$$W(P) = \sum_{(v_i, v_j)} w_{ij}$$

又若 p^* 是D图中从 v_s 到 v_t 的一条路,且满足

$$w(p^*) = \min \{ w(p) | p \not \partial v_s \mathfrak{I} v_t \mathfrak{o} \mathfrak{B} \}$$

式中对D的所有从 v_s 到 v_t 的路p取最小,则称 p^* 为从 v_s 到 v_t 的最短路, $w(p^*)$ 为从 v_s 到 v_t 的最短距离。记为 $d(v_i,v_j)$ 。在一个图D=(V,A)中,求从 v_s 到 v_t 的最短路和最短距离的问题就称为最短路问题。

这里说的"距离只是权数"的代称,在实际的网络图中,权数也可以 是时间、费用等等;

2、求最短路有两种算法:

一是求从某一点至其他各点之间最短距离的狄克斯屈拉(Dijkstra)算法;

另一种是求网络图上**任意两点之间最短距离**的矩阵算法福德(Ford) 算法:

3、Dijkstra 算法实际上也给出了寻求从一个始定点 v_s 到任意一个点 v_j 的最短路。目前认为,在所有权 $w_{ij} \geq 0$ 时,这个算法是寻求最短路问题最好的算法。

Dijkstra 算法基于的事实:如果P是D中从 v_s 到 v_j 的最短路, v_i 是P中的一点,那么从 v_s 沿P到 v_i 路也是从 v_s 到 v_i 的最短路。

- 4、Dijkstra 算法的基本思路:
 - (1) 求从图的一点到其它各点之间最短路
 - (2) 从始点出发,逐步顺序地向外探寻
 - (3) 每向外延伸一步都要求是最短的

Dijkstra 算法的标号说明:

- (1)用 d_{ij} 表示图中两相邻点i与j的距离,若i与j不相邻,令 $d_{ij}=\infty$,显然 $d_{ii}=0$
- (2)用 L_{si} 表示从s点到i点的最短距离,标注于i点旁,并称i点为标号点。
- (3) 当有中间点k时, $L_{si} = L_{sk} + d_{ki}$
- (4) 标号的点表示已找到它与始点之间的最短路

5、Dijkstra 算法例题

- 1. 从点 s 出发, 因 Lss=0,将此值标注在 s 旁,表示 s 点已标号;
- 2. 从 s 点出发, 找出与 s 相邻的点中距离最小的一个, 设为 r。将 Lsr=Lss+dsr 的值标注在 r 旁, 表明点 r 也已标号; 此为有向图, 注意不可逆向

3. 已标号的点出发,找出与这些点相邻的所有未标号点 p。若有 Lsp=min {Lss+dsp, Lsr+drp},则对 p点标号,并将 Lsp 的值标注在 p点旁

4. 重复第 3 步, 一直到 t 点得到标号为止

1到8的最短路径为{1,4,7,5,8},长度为10,1到所有点的最短路机器距离都以求出并标出。

6、Dijkstra 算法局限性

Dijkstra 算法仅适用于所有的权 $w_{ij} \geq 0$ 的情形,如果当赋权有向图中存在负权弧时,则该算法失效。例如下图中,

根据 Dijkstra 算法,可以得到从 v_1 到 v_2 最短路的权是 1,但是这显然不对,因为从 v_1 到 v_2 的最短路是 (v_1,v_3,v_2) ,权是-1

另外, Dijkstra 算法只能用来求解从某一点至其它各点之间最短距离, 而不能用来求解网络图上任意两点间的最短距离。

7、最短路的 Floyd (弗洛伊德) 算法

Floyd 算法时更一般的算法, 该算法是一种矩阵(表格)迭代的方法, 对于求任意两点间的最短路, 混合最短路, 有赋权图的最短路等一般网络问题来说比较有效。

下面给出有负权数的,但无负回路的有向(或无向)网络的最短路问题的方法:

首先,设从任一点 v_i 到任一点 v_j 都有一条弧,如果在图 D 中,(v_i,v_j) 不是弧,则添加弧 (v_i,v_j),并且令 $w_{ij}=+\infty$. 很明显,从 v_s 到 v_j 的最短路是从 v_s 点出发,沿着这条路到某个点 v_i 的再沿弧(v_i,v_j)到点 v_j 。显然,从 v_s 到 v_i 的这条路必定是从 v_s 到 v_i 的最短路。否则从 v_s 到 v_j 的这条路将不是最短路。于是,从 v_s 到 v_j 的距离 $d(v_s,v_j)$ 满足以下条件: $d(v_s,v_j)=\min\{d(v_s,v_i)+w_{ij}\}$,i=1,...,p,p=p(D)

8、Floyd(弗洛伊德)算法例题

在其中一定要注意从\至关系

$$w * d_1 = \begin{bmatrix} 0 & 3 & 2 & \infty & \infty & 4 \\ \infty & 0 & 4 & \infty & 4 & 1 \\ \infty & \infty & \infty & 0 & -1 & 6 & \infty \\ 3 & -2 & \infty & 0 & 1 & \infty \\ 5 & \infty & \infty & \infty & 0 & 3 \\ \infty & \infty & 3 & 3 & \infty & 0 \end{bmatrix} * \begin{bmatrix} 4 \\ 1 \\ \infty \\ \infty \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 \\ 1 \\ 9 \\ -1 \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 \\ 1 \\ -2 \\ -1 \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \\ -2 \\ -1 \\ 3 \\ 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 0\\1\\-2\\-1\\3\\0 \end{bmatrix} \rightarrow \begin{bmatrix} 0\\1\\-2\\-1\\3\\0 \end{bmatrix}$$

根据下式:

$$w*d_1 = \begin{bmatrix} 0 & 3 & 2 & \infty & \infty & 4 \\ \infty & 0 & 4 & \infty & 4 & 1 \\ \infty & \infty & 0 & -1 & 6 & \infty \\ 3 & -2 & \infty & 0 & 1 & \infty \\ 5 & \infty & \infty & \infty & 0 & 3 \\ \infty & \infty & 3 & 3 & \infty & 0 \end{bmatrix} * \begin{bmatrix} 4 \\ 1 \\ \infty \\ \infty \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \\ -2 \\ -1 \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \\ -2 \\ -1 \\ 3 \\ 0 \end{bmatrix} \text{ how }$$

最短路: 按W阵中画圈元素的从\至关系:

$$v_1 \to v_3 \to v_4 \to v_2 \to v_6$$
 2-1-2+1=0

$$v_2 \rightarrow v_6$$

$$v_3 \rightarrow v_4 \rightarrow v_2 \rightarrow v_6$$

$$v_4 \rightarrow v_2 \rightarrow v_6$$

$$v_5 \to v_6$$

$$v_6 \rightarrow v_6$$

求 "某点至" 各点的最短路

$$l_1^T * W = (0 \ 3 \ 2 \ \infty \ \infty \ 4) *$$
 $\rightarrow l_2^T = (0 \ 3 \ 2 \ 1 \ 7 \ 4)$
 $\rightarrow l_3^T = (0 \ -1 \ 2 \ 1 \ 2 \ 4)$
 $\rightarrow l_4^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1 \ 2 \ 0)$
 $\rightarrow l_5^T = (0 \ -1 \ 2 \ 1$

10、记矩阵 $D_k = (d_{ij}^{(k)})_{n \times n}$,当k = 1时,令 $D_1 = (d_{ij}^{(1)})_{n \times n} = (w_{ij})_{n \times n} = w$,定义 $D_k = D_{k-1} * D_{k-1}, k = 2,3,...,p$,其中 $d_{ij}^{(k)} = \min\{d_{is}^{(k-1)} + d_{sj}^{(k-1)}\}, i,j = 1,2,...,n$ 若 $w_{ij} \geq 0, i,j = 1,2,...,n$,则关于p值有下述估式: $2^{p-1} \leq n-1 \leq 2^p$,则 $p \geq \frac{\lg(n-1)}{\lg 2} \geq p-1$,也可以计算到 $D_k = D_{k-1}, k = 2,3,...$ 时停止计算。

11、网络规划解决设备更新问题

各年初购价								
年度 i 1 2 3 4 5								
年初购价p _i	13	13 14 16		19 24				
各年维护费								
使用年数 k	1	2	3	4	5			
第k年维护费ck	8	10	13	18	27			

解:设以

 v_i 表示第 i 年初这一状态, i=1,2,…,5

ν6表示第5年末这一状态

 (v_i, v_j) 第 i 年初购置的一台新设备一直使用到第 j 年初这一方案 w_{ij} 方案 (v_i, v_j) 的费用

则

$$w_{ij} = p_i + \sum_{k=1}^{j-i} c_k$$

累积维护费								
使用年数 j-i	1.1	2	3	4	5			
第年维护费ck	8	10	13	18	27			
累积维护费Σck	8	18	31	49	76			

12、网络的中心和重心

(1) 网络的中心

设 $D=(d_{ij})$ 为 网 络 各 点 间 最 短 距 离 矩 阵 。 令 $d(v_i)=\max\{d_{ij}\}, i=1,2,...,n$ $1\leq j\leq n$,若 $\min\{d(v_i)\}=d(v_k)$,则 v_k 称为网络的中心.

(2) 网络的重心

设 g_i 为点 v_i 的权重 $(i=1,2,\cdots,n)$,令 $h(v_i)=\sum_{i=1}^n g_i\,d_{ij},j=1,2,\ldots,n$,若 $\min\{h(v_i)\}=h(v_r)$,则称 v_r 为网络的重心

例:某地7个村镇之间的现有交通道路如图所示,边旁数字为各村镇之间道路的长度。现要沿交通道路架设电话线,使各村之间均能通话。应如何架线使费用最省?

- (1) 商店应建在何村, 能使各村都离它较近?
- (2) 小学应建在何村, 能使各村小学生到校总里程最小?

村 镇	1	2	3	4	5	6	7
小学生人数	40	25	45	30	20	25	50

(1) 商店应建在1/4村(中心)

$\upsilon_{\rm j}$	$D=(d_{ij})$							$d(v_i)=\max\{d_{ij}\}$	
v_i	1	2	3	4	5	6	7		
1	0	3	4	5	7	8	10	10	
2	3	0	3	2	4	5	7	7	
3	4	3	0	5	5	6	8	8	
4	5	2	5	0	2	3	5	5 min	
5	7	4	5	2	0	1	3	7	
6	8	5	6	3	1	0	2	8	
7	10	7	8	5	3	2	0	10	

(2) 小学应建在v5村(重心)

$\upsilon_{\rm j}$	$\mathbf{g_i} \times \mathbf{d_{ij}}$									
v_i	1	2	3	4	5	6	7			
40 1	0 0	3120	4 160	5200	7280	8320	10 400			
25 2	3 75	0 0	3 75	250	41 00	5125	7 175			
45 3	4 180	3135	00	225	5225	6 270	8 360			
30 4	5 150	2 60	5 150	0 0	2 60	3 90	5 150			
20 5	7 140	4 80	5 100	240	0 0	120	3 60			
35 6	8 280	5 175	6210	3105	1 35	0 0	2 70			
50 7	10 500	7350	8400	5250	3 150	2100	0 0			
$\mathbf{h}(\mathbf{v_j})$	1325	920	1095	870	850	925	1215			