

Data Visualization By Voice: Syntax, Parsing, and Recognition Techniques

Maurice Diesendruck

Department of Statistics and Data Science momod@utexas.edu

Honghe Zhao

Department of Mathematics joehonghe@utexas.edu

Code available at:

https://github.com/diesendruck/ggspeak

ABSTRACT

This research identifies techniques that enable a computer system to perform automated data visualization by actively "listening" to a user's natural spoken language, in an interactive and real-time session. This work coins the name *ggspeak* as the "grammar of graphics" for speech, and presents software that incorporates speech recognition and a domain-specific entity extraction algorithm that respects and resolves errors of mistranscription.

SPOKEN WORKFLOW

The syntax and pacing of speech differs greatly from that of the written language (coded syntax being one example). When speaking, people pause, repeat words, allude to things implicitly, and carry context from one statement to the next. Any voice system used to produce graphics would ideally respect these natural qualities of speech, and eventually produce a correct, detailed, and explicit definition for a graph object.

Ideal Conversation "Show me the relationship between carat and price" "Group by clarity" "Save it" "New graph" "Scatter plot x and y" "Color by carat" "Save it" "Quit"

SPEAKING GRAPHS AND RESOLVING MISTRANSCRIPTION

Target Type	Target	Candidate 1: Transcription	Candidate 2: Bigram Representation	Leven: Words	Leven: Meta(words)	Leven: MRC(words)	Jaro: Words	Jaro: Meta(words)	Jaro: MRC(words)
x	lacks	-	5	2	4	0	0	0	
У	why		2	0	2	0	0	0	
У	white	-	5	2	3	0	0	0	
One-word homophone	carat	carrot	-	2	0	1	0.822	1	0.917
	carat	cart	-	1	0	0	0.933	1	1
	depth	debt		2	2	2	0.783	0.556	0.722
	depth	dead	-	3	2	3	0.633	0.611	0.583
Two-word concatenation	interestrate	interest rate	interestrate	0	0	0	1	1	1
	interest_rate	interest rate	interestrate	1	0	1	0.974	1	0.822
Word and number	user2016	user 2016	user2016	0	0	0	1	1	1
	variable1	variable one	variableone	3	1	1	0.872	0.933	0.866
	variable1	variable 1	variable1	0	0	0	1	1	1
	under10	under 10	under10	0	0	0	1	1	1
	underten	under 10	under10	3	2	2	0.78	0.889	0.778
Syllable and number	var1	bar one	barone	4	2	2	0.611	0.611	0.556
Syllable and word	quallife	quad life	quadlife	1	1	1	0.917	0.917	0.833
Initialism and word	osi model	osi model	osimodel	1	1	0	0.963	0.944	1
Acronym and word	sat score	sat score	satscore	1	1	0	0.963	0.944	1

GRAMMAR OF GRAPHICS FOR SPEECH

Voice commands in this domain can be interpreted as being decomposable into at least two classes: statements indicating session-level actions, and statements indicating graph-level actions. This system uses hotword detection to identify a variety of session-level actions, like Quit, Reset, and Summarize, before processing graph-level details. Such a grouping enables a conversational approach, in which users build graphs over several steps.


```
# Run speech recognition and graphing in a streaming format.
while 1:
    raw_input('Tap ENTER to continue.')
   with mic as source:
        audio = get_audio(r, source)
        try:
            text = r.recognize(audio)
           print('You said: ' + text)
        except LookupError:
           print("Didn't get audio.")
           continue
        # See if command is quit, save, reset, or edit.
       if text:
            terms = tokenize(text)
            # Decide what the terms indicate, and do the actions.
            if is_quit(terms):
                print 'Goodbye'
                return None
            elif is_reset(terms):
                plt.clf()
                g = copy(g_data_only)
                data_preview(g)
                print 'DEFINE a new graph.'
           elif is_summary(terms):
                data_preview(g)
                g.summarize()
           elif g.has_base():
                g = update_graph(g, terms)
               g = graph_if_valid(g, g_data_only)
           else:
                g = create_graph(g, terms)
                g = graph_if_valid(g, g_data_only)
```