1/2

1. The stress power is defined to be $S_p = \int_R tr(\boldsymbol{\sigma} \cdot \boldsymbol{d}) dV$ where $\boldsymbol{\sigma}$ is the Cauchy stress and $\boldsymbol{d} = \boldsymbol{L}_{sym}$.

Other measures of stress are

$$\Sigma = R^T \cdot \sigma \cdot R$$
 Rotated Cauchy stress
$$\hat{P} = J\sigma \cdot F^{-T}$$
 Piola-Kirchoff stress of the first kind
$$P = JF^{-1} \cdot \sigma \cdot F^{-T} = F^{-1} \cdot \hat{P}$$
 Piola-Kirchoff stress of the second kind

and other rates of deformation are

$$D = F^T \cdot d \cdot F = \dot{E} \qquad D^* = R^T \cdot d \cdot R$$

Show that alternative expressions for the stress power are:

$$S_p = \int_R tr(\boldsymbol{\Sigma} \cdot \boldsymbol{D}^*) dV = \int_{R_o} tr(\hat{\boldsymbol{P}} \cdot \dot{\boldsymbol{F}}^T) dV_o = \int_{R_o} tr(\boldsymbol{P} \cdot \dot{\boldsymbol{E}}) dV_o$$

These combinations of stress and deformation rates are said to be "conjugate."

2. Recall that in connection with the study of a continuum, tensors could be defined as one of four possibilities: m-m, s-s, s-m, m-s where "m" denotes "material" and "s" denotes "spatial". Recall the classifications of F and R from the notes. Assume σ and d are both s-s. Use the relations given in Prob. 1 to classify the tensors Σ , \hat{P} , P, D and D^* .

3. A bar of original length L that is initially horizontal (Fig. 1) deforms in a plane as the result of a simultaneous stretch and rotation as indicated in Fig. 2. The end O is fixed in space. The rotation is defined by $\theta = \omega t$ and the elongation of the end of the bar is $\delta_A = \varepsilon L t$ with both ω and ε constant.

Fig. 1. Initial Position

Fig. 2. Deformed position

The easiest way to describe the deformation is to use the two bases. Then the deformation is defined by

$$\mathbf{r} = x_i \mathbf{e}_i$$
 and $\mathbf{R} = X_i \mathbf{E}_i$
 $x_1 = X_1 (1 + \varepsilon t)$ $x_2 = X_2$ $x_3 = X_3$ (0-1)

The elongation at the end of the bar is $\delta_A = (x_I - X_I)|_{X_I = L} = (X_I \varepsilon t)|_{X_I = L} = \varepsilon Lt$.

- 3.1 Perform the transformation so that the components of r are given with respect to the basis E_i . Let $r = x_i^E E_i$. Use this form to obtain $F, R, U, \dot{F}, \dot{R}, \dot{U}$ and Ω all with the tensor basis $E_i \otimes E_j$.
- 3.2 Now use the two bases and the deformation as given by (0-1).
- (i) Determine F, R and U
- (ii) The basis e_i is a function of time. Determine \dot{e}_i and determine the tensor Ω^* such that $\dot{e}_i = \Omega^* \cdot e_i$.
- (iii) Determine $\dot{F}, \dot{U}, \dot{R}$ and Ω

Verify that your results for parts (ii) and (iii) agree with the results of 3.1.

- 3.3 Obtain $\mathbf{v} = \mathbf{v}(\mathbf{r}, t)$ and \mathbf{L} , and show that $\dot{\mathbf{F}} = \mathbf{L} \cdot \mathbf{F}$
- 3.4 Consider an element $d\mathbf{X} = d\mathbf{X}_1 \mathbf{E}_1$. Determine the vector $\mathbf{U} \cdot d\mathbf{X}$ and then the vector $\mathbf{R} \cdot (\mathbf{U} \cdot d\mathbf{X})$.