GoogLeNet

Going deeper with convolutions

이민주

1. Introduction

- Increasing the depth and width of the network while keeping the computational budget constant
 - 12X fewer parameters, more accurate
 - Efficient deep neural network architecture

- LeNet-5: standard structure
- → Stacked conv layers, one or more fully-connected layers

- Network-in-Network
- → Additional 1X1 conv layers
- → Dimension reduction modules to remove computational bottlenecks, limit the size of networks
- → Increasing the depth and width of networks without performance penalty

$$f_{i,j,k_1}^1 = max(w_{k_1}^{1\intercal}x_{i,j} + b_{k_1}, 0)$$

$$f_{i,j,k_n}^n = max(w_{k_n}^{n\intercal}f_{i,j}^{n-1} + b_{k_n}, 0)$$

- Network-in-Network
- → Additional 1X1 conv layers
- → Dimension reduction modules to remove computational bottlenecks, limit the size of networks
- → Increasing the depth and width of networks without performance penalty

- Network-in-Network
- → Additional 1X1 conv layers
- → Dimension reduction modules to remove computational bott
- → Increasing the depth and width of networks without perform

3. Motivation and High Level Considerations

- Improving the performance of DNN
- → Increasing the depth(the number of levels) of the network
- → Increasing the width(the number of units at each level)
- P1 . Larger number of parameters, overfitting
- P2. uniformly increased network size is the increased use of computational resources If the added capacity is used inefficiently, the a lot of computation is wasted
- S1. ultimately moving from fully connected to sparsely connected architectures

- Inception architecture
- → Finding out how an optimal local sparse structure can be approximated and covered by readily available dense components
- → The optimal local construction & repeat spatially
- → the correlation statistics of the last layer and cluster them into groups of units with high correlation

(a) Inception module, naïve version

- 1X1 conv : a lot of clusters concentrated in a single region
- 3X3 & 5X5 conv: be covered by convolutions over larger patches, decreasing number of patches over larger and larger regions.
- Pooling : additional beneficial effect
- → Combination of layers, concentrated into a single output vector forming the input of the next stage

(a) Inception module, naïve version

- Applying dimension reductions and projections
- Low dimensional embeddings contain a lot of information & keep representation sparse
- → 1X1 conv: compute reductions before the expensive 3X3 and 5X5 convs

 Reduction & include the use of rectified linear activation

(b) Inception module with dimension reductions

```
inception_3a_1x1 = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3a/1x1',W_regularizer=12(0.0002))(pool2_3x3_s2)
inception 3a 3x3 reduce = Convolution2D(96,1,1,border mode='same',activation='relu',name='inception 3a/3x3 reduce',W regularizer=12(0.0002))(pool2 3x3 s2)
inception_3a_3x3 = Convolution2D(128,3,3,border_mode='same',activation='relu',name='inception_3a/3x3',W_regularizer=12(0.0002))(inception_3a_3x3_reduce)
inception 3a 5x5 reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_3a/5x5_reduce',W_regularizer=12(0.0002))(pool2_3x3_s2)
inception 3a 5x5 = Convolution2D(32,5,5,border mode='same',activation='relu',name='inception 3a/5x5',W regularizer=12(0.0002))(inception 3a 5x5 reduce)
inception_3a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3a/pool')(pool2_3x3_s2)
inception_3a_pool_proj = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3a/pool_proj',W_regularizer=12(0.0002))(inception_3a_pool)
inception 3a output = merge([inception 3a 1x1,inception 3a 3x3,inception 3a 5x5,inception 3a pool proj], <math>mode="concat", concat" axis=1, name="inception 3a/output")
inception 3b 1x1 = Convolution2D(128,1,1,border mode='same',activation='relu',name='inception 3b/1x1',W regularizer=12(0.0002))(inception 3a output)
inception_3b_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/3x3_reduce',W_regularizer=12(0.0002))(inception_3a_output)
inception_3b_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='inception_3b/3x3',W_regularizer=12(0.0002))(inception_3b_3x3_reduce)
inception 3b 5x5 reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3b/5x5 reduce',W regularizer=12(0.0002))(inception_3a_output)
inception_3b_5x5 = Convolution2D(96,5,5,border_mode='same',activation='relu',name='inception_3b/5x5',W_regularizer=12(0.0002))(inception_3b_5x5_reduce)
inception_3b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3b/pool')(inception_3a_output)
inception 3b pool proj = Convolution2D(64,1,1,border mode='same',activation='relu',name='inception 3b/pool proj',W regularizer=12(0.0002))(inception 3b pool)
inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],mode='concat',concat_axis=1,name='inception_3b/output')
inception 3b output zero pad = ZeroPadding2D(padding=(1, 1))(inception 3b output)
pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool3/3x3_s2')(pool3_helper)
```


• # 3X3 reduce : number of 1X1 filters before 3X3 conv ...

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1\times1\times1000$	1							1000K	1M
softmax		$1\times1\times1000$	0								

Table 1: GoogLeNet incarnation of the Inception architecture

- 22 layers deep
- Average pooling before classifier
 - → average pooling은 spatial한 정보를 합하는 방식이기 때문에 입력 이미지의 spatial 변환에 robust 하다
 - → fully connected layer보다 0.6% 향상 (dropout 추가)
- By adding auxiliary classifiers on top of 4a and 4b, increase backprop gradient
 - → loss added to the total loss , weighted by 0.3
 - → average pooling 5X5 filter, stride 3

