Derivative Review

- Machine learning uses derivatives in optimization problems.
- Optimization algorithms like *gradient descent* use derivates to actually decide whether to increase or decrease the weights in Neural Networks in order to increase or decrease any objective function.

Power Rule

- It helps find the derivative of a variable raised to a power
- If $f(x) = x^n$, then $\frac{\partial f(x)}{\partial x} = nx^{n-1}$

Chain Rule

- It is used to compute the derivative of composite functions
- $\bullet \quad \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} * \frac{\partial y}{\partial x}$
- If $y = x^2$ and $x = z^2$, $\frac{\partial y}{\partial x} = 2x$ and $\frac{\partial x}{\partial z} = 2z$, hence $\frac{\partial y}{\partial z} = 2x^*2z$
- If we have a function such that $f(x,y) = x^4 + y^7$, the partial derivative with respect to x will be $\frac{\partial f}{\partial x} = 4x^3 + 0$. If we treat y as a constant and compute the partial derivative of the function with respect to y, we have $\frac{\partial f}{\partial y} = 0 + 7y^6$

Gradient Descent

1. Let say the cost function is

$$J_{m,b} = \frac{1}{N} \sum_{i=1}^{N} (Error_i)^2$$

2. If we are focusing on each error one at a time, then

$$\frac{\partial J}{\partial m} = 2.\, Error. \frac{\partial}{\partial m}\, Error$$

$$\frac{\partial J}{\partial b} = 2 \cdot Error. \frac{\partial}{\partial b} Error$$

3. If we calculate the gradient of error with respect to both m and b then

4. If we plug the values back in the cost function and multiply it with the learning rate:

$$\frac{\partial J}{\partial b} = 2$$
. Error * Learning Rate

5. For the gradient descent, there are two key equations:

$$\frac{\partial J}{\partial m} = \text{ Error} * X * \text{ Learning Rate} \qquad \qquad \frac{\partial J}{\partial b} = \text{ Error} * \text{ Learning Rate}$$

$$Since \ m = m - \delta m \qquad \qquad Since \ b = b - \delta b$$

$$\boxed{m^1 = m^0 - \text{ Error} * X * \text{ Learning Rate}} \qquad b^1 = b^0 - \text{ Error} * \text{ Learning Rate}$$

 m^1,b^1 = next position parameters; m^0,b^0 = current position parameters.

- To solve the gradient descent:
 - Iterate through the data points using the new values of m and b
 - Compute the partial derivatives.
- The new gradient indicates the slope of the cost function at a present position and the direction of update.
- The learning rate controls the magnitude of the update.

CALCULUS DERIVATIVES AND LIMITS

DERIVATIVE DEFINITION

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

BASIC PROPERTIES

$$\begin{split} &\left(cf(x)\right)'=c\left(f'(x)\right)\\ &\left(f(x)\pm g(x)\right)'=f'(x)\pm g'(x)\\ &\frac{d}{dx}(c)=0 \end{split}$$

MEAN VALUE THEOREM

If f is differentiable on the interval (a,b) and continuous at the end points there exists a c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

PRODUCT RULE

$$\left(f(x)g(x)\right)'=f(x)'g(x)+f(x)g(x)'$$

QUOTIENT RULE

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

CHAIN RULE

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

COMMON DERIVATIVES

$$\begin{aligned} \frac{d}{dx}(x) &= 1 \\ \frac{d}{dx}(\sin x) &= \cos x \\ \frac{d}{dx}(\cos x) &= -\sin x \\ \frac{d}{dx}(\cos x) &= -\sin x \\ \frac{d}{dx}(\tan x) &= \sec^2 x \\ \frac{d}{dx}(\sec x) &= -\csc x \cot x \\ \frac{d}{dx}(\csc x) &= -\csc x \cot x \\ \frac{d}{dx}(\cos x) &= -\csc^2 x \\ \frac{d}{dx}(\sin^{-1}x) &= \frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx}(\cos^{-1}x) &= -\frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx}(\tan^{-1}x) &= \frac{1}{1+x^2} \\ \frac{d}{dx}(a^x) &= a^x \ln(a) \\ \frac{d}{dx}(e^x) &= e^x \\ \frac{d}{dx}(\ln|x|) &= \frac{1}{x} \\ \frac{d}{dx}(\log_a(x)) &= \frac{1}{x \ln(a)} \end{aligned}$$

CHAIN RULE AND OTHER EXAMPLES

$$\begin{split} &\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x) \\ &\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)} \\ &\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)} \\ &\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)] \\ &\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)] \\ &\frac{d}{dx}(\tan[f(x)]) = f'(x)\sec^2[f(x)] \\ &\frac{d}{dx}(\sec[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)] \\ &\frac{d}{dx}(\tan^{-1}[f(x)]) = \frac{f'(x)}{1 + [f(x)]^2} \\ &\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)} \left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right) \end{split}$$

PROPERTIES OF LIMITS

These properties require that the limit of f(x) and g(x) exist $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$

$$\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} \frac{f(x)}{g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to \infty} [f(x)]^n = \left[\lim_{x \to \infty} f(x)\right]^n$$

LIMIT EVALUATION METHOD - FACTOR AND CANCEL

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'SRULE

If
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

eCalc com

The Best Online Calculator

- Unit Converter
- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

LIMIT EVALUATIONS AT +-∞

$$\lim_{x\to\infty} e^x = \infty \text{ and } \lim_{x\to\infty} e^x = 0$$

$$\lim_{x\to\infty} \ln(x) = \infty \text{ and } \lim_{x\to0^+} \ln(x) = -\infty$$
If $r > 0$ then $\lim_{x\to\infty} \frac{c}{r^r} = 0$

If
$$r > 0 & x^r$$
 is real for $x < 0$ then $\lim_{x \to \infty} \frac{c}{x^r} = 0$

$$\lim_{r \to +\infty} x^r = \infty \text{ for even } r$$

$$\lim_{n \to \infty} x^r = \infty \text{ \& } \lim_{n \to \infty} x^r = -\infty \text{ for odd } r$$

eCalc.com

The Best Source for Math Help Reference Sheets

eCalc.com

Review of the Indefinite Integral

The function F(x) is called an antiderivative of f(x) if F'(x) = f(x).

EX: $F(x) = 2x^{t}$ is an antiderivative of $f(x) = 6x^{t}$ because $\frac{d}{dt}(2x^{t}) = 6x^{t}$. Similarly, $F(x) = 2x^{t} + 7$ is also an artiflerivative of $f(x) = 6x^{t}$ because $\frac{d}{dt}(2x^{t} + 7) = 6x^{t}$.

In general, if F(x) is an antiderivative of f(x), then F(x) + C, where C is a constant, is also an antiderivative of f(x). The symbol $\int f(x) dx$ is used to represent any antiderivative

The symbol $\int f(x) dx$ is used to represent any antiderivative of f(x). In this notation, f(x) is called the integrand. An antiderivative $\int f(x) dx$ is also called an indefinite integral.

Review of Integration

- . O dr = C, for some constant C
- . [1 dx = x + C
- . [k dx = kx + C, where k is a constant
- $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, for any cational number n, where $n \neq -1$
 - $\int_{-T}^{T} dx = \ln |x| + C$
 - $\int e^x dx = e^x + C$
- $\int e^{kx} dx = \frac{1}{k} e^{kx} + C$, where k is a constant
- $\left| \sin x \, dx = -\cos x + C \right|$
- $\int \cos x \, dx = \sin x + C$
- $\int \tan x \, dx = -\ln|\cos x| + C$
- $\iint [f(x) + g(x)] dx = \iint f(x) dx + \iint g(x) dx$
- $\int [f(x) g(x)] dx = \int f(x) dx \int g(x) dx$
- $\int kf(x) dx = k \int f(x) dx$, where k is a constant

To perform integration by parts:

If u(x) and v(x) are functions, the product rule of differentiation yields $\frac{d}{dx}(uv) = uv' + vu'$. To use integration by parts, follow these steps to undo the product rule,

Step I: Factor the integrand into two parts, u and dr, so that the integral appears as $\int u \ dv$,

Step 2: Use differentiation to find du, and integrate dv to find v.

Step 3: Apply the rule fu dr = ur - fr du.

Step 4: Find | v olv to complete the integration.

To perform integration by substitution:

To find an integral of the form $\int f(g(x))g'(x) dx$, use substitution to undo the chain rule of differentiation.

Step 1: Set u = g(x), where g(x) is chosen so as to simplify the integrand.

Step 2: Substitute u = g(x) and du = g'(x) into the integrand. (NOTE: This step usually requires multiplying or dividing by a constant.)

Step 3: Integrate to find the antiderivative $\int f(u) du = F(u) + C.$

Step 4: Substitute u = g(x) to rewrite the antiderivative in the form F(g(x)) + C.

Basic Definitions

A differential equation is an equation involving an unknown function and one or more of its derivatives.

EX: The following equations are differential equations.

- ·y 2x+y+3
- · dy -2y=e'
- $+ -2\frac{d^3y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 5xy$
- · 3'u = 3'u

Solutions of a Differential Equation

- A solution of a differential equation is a function such that the derivatives of the function, the independent variables, and the dependent variable all satisfy the original equation. A differential equation can have one unique solution, no solution, or infinitely many solutions.
- In an explicit solution, the dependent variable can be expressed solely in terms of the independent variable and constants.

 $EX(y = xe^x)$ is in the form of an explicit solution.

- In an implicit solution, the dependent variable is not expressed solely in terms of the independent variable and constants. The solution function is an implicit function.
- EX: $x^2 + y^2 25 = 0$ is in the form of an implicit solution.
- The trivial solution is the function y = 0.
- A general solution of a differential equation is a function that contains arbitrary constants.
 EX; y = √e-x² is in the form of a general solution, where c is a constant.
- A particular solution of a differential equation is a function that is free of all arbitrary constants.
 EX: y = √16-x² is in the form of a particular solution.

Verifying a Solution of a Differential Equation

You can verify that a function is a solution of a differential equation by substituting the function and its derivatives into the equation and confirming that the result is an identity.

EX: Verify that the function $y = \sqrt{16 - x^2}$ is a solution of the differential equation $\frac{df_c}{dx} + \frac{x}{y} = 0$.

- a. $\frac{dy}{dt} + \frac{x}{dt} = 0$ Original differential equation
- b. $\frac{db}{dt} = \frac{1}{2} (16 x^2)^{-\frac{1}{2}} (-2x) = \frac{-x}{\sqrt{16 x^2}}$ This is

the derivative of the given solution function.

c. $\frac{-x}{\sqrt{16-x^2}} + \frac{x}{\sqrt{16-x^2}} = 0$ Substitute s, y, and y' into the equation $\frac{dy}{dx} + \frac{x}{y} = 0$.

d 0 = 0 Simplify

The result is the identity 0 = 0, so the function $y = \sqrt{16 - x^2}$ is a solution of the differential equation.

Classifying Differential Equations

Classification by Type

An ordinary differential equation (ODE) is an equation that contains only ordinary derivatives of one or more dependent variables.

EX: The following equations are ODEs.

- ·y' + 5y = -2x
- $\bullet \frac{d^2y}{dx^2} 4\frac{dy}{dx} + y = 0$
- $\cdot y^n + y' 8y = 0$

A partial differential equation (PDE) is an equation that contains the partial derivatives of one or more dependent variables with respect to two or more independent variables.

EX: The following equations are PDEs.

- $\frac{\partial^2 u}{\partial r^2} = 100 \frac{\partial^2 u}{\partial r^2}$
- $\frac{\partial u}{\partial x} = -0.25 \frac{\partial^2 u}{\partial x^2}$
- $+\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 2xy$

Classification by Order

The order of a differential equation is the order of the highest derivative in the equation.

EX:

- y' + 5y = -2x is a first-order differential equation.
- $\frac{d^2y}{dr^2} 4\frac{dy}{dr} + y = 0$ is a second-order ODE.
- $\frac{\partial w}{\partial r} = -0.25 \frac{\partial^2 w}{\partial x^2}$ is a second-order PDE.

Classification by Linearity

Assume that a differential equation can be written in the form $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$, where $y^{(n)}$ is the highest-order derivative and f is a function of the independent variable, dependent variable, and lower-order derivatives.

A linear differential equation is an equation in which f is a linear function of y, y', y'', ..., y'''. That is, the differential equation can be written in the form $b_x(xy''' + b_{xy}(x)y'''' + ..., + b_x(x)y' + b_y(x)y = g(x)$.

- x'y" +sin(x)y = e' is linear because each coefficient of y or one of its derivatives is a function of x.
- $\frac{d^2y}{dr^2} 4\frac{dy}{dr} + y = 0$ is also linear.

If an equation contains functions of y such as e' or functions of the derivatives of y such as $\sin(y')$, then the differential equation is nonlinear.

EX:

- $\mathbf{y}^{n} + \mathbf{e}^{n}y^{n} + y^{n} = 2\mathbf{r}$ is nonlinear because the coefficient of \mathbf{y}^{n} is a function of \mathbf{y} .
- $+\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + xy = 0$ is nonlinear because the power of $\frac{dy}{dx}$ is not 1.
- (5y)y" + (1 x)y' + y = 10x is nonlinear because the coefficient of y" depends on y.

Sources: Toward Science, eCalc.com, BarCharts, Inc. For class use only.