

The incident ray, the reflected ray, and the normal all lie in the same plane, and 
$$\theta_1' = \theta_1$$
.

Normal Reflected ray  $\theta_1' = \theta_1'$ 

ANGLES MEASURED W.RT. THE MORMAL

ray 
$$\theta_1$$
  $\theta_1'$ 

- V DELREASE WHILE ENTERING MEDIUM 2, THE ANGLE FROM THE NORMAL DECREASE
- IN GREASE WHILE ENTERING MEDIUM 2, THE ANGLE FROM THE NORMAL INGREASE

TOTAL INTERNAL REFRACTION: 82:90 - NA SEN 0, = N2

# IMAGE FORMATION

P: 08 JECT DISTANCE

9: IMAGE DISTANCE

IT AFFEARS FROM THE "FROMT "
CONNECTION OF THE RAY

VIRTUAL IMAG

IT APPEARS FROM THE "BROK"

Because the triangles PQR and P'QR are congruent, |p| = |q| and h = h'.



THE IMAGE. FROM A FLAT MIRROR IS ALWAYS VIRTUAL

## CONVEX MIRROR



THE IMAGE IS A CWRYS VIRTUAL, UPRIGHT

#### concave mirror



THE IMAGE IS REAL, INVERTED AND
SMALLER THAN THE OBJECT



THE IMAGE IS VIRTUAL, UPRIGTH AND BIGGER THAN THE DEJECT

### SIGN CONVENTION

#### TABLE 35.1 Sign Conventions for Mirrors

| Quantity                            | Positive When                               | Negative When                                   |
|-------------------------------------|---------------------------------------------|-------------------------------------------------|
| Object location (p)                 | object is in front of mirror (real object). | object is in back of mirro<br>(virtual object). |
| Image location (q)                  | image is in front of mirror (real image).   | image is in back of mirro (virtual image).      |
| Image height (h')                   | image is upright.                           | image is inverted.                              |
| Focal length $(f)$ and radius $(R)$ | mirror is concave.                          | mirror is convex.                               |
| Magnification (M)                   | image is upright.                           | image is inverted.                              |

## TABLE 35.2 Sign Conventions for Refracting Surfaces

| Quantity              | Positive When                                | Negative When                                  |
|-----------------------|----------------------------------------------|------------------------------------------------|
| Object location $(p)$ | object is in front of surface (real object). | object is in back of surface (virtual object). |
| Image location $(q)$  | image is in back of surface (real image).    | image is in front of surface (virtual image).  |
| Image height $(h')$   | image is upright.                            | image is inverted.                             |
| Radius (R)            | center of curvature is in back of surface.   | center of curvature is in front of surface.    |

$$\frac{N_1}{P} + \frac{N_2}{Q} = \frac{N_2 - N_1}{R}$$

EN'S MARRER EQUATION: 
$$\frac{1}{5} = \left(\frac{NL}{NM}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

AMOUNT OF REFLECTED LIGHT: 
$$R = \left(\frac{N_2 - N_4}{N_2 + N_4}\right)^2$$