

Tema 5: Productos escalares. Ortogonalidad

Marisa Serrano

Universidad de Oviedo

15 de noviembre de 2020

email: mlserrano@uniovi.es

Contenido

- 1 Definición de Espacio Vectorial Euclídeo
- Matriz asociada a un producto escalar
- Propiedades métricas
- Ortogonalidad

Definición 5.1

 $\begin{array}{ccc} \cdot \colon & V \times V & \to & \mathbb{R} \\ & (\vec{v}, \vec{u}) & \to & \vec{v} \cdot \vec{u} \end{array}$ V, \mathbb{R} -espacio vectorial, la aplicación producto escalar si cumple:

a) $\forall \vec{v_1}, \vec{v_2}, \vec{u} \in V \ \forall \alpha, \beta \in \mathbb{R}$ entonces

$$(\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \vec{v}_1 \cdot \vec{u} + \beta \vec{v}_2 \cdot \vec{u}$$

$$\vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \vec{u} \cdot \vec{v}_1 + \beta \vec{u} \cdot \vec{v}_2$$

Definición 5.1

- $\begin{array}{ccc} \cdot \colon & V \times V & \to & \mathbb{R} \\ & (\vec{v}, \vec{u}) & \to & \vec{v} \cdot \vec{u} \end{array}$ V, $\mathbb{R}-espacio$ vectorial, la aplicación producto escalar si cumple:
 - a) $\forall \vec{v_1}, \vec{v_2}, \vec{u} \in V \ \forall \alpha, \beta \in \mathbb{R}$ entonces

$$(\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \vec{v}_1 \cdot \vec{u} + \beta \vec{v}_2 \cdot \vec{u}$$

$$\vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \vec{u} \cdot \vec{v}_1 + \beta \vec{u} \cdot \vec{v}_2$$

- b) Simetría $\forall \vec{v}, \vec{u} \in V \quad \vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$

Definición 5.1

- $\begin{array}{ccc} \cdot \colon & V \times V & \to & \mathbb{R} \\ & (\vec{v}, \vec{u}) & \to & \vec{v} \cdot \vec{u} \end{array}$ V, \mathbb{R} -espacio vectorial, la aplicación producto escalar si cumple:
 - a) $\forall \vec{v_1}, \vec{v_2}, \vec{u} \in V \ \forall \alpha, \beta \in \mathbb{R}$ entonces

$$(\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \vec{v}_1 \cdot \vec{u} + \beta \vec{v}_2 \cdot \vec{u}$$

$$\vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \vec{u} \cdot \vec{v}_1 + \beta \vec{u} \cdot \vec{v}_2$$

- b) Simetría $\forall \vec{v}, \vec{u} \in V \quad \vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$
- c) Positiva $\forall \vec{v} \in V \quad \vec{v} \cdot \vec{v} > 0$

Definición 5.1

- $\begin{array}{ccc} \cdot \colon & V \times V & \to & \mathbb{R} \\ & (\vec{v}, \vec{u}) & \to & \vec{v} \cdot \vec{u} \end{array}$ V, \mathbb{R} -espacio vectorial, la aplicación producto escalar si cumple:
 - a) $\forall \vec{v_1}, \vec{v_2}, \vec{u} \in V \ \forall \alpha, \beta \in \mathbb{R}$ entonces

$$(\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \vec{v}_1 \cdot \vec{u} + \beta \vec{v}_2 \cdot \vec{u}$$

$$\vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \vec{u} \cdot \vec{v}_1 + \beta \vec{u} \cdot \vec{v}_2$$

- b) Simetría $\forall \vec{v}, \vec{u} \in V \quad \vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$
- c) Positiva $\forall \vec{v} \in V \quad \vec{v} \cdot \vec{v} > 0$
- d) Definida $\vec{v} \cdot \vec{v} = 0 \rightarrow \vec{v} = \vec{0}$

Definición 5.1

- V, \mathbb{R} -espacio vectorial, la aplicación $\overset{\cdot :}{(\vec{v},\vec{u})} \overset{V \times V}{\rightarrow} \overset{\mathbb{R}}{\vec{v} \cdot \vec{u}}$ es un producto escalar si cumple:
 - a) $\forall \vec{v}_1, \vec{v}_2, \vec{u} \in V \ \forall \alpha, \beta \in \mathbb{R}$ entonces

$$(\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \vec{v}_1 \cdot \vec{u} + \beta \vec{v}_2 \cdot \vec{u}$$

$$\vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \vec{u} \cdot \vec{v}_1 + \beta \vec{u} \cdot \vec{v}_2$$

- b) Simetría $\forall \vec{v}, \vec{u} \in V \quad \vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$
- c) Positiva $\forall \vec{v} \in V \quad \vec{v} \cdot \vec{v} \geq 0$
- d) Definida $\vec{v} \cdot \vec{v} = 0 \rightarrow \vec{v} = \vec{0}$

Al par (V, \cdot) se le denomina espacio euclídeo.

Ejemplo

Ejemplo 5.1

Probar que la aplicación siguiente es un producto escalar:

$$(x_1, x_2) \cdot (y_1, y_2) = 2x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2$$

Cuadrado escalar

Definición 5.2

A la aplicación:

$$egin{array}{cccc} V & \longrightarrow & \mathbb{R} \ ec{v} & \rightarrow & ec{v} \ ^2 = ec{v} \cdot ec{v} \end{array}$$

la llamaremos cuadrado escalar.

Ejemplo

Ejemplo 5.2

Calcular el cuadrado escalar asociado al producto:

$$(x_1, x_2) \cdot (y_1, y_2) = 2x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2$$

Calcula $(1,0)^2$

Recuperación del producto escalar a partir del cuadrado

Vamos a calcular el cuadrado escalar de una combinación lineal de dos vectores del espacio:

$$(\alpha \vec{u} + \beta \vec{v})^2 = (\alpha \vec{u} + \beta \vec{v}) \cdot (\alpha \vec{u} + \beta \vec{v}) = \alpha^2 \vec{u}^2 + 2\alpha \beta \vec{u} \cdot \vec{v} + \beta^2 \vec{v}^2$$

Tomando $\alpha = 1$ y $\beta = 1$ se puede obtener el producto escalar de dos vectores a partir de sus cuadrados escalares:

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left((\vec{u} + \vec{v})^2 - \vec{u}^2 - \vec{v}^2 \right)$$

Representación matricial

Se fija una base $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ y expresamos los vectores $\vec{u}, \vec{w} \in V$, con coordenadas $\vec{u} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n$, $\vec{w} = y_1 \vec{v}_1 + y_2 \vec{v}_2 + \dots + y_n \vec{v}_n$, entonces el producto escalar se puede escribir como:

$$\vec{u} \cdot \vec{w} = X^t G Y$$

donde

$$G = \begin{pmatrix} \vec{v}_{1}^{2} & \vec{v}_{1}.\vec{v}_{2} & \dots & \vec{v}_{1}.\vec{v}_{n} \\ \vec{v}_{1}.\vec{v}_{2} & \vec{v}_{2}^{2} & \dots & \vec{v}_{2}.\vec{v}_{n} \\ \vdots & \vdots & & \vdots \\ \vec{v}_{1}.\vec{v}_{n} & \vec{v}_{2}.\vec{v}_{n} & \dots & \vec{v}_{n}^{2} \end{pmatrix}; X = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}; Y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

A la matriz G se llama Matriz de Gram.

Propiedades de la Matriz de Gram

Por la simetría del producto escalar se cumple que $\vec{v}_i \cdot \vec{v}_j = \vec{v}_i \cdot \vec{v}_i$, la matriz G debe ser simétrica.

Como $\vec{v}^2 > 0$, entonces $g_{ii} > 0$.

Además:
$$(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} x_i y_j$$
, es decir, el

elemento i, j de la matriz G es el coeficiente del producto $x_i y_i$.

El cuadrado escalar sería
$$(x_1, x_2, \dots, x_n)^2 = \sum_{i=1}^n g_{ii} x_i^2 + \sum_{i=1}^{n-1} 2g_{ij} x_i x_j$$

$$i = 1$$

$$i > i$$

Ejemplos

Ejemplo 5.3

Dado el producto escalar:

$$(x_1, x_2, x_3) \cdot (x_1, y_2, y_3) =$$

$$= x_1 y_1 + 6x_2 y_2 + 7x_3 y_3 + 2x_1 y_2 + 2x_2 y_1 - 2x_2 y_3 - 2x_3 y_2$$

Calcula la matriz asociada.

Ejemplo 5.4

Dado el cuadrado escalar:

$$(x,y)^2 = 3x^2 - xy + 2y^2$$

Calcule la matriz asociada al producto escalar correspondiente.

Cambio de base en productos escalares

Sea · un producto escalar, cuya matriz asociada en la base \mathcal{B} es A y en la base \mathcal{B}' es M.

$$P$$
 matriz de cambio de base de \mathcal{B} a \mathcal{B}' $\vec{v} \equiv X_{\mathcal{B}} \equiv X'_{\mathcal{B}'}$ $\vec{u} \equiv Y_{\mathcal{B}} \equiv Y'_{\mathcal{B}'}$

entonces: $M = P^t A P$

Matrices congruentes

Definición 5.3

En el espacio $\mathcal{M}_{n\times n}(\mathbb{R})$ se dice que A y M son congruentes si $\exists P \in \mathcal{M}_{n \times n}(\mathbb{R})$ regular, tal que $M = P^t A P$.

Ejemplo

Ejemplo 5.5

Calcúlese la matriz del producto escalar:

$$(x_1, x_2) \cdot (y_1, y_2) = 2x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2$$

en la base canónica. Calcúlese la matriz asociada en la base $\mathcal{B} = \{(1,1), (-1,1)\}$

Una condición sobre la matriz asociada

Teorema 5.1 (Criterio de Sylvester)

Una condición necesaria y suficiente para que una matriz A simétrica esté asociada a un producto escalar es que:

$$\det \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1i} \\ a_{12} & a_{22} & \dots & a_{2i} \\ \vdots & \vdots & & \vdots \\ a_{1i} & a_{2i} & \dots & a_{ii} \end{array} \right) > 0 \qquad \forall i \in \{1, 2, \dots n\}$$

¡Son productos escalares?

$$A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 1 & -1 \\ -2 & 1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 8 & 2 \\ 1 & 2 & -2 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Longitud

Definición 5.4

Llamaremos longitud, norma o módulo de un vector al número real:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\vec{v}^2}$$

$$\frac{\vec{V}}{||\vec{V}|}$$

Longitud

Definición 5.4

Llamaremos longitud, norma o módulo de un vector al número real:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\vec{v}^2}$$

Definición 5.5

Un vector \vec{v} diremos que es unitario si $||\vec{v}|| = 1$

Longitud

Definición 5.4

Llamaremos longitud, norma o módulo de un vector al número real:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\vec{v}^2}$$

Definición 5.5

Un vector \vec{v} diremos que es unitario si $\|\vec{v}\|=1$

Definición 5.6

Dado un vector $\vec{v} \neq \vec{0}$, llamaremos vector unitario asociado a \vec{v} al vector:

Propiedades

Teorema 5.2 (designaldad de Cauchy-Schwartz)

Dados dos vectores cualesquiera del espacio euclídeo V se cumple:

$$|\vec{v} \cdot \vec{w}| \le ||\vec{v}|| \ ||\vec{w}||$$

Propiedades

Teorema 5.2 (desigualdad de Cauchy-Schwartz)

Dados dos vectores cualesquiera del espacio euclídeo V se cumple:

$$|\vec{v} \cdot \vec{w}| \le ||\vec{v}|| \ ||\vec{w}||$$

Corolario

Si los vectores \vec{v} y \vec{w} son linealmente dependientes entonces se verifica la igualdad.

Angulo que forman dos vectores

Definición 5.7

Si los dos vectores son no nulos: $-1 \leq \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| \ ||\vec{w}||} \leq 1$ y existe un único número real $\theta \in [0, \pi]$ tal que

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| \ ||\vec{w}||}$$

 $A \theta \in \mathbb{R}$ le llamaremos ángulo que forman los vectores \vec{v} y \vec{w} .

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| \ ||\vec{w}|| \cos(\theta)$$

Angulo que forman dos vectores

Definición 5.7

Si los dos vectores son no nulos: $-1 \le \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| \ ||\vec{w}||} \le 1$ y existe un único número real $\theta \in [0, \pi]$ tal que

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| \ ||\vec{w}||}$$

 $A \theta \in \mathbb{R}$ le llamaremos ángulo que forman los vectores \vec{v} y \vec{w} .

Nota 5.1

Si multiplicamos la expresión del coseno por las longitudes de los vectores se obtiene la expresión habitual del producto escalar:

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| \ ||\vec{w}|| \cos(\theta)$$

¿Sorprendente?, no, la métrica depende del producto escalar

Ejemplo 5.6

Con el producto escalar que en la base canónica tiene asociada la matriz

$$G = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

Calcúlese el coseno del ángulo que forman los vectores (1,0,0) y (0,1,0).

Vectores ortogonales

Definición 5.8

Dos vectores \vec{u} y \vec{v} diremos que son ortogonales y lo denotaremos por $\vec{u} \mid \vec{v} \ si \ \vec{u} \cdot \vec{v} = 0.$

Vectores ortogonales

Definición 5.8

Dos vectores \vec{u} y \vec{v} diremos que son ortogonales y lo denotaremos por $\vec{u} \mid \vec{v} \ si \ \vec{u} \cdot \vec{v} = 0.$

Teorema 5.3

Sea (V, \cdot) un espacio euclídeo, y sea \vec{v} un vector no nulo de V, entonces, cualquier vector $\vec{u} \in V$ se puede expresar de forma única como suma de un vector proporcional a \vec{v} y uno ortogonal a éste.

Vectores ortogonales

Definición 5.8

Dos vectores \vec{u} y \vec{v} diremos que son ortogonales y lo denotaremos por $\vec{u} \perp \vec{v}$ si $\vec{u} \cdot \vec{v} = 0$.

Teorema 5.3

Sea (V, \cdot) un espacio euclídeo, y sea \vec{v} un vector no nulo de V, entonces, cualquier vector $\vec{u} \in V$ se puede expresar de forma única como suma de un vector proporcional a \vec{v} y uno ortogonal a éste.

Teorema 5.4

En un espacio euclídeo, cualquier sistema de vectores no nulos y ortogonales dos a dos es un sistema libre.

Ejemplo 5.7

En \mathbb{R}^3 con el producto escalar habitual, se considera el vector $\vec{v}=(2,-3,1)$, expresa el vector $\vec{u}=(1,3,5)$ como suma de dos vectores, uno proporcional a \vec{v} y otro ortogonal a éste.

Introducción

A continuación nos plantearemos el cálculo de una base donde la matriz asociada al producto escalar sea lo más sencilla posible, es decir, siempre que sea posible diagonal, y mejor aún, la identidad. Veamos qué tipo de

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

$$\vec{v}_i \cdot \vec{v}_j = \left\{ egin{array}{ll} 1 & \mathrm{si} & i = j \\ 0 & \mathrm{si} & i \neq j \end{array}
ight.$$

Introducción

A continuación nos plantearemos el cálculo de una base donde la matriz asociada al producto escalar sea lo más sencilla posible, es decir, siempre que sea posible diagonal, y mejor aún, la identidad. Veamos qué tipo de base sería, si queremos que la matriz asociada sea la identidad. Si

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

es la base en la que la matriz asociada es la identidad, debe verificar que

$$\vec{v}_i \cdot \vec{v}_j = \left\{ egin{array}{ll} 1 & \mathrm{si} & i = j \\ 0 & \mathrm{si} & i \neq j \end{array} \right.$$

Bases ortogonales

Definición 5.9

Diremos que una base

$$\textit{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

es una base ortogonal si sus vectores son ortogonales dos a dos.

Bases ortogonales

Definición 5.9

Diremos que una base

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

es una base ortogonal si sus vectores son ortogonales dos a dos.

Nota 5.2

Si trabajamos en una base ortogonal, la matriz de Gram es diagonal.

Bases ortonormales

Definición 5.10

Diremos que una base

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

es una base ortonormal si sus vectores son ortogonales dos a dos y unitarios.

Bases ortonormales

Definición 5.10

Diremos que una base

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

es una base ortonormal si sus vectores son ortogonales dos a dos y unitarios.

Nota 5.3

Si trabajamos en una base ortogonal, la matriz de Gram es la identidad.

Método de Ortogonalización de Gram-Schmidt

A partir de una base cualquiera $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$, vamos a obtener una base ortogonal $\mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ como sigue:

$$\forall p \in \{1, 2, \dots, n\}$$
 $\vec{e}_p = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_{p-1} \vec{v}_{p-1} + \vec{v}_p$

$$\left\{\frac{\vec{v}_1}{\|\vec{v}_1\|}, \frac{\vec{v}_2}{\|\vec{v}_2\|}, ..., \frac{\vec{v}_n}{\|\vec{v}_n\|}\right\} = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$$

Método de Ortogonalización de Gram-Schmidt

A partir de una base cualquiera $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$, vamos a obtener una base ortogonal $\mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ como sigue:

$$\forall p \in \{1, 2, \dots, n\} \quad \vec{e}_p = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_{p-1} \vec{v}_{p-1} + \vec{v}_p$$

de forma que $\vec{v_p} \perp \vec{v_i}$ entonces $\alpha_i = \frac{\vec{e_p} \cdot \vec{v_i}}{\vec{v_i} \cdot \vec{v_i}}$ para todo $i \in \{1, 2, ..., p-1\}$. Así, la base

$$\left\{\frac{\vec{v}_1}{\|\vec{v}_1\|}, \frac{\vec{v}_2}{\|\vec{v}_2\|}, ..., \frac{\vec{v}_n}{\|\vec{v}_n\|}\right\} = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$$

Método de Ortogonalización de Gram-Schmidt

A partir de una base cualquiera $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$, vamos a obtener una base ortogonal $\mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ como sigue:

$$\forall p \in \{1, 2, \dots, n\} \quad \vec{e}_p = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_{p-1} \vec{v}_{p-1} + \vec{v}_p$$

de forma que $\vec{v_p} \perp \vec{v_i}$ entonces $\alpha_i = \frac{\vec{e_p} \cdot \vec{v_i}}{\vec{v_i} \cdot \vec{v_i}}$ para todo $i \in \{1, 2, ..., p-1\}$. Así, la base

$$\left\{\frac{\vec{v}_1}{\|\vec{v}_1\|}, \frac{\vec{v}_2}{\|\vec{v}_2\|}, ..., \frac{\vec{v}_n}{\|\vec{v}_n\|}\right\} = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$$

es una base ortonormal de E.

Un ejemplo

Ejemplo 5.8

Utilícese el método anterior para calcular una base ortonormal para el producto escalar definido en la base canónica por la matriz

$$G = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

Ortogonalidad de subespacios

Definición 5.11

Se dice que dos subespacios U y V de E son subespacios ortogonales si $\vec{v} \cdot \vec{w} = 0$ para cada $\vec{v} \in U$ y para cada $\vec{w} \in V$. En este caso, se puede escribir $U \perp V$.

$$U^{\perp} = \{ \vec{w} \in E / \vec{v} \cdot \vec{w} = 0 \quad \forall \vec{v} \in U \}$$

Ortogonalidad de subespacios

Definición 5.11

Se dice que dos subespacios U y V de E son subespacios ortogonales si $\vec{v} \cdot \vec{w} = 0$ para cada $\vec{v} \in U$ y para cada $\vec{w} \in V$. En este caso, se puede escribir $U \perp V$.

Definición 5.12

Si U es un subespacio de un espacio euclídeo E, el conjunto de los vectores ortogonales a U se denota por

$$U^{\perp} = \{ \vec{w} \in E / \vec{v} \cdot \vec{w} = 0 \quad \forall \vec{v} \in U \}$$

Ortogonalidad de subespacios

Definición 5.11

Se dice que dos subespacios U y V de E son subespacios ortogonales si $\vec{v} \cdot \vec{w} = 0$ para cada $\vec{v} \in U$ y para cada $\vec{w} \in V$. En este caso, se puede escribir $U \perp V$.

Definición 5.12

Si U es un subespacio de un espacio euclídeo E, el conjunto de los vectores ortogonales a U se denota por

$$U^{\perp} = \{ \vec{w} \in E / \vec{v} \cdot \vec{w} = 0 \quad \forall \vec{v} \in U \}$$

Teorema 5.5

 U^{\perp} es subespacio de E y se le denomina suplemento ortogonal de U respecto de E.

El suplemento ortogonal

Teorema 5.6

$$U\cap U^{\perp}=\left\{\vec{0}\right\}$$

$$\mathcal{B} = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}.$$

El suplemento ortogonal

Teorema 5.6

$$U\cap U^{\perp}=\left\{\vec{0}\right\}$$

Teorema 5.7

Para que un vector $\vec{b} \in E$ sea ortogonal al subespacio U es suficiente que sea ortogonal a los vectores de una base cualquiera de U,

$$\mathcal{B} = \{\vec{e_1}, \vec{e_2}, ..., \vec{e_n}\}.$$

Proyección ortogonal

Consideremos en el espacio euclídeo E de dimensión finita o no, $\mathcal U$ un subespacio vectorial de E de dimensión m y un vector $\vec v \in E$. Buscamos un vector $\vec u \in \mathcal U$ tal que $\vec v - \vec u$ sea ortogonal a $\mathcal U$, es decir, $\vec v - \vec u \in \mathcal U^\perp$. Al vector $\vec u$ se le denomina **proyección ortogonal** de $\vec v$ sobre $\mathcal U$ y se le denota por $\vec u = proy_{\mathcal U}(\vec v)$, o también $\vec u = \pi_{\mathcal U}(\vec v)$.

Teorema 5.8

Si $\mathcal U$ es un subespacio de dimensión finita de un espacio euclídeo E (no necesariamente de dimensión finita) y $\vec{p} \in \mathcal U$ es la proyección ortogonal de $\vec{v} \in E$ sobre $\mathcal U$, $\vec{v} \notin \mathcal U$.

$$\|\vec{v} - \vec{w}\| > \|\vec{v} - \vec{p}\| \quad \forall \vec{w} \in \mathcal{U} \quad \vec{w} \neq \vec{p}$$

Cálculo de la proyección

Supongamos que conocemos una base del subespacio \mathcal{U} : $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_m}\}$, buscamos $\vec{u} \in \mathcal{U}$ que debe ser de la forma

$$\vec{u} = c_1 \vec{e}_1 + c_2 \vec{e}_2 + ... + c_m \vec{e}_m$$

y que cumple

$$ec{v}-\left(c_1ec{e}_1+c_2ec{e}_2+...+c_mec{e}_m
ight)\in\mathcal{U}^\perp$$

Cálculo de la proyección

Supongamos que conocemos una base del subespacio \mathcal{U} : $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_m}\}$, buscamos $\vec{u} \in \mathcal{U}$ que debe ser de la forma

$$\vec{u} = c_1 \vec{e}_1 + c_2 \vec{e}_2 + ... + c_m \vec{e}_m$$

y que cumple

$$ec{v}-\left(c_1ec{e}_1+c_2ec{e}_2+...+c_mec{e}_m
ight)\in \mathcal{U}^\perp$$

Para calcular la proyección, descomponemos \vec{v} en suma de un vector de \mathcal{U} y otro de \mathcal{U}^{\perp} y la proyección será el vector de \mathcal{U} obtenido.

Cálculo de la proyección de una función

Ejemplo 5.9

Calcula la proyección ortogonal de la función $f(x) = sen(\pi x)$ definida para $x \in [0,1]$, en el espacio euclídeo $\mathbb{R}_2[x]$ con el producto escalar:

$$\forall p, q \in \mathbb{R}_2[x]$$
 $p \cdot q = \int_0^1 p(x)q(x)dx$

