

Edition 2.0 2021-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) based photovoltaic (PV) modules

Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation -

Partie 1-2: Exigences particulières d'essai des modules photovoltaïques (PV) au tellurure de cadmium (CdTe) à couches minces

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20

Switzerland

Tel.: +41 22 919 02 11

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2021-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) based photovoltaic (PV) modules

Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation –

Partie 1-2: Exigences particulières d'essai des modules photovoltaïques (PV) au tellurure de cadmium (CdTe) à couches minces

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.160 ISBN 978-2-8322-9358-4

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FC	REWO	RD.		. 4
1	Scop	е		. 6
2	Norm	native	e references	.6
3	Term	ıs an	d definitions	.7
4	Test	sam	ples	.7
5			and documentation	
6		•		
7			eria	
8			ual defects	
9				
	-		ons	
10				
11			and procedures	
	11.1		ual inspection (MQT 01)	
			timum power determination (MQT 02)	
	11.3		ulation test (MQT 03)	
	11.4 11.5		surement of temperature coefficients (MQT 04)eholder section, formerly NMOT	
	11.6		formance at STC (MQT 06.1)	
	11.7		formance at 510 (MQ1 00.1)	
	11.8		door exposure test (MQT 08)	
	11.9		-spot endurance test (MQT 09)	
	11.9.		Purpose	
	11.9.	2	Hot-spot effect	
	11.9.	3	Classification of cell interconnection	.8
1	11.9.	4	Apparatus	.8
	11.9.	5	Procedure	
	11.9.	6	Final measurements	
	11.9.		Requirements	
			preconditioning test (MQT 10)	
			rmal cycling test (MQT 11)	
			nidity-freeze test (MQT 12)	
			np heat test (MQT 13)	
			oustness of terminations (MQT 14)	
			tic mechanical load test (MQT 16)	
			test (MQT 17)	
			ass diode testing (MQT 18)	
			bilization (MQT 19)	
	11.19	9.1	Criterion definition for stabilization	.9
	11.19	9.2	Light induced stabilization procedures	10
	11.19	9.3	Other stabilization procedures	
	11.19	9.4	Initial stabilization (MQT 19.1)	10
	11.19		Final stabilization (MQT 19.2)	
			lic (dynamic) mechanical load test (MQT 20)	
	11.21	Pote	ential induced degradation test (MQT 21)	11

IEC 61215-1-2:2021 © IEC 2021	– 3 –		
11.22 Bending test (MQT 22)		 	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) based photovoltaic (PV) modules

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61215-1-2 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This second edition cancels and replaces the first edition of IEC 61215-1-2, issued in 2016, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) A cyclic (dynamic) mechanical load test (MQT 20) added.
- b) A test for detection of potential-induced degradation (MQT 21) added.
- c) A bending test (MQT 22) for flexible modules added.

Informative Annex A, of 61215-1:2021, explains the background and reasoning behind some of the more substantial changes that were made in the IEC 61215 series in progressing from edition 1 to edition 2.

The text of this standard is based on the following documents:

FDIS	Report on voting
82/1825/FDIS	82/1850/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

This standard is to be read in conjunction with IEC 61215-1:2021 and IEC 61215-2:2021.

A list of all parts in the IEC 61215 series, published under the general title *Terrestrial* photovoltaic (PV) modules – Design qualification and type approval, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) based photovoltaic (PV) modules

1 Scope

This document lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime.

In climates where 98th percentile operating temperatures exceed 70 °C, users are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126. Users desiring qualification of PV products with lesser lifetime expectations are recommended to consider testing designed for PV in consumer electronics, as described in IEC 63163 (under development). Users wishing to gain confidence that the characteristics tested in IEC 61215 appear consistently in a manufactured product may wish to utilize IEC 62941 regarding quality systems in PV manufacturing.

This document is intended to apply to all thin-film CdTe based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing.

This document does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the irradiance, current, voltage and power levels expected at the design concentration.

The object of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. Accelerated test conditions are empirically based on those necessary to reproduce selected observed field failures and are applied equally across module types. Acceleration factors may vary with product design and thus not all degradation mechanisms may manifest. Further general information on accelerated test methods including definitions of terms may be found in IEC 62506.

Some long-term degradation mechanisms can only reasonably be detected via component testing, due to long times required to produce the failure and necessity of stress conditions that are expensive to produce over large areas. Component tests that have reached a sufficient level of maturity to set pass/fail criteria with high confidence are incorporated into the IEC 61215 series via addition to Table 1 in IEC 61215-1. In contrast, the tests procedures described in this series, in IEC 61215-2, are performed on modules.

This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:2021 and IEC 61215-2:2021.

2 Normative references

The normative references of IEC 61215-1:2021 and IEC 61215-2:2021 are applicable without modifications.

3 Terms and definitions

This clause of IEC 61215-1:2021 is applicable without modifications.

4 Test samples

This clause of IEC 61215-1:2021 is applicable without modifications.

5 Marking and documentation

This clause of IEC 61215-1:2021 is applicable without modifications.

6 Testing

This clause of IEC 61215-1:2021 is applicable with the following modifications:

Special care has to be taken for stabilizing the power output of the module using MQT 19 procedure with specific requirements stated in 11.19 below.

7 Pass criteria

This clause of IEC 61215-1:2021 is applicable with the following modifications:

The maximum allowable value of reproducibility is set to r = 2.0 %.

The maximum allowable value of measurement uncertainty is set to $m_1 = 4.0 \%$ for modules containing single-junction cells, and $m_1 = 5.0 \%$ for modules containing multi-junction cells.

8 Major visual defects

This clause of IEC 61215-1:2021 is applicable without modifications.

9 Report

This clause of IEC 61215-1:2021 is applicable without modifications.

10 Modifications

This clause of IEC 61215-1:2021 is applicable without modifications.

11 Test flow and procedures

The test flow from IEC 61215-1:2021 is applicable.

11.1 Visual inspection (MQT 01)

This test of IEC 61215-2:2021 is applicable without modifications.

11.2 Maximum power determination (MQT 02)

This test of IEC 61215-2:2021 is applicable without modifications.

11.3 Insulation test (MQT 03)

This test of IEC 61215-2:2021 is applicable without modifications.

11.4 Measurement of temperature coefficients (MQT 04)

This test of IEC 61215-2:2021 is applicable without modifications.

11.5 Placeholder section, formerly NMOT

This subclause of IEC 61215-2:2021 does not require technology-specific modifications.

11.6 Performance at STC (MQT 06.1)

This test of IEC 61215-2:2021 is applicable without modifications.

11.7 Performance at low irradiance (MQT 07)

This test of IEC 61215-2:2021 is applicable without modifications.

11.8 Outdoor exposure test (MQT 08)

This test of IEC 61215-2:2021 is applicable without modifications.

11.9 Hot-spot endurance test (MQT 09)

This test of IEC 61215-2:2021 is applicable with the following modifications:

CdTe thin-film modules may exhibit performance changes with extended time in storage without light exposure (the "dark soak" effect). In order to minimize the influence of this dark soak effect, limit the time delay between the outdoor exposure or stabilization and the hot spot procedure to within 2 to 3 days. During the first hour after the hot-spot procedure is complete, no additional heating or light beyond room ambient shall be applied. If the time delay is to exceed 1 h, the modules are to be stored in the dark at ≤ 25 °C.

11.9.1 Purpose

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.9.2 Hot-spot effect

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.9.3 Classification of cell interconnection

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.9.4 Apparatus

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.9.5 Procedure

MQT 09.2 of IEC 61215-2:2021 shall be performed for any MLI module design.

If the module is constructed by interconnection of cell-like substructures, MQT 09.1 of IEC 61215-2:2021 may be applicable.

11.9.6 Final measurements

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.9.7 Requirements

This subclause of IEC 61215-2:2021, test MQT 09, is applicable without modifications.

11.10 UV preconditioning test (MQT 10)

This test of IEC 61215-2:2021 is applicable without modifications.

11.11 Thermal cycling test (MQT 11)

This test of IEC 61215-2:2021 is applicable with the following modifications:

The technology specific current which needs to be applied according to MQT 11 of IEC 61215-2:2021 shall be equal to $0.1 \times STC$ peak power current. If $0.1 \times STC$ peak power current is less than 100 mA, then 100 mA may be applied instead.

11.12 Humidity-freeze test (MQT 12)

This test of IEC 61215-2:2021 is applicable without modifications.

11.13 Damp heat test (MQT 13)

This test of IEC 61215-2:2021 is applicable without modifications.

11.14 Robustness of terminations (MQT 14)

This test of IEC 61215-2:2021 is applicable without modifications.

11.15 Wet leakage current test (MQT 15)

This test of IEC 61215-2:2021 is applicable without modifications.

11.16 Static mechanical load test (MQT 16)

This test of IEC 61215-2:2021 is applicable without modifications.

11.17 Hail test (MQT 17)

This test of IEC 61215-2:2021 is applicable without modifications.

11.18 Bypass diode testing (MQT 18)

This test of IEC 61215-2:2021 is applicable without modifications.

11.19 Stabilization (MQT 19)

This test of IEC 61215-2:2021 is applicable with the following modifications:

11.19.1 Criterion definition for stabilization

For the definition of stabilization as per MQT 19 of IEC 61215-2:2021 x = 0.02 shall be used.

Any kind of storage shall be done at temperature below 25 °C to avoid thermally activated processes affecting MQT 06.1 of IEC 61215-2:2021 measurement.

processes affecting MQT 06.1 of IEC 61215-2:2021 measurement.

11.19.2 Light induced stabilization procedures

This test of IEC 61215-2:2021 is applicable without modifications.

11.19.3 Other stabilization procedures

This test of IEC 61215-2:2021 is applicable without modifications.

11.19.4 Initial stabilization (MQT 19.1)

Initial stabilization is performed on all modules.

To fulfil MQT 19 requirements using light exposure, a minimum of two intervals each of at least 20 kWh/m² are required. After this preconditioning all of the test modules shall be measured for STC power (MQT 06.1 of IEC 61215-2:2021).

If stabilization is performed outdoors, in general no module temperature limits apply. The outdoor stabilization shall be proven at least with one module using the indoor method following the validation procedure from MQT 19 of IEC 61215-2:2021.

The minimum and maximum module temperatures observed during outdoor light exposure stabilization verification while the irradiance level is above 500 W/m² shall be the minimum and maximum allowable module temperatures for all modules. If the module temperature falls outside of these limits, the new module temperature range has to be re-verified.

Output power determination shall be performed after a minimum cooling time of 30 min and maximum 60 min.

A validated alternative procedure can be used in accordance to MQT 19 of IEC 61215-2:2021.

11.19.5 Final stabilization (MQT 19.2)

Final stabilization is performed on all modules after the test sequences to prove fulfilment of gate No. 2 requirement of IEC 61215-1:2021.

To fulfil MQT 19 requirements using light exposure, at least two intervals of at least 20 kWh/m² each are required.

If stabilization is performed outdoors, in general no module temperature limits apply. The outdoor stabilization shall be proven at least with one module using the indoor method following MQT 19 of IEC 61215-2:2021.

The minimum and maximum module temperatures observed during outdoor light exposure stabilization verification while the irradiance level is above 500 W/m² shall be the minimum and maximum allowable module temperatures for all modules. If the module temperature falls outside of these limits, the new module temperature range has to be re-verified.

For modules that have been subjected to potential induced degradation (PID) stress (MQT 21), the maximum exposure limit after reaching stabilization shall not be exceeded. The light soak shall terminate no more than 40 kWh/m² after the stabilization criterion is met.

Output power determination shall be performed after a minimum cooling time of 30 min and maximum 60 min.

A validated alternative procedure can be used in accordance to MQT 19 of IEC 61215-2:2021.

11.20 Cyclic (dynamic) mechanical load test (MQT 20)

This test of IEC 61215-2:2021 is applicable without modifications.

11.21 Potential induced degradation test (MQT 21)

This test of IEC 61215-2:2021 is applicable without modifications.

11.22 Bending test (MQT 22)

This test of IEC 61215-2:2021 is applicable to flexible modules without modifications.

SOMMAIRE

AVA	'ANT-PROPOS	14
1	Domaine d'application	16
2	Références normatives	17
3	Termes et définitions	17
4	Échantillons d'essai	17
5	Marquage et documentation	17
6	Essais	
7	Critères d'acceptation	
8	Défauts visuels majeurs	
9	Rapport	
10		
11	Série et procédures d'essais	
	11.1 Examen visuel (MQT 01)	
	11.2 Détermination de la puissance maximale (MQT 02)	
	11.3 Essai diélectrique (MQT 03)	
	11.4 Mesurage des coefficients de température (MQT 04)	
	11.5 Section de l'espace réservé, précédemment NMOT	
	11.6 Performances dans les STC (MQT 06.1)	
	11.8 Essai d'exposition en site naturel (MQT 08)	
	11.9 Essai de tenue à l'échauffement localisé (MQT 09)	
	11.9.1 Objet	
	11.9.2 Effet de l'échauffement localisé	
	11.9.3 Classification des interconnexions de cellules	
	11.9.4 Appareillage	
	11.9.5 Procédure	
	11.9.6 Mesurages finaux	
	11.9.7 Exigences	19
1	11.10 Essai de préconditionnement aux UV (MQT 10)	19
1	11.11 Essai de cycle thermique (MQT 11)	19
1	11.12 Essai humidité-gel (MQT 12)	20
1	11.13 Essai de chaleur humide (MQT 13)	20
	11.14 Essai de robustesse des sorties (MQT 14)	
	11.15 Essai de courant de fuite en milieu humide (MQT 15)	
	11.16 Essai de charge mécanique statique (MQT 16)	
	11.17 Essai à la grêle (MQT 17)	
	11.18 Essai de la diode de dérivation (MQT 18)	
1	11.19 Stabilisation (MQT 19)	
	11.19.1 Définition de critères pour la stabilisation	
	11.19.2 Procédures de stabilisation induite par la lumière	
	11.19.3 Autres procédures de stabilisation	
	11.19.4 Stabilisation initiale (MQT 19.1)	
4		
	11.20 Essai de charge mécanique cyclique (dynamique) (MQT 20)	
	11.21 Losar de degradation induite par le potentier (MQT 21)	22

IEC 61215-1-2:2021 © IEC 2021	– 13 –	
11.22 Essai de flexion (MQT	22)	22

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MODULES PHOTOVOLTAÏQUES (PV) POUR APPLICATIONS TERRESTRES – QUALIFICATION DE LA CONCEPTION ET HOMOLOGATION –

Partie 1-2: Exigences particulières d'essai des modules photovoltaïques (PV) au tellurure de cadmium (CdTe) à couches minces

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61215-1-2 a été établie par le comité d'études 82 de l'IEC: Systèmes de conversion photovoltaïque de l'énergie solaire.

Cette deuxième édition annule et remplace la première édition de l'IEC 61215-1-2, parue en 2016. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) Ajout d'un essai de charge mécanique (dynamique) cyclique (MQT 20).
- b) Ajout d'un essai de dégradation induite par le potentiel (MQT 21).
- c) Ajout d'un essai de flexion (MQT 22) dédié aux modules souples.

L'Annexe informative A de l'IEC 61215-1:2021 explique le contexte et le raisonnement qui justifient certaines modifications les plus importantes apportées à la série IEC 61215 dans l'évolution de l'édition 1 à l'édition 2.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
82/1825/FDIS	82/1850/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette Norme internationale.

La version française de la norme n'a pas été soumise au vote.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

La présente norme doit être utilisée conjointement avec l'IEC 61215-1:2021 et l'IEC 61215-2:2021.

Une liste de toutes les parties de la série IEC 61215, publiées sous le titre général Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- · reconduit,
- · supprimé,
- remplacé par une édition révisée, ou
- amendé.

MODULES PHOTOVOLTAÏQUES (PV) POUR APPLICATIONS TERRESTRES – QUALIFICATION DE LA CONCEPTION ET HOMOLOGATION –

Partie 1-2: Exigences particulières d'essai des modules photovoltaïques (PV) au tellurure de cadmium (CdTe) à couches minces

1 Domaine d'application

Le présent document établit les exigences pour la qualification de la conception des modules photovoltaïques (PV) pour applications terrestres adaptés à une utilisation de longue durée dans les climats à l'air libre. La durée de vie utile des modules ainsi qualifiés dépend de leur conception, de leur environnement et de leurs conditions de fonctionnement. Les résultats d'essai ne sont pas considérés comme une prévision quantitative de la durée de vie des modules.

Sous des climats pour lesquels les températures de fonctionnement du 98° percentile dépassent 70 °C, il est recommandé aux utilisateurs d'envisager d'effectuer des essais dans des conditions d'essai à des températures plus élevées telles que décrites dans l'IEC TS 63126. Il est recommandé aux utilisateurs qui souhaitent qualifier des produits PV ayant une durée de vie moins longue d'envisager des essais conçus pour des produits PV utilisés dans l'électronique grand public, comme cela est spécifié dans l'IEC 63163 (en cours d'élaboration). Les utilisateurs qui souhaitent être assurés qu'un produit fabriqué présente de manière cohérente les caractéristiques soumises aux essais dans le cadre de l'IEC 61215 peuvent vouloir utiliser l'IEC 62941 relative aux systèmes de qualité pour la fabrication des modules photovoltaïques (PV).

Le présent document est destiné à s'appliquer à tous les modules à plaque plane au tellurure de cadmium (CdTe) à couches minces pour applications terrestres. À ce titre, il spécifie des exigences d'essai particulières à cette technologie en complément des exigences d'essai données dans l'IEC 61215-1:2021 et l'IEC 61215-2:2021.

Le présent document ne s'applique pas aux modules utilisés avec un ensoleillement intense, même s'il peut être utilisé pour les modules à faible concentration (ensoleillement 1 à 3). Pour les modules à faible concentration, tous les essais sont réalisés en utilisant les niveaux d'éclairement, de courant, de tension et de puissance prévus à la concentration théorique.

L'objet de cette séquence d'essais est de déterminer les caractéristiques électriques du module et de démontrer, dans toute la mesure du possible et avec des contraintes de coût et de temps raisonnables, que le module est capable de supporter une exposition prolongée en site naturel. Les conditions d'essais accélérés sont fondées de manière empirique sur les conditions nécessaires pour reproduire les défaillances sur site observées sélectionnées et sont appliquées de manière égale aux types de modules. Les facteurs d'accélération peuvent varier avec la conception du produit et ainsi les mécanismes de dégradation peuvent ne pas tous se produire. D'autres informations générales concernant les méthodes d'essais accélérés, y compris les définitions des termes, peuvent être consultées dans l'IEC 62506.

Certains mécanismes de dégradation de longue durée ne peuvent être raisonnablement détectés que par des essais de composants, en raison des longs délais exigés pour produire la défaillance et de l'existence nécessaire de conditions de contrainte dont la réalisation est coûteuse sur de grandes surfaces. Les essais de composants qui ont atteint un niveau de

maturité suffisant pour établir des critères d'acceptation/refus en toute fiabilité sont intégrés dans la série IEC 61215 par le biais d'un ajout dans le Tableau 1 de l'IEC 61215-1. En revanche, les procédures d'essai décrites dans cette série IEC 61215-2, sont réalisées sur des modules.

Le présent document définit les modifications dépendantes de la technologie photovoltaïque, apportées aux exigences et procédures d'essai de l'IEC 61215-1:2021 et de l'IEC 61215-2:2021.

2 Références normatives

Les références normatives de l'IEC 61215-1:2021 et de l'IEC 61215-2:2021 s'appliquent sans modification.

3 Termes et définitions

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

4 Échantillons d'essai

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

5 Marquage et documentation

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

6 Essais

Cet article de l'IEC 61215-1:2021 s'applique avec les modifications suivantes:

Une attention particulière doit être accordée à la stabilisation de la puissance de sortie du module dans le cadre de la procédure MQT 19, conformément aux exigences spécifiques données en 11.19 ci-après.

7 Critères d'acceptation

Cet article de l'IEC 61215-1:2021 s'applique avec les modifications suivantes:

La valeur maximale admissible de reproductibilité est fixée à r = 2,0 %.

La valeur maximale admissible de l'incertitude de mesure est fixée à $m_1 = 4,0 \%$ pour les modules contenant des cellules à jonction unique, et à $m_1 = 5,0 \%$ pour les modules contenant des cellules multijonctions.

8 Défauts visuels majeurs

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

9 Rapport

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

10 Modifications

Cet article de l'IEC 61215-1:2021 s'applique sans modification.

11 Série et procédures d'essais

La série d'essais de l'IEC 61215-1:2021 s'applique.

11.1 Examen visuel (MQT 01)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.2 Détermination de la puissance maximale (MQT 02)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.3 Essai diélectrique (MQT 03)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.4 Mesurage des coefficients de température (MQT 04)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.5 Section de l'espace réservé, précédemment NMOT

Ce paragraphe de l'IEC 61215-2:2021 n'exige pas de modifications spécifiques à la technologie.

11.6 Performances dans les STC (MQT 06.1)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.7 Performances sous faible éclairement (MQT 07)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.8 Essai d'exposition en site naturel (MQT 08)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.9 Essai de tenue à l'échauffement localisé (MQT 09)

Cet essai de l'IEC 61215-2:2021 s'applique avec les modifications suivantes:

Les modules au CdTe à couches minces peuvent présenter des variations de performances après un stockage prolongé dans l'obscurité ("phénomène de stockage prolongé à l'abri de la

lumière"). Afin de réduire le plus possible l'influence de ce phénomène de stockage prolongé à l'abri de la lumière, limiter le délai entre l'exposition en site naturel ou la stabilisation et la procédure d'échauffement localisé à 2 à 3 jours. Au cours de la première heure suivant l'achèvement de la procédure d'échauffement localisé, aucun chauffage ni aucune lumière supplémentaire au-delà des conditions ambiantes du local ne doivent être appliqués. Si le délai doit dépasser 1 h, les modules doivent être stockés dans l'obscurité à une température ≤ 25 °C.

11.9.1 Objet

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.9.2 Effet de l'échauffement localisé

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.9.3 Classification des interconnexions de cellules

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.9.4 Appareillage

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.9.5 Procédure

L'essai MQT 09.2 de l'IEC 61215-2:2021 doit être réalisé pour toutes les conceptions de modules à intégration monolithique (MLI - monolithically integrated).

Si le module est un assemblage de sous-structures de type cellules interconnectées, l'essai MQT 09.1 de l'IEC 61215-2:2021 peut s'appliquer.

11.9.6 Mesurages finaux

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.9.7 Exigences

Ce paragraphe de l'IEC 61215-2:2021, essai MQT 09, s'applique sans modification.

11.10 Essai de préconditionnement aux UV (MQT 10)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.11 Essai de cycle thermique (MQT 11)

Cet essai de l'IEC 61215-2:2021 s'applique avec les modifications suivantes:

Le courant spécifique à la technologie qu'il est nécessaire d'appliquer selon l'essai MQT 11 de l'IEC 61215-2:2021, doit être égal à $0,1 \times l$ 'intensité à la puissance de crête STC. Si la valeur $0,1 \times l$ 'intensité à la puissance de crête est inférieure à 100 mA, alors la valeur 100 mA peut être appliquée en lieu et place.

11.12 Essai humidité-gel (MQT 12)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.13 Essai de chaleur humide (MQT 13)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.14 Essai de robustesse des sorties (MQT 14)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.15 Essai de courant de fuite en milieu humide (MQT 15)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.16 Essai de charge mécanique statique (MQT 16)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.17 Essai à la grêle (MQT 17)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.18 Essai de la diode de dérivation (MQT 18)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.19 Stabilisation (MQT 19)

Cet essai de l'IEC 61215-2:2021 s'applique avec les modifications suivantes:

11.19.1 Définition de critères pour la stabilisation

Pour la définition de la stabilisation conformément à l'essai MQT 19 de l'IEC 61215-2:2021, x = 0.02 doit être utilisée.

La température de stockage doit être inférieure à 25 °C, quel que soit le type de stockage, afin d'éviter les processus activés thermiquement affectant le mesurage MQT 06.1 de l'IEC 61215-2:2021.

11.19.2 Procédures de stabilisation induite par la lumière

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.19.3 Autres procédures de stabilisation

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.19.4 Stabilisation initiale (MQT 19.1)

La stabilisation initiale est réalisée sur tous les modules.

Pour satisfaire aux exigences de l'essai MQT 19 utilisant l'exposition à la lumière, deux intervalles au minimum sont exigés (chaque intervalle étant d'au moins 20 kWh/m²). Après ce préconditionnement, la puissance STC de tous les modules d'essai doit être mesurée (MQT 06.1 de l'IEC 61215-2:2021).

Si la stabilisation est réalisée en site naturel, aucune limite ne s'applique généralement à la température du module. La stabilisation en site naturel doit être démontrée au moins avec un module en utilisant la méthode en intérieur donnée dans la procédure de validation de l'essai MQT 19 de l'IEC 61215-2:2021.

Les températures de module minimale et maximale observées lors de la vérification de la stabilisation dans le cadre d'une exposition à la lumière en site naturel pour un niveau d'éclairement supérieur à 500 W/m2 doivent correspondre aux températures de module minimale et maximale admissibles pour tous les modules. Si la température du module sort de ces limites, la nouvelle plage de températures du module doit être à nouveau vérifiée.

La détermination de la puissance de sortie doit être réalisée après un temps de refroidissement compris entre 30 min et 60 min.

Une procédure alternative validée peut être utilisée conformément à l'essai MQT 19 de l'IEC 61215-2:2021.

11.19.5 Stabilisation finale (MQT 19.2)

La stabilisation finale est réalisée sur l'ensemble des modules à l'issue des séquences d'essais pour démontrer que les modules satisfont à l'exigence du Point 2 de l'IEC 61215-1:2021.

Pour satisfaire aux exigences de l'essai MQT 19 utilisant l'exposition à la lumière, deux intervalles au minimum sont exigés (chaque intervalle étant d'au moins 20 kWh/m²).

Si la stabilisation est réalisée en site naturel, aucune limite ne s'applique généralement à la température du module. La stabilisation en site naturel doit être démontrée au moins avec un module en utilisant la méthode en intérieur donnée dans l'essai MQT 19 de l'IEC 61215-2:2021.

Les températures de module minimale et maximale observées lors de la vérification de la stabilisation dans le cadre d'une exposition à la lumière en site naturel pour un niveau d'éclairement supérieur à 500 W/m² doivent correspondre aux températures de module minimale et maximale admissibles pour tous les modules. Si la température du module sort de ces limites, la nouvelle plage de températures du module doit être à nouveau vérifiée.

Pour les modules soumis à une contrainte de dégradation induite par le potentiel (PID potential induced degradation) (MQT 21), la limite maximale d'exposition une fois la stabilisation atteinte ne doit pas être dépassée. L'exposition prolongée à la lumière doit s'achever au maximum à 40 kWh/m² après satisfaction du critère de stabilisation.

La détermination de la puissance de sortie doit être réalisée après un temps de refroidissement compris entre 30 min et 60 min.

Une procédure alternative validée peut être utilisée conformément à l'essai MQT 19 de l'IEC 61215-2:2021.

11.20 Essai de charge mécanique cyclique (dynamique) (MQT 20)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.21 Essai de dégradation induite par le potentiel (MQT 21)

Cet essai de l'IEC 61215-2:2021 s'applique sans modification.

11.22 Essai de flexion (MQT 22)

Cet essai de l'IEC 61215-2:2021 s'applique aux modules souples sans modification

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 info@iec.ch www.iec.ch