BANA 273 Session 5

Assignment Project Exam Help Testing https://powcoder.com

Add WeChat powcoder
Prof. Vibs Abhishek
The Paul Merage School of Business
University of California, Irvine

Agenda

- Construction of test data set
- Measuringsignment Project Exam Help
- Assignments posted to Canyas com
- Review Assignment 1
 Add WeChat powcoder

What is Testing?

- It is important to know how the decision support system is performing in real-world situations
- "Real" testing is difficult
 How do We testine negative diest Exam Help
- Was it right to turn down the loan application?
- Was it correct that we did not invest in the other project?
 - Even for positive decimon Chateventus Code me may not be known
- The loan that was approved has not defaulted yet, but we do not know if it would do so in the next 28 years
- **Testing**
 - Use a small number of old cases to see how the system performs

Training versus Testing

- It is not advisable to use the same set of cases to train the model and then test it
 - The performance we proper that is the last of the la
- Training data would perfectly capture all the https://powcoder.com/stochastic relationships across the features and the goal
 Add WeChat powcoder
- As mentioned before, we partition the dataset into two subsets
 - Training set
 - Used to build the model
 - Testing set
 - Used to validate the performance of the model

Training and testing

- Natural performance measure for classification problems: error rate
 Assignment Project Exam Help
 * Success: instance's class is predicted correctly

 - Error: instaltes: / lassis predicted macorrectly
 - Error rate: proportion of errors made over the whole set of instances we Chat powcoder
- Resubstitution error: error rate obtained from training data
- Resubstitution error is (hopelessly) optimistic

Making the most of the data

- Once evaluation is complete, *all the data* can be used to build the final classifier
- Generally, the larger the training data the better the classifier (but returns diminish)
- The larger the test rate the error estimate

 Add WeChat powcoder
- *Holdout* procedure: method of splitting original data into training and test set
 - Dilemma: ideally both training set *and* test set should be large!

Holdout estimation

- What to do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 Assignment Project Exam Help
 Usually: one third for testing, the rest for training
- Problem: the sattpole's povight devictor representative
 - Example: class might be missing in the test data Add WeChat powcoder
- Advanced version uses stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for spanning (pt. 1818) selected for spanning (pt. 1818).
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the Areplet Wedthold pow method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?

Cross-validation

- Cross-validation avoids overlapping test sets
 - First step: split data into k subsets of equal size
 - Second step: use each subset in turn for testing, the Assignment Project Exam Help remainder for training
- Called k-foldhupssk-powidationcom
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate

More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten? Assignment Project Exam Help
 - Extensive experiments have shown that this is the best choice to get an accurate estimate
- Even better: repeated Watifiet prosposatidation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged

Leave-One-Out cross-validation

- Leave-One-Out: a particular form of cross-validation:
 - Set number strangent Project Frank Hances
 - I.e., for n training instances build classifier n times
- Makes best use of the data
 Add WeChat powcoder
 Very computationally expensive

Accuracy Measure

- Accuracy is the percentage of test cases where the predicted and actual goals are the same
 - The test set of the ignments Project Ex accuracy

 https://powcoder.c
- Problem
 - Does it account for a bias towards a class?
- Stratified accuracy
 - Accuracy for each class
 - Accuracy for Approve=no
 - 4 out of 6 (66.7%)
 - Accuracy for Approve = yes
 - 3 out of 4 (75%)

Ap	prove		
Actual	Predicted	Match?	
yes	yes	1	
He ⁴ p	no	0	
no	no	1	
no	no	1	
no	yes	0	
yes	yes	1	
no	yes	0	
yes	yes	1	
no	no	1	
no	no	1	
		7	
	Actual yes Help no no no yes no yes no	Actual Predicted yes yes Help no no no no no yes yes yes yes yes yes yes no yes no yes yes no no no	Actual Predicted Match? yes yes 1 Help no 0 no 1 no no 1 no yes 0 yes yes 1 no yes 0 yes yes 1 no yes 0 yes yes 1 no no 1

Confusion Matrix

• A confusion matrix summarizes the result of running a classification model on a *test dataset*

Assignment Project Examellelpass				
	https://pow	Yes	No	
Actual class	Yes Tr	ue positive	No False negative (Type 2)	
	No Adals Whost	væt (pvpædd	der True negative	

A 3x3 Confusion Matrix

A 2x2 Confusion Matrix

a	b	← classified as
905	23	a = yes
12	323	b = no

a	b	С	\leftarrow classified as
911	24	12	a = buy
12	374	22	b = hold
11	14	123	$\mid c = sell$

Confusion Matrix

- Total number of test cases
 - * 905 Assighment Project Exam Help
- Number of correct classification
 - 905 + 323 https://powcoder.com
- Number of incorrected assisticationer
 - 23 + 12 = 35
- Accuracy = 1228/1263 = 97.2%
- Stratified accuracy
 - Accuracy for "a" = 905/(905+23) = 975%
 - Accuracy for "b" = 323/(12+323) = 96.4%

The bootstrap

- CV uses sampling without replacement
 - The same instance, once selected, can not be selected again for a particular training/test set
- The bootstrap uses sampling with replacement to form the training set
 - Sample a dataset of prinstances form a new dataset of prinstances powcoder
 - Use this data as the training set
 - Use the instances from the original dataset that don't occur in the new training set for testing

The 0.632 bootstrap

- The 0.632 bootstrap
 - A particular instance has a probability of 1–1/n of not being spictment Project Exam Help
 - Thus its probability of *not* ending up in the test data https://powcoder.com
 is: $\frac{1}{\text{Add WeChat powcoder}} \approx 0.368$
 - This means the training data will contain approximately 63.2% of the instances

Estimating error with the bootstrap

- The error estimate on the test data will be pessimistic
- Trained on ~63% of the instances
 Assignment Project Exam Help

 Therefore, combine it with the resubstitution
 - Therefore, combine it with the resubstitution error: https://powcoder.com

$$err = 0.632 * e_{test_data_set} + 0.368 * e_{training_data_set}$$
Add WeChat powcoder

- The resubstitution error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results

Training, testing and validation data

- The standard for computing accuracy of a model
 - Split datasing ampants Project Exam Help
 - Training data to be used for model generation
 - Validation https://poweroderdecembertion
 - Testing data to be used for determining the accuracy of the final model dd WeChat powcoder

Counting the cost

- In practice, different types of classification errors often incur different postect Exam Help
- Examples: https://powcoder.com
 - Loan decisions
 - Promotiona Add Mg Chat powcoder
 - Fault diagnosis

Classification with costs

• Default cost matrices:

	Ass	ign	me	nt Projec	t Ex	kam	He	diffed c	lass
		yes	no	11	•		а	b	c
Actual	yes	hti	.ps:	//powcod	ter.c	com	0	1	1
class	no	A	ld V	WeChat p	Actual	cbd	er	0	1
						c	1	1	0

- Success rate is replaced by average cost per prediction
 - Cost is given by appropriate entry in the cost matrix

Cost-sensitive classification

Change classifier model to take account of cost of errors

- Can take costs into account when making predictions
 - Basic idea: only predict high-cost class when very confident about prediction
- Given: predicted chaspspropabilities.com
 - Normally we just predict the most likely class
 - Here, we should make the prediction that minimizes the expected cost
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Changing the cutoff probability in Naïve Bayes

Example – Work out the cost of errors:

- Consider a classifier problem where the class variable is significant Analyze Rajequelp
- Suppose Naïve Bayes examines a test instance https://powcoder.com (row) and assigns the following probabilities:
 - Accept 50%, Addalyze 30%, Reject 20%
- Suppose the cost matrix is

Actual↓	Predicted →	Accept	Analyze	Reject
Accept		0	1	2
Analyze		1	0	1
Reject		3	1	0

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Cost-sensitive learning

- So far we haven't taken costs into account at training time
- Most learning schemes do not perform costsensitiva learning nt Project Exam Help
 - They generate the same classifier no matter what costs are assigned to the design design design.

Add WeChat powcoder

- Simple methods for cost-sensitive learning:
 - Thresholding: Adjust probability threshold for setting class labels
 - Rebalancing: Resampling of instances according to costs

Terminology

True Labels

AssignmentitiProject Extam Help

Positivattps://TPowecoderecome

Model's

Predictions Add WeChat powcoder

Negative

FN False negative

TN True negative

A hypothetical lift chart

Generating a lift chart

• Sort instances according to predicted probability of being positive:

	Assignmento Baniject Exam Hedpal class				
1	https://powcoder.com	Yes			
2	0.93	Yes			
3	Add Chat powcoder	No			
4	0.88	Yes			
	•••				

- Lift Chart
 - x axis is sample sizey axis is number of true positives

Binary Classification: Lift Curves

Sort test examples by their predicted score

For a particular threshold compute

- (1) NTP = number of true positive examples detected by the model Assignment Project Exam Help
- (2) NTPR = number of true positive examples that would be https://powcoder.com

Lift curve = Lift as a function of number of examples above the threshold, as the threshold is varied

Expect that good models will start with high lift (and will eventually decay to 1)

From Chapter 8: Visualizing Model Performance, in Data Science for Business (O Reilly, 2013),

Computing Profits using Lift charts

- Example: promotional mailing to 1,000,000 households @ \$0.50 each. Company earns on average, \$600 from each response
 - Mail to all; 0.1% respond (1000).
 - · Total Provissing Anna Property Property Exam Help
 - Data mining toohttestifes with selection, 000 most promising, 0.4% of these respond (400)
 - Lift Ratio = 0.4 Add WeChat powcoder
 - Total profit =
 - Identify subset of 400,000 most promising, 0.2% respond (800)
 - Lift Ratio = 0.2 / 0.1 = 2
 - Total profit =
 - A lift chart allows a visual comparison

Example of an Empirical "Profit Curve"

12:1 benefit/cost ratio (more lucrative)

From Chapter 8: Visualizing Model Performance, in Data Science for Business (O Reilly, 2013), with permission from the authors, F. Provost and T. Fawcett

ROC curves

- ROC curves are similar to lift charts
 - Stands Agrigentient Pretiting Exampter to be a standard of the standard of t
 - Used in signal detection to show tradeoff between hit rate and false that mate 80er noisy channel
- Differences to difft what powcoder
 - y axis shows percentage of true positives in sample rather than absolute number
 - x axis shows percentage of false positives in sample rather than sample size

True Labels

ROC Plots

Positive

Negative

Positive

TP True positive

FP False positive

Model's **Predictions**

Assignment Project regative Holpegative

TPR = True Positive Rate = TP / (TP + FN)

= ratio of correct positives predicted to actual number of positives (same as recall, sensitivity, hit rate)

FPR = False Positive Rate

= FP / (FP + TN) = ratio of incorrect negatives predicted to actual number of negatives(same as false alarm rate)

Receiver Operating Characteristic: plots TPR versus FPR as threshold varies

As we decrease our threshold, both the TPR and FPR will increase, both ending at [1, 1]

Example of an Actual ROC

From Chapter 8: Visualizing Model Performance, in Data Science for Business (O Reilly, 2013), with permission from the authors, F. Provost and T. Fawcett

In the following confusion matrix, the number of errors is

A 3x3 Confusion Matrix

```
a b c ← classified as

911 24 12 | a = buy

12 374 22 | b = hold

11 14 123 | c = sell
```

A: 123
Assignment Project Exam Help

B: 374

C: 99 https://powcoder.com

D: 911 Add WeChat powcoder

E: None of the above

A lift chart is useful for

A: Calculating Bayesian lift

B: Calculating the difference function Assignment Project Exam Help

C: Calculating the optimal number of promotional mailings
Add WeChat powcoder

D: Calculating the accuracy of Naïve Bayes

E: None of the above

Review Assignment 1

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Weka Example – Classification using Naïve Bayes

- Download file from EEE (session 9):
 - 4bank-datai-granfent Project Exam Help
- Switch tab to "classify" https://powcoder.com
- Select method: NaiveBayes
- Verify class variable set to pep der
- Use 10 fold cross validation
- Run classifier
- Examine confusion matrix

Next Session

Decision Tree based classification
 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

