

Spotify Wake Words Project

Monu Singh, Nischal, Nkem Michael Onuorah

Outline

- Problem
- Solution
- Data + Model
- MLE Stack

Problem

 <u>Context</u> - Voice interaction or commands "Hey Google", or "Hey Siri" rely on keyword spotting to start interaction on local device. It helps people experience "Hands-free" searching and task completion

Keyword Spotted → Acknowledge → Post "request" → Web service → Get "response"

- What & Why Opportunities to improve the above technology -
 - Triggers on negative wake words, unrelated speech, background noise, or silence
 - High no. of instance, when device does not trigger on positive wake words

- Need for quick response & acknowledgment
- Ability to customise wake word
- Wake model to be lightweight & energy efficient

Solution

- To design, build and deploy a lightweight Keyword spotting ML model (CNN, SVM) and exposed as a mobile-application that can process a "<u>custom wake word"</u>
- Voice response with results by respecting local device resource constraints (low compute) and adhering to ethical challenges (Privacy respecting and non-eavesdropping)
- Model will measure following metrics which tie backs to existing challenges:-
 - Accuracy of the custom wake word detection (Primary Metric)
- 3. Minimize False Alarm Rate per hour of speech
- Minimize False Reject Rate per hour of speech
- 4. Low latency → Measure & Reduce time to acknowledge

Data

Google Speech Command Dataset V2 35 * (For Model Training)

- The dataset consisted of 105,829 utterances of 35 words
- Stored as a one-second (or less) WAVE format file, with the sample data encoded as linear 16-bit single-channel PCM values, at a 16 KHz rate.
- There are 2,618 speakers recorded, assigned unique hex code to each. (All American accents, Language - English)

CNN Model

source - https://www.geeksforgeeks.org/python-image-classification-using-keras/normal

Dataset for DNN and MLP Classifier

- Created our own audio dataset
 - Built the library of background noise and separate library of wake word
 - Preprocess each file to MFCC format before using it to train/test model

Wake word sample

Background noise sample

DNN and MLP Classifier - Custom Dataset

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	256)	10496
activation (Activation)	(None,	256)	0
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	256)	65792
activation_1 (Activation)	(None,	256)	0
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	2)	514
Total params: 76,802 Trainable params: 76,802 Non-trainable params: 0	=====		

Model

Model 1 - A neural attention model for speech command recognition

https://arxiv.org/pdf/1808.08929v1.pdf

Model 2 - Wav2KWS: Transfer Learning From Speech Representations for Keyword Spotting https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8607038

Model 3 - DenseNet and BiLSTM for Keyword Spotting

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8607038

Challenges

- Lack of experience with audio dataset
- Deciding on which model to use
- Inference is not working correctly
- Finalizing inference method Predict on recorded/streaming audio
- Lack of backend knowledge
- Not enough time

MLE Stack

Demo (2 min)

... & screen share well!

Conclusions (90 s)

- We learned to do end-to-end ML the easy way, the hard way
- Let us tell you about it!
- Here's a tip or two for anyone who tries to walk down a similar path!
- And the biggest lesson we're taking with us into the future is ...

Future Work (30 s)

- Given those conclusions and lessons...
- here's what we would do next...
- in rank order...
- and here's why
- That's a wrap!

Thank You! Questions?