2. Python: Dominant Cells

There is a given list of lists of integers that represent a 2-dimensional grid with n rows and m columns. A cell is called a *dominant cell* if it has a strictly greater value than all of its neighbors. Two cells are neighbors when they share a common side or a common corner, so a cell can have up to 8 neighbors. Find the number of dominant cells in the grid.

Function Description

Complete the function numCells in the editor below.

numCells has the following parameter(s):
int grid[n][m]: a 2-dimensional array of integers

Returns

int: the number of dominant cells in the grid

Constraints

- $1 \le n, m \le 500$
- There are at least 2 cells in the grid.
- 1 ≤ grid[i][j] ≤ 100

▼ Sample Case 0

Sample Input 0

STDIN		Function						
3	\rightarrow	n = 3						
3	\rightarrow	m = 3						
1 2 7	\rightarrow	grid = [[1,	2, 7],	[4, 5	5, 6],	[8,	8,	9]]
4 5 6								
8 8 9								

Sample Output 0

2

Explanation 0

There are 3 cells that have strictly greater values than all their neighboring cells. These cells are:

- the bottom right value, 9, with neighbors of 5, 6 and 8
- the top right value, 7, with neighbors of 2, 5 and 6

Notice that the 8 at bottom left is not a dominant cell. It is not strictly greater than the cell to its right with a value of 8.