MANUFACTURING PROCESSES

COORDINATOR: PAUL MUNAFO

NASA/MSFC

CONTRIBUTORS: JAY BENNET

NASA/JSC

DAVID BROWER

LOCKHEED/HOUSTON

STAN LEVINE

NASA/LERC

RAY WALKER

P&W/WEST PALM BEACH

JOHN WOOTEN

ROCKWELL/ROCKETDYNE

MANUFACTURING PROCESSES

ISSUES

- PROCESS DEVELOPMENT FREQUENTLY LAGS BEHIND MATERIAL DEVELOPMENT
- HIGH FABRICATION COSTS
- FLEX JOINTS (BELLOWS) A CONTINUING PROGRAM
- SRM FABRICATION-INDUCED DEFECTS
- IN-SPACE ASSEMBLY WILL REQUIRE SIMPLIFIED DESIGNS

PROPOSED ACTIONS/PROGRAMS

- FABRICATE ADVANCED COMPOSITE DEMO ARTICLE(S)
- FABRICATE DEMO RCS THRUSTER USING IRIDIUM-COATED RHENIUM
- **NEAR-NET SHAPE FABRICATION**
- SMART MANUFACTURING
- DEVELOP NEW FLEX JOINT
- RHEOLOGY STUDY OF SOLID PROPELLANT FLOW CHARACTERISTICS
- COVALENT BONDING PROCESS FOR INSULATOR/PROPELLANT
- MANUFACTURE OF LARGE INTEGRATED COMPONENTS (MODULES)

MANUFACTURING PROCESSES (CONT'D)

MAJOR OBJECTIVES

- o LARGE-SCALE DEMO ARTICLES
- o REDUCED FABRICATION COSTS
- o RELIABLE, EASY-TO-ASSEMBLY FLUID COUPLINGS
- o IMPROVED SRM PROCESSING
- o MODULAR COMPONENTS

MILESTONES

IMPROVED BELLOWS	1993
JOINING TECHNIQUE FOR RHENIUM THRUSTERS	1993
SIMPLIFIED COUPLINGS	1994
NET-SHAPE HARDWARE DEMO	1994
RHEOLOGY STUDY OF PROPELLANT CASTING	1995
CERAMIC MATRIX COMPOSITE ROTOR	1996

MANUFACTURING PROCESSES

RECOMMENDATIONS/FINDINGS

- O ESTABLISH BROAD-BASED PEER GROUPS TO REVIEW TECHNOLOGY DEVELOPMENT PROGRAMS
 - O PROGRAM MANAGER AS FOCAL POINT
 - o FELLOW TECHNOLOGISTS (M'F'G, MAT'LS, NDE)
 - o USERS/DESIGNERS
 - O GUIDE THE DEVELOPMENT PROCESS
 - O INDEPENDENT TEAM FOR PROGRAMMATIC DECISIONS
 - O FUNCTIONS THROUGHOUT PROGRAM -- FROM ADVOCACY TO IMPLEMENTATION

MANUFACTURING PROCESSES

RECOMMENDATIONS/FINDINGS (CONT'D)

- O IMPLEMENT REVIEW/REPORTING SYSTEM SIMILAR TO THAT NOW USED IN IR&D
 - O CURRENT AND PLANNED PROGRAMS
 - o STANDARD FORMAT
 - o COULD REPLACE ANNUAL SYMPOSIA
- O INCORPORATE TECHNOLOGY TRANSFER INTO DEVELOPMENT PLAN FOR IMPROVED EQUIPMENT
 - NOULD PROVIDE "PEER" SUPPORT FOR CONTINUED DEVELOPMENT
 - O WOULD ASSURE CONSISTENCY BETWEEN DEVELOPED EQUIPMENT AND USER NEEDS
 - WOULD PROVIDE FOR ORDERLY, PLANNED TRANSFER OF RESPONSIBILITY FROM DEVELOPER TO USER

MANUFACTURING PROCESSES

RECOMMENDATIONS/FINDINGS (CONT'D)

- O HARDWARE DEMONSTRATION PROGRAMS SHOULD BE PERFORMED FOR COMPOSITES
 - SHOULD NOT STOP AT THE COUPON LEVEL
 - o "PHASE 2 OFTEN NOT FUNDED"
 - O DEMO ARTICLES SHOULD BE USED FOR PROPERTY DETERMINATION
 - INVOLVE PROPULSION/DESIGN ELEMENTS
- O PROPULSION SYSTEMS FOR IN-SPACE ASSEMBLY SHOULD BE DESIGNED TO MINIMIZE COMPLEX OPERATIONS
 - MODULAR DESIGN
 - o EASY-TO-ASSEMBLE COUPLINGS

FABRICATE ADVANCED COMPOSITE DEMOS

ISSUES MAJOR OBJECTIVES o Full-scale fabrication not demonstrated for o Full scale demo articles for advanced advanced composites. compostites. o Properties obtained from coupons not o Component tests. representative. o Destructive evaluation of mechanical properties. CANDIDATE PROGRAMS SIGNIFICANT MILESTONES o Screen and match materials/components. o Screen and match: 1991-1992 o Subscale feasibility tests. o Select demo articles: 1993 o Select demo article configuration(s). o Build and test: 1996 ---o Build and test demo articles. o Destructive evaluation.

FABRICATION OF RCS THRUSTERS

Issues	MAJOR OBJECTIVES
o Advanced (optimized) thrusters require material combinations which currently can not be welded.	o Develop joining techniques for rhenium thrusters.
CANDIDATE PROGRAMS	SCHEDULE
o Select candidate materials to join to rhenium.	o Material selecton: 1991
o Select candidate joining processes. o Pabricate and evaluate samples.	o Process selection: 1991
o Transfer findings to hardware fabrication program.	o Sample fabrication/evaluation: 1992 o Mardware applications: 1993
	ADDICATION DOCCCCC

NEAR-NET SHAPE FABRICATION PROCESSES

Issues o Migh fabrication costs for complex components.	MAJOR OBJECTIVES o State-of-the-art of near-net shape forming processes. o Choose most promising applications. o Demonstration tests.
CANDIDATE PROGRAMS	SCHEDULE
o Literature survey. o Prioritise candidate processes and applications. o Conduct/evaluate fabrication requirements. o Fabricate and test component.	o Literature survey: 1991-1992 o Fabrication experiments: 1992-1993 o Demonstration tests: 1993-1994 o Program implementations: 1994

SMART MANUFACTURING TECHNOLOGY

ISSUES MAJOR OBJECTIVES o High Fabrication costs for Low-Volume-Components. o Cost-effective manufacturing in a low-volume production environment. o Analytically-based process development. o Rapid transition from laboratory to manufacturing. CANDIDATE PROGRAMS SCHEDULE o Computer simulation of manufacturing processes. o Identify near-term applications: 1992 o Material processing data base. o SRM, ALS, External Tank applications: 1992o Process control utilizing process sensor o SEI: Long term technology. o Standardisation of computer language. o Rapid prototyping by stereolithography. o Flexible processing cells.

MODULAR ASSEMBLY

o Frequent flex joint (bellows) problems. o Current manufacturing procedures too complex for in-space assembly.	MAJOR OBJECTIVES o Migh-reliability flex joints. o Modular components. o Simple-to-assemble couplings.
CANDIDATE PROGRAMS	SCHEDULE
o Improved bellows fabrication.	o Bellows fabrication optimized: 1993
o Design/Test snap-together couplings.	o Simplified couplings: 1994
o Manufacture of large integrated components (modules).	o Demo modular components: Long term

SRM MANUFACTURING TECHNOLOGY

Issues	Major Objectives
1. Debonds at insulator (propellant and insulator) case interfaces.	 Improved bonding methods. Improved understanding of flow during casting, leading to improved ballistic and mechanical
2. Flow-induced anomalized in the property of a state o	properties of propellant. 3. Determine the mechanism that leads to the scale-up and orientation variability phenomens; develop processes that will provide more homogenous propellant.
CANDIDATE PROGRAMS	SCHEDULE
1. Develop an insertion material to form covalent bonds with the two materials. 2. Rheology study of propellant flow during casting. 3. Analytical study of scale-up and orientation phenomena; ampirical, configuration-specific determination of obtimus processing for	 Continuous through 1995. Continuous through 1995. Analytical study: Continous through 1996. Emprical study: Early in production.
specific SRM designs.	