Universidade do Vale do Itajaí Escola do Mar, Ciência e Tecnologia Engenharia de Computação

Introdução ao Processamento Digital de Imagens

LEDS - Laboratory of Embedded and Distributed Systems

Agenda

- Fisiologia do olho humano
- Tratamento digitais de imagens
- Modelo de adequação
- Operações nos diferentes domínios

Imagem x Olho Humano:

- Sinal Bidimensional
- Interpretação
- Retina x Cérebro

Características:

- Representação Digital
- Discretização através de uma matriz de ponto
- Representação das Cores
- Estrutura de Dados para Armazenamento

- 1º passo: como o olho percebe sinais?
- Percebidos pelo olho humano através da retina:
 - 125 Milhões de células fotorreceptoras
 - Dividida em cones e bastonetes:
 - Bastonetes: sensíveis à luminosidade (preto e branco)
 - Cones: Sensíveis à cor:
 - Vermelho (R)
 - Verde (G)
 - Azul (B)
 - Organizada em Campos Receptivos

Cones e Bastonetes

Bastonetes

- Sensíveis a luz fraca, mas monocromática e não pode enxergar cores
- Responsáveis pela visão noturna
- Informação recebida dos bastonetes é chamada de luminância

Cones

- Sensíveis a altos níveis de iluminação
- Responde pela visão diurna
- Distinção de cores e detalhes
- Informação recebida pelos Cones é chamada de crominância

Cones e Bastonetes

Cones

- Para realizar a visão a cores, o cérebro combina informações de luz incidindo em regiões próximas na retina:
 - Sinais de intensidade luminosa
 - Sinais de cores (menos bem definidos):

A estrutura do olho humano

Tratamento digital de imagens

- Representação dos Pontos
 - Matriz de Pontos
 - Cada elemento é um Pixel da Imagem
- Representação de Cores (2 tipos)
 - Tabela de Cores
 - Uma tabela possui valores de intensidade RGB
 - Valor na Matriz de Pontos é um Índice para a Tabela
 - TrueColor
 - Cada ponto na Matriz é representado por três valores R, G e B (ou mais comprimentos)
 - Preto e Branco ou Tons de Cinza
 - Não há tabela de cores. Cada ponto da Matriz é uma Intensidade Luminosa

- Uso de diferentes sensores permite capturar quase todo o espectro EM
 - De ondas de rádio a raios-X e gama

- Divisão em pré-processamento, nível médio e nível alto
- Há diferentes tipos de sensor que influenciam na amostragem e quantização

64x64 pixels

16x16 pixels

4 bits

3 bits

1 bits

SENSOR CCD

É o primeiro sensor no mercado. É baseada na conversão espontânea de luz em corrente eléctrica. Essa corrente elétrica ou número de eletrões é proporcional à quantidade de luz recebida e é expressa em pixels.

Os pixels do CCD registram uma gradação das três cores de base RGB (vermelho, verde, azul), de modo que tenha um sensor para cada um deles.

SENSOR CMOS

É um sensor formado por numerosos elementos que captam a luz, proporcionando uma corrente elétrica que varia dependendo da intensidade da luz recebida. Ao contrário do CCD, usa o mesmo sensor para as três cores sem precisar de um sistema eletrónico externo que aumente seu custo.

- CMOS processa a imagem pelo método "rolling shutter", capta cada linha a linha do sensor.
- o CCD capta a imagem através do método "global shutter", capta tudo de uma vez.

Veja uma imagem para exemplificar:

Tratamento de imagens

- Não existe algoritmo genérico de "Visão Computacional"
- Interpretação de Imagens realizada através de:
 - Conjunto de algoritmos (filtros) para imagens
 - Algoritmos são encadeados (pipeline)
 - Específicos para cada tarefa a ser realizada (enorme variação)
- Variação grande:
 - Conjunto de algoritmos a ser utilizado varia:
 - De acordo com a tarefa
 - De acordo com as características da imagem

Tratamento de imagens

- Divisão em pré-processamento, nível médio e nível alto
- Preparação (Filtragem)
 - Ruído, Cores e Histograma
- Condicionamento (Segmentação)
 - Detecção de Bordas e Regiões
- Descrição (Processamento de Objetos)
 - Morfologia, Convolução, Esqueletonização, Descrição de Objetos
- Reconhecimento
 - Classificação de Objetos, Regiões e Texturas

Operações no domínio espacial – detecção de borda

Operações no domínio espacial – morfologia

Dilatação, erosão, abertura e fechamento

Esqueletonização

Operações no domínio da frequência

- Aplicação de transformada de Fourier ou Wavelets
- Detecção de doenças em plantas

Controle de qualidade

Operações no domínio da frequência

Filtros de frequência – aumento de detalhes (ex: finos)

