Determinants

A general way to compute it is,

If A is an $n \times n$ matrix where n > 1,

$$\det(A) = a_{1,1} \det\left(A_{1,1}\right) - a_{1,2} \det\left(A_{1,2}\right) + \dots + \left(-1\right)^{n+1} \! a_{1,n} \det\left(A_{1,n}\right)$$

 $a_{i,j}$ means the element at the $i^{
m th}$ row and the $j^{
m th}$ column.

 $A_{i,j}$ means the Matrix if you drop (get rid of) the $i^{
m th}$ row and the $j^{
m th}$ column.