IL CRITERIO DI NYQUIST

- Criterio grafico per determinare la stabilità di un sistema a ciclo chiuso che usa i diagrammi di Nyquist
- Si determina la stabilità a ciclo chiuso dalle caratteristiche a ciclo aperto
- Si applica anche a Sistemi con FdT non razionale
- Consente di definire la "robustezza" di un sistema di controllo

07/03/2010

Terza Universita' degli studi di Roma

G.U -FdA- 1

THEO. INDICATORE LOGARITMICO

Ip: F(s): analitica, C: curva chiusa, s compie un giro su C, all'interno di C ci sono n poli e m zeri.

Th: F(s) compie m-n giri nello stesso verso

Marro p. 233 dimostrazione completa

$$F(s) = K' \frac{s - z}{s - p} = K' \frac{r}{\rho} e^{j(\theta - \varphi)}$$

r e ρ non ci interessano

φ compie un giro,

 θ oscilla ma complessivamente non cambia

 $s-p=\rho e^{s}$

07/03/2010 Terza Universita' degli studi di Roma

G.U -FdA- 2

ESEMPIO th=0:pi/50:2*pi; j=sqrt(-1);C=exp(j*th)+0.5; $F(s) = 2\frac{s-3}{(s-0.25)(s+1)}$ figure(1) plot(C,'r'); axis('square'), grid figure(2) plot(2*(C-3)./((C-0.25).*(C+1)),'b') axis('square'), grid F(s) 0 -0.5 R: rotazioni orarie di F(s) attorno all'origine = -1 07/03/2010 G.U -FdA- 3 Terza Universita' degli studi di Roma

SPIEGAZIONE INTUITITIVA del criterio ridotto F(s) stabile F(s) Sistema a controreazione sede di un'oscillazione stazionaria con pulsazione Ω . •I segnali hanno le relazioni 0.5 indicate, quindi $F(i \Omega) = -1$. •L'oscillazione ha la 0.5 0.5 pulsazione per cui $F(i \Omega) = -1$. ·Se il guadagno in catena diretta è maggiore, $F(j \Omega)$ oscillazioni divergenti; •se è minore, oscillazioni convergenti. 07/03/2010 G.U -FdA- 9 Terza Universita' degli studi di Roma

PENDOLO ROVESCIATO

$$ML^{2}\ddot{\theta} = C_{m} + MgL \cdot \sin \theta - D\dot{\theta}$$

$$\Theta(s) \cdot \left[ML^2 s^2 + Ds - MgL \right] = C_m(s)$$

$$F(s) = \frac{1}{ML^2s^2 + Ds - MgL}$$
 (anello aperto)
instabile

Introduciamo un controllo: $C_m = -k(\theta - \theta_d)$ $\theta_d = 0$

$$\Theta(s) \cdot \left[ML^2 s^2 + Ds - MgL \right] = -k\Theta + k\Theta_1$$

$$W(s) = \frac{\Theta(s)}{\Theta_d(s)} = \frac{k}{ML^2s^2 + Ds + (k - MgL)}$$
 (anello chiuso)

se K>MgL il sistema è stabile

07/03/2010

Terza Universita' degli studi di Roma

G.U -FdA- 13

PENDOLO 2

$$M = L = 1$$

$$D = 3$$

Deve risultare R (orarie) = $-n_p$

Stabilità "paradossale" : solo per $k > k_0$ il contrario del solito.

Se k > MgL il sistema è stabile

07/03/2010

Terza Universita' degli studi di Roma

G.U -FdA- 14

