Analyzing COVID-19's Impact On Facility Violations

Group members: Wasay Ahmed, Sahil Chauhan, Arthur Floriano, Kiyoon Jang, Miguel Rodriguez

Problem

Hypothesis:

The COVID-19 pandemic has reverberated widely, leading to shifts in facility violations.

Our study aims to investigate the pandemic's impact on grocery stores and restaurants, expecting increased violations in the former and decreased violations in the latter during the pandemic when compared to before it. Furthermore, we anticipate that violation types will vary based on the facility type and their association with nearby areas.

Established pandemic dates as the following:

Pre-Pandemic Dates: 10/01/16 - 12/15/19

Pandemic Dates: 03/01/20 - 05/11/23

Data: Why restaurants and grocery stores?

Top 10 Facility Types by Inspection Frequency

Why Care:

 Significant dip in inspections between 2020 and 2022

Choosing the Data:

 Restaurants and grocery stores are most frequently inspected
 Graphs are findings from exploratory data analysis

Number of Inspections Over Time

Solution/Findings: Pre-Pandemic vs. Pandemic Violations

Total violations before pandemic vs pandemic

Top 5 Facility Types with most violations before pandemic vs pandemic

Solution/Findings: Common Violation Types Pre-Pandemic vs. Pandemic

Top 10 most common violation types before pandemic vs pandemic

Solution/Findings: Pre-Pandemic vs. Pandemic Violation Location Analysis

Pre-pandemic: Higher concentrations of violations

Pandemic: Lower Concentrations of violations

Solution/Findings: Machine Learning Analysis

Accuracy: 0.54 Histogram Classifier									
Classification Report:									
•		precision	recall	f1-score	support				
Business Not Located		0.04	0.14	0.06	22				
Fail		0.53	0.01	0.01	10086				
No Entry		0.97	0.23	0.37	2102				
Not Ready		0.49	0.05	0.08	640				
Out of Business		0.78	0.22	0.35	4547				
Pass		0.53	0.99	0.69	27119				
Pass w/ Conditions		0.18	0.00	0.00	8047				
accuracy			0.54	52563					
macro avg	0.50	0.23	0.22	52563					
weighted avg	0.52	0.54	0.41	52563					

	Accuracy. 0.55	Lir	Linear Regression Model						
Classification Report: precision			recall f1-score		support				
	Business Not Lo Fail No Entry Not Ready Out of Business Pass Pass w/ Condit	;	1.00 1.00 1.00 1.00 0.62 0.52 1.00	0.00 0.00 0.00 0.00 0.19 0.99 0.00	0.00 0.00 0.00 0.00 0.29 0.68 0.00	22 10086 2102 640 4547 27119 8047			
	accuracy macro avg weighted avg	0.88 0.72	0.17 0.53	0.53 0.14 0.38	52563 52563 52563				

Did Not Work:

- No baseline established in findings
- Accuracies too low
- Must reduce data file for higher accurate results -> Speed up training data

Different Attempts:

- Different models took too long: must decrease file size

Future Attempts -> Improvements:

- Attempt new models with decreased file size: SVM, etc.

Results

Hypothesis:

The COVID-19 pandemic has reverberated widely, leading to shifts in facility violations.

Our study aims to investigate the pandemic's impact on grocery stores and restaurants,

expecting increased violations in the former and decreased violations in the latter during

the pandemic when compared to before it. Furthermore, we anticipate that

violation types will vary based on the facility type and their association with nearby areas.

WHY SOLUTION WORKS:

- Data analysis supporting why restaurants/grocery stores need specific focus
- Inspections over time denote dip in inspections during pandemic
- Various visuals highlight decrease in violations during pandemic
- Heat map showcases violation concentration based on surrounding areas

WHAT DID NOT WORK + IMPROVEMENTS

- ML analysis accuracies are too low
 - Adopt new analysis to reflect higher accuracies
 - Minimize the data set and adjust for overfitting
 - Implement MLC baseline
- Alternative models
 - SVM, Neural Networks, Decision Tree

Next Steps

