WuS - Lecture Notes Week 8

Ruben Schenk, ruben.schenk@inf.ethz.ch

June 23, 2022

1 Grenzwertsätze

Vorbemerkung: In diesem Kapitel fixieren wir einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und eine Folge von u.i.v.-Z.V. $X_1, X_2, ...$ Mit anderen Worten, wir erhalten Z.V. $X_i : \Omega \to \mathbb{R}$, so dass

$$\forall i_1 < \dots i_k, \, \forall x_1, \dots, \, x_k \in \mathbb{R} \quad \mathbb{P}[X_{i_1} \le x_1, \dots, \, X_{i_k} \le x_k] = F(x_1) \dots F(x_k).$$

wobei F die allgemeine Verteilungsfunktion ist. Für jedes n betrachen wir die Partialsumme

$$S_n = X_1 + \dots + X_n,$$

und wir interessieren uns für das Verhalten (wenn n gros ist) der folgenden Z.V.

$$\frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}.$$

Das wird manchmal auch der empirische Durchschnitt genannt.

1.1 Gesetz der grossen Zahlen (GGZ)

Theorem: Sei $\mathbb{E}[|X_1|] < \infty$. Setze $m = \mathbb{E}[X_1]$, dann gilt

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = m \quad f.s.$$

Bemerkung: Da die Z.V. u.i.v. sind, haben wir ebenfalls $\mathbb{E}[|X_i|] < \infty$ und $m = \mathbb{E}[X_i]$ für jedes i.

Beispiele: Sei $X_1, X_2, ...$ eine Folge von u.i.v. Bernoulli Z.V. mit Parameter p. Dann ist

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = p \quad f.s.$$

Sei $T_1,\,T_2,\dots$ eine u.i.v. Folge von exponential verteilten Z.V. mit Parameter $\lambda.$ Dann gilt

$$\lim_{n\to\infty}\frac{T_1+\cdots+T_n}{n}=\frac{1}{\lambda}\quad f.s.$$

1.2 Anwendung: Monte-Carlo Integration

Unser Ziel ist es folgendes Integral

$$I = \int_0^1 g(x) \, dx$$

nummerisch zu bestimmen. Die Idee: Wir betrachten I als Erwartungswert und verwenden das GGZ um I zu approximieren. Sei U eine gleichverteilte Z.V. auf [0, 1]. Dann gilt

$$\mathbb{E}[g(U)] = \int_0^1 g(x) \, dx = I.$$

Somit finden wir eine gute Approximation von I, falls wir obigen Erwartungswert g(U) zufriedenstellen bestimmen können. Nun kommt das GGz ins Spiel. Sei $U_1, U_2, ...$ eine u.i.v. Folge von gleichverteilten Z.V. auf [0, 1] und setze $X_{=}g(U_n)$ für jedes n. Somit sind die Folgenglieder $X_1, X_2, ...$ u.i.v. und es gilt

$$\mathbb{E}[|X_1|] = \int_0^1 |g(x)| \, dx > \infty,$$

und $\mathbb{E}[X_1] = I$. Anwendung des GGZ liefert

$$\lim_{n \to \infty} \frac{g(U_1) + \cdots + g(U_n)}{n} = I.$$

Somit erhalten wir eine Approximation von I.

1.3 Konvergenz in Verteilung

Def: Seien $(X_n)_{n\in\mathbb{N}}$ und X Z.V. Wir schreiben

$$X_n \stackrel{Approx}{\approx} X \text{ as } n \to \infty$$

falls für jedes $x \in \mathbb{R}$

$$\lim_{n \to \infty} \mathbb{P}[X_n \le x] = \mathbb{P}[X \le x].$$

1.4 Zentraler Grenzwertsatz

1.4.1 Ein Frage der Fluktuation?

Das GGZ besagt, dass für grosse n der empirische Durchschnitt nahe dem Erwartungswert $m = \mathbb{E}[X_1]$ ist. Eine zweite Frage, die man stellen kann, ist:

Wie weit ist
$$\frac{X_1 + \cdots + X_n}{n}$$
 typischerweise von m entfernt?

1.4.2 Fluktuation von Normalverteilten Z.V.

Betrachten wir zuerst den Fall, dass $X_1, X_2, ...$ eine Folge von i.i.d. normalen Z.V. mit den Parametern m und σ^2 ist. Dann sagen uns die Ergebnisse, die wir für normale Z.V. gesehen haben, dass

$$Z = \frac{X_1 + \dots + X_n}{n} - m$$

wiederum eine normale Z.V. mit Parametern $\bar{m}=0$ und $\bar{\sigma}^2=\frac{1}{n}\sigma^2$ ist. Die Standardabweichung $\bar{\sigma}=\frac{1}{\sqrt{n}}\sigma$ stellt die typischen Schwankungen von Z dar. Grobn kann man sage, dass der typische Abstand zwischen $\frac{X_1+\cdots+X_n}{n}$ und m von der Ordnung $\frac{\sigma}{\sqrt{n}}$ ist.

1.4.3 Der zentrale Grenzwertsatz (ZGWS)

Seien $X_1, X_2, ...$ nicht normalverteilt. Dann ist die Brechnung der Verteilung

$$\frac{X_1 + \dots + X_n - n \cdot m}{\sqrt{\sigma^2 n}}$$

nicht immer einfacht. Hier setzt der ZGWS gerade an. Er besagt, dass für immer grösser werdende n die Verteilung der obigen Z.V. sich der Verteilung einer standard normalverteilten Z.V. annähert.

Theorem (ZGWS): Nehme an, dass der Erwartungswert $\mathbb{E}[X_1^2]$ wohldefineirt und endlich ist. Setze $m = \mathbb{E}[X_1]$ und $\sigma^2 = \text{Var}(X_1)$, dann gilt folgender Grenzwert

$$\mathbb{P}\Big[\frac{S_n - n \cdot m}{\sqrt{\sigma^2 n}} \le a\Big] \to_{n \to \infty} \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$$

für jedes $a \in \mathbb{R}$.

Beachte gerade, dass Φ gerade die Verteilungsfunktion einer Z.V. $Z \sim \mathcal{N}(0, 1)$ ist. Der Satz besagt somit, dass für grosse $n \in \mathbb{N}$ die Z.V.

$$Z_n = \frac{S_n - n \cdot m}{\sqrt{\sigma^2 n}}$$

einer Verteilung $Z \sim \mathcal{N}(0, 1)$ ähnelt.