

# CSC-257 Theory Of Computation (BSc CSIT, TU)

Ganesh Khatri kh6ganesh@gmail.com

## Left Recursive Grammar

- A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation  $(A \rightarrow^* Ax)$  for some string x(which may variable or terminal).
- A production of grammar is said to have left recursion if the leftmost variable of its RHS is same as variable of its LHS.
- The top down parsing methods can not handle left recursive grammars, so a transformation that eliminates left recursion is needed.
- If a left recursion is present in any grammar then, during parsing in the the syntax analysis part of compilation there is a chance that the grammar will create infinite loop.
- This is because at every time of production of grammar A will produce another A without checking any condition

• Let A  $\rightarrow$  Aa |  $\beta$ , where  $\beta$  does not start with A. Then, the left-recursive pair of productions could be replaced by the non-left-recursive productions as;

$$A \rightarrow \beta A'$$
  
 $A' \rightarrow \alpha A' \mid \in$ 

Or equivalently, these productions can be rewritten after removing
 E- production as

$$A \rightarrow \beta A' \mid \beta$$
  
 $A' \rightarrow \alpha A' \mid \alpha$ 

 No matter how many A-productions there are, we can eliminate immediate left recursion from them

So, in general,

• If A 
$$\rightarrow$$
 Aa<sub>1</sub> |Aa<sub>2</sub> | ...... |A a<sub>m</sub> |  $\beta_1$  |  $\beta_2$  | ..... |  $\beta_n$ ; With  $\beta_i$  does not start with A

Then we can remove left recursion as:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$
  
 $A' \rightarrow a_1 A' \mid a_2 A' \mid \dots \mid a_m A' \mid \epsilon$ 

• Equivalently, these productions can be rewritten after removing E-productions as:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A' \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$
  
 $A' \rightarrow a_1 A' \mid a_2 A' \mid \dots \mid a_m A' \mid a_1 \mid a_2 \mid \dots \mid a_m$ 

• Example: Remove left recursion from following grammar

```
S \rightarrow AA \mid 0
A \rightarrow AAS \| 0S \| 1
```

- Solution:
- Suppose a1 = AS,  $\beta 1 = 0S$  and  $\beta 2 = 1$
- Here, the production A → AAS is immediate left recursive. So removing left recursion, we get

```
S \rightarrow AA \mid 0

A \rightarrow 0SA' \mid 1A'

A' \rightarrow ASA' \mid \epsilon
```

• After removing E-productions, it can be rewritten as:

```
S \rightarrow AA \mid 0

A \rightarrow 0SA' \mid 1A' \mid 0S \mid 1

A' \rightarrow ASA' \mid AS
```

• Exercise: Remove left recursion from the following grammars

1.

$$A \rightarrow ABd \mid Aa \mid a$$

$$B \rightarrow Be \mid b$$

2.

$$S \rightarrow SOS1S \mid 01$$