1 Introduction

This document presents the MATLAB ZS+G module. ZS+G is an application for creating multidimensional grids (full tensor grids and sparse grids) in order to create optimal experimental designs for surrogate models. The user is introduced to ZS+G in this document, which is divided into the following sections:

- I. System requirements for ZS+G.
- II. Installation and uninstallation procedure.
- III. CLI interface usage
- IV. Minimal examples
- V. ZS+G classes repository

2 Software requirements

ZS+G requires MATLAB to run. Please go to MathWorks to download MATLAB.

ZS+G is a standalone application for generating unit grids on the interval $[-1,1]^d$ but requires UQLab for mapping the grid on natural supports such as random vectors. Some features of ZS+G will not work without the installation of UQLab. That is why, its installation is strongly recommended before using ZS+G. The user can download UQLab for free here. Please follow then the installation procedure of UQLab.

3 Installation of ZS+G

The following installation procedure applies:

- I. Go to ZS+G.git to download the .zip file containing ZS+G.
- II. Unzip the file in Program Files folder on your machine (recommended) or in another chosen folder.
- III. Open MATLAB in administrator mode and select yourfolder\ZS_G\core as the Current Folder in MATLAB.
- IV. Type ZS_G_install in the MATLAB console.

4 Uninstallation of ZS+G

The following uninstallation procedure applies :

- I. Open MATLAB in administrator mode and select yourfolder\ZS_G\core as the Current Folder in MATLAB.
- II. Type ZS_G_uninstall in the MATLAB console.

5 MATLAB class repository

5.1 ZS_Points | Class

		Class properties						
Name	Sj	nestedFlag	Family	M	N			
Class	cell	logical	char	double	double			
Size	$(1 \times :)$	(1×1)		(1×1)	(1×1)			

5.1.1 ZS_Points (family, selection, expr, bounds) | constructor

Error handling: YES

This class creates a ZS_Points object. Sj $(=S^j)$ is a set of subsets containing the unidimensional 1d-vector. nestedFlag is a logical value which indicates if the subsets contained in S^k are nested. Family is the name of the nodes family given by the user. M is the number of subsets in S^j . N is the total number of elements in S^j .

		Input args					
Name	family	selection	expr	bounds	self		
Class	char 'linspace' 'chebyshev_1' 'chebyshev_2' 'legendre' 'lobatto'	(1×:) double	char	logical	ZS_Points		
Default value			'2^n+1'	true			

${\bf 5.1.2} \quad .{\tt print_set} \; (\;) \;|\; {\tt class} \; {\tt method}$

Error handling: NO

This function makes a scatter plot of the subsets of S^j . X-axis represents the coordinates over the closed interval [-1 1] and Y-axis denotes the index i of S^j_i

```
 \begin{array}{ll} \texttt{obj} = \mathtt{ZS\_Points}(\text{`chebishev\_2'}, 5) & \rightarrow \mathtt{ZS\_Points} \\ \texttt{obj.print\_set} & \rightarrow \text{figure with a scatter plot} \\ \end{array}
```

5.1.3 .get_family () | static method

Error handling: NO

This function returns the current implemented point families of the ZS_Points class.

5.1.4 .convert_pts (selection , expr) | static method

Error handling: YES

This function is powerful. It maps the mathematical expression(s) in **expr** element-wise or column-wise over **selection**. It have been adapted to flexibly behave against the user inputs. It is particularly suitable for generating growing sequences of integers used then to generate a set S^j with subsets of unidimensional vectors. Be careful: when **selection** is not a vector of size (: $\times 1$) or (1 \times :), i.e. **selection** is a matrix, then the mapping is performed column-wise. In this case, **expr** must be a cell array with size (1 $\times k$) where k is the number of columns of **selection**.

	Inp	Output args		
Name	selection	expr	new_selection	
Class	double	char or cell	double	
Size	$(:\times:)$	or $(1 \times :)$	$(: \times :)$	
Default value		'n,		

5.1.5 .remove_bounds (vec_1d) | static method

Error handling: YES

This function removes the points -1 and 1 of a unidimensional vector vec_1d.

	Input args	Output args
Name	vec_1d	new_selection
	•	
Class	double	double
Size	$(: \times :)$	$(: \times :)$

Example:

 ${\tt ZS_Points.remove_bounds}([-1\ 0\ 1]) \rightarrow [0]$

5.1.6 .check_nested (S) | static method

Error handling: YES

This function tests if the set S^k contains nested subsets. If **S** is not a cell, the *nestedness* has no sense.

	Input args	Output args
Name	S	nestedFlag
	•	
Class	double or cell	logical
Size	$(: \times :)$ or $(1 \times :)$	(1×1)

$$\begin{split} & \text{ZS_Points.check_nested('a')} & \rightarrow \text{false} \\ & \text{ZS_Points.check_nested([-1\ 0\ 1\ 1])} & \rightarrow \text{false} \\ & \text{ZS_Points.check_nested(\{[0], [-1\ 0\ 1], [-1\ -0.5\ 0\ 0.5\ 1]\})} & \rightarrow \text{true} \\ & \text{ZS_Points.check_nested(\{"a", ["a""b"], ["b""c"]\})} & \rightarrow \text{false} \\ \end{aligned}$$

5.1.7 .get_pts_linspace (selection , bounds) | static method

This function creates a set of unidimensional vectors. The set is represented in MAT-LAB as a cell array containing M unidimensional vectors whose sizes are driven within generator vector **selection**. If **selection** is a vector of size = 1, the function returns only a unidimensional vector. Second output argument is a logical value if the set is nested or not. This flag is always false if **selection** is a vector of size = 1. Option argument **bounds** controls the boundary points of the domain [-1 1] (true = keep the boundary points, false = delete the boundary points).

	Input args		Output args		
Name	selection	bounds	nodes	nestedFlag	
	•	•			
Class	double	logical	cell	logical	
Size	$(1 \times M)$	(1×1)	$(1 \times M)$	(1×1)	
Default value		true			

Example:

$$\begin{split} & \text{ZS_Points.get_pts_linspace}(1) & \rightarrow [0] & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(3) & \rightarrow [-1 \ 0 \ 1] & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [-1 \ 0 \ 1]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0]\} & \text{false} \\ & \text{ZS_Points.get_pts_linspace}(1:3, \text{true}) & \rightarrow \{[0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2}{3} \ \frac{2}{3}] \ , \ [0] \ , \ [-\frac{2$$

5.1.8 .get_pts_chebyshev_1 (selection , \sim) | static method

Explanations in Point 5.1.7 hold. This function returns the Chebyshev nodes of the first kind. Since they do not have any boundary points, second argument is unused.

$$\begin{split} \text{ZS_Points.get_pts_chebyshev_1(3)} & \rightarrow [-\frac{\sqrt{3}}{2} \ 0 \ \frac{\sqrt{3}}{2}] \end{split} \qquad \text{false} \\ \text{ZS_Points.get_pts_chebyshev_1(1:3)} & \rightarrow \{[0] \ , \ [-\frac{1}{\sqrt{2}} \ \frac{1}{\sqrt{2}}] \ , \ [-\frac{\sqrt{3}}{2} \ 0 \ \frac{\sqrt{3}}{2}]\} \end{cases} \qquad \text{false}$$

5.1.9 .get_pts_chebyshev_2 (selection , bounds) | static method

Explanations in Point 5.1.7 hold. This function returns the Chebyshev nodes of the second kind.

Example:

$$\begin{split} & \text{ZS_Points.get_pts_chebyshev_2(3)} & \rightarrow [-1 \ 0 \ 1] & \text{false} \\ & \text{ZS_Points.get_pts_chebyshev_2([1 \ 3 \ 5])} & \rightarrow \{[0] \ , \ [-1 \ 0 \ 1] \ , \ [-1 \ -\frac{1}{\sqrt{2}} \ 0 \ \frac{1}{\sqrt{2}} \ 1]\} & \text{true} \\ & \text{ZS_Points.get_pts_chebyshev_2([1 \ 3 \ 5], false)} & \rightarrow \{[0] \ , \ [0] \ , \ [-\frac{1}{\sqrt{2}} \ 0 \ \frac{1}{\sqrt{2}}]\} & \text{true} \\ \end{aligned}$$

5.1.10 .get_pts_legendre (selection , \sim) | static method

Explanations in Point 5.1.7 hold. This function returns the Gauss-Legendre nodes. Since they do not have any boundary points, second argument is unused.

5.1.11 .get_pts_lobatto (selection , bounds) | static method

Explanations in Point 5.1.7 hold. This function returns the Gauss-Legendre-Lobatto nodes.

${\bf 5.2 \quad ZS_SparseGrid \mid Class}$

	Class properties						
Name	${\bf Unit_grid}$	Class	Level	Dimensions	${\bf nestedFLag}$	Basis	Mapping
Class	double	char	double	double	logical	struct	struct
Size	$(: \times d)$		(1×1)	(1×2)	(1×1)		

${\bf 5.2.1} \quad {\tt ZS_SparseGrid} \ (\ Validation \) \ | \ constructor$

This class creates a ${\tt ZS_SparseGrid}$ object. test affafefewgegweg