

Instruções

- 1- Você está recebendo o seguinte material:
- a) este caderno com o enunciado das 40 (quarenta) questões objetivas, das 6 (seis) questões discursivas específicas para cada área, das quais você deverá responder a 5 (cinco), à sua escolha, da mesma área, e das questões relativas às suas impressões sobre a prova, assim distribuídas:

Partes	Nºs das Questões	Nºs das pp. neste Caderno	Valor de cada parte
A - Objetiva	1 a 40	3 a 6	50%
B - Discursiva específica			
de BACHARELADO	1 a 6	7 e 8	50%
C - Discursiva específica			30 /0
de LICENCIATURA	7 a 12	9 e 10	
Impressões sobre a prova	41 a 49	11	_

- b) 01 Caderno de Respostas em cuja capa existe, na parte inferior, um cartão destinado às respostas das questões objetivas e de impressões sobre a prova. O desenvolvimento e as respostas das questões discursivas deverão ser feitos a caneta esferográfica de tinta preta e dispostos nos espaços especificados nas páginas do Caderno de Respostas.
- 2 Verifique se este material está em ordem e se o seu nome no Cartão-Resposta está correto. Caso contrário, notifique imediatamente a um dos Responsáveis pela sala.
- **3** Após a conferência do seu nome no Cartão-Resposta, você deverá assiná-lo no espaço próprio, utilizando caneta esferográfica de tinta preta e, imediatamente após, deverá assinalar, também no espaço próprio, o número correspondente a sua prova (1,2,3) ou 4). Deixar de assinalar esse número implica anulação da parte objetiva da prova.
- **4 -** No Cartão-Resposta, a marcação das letras correspondentes às respostas assinaladas por você para as questões objetivas (apenas uma resposta por questão) deve ser feita cobrindo a letra e preenchendo todo o espaço compreendido pelo círculo que a envolve com um traço contínuo e denso, a lápis preto nº 2 ou a caneta esferográfica de tinta preta. A leitora ótica é sensível a marcas escuras, portanto, preencha os campos de marcação completamente, sem deixar claros.

Exemplo:

- **5 -** Tenha cuidado com o Cartão-Resposta, para não o dobrar, amassar ou manchar. Este Cartão somente poderá ser substituído caso esteja danificado em suas margens-superior e/ou inferior barra de reconhecimento para leitura ótica.
- **6** Esta prova é individual. Você pode usar calculadora científica; entretanto são vedadas qualquer comunicação e troca de material entre os presentes, consultas a material bibliográfico, cadernos ou anotações de qualquer espécie.
- 7 Quando terminar, entregue a um dos Responsáveis pela sala o Cartão-Resposta grampeado ao Caderno de Respostas e assine a Lista de Presença. Cabe esclarecer que nenhum graduando deverá retirar-se da sala antes de decorridos 90 (noventa) minutos do início do Exame. Após esse prazo, você poderá sair e levar este Caderno de Questões.

ATENÇÃO:

Você poderá retirar o boletim com seu desempenho individual pela Internet, mediante a utilização de uma senha pessoal e intransferível, a partir de novembro. A sua senha é o número de código que aparece no lado superior direito do Cartão-Resposta. Guarde bem esse número, que lhe permitirá conhecer o seu desempenho. Caso você não tenha condições de acesso à Internet, solicite o boletim ao INEP no endereço: Esplanada dos Ministérios, Bloco L, Anexo II, Sala 411 - Brasília/DF - CEP 70047-900, juntando à solicitação uma fotocópia de seu documento de identidade.

8 - Você terá 04 (quatro) horas para responder às questões objetivas, discursivas e de impressões sobre a prova.

OBRIGADO PELA PARTICIPAÇÃO!

PROVA

CADERNO DE QUESTÕES

MATEMÁTICA

PRIMEIRA PARTE - QUESTÕES OBJETIVAS

ANTES DE MARCAR SUAS RESPOSTAS, ASSINALE, NO ESPAÇO PRÓPRIO DO CARTÃO-RESPOSTA, O NÚMERO DO SEU GABARITO.

I 1

As probabilidades dos eventos X, Y e $X \cap Y$ são iguais a 0,6; 0,5 e 0,1, respectivamente. Quanto vale a probabilidade do evento X-Y?

- (A) 0,1
- (B) 0.2
- (C) 0,3
- (D) 0,4
- (E) 0.5

2

O conjunto das soluções reais da equação

- 2x + 3 (x + 1) = x + 4 é
- $(A) \varnothing$
- (B) {0}
- (C) {2}
- (D) {4}
- (E) {2, 4}

3

Se o resto da divisão do inteiro N por 5 é igual a 3, o resto da divisão de N^2 por 5 é, necessariamente, igual a

- (A) 0
- (B) 1
- (C) 2
- (E) 4

4

A força gravitacional com que o Sol atrai a Terra

- (A) é menor que a força com que a Terra atrai o Sol.
- (B) é maior que a força com que a Terra atrai o Sol.
- (C) é igual à força com que a Terra atrai o Sol.
- (D) dobraria, se a distância entre a Terra e o Sol se reduzisse à metade.
- (E) dobraria, se as massas da Terra e do Sol dobrassem.

5

Toda sequência limitada de números reais

- (A) é convergente.
- (B) é divergente.
- (C) é monótona.
- (D) admite subsequência convergente.
- (E) tem apenas um número finito de termos distintos.

6

A função $F: \mathbb{R}^2 \to \mathbb{R}$ definida por $F(x, y) = (x-3)^2 + (4y+1)^2 - 4$

- (A) não tem máximo nem mínimo.
- (B) tem máximo e mínimo.
- (C) tem máximo, mas não tem mínimo.
- (D) tem mínimo, mas não tem máximo.
- (E) é limitada.

7

Um quadrado de lado 2 gira em torno de um de seus lados, gerando um sólido de revolução. O volume desse sólido é igual a

- (A) $\frac{4\pi}{3}$
- (B) 2π
- (C) $\frac{8\pi}{3}$
- $(D) 4\pi$
- (E) 8π

8

Num plano, o lugar geométrico dos pontos que eqüidistam de uma reta fixa e de um ponto fixo que não pertence à reta é uma (A) reta.

- (B) parábola.
- (C) elipse.
- (D) hipérbole.
- (E) circunferência.

9

Os inteiros, com a adição e a multiplicação usuais, constituem um exemplo de

- (A) corpo.
- (B) anel com unidade.
- (C) anel com divisores de zero.
- (D) grupo multiplicativo abeliano.
- (E) grupo multiplicativo não abeliano.

10

Se a sequência $\{a_n\}$ é convergente, então $\lim_{n\to\infty} (a_{n+1}-a_n)$

- (A) vale 0.
- (B) vale 1.
- (C) é positivo e diferente de 1.
- (D) é infinito.
- (E) pode não existir.

11

Um triângulo de lados $a,\,b$ e c cujas alturas são $h_a,\,h_b$ e h_c é tal que a>b>c. Então, necessariamente,

- (A) a maior altura é h_a .
- (B) a maior altura é h_h^a
- (C) a maior altura é h.
- (D) a menor altura é h_{h} .
- (E) a menor altura é h_c^v

12

O centro do círculo circunscrito a um triângulo é o ponto de encontro das

- (A) mediatrizes de seus lados.
- (B) suas medianas.
- (C) suas alturas.
- (D) suas bissetrizes internas.
- (E) suas bissetrizes externas.

13

Quantos são os números complexos cujo cubo vale i?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) infinitos

3

14

Se P(x) é um polinômio do segundo grau cujas raízes são 2 e 3, o polinômio $[P(x)]^2$ admite

- (A) 2 e 3 como raízes simples.
- (B) 2 e 3 como raízes duplas.
- (C) 4 e 9 como raízes simples.
- (D) 4 e 9 como raízes duplas.
- (E) duas raízes reais e duas não reais.

15

O gráfico da função real $f(x) = \sqrt[3]{x}$ pode ser obtido do gráfico da função real $g(x) = x^3$ por meio de uma

- (A) reflexão no eixo dos x.
- (B) reflexão no eixo dos y.
- (C) reflexão na bissetriz dos quadrantes ímpares.
- (D) reflexão na bissetriz dos quadrantes pares.
- (E) simetria em relação à origem.

Escalonando o sistema

$$\begin{cases} x - 2y + 4z = -1 \\ 2x + y - 7z = 3 \\ x - 4y + 10z = -3 \end{cases}$$

chegou-se a
$$\begin{cases} x - 2z = 1 \\ y - 3z = 1 \\ 0 = 0 \end{cases}$$

Então, os três planos dados pelas equações do sistema inicial

- (A) são paralelos.
- (B) têm apenas um ponto comum.
- (C) têm uma reta comum.
- (D) têm interseção vazia, porque dois deles são paralelos.
- (E) têm interseção vazia, embora não haja entre eles dois que sejam paralelos.

17

Em \mathbb{R}^2 , a equação xy = 1 representa uma

- (A) reta.
- (B) circunferência.
- (C) elipse.
- (D) parábola.
- (E) hipérbole.

18

Quanto vale $\lim_{x \to \infty} [ln2x - lnx]$?

- (A) 0
- (B) ln 2
- (C) 1
- (D) *e*
- (E) ∞

19

Se q é um número real, a série 1 + q + q^2 + ... + q^n + ... é convergente se e somente se

- (A) $q \le -1$
- (B) $q \le 1$
- (C) $|q| \le 1$
- (D) |q| < 1
- (E) |q| > 1

20

O lugar geométrico dos pontos do espaço que eqüidistam dos três planos coordenados é

- (A) uma reta.
- (B) a união de 2 retas.
- (C) a união de 3 retas.
- (D) a união de 4 retas.
- (E) a união de 8 retas.

21

"Para calcular o índice de discriminação das questões de múltipla escolha, foi adotado o seguinte procedimento: calcularam-se as notas de cada graduando no conjunto das questões objetivas. (...) A partir daí, os 27% que tiveram as notas mais altas foram denominados de grupo superior de desempenho e os 27% com as notas mais baixas, grupo inferior de desempenho. Verificou-se, então, para cada questão, o percentual dos integrantes de cada um desses grupos que acertaram a resposta. O índice de discriminação foi calculado pela diferença entre essas duas razões."

(adaptado de MEC/INEP/DAES. Relatório do Exame Nacional de Cursos 2002 - Matemática)

Entre que valores pode variar o índice de discriminação?

- (A) -∞ e ∞
- (B) -1 e 0
- (C) -1 e 1
- (D) 0 e 1
- (E) 0 e ∞

22

Se $\cos a = 0.6$, então $sen\left(\frac{3\pi}{2} - a\right)$

- (A) vale -0.8.
- (B) vale -0.6.
- (C) vale 0,6.
- (D) vale 0,8.
- (E) só pode ser determinado com o conhecimento do quadrante de a.

23

A integral imprópria $\int_{1}^{\infty} \frac{dx}{x^{p}}$ é convergente se e somente se

- (A) p > 1
- (B) p = 1
- (C) $p \ge 1$
- (D) p < 1
- (E) p > 0

24

Defina, no conjunto dos inteiros positivos, a operação * por a* b= máximo divisor comum de a e b. Assinale, a respeito de *, a afirmativa **FALSA**.

- (A) * é comutativa.
- (B) * é associativa.
- (C) 1 é elemento neutro.
- (D) a * a = a, para todo a.
- (E) Para cada a, existe b tal que a * b = 1.

| 25

Uma base do espaço vetorial das soluções da equação diferencial y'' + y = 0 é formada pelas funções

- (A) $f_1(x) = senx$ e $f_2(x) = cosx$
- (B) $f_1(x) = senx$ e $f_2(x) = 2senx$
- (C) $f_1(x) = \cos x \ e \ f_2(x) = 2\cos x$
- (D) $f_1(x) = x$ e $f_2(x) = x^{-1}$
- (E) $f_1(x) = e^x$ e $f_2(x) = e^{-x}$

Se $g: \mathbf{R} \to \mathbf{R}$ tem todas as derivadas contínuas, g'(a) = g''(a) = 0 e g'''(a) = 2, então a função g possui, em x = a, um

- (A) máximo relativo.
- (B) máximo absoluto.
- (C) mínimo relativo.
- (D) mínimo absoluto.
- (E) ponto de inflexão.

27

Considere uma caixa d'água, inicialmente vazia, em forma de tronco de cone reto, cuja maior base é a superior, e que está sendo enchida por uma torneira de vazão constante. Em cada instante t, entre o momento em que a torneira foi aberta e aquele em que a caixa ficou cheia, seja h(t) a altura da água na caixa. A respeito dos sinais de h'(t) e h''(t), pode-se afirmar que

(A)
$$h'(t) > 0$$
 e $h''(t) > 0$

(B)
$$h'(t) > 0$$
 e $h''(t) < 0$

(C)
$$h'(t) > 0$$
, mas o sinal de $h''(t)$ varia.

(D)
$$h'(t) < 0$$
 e $h''(t) > 0$

(E)
$$h'(t) < 0$$
 e $h''(t) < 0$

28

Na figura, z e w são números complexos.

Então, w é igual a

- (A) 1/z
- (B) 2/z
- (C) z^2
- (D) 2z 1
- (E) 2z

29

$$\lim_{x \to 0} \left[x. sen \frac{1}{x} \right]$$

- (A) vale 0.
- (B) vale 1.
- (C) vale e.
- (D) é infinito.
- (E) não existe.

30

Considere uma piscina e, em cada ponto da água, a pressão hidrostática no ponto. Em cada ponto, o gradiente de pressão

- (A) é horizontal.
- (B) é vertical e aponta para cima.
- (C) é vertical e aponta para baixo.
- (D) é inclinado e aponta para cima.
- (E) é inclinado e aponta para baixo.

31

A matriz $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, considerada como transformação do

plano, representa uma

- (A) projeção.
- (B) simetria central.
- (C) simetria axial.
- (D) homotetia.
- (E) rotação.

32

Em \mathbb{R}^3 , os vetores (x, y, z) tais que x + y = 0

- (A) formam um subespaço vetorial de dimensão 0.
- (B) formam um subespaço vetorial isomorfo a ${\it R}$.
- (C) formam um subespaço vetorial isomorfo a \mathbb{R}^2 .
- (D) formam um subespaço vetorial isomorfo a \mathbb{R}^3 .
- (E) não formam um subespaço vetorial.

33

A função real definida por $f(x) = 4x^2$, se x > 1, e f(x) = k + x, se $x \le 1$, será contínua, se a constante k valer

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

34

Sejam $M = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ e N = [1, 2[. O conjunto dos

pontos de acumulação de $M \cup N$ é

- (A) $M \cup N$
- (B) [1, 2]
- (C) N
- (D) $\{0\} \cup [1, 2[$
- (E) $\{0\} \cup [1, 2]$

35

Se p é inteiro e positivo, a soma da série

$$1 + \frac{px}{1!} + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots$$
 vale

- $(A) \ \frac{1}{1-px}$
- (B) e^{px}
- (C) pe^{px}
- (D) $(1 + x)^p$
- $(E) (1 + p)^{x}$

36

Em um jogo de par-ou-ímpar, cada um dos dois jogadores escolhe, ao acaso, um dos seis inteiros de 0 a 5. Verifica-se, então, se a soma dos números escolhidos é par ou ímpar. Observando o jogo, José concluiu que era mais provável que a soma fosse par do que ímpar, porque há onze valores possíveis para a soma, os inteiros de 0 a 10, e, entre eles, há seis números pares e apenas cinco números ímpares.

Assinale, a respeito da conclusão de José e da justificativa por ele apresentada, a afirmativa correta.

- (A) As probabilidades são iguais; José errou quando considerou 0 como par.
- (B) As probabilidades são iguais; José errou quando considerou igualmente prováveis as várias somas possíveis.
- (C) A probabilidade de a soma ser par é menor que a de ser ímpar.
- (D) A probabilidade de a soma ser par é maior do que a de ser ímpar, mas não pelo motivo apresentado por José.
- (E) A conclusão de José e sua justificativa estão corretas.

37

Um vetor de ${\it R}^2$ que constitui com (1, 0) um par de vetores linearmente dependentes é

- (A) (-1, -1)
- (B) (-1, 0)
- (C)(0,1)
- (D)(1,1)
- (E)(2,3)

38

Sejam p e q inteiros positivos, relativamente primos (primos entre si), $q \geq 2$, e seja D o conjunto dos fatores primos de q. O racional $\frac{p}{q}$ admitirá uma representação decimal finita se e somente se

- (A) $D \supset \{2, 5\}$
- (B) $D = \{2, 5\}$
- (C) $D \subset \{2, 5\}$
- (D) $D \cap \{2, 5\} = \emptyset$
- (E) $D \cap \{2, 5\} \neq \emptyset$

39

Em \mathbb{R}^3 , a equação $x^2 - y^2 - z^2 = 0$ representa

- (A) um elipsóide.
- (B) um parabolóide.
- (C) um hiperbolóide de uma folha.
- (D) um hiperbolóide de duas folhas.
- (E) uma superfície cônica.

40

Qual dos gráficos a seguir melhor representa a função que a cada número real x associa a distância de x ao número 1?

SEGUNDA PARTE – QUESTÕES DISCURSIVAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO

A seguir, são apresentadas 6 (seis) questões das quais você deverá responder a apenas 5 (cinco), à sua escolha. Você deve indicar as questões escolhidas nos locais apropriados do Caderno de Respostas. Se você responder a todas as questões, serão corrigidas apenas as 5 (cinco) primeiras respostas.

Seja
$$I = \int_0^3 \int_{\sqrt{\frac{x}{3}}}^1 e^{y^3} dy dx$$
.

a) Esboce graficamente a região de integração.

(valor: 5,0 pontos)

b) Inverta a ordem de integração.

(valor: 10,0 pontos)

c) Calcule o valor de I.

(valor: 5,0 pontos)

2

Seja Z_{18} o anel dos inteiros módulo 18 e seja G o grupo multiplicativo dos elementos invertíveis de Z_{18} .

a) Escreva todos os elementos do grupo G.

(valor: 10,0 pontos)

b) Mostre que G é cíclico, calculando explicitamente um gerador, ou seja, mostre que existe $g \in G$ tal que todos os elementos de G são potências de g. (valor: 10,0 pontos)

a) Dada a matriz simétrica $A = \begin{bmatrix} 1 & 6 \\ 6 & -4 \end{bmatrix}$, escreva, em forma de polinômio f(x,y), a forma quadrática definida por A, isto é, calcule os coeficientes numéricos de

 $f(x,y) = v^t A v$, onde $v = \begin{bmatrix} x \\ y \end{bmatrix}$ e v^t significa "v transposto".

(valor: 5,0 pontos)

- b) Encontre uma matriz invertível P tal que P^{t} A P = D, onde D é uma matriz diagonal. Para isto, basta tomar como P uma matriz que tenha por colunas um par de autovetores ortonormais de A. (valor: 10,0 pontos)
- c) Na forma quadrática $f(x,y) = v^t A v$, faça uma transformação de coordenadas $v = P \tilde{v}$, sendo $\tilde{v} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}$, obtendo a forma quadrática diagonalizada, isto é, sem o termo em $\tilde{x}\tilde{y}$. (valor: 5,0 pontos)

4

Seja $p(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$, com $n \ge 1$, um polinômio de coeficientes reais. Suponha que p'(x) divide p(x).

- a) Prove que o quociente $q(x) = \frac{p(x)}{p'(x)}$ é da forma $q(x) = \frac{1}{n}(x x_0)$, $x_0 \in \mathbb{R}$. (valor: 5,0 pontos)
- **b)** Encontre todos os polinômios p(x) que satisfazem essa condição, resolvendo a equação diferencial q(x) p'(x) p(x) = 0.

(valor: 15,0 pontos)

Dado um conjunto aberto $U \subset \mathbf{R}^3$ e um campo de vetores $X = (X_1, X_2, X_3)$: $U \to \mathbf{R}^3$ diferenciável, o divergente de \mathbf{X} é definido por

$$div\,X = \frac{\partial X_1}{\partial x} + \frac{\partial X_2}{\partial y} + \frac{\partial X_3}{\partial z}.$$

Para uma função de classe C 2 , f : $U \to {\it I\!\!R} \,$ o laplaciano de f é definido por

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

a) Se $f:U\to \mathbf{R}$ é diferenciável e $X:U\to \mathbf{R}^3$ é um campo de vetores diferenciável, mostre que

$$div(fX) = f div X + \nabla f \cdot X$$
,

sendo ∇f o gradiente de f e $\ \nabla f \cdot X$ o produto interno entre ∇f e X.

(valor: 5,0 pontos)

- **b)** Se $f:U\to \mathbf{R}$ é de classe C^2 , mostre que $\operatorname{div}(f\nabla f)=f\Delta f+\|\nabla f\|^2$, sendo $\|\cdot\|$ a norma euclidiana. (valor: 5,0 pontos)
- **c)** Se $U = B = \{x \in \mathbb{R}^3 : \|x\| < 1\}$ e $f: \overline{B} \to \mathbb{R}$ é de classe C^3 tal que f(x) > 0 para qualquer $x \neq 0$, $div(f\nabla f) = 5f$ e $\|\nabla f\|^2 = 2f$, calcule

$$\int_{S} \frac{\partial f}{\partial N} dS,$$

onde \overline{B} é o fecho de B, S é a fronteira de B, N é a norma unitária exterior a S, $\frac{\partial f}{\partial N}$ é a derivada direcional de f na direção de N e dS é o elemento de área de S. (valor: 10,0 pontos)

6

Considere a função real f definida, para $x \ge 0$, por $f(x) = \sqrt{2x}$.

a) Prove que se 0 < x < 2, então x < f(x) < 2.

(valor: 5,0 pontos)

- b) Prove que é convergente a seqüência definida recursivamente por
 - i) $a_1 = \sqrt{2}$
 - ii) $a_{n+1} = f(a_n)$, para todo $n \ge 1$

(valor: 5,0 pontos)

c) Calcule $\lim_{n \to \infty} a_n$ (valor: 10,0 pontos)

MATEMÁTICA 8 PROVA 1 ENC 2003

TERCEIRA PARTE – QUESTÕES DISCURSIVAS ESPECÍFICAS PARA OS FORMANDOS DE LICENCIATURA

A seguir, são apresentadas 6 (seis) questões das quais você deverá responder a apenas 5 (cinco), à sua escolha. Você deve indicar as questões escolhidas nos locais apropriados do Caderno de Respostas. Se você responder a todas as questões, serão corrigidas apenas as 5 (cinco) primeiras.

7

Uma roda-gigante tem 30 metros de diâmetro, completa uma volta em 120 segundos e o embarque dos passageiros se dá no carro situado no ponto mais baixo da roda-gigante, a 2 metros de altura a partir do solo. Considere, ainda, a roda como uma circunferência num plano perpendicular ao plano do solo, o passageiro como um ponto dessa circunferência, o movimento uniforme e o instante do início do movimento como t=0.

- a) Encontre a altura máxima, em relação ao solo, alcançada pelo passageiro durante uma volta completa e a velocidade angular da roda, em radianos por segundo.
 (valor: 5,0 pontos)
- b) É verdadeira a afirmação: "Em quinze segundos, a altura alcançada pelo passageiro é um quarto da altura máxima que ele pode alcançar"? Justifique sua resposta. (valor: 5,0 pontos)
- c) Encontre a altura em que o passageiro estará no instante t = 75s.
- d) Determine h(t), altura (em relação ao solo) em que se encontra o passageiro no instante t, e esboce o seu gráfico. (valor: 5,0 pontos)

8

O ensino de logaritmos apresenta algumas dificuldades metodológicas. Uns preferem construir primeiramente a função exponencial e definir a função logaritmo como inversa da função exponencial, transferindo as dificuldades para a construção da função exponencial. Outros preferem definir logaritmos como áreas, ou seja, como integrais.

Adotaremos, nesta guestão, a definição de logaritmo neperiano (natural) pela fórmula

$$ln x = \int_{1}^{x} \frac{dt}{t}$$
, para $x > 0$.

Dados a e b positivos, prove que:

a)
$$\int_{1}^{a} \frac{dt}{t} = \int_{b}^{ab} \frac{dt}{t}$$
 (valor: 10,0 pontos)

Sugestão: mudança de variáveis

b) ln(ab) = ln(a) + ln(b), usando a definição acima.

(valor: 10,0 pontos)

(valor: 5,0 pontos)

Em um livro texto para a segunda série do ensino médio encontra-se, sem qualquer justificativa, a afirmação abaixo.

"PROPRIEDADES DOS POLIEDROS CONVEXOS

Num poliedro convexo, a soma dos ângulos de todas as faces é dada por $S = (V - 2).360^{\circ}$, onde V é o número de vértices."

Em seguida, há um exemplo de aplicação dessa fórmula e são propostos exercícios. Entre estes, há um, classificado como de fixação, que tem o seguinte enunciado: "Qual é a soma dos ângulos das faces de um poliedro convexo que tem 12 faces e 15 arestas?" A resposta, dada no final do livro, é: 1080°.

- a) Demonstre que, em um poliedro convexo com V vértices, a soma dos ângulos internos de todas as faces é, de fato, dada por $S = (V 2).360^{\circ}$. (valor: 10,0 pontos)
- b) De acordo com o Teorema de Euler, se existisse um poliedro convexo com 12 faces e 15 arestas, quantos vértices teria?

(valor: 5,0 pontos)

c) Prove que o poliedro descrito no item anterior não pode existir. (valor: 5,0 pontos)

10

Os Parâmetros Curriculares Nacionais (PCN) sugerem os jogos como uma atraente possibilidade para o ensino da Matemática. Um professor dividiu seus alunos em duplas e propôs a cada dupla o jogo descrito a seguir. O primeiro jogador escolhe um número no conjunto {1, 2, 3, 4, 5, 6, 7} e o anuncia. O segundo jogador escolhe um número no mesmo conjunto (pode escolher o mesmo número escolhido pelo primeiro jogador), soma-o ao anunciado pelo primeiro jogador e anuncia a soma. O primeiro jogador escolhe um número no mesmo conjunto, soma-o à soma anunciada por seu adversário e anuncia essa nova soma, e assim por diante. Ganha quem conseguir anunciar a soma 40.

Uma das partidas desenvolveu-se do modo seguinte (P = primeiro jogador, S = segundo jogador):

S: 3 + 6 = 9

P: 9 + 7 = 16

S: 16 + 4 = 20

P: 20 + 5 = 25

S: 25 + 7 = 32

P: perdi!

a) Indique três funções do uso dos jogos no ensino da Matemática, de acordo com os PCN.

(valor: 5,0 pontos)

b) Mostre que realmente o primeiro jogador perdeu essa partida.

(valor: 5,0 pontos)

c) Que estratégia deve ser usada por um dos jogadores para ganhar sempre?

(valor: 5,0 pontos)

d) Que conceito matemático pode ser trabalhado a partir desse jogo?

(valor: 5,0 pontos)

11

Uma tendência que se nota em alguns livros didáticos recentemente publicados é a apresentação da Geometria (na 5ª série) com o estudo (descritivo) de sólidos e a exploração de conceitos como sólidos redondos (podem rolar, se empurrados) e não redondos. As noções pelas quais se iniciavam Os Elementos (ponto, reta, plano) são apresentadas posteriormente, por exemplo: o plano é apresentado como um conceito abstrato, idealizado a partir de objetos concretos tais como o tampo de uma mesa na qual se apóiam os poliedros, ou as faces de um sólido não redondo.

Informe que seqüência você utilizaria para a apresentação desse conteúdo e justifique sua escolha.

12

Uma nova linha no ensino de Geometria vem recebendo o nome de Geometria Dinâmica. Trata-se da utilização de softwares de construções geométricas que permitem a transformação de figuras mantendo um certo número de suas propriedades.

a) Indique o nome de um desses softwares, descrevendo duas de suas potencialidades.

(valor: 10,0 pontos)

b) Cite duas vantagens do uso de um desses softwares sobre a construção com régua e compasso em papel. (valor: 5,0 pontos)

c) Apresente um exemplo de propriedade geométrica que possa ser mais bem estudada na "Geometria Dinâmica" do que no ensino sem o computador. (valor: 5,0 pontos)

MATEMÁTICA ENC 2003 10 PROVA 1

IMPRESSÕES SOBRE A PROVA

As questões abaixo visam a levantar sua opinião sobre a qualidade e a adequação da prova que você acabou de realizar e também sobre o seu desempenho na prova.

Assinale, nos espaços próprios (parte inferior) do Cartão-Resposta, as alternativas correspondentes à sua opinião e à razão que explica o seu desempenho.

Agradecemos sua colaboração.

41

Qual o ano de conclusão deste seu curso de graduação?

- (A) 2003.
- (B) 2002.
- (C) 2001.
- (D) 2000.
- (E) Outro.

42

Qual o grau de dificuldade desta prova?

- (A) Muito fácil.
- (B) Fácil.
- (C) Médio.
- (D) Difícil.
- (E) Muito difícil.

43

Quanto à extensão, como você considera a prova?

- (A) Muito longa.
- (B) Longa.
- (C) Adequada.
- (D) Curta.
- (E) Muito curta.

44

Para você, como foi o tempo destinado à resolução da prova?

- (A) Excessivo.
- (B) Pouco mais que suficiente.
- (C) Suficiente.
- (D) Quase suficiente.
- (E) Insuficiente.

45

A que horas você concluiu a prova?

- (A) Antes das 14 h 30 min.
- (B) Aproximadamente às 14 h 30 min.
- (C) Entre 14 h 30 min e 15 h 30 min.
- (D) Entre 15 h 30 min e 16 h 30 min.
- (E) Entre 16 h 30 min e 17 h.

46

As questões da prova apresentam enunciados claros e objetivos?

- (A) Sim, todas apresentam.
- (B) Sim, a maioria apresenta.
- (C) Sim, mas apenas cerca de metade apresenta.
- (D) Não, poucas apresentam.
- (E) Não, nenhuma apresenta.

47

Como você considera as informações fornecidas em cada questão para a sua resolução?

- (A) Sempre excessivas.
- (B) Sempre suficientes.
- (C) Suficientes na maioria das vezes.
- (D) Suficientes somente em alguns casos.
- (E) Sempre insuficientes.

48

Com que tipo de problema você se deparou mais freqüentemente ao responder a esta prova?

- (A) Desconhecimento do conteúdo.
- (B) Forma de abordagem do conteúdo diferente daquela a que estou habituado.
- (C) Falta de motivação para fazer a prova.
- (D) Espaço insuficiente para responder às questões.
- (E) Não tive qualquer tipo de dificuldade para responder à prova.

49

Como você explicaria o seu desempenho na prova, de um modo geral?

- (A) Não estudei durante o curso a maioria desses conteúdos.
- (B) Estudei somente alguns desses conteúdos durante o curso, mas não os aprendi bem.
- (C) Estudei a maioria desses conteúdos há muito tempo e já os esqueci.
- (D) Estudei muitos desses conteúdos durante o curso, mas nem todos aprendi bem.
- (E) Estudei e conheço bem todos esses conteúdos.