Hashmap Intro	
Teekam Adanh	
D D T A I A 2 NA	
D D Kavan 4 5	
111 223 C 131 T A 01 511 114	
01 511 114 D D Karun	
10000	
Room -> Available or not Avail	
key> value	
Room number -> T/F	
Hash map < key, value?	
key has to be unique	

	h > / + ~ ! (+
	kcy → Country Name: String
	Value → population : long
	Hashmak < String, long >
)2) No. of sta	ites in each country
	Key: Country Name: String
	Value 10. of States int
	value: No. of states: int
	Value No. of States int
P3) For every	country we want to know all states names
P3) For every	country we want to know all states names
3) For every	country we want to know all states names
3) For every	
3) For every	country we want to know all states names

Key (
1) It has to be unique		
2) Premitive data tube [int.	char stvin	Hoat boolean
2) Premitive data type [int, o	7	, , , , , ,
-007	3 -	
	A 1	
) Why unique:	Advance	
2) why premitive!		
1) Why unique? 2) why permitive? 3) How does HM work?		
Hashing al	go working?	
	<i>'</i>	
Value:		
No restriction		
Hash code Advance		

P4)	Fox eve	ry	country	store	population	of	lach	state
			Hashmap			H	lashxt	
		ley, V	rlu >			_		
		Key	will be	unighu	V		be a	ny deplicati
			£	Sunday,	Moday		3	
					HS : ጀ	-1,2,33 yest 2)	

L search (R): Check if R in HM or V get (R): value associated with key scarch (R) Check if R in H id delete (R): Del (R, V) in HM delete (R) id update (R, new V): update new V corresponding	HM	HC
L search (R): Check if R in HM or V get (R): value associated with key scarch (R) Check if R in H id delete (R): Del (R, V) in HM delete (R) id update (R, new V): update new V corresponding	size (): No. of keys in HM	size: No of keys in HS
or V get (k): value associated with key scarch (k) Check if k in H id delete (k): Del (k, v) in HM delete (k) id update (k, new V): update new V corresponding	id insut (k,v): Inset (k,v) in HM ool search (k): Check if k in 411	1 insert (k) nort k in 45
id delete (k): Del (k,v) in HM delete (k) id update (k, new v): update new v corresponding		y scarch (k) Check if k in HIS
id update (k, new V): update new V corresponding	void delete (k): Del (k,v) in HM	
update new V corresponding		
· · · · · · · · · · · · · · · · · · ·	·	ing
to key	to key	θ

2# Hashing	library no	zones in de	fferent language	r 3
	pseudocode Hashnap Hashset	Java Hashmap Hashset	python dictionary sct	C++ unordered_mp unordered_set
	only	for syntax:	Use Chot GP	<u> </u>

Pi) Find	Frequency	of 1	Jumbers			
Pi) Find Given N find kegp	array el	ements &	ς φ	querics	for each	query
find kegn	ioncy of	each	elemen	t in	array	/ 0
	8 D				8	
\c\ \ <=	10 ⁵	\ \<=	0 <=	5		
			•			
A[10] = { 2	6 3 8	2 8	2 3	8 IT	6 }	
					•	
φ:	frey		¢)[]:		
	. : 3		l		TC: O((NQ
	s : 2			But for		•
	1:0					
10	;		•	Ttra	cvery Q	no d semi
					if (Ali) = - q Counter	
	J.	1M				
	'		2 1/2 /			
		key -	fucq,			
						

p1) Construct the HM	2:3
hm = Hashmap()	6: 2
for (i=0; i <n; i++)="" th="" {<=""><th>3: 2</th></n;>	3: 2
if (hm. search(A[i])){E	8:3
1 hm [A[i]) + = 1	10:1
11 hm. update (A[i], hm.get (A[i])+1)	
ilse E	
hm. insert (A[i], 1)	TC:0 (N+Q)
3	SC: D(N)
	SC. U(N)
for (i=0; i< len(q); i++){	
if (hm·search (Φ[i]) ξ	
if (hm. search (P[i]) \(\frac{1}{2} \) print (hm.get (P[i])) slue \(\frac{1}{2} \) print (0) 3	
reint (0)	
7/0(1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	

(P2) Find the first non-repeating element 5:1 1:2 A[6] = { 1 2 3 1 2 5 } 2: 2 3: [A[8] = 24 3 3 2 5 6 4 5 3 -> 2 A[7] = {2 6 8 4 7 2 9 3 -> 6 {1, 1, 2,23 → -1 D Build the HM 2) Find the fish key having value = 1 i) Build the HM TC: O(N) 2) for (i=0; i< N; i++) { SC: O(N) if (hm.get (A[i] ==1) { | exturn (A[i]) ecturn -1 10:42

(94) Given ar[N] elements find no. of distinct elements A[5] = $\frac{2}{3}$ 5 6 5 4 $\frac{3}{3}$ \longrightarrow $\frac{2}{3}$ 6 5 4 $\frac{3}{3}$ \longrightarrow 4 after removing duplicates. $A[5] = \{ 1 \mid 1 \mid 2 \mid 2 \} \longrightarrow \{ 1, 25 \longrightarrow 2 \}$ $A[3] = \begin{cases} 3 & 3 & 3 \end{cases} \xrightarrow{} \begin{cases} 3$ Use hashset for (1=0; i<N; i++){ I hs. insert (A[i]) return hs.sige() Google / Amazon/ Uper

```
(P4) Given ar [N] elements, check if there exists a subaway with sum = 0 T F
A[10] = \begin{cases} 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 2 & 2 & 1 & -3 & 4 & 3 & 1 & 2 & -3 & 2 \end{cases}
            D) Find sum of every subarray TC: O(N3)
pf[2] = 5 : Sum(A[0:2])
                    p[[8] = 5 sum (A[0:8])
                    sum (A[0:8]) = sum (A[0:2]) + sum (A[3:8])
                       5 = 5 + Jum (A[3:8])
                     sum (A[3:8]) = D
```


A: [1 2 -3 5]
pf: [1 3 0 5]
pf [i] = 0
sum (Aloci)) = 0