Operating Systems

Isfahan University of Technology Electrical and Computer Engineering Department 1400-1 semester

Zeinab Zali

Session 8: CPU Scheduling

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

IO-bound and CPU-bound

load store add store CPU burst read from file I/O burst wait for I/O store increment index CPU burst write to file I/O burst wait for I/O load store CPU burst add store read from file I/O burst wait for I/O

Histogram of CPU-burst Times

CPU Scheduler

- Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive

قبضه نشدنی یا انحصاری

All other scheduling is preemptive

قبضه شدنی یا غیرانحصاری

- Consider access to shared data
- Consider preemption while in kernel mode
- Consider interrupts occurring during crucial OS activities

Dispatcher

- **Dispatcher** module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

vmstat 1 3

cat /proc/pid/status

Scheduling Criteria

- درصد مصرف پردازنده CPU utilization : keep the CPU as busy as possible
- Throughput: number of processes that complete their execution per time unit
- Turnaround time: amount of time to execute a particular زمان برگشت process
- Waiting time: amount of time a process has been waiting زمان انتظار in the ready queue
- Response time: amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
- Fairness: give each process a fair share of CPU
- Overhead: computation resource required for implementing the scheduling algorithm

باز ده

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time
- Max Fairness
- Min Overhead

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
$P_{\scriptscriptstyle 1}$	24
$P_{\scriptscriptstyle 2}$	3
P_3	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
$P_{\scriptscriptstyle 1}$	24
P_{2}	3
$P_{\scriptscriptstyle 3}$	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

	P 1	P 2	P 3
0	24	27	30

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

<u>Process</u>	Burst Time
$P_{\scriptscriptstyle 1}$	24
P_{2}	3
P_{3}	3

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$, $P_2 = 0$, $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

FCFS Scheduling (Example)

پر و سس	زمان ورود	زمان پرداز <i>ش</i>
Α	0	3
	O	3
В	1	3
0	4	
С	4	3
D	6	2

Waiting_time=(0+2+2+3)/4=7/4

FCFS Properties

- Non-preemptive
- No starvation
- More suitable for short jobs compared to long ones
- The least overhead

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request

Example of SJF

<u>Process</u>	Burst Time
$P_{\scriptscriptstyle 1}$	6
P_2	8
P_3	7
$P_{\scriptscriptstyle A}$	3

Example of SJF

<u>Process</u>	Burst Time
$P_{\scriptscriptstyle 1}$	6
P_{2}	8
P_3	7
$P_{\scriptscriptstyle 4}$	3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

SJF Properties

- Non preemptive
- Maybe starvation for long processes
- The least average waiting time

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n+1} = \alpha t_n + (1 \alpha) \tau_n$.
- Commonly, α set to ½

Prediction of the Length of the Next CPU Burst

CPU burst (t_i) 6 4 6 4 13 13 13 ...

"guess" (τ_i) 10 8 6 6 5 9 11 12 ...

Example of Shortest-remaining-time-first

- Preemptive version of SJF is called shortest-remaining-time-first
- Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival Time</u>	Burst Time
$P_{\scriptscriptstyle 1}$	0	8
$P_{\scriptscriptstyle 2}$	1	4
P_3	2	9
$P_{_4}$	3	5

Example of Shortest-remaining-time-first

- Preemptive version of SJF is called shortest-remaining-time-first
- Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	Arrival Time	Burst Time
$P_{\scriptscriptstyle 1}$	0	8
P_2	1	4
P_3	2	9
$P_{\scriptscriptstyle 4}$	3	5

Preemptive SJF Gantt Chart

	P 1	P 2	P ₄	P ₁	P 3
0	1	. 5	10	17	26

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec