Лабораторная работа 1.4.2 LOL

Определение ускорения свободного падения при помощи оборотного маятника

Автор: Воробьев Игорь, Александр Егошин

13 апреля 2023 г.

Цель работы: с помощью оборотного маятника измерить величину ускорения свободного падения.

Оборудование: оборотный маятник с двумя подвесными призмами и двумя грузами (чечевицами); электронный счётчик времени и числа колебаний; подставка с острием для определения положения центра масс маятника; закреплённая на стене консоль для подвешивания маятника; металлические линейки, штангенциркуль длиной 1 м.

Теоретические сведения

Физический маятник - твёрдое тело, способное совершать колебания в вертикальной плоскости, будучи подвешено за одну из своих точек в поле тяжести. Ось, проходящая через точку подвес перпендикулярно плоскости качания, называется осью качания маятника.

При малых колебаниях период колебаний физического маятника определяется формулой:

$$T = 2\pi \sqrt{\frac{I}{mgl}} \quad (1)$$

где I - момент инерциимаятника относительно оси качания, m - масса маятника, l - расстояние от оси качания до центра масс маятника. Если сравнить (1) с известной формулой колебаний математического маятника длиной l $(T=2\pi\sqrt{\frac{l}{g}})$ определить приведённую длину физического маятника как:

$$l_{\rm np} = \frac{I}{ml} \quad (2)$$

где $l_{\rm np}$ - приведённая длина. Смысл приведённой длины в том, что при длине математического маятника, равной $l_{\rm np}$, его период колебаний совпадает с периодом колебаний физического маятника.

Теорема Гюйгенса об оборотном маятнике

Пусть O_1 - точка подвеса физического маятника, а ${\bf C}$ - его центр масс. Отложим отрезок длиной l вдоль линии O_1C , и обозначим соответствующую точку как O_2 — эту точку называют центром качания физического маятника. Заметим, что приведённая длина всегда больше расстояния до центра масс, поэтому точка O_2 лежит по другую сторону от центра масс.

Точки O_1 и O_2 обладают свойством взаимности: если перевернуть маятник и подвесить его за точку O_2 то его период малых колебаний останется таким же, как и при подвешивании

за точку O_1 .

$$T_1 = 2\pi \sqrt{\frac{I_1}{mgl_1}}, \quad T_2 = 2\pi \sqrt{\frac{I_2}{mgl_2}}$$
 (3)
 $I_1 = I_c + ml_1^2, \quad I_2 = I_c + ml_2^2$ (4)

где I_c - момент инерции относительно оси, проходящей через точку ${\bf C}.$

Измерение д

Пусть $L=O_1O_2=l_1+l_2$. Если $T_1=T_2$, то $L=l_{\rm np}$. Из (1) и (2) находим ускорение свободного падения:

$$g_0 = (2\pi)^2 \frac{L}{T^2} \quad (5)$$

Точного совпадения $T_1 = T_2$ на опыте добиться, конечно, невозможно. Поэтому получим формулу для определения ускорения свободного падения g, если измеренные периоды незначительно различаются: $T_1 = T$ $T_2 = T + \Delta T$. Из системы (3) и (4) получаем:

$$g = (2\pi)^2 \frac{l_1^2 - l_2^2}{T_1^2 l_1 - T_2^2 l_2} \quad (6)$$

что также можно переписать как

$$g = g_0 \frac{\lambda - 1}{\lambda - \frac{T_2^2}{T_1^2}} \quad (7)$$

где $g_0=(2\pi)^2L/T^2$ и $\lambda=\frac{l_1}{l_2}$

Проанализируем отличия (5) и (7). Пусть $\varepsilon = \frac{\Delta T}{T} \ll 1$ - относительное отклонение при измерении периодов. Тогда при $\lambda \neq 1$, пользуясь малостью ε , получим

$$g = g_0 \frac{\lambda - 1}{\lambda - (1 + \varepsilon)^2} \approx g_0 \frac{1}{1 - \frac{2\varepsilon}{\lambda - 1}} \approx g_0 (1 + 2\beta\varepsilon)$$

где обозначено

$$\beta \equiv \frac{1}{\lambda - 1} = \frac{l_2}{l_1 - l_2}$$

Видно, что поправка $\Delta g \approx 2\beta \varepsilon g$ к формуле (5) остаётся малой, если мало относительное различие измеренных периодов ε , но при этом также мал и коэффициент $\beta = \frac{l_2}{l_1 - l_2}$. Поэтому на практике желательно, чтобы выполнялось $l_1/l_2 > 2, 5$.

Экспирементальная установка

Применяемые в работе маятники представляет собой стержни цилиндрического или прямоугольного сечения длиной ~ 1 м и массой $\sim 1\div 1,5$ кг. Маятник подвешивается с помощью небольших треугольных призм (П1 и П2), острым основанием опирающихся на закреплённую на стене консоль. Ребро призмы задаёт ось качания маятника. На стержне закрепляются два дополнительных груза в форме «чечевицы» (Г1 и Г2). Для выполнения условия $l_1 = l_2$ внешнюю чечевицу Г2 следует крепить за призмой П2, а чечевицу Г1 (внутреннюю) - между призмами П1 и П2.

Регистрация времени колебаний проводится с помощью электронных счётчиков. Расстояния между точками установки маятников на консоли до электронных счётчиков фиксировано. Фиксированное положение призм однозначно задаёт приведённую длину оборотного маятника $l_{\rm np}=L$

Сбор данных

$$m_{\text{г1}}=1495, 8$$
 г, $m_{\text{г2}}=1484$ г, $m_{\text{п1}}=78, 9$ г, $m_{\text{п2}}=79, 6$ г, $m_{\text{ст}}=868, 3$ г, $\sigma_m=0, 5$ г $L_{\text{ст}}=1000, 6$ мм, $L=607, 5$ мм, $\sigma_L=0, 1$ мм

С помощью ⊥-образной подставки удалось определить расположение центра масс маятника с грузами, он оказался удалённым от края со стороны груза Г2 на расстояние 372,7 мм.

Рассчитанный с помощью формулы $\frac{\sum_i^n m_i x_i}{m_i}$ центра масс был удалён от правого края на расстояние 373,2 мм. Таким образом, $l_1=432$ мм, а $l_2=175,5$ мм, $\sigma_l=1$ мм.

Колебания маятника при подвешивании за П2 (20 колебаний, отклонение $\approx 5^{\circ}$)

Ν	$_{\rm t,c}$	$_{\mathrm{T,c}}$
1	31,22	1,561
2	31,22	1,561
3	31,14	1,557
4	31,13	1,5565

$$T_{\rm cp} = 1,558 \text{ c}$$

Колебания маятника при подвешивании за П1 (20 колебаний, отклонение ≈ 5°)

N	$_{ m t,c}$	$_{\rm T,c}$
1	31,20	1,56
2	31,20	1,56
3	31,21	1,5605
4	31,20	1,56
	'	'

$$T_{\rm cp} = 1,56 \, {\rm c}$$

Таким образом, $\triangle T = 0.002$ с, $\triangle T/T \approx 0,001$. Отклонение составляет около 0,1%, что говорит о правильности определения положения грузов. Теперь проведём окончательное измерение периодов T_1 и T_2 .

Колебания маятника при подвешивании за П2 (100 колебаний, отклонение ≈ 5°)

Ν	$_{\mathrm{t,c}}$	$_{\mathrm{T,c}}$
1	155,52	1,5552
2	155,5	1,555
3	155,39	1,5539

Используя формулу среднеквадратичного отклонения $\sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}(x_i-x_{\rm cp})^2}$ получим, что $\sigma_{T2}^{\rm cnyq}=0,0004$. Так как $\sigma_{T}^{\rm cuct}=0,001{\rm c},$ получим, что $\sigma_{T2}\approx0,001{\rm c}.$

Колебания маятника при подвешивании за $\Pi1$ (100 колебаний, отклонение $\approx 5^{\circ}$)

$$\sigma_{T1}^{\text{случ}} = 0,00015 \text{ c}, \, \sigma_{T1} \approx 0,001 \text{ c}.$$

Таким образом, $T_1 = T = 1,560 \pm 0,001$ с, $T_2 = T + \triangle T = 1,554 \pm 0,001$ с.

Вычисление ускорения свободного падения

Воспользуемся формулой (6) для определения g, получим, что g=9.8187 м/с2. Для расчёта погрешности g воспользуемся формулой:

$$\sigma_g = g\sqrt{(\frac{\sigma_L}{L})^2 + 4(\frac{\sigma_T}{T})^2 + 8(\beta \frac{\sigma_T}{T})^2 + 8(\beta \frac{\Delta T}{T} \frac{\sigma_L}{\Delta l})^2}$$

где $\triangle l=l_1-l_2$ и $\triangle T=T_1-T_2$. Таким образом, получаем, что $\sigma_g=0,0176$ м/с2 и $\frac{\sigma_g}{q}\thickapprox 0,2\%$.

$$g \approx 9,82 \pm 0,02 \text{ m/c}2$$

Можно рассчиать погрешность при расчётах по формуле (6), пользуясь стандартными правилами. Получим, что $\sigma_g = 0,0314$ м/с2, тогда $g \approx 9,82 \pm 0,03$ м/с2 и $\frac{\sigma_g}{g} \approx 0,3\%$. Вывод

Нам удалось измерить с высокой точностью величину ускорения свободного падения за счёт использования оборотного маятника с двумя подвесными призмами и двумя грузами.