DC Power Systems MODBUS FOR PROTECT RCS SERIES SPRe/TPRe

Operation Manual

BN 09 2138/01/02 05.02.09

CONTENTS

1	COMMUN	ICATION AND PROTOCOLS	4
2	SPECIFIC	ATIONS	6
3	CUSTOME	ER COMMUNICATON PORT	7
0.4	N 4		_
3.1		US	
3.2	Modbi	US SPECIFICATION	8
	3.2.1		
	3.2.2	·	
	3.2.3	Modbus functions	g
	3.2.4	REGISTER LOCATIONS	
4	PROGRAM	MMING THE COMMUNICATION PARAMETERS	16
4.1	THE "(COMMUNICATION" SETUP GROUP	16
		THE "SLAVE NUMBER" CONFIGURATION OPTION (COMMUNICATION)	
		THE "PROTOCOL CONFIGURATION" OPTION (COMMUNICATION)	
		THE "BAUDRATE" CONFIGURATION OPTION (COMMUNICATION)	
		THE "HARDWARE CONFIGURATION" OPTION (COMMUNICATION)	
		THE "FORMAT" CONFIGURATION SETTING (COMMUNICATION)	
4 2		VING THE PROGRAM MODE	

1 COMMUNICATION AND PROTOCOLS

The Protect RCS has a communication feature allowing the customer to dialog with one or more systems. These connections can be point to point, as in EIA232, or multidrop configuration as in EIA485.

• Glossary:

ASCII: American Standard Code for Information Interchange

CRC: Cyclic Redundancy Check CR: Carriage Return (ASCII 13)

EIA: Electronics Industries Association – recommendation body

GCAU: Generic Control and Alarm Unit

I/O: Inputs / outputs LF: Line Feed (ASCII 10)

LRC: Longitudinal Redundancy Check

LSB: Least Significant Byte MSB: Most Significant Byte NRC: Network Report Controller

RTU: Remote Terminal Unit protocol, a compact binary message format used in Modbus

RS: Recommended Standard. Not used and replaced by EIA since mid nineties

SCADA: Supervisory Control And Data Acquisition

SPG: SPS Protocol for the GCAU i.e. AEG Protocol for the GCAU NRC

TBA: to be advised.

Numeric quantities are expressed in decimal. When expression is needed in a binary form a small b is appended (e.g. 1011 0111b for decimal 183) and 0x precedes an hexadecimal quantity (e.g. 0x1fff for decimal 8,191).

Note: Modbus, simply referred to as simply Modbus in this document, was a registered trademark of 'Schneider Automation'. Since April 2004, it is a trademark of the Modbus-IDA organization (http://www.modbus-ida.org). This organization made this standard publicly available ever since.

• Reference Document:

Modicon *Modbus Protocol Reference Guide PI-MBUS-300 Rev. J – June 1996* Availabe as a PDF here: http://www.modbus-ida.org/docs/PI_MBUS_300.pdf also here: http:// www.modbustools.com/PI_MBUS_300.pdf

• Physical Layers:

. Serial EIA232 or EIA485 Customer port.

Supported Protocols:

- . Modbus™ RTU and ASCII.
- . AEG Maintenance Protocol also referred to as SPG.

When your system is equipped with the serial communication option, you can integrate your systems in a SCADA system or you can use our advanced remote control software (Winsparc, WinSite).

BN 09 2138/01/02

The option comes as a piggy-back board which is connected to the extension bus of the control card.

Note:

Do not attempt to connect or remove this card when the system is powered up. This can cause electrical shock. It can damage the control card and result in losing your system performance.

If an upgrade is necessary this must be carried out by qualified persons experienced with the system.

The communication ports are fully isolated from the chargers output and/or internal voltages.

Through the programming mode of the system, the user can change the communication parameters such as baudrate, slave number etc. if required.

2 SPECIFICATIONS

Hardware : EIA232 or EIA485

Speed : 1,200 – 38,400 Baud

Protocol : Modbus ASCII or RTU

SPG (AEG Maintenance protocol)

Communication mode : Half (2-wire) or full duplex (4-wire)

Isolation: 1500Vdc

Full (1-2) or Half duplex (2-3) jumper

Pin 1 EIA232 (J2)

J3 EIA485 Plug – RJ6/6					
Pin	Function				
1	RX+				
2	RX-				
3	TX-				
4	TX+				
5	Bias – (1K to Gnd)				
6	Bias + (1K to +5V)				

J2 EIA232 Plug – RJ8/8				
Pin	Function			
1	NC			
2	NC			
3	NC			
4	Signal Ground			
5	RxD			
6	TxD			
7	CTS			
8	RTS			

Note: J2 pinout is compatible with EIA-561 specification and also with standard RJ-DE9 cords used with other AEG Power Systems controllers such as ACM1000, ACM1D, NRC30, NRC50.

3 CUSTOMER COMMUNICATON PORT

The Customer communication port is an add-on card with EIAS232 and EIA485 hardware. The ports are isolated from the chargers output.

Two protocols are supported on this port: Modbus and our Maintenance protocol (SPG).

The selection of the protocol is configurable. A dynamic protocol switch can be selected. Then, the stream of incoming data will be analyzed. Whether it is an SPG or ASCII Modbus message, it will be answered accordingly.

3.1 <u>Modbus</u>

This port is used to interface the charger with the customer SCADA system.

The Customer serial port will be a software controlled isolated EIA232 or EIA485. The standard communication protocol used will be MODBUS.

The following data and commands can be retrieved using Modbus:

- ✓ All analogue measurements
- ✓ Charge status
- ✓ Remaining charge time
- ✓ Active Alarms
- ✓ Alarm list
- ✓ History list
- ✓ Date/time
- ✓ Reset alarms
- ✓ Commissioning charge
- ✓ Highrate charge
- ✓ Floating charge
- ✓ Battery test on/off
- ✓ Clear History
- ✓ Stop/Start

Mapping of above data is given later on in this document.

3.2 MODBUS Specification

3.2.1 Modbus Format (RTU or ASCII)

The Modbus protocol can operate in RTU or ASCII mode. The following example shows both formats. The example shows the Read Holding Registers 40,108 - 40,110 addressed to slave equipment #06. The messages for RTU or ASCII will look as follows:

Query Message	RTU	ASCII	
Header	(none)	: (colon)	
Slave address	0000 0110b	0	6
Function	0000 0011b	0	3
Starting	0000 0000b	0	0
Register	0110 1011b	6	В
Quantity of	0000 0000b	0	0
Registers	0000 0011b	0	3
Error	0111 0101b	8	9
Check	1010 0000b		
Trailer	(none)	CR	LF
	8 Bytes Total	17 Bytes T	otal

Notes: in this document we only deal with holding registers which are read/write 16-bit entities. Modbus defines other I/O's such as input registers, output registers, coils, etc. It is not necessary to explain the differences in further details here. Holding registers are the most common I/O's dealt with and are read and written with the functions numbers seen below. Holding registers are numbered from 40,001 to 49,999. Their address in the messages start from 0. In the example, number 40,108 is at address 6B hexadecimal (107 which is 40,108 less 40,001). Note also that quantities in messages are encoded MSB first.

Response Message		RTU	ASCII	
Header		(none)	: (colon)	
Slave address	3	0000 0110b	0	6
Function		0000 0011b	0	3
Byte Count		0000 0110b	0	6
	MSB	0000 0010b	0	2
Data	LSB	0010 1011b	2	В
(3 x	MSB	0000 0000ь	0	0
16-bit	LSB	0000 0100b	0	4
registers)	MSB	0000 0000b	0	0
	LSB	0110 0011b	6	3
Error		0010 0011b	5	D
Check		0100 1001b		
Trailer		(none)	CR	LF
		11 Bytes Total	23 Bytes	Total

In all cases the ASCII message will be about twice the length in bytes compared to the RTU message.

The error check is either a CRC-16 in case of RTU (see brief introduction below) or an LRC in case of ASCII. The LRC is the modulo 256 arithmetical opposite of the sum of all bytes after the column sign and before the LRC itself. In the example above: 0x06+0x03+0x02+0x2b+0x00+0x04+0x00+0x63=0xa3 and the opposite byte of 0xa3 is 0x5d.

3.2.2 Slave address

Slave number: 1 to 247. Broadcast is not supported.

3.2.3 Modbus functions

The GCAU only supports the two following functions:

- 03 Read holding registers
- 16 Preset multiple holding registers

This limitation is compliant to conformance class 0 as per Open Modbus Specification from Modicon.

• Function 03, Read Holding Registers

This function is used for the following purpose:

- Read the discrete statuses
- Read the analog inputs
- > Read the events history list
- > Read the software version information

If any combination of starting address and requested number of register exceeds these ranges, the reply will contain an exception code 02 (Illegal data address).

- 9 / 19 - BN 09 2138/01/02

Notes:

The alarm and events history list is not entirely accessible in the register mapping in a single read. Only one history list item can be read at a time from dedicated GCAU registers. Since the GCAU may contain a completed list of alarms and events in its memory, and the GCAU can only hold 1 entry at a time, you must first request a history item by writing in a special register holding the current history item number (starting from number one) then you can read that history item.

Function 16, preset multiple registers

This function is used for the following purposes:

- Request a history item
- Execute a command

Again if any combination of starting address and requested number of register exceeds valid ranges, the reply will contain an exception code 02 (Illegal data address).

Notes:

- 1. See previous note in section for the use of requesting an history item.
- 2. It is not allowed to write more than one register in the range at the same time in the range for executing commands (by using function 16, Multiple Preset). Doing so results in an exception code 02 (Illegal Data Address). In addition, if the data or registers do not match, exception code 03 (Illegal Data Value) is returned.

Illegal function codes

When a function code request is received that is not supported by the GCAU, it will be handled as an exception and it will follow the rules for exception responses within the Modbus protocol. To indicate that the response is a notification of an error, the high order bit of the function code is set to 1. Subsequently, an exception response code will follow, indicating the type of exception. In the case of an unsupported function, exception code 01 (Illegal Function) will be sent. Error codes 1, 2, 3 indicate message format is bad (permanent error) and error code 4 indicates the operation cannot be completed (temporary error).

• CRC-16 calculation

CRC-16 used in Modbus is extensively explained in the standards and else where. Here is a flowchart that exposes the algorithm. Actually, a faster method exists using a pair of lookup tables.

3.2.4 Register locations

• Modbus mapping

Note about numbering and addressing registers:

The Modbus numbering scheme for holding registers starts from 40,001. In addition to Modbus holding register number (nMbHR), two other schemes of interest should be defined the Jbus register number (nJbR) and the actual register address that is encoded in Modbus message over the network (aRN). Here are the equations related these three schemes:

nMbHR = 40,001 + aRN,

nJbR = aRN.

Also, the JBUS usage imposes nJbR > 0.

• Register tables

Alarm and event table:

Modbus	Jbus	aRN	Variable	Range
Register	Register	(hex)		3
(nMbHR)	(nJbR)	, ,		
40,002	1	0x1	High Mains Voltage	
40,003	2	0x2	Low Mains Voltage	
40,004	3	0x3	Charger Failure	
40,005	4	0x4	High Battery Voltage	
40,006	5	0x5	Low Battery Voltage	
40,007	6	0x6	High DC Voltage	
40,008	7	0x7	Low DC Voltage	
40,009	8	0x8	Ground Fault +	
40,010	9	0x9	Ground Fault -	
40,011	10	0xa	Spare 1	
40,012	11	0xb	Spare 2	
40,013	12	0xc	Spare 3	
40,014	13	0xd	Spare 4	
40,015	14	0xe	Spare 5	
40,016	15	0xf	Spare 6	
40,017	16	0x10	Spare 7	0 = No alarm, 1 = Alarm
40,018	17	0x11	Spare 8	
40,019	18	0x12	Charger Current Limit Indicator	
40,020	19	0x13	Battery Current Limit Indicator	
40,021	20	0x14	High Charger Current	
40,022	21	0x15	High Battery Current	
40,023	22	0x16	High Temperature	
40,024	23	0x17	Temperature Sensor Error	
40,025	24	0x18	Internal Communication Error	
40,026	25	0x19	Battery Test Fail	
40,027	26	0x1a	Battery Test Aborted	
40,028	27	0x1b	High Battery Temperature	
40,029	28	0x1c	High Float Current	
40,030	29	0x1d	Long Charge Time	
40,031	30	0x1e	No Power Supply Voltage	
40,032	31	0x1f	Battery in Operation	

All holding registers in this table have a read-only access.

Measurements and status:

Modbus Register (nMbHR)	Modbus register (nJbR)	aRN (hex)	Variable	Range
40,100	99	0x63	Mains Voltage	VAC / 10
40,101	100	0x64	Battery Voltage	VDC / 10
40,102	101	0x65	Load Voltage	VDC / 10
40,103	102	0x66	Charger Current	Positive Amps / 10
40,104	103	0x67	Battery Current	Signed Amps / 10
40,105	104	0x68	Ambient Temperature	Signed Celsius
40,106	105	0x69	Battery Temperature	Signed Celsius
40,107	106	0x6a	Analogue Spare	10 th of measured value
40,108	107	0x6b	Frequency	Hertz / 10
40,109	108	0x6c	Earth Fault Impedance	Signed earthfault in k- Ohm/10
40,110	109	0x6d	Charge Status	0: Float 1: Highrate 2: Commissioning 3: Battery test 4: Charger Off
40,111	110	0x6e	Remaining Charge Time	Minutes
40,112	111	0x6f	AhMeter	%

All holding registers in this table have a read-only access.

History access:

Modbus Register (nMbHR)	Jbus register (nJbR)	aRN (hex)	Variable	Range
40,150	149	0x95	Request/confirm history entry	1: most recent
40,151	150	0x96	Number of items in history list	Number of events
40,152	151	0x97	Year - Month	MSB: Actual Year-2000 LSB: Month (1-12)
40,153	152	0x98	Day - Hour	MSB: Day (1-31) LSB: Hours (0-23)
40,154	153	0x99	Minute - Second	MSB: Minutes (0-59) LSB: Seconds (0-59)
40,155	154	0x9A	Code of alarm/event	See annex 'definition of
40,156	155	0x9B	Setpoint value	events'

All holding registers except first one in this table have a read-only access. First register in this table must be preset for the other to be updated.

Commands:

Modbus Register (nMbHR)	Jbus register (nJbR)	aRN (hex)	Variable	Value definition
40,200	199	0xC7	Charge highrate/float	1 = highrate, 0 = float
40,201	200	0xC8	Alarm acknowledgment	1 = proceed
40,202	201	0xC9	Rectifier shut down/start up	0 = shut down, 1 = start up
40,203	202	0xCA	Clear history list	1 = proceed
40,204	203	0xCB	Start/Stop battery test	1 = Start, 0 = Stop
40,205	204	0xCC	Set Ah meter to 100%	1 = Set to 100%
40,206	205	0xCD	Commissioning/Float	1 = Commissioning, 0 = float

All holding registers in this table are write only.

Writing to more than one holding register in this table is not allowed and will result in an explicit error.

For commands to be executed, a protection mechanism exists based on a special configuration parameter. CmdCookie (defined in configuration object COMMUN2).

The command will be taken into account if the value in the Modbus frame less the Modbus CmdCookie equals one of possible definition values for the command at stake. For example, if we want to initiate a highrate charge (value 1 for this) and if Modbus CmdCookie equals 1234, then we must set the proper holding register to 1235.

Naturally, when CmdCookie is null, this protection is disabled. This is its default value.

Software versions:

Modbus	Jbus	aRN	Variable	Value definition
Register	register	(hex)		
(nMbHR)	(nJbR)			
40,250-40,256	249-255	0xf9-	Software version of the control	16 characters, zero
40,230-40,230	249-255	0xff	processor	terminated
40,257	256	0x100	Software version of the regulation co-	MSB: major version
40,237	230	0.00	coprocessor	LSB: minor version

All holding registers in this table have a read-only access.

4 PROGRAMMING THE COMMUNICATION PARAMETERS

If you need some communication settings, refer to this section for details.

4.1 <u>The "Communication" Setup Group</u>

(See section 2.2 for details about how to enter the programming mode).

Your system can be equipped with serial communication options which allow you to connect your system to a SCADA system or network. In this case, your system has an additional setup menu to program the communication parameters.

The communication card for the GCAU card is a plug-in device which is installed on the GCAU card with a piggy-back card.

Note

Removing or adding this card after the system left the factory must be carried out by qualified persons.

The communication setups incorporate five parameters e.g.

- ✓ Slave Number
- ✓ Protocol
- ✓ Baudrate
- ✓ Hardware Configuration
- ✓ Format

By default the communication setup values are the following:

✓ Slave Number : 1
 ✓ Protocol : SPG
 ✓ Baudrate : 38400
 ✓ Hardware Configuration : RS232
 ✓ Format : 8b-NP-1s

4.1.1 The "Slave Number" Configuration Option (Communication)

In case of multi drop configurations your system can be given a unique Slave number. Only if the broadcasted slave number matches the programmed slave number the GCAU will respond. This allows sequential interrogation of multiple systems on one communication line. The slave number can be configured between 1 and 247.

Use the up and down arrow keys to change the slave number setting.

- 16 / 19 -

BN 09 2138/01/02

4.1.2 The "Protocol Configuration" Option (Communication)

The protocol configuration option can be set for:

- ✓ Mixed: SPG+ASCII Modbus
- ✓ RTU Modbus
- ✓ ASCII Modbus
- ✓ SPG

4.1.3 The "Baudrate" Configuration Option (Communication)

You can configure the communication speed of your system with the Baudrate option. The Baudrate defines the number of bits per second transferred over the communication bus. You can set the communication rate at 1200, 2400, 4800, 9600, 19200 or 38400 Baud. The GCAU system is fixed with 1 stopbit and no parity.

Use the up and down arrow keys to change the Baudrate.

4.1.4 The "Hardware Configuration" Option (Communication)

The hardware configuration option allows you to select the physical layer of the communication option. You can set it for:

✓ RS232 point to point with a maximum distance of 30 feet*
 ✓ RS485 Multi drop line up to 255 units maximum. Distance 1km*.

^{*} Depends on environment, cable type and communication speed.

Use the up and down arrow keys to change the selection.

- 17 / 19 -

4.1.5 The "Format" Configuration Setting (Communication)

The Format setting allows you to select twelve values:

✓ 8 bits-no parity-2 stop.: 8b-NP-2s
✓ 8 bits-no parity-1 stop.: 8b-NP-1s
✓ 7 bits-even parity-2 stop.: 7b-EP-2s
✓ 7 bits-even parity-1 stop.: 7b-EP-1s
✓ 7 bits-odd parity-2 stop.: 7b-OP-2s
✓ 7 bits-odd parity-1 stop.: 7b-OP-1s
✓ 8 bits- even parity-2 stop.: 8b-EP-2s
✓ 8 bits- even parity-1 stop.: 8b-EP-1s
✓ 8 bits- odd parity-2 stop.: 8b-OP-2s
✓ 8 bits- odd parity-1 stop.: 8b-OP-1s
✓ 7 bits-no parity-2 stop.: 7b-NP-2s
✓ 7 bits-no parity-1 stop.: 7b-NP-1s

Use the up and down arrow keys to change the FORMAT setting.

4.2 <u>Entering the program mode</u>

To enter the program mode follow the instruction below. The defaults 1111 and 1211 are used for respectively the user and supervisor levels. Select the System Setup and search for the communication options.

LCD access, example.

