

Student Number:	
	-

2023 YEAR 12 TASK 4

Mathematics Extension 2

General Instructions

- Reading time 10 minutes
- Working time 180 Minutes
- · Write using blue or black pen
- · Calculators approved by NESA may be used
- · A reference sheet is provided at the back of this paper
- · For questions in Section II, show relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I – 10 marks

- Attempt Questions 1–10
- · Allow about 20 minutes for this section

Section II - 90 marks

- Attempt Questions 11 14
- Allow about 160 minutes for this section

Section I

10 marks

Attempt Questions 1–10

Use the multiple-choice answer sheet for Questions 1–10.

In an Argand diagram the points A(-3,2) and B(5,-4) lie at opposite ends of a diameter of a circle. What is the equation of the circle?

A.
$$|z-1+i|=5$$

B.
$$|z+1-i|=5$$

C.
$$|z-1+i|=10$$

D.
$$|z+1-i| = 10$$

What is the size of the acute angle θ between the vectors $\underline{a} = 2\underline{i} - \underline{j} - \underline{k}$ and $\underline{b} = 2\underline{i} - 2\underline{k}$?

A.
$$\theta = \frac{\pi}{6}$$

B.
$$\theta = \frac{\pi}{5}$$

C.
$$\theta = \frac{\pi}{4}$$

D.
$$\theta = \frac{\pi}{3}$$

3 Which of the following is an expression for $\int \frac{1}{x^2 - \sqrt{3}x + 1} dx$?

A.
$$\tan^{-1}\left(x-\sqrt{3}\right)+c$$

B.
$$2\tan^{-1}\left(x-\sqrt{3}\right)+c$$

$$C. \quad \tan^{-1}\left(2x - \sqrt{3}\right) + c$$

D.
$$2\tan^{-1}\left(2x-\sqrt{3}\right)+c$$

4 The amount of apples, bananas and oranges sold by a fruit seller over a year is shown in the table below

Fruit	Amount Sold (tonnes)	Profit (\$/tonne)
Apples	25	530
Bananas	55	380
Oranges	10	410

Let
$$\underline{a} = \begin{bmatrix} 25 \\ 55 \\ 10 \end{bmatrix}$$
, $\underline{b} = \begin{bmatrix} 530 \\ 380 \\ 410 \end{bmatrix}$ and $\underline{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Which of the following expressions calculates the average profit in dollars per tonne of fruit sold over the year?

A.
$$\frac{\underline{a} \cdot \underline{c}}{\underline{b} \cdot \underline{c}}$$

B.
$$\frac{\underline{b} \cdot \underline{c}}{\underline{a} \cdot \underline{c}}$$

C.
$$\frac{\underline{a} \cdot \underline{b}}{\underline{b} \cdot \underline{c}}$$

D.
$$\frac{\underline{a} \cdot \underline{b}}{\underline{a} \cdot \underline{c}}$$

- 5 Which of the following expressions is equivalent to $\int \ln(x^2 + 1) dx$?
 - A. $x \ln(x^2+1) 2x + 2 \tan^{-1} x + c$
 - B. $x \ln (x^2 + 1) 2 \ln (x^2 + 1) + c$
 - C. $\ln(x^2+1) 2x + 2\tan^{-1}x + c$
 - D. $\ln(x^2+1) x \ln(x^2+1) + c$
- 6 Consider the complex, non-real cube roots of unity ω and ω^2 .

What is the value of $(1 - \omega + \omega^2) (1 + \omega - \omega^2)$?

- A. 0
- B. 1
- C. 2
- D. 4

7 The complex numbers a, b, c, d and z are solutions to $z^7 = 1$ as shown in the Argand diagram below.

Which of the following is a cube root of z?

- A. *a*
- B. *b*
- C. *c*
- D. *d*

A sequence of complex numbers $z_1, z_2, z_3, z_4, ...$ is given by the rule $z_1 = Z$ and $z_{n+1} = c\overline{z}_n + c - 1$ for $n \in \mathbb{Z}^+$ where c is a complex number with modulus 1. What is the value of z_3 ?

A.
$$z_3 = Z$$

B.
$$z_3 = -2 + Z$$

C.
$$z_3 = 2c + Z$$

D.
$$z_3 = -2 + 2c + Z$$

9 Consider a line that passes through the point (5,2,1) and is parallel to the x-y plane and the x-z plane.

Which of the following is the vector equation of the line?

A.
$$\begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

10 The function F(x) is the primitive of f(x), that is F'(x) = f(x). Which of the following is true?

A.
$$\int \left(\frac{d}{dx} \int_{a}^{b} f(x) dx\right) dx = f(b) - f(a)$$

B.
$$\int_{a}^{b} \left(\frac{d}{dx} \int f(x) \, dx \right) \, dx = f(b) - f(a)$$

C.
$$\frac{d}{dx} \int \left(\int_{a}^{b} f(x) \, dx \right) \, dx = F(b) - F(a)$$

D.
$$\frac{d}{dx} \int_{a}^{b} \left(\int f(x) \, dx \right) \, dx = F(b) - F(a)$$

Section II

90 marks

Attempt Questions 11 – 16

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Please begin a new Writing Booklet.

(a) Express
$$2\sqrt{2}e^{-\frac{3\pi}{4}i}$$
 in the form $x + iy$.

2

(b) Consider the two points A(2,2,2) and B(2,-2,2).

(i) Find
$$\overrightarrow{AB}$$

1

(ii) Find
$$|\overrightarrow{AB}|$$

1

(iii) Find ∠AOB. Give your answer to the nearest degree.

2

(c) Consider the complex number $z = 2e^{0.4i}$, as sketched below.

3

Copy and clearly label this Argan diagram, and sketch the four points represented by z, \bar{z} ,

$$-\overline{z}$$
 and $z-\overline{z}$.

(d) Use the substitution $t = \tan \frac{x}{2}$ to find $\int \frac{1}{1 + \sin x} dx$.

3

(e) Show for any complex numbers z and w, that $\overline{zw} = \overline{z} \times \overline{w}$.

3

Question 12 (15 marks) Please begin a new Writing Booklet.

(a) Consider the two lines

$$L_1: \begin{bmatrix} 7 \\ -1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ -5 \end{bmatrix} \text{ and } L_2: \begin{bmatrix} -1 \\ 2 \\ -6 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}.$$

(i) Find the values of k given B(9, k, 24) lies on L_2 .

2

(ii) Find the point of intersection of L_1 and L_2 .

3

(b) Find $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x^3}{\sqrt{1-x^2}} dx$

4

(c) Solve $z^2 + (7 - i)z + 16 + 4i = 0$

3

(d) Find $\int \frac{x^3 - 2}{x^3 - x} \, dx.$

3

Question 13 (15 marks) Please begin a new Writing Booklet.

-6 and passes through (1, -4).

(a) On an Argand diagram shade the region containing all points representing the complex numbers z that satisfy both $|z-2i| \le 2$ and $\frac{\pi}{6} \le \arg z \le \frac{\pi}{4}$.

2

2

1

- (b) The graph of a polynomial function $f(x) = (x+3)(x-2)(x^2+bx+c)$ has a y intercept of
 - (i) Find the two complex roots of the equation f(x) = 0.
 - (ii) Express these two complex roots in the form $r(\cos \theta + i \sin \theta)$.
 - (iii) Plot all four solutions to f(x) = 0 on an Argand diagram.
 - (iv) Write down the name of the quadrilateral formed by these four points.
- (c) Consider the sphere with vector equation $\begin{vmatrix} r 3 \\ -12 \\ 4 \end{vmatrix} = 3$.
 - (i) Show that the point (5, -10, 3) lies on the sphere.
 - (ii) Find the point on the sphere farthest from the origin.
- (d) Prove by Mathematical induction that $3n^2 3n \le 2^n 1$ for $n \ge 7$.

Question 14 (15 marks) Please begin a new Writing Booklet.

(a) The number z is a fifth root of unity where $z \neq 1$, that is $z^5 = 1$

(i) Show that
$$(z+z^{-1})^2 + (z+z^{-1}) - 1 = 0$$
.

(ii) If
$$z = e^{i\theta}$$
, show $\cos \theta = \frac{z + z^{-1}}{2}$.

(iii) Hence show
$$\cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

(iv) Consider the five fifth roots of unity z_1 , z_2 , z_3 , z_4 and z_5 as shown in the diagram below.

Show that
$$\left| \frac{z_3 - z_1}{z_2 - z_1} \right| = \frac{1 + \sqrt{5}}{2}$$
.

Question 14 continues on page 13

Question 14 (continued)

(b) The position of an object afer t seconds is given by the vector equation

$$\underline{r} = \cos\frac{\pi t}{4}\underline{i} + \left(\cos\frac{\pi t}{4} + \sin\frac{\pi t}{4}\right)\underline{j} + \sin\frac{\pi t}{4}\underline{k}.$$

- (i) What is the position of the object after 3 seconds?
- (ii) Find the vector equation of the tangent to the path taken by the object after 3 seconds. 3

1

(c) Find
$$\int_0^9 \frac{1}{\sqrt{1+\sqrt{x}}} dx$$

Question 15 (15 marks) Please begin a new Writing Booklet.

(a) Consider the function $f(x) = e^{-x} \cos x$, with domain $x \in \left[0, \frac{3\pi}{2}\right]$. Show that the ratio of the area above the *x*-axis to the area below the *x*-axis is

$$\frac{e^{\pi}\left(e^{\frac{\pi}{2}}+1\right)}{e^{\pi}+1}$$

- (b) A series is defined by $T_n = 6T_{n-1} 9T_{n-2}$ for $n \ge 2$ where $T_0 = 1$ and $T_1 = 6$.

 Use Mathematical induction to prove $T_n = 3^n + n \times 3^n$.
- (c) Let $I_n = \int \frac{\cos nx}{\sin x} dx$.
 - (i) Show that $\cos((n-2)x) \cos nx = 2\sin((n-1)x)\sin x$.
 - (ii) Show that $I_n I_{n-2} = \frac{2\cos((n-1)x)}{n-1} + c$
 - (iii) Hence, or otherwise, evaluate $\int_0^{\frac{\pi}{3}} \frac{\cos 2x \cos 6x}{\sin x} dx$ 3

Question 16 (15 marks) Please begin a new Writing Booklet.

(a) Consider the tile below consisting of three equilateral triangles of side length 1 unit.

3

1

Prove the following result for positive integers n, using Mathematical induction:

An equilateral triangle of side length 2^n units may be covered by the tiles shown above (in any orientation) such that a single equilateral triangle of side length 1 unit is left over at one of the vertices. The tiles may not overlap.

- (b) The limiting sum of series is be given by $S = \frac{a}{1-r}$ where a is the first term of the series and r is the common ratio between consecutive terms. It only exists when $|r| \le 1$.
 - (i) Show that the limiting sum *S* of the series $1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \frac{1}{8}e^{3i\theta} + \dots$ is given by $S = \frac{2}{2 e^{i\theta}}.$
 - (ii) Hence show that $\frac{1}{2}\sin\theta + \frac{1}{4}\sin2\theta + \frac{1}{8}\sin3\theta + \dots = \frac{2\sin\theta}{5 4\cos\theta}$.
 - (iii) Show that there exists no real values of θ such that S is purely imaginary.

Question 16 continues on page 16

(c) An ant follows a spiral path up a cylindrical column from P(0,7,0) to the point Q as shown in the diagram below.

The ant's position \underline{r} in centimetres after t seconds is given by the vector equation below.

$$r(t) = 7\sin\frac{\pi t}{32}i + 7\cos\frac{\pi t}{32}j + \frac{t}{15}k$$

- (i) Find the coordinates of the point Q if $\left| \overrightarrow{OQ} \right| = 25$.
- (ii) How many times has the ant crossed the line x = 7 on its journey to Q?
- (iii) The ant crawls back from *Q* to *P* along the shortest path possible. How far did it crawl on this leg of its journey? Give you answer correct to one decimal place.

End of Exam

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2} (a + b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\sqrt{2}$$
 45°
 1

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

If
$$t = \tan \frac{A}{2}$$
 then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1+t^2}$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A + B) - \sin(A - B) \right]$$

$$\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$$

$$\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have z-scores between –1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x) \, dx$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X=r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X=x)$$

$$=\binom{n}{x}p^{x}(1-p)^{n-x}, x=0,1,\ldots,n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a) f'(x) a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

Integral Calculus

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$$

where
$$n \neq -1$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x) dx$$

$$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$$

where
$$a = x_0$$
 and $b = x_n$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${\binom{n}{r}} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + {\binom{n}{1}}x^{n-1}a + \dots + {\binom{n}{r}}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \underbrace{u} \right| &= \left| x \underline{i} + y \underline{j} \right| = \sqrt{x^2 + y^2} \\ \underbrace{u \cdot y} &= \left| \underbrace{u} \right| \left| \underbrace{y} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underbrace{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underbrace{y} &= x_2 \underline{i} + y_2 \underline{j} \\ \underbrace{r} &= \underbrace{a} + \lambda \underline{b} \end{split}$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$
$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$

BLANK PAGE