

dsPIC en Lenguaje C y sus Aplicaciones

Instructor: Godo Sánchez Heredia
Investigador y Desarrollador en el Área de Sistemas
Embebidos

Portafolio Microcontroladores de Microchip

¿Qué es el DSPIC?

Es un procesador de señales digitales muy rápido y poderos, capaz de procesar audio y algunos hasta video en tiempo real. Por sus capacidades son perfectos para aplicaciones en las que no vamos a tolerar retrasos.

El dispositivo dsPIC se diseñó con el fin de integrar las características que debe tener un DSP y un Microcontrolador (MCU), de forma que las secciones de los dos trabajan de forma conjunta, compartiendo la carga de instrucciones y la lógica de decodificación. El poder del dsPIC radica en su interactuación con el entorno mediante el software,

sensores, tarjetas de acondicionamiento, etc.

Arquitectura de 16 bits

Memoria de Programa

Memoria de Datos

Registros de Trabajo

PC, PSV, DO and REPEAT

Arquitectura de 16 bits

Motor DSP

Diez categorías de instrucción

- 1) Mover
- 2) Matemáticas
- 3) Lógica
- 4) Girar / Cambiar
- 5) Manipulación de bits
- 6) Comparar / Saltar
- 7) Programa / Flujo
- 8) Sombra / Pila
- 9) Control
- 10) DSP

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \cdot y$	No
MPY	A = x 2	No
MPY.N	$A = -x \cdot y$	No
MSC	$A = A - x \cdot y$	Yes

$$y[n] = \sum_{k=0}^{N-1} h[k] * x[n-k]$$

- Adder
 - Output feeds accumulators
- Barrel Shifter
 - Operates solo or as part of data path
- Multiplier
 - Two 16-bit numbers from X and Y data buses or WREGS
- Formatting Logic
 - Sign Extension
 - Zero Backfill
 - Rounding
 - Saturation

Pipline

Familias del dsPIC

dsPIC33F Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins							
16-50	6 - 256	512 16384	18 - 100							
Series:	dsPIC33F Features: DSP, ADC, Timers, UART, SPI, I ² C, PWM									
dsPIC33FJxx GP xxx -	General purpose, some devices with DMA, DAC, and QEI									
dsPIC33FJxx GS xxx -	Optimized for SMPS designs, some devices with QEI and CTMU									
dsPIC33FJxx MC xxx -	Motor control optimized, includes QEI and MCPWM									

sPIC33E Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins						
70	32 - 512	4096 58304	28 - 144						
Series:	dsPIC33E Features: DSP, DMA, ADC, UART, I ² C, SPI, PWM, IC								
dsPIC33EPxx GP xxx -	General purpose, includes CTMU and CAN								
dsPIC33EPxx GM xxx -	Adds I ² S and a second CAN to the GP series								
dsPIC33EPxx MC xxx -	Motor control, includes QEI and enhanced PWM								
dsPIC33EPxx GS xxx -	Optimized peripher	als for SMPS applications							

dsPIC33CH DUAL-CORE Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins		
100	64 - 512	20K - 40K	28 - 80		

dsPIC30F Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins					
30	6 - 144	256 8192	18 - 80					
Series: dsPIC30F Features: DSP, ADC, Timers, UART, SPI, I ² C, PWM								
dsPIC30Fxxxx	- 5 Volt, some devices with	EEPROM, CAN and QEI						

MPLAB X IDE

Entorno de desarrollo oficial para desarrollar aplicaciones con microconroladores de Microchip compatible con Windows, Linux y MAC.
Flexibildad de integracion con el Compilaodr de mcu de 16 bits

Función del Compilador XC16

Traducir el lenguaje de alto nivel(Lenguaje C,Basic ,Python etc). a lenguaje emsamblador

Compilador XC16

- Compilador ISO C90 (conocido como ANSI C)
- Soporta a todos los MCU de 16 Bits : PIC24 ,dsPIC33 Y dsPIC30
- Disponible para WIndows ,Linux, Mac OS

Oscilador del Sistema

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

Oscilador del Sistema

$$T_{osc} = \frac{1}{F_{osc}}$$

$$T_{OSC} = \frac{1}{10MHz} = 0.1\mu S$$

$$T_{CY} = T_{OSC} x 2 = 0.2 \mu S$$

$$F_{OSC} = \frac{F_{CY}}{2}$$

Fosc = Frecuencia del Sistema

Fcy= Frecuencia de ciclo de Instrucción

dsPIC33FJ32MC202

Registros

Registros de 16 bits

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WREG0 0000 Working Register 0																	

SFR GPR

Registros de Funcion Especifica Registros de Proposito Generall

GPIO (GENERAL PURSPUSE INPUT OUTPUT)

GPIO

Registros Relacionados

TRISX

Define si el pin es E/S

PORTX

Registro de Lectura de un Pin

LATX

Registro de Escritura en un Pin

Registros Relacionados

El Registro de Opend Drain ayuda a tener salidas mayores a VDD

Este registro nos permite configurar los pines Analógicos como Digitales

Este registro nos permite configurar las resisstencias pull-up y activar las notificaciones por cambio de estado

Aplicamos lo Aprendido

IMUCHAS GRACIAS!

Telf: 922206796

Correo:

godo.electronica@gmail.com

