

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	,		
(51) International Patent Classification 5:		(11) International Publication Number:	WO 93/10956
 B29C 47/06, 49/04	A1	(43) International Publication Date:	10 June 1993 (10.06.93)
	L		

(21) International Application Number:

PCT/US91/08985

(22) International Filing Date:

27 November 1991 (27.11.91)

(71) Applicant: GENERAL ELECTRIC COMPANY [US/US]; 1 River Road, Schenectady, NY 12345 (US).

(72) Inventors: COYLE, Dennis, Joseph; 9 Jonathan Drive, Clifton Park, NY 12065 (US). TEUTSCH, Erich, Otto; RR 3, Summit Road, Pittsfield, MA 01201 (US).

(74) Agents: KING, Arthur; Counsel, International Patent Operation, General Electric Company, 1285 Boston Avenue, Bldg. 23CW, Bridgeport, CT 06602 (US) et al.

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE).

Published

With international search report.

(54) Title: MODULAR TUBULAR EXTRUSION HEAD AND A PROCESS FOR EXTRUDING TUBULAR ARTICLES

(57) Abstract

A polymer resin extrusion head includes one or more annular extrusion modules in which a spiral channel means having one or more convolutions extends from a resin inlet on the periphery of the module to an annular extrusion outlet. Preferably, the channel means gradually opens into an annular frustoconical space leading to the extrusion outlet at the inner edge of the module. The spiral channel extends symmetrically around the extrusion module or modules in a manner so as to subject all of the extruded polymer flowing from the inlet to the extrusion outlet to substantially the same process conditions along the flow path. As a result, the polymer is distributed at the outlet with properties which are substantially symmetrical around the axis of the extrusion module or modules for all resin distributed to the outlet. It is preferable that the extrusion module or modules comprise a pair of mating annular members with central frustoconical portions having apexes with an axial dimension greater than the axial dimension of the outer portions of the modules so as to form air spaces around each module including frustoconical air space portions to avoid direct heat transfer between adjacent modules.

ĸ

ř.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ΑU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
		GN	Guinca	NO	Norway
38	Belgium	GR	Grace	NZ	New Zealand
BF	Burkina Faso	HU	Hungary	PL	Poland
BC	Bulgaria	Œ	Ireland	PT	Portugal
BJ	Benin	π	Italy	RO	Romania
BR	Brazil		•	RU	Russian Federation
CA	Canada	JP	Japan Democratic People's Republic	SD	Sudan
CF	Central African Republic	KP	•	SE.	Sweden
CG	(°ongo		of Korea	SK	Slovak Republic
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	('öte d'Ivaire	KZ	Kazaklistan	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	_	Chad
cs	Czechoslovakia •	LK	Sri Lanka	TD	
CZ	Czech Republic	I.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	MI.	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

WO 93/10956 PCT/US91/08985

MODULAR TUBULAR EXTRUSION HEAD AND A PROCESS FOR EXTRUDING TUBULAR ARTICLES

BACKGROUND OF THE INVENTION

Related Application

5 This application is a continuation-in-part application of Serial No. 535,452, filed September 20, 1990, for a "MODULAR TUBULAR EXTRUSION HEAD".

Field of the Invention

10

15

20

The invention relates to resin extrusion apparatus and particularly to extrusion heads for producing articles with one or more tubular layers such as parisons, wire coatings, blown films, pipes, pultruded rods, profiles, reinforced sheets, etc.

· Description of Prior Art

Parisons, tubular extrusions of plastic resin which are subsequently blow molded to form bottles or other containers, are formed in the prior art by various apparatus some including extrusion heads which extrude successive layers of plastic resin onto a mandrel. A typical multilayer parison extrusion head has separate inlets for receiving heated and plasticized r sin from individual screw extruders and has separate channels for distributing and expressing the r sp ctiv plastic r sins in successive layers on

10

15

20

25

30

equalization and distribution chamber surrounding and spaced from the mandrel for receiving the plastic resin from the corresponding inlet. From the equalization chamber the plastic resin is fed though a frustoconical transfer passage downward and inward to a tubular extrusion channel formed around the mandrel. This annular extrusion channel exits through an inwardly or outwardly flaring annular die which includes a conical core member which may be moved longitudinally relative to the outer member of the die to vary the thickness of the wall of the extruded tubular article.

One particularly useful and successful extrusion head for forming tubular articles such as parisons is disclosed in U.S. Patent No. 4,798,526. This head includes one or more individual annular extrusion modules surrounding respective successive portions of a stepped or tapered mandrel to form the annular extrusion channel which receives one or more successively extruded plastic resin layers from the modules. Each module has a pair of members with mating surfaces wherein the equalization and distribution chamber and the frustoconical transfer passage are formed. Having the head formed from individual coaxially spaced extrusion modules enables the head to be readily assembled and disassembled as well as enabling the assembly of an extrusion head with varying numbers of modules so that a module can be used in one assembled head to extrude a single layer tubular article or can be used in a differently assembled head to extrude any layer of a multilayer article. modules forming an extrusion head can be positioned in any d sir d order. Furth rmore, the die modules are separated from each other by annular air spac s.

10

15

20

25

30

7

Concentric tubular necks or collars extend from each module into engagement with an adjacent module to define the separation distance or the width of the air spaces between modules. These air spaces prevent heat transfer from a high temperature module to an adjacent low temperature module. Low temperature resins can be degraded if heated to the higher temperature. This patent further discloses polymer inlet pressures at the extrusion head of 4,000 to 6,000 psi (27,000 to 41,000 KPa) for polycarbonate, 2,500 to 4,000 psi (17,000 to 28,000 KPa) for polypropylene, and 2,000 to 3,000 psi (13,000 to 21,000 KPa) for tie resins and barrier resins.

U.S. Patents No. 3,649,143, No. 4,111,630 and No. 4,182,603 disclose tubular extrusion dies for blow molding of multi-ply films and having nested frustoconical, hemispherical and cylindrical die members forming polymer distribution chambers wherein spiral and helical grooves are formed on the outer surfaces of inner members. These grooves progress from points near or at the inlets toward the outlets with decreasing depth so that the polymer flow is gradually forced out of the grooves and into the frustoconical, hemispherical or tubular space between die members to evenly distribute the polymer around the chamber. These nested arrangements have several deficiencies such as limiting any temperature differential between the different layers being extruded, requiring larger heads for extruding greater numbers of layers, and having long conical passages from the end of the groove or grooves to the annular outlet.

Generally the prior art tubular extrusion apparatus requires a restrictive frustoconical transfer passage from the distribution chamber to the annular

5

10

outlet from which the tubular article is extruded. This restrictive passage provides a relatively large pressure drop, i.e., greater than 50% of the total pressure drop from the extrusion head inlet through the distribution region or chamber and the restrictive passage to the outlet, in order to assist in even distribution of the polymer in the distribution chamber. In the absence of the restrictive outlet passage with the relatively large pressure drop, the polymer tends to flow at a greater rate along the shortest path between the inlet to the distribution chamber and the closest region of the annular outlet producing unevenness in the thickness of the tubular article about its circumference.

While the prior art apparatus is generally 15 efficient and successful in the extrusion of tubular articles such as multilayer parisons, blown films, wire coatings, etc., there is room for improvement. addition to the pressure differential problems discussed above, the stresses caused by temperature 20 differentials need to be reduced. For instance, polymer melt in prior art extrusion heads flow from the inlet side of an equalization and distribution chamber to the opposite side. As a result, resins processed in prior art extrusion heads are subjected to temperature 25 differentials, as well as subjected to the abovedescribed pressure differentials, as the resin is processed through the inlet, the distribution means, and outlet. As a result of these processing differentials, the resin extrudate will deposit in a 30 non-homogeneous distribution, thereby creating actual and latent internal stresses in the extruded parison. Then when the parison is formed into a final shape of a b ttle or similar contain r, such internal stresses

WO 93/10956 PCT/US91/08985

Ŧ

5

10

15

20

25

30

5

will b carri d forward, and perhaps in some instances even exacerbated, in the final product. For instance, if the bottle or like article is to be reused and subjected to high temperature cleaning or the like and filled under pressure, e.g., with carbonated beverage, the article may explode as a result of such internal stresses. Given that prior extrusion apparatus are likely unable to alleviate these stresses there is a need to further improve extrusion heads. This is especially so in light of environmental demands which require reuse of containers rather than their disposal in landfills or the like.

Accordingly an object of the present invention is to construct a new and improved polymer extrusion head and process for tubular extrusions which minimize processing differentials that occur in prior art extrusion heads and processes and thereby resulting in a more homogenous distribution of polymer as it is extruded.

It is also an object of the invention to provide a container having superior properties as a result of the improved polymer distribution described above, and to thereby provide a container having sufficient properties to be effectively and safely reused or reclaimed.

SUMMARY OF THE INVENTION

The present invention provides a process for extruding containers which achieves the above described object, the process comprising

disposing and securing an extrusion module or modules along a longitudinal axis;

said extrusion module or modules each having a resin inlet, a b re having an inner cylindrical

PCT/US91/08985 surface; and an annular extrusion outlet opening into inner cylindrical surface; having channel each of said module as a surface; having channel each of said module or modules having channel near for receiving and distributing and defining a flow national for the outlet and defining a flow national for receiving and the outlet and defining a flow national for the outlet and defining a flow national for the outlet and defining a flow national for the outlet and defining a flow national flow from the inlet to the outlet and defining a flow national said inner cylindrical surface; Trom the inlet to the outlet and defining a flow path the annular to the outlet and defining a flow path the inlet to the annular to flow from the notwar to extract the polymer to the polymer the po WO 93/10956 for the polymer to flow from the inlet to the annular is extruded which the polymer is extruded means extending extrusion outlet through which means extending extrusion outlet gaid channel means extending EXCEUSION OUTLET THEOUGH WILLOW THE POLYMER LS (

annular form, the law, th In annuar rorm, said channel means extending said the longitudinal axis of said the longitudinal axis of symmetrically around the madulon and an analysis of symmetrically around the longitudinal axis of symmetrically around the longitudinal axis of said symmetrical axis of said s Symmetrically around the longitudinal axis or sair of the symmetrically around the longitudinal axis of as to symmetrically around the longitudinal axis of a symmetrical axis of a extrusion module or modules in a manner so as to to substantially the same oroness substantially the same oroness said outlet to substantially the same process the polymer is whereby the polymer of the polymer of the polymer of the polymer is and outlet to substantially the same process of the polymer is said outlet with properties on the annular outlet with properties of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the same process of the polymer is an outlet to substantially the path whereby the properties of the polymer is an outlet to substantially the polymer is an outlet to substantially the path whereby the polymer is an outlet to substantially the path whereby the polymer is an outlet to substantially the path whereby the polymer is an outlet to substantially the path whereby the path whereby the path of subject all or the polymer riowing are process
said outlet to substantially the same process
said outlet to conditions along said flow path whereby the polymer is which along said flow path whereby the properties which distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the aummetrical around the axis for all distributed at the axis for axis for axis for a fine axis for a fine axis for axis fo distributed at the annular outlet with properties which distributed at the annular outlet; are substantially symmetrical around the outlet; are substantially through the outlet; are substantially through the outlet; 5 distributed through the outlet; into gaid inlet and introducing a polymer material module or mod introducing a polymer material into said inlet from the module or modules are not the module or module or module or module or module or module or modules are not the module or module or module or modules are not the module or modules and through said flow nath to said extransion the inlet and through said flow nath to said extransion the inlet and through said flow nath to said extransion. tlowing said polymer through the module or modules from said flow path to said extrusion the inlet and the flowing polymer material the inlet so that the flowing polymer material are supstantially symmetrical around the outlet; outlet so that the flowing polymer material arrives at the outlet so that circumscribes the which are substantially circumscribes which are substantially outlet with properties which are 10 extrusion outlet with properties which axis for all substantially symmetrical around the axis for all substantially symmetrical around the module of module symmetrical around the module of module of the symmetrical around the module of the symmetrical around the module of the symmetrical around th ENUIS LOUILLE WITH PROPERTIES WHICH are a server as a SUDBEAUCHALLY SYMMETTICEL ATOUND THE AXIS FOR A SUDBEAUCHALLY SYMMETTICEL ATOUND THE MODULE OF MODULES IN THE MODIFICATION OF 15 mer ricowing the polymer material through said

extruding the polymer material through said DEION CHANNEL! AN ANSANSI SAN the extrusion channel, and the parison so formed, and the parison are and a container from the parison are a substant and a substant a substant and a substant a substant and a substant a subs molding a container from the parison so formed, of molding a container is formed substantially free of whereby said container otherwise result from whereby said stresses which otherwise result from internal stresses which otherwise result. 20 internal stresses which otherwise result from extruded in the properties of the extruded in the properties of mariann.

Peripheral variant the n rinhard of maid nariann. exits the extrusion channel, and extrusion channel; whereby said container is formed substantially from internal stresses which otherwise result from internal stresses in the container is a substantially from the container is a substantial from the c POLYM I around the P Liphery of said Parison. 25 30

10

15

20

25

30

In one embodiment, the above process can be carried out with a polymer resin extrusion head for extruding tubular articles, comprising

one or more annular extrusion modules disposed along a longitudinal axis of the module or modules;

means for holding the annular extrusion module or modules along the axis;

the extrusion module or modules each having a polymer inlet, a bore having an inner cylindrical surface, and an annular extrusion outlet opening into the inner cylindrical surface;

each of said module or modules having channel means for receiving and distributing polymer extending from the inlet to the outlet and defining a flow path for the polymer to flow from the inlet to the annular extrusion outlet through which the polymer is extruded in annular form, said channel means extending symmetrically around the longitudinal axis of said extrusion module or modules in a manner so as to subject all of the polymer flowing from said inlet to said extrusion outlet to substantially the same process conditions along said flow path whereby the polymer is distributed at the annular extrusion outlet with properties which are substantially symmetrical around the axis for all resin distributed through said outlet.

In another aspect, the invention is summarized by a polymer resin extrusion head for extruding tubular articles, comprising

one or more annular extrusion modules disposed along a longitudinal axis of the module or modules;

means for holding the annular extrusion module or modules along the longitudinal axis each extrusion m dule or modules having a pair of mating coaxial

10

15

20

25

30

annular memb rs, and m ans securing the pair of mating annular members together;

the pair of mating annular members defining a resin inlet on the periphery of the module, a coaxial bore having an inner cylindrical surface, an annular extrusion outlet opening into the cylindrical surface;

each pair of mating annular members having channel means formed on mating surfaces of the mating annular members for receiving and distributing resin from the inlet to the annular extrusion outlet and defining a flow path for the polymer to flow from the inlet to the annular extrusion outlet through which the polymer is extruded in annular form, said channel means extending symmetrically around the longitudinal axis of said extrusion module or modules in a manner so as to subject all of the polymer flowing from said inlet to said extusion outlet to substantially the same process conditions along said flow path whereby the polymer is distributed at the annular extrusion outlet with properties which are substantially symmetrical around the axis for all resin distributed through said outlet;

the pair of mating members having inner and outer nested frustoconical portions, respectively, with the outlet defined by an annular space between the frustoconical portions; and

the inner frustoconical portion having an inside surface with a greater angle from the axis than the angle of an outside surface of the outer frustoconical portion.

In still another aspect, the invention is summarized in polymer resin extrusion head for extruding multilayer tubular articles comprising

a plurality of coaxial annular extrusion modules disposed along a longitudinal axis;

WO 93/10956 PCT/US91/08985

9

means for holding the modules spaced
longitudinally along the axis of the modules;
each module having a pair of mating coaxial
annular members, and means securing the pair of mating

5 annular members together;

the pair of mating annular members defining a resin inlet on the periphery of the module, a coaxial bore having an inner cylindrical surface, an annular extrusion outlet opening into the cylindrical surface;

10

15

each of said module or modules having channel means for receiving and distributing polymer extending from the inlet to the outlet and defining a flow path for the polymer to flow from the inlet to the annular extrusion outlet through which the polymer is extruded in annular form, said channel means extending symmetrically around the longitudinal axis of said extrusion module or modules in a manner so as to subject all of the polymer flowing from said inlet to said extrusion outlet to substantially the same process conditions along said flow path whereby the polymer is distributed at the annular extrusion outlet with properties which are substantially symmetrical around the axis for all resin distributed through said outlet; and

25

30

20

each module further having a center portion which is frustoconical wherein the frustoconical center portion at the center bore has a dimension along the axis which is greater than the axial dimension of the outer portions of each module so that the apex of each preceding module engages the succeeding adjacent module to form air spaces including frustoconical air space portions between adjacent modules to produce enhanced temperature isolation between modules.

ô

5

10

15

20

25

30

In another aspect, the inventi n is polymer r sin extrusion head for extruding multilayer tubular articles comprising

an elongate mandrel;

a plurality of coaxial annular extrusion modules spaced longitudinally along the mandrel and extending around successive sections of a mandrel so as to define a tubular extrusion channel between the modules and the mandrel for receiving successive layers extruded by the modules into the tubular extrusion channel;

an annular die mounted downstream from the extrusion modules and having three successive sections for receiving and forming the multilayered tubular extrusion from extrusion channel, the first section having a tapered diameter progressively reduced from the diameter of the annular extrusion channel, the second section having a constant diameter equal to the exit diameter of the first section throughout its length, and the third section having a flared diameter progressively increasing the diameter from the diameter of the second section to a desired diameter.

Other objects, advantages and features of the invention will be apparent from the following description of the preferred embodiment taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a section view of an extrusion head for a extruding a multilayer parison in accordance with the invention.

Fig. 2 is a bottom view of an upper member of one extrusion module in the head of Fig. 1.

WO 93/10956 PCT/US91/08985

11

Fig. 3 is a sectional view, taken at line 3-3 of Fig. 2, of an extrusion module removed from the head of Fig. 1.

Fig. 4 is a sectional view, taken at line 4-4 of Fig. 2, of a portion broken away from the module of Fig. 3.

Fig. 5 is an elevational view, partially in section, of a broken away portion of an upper member of the module of Fig. 3 with the section taken at line 5,6 - 5,6 of Fig. 2.

Fig. 6 is an elevational sectional view of a broken away portion of a lower member of the module of Fig. 3 with the section taken at line 5,6 - 5,6 of Fig. 2.

15 Fig. 7 is a diagrammatic view of a parison extrusion apparatus including the extrusion head of Fig. 1.

10

20

25

Fig. 8 is a view similar to Fig. 2 showing a variation of the spiral channel in the upper member of the extrusion module.

Fig. 9 is a view similar to Figs. 2 and 6 showing another variation of the spiral channel in the upper member of the extrusion module.

Fig. 10 is a schematic illustration of a container blow molding process and apparatus which can incorporate an extrusion head according to this invention.

Fig. 11 is a partial view in cross section of an annular die according to the invention.

30 <u>DESCRIPTION OF THE PREFERRED EMBODIMENT</u>

As shown in Fig. 7, one embodiment of an extrusion head, indicated generally at 10, in accordance with the invention includes one or more extrusion modules such as a plurality of extrusion m dul s indicated generally

10

15

20

25

30

at 14, 16, 18 and 20 which receive streams of different polymer materials from respective conventional screw extruders 24, 26, 28, and 30 for forming a multilayer parison 32 which is then extruded into a container blow mold as illustrated in Fig. 10. As shown in Fig. 1, the modules 14, 16, 18 and 20 are coaxially mounted in spaced relationship along the axis 22 of the modules so as to form air spaces 88 including frustoconical air spaces 90 thermally isolating each module in the head to enable improved extrusion temperature control of each layer being extruded.

In the illustrated parison head, the modules 14, 16, 18 and 20 coaxially extend over spaced sections of a tapered stepped mandrel 34 so as to extrude their respective layers into a tubular extrusion channel 36 defined between the inner surfaces of the modules and the outer surface of the mandrel.

The modules 14, 16, 18 and 20 have substantially similar constructions. As shown in Fig. 3 for the module 18, each of the modules includes upper and lower members 40 and 42 which mate together and include a plastic material inlet 46 opening on the periphery of the module, an annular outlet 48 opening at the inner surface of the module, and one or more spiral channels such as a pair of spiral channels 50 and 51, Figs. 2 and 3, extending from bifurcated inlet channels 52 and 53 to a position adjacent to the outlet 48. The inlet 46 is formed by machining the mating surfaces of the members or by boring along the parting line between the outer portions of the members. Alternatively, the inlet 46 can be formed by boring in one of the members 40 or 42 similar to that shown in U.S. Patent 4,798,526. The inlet bifurcated channels 52 and 53 are machined in opp site directions through ninety degree

10

15

20

25

30

arcs in th mating surfaces of the outer flange portions of the members 40 and 42. The mating flat or land surfaces of the flange portions of the members 40 and 42 sealingly engage each other to close the channels 52 and 53.

Center portions 54 and 56 of the members 40 and 42 are generally frustoconical with apexes extending downstream. As shown in Fig. 6, the inside surface of the center portion 56 has a cylindrical ring portion 58 and three successive frustoconical portions 60, 61 and 62 which extend inward from the ring portion 58 to the cylindrical surface 63 of a bore which defines a portion of the outer wall of the tubular extrusion channel 36, Fig. 1. The slant angle of the surface 61, i.e., the angle of the surface 61 relative to the axis 22, is less than the slant angle of the surfaces 60 and 62 so that the thickness of an annular frustoconical space or passage 64, Fig. 4, between the portions 54 and 56 gradually increases over the region of the spiral channels 50 and 51, as illustrated by the short and long dashed line 70 which has the same angle as surfaces 60 and 62. As shown in Fig. 5, the outside surface of the inner frustoconical portion 54 has a cylindrical ring portion 65 sealingly engaging the surface 58, a first frustoconical surface portion 66 extending inward from the ring portion 65 to the first convolution of the spiral channels 50 and 51, and a second frustoconical surface portion 67 extending inward from the outermost spiral convolution formed by channels 50 and 51 to the apex of the frustoconical portion 54 where a cylindrical surface 68 of above, Fig. 4, defines a portion of the outer wall of the tubular extrusi n channel 36. The bores defining cylindrical surfaces 63 and 68 are coaxial. Edges 71,

10

15

20

25

30

Fig. 2, between the first and s cond frustoconical surfaces 66 and 67 are formed in the land areas between the first convolutions of the spiral channels 50 and 51. The first frustoconical surface portion 66 has a slant angle equal to surface 60 so that surface portion 66 sealingly engages the surface portion 60. The second frustoconical surface portion 67 also has the same slant angle as surfaces 60 and 66 but has a reduced diameter, as illustrated by the long and short dashed line 69 which is an extension of the surface 66, so as to introduce an initial frustoconical space or thickness between the surface 61 and the land areas separating the spiral channels 50 and 51 to begin the frustoconical passage 64. At its inner end the frustoconical passage 64 defines the outlet 48.

Referring to Fig. 2, the inlet channels 52 and 53 have extensions 72 and 73 machined in the surfaces 65 and 66 of the inner center portion 54 to open into the origins of the respective spiral channels 50 and 51. these origins are on opposite sides, 180° apart. The spiral channels 50 and 51 are formed by machining the frustoconical surface 67 of the inner frustoconical portion 54 and each extend clockwise for approximately one and one-half convolutions about the frustoconical portion 54. The cross-sectional area of each channel 50 and 51 gradually decreases from its origin to its endpoint so that the polymer forced into each channel at its origin is gradually dispersed into the increasing width of the frustoconical passage 64 to distribute the polymer evenly about the frustoconical portion 54. The pitch of the spiral channels, i.e., the spacing between adjacent convolutions, is constant and the depth of the spiral channels relative to

10

15

20

25

30

surface 67 changes linearly so as to facilitate the machining of the channels.

The length of the spiral channels must together circumscribe or extend symmetrically around the longitudinal axis of the extrusion module or modules, i.e., extend substantially 360° around the axis of the bore which the mating inner and outer portions create to form extrusion channel 36, so as to subject all of the polymer flowing from the inlet to the outlet to substantially the same process conditions.

"Circumscribe," as used herein, is meant to include circular as well as non-circular paths. Such channels provide a means whereby the polymer is distributed at the annular extrusion outlet with properties which are substantially symmetrical around the axis of the extrusion module or modules for all resin which is distributed through the outlet.

In the modification shown in Fig. 8, channels 93 and 94 extend in opposite directions each through a minimum of 180° along spiral paths so that the channels 93 and 94 together extend completely around the inner frustoconical portion. The numbers of spiral channels and their direction can vary. The modification of Fig. 9 illustrates a single spiral channel 96 which makes more than three full convolutions around the inner frustoconical portion.

Referring back to Fig. 3, the outside surface 76 of the lower portion of the lower frustoconical portion 56 has a slant angle which is less than the slant angle of the inside surface 78 of the upper frustoconical portion 54 so that the width 82 of the inside surface of the module 18 along the axis 22 is greater than the width 86 of the outer portions of the module 18. The diff rence between the widths 82 and 86 is selected to

÷

5

10

15

20

25

30

provid the desired spacing 88, Fig. 1, between adjacent modules. The lower edge of the apex of each higher module 14, 16 and 18 engages the upper side of the next lower module 16, 18 and 20 to define the spacing 88 between modules. Spacers 84 formed on the bottom of the flanges of the lower members 42 abut the adjacent modules to assist in maintaining even spacing between the flanges or outer portions of the modules around their circumference. These spacers 84 are broken by the various bores into the flange so as to permit air flow into and out of the spaces 88. The frustoconical air space portions 90 of the spaces 88 extend to the points of engagement between modules.

Bolts 98, Figs. 1 and 2, secure the upper and lower members 40 and 42 of the extrusion modules 14, 16, 18 and 20 together. Guide pins 99, Figs. 2 and 4, provide for proper alignment of the members 40 and 42 during assembly. Threaded bores 101, Fig. 6, in the members 42 are aligned with recesses 103, Figs. 2 and 5, in the members 40 so that conventional jacking bolts (not shown) can be screwed into the bores 101 to engage the recesses and force the members 40 and 42 apart during disassembly.

As shown in Fig. 1, the modules 14, 16, 18 and 20 are held in the extrusion head 10 by upper and lower clamp members 100 and 102 and by bolts 104, see also Fig. 2, which extend through bores in the clamp members and the extrusion modules. The lower surface 106 of the upper clamp member 100 has a convex frustoconical configuration similar to the lower surface of the extrusion modules 14, 16, 18 and 20, and the upper surface 108 of the lower clamp member 102 has a concave frustoconical configuration similar to the upper surface of the extrusion modules. This enables

10

15

20

25

30

extrusion modules to be interchanged in position as well as the clamp members to be used to hold a single extrusion module or any number of modules.

The mandrel 34 is tubular and extends through the upper clamp member and a mounting plate 110 fastened by bolts 112 to the upper clamp member 100. Bolts 113 secure the mounting plate 110 to conventional blow molding and supporting structures (not shown). A threaded nut 114 secures the upper end of the mandrel which has a tapered fit in the clamp member 100. The mandrel 34 is tapered downward with by a plurality of successive steps 118, 120, 122 and 124 which begin at each corresponding outlet of the modules 14, 16, 18 and 20 to provide for the extrusion of the successive polymer layers on the mandrel. The diameters of each step are selected in accordance with the desired thickness of the corresponding layer being extruded. Generally different mandrels are required for different arrangements of extrusion modules.

Alternatively, the mandrel can have a constant diameter through the extrusion modules and the inner diameters of the extrusion modules can be stepped. This limits the interchangeability of the modules, but blank modules can be manufactured with the inner diameters machined later after the extrusion head configuration is determined.

Annular upper and lower dies 128 and 130 are mounted by a die clamp 132 and bolts 136 and 138 on the bottom of the module clamp member 102. The lower die 130 is threaded to the upper die 128. Positioned within the dies is a die core 140 which is threaded onto the lower end of a shaft 142 slidably extending through th lumen of the mandrel 34. The die 128 has its di opening tapered or stepped down in diam ter at

10

15

20

25

30

the mandrel 34 so that a constant cross-sectional area of the extrusion passage is maintained. This reduced diameter extends along a section 146 of constant diameter through the upper portion of the lower die 130 with the bottom portion 148 of the lower die flaring out to the desired diameter of the article or parison. The bottom portion 150 of the die core 140 flares outwardly at an angle slightly greater than the angle of the die portion 148 so that the exit thickness of the annular extrusion channel is less than the upper portion of the extrusion channel to insure that the layers of plastic polymer are firmly bonded together and that the cross-sectional area of the extrusion passage is maintained.

In order to assure that the polymer layers are preferably radially compressed to some degree upon being extruded from the die, the cross-sectional area of the annular channel at the exit from the bottom of the die portions 148 and 150 is slightly less than the cross-sectional area at the entrance portion of the channel. In other words, the extruded multi-layer polymer structure is preferably compressed slightly by reason of the reduction in the cross-sectional area of the flow passage formed by the channel formed by the elements 148 and 150 in the direction of the exit therefrom. This assures compression of the multi-layer structure as it exits from the die and provides firm bonding and enhanced structural integrity of the extruded multi-layer parison.

As illustrated in Fig. 11 the bottom portion 150 f the die core 140 can alternatively flare inwardly at an angle gr at r than the angl of the die p rtion 148. As a r sult the die is inwardly tap red, but has an

10

15

20

25

30

expanding extrusion chann l annulus. In the embodiment of Fig. 11, the same contraction in cross-sectional area of the annular flow passage is preferably provided in order to compress the extruded multi-layer structure as it exits the die.

A center longitudinal bore 152 is formed through the die core 140 and the shaft 142 for passing gas into the parison being extruded to prevent collapse of the parison.

The extrudate exits the above-described die into a container blow mold according to conventional techniques. As illustrated in Fig. 10 parison 32 exits into a container blow mold 200. Container blow mold 200 can be a conventional split mold which is divided into halves 200a and 200b along its longitudinal axis and has a shape selected for the particular container desired. The extruded parison 32 is then processed according to conventional blow molding techniques. See, for example, "Blow Molding", Modern Plastics, October 1991, pp. 222-224.

For example, after parison 32 exits into container blow mold 200 halves 200a and 200b of the mold come together, thereby pinching the bottom of parison 32 to form a seal. The sealed bottom of the parison will become the bottom of the finished container. Shortly after the bottom of the parison is pinched, a conventional cutting blade (not shown) severs the parison from the extrudate exiting the annular die 130. The container blow mold 200 is then removed from under annular die 130 and replaced with another mold 300 to repeat the process described above. This particular process is known as a single-station shuttle process.

After the container blow mold is removed from und r xtrusion head 10, container bl w mold 200 is

10

15

20

25

30

techniques.

shuttled to calibration station 310. A blow pin 311 is then inserted into container blow mold 200 and parison 32 to inflate the parison into a container schematically illustrated as 312 in figure 10. Container blow mold 200 is not illustrated at calibration station 310 in order to better illustrate container 312. The blown container 312 is then separated from mold 200 and trimmed using standard

As shown in Fig. 7, the illustrated parison extrusion apparatus includes a conventional control 160 which controls the vertical position of the shaft 142 in the mandrel 34. Parisons being extruded are often varied in thickness from the bottom to the top; i.e., bottle bottom portions having inverted bottoms need thicker walls at the bottom to prevent bulging of the bottoms from the pressure of the bottle contents such as a carbonated beverage. Additionally the control 160 can vary the extrusion pressures of the extruders 24, 26, 28 and 30 to vary the thickness of each layer being extruded relative to the other layers in a conventional manner. For example, the thickness of a barrier layer can be maintained uniform throughout the bottle height while the thickness of a structural layer is reduced in upper portions of the bottle.

Referring back to Fig. 1, electrical heater coils 164, 166, 168, 170, 172, 174, 175 and 176 are mounted on the extrusion modules 14, 16, 18 and 20, the clamp members 100 and 102 and the lower die member 130, respectively, for initially heating the corresponding members to their desired operating temperatures as well as maintaining a proper temperature during operation. Thermocouple sensing elements 180, 182, 184, 186, 188 and 190 provide temperature signals of the extrusion

10

15

20

25

30

modul s 14, 16, 18 and 20, the lower clamp 102, and the die member 130 to conventional control circuitry (not shown) operating the heater coils.

In an example of a parison suitable for blow molding to form a bottle, the parison is formed by extruding inner and outer layers of polycarbonate, and intermediate layers of amorphous polyamide and regrind through multiple extrusion modules. However, there may be instances where a single material has properties which meet all of the requirements of a particular container application. In those instances, parisons having only one layer are needed. Accordingly, those single-layered parisons can also be prepared into single-layered containers according to the invention wherein only one extrusion module would be used.

The described embodiment has several advantages over the prior art extrusion apparatus. The spiral channel or channels forming together at least one full convolution gradually opening into the frustoconical passage 64 results in pressure differentials in the channel or channels being cancelled by pressure differentials in the thinner upper portions of the frustoconical passage 64. This eliminates the need for an annular pressure equalization and distribution chamber which is generally required in prior art tubular article extrusion apparatus. Such equalization and distribution chambers still have some unequal pressure, i.e., there must be a pressure differential to produce plastic polymer flow from one side to the other side of the annular chamber. The uneven pressure around the annular outlet produces uneven thicknesses in the layers being formed in the parison. embodiments of Figs. 1-9 produce superior circumferential layer thickness uniformity.

10

15

20

25

30

Furthermore a generally restrictive frustoconical transfer passage extends from the prior art equalization and distribution chamber to the annular outlet in order to minimize the pressure differential in the equalization and distribution chamber. prior art restrictive transfer passage results in a requirement for a substantially higher melt pressure compared to the present embodiment which relies upon at least one convolution formed by a channel or by the combined length of two or more channels of decreasing cross section opening into the gradual increasing thickness of the frustoconical passage 64 to minimize circumferential pressure differentials at the outlet The size of the spiral channel or channels and the thickness of the passage 64 are selected to produce substantially less pressure drop between the inlet 46 and outlet 48 compared to the prior art.

Still further the elimination of the prior art equalization chamber with its opening into a restrictive frustoconical transfer passage reduces shear on the plastic polymer that is produced by such opening. Substantially less shear results from the present gradual opening of the spiral channel or channels through one or more spiral convolutions in the frustoconical passage 64. This results in increased strength in the article being produced.

Circumferential polymer extrusion temperatures tend to be more uniform in extrusion heads according to the invention, and substantially more uniform in the embodiments having two or more spiral distribution channel convolutions. As discussed earlier, since polymer melt in the prior art flows from the inlet side of the equalization and distribution chamber to the opposite side, a temp rature differ ntial can be

10

15

20

25

30

produced where the inlet polymer m lt temperature differs from th averag temperature of the distribution module. As a result, the actual and latent internal stresses discussed above occur. However, in extrusion heads according to this invention all portions of the polymer material flowing from the inlet to the annular extrusion channel are exposed to

inlet to the annular extrusion channel are exposed to substantially the same process conditions, e.g., temperature, pressure, shear, etc., along the channel means from the inlet to the annular extrusion channel. Therefore, all of the polymer arriving at the annular extrusion channel has substantially the same process history, that is a substantially identical prior exposure to such process conditions, and is therefore substantially uniform in its properties around the

periphery of the extrusion channel as it is extruded therefrom. Thus, the tendency for circumferential temperature differentials and the occurrence of non-homogeneities are reduced.

Reducing the occurrences of non-homogeneities allows one to produce parisons and bottles which are believed to be superior to those in the art. As indicated earlier, reducing non-homogenous distribution of resin which result from pressure and temperature differentials, as well as other processing differentials, reduces the number of actual and latent internal stresses in any parison, bottle or like article prepared from the resin. Accordingly, the resulting bottle or like article will possess superior ability to maintain its integrity under external stresses.

The term "properties" as used herein refer to those properties which are the result of process conditions applied to the resin during the flow from

10

15

20

25

30

the inlet to the outlet. These includ such parameters as process temperatures, pressures, shear conditions and other process conditions to which the polymer is exposed along the path of flow from the inlet to the annular extrusion outlet. The flow path is arranged symmetrically around the periphery of the axis of the module(s) so that all of the polymer is exposed to substantially the same process conditions during its flow from the inlet to the extrusion outlet, with the result that it arrives at the extrusion outlet with substantially symmetrical and homogenous properties around the full periphery of the extrusion outlet.

The present embodiment also provides greater temperature isolation between adjacent modules with a relatively simple and inexpensive structure. The prior art included abutting collars for spacing modules, but the collars had substantial thickness to transfer heat between modules. The present embodiment by including frustoconical air spaces 90 provides improved temperature isolation between extrusion modules.

Still further, the die output structure with section 144 reducing the annular extrusion channel diameter followed by the section 146 of uniform diameter and then the section 148 producing an increase in diameter to the desired container or parison diameter, results in improved product by eliminating prior art tendencies for failure of multiple layers to adhere uniformly together.

While the described embodiment is directed to manufacture of parisons used for blow molding bottles, the disclosed modular extrusion head is suitable for the manufacture of many other tubular articles such as film which is formed by slitting a tubular form with or without blowing of the tubular form; pip or oth r

10

15

20

25

30

elongated profile article which may or may not be filled with foam such as through bore 152; glass mat reinforced sheet wherein polymer is extruded from one or more annular extrusion heads with rectangular center bores onto a glass fiber mat; pultruded sheet, rod or profile article; and wire coatings. For certain applications such as forming wire coatings or extruding coatings on other elongated materials, the extrusion head does not include a mandrel; rather the object on which the coatings are being extruded take the place of the mandrel. The term "container" is used herein to include all of the above described articles.

The container of the present invention is remarkably superior to those formed by prior art methods in that it is relatively free from residual internal stresses otherwise carried forward from the parison by reason of the fact that the polymers of which such prior art parisons were formed were subjected to non-uniform processing conditions in the extrusion head. These non-uniform conditions resulted from the fact that flow paths from the inlets of such prior art extrusion apparatus were non-symmetrical in flow patterns from the inlets to the annular extrusion channel. In the apparatus and method of the present invention, such flow paths extend symmetrically about the axis of each module such that all of the polymer flowing from the inlet to the extrusion channel is subjected to substantially the same process conditions, whereby the properties of the polymer are substantially the same and homogeneous around the full periphery of the annular extrusion channel at the point of extrusion from the channel.

The parison thus formed is therefore substantially fre from r sidual int rnak str ss s that would

10

15

otherwise occur as a result of such non-uniformities and non-homogeneities. The same advantages are realized whether the container is formed from a single layer or from a plurality of layers in accordance with the present invention. In either case, the finished container is substantially free from residual internal stresses which would otherwise be present from the formation of the parison. It is thus believed that the finished container of this invention can be effectively and safely reused or reclaimed.

The above described embodiment is only illustrative of the disclosed embodiment and many other embodiments, variations, modifications, and changes in detail can be devised without departing from the scope and spirit of the invention as defined in the following claims.

WHAT IS CLAIMED IS:

- 1. A polymer material extrusion head for extruding
- 2 containers comprising
 - one or more annular extrusion modules disposed
- 4 along a longitudinal axis of the module or modules;
 - means for holding the annular extrusion module or
- 6 modules along the axis;
 - the extrusion module or modules each having a
- 8 polymer inlet, a bore having an inner cylindrical
- surface, and an annular extrusion outlet opening into
- 10 the inner cylindrical surface;
 - each of said module or modules having channel
- means for receiving and distributing polymer extending from the inlet to the outlet and defining a flow path
- 14 for the polymer to flow from the inlet to the annular extrusion outlet through which the polymer is extruded
- in annular form, said channel means extending symmetrically around the longitudinal axis of said
- extrusion module or modules in a manner so as to subject all of the polymer flowing from said inlet to
- said extrusion outlet to substantially the same process conditions along said flow path whereby the polymer is
- 22 distributed at the annular extrusion outlet with properties which are substantially symmetrical around
- 24 the axis for all resin distributed through said outlet.
 - 2. A polymer resin extrusion head as defined in
- 2 claim 1 wherein the channel means includes one or more spiral flow paths in the annular extrusion module or
- 4 modules wherein the one or more flow paths substantially circumscribes the axis and which
- 6 gradually opens into an annular frustoconical space to distribute the resin into the outlet.

- 3. A polymer resin extrusion head as defined in
- 2 claim 1 wherein the channel means comprises two spiral flow paths, each path originating from said inlet and
- 4 each path extending in an opposite direction for at least 180° around the axis so that the axis is
- 6 substantially circumscribed by the two paths.
 - 4. A polymer resin extrusion head as defined in
- 2 claim 3 wherein each of the two spiral paths substantially circumscribes the axis of the extrusion
- 4 module or modules so that one path is substantially concentric with the other path.
 - An extrusion head according to claim 1
- wherein the channel means circumscribes the axis along more than one spiral path.
 - 6. A polymer resin extrusion head as defined in
- 2 any one of claims 1-5 wherein the channel means has a cross-section which decreases from the inlet to the
- 4 outlet and the channel means gradually opens into an annular frustoconical space which opens into the
- 6 outlet.
- 7. A polymer resin extrusion head as defined in
- 2 claim 6 wherein the annular frustoconical space increases in thickness as the space opens into the
- 4 outlet.

	8. A polymer restm extrusion head for excluding
2	containers comprising
	one or more annular extrusion modules disposed
4	along an axis of the module or modules;
	means for holding the annular extrusion module or
6	modules along the axis each extrusion module or modules
	having a pair of mating coaxial annular members, and
- 8	means securing the pair of mating annular members
	together;
10	the pair of mating annular members defining a
	resin inlet on the periphery of the module, a coaxial
12	bore having an inner cylindrical surface, an annular
	extrusion outlet opening into the cylindrical surface;
14	each pair of mating annular members having channel
	means formed on mating surfaces of the mating annular
16	members for receiving and distributing resin from the
	inlet to the annular extrusion outlet and defining a
18	flow path for the polymer to flow from the inlet to the
	annular extrusion outlet through which the polymer is
20	extruded in annular form, said channel means extending
	symmetrically around the longitudinal axis of said
22	extrusion module or modules in a manner so as to
	subject all of the polymer flowing from said inlet to
24	said extusion outlet to substantially the same process
	conditions along said flow path whereby the polymer is
26	distributed at the annular extrusion outlet with
	properties which are substantially symmetrical around
28	the axis for all resin distributed through said outlet
	the pair of mating members having inner and outer
30	nested frustoconical portions, respectively, with the
	annular extrusion outlet defined by an annular space
32	between the frustoconical portions; and
	the inner frustoconical portion having an inside
34	surfac with a greater angle from the axis than the
	angle of an outside surface of the outer frustoconical
36	portion.

- 9. A polymer resin extrusion head as defined in claim 8 wherein the channel means includes one or more spiral paths extending completely around the inner
- 4 frustoconical portion and gradually opening into the annular frustoconical space between the frustoconical
- 6 portions to distribute the resin around the inner frustoconical portion and into the annular extrusion
- 8 outlet.
 - 10. A polymer resin extrusion head as defined in
- 2 claim 9 wherein the frustoconical portions have mating surfaces defining a frustoconical space with an
- increasing thickness toward the apexes, and the spiral paths gradually open into the frustoconical space
- 6 progressively toward the apexes.
 - 11. A polymer resin extrusion head as defined in
- 2 claim 10 wherein the mating surfaces of the frustoconical portions have base sections in sealing
- 4 engagement with each other, and the mating surfaces defining the frustoconical space extend from the base
- sections to the apexes of the frustoconical portions with the increasing thickness of the frustoconical
- 8 space being formed over a region containing the spiral path.
 - 12. A polymer resin extrusion head as defined in
- 2 claim 11 wherein the frustoconical space between the frustoconical portions is initially determined by a
- 4 reduction in diameter of the inner frustoconical portion downstream from a first convolution of the
- spiral channel, and the increasing thickness of the frustoconical space is formed by a frustoconical
- 8 surface portion on the inside of the outer frustoconical portion having a slant angle 1 ss than a
- slant angle of the surface of the inner frustoconical portion over the region of the spiral path.

- 31 -

- 13. A polymer resin extrusion head as defined in claim 8 including a mandrel; and wherein the extrusion 2 head comprises a plurality of annular extrusion modules
- which are spaced longitudinally along the mandrel. 4

	 A polymer resin extrusion head for extruding
2	multilayer containers comprising
	a plurality of coaxial annular extrusion modules;
4	means for holding the modules spaced
	longitudinally along the axis of the modules;
6	each module having a pair of mating coaxial
	annular members, and means securing the pair of mating
8	annular members together;
	the pair of mating annular members defining a
10	resin inlet on the periphery of the module, a coaxial
	bore having an inner cylindrical surface, an annular
12	extrusion outlet opening into the cylindrical surface;
	each of said module or modules having channel
14	means for receiving and distributing polymer extending
	from the inlet to the outlet and defining a flow path
16	for the polymer to flow from the inlet to the annular
	extrusion outlet through which the polymer is extruded
18	in annular form, said channel means extending
	symmetrically around the longitudinal axis of said
20	extrusion module or modules in a manner so as to
	subject all of the polymer flowing from said inlet to
22	said extrusion outlet to substantially the same process
	conditions along said flow path whereby the polymer is
24	distributed at the annular extrusion outlet with
	properties which are substantially symmetrical around
26	the axis for all resin distributed through said outlet.
	each module further having a center portion which
28	is frustoconical wherein the frustoconical center
	portion at the center bore has a dimension along the
30	axis which is greater than the axial dimension of the
	outer portions of each module so that the apex of each
32	preceding module engages the succeeding adjacent module
	to form air spaces including frustoconical air space
34	portions between adjac nt modules to produce enhanced
	temperature isolation between modules

	15. A polymer resin extrusion head for extruding
2	multilayer containers comprising
	an elongate mandrel;
4	a plurality of coaxial annular extrusion modules
	spaced longitudinally along the mandrel and extending
6	around successive sections of a mandrel so as to define
	a tubular extrusion channel between the modules and the
8	mandrel for receiving successive layers extruded by the
	modules into the tubular extrusion channel;
10	an annular die mounted downstream from the
	extrusion modules and having three successive sections
12	for receiving and forming the multilayered tubular
	extrusion from extrusion channel, the first section
14	having a tapered diameter progressively reduced from
	the diameter of the annular extrusion channel, the
16	second section having a constant diameter equal to the
	exit diameter of the first section throughout its
18	length, and the third section having a flared diameter
	progressively increasing the diameter from the diameter
20	of the second section to a desired diameter.

	16. A process for forming containers from polymer
2	materials comprising:
	disposing and securing an extrusion module or
4	modules along a longitudinal axis;
	said extrusion module or modules each having a
6	resin inlet, a bore having an inner cylindrical
	surface, and an annular extrusion outlet opening into
8	said inner cylindrical surface;
	each of said module or modules having channel
10	means for receiving and distributing resin extending
	from the inlet to the outlet and defining a flow path
12	for the polymer to flow from the inlet to the annular
	extrusion outlet through which the polymer is extruded
14	in annular form, said channel means extending
	symmetrically around the longitudinal axis of said
16	extrusion module or modules in a manner so as to
	subject all of the polymer flowing from said inlet to
18	said outlet to substantially the same process
	conditions along said flow path whereby the polymer is
20	distributed at the annular outlet with properties which
	are substantially symmetrical around the axis for all
22	resin distributed through the outlet;
	introducing a polymer material into said inlet and
24	flowing said polymer through the module or modules from
	the inlet and through said flow path to said extrusion
26	outlet so that the flowing polymer material
	substantially circumscribes the axis and arrives at the
28	extrusion outlet with properties which are
	substantially symmetrical around the axis for all
30	polymer flowing through the module or modules;
	extruding the polymer material through said
32	extrusion outlet;
	forming a parison from the polym r mat rial as it
34	xits an extrusion channel, and
	molding a container from the parison so formed,
36	whereby said container is formed substantially free of

- internal stresses which otherwise result from
 peripheral variations in the properties of the extruded
 polymer around the periphery of said parison.
- 17. A process as defined in claim 16 comprising
 2 introducing a polymer material into said inlet and flowing said polymer through the module or modules from
- the inlet and through said flow path to said extrusion outlet so that the flowing polymer material
- 6 substantially circumscribes the longitudinal axis of said module or modules in one or more spirals.
 - 18. A process as defined in claim 16 comprising
- 2 introducing polymer material into said inlet and flowing said polymer to the the extrusion outlet so
- that the flowing polymer flows in two opposite directions for at least 180° around the longitudinal
- 6 axis in each direction, with both polymer flows arriving at the extrusion outlet.
- 19. A process as defined in claim 18 comprising2 flowing polymer in one or more spirals for each direction.
- 20. A process as defined in claim 16 further
 2 comprising flowing the polymer material through an annular frustoconical space prior to delivering the
 4 resin to the extrusion outlet.
 - 21. A process as defined in claim 20 comprising
 - flowing the polymer material from the inlet to the annular frustoconical space along a path having a
- 4 cross-section which decreases as the path approaches the annular frustoconical space.
 - 22. A process as defined in claim 21 comprising
- 2 flowing the resin material through an annular frustoconical space which increases in thickness as the
- annular frustoconical space opens into the extrusion channel.
- 23. A container prepared by any one of the process s in claims 16-22.

PCT/US91/08985 WO 93/10956

- 36 **-**

24. A container as defined in claim 23 comprising a single layer extruded from a single extrusion module.

	25. A polymer resin extrusion head for extruding
2	tubular articles, comprising
-	one or more annular extrusion modules disposed
4	along an axis of the module or modules;
	upper and lower clamp members being disposed on
6	opposite sides of the extrusion module or modules along
	the axis;
8	means securing the annular extrusion module or
	modules between the upper and lower clamp members;
10	said extrusion module or each module having a pair
	of mating coaxial annular members, and means securing
12	the pair of mating annular members together;
	said pair of mating annular members defining a
14	resin inlet on the periphery of the module, a coaxial
	bore, an annular extrusion outlet opening into the
16	cylindrical surface of the bore, and channel means
	formed on mating surfaces of the annular members for
18	receiving and distributing resin from the inlet to the
	outlet;
20	said pair of mating members having inner and outer
	nested frustoconical portions, respectively, with the
22	outlet defined by an annular space between the
	frustoconical portions;
24	said inner frustoconical portion having an inside
	surface with a greater angle from the axis than the
2.6	angle of an outside surface of the outer frustoconical
00	portion;
28	said upper and lower clamp members having
20	respective convex and concave frustoconical surfaces
30	with angles less than and greater than, respectively,
2.0	the inside surface of the inner frustoconical portion
32	and the outside surface of the outer frustoconical
24	portion so that the apex of the convex frustoconical
34	surface of the upp r clamp member abuts the inside
36	surface of the inner frustoconical portion of the module or the uppermost module and the outside surface

- of the apex of the outer frustoconical portion of the
 outer frustoconical portion of the module or the
 lowermost module abuts the concave frustoconical
 surface of the lower clamp member to form air spaces
- between the module or modules and the upper and lower clamp members including frustoconical air space
- portions.

 26. A polymer resin extrusion head as defined in
- 2 claim 25 wherein the channel means includes one or more channels extending spirally in the outer surface of the
- 4 inner frustoconical portion to form spiral channel means extending completely around the inner
- frustoconical portion and gradually opening into the annular frustoconical space between the frustoconical
- 8 portions to distribute the resin around the inner frustoconical portion and into the outlet.
- 27. A polymer resin extrusion head as defined in
 2 claim 26 wherein the frustoconical portions have mating surfaces defining a frustoconical space with an
- increasing thickness toward the apexes, and the spiral channel means gradually open into the frustoconical
- 6 space progressively toward the apexes.
- 28. A polymer resin extrusion head as defined in
- 2 claim 27 wherein the mating surfaces of the frustoconical portions have base sections sealing
- 4 engaging each other, and the mating surfaces defining the frustoconical space extend from the base sections
- to the apexes of the frustoconical portions with the increasing thickness of the frustoconical space being
- 8 formed over a region containing the spiral channel.

- 29. A polymer resin extrusion head as defined in claim 28 wherein the frustoconical space between the frustoconical portions is initially determined by a
- 4 reduction in diameter of the inner frustoconical portion downstream from the first convolution of the
- spiral channel, and the increasing thickness of the frustoconical space is formed by a frustoconical
- 8 surface portion on the inside of the outer frustoconical portion having a slant angle less than a slant angle of the surface of inner frustoconical portion over the region of the spiral channel.
- 30. A polymer resin extrusion head as defined in claim 25 including a plurality of the annular extrusion modules spaced longitudinally along the axis so as to
- form air spaces including frustoconical air space portions between adjacent modules to reduce direct heat
- 6 transfer between adjacent modules.
- 31. A polymer resin extrusion head as defined in
 2 claim 26 including a plurality of the annular extrusion modules spaced longitudinally along the axis so as to
- form air spaces including frustoconical air space portions between adjacent modules to reduce direct heat
- 6 transfer between adjacent modules.
- 32. A polymer resin extrusion head as defined inclaim 27 including a plurality of the annular extrusion
- modules spaced longitudinally along the axis so as to

 form air spaces including frustoconical air space
 portions between adjacent modules to reduce direct heat
- 6 transfer between adjacent modules.
 - 33. A polymer resin extrusion head as defined in
- 2 claim 28 including a plurality of the annular extrusion modules spaced longitudinally along the axis so as to
- form air spaces including frustoconical air space portions between adjacent modules to reduce direct heat
- 6 transfer between adjacent modules.

- 34. A polymer resin extrusion head as defined in claim 29 including a plurality of the annular extrusion modules spaced longitudinally along the axis so as to
- form air spaces including frustoconical air space portions between adjacent modules to reduce direct heat
- 6 transfer between adjacent modules.
- 35. A polymer resin extrusion head as defined in
- 2 claim 30 including a mandrel; and wherein the plurality of the annular extrusion modules are spaced
- 4 longitudinally along the mandrel.
 - 36. A polymer resin extrusion head as defined in
- 2 claim 35 wherein the plurality of annular extrusion modules have the same internal diameter, and the
- 4 mandrel has a plurality of successive sections with progressively smaller diameters beginning at the
- 6 respective outlets of the annular extrusion dies.

	37. A polymer resin extrusion head for extruding
2	multilayer tubular articles comprising
	a plurality of coaxial annular extrusion modules;
4	means for holding the modules spaced
	longitudinally along the axis of the modules;
6	each module having a pair of mating coaxial
	annular members, and means securing the pair of mating
8	annular members together;
	said pair of mating annular members defining a
10	resin inlet on the periphery of the module, a coaxial
	bore, an annular extrusion outlet opening into the
12	cylindrical surface of the bore, and channel means
	formed on mating surfaces of the annular members for
14	receiving and distributing resin from the inlet to the
	outlet;
16	each module further having a center portion which
	is frustoconical wherein the frustoconical center
18	portion at the center bore has a dimension along the
	axis which is greater than the axial dimension of the
20	outer portions of each module so that the apex of each
	preceding module engages the succeeding adjacent module
22	to form air spaces including frusotoconical air space
	portions between adjacent modules to produce enhanced
24	temperature isolation between modules.
	38. A polymer resin extrusion head as defined in
2	claim 37 wherein the channel means includes one or more
	channels extending spirally in the outer surface of the
4	inner frustoconical portion to form spiral channel
_	means extending completely around the inner
6	frustoconical portion and gradually opening into the
	annular frustoconical space between the frustoconical
8	portions to distribute the resin around the inner
	frustoconical portion and into the outlet.

WO 93/10956 PCT/US91/08985

-42 -

- 39. A polymer resin extrusion head as defined in claim 38 wherein the frustoconical portions have mating
- 4 increasing thickness toward the apexes, and the spiral channel means gradually open into the frustoconical

surfaces defining a frustoconical space with an

6 space progressively toward the apexes.

2

- 40. A polymer resin extrusion head as defined in
- 2 claim 39 wherein the mating surfaces of the frustoconical portions have base sections sealing
- 4 engaging each other, and the mating surfaces defining the frustoconical space extend from the base sections
- to the apexes of the frustoconical portions with the increasing thickness of the frusotoconical space being
- 8 formed over a region containing the spiral channel.
 - 41. A polymer resin extrusion head as defined in
- 2 claim 40 wherein the frustoconical space between the frustoconical portions is initially determined by a
- 4 reduction in diameter of the inner frustoconical portion downstream from the first convolution of the
- spiral channel, and the increasing thickness of the frustoconical space is formed by a frustoconical
- 8 surface portion on the inside of the outer frustoconical portion having a slant angle less than a
- slant angle of the surface of inner frustoconical portion over the region of the spiral channel.
 - 42. A polymer resin extrusion head as defined in
- 2 claim 37 including a mandrel; and wherein the plurality of the annular extrusion modules are spaced
- 4 longitudinally along the mandrel.

FIG. 1

FIG. 2

CLIBOTITITE SHEET

WO 93/10956 PCT/US91/08985

FIG. 7

7/8

FIG. 10

FIG. 11

SUBSTITUTE SHEET

International Application No

I. CLASS	IFICATION O	F SUBJECT MATTER (il several classific	stion symbols apply, indicate all) 4		
According to international Patent Classification (IPC) or to both National Classification and IPC					
IPC ⁵ :	B 29 C	4//00,B 29 C 49/01			
II, FIELDS	SEARCHED	Minimum Documents	tion Searched 7		
	··· Contract		essification Symbols		
Classification	ou Skereur 1	· ·			
IPC ⁵ B 29 B,B 29 C,B 29 D					
	·	Documentation Searched other the to the Extent that such Documents a	n Minimum Documentation re included in the Fields Searched ^a		
	ı	,			
		CIOCHED TO BE BELEVANT		-	
	MENTS CON	SIDERED TO BE RELEVANT®	priate, of the relevant passages 12	Relevant to Claim No. 13	
Category •	Citation	11 Document with marchaeld			
x	US,	A, 4 522 775 (BRIGGS) 11 June 198 (01.06.85),		1	
		see column 4, lines	46-57;		
		fig. 3.		8,14-	
A		-		16,25, 37,43	
X	US,	A, 4 649 004 (NOHARA) 10 March 1 (10.03.87), see claims 1,7; fig		1	
A		See Claims 1, 1, 1-3		8,14- 16,25, 37	
. A	EP,	A2, 0 215 337 (BATTENFELD FISCHER 25 March 1987 (25.0 see claims; fig. 1.	3.87),	1,8, 14-16, 25,37, 43	
"The special categories of cited documents: 14 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document but but but but but is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "A" document member of the same patent family "V. CERTIFICATION					
		ietion of the international Search	Date of Mailing of this international	Search Report	
Date of A	23 June 1992				
Internatio	nel Searching A	Lutharity	Signature of Authorized Officer	Lupi	
EUROPEAN PATENT OFFICE Mmg N KUIPER				- Charles	

8985

_	2- International Application	PCT/US 91/08						
III. DOCU	111. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)							
Category *	Citation of Document, " with Indication, where appropriate, of the relevant passa	ages Relevant to Claim No.						
A	EP, A2, 0 274 095 (BEKUM) 13 July 1988 (13.07.88), see the whole document.	1,8,43						

Form PCT/ISA 210(extra sheet) (January 1985)

ANHANG

ANNEX

ANNEXE

zum internationalen Recherchenbericht über die internationale Patentanmeldung Nr. to the International Search Report to the International Patent Application No.

au rapport de recherche inter-national relatif à la demande de brevet international n°

PCT/U891/08985 SAE 54666

In diesem Anhang sind die Mitglieder der Patentfamilien der im obenge- members relating to the patent documents members de la familie de brevets cités in the above-mentioned internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unternational search report. The Office is in no way liable for these particulars which are given merely for the purpose of information.

This Annex lists the patent family members de la familie de brevets cités de la familie de

angeführtes Patent d in sear Document d	rchenbericht Patentdokument ocument cited ch report e brevet cité port de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publication
US A	4552775	12-11-85	WO A1 8300007 AU A1 85823/82 AU 82 546582 DE CO 3262769 EP A1 93720 EP B1 93720 AU A1 85830/82 CA A1 1196809 NO A 822055 WO A1 8300006	06-01-83 18-01-83 05-09-85 02-05-85 16-11-83 27-03-85 18-01-83 19-11-85 23-12-82 06-01-83
US A	4649004	10-03-87	AU A1 37146/84 AU B2 571917 CA A1 1240113 GB A1 2153739 GB B2 2153739 JP A2 60147306 JP B4 3076645 KR B1 9108615 BE A0 8406622 SE A 8406622 US A 4741936 GB A0 60137610 JP B4 3067483 ZA A 8410082	04-07-85 28-04-88 09-08-88 29-08-85 26-08-87 03-02-91 19-10-91 27-12-84 28-06-85 03-02-85 03-02-85 22-07-85 23-10-91 28-08-85
EP A2	215337	25-03-87	AT E 59332 AU A1 62604/86 AU B2 599048 BR A 8604416 CN A 86106753 CN B 1009907 DE A1 3532996 DE CO 3676599 EP A3 215337 EP B1 215337 JP A2 62066908 US A 4889477	15-01-91 19-03-87 12-07-90 12-05-87 20-05-87 10-10-90 26-03-87 07-02-91 21-09-88 27-12-90 26-03-87 26-12-89
EP A2	274095	13-07-88	AT E 64336 DE A1 3700237 EP A3 274095 EP B1 274095 JP A2 63247009 US A 4838778	15-06-91 21-07-88 26-07-89 12-06-91 13-10-88 13-06-89