KINETIC AND BUILDING LOD2

Intern: Demuth Axel

Supervisor: Vincent Chabannes, Pierre Alliez, Florent Lafarge

Table of Contents

- Introduction
 - Context
 - Issue with Kinetic Algorithm
 - Objectives
 - CGAL
- 2 Data
 - Files Format
 - Software and Data
- Methodology
 - Kinetic
 - preprocessing

- Labelling
- Metric
- Implementation
 - Contribution to Ktirio library
 - test
- Sesult
 - Point cloud generation Result
 - Self Intersection Result
 - Performance
- 6 Conclusion
- Refereces

Introduction Data Met hodology Implementation Result Conclusion Refereces

Introduction

Introduction
Data
Met hodology
Implementation
Result
Conclusion
Refereces

Issue with Kinetic Algorithm

Objectives

- Check the validity of the Mesh
- Create a workflow for automatic generation using KSR Algorithm
- Keep the correspondence of surfaces between both meshes
- Run some simulations using the Feel++ library

CGAL

 C++ library for geometric calculations, providing data structures for mesh generation and manipulation.

The main packages utilized are:

• CGAL::Polygon_mesh_processing

CGAL::Surface_mesh

• CGAL::Point_set_processing

• CGAL::IO_streams

• CGAL::AABB_tree

File Format

- IFC : Standart for buillding data modeling, similar to class oriented code
- CityGML : 3D format for city modeling with representation of geographic details
- STL: 3D Modeling format
- OBJ :A standard file format for 3D models
- OFF: A file format for 3D mesh data
- PLY: A file format for 3D mesh data, stocking the cloud point of the mesh
- MSH: A file format for mesh data use by GMSH software

Software

- Github : Platforme for collaborating work on a project
- Visual Studio Code: Versatil tools for coding with various extensions
- Paraview : Open-source data analysis and visualisation
- Meshlab: A tool for processing, editing, visualisation of 3D mesh
- GMSH: a 3D finite element mesh generator

Data

The following Data were given by Vincent Chabannes

Figure: Three zones mesh

Figure: ACJasmin mesh

Kinetic

We get information from a INRIA report (citer le rapport) Kinetic algorithm is an geometric algorithm generate 3D mesh from a point clouds, it uses geometric primitive with an energy based model to fit the primitives to the model.

Energy formule:

$$U(x) = w_f U_f(x) + w_s U_s(x) + w_c U_c(x)$$

to calculate the best primitive to fit the mesh. then we have a list of geometric operation on each primitive

preprocessing

To improve Kinetic outcome we pre-process the mesh:

- Isotropic remeshing of the mesh
- Unified and regularize the mesh with grid simplify
- Fix self Intersection
- Calcul normals

Labelling

Issue: Inria developed a method to preserve the semantic information of IFC elements, but it has not yet been implemented in CGAL.

Two potential solutions:

- Modify the Kinetic Solver to recognize and utilize markers on each point used to form a shape.
- Compare the input and output meshes to apply the same markers to the closest faces.

Labelling

Exemple of result of second solutions:

Figure: Input Mesh

Figure: Output Mesh

We also want to add method to check the quality off the output mesh

Properties Check (closed,connected,triangulated...)

Correspondance between input and output

To check the Correspondance between mesh, we can compare bounding box of each labelled elements.

Metric

Contribution to Ktirio library test

test

Point cloud

Self Intersection fixing

Point cloud generation Result Self Intersection Result Performance

Performance

Introduction Data Met hodology Implementation Result Conclusion Refereces

Conclusion

Introduction Data Met hodology Implementation Result Conclusion Refereces

bib