LP 41 – Effet tunnel

ALEXANDRA D'ARCO

1.3)Probabilité de réflexion et de transmission

Particule	m (kg)	V_0 (eV)	a (nm)	δ (nm)	T
Électron	10^{-30}	4	0,3	0,1	10^{-2}
Électron	10^{-30}	40	0,3	4×10^{-2}	10^{-6}
Électron	10^{-30}	4	3	0,1	10^{-20}
Proton	10^{-27}	4	0,3	4×10^{-3}	10^{-63}
Proton	10^{-27}	4	3	2×10^{-3}	10^{-628}

1.4) Application technologique : le microscope à effet tunnel

I.4) Application technologique : le microscope à effet tunnel

II.1) Faits expérimentaux

Noyau	Demi-vie $ au_{rac{1}{2}}$	E(Mev)
²¹² ₈₃ Bi	$4,0.10^4$	6,2
$^{212}_{84}Po$	$3,0.10^{-7}$	9,0
$^{215}_{85}At$	$1,0.10^{-4}$	8,1
$^{226}_{88}Ra$	5,4.10 ⁹	4,9
²³⁶ ₉₂ U	7,2.10 ¹⁴	4,4
$^{232}_{90}Th$	4, 4.10 ¹⁷	4,0

