Revision Questions

Revision Question 1 — 30/04/14

Let X be the subset of \mathbb{R}^2 given by the union of

$$\{(x,y) \mid ||(x-2,y)|| \le 1\}$$

and

$$\{(2,y) \mid 1 \le y \le 3\}$$
.

Let \mathcal{O}_X be the subspace topology on X with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.

- a) Is (X, \mathcal{O}_X) compact? Justify your answer. You may quote without proof any results from the syllabus. [5 marks]
- b) Is (X, \mathcal{O}_X) Hausdorff? Justify your answer. You may quote without proof any results from the syllabus. [5 marks]
- c) Is (X, \mathcal{O}_X) locally compact? You may quote without proof any results from the syllabus. [3 marks]
- d) Suppose that (x, y) belongs to \mathbb{R}^2 , and that $\|(x, y)\| \leq 1$. Prove that $D^2 \setminus \{(x, y)\}$, equipped with the subspace topology with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$, is path connected. You may quote without proof any results from the syllabus. [6 marks]

Let Y be the subset of \mathbb{R}^2 given by the union of

$$\{(x,y) \mid ||(x-2,y)|| = 1\}$$

and

$$\{(2,y) \mid 1 \le y \le 3\}$$
.

Let \mathcal{O}_Y be the subspace topology on Y with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.

- e) Is (X, \mathcal{O}_X) homeomorphic to (Y, \mathcal{O}_Y) ? Justify your answer. You may quote without proof any results from the syllabus, except that you may not appeal to the fact that homeomorphisms preserve Euler characteristic. [8 marks]
- f) Equip (X, \mathcal{O}_X) with the structure of a Δ -complex, and calculate its Euler characteristic. [6 marks]

Let Z be the union of $\{(x,0) \mid -2 \le x \le 0\}$ and $\{(x,y) \mid ||(x-2,y)|| \le 1\}$.

Let \mathcal{O}_Z be the subspace topology on Z with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$. Let \sim be the equivalence relation on Z generated by $(0,0) \sim (2,1)$. Let $\mathcal{O}_{Z/\sim}$ be the quotient topology on Z/\sim with respect to (Z, \mathcal{O}_Z) . Let A be the union of

$$\{(x,0) \mid -1 < x < 0\}$$

and

$$\{(x,y) \mid \|(x-2,y)\| \le 1\} \cap (]\frac{3}{2}, \frac{5}{2}[\times]\frac{1}{2}, \frac{3}{2}[).$$

Let

$$Z \xrightarrow{\pi} Z/\sim$$

be the quotient map.

- g) Does $\pi(A)$ belong to $\mathcal{O}_{Z/\sim}$? Justify your answer. [6 marks]
- h) Prove that $(Z/\sim, \mathcal{O}_{Z/\sim})$ is homeomorphic to (X, \mathcal{O}_X) . You may quote without proof any results from the course. [8 marks]