

Outline

- Introduction
- Grammar of Graphics
- Observable Plot
- Practical Activities
- Conclusion

Exploratory Data Analysis

Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often **employing** data visualisation methods.

Defined by John W. Tukey in 1977

Anscombe Quartet

Property	Value
Mean of x	9
Sample variance of x : s_{χ}^2	11
Mean of y	7.50
Sample variance of y : s_y^2	4.125
Correlation between x and y	0.816
Linear regression line	y = 3.00 + 0.500x
Coefficient of determination of the linear regression: R^2	0.67

Many Visualisation Designs...

...and many toolkits/ways of doing them

- Graphical Interface: Tableau, RawGraph, Flourish
- Chart-based libraries: Matplotlib, bokeh, R base library
- Low-level libraries: D3, three.js, HTML canvas
- Grammar of Graphics libraries: vega, ggplot, Observable Plot

The Grammar of Graphics

"A grammar of graphics is a tool that enables us to concisely **describe** the **components of a graphic**. Such a grammar allows us to **move beyond named graphics** (e.g., the ``scatterplot'') and gain insight into the deep structure that underlies statistical graphics."

A Layered Grammar of Graphics, Hadley WICKHAM, 2010

Leland Wilkinson, The Grammar of Graphics, Springer, 1999

The grammar of graphics

Data

Transforms (statistics)

Scales

Coordinate system

Geometries (mark)

Aesthetic mappings

Facets

The grammar of graphics

Data

Transforms (statistics)

Scales

Coordinate system

Geometries (mark)

Aesthetic mappings

Facets

bin, mean, median, max...

Linear, log...

Cartesian, polar...

Points, rect, lines, shapes...

x, y, fill, stroke...

ScatterPlot

ID	culmen length (mm)	culmen depth (mm)
1	39	18
2	38	17
3	28	20

Penguins

CULMEN: RIDGE ALONG THE TOP PART OF A BIRD'S BILL

ScatterPlot

Data

Transforms (statistics)

Scales

Coordinate system

Geometries (mark)

Aesthetic mappings

Facets

Penguins

Identity

Linear

Cartesian

Points

x=culmen_length,
y=culmen_depth, fill="red"

ID	culmen length (mm)	culmen depth (mm)
1	39	18
2	38	17
3	28	20

ScatterPlot

Observable Plot

Observable Plot (Scatterplot)

```
Plot.plot({
     marks: [
          Plot.dot(penguins, {x: "culmen_length", y="culmen_depth", fill="red"})
                                                                   Data
                                                                   Transforms (statistics)
                                                                   Scales
                                                                   Coordinate system
                                                                   Geometries (mark)
                                                                   Aesthetic mappings
                                                                   Facets
```

Observable Plot: marks, channels, scales

Data

Transforms (statistics)

Scales

Coordinate system

Geometries (mark)

Plot.dot, Plot.rule, Plot.line, ...

Aesthetic mappings (channel)

Facets

Observable Plot: marks, **channels**, scales

Data

Transforms (statistics)

Scales

Coordinate system

Geometries (mark)

Aesthetic mappings (channel)

Facets

Plot.dot, Plot.rule, Plot.line, ...

{x, y, stroke, fill, strokeWidth, ...}

Observable Plot: marks, channels, scales

Data

Transforms (statistics)

Scales

Plot({x: {type: 'log'}})

Coordinate system

Geometries (mark)

Plot.dot, Plot.rule, Plot.line, ...

Aesthetic mappings (channel)

{x, y, stroke, fill, strokeWidth, ...}

Facets

Data

ID	culmen length (mm)	culmen depth (mm)
1	39	18
2	38	17
3	28	20

```
penguins = [
     {ID: 1, culmen_length: 39, culment_depth: 18},
     {ID: 2, culmen_length: 38, culment_depth: 17},
     {ID: 3, culmen_length: 28, culment_depth: 20}
]
```

Tabular

JSON

Activities

Examples: https://observablehq.com/@observablehq/plot-gallery

Documentation: https://observablehq.com/plot/getting-started

Fork this notebook: https://observablehg.com/d/45b4056b09ad6296

Conclusion

- The Grammar of Graphics allows us to create expressive and modulable visualisations with a common framework.
- Observable Plot is based on the GoG
- Don't hesitate to look at examples and documentation to learn more!
- Observable Plot and Observable Notebooks lets us easily to Exploratory Data Analysis.

Meetup

https://www.meetup.com/datavisedinburgh/

- One last Thursday of every month
- Next one on network
 visualisation, 30th May 2024