第2章

図形の方程式

2.1 直線

2.1.1 直線のパラメーター表示

ここでは直交座標系を定めた座標平面または座標空間を考える.

2点 A,B を通る直線を ℓ とする. ℓ 上の点 P はどのように表わせるだろうか. この場合, 図 2.1 左のように \overrightarrow{AB} と \overrightarrow{AP} は平行である. これは

$$\overrightarrow{AP} = t\overrightarrow{AB} \tag{2.1}$$

を満たす実数 t が存在することを意味する。点 A,B,P の位置ベクトルをそれぞれ \vec{a},\vec{b},\vec{p} とすると, $\overrightarrow{AP}=\vec{p}-\vec{a}$ 、 $\overrightarrow{AB}=\vec{b}-\vec{a}$ であるから,(2.1) は

$$\vec{p} = \vec{a} + t(\vec{b} - \vec{a}) \tag{2.2}$$

と表すことができる。これを直線 ℓ のパラメーター表示(または媒介変数表示)といい,t をパラメーター(または媒介変数)という。(2.2) において,パラメーターが t であることを明示する場合は, $\vec{p}(t) = \vec{a} + t(\vec{b} - \vec{a})$ と表記する。 $\vec{p}(t)$ を位置ベクトルとする点を P_t とすると,t が変化することによって P_t は ℓ 上を動く。t の範囲が実数全体のときは直線 ℓ 全体を表し,0 < t < 1 のときは線分 AB を表す.

図 2.1 2 点 A, B を通る直線上の点

(2.2) において、 $\vec{v}=\vec{b}-\vec{a}$ とおいた式 $\vec{p}(t)=\vec{a}+t\vec{v}$ は点 A を通り、 \vec{v} に平行な直線を表す (図 2.2). このベクトル \vec{v} を直線 ℓ の方向ベクトルという.

図 2.2 直線の方向ベクトル

直線のパラメーター表示 ——

(1) 2点 A, B を通る直線上の点 P は

$$\vec{p} = \vec{a} + t(\vec{b} - \vec{a})$$

(2) 点 A を通り、 \vec{v} に平行な(方向ベクトルが \vec{v} の)直線上の点 P は

$$\vec{p} = \vec{a} + t\vec{v}$$

と表すことができる.

例 **2.1.** 平面上の 2 点 (1,2), (-3,5) を通る直線を ℓ とする。このとき、次の問に答えなさい。

- (1) ℓのパラメーター表示を求めなさい.
- (2) 点 Q(-3,5) が ℓ 上の点であるか否か判定しなさい.
- 2.1.2 平面内の直線の方程式
- 2.1.3 空間内の直線の方程式
- 2.2 空間上内の平面
- 2.2.1 平面のパラメーター表示
- 2.2.2 平面の方程式
- 2.3 図形の交わり

平面達の交点の集合

平面の直線の交点

2.4 2次曲線と2次曲面