

Иван Кочкожаров, студент группы М8О-108Б-22

10 мая 2023 г.

1. Определить для орграфа, заданного матрицей смежности
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности;
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров.

Решение.

Изображение графа:

Рис. 1: Граф *G*

Матрица односторнней связности:

Матрица двусторонней связности:

$$S(D) = T(D) \& [T(D)]^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $S(D) = E \Rightarrow$ в графе D нет контуров.

Компонентны сильной связности:

$$S_{2}(D) = S(D) = \begin{vmatrix} & v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 1 & 0 & 0 & 0 \\ v_{2} & 0 & 1 & 0 & 0 \\ v_{3} & 0 & 0 & 1 & 0 \\ v_{4} & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$D_1 = (V_1, X_1), V_1 = \{v_1\}$$

$$A(D_1) = egin{bmatrix} oxedsymbol{v_1} & v_1 \ \hline v_1 & 0 \end{bmatrix} \qquad D_1:$$

$$S_{2}(D) = \begin{vmatrix} v_{2} & v_{3} & v_{4} \\ v_{2} & 1 & 0 & 0 \\ v_{3} & 0 & 1 & 0 \\ v_{4} & 0 & 0 & 1 \end{vmatrix}$$

$$D_2 = (V_2, X_2), V_2 = \{v_2\}$$

$$S_3(D) = \begin{bmatrix} v_3 & v_4 \\ v_3 & 1 & 0 \\ v_4 & 0 & 1 \end{bmatrix}$$

$$D_3 = (V_3, X_3), V_3 = \{v_3\}$$

$$D_4 = (V_4, X_4), V_4 = \{v_4\}$$

$$A(D_4) = \begin{array}{|c|c|c|c|c|} \hline v_4 \\ \hline v_4 & 0 \\ \hline \end{array} \qquad D_4:$$

$$\bigcirc$$
4

Матрица контуров:

2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

Рис. 2: Граф G

Решение.

Для решения этой задачи действуем в соответствии с алгоритмом Тэрри. Для реализации алгоритма помечаем первые заходящие в вершины ребра крестиками, которые наносим на ребрах ближе к той вершине в которую в первый раз заходим, а также указываем направления прохождения ребер и последовательность прохождения ребер. Алгоритм дает следующий возможный маршрут:

$$v_1v_2v_3v_5v_4v_3v_4v_2v_4v_1v_4v_5v_3v_2v_1$$

Рис. 3: Визуализация алгоритма Терри

3. Орграф D=(V,X), где $V=\{v_1,\ldots,v_{10}\}$ задан матрицей смежности A(D). Найти все минимальные пути v_1 в v_8 .

		v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
	v_1	0	0	1	0	0	1	0	0
	v_2	1	0	1	1	1	1	0	0
	v_3	1	0	0	0	0	1	0	0
A = A(D) =	v_4	1	1	1	0	0	1	0	0.
	v_5	1	1	1	1	0	0	1	1
	v_6	0	0	1	1	0	0	0	0
	v_7	1	0	1	1	1	1	1	0
	v_8	1	0	1	1	0	0	1	0

Решение.

Действуя согласно алгоритму фронта волны, последовательно определяем:

$$FW_{0}(v_{1}) = \{v_{1}\}, FW_{1}(v_{1}) = D(v_{1}) = \{v_{3}, v_{6}\},$$

$$FW_{2}(v_{1}) = D(FW_{1}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1})) = D(\{v_{3}, v_{6}\}) \setminus \{v_{1}, v_{3}, v_{6}\} =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{6}\} \setminus \{v_{1}, v_{3}, v_{6}\} = \{v_{4}\}$$

$$FW_{3}(v_{1}) = D(FW_{2}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1})) = \{v_{1}, v_{2}, v_{3}, v_{6}\} \setminus$$

$$\{v_{1}, v_{3}, v_{4}, v_{6}\} = \{v_{2}\}$$

$$FW_{4}(v_{1}) = D(FW_{3}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1})) =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\} = \{v_{5}\}$$

$$FW_{5}(v_{1}) = D(FW_{4}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1}) \cup FW_{4}(v_{1})) =$$

$$\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, v_{8}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\} = \{v_{7}, v_{8}\}$$

Таким образом, $v_8 \in FW_5(v_1)$, а следовательно, согласно алгоритму фронта волны существует минимальный путь в орграфе D из v_1 в v_8 длины 5. Найдём все эти пути.

Рис. 4: Граф D'

На рисунке изображен подграф D' орграфа D, на котором последовательно изображены множества $FW_k(v_1), k=1,2,3,4,5$, а так же дуги вида (v,v'), где для некоторого $k \in \{0,1,2,3,4\}, v \in FW_k(v_1), v' \in FW_{k+1}(v_1)$, т.е. исходящие из вершин некоторого k-го фронта волны и заходящие в вершины следующего (k+1)-го фронта волны.

Используя изображение D' нетрудно выделить все минимальные пути из v_1 в v_8 в орграфе D. При этом, следуя алгоритму фронта волны, находим эти минимальные пути, используя орграф D' но двигаясь в D' в обратной последовательности (т.е. не из v1 в v_8 а наоборот, из v_8 в v_1). Используя рисунок 1, получаем, что в любом минимальном пути из v_1 в v_8 соблюдается следующая последовательность вершин. Вершиной, предшествующей вершине v_8 может быть v_5 . Вершиной, предшествующей вершине 5 может быть v_2 . Вершиной, предшествующей вершине v_2 – вершина v_4 . Вершиной, предшествующей вершине v_4 – любая из вершин v_3, v_6 . Вершинам, предшествующей вершине v_4 может предшествовать только v_1 . Этими условиями однозначно определяется множество минимальных путей из v_1 в v_8 которое компактно изображено на рисунке 2. На этом рисунке изображены все вершины, входящие в минимальные пути v_1 в v_8 Для каждой из промежуточных вершин ν показано множество вершин, которые могут ей предшествовать, а также соответствующие дуги (исходящие из вершин, предшествующих у и заходящие в v). Из рисунка 2 видно, что всего существует два минимальных пути из v_1 в v_8 : $v_1v_3v_4v_2v_5v_8$, $v_1v_6v_4v_2v_5v_8$.

Рис. 5: Граф минимальных путей

4. Нагруженный орграф D задан матрицей длин дуг C(D). Найти минимальные пути из v_1 во все достижимые вершины.

$$C(D) = \begin{pmatrix} \infty & 4 & \infty & \infty & 5 & \infty & \infty & \infty \\ 5 & \infty & 7 & 10 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & 2 & \infty & 2 & \infty & \infty \\ 6 & \infty & \infty & \infty & \infty & \infty & 3 & 5 \\ 3 & 2 & \infty & \infty & \infty & 3 & 11 & \infty \\ 4 & \infty & 2 & \infty & \infty & \infty & 7 & \infty \\ 8 & \infty & \infty & 3 & \infty & \infty & \infty & 3 \\ \infty & \infty & \infty & \infty & 17 & \infty & \infty & \infty \end{pmatrix}$$

Решение.

Воспользуемся алгоритмом Форда. Сначала определим таблицу величин $\lambda_i^{(i)}, i = 1, 2, \ldots, n-1$, где n=8

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	$\lambda^{(0)}$	$\lambda^{(1)}$	$\lambda^{(2)}$	$\lambda^{(3)}$	$\lambda^{(4)}$	$\lambda^{(5)}$	$\lambda^{(6)}$	$\lambda^{(7)}$
v_1	∞	4	∞	∞	5	∞	∞	∞	0	0	0	0	0	0	0	0
v_2	5	∞	7	10	2	∞	∞	∞	∞	4	4	4	4	4	4	4
v_3	∞	∞	∞	2	∞	2	∞	∞	∞	∞	11	10	10	10	10	10
v_4	6	∞	∞	∞	∞	∞	3	5	∞	∞	14	13	12	12	12	12
v_5	3	2	∞	∞	∞	3	11	∞	∞	5	5	5	5	5	5	5
v_6	4	∞	2	∞	∞	∞	7	∞	∞	∞	8	8	8	8	8	8
v_7	8	∞	∞	3	∞	∞	∞	3	∞	∞	16	15	15	15	15	15
v_8	∞	∞	∞	∞	17	∞	∞	∞	∞	∞	∞	19	18	17	17	17

C(D) Таблица величин

Обозначим $\lambda^{(k)} = (\lambda_1^{(k)}, \dots, \lambda_8^{(k)})^{\mathrm{T}}$, где $k = 0, 1, \dots, 7$. Это столбцы в таблице величин. Первая строка по таблицы величин состоит из нулевых элементов $(\lambda_1^{(k)} = 0, k = 0, 1, \dots, 7)$, а первый столбец заполняем следующим образом: $\lambda_i^{(0)} = \infty, i = 2, \dots, 8$. Далее, используя формулу $\lambda_j^{(k+1)} = \min_{1 \leq i \leq 8} \{\lambda_i^{(k)} + c_{ij}\}$ последовательно определяем элементы столбца $\lambda^{(1)}$, используя элементы столбца $\lambda^{(0)}$ (а так же элементы матрицы C(D)), затем находим элементы столбца $\lambda^{(2)}$, используя элементы столбца $\lambda^{(1)}$ и т.д.

Длина минимального пути из v_1 в v_8 равна 17. Вершине v_8 предшествует v_4 , потому что $\lambda_8^{(5)} = 17 = \lambda_4^{(4)} + c_{48} = 12 + 5$. Вершине v_4 предшествует v_3 и т.д. В итоге получаем минимальный путь: $v_1v_5v_6v_3v_4v_8$ (в таблице выделен жирным шрифтом). Соответственно, $v_1v_5v_6v_3v_4$, $v_1v_5v_6v_3$, $v_1v_5v_6$, v_1v_5 - минимальные пути из v_1 в соответствующие вершины. Минимальный путь из v_1 в v_7 находится аналогично. Получаем такой минимальный путь: $v_1v_5v_6v_7$. Минимальный путь из v_1 в v_2 , очевидно, v_1v_2 .

5. Найти остовное дерево графа G с минимальной суммой длин входящих в него ребер.

Рис. 6: Граф *G*

Решение. Согласно алгоритму Краскала выбираем ребро $\{v_5, v_6\}$ минимальной длины 1. Выделяем его жирной линией (см. рис. 7). Далее выбираем ребро минимальной длины, соединяющее либо v_5 либо v_6 с какой-нибудь новой (т.е. отличной от v_1, v_5) вершиной графа G (т.е. выбираем среди ребер $\{v_5, v_1\}, \{v_5, v_9\}, \{v_6, v_2\}, \{v_6, v_7\}, \{v_6, v_{10}\})$. Минимальную длину имеет ребро $\{v_5, v_9\}$. Выделяем его жирной линией (см. рис. 7). Далее выбираем ребро минимальной длины, соединяющее либо v_5 , либо v_6 , либо v_9 с какой-нибудь новой вершиной графа (выбираем между $\{v_9, v_{10}\}, \{v_6, v_{10}\}, \{v_6, v_7\}, \{v_6, v_2\}, \{v_5, v_1\})$. Минимальную длину имеет ребро $\{v_5, v_1\}$ Выделяем его жирной линией (см. рис. 7). Следующим ребром минимальной длины (если таких несколько, можно выбрать любое) среди всех возможных является $\{v_1, v_2\}$, затем $\{v_2, v_3\}$, далее $\{v_3, v_4\}$, далее $\{v_4, v_8\}$, далее $\{v_8, v_{12}\}$, далее $\{v_7, v_8\}$, далее $\{v_7, v_{11}\}$ и, наконец, $\{v_6, v_{10}\}$. Выделено 11 = 12 - 1 = n(G) - 1 ребер, алгоритм окончен, выделяем минимальное остовное дерево графа (см. на рис. 7 подграф графа G, ребра которого выделены жирными линиями).

Рис. 7: Граф G с выделенным подграфом - минимальным остовным деревом