CREATING VALUE FOR CUSTOMERS: VALUE IN USE

Professor Sonnier
Texas MSBA Program
Fall 2022

CONSUMER BEHAVIOR

A Model of The Decision Making Process

Types of Customer Value

Types of Customer Value

Value in Use

Value in Use

Value in Use for 50,000 hours of light							
Incandescent L							
Watts per Bulb	60	10					
kWh electricity (50K hrs.)	3,000	500					
Cost of electricity (\$0.10/kWh)	\$300	\$50					

- Value of New Tech + Cost to Operate New Tech = Cost to Own and Operate Existing Tech
- > Value of New Tech + \$50= \$352.50 so Value of New Tech = \$302.50
- Will the customer be willing to pay this?

PPHMI: Record Label Economics

Exhibit 3b Top 10 Music Markets, by Retail Value, 2002

			Units (in millions)					Annual
	Singles	LPs ^a	MCs ^b	CDs	DVD	VHS	Retail Value (\$ millions)	Growth in Unit Sales
U.S.	8.4	1.7	32.4	803.3	10.7	3.5	12,609	-10.4%
Japan	77.1	2.2	4.6	228.9	11.0	2.1	5,001	-9.9%
U.K.	52.5	2.2	1.9	221.6	3.6	1.5	2,936	-0.9%
Germany	39.0	1.1	14.3	179.4	3.8	3.3	2,091	-4.7%
France	40.5	0.5	5.0	130.4	3.1	0.8	2,070	3.1%
Canada	0.6	-	1.1	57.0	1.6	1.2	621	-5.4%
Italy	3.5	0.0	3.4	36.8	0.4	0.2	565	9.3%
Spain	2.2	0.0	2.4	61.7	0.5	0.0	551	-17.9%
Australia	11.9	0.0	0.6	49.2	2.4	0.2	532	-3.0%
Mexico	0.6	0.0	2.9	51.1	-	0.9	462	-3.3%
Top 10 Markets	236.3	7.7	68.6	1819.4	37.1	13.7	22,442	
All Markets	265.0	8.6	478.9	2,247.1)	63.6	16.1	32,281	

Source: Adapted from International Federation of the Phonographic Industry (IFPI).

^a LP denotes "long-playing phonograph record."

^b MC denotes "microcassette."

- > 2.2 billion CD units sold over 30,000 releases implies average sales of ~75,000 units per release
- > 2,500 albums released with a single

PPHMI: Record Label Economics

- > Fewer than 15% of Released Titles are Profitable!
- Only 10% of singles chart

- > Average sales of 2002 Top 25 albums is 3MM units
- > 65 albums sold over 1MM units
- Having a Top 40 single is best indicator of profitability

POLYPHONIC HMI

Record Company Economics

Price Breakdown for Album	
Suggested Retail Price	\$ 17.00
Average Retail Price (exhibit 4)	\$ 15.00
Price to Retailers	\$ 10.50
Royalties to Artist (10% of suggested retail price)	\$ 1.70
Fees to publisher (5% of price to retailer)	\$ 0.53
A&R expenses (15% of price to retailer)	\$ 1.58
Manufacturing/Distribution Costs (10% of price to retailer)	\$ 1.05
Administrative Expenses (10% of price to retailer)	\$ 1.05
Cost Summary	\$ 5.90
Record Company Margin	\$ 4.60

- What are total production and marketing costs?
- What are the breakeven quantities on total production and marketing costs?

PPHMI: Record Label Economics

- Fewer than 15% of Released Titles are Profitable!
- Margins are ~\$4.60 per album

Record Company Break Even Analysis (albums)

For new artists	
Marketing and Production Costs	\$ 400,000
Profit Margin	\$ 4.60
Breakeven Qty.	86,957
For established artists	
Marketing and Production Costs	\$ 2,000,000
Profit Margin	\$ 4.60
Breakeven Qty.	434,783

PPHMI: Value in Use

- Industry Situation
 - 10% success rate
 - <15% of releases are profitable</p>
- > Value
 - Probability of correct prediction: 80%
 - Can we quantify the value of Hit Song Science?

Polyphonic HMI: The Basic Idea Behind Hit Song Science

- ➤ Hit songs group into 50-60 clusters
- Compare the mathematical properties of new songs to the properties of the hit clusters
- If new song falls in a cluster it has a high chance of being a hit

PPHMI: Value in Use

EVC Template (from Canvas Session 2 Folder)

Economic Value of Hit Song Science						
	ST	ATUS QUO		HSS		
Trials (Albums with Singles)		100				
Hits (Single Reaches Top 40)		10				
Failures (Single Does Not Reach Top 40)		90				
Current Hit Rate		10%				
REVENUES*					ECONOMIC VALUE: NEW ARTISTS STATUS QUO	HSS
Single Does Not Reach Top 40	\$	10,000			Songs Launched 100	
Album w/ Single That Does Not Reach Top 40	\$	90,000			Revenues \$ 31,000,000	
TOTAL REVENUES W/ FAILURE	\$	100,000			Costs \$ 40,000,000	
					Expected Profits (9,000,000)	
Single Reaches Top 40	\$	200,000				
Album w/Single that Reaches Top 40	\$	2,000,000			ECONOMIC VALUE: ESTABLISHED ARTISTS	HSS
TOTAL REVENUES W/SUCCESS	\$	2,200,000			Songs Launched 100	
					Revenues \$ 31,000,000	
COSTS					Costs \$ 200,000,000	
		New Artists	Esta	ablished Artists	Expected Profits (169,000,000)	
Production Costs	\$	100,000	\$	1,000,000		
Marketing Costs	\$	300,000	\$	1,000,000		
TOTAL COSTS	\$	400,000	\$	2,000,000		
*USING FIGURES FOR MEDIUM CASE ON PAGE 9						

PPHMI: Value in Use

- Label chooses it's 100 albums to launch
- How well does algorithm predict?

Actuals	Hit	Fail	Totals	HSS Efficacy
HSS Predicts Hits				
HSS Predicts Fails				
Launch			1	

- Launch only the 26 predicted hits: 18 false positives (Type I error)
- > Do not launch 74 predicted failures: 2 false negatives (Type II error)

POLYPHONIC HMI

Value Creation

HIT RATES					
	STA	ATUS QUO		HSS	
Launch		100		26	
Hits		10		8	
Failures		90		18	
Hit Rate		10%		31%	_
REVENUES*					_
Single Does Not Reach Top 40	\$	10,000			
Album w/ Single That Does Not Reach Top 40	\$	90,000			
TOTAL REVENUES W/ FAILURE	\$	100,000			
Single Reaches Top 40	\$	200,000			_
Album w/Single that Reaches Top 40	\$	2,000,000			
TOTAL REVENUES W/SUCCESS	\$	2,200,000			_
COSTS		New Artists	Esta	blished Artists	_
Production Costs	\$	100,000	\$	1,000,000	
Marketing Costs	\$	300,000	\$	1,000,000	
TOTAL COSTS	\$	400,000	\$	2,000,000	_
*REVENUES ESTIMATED USING FIGURES FOR MEDIUM CASE					_

PPHMI: Value in Use

ESTABLISHED ARTISTS						
	Curre	ent	w/H	SS		
Launch		100.00		26.00		
Revenues	\$	4,000,000	\$	3,200,000		
Costs	\$	200,000,000	\$	52,000,000	Improvement	
Expected Profits	\$	(196,000,000)	\$	(48,800,000)	\$ 147,200,000	
ESTABLISHED ARTISTS			MI	EDIUM CASE		
	Curre	ent	w/H	SS		
Launch		100.00		26.00		
Revenues	\$	31,000,000	\$	19,400,000		
Costs	\$	200,000,000	\$	52,000,000	Improvement	Wtd. Average
Expected Profits	\$	(169,000,000)	\$	(32,600,000)	\$ 136,400,000	\$ 125,100,000
ESTABLISHED ARTISTS			F	HIGH CASE		
	Curre	Current w/HSS				
Launch		100.00		26.00		
Revenues	\$	456,000,000	\$	343,200,000		
Costs	\$	200,000,000	\$	52,000,000	Improvement	
Expected Profits	\$	256,000,000	\$	291,200,000	\$ 35,200,000	

PPHMI: Value in Use

NEW ARTISTS			LO	W CASE		
	Current		w/HSS			
Launch		100.00		26.00		
Revenues	\$	4,000,000	\$	3,200,000		
Costs	\$	40,000,000	\$	10,400,000	Improvement	
Expected Profits	\$	(36,000,000)	\$	(7,200,000)	\$ 28,800,000	
NEW ARTISTS			MED	IUM CASE		
	Current		w/HSS			
Launch		100.00		26.00		
Revenues	\$	31,000,000	\$	19,400,000		
Costs	\$	40,000,000	\$	10,400,000	Improvement	Wtd Average
Expected Profits	\$	(9,000,000)	\$	9,000,000	\$ 18,000,000	\$ 6,700,000
NEW ARTISTS			HIC	GH CASE		
	Current		w/HSS			
Launch		100.00		26.00		
Revenues	\$	456,000,000	\$	343,200,000		
Costs	\$	40,000,000	\$	10,400,000	Improvement	
Expected Profits	\$	416,000,000	\$	332,800,000	\$ (83,200,000)	

POLYPHONIC HMI

Basic Company Economics

- > Are Polyphonic's breakeven economics favorable or unfavorable?
- ➤ Annual fixed costs are \$500K
- > PPHMI costs are \$300 for a 10 song album
- ► Labels spend \$3,000-\$10,000 per song for research
- Let's assume labels currently test 3 songs per album
- ✓ Price @ \$30K: \$500K/\$29,700=17 album reports
- ✓ Price @ \$9K: \$500K/\$8,700=57 album reports

PPHMI: Value in Use

Despite the value created by HSS, it was not widely adopted

- Advantage (relative to status quo)
- Compatibility (with existing systems)
- Complexity (easy to understand)
- > Observable (benefits)
- Risk (of failure)
- Divisibility (Easy to try?)

Research from Sony Computer Science Labs

Pachet, F. and Roy, P. "Hit Song Science is Not yet a Science", Proc. of Ismir '08, Philadelphia, pp. 355-360

HIT SONG SCIENCE IS NOT YET A SCIENCE

François Pachet

Sony CSL pachet@csl.sony.fr

ABSTRACT

We describe a large-scale experiment aiming at validating the hypothesis that the popularity of music titles can be predicted from global acoustic or human features. We use a 32.000 title database with 632 manually-entered labels per title including 3 related to the popularity of the title. Our experiment uses two audio feature sets, as well as the set of all the manually-entered labels but the popularity ones. The experiment shows that some subjective labels may indeed be reasonably well-learned by these techniques, but not popularity. This contradicts recent and sustained claims made in the MIR community and in the media about the existence of "Hit Song Science".

1. INTRODUCTION

Claims have recently been formulated about the possibility of a "Hit Science" that aims at predicting whether a given cultural item, e.g. a song or a movie, will be a hit, prior to its distribution. Such claims have been made in the domains of music [4] as well as movie [7], and are the basis of hit counseling businesses [9], [17].

Pierre Roy

Sony CSL roy@csl.sony.fr

In particular, [4] describe an experiment in which a system is trained to learn a mapping between various musical features extracted from the acoustic signal and from the lyrics, and the popularity of the song. They conclude from this experiment that their system learns something about popularity, and so that Hit Song Science is indeed possible.

However, the idea that popularity can be inferred from such technical features contradicts the natural intuitions of any musically-trained composer.

In this paper, we describe a larger-scale and more complete experiment designed to further validate this claim. We use a 32.000 song database of popular music titles, associated with fine-grained human metadata, in the spirit of the Pandora effort [16]. To ensure that the experiment is not biased, we use three sets of different features. We describe the various experiments conducted and conclude that popularity is basically not learned by any of these feature sets.

2. EXTRACTING GLOBAL DESCRIPTORS

The most widely used approach to extract global

Machine vs. Machine

versus

Value in Use

What is the Value of a Hybrid Automobile?

Value in Use for the Toyota Prius

~50 MPG (city/hwy combined)

~30 MPG(city/hwy combined)

- > 12,000 miles/50 mpg = 240 gal
- > 12,000 miles/30 mpg = 400 gal
- ➤ Annual fuel savings of 160 gal
 - >@\$2.00 per gal = \$320 per year
 - >@\$4.00 per gal = \$640 per year

~\$25,000 MSRP

~\$19,000 MSRP

Value in Use

Prius Sales by Month

- > Download data file from Canvas (in Session 2 Folder)
- > For now use the data in the sales-gas tab
- What is the effect of a \$1 increase in gas prices on monthly sales?

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Date	Sales	Gas Price
Aug-00	788	0.856481
Sep-00	981	0.899252
Oct-00	829	0.888506
Nov-00	989	0.880528
Dec-00	1,134	0.837931
Jan-01	1,298	0.837807
Feb-01	1,198	0.836746
Mar-01	1,378	0.807605
Apr-01	872	0.880158
May-01	1,126	0.950478
Jun-01	1,534	0.891011
Jul-01	1,037	0.778028
Aug-01	1,311	0.801127
Sep-01	862	0.863152
Oct-01	1,580	0.738323
Nov-01	1,580	0.663472
Dec-01	1,780	0.628749
Jan-02	1,954	0.640316

Descriptive statistics (Quantitative data):						
Statistic	Sales	Gas Price				
Nbr. of observatio	87	87				
Minimum	112.000	0.629				
Maximum	24009.000	1.518				
1st Quartile	1469.000	0.815				
Median	4025.000	0.950				
3rd Quartile	8880.000	1.154				
Mean	5564.989	1.006				
Variance (n-1)	24547606.500	0.055				
Standard deviation	4954.554	0.234				

$$(sales) = a + b \times (gas price) + e$$

> What do we learn from this simple linear model?

Value in Use

Are Gas Prices Affecting Prius Sales?

Linear Regression

Model parameters (Sales):						
					Lower	Upper
					bound	bound
Source	Value	Standard error	t	Pr > t	(95%)	(95%)
Intercept	-12920.5	1170.8	-11.0	< 0.0001	-15248.3	-10592.7
Gas Price	18373.5	1133.7	16.2	< 0.0001	16119.5	20627.5

$$Sales_t = -12,920.5 + 18,373.5 \times Gas Price_t$$

$$\frac{\Delta \text{Sales}}{\Delta \text{Gas Price}} = 18,373.5$$

- > The marginal effect is the unit change in sales given a unit change in gas prices
- For the linear regression model the marginal effect of a change in gas prices is constant (i.e., it is the same everywhere along the line)

Value in Use

What is the Elasticity of Sales with respect to Gas Price?

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = \frac{\frac{\Delta \text{Sales}}{\text{Sales}}}{\frac{\Delta \text{Gas Price}}{\text{Gas Price}}} = \frac{\Delta \text{Sales}}{\Delta \text{Gas Price}} \times \frac{\text{Gas Price}}{\text{Sales}}$$

$$Sales_t = -12,920.5 + 18,373.5 \times Gas Price_t$$

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = 18,373.5 \times \frac{\text{Gas Price}}{\text{Sales}}$$

For the linear regression model the elasticity depends on which sales-price pair you choose (i.e., where you are located on the line matters!)

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Date	Sales	Gas Price
Aug-00	788	0.856481
Sep-00	981	0.899252
Oct-00	829	0.888506
Nov-00	989	0.880528
Dec-00	1,134	0.837931
Jan-01	1,298	0.837807
Feb-01	1,198	0.836746
Mar-01	1,378	0.807605
Apr-01	872	0.880158
May-01	1,126	0.950478
Jun-01	1,534	0.891011
Jul-01	1,037	0.778028
Aug-01	1,311	0.801127
Sep-01	862	0.863152
Oct-01	1,580	0.738323
Nov-01	1,580	0.663472
Dec-01	1,780	0.628749
Jan-02	1,954	0.640316
Feh-02	1.481	0 634983

Descriptive statistics (Quantitative data):				
Statistic	Sales	Gas Price		
Mean	5564.989	1.006		
Variance (n-1)	24547606.500	0.055		
Standard deviation	4954.554	0.234		

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = 18,373.5 \times \frac{1.00}{5,565}$$

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = 3.30$$

> A 10% increase in gas prices yields a 33% increase in monthly Prius sales

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Linear Regression

Model par	Model parameters (Sales):						
						Lower	Upper
						bound	bound
Source	Value	Standard error	t		Pr > t	(95%)	(95%)
Intercept	-12920.5	1170.8		-11.0	< 0.0001	-15248.3	-10592.7
Gas Price	18373.5	1133.7		16.2	< 0.0001	16119.5	20627.5

Marginal Effect of Gas Prices on Sales

$$\frac{\Delta \text{Sales}}{\Delta \text{Gas Price}} = 18,373.5$$

Elasticity of Sales with respect to Gas Prices

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = 18,373.5 \times \frac{1.00}{5,565} = 3.30$$

Value in Use

Let's Consider Some Nonlinear Equations

Equation

$$(1) \quad y = a + xb$$

$$(2) \quad y = a + b \ln(x)$$

(3)
$$\ln(y) = a + xb$$
$$y = \exp(a + xb)$$

Marginal Effect*

$$\frac{\Delta y}{\Delta x} = b$$

$$\frac{\Delta y}{\Delta x} = \frac{b}{x}$$

$$\frac{\Delta y}{\Delta x} = b \exp(a + xb) = by$$

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Date	LN(Sales)	LN(Gas Prices)
Aug-00	6.66949809	-0.154922583
Sep-00	6.88857246	-0.106192436
Oct-00	6.720220155	-0.118214163
Nov-00	6.896694332	-0.127233061
Dec-00	7.033506484	-0.17681948
Jan-01	7.168579897	-0.176967554
Feb-01	7.088408779	-0.178234358
Mar-01	7.228388452	-0.213682208
Apr-01	6.770789424	-0.127653522
May-01	7.026426809	-0.050789911
Jun-01	7.335633982	-0.115398241
Jul-01	6.944087208	-0.250992549
Aug-01	7.178545484	-0.221736092
Sep-01	6.759255271	-0.147164484
Oct-01	7.365180126	-0.303373859
Nov-01	7.365180126	-0.410268056
Dec-01	7.484368643	-0.464022683
Jan-02	7.577633833	-0.445793153
Feb-02	7.300472814	-0.454156852
Mar O2	7 /7/772102	0.250770022

Log-Log Model

$$\ln(\text{sales}) = a + b \times \ln(\text{gas price}) + e$$

					Lower	Upper
		Standard			bound	bound
Source	Value	error	t	Pr > t	(95%)	(95%)
Intercept	8.231	0.070	117.573	< 0.0001	8.092	8.370
LN(Gas Prices)	3.714	0.308	12.042	< 0.0001	3.101	4.327

Marginal Effect of Gas Prices on Sales

Elasticity of Sales with respect to Gas Prices

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

					Lower	Upper
		Standard			bound	bound
Source	Value	error	t	Pr > t	(95%)	(95%)
Intercept	8.231	0.070	117.573	< 0.0001	8.092	8.370
LN(Gas Prices)	3.714	0.308	12.042	< 0.0001	3.101	4.327

Marginal Effect of Gas Prices on Sales

$$ln(Sales) = a + b \times ln(Gas Price) + e$$

$$\frac{\Delta \text{Sales}}{\Delta \text{Gas Price}} = b \times \frac{\text{Sales}}{\text{Gas Price}}$$

➤ In the Log-Log model the marginal effect of gas prices on sales depends on which sales-price pair you choose (i.e., the marginal effect depends on where you are located on the curve)

Value in Use

What is the Elasticity of Sales with respect to Gas Price?

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = \frac{\frac{\Delta \text{Sales}}{\text{Sales}}}{\frac{\Delta \text{Gas Price}}{\text{Gas Price}}} = \frac{\frac{\Delta \text{Sales}}{\Delta \text{Gas Price}}}{\frac{\Delta \text{Gas Price}}{\Delta \text{Gas Price}}} \times \frac{\text{Gas Price}}{\text{Sales}}$$

For the Log-Log Model

Elasticity of Sales with respect to Gas Prices

$$b \times \frac{\text{Sales}}{\text{Gas Price}} \times \frac{\text{Gas Price}}{\text{Sales}} = b$$

In the Log-Log model the elasticity of sales with respect to gas prices is constant (i.e., it does not matter where you are along the curve). It is given by the beta coefficient from the regression.

Value in Use

For the Log-Log Model

Marginal Effect of Gas Prices on Sales

$$b \times \frac{\text{Sales}}{\text{Gas Price}}$$

Elasticity of Sales with respect to Gas Prices

b

In the Log-Log model the elasticity of sales with respect to gas prices is constant (i.e., it does not matter where you are along the curve). It is given by the beta coefficient from the regression.

Value in Use

> We have two models

Log-Log Model

$$ln(Sales) = a + b \times ln(Gas Price) + e$$

Linear Model

Sales =
$$a + b \times (Gas Price) + e$$

> Which model do we prefer?

Log-Log Model

Goodness of fit statistics (LN(Sales)):				
Observations	87.000			
R ²	0.630			
Adjusted R ²	0.626			

Linear Model

Goodness of fit statistics (Sales):					
Observations	87.000				
R ²	0.756				
Adjusted R ² 0.7					

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Linear Regression

Model par	Model parameters (Sales):						
						Lower	Upper
						bound	bound
Source	Value	Standard error	t		Pr > t	(95%)	(95%)
Intercept	-12920.5	1170.8		-11.0	< 0.0001	-15248.3	-10592.7
Gas Price	18373.5	1133.7		16.2	< 0.0001	16119.5	20627.5

Marginal Effect of Gas Prices on Sales

$$\frac{\Delta \text{Sales}}{\Delta \text{Gas Price}} \neq 18,373.5$$

Elasticity of Sales with respect to Gas Prices

$$E_{S|P} = \frac{\%\Delta \text{Sales}}{\%\Delta \text{Gas Price}} = 18,373.5 \times \frac{1.00}{5,565} \neq 3.30$$

Value in Use

What Effect Do Gas Prices Have on Prius Sales?

Date	Sales	Gas Price
Aug-00	788	0.856481
Sep-00	981	0.899252
Oct-00	829	0.888506
Nov-00	989	0.880528
Dec-00	1,134	0.837931
Jan-01	1,298	0.837807
Feb-01	1,198	0.836746
Mar-01	1,378	0.807605
Apr-01	872	0.880158
May-01	1,126	0.950478
Jun-01	1,534	0.891011
Jul-01	1,037	0.778028
Aug-01	1,311	0.801127
Sep-01	862	0.863152
Oct-01	1,580	0.738323
Nov-01	1,580	0.663472
Dec-01	1,780	0.628749
Jan-02	1,954	0.640316
Feb-02	1.481	0 634983

- > What else to consider?
 - > Seasonality?
 - Dynamic Effects?
 - Marketing Mix Effects?
 - Other Factors?

Prius Value

How Does Prius fare in the ACCORD framework?

- Advantage (relative to status quo)
- Compatibility (with existing systems)
- Complexity (easy to understand)
- Observable (benefits)
- Risk (of failure)
- Divisibility (Easy to try?)

Key Concepts from Today

- Consumers derive value from goods and services in different ways
 - Value in Use
 - Functional Value
 - Experiential Value
- Value is Use is the value consumers derive from using a good or service relative to the status quo
- Value is Use is not generally equal to the price a firm may charge
 - > Competition
 - > Other dimensions of value
 - Other dimensions of consumer behavior
- Creating value in use is not the only determinant of new product adoption
 - > ACCORD

Next Week in Marketing Analytics

Tuesday 8/30/22---Session 3: Customer Mindset Metrics

Reading: Methods for Producing Perceptual Maps from Data

Thursday 9/1/22---Session 4: Measuring Customer Preferences

Reading: Managerial Overview of Conjoint Analysis (available in Session 4 folder on Canvas)