

B41 Oct 4 Lec 1 Notes

Theorem: Properties of continuous functions

- (i) Let f(x) and g(x) be continuous real valued at x_0 , and let c be a constant. Then cf, $f\pm g$, fg, and fg $(g(x_0) \mp 0)$ are continuous at x_0
- (ii) Let $f: U \in \mathbb{R}^n \to \mathbb{R}^m$ with $f(x) = (f, (x), f_2(x), \cdots, f_m(x))$. f is continuous at x_0 iff each of the real valued Function f_1, f_2, \cdots, f_m is continuous at x_0 .
- (iii) Let $g: U_1 \subset \mathbb{R}^n \to \mathbb{R}^m$ and $f: U_2 \subset \mathbb{R}^m \to \mathbb{R}^n$. Suppose $g(U_1) \subset U_2$, so that $f \circ g$ is defined on U_1 . If g is continuous at $x \circ g$ and f is continuous at $g(x \circ g)$, then $f \circ g$ is continuous at $x \circ g$.

Definition:

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ with $f(x) = (f_1(x), f_2(x), ..., f_m(x))$. f is continuous at x_0 if given any $\epsilon > 0$, there is a $\delta > 0$ s.t. $\|f(x) - f(x_0)\| < \epsilon$ if $\|x - x_0\| < \delta$.

Differentiation

The directional derivative of f at a in direction v, denoted by $D_v(f(a)) = \frac{g_{im}}{\epsilon + 0} = \frac{f(a + \epsilon v) - f(a)}{\epsilon + 0}$

When $v=e_i$, i=1,2,...,n, $De_i(f(a))$ is denoted by $\frac{2f}{\partial x_i}$ (a) and is called the partial derivative of f with respect to x_i at a, i=1,2,...,n

Then.

$$\frac{\partial f}{\partial x_i}(a) = D_{e_i}(f(a)) = \lim_{t \to 0} \frac{f(a+te_i)-f(a)}{t}$$

$$=\frac{Q_{i_{0}}}{t+0}\frac{f(a_{1},a_{2},...,a_{\ell}+t,...a_{n})-f(a_{1},a_{2},...,a_{\ell},...,a_{n})}{t}$$

Definition:

Let f: UCR" - R". f is differentiable at a EU if the partial devivatives of f exist at a and if

$$\lim_{x\to a} \frac{||f(x)-f(a)-Df(a)(x-a)||}{||x-a||} = 0$$

where

$$\mathsf{Df}(a) = \left(\frac{\partial f_i}{\partial x_j}(a), i=1,2,\cdots, m \text{ and } j=1,2,\cdots, n,\right)$$

is the derivative (Jacobian matrix) of fat a given by

$$Df(\alpha) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\alpha) & \frac{\partial f_1}{\partial x_2}(\alpha) & \cdots & \frac{\partial f_1}{\partial x_n}(\alpha) \\ \frac{\partial f_2}{\partial x_1}(\alpha) & \frac{\partial f_2}{\partial x_2}(\alpha) & \cdots & \frac{\partial f_n}{\partial x_n}(\alpha) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\alpha) & \frac{\partial f_m}{\partial x_n}(\alpha) & \cdots & \frac{\partial f_m}{\partial x_n}(\alpha) \end{bmatrix}$$

Calculate Df(a) where
$$f(x,y,z) = (x^2 + y\sin z, xe^3, z\cos x)$$
 at $a = (1,1,1)$

$$f_1(x,y,z) = f_2(x,y,z)$$
Note $f: \mathbb{R}^3 \to \mathbb{R}^3 \Rightarrow Df(a)$ is 3×3

$$f_1(x,y,z)$$

$$D_{\frac{1}{2}} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_3}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_3}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{bmatrix} = \begin{bmatrix} 2x & \sin z & y\cos z \\ e^y & xe^y & 0 \\ -2\sin x & 0 & \cos x \end{bmatrix}$$

$$Df(c) = \begin{bmatrix} 2 & \sin 1 & \cos 1 \\ e & e & 0 \\ -\sin 1 & 0 & \cos 1 \end{bmatrix}$$

Let m=1. f: UCR" → R. Df(a) is the lan matrix.

$$Df(A) = \left(\frac{\partial f}{\partial x_1}(A), \frac{\partial f}{\partial x_2}(A), \dots, \frac{\partial f}{\partial x_m}(A)\right)$$

It is called the gradient of f at a , and denoted , as, $\nabla f(a)$

Ex 2:

Is the function $f(x,y) = x^{\frac{1}{2}}y^{\frac{1}{2}}$ differentiable at (0,0).

$$\frac{\partial f}{\partial x} = \frac{1}{3} x^{-\frac{3}{2}} y^{\frac{1}{2}} \qquad \frac{\partial f}{\partial y} = \frac{1}{3} x^{\frac{1}{2}} y^{-\frac{3}{2}}$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$$

Similar for
$$\frac{\partial f}{\partial y}(0,0) = 0$$

By def of differentiation,

= DNE

Theorem:

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$. Suppose that the partial derivatives $\frac{\partial f_*}{\partial x_j}$ of f all exist and are continuous in a neighborhood as U. Then f is differentiable at $a \in U$.