Plate-Forme Intelligence Artificielle Saint-Étienne, France, PFIA-2022, 27.06 – 01.07.2022

Tutorial: Conformal learning – prediction with accuracy guarantees

Dr. Marharyta Aleksandrova
University of Luxembourg

marharyta.aleksandrova@
{uni.lu, gmail.com}

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise
- 3. Conformal regression
 - 1. Derivation
 - 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

Why Conformal Learning

- Traditional prediction:
 - Point prediction
 - Accuracy is not guaranteed

Banking

Demo 1: models calibration

https://github.com/marharytaaleksandrova/conformallearning/blob/main/tutorials/Demo 1. Calibra tion.ipynb

Why Conformal Learning

- Traditional prediction:
 - Point prediction
 - Accuracy is not guaranteed

- Conformal prediction:
 - Region prediction
 - Guaranteed accuracy
 - Useful for sensitive applications

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise
- 3. Conformal regression
 - 1. Derivation
 - 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

Math revision: Estimating cumulative distribution function from sample

- Z random variable
- f(Z) function of the random variable Z
- From sample estimate cumulative distribution function f(Z):

$$F_{f(Z)}(x) = P(f(Z) \le x)$$

Example: f(Z): 1, 3, 2, 7, 5

- Sorting -f(Z): 1, 2, 3, 5, 7
- $F_{f(Z)}(x)$ is defined as the fraction of the elements

Conformal classification: Example

	P(y)	A = 1 - P(y)
1	0.9	0.1
2	0.87	0.13
3	0.72	0.28
4	0.47	0.53
5	0.40	0.60

	P(1)	A(1)	P(2)	A(2)	P(3)	A(3)
6	0.5	0.5	0.45	0.55	0.05	0.95
p		0.33		0.17		0

$$p_{k}^{\tilde{y}} = \frac{\#(\alpha_{i} \ge \alpha_{k}^{\tilde{y}})}{q+1} < \varepsilon \Longrightarrow reject$$

Probability to make a mistake by rejecting a class-label

Demo: Derivation of conformal classification What about *conformity* functions?

https://github.com/marharytaaleksandrova/conformallearning/blob/main/theory/conformal_learning_from_scratch.ipynb

Exercise: Testing conformal classifiers

https://github.com/marharytaaleksandrova/conformallearning/blob/main/theory/conformal learning from scratch.ipynb

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise
- 3. Conformal regression
 - 1. Derivation
 - 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

Evaluating conformal classifiers

- Validity
 - Empirical error rate
- Efficiency:
 - avgC = avg. num. of labels, $\epsilon[0, num_labels]$, min
 - oneC = fraction of singletons, $\epsilon[0,1]$, max
 - mutlyC = fraction of predictions with ≥ 1 label, $\epsilon[0,1]$, min
 - zeroC = fraction of empty predictions, $\epsilon[0,1]$, min
 - oneAcc = fraction of correct singletons , $\epsilon[0,1]$, min

```
    {Label1, Label2}
    {Label5}
    {Label3}
    {Label1, Label2, Label5, Label6}
```

```
acc =
avgC =
oneC =
multyC =
zeroC =
oneArr =
```

Evaluating conformal classifiers

- Validity
 - Empirical error rate
- Efficiency:
 - avgC = avg. num. of labels, $\epsilon[0, num_labels]$, min
 - oneC = fraction of singletons, $\epsilon[0,1]$, max
 - mutlyC = fraction of predictions with ≥ 1 label, $\epsilon[0,1]$, min
 - zeroC = fraction of empty predictions, $\epsilon[0,1]$, min
 - oneAcc = fraction of correct singletons , $\epsilon[0,1]$, min

- 1. {Label1, Label2}
- 2. {Label5}
- 3. {Label3}
- 4. {Label1, Label2, Label5, Label6}

$$acc = \frac{3}{4} = 0.75$$

$$avgC = \frac{2+1+1+4}{4} = \frac{8}{4} = 2$$

$$oneC = \frac{2}{4} = 0.5$$

$$multyC = \frac{2}{4} = 0.5$$

$$zeroC = \frac{0}{4} = 0$$

$$oneArr = \frac{1}{4} = 0.25$$

Non-conformity functions

- Non-conformity function:
 - measure the strangeness of the target pair
 - depend upon the prediction error of an underlying classification or regression model
- Types
 - Model-agnostic
 - Inverse probability
 - Margin different with the next most possible classifier
 - Model-dependent
 - KNN distance to neighbors
 - SVM distance to the separating hyperplane

Non-conformity functions

- Model agnostic
 - Inverse probability
 - Margin

$$A = 1 - p^{\tilde{y}}$$

$$A = \max_{y \neq \tilde{y}} p^{y} - p^{\tilde{y}}$$

	Y=1	Y=2	Y=3	Tot	Inv_prob	Margin
1	0.90	0.10	0.00	1	0.10	-0.80
2	0.10	0.87	0.03	1	0.90	0.77
3		0.08	0.20	1	0.28	-0.52
4	0.40	0.39	0.21	1	0.60	-0.01
5	0.45	0.08	0.47	1	0.55	0.02

Exercise: Classification – impact of nonconformity functions

https://github.com/marharytaaleksandrova/conformallearning/blob/main/tutorials/Exercise 2. Impact of nonconformity functions classification.ipynb

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise

3. Conformal regression

- 1. Derivation
- 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

Conformal regression

Absolute Error function:

$$A = |y - \tilde{y}|$$

Signed Error function:

$$A = y - \tilde{y}$$

Conformal regression: size of the prediction interval

Normalized conformal prediction

- One more model is trained to predict errors
- Normalized classification

Exercise: Regression – impact of nonconformity functions

https://github.com/marharytaaleksandrova/conformallearning/blob/main/tutorials/Exercise 3. Impact of nonconformity functions regression.ipynb

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise
- 3. Conformal regression
 - 1. Derivation
 - 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

TCP — transductive CP Data retrained for every test instance! Data **Training** Test Test Training (1 point) Proper Calibration training Nonconformity function Nonconformity **ML** model function Model is **ML** model **Calibration** score **Prediction Calibration** score **Prediction**

Efficient data usage

Cross-conformal prediction (CCP)

- 1. Cross-fold validation for conformal prediction
- 2. Averaging *p*-values
- Multiple models
- No validity guarantees

Bootstrap conformal prediction (BCP)

- 1. Bootstrap replicas (sampling with replacement)
- 2. p-values on out-of-bag + combined
- Multiple models
- No validity guarantees

OOB-CP for bagging ensemble models

- 1. Calibration on out-of-bag prediction for training set
- √ Validity is guaranteed

Validity guarantees

Löfström, Tuve, Ulf Johansson, and Henrik Boström. "Effective utilization of data in inductive conformal prediction using ensembles of neural networks." *The 2013 International Joint Conference on Neural Networks (IJCNN)*. IEEE, 2013.

Demo 2: Efficient data usage

https://github.com/marharytaaleksandrova/conformallearning/blob/main/tutorials/Demo 2. Efficie nt data usage.ipynb

Agenda

- 1. Motivation
- 2. Conformal classification
 - 1. Derivation + Exercise
 - 2. Impact of nonconformity functions + Exercise
- 3. Conformal regression
 - 1. Derivation
 - 2. Normalized regression + Exercise
- 4. TCP and data usage
- 5. Applications & Generalizations

Applications

Prediction with accuracy guarantees

Anomaly (outlier) detection

Statistical tests

Causal ML

Generalizations

- Risk controlling prediction sets https://github.com/aangelopoulos/rcps
 - Some errors are more expensive than others
 - Can be used for image segmentation

90% of polyp for 90% of images

• Conformalized quantile regression Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression." Advances in neural information processing systems 32 (2019).

Resources

- nonconformist library https://github.com/donlnz/nonconformist
- Tutorial by Anastasios N. Angelopoulos and Stephen Bates <u>https://www.youtube.com/watch?v=nql000Lu_iE</u>
- 2. Vide by Maria Navarro https://www.youtube.com/watch?v=r6bhm A-YcQ&t=9s
- Tutorial by Glenn Shafer and Vladimir Vovk https://www.jmlr.org/papers/volume9/shafer08a/shafer08a.pdf
- Conformal learning conference COPA <u>https://cml.rhul.ac.uk/copa2021</u>
- Distribution-Free Uncertainty Quantification Workshop at ICML https://sites.google.com/berkeley.edu/dfuq21/home?authuser=0
- "Awesome Conformal Prediction" list of resources https://github.com/valeman/awesome-conformal-prediction