

Výroková logika

Jindřich Matuška

Faculty of Informatics, Masaryk University

24. října 2024

Čas na odpovědníky

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Syntax výrokové logiky

Abeceda

- Výrokové proměnné $\mathcal{P} = \{p, q, r, \ldots\}$
- Logické spojky \neg , \lor , \land , \Longrightarrow , \Longleftrightarrow , ...
- Pomocné symboly závorek (,)
- Formule výrokové logiky
 - lacktriangle Každá proměnná $p \in \mathcal{P}$ je formule
 - Jsou-li p, q formule, pak jsou formule i $\neg(p), (p) \lor (q), (p) \land (q), (p) \implies (q), (p) \iff (q), \dots$
 - \blacksquare Množinu formulí výrokové logiky značíme \mathcal{F}

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Sémantika výrokové logiky

- Interpretace I
 - Zobrazení $I: \mathcal{P} \rightarrow \{0, 1\}$
 - Přiřazuje výrokovým proměnným 1 (pravda) či 0 (nepravda)
- Valuace příslušící /
 - Zobrazení $I: \mathcal{F} \rightarrow \{0,1\}$
 - Rozšíření interpretace na všechny výrokové proměnné podle sémantiky spojek

Pojmy

- Formule φ pravdivá v interpretaci $I I(\varphi) = 1$
- Formule φ logicky pravdivá (tautologie) $\forall I. \ I(\varphi) = 1$
- Kontradikce $\forall I. I(\varphi) = 0$
- Splnitelná $\exists I. \ I(\varphi) = 1$
- Sémanticky ekvivalentní formule $\varphi, \psi \forall I. \ I(\varphi) = I(\psi)$

Pravdivostní tabulka

р	q	p	\wedge	(<i>q</i>	\Longrightarrow	$\neg p)$
0	0	0	0	0 1 0 1	1	1
0	1	0	0	1	1	1
1	0	1	1	0	1	0
1	1	1	0	1	0	0

Příklad 5.2.4.

Mějme formuli výrokové logiky $\varphi \equiv (p \land q) \iff (\neg q \land r)$. Bez použití pravdivostní tabulky určete:

- **z**da je φ pravdivá v interpretaci I(p) = 0, I(q) = I(r) = 1,
- lacksquare zda je φ kontradikcí,
- \blacksquare zda je φ tautologií,
- $lue{}$ zda je arphi splnitelná; případně nalezněte nějaký její model.

Příklad 5.2.5.

Udejte příklad formule φ takové, že:

- φ obsahuje právě 3 různé výrokové proměnné a je pravdivá právě ve 3 interpretacích,
- φ obsahuje právě 3 různé výrokové proměnné, je pravdivá právě ve 3 interpretacích a obsahuje pouze logickou spojku \Longrightarrow ,
- φ je kontradikce, obsahuje právě 2 různé výrokové proměnné, každou dvakrát

(Uvažujte interpretaci jako zobrazení přiřazující hodnoty právě výrokovým proměnným vyskytujícím se v φ .)

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Normální formy

- Literál je výroková proměnná nebo její negace
- Klauzule je disjunkce literálů (∨)
- Duální klauzule je konjunkce literálů (△)
- Konjunktivní normální forma (KNF) konjunkce klauzulí
- Disjunktivní normální forma (DNF) disjunkce duálních klauzulí
- Úplná normální forma (ÚKNF, ÚDNF) každá klauzule obsahuje každou výrokovou proměnnou právě jednou

Příklad 5.3.2, 5.3.3

Použitím ekvivalentních úprav nalezněte KNF následující formule.

$$\varphi \equiv (p \implies q) \implies r$$

Použitím ekvivalentních úprav nalezněte DNF následující formule.

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Splnitelnost množiny formulí

Množina formulí $\mathcal T$ je splnitelná, jestliže existuje interpretace I , v níž jsou pravdivé všechny formule $\varphi \in \mathcal T$. O množině $\mathcal T$ řekneme, že je pravdivá v interpretaci I a tuto interpretaci nazveme modelem množiny $\mathcal T$.

Formule φ logicky vyplývá z množiny formulí \mathcal{T} ($\mathcal{T} \models \varphi$), právě když je φ pravdivá v každém modelu množiny \mathcal{T} .

Příklad 5.4.1, 5.4.2

Určete splnitelnost následujících množin formulí. Je-li množina splnitelná, nalezněte nějaký její model. Vyhněte se použití pravdivostních tabulek.

$$T = \{ (p \implies q) \land r, q \land r, r \implies s, p \land \neg s \}$$

Je množina formulí $\mathcal{T} = \emptyset$ splnitelná? Dokažte.

Příklad 5.4.7

Uvažujte množinu formulí výrokové logiky $\mathcal T$ a formule $\varphi,\psi.$ Rozhodněte o platnosti následujících tvzení:

- Pokud $\mathcal{T} \models \varphi$ a $\mathcal{T} \models \psi$, pak $\mathcal{T} \models \varphi \lor \psi$
- Pokud $\mathcal{T} \models \varphi$ a $\mathcal{T} \models \psi$, pak $\mathcal{T} \models \varphi \wedge \psi$
- Pokud $\mathcal{T} \models \varphi \lor \psi$, pak $\mathcal{T} \models \varphi$ nebo $\mathcal{T} \models \psi$
- Pokud $\mathcal{T} \models \varphi \land \psi$, pak $\mathcal{T} \models \varphi$ a $\mathcal{T} \models \psi$
- Pokud $\mathcal{T} \models \varphi$, pak $\mathcal{T} \models \varphi \lor \psi$
- Pokud $\mathcal{T} \models \varphi$, pak $\mathcal{T} \models \varphi \wedge \psi$
- Pokud $\mathcal{T} \models \varphi$, pak $\mathcal{T} \cup \{\psi\} \models \varphi$
- Pokud $\mathcal{T} \cup \{\psi\} \models \varphi$, pak $\mathcal{T} \models \varphi$

Příklad 5.4.8

Ukažte, že logické vyplývání $\mathcal{T} \models \varphi$ platí, právě když množina $\mathcal{T} \cup \{\neg \varphi\}$ je nesplnitelná.

Syntax

Sémantika

Normální formy

Množiny formulí, splnitelnost, vyplývání

Sémantika logické spojky

Sémantika *n*-ární logické spojky \square je funkce $f_{\square}: \{0,1\}^n \to \{0,1\}$

Valuace formule $\psi \equiv \Box(\varphi_1, \dots, \varphi_n)$ v interpretaci / je dána:

$$I(\psi) = f_{\square}(I(\varphi_1), \ldots, I(\varphi_n))$$

Sémantika logické spojky lze definovat např. pomocí tabulky nebo již definovaných spojek

Úplný systém logických spojek

Množina logických spojek tvoří úplný systém logických spojek, pokud lze formulemi obsahujícími pouze spojky z dané množiny vyjádřit libovolnou logickou funkci.

Například množina $\{\land,\lor,\lnot,\Longrightarrow,\iff\}$ je úplný systém logických spojek.

Příklad 5.5.1

Kolik existuje různých vzájemně neekvivalentních n-árních spojek?

Příklad 5.5.5 a)

Ukažte, že $\{NOR\}$ je úplný systém logických spojek. Vyjděte z předpoklad, že $\{\Longrightarrow,\lnot\}$ je úplný systém logických spojek. (Tj. vyjádřete formule $\varphi\Longrightarrow\psi$ a $\lnot\varphi$ pomocí formulí obsahujících pouze spojku NOR).

$$\varphi NOR\psi \equiv \neg(\varphi \lor \psi)$$