Theorem: $lcm(a, b) \times gcd(a, b) = ab$ for any positive integers a, b.

Proof: First a

Lemma: If m > 0, Icm (ma, mb) = $m \times$ Icm (a, b).

Since lcm(ma, mb) is a multiple of ma, which is a multiple of m, we have m | lcm (ma, mb).

Let $mh_1 = lcm(ma, mb)$, and set $h_2 = lcm(a, b)$.

Then ma $| mh_1 \Rightarrow a | h_1$ and mb $| mh_1 \Rightarrow b | h_1$.

That says h₁ is a common multiple of a and b; but h₂ is the least common multiple, so

$$h_1 \ge h_2. \tag{1}$$

Next, a $\mid h_2 \Rightarrow am \mid mh_2$ and b $\mid h_2 \Rightarrow bm \mid mh_2$.

Since mh_2 is a common multiple of ma and mb, and $mh_1 = lcm(ma, mb)$, we have $mh_2 \ge mh_1$, i.e.

$$h_2 \ge h_1. \tag{2}$$

From (1) and (2), $h_1 = h_2$.

Therefore, $lcm(ma, mb) = mh_1 = mh_2 = m \times lcm(a, b)$; proving the Lemma.

Conclusion of Proof of Theorem:

Let g = gcd(a, b). Since $g \mid a, g \mid b$, let a = gc and b = gd.

From a result in the text, gcd(c, d) = gcd(a/g, b/g) = 1.

Now we will prove that lcm(c, d) = cd. (3)

Since $c \mid lcm(c, d)$, let lcm(c, d) = kc.

Since d | kc and gcd(c, d) = 1, d | k and so dc \leq kc.

However, kc is the least common multiple and dc is a common multiple, so $kc \le dc$.

Hence kc = dc, i.e. lcm(c, d) = cd.

Finally, using the Lemma and (3), we have:

$$lcm(a, b) \ x \ gcd(a, b) = lcm(gc, gd) \ x \ g = g \ x \ lcm(c, d) \times g = gcdg = (gc)(gd) = ab.$$
 QED