

Лабораторная работа №6 Определение коэффициента трения скольжения

Хафизов Фанис

6 октября 2019 г.

1 Цель работы:

Изучить закон сухого трения и ознакомиться с методами определения коэффициента трения скольжения.

2 Схема установки:

Рис. 1: Схема установки

Лабораторный стенд (рис. 1) включает наклонную направляющую скамью с прикрепленной к ней измерительной линейкой, движущееся тело (2 шт.), оптоэлектрические датчики (2 шт.) с модулем сбора сигналов, а также транспортир для измерения угла наклона направляющей скамьи. К приборам и принадлежностям относятся также компьютер с необходимым программным обеспечением.

3 Порядок действий

- 1)Соберём экспериментальную установку, выставив угол наклона $\alpha=30^\circ$ и установив датчики на достаточном расстоянии друг от друга.
- 2) С помощью соединительного кабеля подключим к компьютеру модуль сбора сигналов, к которому присоединены датчики. Затем откроем программу для получения результатов на компьютере.
- 3) Установим брусок в верхней точке линейки. Запустим измерения и отпустим брусок. После остановки бруска закончим запись. Обработаем данные по прохождению через датчики и найдем ускорение в каждом случае.

4 Таблицы данных и графики

Таблица 1: Входные данные

$N_{\overline{0}}$	α ,	l,	x_1 ,	$x_1+l,$	x_1+2l ,	x_1+3l ,	x_2	x_2+l	$x_2 + 2l,$	x_2+3l
Π/Π	0	MM	MM	MM	MM	MM	MM	MM	MM	MM
1	30	70	250	320	390	460	650	720	790	860
1	30	70	200	270	340	410	600	670	740	810
1	30	70	200	270	340	410	550	620	690	760
1	30	70	200	270	340	410	500	570	640	710
1	30	70	250	320	390	460	600	670	740	810
2	30	70	250	320	390	460	650	720	790	860
2	30	70	250	320	390	460	600	670	740	810
2	30	70	250	320	390	460	550	620	690	760
2	30	70	250	320	390	460	500	570	640	710
2	30	70	200	270	340	410	600	670	740	810

Таблица 2: Значения ускорений и коэффициента трения

						1 1		
Nº	$a_1,$	$a_2,$	a_3 ,	a_4 ,	a_5 ,	\overline{a} ,	μ	$\Delta \mu$
Π/Π	$\mathrm{m/c^2}$	M/c^2	$\mathrm{m/c^2}$	$\mathrm{m/c^2}$	$\mathrm{m/c^2}$	$\mathrm{m/c^2}$		
1	1,520	1,538	1,788	1,520	1,506	1,574	0,392	0,025
2	1,236	1,482	1,214	1,182	1,224	1,268	0,428	0,026

Рис. 2: График зависимости S(t) для первого бруска

Рис. 3: График зависимости S(t) для второго бруска

5 Расчеты

$$\begin{split} \overline{a} &= \frac{\sum\limits_{i=1}^{5} a_i}{5} \\ \overline{\mu} &= tg\alpha - \frac{\overline{a}}{g\cos\alpha} \\ \overline{\mu}_1 &= tg30^\circ - \frac{1,574}{g\cos30^\circ} = \frac{1}{\sqrt{3}} - \frac{1,574}{9,8\cdot\frac{\sqrt{3}}{2}} = 0,392 \end{split}$$

$$\overline{\mu}_2=tg30^\circ-rac{1,268}{gcos30^\circ}=rac{1}{\sqrt{3}}-rac{1,268}{9,8\cdotrac{\sqrt{3}}{2}}=0,428$$
 Расчет погрешностей:

$$\begin{split} \Delta a &= 2 \sqrt{\frac{\sum\limits_{i=1}^{5} (a_i - \overline{a})^2}{5}} \\ \Delta a_1 &= 0, 215 \text{M/c}^2 \\ \Delta a_2 &= 0, 217 \text{M/c}^2 \\ \Delta \mu &= \frac{\Delta a}{g cos \alpha} \\ \Delta \mu_1 &= \frac{\Delta a_1}{g cos \alpha} = \frac{0,215}{9,8 \cdot \frac{\sqrt{3}}{2}} = 0,025 \\ \Delta \mu_2 &= \frac{\Delta a_2}{g cos \alpha} = \frac{0,217}{9,8 \cdot \frac{\sqrt{3}}{2}} = 0,026 \\ \varepsilon_{\mu} &= \frac{\Delta \mu}{\overline{\mu}} \\ \varepsilon_{\mu 1} &= \frac{\Delta \mu_1}{\overline{\mu}_1} = \frac{0,025}{0,392} = 6\% \\ \varepsilon_{\mu 2} &= \frac{\Delta \mu_2}{\overline{\mu}_2} = \frac{0,026}{0,428} = 6\% \end{split}$$

6 Результаты

$$\mu = \overline{\mu} \pm \Delta \mu$$
 $\mu_1 = \overline{\mu}_1 \pm \Delta \mu_1 = 0,392 \pm 0,025$
 $\mu_2 = \overline{\mu}_2 \pm \Delta \mu_2 = 0,428 \pm 0,026$

7 Вывод

Мы получили достаточно ожидаемый результат. Необычно лишь то, что коэффициент трения у обоих брусков получился почти одинаковый. Относительная погрешность в обоих случаях 6%. Основная составляющая погрешности — случайная погрешность измерений. Для улучшения точности результата можно было бы увеличить длину линейки или использовать больше датчиков.