fabric8io/fabric8-maven-plugin

Roland Huß

Version 3.1.42, 2016-09-20

fabric8-maven-plugin

1.	Introduction	2
	1.1. Building Images	2
	1.2. Kubernetes and OpenShift Resources	2
	1.3. Configuration	2
	1.4. Examples	3
	1.4.1. Zero-Config	4
	1.4.2. XML Configuration	6
	1.4.3. Resource Fragments	8
2.	Installation	. 10
3.	Goals	. 11
	3.1. fabric8:setup	. 11
	3.2. fabric8:cluster-start	. 13
	3.2.1. Using OpenShift	. 13
	3.2.2. Configure apps	. 13
	3.2.3. Configure cluster resources	. 13
	3.2.4. Stop	. 14
	3.3. fabric8:cluster-stop	. 14
	3.3.1. Restarting	. 14
	3.3.2. Deleting	. 14
	3.4. fabric8:run	. 15
	3.5. fabric8:deploy	. 16
	3.6. fabric8:undeploy	. 17
	3.7. fabric8:start	. 17
	3.7.1. Scaling	. 17
	3.8. fabric8:stop	. 18
	3.9. fabric8:log	. 18
	3.10. fabric8:debug	. 18
	3.11. fabric8:watch	. 19
	3.12. fabric8:resource	. 23
	3.12.1. Labels and Annotations	. 23
	3.13. fabric8:resource-apply	. 24
	3.14. fabric8:build	. 25
	3.14.1. Kubernetes Build	. 25
	3.14.2. OpenShift Build	. 25
	3.14.3. Configuration	. 26
	3.14.4. Image Configuration	. 29
	3.14.5. Build Configuration	. 31
	3.14.6. Assembly	. 34

3.14.7. Environment and Labels
3.14.8. Startup Arguments
3.14.9. Build Args
3.15. fabric8:push
3.16. fabric8:install
3.17. fabric8:helm
3.18. fabric8:helm-index
3.19. fabric8:app-catalog
3.20. fabric8:distro
4. Generators
4.1. Default Generators44
4.1.1. Spring Boot
4.1.2. Java Applications
4.1.3. Karaf
4.2. Generator API
5. Enrichers
5.1. Default Enrichers
5.1.1. Standard Enrichers
5.1.2. Fabric8 Enrichers
5.2. Enricher API
6. Profiles
7. Access configuration
7.1. Docker Access
7.2. OpenShift and Kubernetes Access
8. Registry handling
9. Authentication
9.1. Pull vs. Push Authentication
9.2. OpenShift Authentication
9.3. Password encryption
10. Migration from version 2

© 2016 The original authors.

Chapter 1. Introduction

The **fabric8-maven-plugin** (f8-m-p) brings your Java applications on to Kubernetes and OpenShift. It provides a tight integration into Maven builds and benefits from the build information already provided. This plugin focus on two tasks: *Building Docker images* and *creating Kubernetes and OpenShift resource descriptors*. It can be configured very flexibly and supports multiple configuration models for creating: A *Zero-Config* setup allows for a quick ramp-up with some opinionated defaults. For more advanced requirementes an *XML configuration* provides additional configuration options which can be added to the pom.xml. For the full power in order to tune all facets of the creation external *resource fragments* and *Dockerfiles* can be used.

This introduction will explain how f8-m-p supports these tasks and demonstrates the different configuration models with examples.

1.1. Building Images

The **fabric8:build** goal is for creating Docker images which carry the actual application and which can be deployed on Kubernetes or OpenShift. It is easy to include build artifacts and their dependencies. The plugin uses the assembly descriptor format from the maven-assembly-plugin to specify the content which will be added to a sub-directory in the image (/deployments by default). Images that are built with this plugin can then be pushed to public or private Docker registries with **fabric8:push**.

Depending on the operational mode, for building the actual image either a Docker daemon is contacted directly or an OpenShift Docker Build is performed.

A special **fabric8:watch** goal allows for reacting on code changes and automatic recreation of images or copying new artifacts into running container.

These image related features are inherited from the fabric8io/docker-maven-plugin which is transparently included in this plugin.

1.2. Kubernetes and OpenShift Resources

With **fabric8:resource** Kubernetes and OpenShift resource descriptors can be created from the build information for creating the corresponding resource object. These files are packaged within the Maven artifacts created and can be deployed to a running orchestration platform with **fabric8:deploy**.

You only specify a fragment of the real resource descriptors which will be enriched by this plugin with various extra informations taken from the build. This drastically can reduce boilerplate code for common scenarios. It is also possible to auto-create resource objects like services or replica-set without explicitly declaring it.

1.3. Configuration

In order to capture many use case scenarios, there are three levels of configuration:

- **Zero-Config** mode makes some decisions based what is present in the pom.xml like what base image to use or which ports to expose. This is great for starting up things and for keeping quickstart applications small and tidy.
- XML plugin configuration mode is similar to what docker-maven-plugin provides. This allows for type safe configuration with IDE support, but only a subset of possible resource descriptor features is provided.
- **Kubernetes & OpenShift resource fragments** are user provided YAML files that can be *enriched* by the plugin. This allows expert users to use plain configuration file with all their capabilities, but also to add project specific build information and avoid boilerplate code.

The following table gives an overview of the different models.

Table 1. Configuration Models

Model	Docker Images	Resource Descriptors
Zero- Config	Generators are used to creatin Docker image configurations. Generators can detect certain aspects of the build (e.g. whether Spring Boot is used) and then choose some default like the base image, which ports to expose and the startup command. The can be configured, but offer only a few options.	Default Enrichers will create a default Service and Deployment (DeploymentConfig for OpenShift) when no other resource objects are provided. Depending on the image they can detect which port to expose in the service. As with Generators, Enrichers support a limited set of configuration options.
XML configur ation	f8-m-p inherits the XML based configuration for building images from the docker-maven-plugin and provides the same functionality. It supports an assembly descriptor for specifying the content of the Docker image.	A subset of possible resource objects can be configured with a dedicated XML syntax. With a decent IDE you get autocompletion on most object and inline documentation for the available configuration elements. The provide configuration can be still enhanced by Enhancers which is useful for adding e.g. labels and annotation containing build or other information.
Fragmen ts and	Like the docker-maven-plugin f8-m-p supports external Dockerfiles too, which are referenced from the plugin configuration.	Resource descriptors can be provied as external YAML files which specify a skeleton. This skeleton is then filled by Enrichers which add labels and more. Maven properties within these files are resolved to thier values. With this model you can use every Kubernetes / OpenShift resource object with all their flexibility, but still get the benefit of adding build informations.

1.4. Examples

Let's have a look at some code. The following examples will demonstrate all three configurations variants:

1.4.1. Zero-Config

This minimal but full working example pom.xml shows how a simple spring boot application can be dockerized and prepared for Kubernetes and OpenShift. The full example can be found in directory samples/zero-config.

Example

```
< project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>io.fabric8
 <artifactId>fabric8-maven-sample-zero-config</artifactId>
 <version>3.1.42
 <packaging>jar</packaging>
 <parent>
   <groupId>org.springframework.boot
   <artifactId>spring-boot-starter-parent</artifactId> ①
   <version>1.3.6.RELEASE
 </parent>
 <dependencies>
   <dependency>
     <groupId>org.springframework.boot
     <artifactId>spring-boot-starter-web</artifactId> ②
   </dependency>
 </dependencies>
 <build>
   <plugins>
     <plugin>
       <groupId>org.springframework.boot
       <artifactId>spring-boot-maven-plugin</artifactId> 3
     </plugin>
     <plugin>
       <groupId>io.fabric8
       <artifactId>fabric8-maven-plugin</artifactId> 4
       <version>3.1.42
     </plugin>
   </plugins>
 </build>
</project>
```

- ① This minimalistic spring boot application uses the spring-boot parent POM for setting up dependencies and plugins
- ② The Spring Boot web starter dependency enables a simple embedded Tomcat for serving Spring MVC apps
- ③ The spring-boot-maven-plugin is responsible for repackaging the application into a fat jar, including all dependencies and the embedded Tomcat

4 The fabric8-maven-plugin enables the automatic generation of a Docker image and Kubernetes / OpenShift descriptors including this Spring application.

This setup make some opinionated decisions for you:

- As base image fabric8/java-alpine-openjdk8-jdk is chosen which enables Jolokia and jmx_exporter. It also comes with a sophisticated startup script.
- It will create a Kubernetes Deployment and a Service as resource objects
- It exports port 8080 as the application service port (and 8778 and 9779 for Jolokia and jmx_exporter access, respectively)

These choices can be influenced by configuration options as decribed in Spring Boot Generator.

To start the Docker image build, you simply run

mvn package fabric8:build

This will create the Docker image against a running Docker daemon (which must be accessible either via Unix Socker or with the URL set in DOCKER_HOST). Alternatively, when using mvn-Dfabric8.mode=openshift package fabric8:build and connected to an OpenShift cluster, then a Docker build will be performed on OpenShift which at the end creates an ImageStream.

To deploy the resources to the cluster call

mvn fabric8:resource fabric8:deploy

By default a *Service* and a *Deployment* object pointing to the created Docker image is created. When running in OpenShift mode, a *Service* and *DeploymentConfig* which refers the *ImageStream* created with fabric8; build will be installed.

Of course you can bind all those fabric8-goals to execution phases as well, so that they are called along with standard lifecycle goals like install:

1.4.2. XML Configuration

XML based configuration is implemented only partially and not recommended to use right now.

Altough the Zero-config mode with its generators can be tweaked with options up to a certain degree. In many cases more flexibility and power is required, though. For this an XML based plugin configuration can be use, much similar to the XML configuration used by docker-maven-plugin.

The plugin configuration can be roughly divided into the following sections:

- A global configuration options are responsible for tuning the behaviour of plugin goals
- <images> section which defines the Docker images to build. It has the same syntax as the similar configuration of docker-maven-plugin (except that <run> and <external> sub-elements are ignored)
- <resource> is used to defined the resource descriptors for deploying on an OpenShift or Kuberneres cluster.
- <generator> is for configuring generators which are responsible for creating images. Generators are used as an alternative to a dedicates <images> section.
- <enricher> is used to configure various aspects of enrichers for creating or enhancing resource descriptors.

A working example can be found in the samples/xml-config directory. An extract of the plugin configuration is shown in the next example

Example for an XML configuration

```
<configuration>
```

```
<images> ①
  
</images>
<resources> ②
  <labels> ③
    <group>quickstarts</group>
  </labels>
  <deployment> 4
    <name>${project.artifactId}</name>
    <replicas>1</replicas>
    <containers> ⑤
      <container>
        <alias>camel-app</alias> ⑥
        <ports>
          <port>8778</port>
        </ports>
        <mounts>
          <scratch>/var/scratch</scratch>
        </mounts>
      </container>
    </containers>
    <volumes> ⑦
      <volume>
        <name>scratch</name>
        <type>emptyDir</type>
      </volume>
    </volumes>
  </deployment>
  <services> ®
    <service>
      <name>camel-service</name>
```

- ① Standard docker-maven-plugin configuration for building one single Docker image
- ② Kubernetes / OpenShift resources to create
- 3 Labels which should be applied globally to all resource objects
- 4 Definition of a Deployment to create
- ⑤ Container to include in the deployment
- 6 An *alias* is used to correlate a container's image with the image definition in the <images> section where each image carry an alias. Can be omitted if only a single image is used
- 7 Volume definitions used in a Deployment's ReplicaSet
- 8 One or more Service definitions.

The XML resource configuration is based on plain Kubernetes resource objects. For creating OpenShift resource descriptor an automatic conversion will happen, e.g. from Kubernetes Deployment to an OpenShift DeploymentConfig.

1.4.3. Resource Fragments

The third configuration option is to use an external configuration in form of YAML resource descriptors which are located in the src/main/fabric8 directory. Each resource get is own file, which contains some skeleton of a resource description. The plugin will pick up the resource, enriches it and the combines all to a single kubernetes.yml and openshift.yml. Within these descriptor files you are can freely use any Kubernetes feature. Note, that in order to support simultaneously both OpenShift and Kubernetes, there is currently no way to specify OpenShift feature only this way (but this might change).

Let's have a look at an example from samples/external-resources. This is a plain spring-boot application, whose images are auto generated like in the Zero-Config case. The resource fragments are in src/mainfabric8.

```
spec:
 replicas: 1
 template:
    spec:
      volumes:
        - name: config
          gitRepo:
            repository: 'https://github.com/jstrachan/sample-springboot-config.git'
            revision: 667ee4db6bc842b127825351e5c9bae5a4fb2147
            directory: .
      containers:
        - volumeMounts:
            - name: config
              mountPath: /app/config
          env:
            - name: KUBERNETES_NAMESPACE
              valueFrom:
                fieldRef:
                  apiVersion: v1
                  fieldPath: metadata.namespace
      serviceAccount: ribbon
```

As you can see, there is no metadata section as expected for each Kubernetes resource object. This section will be created automatically by fabric8-maven-plugin. The object's Kind, if not given, will be extracted from the filename. In this case its a Deployment because the file is called deployment.xml. For each supported resource type such a mapping exists. In addition you could specify a name in like in myapp-deployment.xml to give the resource a fixed name. Otherwise it will be automatically extracted from project information (i.e. the artificact id).

Here also the reference to the image is missing. In this case it will be automatically connected to the image you are building with this plugin (And you already know, that the image definition comes either from a generator or by a dedicated image plugin configuration).

For building images there is also an alternative mode using external Dockerfiles, in addition to the XML based configuration. Refer to fabric8:build for details.

Now that we have seen some examples for the various ways how this plugin can be used, the following sections will describe the plugin goals and extension points in detail.

Chapter 2. Installation

This plugin is available from Maven central and can be connected to pre- and post-integration phase as seen below. The configuration and available goals are described below.

```
<plugin>
 <groupId>io.fabric8
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>3.1.42
 <configuration>
     . . . .
    <images>
        <!-- A single's image configuration -->
        
    </images>
 </configuration>
 <!-- Connect fabric8:resource, fabric8:build and fabric8:helm to lifecycle phases
-->
 <executions>
    <execution>
       <id>fabric8</id>
       <goals>
        <goal>resource</goal>
        <goal>build</goal>
         <goal>helm</goal>
       </goals>
    </execution>
 </executions>
</plugin>
```

Chapter 3. Goals

This plugin supports the following goals, which are explained in the next sections:

Table 2. Plugin Goals

Goal	Description
fabric8:build	Build images
fabric8:push	Push images to a registry
fabric8:resource	Create Kubernetes or OpenShift resource descriptors
fabric8:helm	Create a Helm Chart
fabric8:deploy	Deploy resources decriptors to a cluster
fabric8:watch	Watch for doing rebuilds and redeployments

Depending on whether the OpenShift or Kubernetes operational mode is used, the workflow and the performed actions differs :

Table 3. Workflows

Use Case	Kubernetes	OpenShift
Build	fabric8:build fabric8:push * Creates a image against an exposed Docker daemon (with a docker.tar) * Pushes the image to a registry which is then referenced from the configuration	fabric8:build * Creates or uses a BuildConfig * Creates or uses an ImageStream which can be referenced by the deployment descriptors in a DeploymenConfig * Starts an OpenShift build with a docker.tar as input
Deploy	fabric8:deploy * Applies a Kubernetes resource descriptor to cluster	<pre>fabric8:deploy * Applies an OpenShift resource descriptor to a cluster</pre>

3.1. fabric8:setup

This goal is for setting up maven projects to use f8-m-p. It can be used to set up afresh this plugin in the pom.xml or to update an existing configuration.

To use this goal type:

```
mvn io.fabric8:fabric8-maven-plugin:3.1.42:setup
```

Now your pom.xml is modified to use f8-m-p. The plugin will be bound some goals to Maven execution phases, so you can test it by running:

mvn clean install

After this, a Docker image from your application is created (if some of the default generators could detect your setup) and the Kubernetes and OpenShift descriptors are created in target/classes/META-INF/fabric8.

Manual Setup

Alternatively, if you prefer to do it all by hand, then add the following to your pom.xml file:

```
<plugin>
 <groupId>io.fabric8
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>3.1.42
 <configuration>
     . . . .
    <images>
       <!-- A single's image configuration -->
        
        . . . .
    </images>
 </configuration>
 <!-- Connect fabric8:resource and fabric8:build to lifecycle phases -->
 <executions>
    <execution>
       <id>fabric8</id>
       <goals>
        <goal>resource</goal>
        <goal>build</goal>
        <goal>helm</goal>
       </goals>
    </execution>
 </executions>
</plugin>
```

The setup can be influenced with the following configuration options:

Table 4. Setup configuration

Element	Description	Property
updateVersi on	If set to true then an already existing plugin configuration will be updated. Otherwise an existing configuration is left untouched. Default is true.	updateVersio n

Element	Description	Property
useVersionP roperty	Whether we should use a version property for the plugin which is defined in a dedicates <pre><pre>certies</pre><pre>section with the name fabric8.maven.plugin.version</pre></pre>	useVersionPr operty
generateBac kupPoms	Controls whether a backup pom should be created when the pom.xml is modified. Ddefault is true.	generateBack upPoms
backupPom FileName	Name of the backup file to create. Default is \${basedir}/pom.xml-backup	backupPomFil eName

3.2. fabric8:cluster-start

This goal will start a local kubernetes cluster for local development.

```
mvn fabric8:cluster-start
```

This will internally invoke the **fabric8:install** goal to ensure that all the required binaries are installed (like gofabric8 and for kubernetes: kubectl and minikube or for OpenShift: oc and minishift)

By default the binaries are installed in ~/.fabric8/bin

3.2.1. Using OpenShift

By default fabric8:cluster-start will use minikube to create a local single node kubernetes cluster. To specify OpenShift use:

```
mvn fabric8:cluster-start -Dfabric8.cluster.kind=openshift
```

This will then use minishift instead to create a single node local OpenShift cluster.

3.2.2. Configure apps

By default the cluster contains only the fabric8 developer console as often developers laptops don't have lots of RAM.

If you want to deploy the full fabric8 platform (with Nexus, Jenkins, Gogs, JBoss Forge etc) then use the following command:

```
mvn fabric8:cluster-start -Dfabric8.cluster.app=platform
```

3.2.3. Configure cluster resources

You can specify the number of CPUs or memory via additional parameters:

mvn fabric8:cluster-start -Dfabric8.cluster.cpus=2 -Dfabric8.cluster.memory=4096

The above configures 2 CPUs and 46b of memory

3.2.4. Stop

You can stop the cluster at any time via fabric8:cluster-stop

mvn fabric8:cluster-stop

Once stopped you can restart again with all the images, resources and pods intact later on by running fabric8:cluster-start again

mvn fabric8:cluster-start

3.3. fabric8:cluster-stop

This goal will stop a local kubernetes cluster.

This goal stops the VM running the local cluster so it will free up resources on your machine (memory + CPU) though the VM is not destroyed; it can restarted.

mvn fabric8:cluster-stop

3.3.1. Restarting

You can restart the cluster at any time via fabric8:cluster-start

mvn fabric8:cluster-start

Once restarted all the images, resources and pods should come back

3.3.2. Deleting

If you wish to destroy the cluster VM and all the data inside it then you can pass the fabric8.cluster.delete parameter with a value of true:

mvn fabric8:cluster-stop -Dfabric8.cluster.delete=true

3.4. fabric8:run

This goal builds your application (generating the docker image and kubernetes manifest), deploys it on the current kubernetes cluster then tails the logs of the first pod that starts until you hit Ctrl+C then the application is stopped.

```
mvn fabric8:run
```

So this goal feels very much like the run goal in other maven plugins like spring-boot, tomcat, jetty, wildfly etc.

You can think of this goal as being similar to performing:

```
mvn fabric8:deploy
mvn fabric8:logs
...
^C
mvn fabric8:stop
```

If you wish to **fabric8:undeploy** on the Ctrl+C keypress you can pass in the fabric8.onExit goal:

```
mvn fabric8:run -D fabric8.onExit=undeploy
```

If you prefer Ctrl-C to just terminate the log tailing but leave your app running you can use:

```
mvn fabric8:run -D fabric8.onExit=
```

Though its maybe just simpler to do:

```
mvn fabric8:deploy fabric8:log
```

Note that you must have the **fabric8:resource** and **fabric8:build** goals bound to your executions in your pom.xml. e.g. like this:

```
<plugin>
 <groupId>io.fabric8
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>3.1.42
 <!-- Connect fabric8:resource, fabric8:build and fabric8:helm to lifecycle phases
-->
 <executions>
   <execution>
      <id>fabric8</id>
      <goals>
        <goal>resource</goal>
        <goal>build</goal>
        <goal>helm</goal>
      </goals>
   </execution>
 </executions>
</plugin>
```

3.5. fabric8:deploy

This is the main goal for building your docker image, generating the kubernetes resources and deploying them into the cluster.

```
mvn fabric8:deploy
```

Effectively this builds your project then invokes these goals:

- fabric8:build
- fabric8:resource-apply

Note that you must have the **fabric8:resource** and **fabric8:build** goals bound to your executions in your pom.xml. e.g. like this:

```
<plugin>
 <groupId>io.fabric8
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>3.1.42
 <!-- Connect fabric8:resource, fabric8:build and fabric8:helm to lifecycle phases
 <executions>
   <execution>
      <id>fabric8</id>
      <goals>
        <goal>resource</goal>
        <goal>build</goal>
        <goal>helm</goal>
      </goals>
   </execution>
 </executions>
</plugin>
```

3.6. fabric8:undeploy

This goal is for deleting the kubernetes resources that you deployed via the **fabric8:run** or **fabric8:deploy** goals

It iterates through all the resources generated by the **fabric8:resource** goal and deletes them from your current kubernetes cluster.

```
mvn fabric8:undeploy
```

3.7. fabric8:start

This goal starts the app that you deployed via the **fabric8:deploy** goal and then subsequently stopped via **fabric8:stop**.

```
mvn fabric8:start
```

This goal iterates through all scaleable resources generated by the **fabric8:resource** goal and scales them to a *replica count* of `1` so that by the time this goal completes there should be a single running pod of this app.

3.7.1. Scaling

You can also use the fabric8:start goal to scale the number of pods running your application via passing the fabric8.replicas parameter:

```
mvn fabric8:start -Dfabric8.replicas=2
```

After the above you should see 2 pods running for your application.

From the command line you can use the kubectl binary to watch pods come and go via the following:

```
kubectl get pod -w
```

The -w flag watches the resource and keeps updating the console as things change. Leaving off the -w just lists the current pods only then kubect terminates.

3.8. fabric8:stop

This goal stops the app that you deployed via the fabric8:deploy goal.

```
mvn fabric8:stop
```

This goal iterates through all scaleable resources generated by the **fabric8:resource** goal and scales them to a *replica count* of 0 so that by the time this goal completes there are no running pods for this app.

3.9. fabric8:log

This goal tails the log of the app that you deployed via the fabric8:deploy goal

```
mvn fabric8:log
```

You can then terminate the output by hitting Ctrl+C

If you wish to get the log of the app and then terminate immediately then try:

```
mvn fabric8:log -Dfabric8.log.follow=false
```

This lets you pipe the output into grep or some other tool

```
mvn fabric8:log -Dfabric8.log.follow=false | grep Exception
```

3.10. fabric8:debug

This goal enables debugging in your Java app and then port forwards from localhost to the latest running pod of your app so that you can easily debug your app from your Java IDE.

mvn fabric8:debug

Then follow the on screen instructions.

The default debug port is 5005. If you wish to change the local port to use for debugging then pass in the fabric8.debug.port parameter:

```
mvn fabric8:debug -Dfabric8.debug.port=8000
```

Then in your IDE you start a Remote debug execution using this remote port using localhost and you should be able to set breakpoints and step through your code.

This lets you debug your apps while they are running inside a Kubernetes cluster - for example if you wish to debug a REST endpoint while another pod is invoking it.

Debug is enabled via the JAVA_ENABLE_DEBUG environment variable being set to true. This environment variable is used for all the standard Java docker images used by Spring Boot, flat classpath and executable JAR projects and Wildfly Swarm. If you use your own custom docker base image you may wish to also respect this environment variable too to enable debugging.

3.11. fabric8:watch

Section needs review and rearrangments

When developing and testing applications you will often have to rebuild Docker images and restart containers. Typing fabric8:build and fabric8:start all the time is cumbersome. With fabric8:watch you can enable automatic rebuilding of images and restarting of containers in case of updates.

fabric8:watch is the top-level goal which perform these tasks. There are two watch modes, which can be specified in multiple ways:

• build: Automatically rebuild one or more Docker images when one of the files selected by an assembly changes. This works for all files included directly in assembly.xml but also for arbitrary dependencies.

Example

```
$ mvn package fabric8:build fabric8:watch -Ddocker.watchMode=build
```

This mode works only when there is a <build> section in an image configuration. Otherwise no automatically build will be triggered for an image with only a <run> section. Note that you need the package phase to be executed before otherwise any artifact created by this build can not be included into the assembly. As described in the section about fabric8:start this is a Maven limitation. * run: Automatically restart container when their associated images changes. This is useful if you pull a new version of an image externally or especially in combination with the build mode to restart containers when their image has been automatically rebuilt. This mode works reliably only when

used together with fabric8:start.

Example

\$ mvn fabric8:start fabric8:watch -Ddocker.watchMode=run

- both: Enables both build and run. This is the default.
- none: Image is completely ignored for watching.
- copy: Copy changed files into the running container. This is the fast way to update a container, however the target container must support hot deply, too so that it makes sense. Most application servers like Tomcat supports this.

The mode can also be both or none to select both or none of these variants, respectively. The default is both.

fabric8:watch will run forever until it is interrupted with CTRL-C after which it will stop all containers. Depending on the configuration parameters keepContainer and removeVolumes the stopped containers with their volumes will be removed, too.

When an image is removed while watching it, error messages will be printed out periodically. So don't do that ;-)

Dynamically assigned ports stay stable in that they won't change after a container has been stopped and a new container is created and started. The new container will try to allocate the same ports as the previous container.

If containers are linked together network or volume wise, and you update a container which other containers dependent on, the dependant containers are not restarted for now. E.g. when you have a "service" container accessing a "db" container and the "db" container is updated, then you "service" container will fail until it is restarted, too.

A future version of this plugin will take care of restarting these containers, too (in the right order), but for now you would have to do this manually.

This maven goal can be configured with the following top-level parameters:

Table 5. Watch configuration

Element	Description	Property
watchMode	Watch mode specifies what should be watched * build: Watch changes in the assembly and rebuild the image in case * run: Watch a container's image whether it changes and restart the container in case * copy: Changed files are copied into the container. The container can be either running or might be already exited (when used as a <i>data container</i> linked into a <i>platform container</i>). Requires Docker >= 1.8. * both: build and run combined * none: Neither watching for builds nor images. This is useful if you use prefactored images which won't be changed and hence don't need any watching. none is best used on an per image level, see below how this can be specified.	docker.watch Mode
watchInterv al	Interval in milliseconds how often to check for changes, which must be larger than 100ms. The default is 5 seconds.	docker.watch Interval
watchPostG oal	A maven goal which should be called if a rebuild or a restart has been performed. This goal must have the format <plugingroupid>:<pluginartifactid>:<goal> and the plugin must be configured in the pom.xml. For example a post-goal io.fabric8:fabric8:delete-pods will trigger the deletion of PODs in Kubernetes which in turn triggers are new start of a POD within the Kubernetes cluster. The value specified here is the the default post goal which can be overridden by <postgoal> in a <watch> configuration.</watch></postgoal></goal></pluginartifactid></plugingroupid>	
watchPostE xec	A command which is executed within the container after files are copied into this container when watchMode is copy. Note that this container must be running.	
keepRunnin g	If set to true all container will be kept running after fabric8:watch has been stopped. By default this is set to false.	docker.keepR unning
keepContai ner	As for fabric8:stop, if this is set to true (and keepRunning is disabled) then all container will be removed after they have been stopped. The default is true.	docker.keepC ontainer
removeVolu mes	if set to true will remove any volumes associated to the container as well. This option will be ignored if either keepContainer or keepRunning are true.	docker.remov eVolumes

Image specific watch configuration goes into an extra image-level <watch> section (i.e. ). The following parameters are recognized:

Table 6. Watch configuration for a single image

Element	Description	
mode	Each image can be configured for having individual watch mode. These take precedence of the global watch mode. The mode specified in this configuration takes precedence over the globally specified mode.	
interval	Watch interval can be specified in milliseconds on image level. If given this will override the global watch interval.	

Element	Description
postGoal	Post Maven plugin goal after a rebuild or restart. The value here must have the format <plugingroupid>:<pluginartifactid>:<goal> (e.g. io.fabric8:fabric8:delete-pods)</goal></pluginartifactid></plugingroupid>
postExec	Command to execute after files are copied into a running container when mode is copy.

Here is an example how the watch mode can be tuned:

Example

```
<configuration>
   <!-- Check every 10 seconds by default -->
   <watchInterval>10000</watchInterval>
   <!-- Watch for doing rebuilds and restarts -->
   <watchMode>both</watch>
   <images>
      
      
      . . . .
   </images>
</configuration>
```

Given this configuration

Example

```
mvn package fabric8:build fabric8:start fabric8:watch
```

You can build the service image, start up all containers and go into a watch loop. Again, you need the package phase in order that the assembly can find the artifact build by this project. This is a Maven limitation. The db image will never be watch since it assumed to not change while watching.

3.12. fabric8:resource

This is chapter is incomplete, but there is work in progress.

3.12.1. Labels and Annotations

Labels and annotations can be easily added to any resource object. This is best explained by an example.

Example for label and annotations

```
<plugin>
 <configuration>
    <resources>
      <labels> ①
        <all> ①
          <organisation>unesco</organisation> ②
        </all>
        <service> ③
          <persistent>true</persistent>
          <database>mysql</dabatabase>
        </service>
        <replicaSet> ④
        </replicaSet>
        <pod> ⑤
          . . .
        </pod>
        <deployment> 6
        </deployment>
      </labels>
     <annotations> ⑦
      </annotations>
    </resource>
 </configuration>
</plugin>
```

- ① <labels> section with <resources> contains labels which should be applied to objects of various kinds
- ② Within <all> labels which should be applied to every object can be specified
- (3) <service> labels are used to label services
- 4 <replicaSet> labels are for replica set and replication controller
- ⑤ <pod> holds lables for pod specifications in replication controller, replica sets and deployments

- 6 <deployment> is for labels on deployments (kubernetes) and deployment configs (openshift)
- 7 The subelements are also available for specifying annotations.

Labels and annotations can be specified in free form as a map. In this map the element name is the name of the label or annotation respectively, whereas the content is the value to set.

The following subelements are possible for <labels> and <annotations>:

Table 7. Label and annotation configuration

Element	Description	
all	All entries specified in the <all> sections are applied to all resource objects created. This also implies build object like image stream and build configs which are create implicitely for an OpenShift build.</all>	
deployment	Labels and annotations applied to Deployment (for Kubernetes) and DeploymentConfig (for OpenShift) objects	
pod	Labels and annotations applied pod specification as used in ReplicationController, ReplicaSets, Deployments and DeploymentConfigs objects.	
replicaSet	Labels and annotations applied to ReplicaSet and ReplicationController objects.	
service	Labels and annotations applied to Service objects.	

3.13. fabric8:resource-apply

This goal will generate the kubernetes resources via the **fabric8:resource** goal and apply them into the current kubernetes cluster.

```
mvn fabric8:resource-apply
```

Its usually simpler to just use the **fabric8:deploy** goal which performs a build, creates the docker image and runs fabric8:resource-apply:

```
mvn fabric8:deploy
```

However if you have built your code and docker image but find some issue with the generated manifests; you can update the configuration of the **fabric8:resource** goal in your pom.xml or modify the YAML files in src/main/fabric8 and then run:

```
mvn fabric8:resource-apply
```

Which will skip running unit tests and generating the docker build via **fabric8:build** but will only regenerate the manifests and apply them. This can help speed up the round trip time when fixing up resource generation issues.

Note to use this goal you must have the fabric8:resource goal bound to your executions in your

pom.xml. e.g. like this:

3.14. fabric8:build

This goal is for building Docker images. Images can be build in two ways which depend on the mode (property: fabric8.mode). This mode can have be either kubernetes for a standard Docker build (the default) or openshift for an OpenShift build.

By default the mode is set to auto. In this case the plugin tries to detect which kind of build should be performed by contaction the API server. If this fails or if no cluster access is conigured e.g. with oc login then the mode is set to kubernetes.

3.14.1. Kubernetes Build

If the mode is set to kubernetes then a normal Docker build is performed. The connection configuration to access the Docker daemon is described in Access Configuration.

In order to make the generated images available to the Kubernetes cluster the generated images need to be pushed to a registry with the goal **fabric8:push**. This is not necessary for single node clusters, though as their is no need to distribute images.

3.14.2. OpenShift Build

For the mode openshift OpenShift specific Builds can be performed. These are so called Binary Source builds ("binary builds" in short), where the data specified with the build configuration is send directly to OpenShift as a binary archive.

There are two kind of binary builds supporte by this plugin, which can be selected with the configuration option buildStrategy (property fabric8.build.strategy)

Table 8. Build Strategies

buildStrateg y	Description
s2i	The Source-to-Image (S2I) build strategy uses so called builder images for creating new application images from binary build data. The builder image to use is taken from the base image configuration specified with from in the image build configuration. See below for a list of builder images which can be used with this plugin.
docker	A Docker Build is similar to a normal Docker build except that it is done by the OpenShift cluster and not by a Docker daemon. In addition this build pushes the generated image to the OpenShift internal registry so that it is accessbile in the whole cluster.

Both build strategies update an Image Stream after the image creation.

The Build Config and Image streams can be managed by this plugin. If they do not exist, they will be automatically created by fabric8:build. If they do already exist, they are reused, except when the configuration option buildRecreate (property fabric8.build.recreate) is set to a value as described in Configuration. Also if the provided build strategy is different than for the existing build configuration, the Build Config is edited to reflect the new type (which in turn removes all build associated with the previous build).

This image stream created can then be referenced directly from a Deployment Configuration objects created by **fabric8:resource**.

In order to be able to to create these OpenShift resource objects access to an OpenShift installation is required. The access parameters are described in Access Configuration.

Regardless which build mode is used, the images are configured in the same way.

The configuration consists of two parts: A global section which defines the overall behaviour of this plugin. And a <images> section which defines how the one or more images should be build.

Many of the options below are relevant for the Kubernetes Workflow or the OpenShift Workflow with Docker builds as they influence how the Docker image is build.

For an S2I binary build mostly the Assembly is relevant because it depends on the builder image how to interpret the content of the uploaded docker.tar.

3.14.3. Configuration

The following sections describe the usual configuration, which is similar to the build configuration used in the docker-maven-plugin.

In addition a more automatic way for creating predefined build configuration can be performed with so called Generators. Generators are very flexibel and can be easily created. These are described in an extra section.

Global configuration parameters specify overall behavior common for all images to build. Some of the configuration options are shared with other goals.

Table 9. Global configuration

Element	Description	Property
apiVersion	Use this variable if you are using an older version of docker not compatible with the current default use to communicate with the server.	docker.apiVe rsion
authConfig	Authentication information when pulling from or pushing to Docker registry. There is a dedicated section Authentication for how doing security.	
autoPull	Decide how to pull missing base images or images to start: * on: Automatic download any missing images (default) * off: Automatic pulling is switched off * always: Pull images always even when they are already exist locally * once: For multi-module builds images are only checked once and pulled for the whole build.	docker.autoP ull
buildRecrea te	If the effective mode is openshift then this option decides how the OpenShift resource objects associated with the build should be treated when they already exist: *buildConfig or bc: Only the BuildConfig is recreated * imageStream or is: Only the ImageStream is recreated * all: Both, BuildConfig and ImageStream are recreated * none: Neither BuildConfig nor ImageStream is recreated The default is none. If you provide the property without value then all is assumed, so everything gets recreated.	fabric8.buil d.recreate
buildStrateg y	If the effective mode is openshift then this option sets the build strategy. This can be: * s2i for a Source-to-Image build with a binary source * docker for a Docker build with a binary source By default S2I is used.	fabric8.buil dStrategy
certPath	Path to SSL certificate when SSL is used for communicating with the Docker daemon. These certificates are normally stored in ~/.docker/. With this configuration the path can be set explicitly. If not set, the fallback is first taken from the environment variable DOCKER_CERT_PATH and then as last resort ~/.docker/. The keys in this are expected with it standard names ca.pem, cert.pem and key.pem. Please refer to the Docker documentation for more information about SSL security with Docker.	docker.certP ath

Element	Description	Property
dockerHost	The URL of the Docker Daemon. If this configuration option is not given, then the optional <machine> configuration section is consulted. The scheme of the URL can be either given directly as http depending on whether plain HTTP communication is enabled or SSL should be used. Alternatively the scheme could be tep in which case the protocol is determined via the IANA assigned port: 2375 for http and 2376 for http. Finally, Unix sockets are supported by using the scheme unix together with the filesystem path to the unix socket. The discovery sequence used by the docker-maven-plugin to determine the URL is: value of dockerHost (docker.host) the Docker host associated with the docker-machine named in <machine>, i.e. the DOCKER_HOST from docker-machine env. See below for more information about Docker machine support. the value of the environment variable DOCKER_HOST. unix:///var/run/docker. sock if it is a readable socket.</machine></machine>	docker.host
image	In order to temporarily restrict the operation of plugin goals this configuration option can be used. Typically this will be set via the system property docker.image when Maven is called. The value can be a single image name (either its alias or full name) or it can be a comma separated list with multiple image names. Any name which doesn't refer an image in the configuration will be ignored.	docker.image
machine	Docker machine configuration. See Docker Machine for possible values	
mode	The build mode which can be * kubernetes : A Docker image will be created by calling a Docker daemon. See Kubernetes Build for details. * openshift : An OpenShift Build will be triggered, which can be either a Docker binary build or a S2I binary build, depending on the configuration buildStrategy. See OpenShift Build for details. * auto : The plugin tries to detect the mode by contacting the configured cluster. auto is the default. (Because of technical reasons, "kubernetes" is currently the default, but will change to "auto" eventually)	fabric8.mode
maxConnec tions	Number of parallel connections are allowed to be opened to the Docker Host. For parsing log output, a connection needs to be kept open (as well for the wait features), so don't put that number to low. Default is 100 which should be suitable for most of the cases.	docker.maxCo nnections
namespace	Namespace to use when accessing Kubernetes or OpenShift	fabric8.name space
outputDirec tory	Default output directory to be used by this plugin. The default value is target/docker and is only used for the goal fabric8:build.	docker.targe t.dir
portPropert yFile	Global property file into which the mapped properties should be written to. The format of this file and its purpose are also described in Port Mapping.	
profile	Profile to which contains enricher and generators configuration. See Profiles for details.	fabric8.prof ile

Element	Description	Property
registry	Specify globally a registry to use for pulling and pushing images. See Registry handling for details.	docker.regis try
resourceDir *	Directory where fabric8 resources are stored. This is also the directory where a custom profile is looked up	fabric8.reso urceDir
skip	With this parameter the execution of this plugin can be skipped completely.	docker.skip
skipBuild	If set not images will be build (which implies also <i>skip.tag</i>) with fabric8:build	docker.skip. build
skipBuildPo m	If set the build step will be skipped for modules of type pom	docker.skip. build.pom
skipTag	If set to true this plugin won't add any tags to images that have been built with fabric8:build	docker.skip. tag
skipMachin e	Skip using docker machine in any case	docker.skip. machine
sourceDirec tory	Default directory that contains the assembly descriptor(s) used by the plugin. The default value is <pre>src/main/docker</pre> . This option is only relevant for the <pre>fabric8:build</pre> goal.	docker.sourc e.dir
verbose	Boolean attribute for switching on verbose output like the build steps when doing a Docker build. Default is false	docker.verbo se

3.14.4. Image Configuration

The configuration how images should be created a defined in a dedicated <images> sections. These are specified for each image within the <images> element of the configuration with one 
    
 </images>
</configuration>
```

There is some special behaviour when using an externally provided registry like described above:

- When *pulling*, the image pulled will be also tagged with a repository name **without** registry. The reasoning behind this is that this image then can be referenced also by the configuration when the registry is not specified anymore explicitly.
- When *pushing* a local image, temporarily a tag including the registry is added and removed after the push. This is required because Docker can only push registry-named images.

Chapter 9. Authentication

When pulling (via the autoPull mode of fabric8:start) or pushing image, it might be necessary to authenticate against a Docker registry.

There are three different ways for providing credentials:

- Using a <authConfig> section in the plugin configuration with <username> and <password> elements.
- Providing system properties docker.username and docker.password from the outside
- Using a <server> configuration in ~/.m2/settings.xml
- Login into a registry with docker login

Using the username and password directly in the pom.xml is not recommended since this is widely visible. This is most easiest and transparent way, though. Using an <authConfig> is straight forward:

The system property provided credentials are a good compromise when using CI servers like Jenkins. You simply provide the credentials from the outside:

Example

```
mvn -Ddocker.username=jolokia -Ddocker.password=s!cr!t fabric8:push
```

The most secure and also the most *mavenish* way is to add a server to the Maven settings file ~/.m2/settings.xml:

```
<server>
    <id>docker.io</id>
    <username>jolokia</username>
    <password>s!cr!t</password>
    </server>
    ....
</servers>
```

The server id must specify the registry to push to/pull from, which by default is central index docker.io (or index.docker.io / registry.hub.docker.com as fallbacks). Here you should add your docker.io account for your repositories. If you have multiple accounts for the same registry, the second user can be specified as part of the ID. In the example above, if you have a second accorunt 'fabric8io' then use an <id>docker.io/fabric8io</id> for this second entry. I.e. add the username with a slash to the id name. The default without username is only taken if no server entry with a username appended id is chosen.

As a final fallback, this plugin consults ~/.docker/config.json for getting to the credentials. Within this file credentials are stored when connecting to a registry with the command docker login from the command line.

9.1. Pull vs. Push Authentication

The credentials lookup described above is valid for both push and pull operations. In order to narrow things down, credentials can be be provided for pull or push operations alone:

In an <authConfig> section a sub-section <pull> and/or <push> can be added. In the example below the credentials provider are only used for image push operations:

Example

When the credentials are given on the command line as system properties, then the properties docker.pull.username / docker.push.username / docker.push.password are

used for pull and push operations, respectively (when given). Either way, the standard lookup algorithm as described in the previous section is used as fallback.

9.2. OpenShift Authentication

When working with the default registry in OpenShift, the credentials to authtenticate are the OpenShift username and access token. So, a typical interaction with the OpenShift registry from the outside is:

```
oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
-Ddocker.username=$(oc whoami) \
-Ddocker.password=$(oc whoami -t)
```

(note, that the image's user name part ("default" here") must correspond to an OpenShift project with the same name to which you currently connected account has access).

This can be simplified by using the system property docker.useOpenShiftAuth in which case the plugin does the lookup. The equivalent to the example above is

```
oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
-Ddocker.useOpenShiftAuth
```

Alternatively the configuration option <useOpenShiftAuth</pre> can be added to the <authConfig</pre> section.

For dedicted *pull* and *push* configuration the system properties docker.pull.useOpenShiftAuth and docker.push.useOpenShiftAuth are available as well as the configuration option <useOpenShiftAuth> in an <pull> or <push> section within the <authConfig> configuration.

9.3. Password encryption

Regardless which mode you choose you can encrypt password as described in the Maven documentation. Assuming that you have setup a *master password* in ~/.m2/security-settings.xml you can create easily encrypted passwords:

Example

```
$ mvn --encrypt-password
Password:
{QJ6wvuEfacMHklqsmrtrn1/ClOLqLm8hB7yUL23KOKo=}
```

This password then can be used in authConfig, docker.password and/or the <server> setting configuration. However, putting an encrypted password into authConfig in the pom.xml doesn't make

much sense, since this password is encrypted with an individual master password.							

Chapter 10. Migration from version 2

This version 3 of f8-m-p is using a completely new configuration syntax compated to version 2.

If you have a maven project with a 2.x fabric8-maven-plugin then we recommend you run the mvn fabric8:migrate goal directly on your project to do the migration:

```
# in a fabric8-maven-plugin 2.x project
mvn fabric8:migrate
# now the project is using 3.x or later
```

Once the project is migrated to 3.x or later of the fabric8-maven-plugin you can then run this fabric8:setup goal at any time to update to the latest plugin and goals.