Logic Synthesis

1 Variables

Given the number of input signals n, the depth d, and the specification (truth table) of the logical circuit, I defined the following variables:

- $\mathbf{c_i} :=$ "Code of the node i", for $i \in \{0, 1, ..., 2^{d+1} 2\}$.
- $\mathbf{b_i^t}$:= "Boolean value of the node i for the row t of the truth table", for $i \in \{0, 1, ..., 2^{d+1} 2\}$ and $t \in \{0, 1, ..., 2^n\}$.

For example, for a NOR-circuit that implements the functionality of an AND gate (see figure 1), with n = d = 2, one possible solution for the variables c_i and b_i^0 , with $i \in \{0, 1, ..., 6\}$, is shown in figures 2b and 2c, respectively.

Figure 1: Truth table of $y = AND(x_1, x_2)$ and NOR-circuit implementing it.

Figure 2: Visual representation of some parameters and variables.

2 Constraints

In order to simplify the definition of the constraints, I define two functions. Given the variable x_i , with $x_i = c_i$ or b_i^t ,

- left(x_i) := "Variable corresponding to the one on the left of x_i "
- $\mathbf{right}(x_i) :=$ "Variable corresponding to the one on the right of x_i "