Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3216	К работе допущен		
Студент <u>Квачук С.А и Орлов В.Д</u>	Работа выполнена		
Преподаватель Тимофеева Э.О	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №3.13

Магнитное попе Земпи

1. Цель работы.

Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца. На основе данных измерений определить горизонтальную составляющую магнитного поля Земли.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерить направления суммарного магнитного поля при разных силах тока
 - 2. Найти величины магнитного поля катушек Гельмгольца.
 - 3. Построить график зависимости $B_c = B_c(\gamma_i)$
 - 4. Найти величину магнитного поля Земли и оценить ее с помощью метода наименьших квадратов.
- 3. Объект исследования.

Суммарное магнитное поле, создаваемое Землей и системой тонких катушек Гельмгольца.

4. Метод экспериментального исследования.

Прямые многократные измерения физической величины суммарного магнитного поля.

- 5. Рабочие формулы и исходные данные.
 - 1) Магнитная индукция поля между двумя катушками: $B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R}$

$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R}$$

2) Разложение вектора магнитной индукции на вертикальную и горизонтальную:

$$B_v = B_h * tg(\theta)$$

3) Индукция магнитного поля B_c через линейную зависимость:

$$B_c = B_h * \frac{\sin(\alpha)}{\sin(\varphi - \alpha)}$$

- 4) Алгоритм расчёта коэффициентов a и b в методе МНК:
 - 1. Найти средние значения всех экспериментальных точек:

$$\bar{x} = \frac{1}{n} \Sigma x_i;$$
 $\bar{y} = \frac{1}{n} \Sigma y_i$

2. Найти коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$a = \bar{v} - b\bar{x}$$

3. Рассчитать параметры D и d_i :

$$d_i = y_i - (a + bx_i)$$

$$D = \sum_{i} (x_i - \bar{x})^2$$

4. Определить СКО коэффициентов a и b:

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}$$

$$S_a^2 = \frac{1}{\sum x_i^2} \frac{\sum d_i^2}{n-1}$$

5. Рассчитать погрешность косвенных измерений:

$$\Delta_a = 2S_a$$

$$\Delta_b = 2S_b$$

- 5) Исходные данные:
 - Угол между направлением пробного поля и земного поля:

$$\varphi = 160^{\circ}$$

• Радиус колец:

$$R = 0.15 \,\mathrm{M}$$

• Число витков:

$$n = 100$$

• Горизонтальная составляющая индукции в день проведения лабы:

$$B = 28 \,\text{мкТл}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Транспортир	физический	0-160°	0.05°
2	Амперметр	электрический	0-60 мА	0.05 мА

Рис. 7. Параметры установки: $R=0.15~\mathrm{\emph{m}}$ — радиус катушек; n=100 — число витков в каждой из катушек

- 7. Схема установки (перечень схем, которые составляют Приложение 1).
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

$\varphi = 160^{\circ}$	Ток в катушках, мА					
					$sin(\alpha_i)$	
a_i	I_1	I_2	I_3	< <i>I</i> >	$\overline{\sin(\varphi-\alpha_i)}$	$B_{\mathcal{C}}$, мкТл
10	11,9	12	12,1	12	0,347296355	7,193410285
20	19	18,9	18,8	18,9	0,532088886	11,3296212
30	23,4	23,6	23,5	23,5	0,652703645	14,08709514

	_	<u>-</u> .	<u>.</u>	_	<u>.</u>	
40	27,5	27,2	27,4	27,36667	0,742227199	16,40497179
50	30,1	30,2	30,1	30,13333	0,815207469	18,06345249
60	33,1	33	33,1	33,06667	0,879385242	19,82184167
70	35,7	35,9	35,8	35,8	0,939692621	21,46034068
80	38,2	38,1	38,2	38,16667	1	22,87904104
90	40,8	40,9	40,9	40,86667	1,064177772	24,49755836
100	44	43,9	44	43,96667	1,137158043	26,35585601
110	47,9	48	47,9	47,93333	1,226681597	28,73367775
120	51,9	51,8	51,9	51,86667	1,347296355	31,09151779
130	58,8	58,9	58,8	58,83333	1,532088886	35,26769209

Обработка измерений:

• Нахождение среднего значения:

$$\langle I \rangle = \frac{1}{n} \sum_{i=1}^{n} I_i = 11.9 + 12 + 12.1 = 12 \text{ MA}$$

• Индукция магнитного поля, создаваемые катушками:

$$B_{\rm c} = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R} = 4\pi * 10^{-7} * \left(\frac{4}{5}\right)^{\frac{3}{2}} * \frac{12 * 100}{0.15} = 7.1934 \text{ мкТл}$$

• Промежуточные вычисления:

$$\gamma_i = \frac{\sin(\alpha_i)}{\sin(\varphi - \alpha_i)} = \frac{\sin(10^\circ)}{\sin(160^\circ - 10^\circ)} = 0.347296$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Расчет B_h с помощью МНК:

$$b = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2} = rac{31.83981}{1.315126} = 24.21046$$
, мкТл $a = ar{y} - b * ar{x} = 21.32201 - 24.2105 * 0.93969 = -1.428389$, мкТл $D = \sum (x_i - ar{x})^2 = 1.315125876$ $d_i = y_i - (a + bx_i) = 11.3296 - 24.214 * 0.53209 = -1.552498$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} = 1.635660273$$

 $\Delta_b = 2S_b = 2.55786$
 $\varepsilon = \frac{B_h}{\Delta_{B_h}} \approx 7.404\%$

11. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости $B_c = B_c(\gamma)$

12. Окончательные результаты.

$$B_c = (24.2105 \pm 2.557) \text{ мкТл}$$
 $\varepsilon = 7.404\%$

13. Выводы и анализ результатов работы.

В результате проделанной лабораторной работы было изучено: для оценки значения горизонтальной составляющей магнитной индукции геомагнитного поля необходимо создать магнитное поле катушек Гельмгольца и регистрировать суперпозицию таких векторов магнитной индукции.

Вычисленное значение (24.21 мкТл) получилось ниже действительного значения горизонтальной составляющей индукции Земли (28 мкТл).

На графике появился свободный коэффициент равный -1.43 мкТл, что означает, что во время проведения измерений был внешний фактор, влияющий на результаты измерений.

14. Дополнительнь	іе задания.
15. Выполнение до	ополнительных заданий.
16. Замечания пре также помещают	подавателя (исправления, вызванные замечаниями преподавателя в этот пункт).
Примечание:	 Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу. Приложения 1 и 2 вкладывают в бланк протокола-отчета.