Department of Mathematical Sciences

RAJIV GANDHI INSTITUTE OF PETROLEUM TECHNOLOGY, JAIS, U.P.

MA111 / Real Analysis and Calculus

September 26, 2023

QUIZ

Full Marks :

10

Q1. Check the convergence of the sequence $\left\{\frac{\cos n}{1+n^2}\right\}$ and find its limit if exists. [3]

Solution: Note that $-1 \le \cos n \le 1$. It follows that

$$\frac{-1}{1+n^2} \le \frac{\cos n}{1+n^2} \le \frac{1}{1+n^2}.$$

Since $\lim_{n\to\infty}\frac{-1}{1+n^2}=0$ and $\lim_{n\to\infty}\frac{1}{1+n^2}=0$, by *Sandwich theorem* the sequence $\left\{\frac{\cos n}{1+n^2}\right\}$ is convergent and

$$\lim_{n\to\infty}\frac{\cos n}{1+n^2}=0$$

Q2. Check the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{\cos n}{1+n^2}.$ [3]

Solution: Let $u_n = \frac{\cos n}{1+n^2}$. Then $|u_n| \le \frac{1}{1+n^2} \le \frac{1}{n^2}$. Since $\sum_{n=1}^{\infty} |u_n|$ is a series of

positive terms and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, by comparison test $\sum_{n=1}^{\infty} |u_n|$ is convergent.

That means $\sum_{n=1}^{\infty} u_n$ is absolutely convergent.

We know that an **absolutely convergent series is convergent**. Therefore $\sum_{n=1}^{\infty} u_n$ is convergent.

****Note that one can apply comparison test to check the convergence of series of positive terms (real numbers). As $\sum_{n=1}^{\infty} \frac{\cos n}{1+n^2}$ is a series of positive and negative terms, comparison test can not be applied to check the convergence of this series.

Q3. A function $f:[0,1] \to [0,1]$ is continuous. Prove that there is a point c in [0,1] such that $f(c) = c^{2023}$.

Solution: If f(0) = 0 or f(1) = 1, the existence of c is proved.

Let $f(0) \neq 0$ and $f(1) \neq 1$.

Consider a function $\varphi : [0,1] \to \mathbb{R}$ by

$$\varphi(x) = f(x) - x^{2023}.$$

Then φ is continuous on [0,1]. Also $\varphi(0) = f(0) > 0$ (since $f(0) \in [0,1]$ and $f(0) \neq 0$) and $\varphi(1) = f(1) - 1 < 0$ (since $f(1) \in [0,1]$ and $f(1) \neq 1$).

By *Bolzano's theorem* (or *Intermediate Value Property*) there is a point c in (0,1) such that $\varphi(c) = 0$. It follows that

$$f(c) = c^{2023}$$
.