## FURTHER MATHEMATICS HIGHER LEVEL PAPER 1

Tuesday 18 February 2020

Name in block letters

2 hour 30 minutes



## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- A graphic display calculator is required for this paper.
- A clean copy of the formula booklet is required for this paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Dy collect

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

| 1  | Heo | L'Uônital'a | mula t | to | to find | 1:                | $\tan x - x$          |  |
|----|-----|-------------|--------|----|---------|-------------------|-----------------------|--|
| 1. | OSE | L'Hôpital's | ruie   | to | ша      | $x \rightarrow 0$ | $\overline{1-\cos x}$ |  |

| / o I - cos a                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------|
| $\lim_{x\to 0} \frac{\tan x - x}{1 - \cos x} = \frac{0}{0}$ , apply L. Hopital.                                                 |
| lim (tanx-x)<br>x->0 (1-cosx)                                                                                                   |
| $= \lim_{X \to 0} \left( \frac{1}{\cos^2 x} - 1 \right) \frac{1}{\sin x} = \lim_{X \to 0} \frac{1 - \cos^2 x}{\cos^2 x \sin x}$ |
| $= \lim_{x \to 0} \frac{\sin^2 x}{\cos^2 x \sin x} = \lim_{x \to 0} \frac{\sin x}{\cos^2 x}$                                    |
| = 0                                                                                                                             |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
| ······································                                                                                          |
|                                                                                                                                 |

| 2. Let $n \in \mathbb{N}$ and define $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Simplify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i. $(3\mathbb{Z}\cap 6\mathbb{Z})\cup 18\mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ii. $6\mathbb{Z} \cap 15\mathbb{Z}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (b) Let $n_1, n_2 \in \mathbb{N}$ . Giving reasons, state whether the following assertions are true or false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i. $n_1\mathbb{Z} \cap n_2\mathbb{Z} = m\mathbb{Z}$ for some $m \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ii. $n_1 \mathbb{Z} \cup n_2 \mathbb{Z} = m \mathbb{Z}$ for some $m \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (a) (i) $3Z \cap 6Z = 6Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6ZU18Z = 6Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| So (3Z N 6Z) V 18Z = [6Z =  -6,0,6,12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (ii) 6# = 6 6 FXC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6Z = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 152 = 9, -15,0,15,30,45,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6Z015Z = (cm(6,15) Z/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| = [30] = {==================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (b) (i) N1Z O n2Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $= lcm(n, n_2) \mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Since for $n_1, n_2 \in \mathbb{N}$ , $lam(n_1, n_2) \in \mathbb{N}$ , let $m = lcm(n_1, n_2)$ , such $m \in \mathbb{N}$ exist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Let m = lcm(n, nz), such m ∈ N exist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| the assertion's true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (ii) It's false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a consist of the second construction of the seco |
| A counter example; N=3, N=5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $3ZU5Z=\{\cdots,-6,-5,-3,0,3,5,6,9,\cdots\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| which can not be expressed as mZ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| for any m & M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

3. The graph G with vertices P, Q, R, S, T has the following adjacency table.

|   | P | Q | R | S | T |
|---|---|---|---|---|---|
| P | 0 | 1 | 0 | 1 | 2 |
| Q | 1 | 0 | 1 | 0 | 0 |
| R | 0 | 1 | 0 | 1 | 1 |
| S | 1 | 0 | 1 | 0 | 0 |
| T | 2 | 0 | 1 | 0 | 0 |

- (a) Make a drawing of G illustrating that G is planar.
- (b) Giving reasons, state whether or not G is
  - i. simple;
  - ii. connected;
  - iii.\bipartite.

(c) Explain why G has an Eulerian trail but not an Eulerian circuit.

Already has 6,

Maximum

3 edges can

(2

(d) Find the maximum number of edges that can be added to the graph G, not including loops or further multiple edges, whilst still keeping it planar.

Since planar,  $e_{max} = 3V + 6 = 9$   $\Rightarrow planar.$ 

(b) (i) not simple, because there are two edges

Connecting P.J

(ii) it is connected because every vertex is

adjacent to at least one other vertex

(iii) it is not bipartite because it is not a the vertice.

Simple graph. It is bipartite because in cam

be divided into { P, P3 and {Q, S, T},

Such that there's no edge with in each set of

vertius.

(c) It does not have an Enterior circuit because not all vertices are of even degrees; However, it's an Enterior trial because there are

exactly 2 odd vertices (T and R)

| 4. | (a) Consider the functions from $\mathbb{N}$ to $\mathbb{N}$ with rules $f(x) = \lfloor x/2 \rfloor$ , $g(x) = x$ , $h(x) = 1 + x$ .                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | i. Write down the function which is injective but not surjective.                                                                                         |
|    | ii. Write down the function which is surjective but not injective.                                                                                        |
|    | (b) Write down a function from $\mathbb{N}$ to $\mathbb{N}$ which is neither injective nor surjective.                                                    |
|    | (c) If the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ with rule $f(x,y) = (2x + y, x + y)$ possesses an inverse find its |
|    | rule, otherwise explain why no such inverse exists.                                                                                                       |
|    |                                                                                                                                                           |
|    | (a) (a) injective: g(x), h(x)                                                                                                                             |
|    | surjective: f(x), g(x),                                                                                                                                   |
|    |                                                                                                                                                           |
|    | (i) $(i)$ $(i)$ $(i)$ $(i)$ $(i)$                                                                                                                         |
|    | (a) (b) injective: $g(x)$ , $h(x)$<br>surjective: $f(x)$ , $g(x)$ ,<br>(i) $h(x)$ (ii) $f(x)$ .<br>(b) $L(x) = L \frac{x}{2} + 2J$                        |
|    | (c) $\frac{f'(a)x+y',x+y}{f(a,b)}$ let $f'(a,b)$ be the inverse of $f(a,b)$ , $a,b\in I$ .                                                                |
|    |                                                                                                                                                           |
|    | $f(a,b)$ , $a$ , $b \in L$ .                                                                                                                              |
|    | (a = 2x + y) = (a - b = x) $b = x + y = 2b - a = y$ $S(f'(a,b)) = f(a-b, 2a-b)$ $f'(x-y) = f(x-y, 2x-y)$                                                  |
|    | $b - v + v$ $\Rightarrow$ $2b - a = v$                                                                                                                    |
|    | 1 1 1 1 5 1                                                                                                                                               |
|    | S(f(a,b)) = f(a,b)                                                                                                                                        |
|    | f'(x,y) = f(x-y, 2x-y)                                                                                                                                    |
|    | 29-16                                                                                                                                                     |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    | y = 1 ± y = 0                                                                                                                                             |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |
|    |                                                                                                                                                           |
|    | i                                                                                                                                                         |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    | /                                                                                                                                                         |

- 5. (a) Show that the vectors  $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ ,  $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ ,  $\begin{pmatrix} 5 \\ 2 \\ 5 \end{pmatrix}$  form a basis for  $\mathbb{R}^3$ .
  - (b) Express the vector  $\begin{pmatrix} 12\\14\\16 \end{pmatrix}$  as a linear combination of the above vectors.

Since det  $\neq 0$ , the vectors form a basis

for  $\mathbb{R}^3$ (b)  $\left(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac$ 

$$\alpha(\binom{1}{3} + b(\frac{3}{3}) + c(\frac{5}{5}) = \binom{1^2}{1^2}$$

 $\begin{pmatrix} 9 \\ 6 \\ c \end{pmatrix} = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{pmatrix} + \begin{pmatrix} 12 \\ 14 \\ 16 \end{pmatrix}$ 

= (3)

Thursfore

$$\begin{pmatrix} 12 \\ 14 \\ 16 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \\ 5 \end{pmatrix}$$

| 6. Consider the two independent random variables X and Y where $X \sim Po(3)$ and $Y \sim Po(4)$ . |
|----------------------------------------------------------------------------------------------------|
| (a) Calculate $E(2X + 7Y)$ .                                                                       |
| (b) Calculate $Var(4X - 3Y)$ .                                                                     |
| (c) Calculate $E(X^2 - Y^2)$ .                                                                     |
|                                                                                                    |
| (a) $E(2x+7y)$                                                                                     |
| = 2E(x) + 7E(Y)                                                                                    |
| $= 2 \times 3 + 7 \times 4 = 34$                                                                   |
|                                                                                                    |
|                                                                                                    |
| (b) Var (4x-3y)                                                                                    |
| = 16 Var(x) + 9 Var (Y)                                                                            |
| = 16(3) + 9(4) - 911                                                                               |
| = 16(3) + 9(4) = 84                                                                                |
|                                                                                                    |
| (c) $E(x^2-Y^2)$                                                                                   |
| $= E(x^2) - E(Y^2)$                                                                                |
|                                                                                                    |
| = { Var(x) + [E(x)] <sup>2</sup> } - { Var(Y) + [E(Y)] <sup>2</sup> }                              |
| = (3+9) - (4+16)                                                                                   |
| = -8                                                                                               |
|                                                                                                    |
|                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                              |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                              |
| 1,7)                                                                                               |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |

7. Consider the system of equations 
$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & 2 & -1 \\ 3 & 5 & -4 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 1 \\ k \end{pmatrix}$$

- (a) Find the rank of the coefficient matrix.
- (b) Find the value of k for which the system has a solution.
- (c) For this value of k determine the solution.

(b) To have a solution 
$$k-8=8-k=0$$
,

(c) let 
$$7 = 8$$
,  
 $y - \frac{7}{4} = -\frac{7}{4}$ 

$$y = \frac{s}{4}s - \frac{7}{4}$$

$$X = \frac{7}{4}S - \frac{7}{4} - 2S + 5$$

So the solutions are 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = S\begin{pmatrix} -\frac{3}{4} \\ \frac{4}{4} \\ -\frac{7}{4} \\ 0 \end{pmatrix}$$

- 8. The function f is defined by  $f(x) = e^x \cos x$ .
  - (a) Show that  $f''(x) = -2e^x \sin x$ .
  - (b) Determine the fourth degree Maclaurin polynomial for f(x).
  - (c) By differentiating your polynomial, determine the cubic Maclaurin polynomial for  $e^x \sin x$ .



- 9. (a) The point  $T(at^2, 2at)$  lies on the parabola  $y^2 = 4ax$ . Show that the tangent to the parabola at T has equation  $x - ty + at^2 = 0$ .
  - (b) The distinct points  $P(ap^2, 2ap)$  and  $Q(aq^2, 2aq)$ , where  $p, q \neq 0$ , also lie on the parabola  $y^2 = 4ax$ . If the line (PQ) passes through the focus show that the tangents to the parabola at P and Q intersect at the directrix.

(a) 
$$\frac{dy}{dt} = 2a \cdot \frac{dx}{dt} = 2at$$
.

$$S_0 \frac{dy}{dx} = \frac{1}{t}$$

$$\Rightarrow +y - 2at^2 = x - at^2$$

$$\Rightarrow x - ty + at^2 = 0$$

$$(PQ): y = \frac{2A(p-95)}{9((p-95)(p+9))} (x-a)$$

$$\Leftrightarrow p^2 + pq_0 = p^2 - 1 \Leftrightarrow pq_0 = -1$$

so the tangents are

$$\begin{cases} x - py + ap^2 = 0 \end{cases}$$

$$x - q_0 y + a q_0^2 = 0$$

X = -a, which means the two transpents intersect at the directrix



- 11. The weights of peaches are normally distributed with mean 98 grams and standard deviation 16 grams.
  - (a) A shopkeeper places 100 randomly chosen peaches on a weighing machine. Find the probability that their total weight exceeds 10 kilograms.
  - (b) Find the minimum number of randomly selected peaches needed to ensure their total weight exceeds 10 kilograms with probability greater than 0.95.

| Let X denote the neights of peaches                                |
|--------------------------------------------------------------------|
| $X \sim N(98, 16^2)$                                               |
| (a) let S = \( \sum_{i=1}^{16} \times i \).                        |
| S~N(98×100,100×162)                                                |
| $P(S > (0^4) = mormal cdf(10^4, 00, 9800, 160)$<br>= 0.106 (35.f.) |
| (b) for Y m                                                        |
| $\bigotimes (et Y = \sum_{i=1}^{\infty} X_i)$                      |
| and YNN (1098m, 162m)                                              |
| $P(Y > 10^4) = 0.95$                                               |
| $P(z > \frac{10^4 - 98m}{\sqrt{16^2 m}}) = 0.95$                   |
| $\Rightarrow \frac{10^4 - 98m}{\sqrt{16^2 m}} = -1.645$            |
| 9.8 m - 6.5 gu m - 104 = 0.                                        |
| nsing technology:  M = 10,236692 > 104                             |
| VA (03.4 0 > 10)                                                   |
| So the mirrimum nurber is 1809 105                                 |
|                                                                    |

| 12. | The points $A$ , $B$ have coordinates $(-3,0)$ , $(5,0)$ respectively. Consider the circle $\mathscr C$ with centre $(13,0)$ which is the locus of the point $P$ where $PA:PB=k:1$ for $k\neq 1$ . |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) Find the radius of $\mathscr{C}$ .                                                                                                                                                             |
|     | (b) If $M$ is a point on $\mathscr C$ and $N$ is the $x$ -intercept of $\mathscr C$ between $A$ and $B$ , prove $\angle AMN = \angle NMB$ .                                                        |
|     |                                                                                                                                                                                                    |
|     | (a) let the vadius be 0 n.                                                                                                                                                                         |
|     | 950 13-1+3 = 13+3+r<br>V-8 V+8                                                                                                                                                                     |
|     | V-8 V.+8                                                                                                                                                                                           |
|     | (16-r)(r+8) = (16+r)(r-8).                                                                                                                                                                         |
|     | V = 8 NZ                                                                                                                                                                                           |
|     | (b) 16-17 19-18-18-18-18-18-18-18-18-18-18-18-18-18-                                                                                                                                               |
|     | $(b)$ $k = \frac{16-v}{v-8} = \sqrt{2}$                                                                                                                                                            |
|     | S. MA NA                                                                                                                                                                                           |
|     | SO MA NA                                                                                                                                                       |
|     | MA MB                                                                                                                                                                                              |
|     | NA NB , and the                                                                                                                                                                                    |
|     | SO ZAMN = ZNMB                                                                                                                                                                                     |
|     |                                                                                                                                                                                                    |
| •   | ······                                                                                                                                                                                             |
|     | Ry What This ium                                                                                                                                                                                   |
|     |                                                                                                                                                                                                    |
| ٠   | funt.                                                                                                                                                                                              |
|     | Dings font Mis                                                                                                                                                                                     |
|     |                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                    |
| •   |                                                                                                                                                                                                    |
| *** |                                                                                                                                                                                                    |

| 13. (a) State Lagrange's theorem.                                                                         |
|-----------------------------------------------------------------------------------------------------------|
| (b) Prove that every group of prime order is cyclic.                                                      |
| (c) The Abelian group $G$ is generated by the distinct group elements $a$ and $b$ where $ a  =  b  = 3$ . |
| i. What is the order of $G$ ?                                                                             |
| ii. How many proper subgroups does $G$ have?                                                              |
| a) In a finite group, the order of a subgroup always devides the order of the group.                      |
| arways devides the order of the group.                                                                    |
| (b) Proce , fine                                                                                          |
| let G be a group of priese order G test, otherwise [G]=1; So there exists                                 |
| G tannot se (G) =1; So there exists                                                                       |
|                                                                                                           |
| acq, ate                                                                                                  |
| consider a°, a', a², a³,                                                                                  |
| Since Gis of prime order, it has                                                                          |
| no proper subgroup, so a must                                                                             |
| 1 1000 1000 00000                                                                                         |
| generate the whole group                                                                                  |
| since # G= <a> the group is</a>                                                                           |
| cyclic. 11.                                                                                               |
| G  =  G  = 3                                                                                              |
|                                                                                                           |
| (1) Sina G = 3, 3 is a prime,                                                                             |
| only 1 3 and 3 3,                                                                                         |
| (ii) Sina $ G =3$ , 3 is a prime,<br>only $ 3 $ and $ 3 $ 3,<br>So there is no proper subgroups           |
|                                                                                                           |
| 9.50                                                                                                      |
| (.4.2.)                                                                                                   |

- 14. Consider the matrix  $A = \begin{pmatrix} 11 & \sqrt{3} \\ \sqrt{3} & 9 \end{pmatrix}$ 
  - (a) Find the eigenvalues and eigenvectors of A.
  - (b) The ellipse  $\mathscr{E}$  has equation  $X^T A X = 24$  where  $X^T = (x \ y)$ .
    - i. Show that  $\mathscr{E}$  can be rotated about the origin onto the ellipse  $\mathscr{E}'$  having equation  $2x^2+3y^2=6x$
    - ii. Find the acute angle through which  $\mathscr E$  must be rotated to coincide with  $\mathscr E'$ .

$$(9) \lambda^2 - 20\lambda + 99 - 3 = 0$$

$$\lambda_1 = 100/12$$
  $\lambda_2 = 100$ 

$$\begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -3 \end{pmatrix} \begin{pmatrix} \times \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_3 \\ y_4 \end{pmatrix} \begin{pmatrix} x_3 \\ y_4 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix}$$

let 
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{2}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$|\vec{\lambda} \times \vec{\lambda}|^2 + 8y'^2 = 2y \iff 3x^2 + 2y^2 = 6$$
(ii) The votation matrix  $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ 

Turn over

- 15. Let y = f(x) be the solution to the differential equation  $y' + y \sec x = x(\sec x \tan x)$  with f(0) = 3.
  - (a) Use Euler's method in table form with a step length of 0.1 to approximate f(0.2).
  - (b) i. Determine the second degree Maclaurin polynomial for f(x).
    - ii. Use this polynomial to approximate f(0.2).
  - (c) i. Solve this differential equation to find y = f(x).
    - ii. Hence determine which of the above two approximations for f(0.2) is closer to the true value.

| in the control of the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) $\frac{n}{o}$ $\frac{x_n}{o}$ $\frac{y_n}{o}$ $\frac{h}{o}$ $\frac{h \times f(x,y)}{-0.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 0 3 0.1 -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 011 27 011 -0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 0.2 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| So f(0,2) ≈ 2.44. (3 s.f.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (b)(i) _ dy + seex dy + seex tann y = seex -tanx + x (seex tan - see2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $P_{2}(x) = f(0) + f(0) \times + f''(0) \times^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= 3 + -3 \times + 2 \times^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (ii) $f(0.2) = 3 + -3(0.2) + 2(0.2)^{2}$<br>= 3-0.6 + 0.08 = 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = 3-0.6+0.08 = 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (c) (i) $\int \sec x  dx =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(ii) the Maclaurin polynomial
wether is closer. Reason?

| ······································ |
|----------------------------------------|
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
| -<br>                                  |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |

| *************************************** |                                         |
|-----------------------------------------|-----------------------------------------|
|                                         |                                         |
|                                         |                                         |
|                                         | • • • • • • • • • • • • • • • • • • • • |
|                                         |                                         |
|                                         | • • • • • • • •                         |
|                                         | *****                                   |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         | *** *** *** ***                         |
|                                         | *******                                 |
|                                         |                                         |
|                                         |                                         |
| ######################################  | • • • • • • • • • • • • • • • • • • • • |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |



Page 1 of Excellent! (Miller in 150)

3 (b). G is connected because there exists a path joining each pair of vertices in G. Wrong definition, and When I tried define it myserf, I didn't take all circumstances into 4. (c). Let f'(a,b) be the inverse of f(a,b),  $a,b\in\mathbb{Z}$ , consideration.

Let f(a).  $\begin{cases}
a = 2x + y \\
b = x + y
\end{cases} \Rightarrow \begin{cases}
x = a - b \\
y = 2b - a
\end{cases}$   $\begin{cases}
f(a - b), 2b - a
\end{cases}$ I copied it wrongly So  $f^{-1}(a,b) = f(a-b,2b-a)$  I copied it if  $f^{-1}(x,y) = f(x-y,zy-x)$  from above ...

 $\lim_{n\to\infty} \left| \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} \right|$ 

- lim | (N+1) NN |

=  $\lim_{N\to\infty} \left| \left( \frac{N}{N+1} \right)^N \right|$ 

= 1 + herefore,

I didn't calculate the

limit correctly at first, and

So I continued trying different methods instead of calculating it it converges. again. ".

12 (b). since N.M are both points on b.

MA = NA = K

=> MA = MB NB, by Angle Bisector thrm,

I didn't state the thron explicitly for the thron

LAMB = < NMB. a.

> I inistend the question.

13 (c) (i) since |a|=|b|=3. <a>, + <b>, the group elasts are e, a, a2, b, b2, ab, a2b, ab2, a2b2; 50/6/=9.

(ii) Since only 3/9 and |a|=|b|=|ab|=|a²b| generate different Subgroups, there are 4 proper subgroups

(\* y) 
$$\begin{pmatrix} 1 & \sqrt{3} & 4 \end{pmatrix}$$
  $\begin{pmatrix} x \\ y \end{pmatrix} = 24$ .

(\* y)  $\begin{pmatrix} 1 & \sqrt{3} & 1 \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 8 & 0 \\ 0 & 12 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$   $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} &$