M1C03 Lecture 24

Injective, Surjective, and Bijective Functions

Jeremy Lane

Nov 11, 2021

Announcement(s)

- Test 1 results are out
- Quiz due Friday
- Assignment 4 posted

Overview

Injective, surjective, and bijective functions

Reference: Notes on functions (Avenue), Lakins Chapter 5.

Example

What are some examples of functions in real-life?

Injective Functions

A function $f \colon X \to Y$ is *injective* if for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Functions on the alphabet

Let

$$\mathcal{L} = \{ \text{``a"}, \text{``b"}, \dots, \text{``z"} \}, \qquad \mathcal{U} = \{ \text{``A"}, \text{``B"}, \dots, \text{``Z"} \}, \qquad \mathcal{A} = \mathcal{L} \cup \mathcal{U}.$$

Let ${\it Cap}$ be the correspondence that converts a letter to upper case.

Describe all subsets $X\subseteq \mathcal{A}$ such that $Cap\colon X\to \mathcal{A}$ is injective.

Surjective Functions

A function $f\colon X\to Y$ is *surjective* if for all $y\in Y$, there exists $x\in X$ such that f(x)=y.

Functions on the alphabet

Let

$$\mathcal{L} = \{ \text{``a"}, \text{``b"}, \dots, \text{``z"} \}, \qquad \mathcal{U} = \{ \text{``A"}, \text{``B"}, \dots, \text{``Z"} \}, \qquad \mathcal{A} = \mathcal{L} \cup \mathcal{U}.$$

Let ${\it Cap}$ be the correspondence that converts a letter to upper case.

Describe all subsets $Y \subseteq \mathcal{A}$ such that $Cap \colon \mathcal{A} \to Y$ is surjective.

Functions on binary sequences

Recall

$$B_4 = \left\{ \begin{array}{cccc} 0000, & 1000, & 0100, & 0010, & 0001, & 1100, & 1010, & 1001, \\ 0101, & 0011, & 0110, & 1110, & 1101, & 1011, & 0111, & 1111 \end{array} \right\}$$

Which of the following functions are injective, surjective?

- $n: B_4 \to B_4$ bit flip.
- $r: B_4 \to B_4$ right shift.
- $t: B_4 \to B_3$ removes the leftmost digit.
- $a: B_3 \to B_4$ appends 0 as the leftmost digit.

Functions of real numbers

Which of the following functions are injective, surjective?

- $f: [0, \infty) \to [0, \infty), f(x) = \sqrt{x}.$
- $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2$.

Bijective functions

A function $f \colon X \to Y$ is *bijective* if it is surjective and injective.

Function composition

Let $f\colon X\to Y$ and $g\colon A\to B$ be functions with $Y\subset A$. The composition of $f\colon X\to Y$ and $g\colon A\to B$ is the function

$$g\circ f\colon X\to B$$

defined by the rule $g \circ f(x) = g(f(x))$.

Functions on the alphabet

Let

$$\mathcal{L} = \{ \text{``a"}, \text{``b"}, \dots, \text{``z"} \}, \qquad \mathcal{U} = \{ \text{``A"}, \text{``B"}, \dots, \text{``Z"} \}, \qquad \mathcal{A} = \mathcal{L} \cup \mathcal{U}.$$

Let $Cap \colon \mathcal{A} \to \mathcal{A}$ be the function that converts a letter to upper case.

Let $Low \colon \mathcal{A} \to \mathcal{A}$ be the function that converts a letter to upper case.

What is $Cap \circ Low("a")$?

What is $Low \circ Cap("a")$?

Functions on binary sequences

- $n: B_4 \to B_4$ bit flip.
- $r: B_4 \to B_4$ right shift.
- $t \colon B_4 \to B_3$ removes the leftmost digit.
- $a: B_3 \to B_4$ appends 0 as the leftmost digit.

Compute:

- $n \circ n(1010)$
- $a \circ t(1010)$
- $t \circ a(111)$
- $r \circ l(1010)$
- $l \circ r(1111)$
- $r \circ (r \circ r)(1010)$