Mathématiques

Alexandre

Table des matières

1	Séri	ies numériques et vectorielles		
	1.1	Définitions		
	1.2	Séries réelles à termes positifs		
	1.3	Séries absolument convergentes		
	1.4	Séries alternées		
	1.5	Techniques randoms		
2 E	Esp	Espaces vectoriels normés		
	2.1	Bornes supérieures et inférieures		
	2.2	Normes		
	2.3	Suites		
	2.4	Fonctions		

Séries numériques et vectorielles 1

Définitions 1.1

Proposition 1

Une suite converge si et seulement si sa série téléscopique associée converge.

$$\forall (u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ converge } \iff \sum (u_{n+1} - u_n) \text{ converge}$$

- 1. Convergence d'une série (somme partielle et reste partiel)
- 2. opération sur les séries convergentes (c'est un K espace vectoriel)
- 3. Lien convergence suites/séries (téléscopique, terme général tends vers 0)

1.2 Séries réelles à termes positifs

Proposition 2 (règle d'Alembert)

Soit (u_n) une suite réelle strictement positive, telle que $\frac{u_{n+1}}{u_n} \longrightarrow l$

- si l < 1, la série $\sum u_n$ converge si l > 1, la série $\sum u_n$ diverge si $l = 1^+$, la série $\sum u_n$ diverge
- 1. Règles d'Alembert
- 2. Théorème de césaro
- 3. Comparaison avec des ingéalités
- 4. Comparaison avec des petit o ou grand O ou équivalent
- 5. Implication sur des séries (jsp comment écrire)
- 6. Comparaison série/intégrale

1.3 Séries absolument convergentes

- 1. En dimension finie, toute série absolument convergente est convergente
- 2. Résultats sur les sommations dans les relations de dominations???
- 3. Produit de Cauchy

Séries alternées 1.4

1. CSSA

1.5 Techniques randoms

- 1. quand on a un quotient $\frac{u_{n+1}}{u_n}$, passez au log pour faire des séries téléscopiques
- 2. pour trouver un équivalent à une suite, voire sa série, étudier la série de la forme $\frac{1}{u_{n+1}^{\alpha}} - \frac{1}{u_n^{\alpha}}$

- 3. quand on cherche l'équivalent A_n d'une série à termes de signe non constant, on peut étudier la différence u_n-A_n
- 4. equivalent suites récurantes gourdon p229

2 Espaces vectoriels normés

2.1 Bornes supérieures et inférieures

2.2 Normes

- 1. définition
- 2. distance (+ espace métrique)
- 3. norme produit evn
- 4. normes équivalentes (et en dim finie)
- 5. boules
- 6. convexe
- 7. partie bornée

2.3 Suites

- 1. convergence
- 2. unicité limite
- 3. operations / suites extraites
- 4. dimension finie
- 5. adherance

2.4 Fonctions

- 1. limite
- 2. caractérisation sequentielle
- 3. unicité limite
- 4. operations et composition
- 5. dimension finie
- 6. continuité (caractérisation sequentielle)
- 7. lien densité?
- 8. fonction lipschitwiennes
- 9. applications linéaires continues
- 10. norme subordonnées