GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2024

Subject Code:3154102 Date:17-12-2024

Subject Name:Principles of Robotics

Time:10:30 AM TO 01:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	Define linear and angular velocities in the context of robotic manipulators.	03
	(b)	Briefly describe the history and evolution of robotics.	04
	(c)	How are robots classified based on their applications and capabilities?	07
Q.2	(a)	What is forward kinematics and where it can be applied?	03
	(b)	I I	04
	(c)	Explain the various industrial application of robots. OR	07
	(c)	Demonstrate the robot cell construction and its working principle	07
Q.3	(a)	Explain the concept of homogeneous transformation and its role in robotic kinematics.	03
	(b)	Explain the concept of degrees of freedom (DOF) in robots and its significance in robot design.	04
	(c)	How are Denavit-Hartenberg (D-H) parameters used to represent robotic joints and linkages?	07
		OR	
Q.3	(a)	What are the various types of joints used in robots, and how do they impact the robot's motion?	03
	(b)	Explain the concept of solvability in inverse kinematics and how it affects robotic systems.	04
	(c)	What are SCARA robots? Draw a neat sketch and explain how are they different from other robot configurations?	07
Q.4	(a)	What is Cartesian space technique?	03
	(b)		04
	(c)	Explain use of p-degree polynomial as interpolation function. OR	07
Q.4	(a)	What are the key parameters involved in joint space path planning?	03
	(b)	Explain how cubic polynomials are used in joint space trajectory planning.	04
	(c)	Discuss in detail about the position and orientation planning.	07
Q.5	(a)	What is the manipulator control problem?	03
	(b) (c)	What is the significance of static analysis in robotic manipulators? Explain the PID control scheme and its application in controlling robotic manipulators.	04 07

Q.5	(a)	Define 'Lagrange function'.	03
	(b)	What is the Jacobian matrix in robotics, and why is it important?	04
	(c)	Explain the following.	07
	` ′	1. Lagrange Euler formulation.	
		2. Force control of robotic manipulator.	
