MEASURE THEORY NOTES

PARKER KNIGHT

Contents

1.	σ -Algebras and Measurable Functions	2
1.1.	σ -Algebras	2
1.2.	Measurable functions	3
2.	Measures	4
3.	The Lebesgue Integral	E

1. σ -Algebras and Measurable Functions

Loosely speaking, a measure is a nonnegative, countably additive real-valued function defined on a collection of well-behaved sets. Before we can give a more rigorous definition of a measure, we need to examine what is precisely meant by well-behaved. This section explores the concept of the σ -algebra, a collection of sets which holds certain properties required for the formal definition of measure. I will also discuss measurable functions, and give examples of both.

1.1. σ -Algebras.

Definition 1.1 (σ -algebra). Let X be any set, and let Σ be a collection of subsets of X. We say that Σ is a σ -algebra if:

- (1) $\emptyset, X \in \Sigma$
- (2) If $A \in \Sigma$, then $A^c \in \Sigma$
- (3) If (A_n) is a sequence of sets in Σ , then $\bigcup A_n \in \Sigma$

Defintion 1.1 states that a σ -algebra is closed under taking complements and unions. It follows by De Morgan's laws that every σ -algebra is also closed under taking intersections. For a set X and σ -algebra Σ , the pair (X, Σ) is called a *measurable space*. Below provides some simple examples.

Example 1.2. If X is any set, then $\Sigma = \{X, \emptyset\}$ is the trivial σ -algebra.

Example 1.3. For any X, the power set of X (the set of all subsets of X) is a σ -algebra.

Example 1.4. For any X and $A \subset X$, the set $\Sigma = \{\emptyset, A, A^c, X\}$ is a σ -algebra.

A useful result is that the intersection of two σ -algebras is itself a σ -algebra.

Proposition 1.5. Let X be an arbitrary set, and let Σ_1 and Σ_2 be σ -algebras of X. Then $\Sigma_3 = \Sigma_1 \cap \Sigma_2$ is a σ -algebra.

Proof. The proof is simple. First, we know that $\emptyset, X \in \Sigma_1$ and $\emptyset, X \in \Sigma_2$, so we have $\emptyset, X \in \Sigma_1 \cap \Sigma_2$. Now let $A \in \Sigma_1 \cap \Sigma_2$ be arbitrary. Then $A \in \Sigma_1$ and $A \in \Sigma_2$, and so we have $A^c \in \Sigma_1$ and $A^c \in \Sigma_2$ by Definition 1.1. So $A^c \in \Sigma_1 \cap \Sigma_2$. Finally, if (A_n) is a sequence in $\Sigma_1 \cap \Sigma_2$, then (A_n) is a sequence in Σ_1 and Σ_2 as well. So $\cup A_n \in \Sigma_1$ and $\cup A_n \in \Sigma_2$, so $\cup A_n \in \Sigma_1 \cap \Sigma_2$.

Proposition 1.5 yields the following definition.

Definition 1.6. For any set X and a collection of subsets A of X, the σ -algebra generated by A is the intersection of all σ -algebras that contain A. By Proposition 1.5, this intersection is itself a σ -algebra.

We can also think of the σ -algebra generated by a collection of subsets \mathcal{A} as the smallest σ -algebra containing \mathcal{A} .

Proposition 1.7. If A is a collection of subsets of X and Σ is the σ -algebra generated by A, then every element of Σ can be constructed as a countable union, intersection, or complement of elements of A.

The proof of this proposition is clear: the set of countable unions, intersections, and complements of \mathcal{A} is σ -algebra that contains \mathcal{A} as long as it also contains X and \emptyset , and so the σ -algebra generated by \mathcal{A} must be a subset of this set by definition.

Definition 1.8 (Borel algebra). Let $X = \mathbb{R}$. The Borel σ -algebra \mathcal{B} is the σ -algebra generated by all open intervals of the form $(a,b) \subset \mathbb{R}$. The elements of \mathcal{B} are called Borel sets.

We can show that \mathcal{B} is also generated by all closed intervals, as well as half-open intervals (a, b] and half-rays (a, ∞) .

Proposition 1.9. The Borel algebra \mathcal{B} is also generated by

- (1) The closed intervals [a, b]
- (2) The half-open intervals (a, b]
- (3) The half-rays (a, ∞)

Proof. For the proof of (1), let \mathcal{B}' denote the σ -algebra generated by closed intervals. Notice that we can write any closed interval [a,b] as $[a,b] = \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$. So [a,b] is an intersection of open intervals, and thus $[a,b] \in \mathcal{B}$. Since every element of \mathcal{B}' can be constructed by countable union, intersection, or complement of closed intervals by Proposition 1.7 and \mathcal{B} is closed under these operations, it follows that every element of \mathcal{B}' is in \mathcal{B} , and thus $\mathcal{B}' \subseteq \mathcal{B}$. Similarly, we show that $\mathcal{B} \subseteq \mathcal{B}'$ by noting that $(a,b) = \bigcup_{n=1}^{\infty} [a+\frac{1}{n},b-\frac{1}{n}]$ and applying the same logic. Thus $\mathcal{B}' = \mathcal{B}$, and so the Borel algebra is generated by closed intervals.

The proofs of (2) and (3) follow similarly.

1.2. Measurable functions.

Definition 1.10 (Measurable function). Let (X, Σ_1) and (Y, Σ_2) be measurable spaces, and let $f: X \to Y$ be a function. We say that f is a measurable function if

$$f^{-1}(E) = \{ x \in X : f(x) \in E \}$$

is in Σ_1 for every $E \in \Sigma_2$.

In other words, measurable functions *pull back* measurable sets in Σ_2 to sets in Σ_1 . Note the similarity to the definition of continuous functions between metric spaces. We can give a simpler characterization of measurable functions when $(Y, \Sigma_2) = (\mathbb{R}, \mathcal{B})$.

Proposition 1.11. Let (X, Σ) be a measurable space. A function $f: X \to \mathbb{R}$ is measurable if for every $\alpha > 0$, the set

$$\{x \in X : f(x) > \alpha\}$$

is in Σ .

2. Measures

3. The Lebesgue Integral