

Tecnologia em Análise e Desenvolvimento de Sistemas MAT – Matemática **Prof. Piva** Lista de Exercícios Matrizes e Sistemas

- **1.** (F. Santana) Dadas as matrizes $A = (a_{ij})_{2,r2}$, tal que $a_{ij} = \begin{cases} i+j & \text{se } i=j \\ 0 & \text{se } i \neq j \end{cases}$ e $B = (b_{ij})_{2x2}$, tal que $b_{ii} = 2i - 3j$, calcule a matriz A + B.
- 2. (UECE 1991) Sejam as matrizes

$$M = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -4 \\ 1 & -2 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} \quad \text{e} \quad T = \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \quad \text{Se}$$

 $M \cdot T = N$, então x + y + z é igual a:

- a) 5
 - b) 6 c) 7

- **3.** (UFAL) Considere a matriz $A = (a_{ij})_{3x4}$, na

$$\text{qual} \quad a_{ij} = \begin{cases} i-j \text{ , se } i \leq j \\ i \quad \text{ , se } i > j \end{cases} \quad . \quad \text{O} \quad \text{elemento} \quad \text{que}$$

pertence à 3^a linha e à 2^a coluna da matriz A^t , transposta de A, é:

- a) 4 b) 2
- c) 1
- d) -1 e) -2
- 4. Assinale a afirmativa falsa.
 - a) a) $(A^t)^t = A$
 - b) b) $I^t = I$, em que Ié uma matriz identidade.
 - Se A é uma matriz linha, então A^t é uma matriz coluna.
 - d) Para toda matriz diagonal A, temos que $A^t = A$.
 - Toda matriz diagonal é uma matriz identidade.
- **5.** Coloque (V) se a alternativa for verdadeira ou (F) se for falsa.
- () A matriz $A = (a_{ij})_{3,1}$ é uma matriz linha.
-) A matriz $B = (b_{ij})_{1 \le 5}$ 5 é uma matriz coluna.
- () A matriz $C = (c_{ij})_{3x3}$, com $c_{ij} = \begin{cases} 1 \text{ se } i = j \\ 0 \text{ se } i \neq i \end{cases}$

é uma matriz identidade.

-) As matrizes $D = \left(d_{ij}\right)_{2x^2}$ e $E = \left(e_{ij}\right)_{2x^2}$, com $d_{ii} = -e_{ii}$, para 0 < i < 3 e 0 < j < 3, são opostas.
- () A matriz $X = \left(x_{ij}\right)_{3 \times 3}$ é a transposta da matriz $Y = (y_{ij})_{3x3}$ se $x_{ij} = y_{ji}$ para 0 < i < 4 e 0 < i < 4.

6. (UFRN) A solução da equação matricial a seguir é um número:

$$\begin{bmatrix} -1 & 2 \\ x & x^2 - 2 \end{bmatrix} = \begin{bmatrix} x+1 & x+4 \\ 3x+4 & 2 \end{bmatrix}$$

- a) maior que -1.
- b) menor que -1.
- e) entre 0 e 3.
- c) maior que 1.
- **7.** (UFBA) Se $P = \begin{bmatrix} 4 & 1 \\ -2 & 3 \end{bmatrix}$ e $Q = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$,

a matriz transposta de P - 2Q é:

a)
$$\begin{bmatrix} 10 & 8 \\ -3 & 11 \end{bmatrix}$$
 d) $\begin{bmatrix} -2 & 8 \\ -3 & 11 \end{bmatrix}$ b) $\begin{bmatrix} -2 & -12 \\ 5 & -5 \end{bmatrix}$ e) $\begin{bmatrix} 10 & 11 \\ -3 & 8 \end{bmatrix}$

d)
$$\begin{bmatrix} -2 & 8 \\ -3 & 11 \end{bmatrix}$$

b)
$$\begin{bmatrix} -2 & -12 \\ 5 & -5 \end{bmatrix}$$

e)
$$\begin{bmatrix} 10 & 11 \\ -3 & 8 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & -7 \\ -1 & -1 \end{bmatrix}$$

8. (PUC-BA) Se A e B são matrizes do tipo 2 × 3, qual das seguintes operações não pode ser efetuada?

- a) A+B
- d) $B^t \cdot A$
- b) $A^t B^t$
- e) $A \cdot B$
- c) $(A+B)\cdot B^t$
- 9. (Fuvest) Analise as matrizes a seguir:

$$A = (a_{ij})_{4x7}$$
, onde $a_{ij} = i - j$
 $B = (b_{ij})_{7x9}$, onde $b_{ij} = i$
 $C = (c_{ii})$ e $C = A \cdot B$

O elemento c_{63} é:

- a) -112
- d) 112
- b) -18
- e) não existe
- c) -56
- **10.** (Fuvest) Dadas as matrizes $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ e

$$B = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$$
, determine $a \in b$ de modo que

 $A \cdot B = I$, em que I é a matriz identidade.

11. (E. E. Mauá) Resolva a equação matricial AX = B, dadas as matrizes:

$$A = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} e A = \begin{pmatrix} 3 & 2 \\ -6 & -5 \end{pmatrix}.$$

12. (UFMT) Uma empresa fabrica três produtos. Suas despesas de produção estão divididas em três categorias (Tabela I). Em cada uma dessas categorias, faz-se uma estimativa do custo de produção de um único exemplar de cada produto. Faz-se, também uma estimativa da quantidade de cada produto a ser fabricado por estação (Tabela II).

Tabela I

Categorias	Produto		
	А	В	С
Matéria-prima	0,10	0,30	0,15
Pessoal	0,30	0,40	0,25
Despesas gerais	0,10	0,20	0,15

Tabela II

Q	uantidade	produzida j			
Produto	Estação				
	Verão	Outono	Inverno	Primavera	
Α	4.000	4.500	4.500	4.000	
В	2.000	2.600	2.400	2.200	
С	5.800	6.200	6.000	6.000	

As tabelas I e II podem ser representadas, respectivamente, pelas matrizes:

$$M = \begin{pmatrix} 0,10 & 0,30 & 0,15 \\ 0,30 & 0,40 & 0,25 \\ 0,10 & 0,20 & 0,15 \end{pmatrix} \text{ e } P = \begin{pmatrix} 4.000 & 4.500 & 4.500 & 4.000 \\ 2.000 & 2.600 & 2.400 & 2.200 \\ 5.800 & 6.200 & 6.000 & 6.000 \end{pmatrix}$$

A empresa apresenta a seus acionistas uma única tabela mostrando o custo total por estação de cada uma das três categorias: matéria-prima, pessoal e despesas gerais.

A partir das informações dadas, julgue os itens.

- () A tabela apresentada pela empresa a seus acionistas é representada pela matriz MP de ordem 3×4 .
- () Os elementos na primeira linha de MP representam o custo total de matéria-prima para cada uma das quatro estações.
- () O custo com despesas gerais para o outono será 2.160 dólares.
- **13.** (ITA) Considere as matrizes: $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 2 \end{bmatrix}$,

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \end{bmatrix} e \ B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Se x e y são soluções do sistema $(AA^t - 3I)X = B$, então x + y é igual a:

- a) 2 d) 1
- b) 1 e) -2
- c) 0

14. (UERJ) Considere as matrizes *A* e *B*.

 $A = \left(a_{xj}\right)$ é quadrada de ordem n, em que $a_{xj} = 1$, se x é par, e $a_{xj} = -1$, se x é impar. $B = \left(b_{xj}\right)$ é de ordem $n \times p$, em que $b_{xj} = jx$.

- a) Calcule a soma dos elementos da diagonal principal da matriz A.
- b) O elemento da quarta linha e da segunda coluna da matriz produto *AB* é igual a 4.094. Calcule o número de linhas da matriz B.
- 15. Resolva os sistemas lineares:

a)
$$\begin{cases} x-2y-2z=-1 \\ x & -2z=3 \\ y-z=1 \end{cases} \begin{cases} x-2y+z=4 \\ y-z=3 \end{cases}$$

c)
$$\begin{cases} 2x - 3y = 8 \\ x + 2y = -3 \\ 5x + 3y = -1 \end{cases}$$

16. (PUC-SP) Alfeu, Bento e Cíntia foram a uma certa loja e cada qual comprou camisas escolhidas entre três tipos, gastando nessa compra os totais de R\$ 134,00, R\$ 115,00 e R\$ 48,00, respectivamente.

Sejam as matrizes
$$A = \begin{pmatrix} 0 & 3 & 4 \\ 1 & 0 & 5 \\ 2 & 1 & 0 \end{pmatrix}$$
 e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, tais

que:

- os elementos de cada linha de *A* correspondem às quantidades dos três tipos de camisas compradas por Alfeu (1ª linha), Bento (2ª linha) e Cíntia (3ª linha);
- os elementos de cada coluna de *A* correspondem às quantidades de um mesmo tipo de camisa;
- os elementos de *X* correspondem aos preços unitários, em reais, de cada tipo de camisa.

Nessas condições, o total a ser pago pela compra de uma unidade de cada tipo de camisa é:

- a) R\$ 53,00
- d) R\$ 62,00
- b) R\$ 55,00
- e) R\$ 65,00
- c) R\$ 57,00