Prof. Dr. Jan Bender Dynamische Simulation von Mehrkörpersystemen

# KOLLISIONSERKENNUNG

# Klassifizierung von 3D Modellen



# Kollision



## Reduktion der Kollisionstests

- Hüllkörper
  - Kugeln
  - Achsenorientierte Quader
  - Objektorientierte Quader
  - k-DOPs
- Hüllkörperhierarchien
- Zellrasterverfahren

# Hüllkörper

- Bei polygonalen Modellen hat ein Kollisionstest den Aufwand
- Beschleunigung durch einfachen Ausschluss



keine Kollision



mögliche Kollision

# Hüllkörper



# Hüllkörper: Kugeln



# Hüllkörper: Kugeln

- Objekte werden nur schlecht angenähert.
- Der Speicherbedarf ist gering.
- Die Hüllkugel kann sehr einfach bestimmt werden.
- Der Kollisionstest ist sehr günstig.

# Hüllkörper-Hierarchien

- Eine Hüllkörper-Hierarchie ist ein Baum von Hüllkörpern.
- Jeder Knoten im Baum enthält Informationen über den zugehörigen Hüllkörper.

# Hüllkörper-Hierarchien

### Ziele

- Wenig Überlappung
- Hierarchie soll Körper möglichst gut annähern
- Gut ausbalancierter Baum

- Die Hüllkugel in der Wurzel der Hierarchie muss den ganzen Quader umschließen.
- Auf der zweiten Stufe wird eine Hüllkugel pro Fläche konstruiert.
- Für die folgenden Stufen wird jede Fläche in vier Teile zerlegt, die dann weiter zerlegt werden. Für jeden Teil wird eine Kugel bestimmt.



# Hüllkörper-Hierarchien

- Die Hierarchie wird einmal in der Vorverarbeitung konstruiert und in jedem Zeitschritt werden die Positionen Hüllkörper aktualisiert.
- Für die Aktualisierung werden die Positionen im lokalen Koordinatensystem des Körpers gespeichert und in jedem Schritt einmal in Weltkoordinaten transformiert.

## Kollisionstest

- Beim Durchlaufen zweier Hierarchien wird mit den Wurzelknoten angefangen.
- Wenn sich zwei Hüllkörper überlappen, wird einer von beiden gegen die Kinder des anderen getestet.
- Am schnellsten können Durchdringungen ausgeschlossen werden, wenn der Knoten mit dem kleineren Hüllkörper gegen die Kinder des zweiten Knotens getestet werden.

# Kollisionstest



Durchlaufen der Hierarchien:



# Literatur

 Lin, M.C., Gottschalk, S., "Collision detection between geometric models: A survey", Proceedings of IMA Conference on Mathematics of Surfaces, 1998