Lab #4 MPI Programming III

Purpose: to learn how to use collective operations and write more complex MPI programs.

- 1. (35) write an MPI sorting programming.
- You need to write two programs:
 - o seq.c : sort arrays locally (it includes bubbleSort or quicksort, see below)
 - o para.c: parallel version with MPI using **odd-even sorting**
 - 1) Process 0 generates the whole array, distributes it to other processes including itself, collects the sorted subarrays, and **merges** them into one final sorted array with length n
 - 2) Use *collective* operations for array distribution and subarray collection
 - 3) After the whole array is distributed to different processes, all the processes should be involved when all the numbers are being sorted using odd-even sorting
 - 4) Use different number of processes to run the program

• Requirement:

- The array size should be passed in from command line, such as mpirun -np \$NPROCS machinefile \$PBS_NODEFILE \$MCA_OPTS \$PROGRAM ARRAY_SIZE
- o Use random number generators to create unsorted arrays
- Write a function called *void bubbleSort(int *array, int n)* to sort integer arrays/subarrays locally
- o If $n \le 40$, print out the sorted array. You can assume n can be perfectly divided by npes (number of processes).
- o Print out the execution time (NOT include array generation time) in process 0 (set timers before array distribution and after getting the final result), and fill out the following form:

	1 process	4 processes	8 processes	16 processes
40000 elements				
400000 elements				

o Change your local sorting algorithm to *quicksort* and fill out the following form:

	1 process	4 processes	8 processes	16 processes
400000 elements				
4000000 elements				

o Analyze and explain the data in the two tables.