What's so special is proposed in the paper?

Mining of structured data to find useful patterns by Association Rule Mining. Traditional method is available for Association Rule Mining (**T-ARM**). A new approach is proposed in the paper to extract **Mostly Associated Sequential Patterns**.

Why new approach?

- The proposed approach requires less computational resources in terms of time and memory requirements.
- No need to search the entire lattice of item combinations.
- Pruning process is not required.
- K-item patterns can be obtained taking the advantage of sub-lattice property of MASPs.
- Tree (MASP) formation take place which helps in the visual analysis of data.

What does ARM do?

Discover hidden rules among **enormous pattern combination** based on **individual** and **conditional** frequencies.

T-ARM

- Generate all possible patterns from data while pruning out non-frequent ones.
- Produce rules from frequent patterns.
- Apply some **interesting measures** to obtain **interesting rules** that can be used in **decision making**.

General ARM Workflow

- Data
- Preprocess localize, summarize and transform data
- C-Generator finds candidate patterns
- Pruning throw less frequent patterns
- R-Generator generate k-item rules
- R-Filter find interesting rules

(ARM algorithms varies because of constraints)

Default constraints: minimum support and minimum confidence If **only default constraint** is used then **exhaustive search** will be required to **find interesting rules**.

MASP

In case of **MASPs no** need to search **entire lattice** because **one more constrain**t other than the **default** has been imposed.

MASPs imposes **interestingness** constraint on patterns to **detect highest co-occurence** without searching all possible combinations. During search process, **MASP tree** will be formed.

MASP has **sub-lattice** property that reveals **k-item rules** from MASP.

MASP+

T-ARM can be conducted within small dataset of each MASP. The combination of rules obtained from **T-ARM** and **MASP** give rise to **MASP+** approach.

Terminology

Transactional Data : A set of **attribute-value** pairs. **e.g.** t = {Age:Young, Day:Sunday}

A rule in the form **A** -> **B** is an association rule.

Support : Probability of occurence of **AUB** together in the complete data set.

Confidence : The conditional probability P(B|A) i.e. probability of getting B when A is given.

Steps to detect interesting rules

Data must be in the form

A1	A2	A3	A4	A5	A6	A7	A8	A9
V11	V21	V31	V41	V51	V61	V71	V81	V91
V11	V22	V32	V41	V51	V62	V71	V81	V92

Where each cell store a value of the corresponding attribute.

How to generate MASP tree?

Notation

Let X and Y are two sets then

X (Y implies X is a subset of Y

X\Y implies set of elements of X which are not in Y

|X| = number of entries in set X

If D is a data table:

One can say that it is composed of **cells C**_{ri} = $(A_i = V_{ij})$ where r = 1, 2,, |D| and i = 1,2,....., |A|. J = 1, 2, ,3,....., |unique entries in the ith column|

An item I is unique attribute-value pair I = V_{ii}

Condition for MASP

A set M = $\{I_1, I_2, I_3, \dots, I_k, \dots, I_K\}$ will be **MASP** iff for all k belongs to $\{1, 2, 3, \dots, K\}$

- 1. $P(I_1, I_2, I_3, \dots, I_k) >= \text{(threshold value of support)}$
- 2. $P(I_k | I_1, I_2, I_3, \dots, I_{k-1}) >=$ (threshold value of confidence)

3. $P(I_k | I_1, I_2, I_3, \dots, I_{k-1})$ must be maximum

Block (M) and Counter Block (M)

 $\begin{aligned} &M = \{V_{11}, \, V_{23}, \, V_{42}\} \\ &Attr(D) = A_1, \, A_2, \, A_3, \, A_4, \, A_5, \, A_6 \\ &B(M) = \{\text{select A3, A5, A6; FROM D; where (A1 = V11 && A2 = V23 && A4 = V42)}\} \\ &CB(M) = \{\text{select A3, A4, A5, A6; FROM D; where (A1 = V11 && A2 = V23 && A4 = V42)}\} \\ &\neq \quad V42)\} \end{aligned}$

ROOT

A 1	A2	А3	A 4	A5
V11	<u>V21</u>	<u>V31</u>	<u>V41</u>	<u>V51</u>
V11	<u>V21</u>	<u>V32</u>	<u>V41</u>	<u>V53</u>
V11	<u>V22</u>	<u>V31</u>	<u>V42</u>	<u>V52</u>
V11	<u>V21</u>	<u>V32</u>	<u>V42</u>	<u>V52</u>
V11	<u>V22</u>	<u>V32</u>	<u>V43</u>	<u>V52</u>
V11	<u>V22</u>	<u>V32</u>	<u>V43</u>	<u>V52</u>
V12	V22	V31	V44	V51
V12	V22	V31	V44	V51
V12	V23	V31	V45	V51
V12	V23	V32	V46	V51

V11'

<u> </u>							
A 1	A1 A2 A3 A4		A 4	A 5			
V12	V22	V31	V44	V51			
V12	V22	V31	V44	V51			
V12	V23	V31	V45	V51			

V12 V23 V32 V46 V5	1
--------------------	---

V11

А3	A2	A 4	A5
V32	<u>V21</u>	<u>V41</u>	<u>V53</u>
V32	<u>V21</u>	<u>V42</u>	<u>V52</u>
V32	<u>V22</u>	<u>V43</u>	<u>V52</u>
V32	<u>V22</u>	<u>V43</u>	<u>V52</u>
V31	V21	V41	V51
V31	V22	V42	V52

V32'

А3	A2	A4	A 5
V31	V21	V41	V51
V31	V22	V42	V52

V32

A2	A4	A 5			
V21	V41	V53			
V21	V42	V52			
V22	V43	V52			
V22	V43	V52			

How to	generate	rules	using	MASP	Tree	?

If MASP $\mathbf{M} = \{\mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_3, \dots, \mathbf{I}_K\}$ then rules will be

$$(I_1, I_2, I_3, \dots, I_{K-1}) \rightarrow I_K$$

$$(I_1, I_2, I_3, \dots, I_{K-2}) \rightarrow I_{K-1}$$

$$(I_1, I_2, I_3, \dots, I_{K-3}) \rightarrow I_{K-2}$$

.....

.....

.....

I₁ -> I₂

Additional rule

 $(I_1, I_2, \ldots, I_{k-1}) \rightarrow (I_k, I_{k+1}, \ldots, I_K)$ satisfies the minimum support condition. If it will satisfy the minimum confidence then it will be included in the rule set.

MASP+ patterns

The combination of MASP and the rules obtained from its block is also a rule.

MASP **M** = {V11, V41, V31}

Rules from its block {V21, V61 -> V51; V22 -> V53}

New rules {((V11, V41, V31), V21, V61) -> V51, ((V11, V41, V31), V22) -> V53}