RDBMS & NoSQL

발표 자료

Database (DB), DBMS

SQL

RDBMS

RDBMS

Relational Databases

RDBMS 장단점

장점

- Schema가 명확히 정의
- 데이터 무결성 보장
- 데이터 중복 없음
- 복잡한 쿼리 가능

단점

- Schema 사전 계획, 수정 어려움
- 복잡한 쿼리 만들어짐
- 확장성 안 좋음
- 상대적으로 덜 유연함

NoSQL

NoSQL 장단점

장점

- 언제든 새로운 필드 추가 가능 데이터 중복 계속 업데이트
- Schema 없어 더 유연
- 데이터 읽어오는 속도 빠름
- 확장성이 좋음

단점

- 복잡한 join 쿼리 어려움
- 데이터 일관성 항상 보장 X
- 데이터 구조 결정 미뤄짐

RDBMS vs NoSQL

	RDBMS	NoSQL
처리 데이터	정형 데이터	정형 데이터, 비정형 데이터
대용량 데이터	대용량 처리 시 성능 저하	대용량 데이터 처리 지원
스키마	미리 정해진 스키마가 존재	스키마가 없거나 변경이 자유로움
트랜잭션	트랜잭션을 통해 일관성 유지를 보장함	트랜잭션을 지원하지 않아 일관성 유지를 보장하기 어려움
검색 기능	조인 등의 복잡한 검색 기능 제공	단순한 데이터 검색 기능 제공
확장성	클러스터 환경에 적합하지 않음	클러스터 환경에 적합함
라이선스	고가의 라이선스 비용	오픈소스
대표적 사례	MySQL, PostgreSQL, Oracle, Microsoft SQL Server, MariaDB	MongoDB, Redis

RDBMS vs NoSQL

RDBMS 사용

- DB의 ACID 성질을 준수해야 하 는 경우
- 관계를 맺고 있는 데이터가 자주 변경되는 경우
- 변경될 여지 없고 명확한 스키마 가 user, data에게 중요한 경우

NoSQL 사용

- 막대한 양의 데이터 다뤄야 해서 DB 수평으로 확장해야 하는 경 우
- 읽기는 자주 해도 데이터 변경은 자주 없는 경우
- 정확한 데이터의 구조 알 수 없거 나 변경, 확장될 가능성 있는 경 우