

Al Tools Lab 2020 - DBMS

Florian Betz & Astrid Büchner Summerterm 2020 Dr. Todor Ivanov

- 1. Definition of the Use Case
- 2. Overview of the dataset
- 3. Decision Tree & Logistic Regression
- 2. Data Cleaning
- 3. Approach to the models
- 4. MS Interpret ML Results
- 5. AIX360 Results
- 6. Conclusion
 - 1. Comparison of the findings
 - 2. Difficulties & Further Research

The Use Case

Prediction of default payment of credit card clients.

To do so, we use classification trees as well as logistic regression.

The Dataset

- The data set contains information of Taiwanese credit card clients
- ➤ The dataset captures a timeframe from April 2005 to September 2005
- It was uploaded to kaggle.com in 2016 and there is no copyright for it
- Please find the whole dataset here

1.2 Overview of the dataset

Dataset size: 30'000

Columns: 25

Depentent variables: 23

Rows: 30'000

The Variables

ID ID of each client (numbers datapoints consecutively) LIMIT BAL Amount of given credit in NT dollars (includes individual & family/supplementary credit) SEX 1 = male, 2 = female **EDUCATION** 1 = graduate school, 2 = university, 3 = high school, 0.4.5.6 = others MARRIAGE Marital status: 1 = married, 2 = single, 3 = divorced, 0 = others AGE Age in years NOTE: Possible values and their meaning valid for all PAY columns: PAY 0 Repayment status in September 2005 -2 = no consumption PAY 2 Repayment status in August 2005 -1 = pay duly 0 = the use of revolving credit PAY 3 Repayment status in July 2005 1 = payment delay for one month PAY 4 Repayment status in June 2005 2 = payment delay for two months PAY 5 Repayment status in May 2005 8 = payment delay for eight months PAY 6 Repayment status in April 2005 9 = payment delay for nine months and above

1.2 Overview of the dataset

BILL_AMT1	Amount of bill statement in September 2005 (NT dollar)
BILL_AMT2	Amount of bill statement in August 2005 (NT dollar)
BILL_AMT3	Amount of bill statement in July 2005 (NT dollar)
BILL_AMT4	Amount of bill statement in June 2005 (NT dollar)
BILL_AMT5	Amount of bill statement in May 2005 (NT dollar)
BILL_AMT6	Amount of bill statement in April 2005 (NT dollar)
PAY_AMT1	Amount of previous payment in September 2005 (NT dollar)
PAY_AMT2	Amount of previous payment in August 2005 (NT dollar)
PAY_AMT3	Amount of previous payment in July 2005 (NT dollar)
PAY_AMT4	Amount of previous payment in June 2005 (NT dollar)
PAY_AMT5	Amount of previous payment in May 2005 (NT dollar)
PAY_AMT6	Amount of previous payment in April 2005 (NT dollar)
default.payment.next.month	Default payment (1 = yes, 0 = no)

<u>Note</u>: The explanation of the variables given for the dataset was incomplete. We adjusted the variable explanation in relation to a kaggle user, who contacted the responsible professor and asked for the missing explanations. You can find his post <u>here</u>.

Visualization of Attributes

DEFAULT PAYMENT

- ➤ The majority of clients pays their bills.
- > There are still 6'598 default payments out of 30'000, which is about 22%.
- ➤ In the following, we will take a closer look at the distribution of default payments in terms of demographic data.

1.2 Overview of the dataset

SEX

- The dataset contains more male than female subjects
- ➤ In absolute numbers it seems men rather default

MARRIAGE

- Most people in the dataset are either single or married
- ➤ The minority is divorced
- ➤ The status "others" (= 0) is neglectable in this case

1.2 Overview of the dataset

- ➤ The majority of the subjects is in their twenties or thirties
- ➤ The higher the age (starting at 30), the fewer the count of people

EDUCATION

- Most people in the dataset hold an university degree
- overall we can say the educational background of test persons is quite high
- We can also see that 4, 5, 6& 0 (others) are a minority and do not seem to play a big role

- ➤ To adress the use case of predicting default payments we use Classification Tree and Logistic Regression.
- Further, we used the LIME Tabular Explainer to get a better explanation of the results.
- ➤ While using the MS InterpretML Toolkit, we made use of the Classification Tree and Logistic Regression, that are already implemented in InterpretML.
- ➤ Whereas for the AIX360 approach, we had to use the models by scikit learn and applied AIX360 tools afterwards.

2. Data Cleaning

To prepare and clean the dataset in order to apply the models, we made some modifications:

1. Check for null values

The dataset has no null values

2. Rename columns

Change of name of the independent variable to "default_pay", for convenience. Change of the column "PAY_0" to "PAY_1" for consistency

3. Convert currency

To get a better reference New Taiwan Dollar is changed to Euro (Exchange rate: Euro ≈ 0.03 * Taiwan-Dollar 9. Juni, 18:11 UTC)

4. Change "SEX" 2 to 0

Change of numerical representation for male clients from 2 to 0, to get a dummy variable.

5. Drop columns containing "other/unknown"

The columns "EDUCATION" and "MARRIAGE" have other/unknown values. These are relatively rare, so these rows are dropped. They don't add value to the model, and cannot be interpreted

6. Delete ID & rearrange index

Deletion of column "ID" (it is just a random consecutively numbering of the datapoints, no impact)

7. Categorize data

Categorization of ordinal and nominal data, to change them to dummy variables

8. Correlation matrix

Correlation between cardinal columns:

- "LIMIT_BAL" has by far the biggest correlation with default payment
- "BILL_AMTX" and "PAY_AMTX" are highly correlated among themselves, but its declining dependent on time
- "BILL_AMT1" is more correlated with default_payment than BILL_AMT2" and so on...
- "PAY_AMT1" is more correlated with default_payment than "PAY AMT2" and so on...

9. Crosstabs

Analysis of dependencies of ordinal and nominal data:

- There is a big gap in defaults between single and divorced clients
- Highly educated people default less
- Male clients default less than female clients
- Bigger payment delay results in higher chance of default
- The default rate is rising depending on time (comparing "Pay_1" with "Pay_2" and so on..)

10. Determine dependent and independent variables

11. Get dummies for independent variables

3. Approach to the models

MS InterpretML

AIX360

1

2

3

4

5 6

7

8 9 Split data into training and test sets

A test size of 0.2 delivers best results

Build and implement Classification Tree with the respective interpretML model

--- depth = 7 provides best results

Define and implement Logistic Regression with the respective interpretML model

Build and implement Classification Tree with the respective scikit model

depth = 7 provides best results
Define and implement Logistic
Regression with the respective
scikit model

For both models apply prediction function and check the accuracy
Get a classification report

Create ROC curve

Import LimeTabular from interpret.blackbox

Import LimeTabularExplainer from aix360.algorithms.lime

Interpret local explanations
Compare findings

4. MS Interpret ML – Results

Classification Tree

Logistic Regression

Accuracy Score

Training accuracy: 0.8273259265541515

Test accuracy: 0.8151289009497965

Training accuracy: 0.8079043338139259

Test accuracy: 0.814280868385346

Confusion Matrix

Actual=True Actual=False

Predicted = True: 434
Predicted = False: 863

34 227 63 4372 Actual=True Actual=False

Predicted = True: 397 195 Predicted = False: 900 4404

Classification Report

	precision	recall	f1-score	support		precision	recall	f1-score	support
False True	0.84 0.66	0.95 0.33	0.89 0.44	4599 1297	False True	0.83 0.67	0.96 0.31	0.89 0.42	4599 1297
accuracy macro avg weighted avg	0.75 0.80	0.64 0.82	0.82 0.67 0.79	5896 5896 5896	accuracy macro avg weighted avg	0.75 0.80	0.63 0.81	0.81 0.65 0.79	5896 5896 5896

4. MS Interpret ML – Results

5. AIX360 - Results

Classification Tree

Logistic Regression

Accuracy Score

Training accuracy: 0.8273259265541515

Test accuracy: 0.8144504748982361

Training accuracy: 0.8115935883300822 Test accuracy: 0.8175033921302578

Confusion Matrix

Actual=True Actual=False

Predicted = True: 432 229 Predicted = False: 865 4370 Actual=True Actual=False

Predicted = True: 468 247 Predicted = False: 829 4352

Classification Report

	precision	recall	f1-score	support		precision	recall	f1-score	support
False True	0.83 0.65	0.95 0.33	0.89 0.44	4599 1297	False True	0.84 0.65	0.95 0.36	0.89 0.47	4599 1297
accuracy macro avg weighted avg	0.74 0.79	0.64 0.81	0.81 0.67 0.79	5896 5896 5896	accuracy macro avg weighted avg	0.75 0.80	0.65 0.82	0.82 0.68 0.80	5896 5896 5896

5. AIX360 - Results

6. Conclusion

6.1 Comparison of the findings

MS InterpretML

AIX360

Model

Visualization All models needed are implemented in InterpretML

- Several visualization tools
- ➤ Easy to handle
- Clear and well readable representation
- > Good and detailed documentation
- Provides lots of example notebooks
- Great for beginners

- Additional models (e.g. from scikit) are needed, before applying the LIME Explainer from AIX360
- ➤ Only visualization for Lime
- Use of other libraries to figure the data (e.g. matplotlib)
- ➤ No detailed documentation
- Harder to find relevant information
- Great for intermediates to play around
- Results in this use case are very similar, which might be due to the quite low complexity. Thus, a clear favorite cannot be stated in terms of comparison of the findings.

6. Conclusion

Difficulties

- Quite imbalanced dataset
 - Solving the issue by downsampling (decreasing dataset to 13'196)
 - > TPR increased with that change of the dataset
 - But high decrease of TNR and also of the AUC
- Some values in PAY_X have only a few counts, therefore predictions based on these values can be misleading

Further Research

- Need of a larger dataset
- More information about clients
- Larger time frame of observation