Approximate summation, operations on data stetches
Example one nodo (B) can observe one pochet may times. (i,2i) B one nodo (B) can observe one pochet may times.
(i, λ_i) each node observes a stroam $M = (s, m)$, $m: S \sim M_t$ $S = \{(1, \mathcal{R}_1), (2, \mathcal{R}_2),, (n, \mathcal{R}_n)\}$, where $S = \{(1, \mathcal{R}_1), (2, \mathcal{R}_2),, (n, \mathcal{R}_n)\}$, where
· S= [1, R1), (2, Rz),, (n, Rn) }, where
fon (i, ?i), i-denotes a unique identifier of a poiket.
Aim 1: Por each node me try to estimate
$ S _{w} = \sum_{(i,\lambda_i) \in S} \lambda_i$
$\frac{M}{(1,\lambda_1),(2,2)[1,\lambda_2)} \xrightarrow{h} \frac{M}{(2,\lambda_2)} \xrightarrow{h} \frac{M}{sketch} \rightarrow \chi S _{W}$
Aim 2: operations on alora sketches S1
$(1, \lambda)$ $(2, \lambda_2)$ $(3, \lambda_3)$ $(5, \lambda_5)$
Sketch Min Sketch M,

· Use sketches M, and Mz to estimate the value of
15, n52/w, 15, u52/w, 15, 15, 15, 15, 1 w very nice
$E \times p \text{ Sketch } (M, m, h):$ $M = (\infty, \infty, \ldots, \infty)$
$\{\gamma\} = \{ (00, 00, \dots, 00) \}$
for each (i, Ri) EM
In each k & 31,2, , ms
u h (illk) // concat of binory nepr. we twest h(illk) ~ U(0,1)
$M_K \leftarrow \min \{M_{K_1} \frac{(n(u))}{-R_1}\}$ we twat $N(i)(i)$
return M
$\left(S_{i}^{(k)} \sim E \times p(\lambda_{i})\right)$
Lemma 1 Let F(x) lee CDF of some distribution and let
$F^{-1}(u) = \inf\{x : F(x) \ge u\}, 0 \le u < 1.$
$F^{-1}(u) = \inf\{x : F(x) \neq u\}, 0 \leq u \leq 1$. Small pot $x : F(x) \neq u$ CDF $F_{\mathcal{X}}(x) = Pr[\mathcal{X} \in X]$
then for $U \sim U(0,1)$ we have $F(u) \sim F(x)$
then for $U \sim U(0,1)$ no have $F(u) \sim F(x)$ Proof: $Pr[F^{-1}(u) \leq X] = Pr[U \leq F(x)] = F(x)$ Fishen-dermaning $F(x)$
o \hat{V} $u \sim u(0,1)$
we can use this to obtain any distribution by obtaining elements from Uniform distribution

Examples (why we need infimum in definition of F-1(x))

we assume that F(x) is 1-1 and continues

F(x)

this is no longer u distit's F(x) dist

F(u) ~ F(x)

T F(x) is not 1-1

T F(x) is not continue

Cenerating values from the exponential distuilention $S \sim E \times p(\lambda)$, $E[S] = \frac{1}{\lambda}$, $f(x) = \lambda e^{-\lambda x}$ cof F(x)=1-e-2x, x>0,20 we book for inverse of F. . $u = 1 - e^{-2x} \rightarrow x = \frac{\ln(1-u)}{-2} \rightarrow F^{-1}(u) = \frac{\ln(1-u)}{-2} \xrightarrow{\text{finity}} \frac{\int_{0}^{1} \sin^{1/2} u}{\int_{0}^{1} \sin^{1/2} u}$. Lemma 1: $U \sim U(0,1) \rightarrow F^{-1}(u) \sim \frac{\ln(1-u)}{-2} \sim \frac{\ln(u)}{-2}$ Exp(2) The next step is to derive the estimator Estimation definition $M = \sqrt{111}$ me think about Mii)
as results of indep. $M_1 = \min\{S_1^{(1)}, S_2^{(1)}, \dots S_n^{(1)}\}$ experimels $M_{m} = \min\{S_{1}^{(m)}, S_{2}^{(m)}, ..., S_{n}^{(m)}\}$ $M_{n} = \min\{S_{1}^{(k)}, S_{2}^{(k)}, ..., S_{n}^{(k)}\}$ $\sum_{i=1}^{k} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m}$ nmac. 151w = 21,+22+...+2n = 1 ~> Mr ~ Exp(1) proof \[\big(x) = \Pr \big[\min \big\S_{1}...\big\s_n\big\z_n\big] = \Pr \big\S_{1} \text{2...} \land \S_{1} \text{2...} \land \S_{n} \text{2...

1-F(x) So for each element of sketch we know what's the dist nibeline.

Conclusion $M_{\kappa} \sim Exp(\Lambda) \rightarrow E[M_{\kappa}] = \frac{1}{\Lambda} \xrightarrow{M_{\kappa}} \Lambda^{\kappa} = \frac{1}{M_{\kappa}}$ from Hyperloglog me linam that hommonic neons has letten peropenties Lemma 3 Let G = ZMK, MK r Exp(A) then G~ Gamma (m, A), m & /N+, A & IR+, x > 0 Proof (ex 25) • $f_G(x) = \Lambda e^{-\Lambda x} \frac{(\Lambda x)^{m-1}}{\Gamma(m)}$, M(m)=(m-1); for mt// • it is ok for $m=1: f_{\epsilon}(x) = \Lambda e^{-\Lambda x} = \sum_{convolution} f_{convolution}$ • use induction to show that $G_m = G_{m-1} + M_1$ has distribution Comme (m, L) tip: take integral

Gamma (m-1, 1)

Lemma 4 $M \ni 2$, $\Lambda = \frac{m}{2}M_{K}$ we show that $E[\Lambda] = \frac{m}{m-1}\Lambda$ proof (ex. 26) $G = \sum_{K=1}^{m} M_{K} \sim Goldmod(m, \Lambda) \rightarrow M_{K}$ $\Rightarrow E[\Lambda] = E[G] = \sum_{K=1}^{m} \sum_{k=1}^$

Conclusion remnais $\int_{K=1}^{\infty} \frac{m-1}{\sum_{K=1}^{\infty} M_{K}} \int_{K=1}^{\infty} \frac{1}{\sum_{K=1}^{\infty} M_{K}} \int_{K=1}^{\infty} \frac{1} \int_{K=1}^{\infty} \frac{1}{\sum_{K=1}^{\infty} M_{K}} \int_{K=1}^{\infty} \frac{1}{\sum_{K=1}^{$

Lemma 5 $m \ge 3$, $\widetilde{\Lambda} := \frac{m-1}{2 M_{\text{K}}} \rightarrow \text{SE[}\widetilde{\Lambda} \text{]} = \frac{1}{\sqrt{m-2}}$ Proof

SE[$\widetilde{\Lambda}$] = $[\text{Var}[\frac{\widetilde{\Lambda}}{\Lambda}]$ what we see as $[\text{Var}[\chi] = \text{E[}\chi^2] - \text{E[}\chi^2]^2$ $\text{E[}(\frac{m-1}{G})^2 \text{]} \stackrel{*}{=} ...$