Optimization for Machine Learning (Homework #1)

Assignment date: Sep 19 Due date: Oct 3 (noon)

Read Chapter 2.5 (Convex Duality)

Theoretical Problems (10 points)

- 1. (1 points) Let $f(x) = ||x||_1 + ||x||_2^4/4$, where $x \in \mathbb{R}^d$. Find its conjugate $f^*(x)$.
- 2. (2 points) Let $x \in \mathbb{R}$ and $y \in \mathbb{R}_+$. Is $f(x,y) = x^2/y$ a convex function? Prove your claim.
- 3. (2 points) Consider the convex set $C = \{x \in \mathbb{R}^d : ||x||_{\infty} \le 1\}$. Given $y \in \mathbb{R}^d$, compute the projection $\operatorname{proj}_C(y)$.
- 4. (3 points) Compute $\partial f(x)$ for the following functions of $x \in \mathbb{R}^d$
 - $f(x) = ||x||_2$
 - $f(x) = 1(||x||_{\infty} \le 1)$
 - $f(x) = ||x||_2 + ||x||_{\infty}$
- 5. (3 points) Consider the square root Lasso method. Given $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$, we want to find $w \in \mathbb{R}^d$ to solve

$$[w_*, \xi_*] = \arg\min_{w, b, \xi} \left[\|Xw - y\|_2 + \lambda \sum_{j=1}^d \xi_j \right], \tag{1}$$

subject to
$$\xi_j \ge w_j$$
, $\xi_j \ge -w_j$ $(j = 1, \dots, d)$. (2)

Lasso produces sparse solutions. Define the support of the solution as

$$S = \{j : w_{*,j} \neq 0\}.$$

Write down the KKT conditions under the assumption that $Xw_* \neq y$. Simplify in terms of $S, X_S, X_{\bar{S}}, y, w_S$. Here X_S contains the columns of X in S, $X_{\bar{S}}$ contains the columns of X not in S, and w_S contains the nonzero components of w_* .

Programming Problem (4 points)

We consider ridge regression problem with randomly generated data. The goal is to implement gradient descent and experiment with different strong-convexity settings and different learning rates.

- Use the python template "prog-template.py", and implement functions marked with '# implement'.
- Submit your code and outputs. Compare to the theoretical convergence rates in class, and discuss your experimental results.