15CSE201: Data Structures and Algorithms

Lecture 2.5 : Complexity Analysis -- A Recap

By Ritwik M

Based on the reference materials by Prof. Goodrich, OCW METU and Dr. Vidhya Balasubramanian

Average Case and Worst Case

- The running time and memory usage of a program is not constant
 - Depends on input
 - Can run fast for certain inputs and slow for others
 - e.g linear search
- Average Case Cost
 - Cost of the algorithm (time and space) on average
 - Difficult to calculate
- Worst Case
 - Gives an upper limit for the running time and memory usage
 - Easier to analyze the worst case

Method for analyzing complexity

- Model of Computation
 - Mathematical Framework
- Asymptotic Notation
 - What to Analyze
- Running Time Calculations
- Checking the analysis

Counting Primitives to analyze time complexity

- Primitive operations are identified and counted to analyze cost
- Primitive Operations
 - Assigning a value to a variable
 - Performing an arithmetic operation
 - Calling a method
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a method

What about an IF -Then -Else Statement?

Example

```
Algorithm FindMax(S, n)
Input: An array S storing n numbers, n>=1
Output: Max Element in S
curMax <-- S[0] (2 operations)
i \leftarrow 1 (1 operations)
while i< n-1 do (n comparison operations)
 if curMax <A[i] then (2(n-1) operations)
     curMax <-- A[i] (2(n-1) operations)
 i \leftarrow i+1; (2 (n-1) operations)
return curmax (1 operations)
Complexity between 5n and 7n-2
```

Some

Loops

- cost is linear in terms of number of iterations
- Nested loops product of iteration of the loops
 - If outer loop has n iterations, and inner m, cost is mn
- Multiple loops not nested
 - Complexity proportional to the longest running loop
- If Else
 - Cost of if part of else part whichever is higher

Exercises

```
1) sum = 1;
                              4) for (i = 20; i \le 30; i++)
   for( i=1; i<n; i++ )
                                     for (j=1; j<=n; j++)
                                         x = x + 1;
       sum++;
2) sum = 1;
   for( i=1; i<n; i++ )
       for( j=1; j<n; j++ )
           sum++;
3) sum = 1;
   for( i=1; i<n; i++ )
       for( j=1; j<n*n; j++ )
           sum++;
```

More Exercises

Identify the basic operation for each of these algorithms

- 1) Computing sum of 'n' numbers
- 2) Computing the cube of a number
- 3) Computing n!
- 4) Max(2,3,7,6,5,8)
- 5) Pen and paper method for multiplying 2 n-digit numbers

Growth Rates and Complexity

- Important factor to be considered when estimating complexity
- When experimental setup (hardware/software) changes
 - Running time/memory is affected by a constant factor
 - 2n or 3n or 100n is still linear
 - Growth rate of the running time/memory is not affected
- Growth rates of functions
 - Linear
 - Quadratic
 - Exponential

Comparing Growth Rates

Ideal Logic / From the Growth Rates

- The exponential functions are increasing at an extremely fast rate when compared to linear functions.
- Data structure operations to run in times proportional to the constant or logarithm function
- Algorithms to run in linear or n-log-n time

Asymptotic Analysis

- Can be defined as a method of describing limiting behavior
- Used for determining the computational complexity of algorithms
 - A way of expressing the main component of the cost of an algorithm using the most determining factor
 - e.g if the running time is 5n2+5n+3, the most dominating factor is 5n2
- Capturing this dominating factor is the purpose of asymptotic notations

Big-Oh Notation

 Given a function f(n) we say, f(n) is O(g(n)) if there are positive constants c and n₀ such that f(n)<= cg (n) when n>= n₀

Big-Oh Example

- Show 7n-2 is O(n) [Hint: prove that f(n)<=cg(n)]
 - need c > 0 and n_0 >= 1 such that 7n-2 <= cn for n >= n_0
 - this is true for c = 7 and $n_0 = 1$
- Show $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - need c > 0 and n0 >= 1 such that $3n^3 + 20n^2 + 5 \le cn^3$ for n >= n0
 - this is true for c = 4 and $n_0 = 21$
- n² is not O(n)
 - Must prove n² <= cn</p>
 - n <= c
 - The above inequality cannot be satisfied since c must be a constant
 - Hence proof by contradiction

Big-Oh Significance

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is not more than the growth rate of g(n)
 - We are guaranteeing that f(n) grows at a rate no faster than g(n)
 - Both can grow at the same rate
 - Though 1000n is larger than n², n² grows at a faster rate
 - o n^2 will be larger function after n = 1000
 - Hence $1000n = O(n^2)$
- The big-Oh notation can be used to rank functions according to their growth rate

Big-Oh Significance

 Table of max-size of a problem that can be solved in one second, one minute and one hour for various running time measures in microseconds [Goodrich]

Running Time		Maximum Problem Size (n)	
	1sec	1 min	1 hour
400n	2500	150000	9000000
20nlogn	4096	166666	7826087
2n ²	707	5477	42426
n^4	31	88	244
2 ⁿ	19	25	31

- Take away from the table
 - Algorithms with quadratic or cubic running times are less practical, and algorithms with exponential running times are infeasible for all but the smallest sized inputs

Common Rules for Big-Oh

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions to represent in big Oh
 - "2n is O(n)" instead of "2n is O(n^2)"
- Use the simplest expression of the class
 - "3n+ 5 is O(n)" instead of "3n + 5 is O(3n)"

Exercises

- Show that 8n+5 is O(n)
- Show that $20n^3 + 10nlogn + 5$ is $O(n^3)$
- Show that 3logn+2 is O(logn).

Try This Out

- Consider a set of numbers from 1 to n. All the values except one value are present
 - Goal: Find the missing number
 - Give 3 solutions to find the missing number
 - What is the time and <u>space</u> complexity in terms of n?

Exercises

Calculate the value returned by total

```
def example4(S):
"""Return the sum of the prefix sums of sequence S."""
n = len(S)
prefix = 0
total = 0
for j in range(n):
    prefix += S[j]
    total += prefix
return total
```

QUIZ - 1

- Kindly solve the following quiz on your own.
- Copying is strictly prohibited and any discovered attempt will be viewed seriously
- Answer any 5 of 6 questions
- If all 6 are attempted and correct, bonus points will be awarded
- All questions carry 2 points.
- Total 10 points

QUIZ

1. Calculate time complexity by counting primitives

Input: An array A storing $n \ge 1$ integers.

Output: The sum of the elements in A.

1: $s \leftarrow A[0]$

2: for $i \leftarrow 1$ to n - 1 do

3: $s \leftarrow s + A[i]$

4: end for

5: return s

Quiz

2. Calculate time complexity by counting primitives

Input: An array A storing n ≥ 1 integers.

Output: The sum of the elements at even cells in A.

1: $s \leftarrow A[0]$

2: for $i \leftarrow 2$ to n - 1 by increments of 2 do

3: $s \leftarrow s + A[i]$

4: end for

5: return s

Quiz

3. Calculate time complexity by Asymptotic notation

Input: An array A storing n ≥ 1 integers.

Output: The sum of the prefix sums in A.

1:
$$s \leftarrow A[0]$$

3: for
$$i \leftarrow 1$$
 to $n - 1$ do

4:
$$s \leftarrow s + A[i]$$

5:
$$t \leftarrow t + s$$

- 4. Show that $f(n) = n^2 + 2n + 1$ is $O(n^2)$.
- 5. Show that $f(n) = (n + 1)^3$ is $O(n^3)$.
- 6. Assume that you are the teacher and write as if you are explaining the concept of growth rates to a student.

QUIZ -Solution

```
    Input: An array A storing n ≥ 1 integers.
        Output: The sum of the elements in A.
        1: s ← A[0] {1}
        2: for i ← 1 to n − 1 do {n-1}
        3: s ← s + A[i] {n-1}
        4: end for
        5: return s {1}

    Input: An array A storing n ≥ 1 integers.
        Output: The sum of the elements at even cells in A.
        1: s ← A[0] {1}
```

3: $s \leftarrow s + A[i] \{(n-1)/2\}$

4: end for

5: return s {1}

2: for $i \leftarrow 2$ to n - 1 by increments of 2 do $\{(n-1)/2\}$

QUIZ -Solution

- 3. O(n)
- 4. Choose C = 4 and n > 1
- 5. Choose C = 8. whenever n > 1
- 6. The scoring for this is based on the answer that you provide, namely the depth and clarity of the explanation given.