Contents

1	Cla	sses	:	2
	1.1	finitef	eld – Finite Field	2
		1.1.1	†FiniteField – finite field, abstract	3
		1.1.2	†FiniteFieldElement – element in finite field, abstract	4
		1.1.3		5
			1.1.3.1 createElement – create element of finite prime	
			$_{ m field}$	6
			1.1.3.2 getCharacteristic – get characteristic	6
			1.1.3.3 issubring – subring test	6
			1.1.3.4 issuperring – superring test	6
		1.1.4		7
			1.1.4.1 getRing – get ring object	8
			1.1.4.2 order – order of multiplicative group	8
		1.1.5	ExtendedField – extended field of finite field	9
			1.1.5.1 createElement – create element of extended field 10	0
			1.1.5.2 getCharacteristic – get characteristic 10	0
			1.1.5.3 issubring – subring test	0
			1.1.5.4 issuperring – superring test	0
			1.1.5.5 primitive_element – generator of multiplicative	
			group	0
		1.1.6	ExtendedFieldElement – element of finite field 1	1
			1.1.6.1 getRing – get ring object	2
			1 1 6 2 inverse = inverse element	2

Chapter 1

Classes

1.1 finitefield – Finite Field

- Classes
 - $\ \dagger Finite Field$
 - $-\ \dagger Finite Field Element$
 - FinitePrimeField
 - FinitePrimeFieldElement
 - ExtendedField
 - $\ \mathbf{ExtendedFieldElement}$

1.1.1 †FiniteField – finite field, abstract

Abstract class for finite fields. Do not use the class directly, but use the subclasses FinitePrimeField or ExtendedField.

The class is a subclass of **Field**.

Abstract class for finite field elements. Do not use the class directly, but use the subclasses FinitePrimeFieldElement or ExtendedFieldElement.

The class is a subclass of FieldElement.

1.1.3 FinitePrimeField – finite prime field

Finite prime field is also known as \mathbb{F}_p or GF(p). It has prime number cardinality. The class is a subclass of **FiniteField**.

Initialize (Constructor)

FinitePrimeField(characteristic: integer) ightarrow FinitePrimeField

 $Create\ a\ Finite Prime Field\ instance\ with\ the\ given\ {\tt characteristic}.\ {\tt characteristic}$ must be positive prime integer.

Attribute

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation
F==G	equality test.
x in F	membership test.
card(F)	Cardinality of the field.

1.1.3.1 createElement - create element of finite prime field

```
createElement(self, seed: integer) \rightarrow FinitePrimeFieldElement
```

Create FinitePrimeFieldElement with seed. seed must be int or long.

1.1.3.2 getCharacteristic - get characteristic

```
\mathtt{getCharacteristic(self)} 	o integer
```

Return the characteristic of the field.

${\bf 1.1.3.3}\quad is subring-subring\ test$

```
issubring(self, other: Ring) \rightarrow bool
```

Report whether another ring contains the field as subring.

1.1.3.4 issuperring – superring test

```
issuperring(self, other: Ring) \rightarrow bool
```

Report whether the field is a superring of another ring. Since the field is a prime field, it can be a superring of itself only.

1.1.4 FinitePrimeFieldElement – element of finite prime field

The class provides elements of finite prime fields.

It is a subclass of FiniteFieldElement and IntegerResidueClass.

Initialize (Constructor)

Create element in finite prime field of modulus with residue representative. modulus must be positive prime integer.

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 ${\bf 1.1.4.1} \quad {\bf getRing-get\ ring\ object}$

 $\mathtt{getRing}(\mathtt{self}) o extit{FinitePrimeField}$

Return an instance of FinitePrimeField to which the element belongs.

1.1.4.2 order – order of multiplicative group

 $\operatorname{order}(\mathtt{self}) o \mathit{integer}$

Find and return the order of the element in the multiplicative group of \mathbb{F}_p .

1.1.5 ExtendedField – extended field of finite field

Extended Field is a class for finite field, whose cardinality $q = p^n$ with a prime p and n > 1. It is usually called \mathbb{F}_q or GF(q).

The class is a subclass of **FiniteField**.

Initialize (Constructor)

 $\begin{tabular}{ll} Extended Field (basefield: $FiniteField, $modulus: $FiniteFieldPolynomial) \end{tabular}$

 \rightarrow ExtendedField

Create a field extension basefield [X]/(modulus(X)).

FinitePrimeField instance with the given characteristic. The modulus has to be an irreducible polynomial with coefficients in the basefield.

Attribute

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation				
F==G	equality or not.				
x in F	membership test.				
card(F)	Cardinality of the field.				
repr(F)	representation string.				
str(F)	$\int_{0}^{1} string.$				

1.1.5.1 createElement – create element of extended field

```
createElement(self, seed: extended element seed) \rightarrow ExtendedFieldElement
```

Create an element of the field from seed. The result is an instance of **ExtendedFieldElement**.

The seed can be:

- a FinitePrimeFieldPolynomial
- an integer, which will be expanded in card(basefield) and interpreted as a polynomial.
- basefield element.
- a list of basefield elements interpreted as a polynomial coefficient.

1.1.5.2 getCharacteristic - get characteristic

```
\operatorname{getCharacteristic(self)} 	o integer
```

Return the characteristic of the field.

1.1.5.3 issubring – subring test

```
issubring(self, other: Ring) \rightarrow bool
```

Report whether another ring contains the field as subring.

1.1.5.4 issuperring – superring test

```
issuperring(self, other: Ring) \rightarrow bool
```

Report whether the field is a superring of another ring.

1.1.5.5 primitive element – generator of multiplicative group

```
	ext{primitive element(self)} 	o 	ext{\it ExtendedFieldElement}
```

Return a primitive element of the field, i.e., a generator of the multiplicative group.

1.1.6 ExtendedFieldElement – element of finite field

ExtendedFieldElement is a class for an element of F_q . The class is a subclass of **FiniteFieldElement**.

Initialize (Constructor)

Create an element of the finite extended field.

The argument representative must be an FiniteFieldPolynomial has same basefield. Another argument field must be an instance of ExtendedField.

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a/b	inverse multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 ${\bf 1.1.6.1} \quad {\bf getRing-get\ ring\ object}$

 $\mathtt{getRing}(\mathtt{self}) o extit{FinitePrimeField}$

Return an instance of FinitePrimeField to which the element belongs.

1.1.6.2 inverse element

inverse(self)
ightarrow ExtendedFieldElement

Return the inverse element.