Precondición más débil de ciclos

Algoritmos y Estructuras de Datos I

Repaso: Lenguaje SmallLang

- ▶ Definimos un lenguaje imperativo basado en variables y las siguientes instrucciones:
 - 1. Nada: Instrucción skip que no hace nada.
 - 2. Asignación: Instrucción x := E.
- ► Además, tenemos las siguientes estructuras de control:
 - 1. Secuencia: **S1**; **S2** es un programa, si **S1** y **S2** son dos programas.
 - 2. Condicional: if B then S1 else S2 endif es un programa, si B es una expresión lógica y S1 y S2 son dos programas.
 - 3. Ciclo: while B do S endwhile es un programa, si B es una expresión lógica y S es un programa.

Repaso: Triplas de Hoare

► Consideremos la siguiente tripla de Hoare:

$$\{P\} \ S \ \{Q\}.$$

- ► Esta tripla es válida si se cumple que:
 - 1. Si el programa S comienza en un estado que cumple P ...
 - 2. ... entonces termina luego de un número finito de pasos ...
 - 3. ... Y además en un estado que cumple Q.

Repaso: Precondición más débil

- ▶ **Definición.** La precondición más débil de un programa **S** respecto de una postcondición Q es el predicado P más débil posible tal que $\{P\}$ **S** $\{Q\}$.
- ► Notación. wp(S, Q).
- ► **Teorema:** Decimos que $\{P\}$ **S** $\{Q\}$ es válida sii $P \Rightarrow_L wp(S, Q)$

Repaso: Axiomas wp

- ▶ Axioma 1.wp(x := E, Q) \equiv def(E) $\wedge_L Q_F^{\times}$.
- ▶ Axioma 2. $wp(skip, Q) \equiv Q$.
- ▶ Axioma 3. $wp(S1; S2, Q) \equiv wp(S1, wp(S2, Q))$.
- ▶ Axioma 4.wp(if B then S1 else S2 endif, Q) \equiv

$$def(B) \wedge_L \quad \Big((B \wedge wp(S1, Q)) \vee (\neg B \wedge wp(S2, Q)) \Big)$$

▶ **Observación**: $wp(b[i] := E, Q) \equiv wp(b := setAt(b,i,E), Q)$

¿Cuál es la precondición más débil?

```
\{???\} while (x>0) do x := x - 1 endwhile \{x = 0\} wp(\text{while } \dots, x = 0) \equiv x \geq 0
```

¿Cuál es la precondición más débil?

```
{???}}

i := 0;

while (x<5) do

x := x + 1;

i := i + 1

endwhile

\{x = 5 \land i = 5\}

wp(i:=0; while ..., x = 5 \land i = 5) \equiv x = 0
```

¿Cuál es la precondición más débil?

```
\{???\}
while (x==5) do
x := 5
endwhile
\{x \neq 5\}
wp(\text{while } \dots, x \neq 5) \equiv x \neq 5
```

¿Es válida la siguiente tripla de Hoare?

```
\{n \geq 0 \land i = 1 \land s = 0\} while (i <= n) do s := s + i; i := i + 1 endwhile \{s = \sum_{k=1}^{n} k\}
```

Ejemplo

```
\{???\}
while (0<i && i<3) do
i := i +1
endwhile
\{i = 3\}
```

- ▶ A lo sumo, se va a ejecutar 2 veces el cuerpo del ciclo
- ▶ ¿Cuál es la precondición más débil?

Precondición más débil de un ciclo

- ▶ Supongamos que tenemos el ciclo while B do S endwhile.
- ▶ **Definición.** Definimos $H_k(Q)$ como el predicado que define el conjunto de estados a partir de los cuales la ejecución del ciclo termina en exactamente k iteraciones:

$$H_0(Q) \equiv \operatorname{def}(B) \wedge \neg B \wedge Q,$$

 $H_{k+1}(Q) \equiv \operatorname{def}(B) \wedge B \wedge wp(S, H_k(Q))$ para $k \geq 0$.

▶ **Propiedad:** Si el ciclo realiza a lo sumo *k* iteraciones, entonces

```
wp(\text{while B do S endwhile}, Q) \equiv \bigvee_{i=0}^k H_i(Q)
```

Otro ejemplo

```
\{???\}
while (0<i && i<n) do
    i := i +1
endwhile
\{i \ge 0\}
```

- ▶ ¿Cuántas veces se va a ejecutar el cuerpo del ciclo?
- ▶ ¿Podemos usar la propiedad anterior para conocer la precondición más débil?
- ▶ ¡No! Porque no podemos fijar a priori una cota superior a la cantidad de iteraciones que va a realizar el ciclo.

Precondición más débil de un ciclo

- ▶ Intituivamente: wp(while B do S endwhile, Q) tiene que ser una fórmula lógica capaz de capturar todos los estados tales que, luego de ejecutar el ciclo una cantidad arbitraria de veces, vale Q.
- Axioma 5:

$$wp(\text{while B do S endwhile}, Q) \equiv (\exists_{i>0})(H_i(Q))$$

Recap: Teorema del Invariante

- ▶ **Teorema.** Si def(B) y existe un predicado I tal que
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$

... y **el ciclo termina**, entonces la siguiente tripla de Hoare es válida:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

- ► Esta observación es un teorema que se deduce de la definición anterior.
- ► Las condiciones 1-3 garantizan la corrección parcial del ciclo (la hipótesis de terminación es necesaria para garantizar corrección).

Precondición más débil de un ciclo

▶ Ahora tratemos de usar el **Axioma 5**:

$$wp(\text{while B do S endwhile}, Q)$$

$$\equiv (\exists_{i \geq 0}) H_i(Q)$$

$$\equiv H_0(Q) \vee H_1(Q) \vee H_2(Q) \vee \dots$$

$$\equiv \vee_{i=0}^{\infty} (H_i(Q))$$
¡Es una fórmula infinitaria!

▶ Por lo tanto, no podemos usar mecánicamente el **Axioma 5** para demostrar la corrección de un ciclo con una cantidad no acotada a priori de iteraciones :(

Ejemplo: suma de índices

► Sea la siguiente tripla de Hoare:

```
 \{n \geq 0 \land i = 1 \land s = 0\}  while (i <= n) do  s = s + i;   i = i + 1;  endwhile  \{s = \sum_{k=1}^{n} k\}
```

- ► Hace dos semanas identificamos los predicados necesarios para aplicar el Teorema del Invariante:
 - $P_C \equiv n \ge 0 \land i = 1 \land s = 0$
 - $ightharpoonup Q_C \equiv s = \sum_{k=1}^n k$
 - ▶ $B \equiv i \leq n$
 - $I \equiv 1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k$

$P_C \Rightarrow I$

$$P_C \equiv n \ge 0 \land i = 1 \land s = 0$$

$$\Rightarrow 1 \le i \le n + 1 \land s = 0$$

$$\Rightarrow 1 \le i \le n + 1 \land s = \sum_{k=1}^{0} k$$

$$\Rightarrow 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k$$

$$\equiv 1 \checkmark$$

$\{I \wedge B\} S \{I\}$

Para demostrar $\{I \land B\} S \{I\}$ tenemos que probar que:

$$I \wedge B \Rightarrow wp(S, I)$$

$$wp(s:=s+i;i:=i+1,1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k)$$

$$\equiv wp(s:=s+i, wp(i:=i+1,1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k))$$

$$\equiv wp(s:=s+i, def(i+1) \land_L (1 \le i+1 \le n+1 \land s = \sum_{k=1}^{i+1-1} k))$$

$$\equiv wp(s:=s+i, 1 \le i+1 \le n+1 \land s = \sum_{k=1}^{i+1-1} k)$$

$$\equiv def(s+i) \land_L (1 \le i+1 \le n+1 \land s + i = \sum_{k=1}^{i+1-1} k)$$

$$I \wedge \neg B \Rightarrow Q_C$$

$$I \wedge \neg B \equiv 1 \le i \le n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge \neg (i \le n)$$

$$\equiv 1 \le i \le n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge i > n$$

$$\Rightarrow 1 \le i \le n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge i = n + 1$$

$$\Rightarrow 1 \le i \le n + 1 \wedge s = \sum_{k=1}^{n+1-1} k \wedge i = n + 1$$

$$\Rightarrow s = \sum_{k=1}^{n} k \equiv Q_{C} \checkmark$$

$\{I \wedge B\} S \{I\}$

$$\equiv 0 \le i \le n \land s + i = \sum_{k=1}^{i} k$$

$$\equiv 0 \le i \le n \land s = (\sum_{k=1}^{i} k) - i$$

$$\equiv 0 \le i \le n \land s = \sum_{k=1}^{i-1} k$$

► Luego de simplificar, nos falta probar que:

$$\left(1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k \land \underbrace{i \le n}_{B}\right) \Rightarrow \underbrace{\left(0 \le i \le n \land s = \sum_{k=1}^{i-1} k\right)}_{wp(s,l)}$$

- ▶ Lo cual es trivialmente cierto.
- ▶ Por lo tanto podemos concluir que $\{I \land B\}$ S $\{I\}$ es una tripla de Hoare válida (i.e., verdadera)

Ejemplo: suma de índices

► Habiendo probado las hipótesis del Teorema del Invariante podemos decir que si el ciclo siempre termina, entonces la siguiente tripla de Hoare es válida:

```
\{n \ge 0 \land i = 1 \land s = 0\} while (i <= n) do s = s + i; i = i + 1; endwhile \{s = \sum_{k=1}^{n} k\}
```

- ▶ Pero ..., ¡no probamos que el ciclo termina!
- ¿Cómo podemos probar si dada una precondición, un ciclo siempre termina?
 - ▶ Para eso tenemos el Teorema de terminación.

Ejemplo: Suma de índices

► Sea la siguiente tripla de Hoare:

$$\{n \ge 0 \land i = 1 \land s = 0\}$$
while (i <= n) do
$$s = s + i;$$

$$i = i + 1;$$
endwhile
$$\{s = \sum_{k=1}^{n} k\}$$

► Ya probamos que el siguiente predicado es un invariante de este ciclo.

$$I \equiv 1 \le i \le n+1 \land \mathsf{s} = \sum_{k=1}^{i-1} k$$

L'Cúal sería una buena función variante para este ciclo?

Teorema de terminación de un ciclo

▶ **Teorema.** Sea $\mathbb V$ el producto cartesiano de los dominios de las variables del programa y sea I un invariante del ciclo **while B do S endwhile**. Si existe una función $fv : \mathbb V \to \mathbb Z$ tal que

1.
$$\{I \land B \land v_0 = fv\}$$
 S $\{fv < v_0\}$, 2. $I \land fv < 0 \Rightarrow \neg B$.

... entonces la ejecución del ciclo **while B do S endwhile** siempre termina.

- La función fv se llama función variante del ciclo.
- ► El Teorema de terminación nos permite demostrar que un ciclo termina (i.e. no se cuelga).

▶ Ejecutemos el ciclo con n = 6.

Iteración	i	S	n	n+1-i
0	1	0	6	6
1	2	1	6	5
2	3	3	6	4
3	4	6	6	3
4	5	10	6	2
5	6	15	6	1
6	7	21	6	0

- ► Una función variante representa una cantidad que se va reduciendo a lo largo de las iteraciones. En este caso es la cantidad de índices que falta sumar.
- ▶ Proponemos entonces fv = n+1-i

Ejemplo: Suma de índices

- ▶ Veamos que se cumplen las dos condiciones del teorema.
- 1. Para verificar que $\{I \land B \land fv = v_0\}$ S $\{fv < v_0\}$ para todo v_0 , calculamos $wp(S, fv < v_0)$.

```
 wp(s:=s+1;i:=i+1, fv < v_0) \\ \equiv wp(s:=s+1;i:=i+1, (n+1-i) < v_0) \\ \equiv wp(s:=s+1, wp(i:=i+1, (n+1-i) < v_0)) \\ \equiv wp(s:=s+1, def(i+1) \land_L (n+1-(i+1)) < v_0)) \\ \equiv wp(s:=s+1, (n+1-(i+1)) < v_0)) \\ \equiv def(s+1) \land_L n-i < v_0 \\ \equiv n-i < v_0 \\ \equiv n-i < n-i+1 \checkmark
```

Ejemplo: Suma de índices

Recapitulando, sean

- $I \equiv 1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k$
- fv = n+1-i

Ya habíamos probado que el ciclo es **parcialmente** correcto dado que:

- 1. $P_C \Rightarrow I$
- 2. $\{I \wedge B\}$ S $\{I\}$
- 3. $I \wedge \neg B \Rightarrow Q_C$

Y además también acabamos de probar que el ciclo siempre termina ya que:

- 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
- 5. $I \wedge fv < 0 \Rightarrow \neg B$,

Por lo tanto, por (1)-(5) tenemos (finalmente) que ...

Ejemplo: Suma de índices

- ▶ Veamos que se cumplen las dos condiciones del teorema.
- 2. Verifiquemos que $I \wedge fv \leq 0 \Rightarrow \neg B$

$$I \wedge fv \le 0 \quad \equiv \quad 1 \le i \le n+1 \wedge s = \sum_{k=1}^{i-1} k \wedge n+1 - i \le 0$$

$$\Rightarrow \quad i \le n+1 \wedge n+1 - i \le 0$$

$$\Rightarrow \quad i \le n+1 \wedge n+1 \le i$$

$$\Rightarrow \quad i = n+1$$

$$\Rightarrow \quad \neg (i \le n)$$

$$\Rightarrow \quad \neg B \checkmark$$

Ejemplo: Suma de índices

▶ Que la siguiente tripla de Hoare:

```
\{P_C: n \geq 0 \land i = 1 \land s = 0\}
while (i <= n) do
s = s + i;
i = i + 1;
endwhile
\{Q_C: s = \sum_{k=1}^n k\}
```

jes una tripla de Hoare válida!

- ► Esto significa que:
 - 1. Si el ciclo comienza en un estado que cumple P_C
 - 2. ... entonces termina luego de un número finito de pasos
 - 3. y además en un estado que cumple Q_C

Intervalo

Break!

Otro ejemplo: Chequeo de paridad

► ¿Es válida la siguiente tripla de Hoare?

```
▶ \{i = 0 \land c = 0\}
while( i < |s| ) do
    if s[i]=true then
        c := c + 1
    else
        skip
    endif;
    i := i +1
endwhile
\{c = \#apariciones(s, true)\}
```

Otro ejemplo: Chequeo de paridad

Sea una secuencia de booleans s, contar la cantidad de posiciones de la secuencia iguales a true.

Algunas propiedades de #apariciones:

- \blacktriangleright #apariciones($\langle \rangle$, true) = 0
- #apariciones(concat(s, $\langle e \rangle$), true) = #apariciones(s, true) + (if e = true then 1 else 0 fi)

Otro ejemplo: Chequeo de Paridad

- ▶ Para probar que se cumplen las condiciones del Teorema del Invariante tenemos que demostrar formalmente que se cumple:
 - 1. $P_C \Rightarrow I$
 - 2. $\{I \wedge B\} \mathbb{S} \{I\}$
 - 3. $\overrightarrow{I} \wedge \neg \overrightarrow{B} \Rightarrow \overrightarrow{Q_C}$
- ightharpoonup ¿Cuál es el predicado P_C, Q_C, I y B?
 - $P_C \equiv i = 0 \land c = 0$
 - $ightharpoonup Q_C \equiv c = \#apariciones(s, true)$
 - $B \equiv i < |s|$
 - ▶ $I \equiv 0 \le i \le |s| \land_L c = \#apariciones(subseq(s, 0, i), true)$

1.
$$P_C \Rightarrow I$$
?

$$P_C \equiv i = 0 \land c = 0$$

$$\Rightarrow 0 \le i \le |s| \land c = 0$$

$$\Rightarrow 0 \le i \le |s| \land c = \#apariciones(\langle \rangle, true)$$

$$\Rightarrow 0 \le i \le |s| \land c = \#apariciones(subseq(s, 0, 0), true)$$

$$\Rightarrow 0 \le i \le |s| \land c = \#apariciones(subseq(s, 0, i), true)$$

$$\equiv I \checkmark$$

Otro ejemplo: Chequeo de Paridad

2. Finalmente, tenemos que demostrar que $\{I \land B\}$ S $\{I\}$, para lo cual debemos probar que:

$$I \wedge B \Rightarrow wp(S, I)$$
.

Calculamos:

$$\begin{split} ℘(\texttt{if...endif}; \texttt{i:=i+1}, I) \\ &\equiv ℘(\texttt{if...endif}, wp(\texttt{i:=i+1}, I)) \\ &\equiv ℘(\texttt{if...endif}, I_{i+1}^i) \\ &\equiv &(s[i] = true \land wp(\texttt{c:=c+1}, I_{i+1}^i)) \lor (s[i] = false \land wp(\texttt{skip}, I_{i+1}^i)) \\ &\equiv &(s[i] = true \land (I_{i+1}^i)_{c+1}^c)) \lor (s[i] = false \land I_{i+1}^i) \end{split}$$

Para probar que esto es verdadero, separemos en 2 casos: $s[i] = true \ y \ s[i] = false$

Otro ejemplo: Chequeo de Paridad

3.
$$I \land \neg B \Rightarrow Q_C$$
?

 $I \land \neg B \equiv 0 \le i \le |s| \land c = \#apariciones(subseq(s, 0, i), true)$
 $\land \neg (i < |s|)$
 $\Rightarrow i = |s| \land c = \#apariciones(subseq(s, 0, i), true)$
 $\Rightarrow c = \#apariciones(subseq(s, 0, |s|), true)$
 $\Rightarrow c = \#apariciones(s, true)$
 $\equiv Q_C \checkmark$

Otro ejemplo: Chequeo de Paridad

▶ Si s[i] = true, entonces podemos simplificar el predicado:

$$(s[i] = true \land (I_{i+1}^i)_{c+1}^c) \lor (s[i] = false \land I_{i+1}^i)$$

$$\equiv (s[i] = true \land (I_{i+1}^i)_{c+1}^c)$$

$$\equiv (I_{i+1}^i)_{c+1}^c$$

$$\equiv 0 \le i+1 \le |s| \land_L c+1 = \#apariciones(subseq(s, 0, i+1), true)$$

- ▶ Ahora probemos que este predicado es verdadero:
 - ▶ Por hipótesis, $0 \le i \le |s|$ y i < |s|
 - ▶ Por lo tanto.

$$0 \le i < |s|$$

$$\Rightarrow 0 \le i + 1 \le |s| \tag{1}$$

Por hipótesis:

$$c = \#apariciones(subseq(s, 0, i), true)$$

Por lo tanto.

$$c+1 = \#apariciones(subseq(s, 0, i), true) + 1$$

$$= \#apariciones(subseq(s, 0, i), true) + (if true = true then 1 else 0 fi)$$

$$= \#apariciones(subseq(s, 0, i), true) + (if s[i] = true then 1 else 0 fi)$$

$$= \#apariciones(subseq(s, 0, i + 1), true)$$
(2)

Finalmente, por (1) y (2) demostramos que $I \wedge B \Rightarrow wp(S, I)$ para el caso que s[i] = true (pero aún falta probarlo para s[i] = false)

Otro ejemplo: Chequeo de Paridad

Por hipótesis:

$$c = \#apariciones(subseq(s, 0, i), true)$$

Por lo tanto,

$$c = \#apariciones(subseq(s, 0, i), true) + 0$$

 $= \#apariciones(subseq(s, 0, i), true) + (if false = true then 1 else 0 fi)$
 $= \#apariciones(subseq(s, 0, i), true) + (if s[i] = true then 1 else 0 fi)$
 $= \#apariciones(subseq(s, 0, i + 1), true)$ (4)

Finalmente, por (3) y (4) demostramos que $I \wedge B \Rightarrow wp(S, I)$ para el caso que s[i] = false. Y como ya probamos lo mismo para s[i] = true, podemos concluir que:

$$\{I \wedge B\}S\{I\} \checkmark$$

Otro ejemplo: Chequeo de Paridad

▶ Si s[i] = false, entonces podemos nuevamente simplificar el predicado:

$$(s[i] = true \land (I_{i+1}^i)_{c+1}^c) \lor (s[i] = false \land I_{i+1}^i)$$

$$\equiv (s[i] = false \land I_{i+1}^i)$$

$$\equiv I_{i+1}^i$$

$$\equiv 0 \le i+1 \le |s| \land_L c = \#apariciones(subseq(s, 0, i+1), true)$$

- ▶ Ahora probemos que este predicado es verdadero:
 - ▶ Por hipótesis, $0 \le i \le |s|$ y i < |s|
 - Análogo al caso s[i] = true, podemos probar que:

$$0 < i + 1 < |s| \tag{3}$$

Otro ejemplo: Chequeo de Paridad

- Ya que probamos
 - $ightharpoonup P_C \Rightarrow I$
 - ► {*I* ∧ *B*}*S*{*I*}
 - ▶ $I \land \neg B \Rightarrow Q_C$
- ▶ usando el teorema del invariante pudimos probar que (si el ciclo termina), se cumple Q_C .
- ▶ Ya probamos que $I \equiv 0 \le i \le |s| \land_L c = \#apariciones(s, true)$ es un invariante del ciclo.
- ▶ ¡Pero no probamos todavía que la ejecución del ciclo termina!

- La función variante representa una cantidad que se va reduciendo.
- ▶ Pero... ¿Cuál la condición para que se detenga el ciclo?
 - $B \equiv i < |s|$
 - Necesitamos que $fv \le 0$ implique i < |s|
- ▶ Por lo que proponemos entonces:

$$fv = |s| - i$$

Otro ejemplo: Chequeo de Paridad

- ► Con esta definición de fv, veamos si se cumplen las dos condiciones del Teorema de Terminación:
 - 1. $\{I \wedge B \wedge fv = v_0\} \ S \ \{fv < v_0\}$
 - 2. $I \wedge fv \leq 0 \Rightarrow \neg B$

Otro ejemplo: Chequeo de Paridad

► Sea la siguiente función candidato a función variante:

$$fv = |s| - i$$

▶ Veamos como evoluciona con los valores para |s| = 4

Iteración	s	i	fv = s - i
0	4	0	4-0=4
1	4	1	4-1=3
2	4	2	4-2=2
3	4	3	4-3=1
4	4	4	4-4=0

Otro ejemplo: Chequeo de Paridad

▶ ${I \land B \land fv = v_0} S {fv < v_0}$?

Para demostrarlo tenemos que probar que:

$$I \wedge B \wedge fv = v_0 \Rightarrow wp(S, fv < v_0)$$

► Comenzamos con la definición de la wp:

Otro ejemplo: Chequeo de Paridad

2.
$$I \wedge fv \leq 0 \Rightarrow \neg B$$
?

$$fv \le 0 \equiv |s| - i \le 0$$

$$\equiv |s| \le i$$

$$\Rightarrow \neg (i < |s|)$$

$$\equiv \neg B \checkmark$$

- ▶ Por lo tanto, probamos que $I \land fv \le 0 \Rightarrow \neg B$
- ➤ Ya que se cumplen sus hipótesis, por el teorema de terminación podemos concluir que el ciclo siempre termina.

Otro ejemplo: Chequeo de Paridad

• ... como $fv = v_0$ equivale a |s| - i, reemplazamos v_0 con esa expresión

$$\equiv |s| - (i+1) < |s| - i$$

$$\equiv -(i+1) < -i$$

$$\equiv (i+1) > i$$

- ▶ Lo cual es verdadero.
- ▶ Por lo tanto, demostramos que

$$I \wedge B \wedge fv = v_0 \Rightarrow wp(S, fv < v_0) \checkmark$$

Otro ejemplo: Chequeo de Paridad

- ► Finalmente, probamos que:
 - 1. $P_C \Rightarrow I$
 - 2. $\{I \wedge B\}S\{I\}$
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge v_0 = fv\}S\{fv < v_0\}$
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$
- ► Entonces, por (1)-(5) , se cumplen las hipótesis de ambos teoremas (teorema del invariante + teorema de terminación).
- ▶ Por lo tanto, la tripla de Hoare es válida (i.e., dada P_C , el ciclo siempre termina y vale Q_C)

Recap #1: Teorema del invariante

- ▶ **Teorema.** Si def(*B*) y existe un predicado *I* tal que
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$

... y **el ciclo termina**, entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

Teorema de corrección de un ciclo

- ▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

... entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

Recap #2: Teorema de terminación de un ciclo

▶ **Teorema.** Sea $\mathbb V$ el producto cartesiano de los dominios de las variables del programa y sea I un invariante del ciclo **while B do S endwhile**. Si existe una función $fv : \mathbb V \to \mathbb Z$ tal que

1.
$$\{I \wedge B \wedge v_0 = fv\}$$
 S $\{fv < v_0\}$,

2. $I \wedge fv < 0 \Rightarrow \neg B$,

... entonces la ejecución del ciclo **while B do S endwhile** siempre termina.

La función fy se llama función variante del ciclo.

Teorema de corrección de un ciclo

- ► El teorema de corrección de un ciclo nos permite demostrar la validez de una tripla de Hoare cuando el programa es un ciclo.
- ▶ Por definición, si probamos que:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

... entonces probamos que:

$$P_C \Rightarrow wp(\text{while B do S endwhile}, Q_C)$$

▶ ¡Cuidado! Probar lo anterior no significa haber obtenido un predicado que caracteriza a la precondición más débil del ciclo:

wp(while B do S endwhile, Q_C)

Programas con ciclos

- ► En general, no se puede definir un mecanismo efectivo para obtener una fórmula cerrada que represente la precondición más débil de un ciclo.
- ► Entonces, ¿cómo hacemos para probar la corrección y terminación de un programa que incluye ciclos intercalados con otras instrucciones?

Demostrando programas con ciclos

$$n \ge 0 \Rightarrow wp(s:=0;i:=1;while...;result:=s, result = \sum_{k=1}^{n} k)$$

$$\equiv wp(s:=0;i:=1;while...,wp(result:=s, result = \sum_{k=1}^{n} k))$$

$$\equiv wp(s:=0;i:=1,wp(while...,s = \sum_{k=1}^{n} k))$$

Como no podemos aplicar el Axioma 5 (no está acotado el número de iteraciones), ¿qué podemos hacer entonces?

Programas con ciclos

► Supongamos que tenemos la siguiente tripla de Hoare:

```
\{Pre : n \ge 0\}

s := 0;

i := 1;

while i<=n do

s := s + i;

i := i + 1

endwhile;

result := s

\{Post : result = \sum_{k=1}^{n} k\}
```

► Para demostrar que es válida necesitamos probar que es válida la fórmula:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s:=0;i:=1;while...;result:=s,result = \sum_{k=1}^{n} k)$$

Recap: Suma de índices

► Antes probamos que la siguiente tripla es válida:

```
\{P_C: n \ge 0 \land i = 1 \land s = 0\}
while (i <= n) do
s = s + i;
i = i + 1;
endwhile
\{Q_C: s = \sum_{k=1}^n k\}
```

▶ Por lo tanto, sabemos que se cumple que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(\text{while...}, s = \sum_{k=1}^{n} k)$$

Demostrando programas con ciclos

► Para poder usar que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(\text{while...}, s = \sum_{k=1}^{n} k)$$

- ... necesitamos probar que efectivamente el programa cumple $n \geq 0 \land i = 1 \land s = 0$ antes de que comience la ejecución del while.
- ► En otras palabras, necesitamos probar que:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s:=0; i:=1, \underbrace{n \geq 0 \land i = 1 \land s = 0}_{P_C})$$

► ¿Es esto verdadero?

Demostrando programas con ciclos

Por lo tanto, ya demostramos que:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s:=0;i:=1,\underbrace{n \geq 0 \land i=1 \land s=0}_{P_c})$$

► A esto lo llamaremos **Lema 1**

Y además probamos que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(\text{while...}, s = \sum_{k=1}^{n} k)$$

▶ A esto otro lo llamaremos Lema 2

Entonces, ¿qué propiedad que vimos la clase pasada podemos usar?

¡Corolario de la monotonía de la wp!

Demostrando programas con ciclos

$$n \ge 0$$
 \Rightarrow $wp(s:=0;i:=1, n \ge 0 \land i = 1 \land s = 0)$
 \equiv $wp(s:=0, wp(i:=1, n \ge 0 \land i = 1 \land s = 0))$
 \equiv $wp(s:=0, n \ge 0 \land 1 = 1 \land s = 0)$
 \equiv $wp(s:=0, n \ge 0 \land s = 0)$
 \equiv $n \ge 0 \land 0 = 0$
 \equiv $n \ge 0$
Verdadero

Recap: Corolario de la monotonía de la wp

- ► Corolario: Si
 - $ightharpoonup P \Rightarrow wp(S1, Q),$
 - $ightharpoonup Q \Rightarrow wp(S2, R),$

entonces

 $ightharpoonup P \Rightarrow wp(S1;S2,R).$

Corolario de monotonía

► Tenemos que:

```
1. n \ge 0 \Rightarrow wp(s:=0; i:=1, n \ge 0 \land i = 1 \land s = 0),
2. (n \ge 0 \land i = 1 \land s = 0) \Rightarrow wp(while..., s = \sum_{k=1}^{n} k).
```

► Entonces, por el corolario de la monotonía de la wp podemos concluir que:

$$n \ge 0 \Rightarrow wp(s:=0;i:=1; while..., s = \sum_{k=1}^{n} k)$$

▶ A esta fórmula que es verdadera la llamaremos **Lema 3**:

Programas con ciclos

▶ Ya que probamos que es verdadero que:

$$\underbrace{n \ge 0}_{Pre} \Rightarrow wp(s:=0;i:=1; while...; result:=s, result = \sum_{k=1}^{n} k)$$

▶ Entonces probamos que la siguiente tripla de Hoare es válida:

```
\{Pre: n \ge 0\}

s := 0;

i := 1;

while i<=n do

s := s + i;

i := i + 1

endwhile;

result := s

\{Post: result = \sum_{k=1}^{n} k\}
```

Demostrando programas con ciclos

▶ Volviendo a lo que habíamos desarrollado anteriormente:

$$n \ge 0 \Rightarrow wp(s:=0;i:=1;while...;result:=s, result = \sum_{k=1}^{n} k)$$
 $n \ge 0 \Rightarrow wp(s:=0;i:=1;while...wp(result :=s, result = \sum_{k=1}^{n} k))$
 $n \ge 0 \Rightarrow wp(s:=0;i:=1, wp(while..., s = \sum_{k=1}^{n} k))$

▶ Ahora, por **Lema 3**, sabemos que:

$$n \ge 0 \Rightarrow wp(s:=0;i:=1, wp(while..., s = \sum_{k=1}^{n} k))$$

Verdadero

Guía para demostrar programas con ciclos

Cuando tenemos programas con ciclos: S1; while...; S3

- 1. Aplicamos los axiomas de wp hasta que que no podemos aplicar ninguno y obtenemos Q_C .
- 2. Probamos que la tripla de Hoare que contiene al ciclo es verdadera. Esto nos permite concluir que $P_C \Rightarrow wp(\text{while}...,Q_C)$.
- 3. Utilizamos el corolario de la monotonía de wp para concluir que $Pre \Rightarrow wp(S1; while..., Q_C)$ es verdadero.
- Esto finalmente nos permite demostrar que Pre ⇒ wp(S1; while...; S3, Post) es verdadera.

Recap: SmallLang

- ▶ Para las demostraciones de corrección, introdujimos un lenguaje sencillo y con menos opciones (mucho más simple que C++). Llamemos **SmallLang** a este lenguaje.
- ► SmallLang tiene únicamente:

► Nada: skip

► Asignación: x := E

► Secuencia: S1;S2

▶ Condicional: if B then S1 else S2 endif

► Ciclo: while B do S endwhile

▶ No posee memoria dinámica (punteros), aliasing, llamados a función, estructura for, etc.

Corrección de programas en C++

Para demostrar la corrección de un programa en C++ con respecto a una especificación, podemos:

- 1. Traducir el programa C++ a SmallLang preservando su comportamiento.
- 2. Demostrar la corrección del programa en SmallLang con respecto a la especificación.
- 3. Entonces, probamos la corrección del comportamiento del programa original.

$C++ \rightarrow SmallLang$

Pero dado un programa en C++ podemos traducirlo a SmallLang preservando su semántica (comportamiento). Por ejemplo:

Ambos programas tienen el mismo comportamiento.

Bibliografía

- ► David Gries The Science of Programming
 - ▶ Part II The Semantics of a Small Language
 - ▶ Chapter 11 The Iterative Command