3 – ÉTUDE CINÉMATIQUE DES SYSTÈMES DE SOLIDES DE LA CHAÎNE D'ÉNERGIE : ANALYSER – MODÉLISER – RÉSOUDRE CHAPITRE 2 : MODÉLISATION DES SYSTÈMES MÉCANIQUES

TD 02 – PINCE TÔLE

Objectifs

Modéliser un système incluant une transformation de mouvement

Compétences : Modéliser, Communiquer

- Mod2 C12 : Modélisation cinématique des liaisons entre solides ;
- Mod2 C14 : Modèle cinématique d'un mécanisme ;
- Com1 C2 : Schémas cinématique, d'architecture, technologique.

Mise en situation

Le plan d'ensemble proposé représente l'avant projet d'une pince de manutention permettant le serrage d'une tôle. Les vues de face et de gauches sont proposées à une échelle réduite. Le carter 1 est solidaire d'une colonne de guidage dans laquelle se situe un vérin qui, par l'intermédiaire d'une bielle 2, fait pivoter la fourche 3 autour de l'axe 4. La tige 5 est alors entraînée en translation par l'intermédiaire de deux galets 6 et 6', encastrés dans la fourche 3. Ceci permet le pincement de la tôle 11 entre le mors 7 et le carter 1. (Attention, la nomenclature donnée ci-dessous utilise l'ancienne désignation des matériaux).

16	1	axe	C22	percé pour recevoir une goupille
15	1	boitier	E290	
14	3	vis H M5 -8		
13	3	vis CHC M5-10		
12	1	colonne	E290	
11	1	tôle à manipuler		
10	1	tige du vérin		
9	2	coussinet à collerette	CuSn8P	antifriction
8	2	coussinet	CuSn8P	antifriction
7	1	mors	E299	
6	2	galets	C22	
5	1	tige	C22	
4	1	axe	C22	
3	1	fourche	AS13	moulée
2	1	bielle	E299	
1	1	carter	FGL200	
гер	nbre	désignation	matière	observations

On étudie le mécanisme en phase de serrage de la tôle en tenant compte des remarques suivantes. On considérera que les liaisons sont parfaites (sans jeu) sauf pour les cas suivants :

- au vu des jeux et des dimensions des pièces 2 et 3, on admettra que la liaison de 2 par rapport à 3 est une sphère cylindre d'axe (D, \vec{z}) ;
- il existe un jeu axial important entre les pièces 5 et 7, qui autorise une légère translation suivant \vec{z} ;
- on considérera qu'il y a un jeu entre les pièces **{6 ;6'}** et l'arbre **5**, de telle sorte qu'on ne tiendra pas compte des éventuels contacts plans entre ces pièces.

Question 1: Dans quel sens faut-il déplacer la tige du vérin 10 pour commander le serrage de la tôle?

Question 2 : Déterminer les classes d'équivalence de ce mécanisme en les coloriant sur les deux vues du plan d'ensemble.

Question 3 : Effectuer le graphe des liaisons en respectant les couleurs.

Question 4 : Tracer le schéma cinématique plan du mécanisme en vue de face, dans la position représentée sur le plan d'ensemble et à l'échelle du plan.

Question 5 : *Tracer le schéma cinématique en perspective.*

