Лабораторная работа №3 Программирование циклических вычислительных процессов.

Задание 1. (использовать while) Вычислить $N = \sum_{i=1}^{30} (a_i - b_i)^2$, где а и b определены по формуле

$$a_i = egin{cases} i, \text{ если } i \text{ нечетное} \\ i/2, \text{ если } i \text{ четное} \end{cases}$$
 $b_i = egin{cases} i^2, \text{ если } i \text{ нечетное} \\ i^3, \text{ если } i \text{ четное} \end{cases}$

Задание 2. (использовать do while) Найти сумму ряда с точностью $\varepsilon = 10^{-3}$, общий член которого $d_n = 1/2^n + 1/3^n$. При составлении программы считать, что точность достигнута, если $d_n \le \varepsilon$.

Задание 3. (использовать for) Составить программу вычисления значений функции $y=\sin(x)-\cos(x)$ на отрезке [A,B] в точках $X_i=A+i\cdot H$, где H=(B-A)/M, M=20, A=0,B= π /2.

Задание 4

Вычислить сумму четных чисел на промежутке от 1 до числа, введенного пользователем:

- 4.1 С использованием цикла;
- 4.2 Без использования цикла.

Задача 5

Необходимо разложить функцию Y(x) из своего варианта в ряд S(x), затем с помощью полученного ряда найти значение функции и сравнить его со значением, вычисленным с помощью стандартных функций. программа должна запросить у пользователя количество членов ряда (n), затем запросить у пользователя количество чисел, от которых он хочет посчитать функцию, затем пользователь вводит по одному числу (x от 0.1, до 1), программа считает значение функции с помощью ряда и с помощью стандартных функций и выводит оба значения.

№	S(x)	Y(x)
1	$x - \frac{x^3}{3!} + + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	sin x
2	$1 + \frac{x^2}{2!} + + \frac{x^{2n}}{(2n)!}$	$\frac{e^x + e^{-x}}{2}$
3	$1 + \frac{\cos\frac{\pi}{4}}{1!}x + \dots + \frac{\cos n\frac{\pi}{4}}{n!}x^{n}$ $1 - \frac{x^{2}}{2!} + \dots + (-1)^{n}\frac{x^{2n}}{(2n)!}$	$e^{x\cos\frac{\pi}{4}}\cos(x\sin\frac{\pi}{4})$
4	$1 - \frac{x^2}{2!} + + (-1)^n \frac{x^{2n}}{(2n)!}$	cosx
5	$1+3x^2++\frac{2n+1}{n!}x^{2n}$	$(1+2x^2)e^{x^2}$
6	$x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$	$\frac{e^x - e^{-x}}{2}$
7	$\frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	$\frac{1+x^2}{2}arctgx - \frac{x}{2}$
8	$1 + \frac{2x}{1!} + \dots + \frac{(2x)^n}{n!}$	e ^{2x}
9	$1 + \frac{2x}{1!} + \dots + \frac{(2x)^n}{n!}$ $1 + 2\frac{x}{2} + \dots + \frac{n^2 + 1}{n!} \left(\frac{x}{2}\right)^n$	$\left(\frac{x^2}{4} + \frac{x}{2} + 1\right)e^{\frac{x}{2}}$
10	$x - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1}$	arctgx
11	$1 - \frac{3}{2}x^2 + + (-1)^n \frac{2n^2 + 1}{(2n)!}x^{2n}$	$\left(1-\frac{x^2}{2}\right)\cos x - \frac{x}{2}\sin x$
12	$-\frac{(2x)^2}{2} + \frac{(2x)^4}{24} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$	2(cos ² x - 1)
13	$-(1+x)^2 + \frac{(1+x)^4}{2} + + (-1)^n \frac{(1+x)^{2n}}{n}$	$ \ln \frac{1}{2 + 2x + x^2} $
14	$\frac{x}{3!} + \frac{4x^2}{5!} + \dots + \frac{n^2}{(2n+1)!}x^n$	$\frac{1}{4} \left(\frac{x+1}{\sqrt{x}} sh\sqrt{x} - ch\sqrt{x} \right)$
15	$\frac{x^2}{2} - \frac{x^4}{12} + \dots + (-1)^{n+1} \frac{x^{2n}}{2n(2n-1)}$	$x \operatorname{arctg} x - \ln \sqrt{1 + x^2}$

Задача 6

Необходимо приближенно найти корень уравнения f(x) = 0 для функции из своего варианта. Корень нужно найти по следующему алгоритму: перебираем значения от начала до конца интервала с некоторым шагом и ищем значение функции, минимальное по модулю. Аргумент, при котором оно достигается, считаем корнем уравнения. Программа должна запросить у пользователя, на сколько частей разделить область поиска корня, вычислить шаг, с которым нужно проходить значения, пройти в цикле нужные значения, найти корень и вывести его.

Варианты:

	T		
1)	$\sin x + \cos x - 2 \arctan x$; $x \in [0; 1]$	9)	$\lg \cosh x - \tanh x + 0.5; \ x \in [0; 2]$
2)	$\ln x + 3 * \tan x + \sqrt{x}; \ x \in [2; 4]$	10)	$e^x \tan x + \sin x^2 + 0.1; \ x \in [-1; 0]$
3)	$\arcsin x - x + x^2 - 1; \ x \in [0; 1]$	11)	$\sin \lg x + x \cot x^2; x \in [0.5; 1.5]$
4)	$e^x - \sin \cos x$; $x \in [-2, 0]$	12)	$\sinh x + \arccos x - 1.5; \ x \in [0; 1]$
5)	$\cosh x^2 - \arccos x; \ x \in [-1; 1]$	13)	$\sin x + \tan x - \frac{1}{1+x^2}; \ x \in [-1;1]$
6)	$\arccos e^{-x} - 2\sin x$; $x \in [1;3]$	14)	$e^{\sin x} - \sinh \arcsin x - 2$; $x \in [-1, 1]$
7)	$\cot 2x - \frac{1}{1+x^2}; \ x \in [2;3]$	15)	$\arccos e^{-(x+1)^2} + \sin x; \ x \in [-2; 2]$
8)	$\sqrt{\cos x} + \ln \sin x - 0.5; \ x \in [0.5; 1.5]$		

Задача 7

Из величин, определяемых выражениями $a = \sin x$, $b = \cos x$, $c = \ln|x|$ при заданном x, определить и вывести на экран дисплея минимальное значение.

Задача 8*

Числа Армстронга (названные в честь Майкла Ф. Армстронга (Michael F. Armstrong)), их также называют самовлюбленными числами и совершенными цифровыми инвариантами, — это числа, равные сумме своих цифр, возведенных в степень, равную количеству цифр. Например, наименьшее число Армстронга — 153, которое равно 1^3 + 5^3 + 3^3. Напишите программу, которая выводит все числа Армстронга, меньше введённого пользователем числа.

Задача 9

Вычислить
$$a_0 - 2a_1 + 4a_2 - 8a_3 + ... + 2^{n-1}(-1)^{n-1}a_{n-1}$$

Входные данные таковы, что результат может быть вычислен без переполнения. Использование вещественной арифметики запрещено.