

Project Cassini

Infrastructure Line of Business

Q4, 2019

Context

- Intelligent infrastructure connecting a world of 1T endpoints to the Cloud *the AI Edge* is being built
- Diversity across Silicon, platform & application worlds fosters innovative solutions at the AI Edge, but...
- Deploying a cloud-native software stack at the infrastructure edge remains a significant challenge

Project Cassini

Goal

Ensuring a cloud-native experience across a diverse and secure edge ecosystem

Collaborate with Arm to

Define Platform Standards & Reference Systems

Adopt PSA extended for a secure Infrastructure Edge

Enable Cloud-native Software stacks for the Edge

Platform Standards & Reference Systems

Platform Standards – Background

- The Infrastructure edge hosts a diverse array of platforms
 Traditional-embedded, fixed-function gateways
 General purpose compute with heterogenous accelerators
- Mature firmware + OS ecosystems co-exist
 Embedded / RTOS, U-Boot, Commercial BIOS
 Standard / Enterprise OS, Hypervisor, Bare-metal solutions

Platform standards at the AI Edge influenced by

- **Deployment** model → High-touch, per-system management vs. 3rd party-ready
- Functional model \rightarrow <u>MUD</u>-based vs. general purpose compute
- Management model → System management & security updates remote vs. local

Platform Standards – SBSA / SBBR

- Arm supports standards versus specific implementations
- Recommendations and guidelines uniformly apply to all platforms from the Infrastructure Edge to the Cloud / Datacenter

For **all platforms** expected to host 3^{rd} party Commercial OSes, Hypervisors, or other bare-metal solutions \rightarrow SBSA / SBBR

Examples:- Red Hat, Windows, VMware ESXi,...

SBSA / SBBR

Minimum Hardware requirements → SBSA

Minimum Firmware requirements → SBBR

Arm provides → Certification Program (ServerReady) + Compliance Test Suites (ACS)

Platform Standards – EBBR

Platform characteristics

Traditional/Embedded with varying degrees of per-platform engineering enablement, support & maintenance

For such Platforms that host a vertically-integrated stack derived from community distributions (Yocto/Linux, BSD or other), EBBR minimizes custom engineering effort on the Firmware-OS interface

Moving towards **EBBR**

- 1. Leverage UEFI by merging BSP to mainline U-Boot
- 2. Check EBBR-readiness with community-managed open-source tool from Arm \rightarrow (WIP)

Under consideration

Android, Coreboot + LinuxBoot

Reference list of SBSA/SBBR platforms

For the latest on SBSA/SBBR platforms and partners, please go (here)

Platform Standards - Summary

1. Arm recommends SBSA/SBBR as the de-facto standard for all platforms esp., in cases where 3rd party & managed software – OS, Hypervisors, etc. – are expected to run

2. When SBSA/SBBR is not feasible, esp. where vertically integrated OS stacks are enabled and managed, Arm recommends EBBR-compliance to reduce custom engineering efforts and to allow community distros to support Arm platforms

Platform Security

Security for the Infrastructure Edge

Background

- At the AI Edge, implementations for Root of Trust (RoT) & RoT Service APIs are heavily fragmented, between endpoints, edge, cloud, test and development environments, and across processor architectures and platforms
 - RoT examples:- TPM, HSM, Secure Element, ...
 - RoT service API examples:- PKCS11, TPM2.0, ...

Solution

PSA (Platform Security Architecture) solves fragmentation through architecture, reference SW and certification with market traction in the constrained IoT space

Project Cassini extends PSA to the infrastructure edge

PSA for constrained IoT devices

The open device security framework, with independent testing

PSA: enabling right-sized device security

PSA extensions for the Infrastructure Edge

PSA for M-profile (constrained IoT) deliverable	PSA for Infrastructure Edge deliverable
Threat models	New Threat Model and Security Analysis (TMSA) for the Edge
Firmware Framework-M	Firmware Framework-A
Trusted Boot and Firmware Update	Same
PSA APIs (Crypto, Attestation, Secure Storage)	Same A new open-source security microservice: PARSEC
Trusted Firmware-M	Trusted Firmware-A New features being added to support the needs of infrastructure
Certification scheme	In progress – Working to understand market need
-	New SBSG – Server Base Security Guide

For details – please see white paper https://bit.ly/311Pb3Q

Security for the Infrastructure Edge — PARSEC

The gap between Secure Hardware & Cloud native software worlds

- Key benefit of cloud native \rightarrow software abstracts the platform
 - Once software is packaged (e.g. as a container), can be deployed anywhere
- But the best security is rooted in hardware...
- Plumbing hardware directly into cloud native stacks, weakens 'run anywhere' benefits

PARSEC

Provides applications, access to security services in a Project Cassini platform

- Architecture neutral
- Reference implementation available in PSA software
- Originally developed in collaboration with Docker
- Currently independently hosted as open source with plans to seed to a community project

End-to-End Integrated Hardware Backed Platform Security

PARSEC Collaboration with Docker

PARSEC Backends

Cloud Native stack for the Al Edge

The AI Edge Technology Stack

Flexible Edge Deployment Profiles

- Cloud / Hyperscaler
- Enterprise
- Telco / MNO

Device ecosystem

Crypto services (device edge)

Engaging on Project Cassini

Partner with Arm on PoCs to

- Enable standards-based edge & gateway platforms
- Integrate PSA / PARSEC APIs into Software runtimes
- Establish joint value propositions through end-to-end demos

arm

Thank You

Danke

Merci

射 ありがとう

Gracias

Kiitos

감사합니다

धन्यवाद

شکرًا

תודה

© 2019 Arm Limited