

Undergraduate Studies

Numerical Analysis

Homework #2

The solution of Nonlinear Equations f(x) = 0

DATE: 9th June 2020 DUE: **21th June 2020**

1 Indications

- 1. You **must** fill this sheet with just the answer for each problem and return it to the professor. However, you have to present the process on a separate exam sheet.
- 2. Answers with no process are not valid.
- 3. Make all calculations with 5 decimal places of precision.

2 THE SOLUTION OF NONLINEAR EQUATIONS

1. (1.0 point) The Van der Waals equation relates the density of fluids to the pressure P, volume v, and temperature T conditions. Thus, it is a thermodynamic equation of state given by,

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT,$$
(2.1)

where, a, b and R are constasts that depends on the gas.

If P = 5, a = 0.245, b = 0.0266, R = 0.08206 and T = 350,

- a) Determine a nonlinear equation f(v)=0 that allows to calculate the volume v by finding its root. f(v)=
- b) Use the Secant method to find the root of the nonlinear equation in literal a). Use $v_0=35$, $v_1=30$ and iterate until achieving a precision of $|v-v_{k-1}|<1\times10^{-5}$ Make all calculations with 5 decimal places.

Iteration rule: $v_{k+1} =$

k	v_k	$f(v_k)$	$ v_k-v_{k-1} $	$E_k = 5.76234 - v_k $
0	35	146.15299		29.23766
1	30	121.15416	5	24.23766
2	5.76803	0.02845	24.23197	5.69e-3
3	5.76234	0.00003	0.00569	0
4	5.76234	0.00003	1e-05	0
5	5.76234	0.00003	0.0	0
6				
7				
8				
9				
10				

c) The rate of convergence for the secant method is given by, $R \approx 1.618$. Thus, the relation between successive error terms is $E_{k+1} = A|E_k|^{1.618}$. Use information found in table of literal b), to calculate the value of A.

$$A = 1.20629$$

2. (1.0 point) Let $f(x) = x^3 - 3x - 2$

a) Find the Newton-Rapshon formula $p_k=g(p_{k-1})$

Iteration rule: $p_k =$

b) Start with $p_0 = 2.1$ and find p_1, p_2, p_3, p_4 and p_5 .

	1 0	1 1 7 1 2 7 1 3 7 1 1 1 3	1/12/10/11		
\boldsymbol{k}	p_{k}	$f(p_k)$	$f'(p_k)$	$\left p_k-p_{k-1}\right $	
0	2.1	0.96100	10.23000		
1	2.00606	0.05477	9.07284	0.09394	
2	2.00002	0.00022	9.00029	0.00604	
3	2.00000	0.00000	8.99999	2e-05	
4	2.00000	0.00000	8.99999	0	
5	2.00000	0.00000	8.99999	0	

c) Is the sequence converging quadratically or linearly?

Answer: Quadratically

3. (1.0 point) The world population N can be simulated by a function that grows in proportion to the number of individuals in a given time t. This is called the *logistic function* and it follows the equation (2.2),

$$N(t) = N_0 e^{\lambda t} + \mu \frac{e^{\lambda t} - 1}{\lambda}, \qquad (2.2)$$

where, $N_0=N(t_0)$ is the amount of individuals at the beginning of the simulation period, λ is the growth rate and μ simulates the immigration rate.

Figure 2.1: World population growth

Suppose that $N(t_0) = 1000$, $\mu = 435$ and $N(t_1) = 1564$.

- a) Determine a nonlinear equation $g(\lambda)=0$ that allows to calculate the growth rate λ by finding its root. $g(\lambda)=$
- b) Use the Newton method to find the root of the nonlinear equation in literal a). Use $\lambda_0=0.5$ and iterate until achieving a precision of $|\lambda_k-\lambda_{k-1}|<1\times10^{-6}$ Make all calculations with 5 decimal places.

Iteration rule: $\lambda_{k+1} =$

\boldsymbol{k}	λ_k	$g(\lambda_k)$	$g'(\lambda_k)$	$ \lambda_k - \lambda_{k-1} $
0	0.5	649.10878	1954.33377	
1	0.16786	92.41474	1426.21639	0.33214
2	0.10306	2.77011	1341.60135	0.0648
3	0.10100	0.00270	1338.99151	0.00206
4	0.10100	0.00270	1338.99151	0.0
5				
6				
7				
8				
9				
10				

4. (1.0 point) Determine rigorously if each function has an unique fixed point.

a)
$$g(x) = \frac{x^2 - 8x + 25}{3}$$
, $x \in [1, 7]$

fixed point existence theorem verification:	unique fixed point theorem verification:
Sketch $g(x)$ and $y=x$	Sketch $g'(x)$

Use the starting value $p_0=3.15$ and compute p_1,p_2,p_3,p_4 and p_5 .

p_0	p_1	p_2	p_3	p_4	p_5			
3.15	3.24083	3.19211	3.21756	3.20407	3.21117			
Do the sequence converge? Si.								

Use the starting value $p_0=3.25$ and compute p_1,p_2,p_3,p_4 and p_5 .

p_0	p_1	p_2	p_3	p_4	p_5		
3.25	3.18750	3.22005	3.20277	3.20277	3.20706		
Do the sequence converge? Si.							

b)
$$g(x) = \frac{11x^3 - 141x^2 + 556x - 546}{30}, x \in [2, 7]$$

fixed point existence theorem verification:	unique fixed point theorem verification:
	Sketch $g'(x)$

Use the starting value $p_0=4.1$ and compute p_1,p_2,p_3,p_4 and p_5 .

p_0	p_1	p_2	p_3	p_4	p_5		
4.1	4.0507	4.12492	4.01282	4.18115	3.92266		
Do the sequence converge? Si.							

Use the starting value $p_0=6.95$ and compute p_1,p_2,p_3,p_4 and p_5 .

	1 0	1 1 = / 1	=/1 0/1 1				
p_0	p_1	p_2	p_3	p_4	p_5		
6.95	6.67579	5.12224	2.67727	4.76076	3.07028		
Do the sequence converge? No.							

5. (1.0 point) Archimedes' principle indicates that the upward buoyant force that is exerted on a body immersed in a fluid, is equal to the weight of the fluid that the body displaces, and it acts in the upward direction at the centre of mass of the displaced fluid. Suppose that a sphere of radius r=15 constructed with a material of density $\rho=0.638$ is submerged in water to a depth d as shown in Fig. 2.2. According to Archimedes' principle, the mass of water displaced M_w is equal to the mass of the ball M_b , thus,

Figure 2.2: Sphere submerged in water

a) Use equations (2.3), (2.4) and (2.5) to find a nonlinear equation of the form f(d)=0, that allows to determine the depth d.

$$f(d) =$$

b) Use the bisection method of Bolzano to calculate the roots of the nonlinear equation in literal a). Use $a_0=17.6$ and $b_0=18$ and iterate until achieving a precision of $|c_k-c_{k-1}|<1\times 10^{-3}$. Make all calculations with 5 decimal places.

k	a_k	b_k	c_k	$f(a_k)$	$f(b_k)$	$f(c_k)$	$ c_k-c_{k-1} $
0	17.6	18	17.8	-175.576	85	-44.952	
1	17.8	18	17.9	-44.952	85	20.111	0.1
2	17.8	17.9	17.85	-44.952	20.111	-12.39912	0.05
3	17.85	17.9	17.875	-12.39912	20.111	3.86133	0.025
4	17.85	17.875	17.8625	-12.39912	3.86133	-4.26756	0.0125
5	17.8625	17.875	17.86875	-4.26756	3.86133	-0.20278	6.25e-3
6	17.86875	17.875	17.87187	-0.20278	3.86133	1.82936	3.12e-3
7	17.86875	17.871875	17.87031	-0.20278	1.82936	0.81331	1.56e-3
8	17.86875	17.87031	17.86953	-0.20278	0.81331	0.30527	7.8e-4
9							
10							

c) Without doing iterations, determine the required number of iterations N to guarantee that the midpoint c_N is an aproximation to a zero of the nonlinear equation in literal a) with an error less than $\delta=1\times 10^{-15}$, where $a_0=17$ and $b_0=18$.

N = 48.82892