Binary probit regression with I-priors

Haziq Jamil
Supervisors: Dr. Wicher Bergsma & Prof. Irini Moustaki

Social Statistics (Year 3) London School of Economics & Political Science

8-9 May 2017

PhD Presentation Event

http://phd3.haziqj.ml

Outline

- Introduction
- 2 Probit models with I-priors
- Variational inference Introduction A simple example
- 4 R/iprobit
- **6** Applications
- **6** Summary

Variational inference introduction

• Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) =: \hat{\boldsymbol{\theta}}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

Using variational calculus, we can solve

$$\arg\max_{p}\mathcal{H}(p)=:\tilde{p}$$

e.g. \mathcal{H} is the entropy $\mathcal{H} = -\int p(x) \log p(x) dx$, and \tilde{p} is the entropy maximising distribution.

C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer

Variational inference introduction (cont.)

- Consider a statistical model where we have observations (y_1, \ldots, y_n) and also some latent variables (z_1, \ldots, z_n) .
- The z_i could be random effects or some auxiliary latent variables.
- In a Bayesian setting, this could also include the parameters to be estimated.
- GOAL: Find approximations for
 - ▶ The posterior distribution $p(\mathbf{z}|\mathbf{y})$; and
 - ▶ The marginal likelihood (or model evidence) p(y).
- Variational inference is a deterministic approach, unlike MCMC.

Decomposition of the log marginal

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed into

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising the $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.
- Although KL(q||p) is minimised at $q(z) \equiv p(z|y)$ (c.f. EM algorithm), we are unable to work with $p(\mathbf{z}|\mathbf{y})$.

Comparison of approximations (deviance)

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into m disjoint groups $z = (z^{(1)}, ..., z^{(m)})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^m q_j(\mathsf{z}^{(j)})$$

• Under this restriction, the solution to arg max_q $\mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

 In practice, these unnormalised densities are of recognisable form (especially if conjugate priors are used).

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe (2016). "Variational Inference: A Review for Statisticians". arXiv: 1601.00670

Coordinate ascent mean-field variational inference (CAVI)

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_i(\mathbf{z}^{(j)})$ depends on the optimal moments of $\mathbf{z}^{(k)}$, $k \in \{1, \dots, m : k \neq i\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{z})] - \mathsf{E}_q[\log q(\mathbf{z})].$$

Algorithm 1 CAVI

- 1: **initialise** Variational factors $q_i(\mathbf{z}^{(j)})$
- 2: while $\mathcal{L}(q)$ not converged do
- for $j = 1, \ldots, m$ do 3.
- $\log q_i(\mathbf{z}^{(j)}) \leftarrow \mathsf{E}_{-i}[\log p(\mathbf{y}, \mathbf{z})] + \mathsf{const.}$
- end for 5:
- $\mathcal{L}(q) \leftarrow \mathsf{E}_{q}[\log p(\mathsf{y},\mathsf{z})] \mathsf{E}_{q}[\log q(\mathsf{z})]$
- 7. end while
- 8: **return** $\tilde{q}(z) = \prod_{i=1}^{m} \tilde{q}_i(z^{(j)})$

ullet GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N}\left(a, (b\psi)^{-1}\right)$ $\psi \sim \mathsf{\Gamma}(c, d)$ Priors $i = 1, \dots, n$

• GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N}\left(a, (b\psi)^{-1}\right)$ $\psi \sim \mathsf{\Gamma}(c, d)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi|\mathbf{y})$ with the mean-field approximation

$$q(\mu,\psi)=q_{\mu}(\mu)q_{\psi}(\psi)$$

• GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N} \left(a, (b\psi)^{-1} \right)$ $\psi \sim \mathsf{\Gamma}(c, d)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi | \mathbf{y})$ with the mean-field approximation

$$q(\mu,\psi)=q_{\mu}(\mu)q_{\psi}(\psi)$$

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_{q} \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y},\mathbf{z})]\right)$$

for $j \in \{1, \ldots, m\}$.

$$q(\mu,\psi)=q_{\mu}(\mu)q_{\psi}(\psi)$$

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_{q} \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y},\mathbf{z})]\right)$$

for $j \in \{1, \ldots, m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$$

$$ilde{q}_{\mu}(\mu) \equiv \mathsf{N}\left(rac{\mathsf{a} b + \mathsf{n} ar{y}}{b + n}, rac{1}{(b + n)\,\mathsf{E}_{ar{a}}[\psi]}
ight)$$

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y},\mathbf{z})]\right)$$

for $j \in \{1, \ldots, m\}$.

$$q(\mu,\psi)=q_{\mu}(\mu)q_{\psi}(\psi)$$

$$\tilde{q}_{\mu}(\mu) \equiv N\left(\frac{ab + n\bar{y}}{b + n}, \frac{1}{(b + n) E_{q}[\psi]}\right) \text{ and } \tilde{q}_{\psi}(\psi) \equiv \Gamma(\tilde{c}, \tilde{d})$$

$$\tilde{c} = c + \frac{n}{2}$$
 $\tilde{d} = d + \frac{1}{2} E_q \left[\sum_{i=1}^n (y_i - \mu)^2 + b(\mu - a)^2 \right]$

End

End

Thank you!