University of Copenhagen

Union-Find

Author: William Henrich Due

1 Definitions

Definition 1.1 (Union-Find). The union-find data structure U represents a partition of a set S if:

- 1. $a \neq \emptyset$ for all $a \in \mathcal{C}(U)$
- 2. $a \cap b = \emptyset$ for all $a, b \in \mathcal{C}(U)$ where $a \neq b$
- 3. $\bigcup_{a \in \mathcal{C}(U)} a = S$

where $\mathcal{C}: \mathbb{P}(U) \to \mathbb{P}(\mathbb{P}(S))$ converts the data structure U into a partition of S.

Definition 1.2 (Reachability). A node v is reachable from a node u in a directed graph G = (V, E) if there exists a sequence of directed edges $e_1, e_2, \ldots, e_m \in E$ where $m \ge 1$ and $e_i = (v_{i-1}, v_i)$ for $1 \le i \le m$, such that $v_0 = u$ and $v_m = v$. We denote this by $u \leadsto v$.

Definition 1.3 (Cycle). A cycle in a directed graph G = (V, E) has a cycle if there exists $v \in V$ such that $v \rightsquigarrow v$.

Definition 1.4 (Forest). A forest is a directed graph F = (V, E) where V is a set of vertices and $E \subseteq V \times V$ is a set of directed edges such that:

- 1. There are no cycles $v \not\rightsquigarrow v$ for all $v \in V$, and
- 2. each node has at most one parent i.e. for all $(u, v_1), (u, v_2) \in E$ it holds that $v_1 = v_2$.

Definition 1.5 (Root). A node $v \in V$ in a forest F = (V, E) is a root if it has no parent. This is defined as the predicate:

$$\mathcal{R}_F(v): v \not\rightsquigarrow u \text{ for all } u \in V$$

Definition 1.6 (Tree). A tree is a forest T = (V, E) where there exists a unique root $r \in V$ such that $v \leadsto r$ for all $v \in V \setminus \{r\}$.

Proposition 1.1 (Forest Tree Relation). A forest F = (V, E) where |V| = n and |E| = n - 1 is a tree.

Proof. Let F = (V, E) be a forest where |V| = n and |E| = n - 1. By second property of a forest then n - 1 vertices must have a parent. Since there are n vertices in total it follows that there is exactly one vertex $r \in V$ that has no parent. Hence $\mathcal{R}_F(r)$.

Proposition 1.2 (Forest Edge Limit). A forest F = (V, E) where |V| = n and |E| > n - 1 is not a forest.

Proof. Let F = (V, E) be a forest where |V| = n and |E| > n - 1. By proposition 1.1 F must either have a cycle or a vertex with two parents. Hence F is not a forest.

Proposition 1.3 (Roots Exist). In a forest F = (V, E) there is at least one root $r \in V$ such that $\mathcal{R}_F(r)$.

Proof. Let F = (V, E) be a forest. The negation of $\mathcal{R}_F(v)$ is $v \leadsto u$ for some $u \in V$. If there is no root in F then for all $v \in V$ it holds that $v \leadsto u$ for some $u \in V$. So for all $v \in V$ an edge $(v, w) \in E$ for some $w \in V$ exists. So the number of edges is |E| > n - 1 for |V| = n. Hence by proposition 1.2 F is not a forest which is a contradiction. Thus there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$.

Proposition 1.4 (Roots Path Exist). In a forest F = (V, E) for each element $v \in V$ there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$ and $v \rightsquigarrow r$.

Proof. Let F = (V, E) be a forest and let $v \in V$ be an arbitrary element in V. By proposition 1.1 there exists at least one root $r \in V$ such that $\mathcal{R}_F(r)$. If v is a root then we are done. Otherwise since F is forest there exists a path from v to some root $r \in V$ such that $v \leadsto r$. Hence for each element $v \in V$ there exists at least one root $v \in V$ such that $v \leadsto r$. \square

Definition 1.7 (Union-Find Structure). The union-find structure U is a forest U = (V, E) where the vertices V = S for some set of elements S. The edges $E \subseteq V \times V$ represent parent relations between elements in S such that $(u, v) \in E$ means that u has parent v.

Definition 1.8 (Representative). The representative of an element $v \in V$ in a union-find structure U = (V, E) is the root $r \in V$ such that there is a path from v to r. This is defined as the function:

$$\rho_U(v) := r \text{ where } r \in V \land \mathcal{R}_U(r) \land v \leadsto r$$

Proposition 1.5 (Representative Exists). In a union-find structure U = (V, E) each element $v \in V$ has at least one representative $\rho_U(v)$.

Proof. Let $v \in V$ be an arbitrary element in the union-find structure U = (V, E). By proposition 1.1 there exists at least one root $r \in V$ such that $\mathcal{R}_U(r)$. If v is a root then $\rho_U(v) = v$ and we are done. Otherwise since U is a forest there exists a path from v to some root $r \in V$ such that $v \leadsto r$. Hence $\rho_U(v) = r$ and thus each element $v \in V$ has at least one representative. \square

Proposition 1.6 (Unique Representative). In a union-find structure U = (V, E) each element $v \in V$ has a unique representative $\rho_U(v)$.

Proof. Let $v \in V$ be an arbitrary element in the union-find structure U = (V, E).

Proposition 1.7 (Representation of Union-Find). A cycleless union-find structure $U \in \mathbb{U}_n$ fulfills definition 1.1 for the following conversion function:

$$\mathcal{C}(U) := \{ \{ f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p \} : p \in \mathbb{N}_{\leq n} \} \setminus \{\emptyset\}$$

where $f: \mathbb{N}_{\leq n} \to S$ is a bijective function mapping indices to elements in the set S.

Proof. Let $U \in \mathbb{U}_n$ be a union-find data structure fulfilling the three criteria in proposition 1.7. We will show that U fulfills the three criteria in definition 1.1

- 1. By definition of \mathcal{C} it is clear that $a \neq \emptyset$ for all $a \in \mathcal{C}(D)$ since \mathcal{C} only includes non-empty sets.
- 2. Let $a, b \in \mathcal{C}(D)$ where $a \neq b$ then by definition $a = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_a\}$ and $b = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_b\}$ for some $p_a, p_b \in \mathbb{N}_{\leq n}$ where $p_a \neq p_b$. Since if $p_a = p_b$ then a = b it follows that $a \cap b = \emptyset$.
- 3. Let $s \in S$ then since U is a union-find data structure of size n there exists $(i, p) \in U$ for some i and p. Let $r = \mathcal{P}_U(i)$ then by definition of \mathcal{C} it follows that $s \in \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = r\} \in \mathcal{C}(U)$. Since s was arbitrary it follows that $\bigcup_{a \in \mathcal{C}(U)} a = S$.

Definition 1.9 (Substitute Parent). The function for substitution a parent of an element i to p in a cycleless union-find data structure $U \in \mathbb{U}_n$ is denoted $\mathcal{S}_U : \mathbb{N}_{\leq n} \times \mathbb{N}_{\leq n} \to \mathbb{P}(\mathbb{U}_n)$ and defined as:

$$S_U(i,p) := (U \setminus \{(i,p')\}) \cup \{(i,p)\} \text{ where } (i,p') \in U$$

Definition 1.10 (Equivalence Set). The set of equivalent indices of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is defined as:

$$\mathcal{E}_U(i) := \{ j : j \in \mathbb{N}_{\leq n} \land \mathcal{P}_U(j) = \mathcal{P}_U(i) \}$$

Definition 1.11 (Parent). A element $i \in \mathbb{N}_{\leq n}$ has a parent $p \in \mathbb{N}_{\leq n} \cup \{0\}$ if

Definition 1.12 (Equivalent Union-Find Structures). Two cycleless union-find data structures $U, U' \in \mathbb{U}_n$ are equivalent if:

$$\mathcal{E}_{U'}(i) = \mathcal{E}_{U}(i)$$
 for all $i \in \mathbb{N}_{\leq n}$

Lemma 1.1 (Cycleless substitution). A parent substitution $S_U(i, p)$ of a cycleless union-find data structure $U \in \mathbb{U}_n$ will result in a cycleless union-find data structure if:

$$\mathcal{P}_U(i) \neq \mathcal{P}_U(p)$$

Proof.

Definition 1.13 (Well-formed Union). For a cycleless union-find data structure $U \in \mathbb{U}_n$ the union of two elements $i \sim j$ where $i, j \in \mathbb{N}_{\leq n}$ is well-formed if it results in a cycleless union-find data structure $U' \in \mathbb{U}_n$ such that:

- 1. $\mathcal{E}_{U'}(i) = \mathcal{E}_{U}(i) \cup \mathcal{E}_{U}(j)$ and
- 2. $\mathcal{E}_{U'}(k) = \mathcal{E}_{U}(k)$ for all $k \in \mathbb{N}_{\leq n} \setminus (\mathcal{E}_{U}(i) \cup \mathcal{E}_{U}(j))$.

Definition 1.14 (Sequential Unions). Given a sequence of union relations $i_1 \sim j_1, i_2 \sim j_2, \ldots, i_m \sim j_m$ where $i_k, j_k \in \mathbb{N}_{\leq n}$ for all $1 \leq k \leq m$ and a initial $U \in \mathbb{U}_n$. The final union-find data structure $U' \in \mathbb{U}_n$ is defined as:

$$U_0 := \{(i,0) : i \in \mathbb{N}_{\leq n}\}$$

$$(q_k, p_k) := (\mathcal{P}_{U_{k-1}}(i_k), \mathcal{P}_{U_{k-1}}(j_k)) \text{ for } 1 \leq k \leq m$$

$$U_k := \begin{cases} U_{k-1} & \text{if } p_k = q_k \\ \mathcal{S}_{U_{k-1}}(q_k, p_k) & \text{if } p_k \neq q_k \end{cases} \text{ for } 1 \leq k \leq m$$

$$U' := U_m$$

Proposition 1.8 (Sequential Unions is Well-formed). Given a sequence of union relationss $i_1 \sim j_1, i_2 \sim j_2, \ldots, i_m \sim j_m$ where $i_k, j_k \in \mathbb{N}_{\leq n}$ for all $1 \leq k \leq m$ and a cycleless union-find data structure $U \in \mathbb{U}_n$. The final union-find data structure $U' \in \mathbb{U}_n$ defined in definition 1.14 is well-formed.

Proof. To prove that U' is well-formed we need to show that each union in the sequence is well-formed. This can be shown by induction on the index k of the union in the sequence.

• For U_0 it is clear that $\mathcal{E}_{U_0}(i) = \{i\}$ for all $i \in \mathbb{N}_{\leq n}$ since all elements are their own root.

- Assume that U_{k-1} is well-formed for some $1 \leq k \leq m$. We will show that U_k is well-formed. Let $q_k = \mathcal{P}_{U_{k-1}}(i_k)$ and $p_k = \mathcal{P}_{U_{k-1}}(i_k)$.
 - 1. If $p_k = q_k$ then by definition $U_k = U_{k-1}$ and thus U_k is well-formed by the inductive hypothesis.
 - 2. If $p_k \neq q_k$ then since q_k is a root $(q_k, 0) \in U_{k-1}$ and by definition of S.

$$U_k := (U_{k-1} \setminus \{(q_k, 0)\}) \cup \{(q_k, p_k)\} \text{ where } (q_k, 0) \in U_{k-1}$$

Now $p_k = \mathcal{P}_{U_k}(q_k)$ hence $\mathcal{P}_{U_k}(q) = p_k$ for all $q \in \mathcal{E}_{U_{k-1}}(q_k)$. And by definition of p_k being a root it follows that $\mathcal{P}_{U_k}(p) = p_k$ for all $p \in \mathcal{E}_{U_{k-1}}(p_k)$. Thus $\mathcal{E}_{U_k}(i_k) = \mathcal{E}_{U_{k-1}}(i_k) \cup \mathcal{E}_{U_{k-1}}(j_k)$ and since all other elements are unaffected by the union it follows that $\mathcal{E}_{U_k}(l) = \mathcal{E}_{U_{k-1}}(l)$ for all $l \in \mathbb{N}_{\leq n} \setminus (\mathcal{E}_U(i) \cup \mathcal{E}_U(j))$.

Finally since U_{k-1} is cycleless and q_k is a root it follows that U_k is cycleless and thus U_k is well-formed.

Definition 1.15 (Parallel Unions).