Data Structure: Graph

A spanning tree of G is a subgraph of G that is a tree containing every vertex of G

spanning tree of G

Minimum spanning tree (MST)

A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges

spanning tree of G weight:77

minimum spanning tree of G weight:72

spanning tree of G weight:73

Minimum spanning tree (MST)

- given a connected, undirected graph G = (V, E), a spanning tree is an acyclic subset of edges $T \subseteq E$ that connects all vertices together.
- a common problem in communication networks and circuit design
- the cost of a spanning tree T is $w(T) = \sum_{(u,v) \in T} w(u,v)$
- a minimum spanning tree is the one with minimum cost
- the idea of finding MST (greedy approach)
 - start with an empty graph
 - add edges (with the smallest cost at each step) one at a time
- several algorithms depending on how to choose edges to add
 - Prim's algorithm
 - Kruskal's algorithm

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0				
b	∞	4 (a)			
С	8	8 (a)			
d	8	∞			
е	∞	∞			
f	∞	∞			
g	∞	∞			

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0				
b	∞	4 (a)			
С	∞	8 (a)	8 (a)		
d	∞	8	8(b)		
е	∞	∞	10 (b)		
f	∞	∞	8		
g	∞	∞	∞		

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0					
b	8	4 (a)				
С	8	8 (a)	8 (a)	2(d)		
d	8	∞	8(b)			
е	8	∞	10 (b)	7 (d)		
f	8	∞	∞	9(d)		
g	∞	∞	∞	∞		

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0					
b	8	4 (a)				
С	8	8 (a)	8 (a)	2(d)		
d	8	∞	8(b)			
е	8	∞	10 (b)	7 (d)	7(d)	
f	8	∞	8	9(d)	l (c)	
g	∞	∞	∞	∞	∞	

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0						
b	8	4 (a)					
С	8	8 (a)	8 (a)	2(d)			
d	8	∞	8(b)				
е	8	∞	10 (b)	7 (d)	7(d)	5(f)	
f	8	∞	8	9(d)	I(c)		
g	∞	∞	∞	∞	∞	2(f)	

- similar to Dijkstra's algorithm (finding the shortest path)
- for each v in Adj[u] /* in Dijkstra's algorithm $d[v] = \min(d[v], \ w(u, v))$ /* $d[v] = \min(d[v], \ d[u] + w(u, v)) */$

a	0						
b	8	4 (a)					
С	8	8 (a)	8 (a)	2(d)			
d	8	∞	8(b)				
е	8	∞	10 (b)	7 (d)	7(d)	5(f)	5(f)
f	8	∞	8	9(d)	l (c)		
g	∞	∞	∞	∞	∞	2(f)	

```
Prim (G, w, r) {
  for each u in V {
      key[u] = infinite; color[u] = W;
  key[r] = 0;
  pred[r] = NIL;
  Q = MakePriorityQueue(V);
  While( Q is nonempty) {
     u = deleteMin(Q);
     for each (v is adjacent u){
         if ( (color[v] == W \&\& w[u,v] < key[v]){
            key[v] = w[u, v];
            pred[v] = u;
             Decrease_Priority(Q, v);
     color[u] = B;
```

Minimum spanning tree: Kruskal's algorithm

cf		0
cd	2	0
fg	2	0
ab	4	0
ef	5	0
eg	6	
de	7	
bd	8	0
ac	8	
df	9	
bc	9	
be	10	

Minimum spanning tree: Kruskal's algorithm

```
Kruskal (G = (V, E))
MST = \{\};
for each v in V
                                                                                O(n)
   Create_Set({v});
Sort the edges of E in increasing order of weights;
                                                                               O(e log e)
                                                                               O(e log n)
for each edge (u, v) in E in weight order do
  if (Find(u) != Find(v) ) THEN
    MST = MST + \{(u, v)\};
    Union(Find(u), Find(v));
since G is connected, we have n-1 \le e \le n^2, thus (\log e) = \Theta(\log n)
the total running time is
  T(n, e) = O(n) + O(e \log e) + O(e \log n) = O(e \log n)
```