

Karin Kruuse

Reid Ferguson, Daniele Vetrungo, Guido Müller

Outline of the Talk

- LISA interferometry
- About previous LISA simulators
- Overview of our proposed LISA testbed
 - Its purpose and goals
 - Status of the current purely electronic testbed
 - Putting together an optical input

The Satellites

Three satellites surrounding six test masses in free fall

Each satellite houses two lasers, two optical benches and a phasemeter.

Each optical bench houses three interferometers.

The test mass to test mass distances are measured in three parts – this is the so-called split interferometry used in LISA.

Internals of a LISA Spacecraft

LISA interferometric metrology system

Internals of a LISA Spacecraft

LISA interferometric metrology system

Solution: Time Delay Interferometry

Time Delay Interferometry (TDI) is a cluster of methods to construct virtual equal arms in post-processing.

Hartwig, 2021

Solution: Time Delay Interferometry

Time Delay Interferometry (TDI) is a cluster of methods to construct virtual equal arms in post-processing.

0th generation TDI X combination, equal unchanging arm lengths

In practice, 2nd generation combinations should suppress noise enough to meet the requirement.

Solution: The Sidebands

Lisa metrology system-final report, 2014

Previous Experiments

Mitryk, 2012: Laser Noise Mitigation through Time Delay Interferometry for Space-based Gravitational Wave Interferometers Using the UF Laser Interferometer

Laser noise, No Clock Jitter, Realistic Delay

De Vine et al., 2010: Experimental Demonstration of Time-Delay Interferometry for LISA, JPL

Laser noise, Clock jitter, No delay

Vidal, 2023: Validation expérimentale des performances interférométriques de LISA, Paris

Laser noise, Clock Jitter, Delay

MiniLISA

MiniLISA is a hardware testbed that aims to simulate LISA's signal chain and test whether we can recover a gravitational wave signal from a realistic, noisy system.

To start with, we want to test the combination of second generation TDI and the clock noise removal post-processing methods on experimental data.

MiniLISA could also offer a substitute to modelled noise sources included in current data analysis.

Current Status

A fully electronic implementation of the interferometry system together with a delay and gravitational wave injection has already been developed and is being tested.

- Time varying delays
- Doppler shifts for both the carrier and sidebands
- Gravitational wave injection

The Delay Line

The center of the experiment is the delay line.

The added varying delays, gravitational wave signals and Doppler shifts are controllable via a Python-based interface.

AMD Zynq™ UltraScale+™ RFSoC ZCU208 Evaluation Kit

Signal Processing on the Delay Line

The evaluation board includes enough to take in two photodetector readings and output the corresponding LISA-like beatnote as an electrical signal.

Figure 3: Block diagram of Doppler- and GW-derived phase modulation of the carrier after the delay.

Credit: Reid Ferguson

Delay Line Noise Measurement

FIG. 6: Block diagram of single delay line performance test, including clocking effects.

Credit: Reid Ferguson

Phase Measurement with an Optical Input

Set up for generating one LISA-like science interferometer readout.

Phase Measurement with an Optical Input

Set up for generating one LISA-like science interferometer readout.

Phase Measurement with an Optical Input

Set up for generating one LISA-like arm link.

The Phasemeters

Red Pitaya running LISA gateware

Not space-qualified, but enables MHz phase readout

ADC is noisier than LISA's frontend, but pilot tone

correction helps

Each board has two inputs and two outputs.

Two-arm Testbed

Reference Oscillator

20

Two-arm Testbed

Possible Additions

- More true-to-LISA clock noise transfer
 - Needs some more studying
- Third arm link
 - Needs frequency planning
- Test mass acceleration noise

