General stuff:

- \cdot vectors
- · matrices (det)
- \cdot test

1 Basics

1.1 Cartesian Coordinates

1.2 Contour Maps

2 2

2.1 Dot Product

The dot product of two vectors returns a scalar describing how The dot product is a derivation from the law of cosines:

$$c^{2} = a^{2} + b^{2} - 2ab \cos \theta$$

$$\|\vec{b} - \vec{a}\|^{2} = \|\vec{a}\|^{2} + \|\vec{b}\|^{2} - 2\|\vec{a}\| \|\vec{b}\| \cos \theta$$

$$\vec{a} = \langle a_{x}, a_{y} \rangle, \vec{b} = \langle b_{x}, b_{y} \rangle$$

$$(b_{x} - a_{x})^{2} + (b_{y} - a_{y})^{2} = a_{x}^{2} + a_{y}^{2} + b_{x}^{2} + b_{y}^{2} - 2\|\vec{a}\| \|\vec{b}\| \cos \theta$$

$$b_{x}^{2} - 2a_{x}b_{x} + \rho_{x}^{2} + b_{y}^{2} - 2a_{y}b_{y} + \rho_{y}^{2} = \rho_{x}^{2} + \rho_{y}^{2} + b_{x}^{2} + b_{y}^{2} - 2\|\vec{a}\| \|\vec{b}\| \cos \theta$$

$$a_{x}b_{x} + a_{y}b_{y} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$

We name each side of the resulting equation "the dot product" of the two vectors or $a \cdot b$. Note that \vec{a} and \vec{b} could have an arbitrary amount of entries and yield the same result, so:

$$a \cdot b = a_0 b_0 + a_1 b_1 + \dots + a_n b_n = \|\vec{a}\| \|\vec{b}\| \cos \theta \tag{1}$$

3 Matrices

3.1 What is a Matrix?

A Matrix is a rectangle of numbers. For instance, $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$ is a 2×3 matrix, for it has height 2 and width 3.

We can name any given entry a_{ij} where i is its row and j is its column.

Generally,
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
 is an $m \times n$ matrix.

3.2 Basic Operations

Scaling The name given to the operation of multiplying every entry within the matrix by a scalar. If a scalar is multiplied to the matrix, the scaling operation is implied.

Given a matrix
$$A$$
 and scalar α , $\alpha \cdot A = \begin{bmatrix} \alpha \cdot a_{11} & \dots & \alpha \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ \alpha \cdot a_{m1} & \dots & \alpha \cdot a_{mn} \end{bmatrix}$
Or, $\alpha \cdot A = \Sigma$

Adding When two matrices are separated by a "+" sign, this means that

3.3 Determinant

4 Transformations