Technical details for the SEIR graphical model of the Open SEIR-Graph project

Oliver Hines

March 16, 2020

1 SEIR graphical model

We consider N nodes on the graph, \mathcal{G} indexed by an integer $i \in \{1, ..., N\}$. Each node may be in one of four states, Susceptible (0), Exposed (1), Infectious(2) or Removed(3). Denoting the state of any particular node by $X_{i,t}$ for discrete time index, $t \geq 0$, then we define the four time series

$$\{S_t\}_{t\geq 0} = \sum_{i=1}^{N} \mathcal{I}\{X_{i,t} = 0\}$$
$$\{E_t\}_{t\geq 0} = \sum_{i=1}^{N} \mathcal{I}\{X_{i,t} = 1\}$$
$$\{I_t\}_{t\geq 0} = \sum_{i=1}^{N} \mathcal{I}\{X_{i,t} = 2\}$$
$$\{R_t\}_{t\geq 0} = \sum_{i=1}^{N} \mathcal{I}\{X_{i,t} = 3\}$$

Where I is the indicator function that the argument is true. Since the state is categorical, we have that at every time point $S_t + E_t + I_t + R_t = N$.

Starting in the intial configuration $X_{0,0} = 2$ and $X_{i,0} = 0$ for $i \neq 0$, the dynamics proceeds in the manner below, where we use $n_{i,t}(x,\mathcal{G})$ to denote the number of neighbors of the node i, which are in a state x at time t.

At each time point T, iterate through each node i:

- If $X_{i,T} = 0$, simulate $A \sim \text{Binomial}(n_{i,T}(1,\mathcal{G}), p_E)$ and $B \sim \text{Binomial}(n_{i,T}(2,\mathcal{G}), p_I)$, then if $A + B \geq 1$ set $X_{i,T+1}$ to 1.
- If $X_{i,T} = 1$ and $X_{i,T-\delta_I}$ then set $X_{i,T+1}$ to 2
- If $X_{i,T} = 2$ and $X_{i,T-\delta_R}$ then set $X_{i,T+1}$ to 3

This process is parameterised by $\theta = (p_E, p_I, \delta_I, \delta_R)$. The first may be interpreted as the probabilities of transmission, on any given day, from an exposed node to a susceptible neighbor, from an infectious node to a susceptible neighbor. The final two parameters are the incubation and recovery periods in days.

We notice that this process necessarily leads to a state where all nodes are either in state 0 or state 3. This can be used as a stopping condition in the iterative process.

2 Dynamic Interventions

In the SEIR model in the previous section, the Graph, \mathcal{G} was static throughout the state evolution. We define a dynamic intervention as those which add additional rules to modify \mathcal{G} . Denoting the state of the graph at a particular time point by \mathcal{G}_t then an SEIR model with a dynamic intervention modifies the first step if the iteration to

• If $X_{i,T} = 0$, simulate $A \sim \text{Binomial}(n_{i,T}(1,\mathcal{G}_T), p_E)$ and $B \sim \text{Binomial}(n_{i,T}(2,\mathcal{G}_T), p_I)$, then if $A + B \geq 1$ set $X_{i,T+1}$ to 1.

Then adds an additional step at each time point, once the node iteration is complete, which obtains \mathcal{G}_{T+1} conditional on \mathcal{G}_T and the histories $\{X_{i,t}\}$ up to time point T

3 Estimands

The desired estimand of interest is the expected peak proportion of infected individuals given an intial graph \mathcal{G} and dynamic intervention rule \mathcal{D} .

$$\psi(\mathcal{G}, \mathcal{D}) = E\left[\max_{t \ge 0} \{S_t\}\right] \tag{1}$$

Such an estimand can be made using the Monte Carlo estimate

$$\hat{\psi}(\mathcal{G}, \mathcal{D}) = M^{-1} \sum_{j=1}^{M} \left(\max_{t \ge 0} \{S_t\} \right)_j \tag{2}$$

where $(\max_{t\geq 0} \{S_t\})_j$ is a set of M simulated samples.