CSCE5150 Analysis of Computer Algorithms

Dr. Xuan Guo

1

Content

- Asymptotic notation
 - Big Oh
 - Big Omega
 - Big Theta
 - little Oh
 - little Omega
- Asymptotic Dominance
- Recursive algorithms
 - Merge Sort
- Resolving Recurrences
 - Substitution method
 - · Recursion trees
 - Master method

Problem Solving: Main Steps

- 1. Problem definition
- 2. Algorithm design / Algorithm specification
- 3. Algorithm analysis
- 4. Implementation
- 5. Testing
- 6. [Maintenance]

3

Algorithm Analysis

- Goal
 - Predict the resources that an algorithm requires
- What kind of resources?
 - Memory
 - Communication bandwidth
 - Hardware requirements
 - Running time
- Two approaches
 - Empirical tests
 - Mathematical analysis

Algorithm Analysis – Empirical Tests

- Steps:
 - Implement algorithm in a given programming language
 - Measure runtime with several inputs
 - Infer running time for any input
- Pros:
 - No math, straightforward method
- Cons:
 - Not reliable, heavily dependent on
 - the sample inputs
 - · programming language and environment
- We want to analyze algorithms to decide whether they are worth implementing

5

Algorithm Analysis – Mathematical Analysis

- Use math to estimate the running time of an algorithm
 - almost always dependent on the size of the input
 - Algorithm1 running time is n^2 for an input of size n
 - Algorithm2 running time is $n \times \log(n)$ for an input of size n
- Pros:
 - formal, rigorous
 - no need to implement algorithms
 - machine-independent
- Cons:
 - math knowledge

6

Algorithm Analysis

Best case analysis

- shortest running time for any input of size n
- often meaningless, one can easily cheat

Worst case analysis

- longest running time for any input of size n
- it guarantees that the algorithm will not take any longer
- provides an upper bound on the running time
- worst case occurs often search for an item that does not exist

Average case analysis

- running time averaged for all possible inputs
- it is hard to estimate the probability of all possible inputs

7

Random-Access Machine (RAM)

In order to predict running time, we need a (simple) computational model: the Random-Access Machine (RAM)

- Instructions are executed sequentially
 - No concurrent operations
- Each basic instruction takes a constant amount of time
 - arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling, shift left/shift right
 - data movement: load, store, copy
 - control: conditional/unconditional branch, subroutine call and return
 - Loops and subroutine calls are not simple operations. They depend upon the size of the data and the contents of a subroutine. "Sort" is not a single step operation.
- Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the number of steps.

RAM model is useful and accurate in the same sense as the flat-earth model (which is useful)!

The RAM Model of Computation

- The worst-case (time) complexity of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
- The best-case complexity of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
- The average-case complexity of the algorithm is the function defined by an average number of steps taken on any instance of size n.
- Each of these complexities defines a numerical function: time vs. size!

q

Asymptotic Notation - Big Oh, O

$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0 : 0 \le f(n) \le cg(n)\}$$

- In plain English: O(g(n)) are all functions f(n) for which there exists two positive constants c and n_0 such that for all $n \ge n_0$, $0 \le f(n) \le cg(n)$
 - g(n) is an asymptotic upper bound for f(n)
- Intuitively, you can think of O as " \leq " for functions
- If $f(n) \in O(g(n))$, we write f(n) = O(g(n))
- The definition implies a constant n_0 beyond which they are satisfied. We do not care about small value of n.

Examples

• Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

11

Examples

• Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

 $2^{n+1} = O(2^n)$, but $2^{2n} \neq O(2^n)$.

To show that $2^{n+1} = O(2^n)$, we must find constants $c, n_0 > 0$ such that

 $0 \le 2^{n+1} \le c \cdot 2^n$ for all $n \ge n_0$.

Since $2^{n+1} = 2 \cdot 2^n$ for all n, we can satisfy the definition with c = 2 and $n_0 = 1$.

To show that $2^{2n} \neq O(2^n)$, assume there exist constants $c, n_0 > 0$ such that

 $0 \le 2^{2n} \le c \cdot 2^n$ for all $n \ge n_0$.

Then $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. But no constant is greater than all 2^n , and so the assumption leads to a contradiction.

Asymptotic Notation – Big Omega, Ω

$$\Omega(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0 : 0 \le cg(n) \le f(n)\}$$

- In plain English: $\Omega(g(n))$ are all function f(n) for which there exists two positive constants c and n_0 such that for all $n \ge n_0$, $0 \le cg(n) \le f(n)$
 - g(n) is an asymptotic lower bound for f(n)
- Intuitively, you can think of Ω as " \geq " for functions

13

Asymptotic Notation – Theta, Θ

 $\Theta(g(n)) = \{f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0 : 0 \le c_1 g(n) \le f(n) \le c_2 g(n)\}$

- In plain English: $\Theta(g(n))$ are all function f(n) for which there exists three positive constants c_1 , c_2 , and n_0 such that for all $n \ge n_0$, $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$
- In other words, all functions that grow at the same rate as g(n)
 - g(n) is an asymptotically tight bound for f(n)
- Intuitively, you can think of Θ as "=" for functions

Asymptotic Notation – Theta, Θ

Theorem

$$f(n) = \Theta(g(n))$$
 iff $f = O(g(n))$ and $f = \Omega(g(n))$

15

Asymptotic notation in equations and inequalities

- On the right-hand side alone of an equation (or inequality)
 ≡ a set of functions
 - ex., $n = O(n^2) \leftrightarrow n \in O(n^2)$
- In general, in a formula, stands for some anonymous function that we do not care to name
 - ex., $2n^2+3n+1=2n^2+\Theta(n)\leftrightarrow 2n^2+3n+1=2n^2+f(n)$, where $f(n)=\Theta(n)$
 - · help eliminate inessential detail and clutter in a formula
 - ex., $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

Asymptotic Notation – little oh, o

$$o(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0 : 0 \le f(n) < cg(n) \}$$

- In plain English: o(g(n)) are all function f(n) for which for all constant c>0, there exists a constant $n_0>0$ such that for all $n\geq n_0$, $0\leq f(n)< cg(n)$
 - o(g(n)) is an asymptotic upper bound for f(n), but not tight
 - f(n) becomes insignificantly relative to g(n) as n grows
 - f(n) grows asymptotically slower than g(n)
- Similar to O(g(n)), intuitively, you can think of o as "<" for functions

17

Asymptotic Notation – little oh, o

Examples

- $n^{1.999} = o(n^2)$
- $\bullet \frac{n^2}{\log(n)} = o(n^2)$
- $n^2 \neq o(n^2)$
- $\bullet \, \frac{n^2}{1000} \neq o(n^2)$

Asymptotic Notation – little Omega, ω

$$\omega(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0 : 0 \le cg(n) < f(n) \}$$

- In plain English: $\omega(g(n))$ are all function f(n) for which for all constant c>0, there exists a constant $n_0>0$ such that for all $n\geq n_0$, $0\leq cg(n)< f(n)$
 - $\omega(g(n))$ is an asymptotic lower bound for f(n), but not tight
 - f(n) becomes arbitrarily large relative to g(n) as n grows
 - f(n) grows asymptotically faster than g(n)
 - Similar to $\Omega(g(n))$
- Intuitively, you can think of ω as ">" for functions

19

Asymptotic Notation – little Omega, ω

Examples:

- $n^{2.0001} = \omega(n^2)$
- $n^2 \log(n) = \omega(n^2)$
- $n^2 \neq \omega(n^2)$

20

Asymptotic Notation

- Asymptotic notation is a way to compare functions
 - 0 ≈≤
 - Ω ≈≥
 - Θ ≈=
 - o ≈
 - ω ≈>
- When using asymptotic notations, sometimes,
 - drop lower-order terms
 - ignore constant coefficient in the leading term

21

Asymptotic Notation Multiplication by Constant

• Multiplication by a constant does not change the asymptotic:

$$\begin{array}{l}
O(c \cdot f(n)) \to O(f(n)) \\
\Omega(c \cdot f(n)) \to \Omega(f(n)) \\
\Theta(c \cdot f(n)) \to \Theta(f(n))
\end{array}$$

• The "old constant" C from the Big Oh becomes $c \cdot C$.

Asymptotic Notation Multiplication by Function

• But when both functions in a product are increasing, both are important:

$$\begin{array}{l} O(f(n)) \cdot O(g(n)) \to O(f(n) \cdot g(n)) \\ \Omega(f(n)) \cdot \Omega(g(n)) \to \Omega(f(n) \cdot g(n)) \\ \Theta(f(n)) \cdot \Theta(g(n)) \to \Theta(f(n) \cdot g(n)) \end{array}$$

This is why the running time of two nested loops is $O(n^2)$.

23

Testing Dominance

- f(n) dominates g(n) if $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$, which is the same as saying g(n)=o(f(n)).
- Note the little-oh it means "grows strictly slower than".

Dominance Rankings

- You must come to accept the dominance ranking of the basic functions:
- $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

25

Advanced Dominance Rankings

- Additional functions arise in more sophisticated analysis:
- $n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg (\log n)^2 \gg \log n \gg \frac{\log n}{\log \log n} \gg \log \log n \gg 1$

Logarithms

- It is important to understand deep in your bones what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function.
- Saying $b^x = y$ is equivalent to saying that $x = \log_b y$.
- Logarithms reflect how many times we can double something until we get to n or halve something until we get to 1.

27

The Base is not Asymptotically Important

- Recall the definition, $c^{\log_c x} = x$ and that
- $\log_b a = \frac{\log_c a}{\log_c b}$
- Thus, $\log_2 n = (1/\log_{100} 2) \times \log_{100} n$. Since $\frac{1}{\log_{100} 2} = 6.643$ is just a constant, it does not matter in the Big Oh.

Analyzing Merge Sort

Input: S_1 , S_2 , two sorted sequences

```
Input: S = \{a_1, a_2, \dots, a_n\}
   Output: A sorted permutation of the input sequence
1 if n \leq 1 then
      return S:
 3 else
     m = \frac{n}{2};
                                           // divide input into two
     left = S[1..m]; right = S[m + 1..n];
     merge_sort(left);
                                             // conquer subproblem<sub>1</sub>
      merge_sort(right);
                                             // conquer subproblem2
      merge(left, right);
                                             // combine subproblems
 9 end
10 return S
```

29

Analyzing Merge Sort – Merge Procedure

```
Output: S, a sorted sequence containing S_1 and S_2
1 sequence S;
2 while length(S_1) > 0 and length(S_2) > 0 do
       // merge in order elements of S_1 and S_2
       if first(S_1) \leq first(S_2) then
       append(first(S_1), S); discard(first(S_1);
       else
           append(first(S_2), S); discard(first(S_2));
       end
8 end
  while length(S_1) > 0 do
       append(first(S_1), S); discard(first(S_1)); // add whatever is left in S_1
11 end
12 while length(S_2) > 0 do
       append(first(S_2), S); discard(first(S_2)); // add whatever is left in S_2
14 end
15 return S
```

Analyzing Merge Sort

Input: {10,5,7,6,1,4,8,3}

```
Output: {1,3,4,5,6,7,9,10}
   Input: S = \{a_1, a_2, \dots, a_n\}
   Output: A sorted permutation of the input sequence
 1 if n \leq 1 then
      return S;
 3 else
      m=\frac{n}{2};
                                            // divide input into two
       left = S[1..m]; right = S[m + 1..n];
       merge_sort(left);
                                               // conquer subproblem<sub>1</sub>
       merge_sort(right);
                                               // conquer subproblem2
                                               // combine subproblems
       merge(left, right);
 8
 9 end
10 return S
```

31

Analyzing Algorithms – recursive algorithms

- Divide-and-conquer paradigm
 - solve a problem for a given input of size n
 - You don't know how to solve it for any n, but
 - you can **divide** the problem into smaller subproblems (input sizes n' < n)
 - you can **conquer** (solve) the subproblems recursively you need a base case: for a small enough input solving the problem is straightforward
 - you can combine the solutions to the subproblems to solve the original problem with input size n
- Recursive algorithms call themselves with a different input
 - we cannot just count the number of instructions

Analyzing Merge Sort – running time

- In plain English, the cost of merge sort, i.e., T(n) is
 - a constant if $n \le 1$; $\Theta(1)$
 - the cost of dividing, solving the subproblems and combining the subproblems, if $n>1\,$
 - dividing: $\Theta(n)$
 - conquering (solving) subproblems: $2 \times T(n/2)$
 - combining subproblems: $\Theta(n)$

33

Analyzing Merge Sort – running time

Formally

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ 2T(n/2) + \Theta(n), & \text{if } n > 1 \end{cases}$$

How do we solve a recurrence?

(Solving a recurrence relation means obtaining a closed-form solution: a non-recursive function of n.)

Resolving Recurrences

- Substitution method
 - Guess a solution and check if it is correct
 - Pros: rigorous, formal solution
 - Cons: requires induction, how do you guess?
- Recursion trees
 - Build a tree representing all recursive calls, infer the solution
 - Pros: intuitive, visual, can be used to guess
 - Cons: not too formal
- Master method
 - Check the cookbook and apply the appropriate case
 - Pros: formal, useful for most recurrences
 - · Cons: have to memorize, useful for most recurrence

35

Resolving Recurrences – Substitution Method

- Steps
 - Guess the solution
 - Use induction to show that the solution works
- What is induction?
 - ullet A method to prove that a given statement is true for all-natural numbers k
 - Two steps
 - Base case: show that the statement is true for the smallest value of *n* (typically 0)
 - Induction step: assuming that the statement is true for any k, show that it must also hold for k+1

Resolving Recurrences – Substitution Method, induction

• A more serious example

•
$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + n & \text{if } n > 1 \end{cases}$$

- guess $T(n) = n \log n + n$
- $T(n) = \Theta(n \log n)$

37

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n > 1. \end{cases}$$

- 1. Guess: $T(n) = n \lg n + n$. [Here, we have a recurrence with an exact function, rather than asymptotic notation, and the solution is also exact rather than asymptotic. We'll have to check boundary conditions and the base case.]
- 2. Induction:

Basis:
$$n = 1 \Rightarrow n \lg n + n = 1 = T(n)$$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We'll use this inductive hypothesis for T(n/2).

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n \quad \text{(by inductive hypothesis)}$$

$$= n\lg\frac{n}{2} + n + n$$

$$= n(\lg n - \lg 2) + n + n$$

$$= n\lg n - n + n + n$$

$$= n\lg n + n.$$

Resolving Recurrences – Substitution Method, induction

- When we want an asymptotic solution to a recurrence, we don't worry about the base cases in our proof.
 - Since we are ultimately interested in an asymptotic solution to a recurrence, it will always be possible to choose base cases that work.
- When we want an exact solution, then we have to deal with base case.

39

Resolving Recurrences – Substitution Method, induction

- When solving recurrences with asymptotic notation
 - assume $T(n) = \Theta(1)$ for small enough n, don't worry about base case
 - show upper and lower bounds separately (O,Ω)
- Example
 - $T(n) = 2T(n/2) + \Theta(n)$

Resolving Recurrences – Recursion Trees

- Draw a "recursion tree" for the recurrence
 - Nodes are the cost of a single subproblem
 - Nodes have as their children the subproblems they are decomposed into
- Example
 - T(n) = 2T(n/2) + n

41

Example -- Recursion Tree Method

- Example
 - $T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + \Theta(n^2)$
- For upper bound, rewrite as $T(n) \le T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + cn^2$
- For lower bound, as $T(n) = \Omega(n^2)$

Asymptotic Behavior of a Geometric Series

- Sum a geometric series
- $S = n^2 + \frac{3}{4}n^2 + \left(\frac{3}{4}\right)^2 n^2 + \dots + \left(\frac{3}{4}\right)^k n^2$
- $\sum_{i=1}^n a_i = a\left(\frac{1-r^n}{1-r}\right)$, $\sum_{i=1}^\infty a_i = a\left(\frac{1}{1-r}\right)$ if |r| < 1
- A decreasing geometric series behaves asymptotically just like its 1st term: $S = \Theta(n^2)$
- By symmetry, if S were increasing, it would behave asymptotically like its final term: $S = n^2 + 2n^2 + 2^2n^2 + \dots + 2^kn^2 = \Theta(2^kn^2)$

43

Resolving Recurrences – Master Method

- "Cookbook" for many divide-and-conquer recurrences of the form T(n) = aT(n/b) + f(n), where
 - *a* ≥ 1
 - *b* ≥ 1
 - f(n) is an asymptotically positive function
- What are a, b, and f(n)?
 - ullet a is a constant corresponding to ...
 - ullet b is a constant corresponding to ...
 - f(n) is a function corresponding to ...

Resolving Recurrences – Master Method

- Problem: You want to solve a recurrence of the form T(n) = aT(n/b) + f(n), where
 - $a \ge 1$, $b \ge 1$ and f(n) is asymptotically positive function
- Solution:
 - Compare $n^{\log_b a}$ vs. f(n), and apply the Master Theorem

45

Resolving Recurrences – Master Method

- Intuition: the larger of the two functions determines the solution
- The three cases compare f(n) with $n^{\log_b(a)}$
 - Case 1: $n^{\log_b(a)}$ is larger 0 definition
 - Case 2: f(n) and $n^{\log_b(a)}$ grow at the same rate Θ definition
 - Case 3: f(n) is larger Ω definition
- The three cases do not cover all possibilities
 - but they cover most cases we are interested in

The Master Theorem

- Case 1: If $f(n)=O\left(n^{(\log_b a)-\epsilon}\right)$ for some $\epsilon>0$ then $T(n)=\Theta\left(n^{\log_b(a)}\right)$
- Case 2: If $f(n) = \Theta(n^{\log_b(a)})$ then $T(n) = \Theta(n^{\log_b(a)}\log(n))$
- Case 3: If $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n (regularity condition), then $T(n) = \Theta(f(n))$

A function f(n) is polynomially bounded if $f(n) = O(n^k)$ for some constant k.

You need to memorize these rules and be able to use them

47

The Master Theorem

Case 2:

If $f(n) = \Theta\left(n^{\log_b(a)}(\log n)^k\right)$ for some constant $k \ge 0$ then $T(n) = \Theta\left(n^{\log_b(a)}(\log n)^{k+1}\right)$

Resolving Recurrences – Master Method, examples T(n) = aT(n/b) + f(n),

 $n^{\log_b a}$ vs. f(n)

• Examples:

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$

49

Resolving Recurrences – Master Method, examples

- Examples:
- $T(n) = 5T\left(\frac{n}{2}\right) + \Theta(n^3)$

Resolving Recurrences – Master Method, examples

- Examples:
- $T(n) = 27T\left(\frac{n}{3}\right) + \Theta\left(\frac{n^3}{\log n}\right)$

51

Idea of master theorem Recursion tree: f(n) f(n/b) f(n/b

52

Resolving Recurrences – Master Method

• Case 1: If $f(n) = O(n^{(\log_b a) - \epsilon})$ for some $\epsilon > 0$ then $T(n) = O(n^{\log_b a})$

f(n) is polynomially smaller than $n^{\log_b a}$

Intuition: cost is dominated by the leaves

53

Resolving Recurrences – Master Method

• Case 3: If $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

Intuition: cost is dominated by root, we can discard the rest

Resolving Recurrences – Master Method

• Case 2: If $f(n) = \Theta \left(n^{\log_b a} \right)$ then $T(n) = \Theta \left(n^{\log_b (a)} \log(n) \right)$

f(n) grows at the same rate of $n^{\log_b a}$

Intuition: cost $n^{\log_b a}$ at each level, there are $\log(n)$ levels

55

Resolving Recurrences – Master Method

Case 3: If $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

What's with the Case 3 regularity condition? Generally, not a problem. It always holds whenever $f(n) = n^k$ and $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ for constant $\epsilon > 0$. So, you don't need to check it when f(n) is a polynomial.