

Título

Felipe Claudio da Silva Santos

Projeto de Graduação apresentado ao Curso de Engenharia Eletrônica e de Computação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientador: Luiz Pereira Calôba

Coorientador: Natanael Nunes de Moura Ju-

nior

Rio de Janeiro

Outubro de 2008

Título

Felipe Claudio da Silva Santos

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO ELETRÔNICO E DE COMPUTAÇÃO

Autor:	
	Felipe Claudio da Silva Santos
Orientador:	
	Prof. Luis Pereira Calôba, Dr.Ing
Co-orientador:	
	Natanael Nunes de Moura Junior, Dr.
Examinador:	
	Examinador 1
Examinador:	
	Examinador 2
	Rio de Janeiro

Outubro de 2008

Declaração de Autoria e de Direitos

Eu, Felipe Claudio da Silva Santos CPF 427.279.208-30, autor da monografia título da monografia, subscrevo para os devidos fins, as seguintes informações:

- 1. O autor declara que o trabalho apresentado na disciplina de Projeto de Graduação da Escola Politécnica da UFRJ é de sua autoria, sendo original em forma e conteúdo.
- 2. Excetuam-se do item 1. eventuais transcrições de texto, figuras, tabelas, conceitos e idéias, que identifiquem claramente a fonte original, explicitando as autorizações obtidas dos respectivos proprietários, quando necessárias.
- 3. O autor permite que a UFRJ, por um prazo indeterminado, efetue em qualquer mídia de divulgação, a publicação do trabalho acadêmico em sua totalidade, ou em parte. Essa autorização não envolve ônus de qualquer natureza à UFRJ, ou aos seus representantes.
- 4. O autor pode, excepcionalmente, encaminhar à Comissão de Projeto de Graduação, a não divulgação do material, por um prazo máximo de 01 (um) ano, improrrogável, a contar da data de defesa, desde que o pedido seja justificado, e solicitado antecipadamente, por escrito, à Congregação da Escola Politécnica.
- 5. O autor declara, ainda, ter a capacidade jurídica para a prática do presente ato, assim como ter conhecimento do teor da presente Declaração, estando ciente das sanções e punições legais, no que tange a cópia parcial, ou total, de obra intelectual, o que se configura como violação do direito autoral previsto no Código Penal Brasileiro no art.184 e art.299, bem como na Lei 9.610.
- 6. O autor é o único responsável pelo conteúdo apresentado nos trabalhos acadêmicos publicados, não cabendo à UFRJ, aos seus representantes, ou ao(s) orientador(es), qualquer responsabilização/ indenização nesse sentido.
- 7. Por ser verdade, firmo a presente declaração.

Felipe Claudio da Silva Santos	

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Eletrônica e de Computação Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

DEDICATÓRIA

Opcional.

AGRADECIMENTO

Sempre haverá. Se não estiver inspirado, aqui está uma sugestão: dedico este trabalho ao povo brasileiro que contribuiu de forma significativa à minha formação e estada nesta Universidade. Este projeto é uma pequena forma de retribuir o investimento e confiança em mim depositados.

RESUMO

Inserir o resumo do seu trabalho aqui. O objetivo é apresentar ao pretenso leitor do seu Projeto Final uma descrição genérica do seu trabalho. Você também deve tentar despertar no leitor o interesse pelo conteúdo deste documento.

Palavras-Chave: trabalho, resumo, interesse, projeto final.

ABSTRACT

Insert your abstract here. Insert your abstract here. Insert your abstract here. Insert your abstract here.

Key-words: word, word, word.

SIGLAS

•	TTT	-	TT .			-	ъ.	1 7	
l	$\cup F'K$.J –	Unive	rsidade	Federal	do	R_{10}	de .	laneiro

- EPE Empresa de Pesquisa Energética
- SIN Sistema Interligado Nacional
- SEB Sistema Elétrico Brasileiro
- RE-SEB Reestruturação do Sistema Elétrico Brasileiro
- ANEEL Agência Nacional de Energia Elétrica
- MME Ministério de Minas e Energias
- CCEE Câmara de Comercialização de Energia Elétrica
- EPE Empresa de Energia Elétrica
- ONS Operador Nacional do Sistema Elétrico
- MAE Mercado Atacadista de Energia
- CMSE Comitê de Monitoramento do Setor Elétrico
- ACR Ambiente de Contratação Regulada
- ACL Ambiente de Contratação Livre
- PLD Preço de Liquidação das Diferenças
- MCP Mercado de Curto Prazo
- CMO Custo Marginal de Operação

CVU - Custo Variável Unitário

UTE - Usina Térmica

ENA - Energia Natural Armazenada

EAR - Energia Armazenada

CCEAR - Contrato de Comercialização de Energia ELétrica no Ambiente Regulado

PMO - Planejamento Mensal de Operação

CFURH - Compensação Financeira pelo Uso dos Recursos Hídricos

MLP - Multilayer Perceptron

FFT - Fast Fourier Transform

IIR - Infinite Impulse Response

FIR - Finite Impulse Response

AR - Autoregressive

ARIMA - Autoregressive Integrated Moving Average

GARCH - Genralized Auto-Regressive Conditional Heteroscedasticity

ACF - Autocorrelation Function

PACF - Partial Autocorrelation Function

AIC - Akaike Info Criterion

PSF - Partial Sequence-based Forecasting

RBFN - Radial Basis Function Network

CSV - Comma Separated Values

Sumário

1	Intr	odução 1
	1.1	Tema
	1.2	Delimitação
	1.3	Justificativa
	1.4	Objetivos
	1.5	Metodologia
	1.6	Descrição
2	O s	istema elétrico brasileiro
	2.1	O Cálculo do Preço da Liquidação das Diferenças
	2.2	Revisão bibliográfica
3	Seri	les Temporais e Aprendizado de Máquina 18
	3.1	Séries Temporais
		3.1.1 Tendência
		3.1.2 Sazonalidade
		3.1.3 Ciclos Senoidais
		3.1.4 Componente Residual
	3.2	Processamento de Sinais
	3.3	Redes Neurais Artificiais
		3.3.1 Backpropagation
		3.3.2 Rede perceptron multicamadas - MLP
		3.3.3 Treinamento
4	Mé	todo 36
	4.1	Aquisição dos dados

	4.2 Pré-Processamento	. 37
	4.3 Rede Neural	. 38
5	Conclusões	39
Bi	bliografia	40
\mathbf{A}	O que é um apêndice	46
В	Encadernação do Projeto de Graduação	47
\mathbf{C}	O que é um anexo	49

Lista de Figuras

2.1	Instituições do setor elétrico brasileiro []	5
2.2	Mapa do Sistema Elétrico Brasileiro no horizonte de 2017 [1] $\ \ldots \ \ldots$	6
2.3	Mapa do Sistema Elétrico Brasileiro no horizonte de 2017 [2] $\ \ldots \ \ldots$	8
2.4	Comparação entre a matriz elétrica mundial e a brasileira	9
2.5	Instituições do setor elétrico brasileiro [3]	10
2.6	Previsão indireta do PLD	14
2.7	Previsão direta do PLD	14
2.8	Previsão do PLD utilizando o modelo híbrido	15
2.9	Previsão do PLD utilizando o modelo híbrido	15
2.10	Instituições do setor elétrico brasileiro [4]	17
3.1	Exemplo de decomposição de série temporal [5]	19
3.2	Exemplo de extração de tendência com filtro de média [6]	22
3.3	Extração de sazonalidade com periodicidade anual $(P=12)$ para o dataset	
	de nascimentos em Nova York [6] $\hfill \ldots \ldots \ldots \ldots \ldots$	23
3.4	Autocorrelação para o sinal residual do dataset de nascimentos em Nova	
	$York[6] \ \ldots \ldots \ldots \ldots \ldots \ldots$	24
3.5	Residuo sem remoção de ciclos senoidasi para o dataset de nascimentos em	
	Nova York[6]	25
3.6	Residuo com remoção de ciclos senoidas para o dataset de nascimentos em	
	Nova York. Filtro Notch com $\omega_0=0.135 radamostra$ e $Q=0.2$ [6] $$	25
3.7	Sinal residual no tempo para o dataset de nascimentos em Nova York $[6]$.	26
3.8	Filtro Notch IIR digital [7]	27
3.9	Neurônio [8]	28
3.10	Neurônio [9]	28
3.11	Função logística [10]	30

3.12	Tangente hiberbólica [11]	3(
3.13	ReLU [12]	31
3.14	Tangente hiberbólica [12]	32
3.15	Rede Perceptron Multicamadas [12]	33
3.16	Influência da taxa de aprendizado [13]	34
3.17	Validacao Cruzadas [14]	35
B.1	Encadernação do projeto de graduação.	48

Lista de Tabelas

2.1	Critérios vigentes para se tor consumidor Livre [3]	7
2.2	Variáveis utilizadas no cálculo do PLD semanal [3]	11
2.3	Preço mínimo e máximo do PLD [3]	12
2.4	Arquivos de entrada do DECOMP [3]	13
4.1	Dados utilizado no trabalho	36

Capítulo 1

Introdução

1.1 Tema

Falar do que se trata o trabalho usando uma visão macroscópica (tamanho do texto: 1 ou 2 parágrafos no máximo).

Sobre que grande área de conhecimento você vai falar?

Dada esta grande área, qual é o subconjunto de conhecimento sobre o qual será o seu trabalho?

Qual o problema a ser resolvido?

1.2 Delimitação

Realizar uma delimitação informando de quem é a demanda, em que local, e em que momento no tempo. Eventualmente, pode ser mais fácil começar pensando por exclusão, ou seja, para quem não serve, onde não deve ser aplicado, e em seguida pegar o universo que sobra (tamanho do texto: livre).

1.3 Justificativa

Apresentar o porquê do tema ser interessante de ser estudado. Cuidado, não é a motivação particular. Devem ser apresentadas razões para que alguém deva se

interessar no assunto, e não quais foram suas razões particulares que motivaram você a estudá-lo (tamanho do texto: livre).

1.4 Objetivos

Informar qual é o objetivo geral do trabalho, isto é, aquilo que deve ser atendido e que corresponde ao indicador inequívoco do sucesso do seu trabalho. Pode acontecer que venha a existir um conjunto de objetivos específicos, que complementam o objetivo geral (tamanho do texto: livre, mas cuidado para não fazer uma literatura romanceada, afinal esta seção trata dos objetivos).

1.5 Metodologia

Como é a abordagem do assunto. Como foi feita a pesquisa, se vai houve validação, etc. Em resumo, você de explicar qual foi sua estratégia para atender ao objetivo do trabalho (tamanho do texto: livre).

1.6 Descrição

No capítulo 2 será

O capítulo 3 apresenta ...

Os são apresentados no capítulo 4. Nele será explicitado ...

E assim vai até chegar na conclusão.

Capítulo 2

O sistema elétrico brasileiro

No começo da década de 90 a estrutura do setor elétrico brasileiro era verticalizada, composta por grandes estatais que tinham o controle sobre toda a cadeia produtiva (geração, transmissão e distribuição). Houve então uma reestruturação do setor (RE-SEB), baseado no princípio de que "a eficiência no setor elétrico será assegurada através da competição, onde possível, e da regulamentação, onde necessária" [15]. Sendo assim, o mercado foi aberto para o setor privado. O SEB foi então divido em empresas de geração, transmissão, distribuição e comercialização de energia. Muitas empresas públicas foram leiloadas, dentre elas a a Light (21/05/1196) e a CERJ(20/11//1996) [16].

Assim como mencionado, um dos pilares do RE-SEB foi a regulamentação. Então em 1996 foi criada a Agência Nacional de Energia Elétrica - ANEEL, a qual tinha como função regular e fiscalizar a produção, transmissão, distribuição e comercialização de energia elétrica segundo as diretrizes definidas pelo governo federal.

Foram aprovadas medidas que incentivavam a realização de contratos de longo prazo entre distribuidores e geradores [16]. Além disso, foi dado livre acesso aos pequenos produtores (potenciais hidráulicos menores que 1MW e usinas termoelétricas com potencial inferior a 5MW) ao sistemas de transmissão e distribuição das concessionárias e permissionárias do serviço publico. Isto facilitou o aparecimento de novas fontes de energias e novos produtores no SEB.

Em 2001 houve uma grande crise energética no país que foi fruto de um período seco. Então, mudanças estruturais foram implantadas no SEB buscando assim melhorar a gestão, evitar incidentes, garantir a qualidade e incentivar a expansão do sistema. Com isso, a organização da estrutura foi modificada, sendo que as instituições responsáveis pelo pleno funcionamento deste modelo são descritas a seguir [3]:

- Ministério de Minas e Energias MME: Reponsável pela formulação e implantação de políticas relacionadas ao setor elétrico.
- Comitê de Monitoramento do Setor Elétrico CMSE: Acompanha e avalia a continuidade e a segurança do suprimento elétrico em todo o território nacional
- Conselho Nacional de Política Energética CNPE: Formula políticas e diretrizes de energia que garantam o suprimento de energia elétrica para todo o país
- Agência Nacional de Energia Elétrica ANEEL: Regula, e fiscaliza
 a produção, transmissão, distribuição e comercialização de energia elétrica
 segundo as diretrizes definidas pelo governo federal.
- Câmara de Comercialização de Energia Elétrica CCEE: Atua desde a medição de energia gerada e efetivamente consumida até a liquidação financeira dos contratos de compra e venda no curto prazo [3]. Anteriormente se chamava Mercado Atacadista de Energia MAE.
- Operador Nacional do Sistema Elétrico ONS: Tem como objetivo a coordenação e controle da instalações de geração e transmissão de energia elétrica no Brasil, buscando garantir a todos os agentes o livre acesso à rede de transmissão, o menor custo de expansão do sistema e as melhores condições operacionais futuras [1]
- Empresa de Pesquisa Energética EPE: Realiza pesquisas em áreas relacionadas com energia elétrica, petróleo, gás biocombustíveis e planejamento energético [17].

Figura 2.1: Instituições do setor elétrico brasileiro. Fonte: EPE [3].

Outra medida tomada para facilitar o gerenciamento de toda a rede de geração, transmissão, e consumo de energia elétrica foi dividir o Sistema Interligado Nacional - SIN [1] em quatro subsistemas sendo estes: Norte, Nordeste, Sudeste/Centro-Oeste e Sul. Vale ressaltar que existe conexão entre as partes, de forma que um subsistema pode auxiliar o suprimento da demanda de energia de outro em períodos de seca. Participam desse sistema diversos agentes [3], sendo eles:

- Agentes geradores: são agentes autorizados a gerar energia elétrica para o sistema.
- Agentes de transmissão: são agentes que detêm o meios de transmissão de energia.
- Agentes de distribuição: são agentes autorizados a distribuir energia contratada dos serviços de transmissão em uma área definida pela concessão
- Consumidores livres: são consumidores que têm a opção de escolher o distribuidor de energia, diferente do que acontece no consumo doméstico.
- Agentes importadores: são agentes titulares de autorização expedida pela ANEEL para exercer as atividades de importação de energia elétrica.
- Agentes exportadores: são agentes titulares de autorização para implantação de sistemas de transmissão associados à exportação de energia elétrica.

Agente comercializador da energia de Itaipu: por ser uma usina binacional, segue tratos específicos. Atualmente a comercialização desta energia é coordenada pela Eletrobras.

Figura 2.2: Mapa do Sistema Elétrico Brasileiro no horizonte de 2017[1]

A reestruturação também dividiu o mercado de energia elétrica brasileiro em dois ambientes de comercialização: Ambiente de Contratação Regulada - ACR e Ambiente de Contratação Livre - ACL. O primeiro ambiente é focado na contratação

de energia para consumidores residenciais e indústrias de baixo consumo em geral. As negociações são feitas através de leilões onde geralmente os contratos de fornecimento de energia tem foco no médio e longo prazo (duração maior que 5 anos). As distribuidoras são obrigadas a comprar 100% da energia utilizada através desse meio. O segundo ambiente é focado em contratações bilaterais, de forma a trazer benefícios para grande consumidores, conforme mostrado abaixo, pois podem negociar o preço da energia direto com os geradores [18]. Os agentes que podem realizar compra por esse tipo de mercado são os agentes livres, conforme mostrados na tabela a seguir:

Tabela 2.1: Critérios vigentes para se tor consumidor Livre [3].

Demanda Mínima	Tensão mínima de fornecimento	Data da ligação do consumidor
3MW	Qualquer Tensão	Após 07/07/1995
3MW	69KV	Após 07/07/1995

Dado o dinamismo do consumo, dificilmente a energia utilizada será igual a contratada. Uma das funções da CCEE é realizar medições tanto do que é produzido quanto o que é consumido. Esta instituição concentra informações sobre o montante de energia negociado em cada contrato do SEB. A diferença entre o que foi negociado e o que foi consumido é liquidado utilizando como multiplicador o Preço de Liquidação das Diferença - PLD, o qual será explicado mais a frente. O saldo dos agentes no mercado de curto prazo se dá pelas seguintes equações[18].

$$Receita_{Gerador} = (Energia_{Gerada} - Energia_{Contratada}) * PLD$$
 (2.1)

$$Despesa_{Consumidor} = (Energia_{Consumida} - Energia_{Contratada}) * PLD$$
 (2.2)

Esse processo de liquidação das diferenças é realizado entre as partes envolvidas na negociação. A CCEE somente realiza o cálculo de quanto cada contraparte deve pagar ou receber. A importância do PLD não se resume somente ao MCP, pois

muitos dos contratos do mercado livre são baseados nesse valor[19]. Isto permite que os agentes tomem estratégias diferentes para aumentar o lucro ou diminuir o prejuízo. Um exemplo disso seria um agente consumidor, que ao prever o aumento de preços nos próximos meses, pode buscar realizar contratos para abastecimento futuro a um preço menor do que seria pago. Outro exemplo seria um distribuidor, que ao prever um baixo PLD no MCP do mês atual, decide vender o excedente de energia contratada no mercado livre ao invés de receber o valor proporcional ao PLD.

2.1 O Cálculo do Preço da Liquidação das Diferenças

O grande desafio do setor é utilizar a energia de maneira eficiente, reduzindo o custo da mesma e o risco de deficit tanto no mês atual quanto nos meses seguintes. Isto demanda a criação e utilização de novas tecnologias auxiliares ao planejamento.

Conforme observado na figura abaixo, o preço depende diretamente da quantidade de água nos reservatórios e a previsão de quanto água estará armazenada nos meses futuros.

Figura 2.3: Planejamento da produção de energia do sistema hidrotérmico[2]

Sendo assim, utilizar as usinas hidrelétricas - UHEs na capacidade máxima gerará o menor custo de energia possível no mês atual, porém, se no futuro for necessário utilizar outras fontes para suprir a demanda energética, o custo pode ser muito maior do que em uma situação onde a produção energética da UHE foi distribuída durantes os meses consecutivos. Por um outro lado, caso a a quantidade de água armazenada em um reservatório supere o limiar máximo do mesmo, torna-se necessário liberar o excedente para o rio, situação chamada de "vertimento". Isto é indesejável, pois resulta em um desperdício de energia barata. Portanto, um planejamento equivocado pode causar altas no PLD, o que afeta diretamente os agentes que participam do mercado de energia elétrico brasileiro.

O Brasil atualmente possui uma matriz elétrica diferente do que em geral é observado no mundo. Em média 65,2% da energia utilizada no país vem de fontes hidráulicas, diferente do que ocorre em média no resto do mundo (aproximadamente 16,6%), assim como visto em[17]. Essa fonte além de ser renovável, tem impacto menor no meio ambiente e custos menores quando comparado com fontes baseadas em combustíveis fósseis. O grande ponto negativo é a característica volátil desse recurso, pois depende baste de condições climáticas, o que dificulta o planejamento para períodos longos.

(a) Matriz Elétrica Mundial. Fonte: EPE[17].

(b) Matriz Elétrica Brasileira. Fonte: EPE [17].

Figura 2.4: Comparação entre a matriz elétrica mundial e a brasileira

Uma tendência mundial no setor é a transição da rede elétrica atual para o smart grid. Este termo engloba uma série de tecnologias, tendo como foco o sensoriamento dos componentes que compõem a rede. Isto permite ter informações sobre o consumo em um período de tempo menor do que nas redes antigas, além de conseguir averiguar falhas na rede de maneira remota, mudando a postura das distribuidoras de reativa para ativa, pois torna-se possível resolver os erros antes que os clientes liguem para a concessionária.

Assim como visto em [20], no ano de 2012 a ANEEL aprovou a resolução normativa No 482 [21], que "Estabelece as condições gerais para o acesso de microgeração e minigeração distribuída aos sistemas de distribuição de energia elétrica, o sistema de compensação de energia elétrica, e dá outras providências". Desde março de 2016 é permitido que qualquer fonte de energia renovável participe do sistema de geração distribuído, não limitando somente à solar e à eólica. Sendo assim a tendência é que parte da produção de energia seja proveniente de pequenos geradores, diminuindo parcialmente a dependência de grandes produtores de energia, o que pode acarretar na redução do risco de deficit de energia.

Figura 2.5: PLD mensal. Fonte: CCEE [3].

No gráfico acima observa-se que existem pontos onde o SIN foi afetado por crises, fazendo com que o PLD aumentasse abruptamente. No ano de 2007 ocorreu a primeira mostrada no gráfico. O SEB tinha passado por uma recente reestruturação da organização, a qual não foi suficiente para evitar o acontecimento. Durante o

período de racionamento (2001/06 - 2002/02) a demanda foi menor do que a oferta, porém com o passar do anos ela voltou a se aproximar da curva de oferta. Após abril de 2005, houve um período sem investimento na capacidade energética sistema. Junto com esse fato, ocorreu um período de baixa afluência nas usinas hidrelétricas.

Outra crise notável ocorreu no ano de 2014, onde segundo [22], houve a diminuição das tarifas imposta pelo governo em um momento de demanda crescente, o atraso em obras de geração e transmissão, além da escassez de chuvas.

O PLD é calculado semanalmente e disponibilizado sexta-feira pela CCEE conforme a fórmula 2.3, com vigência na semana seguinte. Para cada um dos submercados do SIN são divulgados valores para os três patamares de carga: leve, médio e pesado. Esses estão relacionados com a hora do dia e o consumo, sendo que o patamar é pesado em horários de alto consumo e leve nos período de baixo demanda energética. O PLD mensal por subsistema é calculado também pela CCEE através da média dos preços ponderadas pelo tempo em cada patamar.

$$PLD_{s,r,\omega} = min(max(CMO_{s,r,\omega}, PLD_{min_{ano}}), PLD_{max_{ano}})$$
 (2.3)

Onde:

Tabela 2.2: Variáveis utilizadas no cálculo do PLD semanal [3].

Variável	Significado	
s	Subsitema ("N", "NE", "S", "SE\CO")	
r	Patamar de carga ("leve", "médio", "pesado")	
w	Semana do mês	
CMO	Custo para produção de um MWh adicional no SIN	
$PLD_{min_{ano}}$	PLD mínimo estabelecido anualmente pela ONS	
$PLD_{max_{ano}}$	$PLD_{max_{ano}}$ PLD máximo estabelecido anualmente pela ONS	

O PLD máximo é calculado com base no custo variável unitário - CVU mais elevado de uma Usina térmica - UTE em operação comercial, a gás natural, contratada por meio Contrato de Comercialização de Energia Elétrica no Ambiente Regulado -

CCEAR , definido no planejamento mensal de operação - PMO de dezembro e será aplicado entre a primeira e última semana operativa do ano subsequente, para todos os submercados.

O PLD mínimo é calculado com base no maior valor entre: i) o calculado com base na Receita Anual de Geração- RAG das usinas hidrelétricas em regime de cotas, nos termos da Lei nº 12.783/2013, excluídos os valores relacionados à remuneração e reintegração de investimentos, e adicionada a estimativa de Compensação Financeira pelo Uso dos Recursos Hídricos - CFURH; e ii) as estimativas dos custos de geração da usina de Itaipu para o ano seguinte, fornecidas pela Itaipu Binacional para fins de reajustes e/ou revisões tarifárias.

O valores de definidos para os últimos 5 anos foram:

Tabela 2.3: Preço mínimo e máximo do PLD [3].

Ano	PLD Mínimo	PLD Máximo
2015	30,26	388,48
2016	30,25	422,56
2017	33.68	533.82
2018	40,16	505,18
2019	42,35	513,89

O planejamento e o cálculo do PLD é feito com base em programas desenvolvidos especificamente para o SIN. Algum deles são [23]:

- NEWAVE: Utilizado no planejamento de médio prazo (até 5 anos), com espaçamento mensal entre as previsões
- DECOMP: Utilizado no planejamento de curto prazo (até 12) com base semanal

cálculo do PLD é feito com base no CMO obtido do programa DECOMP, o qual é disponibilizado somente para agentes cadastrados no CCEE e tem como entrada os seguintes dados:

Tabela 2.4: Arquivos de entrada do DECOMP [3].

Arquivo	Conteúdo	
CASO.DAT	Contém o nome do Arquivo índice	
Arquivo Índice	Contém a lista de arquivos de entrada sob gerenciamento do usuário	
DADGER.DAT Dados gerais de planejamento		
VAZOES.XXX	Vazões incrementais afluentes aos aproveitamentos da configuração considerada	
HIDR.DAT Cadastros de dados das usinas		
MLT.DAT Médias mensais de longo termo		
LOSS.DAT	Perdas no sistema	
DADGNL.XXX	VL.XXX dados de usinas térmicas	

O Termo MLT - Média de Longo Termo se refere à média com período anual, utilizando uma série histórica dos valores de ENA - Energia Natural Afluente para cada um dos meses desde 1931. A ENA, por sua vez é a energia que pode ser gerada através a partir da vazão da água em uma determinada bacia.

O arquivo HIDR.DAT, MLT.DAT e VAZOES.DAT vem em formato binário e para serem lidos pelo operador, precisam de programas auxiliares para a conversão, sendo eles Hydroedit para o primeiro e Vazedit para os dois últimos. Ambos são fornecidos pela ONS. Já arquivo de dados gerais tem 43 parâmetros, sendo alguns deles contratos de importações/exportação de energia, custo de déficit e a função de custo futuro. Esta última determinada pelo NEWAVE.

Obter um modelo matemático baseado no DECOMP que possa ser utilizado na previsão do PLD é de interesse não só dos agentes que participam do mercado elétrico brasileiro, como também de empresas indiretamente relacionadas ao setor como consultorias e bancos, além de existir o viés acadêmico, pois o entendimento da dinâmica do preço pode ajudar na formulação de novos modelo de previsão e alteração do já existente, buscando melhoras nas atividades de planejamento feitas pelos órgãos.

2.2 Revisão bibliográfica

Em [24] foi utilizada uma abordagem onde são previstos os valores de energia afluente, energia proveniente de hidroelétricas, energia proveniente de usinas térmicas e carga dos subsistemas, a fim de obter o valor do PLD indiretamente. A outra forma proposta foi utilizar a própria informação sobre o PLD na previsão do mesmo. Em ambos os casos, foram utilizadas redes neurais artificiais autorregressiva não-linear - NARNET e os valores previstos são para até 3 semanas à frente.

(a) Esquematico previsão indireta PLD[24].

(b) Previsão indireta do PLD [24].

Figura 2.6: Previsão indireta do PLD

Figura 2.7: Previsão direta do PLD

Outras abordagens são vistas em [2], onde é proposto um modelo híbrido com a utilização de *Autoregressive Integrated Moving Average* - ARIMA, análise de componentes principais e redes neurais, conforme a figura a seguir:

(a) Esquematico modelo híbdrido de pre- (b) Resultado da previsão do modelo visão do PLD. [2]. híbrido. [2].

Figura 2.8: Previsão do PLD utilizando o modelo híbrido

Na segunda abordagem proposta pelo mesmo autor utilizou-se uma combinação do algoritmo C5.0 e árvore de classificação e regressão - CART para determinar se o preço do PLD será estará dentro de um patamar num instante futuro.

(a) Classes de saída do algorítmo [2].

	Muito Baixo	Baixo	Médio	Alto	Muito Alto
Muito Baixo	342	0	0	2	0
Baixo	1	50	0	0	0
Médio	1	1	76	5	0
Alto	1	0	0	95	0
Muito alto	0	0	0	0	7

(b) Matriz de confusão [2].

Figura 2.9: Previsão do PLD utilizando o modelo híbrido

Em ambos o casos acima o autor realiza previsões para um período de 12 semanas à frente.

No trabalho visto em [25], , têm se a análise das variáveis utilizadas na entrada de cada submercado através da correlação. Além é feita a comparação entre os resultados obtidos pelo modelo ARIMA, rede neurais recorrentes, rede neural direta sem seleção de lags e com a seleção de lags. Já em [26] foram utilizadas como variáveis de entrada a geração das hidroelétricas, térmicas e eólica, além da Energia Natural Afluente - ENA, ENA máxima, EAR - Energia Armazenada e o PLD para cada um dos patamares nas 4 últimas semanas, utilizando uma rede neural com 3 camadas ocultas. Como métrica de avaliação dos resultados, faz-se um plot do alvo pelo resultado previsto pela rede e então é feito uma ajuste linear. No caso ideal a equação $y = a \cdot x + b$ se torna y = x (previsão perfeita). Os preços são previstos em um horizonte de até 6 semanas. Em [27] utiliza-se uma rede neural recorrente para obter previsões em um horizonte de até seis meses a frente.

Outra abordagem diferente das observadas acima é a vista em [28], onde o autor utiliza modelos Genralized Auto-Regressive Conditional Heteroscedasticity- GARCH para a previsão do PLD. Para a estimação dos parâmetros foram utilizadas análises com base na função de autocorreções - ACF, autocorrelações parciais - PACF, função de verossimilhança (LLF) e testes estatísticos como o Akaike info criterion - AIC.

A previsão do preço da energia elétrica é um interesse comum de vários agentes envolvidos com o mercado de energia mundialmente. Em [4] o autor utiliza o algoritmo K-means para clusterizar os dados de entrada passados e o algoritmo Partial Sequence-based Forecasting - PSF para prever o resultado com base na média dos resultados obtidos no clusters anteriores. O modelo obtido foi utilizado para prever preço e demanda de energia para o mercado espanhol, australiano e nova-iorquino e obteve resultados relevantes.

Figura 2.10: Utilização do algoritmo PSF para previsão de séries temporais [4].

Em [29] são mostradas algumas abordagem simples para o problema de previsão do preço spot (PLD é um exemplo de preço spot) no mercado de energia de Ontário. Foi utilizada uma rede neural com uma camada escondida, uma rede neural misturada com lógica fuzzy e otimização com o algoritmo IMO. A previsão foi feita hora a hora para um período de 24 horas. Concluiu-se que a rede neural com lógica fuzzy obteve o melhor resultado, além disso a relevância das entradas para a previsão foi analisada e viu-se que as entradas mais relevantes eram a demanda e a interrupção do gerador.

A revista [30] traz a revisão de alguns resultados obtidos na previsão dos preços de mercados de energia elétrica como o da Noruega, Espanha e Califórnia. São utilizadas algumas abordagem lineares como AR, ARIMA e GARCH. Além disso são exibidos resultados de abordagens não lineares utilizando redes neurais. Alguns variantes mostrados são: RNA com lógica fuzzy, com filtro de Kalman extendido e com transformada de Fourier e Hartley como filtro para os preços. O paper [31] mostra os resultados para a a competição de global de previsão de energia, a qual ocorreu em 2014. São mostrados resultados tanto para previsão de preços da energia elétrica, carga de energia, energia eólica e solar.

Em [32] foi utilizada uma abordagem híbrida, onde o modelo wavelet-ARIMA seria responsável por prever a parte linear e a parte composta pelo modelo *Radial Basis Function Network* - RBFN seria responsável por corrigir o erro residual proveniente da primeira parte.

Capítulo 3

Series Temporais e Aprendizado de Máquina

O objetivo deste capitulo é trazer a fundamentação teórica das técnicas utilizadas neste trabalho. Em primeiro lugar será abordada a teoria, aplicações e dificuldades relacionadas às séries temporais. Logo após, serão apresentados os modelos de aprendizados de máquina utilizados como redes neurais MLP.

3.1 Séries Temporais

Uma série temporal é composta por uma coleção de observações feitas de forma sequencial e dependente [33]. Essa ordem da sequência é dada pelo tempo, o qual pode ser contínuo ou discreto. No primeiro caso, $T = t : t_1 < t < t_2$ e a série temporal é definida como $\{X(t): t \in T\}$, já no segundo caso, $T = \{t_1, t_2, ..., t_n\}$ e a série temporal é definida como $\{X_t: t \in T\}$, onde X é a variável observada. Geralmente define-se o T para o caso discreto como $T = \{1, 2, ..., n\}$ por questões de simplicidade. Neste trabalho será utilizado o caso discreto, dado que a amostragem do sinal tem periodicidade mensal. Sendo assim, os exemplos dados no trabalho serão discretos também.

Assim como o tempo, os valores da variável X_t podem ser contínuos ou discretos de acordo com o fenômeno que se observa. Alguns exemplos de fenômenos temporais com valores contínuos são a temperatura em um determinada região, volume de

água em uma bacia hidrográfica e o peso de um indivíduo. Já como exemplo de fenômenos temporais com valores discretos podem ser citados o número viagens de avião, quantidade de nascimentos, de carros produzidos por uma montadora etc. Todos esse casos estão relacionados com um período de observação próprio, podendo ser uma janela de meses, anos, até mesmo décadas de observações de uma determinada variável.

A análise de séries temporais pode ser feita com diferentes intuitos, sendo os mais comuns a predição de valores futuros com base no histórico já conhecido, o controle de um processo, a explicação e descrição de fenômenos [33].

Figura 3.1: Exemplo de decomposição de série temporal. Fonte: Makridakis, Wheelwright and Hyndman (1998) [5]

Buscando tornar a análise das séries temporais mais simples, além de facilitar a extração de informações importantes de maneira gráfica, é comum decompor a série em outras mais simples. A decomposição utilizada será a seguinte, conforme visto em [34]:

$$X_t = tend_t + sz_t + cs_t + res_t$$

Onde $tend_t$ é a tendência, sz_t é a sazonalidade, cs_t é o ciclo senoidal e res_t é o resíduo. Tanto a tendência, quanto a sazonalidade e os ciclos senoidais são de-

terminísticos. Conforme [35], boa parte das séries temporais são não estacionárias, sendo que as componentes de tendência e sazonalidade são as maiores responsáveis por esse efeito. Para que o modelo com redes neurais faça boas previsões, que é o que se busca nesse trabalho, é necessário utilizar séries estacionárias, portanto somente a parte residual será usada na entrada das redes neurais.

3.1.1 Tendência

Segundo [33], a tendência pode ser vista como "uma mudança de longo prazo no nível médio da série" e a forma mais simples de modelar pode ser vista pela equação a seguir.

$$tend_t = \alpha + \beta t + \epsilon_t \tag{3.1}$$

Onde α e β são constantes a serem estimadas e ϵ_t denota um erro aleatório com média zero. Geralmente chama-se o termo $m_t = \alpha + \beta t$ de termo de tendência, mas alguns autores chamam o termo β de tendência, já que $\beta = m_t - m_{t-1}$. Essa variável indica a inclinação da função durante o tempo.

A função utilizada na aproximação da tendência pode ser escolhida de acordo com a série que está sendo analisada. Uma forma bastante comum é a utilização de uma função polinomial na extração de tendência.

Na tendência polinomial 3.2, busca-se fazer uma extração boa o suficiente para obter-se ao final do processamento a componente residual estacionária com média zero. Para séries monotonicamente crescente ou decrescente, utilizar p=1 (função linear) ou p=2 (função quadrática) geralmente é suficiente para a extração da tendência, porém caso a série seja mais complexa, pode ser necessário utilizar funções de ordem mais altas

$$tend_t = \epsilon_t + \sum_{n=0}^p \beta_n t^n \tag{3.2}$$

Alguns métodos de filtragem podem ser utilizados também na extração de tendência. É comum utilizar filtros lineares nessa tarefa. Esses são definidos pela seguinte equação:

$$y_t = \sum_{j=-q}^{s} a_j x_{t+j} \tag{3.3}$$

Onde a_j são os pesos que multiplicam o sinal x_{t+j} . Para o filtro de médias móveis geralmente utiliza-se q=s e $a_{-r}=a_r$, garantindo a simetria do filtro. Além disso faz-se que $\sum_{j=-q}^s a_j=1$, de modo que $min\{x_t\} \leq y_t \leq max\{x_t\}$. O caso mais simples de média móvel é aquele onde todos os pesos tem o mesmo valor:

$$y_t = \frac{1}{2q+1} \sum_{j=-q}^{q} x_{t+j} \tag{3.4}$$

O resultado do filtro acima é não-causal, o que impede que o processamento seja utilizado para a previsão de séries. Sendo assim, uma outra abordagem possível é fazer um deslocamento no filtro para que sejam utilizadas somente amostras do passado, conforme a equação a seguir:

$$y_t = \frac{1}{2q+1} \sum_{j=-2q}^{0} x_{t+j} \tag{3.5}$$

Outro problema observado nas abordagens de média móvel descritas acima é que somente é que só se obtém a tendência para N-2q pontos. Caso seja necessário obter a tendência para todos os pontos da série, pode-se aplicar métodos de extrapolação sobre o resultado obtido.

Uma terceira abordagem para extração de tendência é utilizar um filtro com pesos que decaem geometricamente, com j, priorizando assim, as amostras mais recentes da série temporal:

$$y_t = \sum_{j=0}^{\infty} \alpha (1 - \alpha)^j x_{t-j}$$
(3.6)

Figura 3.2: Exemplo de extração de tendência com filtro de média. Fonte: Newton (1998). [6]

Outra forma de extrair a tendência é através da diferenciação. Para dados não sazonais, a primeira diferença costuma ser suficiente para garantir a estacionariedade aproximada da série restante [33]:

$$y_t = x_t - x_{t-1} = \nabla x_t \tag{3.7}$$

3.1.2 Sazonalidade

É comum encontrar nas séries observadas alguns padrões que se repetem periodicamente. Esse efeito é denominado sazonalidade e deve ser removido para que se obtenha ao final do processamento uma série residual estacionária [34].

Segundo [34], a sazonalidade pode ser determinada pela seguinte fórmula:

$$sz_t = \frac{1}{Int(N/P)} \sum_{k=0}^{Int(N/P)} s_i(i+kP) \qquad i = 1,...,P$$
 (3.8)

Onde N é o número de amostras, P é o período sazonal, Int(N/P) é o resultado inteiro da divisão de N/P e s_i é o sinal com a tendência previamente removida. Sendo assim, é feito uma média dos pontos da série temporal espaçados pelo período

P. A sazonalidade se repete durante a série temporal, então, caso seja desejado obter a sazonalidade em um tempo 0 < t < N utiliza-se a seguinte fórmula:

$$sz_t = sz[Resto(t/P)]$$
 (3.9)

A periodicidade do fenômeno sazonal pode ser obtida através do conhecimento prévio da série que está sendo analisada ex: Espera-se que a venda de protetores solares seja maior no período de verão, pois é quando as pessoas costumam ir mais às praias. O número de pessoas que frequentam o metrô deve diminuir durante o fim de semana, pois a maioria trabalha durante a semana etc.

Outra forma de se obter o período é fazendo uma inspeção visual sobre o gráfico da série após a remoção da tendência. Em alguns casos serão visíveis os padrões periódicos.

Figura 3.3: Extração de sazonalidade com periodicidade anual (P = 12) para o dataset de nascimentos em Nova York. Fonte: Newton (1988). [6]

Também pode-se obter a informação sobre o período através da observação do gráfico de autocorrelação, onde picos de magnitude seguindo um padrão de espaçamento podem indicar a periodicidade da sazonalidade.

Figura 3.4: Autocorrelação para o sinal residual do dataset de nascimentos em Nova York. Fonte: Newton (1988). [6]

3.1.3 Ciclos Senoidais

Os ciclos senoidais representam um caso bem específico de sazonalidade, sendo representados por senoides de período P. Essa senoide é extraída através da análise do espectrograma dado pela FFT- $Fast\ Fourier\ Transform$. Os parâmetros de sáida são os termos a e b, conforme vistos nas equações abaixo[7]:

$$cs_t = a \cdot \cos(2\pi ft) + b \cdot \sin(2\pi ft) \tag{3.10}$$

Os pontos onde a magnitude do sinal $(\sqrt{a^2+b^2})$ são muito maiores que os outros indicam provável ciclos senoidais que devem ser removidos.

3.1.4 Componente Residual

Caso o processo de extração de componentes descrito nos tópicos acima seja realizado com sucesso, será obtida uma componente residual estacionária. Busca-se também uma distribuição próxima da normal para facilitar a análise. Seguindo esta abordagem, este sinal residual é a única parte aleatória do modelo. Sendo assim, o problema se reduz a prever o comportamento da parte residual da série temporal.

Figura 3.5: Resíduo sem remoção de ciclos senoidais para o dataset de nascimentos em Nova York. Fonte: Newton (1988). [6]

Figura 3.6: Residuo com remoção de ciclos senoidais para o dataset de nascimentos em Nova York. Fonte: Newton (1988). [6]

Como pode-se observar, o sinal residual após a remoção de ciclos senoidais diminuiuse a discrepância gerada pelas frequências próximas de $\omega_0 = 0.135 rad$ amostra além de deixar a distribuição menos espaçada (O desvio padrão mudou de aproximadamente $\sigma = 0.37$ para $\sigma = 0.14$).

Figura 3.7: Sinal residual no tempo para o dataset de nascimentos em Nova York Fonte: Newton (1988). [6]

3.2 Processamento de Sinais

Para remover os ciclos senoidais do espectrograma visto em 3.5 é necessário realizar algum tipo de filtragem sobre sinal. Uma das formas de se classificar um filtro é pela sua resposta em frequência, sendo as mais comuns: passa-baixa, passa-alta, passa-banda e rejeita-banda.

No problema de remoção de ciclos senoidais, busca-se um filtro que remova somente a frequência com maior magnitude, sem afetar muito as magnitudes das outras frequências presentes no espectrograma. Para isso procura-se um filtro que seja rejeita-banda com a banda de rejeição bem estreita e banda de passagem aproximadamente plana.

Um filtro bastante conhecido na literatura que atende a esse critério é o Notch. A escolha pela versão IIRs se dá pela possibilidade de obter atenuações maiores e banda de rejeição mais estreita para um mesma ordem N quando comparado com os filtros FIRs. A função de transferência do filtro Notch de segunda ordem se dá pela equação a seguir: [7]:

$$H(z) = b \cdot \frac{1 - 2\cos\omega_0 z^{-1} + z^{-2}}{1 - 2b\cos\omega_0 z^{-1} + (2b - 1)z^{-2}}$$
(3.11)

е

$$b = \frac{1}{1+\beta} = \frac{1}{1 + \frac{\sqrt{1 - G_b^2}}{G_b} \tan(\frac{\Delta\omega}{2})}$$
(3.12)

Onde ω_0 é a frequência que se deseja rejeitar, $\Delta\omega$ é a banda de rejeição, G_b é a atenuação na frequência de corte. Geralmente utiliza-se $G_b=3dB$. O parâmetro Q citado na seção 3.1.4 pode ser definido também como $Q=\frac{\omega_0}{bw}$. bw por sua vez é a banda de rejeição do filtro Notch.

Figura 3.8: Filtro Notch IIR digital Fonte: Introduction to Signal Processing. [7]

3.3 Redes Neurais Artificiais

Redes Neurais artificiais são modelos computacionais que tentam reproduzir o comportamento observado na estrutura cerebral dos seres vivos. O neurônio pode ser considerado a célula básica de processamento do cérebro humano. Sua estrutura é divida em três partes principais [34] [36] [37]:

Figura 3.9: Neurônio. Fonte: [8]

- Dendritos: São responsáveis por receber estímulos elétricos de outros neurônios
- Corpo celular: Processa as informações recebidas pelos dendritos e determina se será disparado um impulso elétrico
- Axônio: Transmite o impulso elétrico, e, através das sinapses, envia a informação para outros neurônios. Isto ocorre sem contato entre os mesmos.

A representação matemática desse modelo é dada pela seguinte estrutura:

Figura 3.10: Neurônio Artificial. Fonte: [9]

A entrada do neurônio é um vetor $X = [x_1, x_2..., x_n]$ análogo ao sinais elétricos transmitidos no cérebro humano. Essa entrada é ponderada por um conjunto de pesos $W = [w_1, w_2, ..., w_N]$ e somada em um combinador linear junto com um limiar de ativação θ . O somatório das entradas gera um potencial de ativação u, o qual passa por uma função de ativação e gera um sinal de saída que poderá ser propagado para outros neurônios [36]. As informações descritas acima se resumem nas seguintes equações [38]:

$$u_j = \sum_{i=1}^{N} w_{ji} \cdot x_i - \theta \tag{3.13}$$

$$y = g(u) (3.14)$$

Sendo que se considerar $x_0=1$ e $w_0=-\theta,$ pode-se definir a equação 3.13 como:

$$u = \sum_{i=0}^{n} w_i \cdot x_i \tag{3.15}$$

A função de ativação pode ter diferentes formatos. Caso seja identidade, obtém se um regressor linear [39]. Este tipo de abordagem traz uma grande desvantagem, pois a saída do sistema sempre será linear. Isto vem do fato de que uma composição de transformações lineares é também uma transformação linear. Sendo assim, nas redes neurais são utilizadas funções não-lineares. Alguns exemplos são:

• Função Logística:

$$g(u) = \frac{1}{1 + e^{-\beta u}} \tag{3.16}$$

Onde β é uma constante real que modifica a inclinação da reta.

Figura 3.11: Neurônio Artificial. Fonte: [10]

• Tangente Hiperbólica:

$$g(u) = \frac{1 - e^{-\beta u}}{1 + e^{-\beta u}} \tag{3.17}$$

Onde $-1 \le g(u) \le$ para qualquer u e assim como em 3.16, β também modifica a inclinação da reta.

Figura 3.12: Tangente Hiperbólica. Fonte: [11]

• Unidade Linear Retificada - ReLU [40]:

$$g(u) = \max(0, u) \tag{3.18}$$

Esta função é linear na parte positiva e zero na parte negativa.

Figura 3.13: ReLU. Fonte: [12]

As funções de ativação 3.16 e 3.17 são deriváveis em todos os pontos e a 3.18 só não é derivável no ponto zero, porém contorna-se essa limitação fazendo g'(0) = 0. A ReLU tem sido essencial para o estado da arte de redes neurais [12] [41] [42] [43]. A derivada da função de ativação é utilizada pelos algoritmos de treinamento baseados no gradiente do erro assim como será visto mais à frente.

3.3.1 Backpropagation

O algoritmo de backpropagtion é bastante utilizado no treinamento de de redes neurais e utiliza o gradiente do erro como base dos cálculos, assim como mencionado anteriormente [39] [44]. Busca-se mover o vetor dos pesos na direção do mínimo local. A expressão de atualização dos pesos é da seguinte forma:

$$w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E_n w^{(\tau)}$$
(3.19)

O qual deve ser repetido até que o erro se torne suficientemente pequeno. O gradiente do erro nessa fórmula é dado por:

$$\nabla E^{(\tau)} = \frac{\partial E}{\partial W_{ji}^{(\tau)}} = \frac{\partial E}{\partial Y_j^{(\tau)}} \cdot \frac{\partial Y_j^{(\tau)}}{\partial u_j^{(\tau)}} \cdot \frac{\partial u_j^{(\tau)}}{\partial W_{ji}^{(\tau)}}$$
(3.20)

Têm-se como ideia principal do mesmo avaliar quanto que um determinado peso em uma camada influência no erro da saída e assim, modificá-lo de forma a tornar esse erro menor. Um ponto importante para o sucesso do algoritmo é a normalização da entrada, visto que diminui o tempo de convergência.

Figura 3.14: Gradiente Descendente desnormalizado e normalizado. Fonte: [12]

3.3.2 Rede perceptron multicamadas - MLP

Assim como no cérebro, os neurônios artificiais podem ser agrupados em estrutura mais complexas. Para uma camada inicial com N entradas têm se na J-ésima saída:

$$Y_j^{(1)} = g(\sum_{i=0}^N W_{ji}^{(1)} \cdot X_i)$$
(3.21)

Nas camadas seguintes utiliza-se a saída da camada anterior (com M neurônios) como entrada na camada atual. Na fórmula busca-se obter a saída para o P-ésimo neurônio da camada H.

$$Y_P^{(H)} = g(\sum_{i=0}^M W_{pi}^{(H)} \cdot Y_i^{(H-1)})$$
(3.22)

As redes MLP tem sido utilizadas em diferentes classes de problemas como classificação de elementos e previsão de séries temporais [34] [36] [45]. Com o grande crescimento do número de dados disponível para utilização e o desenvolvimento das tecnologias computacionais, têm-se atualmente redes com muitas camadas e neurônios em busca de obter maior capacidade de separação, previsão, além de poder obter informações relevantes sobre neurônios intermediários da rede [46] [47] [48].

Figura 3.15: Rede Perceptron Multicamadas. Fonte: [49]

3.3.3 Treinamento

Para que a rede consiga de fato "aprender" com os dados é necessário realizar o treinamento. Para que o mesmo seja bem sucedido deve-se atentar para alguns fatores como:

- Inicialização dos pesos: Os pesos não devem se iniciados com o mesmo valor, pois isto faria com que cada neurônio interprete a entrada da mesma forma, gerando então uma estrutura simétrica [12] [50] [51].
- Função custo: Há necessidade de definir qual função de custo será utilizada na avaliação dos resultados da rede. A função mais comum é o erro médio quadrático MSE, porém dependendo da análise que se deseja fazer e do problema a ser resolvido, outras funções podem ser utilizadas como a o erro médio quadrático RMSE, erro absoluto -MAE e acurácia ACC [35].
- Curva de aprendizado: É comum também utilizar um gráfico do erro na saída em função da época de treinamento para o conjunto de treinamento e validação. Através do mesmo é possível observar características como overfitting e underfitting e selecionar o conjunto de pesos que tem o melhor compromisso [52].
- Quantidade de dados X complexidade da rede: Outro fator importante a ser observado é a quantidade de dados disponível para treinamento, visto

que quanto maior a complexidade estrutural da rede, maior a capacidade de gerar funções complexa, portanto torna-se necessário uma maior quantidade de dados para que a mesma seja treinada sem o efeito de overfitting.

• Taxa de aprendizado: Caso o fator η da fórmula 3.19 seja um valor muito grande, o algoritmo não conseguirá convergir para um mínimo, porém se η for um número muito grande, o treinamento pode levar muita épocas até convergir. Cabe então a quem especifica os parâmetros da rede neural escolher um η adequado de forma com que a convergência ocorra e não demore demais.

Figura 3.16: Influência da taxa de aprendizado. Fonte: [13]

• Divisão dos dados de entrada: Uma prática comum para se obter resultados consistentes é dividir os dados em um conjunto de testes e outro de validação, de forma que o conjunto de testes não seja usado no treinamento, sendo assim usado para verificar o quão bom são os resultados da rede para dados desconhecidos. Outra prática comum é dividir o conjunto de treinamento em treino e validação e utilizar a validação cruzada, de forma a realizar vários treinos com a mesma arquitetura, permitindo obter melhores resultados no treinamento [53].

Figura 3.17: Validação cruzada. Fonte: [14]

Capítulo 4

Método

O objetivo deste capitulo é descrever o método utilizado no desenvolvimento do trabalho. Serão descrito onde os dados foram retirados e como foi feito o préprocessamento. Além disso, será descrito o processo de treinamento da rede neural, visando obter a previsão do PLD.

4.1 Aquisição dos dados

Os dados utilizados e suas respectivas fontes podem ser observados na tabela 4.1.

Tabela 4.1: Dados utilizado no trabalho.

Dado	tipo	Fonte
PLD	Saída	CCEE [3]
Energia Total Armazenada	Entrada	ONS [1]
Energia Gerada pelas Usinas Hidroelétricas	Entrada	ONS [1]
Energia Gerada pela Usinas Térmicas	Entrada	ONS [1]
Energia Gerada pela Usinas Solares	Entrada	ONS [1]
Energia Gerada pela Usinas Eólicas	Entrada	ONS [1]
Energia de Carga	Entrada	ONS [1]
Energia Natural Afluente	Entrada	ONS [1]
Soma das Vazões Afluentes	Entrada	CCEE [3]
Valor Útil da Soma das Vazões Afluentes	Entrada	CCEE [3]

4.2 Pré-Processamento

No início do trabalho definiu-se que o foco seria a região sudeste, sendo assim, todos os dados utilizados foram filtrados para a região SE/CO. Os dados provenientes da ONS foram baixados direto do site no formato *Comma Separated Values* - CSV. Para facilitar o processamento, todas as colunas que não fossem a data no formato "mês(por extenso) ano" foram retiradas. Essas colunas foram renomeadas para "month" e "value", respectivamente.

Para a obtenção da soma das vazões, utilizou-se o arquivo VAZOES.DAT fornecido pela CCEE. Este arquivo é binário e para ser lido precisa da utilização do
executável vazedit também fornecido pela CCEE. Após o processamento deste programa, obtém-se um arquivo texto com as vazões de cada posto fluviométrico para
cada mês em cada ano desde de 1931. Esses valores foram somados para os postos
que pertencem exclusivamente à região Sudeste.

O "valor útil da soma das vazões afluentes" é um cálculo semelhante ao descrito no parágrafo anterior, porém removendo em cada posto a vazão mínima necessária para a produção de energia. Para obter essa informação, utiliza-se o arquivo HIDR.DAT, também fornecido pela CCEE, o qual possui o cadastro de todas as usinas consideradas nos cálculos do PLD. Assim como no caso do arquivo VAZOES.DAT, o HIDR.DAT também é binário. Para processar o mesmo é necessário um executável também fornecido pela CCEE chamado hidroedit.

Todas as séries temporais foram decompostas em tendência, sazonalidade, ciclos senoidais e resíduo assim como mostrado na seção 3.1, dado que na rede neural será utilizado como entrada somente os resíduos. Busca-se que a parte residual tenha a menor energia possível, por isso cabe bastante cuidado na análise para obter uma boa extração das componentes do sinal.

Após a extração residual, os dados são normalizados para facilitar a convergência do treinamento, assim como mostrado em 3.3.3. A normalização utilizada foi o *MinMaxScaler* [54].

Dado que as regras para o cálculo do PLD variam durante os anos, utilizou-se somente os dados no período entre 01/2015 e 12/2018 de modo a tentar reduzir ao máximo esse efeito. Sendo assim, o *dataset* possui 48 pontos.

4.3 Rede Neural

Foi definido que a rede neural utilizada será um MLP de uma camada escondida somente, com ReLU 3.13 como função de ativação. A saída conterá somente um neurônio com função de ativação linear, de modo a conseguir obter o sinal utilizado na previsão do resíduo do PLD.

Devido ao número de atrasos relevantes obtidos pelo gráfico de autocorrelação (20 atrasos), o *dataset* se reduziu a 28 pontos, dos quais os 3 últimos foram separados para teste e os outros 24 foram utilizados na validação cruzada.

O treinamento será realizado modificando o número de neurônios na camada intermediária, de forma a avaliar qual arquitetura fornece o menor erro na saída.

Capítulo 5

Conclusões

Tratam-se das considerações finais do trabalho, mostrando que os objetivos foram cumpridos e enfatizando as descobertas feitas durante o projeto. Em geral reserva-se um ou dois parágrafos para sugerir trabalhos futuros.

Observe que neste modelo a conclusão é numerada pelo numeral 3, mas o projeto não tem a obrigatoriedade de possuir apenas 3 capítulos. Alias, espera-se que tenha mais que isso.

Referências Bibliográficas

- [1] ONS, "Operador Nacional do Sistema Elétrico", http://ons.org.br/, 2019, (Acesso em 27 Janeiro 2019).
- [2] FILHO, J. C. R., Previsão multi-passo a frente do preço de energia elétrica de curto prazo no mercado brasileiro. Ph.D. dissertation, Universidade Federal do Pará Instituto de Tecnologia, programa de pós-graduação em engenharia elétrica, 2014.
- [3] CCEE, "Câmara de Comercialização de Energia Elétrica", https://www.ccee.org.br/, 2019, (Acesso em 31 Janeiro 2019).
- [4] Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., et al., "Energy Time Series Forecasting Based on Pattern Sequence Similarity", IEEE Transactions on Knowledge and Data Engineering, v. 23, n. 8, pp. 1230–1243, Aug 2011.
- [5] MAKRIDAKIS, W., HYNDMAN, "Sales of shampoo over a three year period", https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period#!ds=22r0&display=line, 1998, (Acesso em 9 de Abril 2019).
- [6] (1988), N., "Monthly New York City births: unknown scale. Jan 1946? Dec 1959", https://datamarket.com/data/set/22nv/monthly-new-york-city-births-unknown-scale-jan-1946-dec-1959#!ds=22nv&display=line, 1988, (Acesso em 9 de Abril 2019).
- [7] ORFANIDIS, S. J., Introduction to Signal Processing, 2002.
- [8] ESCOLA, B., "O que é neurônio?", https://brasilescola.uol.com.br/o-que-e/biologia/o-que-e-neuronio.htm, 2019.

- [9] VINICIUS, A., "Redes Neurais Artificiais", https://medium.com/@avinicius.adorno/redes-neurais-artificiais-418a34ea1a39, 2017.
- [10] SHARMA, S., "Redes Neurais Artificiais", https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6, 2017.
- [11] BHATTARAI, S., "tanh-activation-function", https://saugatbhattarai.com.np/what-is-activation-functions-in-neural-network-nn/logistic-sigmoid-unipolar-tanh-bipolar/, 2018.
- [12] SARKAR, K., "ReLU: Not a Differentiable Function: Why used in Gradient Based Optimization? and Other Generalizations of ReLU.", https://medium.com/@kanchansarkar/relu-not-a-differentiable-function-why-used-in-gradient-based-optimization-7fef3a4cece, 2018.
- [13] DABBURA, I., "Gradient Descent Algorithm and Its Variants", https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3, 2017.
- [14] COUTO, E., "Bias vs. Variância (Parte 2)", https://ericcouto.wordpress.com/2013/07/18/bias-vs-variancia-parte-2/, 2013.
- [15] SILVA, E. F. D., Principais Condicionantes das alterações no modelo de comercialização. M.Sc. dissertation, Escola Politécnica da Universidade de São Paulo, 2008.
- [16] SILVA, B. G. D., Evolução do setor elétrico brasileiro no contexto econômico nacional: Uma análise histórica e econométrica de longo prazo. Ph.D. dissertation, Universidade de São Paulo - Programa de pós-graduação em energia EP-FEA-IEE-IF, 2011.
- [17] EPE, "Empresa de Pesquisa Energética", http://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica, 2018, (Acesso em 26 Janeiro 2019).

- [18] CASTRO, N. J. D., LEITE, A. L. D. S., "Preço spot de eletricidade: teoria e evidências do caso brasileiro", IV Encontro de Enconomia Catarinense, 2010, Criciúma, , 2010.
- [19] CAVALIERE, M. A., "Previsão de preços futuros de energia eleétrica no ambiente de contratação livre uma abordagem de equilíbrio de mercado sob incertezas", 2017.
- [20] BARRETTO, E. P. B. M., "Smart grid: Eficiência energética e a geração distribuida a partir das redes inteligentes", 2018.
- [21] ANEEL, "Resolução normativa nº 482, de 17 de abrid de 2012", http://www2.aneel.gov.br/cedoc/ren2012482.pdf, 2019, (Acesso em 26 Fevereiro 2019).
- [22] UFJF, E. I., "Especial: A crise energética brasileira", http://energiainteligenteufjf.com/especial/especial-a-crise-energeticabrasileira/, 2019, (Acesso em 26 Fevereiro 2019).
- [23] CEPEL, "Documentação Técnica metodologias das modelos de otimização energética do CEPEL", http://www.cepel.br/sala-deimprensa/noticias/menu/noticias/documentacao-tecnica-das-metodologiase-modelos-de-otimizacao-energetica-do-cepel.htm, 2019, 26 (Acesso Fevereiro 2019).
- [24] SILVA, A. P. S., "Previsão do preço de liquidação das diferenças por meio de redes neurais artificiais", 2018.
- [25] JUNIOR, F. R. P., Redes neurais diretas e recorrentes na previsão do preço de energia elétrica de curto prazo no mercado brasileiro. M.Sc. dissertation, Universidade Federal do Pará, 2016.
- [26] RODRIGUES, A. L., Redes neurais artificiais aplicadas na previsão de preços do mercado spot de energia elétrica. M.Sc. dissertation, Universidade de São Paulo, 2009.
- [27] NASCIMENTO, F. B. D., "Redes Neurais Artificiais Aplicadas à Predição do Preço De Liquidação das Diferenças no Mercado De Energia", 2017.

- [28] SOUSA, A. J. S. D., Análise e Previsão da Volatilidade do Preçode Liquidação das Diferençasno Mercado Brasileiro Utilizando o Modelo GARCH. M.Sc. dissertation, Universidade Federal da Bahia, 2013.
- [29] Rodriguez, C. P., Anders, G. J., "Energy price forecasting in the Ontario competitive power system market", *IEEE Transactions on Power Systems*, v. 19, n. 1, pp. 366–374, Feb 2004.
- [30] Amjady, N., Hemmati, M., "Energy price forecasting problems and proposals for such predictions", *IEEE Power and Energy Magazine*, v. 4, n. 2, pp. 20–29, March 2006.
- [31] HONG, T., PINSON, P., FAN, S., et al., "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, v. 32, n. 3, pp. 896 – 913, 2016.
- [32] SHAFIE-KHAH, M., MOGHADDAM, M. P., SHEIKH-EL-ESLAMI, M., "Price forecasting of day-ahead electricity markets using a hybrid forecast method", Energy Conversion and Management, v. 52, n. 5, pp. 2165 – 2169, 2011.
- [33] EHLERS, R. S., Análise de Séries Temporais, 2009.
- [34] CALôBA, L. P., Introdução ao Uso de Redes Neurais na Modelagem de Sistemas Dinâmicos e Séries Temporais., 2002.
- [35] PEREIRA, D. F. R., "Aprendizado de máquina e aprendizado profundo para apoio à decisão no mercado financeiro", 2018.
- [36] SILVA, I. N. D., SPATTI, D. H., FLAUZINO, R. A., Redes neurais artificiais para engenharia e ciências aplicadas. Artliber Editora, 2010.
- [37] GURNEY, K., An Introduction to Neural Networks. Bristol, PA, USA, Taylor & Francis, Inc., 1997.
- [38] HILDEBRANDT, T. H., DINGLE, A., "Improving C++ Performance Using Temporaries", *Computer*, v. 29, n. 03, pp. 31–41, mar 1998.

- [39] BISHOP, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg, Springer-Verlag, 2006.
- [40] HE, K., ZHANG, X., REN, S., et al., "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", CoRR, v. abs/1502.01852, 2015.
- [41] AGARAP, A. F., "Deep Learning using Rectified Linear Units (ReLU)", CoRR, v. abs/1803.08375, 2018.
- [42] CHENG, H.-T., KOC, L., HARMSEN, J., et al., "Wide & Deep Learning for Recommender Systems". In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pp. 7–10, New York, NY, USA, 2016.
- [43] TANG, Y., "Deep Learning using Support Vector Machines", CoRR, v. abs/1306.0239, 2013.
- [44] Hecht-Nielsen, "Theory of the backpropagation neural network". In: *International 1989 Joint Conference on Neural Networks*, pp. 593–605 vol.1, 1989.
- [45] GARDNER, M., DORLING, S., "Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences", *Atmospheric Environment*, v. 32, n. 14-15, pp. 2627–2636, 1998.
- [46] SCHMIDHUBER, J., "Deep learning in neural networks: An overview", Neural Networks, v. 61, pp. 85 117, 2015.
- [47] DENG, L., YU, D., "Deep Learning: Methods and Applications", Foundations and Trends® in Signal Processing, v. 7, n. 3?4, pp. 197–387, 2014.
- [48] HINTON, G., DENG, L., YU, D., et al., "Deep Neural Networks for Acoustic Modeling in Speech Recognition", IEEE Signal Processing Magazine, v. 29, pp. 82–97, November 2012.
- [49] MOREIRA, S., "Rede Neural Perceptron Multicamadas", https://medium.com/ensina-ai/rede-neural-perceptron-multicamadasf9de8471f1a9, 2018.

- [50] YAM, J. Y., CHOW, T. W., "A weight initialization method for improving training speed in feedforward neural network", *Neurocomputing*, v. 30, n. 1, pp. 219 – 232, 2000.
- [51] HSIAO, T.-C. R., LIN, C.-W., CHIANG, H. K., "Partial least-squares algorithm for weights initialization of backpropagation network", Neurocomputing, v. 50, pp. 237 247, 2003.
- [52] Russo, D., Zou, J., "How much does your data exploration overfit? Controlling bias via information usage", arXiv e-prints, p. arXiv:1511.05219, Nov 2015.
- [53] Arlot, S., Celisse, A., "A survey of cross-validation procedures for model selection", arXiv e-prints, p. arXiv:0907.4728, Jul 2009.
- [54] LEARN, S., "sklearn.preprocessing.MinMaxScaler", https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html, 2019.

Apêndice A

O que é um apêndice

Elemento que consiste em um texto ou documento elaborado pelo autor, com o intuito de complementar sua argumentação, sem prejuízo do trabalho. São identificados por letras maiúsculas consecutivas e pelos respectivos títulos.

Apêndice B

Encadernação do Projeto de Graduação

* Título resumido caso necessário Capa na cor preta, inscrições em dourado

Figura B.1: Encadernação do projeto de graduação.

Apêndice C

O que é um anexo

Documentação não elaborada pelo autor, ou elaborada pelo autor mas constituindo parte de outro projeto.