

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Aplicada

MS211

Atividade 1

Fernando Teodoro de Cillo - RA: 197029

Gustavo De Castro Yamashiro - RA: 236206

Natália Braghini Pardini - RA: 203964

Campinas Abril de 2021

1 Empuxo

1.1 Condições para que a esfera flutue

Para que a esfera não afunde, a força resultante sobre ela na direção vertical deve ser nula [1]. Portanto,

$$F_R = 0$$

$$P - E = 0$$

$$P = E$$

em que:

 F_R = Força resultante

P =Peso da esfera

E = Empuxo da água sobre a esfera

1.2 Empuxo sobre a esfera

O empuxo E pode ser calculado [1] como

$$E = d_L \cdot V_S \cdot g$$

em que:

 $d_L = densidade do líquido$

 V_S = volume da esfera que está submerso

g = aceleração da gravidade

Sabe-se que a densidade da água vale $d_L=1\ g/L$ e o volume submerso pode ser calculado como uma calota esférica, em que h representa a altura da calota que fica submersa, ou seja

$$V_S = \frac{\pi}{3}(3 \cdot r \cdot h^2 - h^3)$$

Assim, temos que E vale

$$E = d_L \cdot V_S \cdot g$$
$$E = 1 \cdot \frac{\pi}{3} (3 \cdot r \cdot h^2 - h^3) \cdot g$$

1.3 Peso da esfera

O Peso P pode ser calculado com a massa m dada e a densidade d=0.6~g/L:

$$P = m \cdot g$$

$$P = \frac{4}{3}\pi \cdot r^3 \cdot d \cdot g$$

$$P = \frac{4}{5}\pi \cdot r^3 \cdot g$$

1.4 Igualando Peso e Empuxo

$$P = E$$

$$\frac{4}{5}\pi \cdot r^3 \cdot g = \frac{\pi}{3}(3 \cdot r \cdot h^2 - h^3) \cdot g$$

$$\frac{4}{5} \cdot r^3 = \frac{1}{3}(3 \cdot r \cdot h^2 - h^3)$$

Considerando a altura como uma fração do raio da esfera, $h=\alpha\cdot r$, em que α representa uma constante de proporcionalidade, temos:

$$\frac{4}{5} \cdot r^3 = \frac{1}{3} (3 \cdot r \cdot (\alpha \cdot r)^2 - (\alpha \cdot r)^3)$$
$$\frac{4}{5} \cdot r^3 = \frac{1}{3} (3 \cdot \alpha^2 \cdot r^3 - \alpha^3 \cdot r^3)$$

Como todos os termos possuem r^3 , podemos dividir toda a equação por este valor, que jamais será nulo, e obter:

$$\frac{4}{5} = \frac{1}{3}(3 \cdot \alpha^2 - \alpha^3)$$
$$\frac{\alpha^3}{3} - \alpha^2 + \frac{4}{5} = 0$$

2 Encontrando o valor de α que zera a função

2.1 Escolha do Método de Newton

A escolha pelo Método de Newton para encontrar uma aproximação para a raiz da equação se deve ao fato deste método ter convergência quadrática, o que nos dá um resultado suficientemente bom em poucas iterações, comparando com os métodos que tem convergência linear [2]. O principal fator negativo que a escolha do Método de Newton acarreta é a necessidade de se calcular a derivada da função, o que nem sempre é fácil. Para este caso, um polinômio de terceiro grau, encontrar a derivada é simples.

2.2 Entradas do Método de Newton

2.2.1 Função $f(\alpha)$

Das condições para que a esfera flutue obtemos:

$$f(\alpha) = \frac{\alpha^3}{3} - \alpha^2 + \frac{4}{5}$$

2.2.2 Derivada da função $f(\alpha)$

Derivando $f(\alpha)$, obtemos:

$$f'(\alpha) = \alpha^2 - 2 \cdot \alpha$$

2.2.3 Aproximação inicial α_0

Um palpite razoável para o valor de α_0 é a metade do intervalo em que α está contido.

Pela geometria do problema, os valores possíveis para a altura h estão no intervalo $]0, 2 \cdot r]$. Como α é justamente a constante de proporcionalidade entre altura e raio da esfera, este valor está contido em]0, 2] e, portanto, seu valor médio é $\alpha_0 = 1$.

2.2.4 Tolerância

A tolerância utilizada foi de $E=10^{-15}$, o que permitiu que o Octave aproximasse $f(\alpha)\approx 0$ e, portanto, encontrasse a raíz α da função.

3 Resultados

Como podemos ver na figura 1, a raíz da função $f(\alpha)$ encontrada pelo Método de Newton foi $\alpha=1.1341,$ em um total de 4 iterações.

Figura 1: Programa em Octave baseado no código do ped Felipe Longo

Sendo assim, encontramos o valor de h como fração de r:

$$h = \alpha \cdot r$$

$$h = 1.1341 \cdot r$$

Referências

- [1] Robert Resnick, David Halliday, and Jearl Walker. Fundamentals of Physics, Vol. 1. John Wiley, 1988.
- [2] Márcia A Gomes Ruggiero and Vera Lúcia da Rocha Lopes. Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil, 1997.