Lecture: Coloring

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Matchings

Hungarian example

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0.1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for q=3, and the contracted graph G_S from Theorem 2.2.3.

Find augmenting paths in general graphs

- Different from bipartite graphs
- ullet Example: How to explore from M-unsaturated point u

Flower/stem/blossom

 \boldsymbol{x}

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- **Idea**: Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S = \{u\}$ and $T = \emptyset$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate

Example

Example

Example (cont.)

Coloring

Motivation: Scheduling and coloring

- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member

Definitions

- Given a graph G and a positive integer k, a k-coloring is a function $K:V(G) \longrightarrow \{1, ..., k\}$ from the vertex set into the set of positive integers less than or equal to k. If we think of the latter set as a set of k "colors," then K is an assignment of one color to each vertex.
- We say that K is a proper k-coloring of G if for every pair u, v of adjacent vertices, $K(u) \neq K(v)$ that is, if adjacent vertices are colored differently. If such a coloring exists for a graph G, we say that G is k-colorable

Chromatic number

- Given a graph G, the chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable
- Examples

$$\chi(C_n)=\left\{egin{array}{ll} 2 & ext{if n is even,} \\ 3 & ext{if n is odd,} \end{array}
ight. \ \chi(P_n)=\left\{egin{array}{ll} 2 & ext{if $n\geq 2$,} \\ 1 & ext{if $n=1$,} \end{array}
ight. \ \chi(K_n)=n, \ \chi(E_n)=1, \ \chi(K_{m,n})=2. \end{array}
ight.$$

Bounds on Chromatic number

• Theorem (1.41, H) For any graph G of order $n, \chi(G) \leq n$

Greedy algorithm

- First label the vertices in some order—call them $v_1, v_2, ..., v_n$
- Next, order the available colors (1,2,...,n) in some way
 - Start coloring by assigning color 1 to vertex v_1
 - If v_1 and v_2 are adjacent, assign color 2 to vertex v_2 ; otherwise, use color 1
 - To color vertex v_i , use the first available color that has not been used for any of v_i 's previously colored neighbors

Examples: Different orders result in different number of colors

Bound of the greedy algorithm

- Theorem (1.42, H) For any graph G, $\chi(G) \leq \Delta(G) + 1$
- The equality is obtained for complete graphs and cycles with an odd number of vertices

Brooks's theorem

• Theorem (1.43, H) If G is a connected graph that is neither an odd cycle or a complete graph, then $\chi(G) \leq \Delta(G)$

Chromatic number and clique number

- The clique number $\omega(G)$ of a graph is defined as the order of the largest complete graph that is a subgraph of G
- Example: $\omega(G_1) = 3$, $\omega(G_2) = 4$

• Theorem (1.44, H) For any graph G, $\chi(G) \ge \omega(G)$

Chromatic number and independence number

• Theorem (1.45, H; Ex6, S1.6.2, H) For any graph
$$G$$
 of order n ,
$$\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$$

The Four Color Problem

- Q: Is it true that the countries on any given map can be colored with four or fewer colors in such a way that adjacent countries are colored differently?
- Theorem (Four Color Theorem) Every planar graph is 4-colorable
- Theorem (Five Color Theorem) (1.47, H) Every planar graph is 5-colorable