Tarea 8

1. Muestra que que la $\frac{D\mathbf{v}}{Dt}$ también puede escribirse como:

$$\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{v^2}{2}\right) - \mathbf{v} \times (\nabla \times \mathbf{v}), \quad v^2 = \mathbf{v} \cdot \mathbf{v}$$

2. Deriva la siguiente ecuación de vorticidad para un fluido de densidad y viscosidad constantes:

$$\frac{\partial \mathbf{w}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{w} = (\mathbf{w} \cdot \nabla)\mathbf{v} + \nu \nabla^2 \mathbf{w}$$

donde $\mathbf{w} = \nabla \times \mathbf{v} \ \mathbf{v} \ \nu = \mu/\rho$.

3. Muestra que, para un flujo bidimensional de un fluido Newtoniano incompresible con ${\bf f}$ conservativa, la vorticidad ${\bf w}=\frac{1}{2}\nabla\times{\bf v}$ satisface la ecuación de difusión:

$$\rho \frac{D\mathbf{w}}{Dt} = \mu \nabla^2 \mathbf{w}$$

4. Considera un fluido ideal, donde $\sigma = -p\mathbf{I}$, y fuerza de cuerpo conservativa $\mathbf{f} = -\nabla \phi$.

a) Para flujo estacionario, demuestra que:

$$\nabla \cdot \left(\mathbf{v} \left(\frac{v^2}{2} + \phi \right) \right) + \frac{1}{\rho} \mathbf{v} \cdot \nabla p = 0$$

b) Para flujo estacionario e irrotacional (i.e., $\nabla \times \mathbf{v} = 0$), demuestra que:

$$\nabla \left(\frac{v^2}{2} + \phi\right) + \frac{1}{\rho} \nabla p = 0$$

c) Determina la velocidad y el gasto volumétrico del fluido en la salida de la boquilla en la pared del depósito mostrado en la figura ($d \ll D$, con D el diámetro del contenedor.)

