Claims

1. A sodium channel blocker represented by the general structure:

5

$$R_{4}$$
 R_{3}
 R_{2}
 R_{5}
 R_{6}

10

15

wherein R is selected from the group consisting of C₁-C₁₂ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, -(CH₂)_mCOOH, -(CH₂)_mNH₂, -(CH₂)_mCONH₂, -(CH₂)_nC₃-C₆ cycloalkyl, -(CH₂)_naryl, -(CH₂)_nsubstituted aryl, -(CH₂)_pNCH₃(CH₂)_psubstituted aryl and -(CH₂)_nsubstituted heterocyclic, wherein m is an integer ranging from 3-8, n is an integer ranging from 0-4 and p is an integer ranging from 1-4;

 R_2 is selected from the group consisting of -(CH₂)_nCOOH, -(CH₂)_nNH₂, and -(CH₂)_nCONHR₁₀;

R₃ is selected from the group consisting of hydroxy, amino, C₁-C₄ alkoxy,
-CH₂OH and -CONH₂, or R₂ and R₃ taken together with the atoms to which they are attached form an optionally substituted heterocyclic ring;

 R_4 and R_5 are independently selected from the group consisting of H, halo, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, and C_1 - C_4 alkoxy; and

R₆ is selected from the group consisting of H, C₁-C₈ alkyl,

25

20

$$R_7R_8N$$
 and R_7R_8N

30

wherein R_7 and R_8 are independently selected from the group consisting of H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl and C_2 - C_4 alkynyl, and R_9 is H, or R_8 and R_9 taken together with the atoms to which they are attached form an optionally substituted heterocyclic ring, and R_{10} is selected from the group consisting of H, benzyl and C_1 - C_4 alkyl, with the proviso that when R_2 and R_3 taken together form a heterocyclic ring, R is not - $(CH_2)_n$ aryl.

10

20

30

- The compound of claim 1, wherein R₂ is -(CH₂)_nCONH₂; and 2. R_3 is hydroxyl.
- The compound of claim 1, wherein R2 and R3 taken together with the atoms to 5 3. which they are attached form a heterocyclic ring having the structure:

$$O$$
 R_{11}
 O
 R
 R

wherein X is selected from the group consisting of -CHR₁₂-, -O- and -NR₁₂-, wherein R₁₁ and R₁₂ are independently selected from the group consisting of H, benzyl and C₁-C₄ alkyl.

- The compound of claim 2 or 3 wherein R is selected from the group consisting 4. 15 of C_1 - C_{12} alkyl, C_2 - C_8 alkenyl and C_2 - C_8 alkynyl.
 - The compound of claim 2 or 3 wherein R₄ and R₅ are independently selected 5. from the group consisting of H, halo and C₁-C₄ alkyl; and
 - R₆ is selected from the group consisting of H,

- wherein n is an integer ranging from 0-2. 25
 - The compound of claim 5 wherein R₄ and R₆ are both H, and R₅ is Cl or F. 6.
 - The compound of claim 5 wherein R₄ and R₅ are both H, and R₆ is 7.

wherein n is an integer ranging from 0-2.

8. The compound of claim 5 wherein R_4 and R_5 are both C_1 - C_4 alkyl, and R_6 is

wherein n is an integer ranging from 0-2.

9. The compound of claim 2 or 3 wherein R is

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{-}C_4$ alkoxy; and

R₆ is H.

5

10. A pharmaceutical composition comprising a compound represented by the general formula:

20
$$R_4$$
 OH R R_6 R_6 R_6 R_6 R_6 R_6 R_6 R_6

wherein R is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, -(CH₂)_nC₃-C₆ cycloalkyl,

wherein n is an integer ranging from 0-4;

R₂ is H or C₁-C₄ alkyl;

 R_4 and R_5 are independently selected from the group consisting of H, halo, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, -COR₁₁ and (C_1 - C_4) alkoxy; and

R₆ is selected from the group consisting of H, halo,

wherein R₁₁ is selected from the group consisting of H, C₁-C₄ alkyl, NH₂ and OH; and a pharmaceutically acceptable carrier.

- 11. The composition of claim 10 further comprising an anti-tumor agent.
- 12. The composition of claim 11, wherein the anti-tumor agent is a chemotherapeutic.
- 25 13. The composition of claim 10, wherein R is selected from the group consisting of C₁-C₁₂ alkyl;

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{-}C_4$ alkyl; and

R₆ is selected from the group consisting of H,

30

20

wherein n is an integer ranging from 0-4.

5

30

14. A method of specifically inhibiting voltage-gated sodium channels, said

method comprising the step of contacting said sodium channel with a compound represented by the general structure:

wherein R is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, -(CH₂)_nC₃-C₆ cycloalkyl,

 R_4 and R_5 are independently selected from the group consisting of H, halo, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, -COR₁₁ and (C_1 - C_4) alkoxy; and

R₆ is selected from the group consisting of H, halo,

wherein R₁₁ is selected from the group consisting of H, C₁-C₄ alkyl, NH₂ and OH, and n is an integer ranging from 0-4.

The method of claim 14 wherein R is selected from the group consisting of C_{1-10} C₁₂ alkyl;

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{-}C_4$ alkyl; and

R₆ is selected from the group consisting of H,

wherein n is an integer ranging from 0-4.

5

16. A method for treating a neoplastic disease, said method comprising the step of administering to a patient in need thereof a composition comprising a compound represented by the general structure:

wherein R is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, -(CH₂)_nC₃-C₆ cycloalkyl,

wherein n is an integer ranging from 0-4;

10

25

30

R₄ and R₅ are independently selected from the group consisting of H, halo, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, -COR₁₁ and (C₁-C₄) alkoxy; and

R₆ is selected from the group consisting of H, halo,

wherein R₁₁ is selected from the group consisting of H, C₁-C₄ alkyl, NH₂ and OH.

20 The method of claim 16 wherein R is selected from the group consisting of C_{1-} C_{12} alkyl;

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{-}C_4$ alkyl; and

R₆ is selected from the group consisting of H,

wherein n is an integer ranging from 0-4.

18. The method of claim 17 wherein R_4 and R_5 are independently selected from the group consisting of H and halo; and R_6 is H.

19. A sodium channel blocker represented by the general structure

5
$$R_4$$
 OH NH_2 or R_5 R_6 R_{15} R_{15}

wherein R_4 and R_5 are independently selected from the group consisting of H, halo and C_1 - C_4 alkyl;

R₆ is selected from the group consisting of H,

15
$$CH_3(CH_2)_n$$
 $CH_3(CH_2)_n$ $CH_3(CH_2)_n$ $CH_3(CH_2)_n$

wherein n is an integer ranging from 0-4 and

 R_{14} and R_{15} are independently selected from the group consisting of H and halo, or R_{14} and R_{15} taken together with the atoms to which they are attached form an optionally substituted C_5 - C_6 aryl.

20. The compound of claim 19 wherein R_4 , R_5 and R_6 are independently H or halo; and

 R_{14} and R_{15} are each H or taken together with the atoms to which they are attached form a phenyl ring.

30

25

20