A Network of Arithmetic Biform Theories

William M. Farmer

February 27, 2017

1 Introduction

This report describes a network of arithmetic biform theories expressed in CTT_{qe} [1], a version of simple type theory with quotation and evaluation. The reader is expected to be familiar with the notation of CTT_{qe} . The following are additional notes to the reader:

- 1. We assume that a denumerable set of unspecified base types and a definite description operator I have been added to ${\rm CTT}_{\rm qe}$.
- 2. All constants that are not introduced as components of one of the biform theories listed below are logical constants of CTT_{qe} , either primitive or defined. is- $abs_{\epsilon \to o}$, abs- $body_{\epsilon \to \epsilon}$, and is- $closed_{\epsilon \to o}$ are defined logical constants not in [1]. is- $abs_{\epsilon \to o} A_{\epsilon}$ holds iff A_{ϵ} represents an abstraction. If A_{ϵ} represents an abstraction, then abs- $body_{\epsilon \to \epsilon} A_{\epsilon}$ represents the body of the abstraction. is- $closed_{\epsilon \to o} A_{\epsilon}$ holds iff A_{ϵ} represents an expression that is closed (and eval-free).
- 3. The type attached to a constant may be dropped when there is no loss of meaning.
- 4. When it makes sense, the notation $\{\mathbf{A}^1_{\alpha}, \dots, \mathbf{A}^n_{\alpha}\}$ denotes the predicate

$$\lambda \mathbf{x}_{\alpha} \cdot (\mathbf{x}_{\alpha} = \mathbf{A}_{\alpha}^{1} \vee \cdots \vee \mathbf{x}_{\alpha} = \mathbf{A}_{\alpha}^{n}).$$

5. Expressions of type ϵ , i.e., expressions that denote constructions, are colored red.

2 Biform Theories

T1: Simple Theory of Successor

Base Types

1. nat.

Primitive Constants

- 1. 0_{nat} .
- 2. $S_{nat \rightarrow nat}$.

Defined Constants

- 1. $1_{nat} = S 0$.
- 2. is-fo- $\mathsf{T1}_{\epsilon \to \epsilon} = \lambda \, x_{\epsilon}$. \mathbf{B}_{ϵ} where \mathbf{B}_{ϵ} is a complex expression such that $(\lambda \, x_{\epsilon} \, . \, \mathbf{B}_{\epsilon}) \, \mathsf{A}_{o} \, \mathsf{P}$ equals $\mathsf{T}_{o} \, \mathsf{P}_{o} \, \mathsf{P}_{o}$

Axioms

- 1. $S x_{nat} \neq 0$.
- 2. $S x_{nat} = S y_{nat} \supset x_{nat} = y_{nat}$.

Transformers

- 1. ξ_1 computes is-fo-T1 $_{\epsilon \to \epsilon}$ using an efficient program that accesses the data stored in the data structures that represent expressions.
- 2. ξ_2 computes is-fo-T1 $_{\epsilon \to \epsilon}$ using its definition.

T2: Simple Theory of Successor and Addition

Extended Theories

1. T1.

Primitive Constants

3. $+_{nat \rightarrow nat \rightarrow nat}$ (infix).

4. $\mathsf{bplus}_{\epsilon \to \epsilon \to \epsilon}$ (infix).

Defined Constants

- 3. $\operatorname{bnat}_{\operatorname{nat} \to \operatorname{nat} \to \operatorname{nat}} = \lambda \, x_{\operatorname{nat}} \cdot \lambda \, y_{\operatorname{nat}} \cdot ((x_{\operatorname{nat}} + x_{\operatorname{nat}}) + y_{\operatorname{nat}}).$ Notational definition: $(0)_2 = \operatorname{bnat} 0_{\operatorname{nat}} 0_{\operatorname{nat}}.$ $(1)_2 = \operatorname{bnat} 0_{\operatorname{nat}} 1_{\operatorname{nat}}.$
 - $(a_1 \cdots a_n 0)_2 = \operatorname{bnat}(a_1 \cdots a_n)_2 0_{\mathsf{nat}}$ where each a_i is 0 or 1. $(a_1 \cdots a_n 1)_2 = \operatorname{bnat}(a_1 \cdots a_n)_2 1_{\mathsf{nat}}$ where each a_i is 0 or 1.
- 4. is-bnum $_{\epsilon \to o} = \mathrm{I}\, f_{\epsilon \to o}$. $\forall \, u_{\epsilon} . \, (f_{\epsilon \to \epsilon} \, u_{\epsilon} \equiv \exists \, v_{\epsilon} . \, \exists \, w_{\epsilon} . \, (u_{\epsilon} = \lceil \mathsf{bnat} \, \lfloor v_{\epsilon} \rfloor \, \lfloor w_{\epsilon} \rfloor \rceil \wedge (v_{\epsilon} = \lceil 0 \rceil \lor f_{\epsilon \to \epsilon} \, v_{\epsilon}) \wedge (w_{\epsilon} = \lceil 0 \rceil \lor w_{\epsilon} = \lceil 1 \rceil))).$
- 5. is-fo-T2 $_{\epsilon \to \epsilon} = \lambda x_{\epsilon}$. \mathbf{B}_{ϵ} where \mathbf{B}_{ϵ} is a complex expression such that $(\lambda x_{\epsilon} \cdot \mathbf{B}_{\epsilon})^{\mathsf{T}} \mathbf{A}_{o}^{\mathsf{T}}$ equals $\mathsf{T}_{o}^{\mathsf{T}} [\mathsf{F}_{o}^{\mathsf{T}}]$ if \mathbf{A}_{o} is [not] a formula of first-order logic with equality whose variables are of type nat and whose nonlogical constants are members of $\{0, S, +\}$.

Axioms

- 5. $x_{nat} + 0 = x_{nat}$.
- 6. $x_{nat} + S y_{nat} = S (x_{nat} + y_{nat}).$
- 7. is-bnum $u_{\epsilon} \supset u_{\epsilon}$ bplus $\lceil (0)_2 \rceil = u_{\epsilon}$.
- 8. is-bnum $u_{\epsilon} \supset \lceil (0)_2 \rceil$ bplus $u_{\epsilon} = u_{\epsilon}$.
- 9. $\lceil (1)_2 \rceil$ bplus $\lceil (1)_2 \rceil = \lceil (10)_2 \rceil$.
- 10. is-bnum $u_{\epsilon}\supset$ $\lceil \operatorname{bnat} \lfloor u_{\epsilon} \rfloor \ 0 \rceil \ \operatorname{bplus} \lceil (1)_{2} \rceil = \lceil \operatorname{bnat} | u_{\epsilon} | \ 1 \rceil.$
- 11. is-bnum $u_{\epsilon} \supset$ $\lceil \operatorname{bnat} | u_{\epsilon} | 1 \rceil \operatorname{bplus} \lceil (1)_{2} \rceil = \lceil \operatorname{bnat} | u_{\epsilon} \operatorname{bplus} \lceil (1)_{2} \rceil | 0 \rceil.$
- 12. is-bnum $u_{\epsilon} \supset \lceil (1)_2 \rceil$ bplus $\lceil \text{bnat} \lfloor u_{\epsilon} \rfloor 0 \rceil = \lceil \text{bnat} \lfloor u_{\epsilon} \rfloor 1 \rceil$.
- 13. is-bnum $u_{\epsilon} \supset \lceil (1)_2 \rceil$ bplus $\lceil \text{bnat} \lfloor u_{\epsilon} \rfloor 0 \rceil = \lceil \text{bnat} \lfloor u_{\epsilon} \text{ bplus } \lceil (1)_2 \rceil \rfloor 0 \rceil$.

Transformers

- 3. ξ_3 computes $\mathsf{bplus}_{\epsilon \to \epsilon \to \epsilon}$ using an efficient program that satisfies Axioms 7–17.
- 4. ξ_4 computes $\mathsf{bplus}_{\epsilon \to \epsilon \to \epsilon}$ using Axioms 7–17 as conditional rewrite rules.
- 5. ξ_5 computes is-fo-T1 $_{\epsilon \to \epsilon}$ using an efficient program that accesses the data stored in the data structures that represent expressions.
- 6. ξ_6 computes is-fo-T2 $_{\epsilon \to \epsilon}$ using its definition.

Theorems

```
1. Meaning formula schema for \mathsf{bplus}_{\epsilon \to \epsilon \to \epsilon} ((is-bnum \mathbf{A}_{\epsilon} \land \mathsf{is-bnum} \, \mathbf{B}_{\epsilon}) \supset (is-bnum (\mathbf{A}_{\epsilon} \, \mathsf{bplus} \, \mathbf{B}_{\epsilon}) \land ([\![\mathbf{A}_{\epsilon} \, \mathsf{bplus} \, \mathbf{B}_{\epsilon}]\!]_{\mathsf{nat}} = [\![\mathbf{A}_{\epsilon}]\!]_{\mathsf{nat}} + [\![\mathbf{B}_{\epsilon}]\!]_{\mathsf{nat}}))).
```

T3: Simple Theory of Successor, Addition, and Multiplication

Extended Theories

2. T2.

Primitive Constants

- 5. $*_{nat \rightarrow nat \rightarrow nat}$ (infix).
- 6. brimes $_{\epsilon \to \epsilon \to \epsilon}$ (infix).

Defined Constants

4. is-fo- $\mathsf{T3}_{\epsilon \to \epsilon} = \lambda x_{\epsilon}$. \mathbf{B}_{ϵ} where \mathbf{B}_{ϵ} is a complex expression such that $(\lambda x_{\epsilon} \cdot \mathbf{B}_{\epsilon}) \, \mathbf{A}_{o} \, \mathbf{e}$ equals $\mathbf{T}_{o} \, \mathbf{F}_{o} \, \mathbf{e}$ if \mathbf{A}_{o} is [not] a formula of first-order logic with equality whose variables are of type nat and whose nonlogical constants are members of $\{0, S, +, *\}$.

Axioms

```
18. \  \, x_{\mathsf{nat}} * 0 = 0.
19. \  \, x_{\mathsf{nat}} * S \, y_{\mathsf{nat}} = (x_{\mathsf{nat}} * y_{\mathsf{nat}}) + x_{\mathsf{nat}}.
20. \  \, \mathsf{is-bnum} \, u_{\epsilon} \supset u_{\epsilon} \, \mathsf{btimes} \, \lceil (0)_2 \rceil = \lceil (0)_2 \rceil.
21. \  \, \mathsf{is-bnum} \, u_{\epsilon} \supset \lceil (0)_2 \rceil \, \mathsf{btimes} \, u_{\epsilon} = \lceil (0)_2 \rceil.
22. \  \, \mathsf{is-bnum} \, u_{\epsilon} \supset u_{\epsilon} \, \mathsf{btimes} \, \lceil (1)_2 \rceil = u_{\epsilon}.
23. \  \, \mathsf{is-bnum} \, u_{\epsilon} \land \mathsf{is-bnum} \, v_{\epsilon}) \supset \qquad \qquad \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \rfloor \, 0 \rceil \, \mathsf{btimes} \, v_{\epsilon} = \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \mathsf{btimes} \, v_{\epsilon} \rfloor \, 0 \rceil.
25. \  \, (\mathsf{is-bnum} \, u_{\epsilon} \land \mathsf{is-bnum} \, v_{\epsilon}) \supset \qquad \qquad \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \rfloor \, 1 \rceil \, \mathsf{btimes} \, v_{\epsilon} = \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \mathsf{btimes} \, v_{\epsilon} \rfloor \, 0 \rceil \, \mathsf{badd} \, v_{\epsilon}.
26. \  \, (\mathsf{is-bnum} \, u_{\epsilon} \land \mathsf{is-bnum} \, v_{\epsilon}) \supset \qquad \qquad v_{\epsilon} \, \mathsf{btimes} \, \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \rfloor \, 0 \rceil = \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \mathsf{btimes} \, v_{\epsilon} \rfloor \, 0 \rceil.
27. \  \, (\mathsf{is-bnum} \, u_{\epsilon} \land \mathsf{is-bnum} \, v_{\epsilon}) \supset \qquad \qquad v_{\epsilon} \, \mathsf{btimes} \, \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \rfloor \, 1 \rceil = \lceil \mathsf{bnat} \, \lfloor u_{\epsilon} \, \mathsf{btimes} \, v_{\epsilon} \, \rfloor \, 0 \rceil \, \mathsf{badd} \, v_{\epsilon}.
```

Transformers

- 7. ξ_7 computes brimes $_{\epsilon \to \epsilon \to \epsilon}$ using an efficient program that satisfies Axioms 20–27.
- 8. ξ_8 computes brimes $_{\epsilon \to \epsilon \to \epsilon}$ using Axioms 20–27 as conditional rewrite rules.
- 9. ξ_9 computes is-fo-T3_{$\epsilon \to \epsilon$} using an efficient program that accesses the data stored in the data structures that represent expressions.
- 10. ξ_{10} computes is-fo-T3 $_{\epsilon \to \epsilon}$ using its definition.

Theorems

```
2. Meaning formula schema for \operatorname{btimes}_{\epsilon \to \epsilon \to \epsilon} ((is-bnum \mathbf{A}_{\epsilon} \land \operatorname{is-bnum} \mathbf{B}_{\epsilon}) \supset (is-bnum (\mathbf{A}_{\epsilon} \operatorname{btimes} \mathbf{B}_{\epsilon}) \land ([\![\mathbf{A}_{\epsilon} \operatorname{btimes} \mathbf{B}_{\epsilon}]\!]_{\operatorname{nat}} = [\![\mathbf{A}_{\epsilon}]\!]_{\operatorname{nat}} + [\![\mathbf{B}_{\epsilon}]\!]_{\operatorname{nat}}))).
```

T4: Robinson Arithmetic (Q)

Extended Theories

3. T3.

Axioms

28.
$$x_{nat} = 0 \lor \exists y_{nat} . S y_{nat} = x_{nat}.$$

T5: Complete Theory of Successor

Extended Theories

1. T1.

Primitive Constants

7. T5-dec-proc $_{\epsilon \to \epsilon}$.

Defined Constants

6. is-fo-T1-abs
$$_{\epsilon \to \epsilon} = \lambda x_{\epsilon}$$
. (if (is-abs $_{\epsilon \to o} x_{\epsilon}$) (is-fo-T1 $_{\epsilon \to \epsilon}$ (abs-body $_{\epsilon \to \epsilon} x_{\epsilon}$)) $\lceil F_o \rceil$).

Axioms

29. Induction Schema for Successor

```
\begin{array}{l} \forall \ \underline{f_{\epsilon}} \ . \ ((\mathsf{is\text{-}expr}^{\mathsf{nat} \to o}_{\epsilon \to o} \ f_{\epsilon} \land \llbracket \mathsf{is\text{-}fo\text{-}T1\text{-}abs}_{\epsilon \to \epsilon} \ f_{\epsilon} \rrbracket_{o}) \supset \\ ((\llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ 0 \land (\forall \ x_{\mathsf{nat}} \ . \ \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ x_{\mathsf{nat}} \supset \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ (\mathsf{S} \ x_{\mathsf{nat}}))) \supset \\ \forall \ x_{\mathsf{nat}} \ . \ \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ x_{\mathsf{nat}})). \end{array}
```

30. Meaning Formula for T5-dec-proc_{$\epsilon \to \epsilon$}

```
\begin{array}{l} \forall\, u_{\epsilon} \;.\; ((\mathsf{is\text{-}expr}_{\epsilon \to o}^{o}\, u_{\epsilon} \wedge \mathsf{is\text{-}closed}_{\epsilon \to o}\, u_{\epsilon} \wedge \llbracket \mathsf{is\text{-}fo\text{-}}\mathsf{T}1_{\epsilon \to \epsilon}\, u_{\epsilon} \rrbracket_{o}) \supset \\ ((\mathsf{T5\text{-}dec\text{-}proc}_{\epsilon \to \epsilon}\, u_{\epsilon} = \ulcorner T_{o} \urcorner \vee \mathsf{T5\text{-}dec\text{-}proc}_{\epsilon \to \epsilon}\, u_{\epsilon} = \ulcorner F_{o} \urcorner) \wedge \\ \lVert \mathsf{T5\text{-}dec\text{-}proc}_{\epsilon \to \epsilon}\, u_{\epsilon} \rVert_{o} = \lVert u_{\epsilon} \rVert_{o})). \end{array}
```

Transformers

- 11. ξ_{11} computes the decision procedure T5-dec-proc_{$\epsilon \to \epsilon \to \epsilon$} using an efficient program that satisfies Axiom 30.
- 12. ξ_{12} computes is-fo-T1-abs $_{\epsilon \to \epsilon}$ using an efficient program that accesses the data stored in the data structures that represent expressions.
- 13. ξ_{13} computes is-fo-T1-abs $_{\epsilon \to \epsilon}$ using its definition.

T6: Presburger Arithmetic

Extended Theories

2. T2.

Primitive Constants

8. T6-dec-proc $_{\epsilon \to \epsilon}$.

Defined Constants

```
7. is-fo-T2-abs_{\epsilon \to \epsilon} = \lambda \, x_{\epsilon} . (if (is-abs_{\epsilon \to o} \, x_{\epsilon}) (is-fo-T2_{\epsilon \to \epsilon} \, (\mathsf{abs-body}_{\epsilon \to \epsilon} \, x_{\epsilon})) \, \lceil F_o \rceil).
```

Axioms

31. Induction Schema for Successor and Addition

```
\begin{array}{l} \forall \ \underline{f_{\epsilon}} \ . \ ((\mathsf{is\text{-}expr}^{\mathsf{nat} \to o}_{\epsilon \to o} \ f_{\epsilon} \land \ \llbracket \mathsf{is\text{-}fo\text{-}T2\text{-}abs}_{\epsilon \to \epsilon} \ f_{\epsilon} \rrbracket_{o}) \supset \\ ((\llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ 0 \land (\forall \ x_{\mathsf{nat}} \ . \ \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ x_{\mathsf{nat}} \supset \ \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ (\mathsf{S} \ x_{\mathsf{nat}}))) \supset \\ \forall \ x_{\mathsf{nat}} \ . \ \llbracket \underline{f_{\epsilon}} \rrbracket_{\mathsf{nat} \to o} \ x_{\mathsf{nat}})). \end{array}
```

32. Meaning formula for T6-dec-proc_{$\epsilon \to \epsilon$}.

```
\begin{array}{l} \forall \, u_{\epsilon} \, . \, ((\mathsf{is\text{-}expr}_{\epsilon \to o}^{o} \, u_{\epsilon} \wedge \mathsf{is\text{-}closed}_{\epsilon \to o} \, u_{\epsilon} \wedge \llbracket \mathsf{is\text{-}fo\text{-}T2}_{\epsilon \to \epsilon} \, u_{\epsilon} \rrbracket_{o}) \supset \\ ((\mathsf{T6\text{-}dec\text{-}proc}_{\epsilon \to \epsilon} \, u_{\epsilon} = \ulcorner T_{o} \urcorner \vee \mathsf{T6\text{-}dec\text{-}proc}_{\epsilon \to \epsilon} \, u_{\epsilon} = \ulcorner F_{o} \urcorner) \wedge \\ \lVert \mathsf{T6\text{-}dec\text{-}proc}_{\epsilon \to \epsilon} \, u_{\epsilon} \rVert_{o} = \lVert u_{\epsilon} \rVert_{o})). \end{array}
```

Transformers

- 14. ξ_{14} computes the decision procedure T6-dec-proc_{$\epsilon \to \epsilon \to \epsilon$} using an efficient program that satisfies Axiom 32.
- 15. ξ_{15} computes is-fo-T2-abs $_{\epsilon \to \epsilon}$ using an efficient program that accesses the data stored in the data structures that represent expressions.
- 16. ξ_{16} computes is-fo-T2-abs $_{\epsilon \to \epsilon}$ using its definition.

Theorems

3. Meaning formula for bplus $_{\epsilon \to \epsilon \to \epsilon}$

```
\begin{array}{l} \forall \, \underline{u_{\epsilon}} \, . \, \forall \, \underline{v_{\epsilon}} \, . \, \big( (\mathsf{is\text{-}bnum} \, \underline{u_{\epsilon}} \wedge \mathsf{is\text{-}bnum} \, \underline{v_{\epsilon}} \big) \supset \\ (\mathsf{is\text{-}bnum} \, \big( \underline{u_{\epsilon}} \, \, \mathsf{bplus} \, \underline{v_{\epsilon}} \big) \wedge \\ \big( \big[ \underline{u_{\epsilon}} \, \, \mathsf{bplus} \, \underline{v_{\epsilon}} \big]_{\mathsf{nat}} = \big[ \underline{u_{\epsilon}} \big]_{\mathsf{nat}} + \big[ \underline{v_{\epsilon}} \big]_{\mathsf{nat}} \big) \big). \end{array}
```

T7: First-Order Peano Arithmetic

Extended Theories

3. T3.

Defined Constants

```
8. is-fo-T3-abs_{\epsilon \to \epsilon} = \lambda x_{\epsilon}. (if (is-abs_{\epsilon \to o} x_{\epsilon}) (is-fo-T3_{\epsilon \to \epsilon} (abs-body_{\epsilon \to \epsilon} x_{\epsilon})) \lceil F_o \rceil).
```

Axioms

33. Induction Schema for Successor, Addition, and Multiplication

```
\begin{array}{l} \forall \ f_{\epsilon} \ . \ ((\mathsf{is\text{-}expr}^{\mathsf{nat}\to o}_{\epsilon\to o} \ f_{\epsilon} \land \llbracket \mathsf{is\text{-}fo\text{-}T3\text{-}abs}_{\epsilon\to \epsilon} \ f_{\epsilon} \rrbracket_o) \supset \\ ((\llbracket f_{\epsilon} \rrbracket_{\mathsf{nat}\to o} \ 0 \land (\forall \ x_{\mathsf{nat}} \ . \ \llbracket f_{\epsilon} \rrbracket_{\mathsf{nat}\to o} \ x_{\mathsf{nat}} \supset \llbracket f_{\epsilon} \rrbracket_{\mathsf{nat}\to o} \ (\mathsf{S} \ x_{\mathsf{nat}}))) \supset \\ \forall \ x_{\mathsf{nat}} \ . \ \llbracket f_{\epsilon} \rrbracket_{\mathsf{nat}\to o} \ x_{\mathsf{nat}})). \end{array}
```

Transformers

- 17. ξ_{17} computes is-fo-T3-abs $_{\epsilon \to \epsilon}$ using an efficient program that accesses the data stored in the data structures that represent expressions.
- 18. ξ_{18} computes is-fo-T3-abs $_{\epsilon \to \epsilon}$ using its definition.

Theorems

```
4. Meaning formula \mathsf{btimes}_{\epsilon \to \epsilon \to \epsilon}
\forall \, \underbrace{v_{\epsilon}}_{\epsilon} \, . \, \forall \, \underbrace{v_{\epsilon}}_{\epsilon} \, . \, ((\mathsf{is-bnum} \, \underbrace{u_{\epsilon}}_{\epsilon} \land \mathsf{is-bnum} \, \underbrace{v_{\epsilon}}_{\epsilon}) \supset (\mathsf{is-bnum} \, (\underbrace{u_{\epsilon}}_{\epsilon} \, \mathsf{btimes} \, \underbrace{v_{\epsilon}}_{\mathsf{nat}}) \land ([\underbrace{u_{\epsilon}}_{\epsilon} \, \mathsf{btimes} \, \underbrace{v_{\epsilon}}_{\mathsf{nat}}]_{\mathsf{nat}} * [\underbrace{v_{\epsilon}}_{\mathsf{nat}}))).
```

T8: Higher-Order Peano Arithmetic

Extended Theories

1. T1.

Defined Constants

- 9. $+_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} = \operatorname{I} f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} \cdot \forall x_{\mathsf{nat}} \cdot \forall y_{\mathsf{nat}} \cdot (f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} x_{\mathsf{nat}} 0 = x_{\mathsf{nat}} \land f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} x_{\mathsf{nat}} (S y_{\mathsf{nat}}) = S (f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} x_{\mathsf{nat}} y_{\mathsf{nat}})).$
- $$\begin{split} 10. \ *_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} &= \operatorname{I} f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} . \ \forall \, x_{\mathsf{nat}} \ . \ \forall \, y_{\mathsf{nat}} \ . \\ & (f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} \, x_{\mathsf{nat}} \, 0 = 0 \land \\ & f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} \, x_{\mathsf{nat}} \, (S \, y_{\mathsf{nat}}) = (f_{\mathsf{nat} \to \mathsf{nat} \to \mathsf{nat}} \, x_{\mathsf{nat}} \, y_{\mathsf{nat}}) + x_{\mathsf{nat}}). \end{split}$$

Axioms

34. Induction Axiom for the Natural Numbers

```
\forall \, p_{\mathsf{nat} \to o} \, . \, \left( \left( p_{\mathsf{nat} \to o} \, 0 \land \left( \forall \, x_{\mathsf{nat}} \, . \, \left( p_{\mathsf{nat} \to o} \, x_{\mathsf{nat}} \supset p_{\mathsf{nat} \to o} \left( S \, x_{\mathsf{nat}} \right) \right) \right) \right) \supset \\ \forall \, x_{\mathsf{nat}} \, . \, p_{\mathsf{nat} \to o} \, x_{\mathsf{nat}} \right).
```

Theorems

- 5. Induction Schema for Successor.
- 6. Induction Schema for Successor and Addition.
- 7. Induction Schema for Successor, Addition, and Multiplication.

References

[1] W. M. Farmer. Incorporating quotation and evaluation into church's type theory. *Computing Research Repository (CoRR)*, abs/1612.02785 (72 pp.), 2016.