Grundlagen der Elektrotechnik 1, WS 2021/22

Übungsblatt 7

Eike Petersen, Carlotta Hennigs¹ Besprechung am 19. Januar 2022

Aufgabe 1

Betrachten Sie die Common-Source-Verstärkerschaltung in Abbildung 2a. Nehmen Sie an, für den MOSFET gelten die Charakteristiken in Abbildung 1, und es sei $U_T = 1.3 \,\mathrm{V}$.

Abbildung 1: Charakteristisches Verhalten eines MOSFETs vom Typ BSS138 der Firma Fairchild, dem Datenblatt entnommen. Das Datenblatt ist im Moodle verfügbar.

- a) Nehmen Sie an, $R_L = 3\Omega$. Finden Sie je einen Wert für $U_{\rm in}$, für den der MOSFET im Cutoffbereich, im Triodenbereich sowie im Sättigungsbereich betrieben wird.
- b) Nehmen Sie für diesen und die beiden folgenden Aufgabenteile an, der MOSFET werde im Sättigungsbereich betrieben und sei dort durch die Gleichung

$$I_{DS} = \frac{K}{2}(U_{GS} - U_T)^2$$

charakterisiert. Zeichnen Sie ein Ersatzschaltbild der dargestellten Verstärkerschaltung, indem Sie das SCS-Modell des MOSFETs anwenden.

c) Bestimmen Sie anhand der MOSFET-Charakteristiken in Abbildung 1 einen Schätzwert für den MOSFET-Parameter K. Ist dieser eindeutig? Wie stark hängt dieser vom Wert der Threshold-Spannung U_T ab? Ziehen Sie das Datenblatt des MOSFETs zu Rate, um abzuschätzen, wie stark der Wert von U_T bei unterschiedlichen Exemplaren dieser Baureihe schwanken kann. Sie finden das Datenblatt des BSS138 im Moodle.

¹Institut für Medizinische Elektrotechnik, Universität zu Lübeck. Aufgaben teilweise modifiziert übernommen aus Agarwal, Lang (2005): "Foundations of Analog and Digital Electronic Circuits".

Abbildung 2

- d) i) Geben Sie eine Beziehung zwischen U_{out} und I_{DS} an.
 - ii) Geben Sie eine Beziehung zwischen I_{DS} und $U_{\rm in}$ an.
 - iii) Geben Sie eine Beziehung zwischen U_{out} und U_{in} an.
- e) Bestimmen Sie näherungsweise (grafisch) die Verstärkerkennlinie ($U_{\rm out}$ gegen $U_{\rm in}$ aufgetragen) für $R_L=2\,\Omega$, indem Sie die Kennlinie des Widerstands R_L in Abbildung 1 einzeichnen. Stimmt diese Kennlinie mit der im letzten Aufgabenteil bestimmten, analytischen Beziehung zwischen $U_{\rm out}$ und $U_{\rm in}$ überein?

Aufgabe 2 (Klausuraufgabe WS 2017/18)

Betrachten Sie die Schaltung in Abbildung 3, und bestimmen Sie die Ausgangsspannung $U_{\rm out}$ als Funktion der Eingangsspannung $U_{\rm in}$ sowie der relevanten Bauteilparameter. Nehmen Sie hierfür an, der MOSFET werde in Sättigung betrieben, und erläutern Sie Ihren Lösungsweg.

Aufgabe 3 (Klausuraufgabe WS 2017/18)

Gegeben sei die Schaltung in Abbildung 4. Bestimmen Sie Werte für die Widerstände R_1 und R_2 , bei denen der MOSFET in Sättigung betrieben wird und $I_{\rm ges} < 300\,{\rm mA}$ gilt. Gehen Sie hierfür von den MOSFET-Parametern $U_T=1\,{\rm V}$ und $K=100\,{\rm mA/V^2}$ aus, und erläutern Sie Ihren Lösungsweg.

