大学物理试券

一选择题(共30分)

1. (本题 3分)(5603)

已知分子总数为 N, 它们的速率分布函数为 f(v), 则速率分布在 $v_1 \sim v_2$ 区间 内的分子的平均速率为

(A)
$$\int_{v_1}^{v_2} v f(v) dv$$
.

(A)
$$\int_{v_1}^{v_2} v f(v) dv$$
. (B) $\int_{v_1}^{v_2} v f(v) dv / \int_{v_1}^{v_2} f(v) dv$.

(C)
$$\int_{v_1}^{v_2} Nv f(v) dv$$

(C)
$$\int_{v}^{v_2} Nv f(v) dv$$
. (D) $\int_{v}^{v_2} v f(v) dv / N$.

7

2. (本题 3分)(4903)

如图所示,工作物质进行 a I b II a 可逆循环过 程,已知在过程 a I b 中,它从外界净吸收的热量为 Q, 而它放出的热量总和的绝对值为 Q_2 , 过程 b II a为绝热过程;循环闭曲线所包围的面积为A.该循 环的效率为

(A)
$$\eta = \frac{A}{Q}$$

(B)
$$\eta > \frac{A}{Q}$$
.

(C)
$$\eta = \frac{A}{Q + Q_2}$$
. (D) $\eta = 1 - \frac{T_2}{T_1}$.

(D)
$$\eta = 1 - \frac{T_2}{T_1}$$

(式中 T_1 、 T_2 为a、b两点的温度)

3. (本题 3分)(4918)

根据卡诺定理,工作于两个有恒定温度的热源之间的热机,其效率

- (A) 只决定于两恒温热源的温度.
- (B) 只决定于工作物质.
- (C) 只决定于过程的可逆性.
- (D) 决定于过程的可逆性和两恒温热源的温度.

Γ ٦

4. (本题 3分)(4597)

1 mol 理想气体经过一等压过程,温度变为原来的两倍,设该气体的定压摩 尔热容为 C_n ,则此过程中气体熵的增量为:

(A)
$$\frac{1}{2}C_p$$
.

(B)
$$2C_p$$

(C)
$$C_p \ln \frac{1}{2}$$
.

(D)
$$C_p \ln 2$$
.

7

5. (本题 3分)(7932)

某一周期性振动的数学表达式为

 $x = 2a(1 + \cos \omega_0 t)\cos \omega t$ (ω = mω₀, m 整数).

该振动可以分解为三个简谐振动,它们的角频率分别为 $m\omega_0$ 、 $(m+1)\omega_0$ 和 $(m-1)\omega_0$;而其中两个简谐振动分别为 a 和 2a ,另一个简谐振动的振幅为

(A) a.

(B) 2a.

(C) 3a.

(D) 4a.

7

6. (本题 3分)(3147)

一平面简谐波沿 Ox 正方向传播,波动表达式为 $y = 0.10\cos\left[2\pi\left(\frac{t}{2} - \frac{x}{4}\right) + \frac{\pi}{2}\right]$

(SI), 该波在 t = 0.5 s 时刻的波形图是

7. (本题 3分)(3149)

一平面简谐波沿x轴正方向传播,t=0 时刻的波形图 如图所示,则P处质点的振动在t=0时刻的旋转矢量图是

Γ

$$(A) \xrightarrow{O'} S \xrightarrow{(B)} \emptyset$$

$$(C) \xrightarrow{\bar{A}} \emptyset \xrightarrow{(D)} \bigwedge_{\bar{A}} \overline{A}$$

$$(C) \xrightarrow{\bar{A}} O' > S$$

$$0' \xrightarrow{S} S$$

8. (本题 3分)(3090)

一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处 的过程中:

- (A) 它的动能转换成势能.
- (B) 它的势能转换成动能.
- (C) 它从相邻的一段质元获得能量其能量逐渐增大.
- (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [

9. (本题 3分)(5321)

 S_1 和 S_2 是波长均为 λ 的两个相干波的波源,相距 3λ /4, S_1 的相位比 S_2 超前 $\frac{1}{2}$ π. 若两波单独传播时,在过 S_1 和 S_2 的直线上各点的强度相同,不随距离变 化,且两波的强度都是 I_0 ,则在 S_1 、 S_2 连线上 S_1 外侧和 S_2 外侧各点,合成波的 强度分别是

(A) $4I_0$, $4I_0$.

(B) 0, 0.

(C) $0, 4I_0$.

(D) $4I_0$, 0.

7

10. (本题 3分)(3591)

沿着相反方向传播的两列相干波,其表达式为 $y_1 = A\cos 2\pi(vt - x/\lambda)$ π $y_2 = A\cos 2\pi(vt + x/\lambda)$.

在叠加后形成的驻波中,各处简谐振动的振幅是

(A) A.

- (B) 2A.
- (C) $2A\cos(2\pi x/\lambda)$. (D) $|2A\cos(2\pi x/\lambda)|$.

二填空题(共30分)

11. (本题 4分)(4092)

某理想气体等温压缩到给定体积时外界对气体作功|W|,又经绝热膨胀返回 原来体积时气体对外作功|W2|,则整个过程中气体

- (1) 从外界吸收的热量 Q=
- (2) 内能增加了 $\Delta E =$

12. (本题 3分)(4336)

由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果

把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度 (升

高、降低或不变), 气体的熵 (增加、减小或不变).

13. (本题 3分)(3271)

一简谐振子的振动曲线如图所示,则以余 弦函数表示的振动方程为

14. (本题 3分)(5314)

一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

$$x_1 = 0.05\cos(\omega t + \frac{1}{4}\pi)$$
 (SI), $x_2 = 0.05\cos(\omega t + \frac{3}{4}\pi)$ (SI)

其合成运动的运动方程为 x =

15. (本题 4分)(3902)

一点波源向四周发射均匀的简谐球面声波,发射功率为P,波的角频率为 ω ,波速为 ν ,周围媒质的密度为 ρ ,则在距波源r处的振幅

16. (本题 3分)(3304)

两列纵波传播方向成 90°, 在两波相遇区域内的某质点处,甲波引起的振动方程是 $y_1 = 0.3 \cos(3\pi t)$ (SI), 乙波引起的振动方程是 $y_2 = 0.4 \cos(3\pi t)$ (SI), 则

t=0 时该点的振动位移大小是 .

的振动方程为 v =

17. (本题 3分)(3444)

设沿弦线传播的一入射波的表达式是

$$y_1 = A\cos[2\pi(\nu t - \frac{x}{\lambda}) + \phi],$$

在x = L处(B点)发生反射,反射点为固定端(如图).设 波在传播和反射过程中振幅不变,则弦线上形成的驻波的

表达式为 y = _____.

18. (本题 3分)(5884)

距一点声源 10 m 处声音的声强级是 20 dB. 若不考虑声音在介质中的损耗,

则声强级为 10 dB 处距点声源的距离 r = .

10	(木顋	144	121	151
19	しノスポル	477		13

一列火车以 20 m/s 的速度行驶, 若机车汽笛的频率为 600 Hz, 一静止观测

者在机车前和机车后所听到的声音频率分别为______和

_____(设空气中声速为 340 m/s).

三 计算题 (共40分)

20. (本题10分)(4816)

一薄壁容器内贮有温度为 373 K 的水银,在薄壁上 开一面积为 3.14×10⁻⁸ m² 的小孔,由小孔向外抽气,令抽气速率恰能维持恒定水银蒸气压强为 37.3 Pa,见图.求1 秒钟从小孔逸出的水银蒸气质量.

(水银的摩尔质量为 201×10^{-3} kg, 普适气体常量 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$)

21. (本题 5分)(4272)

某理想气体的定压摩尔热容为 29.1 $J \cdot mol^{-1} \cdot K^{-1}$. 求它在温度为 273 K 时分子平均转动动能. (玻尔兹曼常量 $k=1.38\times 10^{-23}$ $J \cdot K^{-1}$)

22. (本题 5分)(4323)

两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为 V_0 ,其中盛有温度相同、压强均为 p_0 的同种理想气体. 现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的 2 倍,问外力必须作多少功?

23. (本题10分)(4707)

如图所示,用绝热材料包围的圆筒内盛有一定量的刚性双原子分子的理想气体,并用可活动的、绝热的轻活塞将其封住,可忽略摩擦. 图中 *K* 为用来加热气体的电热丝,*MN* 是固定在圆筒上的环,用来限制活塞向上运动. I、II、III是圆筒体积等分刻度线,每等分刻度为 1×10⁻³ m³. 开始时活塞在位置 I,系统与大气同温、同压、同为标准状态. 现将小砝码逐个加到活塞上,缓慢地压缩气体,当活塞到达位置III时停止加砝码; 然后接通电源缓慢加热使活塞至 II;

断开电源,再逐步移去所有砝码使气体继续膨胀至I,当上升的活塞被环M、N 挡住后拿去周围绝热材料,系统逐步恢复到原来状态,完成一个循环.

- (1) 在p-V图上画出相应的循环曲线;
- (2) 求出各分过程的始末状态温度;
- (3) 求该循环过程吸收的热量和放出的热量.

24. (本题 5分)(3017)

- 一质点沿x 轴作简谐振动,其角频率 ω = 10 rad/s. 试分别写出以下两种初始状态下的振动方程:
 - (1) 其初始位移 $x_0 = 7.5$ cm, 初始速度 $v_0 = 75.0$ cm/s;
 - (2) 其初始位移 $x_0 = 7.5$ cm, 初始速度 $t_0 = -75.0$ cm/s.

25. (本题 5分)(7905)

在大教室中,教师手拿振动的音叉站立不动,学生听到音叉振动声音的频率 ν_0 =1020Hz; 若教师以速度 ν = 0.5m/s 匀速向黑板走去,则教师身后的学生将会听到拍音,试计算拍频(设声波在空气中的速度为 ν =340m/s).