

Separating the signal from the noise: Signal processing and feature extraction techniques for biological data

Michelle Hoogenhout, PhD Mathias Ciliberto, PhD

Learning objectives

At the end of the workshop attendees should be able to:

- List 2 use cases
- Able to create spectrogram to visualize data
- Differentiate between frequency and time-domain analysis
- Know when to use frequency and when to use time-domain filters
- Apply at least one frequency and one time-domain filter to the data
- Evaluate whether the filter was successful e.g. calculate error
- Discuss 2-3 factors to consider in data collection of PPG signals

Requirements

- Will work from Colab Notebook
 - No need to install anything locally
- Assume familiarity with:
 - Python
 - Numpy, Pandas, Scipy packages

Biological signals

- Photoplethysmogram (PPG)
- Electromyography (EMG)
- Inertial data
 - accelerometer
 - gyroscope
 - magnetometer

Visualizing your data

- Inertial
 - Useful for detecting anomalies
- PPG
 - Check for missing data
- Activities (labels)

Time-domain signal example

Interested in amplitude

- Skin conductance
- Temperature

Frequency-domain signal example

Interested in peaks/repetition:

Blood volume pressure

Time vs Frequency domain

Time vs Frequency domain

Spectrograms: Visualize time and frequency at the same time

Time-domain filters

Moving average:

$$MA_k = rac{1}{k} \sum_{i=n-k+1}^n p_i$$

k = window length, p= sample

- Good usage: o Identify slow-changing process / **trends** • Remove small
 - fluctuations

Time-domain filters

Moving average

- Bad usage
 - Frequency-based signal

Time-domain filters

Savitzky-Golay

- Smoothing filter based on convolution
- Good for movements artefact removal (spikes)

Capturing information in the frequency domain

Fourier transform

Useful: What frequencies exist?

HOWEVER FFT assumes **stationarity**

Not useful: When do frequencies change?

Frequency-domain filters

Low-pass filter:

 Remove high frequency noise (i.e. vibrations in inertials sensors data)

Frequency-domain filters

High-pass filter:

 Remove low frequency variations (i.e. changes due to temperature variations in optical signals)

Joint time-frequency

Short time Fourier transform

Trade-off between time and frequency resolution

Wavelet functions

- Improves on time/resolution trade-off by having a 'wavelet' rather than fixed time window
- Expanded wavelet: Low frequency components, bad time resolution
- Shrunken waveliet: High frequency components, good time resolution

Check-in

What's the difference between time and frequency (spectral) analysis? Can you think of a use case for each that we have not discussed?

Case Study: Detecting heart rate

Goal: Detect a user's heart rate using photoplethysmography (PPG) signals

Compare accuracy of heart rate estimates between raw and processed signals under different conditions

[Interactive Colab Notebook session]

Example accelerometry signal:

Example PPG signal:

Factors to consider in data collection and analysis

Easier to solve problems earlier rather than later!

- Know your confounding factors (and controlling for them!)
- Select the right frequency
- Find a way to ensure that your variables of interest are measured in they way you expect
- Finding a good ground truth can be challenging

Factors to consider in data collection and analysis

What obstacles have you faced in your own analyses?

Recap: Learning objectives

- List 2 use cases for today's signal processing examples
- Able to create spectrogram to visualize data
- Differentiate between frequency and time-domain analysis
- Know when to use frequency and when to use time-domain filters
- Apply at least one frequency and one time-domain filter to the data
- Evaluate whether the filter was successful e.g. calculate error
- Discuss 2-3 factors to consider in data collection of PPG signals

Putting it all together

You can now use spectrograms and filtered signals as input in a variety of statistical learning algorithms

Examples uses:

- spectrograms for detecting activities with CNN
- regression analysis on denoised PPG data to detect blood volume
- wavelet power spectra of skin temperature for detecting covid with SVD
- wavelet denoising of PPG signals to detect heart rate anomalies

Additional Resources

- Video: Advanced physiological signal processing
 Course: Complete neural signal processing and analysis: Zero to hero
- PPG example analysis: <u>Blood pressure estimation using PPG</u> ECG example: <u>Signal processing with MATLAB</u>
- Physics fundamentals: What is the Fourier transform: A visual introduction

