REELECTION BACKFIRE:

THE EFFECT OF REELECTION INCENTIVES ON DELEGATION OF PUBLIC SECURITY PROVISION IN MEXICO

Rafael Ch New York University

ABSTRACT. Local incumbents up for reelection face a delegation puzzle with upper levels of government. In the presence of spillovers and sum costs, delegation of public good provision may increase its efficiency but cut down its use for electoral purposes. Not delegating allows incumbents to signal responsiveness and carry credit claiming activities to win votes but may generate an inefficient public good provision. A clear tradeoff between efficiency and electoral survival arises. This paper studies the effect of reelection incentives on delegation of public security provision to upper levels of government in a country overwhelmed by criminal wars, Mexico. To do so, I exploit the staggered implementation of an electoral reform that introduced reelection for local executives from 2014 to 2022. I find that mayors up for reelection decrease the delegation of public security to the Governor of their state relative to term limited mayors. This behavior is prominent in municipalities characterized with citizens concerned by narcotraffic and insecurity, and where they hold high levels of trust for police forces different from municipal ones. As a result of this no-delegation behavior, a personal incumbency advantage follows, as well as public security underprovision and violence. Results suggest that delegation is not only a political decision but an electoral one, and that reelection incentives in party-centered systems -like Mexico- may lead local executives to go local to signal responsiveness at the expense of efficient public good provision.

KEY WORDS: DELEGATION, REELECTION INCENTIVES, RESPONSIVENESS, PUBLIC GOOD PRO-VISION, PUBLIC SECURITY, VIOLENCE, INCUMBENCY ADVANTAGE.

Date: April 23, 2021.

Ch: Wilf Family Department of Politics, New York University.

Email: rafael.ch@nyu.edu

Website: https://wp.nyu.edu/rafaelch/.

1. Main Results

Main takeaway: Reelection incentives decreased delegation of public security provision to the Governor.

FIGURE 1. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, 2010-2018

Note: Figure **??** shows the IW estimators following **?** for each lead and lag relative to the first year a municipality implemented reelection. Red points are pre-treatment, while blue ones post-treatment.

t-3

t-2

95% CI

t=0

t+1

t+2

90% CI

t+3

2. Robustness

t-7

t-6

t-5

99% CI

t-4

Main takeaways:

1. Results are robust across multiple specifications and models.

TABLE 1. Effect of 2014 Term Limit Reform on Signing Security Cooperation Agreements, Average Effect

Dependent variable: Sign Security Coop	peration Agr	eement w/ Governor		
Model:	CATTs (1)	CATTs w/ WILD CIs (2)	Change ref. period (t=0) (3)	Trim < t-4 (4)
Reform Average Effect (from t to t+3)	-0.4197*** (0.0457(-0.4197*** (0.0473)	-0.4622** (0.1977)	-0.3559*** (0.0468)
Observations	12,173	12,173	12,173	12,173
R-squared	0.4545	0.4545	0.4545	0.4544
Mun. FEs	\checkmark	\checkmark	✓	\checkmark
Year. FEs	\checkmark	\checkmark	✓	\checkmark
Controls ^b	\checkmark	\checkmark	✓	\checkmark
Cohort weighted	\checkmark	\checkmark	✓	\checkmark
Parallel trend holds	✓	✓	✓	✓

Notes: Coefficients show IW estimators following? Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by? except for the specification that trims periods prior to t-4. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; *** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^b State-level controls include governor winning margin in last pre-treatment election and an indicator of whether the governor's party is the same as the federal incumbent party.

FIGURE 2. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, 2010-2018

2. Results only present if upper-level government can compete in credit claiming locally (President never does this).

FIGURE 3. Comparison: Security Cooperation Agreements with Governor vs. Other Actors, 2014-2018

3. Mechanisms

Main takeaways:

1. Mayors facing reelection decrease the delegation of public security provision and traffic, but not other services.

FIGURE 4. Comparison: Security Cooperation Agreements with Governor vs. Other Actors, 2014-2018

2. Alignment: If you are aligned you have a lot to loose in terms of credit claim, especially if you are from the PRI. This should be smaller for alignment with President since you are not competing directly in terms of reputation in local politics. Lastly, we should see a greater negative effect if not aligned since citizens do not blame you as much por public security inefficiencies following?.

FIGURE 5. Reform interaction with Party Alignment

- 3. a. Mayors facing reelection want to show responsiveness to constituents preferences.
- 3. b. Mayors facing reelection sign security agreements when faced by problems "too big" or of the national order.

FIGURE 6. Interaction effects by citizens' preferences

4. Mayors facing reelection do not sign agreements when other security forces are highly trusted or identified.

FIGURE 7. Total interaction effects by citizens' trust and identification of police forces

4. Ruling out Alternative Hypothesis

4.1. Selection: incumbents and challengers quality

4.2. Cartel Presence

All regressions control for Cartel Presence pretreatment.

4.3. Citizens' Evaluation of Corruption and Efficiency of Police Forces

FIGURE 8. Interaction effects by citizens' evaluation of efficiency and corruption of police forces

5. Unintended consequences

5.1. Preferences for order and security

1. PREFERENCES: citizens are more concerned about security but less about other things. Recall results are conditional on violence. So in the next election, they will look for another hawk. This ties to the incumbency advantage.

FIGURE 9. Effect of Term Limit Reform on Citizens' Preferences

Note: Figure **??** shows the average treatment effect from t to t+3 across multiple specifications. This average effect was estimated using the IW estimators following **?** for each lead and lag relative to the first year a municipality implemented reelection. Filled points (squares) show that parallel trends hold, while hollow ones imply pretrends.

5.2. Security underprovision and violence

3. VIOLENCE: increase of violence.

FIGURE 10. Effect of Term Limit Reform on Violence

Note: Figure **??** shows the IW estimators following **?** for each lead and lag relative to the first year a municipality implemented reelection. Red points are pre-treatment, while blue ones post-treatment.

TABLE 2. Effect of Security Cooperation Agreements signed with the Governor on Violence

	(1)	(2)
Predicted Agreement w/ Governor	-0.1521*	-0.1521**
	(0.0802)	(0.0749)
Observations	12,173	12,173
R2	0.724	0.724
$Controls^a$	\checkmark	\checkmark
Mun. FE	\checkmark	\checkmark
Year FE	\checkmark	\checkmark
State Cluster S.E.		\checkmark
Wild CI ^b		\checkmark
First stage F-stat	1,739	1,739

Notes: Coefficients show IW estimators following?. Two relative time periods (lag 8 and 1) were removed to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level unless indicated, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; and Cartel presence. ^a Wild bootstrap standard errors clustered at the state-level are reported when indicated.

FIGURE 11. Effect of Term Limit Reform on Effort of Local and Federal Security Forces

6. New Appendix

6.1. Main Results

6.2. Robustness

FIGURE 12. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, propensity score matching on pretreatment covariates

Estimated Effects of Treatment Over Time

Note: Figure **??** produced by propensity score matching that adjust for the treatment and covariate histories during the 5 year periods prior to the treatment. I report 95% bootstrap confidence intervals clustered at the state level. Covariates include those used to generate Figure **??**.

TABLE 3. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, 2010-2018

Dependent variable		operation Agreement
	•	Governor ^a
	(1)	(2)
Lag 7 years	0.1123	0.1123
o y y a v	(0.1709)	(0.7117)
Lag 6 years	-0.0383	-0.0383
	(0.0579)	(0.2458)
Lag 5 years	-0.0848	-0.0848
	(0.0846)	(0.2404)
Lag 4 years	0.0751	0.0751
•	(0.3174)	(0.2890)
Lag 3 years	0.2088	0.2088
•	(0.2603)	(0.2139)
Lag 2 years	0.0044	0.0044
	(0.1583)	(0.2139)
Reform, time 0	-0.2446^{***}	-0.2446^{***}
	(0.0475)	(0.0685)
Lead 1 year	-0.4154^{***}	-0.4154^{***}
-	(0.0610)	(0.0610)
Lead 2 years	-0.4259^{***}	-0.4259^{***}
	(0.0571)	(0.0571)
Lead 3 years	-0.5931^{***}	-0.5931^{***}
	(0.0604)	(0.0604)
Observations	12,173	12,173
R-squared	0.4545	0.4545
Mun. FEs	\checkmark	\checkmark
Year. FEs	\checkmark	\checkmark
$Controls^b$	\checkmark	\checkmark
Cohort weighted	\checkmark	\checkmark
WILD CI		\checkmark
Aggregate effect	-0.4197^{***}	-0.4197^{***}
SE (aggregate eff.)	0.0457	0.0473

Notes: Coefficients show IW estimators following?. Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 4. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, with t=0 as reference period

Dependent variable	:	
-	Security Co	operation Agreement
	W,	/ Governor ^a
	(1)	(2)
t-6	-0.0648	0.0312
1-0	-0.0048 (0.0400)	(0.0925)
t-5	-0.2066**	-0.1867
1-3	-0.2000 (0.0746)	(0.1670)
+ 1	` '	• •
t-4	-0.0615	-0.0250
t-3	(0.1748)	(0.1609)
1-3	0.1032	0.1517*
. 0	(0.1363)	(0.0848)
t-2	-0.0241	-0.0972
4 1	(0.1157)	(0.0848)
t-1	-0.0747	-0.0738
1	(0.0917)	(1.6557)
t+1	-0.2856	-0.7543*
0	(0.2014)	(0.4304)
t+2	-0.6194^{**}	-0.7092^*
0	(0.2337)	(0.3702)
t+3	-0.4815^*	-0.6337*
	(0.2643)	(0.3141)
Observations	12,173	12,173
R-squared	0.4545	0.4561
Mun. FEs	\checkmark	\checkmark
Year. FEs	\checkmark	\checkmark
$Controls^b$	\checkmark	\checkmark
Cohort weighted	\checkmark	\checkmark
WILD CI		\checkmark
Aggregate effect	-0.4622^{**}	-0.6990**
SE (aggregate eff.)	0.1977	0.3366

Notes: Coefficients show IW estimators following?. Two relative time periods (lag 8 and 0) are removed to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 5. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, trimming periods

Dependent variable		operation Agreement
	•	Governor ^a
	(1)	(2)
t-4 years	0.1961	0.1961
-	(0.2680)	(0.8260)
t-3	0.2193	0.2193
	(0.2070)	(0.2702)
t-2	0.0370	0.0370
	(0.1546)	(0.2702)
t=0 (Reform)	-0.3057***	-0.3057
	(0.0682)	(0.4093)
t+1	-0.2858***	-0.2858
	(0.0725)	(0.2610)
t+2	-0.2389^{***}	-0.2389
	(0.0823)	(0.2369)
t+3	-0.5931***	-0.5931^{***}
	(0.0604)	(0.0715)
Observations	12,173	12,173
R-squared	0.4544	0.4544
Mun. FEs	\checkmark	\checkmark
Year. FEs	\checkmark	\checkmark
$Controls^b$	\checkmark	\checkmark
Cohort weighted	\checkmark	\checkmark
WILD CI	\checkmark	\checkmark
Aggregate effect	-0.3559***	-0.3559**
SE (aggregate eff.)	0.0468	0.1395

Notes: Coefficients show IW estimators following?. I trimmed the periods lag 8, 7, 6 and 5, and removed the period 1 to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 6. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, ? correction

Dependent var		Agreement B ^a (2)
t-2	-0.161	-0.158
	(0.117)	(0.125)
t-1	-0.094	-0.110
	(0.113)	(0.128)
Reform $(t=0)$	-0.013	-0.040
	(0.068)	(0.091)
t+1	-0.061	-0.098
	(0.080)	(0.081)
t+2	-0.017^*	-0.017^*
	(0.010)	(0.010)
Controls ^b	✓	✓

Notes: Coefficients show corrected estimators following?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%. *Secondary measure of security cooperation agreements. *Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

FIGURE 13. Effect of Term Limit Reform on Security Cooperation Agreements signed with the Governor, 2010-2018

DID, from last period before treatment changes (t=-1) to t

TABLE 7. Comparison: Security Cooperation Agreements with Governor vs. Other Actors, 2014-2018

Dependent variable:Sign Security Cooperation Agreement											
	W/	Governor ^a	w/ Other P	olitical Actors ^b							
	(1)	(2)	(3)	(4)							
t-4	0.3516	0.0197	-0.2760	-0.0326							
	(1.7224)	(0.3292)	(0.5875)	(0.0763)							
t-3	-0.7347	-0.0102***	0.2470	0.2193							
	(37.4822)	(0.0000)	(15.0268)	(0.2702)							
t-2	0.3855	0.1418	-0.1496	-0.0648							
	(0.3262)	(0.1318)	(0.1245)	(0.0524)							
Reform $(t=0)$	0.2227***	0.0064	-0.0599**	-0.0089							
	(0.0588)	(0.0354)	(0.0273)	(0.0069)							
t+1	-0.2203**	-0.2230***	0.1148	-0.2858							
	(0.0920)	(0.0435)	(0.0904)	(0.2610)							
t+3	-0.5915***	-0.5921***	0.1660*	0.1665							
	(0.0783)	(0.0708)	(0.0953)	(0.1040)							
Observations	4,382	4,382	4,382	4,382							
R-squared	0.6434	0.6434	0.5469	0.5469							
Mun. FEs	\checkmark	\checkmark	✓	\checkmark							
Year. FEs	\checkmark	\checkmark	\checkmark	\checkmark							
$Controls^b$	\checkmark	\checkmark	\checkmark	\checkmark							
Cohort weighted		\checkmark		\checkmark							
WILD CI	\checkmark	\checkmark	\checkmark	\checkmark							
Aggregate effect	-0.213***	-0.2696***	0.069	0.0796							
SE (aggregate eff.)	0.033	0.0339	0.045	0.0491							

Notes: Coefficients show IW estimators following?. Two relative time periods (lag 5 and 1) are removed to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers primarily to the President but could include Governors and mayors from other states or other municipalities from the same state. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 8. Test on selection on unobservables

	(1)
Fitted value	0.1312
	(0.0780)
Observations	10,668
R2	0.459
Mun. FE	\checkmark
Year FE	\checkmark
State Cluster S.E.	\checkmark

Notes: I follow ? to check if unobserved variation is likely to explain the signing of security cooperation agreements with the Governor by mayors. To do so, I regress the treatment (whether the municipality held reelection) on all the available covariates used for Figure ??. I then take the fitted value from the regression and use it to predict each outcome, this time including unit and year fixed effects. This test suggests that – under the assumption that observables are representative of unobservables – selection on unobservables is not driving the results.

FIGURE 14. "Event-by-event analysis" following? -95% confidence intervals-

Note: Estimate separate treatment effects for each event, i.e. each Mexican state in the sample. Each event dataset contains the treated state and all other states that never received treatment or received treatment after the sample window (t+1).

FIGURE 15. "Stacked dataset analysis" following? -95% confidence intervals-

Note: Utilize estimated coefficients from Figure ?? and stack them in relative time, and estimate lead and lag variables to treatment following the event-by-event analysis setup, i.e. without treatment containment from using prior treated units of controls. Analysis done stacking at the cohort level, and adding municipality and year fixed effects, and clustered standard errors at the state level.

6.3. Mechanisms

FIGURE 16. Effect of 2014 Term Limit Reform on Motives to Sign Security Agreements w/ Governor

TABLE 9. Effect of 2014 Term Limit Reform on Motives to Sign Security Agreements w/ Governor

J	Dependent variable: Mouve to sign security Cooperation Agreement w. Governor Cons. reform Law reform Lack resources Professional (1) (2) (3) (4)	Law reform (2)	Cons. reform Law reform Lack resources (1) (2) (3)	Professionalization (4)	Coordination (5)	Crime (6)
t-7	-0.2347***	-0.2580**	-0.0957*	-0.1999***	-0.1558*	-0.1540
¥+	(0.0409)	(0.1174)	(0.0481)	(0.0669)	(0.0843)	(0.1079)
0-1	-0.0757 (0.0176)	(0.0199)	-0.0613 (0.0161)	-0.0047 (0.0585)	-0.0824 (0.0344)	-0.0570 (0.0265)
t-5	0.0217	-0.0411	0.0562	0.0567	-0.0095	0.0415
+	(0.0582)	(0.0577)	(0.0475)	(0.0744)	(0.0706)	(0.0444)
1 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(0.1001)	-0.0623 (0.0843)	(0.0832)	(0.1038)	-0.1201 (0.2098)	(0.1167)
t-3	-0.0386	-0.0161	0.0724	0.0800	0.0402	0.0731
	(0.1052)	(0.0840)	(0.1002)	(0.0738)	(0.1660)	(0.1061)
t-2	-0.1161	-0.0919 (0.0915)	0.0226	-0.0824	-0.2781^{*}	-0.0756
Reform $(t=0)$	0.0457	0.0292	0.0214	0.0282	0.0233	0.0272*
,	(0.0278)	(0.0183)	(0.0179)	(0.0201)	(0.0209)	(0.0146)
t+1	-0.0906***	-0.1071^{***}	-0.0935***	-0.0935***	-0.1215***	-0.0735**
	(0.0164)	(0.0182)	(0.0106)	(0.0160)	(0.0291)	(0.0121)
t+3	-0.2452^{***}	-0.2576^{***}	-0.1560^{***}	-0.2011^{***}	-0.2436^{***}	-0.1492***
	(0.0535)	(0.0484)	(0.0350)	(0.0463)	(0.0431)	(0.0527)
Observations	9,725	9,725	9,725	9,725	9,725	9,725
R-squared	0.2974	0.3021	0.2617	0.2722	0.2866	0.2594
Mun. FEs	`	>	>	>	>	>
× × × × × × × × × × × × × × × × × × ×	> `	`	`	`	`	`
Year. FES ✓	> >	>	>	>	>	>
Controls ^a	· > '	>	>	>	>	>
ر Cohort weighted	> >	>	>	>	>	>
>	>					
Reform aggregate effect SE	-0.0967^{***} (0.0225)	-0.1118^{***} (0.0210)	-0.0760^{***} (0.0136)	-0.0888^{***} (0.0208)	-0.1139^{***} (0.0125)	-0.0652^{***} (0.0211)

Notes: Coefficients show IW estimators following ?. Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by ?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and ** 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 10. Effect of 2014 Term Limit Reform on Services Delegated to the Governor

Dependent variable: Se	ervices Delegated to Governo	to Govern	or					
	Public security (1)	Traffic (2)	Prevention (3)	Training (4)	Technology (5)	Research (6)	Inteligence (7)	Unify procedures (8)
t-2	-0.0244	-0.0447	-0.0598***	-0.0565***	-0.0567***	-0.0596***	-0.0596***	-0.0506***
	(0.1049)	(0.0811)	(0.0021)	(0.0012)	(0.0016)	(0.0017)	(0.0017)	(0.0052)
Reform $(t=0)$	0.0701	0.0257	0.0175	0.0214	0.0194	0.0194	0.0204	0.0233
	(0.0435)	(0.0369)	(0.0137)	(0.0142)	(0.0126)	(0.0138)	(0.0135)	(0.0147)
t+1	-0.0947*	-0.0259*	0.0106	0.0053	0.0047	0.0024	0.0018	0.0053
	(0.0509)	(0.0147)	(0.0198)	(0.0193)	(0.0197)	(0.0201)	(0.0205)	(0.0174)
t+3	-0.2847^{***}	0.0000	-0.1560***	-0.2011***	-0.2436***	-0.1492***	-3.1334^{***}	1.0165^{*}
	(0.0430)	(0.0000)	(0.0350)	(0.0463)	(0.0431)	(0.0527)	(0.2407)	(0.5277)
Observations	4,865	4,865	3,244	3,244	3,244	3,244	3,244	12,173
R-squared	0.4234	0.3703	0.5567	0.5477	0.5409	0.5473	0.5467	0.4612
Mun. FEs	>	>	>	>	>	>	>	>
Year. FEs	>	>	>	>	>	>	>	>
$Controls^b$	>	>	>	>	>	>	>	>
Cohort weighted	>	>	>	>	>	>	>	>
Reform average effect	-0.1031^{***}	-0.0242	0.0094	0.0133	0.0121	0.0109	0.0111	0.0143
SE (average effect)	(0.0225)	(0.0162)	(0.0080)	(0.0120)	(0.0117)	(0.0122)	(0.0123)	(0.0114)

Notes: Coefficients show IW estimators following ?. Relative time periods prior to t-2 do not exist and lag 1 is removed to avoid collinearity problems noted by 2 and serves as the reference period. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; *** 5%; and ** 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 11. Party Alignment Total Interaction Effects

Dependent variable: Signature of the control of the	gning Security	Cooperation A	greement
Party Alignment:			w/ Governor from PRI
	(1)	(2)	(3)
t-7	-0.2389^*	-0.0747^{**}	0.0000
	(0.1375)	(0.0291)	(0.0000)
t-6	-0.0810	0.0004	-0.0442
	(0.0881)	(0.0509)	(0.0467)
t-5	-0.1180	-0.2348**	-0.2752^{***}
	(0.1032)	(0.0973)	(0.0949)
t-4	0.0631	-0.1337	-0.1757
	(0.1496)	(0.1292)	(0.1304)
t-3	0.3430**	0.2040**	0.1615**
	(0.1627)	(0.0790)	(0.0781)
t-2	0.0052	-0.0577	0.0503
	(0.1546)	(0.1227)	(0.1548)
Reform $(t=0)$	-0.1667	-0.2601^*	0.1288
	(0.1884)	(0.1297)	(0.1236)
t+1	-0.2121	-0.6036^{***}	-0.0941
	(0.1912)	(0.2122)	(0.1633)
t+2	-0.1075	-0.5550**	-0.5689**
	(0.2467)	(0.2671)	(0.2763)
t+3	-0.2125	-0.4193	-0.4864
	(0.2204)	(0.3757)	(0.3788)
Observations	12,173	12,173	12,173
R-squared	0.4557	0.4570	0.4551
Mun. FEs	\checkmark	\checkmark	✓
Year. FEs	\checkmark	\checkmark	\checkmark
$Controls^b$	\checkmark	\checkmark	\checkmark
Cohort weighted	\checkmark	\checkmark	\checkmark
Reform average effect	-0.1339	-0.1710*	-0.0799
SE (average effect)	(0.1306)	(0.0895)	(0.0656)

Notes: Coefficients show IW estimators following?. Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to signing a security cooperation agreement with any of the following actors. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 12. Reform interaction with citizens' preferences

Marines (8)	0.0788	0.0038	(0.0413) -0.5789	(0.3456)	-0.4918 (0.6697)	-0.1128	(0.7221)	-0.4018	(0.4479)	-0.8450	(0.5361)	-1.8923**	(0.6934)	-1.8294^{**}	(0.6810)	-0.9525	(1.1245)	12,173	0.4666	>	>	>	>	-0.4837* (0.2374)
Army (7)	0.1093*	0.0234	(0.0413) $-0.6699**$	(0.3135)	-0.3788 (0.5581)	0.1189	(0.6286)	-0.4240	(0.3186)	-0.4517	(0.4624)	-1.5411**	(0.6971)	-1.2009	(0.7654)	0.0385	(1.1601)	12,173	0.4666	>	>	>	>	-0.4636 (0.4248)
Federal Ministerial Police (6)	0.1162	-0.0538	(0.0379) -1.3845***	(0.2852)	-1.2390 (1.0418)	-0.8293	(1.1144)	-0.3460	(0.7851)	-0.8582	(0.7679)	-1.8551*	(0.9450)	-3.3031^{***}	(0.6820)	-1.1886	(1.2863)	12,173	0.4719	>	>	>	>	-0.2614^{**} (0.1107)
Federal Police (5)	0.0908	0.0056	(0.0390) $-0.8583**$	(0.3310)	-1.0907 (0.7492)	-0.6963	(0.8562)	-0.6132	(0.4795)	-1.2945**	(0.5674)	-2.4944^{***}	(0.7475)	-2.2753^{***}	(0.7941)	-0.9980	(1.4571)	12,173	0.4642	>	>	>	>	-0.5739^{**} (0.2673)
w/ Governor State State Attorney Police (4)	0.1269	-0.0566	(0.0457) -1.3248	(0.9127)	-1.8134 (1.3211)	-1.8474	(1.3390)	-0.6193	(0.8964)	-0.3590	(1.1629)	-1.3448	(1.4393)	-4.0615***	(1.1352)	-1.9755^{*}	(1.0802)	12,173	0.4673	>	>	>	>	-0.2984^{**} (0.1455)
Signing Security Cooperation Agreement w/ Governor Municipal State Traffic Preventive State Police State Attorne (1) (2) (3) (4)	0.1737	-0.0415	(0.0539) -0.7754	(0.6290)	-0.8334 (0.7594)	-0.4855	(0.7510)	-0.2886	(0.4176)	-0.5433	(0.4116)	-1.3877**	(0.6053)	-1.9022**	(0.8555)	-0.9653	(0.7908)	12,173	0.4675	>	>	>	>	-0.3431^{**} (0.1594)
ty Cooperati cipal Preventive (2)	0.0000	-0.0601	(0.0481) -0.2958	(0.2471)	-0.4847 (0.7828)	-0.2255	(0.8597)	-0.2669	(0.5922)	0.1161	(0.4974)	-0.2187	(0.5769)	-1.6314**	(0.6872)	-1.5280	(1.1456)	12,173	0.4641	>	>	>	>	-0.2053 (0.1633)
gning Security Cc Municipal Traffic Prev	0.1781	-0.0459	(0.0801) -0.8924***	(0.2538)	-0.8378 (0.7686)	-0.0583	(0.8134)	0.0349	(0.5384)	-0.4445	(0.4490)	-0.9837	(0.5947)	-1.8509***	(0.5939)	-0.1382	(1.1166)	12,173	0.4666	>	>	>	>	-0.1400 (0.0944)
Dependent variable: Si, Jurisdiction: Trust in Police Force:	t-7	t-6	t-5		t-4	t-3		t-2		Reform $(t=0)$		t+1		t+2		t+3		Observations	R-squared	Mun. FEs	Year. FEs	$Controls^b$	Cohort weighted	Reform average effect SE (average effect)

Notes: Coefficients show IW estimators following ?. Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by ?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 196; *** 596; and ** 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 13. Reform interaction with citizens' being able to identify a Police Force

Dependent variable: Si Jurisdiction:	gning Secu Mun	Security Coopera Municipal	tion Agreeme	igning Security Cooperation Agreement w/ Governor Municipal State		Federal		
Identify Policy Force:	Traffic (1)	Preventive (2)	State Police (3)	State Attorney Police (4)	Federal Police (5)	Ministerial Police (6)	Army (7)	Marines (8)
t-7	-0.8572	0.1007	0.0649	0.0783	-2.5321***	0.0632	-1.4640^{*}	0.0539
t-6	(0.6544) -0.2641	(0.0978) 0.0248	(0.0611) 0.0135	(0.0697) 0.0056	(0.8962) -0.7692^{***}	(0.0550) -0.0035	(0.8372) -0.4466^*	(0.0455) 0.0092
t-5	(0.2039) -0.4097	(0.0609) -0.0652	(0.0467) 0.6451	(0.0441) 0.1762	(0.2696) $-1.1340**$	(0.0413) -0.7691***	(0.2577) -0.8805	(0.0423) -0.3720
1-4	(0.3986) 0.3350	(0.3080) 0.1050	(0.3960) 0.7461	(0.4004) -0.0893	(0.4306) -1.6040^{***}	(0.2589) -0.2211	(0.5274) -0.7589	(0.2421) -0.3294
t-3	(0.5455) 0.8549	(0.5451) 0.3354	(0.4774) $0.8618*$	(0.6583) -0.1098	(0.5716) $-1.2530**$	(0.7553) 0.2973	(0.8538) -0.3261	(0.4995) -0.0407
t-2	(0.5572) -0.0741	(0.6384) 0.0173	(0.5038) 0.3106	(0.7313) -0.0035	(0.6065) -1.1572^{**}	(0.8187) -0.2290	(0.8829) -0.7416	(0.5638) -0.3552
Reform $(t=0)$	(0.3985) 0.0965	(0.3426) -0.3095	(0.3583) -0.6740	(0.4741) -0.0176	(0.4705) -1.7122^{***}	(0.5458) -0.3017	(0.5501) -0.8230	(0.3444) -0.7614
t+1	(0.3746) 0.1452	(0.5580) -0.8415	(0.5072) -0.5733	(0.5448) -0.5894	(0.5196) -1.1449^{**}	(0.5185) -1.2316	(0.5125) -0.8753	(0.4724) -1.6442^{***}
t+2	(0.4015) 0.4499	(0.7920) -0.7212	(0.6386) 0.0862	$(0.7035) \\ -1.4956** \\ (0.7935)$	(0.4877) -0.5687	(0.7296) $-1.6626**$	(0.5560) -0.4091	(0.5433) $-1.5000**$
t+3	(0.3760) 1.1277 (0.9218)	(0.7799) -0.5739 (1.2931)	(0.6272) -0.6702 (0.9352)	(0.7215) -1.2519 (1.0598)	(0.5955) -1.7933 (1.0758)	(0.6266) 0.0623 (1.0916)	(0.6311) -0.5981 (0.9325)	(0.5652) -1.0885 (0.9434)
Observations R-squared	12,173 0.4688	12,173 0.4599	12,173 0.4659	12,173 0.4658	12,173 0.4624	12,173 0.4783	12,173 0.4645	12,173 0.4655
Mun. FEs Year. FEs	>>	>>	>>	> >	> >	> >	>>	>>
Controls ⁶ Cohort weighted	>>	>>	>>	> >	>>	> >	>>	>>
Reform average effect SE (average effect)	0.3037 (0.3233)	-0.4471 (0.6044)	-0.2964 (0.3716)	-0.3087 (0.2401)	-0.7782** (0.2868)	-0.2768 (0.2411)	-0.5017 (0.4665)	-0.5781^{**} (0.2669)

Notes: Coefficients show IW estimators following ? Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by ?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; *** 5%; and ** 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 14. Reform interaction with citizens' efficiency evaluation of police forces

Dependent variable: Signing Security Cooperation Agreement w/ Governor Jurisdiction: Municipal State State Efficiency Policy Force: Traffic Preventive State Police State Attorn (1) (2) (3)	ning Security Coo Municipal Traffic Prev (1)	y Cooperatio icipal Preventive (2)	n Agreement State Police (3)	w/ Governor State State Attorney Police (4)	Federal Police (5)	Federal Ministerial Police (6)	Army (7)	Marines (8)
	0.1495	0.0000	0.1580	0.1178	0.0821	0.1125	0.0996	0.0723
	-0.0430	-0.0600	(0.1237) -0.0408	-0.0550	0.0050	-0.0539	0.0392	0.0031
	(0.0554)	(0.0481)	(0.0487)	(0.0432)	(0.0413)	(0.0372)	(0.0432)	(0.0431)
	-0.8214^{***} (0.2173)	-0.2661 (0.2280)	-0.6765 (0.5991)	-1.0574 (0.8293)	-0.8511^{**} (0.3265)	-1.3151^{***} (0.2946)	-0.6265^{*} (0.3331)	-0.5477 (0.3312)
	-0.5218	-0.3094	-0.6839	-1.4607	-1.0699	-1.1764	-0.3632	-0.4794
	(0.6322)	(0.6711)	(0.7109)	(1.2102) -1 55.91	(0.6659) -0.6947	(0.9647) -0.7613	(0.5751)	(0.6316)
	(0.6633)	(0.7380)	(0.6994)	(1.2330)	(0.7686)	(1.0338)	(0.6450)	(0.6843)
	0.1301	-0.1088	-0.2605	-0.4476	-0.6274	-0.3362	-0.4306	-0.4001
	(0.4219)	(0.5170)	(0.3883)	(0.8207)	(0.4341)	(0.7275)	(0.3376)	(0.4258)
	-0.2825	0.2132	-0.4068	-0.1690	-1.2332**	-0.6252	-0.4515	-0.8273
	(0.3771)	(0.4424)	(0.3661)	(1.0199)	(0.5445)	(0.7224)	(0.4956)	(0.5171)
	-0.8544	-0.1639	-1.2047**	-1.0867	-2.4180***	-1.5837*	-1.5141^{**}	-1.8447***
	(0.5069)	(0.5180)	(0.5515)	(1.2521)	(0.7203)	(0.9025)	(0.7243)	(0.6586)
	-1.6548***	-1.5020**	-1.7252^{**}	-3.6912^{***}	-2.2110***	-3.0680***	-1.1837	-1.7816**
	(0.5166)	(0.6272)	(0.8167)	(1.0720)	(0.7669)	(0.6529)	(0.7910)	(0.6492)
	-0.0738	-1.2495	-0.8880	-1.8369*	-1.0878	-1.0650	-0.0721	-1.0091
	(0.9252)	(1.0025)	(0.7675)	(1.0415)	(1.3469)	(1.1792)	(1.2083)	(1.0552)
	12,173	12,173	12,173	12,173	12,173	12,173	12,173	12,173
	0.4692	0.4656	0.4672	0.4675	0.4642	0.4725	0.4667	0.4667
	>	>	>	>	>	>	>	>
	>	>	>	>	>	>	>	>
	>	>	>	>	>	>	>	>
Cohort weighted	>	>	>	>	>	>	>	>
Reform average effect	-0.1373	-0.1957	-0.3432^{*}	-0.2914^*	-0.6190^{**}	-0.2679**	-0.5001	-0.5024^{**}
or (average cireet)	() + () ()	() () ()	(/ 0 / 7 · 0)	(0017:0)	(/0/13:0)	(0:17:0)	(0.101.0)	(, , , , , , ,)

Notes: Coefficients show IW estimators following ?. Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by ?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 196; *** 596; and ** 1096, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

TABLE 15. Reform interaction with citizens' corruption evaluation of police forces

Dependent variable: Signing Jurisdiction: Corruption of Police Forces:	Security Coopera Municipal Traffic Prev	peration Agripal Preventive (2)	Security Cooperation Agreement w/ Governor Municipal State Traffic Preventive State Police State A (1) (2) (3)	overnor State State Attorney Police (4)	Federal Police (5)	Federal Ministerial Police (6)	Army (7)	Marines (8)
t-7	0.1477	0.0419	0.0402	-0.0324	-0.0147	-0.0933	-0.0543	-0.1444
1. 6	(0.2864)	(0.3087)	(0.2813) -0.0013	(0.0946) -0.0258	(0.3434) -0.0133	(0.0782) -0.0488	(0.1059)	(0.1083) -0.0432
	(0.0796)	(0.1139)	(0.1017)	(0.0568)	(0.1316)	(0.0524)	(0.0622)	(0.0617)
t-5	-0.1338	-0.0973	-0.1177	-0.9190^{***}	-0.2156	-0.8364^{***}	0.4054**	0.4021^{**}
t-4	-1.3881^{***}	-0.8179	-1.1187***	-1.3964^{***}	-0.7440	-1.2269***	0.0944	0.3231
,	(0.3821)	(0.5316)	(0.3690)	(0.3654)	(0.5666)	(0.3341)	(0.3531)	(0.4236)
7. 3	-1.6818***	-0.9104	-1.2935***	-1.1282^{***}	-0.7637 (0.6363)	-1.0065***	0.0275	0.2564
t-2	-0.2879	-0.2198	-0.2301	-0.5050 -0.9068***	-0.2657	-0.7393^{***}	0.3265	0.3743
	(0.2474)	(0.2868)	(0.2681)	(0.1970)	(0.2943)	(0.1573)	(0.2314)	(0.2279)
Reform $(t=0)$	-2.2651^{***}	-1.5561^{***}	-1.9299***	-1.0484^{***}	-1.3274^{**}	-0.9674^{***}	-0.8107***	-0.6875***
	(0.2832)	(0.5290)	(0.2479)	(0.1614)	(0.5851)	(0.1417)	(0.2515)	(0.2343)
t+1	-3.1112^{***}	-2.2160***	-2.6228***	-2.6054^{***}	-1.9768***	-2.2670^{***}	-0.5640**	-0.3577
	(0.3902)	(0.6501)	(0.3255)	(0.2394)	(0.6995)	(0.2017)	(0.2557)	(0.2419)
t+2	-3.0152***	-1.9965***	-2.4536***	-2.5539***	-1.7638**	-2.2646***	-0.2627	-0.0623
	(0.3961)	(0.6063)	(0.2654)	(0.2049)	(0.6524)	(0.1648)	(0.2654)	(0.2224)
t+3	-4.9633***	-3.2615***	-4.0463***	-2.4673***	-2.5721^{**}	-2.2158***	-1.2288**	-0.9278**
	(0.5220)	(1.0612)	(0.3194)	(0.2057)	(1.1755)	(0.1413)	(0.4848)	(0.4028)
Observations	12,173	12,173	12,173	12,173	12,173	12,173	12,173	12,173
R-squared	0.4593	0.4572	0.4598	0.4623	0.4636	0.4599	0.4632	0.4586
Mun. FEs	>	>	>	>	>	>	>	>
Year. FEs	>	>	>	>	>	>	>	>
$Controls^b$	>	>	>	>	>	>	>	>
Cohort weighted	>	>	>	>	>	>	>	>
Reform average effect	-4.0564***	-2.8579***	-3.5587***	-2.5851^{***}	-2.2583**	-2.3551^{***}	-0.6132**	-0.4725^{*}
SE (average effect)	(0.4611)	(0.8900)	(0.3522)	(0.2217)	(0.9100)	(0.1739)	(0.2536)	(0.2396)

Notes: Coefficients show IW estimators following? Two relative time periods (lag 8 and 1) are removed to avoid collinearity problems noted by? Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and ** 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Refers to security cooperation agreements signed with the Governor. ^b Pretreatment controls include: governor winning margin; party alignment with the Governor; municipal winning margin; logged population; logged organized crime related deaths; and Cartel presence.

6.4. Unintended consequences

A. Preferences

TABLE 16. Effect of 2014 Term Limit Reform on Citizens Preferences

Dependent variable: topic that worries the mos Narcotraffic Insecurity (1) (2)	opic that worries the mos Narcotraffic Insecurity (1) (2)	ies the most Insecurity (2)	Punishment to criminals (3)	Corruption (4)	Poverty (5)	Unemployment (6)	Inflation (7)	Natural Disasters (8)	Water Scarcity (9)	Education (10)	Health (11)
-	0.0190***	0.0218**	-0 0088	0.0140**	***8980-0-	0.0120	-0.0150	-0.0121***		0.0106***	-0.0087***
)	(0.0066)	(0.0085)	(0.0121)	(0.0000)	(0.0118)	(0.0156)	(0.0103)	(0.0021)	(0.0066)	(0.0013)	(0.0022)
t-5	0.0073***	0.0167**	0.0062	0.0015	-0.0186***	0.0143*	9900.0—	-0.0059**	_	0.0011	-0.0090**
	(0.0012)	(0.0062)	(0.0063)	(0.0018)	(0.0062)	(0.0074)	(0.0065)	(0.0025)		(0.0000)	(0.0034)
t-4	-0.0034	0.0921**	0.0218	-0.0048	-0.0447	0.0106	-0.0432*	-0.0055		0.0089	-0.0492**
	(0.0083)	(0.0380)	(0.0247)	(0.0142)	(0.0274)	(0.0233)	(0.0224)	(0.0043)		(0.0052)	(0.0189)
t-3	0.0439**	0.0727	-0.0033	-0.0143	-0.0275	0.0254	-0.0204	0.0015		0.0071	-0.0536**
	(0.0182)	(0.0566)	(0.0210)	(0.0202)	(0.0438)	(0.0332)	(0.0152)	(0.0116)		(0.0172)	(0.0227)
t-2	0.0280	0.0144	0.0304	-0.0195	-0.0253	0.0266	0.0435***	0.0121		-0.0306*	-0.0623*
	(0.0219)	(0.0496)	(0.0195)	(0.0216)	(0.0420)	(0.0211)	(0.0143)	(0.0159)		(0.0157)	(0.0314)
Reform, $t=0$	0.0021	0.0267***	0.0206***	0.0012	-0.0187***	-0.0355***	0.0034	-0.0016		-0.0091**	0.0017
	(0.0050)	(0.0072)	(0.0037)	(0.0044)	(0.0063)	(0.0051)	(0.0056)	(0.0026)		(0.0039)	(0.0053)
t+1	0.0165**	0.0427***	0.0270***	0.0126***	-0.0392***	-0.0803***	0.0520***	0.0093		-0.0189***	-0.0329***
	(0.0071)	(0.0112)	(0.0037)	(0.0045)	(0.0097)	(0.0058)	(0.0075)	(0.0074)		(0.0046)	(0.0071)
t+2	0.0227**	0.0785***	0.0400***	*6200.0	-0.0405***	-0.1023***	0.0172*	*6600.0		-0.0283***	-0.0323***
	(0.0086)	(0.0108)	(0.0050)	(0.0042)	(0.0108)	(0.0087)	(0.0093)	(0.0050)		(0.0062)	(0.0058)
t+3	0.0182	0.0837***	0.0828***	-0.0081	-0.0397**	-0.1094***	-0.0357***	0.0048*		-0.0275***	-0.0152
	(0.0134)	(0.0151)	(0.0098)	(0.0080)	(0.0169)	(0.0177)	(0.0064)	(0.0025)		(0.0092)	(0.0109)
Observations	11,353	11,353	11,353	11,353	11,353	11,353	11,353	11,353	11,353	11,353	11,353
R-squared	0.8662	0.8556	0.9239	0.8767	0.8549	0.8954	0.8557	0.7008	0.8419	0.8048	0.8799
Mun. FEs	>	>	>	>	>	>	>	>	>	>	>
Year. FEs	>	>	>	>	>	>	>	>	>	>	>
$Controls^b$	>	>	>	>	>	>	>	>	>	>	>
Cohort weighted	>	>	>	>	>	>	>	>	>	>	>
Reform average effect	0.0149*	0.0579***	0.0426***	0.0034	-0.0345***	-0.0819***	0.0092	0.0056	0.0106**	-0.0209***	
SE (average effect)	(0.002)	(0.0030)	(0.0046)	(0.0048)	(0.0103)	(0.0085)	(0.0063)	(0.0034)	(0.0047)	(0.0055)	(0.0063)

SE (average effect) (0.0079) (0.0099) (0.0046) (0.0048) (0.0103) (0.0085) (0.0085) (0.0083) (0.0034) (

B. Violence

TABLE 17. Effect of 2014 Term Limit Reform on Violence

Dependent variable:		
_ ·F	log(homicide per capita)	IHS(homicide per capita) ^a
	(1)	(2)
Lag 6 years	0.0119	-0.1702
	(0.0195)	(0.1061)
Lag 5 years	-0.0480	0.0381
	(0.0357)	(0.0856)
Lag 4 years	0.0403	-0.0440
	(0.1012)	(0.2077)
Lag 3 years	0.0167	-0.0015
	(0.0581)	(0.1098)
Lag 2 years	-0.0288	-0.1734
	(0.0498)	(0.1098)
Reform, time 0	0.0024	0.0067
	(0.0324)	(0.0583)
Lead 1 year	0.0719^*	0.0168
	(0.0401)	(0.0692)
Lead 2 years	0.1420***	0.1814**
	(0.0465)	(0.0761)
Lead 3 years	0.1890^*	0.2805^{*}
	(0.0993)	(0.1481)
Observations	12,173	12,173
R-squared	0.7267	0.5330
Mun. FEs	\checkmark	\checkmark
Year. FEs	\checkmark	\checkmark
$Controls^b$	\checkmark	\checkmark
Cohort weighted	\checkmark	\checkmark
Aggregate effect	0.1013**	0.1213^*
SE (aggregate eff.)	0.0442	0.0687
Standardize Aggregate effect	0.1036**	0.0662*
Standardize SE (aggregate eff.)	0.0452	0.0375

Notes: Coefficients show IW estimators following ?. Two relative time periods (lag 8 and 0) are removed to avoid collinearity problems noted by ?. Standard errors in parentheses are clustered at the state level, with the following significance-level: *** 1%; ** 5%; and * 10%, that refer to two-sided t-test with the null hypothesis equal to 0 for each relative time period. ^a Inverse hyperbolic sine transformation. ^b Pretreatment controls include: governor winning margin; party alignment with the President; party alignment with the Governor; municipal winning margin; and Cartel presence.

FIGURE 18. Effect of Term Limit Reform on Violence, propensity score matching on pretreatment covariates

Estimated Effects of Treatment Over Time

Note: Figure **??** produced by propensity score matching that adjust for the treatment and covariate histories during the 5 year periods prior to the treatment. I report 95% bootstrap confidence intervals clustered at the state level. Covariates include those used to generate Figure **??**.