGAGGGCGAGGCCTGTGGCACGGTGGGGCTGCT}$ GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCT GGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCGCTCAGCGAGGAGGAGCGGGGC CGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGG GGCCCTGGATGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGG TGGAGTCGCACCTGTCGGACCAGCTGACCCTGCACGTGGATGTGGCCGGCAACGTGGTGGGC GTGTCGGTGGTGACGCACCCCGGGGGCTGCCGGGGCCATGAGGTGGAGGACGTGGACCTGGA GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACGCCCCAGGCCCTGAGACGGCGG CCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAGGCCAAGAACCCCCAGGAGCAGAAG TCCTTCTTCGCCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGG ${\tt AGCGCCAGACACCGGGGGCCAGGGTGGGGGTGGGGGGTGGTGGGGGGTAGTGGCCC}$ ${\tt TTTGCTGTGTGCCACCCTCCCTG} \underline{{\tt TAA}}{\tt GTCTATTTAAAAACATCGACGATACATTGAAATGTG}$ TGAACGTTTTGAAAAGCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTGGCAAGACGG TCCTGATGTACAAGCTTGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAG GAATGGCTGTCCCCATCCTCATGTGGCTGTGTGGAGCTCAGCTGTGTTGTGTGGCAGTTTAT TAAACTGTCCCCCAGATCGACACGCAAAAAAAA

FIGURE 216

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529

><subunit 1 of 1, 269 aa, 1 stop

><MW: 28004, pI: 5.80, NX(S/T): 1

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEI
DDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEA
GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ
LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQ
GGGGGGGGGGGGGGGCCCVPPSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCGGAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT GGAGCCGGACGTGTCCGGGGCGTCCCCGCAGACCGGGGCAGCAGGTCGTCCGGGGGCCCACC AACTGGACTTCTATCAGGTCTACTTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG TGGCCTTGCCTCTACAGTCCTCTTTGGCCTAGTGGCCTCCTCCCTTGTGGATTGGCTGGGTC GCAAGAATTCTTGTGTCCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACTCTCT ${\tt CAAGACTACTTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGGCTGTCCACAGCCCTGCTCTT}$ CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT GTGGCAGCTGAGGCTGTAGCCAGCTGGATAGGGCTGGGGCCTGTAGCGCCCTTTGTGGCTGC CATCCCTCTCCTGGCTCTGGCAGGGGCCTTGGCCCTTCGAAACTGGGGGGAGAACTATGACC GGCAGCGTGCCTTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCCTGTCGGACCGCCGC GTGCTGCTGCTGGGCACCATACAAGCTCTATTTGAGAGTGTCATCTTCATCTTTGTCTTCCT CTGGACACCTGTGCTGGACCCACACGGGGCCCCTCTGGGCATTATCTTCTCCAGCTTCATGG CAGCCAGCCTGCTTGGCTCTTCCCTGTACCGTATCGCCACCTCCAAGAGGTACCACCTTCAG CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTTCATAGCCTTTCTACTTATTGAGT TGGCTTGTGGATTATACTTTCCCAGCATGAGCTTCCTACGGAGAAAGGTGATCCCTGAGACA CCTTGTCCTCCATGACAGTGATCGAAAAACAGGCACTCGGAATATGTTCAGCATTTGCTCTG CTGTCATGGTGATGGCTCTGCTGGCAGTGGTGGGACTCTTCACCGTGGTAAGGCATGATGCT GAGCTGCGGGTACCTTCACCTACTGAGGAGCCCTATGCCCCTGAGCTGTAACCCCCACTCCAG GACAAGATAGCTGGGACAGACTCTTGAATTCCAGCTATCCGGGATTGTACAGATCTCTCTGT GACTGACTTTGTGACTGTCCTGTGGTTTCTCCTGCCATTGCTTTGTGTTTTGGGAGGACATGA TGGGGGTGATGGACTGGAAAGAAGGTGCCAAAAGTTCCCTCTGTGTTACTCCCATTTAGAAA ATAAACACTTTTAAATGATCAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSFLRRKVIPET
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299, 314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGCGGGGCGGGCGAGAGGAAACGCGGCCCGGGCCCGGCCCTGGAGATG GTCCCCGCGCGCGCGGCTGGTGTTGTCTCGTGCTCTGGCTCCCCGCGTGCGTCGCGGCCCA CGGCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTCGATACA TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATT CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTTTCTTCATCCA AGGAGCACGGCGGCCGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTCTTCCTGCTCGG CCGAGACGGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTT CCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGCTGCAACCGCCCTGGACCTTC TGG<u>TAG</u>AAGAGTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCC AGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGA AAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCCACACCACTGGCCTTCCCCTTCCCCAGG GCCCCAAGGGTGTCTCATGCTACAAGAAGAGGCAAGAGACAGGCCCCAGGGCTTCTGGCTA GAACCCGAAACAAAGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACACT CACCTGGCTCCAGCCTCCCCTACCCAGGGTCTCTGCACAGTGACCTTCACAGCAGTTGTTGG AGTGGTTTAAAGAGCTGGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTAGCAATAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532</pre>

><subunit 1 of 1, 188 aa, 1 stop

><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

FIGURE 222

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538</pre>

><subunit 1 of 1, 116 aa, 1 stop

><MW: 12910, pI: 6.41, NX(S/T): 1

MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTTCTGGATGGGGGCCCAGGGGGCCCAGGAGAGTATAAAGGCGATGTGGAG
GGTGCCCGGCACAACCAGACGCCCAGTCACAGGCGAGAGCCCTGGGATGCACCGGCCAGAGG
CCATGCTGCTGCTCCACGCTTGCCCTCCTGGGGGGGCCCCACCTGGGCAGGAAGATGTAT
GGCCCTGGAGGAGGCAAGTATTTCAGCACCACTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTTCTCCTGGTGAAAAGTGTCCAGGTGAAACTTGGAGACTCCTGGG
ACGTGAAACTGGGAGCCTTAGGTGGGAATACCCAGGAAGTCACCCTGCAGCCAGGCGAATAC
ATCACAAAAGTCTTTGTCGCCTTCCAAGCTTTCCTCCGGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTTCTATTTTGGGAAGCTTGATGGCCAGATCTCCTTGGCATCAAGAGCATTGGC
AGGGGCAGGTGCTGGTGGGCATCTATGGCCAGTATCAACTCCTTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGAGCCGACCACTGAGCCACCAGTTAATCTCACATACTC
AGCAAACTCACCCGTGGGTCGCTAGGGTGGGGTATGGGGCCATCCGAGCTGAGGCCATCTGT
GTGGTGGTGGCTGATGGTACTGGAGTAACTGGGGACGCTGAATCTGAATCCACCAATA
AATAAAGCTTCTGCAGAAAA

FIGURE 224

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19600, pI: 5.89, NX(S/T): 1

MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVK LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide:

amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCGCGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCT GAACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAG CCCCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTT TTTTTTTTAACCGCCCCCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATAT CCATGAAGATCCTATTACCTAGGAAGATTTTGATGTTTTGCTGCGAATGCGGTGTTGGGATT TATTTGTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCT CCCAAGGGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG ACAGGGCTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAA CAATACAAAGG<u>ATG</u>GGTTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT ATAGCCCCCACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTA TATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT CAATTTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATAT TGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAA TCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCC TATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTT ACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC TGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGC TTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAG GACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATC GAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGA TTCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACA TCAGTCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTG AAAAGTTTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT TTGATCTGGCCAGGGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCAT GAGAGCAAACCCCCTTTGCCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGC TGACGCCGAGCACATCTCTTTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCG TGCTCGTCATCCTGCTGGTTATCTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAG CTGCAGCAGCGCTCCCTCATGCGAAGGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAAT GACTCCCAGCACCCAGGAATTTTATGTAGATTATAAACCCACCAACACGGAGACCAGCGAGA TGCTGCTGAATGGGACGGGACCCTGCACCTATAACAAATCGGGCTCCAGGGAGTGTGAGGTA TGAACCATTGTGATAAAAAGAGCTCTTAAAAGCTGGGAAATAAGTGGTGCTTTATTGAACTC TGGTGACTATCAAGGGAACGCGATGCCCCCCCCCCCTCCCCTTCCCTCTCACTTTGGTGG ATCAACCCATTGAAATTTAAATACCACAATCAATGTGAAGCTTGAACTCCGGTTTAATATAA TACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTTGTTTTAAGATAAAACT TCTTTCATAGGTAAAAAAAAAA

FIGURE 226

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301</pre>

><subunit 1 of 1, 513 aa, 1 stop

><MW: 58266, pI: 9.84, NX(S/T): 4

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAG CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELL DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTM SWTWSSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLA GNIWECSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLN GTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT TAAATATGTCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTG TGTTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGGTTTTGG ATTGATTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTGGAGACTTGGACTCTATTTATGG GACAGAAGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTAT ATCCTGTTCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTA AAAACAACCTGATTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCA AAACATCAAATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATA GTCTGAGGAAGGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTGGTCATGGAGATG TTTAAATAGTAAAGTAGCAGGCTTTTGATGTGTCACTGCTGTATCATACTTTTATGCTACAC AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT TCCATCACATTTAGGACTCCACTGCAGTATACAGCACCACTTTTCTGCTTTAAACTCTTTC CTAGCATGGGGTCCATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACAT GTCCAGAACCAGAACCAGAAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA GAAAAGTTTGGAGTTGAAGGGTAAAGGATAAATGAAGAGGAAAAGGAAAAGATTACAAGTCT AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTTCCC CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTG GCATTTATTGCAGCATCATGCTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGC AGAAGTAGCAATGAGACATCTTCAAGTGGCCATTTTGGCAGTGGCCATCAGCAGGGGGACAGA CAAAAACATCCATCACAGATGACATATGATCTTCAGCTGACAAATTTGTTGAACAAAACAAT AAACATCAATAGATATCTAAAAA

FIGURE 228

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303</pre>

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVA ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP VPAPCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTA GCTCTCGCTGCGTCGCCCCGGCTCAGAAGCTCCGTGGCGGCGGCGACCGTGACGAGAAGCCC ${ t ACGGCCAGCTCAGTTCTCTTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCCTTTTAAACT}$ CCCTCTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAG CAATCTCAAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATT TGGGGATTGATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTT ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA ACACAGTGGATGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATT GCTGTCCTTCTGGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT TGTTGTGAATGGCTCAGCAGCCAACACCCACCAATGGTACTAGTGGGAATTTGGTGCCAGTAA $\tt CCACAAATAAAAGAACGAATGTCTCGGGCAGTATCAGA{\color{red}{\textbf{TAG}}} CAGTTGAAAATCACCTTGTGC$ TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGAC AGAGCAATACTTTACAATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAAC TCTAATTCTGTACATAAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATG CTGTACTATGTCCTTAAAGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGT TTTGTATAAATCTTTTGTGTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTC ATTTCTATAACACATTTATTTAAGTATATAACACGTTTTTTGGACAAGTGAAGAATGTTTAA TCATTCTGTCATTTGTTCTCAATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTG CTTATTGTACTATATTTTGTTATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAA TAATGTTTTGAAATCATGACCCAAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGA AGGTTAATTATTGTATATTTTTAAAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAG CAGCCACTGTCCATTACCTATCGTAAACATTGGGGCAATTTAATAACAGCATTAAAATAGTT GTAAACTCTAATCTTATTGAAGAATAAAAGATATTTTTATGATGAGAGTAACAATA AAGTATTCATGATTTTCACATACATGAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCT ATGCTATCAGGAAAGCACATTATTTCCATATTTGGGTTAATTTTGCTTTTATTATATTGGTC TAGGAGGAAGGGACTTTGGAGAATGGAACTCTTGAGGACTTTAGCCAGGTGTATATAATAAA CTTTATGAAATTTGAATTTGTATAACAGATGCATTAGATATTCATTTTATATAATGGCCAC TTAAAATAAGAACATTTAAAATATAAACTATGAAGATTGACTATCTTTTCAGGAAAAAAGCT GTATATAGCACAGGGAACCCTAATCTTGGGTAATTCTAGTATAAAACAAATTATACTTTTAT CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTCTAGATTTAGACTATATAGAATTTAGATAT TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTTTATTAAAA CTGTCTACCTTTATGTGAAGAAATTAATTATATGCCATTGCCAGGT

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648

><subunit 1 of 1, 140 aa, 1 stop

><MW: 15668, pI: 10.14, NX(S/T): 5

MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL VPVTTNKRTNVSGSIR

Important features of the protein: Signal peptide:

amino acids 1-26

FIGURE 231

CGCGGCCGGGCCGGGGTGAGCGTGCCGAGGCGGTGTGGCGCAGGCTTCCAGCCCCCAC $ext{C} ext{ATG}$ $ext{C} ext{C} ext{C}$ TCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCTTTTCGACAGCTTCAGCCTGACTCGG GTGGATTGTAGCGGCCTGGGCCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCCA CTTGGACCTGTCCTCCAACCGGCTGGAGATGGTGAATGAGTCGGTGTTGGCGGGGCCGGGCT ACACGACGTTGGCTGGCCTGGATCTCAGCCACAACCTGCTCACCAGCATCTCACCCACTGCC ${ t TTCTCCCGCCTTCGCTACCTGGAGTCGCTTGACCTCAGCCACAATGGCCTGACAGCCCTGCC}$ AGCCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGGG AGGTCTCAGTGTCTCACGACGCACAGTCAGGGCCGGGCACTACACGTGGACCTCTCC TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCCAACCTCCGAGACTTGCCCC TGCGCTACCTGAGCCTGGATGGGAACCCTCTAGCTGTCATTGGTCCGGGTGCCTTCGCGGGG $\tt CTGGGAGGCCTTACACACCTGTCTCTGGCCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCCAG$ TGGCTTCCGTGAGCTACCGGGCCTGCAGGTCCTGGACCTGTCGGGCAACCCCAAGCTTAACT GGGCAGGAGCTGAGGTGTTTTCAGGCCTGAGCTCCCTGCAGGAGCTGGACCTTTCGGGCACC AACCTGGTGCCCTGCCTGAGGCGCTCCTCCACCTCCCGGCACTGCAGAGCGTCAGCGT GGGCCAGGATGTGCGGCGCGCGCGTGGTGCGGGAGGCCACCTACCCCCGGAGGCCTGGCT CCAGCCCCAAGGTGCCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCCCACC \mathtt{ATCTTG} GTCCCGAGTAACTTATGTTCAATGTGCCAACACCAGTGGGGAGCCCGCAGGCCTATGTGGCA GCGTCACCACAGGAGTTGTGGGCCTAGGAGGCTTTGGACCTGGGAGCCACACCTAGGAGC AAAGTCTCACCCCTTTGTCTACGTTGCTTCCCCAAACCATGAGCAGAGGGACTTCGATGCCA AACCAGACTCGGGTCCCCTGCTTCCCTTCCCCACTTATCCCCCAAGTGCCTTCCCTCAT GTTCAGGTCCACTGGGCTGAGTGTCCCCTTGGGCCCATGGCCCAGTCACTCAGGGGCGAGTT TCTTTTCTAACATAGCCCTTTCTTTGCCATGAGGCCATGAGGCCCGCTTCATCCTTTTCTAT TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCTTCTCATGTGAC AGATGGGGAAACTGAGGCCTTGAGAAGGAAAAAGGCTAATCTAAGTTCCTGCGGGCAGTGGC ATGACTGGAGCACAGCCTCCTGCCTCCCAGCCCGGACCCAATGCACTTTCTTGTCTCCTCTA ATAAGCCCCACCCTCCCCGCCTGGGCTCCCCTTGCTGCCCTTGCCTGTTCCCCATTAGCACA GGAGTAGCAGCAGGACAGGCAAGAGCCTCACAAGTGGGACTCTGGGCCTCTGACCAGCT GTGCGGCATGGGCTAAGTCACTCTGCCCTTCGGAGCCTCTGGAAGCTTAGGGCACATTGGTT CCAGCCTAGCCAGTTTCTCACCCTGGGTTGGGGTCCCCCAGCATCCAGACTGGAAACCTACC CATTTTCCCCTGAGCATCCTCTAGATGCTGCCCCAAGGAGTTGCTGCAGTTCTGGAGCCTCA TCTGGCTGGGATCTCCAAGGGGCCTCCTGGATTCAGTCCCCACTGGCCCTGAGCACGACAGC CCTTCTTACCCTCCCAGGAATGCCGTGAAAGGAGACAAGGTCTGCCCGACCCATGTCTATGC TCTACCCCCAGGGCAGCATCTCAGCTTCCGAACCCTGGGCTGTTTCCTTAGTCTTCATTTTA TAAAAGTTGTTGCCTTTTTAACGGAGTGTCACTTTCAACCGGCCTCCCCTACCCCTGCTGGC CGGGGATGGAGACATGTCATTTGTAAAAGCAGAAAAAGGTTGCATTTGTTCACTTTTGTAAT ATTGTCCTGGGCCTGTGTTGGGGGTGTTGGGGGAAGCTGGGCATCAGTGGCCACATGGGCATC AGGGGCTGGCCCACAGAGACCCCACAGGGCAGTGAGCTCTGTCTTCCCCCACCTGCCTAGC

FIGURE 232

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652</pre>

><subunit 1 of 1, 353 aa, 1 stop

><MW: 37847, pI: 6.80, NX(S/T): 2

MPWPLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPHIMPVPIPLDTAH LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI QSLNLAWNRLHAVPNLRDLPLRYLSLDGNPLAVIGPGAFAGLGGLTHLSLASLQRLPELAPS GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV GQDVRCRRLVREGTYPRRPGSSPKVPLHCVDTRESAARGPTIL

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGG GGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT<u>ATG</u>CGTCAATTCCCCA GTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGC CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCAC GGGAGGCTTGGCAGTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC TCTAGTCTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGG ACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATG GATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTA AGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTT GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCC GGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCAT GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA CTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTTGGGGGGAACTAGACATTCTTC TGCAATGGATGGAGGAGACAGAA**TAG**GAGGAAAGTGATGCTGCTAAGAATATTCGAGGT CAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACT GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGAT TGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTT ATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAG AGCAGGTGATGTATTTTATACAGTAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT AGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGA TATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATT GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTTCTACAAATAAAGTTTTCTTTGCATA CCAAAAAAAAAAAAAAAA

FIGURE 234

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500

><subunit 1 of 1, 261 aa, 1 stop

><MW: 29667, pI: 8.76, NX(S/T): 0

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTP DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG ELDILLQWMEETE

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGC CGAGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAG CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACA GCCCTAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCAT TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTG TGTTTGGCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATG GCTGGTGTTATTGGCCAGTTTTTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAAT GGAAGGAAAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTG CAAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAA AGAGCAGCACTGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGT ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGAC TGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCA TCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTTACCATCTTGGCTGAGAATGACCC TTTTAA

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568</pre>

><subunit 1 of 1, 323 aa, 1 stop

><MW: 36064, pI: 9.33, NX(S/T): 1

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA RESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTP ADVIKSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLT YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

GCCTGAAGTCGGCGTGGGCGTTTGAGGAAGCTGGGATACAGCATTTAATGAAAAATTTATGC TTAAGAAGTAAAAATGGCAGGCTTCCTAGATAATTTTCGTTGGCCAGAATGTGAATGTATTG ACTGGAGTGAGAGAAATGCTGTGGCATCTGTTGTCGCAGGTATATTGTTTTTTACAGGC TGGTGGATAATGATTGATGCAGCTGTGGTGTATCCTAAGCCAGAACAGTTGAACCATGCCTT TCACACATGTGGTGTATTTTCCACATTGGCTTTCTTCATGATAAATGCTGTATCCAATGCTC AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTTAGGAAGAACAGGTGCTCGAGTTTGGCTT TTCATTGGTTTCATGTTGATGTTTGGGTCACTTATTGCTTCCATGTGGATTCTTTTTGGTGC ATATGTTACCCAAAATACTGATGTTTATCCGGGACTAGCTGTGTTTTTCAAAATGCACTTA TATTTTTTAGCACTCTGATCTACAAATTTGGAAGAACCGAAGAGCTATGGACC**TGA**GATCAC TTCTTAAGTCACATTTTCCTTTTGTTATATTCTGTTTGTAGATAGGTTTTTTATCTCTCAGT ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTTTGTTTCTTTACATTTTTATGTTC TGAGTTTTGAAATAGTTTTATGAAATTTCTTTATTTTTCATTGCATAGACTGTTAATATGTA TATAATACAAGACTATATGAATTGGATAATGAGTATCAGTTTTTTATTCCTGAGATTTAGAA CTTGATCTACTCCCTGAGCCAGGGTTACATCATCTTGTCATTTTAGAAGTAACCACTCTTGT CTCTCTGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG CCGATTGCTTGAGGTCAAGTGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTACT AAAAATACAAAAATTAGCCAGGCATGGTGGTGGGTGCCTGTAATCCCAGCTACCTGGGAGGC TGAGGCAGGAGAATCGCTTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTTGCGCCAC TCTGATTTCTGAAGATGTACAAAAAAATATAGCTTCATATATCTGGAATGAGCACTGAGCCA AAAAATATTTGTTCTTATGTATTGAAGAAGTGTACTTTTATATAATGATTTTTTAAATGCCC AAAGGACTAGTTTGAAAGCTTCTTTTAAAAAGAATTCCTCTAATATGACTTTATGTGAGAA

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACTTCCTCAAAGGAGGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCA CTGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCT GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGT GGTCAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAG GGAAGTGGGAGCCTCGAGCCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAG GATGAGAGTGTCAGGTGTGCTTCGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGA GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCC AGCCAACTACTTTGCGTTTAAAATCTGCAGTGGGGCCGCCAACGTCGTGGGCCCTACTATGT GCTTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATC GCCCTGGTGAATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGG AGATGTTATGCACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGTGCACTGGTGGTGG CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTG GGGAGTTCCTACGCAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGA ${\tt AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCCCGAAGCCATTT}{\color{red}{\bf TAG}{\tt GGTGGC}}$ GCAGGGCTGAGGAGGAGGAGCAGGGGGTGCTGCGTGGAAGGTGCTGCAGGTCCTTGCACGC TGTGTCGCGCCTCTCCTCCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACC AGCCTCAGAGGGTCCTTCTGGAACCAGCTGTCTGTGGAGAGAATGGGGTGCTTTCGTCAGGG ACTGCTGACGGCTGGTCCTGAGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTA TTTTTGCTGGTTTTGAAAAAAAAAAAAAAAAAAAA

FIGURE 240

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814
<subunit 1 of 1, 224 aa, 1 stop
<MW: 24963, pI: 9.64, NX(S/T): 1
MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP
ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG
DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD</pre>

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGAT CCAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACA TCACTCCTCCCTCTCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCC $\tt CTGCACCCCTTCCTGGGACACT \textbf{ATG} TTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCC$ TGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA GACATTTGACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC GGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATC CCCAGGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTAC ATTATGACTCTGATTCCTATGACAGCTTGAGTGAGGCCTGAGAGGCCTCAGGGCCTGGCT GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG TCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAG TGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCT GGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGGAGCCCTCTAAGCTTCTGGTACAGA ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGA CCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAGAGGCTGGAAAACCGAA ${\tt AGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA} {\tt TAA} {\tt ATTCCTTCTCAGATACCA}$ TGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTG GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAG GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTA GGAGGAAATGAGGAAATCGCTGTTTTTTTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGG GAAGTTTGGGATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATA TACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATA TATTTGGAAATTAAAGTTTCTGACTTT

FIGURE 242

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812</pre>

><subunit 1 of 1, 337 aa, 1 stop

><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTC GTGGACCCAAAGGTAGCAATCTGAAAC<u>ATG</u>AGGAGTACGATTCTACTGTTTTTGTCTTCTAGG CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTG ATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG AATGACACCTGGTACCCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAAC TGCACCCACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGC TCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCAT CCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAG GAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGC ACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGA GGAAGCCACCACAGAATCAGCAAATGGAATTCAG<u>TAA</u>GCTGTTTCAAATTTTTTCAACTAAG CTGCCTCGAATTTGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGA GACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATT TCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAAT CTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTTGGAAA AAAAAAAAAAAAAAA

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGCCTCGGAGCGCGCG GAGCCAGACGCTGACCACGTTCCTCTCCTCGGTCTCCCGCCTCCAGCTCCGCGCTGCCCG GCAGCCGGGAGCCATGCGACCCCAGGGCCCCGCCGCCTCCCCGCAGCGGCTCCGCGGCCTCC TGCTGCTGCTGCTGCAGCTGCCCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAG CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG GCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG GGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGGAATGTCTGAGGGAAAGCTTTGAG GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCT TGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGT TCAGTGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTC CCCTGAAATGAATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAG GAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAA GGAGATGCTTCTACTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAA**TA A**ATGCTTTAATTTTCATTTGCTACCTCTTTTTTTTATTATGCCTTGGAATGGTTCACTTAAAT GACATTTTAAATAAGTTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGA GGTTTCAATATTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTA TAATTTGGAATATTGTTGTGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTAAAAAAATA AAAAATTATTTCCAACA

FIGURE 246

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217