ECE 269 - Solution to Homework 3

Prepared by the TAs

Fall 2019

Problem 1 It is given that \mathcal{V} is a subspace of \mathbb{R}^n , $\mathcal{V}^{\perp} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{y} = 0, \forall \mathbf{y} \in \mathcal{V}\}.$

- (a) Consider $\alpha, \beta \in \mathbb{R}, v_1, v_2 \in \mathcal{V}^{\perp}$. So $\forall u \in \mathcal{V}$: $(\alpha v_1 + \beta v_2)^T u = \alpha v_1^T u + \beta v_2^T u = 0$ since $v_1^T u = 0 = v_2^T u$. Also, $0 \in \mathcal{V}^{\perp}$ since $0^T u = 0, \forall u \in \mathcal{V}$. Thus, \mathcal{V}^{\perp} is a subspace of \mathbb{R}^n .
- (b) Using the given matrix **A**, notice that:

$$\mathcal{V} = \{\sum_{i=1}^{k} x_i \mathbf{v_i} : \forall x_1, ..., x_k \in \mathbb{R}\} = \{\mathbf{A} \cdot (x_1, ..., x_k)^T : \forall x_1, ..., x_k \in \mathbb{R}\} = \{\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^k\} = \mathcal{R}(\mathbf{A}). \text{ Meaning } \mathcal{V} \text{ is the range space of } \mathbf{A}.$$
Similarly:

Similarly.

$$\mathcal{V}^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y}^T \sum_{i=1}^k x_i \mathbf{v_i} = 0, \forall x_1, ..., x_k \in \mathbb{R} \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^n : (\sum_{i=1}^k x_i \mathbf{v_i}^T) \mathbf{y} = 0, \forall x_1, ..., x_k \in \mathbb{R} \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{A}^T \mathbf{y} = 0, \mathbf{x} \in \mathbb{R}^k \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{A}^T \mathbf{y} = 0 \}$$

$$= \mathcal{N}(\mathbf{A}^T).$$

Meaning the orthogonal complement of the range space is the null space of the transpose.

- (c) Consider $\mathbf{x} \in \mathcal{V}$. By definition of the orthogonal subspace $\mathbf{x}^T \mathbf{y} = 0, \forall \mathbf{y} \in \mathcal{V}^{\perp} \to \mathbf{x} \in (\mathcal{V}^{\perp})^{\perp}$. Thus, $\mathcal{V} \subseteq (\mathcal{V}^{\perp})^{\perp}$. Using the result of section (d), $dim(\mathcal{V}) + dim(\mathcal{V}^{\perp}) = n \to dim(\mathcal{V}^{\perp}) + dim((\mathcal{V}^{\perp})^{\perp}) = n \to dim((\mathcal{V}^{\perp})^{\perp}) = dim(\mathcal{V}) \to \mathcal{V} = (\mathcal{V}^{\perp})^{\perp}$.
- (d) Using section (b), we get that $dim(\mathcal{V}) = dim(\mathcal{R}(\mathbf{A})) = rank(\mathbf{A}) = rank(\mathbf{A}^T). \text{ And,} \\ dim(\mathcal{V}^\perp) = dim(\mathcal{N}(\mathbf{A}^T)). \\ \text{Using the rank nullity theorem and the fact that } \mathbf{A}^T \in \mathbb{R}^{k \times n}: \\ n = rank(\mathbf{A}^T) + dim(\mathcal{N}(\mathbf{A}^T)) = dim(\mathcal{V}) + dim(\mathcal{V}^\perp).$
- (e) Assuming $\mathcal{V} \subseteq \mathcal{W}$ implies: $\forall \mathbf{v} \in \mathcal{V} \to \mathbf{v} \in \mathcal{W}$, so taking $\mathbf{u} \in \mathcal{W}^{\perp}$: $\mathbf{u}^T \mathbf{w} = 0, \forall \mathbf{w} \in \mathcal{W} \to \mathbf{u}^T \mathbf{w} = 0, \forall \mathbf{w} \in \mathcal{V} \to \mathbf{u} \in \mathcal{V}^{\perp} \to \mathcal{W}^{\perp} \subset \mathcal{V}^{\perp}$.
- (f) We know that if \mathbf{v} is a projection of \mathbf{x} on \mathcal{V} , the $\mathbf{v}^{\perp} = \mathbf{x} \mathbf{v}$ is orthogonal to all vectors in \mathcal{V} , meaning $\mathbf{v}^{\perp} \in \mathcal{V}^{\perp}$. Let us assume $\exists \mathbf{v} \neq \mathbf{u}, \mathbf{v}, \mathbf{u} \in \mathcal{V}$ such that $\mathbf{x} = \mathbf{v} + \mathbf{v}^{\perp} = \mathbf{u} + \mathbf{u}^{\perp}$, which means $\mathbf{v}^{\perp}, \mathbf{u}^{\perp} \in \mathcal{V}^{\perp}$. So $\mathbf{v} \mathbf{u} = \mathbf{u}^{\perp} \mathbf{v}^{\perp}$. However, since $\mathcal{V}, \mathcal{V}^{\perp}$ are sub

spaces, we get that $\mathbf{v} - \mathbf{u} \in \mathcal{V}, \mathbf{u}^{\perp} - \mathbf{v}^{\perp} \in \mathcal{V}^{\perp}$, so $\mathbf{v} - \mathbf{u} \in \mathcal{V} \cap \mathcal{V}^{\perp} = \mathbf{0} \to \mathbf{v} = \mathbf{u}$ in contradiction to the assumption. Thus, the representation is unique.

Problem 2 $\mathbf{A} \in \mathbb{R}^{4\times3}, \mathbf{B} \in \mathbb{R}^{3\times3}$. $Rank(\mathbf{A}) = 2, Rank(\mathbf{B}) = 3$.

(a) We will show that in this question, $Rank(\mathbf{A}) = Rank(\mathbf{AB})$. Consider $\mathbf{v} \in \mathcal{R}(\mathbf{A})$. So $\exists \mathbf{u} \in \mathbb{R}^3$ s.t. $\mathbf{A}\mathbf{u} = \mathbf{v}$. Since \mathbf{B} is full rank, $\exists \mathbf{x} \in \mathbb{R}^3$ s.t. $\mathbf{B}\mathbf{x} = \mathbf{u}$. So $\mathbf{A}(\mathbf{B}\mathbf{x}) = (\mathbf{AB})\mathbf{x} = \mathbf{v} \to \mathbf{v} \in \mathcal{R}(\mathbf{AB}) \to \mathcal{R}(\mathbf{A}) \subseteq \mathcal{R}(\mathbf{AB})$.

Similarly, consider $\mathbf{v} \in \mathcal{R}(\mathbf{AB})$, so $\exists \mathbf{u} \in \mathbb{R}^3$ s.t. $(\mathbf{AB})\mathbf{u} = \mathbf{v} \to \mathbf{A}(\mathbf{Bu}) = \mathbf{v} \to \mathbf{v} \in \mathcal{R}(\mathbf{A}) \to \mathcal{R}(\mathbf{AB}) \subseteq \mathcal{R}(\mathbf{A}) \to \mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{A}) \to \mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{AB})$. So, $r_{min} = r_{max} = 2$.

Consider: $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B} = \mathbf{I}_{3\times 3}, \mathbf{A}\mathbf{B} = \mathbf{A}.$

(b) The example above satisfies the requirements.

Problem 3 It is given that the columns of $\mathbf{U} \in \mathbb{R}^{n \times k}$ are orthonormal.

Also, notice that: $\mathbf{x}, \mathbf{U}\mathbf{U}^T\mathbf{x} \in \mathbb{R}^n$.

Let $\mathbf{U}\mathbf{U}^T\mathbf{x}$ be the projection of \mathbf{x} onto $\mathcal{R}(\mathbf{U})$. So:

 $0 \le \|\mathbf{x} - \mathbf{U}\mathbf{U}^T\mathbf{x}\|_2^2 = \|(\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{x}\|_2^2 = \mathbf{x}^T(\mathbf{I} - \mathbf{U}\mathbf{U}^T)^T(\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{x} = \mathbf{x}^T(\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{x} = \mathbf{x}^T\mathbf{x} - \mathbf{x}^T\mathbf{U}\mathbf{U}^T\mathbf{x} = \|\mathbf{x}\|_2^2 - \|\mathbf{U}^T\mathbf{x}\|_2^2.$ Thus, $\|\mathbf{U}^T\mathbf{x}\|_2 < \|\mathbf{x}\|_2$.

Problem 4 $\mathbf{Q} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$

For unit vector $\mathbf{u} \in \mathbb{R}^n$. Notice that $\mathbf{Q} \in \mathbb{R}^{n \times n}$.

Also, notice that if a matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is orthogonal then by definition $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$.

- (a) $\mathbf{Q}\mathbf{Q}^T = (\mathbf{I} 2\mathbf{u}\mathbf{u}^T)(\mathbf{I} 2\mathbf{u}\mathbf{u}^T)^T = (\mathbf{I} 2\mathbf{u}\mathbf{u}^T)(\mathbf{I} 2\mathbf{u}\mathbf{u}^T) = \mathbf{I} 2\mathbf{u}\mathbf{u}^T 2\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T = \mathbf{I} 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T = \mathbf{I}.$
- (b) For unit vector $\mathbf{u} \in \mathbb{R}^n$:

 $\mathbf{Q}\mathbf{u} = (\mathbf{I} - 2\mathbf{u}\mathbf{u}^T)\mathbf{u} = \mathbf{u} - 2\mathbf{u}\mathbf{u}^T\mathbf{u} = \mathbf{u} - 2\mathbf{u} = -\mathbf{u}.$

For any $\mathbf{u} \perp \mathbf{v}$:

 $\mathbf{Q}\mathbf{v} = (\mathbf{I} - 2\mathbf{u}\mathbf{u}^T)\mathbf{v} = \mathbf{v} - 2\mathbf{u}\mathbf{u}^T\mathbf{v} = \mathbf{v} - 0 = \mathbf{v}.$

Any $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = (\mathbf{u}^T \mathbf{x})\mathbf{u} + \mathbf{v}$, where $\mathbf{u}^T \mathbf{v} = \mathbf{u}^T (\mathbf{x} - (\mathbf{u}^T \mathbf{x})\mathbf{u}) = 0$, meaning $\mathbf{v} \perp \mathbf{u}$. Thus, $\mathbf{Q}\mathbf{x} = -(\mathbf{u}^T \mathbf{x})\mathbf{u} + \mathbf{v}$ which can be interpreted as the reflection of \mathbf{x} through a hyperplane with normal vector \mathbf{u} .

- (c) Since **Q** is symmetric and orthogonal, $\mathbf{Q}^{-1} = \mathbf{Q}^T = \mathbf{Q}$. Hence, $\mathbf{x} = \mathbf{Q}^{-1}\mathbf{y} = \mathbf{Q}\mathbf{y}$ which is the reflection back from **y**.
- (d) Using the given property: $det(\mathbf{Q}) = det(\mathbf{I} 2\mathbf{u}\mathbf{u}^T) = det(1 2\mathbf{u}^T\mathbf{u}) = det(1 2) = -1$.

(e) The question is asking to find the vector \mathbf{u} such that \mathbf{x} and $\alpha \mathbf{y}$ for some α are reflections of each other through the hyper plane $\{\mathbf{z}: \mathbf{u}^T\mathbf{z} = 0\}$. Since \mathbf{Q} is given to be in the span of \mathbf{y} we can write $\mathbf{Q}\mathbf{x} = \alpha \mathbf{y}$ for some constant α , or $\|\mathbf{x}\| = \|\mathbf{Q}\mathbf{x}\| = \|\alpha \mathbf{y}\|$, which implies that $\alpha = \pm \frac{\|\mathbf{x}\|}{\|\mathbf{y}\|}$. We consider the case $\mathbf{Q}\mathbf{x} = (\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|})\mathbf{y} = \tilde{\mathbf{x}}$, but the other case works equally well and provides an alternative answer. Now note that if the hyperplane $\{\mathbf{z}: \mathbf{u}^T\mathbf{z} = 0\}$ reflects \mathbf{x} to $\tilde{\mathbf{x}}$ and vice versa, then $\mathbf{x} - \tilde{\mathbf{x}}$ is normal to the hyperplane, or equivalently:

$$u = \tfrac{x - \tilde{x}}{\|x - \tilde{x}\|} = \tfrac{x - (\tfrac{\|x\|}{\|y\|})y}{\|x - (\tfrac{\|x\|}{\|y\|})y\|} = \tfrac{\|y\|x - \|x\|y}{\|\|y\|x - \|x\|y\|}$$

which is the desired unit normal vector.

Alternatively, if we take $-\tilde{\mathbf{x}}$ as the reflection of \mathbf{x} , then $\mathbf{u} = \frac{\mathbf{x} + \tilde{\mathbf{x}}}{\|\mathbf{x} + \tilde{\mathbf{x}}\|} = \frac{\|\mathbf{y}\|\mathbf{x} + \|\mathbf{x}\|\mathbf{y}}{\|\|\mathbf{y}\|\mathbf{x} + \|\mathbf{x}\|\mathbf{y}\|}$.

Problem 5 A symmetric matrix $\mathbf{P} = \mathbf{P}^T \in \mathbb{R}^{n \times n}$ is said to be a projection matrix if $\mathbf{P} = \mathbf{P}^2$.

- (a) $(\mathbf{I} \mathbf{P})^T = \mathbf{I} \mathbf{P}^T = \mathbf{I} \mathbf{P}$ and so $\mathbf{I} \mathbf{P}$ is symmetric. Also, $(\mathbf{I} \mathbf{P})^2 = (\mathbf{I} \mathbf{P})(\mathbf{I} \mathbf{P}) = \mathbf{I} \mathbf{P} \mathbf{P} + \mathbf{P}^2 = \mathbf{I} 2\mathbf{P} + \mathbf{P} = \mathbf{I} \mathbf{P}$. Hence, $\mathbf{I} \mathbf{P}$ is symmetric and $\mathbf{I} \mathbf{P} = (\mathbf{I} \mathbf{P})^2$, and thus it is a projection matrix.
- (b) Notice that $\mathbf{U}\mathbf{U}^T = (\mathbf{U}^T)^T\mathbf{U} = \mathbf{U}\mathbf{U}^T$ and $(\mathbf{U}\mathbf{U}^T)^2 = \mathbf{U}\mathbf{U}^T\mathbf{U}\mathbf{U}^T = \mathbf{U}\mathbf{U}^T$.
- (c) First of all, $\mathbf{A}^T \mathbf{A}$ is invertible for a full-rank tall matrix \mathbf{A} (from problem 6 in HW 2). For symmetry, consider $(\mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T)^T = (\mathbf{A}^T)^T ((\mathbf{A}^T \mathbf{A})^{-1})^T \mathbf{A}^T = \mathbf{A}((\mathbf{A}^T \mathbf{A})^{-1})^T \mathbf{A}^T = \mathbf{A}((\mathbf{A}^T \mathbf{A})^T)^{-1} \mathbf{A}^T = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T.$ Also, consider $(\mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T)^2 = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{A}$
- (d) It suffices to show that $\|\mathbf{x} \mathbf{v}\|$ is minimized over all $\mathbf{v} \in \mathcal{R}(\mathbf{P})$ by $\mathbf{v}^* = \mathbf{P}\mathbf{x}$. For any $\mathbf{v} \in \mathcal{R}(\mathbf{P})$: $\|\mathbf{x} \mathbf{v}\|^2 = \|\mathbf{x} \mathbf{P}\mathbf{x} + \mathbf{P}\mathbf{x} \mathbf{v}\|^2 = \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x} \mathbf{P}\mathbf{x})^T(\mathbf{P}\mathbf{x} \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{x}^T \mathbf{P})(\mathbf{P}\mathbf{x} \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{P}\mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{x}^T \mathbf{P}^2 \mathbf{x} + \mathbf{x}^T \mathbf{P} \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{P}\mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{x}^T \mathbf{P}\mathbf{x} + \mathbf{x}^T \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{P}\mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{x}^T \mathbf{P}\mathbf{x} + \mathbf{x}^T \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{P}\mathbf{x} \mathbf{x}^T \mathbf{v} \mathbf{x}^T \mathbf{v} + \mathbf{x}^T \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{P}\mathbf{x} \mathbf{v}^T \mathbf{v} \mathbf{v}^T \mathbf{v} \mathbf{v}^T \mathbf{v} + \mathbf{v}^T \mathbf{v})$ $= \|\mathbf{x} \mathbf{P}\mathbf{x}\|^2 + \|\mathbf{P}\mathbf{x} \mathbf{v}\|^2 + 2(\mathbf{x}^T \mathbf{v} \mathbf{v}^T \mathbf{v$
- (e) Consider $\mathbf{P} = \mathbf{u}\mathbf{u}^T$. Since $\mathbf{P} = \mathbf{P}^T$ and $\mathbf{P} = \mathbf{P}^2$, \mathbf{P} is a projection matrix. Since $\mathcal{R}(\mathbf{P}) = span(\mathbf{u})$, using part (d) $\mathbf{P}\mathbf{x}$ is the projection of \mathbf{x} onto $span(\mathbf{u})$. This can also be directly verified since $(\mathbf{u}^T\mathbf{x})\mathbf{u} = \mathbf{u}\mathbf{u}^T\mathbf{x} = \mathbf{P}\mathbf{x}$ is the component of \mathbf{x} in the direction for the unit vector \mathbf{u} .

 $argmin_{\mathbf{v} \in \mathcal{R}(\mathbf{P})} \|\mathbf{x} - \mathbf{v}\| = \mathbf{P}\mathbf{x}.$