

Silicon PIN Photodiode

VBPW34FAS and VBPW34FASR are high speed and high sensitive PIN photodiodes. It is a surface mount device (SMD) including the chip with a 7.5 mm² sensitive area and a daylight blocking filter matched with IR emitters operating at wavelength 870 nm or 950 nm.

FEATURES

Package type: surface mount

• Radiant sensitive area (in mm²): 7.5

High radiant sensitivity

 Daylight blocking filter matched with 870 nm to 950 nm emitters

· Fast response times

• Angle of half sensitivity: $\varphi = \pm 65^{\circ}$

• Floor life: 168 h, MSL 3, acc. J-STD-020

• Lead (Pb)-free reflow soldering

 Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- · High speed detector for infrared radiation
- Infrared remote control and free air data transmissionsystems, e.g. in combination with TSFFxxxx series IR emitters

PRODUCT SUMMARY				
COMPONENT	I _{ra} (μΑ)	φ (deg)	$\lambda_{0.5}$ (nm)	
VBPW34FAS	55	± 65	780 to 1050	
VBPW34FASR	55	± 65	780 to 1050	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VBPW34FAS	Tape and reel	MOQ: 1000 pcs, 1000 pcs/reel	Gullwing		
VBPW34FASR	Tape and reel	MOQ: 1000 pcs, 1000 pcs/reel	Reverse gullwing		

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V_{R}	60	V	
Power dissipation	T _{amb} ≤ 25 °C	P _V	215	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	Acc. reflow sloder profile fig. 8	T _{sd}	260	°C	
Thermal resistance junction/ambient		R _{thJA}	350	K/W	

Note

T_{amb} = 25 °C, unless otherwise specified

Silicon PIN Photodiode

BASIC CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 50 mA	V _F		1	1.3	V
Breakdown voltage	I _R = 100 μA, E = 0	V _(BR)	60			V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}		2	30	nA
Diada assasitansa	V _R = 0 V, f = 1 MHz, E = 0	C _D		70		pF
Diode capacitance	V _R = 3 V, f = 1 MHz, E = 0	C _D		25	40	pF
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	Vo		350		mV
Temperature coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Vo}		- 2.6		mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	I _k		50		μΑ
Temperature coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Ik}		0.1		%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2, \ \lambda = 950 \text{ nm}, \\ V_R = 5 \text{ V}$	I _{ra}	45	55		μΑ
Angle of half sensitivity		φ		± 65		deg
Wavelength of peak sensitivity		λ_{p}		950		nm
Range of spectral bandwidth		λ 0.5		780 to 1050		nm
Noise equivalent power	$V_R = 10 \text{ V}, \lambda = 950 \text{ nm}$	NEP		4 x 10 ⁻¹⁴		W/√Hz
Rise time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega,$ $\lambda = 820 \text{ nm}$	t _r		100		ns
Fall time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega,$ $\lambda = 820 \text{ nm}$	t _f		100		ns

Note

 T_{amb} = 25 °C, unless otherwise specified

BASIC CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

Fig. 1 - Reverse Dark Current vs. Ambient Temperature

Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

Silicon PIN Photodiode

Vishay Semiconductors

Fig. 3 - Reverse Light Current vs. Irradiance

Fig. 4 - Reverse Light Current vs. Reverse Voltage

Fig. 5 - Diode Capacitance vs. Reverse Voltage

Fig. 6 - Relative Spectral Sensitivity vs. Wavelength

Fig. 7 - Relative Radiant Sensitivity vs. Angular Displacement

Silicon PIN Photodiode

PACKAGE DIMENSIONS FOR VBPW34FAS in millimeters

PACKAGE DIMENSIONS FOR VBPW34FASR in millimeters

Silicon PIN Photodiode

Vishay Semiconductors

TAPING DIMENSIONS FOR VBPW34FAS in millimeters

TAPING DIMENSIONS FOR VBPW34FASR in millimeters

Document Number: 81127 Rev. 1.0, 23-Jul-09

Silicon PIN Photodiode

REEL DIMENSIONS FOR VBPW34FAS AND VBPW34FASR in millimeters

SOLDER PROFILE

Fig. 8 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Time between soldering and removing from MBB must not exceed the time indicated in J-STD-020:

Moisture sensitivity: level 3

Floor life: 168 h

Conditions: T_{amb} < 30 °C, RH < 60 %

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or recommended conditions:

192 h at 40 °C (+ 5 °C), RH < 5 %

or

96 h at 60 °C (+ 5 °C), RH < 5 %.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08