SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 13-14) – 19 GENNAIO 2015

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** (che deve essere nella directory studente_XXX) che deve essere creato e avere nome **ESAME19Gen15_1_01.** FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. **ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.**
- 3) Il tempo a disposizione per la prova è di **75 MINUTI** per lo svolgimento della sola parte C e di **120 MINUTI** per lo svolgimento di tutto il compito.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere **quattro** parametri: il primo e il secondo devono essere nomi assoluti di direttori che identificano due gerarchie (**G1** e **G2**) all'interno del file system, mentre il terzo e il quarto devono essere considerati singoli caratteri (**C1** e **C2**). Il programma deve cercare (in due fasi successive) nelle gerarchie **Gi** specificate (prima **G1** e poi **G2**) tutti i direttori che contengono almeno **un** file che abbia nel suo contenuto almeno una istanza del carattere **CX** (**C1** per **G1** e **C2** per **G2**): si riporti il nome assoluto di tali direttori sullo standard output. Al termine dell'intera esplorazione ricorsiva di **G1** e di **G2**, si deve verificare che il numero globale di file trovati in **G1** (**F0**, **F1**, ... **FN-1**) sia uguale al numero globale di file trovati in **G2** (**FF0**, **FF1**, ... **FFN-1**): solo in tale caso, si deve invocare la parte in C passando come parametri <u>i nomi assoluti</u> dei file trovati **F0**, **F1**, ... **FN-1**, **FF0**, **FF1**, ... **FFN-1** e i caratteri **C1** e **C2**.

La <u>parte in C</u> accetta un numero variabile pari 2N+2 di parametri maggiore o uguale a 4 (da controllare che 2N sia pari e sia ≥ 2) che rappresentano: i primi 2N nomi assoluti di file F0, F1, ... FN-1, FF0, FF1, ... FFN-1, mentre gli ultimi due rappresentano singoli caratteri (C1 e C2) (da controllare). Il processo padre deve generare in 2 cicli successivi Nprocessi figli (in totale quindi devono essere generati 2N processi figli, P0 ... PN-1 e P'0 ... P'N-1): i processi figli Pi sono associati ai file Fi mentre i processi figli P'i sono associati ai file FFi (con i che, in entrambi i casi, varia da 0 a N-1). Ogni figlio Pi e P'i esegue concorrentemente: in particolare, i primi Nprocessi (Pi) devono cercare le occorrenze del carattere C1, mentre gli altri Nprocessi (P'i) le occorrenze del carattere C2. I processi figli devono attenersi ad uno schema di comunicazione a pipeline ad N ad N compreso il processo padre: in particolare, il figlio PN-1 comunica con il figlio PN-2 che comunica con il figlio PN-3 etc. fino al figlio P0 che comunica con il padre e la stessa cosa per gli altri N figli e cioè il figlio P'N-1 comunica con il figlio P'N-2 che comunica con il figlio P'N-3 etc. fino al figlio P'0 che comunica con il padre. Le strutture dati che i processi figli Pi e P'i devono comunicare nelle due pipeline devono avere 3 campi (il primo deve essere un int, mentre gli altri due devono essere long int), pid, occmax e occtotale: pid deve essere il PID del processo che ha trovato nel suo file associato il massimo numero di occorrenze di CX (C1 o C2), occmax il valore di tale massimo e occtotale il conteggio globale ottenuto fino a quel momento. Il padre ha il compito di stampare su standard output tutti i campi delle due strutture ricevute dalle due pipeline (prima quella dei primi N figli e poi quella degli altri) aggiungendo <u>l'indicazione del carattere CX cui si riferiscono con una opportuna</u> spiegazione.