Embedded Systems / Eingebettete Systeme

Studiengang Informatik Campus Minden

Matthias König

FH Bielefeld University of Applied Sciences

Hardware eingebetteter Systeme

Arduino Uno

[Quelle: http://arduino.cc/en/Guide/Board?from=Tutorial.ArduinoBoard]

- 8 Bit Mikrocontroller ATmega328P, 16 MHz
- 2 Kbytes SRAM, 32 Kbytes Flash (30 für eigene Anwendungen), I Kbyte EEPROM
- 20 I/O Pins

Arduino Schaltbild

Reference Designs ARE PROVIDED "AS IS" AND "WITH ALL FAULTS. Arduino DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE Arduino may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Arduino reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is subject to change without notice. Do not finalize a design with this information. ARDUINO is a registered trademark.

Use of the ARDUINO name must be compliant with http://www.arduino.cc/en/Main/Policy

	<u>Oty</u>	Part Number	Manufacturer	Package	Reference	A 1 '	חיים (
Capacitors	0	500D14N220H44E	T 1	0602	G0, G11	Ardı	no Bill of	' Material	C
	2	500R14N220JV4T	Johanson	0603	C9, C11	$\frac{22p}{2}$		1 laterial	3
	2	MC0603N220J500CT	Multicomp	0603	C9, C11	22p. Quelle: http://rugge	dcircuits.com/misc/ar	eduino Ilno Rev3 (D TH VIC
	2	VJ0603A220KXQPW1BC	Vishay	0603	C9, C11	22p Quelle: <u>http://rugge</u>		dulilo_Offo_ftev5-0	/ <u>Z-111.XIS</u>
	6	CC0603KRX7R9BB104	Vagaa	0603	C1, C2, C4, C5, C6, C7	100nF capacitor ceramic	311-1344-1-ND		
	6	C0603C104K5RACTU	Yageo	0603		100nF capacitor ceramic	311-1344-1-ND		72J5992
			Kemet	0603	C1, C2, C4, C5, C6, C7		490-1519-1-ND	91 CDM20V104V50D	38K1670
	6	GRM188R71H104KA93D	Murata	0003	C1, C2, C4, C5, C6, C7	100nF capacitor ceramic	490-1319-1-ND	81-GRM39X104K50D	38K10/U
	2	GRM188R60J105KA01D	Murata	0603	C3, C8	1uF capacitor ceramic 6.3V	490-1550-1-ND	81-GRM39R105K6.3	
	2	C1608X5R1A105MT	TDK	0603	C3, C8	1uF capacitor ceramic 10V		810-C1608X5R1A105M	
		EMVA250ADA470MF55G	UCC	SMD	PC1, PC2	47uF electrolytic capacitor SMT	565-2103-1-ND	661-EMVA250ADA470MF5	76K1185
	2	AVE476M50X16T-F	Cornell	SMD	PC1, PC2	47uF electrolytic capacitor SMT		598-AVE476M50X16T-F	
Connectors									
	1	PJ-102A	CUI	PTH	X1	2.1mm DC power jack	CP-102A-ND		
		TIOD DATIONAL	0 01	DOUT	770	1100	ED 2002 MD		
	1	USB-B1HSW6	On Shore	PTH	X2	USB type B connector right-angle - white			
	1	USB-B1HSB6	On Shore	PTH	X2	USB type B connector right-angle - black	ED2983-ND		
	1	67996-404HLF	FCI	PTH	JP2	Pin header 0.1" 2x2	609-3390-ND	649-67996-404HLF	
	1	07990-40411L1	rcı	1 111	J1 Z	Till licauct 0.1 ZAZ	009-3390-IND	049-07990-404HLI	
	2	67996-406HLF	FCI	PTH	ICSP, ICSP1	Pin header 0.1" 2x3	609-3218-ND	649-67996-406HLF	20M2191
	1	M20-7820646	Harwin	PTH	AD	Socket strip 0.1" 1x6		855-M20-7820646	
	1	5-534237-4	TE	PTH	AD	Socket strip 0.1" 1x6	A32907-ND		62M8851
	2	960108-6202-AR	3M	PTH	IOL, POWER	Socket strip 0.1" 1x8	3M9518-ND	517-9601086202AR	62R6734
	2	M20-7820842	Harwin	PTH	IOL, POWER	Socket strip 0.1" 1x8		855-M20-7820842	
	1	M20-7821046	Harwin	PTH	IOH	Socket strip 0.1" 1x10	1 22210 117	855-M20-7821046	50110516
0 1	1	5-534237-8	TE	PTH	IOH	Socket strip 0.1" 1x10	A32910-ND	571-5-534237-8	52K3746
<u>Crystals</u>	-	A TICL CD	CITIC	полоди	371	1/MH 10 F	CENTIONS ND	774 A F01 (D	
	1	ATS16B	CTS	HC49/US		16MHz 18pF	CTX1085-ND	774-ATS16B	1211720
Diadaa	1	ABL-16.000MHZ-B2	Abracon	HC49/US	Y1	16MHz 18pF		815-ABL-16-B2	13J1628
<u>Diodes</u>	2	CD1206-S01575	Bourns	1206	D2, D3	Switching diode		652-CD1206-S01575	09J8040
		CD1200-301373	Dourns	1200	D2, D3	Switching diode		032-CD1200-301373	0910040
	1	S2M-13-F	Diodes Inc	SMB	D1	Switching diode	S2M-FDICT-ND	621-S2M-F	
	1	S2J	Fairchild	SMB	D1	Switching diode	S2J-TPMSCT-ND	512-S2J	05R5915
<u>Ferrites</u>				51.12		Switching Greec	520 11111501115		
	1	BLM21PG221SN1D	Murata	0805	L1	Ferrite 50mOhm@DC / 220ohm@100MHz	490-1054-1-ND	81-BLM21P221SG	
<u>Fuses</u>				Marie Sales					
	1	MF-MSMF050-2	Bourns	1812	F1	Fuse 500mA 15V	MF-MSMF050-2CT-ND	652-MF-MSMF050-2	02J2718
<u>IC's</u>									
	1	ATMEGA16U2-MUR	Atmel	VQFN-32	U3	ATmega16U2 16kB FLASH	ATMEGA16U2-MURCT-ND	556-ATMEGA16U2-MUR	
	1	ATMEGA328P-PU	Atmel	DIP-28	ZU4	ATmega328P	ATMEGA328P-PU-ND	556-ATMEGA328P-PU	15R0268
	1	LMV358IDGKR	TI	MSOP-8	U5	Dual op-amp RRO	296-13455-1-ND	595-LMV358IDGKR	
	1	MCP6002-E/MS	Microchip	MSOP-8	U5	Dual op-amp RRO	MCP6002-E/MS-ND	579-MCP6002-E/MS	88H9854
	1	I D2005 22DDXD	TPI	COT 22 5	110	150 A 2 237 I DO	206 10476 1 ND	505 I D0005 22DDVD	1210246
	1	LP2985-33DBVR	TI	SOT-23-5	U2	150mA 3.3V LDO	296-18476-1-ND	595-LP2985-33DBVR	43J9346
	1	NCP1117ST50T3G	ON Semi	SOT-223	U1	1A 5V LDO	NCP1117ST50T3GOSCT-ND	863-NCP1117ST50T3G	71J6563
LED's	1	NCI 111/3130130	OIN SCIII	501-225	UI	IA 3 V LDO	11011111111111111111111111111111111111	003-110111175130130	/130303
<u>LLD 8</u>	1	LC D071 VN 1 0 20 D10	0	0005	ON	LED	475 1410 1 ND		

Einfaches Schaltbild

Hardware/Software Codedesign

Entwurf Eingebetteter Systeme (nach Marwedel)

[Quelle: Marwedel, Eingebettete Systeme]

Blockdiagramm eines ATmegas

ATmega 168/328-Arduino Pin Mapping

Hardware in a loop

Hardware in a loop

Verarbeitungseinheiten

- Application-Specific Integrated Circuits ASICs
 - speziell entworfene Schaltkreise, lohnt erst bei hoher Stückzahl
- Field Programmable Gate Arrays FPGAs
 - (re)konfigurierbare Logik, programmierbare Verbindungsstruktur (z.B. mit VHDL)
- Mikroprozessoren

Mikroprozessoren: Schaltungskonzepte

- Harvard-Architektur
 - Programm- und Datenspeicher sind getrennt.
 - Programmcode kann nicht überschrieben werden.
- von-Neumann-Architektur
 - gemeinsamer Speicher für Daten und Programmcode.

Mikroprozessoren

- Complex Instruction Set Computer CISC
 - mächtiger Befehlsumfang, wenig Register, unterschiedliche Befehlslängen
- Reduced Instruction Set Computer RISC
 - nur notwendige Befehle gleicher Befehlslängen, mehr Register
- Mikrocontroller
 - Mikroprozessor plus Speicher und I/O

Mikroprozessor/-controller: Aufbau

- Steuerwerk (control unit)
- Rechenwert (arithmetic logic unit, alu)
- Speicher (memory)
- Ein- und Ausgabe (i/o)
- Bus

[Quelle: Wikipedia (Medvedev): http://de.wikipedia.org/w/index.php?title=Datei: %22von Neumann%22 Architektur de.svg]

Microcontroller: Beispiel ATmega

Befehlsabarbeitung: Beispiel ATmega

Register und Adressierung

Beispiel: ATmega zusammengesetzte Y, Z Register

Beispiel: ATmega indirekte Datenadressierung mit Offset

[Quelle: Atmel, 8-bit AVR Instruction Set]

Befehlswort (opcode) - Beispiel ATmega

- LDD: Load Indirect from Data Space to Register using Index Y
- Syntax und Operation (q ist Offset):
 - LDD Rd, Y+q,

 $0 \le d \le 31, 0 \le q \le 63$

- Rd \leftarrow (Y+q),

 $PC \leftarrow PC + 1$

- Opcode:
 - 10q0 qq0d dddd Iqqq
 - Beispiel: LDD r30,Y+1 ist 1000 0001 1110 1001 (0x81e9)

Mikroprozessoren: Interrupts

Mikrocontroller: Watchdog

- Watchdog / Wachhund
 - Verhindern eines Absturz / Aufhängen des Mikrocontrollers
 - Startet einen Timer, der bei Ablauf Reset ausführt.
 - Laufendes (nicht abgestürztes) Programm muss den Watchdog regelmäßig zurücksetzen.

Hardware in a loop

Eingabe/Sensoren

- Große Vielfalt an Sensoren für Informationen aus (physikalischen) Umgebung, z.B. für
 - Gewicht, Beschleunigung, Spannung, Temperatur
- unter Nutzung unterschiedlichster physikalischen Effekte, z.B.
 - Leitfähigkeit
 - Induktion
 - Photoeffekt

Bildsensor / Kamera

- · Gitterförmig Anordung von Lichtsensoren:
 - Complementary metal-oxide-semiconductor CMOS:
 - Photodetektor und Schaltkreis für jeden Pixel
 - geringer Stromverbrauch, geringe Baugröße, hohe Bildrate
 - Charge-coupled device CCD:
 - Schrittweise Weitergabe der gesammelten Ladung (Potentialtopf-Prinzip) über Nachbarpixel zum Auslesen an Seite des Gitters
 - hohe Bildqualität, lichtempfindlicher, robuster Bauweise
- CMOS günstiger als CCD

Beschleunigungssensor

- Beispiel: Kapazitiver MEMS-Beschleunigungssensor
- Micro-Electro-Mechanical-System (MEMS): Zusammenspiel von Elektronik und Mechanik
- Bewegung einer Masse bewirkt Kapazitätsänderung
- Umwandlung der Änderung in Schaltung in bspw. PWM

Pulsweitenmodulation (PWM)

- Umwandlung einer technischen Größe in eine Signalfolge von Pulsen unterschiedlicher Breite.
- Frequenz des modulierten
 Signals dabei konstant
- Duty Cycle: Anteil von Anzustände an Gesamtintervall
- Vergleich: Ofen auf Temperatur heizen mit An-/ Ausschalten

[Quelle: Wikipedia (Autor: WolfgangS): http://commons.wikimedia.org/wiki/File:Pulsweitenmodulation.png]

Abtasttheorem

Nach Shannon-Nyquist:

 Abtastfrequenz f_{abtast} für Rekonstruktion des abgetasteten Signals f:

 $f_{abtast} > 2 (f_{max} - f_{min}), mit$

f_{min} minmale und f_{max} maximale Frequenz von f

[Quelle: Wikipedia (Peterpall): http://de.wikipedia.org/w/index.php?
title=Datei:Nyquist_Aliasing.svg]

A/D-Wandlung I

- Sample-and-Hold-Schaltungen:
 - getakteter Transistor und Kondensator
 - Laden des Kondensators mit Eingangsspannung V_e ergibt diskrete Folge von Werten V_×

A/D-Wandlung 2

- Quantisierung mittels Flash A/D-Wandlers:
 - Vergleicher testet, ob Spannung an + größer als an -. Ausgabe entsprechend 0 oder 1. Kodierer bildet Ergebnis.

A/D-Wandlung 3

- Sukzessive Approximation:
 - Strategie der binären Suche (O(log₂(n)).
 - Start mit 0,5 max. Eingangsspannung.

Hardware in a loop

Kommunikation/Bus

- Anforderungen an Kommunikationskanäle entsprechen denen an das eingebettete System:
 - Robustheit (z.B. ausgesetzten Temperaturen)
 - Fchtzeit
 - Fehlertoleranz (z.B. wenn eine Nachricht nicht ankommt)
 - Effizienz (Verbauung, Kosten)
 - Bandbreite

Elektrische Robustheit: asymmetrisch vs. symmetrisch Datenübertragung

· Bei zwei Leitungen (symmetrische Datenübertragung) gleichen sich Störungen auf beiden Leitungen aus. Masse stört nicht.

Echtzeit / Kollisionen

Carrier-sense multiple access

Bei gleichzeitigem Senden auf Kanal gibt es Kollisionen

- collision detect (CSMA/CD)
 - · Bei Kollision: neuer Versuch nach zufälliger Wartezeit
- collision resolution (CSMA/CR)
 - In Arbitrierung werden Teilnehmern Prioritäten zugewiesen. Bei Kollision hat höhere Priorität Vorrang.

Beispiel: CAN-Bus

- Controller Area Network CAN
- symmetrische Signalübertragung mit twisted-pair Kabel
- Arbitrierung mit CSMA/CR
- Durchsatz von I 0 kBit/s bis I MBit/s
- geringe Latenz (ca. 300 µs) für hochpriorisierte Signale

Beispiel: Inter-Integrated Circuit I²C

- Clock (SCL) und Data (SCA) Leitungen
- Arbitrierung

Beispiel: I²C / (2-wire interface)

Beispiel: I²C / (2-wire interface)

Hardware in a loop

Operationsverstärker

Operationsverstärker:

- Spannungsverstärkung mit Geradeausverstärkung der Eingangsspannungsdifferenz

•
$$U_{ausgang} = (U_+ - U_-) G_{gv}$$

• Invertierender Verstärker:

- virtuelle Masse am invertierenden Eingang (-)

$$-U_a = -U_{R2} = -I_{R2} = -(U_e/R_1)R_2 = -(R_2/R_1)U_e$$

Ausgabe: D/A Wandler

Hier:

$$-V = V_{ref} R_1/R \sum_{i=0}^{3} x_i 2^{i-3} = V_{ref} R_1/(8R)$$
 nat(x)

mit nat(x) als Zahl des Bitvektors x.

Beispiel: Einschalten der LED

[Quelle: White, Making Embedded Systems]

```
P2DIR |= (1 << 2); // set to output

P2OUT |= (1 << 2); // turn on
```

Zusammenfassung

- Beispiele von Hardware eingebetteter Systeme
 - Sensoren
 - A/D Wandler
 - Mikrocontroller
 - D/A Wandler
 - Aktoren
 - Kommunikation/Bus

Literatur / Quellen

- Atmel, 8-bit AVR Instruction Set, 2010
- Atmel, 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash, 2009
- Peter Marwedel, Eingebettete Systeme, Springer-Verlag, 2008
- Harvey Weinberg, Dual Axis, Low g, Fully Integrated Accelerometers, Analog Dialogue 33-1, 1999,
 URL: http://www.analog.com/library/analogDialogue/cd/vol33n1.pdf
- Elicia White, Making Embedded Systems, O'Reilly 2011
- Wikipedia, Operationsverstärker, URL: http://de.wikipedia.org/wiki/Operationsverstärker
- Wikipedia, Von-Neumann-Architektur, URL: http://de.wikipedia.org/wiki/Von-Neumann-Architektur
- Wikipedia, Nyquist-Shannon-Abtasttheorem, URL: http://de.wikipedia.org/wiki/Abtasttheorem
- · Wikipedia, Pulsweitenmodulation, URL: http://de.wikipedia.org/wiki/Pulsweitenmodulation
- Stand aller Internetquellen: 27.04.2015