SEQUENCE LISTING

<110> Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William, I.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/665,350
- <141> 2000-09-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13
- <150> PCT/US99/21090
- <151> 1999-09-15
- <150> PCT/US99/21547
- <151> 1999-09-15
- <150> PCT/US99/23089

```
<151> 1999-10-05
<150> PCT/US99/28214
<151> 1999-11-29
<150> PCT/US99/28313
<151> 1999-11-30
<150> PCT/US99/28564
<151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
<400> 1
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccacgcg tccgggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctgccggt gccacatggg gtaccagggc 660
ccgctgtgca ctgactgcat ggacggctac ttcagctcgc tccggaacga gacccacagc 720
atctgcacag cctgtgacga gtcctgcaag acgtgctcgg gcctgaccaa cagagactgc 780
ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
geggeegage egecteeetg cagegetgeg cagttetgta agaacgeeaa eggeteetae 900
acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
aaagagtgta tetetggeta egegagggag caeggacagt gtgcagatgt ggacgagtge 1020
tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080
tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140
gaggctgaag ccacagaagg agaaagcccg acacagctgc cctcccgcga agacctgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
ggatgccgtc tcctgcagtg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380
aaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
```

atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680 tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740 tcagttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800 ctcaattagt cagcaaccca gtttt

<210> 2

<211> 353

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His 20 25 30

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr 35 40 45

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr 50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Glu Ile Leu Glu 65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala 85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 130 135 140

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg 145 150 155 160

Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu 165 170 175

Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr 180 185 190

His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly 195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp 210 215 220

Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro 225 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys 245 250 255

Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly 260 265 270

Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys 275 280 285

Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys 290 295 300

Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 305 310 315 320

Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala 325 330 335

Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp 340 345 350

Leu

<210> 3 <211> 2206

<212> DNA

<213> Homo sapiens

<400> 3

caggiccaac tgcaccicgg tictatcgat tgaattcccc ggggatccic tagagatccc 60 tegacetega eccaegegte egecaggeeg ggaggegaeg egeceageeg tetaaaeggg 120 aacagccctg gctgagggag ctgcagcgca gcagagtatc tgacggcgcc aggttgcgta 180 ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240 gcgccttccc tgccgccgcg ctctggctct ggagcatcct cctgtgcctg ctggcactgc 300 gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360 caagagtact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420 cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480 attecatgaa ttttacetgg caagetgeag ggeaggeaga atacttetat gaatteetgt 540 ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600 gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660 atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720 tccaaacacc tcaaaatgct atcttcttta aaacatgtca acaagctgag tgcccaggcg 780 ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840 acggacctca ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900 tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960 actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020 ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080 gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140 gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200 aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260 tcatacatgc cctgaggcca gcaggcgccc agctcaggca gcacacgcct tcacttaaaa 1320 aggeegagga geggegggat ceaectgaat ceaattacat etggtgaact eegacatetg 1380 aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440 aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500 actgagetga tatttactet teettttaag ttttetaagt aegtetgtag catgatggta 1560 tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620 aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680 gggcagggga acatcagaaa ggttaaattg ggcaaaaaatg cgtaagtcac aagaatttgg 1740 atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800 ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980 ttttatactg tttgtatgta taaaataaag gtgctgcttt agttttttgg aaaaaaaaa 2100 aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160 <210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 10 15

Ile Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln 20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala 50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile 65 70 75 80

Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln 85 90 95

Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly
100 105 110

Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro
115 120 125

His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln 130 135 140

Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu 145 150 155 160

Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr 165 170 175

Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys 180 185 190

Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His 195 200 205

Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys 210 215 220

Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn 225 230 235 240

Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys 245 250 255

Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Glu Gln
260 265 270

Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys 275 280 285

```
Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu
    290
                        295
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys
His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His
                325
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala
                                 345
Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
                             360
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
    370
                        375
<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 5
                                                                    45
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca
<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 6
agagtgtatc tctggctacg c
                                                                    21
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 7
taagtccggc acattacagg tc
                                                                    22
<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 8
                                                                  49
cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 9
                                                                  22
aaagacgcat ctgcgagtgt cc
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 10
                                                                  23
tgctgatttc acactgctct ccc
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
eggacgegtg ggcgteegge ggtegeagag ceaggaggeg gaggegegeg ggceageetg 60
ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggagc aggacctgtg ctgccgcggc cgtgccgacg actgtgccct gccctacctg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccctgac 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgagecte ttgaccaagg caactgtgca ggeteetggg cettetecae 780
agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc actgctaccc 960
cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacatc taccaggtca ctcctgtcta ccgcctcggc tccaacgaca aggagatcat 1140
gaaggagetg atggagaatg geeetgteea ageeeteatg gaggtgeatg aggaettett 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc cagagagata 1260
ccgccggcat gggacccact caqtcaaqat cacaggatgg ggagaggaga cgctgccaga 1320
tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct ggggcgagag 1380
gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg 1440
cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
```

```
ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg gggcggtgac 1560
cccagcctcg cccgacagag cccggggcgc aggcgggcgc cagggcgcta atcccggcgc 1620
gggttccgct gacgcagcgc cccgcctggg agccgcgggc aggcgagact ggcggagccc 1680
ccagacetee cagtggggae ggggeaggge etggeetggg aagageaeag etgeagatee 1740
caggeetetg gegeececae teaagaetae caaageeagg acaceteaag tetecageee 1800
caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg tcttgctccg 1860
ttgcccaggt tggagtgcag tggcccatca gggctcactg taacctccga ctcctgggtt 1920
caagtgaccc tcccacctca gcctctcaag tagctgggac tacaggtgca ccaccacacc 1980
tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040
cgaactcctg ggctcaagcg gtccacctgc ctccgcctcc caaagtgctg ggattgcagg 2100
catgagccac tgcacccagc cctgtattct tattcttcag atatttattt ttcttttcac 2160
tgttttaaaa taaaaccaaa gtattgataa aaaaaaa
<210> 12
<211> 164
<212> PRT
<213> Homo sapiens
<400> 12
Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly
His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala
Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
145
                    150
His Asp Pro Gly
<210> 13
<211> 533
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (33)..(33)
<223> a, t, c or g
```

```
<220>
<221> modified base
<222> (37)..(37)
<223> a, t, c or g
<220>
<221> modified_base
<222> (80)..(80)
<223> a, t, c or g
<220>
<221> modified_base
<222> (94)..(94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)..(144)
<223> a, t, c or g
<220>
<221> modified_base
<222> (188)..(188)
<223> a, t, c or g
<400> 13
aggeteettg geeettttte cacageaage ttntgenate eegattegtt gteteaaate 60
caattetett gggacacatn acgcetgtee tttngcecca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
                                                                  533
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 14
ttcgaggcct ctgagaagtg gccc
                                                                   24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 15
ggcggtatct ctctggcctc cc
                                                                   22
```

```
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 16
                                                                  50
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg
<210> 17
<211> 960
<212> DNA
<213> Homo sapiens
<400> 17
gctgcttgcc ctgttgatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60
ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
gggggagcag tgctggaccg cgcgcatccg cgcagttggc ctcctgaccg tcatcagcaa 180
aggctgcagc ttgaactgcg tggatgactc acaggactac tacgtgggca agaagaacat 240
cacgtgctgt gacaccgact tgtgcaacgc cagggggcc catgccctgc agccggctgc 300
egecatectt gegetgetee etgeaetegg eetgetgete tggggaeeeg geeagetata 360
ggctctgggg ggcccgctg cagcccacac tgggtgtggt gccccaggcc tctgtgccac 420
tcctcacaga cctggcccag tgggagcctg tcctggttcc tgaggcacat cctaacgcaa 480
gtctgaccat gtatgtctgc acccctgtcc cccaccctga ccctcccatg gccctctcca 540
ggactcccac ccggcagatc agctctagtg acacagatcc gcctgcagat ggcccctcca 600
accetetetg etgetgttte catggeecag cattetecae cettaaceet gtgeteagge 660
acctettece ecaggaagee tteeetgeee acceeateta tgaettgage eaggtetggt 720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo sapiens
<400> 18
Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
                                         75
                     70
Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
                                105
```

A	Arg	Thr	Pro 115	Thr	Arg	Gln	Ile	Ser 120	Ser	Ser	Asp	Thr	Asp 125	Pro	Pro	Ala	
A		Gly 130	Pro	Ser	Asn	Pro	Leu 135	Cys	Cys	Cys	Phe	His 140	Gly	Pro	Ala	Phe	
	Ser 145	Thr	Leu	Asn	Pro	Val 150	Leu	Arg	His	Leu	Phe 155	Pro	Gln	Glu	Ala	Phe 160	
F	Pro	Ala	His	Pro	Ile 165	Tyr	Asp	Leu	Ser	Gln 170	Val	Trp	Ser	Val	Val 175	Ser	
F	Pro	Ala	Pro	Ser 180	Arg	Gly	Gln	Ala	Leu 185	Arg	Arg	Ala	Gln				
<	<210 <211 <212 <213	> 24 > DN	l JA	icial	. Seq	Jueno	ce										
	<220 <223	> De			on of eotic		cific cobe	cial	Seqı	ience	e: S∖	/nthe	etic				
	<400 tgct			ctcct	gcaa	ıa go	ccc										24
<	<210 <211 <212 <213	> 24 > DN	ļ JA	cial	. Sec	quenc	ce										
	<220 <223	> De			on of		cific cobe	cial	Sequ	ience	e: Sy	nthe	etic				
	<400 tgca			ggtgt	caca	ıg ca	acg										24
<	<210 <211 <212 <213	> 44 > DN	IA	cial	. Sec	quenc	ce										
<		> De ol	.igon		on of eotic		ific cobe	cial	Sequ	ience	e: Sy	/nthe	etic				
	<400 agca		•	actgo	ctgc	a gg	gtgga	agaac	tgc	accc	agc	tggg	ī				44
<	<210 <211 <212 <213	> 12 > DN	00 A	sapie	ens												
c g	gtgc	cgcg ttac	rtc c	tgct	gatt	c to	tgct	gtca	aac	tcag	rtac	gtga	ıggga	.cc a	agggc	actct gccat agtgg	120

```
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480
ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660
agcagcccct gggccgcctc cccacccctt tcccttctta atccaaggac tgggctgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020
ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080
tttcaggaaa aaagaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200
<210> 23
<211> 205
<212> PRT
<213> Homo sapiens
<400> 23
Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu
Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser
Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala
Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr
Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr
Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg
Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu
Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn
His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr
Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
```

195 200 205

```
<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 24
cagtacgtga gggaccaggg cgccatga
                                                                   28
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
ccggtgacct gcacgtgctt gcca
                                                                   24
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified_base
<222> (21)..(21)
<223> a, t, c or g
<400> 26
                                                                   41
geggatetge egeetgetea netggteggt eatggegeee t
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttctttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tectggeetg ceetagtgtg tgeegetgeg acaggaactt tgtetaetgt aatgagegaa 420
gettgacete agtgeetett gggateeegg agggegtaae egtaetetae etecacaaea 480
accaaattaa taatgotgga tttootgoag aactgoacaa tqtacagtog gtgoacaogg 540
totacotgta tggcaaccaa otggacgaat tocccatgaa cottoccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatc cacagtgggg gtggaagacg 720
```

```
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctatttg caggacaacc agataaacca cattcctttg acagccttct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
aaggggtttt tgataatctc tccaacctga agcagctcac tgctcggaat aacccttggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctcta 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tettttgtee tgteecacea egaceeegg eetgeetete tteaceeeag 1380
ccccaagtac agcttctccg accactcagc ctcccaccct ctctattcca aaccctagca 1440
gaagctacac gcctccaact cctaccacat cgaaacttcc cacgattcct gactgggatg 1500
gcagagaaag agtgaccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatactic cattcaagtc agctggctct ctctcttcac cgtgatggca tacaaactca 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980
cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca actccttaaa ggagatttca gactgcagcc catttacacc ccaaatgggg 2160
gcattaatta cacagactgc catatcccca acaacatgcg atactgcaac agcagcgtgc 2220
cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactettg agaacacact cgtgtgtgca cataaagaca cgcagattac atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
                                                                  2479
tctttgcttt ttaaatctt
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
```

70

115

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg 100 105 110

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala

125

Leu	Ala 130	Gln	Leu	Leu	Lys	Leu 135	Glu	Glu	Leu	His	Leu 140	Asp	Asp	Asn	Ser	
Ile 145	Ser	Thr	Val	Gly	Val 150	Glu	Asp	Gly	Ala	Phe 155	Arg	Glu	Ala	Ile	Ser 160	
Leu	Lys	Leu	Leu	Phe 165	Leu	Ser	Lys	Asn	His 170	Leu	Ser	Ser	Val	Pro 175	Val	
Gly	Leu	Pro	Val 180	Asp	Leu	Gln	Glu	Leu 185	Arg	Val	Asp	Glu	Asn 190	Arg	Ile	
Ala	Val	Ile 195	Ser	Asp	Met	Ala	Phe 200	Gln	Asn	Leu	Thr	Ser 205	Leu	Glu	Arg	
Leu	Ile 210	Val	Asp	Gly	Asn	Leu 215	Leu	Thr	Asn	Lys	Gly 220	Ile	Ala	Glu	Gly	
Thr 225	Phe	Ser	His	Leu	Thr 230	Lys	Leu	Lys	Glu	Phe 235	Ser	Ile	Val	Arg	Asn 240	
Ser	Leu	Ser	His	Pro 245	Pro	Pro	Asp	Leu	Pro 250	Gly	Thr	His	Leu	Ile 255	Arg	
Leu	Tyr	Leu	Gln 260	Asp	Asn	Gln	Ile	Asn 265	His	Ile	Pro	Leu	Thr 270	Ala	Phe	
Ser	Asn	Leu 275	Arg	Lys	Leu	Glu	Arg 280	Leu	Asp	Ile	Ser	Asn 285	Asn	Gln	Leu	
Arg	Met 290	Leu	Thr	Gln	Gly	Val 295	Phe	Asp	Asn	Leu	Ser 300	Asn	Leu	Lys	Gln	
Leu 305	Thr	Ala	Arg	Asn	Asn 310	Pro	Trp	Phe	Cys	Asp 315	Cys	Ser	Ile	Lys	Trp 320	
Val	Thr	Glu	Trp	Leu 325	Lys	Tyr	Ile	Pro	Ser 330	Ser	Leu	Asn	Val	Arg 335	Gly	
Phe	Met	Cys	Gln 340	Gly	Pro	Glu	Gln	Val 345	Arg	Gly	Met	Ala	Val 350	Arg	Glu	
Leu	Asn	Met 355	Asn	Leu	Leu	Ser	Cys 360	Pro	Thr	Thr	Thr	Pro 365	Gly	Leu	Pro	
Leu	Phe 370	Thr	Pro	Ala	Pro	Ser 375	Thr	Ala	Ser	Pro	Thr 380	Thr	Gln	Pro	Pro	
Thr 385	Leu	Ser	Ile	Pro	Asn 390	Pro	Ser	Arg	Ser	Туг 395	Thr	Pro	Pro	Thr	Pro 400	
Thr	Thr	Ser	Lys	Leu 405	Pro	Thr	Ile	Pro	Asp 410	Trp	Asp	Gly	Arg	Glu 415	Arg	
Val	Thr	Pro	Pro 420	Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val	
Asn	Asp	Thr 435	Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met	
Ala	Tyr	Lys	Leu	Thr	Trp	Val	Lys	Met	Gly	His	Ser	Leu	Val	Gly	Gly	

450 455 460

Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu 465 470 475 480

Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu 485 490 495

Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala 500 505 510

Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser 515 520 525

His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala 530 535 540

Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser 545 550 555 560

Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys 565 570 575

Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly 580 585 590

Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln 595 600 605

Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu 610 620

Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His 625 630 635 640

Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu 645 650 655

His Cys His Thr 660

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<400> 29

cggtctacct gtatggcaac c

21

<210> 30

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

```
<400> 30
                                                                 22
gcaggacaac cagataaacc ac
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 31
acgcagattt gagaaggctg tc
                                                                22
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac
                                                                46
<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens
<400> 33
acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg gctccgtcct 60
gaggaagacc cgggtggctg cgccctgcc tcgcttccca ggcgccggcg gctgcagcct 180
tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240
teggacagat egteeteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300
ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360
acaageggge agacetggtt tteateattg acageteteg eagtgteaac acceatgact 420
atgcaaaggt caaggagttc atcgtggaca tcttgcaatt cttggacatt ggtcctgatg 480
tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540
ccttcaagag gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600
gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca gaagcagagg 660
gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720
ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780
ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840
aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900
agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960
gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020
atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080
tetgtgtgaa tgtgceggge teettegtet geeagtgeta eagtggetae geeetggetg 1140
aggatgggaa gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200
atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260
acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320
agcatgagtg cgtcaacatg gaggagagct actactgccg ctgccaccgt ggctacactc 1380
tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440
gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500
tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg agtgaccatg 1560
gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620
```

```
acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680
acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740
gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800
accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860
agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920
cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980
cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040
ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100
tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa gccgctcgag 2160
tggggctgct ccagtattcc acacaggtcc acacagagtt cactctgaga aacttcaact 2220
cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280
ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340
ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400
acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460
taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520
tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaaactc aagaaaggca 2580
tctgtgaagc tctagaagac tccgatggaa gacaggactc tccagcaggg gaactgccaa 2640
aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700
cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760
ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820
atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880
aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940
gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000
gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060
aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120
ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180
gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240
catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300
ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360
gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420
ttatacaata ttaaaattca ccacttcag
<210> 34
<211> 915
<212> PRT
<213> Homo sapiens
Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
```

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His	Leu 130	Ser	Thr	Gly	Thr	Met 135	Thr	Gly	Leu	Ala	Ile 140	Gln	Tyr	Ala	Leu
Asn 145	Ile	Ala	Phe	Ser	Glu 150	Ala	Glu	Gly	Ala	Arg 155	Pro	Leu	Arg	Glu	Asn 160
Val	Pro	Arg	Val	Ile 165	Met	Ile	Val	Thr	Asp 170	Gly	Arg	Pro	Gln	Asp 175	Ser
Val	Ala	Glu	Val 180	Ala	Ala	Lys	Ala	Arg 185	Asp	Thr	Gly	Ile	Leu 190	Ile	Phe
Ala	Ile	Gly 195	Val	Gly	Gln	Val	Asp 200	Phe	Asn	Thr	Leu	Lys 205	Ser	Ile	Gly
Ser	Glu 210	Pro	His	Glu	Asp	His 215	Val	Phe	Leu	Val	Ala 220	Asn	Phe	Ser	Gln
Ile 225	Glu	Thr	Leu	Thr	Ser 230	Val	Phe	Gln	Lys	Lys 235	Leu	Cys	Thr	Ala	His 240
Met	Суѕ	Ser	Thr	Leu 245	Glu	His	Asn	Cys	Ala 250	His	Phe	Cys	Ile	Asn 255	Ile
Pro	Gly	Ser	Tyr 260	Val	Cys	Arg	Суз	Lys 265	Gln	Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275	Thr	Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285	Glu	Asp	His
Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295	Asn	Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 345	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	Val	Asp	His 405	Cys	Ala	Gln	Gln	Asp 410	His	Gly	Cys	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Cys	Leu

Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 585 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser 615 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 635 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 665 Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu

770 775 780

Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 790 795 Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 805 Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 825 Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 845 Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 855 Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 870 875 Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu 905 Arg Tyr Arg 915 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 35 gtgaccctgg ttgtgaatac tcc 23 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 36 acagccatgg tctatagctt gg 22 <210> 37 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 37
                                                             . 45
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
ggctgagtgc cctcgcgcc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
ccttggtcta ctccatgccc tcccggaacc tgtccctgcg gctggagggt ctccaggaga 480
aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020
agageteaga caeaatetee aagaatggga eeettteete tgteacetee geacgageee 1080
teeggeeace ceatggeest eccaggeetg gtgcattgae ecceaegees agtetetesa 1140
gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
cccccatccc tggtggggtt tcttcctctg gcttgagccg catgggtgct gtgcctgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
ggaaagagtc acactcctga cccttagtac tctgccccca cctctcttta ctgtgggaaa 1440
accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500
attgggagga gcctccaccc acccctgact cctccttatg aagccagctg ctgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
tetgtacece acceetatet aacaceaece ttggeteeca etecagetee etgtattgat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
tttgtatgaa aaa
                                                                  1813
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                                 25
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Val
Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln
                         55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
```

Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro 85 90 95

Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg 100 105 110

Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val 115 120 125

Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr 130 135 140

Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu 145 150 155 160

Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser 165 170 175

Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro 180 185 190

Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser 195 200 205

Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys 210 225 220

Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 225 230 235 240

Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly 245 250 255

Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His 260 265 270

Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp 275 280 285

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 355 360 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380

Gln Ala Gly Ser Leu Val

<210> 40 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 40 agggtctcca ggagaaagac tc	22
<210> 41 <211> 24 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 41 attgtgggcc ttgcagacat agac	24
<pre><210> 42 <211> 50 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<pre><400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc</pre>	50
<pre><210> 43 <211> 18 <212> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<pre><400> 43 gtgtgacaca gcgtgggc</pre>	18
<pre>2210> 44 2211> 18 2212> DNA 2213> Artificial Sequence</pre>	
<pre>220> 223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
4400> 44 gaccggcagg cttctgcg	18

```
<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 45
cagcagcttc agccaccagg agtgg
                                                                   25
<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 46
                                                                   24
ctgagccgtg ggctgcagtc tcgc
<210> 47
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 47
                                                                   45
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tagctctcaa agttttcttt tttgattcat ataacatgaa acatattcat cctcatatga 840
atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900
gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttett attgaaacet caaaattatg ataattetga agaggaggaa agagteatat 1020
cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
```

```
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttg cacaagaatt 1620
tttatatett tggetateta ageecageeg tggtagttgg atttteggea geactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
taaggtettg tgeaagagga geeetegete ttetgtteet teteggeaee acetggatet 1920
ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980
atgctttcca ggggatgttc atttttttat tcctgtgtgt tttatctaga aagattcaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagttttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgtttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg teetgaagga aaccaetgge ttgatattte tgtgaetegt 2460
gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataagagaa tgaaggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtatttt 2580
gaatgaactg ttttttctgt agactagctg agaaattgtt gacataaaat aaagaattga 2640
agaaacacat tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa aaaaaggttt 2760
2822
aa
<210> 49
<211> 690
<212> PRT
```

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asn Glu Cys Gly Asn

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly 65

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn 100 105

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys 120

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln

<213> Homo sapiens

Glu 145	Val	Tyr	Arg	Asn	Ser 150	Val	Thr	Asp	Leu	Ser 155	Pro	Thr	Asp	Ile	Ile 160
Thr	Tyr	Ile	Glu	Ile 165	Leu	Ala	Glu	Ser	Ser 170	Ser	Leu	Leu	Gly	туr 175	Lys
Asn	Asn	Thr	Ile 180	Ser	Ala	Lys	Asp	Thr 185	Leu	Ser	Asn	Ser	Thr 190	Leu	Thr
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Tyr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 415	Gly
Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
Phe	Trp 450	Phe	Phe	Ser	Glu	Ile 455	Gln	Ser	Thr	Arg	Thr 460	Thr	Ile	His	Lys

```
Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
465
Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
                                 505
Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
                        535
Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
                565
                                    570
Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
                                 585
Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
                        615
Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
                    630
                                        635
Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
                                    650
Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
                                665
Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
                            680
Leu Arg
    690
<210> 50
<211> 589
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (61)..(61)
<223> a, t, c or g
<400> 50
tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
```

gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180 aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaaac 240

```
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagc 360
tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420
aatcacctga cacattttgc aattttgatg teetetggte ettecattgg tattaaagat 480
tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 51
                                                                   20
ggtaatgagc tccattacag
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 52
                                                                   18
ggagtagaaa gcgcatgg
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 53
cacctgatac catgaatggc ag
                                                                   22
<210> 54
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 54
cgagctcgaa ttaattcg
                                                                   18
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 55
ggatctcctg agctcagg
                                                                  18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 56
                                                                  23
cctagttgag tgatccttgt aag
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt
                                                                  50
<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc 60
cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120
gggacaagaa gccgccgct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac ccggcactca cagccccgca qcgcatcccg gtcgccgccc agcctcccgc 420
acceccateg ceggagetge geogagage ceagggaggt gecatgegga gegggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gcccctcgc 540
cttctcggac gcggggccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctgtacacc tccggccccc acgggctctc cagctgcttc ctgcgcatcc gtgccgacgg 660
cgtcgtggac tgcgcgggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca tgggcgccga 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catgttctct tcgcccctgg agaccgacag catggaccca tttgggcttg tcaccggact 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tccattggca gtgccagttt ctagccaata gacttgtctg atcataacat tgtaaqcctg 1320
tagettgece agetgetgee tgggeeceea ttetgeteee tegaggttge tggacaaget 1380
gctgcactgt ctcagttctg cttgaatacc tccatcgatg gggaactcac ttcctttgga 1440
aaaattctta tgtcaagctg aaattctcta attttttctc atcacttccc caggagcagc 1500
```

cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560 taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620 cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680 ggagtagggg aagcetggag ceceaeteea geeetgggae aaettgagaa tteeeeetga 1740 ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800 ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg attggggcct 1860 atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980 gaaccettte cecageactt ggttttecaa catgatattt atgagtaatt tattttgata 2040 tgtacatctc ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100 gaggtttgtt ttgtatatta aaatggagtt tgtttgt <210> 59 <211> 216 <212> PRT <213> Homo sapiens <400> 59 Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu 105 Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro 120 Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser 135 Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu 155 Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro 170 Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu 185 Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala 195 205

2137

210

Val Arg Ser Pro Ser Phe Glu Lys

```
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 60
                                                                   26
atccgcccag atggctacaa tgtgta
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 61
gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta
                                                                   42
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
                                                                   22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgacctcct 60
cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg agccgccacc gcctcctcct 120
gctgctgctg cgctacctgg tggtcgccct gggctatcat aaggcctatg ggttttctgc 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
agtagatgat ctcaacataa gtggcatcat agcagccgta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
accogggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcca gcctgggtaa 1200
```

<210> 64

<211> 312

<212> PRT

<213> Homo sapiens

<400> 64

Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Leu Arg Tyr 1 5 10 15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro 20 25 30

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys 50 55 60

Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln 65 70 75 80

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile 85 90 95

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser 100 105 110

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 115 120 125

Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 130 135 140

Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly 145 150 155 160

Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 165 170 175

Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
180 185 190

Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 195 200 205

Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 210 215 220

Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 225 230 235 240

Île Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
245 250 255

Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 260 265 270

Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn

275 280 285

```
Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
                        295
                                            300
Gly Gly Ser Arg Gly Gln Glu Phe
                    310
<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 65
                                                                   22
atcgttgtga agttagtgcc cc
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 66
                                                                   23
acctgcgata tccaacagaa ttg
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc
                                                                   48
<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccttatc aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540
aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660
```

```
taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720
ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840
tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960
ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260
atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380
atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaaceeta 1440
gattgtctta cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcatggagc cagattcact gttttgcgtg gacccacctg 1680
aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740
ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040
acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160
aaaattotoa tgotgogoaa agtgotogaa taccatotga tgtcaaggta tataatotta 2220
ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280
aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggacacaget 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639
<210> 69
<211> 708
<212> PRT
<213> Homo sapiens
<400> 69
Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile
Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
```

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Gln Thr Asn Asn

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val

105

100

Lys	Lys	Met 115	Pro	GIn	Leu	Leu	Ser 120	Val	Tyr	Leu	Glu	G1u 125	Asn	Lys	Leu
Thr	Glu 130	Leu	Pro	Glu	Lys	Cys 135	Leu	Ser	Glu	Leu	Ser 140	Asn	Leu	Gln	Glu
Leu 145	Tyr	Ile	Asn	His	Asn 150	Leu	Leu	Ser	Thr	Ile 155	Ser	Pro	Gly	Ala	Phe 160
Ile	Gly	Leu	His	Asn 165	Leu	Leu	Arg	Leu	His 170	Leu	Asn	Ser	Asn	Arg 175	Leu
Gln	Met	Ile	Asn 180	Ser	Lys	Trp	Phe	Asp 185	Ala	Leu	Pro	Asn	Leu 190	Glu	Ile
Leu	Met	Ile 195	Gly	Glu	Asn	Pro	Ile 200	Ile	Arg	Ile	Lys	Asp 205	Met	Asn	Phe
Lys	Pro 210	Leu	Ile	Asn	Leu	Arg 215	Ser	Leu	Val	Ile	Ala 220	Gly	Ile	Asn	Leu
Thr 225	Glu	Ile	Pro	Asp	Asn 230	Ala	Leu	Val	Gly	Leu 235	Glu	Asn	Leu	Glu	Ser 240
Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	Val	Pro	His	Val	Ala 255	Leu
Gln	Lys	Val	Val 260	Asn	Leu	Lys	Phe	Leu 265	Asp	Leu	Asn	Lys	Asn 270	Pro	Ile
Asn	Arg	Ile 275	Arg	Arg	Gly	Asp	Phe 280	Ser	Asn	Met	Leu	His 285	Leu	Lys	Glu
Leu	Gly 290	Ile	Asn	Asn	Met	Pro 295	Glu	Leu	Ile	Ser	Ile 300	Asp	Ser	Leu	Ala
Val 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315	Ala	Thr	Asn	Asn	Pro 320
Arg	Leu	Ser	Tyr	Ile 325	His	Pro	Asn	Ala	Phe 330	Phe	Arg	Leu	Pro	Lys 335	Leu
Glu	Ser	Leu	Met 340	Leu	Asn	Ser	Asn	Ala 345	Leu	Ser	Ala	Leu	Tyr 350	His	Gly
Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360	Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn
Pro	Ile 370	Arg	Cys	Asp	Cys	Val 375	Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr
Asn 385	Ile	Arg	Phe	Met	Glu 390	Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400
Glu	Phe	Gln	Gly	Gln 405	Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met
Glu	Ile	Сув	Leu 420	Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu
Asn	Val	Glu	Ala	Gly	Ser	Tyr	Val	Ser	Phe	His	Cys	Arg	Ala	Thr	Ala

435 440 445

Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu 450 455 460

Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr 465 470 475 480

Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys
485
490
495

Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys 500 505 510

Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys 515 520 525

Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser 530 540

Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr 545 550 555 560

Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys
565 570 575

Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys 580 585 590

Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn 595 600 605

Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn 610 620

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 625 630 635 640

Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 645 650 655

Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 660 665 670

Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys
675 680 685

Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 690 695 700

Thr Asn Met Ser 705

<210> 70

<211> 1305

<212> DNA

<213> Homo sapiens

<400> 70

gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120

```
ttaccacgct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccagcat 180
gaatctggta gacctgtggt taacccgttc cctctccatg tgtctcctcc tacaaagttt 240
tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300
ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360
tcttcctcct gaaacagtct tactgtatct ggactccaat cagatcacat ctattcccaa 420
tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480
gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540
cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600
aattgccaac aaccctggc actgcgactg tactctacag caagttctga ggagcatggc 660
gtccaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720
tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaac 780
taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840
ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900
cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960
tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020
ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080
tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140
caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200
tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260
cttaactttg aaccatggga aaaaaaaaaa aaaaaaaaa aaaca
<210> 71
<211> 259
<212> PRT
<213> Homo sapiens
<400> 71
Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser
Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val
Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro
Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser
Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
                                105
Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val
        115
                            120
His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn
                        135
Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met
Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val
```

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala

180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

<210> 72 <211> 2290

<212> DNA

<213> Homo sapiens

<400> 72

accgagccga gcggaccgaa ggcgcgcccg agatgcaggt gagcaagagg atgctggcgg 60 ggggcgtgag gagcatgccc agcccctcc tggcctgctg gcagcccatc ctcctgctgg 120 tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180 cccaggaccg cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240 ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360 tggagcccgg cgccttcaac aacctcttca acctccggac gctgggtctc cgcagcaacc 420 gcctgaagct catcccgcta ggcgtcttca ctggcctcag caacctgacc aagcaggaca 480 tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540 agtcactgga ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc cccaccgagg 660 cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg gcacctcaac atcaatgcca 720 tccgggacta ctccttcaag aggctgtacc gactcaaggt cttggagatc tcccactggc 780 cctacttgga caccatgaca cccaactgcc tctacggcct caacctgacg tccctgtcca 840 teacacactg caatetgace getgtgeeet acetggeegt eegecaceta gtetatetee 900 gcttcctcaa cctctcctac aaccccatca gcaccattga gggctccatg ttgcatgagc 960 tgctccggct gcaggagatc cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020 ccttccgcgg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080 tggaggaatc agtcttccac tcggtgggca acctggagac actcatcctg gactccaacc 1140 cgctggcctg cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260 tecetgatgt getactgeec aactaettea eetgeegeeg egeeegeate egggaeegea 1320 aggeceagea ggtgtttgtg gaegagggee acaeggtgea gtttgtgtge egggeegatg 1380 gegaccegee gecegecate etetggetet cacceegaaa geacetggte teagecaaga 1440 gcaatgggcg gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560 cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620 ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680 teceettega cateaagace etcateateg ceaecaceat gggetteate tettteetgg 1740 gcgtcgtcct cttctgcctg gtgctgctgt ttctctggag ccggggcaag ggcaacacaa 1800 agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc agctccgccg 1860 acgcgccccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920 cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980 cetectecet accettetae acaegttete tttetecete eegeeteegt eecetgetge 2040 cccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160 ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220

aaaaaaaaa 2290

- <210> 73
- <211> 620
- <212> PRT
- <213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 395 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln 425 Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His 455 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr 520 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 535 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 555 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn 585 Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser 600

	sp Ala Pro Arg Lys Phe Asn Met Lys Met Ile 10 615 620	
<210><211><212><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcacc	74 tggag cctttattgg cc	22
<210><211><212><212><213>	23	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> atacca	75 agcta taaccaggct gcg	23
<210><211><211><212><213>	52	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> caacag gg	76 gtaag tggtttgatg ctcttccaaa tctagagatt ctgatgattg	50 52
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ccatgt	77 cgtct cctcctacaa ag	22
<210> <211> <212> <213>	23	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	

<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgcggt gaaagatgta gacg	24
<210> 82 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 82 gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga	50
<210> 83 <211> 1685 <212> DNA <213> Homo sapiens	
<400> 83 cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cgggggcgcc ctttcggtc acatcgtagt ccacccctc cccatcccca gccccgggg attcaggctc gccagcgcc agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctg tcctgctgtt cgcctgctgc tgggcgcccg gcggggccaa cctctcccag gacgacagc	c 120 c 180

```
agccctggac atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae aeetgeteaa 480
tetteaetat geetgtgega aetgeeaagt eeetegteae tgtgetagga atteeaeaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
gctcggtgac attccaggtt acccgggagg atgatggggc gagcatcgtg tgctctgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acaccctcaa tgttaatgac cccagtccgg tgccctcctc ctccagcacc taccacgcca 1140
tcatcggtgg gatcgtggct ttcattgtct tcctgctgct catcatgctc atcttccttg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggcgcc tgcccacttc ctgcgccccc caggggccct 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
<400> 84
Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala
Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
                                25
Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
```

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly 115 120 125

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile

85

100

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 145 150 155 160 Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro 165 Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser 185 Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 200 Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 215 Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 235 Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser 315 Pro Val Pro Ser Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile 325 Val Ala Phe Ile Val Phe Leu Leu Ile Met Leu Ile Phe Leu Gly 345 His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile 390 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220>

<400> 85 gctaggaatt ccacagaagc cc

oligonucleotide probe

<223> Description of Artificial Sequence: Synthetic

<210> 86

<211> 22

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 86
aacctggaat gtcaccgagc tg
                                                                   22
<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 87
cctagcacag tgacgaggga cttggc
                                                                   26
<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 88
                                                                   50
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc
<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt
                                                                   50
<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens
<400> 90
gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 60
ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120
gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaaaatgc tgctttggat 180
tctgttgctg gagacgtctc tttgttttgc cgctggaaac gttacagggg acgtttgcaa 240
agagaagatc tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300
gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttatttct 360
gcatggcaat teceteacte gaettiteee taatgagite getaactitt ataatgeggt 420
tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttc gaaagcagac 540
ttttctgggg ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600
```

```
agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcacccacc tcgacctccg 720
gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780
ggagatcctg ctagaggata accettggga ctgcacctgt gatctgctct ccctgaaaga 840
atggctggaa aacattccca agaatgccct gatcggccga gtggtctgcg aagcccccac 900
cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc ctttgaaaaa 960
ccgagtggat tctagtctcc cggcgcccc tgcccaagaa gagacctttg ctcctggacc 1020
cctgccaact cctttcaaga caaatgggca agaggatcat gccacaccag ggtctgctcc 1080
aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agcgacgggt agctccagga acaaacctt agctaacagt ttaccctgcc ctgggggctg 1200
cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca ggaacgtgag 1260
cagcttggct gatttgaagc ccaagctctc taacgtgcag gagcttttcc tacgagataa 1320
caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380
tetgggcaac aataacateg etactgtaga gaacaacact tteaagaace ttttggacet 1440
caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500
gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560
cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620
cetgcetgtg gacgtgtteg etggggtete getetetaaa eteageetge acaacaatta 1680
cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800
acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg tgaacttctt 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980
ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
gctggtgttt gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160
gacagtctgt gactcttcct actggcacaa tgggccttac aacgcagatg gggcccacag 2220
agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280
gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccggggggctg gaggggcgtg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460
tggagagctg ggagagcgca gccagctcgc tctttgctga gagccccttt tgacagaaag 2520
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac
<210> 91
```

<400> 91

Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 75

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 85 90

<211> 696

<212> PRT

<213> Homo sapiens

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 135 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 200 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn

Leu·Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn

Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser

420 425 430

Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn 435 440 445

Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 450 455 460

Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 465 470 475 480

Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 490 495

Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 500 505 510

Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 515 520 525

Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 530 540

Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr 545 550 555 560

Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu 565 570 575

Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His 580 585 590

Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser 595 600 605

Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 610 615 620

Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 635 640

Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 645 650 655

Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr
660 665 670

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675 680 685

Cys Gly Ser His Ser Leu Ser Asp 690 695

<210> 92

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

```
<400> 92
                                                                   22
gttggatctg ggcaacaata ac
<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 93
                                                                  24
attgttgtgc aggctgagtt taag
<210> 94
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
ggtggctata catggatagc aattacctgg acacgctgtc ccggg
                                                                  45
<210> 95
<211> 2226
<212> DNA
<213> Homo sapiens
<400> 95
agtogactgc gtcccctgta cccggcgcca gctgtgttcc tgaccccaga ataactcagg 60
gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgcggcctaa gggaaactgt 120
tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg 180
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agcgccgctc tggacttcag tccacctggg accgaggtga gtgcgctctg 960
ccggggacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaactctcg ggcgatgtgt tgtgtccctg ccccgggagg tacctccgtg ctggcaaatg 1080
cgcagagctc cctaactgcc tagacgactt gggaggcttt gcctgcgaat gtgctacggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tgggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccetteaa atgleeette aageegagte aaaggeeaet ateaceecat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
```

<210> 96

<211> 490

<212> PRT

<213> Homo sapiens

<400> 96

Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln 35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val 50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly 65 70 75 80

Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu 85 90 95

Glu Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly 100 105 110

Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu 115 120 125

Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala 130 135 140

Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met 145 150 155 160

Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu 165 170 175

Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr 180 185 190

Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro 195 200 205

Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val 210 215 220

Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly

Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys 245 250 255

Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu 260 265 270

Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr 275 280 285

Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg 290 295 300

Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro 305 310 315 320

Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln 325 330 335

Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln 340 345 350

Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala 355 360 365

Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr 370 375 380

Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe 385 390 395 400

Ile Phe Val Ser Thr Ala Val Val Leu Val Ile Leu Thr Met Thr 405 410 415

Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln
420 425 430

Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu 435 440 445

Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val 450 455 460

Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu 465 470 480

Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala 485 490

<210> 97

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 97

tggaaggaga tgcgatgcca cctg

<210> 98 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 98 tgaccagtgg ggaaggacag	20
<210> 99 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 99 acagagcaga gggtgccttg	20
<210> 100 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 100 tcagggacaa gtggtgtctc tccc	24
<210> 101 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 101 tcagggaagg agtgtgcagt tctg	24
<210> 102 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 102 acageteceg ateteagtta ettgeatege ggacgaaate ggegeteget	50

```
<211> 2026
<212> DNA
<213> Homo sapiens
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeae cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tateceeegg ctacetggge egeceegegg eggtgegege gtgagaggga gegegeggge 180
agccgagcgc cggtgtgagc cagcgctgct gccagtgtga gcggcggtgt gagcgcggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
gctgccatga ggggcgcgaa cgcctgggcg ccactctgcc tgctgctggc tgccgccacc 360
cagetetege ggeageagte eccagagaga cetgttttea catgtggtgg cattettact 420
ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett eeggetettt taaaaceece aactggeeag aeegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaagtca acgatgctag aagaattgga aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
gccggcactg ttatcacaac catcactcgc gatgggagtt tgcacgccac aqtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggetgactg tegtetgeaa geagtgeeet eteeteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactcttc acatgatgga ggtatgaggc ctccgagata gctgagggaa gttctttgcc 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
                                                                  2026
<210> 104
<211> 415
<212> PRT
<213> Homo sapiens
<400> 104
Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu
```

<210> 103

- Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu 185 Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
- Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Glu Val Asn Asp Ala
- Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
- Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
- Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
- Pro Thr Thr Glu Gln Pro Val Thr Thr Thr Phe Pro Val Thr Thr
- Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr 295
- Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly 310 315
- Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val 325
- Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala 345
- Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro
- Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu 375
- Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys 390

```
Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys
                405
                                    410
<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 105
ccgattcata gacctcgaga gt
                                                                   2.2
<210> 106
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 106
gtcaaggagt cctccacaat ac
                                                                   22
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt
                                                                   45
<210> 108
<211> 1838
<212> DNA
<213> Homo sapiens
<400> 108
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
tteettetee gtggeetaeg agggteecea geetgggtaa agatggeece atggeeceeg 120
aagggcctag tcccagctgt gctctggggc ctcagcctct tcctcaacct cccaggacct 180
atctggetee agecetetee accteeceag tetteteece egeeteagee ceateegtgt 240
catacctgcc ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagacccgcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgccac 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gccccggacc tettecagtg getgtgetca gattecetga agetetgetg eccegeagge 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
```

```
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
cagatcccag agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200
cagcagatgt tctttggcat catcatctgt gcactggcca cgctggctgc taagggcgac 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctggttgtca 1320
gagcgcagtg accgtgtgct ggagggcttc atcaagggca gataatcgcg gccaccacct 1380
gtaggacete eteceaceca egetgeeece agagettggg etgeeeteet getggacaet 1440
caggacagct tggtttattt ttgagagtgg ggtaagcacc cctacctgcc ttacagagca 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaggtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctccctcct gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
<210> 109
<211> 420
<212> PRT
<213> Homo sapiens
<400> 109
Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
                         55
Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
                            120
Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
                                        155
Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys
                                185
Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
```

ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020

1838

```
Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His
                                        235
Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
                        295
Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
Met Phe Phe Gly Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
                                        395
Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
                405
                                    410
Ile Lys Gly Arg
            420
<210> 110
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 110
cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga
                                                                   50
<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide probe

```
<400> 111
attctgcgtg aacactgagg gc
                                                                 22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 112
atctgcttgt agccctcggc ac
                                                                 22
<210> 113
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1461)..(1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett etcaagggae ageeceaete tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accetggaca gggccgacat ggaggagetg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagage ttccgagagg tggccggcag gttcctggcg ttggaggcca gcacacacct 360
gctggtgttc ggcatggagc agcggctgcc gcccaacagc gagctggtgc aggccgtgct 420
geggetette eaggageegg teeceaagge egegetgeae aggeaeggge ggetgteece 480
gcgcagcgcc cgggcccggg tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccctggac cttggggact atggagctca gggcgactgt gaccctgaag caccaatgac 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgagggc agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
aaagtcctcc accaccactc tggacctaag acctggggtt aagtgtgggt tgtgcatccc 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
```

<400> 114 Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu 105 Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala 120 Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu

```
Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr
Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
                                345
Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
                            360
<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 115
                                                                   21
aggactgcca taacttgcct g
<210> 116
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 116
                                                                   22
ataggagttg aagcagcgct gc
<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 117
tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc
                                                                   45
<210> 118
<211> 1857
<212> DNA
<213> Homo sapiens
<400> 118
gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc 120
ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat 180
aatcetgtga agttgteetg tgeetacteg ggettttett eteceegtgt ggagtggaag 240
tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaceggg tgacettett gecaactggt atcacettea agteegtgae aegggaagae 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagctca tcgtgcttgt gcctccatcc aagcctacag ttaacatccc ctcctctgcc 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
```

```
agcaactett cetatgteet gaateeeaca acaggagage tggtetttga teeeetgtea 660
gcctctgata ctggagaata cagctgtgag gcacggaatg ggtatgggac acccatgact 720
tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840
ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960
geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeecetgat 1020
gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge eeteeeteee 1140
tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260
tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggtatettg agettggtte tgggetettt cettgtgtae tgacgaccag ggecagetgt 1380
tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440
tccttccatc tctggggccc actctcttct gtcttcccat gggaagtgcc actgggatcc 1500
ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggetga ggcaggegga tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa
<210> 119
<211> 299
<212> PRT
<213> Homo sapiens
<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Cys Leu Phe Ile
Leu Ala Ile Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
                             40
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
                                105
Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
                        135
Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
```

165

tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600

Pro	Lys	Ser	Thr 180	Arg	Ala	Phe	Ser	Asn 185	Ser	Ser	Tyr	Val	Leu 190	Asn	Pro	
Thr	Thr	Gly 195	Glu	Leu	Val	Phe	Asp 200	Pro	Leu	Ser	Ala	Ser 205	Asp	Thr	Gly	
Glu	Tyr 210	Ser	Суѕ	Glu	Ala	Arg 215	Asn	Gly	Tyr	Gly	Thr 220	Pro	Met	Thr	Ser	
Asn 225	Ala	Val	Arg	Met	Glu 230	Ala	Val	Glu	Arg	Asn 235	Val	Gly	Val	Ile	Val 240	
Ala	Ala	Val	Leu	Val 245	Thr	Leu	Ile	Leu	Leu 250	Gly	Ile	Leu	Val	Phe 255	Gly	
Ile	Trp	Phe	Ala 260	Tyr	Ser	Arg	Gly	His 265	Phe	Asp	Arg	Thr	Lys 270	Lys	Gly	
Thr	Ser	Ser 275	Lys	Lys	Val	Ile	Tyr 280	Ser	Gln	Pro	Ser	Ala 285	Arg	Ser	Glu	
Gly	Glu 290	Phe	Lys	Gln	Thr	Ser 295	Ser	Phe	Leu	Val						
<210> 120 <211> 24 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
<400> 120 tcgcggagct gtgttctgtt tccc 2												24				
<210> 121 <211> 50 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
<400> 121 tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct 5											50					
<210> 122 <211> 20 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
<400> 122 acacctggtt caaagatggg 20											20					

```
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 123
                                                                   24
taggaagagt tgctgaaggc acgg
<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 124
ttgccttact caggtgctac
                                                                   20
<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 125
                                                                   20
actcagcagt ggtaggaaag
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagcgcgtgg ccggcgccgc tgtggggaca gcatgagcgg cggttggatg gcgcaggttg 60
gagegtggeg aacagggget etgggeetgg egetgetget getgetegge eteggaetag 120
gcctggaggc cgccgcgagc ccgctttcca ccccgacctc tgcccaggcc gcaggcccca 180
gctcaggctc gtgcccaccc accaagttcc agtgccgcac cagtggctta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc ccctgcccct 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccaccca gactgtcccg actccagcga cgagctcggc tgtggaacca 540
atgagatect eceggaaggg gatgecacaa ecatggggee ecetgtgaee etggagagtg 600
teacetetet caggaatgee acaaceatgg ggeeceetgt gaccetggag agtgteeeet 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatg 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctcttt 780
tgtcctggct ccgagcccag gagcgcctcc gcccactggg gttactggtg gccatgaagg 840
agtccctgct gctgtcagaa cagaagacct cgctgccctg aggacaagca cttgccacca 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc agtgatgcgg atgggtaccc 960
gggcacacca gccctcagag acctgagttc ttctggccac gtggaacctc gaacccgagc 1020
tcctgcagaa gtggccctgg agattgaggg tccctggaca ctccctatgg agatccgggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggccccagg cagctcccag 1140
```

ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200 aagttgcttc 1210

<210> 127

<211> 282

<212> PRT

<213> Homo sapiens

<400> 127

Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala 1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu 20 25 30

Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser 50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln 85 90 95

Lys Gly Gln Cys Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
100 105 110

Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Leu Arg Asn Cys Ser 115 120 125

Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp 130 135 140

Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp 145 150 155 160

Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly 165 170 175

Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser

Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
195 200 205

Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly 210 215 220

Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala 225 230 235 240

Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
245 250 255

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 265 270

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro

```
<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 128
                                                                   2.4
aagttccagt gccgcaccag tggc
<210> 129
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 129
                                                                   24
ttggttccac agccgagctc gtcg
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 130
                                                                   50
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1837)..(1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactettggc cgtgatectg tggttteage tggegetgtg etteggeeet geacagetea 300
egggegggtt egatgacett caagtgtgtg etgaceeegg catteeegag aatggettea 360
qqacccccag cggaqgggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaaget gaagggggt acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
```

```
atggctatgt aaacatetet gageteeaga eeteetteee ggtggggaet gtgateteet 780
ategetgett teeeggattt aaacttgatg ggtetgegta tettgagtge ttacaaaace 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320
gcttgagtgc cttaggcccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380
tggacgacca gagcccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440
agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
ctcccaggtg ccaagagagc acccaccctg cttcggacaa ccctgacata attgccagca 1560
cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgttcc 1620
taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680
gttgatctgt ggagttgatt cctttccttc tcttggtttt agacaaatgt aaacaaagct 1740
ctgatcctta aaattgctat gctgatagag tggtgagggc tggaagcttg atcaagtcct 1800
gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa
<210> 132
<211> 490
<212> PRT
<213> Homo sapiens
<400> 132
Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln
Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val
                                 25
Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr
Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu
Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val
Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys
Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser
                                105
Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu
                            120
                                                125
Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile
                        135
Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn
                    150
                                        155
Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile
Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn
                                185
```

Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr 200 205 Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys Leu Gln Asn Leu Ile Trp Ser Ser Pro Pro Arg Cys Leu Ala Leu Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe 250 Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr 315 Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His 345 Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Asp Pro Asp Phe 360 Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val 395 Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys 425 Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile 455 Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His His Ala His Trp Val Leu Phe Leu Arg Asn 485

<210> 133

<211> 23

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 133
atctcctatc gctgctttcc cgg
                                                                   23
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
agccaggatc gcagtaaaac tcc
                                                                   23
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
                                                                  50
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg gtggcctaga 60
gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg cccgccagcc cgctccaccg 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgcgc 180
tacaggeegt getgetggee gtgetgetgg tggggetgeg ggeegegaeg ggtegeetge 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagetge ettgaatetg geetacatee taateeecag catteeectt etecteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacaccca tctggccctc tcctcaccag ggaaacagcc 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
```

aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380 ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440 tccccacgac ctcctgttgg acccccacgt tttggctgta tcctttatcc cagccagtca 1500 tccagctcga ccttatgaga aggtaccttg cccaggtctg gcacatagta gagtctcaat 1560 aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620 aaagatgggc tgtggagctt ggaaaaccac ctctgtttc cttgctctat acagcagcac 1680 atattatcat acagacagaa aatccagaat ctttcaaag cccacatatg gtagcacagg 1740 ttggcctgtg catcggcaat tctcatatct gtttttca aagaataaaa tcaaataaag 1800 agcaggaaaa aaaaa

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu 1 5 10 15

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu 20 25 30

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro 35 40 45

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe 50 55 60

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser
65 70 75 80

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn 85 90 95

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu
100 105 110

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr 115 120 125

Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser 130 135 140

Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro 145 150 155 160

Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
165 170 175

Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala 180 185 190

Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro 195 200 205

Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys 210 215 220

Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser 225 230 235 240

```
Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
                                265
Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
                                         315
Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
                325
                                    330
Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
                                345
Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
                            360
Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
    370
                        375
<210> 138
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 138
gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca
                                                                   50
<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 139
aagccaaaga agcctgcagg aggg
                                                                   24
<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 140
```

```
<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcatccgcag gttcccgcgg acttgggggc gcccgctgag ccccggcgcc cgcagaagac 120
ttgtgtttgc ctcctgcagc ctcaacccgg agggcagcga gggcctacca ccatgatcac 180
tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg 240
cctgcaccag cggcggttgg ccctggccga gctgcaggag gccgatggcc agtgtccggt 300
cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg gggctcggag 360
tecteteaag eegeteeege tggaggagea ggtagagtgg aaceeceage tattagaggt 420
cccaccccaa actcagtttg attacacagt caccaatcta gctggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctgggca 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc 660
cactaacatt tttcggaatc tggagtccac ccgttgtttg ctggctgggc ttttccagtg 720
tcagaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780
caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
cacatccttg tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080
attectecae atectagaga geaacetget gaaagecatg gaetetgeea etgeeeeega 1140
caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
gaccctgggg atttttgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260
ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320
ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
agttggaaat gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500
gcctttatac aatg
                                                                  1514
<210> 142
<211> 428
<212> PRT
<213> Homo sapiens
<400> 142
Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val
                                     10
Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala
Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu
Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro
Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu
                                         75
Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu
Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu
```

Thr	Thr	Leu 115	Lys	Gly	Gly	Met	Phe 120	Ala	Gly	Gln	Leu	Thr 125	Lys	Val	Gly
Met	Gln 130	Gln	Met	Phe	Ala	Leu 135	Gly	Glu	Arg	Leu	Arg 140	Lys	Asn	Tyr	Val
Glu 145	Asp	Ile	Pro	Phe	Leu 150	Ser	Pro	Thr	Phe	Asn 155	Pro	Gln	Glu	Val	Phe 160
Ile	Arg	Ser	Thr	Asn 165	Ile	Phe	Arg	Asn	Leu 170	Glu	Ser	Thr	Arg	Cys 175	Leu
Leu	Ala	Gly	Leu 180	Phe	Gln	Cys	Gln	Lys 185	Glu	Gly	Pro	Ile	Ile 190	Ile	His
Thr	Asp	Glu 195	Ala	Asp	Ser	Glu	Val 200	Leu	Tyr	Pro	Asn	Tyr 205	Gln	Ser	Cys
Trp	Ser 210	Leu	Arg	Gln	Arg	Thr 215	Arg	Gly	Arg	Arg	Gln 220	Thr	Ala	Ser	Leu
Gln 225	Pro	Gly	Ile	Ser	Glu 230	Asp	Leu	Lys	Lys	Val 235	Lys	Asp	Arg	Met	Gly 240
Ile	Asp	Ser	Ser	Asp 245	Lys	Val	Asp	Phe	Phe 250	Ile	Leu	Leu	Asp	Asn 255	Val
Ala	Ala	Glu	Gln 260	Ala	His	Asn	Leu	Pro 265	Ser	Cys	Pro	Met	Leu 270	Lys	Arg
Phe	Ala	Arg 275	Met	Ile	Glu	Gln	Arg 280	Ala	Val	Asp	Thr	Ser 285	Leu	Tyr	Ile
Leu	Pro 290	Lys	Glu	Asp	Arg	Glu 295	Ser	Leu	Gln	Met	Ala 300	Val	Gly	Pro	Phe
Leu 305	His	Ile	Leu	Glu	Ser 310	Asn	Leu	Leu	Lys	Ala 315	Met	Asp	Ser	Ala	Thr 320
Ala	Pro	Asp	Lys	Ile 325	Arg	Lys	Leu	Tyr	Leu 330	Tyr	Ala	Ala	His	Asp 335	Val
Thr	Phe	Ile	Pro 340	Leu	Leu	Met	Thr	Leu 345	Gly	Ile	Phe	Asp	His 350	Lys	Trp
Pro	Pro	Phe 355	Ala	Val	Asp	Leu	Thr 360	Met	Glu	Leu	Tyr	Gln 365	His	Leu	Glu
Ser	Lys 370	Glu	Trp	Phe	Val	Gln 375	Leu	Tyr	Tyr	His	Gly 380	Lys	Glu	Gln	Val
Pro 385	Arg	Gly	Cys	Pro	Asp 390	Gly	Leu	Cys	Pro	Leu 395	Asp	Met	Phe	Leu	Asn 400
Ala	Met	Ser	Val	Tyr 405	Thr	Leu	Ser	Pro	Glu 410	Lys	Tyr	His	Ala	Leu 415	Cys
Ser	Gln	Thr	Gln 420	Val	Met	Glu	Val	Gly 425	Asn	Glu	Glu				

```
<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 143
                                                                   24
ccaactacca aagctgctgg agcc
<210> 144
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 144
                                                                   24
gcagctctat taccacggga agga
<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 145
                                                                   24
tccttcccgt ggtaatagag ctgc
<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 146
                                                                   45
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg
<210> 147
<211> 1686
<212> DNA
<213> Homo sapiens
<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60
cttaaatttc agctcatcac cttcacctgc cttggtcatg gctctgctat tctccttgat 120
ccttgccatt tgcaccagac ctggattcct agcgtctcca tctggagtgc ggctggtggg 180
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
```

```
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte teeceagtee cagagggtgt caggetgget gaeggeeetg ggeattgeaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagteeete teteeeteet teagagaeeg gaaatgetat ggeeetgggg ttggeegeat 1020
ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacaca cacacacaca cacacacaca cacacataca ceattegtee 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680
ttcaaa
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
                  5
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Val Tyr
                                105
Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
                        135
Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
                165
                                    170
```

1686

Arg	Gln	Leu	Gly 180	Cys	Gly	Arg	Ala	Val 185	Leu	Thr	Gln	Lys	Arg 190	Суѕ	Asn	
Lys	His	Ala 195	Tyr	Gly	Arg	Lys	Pro 200	Ile	Trp	Leu	Ser	Gln 205	Met	Ser	Cys	
Ser	Gly 210	Arg	Glu	Ala	Thr	Leu 215	Gln	Asp	Cys	Pro	Ser '220	Gly	Pro	Trp	Gly	
Lys 225	Asn	Thr	Cys	Asn	His 230	Asp	Glu	Asp	Thr	Trp 235	Val	Glu	Cys	Glu	Asp 240	
Pro	Phe	qaA	Leu	Arg 245	Leu	Val	Gly	Gly	Asp 250	Asn	Leu	Cys	Ser	Gly 255	Arg	
Leu	Glu	Val	Leu 260	His	Lys	Gly	Val	Trp 265	Gly	Ser	Val	Cys	Asp 270	Asp	Asn	
Trp	Gly	Glu 275	Lys	Glu	Asp	Gln	Val 280	Val	Cys	Lys	Gln	Leu 285	Gly	Cys	Gly	
Lys	Ser 290	Leu	Ser	Pro	Ser	Phe 295	Arg	Asp	Arg	Lys	Cys 300	Tyr	Gly	Pro	Gly	
Val 305	Gly	Arg	Ile	Trp	Leu 310	Asp	Asn	Val	Arg	Cys 315	Ser	Gly	Glu	Glu	Gln 320	
Ser	Leu	Glu	Gln	Cys 325	Gln	His	Arg	Phe	Trp 330	Gly	Phe	His	Asp	Cys 335	Thr	
His	Gln	Glu	Asp 340	Val	Ala	Val	Ile	Cys 345	Ser	Val						
<211 <212	<210> 149 <211> 24 <212> DNA <213> Artificial Sequence															
<220 <223	}> De				Art le pr		cial	Sequ	ience	e: Sy	/nthe	etic				
)> 14 agcto		acct	tcac	c to	icc										24
<211 <212)> 15 .> 24 ?> DN }> Ar	l IA	.cial	. Sec	quenc	e										
<220 <223	3> De				Art le pr		ial	Sequ	ience	e: Sy	mthe	etic				
<400> 150 ggctcataca aaataccact aggg 24												24				
<211)> 15 -> 50 !> DN)														

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 151
                                                                   50
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt
<210> 152
<211> 1427
<212> DNA
<213> Homo sapiens
<400> 152
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg 60
acceacgcgt ccgcggacgc gtgggcggac gcgtgggccg gctaccagga agagtctgcc 120
gaaggtgaag gccatggact tcatcacctc cacagccatc ctgcccctgc tgttcggctg 180
cctgggcgtc ttcggcctct tccggctgct gcagtgggtg cgcgggaagg cctacctgcg 240
gaatgctgtg gtggtgatca caggcgccac ctcagggctg ggcaaagaat gtgcaaaagt 300
cttctatgct gcgggtgcta aactggtgct ctgtggccgg aatggtgggg ccctagaaga 360
gctcatcaga gaacttaccg cttctcatgc caccaaggtg cagacacaca agccttactt 420
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctgca 480
\tt gtgctttggc\ tatgtcgaca\ tacttgtcaa\ caatgctggg\ atcagctacc\ gtggtaccat\ 540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc 660
catcagcagc atccagggca agatgagcat tccttttcga tcagcatatg cagcctccaa 720
gcacgcaacc caggctttct ttgactgtct gcgtgccgag atggaacagt atgaaattga 780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc 840
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgga 900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga 960
cttactgcct tccttggctg tttatcttcg aactctggct cctgggctct tcttcagcct 1020
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagtact ctgaccagcc 1080
agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140
ttgttgagac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200
gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 1260
ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320
tctcaaacag taaaaaaaaa aaaaaagggc ggccgcgact ctagagtcga cctgcagaag 1380
cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac
                                                                  1427
<210> 153
<211> 310
<212> PRT
<213> Homo sapiens
<400> 153
Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys
 1
Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys
                                 25
Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly
Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu
Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu
                     70
```

<213> Artificial Sequence

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 135 Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 150 Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 165 Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 185 Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg 235 Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Lys Asp Val Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu 295 Arg Lys Ser Lys Asn Ser 305 <210> 154 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 154 ggtgctaaac tggtgctctg tggc <210> 155

<211> 20 <212> DNA

<213> Artificial Sequence

24

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 155
                                                                   20
cagggcaaga tgagcattcc
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 156
                                                                   24
tcatactgtt ccatctcggc acgc
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 157
                                                                   50
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cctcctgctt ctcccgttac tgatcgtctg ctccctagag tccttcgtga agctttttat 180
tcctaagagg agaaaatcag tcaccggcga aatcgtgctg attacaggag ctgggcatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt gctgctgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
```

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile Val 1 5 10 15

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Lys 20 25 30

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile 35 40 45

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val 50 55 60

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 115 120 125

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 130 135 140

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 255

```
Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
            260
                                265
Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
                        295
<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 160
                                                                   23
ggtgaaggca gaaattggag atg
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 161
atcccatgca tcagcctgtt tacc
                                                                   24
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 162
                                                                   48
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag
<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens
<400> 163
cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60
tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttcttctggt tcttcccagc tcagatacag ccagaagatg ccccagtagt tctctggcta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
```

```
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcatcgtgg cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
tttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
                                                                  2076
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
```

<400> 164

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Phe Pro Ala Gln

Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro 105

Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val

Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr

Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser

145 150 155 160

Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala 165 170 175

Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu 180 185 190

Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys 195 200 205

Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg 210 215 220

Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser 225 230 235 240

Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile 245 250 255

Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His 260 265 270

Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu 275 280 285

Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr 290 295 300

Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys 305 310 315 320

Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro 325 330 335

Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly 340 345 350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn 370 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu 385 390 395

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 465 470 475

```
<210> 165
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 165
ttccatgcca cctaagggag actc
                                                                   24
<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 166
tggatgaggt gtgcaatggc tggc
                                                                   24
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 167
                                                                   24
agctctcaga ggctggtcat aggg
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
                                                                   50
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60
attittccct ttcctaacaa gttctaacag ctgttctaac agctagtgat caggggttct 120
tettgetgga gaagaaaggg etgagggeag ageagggeac teteaeteag ggtgaeeage 180
tccttgcctc tctgtggata acagagcatg agaaagtgaa gagatgcagc ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
```

```
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccctggg tcaggccagc ctctttgctc ctcccggaaa ttatttttgg 720
tctgaccact ctgccttgtg ttttgcagaa tcatgtgagg gccaaccggg gaaggtggag 780
cagatgagca cacacaggag ccgtctcctc accgccgccc ctctcagcat ggaacagagg 840
cagccctggc cccgggccct ggaggtggac agccgctctg tggtcctgct ctcagtggtc 900
tgggtgctgc tggcccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140
gaagtgetea eeeteaceaa caatgteaac aagetgetea teattgaeta etetgagaac 1200
cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccetg agtectcage catgetegae tatgagetae acagegattt tgteteetet 1500
ctcatcaaga tcccttcaga caccctggcc ctggtctccc actttgacat cttctacatc 1560
tacggetttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
gtggaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggcccag 1800
gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa agggcagaag 1860
cagtatcacc accegecega tgactetgee etgtgtgeet tecetateeg ggecateaac 1920
ttgcagatca aggagcgcct gcagtcctgc taccagggcg agggcaacct ggagctcaac 1980
tggctgctgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa cggctacagc 2160
gtggtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
agatttaact ataggcaact ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggttaat tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaact ttaagaaggt 2460
acatctgcaa aagcaaa
                                                               2477
<210> 170
<211> 552
<212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
                           40
```

Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His 85 90 95

Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala

Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val

ser	GIU	ASII	100	Asp	тър	THE	Pne	105	HIS	Leu	THE	vai	110	GIII	GIY
Thr	Gly	Ala 115	Val	Tyr	Val	Gly	Ala 120	Ile	Asn	Arg	Val	Туг 125	Lys	Leu	Thr
Gly	Asn 130	Leu	Thr	Ile	Gln	Val 135	Ala	His	Lys	Thr	Gly 140	Pro	Glu	Glu	Asp
Asn 145	Lys	Ser	Arg	Tyr	Pro 150	Pro	Leu	Ile	Val	Gln 155	Pro	Cys	Ser	Glu	Val 160
Leu	Thr	Leu	Thr	Asn 165	Asn	Val	Asn	Lys	Leu 170	Leu	Ile	Ile	Asp	Туг 175	Ser
Glu	Asn	Arg	Leu 180	Leu	Ala	Cys	Gly	Ser 185	Leu	Tyr	Gln	Gly	Val 190	Cys	Lys
Leu	Leu	Arg 195	Leu	Asp	Asp	Leu	Phe 200	Ile	Leu	Val	Glu	Pro 205	Ser	His	Lys
Lys	Glu 210	His	Tyr	Leu	Ser	Ser 215	Val	Asn	Lys	Thr	Gly 220	Thr	Met	Tyr	Gly
Val 225	Ile	Val	Arg	Ser	Glu 230	Gly	Glu	Asp	Gly	Lys 235	Leu	Phe	Ile	Gly	Thr 240
Ala	Val	Asp	Gly	Lys 245	Gln	Asp	Tyr	Phe	Pro 250	Thr	Leu	Ser	Ser	Arg 255	Lys
Leu	Pro	Arg	Asp 260	Pro	Glu	Ser	Ser	Ala 265	Met	Leu	Asp	Tyr	Glu 270	Leu	His
Ser	Asp	Phe 275	Val	Ser	Ser	Leu	Ile 280	Lys	Ile	Pro	Ser	Asp 285	Thr	Leu	Ala
Leu	Val 290	Ser	His	Phe	Asp	Ile 295	Phe	Tyr	Ile	Tyr	Gly 300	Phe	Ala	Ser	Gly
Gly 305	Phe	Val	Tyr	Phe	Leu 310	Thr	Val	Gln	Pro	Glu 315	Thr	Pro	Glu	Gly	Val 320
Ala	Ile	Asn	Ser	Ala 325	Gly	Asp	Leu	Phe	Tyr 330	Thr	Ser	Arg	Ile	Val 335	Arg
Leu	Сув	Lys	Asp 340	Asp	Pro	Lys	Phe	His 345	Ser	Tyr	Val	Ser	Leu 350	Pro	Phe
Gly	Cys	Thr 355	Arg	Ala	Gly	Val	Glu 360	Tyr	Arg	Leu	Leu	Gln 365	Ala	Ala	Tyr
Leu	Ala 370	Lys	Pro	Gly	Asp	Ser 375	Leu	Ala	Gln	Ala	Phe 380	Asn	Ile	Thr	Ser
Gln 385	Asp	Asp	Val	Leu	Phe 390	Ala	Ile	Phe	Ser	Lys 395	Gly	Gln	Lys	Gln	Tyr 400
His	His	Pro	Pro	Asp 405	Asp	Ser	Ala	Leu	Cys 410	Ala	Phe	Pro	Ile	Arg 415	Ala
Ile	Asn	Leu	Gln	Ile	Lys	Glu	Arg	Leu	Gln	Ser	Cys	Tyr	Gln	Gly	Glu

420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn 455 Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly 485 Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val 505 Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys 515 520 Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln 540 Leu Tyr Phe Leu Gly Glu Gln Arg 545 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 171 tggaataccg cctcctgcag 20 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 172 cttctgccct ttggagaaga tggc 24 <210> 173 <211> 43 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 173

```
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1683)..(1683)
<223> a, t, c or g
<400> 174
aggeteeege gegeggetga gtgeggaetg gagtgggaac eegggteeee gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attccacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggeettegt cetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeeet 480
acatetgeag tgagatggae eteggggget tgeecagetg getaeteeaa gaeeetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaaget tegagaette tteggeteea teteaggeat ceeteteeet ceeceacetg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acgccctcaa gtacctgggg gagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtcccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
gctccacgcc ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1980
cggtggcacc ccctcctgct ggtgccagtg ggagactgcc gcctcctctt gacctgaagc 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actgggggct acagtctgcc cctgtctcag ctcaaaaccc taagcctgca gggaaaggtg 2160
ggatggctct gggcctggct ttgttgatga tggctttcct acagccctgc tcttgtgccg 2220
aggctgtcgg gctgtctcta gggtgggagc agctaatcag atcgcccagc ctttggccct 2280
cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
gactcaggcg tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagctgact ttgttcttcc ttcacaacct tctgagcctt ctttgggatt ctggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catecaggga ggaggacaga aggcccagct cacatgtgag teetggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
```

tcctggcaga agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2940 cagtggccc cgctcccac ccccacgcc cgaacagcag gggcagagca gcctccttc 3000 gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060 ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa 3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (539)

<223> Any amino acid

<400> 175

Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu 1 5 10 15

Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp 20 25 30

Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln 35 40 45

Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe 50 55 60

Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp 65 70 75 80

Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Tyr 85 90 95

Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser 100 105 110

Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
115 120 125

Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp 130 135 140

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu 145 150 155 160

Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp 165 170 175

His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro 180 185 190

Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp 195 200 205

Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile 210 215 220

Val Glu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly 225 230 235 240

Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255	Glu
Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270	Gln	Pro
Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285	Trp	Gly	Gly
Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300	Thr	Val	Ser	Ala
Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315	Met	Phe	His	Gly	Gly 320
Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330	His	Phe	His	Asp	Tyr 335	Lys
Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345	Ala	Val	Leu	Thr	Glu 350	Ala	Gly
Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360	Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Ile
Ser	Gly 370	Ile	Pro	Leu	Pro	Pro 375	Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro
Tyr 385	Glu	Pro	Leu	Thr	Pro 390	Val	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400
Lys	Tyr	Leu	Gly	Glu 405	Pro	Ile	Lys	Ser	Glu 410	Lys	Pro	Ile	Asn	Met 415	Glu
Asn	Leu	Pro	Val 420	Asn	Gly	Gly	Asn	Gly 425	Gln	Ser	Phe	Gly	Tyr 430	Ile	Leu
Tyr	Glu	Thr 435	Ser	Ile	Thr	Ser	Ser 440	Gly	Ile	Leu	Ser	Gly 445	His	Val	His
Asp	Arg 450	Gly	Gln	Val	Phe	Val 455	Asn	Thr	Val	Ser	Ile 460	Gly	Phe	Leu	Asp
Tyr 465	Lys	Thr	Thr	Lys	Ile 470	Ala	Val	Pro	Leu	Ile 475	Gln	Gly	Tyr	Thr	Val 480
Leu	Arg	Ile	Leu	Val 485	Glu	Asn	Arg	Gly	Arg 490	Val	Asn	Tyr	Gly	Glu 495	Asn
Ile	Asp	Asp	Gln 500	Arg	Lys	Gly	Leu	Ile 505	Gly	Asn	Leu	Tyr	Leu 510	Asn	Asp
Ser	Pro	Leu 515	Lys	Asn	Phe	Arg	Ile 520	Tyr	Ser	Leu	Asp	Met 525	Lys	Lys	Ser
Phe	Phe 530	Gln	Arg	Phe	Gly	Leu 535	Asp	Lys	Trp	Xaa	Ser 540	Leu	Pro	Glu	Thr
Pro 545	Thr	Leu	Pro	Ala	Phe 550	Phe	Leu	Gly	Ser	Leu 555	Ser	Ile	Ser	Ser	Thr 560
Pro	Cys	Asp	Thr	Phe	Leu	Lys	Leu	Glu	Gly	Trp	Glu	Lys	Gly	Val	Val

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln 580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln 595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 610 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 625 630 635

<210> 176

<211> 2505

<212> DNA

<213> Homo sapiens

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180 ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300 tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420 tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480 atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540 acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600 gacettaeat etgtgeagag tgggagatgg ggggtetece atectggttg ettegaaaae 660 ctgaaattca tctaagaacc tcagatccag acttecttge egeagtggae teetggttca 720 aggtettget geccaagata tatecatgge tttateacaa tgggggeaac ateattagea 780 ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840 tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900 ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat tttggcccag 960 ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020 taaactetga gtactacaca ggetggetgg attactgggg ecagaateac tecacaeggt 1080 ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140 tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200 gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260 ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320 gacetttace teeceegage eccaagatga tgettggace tgtgactetg cacetggttg 1380 ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440 caatgacett tgaggetgte aageaggace atggetteat gttgtacega acetatatga 1500 cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560 cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620 tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680 tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740 aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800 ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860 actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920 ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980 ggccacaaca gaccctctac gtgccaagat tectgctgtt tectagggga gccctcaaca 2040 aaattacatt getggaacta gaagatgtac etetecagee ecaagtecaa tttttggata 2100 agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160 atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220 ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280 teaggactic aagaceagee tggceaacat ggtgaaacee egtetecaet aaaaatacaa 2340 aaattagccg ggcgtgatgg tgggcacctc taatcccagc tacttgggag gctgagggca 2400 ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460 <210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Pro Leu 1 5 10 15

Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala 50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe 65 70 75 80

Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe 85 90 95

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala 100 105 110

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His 130 135 140

Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe 145 150 155 160

Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly 165 170 175

Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala 180 185 190

Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu 195 200 205

Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu 210 215 220

Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro 225 230 235 240

Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro 245 250 255

His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr 260 265 270

Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly 275 280 285

Leu	Glu 290	Asn	Met	Leu	Lys	Leu 295	Gly	Ala	Ser	Val	Asn 300	Met	Tyr	Met	Phe
His 305	Gly	Gly	Thr	Asn	Phe 310	Gly	Tyr	Trp	Asn	Gly 315	Ala	Asp	Lys	Lys	Gly 320
Arg	Phe	Leu	Pro	Ile 325	Thr	Thr	Ser	Tyr	Asp 330	Tyr	Asp	Ala	Pro	Ile 335	Ser
Glu	Ala	Gly	Asp 340	Pro	Thr	Pro	Lys	Leu 345	Phe	Ala	Leu	Arg	Asp 350	Val	Ile
Ser	Lys	Phe 355	Gln	Glu	Val	Pro	Leu 360	Gly	Pro	Leu	Pro	Pro 365	Pro	Ser	Pro
Lys	Met 370	Met	Leu	Gly	Pro	Val 375	Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala 385	Phe	Leu	Asp	Leu	Leu 390	Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro	Met	Thr	Phe	Glu 405	Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg	Thr	Tyr	Met 420	Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val
Pro	Asn	Asn 435	Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val
Phe	Gln 450	Gly	Val	Val	Glu	Arg 455	Asn	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr
Gly 465	Lys	Leu	Gly	Ser	Lys 470	Leu	Asp	Ile	Leu	Val 475	Glu	Asn	Met	Gly	Arg 480
Leu	Ser	Phe	Gly	Ser 485	Asn	Ser	Ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495	Pro
Pro	Ile	Leu	Gly 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510	Pro	Leu
Lys	Ile	Asp 515	Asn	Leu	Val	Lys	Trp 520	Trp	Phe	Pro	Leu	Gln 525	Leu	Pro	Lys
Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 540	Tyr	Ser	Lys	Thr
Phe 545	Pro	Ile	Leu	Gly	Ser 550	Val	Gly	Asp	Thr	Phe 555	Leu	Tyr	Leu	Pro	Gly 560
Trp	Thr	Lys	Gly	Gln 565	Val	Trp	Ile	Asn	Gly 570	Phe	Asn	Leu	Gly	Arg 575	Tyr
Trp	Thr	Lys	Gln 580	Gly	Pro	Gln	Gln	Thr 585	Leu	Tyr	Val	Pro	Arg 590	Phe	Leu
Leu	Phe	Pro 595	Arg	Gly	Ala	Leu	Asn 600	Lys	Ile	Thr	Leu	Leu 605	Glu	Leu	Glu

```
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu
Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
625
                    630
                                         635
Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
<210> 178
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 178
tggctactcc aagaccctgg catg
                                                                    24
<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 179
                                                                    24
tggacaaatc cccttgctca gccc
<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 180
                                                                    50
gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 181
                                                                    22
ccagctatga ctatgatgca cc
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 182
                                                                  24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 183
                                                                  50
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctqtt catqctqtcq qqqqtqcccq atqctqtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acqtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacqgcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattqttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380
ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
cageceaget gggecagtgt eggatgetea agaaaagegg gettgttgtg gaagateace 1500
tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560
ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680
cttttaaaat aaaacagaga qgatgcatag aaggctgata gaagacataa ctgaatgttc 1740
aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800
agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg taacttggat 1860
gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
ttttcttact aaaaaaaaa aaaaaaa
                                                                  1947
```

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile 1 5 10 15

Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg 20 25 30

Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser 35 40 45

Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His 50 55 60

Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe 65 70 75 80

Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His
85 90 95

Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln
100 105 110

Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala 115 120 125

Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 135 140

Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu 145 150 155 160

Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser 165 170 175

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu 195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 225 230 235 240

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu 245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn 260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys 275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 305 310 315 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn 330 Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile 375 Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg 455 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr 475 Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 490 Phe Ala Asn Gly Ile 500 <210> 186 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 186 21 cctccctcta ttacccatgt c <210> 187 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 187
                                                                  24
gaccaacttt ctctgggagt gagg
<210> 188
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 188
                                                                  47
gtcactttat ttctctaaca acaagctcga atccttacca gtggcag
<210> 189
<211> 2917
<212> DNA
<213> Homo sapiens
<400> 189
cccacgcgtc cggccttctc tctggacttt gcatttccat tccttttcat tgacaaactg 60
acttttttta tttcttttt tccatctctg ggccagcttg ggatcctagg ccgccctggg 120
aagacatttg tgttttacac acataaggat ctgtgtttgg ggtttcttct tcctcccctg 180
acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240
gcacttatct gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300
ategetggtg gtateetgge ggeettgete etgetgatag ttgtegtget etgtetttae 360
ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420
cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480
tettgteetg ceetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540
ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600
gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat gtgcaggcac 660
agaagaaagg cacagctccc catcagtttc atggaaaata actcagtgcc tgctgggaac 720
cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780
ggggagagag aaccctcact gtggggaatg ctgataaacc agtcacacag ctgctctatt 840
ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900
gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960
aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020
gagctgacaa tggcggaggc tgaaggcaat gcaagctgca cagtcagtct agggggtgcc 1080
aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tcttttccta tgtccagctt 1200
gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320
tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380
gtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440
accttggaag gatcettcac cageeccaat tacecaaage egeateetga getggettat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620
accaactctg gcctgattgg acaagtctgt ggccgtgtga ctcccacctt cgaatcgtca 1680
tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740
gcttcctaca cctcaattta tgcagaaaac atcaacacta catctttaac ttgctcttct 1800
gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860
aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920
gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980
aatataatca ccttttctgc atcctcaact tctgaagtga tcacccgtca gaaacaactc 2040
cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100
gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160
tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220
caaactettt tigiteaagt tagietgeac aceteagate caaattiggt ggigtitett 2280
gatacetgta gageetetee cacetetgae titigeatete caacetaega eetaateaag 2340
agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400
```

ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460 gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520 agcaaacgag acatttcttc atataaatgg aaaacagatt ccatcatagg acccattcgt 2580 ctgaaaaggg atcgaagtc aagtggcaat tcaggattc agcatgaaac acatgcggaa 2640 gaaactccaa accagccttt caacagtgtg catctgttt ccttcatggt tctagctctg 2700 aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760 aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820 tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880 ggcctgaaag tgacacacag gcctgcatgt aaaaaaa

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg 50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Ser Thr Leu Thr Phe Gln Ile Val 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe 130 135 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser 225 230 235 240

Asn	Ser	Leu	Thr	Val 245	Val	Leu	Ser	Thr	Asp 250	Tyr	Ala	Asn	Ser	Tyr 255	Arg
Gly	Phe	Ser	Ala 260	Ser	Tyr	Thr	Ser	Ile 265	Tyr	Ala	Glu	Asn	Ile 270	Asn	Thr
Thr	Ser	Leu 275	Thr	Cys	Ser	Ser	Asp 280	Arg	Met	Arg	Val	Ile 285	Ile	Ser	Lys
Ser	Туг 290	Leu	Glu	Ala	Phe	Asn 295	Ser	Asn	Gly	Asn	Asn 300	Leu	Gln	Leu	Lys
Asp 305	Pro	Thr	Суз	Arg	Pro 310	Lys	Leu	Ser	Asn	Val 315	Val	Glu	Phe	Ser	Val 320
Pro	Leu	Asn	Gly	Cys 325	Gly	Thr	Ile	Arg	Lys 330	Val	Glu	Asp	Gln	Ser 335	Ile
Thr	Tyr	Thr	Asn 340	Ile	Ile	Thr	Phe	Ser 345	Ala	Ser	Ser	Thr	Ser 350	Glu	Val
Ile	Thr	Arg 355	Gln	Lys	Gln	Leu	Gln 360	Ile	Ile	Val	Lys	Cys 365	Glu	Met	Gly
His	Asn 370	Ser	Thr	Val	Glu	Ile 375	Ile	Tyr	Ile	Thr	Glu 380	Asp	Asp	Val	Ile
Gln 385	Ser	Gln	Asn	Ala	Leu 390	Gly	Lys	Tyr	Asn	Thr 395	Ser	Met	Ala	Leu	Phe 400
Glu	Ser	Asn	Ser	Phe 405	Glu	Lys	Thr	Ile	Leu 410	Glu	Ser	Pro	Tyr	Tyr 415	Val
Asp	Leu	Asn	Gln 420	Thr	Leu	Phe	Val	Gln 425	Val	Ser	Leu	His	Thr 430	Ser	Asp
Pro	Asn	Leu 435	Val	Val	Phe	Leu	Asp 440	Thr	Cys	Arg	Ala	Ser 445	Pro	Thr	Ser
Asp	Phe 450	Ala	Ser	Pro	Thr	Tyr 455	Asp	Leu	Ile	Lys	Ser 460	Gly	Cys	Ser	Arg
Asp 465	Glu	Thr	Cys	Lys	Val 470	Tyr	Pro	Leu	Phe	Gly 475	His	Tyr	Gly	Arg	Phe 480
Gln	Phe	Asn	Ala	Phe 485	Lys	Phe	Leu	Arg	Ser 490	Met	Ser	Ser	Val	Tyr 495	Leu
Gln	Cys	Lys	Val 500	Leu	Ile	Cys	Asp	Ser 505	Ser	Asp	His	Gln	Ser 510	Arg	Cys
Asn	Gln	Gly 515	Cys	Val	Ser	Arg	Ser 520	Lys	Arg	Asp	Ile	Ser 525	Ser	Tyr	Lys
Trp	Lys 530	Thr	Asp	Ser	Ile	Ile 535	Gly	Pro	Ile	Arg	Leu 540	Lys	Arg	Asp	Arg
Ser 545	Ala	Ser	Gly	Asn	Ser 550	Gly	Phe	Gln	His	Glu 555	Thr	His	Ala	Glu	Glu 560
Thr	Pro	Asn	Gln	Pro	Phe	Asn	Ser	Val	His	Leu	Phe	Ser	Phe	Met	Val

Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe 585 Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr 600 <210> 191 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 191 21 tctctattcc aaactgtggc g <210> 192 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 192 22 tttgatgacg attcgaaggt gg <210> 193 <211> 47 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe 47 ggaaggatcc ttcaccagcc ccaattaccc aaagccgcat cctgagc <210> 194 <211> 2362 <212> DNA <213> Homo sapiens <400> 194 gacggaagaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc cggcctgcgc 60 cgggacatgc ggccccagga gctccccagg ctcgcgttcc cgttgctgct gttgctgttg 120 ctgctgctgc cgccgccgcc gtgccctgcc cacagcgcca cgcgcttcga ccccacctgg 180 gagtecetgg acgeecgeca getgeecgeg tggtttgace aggeeaagtt eggeatette 240 atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300 caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360 aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420 gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480 tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540 agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600 ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660

```
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gcttcttggc ctggttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatgatc gttggggagc tggtagcatc tgtaagcatg gtggcttcta tacctgcagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gagggaagct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactag atggcaccat ttctgtagtt tttgaggagc gactgaggca agtggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
taaactcatt gtgcaaatgt aa
                                                                  2362
<210> 195
<213> Homo sapiens
<400> 195
```

```
<211> 467
```

<212> PRT

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro

Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe

Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr

Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser

Glu 145	Tyr	Ser	Trp	Asn	Trp 150	Asn	Ala	Ile	Asp	Glu 155	Gly	Pro	Lys	Arg	Asp 160
Ile	Val	Lys	Glu	Leu 165	Glu	Val	Ala	Ile	Arg 170	Asn	Arg	Thr	Asp	Leu 175	Arg
Phe	Gly	Leu	Tyr 180	Tyr	Ser	Leu	Phe	Glu 185	Trp	Phe	His	Pro	Leu 190	Phe	Leu
Glu	Asp	Glu 195	Ser	Ser	Ser	Phe	His 200	Lys	Arg	Gln	Phe	Pro 205	Val	Ser	Lys
Thr	Leu 210	Pro	Glu	Leu	Tyr	Glu 215	Leu	Val	Asn	Asn	Tyr 220	Gln	Pro	Glu	Val
Leu 225	Trp	Ser	Asp	Gly	Asp 230	Gly	Gly	Ala	Pro	Asp 235	Gln	Tyr	Trp	Asn	Ser 240
Thr	Gly	Phe	Leu	Ala 245	Trp	Leu	Tyr	Asn	Glu 250	Ser	Pro	Val	Arg	Gly 255	Thr
Val	Val	Thr	Asn 260	Asp	Arg	Trp	Gly	Ala 265	Gly	Ser	Ile	Cys	Lys 270	His	Gly
Gly	Phe	Tyr 275	Thr	Cys	Ser	Asp	Arg 280	Tyr	Asn	Pro	Gly	His 285	Leu	Leu	Pro
His	Lys 290	Trp	Glu	Asn	Cys	Met 295	Thr	Ile	Asp	Lys	Leu 300	Ser	Trp	Gly	Tyr
Arg 305	Arg	Glu	Ala	Gly	Ile 310	Ser	Asp	Tyr	Leu	Thr 315	Ile	Glu	Glu	Leu	Val 320
Lys	Gln	Leu	Val	Glu 325	Thr	Val	Ser	Cys	Gly 330	Gly	Asn	Leu	Leu	Met 335	Asn
Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg
Leu	Arg	Gln 355	Val	Gly	Ser	Trp	Leu 360	Lys	Val	Asn	Gly	Glu 365	Ala	Ile	Tyr
Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val
Trp 385	Tyr	Thr	Ser	Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400
Lys	Trp	Pro	Thr	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile
Leu	Gly	Ala	Thr 420	Glu	Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn
Trp	Ile	Ser 435	Leu	Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu
Thr	Ile 450	His	Gln	Met	Pro	Cys 455	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr

Asn Val Ile 465	
<210> 196 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 196 tggtttgacc aggccaagtt cgg	23
<210> 197 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 197 ggattcatcc tcaaggaaga gcgg	24
<210> 198 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 198 aacttgcagc atcagccact ctgc	24
<210> 199 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 199 ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca	45
<210> 200 <211> 2372 <212> DNA <213> Homo sapiens	
<400> 200 agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 2	120

```
gtgttgette teaetteeat etggaeeaeg aggeteetgg teeaaggete tttgegtgea 240
gaagagettt ccatecaggt gtcatgcaga attatgggga tcaccettgt gagcaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactegg tggcatecee ttactetaca atacetgeee etactactae teeteetget 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcttgc tctcctcttc 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtccaa gcaaaactac cgtgcgatgc ctggaagctg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
tcaggactgc cattggacta tggagtgcac caaagagaat gcccttctcc ttattgtaac 1320
cctgtctgga tcctatcctc ctacctccaa agcttcccac ggcctttcta gcctggctat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500
caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560
gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620
agaatggcag aaaagtttag cccctgaaag ccatggagat tctcataact tgagacctaa 1680
tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740
gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800
cactgtttag aacacaca cttacttttt ctggtctcta ccactgctga tattttctct 1860
aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct attttatct 1920
gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980
ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100
ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220
atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280
caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340
                                                                  2372
tgtgacaaaa aattaaagca tttagaaaac tt
<210> 201
<211> 322
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic protein
<400> 201
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp Thr
Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
                             40
Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
```

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val 85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr 145 150 155 160

Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser 165 170 175

Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser 180 185 190

Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
195 200 205

Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala 210 215 220

Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu 225 230 235 240

Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe 245 250 255

Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn 260 265 270

Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala 275 280 285

Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro 290 295 300

Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala 305 310 315 320

Glu Val

<210> 202

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 202 gagctttcca tccaggtgtc atgc

```
<210> 203
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 203
gtcagtgaca gtacctactc gg
                                                                    22
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 204
                                                                    24
tggagcagga ggagtagtag tagg
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 205
                                                                    50
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (973)..(973)
<223> a, t, c or g
<220>
<221> modified_base
<222> (977)..(977)
<223> a, t, c or g
<220>
<221> modified_base
<222> (996)..(996)
<223> a, t, c or g
<220>
<221> modified_base
<222> (1003)..(1003)
<223> a, t, c or g
```

```
<400> 206
agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60
ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120
ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180
actttgactg gagagaagtg gagateetga tgttteteag tgecattgtg atgatgaaga 240
accgcagatc catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300
ccaacacaat tetttette egettggata ttegeatggg cetaetttae ateacaetet 360
gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420
acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
tggagttett tgecaattgg tetaatgaet gecaateatt tgeceetate tatgetgaee 540
tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600
ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660
tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac aagaaaggac 720
gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840
tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960
gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020
tctgatttta aagaggcatc tagggaattg tcaggcaccc tacaggaagg cctgccatgc 1080
tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140
ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260
agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320
aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380
gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440
gacaatattg aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560
acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620
<210> 207
<211> 296
<212> PRT
<213> Homo sapiens
<400> 207
Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
                                105
Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
```

Thr 145	Ile	Asp	Glu	Glu	Leu 150	Glu	Arg	Asp	Lys	Arg 155	Val	Thr	Trp	Ile	Val 160		
Glu	Phe	Phe	Ala	Asn 165	Trp	Ser	Asn	Asp	Cys 170	Gln	Ser	Phe	Ala	Pro 175	Ile		
Tyr	Ala	Asp	Leu 180	Ser	Leu	Lys	Tyr	Asn 185	Cys	Thr	Gly	Leu	Asn 190	Phe	Gly		
Lys	Val	Asp 195	Val	Gly	Arg	Tyr	Thr 200	Asp	Val	Ser	Thr	Arg 205	Tyr	Lys	Val		
Ser	Thr 210	Ser	Pro	Leu	Thr	Lys 215	Gln	Leu	Pro	Thr	Leu 220	Ile	Leu	Phe	Gln		
Gly 225	Gly	Lys	Glu	Ala	Met 230	Arg	Arg	Pro	Gln	Ile 235	Asp	Lys	Lys	Gly	Arg 240		
Ala	Val	Ser	Trp	Thr 245	Phe	Ser	Glu	Glu	Asn 250	Val	Ile	Arg	Glu	Phe 255	Asn		
Leu	Asn	Glu	Leu 260	Tyr	Gln	Arg	Ala	Lys 265	Lys	Leu	Ser	Lys	Ala 270	Gly	Asp		
Asn	Ile	Pro 275	Glu	Glu	Gln	Pro	Val 280	Ala	Ser	Thr	Pro	Thr 285	Thr	Val	Ser		
Asp	Gly 290	Glu	Asn	Lys	Lys	Asp 295	Lys										
	.> 24 !> D1	l IA	cial	L Sec	quenc	e											
<220 <223	> De				Art le pi		cial	Sequ	ience	e: Sy	nthe	etic					
<400 gctt		_	cgca	atggg	gc ct	ac										24	
<211 <212) JA	cial	. Sec	quenc	:e											
<220 <223	> De				Art le pr		ial	Sequ	ience	e: Sy	nthe	etic					
<400 tgga			atccc	tgag	ıg											20	
<210 <211 <212 <213	> 24 > DN	l IA	cial	. Seç	quenc	:e											
<220	>																

```
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 210
                                                               24
aacagttggc cacagcatgg cagg
<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 211
                                                               50
ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag
<210> 212
<211> 1985
<212> DNA
<213> Homo sapiens
<400> 212
ggacageteg eggeeeega gagetetage egtegaggag etgeetgggg aegtttgeee 60
tggggcccca gcctggcccg ggtcaccctg gcatgaggag atgggcctgt tgctcctggt 120
cccattgctc ctgctgcccg gctcctacgg actgcccttc tacaacggct tctactactc 180
caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
gaagetggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat 300
cctgccctgc cgctaccgct acgagccggc cctggtctcc ccgcggcgtg tgcgtgtcaa 360
atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct 420
gaggcaccgc tcctttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
ctttccttac cagtcccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgcccgg cagcctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080
cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgctt gctcccctgg gccatttgcg gttttgtggg cttctggagg gttccccgcc 1440
atccaggctg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560
gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctcccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
1985
aaaaa
```

<210> 213 <211> 360 <212> PRT

<213> Homo sapiens

<400> 213

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Pro Gly Ser Tyr 1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala 50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser 65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala 85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp 115 120 125

Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr 130 135 140

Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu 145 150 155 160

Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg 165 170 175

Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala 180 185 190

Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly 195 200 205

Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr 210 215 220

Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro 225 230 235 240

Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp 245 250 255

Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu 260 265 270

His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu 275 280 285

Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys 290 295 300

Phe H: 305	is Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320	
Val A	rg Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu	
Pro G	ly Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr	
Gly Va	al Tyr 355	Сув	Tyr	Arg	Gln	His 360									
<210><211><212><213>	18	icia	l Sed	quenc	ce										
<220> <223>	Descr:					cial	Sequ	ience	e: Sy	nthe	etic				
<400> tgctte	214 cgcta (ctgc	cctc												18
<210><211><212><213>	18	icial	l Sed	quenc	ce										
<220> <223>	Descr:					cial	Sequ	ience	e: S <u>y</u>	/nthe	etic				
<400> ttccct	215 ttgtg (ggtt	ggag												18
<210><211><212><213>	18	icial	l Sec	quenc	ce										
<220> <223>	Descr:					cial	Sequ	ience	e: Sy	nthe	etic				
<400> agggct	216 Eggaa g	gccag	gttc												18
<210><211><212><212><213>	18	icial	l Sec	quenc	ce										
<220> <223>	Descr:					cial	Sequ	ience	e: Sy	nthe	etic				
<400> agccag	217 gtgag (gaaat	gcg												18
<210>	218														

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 218
tgtccaaagt acacacact gagg
                                                                24
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 219
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
                                                                45
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gettetgttg etactgagge aeggggeeca ggggaageea teeceagaeg eaggeeetea 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgcggcctgg gacacgtacg acacggaccg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
geggegttte egggtggeeg accaggatgg ggaetegatg gecaetegag aggagetgae 600
agcetteetg cacceegagg agtteeetca catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagcccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageceagae ecagggaeee ttggeeecaa geteagetet aagaaeegee ecaaeeeete 1320
cagetecaaa tetgageete caccacatag aetgaaaete eeetggeeee ageeetetee 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
```

<400> 221 Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr 200 Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Glu Pro Ala Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro 265 Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly 295 Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp

310

```
Leu Thr Arg His His Asp Glu Leu
                325
<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 222
cgcaggccct catggccagg
                                                                    2.0
<210> 223
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 223
                                                                    18
gaaatcctgg gtaattgg
<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 224
                                                                    23
gtgcgcggtg ctcacagctc atc
<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    oligonucleotide probe
<400> 225
                                                                    44
ccccctgag cgacgctccc ccatgatgac gcccacggga actt
<210> 226
<211> 2403
<212> DNA
<213> Homo sapiens
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
gggcggcggg cgcgggtgcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccagcctgtc tgtcgtcgtt ttggcgcccc cgcctccccg cggtgcgggg ttgcacaccg 180
atcctgggct tcgctcgatt tgccgccgag gcgcctccca gacctagagg ggcgctggcc 240
```

```
tggagcagcg ggtcgtctgt gtcctctctc ctctgcgccg cgcccgggga tccgaagggt 300
gcggggctct gaggaggtga cgcgcggggc ctcccgcacc ctggccttgc ccgcattctc 360
cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccggctc 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tctgcccagg gggctgccct cttgaggaat tctctgtgta tgggaacata gtatatgctt 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tccagtctca aatgctttct agatggtctg cttctttcac agtaactaaa ggcaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag aattttgttg 960
gaaaagtggc tctaatgttg ggaattggaa cagaaggacc acatgtgggc cttgttcaag 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaaactt tacatcagcc aaagatgttt 1080
tgtttgccat aaaggaagta ggtttcagag ggggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
tctcttacca catgcccaac tggtttggca ccacaaaata cgtaaagcct ctggtacaga 1440
agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattg 1500
cctttctaat tgatggctcc agcagtgttg gagatagcaa tttccgcctc atgcttgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgteetage tgteateaga aacateeget atatgagtgg tggaacaget aetggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tcctagtaat tgtcacagat gggcagtcct atgatgatgt ccaaggccct gcagctgctg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgcttta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
                                                                  2403
aaa
<210> 227
<211> 550
<212> PRT
```

```
<213> Homo sapiens
```

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro

Gly	Arg	Glu	Asn 100	Tyr	Ser	Ser	Val	Asp 105	Ala	Asn	Gly	Ile	Gln 110	Ser	Gln
Met	Leu	Ser 115	Arg	Trp	Ser	Ala	Ser 120	Phe	Thr	Val	Thr	Lys 125	Gly	Lys	Ser
Ser	Thr 130	Gln	Glu	Ala	Thr	Gly 135	Gln	Ala	Val	Ser	Thr 140	Ala	His	Pro	Pro
Thr 145	Gly	Lys	Arg	Leu	Lys 150	Lys	Thr	Pro	Glu	Lys 155	Lys	Thr	Gly	Asn	Lys 160
Asp	Cys	Lys	Ala	Asp 165	Ile	Ala	Phe	Leu	Ile 170	Asp	Gly	Ser	Phe	Asn 175	Ile
Gly	Gln	Arg	Arg 180	Phe	Asn	Leu	Gln	Lys 185	Asn	Phe	Val	Gly	Lys 190	Val	Ala
Leu	Met	Leu 195	Gly	Ile	Gly	Thr	Glu 200	Gly	Pro	His	Val	Gly 205	Leu	Val	Gln
Ala	Ser 210	Glu	His	Pro	Lys	Ile 215	Glu	Phe	Tyr	Leu	Lys 220	Asn	Phe	Thr	Ser
Ala 225	Lys	Asp	Val	Leu	Phe 230	Ala	Ile	Lys	Glu	Val 235	Gly	Phe	Arg	Gly	Gly 240
Asn	Ser	Asn	Thr	Gly 245	Lys	Ala	Leu	Lys	His 250	Thr	Ala	Gln	Lys	Phe 255	Phe
Thr	Val	Asp	Ala 260	Gly	Val	Arg	Lys	Gly 265	Ile	Pro	Lys	Val	Val 270	Val	Val
Phe	Ile	Asp 275	Gly	Trp	Pro	Ser	Asp 280	Asp	Ile	Glu	Glu	Ala 285	Gly	Ile	Val
Ala	Arg 290	Glu	Phe	Gly	Val	Asn 295	Val	Phe	Ile	Val	Ser 300	Val	Ala	Lys	Pro
Ile 305	Pro	Glu	Glu	Leu	Gly 310	Met	Val	Gln	Asp	Val 315	Thr	Phe	Val	Asp	Lys 320
Ala	Val	Cys	Arg	Asn 325	Asn	Gly	Phe	Phe	Ser 330	Tyr	His	Met	Pro	Asn 335	Trp
Phe	Gly	Thr	Thr 340	Lys	Tyr	Val	Lys	Pro 345	Leu	Val	Gln	Lys	Leu 350	Cys	Thr
His	Glu	Gln 355	Met	Met	Cys	Ser	Lys 360	Thr	Cys	Tyr	Asn	Ser 365	Val	Asn	Ile
Ala	Phe 370	Leu	Ile	Asp	Gly	Ser 375	Ser	Ser	Val	Gly	Asp 380	Ser	Asn	Phe	Arg
Leu 385	Met	Leu	Glu	Phe	Val 390	Ser	Asn	Ile	Ala	Lys 395	Thr	Phe	Glu	Ile	Ser 400
Asp	Ile	Gly	Ala	Lys 405	Ile	Ala	Ala	Val	Gln 410	Phe	Thr	Tyr	Asp	Gln 415	Arg

```
Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
                        455
Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
                    470
                                        475
Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile
Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
                                505
Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
                        535
Phe Leu Glu Ser Gln Gln
545
<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 228
                                                                   18
tggtctcgca caccgatc
<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 229
ctgctgtcca caggggag
                                                                   18
<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 230
```

ccttgaagca tactgctc	18
<210> 231 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 231 gagatagcaa tttccgcc	18
<210> 232 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 232 ttcctcaaga gggcagcc	18
<210> 233 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	·
<400> 233 cttggcacca atgtccgaga tttc	24
<210> 234 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 234 gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg	45
<210> 235 <211> 2586 <212> DNA <213> Homo sapiens	
<400> 235 egeegegete eegeaceege ggeeegeea eegegeeget eeegeatetg eaceegeage eeggeggeet eeeggeggga gegageagat eeagteegge eegeagega acteggteea gteggggegg eggetgeggg egeagagegg agatgeageg gettgggge accetgetgt geetgetget ggeggeggeg gteeceaegg eeeeeggee egeteegaeg gegaeetegg eteeagteaa geeggeegg ggetstaaget accegegge ggagegaeg eteaatgaga	120 180 1240

```
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc 660
catgccgggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960
gcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttggcagctt catggaggag gtgcgccagg agctggagga cctggagagg agcctgactg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
teceetetgg ettgacagea tgaggtgttg tgeatttgtt eageteeece aggetgttet 1380
ccaggcttca cagtctggtg cttgggagag tcaggcaggg ttaaactgca ggagcagttt 1440
gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
tctctcagca cagcctgggg agggggtcat tgttctcctc gtccatcagg gatctcagag 1860
gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920
atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttaqcaq caactqaaqa caattatcaa ccacqtqqaq aaaatcaaac cgagcagggc 2340
tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
aaaaaa
                                                                2586
<210> 236
```

```
<211> 350
```

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 25

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys

```
Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
                                105
Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser
His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln
Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys
Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg
                        215
Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
                    230
                                        235
Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu
Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
```

<210> 237

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 237

```
<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg
                                                                    49
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 239
                                                                    24
 gcagagcgga gatgcagcgg cttg
<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 240
                                                                    18
 ttggcagctt catggagg
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 241
                                                                    18
cctgggcaaa aatgcaac
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
                                                                     24
ctccagctcc tggcgcacct cctc
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic Oligonucleotide Probe

<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg

<210> 244

<220>

<211> 3679

<212> DNA

<213> Homo Sapien

<400> 244

aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50 tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100 cactctcctt ccctcccaaa cacacatgtg catgtacaca cacacataca 150 cacacataca cetteetete etteactgaa gaeteacagt cacteactet 200 gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250 attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300 ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350 tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500 gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550 gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600 ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actettgeta gettgggtgg etggtgeeac tgccaetgtg ecegtggtae 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 45

tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaactteegg ceeetggeea acetgegtag eetggtgeta geaggeatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agcctctcct tctatgacaa ccagctggcc cgggtgccca ggcgggcact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agcgggtagg gccgggggac tttgccaaca tgctgcacct taaggagctg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 ccttcatcca ccccgcgcc ttccaccacc tgccccagat ggagaccctc 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950 cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ceaecetgtg tgeggageet eeggacetee agegeeteee 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tetececacg aagetteece ecaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 gcctgcctcg gggaacccac agctacaaca ttacccgcct ccttcaggcc 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750

ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250 ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350 eccegggetg cacceettee tettetett etetgtacag tetcagttge 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

```
<210> 245
```

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro 20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly

<211> 713

<212> PRT

<213> Homo Sapien

Tyr	Leu	Ala	Asn	Leu 95	Thr	Glu	Leu	Asp	Leu 100	Ser	Gln	Asn	Ser	Phe 105
Ser	Asp	Ala	Arg	Asp 110	Cys	Asp	Phe	His	Ala 115	Leu	Pro	Gln	Leu	Leu 120
Ser	Leu	His	Leu	Glu 125	Glu	Asn	Gln	Leu	Thr 130	Arg	Leu	Glu	Asp	His 135
Ser	Phe	Ala	Gly	Leu 140	Ala	Ser	Leu	Gln	Glu 145	Leu	Tyr	Leu	Asn	His 150
Asn	Gln	Leu	Tyr	Arg 155	Ile	Ala	Pro	Arg	Ala 160	Phe	Ser	Gly	Leu	Ser 165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390

.

Glu	Pro	Gln	Ser	Thr 395	Leu	Сув	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu 410	Val	Pro	Phe	Arg	Glu 415	Met	Thr	Asp	His	Cys 420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	G1u 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	Leu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675
Ala	Pro	Ser	Val	Arg 680	Val	Val	Ser	Ala	Pro 685	Leu	Val	Leu	Pro	Trp 690
Asn	Pro	Gly	Arg	Lys	Leu	Pro	Arg	Ser	Ser	Ġlu	Gly	Glu	Thr	Leu

Leu Pro Pro Leu Ser Gln Asn Ser 710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaacttgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100 gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150 catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttcgccttca tgctgcacct cattgaccaa tacgaccgc tctactccaa 450

gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700 aaggagetgt ggetetacea cacageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatcccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450 acgetecete eggagetett ecagtgeegg aagetgeggg ecetgeacet 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagctgggcg agtgcccact gctcaagcgc agcggcttgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950

agcaagtete aagagegeag tatttggata atcagggtet cetecetgga 2000 qqccaqctct qccccaqqqq ctqaqctqcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggeeteeag etggaaagge eaggeetgga gettgeetet 2350 tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagtctcag ggcagggtgg cagtttccct tgagcaaagc agccagacgt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800 aacggtgete cattegeace teccetecte gtgeetgeee tgeeteteea 2850 cgcacagtgt taaggagcca agaggagcca cttcgcccag actttgtttc 2900 cccacctcct geggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950 cttccatcag ccctgtcgcc acctggtcct tcatgaagag cagacactta 3000 gaggctggtc gggaatgggg aggtcgccc tgggagggca ggcgttggtt 3050 ccaageeggt teeegteet ggegeetgga gtgeacacag ceeagtegge 3100 acctggtggc tggaagccaa cctgctttag atcactcggg tccccacctt 3150 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350 agacteggte acagtateaa ataaaateta taacagaaaa aaaaaaaaaa 3400

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile 1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg 35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro 110 115 120

Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu
125 130 135

Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp 140 145 150

Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu 155 160 165

Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp 170 175 180

Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val 185 190 195

Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu 200 205 210

Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala 215 220 225

Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp 230 235 240

Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu

Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr 260 265 270

Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu

				275					280					285
Arg	Leu	Lys	Ser	Asn	Leu	Ser	Lys	Leu	Pro	Gln	Val	Val	Thr	Asp
				290					295					300
Val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360
Asn	Leu	Lys	Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg	Leu	Thr	Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro	Ile	Gln	Ile	Gly 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn	Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg	Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu	Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile	Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys	Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser	Leu	Pro	Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495
Glu	Leu	Arg	Gly	Asn 500	Arg	Leu	Glu	Cys	Leu 505	Pro	Val	Glu	Leu	Gly 510
Glu	Cys	Pro	Leu	Leu 515	Lys	Arg	Ser	Gly	Leu 520	Val	Val	Glu	Glu	Asp 525
Leu	Phe	Asn	Thr	Leu 530	Pro	Pro	Glu	Val	Lys 535	Glu	Arg	Leu	Trp	Arg 540
Ala	Asp	Lys	Glu	Gln 545	Ala									

<210> 251 <211> 20 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 251
 caacaatgag ggcaccaagc 20
<210> 252
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
 gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
 gegetetece gteeegegt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
 tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
 ttatgccacc aactectgca agaacttete agaactgccc etggtcatgt 250
 ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
 gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
 ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400
 gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
 ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
 cagetggcat tggtctagag etttataagg ceatteageg agggaecate 600
 aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
```

tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700 aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggetetga agatgatgag aetggtgaet eageaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattettee etgtatetaa etggggetgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp 20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
50 55 60

Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
65 70 75

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln 305	Arg	Asp	Ala	Leu	Ser 310	Gln	Leu	Met	Asn	Gly 315
Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu	Ala	Trp	Val	Arg	Lys	Leu	Lys	Trp	Pro	Glu

Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp 400

Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn 410

Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser 425

Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln 440

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256 ggccgcggga gaggaggcca tgggcgcgcg cggggcgctg ctgctggcgc 50 tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100 ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150 tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200 tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250 ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300 cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350 gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400 cctcgctacc tggggaattc accctatgac attgccttgg tgaagctgtc 450 tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggcggga aggatgcctg cttcggtgac tcaggtggac ccttggcctg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800

gctgtggtcg gcccaatcgg cccggtgtct acaccaatat cagccaccac 850

tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900'

cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950

tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg 50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
65 70 75

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu 80 85 90

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser 95 100 105

Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
110 115 120

Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro 125 130 135

Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr 140 145 150

Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
155 160 165

Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys 170 175 180

Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln 185 190 195

Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys 200 205 210

Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly 215 220 225

Asn Ala Gin Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly 230 235 240

Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val

Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val 270

Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met 275

Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu 290

Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val

310

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

305

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50 cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece caetgaceet ceacaeggtg caaaaatgge tettggeage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagctt ccacaggcct tggccccca tgtggacttt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050

```
gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100
cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150
agtteegeee taeetteeet geeteeagee eetatgteae caeagtggga 1200
ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250
tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300
aggaagctgt aacgaagttc ctgagctcta gcccccacct gccaccatcc 1350
agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400
tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
gaacctegge etetacteca gtgtttgggg ggatectate ettgateaat 1500
gagcacagga teettagtgg eegeceeet ettggettte teaacecaag 1550
gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600
atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650
cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700
ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750
gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800
agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850
aaccetgaaa tgetgtgage ttgacttgae teccaaccet accatgetee 1900
atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950
gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000
ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050
acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100
tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150
ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200
ccttacttag cttccaggtc ttaacttctc tgactactct tgtcttcctc 2250
tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300
tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350
ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400
aatgattgat acctcaaatg taaaaaa 2427
```

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259 Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu 115 Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Pro Gly 125 130 Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro 155 His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala Ser Val Ala Arg Val Val Gly Gln Gly Arg Gly Arg Ala Gly Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala 275 Asn Ile Ser Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly 290 295

Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260

gccgcgcgct ctctcccggc gcccacacct gtctgagcgg cgcagcgagc 50

cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attecaggge teetetteet tetettett etgetetgtg etgttgggea 150 agtgagecet tacagtgeec cetggaaace caettggeet geatacegee 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350 tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcatatatca 1450 tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550 caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600 atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261 <211> 383 <212> PRT <213> Homo Sapien														
<400 Met 1			Ile	Pro 5	Gly	Leu	Leu	Phe	Leu 10	Leu	Phe	Phe	Leu	Leu 15
Cys	Ala	Val	Gly	Gln 20	Val	Ser	Pro	Tyr	Ser 25	Ala	Pro	Trp	Lys	Pro 30
Thr	Trp	Pro	Ala	Tyr 35	Arg	Leu	Pro	Val	Val 40	Leu	Pro	Gln	Ser	Thr 45
Leu	Asn	Leu	Ala	Lys 50	Pro	Asp	Phe	Gly	Ala 55	Glu	Ala	Lys	Leu	Glu 60
Val	Ser	Ser	Ser	Суs 65	Gly	Pro	Gln	Cys	His 70	Lys	Gly	Thr	Pro	Leu 75
Pro	Thr	Tyr	Glu	Glu 80	Ala	Lys	Gln	Tyr	Leu 85	Ser	Tyr	Glu	Thr	Leu 90
Tyr	Ala	Asn	Gly	Ser	Arg	Thr	Glu	Thr	Gln	Val	Gly	Ile	Tyr	Ile
				95					100					105
Leu	Ser	Ser	Ser	Gly 110	Asp	Gly	Ala	Gln	His 115	Arg	Asp	Ser	Gly	Ser 120
Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala		His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255

His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Z70

Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp 285

Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu 300

Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala 315

Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln 330

Lys Trp Glu Arg S35 Ile Ile Gly Ile Phe Ser Gly His Gln 345

Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg 360

Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly 375

Asn Tyr Leu Asp Cys Arg Glu Gly 380

<210> 262

<211> 1378

<212> DNA

<213> Homo Sapien

<400> 262

geategeet gggteteteg ageetgeteg etgeteece geeceaecag 50 ceatggtggt ttetggageg ececeagece tgggtgggg etgeteege 100 acetteaect ecetgetget getggegteg acagecatee teaatgegge 150 caggatacet gttececeag ectgtgggaa geeceageag etgaaceggg 200 ttgtgggggg egaggacage actgacageg agtggeetg gategtgage 250 atecagaaga atgggacea ecactgegea ggttetetge teaceageeg 300 ectgggtgate actgetgee actgtteaa ggacaaectg aacaaaecat 350 acetgttete tgtgetgetg ggggeetgge agetggggaa ecetggetet 400 eggteecaga aggtggtgt tgeetgggtg gagececaec etgtgtatte 450 ectggaaggaa ggtgeetgtg eagacattge ectggtgeg etegageget 500 ecatacagtt eteagagegg gteetgeea tetgeetaec tgatgeete 550 atecacetee eteaaaeae ecactgetgg atecteage gggggageat 600 ecaagatgga gtteeettge eccaceetea gaeeetgeag aagetgaagg 650 tteetateat egaeteggaa gtetgeagee atetgtaetg geggggagea 700

ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggaccgccc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtggggc cctcagggca ccgagccagg gctctggggc cgccgcgcg 1000 tcctagggcg cagcgggac cggggctcgg atctgagag cggccagatc 1050 cacatctgga tctggatctg cggcggctc gggggttc ccccgccgt 1100 aataggctca tctacctcta cctctggggg cccggacggc tgctgggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaggcc cccccacagg 1200 catcaggccc cgcccaacgg cttttgtgta tataaatgtt aatgatttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaaattatt tattctccaa aaaaaaaa 1378

```
<210> 263
```

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu 1 5 10 15

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln
45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu
50 55 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His 80 85 90

Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu 95 100 105

Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 110 115 120

Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys

<211> 317

<212> PRT

<213> Homo Sapien

Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser 140 145 150

Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala 155 160 165

Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp
170 175 180

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu 185 190 195

Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
200 205 210

Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
215 220 225

Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
230 235 240

Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu 245 250 255

Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn 260 265 270

Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val 275 280 285

Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly 290 295 300

Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala 305 310 315

Arg Ser

<210> 264

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 264

gtccgcaagg atgcctacat gttc 24

<210> 265

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 265

gcagaggtgt ctaaggttg 19

```
<210> 266
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
agctctagac caatgccagc ttcc 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 269
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
```

```
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 272
cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 274
ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
```

```
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
 tggagggga gcgggatgct tgtctgggcg actccggggg cccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150
aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250
caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300
gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
 tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400
cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450
 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500
 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550
ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600
 tetgtgaace categgaage eeggaagatg etcaggattt geettacetg 650
gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700
aatgggtact cettetteee tageaacggg gatteegget ttettggtaa 750
cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800
```

caggeecaa etteettage aacgaaagae eegeetteea tggeaacaga 850 ggetceacct tgcgtaacaa ctgaggtece ttccattttg gcagetcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtecetgee caattteece aatacetetg ceaeegetaa tgeeaegggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagcctagc gttgtgtcag ggctgaactc gggccctggt catgtgtggg 1350 gccctctcct gggactactg ctcctgcctc ctctggtgtt ggctggaatc 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450 catcttcccc accetgtccc cageccetaa acaagatact tettggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgta gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtggggg aggcagggac gagggaagga aagtaactcc tgactctcca 1850 ataaaaacct gtccaacctg tgaaa 1875

```
<210> 285
```

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp 50 55 60

<211> 463

<212> PRT

<213> Homo Sapien

Glu	Glu	Leu	Ala	Ala 65	Phe	Ala	Lys	Ala	туr 70	Ala	Arg	Gln	Суѕ	Val 75
Trp	Gly	His	Asn	Lys 80	Glu	Arg	Gly	Arg	Arg 85	Gly	Glu	Asn	Leu	Phe 90
Ala	Ile	Thr	Asp	Glu 95	Gly	Met	Asp	Val	Pro 100	Leu	Ala	Met	Glu	Glu 105
Trp	His	His	Glu	Arg 110	Glu	His	Tyr	Asn	Leu 115	Ser	Ala	Ala	Thr	Cys 120
Ser	Pro	Gly	Gln	Met 125	Cys	Gly	His	Tyr	Thr 130	Gln	Val	Val	Trp	Ala 135
Lys	Thr	Glu	Arg	Ile 140	Gly	Cys	Gly	Ser	His 145	Phe	Cys	Glu	Lys	Leu 150
Gln	Gly	Val	Glu	Glu 155	Thr	Asn	Ile	Glu	Leu 160	Leu	Val	Cys	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala														

```
Ala Glu Leu Pro Pro Ser Ser Glu Val Leu Ala Ser Val Phe Pro
 Ala Gln Asp Lys Pro Gly Glu Leu Gln Ala Thr Leu Asp His Thr
 Gly His Thr Ser Ser Lys Ser Leu Pro Asn Phe Pro Asn Thr Ser
 Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
                 410
                                      415
 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
                                     445
 Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
                 455
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 286
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
 gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
```

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagettt ttgggggetg ageaacatgg aaattttgca getggaecat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350 tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550

gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagacccc catggatete accatecgag etggggeeat ggeaegettg 1750 gagtgtgctg ctgtggggca cccagcccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagetetea ggagaeetea eetagatgee tatteaaget 3050 ttggacagee atcagattgt cagecaagag eettttattt gaaageteat 3100

tettecccag acttggacte tgggteagag gaagatggga aagaaaggac 3150 agattteag gaagaaate acatttgtac etttaaacag actttagaaa 3200 actacaggac tecaaattt cagtettatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagett aacatactac etcaagtgaa ettttatta 3300 aaagagagag aatettatgt tetttaaatg gagttatgaa tettaaaagg 3350 ataaaaatge tetattata cagatgaace aaaattacaa aaagttatga 3400 aaattettat actgggaatg atgeteatat aagaatacet tettaaacta 3450 tetttaact tegetetatg eaaaaaagta teetaacgaa attaatgata 3500 taaatcatga teattetatg tattetata atgecagate teetettatg 3550 gaaaatgagt tactaaagca tettaaataa tacetgeett gtaceatttt 3600 tetaaatagaa getaceteat tatattetge acattatat taataaaatg 3650 tgteaatttg aa 3662

<210> 290 <211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His 1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 35 40 45

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 50 55 60

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
65 70 75

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
80 85 90

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 95 100 105

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 110 115 120

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 125 130 135

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 140 145 150

Met	Phe	Lys	Leu	Pro	Gln	Leu	Gln	His	Leu	Glu	Leu	Asn	Arg	Asn
				155					160					165
Lys	Ile	Lys	Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu	Lys	Ser	Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp	Gly	Ala	Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp	His	Asn	Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu	Leu	Met	Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg	Ile	Ser	Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu	Asp	Leu	Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile 290	Ala	Asp	Cys	Ala	Phe 295	Arg	Gly	Leu	Ser	Ser 300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450

-1	_	01	a	•	•	a	D 1	-1	a	a	3 1-		a	
ITe	Lys	GIY	Ser	455	Leu	Ser	Pne	TTe	460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro	Met	Thr	Phe	Ala	Trp	Lys	Lys	Asp	Asn	Glu	Leu
				470					475					480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555
Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750

Val	Ile	Ile	Ala	Val 755	Val	Сув	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr	Asp	Glu	Thr	Asn	Leu	Pro	Ala	Asp	Ile	Pro
				785					790					795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810
Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Суs 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln	Pro 1	Ser 1000	Asp	Cys	Gln	_	Arg .005
Ala	Phe	Tyr		Lys 1010	Ala	His	Ser	Ser 1	Pro 1015	Asp	Leu	Asp		Gly .020
Ser	Glu	Glu		Gly L025	Lys	Glu	Arg	Thr 1	Asp 030	Phe	Gln	Glu	_	Asn .035
His	Ile	Cys		Phe 1040	Lys	Gln	Thr	Leu 1	Glu .045	Asn	Tyr	Arg		Pro .050

Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1055

<210> 291 <211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagcttttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200 acacaqqqaq cattcaaqaa tgaaataaac cagagttaga cccgcggggg 250 ttqqtqttt ctqacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 qcaqattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggteeta ggtttaacag ggeeetattt gaeeeeetge ttgtggtget 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaecatece gaatggaget tttgtataet 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300

ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct coggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850

aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

Caac	aaa .	2900												
<210><211><211><212><213>	> 640 > PR'	0 Г	apie	n										
<400> Met 1			Lys	Met 5	Thr	Leu	His	Pro	Gln 10	Gln	Ile	Met	Ile	Gly 15
Pro	Arg	Phe	Asn	Arg 20	Ala	Leu	Phe	Asp	Pro 25	Leu	Leu	Val	Val	Leu 30
Leu	Ala	Leu	Gln	Leu 35	Leu	Val	Val	Ala	Gly 40	Leu	Val	Arg	Ala	Gln 45
Thr	Cys	Pro	Ser	Val 50	Cys	Ser	Суѕ	Ser	Asn 55	Gln	Phe	Ser	Lys	Val 60
Ile	Cys	Val	Arg	Lys 65	Asn	Leu	Arg	Glu	Val 70	Pro	Asp	Gly	Ile	Ser 75
Thr	Asn	Thr	Arg	Leu 80	Leu	Asn	Leu	His	Glu 85	Asn	Gln	Ile	Gln	Ile 90
Ile	Lys	Val	Asn	Ser 95	Phe	Lys	His	Leu	Arg 100	His	Leu	Glu	Ile	Leu 105
Gln	Leu	Ser	Arg	Asn 110	His	Ile	Arg	Thr	Ile 115	Glu	Ile	Gly	Ala	Phe 120
Asn	Gly	Leu	Ala	Asn 125	Leu	Asn	Thr	Leu	Glu 130	Leu	Phe	Asp	Asn	Arg 135
Leu	Thr	Thr	Ile	Pro 140	Asn	Gly	Ala	Phe	Val 145	Tyr	Leu	Ser	Lys	Leu 150
Lys	Glu	Leu	Trp	Leu 155	Arg	Asn	Asn	Pro	Ile 160	Glu	Ser	Ile	Pro	Ser 165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240

Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile 245 250 255

Gln Val Ile Gl	ı Arg Asn Ala Phe Asp 260	Asn Leu Gln Ser Leu 265	Val 270
Glu Ile Asn Le	ı Ala His Asn Asn Let 275	Thr Leu Leu Pro His 280	Asp 285
Leu Phe Thr Pr	D Leu His His Leu Glu 290	Arg Ile His Leu His 295	His 300
Asn Pro Trp As	n Cys Asn Cys Asp Ile 305	Leu Trp Leu Ser Trp 310	Trp 315
Ile Lys Asp Me	Ala Pro Ser Asn Thi 320	Ala Cys Cys Ala Arg 325	Cys 330
Asn Thr Pro Pr	o Asn Leu Lys Gly Arg 335	Tyr Ile Gly Glu Leu 340	Asp 345
	350	Val Ile Val Glu Pro 355	360
	365	Ala Ala Glu Leu Lys 370	375
	380	Ser Trp Ile Thr Pro 385	390
Gly Thr Val Me	: Thr His Gly Ala Tyr 395	Lys Val Arg Ile Ala 400	Val 405
	410	Asn Val Thr Val Gln 415	420
	425	Asn Ser Val Gly Asn 430	435
	440	Ala Ala Thr Thr Thr 445	450
	455	Glu Thr Met Glu Pro 460	465
_	470	Asn Val Gly Pro Thr 475	480
	485	Thr Thr Ser Leu Thr 490	495
	500	Phe Thr Ile Pro Val	510
	515	Asp Glu Val Met Lys 520	525
	530	Ala Ile Thr Leu Met 535	540
Ala Val Met Le	ı Val Ile Phe Tyr Lys 545	Met Arg Lys Gln His 550	His 555

Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn 560 565 570

Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu 575 580 585

Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser 590 595 600

Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn 605 610 615

Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn 620 625 630

Ser Lys Asp Asn Val Gln Glu Thr Gln Ile 635 640

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agecgaeget geteaagetg caactetgtt geagttggea gttetttteg 50 gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcc acgcgaccgc 150 gagggegge gtgcaccctc ggctggaagt ttgtgceggg ccccgagege 200 gegeeggetg ggagettegg gtagagaeet aggeegetgg acegegatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 gcggtgctgg ggcgcgctgg ccggtccgac agcggcggtc gcggggaact 350 cgggcagccc tctggggtag ccgccgagcg cccatgccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte ateaaggeaa gtteeatgag ceaeetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatete agetateeca eccaagatgt ttaaactgee ecaactgeaa 900

catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350 aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacget tggagtgtgc tgctgtgggg cacccagecc cccagatage 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450

cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700 gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagete attetteece agaettggae tetgggteag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tattttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtatttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu 1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly 20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys 50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 . 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn 215 220 225

Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala 230 235 240

Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met

0.45	250	255
245	250	255

Asp Gly Ala Phe 260 Cly Leu Ser Asn Met 265 Clu Ile Leu Cln Leu Chr 270 Asp His Asn Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly 285 Leu Leu Met Leu Gln Glu Glu Leu His Leu 295 Ser Gln Asn Ala Ile Asn 300 Asn Glu Fre 295 Asn Ala Ile Ser 295 Asn Ala Ile Ser 300 Arg Ile Ser Pro 305 Asp Asp Ala Trp Glu Phe 295 Clu Asp Leu Ser Glu 315 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser 313 Ser 325 Leu Asp Asp Ser Ser 333 Ser Leu Gly Leu 335 Ser Leu Leu Asn Thr Leu His Ile Gly Asn Ash 345 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser 360 Ser 360 Leu Lys Thr Leu 365 Leu Lys Asn Asn 375 Asn Asp Gly Leu Ser Gly 385 Arg Gly Leu Arg Arg 360 Arg Arg 360 Leu 1le Leu Gln 395 Asn Arg Ile Arg 385 Asp Lys Leu Arg Arg 380 Arg 380 Arg 11e Arg 385 Arg Lys Leu Arg Arg 380 Leu Ile Leu Gln Gly Asn Arg Ile Arg 400 Arg 400 Arg 420 Arg 420 Phe Thr Gly Leu 389 Arg 410 Arg 420 Arg 420 Ala 396 Arg 410 Arg 420 Arg 420 Arg 420 Ala 396 Arg 410 Arg 420 Arg 420 Arg 420 Leu Leu Lys Lys 445 Arg 420 Ar													
275 280 285 285 286 285 286 286 286 287 280 285 280 285 280	Asp	Gly	Ala	Phe	 Gly	Leu	Ser	Asn	Glu	Ile	Leu	Gln	
290 295 300 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu 315 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser 330 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn 345 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser 360 Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile 361 Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg 380 Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 395 Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 405 Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 410 Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gly Leu Asp Leu Ser Asp Asn 420 Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gly Leu Asp Leu Cys Asp Cys 435 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 445 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Lys Gly 470 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Aps Aps Aps Aps Aps Aps Aps Ap	Asp	His	Asn	Asn	Thr	Glu	Ile	Thr	 Gly	Trp	Leu	Tyr	
Solution Solution	Leu	Leu	Met	Leu	Glu	Leu	His	Leu	Gln	Asn	Ala	Ile	
Sample S	Arg	Ile	Ser	Pro	 Ala	Trp	Glu	Phe	 Gln	Lys	Leu	Ser	
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser 360 Leu Lys Thr Leu Asp 365 Leu Lys Asn Asn Glu 370 Ile Ser Trp Thr Ile 375 Glu Asp Met Asn Gly 385 Ala Phe Ser Gly Leu Asp Lys Leu Arg 370 Leu Ile Leu Gln Gly 395 Asn Arg Ile Arg 385 Leu Thr Lys Lys Ala 405 Phe Thr Gly Leu Asp 410 Ala Leu Glu His Leu Asp Leu Ser Asp 420 Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys 435 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp 245 Gln Leu Lys Trp Leu 440 Asn Trp Val Ala Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp 490 Pro Val Cys Asp Asp 495 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met 515 Pro Ret Phe Ala Trp Lys Lys Asp Asn Glu Leu 540 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Leu	Asp	Leu	Thr	Asn	His	Leu	Ser	Leu	Asp	Asp	Ser	
350 355 360 Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile 375 Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg 380 Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 405 Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 420 Ala Ile Met Ser Leu Gln Gly Asn And Phe Ser Gly His Leu Asp Leu Ser Asp Asn 425 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 445 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp Asp Asp 505 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asp Asn Glu Leu Leu Seu Ser Ser Sag Asp	Phe	Leu	Gly	Leu	 Leu	Leu	Asn	Thr	 His	Ile	Gly	Asn	
365 370 375 Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg 390 Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 405 Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 420 Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Ser Gln Met Lys Lys 435 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Cys Asp Cys 440 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp 495 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu Leu Sag Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Arg	Val	Ser	Tyr	Ala	Asp	Cys	Ala	Arg	Gly	Leu	Ser	
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 405 Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 420 Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys 435 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 445 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 470 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp App Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser Ser Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Leu	Lys	Thr	Leu	Leu	Lys	Asn	Asn	Ile	Ser	Trp	Thr	
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys Asp Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys Asp Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln Asr Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Lys Gly Asp Asp Asp Asp Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp Asp Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala Sin Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser Ser Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Lys Asp Asp Asn Glu Leu Leu Lys Gly Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Glu	Asp	Met	Asn	Ala	Phe	Ser	Gly	 Asp	Lys	Leu	Arg	
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys 435 Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 445 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln A65 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp 495 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala Ser Ser Asp Ser Asp Asp Asp 495 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asp Asn Glu Leu Leu Lys Gly Ser Asp	Leu	Ile	Leu	Gln	Asn	Arg	Ile	Arg	 Ile	Thr	Lys	Lys	
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 445 Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu Leu Leu Lys Gly Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Phe	Thr	Gly	Leu	Ala	Leu	Glu	His	Asp	Leu	Ser	Asp	
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 465 Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 470 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu Leu Leu Lys Glu Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Ala	Ile	Met	Ser	Gln	Gly	Asn	Ala	 Ser	Gln	Met	Lys	
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 480 Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp 495 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 540 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Leu	Gln	Gln	Leu	Leu	Asn	Thr	Ser	Leu	Leu	Cys	qaA	
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp 495 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 540 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Gln	Leu	Lys	Trp	Pro	Gln	Trp	Val	Glu	Asn	Asn	Phe	
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 510 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 540 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Ser	Phe	Val	Asn	 Ser	Суѕ	Ala	His	Gln	Leu	Leu	Lys	
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Arg	Ser	Ile	Phe	 Val	Ser	Pro	Asp	 Phe	Val	Cys	Asp	
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 530 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Phe	Pro	Lys	Pro	Ile	Thr	Val	Gln	Glu	Thr	Gln	Ser	
530 535 540 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln	Ile	Lys	Gly	Ser	 Leu	Ser	Phe	Ile	 Ser	Ala	Ala	Ser	
	Ser	Asp	Ser	Pro	 Thr	Phe	Ala	Trp	 Lys	Asp	Asn	Glu	
	Leu	His	Asp	Ala	 Met	Glu	Asn	Tyr	His	Leu	Arg	Ala	

Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750
Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Туг 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855

Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr Glu Pro Ser Tyr Ile Lys Lys Glu Cys Tyr Pro Cys Ser His Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro

Asn Phe Gln Ser Tyr Asp Leu Asp Thr

<210> 295

<211> 18

<212> DNA

<213> Artificial Sequence

<2205

<223> Synthetic Oligonucleotide Probe

```
<400> 295
 ggaaccgaat ctcagcta 18
<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 296
cctaaactga actggacca 19
<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 297
ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 298
acagctgcac agctcagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
gggtcttggt gaatgagg 18
<210> 301
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 302
gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 306
 actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
 ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
 caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
 cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
 gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
 ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
 cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
 gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
 gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
```

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agecegggee tggeeeagee geggteaget geeeeegaga etgtgeetgt 650 tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tccagcaact tcctgcgcca cgtgcccaag cacctgccgc ctgccctgta 1150 caagetgeac etcaagaaca acaagetgga gaagateece eegggggeet 1200 tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet cagetacaac egeateacea geceacaggt geacegegae 1700 gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950

tcgccgggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtettgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 teccaeatga caegggetga caeagtetea tatecceaec cetteccaeg 2450 gegtgtecca eggecagaca catgcacaca catcacacec teaaacacec 2500 ageteageea cacacaacta ecetecaaac caccacagte tetgteacac 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tcccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700 cageceteca aagectatge cacagacage tettgeecca gecagaatea 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agectteagg actgctggcc tggcctggcc caecctgctc ctccaggtgc 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050 cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296

<210> 311

<211> 22

<212> DNA

<213> Artificial Sequence

```
<223> Synthetic Oligonucleotide Probe
<400> 311
 gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 313
tggaggaget caaceteage tacaacegea teaceagece acagg 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
 gggaggggc tccgggcgcc gcgcagcaga cctgctccgg ccgcgcgcct 50
 cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100
 gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150
 caacctgttc ctcgcgcgcc actgcgctgc gcccaggac ccgctgccca 200
 acatggattt tctcctggcg ctggtgctgg tatcctcgct ctacctgcag 250
 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300
 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350
 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400
 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450
 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500
 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550
 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600
 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650
 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700
```

tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attcctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400 gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgae eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250

```
tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300
 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350
 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400
 tttcatttgt tcaatggatg atgtttcaga ttttttttt tttaagagat 2450
 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500
 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550
 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600
 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650
 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700
 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750
 gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800
 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850
 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900
 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950
 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000
 aat 3003
<210> 315
<213> Homo Sapien
<400> 315
```

<211> 509

<212> PRT

Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu

Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu

Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met

95 100 105

Asn	Thr	Tyr	Gly	Ser 110	Tyr	Lys	Cys	Tyr	Cys 115	Leu	Asn	Gly	Tyr	Met 120
Leu	Met	Pro	Asp	Gly 125	Ser	Cys	Ser	Ser	Ala 130	Leu	Thr	Cys	Ser	Met 135
Ala	Asn	Cys	Gln	Tyr 140	Gly	Cys	Asp	Val	Val 145	Lys	Gly	Gln	Ile	Arg 150
Cys	Gln	Cys	Pro	Ser 155	Pro	Gly	Leu	His	Leu 160	Ala	Pro	Asp	Gly	Arg 165
Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Суѕ	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	Tyr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Суs 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu	His	Trp	Glu	Pro	Ile	Arg	Asp	Pro	Ala	Gly

```
410
                                      415
                                                          420
 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys
                 425
                                      430
 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly
                 440
                                      445
 Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser
                 455
                                      460
 Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala
                 470
                                      475
 Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln
 Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg
                 500
<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 316
gatggttcct gctcaagtgc cctg 24
<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 317
ttgcacttgt aggacccacg tacg 24
<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 318
ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50
<210> 319
<211> 2110
<212> DNA
<213> Homo Sapien
<400> 319
cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50
```

tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteetttte teeccaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250 cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg attttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 tcctatcttg ttattgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttcttt tttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttattt 2050 tttcaaggaa agatggattc aaataaatta ttctgtttt gctttaaaa 2100 aaaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe 35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser 65 70 75

Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro 80 85 90

Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu 95 100 105

Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu 110 115 120

Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr 125 130 135

Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr

Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg

				155					160					165
Leu	Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser	Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro	Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn	Pro	Val	Ser	Glu 215	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225
Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys	Val	Gly	Glu	Val 245	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe	Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile	Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg	Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr	Val	Cys	Суз	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr	His	Phe	Thr	Val 320	Ile	Ile	Thr	Ser	Val 325	Gly	Leu	Glu	Lys	Leu 330
Ala	Gln	Lys	Gly	Lys 335	Ser	Leu	Ser	Pro	Leu 340	Ala	Ser	Ile	Thr	Gly 345
Ile	Ser	Leu	Phe	Leu 350	Ile	Ile	Ser	Met	Cys 355	Leu	Leu	Phe	Leu	Trp 360
Lys	Lys	Tyr	Gln	Pro 365	Tyr	Lys	Val	Ile	Lys 370	Gln	Lys	Leu	Glu	Gly 375
Arg	Pro	Glu	Thr	Glu 380	Tyr	Arg	Lys	Ala	Gln 385	Thr	Phe	Ser	Gly	His 390
Glu	Asp	Ala	Leu	Asp 395	Asp	Phe	Gly	Ile	Tyr 400	Glu	Phe	Val	Ala	Phe 405
Pro	Asp	Val	Ser	Gly 410	Val	Ser	Arg	Ile	Pro 415	Ser	Arg	Ser	Val	Pro 420
Ala	Ser	Asp	Cys	Val 425	Ser	Gly	Gln	Asp	Leu 430	His	Ser	Thr	Val	Tyr 435
Glu	Val	Ile	Gln	His 440	Ile	Pro	Ala	Gln	Gln 445	Gln	Asp	His	Pro	Glu 450
<210:	> 321	L												

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 321
gatcctgtca caaagccagt ggtgc 25
<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 322
cactgacagg gttcctcacc cagg 24
<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 323
ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45
<210> 324
<211> 2397
<212> DNA
<213> Homo Sapien
<400> 324
gcaageggeg aaatggegee eteegggagt ettgeagtte eeetggeagt 50
cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100
 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150
 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200
 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250
 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300
 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350
 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400
 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450
gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500
 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550
 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600
```

ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacaçca tacccataco ottoaaaaaa attattatoa gaatotgoac 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attitgtitg gittgaagtg aactgigact tittigaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val
1 5 10 15

Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn 20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly 80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys 200 205 210

```
Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu
 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
                                      235
 Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
                                      250
 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
                 260
                                      265
 Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
                 275
<210> 326
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 326
tgaggtgggc aagcggcgaa atg 23
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 327
tatgtggatc aggacgtgcc 20
<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 328
tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
```

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
 ggagtcttgc agttcccctg gcagtcctgg tgctgttgct ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
 gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
 ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
 acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
 ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
 cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
 agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
 ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
 agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
 gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
 ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
 caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
 gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
 gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850
 ctcaccegee geetgetete cettgaceea ageeacgaac gagetggagg 900
 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950
 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000
 aggectgtgg actacetgee tgagagggat gtttacgaga geetetgteg 1050
 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgta 1100
 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150
```

gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egttegtgat eccaagacag gagteeteae tgtegecage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys
35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
50 55 60

Trp A	la	Asn	Lys	Met 65	Glu	Ala	Leu	Thr	Ser 70	Lys	Ser	Ala	Ala	Asp 75
Ala G	1u	Gly	Tyr	Leu 80	Ala	His	Pro	Val	Asn 85	Ala	Tyr	Lys	Leu	Val 90
Lys A	rg	Leu	Asn	Thr 95	Asp	Trp	Pro	Ala	Leu 100	Glu	Asp	Leu	Val	Leu 105
Gln A	sp	Ser	Ala	Ala 110	Gly	Phe	Ile	Ala	Asn 115	Leu	Ser	Val	Gln	Arg 120
Gln Pl	he	Phe	Pro	Thr 125	Asp	Glu	Asp	Glu	Ile 130	Gly	Ala	Ala	Lys	Ala 135
Leu Me	et	Arg	Leu	Gln 140	Asp	Thr	Tyr	Arg	Leu 145	Asp	Pro	Gly	Thr	Ile 150
Ser A	rg	Gly	Glu	Leu 155	Pro	Gly	Thr	Lys	Туг 160	Gln	Ala	Met	Leu	Ser 165
Val As	sp	Asp	Cys	Phe 170	Gly	Met	Gly	Arg	Ser 175	Ala	Tyr	Asn	Glu	Gly 180
Asp Ty	yr	Tyr	His	Thr 185	Val	Leu	Trp	Met	Glu 190	Gln	Val	Leu	Lys	Gln 195
Leu As	sp	Ala	Gly	Glu 200	Glu	Ala	Thr	Thr	Thr 205	Lys	Ser	Gln	Val	Leu 210
Asp Ty	yr	Leu	Ser	Tyr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala Le	eu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu A	rg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu G	lu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	Leu 270
Ala Th	hr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu A	rg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu Th	nr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly As	sn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp G	lu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser As	sp	Glu	Glu	11e 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu A	la .	Arg	Ala	Thr	Val	Arg	Asp	Pro	Lys	Thr	Gly	Val	Leu	Thr

365 370 375

Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp 380 385 390

Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile 395 400 400

Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
410 415 420

Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg 425 430 435

Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
440 445 450

Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr 455 460 465

Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495

Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525

Pro Cys Gly Ser Thr Glu Val Asp 530

<210> 333

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 333

ccaggcacaa tttccaga 18

<210> 334

<211> 19

<212> DNA

<213> Artificial Sequence

<220:

<223> Synthetic Oligonucleotide Probe

<400> 334

ggaccettet gtgtgccag 19

<210> 335

<211> 19

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 335
ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 336
 acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 337
gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
<400> 338
gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50
 tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100
 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150
 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200
 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250
 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350
 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400
gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450
 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500
 tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550
 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600
ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650
```

```
ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700
ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750
cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800
gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850
cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900
cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950
ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000
tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050
ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100
gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150
acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200
accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250
cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300
tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350
teeggaacet gacegtgetg acceeegaag gggaggeagg getgagetgg 1400
cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450
gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500
ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550
ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600
cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700
gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750
ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800
agetggtget gecacteetg gtggetgaag etgetgeage eeeggettte 1850
ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900
caccetytty etgytetacy gyccaegaga agytygeegt gyageteeag 1950
acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000
cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050
ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100
tetteettae cacegtgtgg acaaggeetg ggeecgaagt ceteaacege 2150
```

tgtcgcatga atgccatctc tggctggcag gcettette cagtecattt 2200 ccaggagttc aatcetgcec tgtcaccaca gagatcacce ccagggcccc 2250 cgggggctgg ccetgaccce ccetccctc ctggtgctga eccetcccgg 2300 ggggctccta taggggggag atttgaccgg caggettetg cggagggctg 2350 cttctacaac gctgactacc tggcggcccg agcccggctg gcaggtgaac 2400 tggcaggcca ggaagaggag gaagccctgg aggggctga ggtgatggat 2450 gttttcetce ggttctcagg gctccacctc tttcgggccg tagagccagg 2500 gctggtgcag aagttctccc tgcgagactg cagccacgg ctcagtgaag 2550 aactctacca ccgctgccgc ctcagcaacc tggaggggct aggggccgt 2600 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650 gcccgcctgg gggccctaac ctcattacct ttcctttgtc tgcctcagcc 2700 ccaggaaggg caaggcaaga tggtggacag atagagaatt gttgctgtat 2750 tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg 80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala 95 100 105

Val Leu Thr Ser Arg Ala Thr Leu Ser Thr Leu Ala Val Ala Val 110 115 120

Asn Arg Thr Val Ala His His Phe Pro Arg Leu Leu Tyr Phe Thr 125 130 135

Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly Met Gln Val Val Ser 140 145

His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Туг 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Суѕ	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360
Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Суѕ	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450

Glu	Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
				575					580	Ser				585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
				605					610	Ala				615
				620					625	Phe				630
				635					640	Gly				645
				650					655	Arg				660
				665					670	Glu				675
				680					685	Leu				690
				695					700	Gly				705
				710					715	Leu				720
				725					730	Arg				735
				740					745	Arg				750
GIu	GLY	Leu	GГХ	GLY	Arg	Ala	GIn	Leu	Ala	Met	Ala	Leu	Pne	GIU

Gln Glu Gln Ala Asn Ser Thr 770

<210> 340

<211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgctttcc 50 tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100 ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250 ggatgagege atggagetea gtaagagett tegagtatae tgtattatee 300 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350 accaaacact gtgacaaagc agagttette agttetgaaa atgttaaagt 400 gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagettacaa ataegeettt gataagtata gagaccaata caactggtte 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341 <211> 318

<211> 310 <212> PRT

<213> Homo Sapien

<400> 341

Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly
1 5 10 15

Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile 20 25 30

Gly His Gly Asn Arg Met His His His Glu His His Leu Gln
35 40 45

Ala Pro Asn Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg
50 55 60

Met Glu Leu Ser Lys Ser Phe Arg Val Tyr Cys Ile Ile Leu Val 65 70 75

Lys Pro Lys Asp Val Ser Leu Trp Ala Ala Val Lys Glu Thr Trp 80 85 90

Thr Lys His Cys Asp Lys Ala Glu Phe Phe Ser Ser Glu Asn Val 95 100 105

Lys Val Phe Glu Ser Ile Asn Met Asp Thr Asn Asp Met Trp Leu
110 115 120

Met Met Arg Lys Ala Tyr Lys Tyr Ala Phe Asp Lys Tyr Arg Asp 125 130 135

Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr Thr Phe Ala Ile 140 145 150

Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp Pro Ser Gln
155 160 165

Pro Phe Tyr Leu Gly His Thr Ile Lys Ser Gly Asp Leu Glu Tyr 170 175 180

Val Gly Met Glu Gly Gly Ile Val Leu Ser Val Glu Ser Met Lys 185 190 195

Arg Leu Asn Ser Leu Leu Asn Ile Pro Glu Lys Cys Pro Glu Gln 200 205 210

```
Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val
                 215
 Cys Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala
                 230
                                      235
 Asp Gly Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Ser Ile
                 245
                                      250
 Lys Glu Ala Met Thr Tyr His Pro Asn Gln Val Val Glu Gly Cys
                 260
                                      265
 Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
                 275
                                      280
 Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
                 290
                                      295
                                                          300
 His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
                 305
                                      310
 Asp Asn Asp
<210> 342
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 342
tccccaagcc gttctagacg cgg 23
<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 343
ctggttcttc cttgcacg 18
<210> 344
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 344
gcccaaatgc cctaaggcgg tatacccc 28
<210> 345
<211> 50
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 345
 gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 346
gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
 ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 348
 ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 349
ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 350
```

```
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
```

```
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 362
 ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 363
 ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
 ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
 ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
 ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 370
 ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
 ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
```

```
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
 tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
 tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
```

<400> 377

- Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly 1 5 10 15
- Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro $20 \hspace{1cm} 25 \hspace{1cm} 30$
- Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro
 50 55 60
- Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser 65 70 75
- Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90
- Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105
- Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120
- Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135
- Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp
 140 145 150
- Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 155 160 165
- Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

```
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
                                      190
                 185
 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
                                      205
                 200
 Asn Pro Leu Asn Lys Gly Lys Ser Leu
                 215
<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 378
ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 379
tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 382
 ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
cagctgccct tccccaacca 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 386
cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
 gggatgtggt gaacacagaa ca 22
<210> 389
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 389
tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 392
gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 393
 atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
 gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
 ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 400
 gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
 cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
 gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 404
```

```
caggcccct tgatctgtac ccca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 405
gggacgtgct tctacaagaa cag 23
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 409
cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 410
gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 414
tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 415
```

```
ccctgtttcc ctatgcatca ct 22
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 416
 tcaaccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
 ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 418
gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 420
tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Synthetic oligonucleotide probe

<400> 421 tctgtccacc atcttgcctt g 21

<210> 422

<211> 3554

<212> DNA

<213> Homo Sapien

<400> 422

gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200

ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750

atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gcttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 gccttattgc cccctcttct tataccctaa aaccttctac actagtgcca 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400 aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu 1 5 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu 35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
50 55 60

Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr
65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val

									1		,			
Thr	Arg	Arg	Asp	Ser 110	Ala	Leu	Tyr	Arg	Cys 115	Glu	Val	Val	Ala	Arg 120
Asn	Asp	Arg	Lys	Glu 125	Ile	Asp	Glu	Ile	Val 130	Ile	Glu	Leu	Thr	Val 135
Gln	Val	Lys	Pro	Val 140	Thr	Pro	Val	Cys	Arg 145	Val	Pro	Lys	Ala	Val 150
Pro	Val	Gly	Lys	Met 155	Ala	Thr	Leu	His	Cys 160	Gln	Glu	Ser	Glu	Gly 165
His	Pro	Arg	Pro	His 170	Tyr	Ser	Trp	Tyr	Arg 175	Asn	Asp	Val	Pro	Leu 180
Pro	Thr	Asp	Ser	Arg 185	Ala	Asn	Pro	Arg	Phe 190	Arg	Asn	Ser	Ser	Phe 195
His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260	Leu	Gly	Ile	Суѕ	Cys 265	Ala	Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
				275					280					285
Gly	Lys	Pro	Asp	Gly 290	Val	Asn	Tyr	Ile	Arg 295	Thr	Asp	Glu	Glu	Gly 300
Asp	Phe	Arg	His	Lys 305	Ser	Ser	Phe	Val	Ile 310					

r,