

Representación basada en Restricciones

Asunción Gómez-Pérez asun@fi.upm.es

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

Bibliografía

• Notas sobre modelos de Razonamiento. (Sección 1.4)

Servicio de Publicaciones de la Facultad de Informática

José Cuena

Idea Intuitiva (I)

Estado Inicial

$$X = \{a, b\}$$

$$Y = \{a, b, c\}$$

 $Z = \{a, b\}$

Estado 1

 $X = \{a, b\}$ $Y = \{b, c\}$

 $\mathbf{7} = \{0, 0\}$

$$R = \{R1, R2,, Rm\}$$

R1: X=Z

R2: Y <> a

Incoveniente:

Generación exhaustiva de todo el espacio de búsqueda hace poco eficiente la solucion alcanzada

Solución: Búsqueda con Poda

Evaluación de soluciones correctas

$${X=a, Y=b, Z=a}{X=a, Y=c, Z=a}.....$$

Nociones Básicas

Representar el problema usando modelos con ecuaciones en los que aparecen atributos (variables) que toman valores en unos dominios.

Objetivo:

Asignar valores a variables satisfaciendo el conjunto de restricciones

¿Cómo?

Utilizando un proceso iterativo de <mark>búsqueda con poda</mark> basado en el análisis del conjunto de restricciones en cada nodo del árbol de búsqueda

- Filtrado de variables
- Propagación de valores

Componentes básicos

Marco Conceptual

- Variables/Atributos: X1, X2, ... Xn
- Dominio finito para cada atributo: DXi = <Vi1, Vi2,, Vim>
- Se pueden establecer prioridades entre atributos

Conjunto de Restricciones

 $R = \{R1, R2, ..., Rm\}$ / Ri es ecuación o inecuación

Se pueden establecer prioridades entre restricciones

Motor de Inferencia

- Filtrado de las restricciones (Obtener combinaciones de valores de atributos que satisfacen R)
- Propagación de restricciones de valores en las variables

Dominios de las Variables

Restricciones

$$R = \{R1, R2, Rn\}$$

Estado Inicial

$$X1= \{V11\}$$

 $X2 = \{V21, V22\}$

Motor de Inferencias (Algoritmo de Waltz)

Conjunto de posibles soluciones válidas:

Modelización de las Restricciones

Tipos de Restricciones

- Unarias X > 30
- Binarias X-4=Y
-

Formulación Implícita

- Ecuaciones X + Y = Z
- Inecuaciones X + Y > 4
- Producto Cartesiano
- Relaciones de orden
-

Formulación Explícita

Criterios de Diseño de la restricción

- No usar disyunciones
- No asignar valores a variables

Ej: evitar expresiones X1=v1

- Intentar minimizar el número de variables
-

El Motor de Inferencias

Características:

- Eficaz: alcanzar todas las soluciones
- Eficiente: En el menor número de pasos

Problema:

NP completo

Solución:

- Buscar restricción a restricción inconsistencias en los valores de las variables
- Iteración de procesos de resolución de inconsistencias locales

Alternativas:

- Algoritmo de Waltz (1 variable)
- Algoritmo de Martelli (3 variables)
- Algortimo de Freuder (k variables)

Generación del Arbol en la etapa de Propagación

En amplitud (por niveles)

En profundidad

- En cada nodo se Filtran los dominios de las variables
 - Si dominios vacios: se poda
 - En caso contrario: seleccionar una variable y fijar valores

Backtracking si el nodo no se puede expandir

Idea Intuitiva del algoritmo de Waltz

¿Cómo se resuelven los problemas?

- 1. Identificar Variables
- 2. Definir dominios de variables
- 3. Listar Restricciones
- 4. Establecer prioridades
 - 1. De Variables
 - 2. De restricciones
- 5. Aplicar el algoritmo de Waltz
 - 1. Filtrado
 - 2. Propagación