

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARD CONTRACT

CLEAN-BURNING DIESEL ENGINES PHASE II

AD-A152

INTERIM REPORT AFLRL No. 178

By

Harry E. Dietzmann
Engines, Emissions and Vehicle Research Division
Southwest Research Institute
San Antonio, Texas

Prepared for

U.S. Army Fuels and Lubricants Research Laboratory Southwest Research Institute San Antonio, Texas

Under Contract to

U.S. Army Belvoir Research and Development Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-85-C-0007

Approved for public release; distribution unlimited

DTIC ELECTE APR 2 2 1985

December 1984

85 03 28 053

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

	REPORT DOCUME	NTATION PAGE			
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MAP	KINGS	=	
Unclassified		None			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AV	AILABILITY OF REP	ORT	
		Approved fo	or public r	elease:	
26 DECLASSIFICATION/DOWNGRADING SCHEDULE -		distribution	_		
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGA	ANIZATION REPORT	NUMBER(S)	
Interim Report AFLRL No. 178					
6 NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL	7a. NAME OF MONITO	RING ORGANIZATI	ON	
Southwest Research Institute	(If applicable)				
Dept. of Emissions Research					
6c. ADDRESS (City, State and ZIP Code)	<u>. </u>	7h ADDRESS (City)	en a ging a		
P.O. Drawer 28510		76. ADDRESS (City, S	State, and ZIP Code	,	
6220 Culebra Road		1			
San Antonio, Texas 78284	I m. orrice average				
Ba: NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT IN			
		DAAK70-82-0	•	TΩ	
U.S. Army Belvoir R&D Center	STRBE-VF (GMW)	L			
Bc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUND	ING NOS.		
Fort Belvoir, VA 22060		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.
			ļ		
11. TITLE (Include Security Classification)					
Clean-Burning Diesel Engines	- Phase II (II)				
12 PERSONAL AUTHOR(S)	Induction (0)	1	<u> </u>		
Dietzmann, Harry E.		·		4	<i>:</i>
13a TYPE OF REPORT 13b. TIME CO		14. DATE OF REPORT	(Yr., Mo., Day)	15. PAGE CO	UNT
	у 83 то <u>Dec</u> 84	1		118	
16 SUPPLEMENTARY NOTATION This work w	as performed un	der a contrac	ct issued t	the U.S. A	Army
Fuels and Lubricants Research					
by U.S. Army Belvoir R&D Cent	er. Ft. Belvoir	. VA 22060			, i
17 COSATI CODES	18. SUBJECT TERMS (Con	tinue on reverse if necessi	ary and identify by bl	ock number)	
FIELD GROUP SUB. GR	Forklifts, emi	lssions. char	acterizati	on, induced	faults.
	fuel effects	,		,	,
19 ABSTRACT (Continue on reverse if necessary and identi-	4				
Gaseous, particulate and un	regulated emiss	ions were mea	asured from	four diese	1
forklift engines under a va					
fuel was used to determine					
sulfur dioxide, sulfate, or					
Four engines included in th					
9			-		
Perkins 4.2032 and Perkins					
with the Deutz F3L 912W wit					
fuels. The Perkins 4.2032					rence
fuel. Data from Phase I is	also included	for compariso	on purposes	3 .	
The effect of selected indu	ced faults on e	mission rate:	s of the De	utz F3L 912	W was
also determined. These ind	uced faults inc	luded intake	air restrí	ction, exhau	ust
restriction and injection p					
g/hp-hr and concentration,					
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT	, ppm, perc	21. ABSTRACT SECU	RITY CLASSIFICATI	ON	
UNCLASSIFIED/UNLIMITED X SAME AS RPT DTIC C	JSERS . J	Unclassi			
22a NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NUM	ABER	22c. OFFICE SYMBO	<u> </u>
Mar E. H. Calar I. I		(Include Area Coo	ie)	j	İ
Mr. F. W. Schaekel		(703) 664-3	ל'ז כ	STRBE-VF	

FORE WORD

Work Directive 18, "Clean-Burning Diesel Engines," was issued on September 13, 1982 under Contract DAAK70-82-C-0001 to the U.S. Army Mobility Equipment Research and Development Command (MERADCOM; currently the Belvoir Research and Development Center). This work was expanded to include additional engines and fuels by a contract modification on July 5, 1983. The engineering and analytical efforts of this program were conducted by the Department of Emissions Research of Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78284. This program was identified within Southwest Research Institute as Project 02-6800-175.

This project was under the overall supervision of Harry E. Dietzmann, manager of the Chemical Analysis Section. He was assisted by Dr. Lawrence R. Smith (chemical analysis) and Mr. Orville J. Davis (engine gaseous and particulate emissions). Emission testing was initiated in January 1983 and was completed in March 1984. Mr. Tim Lee of Belvoir Research and Development Center, STRBE-GMW was the project technical officer, Mr. James Stephens and Mr. Irv Rosen served as the overall program managers, Mr. M.E. LePera, Belvoir Research and Development Center, STRBE-VF, served as project coordinator, and Mr. F.W. Schaekel, STRBE-VF was Contracting Officer's Representative.

Accession For	
NTIS GRA&I DTIC TAB	
Unannounced Justification	
By	
Availa (y odes	
Nint Special	
A-1	QUALITY INSPECTED

TABLE OF CONTENTS

			Page
I.	INT	RODUCTION	9
	A. B.	Objective Scope	9 10
II.	DES	CRIPTION OF FACILITIES, ENGINES, AND PROCEDURES	12
	A. B. C. D.		12 19 19 21
III.		SSIONS	24
	A. B.	Description of Analytical Procedures Accuracy of the Analytical Procedures	24 29
IV.	RES	ULTS	32
		Basic Test Matrix Induced Faults Trend Validation	32 50 61
٧.	SUM	MARY	69
VI.	REF	ERENCES	73
APP	ENDI	CES	
	A. B. C.	13-MODE EMISSION TESTS GROUP I ONLY GROUP II AND III EMISSIONS INDUCED FAULTS EMISSION RATES	

LIST OF FIGURES

Figure	•	Page
1	Several Views of the Deutz F3L 912W on the Test Stand	13
2	Several Views of the Perkins 4.2032 on the Test Stand	14
3	Several Views of the Deutz F4L 912W on the Test Stand	17
4	Several Views of the Perkins 4.2482 on the Test Stand	18
5	Several Views of Gaseous and Particulate Emissions Instrumentation	22
6	Gaseous Emissions Cart Flow Schematic	23
7	Several Views of Group II and III Sampling Systems (used with Deutz F3L 912W and Perkins 4.2032)	25
8	Comparison of HC, CO, and NO_X 13-Mode Emission Rates From Four Diesel Forklift Engines	33
9	The Effect of Engine Load on Hydrocarbons, Carbon Monoxide, and Oxides of Nitrogen Emission Rates From a Perkins 4.2032 at Two Engine Speeds	63
10	The Effect of Engine Load on Hydrocarbons, Carbon Monoxide, and Oxides of Nitrogen Emission Rates From a Deutz F3L 912W at Two Engine Speeds	64

LIST OF TABLES

<u>Table</u>	·	Page
1	Engines, Fuels and Emission Test Matrix	11
2	Engine Performance Data on Deutz F3L 912W and Perkins 4.2032 Determined 12 July 1983	15
3	Break-In Schedule for Deutz F4L 912W and Perkins 4.2482	16
4	Engine Performance Data After 80 Hour Break-In on Deutz F4L 912W and Perkins 4.2482	19
5	Test Fuel Inspection Data	20
6	List of Group I Emission Measurement Equipment	21
7	Sampling and Analysis Methodology for Unregulated Emissions	26
8	Gas Chromatograph Mass Spectrometer Target Compounds	30
9	Unregulated Emission Procedural Sample Rates and Accuracy	31
10	Summary of 13-Mode Emission Results	34
11	Summary of 13-Mode Emission Results for a Deutz F3L 912W Operated on Three Fuels	35
12	Relative 13-Mode Emission Ranking of Four Diesel Forklift Engines Operating on EM-565-F (g/hp-hr)	36
13	Summary of Particulate, Sulfur Dioxide and Sulfate Emission Rates From Four Diesels With Several Fuels (g/hr)	37
14	Summary of Particulate, Sulfur Dioxide and Sulfate Emission Rates From Four Diesels With Several Fuels (g/hp-hr)	38
15	Summary of Major Group III Species (Formaldehyde, Carbonyl Sulfide, DOAS Odor) Emission Rates and	42

LIST OF TABLES (CONT'D)

Table		Page
16	Summary of Group IV Gaseous Emissions From a Deutz F3L 912W Operating on AL-12287-F	46
17	Soluble Organics in Diesel Particulate From Three Engines	47
18	Nitropyrene Emission Rates of a Deutz F3L 912W Operating on a MIL-F-46162B(ME) Fuel (AL-12287-F)	47
19	PNA Emission Rates From Three Diesel Engines (μ g/hp-hr)	48
20	Concentration of Various PNA Compounds in Organic Extractables From Diesel Particulate (ppm)	49
21	Effect of Injection Pump Timing on Exhaust Emissions of a Deutz F3L 912W Operating on EM-565-F (EPA Certification Fuel)	52
22	Effect of Exhaust Restriction on Exhaust Emissions of a Deutz F3L 912W Operating on EM-565-F (EPA Certification Fuel)	53
23	Effect of Inlet Air Restriction on Exhaust Emissions of a Deutz F3L 912W Operating on EM-565-F (EPA Certification Fuel)	54
24	Effect of Induced Faults on Gaseous and Particulate Emission Rates: Arrows Indicate Change From Baseline at 100% Load at Rated Speed on Deutz F3L 912W With EM-565-F	56
25	Effect of Induced Faults on Gaseous and Particulate Emission Rates: Arrows Indicate Change From Baseline at 2 Percent Load at Rated Speed on Deutz F3L 912W With EM-565-F	57
26	Effect of Faults and Maladjustments on Diesel Engine Exhaust Composition: Arrows Indicate Change From Baseline	58
27	Effect of Induced Faults on Aldehyde Emission Rates: Arrows Indicate Change From Baseline Under Worst Case Condition (2 Percent Load at Rated Speed) on Deutz F3L 912W with EM-565-F	60

LIST OF TABLES (CONT'D)

<u>Table</u>		Page
28	Effect of Induced Faults on Unregulated Emissions (Sulfur Dioxide, Sulfate, Organic Sulfides and Phenols) From a Deutz F3L 912W With EM-565-F Under Worst Case Condition (2 Percent Load at Rated Speed)	62
29	Trend Validation of Emissions From Perkins 4.2482 With EPA Certification Fuel, EM-565-F	66
30	Trend Validation of Emissions From Deutz F4L 912W With EPA Certification Fuel, EM-565-F	67
31	Trend Validation of Deutz F3L 912W With MIL-F-46162B(ME), AL-12287-F	68

I. INTRODUCTION

The United States Army is investigating the possibility of replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric-powered forklifts have no noise or air pollution problems, however, the logistic problems associated with field operations have prompted the U.S. Army to investigate other possible alternatives. The most promising candidate is the diesel-powered forklift. Although the diesel engine has many advantages, i.e., mobility, cost, maintenance, the use of diesels in areas of limited ventilation is of concern. This program addresses engine-out emissions from several candidate diesel forklift engines under a variety of conditions.

The use of diesel forklift engines in areas with only limited ventilation is of concern; however, these concerns may be amplified when the vehicle is operating under a malfunction mode. Malfunctions include simulating a plugged air cleaner (inlet air restriction), injection pump timing not property adjusted, and damaged exhaust system (exhaust restriction). The magnitude of these malfunctions was determined on a Deutz F3L 912W. A review of available data on Bureau of Mines Contract No. H0292009 is included to confirm emission trends as well as to look at synergistic effects.

A. Objective

The objective of this program was to expand the exhaust emissions characterization data base of diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. A previous emissions characterization program was conducted for gaseous, particulate, and unregulated on a Deutz F3L 912W and a Perkins 4.2032 operating on a MIL-F-46162A(MR) fuel^{(1)*}. This program included additional tests on the Deutz F3L

^{*}Numbers in parentheses designate references at the end of the report.

912W with a MIL-F-46162B(ME) fuel. The MIL-F-46162B(ME) is a high-sulfur reference fuel, and it was of importance to know the relationship of gaseous, particulate, and unregulated emissions (especially sulfur-containing compounds) to the sulfur content of the fuel. The emissions data base was also expanded to include two additional engine models.

B. Scope

Four diesel forklift engines were provided by Belvoir R&D Center for this study, a Deutz F3L 912W, a Deutz F4L 912W, a Perkins 4.2032, and a Perkins 4.2482. Two fuels were required for this program, a MIL-F-46162B(ME) reference fuel and a EPA certification fuel. The MIL-F-46162B(ME) fuel was provided by the U.S. Army Fuels and Lubricants Research Laboratory (AFLRL) at Southwest Research Institute. The EPA certification fuel was obtained from Phillips Petroleum Company. Emissions characterization was accomplished over the test matrix in Table 1. Emission rates are presented in g/hp-hr, g/hr, and observed concentrations.

TABLE 1. ENGINES, FUELS AND EMISSIONS TEST MATRIX

Emission Measurement Modes Group II Engine Fuel Code Group I Group III Group IV Deutz F3L 912W AL-7225-Fa 26 14 10 3b Deutz F3L 912W AL-12287-F 13 6 3 Deutz F3L 912W EM-565-F 13 3 6 Perkins 4,2032 AL-7225-Fa 26 14 10 3 Perkins 4.2032 13 6 3 EM-565-F Deutz F4L 912W EM-565-F 13 6 3 3 Perkins 4.2482 13 6 3 EM-565-F

Group I includes CO, CO₂, HC, smoke

Group II includes particulate, SO₂ and sulfate

Group III includes aldehydes, organic sulfides, DOAS odor, phenols

Group IV includes GC-MS for priority pollutants

aincludes data reported in Interim Report AFLRL No. 169 "Clean Burning Diesel Engines" (AD A145515) to Contract DAAK70-82-C-0001, August 1984. bSelected additional unregulated emissions were measured on four modes, including hydrogen sulfide, hydrogen cyanide, individual hydrocarbons, and nitropyrenes.

Aldehydes and Phenols

DOAS Odor

Particulate/Sulfate

Organic Sulfides

FIGURE 7. SEVERAL VIEWS OF GROUP II AND III SAMPLING SYSTEMS (USED WITH DEUTZ F3L 912W AND PERKINS 4.203.2)

III. ANALYTICAL PROCEDURES FOR UNREGULATED EMISSIONS

The analytical procedures used to measure the unregulated emissions are summarized in this section. Detailed descriptions of most of the procedures, along with discussions of their development, validation, and qualification, are available in Interim Report II, "Analytical Procedures for Characterizing Unregulated Pollutant Emissions From Motor Vehicles," developed in a related EPA project. (3) Several views of Group II and III sampling systems are shown in Figure 7.

A. <u>Description of Analytical Procedures</u>

The unregulated emissions evaluated in this project, along with the methods for sampling and the procedures used in the analyses, are listed in Table 7. Aldehydes and ketones, organic sulfides, and phenols represent groups of compounds. The respective procedures separate and identify a number of individual components within each of these groups. The analytical procedures involved in this project are briefly described in the following subsections.

1. Aldehydes and Ketones

The collection aldehydes (formaldehyde, acetaldehyde, propionaldehyde, crotonaldehyde, isobutyraldehyde, benzaldehyde, hexanaldehyde) and ketones (acetone and methylethylketone) is accomplished by bubbling exhaust through glass impingers containing 2,4 dinitrophenylhydrazine (DNPH) in dilute hydrochloric acid. The aldehydes and ketones (also known as carbonyl compounds) react with the DNPH to form their respective phenylhydrazone derivatives. These derivatives are insoluble or only slightly soluble in the DNPH/HCl solution and are removed by filtration followed by pentane extractions. The filtered precipitate and the pentane extracts are combined, and then the pentane is evaporated in a vacuum oven. The remaining dried extract contains the phenylhydrazone derivatives. The extract is dissolved in a quantitative volume of methanol, and a portion of this dissolved

FIGURE 6. CASEOUS EMISSIONS CART FLOW SCHEMATIC

ľ

Particulate Sampling Controls

Dilution Tunnel

Gaseous Emissions Cart

Heated Interface

FIGURE 3. SEVERAL VIEWS OF GASEOUS AND PARTICULATE EMISSIONS INSTRUMENTATION

D. Gaseous Emissions (Group I)

The measurement of gaseous emissions was accomplished using analytical equipment, procedures, and calculations specified in the <u>Federal Register</u>(2) for 13-mode certification testing. The specific analytical instruments used in this study are listed in Table 6, and several views of this equipment are also illustrated in Figure 5. A flow schematic of the gaseous emissions instrumentation is shown in Figure 6. One set of gaseous, particulate, and unregulated emissions instrumentation was used to obtain emissions data on this program. The proximity of the two test stands and the common exhaust system allowed ready changing between test stands.

TABLE 6. LIST OF GROUP I EMISSION MEASUREMENT EQUIPMENT

Exhaust Species	Chemical Symbol	Detection Technique	Instrument
Carbon Monoxide Carbon Dioxide Oxides of Nitrogen Hydrocarbons	CO CO ₂ NO _x HC	NDIR ^a NDIR ^a CL ^b FID ^c	Beckman 315B Beckman 315B SwRI w/EPA Design SwRI w/Beckman 402 Detector
Smoke		Opacity	PHS Smokemeter

and another nondispersive infrared bCL denotes chemiluminescent analyzer

CFID denotes flame ionization detector

TABLE 5. TEST FUEL INSPECTION DATA

D

tification EM-565-F Analysis	33.1 NA 66 NA NA 3.0 198 273 312 338	KKK KK KKK KK KKK	55.8 0.4 77.1 NA
EPA DF-2 Certification Fuel EM-565 Specification Analysi	33-37 NA > 49 NA NA 2.0-3.2* 171-204 204-238 243-282 288-321 304-349	EAA AAS	>27.0 min 0.2-0.5 42-50 NA
52B(ME) AL-12287-F Analysis	32.9 0.8603 70 -18 -20 2.66 193 228 264 319	0.16 1.8 1.83 0.04	57.7 1.03 53 10
MIL-F-46162B(ME) Fuel AL-12 Specification Anal	NA Report Report ≤-13 ≤-18 1.9-4.1 Report Report Report 245-285 330-387 ≤385 max	 5.0.2 max 0.02 1 max 1.5 max 60.2 	0.95-1.05 40-45 10 max
2A(MR) AL-7225-F Analysis	36.1 0.844 60 -21 -24 2.2 2.2 166 219 244 296 358	0.01 1A 0.60 0.01	0.35 48
MIL-F-46162A(MR) Fuel AL-72 Specification Analy	33-37 0.84-0.85 > 56 <-13 <-18 2.2-3.2* 171-204 204-238 243-282 288-321 304-349	 <0.20 <0.02 Report 1.0 max <0.01 <0.01 	2.27.3 0.35-0.70 > 4.2
Fuel Property	Gravity, oAPI Density, g/mL Flash Point, oC Cloud Point, oC Viscosity, cSt, @ 40°C Distillation, oC IBP 10% Recovered 50% Recovered 90% Recovered EBP Carbon Residue	Ash, wt % max Cu Strip Corrosion Acceleration Stability, mg/100 mL Neutral Number	Sulfur, % Cetane Number Particulate, mg/L

*Viscosity at 37.80C (1000F)

TABLE 4. ENGINE PERFORMANCE DATA AFTER 80-HOUR BREAK-IN ON DEUTZ F4L 912W AND PERKINS 4.2482 ENGINES

Deutz F4L 912W			Perkins 4.2482			
Engine RPM	Horsepower, hp	BSFC, lb/hp-hr	Engine RPM	Horsepower, hp	BSFC, lb/hp-hr	
2300	57.3	0.457	2300	74.0	0.375	
2100	55.1	0.445	2100	72.9	0.369	
1900	52.5	0.431	1900	68.2	0.363	
1700	48.1	0.434	1700	63.0	0.361	
1500	42.8	0.415	1500	56 . 8	0.364	
1300	36.2	0.415	1300	49.2	0.374	
1100	30.7	0.407	1100	39.4	0.384	
900	17.2	0.417	900	30.1	0.399	

B. Fuel Description

This program provided for emission testing using two DF-2 reference fuels. The first fuel was designed to meet MIL-F-46162B(ME) specifications and was provided by the U.S. Army Fuels and Lubricants Research Laboratory (AFLRL) at Southwest Research Institute. The second fuel, a DF-2 fuel, met EPA certification specifications and was obtained from Phillips Petroleum Company. The fuel inspection data on the two test fuels are presented in Table 5.

C. Dynamometer Description

A 250-hp Midwest wet-gap, eddy-current dynamometer was used to determine the load on the Deutz F3L 912W, and an adjacent 175-hp Midwest dry gap eddy current dynamometer measured the engine load on the Perkins 4.2032, Perkins 4.2482, and Deutz F4L 912W engines. A 0-30 lb/hr Flotron was used to determine fuel consumption. An 8-inch stainless steel dilution tunnel was used to collect particulate samples. All equipment was calibrated prior to testing using accepted applicable procedures, i.e., <u>Federal Register</u>, SAE, EPA Recommended Practice, etc.

OZ

FIGURE 4. SEVERAL VIEWS OF PERKINS 4.2482 ON THE TEST STAND

65

a

FIGURE 3. SEVERAL VIEWS OF DEUTZ 1-4E 912W ON THE TEST STAND

TABLE 3. BREAK-IN SCHEDULE FOR DEUTZ F4L 912W AND PERKINS 4.2482

Step No.	Time per Step	Total Time	RPM	Beam Load,	Remarks
i	0:30	0:30	800	20	
2	0:30	1:00	1200	30	
3	1:00	2:00	1400	30	
4	1:00	3:00	1600	35	
5	1:00	4:00	1800	55	
6	1:00	5:00	2000	55	
7	7 hours cycling (Total Time- 12:00 hr)	0:05 0:25 0:05 0:25	800 1200 800 1600	20 30 20 35	7 cycles
8	8 hours cycling (Total Time- 20:00 hr)	0:05 0:25 0:05 0:25	1200 1800 1200 2200	30 55 30 55	8 cycles
9	10 hours cycling (Total Time- 30:00 hr)	0:15 0:15 0:15 0:15	1200 1600 1400 1800	30 35 30 55	10 cycles
10	10 hours cycling (Total Time- 40:00 hr)	0:15 0:15 0:15 0:15	1600 2200 2000 2300	35 55 55 60	10 cycles

Repeat entire sequence to give a total of $80\ hours$

TABLE 2. ENGINE PERFORMANCE DATA ON DEUTZ F3L 912W AND PERKINS 4.2032 DETERMINED 12 July 1983

Deutz F3L 912W			Perkins 4.2032			
Engine RPM	Horsepower, hp	BSFC lb/hp-hr	Engine RPM	Horsepower, hp	BSFC lb/hp-hr	
2650	43.7	0.472	2500	<i>5</i> 2 . <i>5</i>	0.430	
2400	45.0	0.437	2300	49.7	0.402	
2200	42.8	0.420	2100	47.1	0.394	
2000	39.2	0.420	1900	44.0	0.384	
1800	36.5	0.433	1700	40.9	0.384	
1600	34.3	0.421	1500	37.4	0.385	
1400	29.5	0.420	1300	32.9	0.381	
1200	25.0	0.428	1100	27.3	0.374	
1000	20.2	0.435	900	21.6	0.397	
800	15.4	0.435	700	15.8	0.401	
600	10.2	0.464	500	9.6	0.396	

3. Deutz F4L 912W Engine Description

The Deutz F4L 912W engine was supplied new by Belvoir R&D Center. This engine was a four-cylinder, air-cooled diesel engine rated at 59 hp at 2300 rpm. The engine was run using the inlet and outlet exhaust restrictions provided by Deutz. The new engine underwent an 80-hour engine break-in using the break-in schedule presented in Table 3. Engine performance data are presented in Table 4. The engine was received in satisfactory operating condition and underwent the 80-hour break-in and emission test program without incident. Several views of the Deutz F4L 912W on the test stand are illustrated in Figure 3.

4. Perkins 4.2482 Engine Description

A new four-cylinder, water-cooled Perkins 4.2482 diesel engine was supplied by Belvoir R&D Center for this program. This engine was rated at 80 hp at 2300 rpm and underwent the break-in schedule presented in Table 3 prior to emissions testing. The engine performance data for the Perkins 4.2482 are illustrated in Table 4. Figure 4 illustrates the Perkins 4.2482 engine on the test stand.

Port View of Perkins 4.203.2

Control Console

Intake Air Measurement System

Starboard View of Perkins 4.203.2

FIGURE 2. SEVERAL VIEWS OF THE PERKINS 4.203.2 ON THE TEST STAND

.

Port View of Deutz F3L 912W

Starboard View Deutz F3L 913

Control Console

Exhaust System

FIGURE 1. SEVERAL VIEWS OF THE DEUTZ F3L 912W ON THE TEST STAND

II. DESCRIPTION OF FACILITIES, ENGINES, AND PROCEDURES

A. Engine Description

This program involved emission mapping for gaseous, particulate, and unregulated emissions from a Deutz F3L 912W engine operating on a high-sulfur reference fuel, MIL-F-46162(B)ME (AL-12287-F). Four candidate diesel forklift engines were tested using an EPA certification DF-2 reference fuel. These engines included two Deutz engines (F3L 912W and F4L 912W) and two Perkins diesel engines (4.2032 and 4.2482). All engines were supplied by Belvoir R&D Center.

1. Deutz F3L 912W Engine Description

The first engine tested in this program was a Deutz F3L 912W engine rated at 48 hp at 2650 rpm. This engine was supplied to SwRI by Belvoir R&D Center on an earlier program, and no engine break-in was required. Several views of the Deutz F3L 912W on the test stand are illustrated in Figure 1. The engine performance data for the Deutz F3L 912W prior to the start of this program are presented in Table 2.

2. Perkins 4.2032 Engine Description

A Perkins 4.2032 four-cylinder, water-cooled diesel engine was tested in this program. This engine was rated at 59 hp at 2500 rpm and was used on an earlier program for Belvoir R&D Center. The engine had previously undergone the 80-hour break-in, and only a performance map was accomplished prior to emission testing on this program. The engine performance data are presented in Table 2, and several views of the Perkins 4.2032 on the test stand are illustrated in Figure 2.

extract is injected into a liquid chromatograph and analyzed for several individual aldehydes and ketones using an ultraviolet detector.

TABLE 7. SAMPLING AND ANALYSIS METHODOLOGY FOR UNREGULATED EMISSIONS

Compound	Sampling	Method of Analysis	
Aldehydes and Ketones	Impinger	Dinitrophenylhydrazone derivative. Liquid chromatograph with ultraviolet detector (LC-UV).	
Sulfur Dioxide	Impinger	Ion chromatograph	
Carbonyl Sulfide (COS) and Organic Sulfides	Тгар	Gas chromatograph with flame photometric detector (GC-FPD)	
Sulfate	47-mm filter	Barium chloranilate derivative (BCA). Liquid chromatograph with ultraviolet detector (LC-UV)	
Particulates	47-mm filter	Weighed using microbalance	
Phenols	Impinger	Gas chromatograph with flame ionization detector (GC-FID)	
DOAS	Trap	Liquid chromatograph with ultraviolet detector (LC-UV)	
GC-MS General	20x20 filter	Gas chromatograph-Mass Spectral Analysis (GC-MS)	

2. Sulfur Dioxide

The concentration of sulfur dioxide in exhaust is determined as sulfate using an ion chromatograph. Sulfur dioxide is collected and converted to sulfate by bubbling dilute exhaust through two glass impingers containing 3-percent hydrogen peroxide absorbing solution. The samples are analyzed on the ion chromatograph and compared to standards of known sulfate concentrations.

3. Carbonyl Sulfide and Organic Sulfides

The collection of carbonyl sulfide (COS) and the organic sulfides, methyl sulfide (dimethylsulfide (CH₃)₂S), ethyl sulfide (diethylsulfide (C₂H₅)₂S), and methyl disulfide (dimethyl disulfide (CH₃)₂S₂), is accomplished by passing exhaust through Tenax GC traps at -76°C. At this temperature, the traps remove the organic sulfides from the exhaust. The organic sulfides are thermally desorbed from the traps into a gas chromatograph sampling system and injected into a gas chromatograph equipped with a flame photometric detector for analysis. External organic sulfide standards generated from permeation tubes are used to quantify the results.

4. Sulfate

The exhaust is vented into a dilution tunnel where it is mixed with a stream of filtered room air. In the tunnel, the SO₃ reacts rapidly with water in the exhaust to form sulfuric acid aerosols. The aerosols grow to a filterable size range within the tunnel and are collected on a fluorocarbon membrane filter. Particulate sulfate salts are also collected on the filter.

Sulfuric acid collected on the filter is then converted to ammonium sulfate by exposure to ammonia vapor. The soluble sulfates are leached from a filter with a measured volume of an isopropyl alcohol-water solution (60 percent IPA). A fixed volume of the sample extract is injected into a high-pressure liquid chromatograph (HPLC) and pumped through a column of strong cation exchange resin in Ag⁺ form to scrub out the halides (Cl⁻, Br⁻) and then through a column of strong cation exchange resin in H⁺ form to scrub out the cations and convert the sulfate to sulfuric acid. Passage through a reactor column of barium chloranilate crystals precipitates out barium sulfate and releases the highly UV-absorbing chloranilate ions. The amount of chloranilate ions released is equivalent to the sulfate in the sample and is measured by a sensitive liquid chromatograph UV detector at 310-313 nanometers. All the reactions and measurements take place in a flowing stream of 60 percent IPA. The scrubber and reactor columns also function as efficient filter media for any solid

reaction products formed during passage of the sample through the column system.

5. Particulate

Engine exhaust was diluted with filtered ambient air in an 8-inch (20.3 cm) stainless steel dilution tunnel. (4) Air dilution was varied to maintain temperatures at the filter of less than 125°F (52°C). Particulate was collected on pre-weighed 47-mm Pallflex filters and weight gain determined by reweighing the filter. Particulate emission rates were expressed in g/hr and g/hp-hr.

6. Phenols

Phenols (phenol; salicylaldehyde; m-cresol/p-cresol; p-ethylphenol/2-isopropyl-phenol/2,3-xylenol/3,5-xylenol/2,4,6-trimethylphenol; 2,3,5-trimethylphenol; and 2,3,5,6-tetramethylphenol) in exhaust are sampled and quantitatively analyzed with a gas chromatograph (GC) equipped with a flame ionization detector. The exhaust is passed through two Greenburg-Smith impingers in series, each containing 200 mL of 1 N KOH chilled in an ice bath. The contents of each impinger are acidified and extracted with diethyl ether. The samples are partially concentrated, combined, and then further concentrated to about 1 mL. An internal standard is added, and the volume is adjusted to 2 mL. The final sample is analyzed by the use of a GC, and concentrations of individual phenols are determined by comparison to external and internal standards.

7. Diesel Odor Analysis System (DOAS)

The Diesel Odor Analysis System (DOAS) separates and measures the quantity of the odorous components present in a collected diesel exhaust sample eluted from an exhaust sampling trap charged with Chromosorb 102. The separation is achieved Ly liquid-column chromatography on a silica-type adsorbent, and the detection unit is a UV detector sensitive to 254-nm radiation.

8. Gas Chromatograph-Mass Spectrometer Analysis

Diesel particulate is collected on 20 inch by 20 inch (50.8 cm) Pallflex filters using an 8-inch (20.3 cm) stainless steel dilution tunnel. The organic portion of the diesel particulate is separated from the inorganic particulate matter using a soxhlet extraction with methylene chloride. The methylene chloride solution containing dissolved organics is reduced to dryness (constant weight) using a vacuum rotary evaporator followed by nitrogen blow-down in an inert atmosphere.

A Gas Chromatograph-Mass Spectrometer (GC-MS) analysis of the organic extractables was conducted using a gas chromatograph with a 30-meter fused silica capillary column with a DB-5 liquid phase. The injection temperature was 280°C, with the oven temperature program starting at 40°C for 1 minute, then to 310°C at 10°C/minute. No sample transfer line was used, i.e., capillary was threaded directly into the MS source. The ionization energy of the mass spectrometer was 70 ev and operated over a mass range of 30-525 at 1-second scans.

Selected compounds specifically searched for included the priority pollutant polynuclear aromatic hydrocarbons (PAHs) and other nitroaromatics listed in Table 8. Additional analyses were performed on the aromatic fraction of each extract obtained from silica gel chromatography.

B. Accuracy of the Analytical Procedures

A difficult, but very important, endeavor was the determination of procedural accuracy for each analytical method. The primary difficulty involved those procedures in which the exhaust compounds are trapped or absorbed, an extraction or subsequent reaction is performed, and then a portion of the extraction is analyzed. The decision was reached to initially define the

accuracy in terms of a "minimum detection value" (MDV). The MDV, as used in this report, is defined as the value above which it can be said that the compound has been detected in the exhaust (i.e., at a measured value equal to the MDV, the accuracy is equal to plus or minus the MDV). Determination of accuracy over the entire range of each procedure was beyond the scope of this project.

For compounds collected by bag samples, the MDV was determined from the instrument detection limits only, and is independent of the sampling rate and duration. For compounds which are concentrated in impingers or traps, the MDV is dependent on the instrument detection limit, chemical workup, sampling rate, and sampling duration. The MDV's listed in Table 9 were derived using the listed sampling rate and a 10-minute sampling period.

TABLE 8. GAS CHROMATOGRAPH MASS SPECTROMETER TARGET COMPOUNDS

Priority Pollutant PAHs:

fluorene phenanthrene anthracene fluoranthene pyrene benz(a)anthracene chrysene benzo(b)fluoranthene benzo(d)fluoranthene benzo(a)pyrene indeno(1,2,3-CD)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene

Selected Nitro PAHs:

nitronaphthalene dinitronaphthalene nitrofluorene nitroanthracene nitrodibenzothiophene dinitroanthracene nitrofluoranthene nitropyrene dinitrofluorene

TABLE 9. UNREGULATED EMISSION PROCEDURAL SAMPLE RATES AND ACCURACY

	Sample Flow, <u>L/min</u>	Proced Mining Detection ppm	num	MDV for 10 min SS Test, mg/hour
Aldehydes and Ketones	4			
Formaldehyde		0.01	15	2
Acetaldehyde		0.01	20	2
Acrolein		0.01	25	2 2 3 3 3 3 3 5 5
Propionaldehyde		0.01	25	3
Acetone		0.01	25	3
Crotonaldehyde		0.01	30	3
Isobutyraldehyde		0.01	30	3
Methylethylketone		0.01	30	3
Benzaldehyde		0.01	45	5
Hexanaldehyde		0.01	40	
Sulfur Dioxide	4	0.05	135	15
Organic Sulfides	0.13			
Carbonyl Sulfide		0.001	3	1
Methyl Sulfide		0.001	3 3	1
Ethyl Sulfide		0.001	3	1
Methyl Disulfide		0.001	5	1
Sulfate	14	0.01	6	1
Particulate	14		50	5
Phenols	14			
Phenol		0.03	125	15
Salicylaldehyde		0.03	150	15
m-/p-cresol		0.02	100	10
Five phenols*		0.02	250	30
2-n-Propylphenol		0.05	75	10
2,3,5-Trimethylphenol		0.01	50	5 5
2,3,5,6-Tetramethyl	ohenol	0.01	25	5

^{*}Includes sum of p-ethylphenol + 2-isopropylphenol + 2,3-xylenol + 3,5-xylenol + 2,4,6-trimethylphenol

IV. RESULTS

A. Basic Test Matrix

This section presents emission results from four engines operating on one or more fuels. The test matrix for this evaluation is presented in Table I. Group I emissions (HC, CO, CO₂ and smoke) were measured on each engine fuel combination over the EPA 13-mode cycle, while Group III emissions (particulate, sulfate and sulfur dioxide) were determined on six of the 13 modes. Group II emissions (aldehydes, organic sulfides, phenols and DOAS odor) were obtained on three of the 13 modes. Group IV (GC-MS for EPA priority pollutants) emissions were measured on three of the 13 modes for the Deutz F4L 912W and the Perkins 4.2032. Data from Phase II is also included for comparison purposes.

1. Group I Emissions

Thirteen-mode emission tests are used as the primary basis of comparison for regulated emissions, i.e., CO, NO_X, HC and CO₂. Results of each individual 13-mode emission test are presented in Tables A-1 through A-7 of Appendix A. These results are summarized in Table 10, and a comparison of emission rates is fillustrated in Figure 8.

The Deutz F3L 912W was evaluated with three fuels, a MIL-F-46162A(MR) reference fuel (AL-7225-F), a MIL-F-46162B(ME) reference fuel (AL-12287-F) and an EPA certification fuel (EM-565-F). The absolute values of CO and HC emission rates from this engine were quite low, and any changes in emissions due to fuel effects were minimal. Although the NO_X levels were somewhat higher than the CO and HC emissions, the NO_X emission rates were also apparently unaffected by fuel composition. The major difference in the fuel specifications is primarily the amount of allowable sulfur. A summary of the individual modes of the 13-mode tests with each of the three fuels with the

FIGURE 8. COMPARISON OF HC, CO, AND NO χ 13-MODE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES

Deutz F3L 912W is presented in Table 11. This provides an opportunity to compare emission rates (g/hr, g/hp-hr, ppm or percent) and emission concentrations as a function of fuels for each individual mode.

TABLE 10. SUMMARY OF 13-MODE EMISSION RESULTS

D

		Emission	n Rate, g/hp	-hr
Engine Description	Fuel Code	СО	HC	NOx
Deutz F3L 912W	AL-7225-F	1.627	0.454	4.445
Deutz F3L 912W	AL-12287-F	1.472	0.335	4.684
Deutz F3L 912W	EM-565-F	1.851	0.385	4.679
Perkins 4.2032	AL-7225-F	5.438	3.205	5.361
Perkins 4.2032	EM-565-F	4.879	2.740	6.406
Deutz F4L 912W	EM-565-F	1.691	0.409	4.302
Perkins 4.2482	EM-565-F	2.396	1.060	8.647

Thirteen-mode emission tests were conducted on a Perkins 4.2032 with AL-7225-F and EM-565-F. Computer printouts of 13-mode emission results are presented in Tables A-4 and A-5 of Appendix A. The HC and CO emission rates of the Perkins 4.2032 were noticeably higher with both fuels than the Deutz F3L 912W. NO_X emission rates of the Perkins 4.2032 were only slightly higher than the Deutz F3L 912W. HC and CO emissions from the Perkins 4.2032 were slightly higher with AL-7225-F than with EM-565-F, although NO_X emission rates were higher with EM-565-F.

Two additional engines, a Deutz F4L 912W and a Perkins 4.2482, were evaluated with the EPA certification fuel. Emission rates from the EPA 13-mode tests are presented in Tables A-6 and A-7 of Appendix A. A comparison of HC, CO, and NO_X emission rates for all engine-fuel combinations is shown in Figure 8. Emission rates from the Deutz F4L 912W are quite similar to those from the

TABLE II. SUMMARY OF 13-MODE EMISSION RESULTS FOR A DEUTZ F3L 912W OPERATED ON THREE FUELS

Engine Speed Load, %
0 0
0 0
2 76
10 7
25 65
25 45
50 50
£ 22
100 51
2 154
2 155
25 %
50 102
75 80
901 001

Deutz F3L 912W. HC and CO emission rates from the Perkins 4.2482 were significantly lower than the Perkins 4.2032; however, NO_X emission rates from the Perkins 4.2482 were noticeably higher than the Perkins 4.2032. A relative ranking of 13-mode emission rates for CO, HC and NO_X is presented in Table 12.

TABLE 12. RELATIVE 13-MODE EMISSION RANKING OF FOUR DIESEL FORKLIFT ENGINES OPERATING ON EM-565-F (g/hp-hr)

Ranking	Carbon Monoxide	Hydrocarbons	Oxides of Nitrogen
Lowest	Deutz F4L 912W	Deutz F3L 912W	Deutz F4L 912W
1	Deutz F3L 912W	Deutz F4L 912W	Deutz F3L 912W
\downarrow	Perkins 4.2482	Perkins 4.2482	Perkins 4.2032
Highest	Perkins 4.2032	Perkins 4.2032	Perkins 4.2482

2. Group II Emissions

Particulate, sulfate and sulfur dioxide emissions were measured on six of the 13-modes for all four engines with several fuels. Particulate emission rates are presented in Tables B-1 (g/hp-hr) and B-2 (g/hr) of Appendix B for the four engine-fuel combinations tested. The sulfur dioxide emission rates are found in Tables B-3 (g/hp-hr) and B-4 (g/hr), and sulfate emission rates are included in Tables B-5 (g/hp-hr) and B-6 (g/hr) of Appendix B. These results are summarized for two modes for particulate, sulfur dioxide, and sulfate in Tables 13 (g/hr) and 14 (g/hp-hr). The two modes are 2 percent at peak torque speed and 100 percent at rated speed. The two conditions generally represent the range of emission rates that may be produced for a given engine fuel combination.

TABLE 13. SUMMARY OF PARTICULATE, SULFUR DIOXIDE AND SULFATE EMISSION RATES FROM FOUR DIESELS WITH SEVERAL FUELS (g/hr)

		Engine	Condition	Emissio	n Rate, g/	hr
Engine Model	Fuel Code	% Load	Speed, rpm	Particulate	SO ₂	Sulfate
Deutz F3L 912W	AL-7225-F	2	2650	9.70	16.48	0.404
		100	2650	11.81	51.61	1.021
Deutz F3L 912W	AL-12287-F	2	2650	6.58	62.04	0.821
		100	2650	22.27	222.79	4.018
Deutz F3L 912W	EM-565-F	2	2650	13.48	22.45	0.530
		100	2650	5.10	*	0.572
Perkins 4.2032	AL-7225-F	2	2500	21.28	15.21	0.709
		001	2500	31.56	40.12	1.422
Perkins 4.2032	EM-565-F	2	2500	30.40	27.00	0.964
		100	2500	32.18	114.52	1.677
Deutz F4L 912W	EM-565-F	2	2300	14.14	40.65	0.335
		100	2300	7.00	109.00	0.471
Perkins 4.2482	EM-565-F	2	2300	8.44	25.30	0.478
		100	2300	13.89	133.09	1.147

^{*}Sample void

TABLE 14. SUMMARY OF PARTICULATE, SULFUR DIOXIDE AND SULFATE EMISSION RATES FROM FOUR DIESELS WITH SEVERAL FUELS (g/hp-hr)

	•	Engine	Condition	Emission	Rate, g/hp	o-hr
Engine Model	Fuel Code	% Load	Speed, rpm	Particulate	502	Sulfate
Deutz F3L 912W	AL-7225-F	2 100	2650 2650	11.28 0.28	23.54 1.24	0.577 0.024
Deutz F3L 912W	AL-12287-F	2 100	2650 2650	9.40 0.52	88.63 5.25	1.173 0.095
Deutz F3L 912W	EM-565-F	2 100	2650 2650	19 . 26 0.11	32 . 07	0.757 0.013
Perkins 4.2032	AL-7225-F	2 100	2500 2500	16.37 0.68	11.70 0.87	0.545 0.031
Perkins 4.2032	EM-565-F	2 100	2500 2500	23 . 37 0.62	20.77 2.23	0.742 0.033
Deutz F4L 912W	EM-565-F	2 100	2300 2300	12.30 0.12	33.87 1.95	0.291 0.008
Perkins 4.2482	EM-565-F	2 100	2300 2300	4.89 0.18	14.88 1.78	0.281 0.016

^{*}Sample void

a. Particulate

Particulate emission rates from the Deutz F3L 912W at rated speed and load ranged from 5.10 g/hr to 22.27 g/hr for the three fuels. Brake specific particulate emissions rates from the Deutz F3L 912W ranged from 0.11 g/hp-hr at rated speed and load to 19.26 g/hp-hr at 2 percent load at rated speed. The Perkins 4.2032 was higher for the Deutz F3L 912W for those tests conducted on the same fuels. In all cases, brake specific particulate emission rates were highest at the 2 percent load condition, generally ranging from 18-175 times higher than rated speed and load for those same engine fuel combinations.

Results presented in Tables B-1 and B-2 of Appendix B and Tables 13 and 14 are summarized below:

- At constant rated speed, particulate mass emission rates (g/hr) increased with increasing load.
- The 2-percent load condition produced significantly higher brake specific particulate emission rates (g/hp-hr) than higher loads.
- The Perkins 4.2032 had higher mass particulate emission rates (g/hr) than the other three engines tested, ranging from 21-33 g/hr.
- Brake specific emission rates (g/hp-hr) were higher with EM-565-F under low load conditions than AL-7225-F for both the Deutz F3I 912W and the Perkins 4.2482.

b. Sulfur Dioxide

Sulfur dioxide emission rates are presented in Tables B-3 (g/hp-hr) and B-4 (g/hr) of Appendix B. The SO₂ emission rates are summarized in Tables 13

TABLE 22. EFFECT OF EXHAUST RESTRICTION ON EXHAUST EMISSIONS OF A DEUTZ F3L 912W OPERATING ON EM-565-F (EPA CERTIFICATION FUEL)

	Smoke	0.4 0.5 0.5	1.0	7. 7. 0	2.0	1.8 2.0 3.5
			19.26	0.53	0.40	0.13 0.17 0.12
	NOx	111	59.13 63.44 62.84	4.37	4.35	3.39 3.41 3.03
	Emission Rate, g/hp-hr CO NOx	111	115.47	1.68	1.78	0.88 0.96 1.01
	HC	111	22.23 27.09 29.26	74.0	0.54	0.14 0.21 0.18
	BSFC, lb/hp-hr		8.690 9.505 9.493	0.530	0.566	0.472 0.463 0.473
Restriction	Exhaust, "Hg	1.5 3.1 6.0	0.9	4.1	9.4	1.5a 3.1 6.0
Rest	Inlet, "H ₂ 0	12.0 11.8 12.0	12.1	11.9	12.7	12.0 11.8 12.0
	Timing, oBTDC	17 17 17	17	17	17	17 17 17
	Engine Load, %	000	7 5 5	2 00 00	20	100 100 100
	Engine Speed, rpin	Idle Idle Idle	2650 2650 2650	2650	2650	2650 2650 2650

aStandard exhaust restriction is 1.5 inches of Hg at 2650 rpm @ 100% load

TABLE 21. EFFECT OF INJECTION PUMP TIMING ON EXHAUST EMISSIONS OF A DEUTZ F3L 912W OPERATING ON EM-565-F (EPA CERTIFICATION FUEL)

	Smoke	0.4	1.0	0.5	0.5	2.0	1.0	1.5	1.2	1.5	1.4	1.0	2.0	2.5	1.8	1.5	3.0
	Part.		1	1	1	29.16a	19.26	10.74	12.41	0.36	0.53	0.56	0.61	0.18	0.13	0.16	0.33
	Emission Rate, g/hp-hr CO NOx	1	;	;	!	46.58	59.13	116.64	133.41	3.61	4.37	7.12	8.82	2.93	3.39	4.89	5.69
	mission Ra	;	;	i	;	311.25	115.47	84.22	95.82	1.99	1.78	1.63	1.78	0.90	0.88	96.0	1.43
	HC	1	;	;	;	94.85	22.23	15.63	19.23	0.49	0.47	0.55	0.62	0.15	0.14	0.24	0.31
	BSFC, Ib/hp-hr	1	;	;	;	9.748	8.690	9.929	9.821	0.587	0.530	0.560	0.569	0.506	0.472	0.458	0.471
iction	Exhaust, "Hg	0.0	0.0	0.0	0.0	0.7	6.0	8.0	9.0	1:1	1.4	1.2	1.1	1.4	1.5	1.5	1.4
Restriction	Inlet, "H ₂ 0	1.5	1.2	1.5	1.5	13.0	12.1	12.0	13.0	13.0	11.9	12.0	12.0	12.0	12.0	12.0	12.0
	Timing, oBTDC	13	17a	21	25	13	17a	21	25	13	17a	21	25	13	17a	21	25
	Engine Load, %	0	0	0	0	2	2	2	2	50	50	50	20	100	100	100	100
	Engine Speed, rpm	Idle	Idle	Idle	Idle	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650

aStandard injection pump timing is 170BTDC bParticulate filter appeared to be saturated with unburned fuel

100-percent load at 2650 rpm. During each mode, Group I, II, and III were obtained.

The intake air restriction was increased from standard 12.5 in. H₂0 and 50 in. H₂0 to simulate a plugged air filter. Exhaust restrictions were increased from the 1.5 in. Hg standard to 3.0 and 6.0 in. Hg to represent a defective or damaged exhaust system. Injection pump timing was adjusted to include 13°, 21°, 25° BTDC in addition to the standard timing of 17° BTDC.

The effects of these induced faults on HC, CO, NO_X , particulate, sulfur dioxide and sulfate are listed in Tables C-1 through C-5 of Appendix C. These effects are summarized in Tables 21, 22, and 23 for all test conditions, and general trends at rated speed and load are illustrated in Tables 24 and 25. Increasing the intake restriction from 12.5 to 25 in. H_20 had no effect on NO_X or CO at rated speed and load. A noticeable increase in particulate was observed in increasing the intake restriction under rated speed and load, i.e., more restriction, more particulate. CO increased at the 50 in. H_20 intake restriction.

At 2-percent load at rated speed, no changes in particulate or NO_X were observed with an increased intake air restriction. Both HC and CO emission rates increased at the higher intake air restrictions; although, HC increases were more pronounced.

Increased exhaust backpressures were used to simulate restricted mufflers, bent exhaust pipe, etc. The engine backpressure was increased from 1.5 in. Hg to 3.0 and 6.0 in. Hg to investigate the effect of this fault on exhaust emission rates. Under rated speed and load conditions as well as the worst case condition; no significant effect on HC, CO, NO_X and particulate emissions could be attributed to excessive engine backpressure.

The third fault included injection pump adjustments to cover the range of anticipated maladjustments that might be experienced in the field. This

- Phenanthrene and pyrene were the most prevalent PNAs detected
- Brake specific PNA emission rates were much greater at low loads for all three engines than at high loads.
- 1-nitropyrene was the highest emitted nitroaromatic, 30-60 times any of the dinitropyrene (brake specific basis)
- Brake specific 1-nitropyrene emission rates ranged from 227 µg/hp-hr at 2-percent load at 1600 rpm (worst case) to 9.4 µg/hp-hr at rated speed and load.

Other PNA Compounds tentatively identified in the GC-MS analysis are listed in Table B-13 of Appendix B.

B. Induced Faults

Emission rates from several diesel engines operating on various fuels have been reported in previous sections in this report. These data were generated with the vehicle in proper operating condition. In reality, it is conceivable that these engines could be operated (and still function satisfactorily) with engine faults or maladjustments. Typical engine faults include excessive intake air restriction (plugged air filter), increased exhaust backpressure (bent exhaust pipe, restricted muffler) or injection timing maladjustment. These three faults represent three of the more common faults typically encountered in field operation.

The use of diesel forklifts in areas with limited ventilation warrant investigation into this "worst case" situation. The Deutz F3L 912W diesel engine was selected for this evaluation and was tested over an abbreviated test matrix that included four test conditions representing the range of emission rates expected from this engine. These conditions included idle, 2-, 50-, and

TABLE 20. CONCENTRATION OF VARIOUS PNA COMPOUNDS IN ORGANIC EXTRACTABLES FROM DIESEL PARTICULATE (ppm)

	Deutz	Deutz F3L 912W (AL-12287-F)	L-12287-F)	Perk	Perkins 4.2032 (EM-565-F)	M-565-F)	Deut	Deutz F4L 912W (EM-565-F)	EM-565-F)
Compound	Idle	1600 rpm	100% Load 2650 rpm	Idle	1500 rpm	2500 rpm	Idle	1500 rpm	2300 rpm
Fluorene	17	20	20	044	241	41	20	. 02	91
Phenanthrene	290	210	099	3600	3300	2800	004	330	550
Anthracene	59	34	74	220	170	110	N	39	55
Fluoranthene	160	330	1300	130	061	760	100	550	046
Pyrene	320	410	620	550	800	830	56	710	830
Benzo(a)anthracene	9#	92	110	22	27	07	30	150	110
Chrysene	65	110	380	41	48	110	62	061	260
Benzo(b)fluoranthene	99	240	250	20	20	34	9/	360	180
Benzo(a)pyrene	20	58	20	20	N	20	ND	83	20
Indeno(1,2,3-CD)pyrene	20	50	20	N	ND	N	ND	99	18
Dibenzo(a,h)anthracene	N N	23	20	ND	Q	N	N	ND	20
Benzo(g,h,i)perylene	20	130	20	Q	ND	ND	N	210	20
Nitropyrene	N	ND	200	ND	ND	S	N	ND	009

TABLE 19. PNA EMISSION RATES FROM THREE DIESEL ENGINES ($\mu g/hp-hr$)

	Deutz	Deutz F3L 912W (AL-12287-F) 2% Load 100% Load	L-12287-F) 100% Load	Perk	Perkins 4.2032 (EM-565-F) 2% Load 100% Lo	M-565-F) 100% Load	Deut	Deutz F4L 912W (EM-565-F) 2% Load 100% Loa	EM-565-F) 100% Load
Compound	Idle	1600 rpm	2650 rpm	Idle	1500 rpm	2500 rpm	Idle	1500 rpm	7300 rpm
Fluorene	1	7.1	-	;	1487	1	ļ	58	-
Phenanthrene	:	942	16	1	20368	36	1	196	∞
Anthracene	;	121	1	1	1049	П	!	114	-
Fluoranthene	;	1172	32	;	1173	10	;	1062	14
Pyrene	;	95†1	15	ŀ	4938	11	1	5069	12
Benzo(a)anthracene	ł	327	6	ł	167	I	1	437	2
Chrysene	1	391	6	1	596	1	;	554	7
Benzo(b)fluoranthene	1	853	9	!	123	-	;	1049	٣
Benzo(a)pyrene	1	206	1	ł	ND	0.3	ŀ	242	0.3
Indeno(1,2,3-CD)pyrene	1	178	1	ŀ	ND	Q	1	192	0.3
Dibenzo(a,h)anthracene	!	82	1	ŀ	N	ND	1	ND	0.3
Benzo(g,h,i)perylene	ł	462	1	ł	N	QZ	;	612	0.3
Nitropyrene	ł	Q Q	5	1	N	ND	1	Q	6

TABLE 17. SOLUBLE ORGANICS IN DIESEL PARTICULATE FROM THREE ENGINES

		Engine C	ondition	Percent Organic
Engine Model	Fuel	Load,%	Speed	Extractables
Deutz F3L 912W	AL-12287-F		Idle	<i>55</i> . 0
Deutz F3L 912W	AL-12287-F	2	1600	28.6
Deutz F3L 912W	AL-12287-F	100	2650	4.8
Perkins 4.2032	EM-565-F		Idle	88.5
Perkins 4.2032	EM-565-F	2	1500	90.9
Perkins 4.2032	EM-565-F	100	2500	7.1
Deutz F4L 912W	EM-565-F		Idle	39.0
Deutz F4L 912W	EM-565-F	2	1500	32.7
Deutz F4L 912W	EM-565-F	100	2300	12.5

TABLE 18. NITROPYRENE EMISSION RATES OF A DEUTZ F3L 912W OPERATING ON A MIL-F-46162B(ME) Fuel (AL-12287-F)

	E	ngine Condit	ion - Idle	
Exhaust Species	ng/mg particulate	µ g/hour	μ g/lb-fuel	⊔g/hp-hr
1-Nitropyrene	4.2	6.3	8.2	*
1,3-Dinitropyrene	0.2	0.3	0.4	*
1,6-Dinitropyrene	0.5	0.8	1.0	*
1,8-Dinitropyrene	0.4	0.6	0.8	*

	Engine Co	ondition - 2%	Load, 1600 rps	n
Exhaust Species	ng/mg particulate	ug/hour	ug/lb-fuel	µg/hp-hr
1-Nitropyrene	18.3	90.4	30.7	227.3
1,3-Dinitropyrene	0.1	0.5	0.2	1.2
1,6-Dinitropyrene	0.7	3.5	1.2	8.7
1,8-Dinitropyrene	0.2	1.0	0.3	2.5

	Engine Cor	ndition - 100	% Load, 2650 r	<u>pm</u>
Exhaust Species	ng/mg particulate	ug/hour	ug/lb-fuel	⊔g/hp-hr
I-Nitropyrene	18.1	403.1	20.5	9.4
1,3-Dinitropyrene	0.2	4.5	0.2	0.1
1,6-Dinitropyrene	0.2	4.5	0.2	0.1
1,8-Dinitropyrene	0.3	6.7	0.3	0.2

^{*}Denotes no horsepower produced at idle

TABLE 16. SUMMARY OF GROUP IV GASEOUS EMISSIONS FROM A DEUTZ F3L 912W OPERATING ON AL-12287-F

Exhaust Species_		Concer ppm	ntration		ion Rate mg/hp-hr
Extradat apecies		ррии	<u> 115/111-</u>	111g/111	mg/mp-m
Total cyanide	Idle	0.03	27.85	1.25	
	2% @ 1600	0.02	21.07	2.54	3.18
	100% @ 2650	0.02	22.07	3.94	0.09
	TLV	10			
Hydrogen sulfide	Idle	0.01	14	0.6	
	2% @ 1600	0.01	14	1.7	2.13
	100% @ 26 <i>5</i> 0	10.0	14	2.5	0.06
	TLV	10			
Methane	Idle	1.68	1121	50	
	2% @ 1600	2.75	1834	221	276.25
	100% @ 2650	2.67	1781	318	7.28
	TLV	None			
Ethylene	Idle	3.00	1749	79	
	2% @ 1600	8.27	4821	582	727.50
	100% @ 26 <i>5</i> 0	11.75	6850	1222	28.96
	TLV	5500			
Ethane	Idle	0.08	50	2	
	2% @ 1600	0.14	88	11	13.75
	100% @ 2650	0.19	119	21	0.48
	TLV	None			
Acetylene	Idle	0.29	157	7	
	2% @ 1600	0.96	520	63	78 . 75
	100% @ 2650	1.50	813	145	3.31
	TLV	None			
Propane	Idle	0.05	30	1	
	2% @ 1600	0.05	30	4	5.00
	100% @ 2650	0.05	30	6	0.14
	TLV	1000			
Propylene	Idle	0.88	513	23	• •
	2% @ 1600	2.35	1370	165	206.25
	100% @ 2650	3.96	2309	412	9.43
	TLV	None			
Benzene	Idle	0.46	249	11	
	2% @ 1600	1.02	553	67	83.75
	100% @ 2650	1.85	1003	179	4.10
	TLV	10			~-
Toluene	Idle	0.05	30	ND	
	2% @ 1600	0.05	30	ND	ND
	100% @ 2650	0.17	93	17	0.39
	TLV	200			

the TIA values were noticeably higher, namely the Perkins 4.2032 operating on a EM-565-F. No other trends were readily apparent.

4. Group IV Analysis

Group IV analyses included both gaseous and particulate bound organic compounds. Gaseous emissions in Group IV include hydrogen sulfide, total cyanide, and selected individual low molecular weight hydrocarbons. These results are presented in Table 16. A comparison of the gaseous emissions to Occupational Safety and Health Administration (OSHA) Threshold Limit Value (TLV) for these compounds indicates all gaseous Group IV species were well below the OSHA TLV for those compounds which have established TLVs.

The particulate bound organic materials were removed using a soxhlet extraction with methyl chloride followed by solvent evaporation in a litrogen atmosphere. The percent organic extractables in diesel particulate from three engines is presented in Table 17. The percent organic extractables generally decreased with an increase in load. These organic extractables were analyzed for nitropyrenes using an HPLC procedure and for EPA priority pollutant PNA compounds using GC-MS procedures.

The results of the nitropyrene analysis are presented in Table 18. Of the four nitropyrenes (one nitro- and three dinitro-) detected, 1-nitropyrene was by far the most predominant. The 1-nitropyrene emission rates ranged from 227 μ g/hp-hr at the worst case (2-percent load) to 9.4 μ g/hp-hr at rated speed and load. 1-nitropyrene mass emission rates ranged from 6.3 μ g/hr at idle to 403.1 μ g/hr at rated speed and load.

A GC-MS was used to quantitatively determine the presence of EPA priority pollutant PNA compounds in the organic extracts of diesel particulate from three diesel engines. The concentration of those PNA compounds quantitatively detected by GC-MS are presented in Table 19. The brake specific PNA emission rate (µg/hp-hr) is listed in Table 20. A summary of PNA and nitropyrene emission trends is listed below:

c. Organic Sulfides

Carbonyl sulfide, methyl sulfide, ethyl sulfide and dimethyldisulfide were organic sulfides included in this Group III analysis. Organic sulfide emission rates are presented in Tables B-10 (mg/hp-hr) and B-11 (mg/hr) of Appendix B. In general, the only organic sulfide which was detected in most Perkins exhaust samples was carbonyl sulfide. Other sulfides were detected only randomly and in very low concentrations. Table 15 summarizes the carbonyl sulfide brake specific emission rates. Trends observed for carbonyl sulfide are summarized below:

- No carbonyl sulfide or other organic sulfides were detected in any of the Deutz F3L 912W of Deutz F4L 912W exhaust samples with any of the fuels tested.
- In general, organic sulfides emission rates did not appear dependent on the fuel sulfur level.
- With the Perkins 4.2032, brake specific carbonyl sulfur emission rates were highest under low load condition.
- Brake specific carbonyl sulfide emission rates from the Perkins 4.2482 were less than the Perkins 4.2032.

d. DOAS Odor

Odor measurements were obtained on the four diesel engines at three of the 13 modes. These results are presented in Table B-12 of Appendix B. The DOAS odor is summarized in Table 15 for two primary modes (2 percent load at peak torque and 100 percent load at rated speed) for the engine-fuel combinations evaluated. In general, the DOAS odor levels ranged within typically experienced values (i.e., 1.5-2.0 TIA units). Only one instance occurred where

- Formaldehyde was the predominant aldehyde detected, generally accounting for 30-50 percent of the total detected.
- Brake specific formaldehyde emission rates (g/hp-hr) were highest under low load conditions.
- Formaldehyde emission rates were higher with MIL-F-46162A(MR) fuel (AL-12887-F) than the other two fuels.
- Formaldehyde emission rates (g/hp-hr and µg/hr) were significantly higher on the two Perkins engines than the Deutz engines.

b. Phenols

Phenols were measured on three of the thirteen-modes with the various engine-fuel combinations. Results of the individual modes tested for each of the engine-fuel combinations are presented in Table B-9 of Appendix B. In general, the individual phenols included in this analysis were below or near the detection limits of the analytical procedure. Consequently, only a limited amount of trend analysis can be determined, namely:

- No phenols were detected with any of the four engines with EM-565-F.
- Some phenols were detected in exhaust from the Deutz F3L
 912W and Perkins 4.2032 using AL-7225-F.
- Some phenols were detected in exhaust from the Deutz F3L
 912W and Perkins 4.2032 using AL-7225-F.
- No phenols were detected with the Deutz F3L 912W with AL-12287-F.

TABLE 15. SUMMARY OF MAJOR GROUP III SPECIES (FORMALDEHYDE, CARBONYL SULFIDE, DOAS ODOR) EMISSION RATES AND ODOR VALUES

		Engine	Condition	Emission Rate, r	ng/hp-hr	DOAS Odor,
Engine Model	Fuel Code	% Load	Speed, rpm	<u>Formaldehyde</u>	COS	TIA Units
Deutz F3L 912W	AL-7225-F	2	1600	18	ND	1.71
		100	2650	0.4	ND	1.38
Deutz F3L 912W	AL-12287-F	2	1600	60	ND	1.95
		100	2650	0.5	ND	2.14
Deutz F3L 912W	EM-565-F	2	1600	20	ND	1.39
		100	2650	2.8	ND	2.04
Perkins 4.2032	AL-7225-F	2	1500	588	5.96	2.07
		100	2500	11.7	0.06	
Perkins 4.2032	EM-565-F	2	1500	698	19.88	2.27
		100	2500	41.4	0.19	2.91
Deutz F4L 912W	EM-565-F	2	1500	ND	ND	1.48
		100	2300	3.2	ND	2.06
Perkins 4.2482	EM-565-F	2	1400	435	ND	1.66
		100	2300	0.8	0.06	1.87

- Brake specific sulfate emission rates (g/hp-hr) were highest at the low load conditions for all engine fuel combinations.
- Higher sulfate emissions (g/hp-hr and g/hr) were observed with the Deutz F3L 912W operating on high sulfur AL-12287-F than either AL-7225-F or EM-565-F.

3. Group III Emissions

Group III exhaust emissions include aldehydes (and ketones), organic sulfides, phenols, and DOAS odor. This section presents results of these analyses for all engine-fuel combinations tested. Results for two engines (Deutz F3L 912W and Perkins 4.2032) tested with AL-7225-F in an earlier phase of this program⁽¹⁾ are included for comparison purposes. The Group III analyses were conducted at three test conditions; i.e., idle, 2-percent load at peak torque speed, and 100 percent load at rated speed. The conditions were selected on a basis of a previous study to represent the range of anticipated emission rates for Group III emissions.

a. Aldehyde (and Ketone)

Aldehyde and ketone emission rates are summarized in Tables B-7 (mg/hp-hr) and B-8 (mg/hr) of Appendix B. Although Tables B-7 and B-8 present emission rates for each of the the individual aldehydes and ketones, formaldehyde is considered the best individual indicator of aldehyde trends. Formaldehyde emission rates are summarized in Table 15 for each engine-fuel combination tested. In general, these results are summarized following Table 15.

(g/hp-hr) and 14 (g/hr) for all engine fuel combinations tested. A review of this data indicates several trends, namely:

- At constant speed, sulfur dioxide mass emission rates (g/hr) increase with an increase in load. This increase is probably due to the increase in fuel rate.
- Sulfur dioxide brake specific emission rates (g/hp-hr) were highest at low loads at rated speed for all engines tested.
- Mass sulfur dioxide emission rates (g/hr) were higher with the high-sulfur containing fuel (AL-12287-F) for the Deutz F3L 912W and Perkins 4.2032 than for fuels AL-7225-F or EM-565-F.
- Sulfur dioxide emissions are a result of the fuel sulfur level and any control on sulfur dioxide emissions would have to come from reductions in fuel sulfur level rather than engine design changes.

c. Sulfate

Sulfate emission rates are presented in Tables B-5 (g/hp-hr) and B-6 (g/hr) for all engine fuel combinations tested. The sulfate emission rates are summarized in Tables 13 (g/hp-hr) and 14 (g/hr). General trends and observations for this data are summarized below:

- Sulfate mass emission rates (g/hr) were highest at the high load conditions.
- Generally, less than 5 percent of the fuel sulfur is converted to sulfate.

TABLE 23. EFFECT OF INLET AIR RESTRICTION ON EXHAUST EMISSIONS OF A DEUTZ F3L 912W OPERATING ON EM-565-F (EPA CERTIFICATION FUEL)

Smoke	0.4	1.0 2.5 2.0	1.4 0.5 1.0	1.8 2.5 5.0
r Part.		19.26 12.92 12.35	0.53 0.40 0.33	0.13 0.28 0.30
ite, g/hp-h NOx	111	59.13 59.63 57.90	4.37 4.03 3.55	3.39 2.88 2.81
Emission Rate, g/hp-hr CO NOx	111	115.47 165.53 207.42	1.78	0.88 1.47 1.31
HC	111	22.23 34.02 50.53	0.47	0.14 0.15 0.13
BSFC, lb/hp-hr	111	8.690 9.037 8.046	0.530 0.545 0.518	0.472 0.466 0.460
Restriction nlet, Exhaust, H20 "Hg	0.1 0.0	0.9 0.8 0.7	1.4 1.3 1.1	1.5
Rest Inlet, "H20	1.2 3.5 5.0	12.1 27.7 55.0	11.9 26.3 53.0	12.0a 25.0 50.0
Timing, oBTDC	17 17 17	17 17 17	17 17 17	17 17 17
Engine Load, %	000	222	50 50 50	100 100 100
Engine Spead, rpm	Idle Idle Idle	2650 2650 2650	2650 2650 2650	2650 2650 2650

^aStandard intake restriction is 12.0 "H₂0 at 2650 rpm (d 100% load

adjustment included 13° , 21° and 25° BTDC in addition to the standard timing of 17° BTDC. The effects of injection timing on emissions rates at all four test conditions are listed in Table 21, and are summarized in Table 24 for rated speed and load and Table 25 for 2-percent load at rated speed. No significant changes were observed in HC, CO, NO_X or particulate when the injection pump timing was adjusted to 13° BTDC when tested at rated speed and load. However, at 2-percent load, significant increases in CO and HC were observed, along with a slight increase in particulate.

No changes in CO or particulate rates were observed for an injection timing of 21° BTDC, although a slight increase in NO_X emission rates was observed at 2-percent load. CO emission rates also slightly increased at rated speed and load at 21° BTDC. When the injection pump timing was adjusted to 25° BTDC, both CO and NO_X showed slight increases while particulate emission rates increased significantly (at rated speed and load). At 2-percent load, no changes in HC, CO and particulate were observed; however, a significant increase in NO_X was observed.

Under Bureau of Mines Contract H0292009 to Southwest Research Institute, a more detailed investigation of the effect of induced faults on emissions was conducted. This study involved a Deutz F6L 912W operated over a wider range of induced faults and various combinations of induced faults. In general, effects of various induced faults on the Deutz F6L 912W agreed reasonably well with data reported in this study on the Deutz F3L 912W. The results illustrating the effect of individual induced faults and combinations of induced faults on a Deutz F6L 912W are found in Table 26. As a result of the two studies involving induced faults on two Deutz 912W series engines, the following general trends were observed.

- l. Exhaust restriction little or no effect on HC, CO, NO_X or particulate.
- 2. Intake restriction little or no effect on HC, CO and NO_X , particulate increased at high (50 in. H_20) intake air restriction.

TABLE 24. EFFECT OF INDUCED FAULTS ON GASEOUS AND PARTICULATE EMISSION RATES: ARROWS INDICATE CHANGE FROM BASELINE AT 100% LOAD AT RATED SPEED ON DEUTZ F3L 912W WITH EM-565-F

Fault Descriptio	Fault Description		со	$NO_{\mathbf{X}}$	Particulate
Intake Restricti (12.5 in. H20	on 25	\rightarrow	->	\rightarrow	1
is standard	50	->	1	->	1
Exhaust Restriction	3.0	->	→	>	->
(l.5 in. Hg is standard)	6.0	->	->	\rightarrow	->
Injection Timing	13°	→	->	->	→
(17°BTDC is standard)	21°	7	->	->	->
	25°	1	1	1	↑

[↑] indicates >200% increase above baseline

[≠]indicates 50% to 200% increase

[→]indicates <50% increase

TABLE 25. EFFECT OF INDUCED FAULTS ON GASEOUS AND PARTICULATE EMISSION RATES: ARROWS INDICATE CHANGE FROM BASELINE AT 2 PERCENT LOAD AT RATED SPEED ON DEUTZ F3L 912W WITH EM-565-F

Fault Description	Fault Description		СО	NO _x	Particulate
Intake Restricti	on 25	A	->		->
is standard)	50	1	A	→	→
Exhaust Restriction	3.0	->	->	<i>→</i>	\rightarrow
(1.5 in. Hg is standard)	6.0	->>	→	->	→
Injection Timing	13°	↑	1	->	7
(17°BTDC is standard)	21°	->	->	A	->
	25°	->	→	个	->

[↑] indicates >200% increase above baseline **Jindicates 50% to 200% increase

[→] indicates <50% increase

TABLE 26. EFFECT OF FAULTS AND MALADJUSTMENTS ON DIESEL ENGINE EXHAUST COMPOSITION: ARROWS INDICATE CHANGE FROM BASELINE(5)

NO.	FAULT DESCRIPTION Intake Restriction	ON 25	HC	co	NO _X	PART.*
1-1	(in - H ₂ 0)		^	\rightarrow	\rightarrow	→
1-2		50	→	\rightarrow	\rightarrow	7
2-1	Exhaust Restriction (in - Hg)	3.0	~	\rightarrow	\rightarrow	→
2-2	,	6.0	\rightarrow	→	\rightarrow	\rightarrow
3-1	Timing Advance (from Mfg. Spec.)	4.	1	7	\rightarrow	1
3-2	(110-1-8: 0)	+4°	7	\rightarrow	\rightarrow	\rightarrow
3-3		+8*	7	^	7	\rightarrow
4-1	Overfueling (I rated)	10%	→	7	\rightarrow	7
4-2	(4 11114)	20%	1	1	\rightarrow	7
5-1	Intake Restriction Timing Advance	25 -4•	7	\rightarrow	\rightarrow	1
5-2	IImriig advance	50 -4*	1	7	\rightarrow	1
6-1	Exhaust Restriction Timing Advance	3.0	A	\rightarrow	\rightarrow	\rightarrow
6-2	• • • • • • • • • • • • • • • • • • • •	6.0 +8*	\rightarrow	\rightarrow	7	1
7-1	Intake Restriction Overfueling	25 10%	\rightarrow	7	\rightarrow	1
7-2	***************************************	50 20 %	\rightarrow	1	\rightarrow	1
8-1	Overfueling Timing Advance	10%	\rightarrow	7	\rightarrow	1
8-2		207 +8	\rightarrow	7	\rightarrow	个
9-1	Intake Restriction Exhaust Restriction	25 3.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow
9-2		50 6.0	\rightarrow	7	→	1
10-1	Exhaust Restriction Overfueling	3.0	\rightarrow	7	\rightarrow	个
10-2		6.0	\rightarrow	1	\rightarrow	1
11-1	Int., Exh. Restric. Overfuel, Timing Adv.	25,3.0	→	7	\rightarrow	1
11-2		50,6.0 207.+8°	\rightarrow	1	\rightarrow	个

^{*}This represents particulate production at the most severe engine operating mode.

4

[†] indicates > 200% increase above baseline

Findicates 50% to 200% increase

[→]indicates < 50% increase

- 3. Timing advance at 13° BTDC, HC and particulate increased significantly, CO increased slightly with no change in NO_X observed for the Deutz F6L 912W. Little or no changes in CO, HC, NO_X or particulate observed with Deutz F3L 912W at 13° BTDC. HC and particulate increased significantly at 25° BTDC for both engines, NO_X increased slightly for both engines.
- 4. Overfueling HC and NO_X were essentially unaffected, CO and particulate both increased with the Deutz F6L 912W.
- 5. Combinations of 1-4 above In general, most combinations of induced faults on the Deutz F6L 912W produced increased CO and particulate. In most cases, little or no effect on HC and NO_X emissions was observed. (HC exception was intake restriction at 13° BTDC, NO_X exception exhaust restriction at 25° BTDC).

The effects of induced faults on unregulated emissions (Groups II and III) were also determined. For relative comparison purposes, particulate results were included with Group I. The worst case condition for the effects of engine faults on Groups II and III emissions was observed at 2-percent load at rated speed. Although the trends generally hold for other test conditions, only the 2-percent load is discussed. The emission rates for Groups II and III are included in Tables C-6 through C-10 of Appendix C in the event additional data analysis is desired.

A summary of four primary aldehyde emission rates (formaldehyde acetaldehyde, acrolein, and benzaldehyde) as a function of increased intake air, increased backpressure and maladjusted injection pump timing is presented in Table 27. In general, aldehyde emission rates increase with any adjustment from the standard. In two instances, 50 in. H₂0 intake air restriction and 13° BTDC injection pump timing produced very significant increases in quantities of aldehyde emission rates, greater than 1000 percent increase over baseline

conditions. These increases could conceivably be higher if the two faults occurred simultaneously.

TABLE 27. EFFECT OF INDUCED FAULTS ON ALDEHYDE EMISSION RATES: ARROWS INDICATE CHANGE FROM BASELINE UNDER WORST CASE CONDITION (2 PERCENT LOAD AT RATED SPEED) ON DEUTZ F3L 912 W WITH EM-565-F

Fault Description	Fault Description		Acetaldehyde	Acrolein	Benzaldehyde
Intake Restricti	on 25	1	^	\rightarrow	1
is standard)	50	1	11	1	1
Exhaust Restriction	3.0	1	1	1	->
(1.5 in. Hg is standard)	6.0	1	1	->	1
Injection Timing	1 3°	个个	11	11	个个
(17°BTDC is standard)	21°	7	7	7	-7
	25 °	-7	Я	7	<i>→</i> >

[↑] indicates >200% increase from baseline

[₱]indicates 50% to 200% increase

[→] indicates <50% increase

ff indicates >1000% increase

The nature of this program did not allow projecting emission exposures under various ventilation or emission rate senarios; but the high aldehyde emission rates under these induced faults should be included in any future modeling studies or exposure estimates. An example of these increases is best illustrated by comparing the formaldehyde emission rate under standard conditions (125 mg/hp-hr) to the emission rate at 50 in. H₂0 (2000 mg/hp-hr) and 130 BTDC (7300 mg/hp-hr). Similar increases were observed on other aldehydes under these same induced fault conditions. Additional analysis of the aldehyde emission rates should be made to ensure that exposure to diesel exhaust under typical fault conditions does not pose any health threat to personnel.

Other emissions that were investigated during these induced faults tests included sulfur dioxide, sulfate, organic sulfides, and phenols. The emission rates for sulfur dioxide, sulfate, and organic sulfides for the induced fault tests are included in Appendix C, and the effect of induced faults on these emissions is summarized in Table 28. These emissions were found to be essentially insensitive to the induced faults.

C. Trend Validation

Validation of Group I emission trends was accomplished on several engine-fuel combinations to confirm emission trends reported in an earlier phase. The emission trends reported earlier are presented in Figures 9 and 10 for the Deutz F3L 912W and Perkins 4.2032 operating on AL-7225-F. Trend validation was accomplished on the Deutz F3L 912W with AL-12287-F (MIL-F-46162B(ME), Perkins 4.2482 and Deutz F4L 912W operating on EM-565-F, the EPA certification fuel.

Six modes of the EPA 13-mode cycle were selected to confirm emission trends. These modes included 2-, 50-, and 100-percent load at rated speed, 2- and 25-percent at peak torque speed and idle. These six modes include the worst case conditions, i.e. 2 percent load at both speeds. In general, as load is applied,

TABLE 28. EFFECT OF INDUCED FAULTS ON UNREGULATED EMISSIONS (SULFUR DIOXIDE, SULFATE, ORGANIC SULFIDES AND PHENOLS) FROM A DEUTZ F3L 912W WITH EM-565-F UNDER WORST CASE CONDITION (2 PERCENT LOAD AT RATED SPEED)

Fault Description	n	SO ₂	S0 ₄ =	Organic Sulfides	Phenols
Intake Restriction (12.5 in. H ₂ 0 is standard)	on 25	->	>	>	->
is standard)	50	->	->	→	->
Exhaust Restriction (1.5 in. Hg	3.0	>	->	>	>
is standard)	6.0	>	->	>	->
Injection Timing (17°BTDC	13°	->	→	->	>
is standard)	21°	->	->	->	->
	25°	->	->	->	->

[↑] indicates >200% increase from baseline

[≠]indicates 50% to 200% increase

[→] indicates <20% increase

FIGURE 9. THE EFFECT OF ENGINE LOAD ON HYDROCARBONS, CARBON MONOXIDE, AND OXIDES OF NITROGEN EMISSION RATES FROM A PERKINS 4.2032 AT TWO ENGINE SPEEDS

FIGURE 10. THE EFFECT OF ENGINE LOAD ON HYDROCARBONS, CARBON MONOXIDE, AND OXIDES OF NITROGEN EMISSION RATES FROM A DEUTZ F3L 912W AT TWO ENGINE SPEEDS

emission rates (g/hp-hr) decreased quite rapidly. During the validation of emission trends, triplicate tests were conducted with each engine-fuel combination.

Results of the trend validation tests are summarized in Tables 29, 30, and 31. The trends were confirmed to the extent that at low load (i.e., 2-percent) brake specific emissions rates were high. However, once load was applied to the engine, brake specific emission rates were reduced drastically. This trend was observed for both rated and peak torque speeds.

In comparing mass emission rates, general trends on all three engines were also confirmed. As the load increased, CO emissions decreased at both peak torque and rated speeds. NO_X mass emission rates increased as the engine load increased for a given engine speed. Results observed with these three enginefuel combinations confirm trends reported in earlier work. (1)

TABLE 29. TREND VALIDATION OF EMISSIONS FROM PERKINS 4.2482 WITH EPA CERTIFICATION FUEL, EM-565-F

b fuel	13.31	17.54 17.91 19.16 18.20	10.87 11.26 12.49 11.54	12.67 13.79 13.02 13.16	19.81 21.93 20.49 20.74	17.84 17.92 17.86 17.86
Fuel Specific Emission Rate, g/lb fuel HC CO N	15.49 15.42 14.60 15.17	6.79 6.91 6.83	17.55 17.57 17.38 17.38	4.42	2.84 2.67 2.47 2.67	11.29
Emiss	10.03 11.55 10.95 10.84	5.17 5.96 5.65 5.59	8.59 8.18 8.27 8.35	1.97 2.62 2.72 2.44	0.82 1.03 0.78 0.88	8.43 8.56 8.40 8.40
/hp-hr NOx	41.84 49.61 46.66 46.04	8.71 8.89 9.51 9.04	39.70 41.79 47.08 42.86	5.56 6.12 5.64 5.77	7.63 8.34 7.18 7.72	1 1 111
Brake Specific Emission Rate, g/P HC CO	48.67 49.94 47.28 48.63	3.37 3.43 3.36 3.39	64.11 65.19 65.47 64.92	1.94	1.09 1.02 0.87 1.13	1 1 111
Br Emissi HC	31.53 37.41 37.45 35/47	2.57 2.96 2.80 2.78	31.38 30.36 31.15 30.96	0.86 1.17 1.18 1.07	0.32 0.39 0.27 0.33	1 1 111
R/hr NOx	# K 25 # # 18	116 118 126 119	68 72 73	208 229 211 211	574 614 545 578	2 23 23
Mass Emission, Rate, g/hr HC CO NOx	2 5 5 <u>1</u>	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	112	72 74 72 73	82 75 <u>66</u> 74	C 2 2 2
F	8/3 3 3	3 33 3	21222	7 7 7 7 7 7 7 7 7 7 7	22 24	요프리프
NOx ppru	180 185 180 182	465 440 455 453	180 180 190 183	555 520 543	1575 1575 1560 1560	203 185 190 193
oncentrations CO2, %	1.75 1.70 1.80 1.75	3.52 3.45 3.52 3.50	2.20 2.25 2.25 2.23	5.93 5.85 5.88 5.88	10.96 10.37 10.84 10.72	1.47
Measured Co	307 298 301	265 265 265 265	437 447 442 442	288 288 288 288 288	341 303 312 312	185 191 195 190
HC, ppmC	396 444 428	396 448 432 425	424 412 416	246 324 302	182 216 170 189	264 284 277
8	1 2 L	- 2 Avg	1 2 2 Avg	1 2 2 Avg	1 2 4 Avg	1 2 V
Speed,	1400	1400	2300	2300	2300	0.29
Load, %	7	25	~	20	001	Idle

TABLE 30. TREND VALIDATION OF EMISSIONS FROM DEUTZ F4L 912W WITH EPA CERTIFICATION FUEL, EM-565-F

lb fuel	8.67 8.51 8.36 8.51	11.93 12.22 11.30 11.82	5.78 6.51 5.98 6.09	8.73 9.69 8.82 9.08	6.29 5.84 6.12 6.08	19.12 18.62 16.81 18.18
Fuel Specific Emission Rate, g/lb fuel HC CO NO	7,85 6.25 6.86 6.99	3.21 2.55 2.70 2.82	17.43 12.71 13.63 14.59	2.65 2.40 2.36 2.47	2.13 2.59 2.21 2.31	3.57 3.71 3.82 3.70
Emiss	1.48 1.27 1.42 1.39	0.78 0.85 0.83 0.83	5.07 3.88 3.58 4.18	0.70 0.98 0.94 0.87	0.31 0.45 0.40 0.39	0.77 0.45 0.59 0.60
NO.		7.02 6.97 6.13 6.70	31.68 36.81 33.81 34.10	4.25 5.02 4.45 4.57	2.89 2.68 2.81 2.79	1 1 111
Brake Specific Emission Rate, g/hp HC CO	36.64 29.18 32.94 32.92	1.89	95.50 71.80 77.06 81.45	1.29 1.24 1.19 1.24	0.98 1.19 1.01 1.06	1 1 111
Emiss HC	6.92 5.92 6.82 6.55	0.46 0.48 0.45 0.45	27.76 21.94 20.23 23.31	0.34 0.51 0.48 0.44	0.14 0.20 0.18 0.17	1 : 111
R/hr NOx	30.0 30.0 30.0	76.0 76.0 67.0 73.0	36.0 42.0 39.0 39.0	122.0 144.0 128.0 131.3	164.0 151.0 155.0 156.7	21.0 22.0 20.0 21.0
Mass sion, Rate, g/hr CO NO	27.0 22.0 25.0 25.0	21.0 16.0 16.0 17.7	85.0 89.0 89.0	37.0 36.0 34.0	56.0 67.0 56.0 59.7	4 .0 8 .0 8 .0
Em.	5.0 4.0 4.7	5.0	32.0 25.0 25.0 27.3	10.0 15.0 14.0	8.0 11.0 10.0 9.7	0.000
NO _M PPm	110.0 122.0 122.0 118.0	285.0 315.0 285.0 295.0	100.0 119.0 110.0 113.0	350.0 390.0 370.0 370.0	485.0 460.0 475.0 473.3	215.0 215.0 210.0 213.3
oncentration CO ₂ , %	1.85 1.95 2.00 1.93	3.45 3.58 3.59 3.54	2.31 2.41 2.41 2.38	5.53 5.61 5.85 5.85	10.96 11.20 10.96 11.04	1.61 1.65 1.70 1.65
Measured Cor	160.0 134.0 151.0 148.3	121.0 100.0 100.0 107.0	452.0 341.0 366.0 386.3	160.0 147.0 151.0 152.7	255.0 317.0 264.0 278.7	63.0 67.0 71.0 63.7
HC, PPmC	60.0 54.0 62.0 58.7	58.0 65.0 60.0 61.0	260.0 206.0 190.0 218.7	81.0 116.0 116.0 104.3	68.0 100.0 88.0 85.3	27.0 16.0 22.0 21.7
Run	1 2 Avg	1 2 Avg	1 2 2 Avg	1 2 2 1 Avg	1 2 2 L	1 2 2 - Avg
Speed,	1500	1500	2300	2300	2300	
Load, %	2	25	7	20	001	Idle

FABLE A-7. COMPUTER PRINTOUT OF 13-MODE EMISSIONS TEST ON PERKINS 4.2482 ON EPA CERTIFICATION FUEL (EM-565-F)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

	MODE	- 2848878800-28	MODE	- 2 × 4 × 9 × 8 9 0 1 1 2 ×	
	A TED HOUR NOX	21 24 116 265 265 474 474 397 208 106 68	MODAL WE1GHT FACTOR	080 080 080 080 080 080 080 080	
	CA LCULATED AMS / HOUR CO NO	2000 2000 2000 2000 2000 2000 2000 200	1 1		
	F 9.0	0 W W W W W W W W W W W W W W W W W W W	BSFC CORR LB/HP-HR	* ←50 4 55 55 4 55 56 56 56 56 56 56 56 56 56 56 56 56	
DA TE: 12/07/83	NO NO W	200. 200. 1080. 200. 200. 1575. 1065. 285. 210.	POWER CORR FACT	987 987 988 988 977 900 901	
OA TE: 1	ED C02 PCT	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00			
	MEA SURED CO C PPM P	186. 265. 191. 142. 1132. 1132. 241. 241. 241. 241. 182.	F/A PCT MEAS		
75		260. 396. 396. 254. 274. 182. 180. 348.	F ×	0072 0086 0169 0271 0386 0537 0072 0278 0186	FACTORS -HR -HR
PROJECT: 05-6800-175	NOX CORR FACT	889 899 903 908 917 924 917 911	WET HC CORR FACT	9986 9983 9989 9989 9989 9986 9986 9986	E WEJGHT FAC GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR
ROJECT: 0	INTAKE HUMID GR/LB	24. 26. 26. 26. 28. 28. 32. 34.	= ł Hdu	094 116 235 235 379 759 702 702 519 519 518 148 148	8
	A IR FLOW B/MIN	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F/A STOICH	0690 0690 0690 0690 0690 0690 0690 0690	SING
NS 4.2482 FUEL:EM-565-F	FUEL FLOW B/MIN L	020 055 175 243 332 332 370 105 105	F/A DRY MEAS	0060 0080 0162 0370 0524 0060 0358 0178	S TE
1	OWER OBS BHP	2666 33999 3409 3758 3758 1900	HR NO X	* * * * * * * * * * * * * * * * * * *	YCLE COMPC BSHC - BSCO - BSNOX BSHC +
ENGINE: PERK TEST-1	TORQUE P OBS LB-FT	1	ED GRAMS/BHP HC CO	* * * * * * * * * * * * * * * * * * *	6
	ED RPM		CA LCULAT FUEL NOX	3.50 3.50	
; ; ; ; ;		SPEE COND / IDLE / INTER / INTER / INTER / INTER / IDLE / RATED / RATED / RATED / RATED / IDLE / IDL	GRAMS/LB-F CO	25.49 13.70 13.00	
	ER T	25 25 50 100 75 50 25 25	GP.	0003 0003 0003 0003 0003 0003 0003 000	
	MODE	- 0 1 4 1 0 1 8 6 0 1 7 1	MODE		

83

DEUTZ F4L 912W ON EPA CERTIFICATION FUEL (EM-565-F)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

				ENGINE: D	DEUTZ MODEL FUEL: EM	DEL F41912W EM-565-F	2W	S/N 6501447 PROJECT:	05-6800-175	-175				817/23/1	33		
MODE	POWER	CON	ENGINE SPEED D / RPM	TORQUE OBS LB-FT	POWER OBS BHP	FUEL FLOW LB/MIN	A IR FLOW LB/MIN	INTAKE HUM ID GR/LB	NOX CORR FACT	P P P	MEA SURED CO CO PPM P	ED C02 PCT	NOX PPM	GRAMS HC CC	[3/6]	A TED HOUR NOX	HODE
-	; 1 1 1	IDLE	630.	0.	0.	.018	2.74	52.	.961	27.	63.	1.61	215.	-	4	21.	-
7	7	INTER	/ 1500.	'n	σ.	.058	6.87	58.	985	09	160	1,85	110		27.	30,	. ~
~	25	INTER	/ 1500.	38.	6.0	. 107	6.80	53.	696	28	121.	3.45	285.		21,	76.	m
◀	20	INTER	/ 1500.	76.	21.8	. 157	6.70	47.	.949	62.	87.	5,30	430	٠ د.	<u>+</u>	108	4
S	75	INTER	/ 1500.	_	32.3	.215	6.56	36.	.923	58.	87.	7.85	550.	۳.	13.	125.	~
•	100	INTER	/ 1500.	=	•	.298	6.38	45.	. 950	74.	200	11.20	540.	•	29.	123.	9
_ `		DLE	/ 651.		•	.018	2.69	46.	.938	27.	54.	1.56	205.	<u>-</u> :	۳.	20.	7
.	001	RA TEO	/ 2300.	_	56.9	.435	8.95	45.	156.	68.	255.	10.96	485.	8	56.	164.	80
3 0	2	R¥ TED	/ 2300.			. 323	9.15	46.	. 943	. 99	151.	7.76	490.	8	35.	173.	o,
2:	S (S TED	/ 2300	99	28.8	. 233	9.34	42.	.924	81.	160.	5.53	350.	<u>.</u> 0	37.	122.	2
= :	25	RA TED	/ 2300.		14.4	. 162	9.53	37.	. 905	136.	303.	3.64	210.	17.	73.	75.	=
12	2	№ TED	/ 2300.	3.	1.2	. 105	9.73	44.	916.	260.	452.	2,31	100	32.	110.	36.	13
<u>~ </u>		IDLE	/ 625.	•0	•	.020	2.71	51.	.947	44.	104.	1.65	220.	- :	7.	23.	~
	1	1	1						; i						; ; ; ;		
			CA LCULA TED	ATED		F∖A	F.A		WET HC	F.∧	F.A		POWER	BSFC	-	HODA L	
MODE	,	GRAMS/LB-FUEL	-FUEL	₹ K K K	P-HR	DRY		"PH !	CORR		PCT		CORR	CÓRR		WEIGHT	MODE
10	HC.	00	X ON I	HC CO	XON	MEAS	STOICH	I	FACT	37 S	MEAS		FACT	LB/HP-HR		FACTOR	
-	.11	3.57	19,12 #				!	l !		7,00	13.9	•	.974	****	į `	.067	-
7	1.48	7	8.67	36	40.48	9800.	•	. 124	186.	.0089	3,5	•	166.	4.711	•	080	7
m ·	. 78	3.2	11.93	.46 1.89	7.0					.0163		-	066.	. 594	,	.080	m
♥ 4	96.		15.1	.24 .65	4.0					.0248		•	,991	. 436	-	080	4
ο,	97.		9.08	14.	3.8					.0363		•	966,	.402	-	080	'n
ا م	55.	- •	6.85	14	2.8					.0510		•	,995	.417	-	080	ø
~ (6/.	~ ·	18.58				0690			0074		•	976.	非な定律な	-	.067	7
x 0 (67.9		2.8	_				.0500		_	,008	.455	-	.080	6 0
3 0 (4.	1.7	8.90	18.	••		-			.0359	6.		010.	.451	-	.080	0
2:	07.	2.6	8.73	.34 1.29	4.2	0251			.951	.0259	2.9	_	.01	.482	-	.080	2
= :	1.73	-	7.74	. 17	5.2		0690	. 247		.0173	7.5	_	.012	.667		.080	=
7:	10.0	17.4	5.78	76 95.5	31.6			•		.0113	3.6	_		5.419	-	.080	12
?	1.22	5.74	18.77 *	************		4 000.	0690.	•		.0079	0.9	_	.979	***		.067	<u></u>
1111	1 1 1 1 1														1		

COMPUTER PRINTOUT OF 13-HODE EMISSIONS TEST ON PERKINS 4.2032 ON EPA CERTIFICATION FUEL (EM-565-F) TABLE A-5.

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

	MODE	-28480600125	MODE		
	A TED HOUR · NOX	203. 243. 243. 243. 243. 207. 169. 131.	MODAL WEIGHT FACTOR	080 080 080 080 080 080 080 080	
	CALCULATED GRAMS / HOUR C CO NO	999. 74. 74. 75. 74. 75. 100. 132. 132. 132.	i ;		
	유	24.0 24.0 24.0 24.0 20.0 20.0 20.0 20.0	BSFC CORR LB/HP-HR	* 0	
DATE: 07/26/83	NON M	165. 200. 200. 1200. 170. 720. 545. 410.	POWER CORR FACT	997 0010 0010 0010 0010 0010 0010 0010 0	
DATE: 0	ED C02 PCT	1.55 1.05 1.05 1.05 1.05 1.05 1.05 1.05	!		
	MEASURED CO PPM P	3 13	F/A PCT MEAS	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
MODE 0-175	HC PPM	684. 720. 748. 764. 640. 558. 848. 818. 148. 880.	F/A CALC	0079 0095 0095 0363 0493 0493 0183 0183	FACTORS HR HR -HR -HR
13	NOX CORR FACT	924 924 924 924 924 934 934 934 934 934 934 934	WET HC CORR FACT	983 988 933 933 948 948 948	E WEIGHT FA GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR LBS/BHP-HR
PROJECT: 05	INTAKE HUMID GR/LB	44444444444444444444444444444444444444	u l Hdu	00-127 122-127 122-127 122-127 123-127	<u> </u>
	AIR FLOW H	75555555555555555555555555555555555555	F/A STOICH	0690 0690 0690 0690 0690	USING 13-MC # 2.740 # 4.879 # 6.406 # 9.146 # 4.74
MODEL 4,203,2 EL:EM-565-F	FUEL FLOW LB/MIN L	013 0013 0090 192 192 258 358 302 142 000	F/A ORY MEAS	00084 00084 00084 00084 00088 00088 00088 00088 00088	DS I TE
PERKINS MOD FUEL:E	P S E	00000000000000000000000000000000000000	-HR NOX	i∗v.– ∗ –-w∗i	CYCLE COMPC BSHC BSCO BSNOX BSNOX BSHC CORR
ENGINE: PER	ORQUE OBS B-FT	0	ED GRAMS/BHP HC CO	**************************************	5
	3	2500.	CALCULATI -FUEL NOX	24-00-00-00-00-00-00-00-00-00-00-00-00-00	
	ENGINE SPEED COND / RP	DELE INTER / I	GRAMS/LB-F CO	7. 17. 31 13. 62 2 3. 55 1 3. 55 1 7. 17 17. 17 10. 59 10. 59 10. 59 10. 59 10. 59 10. 59	
	POWER PCT	2222 200 200 200 200 200 200 200 200 20	GRU	19.00 9.96 7.96 7.96 7.96 7.96 7.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1	
1	MODE	- 2 M 4 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0	300	- 0 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

TABLE A-4. COMPUTER PRINTOUT OF 13-MODE EMISSIONS TEST ON PERKINS 4.2032 ON MIL-F-46162A(MR) (AL-7225-F)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

 				ENGINE:		PERKINS MODEL FUEL: EM	1	4.203.2 -544-F	PROJECT:		13-MODE 05-6800-175		DATE:	3/2/83				
MODE	POWER PCI	ENC SPE COND /	ENGINE SPEED D / RPM	TORQUE 08\$ LB-FT	ш	POWER OBS BHP	FUEL FLOW LB/MIN	AIR FLOW LB/MIN	INTAKE HUM ID GR/LB	NOX CORR FACT	<u> </u>	MEASURED CO CO	ED C02 PCT	NOX	를 즐 글 등 등 글	CALCULATED GRAMS / HOUR C CO NO	ATED HOUR NOX	MODE
-		1016	/ 750.	0		0	0.15	2.74	0.5	980	824	437	- 51	128		22		-
~	7	INTER	1500.	•		œ.	020	5,68	47.	916	720.	624	80	9		. o e	• •	- ~
~	52	INTER /	1500.	34	•	9.8	.093	5,66	56.	974	960	494	. 4.5	117	. 02	-	102	
•	20	INTER /	1500.	68.		19.5	140	5,62	53.	166.	728.	361.	5.46	675.	52	0	7	\
<u>د</u>	15	INTER /	1500.			29.6	200	5.81	49.	950	540	274.	7.67	785.	-	0.0	173	ی -
ø	001	INIER	1500.	129		36.8	. 240	5,55	64.	. 982	620.	303.	69.6	859		=	186.	\ vc
~		1016	750.		٠.	•	.015	2.74	39.	. 889	824.	437.	1.51	128		22.	6	^
6	<u> </u>	RATED /	7 2500.		_	46.3	. 342	8.07	58.	.970	464	790.	9.69	482	. 6	152.	146.	•
Φ,	15	RATED /	7 2500.			38.8	300	8.19	52.	196.	592.	494.	7.85	402		103	151	•
0	20	RATEU /	7 2500.			25.0	. 220	8.05	56.	.963	704	7 90.	5.69	273.		164	98	2
=	52	HAIED /	7 2500.	56		12.5	. 158	-	61.	.987	1104.	828.	4, 10	273.	115.	168	98	: =
71	~	HA1ED /	7 2500.	•	•		.097	_	63.	000	912.	1348.	2.47	167.	0	266.	24	2
<u>-</u>		1016	/ 750.	0		۰.	.015	2.74	39.	. 889	824.	437.	1.51	128	21.	22.	6	: :
; 1 ; 1 ; 1	1 1 1 1 1 1 1 1 1 1 1 1 1						1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			1 1 1 1 1 1 1 1	; !			1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1
			CALCULATED	ATED			F/A	F/A		MET IS	F/A	F / A	. A	POWER	BSEC	¦ ¯	MODAL	1
₩	3	8	-FUEL	GRAM	GRAMS/BHP-HR	± ₩	DRY		"I Hd"			PCT		CORR	CORR		WE I GHT	HODE
1 1 1	Ξ	00	X ON	3	00	XON	MEAS	STOICH	Ŧ	FACT	CALC	MEAS		FACT	LB/HP-HR		FACTOR	
-	73.20	24.52	10.42 #	* * * * *		*****	.0055	0690	080	984	A700	1 17	i -	800		!		
~	61.71	29.61	98.	68.7611	8.45	55.43	.0089	•	128	•	0092	9	-	032	3 875		90.0	- ^
~	15.51	12.61	1 9. 1 4	61.	7.24	10.42	.0166	0690.	. 241	•	.0169	6.		024	561		080	· •
₹	6.25	5.95	17.28	_	2.56	7.44	.0251	•	. 364	•	.0260	Α,		.028	419		080	•
-	3. 38	•	•	_	.3	5.84	•	•	•	•	.0358	r		.017	398		080	~
• ر		3	<u>ح</u>	1.23	<u> </u>	<u>ب</u>	•	•	•	•	.0448	2.7		.027	. 382		.080	9
• (25.20		10.42				.0055	•	•	•	.0078			.008	***		.067	7
3 0 (2. 54 	•	7.14		3.28	3. 16	. 042	٠	.618	•	.0449		_	.047	. 423		080	80
3	5.62	5.70	\sim		2.65	3, 38	.0369	•	. 535	•	.0367	5		.029	.451		080	6
2:		12.42	٠	0	6.56	3.56	.0276	٠	399	•	.0272	-1.2	-	0.050	. 503		080	0
= :	- '	17.70	9.40	. 21	•	7.14	•	•	. 285	•	.0202	2.6	<u>-</u>	.043	, 728		080	=
71	ς.	5.8		3,0021	2.93	•	.012	٠	. 173	•	.0128	9.9	_	.042	4.452		080	12
<u>.</u> ;	25.20	24.52	10.42 #	# # # # # #		***		0690 :	080.	. 984	.0078	1.1	-	000	* * *		.067	13
ļi ļi	1	; ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	12	100000	7 1 1 2 C C C C C C C C C C C C C C C C C									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	11111
					ڌَ	מונ נמ	CICLE COMPOSITE USING		15-MODE W	WEIGHT FA	FACTORS							

GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR GRAM/BHP-HR

3.215 5.438 5.361 8.577

BSCO ----- BSNOX ----- BSNOX ----- BSNOX ----- CORR. BSFC - BSFC

LBS/BHP-HR

TABLE A-3. COMPUTER PRINTOUT OF 13-MODE EMISSIONS TEST ON DEUTZ F3L 912W ON EPA CERTIFICATION FUEL (EM-565-F)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

MODE	-2×4×0×8	MODE	- 2 x 4 x 2 x 2 x 2 0 - 2 x 1	
CA LCULATED AMS / HOUR	22 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	MODAL WEIGHT FACTOR	080 080 080 080 080 080 080 080	
A LCU	25. 11. 11. 13. 13. 13. 14. 15.	ı <u>∝</u>	'	
GRAMS HC COLO	- 2 2 4 4 4 4 - 2 0 2	BSFC CORR LB/HP-HR	* * * * * * * * * * * * * * * * * * *	
X X X	140. 1040. 1040. 1050. 1050. 1050. 1050. 1050. 1050.	OWER CORR FACT	988 0004 0002 0004 0003 0017 0016 0018	
D CO2 PCT	wwv 0 2 4 4 2 0 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>		
MEA SURED CO C	129. 191. 121. 87. 87. 120. 112. 112. 182. 200. 251. 406.	F/A PCT MEAS	20 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
P HC	40. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	F/A CALC	.0081 .0098 .0172 .0258 .0363 .0377 .0259 .0197	CTORS
NOX CORR FACT	935 935 935 928 928 931 934 939 946	WET HC CORR FACT	880 666 666 667 737 833 833	E WEIGHT FAC GRAM/BHP-HR GRAM/BHP-HR
INTAKE HUMID GR/LB	4 4 4 4 4 4 4 4 4 4 6 6 8 8 8 8 8 8 8 8	" l Hd"	~ พ พ พ ~ พ พ พ พ พ พ พ พ พ พ พ	13-MODE WE .385 GRAN .851 GRAN
A IR FLOW B/MIN	2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	F/A STOICH	000000000000000000000000000000000000000	SING
FUEL FLOW B/MIN L	012 090 090 132 180 180 013 252 253 253 258 150	F/A DRY MEAS		STTE
POWER OBS BHP L	25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NOX	* 0	CYCLE COMPC BSHC . BSCO .
TORQUE F OBS LB-FT	28. 28. 58. 58. 0. 64. 25.	RAMS/BHICCO	**	ပ်
Σ Σ	673. 1600. 1600. 1600. 1600. 2650. 2650. 2650.	CULATE L X H	4448-000-4490 2000-4490 4 000-4490 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
100	~~~~~	CB-F	00 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
COND	PARTED RATED RATED LOLE LOLE RATED LOLE LOLE LOLE LOLE LOLE LOLE LOLE LO	GRAMS/ CO	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
POWER	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GR HC	1.08 83.50 .50 .550 .725 .725 .725 .727 .727	
MODE	- 2 5 4 5 9 7 8 5 9 - 2 5	MODE	-28 4 8 9 0 - 25 E	

79

TABLE A-2. COMPUTER PRINTOUT OF 13-MODE EMISSIONS TEST ON DEUTZ F3L 912W ON MIL-F-46162B(ME) (AL-12287-F)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

	MODE	-2x4x00-2x	MODE	-2x420080012x
	ATED HOUR NOX	11, 20, 20, 20, 101, 102, 136, 136, 136, 105, 105,	MODAL WEIGHT FACTOR	080 080 080 080 080 080 080 080
	: in the contract of the contr	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	; ; . ≅.	
,	GRAMS HC C	004444-000000-	BSFC CORR LB/HP-HR	* * * * * * * * * * * * * * * * * * *
7/19/83	NOX Mdd	145. 125. 285. 495. 495. 435. 220. 210.	POWER CORR FACT	983 997 997 996 995 995 984 013 013
DATE:	ED C02 PCT	2.156 2.10 2.10 5.04 5.04 5.04 5.05 5.05 5.05 5.05 5.0		
	MEASURED CO PPM P	24. 125. 125. 17. 169. 186. 186. 155. 87.	F/A PCT MEAS	64 - 1
0-175	HC PPM	200 500 500 500 500 500 500 500 500 500	F/A CALC	0074 00100 00163 00338 00495 00355 00355 00181
: 05-6800-175	NOX CORR FACT	024 002 003 014 009 987 003 003 003 002	WET HC CORR FACT	982 977 967 953 975 978 978 978 978 978
6498515 PROJECT:	INTAKE HUMID GR/LB	73. 73. 74. 74. 73. 73. 73.	"HA"	232 232 232 232 232 236 236 236 236 236
ZSW S/N	AIR I FLOW F B/MIN G	22.22 25.22 25.23 25.23 27.25 27.26 27.26 27.26 27.26 27.26	F/A ST01CH	0690 0690 0690 0690 0690 0690
L F3L912SW AL-12287-F	FUEL FLOW B/MIN LI	013 037 083 125 167 250 012 350 143 093	F/A DRY MEAS	0064 0070 0160 0242 0330 0514 0060 0467 0352 0187 0187
DEUTZ MODEL FUEL: /	~	8.0 22.4 3.7 3.2 3.0 10.0 0.0	HR NOX	* * * * * * * * * * * * * * * * * * *
ENGINE: DE TEST-1		0. 26. 54. 80. 0. 87. 87. 21. 1.	TED GRAMS/BHP-HR HC CO N	**************************************
	ENGINE SPEED D / RPM	600. 1600. 1600. 1600. 1600. 2650. 2650. 2650. 2650. 2650.	CALCULATED FUEL G NOX HC	2.36 2.36 2.36 2.36 3.00 4.00 4.00 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8
1	ENGIN SPEED COND / R	DLE NTER NTER NTER NTER NTER NTER NTER NTE	GRAMS/LB-FUEL CO NOX	2.4.2 1.3.4.2 1.3.4.2 1.0.6.3
 	POWER PCT	25 25 25 100 25 25 25 25 25 25 25 25 25 25 25 25 25	GR.	23 - 23 - 23 - 23 - 23 - 23 - 23 - 23 -
1	MODE		78	- 4 m 4 m 6 v 8 9 0 - 2 m

CYCLE COMPOSITE USING 13-MODE WEIGHT FACTORS
BSHC ----- # .355 GRAM/BHP-HR
BSCO ----- # 1.472 GRAM/BHP-HR
BSNOX ---- # 4.684 GRAM/BHP-HR
BSHC + BSNOX # 5.019 GRAM/BHP-HR
CORR. BSFC - # .542 LBS/BHP-HR

TABLE A-1. COMPUTER PRINTOUT OF 13-MODE EMISSIONS TEST ON DEUTZ F3L 912W ON MIL-F-46162A(MR), AL-7225-F

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

DATE: 02/09/83	MEASURED CALCULATED CO CO2 NOX GRAMS / HOUR MODE PPM PCT PPM HC CO 'NOX	129, 1.65 99, 3, 10, 12, 1 125, 2.20 114, 4, 16, 22, 2	3,90 293, 3, 13,	7.95 585. 3. 10.	10.25 402. 5. 19.	1.65 99. 3. 10.	8.24 437, 11, 39,	7.21 470. 11. 34.	5.69 308. 11. 40.	4.30 243. 13. 51.	3.39 129. 13. 57.	00 1
-175	D P P P P P	90.	4	200	72.	90	901	Ξ.	<u>.</u>	130.	160	6
13 MODE : 05-6800-	NOX CORR FACT	. 927	.983	.964	.980	.927	. 965	. 958	. 921	.953	.913	
6498515 PROJECT:	INTAKE HUM 10 GR/LB	56.	63.	58.	63.	56.	.09	56.	47.	58.	45.	7 4
125W S/N	AIR FLOW LB/MIN	2.80	5.22	5.05	4.99	2.80	7.59	7.82	7.62	7.84	7.56	000
DEL F319125W EL:EM-544-F	FUEL FLOW LB/MIN	.023	00:	921.	. 230	.023	. 282	. 250	. 193	. 158	<u>8</u>	100
NGINE: DEUTZ MODEL	POWER OBS BHP	0.6	8	25.6	34.0	0.	41.7	31.1	21.2	10.6	۲.	•
ENGINE: C TEST-1	TORQUE OBS LB-FT	0	28.	84.	112.	•	83.	62.	42.	21.	<u>-</u> :	c
	ENGINE SPEED COND / RPM	/ 600°.	/ 1600.	/ 1600. / 1600.	/ 1600.	/ 600.	/ 2650.	/ 2650.	/ 2650.	/ 2650.	/ 2650.	,
	COND	IDLE	INTER	INTER	INTER	1016	RA TED	9				
	POWER PCT	2	52	20 75	001		00	15	20	52	7	
	MODE	2	m	4 N	9	۲	00	6	01	=	15	7 -

MODAL	WEIGHT MODE	FACTOR		1 190°	.067 1	067 1 080 2 080 3	. 067 1 . 080 2 . 080 3	067 1 080 2 080 3 080 4 080 4	080 080 080 080 080 080 080 6	080 080 080 080 080 080 080 080	080 080 080 080 080 080 067 080 080	080 080 080 080 080 080 080 067 7	080 080 080 080 080 080 067 067 080 080 080	067 080 080 080 080 080 067 067 080 080 080 080	067 10 080 99 08
BSFC	CORR	LB/HP-HR		****	3,788	3.788	3, 788	* * * * * * * * * * * * * * * * * * *	3.788 3.788 709 443 412	3.788 .709 .443 .412	3 + 1	3 * * * * * * * * * * * * * * * * * * *	3 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *	3 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *	3.788 3.788 3.788 443 412 412 8.403 8.467 9.868 8.783
POWER	CORR	FACT		000.	1.000	1.000	1.000 1.023 1.008 1.023	1.000 1.0023 1.008 1.023	1.000 1.023 1.008 1.023 1.014	1.000 1.023 1.023 1.014 1.007	1.000 1.003 1.003 1.001 1.000	1.000 1.023 1.023 1.003 1.000 1.000	1.000 1.003 1.003 1.007 1.000 1.040	1.000 1.003 1.003 1.000 1.000 1.040 1.040	1.000 1.003 1.003 1.004 1.032
F/A	PCI	MEAS	-5.6	•	. v.	, v. v.	ง เกษย เกษย	ง เพาะ เพาะ	ง เขา เขา เขา เขา เขา เขา เขา เขา เขา เขา						
C F/A			1	•	•	• • •	• • • •							· · · · · · · · · · · ·	0105 0184 0251 0367 0469 0079 0315 0266
WET HO	CORR	FACT	.983		.978	978	978 963 129	. 978 . 963 . 129 . 129	979 859 129 129 129	979. 963. 199. 199. 199.	978 963 951 931 983	979 963 1989 1889 978	949 949 949 949	8.0000 00000000000000000000000000000000	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
	"PH I		.122		. 144	. 280	. 144 . 280 . 376	. 144 . 280 . 376 . 516	. 144 . 280 . 376 . 516	. 144 . 280 . 376 . 516 . 674	. 144 . 280 . 376 . 516 . 516 . 524	. 144 . 280 . 376 . 516 . 516 . 543 . 543	280 280 376 376 516 674 674 543 370	280 280 376 516 674 674 674 674 674 674 674 674 674 67	280 280 376 674 674 7543 767 767 767 767 767 767 767 767 767 76
F />		STOICH	0690		0690	0690	0690	0690	0690	0690 0690 0690	0690	0690 0690 0690	000000000000000000000000000000000000000		
F.^A	DRY	MEAS	0084		6600.	.0099	.0099 .0193	.0099 .0193 .0260	.0099 .0193 .0260 .0356	0193 0193 0260 0356 0465	.0099 .0193 .0260 .0356 .0356	.0099 .0193 .0260 .0356 .0084	0099 00193 00260 00356 00356 00374 00322	0099 0193 0356 0356 00465 0374 0324	.0099 .0193 .0260 .0356 .0084 .0374 .0322 .0255
	-HR	X ON	***		27.52	27.52	27.52 7.88 4.56	27.52 7.88 4.56	27.52 7.88 4.56 4.44 2.33	27.52 7.88 4.56 4.44 8.33	27.52 7.88 4.56 4.56 4.44 2.33 3.09	27.52 7.88 7.88 8.2.34 8.2.33 4.09 4.09	27.52 7.58 7.688 7.688 8.2.44 8.2.344 8.4.09 8.4.09	27.52 7.688 7.688 8.7.4.56 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	27.52 7.68 8.2.4.56 8.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
ATED	GRAMS/BHP-HR	нс со	*************************************		5.26 20.05	5.26 20.05	5.26 20.05 .39 1.59 .20 .42	5.26 20.05 .39 1.59 .20 .42 .13 .40	5.26 20.05 .39 1.59 .20 .42 .13 .40	5.26 20.05 .39 1.59 .20 .42 .13 .40	5.26 20.05 .39 1.59 .20 .42 .13 .40 .40 .55	5.26 20.05 .39 1.59 .20 .42 .13 .40 .40 .55	5.26 20.05 .39 1.59 .20 .42 .13 .40 .44 .59 .45 .40 .36 1.08	5.26 20.05 39 1.59 20.42 13.40 14.85 14.85 14.86 15.09 16.50 1.88	5.26 20.05 39 1.59 20.42 13.40 14.88 18.88 19.73 86.05
CALCULATED	3-FUEL	XON	8.23		7.10	7.10	7.10 11.03 10.06	7.10 11.03 10.06 10.61	7.10 11.03 10.06 10.61 5.75	7.10 11.03 10.06 10.61 5.75	7.10 11.03 10.06 10.61 5.75 7.64	7.10 11.03 10.06 10.61 5.75 8.23 #	7.10 11.03 10.06 5.75 8.23 # 9.32	10.05 10.06 10.06 10.61 8.23 7.43 7.43	
	GRAMS/LB-FUEL	00	7.09		5.17	5.17	5.17 2.23 .92	5.17 2.23 .92 .95	5.17 2.23 .92 .95	5.17 2.23 .92 .95 1.35	5.17 2.23 .92 .95 1.35 7.09	5.17 2.23 .92 1.35 7.09 2.32 2.32	20		22 22 K 6 9 2 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9
		£	2.48		1.36	1.36		0		2		5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
_	#ODE		-		7	7 m	0 m 4	0 w 4 w	0 w 4 n o	0×4500	0 m 4 m 6 m 8	0m450000	0×4v0≻800	0×4v0v800 <u>-</u>	0×450/0000 <u>-</u> 5

TYCLE COMPOSITE USING 13-MODE WEIGHT FACTORS	.454 GRAM/BHP-HR	1.627 GRAM/BHP-HR	4.445 GRAM/BHP-HR	4.899 GRAM/BHP-HR	.529 LBS/BHP-HR
CYCLE COMPOSITE USING	BSHC =	BSC0 =	BSNOX	BSHC + BSNOX =	CORR. BSFC - =

APPENDIX A

13-MODE EMISSION TESTS GROUP I ONLY

<u>Table</u>	Engine Model	Test Fuel
A-1	Deutz F3L 912W	MIL-F-46162A(MR)(AL-7225-F)
A-2	Deutz F3L 912W	MIL-F-46162B(ME)(AL-12287-F)
A-3	Deutz F3L 912W	EPA Certification (EM-565-F)
A-4	Perkins 4.2032	MIL-F-46162A(MR)(AL-7225-F)
A-5	Perkins 4.2032	EPA Certification (EM-565-F)
A-6	Deutz F4L 912W	EPA Certification (EM-565-F)
A-7	Perkins 4.2482	EPA Certification (EM-565-F)

VI. REFERENCES

- 1. Dietzmann, Harry E., "Clean Burning Diesel Engines." Interim Report AFLRL No. 169, AD A145515, U.S. Army Belvoir R&D Center, Contract No. DAAK70-82-C-0001, August 1983.
- 2. Code of Federal Regulations, Title 40, Part 86, Subpart D, "Emission Regulations for New Gasoline-Fueled and Diesel Heavy-Duty Engines; Gaseous Exhaust Test Procedures," pp 428-460, 1 July 1982.
- 3. Smith, L.R., Parness, M.A., Fanick, E.R., Dietzmann, H.E., "Analytical Procedures for Characterizing Unregulated Emissions From Vehicles Using Middle-Distillate Fuels," EPA 600/2-80-068, April 1980.
- 4. Code of Federal Regulations, Title 40, Part 86, Subpart B, "Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks; Test Procedures," (particulate tunnel and sampling system) pp 402-465, 1 July 1983.
- 5. Branstetter, R., Buraham, R., and Dietzmann H., "Relationship of Underground Diesel Engine Maintenance to Emissions," Final Report on Bureau of Mines Contract H0202009, December 1983.

- At rated speed and load, an increase in intake air restriction resulted in an increase in particulate and CO.
- No-change in emissions was observed with an increased exhaust restriction.
- Advancing the timing from 170BTDC to 250BTDC increased HC,
 CO, NO_x and particulate emissions.
- In general, virtually all induced faults increased the aldehyde levels, particularly by retarding the injection timing to 130BTDC.
- Induced faults did not affect sulfur dioxide, sulfate, phenols, or organic sulfides.

Results of this study have provided baseline emissions data to allow assessment of the potential problems when operating diesel engines in areas with limited ventilation.

- Of the organic sulfides detected with the Perkins 4.2032 and 4.2482, gerbonyl sulfide was the most predominant.
- No carbonyl sulfide or other organic sulfide was detected in any of the Deutz F3L 912W or Deutz F4L 912W exhaust with any of the fuels.
- DOAS odor values were generally within the range of typically reported values; except the Perkins 4.2032 produced noticeably higher TIA with EM-565-F than other engine-fuel combinations.

Additional unregulated emissions were included in the Group IV analysis; namely, nitropyrenes, PNA compounds, hydrogen sulfide, and selected individual hydrocarbons. A summary of trends and observations for Group IV compounds is presented below:

- None of the unregulated emissions in raw exhaust exceeded the OSHA TLV.
- I-nitropyrene was the most predominant nitroaromatic compound detected. Brake specific 1-nitropyrene emission rates (µg/hr) were highest at low loads.
- Organic extractables from diesel particulate were highest at idle and low load conditions.
- · Phenanthrene and pyrene were the most prevalent PNAs detected.

Engine operation under various malfunctions was determined with selected induced faults. These faults were evaluated on a Deutz F3L 912W, and the results are presented below:

- Sulfate mass emissions (g/hr) were highest at the high load conditions.
- Brake specific sulfate emission rates (g/hp-hr) were highest at low load conditions for all engine-fuel combinations.
- Brake specific particulate rates are highest under low load conditions.

Aldehydes, organic sulfides, phenols, and DOAS odor were included in Group III analyses. General trends and observations are summarized below:

- Formaldehyde was the predominant aldehyde detected, generally accounting for 30-50 percent of the total detected.
- Brake specific formaldehyde emission rates (mg/hp-hr) were highest under low load conditions.
- Formaldehyde emission rates were higher with the high sulfur fuel (AL-12287-F) than the other two fuels.
- Formaldehyde emission rates (mg/hp-hr and mg/hr) were significantly higher on the two Perkins engines than the Deutz engines.
- No phenols were detected with any of the four engines with EM-565 F. Some phenols were detected in exhaust from the Deutz F3L
 912 W and Perkins 4.2032.
- In general, organic sulfide emission rates did not appear dependent on fuel sulfur level.

V. SUMMARY

This section summarizes emission results from engine and fuel combinations tested in this program. Data for Group I emissions provided several general trends and observations:

- BSCO, BSNO_X, and BSHC 13-mode emissions were lowest with the Deutz F3L 912W and Deutz F4L 912W. The highest brake specific HC and CO emissions were observed with the Perkins 4.2032, the Perkins 4.2482 produced the greatest BSNO_X (See Figure 8).
- All engines produced higher BSHC, BSCO and BSNO_X at low load conditions, regardless of speed.
- BSCO and BSHC were lower from the Deutz F3L 912W operating on a MIL-F-46162B(ME) compared to the EPA certification fuel, BSHC was higher and BSCO was lower with MIL-F-46162A(MR) than the EPA certification fuel. BSNO_X emissions were essentially unaffected by fuel type.

Results of Group II emissions for particulate, sulfur dioxide, and sulfate also produced some general trends, and are summarized below:

- At constant speed, sulfur dioxide mass emission rates (g/hr) increase with an increase in load, due primarily to the increase in fuel rate.
- Mass sulfur dioxide emission rates (g/hr) were higher with the high sulfur containing fuel (Al-12287-F) for the Deutz F3L 912W than the MIL-F-46162B(MR) or EPA certification fuel.
- Generally, less than 5-percent of the fuel sulfur is converted to sulfate.

TABLE 31. TREND VALIDATION OF DEUTZ F3L 912W WITH MIL-F-46162B(ME), AL-12287-F

b fuel NOx	8.21 7.60 8.29	12.36 11.76 10.77 11.63	6.40 6.77 5.91 6.36	8.84 7.85 7.85 8.27	7.13 7.33 7.52 7.33	14.91 12.03 14.21 13.72
Fuel Specific Emission Rate, g/lb fuel HC CO N	5.42 7.21 7.22 6.62	2.31 2.17 2.78 2.42	11.74 10.08 9.92 10.58	2.79 2.65 2.65 2.65	1.66 1.69 1.68	2.93 4.16 3.16 3.42
Emissi	1.12	0.58 0.56 0.61 0.58	2.75 1.83 1.79 2.12	0.71 0.59 0.59 0.66	0.28 0.42 0.51 0.40	1.00 0.76 0.59 0.78
fic /hp-hr NOx	49.84 61.59 55.12 55.52	7.72 7.14 6.41 7.09	54.09 61.32 55.34 56.92	4.48	3.42 3.37 3.53 3.44	1 1 111
Brake Specific Emission Rate, g/hp-hr HC CO NO	29.82 54.09 52.34 45.42	1.44 1.32 1.61 1.46	99.22 91.30 92.87 94.46	1.52	0.80 0.78 0.79 0.79	1 1 111
Emiss HC	6.16 13.89 10.82 10.29	0.36 0.34 0.35	23.2i 16.58 16.73 18.84	0.38 0.34 0.34	0.13 0.20 0.24 0.19	1 1 111
R/hr NOx	22 22 23	62 24 54 54	36 37 38	105 95 99	150 143 150 148	0 0 = 0
Mass Emission, Rate, R/hr HC CO NO _X	12 22 21 18	12 17 17 17 17 17 17 17 17 17 17 17 17 17	66 60 63 63	33 32 32 32	33 33 34	~ m m m
Emis	0 0 a a	w w w w	2 = = 12	∞ ~ ∞ ∞	8 5 <u>1</u> 8	0 -
NO _x , ppm	125 108 105 113	285 285 275 282	110 120 120 120	320 310 320 317	495 490 503	155 140 145 147
oncentration CO2, %	2.10 1.85 1.90 1.95	3.45 3.33 3.43 3.43	2.58 2.63 2.80 2.67	5.53 5.53 5.53 5.53	10.25 9.37 9.91 9.84	1.56 1.56 1.56 1.56
CO, ppm	123 147 151 141	87 79 104 90	336 293 307 312	169 160 151 160	186 173 182 180	2 1 2 28
HC, ppmC	52 53 53	£ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	155 105 123	82 69 76	58 81 102 80	2/20 34
Run	1 2 2 Avg	1 2 Avg			1 2 A A & B	1 2 L
Speed,	1600	1600	2650	2650	2650	009
Load, %	8		7	90	001	Idle

APPENDIX B

GROUP II AND III EMISSIONS

- Particulate Emission Rates, g/hr
- B-2 Particulate Emission Rates, g/hp-hr
- B-3 Sulfur Dioxide Emission Rates, g/hp-hr B-4 Sulfur Dioxide Emission Rates, g/hp-hr B-5 Sulfate Emission Rates, g/hr
- B-6 Sulfate Emission Rates, g/hp-hr
- B-7 Aldehyde and Ketone Emission Rates, mg/hr
- B-8 Aldehyde and Ketone Emission Rates, mg/hp-hr
- B-9 Phenols Emission Rates, mg/hr and mg/hp-hr
- B-10 Organic Sulfides Emissions Rates, mg/hr
- B-11 Organic Sulfides Emission Rates, mg/hp-hr
- B-12 DOAS Odor
- B-13 Tentatively Identified PNA Compounds

TABLE B-1. SUMMARY OF PARTICULATE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (g/hr)

		AL-7225-Fa	25-Fa	AL-12287-Fb		EM-5	EM-565-FC	
Engine Speed, rpm	Engine Load, %	Deutz F3L 912W	Perkins 4.2032	Deutz F3L 912W	Deutz F3L 912W	Perkins 4.2032	Perkins Perkins 4.2482	Deutz F4L 912W
Idle	2	1.57	1.24	1.37	1.08	5.96	1.77	1.14
Peak Torque	2	6.97	5.24	46.4	4.38	12.88	7.13	42.9
Peak Torque	25	5.05	78.6	98.9	66.4	9.38	6.81	7.82
Rated	2	9.70	21.28	6.58	13.48	30.40	8.44	14.14
Rated	20	9.33	16.70	15.48	11.61	22.34	9.31	10.02
Rated	100	11.81	31.56	22.27	5.10	32.18	13.89	7.00

aAL-7225-F conforms to MIL-F-46162A(MR) fuel specifications bAL-12287-F conforms to MIL-F-46162B(ME) fuel specifications CEM-565-F conforms to EPA DF-2 certification fuel specifications

TABLE B-2. SUMMARY OF PARTICULATE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (g/hp-hr)

	Deutz F4L 912W	*	8.98	0.72	12.30	0.34	0.12
65-FC	Perkins 4.2482	*	6.79	0.51	4.89	0.24	0.18
EM-565-FC	Perkins 4.2032	*	16.09	1.00	23.37	0.88	0.62
	Deutz F3L 912W	*	5.47	09.0	19.26	0.53	0.11
AL-12287-Fb		*	6.18	0.82	04.6	0.73	0.52
25-Fa	Perkins 4.2032	*	6.55	1.00	16.37	0.67	0.68
AL-7225-Fa	Deutz F3L 912W	*	89.6	0.59	11.28	0.44	0.28
	Engine Load, %	2	2	25	2	20	100
	Engine Speed, rpm	Idle	Peak Torque	Peak Torque	Rated	Rated	Rated

^{*} denotes no horsepower at idle aAL-7225-F conforms to MIL-F-46162A(MR) fuel specifications bAL-12287-F conforms to MIL-F-46162B(ME) fuel specifications CEM-565-F conforms to EPA DF-2 certification fuel specifications

TABLE B-3. SUMMARY OF SULFUR DIOXIDE EMISSION RATES FROM FOUR ENGINES OPERATING ON SEVERAL FUELS (g/hr)

Engine Er	Engine	AL-7225-Fa Deutz Perki	25-Fa Perkins	AL-12287-Fb Deutz	Deutz	EM-565-FC Perkins Perkin	65-FC Perkins	Deutz
Load, %	٠,	F3L 912W	4.2032	F3L 912W	F3L 912W	4.2032	4.2482	F4L 9121
7		2.30	0.73	9.37		4.56	5.24	5.06
7		5.08	4.20	į	1	:		;
7		8.59	8.79	29.09	13.00	13.95		14.84
7		16.48	15.21	62.04	22.45	27.00		40.65
25		5.18	1.09	:	!	1		1
25		12.94	6,45	1	1	1		;
25		15.93	16.88	51.37	18.44	25.35		25.69
25		28.79	17.98	!	1	;		1
20		14.92	13,35	ł	;	;		!
20		23.27	24.90	1	1	1		:
20		23.04	39.02	124.56		57.17		62.83
100		32.19	34.11	ł	1	1		1
100		36.14	41.94	;	1	1		1
100		51.61	40.12	222.79		114.52		109.00

aAL-7225-F conforms to MIL-F-46162A(MR)
bAL-12287-F conforms to MIL-F-46162B(ME)
cEM-565-F conforms to EPA DF-2 Certification Fuel Specifications

TABLE B-4. SUMMARY OF SULFUR DIOXIDE EMISSION RATES FROM FOUR ENGINES OPERATING ON SEVERAL FUELS (g/hp-hr)

	Deutz F4L 912W	*	1	18.55	33.87	ŧ 1	1	2.36	;	;	;	7.18	{	, ! !	1.95
5-FC	Perkins 4.2482	*	:	12.29	14.88	1	:	1.74	!	;	; i	1.79	1	1	1.78
EM-56	Z Perkins Perkins 2W 4.2032 4.2482	*	;	17.44	20.77	;	:	2.70	1	{	!	2.23	;	;	2.23
	Deutz F3L 912W	*	ŀ	16.25	32.07	!	ļ	2.20	;	1	!		1	;	
-	Deutz F3L 912W														
5-Fa	Perkins 4.2032	7.30	8.40	10.99	11.70	10.90	1.02	1.72	1.44	1.03	1.28	1.56	1.40	1.14	0.87
71,-722	Deutz Perkins F3L 912W 4.2032	11.50	8.47	10.74	23.54	1.99	2.12	1.90	2.72	1.29	1.35	1.09	1.39	90.1	1.24
	Engine Load, %	2	۰ ر	1 0	۰ ۲	25	25	25	25	50	20	50	100	100	100
	Engine Speed, rpm	<u>و</u> ح	Intermediate	Deal: Torque	Reak lorque	Idle	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Intermediate	Deak Tordile	Rated

* denotes no horsepower at idle aAL-7225-F conforms to MIL-F-46162B(ME) bAL-12287-F conforms to MIL-F-46162B(ME) cEM-565-F conforms to EPA DF-2 Certification Fuel Specifications

TABLE B-5. SUMMARY OF SULFATE EMISSION RATES FROM FOUR ENGINES OPERATING ON SEVERAL FUELS (g/hr)

	Perkins Deutz	0.178 0.182													
EM-565-FC	Perkins Perkin 4.2032 4.248	0.186 0.	:	0.403 0.	0.964	:	;	0.380 0.	1	;	:	1.305 1.0	:	;	1.677 1.
	Deutz F3L 912W	0.118	;	0.261	0.530	;	1	0.337	1	ţ	;	0.983	ŀ	i	0.572
AL-12287-Fb	Deutz F3L 912W	0.267													
25-Fa	Perkins 4.2032	0.115	0.256	0.241	0.709	0.132	0.247	0.455	0.760	0.324	0.639	0.888	0.418	0.678	1.422
AL-7225-Fa	Deutz F3L 912W	0.278	0.177	0.318	0.404	1.061	0.252	0.452	1.021	0.270	0.501	0.784	0.401	0.693	1.021
	Engine Load, %	2	2	2	2	25	25	25	25	20	20	50	100	100	100
	Engine Speed, rpm	Idle	Intermediate	Peak Torque	Rated	Idle	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated

aAL-7225-F conforms to MIL-F-46162A(MR)
bAL-12287-F conforms to MIL-F-46162B(ME)
CEM-565-F conforms to EPA DF-2 Certification Fuel Specifications

TABLE B-6. SUMMARY OF SULFATE EMISSION RATES FROM FOUR ENGINES OPERATING ON SEVERAL FUELS (g/hp-hr)

		AL-7225-Fa	:5-Fa	AL-12287-Fb		EM-5	65-FC	
Engine Speed, rpm	Engine Load, %	Deutz F3L 912W	Perkins 4.2032	Deutz F3L 912W	Deutz F3L 912W	Perkins Perkir 4.2032 4.248	Perkins 4.2482	Deutz F4L 912W
Idle	2	1.390	1.150	*	*	*	*	*
Intermediate	2	0.295	0.512	;	1	;		1
Peak Torque	2	0.398	0.301	1.408	0.326	0.504		644.0
Rated	2	0.577	0.545	1.173	0.757	0.742		0.291
Idle	25	0.408	1.320	!	:	;		!
Intermediate	25	0.041	0.039	1	!	ł		1
Peak Torque	25	0.054	9,000	0.122	0,040	0.040		0.023
Rated	25	0.096	0.061	ł	!	{		1
Intermediate	50	0.023	0.025	1	!	;		;
Peak Torque	20	0.029	0.033	ţ	{	1		•
Rated	50	0.037	0.036	0.146	0.045	0.051	0.029	0.032
Intermediate	100	0.017	0.017	1	;	;		!
Peak Torque	100	0.020	0.018	{	ł	1		ţ
Rated	100	0.024	0.031	0.095	0.013	0.033		0.008

* denotes no horsepower at idle aAL-7225-F conforms to MIL-F-46162B(ME) bAL-12287-F conforms to MIL-F-46162B(ME) CEM-565-F conforms to EPA DF-2 Certification Fuel Specifications

TABLE B-7. SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERL FUELS (mg/hr)

		u u		200	Aldehyde	Aldehyde and Ketone Emission Rate, mg/hr	mission Rate	mg/hr	P
Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F EM-5	#.2032 EM-565-F	EM-565-F	EM-565-F
Idle	7	Formaldehyde	~		2	135	140	45	Q
Intermediate	7	Formaldehyde	7	1	;	310	:	:	1
Peak Torque	7	Formaldehyde	\$	24	91	470	558	478	S
Rated	7	Formaldehyde	93	:	;	739	;	;	ŧ
Intermediate	S	Formaldehyde	51	:	1	90)	;	;	:
Peak Torque	8	Formaldehyde	32	1	;	64	;	:	:
Rated	8	Formaldehyde	83	1	i	352	;	;	ţ
Intermediate	001	Formaldehyde	•••	1	;	143	1	;	;
Peak Torque	<u>00</u>	Formaldehyde	50	1	;	426	;	;	;
Rated	100	Formaldehyde	11	20	126	541	2111	09	175
Idle	7	Acetaldehyde	QX	QN	-	33	36	*	QN
Intermediate	7	Acetaldehyde	2	:	;	06	:	:	;
Peak Torque	7	Acetaldehyde	7		2	133	66	79	Q
Rated	7	Acetaldehyde	28	:	;	199	1	;	;
Intermediate	2	Acetaldehyde	Q	;	;	63	ł	;	;
Peak Torque	8	Acetaldehyde	Q	;	1	13	;	:	1
Rated	8	Acetaldehyde	3	1	:	531	:	:	;
Intermediate	<u>00</u>	Acetaldehyde	Q	;	;	22	;	;	;
Peak Torque	001	Acetaldehyde	2	:	;	141	ł	1	;
Rated	<u>8</u>	Acetaldehyde	Q	Q	31	64	366	13	34
Idle	7	Acrolein	7	Q	-	Q	QN	E	-
Intermediate	7	Acrolein	<u>Q</u>	;	;	Q	;	:	;
Peak Torque	7	Acrolein	3	QN	-	Q	Q	31	QN
Rated	7	Acrolein	8	:	;	23	1	:	;
Ihtermediate	Š	Acrolein	.	;	1	15	:	;	1
Peak Torque	<u></u>	Acrolein	13	;	;	Q	:	:	:
Rated	Š	Acrolein	22	ł	;	Q.	1	:	;
Intermediate	<u>00</u>	Acrolein	Q	;	1	Q	1		;
Peak Torque	<u>00</u>	Acrolein	2	;	;	Q	1	1	1
Rated	100	Acrolein	#	Q	12	09	Q	01	18

TABLE B-7 (Cont'd). SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hr)

Engine	Engine	Exhaust		Dei 17 F 31 91 7 W		Derking 4 2012	4 2012	Darking 4 2482	Dante E41 012W
Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
ldle	2	Propionaldehyde	QN	QX	54	15	33	6	24
Intermediate	7	Propionaldehyde	2	;	;	53	: :	. ;	; ;
Peak Torque	~	Propionaldehyde	~	7	26	99	11	98	04
Rated	7	Propionaldehyde	56	. 1	;	106	: ;	; ;	: ;
Intermediate	8	Propionaldehyde	Q	ł	;	3	;	;	;
Peak Torque	Š	Propionaldehyde	QZ	;	;	Q	;	;	:
Rated	20	Propionaldehyde	Q	;	i	240	;	;	;
Intermediate	100	Propionaldehyde	2	;	:	<u>``</u>	;	;	:
Peak Torque	001	Propionaldehyde	~	;	;	50	:	;	;
Rated	001	Propionaldehyde	\$	Q	36	25	124	153	15
Idle	7	Acetone	Q	Q	Q	Q	S	%	2
Intermediate	7	Acetone	Q	:	!	Q	! :	: :	} ;
Peak Torque	7	Acetone	Q	QN	QN	Q	QN	Q	Q
Rated	2	Acetone	Q	:	:	Q	;	:	1
Intermediate	S	Acetone	S	;	:	QN	;	:	;
Peak Torque	<u>8</u>	Acetone	6	;	;	Q	:	;	1
Rated	δ 2	Acetone	21	1	;	Q	:	;	1
Intermediate	<u>8</u>	Acetone	2	;	;	Q	:	:	;
Peak Torque	001	Acetone	Q	;	;	Q	:	!	;
Rated	100	Acetone	Q	QN	Q	QN	QN	13	QN
Idle	7	Crotonaldehyde	QN	7	-	QN	٠	-	
Intermediate	7	Crotonaldehyde	.	;	;	Q	. }	. ;	. ;
Peak Torque	7	Crotonaldehyde	7	S	3	Q	32	87	
Rated	7	Crotonaldehyde	33	;	1	Q	:	:	;
Intermediate	Š	Crotonaldehyde	~	:	;	15	;	:	;
Peak Torque	Σ Σ	Crotonaldehyde	~	;	;	Q	:	;	:
Rated	S	Crotonaldehyde	91	;	;	28	;	;	;
Intermediate	<u>00</u>	Crotonaldehyde	7	:	;	S	ŀ	:	;
Peak Torque	001	Crotonaldehyde	21	:	:	S	;	i	;
Rated	100	Crotonaldehyde	~	3	3	24	ΩN	81	6

TABLE B-7 (Cont'd). SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hr)

Engine	Engine	Exhaust	0	Deutz F3L 912W	L	Perkins 4,2032 Perk	4.2032	Perkins 4.2482	Deutz F4L 912W
Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
Ide	7	Isobutyraldehyde+MEK	36	7	~	20	50	55	10
Intermediate	7	Isobutyraldehyde+MEK	∞	:	;		;	;	;
Peak Torque	7	Isobutyraldehyde+MEK	52	••	22	78	98	136	9
Rated	7	Isobutyraldehyde+ME*	260	;	;	96	:	ŀ	;
Intermediate	8	Isobutyraldehyde+ME:	17	ł	;	64	!	ł	:
Peak Torque	Š	Isobutyraldehyde+MEK	22	ł	;	\$;	į	:
Rated	<u>ک</u>	Isobutyraldehyde+MEK	27	;	;	183	;	:	:
Intermediate	001	Isobutyraldehyde+MEK	13	;	;	74	;	ł	;
Peak Torque	001	Isobutyraldehyde+MEK	61	:	;	Q	1	;	!
Rated	001	Isobutyraldehyde+MEK	52	91	35	115	Q	55	57
Idle	7	Benzaldehyde	Q	2	×	Q	Q	15	3
Intermediate	7	Benzaldehyde	•	1	;	64	1	;	;
Peak Torque	7	Benzaldehyde	12	••	22	38	89	253	-
Rated	7	Benzaldehyde	19	;	;	125	;	;	;
Intermediate	S	Benzaldehyde	g	;	ŀ	28	:	;	:
Peak Torque	8	Benzaldehyde	Ş	1	;	23	;	;	:
Rated	8	Benzaldehyde	7	:	;	55	1	:	;
Intermediate	<u>00</u>	Benzaldehyde	9	;	;	91	;	;	:
Peak Torque	001	Benzaldehyde	7	:	;	38	;	;	;
Rated	100	Benzaldehyde	2	16	35	168	189	09	62
Idle	7	Hexanaidehyde	QN	Q.	47	QN	11	19	-
Intermediate	7	Hexanaldehyde	Q	:	1	165	1	;	;
Peak Torque	7	Hexanaldehyde	Q	11	7	243	85	69	•
Rated	7	Hexanaldehyde	Q	!	;	312	1	;	;
Intermediate	S	Hexanaldehyde	2	;	;	<u>8</u>	:	;	;
Peak Torque	8	Hexanaldehyde	•	1	;	27	;	;	;
Rated	<u>\$</u>	Hexanaldehyde	Q	;	ł	90 90	1	;	;
Intermediate	001	Hexanaldehyde	운	1	;	8	:	;	;
Peak Torque	<u>00</u> 1	Hexanaldehyde	Q	i	;	160	1	;	;
Rated	001	Hexanaldehyde	S	31	7	36	305	45	9

TABLE B-8. SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERL FUELS (mg/hp-hr)

Engine	Engine	Exhaust		Deutz F3L 912W		Perkins 4.2032 Perkin	4.2032	Perkins 4.2482	Deutz F4L 912W
Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
Idle	7	Formaldehyde	25	•	*	1350	•	*	
Intermediate	7	Formaldehyde	13	1	;	620	1	;	;
Peak Torque	7	Formaldehyde	. ≈	09	20	588	869	435	Q
Rated	7	Formaldehyde	133	ł	ŀ	588	;	;	:
Intermediate	S	Formaldehyde	1.3	;	;	9.0	;	;	;
Peak Torque	8	Formaldehyde	1.9	ł	;	2.5	1	:	;
Rated	8	Formaldehyde	3.9	;	1	14.1	;	:	:
Intermediate	100	Formaldehyde	0.3	;	;	5.9	;	•	;
Peak Torque	90	Formaldehyde	9.0	:	;	9.11	:	;	!
Rated	00	Formaldehyde	0.4	0.5	2.8	11.7	41.1	0.8	3.2
Idle	~	Acetaldehyde	Q	•	*	330	*	٠	*
Intermediate	7	Acetaldehyde	3	1	;	180	;	;	;
Peak Torque	7	Acetaldehyde		••	1.5	991	124	72	Q
Rated	7	Acetaldehyde	04	1	;	153	;	i	;
Intermediate	8	Acetaldehyde	Q	:	;	4.8	1	;	;
Peak Torque	8	Acetaldehyde	S	ł	;	0.7	;	1	:
Rated	2	Acetaldehyde	0.2	;	1	21.2	;	:	;
Intermediate	001	Acetaldehyde	Q	:	1	0.1	1	;	;
Peak Torque	<u>00</u>	Acetaldehyde	2	:	;	3.8	:	;	:
Rated	00 1	Acetaldehyde	Q	Q	0.7	: :	7.1	0.2	9.0
Idle	7	Acrolein	01	*	*	Q	*	*	*
Intermediate	7	Acrolein	2	;	;	2	!	;	1
Peak Torque	7	Acrolein	.	g	0.9	2	Q	78	Q
Rated	7	Acrolein	71	ŀ	;	8 1	;	1	1
Intermediate	2	Acrolein	0.3	:	ł	1.2	;	:	:
Peak Torque	8	Acrolein	0.8	•	;	Q	:	:	:
Rated	8	Acrolein	1:0	:	;	Q	1	i	:
Intermediate	<u>00</u>	Acrolein	Q	;	:	Q	:	•	
Peak Torque	001	Acrolein	Q	:	1	Q	;	1	:
Rated	001	Acrolein	0.1	2	0.3	1.3	Q	0.1	5.1

^{*}denotes no horsepower at idle

TABLE B-8 (Cont'd). SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hp-hr)

					Aldehyde	nd Ketone Fm	Aldehyde and Ketone Emission Rate, mg/ho-hr	ne/hn-hr	
Engine Speed, rpm	Engine Load, %	Exhaust Species	AL-7225-F	Deutz F3L 912W AL-12287-F	1. 1	Perkins 4.2032 AL-7225-F EM-5	4.2032 EM-565-F	Perkins 4.2482 EM-565-F	Deutz F4L 912W EM-565-F
Idle	7	Propionaldehyde	Q	•	*	150	*	•	•
Intermediate	7	Propionaldehyde		;	;	105	;	;	;
Peak Torque	7	Propionaldehyde	Þ	\$	02	83	1.4	78	2.
Rated	7	Propionaldehyde	37	1	1	82	1	;	:
Intermediate	8	Propionaldehyde	2	:	ì	2.4	:	:	;
Peak Torque	<u>8</u>	Propionaldehyde	Q	:	1	Q	:	;	;
Rated	<u>ک</u>	Propionaldehyde	9	1	:	9.6	;	;	;
Intermediate	001	Propionaldehyde	٥.1	;	:	9.0	;	;	:
Peak Torque	001	Propionaldehyde	0.1	;	;	7. I	;	;	;
Rated	100	Propionaldehyde	0.1	Q	8.0	0.5	2.4	2.0	0.3
17.	,	Acetone	2	•	٠	S	*	•	*
lotermediate	• ^	Acetone	Ž	1	;	Ž	1	;	;
Peak Tornie	۰ ۲	Acetone	2	Q	2	Z	QZ	QN	QV
Rated	7	Acetone	S	;	1	QN	;	;	;
Intermediate	8	Acetone	2	:	;	Q	;	;	;
Peak Torque	50	Acetone	0.5	ŀ	1	Q.	1	:	:
Rated	<u>\$</u>	Acetone	0.1	:	;	Q	í	;	:
Intermediate	700	Acetone	Q	1	;	Q	:	;	;
Peak Torque	001	Acetone	Q	;	;	S	•	;	:
Rated	001	Acetone	Q	Q	Q	Q	Q	0.2	Q
Idle	~	Crotonaldehyde	S	•	*	Q	*	*	•
Intermediate	7	Crotonaldehyde	7	:	;	g	;	;	;
Peak Torque	7	Crotonaldehyde	6	Q	3.3	Q	0,4	16	4.1
Rated	~	Crotonaldehyde	47	:	;	Q	{	1	:
Intermediate	8	Crotonaldehyde	9. 0	;	;	1.2	;	;	;
Peak Torque	S	Crotonaldehyde	0.3	1	;	Q	;	;	:
Rated	8	Crotonaldehyde	o.8	1	:	Q	:	;	1
Intermediate	001	Crotonaldehyde	0.3	ſ	;	Q	}	:	:
Peak Torque	<u>00</u>	Crotonaldehyde	9.0	{	;	S	;	:	1
Rated	100	Crotonaldehyde	0.1	0.1	0.1	6.0	Q	0.2	0.2

* denotes no horsepower at idle

TABLE B-8 (Cont'd). SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hp-hr)

T cioc e ci	7. 	H ************************************		De E31 917W	- 1	Aldehyde and Ketone Emission Rate, mg/hp-hr	ission Rate, n	ng/hp-hr	Dent 7 E41 912 W
Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
Idle	7	Isobutyraidehyde+MEK	180	•	*	200	•	*	*
Intermediate	7	Isobutyraldehyde+MEK	30	;	;	162	;	;	:
Peak Torque	7	Isobutyraldehyde+MEK	ĸ	21	32	86	108	124	7.1
Rated	7	Isobutyraldehyde+MEK	372	;	1	74	;	;	:
Intermediate	8	Isobutyraldehyde+MEK	4. I	;	;	3.7	;	;	;
Peak Torque	8	Isobutyraldehyde+MEK	†. I	ì	;	2.3	;	:	;
Rated	8	Isobutyraldehyde+MEK	1.3	}	ł	7.3	;	:	;
Intermediate	001	Isobutyraldehyde+MEK	0.7	1	;	1.0	1	;	:
Peak Torque	001	Isobutyraldehyde+MEK	9.0	;	;	Q	;	:	:
Rated	100	Isobutyraldehyde+MEK	9.0	4.0	8.0	2.5	Q	0.7	1.0
Idle	2	Benzaldehyde	Q	*	*	QN	*	*	*
Intermediate	7	Benzaldehyde	~	;	:	86	;	:	;
Peak Torque	7	Benzaldehyde	2	21	28	87	85	230	8.1
Rated	7	Benzaldehyde	87	;	:	%	:	;	:
Intermediate	S	Benzaldehyde	Q	:	i	2.2	;	ł	;
Peak Torque	Š	Benzaldehyde	2	;	1	1.2	}	;	;
Rated	S	Benzaldehyde	0.3	1	;	2.2	:	ł	;
Intermediate	001	Benzaldehyde	0.3	ì	;	0.7	1	;	:
Peak Torque	001	Benzaldehyde	0.2	;	;	0.1	ì	i	ł
Rated	001	Benzaldehyde	0.3	0.4	1:1	3.6	3.7	0.8	1:1
Idle	7	Hexanaldehyde	QN	*	*	Q	*	*	•
Intermediate	7	Hexanaldehyde	Q	}	;	330	;	;	:
Peak Torque	7	Hexanaldehyde	Q	5 6	8.5	304	73	63	3.5
Rated	2	Hexanaldehyde	2	1	;	240	}	:	;
Intermediate	δ 2	Hexanaldehyde	Q	;	;	7. T	;	:	;
Peak Torque	8	Hexanaldehyde	0.3	;	;	1.4	1	;	:
Rated	<u>چ</u>	Hexanaldehyde	S	;	;	3.5	;	;	;
Intermediate	8	Hexanaldehyde	Q	;	;	3.7	;	:	:
Peak Torque	001	Hexanaldehyde	2	1	;	4.3	;	:	1 7
Rated	100	Hexanaldehyde	Q	0.7	0.2	8.0	5.9	9.0	0.1

denotes no horsepower at idle

TABLE B-9. SUMMARY OF PHENOL EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS, mg/hr (mg/hp-hr)

					Phenol E	Phenol Emission Rate, mg/hr(mg/hp-hr)	hr(mg/hp-hr)		
Engine Speed, rpm	Engine Load, %	Exhaust Species	AL-7225-F	Deutz F3L 912W AL-12287-F	EM-565-F	Perkins 4. AL-7225-F	2032 EM-565-F	Perkins 4.2482 EM-565-F	Deutz F4L 912W EM-565-F
Idle	7	Phenol	QN	Q	Q	Q	Q	7.43(*)	*
Intermediate	7	Phenol	Q	;	;	Q	:	;	;
Peak Torque	7	Phenol	*	QN	*	38.83(48.54)	QV	36.19(32.90)	*
Rated	7	Phenol	Q	;	;	Q	;	1	;
Intermediate	Š	Phenol	Q	:	;	Q	;	;	;
Peak Torque	<u>ک</u>	Phenol	Q	;	1	Q	1	;	:
Rated	8	Phenol	Q	i	;	Q.	:	;	;
Intermediate	001	Phenol	QN	;	;	2	;	i	;
Peak Torque	100	Phenol	QZ	1	;	20.93(0.57)	:	•	1
Rated	001	Phenol	QN	Q	Q	QN	Q	Q	40.89(0.74)
Idle	7	Salicylaldehyde	QN ON	Q	Q	N	Q	17.21(*)	*
Intermediate	7	Salicylaldehyde	QN	;	;	Q	:	;	;
Peak Torque	7	Salicylaldehyde	*	Q	*	9.06(11.33)	Q	6.27(5.70)	*
Rated	7	Salicylaldehyde	Q	;	;	2	:	;	ł
Intermediate	8	Salicylaldehyde	Q	:	;	4.07(0.31)	;	;	;
Peak Torque	Š	Salicylaldehyde	Q	;	;	Q	;	;	:
Rated	20	Salicylaldehyde	Q	1	;	2	:	;	;
Intermediate	001	Salicylaldehyde	QN	1	;	Q	1	:	1
Peak Torque	100	Salicylaldehyde	S	;	;	2	ł	;	;
Rated	001	Salicylaldehyde	Q	Q	Q	22.80(0.49)	Q	Q	Q
Idle	7	m- & p-cresol	QN	Q	QN	QN	QN	QN	•
Intermediate	7	m- & p-cresol	Q	;	1	Q	:	:	1
Peak Torque	7	m- & p-cresol	*	Q	*	Q	Q	Q	*
Rated	7	m- & p-cresol	QN	;	:	106.19(81.68)	;	;	;
Intermediate	8	m- & p-cresol	QN	;	;	S	1	:	;
Peak Torque	8	m- & p-cresol	Q	;	;	Q	1	;	;
Rated	20	m- & p-cresol	Q	:	ł	49.13(1.97)	1	:	;
Intermediate	0CI	m- & p-cresol	Q.	;	ł	Q	:	;	;
Peak Torque	001	m- & p-cresol	Q	:	;	Q	1	:	;
Rated	100	m- & p-cresol	QN	Q	Q	Q	Q	S	Q

denotes no horsepower at idle

TABLE B-9 (Cont'd). SUMMARY OF PHENOL EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS, mg/hr (mg/hp-hr)

d, rpm Load, % Species AL-7225-F AL-1228-F AL-7228-F EM-56-F ediate 2 Five Phenols ND 11.71(*) ND ND ND rediate 2 Five Phenols 29.04(2.10)	Engine	Engine	Exhaust		Deutz F3L 912W		Perkins 4.2032	-1	Perkins 4.2482	Deutz F4L 912W
claste 2 Five Phenols ND 11.71(*) ND ND ND orque 2 Five Phenols ***	Speed, rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
cdiate 2 Five Phenols ND 3.32(6.64) orque 2 Five Phenols 9.04(42.00) 281.32(216.4) ediate 30 Five Phenols 36.1(3.11) 281.32(216.4) orque 30 Five Phenols 26.1.2(12.31) 11.54(1.19) orque 30 Five Phenols 26.1.2(12.32) ND norque 30 Five Phenols 16.54(0.20) ND rediate 100 Five Phenols 16.54(0.20) ND orque 100 Five Phenols 16.54(0.20) ND ND orque 100 Five Phenols 17.94(0.4) ND ND ND ND ND ND ND ND ND ND ND AD AD	Idle	~	Five Phenols	Q	11.71(*)	2	Q	Q	Q	•
2 Five Phenols * ND * ND	Intermediate	~	Five Phenols	2	:	;	3.32(6.64)	;	:	;
Colored Colo	Peak Torque	7	Five Phenols	•	S	•	2	Q	8.15(7.41)	*
ediate 30 Five Phenols 36.11(3.11)	Rated	8	Five Phenols	29.04(42.00)		ł	281.32(216.4)	1	. 1	;
orque 50 Five Phenols 26,122(13.2) — ND — cliate 100 Five Phenols 16,90(0.73) — — ND — orque 100 Five Phenols 16,90(0.73) — — ND — 100 Five Phenols 17,34(0.43) ND — — ND — 2 2-r-propylphenol ND ND — ND ND — ediate 2 2-r-propylphenol ND — — ND — ediate 30 2-r-propylphenol ND — ND ND — ediate 30 2-r-propylphenol ND — — ND — ediate 30 2-r-propylphenol ND — — ND — ediate 100 2-r-propylphenol ND — — ND ND ediate 100 2-r-propylphenol ND	Intermediate	2	Five Phenols	36.11(3.11)	;	;	15.47(1.19)	ŀ	:	;
100 Five Phenols 261,22(12,12)	Peak Torque	2	Five Phenols	Q	ł	1	2	;	:	;
ediate 100 Five Phenols 16,99(0,73)	Rated	2	Five Phenols	261.22(12.32)	;	:	Q	;	1	3
orque 100 Five Phenols 30.66(0.30)	Intermediate	8	Five Phenols	16.90(0.73)	ł	;	2	;	:	;
100 Five Phenols 17.94(0.43) ND ND ND ND ND ND ND N	Peak Torque	8	Five Phenols	30.66(0.90)	!	:	2	ł	:	3
2 2-n-propylphenol ND	Rated	8	Five Phenols	17.94(0.43)	2	Q	Q	Q	Q	Q
ediate 2 2-n-propylphenol ND	ídie	7	2-n-propylphenol	QN	Q	QN	Q	S	3.33(*)	•
2 2-n-propyliphenol * ND * ND * 2 2-n-propyliphenol ND	Intermediate	7	2-n-propylphenol	S	;	;	2	ł	:	1
2 2-n-propylphenol ND	Peak Torque	7	2-n-propylphenol	•	S	*	욷	Q	13.57(12.33)	*
ediate 30 2-n-propylphenol ND 6.51(0.33) orque 30 2-n-propylphenol ND 6.51(0.33) 50 2-n-propylphenol ND 1.58(0.07) orque 100 2-n-propylphenol ND 2.62(0.07) orque 100 2-n-propylphenol ND 2.62(0.07) orque 100 2-n-propylphenol ND ND ND ND ediate 2 2,3,5-trimethylphenol ND ND ND orque 2 2,3,5-trimethylphenol ND ND orque 50 2,3,5-trimethylphenol ND ND orque 50 2,3,5-trimethylphenol 6,14(0.27) ND 0 2,3,5-trimethylphenol 6,14(0.27)	Rated	7	2-n-propylphenol	QV.	1	;	2	ł	:	1
orque 30 2-n-propylphenol ND 6,51(0,33) 50 2-n-propylphenol ND 1,58(0,07) 6-diate 100 2-n-propylphenol ND 2,62(0,07) 6/0 2-n-propylphenol ND ND ND ND ND 6/diate 100 2-n-propylphenol ND ND ND ND 6/diate 2 2,3,5-trimethylphenol ND ND ND 6/diate 3 2,3,5-trimethylphenol 3,93(0,34) ND 6/diate 50 2,3,5-trimethylphenol ND ND 7 2,3,5-trimethylphenol ND ND 8 2,3,5-trimethylphenol ND ND 9 2,3,5-trimethylphenol 6,14(0,27) ND 100 <	Intermediate	ደ	2-n-propylphenol	Q	;	;	g	ł	:	:
50 2-n-propylphenol ND I.58(0.07) orque 100 2-n-propylphenol ND 1.58(0.07) orque 100 2-n-propylphenol ND 2.62(0.07) 100 2-n-propylphenol ND ND ND ND 2 2-n-propylphenol ND ND ND ND ediate 2 2,3,5-trimethylphenol ND ND ND orque 30 2,3,5-trimethylphenol 3,93(0.34) ND orque 50 2,3,5-trimethylphenol ND ND orque 50 2,3,5-trimethylphenol ND ND orque 100 2,3,5-trimethylphenol 6,14(0.27) ND 0 2,3,5-trimethylphenol 6,14(0.27)	Peak Torque	ደ	2-n-propylphenol	Q	;	į	6.51(0.33)	1	;	;
ediate 100 2-n-propylphenol ND	Rated	Š	2-n-propylphenol	Q	;	;	Ş	;	1	:
orque 100 2-n-propylphenol ND 2.62(0.07) 100 2-n-propylphenol ND ND ND ND ND 2 2,3,5-trimethylphenol ND ND ND ediate 2 2,3,5-trimethylphenol ND ND orque 2 2,3,5-trimethylphenol 13.57(19.39) ND ediate 50 2,3,5-trimethylphenol ND ND ND sque 50 2,3,5-trimethylphenol ND ND ND sque 100 2,3,5-trimethylphenol 6.14(0.27) ND sque 100 2,3,5-trimethylphenol 8.97(0.22) ND sque 100 2,3,5-trimethylphenol 8.97(0.22) ND	Intermediate	8	2-n-propylphenol	Q	;	;	1.58(0.07)	1	:	:
100 2-n-propylphenol ND ND ND ND 2 2,3,5-trimethylphenol ND	Peak Torque	<u>8</u>	2-n-propylphenol	2	;	;	2.62(0.07)	ì	:	:
2 2,3,5-trimethylphenol ND ND ND ND ND Orque 2 2,3,5-trimethylphenol ND	Rated	001	2-n-propylphenol	QN	Q	Q	Q	Q	2.56(0.03)	QN
ediate 2 2,3,5-trimethylphenol ND ND orque 2 2,3,5-trimethylphenol 13,57(19,39) ND 2 2,3,5-trimethylphenol 3,93(0,34) ND ediate 30 2,3,5-trimethylphenol ND ND orque 30 2,3,5-trimethylphenol 6,14(0,27) ND ediate 100 2,3,5-trimethylphenol 6,14(0,27) ND 100 2,3,5-trimethylphenol 8,97(0,22) ND ND ND	idle	7	2,3,5-trimethylphenol	QN	QN	Q	3.04(*)	QN	Q	•
2 2,3,5-trimethyliphenol * ND ND 2 2,3,5-trimethyliphenol 13.57(19.39) ND ediate 50 2,3,5-trimethyliphenol ND ND orque 50 2,3,5-trimethyliphenol ND ND ediate 100 2,3,5-trimethyliphenol 6.14(0.27) ND orque 100 2,3,5-trimethyliphenol 10.61(0.31) ND ND 100 2,3,5-trimethyliphenol 8,97(0.22) ND ND ND	Intermediate	7	2, 3, 5-trimethylphenol	QX	;	;	2	;	:	:
2 2,3,5-trimethylphenol 13.57(19.39) ND Orque 50 2,3,5-trimethylphenol 3.93(0.34) ND Orque 50 2,3,5-trimethylphenol ND	Peak Torque	7	2,3,5-trimethylphenol	*	Q	•	2	2	Q	•
ediate 50 2,3,5-trimethylphenol 3,93(0,34) ND orque 50 2,3,5-trimethylphenol ND ND 50 2,3,5-trimethylphenol 6,14(0,27) ND ediate 100 2,3,5-trimethylphenol 10,61(0,31) ND orque 100 2,3,5-trimethylphenol 8,97(0,22) ND ND	Rated	2	2,3,5-trimethylphenol	13.57(19.39)	;	;	2	;	:	1
50 2,3,5-trimethylphenol ND ND 50 2,3,5-trimethylphenol 6.14(0.27) ND 100 2,3,5-trimethylphenol 10.61(0.31) ND 100 2,3,5-trimethylphenol 8,97(0.22) ND ND ND	Intermediate	2	2,3,5-trimethylphenol	3.93(0.34)	}	1	Q	;	:	:
50 2,3,5-trimethylphenol ND	Peak Torque	2	2,3,5-trimethylphenol	2	;	;	S	į	ï	;
i 100 2,3,5-trimethylphenol 6.14(0.27) ND 100 2,3,5-trimethylphenol 10.61(0.31) ND 100 2,3,5-trimethylphenol 8,97(0.22) ND ND ND	Rated	ş	2, 3, 5-trimethylphenol	Q	;	;	2	;	;	:
100 2,3,5-trimethylphenol 10,61(0,31) ND 100 2,3,5-trimethylphenol 8,97(0,22) ND ND ND ND	Intermediate	8	2, 3, 5-trimethylphenol	6.14(0.27)	;	;	2	;	;	•
100 2.3.5-trimethylphenol 8.97(0.22) ND ND ND ND	Peak Torque	<u>0</u>	2,3,5-trimethylphenol	10.61(0.31)	;	;	Ş	;	:	:
	Rated	<u>8</u>	2,3,5-trimethylphenol	8.97(0.22)	Q	Q	S	Q	2	2

^{*}denotes no horsepower at idle

TABLE B-9 (Cont'd). SUMMARY OF PHENOL EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS, mg/hr (mg/hp-hr)

					Pheno! E	Phenol Emission Rate, mg/hr(mg/	hr(mg/hp-hr)		
	Freine	Exhaust	Deutz F	tz F3L 912W		Perkins 4.2	032	Perkins 4.2482 Deutz F4L 912	Deutz F4L 912W
Speed rpm	Load, %	Species	AL-7225-F	AL-12287-F	EM-565-F	AL-7225-F	EM-565-F	EM-565-F	EM-565-F
	·	2 3 5 6_tetramethylobenol	21.03(105.15)	Ž	Q	61.56(*)	QN	Q	•
	• (2.3 6.4 total mothiliphonol	299 4 5/499 (18)		;	299.70(599.4)	;	;	:
Intermediate	,	2,5,5,0-tettaliletiiyiphenol	(00°′′′+)′′+°′′′* *	Z	*	2	2	2	*
reak lorque	, (2,2,2,0-tettamethylphenol	128.89(184.13)	<u> </u>	1	Q	;	;	:
Kated	۰,5	2,2,2,0-tetramethylphenol	304.94(26.46)	;	;	2	1	;	1
Del. Terme	₹ \$	2,2,2,5-terramethylphenol	14.02(0.82)	;	;	Q	}	;	•
Peter Jordan	₹ \$	2.3.5. Lettamethylphenol	204, 50(9, 74)	;	1	489.47(25.1)	ŀ	;	1
R. S. I.C.	2	2 3 5 6-tetramethylphenol	S	ł	1	2	1	;	:
שונבו ווובסופוב	3 5	2 2 6 C total mothic phanel	(92 5/52 56)	;	1	2	:	;	1
Feak Lorque Rated	38	2,3,5,6-tetramethylphenol	NO	Q	Q	53.21(1.15)	Q	Q	Q

*denotes no horsepower at idle

TABLE B-11. SUMMARY OF ORGANIC SULFIDE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hp-hr)

			AL-7225-Fa		Organic Sulfide AL-12287-Fb	Emission Rate	ate, mg/hp-h EM-56	hr 55-FC	
Organic Sulfide	Engine Speed, rpm	Engine Load, %	Deutz F3L 912W	Perkins 4.2032	Deutz F3L 912W	Deutz F3L 912W	Perkins 4.2032	Perkins 4.2482	Deutz F4L 912W
COS	Idle	2	QX	9.00	1	ł	;	;	;
COS	Intermediate	7	Q	6.82	N. R.	N. R.	N R	NR	NR R
COS	Peak Torque	7	ND	5.96	ND	ND	19.88	S	QN
cos	Rated	2	Q	34.68	NR	NR R	N. R.	N. R.	NR R
cos	Intermediate	20	S	0.04	NR	NR	NR	N R	NR
cos	Peak Torque	20	QN	0.05	NR	NR R	NR R	N R	NR R
cos	Rated	20	Q	0.65	NR NR	NR	N.	N. R.	N. R.
COS	Intermediate	100	S	0.04	NR	N. R.	N R	X X	N. N.
cos	Peak Torque	100	QN	0.04	NR	NR R	N.	NR R	N. N.
COS	Rated	100	ND	90.0	QZ	ND	0.19	90.0	S
(CH ₃) ₂ S	Idle	7	N	Ŋ	1	1	ŀ	;	1
(CH ₃) ₂ S	Intermediate	7	QN	Q	NR	NR	NR	NR R	NR
(CH ₃) ₂ S	Peak Torque	7	ND	ΩN	QN	Q	QN	3.07	S
(CH ₃) ₂ S	Rated	2	QN	Q	NR	NR R	N.	NR	NR R
(CH ₃) ₂ S	Intermediate	20	ND	Ω	NR	N. N.	X X	Z Z	N.
(CH ₃) ₂ S	Peak Torque	20	QN	Ω	N N N	Z Z	N R	N R	NR
$(CH_3)_2$ S	Rated	50	Q	ΩN	NR	NR R	N. R.	N N	NR R
(CH ₃) ₂ S	Intermediate	001	QN	Q	N. N.	N R	Z R	N N	NR
(CH ₃) ₂ S	Peak Torque	001	QN	Ω	NR	NR	NR	N N	N.
$(CH_3)\overline{2}S$	Rated	100	Q	ΩN	Ω	ND	Q	0.04	Q
(C2H4)2S	Idle	2	QN	Q	;	;	ł	;	;
(C2H5)2S	Intermediate	7	QN	QZ	N. R.	NR	N. N.	NR	NR
(C2H5)25	Peak Torque	7	QN	QN	QN	ND	QN	1.91	ND
(C2H5)2S	Rated	2	QN	4.72	NR NR	NR	N.	N. R	X X
(C2H5)2S	Intermediate	20	ND	Q	NR R	N.	NR	N R	NR R
$(C_2H_5)_2S$	Peak Torque	20	ND	Q	NR	N. N.	N R	NR R	Z Z
$(C_2H_5)_2S$	Rated	20	QN	90.0	N. N.	NR	N R	N R	NR R
$(C_2H_5)_2S$	Intermediate	100	Q	Q	NR NR	NR	N R	N R	N. N.
$(C_2H_5)_2^5$	Peak Torque	100	QN	0.01	NR R	NR	N.	N R	NR R
$(C_2H_5)_2^2S$	Rated	100	ND	0.07	ΩN	Q	0.12	0.05	S
3 1 7735 E	11 - 1 - 1 - 1	/C/1/7 4	(0.,)						

aAL-7225-F confirms to MIL-F-46162A(MR)
bAL-12287-F confirms to MIL-F-46162B(ME)
cEM-565-F confirms to EPA DF-2 certification fuel specifications
ND denotes Not Detected; NR denotes Not Run

TABLE B-10. SUMMARY OF ORGANIC SULFIDE EMISSION RATES FROM FOUR DIESEL FORKLIFT ENGINES OPERATING ON SEVERAL FUELS (mg/hr)

Deutz F4L 912W	1 4E 715 W	QZ	ZZ	QN	NR	N.	N.	NR	NR	A'N	Ω	QN	NR R	Q	NR	A'N	NR R	X.	N.	NR	Ω	QN	N R	QN	N. N.	N R	NR R	NR	Ä	NR	Q
65-FC Perkins	70474	Q	Z Z	Q	Z. R.	N. R.	N. N.	N. R.	NR	N. N.	4.57	Q	N. N.	3.38	NR	NR	NR NR	N. N.	N. R.	Z Z	2.85	Q	N N N	2.10	N. R.	Z R	Z R	Z R	X X	N. N.	3.72
Rate, mg/hr EM-50 Perkins	4.2032	CZ	Z.	15.90	N.	N N	NR	NR R	NR R	N.	09.6	N	A.	S	NR	N. R.	N.	NR	NR	NR	Q	QN	NR	ΩN	NR	N. N.	NR	NR R	NR R	NR	6.30
de Emission Rate Deutz F31 912 W	1.2L 714 W	QZ	N. N.	QN	NR	Z Z Z	NR	NR	NR R	NR	Q	QN QN	NR	QN	NR	NR	N. N.	N.R.	NR	NR	QZ	QN	NR R	QN	NR	N. N.	NR	NR	N N N	N.	Q
Organic Sulfic AL-12287-Fb Deutz Fal 912 W	1.7L 712 W	Z	Z.	QZ	Z Z	N.	N.	N. R.	N.	A.	Q N	N	N.	SP	NR R	NR R	N.	N.	N.	N.	Q	N	NR	S	N.	N.	NR	N. R.	NR	NR	QN
kins (032	4.2032	0.90	3.41	4.77	45.08	0.58	0.94	16.33	1.00	1.32	2.94	QN	ΩN	ΩN	ND	QN	QN	Q	ND	QN	Q	N	Q	QZ	2.59	N	Q	1.55	Q	0.43	3.42
AL-7225-Fa Deutz Per	1. JL 712 W	Z	2	Q	Q	QZ	QN	ND	QN ON	S	ND	ND	QN	ND	QN	QN Q	QN	Q	QN	QN	Q	QN	QN	S	Q	QN	Q	QN Q	S	QN	Q
Engine Load %	10au	2	7	7	7	50	20	20	100	100	100	2	7	7	2	20	20	20	100	100	100	2	7	7	7	50	20	20	001	100	100
Engine Speed, rpm	Specus I pill	Idle	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Idle	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Idle	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated	Intermediate	Peak Torque	Rated
Organic Sulfide	Sulling	COS	COS	COS	COS	COS	COS	cos	COS	COS	cos	(CH ₃) ₂ S	(CH ₁) ₂ S	(CH ₃) ₂ S	(CH ₃) ₂ S	(CH_3) 5S	(CH ₃) ₂ S	(CH ₃) ₂ S	(CH ₃) ₂ S	$(CH_3)_2^2S$	$(CH_3)\overline{2}S$	(C2H5)2S	$(C_2H_5)_2S$	$(C_2H_5)_2S$	$(C_2H_5)_2S$	$(C_2H_5)_2S$	$(C_2H_5)_2S$	$(C_2H_5)_2S$	(C2H5)2S	$(C_2H_5)_2S$	$(C_2^{\dagger}H_5^{\dagger})_2^{\dagger}S$

aAL-7225-F confirms to MIL-F-46162A(MR)
bAL-12287-F confirms to MIL-F-46162B(ME)
CEM-565-F confirms to EPA DF-2 certification fuel specifications
ND denotes Not Detected; NR denotes Not Run

TABLE B-12. SUMMARY OF DIESEL ODOR ANALYSIS SYSTEM (DOAS) RESULTS FROM FOUR ENGINES OPERATING ON SEVERAL FUELS

		AL-722	5-Fa	_		EM-5	65-FC	
Engine Speed, rpm	Engine Load, %	Deutz Perkins F3L 912W 4.2032	Perkins 4.2032	Deutz F3L 912W	Deutz F3L 912W	tz Perkins Perkins 12W 4.2032 4.2482	Perkins 4.2482	Deutz F4L 912W
Idle	2	1.55	2.10		1.53	;	0.51	1.59
Intermediate	2	1.55	2.17		NR	N. R.	ZR	Z.
Peak Torque	7	1.71	2.07		1.39	2.27	1.66	1.48
Rated	7	1.92	2.08		NR	N. R.	N. R.	N.
Intermediate	20	1.77	2.21		NR	N. R.	N. N.	N. R.
Peak Torque	20	1.62	2.28		NR	NR	NR	N.
Rated	20	1.71	2.52		NR	N. R.	Z R	NR
Intermediate	100	1.72	2.17		NR	N. R.	N.	ZR
Peak Torque	100	1.41	2.57		NR	NR R	N. R	N.
Rated	100	1.38	ł		2.04	2.91	1.87	2.06

aAL-7225-F confirms to MIL-F-46162A(MR)
bAL-12287-F confirms to MIL-F-46162B(ME)
cEM-565-F confirms to EPA DF-2 certification fuel specifications

TABLE B-13. ADDITIONAL PNA COMPOUNDS IN ORGANIC EXTRACTABLES TENTATIVELY IDENTIFIED BY GC-MS

	Deutz	Deutz F3L 912W (A		Perk	Perkins 4.2032 (EM-565-F 2% Load 100% Lo	M-565-F) 100% Load	Deut	Deutz F4L 912W (912 W (EM-565-F) Load 100% Load
Compound	Idle	1600 rpm	Z620 rpm	ldle	1500 rpm	2200 rpm	Idle	1500 rpm	2300 rpm
C ₂ biphenyl	×	×		×	×	×		×	×
diethyleneglycol						×		×	•
butoxyethoxyethanol						×		×	
di-t-butylphenol				×				×	
benzene dicarboxylic acid				×			×	×	
tetramethylbutyl phenol								×	
fluorenone	×	×	×	×	×	×	×	×	×
methylphenanthrenes/ methylanthracenes	×	×	×	×	×	×	×	×	×
C ₂ phenanthrenes/ C ₂ anthracenes	×	×	×	×	×	×	×	×	×
C ₃ phenanthrenes/ C ₃ anthracenes	×	×	×	×	×	×	×	×	×
benz(d,e)anthracenone	×	×	×	×	×	×	×	×	×
C3 naphthalenes	×	×	×	×	×	×	×	×	×
C4 naphthalenes	×	×	×	×	×	×	×	×	×
naphthopyradione	×	×	×	×	×	×		×	
terphenyl	×	×	×	×	×	×		×	×
tributylphosphate			×						
anthracendione	×	×	×	×	×	×		×	×
methyl fluorene	×	×	×	×	×	×		×	×
methylpyrene	×	×	×	×	×	×		×	×
$C_{m{\mu}}$ phenanthrenes/ $C_{m{\mu}}$ anthracenes		×	×	×	×	×		×	
pentachlorophenol						×			

X - denotes PNA compound tentatively identified

APPENDIX C

INDUCED FAULTS EMISSION RATES

- C-1 HC, CO, NO_X Emission Rates, g/hp-hr C-2 HC, CO, NO_X Emission Rates, g/hr C-3 HC, CO, NO_X Emission Rates, ppm C-4 Particulate, Sulfur Dioxide and Sulfate Emission Rates, g/hp-hr
- C-5 Particulate, Sulfur Dioxide and Sulfate Emission Rates, g/hr
- C-6 Aldehyde and Ketone Emission Rates, mg/hp-hr
- C-7 Aldehyde and Ketone Emission Rates, mg/hr C-8 Organic Sulfides Emission Rates, mg/hp-hr
- C-9 Organic Sulfides Emission Rates, mg/hr
- C-10 DOAS Odor (TIA Units)

TABLE C-1. SUMMARY OF HC, CO, AND NO_x EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (g/hp-hr)

Injection		1	1	HC Emissi	된.	P-hr		CO Emissic	CO Emission Rate, g/hp-hr	-hr 26.50 com		NO _x Emissi	NO, Emission Rate, g/ho-hy	2650 rom
Restric. Timing, 2650 rpm 2650 rpm 265	Idle 2% Load 50% Load I	2670 rpm	2670 rpm	2670 rpm	<u> </u>	00% Load	ide e	2% Load	50% Load	100% Load	Idle	2% Load	SO% Load	100% Los
17 11.95 0.47	11.95 0.47	0.47	0.47	0.47	_	0.14	1	62.08	1.78	0.88	1	31.79	4.37	3.39
17	27.09					0.21	i	132.17	1.68	96.0	1	63.44	19.4	3.41
17	29.26					0.18	1	143.42	18.1	101	1	62.84	4.35	3.03
17	34.02					0.15	1	165.53	1.81	1.47	:	59.63	4.05	2.88
17	50.53					0.13	ł	207.42	1.67	1.3	1	57.90	3.55	2.81
13	94.85					0.15	í	311.25	1.99	0.90	1	46.58	3.61	2.93
21	15.63					0.24	ł	84.22	1.63	96.0	1	116.64	7.12	4.89
23	19.23					0.31	ł	95.82	1.78	1.43	1	133.41	8.82	5.69

TABLE C-2. SUMMARY OF HC, CO, AND NO_x EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (g/hr)

		Inlet	Injection		HC Emiss	ssion Rate, g/hr	ځ		CO Emis	CO Emission Rate, g/hr	1		NO _x Emis	NOx Emission Rate, g/hr	2
ا کند	Exhaust	Restric.	Timing,		2650 rpm	26.50 rpm		:	2650 rpm	2650 rpm	2650 rpm	3	2650 rpm	2650 rpm	2650 rpm
الك	P. Hg	#H20	BTDC	<u> </u>	Z% Load	20% Load	100% Load		Z% Load	SON FORD	100% 1030	Idie	7.9 1.030	2020	100%
	1.3	12.5	11	-	91	==	9	*	82	7.7	38	••	42	101	148
	~	12.5	11	7	18	Ξ	•	80	80	38	43	=	42	104	154
	•	12.5	11	-	61	12	90	7	95	04	45	=	42	95	134
		22	11	-	23	9	^	•	011	04	65	Ξ	0#	6	128
	5.1	8	17	^	33	01	5	12	137	36	21	1	38	78	110
	1.5	12.5	13	Þ	63	11	v	•	506	43	37	90	31	79	120
111	1.5	12.5	21	7	2 10	13	Ξ	01	*	36	43	11	"	156	220
	1.5	12.5	23	-	13	\$1	*	1	63	39	63	20	80	193	240

TABLE C-3. SUMMARY OF HC, CO, AND NO_x EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (ppm)

26.50 rom		220	525	495	480	645	410	765	875
NO. Emission Rate, ppm	50% Load	320	330	325	300	300	255	200	635
NO _x Emi	Z% Load	135	130	130	130	150	001	245	280
	Idle	140	130	140	125	128	100	202	305
	2630 rpm 100% Load	509	232	552	386	327	195	237	346
CO Emission Rate, ppm	2650 rpm 50% Load	200	161	509	214	223	223	186	200
CO Emis	2650 rpm 2% Load	90#	426	473	696	821	1068	288	322
	Idle	129	147	129	95	218	173	186	164
Ş	2650 rpm 100% Load	09	93	83	72	52	19	109	140
sion Rate, ppmC	2650 rpm 50% Load	102	110	119		112		120	134
HC Emiss	2650 rpm Idle 2% Load	154	172	190	230	36,	640	105	127
	dle	9	: 59	*	\	: ½	2 0 9	59	89
Injection	Timing, BIDC	2	: 2	: :	<u>:</u> :	: :	` <u> </u>	21 2	: 2
<u> </u>	Restric.		<u>;</u>	()	<u>}</u> ;	3 \$	2 2	12.5	12.3
	Exhaust B D "He	\$1. f	<u>:</u> -	^ \	• :	3 :	<u>:</u>	1 1	2

TABLE C-4. SUMMARY OF PARTICULATE, SULFATE, AND SULFUR DIOXIDE EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (g/hp-hr)

	2650 rpm 100% Load	2.00	2.17	2.05	2.18	2.37	2.40	1.47	Q
Sulfur Dioxide	2650 rpm 50% Load	2.39	1.99	2.49	2.48	2.73	2.69	2.10	Q
Sulfu	2650 rpm 2% Load	32.07	38.12	39.97	38.45	43.53	40.62	36.97	4.033
	Ide	ł	;	;	:	ŀ	ł	ł	ł
4	2650 rpm 100% Load	0.013	0.015	0.020	0.018	0.014	0.029	0.022	0.018
talfata Gasissias Data Alba ba	2650 rpm 50% Load	0.045	0.047	0.056	0.042	0.043	0.043	0.047	0.044
Similar to the second	2650 rpm 2% Load	0.757	0.453	0.499	0.508	0.647	0.776	0.642	0.693
		;	:	1	ŀ	1	ŀ	i	t
1	2650 rpm 100% Load	0.11	0.17	0.12	0.28	0.30	0.18	91.0	0.33
Particulate	m 2650 rpm	0.53	0.44	0.40	0.40	0.33	0.36	0.56	0.61
Par	26 50 rpm 1dle 2% Load	19.26	13.74	10.31	12.92	12.35	29.16	10.74	12.41
	<u>5</u>	ł	i	ł	;	ŧ	ŀ	;	1
	Timing, BTDC								
•	Restric.	12.5	12.5	12.5	52	20	12.5	12.5	12.5
	Exhaust 8.P.,"Hg	1.5	ŗ	•	1.5	1.5	1.5	1.5	1.5

FROM A DEUTZ F3L 912W OPERATING ON EM-262-F WILD SELECTED ENGINE FAULTS (g/hr)

Sulfur Dioxide ate. g/hr Emission Rate, g/hr	550 rpm 265 0% Load Idle 2%	3 0.572 3.96 22.45 52.17 88.65	7 0.690 4.44 26.69 44.74 98.04	5 0.902 4.48 27.98 54.44 91.19	9 0.806 4.45 26.91 54.24 96.71	2 0.532 5.00 30.41 59.77 92.68	5 1.190 4.16 28.43 58.87 98.52	5 1.006 2.51 25.88 46.02 66.12	
iulfate Emission Rate, g/hr	650 rpm 2650 rpm 2% Load 50% Load	0.530 0.983	0.317 1.047	0.349 1.226	0.356 0.919	0.453 0.942	0.543 0.936	0.450 1.036	*****
Sud	265 Idle 2%	0.118 0.	0.140 0.	0.128 0.	0.128 0.	0.177 0.	0.120 0.	0.190 0.	
	2650 rpm 100% Load	5.10	7.65	5.04	12.55	11.65	7.58	7.38	
Particulate Emission Rate, g/hr	2650 rpm 50% Load	11.61	9.88	8.64	80 80 80	7.25	7.77	12.34	
	2650 rpin Idle 2% Load	13.48	9.07	8.87	8.53	8.15	18.66	7.09	
	를	1.08	0.87	0.81	0.81	2.34	1.42	2.50	,
Injection	Timing, BTDC	11	11	17	17	17	c	21	į
<u> </u>	Restric.	12.5	12.5	12.5	22	8	12.5	12.5	
	Exhaust B.P., "Hg	1.5	•	•	1.5	1.5	1.5	1.5	•

TABLE C-6. SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (mg/hp-hr)

z/ho-hr	2650 rpm 100% Load	0.3	*:	2.0	·9:	0.8	6.0	0.2	<u>Q</u>	‡	26 50 rpm	100% Load	0.8	→ .0	e	9.1	0.7	2.2	0.3	0.1									
sion Raile. m	2650 rpm 50% Load	ł	0.3	٥.	o. 1.0	 	1.2	 0	0.2	Isobutyraldehyde Emission Rate, mg/hp-hr	2650 rpm	50% Load	i	0.4	*. –	2.0	1.2	6:1	6.0	0.5									
Acrolein Emission Rate. mg/ho-hr	2650 rpm 2% Load	1	욷	20	37	139	1546	7	23	Isobut Emission	2650 rpm	2% Load	1	29	134	7	361	196	63	47									
•	흵	;	;	;	}	}	;	ŀ	:			Ide	ì	:	1	:	1	ŀ	;	1									
ځ	2650 rpm 100% Load	0.7	0.2	9.0	0.5	0.1	0.2	Q	Q	į	26 50 rpm	100% Load	0.1	0.2	0.3	0.3	0.7	0.		Q	5	2650 rpm 100% Load		I		5. 2.	7.0	1.2	r, B
Acetaldehyde Emission Rate, mg/ho-hr	2650 rpm 50% Load	;	Q	2	Q	S	1.3	Q	Q	Crotonaldehyde Emission Rate, mg/hp-hr	2650 rpm	50% Load	;	9. 0	Q	0.3	 	0.7	오	<u>Q</u>	Benzaldehyde Emission Rate, mg/ho-h	2650 rpm 50% Load	:	2.2	9.7	<u>. 9</u>	5.7	0.7	0.5
Ace Emission	2650 rpm 2% Load	;	61	\$ 2	77	439	1980	Q	=	Crot	2650 rpm	2% Load	;	S	Ş	±	114	310	2	2	Ben Emission	2650 rpm 2% Load	1	127	384	1853	37.59	94	2
	활	;	;	;	;	;	1	1	1			E E	ı	1	1	:	l	1	1	1		를	ł	:	:	۱	:	:	1
Ę	2650 rpm 100% Load	2.8	9.1	10.6	9.3	2.3	5.4	1.2	7.0	ţ	2650 rpm	100% Load	8.0	9. 0	0.7	0.5	6.5	8.0	o.5	0.3	بز	2650 rpm 100% Load	0.2	9	^ •	e C	2	Q	2
Formaldehyde sion Rate, <i>me/ho</i> -hr		1	3.8	1.7	[]	9.0	5.4	0.4	Q	Propionaldehyde ssion Rate. me/ho-hr	2650 rpm	50% Load	ł	6.7	4.2	3.5	5.4	2.1	3.6	3.6	Hexanaldehyde ision Rate, mg/ho-hr	2650 rpm 50% Load	;	0.0	, o) r	Š	Q Z	Q Z
For Emission	2650 rpm 2% Load	;	599	346	50.	2044	7273	21	106	Propi Emission	2650 rpm	2% Load	ı	525	326	**	474	† 99	503	126	Hexa	2650 rpm 2% Load	1	ب	2 2	ŽŽ	191	Q	0
	Idle	;	;	;	;	}	1	;	:			를	:	1	1	:	1	ł	1	1		뒫	ŀ	:	1	: 1	1	ŀ	1
Injection	Timing, BTDC	11	17	2	17	11	5	71	25	Injection	Timing,	BTDC	11	17	17	17	17	2	21	23	Injection	Timing, BTDC	11	11	<u>:</u> :	2 2	: 2	21	22
Inlet	Restric.	12.5	12.5	12.5	2	8	12.5	12.5	12.5	Inlet	Restric.	*H20	12.5	12.5	12.5	2	2	12.5	12.5	12.5	Inlet	Restric. "H20	12.5	12.5	22.5	3 S	12.5	12.5	12.5
	Exhaust B.P., "Hig	1.5	~	9	1.5	.:	::	1.5	1.5		Exhaust	B.P.,"Hg	1.5	•	•	1.5	1.5	1.5	1.5	1.5		Exhaust B.P., "Hg	1.5	m ·	ِ و	: <u>:</u>	: : : :	3	1.5

ND denotes not detected, values were less than the MVD (minimum detection value)

TABLE C-7. SUMMARY OF ALDEHYDE AND KETONE EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (mg/hr)

s/pc	2650 rpm 100% Load	12	63	16	77	3	*	2	2		26.50 20.00	100% Load	35	17	. 62	` 69	36	73	15	•											
Acrolein Emission Rate', mg/hr	2650 rpm 50% Load	!	9	_	7	7	5 6	7	*	Isobutyraldehyde	26.50 rnm	50% Lo-1	;	16	;) es	23	[*	19	=											
Acrolein Emi	2650 rpm 2% Load	;	Q	71	56	97	1082	~	. 9I	Isobut	26.50 202	2% Load	ı	22	8	2 2	183	673	44	33											
	de	-	~	S		_	S	g	-			Idle	~	-3	•	۳,	۰ مر	2	7	7											
	2650 rpm 100% Load	31	••	27	23	**	^	Q	Q		26 50 2000	100% Load	~	7	. 4	<u>-</u>		91	_	Q			100% Load	35	08	322	603	200	987 288	∷	
Acetaldehyde Emission Rate, mg/hr	2650 rpin 50% Load	1	Q	Q	Q	Q	78	Q	Q	Crotonaldehyde	to and 34 to and	50% Load	;	•<	Ş	<u>,</u>	. 2	91	2	9	Benzaldehyde Emission Rate, <i>mell</i> hr	2650 rpm	50% Load	ł	64	% :	v	ر د د	•71 91	21	
Ace	2650 rpm 2% Load	1	13	17	61	307	1386	2	•	Croto	26 SO TOTAL	Z% Load	1	Ž	<u> </u>	2	2 00	217	2	9	Benz	2650 rpm	2% Load	1	8 8	569	523	1676	1697 77	32	
	Ide	-	-	g	2	~	Ş	=	.			Ide e	_	^	٠ ٢	} -	. –	-	Z	-			흵	•0	=	~	'n;	<u>.</u>	n –	• =	
	2650 rpm 100% Load	126	71	472	412	90	223	22	. ≈	•	ı	100% Load	*	- 2	: :	3.2	: =	3	24	13		1	100% Load	^	Q Z	72	* (2 2	2 2	2	
Formaldehyde ission Rate, mv/hr	2650 rpm 50% Load	;	98	37	53	•0	817	•	2	ionaldehyde	M Kate, mg/m	50% Load	;	131		; ×	<u> </u>	45	78	79	tanaldehyde yn Rate, m <i>e/</i> hr		50% Load	;	71	9	Ş,	۽ م	<u> </u>	2	
For	26 50 rpin 2% Load	1	419	242	351	1431	2091	~	*	Propi	OC SO -DE	2% Load	ł	160	228	3 -	332	465	146	80	Hexa	21 <u> </u>	2% Load	ŀ	•	9	2	2:	<u> </u>	?~	
	테	7	78	7	_	23	Q	163	2			E e	5 ¢	77	: <u>-</u>	<u>የ</u>	2	92	6	∞		:	뒫	•	9	~	7 1	٠,	~ 2	<u> </u>	
Injection	Timing, BTDC	17	17	1	-	-	===	7	:2		Timin	BTDC	11	12			. 2	<u> </u>	21	52	Discrim	Timing	BTDC	71	17	12	2:	<u> </u>	2 2	:2	
<u>.</u>	Restric.	12.5	12.5	12.5	2	,	12.5	12.5	12.5	1	Deterio	"Hyo	12.5	12.5	12.5	į×	;	12.5	12.5	12.5		Restric.	TH 20	12.5	12.5	12.5	\$	2.5	12.5	<u> </u>	
	Exhaust B.P.,"Hg	5.5	•	•	5.1	<u></u>	:3		2		T. P.	B.P.,"Hg	5.1	-	٠.	· "	?	L.5	2.1	1.5		Exhaust	B.P.,"Hg	1.5	6	•	::	<u>.</u>		:2	ļ

ND denotes not detected, values were less than the MDV (minimum detection value)

TABLE C-8. SUMMARY OF ORGANIC SULFUDE EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (mg/hp-hr)

	Inlet			COS Emissia	ission Rate, mg/hp-h	no-hr)	(CH1)25 Emission Rate, mg/hp-hr	ion Rate, mg	/hp-hr	<u>ن</u>	Hs)2S Emiss	(C2Hs)25 Emission Rate, mg/hp-hr	/ho-hra
Exhaust B.P.,"Hg	Restric. "H ₂ 0	Timing, BTDC	Idle	2650 rpm Idle 2% Load	2650 rpm 50% Load	2650 rpm 100% Load	Idle	2650 rpm 2% Load	2650 rpm 50% Load	2650 rpm 100% Load	Idle	2650 rpm 2% Load	2650 rpm 50% Load	2650 rpm 100% Load
53	12.5		QQN	ı	;	Q	Š	i	;	Q	Q	Q	Q	Q
~	12.5		Q	Q	Q	Ş	Q	Q	Q	Q	ð	Q	Q	Q
•	12.5		Q	Q	Q	QN	Q	QN	0.05	Q	Q	Q	S	Q
7	22		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Š	Q
5.1	8		Q	12.93	Q	Q	Q	4.57	QN	Q	Q	Q	S	Q
5.1	12.5		Q	N	Q	Q	Q	Q	Q	Q	Q	Q.	S	Q
1.5	12.5		Q	Q	Q	Q	Q	Q	Q	Q	Š	Q.	Š	Q
1.5	12.5		Q	Q	Q	N	Q	Q	Q	Q.	Q	Q	0.04	0.01

aNo dimethyldisulfide was detected under any induced faults at any engine condition bND denotes not detected, values were less than the MDV (minimum detection value)

TABLE C-9. SUMMARY OF ORGANIC SULFUDE EMISSION RATES FROM A DEUTZ F3L 912W OPERATING ON EM-565-F WITH SELECTED INDUCED ENGINE FAULTS (mg/hp-hr)

THE CONTRACTOR IN

ne/hra	2650 rpm 100% Load	Q	Q	Q	Q	Q	Q Z	Š	0.53
(CoHs)25 Emission Rate, mg/h	2650 rpm 50% Load	Q Z	Q	QN	Q	Š	Ş	Q	0.86
CoH4)oS Emi	2650 rpm 2% Load	Q	NO.	Š	Q	N Q	Q Z	Š	Q
J	휠	Ž	Ş	Š	2	Ş	Š	Š	Q
ng/hr	2650 rpm 100% Load	Š	Q	QN	Q	Q	Q	QN	Q
(CH3)25 Emission Rate, mg/h	2650 rpm 50% Load	Q.	Š	QN	Q	Q	Q	Q	Q.
(CH ₁) ₂ S Emi	2650 rpm 2% Load	õ	Q.	õ	3.20	Q	Q	ON	Ž
		Q	Ş	Š	Ž	S	S	Ñ	Q
74	2650 rpm 100% Load	N Q	Q	QN	Š	Q	Q Q	QN	Q
ision Rate, mg/h	2650 rpm 50% Load	Q	Š	Š	Š	Q	N	Q	QN
OS Emis	550 rpm % Load	Q	Q	Q	Q	9.03	Ö	Q	Q
	Idle 2	QQ	Š	S	Ş	S	Š	Ş	Q Z
	Timing, 9BTDC	17	23	23	11	11	13	21	23
Inlet	Restric.	12.5	12.5	12.5	22	8	12.5	12.5	12.5
	Exhaust 8.P., "Hg	1.3	•	v	1.5	1.5	1.5	1.5	1.5

and dimethyldisulfide was detected under any induced faults at any engine condition bND denotes not detected, values were less than the MDV (minimum detection value)

TABLE C-10. SUMMARY OF DIESEL ODOR ANALYSIS SYSTEM (DOAS)
RESULTS FOR A DEUTZ F3L 912W OPERATING ON EM-565-F
WITH SELECTED INDUCED ENGINE FAULTS

	Inlet		DOAS	Odor at Eng		
Exhaust	Restriction,	Injection		2650 rpm	2650 rpm	2650 rpm
B.P., "Hg	<u>"H20</u>	Timing, BTDC	<u>Idle</u>	2% Load	50%Load	100% Load
1.5*	12.5*	17*	1.53			2.04
3	12.5	17	0.90	1.81	1.82	1.91
6	12.5	17	1.49	2.04	1.97	1.96
1.5	25	17	1.48	1.50	1.73	1.70
1.5	50	17	0.68	1.51	1.79	1.87
1.5	12.5	13	1.48	2.61	2.42	2.49
1.5	12.5	21	1.84	1.95	1.27	2.00
1.5	12.5	25	1.54	1.69	1.82	1.23

^{*}Standard condition

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE		CDR
DEFENSE DOCUMENTATION CTR CAMERON STATION ALEXANDRIA VA 22314	12	US ARMY TANK-AUTOMOTIVE CMD ATTN: AMSTA-RG (DR W. WHEELOCK) 1 AMSTA-NS (DR H. DOBBS) 1 AMSTA-MTC 1 AMSTA-G 1
DEPT. OF DEFENSE ATTN: DASD-LMM (MR DYCKMAN) WASHINGTON DC 20301	I	AMSTA-M 1 DRSTA-GBP (MR MCCARTNEY) 1 WARREN MI 48090
COMMANDER DEFENSE FUEL SUPPLY CTR ATTN: DFSC-T (MR. MARTIN) CAMERON STA ALEXANDRIA VA 22314	1	DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS AGENCY ATTN: AMXSY-CM 1 AMXSY-S 1 AMXSY-L 1
DOD ATTN: DUSDRE (RAT) (Dr. Dix) WASHINGTON DC 20301	1	ABERDEEN PROVING GROUND MD 21005 HO, 172D INFANTRY BRIGADE (ALASKA)
DEFENSE ADVANCED RES PROJ AGENCY DEFENSE SCIENCES OFC 1400 WILSON BLVD ARLINGTON VA 22209	ř 1	ATTN: AFZT-DI-L 1 AFZT-DI-M 1 DIRECTORATE OF INDUSTRIAL OPERATIONS FT RICHARDSON AK 99505
DEPARTMENT OF THE ARMY		CDR US ARMY GENERAL MATERIAL &
HG, DEPT OF ARMY ATTN: DALO-TSE (COL NAJERA) DAMA-ARZ-E (DR CHURCH) WASHINGTON DC 20310	1	PETROLEUM ACTIVITY ATTN: STSGP-F 1 STSGP (COL CLIFTON) 1 NEW CUMBERLAND ARMY DEPOT NEW CUMBERLAND PA 17070
CDR U.S. ARMY BELVOIR RESEARCH AND DEVELOPMENT CENTER ATT: STRBE-VF	10	US ARMY MEDICAL BIOENCINEERING R&D LAB ATTN: CPT GARDNER 1 FORT DIETRICK MD 21701
STRBE-WC STRBE-CMW FORT BELVOIR VA 22060 CDR	2 10	COMMANDER TOBYHANNA ARMY DEPOT ATTN: SDSTO-TP-S 1 TOBYHANNA PA 18466
US ARMY MATERIEL DEVEL & READINESS COMMAND ATTN: AMCLD (DR CONANO) AMCDMR (MR GREINER) AMCDMD-ST (DR HALEY)	1 1 1	COMMANDER US ARMY DEPOT SYSTEMS CMD ATTN: DRSDS I CHAMBERSBURG PA 17201
AMCOA-E AMCDE-SG AMCSM-WCS (MR. SCHEUBLE) 5001 EISENHOWER AVE ALEXANDRIA VA 22333	1 1 1	COMMANDER US ARMY WATERVLIFT ARSENAL ATTN: SARWY-RDD 1 WATERVLIET NY 12189

12/84 AFLRL No. 178 Page 1 of 4

COMMANDER		CDR
US ARMY FOREIGN SCIENCE & TECH		US ARMY RES & STDZN GROUP
CENTER		(EUROPE)
ATTN: AMXST-MT1	1	ATTN: DRXSN-UK-RA 1
FEDERAL BLDG	1	BOX 65
•		FPO NEW YORK 09510
CHARLOTTESVILLE VA 22901		THO NEW TORK USDIC
COMMANDER		CDR
AME MATERIEL READINESS		US ARMY FORCES COMMAND
SUPPORT ACTIVITY (MRSA)		ATTN: AFLG-REG 1
	1	AFLG-POP 1
ATTN: AMXMD-MD	1	FORT MCPHERSON GA 30330
LEXINGTON KY 40511		TORT MOTHERSON GA 30330
HO, US ARMY T&E COMMAND		CDR
ATTN: AMSTE-TO-O	1	US ARMY YUMA PROVING GROUND
ABERDEEN PROVING GROUND MD 21005	_	ATTN: STEYP-MLS-M (MR DOEBBLER) 1
ABERDEEN PROVING GROUND FID 2100	,	YUMA AZ 85364
HQ, US ARMY TROOP SUPPORT COMMAN	ND.	
ATTN: DRSTS-MEG (2)	1	PROJ MGR, ABRAMS TANK SYS
4300 GOODFELLOW BLVD	•	ATTN: DRCPM-GCM-S 1
ST LOUIS MO 63120		WARREN MI 48090
SI LOUIS NO 63120		112 400 500
DEPARTMENT OF THE ARMY		PROJ MCR, FIGHTING VEHICLE SYS
CONSTRUCTION ENG RSCH LAB		ATTN: DRCPM-FVS-SE 1
ATTN: CERL-EM	1	WARREN MI 48090
	-	
CERL-ZT	1	PROJ MGR, M60 TANK DEVELOPMENT
CERL-EH	1	USMC-LNO, MAJ. VARELLA 1
P O BOX 4005		· ·
CHAMPAIGN IL 61820		US ARMY TANK-AUTOMOTIVE CMD (TACOM) WARREN MI 48090
но		WINDS IN THE TWO W
US ARMY TRAINING & DOCTRINE CMD		PROG MGR, M113/M113A1 FAMILY
	1	VEHICLES
ATTN: ATCD-S	1	ATTN: DRCPM-M113 1
FORT MONROE VA 23651		WARREN MI 48090
CDR		Wilder The Wood //
US ARMY TRANSPORTATION SCHOOL		PROJ MGR, MOBILE ELECTRIC POWER
•	,	ATTN: DRCPM-MEP-TM 1
ATTN: ATSP-CD-MS	1	7500 BACKLICK ROAD
FORT EUSTIS VA 23604		SPRINGFIELD VA 22150
COMMANDER		STRIKE VA 2.150
		PROJ MGR, IMPROVED TWO
US ARMY MATERIEL ARMAMENT		VEHICLE
READINESS CMD	•	US ARMY TANK-AUTOMOTIVE CMD
ATTN: AMSAR-LEM	1	_
ROCK ISLAND ARSENAL IL 61299		
601844VDBB		WARREN MI 48090
COMMANDER		CDD
US ARMY COLD REGION TEST CENTER		CDR
ATTN: STECR-TA	1	US ARMY EUROPE & SEVENTH ARMY
APO SEATTLE 9733		ATTN: AEAGC-FMD 1
		AEAGD-TE 1
HQ, DEPT. OF ARMY		APO NY 09403
ATTN: DAEN-DRM	1	
WASHINGTON DC 20310		

12/84 AFLRL No. 178 Page 2 of 4

PROJ MGR, PATRIOT PROJ OFC ATTN: AMCPM-MD-T-G US ARMY DARCOM REDSTONE ARSENAL AL 35809	1	CDR US ARMY INFANTRY SCHOOL ATTN: ATSH-CD-MS-M FORT BENNING GA 31905	1
CDR THEATER ARMY MATERIAL MGMT CENTER (200TH) DIRECTORATE FOR PETROL MGMT ATTN: AEAGD-MM-PT-Q	1	PROJ MGR M60 TANK DEVELOP. ATTN: DRCPM-M60-E WARREN MI 48090	1
ZWEIBRUCKEN APO NY 09052	1	DEPARTMENT OF THE NAVY	
CDR US ARMY RESEARCH OFC ATTN: AMXRO-EG (DR MANN) AMXRO-CB	1	CDR NAVAL AIR PROPULSION CENTER ATTN: PE-72 (MR D'ORAZIO) P O BOX 7176 TRENTON NJ 06828	1
P O BOX 12211 RSCH TRIANGLE PARK NC 27709	-	CDR	
CDR US ARMY QUARTERMASTER SCHOOL		NAVAL SEA SYSTEMS CMD ATTN: CODE 05M4 (MR R LAYNE) WASHINGTON DC 20362	1
ATTN: ATSM-CDM ATSM-TNG-PT	1	CDR	
FORT LEE VA 23801	ı	DAVID TAYLOR NAVAL SHIP R&D CTR ATTN: CODE 2830 (MR G BOSMAJIAN)	
HQ, US ARMY ARMOR CENTER ATTN: ATZK-CD-SB FORT KNOX KY 40121	1	CODE 2705.1 (MR STRUCKO) ANNAPOLIS MD 21402	1
		JOINT OIL ANALYSIS PROGRAM -	_
CDR		TECHNICAL SUPPORT CTR RLDG 780	1
101ST AIRBORNE DIV (AASLT) ATTN: AFZB-KE-J	1	NAVAL AIR STATION PENSACOLA FL 32	508
AFZB-KE-DMMC (CPT MORRIS) FORT CAMPBELL KY 42223	1	DEPARTMENT OF THE NAVY	
CDR		HO, US MARINE CORPS ATTN: LPP	1
US ARMY LOGISTICS CTR	•	WASHINGTON DC 20380	
ATTN: ATCL-MS (MR A MARSHALL) FORT LEE VA 23801	1	CDR	
		NAVAL FACILITIES ENGR CTR	
CDR US ARMY FIELD ARTILLERY SCHOOL		ATTN: CODE 120 (MR R BURRIS) 200 STOVWALL ST	1
ATTN: ATSF-CD FORT SILL OK 73503	1	ALEXANDRIA VA 22322	
CDR		CHIEF OF NAVAL RESEARCH ATTN: CODE 473	1
US ARMY ENGINFER SCHOOL		ARLINGTON VA 22217	
ATTN: ATSE-CDM FORT BELVOIR VA 22060	1	CDR	
2000		NAVAL AIR ENGR CENTER ATTN: CODE 92727	1
		LAKEHURST NJ 08733	
		12/84 AFLRL No. 178 Page 3 of 4	

CDR, NAVAL MATERIEL COMMAND		NATIONAL AFRONAUTICS AND	
ATTN: MAT-08E (MR ZIEM)	1	SPACE ADMINISTRATION	
CP6, RM 606		LEWIS RESEARCH CENTER	
WASHINGTON DC 20360		MAIL STOP 5420	
_		(ATTN: MR. GROBMAN)	1
CDR		CLEVELAND OH 44135	
MARINE CORPS LOGISTICS SUPPORT			
BASE ATLANTIC		NATIONAL AERONAUTICS AND	
ATTN: CODE P841	1	SPACE ADMINISTRATION	
ALBANY GA 31704		VEHICLE SYSTEMS AND ALTERNATE	
		FUELS PROJECT OFFICE	
		ATTN: MR CLARK	1
DEPARTMENT OF THE AIR FORCE		LEWIS RESEARCH CENTER	
		CLEVELAND OH 44135	
HQ, USAF			
ATTN: LEYSF (COL CUSTER)	1	US DEPARTMENT OF ENERGY	
WASHINGTON DC 20330		CE-1312, GB-096	_
		ATTN: MR ECKLUND	1
HQ AIR FORCE SYSTEMS CMD		FORRESTAL BLDG.	
ATTN: AFSC/DLF	1	1000 INDEPENDENCE AVE, SW	
ANDREWS AFB MD 20334		WASHINGTON DC 20585	
CDD		SCI & TECH INFO FACILITY	
CDR		ATTN: NASA REP (SAK/DL)	1
US AIR FORCE WRIGHT AERONAUTICAL		P O BOX 8757	-
LAB	•	BALTIMORE/WASH INT AIRPORT MD	21240
ATTN: AFWAL/POSF (MR CHURCHILL)	Z	DAMI I ORL/ WASH INT MERCONT 1	21270
WRIGHT-PATTERSON AFB OH 45433		ENVIRONMENTAL PROTECTION AGCY	
CDD		OFFICE OF MOBILE SOURCES	
CDR		MAIL CODE ANR-455	
SAN ANTONIO AIR LOGISTICS		(MR. G. KITTREDGE)	1
CTR	1	401 M ST., SW	•
ATTN: SAALC/SFO (MR MAKRIS)	•	WASHINGTON DC 20460	
SAALC/MMPRR	1	MIDITINGION DO 25.400	
KELLY AIR FORCE BASE TX 78241			
CDR			
WARNER ROBINS AIR LOGISTIC			
CTR			
ATTN WR-ALC/MMIRAB-1 (MR GRAHAM)	1		
ROBINS AFB GA 31098			
OTHER GOVERNMENT AGENCIES			
DIRECTOR			
DIRECTOR			

2

NATL MAINTENANCE TECH SUPPORT

US POSTAL SERVICE NORMAN OK 73069

AFLRL No. 178 Page 4 of 4

12/84

END

FILMED

5-85

DTIC