

CSE 473/573-A L23: FACE DETECTION

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Many Slides from Lana Lazebnik

Face detection and recognition

Consumer application:

Can be trained to recognize pets!

Consumer application:

Challenges of face detection

- Sliding window detector must evaluate tens of thousands of location/scale combinations
- Faces are rare: 0–10 per image
 - For efficiency, we should try to spend as little time as possible on the non-face windows
 - A megapixel image has ~10⁶ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image, our false positive rate has to be less than 10⁻⁶

The Viola/Jones Face Detector

- Viola-Jones Detection Framework
 - Sliding Window Face Detection
- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face patches

Key ideas

- Integral images for fast feature evaluation
- Boosting for feature selection
- Attentional cascade for fast rejection of nonface windows

Image Features

 Simple Features that measures the difference in intensity

"Rectangle filters"

Value = \sum (pixels in white) – \sum (pixels in black)

Example

Result

Integral Image (Recap)

 A transformed image where every pixel is the sum of all pixels above and to the left of original image.

Integral images (Recap)

What's the sum of pixels in the Rectangle ABCD?

Computing sum within a rectangle (Recap)

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = D - B - C + A$$

 Only 3 additions are required for any size of rectangle!

Integral Image Example (Recap)

Computing a rectangle feature

- Verify this:
 - Value = sum(scale factors * area of the regions).

How do we get this?

White Area – Black Area

- Sum of Entire Block = A B C + D
- White Block = A F C + E
- Black Block = F E B + D

Key ideas

- Integral images for fast feature evaluation
- Boosting for feature selection
- Attentional cascade for fast rejection of nonface windows

Feature selection

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!

Feature selection

- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

Boosting

- Boosting is a learning scheme that combines weak learners into a more accurate ensemble classifier
- Weak learners based on rectangle filters:

value of rectangle feature $h_t(x) = \begin{cases} 1 & \text{if } p_t f_t(x) > p_t \theta_t \\ 0 & \text{otherwise} \end{cases}$ window

Ensemble classification function:

$$C(x) = \begin{cases} 1 & \text{if } \sum_{t=1}^{T} \alpha_t h_t(x) > \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases} \text{ learned weights}$$

A parity indicates the direction of the inequality sign

Training procedure

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner with lowest weighted training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners
 - Weight of each learner is proportional to its accuracy
 - Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme, i,e. Adaptive Boost (AdaBoost).

Boosting intuition

Final classifier is a combination of weak classifiers

Training procedure

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner with lowest weighted training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners
 - Weight of each learner is proportional to its accuracy
 - Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme, i,e. Adaptive Boost (AdaBoost)

Adaboost for face detection

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.

- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

Boosting for face detection

- First two features selected by boosting:
- This feature combination can yield 100% recall and 50% false positive rate

Boosting vs. SVM

- Advantages of boosting
 - Integrates classifier training with feature selection
 - Complexity of training is linear instead of quadratic in the number of training examples
 - Flexibility in the choice of weak learners, boosting scheme
 - Testing is fast
- Disadvantages
 - Needs many training examples
 - Training is slow
 - Often doesn't work as well as SVM, especially for many-class problems

30

Key ideas

- Integral images for fast feature evaluation
- Boosting for feature selection
- Attentional cascade for fast rejection of nonface windows

Boosting for face detection

 A 200-feature classifier can yield 95% detection rate and a false positive rate of 1/14084

Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, etc.
- A negative outcome at any point leads to the immediate rejection of the sub-window

33

Attentional cascade

 Chain classifiers that are progressively more complex and have lower false positive rates

Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10⁻⁶ can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99¹⁰ ≈ 0.9) and a false positive rate of about 0.30 (0.3¹⁰ ≈ 6×10⁻⁶)

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to current stage until target rates met
 - Lower AdaBoost threshold to maximize detection
 - opposed to minimizing total classification error
 - Test on a validation set
- If the overall false positive rate is not low enough
 - Add another stage
- Use false positives from current stage as the negative training examples for the next stage

The implemented system

- Training Data
 - •5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

System performance

- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al.,1998)

Output of Face Detector on Test Images

Other detection tasks

Facial Feature Localization

Profile Detection

Male vs. female

Profile Detection

Profile Features

Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

