Conditions on Relations

The Clowder Project Authors

July 29, 2025

This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

10.1	Funct	ional and Total Relations	2
	10.1.1	Functional Relations	2
	10.1.2	Total Relations	3
10.2	Reflex	rive Relations	3
	10.2.1	Foundations	3
	10.2.2	The Reflexive Closure of a Relation	4
10.3	Symm	netric Relations	6
		Foundations	
	10.3.2	The Symmetric Closure of a Relation	7
10.4	Transitive Relations		
	TI CLIE		_
		Foundations	
	10.4.1		8
	10.4.1 10.4.2	Foundations	8
	10.4.1 10.4.2 Equiv	Foundations	8 9 12
	10.4.1 10.4.2 Equiv 10.5.1	Foundations The Transitive Closure of a Relation alence Relations	8 9 12 12
10.5	10.4.1 10.4.2 Equiv 10.5.1 10.5.2	Foundations The Transitive Closure of a Relation alence Relations Foundations	8 9 12 12
10.5	10.4.1 10.4.2 Equiv 10.5.1 10.5.2 Quoti	Foundations. The Transitive Closure of a Relation. alence Relations. Foundations. The Equivalence Closure of a Relation.	8 9 12 12 12

\mathbf{A}	Other C	Chapters	20
--------------	---------	----------	----

10.1 Functional and Total Relations

10.1.1 Functional Relations

Let A and B be sets.

Definition 10.1.1.1.1. A relation $R: A \to B$ is **functional** if, for each $a \in A$, the set R(a) is either empty or a singleton.

Proposition 10.1.1.1.2. Let $R: A \to B$ be a relation.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The relation R is functional.
 - (b) We have $R \diamond R^{\dagger} \subset \chi_B$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

• Item $1a \Longrightarrow Item \ 1b$: Let $(b,b') \in B \times B$. We need to show that

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

i.e. that if there exists some $a \in A$ such that $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, then b = b'. But since $b \sim_{R^{\dagger}} a$ is the same as $a \sim_{R} b$, we have both $a \sim_{R} b$ and $a \sim_{R} b'$ at the same time, which implies b = b' since R is functional.

- Item 1b \Longrightarrow Item 1a: Suppose that we have $a \sim_R b$ and $a \sim_R b'$ for $b, b' \in B$. We claim that b = b':
 - Since $a \sim_R b$, we have $b \sim_{R^{\dagger}} a$.
 - Since $R \diamond R^{\dagger} \subset \chi_B$, we have

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

and since $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, it follows that $[R \diamond R^{\dagger}](b, b') =$ true, and thus $\chi_{B}(b, b') =$ true as well, i.e. b = b'.

This finishes the proof.

10.1.2 Total Relations

Let A and B be sets.

Definition 10.1.2.1.1. A relation $R: A \to B$ is **total** if, for each $a \in A$, we have $R(a) \neq \emptyset$.

Proposition 10.1.2.1.2. Let $R: A \to B$ be a relation.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The relation R is total.
 - (b) We have $\chi_A \subset R^{\dagger} \diamond R$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

• Item $1a \Longrightarrow Item \ 1b$: We have to show that, for each $(a,a') \in A$, we have

$$\chi_A(a,a') \preceq_{\{\mathsf{t},\mathsf{f}\}} \left[R^{\dagger} \diamond R \right] (a,a'),$$

i.e. that if a = a', then there exists some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a'$ (i.e. $a \sim_R b$ again), which follows from the totality of R.

• Item 1b \Longrightarrow Item 1a: Given $a \in A$, since $\chi_A \subset R^{\dagger} \diamond R$, we must have

$$\{a\} \subset \left[R^{\dagger} \diamond R\right](a),$$

implying that there must exist some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a$ (i.e. $a \sim_R b$) and thus $R(a) \neq \emptyset$, as $b \in R(a)$.

This finishes the proof.

10.2 Reflexive Relations

10.2.1 Foundations

Let A be a set.

Definition 10.2.1.1.1. A **reflexive relation** is equivalently:

¹Note that since Rel(A, A) is posetal, reflexivity is a property of a relation, rather than extra structure.

- An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathbf{Rel}(A,A)), \chi_A)$.
- A pointed object in $(\mathbf{Rel}(A, A), \chi_A)$.

Remark 10.2.1.1.2. In detail, a relation R on A is **reflexive** if we have an inclusion

$$\eta_R \colon \chi_A \subset R$$

of relations in $\mathbf{Rel}(A, A)$, i.e. if, for each $a \in A$, we have $a \sim_R a$.

Definition 10.2.1.1.3. Let A be a set.

- 1. The set of reflexive relations on A is the subset $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.
- 2. The **poset of relations on** A is is the subposet $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.

Proposition 10.2.1.1.4. Let R and S be relations on A.

- 1. Interaction With Inverses. If R is reflexive, then so is R^{\dagger} .
- 2. Interaction With Composition. If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

10.2.2 The Reflexive Closure of a Relation

Let R be a relation on A.

Definition 10.2.2.1.1. The **reflexive closure** of \sim_R is the relation $\sim_R^{\text{refl}2}$ satisfying the following universal property:³

(*) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{refl}} \subset \sim_S$.

Construction 10.2.2.1.2. Concretely, \sim_R^{refl} is the free pointed object on R

 $^{^2}Further\ Notation:$ Also written $R^{\rm refl}.$

³ Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

in $(\mathbf{Rel}(A, A), \chi_A)^4$, being given by

$$\begin{split} R^{\text{refl}} &\stackrel{\text{def}}{=} R \coprod^{\mathbf{Rel}(A,A)} \Delta_A \\ &= R \cup \Delta_A \\ &= \{(a,b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } a = b\}. \end{split}$$

Proof. Clear. \Box

Proposition 10.2.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\text{refl}} \dashv \overline{\Xi})$$
: $\mathbf{Rel}(A, A)$ $\underbrace{\Box}_{\Xi}$ $\mathbf{Rel}^{\mathsf{refl}}(A, A)$,

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{refl}}(R^{\mathsf{refl}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text{refl}} = R$.
- 3. *Idempotency*. We have

$$\left(R^{\text{refl}}\right)^{\text{refl}} = R^{\text{refl}}.$$

4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{refl}} = (R^{\text{refl}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \downarrow (-)^{\dagger}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{refl}}} \text{Rel}(A, A)$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{refl}}} \text{Rel}(A, A).$$

⁴Or, equivalently, the free \mathbb{E}_0 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)), \chi_A)$.

5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A,A)$$

$$(S \diamond R)^{\operatorname{refl}} \diamond R^{\operatorname{refl}}, \qquad \underset{(-)^{\operatorname{refl}} \times (-)^{\operatorname{refl}}}{(-)^{\operatorname{refl}}} \downarrow \qquad \qquad \downarrow_{(-)^{\operatorname{refl}}}$$

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A,A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 10.2.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.2.1.1.4. □

10.3 Symmetric Relations

10.3.1 Foundations

Let A be a set.

Definition 10.3.1.1.1. A relation R on A is **symmetric** if we have $R^{\dagger} = R$. **Remark 10.3.1.1.2.** In detail, a relation R is symmetric if it satisfies the following condition:

(*) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.

Definition 10.3.1.1.3. Let A be a set.

- 1. The set of symmetric relations on A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.
- 2. The **poset of relations on** A is is the subposet $\mathbf{Rel}^{\mathsf{symm}}(A, A)$ of $\mathbf{Rel}(A, A)$ spanned by the symmetric relations.

Proposition 10.3.1.1.4. Let R and S be relations on A.

- 1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger} .
- 2. Interaction With Composition. If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: Clear.

10.3.2 The Symmetric Closure of a Relation

Let R be a relation on A.

Definition 10.3.2.1.1. The symmetric closure of \sim_R is the relation \sim_R^{symm5} satisfying the following universal property:⁶

(*) Given another symmetric relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{symm}} \subset \sim_S$.

Construction 10.3.2.1.2. Concretely, \sim_R^{symm} is the symmetric relation on A defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

Proof. Clear. \Box

Proposition 10.3.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\operatorname{symm}} \dashv \overline{\Xi}) \colon \operatorname{\mathbf{Rel}}(A, A) \xrightarrow{(-)^{\operatorname{symm}}} \operatorname{\mathbf{Rel}}^{\operatorname{symm}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{symm}}(R^{\mathsf{symm}},S) \cong \mathbf{Rel}(R,S),$$

 $\text{natural in } R \in \mathrm{Obj}(\mathbf{Rel}^{\mathsf{symm}}(A,A)) \text{ and } S \in \mathrm{Obj}(\mathbf{Rel}(A,A)).$

- 2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.
- 3. *Idempotency*. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}$$

⁵ Further Notation: Also written R^{symm} .

⁶ Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\text{symm}} = \left(R^{\text{symm}}\right)^{\dagger}, \qquad \left(R^{\dagger}\right)^{\text{symm}} = \left($$

5. Interaction With Composition. We have

$$\operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A, A)$$

$$(S \diamond R)^{\operatorname{symm}} = S^{\operatorname{symm}} \diamond R^{\operatorname{symm}}, \quad (-)^{\operatorname{symm}} \downarrow \qquad \qquad \downarrow (-)^{\operatorname{symm}}$$

$$\operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A, A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 10.3.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, *Idempotency*: This follows from *Item 2*.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.3.1.1.4. □

10.4 Transitive Relations

10.4.1 Foundations

Let A be a set.

Definition 10.4.1.1.1. A transitive relation is equivalently:⁷

- A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A,A)),\diamond)$.
- A non-unital monoid in $(\mathbf{Rel}(A, A), \diamond)$.

Remark 10.4.1.1.2. In detail, a relation R on A is **transitive** if we have

⁷Note that since $\mathbf{Rel}(A, A)$ is posetal, transitivity is a property of a relation, rather than extra structure.

an inclusion

$$\mu_R \colon R \diamond R \subset R$$

of relations in $\mathbf{Rel}(A, A)$, i.e. if, for each $a, c \in A$, the following condition is satisfied:

(*) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

Definition 10.4.1.1.3. Let A be a set.

- 1. The set of transitive relations from A to B is the subset $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.
- 2. The **poset of relations from** A **to** B is is the subposet $\mathbf{Rel}^{\mathsf{trans}}(A)$ of $\mathbf{Rel}(A, A)$ spanned by the transitive relations.

Proposition 10.4.1.1.4. Let R and S be relations on A.

- 1. Interaction With Inverses. If R is transitive, then so is R^{\dagger} .
- 2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272].⁸

10.4.2 The Transitive Closure of a Relation

Let R be a relation on A.

Definition 10.4.2.1.1. The transitive closure of \sim_R is the relation \sim_R^{trans9}

- If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:
 - There is some $b \in A$ such that:
 - * $a \sim_R b$;
 - * $b \sim_S c$;
 - There is some $d \in A$ such that:
 - * $c \sim_R d$;
 - * $d \sim_S e$.

⁸ Intuition: Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

 $^{^9}$ Further Notation: Also written R^{trans} .

satisfying the following universal property:¹⁰

(*) Given another transitive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{trans}} \subset \sim_S$.

Construction 10.4.2.1.2. Concretely, \sim_R^{trans} is the free non-unital monoid on R in $(\text{Rel}(A, A), \diamond)^{11}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \prod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \mid \text{there exists some } (x_1, \dots, x_n) \in R^{\times n} \\ \text{such that } a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b \right\}.$$

Proof. Clear.

Proposition 10.4.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$\Big((-)^{\operatorname{trans}}\dashv \overline{\Xi}\Big)\colon \quad \mathbf{Rel}(A,A) \underbrace{\overset{(-)^{\operatorname{trans}}}{\overleftarrow{\Xi}}} \mathbf{Rel}^{\operatorname{trans}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{trans}}(R^{\mathsf{trans}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{trans}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{\text{trans}} = R$.
- 3. *Idempotency*. We have

$$(R^{\text{trans}})^{\text{trans}} = R^{\text{trans}}.$$

 $^{^{10}}$ Slogan: The transitive closure of R is the smallest transitive relation containing R.

¹¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)),\diamond)$.

4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{trans}} = (R^{\text{trans}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \downarrow (-)^{\dagger}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A).$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A).$$

5. Interaction With Composition. We have

$$(S \diamond R)^{\text{trans}} \stackrel{\text{poss.}}{\neq} S^{\text{trans}} \diamond R^{\text{trans}}, \qquad (-)^{\text{trans}} \times (-)^{\text{$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 10.4.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, *Idempotency*: This follows from *Item 2*.

Item 4, Interaction With Inverses: We have

$$(R^{\dagger})^{\text{trans}} = \bigcup_{n=1}^{\infty} (R^{\dagger})^{\diamond n}$$

$$= \bigcup_{n=1}^{\infty} (R^{\diamond n})^{\dagger}$$

$$= (\sum_{n=1}^{\infty} R^{\diamond n})^{\dagger}$$

$$= (R^{\text{trans}})^{\dagger},$$

where we have used, respectively:

- Definition 10.4.2.1.2.
- Constructions With Relations, ?? of ??.
- Constructions With Relations, ?? of Definition 9.2.3.1.2.
- Definition 10.4.2.1.2.

This finishes the proof.

Item 5, *Interaction With Composition*: This follows from Item 2 of Definition 10.4.1.1.4. □

10.5 Equivalence Relations

10.5.1 Foundations

Let A be a set.

Definition 10.5.1.1.1. A relation R is an equivalence relation if it is reflexive, symmetric, and transitive. ¹²

Example 10.5.1.1.2. The **kernel of a function** $f: A \to B$ is the equivalence relation $\sim_{\text{Ker}(f)}$ on A obtained by declaring $a \sim_{\text{Ker}(f)} b$ iff f(a) = f(b).

Definition 10.5.1.1.3. Let A and B be sets.

- 1. The set of equivalence relations from A to B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.
- 2. The **poset of relations from** A **to** B is is the subposet $\mathbf{Rel}^{eq}(A, B)$ of $\mathbf{Rel}(A, B)$ spanned by the equivalence relations.

10.5.2 The Equivalence Closure of a Relation

Let R be a relation on A.

Definition 10.5.2.1.1. The equivalence closure¹⁴ of \sim_R is the relation \sim_R^{eq15} satisfying the following universal property:¹⁶

(*) Given another equivalence relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{eq}} \subset \sim_S$.

Construction 10.5.2.1.2. Concretely, \sim_R^{eq} is the equivalence relation on A defined by

$$\begin{split} R^{\text{eq}} &\stackrel{\text{\tiny def}}{=} \left(\left(R^{\text{refl}} \right)^{\text{symm}} \right)^{\text{trans}} \\ &= \left(\left(R^{\text{symm}} \right)^{\text{trans}} \right)^{\text{refl}} \end{split}$$

 $^{^{12}}$ Further Terminology: If instead R is just symmetric and transitive, then it is called a partial equivalence relation.

¹³The kernel $Ker(f): A \to A$ of f is the underlying functor of the monad induced by the adjunction $Gr(f) \dashv f^{-1}: A \rightleftharpoons B$ in **Rel** of Constructions With Relations, ?? of ??.

¹⁴ Further Terminology: Also called the equivalence relation associated to \sim_R .

¹⁵ Further Notation: Also written R^{eq} .

¹⁶Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

there exists
$$(x_1, \ldots, x_n) \in R^{\times n}$$
 satisfying at least one of the following conditions:

1. The following conditions are satisfied:

(a) We have $a \sim_R x_1$ or $x_1 \sim_R a$;
(b) We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \le i \le n-1$;
(c) We have $b \sim_R x_n$ or $x_n \sim_R b$;

2. We have $a = b$.

there exists $(x_1, \ldots, x_n) \in \mathbb{R}^{\times n}$ satisfying at least one of the following conditions:

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 10.2.2.1.1, 10.3.2.1.1 and 10.4.2.1.1), we see that it suffices to prove that:

- 1. The symmetric closure of a reflexive relation is still reflexive.
- 2. The transitive closure of a symmetric relation is still symmetric. which are both clear.

Proposition 10.5.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{eq} \dashv \stackrel{\leftarrow}{\Xi}): \operatorname{\mathbf{Rel}}(A,B) \xrightarrow{\stackrel{(-)^{eq}}{\Xi}} \operatorname{\mathbf{Rel}}^{eq}(A,B),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathrm{eq}}(R^{\mathrm{eq}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{eq} = R$.
- 3. *Idempotency*. We have

$$(R^{\rm eq})^{\rm eq} = R^{\rm eq}.$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 10.5.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

10.6 Quotients by Equivalence Relations

10.6.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.

Definition 10.6.1.1.1. The equivalence class associated to a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$

$$= \{x \in X \mid a \sim_R x\}. \qquad \text{(since } R \text{ is symmetric)}$$

10.6.2 Quotients of Sets by Equivalence Relations

Let A be a set and let R be a relation on A.

Definition 10.6.2.1.1. The quotient of X by R is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{[a] \in \mathcal{P}(X) \mid a \in X\}.$$

Remark 10.6.2.1.2. The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:

- Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.
- Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{ x \in X \mid x \sim_R a \},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have [a] = [a]'.¹⁷

• Transitivity. If R is transitive, then [a] and [b] are disjoint iff $a \sim_R b$, and equal otherwise.

 $^{^{17}\}mathrm{When}$ categorifying equivalence relations, one finds that $\left[a\right]$ and $\left[a\right]'$ correspond to

Proposition 10.6.2.1.3. Let $f: X \to Y$ be a function and let R be a relation on X.

1. As a Coequaliser. We have an isomorphism of sets

$$X/\sim_R^{\mathrm{eq}} \cong \mathrm{CoEq}\Bigg(R \hookrightarrow X \times X \stackrel{\mathrm{pr}_1}{\overset{\rightarrow}{\mathrm{pr}_2}} X\Bigg),$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

2. As a Pushout. We have an isomorphism of sets 18

$$X/\sim_R^{\mathrm{eq}} \cong X \coprod_{\mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2)} X,$$

$$X/\sim_R^{\mathrm{eq}} \longleftarrow X$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$X \leftarrow \mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2).$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

3. The First Isomorphism Theorem for Sets. We have an isomorphism of $\operatorname{sets}^{19,20}$

$$X/\sim_{\mathrm{Ker}(f)} \cong \mathrm{Im}(f).$$

4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:

presheaves and copresheaves; see Constructions With Categories, ??.

$$\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2) \cong X \times_{X/\sim_R^{\operatorname{eq}}} X, \qquad \qquad \downarrow \qquad \qquad \downarrow \\ X \longrightarrow X/\sim_R^{\operatorname{eq}} X$$

$$Ker(f): X \to X$$
,

¹⁸Dually, we also have an isomorphism of sets

¹⁹ Further Terminology: The set $X/\sim_{\mathrm{Ker}(f)}$ is often called the **coimage of** f, and denoted by $\mathrm{CoIm}(f)$.

 $^{^{20}}$ In a sense this is a result relating the monad in **Rel** induced by f with the comonad in **Rel** induced by f, as the kernel and image

(a) There exists a map

$$\bar{f}: X/\sim_R \to Y$$

making the diagram

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).
- 5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \bar{f} is the unique map making the diagram

commute.

6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$\frac{\operatorname{Hom}_{\mathsf{Sets}}(X/\sim_R, Y) \cong \operatorname{Hom}_{\mathsf{Sets}}^R(X, Y),}{\operatorname{Im}(f) \subset Y}$$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$(\operatorname{Gr}(f) \dashv f^{-1}): A \xrightarrow{\operatorname{Gr}(f)} B$$

of Constructions With Relations, ?? of ??.

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, given by the assignment $f \mapsto \bar{f}$ of Items 4 and 5, where $\text{Hom}^R_{\mathsf{Sets}}(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\text{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{ then} \\ f(x) = f(y) \end{array} \right\}.$$

- 7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map \bar{f} is an injection.
 - (b) We have R = Ker(f).
 - (c) For each $x, y \in X$, we have $x \sim_R y$ iff f(x) = f(y).
- 8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map $f: X \to Y$ is surjective.
 - (b) The map $\bar{f}: X/\sim_R \to Y$ is surjective.
- 9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:
 - (a) The map f satisfies the equivalent conditions of Item 4:
 - There exists a map

$$\bar{f} \colon X/\sim_R^{\text{eq}} \to Y$$

making the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

commute.

- For each $x, y \in X$, if $x \sim_R^{eq} y$, then f(x) = f(y).
- (b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

Proof. Item 1, As a Coequaliser: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro25c].

Item 5, Descending Functions to Quotient Sets, II: See [Pro25d].

Item 6, Descending Functions to Quotient Sets, III: This follows from Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro25b].

Item 8, Descending Functions to Quotient Sets, V: See [Pro25a].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item 8a \Longrightarrow Item 8b is clear.

Conversely, suppose that, for each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (*) There exist $(x_1, \ldots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - The following conditions are satisfied:
 - * We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - * We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \leq i \leq n-1$;
 - * We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes

References

[MSE 2096272] Akiva Weinberger. Is composition of two transitive relations transitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2096272 (cit. on p. 9).

[Pro25a] Proof Wiki Contributors. Condition For Mapping from Quotient Set To Be A Surjection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection (cit. on p. 18).

[Pro25b] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be An Injection—Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Injection (cit. on p. 18).

References 21

[Pro25c] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be Well-Defined — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined (cit. on p. 18).

[Pro25d] Proof Wiki Contributors. Mapping From Quotient Set When Defined Is Unique — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Mapping_from_Quotient_Set_when_Defined_is_Unique (cit. on p. 18).