Predator-Prey Simulation Using Boids Model

Matija Ojo, Miha Krajnc, Marko Adžaga, and Janez Kuhar

Problem overview

Original paper:

Emergence of splits and collective turns in pigeon flocks under predation, Papadopoulou et. al. (2022)

Interests:

- Faster results than empirical data
- Inspiration for autonomous systems (robotics, drones, ...)

Improvements:

- Different predator strategies
- Enhance realism (occlusion, field of vision, predator confusion, ...)
- Use a boundary instead of toroidal coordinates
- Analyze predator's success

Boids algorithm

Separation Cohesion Alignment

Escape behaviours

Avoid position

$$direction = \sum_{i=1}^{n} position(B) - position(P_i)$$

$$direction = \sum_{i=1}^{n} perpendicular(velocity(B)) \times sign(B, P_i)$$

$$sign(B, P_i) = \begin{cases} -1 & angleBetween(velocity(P_i), velocity(B)) > 0\\ 1 & else \end{cases}$$

Escape behaviours

Avoid turn time

$$direction = \sum_{i=1}^{n} magnitude(velocity(B))^{2}/\mathrm{radius} \times perpendicular(velocity(B)) \times sign(B, P_{i})$$

$$\mathrm{radius} = magnitude(velocity(B))/\mathrm{angularVelocity}$$

$$\mathrm{angularVelocity} = \mathrm{escapeTurn/escapeTime}$$

Avoid turn random

$$angular Velocity = random (MinEscape Turn, MaxEscape Turn) / \\ random (MinEscape Time, MaxEscape Time)$$

Escape behaviours

Avoid turn gamma

```
turnAmount = gammavariate(TurnAlpha, TurnBeta) turnTime = gammavariate(TimeAlpha, TimeBeta) angularVelocity = turnAmount/turnTime
```

Avoid turn zig zag

angular Velocity = Escape Turn/Zig Zag Time $sign = \begin{cases} sign & Zig Timer < Zig Zag Time \\ -sign & else \end{cases}$

Predator behaviours

Attack centroid

Attack most peripheral

Attack nearest

Attack random

Improvements

- 300 degree FOV
- Boid occlusion
- Predator confusion
- Prey reaction time
- Toroidal coordinates and boundary
- Multiple predators

Results (Empirical data)

- Testing whether the simulation works
- Empirical data assures objective comparisons

Results - measuring predator success (average caught prey over 10 simulations, 2000 steps, 20 prey, 1 predator)

Predator attack \ Escape behaviour	Centroid	Most peripheral	Nearest	Random
Avoid position	5.2	14.1	17.5	16.7
Avoid turn time	4.5	10.7	16.6	12.4
Avoid turn gamma	5.8	13.5	16.3	14.5

Results - measuring predator success (average caught prey over 10 simulations, 2000 steps, 20 prey, 2 predators)

Predator attack \ Escape behaviour	Centroid	Most peripheral	Nearest	Random
Avoid position	14.2	18.2	20	20
Avoid turn time	11.4	14.5	20	18.2
Avoid turn gamma	13.5	16.3	20	19.2

Results (predator's success)

