furtherPCB

Josh Johnson

12/8/2019

Josh Johnson furtherPCB 12/8/2019 1/13

FPGA Workshop?

My proposal is:

- Two workshops
 - WTFpga Implementing a 7 segment decoder at your own pace
 - LED Matrix / UART / Simulation / FPGA Theory
 - Verilog only (no SystemVerilog / VHDL)
- Requires Linux / Mac, may work on windows.
 - Will provide untested instruction for windows which may require different workflow - pull requests welcomed
- FPGA hardware will be \$50
 - iCE-40 FPGA in feather form factor
 - 7 Segment / DIP switch board
 - 6*6 LED Matrix / Buttons
 - Feather to dual PMOD (bare PCB)
 - Want to assemble your own? Can be organised!
- Will get hardware to everyone before next meetup, so you can install toolchains / get to blinky at your own leisure

Overview

- Multilayer PCBs
- Impedance control
- Differential Pairs
- Cutting edge processes
- Random KiCad things
- Layout review

Josh Johnson furtherPCB 12/8/2019 3 / 13

Multilayer PCBs

PCBs are often 2 or 4 layers, but 8-16 is common for phones / motherboards / GPUs etc. Why?

- Dedicated power / ground planes
 - Allows for low impedance supply and return of currents
 - Not only required for function of devices, but to pass emissions testing
 - Many different ways to design multilayer boards, will be shown later
- More layers to route signals
- Required for BGA fanout
- Impedance control

Josh Johnson furtherPCB 12/8/2019 4/13

Via Technology

What is impedance?

 the effective resistance of an electric circuit or component to alternating current, arising from the combined effects of ohmic resistance and reactance

Why do we care?

- Impedance mismatch results in reflections, which causes power loss and signal degradation
- Mismatches caused by incorrect track width, stubs, lack of termination resistors

Transmission line model

Characteristic Impedance

$$Z_0 = \sqrt{\frac{L}{C}}$$

 Josh Johnson
 furtherPCB
 12/8/2019
 8 / 13

PCB transmission line

To calculate, use tools such as TXLine or Saturn PCB Toolkit

At higher frequencies, (> 2GHz) FR4's dialectic constant changes + has high loss

Materials such as PTFE, Rogers (glass reinforced hydrocarbon/ceramics) are better suited to higher frequency applications

Packing and orientation of glass weave can also play a part

Josh Johnson furtherPCB 12/8/2019 9/13

I'm designing a digital board, so I don't have to worry about this?

- Bandwidth = $\frac{0.34}{t_{rise}}$
- Dependent on rise / fall times, not frequency (although higher frequencies do require faster edges)

 Josh Johnson
 furtherPCB
 12/8/2019
 10 / 13

Return current?

- Impedance controlled traces must be referenced to an unbroken plane (can be ground or power)
- As return current takes path of least impedance, follows path of outbound current!
- Slots, gaps, cut outs all result in return current taking a long path and emitting EMI

SLOTTED GROUND PLANE

Confirming correct Impedance?

- Follow fabricators guidelines NOT TXLine etc tools they know their process best
- Board houses do what is known as 'Etch Compensation' to ensure traces stay at required impedance
- They can also make a test coupon, and measure with a TDR to ensure correct dimensions

The End

Say Hello!

BSidesCbr Slack: josh Twitter: @_joshajohnson

Email: josh@joshajohnson.com

Project Files: github.com/joshajohnson/CBRhardware

Josh Johnson furtherPCB 12/8/2019 13 / 13