

MICROCONTROLLERS LAB – TEMA D'ESAME

Sezione A

- a) Creare una variabile <u>«conteggio»</u> tipo **unsigned short int** (8 bit) che venga <u>incrementata</u> ogni volta che venga premuto RD5. Ovvero alla pressione di <u>RD5</u> (0 \rightarrow 1) «conteggio» viene incrementata di 1 (*conteggio* ++); al rilascio di RD5 (0 \rightarrow 1) nulla accade (Funzionalità di <u>sensibilità alla pressione</u>).
- b) Invece, se premuto <u>RD6</u> «<u>conteggio</u>» deve essere <u>decrementata</u> (<u>conteggio</u> --). Utilizzare sempre la funzionalità di sensibilità alla pressione.
- c) Alla pressione di <u>RD7</u> «<u>conteggio</u>» deve essere <u>azzerata</u>. Utilizzare sempre la funzionalità di <u>sensibilità alla</u> pressione.
- d) <u>Stampare</u> il contenuto di «<u>conteggio</u>» sulla <u>prima riga del display LCD</u>. Ricordate di effettuare il <u>cast</u> ad *int* prima di utilizzare la funzione **IntToStr**, i.g *IntToStr*((int) conteggio).
- e) Assicurarsi che «conteggio» saturi a 0 ed a 255

// Lcd module connections sbit LCD_RS at LATB4_bit; sbit LCD_EN at LATB5_bit; sbit LCD_D4 at LATB0_bit; sbit LCD_D5 at LATB1_bit; sbit LCD_D6 at LATB2_bit; sbit LCD_D7 at LATB3_bit; sbit LCD_EN_Direction at TRISB4_bit; sbit LCD_EN_Direction at TRISB5_bit; sbit LCD_D4_Direction at TRISB0_bit; sbit LCD_D5_Direction at TRISB1_bit; sbit LCD_D6_Direction at TRISB1_bit; sbit LCD_D6_Direction at TRISB2_bit; sbit LCD_D7_Direction at TRISB3_bit; // End Lcd module connections

Punti: 8

Tempo: 20 min

Sezione B

Partendo dal codice realizzato nella Sezione A aggiungere le seguenti funzionalità

- a) Utilizzando la <u>periferica</u> ADC <u>come indicato sotto</u>, leggere il valore di tensione sul <u>pin RA0</u> impostato tramite il potenziometro «ADC input» connesso tra <u>0V e 5V (V_{SS}, V_{DD})</u>. Mostrare le tensione in <u>mV sulla seconda linea</u> del display <u>LCD</u>. <u>In caso di difficoltà approssimare 1024 con 1000!</u>
 - $T_{AD} = 2 \mu s$
 - Garantire un completa carica del S/H, ovvero $T_{ACQT} > T_{ACQ}$ considerando $T_{ACQ} \approx 7,45 \ \mu s$
 - Trascurare la scarica del S/H ($T_{CY} \approx 0$)
 - Lavorare a 10 bit
 - · Gestire la conversione con l'interrupt
 - Per le tensioni $\pm V_{REF}$ utilizzare i riferimenti interni (V_{SS}, V_{DD}) .
- b) Utilizzando la <u>periferica</u> ADC come impostata nel punto 2.a utilizzando solo <u>8 bit</u> per leggere il valore di tensione di RD0. Usare gli 8 bit letti per <u>impostare il Ton di un PWM generato con CCP5</u> che lavoro su <u>RE2</u>
 - Impostare CCP5 correttamente come PWM
 - Legare a CCP5 il Timer6
 - Impostare il periodo massimo del PWM
 - Lavorare sempre a 8 bit

Punti: 4

Tempo: 40 min

Sezione C:

Partendo dal codice realizzato nella Sezione B aggiungere le seguenti funzionalità

- a) Creare una funzione (binaryToThermo) che converta un <u>codice binario positivo ad 8 bit (unsigned short int)</u> in un codice termometrico lineare ad <u>8 livelli (unsigned short int)</u>.
- b) Processare «conteggio» con **binaryToThermo** e visualizzare il risultato sul PORTC

Binary	Thermo
0 1 31	0000_0001
32 33 63	0000_0011
64 65 95	0000_0111
96 97 127	0000_1111
224 255	1111_1111

Tempo: 15 min