PARLSS Frankel Architecture Research Laboratory

A Reconfigurable Extension to the Network Interface of Beowulf Clusters

Keith Underwood, Ron Sass, Walt Ligon

Parallel Architecture Research Lab Clemson University

Motivation

Beowulf Clusters and Reconfigurable
Computing (RC) have complementary
strengths and weaknesses. Integrating the two
technologies has the potential to create a
system that is more than the sum of its parts.

Reconfigurable Computing

- High performance computing engine based on programmable hardware
- Advantage:
 - Impressive performance for many apps
- Disadvantages:
 - Extremely expensive (low volume)
 - Not suitable for all applications
 - Typically interfaced through a (relatively) slow

Beowulf Clusters

- Low cost, dedicated clusters based on commodity hardware and open source software
- Advantage:
 - Low cost / high performance for some apps
- Disadvantages:
 - Commodity memory subsystem
 - Commodity network
 - Commodity I/O bus and interrupt system

Integrating Two Technologies

- Placing RC on the PCI bus in a cluster increases the I/O problems (bus shared with network)
- Instead, Reconfigurable Computing should be:
 - placed in a commonly used data path
 - placed in a position to mitigate weaknesses in the Beowulf architecture
- The Network Interface Card (NIC) meets both of these criteria

Other Benefits of Enhancing the NIC

- It has potential as a commodity component
 - Simple change to current NICs
 - Other applications possible
- Capable of providing network features

The INIC

INIC Modes of Operation

Beowulf Cluster Model

