PH 108: Electricity and Magnetism

Tutorial Sheet 2: Coloumb's law, Gauss's law and Potential

1. A semi-infinite slab of thickness t has a uniform charge density ρ distributed in its volume. Find the electric field intensity at a distance z from the median plane of the slab.

[Ans.
$$E(z) = \rho z/\epsilon_0$$
 for $-t/2 < z < t/2$ and $E(z) = \rho t/2\epsilon_0$ for $-t/2 > z > t/2$]

2. A thin annular disc of inner radius a and outer radius b carries a uniform charge density σ. Determine the electric field intensity at a point on the z-axis (the axis of symmetry). Using this result determine the field due to an infinite sheet containing a charge density σ.

[Ans.
$$\hat{k} \frac{\sigma z}{2\epsilon_0} \left\{ \frac{1}{(a^2 + z^2)^{1/2}} - \frac{1}{(b^2 + z^2)^{1/2}} \right\}$$
]

3. A charge Q is uniformly distributed on a straight rod of length L. Find the potential at a distance d from the mid-point of the rod.

$$[(Q/4\epsilon_0 L) \ln \{(\sqrt{4d^2 + L^2} + L) / (\sqrt{4d^2 + L^2} - L)\}]$$

- 4. Which one of the following is a possible expression for an electrostatic field? For the right expression, find a potential which determines this field with the origin as the reference.
 - (a) $\vec{E} = A \left(xyz^2 \,\hat{i} + 2xz \,\hat{j} 3yz \,\hat{k} \right)$
 - (b) $\vec{E} = A\left(\left[3xz^2 + y^2\right]\hat{i} + 2xy\hat{j} + 3x^2z\hat{k}\right)$ (here A is a constant having appropriate dimensions).

[Ans. (b)
$$V(x, y, z) = -(3x^2z^2/2) - xy^2 + c$$
]

5. A charge distribution produces an electric field

$$\vec{E} = c \left(1 - \exp(-\alpha r) \frac{\hat{r}}{r^2}\right)$$

where c and α are constants. Find the net charge within a sphere of radius $r = 1/\alpha$.

[Ans.
$$4\pi\epsilon_0 c \{1 - 1/\epsilon_0\}$$
]

6. Show that the maximum value of the electric field |E| for points on the axis of a uniform ring of radius R with total charge q occurs at $x = \pm R/\sqrt{2}$. If an electron is placed at the centre of the ring and then displaced by a small amount x ($x \ll R$) along the axis, show that it would execute simple harmonic oscillations. Determine the frequency of oscillations.

1

[Ans.
$$\sqrt{eq/16mR^3\pi^3\epsilon_0}$$
]

7. A charged semicircular ring of radius R extending from $\theta = 0$ to $\theta = \pi$ lies in the x-y plane, centered at origin. If the charge distribution on the ring is $\lambda_0 \sin \theta$, compute the electric field intensity at P (0,0,z).

[Ans.
$$\frac{\lambda_0 R}{8\pi\epsilon_0} \left\{ \frac{1}{(R^2 + z^2)^{3/2}} \left(-R\pi \,\hat{j} + z \,\hat{k} \right) \right\}$$
]

8. Two isolated surfaces in the shape of a quadrant of a circle of radius R lie in the x-y plane centered at the origin. The charge distribution on the surface in the first quadrant is $\sigma_0 \cos \theta$ while that on the surface in the fourth quadrant is $-\sigma_0 \cos \theta$. Obtain the field intensity at a point P along the z-axis (0,0,z).

[Ans.
$$\hat{i}\frac{\sigma_0}{8\epsilon_0}\left\{\frac{R}{z} - \ln\left[\sqrt{z^2 + R^2} + R\right]/z\right\}$$
].

9. A hemisphere of radius R has z = 0 as its equatorial plane and lies entirely in the region $z \ge 0$. The hemisphere has a uniform charge density ρ . Determine the field at the centre.

[Ans.
$$-k\rho/4\epsilon_0$$
]

- 10. A sphere has a uniform volume charge density everywhere except inside an off-centre spherical cavity within. Show that the field inside the cavity is uniform.
- 11. A sphere of radius R has a uniform charge density ρ everywhere except in a very thin circular disk of thickness Δ , where $\Delta \ll R$, centered at the origin, which divides the sphere into two halves. Find the potential at the origin and at the point (0,R,0).

[Ans.
$$V(0,0,0) = \rho R(R-t)/2\epsilon_0$$
; $V(0,R,0) = \rho R(R/3-t/\pi)/\epsilon_0$]

12. Two infinite sheets of planes intersect at right angles. The sheets carry charge densities $+\sigma$ and $-\sigma$. Find the magnitude and direction of electric field everywhere and sketch the electric field lines.

[Ans.
$$|E| = \sigma/\sqrt{2}\epsilon_0$$
]

13. A electric dipole having moment $\vec{p} = p \,\hat{k}$ is placed at the origin of a coordinate system. Show that the electric field at a point $P(r, \theta)$ is given by

$$\vec{E}(r,\theta) = \frac{1}{4\pi\epsilon_0 r^3} \left\{ 2\cos\theta \,\hat{r} + \sin\theta \,\hat{\theta} \right\}$$

which can be represented by the coordinate independent form by

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0 r^3} \left[3 \left((\vec{p} \cdot \hat{r}) \, \hat{r} - \vec{p} \right] \right]$$

Show that the magnitude of the field is given by

$$E = \frac{p}{4\pi\epsilon_0 r^3} \left(1 + 3\cos^2\theta \right)^{1/2}$$

14. A continuous charge distribution is spherically symmetric and has a volume charge density $\rho(r) = \rho_0 \exp(-\alpha r)$. Find the potential V(r) produced by this charge distribution.

[Ans.
$$V(r) = \frac{\rho}{\epsilon_0} \frac{1}{r^3} \left\{ -\alpha \exp(-\alpha r) - \frac{2}{r} \exp(-\alpha r) + \frac{2}{r} \right\}$$
]

15. A spherical charge distribution has a volume charge density $\rho(r) = A/r$ for $0 \le r \le R$ and $\rho(r) = 0$ for r > R. Find the electric field $\vec{E}(r)$ and the potential V(r) subject to $V(\infty) = 0$.

[Ans.
$$E_{\text{out}} = \frac{AR^2}{2\epsilon_0 r^2}$$
, $E_{\text{in}} = \frac{A}{2\epsilon_0}$, $V_{\text{in}} = \frac{A}{2\epsilon_0} \{2R - r\}$; $V_{\text{out}} = \frac{A}{2\epsilon_0} \frac{R^2}{r}$]

16. Repeat the above problem for a charge distribution given by $\rho(r) = Ar$ for $0 \le r \le R$ and $\rho(r) = 0$ for r > R.

[Ans.
$$V(r) = \frac{A}{6\epsilon_0} \{3R^2 - r^2\}$$
 for $r < R$; $V(r) = \frac{A}{3\epsilon_0} \frac{R^3}{r}$ for $r > R$]

17. A linear quadrupole is formed by placing a charge +q each at $(\pm a,0,0)$, and a charge -2q at the origin. Find the potential and the electric field intensity at a point P(0,0,z), where $z \gg a$.

[Ans. $\vec{E} = \hat{k} \{3qa^2/4\pi\epsilon_0 z^4\}$]

- 18. A quadrupole can also be a configuration shown on right hand side of the above figure. Calculate the field and the potential due to such a quadrupole at a point P(0,0,z), where $z \gg a$.
- 19. A spherical surface of radius a has a uniform charge density σ on it. Calculate by direct integration the electric field at a distance 2a from its centre. [Ans. $\sigma/4\epsilon_0$]
- 20. Consider a line charge having the shape shown below. Portion ABC forms three-fourth of a circle of radius R while the straight portion CD is parallel to the x-axis and extends to infinity. Show that the electric field at the centre of the circular portion is zero.

- 21. One half of a spherical surface has a uniform charge density σ on it. Show that the magnitude of the field at the centre of the sphere is $\sigma/4\varepsilon_0$. What is its direction? [Ans. $-\hat{k}$
- 22. A point charge is located at the centre of a cylinder of length L and radius R. Show that the flux through the curved surface of the cylinder is

$$\frac{QL}{2\varepsilon_0} \, \frac{1}{\sqrt{R^2 + (\frac{L}{2})^2}}$$

23. A spherical distribution of charge consists of uniform charge density ρ_1 from r=0 to r=a/2 and uniform charge density ρ_2 from r=a/2 to r=a. Using Gauss's law, calculate the electric field everywhere.

[Ans.
$$E(\frac{a}{2}) = \frac{\rho_1 a}{6\varepsilon_0}$$
, $E(r) = \frac{(\rho_1 - \rho_2)a^3}{24\varepsilon_0 r^2} + \frac{\rho_2 a}{3\varepsilon_0}$ for $\frac{a}{2} < r < a$, $E(a) = \frac{(\rho_1 + 7\rho_2)a}{24\varepsilon_0}$]

24. A circle of radius a has a uniform chare density λ on its circumference. Determine the electric field and potential along its axis.

[Ans.
$$E_{\text{max}}$$
 at $z = \pm a/\sqrt{2}$; V_{max} at $z = 0$]

25. A circular sheet of radius a has a uniform charge density σ on it. Calculate the potential at a point on the circumference and at the centre.

[Ans. circumference: $\sigma a/\pi \epsilon_0$; centre: $\sigma a/2\epsilon_0$]

26. Calculate the potential everywhere for the charge distribution in problem (25). What should be the relation between ρ_1 and ρ_2 so that the potentials at r=a and r=0 are equal.

[Ans.
$$V(r=a) = a^2(\rho_1 + 7\rho_2)/24\epsilon_0$$
; $V(r=a/2) = a^2(2\rho_1 + 9\rho_2)/24\epsilon_0$; $V(r=0) = a^2(\rho_1 + 3\rho_2)/8\epsilon_0$; $\rho_1 + \rho_2 = 0$]

27. A charge Q is uniformly distributed in a spherical volume of radius R. Find the potential inside the sphere.

[Ans.
$$Q(3R^2 - r^2)/8\pi\epsilon_0 R^3$$

28. An infinitely long cylinder of radius R with its axis along the z-axis has a volume charge density given by

$$\rho(r, \theta, z) = \rho_0(R - r)$$

for r < R and

$$\rho(r,\theta,z) = 0$$

for r > R. Calculate (i) electric field for r < a and r > a and (ii) the potential difference between r = a and r = 0, and between r = 2a and r = a.

[Ans.
$$\frac{\rho_0}{\varepsilon_0}r\left(\frac{R}{2}-\frac{r}{3}\right)$$
, $\frac{\rho_0}{\varepsilon_0}\frac{R^2}{6}$], [Ans. $\frac{\rho_0}{\varepsilon_0}r^2\left(\frac{R}{4}-\frac{r}{9}\right)$, $\frac{\rho_0}{\varepsilon_0}\frac{R^3}{6}\ln 2$]

29. A spherical volume of radius 4R centred at the origin (O) has constant volume charge density $+\rho$. Another spherical volume of radius 3R centred at O' (5R,0,0) has constant volume charge density $-\rho$. Calculate the electric field at any point in the overlap region.

[Ans.
$$5\rho R/3\epsilon_0 \vec{OO'}$$
]