Stellar Mass-to-Light Ratios and the Tully-Fisher Relation

Bell and De Jong 2001

Why M/L?

- Relates photometry to dynamics
- Direct impact on
 - Rotation curve decomposition
 - Passband-dependent slope of Tully-Fisher relation

Why M/L?

- Rotation curve decomposition
- Can determine structure of dark matter halo if we understand contributions of
 - gas (well understood and small)
 - stars (not well understood and big)

- Tully-Fisher relation
- Relates integrated luminosity to global dynamics of galaxy + dark matter halo
- $L \sim V^3$ in optical
- $L \sim V^4$ in near-IR
- Possible to reproduce T-F in one passband without reproducing other passbands
 - Baryonic mass T-F

Galaxy Evolution Models

- Assumptions
 - Disk-dominated galaxies
 - Instantaneous recycling approximation (IRA)
 - SPS models of Bruzual & Charlot (2001)
 - Salpeter IMF (scaled down M/L by 0.7 to agree with observations)
 - Masses between 0.2 and 125 M_{sun}
 - Exponential gas disk with either Schmidt (1959) or Kennicutt (1998) star formation law

Galaxy Evolution Models

- 1) Closed-box, no gas infall or outflow, 12 Gyr, Schmidt law
- 2) + gas infall
- 3) + metal-enriched outflow
- 4) Kennicut law (no infall or outflow)
- 5) Mass-dependent galaxy formation epoch with no infall or outflow
- 6) "Burst", mass-dependent galaxy formation epoch, no infall or outflow, SFR varies on 0.5 Gyr scale with lognormal distribution of width 2 ← default model, best reproduces observations

How to construct galaxy model?

- SPS
- Convert into solar units
- Use IRA to construct stellar masses (instead of full gas mass-loss histories from SPS)
 - Error < 5%

Figure 1
Open circle – B
Filled circle – K
Arrows – dust
extinction vectors

Important points

- Significant trends in all passbands
 - Factors of \sim 7 in B, \sim 3 in I, \sim 2 in K \rightarrow K-band important for observations where you want to minimize M/L scatter
- For all models, in all optical and near-IR passbands M/L correlates strongly with galaxy color
- Assuming universal IMF, "workers determining the stellar M/L ratios of spiral galaxies will [...] observe trends in stellar M/L ratio that correlate most tightly with galaxy color."
- Color gradients in spiral galaxies → significant gradients in stellar M/L (outer regions have lower M/L that inner regions)

Color-M/L Correlation

- SPS with different metallicities from Bruzual and Charlot
- Exponentially declining SFR
 - Parametrized by e-folding timescale τ
 - M/L computed after lifetime of 12 Gyr
- Strong correlation between B-R color and M/L ratio independent of metallicity or SFH

Figure 2 Solid line – different τ , same metallicity Dashed line – same τ , different metallicity

SPS uncertainties

- Salpeter IMF, solar metallicity τ models in B and K band
- Bruzual & Charlot (solid line)
- Kodama & Arimoto (dotted line)
- Schulz, Fritze-von Alvensleben, Fricke (shortdashed line)
- Fioc & Rocca-Volmerange (long-dashed line)
- Conclusion: similar slopes and zero points for M/Lcolor relation

IMF effect

- Bruzual & Charlot
 - + Salpeter IMF (solid line)
 - + modified Salpeter IMF with x=0 below 0.6 M_{sun} (dotted line)
 - + Scalo IMF (dashed line)
- Fioc & Rocca-Volmerange
 - + x=-1.85 IMF (long-dashed line)
 - + x=-0.85 IMF (short-dashed line)
- Slopes are independent of IMF

Galaxy evolution uncertainties

- All 6 models are consistent, age change of ± 3 Gyr
 → M/L change of ± 0.05 dex [check Appendix]
- What about larger bursts?
 - 10% mass fraction added in 0.5 Gyr starbursts
 - Larger effect on red earlier type galaxies
 - Bias M/L ratio to lower values at a give color
 - Unlikely to occur and likely to be selected against in sample selection

Galaxy evolution uncertainties

Uncertainties summary

- Color-M/L is robust in relative sense (within passband and between passbands) provided there is no change in IMF
- Model, galaxy evolution, small bursts, dust \rightarrow 0.1-0.2 dex or less
- IMF gives the largest uncertainty
 - IMFs in literature give uncertainties in absolute normalization of at least a factor of 2

Rotation curves and normalization

- Constraints from maximum disk hypothesis (stellar disk makes maximum possible contribution to rotation velocity)
- Salpeter x=-1.35 IMF overpredicts (dashed line)
- Salpeter IMF x=-1.35 with x=0 below 0.35 M_{sun} (scaling by down by factor of 0.7) (solid line)

Ursa Major Cluster

Rotation curves and normalization

- Zero-point constrained to match observations, but no reason to expect slope of model to match observations
 - Galaxies with maximum disk have similar IMFs

TABLE 1 STELLAR M/L RATIO AS A FUNCTION OF COLOR FOR THE FORMATION EPOCH MODEL WITH BURSTS, ADOPTING A SCALED SALPETER IMF

Color	a_B	b_B	a_V	b_{V}	a_R	b_R	a_I	b_I	a_J	b_J	a_H	b_H	$a_{\mathbf{K}}$	b_{K}
B-V	-0.994	1.804	-0.734	1.404	-0.660	1.222	-0.627	1.075	-0.621	0.794	-0.663	0.704	-0.692	0.652
B-R	-1.224	1.251	-0.916	0.976	-0.820	0.851	-0.768	0.748	-0.724	0.552	-0.754	0.489	-0.776	0.452
V-I	-1.919	2.214	-1.476	1.747	-1.314	1.528	-1.204	1.347	-1.040	0.987	-1.030	0.870	-1.027	0.800
V-J	-1.903	1.138	-1.477	0.905	-1.319	0.794	-1.209	0.700	-1.029	0.505	-1.014	0.442	-1.005	0.402
V-H	-2.181	0.978	-1.700	0.779	-1.515	0.684	-1.383	0.603	-1.151	0.434	-1.120	0.379	-1.100	0.345
V-K	-2.156	0.895	-1.683	0.714	-1.501	0.627	-1.370	0.553	-1.139	0.396	-1.108	0.346	-1.087	0.314

Note:— $\log_{10} (M/L) = a_{\lambda} + b_{\lambda}$ Color. Note that the stellar M/L values can be estimated for any combination of the above colors by a simple linear combination of the above fits. Note also that if all (even very high surface brightness) disks are submaximal, the above zero points should be modified by subtracting a constant from the above relations.

Tully-Fisher relation

- Relates dynamical mass to luminosity
- Limited by passband-dependent slope
 - $L \sim V^3$ in blue
 - $L \sim V^4$ in near-IR
- Possible for theory to match T-F in one passband, but not in others
- Goal is to use previous results (Table 1) to find a single, passband-independent T-F relation

Tully-Fisher relation

- Ursa Major Cluster data
- Foreground galactic extinction
- Internal extinction
- T-F shallower in bluer passbands than in near-IR

Stellar mass T-F

- Mass-dependent extinction correction
- B, R open circles
- I crosses
- K filled circles
- Passband-independent relation, consistent within ~10% rms
 - $L \sim V^{4.4 \pm 0.2}$

Stellar mass T-F

- Mass-independent extinction correction
- Almost the same as for mass-dependent extinction case
- B,R fits dotted line
- I fit dashed line
- K fit solid line

Baryonic mass T-F

• $M_{baryon} \sim V^{3.5 \pm 0.2}$

Summary

- Under several assumptions:
 - Variations in M/L correlate strongly with color
 - Low surface brightness, high gas fraction, low-luminosity galaxies have lower M/L ratios
 - Color correlation is robust to uncertainties in SP and galaxy evolution models
 - Stellar IMF is main uncertainty
- Modified Salpeter IMF best fits the observations
- Slope of stellar T-F of Ursa Major Cluster is 4.4 ± 0.2
- Slope of baryonic T-F of Ursa Major Cluster is 3.5 ± 0.2