

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 3 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование алгоритма имитации отжига»

Вариант 12

Выполнила: Николаева Е.Д., студентка группы ИУ8-31

Проверила: Коннова Н.С., доцент каф. ИУ8

Цель работы

Изучение метода имитации отжига для поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Условие задачи

- 1. На интервале [7; 11] задана унимодальная функция одного переменного $f(x) = \cos(x)*th(x)$. Используя метод имитации отжига осуществить поиск минимума f(x).
- 2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом $\sin(5x)$, т.е. мультимодальной функции $f(x)*\sin(5x)$.

Рисунок $1 - \Gamma$ рафик функции $f(x) = \cos(x) * th(x)$ на отрезке [7,11]

Рисунок 2 – График функции f(x) = cos(x)*th(x)*sin(5x) на отрезке [7; 11]

Имитация отжига для заданных функций

Таблица, которую выводит программа для метода имитации отжига для $y = \cos(x) * th(x)$

1	N		Т	x		f(x)
	1		10000	9.25434		-0.91113
	2		9500	9.25434		-0.91113
	3		9025	9.34004		-0.91113
	4		8573.75	9.34004		-0.91113
	5		8145.06	9.34004		-0.91113
	6		7737.81	9.98642		-0.91113
	7		7350.92	9.98642		-0.91113
	8		6983.37	9.84201		-0.91113
	9		6634.2	9.05414		-0.91113
	10		6302.49	9.05414		-0.91113
	11		5987.37	9.05414		-0.91113
	12		5688	9.05414		-0.91113
	13		5403.6	9.05414		-0.91113
	14		5133.42	9.05414		-0.91113
	15		4876.75	9.05414		-0.91113
	16		4632.91	9.12665		-0.91113
	17		4401.27	9.28474		-0.91113
	18		4181.2	9.40706		-0.91113
	19		3972.14	9.42866		-0.91113
	20		3773.54	9.42866		-0.91113
	21		3584.86	9.42866		-0.91113
	22		3405.62	9.42866		-0.91113
	23		3235.34	9.42866		-0.91113
	24		3073.57	9.07953		-0.91113
	25		2919.89	9.07953		-0.91113
	26		2773.9	9.9067		-0.91113
	27		2635.2	9.9067		-0.91113
	28		2503.44	9.15741		-0.91113
	29		2378.27	9.15741		-0.91113
	30		2259.36	9.15741		-0.91113
	31		2146.39	9.15741		-0.91113

1 22	1 2020 07	9.15741	. 0 01112	1
	2039.07	•	-0.91113	I
33	1937.11	9.15741	-0.91113	
34	1840.26	9.15741	-0.91113	
35	1748.25	9.15741	-0.91113	1
	1660.83	9.15741	-0.91113	l I
				l
	1577.79	9.15741	-0.91113	
38	1498.9	9.15741	-0.91113	
39	1423.96	9.15741	-0.91113	1
	1352.76	9.15741	-0.91113	i
			•	l I
	1285.12	9.76473	-0.91113	
42	1220.87	9.76473	-0.91113	
43	1159.82	9.76473	-0.91113	
44	1101.83	9.97494	-0.91113	İ
	1046.74	9.97494	-0.91113	i
				l i
	994.403	9.97494	-0.91113	
47	944.682	9.97494	-0.91113	
48	897.448	9.97494	-0.91113	1
	852.576	9.43587	-0.91113	i
	809.947	9.28962		l I
	•		-0.91113	l
	769.45	9.28962	-0.91113	
52	730.977	9.28962	-0.91113	
53	694.428	9.28962	-0.91113	1
	659.707	9.28962	-0.91113	i
			•	l I
	626.722	9.28962	-0.91113	l
	595.386	9.62923	-0.91113	
57	565.616	9.62923	-0.91113	
58	537.335	9.79904	-0.91113	
	510.469	9.01923	-0.91113	İ
	484.945	9.01923	-0.91113	i
				I
	460.698	9.01923	-0.91113	I
62	437.663	9.77157	-0.91113	
63	415.78	9.77157	-0.91113	
64	394.991	9.77157	-0.91113	
	375.241	9.73275	-0.91113	i
				l I
66	356.479	9.73275	-0.91113	l
67	338.655	9.73275	-0.91113	
68	321.723	9.73275	-0.91113	
69	305.636	9.73275	-0.91113	
70	290.355	9.73275	-0.91113	i
71	275.837	9.92807	-0.91113	l I
				l I
	262.045	9.92807	-0.91113	I
73	248.943	9.27497	-0.91113	
74	236.496	9.72897	-0.91113	
75	224.671	9.72897	-0.91113	1
76	213.437	9.72897	-0.91113	i
				I I
77	202.765	9.72897	-0.91113	I
78	192.627	9.72897	-0.91113	
79	182.996	9.65194	-0.91113	
80	173.846	9.65194	-0.91113	1
81	165.154	9.65194	-0.91113	i
				l I
82	156.896	9.19819	-0.91113	l I
83	149.051	9.19819	-0.91113	ļ
84	141.599	9.19819	-0.91113	
85	134.519	9.19819	-0.91113	
86	127.793	9.19819	-0.91113	1
87	121.403	9.19819	-0.91113	i
				I I
88	115.333	9.26911	-0.91113	I .
89	109.566	9.26911	-0.91113	I
90	104.088	9.26911	-0.91113	

91	98.8836	9.0036	-0.91113	1
	93.9395	9.0036	-0.91113	l İ
		•	•	
	89.2425	9.0036	-0.91113	
	84.7804	9.0036	-0.91113	
95	80.5413	9.0036	-0.91113	
96	76.5143	9.50703	-0.91113	1
	72.6886	9.63045	-0.91113	İ
	69.0541	9.63045	-0.91113	i i
	65.6014	9.63045	•	1
	•		-0.91113	
	62.3214	9.9725	-0.91113	
	59.2053	9.9725	-0.91113	
102	56.245	9.9725	-0.91113	
103	53.4328	9.9725	-0.91113	
1 104	50.7611	9.9725	-0.91113	
	48.2231	9.40095	-0.91113	i
	45.8119		-0.91113	1
				1
	43.5213		-0.91113	
	41.3453	9.98886	-0.91113	
	39.278	9.98886	-0.91113	
110	37.3141	9.98886	-0.91113	
111	35.4484	9.21284	-0.91113	
i 112	33.676	9.21284	-0.91113	İ
	31.9922	9.21284	-0.91113	i i
	30.3926	9.74459	-0.91113	l I
		9.17377		1
	28.8729	•	-0.91113	
	27.4293	9.17377	-0.91113	
	26.0578	9.17377	-0.91113	
	24.7549	9.17377	-0.91113	
119	23.5172	9.17377	-0.91113	
120	22.3413	9.13031	-0.91113	
121	21.2243	9.51473	-0.91113	
122	20.1631	9.51473	-0.91113	1
	19.1549	9.51473	-0.91113	i
	18.1972	9.51473	-0.91113	i
125	17.2873	9.51473	-0.91113	!
•		'	•	1
	16.4229	9.51473	-0.91113	
127	•	9.51473	-0.91113	
128	14.8217	9.50069	-0.91113	
129	14.0806	9.50069	-0.91113	
130	13.3766	9.50069	-0.91113	
131	12.7078	9.50069	-0.91113	
132	12.0724	9.50069	-0.91113	
133	11.4687	9.50069	-0.91113	1
	10.8953	9.51228	-0.91113	i
135	10.3505	9.41658	-0.91113	i
	9.83302	9.41658	-0.91113	l I
				l I
137	9.34136	9.39131	-0.91113	
138	8.8743	9.5389	-0.91113	l
139	8.43058	9.5389	-0.91113	
140	8.00905	9.4991	-0.91113	
141	7.6086	9.88363	-0.91113	
142	7.22817	9.26301	-0.91113	
143	6.86676	9.26301	-0.91113	1
144	6.52342	9.95163	-0.91113	I
145	6.19725	9.22053	-0.91113	İ
	5.88739	9.22053	-0.91113	ĺ
	5.59302	9.22053	-0.91113	l I
	5.31337	9.79403	-0.91113	1 1
		•		1
149	5.0477	9.33845	-0.91113	1

I 150	4.79532	9.33845	-0.91113	1
	4.55555	9.33845	-0.91113	i
	4.32777	9.44819	-0.91113	i
	4.11138	9.48152	-0.91113	i
	3.90581	9.76449	-0.91113	
	3.71052	9.76449	•	
		•	-0.91113	!
	3.525	9.30415	-0.91113	!
	3.34875	9.30415	-0.91113	
	3.18131	9.45882	-0.91113	
	3.02224	9.91073	-0.91113	
160	2.87113	9.91073	-0.91113	
161	2.72758	9.91073	-0.91113	
162	2.5912	9.2768	-0.91113	
163	2.46164	9.2768	-0.91113	
164	2.33856	9.2768	-0.91113	1
165	2.22163	9.2768	-0.91113	Ĺ
	2.11055	9.2768	-0.91113	i
	2.00502	9.2768	-0.91113	i
•	1.90477	9.56392	-0.91113	i
	1.80953	9.56392	-0.91113	
		•	•	
	1.71905	9.56392	-0.91113	!
	1.6331	9.56392	-0.91113	!
	1.55145	9.00482	-0.91113	
	1.47387	9.00482	-0.91113	
	1.40018	9.95199	-0.91113	
175	1.33017	9.95199	-0.91113	
176	1.26366	9.95199	-0.91113	
177	1.20048	9.90011	-0.91113	
178	1.14045	9.90011	-0.91113	
179	1.08343	9.90011	-0.91113	1
	1.02926	9.90011	-0.91113	i
	0.977798	9.43855	-0.91113	i
	0.928908	9.43855	-0.91113	i
	0.882462	9.43855	-0.91113	
•	•		-0.91113	1
	•	9.43855	'	
	0.796422	•	-0.91113	!
	0.756601	9.0202	-0.91113	
	0.718771	9.0202	-0.91113	
•	0.682833	9.6512	-0.91113	
189	0.648691	9.6512	-0.91113	
•	0.616256	9.6512	-0.91113	
191	0.585444	9.6512	-0.91113	
192	0.556171	9.6512	-0.91113	
193	0.528363	9.1286	-0.91113	
194	0.501945	9.42512	-0.91113	
195	0.476847	9.42512	-0.91113	1
196	0.453005	9.83151	-0.91113	i
	0.430355	9.83151	-0.91113	i
	0.408837	9.83151	-0.91113	i
	0.388395	9.98935	-0.91113	
	0.368975	9.98935	-0.91113	l I
	0.350527	9.98935	-0.91113	l I
		9.98935	-0.91113	l I
	0.31635	9.52339	-0.91113	
	0.300533	9.52339	-0.91113	
	0.285506	9.52339	-0.91113	
206	0.271231	9.52339	-0.91113	
207	0.257669	9.52339	-0.91113	
208	0.244786	9.52339	-0.91113	
			6	

1 200	0.232547	1 0 52330	-0.91113	1
				!
	0.220919		-0.91113	
211	0.209873	9.88656	-0.91113	
	0.19938		-0.91113	1
	•	•		i I
	0.189411		-0.91113	l .
214	0.17994	9.46858	-0.91113	
215	0.170943	9.46858	-0.91113	1
	0.162396		-0.91113	i
	0.154276		-0.91113	i I
				l .
218	0.146562	9.46858	-0.91113	
219	0.139234	9.46858	-0.91113	
1 220	I 0.132272	9.10614	-0.91113	i
1 221	1 0 125650	1 0 11111	-0.91113	i
221	0.125659) 9.44441		l .
	0.119376		-0.91113	I
223	0.113407	9.44441	-0.91113	
1 224	0.107737	9.44441	-0.91113	1
	0.10235		-0.91113	i
				1
	0.0972324		-0.91113	I
	0.0923708		-0.91113	
228	0.0877523	9.2934	-0.91113	
	0.0833647		-0.91113	i
	0.0791964		-0.91113	i i
				l
231	0.0752366	9.2934	-0.91113	
232	0.0714748	9.2934	-0.91113	
1 233	0.067901	1 9.2934	-0.91113	1
	0.064506		-0.91113	i
				!
	0.0612807		-0.91113	l .
236	0.0582167	9.46089	-0.91113	
237	0.0553058	9.46089	-0.91113	
238	0.0525405	9.16962	-0.91113	1
	0.0499135		-0.91113	i
				I I
	0.0474178		-0.91113	I
	0.0450469		-0.91113	
242	0.0427946	9.16962	-0.91113	
	0.0406549		-0.91113	i
		•	-0.91113	i I
·				I .
245		9.16962	-0.91113	l
246	0.0348565	9.16962	-0.91113	
247	0.0331136	9.16962	-0.91113	1
248		9.16962	-0.91113	i
	•			i I
		9.16962	-0.91113	l
250		9.16962	-0.91113	
251	0.0269713	9.16962	-0.91113	
252	0.0256227	9.16962	-0.91113	1
	•	9.16962	-0.91113	i
			·	I I
		9.16962	-0.91113	I
255	0.0219683	9.16962	-0.91113	
256	0.0208699	9.16962	-0.91113	1
257		9.16962	-0.91113	i
		9.16962	-0.91113	i I
258	•			l I
259		9.16962	-0.91113	
260	0.0169986	9.16962	-0.91113	
261	0.0161487	9.16962	-0.91113	
		9.16962	-0.91113	·
				I I
		9.63973	-0.91113	l
		9.63973	-0.91113	
265	0.0131532	9.63973	-0.91113	
266	0.0124956	9.76595	-0.91113	
		9.76595	-0.91113	i
, 20,		, 50,0000	, 0.01110	1

```
| 268 | 0.0112772 | 9.74252 | -0.91113 |
| 269 | 0.0107134 | 9.74252 | -0.91113 |
| 270 | 0.0101777 | 9.91159 | -0.91113 |
```

Result: Xmin = 9.91159 Fmin = -0.91113

Таблица, которую выводит программа для метода имитации отжига для $y = \cos(x)*th(x)*\sin(5x)$

-					
	N 	 	T	X	f(x)
	1	1	10000	7.12427	-0.322807
	2		9500	7.12427	-0.322807
	3		9025	9.82626	-0.775284
	4		8573.75	9.82626	-0.775284
	5		8145.06	9.82626	-0.775284
	6		7737.81	9.82626	-0.775284
	7		7350.92	9.82626	-0.775284
	8		6983.37	9.82626	-0.775284
!	9		6634.2	9.82626	-0.775284
	10		6302.49	9.82626	-0.775284
	11		5987.37	9.82626	-0.775284
	12	1	5688	9.82626	-0.775284
1	13 14	1	5403.6 5133.42	9.82626 9.82626	-0.775284
1	15	1	4876.75	9.82626	-0.775284
1	16	1	4632.91	9.82626	-0.775284
1	17	1	4401.27	9.82626	-0.775284
i	18	i	4181.2	9.82626	-0.775284
i	19	i	3972.14	9.82626	-0.775284
i	20	i	3773.54	9.82626	-0.775284
i	21	i	3584.86	9.82626	-0.775284
i	22	i	3405.62	9.82626	-0.775284
ĺ	23	İ	3235.34	9.82626	-0.775284
ĺ	24	İ	3073.57	9.82626	-0.775284
	25		2919.89	9.82626	-0.775284
	26		2773.9	9.58223	-0.775284
	27		2635.2	9.62703	-0.775284
	28		2503.44	9.62703	-0.775284
	29		2378.27	9.62703	-0.775284
	30		2259.36	9.62703	-0.775284
	31		2146.39	9.27815	-0.775284
	32		2039.07	9.27815	-0.775284
	33		1937.11	9.1623	-0.775284
	34		1840.26	9.31428	-0.775284
	35		1748.25	9.14582	-0.775284
	36		1660.83	9.14582	-0.775284
	37 38	1	1577.79 1498.9	9.14582 9.14582	-0.775284
1	39	1	1423.96	9.14582	-0.775284
1	40	1	1352.76	9.14362	-0.775284
1	41		1285.12	9.36299	-0.775284
	42	i	1220.87	9.36299	-0.775284
i	43	i	1159.82	9.36299	-0.775284
i	44	i	1101.83	9.78939	-0.775284
i	45	i	1046.74	9.78939	-0.775284
i	46	i	994.403	9.78939	-0.775284
					. 0

47	944.682	9.36885	-0.775284	I
48	897.448	9.36885	1 -0.775284	1
	852.576	9.36885	-0.775284	i
	809.947	9.36885	-0.775284	i
	769.45	9.36885	-0.775284	i
	730.977	9.36885	-0.775284	l I
				1
	694.428	9.83407	-0.775284	l
	659.707	9.83407	-0.775284	!
	626.722	9.83407	-0.775284	
	595.386	9.83407	-0.775284	
	565.616	9.91379	-0.775284	
	537.335	9.91379	-0.775284	
59	510.469	9.91379	-0.775284	
60	484.945	9.91379	-0.775284	
61	460.698	9.2823	-0.775284	
62	437.663	9.2823	-0.775284	I
63	415.78	9.98141	-0.775284	İ
	394.991	9.94552	-0.775284	i
	375.241	9.95773	-0.775284	i
	356.479	9.95773	-0.775284	i
	338.655	9.95773	-0.775284	i
	321.723	9.95773	-0.775284	i
	305.636	9.07062	-0.775284	i
	290.355	9.07062	-0.775284	I
	275.837	9.07062	-0.775284	l I
	262.045	9.61934	-0.775284	l I
		•	·	1
	248.943	9.61934	-0.775284	I
	236.496	9.61934	-0.775284	I
	224.671	9.61934	-0.775284	I
	213.437	9.61934	-0.775284	
	202.765	9.78915	-0.775284	!
•	192.627	9.78915	-0.775284	!
	182.996	9.78915	-0.775284	!
	173.846	9.89975	-0.775284	
81	165.154	9.89975	-0.775284	
82	156.896	9.46284	-0.775284	
·	149.051	9.61959	-0.775284	1
	141.599	9.17597	-0.775284	
85	134.519	9.17597	-0.775284	
86	127.793	9.17597	-0.775284	
87	121.403	9.17597	-0.775284	1
88	115.333	9.91147	-0.775284	
89	109.566	9.12384	-0.775284	
90	104.088	9.71969	-0.775284	1
91	98.8836	9.7712	-0.775284	1
92	93.9395	9.7712	-0.775284	
93	89.2425	9.7712	-0.775284	1
94	84.7804	9.7712	-0.775284	1
95	80.5413	9.7712	-0.775284	1
96	76.5143	9.7712	-0.775284	1
	72.6886	9.7712	-0.775284	
	69.0541	9.7712	-0.775284	İ
	65.6014	9.42378	-0.775284	İ
100	62.3214	9.42378	-0.775284	i
	59.2053	9.42378	-0.775284	i
	56.245	9.42378	-0.775284	
	53.4328	9.42378	-0.775284	
	50.7611	9.25141	-0.775284	İ
	48.2231	9.25141	-0.775284	
1 100	1 10.2201	1 2.23111	1 0.775204	ı

1	106	45.8119	9.25141	-0.775284	1
			9.25141	-0.775284	
		'	9.25141	-0.775284	
		39.278	9.25141	-0.775284	
			•	•	
I		37.3141	9.25141	-0.775284	
		35.4484	9.25141	-0.775284	
ا	112		9.44636	-0.775284	
ا	113		9.44636	-0.775284	
	114		9.33039	-0.775284	
ا		•	9.38008	-0.775284	
١			•	-0.775284	
			•	-0.775284	
		•	•	-0.775284	
		23.5172	9.2768	-0.775284	
		22.3413	9.2768	-0.775284	
	121	21.2243	9.2768	-0.775284	
	122	20.1631	9.2768	-0.775284	
	123	19.1549	9.2768	-0.775284	
	124	18.1972	9.2768	-0.775284	
	125	17.2873	9.2768	-0.775284	
	126	16.4229	9.5157	-0.775284	
	127	15.6018	9.5157	-0.775284	
	128	14.8217	9.14228	-0.775284	
	129	14.0806	9.14228	-0.775284	
	130	13.3766	9.14228	-0.775284	
ĺ	131	12.7078	9.14228	-0.775284	İ
ĺ	132	12.0724	9.14228	-0.775284	İ
i	133		9.14228	-0.775284	i
i	134		9.14228	-0.775284	i
i	135	400-0-	9.14228	-0.775284	i
i	136	•	9.9288	-0.775284	i
i			•	-0.775284	i
ï		'	•	1 -0.775284	i
ï	'		!	-0.775284	i
i		8.00905		-0.775284	'
		7.6086	9.85556	-0.775284	
, i		7.22817	9.29328	-0.775284	'
i		6.86676	9.29328	-0.775284	'
'	144		9.29328	-0.775284	
	145		9.29328	-0.775284	
	146	•	9.59053	-0.775284	
	147	5.59302	9.76656	-0.775284	
'	148		9.76656	1 -0.775284	
	149	'	9.76656	-0.775284	
		4.79532	9.76656	-0.775284	
			9.76656	-0.775284	l I
				•	
		•	9.76656	-0.775284	
		4.11138	9.76656	-0.775284	
		3.90581	9.76656	-0.775284	
		3.71052	9.76656	-0.775284	
	156	3.525	9.76656	-0.775284	
		3.34875	9.76656	-0.775284	
	158		9.57552	-0.775284	
	159		9.57552	-0.775284	,
		•	9.57552	-0.775284	
			9.18073	-0.775284	,
			9.79708	-0.775284	,
ا		2.46164	9.79708	-0.775284	
	164	2.33856	9.79708	-0.775284	

165	2.22163	9.2801	-0.775284	1
		9.2801	-0.775284	! !
	2.11055		·	!
167	2.00502	9.2801	-0.775284	
168	1.90477	9.2801	-0.775284	
l 169	1.80953	9.2801	-0.775284	1
	1.71905		-0.775284	i
			•	l I
		9.83761	-0.775284	I
	1.55145	9.83761	-0.775284	
173	1.47387	9.83761	-0.775284	
1 174	1.40018	9.9874	-0.775284	1
	1.33017	9.9874	-0.775284	i
		9.9874	-0.775284	1
	1.26366		·	l
	1.20048	9.9874	-0.775284	I
	1.14045		-0.775284	
179	1.08343	9.9874	-0.775284	
180	1.02926	1 9.9874	-0.775284	1
	0.977798		-0.775284	i
	0.928908		-0.775284	i
		'	· ·	l
	0.882462		-0.775284	I
	0.838339		-0.775284	
185	0.796422	9.73556	-0.775284	
I 186	0.756601	1 9.73556	-0.775284	1
	0.718771		-0.775284	i
	0.682833		-0.775284	1
			·	l
	0.648691	9.73556	-0.775284	l
190	0.616256	9.54988	-0.775284	
191	0.585444	9.54988	-0.775284	
192	0.556171	1 9.54988	-0.775284	1
	0.528363		-0.775284	i
	0.501945		-0.775284	İ
		•	•	I
	0.476847		-0.775284	I
	0.453005		-0.775284	
	0.430355		-0.775284	
198	0.408837	9.20161	-0.775284	1
	0.388395	9.20161	1 -0.775284	i
		9.20161	-0.775284	i
				l I
	0.350527	9.20161	-0.775284	l
	0.333	9.20161	-0.775284	l
203	0.31635	9.20161	-0.775284	
204	0.300533	9.20161	-0.775284	
1 205	0.285506	9.20161	-0.775284	1
		9.56661	-0.775284	i
	0.257669	9.48482	-0.775284	İ
				l I
	0.244786	9.48482	-0.775284	l
	0.232547	9.48482	-0.775284	l
210	0.220919	9.48482	-0.775284	
211	0.209873	9.84945	-0.775284	1
	0.19938	9.84945	-0.775284	i
	0.189411	9.84945	-0.775284	i
				l I
	0.17994	9.67928	-0.775284	l i
	0.170943	9.67928	-0.775284	I
	0.162396	9.67928	-0.775284	
217	0.154276	9.98215	-0.775284	
218	0.146562	9.98215	-0.775284	1
	0.139234	9.5179	-0.775284	i
		9.5179	-0.775284	1
				I I
		9.5179	-0.775284	
		9.5179	-0.775284	I
223	0.113407	9.5179	-0.775284	I

```
| 224 | 0.107737
                 9.5179
                                 | -0.775284
 225 | 0.10235
                  | 9.5179
                                 | -0.775284
 226 | 0.0972324 | 9.5179
                                 | -0.775284
                                 | -0.775284
 227 | 0.0923708 | 9.5179
| 228 | 0.0877523 | 9.5179
                                  -0.775284
| 229 | 0.0833647 | 9.17792
                                 | -0.775284
 230 | 0.0791964 | 9.17792
                                 | -0.775284
 231 | 0.0752366 | 9.17792
                                  -0.775284
 232 | 0.0714748 | 9.40364
                                 | -0.775284
| 233 | 0.067901
                 1 9.40364
                                 1 - 0.775284
 234 | 0.064506
                  9.64095
                                 | -0.775284
                                  -0.775284
 235 | 0.0612807 | 9.64095
 236 | 0.0582167 | 9.61434
                                 | -0.775284
| 237 | 0.0553058 | 9.61434
                                  -0.775284
 238 | 0.0525405 | 9.61434
                                 | -0.775284
-0.775284
 239 | 0.0499135 | 9.61434
 240 | 0.0474178 | 9.03058
                                  -0.775284
| 241 | 0.0450469 | 9.03058
                                 1 - 0.775284
 242 | 0.0427946 | 9.03058
                                 1 - 0.775284
 243 | 0.0406549 | 9.03058
                                 | -0.775284
 244 | 0.0386221 | 9.03058
                                 | -0.775284
| 245 | 0.036691 | 9.03058
                                 | -0.775284
| 246 | 0.0348565 | 9.60237
                                 | -0.775284
                                 | -0.775284
 247 | 0.0331136 | 9.05792
                                  -0.775284
 248 | 0.031458
                  1 9.93588
                                 | -0.775284
 249 | 0.0298851 | 9.9487
 250 | 0.0283908 | 9.9487
                                 | -0.775284
 251 | 0.0269713 | 9.9487
                                 | -0.775284
 252 | 0.0256227 | 9.9487
                                   -0.775284
                                 | -0.775284
 253 | 0.0243416 | 9.9487
| 254 | 0.0231245 | 9.9487
                                  -0.775284
| 255 | 0.0219683 | 9.9487
                                  -0.775284
 256 | 0.0208699 | 9.9487
                                   -0.775284
                                  -0.775284
 257 | 0.0198264 | 9.9487
 258 | 0.018835 | 9.9487
                                 | -0.775284
 259 | 0.0178933 | 9.9487
                                 | -0.775284
 260 | 0.0169986 | 9.32038
                                 | -0.775284
 261 | 0.0161487 | 9.76119
                                 1 - 0.775284
 262 | 0.0153413 | 9.92624
                                 1 - 0.775284
| 263 | 0.0145742 | 9.92624
                                 | -0.775284
                                 | -0.775284
 264 | 0.0138455 | 9.92624
265 | 0.0131532 | 9.92624
                                 | -0.775284
 266 | 0.0124956 | 9.92624
                                 | -0.775284
| 267 | 0.0118708 | 9.92624
                                 | -0.775284
| 268 | 0.0112772 | 9.92624
                                 | -0.775284
| 269 | 0.0107134 | 9.92624
                                 | -0.775284
| 270 | 0.0101777 | 9.92624
                                 | -0.775284
```

Выводы

В результате проделанной работы я исследовала метод имитации отжига. Убедилась в том, что алгоритм имитации отжига является эффективным алгоритмом случайного поиска глобального минимума, на примере данной унимодальной и мультимодальной функции одного переменного. Метод эффективно работает для обеих функций.

Приложение. Исходный код программы

```
#include <iostream>
#include <iomanip>
#include <cmath>
double func (int x)
    double f=cos(x)*tanh(x);
    return f;
}
double funcm (int x)
    double fm=cos(x)*tanh(x)*sin(5*x);
    return fm;
void print (const int it, const double T,
               const double val, const double f) {
    std::cout << "| " << std::setw(4) << it
         << "| " << std::setw(10) << T
         << "| " << std::setw(12) << val
         << "| " << std::setw(14) << f << "|"<<std::endl;
}
int main()
    std::cout << "Simulated Annealing" << std::endl;</pre>
    std::cout<<"Min of function f(x) "<<std::endl;</pre>
    std::cout << std::left << std::string(50, '-') << '\n'
         << "| " << std::setw(4) << "N"
         << "| " << std::setw(10) << "T"
         << "| " << std::setw(12) << "x"
         << "| " << std::setw(14) << "f(x)" << "|"<<std::endl
         << std::string(50, '-') << std::endl;
    double tmin = 0.01;
    double tmax = 10000.0, xi = 0.0, res = 0.0, a=7, b=11;
    int N = 1;
    double x0 = 0, x = (double)(a + rand() * 1./RAND_MAX * (b - a));
    res = func(x);
    while (tmax > tmin)
        xi = (double)(a + rand() * 1./RAND MAX * (b - a));
        double df = func(xi) - func(x);
        if (df <= 0)
            x0 = xi;
            x = xi;
            res = func(x0);
        }
        else
            double probability = (double)(a + rand() * 1./RAND MAX * (b - a));
            double P = exp(-df / tmax);
            if (probability < P)</pre>
                x0 = xi;
                x = xi;
                res = func(x0);
            }
        }
```

```
print(N, tmax , x0, func(x0);
                      tmax = tmax * 0.95;
                      N++;
           }
           std::cout << std::endl << "Result: Xmin = " << x0 << " Fmin = " << res <<
std::endl;
           std::cout<<"\nMin of function f(x)*sin(5x) "<<std::endl;</pre>
           std::cout << std::left << std::string(50, '-') << '\n'</pre>
                                        << "| " << std::setw(4) << "N"
                                         << "| " << std::setw(10) << "T"
                                         << "| " << std::setw(12) << "x"
                                        << "| " << std::setw(14) << "f(x)" << "|"<<std::endl
                                        << std::string(50, '-') << std::endl;
              tmin = 0.01;
              tmax = 10000.0;
             xi = 0.0;
             res = 0.0;
             a = 7;
            b=11;
        N = 1;
             x0 = 0;
             x = (double)(a + rand() * 1./RAND MAX * (b - a));
           res = funcm(x);
           while (tmax > tmin)
                      xi = (double)(a + rand() * 1./RAND_MAX * (b - a));
                      double df = funcm(xi) - funcm(x);
                      if (df \ll 0)
                       {
                                  x0 = xi;
                                  x = xi;
                                  res = funcm(x0);
                       }
                       else
                        {
                                   double probability = (double)(a + rand() * 1./RAND MAX * (b - a));
                                   double P = \exp(-df / tmax);
                                  if (probability < P)</pre>
                                             x0 = xi;
                                              x = xi;
                                              res = funcm(x0);
                                   }
                      print(N,tmax ,x0, funcm(x0));
                      tmax = tmax * 0.95;
                      N++;
           std::cout << std::endl << "Result: Xmin = " << x0 << " Fmin = " << res << " Fmin = " << res << " Fmin = " << res << " Fmin = " << res << " Fmin = " << res << " Fmin = " << res << res << " Fmin = " << res << res << " Fmin = " << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res << res <> << res << res << res << res <> < res <> < res << res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res << res <> < res <> < res <> < res << res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> <  < res <> < res <> < res <> < res <> < res <> < res <> < res <> <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < res <> < < res <> < res <> < res <> < res <> < res <> < res <> < res <> 
std::endl;
          return 0;
```

Ответ на контрольный вопрос

В чем состоит сущность метода имитации отжига? Какова область применимости данного метода?

Метод имитации отжига основан на том, что локальное (субоптимальное) решение, найденное в процессе решения задачи оптимизации, также можно рассматривать как дефектное решение. Улучшить это решение (приблизиться к глобальному оптимуму) можно путём его случайных флюктуаций, амплитуда которых уменьшается с ростом номера итераций. Принципиальным в алгоритме SA является то, что, в отличие от большинства других стохастических алгоритмов поисковой оптимизации, он допускает шаги, приводящие к увеличению значений фитнес-функции. Метод имитации отжига применяется для решения разных оптимизационных задач — финансовых, компьютерной графики, комбинаторных, и т.д., используется в нейронных сетях.