Integrating Learning and Planning

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998. (Bible for RL)
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Chapters 2&9
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
 - Chapters 8-9

Outline

- Introduction
- Model-Based Reinforcement Learning
- Integrated Architectures
- Simulation-Based Search

Model-Based Reinforcement Learning

• Previous lectures:

- learn policy directly from experience
- learn value function directly from experience

• This lecture:

- learn model directly from experience
- use planning to construct a value function or policy
- integrate learning and planning into a single architecture

Model-Based and Model-Free RL

- Model-Free RL
 - No model
 - Learn value function (and/or policy) from experience
- Model-Based RL
 - Learn a model from experience
 - Plan value function (and/or policy) from model

Model-Based RL

Advantages of Model-Based RL

- Advantages:
 - Can efficiently learn model by supervised learning methods
 - Can reason about model uncertainty
- Disadvantages:
 - First learn a model, then construct a value function
 - ⇒ two sources of approximation error

What is a Model?

- A model \mathcal{M} is a representation of an MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, parametrized by η
- We will assume state space S and action space A are known
- So a model $\mathcal{M} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$ represents state transitions $\mathcal{P}_{\eta} \approx \mathcal{P}$ and rewards $\mathcal{R}_{\eta} \approx \mathcal{R}$

$$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1}|S_t, A_t)$$

$$\mathcal{R}_{t+1} \sim \mathcal{R}_{\eta}(R_{t+1}|S_t, A_t)$$

• Typically assume conditional independence between state transitions and rewards

$$\mathbb{P}[S_{t+1}, R_{t+1} \mid S_t, A_t] = \mathbb{P}[S_{t+1} \mid S_t, A_t] \mathbb{P}[R_{t+1} \mid S_t, A_t]$$

Model Learning

- Goal:
 - Estimate model \mathcal{M}_{η} from experience $\{S_1, A_1, R_2, ..., S_T\}$
- This is a supervised learning problem

$$S_1, A_1 \rightarrow R_2, S_2$$

 $S_2, A_2 \rightarrow R_3, S_3$
 \vdots
 $S_{T-1}, A_{T-1} \rightarrow R_T, S_T$

- Learning $s, a \rightarrow r$ is a regression problem
- Learning $s, a \rightarrow s'$ is a density estimation problem
- Pick loss function, e.g. mean-squared error, *KL* divergence, ...
- Find parameters η that minimise empirical loss

Examples of Models

- Table Lookup Model
- Linear Expectation Model
- Linear Gaussian Model
- Gaussian Process Model
- Deep Belief Network Model
- ...

Table Lookup Model

- Model is an explicit MDP, \hat{P} , \hat{R}
- Count visits N(s, a) to each state action pair

$$\widehat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} 1(S_t, A_t, S_{t+1} = s, a, s')$$

$$\widehat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} 1(S_t, A_t = s, a) R_t$$

- Alternatively
 - At each time-step t, record experience tuple $\langle S_t, A_t, R_{t+1}, S_{t+1} \rangle$
 - To sample model, randomly pick tuple matching $\langle s, a, \cdot, \cdot \rangle$

AB Example

• Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

We have constructed a table lookup model from the experience

Planning with a Model

- Given a model $\mathcal{M}_{\eta} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$
- Solve the MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$
- Using favorite planning algorithm
 - Value iteration (previous lectures)
 - Policy iteration (previous lectures)
 - Tree search
 - **—** ...

Sample-Based Planning

- A simple but powerful approach to planning
- Use the model only to generate samples
- Sample experience from model

$$S_{t+1} \sim \mathcal{P}_{\eta}(S_{t+1}|S_t, A_t)$$

$$R_{t+1} \sim \mathcal{R}_{\eta}(R_{t+1}|S_t, A_t)$$

- Apply model-free RL to samples, e.g.:
 - Monte-Carlo control
 - Sarsa
 - Q-learning
- Sample-based planning methods are often more efficient

Back to the AB Example

- Construct a table-lookup model from real experience
- Apply model-free RL to sampled experience

Sampled experience

B, 1 B, 0 B, 1 A, 0, B, 1 B, 1 A, 0, B, 1 B, 1 B, 0

- e.g. Monte-Carlo learning: V(A) = 1; V(B) = 0.75

Planning with an Inaccurate Model

- Given an imperfect model $\langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle \neq \langle P, R \rangle$
- Performance of model-based RL is limited to optimal policy for approximate MDP $\langle S, A, P_{\eta}, \mathcal{R}_{\eta} \rangle$
 - i.e. Model-based RL is only as good as the estimated model
 - When the model is inaccurate, planning process will compute a suboptimal policy
- Solutions
 - when model is wrong, use model-free RL
 - reason explicitly about model uncertainty

Real and Simulated Experience

- We consider two sources of experience
- Real experience
 - Sampled from environment (true MDP)

$$S' \sim \mathcal{P}_{s,s'}^a$$
$$R = \mathcal{R}_s^a$$

- Simulated experience
 - Sampled from model (approximate MDP)

$$S' \sim \mathcal{P}_{\eta}(S'|S,A)$$

$$R = \mathcal{R}_{\eta}(R \mid S, A)$$

Integrating Learning and Planning

- Model-Free RL
 - No model
 - Learn value function (and/or policy) from real experience
- Model-Based RL (using Sample-Based Planning)
 - Learn a model from real experience
 - Plan value function (and/or policy) from simulated experience
- Dyna
 - Learn a model from real experience
 - Learn and plan value function (and/or policy) from real and simulated experience

Dyna Architecture

Dyna-Q Algorithm

• Repeat *n* times for learning Q with planning

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Do forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Execute action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

$$R, S' \leftarrow Model(S, A)$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

Dyna-Q on a Simple Maze

Dyna-Q with an Inaccurate Model

• When the changed environment is harder

Dyna-Q with an Inaccurate Model (2)

• When the changed environment is easier

Forward Search

- Forward search algorithms select the best action by lookahead
 - build a search tree with the current state S_t at the root
 - use a model of the MDP to look ahead

• No need to solve whole MDP, just sub-MDP starting from now

Simulation-Based Search

- Forward search paradigm using sample-based planning
 - Simulate episodes of experience from now with the model
 - Apply model-free RL to simulated episodes

Page 24

Simulation-Based Search (2)

• Simulate episodes of experience from now with the model

$$\{s_t^k, A_t^k, R_{t+1}^k, \dots, S_t^k\}_{k=1}^K \sim \mathcal{M}_v$$

- Apply model-free RL to simulated episodes
 - Monte-Carlo control → Monte-Carlo search
 - Sarsa \rightarrow TD search

Simple Monte-Carlo Search

- Given a model \mathcal{M}_v and a simulation policy π
- For each action $a \in A$ from current (real) state s_t
 - Simulate *K* episodes

$$\{s_t, a, R_{t+1}^k, s_{t+1}^k, A_{t+1}^k, \dots, S_T^k\}_{k=1}^K \sim \mathcal{M}_v, \pi$$

Evaluate actions by mean return (Monte-Carlo evaluation)

$$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^{K} G_t \xrightarrow{P} q_{\pi}(s_t, a)$$

Select current (real) action with maximum value

$$a_t = \underset{a \in A}{\operatorname{armax}} Q(s_t, a)$$

Monte-Carlo Tree Search (Evaluation)

- Given a model M_v
- Simulate K episodes from current state s_t using current simulation policy π

$$\{S_t, A_t^k, R_{t+1}^k, S_{t+1}^k \dots, S_T^k\}_{k=1}^K \sim \mathcal{M}_v, \pi$$

- Build a search tree containing visited states and actions
- Evaluate states Q(s, a) by mean return of episodes from s, a

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{k} \sum_{u=1}^{T} 1(S_u, A_u = s, a) G_u \xrightarrow{P} q_{\pi}(s, a)$$

• After search is finished, select current (real) action with maximum value in search tree

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{armax}} Q(s_t, a)$$

Monte-Carlo Tree Search (Simulation)

- In MCTS, the simulation policy π improves
- Each simulation consists of two phases (in-tree, out-of-tree)
 - Tree policy (improves): pick actions to maximize Q(S, A)
 - Default policy (fixed): pick actions randomly
- Repeat (each simulation)
 - Evaluate states Q(S, A) by Monte-Carlo evaluation
 - Improve tree policy, e.g. by ϵ greedy (Q)
- Notes:
 - Monte-Carlo control applied to simulated experience
 - Converges on the optimal search tree, $Q(S,A) \rightarrow q_*(S,A)$

Case Study: the Game of Go

- The ancient oriental game of Go is 2500 years old
- Considered to be the hardest classic board game
- Considered a grand challenge task for AI (John McCarthy)
- Traditional game-tree search has failed in Go

Rules of Go

- Usually played on 19x19, also 13x13 or 9x9 board
- Simple rules, complex strategy
- Black and white place down stones alternately
- Surrounded stones are captured and removed
- The player with more territory wins the game

Position Evaluation in Go

- How good is a position *s*?
- Reward function (undiscounted):

$$R_t = 0$$
 for all non – terminal steps $t < T$

$$R_T = \begin{cases} 1 & \text{if Black wins} \\ 0 & \text{if White wins} \end{cases}$$

- Policy $\pi = \langle \pi_B, \pi_W \rangle$ selects moves for both players
- Value function (how good is position s):

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_T \mid S = s] = \mathbb{P}[\text{Black wins } \mid S = s]$$

 $v_*(s) = \max_{\pi_B} \min_{\pi_W} v_{\pi}(s)$

Monte-Carlo Evaluation in Go

Applying Monte-Carlo Tree Search (1)

Applying Monte-Carlo Tree Search (2)

Applying Monte-Carlo Tree Search (3)

Applying Monte-Carlo Tree Search (4)

Applying Monte-Carlo Tree Search (5)

Advantages of MC Tree Search

- Highly selective best-first search
- Evaluates states dynamically (unlike e.g. DP)
- Uses sampling to break curse of dimensionality
- Works for "black-box" models (only requires samples)
- Computationally efficient, anytime, parallelizable

Go – One of the Most Popular Games

- Game tree complexity: about 10^{360}
 - It is just impossible to try all moves.

Can Alpha-Beta Search Work for Go?

- Alpha-Beta Search
 - Very successful for many games such as chess.
 - ▶ Almost dominate all computer games before 2006.
 - ▶ This is what Deep Blue used.
- The key for chess: evaluate position accurately and efficiently. E.g., features:

King: 1000
Queen: 200
Rook: 100
Knight: 80
Bishop: 70
Pawn: 30
Guarded Pawns: 30

Guarded Pawns: 30
Guarded Knights: 40
min

- Problem for chess:
 - need to consult with experts for feature values.

Why not alpha-beta search for Go?

- No simple heuristics like chess.
 - Only black/white pieces (no difference)
- Must know life-and-death
 - But, all are correlated.
 - Like the lower-right one.
 - But, this is very complex.

Since no simply heuristics to evaluate,

- Why not use Monte-Carlo?
- Calculate it based on stochastics.

Game 1: AlphaGo vs. 李世石

Rules Overview Through a Game (opening 1)

• Black/White move alternately by putting one stone on an

intersection of the board.

The example was given by B. Bouzy at CIG'07.

Rules Overview Through a Game (opening 2)

Black and White aims at surrounding large « zones »

Rules Overview Through a Game

(atari 1)
A white stone is put into « atari » : it has only one liberty left.

Rules Overview Through a Game (defense)

• White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.

Rules Overview Through a Game (atari 2)

• It is White's turn. One black stone is atari.

Deep Learning and Practice Integrating Learning and Planning Rules Overview Through a Game (capture 1)

 White plays on the last liberty of the black stone which is removed

Rules Overview Through a Game (human end of game)

• The game ends when the two players pass. (Experts would

stop here)

Rules Overview Through a Game (contestation 1)

White contests the black « territory » by playing inside.

Rules Overview Through a Game (contestation 2)

• White contests black territory, but the 3-stone white string

has one liberty left

Rules Overview Through a Game (follow up 1)

Black has captured the 3-stone white string

Rules Overview Through a Game (follow up 2)

• White lacks liberties...

Rules Overview Through a Game (follow up 3)

- Black suppresses the last liberty of the 9-stone string
- Consequently, the white string is removed

Rules Overview Through a Game (follow up 4)

 Contestation is going on. White has captured four black stones.

Rules Overview Through a Game (concrete end of game)

• The board is covered with either stones or « eyes ».

Programs know to end.

Stochastics

- Calculate values based on stochastics.
 - Good example: calculate π .

Multi-Armed Bandit Problem

(吃角子老虎問題)

- Assume that you have infinite plays
 - How to choose the one with the maximal average return?

Exploration vs. Exploitation

- Example for the exploration vs exploitation dilemma
 - Exploration: is a long-term process, with a risky, uncertain outcome.
 - Exploitation: by contrast is short-term, with immediate, relatively certain benefits

Deterministic Policy: UCB1

- UCB: Upper Confidence Bounds. [Auer et al., 2002]
- Observed rewards when playing machine $i: X_{i,1}, X_{i,2}, ...$
- Initialization: Play each machine once.
- Loop:
 - Play machine *j* that maximizes,

$$\bar{X}_j + \sqrt{\frac{2\log n}{T_j(n)}}$$

where n is the overall number of plays done so far,

$$\bar{X}_{i,s} = \frac{1}{s} \sum_{i=1}^{s} X_{i,j} \quad , \quad \bar{X}_i = \bar{X}_{i,T_i(n)} ,$$

- Key:
 - Ensure optimal machine is played exponentially more often than any other machine.

Cumulative Regret

- Assume Machines M₁, M₂, M₃, M₄, M₅
 - Win rates: 37%, 42%, 47%, 52%, 57%
 - Trial numbers: n_1 , n_2 , n_3 , n_4 , n_5 .

Monte-Carlo Tree Search

- A kind of planning
- A kind of Reinforcement learning

Strength of Go Program after MCTS

• [Schaeffer et al., 2014]

Strength grew fast, after MCTS.

Example: MC Tree Search in Computer Go

Page 63

Temporal-Difference Search

- Simulation-based search
 - Using TD instead of MC (bootstrapping)
- MC tree search applies MC control to sub-MDP from now
- TD search applies Sarsa to sub-MDP from now

MC vs. TD search

- For model-free reinforcement learning, bootstrapping is helpful
 - TD learning reduces variance but increases bias
 - TD learning is usually more efficient than MC
 - $TD(\lambda)$ can be much more efficient than MC
- For simulation-based search, bootstrapping is also helpful
 - TD search reduces variance but increases bias
 - TD search is usually more efficient than MC search
 - $TD(\lambda)$ search can be much more efficient than MC search
- Question: can we try TD search for 2048?

TD Search

- Simulate episodes from the current (real) state s_t
- Estimate action-value function Q(s, a)
- For each step of simulation, update action-values by Sarsa $\Delta Q(S,A) = \alpha(R + \gamma Q(S',A') Q(S,A))$
- Select actions based on action-values Q(s, a)
 - e.g. ϵ -greedy
- May also use function approximation for Q

Dyna-2

- In Dyna-2, the agent stores two sets of feature weights
 - Long-term memory
 - Short-term (working) memory
- Long-term memory is updated from real experience using TD learning
 - General domain knowledge that applies to any episode
- Short-term memory is updated from simulated experience using TD search
 - Specific local knowledge about the current situation
- Over value function is sum of long and short-term memories

Results of TD search in Go

I-Chen Wi