Fondamenti dell'Informatica

1 semestre

Prova scritta di esonero del 28-2-2017

Prof. Giorgio Gambosi

a.a. 2016-2017

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.

Quesito 1 (6 punti): Definire un ASFND che accetti il seguente linguaggio

$$L = \{w \in \{0, 1, 2\}^+\}$$

dove:

- 0110 compare in w e inoltre:
 - |w| è un multiplo di 3 oppure
 - 22 non compare in w

Soluzione: Automa A_1 , riconosce le stringhe che includono 0110 come sottostringa

Automa A_2 , riconosce le stringhe di lunghezza pari a un multiplo di 3

start
$$\longrightarrow$$
 02 $0, 1, 2$ $0, 1, 2$ $0, 1, 2$ $0, 1, 2$

Automa A_3 , riconosce le stringhe che non contengono 22 come sottostringa

L'ASFND richiesto può essere ottenuto a partire da questi nel modo seguente, tenendo conto che

$$L = \overline{L(\mathcal{A}_1)} \cup \overline{(L(\mathcal{A}_2) \cup L(\mathcal{A}_3))}$$

1. $L(A_2) \cup L(A_3)$ viene accettato dall'ASFND A_4 ottenuto applicando la nota composizione per l'unione di due linguaggi

- 2. $\overline{L(A_2)} \cup L(A_3)$ viene riconosciuto dall'automa A_5 ottenuto a partire dall'ASFD equivalente a A_4 , invertendo stati finali e non finali
- 3. $\overline{L(A_1)}$ viene riconosciuto dall'automa A_6 ottenuto invertendo stati finali e non finali di A_1
- 4. $\overline{L(A_1)} \cup \overline{(L(A_2) \cup L(A_3))}$ viene accettato dall'ASFND A_7 ottenuto applicando la stessa composizione precedente a A_5 e A_6
- 5. L'ASFND voluto può essere ottenuto da A_7 derivandone l'ASFD equivalente e scambiando stati finali e non.

Quesito 2 (8 punti): Mostrare se il seguente linguaggio è o meno context free:

$$L = \{w_1 w_2 w_3 : w_1 \in \{a, b\}^+, w_2 \in \{c, d\}^+, w_3 \in \{e, f\}^+, |w_1| = |w_2| = |w_3|\}$$

Soluzione: Il linguaggio non è context-free. Per dimostrare cioò utilizziamo il pumping lemma per i linguaggi di tipo 2.

Dato n, consideriamo la stringa $\sigma=a^nc^ne^n$. Se consideriamo le decomposizioni $\sigma=uvwxy$ con $|vwx|\leq n$ e $|vx|\geq 1$ si hanno due casi possibili:

- sia v che x sono sequenze di stessi caratteri (ad esempio $v=a^k$ e $x=c^h$): si osservi che in tal caso uno dei tre caratteri che compaiono in σ non compare in vx. Di conseguenza la stringa $\sigma'=uv^2wx^2y$ non presenta lo stesso numero di a, c ed e, e quindi non appartiene al linguaggio. Si osservi che come caso particolare si ha $v=\varepsilon$ o $x=\varepsilon$: la conclusione deriva anche in questo caso.
- almeno una tra v e x non è una sequenza di stessi caratteri (ad esempio, $v=a^hc^k$): in tal caso, $v^2=a^hc^ka^hc^k$ e $\sigma'=uv^2wx^2y$ non appartiene al linguaggio.

In conclusione, dato che per ogni decomposizione possibile di σ , che soddisfi le condizioni del pumping lemma, si ha $\sigma \notin L$, concludiamo che L non è context free.

Quesito 3 (6 punti): Sia dato un automa a stati finiti deterministico $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ con

- 1. $\Sigma = \{a, b\}$
- 2. $Q = \{0, 1, 2, 3, 4, 5, 6\}$
- 3. $q_0 = 0$
- 4. $F = \{2, 3, 5, 6\}$

e δ descritta dalla seguente tabella di transizione

	0	1	2	3	4	5	6
a	1	1	2	6	4	5	3
b	5	6	4	5	3	4	2

Derivare un automa \mathcal{A}' equivalente ad \mathcal{A} con minimo numero di stati

Soluzione: Applicando la procedura nota per l'individuazione di coppie di stati equivalenti, derivano le seguenti classi di equivalenza: $\{0\}$, $\{1,4\}$, $\{2,5\}$, $\{3,6\}$.

L'automa minimo sarà:

Quesito 4 (8 punti): Definire una grammatica in forma normale di Greibach che generi il linguaggio

$$L = \{a^m b^n | m \neq n\}$$

Soluzione: Il linguaggio può essere generato dalla grammatica

$$S \quad \to \quad aSb|A|B$$

$$A \rightarrow aA|a$$

$$B \rightarrow bB|b$$

La grammatica non ha ε -produzioni. L'eliminazione delle produzione unitarie fornisce:

$$S \rightarrow aSb|aA|bB|a|b$$

$$A \rightarrow aA|a$$

$$B \rightarrow bB|b$$

Dato non ci sono simboli inutili, la grammatica è in forma ridotta. In forma normale di Chomsky,

$$S \quad \rightarrow \quad WY|XA|YB|a|b$$

$$A \rightarrow XA|a$$

$$B \rightarrow YB|b$$

$$W \rightarrow XS$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

La grammatica in forma normale di Greibach deriva immediatamente se consideriamo l'ordinamento S,A,B,W,X,Y dei non terminali, e risulta essere:

$$S \rightarrow aSY|aA|bB|a|b$$

$$A \rightarrow aA|a$$

$$B \rightarrow bB|b$$

$$W \rightarrow aS$$

$$Y \rightarrow a$$

$$Y \rightarrow b$$

Quesito 5 (5 punti): Derivare un ASFD che riconosca il linguaggio descritto dall'espressione regolare

$$(ab^*a + b^*)^*$$

Soluzione: Per composizione, possiamo derivare l'ASFND con ε -transizioni che accetta il linguaggio

Eliminando le ε -transizioni, otteniamo il seguente ASFND, che risulta in effetti deterministico

