ICCTEIE 2025







# Enhanced PCG Classification Using Wavelet Transform and Feature Optimization of EMD and PSD



MARIA MAGDALENA CLINTINA NABABAN mariaamgdlnaegmail.com



PROF ACHMAD RIZAL, S.T., M.T achmadrizaletelkomuniversity.ac.id



MUHAMMAD HABLUL BARRI, S.T., M.T mhbarri@telkomuniversity.ac.id

# Background of The Study



CVD deaths increased from 12.1 M (1990) to 20.5 M (2021)

#### **Normal PCG**

- Transient signal patterns
- Lower frequency components
- Regular rhythm



- Noise-like characteristics
- High-frequency components
- Irregular patterns





Challenge & Key Takeway

Early detection through non-invasive PCG analysis is crucial for reducing CVD mortality. However, signal complexity requires preprocessing and feature extraction techniques.

# Problem Statement & Research Objective

#### **Problem Statement**

### Trade-off Challenge

Existing
methods show
either good
denoising OR
good feature
preservation

### Limited Approach

Singletechnique approaches not optimal for complex PCG signals

## Clinical Need

Need for robust and accurate intelligent diagnostic system

#### **Current Approaches**

- Single denoising technique focus
- Limited feature extraction methods
- Separate optimization of preprocessing and features

#### State-of-the Art Methods Comparison

| Method           | SNR (dB) | PSNR (dB) | MSE  | Key Strength        |
|------------------|----------|-----------|------|---------------------|
| SWT-Sym2         | 27.32    | 40.019    | 5.08 | Best<br>Denoising   |
| EMD              |          | -         | -    | Signal preservation |
| EMD+CNN-<br>LSTM |          |           | _    | 95% accuracy        |
| WST+VMD          | <u>-</u> | _         | -    | 92% sensitivity     |

#### OUR HYBRID APPROACH



Wavelet-based denoising (noise reduction)



Dual feature extraction: EMD + PSD (complementary)



Integrated optimization pipeline

#### **EXPECTED CONTRIBUTION**



SCIENTIFIC NOVELTY

CLINICAL IMPACT

# Dataset Description

| Component | Detail                                                                                                  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------|--|--|
| Data Type | Time-series audio data (Phonocardiogram / PCG)                                                          |  |  |
| Subjects  | 100 recordings: 50 Normal & 50 Murmur heart sounds                                                      |  |  |
| Source    | PhysioNet Heart Sound Database (as used in previous studies)                                            |  |  |
| Content   | wav files recorded at 2000 Hz, with durations 8.6 to 50.8 seconds per sample                            |  |  |
| Purpose   | Used for classification of heart conditions (normal vs murmur) in developing ML-based diagnostic models |  |  |

# Preprocessing & Denoising Workflow

**Preprocessing Pipeline** 

Normalization

**Band Pass Filtering** 

**Wavelet Denoising & Evaluation Metrics** 

Discete Wavelet Transform

Daubechies-6 (db6)

Single level, retain approximation coefficients (A1)

SNR | Signal clarity

MSE/RMSE | Reconstruction error

PRD (%) | Distortion rate



Normal: SNR = 36.27 dB, PRD = 2.10%

Murmur: SNR = 40.05 dB, PRD = 1.34%

This preprocessing-denoising pipeline enhances signal quality while preserving diagnostic PCG characteristics.

# Feature Extraction Overview

Comprehensive Multi-Domain Feature Engineering

### Spectral Features (Frequency-Based)

#### Welch's Method

Averaged FFT from overlapping Hammingwindowed segments → stable estimation

### Classical Periodogram

Full-frame FFT magnitude for baseline comparison

### EMD-Based Time-Frequency Features

Decomposed PCG into Intrinsic Mode Functions (IMFs)

MFs (IMF1-IMF2): Captured high-frequency murmur turbulence

Later IMFs: Lower frequency cardiac rhythms



Murmur signals showed 30 Hz spectral shift with higher energy spread at higher frequencies



Combining PSD-based spectral descriptors with EMD-derived energy and entropy captures both stationary and non-stationary murmur characteristics, providing a comprehensive feature set for accurate PCG classification.

**EMD 27 features** 

**PSD 87 features** 

# Classification Performance Results

LOOCV Performance Across Feature Sets

| Feature Set      | Accuracy | Precision | Sensitivity | Specificity | F1-Score |
|------------------|----------|-----------|-------------|-------------|----------|
| EMD (n=27)       | 69%      | 68.83%    | 70.00%      | 68.00%      | 69.31%   |
| PSD (n=87)       | 87%      | 86.27%    | 88.00%      | 86.00%      | 87.13%   |
| Combined (n=114) | 90%      | 90.00 %   | 90.00%      | 90.00%      | 90.00%   |
| Selected         | 91%      | 93.62 %   | 88.00%      | 94.00%      | 90.72%   |

#### **RF Parameters**

- Optimization: Grid Search
- CV Folds: k = 5 (Stratified)
- Evaluation Metric: F1-Score
- Feature Selection Runs: 30 (Randomized)
- Top Features/Run: 25

#### **Key Findings:**



RF-based feature selection achieved the highest performance (91% accuracy), demonstrating that a compact, optimized feature set improves model generalization. PSD features show strong discriminative capacity compared to EMD alone.

# Classification Performance Results

RF Performance Across Different Validation Strategies

| Feature<br>Set          | Evaluation<br>Method  | Accuracy | Precision | Sensitivity | Specificity | F1-<br>Score |
|-------------------------|-----------------------|----------|-----------|-------------|-------------|--------------|
| EMD<br>n=27             | 5-Fold CV             | 65.00%   | 67.40%    | 58.00%      | 72.00%      | 60.17%       |
|                         | Train-Test<br>(80:20) | 65.00%   | 71.43%    | 50.00%      | 80.00%      | 58.82%       |
| PSD<br>Selected<br>n=80 | 5-Fold CV             | 94.00%   | 94.18%    | 94.00%      | 92.00%      | 93.99%       |
|                         | Train-Test<br>(80:20) | 95.00%   | 95.00%    | 90.00%      | 95.00%      | 94.74%       |
| Combined<br>Selected    | 5-Fold CV             | 89.00%   | 91.96%    | 86.00%      | 96.00%      | 88.61%       |
|                         | Train-Test<br>(80:20) | 90.00%   | 100.00%   | 80.00%      | 100.00%     | 88.89%       |





### Key Insight:

Selected PSD features (n=80) achieved 95% accuracy with perfect precision and specificity in train-test evaluation. Although combining PSD+EMD maintained high cross-validation accuracy (89%), test sensitivity decreased to 80%, suggesting increased feature dimensionality may introduce redundancy affecting generalization.

## Discussion

This study introduces a PCG classification framework that combines wavelet-based denoising with domain-informed features from Empirical Mode Decomposition (EMD) and Power Spectral Density (PSD). While PSD captures spectral shifts through features such as peak frequency, band power ratios, and spectral entropy, EMD-derived energy and entropy features capture non-stationary murmur patterns localized in early IMFs. The fusion of time-frequency and spectral characteristics achieves superior discriminative capability compared to single-domain approaches.

A multi-run randomized feature selection strategy (30 iterations) refined the feature space to 50 high-impact features, leading to a 91% LOOCV accuracy—outperforming the full combined feature set (114 features). Findings highlight that performance gains arise from feature relevance and cross-domain synergy rather than classifier complexity, demonstrating that dimensionality reduction can enhance efficiency without compromising discriminative power.

**Classification Performance** 

95% 94.74%

Accuracy

F1-Score

Random Forest Classifier with Selected PSD Features n=80 | Train-Test Split (80:20)

# Conclusion

This study demonstrates that utilizing interpretable and physiology-informed features enables high classification accuracy within a transparent and lightweight framework, achieving up to 95% accuracy. The results emphasize the significance of principled, domain-driven feature selection in biomedical signal analysis, showing that well-crafted features can deliver performance comparable to more complex deep learning architectures.

Moreover, the efficiency and transparency of this approach support potential implementation in real-world screening scenarios, particularly in settings with limited computational resources. By enabling early murmur detection in primary care or telemedicine environments, this framework contributes toward more accessible and reliable cardiac assessment solutions.

# Thank you!