Assignment # 4: MATH1051

Jamie Chen Student Number: 48093189 Semester 2, 2023

August 7, 2023

1. (1 mark each) Determine the domains (as a subset of \mathbb{R}) of the functions:

(a)
$$f_1(x) = \frac{1}{e^x - e^{-x}}$$

The domain of this function $f_1(x)$ is $\mathbb{R} \setminus \{0\}$.

(b)
$$f_2(x) = \frac{1}{\sqrt{4-x^2}}$$

The domain of this function $f_2(x)$ is (-2,2) (non-inclusive).

(c)
$$f_3(x) = \log \arccos x$$

The domain of this function $f_3(x)$ is [-1, 1] (inclusive).

2. (3 marks) Given is the function $g(x) = x^2 + 3x$. For a second function f with f(3) = 0 we find $(g \circ f)(x) = x^2 - 3x$. What is the function f? Is f unique?

The function f can be a simple linear function, such as f(x) = x - 3.

$$(g \circ f)(x) = g(f(x))$$

$$= (x - 3)^{2} + 3(x - 3)$$

$$= x^{2} - 6x + 9 + 3x - 9$$

$$= x^{2} - 3x$$

However, there are other functions that can be used to achieve the same result. (NOT PROVEN YET)

3. (1 mark each) Determine which of the following functions are 1-1? Prove your answer.

(a)
$$f_1(x) = e^{-x^2}$$

Defined in the workbook:

A function
$$f: X \to Y$$
 is called **one-to-one** (or **injective**) if $\forall x_1, x_2 \in \mathbb{R} \cap X$, $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$.

The function $f_1(x) = e^{-x^2}$ is one-to-one as it is a strictly decreasing function. Additionally, if we follow the definition of a one-to-one function:

$$f_1(x_1) = f_1(x_2)$$

$$e^{-x_1^2} = e^{-x_2^2}$$

$$\ln(e^{-x_1^2}) = \ln(e^{-x_2^2})$$

$$-x_1^2 = -x_2^2$$

$$x_1^2 = x_2^2$$

$$\Rightarrow x_1 = x_2$$

Therefore, the function $f_1(x) = e^{-x^2}$ is one-to-one.

You can see that there are other things:

(b) $f_2(x) = 2x^2 - 3x + 1$

The function $f_2(x) = 2x^2 - 3x + 1$ is not one-to-one. There are several reasons for this:

- 1. The function $f_2(x)$ is not strictly increasing or decreasing.
- 2. The function $f_2(x)$ is a quadratic function, and therefore can have two values of x that correspond to the same value of y.
- 3. Using the definition of a one-to-one function:

$$f_1(x_1) = f_1(x_2) \implies x_1 = x_2$$

$$2x_1^2 - 3x_1 + 1 = 2x_2^2 - 3x_2 + 1 \implies x_1 = x_2$$

We can see that the function $f_2(x)$ is not one-to-one as there are multiple values of x that correspond to the same value of y.

(c) $f_3(x) = |x| + 2 \cdot x$

The function $f_3(x) = |x| + 2 \cdot x$ is not one-to-one. There are several reasons for this:

- 1. The function $f_3(x)$ is not strictly increasing or decreasing.
- 2. The function $f_3(x)$ is a piecewise function, and therefore can have two values of x that correspond to the same value of y.
- 3. Using the definition of a one-to-one function:

- 4. (1 mark each) Determine what the following limits are or show that they do not exist.
 - (a) $\lim_{n \to \infty} \frac{(n^2 + 4n 27)(n^3 1)}{(n(n-1))^2}$

$$\lim_{n \to \infty} \frac{(n^2 + 4n - 27)(n^3 - 1)}{(n(n-1))^2} = \lim_{n \to \infty} \frac{n^5 + 4n^4 - 27n^3 - n^3 + 1}{n^4 - 2n^3 + n^2}$$

$$= \lim_{n \to \infty} \frac{n^5 + 4n^4 - 28n^3 + 1}{n^4 - 2n^3 + n^2}$$

$$= \lim_{n \to \infty} \frac{n + 4 - \frac{28}{n} + \frac{1}{n^3}}{1 - \frac{2}{n} + \frac{1}{n^2}}$$

- (b) $\lim_{n \to \infty} \frac{3n^2 9n + 48}{4n^3}$
- (c) $\lim_{n\to\infty} \frac{(3n+1)^3 27n^3}{n^2}$
- (d) $\lim_{n\to\infty} \frac{2n^2}{2n-1} n$
- (e) $\lim_{n \to \infty} \sqrt{n(n+1)} n$

5. (1 mark each) Consider the sequence a_n defined by the recursion

$$a_n = a_{n-1} - \frac{1}{4}a_{n-2} \tag{1}$$

for $n = 3, 4, 5, \dots$

(a) Calculate h such that $a_n = h^{n-1}$ fulfils the recursive definition.

To calculate h we can substitute $a_n = h^{n-1}$ into the recursive definition:

$$h^{n-1} = h^{n-2} - \frac{1}{4}h^{n-3}$$

We can now divide both sides by h^{n-3} :

$$h^2 = h - \frac{1}{4}$$

Solving h in terms of the quadratic formula:

$$h = \frac{-(-1) \pm \sqrt{1 - 4 \cdot 1 \cdot \frac{1}{4}}}{2 \cdot 1}$$

$$h = \frac{1 \pm \sqrt{1 - 1}}{2}$$

$$h = \frac{1 \pm 0}{2}$$

$$\therefore h = \frac{1}{2}$$

(b) What is the limit of the sequence a_n (if it exists)?

To find the limit of the sequence a_n we can use the formula.

7

6. (1 mark each) Given is the sequence b_n defined in recursive form

$$b_n = \frac{1}{2} \left(b_{n-1} + \frac{A}{b_{n-1}} \right)$$

for a given A > 0. You can assume that all values of b_n are non-zero.

- (a) Use your calculator (or MATLAB) to calculate the first four values of the sequence b_n starting from $b_1 = A$ (this is for n = 1, 2, 3, 4). Inspecting these values do you expect the sequence to be convergent or to be divergent?
- (b) Assume you know the sequence b_n is converging, what would be its limit (or its limits)? Justify your answer. Is it consistent with your result of part (a)?

7. (1 mark each) Assume you have given a sequence c_n with non-zero values $(c_n \neq 0 \text{ for } n = 1, 2, ...)$ that fulfils the condition

$$\left| \frac{c_n}{c_n - 1} \right| \le q \tag{2}$$

for all n = 1, 2, 3, ... for some fixed constant q with 0 < q < 1.

- (a) Show that $c_n \to 0$ for $n \to \infty$. (Hint: use the squeeze theorem)
- (b) Use the result from part(a) to show that $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.
- (c) Again: use the result from part(a) to show that $\lim_{n\to\infty} \frac{1}{3^n n^3} = 0$.