Exemple

- Soit \boldsymbol{u} une suite arithmétique de raison 3, telle que $\boldsymbol{u}_{\mathrm{0}}$ = 2.
 - On a alors
 - $\circ u_1 =$
 - u₂ = u₃ =
- Soit v une suite géométrique de raison $\frac{1}{2}$, telle que $v_0=$ 1. On a alors
 - \circ $v_1 =$
 - \circ $v_2 =$
 - \circ $v_3 =$

Exemple

- Soit \boldsymbol{u} une suite arithmétique de raison 3, telle que $\boldsymbol{u}_{\mathrm{0}}$ = 2.
 - On a alors
 - $\circ u_1 =$
 - \circ $u_2 =$
 - $\circ u_3 =$
- Soit v une suite géométrique de raison $\frac{1}{2}$, telle que $v_0=$ 1. On a alors
 - ∘ v₁ =
 - $\circ v_2 =$
 - · $v_3 =$

Exemple

- Soit u une suite arithmétique de raison 3, telle que $u_{\rm 0}$ = 2.
 - On a alors
 - $\circ u_1 =$
 - \circ $u_2 =$
 - $\circ u_3 =$
- Soit v une suite géométrique de raison $\frac{1}{2}$, telle que $v_0=$ 1. On a alors
 - \circ $v_1 =$
 - ∘ v₂ =
 - \circ v_3 =