Spectral Rankability Update

Thomas R. Cameron

Davidson College

June 11, 2019

Updated Algorithm

Algorithm 1 Spectral Rankability of Graph Data Γ .

```
function [r] = \operatorname{SpecR}(\Gamma):

n \leftarrow \operatorname{the} number of vertices in \Gamma

D \leftarrow \operatorname{the} out-degree matrix of \Gamma

L \leftarrow \operatorname{graph} Laplacian of \Gamma

S = \operatorname{diag}(n-1,n-2,\ldots,0)

r = 1 - \frac{\operatorname{hd}(D,S) + \operatorname{hd}(L,S)}{2(n-1)}

return
```


Tournament Graphs

A Tournament graph is a directed graph obtained by assigning a direction to each edge in a complete undirected graph.

Our rankability measures make sense for data that can be modeled by a tournament (or near-tournament) graph.

Applications

 Sports where each pair of distinct teams play at least one game.

• Social networks that display dominance relations [Lan53].

Preference list voting systems.

On Election Voting Systems

# Voters	Ranking
10	A > B > C
1	A > C > B
5	C > A > B
0	C > B > A
9	B > C > A
5	B > A > C

On Election Voting Systems

# Voters	Ranking
3	$A > B > C > D^*$
1	$D>B>A>C^{\dagger}$
1	D > C > A > B
1	B > D > C > A
1	C > D > B > A

A Different Measure of Rankability

Model voting preference with binary graph.

Theorem

There exists a Condorcet Winner if and only if the graph Laplacian has an eigenvalue of (n-1) and there exists a vertex with out-degree (n-1).

Results

Rankability Measure = 1.00

# Voters	Ranking
10	A > B > C
1	A > C > B
5	C > A > B
0	C > B > A
9	B > C > A
5	B > A > C

Results

Rankability Measure = 0.67

# Voters	Ranking
3	$A > B > C > D^*$
1	$D>B>A>C^{\dagger}$
1	D > C > A > B
1	B > D > C > A
1	C > D > B > A

References L

H. G. Landau, On dominance relations and the structure of animal societies: III, Bull. Math. Biophys. 15 (1953), 143–148.

T. C. Ratliff, Lewis Carroll, voting, and the taxicab metric, College Math. J. 41 (2010), 303-311.