False sharing

Даниил Привалов. 381706-2

Описание проблемы производительности

Термин false sharing означает доступ к разным объектам в программе, разделяющим один и тот же блок кэш-памяти. False sharing в многопотоковом приложении, когда в одном блоке оказываются переменные модифицируемые из разных потоков, ведет к снижению производительности и увеличению нагрузки на Cache coherence механизмы.

Задача приводящая к такой проблеме

Необходимо подобрать какую-то многопоточную программу для работы в разных потоках над отдельными частями структуры(класса).

Данная структура:

```
uint32_t d1;
uint32_t d2;
uint32_t d3;
```

В моем случае я просто модифицирую несколько таких структур параллельно по частям и суммирую все в результирующую структуру, такого же вида.

```
for (size_t i = 0; i < 20; i++)
{
         my_data[i].d1++;
         other_data.d1 += my_data[i].d1 * (my_data[i].d1 + 1);
}</pre>
```

Чтобы получить эту проблему, мне пришлось самому отключить выравнивание структуры командой #pragma pack(push, 1).

Результаты тестирования

40 секунд на не выровненных данных против 15 на выровненных.

VTune показывает проблему и дает хорошую подсказку по ее исправлению:

Clockticks:	274,104,600,000	
Instructions Retired:	189,536,600,000	
CPI Rate ^② :	1.446 🏲	
MUX Reliability ^② :	0.987	
Retiring ^② :	29.4%	of Pipeline Slots
Front-End Bound ^② :	16.6%	of Pipeline Slots
Bad Speculation ^② :	11.4% 🏲	of Pipeline Slots
Back-End Bound ^② :	42.5% 🖪	of Pipeline Slots
	32.6% 🏲	of Pipeline Slots
L1 Bound [®] :	8.9%	of Clockticks
L2 Bound ^② :	0.0%	of Clockticks
L3 Bound [®] :	0.4%	of Clockticks
DRAM Bound [®] :	6.3%	of Clockticks
Store Bound ^② :	39.6% 🏲	of Clockticks
Store Latency ^② :	41.0%	of Clockticks
False Sharing ⁽¹⁾ :	14.3%	of Clockticks
Split Stores ^② :	0.0%	of Clockticks
DTLB Store Overhead ®	0.0%	of Clockticks
Ocre Bound ::	9.9%	of Pipeline Slots

После выравнивания при помощи alignas(CACHE_LINE_SIZE) или отключения директивы #pragma pack(push, 1) мы получаем совершенно другую картину работы программы:

Clockticks:	111,141,800,000	
Instructions Retired:	198,336,600,000	
CPI Rate [®] :	0.560	
MUX Reliability [®] :	0.978	
Retiring [®] :	70.2% 🏲	of Pipeline Slots
Front-End Bound [®] :	12.7%	of Pipeline Slots
Bad Speculation [®] :	0.0%	of Pipeline Slots
⊕ Back-End Bound ^② :	17.0%	of Pipeline Slots
	4.0%	of Pipeline Slots
② L1 Bound ^② :	6.6%	of Clockticks
L2 Bound ^② :	0.1%	of Clockticks
L3 Bound ^② :	0.0%	of Clockticks
ODRAM Bound ::	0.2%	of Clockticks
Store Bound :	0.2%	of Clockticks
Store Latency ^② :	22.7%	of Clockticks
False Sharing ^② :	0.0%	of Clockticks
Split Stores [®] :	0.0%	of Clockticks
DTLB Store Overhead [®] :	0.0%	of Clockticks
Ocre Bound ::	13.0%	of Pipeline Slots

Все же есть некоторые проблемы, но это потому что я пытался нагрузить потоки вычислениями и так же использовал сразу много структур для работы. Также у меня шло сплошное умножение, может в этом дело:

	70.2% ▶ of Pipeline Slots
⊙ General Retirement ^③ :	70.1% ► of Pipeline Slots
FP Arithmetic [®] :	0.0% of uOps
Other [®] :	100.0% № of uOps

Заключение

Была разобрана проблема False sharing, сейчас компилятор не дает попасться на нее, возможно попасть на нее только если сам захочешь где-то упаковать структуру плотнее и не учтешь это при дальнейшем распараллеливании программы.

Параметры системы

CPU параметры:

- Name: Intel(R) Core(TM) Processor code named Broadwell (i5 5200U)
- Frequency: 2.2 GHzLogical CPU Count: 4

RAM: 4 GB

OS: Windows 10

Compiler: VS 2017