

06	හියන් වදනව 1
05.	එක්තරා සජල මැග්නීසියම් සල්ෆේව් සංයෝගයක සූතුය MgSO ₄ . n H ₂ O වේ. මෙයින් 7.38 g ක්
	ර යන් වනයේ වෙණ 1 dm ³ ක් සාදා ඇත. එම දුවණයේ සාන්දුණය 0.03 moi dm වාම ii හි අගය
	වනුයේ, $(H = 1, O = 16, Mg = 24, S - 32)$ (4) 6 (5) 5
06.	අවුෆ්බා මූලධර්මයට අනුව අවසාන ඉලෙක්ටුෝනය 3, 2, 0, $+\frac{1}{2}$ යන ක්වොන්ටම් අංක කුලකය සහින
	කාක්ෂිකයකට පිරිය හැකි මූලදුවා පරමාණුව වනුයේ, (1) Cd (2) Pd (3) Co (4) Ga (5) Ge
07.	පහත සඳහන් කුමන අණුවේ / අයනයේ අඩංගු සියඑ පරමාණු එකම තලයක නොපිහිටයි ද?
1	(1) BCl_3 (2) XeF_4 (3) ICl_3 (4) $HClO_3$ (5) $HOC - CHO$
08.	HF, HCl, HBr සහ HI යන සංයෝගයන්හි තාපාංකවල වැඩිවීමේ නිවැරදි පිළිවෙල වනුයේ, (1) HCl < HBr < HI < HF
09.	Q නැමති වායුවකින් $1\mathrm{dm}^3$ ක් ස : උ : පී : හිදී $1.25\mathrm{g}$ ක ස්කන්ධයක් දරයි. එම දත්නයට අනුව Q වායුව පහත ඒවා අතුරින් කුමක් විය හැකිද?
	(1) N ₂ . (2) NO ₂ (3) CO ₂ (4) O ₂ (5) NO
10.	A ලවණයේ සනයට තනුක අම්ලයක් එකතු කළවිට රතු පැහැයට හුරු වායුවක් පිට වූ අතර එම ලවණය පහන්සිඑ පරීක්ෂාවේ දී ද රතට හුරු වර්ණයක් ලබාදුනි. A විය හැක්කේ,
	(1) $LiNO_2$ (2) $LiBr$ (3) $Ca(NO_3)_2$
	(4) Sr(NO3)2 (5) CaBr2
11.	එක්තරා පාෂාණයක ස්කන්ධය අනුව 1.34% ක් Ag_2S අඩංගු වේ. සංශුද්ධ Ag ලෝහය l g ක් ලබා ගැනීමට එම පාෂාණයෙන් කොපමණ ස්කන්ධයක් අදාළ නිස්සාරණ කිුිිියාවලියට ලක්කළ යුතුද? (1) 74.5 g (2) 85.7 g (3) 107.9 g (4) 134.0 g (5) 216 g
12.	${ m KMnO_4}$ යම් ස්කන්ධයක් ජලයේ දියකර එයට තනුක ${ m H_2SO_4}$ අම්ලය ස්වල්පයක් එකතු කර, ${ m H_2S}$
	වායුව වැඩිපුර බුබුලනය කරන ලදී. එවිට $S,0.8g$ ක් අවක්ෂේප විය. $KMnO_4$ දුවණය සාදා ගැනීමට
	කිරාගත් K MnO_4 ස්කන්ධය වනුයේ, (O = 16, S = 32, K = 39, $Mn = 5$ 5)
	(1) $0.158 g$ (2) $0.988 g$ (3) $1.58 g$ (4) $3.16 g$ (5) $9.88 g$
13.	pentaamminechloridocobalt (III) nitrate හි නිවැරදි රසායනික සූතුය වනුයේ,
	(1) $[Co(NH_3)_5Cl]NO_3$ (2) $[Co(NH_3)_5Cl](NO_3)_2$
	(3) CoCl $(NH_3)_5 NO_3$ (4) $[CoCl (NH_3)_5] (NO_3)_2$
	(5) $Co(NH_3)_5Cl(NO_3)$
14.	${ m BaCl}_2$ $0.50\ { m mol}\ { m mi}\ { m co}$ වෙමණයක් ${ m Na}_3{ m PO}_4$ $0.20\ { m mol}\ { m me}$ මහු කළවිට සෑදිය හැකි උපරිම ${ m Ba}_3({ m PO}_4)_2$ මවුල සංඛ්‍යාව වන්නේ,
	(1) 0.15 (2) 0.2 (3) 0.5 (4) 0.7 (5) 0.1
15.	CaC ₂ 10 g ක් ජලය සමග සම්පූර්ණයෙන්ම පුතිකිුිිිියා කළවිට කොපමණ C ₂ H ₂ අණු සංඛ්‍යාවක් සැදේද?
	(1) 9.4×10^{23} (2) 94×10^{20} (3) 9.4×10^{22}
	(4) 18.8×10^{22} (5) 9.4×10^{18}
	€

16. පහත දී ඇති සංශයා්ග වලින් IUPAC නාමය නිවැරදිව දක්වා නොමැති සංයෝගය කුමක්ද?

සංයෝගය	IUPAC තාමය
RbHCO ₃	Rubedium hydrogen carbonate
KH ₂ PO ₄	Potassium hydrogen phosphate
N ₂ O ₄	Dinitrogen tetroxide
BaO ₂	Barium peroxide
NaClO	Sodium hypochlorite

- දී ඇති වගන්තිවලින් සතා වගන්තිය වන්නේ, 17.
 - ඇතායනයක අරය විශාලවත් ම ධුැවණශීලතාව වැඩිවේ.
 - Na₂O හි අයනික ලක්ෂණ MgO වලට වඩා අඩුය. (2)
 - K^+ හි ධුැවීකාරක බලය Ca^{2+} වලට වඩා වැඩිය. (3)
 - NaCl වලට වඩා AlCl3 හි අයනික ලක්ෂණ වැඩිය. (4)
 - කැටායනයක අරය සහ ආරෝපණය විශාලවත් ම ධුැවීකාරක බලය අඩුවේ.
- සෝඩියම් වාෂ්ප ලාම්පුවකින් විමෝචනය වන කහ ආලෝකයේ තරංග ආයාමය 580 nm වේ. එම කහ 18. ආලෝකයේ සංඛනාසය සහ පෝචෝනයක ශක්තිය වන්නේ,
 - $5.17 \times 10^{14} \text{ S}^{-1} \iff 34.2 \times 10^{-17} \text{ kJ}$
 - $5.17 \times 10^8 \text{ S}^{-1} \mod 3.62 \times 10^{-19} \text{ J}$
 - $6.6 \times 10^{15} \text{ S}^{-1} \text{ aw} 31.2 \times 10^{-19} \text{ J}$ (3)
 - $5.17 \times 10^{14} \text{ S}^{-1} \text{ as } 34.2 \times 10^{-23} \text{ kJ}$ (4)
 - $6.17 \times 10^8 \text{ S}^{-1} \text{ the } 34.2 \times 10^{-17} \text{ kJ}$ (5)
- NH₄Cl හමුවේදී NH₄OH මගින් අවක්ෂේප වන වැඩිපුර NaOH තුළ එම අවක්ෂේපය දියවන කැටායනය කුමක්ද?
 - Cu²⁺ (1)
- Cr3+ (2)
- Fe³⁺ (3)
- Ni²⁺ (4)
- (5)
- N, O, F, Cl යන මූලදුවෳයන්ගේ ඉලෙක්ටුෝනකරණ එන්තැල්පිය වැඩිවන පිළිවෙල වන්නේ, 20.
 - CI < F < O < N (1)
- F < Cl < O < N(2)
- (3) N < O < Cl < F

- C1<F<N<0 (4)
- N < F < O < Cl (5)
- පහත පුකාශවලින් සතා නොවන පුකාශය වන්නේ, 21.
 - ක්ෂාරීය පාංශු ලෝහවල ඕක්සලේට සමහරක් ජලයේ දුාවා වේ.
 - ක්ෂාරීය පාංශු ලෝහවල පරමාණුක කුමාංකය වැඩිවන විට සල්පේටවල ජල දුාවානතාව අඩුවේ. (2)
 - ක්ෂාරීය පාංශු ලෝහවල පොස්පේට සියල්ල ජලයේ අදුාවා වේ. (3)
 - ක්ෂාරීය පාංශු ලෝහවල කාබනේට සියල්ලටම කාප වියෝජනය විය හැකිය. (4)
 - ක්ෂාරීය පාංශු ලෝහවල බයිකාබනේට සියල්ලම සුදු ඝන වශයෙන් පවතී.
- ආම්ලික පුහලතාව වැඩිවීම නිවැරදිව දක්වා ඇත්තේ පහත සඳහන් කුමන කාණ්ඩයේද? 22.
 - $SO_2 < SO_3 < P_2O_3 < Cl_2O_5$ (1)
- (2) $SO_2 < Cl_2O_5 < P_2O_5 < SO_3$
 - $SO_2 < P_2O_3 < SO_3 < Cl_2O_7$ (3)
- (4) $Cl_2O_5 < SO_2 < SO_3 < Cl_2O_7$
- $P_2O_3 < SO_2 < Cl_2O_5 < Cl_2O_7$ (5)
- $1~{
 m mol~dm^{-3}}~{
 m KOH}$ දාවණ $100~{
 m cm^3}~{
 m m}$ ව $1~{
 m mol~dm^{-3}}~{
 m HNO_3}$ දාවණයකින් $100~{
 m cm^3}~{
 m mi}$ හොඳින් තාප 23. පරිවරණය කරන බඳුනක මිශු කරන ලදී. දුාවණයේ සනත්වය හා විශිෂ්ට තාප ධාරිතාව ජලයට සමාන යයි උපකල්පනය කළවිට සිදුවන උෂ්ණත්ව විපර්යාසය වන්නේ කුමක්ද?
 - සම්මත උදාසීනිකරණ එන්තැල්පිය $=-57 \text{ kJ mol}^{-1}$ වේ.
 - 4.2 °C (1)
- (2)3.0 °C
- (3) 6.8 °C
- (4) 8.2 °C
- (5) 5.6 °C

2.	4. පහත සඳහන් සංශෝග 10 g ක් වැඩිපුර D_2O සමග පුතිකියාවෙන් වැඩිම ඩියුවීරියම් (D_2) වායු ජනත්වයක් වෙනගේගේ සමුවෙන්න (D_2) වායු (D_2) සමග පුතිකියාවෙන් වැඩිම ඩියුවීරියම් (D_2) වායු
	(1) NaD (2) MgD_2 (3) CaD_2 (4) LiD (5) KD
25	ව ව Karawa aky kJ mol ^{– 1} හා සම්මත එන්වෙුාපි
_	විපර්යාසය +y J mol - 1 K - 1 වේ. එම පුතිතියාව සම්බන්ධයෙන් වඩාත් නිවැරදි වගන්තිය වන්නේ,
	(1) ඉහළ උෂ්ණත්ව වලදී ස්වයංසිද්ධ විය හැක.
	(2) කිසිඳු උෂ්ණත්වයකදී ස්වයංසිද්ධ විය නොහැක.
	(3) සියලු උෂ්ණත්ව වලදී ස්වයංසිද්ධ වේ.
	(4) පහළ උෂ්ණත්ව වලදී ස්වයංසිද්ධ විය හැක. (5) භෞතික අවස්ථාවේ දී නැති බැවින් අනාවැකියක් පළ කළ නොහැක.
26.	නියුක්ලියෝෆයිල පමණක් අඩංගු වන කාණ්ඩය වන්නේ,
	(1) NH ₃ , H ₂ O, BF ₃ , I ⁻ (2) NO, NH ₃ , CN ⁻ , AlCl ₃
	(3) H_2O , CN^- , NH_2NH_3 , Br^- (4) $AlCl_3$, NO_2 , NH_3 , CO
	(5) NH ₃ , Br ⁻ , BCl ₃ , Cl ⁻
. 27.	$H_2C=CH_{2(g)}+H_{2(g)}\longrightarrow C_2H_{6(g)}$; යන පුතිකියාවේ පුතිකියා
	එන්නැල්පිය –129 kJ mol ⁻¹ ලව C - H සහ C - C යන බන්ධන එන්නැල්පින් 413 kJ mol ⁻¹ සහ
	346 kJ mol^{-1} වේ. $C = C$ බන්ධන එන්නැල්පිය වන්නේ, $H - H$ 432 kg mol^{-1}
	(1) 482 kJ mol^{-1} (2) 511 kJ mol^{-1} (3) 611 kJ mol^{-1}
	(4) 711 kJ mol^{-1} (5) 740 kJ mol^{-1}
28.	පරිපූර්ණ වායු හැසිරීමෙන් වඩාත් ම අපගමනය වන්නේ මින් කුමන වායුවද?
	(1) $CH_{4(g)}$ (2) $He_{(g)}$ (3) $Ne_{(g)}$ (4) $N_{2(g)}$ (5) $C_2H_{4(g)}$
29.	කිසියම් මූලදුවායක රසායනික ගුණ පිළිබඳව නිගමනය සඳහා වඩාත් ම සැළකිල්ලට ලක්කළ යුතු ගුණය වන්නේ,
	වන්නේ, (1) මූලදුවායේ සමස්ථානික සංඛාාව (2) ඉලෙක්ටෝනකරන ශක්තිය
	(3) සහසංයුජ අරය (4) ඉලෙක්ටුෝනික විනාහසය
	(5) පුථම අයනීකරණ ශක්තිය
30.	සෑම විටම කුමයෙන් වැඩිවන ලක්ෂණය වන්නේ පහත ඒවායින් කුමක්ද? (1)
	(2) ඕනෑම කාණ්ඩයක් ඔස්සේ මූලදුවාසයක ඔක්සිකාරක ගුණය
	(3) S ගොනුවේ කාණ්ඩයක පහළට මූලදුවායේ දුවාංක (4) 15 වන කාණ්ඩයේ පහළට හයිඩුයිඩවල භාෂ්මික ගුණය
	(4) 15 වන කාණ්ඩයේ පහළට හයිඩුයිඩවල භාෂ්මික ගුණය (5) 14 වන කාණ්ඩයේ පහළට හයිඩුයිඩවල දුවාංක
•	අංක 31 සිට 40 තෙක් වූ පුශ්නයේ දක්වා ඇති (a), (b), (c) හා (d) යන පුතිචාර අතරින් එකක් හෝ වැඩි සංඛෂාවක් හෝ නිවැරදිය. නිවැරදි පුතිචාරය / පුතිචාර කවරේදැයි නෝරාගන්න.
	(a) හා (b) පමණක් නිවැරදි නම 1
	(b) හා (c) පමණක් නිවැරදි නම්
	(c) හා (d) පමණක් නිවැරදි නම්
	වෙනත් පුතිචාර සංඛනාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම්
	කරන්න.

		උපදෙස් සම්පිණ	්ධනය	
1	2	3	4	5
(a) සහ (b) පමණක් නිවැරදිය	(b) සහ (c) පමණක් නිවැරදිය	(c) සහ (d) පමණක් නිවැරදිය	පමණක්	පුතිචාර එකක් පමණක් හෙ වෙනත් පුතිචාර සංඛනාවක් හෝ නිවැරදියි.

- පහත කුමන අවස්ථාවලදී එන්වොපිය වැඩි වන්නේ යයි සැළකිය හැකිද? 31.
 - $MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$
 - $2 SO_{3(g)} \longrightarrow 2 SO_{2(g)} + O_{2(g)}$
 - $2 \text{ NaCl}_{(aq)} + Pb(NO_3)_{2(aq)} \longrightarrow PbCl_{2(s)} + 2 \text{ NaNO}_3(3)$ (c)
 - $4 \text{ LiNO}_{3(s)} \longrightarrow 2 \text{ Li}_2O_{(s)} + 4 \text{ NO}_{2(g)} + O_{2(g)}$
- පහත සඳහන් කුමන අණුවේ / අණුවල N පරමාණුව sp මුහුමකරණ අවස්ථාවේ පවතීද? 32.
 - (a) CH₃NH₂
- N_2H_4 (b)

(c) HCN

- N_2O (d)
- අණුක චාලක වාදයේ උපකල්පන / උපකල්පනයක් නොවන්නේ,
 - වායුවක අණු විවිධ වේගවලින්, සරළ රේඛීයව එකම දිශාවකට අඛණ්ඩ අහඹු චලිතයක යෙදෙමින් පවතී.
 - අණු අතර ආකර්ෂණ හෝ විකර්ෂණ බල නැත. (b)
 - අණු එකිනෙක ගැවී පොලා පැනීමේදී පද්ධතියේ සමස්ථ චාලක ශක්තිය නියතව පවතී. (c)
 - (d) අණු අතර දුර සමග සැසඳීමේදී අණුවල පරිමාව සහ ස්කන්ධය නොසලකා හැරිය හැක.
- පහත පුකාශ අතුරින් සතා පුකාශ / පුකාශය වන්නේ, 34.
 - (a) අවස්ථා ශුිතයක සිදුවන වෙනස්වීමේ පුමාණය එහි ආරම්භක හා අවසාන අවස්ථාව මෙන්ම වෙනස සිදුකරනු ලබන මාර්ගයෙන් ද ස්වායන්ත වේ.
 - (b) එන්තැල්පිය වික්කි ගුණයක් වන අතර අවස්ථා ශ්‍රිතයකි.
 - මවුලික එන්තැල්පි විපර්යාසය සටනා ගුණයක් වන අතර අවස්ථා ශිුතයකි. (c)
 - ඒකලිත පද්ධතියක මායිම හරහා ශක්තිය හෝ කාර්ය පමණක් හුවමාරු නොවේ.
- උභයගුණි ඔක්සයිඩයක් අඩංගු නොවන සංයෝග කාණ්ඩය / කාණ්ඩ වන්නේ,
 - VO, MnO₂, Fe₂O₃ (a)
- (b) SO_3 , VO_2 , P_2O_5
- (c) VO, CrO₃, MnO
- (d) FeO, SiO₂, TiO₂
- $\stackrel{a}{\operatorname{CH}}_3 \stackrel{c}{\operatorname{C}} = \stackrel{d}{\operatorname{C}} \stackrel{d}{\operatorname{CH}}_3$ අණුව පිළිබඳව මින් කුමන වගන්තිය / වගන්ති සතාවෙද?
 - (a) C පරමාණු සියල්ලම එකම තලයක පවතී.
 - (b) C පරමාණු 03 ක් පමණක් සරළ රේඛාවක පිහිටයි.
 - (c) සියලුම C H බන්ධන එකම දිග වේ.
 - (d) සංයෝගය පාරතිමාණ සමාවයවිකතාව දක්වයි.
- පහත දී ඇති සංයෝග සලකන්න. 37.
 - (A) FeS
- (B) $Na_2S_2O_3$
- (C) HCl

- (D) $AI(OH)_3$
- Na₂CO₃ (E)

සුදුසු තත්ත්ව යටතේදී පුතිකියා වීමට සැලැස්වූ විට පහත කුමන යුගලය / යුගලයන් මගින් ගන්ධයක් නිකුත් කරයි ද?

- (a) (A) too (C)
- (b) (B) හා (C)
- (c) (C) හා (D)
- (d) (C) to (E)

රසායන විදනව I

- CH_{4(g)} වැඩිපුර O₂ සමග පුතිකියා කර CO_{2(g)} 0.2 mol ක් සාදන විට 178.4 kJ තාප පුමාණයක් 38. මුදාහරි. මෙම පද්ධතිය සඳහා පහත සඳහන් කුමන වගන්තිය / වගන්ති සතාවේද? (C = 12, O = 16, H = 1)
 - CH_{4(g)} මවුලයක් සම්පූර්ණයෙන්ම පුතිතියා වනවිට 892 kJ ක තාපයක් පිට කරයි.
 - CO_{2(g)} 22 g ක් සැදීමට 446 kJ ක් අවශා වේ. (b)
 - (c) ඵලයන්හි එන්නැල්පි අගයයන්ගේ එකතුව පුනිකිුයකවල එන්නැල්පි අගයයන්ගේ එකතුවට වඩා
 - ථලයන්හි එන්තැල්පි අගයයන්ගේ එකතුව පුතිකියකවල එන්තැල්පි අගයන්ගේ එකතුවට වඩා අඩුවේ.
- පහත ගුණ අතුරින් විත්ති ගුණ / ගුණය වන්නේ, 39.
 - එන්තැල්පිය

- මවුලික පරිමාව
- විශිෂ්ට තාප ධාරිතාව (c)
- ඝනත්වය (d)
- $m Na_2CO_3$ 10.6~
 m mg ස්කන්ධයක් දුාවණ $100~
 m cm^3$ ක දියවී ඇති දුාවණය සම්බන්ධයෙන් සතා වන්නේ,
 - ${
 m Na_2CO_3}$ සාත්දුණය $0.001\,{
 m mol\,dm}^{-3}$ වේ.
 - Na₂CO₃ සංයුතිය 1000 ppm වේ. (b)
 - Na^+ සංයුතිය 46×10^3 ppm වේ. (c)
 - Na⁺ සංයුතිය 46 ppm වේ. (d)
- අංක 41 සිට 250තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැයි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමු වගන්තිය	දෙවැනි වගන්තිය
(1)	සතාලව්.	සතාවන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.
(2)	සතාවේ.	සතාවන නමුත්, පළමුවැනි පුකාශය නිවැරදිව පහදා නොදෙයි.
(3)	සතාවේ.	අසතාය.
(4)	අසතාාවේ.	සතාවේ.
(5)	අසතාවේ.	අසතාය.

	පළමු වගන්තිය	දෙවැනි වගන්තිය
41.	SO ₂ මගින් වර්ණවක් මල්පෙකි විරංජනය කරයි.	මල්පෙතිවල අඩංගු වර්ණක දුවා SO ₂ මගින් ඔක්සිකරණය කරයි.
42.	එකම උෂ්ණත්වයේ පවතින වායු දෙකක මධානා අණුක වේග සමාන විය හැකිය.	මධානා අණුක වේගය මවුලික ස්කන්ධයෙහි වර්ගමූලයට පුතිලෝමව ද නිරපේක්ෂ උෂ්ණත්වයෙහි වර්ග මූලයට අනුලෝමව සමානුපාතික වේ.
43.	සමාවයවිකවලට සෑම විටම සමාන භෞතික ගුණ පවතී.	සමාවයවිකවල එකම අණුක සූතුය පවතී.
44.	ඕනෑම සමතුලිත පුතිකිුයාවක් සඳහා $\Delta H /_{\Delta S} = T$ ලෙස පුකාශ කළ හැකිය.	සමතුලිතාවයේ පවතින පුතිකිුයාවක ගිබස් ශක්ති විපර්යාසය ශුතා වේ.
45.	${ m Pb}({ m CH_3COO})_2$ දාවණයක් හා ${ m AgNO_3}$ දාවණයක් වෙන්කර හඳුනා ගැනීමට ${ m Na_2S_2O_3}$ දාවණයක් භාවිතා කළ නොහැකිය.	${ m PbS_2O_3}$ සහ ${ m Ag_2S_2O_3}$ යන දෙකම ස්ථායී සුදු අවක්ෂේප වේ.

46.	Cr ³⁺ හා Ni ²⁺ ජලීය දුාවණ දෙකක් වෙන්කර හැඳිනීමට NH ₄ OH දුාවණයක් යොදාගත හැකිය.	Cr(OH)3 උභයගුණි සංයෝගයකි.
47.	ClCH ₂ CH = CHCl යන සංයෝගය පාරතිමාණ සමාවයවිකතාවය පෙන්වයි.	CICH ₂ CH = CH දු සංයෝගයේ අසමම්තික කාබන් පරමාණුවක් පවතී.
48.	NCl ₃ ජල විච්ඡේදනය වී අම්ල දෙකක් සාදයි.	NCl ₃ ජල විච්ඡේදනය ඔක්සිහරණ - ඔක්සිකරණ (Redox) පුතිකිුයාවකි.
49.	SF ₆ ධැවීය අණුවකි	අසමමිතික අණුවකට සෑම විටම ද්විධුැව සූර්ණයක් පවතී.
50.	බොයිල් උෂ්ණත්වයේදී ඕනෑම වායුවක් පරිපූර්ණ වායුවක් ලෙස හැසිරේ.	බොයිල් උෂ්ණත්වයේදී තාත්වික වායුවක් සඳහා සමපීඩානා සාධකය $Z=1$ වේ.

ආවර්තිතා වගුව

		7																2
	1																	He
1	H	L.	-										_	16	7	8	9	10
	3	4	1										5	6 C	N	o	F	Ne
2	Li	Be	1										В	-	-		17	18
	11	12	1										13	14	15	16		
3	10000												Al	Si	P	S	CI	Ar
3	Na	Mg			·			,	_	1	Tan	1 20	31	32	33	34	35	36
	19	20	21	22	23	24	25	26	27	28	29	30		Ge	As	Se	Br	Kr
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	_	-	52	53	54
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51			100000
5	2000	800	Y	100000	10000	0: 0:000000	2055	t	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
3	Rb	Sr		Zr	Nb	Mo	Tc	Ru		-	79	80	81	82	83	84	85	86
	55	56	La-	72	73	74	75	76	77	78	0.000	10000	JAGE LAND	Pb	Bi	Po	At	Rn
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	FU	Di	120	1	-
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

								T	100	167	68	69	70	171
57	58	59	60	61	62	63	64	65	00	07	00	69 Tm		-
	~	-			C	17	CA	1 Th	IIV	HO		A	1	
La	u	LI	Hu	A 111	SIII.	124	-	-	-00	00	100	101 Md	102	103
29	90	91	92	93	94	95	96	97	98	77	100	10.	1.02	
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

	dient Colombia	College, Colomber 10 Anatola College, Colombe
Colombo 10 Annula Co	Gagna 100 ger 11 Shester diegr. Colombo 10 Ananda (College, Colombo 10 Annala College, Colombo 10 A
අවසාන වාර ප	യുട്ടു. അത്താന -	2018 ජූලි
අවසාන වාර ප	ටකුමුනය	(උසස් පෙළ) විභාගය, 2019 අගෝස්තු
අධනයන පොදු (සහතක පල	10mm = 50
		පැය තුනයි
රසායන විදනව	П	12 ලෝණිය Three hours
	П	Three nours
Chemistry		

උපදෙස් :

- ඉතික යන්තු භාවිතයට ඉති දෙනු නොලැබේ.
- අංක 4 සහ 7 පුශ්නවලට පිළිතුරු සැපගීමේදී ඇල්කශිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරූපණය කළ හැකිය.

- A කොවස වපුහගත රචනා (පිටු 2 8)
- # සියලුම පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- එමෙබ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
- 🗆 B කොවස සහ C කොවස රචනා (පිටු 9 14)
- එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරාගෙන පුශ්න හතරකට පිළිතුරු සපයන්න.
- lpha සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු ${f A},{f B}$ සහ ${f C}$ කොටස්වලට පිළිතුරු, ${f A}$ කොටස මුලින් තිබෙන පරිදි අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- lpha පුශ්න පතුයෙහි B සහ C කොටස් පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යා හැකිය.
 - * සාර්වනු වායු තියනය, $R=8.314\,\mathrm{J\,K^{-1}\ mol^{-1}}$.
 - lpha ඇවගාඩ්රෝ නියතය, $N_A=6.022 imes 10^{23}~\mathrm{mol}^{-1}$

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

		0-0 000
කොටස	පුශ්න අංකය	ତ୍ୟଥି ଓ କ୍ଷ
1	1	
Α,	2	
	3	
	4	
	5	
В	6	G ₄
	7	
_	8	
C	9	
	10	
්කතුව		
පුතිශ තය		

ඉලක්කමෙන්	- 20	
අකුරින්		

wooms dom		
උත්තර පතු පරීක්	ෂක	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය	,	

- 02 -

		A සොවස - වසුනගත රචනා
01. (çə N	ගොනුවේ මූලදුවායක් වන X සාදන සුලහ ඔක්සයිඩය වායුවක් එම වායුව ආමලික Na3AsO4 MnO4 දාවණයක් තුළින් බුබුළහය කළවිට දාවණය විවර්ණ විය. එම වායුව ආමලික හයිඩුයිඩය ආමලික වණයකට බුබුළහය කළවිට හිරික්ෂිත චෙනසක් සිදුනොවීය. X මූලදුවා සාදන හයිඩුයිඩය ආමලික a3AsO4 දාවණයක් තුළින් බුබුළහය කළවිට පළමුව අපහැදිලි දාවණයක් ලැබී පසුව එම තද කහ
	(i) X මූලදුවා වාහයේ දහනය කළවිට වැඩිපුරම සැදෙන A වාසුව ද
	(ii)	X සහය සාන්දු $\mathrm{H}_2\mathrm{SO}_4$ සමග පුතිකිුිිිියාවෙන් A වායුව සාදයි. මෙම පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
	(iii)	X සනය උණු සාන්දු NaOH සමග පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
	(iv)	ඉහත (iii) හි ලැබුණ ඵලයට තනුක HCl එකතු කළවිට ලැබෙන නිරීක්ෂණ දෙකක් ලියන්න.
	(v)	ඉහත (iv) ට අදාල තුලිත රසායනික පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
	(vi)	X හි හයිඩුයිඩය ආම්ලික Na_3AsO_4 දාවණයක් තුළින් බුබුළනය කළවිට සිදුවන පුතිකිුිිිිිිිිිිිිිිිිි සඳහා තුලිත අයනික සමීකරණය ලියන්න.
(b)		යක් යම් ඇනායනයක් සහිත දාවණයක් පරීක්ෂණ නලයකට ගෙන, විදාහගාරය තුළ තිබූ දින කෙට කලින් පිළියෙල කරන ලද FeSO4 දාවණයක සමාන පරිමාවක් පරීක්ෂණ නලයට දමා
		ා දිගේ සාන්දු $ m H_2SO_4$ බිංදු බැගින් එකතු කරන ලදී. දුාවණයේ පරීක්ෂා කරන ඇනායනය සද ඔහු බලාපොරොත්තු වූ නිරීක්ෂණය නොලැබුණි.
	(i)	ශිෂායා උත්සාහ කර ඇත්තේ කුමන ඇනායනයක් දුාවණයේ ඇති බව තහවුරු කිරීමටද?
	(ii)	ඔහු බලාපොරොත්තු වූ නිරීක්ෂණය කුමක්ද?
Big.		

හයන විදැ	II Ga	- 03 -	12 ශේුණිය
(iii)	එම නිරි 	්ත්ෂණය නොලැබීයාමට හේතුව තුමක්ද?	T.
(c) (i)		ත් පෙන්වන සියලුම ඔක්සිකරන අවස්ථා සඳහන් කොට : ශ්ය බැගින් දෙන්න.	එක් එක් අවස්ථාව සඳහා
(ii)	ක්ලෝරී:	න් සාදන ඔක්සයිඩ තුනක් සඳහන් කරන්න. (උපරිම ඔක්සි	යිකරන අංකය ඇතුළත්ව)
(iii)	ක්ලෝරී් වන පිළි	න් සාදන ඔක්සෝ අම්ල හතරක රසායනික සූතු ලියා ඒවා ආඡි වෙලට සකස් කරන්න.	මලික පුභලතාව ආරෝහනය
(iv)	ක්ලෝරී ත	් NaOH සමග සිදුකරන සියලු පුතිකිුයා සඳහා තුලිත රස	ායනික සමීකරණ ලියන්න
(v)	මූලදුවන (Na, Be යන මූලදුවා අතරින් දෙකක සන ක්ලෝරයිඩ දෙක වෙන වෙනම හඳුනා ගැනීම සඳහා පහන්සිළු පරීක් ව මූලදුවා දෙක මොනවාද?	ඔබට සපයා ඇත. මෙ ෂාව කරන ලදී.
	(b) çıc	්ලේ පරීක්ෂාව සිදුකිරීමේදී ඝන ලවණය සාන්දු HCl වල ්තුව කුමක්ද?	දිය කිරීම සිදුකරන ලදී.
,		මූලදුවා වලට අදාල දැල්ලේ වර්ණ සඳහන් කරන්න.	
	•••••		

02. (a) පහත සඳහන් මූලදුවා / සංයෝග සලකන්න. ඒවා ඇසුරින් පමණක් අසා ඇති පුශ්නවලට පිළිතුරු සපයන්න.

F, Cl, N, S, Sb, Pb, CoCl2, AgBr

- (i) තලීය නිකෝණාකාර හැඩයක් ඇති ඔක්සයිඩයක් සාදන මූලදුවාය
- (ii) භාෂ්මික හයිඩුයිඩයක් සාදන මූලදුවපය
- (iv) ජලය සමග සුදු අවක්ෂේපයක් ඇති කරන ක්ලෝරයිඩක් සාදන මූලදුවාය

- (vii) ජලයේ අදුාවා ක්ලෝරයිඩයක් සාදන මූලදුවා/මූලදුවාය
- (viii) කෝණික හැඩයෙන් යුත් ආම්ලික හයිඩුයිඩයක් සහ ආම්ලික ඔක්සයිඩයක් සාදන මූලදුවාය

- (b) NH2SO3H අණුක සූතුය සහිත amino sulphonic අම්ලයේ සැකිල්ල පහත පරිදි වේ.

(i) amino sulphonic අණුව සඳහා වඩාත් ම පිළිගත හැකි ලුවිස් වනුහය අඳින්න.

(ii) මෙම අණුව සඳහා තිබිය හැකි සම්පුයුක්ත වයුහ 4 ක් අඳින්න.

රසාග	නෙ විදහව	11	- 07	-		12 ලේණිය
		1.0 පීඩනය හා 27 කළවිට වයරයේ පරි	r°C හි පවතින N2 3මාව 10% වැඩි වන	ැඩි කිරීම සඳහා වියරය වායුවේ පරිමාව සෙ අතර අවසාන උෂ්	ශත්වය 37°C ට වැ	£⊕₽.
	(iv) 9	ඉහත (iii) සඳහන් අ	_{ාකා} රයට N ₂ පිරවූ (පසු වයරය තුළ N ₂	හි මවුල භාගය ගණ	නය කරනන.
04. (a)	(i) A	, B, C, D හා E ය දෙක්කුණ කිහිපයක §	ානු සෝඩියම් සංයෝ අතිඵල පහත දැක්වේ	ෝග වේ. මේවායේ :	Annual An	කරන ලද E
	500		В		D සුදු අවක්ෂේපයකි.	5000
7.	පුතිකාරක Pb(NO ₃) ₂ කළු අවක්ෂේපයකි.	සුදු අවක්ෂේපයකි. රත් කළවිට දියවී, සිසිල් වනවිට ස්ඵටික වෙන්වේ.	සුදු අවක්ෂේපයකි. රත් කළවිට කළු පැහැ විය.	සුදු අවක්ෂිම්පයක් රත් කළවිට සිදු පාට සනයකි.	අවක්ශේෂයකි. රත් කළවිට දියවී සිසිල් වනවිට ස්එටික සැඳේ.
	තනුක අම්ලයක්	දුර්ගන්ධයක් සහිත වායුවක් පිටවේ.	පැහැදිලි වෙනසක් නැත.	දාවණය ලා කහ පැහැති වේ.	කටුක ගඳක් ඇති වායුවක් පිටවේ.	පැහැදිලි වෙනසක් නැත.
L	I.			ා රසායනික සූතු (ලියන්න.	
		B =		E =		
	II.	••••••		විපර්යාස සඳහා කුද්		
	(ii) Cu ₂ I.		යේදී NO3 අයන ස පුතිකිුයාව ලියන්න	මෙග පුතිකිුයා කර ා.	Cu ²⁺ , NO ము ద	ලය ලබාදේ.
	II.		පුතිකිුයාව ලියන්න			

රසායන විදහව II			- 08 -		8-00
.III.	තුලිත රසායනික	සමීකරණය	ලියන්න.		
O ₂ සමග ද	අයත් Z නම් මූල හෙසුවෙන් පුතිකියා දුනාගන්න.	ලදුවනය ZO ස නොකරයි.	ාහ ZO ₂ යා Z, හුමාලය ර	න ඔක්සයිඩ ර මෙග පුතිතිය	දෙකක් සාදයි. ZO වායුගෝලීය ාවෙන් ZO නිපදවා ගත හැකිය.
(ii) Z S	ස්ථායි ක්ලෝරයිඩ				
(iii) Z ສີ ລ	හුරූපී ආකාර සඳ	ාන් කරන්න.	ඒවායේ කාර්	රමික පුයෝජ	iන එක බැගින් සඳහන් කරන්න.
ආරෝහනය වෘ	කෙටි ආවර්තයක ා පිළිවෙල වනුගෙ ග්ති පහත වගුවේ	3R < P < Q	ාත මූලදුවා වේ. P, Q	තුනක් වේ. සහ R මූර	. මෙම මූලදවාවල දවාංකය පුදවාවල පළමුවන හා තෙවන
වූලදුවමූ	3	P	Q	R	
	අයනීකරණ kJ mol ^{–1}	1040	1008	1201	,
	අයතීකරණ kJ mol ^{–1}	2504	2990	3474	
P Q R	මූලදුවස හඳුනාග <u>ැ</u> මූලදුවස හඳුනාගැ		ශක්ති විචලා	නයට හේතු	දක්වන්න.
	· · · · · · · · · · · · · · · · · · ·				
(iii) Q මූලදුවනය තුලිත රසාය:	, ජලීය NaOH ස නික සමීකරණය	මග දක්වන ලබාගන්න.	පුතිකිුයාව ස	ඳහා තුලිත	අර්ධ පුතිකිුයා ලියා දක්වමින්
(iii) Z හි බ	නුරුපී ආකාර සඳා කෙටි ආවර්තයක හ පිළිවෙල වනුගේ න්ති පහත වගුවේ ප්‍යනීකරණ kJ mol ⁻¹ මූලදුවා හඳුනාගෘ මූලදුවා හඳුනාගෘ	8 හිටි අනුය	ඒවායේ කාර් නත මූලදුවත වේ. P, Q 1008 2990	තුනක් වේ. සහ R මූර R 1201 3474	මෙම මූලදුවපවල දුවාංකය පුදුවපවල පළමුවන හා තෙවන දක්වන්න. අර්ධ පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි

B කොවස - රචනා

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න.

 බොයිල් නියමය සඳහන් කරන්න. II. පරිපූර්ණ වායු සමීකරණය භාවිත කර මෙම නියමය වපුත්පන්න කරන්න. (a) 5.

- (ii) වැන්ඩාවල් සමීකරණය ලියා එහි පද හඳුන්වන්න. I. වායුවක මධානා වර්ග පුවේගය සඳහා පුකාශනයක් M (මවුලික ස්කන්ධය), R (සර්වනු වායු
- නියතය), T (නිරපේක්ෂ උෂ්ණත්වය) යන පද ඇසුරින් ගොඩ නගන්න. (iii)
 - II. A_2 සහ B_2 යනු පරිපූර්ණ වායු දෙකකි. A_2 හි මවුලික ස්කන්ධය B_2 හි මවුලික ස්කන්ධයට වඩා විශාල වේ. මෙම වායූන් සඳහා මැක්ස්වෙල් - බෝල්ස්ට්මාන් වාාප්ති වකු T_1 සහ T_2 $(T_2 > T_1)$ උෂ්ණත්ව දෙකකදී එකම අක්ෂ පද්ධතිය යොදා ගනිමින් ඇඳ දක්වන්න. වකු $A_2\left(T_1\right),\ B_2\left(T_1\right), A_2\left(T_2\right)$ සහ $B_2\left(T_2\right)$ ලෙස අංකනය කරන්න.
- (b) සිලින්ඩරාකාර දෘඪ බඳුනක හරස්කඩ වර්ගඵලය $5\,{
 m dm}^2$ වන අතර එහි පතුලට ආසන්න වන පරිදි වූ පරිමාව නොගැනිය හැකි තරම වූ කරාමයක් සහ සචල පිස්ටනයක් පියන ලෙස පවතී. මෙම බඳුනට ${
 m A}_2$ වායුව ඇතුළු කළ පසු පතුලේ සිට පිස්ටනයට දුර $2~{
 m dm}$ ක් වන අතර වායුවේ උෂ්ණත්වය $27\,^{\circ}$ C සහ බාහිර පීඩනය $1 \times 10^{5}\,\mathrm{Pa}$ වේ. පරිමාව $15\,\mathrm{dm}^3$ වූ තවත් දෘඪ බඳුනක් B_2 නම් වායුවෙන් සමන්විත වන අතර එහි උෂ්ණත්වය 27 $^{\circ}$ C ද පීඩනය $4 imes 10^5 \, \mathrm{Pa}$ ද වේ. මෙම වායු බඳුන සිලින්ඩරාකාර වායු බඳුනට කරාමය හරහා සම්බන්ධ කරන ලදී.

- (i) A_2 හා B_2 වායු පුතිකියා නොකරන්නේ යැයි උපකල්පනය කර, මිශුණය තුළ A_2 සහ B_2 වායු මවුල පුමාණ අතර අනුපාතය ලබාගන්න.
- (ii) පද්ධතියේ සමස්ථ පීඩනය කොපමණ ද?
- (iii) වායු දෙකෙහි ආංශික පීඩන ගණනය කරන්න.
- $127\,^{\circ}\mathrm{C}$ දී A_2 සහ B_2 වායු පහත දැක්වෙන පරිදි පුතිකියා වේ. (iv)

$$2A_{2(g)} + 5B_{2(g)} \rightarrow 2A_2B_{5(g)}$$

සිලින්ඩරාකාර බඳුනේ පිස්ටනය (iii) හි දැක්වෙන පිහිටීමේ ම නිශ්චලව පවතින පරිදි බාහිර බල යොදා පද්ධතිය 127°C දක්වා රත් කරන ලදී.

- වායු මිශුණය තුළ පවතින එක් එක් වායුවේ මවුල පුමාණ සොයන්න.
- II. පද්ධතියේ අවසාන පීඩනය ගණනය කරන්න.
- III. එක් එක් වායුවේ අාංශික පීඩන ගණනය කරන්න.
- (c) සියුම්ව කුඩු කරන ලද CaCO3, NaHCO3 මිශුණයක සාම්පලයක් තදින් රත් කළවිට ස්කන්ධ හානිය 8.4 g ක් විය. මෙම තාප වියෝජනයේදී පිටව ගිය ජලයේ ස්කන්ධය 1.8 g කි. මෙම සාම්පලය තුළ වූ CaCO3 සහ NaHCO3 ස්කන්ධයන් ගණනය කරන්න. (සා.ප.ස්. Na - 23, H-1, C-12, O-16, Ca-40)

- පහත එන්තැල්පි අර්ථ දක්වන්න. (a)
 - (1) පුතිකිුියාවක සම්මත එන්නැල්පිය
 - (2) සම්මත දාවණ එන්තැල්පිය
 - (ii) එන්තැල්පි විපර්යාසයන් කිහිපයක අගයන් පහත දී ඇත.

AgCl(s) වල සම්මත උත්පාදන එන්තැල්පිය

 $\Delta H_f^0 = -127 \text{ kJ mol}^{-1}$

Ag(s) වල සම්මත පරමාණුකරණ එන්තැල්පිය

 $\Delta H_{atm}^{\theta} = +278 \, kJ \, mol^{-1}$

Ag(g) වල සම්මත පළමු අයතිකරණ එන්තැල්පිය

 $\Delta H_{J_1}^0 = +731 \text{ kJ mol}^{-1}$

Cl₂(g) වල සම්මත තුකරණ එන්තැල්පිය

 $\Delta H_{atm}^{\theta} = +122 \text{ kJ mol}^{-1}$

Cl(g) වල සම්මත පළමු ඉලෙක්ටෝන බන්ධුතාව

 $\Delta H_{EA_1}^{\theta} = -349 \text{ kJ mol}^{-1}$

Ag + (g) වල සම්මත ජලීකරණ එන්තැල්පිය

 $\Delta H_{hvd}^{\theta} = -473 \text{ kJ mol}^{-1}$

Cl¯(g) වල සම්මත ජලීකරණ එන්තැල්පිය

 $\Delta H_{\text{hyd}}^{\theta} = -378 \text{ kJ mol}^{-1}$

- (1) ඉහත එන්තැල්පි විපර්යාසයන් යොදා ගනිමින් AgCl(s) හි සම්මත දැලිස් එන්තැල්පිය $\left(\Delta H_L^{ heta}
 ight)$ බෝන් - හේබර් චකුයක් මගින් ගණනය කරන්න.
- (2) AgCl(s) හි සම්මත දාවණ එන්තැල්පිය ගණනය කරන්න.
- Zn (s) ලෝහය, CuSO4(aq) දුාවණය සමග සිදුවන පුතිකිුයාව පහත දැක්වේ. (b)

 $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$

මෙම පුතිකිුියාවේ එන්තැල්පි විපර්යාසය පරීක්ෂණාත්මකව සෙවීම සඳහා පහත පරීක්ෂණය සිදුකරන CE.

 $0.25\,\mathrm{mol\,dm^{-3}}\,\mathrm{CuSO_4(aq)}$ දාවණයකින් $200.0\,\mathrm{cm^3}\,\mathrm{කාප}$ පරිවාරක බඳුනකට දමා එයට වැඩිපුර Zn (s) කුඩු එකතු කරන ලදී. එහිදී CuSO4(aq) දාවණයේ උෂ්ණත්වය 24°C සිට 36°C දක්වා ඉහළ

නැගුණි. ජලයේ ඝනත්වය 1 g cm ⁻³ ජලයේ විශිෂ්ඨ තාප ධාරිතාව $4.2\,\mathrm{JK}^{-1}\mathrm{g}^{-1}$

- (1) මෙම පුතිකිුියාවේදි තිපදවූ තාප ශක්තිය ගණනය කරන්න.
- (2) මෙම පුතිකිුයාවේ එන්තැල්පි විපර්යාසය ගණනය කරන්න.
- එතීන් (C_2H_4) නිපදවීමට යොදාගත හැකි පුතිකිුයාවන් දෙකක් පහත දැක්වේ. (c)
 - $H-C \equiv C-H(g)+H_2(g) \rightarrow H_2C=CH_2(g)$
 - $CH_3 CH_2OH(g) \xrightarrow{Al_2O_3} H_2C = CH_2(g) + H_2O(g)$
 - ඉහත ① හා ② පුතිකි්යාවන්වල සම්මත පුතිකියා එන්තැල්පි ගණනය කරන්න.

බන්ධනය	ස.බ.වි. එන්තැල්පිය kJ mol ^{–1}
С-Н	413
C=C	598
C-C	346
C≡C	837
C-0	358
О-Н	464
H-H	436

II. $25\,^{\circ}\mathrm{C}$ දී 0 හා $\mathcal D$ පුතිකියාවත් දෙකෙහි $\Delta\mathrm{G}^{\,0}$ අගය ගණනය කරන්න.

සංයෝගය	සම්මත එන්ටොපිය J mol ⁻¹ K
H-C = C-H(g)	+ 228
CH ₃ CH ₂ - OH(g)	+283
H ₂ O(g)	+188
H ₂ (g)	+131
$CH_2 = CH_2(g)$	+220

III. ඉහත (D) හා (D) පුතිකියාවලින් වඩාත් පහසුවෙන් සිදුවනුයේ කුමන පුතිකියාවදැයි හේතු සහිතව දක්වන්න.

(a) (i) පහත සඳහන් සංයෝගවල රසායනික සූතුය ලියන්න.

සංයෝගය	රසායනික සූතුය
(1) Sodium perchlorate	
(2) Chromium (III) selenate (VI)	
(3) Ammonium oxalate	
(4) hydrosulfuric acid	

(ii) X යනු s ගොනුවේ මූලදවසයකි. X හි ජලීය නයිටේටයේ සූතුය X(NO₃)₂ වේ. X ලෝහය සිසිල් ජලය සමග පුතිකියා නොකරන අතර පහන් සිළු පරීක්ෂාවේදි වර්ණයක් ලබා නොදේ. X හි ජලීය නයිටේටයට තනුක NH₄OH දාවණය එක් කළවිට ජෙලටිනීය සුදු අවක්ශේපයක් ලබාදේ.

- (i) X හඳුනාගන්න.
- (ii) P_1, P_2, P_3, P_4 යන සංයෝග සහ G_1, G_2 යන වායූන්ගේ රසායනික සූතුය ලියන්න.
- (b) (l) පහත සඳහන් පුතිකිුියා තුලිත කරන්න.
 - (i) $KNO_3 + Cr_2(SO_4)_3 + Na_2CO_3 \rightarrow Na_2CrO_4 + Na_2SO_4 + KNO_2 + CO_2$

 - (2) පහත පුතිකිුිිිිිිිිිිි සම්පූර්ණ කර තුලිත කරන්න.
 - (i) සාන්දු $HNO_3(aq) + H_2S(g) \xrightarrow{\Delta}$
 - (ii) $C(s) + සාන්ද H_2SO_4(aq) \longrightarrow \Delta$
 - (iii) $\operatorname{Cl}_{(2)}(g)+$ උණු සාන්දු NaOH (aq) \longrightarrow
 - (iv) $S(s) + NaOH(aq) \xrightarrow{\Delta}$
 - (v) Mg(s)+ සාන්දු $H_2SO_4(aq)$ \longrightarrow

- පුාමාණික H⁺/KMnO₄ දුාවණයක් භාවිතා කර දෙන ලද FeSO₄ දුාවණයක සාන්දණය නිර්ණය කළ හැකිය. මේ සඳහා අළුත සැදු (එවෙලේ සාදන ලද) ඇමෝනියම් ෆෙරස් සල්පේට දුාවණ 50 cm³ ගෙන එයට H₃PO₄ 5 cm³ පමණ එක්කර, ඉන්පසු සාන්දුණය 0.02 mol dm⁻³ වන H⁺/KMnO₄ සමග අනුමාපනය කරන ලදී. වැයවූ පරිමාව 10 cm ³ විය.
 - ඉහත පුතිකිුයාව සඳහා ඔ'කරණ/ඔ'හරණ අර්ධ පුතිකිුයා ලියා තුලින සමීකරණය ගොඩ නගන්න. FeSO₄ දුාවණයේ සාන්දුණය ගණනය කරන්න.
 - විදනාගාරයේදී මෙම FeSO4 දාවණය මැතීම සඳහා ඔබ භාවිතා කරන උපකරණය නම් කර එය (iii) යොදා ගැනීමට හේතු වූ විශේෂ කරුණක් සඳහන් කරන්න.
 - මෙහිදී FeSO₄ දුාවණයට අනුමාපනයට පෙර H₃PO₄ අම්ලය එකතු කරන්නේ ඇයිදැයි විස්තර (iv) කරන්න.
 - මෙම අනුමාපනයේ අන්ත ලක්ෂාය නිර්ණය කරන්නේ කෙසේ ද? දර්ශකයක් භාවිතා කිරීම (v) කළයුතු ද?/නැද්ද යන්න පැහැදිලි කරන්න.
- එක්තරා හයිඩොකාබනයක කාබන් 85.71% ක් අඩංගුව ඇත. එම හයිඩොකාබනයේ සාපේක්ෂ (a) අණුක ස්කන්ධය 70.13 නම් එහි අණුක සූතුය සොයන්න. (H = 1, C = 12)
 - ඉහත සංයෝගය සඳහා පැවතිය හැකි වනුහ සමාවයවික 5 ක් ලියන්න. (ii)
 - එම එක් වසුහ සමාවයවිකයක් තෝරාගෙන එය HBr සමග දක්වන පුතිකිුයාව ලියන්න. (iii)
 - ඉහත (iii) හි පුතිකිුිිිියාවට අදාළ යාන්තුණය ලියන්න. (iv)
 - (v) එම පුතිකිුියාවේ වර්ගය නම් කරන්න.
 - පහත දී ඇති සංයෝගවල IUPAC තාම ලියන්න. (b)

III.
$$H-C - C - C - C - C = CH_2$$

පහත දැක්වෙන කාබනික සංයෝග ඒවායේ තාපාංක ආරෝහණය වන පිළිවෙලට සකස් කරන්න.

පහත දී ඇති පුතිකිුිිිියාවල දී ලැබෙන පුධාන එල ලියන්න. (c)

II.
$$CH_3 - CH = CH_2 \xrightarrow{HBr}$$

III.
$$CH_3 - C \equiv C - H \xrightarrow{Hg^{2+}/\text{ කනුක } H_2SO_4}$$

IV.
$$CH_3 - C \equiv C - H \xrightarrow{HBr}$$

$$V$$
 $CH_3 - C ≡ C - CH_3$ $\xrightarrow{H_2 / \Theta}$ න්ඩලා උත්ලේරකය

 CH_3 -CH = CH_2 සහ CH_3 -C \equiv C -H එකිනෙක වෙන් කර හඳුනාගැනීම සඳහා රසායනික (ii) කුමයක් ඉදිරිපත් කරන්න.

(a) d ගොනුවේ ආන්තරික මූලදුවසයන් වන M හි නයිදේවටය සඳහා වන පහත පුතිකියා දාමය සළකන්න. 9,

- (i) M ලෝහය, X වායුව සහ A සිට E දක්වා සංයෝග හඳුනාගන්න.
- (ii) M හි භුමි අවස්ථාවේ ඉලෙක්ටොනික වින නාසය ලියන්න.
- (ii) (i), (ii), (iv), (v) පියවරවලදී සිදුවන පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (iv) (C) සංගත සංකීර්ණය සඳහා IUPAC නාමය ලියන්න.
- (v) M හි පුයෝජන දෙකක් ලියන්න.
- (b) Y^{2+} අයනයෙහි ජලීය දුාවණය කොළ පැහැති සංකීර්ණයක් සාදයි. එය භාෂ්මික මාධාශයේ $m H_2S$ වායුව සමඟ කළු අවක්ෂේපයක් ලබාදේ. m P,Q,R,S යනු m Y ආන්තරික ලෝහයෙහි +2 ඔක්සිකරණ අවස්ථාවේම පවතින සංගත සංකීරණ 4 කි. ඒවායේ අෂ්ඨතලීය ජාාමිතියක් පවතී. පහත සඳහන් බන්ධ බාණ්ඩ සහ අයනවලින් P, Q, R, S සමන්විත වේ.

$$Na^+$$
, CI^- , SO_4^{2-} , NH_3

- P යනු උදාසීන සංයෝගයකි.
- Q ජලීය BaCl₂ සමඟ සුදු අවක්ෂේපයක් ලබාදෙන අතර එම අවක්ෂේපය තනුක අම්ලයක දිය නොවේ.
- R ජලීය AgNO3 සමග තනුක NH3 වල දියවන සුදු අවක්ෂේපයක් ලබා දේ.
- ullet S මවුල එකක් ජලීය මාධායේදී අයන මවුල 3 ක් ලබාදෙන අතර ${
 m AgNO_3}$ සමග අවක්ෂේප තොවේ.
- (i) Y ලෝහය හඳුනාගන්න.
- එමඟින් Y හි සංගත සංකීර්ණ වන P, Q, R හා S හි වසුහ සූතු ලියන්න. (ii)
- R හි සාන්දණය $0.04\,\mathrm{mol\,dm^{-3}}$ වන දාවණ $50\,\mathrm{cm^3}$ ක් සමග වැඩිපුර $\mathrm{AgNO_3}$ පුතිකිුියාවෙන් ලැබෙන AgCl ස්කන්ධය කවරේ ද?
- (iv) බන්ධන විදහා දැවෙන පරිදි Q හි සංකීර්ණ අයනයෙහි වනුහය අඳින්න.
- (v) S හි IUPAC තාමය ලියන්න. (සා. ප. ස්: Ag = 108, Cl = 35.5, N = 14, O = 16)

- (c) තේතු පැහැදිලි කරන්න.
 - (i) Sc සහ Zn ආන්තරික ලෝහ නොවේ.
 - (ii) දුවාංක සහ තාපාංක සැළකීමේදී Mn හා Zn හි කැපී පෙනෙන අඩු බවක් ඇත.
- (a) A හා B ජලයේ දුාවා, ස්ථායි සංයෝග දෙකකි. Y යනු A හා B හි සන මිශුණයකි. මෙම මිහුණය සම්බන්ධයෙන් පහත පරික්ෂා සිදුකරන ලදී.

	පරික්ෂාව	නිරීක්ෂණය කහ පැහැති අවක්ෂේපයක් (P _I) සැදුර
(a)	Y හි කුඩා කොටසකට ජලය එකතු කර හොඳින්	කහ පැහැති අවකාශයේ
(b)	සොලවන ලදී. P _I පෙරා වෙන්කර පෙරනයට (1 දුාවණය)	වායුවක් පිටවිය. (Q ₁)
(c)	වැඩිපුර ජලීය NaOH එකතු කර රත් කරන ලදී. (b) පරීක්ෂණයේදී වායු පිටවීම නතර වූ පසු	Q _I වායුව නැවත පිටවීය.
(c)	(b) පරීක්ෂණයේදී වායු පිටවීම නතර වූ පසු එයට Al කුඩු එකතු කර නැවත රත් කරන ලදී.	Q _I වායුව නැපය පෙ

 P_1 සහ Q_1 සඳහා පහත පරීක්ෂා සිදුකරන ලදී.

	පරීක්ෂාව	තිරීක්ෂණය
	(a) P _I වෙන්කර, එය වැඩිපුර තනුක HCl අඩංගු දුාවණයකට එකතු කිරීම.	තැඹිලි පැහැති දාවණයක් (2 දුාවණය) සහ සුදු පැහැති අවක්ෂේපයක් (P ₂) ලැබුණි.
P_l	 (b) P₂ සඳහා පහත පරීක්ෂා කරන ලදී. ජලය එකතු කර නවවන ලදී. දාවණය කාමර උෂ්ණත්වයට සිසිල් වීමට ඉඩ හරිනු ලැබේ. 	 අවක්ෂේපය දියවී අවර්ණ දුාවණයක් ලැමු ඉදිකටු හැඩයට ස්එටික වෙන්විය.
,	(a) Q ₁ වායුව ලිට්මස් පතු මගින් පරීක්ෂා	රතු ලිට්මස් නිල් පැතැ විය.
Q_1	කරන ලදී. (b) නෙස්ලර් පුතිකාරකයෙන් පොගවන ලද පෙරහන් කඩදාසියක් අල්වන ලදී.	පෙරහන් කඩදසිය දුඹුරු පැහැයට හැරුණි.

- (i) හේතු දක්වමින් Y දාවණයේ ඇති A සහ B සංයෝග දෙක හඳුනාගන්න. (අවශා තැන්හිදී තුලිත සමීකරණ ලියන්න.)
- (a) P₁ සහ P₂ අවක්ෂේපයන් හි
 - (b) 1 දුාවණය සහ 2 දුාවණයන් හි ඇති රසායනික විශේෂයන් හඳුන්වන්න.
- (b) සන ${
 m KNO_3}$ සහ ${
 m Ca(NO_3)_2}$ මිශුණයකින් $1.653\,{
 m g}$ ක් ගෙන එය නියත ස්කන්ධයක් ලැබෙන තෙක් රත් කරන ලදී. ලැබෙන ශේෂය ජලයට එකතු කර දාවණ 500 cm³ ක් පිළියෙල කරගනී. මේ දාවණයෙන් $25\,\mathrm{cm}^3$ ට ආම්ලික මාධාලය් ඇති $0.02\,\mathrm{mol\,dm}^{-3}$ KMnO $_4$ දාවණයකින් $25\,\mathrm{cm}^3$ ක් (වැඩිපුර) එක් කරයි. විනාඩි 15 ට පසුව මෙම දුාවණය $60\,^{\circ}$ C ට පමණ උණුසුම් කර $0.05\,\mathrm{mol\,dm}^{-3}$ ඛක්සලික් අමල දුාවණයක් සමග අනුමාපනය කිරීමේදී 20 cm³ ක් වැය විය. (K = 39 ; Ca = 40 ; N = 14 ; O = 16)
 - ඉහත පරීක්ෂණයේදී සිදුවන සියලු පුතිකිුිිිිිිිිිිි සඳහා තුලිත සමීකරණ ලියන්න.
 - සාම්පලයේ වූ $\mathrm{KNO_3}$ සහ $\mathrm{Ca(NO_3)_2}$ වල ස්කන්ධ සොයන්න. (ii)
 - සාම්පලය රත් කිරීමේදී පිටවන NO_2 සහ O_2 හි මවුල අනුපාතය ගණනය කරන්න.