EMOTION AWARE MUSIC RECOMMENDATION SYSTEM

 \boldsymbol{A}

Project Report
Submitted in partial fulfilment of the
Requirements for the award of the Degree of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE & ENGINEERING

By

SAI SUMAN CHITTURI

1602-18-733-097

PRANEETH KAPILA

1602-18-733-116

Under the guidance of

Dr. T. ADILAKSHMI

HEAD OF THE DEPARTMENT

Department of Computer Science & Engineering
Vasavi College of Engineering (Autonomous)
(Affiliated to Osmania University)
Ibrahimbagh, Hyderabad-31
2022

Vasavi College of Engineering (Autonomous) (Affiliated to Osmania University) Hyderabad-500 031

Department of Computer Science & Engineering

DECLARATION BY THE CANDIDATE

We, SAI SUMAN CHITTURI and PRANEETH KAPILA, bearing hall ticket numbers 1602-18-733-097 and 1602-18-733-116, hereby declare that the project report entitled "EMOTION AWARE MUSIC RECOMMENDATION SYSTEM" under the guidance of Dr.T. ADILAKSHMI, HOD, Department of Computer Science & Engineering, VCE, Hyderabad, is submitted in partial fulfilment of the requirement for the award of the degree of BACHELOR OF ENGINEERING in COMPUTER SCIENCE & ENGINEERING.

This is a record of bonafide work carried out by us and the results embodied in this project report have not been submitted to any other university or institute for the award of any other degree or diploma.

> SAI SUMAN CHITTURI, 1602-18-733-097. PRANEETH KAPILA, 1602-18-733-116.

Vasavi College of Engineering (Autonomous) (Affiliated to Osmania University) Hyderabad-500 031

Department of Computer Science & Engineering

BONAFIDE CERTIFICATE

This is to certify that the project entitled "EMOTION AWARE MUSIC RECOMMENDATION SYSTEM" being submitted by SAI SUMAN CHITTURI and PRANEETH KAPILA, bearing hall ticket numbers 1602-18-733-097 and 1602-18-733-116, in partial fulfilment of the requirements for the award of the degree of BACHELOR OF ENGINEERING IN COMPUTER SCIENCE & ENGINEERING is a record of bonafide work carried out by them under my guidance.

Dr. T. Adilakshmi, Professor & HOD, Internal guide Dr. T.Adilakshmi, Professor & HOD, Dept. of CSE

Acknowledgement

We are thankful to the College Management for Encouraging us to do our Project titled EMOTION AWARE MUSIC RECOMMENDATION SYSTEM. We extend our heart-felt gratitude to our Professor, Dr. M. SUNITHA REDDY and our Internal Guide and Head of the Dept., Dr. T. ADILAKSHMI for their Invaluable Guidance and Support throughout our project. We extend our heartfelt gratitude to the Principal, Dr. S. V. RAMANA, Vasavi College of Engineering, Ibrahimbagh, for permitting us to undertake this Project. Their guidance was unforgettable, and their constructive suggestions helped us in finishing the project Effectively.

SAI SUMAN CHITTURI, 1602-18-733-097 PRANEETH KAPILA, 1602-18-733-116.

Abstract

Music is an essential part of our regular life. It cheers us up and makes us feel better. Not all forms of music are appropriate for every mood. Furthermore, ever-growing digital music catalogues make it virtually impossible to recollect a specific tune that fits the present emotion. Besides that, due to the enormous number of songs accessible, people are frequently perplexed when selecting a track. This necessitates the development of a context-sensitive music recommendation system.

Therefore, we present a context-aware music recommendation system that assists in identifying the user's current emotion and suggesting music which is relevant to that emotion. We have come up with a comprehensive strategy to improve user preference prediction; our technique integrates context and emotion elements and strives to give users a more convenient, intuitive, and pleasurable listening experience. Finally, we discuss the evaluation and performance metrics and results of our research.

7. Table of Contents

Abstract List of Tables		v	
		viii	
List of Figures			ix
1.	Introduction		
	1.1.	Facial Emotion Identification	2
	1.2.	Music Recommendation	5
		1.2.1. Collaborative Filtering	5
		1.2.2. Content based Filtering	6
2.	Overview	of proposed system	7
	2.1.	Emotion Identification	7
	2.2.	Music Recommendation	8
3.	System de	esign	9
	3.1.	Emotion Identification Module	9
	3.2.	Music Tagging & Recommendation Mod	dule 10
	3.3.	User-Interface Module	11
4.	Pseudo A	lgorithm / Implementation	12
	4.1.	Emotion Identification	12
		4.1.1. Modules used	12
		4.1.2. CNN for facial emotion identific	eation 13
		4.1.3. Deep Neural Network	17
		4.1.4. Multi-task Cascaded Neural Net	work 21
	4.2.	Music Recommendation	23
	4.3.	The Backend	27
	4.4.	The Frontend	30
5.	Results		32
	5.1.	Accurate Predictions	32
	5.2.	Inaccurate Predictions	39
	5 3	No-face-detected	41

6.	Testing		42
	6.1.	Accuracy of CNN Model	42
	6.2.	Accuracy for Deep Face Model	43
		6.2.1. Dataset: AffectNet Test	43
		6.2.2. Dataset: AffectNet Train	44
	6.3.	Accuracy of MTCNN based FER Model	47
	6.4.	Accuracy for K-MEANS clustering	48
	6.5.	Compare & Contrast Emotion Detection Models	48
	6.6.	Emotion-wise Accuracies of all models	49
7.	Conclusio	on & Future work	50
8.	. References		51

List of Tables

Table 2.1.1	: Compare & Contrast of Emotion Detection Models	7
Table 4.1.2.1	: Arguments passed to Keras Model	13

List of Figures

Figure 1.1.1	: Basic model of how Neurons in ANN work	2
Figure 1.1.2	: Processing of a digital image by Neural Network	3
Figure 1.1.3	: Emotion Identification by a Neural Network	4
Figure 1.1.4	: Neural Network involving more hidden layers	5
Figure 1.2.1	: Collaborative Filtering	6
Figure 1.2.2	: Content-based Filtering	6
Figure 3.1.1	: Emotion Identification module	9
Figure 3.2.1	: Music Recommendation module	10
Figure 3.3.1	: User-Interface Module	11
Figure 4.1.2. 1	1: Script to find the accuracy of CNN model (1)	14
Figure 4.1.2.2	2: Script to find the accuracy of CNN model (2)	15
Figure 4.1.2.3	3: Script to find the accuracy of CNN model (3)	16
Figure 4.1.3. 1	1: Deep Neural Network	17
Figure 4.1.3.2	2: Sample Snippet demonstrating Deep Face Module	18
Figure 4.1.3.	3: Script for finding the accuracy of Deep Face module (1)	19
Figure 4.1.3.	1: Script for finding the accuracy of Deep Face module (2)	20
Figure 4.1.4. 1	1: Sample snippet demonstrating MTCNN model	21
Figure 4.1.4. 2	2: Script to find accuracy of MTCNN model	22
Figure 4.2.1	: Script to Cluster using K-MEANS (1)	23
Figure 4.2.2	: Script to Cluster using K-MEANS (2)	24
Figure 4.2.3	: Script to Cluster using K-MEANS (3)	25
Figure 4.2.4	: Script to Cluster using K-MEANS (4)	26
Figure 4.3.1	: Backend script to pre-process (1)	27

Figure 4.3.2	: Backend script to pre-process (2)	28
Figure 4.3.3	: Backend script to pre-process (3)	29
Figure 4.4.1	: Script to create UI using Streamlit (1)	30
Figure 4.4.2	: Script to create UI using Streamlit (2)	31
Figure 5.1.1	: Correctly identifying Angry Emotion	32
Figure 5.1.2	: Correctly identifying Disgust Emotion	33
Figure 5.1.3	: Correctly identifying Fear Emotion	34
Figure 5.1.4	: Correctly identifying Happy Emotion	35
Figure 5.1.5	: Correctly identifying Neutral Emotion	36
Figure 5.1.6	: Correctly identifying Sad Emotion	37
Figure 5.1.7	: Correctly identifying Surprise Emotion	38
Figure 5.2.1	: Wrongly classifying Disgust as Neutral	39
Figure 5.2.2	: Wrongly classifying Neutral as Sad	40
Figure 5.3.1	: Application Failing to detect face	41
Figure 6.1.1	: Accuracy of CNN model against AffectNet Test	42
Figure 6.2.1	: Accuracy of Deep Face model against AffectNet Test	43
Figure 6.2.2	: Accuracy of Deep Face model with AffectNet Train (1)	44
Figure 6.2.3	: Accuracy of Deep Face model with AffectNet Train (2)	45
Figure 6.2.4	: Accuracy of Deep Face model with AffectNet Train (3)	46
Figure 6.3.1	: Accuracy of MTCNN based FER Model	47
Figure 6.4.1	: Accuracy of K-MEANS Clustering	48
Figure 6.5.1	: Compare & Contrast of Emotion Detection Models	48
Figure 6.6.1	: Emotion-wise Accuracies of all models	49