CS7800: Advanced Algorithms

Lecture 23: Regret minimization

- Jon's favorite algorithm
 Application to zero-sum games

Jonathan Ullman 12-9-2022

What do these problems have to do with each othe?

- 1) Finding equilibria in zero-som games
- De Solving linear programs
- 3 Minimizing a convex function L(0)
- Boosting weak learning algorithms to better ensembles
 - (5) Approximating SETCOVER
- Generating privacy preserving synthetic data
- 3 Proving Chemoff bounds
- 3 Training many models without overfitting

- Set of actions 21,2,..., n3 you can take each day

- For t=1,2,...,T:

- You suffer loss
$$\sum_{i=1}^{n} \mathcal{L}_{i}^{t} p_{i}^{t} \in [0, 1]$$

gret $R = \sum_{t=1}^{n} \sum_{j=1}^{n} \mathcal{L}_{i}^{t} - \min_{j \in [n]} \sum_{t=1}^{n} \mathcal{L}_{j}^{t}$

- you choose $P^{t} = (P_{1}^{t}, \dots, P_{n}^{t}) \begin{bmatrix} \frac{n}{2} & p_{i}^{t} = 1 \\ \frac{n}{2} & p_{i}^{t} = 1 \end{bmatrix}$

- You observe losses $L^{t} = (L^{t}, \dots, L^{t})$ [$L^{t} \in [0, 1]$]

How to play when one action has no loss

• Initialize
$$\omega_i^! = 1$$
 for $i=1,\dots,n$

$$\omega_i^! = \sum_{i=1}^n \omega_i^! = n$$

Update: set
$$\omega_i^{t+1} = \begin{cases} 0 & \text{if } l_i^t = 1 \\ \omega_i^t & \text{if } l_i^t = 0 \end{cases}$$

Worst Example

1 + 1 + 1 + 1 + 1

Analysis

$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc \bigcirc

$$\frac{3}{\omega^{t-1}} = (1 - L^{t-1})$$

Update: set
$$\omega_i^{t+1} = \begin{cases} 0 & \text{if } L_i^t = 1 \\ \omega_i^t & \text{if } L_i^t = 0 \end{cases}$$

$$| L W^{T} = N \cdot \frac{T}{|I|} \frac{\omega^{t}}{\omega^{t-1}} = N \cdot \frac{T}{|I|} (|-L^{t-1}|)$$

Multiplicative Weights

- In:table $\omega_i' = 1$ for $i = 1, \dots, n$ $\omega_i' = \sum_{i=1}^n \omega_i' = n$
- · For t= 1,2, --- , T:

- Receive losses lt and suffer loss \(\sum_{i=1}^{\infty} \mathbb{P}_{i}^{\mathbellet} \displays
- Update $\omega_i^{t+1} = (1-\eta)^i \cdot \omega_i^t$ $\omega_i^{t+1} = \sum_{i=1}^n \omega_i$ uphates

$$\mathcal{W}^{++1} = \sum_{i=1}^{n} \omega_i$$

• Initialize
$$\omega_i^1 = 1$$
 for $i = 1, \dots, n$

$$\omega_i^1 = \sum_{i=1}^{n} \omega_i^1 = n$$
• For $t = 1, 2, \dots, 3$?
• Play strategy $P^t = \frac{\omega^t}{\omega^t}$

• Receive losses l^t and suffer loss $\sum_{i=1}^{n} P_i^t l_i^t$

• Update $\omega_i^{t+1} = (1-\eta)^t$ • ω_i^t

$$\omega_i^{t+1} = \sum_{i=1}^{n} \omega_i$$

$$= \sum_{i=1}^{n} \omega_{i}^{t-1} - \gamma \omega_{i}^{t-1} L_{i}^{t-1}$$

$$= \sum_{i=1}^{n} \omega_{i}^{t-1} - W_{i}^{t-1} L_{i}^{t-1}$$

$$= \sum_{i=1}^{n} \omega_{i}^{t-1} - W_{i}^{t-1} L_{i}^{t-1}$$

$$= W_{i}^{t-1} - W_{i}^{t-1} L_{i}^{t-1}$$

- Wi (1-7 Li)

• Initialize
$$\omega_{i}^{t} = 1$$
 for $i = 1, ..., n$
 $W^{t} = \sum_{i=1}^{\infty} \omega_{i}^{t} = n$

• For $t = 1, 2, ..., T$:

- Play strategy $P^{t} = \frac{\omega^{t}}{U^{t}}$

- Receive losses l^{t} and suffer loss $\sum_{i=1}^{\infty} P_{i}^{t} l_{i}^{t}$

- Update $\omega_{i}^{t+1} = (1-\eta)^{t} \cdot \omega_{i}^{t}$
 $W^{t+1} = \sum_{i=1}^{\infty} \omega_{i}$

$$- 2 L^{*} - 2^{2} L^{*} \leq \ln(n) - 9 L$$

$$2 \left(L - L^{*} \right) \leq \ln(n) + 2^{2} L^{*}$$

$$y = \sqrt{\frac{\ln(n)}{T}} \Rightarrow L - L^{*} \leq 2 \sqrt{\frac{\ln(n)}{T}}$$