- 1. Покажите, что если система векторов $u_1, ..., u_k$ линейно независима, то система векторов $u_1, u_1+u_2, u_2+u_3, ..., u_{k-1}+u_k$ также линейно независима.
- 2. Докажите линейную независимость системы функций $\sin x, \cos x$.
- 3. Докажите линейную зависимость системы функций $1, \sin x, \cos x, \sin^2 x, \cos^2 x$.
- 4. Покажите, что пространство $M_n((\mathbb{R}))$ есть прямая сумма $M_n((\mathbb{R})) = R_1 \oplus R_2$ подпространства R_1 симметрических и R_2 кососимметрических матриц. Найдите проекции A_1 и A_2 матрицы

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

на R_1 параллельно R_2 и на R_2 параллельно R_1 .

- 5. Докажите, что всякий линейный оператор любую линейно зависимую систему векторов переводит в линейно зависимую систему.
- 6. Докажите, что всякий линейный оператор $A: R^1 \to R^1$, действующий в одномерном пространстве, имеет вид $A = \lambda I$, т. е. является гомотетией с коэффициентом гомотетии λ .
- 7. Пусть $A: P_n \to P_n$ оператор, определённый равенством Af(t) = f(t+1) (оператор сдвига по аргументу). Покажите, что A линейный оператор и найдите его матрицу в базисе $1, t, t^2, ..., t^n$.
- 8. Пусть оператор $A: P_n \to P_n$ задан формулой $Af(t) = \frac{f(t) f(0)}{t}$. Покажите, что A линейный оператор, найдите его ранг и дефект.
- 9. Оператор $A_h: P_n \to P_n$ задан формулой $A_h f(t) = \frac{f(t) f(h)}{h}$. Покажите, что оператор A_h линейный и найдите его ядро и образ.
- 10. Найдите общий вид матрицы линейного оператора $A: \mathbb{R}^n \to \mathbb{R}^n$, первые k векторов которого составляют:
 - а) базис ядра оператора A;
 - δ) базис образа оператора A.
- 11. Докажите, что для всякого линейного оператора $A: \mathbb{R}^n \to \mathbb{R}^m$ существуют базисы e, f пространств \mathbb{R}^n и \mathbb{R}^m соответственно такие, что

$$A_{ef} = \begin{pmatrix} E_r & 0 \\ \hline 0 & 0 \end{pmatrix}, r = \text{rank}A$$

- 12. Покажите, что всякое подпространство линейного пространства R^n является образом некоторого линейного оператора $A: R^n \to R^n$.
- 13. Покажите, что всякое подпространство линейного пространства R^n является ядром некоторого линейного оператора $A: R^n \to R^n$.
- 14. Покажите, что оператор дифференцирования $D: P_n \to P_n$ является вырожденным.
- 15. Покажите, что линейный оператор $A: \mathbb{R}^n \to \mathbb{R}^n$ обратим тогда и только тогда, когда $0 \notin \operatorname{Spec} A$.
- 16. Найдите собственные векторы и собственные значения оператора дифференцирования $D: P_n \to P_n$.
- 17. Покажите, что все ненулевые векторы пространства являются собственными векторами линейного оператора A тогда и только тогда, когда A оператор гомотетии, т. е. $A = \lambda I$.
- 18. Докажите, что геометрическая кратность собственного значения линейного оператора не превосходит его алгебраической кратности.
- 19. Оператор $A: P_n \to P_n$ зададим формулой Af(t) = f(t+1) f(t). Покажите линейность оператора A и найдите его спектр.
- 20. Докажите, что для любых линейных операторов $A, B: \mathbb{R}^n \to \mathbb{R}^n$ характеристические многочлены операторов AB и BA совпадают.
- 21. Докажите, что линейная оболочка любой системы собственных векторов линейного оператора инвариантна относительно этого оператора.

- 22. Пусть $A: \mathbb{R}^n \to \mathbb{R}^n$ линейный оператор. Докажите, что любое подпространство $\mathbb{R}_1 \subset \mathbb{R}^n$, содержащее $\mathrm{Im} A$, инвариантно относительно оператора A.
- 23. Докажите, что сумма двух и пересечение любого числа инвариантных подпространств линейного оператора инвариантные подпространства.
- 24. Покажите, что если линейные операторы $A, B: \mathbb{R}^n \to \mathbb{R}^n$ перестановочны, то всякое собственное подпространство оператора B инвариантно относительно оператора A.
- 25. Диагонализируем ли оператор дифференцирования $D: P_n \to P_n$?
- 26. Покажите, что если линейный оператор $A: \mathbb{R}^n \to \mathbb{R}^n$ имеет n различных собственных значений, то любой оператор B, перестановочный с A, обладает базисом из собственных векторов.
- 27. Докажите, что равенство $|(x,y)| = ||x|| \cdot ||y||$ имеет место тогда и только тогда, когда векторы x,y линейно независимы.
- 28. Пусть R_1, R_2 подпространства евклидова пространства и $\dim R_1 < \dim R_2$. Покажите, что в R_2 найдётся ненулевой вектор, ортогональный подпространству R_1 .
- 29. Докажите, что для любых подпространств R_1, R_2 евклидова или унитарного пространства справедиливо равенство $R_1 + R_2)^{\perp} = R_1^{\perp} \cap R_2^{\perp}$
- 30. Докажите, что определитель матрицы Грама любой конечной линейно независимой системы векторов евклидова пространства положителен.