Physics 647 Homework 1 Name: Alexander Adams

(1)

- (a) Magnitude: $\sqrt{a^2 + g^2}$ direction, $\theta = \tan^{-1}(\frac{a}{g})$ with vertical.
- (b) It tilts in the direction of the gravitational force from (a), it tilts to the right at an angle $\theta = \tan^{-1}(\frac{a}{a})$ with vertical.
- (c) It tilts in the direction of the gravitational force from (a), it tilts to the right at an angle $\theta = \tan^{-1}(\frac{a}{g})$ with vertical. Pendulum frequency is Proportional to $\sqrt{\frac{g}{L}}$ so the second hand moves $\sqrt{\frac{\sqrt{a^2+g^2}}{g}}$ time faster and takes $60 \cdot \sqrt{\frac{g}{\sqrt{a^2+g^2}}}$ seconds to complete.

(2)

- (a) The components of a lorentz tensor in a new frame are expressed as linear combinations of the components of the tensor in another frame, and a linear combination of 0s is 0.
- (b) We assume $A_{\mu\nu} = -A_{\nu\mu}$.

$$\begin{split} A'_{\mu\nu} &= & \Lambda_{\nu}{}^{\sigma_{1}} \Lambda_{\mu}{}^{\sigma^{2}} A_{\sigma_{1}\sigma_{2}} \\ &= & \Lambda_{\nu}{}^{\sigma_{1}} \Lambda_{\mu}{}^{\sigma^{2}} \left(-A_{\sigma_{2}\sigma_{1}} \right) \\ &= & -\Lambda_{\nu}{}^{\sigma_{2}} \Lambda_{\mu}{}^{\sigma^{1}} A_{\sigma_{1}\sigma_{2}} \text{(relable indices)} \\ &= & -\Lambda_{\mu}{}^{\sigma^{1}} \Lambda_{\nu}{}^{\sigma_{2}} A_{\sigma_{1}\sigma_{2}} \\ &= & -A'_{\nu\mu} \end{split}$$

We assume $S_{\mu\nu} = S_{\nu\mu}$.

$$\begin{split} S'_{\mu\nu} = & \Lambda_{\nu}^{\ \sigma_{1}} \Lambda_{\mu}^{\ \sigma^{2}} S_{\sigma_{1}\sigma_{2}} \\ = & \Lambda_{\nu}^{\ \sigma_{1}} \Lambda_{\mu}^{\ \sigma^{2}} S_{\sigma_{2}\sigma_{1}} \\ = & \Lambda_{\nu}^{\ \sigma_{2}} \Lambda_{\mu}^{\ \sigma^{1}} S_{\sigma_{1}\sigma_{2}} \text{(relable indices)} \\ = & \Lambda_{\mu}^{\ \sigma^{1}} \Lambda_{\nu}^{\ \sigma_{2}} S_{\sigma_{1}\sigma_{2}} \\ = & S'_{\nu\mu} \end{split}$$

- (c) $\frac{K^{\mu\nu}}{K^{\mu\sigma}} = \frac{K^{\rho\nu}}{K^{\rho\sigma}}$ for all choices of μ, ν, ρ, σ .
- (d) We make use of the result (2.37), $\Lambda^{\mu}{}_{\nu}\Lambda_{\mu}{}^{\rho} = \delta^{\rho}_{\nu}$.

$$\begin{split} \delta_{\nu}^{\prime\mu} &= & \Lambda^{\mu}{}_{\rho} \Lambda_{\nu}{}^{\sigma} \delta_{\sigma}^{\rho} \\ &= & \Lambda^{\mu}{}_{\rho} \Lambda_{\nu}{}^{\sigma} \left(\Lambda^{\alpha}{}_{\sigma} \Lambda_{\alpha}{}^{\rho} \right) \\ &= & \left(\Lambda^{\mu}{}_{\rho} \Lambda_{\alpha}{}^{\rho} \right) \left(\Lambda_{\nu}{}^{\sigma} \Lambda^{\alpha}{}_{\sigma} \right) \\ &= & \delta_{\alpha}^{\mu} \delta_{\nu}^{\alpha} \\ &= & \delta_{\nu}^{\mu} \end{split}$$

(3) $U^{\mu} = W^{\mu\nu}V_{\nu}$ where U^{μ} is a Lorentz vector holds in all Lorentz frams for arbitrary Lorentz vector V_{μ} . We have $U'^{\mu} = W'^{\mu\nu}V'_{\nu}$ where $U'^{\mu} = \Lambda^{\mu}_{\nu}U^{\nu}$ and $V'_{\nu} = \Lambda^{\sigma}_{\nu}V_{\sigma}$.

$$U'^{\mu} = W'^{\mu\nu}V'_{\nu}$$

$$\Lambda^{\mu}{}_{\alpha}U^{\alpha} = W'^{\mu\nu}\Lambda^{\sigma}_{\nu}V_{\sigma}$$

$$\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}V_{\rho} = W'^{\mu\nu}\Lambda^{\sigma}_{\nu}V_{\sigma}$$

$$\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}\left(\Lambda^{\beta}{}_{\rho}V_{\beta}\right) = W'^{\mu\nu}\Lambda^{\sigma}_{\nu}\left(\Lambda^{\beta}{}_{\sigma}V_{\beta}\right) \text{ (holds for arbitrary Lorentz vector)}$$

$$\left(\Lambda^{\beta}{}_{\rho}\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}\right)V_{\beta} = W'^{\mu\nu}\left(\Lambda^{\beta}{}_{\sigma}\Lambda^{\sigma}_{\nu}\right)V_{\beta}$$

$$\left(\Lambda^{\beta}{}_{\rho}\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}\right)V_{\beta} = W'^{\mu\nu}\delta^{\nu}_{\beta}V_{\beta}$$

$$\left(\Lambda^{\beta}{}_{\rho}\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}\right)V_{\beta} = W'^{\mu\beta}V_{\beta}$$

Because this holds for arbitrary V_{ν} we conclude $W'^{\mu\beta} = \Lambda^{\beta}{}_{\rho}\Lambda^{\mu}{}_{\alpha}W^{\alpha\rho}$ is a Lorentz tensor.

(4) Wlog we will consider a coordinate system in which we have $k^2 = k^3 = 0$ we then have the condition $(k^0)^2 = (k^1)^2$ from k^μ being null, and we take these both to be nonzero, otherwise $k^\mu V_\mu = 0$ for all V. Then from the condition $k^\mu V_\mu = 0$ we have $k^0 V^0 = k^1 V^1 \Rightarrow V^0 = \frac{k^1 V^1}{k^0} \Rightarrow (V^0)^2 = \frac{(k^1)^2 (V^1)^2}{(k^0)^2} = (V^1)^2$. From the fact that $V^\mu V_\mu = -(V^0)^1 + (V^1)^2 + (V^2)^2 + (V^3)^2 \le 0 \Rightarrow (V^2)^2 + (V^3)^2 \le 0$ and since these are both nonegative numbers $(V^2)^2 = (V^3)^2 = 0 \Rightarrow V^2 = V^3 = 0$. In the case $k^0 = k^1$ we have from $k^0 V^0 = k^1 V^1 \Rightarrow k^1 V^0 = k^1 V^1 \Rightarrow V^0 = V^1$ so clearly V^μ is a multiple of k^μ and $V^\mu = \frac{V^0}{k^0} k^\mu$. In the case $k^0 = -k^1$ we have from $k^0 V^0 = k^1 V^1 \Rightarrow -k^1 V^0 = k^1 V^1 \Rightarrow V^0 = -V^1$

and again V^{μ} is a multiple of k^{μ} and $V^{\mu} = -\frac{V^0}{k^0}k^{\mu}$ so we have the desired conclusion.