Introduction

Dire cest quoi leffet cheerios etc ...

Dans le cadre de l'UE Projet en Calcul Scientifique Numérique, nous devions travailler sur un projet, afin de nous apprendre plus en détail, la programmation et le calcul numérique avec un langage compilé, le C. Notre sujet était sur l'"Effet Cheerios", ou l'interaction d'objets à la surface d'un liquide par l'effet de la gravité et la déformation interfaciale. Cet effet se caractérise par la tension d'une surface liquide sous le poids d'un objet, par exemple une punaise sur l'eau. Lorsque nous ajoutons plusieurs objets sur la même surface, à distance plus ou moins grande, les objets vont potentiellement s'attirer puis créer des tas mobiles. Ce phénomène est notamment visible avec des céréales dans du lait, d'où le nom de Cheerios, célèbre marque de céréales américaine. Pour réaliser à bien ce projet nous avons du faire de nombreuses recherches sur la mécanique des fluides, les collisions inélastiques et nous avons également du faire un travail conséquent sur l'optimisation de notre algorithme.

1 nescescites

1.1 Effet Cheerios

Les formules pour les calculs viennent principalement de vella cheerios 2005

$$F(l) = -2\pi\gamma R B^{5/2} K_1 \left(\frac{l}{L_c}\right) \tag{1}$$

1.2 Integration de verlet

Développement limité de Taylor Young de f(x) au point x_0 agarwal_introduction_2011 :

$$DL_n f(x) = \sum_{i=0}^n \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + o((x - x_0)^n)$$
 (2)

Si on applique le développement limité d'ordre 3 la position($\mathbf{x}(t+dt)$) au point t+dt on a l'équation suivante avec t_0 comme le pas de temps précédent :

$$DL_{3}\boldsymbol{x}(t) = \boldsymbol{x}(t_{0}) + \boldsymbol{x}'(t_{0})(t - t_{0}) + \frac{\boldsymbol{x}''(t_{0})}{2!}(t - t_{0})^{2} + o((t - t_{0})^{3})$$

Si t_0 est le pas de temps précédent, $\boldsymbol{x}'(t)$ vitesse et $\boldsymbol{x}''(t)$ l'accélération, nous avons :

$$DL_3\boldsymbol{x}(t+\mathrm{d}t) = \boldsymbol{x}(t) + \boldsymbol{x}'(t)(t+\mathrm{d}t-t) + \frac{\boldsymbol{x}''(t)}{2!}(t+\mathrm{d}t-t)^2 + o(t+\mathrm{d}t-t)$$
$$\Longrightarrow DL_3\boldsymbol{x}(t+\mathrm{d}t) = \boldsymbol{x}(t) + \boldsymbol{v}(t)(\mathrm{d}t) + \frac{\boldsymbol{a}(t)}{2!}(\mathrm{d}t)^2 + o(\mathrm{d}t^3)$$

L'erreur sur le temps t_n est de l'ordre de $o(\exp(Lt_n)dt^2)$

Et comme notre accélération ne dépend pas du changement de vitesse mais de l'équation (??), nous pouvons calculer l'accélération à partir du principe fondamental de la dynamique avec une masse constante. Il est important de faire cela après le calcul de position mais avant la vitesse car la position prend l'accélération précédente et la vitesse prend celui de avant et pendant le temps.

$$\sum \mathbf{F} = m\mathbf{a} \Longrightarrow \mathbf{a} = \frac{\sum \mathbf{F}}{m} \tag{3}$$

Maintenant comme nous avons la nouvelle position et l'accélération, nous pouvons calculer la nouvelle vitesse.

$$\mathbf{v}(t+\mathrm{d}t) = \mathbf{v}(t) + \frac{\mathbf{a}(t) + \mathbf{a}(t+\mathrm{d}t)}{2}\mathrm{d}t$$
 (4)

1.3 Collsisions

Expliquer comment on a deduit que les collisions etait des collisions inelastic parfait et metre les equations utilise Pour les collisions, nous sommes partis sur un modèle assez simple qui itère chaque objet et regarde si la distance entre eux est plus petite que leur rayons additionnés on dis que il ya une collision et on applique les collisions et la conservation de momentum.

- Dabord on prend le vecteur norme collisions qui est le sens de 1 a 2 $c \longrightarrow ||c|| = 1$
- Apres on trouve la vitesse relative pour voir comment les cheerios vont saffecter
- Et on calcule la vitesse avec le produit scalaire de vitesse relative et la norme de collision ceci ca va nous etre utile quand on calcule m'impulse des objets $v_{collision} = v_{relative}c$
- et on aplique un coefficient entre 0.2 et 0.7 car notre experience nest pas des collisions elastique parfaite. Par contre il faux faire aatention a cette constante car si on le mets trop petit ca fait tel que les cheerios na pas le rebond nescesaire et comence a entrer dans eux et si on le mets trop eleve ca fait tel que ca rebondit beaucoup mais tout ces effects negative diminue plus on prend notre pas de temps petit
- si la vitesse de collision est plus grand que 0 ca veux dire ils vont vers eux meme donc une collision???? ca veux dire que autremenet meme si ils sont entre eux il ya pas de collision???? revoir applique collision et le if
- on calcule limpulse $i = 2 \frac{v}{m_1 m_2}$
- et on soustrait la vitesse du cheerio 1 par $v_1 i * m_2 * c$
- et on ajoute pour lautre $\mathbf{v_2}$ $i * m_1 * \mathbf{c}$

2 Le bord

2.1 collision des bords

Et aussi on fait des collisions de bord aussi.

2.2 force des bords

pour la force des bords on utilise la symetrie.

3 Comment on a concue notre probleme

- On a pris l'interaction des forces totale sur chaque particule par la fonction dans l'article 'Cheerios effect'
- et de ca on deduis la force que reagis a chaque cheerios pour un pas de temps
- Check si il ya des collisions ou pas et si il ya on change les proprietes des cheerios par rapport aux collisions
- De la force en utilisant l'integration de verlet et le principe fondamentale de la dynamique somme forces = derive (masse*vitesse) on peux changer les positions des cheerios

Conclusion