IN THE CLAIMS

Following is a complete set of claims as amended with this response, which includes amendments to claims 1, 9, 17, and 25.

	. .	
1	1. (currently	amended) A method for scheduling traffic in a network, the
2	method comprising:	
3	dividing a hardw	are schedule table into N logical schedule tables, the N logical
4	schedule tables being sep	arated by table delimiters and operating independently of one
5	another; and	
6	assigning an iden	tivitier in a scheduling table, the scheduling table being one of the N
7	logical schedule tables, t	he identifier corresponding to a connection in the network.
		1

- 1 2. (original) The method of claim 1 wherein each of the table delimiters 2 corresponds to at least one unused entry in the hardware schedule table.
 - 3. (original) The method of claim 2 wherein each of the N logical schedule tables corresponds to a class of service.
- 4. (original) The method of claim 1 wherein assigning comprises:
 determining if a first entry requested by the network for the identifier is occupied;
 and
 assigning the identifier to a second entry if the first entry is occupied, the second
- 5. (original) The method of claim 4 further comprising:
 assigning the identifier to the first entry if the first entry is available for occupancy.
- 6. (original) The method of claim 5 further comprising:
 assigning the identifier to a third entry if the second entry coincides with one of the
 table delimiters, the third entry being a next available entry found from a beginning of the
 scheduling table.

1

2

5

entry being available for occupancy.

1	7.	(original) The method of claim 6 wherein the network is an asynchronous
2	mode transfe	r (ATM) network.
1	8.	(original) The method of claim 7 wherein the identifier is a virtual channel
2	identifier.	
1	9.	(currently amended) A computer program product comprising:
2	a com	puter usable medium having computer program code embodied therein to
3	schedule traffic in a network, the computer program product having:	
4	comp	uter readable program code for dividing a hardware schedule table into N
5	logical sched	ule tables, the N logical schedule tables being separated by table delimiters
6	and operating	g independently of one another; and
7	comp	uter readable program code for assigning an identifier in a scheduling table,
8	the schedulin	g table being one of the N logical schedule tables, the identifier corresponding
9	to a connection	on in the network.
1	10.	(original) The computer program product of claim 9 wherein each of the
2	table delimite	ers corresponds to at least one unused entry in the hardware schedule.
1	11.	(original) The computer program product of claim 10 wherein each of the N
2	logical sched	ule tables corresponds to a class of service.
1	12.	(original) The computer program product of claim 9 wherein the computer
2	readable prog	gram code for assigning comprises:
3	comp	uter readable program code for determining if a first entry requested by the
4	network for the identifier is occupied; and	
5	computer readable program code for assigning the identifier to a second entry if the	
6	first entry is o	occupied, the second entry being available for occupancy.
		1

13.

1

(original) The computer program product of claim 12 further comprising:

2	computer readable program code for assigning the identifier to the first entry if the		
3	first entry is available for occupancy.		
1	14. (original) The computer program product of claim 12 wherein the computer		
2	readable program code for assigning further comprising:		
3	computer readable program code for assigning the identifier to a third entry if the		
4	second entry coincides with one of the table delimiters, the third entry being a next		
5	available entry found from a beginning of the scheduling table.		
1	15. (original) The method of claim 14 wherein the network is an asynchronous		
2	mode transfer (ATM) network.		
1	16. (original) The method of claim 15 wherein the identifier is a virtual channel		
2	identifier.		
1	17. (currently amended) A system comprising:		
2	a network interface bus;		
3	a physical interface device coupled to the network interface bus to request a		
4	connection by an identifier; and		
5	a network processor coupled to the network interface bus having at least a hardware		
6	schedule table to schedule traffic in the network, the at least hardware schedule table being		
7	divided into N logical schedule tables separated by table delimiters and operating		
8	independently of one another, the identifier being assigned in one of the N logical schedule		
9	tables.		
1	18. (original) The system of claim 17 wherein each of the table delimiters		
2	corresponds to at least one unused entry in the hardware schedule table.		
1	19. (original) The system of claim 18 wherein each of the N logical schedule		

081862.P149 App. No. 09/451,196

2

tables corresponds to a class of service.

4

1	20. (original) The system of claim 17 wherein the identifier is assigned to a	
2	second entry if a first entry requested by the network for the identifier is occupied, the	
3	second entry being available for occupancy.	
1	21. (original) The system of claim 20 wherein the identifier is assigned to the	
2	first entry if the first entry is available for occupancy.	
1	22. (original) The system of claim 20 wherein the identifier is assigned to a	
2	third entry if the second entry coincides with one of the table delimiters, the third entry	
3	being a next available entry found from a beginning of the scheduling table.	
1	23. (original) The system of claim 22 wherein the network is an asynchronous	
2	mode transfer (ATM) network.	
1	24. (original) The system of claim 23 wherein the identifier is a virtual channel	
2	identifier.	
1	25 (augustly an and ad) A system commissions:	
1	25. (currently amended) A system comprising:	
2	a processor;	
3	a network processor coupled to the processor, the network processor having a	
4	scheduler for scheduling traffic in a network using a hardware schedule table; and	
5	a memory coupled to the processor to store a program, the program, when executed	
6	by the processor, causing the processor to:	
7	divide the hardware schedule table into N logical schedule tables separated	
8	by table delimiters and operating independently of one another, and	
9	assign an identifier in a scheduling table, the scheduling table being one of	
10	the N logical schedule tables, the identifier corresponding to a connection in the	
11	network.	
1	26. (original) The system of claim 25 wherein each of the table delimiters	

2

corresponds to at least one unused entry in the hardware schedule table.

l	27. (original) The system of claim 26 wherein the scheduler assigns the	
2	identifier to a second entry if a first entry requested by the network for the identifier is	
3	occupied, the second entry being available for occupancy.	
1	28. (original) The system of claim 27 wherein the program, when causing the	
2	processor to assign the dentifier in the scheduling table, causing the processor to:	
3	assign the identifier to a third entry if the second entry coincides with one of the	
4	table delimiters, the third entry being a next available entry found from a beginning of the	
5	scheduling table.	
1	29. (original) The system of claim 28 wherein the network is an asynchronous	
2	transfer mode (ATM) network.	
1	30. (original) The system of claim 29 wherein the identifier is a virtual channel	
2	identifier.	
1	31. (original) The system of claim 30 wherein the network processor is a	
2	segmentation and reassembly processor.	