Problem Statement: Customer Segmentation Analysis

Problem Statement:

You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

```
Import libraries
```

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Load the dataset
In [2]:
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In [3]:
data = pd.read csv('drive/My Drive/Mall Customers.csv')
data.head()
Out[3]:
```

CustomerID Gender Age Annual Income (k\$) Spending Score (1-100)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending	g Score (1-100)	
0	1	Male	19	15	39		
1	2	Male	21	15	81		
2	3	Female	20	16	6		
3	4	Female	23	16	77		
4	5	Female	31	17	40		
In [4]:							
data.shape							
Out[4]:							
(200, 5)							
In [5]:							
data.info()							
<pre><class 'pandas.core.frame.dataframe'=""></class></pre>							
RangeIndex: 200 entries, 0 to 199							
Data columns (total 5 columns):							
#	Column			Non-Null	Count	Dtype	
0	Custome	erID		200 non-n	ull	int64	
1	Gender			200 non-n	ull	object	
2	Age			200 non-n	ull	int64	
3	Annual	Income	(k\$)	200 non-n	ull	int64	
4	Spendir	ng Score	e (1-	100) 200 non-n	ull	int64	

```
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
```

Visualizations

Univariate Analysis

Univariate analysis provides an understanding in the characteristics of each feature in the data set. Different characteristics are computed for numerical and categorical data.

For the numerical features characteristics are standard deviation, skewness, kurtosis, percentile, interquartile range (IQR) and range.

In [6]:

```
stats_num = data.describe()
stats_num.loc['variance'] =
data.select_dtypes(np.number).var().tolist()
stats_num.loc['skewness'] =
data.select_dtypes(np.number).skew().tolist()
stats_num.loc['kurtosis'] =
data.select_dtypes(np.number).kurtosis().tolist()
stats_num.loc['IQR'] =
(data.select_dtypes(np.number).quantile(q=0.75) -
data.select_dtypes(np.number).quantile(q=0.25)).tolist()
stats_num.loc['range'] = (data.select_dtypes(np.number).max() -
data.select_dtypes(np.number).min()).tolist()
lnÂ[7]:
stats_num
```

CustomerID Age Annual Income (k\$) Spending Score (1-100)

count 200.000000 200.000000 200.000000 200.000000

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)				
mean	100.500000	38.850000	60.560000	50.200000				
std	57.879185	13.969007	26.264721	25.823522				
min	1.000000	18.000000	15.000000	1.000000				
25%	50.750000	28.750000	41.500000	34.750000				
50%	100.500000	36.000000	61.500000	50.000000				
75%	150.250000	49.000000	78.000000	73.000000				
max	200.000000	70.000000	137.000000	99.000000				
variance	3350.000000	195.133166	689.835578	666.854271				
skewness	0.000000	0.485569	0.321843	-0.047220				
kurtosis	-1.200000	-0.671573	-0.098487	-0.826629				
IQR	99.500000	20.250000	36.500000	38.250000				
range	199.000000	52.000000	122.000000	98.000000				
In [8]:								
from scipy import stats								
for column in data.select_dtypes(np.number).columns:								
<pre>p_value = stats.shapiro(data[column].dropna())[1]</pre>								

if p_value <= 0.05:</pre>

```
print(f'Null hypothesis of normality for feature
{column} is rejected')
  else:
     print(f'Null hypothesis of normality for feature
{column} is accepted')

Null hypothesis of normality for feature CustomerID is rejected

Null hypothesis of normality for feature Age is rejected

Null hypothesis of normality for feature Annual Income (k$) is rejected

Null hypothesis of normality for feature Spending Score (1-100) is rejected
```

The null hypothesis is rejected for every feature and the target, meaning that they aren't modelled with a normal distribution.

```
In [9]:
data.hist(figsize=(15,5), layout=(2,4), bins=70)
plt.show()
```

For the categorical features characteristics are count, cardinality, list of unique values, top and freq.

```
In [10]:
stats_cat = data.select_dtypes('object').describe()
In [11]:
stats_cat
Out[11]:
```

Gender

```
Gender
      200
count
unique 2
      Female
top
freq
      112
In [12]:
def uniqueValues(df):
    for column in df:
        unique values = df[column].unique()
        print(f'Unique values of feature {column} are:
{unique values}')
uniqueValues(data.select dtypes('object'))
Unique values of feature Gender are: ['Male' 'Female']
In [13]:
ax = sns.countplot(x=data['Gender'], data=data)
for p in ax.patches:
    x=p.get bbox().get points()[:,0]
    y=p.get bbox().get points()[1,1]
    ax.annotate(f'{p.get height()}', (x.mean(), y), ha='center',
va='bottom')
```

```
plt.show()
Bi-variate Analysis
In [14]:
corr_matrix = data.corr()
sns.heatmap(corr matrix, annot=True)
plt.show()
Multi-variate Analysis
In [18]:
sns.pairplot(data, hue ='Gender', diag kind='hist')
plt.show()
In [19]:
nnum = data.select dtypes(np.number).shape[1]
cols = 2
rows = 2
fig, axes = plt.subplots(rows, cols, figsize=(20,10))
for ax in axes.flatten():
    ax.set axis off()
for column, ax in zip(data.select_dtypes(np.number).columns,
axes.flatten()):
```

```
sns.boxplot(x=data['Gender'], y=data[column], data=data,
ax=ax)
ax.set_axis_on()
```

plt.show()

Descriptive statistics

In [17]:

data.describe()

Out[17]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

Check for missing values

In [20]:

```
data.isnull().sum()
Out[20]:
CustomerID
                            0
Gender
                            0
                            0
Age
Annual Income (k$)
                            0
Spending Score (1-100)
dtype: int64
No missing values are found.
Finding outliers and scaling data
In [21]:
x = data['CustomerID']
y = data['Annual Income (k$)']
plt.plot(x, y)
Out[21]:
[<matplotlib.lines.Line2D at 0x7f657391aa10>]
In [22]:
x = data['Annual Income (k$)']
y = data['Age']
plt.plot(x, y)
Out[22]:
[<matplotlib.lines.Line2D at 0x7f657388d910>]
```

```
Split the data into dependent and independent variables
```

```
In [23]:
x = data.iloc[:, [3, 4]].values
print(x.shape)
(200, 2)
Clustering algorithms
KMeans clustering
In [24]:
from sklearn.cluster import KMeans
wcss = []
for i in range (1, 11):
  km = KMeans(n_clusters = i, init = 'k-means++', max_iter =
300, n_init = 10, random_state = 0)
  km.fit(x)
  wcss.append(km.inertia )
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('No. of Clusters')
plt.ylabel('wcss')
plt.show()
```

```
In [25]:
km = KMeans(n clusters = 5, init = 'k-means++', max iter = 300,
n init = 10, random state = 0)
y means = km.fit predict(x)
plt.scatter(x[y_means == 0, 0], x[y_means == 0, 1], s = 100, c =
'pink', label = 'miser')
plt.scatter(x[y_means == 1, 0], x[y_means == 1, 1], s = 100, c =
'yellow', label = 'general')
plt.scatter(x[y means == 2, 0], x[y means == 2, 1], s = 100, c = 100
'cyan', label = 'target')
plt.scatter(x[y means == 3, 0], x[y means == 3, 1], s = 100, c = 100
'magenta', label = 'spendthrift')
plt.scatter(x[y_means == 4, 0], x[y_means == 4, 1], s = 100, c =
'orange', label = 'careful')
plt.scatter(km.cluster_centers_[:,0], km.cluster centers [:, 1],
s = 50, c = 'blue' , label = 'centeroid')
plt.title('K Means Clustering')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.legend()
plt.show()
```

Hierarchical clustering

In [26]:

import scipy.cluster.hierarchy as sch

```
dendrogram = sch.dendrogram(sch.linkage(x, method = 'ward'))
plt.title('Dendrogam')
plt.xlabel('Customers')
plt.ylabel('Ecuclidean Distance')
plt.show()
In [27]:
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n clusters = 5, affinity =
'euclidean', linkage = 'ward')
y hc = hc.fit predict(x)
plt.scatter(x[y means == 0, 0], x[y means == 0, 1], s = 100, c = 100
'pink', label = 'miser')
plt.scatter(x[y means == 1, 0], x[y means == 1, 1], s = 100, c = 100
'yellow', label = 'general')
plt.scatter(x[y means == 2, 0], x[y means == 2, 1], s = 100, c = 100
'cyan', label = 'target')
plt.scatter(x[y means == 3, 0], x[y means == 3, 1], s = 100, c = 100
'magenta', label = 'spendthrift')
plt.scatter(x[y means == 4, 0], x[y means == 4, 1], s = 100, c = 100
'orange', label = 'careful')
plt.scatter(km.cluster centers [:,0], km.cluster centers [:, 1],
s = 50, c = 'blue' , label = 'centeroid')
plt.title('Hierarchial Clustering')
plt.xlabel('Annual Income')
```

```
plt.ylabel('Spending Score')
plt.legend()
plt.show()
Clusters of customers based on their ages
Build the Model
In [28]:
data.columns
Out[28]:
Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
       'Spending Score (1-100)'],
      dtype='object')
In [29]:
x = data.iloc[:, [2, 4]].values
x.shape
Out[29]:
(200, 2)
Train the Model
In [30]:
from sklearn.cluster import KMeans
wcss = []
for i in range (1, 11):
  kmeans = KMeans(n clusters = i, init = 'k-means++', max iter =
300, n = 10, random state = 0)
```

```
kmeans.fit(x)
  wcss.append(kmeans.inertia)
plt.rcParams['figure.figsize'] = (7, 5)
plt.plot(range(1, 11), wcss)
plt.title('K-Means Clustering(The Elbow Method)', fontsize = 20)
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
Test the Model
In [31]:
kmeans = KMeans(n clusters = 4, init = 'k-means++', max iter =
300, n init = 10, random state = 0)
ymeans = kmeans.fit predict(x)
plt.rcParams['figure.figsize'] = (10, 10)
plt.title('Cluster of Ages', fontsize = 30)
plt.scatter(x[ymeans == 0, 0], x[ymeans == 0, 1], s = 100, c = 100
'pink', label = 'Usual Customers' )
plt.scatter(x[ymeans == 1, 0], x[ymeans == 1, 1], s = 100, c = 100
'orange', label = 'Priority Customers')
plt.scatter(x[ymeans == 2, 0], x[ymeans == 2, 1], s = 100, c =
'lightgreen', label = 'Target Customers (Young)')
plt.scatter(x[ymeans == 3, 0], x[ymeans == 3, 1], s = 100, c = 100
'red', label = 'Target Customers(Old)')
```

```
plt.scatter(kmeans.cluster centers [:, 0],
kmeans.cluster centers [:, 1], s = 50, c = 'black')
plt.xlabel('Age')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
Clusters of customers based on their gender
Check for Categorical columns and perform encoding.
In [32]:
data['Gender'].replace(['Male', 'Female'], [0, 1], inplace =
True)
data['Gender'].value_counts()
Out[32]:
1
     112
      88
Name: Gender, dtype: int64
Split the data into dependent and independent variables.
In [33]:
x = data.iloc[:, [1, 4]].values
x.shape
Out[33]:
(200, 2)
Train the Model
```

```
In [34]:
from sklearn.cluster import KMeans
wcss = []
for i in range (1, 11):
  kmeans = KMeans(n clusters = i, init = 'k-means++', max iter =
300, n init = 10, random state = 0)
  kmeans.fit(x)
  wcss.append(kmeans.inertia)
plt.rcParams['figure.figsize'] = (7, 7)
plt.title('The Elbow Method', fontsize = 20)
plt.plot(range(1, 11), wcss)
plt.xlabel('No. of Clusters', fontsize = 10)
plt.ylabel('wcss')
plt.show()
Test the Model
In [35]:
kmeans = KMeans(n clusters = 3, max iter = 300, n init = 10,
random state = 0)
ymeans = kmeans.fit predict(x)
plt.rcParams['figure.figsize'] = (10, 10)
plt.scatter(x[ymeans == 0, 0], x[ymeans == 0, 1], s = 80, c =
'pink', label = 'low spending score')
```

```
plt.scatter(x[ymeans == 1, 0], x[ymeans == 1, 1], s = 80, c =
'orange', label = 'medium spending score')

plt.scatter(x[ymeans == 2, 0], x[ymeans == 2, 1], s = 80, c =
'lightgreen', label = 'high spending score')

plt.scatter(kmeans.cluster_centers_[:,0],
kmeans.cluster_centers_[:, 1], s = 50, color = 'blue')

plt.legend()

plt.show()
```

From the above cluster plot, we can conclude that males and females belong to all categories (high, low and medium spending score category).