Queuing System

1. Model Assument

(1) Input Process:

customer arrives alone

The time interval between any two customers arriving at the service desk obey Exponential Distribution

(2) Queuing process:

There is no limit to the number of people in the queue, and there is only one queue When the service desk is idle, customers will enter the service

(3) Service process:

The service hours of the two service desks are independent of each other.

The time each customer receives service obeys Exponential Distribution

2. Symbol Description

T_{1i}	The time when i^{th} customer reaches the service disk
T_{2i}	The time when i^{th} customer leaves the service disk
t_{11i}	The time when i^{th} customer reaches the restaurant
t_{12i}	The time when i^{th} customer chooses their food
t_{21i}	The time when i^{th} Customer receives service
t_{wi}	The time when i^{th} customer waits
Δt_{1i}	The time interval between any two customers arriving at the service desk
Δt_{2i}	The time interval between any two customers leaving at the service desk
m	The number of serice desks
n	The number of customers
n	The number of customers in the queuing system
P_n	The probability of n customers in the queuing system
N(t)	The number of customers at t time
λ	The Exponential Distribution of arriving time interval (start with t time)
μ	The Exponential Distribution of leaving time (start with t time)
S	The number of working service disks
L	The number of waiting customers
where $i = 1, 2, 3,$	

3. Model Estimate and slove

(1) Input Process:

$$T_{1i} = t_{11i} + T_{12i}$$

$$\Delta t_{1i} = T_{1i} - T_{1i-1} = t_{11i} + t_{12i} - (t_{11i-1} + t_{12i-1})$$

$$E(\Delta t_{1i}) = \frac{\sum_{i=1}^{n} \Delta t_{1i}}{n} = \frac{\sum_{i=1}^{n} [t_{11i} + t_{12i} - (t_{11i-1} + t_{12i-1})]}{n} = \frac{\sum_{i=1}^{n} [t_{11i} - t_{11i-1}]}{n} + \frac{\sum_{i=1}^{n} [t_{12i} - t_{12i-1}]}{n}$$
SInce t_{11i} obey Exponential Distribution,
$$\frac{\sum_{i=1}^{n} [t_{11i} - t_{11i-1}]}{n} = 1/\lambda$$
Since t_{12i} obey Normal Distribution,
$$\frac{\sum_{i=1}^{n} [t_{12i} - t_{12i-1}]}{n} = 0$$

So,
$$E(\Delta t_{1i}) = \frac{\sum_{i=1}^{n} \Delta t_{1i}}{n} = 1/\lambda.$$

That is the time interval between any two customers arriving at the service desk obey Exponential Distribution with λ

(2) Service and Queuing process:

$$T_{2i} = T_{1i} + t_{21i} + t_{wi}$$

$$\Delta t_{2i} = T_{1i} - T_{1i-1} = T_{1i} + t_{21i} + t_{wi} - (T_{1i-1} + t_{21i-1} + t_{wi-1})$$

$$E(Deltat_{2i}) = \frac{\sum_{i=1}^{n} T_{1i} + t_{21i} + t_{wi} - (T_{1i-1} + t_{21i-1} + t_{wi-1})}{n} = \frac{\sum_{i=1}^{n} t_{21i}}{n}$$

SInce t_{21i} obey Exponential Distribution, $\frac{\sum_{i=1}^{n} t_{21i}}{n} = \frac{1}{\mu}$

So,
$$E(\Delta t_{2i}) = \frac{\sum_{i=1}^{n} \Delta t_{2i}}{n} = \frac{1}{\mu}.$$

That is the time interval between any two customers leaving at the service desk obey Exponential Distribution with μ

(3) Whole process:

All adjacent states can be obtained by one-step transition. When the system reaches equilibrium, record as P_n , where $n=0,1,2,\ldots$ Since "arriving" and "leaving" are alternated, we can think that these two events have equal probability. When the system runs for a period of time, for state n, each state remains stable, so the equilibrium equation can be established:

$$P_{n+1} = \frac{\lambda_n}{\mu_{n+1}} P_n + \frac{1}{\mu+1} (\mu_n P_n - \lambda_{n-1} P_{n-1}) = \frac{\prod_{i=0}^{n} \lambda_i}{\prod_{i=i}^{n} \mu_i} P_0$$

Let

$$C_n = \frac{\prod_{i=0}^n \lambda_i}{\prod_{i=i}^n \mu_i}$$

Since

$$\sum_{i=0}^{\infty} P_n = 1$$

$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} C_n}$$

When m>1,if $n\geq m$ $\mu_n=m\mu,$ where m=1,2,...; else $\mu_n=n\mu,$ where n=0,1,...,m-1

$$C_n = \frac{(\lambda/\mu)^n}{n!}, n = 1, 2, ..., m$$

; else

$$C_n = \frac{(\lambda/\mu)^m}{m!} (\frac{\lambda}{m\mu})^n, n = m+1, \dots$$

(Each step needs to choose the "Entrance")

$$P_0 = \left[\sum_{n=0}^{m-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^m}{m!(1 - C_n)}\right]^{-1}$$

So,

$$E(S) = \sum_{n=0}^{m-1} nP_n + m \sum_{n=m}^{\infty} P_n = \frac{\lambda}{\mu}$$

When $n \geq m$, customers should wait,

$$E(L) = \sum_{n=m+1}^{\infty} (n-m)P_n = \frac{P_0(\lambda/\mu)^m \lambda/(m\mu)}{m!(1-(\lambda/(m\mu))^2}$$

By Little's Law,

$$E(t_w) = \frac{E(L)}{\lambda}$$

4. Solution for the question

Since $\lambda = 120, \mu = 60$, and total time Tt = 2, m = 2, it means that E(S) = 1, so one of the service disks must be occupied. In this situation,

$$P_n = \frac{1}{Tt\lambda + 1} = \frac{1}{241}$$

$$E(L) = \frac{Tt\lambda(Tt\lambda - 1)}{2(Tt\lambda + 1)}$$

$$E(t_w) = \frac{E(L)}{\lambda} \approx 0.9917$$

Appendix

```
x = zeros(1,240);
   for i = 1:10000
       x(i) = normrnd(8,2,1);
       y(i) = -1/2*log(rand(1));
   end
   y = cumsum(y);
   z = x+y;
  z = sort(z);
   z = diff(z);
   pd = makedist("Exponential");
   qqplot(z,pd);
   lambda = 1/mean(z);
   k = zeros(1,240);
13
   for i = 1:240
14
       k(i) \, = -1/lambda*log(rand(1));
15
16
17
   \quad \text{end} \quad
d = k-z;
```

mean(d)