

planetmath.org

Math for the people, by the people.

probability conditioning on a sigma algebra

 ${\bf Canonical\ name} \quad {\bf Probability Conditioning On A Sigma Algebra}$

Date of creation 2013-03-22 16:25:05 Last modified on 2013-03-22 16:25:05

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 60A99
Classification msc 60A10

Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space and $B \in \mathfrak{B}$ an event. Let \mathfrak{D} be a sub sigma algebra of \mathfrak{B} . The of B given \mathfrak{D} is defined to be the conditional expectation of the random variable 1_B defined on Ω , given \mathfrak{D} . We denote this conditional probability by $\mu(B|\mathfrak{D}) := E(1_B|\mathfrak{D})$. 1_B is also known as the indicator function.

Similarly, we can define a conditional probability given a random variable. Let X be a random variable defined on Ω . The conditional probability of B given X is defined to be $\mu(B|\mathfrak{B}_X)$, where \mathfrak{B}_X is the sub sigma algebra of \mathfrak{B} , http://planetmath.org/MathcalFMeasurableFunctiongenerated by X. The conditional probability of B given X is simply written $\mu(B|X)$.

Remark. Both $\mu(B|\mathfrak{D})$ and $\mu(B|X)$ are random variables, the former is \mathfrak{D} -measurable, and the latter is \mathfrak{B}_X -measurable.