PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-030150

(43) Date of publication of application: 03.02.1998

(51)Int.CI.

C22C 38/00 C22C 38/26

F16C 33/62

(21)Application number: 08-190664

.....

(22)Date of filing:

19.07.1996

(71)Applicant : NIPPON SEIKO KK

(72)Inventor: TAKEMURA HIROMICHI

MURAKAMI YASUO

.....

(54) ROLLING BEARING

(57)Abstract:

PROBLEM TO BE SOLVED: To superiorly prevent the occurrence of peeling in an early stage, caused by high vibration and high load, and to remarkably improve bearing life.

SOLUTION: A rolling bearing 1 is used by disposing plural rolling elements 4 between an outer ring (fixed ring) 2 and an inner ring (rotary ring) 3. In this case, the bearing steel at least of the outer ring 2 has an alloy composition containing, by weight ratio, 0.50–1.60% Cr and containing at least one kind among 0.02–0.10% Al, 0.005–0.02% N, 0.02–0.30% V, and 0.02–0.30% Nb and satisfying the relation of 0.08%<Al+4N+V+Nb<0.8%.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

EEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-30150

(43)公開日 平成10年(1998)2月3日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ			技術表示箇所
C 2 2 C	38/00	301		C 2 2 C	38/00	301H	
	38/26				38/26		
F 1 6 C	33/62			F 1 6 C	33/62		

審査請求 未請求 請求項の数1 OL (全 6 頁)

		香蕉雨水	木南水 前水填の数1 ひし (主 0 貝)
(21)出願番号	特膜平8-190664	(71)出願人	000004204
(22)出顧日	平成8年(1996)7月19日		東京都品川区大崎1丁目6番3号
		(72)発明者	武村 浩道 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内
		(72)発明者	村上 保夫 神奈川県藤沢市鶴沼神明一丁目 5 番50号 日本精工株式会社内
		(74)代理人	弁理士 森 哲也 (外2名)

(54) 【発明の名称】 転がり軸受

(57)【要約】

【課題】 高振動・高荷重に起因する早期剥離を良好に 防止して軸受寿命の大幅な延長を可能にする。

【解決手段】 外輪(固定輪) 2と内輪(回転輪) 3との間に複数の転動体 4を配設して用いられる転がり軸受1において、少なくとも外輪 2の軸受鋼の合金組成成分が重量比に対して、 $C_r=0.50\sim1.60\%$ を含有すると共に $A_1=0.02\sim0.10\%$ 、 $N=0.005\sim0.02\%$ 、 $V=0.02\sim0.30\%$ 、 $Nb=0.02\sim0.30\%$ の範囲内で、 A_1 、N並びにV及びNbの内の少なくとも一種を含み、且つ、<math>0.08% < $A_1+4N+V+Nb<0.8\%$ の関係を満足する。

【特許請求の範囲】

【請求項1】 固定輪と回転輪との間に複数の転動体を 配設して用いられる転がり軸受において、少なくとも固 定輪の軸受網の合金組成成分が重量比に対して、Cェ= 0. 50~1・60%を含有すると共にA1=0.02 $\sim 0.10\%$, N=0.005 $\sim 0.02\%$, V=0. 02~0.30%、Nb=0.02~0.30%の範囲 内で、A1、N並びにV及びNbの内の少なくとも一種 を含み、且つ、0.08%<A1+4N+V+Nb< 0.8%の関係を満足することを特徴とする転がり軸 受。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、転がり軸受に関 し、特に、エンジン補機用(オルタネータ、電磁クラッ チ、中間プーリ用等)のグリース封入軸受に関する。 [0002]

【従来の技術】近年、自動車の小型・軽量化に伴いエン ジンの補機類にも小型・軽量化と共に高性能・高出力化 が求められている。したがって、エンジンの作動時にあ 20 って、例えばオルタネータ用の軸受には高速回転に伴う 高振動、高荷重(重力加速度で4G~20G位)がベル トを介して同時に作用し、この結果、特に固定輪である 外輪の軌道面に早期剥離を生じて軸受の寿命を短くする 原因になっている。

【0003】高振動、高荷重下で使用される軸受の寿命 向上を図る技術としては、例えば、特開平5-2624 4号公報に示すように、固定側軌道輪を1.5~6%C r含有鋼で構成することにより、該軌道輪に酸化被膜を 形成して早期剥離を防止したものや、特開昭63-30 30 8219号公報に示すように、高炭素クロム軸受鋼(S U J 2) を通常焼入れ後、サブゼロ処理あるいは高温焼 戻し処理を施すことにより、固定輪の残留オーステナイ ト量 (yR) を10%以下にしたものが開示されてい

【0004】また、特開昭60-194047号公報に 示すように、V及びNbの内の少なくとも一種を所定量 添加することにより、炭窒化物を生成して強度及び靭性 を向上させた軸受鋼が開示されている。

[0005]

【発明が解決しようとする課題】ところで、早期剥離を 防止する対策として、"SAEテクニカルペーパー:S AE950944 (開催日1995年2月27日~3月 2日)"の第1~第14頁には、オルタネータ用軸受の 疲労メカニズムを解明し、封入グリースをEグリースか らダンパー効果の高いMグリースに変更することによ り、該Mグリースで高振動・高荷重を吸収して早期剥離 を防止する技術が開示されている。

【0006】しかしながら、上述した最初の2件の公開

となりうる媒体がないため、エンジンの高速回転に伴う 高振動・高荷重がベルトを介して早期剥離が発生し易い 固定輪負荷圏にダイレクトに加わることになり、この結 果、早期剥離を十分に防止することができず、軸受寿命 の延長には限界がある。

2

【0007】また、3件めの公開公報に開示された軸受 においては、 $V=0.05\sim0.30\%$, Nb=0.05~0. 30%が本発明と重複しているが、A1及びN がそれぞれA1≦0.015%、N≦0.005%と本 10 発明に比べて少ないため、結晶粒微細化の核となりうる AlN、NbNなどの生成が小さく、この結果、結晶粒 の微細化による高振動防振効果があまり期待できず、早 期剥離を十分に防止することができない。

【0008】本発明はかかる不都合を解消するためにな されたものであり、高振動・高荷重に起因する早期剥離 を良好に防止して軸受寿命の大幅な延長を可能にするこ とができる転がり軸受を提供することを目的とする。

[0009]

【課題を解決するための手段】かかる目的を達成するた めに、本発明の係る転がり軸受は、固定輪と回転輪との 間に複数の転動体を配設して用いられる転がり軸受にお いて、少なくとも固定輪の軸受鋼の合金組成成分が重量 比に対して、Cr=0.50~1・60%を含有すると 共に、A1=0.02~0.10%、N=0.005~ $0.02\%, V=0.02\sim0.30\%, Nb=0.0$ 2~0. 30%の範囲内で、A1、N並びにV及びNb の内の少なくとも一種を含み、且つ、0.08%<A1 +4N+V+Nb<0.8%の関係を満足しすることを 特徴とする。

【0010】この場合、前記合金組成成分が重量比に対 t_{c} t_{c 1. 60%、Mn=0. 5%以下、P=0. 02%以 下、S=0.01%以下、O=0.0015%以下、T i = 0.003%以下となるのが好ましい。

【0011】更に、通常熱処理後のオーステナイト結晶 粒の平均粒径を7μm以下にするのが好ましく、更に好 ましくは4μm以下にするのがよい。ここで、オーステ ナイト結晶粒の平均粒径とは、JISG0551 (鋼の オーステナイト結晶粒度試験方法) の粒度番号Nに対応 40 している。 JISG0551では、試験片の断面積1 m m² 当たりの定められた平均断面積mm² の結晶粒が何 個あるかを示しているのに対し、平均粒度は、視野内の オーステナイト結晶粒をランダムに抽出し、その個々の 平均オーステナイト粒径 d = (a + b) / 2 (a はオーステナイト粒の長径、bは短径)を求め、その後、

$do\Sigma d$, /nとしたものである(表3参照)。

【0012】更に、通常熱処理前に加工度0.19以上 公報に開示された軸受においては、いずれもダンパ効果 50 の冷間加工を行うことにより、オーステナイト結晶粒を 3

更に微細化できるため好ましい。

[0013]

【発明の実施の形態】以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である転がり軸受を説明するための説明的断面図である。

【0014】図1においては符号1は、内輪回転用の深みぞ玉軸受を示したものである。この軸受1は、外輪2がハウジング8に固定され、内輪3はシャフト7に外嵌されている。外輪2と内輪3との間には保持器5により 10保持された多数の転動体4が配設され、また、保持器5の両側位置の外輪2と内輪3との間にはシール部材6,6が装着されている。シール部材6,6によって囲まれる空間にはEグリースが封入されている。そして、シャフト7の回転に伴い内輪3も回転し、該回転による振動・荷重はシャフト7から内輪3及び転動体4を介して外輪2の負荷圏に作用する。

【0015】ここで、この実施の形態では、外輪2の軸受鋼の合金組成成分が重量比に対して、C=0.70~1.10%、Si=0.15~1.60%、Mn=0.5%以下、P=0.02%以下、S=0.01%以下、Cr=0.50~1・60%、O=0.0015%以下、Ti=0.003%以下を含有すると共に、Al=0.02~0.10%、N=0.005~0.02%、V=0.02~0.30%、Nb=0.02~0.30%の範囲内で、Al、N並びにV及びNbの内の少なくとも一種を含み、且つ、0.08%<Al+4N+V+Nb<0.8%の関係を満足する(以下、「条件1」という。)。

【0016】Cは転がり軸受として要求される硬さを付 30 与する元素であるが、0.70%未満だと、転がり軸受として要求される硬さHRC59以上を確保できない場合があり、一方、1.10%を越えて含有させると、巨大炭化物が生成し易くなって疲労寿命及び耐衝撃性が低下する場合があるので、C=0.70~1.10%とした。

【0017】Siは脱酸作用並びに焼入れ性を向上させる元素であり、0.15%以上の含有が必要であるが、1.60%を越えると、焼入れ後の残留オーステナイト量(yR)が増加し、焼入れ硬さが低下して転がり寿命 40が劣化する場合があるので、 $Si=0.15\sim1.60$ %とした。

【0018】Mnは脱酸作用並びに焼入れ性を向上させる元素であるが、多く含有させた場合、その効果の向上

は小さく、また、MnSを生成して転がり寿命を低下させるのでその上限を0.5%とした。

【0019】P(不純物)は転がり寿命及び靭性を低下させる元素であるため、その含有量をできるだけ低下させる必要があり、したがって、上限を0.02%とした。S(不純物)は被削性を向上させる元素であるが、Mnと結合して転がり寿命を低下させる硫化系介在物を生成するため、その上限を0.01%とした。

【0021】Oは鋼中においてAl2 O3, SiO2 などの介在物を生成し、転がり寿命特性を大幅に低下させる元素であるので、その上限を0.0015%とした。Tiは鋼中においてTiNなどの窒化系介在物を生成し、転がり寿命特性を低下させる元素であるので、その20 上限を0.003%とした。

【0022】 A1 は結晶粒微細化のためのピンニング粒子としてA1 Nが必要となるので、少なくとも0.02 %以上含有させる必要があるが、0.10 %を越えて含有させると、A12 O3 など硬い介在物を生成し、転がり寿命を劣化させる場合があるので、 $A1=0.02\sim0.10$ %とした。

【0023】Nはピンニング粒子としてのA1N,NbNとなるために必要な元素であり、少なくとも0.005%以上含有させる必要があるが、0.02%を越えて含有させると、TiNを生成して転がり寿命を劣化させる場合があるので、N=0.005~0.02%とした。

【0024】 V, Nbは共に微細で安定した炭窒化物を生成し、且つ、強度と靭性を向上させる元素であり、これらの効果を得るためには0.02%以上必要であるが、0.30%を越えて含有させたとしてもその効果の向上が小さく、しかも、材料価格が上昇するので、 $V=0.02\sim0.30\%$ とした。

【0025】表1に実施形態例及び比較例に用いた供試材の化学成分を示す。

[0026]

【表1】

-				

													0	
<u> </u>	No.	С	Si	Mn	Р	S	Ċ	0	Ti	Al	N	V	δ	AI+4N+V+Nb
1	1	0.99	0.28	0.42	0.017	0.005	1.38	0.0006	0.0020	0.03	0.013	0.02	0.05	0.14
ŀ	2	0.95	0.28	0.42	0.017	0.006	1.41	0.0009	0.0029	0.02	0.014	0.30	_	0.37
	3	0.96	0.60	0.47	0.015	0.006	1.29	0.0009	0.0011	0.08	0.02	0.05		0.21
۱ ـ	4	0.97	0.14	0.39	0.011	0.009	1.53	0.0012	0.0017	0.02	0.015	0.05	0.28	0.41
美	5	0.93	0.30	0.44	0.011	0.007	0.73	0.0007	0.0009	0.03	0.005	0.07	0.25	0.37
1 100	6	0.78	0.29	0.31	0.008	0.006	1.58	0.0008	0.0010	0.04	0.008	0.06	0.02	0.15
実施形態例	7	0.72	1.55	0.29	0.009	0.006	1.55	0.0013	0.0012	0.10	0.02	0.30	0.25	0.73
例	8	0.91	0.19	0.48	0.003	0.008	1.08	0.0010	0.0013	0.10	0.02	0.03	0.03	0.24
1	9	1.06	0.33	0.42	0.009	0.009	1.00	0.0007	0.0011	0.02	0.005	0.03	0.02	0.09
]	10	1.04	1.49	0.21	0.0015	0.005	0.53	0.0009	0.0025	0.05	0.010	0.29	0.27	0.65
	11	0.80	1.53		0.0019		1.38	0.0014	0.0014	0.08	0.016	_	0.30	0.44
<u></u>	12	0.94	0.60	0.44	0.0006	0.004	0.69	0.0012	0.0006	0.09	0.02	_	0.02	0.19
1	1	0.91	0.31	0.41	0.0011	0.009	1.30	0.0008	0.0023	-	-	_	_	_
1	2	0.78	1.32	0.39	0.0017	0.008	1.09	0.0006	0.0024	-		-	- 1	-
1	3	1.03	0.48	0.33	0.0014	0.003	1.41	0.0007	0.0012	-	-	0.07	_	0.07
1	4	1.08	0.16		0.0003	0.006	1.32	0.0011	0.0012	-	-	_	0.01	0.01
1	5	0.96	0.24	0.42	0.0013	0.005	1.59	0.0010	0.0018	0.01	0.003	0.01	0.01	0.04
比	6	0.94	0.21		0.0007		1.23	0.0005	0.0020	0.04	0.01	0.01	-	0.09
較	7	0.81	0.34		0.0012	0.002	1.45	0.0006	0.0011	-	-	0.29	0.30	0.59
6 0	8	0.95	0.29		0.0010		1.47	0.0014	0.0014	0.01	-	_	0.24	0.25
]	9	0.72	0.97	0.49	0.0015	0.003	1.36	0.0009	0.0013	0.03	0.01	-	0.01	0.08
1	10	0.92	1.43		8000.0		1.05	0.0012	0.0016	0.09	0.02	_	-	0.17
1 :	11	0.72	0.21	0.39	0.0010	0.004	3.58	0.0008	0.0010	0.04	0.01	0.31	_	0.39
1	12	0.80	0.22	0.50	0.0011	0.005	3.33	0.0007	0.0011	0.03	0.01	0.05	0.23	0.35
L	13	0.65	0.19	0.27	0.0013	0.006	2.12	0.0010	0.0010	0.03	0.01	_	0.10	0.17

【0027】実施形態例 $1\sim12$ はC, Si, Mn, P, S, Cr, O, Ti, Al, N, V, Nbが上述した「条件1」を満足する合金鋼であり、比較例 $1\sim13$ はCr, Al, N, V, Nbが「条件1」を満足していない合金鋼である。これらの供試材を用いて外輪を製作し、通常熱処理前に各外輪に対してそれぞれ加工度を変えて冷間加工を施した。加工度の定義としては、JISG0701の鋼材鍛鍊作業の鍛鍊成形比の表し方には、鍛鍊前の断面積をAとし、鍛鍊後の断面積をaとした場合に、鍛鍊成形比はa/aで表されており、したがって、加工度= (A-a)/aとした。

【0028】表2は冷間加工後、通常熱処理(840° Cで焼入れ加熱、油冷却後、180°Cにて焼戻し)を 施した外輪を組み込んだ軸受の耐久寿命、オーステナイ ト結晶粒度及びはくり試験結果を示したものである。なお、外輪の表面硬さはHRC59~63、表面粗さは 0.01~0.03 μ mRaであり、結晶粒度試験は JISG0551に従った。

【0029】また、本実施形態例、比較例共に、内輪及び転動体は同じ軸受鋼として通常熱処理を施し、内輪及び転動体の表面硬さをHRC59~62、内輪の表面組さを0.01~0.03μmRa、転動体の表面組さを0.003~0.010μmRaとした。表3に粒度番30 号(N)に対応するオーステナイト平均結晶粒の大きさ(μm)を示す。

[0030]

【表 2】

		7		8			
		耐久寿命(hr)	はくりの有無	平均結晶粒の 大きさ(µm)	オーステナイト 結晶粒度番号	加工度	
	1	926	(3/10個)外輪はくり	6.5	11	0.15	
	2	1000	はくりなし	3.2	13	0.21	
	3	1000	はくりなし	2.7	14	0.22	
	4	1000	はくりなし	1.8	15	0.31	
上烹	5	1000	はくりなし	1.5	15	0.39	
	6	942	(2/10個)外輪はくり	6.8	11	0.07	
実施形態	7	894	(4/10 個)外輪はくり	4.2	12	0.10	
(5)	8	901	(3/10個)外輪はくり	5.3	12	0.18	
**	9	873	(4/10 個)外輪はくり	7.0	11	0.05	
	10	1000	はくりなし	3.7	13	0,24	
	11	1 0 00	はくりなし	3.9	13	0.19	
L	12	1000	はくりなし	2.6	14	0.20	
	1	259	(10/10 個)外輪はくり	21.2	В	0.06	
	2	172	(10/10 個)外輪はくり	16.0	9	0.23	
	3	301	(10/10 個)外輪はくり	10.3	10	0.18	
1	4	266	【10/10 個)外輪はくり】	120	9	0.10	
	5	324	(10/10 個)外輪はくり	9.6	10	0.19	
比較	6	329	【(10╱10個)外輪はくり	10.7	10	0.12	
粒	7	332	(10/10 個)外輪はくり:	9.1	10	0.25	
例	8	327	(10/10 個)外輪はくり	9.8	10	0.24	
1	9	218	(10/10個)外輪はくり	14.1	9	0.08	
	10	298	(10/10個)外輪はくり	12.4	9	0.21	
	11	273	(10/10 個)外輪はくり	11.7	9	0.16	
1	12	312	(10/10 個)外輪はくり	11.0	10	0.21	
L	13	294	(10/10個)外輪はくり	10.6	10	0.29	

[0031]

【表3】

粒度番号(N)	平均結晶粒の大きさ(μm)
8	2 2
9	1 6
1 0	1 1
1 1	7. 8
1 2	5. 5
1 3	3. 9
1 4	2. 8
1 5	1. 9

【0032】次に、実施形態例の軸受と比較例の軸受と の寿命試験結果について述べる。試験機としては、回転 8000rpmとに切り換えるベンチ急加減速試験機を 用いた。また、本実施形態例及び比較例共に、試験軸受 にはJIS呼び番6303を用い、荷重条件はP(負荷 荷重) / C (動定格荷重) = 0.10とし、封入グリー スにはEグリースを用いた。更に、この時の軸受の計算 寿命は1350時間であり、したがって、試験打ち切り 時間を1000時間とした。試験は各々 n = 10行っ た。

【0033】表2から明らかなように、「条件1」を満

寿命 L10 が計算寿命の約1/4となっており、はくり部 位は全て外輪であった。また、この比較例1~13のミ クロ組織を調査した結果、オーステナイト平均結晶粒径 は全て9μm以上(粒度番号が10番以下)で微細化組 織にはなっていなかった。

【0034】これに対し、「条件1」を満足し、且つ、 加工度が0.19以上の実施形態例2~5、10~12 については、1000時間を越えてもはくりを生じず、 30 試験を打ち切った。この時の実施形態例2~5、10~ 12のミクロ組織を調査した結果、オーステナイト平均 結晶粒径は3. 9μm以下(粒度番号が13番以上)で 微細化組織となっていた。

【0035】また、「条件1」を満足し、且つ、加工度 が0.19未満の実施形態例1,6~9についても軸受 寿命 Lioは全て800時間以上(10個中2個~4個に はくり発生)を有しており、比較例1~13と比べ大幅 に長寿命となった。この時の実施形態例1,6~9のミ クロ組織を調査したところ、オーステナイト平均結晶粒 数を所定時間毎(例えば9秒毎)に9000rpmと1 40 径は4~7μm(粒度番号が11番以上)で微細化組織 となっていた。

> 【0036】このように、この実施の形態では、「条件 1」を満足することにより、オーステナイト結晶粒度番 号が11番以上になって結晶粒が微細化されるので、か かる微細化効果により転動体から外輪(固定輪)へ伝わ る高振動・高荷重が吸収されて十分な防振効果が発揮さ れる。この結果、固定輪である外輪の早期はくりが良好 に防止されて軸受寿命の大幅な延長が可能になることが 判る。

足していない比較例1~13においては、全ての軸受の 50 【0037】また、通常熱処理前に外輪に対して加工度

0.19以上の冷間加工を行うことにより、オーステナ イト粒度番号が13番以上になって結晶粒がより細かく なるため、転動体から外輪(固定輪)へ伝わる高振動・ 高荷重の防振効果がさらに良くり、この結果、早期はく りをより効果的に防止でき、軸受寿命の更なる延長が可 能になることが判る。

[0038]

【発明の効果】上記の説明から明らかなように、本発明 によれば、オーステナイト結晶粒度番号が11番以上に なって結晶粒が微細化されるので、かかる微細化効果に 10 3…内輪 (回転輪) より転動体から固定輪へ伝わる高振動・高荷重が吸収さ れて十分な防振効果が発揮され、転がり軸受の疲労寿命

に到達する時間を遅らせることができる。この結果、固 定輪の早期はくりが良好に防止され、従来に比べて、軸 受寿命を大幅に延長することができる。

10

【図面の簡単な説明】

【図1】本発明の実施の形態の一例である転がり軸受を 説明するための説明的断面図である。

【符号の説明】

1…転がり軸受

2…外輪(固定輪)

4…転動体

【図1】

