Numerical Analysis

Lecture 3: The Solutions of Nonlinear Systems

Instructor: Prof. Qiwei Zhan Zhejiang University

Nonlinear Systems

A system of nonlinear equations has the form

$$f_1(x_1, x_2, ..., x_n) = 0,$$

 $f_2(x_1, x_2, ..., x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, ..., x_n) = 0,$

which can be represented by

$$\mathbf{F}(\mathbf{x}) = \mathbf{0}$$

The functions f_1, f_2, \dots, f_n are called the coordinate functions of **F**.

Outline

- Vector Norms
- 2 Fixed Points for Functions of Several Variables
- 3 Newton's Method for Nonlinear Systems
- Gradient Descent Techniques

- Let \mathbb{R}^n denote the set of all *n*-dimensional column vectors with real-number components.
- To define a distance in \mathbb{R}^n we use the notion of a norm, which is the generalization of the absolute value on \mathbb{R} , the set of real numbers.

Definition: Vector Norm

A vector norm on \mathbb{R}^n is a function, $||\cdot||$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- $|\mathbf{x}|| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- $||\mathbf{x}|| = 0 \text{ iff } \mathbf{x} = 0$
- $|\alpha \mathbf{x}|| = |\alpha| |\mathbf{x}||$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$
- **1** $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ for all $||\mathbf{x}||, ||\mathbf{y}|| \in \mathbb{R}^n$.

Definition: L_1, L_2 , and L_{∞} Norms

The norms for the vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ are defined by:

•
$$L_1$$
 Norm

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

$$||\mathbf{x}||_2 = \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2}$$

•
$$L_{\infty}$$
 Norm

$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Note that each of these norms reduces to the absolute value in the case n = 1.

The vectors in \mathbb{R}^2 with l_{∞} norm less than 1 are inside this figure.

The vectors in the first octant of \mathbb{R}^3 with l_{∞} norm less than 1 are inside this figure.

Establishing the Properties of a Vector Norm for L_{∞}

- It is easy to show that the first three properties of the vector norm hold for L_{∞} norm.
- The only property that requires much demonstration is

$$||\mathbf{x} + \mathbf{y}||_{\infty} \le ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty} \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

Establishing the Properties of a Vector Norm for L_{∞}

- It is easy to show that the first three properties of the vector norm hold for L_{∞} norm.
- The only property that requires much demonstration is

$$||\mathbf{x} + \mathbf{y}||_{\infty} \le ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty} \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

• In this case, if $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$, then

$$||\mathbf{x} + \mathbf{y}||_{\infty} = \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} (|x_i| + |y_i|)$$

$$\le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i| = ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty}$$

Establishing the Properties of a Vector Norm for L_2

- It is easy to show that the first three properties of the vector norm hold for L_2 norm.
- But to show that

$$||\mathbf{x} + \mathbf{y}||_2 \le ||\mathbf{x}||_2 + ||\mathbf{y}||_2 \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

we need a famous inequality.

Theorem (Cauchy-Bunyakovsky-Schwarz Inequality for Sums)

For each
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$$
 and $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$ in \mathbb{R}^n ,
$$\mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^n x_i y_i \le \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^n y_i^2 \right\}^{1/2} = ||\mathbf{x}||_2 ||\mathbf{y}||_2$$

Proof (1/2)

• If y = 0 or x = 0, the result is immediate.

Proof (1/2)

- If $\mathbf{v} = \mathbf{0}$ or $\mathbf{x} = \mathbf{0}$, the result is immediate.
- Suppose $y \neq 0$ and $x \neq 0$. Note that, for each $\lambda \in \mathbb{R}$, we have

$$0 \le ||\mathbf{x} - \lambda \mathbf{y}||_2^2 = \sum_{i=1}^n (x_i - \lambda y_i)^2 = \sum_{i=1}^n x_i^2 - 2\lambda \sum_{i=1}^n x_i y_i + \lambda^2 \sum_{i=1}^n y_i^2$$

so that

$$2\lambda \sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} x_i^2 + \lambda^2 \sum_{i=1}^{n} y_i^2 = ||\mathbf{x}||_2^2 + \lambda^2 ||\mathbf{y}||_2^2$$

However $||\mathbf{x}||_2 > 0$ and $||\mathbf{y}||_2 > 0$, so we can let

$$\lambda = ||\mathbf{x}||_2/||\mathbf{y}||_2$$
 to give

$$\left(2\frac{||\mathbf{x}||_2}{||\mathbf{y}||_2}\right)\left(\sum_{i=1}^n x_i y_i\right) \le ||\mathbf{x}||_2^2 + \frac{||\mathbf{x}||_2^2}{||\mathbf{y}||_2^2}||\mathbf{y}||_2^2 = 2||\mathbf{x}||_2^2$$

Proof (2/2)

Hence

$$2\sum_{i=1}^{n} x_i y_i \le 2||\mathbf{x}||_2^2 \frac{||\mathbf{y}||_2}{||\mathbf{x}||_2} = 2||\mathbf{x}||_2||\mathbf{y}||_2$$

and

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i \le ||\mathbf{x}||_2 ||\mathbf{y}||_2 = \left\{ \sum_{i=1}^{n} x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^{n} y_i^2 \right\}^{1/2}$$

Proof: $||\mathbf{x} + \mathbf{y}||_2 \le ||\mathbf{x}||_2 + ||\mathbf{y}||_2$

With the Cauchy-Bunyakovsky-Schwarz Inequality, we see that for each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||\mathbf{x} + \mathbf{y}||_{2}^{2} = \sum_{i=1}^{n} (x_{i} + y_{i})^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$\leq ||\mathbf{x}||_{2}^{2} + 2||\mathbf{x}||_{2}||\mathbf{y}||_{2} + ||\mathbf{y}||_{2}^{2}$$

which gives norm property:

$$||\mathbf{x} + \mathbf{y}||_2 \le (||\mathbf{x}||_2^2 + 2||\mathbf{x}||_2||\mathbf{y}||_2 + ||\mathbf{y}||_2^2)^{1/2} = ||\mathbf{x}||_2 + ||\mathbf{y}||_2$$

Distance between Vectors in \mathbb{R}^n

Definition: Distance between Vectors

If $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$ are vectors in \mathbb{R}^n , the L_2 and L_{∞} distances between \mathbf{x} and \mathbf{y} are defined by

$$||\mathbf{x} - \mathbf{y}||_2 = \left\{ \sum_{i=1}^n (x_i - y_i)^2 \right\}^{1/2}$$

and

$$||\mathbf{x} - \mathbf{y}||_{\infty} = \max_{1 \le i \le n} |x_i - y_i|$$

Definition: A Limit of a Sequence of Vectors in \mathbb{R}^n

A sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to converge to \mathbf{x} with respect to the norm $||\cdot||$ if, given any $\epsilon > 0$, there exists an integer N_{ϵ} such that

$$||\mathbf{x}^{(k)} - \mathbf{x}|| < \epsilon$$
, for all $k \ge N_{\epsilon}$

Theorem

The sequence of vectors $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in \mathbb{R}^n with respect to the L_{∞} norm iff

$$\lim_{k\to\infty} x_i^{(k)} = x_i$$

for each $i = 1, 2, \dots, n$.

Proof (1/2)

Suppose $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} with respect to the L_{∞} norm. Given any $\epsilon > 0$, there exists an integer N_{ϵ} such that for all $k \geq N_{\epsilon}$,

$$\max_{i=1,2,\cdots,n}|x_i^{(k)}-x_i|=||\mathbf{x}^{(k)}-\mathbf{x}||_{\infty}<\epsilon$$

This result implies that $|x_i^{(k)} - x_i| < \epsilon$, for each $i = 1, 2, \dots, n$, so

$$\lim_{k\to\infty} x_i^{(k)} = x_i$$

for each i.

Proof (2/2)

Conversely, suppose that $\lim_{k\to\infty} x_i^{(k)} = x_i$, for every $i = 1, 2, \dots, n$. For a given $\epsilon > 0$, let $N_{i\epsilon}$ for each i represent an integer with the property that

$$|x_i^{(k)} - x_i| < \epsilon$$

whenever $k \ge N_{i\epsilon}$. Define $N_{\epsilon} = \max_{i=1,2,\cdots,n} N_{i\epsilon}$. If $k \ge N_{\epsilon}$, then

$$\max_{i=1,2,\cdots,n} |x_i^{(k)} - x_i| = ||\mathbf{x}^{(k)} - \mathbf{x}||_{\infty} < \epsilon$$

This implies that $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} with respect to the L_{∞} norm.

Theorem

For each $\mathbf{x} \in \mathbb{R}^n$, $||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_2 \le \sqrt{n}||\mathbf{x}||_{\infty}$

Theorem

For each $\mathbf{x} \in \mathbb{R}^n$, $||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_2 \leq \sqrt{n}||\mathbf{x}||_{\infty}$

Proof

Let x_j be a coordinate of **x** such that $||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i| = |x_j|$.

Then

$$||\mathbf{x}||_{\infty}^2 = |x_j|^2 \le \sum_{i=1} x_i^2 = ||\mathbf{x}||_2^2$$

and

$$||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_2$$

so

$$||\mathbf{x}||_2^2 = \sum_{i=1}^n x_i^2 \le \sum_{i=1}^n x_j^2 = nx_j^2 = n||\mathbf{x}||_{\infty}^2$$

and $||\mathbf{x}||_2 \leq \sqrt{n}||\mathbf{x}||_{\infty}$.

Theorem

$$\| \mathbf{x}^{(\mathbf{k})} - \mathbf{x} \|_{\infty} < \varepsilon \Rightarrow \| \mathbf{x}^{(\mathbf{k})} - \mathbf{x} \|_{2} < \sqrt{\mathbf{n}} \varepsilon$$

$$\| \mathbf{x}^{(\mathbf{k})} - \mathbf{x} \|_{2} < \varepsilon \Rightarrow \| \mathbf{x}^{(\mathbf{k})} - \mathbf{x} \|_{\infty} < \varepsilon$$

Example

Show that

$$\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^{\top} = \left(1, 2 + \frac{1}{k}, \frac{3}{k^2}, e^{-k} sin(k)\right)^{\top}$$

- converges to $\mathbf{x} = (1, 2, 0, 0)^{\mathsf{T}}$ with respect to the L_{∞} norm.
- It also converges to $\mathbf{x} = (1, 2, 0, 0)^{\top}$ with respect to the L_2 norm.

Solution

Given any $\epsilon > 0$, there exists an integer $N(\epsilon/2)$ with the property that

$$||\mathbf{x}^{(k)} - \mathbf{x}||_{\infty} < \frac{\epsilon}{2},$$

whenever $k \ge N(\epsilon/2)$. It implies that

$$||\mathbf{x}^{(k)} - \mathbf{x}||_2 \le \sqrt{4}||\mathbf{x}^{(k)} - \mathbf{x}||_{\infty} \le 2\frac{\epsilon}{2} = \epsilon$$

when $k \ge N(\epsilon/2)$. So $\{\mathbf{x}^{(k)}\}$ also converges to \mathbf{x} with respect to the L_2 norm.

Outline

- Vector Norms
- 2 Fixed Points for Functions of Several Variables
- 3 Newton's Method for Nonlinear Systems
- Gradient Descent Techniques

Nonlinear Systems

A system of nonlinear equations has the form

$$f_1(x_1, x_2, ..., x_n) = 0,$$

 $f_2(x_1, x_2, ..., x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, ..., x_n) = 0,$

which can be represented by

$$\mathbf{F}(\mathbf{x}) = \mathbf{0}$$

The functions f_1, f_2, \dots, f_n are called the coordinate functions of **F**.

A System of Two Nonlinear Equations

Fixed Points in \mathbb{R}^n

A function **G** from $\mathbf{D} \in \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $\mathbf{p} \in D$ if $\mathbf{G}(\mathbf{p}) = \mathbf{p}$.

Theorem (Existence of Fixed Points)

Let $\mathbf{D} = \{(x_1, x_2, \dots, x_n)^\top | a_i \leq x_i \leq b_i, \text{for each } i = 1, 2, \dots, n\}$ for some collection of constants a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n . Suppose \mathbf{G} is a continuous function from $\mathbf{D} \subset \mathbb{R}^n$ into \mathbb{R}^n with the property that $\mathbf{G}(\mathbf{x}) \in \mathbf{D}$ whenever $\mathbf{x} \in \mathbf{D}$. Then \mathbf{G} has a fixed point in \mathbf{D} .

Theorem (Fixed Point Theorem)

Let $\mathbf{D} = \{(x_1, x_2, \dots, x_n)^\top | a_i \leq x_i \leq b_i, \text{ for each } i = 1, 2, \dots, n\} \text{ for some collection of constants } a_1, a_2, \dots, a_n \text{ and } b_1, b_2, \dots, b_n. \text{ Suppose } \mathbf{G} \text{ is a continuous function from } \mathbf{D} \in \mathbb{R}^n \text{ into } \mathbb{R}^n \text{ with the property that } \mathbf{G}(\mathbf{x}) \in \mathbf{D} \text{ whenever } \mathbf{x} \in \mathbf{D}. \text{ Then } \mathbf{G} \text{ has a fixed point in } \mathbf{D}.$

Moreover, suppose that all the component functions of G have continuous partial derivatives and a constant K < 1 exists with

$$\left|\frac{\partial g_i(\mathbf{x})}{\partial x_j}\right| \leq \frac{K}{n}, \text{ whenever } \mathbf{x} \in \mathbf{D},$$

for each $j=1,2,\ldots,n$ and each component function g_i . Then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by an arbitrarily selected $\mathbf{x}^{(0)}$ in \mathbf{D} and generated by

$$\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)}), \text{ for each } k \geq 1$$

converges to the unique fixed point $p \in D$ and

$$||\mathbf{x}^{(k)} - \mathbf{p}||_{\infty} \le \frac{K^k}{1 - K} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||_{\infty}$$

Example

Find a solution for the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Example

Find a solution for the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

Example

Solution:

$$g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4×10^{-3}
3	0.50000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.50000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.50000000	0.00000002	-0.52359877	3.1×10^{-7}

Acceleration Convergence

Use the latest estimates $x_1^{(k)}, \dots, x_{i-1}^{(k)}$ instead of $x_1^{(k-1)}, \dots, x_{i-1}^{(k-1)}$ to compute $x_i^{(k)}$.

$$\begin{split} x_1^{(k)} &= \frac{1}{3} \cos \left(x_2^{(k-1)} x_3^{(k-1)} \right) + \frac{1}{6}, \\ x_2^{(k)} &= \frac{1}{9} \sqrt{\left(x_1^{(k)} \right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ x_3^{(k)} &= -\frac{1}{20} e^{-x_1^{(k)} x_2^{(k)}} - \frac{10\pi - 3}{60}. \end{split}$$

k	$x_1^{(k)}$	$X_2^{(k)}$	$X_3^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.50000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.50000000	0.00000000	-0.52359877	3.8×10^{-8}

Outline

- Vector Norms
- 2 Fixed Points for Functions of Several Variables
- Newton's Method for Nonlinear Systems
- Gradient Descent Techniques

Newton's Method for Nonlinear Systems

The fixed-point method for nonlinear equations

$$g(x) = x - \phi(x)f(x).$$

The fixed-point method for nonlinear systems

$$G(\mathbf{x}) = \mathbf{x} - \mathbf{A}(\mathbf{x})^{-1}\mathbf{F}(\mathbf{x}),$$

where

$$\mathbf{A}(\mathbf{x}) = \begin{bmatrix} a_{11}(\mathbf{x}) & a_{12}(\mathbf{x}) & \dots & a_{1n}(\mathbf{x}) \\ a_{21}(\mathbf{x}) & a_{22}(\mathbf{x}) & \dots & a_{2n}(\mathbf{x}) \\ \dots & \dots & \dots & \dots \\ a_{n1}(\mathbf{x}) & a_{n1}(\mathbf{x}) & \dots & a_{nn}(\mathbf{x}) \end{bmatrix}$$

Newton's Method for Nonlinear Systems

Theorem (Convergence)

Let **p** be a solution of G(x) = x. Suppose a number $\delta > 0$ exists with

- **1** $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}|||\mathbf{x} \mathbf{p}|| < \delta\}$, for each $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, n$;
- ② $\partial^2 g_i(\mathbf{x})/(\partial x_j \partial x_k)$ is continuous, and $|\partial^2 g_i(\mathbf{x})/(\partial x_j \partial x_k)| \leq M$ for some constant M, whenever $\mathbf{x} \in N_\delta$, for each $i = 1, 2, \dots, n$, $j = 1, 2, \dots, n$, and $k = 1, 2, \dots, n$;
- $\partial g_i(\mathbf{p})/\partial x_k = 0$, for each $i = 1, 2, \dots, n$ and $k = 1, 2, \dots, n$.

Then a number $\hat{\delta} \leq \delta$ exists such that the sequence generated by $\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)})$ converges quadratically to \mathbf{p} for any choice of $\mathbf{x}^{(0)}$, provided that $||\mathbf{x}^{(0)} - \mathbf{p}|| < \hat{\delta}$. Moreover,

$$||\mathbf{x}^{(k)} - \mathbf{p}||_{\infty} \le \frac{n^2 M}{2} ||\mathbf{x}^{(k-1)} - \mathbf{p}||_{\infty}^2, \text{for each } k \ge 1$$

Newton's Method for Nonlinear Systems

Construction of the Matrix

Let $b_{ii}(\mathbf{x})$ denote the entry of $\mathbf{A}(\mathbf{x})^{-1}$, we have

$$g_i(\mathbf{x}) = x_i - \sum_{i=1}^n b_{ij}(\mathbf{x}) f_j(\mathbf{x})$$

$$\frac{\partial g_i}{\partial x_k}(\mathbf{x}) = \begin{cases} 1 - \sum_{j=1}^n \left(b_{ij}(\mathbf{x}) \frac{\partial f_i}{\partial x_k}(\mathbf{x}) + \frac{\partial b_{ij}}{\partial x_k}(\mathbf{x}) f_j(\mathbf{x}) \right), & \text{if } i = k, \\ - \sum_{j=1}^n \left(b_{ij}(\mathbf{x}) \frac{\partial f_i}{\partial x_k}(\mathbf{x}) + \frac{\partial b_{ij}}{\partial x_k}(\mathbf{x}) f_j(\mathbf{x}) \right), & \text{if } i \neq k. \end{cases}$$

This means that for i = k, $\sum_{j=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_j}{\partial x_i}(\mathbf{p}) = 1$ and for $i \neq k$, $\sum_{i=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_j}{\partial x_i}(\mathbf{p}) = 0$

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}) \end{bmatrix}.$$

The Jacobian matrix

Then, $\mathbf{A}(\mathbf{p})^{-1}\mathbf{J}(\mathbf{p}) = \mathbf{I}$. Therefore, $\mathbf{A}(\mathbf{p}) = \mathbf{J}(\mathbf{p})$.

$$x^{(k)} = x^{(k-1)} - \frac{1}{f'(x^{(k-1)})} f(x^{(k-1)})$$

Newton's Method for Nonlinear Systems

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \mathbf{J}(\mathbf{x}^{(k-1)})^{-1}\mathbf{F}(\mathbf{x}^{(k-1)}),$$

where $\mathbf{J}(\mathbf{x})$ is the Jacobian matrix

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}) \end{bmatrix}.$$

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \mathbf{J}(\mathbf{x}^{(k-1)})^{-1}\mathbf{F}(\mathbf{x}^{(k-1)}),$$

Remarks

- A weakness in Newton's method arises from the need to compute and invert the matrix J(x) at each step.
- In practice, explicit computation of $\mathbf{J}(\mathbf{x})^{-1}$ is avoided by performing the operation in a two-step manner.
 - **1** A vector **y** is found that satisfies $\mathbf{J}(\mathbf{x}^{(k-1)})\mathbf{y} = -\mathbf{F}(\mathbf{x}^{(k-1)})$
 - ② The new approximation, $\mathbf{x}^{(k)}$, is obtained by adding \mathbf{y} to $\mathbf{x}^{(k-1)}$.

Algorithm

INPUT number n of equations and unknowns; initial approximation $\mathbf{x} = (x_1, \dots, x_n)^t$, tolerance TOL; maximum number of iterations N.

OUTPUT approximate solution $\mathbf{x} = (x_1, \dots, x_n)^t$ or a message that the number of iterations was exceeded.

```
Step 1 Set k = 1.
```

Step 2 While
$$(k \le N)$$
 do Steps 3–7.

Step 3 Calculate
$$F(\mathbf{x})$$
 and $J(\mathbf{x})$, where $J(\mathbf{x})_{i,j} = (\partial f_i(\mathbf{x})/\partial x_j)$ for $1 \le i,j \le n$.

Step 4 Solve the
$$n \times n$$
 linear system $J(\mathbf{x})\mathbf{y} = -\mathbf{F}(\mathbf{x})$.

Step 5 Set
$$x = x + y$$
.

Step 6 If
$$||y|| < TOL$$
 then OUTPUT (x);
(The procedure was successful.) STOP.

Step 7 Set
$$k = k + 1$$
.

Step 8 OUTPUT ('Maximum number of iterations exceeded'); (The procedure was unsuccessful.) STOP.

Example

Find a solution for the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

\boldsymbol{k}	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.1000000000	0.1000000000	-0.1000000000	
1	0.4998696728	0.0194668485	-0.5215204718	0.4215204718
2	0.5000142403	0.0015885914	-0.5235569638	1.788×10^{-2}
3	0.5000000113	0.0000124448	-0.5235984500	1.576×10^{-3}
4	0.5000000000	8.516×10^{-10}	-0.5235987755	1.244×10^{-5}
5	0.5000000000	-1.375×10^{-11}	-0.5235987756	8.654×10^{-10}

Remarks

- The advantage of the Newton's method for solving systems of nonlinear equations is its speed of convergence once a sufficiently accurate approximation is known.
- A weakness of this method is that an accurate initial approximation to the solution is needed to ensure convergence.

Outline

- Vector Norms
- 2 Fixed Points for Functions of Several Variables
- 3 Newton's Method for Nonlinear Systems
- 4 Gradient Descent Techniques

Gradient Descent

- A.K.A Steepest Descent method, converges only linearly to the solution, but it will usually converge even for poor initial approximations.
- The method of Steepest Descent determines a local minimum for a multivariable function.

Gradient Descent Method

A system of nonlinear equations has the form

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

 $f_2(x_1, x_2, \dots, x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0.$

Then the following function has the minimal value of 0:

$$g(x_1, x_2, \dots, x_n) = \sum_{i=1}^n f_i^2(x_1, x_2, \dots, x_n)$$

Gradient Descent Method

The method of Steepest Descent for finding a local minimum for an arbitrary function \mathbf{g} from \mathbb{R}^n into \mathbb{R} can be intuitively described as follows:

- Evaluate **g** at an initial approximation $\mathbf{x}^{(0)}$;
- ② Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of \mathbf{g} ;
- **1** Move an appropriate amount in this direction and call the new value $\mathbf{x}^{(1)}$;
- **1** Repeat steps 1 through 3 with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

The Gradient of a Function

For $g : \mathbb{R}^n \to \mathbb{R}$, the gradient of g at $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ is denoted $\nabla g(\mathbf{x})$ and defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \frac{\partial g}{\partial x_2}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right)^{\top}.$$

Gradient Descent Method

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \alpha \nabla \mathbf{g}(\mathbf{x}^{(k-1)}),$$

where α is the step size.

Example

Using gradient descent method to find a solution for the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Example

Using gradient descent method to find a solution for the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Solution Let $g(x_1, x_2, x_3) = [f_1(x_1, x_2, x_3)]^2 + [f_2(x_1, x_2, x_3)]^2 + [f_3(x_1, x_2, x_3)]^2$.

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$g(x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$
2	0.137860	-0.205453	-0.522059	1.27406
3	0.266959	0.00551102	-0.558494	1.06813
4	0.272734	-0.00811751	-0.522006	0.468309
5	0.308689	-0.0204026	-0.533112	0.381087
6	0.314308	-0.0147046	-0.520923	0.318837
7	0.324267	-0.00852549	-0.528431	0.287024

47/49

Gradient Descent vs. Newton's Method

Gradient Descent vs. Newton's Method

• Newton's method is to find a root $\mathbf{F}(\mathbf{x}) = 0$

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \mathbf{J}(\mathbf{x}^{(k-1)})^{-1}\mathbf{F}(\mathbf{x}^{(k-1)}),$$

• Gradient descent is to find a local minimum $g(\mathbf{x}) = ||\mathbf{F}(\mathbf{x})||_2^2$

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - \alpha \nabla g(\mathbf{x}^{(k-1)}).$$

Assignments

- Reading Assignment: Chap 10
- Homework 2.