A 500MHz 1.5 MByte Cache with On-Chip CPU

Jonathan Lachman
J. Michael Hill
Hewlett Packard Company
VLSI Technology Center
Fort Collins, Colorado

Outline

- Technology
- Cache Architecture
- Timing Control
- Address Paths
- Write Path
- Read Path
- Redundancy
- Performance
- Conclusions

Technology

■ 0.25um CMOS

5 levels of Al interconnect

■ Sub-12 square micron memory cell Icell = 130uA at 110 Degrees C, 1.6v

Die Photo

1/4 MBYTE D-CACHE DATA STACK

BLOCK ARCHITECTURE

SUB-BLOCK 1

SUB-BLOCK 0

256 x 4, N	MCL	256 x 4, N
•	•	•
•	•	•
•	•	•
256 x 4, 1	MCL	256 x 4, 1
256 x 4, 0	MCL	256 x 4, 0
ROW DEC'S	MID CNTL	ROW DEC'S
256 x 4, 0	MCL	256x 4, 0
256 x 4, 1	MCL	256 x 4, 1
•	•	•
•	•	•
•	•	•
256 x 4, N	MCL	256 x 4, N

MCL

Left and Right:
BIT PRECHARGE
READ COL MUX
WRITE COL MUX
Shared:

SENSE-AMP COL PRECHARGE

128KB D-CACHE TAG

BLOCK COMMONALITY TECHNIQUE

TIMING CONTROL

ADDRESS AND CONTROL PRE-DECODE

ROW ADDRESS DECODING

COLUMN DECODING

WRITE PATH

WE[0] WE[1]

GDIB[0]

GDI[0], GDI[1], &

GDIB[1]

WORD

WCS

BB[0]

B[0]

B[1] & BB[1]

THE SENSE-AMP

NRCS WORD & NPRE B & BB SAE DATA EQ

GDATAB

GDATA &

THE OUTPUT BUFFER

REDUNDANCY DATA STEERING

REDUNDANCY DATA STEERING EXAMPLE

ROW DECODERS **BLOCK** BLOCK **BLOCK** REDUND. **BLOCK** * RD DR D0 ▶Select 'D' Select 'R' Sources Sources

Performance

Nominal Silicon 50 Degrees Celsius

Conclusions

■ Combining:

0.25um technology
Data Driven Address Path
Low Skew Control Signal
Fully Differential Data Paths

■ Yields:

1.5 Mbytes Greater than 500MHz Operation Consuming < 12.5W @ 2.0V, 500MHz