3.4: Graphs of Exponential Functions

6

Deft: An exponential function with base a is a function of the form

 $f(x) = a^{x}$

where aso, a = 1. The domain of f is the sef of all real numbers.

Recall when x>0

$$f(-x) = a^{-x} = \frac{1}{a^{x}} = \left(\frac{1}{a}\right)^{x}$$

Eg: f(x) = 2x

Note that $f(0) = 2^{\circ} = 1$.

$$(3,8)$$
 $(3,8)$ $(3,8)$

 $f(x) = 3^{x} \quad g(x) = 2^{x}$ $\begin{array}{c|ccccc}
 & \chi & f(x) & g(x) \\
 & -3 & \frac{1}{27} & \frac{1}{8}8 \\
\hline
 & -2 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
 & 0 & 1 & 1 \\
\hline
 & 1 & 3 & \frac{1}{8} & 2 \\
\hline
 & 2 & 9 & \frac{1}{4} & \frac{1}{3} \\
\hline
 & 3 & 27 & 8 & - f(x) \\
\hline
 & Informally, on asymptote of a function is$

Informally, an asymptote of a function is a line to which the graph of the function gets closer and closer as one travels along the line.

If a>1, then $f(x) = a^x$ has a horizontal asymptote, the x-axis, as f(x) tends toward 0 as x becomes large and negative.

If a < 1, then f(x)=ax also has a horizontal asymptote at y=0 as f(x) tends toward 0 as x becomes large and positive. See p. 288 of the book for a synopsis.

3

Eg.: In 2000 pop was 6.1 billion, growth is exponential r=0,014

Claim: Reducing r to 0.01 would make a Significant difference in just a few decades.

a) Find a model for both. $\Gamma_1 = 0.014$ $V_2 = 0.01$ $a_1 = 1.014$ $a_2 = 1.01$

 $P_{1}(t) = 6.1(1.014)^{t}$ $P_{2}(t) = 6.1(1.01)^{t}$ both are in billions.

Graph (sketch)
P(t)
(0,6.1)
P2(t)

After 5 decades,

 $P_{1}(50) = 6.1 (1.014)^{50} \approx 12.2 \text{ billion}$ $P_{2}(50) = 6.1 (1.01)^{50} \approx 10 \text{ billion}$

Eg:
$$|og_{10}(100) = 2$$
 because $|o^2 = 100$.
Eg: $|og_{10}(1000) = y$ $(0) = 10000 = 1000 = 1000 = 10000 = 10000 = 10000 = 10$

Eq:
$$|og_{10}(735)| = 2.866287339$$
.

RMK: $|og_{10}(x)|$ is commonly called $|og_{10}(x)|$.

Defin: If a is a positive number, then the logarithm base a of x is defined by $|og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

Eq: $|og_{10}(x)| = |og_{10}(x)| = y \Leftrightarrow a^{y} = x$.

= 43

1.
$$\log_a(1)=0$$
 because $a^0=1$

2. $\log_a(a)=1$ because $a'=a$

3. $\log_a(a^x)=x$ because $a^x=a^x$.

4. $a\log_a(x)=x$

by definition $\log_a(x)=y$ \in $a^y=x$