지구온난화의 원인에 목축업/낙농업?

1. 서론

A. 자료 조사

몇 년째, 심각해지고 있는 지구온난화. 과연 원인이 무엇인가?

기사: ['화석 연료, 사막화, 화학 비료'... 지구 온난화의 5 가지 원인] 지구 온난화의 핵심원인 중 하나로 목축업/낙농업으로 인한 화학 비료 사용 및 메탄 가스 배출이라고지적하고 있다.

출처: https://news.joins.com/article/19454330

B. 참고 연구 방향

아래의 주소의 연구자의 지구온난화 연구 방법을 보면 알 수 있다시피, '지구 공전 궤도', '태양의 온도', '화산 활동', '미세먼지', '산림벌채', '오존' 등은 지구 온난화와 큰 상관관계를 가지 않는다. 그의 예로, 그래프가 같은 방향으로 진행하고 있지 않다. 출처: 출처: https://brunch.co.kr/@thyoon/1

하지만, '온실 가스'의 경우 그래프가 지구온난화의 지표와 동일한 방향으로 진행되고 있음을 알 수 있다. 이와 같이, 이번 발제에서도 유제품 생산량을 통해서 지구 온도변화와 얼마나 유사한 추이를 갖는지 알아보자!

2. 연구 계획

A. 주제

지구온난화의 원인으로 주목되고 있는 목축업/낙농업이 얼마나 상관관계를 갖고 있는지 알아보자!

B. 연구 방법

- i. 유제품 생산량, 온실가스 배출량, 지구온도 변화 데이터 수집
- ii. 각 데이터의 추이를 그래프로 표현
- iii. 서로 어떤 상관관계를 갖는지 분석. 얼마나 비슷한 추이를 보이는지 비교! Ols 회귀분석을 이용해보자! Coefficient 가 양수라면 서로 영향력을 갖는다는 것을 알 수 있겠다.
 - Ex) 유제품 생산량이 증가하면, 온실 가스 배출량도 증가하는지, 지구 온도는 올라갔는지

C. 연구 데이터

- i. 유제품 생산량
- ii. 온실가스 배출량
- iii. 지구 평균 온도 추이

D. 연구의 한계점

다른 요소를 제외하지 않고 회귀 분석을 할 경우 왜곡될 수 있지 않을까? 통제변수?를 넣어야 하지 않을까 생각이 든다. 하지만, 아직 통제변수 다루는 법을 모르니... 일단 해보자! 결론적으로는, 목축업/낙농업이 지구온난화의 기여하는 부분이 있을 수 있지만, 그 정도를 왜곡할 수도 있다!

3. 본론

A. 데이터 그래프로 표현

i. 유제품 생산량

ii. 온실가스 배출량

iii. 지구 평균 온도

B. OLS 회귀분석

i. 먼저, 각 데이터를 하나의 파일로 합친 후, 표로 나타낸다.

```
import pandas as pd
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf

totalData = pd.read_csv("csv/total.csv")
totalData
```

]:

	year	temperature	gas	milk
0	1980	0.27	567777.0807	410,629
1	1981	0.33	553345.5501	482,880
2	1982	0.13	592862.1000	562,447
3	1983	0.30	564652.2583	675,168
4	1984	0.15	551310.5385	784,324
5	1985	0.12	554318.2821	931,384
6	1986	0.19	569470.6118	1,120,076
7	1987	0.33	600408.9004	1,348,497
8	1988	0.40	594323.3854	1,581,769
9	1989	0.28	611381.4628	1,559,405
10	1990	0.44	642440.8789	1,751,153
11	1991	0.42	660724.9247	1,827,069
12	1992	0.23	673408.0558	1,928,708

```
M model = smf.ols(formula = 'temperature ~ gas', data = totalData)
   result = model.fit()
   result.summary()
```

Out [12]: OLS Regression Results

Dep. \	/ariable:		tempe	rature	ı	R-squared:	0.750
	Model:			OLS	Adj. l	R-squared:	0.741
	Method:	Le	east So	quares		F-statistic:	84.06
	Date:	Tue,	14 Jar	1 2020	Prob (F	-statistic):	6.31e-10
Time:			17	:00:49	Log-l	_ikelihood:	31.625
No. Observations:				30		AIC:	-59.25
Df Residuals:				28		BIC:	-56.45
Df Model:				1			
Covariance Type:			non	robust			
	coe	f st	td err	t	P> t	[0.025	0.975]
Intercept	-0.610	3	0.113	-5.422	0.000	-0.841	-0.380
gas	1.49e-0	6 1.62	2e-07	9.169	0.000	1.16e-06	1.82e-06
0	-:	4.000	ъ	l.: \A/-		4.070	
Omi	Omnibus: 4.236 Durbin-Watson: 1.878						
Prob(Omn	ibus):	0.120	Jarq	ue-Bera	(JB):	1.665	
	Skew:	-0.113		Prol	b(JB):	0.435	
Kur	rtosis:	1.868		Con	d. No.	4.89e+06	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.89e+06. This might indicate that there are strong multicollinearity or other numerical problems.
- OLS 회귀 분석을 해준다. ii.
 - → 회귀모형의 F 값이 84.06 유의확률(Pr>F)은 0 으로 통계적으로 유의한 모형이라 할 수 있다.
 - → R-squared 가 0.75 즉, 75%의 설명력을 갖는다. 회귀모형의 유용성은 높은 편이라는 것을 알 수 있다.
 - → "[2] The condition number is large, 4.89e+06. This might indicate that there are strong multicollinearity or other numerical problems"를 보아하니, 다중공산성의 문제가 있는 것 같다. 다중공산성이란? 일부 독립변수(예측변수, 회귀자; regressor)가 다른 독립변수와 높은 상관관계를 가질 때 또는 그럴 때 발생하는 문제를 의미한다. 해결법?

https://m.blog.naver.com/PostView.nhn?blogId=cto_hwangga&logNo=2209695423 <u>25&proxyReferer=https%3A%2F%2Fwww.google.com%2F</u> 여기를 참고해보자!

iii. OLS 회귀 분석 - milk

Dep. Variable	:	temperature		R-squared:		0.409
Model	:	OLS		Adj. R-squared:		0.065
Method	: Le	Least Squares		F-statistic:		
Date	: Wed,	Wed, 15 Jan 2020		Prob (F-statistic):		
Time	:	17:26:51		Log-Likelihood:		
No. Observations	:	20			AIC:	-17.08
Df Residuals	:	12			BIC:	-9.111
Df Model	:		7			
Covariance Type	:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.4400	0.137	3.220	0.007	0.142	0.738
milk[T.1,800,000]	-0.0250	0.167	-0.149	0.884	-0.390	0.340
milk[T.1,900,000]	-0.0100	0.167	-0.060	0.953	-0.375	0.355
milk[T.2,000,000]	-0.2000	0.193	-1.035	0.321	-0.621	0.221
milk[T.2,100,000]	0.0300	0.167	0.179	0.861	-0.335	0.395
milk[T.2,200,000]	0.0350	0.153	0.229	0.823	-0.298	0.368
milk[T.2,300,000]	0.1620	0.150	1.082	0.300	-0.164	0.488
milk[T.2,400,000]	0.1000	0.158	0.634	0.538	-0.244	0.444
	0.047			. 70.		
Omnibus:		0.617 Durbin-Wa		1.731		
Prob(Omnibus):	0.734	0.734 Jarque-Bera (JB)		0.337		
Skew:	0.306	0.306 Prob		0.845		
Kurtosis:	2.828	Co	ond. No.	14.0		

→ 이 표는 말썽쟁이 milk 의 데이터를 좀 수정해서, 1990~2009 년까지의 데이터로만 회귀분석을 돌려본 것인데... 보다시피 이상하게 나와요 ㅠㅠ 왜그런지는 저도 모르겠슴다....

4. 결론

A. 그래프를 그려보아서 비교해보자!

Milk graph 를 python 으로 그리는 것은 실패했지만! Greenhouse gas 와 temperature 은 그래프끼리 서로 비슷한 양상을 띄고 있음을 알 수 있다.

B. 회귀식

 $Y_{temperature} = -0.6103 + 0.00000149*greenhousegas$

이게 얼마나 유의미한가...는 솔직히 잘 모르겠음 temperature 자체가 30 도 이런걸 나타나는게 아니라 작년 대비 얼마나 증가했는가 0.3 증가함! 이걸 나타내는 거라서 greenhousegas 의 베타값이 0.000000149 인게 과연 큰 값인가?!

C. 원래는 milk 생산량에 대한 베타값을 구하고 싶었는데... jupyter notebook 을 보면 알다시피 milk 의 데이터만...이상하다!! 흑흑 ㅠㅠ 이상해요 왜 얘만 안되는지 모르겠네요 ㅠㅠ 우리 모두 다같이! 문제점을... 찾아보길 바라요...