## Aqueous Materials for Advanced Lithography

**Strategic Materials Conference Taiwan 2019** 

Yi Cao Taipei, 9/19/2019





#### **Agenda**

- Overview and product roadmap
- ©2 Rinse materials
- **OS** Chemical shrink materials
- Summary





# 



#### Merck Performance Materials – Semiconductor Solutions

#### **Our solutions enable electronic industry**



**Patterning** materials



**Dielectric** materials



we enable

- smaller structures to continue Moore's law
- higher memory capacity, faster processing speed and less power consumption
- improved yields and lower processing costs







#### **Mobile Devices**



**Servers for Big Data** 



Wearables and other IoT devices



Further expanded portfolio with the on-going Versum acquisition



#### Lithography roadMap



- ✓ EUV process makes economic sense when replacing 3 masks.
- ✓ Double SAQP for pillar patterning may render EUV process of cost advantages.



#### **Lithography & cleaning materials roadmap**

**Commercial product** 

**Development stage** 





### D2 Rinse Materials



#### Concept

#### Pattern collapse:

- Capillary effect (rinse surface tension)
- Resist deformation (Young's modulus)

#### Defect reduction & LWR, LER improvement:

- Resist & DIW affinity part of FIRM chemical
- · Clean resist scum & leveling pattern surface





 $\sigma$ : Stress to resist

v : Surface tension of rinse

A : Aspect ratio = H/W

O : Contact angle

D : Space width











#### The process and benefits



**Fully integrated in resist development** 



#### The process and benefits



#### **Key Benefits**

- Straightforward process
- ✓ Pattern collapse mitigation
- ✓ Defect reduction



#### **Material design**

Low

\*Affinity between resist and surfactant (Penetration of surfactant into resist pattern)





#### **Considerations**

- Resist chemistry
- Loading of surfactants
- Bulkiness of surfactants
- Melting control
- Functionality

Surfactant penetration is one of the key factors for resist compatibility



#### Rinse materials – ArF

#### **Commercial products**

| Product Name            | SPC-116A | SPC-124A            | SPC-402             |
|-------------------------|----------|---------------------|---------------------|
| *Surface tension (mN/m) | 33.3     | 37.5                | 33.4                |
| Chemical                | Nonionic | Nonionic            | Nonionic + Additive |
| Application             | ArF-d    | KrF & ArF-d (ArF-i) | ArF-i               |



- Broadly adopted in the industry.
- Proven resist compatibility.





#### **EUV Rinse – development roadmap**





#### Lithographic performance on EUV Resist B

#### **Process conditions**

Exposure tool: NXE3300 (0.33NA, Dipole) EUV Resist B/ 45nm thick (**16nm L/S**) Dose: 41 mJ/cm<sup>2</sup> center / 1.5mJ/cm<sup>2</sup> step

Focus: 0.02um center / 0.02um step

|                                              | DIW | Gen. 2 | Gen. 3 |
|----------------------------------------------|-----|--------|--------|
| Minimum CD (nm)<br>(Pattern collapse margin) | N/A | 15.5   | 14.5   |



Bridge
Collapse or Pinching
Pattern standing

Expanded process margin with new rinse platforms.



#### Lithographic performance on EUV Resist C

#### **Process conditions**

Exposure tool: NXE3300 (0.33NA, Dipole) EUV Resist C / 35nm thick (**16/nm hp**) Dose: 53 mJ/cm<sup>2</sup> center / 2.0mJ/cm<sup>2</sup> step

Focus: 0.04um center / 0.02um step



|       | 18.15 |            |                  |                        |                              |                                    |                                          |                                                |                                                      |                                                      |                                                      |                                                      |                                                      |
|-------|-------|------------|------------------|------------------------|------------------------------|------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|       | -     | 17.2       | 16.33            | 15.38                  | 14.35                        | 12.86                              |                                          |                                                |                                                      |                                                      |                                                      |                                                      |                                                      |
| 19.33 | 18.32 | 17.5       | 16.69            | 15.87                  | 14.83                        | 14.1                               | 13.15                                    |                                                |                                                      |                                                      |                                                      |                                                      |                                                      |
| 19.32 | 18.55 | 17.65      | 16.89            | 16.08                  | 15.3                         | 14.57                              | 13.79                                    | 13.19                                          |                                                      |                                                      |                                                      |                                                      |                                                      |
| 19.44 | 18.54 | 17.81      | 16.94            | 16.15                  | 15.43                        | 14.7                               | 14.06                                    | 13.32                                          | 12.53                                                |                                                      |                                                      |                                                      |                                                      |
| 19.42 | 18.66 | 17.76      | 16.97            | 16.16                  | 15.53                        | 14.84                              | 14.08                                    | 13.53                                          | 12.78                                                |                                                      |                                                      |                                                      |                                                      |
| 19.37 | 18.6  | 17.74      | 17.12            | 16.21                  | 15.5                         | 15                                 | 14.2                                     | 13.47                                          | 12.76                                                | 13                                                   |                                                      |                                                      |                                                      |
| 19.36 | 18.58 | 17.76      | 17.11            | 16.23                  | 15.73                        | 14.95                              | 14.09                                    | 13.37                                          | 12.6                                                 | 12                                                   |                                                      |                                                      |                                                      |
| 19.29 | 18.46 | 17.57      | 16.91            | 16.13                  | 15.39                        | 14.66                              | 13.87                                    | 13.15                                          | 12.32                                                | 12                                                   |                                                      |                                                      |                                                      |
| 19.26 | 18.3  | 17.51      | 16.67            | 15.92                  | 15.14                        | 14.31                              | 13.41                                    | 12.55                                          |                                                      |                                                      |                                                      |                                                      |                                                      |
|       | 19.26 | 19.26 18.3 | 19.26 18.3 17.51 | 19.26 18.3 17.51 16.67 | 19.26 18.3 17.51 16.67 15.92 | 19.26 18.3 17.51 16.67 15.92 15.14 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 12.55 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 12.55 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 12.55 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 12.55 | 19.26 18.3 17.51 16.67 15.92 15.14 14.31 13.41 12.55 |



Gen. 3

**71** blocks

Gen. 3 & process optimization

73 blocks

Bridge Collapse or Pinching Pattern standing

Process window is improved by both material design and process optimization.



## Rinse materials **EUV rinse – defectivity**



\*[]: Defect count excluding invisible

#### **Process conditions**

Exposure tool: NXE3300 (0.33NA, Dipole)

EUV resist / 35nm thick (**18nm L/S**) <u>Dose / Focus</u>: 40.5 mJ/cm<sup>2</sup> / -0.05um

<u>Inspection area</u> (Exposed area): 161.2cm<sup>2</sup>

|                          | DIW  | Gen. 2 | Gen. 3 |
|--------------------------|------|--------|--------|
| Defect map               |      |        |        |
| Defect Density (pcs/cm2) | 0.66 | 0.26   | 0.18   |

|                | Collapse | Fall on | Bridge | Pinching | Specific |
|----------------|----------|---------|--------|----------|----------|
| Defect<br>type |          | 4       |        |          |          |

- ✓ Pattern collapse dominates in regular process.
- Rinse process is effective in eliminating defects.
- ✓ Pinching defects are reduced with rinse process.



#### summary

- **Rinse materials** offer benefits of pattern collapse mitigation and defect improvement, therefore, superior process margins for yield improvement.
- Merck offers rinse materials for both ArF and EUV lithography processes.
- Rinse process has been implemented in volume production of the first generation of EUV lithography.
- 16nm half pitch is resolved with rinse process with sufficient pattern collapse margin.
- Defectivity is significantly improved with EUV rinse.
- Collaborating with TEL, Merck offers not only innovative materials but also expertise in process optimization.





## D3 chemical shrink materials



#### The process & mechanism



ADI (After Development Image)







- Constant shrinkage through pitch
- Whole track compatible process
- In-process tunable shrinkage
- Reduced <u>C</u>ost <u>o</u>f <u>O</u>wnership



## Shrink materials **Shrinkage controllability**

#### **Shrink Process**

Film thickness: 100nm

Mixing Bake: 110, 130, 150°C/ 60sec

**Development:** DI-Water



|           | ADI  |
|-----------|------|
| Top Image | 000  |
| CD (nm)   | 65.5 |

|                | 110°C/60s   | 130°C/60s   | 150°C/60s   |
|----------------|-------------|-------------|-------------|
| Top Image      | 000         | 000         |             |
| CD (nm)        | <u>55.0</u> | <u>54.2</u> | <u>51.2</u> |
| Shrinkage (nm) | 10.5        | 11.3        | 14.3        |

Shrink amount is tunable with mixing bake temperature.



#### **Local CD uniformity**

Grid hole: 110nm pitch





#### **Focus vs CDU improvement**



**Local CD Uniformity is improved by >50%.** 



#### **Proximity effects**

#### **Test Conditions**

NTD resist

Shrink Materials: NSM-314, 530 Mixing Bake: 110, 130°C / 60sec

**Development: DI-Water** 

#### \*ID bias = Isolated and dense pattern bias



#### **Resist Pattern Pitch**





Significantly higher shrinkage and lower iso-dense bias are achieved with NSM-530.



#### **Resist compatibility**

#### **Test conditions**

NTD resists from multiple suppliers

Shrink: 1st Gen shrink material and NSM-314

Mixing Bake: 150°C/60sec

**Development: DIW** 





Good compatibility with various resists.





### 04 summary



#### summary

- Merck is specialized in aqueous materials to enhance photoresist performance.
- **Rinse process** has bee proven effective in mitigating pattern collapse, improving process margin, and depressing defectivity in multiple generations of lithography.
- Chemical shrink is a viable technology assisting pattern scaling with:
  - ✓ Cost-effective process enhancing resolution
  - ✓ Improvement of DOF & local CD uniformity with shrinkage tunable by process
  - ✓ Reduced proximity effects



