

-自动化学院学科核心课-

後腳段式自固份

测量误差与数据处理(5)

本节内容: 回归分析

- 8、回归方程的求法
- 9、回归方程的检验

回归基本概念

- <u>回归分析的分类</u> 一元回归和多元回归 直线回归和曲线回归
- 本章主要解决以下几方面的问题:
- (1) 从一组数据出发,确定这些变量之间的数学表达式——回归方程或经验公式
 - (2) 对回归方程的可信程度进行统计检验
- (3) 进行<mark>因素分析</mark>,例如从对共同影响一个变量的许多变量(因素)中,找出哪些是重要因素,哪些是次要因素

回归基本概念

■ 函数关系与相关关系

函数关系: 例如,以速度v作匀速运动的物体,走过的距离s与时间t之间 s = vt

相关关系:例如,车床上加工零件误差与零件的直径之间有一定关系,知道零件直径可大致估计其加工误差,但 又不能精确地预知加工误差。

- 函数关系和相关关系的对比 两者可以相互转化
- 相关分析的工具 回归分析

8. 回归方程的求法

一元线性回归举例

例: 确定某段导线的电阻与温度间的关系

温度x	19.1	25.0	30.1	36.0	40.0	46.5	50.0
电阻y	76.30	77.80	79.75	80.80	82.35	83.90	85.10

模型: $y = \beta_0 + \beta_1 x + \varepsilon$

建立方程: L - XA = V

计算结果:

 $y = 70.90\Omega + (0.28 \Omega/^{\circ} C)x$

求解:
$$A = (X^T X)^{-1} X^T L$$

8. 回归方程的求法 一元线性回归举例(续)

例:确定某段导线的电阻与温度间的关系

温度x	19.1	25.0	30.1	36.0	40.0	46.5	50.0
电阻y	76.30	77.80	79.75	80.80	82.35	83.90	85.10

模型: $y = \beta_0 + \beta_1 x + \varepsilon$

对应模型假设:

- 1) 误差项ε是一个期望值为0的随机变量。
- 2) 对于所有的x值, ε 的方差 σ^2 都相同。
- 3) 误差项ε是一个服从正态分布的随机变量,且相互独立。

温度x	19.1	25.0	30.1	36.0	40.0	46.5	50.0
电阻y	76.30	77.80	79.75	80.80	82.35	83.90	85.10

模型:
$$y = \beta_0 + \beta_1 x + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2)$$

建立方程:
$$L - XA = V$$

求解:
$$A = (X^T X)^{-1} X^T L$$

$$y = 70.90\Omega + (0.28 \Omega/^{\circ} C)x$$

最大似然估计:

$$\hat{\sigma}^2 = \frac{(L - XA)^T (L - XA)}{n}$$

$$\hat{\sigma}^2 = \frac{(L - XA)^T (L - XA)}{n - 2}$$

推荐阅读: Myung I J. Tutorial on maximum likelihood estimation[J]. Journal of mathematical Psychology, 2003, 47(1): 90-100.

(1) 从偏差大小角度

$$S = \sum [y_i - f(x_i)]^2$$
观测值 拟合值

S 越小越精确

(2) 从随机误差角度

不存在过拟合 不存在系统误差

$$y_i = f(x_i) + \varepsilon_i$$

$$E[\varepsilon_i] = 0$$
,

$$E[\varepsilon_i \varepsilon_j] = \sigma_i^2 \delta_{ij}$$
.

(1) 从偏差大小角度

解决办法: 方差分析法

模型: $y = \beta_0 + \beta_1 x + \varepsilon$

总的离差平方和

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
$$v_s = n-1$$

自由度(degree of freedom, df)指的是计算 某一统计量时,取值不受限制的变量个数

可以证明: SST = SSE + SSR

$$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$
 反映y的总变差中由于x和y的线性关系而引起 y 变化的部分

变化的部分

$$SSE = \sum_{i=1}^{n} (y_i - y_i)$$
 $y_Q = n - 2$

反映所有观测点 即其它 因素对y变差的 影响。(除了x对

基本思路:方程是否显著取决于SSR和SSE的大小, SSR越大SSE越小,说明y与x的线性关系愈密切。

- 步骤(1)提出假设:线性关系不显著, $\beta_1 = 0$
- 步骤(2)计算统计量F

$$F = \frac{SSR/V_U}{SSE/v_Q}$$

对一元线性回归,应为 $F = \frac{SSR/1}{SSE/(n-2)} \sim F_{\alpha}(1, n-2)$

步骤(3)查F分布表,根据给定的显著性水平和已知的自由度1和n-2进行检验:

■ F分布定义

$$F = \frac{\sum_{i=1}^{n_1} X_i^2}{n_1} / \frac{\sum_{i=1}^{n_2} Y_i^2}{n_2}$$

则称统计量F服从自由度 n_1 和 n_2 的F分布,记为 $F \sim F(n_1, n_2)$

一元回归分析方差分析表

来源	平方和 (sum of squares)	自由度 (df)	均方差 (mean square)	F	显著性 (Sig.)
回归 (Regression)	$\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$	1	SSR/1	SSR/1	
残差 (Residual)	$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	n-2	SSE/(n-2)	$\overline{SSE/(n-2)}$	
总计 (Total)		n-1			

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10953.203	2	5476.601	12688.741	.000 ^b
	Residual	3.021	7	.432		
	Total	10956.224	9			

a. Dependent Variable: y

b. Predictors: (Constant), x2, x1

引申: 多元回归分析方差分析表

$$f(x_1, x_2, ..., x_p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$$

$$SST = SSR + SSE$$
 其中

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$
$$v_{ij} = p$$

$$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

$$v_{ij} = p$$

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$v_{ij} = n - 1 - p$$

原假设是?

来源	平方和 (sum of squares)		均方差 (mean square)	F	显著性 (Sig.)
回归 (Regression)	$\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$	p	SSR/p	SSR/p	Pr(F>检 验统计量 F值) =P
残差 (Residual)	$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	n-p-1	SSE/(n-p-1)	$\overline{SSE/(n-p-1)}$	值
总计 (Total)		n-1			

-元线性回归举例

温度x	19.1	25.0	30.1	36.0	40.0	46.5	50.0
电阻y	76.30	77.80	79.75	80.80	82.35	83.90	85.10
电阻 估计值	76.25	77.90	79.33	80.98	82.10	83.92	84.90
残差	0.05	-0.1	0.422	-0.18	0.25	-0.02	0.2

$$y = 70.90\Omega + (0.28 \Omega/^{\circ} C)x$$

$$\hat{\sigma}^{2} = \frac{(L - XA)^{T}(L - XA)}{n - 2} = 0.0652$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2} = \sum_{i=1}^{n} (\hat{y}_{i} - 80.86)^{2}$$

$$= (-4.61)^{2} + (-3.06)^{2} + (-1.11)^{2} + (-0.06)^{2} + (1.49)^{2} + (3.04)^{2} + (4.24)^{2}$$

$$= 61.2907$$

$$\hat{\sigma}^{2} = \frac{(L - XA)^{T}(L - XA)}{n - 2} = 0.0652$$

$$SSE = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = 0.3259$$

$$F = \frac{SSR/v_U}{SSE/v_Q} = \frac{61.2907/1}{0.3259/5} = 940.33$$

Fα k1 k2	1	2	3	4	5	6	8	12	24	œ
1	4052	4999	5403	5625	5764	5859	5981	6106	6234	6366
2	98.49	99.01	99.17	99.25	99.30	99.33	99.36	99.42	99.46	99.50
3	34.12	30.81	29.46	28.71	28.24	27.91	27.49	27.05	26.60	26.12
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	13.93	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.29	9.89	9.47	9.02
6	13.74	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.33	3.91
11	9.65	7.20	6.22	5.67	5.32	5.07	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.20	4.86	4.62	4.30	3.96	3.59	3.16
14	8.86	6.51	5.56	5.03	4.69	4.46	4.14	3.80	3.43	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.79	3.45	3.08	2.65

School of Automation Science and Electrical Engineering

多元回归方程显著性检验

· *t* 检验

假设:
$$\beta_i = 0$$
, $j = 1, 2, ..., p$

记
$$(X'X)^{-1} = (c_{ij}), i, j = 0,1,2,...,p$$

$$\mathbf{E}(\widehat{\boldsymbol{\beta}_{j}}) = \boldsymbol{\beta}_{j}, \quad \mathrm{var}(\widehat{\boldsymbol{\beta}_{j}}) = c_{jj}\sigma^{2}$$

构造t统计量:

$$t_j = \frac{\widehat{\beta_j}}{\sqrt{c_{jj}}\widehat{\sigma}}$$

其中,

$$\widehat{\sigma} = \sqrt{\frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}$$

自由度是?

② 从随机误差角度: 判断偏差是否是随机误差

观察法:

累积分布函数

P-P图、Q-Q图, ···

SANIOR

统计学中验证分布的方法

拟合度检验 goodness-of-fit

- 卡方检验
- Kolmogorov-Smirnov D检验,简称K-S检验
- Lilliefors检验
- Anderson Darling AD检验
- Shapiro Wilk W检验
- Ryan-Joiner检验

一元线性回归举例(续)

温度x	19.1	25.0	30.1	36.0	40.0	46.5	50.0
电阻y	76.30	77.80	79.75	80.80	82.35	83.90	85.10
电阻 估计值	76.25	77.90	79.33	80.98	82.10	83.92	84.90
残差	0.05	-0.1	0.422	-0.18	0.25	-0.02	0.2

判断拟合是否合适,看误差分布: (欠拟合、**过拟合**)

- (1) 画误差图
- (2) 误差分布检验

扩展: 回归方程的形式

• 关于一个自变量的线性回归方程

$$f(x|a,b) = ax^2 + bx + c$$

$$f(x|a,b,c) = a + bexp(-k_1x) + cexp(-k_2x), k_1$$
、 k_2 已知
$$f(x|a,b,c) = ax + b/x + c$$

• 关于多个自变量的线性回归方程

$$f(x, y, z|a, b, c, d) = ax + by + cz + d$$

• 回归方程非线性,但可以线性化

$$f(t|a,b) = aexp(-kt)$$

 $lnf(t|a,b) = -kt + lna$

应该注意什么?

$$\sigma_{\ln y} = \left| \frac{d \ln y}{dy} \right| \sigma_y = \sigma_y / y_i$$

$$y = \alpha e^{\beta x} \Rightarrow \ln y = \ln \alpha + \beta x$$

$$\Rightarrow y' = \ln \alpha + \beta x$$

$$y = \alpha x^{\beta} \Rightarrow \ln y = \ln \alpha + \beta \ln x$$

$$\Rightarrow y' = \ln \alpha + \beta x'$$

$$y = \frac{x}{\alpha x + \beta} \Rightarrow y' = \alpha + \beta x'$$

$$y = \alpha + \beta \log x \Rightarrow y = \alpha + \beta x'$$

$$y = \frac{1}{\alpha + \beta e^{-x}} \Rightarrow y' = \alpha + \beta x'$$

• 回归方程非线性,且不可以线性化

$$f(t|a,b) = aexp(-kt) + b$$

Nonlinear least-squares fitting procedure

扩展: 典型回归技术

- 1) Linear Regression 线性回归
- 2) Logistic Regression 逻辑回归
- 3) Polynomial Regression 多项式回归
- 4) Stepwise Regression 逐步回归
- 5) Ridge Regression 岭回归
- 6) Lasso Regression 套索回归
- 7) ElasticNet回归

扩展: 典型回归技术

变量存在多重共线性问题:

- 5) Ridge Regression岭回归 $\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \underbrace{\|y \mathbf{X}\beta\|_2^2}_{Loss} + \lambda \underbrace{\|\beta\|_2^2}_{Penalty}$
- 6) Lasso Regression套索回归 $\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \underbrace{\|y \mathbf{X}\beta\|_2^2}_{Loss} + \lambda \underbrace{\|\beta\|_1}_{Penalty}$

系数可能为0,可帮助特征选择

7) ElasticNet回归 综合上述两种回归的优点

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \underbrace{\|y - \mathbf{X}\beta\|_2^2}_{Loss} + \lambda_1 \underbrace{\|\beta\|_2^2}_{Penalty} + \lambda_2 \underbrace{\|\beta\|_1}_{Penalty}$$

