190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Mechanics

Paper: M3

Question Number	Scheme	Marks	
1.6	1.5 r= 1.5 sio	BĮ	
	TSHO = Mrw2	MIAI	
	TSHO = .0.5 x1.5 5 x 2.72		• >
	0.59 T = 5.4675 N	Al	(4)
(4)	Tano = 0.5g	सा हा	
	$cos0 = \frac{0.59}{54675}$		
	6 = 26° (newest degree)	Aነ	(3) (3)
2.(0)	35 ; 35	B1; B1	
	$- M \cdot \frac{3r}{4} + M \cdot \frac{3r}{8} = (M+M) \sqrt{5}$	MI AI	
	3r(H-2m) = x	Al	(5)
(b)	8 (M+m)		
	B CD = rtand	н	
	$= \Gamma \times \left(\frac{\Gamma}{3\Gamma}\right)$		
	$\begin{bmatrix} 1 & \zeta \\ 1 & \zeta \\ 2 & \zeta \end{bmatrix} = \frac{1}{3}C$	A- (
	AT O		
	No equil => x> CD		
		MI	
	$\frac{3r(M-Zn)}{8(M+n)} > \frac{r}{3}$	` †	
	q (M-2m) > 8 (M+m) M > 26m *	AI	(4)
	- 11 / 26 to to		역

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Mechanics

Paper: M3

		-	
Question Number	Scheme	Mari	ks
3.(0)	$\int_{0}^{\pi} \frac{1}{2}y^{2} dx = \int_{0}^{\pi} \frac{1}{2} \sin^{2}x dx$ $= \frac{1}{4} \int_{0}^{\pi} (1 - \cos 2x) dx$ $= \frac{1}{4} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\pi}$	HI	
	$= \frac{1}{4} \int (1-\cos 2x) dx$	мі	
	$= \frac{1}{4} \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{1}{2}}$	A I	
	= 174	AI	
	$\overline{J} = \frac{\pi_{4}}{4} = \frac{\pi}{4}$	MI	
	$\overline{y} = \frac{\overline{11}_4}{\int Six dx} = \frac{\overline{11}}{4}$ $= \overline{17}_8$	ΑI	(6)
(6)	$-tno=\frac{\pi_2}{3}$	·++	
	10 = 4 10 = 4	Aı√	
	0 = 75.96°	۸ı	(3)
			(9)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject	Mechanics	Paper: M3	
Question Number	Scheme	Marks	
4. (6)	6 = 21 u => w = 173	MI	
	a = 2L	Bl	
	sc = 2Losset	MI	
	$2L-b = 2L \cos\left(\frac{\pi}{3}, \frac{3}{4}\right)$	AIN	
	$b = L(2-\sqrt{2})$	Al eso.	(হ)
(4)	$\ddot{z} = -2L\omega\sin\omega t$ $= -2L\pi\sin\pi$	MI	
	Speed = \(\bar{12}\Li\T\)	<u>#1</u>	(2)
(0)	1 (2-12)L = 21 sin wt	וא ומ	
	t = 0.1467.		
	Total time = 2x0-14		(3)
	= 0-28 (2dp)	AI.	(10)
5.6	$\frac{dV}{dt} = -\frac{3}{\sqrt{t+4'}}$	мі	
	v = -3 (++4) 2 dt		
	$v = -3 \left(t + 4 \right)^{\frac{1}{2}} dt$ $v = -6 \left(t + 4 \right)^{\frac{1}{2}} + C$	MIAI	
	b=0, v=18: 18 = -6x2 + C => c=30	h)	(5)
	V= 30-6/t+4 次	A) ess.	
(b)	$x = \int 30 - 6(t+4)^{\frac{1}{2}} dt$	нſ	
	= 30t-4(t+4)32 + D	1	
	t=0, x=0: 0 = 0-4×8+D => D=32	41	
	$v=0 \Rightarrow 30-6\sqrt{t+41}=0 \Rightarrow t=2$ $k_{1} = 21$, $x = 30 \times 21 - 4 \times 5^{2} + 32$	MI AI	
	= 162(L)	A [(7)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:	Mechanics	Paper: M3		
Question Number	Scheme	Marks		
6.60)	KELOSS + 9E LOSS = EPE Grani $\frac{1}{2}$. M29L + M33L = $\frac{\lambda(3L)^2}{2L}$ * 8M9 = λ M9-T = MX M9-SM3(x+e) = MX 91	MI AZ (-le.e.)		
() (G)	$m_{g} - T = m\ddot{x}$ $m_{g} - 8m_{g}(x+e) = m\ddot{x}$ q_{L}	MI AI		
	-83 x = il 9L Hence SIAT about D	Al cso. (5)		
(0)	(1) Period = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{9L}{89}} = 3\pi \sqrt{\frac{L}{29}}$	HI AI		
	(ii) mg = 8mg e > e= 92/8	81		
	$A = 3L - 9L/8 = 15L/8$ $V_{M4x} = aW = 15L \sqrt{\frac{85}{8}}$ $= \frac{5}{4}\sqrt{29}L$	HI (5)		

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:	Mechanics	Paper: M3	
Question Number	Scheme	Marks	
7.(0)	$\frac{1}{\sqrt{(v^2 - 15)}} = \sqrt{5} \frac{5}{\sqrt{(v^2 - 15)}}$	HI A)	A) (4)
6	$\frac{1}{2}mw^2 = mg 5 (1-cos 600)$ $W = 7 cs -1$	⊬(A)	
	CLT: $60x8 - 3m = (60+m)7$ 480 - 3m = 420 + 7m 60 = 10m	M 41 🔨	AI ✓
	6 = m	Al	(7)
(0)	$T-665 = \frac{66 \times 7^2}{5}$	MI AIV	^
	T = 132g $= 1290 (1294) N$	A -1	(3)
			(M)