(*): Assigned to weekly problem set.

2D LoTUS and Covariance/Correlation

- 1. A random point is chosen uniformly in the unit disk $\{(x,y): x^2+y^2 \leq 1\}$. Let R be its distance from the origin.
 - (a) Find $\mathbb{E}[R]$ using 2D LOTUS. Polar coordinates may be helpful here...
 - (b) Find the CDF of \mathbb{R}^2 and \mathbb{R} without integrating, using the fact that the probability that the randomly chosen point is in a particular region is proportional to the area of the region.
 - (c) Then obtain the PDFs of R and R^2 by differentiating, and then use the results to calculate E[R] in two more ways: by using the definition of expectation on R, and by using 1D LOTUS and thinking of R as a function of R^2 .
- 2. (*) Let X and Y be iid Unif(0,1).
 - (a) Compute the covariance of (X + Y) and (X Y).
 - (b) Are X + Y and X Y independent? Explain (you do not have to do this mathematically, but rather explain in words or via counter-example).
- 3. (*) (Great practice for midterm 2 in terms of setting up the problem; covariance won't be on midterm of course). Each of $n \geq 2$ people puts their name on a slip of paper (no two have the same name). The slips of paper are shuffled in a hat, and then each person draws one (uniformly at random at each stage, without replacement).
 - (a) Find the expected value of the number of people who draw their own names.
 - (b) Find the standard deviation of the number of people who draw their own names.