Physics Quiz # 3

Date Given: April 21, 2022 Date Due: April 28, 2022

- Q1. (1 point) The time derivative of a vector is a:
 - (a) Tensor (multi-dimensional array of numbers).
 - (b) Either a scalar or a vector.
 - (c) Scalar.
 - (d) Vector.

Answer:

- (d) The time derivative of a vector is itself a vector having both a magnitude and a direction.
- Q2. (1 point) The magnitude of the velocity vector is called the:
 - (a) Acceleration and it is a vector.
 - (b) Acceleration and it is a scalar.
 - (c) Speed and it is a scalar.
 - (d) Speed and it is a vector.

Answer:

- (c) The magnitude of the velocity vector is called the speed and it is a scalar.
- **Q3.** (2 points) For a particle moving in 3D along a helix curve given as $p(t) = \alpha \cos \omega t i + \alpha \sin \omega t j + \gamma t k$, where α, γ, ω are some constants:
 - (a) Show that the speed of the particle is constant.
 - (b) Find out the angle between the velocity and acceleration vectors.

Answer:

By direct differentiation one obtains

- (a) $\mathbf{v} = -\alpha\omega\sin\omega t\mathbf{i} + \alpha\omega\cos\omega t\mathbf{j} + \gamma\mathbf{k}$. Therefore $v = |\mathbf{v}| = \sqrt{\alpha^2\omega^2 + \gamma^2} = \text{const.}$
- (b) $\mathbf{a} = -\alpha\omega^2 \cos \omega t \mathbf{i} \alpha\omega^2 \sin \omega t \mathbf{j}$. Thus $\mathbf{v} \cdot \mathbf{a} = 0$, and therefore vectors \mathbf{v} and \mathbf{a} are perpendicular.
- **Q4.** (2 points) A particle which moves in two-dimensional motion has coordinates given in millimeters by $x = t^2 4t + 20$ and $y = 3\sin 2t$, where the time t is in seconds. Determine the magnitude of the velocity vector and the angle between the velocity and acceleration vectors at time t = 3s.

Answer: Here we have $x = t^2 - 4t + 20$, $v_x = dx/dt = 2t - 4$, $a_x = dv_x/dt = 2\text{mm/s}^2$, and $y = 3\sin 2t$, $v_y = dy/dt = 6\cos 2t$, $a_y = dv_y/dt = -12\sin 2t\text{mm/s}^2$.

- (a) For t=3s we have $v_x=2$ mm/s, $v_y=5.76$ mm/s, Therefore, $v=|\boldsymbol{v}|=\sqrt{v_x^2+v_y^2}\approx 6.10$ mm/s,
- (b) For t=3s we have $a_x=2$ mm/s, $a_y=3.35$ mm/s. For $\boldsymbol{v}=2\boldsymbol{i}+5.76\boldsymbol{j}$, and $\boldsymbol{a}=2\boldsymbol{i}+3.35\boldsymbol{j}$ one gets and $\theta=\arccos\frac{\boldsymbol{v}\cdot\boldsymbol{a}}{|\boldsymbol{v}||\boldsymbol{a}|}\approx 11.67^{\circ}$.
- Q5. (1 point) The path followed by a bouncing ping-pong ball is a:
 - (a) Hyperbola.
 - (b) Circle.
 - (c) Straight line.

Physics 2 of 2

(d) Parabola.

Answer:

- (d) A stroboscopic photograph of a bouncing pig-pong ball shows that the ball follows a parabolic path. This is also easy to derive mathematically.
- **Q6.** (3 points) The ball is kicked from point A with the initial velocity $v_A = 10$ m/s. Determine a) the maximum height h it reaches, and b) the range x_C , and c) the speed when the ball strikes the ground.

Figure 1: Illustration to Q6.

Answer:

- (a) From $v_{By}^2 = v_{Ay}^2 + 2a_y(y_B y_A)$, where $v_{By} = 0$, $v_{Ay} = v_A \sin 30^{\circ} = 5 \text{m/s}$, $a_y = -9.81 \text{m/s}^2$. Therefore $h = y_B y_A = 1.27 \text{m}$.
- (b) From $y_C = y_A + v_{Ay}t_{AC} + \frac{1}{2}a_yt_{AC}^2$, where $y_C = y_A = 0$, we find $5 \frac{1}{2}8.81t_{AC}^2 = 0$ and therefore $t_{AC} = 1.0194$ s. Therefore $x_C = x_A + v_{Ax}t_{AC}$, where $x_A = 0$ and $v_{Ax} = v_A \cos 30^\circ = 8.660$ m/s. Thus, $x_C = 8.83$ m.
- (c) Since $v_{Cy} = v_{Ay} + a_y t_{AC} = -5$ m/s, and $v_{Cx} = v_{Ax} = 8.660$ m/s, we have $v_C = \sqrt{v_{Cx}^2 + v_{Cy}^2} = 10$ m/s