

POLITÉCNICA

2021.02.01

Gestión de datos Data handling

Presentación

Juan Zamorano Alejandro Alonso Miguel A. de Miguel jzamora@datsi.fi.upm.es alejandro.alonso@upm.es miguel.demiguel@upm.es

Gestión de datos

- Asignatura de 2º semestre del Máster Universitario en Sistemas Espaciales (MUSE)
 - ▶ 4.5 créditos ≈ 140 horas de trabajo
 - ▶ 36 h de clase + 9 h de laboratorio = 45 h presenciales
- Objetivo
 - conocer la estructura y el funcionamiento de los sistemas informáticos utilizados en misiones espaciales, en los aspectos de hardware y software
- Contenido
 - computadores embarcados en vehículos espaciales / plataforma de gestión de datos

Profesores

Grupo STRAST

Sistemas de Tiempo Real y Arquitectura de Servicios Telemáticos

Juan Zamorano

Departamento de Arquitectura y Tecnología de Sistemas Informáticos (DATSI) <u>jzamora@datsi.fi.upm.es</u>

Alejandro Alonso

Departamento de Ingeniería de Sistemas Telemáticos (DIT) <u>alejandro.alonso@upm.es</u>

Miguel A. de Miguel

Departamento de Ingeniería de Sistemas Telemáticos (DIT) miguel.demiguel@upm.es

Temario

- 1. Introducción
- 2. Estructura de computadores
- 3. Programación de computadores
- 4. Sistemas operativos
- 5. Sistemas de tiempo real
- 6. Arquitectura y desarrollo de sistemas
- 7. Ciclo de vida y estándares

Prácticas

- Computador embarcado
 - elegir un computador embarcado para una misión
- Laboratorio de desarrollo de software embarcado
 - prácticas con tarjeta STM32F407 Discovery
 - 1. Sistema de desarrollo de software nativo
 - 2. Sistema de desarrollo de software cruzado
 - 3. Housekeeping elemental
 - 4. Housekeeping concurrente
 - 5. Housekeeping distribuido
 - 6. Housekeeping de tiempo real
 - 7. OBDH completo

Actividades de laboratorio

- Instalar entorno de desarrollo de software
- Descargar proyectos de sw
- Compilar y probar
- Hacer cambios sencillos

Evaluación

- Examen final 50 %
 - preguntas cortas de aplicación
- Prácticas 50 %
 - ▶ nota_prácticas = 0.3*nota_OBC + 0.7*nota_LAB
- Nota final = 0.5*nota_examen + 0.5*nota_prácticas
 - mínimo de 4.0 en cada nota parcial

Bibliografía

- P. Fortescue, J. Stark, G. Swinerd
 Spacecraft Systems Engineering
 Wiley 4th ed. 2011
- A. Burns, A.J. Wellings
 Analysable Real-Time Systems
 Addison-Wesley, 2016
- A. Silberschatz, P. Galvin, G. Gagne
 Operating System Concepts Essentials
 Wiley, Global ed. 2019
- W. Stallings
 Computer Organization and Architecture
 Prentice Hall, 9th ed. 2013