[12pt]article amsmath, amssymb graphicx hyperref

Black Hole Singularities as Spacetime Rips: A Hypothetical Mechanism for Information Transfer Between Universes

Tafsir Islam

August 13, 2025

Abstract

Black hole singularities in classical general relativity lead to infinite curvature, while Hawking radiation raises the information paradox. We propose a speculative hypothesis: instead of forming a true singularity, the curvature reaches a critical density at which the spacetime fabric tears, forming a connection to another universe. Information is preserved and transferred through this connection. This framework conceptually resolves both the singularity problem and the information paradox.

1 Introduction

- Classical General Relativity predicts singularities at black hole centers.
- Hawking radiation and the information paradox highlight potential loss of information.
- Existing approaches: Loop Quantum Gravity bounces, ER=EPR wormholes, baby universe cosmology.
- Problem statement: How can we preserve information and avoid infinite curvature?

2 Hypothesis Statement

- 1. Black hole interior reaches a critical curvature $R_{\rm crit}$.
- 2. At $R_{\rm crit}$, spacetime fabric tears, forming a connection to another universe.
- $3.\,$ Information falling into the black hole is transferred to the other universe.

3 Conceptual Framework

- Comparison with classical singularity (GR) and LQG bounce models.
- Diagram placeholder: Black hole interior \rightarrow spacetime rip \rightarrow new universe.
- Analogy: Drain pipe transferring water to another tank.

4 Conflicts and Similarities with Existing Theories

- Conflicts:
 - Classical GR: violates exact singularity solutions.
 - Hawking evaporation: information destruction.
 - Point-like singularity assumption.
- Similarities:
 - LQG bounces.
 - ER=EPR wormhole interpretations.
 - Baby universe theories.

5 Implications

- Preserves information (resolves paradox).
- Avoids infinite curvature.
- Suggests multiverse connections.

6 Possible Predictions / Observables

- Subtle deviations in Hawking radiation spectrum.
- Gravitational wave signatures from black hole mergers or bounces.
- Statistical features indicating information transfer.

7 Discussion

- Strengths: Conceptually resolves paradoxes, intuitive, visualizable.
- Weaknesses: No current formalism, requires modification of GR or quantum gravity.
- Opportunities: Toy models using simplified metrics, potential connection with string theory or LQG.

8 Conclusion

- Singularities may be replaced by spacetime rips.
- Information is preserved and transferred.
- The idea is speculative but provides a new perspective on black hole interiors and information paradox.

Figures

Figure 1: Schematic diagram: black hole interior leading to spacetime rip connecting to a new universe.

References

- Misner, C. W., Thorne, K. S., Wheeler, J. A., *Gravitation*, W. H. Freeman, 1973.
- Hawking, S. W., "Black hole explosions?", Nature, 248, 30–31, 1974.
- Rovelli, C., Vidotto, F., Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, 2014.
- Einstein, A., Rosen, N., "The Particle Problem in the General Theory of Relativity," *Phys. Rev.* 48, 73, 1935.
- Maldacena, J., Susskind, L., "Cool horizons for entangled black holes," Fortsch. Phys. 61, 781–811, 2013.