Frühjahr 12 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $\Omega \subseteq \mathbb{R}^n$ offen und sei $f: \Omega \to \mathbb{R}^n$ ein stetiges Vektorfeld. Für ein $p \in \Omega$ existiere eine Lösung $\gamma:]a, \infty[\to \Omega$ der Differentialgleichung x' = f(x) mit $\lim_{t \to \infty} \gamma(t) = p$. Man zeige, dass dann p eine Ruhelage sein muss (d.h. f(p) = 0).

Lösungsvorschlag:

Angenommen p wäre keine Ruhelage, d. h. es gilt $f(p) \neq 0$. Weil f ein stetiges Vektorfeld ist, gibt es ein $\delta > 0$ mit $\|y - p\| < \delta \implies \|f(y) - f(p)\| < \frac{\|f(p)\|}{2}$, woraus insbesondere $\|f(y)\| > \frac{\|f(p)\|}{2}$ folgt. Weil $\lim_{t \to \infty} \gamma(t) = p$ ist, finden wir ein C > a mit $t > C \implies \|\gamma(t) - p\| < \delta$.

Weil $\lim_{t \to \infty} \gamma(t) = p$ ist, finden wir ein C > a mit $t > C \implies \|\gamma(t) - p\| < \delta$ Insbesondere gilt $\|\gamma(t) - \gamma(s)\| \le \|\gamma(t) - p\| + \|\gamma(s) - p\| < 2\delta$ für alle C < s < t. Für alle C < s < t gilt

$$\gamma(t) - \gamma(s) = \int_{s}^{t} \gamma'(x) dx = \int_{s}^{t} f(\gamma(x)) dx$$
$$= \int_{s}^{t} (f(\gamma(x)) - f(p)) dx + \int_{s}^{t} f(p) dx$$
$$= \int_{s}^{t} (f(\gamma(x)) - f(p)) dx + f(p)(t - s).$$

Für C < s < x < t ist $\|\gamma(x) - p\| < \delta$ und $\|f(\gamma(x)) - f(p)\| < \frac{\|f(p)\|}{2}$, also folgt $\left\| \int_{s}^{t} (f(\gamma(x)) - f(p)) \, \mathrm{d}x \right\| \le (t - s) \frac{\|f(p)\|}{2}$ und

$$\left\| \int_{s}^{t} (f(\gamma(x)) - f(p)) \, \mathrm{d}x + f(p)(t - s) \right\| \ge \left\| \left\| \int_{s}^{t} (f(\gamma(x)) - f(p)) \, \mathrm{d}x \right\| - \|f(p)(t - s)\| \right\|$$

$$= \|f(p)\| (t - s) - \left\| \int_{s}^{t} (f(\gamma(x)) - f(p)) \, \mathrm{d}x \right\| \ge \frac{\|f(p)\|}{2} (t - s)$$

durch Anwendung der umgekehrten Dreiecksungleichung.

Wir lassen jetzt s > C fest und wählen $t > \frac{5\delta}{\|f(p)\|} + s$, dann ist

$$2\delta > \|\gamma(t) - \gamma(s)\| = \left\| \int_s^t (f(\gamma(x)) - f(p)) \, \mathrm{d}x + f(p)(t - s) \right\| \ge \frac{\|f(p)\|}{2} \frac{5\delta}{\|f(p)\|} = \frac{5}{2}\delta,$$

ein Widerspruch zu $\delta > 0$ und $2 < \frac{5}{2}$.

Demnach war die Annahme falsch und es gilt f(p) = 0, p ist also eine Ruhelage.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$