Decision Tree Intuition

Example 1

Occupation	Suggestion
Student	PUBG
Programmer	Github
Programmer	Whatsapp
	Student Programmer

```
If occupation==student
   print(PUBG)
Else
   If gender==female
       print(Github)
   Else
       print(Whatsapp)
```


Example 2

Day	Outlook	Temp	Humid	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Input query point: [Rainy, Mild, High, Strong]

Petal Length	Sepal Length	Туре
1.34	0.34	Setosa
3.45	1.45	Versicolor
1.69	0.98	Setosa
2.56	1.79	Virginica
3.00	1.13	Versicolor
1.3	0.88	Setosa

Geometric Intuition

Some unanswered questions

How to decide which column should be considered as root node?

How to select subsequent decision nodes?

How to decide splitting criteria in case of numerical columns?

<u>Advantages</u>

<u>Disadvantages</u>

Intuitive and easy to understand

Minimal data preparation is required

The cost of using the tree for inference is **logarithmic** in the number of data points used to train the tree

Overfitting

Prone to errors for imbalanced datasets

Entropy

How to calculate Entropy?

The mathematical formula for entropy is:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Where 'Pi' is simply the frequentist probability of an element/class 'i' in our data.

For e.g if our data has only 2 class labels Yes and No.

$$E(D) = -p_{yes}log_2(p_{yes}) - p_{no}log_2(p_{no})$$

Salary	Age	Purchase
20000	21	Yes
10000	45	No
60000	27	Yes
15000	31	No
12000	18	No

Salary	Age	Purchase
34000	31	No
15000	25	No
69000	57	Yes
25000	21	No
32000	28	No

$$H(d)=-P_ylog_2(P_y)-P_nlog_2(P_n)$$

 $H(d)=-2/5log_2(2/5)-3/5log_2(3/5)$
 $H(d)=0.97$

$$H(d) = -P_y log_2(P_y) -P_n log_2(P_n)$$
 $H(d) = -1/5 log_2(1/5) -4/5 log_2(4/5)$
 $H(d) = 0.72$

Salary	Age	Purchase
20000	21	No
10000	45	No
60000	27	No
15000	31	No
12000	18	No

$$H(d)= -P_y log_2(P_y) -P_n log_2(P_n)$$

 $H(d)= -0/5 log_2(0/5) -5/5 log_2(5/5)$
 $H(d)= 0$

Calculating entropy for a 3 class problem

Salary	Age	Purchase
20000	21	Yes
10000	45	No
60000	27	Yes
15000	31	No
30000	30	Maybe
12000	18	No
40000	40	Maybe
20000	20	Maybe

$$H(d) = -P_y log_2(P_y) - P_n log_2(P_n) - P_m log_2(P_m)$$

$$H(d) = -2/8\log_2(2/8) - 3/8\log_2(3/8) - 3/8\log_2(3/8)$$

$$H(d) = 1.56$$

Observation

More the uncertainty more is entropy

- For a 2 class problem the min entropy is 0 and the max is 1
- For more than 2 classes the min entropy is 0 but the max can be greater than 1
- Both log₂ or log₂ can be used to calculate entropy

Entropy Vs Probability

Area	Built in Price	
1200	1999	3.5
1800	2011	5.6
1400	2000	7.3

Area	Built in Price	
2200	1989 4.6	
800	2018	6.5
1100	2005	12.8

Dataset 1

Dataset 2

Quiz: Which of the above datasets have higher entropy?

Information Gain

information gain

Information Gain, is a metric used to train Decision Trees.

Specifically, this metric measures the quality of a split.

The information gain is based on the decrease in entropy after a data-set is split on an attribute. Constructing a decision tree is all about finding attribute that returns the highest

Information Gain = E(Parent) - {Weighted Average} * E{Children}

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Step 1:

Entropy of Parent

$$E(P) = -p_y \log_2(p_y) - p_y \log_2(p_y)$$

=
$$9/14\log_2(9/14)$$
 - $5/14/\log_2(5/14)$

$$E(P) = 0.94$$

$$E(S) = -2/5\log(2/5) - 3/5\log(3/5)$$

$$E(S) = 0.97$$

$$E(O) = -5/5\log(5/5) - 0/5\log(0/5)$$

$$E(O)=0$$

$$E(R) = -3/5\log(3/5) - 2/5\log(2/5)$$

$$E(S) = 0.97$$

Step 3: Calculate weighted Entropy of Children

Weighted Entropy = 5/14 * 0.97 + 4/14 * 0 + 5/14 * 0.97

W.E(Children) = **0.69**

P(Overcast) is a leaf node as it's entropy is 0

Step 4: Calculate Information Gain

Information Gain = E(Parent) - {Weighted Average} * E(Children)

IG = 0.97 - 0.69 = 0.28

So the information gain(or the decrease in entropy/impurity) when you split this data on the basis of **Outlook** condition/column is **0.28**

Step 5: Calculate Information Gain for all the columns

Whichever column has the highest Information Gain(maximum decrease in entropy) the algorithm will select that column to split the data.

Step 6: Find Information Gain recursively

Decision tree then applies a recursive greedy search algorithm in top bottom fashion to find Information Gain at every level of the tree.

Once a leaf node is reached (Entropy = 0), no more splitting is done.