P!=NP

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Count all pairs of integers (n, p) such that $0 \le p \le P$, $p \ne n \cdot p$, and $p! = n \cdot p$.

Input

The input consists of a single integer P $(1 \le P \le 10^5)$ — the upper bound on p.

Tests in subtasks are numbered from 1-10 with samples skipped. Each test is worth $\frac{100}{10}=10$ points. Tests 1-5 will satisfy $P \le 1000$.

The remaining tests do not satisfy any additional constraints.

Output

Output a single integer — the number of integer values for n and p that satisfy the constraints.

Example

standard input	standard output
4	2

Note

In the sample test, the 2 values of (n, p) that work are (2, 3) and (6, 4).

_

Problem Idea: willy108 Problem Preparation: xug

Occurrences: Novice A, Advanced A