计算机与网络技术

第11讲网络层、传输层

课程回顾

- □计算机网络概述
- □物理层
- □数据链路层
- □ 网络层
- □传输层
- □应用层
- □ 网络安全
- □ 网络上的音频/视频服务
- □无线网络和移动网络

提纲

- □计算机网络概述
- □物理层
- □数据链路层
- □ 网络层
- □传输层
- □应用层
- □ 网络安全
- □ 网络上的音频/视频服务
- □无线网络和移动网络

具有五层协议的体系结构

IEEE 802模型

物理层

- 确保二进制位信号正确传输,位流的正确传送与接收。标准规范
- 局域网传输介质与拓扑结构
- 物理接口的机械特性、电气特性、功能特性和规程特性
- 传输信号的编码方案。局域网常用的编码方案有: 曼彻斯特码、差分曼彻斯特码、非归零码、4B/5B码、8B/6T和8B/10B等。
- 错误校验码以及同步信号的产生与删除
- · MAC子层(介质访问控制)
 - MAC是数据链路层的一个功能子层。MAC直接与物理层相邻。
 - 合理的<mark>信道分配</mark>,解决信道竞争问题。完成介质访问控制功能,为竞争的用户分配信道使用权,并具有管理多链路的功能。
 - MAC子层为不同的物理介质定义了介质访问控制标准。 IEEE802的介质访问控制标准有CSMA/CD、Token-Ring、Token-Bus等。
- ·LLC子层(逻辑链路控制)
 - LLC子层的功能包括:数据帧的组装与拆卸、帧的收发、 差错控制、数据流控制和发送顺序控制等功能并为网络层 提供:面向连接服务和无连接服务。
 - LLC在MAC子层的支持下<mark>向网络层提供服务</mark>。可运行于 所有**802** 局域网和城域网协议之上的数据链路协议。
 - LLC子层与传输介质无关,它<mark>独立于介质访问控制方法</mark>, 隐藏了各种**802**网络之间的差别,向网络层提供一个统一的 格式和接口。

802.3 以太网 CSMA/CD

总线拓扑实例:

- **&** Ethernet
 - * 载波侦听
 - ❖ 冲突检测
 - **CSMA/CD**
 - ❖ 截断二进制指数重发

$$T = 2\tau \times (2^i - 1)$$

802.11 无线局域网CSMA/CA

- ★ 隐蔽站: A, C两个站点不能互相"听见"
 - *障碍物,信号衰减
 - *在B站点发生冲突
- ★ 802.11MAC的设计目标:避免可能在B站发生的冲突
- ★ CSMA/CA: 带有冲突避免(Collision Avoidance)策略的CSMA

局域网布线、接口与物理结构

- *WIFI
 - *便捷
 - *快速
 - *建设扩展容易
- ***WAPI**

MAC 帧的格式

- 常用的以太网 MAC 帧格式有两种标准:
 - 1. DIX Ethernet V2 标准
 - 2. IEEE 的 802.3 标准
- 最常用的 MAC 帧是以太网 V2 的格式。

集线器的一些特点

- 集线器是使用电子器件来模拟实际电缆线的工作,因此整个系统仍然像一个 传统的以太网那样运行。
- 使用集线器的以太网在逻辑上仍是一个总线网,各工作站使用的还是 CSMA/CD 协议,并共享逻辑上的总线。
- 集线器很像一个多接口的转发器,工作在物理层。
- 集线器采用了专门的芯片,进行自适应串音回波抵消,减少了近端串音。

从总线以太网到交换机星形以太网

- 采用以太网交换机的星形结构成为以太网的首选拓扑。
- 交換机工作在数据链路层
- 以太网交换机不使用共享总线,没有碰撞问题,因此不使用 CSMA/CD 协议,以全双工方式工作。但仍然采用以太网的帧结构。

提纲

- □计算机网络概述
- □物理层
- □数据链路层
- □ 网络层
- □传输层
- □应用层
- □ 网络安全
- □ 网络上的音频/视频服务
- □无线网络和移动网络

网络层

- □ 包的广域网传输
 - 存储转发
 - ◆ 存储副本
 - ◆ 调度处理
 - ◆ 根据什么?
 - 广域网编址
 - 下一站转发
 - 源地址独立性
 - ◆ 下一站转发不依赖于包的源地址,也不依赖于所走过的路径

destin- ation	next hop	destin- ation	next hop	destin- ation	next hop	destin- ation	next hop
1	-	2	-	1	(3,1)	2	(4,2)
*	(1,3)	4	(2,4)	2	(3,2)	4	-
		*	(2,3)	3	-	*	(4,3)
				4	(3,4)		
node	1	node	2	node	3	node	4

网络层: IP地址

- ❖ 抽象编址: 一个地址对应唯一网络终端*
- ❖ 抽象邮递方案
 - ❖ 发送方(源地址)
 - ❖ 接收方(目的地址)
- ❖ IP地址的构成-IPv4
 - ❖ 32bits
 - ❖ 前缀(计算机从属的物理网络)
 - ❖ 后缀(网络中唯一的一台计算机)

- ◆ Mac-48位
- ◆ C0-63-94-12-D1-28

▶ IP数据报的构成

- ➤ IP数据报的互联网传输
 - ▶ 数据报的封装 (encapsulation)
 - ▶帧头部中帧类型标示
 - ▶下一站物理编址
- > 帧(frame)
 - > 帧的格式
 - ▶ 帧对于保证传输质量的作用(头与尾)
 - > 字节填充
 - > 传输差错与奇偶校验

Preamble	Dest. Address	Source Frame Address Type			CRC	
8	6	6	2	46 - 1500	4	
	- H	eader —	-	Payload		

▶ IP数据报转发

▶ 下一站转发

> 路由表构成

▶目的地:网络

▶掩码

▶下一站

	Destination	Mask	Next Hop
30.0.0.5	30.0.0.0	255.0.0.0	40.0.0.7
40.0.0.5	40.0.0.0	255.0.0.0	deliver direct
128.10.0.5	128.1.0.0	255.255.0.0	deliver direct
192.4.10.5	192.4.10.0	255.255.255.0	128.1.0.9

> 数据报头部中的目的地址与下一站地址的关系

- ❖地址解析
 - ❖将IP地址翻译成等价的硬件地址
 - ❖地址解析的条件是在一个物理网内部

- **❖ ARP基本原理**
 - ❖ 请求消息、应答消息

- **❖ARP消息格式**
 - ❖普适性
 - ❖使用现状

硬件地址类型(1)		协议地址类型(0x800)				
硬件地址长度	协议地址长度	操作类型				
	发送方硬件地址(字节0~3)					
发送方硬件地址	上 (字节4~5)	发送方协议地址(字节0~1)				
发送方协议地址	L (字节2~3)	目的地硬件地址(字节0~1)				
目的地硬件地址(字节2~5)						
	目的地协议地址(字节0~3)					

*ARP消息

帧头
帧数据

帧格式及其实例

Preamble	Dest. Address	Source F Address			CRC
8	6	6	2	46 - 1500	4
	- − H	eader —	-	Payload	

- □帧类型字段
 - 2个字节,表征帧数据的类型。IP or ARP frame?
- □目的地址和源地址字段
 - 地址字段长度: 2个字段,各6个字节
- □目的地址

- **❖** ARP消息传递过程实现
 - * 发送方
 - ❖ 地址联编缓存
 - ❖ 查询缓存 → 广播请求消息 → 接收应答消息

*接收方

- ❖利用接收到的请求消息 更新自己的地址联编表
- *构造应答消息
- *发送应答消息

硬件地	址类型	协议地址类型		
硬件地 址长度	协议地 址长度	操作类型		
发送	方硬件地 均	止(字节0~3)		
发送方码 (字节		发送方协议地址 (字节0~1)		
发送方包 (字节		目的地硬件地址 (字节O~1)		
目的:	地硬件地址	止 (字节2~5)		
目的:	地协议地址	止(字节0~3)		

□ 反向地址解析协议

- (Reversed Address Resolution Protocol)
- RARP实现MAC地址到IP地址的转换
- RARP请求包中是由发送者填充好的 源端MAC地址,而源端IP地址域为空 (需要查询)

□ 应用

- DHCP
- (Dynamic Host Configuration Protocol)
- 动态主机设置协议

差错报告机制 (ICMP)

➤ Internet控制报文协议

(Internet Control Message Protocol)

- > 差错报文
 - > 源抑制
 - ▶ 超时(包、段)
 - ▶ 目的不可达(主机、网络)
 - ▶ 重定向
 - > 要求分段
- > 信息报文
 - ▶ 回应请求/应答
 - ▶ 地址屏蔽码请求/应答

差错报告机制 (ICMP)

> ICMP报文的传输

0	7	8	15		
	类型	代	码		
校验和					
	数据区	(变长)			

ICMPIXX恰式

TYPE	CODE	Description	Query	Error
0	0	Echo Reply——回显应答 (Ping应答)	х	
3	0	Network Unreachable——网络不可达		Х
3	1	Host Unreachable——主机不可达		Х
3	2	Protocol Unreachable——协议不可达		Х
3	3	Port Unreachable——端口不可达		Х
3	4	Fragmentation needed but no frag. bit set——需要进行分片但设置不分片比特		Х
3	5	Source routing failed——源站选路失败		Х
3	6	Destination network unknown——目的网络未知		Х
3	7	Destination host unknown——目的主机未知		Х
3	8	Source host isolated (obsolete)——源主机被隔离(作废不用)		Х
3	9	Destination network administratively prohibited——目的网络被强制禁止		Х
3	10	Destination host administratively prohibited——目的主机被强制禁止		Х
3	11	Network unreachable for TOS——由于服务类型TOS,网络不可达		Х
3	12	Host unreachable for TOS——由于服务类型TOS,主机不可达		X
3	13	Communication administratively prohibited by filtering——由于过滤,通信被强制禁止		x
3	14	Host precedence violation——主机越权		Х
3	15	Precedence cutoff in effect——优先中止生效		Х
4	0	Source quench——源端被关闭 (基本流控制)		
5	0	Redirect for network——对网络重定向		
5	1	Redirect for host——对主机重定向		
5	2	Redirect for TOS and network——对服务类型和网络重定向		
5	3	Redirect for TOS and host——对服务类型和主机重定向		
8	0	Echo request——回显请求 (Ping请求)	X	
9	0	Router advertisement——路由器通告		
10	0	Route solicitation——路由器请求		
11	0	TTL equals 0 during transit——传输期间生存时间为0		Х
11	1	TTL equals 0 during reassembly——在数据报组装期间生存时间为0		X
12	0	IP header bad (catchall error)——坏的IP首部 (包括各种差错)		Х
12	1	Required options missing——缺少必需的选项		X
13	0	Timestamp request (obsolete)——时间戳请求(作废不用)	X	
14		Timestamp reply (obsolete)——时间戳应答(作废不用)	X	
15	0	Information request (obsolete)——信息请求(作废不用)	X	
16	0	Information reply (obsolete)——信息应答(作废不用)	X	
17	0	Address mask request——地址掩码请求	X	
18	0	Address mask reply——地址掩码应答		

IP数据报后的处理过程

网络层: IP地址

❖ 地址分类

地址空间的划分

地址 类别	可变前 缀位数	数值范围	网络最大 数目	后缀 位数	网络最大主 机数目
A	7	0~127	128	24	16,777,216
В	14	128~191	16,384	16	65,536
C	21	192~223	2,097,152	8	256

IPv4困境

- •40亿IP->40亿网民
- •北美占有3/4,约30亿
- •中国-2.5亿->网民8亿
- •网络:1600万;分类200万
- •2011年2月3日分配完毕

解决方案

- 局域网-私有地址:
 - -10.....,172.....,192.....
- NAT网络地址转换
 - -Network Address Translator
- CIDR
 - (无类型域间选路, Classless Inter-Domain Routing)
 - 192.168.1.0/22
- IPv6

A类地址

- □ 3.0.0.0/8: 通用
- □ 9.0.0.0/8: IBM
- □ 11.0.0.0/8: 国防部
- □ 12.0.0.0/8: AT&T贝尔实验室
- □ 13.0.0.0/8: 施乐
- □ 15. 0. 0. 0/8: HP
- □ 16. 0. 0. 0/8: DEC
- □ 17.0.0.0/8: 苹果
- □ 18.0.0.0/8: MIT
- □ 19.0.0.0/8: 福特汽车
- □ 55.0.0.0/8: 波音
- □ 56.0.0.0/8: 邮政局

IP的未来IPv6

- □ IPv6的目标
 - 不能有效分配的情况下, 也能支持数十亿的主机
 - 减小路由表的大小
 - 简化协议,使得路由器能够更快的处理包;
 - 提供比IPv4更好的安全性
 - 更多的关注服务类型,特别是实时数据
 - 可扩展性
 - 支持移动功能
 - 在一段时间内,允许IPv4与IPv6共存

□IPv6的主要变化

- 地址变长, 128位
 - 2002:6505:91bb:4:fda4:8175:b62a:9738
 - 192.168.89.9 -> ::192.168.89.9
 - 0000:0000:0000:0000:0000:0000:c0a8:5909
- IP头简化,提高路由器处理速度
 - 12->8
 - 由于IPv6包头定长,取消头部长度域; 40字节
 - ·取消与分段有关的域,IPv6采用由 主机做分段;
 - · 取消Checksum域;
 - Protocol域取消,用Next header域表示;
- 更好的支持选项功能、安全性提高、更注重服务类型

IPv4与IPv6过渡

双栈策略

在IPv6结点中加入IPv4协议 栈

> 双协议栈的结点称作 "IPv6/IPv4结点"

既可以收发IPv4分组,也可以收发IPv6分组

IPv4与IPv4结点互通

IPv6与IPv6结点互通

隧道技术

与IPv4兼容的IPv6地址

192.168.89.9

::192.168.89.9

隧道两端的IPv6节点 双栈节点 IPv6封装到IPv4

建隧道-隧道类型

- ●路由器-路由器隧道
- ●路由器-主机隧道
- •主机-主机隧道

隧道适配器 isatap.tsinghua.edu.cn:

连接特定的 DNS 后缀 : tsinghua.edu.cn

本地链接 IPu6 地址. fe80::200:5efe:101.5.148.245%21

默认网关. fe80::5efe:166.111.21.1%21

IP数据报传输质量

- ➤ 尽力(best-effort)传输
- > IP不保证处理的问题
 - > 数据报重复
 - > 延迟传送与乱序传送
 - > 数据的损坏
 - > 数据报的丢失

提纲

- □计算机网络概述
- □物理层
- □数据链路层
- □ 网络层
- □传输层
- □应用层
- □ 网络安全
- □ 网络上的音频/视频服务
- □无线网络和移动网络

TCP/IP模型

TCP/IP参考模型

- ➤ TCP服务模式
 - > 端对端服务
 - ▶ 虚连接
 - ➤ TCP把IP看作一个包通信系统
 - ▶ 路由器不需要TCP服务

- ▶TCP数据报的特点
 - ▶面向连接
 - ▶点对点通信
 - ▶全双工通信
 - ▶无结构的数据流
 - ≻完全可靠性
 - ▶有缓冲的传送,实现拥塞控制

TCP报文格式

TCP报文格式

传输层的数据处理

- 一台主机、多个应用程序
 - 同时使用TCP或UDP协议进行通信
 - 如何区分发送给哪个应用程序
 - TCP/UDP中引入了端口(port)的概念
- 端口——16-bit的无符号整型值
 - 端口号,标识传输层协议和应用程序之间的数据接口
 - 一个应用程序对应着唯一的一个端口号
 - 端口号是由不同主机的TCP协议独立分配的
 - 无法实现全局唯一,本地唯一
- 端口号和IP地址合起来,即(host,port)对
 - 唯一地标识TCP的一个连接的端点(endpoint)
 - 端点(202.112.7.12: 80)——IP为202.112.7.12的主机上的80号TCP端口

传输层的端口号

□ 常用的TCP端口号

- 20 FTP server (data channel)
- 21 FTP server (control channel)
- 23 Telnet server
- 25 SMTP server
- 80 Web server (HTTP)
- **110 POP3 server**
- 139 NetBIOS session service

▶建立TCP连接

- > TCP协议建立连接的过程就是一个通信双方序号同步的过程
 - (1) A->B SYN
 - (2) B->A SYN&ACK
 - (3) A->B ACK

我的序号为x;

我的序号为y, 你的序列号为x+1;

我的序号为x+1, 你的序列号为y+1;

三次握手建立TCP连接

- >等待"接收确认"
- ▶超时重发
 - ▶等待时间的确定
 - ▶延迟时间的变化

> 适应性重发

- > 往返时间的估计加权
- > 变化量的估计

> 连接释放方式

两种连接释放方法

- 非对称式
 - 任何一方都可以关闭双向连接; 存在丢 失数据的危险;
- 对称方式
 - 每个方向的连接单独关闭,双方都执行 DISCONNECT才能关闭整条连接
 - 使用三次握手 + 定时器的方法释放连接 在绝大多数情况下是成功的

➢ 释放TCP连接

TCP连接的释放过程

UDP:用户数据报协议

- ■UDP协议: 提供应用程序之间传送数据报的基本机制
 - ■UDP: 简单,无连接
 - ■UDP增加内容
 - 端口: UDP能够区分在同一台主机上运行的多个程序;
 - 检验和: 确认数据有效
 - UDP工作:
 - 不对发送数据缓冲
 - 保留各个消息之间的边界,不会把应用层多次发送的数据合并成一个包发送出去
 - <u>通过UDP协议,可以发送组播数据</u>

0 15	16 31		
源端口	目的端口		报文头
报文长度	检验和	$\frac{1}{2}$	拟义大
UDP数据			
•••			

传输层

常用的熟知端口

单位网络管理员如何禁止用户上网聊天、看剧、购物、游戏、.....?

传输层

基于端口的复用和分用功能

传输层

可靠信道与不可靠信道

TCP和UDP的比较

□服务性质

- 传输可靠性-TCP
- 传输开销-UDP
- 传输速度-UDP
- 传输类型
 - 是否广播

□UDP使用场景

- DNS (Domain Name System, 域名系统)
- 实时音视频传输
- 在线游戏
- 物联网 (IoT) 设备通信
- 增强现实 (AR) 和虚拟现实 (VR)

移动通讯网

□ 模拟通讯

- 1973年4月3日
- 摩托罗拉公司发明,马丁.库帕

☐ GSM

- 全球移动通信系统
- Global System for Mobile Communication
- 1991欧洲电信标准组织ETSI
- 900MHz,1.8GHz

☐ GPRS

- 通用分组无线服务技术
- General Packet Radio Service
- 56~114Kbps

☐ CDMA

- 码分多址, Code Division Multiple Access
- 800MHz, 1.6GHz
- 1995

移动通讯网

□ 3G

- <u>第三代移动通信技术</u>,是指支持高速数据传输的 蜂窝移动通讯技术,1998-2008
- 同时传送声音及数据信息
- 下行3.6Mbit/s, 上行384kbit/s

■ WCDMA

- 欧洲厂商
- Wideband CDMA 80%
- 中国联通

□ CDMA2000

- 美国高通北美公司
- 中国电信

■ TD-SCDMA

- Time Division-Synchronous CDMA (时分同步 CDMA)
- 中国移动

移动通讯网

- □ 4G
 - 第四代移动通信技术
 - TD-LTE, FDD-LTE
 - LTE (Long Term Evolution, 长期演进)
 - 20Mbps, 甚至最高可以达到高达100Mbps
 - 中国主导制定的TD-LTE-Advanced和FDD-LTE-Advanced同时并列成为4G国际标准
- □ 5G
 - 网速可达200Mbps-1Gbps
 - 支持智能设备,自组织网络
 - 2019年3月30日,首个行政区域5G网络-上海

□ 网络结构

- 物理网络层
- 中间环境层
- 应用网络层

卫星通讯

- □ GPS-美
- □ GLONASS-俄
- □ GALILEO-欧
- □ 北斗-中
 - 短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息

物联网

单兵作战系统

互联网架构

谢谢