COGNOME:	
Nome:	
Numero di matricola:	Firma:

Elementi di Teoria della Computazione

Classe 3 (matricole congrue 2 modulo 3) – Proff. Anselmo - Zaccagnino

Appello del 5 luglio 2022

Attenzione:

Non voltare la pagina finché non sarà dato il via.

Inserire i propri dati nell'apposito spazio soprastante.

Dal via, avrete **2 ore** di tempo per rispondere alle domande.

La prova consta di 5 domande aperte, per un totale di 30 punti.

Si è ammessi all'**orale** se si ottengono almeno **15/30** punti.

Le ultime pagine, riservate ad **appunti**, non saranno lette, a meno che non sia espressamente indicato.

Non è consentito l'uso o la detenzione di libri, appunti, carta da scrivere, calcolatrici, cellulari, *smartwatch* e ogni strumento idoneo alla memorizzazione di informazioni o alla trasmissione di dati; ogni violazione darà luogo alle sanzioni previste dal Codice Etico e dal Regolamento Studenti dell'Università di Salerno.

NOTA: nel seguito 'MdT' sta per 'Macchina di Turing'

I fogli con gli esercizi 1 e 2 vanno consegnati al Prof. Zaccagnino I fogli con gli esercizi 3, 4 e 5 vanno consegnati alla Prof.ssa Anselmo

Esercizio 1/8	Esercizio 2/7	Esercizio 3/5	Esercizio 4/3	Esercizio 5/7	Totale/ 30

Esercizio 3 (5 punti)

Si consideri la seguente Macchina di Turing, $\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q_0}, \mathbf{q_{accept}}, \mathbf{q_{reject}})$, dove $\mathbf{Q} = \{ q_0, q_1, q_2, q_{accept}, q_{reject} \}, \Sigma = \{ a, b \}, \Gamma = \{ a, b, _ \}$ e la funzione δ è definita come segue

$$\begin{split} \delta \left(q_{0},\, a \right) &= \left(q_{accept},\, a,\, R \right), & \delta \left(q_{0},\, b \right) &= \left(q_{1},\, a,\, R \right), & \delta \left(q_{0},\, _ \right) &= \left(q_{reject},\, _\,,\, R \right), \\ \delta \left(q_{1},\, a \right) &= \left(q_{2},\, b,\, L \right), & \delta \left(q_{1},\, b \right) &= \left(q_{2},\, b,\, L \right), & \delta \left(q_{1},\, _ \right) &= \left(q_{accept},\, _\,,\, R \right), \\ \delta \left(q_{2},\, a \right) &= \left(q_{1},\, a,\, R \right), & \delta \left(q_{2},\, b \right) &= \left(q_{reject},\, _\,,\, R \right), & \delta \left(q_{2},\, _ \right) &= \left(q_{reject},\, _\,,\, R \right). \end{split}$$

- a) Indicare (se esistono)
 - una stringa $\mathbf{w_a}$ di Σ^* che sia accettata da M con la relativa computazione
 - una stringa $\mathbf{w_r}$ di Σ^* che sia **rifiutata** da M con la relativa **computazione**
 - una stringa w_c di Σ* su cui M cicla
- b) Descrivere il linguaggio L(M) riconosciuto da M.
- c) Il linguaggio L(M) è anche **deciso** da M? Motivare pienamente la risposta.

- Esercizio 4 (*3 punti*)
 a) Definire il linguaggio EQTM.
- b) Provare che il complemento di EQTM non è Turing-riconoscibile.
 Enunciare con precisione eventuali risultati noti che vengono utilizzati, senza necessariamente dimostrarli.

Esercizio 5 (7 punti)

Sia G = (V, E) un grafo non orientato e sia $I \subseteq V$. Diciamo che I è un **insieme indipendente** in G se nessuna coppia di nodi in I è connessa da un arco. Formalmente, per ogni u, $v \in I$ si ha $(u,v) \notin E$. Il problema di decisione **INDEPENDENT-SET** è il seguente: Dato un grafo non orientato G = (V, E) e un intero positivo K, esiste un insieme indipendente I in G di **cardinalità** K?

- a) Definire il **linguaggio** INDSET associato.
- b) Mostrare che INDSET appartiene a NP.
- c) Definire il linguaggio CLIQUE.
- d) Dimostrare che CLIQUE $\leq p$ INDSET, fornendo una opportuna funzione di riduzione.
- e) Cosa possiamo **dedurre** per INDSET dalle affermazioni b) e d)?

Pagina per appunti