1 Generative modelling

Learn $p_{\text{model}} \approx p_{\text{data}}$, sample from p_{model} .

- Explicit density:
- Approximate:
- * Variational: VAE, Diffusion
- * Markov Chain: Boltzmann machine
- Tractable:
- * Autoregressive: FVSBN/NADE/MADE, Pixel(c/R)NN, WaveNet/TCN, Autor. Transf.,
- * Normalizing Flows
- Implicit density:
- Direct: Generative Adversarial Networks
- MC: Generative Stochastic Networks

Autoencoder: $X \rightarrow Z \rightarrow X$, $g \circ f \approx \text{id}$, f and g are NNs. Optimal linear autoencoder is PCA. Undercomplete: |Z| < |X|, else overcomplete. Overcomp. is for denoising, inpainting. Latent space should be continuious and interpolable. Autoencoder spaces are neither, so they are only good for reconstruction.

2 Variational AutoEncoder (VAE)

Sample *z* from prior $p_{\theta}(z)$, to decode use conditional $p_{\theta}(x \mid z)$ defined by a NN.

 $D_{\text{KL}}(P||Q) := \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$: KL divergence, measure similarity of prob. distr. $D_{\text{KL}}(P||Q) \neq D_{\text{KL}}(Q||P), D_{\text{KL}}(P||Q) \geq 0$

Likelihood $p_{\theta}(x) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$ is hard to maximize, let encoder NN define $q_{\phi}(z \mid x)$, $\log p_{\theta}(x^{i}) =$

 $\mathbb{E}_{z} \left[\log p_{\theta}(x^{i} \mid z) \right] - D_{\text{KL}}(q_{\phi}(z \mid x^{i}) || p_{\theta}(z)) + D_{\text{VL}}(q_{\phi}(z \mid x^{i}) || p_{\theta}(z \mid x^{i})) \right]$ Red is intractable

 $D_{\text{KL}}(q_{\phi}(z \mid x^i) || p_{\theta}(z \mid x^i))$. Red is intractable, use ≥ 0 to ignore it; Orange is reconstruction loss, clusters similar samples; Purple makes posterior close to prior, adds cont. and interp. Orange – Purple is **ELBO**, maximize it.

 $x \xrightarrow{\text{enc}} \mu_{z|x}, \Sigma_{z|x} \xrightarrow{\text{sample}} z \xrightarrow{\text{dec}} \mu_{x|z}, \Sigma_{x|z} \xrightarrow{\text{sample}} \hat{x}$ Backprop through sample by reparametr.: $z = \mu + \sigma \epsilon$. For inference, use μ directly.

Disentanglement: features should correspond to distinct factors of variation. Can be done with semi-supervised learning by making z conditionally independent of given features y. 2.1 β -VAE

Disentangle by $\max_{\theta,\phi} \mathbb{E}_x \left[\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x \mid z) \right]$ s.t. $D_{\text{KL}}(q_{\phi}(z \mid x) || p_{\theta}(z)) < \delta$, with KKT: $\max \text{Orange} - \beta \text{Purple}$.