```
# STEP 1: Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from \ sklearn.linear\_model \ import \ LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# STEP 2: Load Dataset
df = pd.read_csv("/content/ai_stock_data (1).csv") # Updated path
print("Initial DataFrame shape:", df.shape)
print(df.head())
# STEP 3: Data Preprocessing
# Convert 'Date' column if exists
if 'Date' in df.columns:
   df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# Drop rows with missing values and duplicates
df = df.dropna()
df = df.drop_duplicates()
print("Cleaned DataFrame shape:", df.shape)
# STEP 4: Feature Normalization (Standard Scaler)
features = ['Open', 'High', 'Low', 'Cls', 'Volume'] # Use 'Cls' for Close price
scaler = StandardScaler()
df[features] = scaler.fit transform(df[features])
# STEP 5: Feature Engineering
df['MA_5'] = df['Cls'].rolling(window=5).mean()
df['MA_10'] = df['Cls'].rolling(window=10).mean()
df['RSI'] = df['Cls'].diff().apply(lambda x: max(x, 0)).rolling(window=14).mean()
df = df.dropna()
# STEP 6: Train-Test Split
X = df[['Open', 'High', 'Low', 'Volume', 'MA_5', 'MA_10', 'RSI']]
y = df['Cls'] # Use 'Cls' for Close price
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# STEP 7: Linear Regression
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred_lr = lr.predict(X_test)
# STEP 8: Random Forest
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
# STEP 9: Model Evaluation
def evaluate(y_true, y_pred, model_name):
    print(f"\n (model_name) Evaluation:")
    print("MAE:", mean_absolute_error(y_true, y_pred))
    print("RMSE:", np.sqrt(mean_squared_error(y_true, y_pred)))
    print("R2 Score:", r2_score(y_true, y_pred))
evaluate(y_test, y_pred_lr, "Linear Regression")
evaluate(y_test, y_pred_rf, "Random Forest")
# STEP 10: Visualization
plt.figure(figsize=(12, 6))
plt.plot(y_test.values, label='Actual')
plt.plot(y_pred_rf, label='Predicted - Random Forest')
plt.legend()
plt.title("Actual vs Predicted Stock Prices")
plt.xlabel("Samples")
plt.ylabel("Normalized Close Price")
plt.grid(True)
plt.show()
```

```
# OPTIONAL STEP 11: LSTM Model (Univariate for 'Close' Price)
# Prepare data for LSTM
df_lstm = df[['Cls']] # Use 'Cls' for Close price
scaler_lstm = MinMaxScaler()
df_lstm_scaled = scaler_lstm.fit_transform(df_lstm)
X_{seq}, y_{seq} = [], []
window = 60
for i in range(window, len(df_lstm_scaled)):
   X_seq.append(df_lstm_scaled[i-window:i, 0])
    y_seq.append(df_lstm_scaled[i, 0])
X_seq, y_seq = np.array(X_seq), np.array(y_seq)
X_seq = X_seq.reshape((X_seq.shape[0], X_seq.shape[1], 1))
# Split into train/test
split_index = int(len(X_seq) * 0.8)
X_train_lstm, X_test_lstm = X_seq[:split_index], X_seq[split_index:]
y_train_lstm, y_test_lstm = y_seq[:split_index], y_seq[split_index:]
# Build LSTM Model
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_seq.shape[1], 1)))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train_lstm, y_train_lstm, epochs=10, batch_size=32, verbose=1)
# Predict and Evaluate
y_pred_lstm = model.predict(X_test_lstm)
y_pred_lstm = scaler_lstm.inverse_transform(y_pred_lstm.reshape(-1, 1))
y_test_lstm_orig = scaler_lstm.inverse_transform(y_test_lstm.reshape(-1, 1))
# Plot LSTM Results
plt.figure(figsize=(12, 6))
plt.plot(y_test_lstm_orig, label='Actual')
plt.plot(y_pred_lstm, label='Predicted - LSTM')
plt.title("LSTM Model - Actual vs Predicted Stock Prices")
plt.xlabel("Samples")
plt.ylabel("Original Close Price")
plt.legend()
plt.grid(True)
plt.show()
from IPython import get_ipython
from IPython.display import display
# STEP 1: Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense \,
import gradio as gr # Import Gradio
# STEP 2: Load Dataset
df = pd.read_csv("/content/ai_stock_data (1).csv") # Updated path
print("Initial DataFrame shape:", df.shape)
print(df.head())
# STEP 3: Data Preprocessing
# Convert 'Date' column if exists
if 'Date' in df.columns:
    df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# Drop rows with missing values and duplicates
df = df.dropna()
df = df.drop_duplicates()
```

```
print("Cleaned DataFrame shape:", df.shape)
# STEP 4: Feature Normalization (Standard Scaler)
features = ['Open', 'High', 'Low', 'Cls', 'Volume'] # Use 'Cls' for Close price
scaler = StandardScaler()
df[features] = scaler.fit_transform(df[features])
# STEP 5: Feature Engineering
df['MA_5'] = df['Cls'].rolling(window=5).mean()
df['MA_10'] = df['Cls'].rolling(window=10).mean()
df['RSI'] = df['Cls'].diff().apply(lambda x: max(x, 0)).rolling(window=14).mean()
df = df.dropna()
# STEP 6: Train-Test Split
X = df[['Open', 'High', 'Low', 'Volume', 'MA_5', 'MA_10', 'RSI']]
y = df['Cls'] # Use 'Cls' for Close price
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# STEP 7: Linear Regression
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred_lr = lr.predict(X_test)
# STEP 8: Random Forest
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
# STEP 9: Model Evaluation
def evaluate(y_true, y_pred, model_name):
    print(f"\n (model_name) Evaluation:")
    print("MAE:", mean_absolute_error(y_true, y_pred))
    print("RMSE:", np.sqrt(mean_squared_error(y_true, y_pred)))
    print("R2 Score:", r2_score(y_true, y_pred))
evaluate(y_test, y_pred_lr, "Linear Regression")
evaluate(y_test, y_pred_rf, "Random Forest")
# STEP 10: Visualization
plt.figure(figsize=(12, 6))
plt.plot(y_test.values, label='Actual')
plt.plot(y_pred_rf, label='Predicted - Random Forest')
plt.legend()
plt.title("Actual vs Predicted Stock Prices")
plt.xlabel("Samples")
plt.ylabel("Normalized Close Price")
plt.grid(True)
plt.show()
# OPTIONAL STEP 11: LSTM Model (Univariate for 'Close' Price)
# Prepare data for LSTM
df_lstm = df[['Cls']] # Use 'Cls' for Close price
scaler lstm = MinMaxScaler()
df_lstm_scaled = scaler_lstm.fit_transform(df_lstm)
X_{seq}, y_{seq} = [], []
window = 60
for i in range(window, len(df_lstm_scaled)):
    X_seq.append(df_lstm_scaled[i-window:i, 0])
    y_seq.append(df_lstm_scaled[i, 0])
X_seq, y_seq = np.array(X_seq), np.array(y_seq)
X_seq = X_seq.reshape((X_seq.shape[0], X_seq.shape[1], 1))
# Split into train/test
split_index = int(len(X_seq) * 0.8)
X_train_lstm, X_test_lstm = X_seq[:split_index], X_seq[split_index:]
y_train_lstm, y_test_lstm = y_seq[:split_index], y_seq[split_index:]
# Build LSTM Model
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_seq.shape[1], 1)))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
# Train Model
model.fit(X_train_lstm, y_train_lstm, epochs=10, batch_size=32, verbose=1)
```

```
# Predict and Evaluate
y_pred_lstm = model.predict(X_test_lstm)
y_pred_lstm = scaler_lstm.inverse_transform(y_pred_lstm.reshape(-1, 1))
y_test_lstm_orig = scaler_lstm.inverse_transform(y_test_lstm.reshape(-1, 1))
plt.figure(figsize=(12, 6))
plt.plot(y_test_lstm_orig, label='Actual')
plt.plot(y_pred_lstm, label='Predicted - LSTM')
plt.title("LSTM Model - Actual vs Predicted Stock Prices")
plt.xlabel("Samples")
plt.ylabel("Original Close Price")
plt.legend()
plt.grid(True)
plt.show()
# Gradio Deployment
# Install Gradio (if not already installed)
   import gradio as gr
except ImportError:
   print("Installing gradio...")
    !pip install gradio==3.48.0
    import gradio as gr
# Define the prediction function for the Gradio interface
def predict_stock_price(Open, High, Low, Volume, MA_5, MA_10, RSI):
   # Scale the input features using the same scaler used during training
    features_input = np.array([[Open, High, Low, Volume, MA_5, MA_10, RSI]])
   # Ensure the scaler is fitted to the training data before this step
   \mbox{\tt\#} In this notebook, the scaler is fitted in STEP 4
   scaled_features = scaler.transform(features_input)
   # Make the prediction using the trained Random Forest model
   prediction = rf.predict(scaled features)
   # Return the prediction
   return prediction[0]
# Create the Gradio interface
interface = gr.Interface(
    fn=predict_stock_price,
    inputs=[
        gr.Number(label="Open Price"),
        gr.Number(label="High Price"),
       gr.Number(label="Low Price"),
       gr.Number(label="Volume"),
       gr.Number(label="MA_5"),
       gr.Number(label="MA_10"),
       gr.Number(label="RSI")
    1.
    outputs="text",
    title="Stock Price Prediction (Random Forest)",
    description="Enter the stock features to predict the closing price using the Random Forest model."
# Launch the Gradio interface
interface.launch(share=True)
```

```
→ Initial DataFrame shape: (201, 6)
              Date
                       0pen
                                                   Cls
                                High
        2024-01-01
                              133.97
                                      125.17
                     129.66
                                               130.58
       2024-01-02
                    161.87
                             167.03
                                     155.56
                                               157.36
                                                          9241
       2024-01-03 148.60
                             156.97 142.22 154.84
                                                         17884
       2024-01-04 138.68 142.55 132.78 135.50 2024-01-05 153.94 157.17 148.90 149.65
     3
                                                         18814
                                                          8166
     Cleaned DataFrame shape: (198, 6)
```

Linear Regression Evaluation:

MAE: 7.447514619262843 RMSE: 44.743083847954296 R2 Score: -2040.63449461884

Random Forest Evaluation: MAE: 0.1096505270107092 RMSE: 0.1447553447480265 R2 Score: 0.9786304496988535

Epoch 1/10
/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argum
super().__init__(**kwargs)

```
4s 52ms/step - loss: 0.4223
Epoch 2/10
                         0s 54ms/step - loss: 0.1734
4/4
Epoch 3/10
4/4 -
                         0s 56ms/step - loss: 0.0841
Epoch 4/10
4/4
                         0s 55ms/step - loss: 0.1274
Epoch 5/10
4/4
                         0s 55ms/step - loss: 0.0816
Epoch 6/10
4/4
                         0s 60ms/step - loss: 0.0832
Epoch 7/10
4/4
                         0s 56ms/step - loss: 0.0870
Epoch 8/10
4/4
                         0s 57ms/step - loss: 0.0734
Epoch 9/10
4/4 -
                         0s 54ms/step - loss: 0.0750
Epoch 10/10
4/4
                         0s 54ms/step - loss: 0.0760
1/1
                         0s 342ms/step
```


Samples

15

20

25

10

```
Initial DataFrame shape: (201, 6)
                0pen
                                         Cls
        Date
                        High
                                 Low
                                              Volume
                                                4015
0
  2024-01-01 129.66
                                      130.58
                      133.97
                              125.17
  2024-01-02
              161.87
                      167.03
                              155.56
                                      157.36
                                                9241
                                               17884
  2024-01-03
              148.60
                      156.97
                              142.22
                                      154.84
  2024-01-04
              138.68
                      142.55
                              132.78
                                      135.50
                                               18814
  2024-01-05 153.94 157.17 148.90 149.65
                                                8166
Cleaned DataFrame shape: (198, 6)
```

■ Linear Regression Evaluation:

MAE: 7.447514619262843 RMSE: 44.743083847954296 R2 Score: -2040.63449461884

Random Forest Evaluation:
MAE: 0.1096505270107092
RMSE: 0.1447553447480265
R2 Score: 0.9786304496988535

/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argum super().__init__(**kwargs) **- 4s** 54ms/step - loss: 0.3353 4/4 Epoch 2/10 4/4 **0s** 57ms/step - loss: 0.1049 Epoch 3/10 4/4 **0s** 56ms/step - loss: 0.1314 Epoch 4/10 4/4 **0s** 55ms/step - loss: 0.1006 Epoch 5/10 4/4 **0s** 59ms/step - loss: 0.0781 Epoch 6/10 4/4 -**0s** 55ms/step - loss: 0.0885 Epoch 7/10 4/4 0s 51ms/step - loss: 0.0807 Epoch 8/10 4/4 **0s** 57ms/step - loss: 0.0736 Epoch 9/10 4/4 **0s** 59ms/step - loss: 0.0772 Epoch 10/10 4/4 **0s** 54ms/step - loss: 0.0872 1/1 0s 306ms/step LSTM Model - Actual vs Predicted Stock Prices

Actual Predicted - LSTM

Colab notebook detected. To show errors in colab notebook, set debug=True in launch() IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.

Running on public URL: https://ea50979c79b9c4e8e8.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spa

Stock Price Prediction (Random Forest)

Enter the stock features to predict the closing price using the Random Forest model.

Start coding or generate with AI.