

移动互联网安全

第四章移动通信安全综述

黄玮

中国传媒日学

内容提纲

- 2G / 2.5G
- 3G / 4G / 5G
- 广义无线网络安全

移动通信系统演进里程碑

中国传播日葵

移动通信技术发展历程

中国传棋日子

移动通信各代典型系统特点

	典型代表	技术	特性
第一代	AMPS	小区制蜂窝系统	模拟话音
第二代	GSM	数字蜂窝(TDMA)	数字话音,数据速率 13Kbps(12.2kbps)
第二代半	GPRS	通用分组数字蜂窝	数据速率 115Kbps, 数 据在线连接
第三代	W-CDMA	宽带码分多址,实 现宽带多媒体业务	数据速率最高达 2Mbps , 数据在线连接宽带数据 业务
后三代	•••	•••	•••

中国传棋日子

蜂窝通信网

- Cellular Based Networks
 - 2G
 - GSM, CDMA
 - 2.5G
 - GPRS, GPRS/EDGE
 - 3G
 - EDGE、CDMA 2000、WCDMA、TD-SCDMA

蜂窝通信网

- Cellular Based Networks
 - 3.5G
 - WiMax, HSPA
 - 4G
 - TDD-LTE, FDD-LTE
 - 5G
 - 标准研究制订过程中, 无正式商用案例

- HPLMN (Home Public Land Mobile Network) GSM的网管、票据处理和安全业务由Home网操作
- HLR (Home Location Register) 处理本地实时 认证和接入控制,永久注册。保存用户的基本 信息,如你的SIM的卡号、手机号码、签约信 息等,和动态信息,如当前的位置、是否已经 关机等

- VLR (Visitor Location Register) 处理本地实时 认证和接入控制,临时注册。保存的是用户的 动态信息和状态信息,以及从HLR下载的用户 的签约信息
- SIM (Subscriber Identity Module) 用户标识卡

- MS (Mobile Station) 移动终端, 例如手机
- MSC (Mobile Switching Center) 移动交换中心,移动网络完成呼叫连接、过区切换控制、无线信道管理等功能的设备,同时也是移动网与公用电话交换网(PSTN)、综合业务数字网(ISDN)等固定网的接口设备
- IMSI (International Mobile Subscriber Identity) 跨国移动用户标识,是TD系统分给用户的唯一标识号,它存储在SIM卡、HLR/VLR中,最多由15个数字组成
- IMEI (International Mobile Equipment Identity) 跨国移动设备标识, MS的唯一标识

中国传棋日学

- TMSI (Temporary Mobile Subscriber Identity) 临时用户身份
 - 一用户在呼叫/被呼叫前, 其身份必须为网络知道
 - -IMSI仅在初次接入,或VLR中数据丢失时使用
 - 一目的是防止攻击者得到用户的进网信息,防止用户位置跟踪

GSM网络体系结构组成

SIM

ME

• 带有SIM卡的移动设备: ME

• 归属位置登记数据库: HLR

• 访问位置登记数据库: VLR

• 设备标识注册数据库: EIR

• 基站(收发信台): BTS

• 基站(控制器): BSC

移动交换中心: MSC

• 认证中心: AuC

• 运营管理中心: OMC

• 有线固话网络: PSTN

中国传棋日子

GSM安全目标

- 获得和PSTN (Public Switched Telephone Network) 等价的安全性
 - 基于电磁信号传输方式难免传输过程中的 监听和传输链路劫持风险
 - GSM协议设计时主要针对上述2大类风险进行了威胁建模和安全机制设计

相关密码学算法

- · GSM用到的密码学算法是对称密钥加密体制
 - 一A3: 移动设备到GSM网络认证
 - -A5: 语音和数据的分组加密算法
 - -A8: 产生A5算法中用到的(会话)对称密钥的密钥生成算法

相关密码学算法

- · Ki用于A3、A8的用户认证密钥
 - · 与HLR共享, 128bit的秘密数据
- · A3为认证算法,单向散列函数
 - 对于HLR的询问产生32bit响应SRES
 - SRES=A3(Ki, RAND)
- · A5是分组加密算法,会话秘钥Kc的长度为64bit
- · A8为生成Kc的单向散列函数
 - Kc = A8(Ki, RAND)

相关密码学算法

- A3和A8算法内置于SIM
 - 由运营商选择A3/A8
 - COMP-128是A3和A8的一种典型实现
 - · 终端漫游时用于安全的传输(RAND,SRES,Kc)
- · A5内置于终端设备
 - A5/1 安全性较好
 - A5/2 安全性较差
 - 一不加密

GSM安全机制——认证

- 手机终端接受随机验证码
- 手机终端使用密钥Ki 和A3认证算法加密 验证码
- 手机终端返回挑战响 应码 (SRES)
- 蜂窝网络校验挑战响 应码是否正确

GSM Cryptography

GSM安全机制——用户数据和信令机密性

- A8算法产生Kc
- 使用Kc加密信令传 输链路
- A5算法用于用户数据传输过程加密

GSM Cryptography

GSM脆弱性

- COMP-128 算法会泄漏 Ki (1998.4)
- A8的有效密钥长度只有54 bits (最后10位全0)
- A5
 - 一缺乏数据完整性验证机制
 - A5/1 (欧洲标准)
 - A5/2(北美标准)
 - A5/0 (不加密, 比如我国)

GSM脆弱性

- 伪基站
 - 只有基站认证用户, 缺少用户对基站的认证
- 明文网络传输链路
 - 监听
 - (匿名) 查询HLR/AuC
- Kc更新周期太长
- 算法和Ki均存储在SIM卡中,存在复制SIM卡的风险

中国传棋日学

GSM网络中的明文传输风险

SIM

ME

- 带有SIM卡的移动设备: ME
- 归属位置登记数据库: HLR
- 访问位置登记数据库: VLR
- 设备标识注册数据库: EIR
- 基站收发信台: BTS
- 基站控制器: BSC
- 移动交换中心: MSC
- · 认证中心: AuC
- 运营管理中心: OMC
- 有线固话网络: PSTN

中国传棋日子

GSM网络的中间人劫持(伪基站)风险

- MS (手机) 向系统请求分配信令信道 (SDCCH)
 - · MS倾向信号更强的BTS, 使用哪种算法由BTC决定
- MSC收到手机发来的IMSI可达消息
- MSC将IMSI可达信息再发送给VLR, VLR将 IMSI不可达标记更新为IMSI可达
- VLR反馈MSC可达信息信号
- · MSC再将反馈信号发给手机

真实世界中的GSM威胁——监听

真实世界中的GSM威胁——伪基站

名师传授(扑克,麻将,牌九绝技)任意一副牌随意洗叠就能得到自己想要的好牌如235变AAA,东风变八万另有高科技产品电话13693054780

发送者: <u>10086100065</u> 接收时间: 9月 23 日

归属地: 未知

中国传媒日至

- CDMA系统使用蜂窝认证和语音加密 (CAVE, Cellular Authentication and Voice Encryption) 算法
- CDMA网络的安全同样采用对称加密体制(单 钥体制)
- CDMA采用64bit的对称密钥 (A-Key) 来认证。 出售手机时,运营者用程序将这个密钥输入到 用户手机内,同时运营商也将此密钥保存在数 据库中

- ·如同GSM中的Ki一样, A-Key也应该妥善保存
- A-Key不直接用于认证和加密,而用于产生子密钥,因此其安全性要高于GSM
- 为了使A-Key泄露的风险降到最低, CDMA采用A-Key生成动态的随机数来进行认证。该随机数称为安全共享密钥(SSD)。它是使用3个数值计算出来的

- CAVE算法产生2个64bit的散列值,即SSD_A 和SSD_B
- SSD_A用来认证, SSD_A等同于GSM的 SRES(32bits)
- SSD_B用来加密, SSD_B等同于GSM的 Kc(64bits)

- CDMA的机密性建立在对称加密体系上
 - 一与GSM类似的数据与语音加密机制
- · CDMA的认证建立在挑战/响应机制上
- 2011年 DEF CON 19上, Coderman演示了通过中间人攻击CDMA和4G监听数据的方法

3G安全综述

- · 3G系统采用双向身份认证
 - 一杜绝伪基站威胁
- 会话密钥更新周期大大缩短
- 缺陷
 - 一没有采用用户数字签名技术,数据完整性保护存在缺陷
 - 一密钥产生机制存在脆弱性
 - 一认证协议仍然存在安全漏洞

VoIP/VoLTE安全综述

- · Caller ID伪造与欺骗更容易
 - 短信和来电号码是伪造的
- 针对呼叫终端/网关的拒绝服务攻击难度和成本大大降低
 - · IP化网络攻击手段和工具
- 中间人劫持攻击方式多样化
 - · IP化网络攻击手段和工具

广义无线网络安全

中国传媒日子

回顾第一章内容: 无线网络是什么

- Wi-Fi? WLAN? 802.11? 蓝牙? NFC?
- •核心是: "无线",相对于"有线"网络技术,无线技术使用肉眼不可见的传输介质
 - 一电磁波

回顾第一章内容: WLAN ≠ Wi-Fi

- Wi-Fi
 - -Wi-Fi 联盟制造商的商标可做为产品的品牌 认证,最基础的认证条件是符合 IEEE 802.11标准、此外还需缴纳认证授权费用
- WLAN
 - 一不仅可以使用Wi-Fi设备来组网、蓝牙、 ZigBee等技术都可以用于构建一个无线局域 网
 - -Wi-Fi是符合802.11标准的WLAN

回顾第一章内容: 无线网络有什么(补充)

- AP? 路由器? 热点?
- 上网卡? 电力猫? 3G? 4G?
- 手机? 平板? 笔记本? 台式机? 空调? 插座?
- · 无线键盘、无线鼠标、<u>无线SD卡</u>
- 电子标签
- 手机支付(公交卡、手机钱包等)

基于"近"距离通信传输技术的无线技术

- RFID (物联网的基础设施技术之一,可以通过蓝牙、NFC技术来实现)
- 蓝牙 (802.15.1)
- NFC (ISO 13157等)
- ZigBee (802.15.4)

电子标签 (RFID)

- Radio Frequency Identification
- 属于无线通信技术范畴
- 通过无线电信号识别特定目标并读写相关数据, 无需识别系统与特定目标之间建立机械或光学 接触

RFID的工作原理

- 无线电的信号是通过调成无线电频率的电磁场, 把数据从附着在物品上的标签上传送出去,以 自动辨识与追踪该物品
 - 某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池——无源RFID
 - 也有标签本身拥有电源,并可以主动发出无线电波(调成 无线电频率的电磁场)——有源RFID
 - 标签包含了电子存储的信息,数米之内都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之内,也可以嵌入被追踪物体之内

中国传媒日学

RFID技术的现状和趋势

- 越来越多的应用
 - 原本只是以条形码的替代者面目出现
- 飞快的发展速度
- 小型化,低成本化
- 协议和标准泛滥
 - 目前共有117个不同的协议
 - 各国使用不同的标准不同的频段

频带	规章管理	读取范围	数据速度	备注	标签估价 (以2006年美元计算)
120到150千赫(低频)	无规定	10厘米	低速	动物识别,工厂数据的收集	1元
13.56兆赫(高频)	全世界通用ISM频段	1米	低速到中速	小卡片	0.50元
433兆赫 (特高频)	近距离设备 SRD	1到100米	中速	国防应用(主动式标签)	5元
868到870兆赫(欧洲) 902到928百万赫兹(北美)特高频	ISM频段	1到2米	中速到高速	欧洲商品编码,各种标准	0.15元(被动式标签)
2450到5800兆赫(微波)	ISM频段	1到2米	高速	802.11WLAN(无线局域网),蓝牙标准	25元(主动式)
3.1到10吉赫(微波)	超宽带	最高200米	高速	需要半主动或主动标签	设计为5元

ref: http://zh.wikipedia.org/wiki/%E5%B0%84%E9%A2%91%E8%AF%86%E5%88%AB

RFID的应用领域——物联网的基础

- 钞票及产品防伪技术
- 身份证、通行证(包括门票)
- 电子收费系统,如香港的八达通与台湾的悠游卡、台湾通、 一卡通
- 家畜或野生动物识别
- 病人识别及电子病历
- 物流管理
- 行李分类
- 门禁系统

中国传棋日学

RFID分类: 是否可写?

- 可读写卡(RW)
 - Read Write,相当于CDRW 第二代身份证
- · 一次写入卡(WORM)
 - Write Once ,Read Many,相当于CDR
- 只读卡(RO)
 - Read Only,相当于CD 门禁

RFID分类: 是否带电源?

- 无源RFID(Passive RFID, 被动RFID)
 - 依靠和阅读器的电磁耦合供能
 - 读取距离取决于
 - 阅读器耦合线圈的尺寸
 - 工作频率
 - 阅读器的功率
 - 0.5W: 0.7m , 4W: 2m , 30W: 5.5m
 - 成本低,应用广泛

中国传播日学

RFID分类: 是否带电源?

- 有源RFID(Active RFID, 主动RFID)
 - 自带电源供能
 - 使用锂电池通常可工作3~10年
 - 读取距离10m~30m,或更远
 - 目前的应用相对无源ID要少
 - 需要远距离识别的场合
 - 手机钱包

RFID的安全风险

- 伪造、假冒和非法篡改
- 泄露隐私
 - 我的口红里有RFID吗?
- 植入人体?
 - 技术上已经成熟
 - 美国国会通过了相关法律
- 《Enemy of the State》

我们身边的RFID

- 门禁
- 第二代身份证
- 无源读写卡
 - ISO 14443 TYPE B
 - 载波频率13.56 MHz、副载波频率847 KHz
 - 身份证号、姓名、性别、居住地址、照片
- 食堂饭卡、水卡、校园一卡通

中国传媒日学

蓝牙概述

- WPAN技术之一
- 支持服务能力描述/声明配置文件
 - 声明蓝牙设备所具备的应用能力
 - 输入(键盘、鼠标)、输出(音频、文件传送、打印机)
 - 设备和能力发现

蓝牙设备 (功耗) 等级分类

设备类型	功耗	最大功耗等级	设计通信距离	典型设备
Class 1	高	100 mW (20 dBm)	< 100米	USB适配器、接入点
Class 2	中	2.5 mW (4 dBm)	< 10米	移动设备、蓝牙适配器、智能卡读卡器
Class 3	低	1 mW (0 dBm)	<1米	蓝牙适配器

中国传媒日子

蓝牙协议栈

June 1999 doc.: IEEE 802.15-99/014r8

Bluetooth and IEEE Structure

Submission Slide 13 Tom Siep, Texas Instruments

蓝牙与IEEE 802.11

特性	蓝牙	IEEE 802.11	
网络拓扑	对称(点对点)	非对称 (以AP为中心)	
工作频段	2.4 GHz	2.4 GHz/5 GHz	
传输速率	1~24 Mbps	5.5~1000 Mbps	
传输距离	1~100米	室外最大250米左右	
协议兼容性	3.0+版本兼容802.11n (物理层使用802.11协议)	-	

中国传媒日学

蓝牙安全概述

- 蓝牙协议本身的安全问题
 - 一劫持配对过程
 - 一窃听、伪造蓝牙通信
- 蓝牙协议栈实现的安全问题
 - 无线网络绑定的是硬件层和协议层
 - · 配对验证码PIN是默认值或弱PIN码
 - 蓝牙直接绑定应用相对复杂
 - BlueSnarf
 - OverFlow

中国传棋日子

NFC - Near Field Communication

- · 短距离高频无线通信技术,由RFID演变而来
- NFC仅限13.56MHz高频段, RFID有较多频段选择
- NFC的有效通信距离大多在10厘米以内, RFID的通信距离范围从几厘米到几十米都有
- NFC是一种"集成"RFID技术,单芯片内置非接触读卡器、非接触卡和点对点功能,RFID通常使用独立的阅读器和标签
- RFID多用于生产、物流、资产管理等,NFC则更多用于公交、 门禁、手机支付等

中国传媒日学

NFC与蓝牙的关系

特性	NFC	蓝牙	低功耗蓝牙
标签是否耗能	否	是	是
标签成本	10美分	5美元	5美元
RFID兼容性	ISO 18000-3	有源(主动)	有源(主动)
标准化组织	ISO/IEC	Bluetooth SIG	Bluetooth SIG
网络协议标准	ISO 13157 etc.	IEEE 802.15.1	IEEE 802.15.1
网络拓扑类型	点对点	WPAN	WPAN
加密	基于RFID技术的没有	可选	可选
通信距离	< 0.2 <i>m</i>	~ 100m (class 1)	~50m
频段	13.56 MHz	2.4-2.5GHz	2.4-2.5GHz
传输(比特)速率	424 kbps	2.1 Mbps	1 Mbps
(网络)建立时间	< 0.1s	< 6s	< 0.006s
功耗	< 15 mA(读)	不同级别有差异	< 15 mA (读和传输)

ref: http://en.wikipedia.org/wiki/Near field communication

无线键盘和无线鼠标

- 红外键盘鼠标
 - 唯一的访问控制就是红外设备的距离特性
 - 电影《小鬼当家》中的一个片段
- 无线鼠标键盘(不包括蓝牙鼠标/键盘)
 - 27MHz
 - 256个ID+2个频道就是所有识别措施
- 蓝牙键盘鼠标
 - 安全性优于无线键盘鼠标,成本较高

电磁辐射泄漏

- · CRT显示器行场信息还原
 - 一个抛物面天线,一台电视机
 - 数百米到数公里
- 普通键盘和鼠标的电磁泄露问题

无线网络安全小结

中国传媒日子

可移动的数据网络

中国传棋日子

无线网络主要威胁与风险

- Data Interception
- DoS
- Rogue APs
- Wireless Intruders
- Misconfigured APs

- Ad Hoc and soft APs
- Evil Twin APs
- Wireless Phishing
- Endpoint Attacks
- Misbehaving Clients

无线网络安全加固——蜂窝通信

- 尽快升级你的移动通信网络制式到3G/4G
- · 不要依赖2G网络的短信传送机密信息
- 服务提供商要正确的实现验证码短信功能
 - 不要在短信中同时出现完整帐号和验证码
 - 验证码有效周期尽可能短,建议重要验证码1分钟过期
- •遇到疑似伪造来源号码的电话和短信,回拨可验证真伪
 - 更换另一个手机号、固定电话,逐个号码输入方式回拨

中国传棋日子

无线网络安全加固——蓝牙

- 默认不启用设备的蓝牙功能,除非需要用到
- 尽可能使用最低等级的蓝牙默认功耗,限制蓝牙传输距离
- 关闭蓝牙的"可被发现"能力
- 使用动态、健壮的PIN码
- 尽可能使用高版本的蓝牙协议支持设备
- 关闭不需要的蓝牙功能
- 建议开启蓝牙配对设备的双向认证功能

中国传播日学

无线网络安全加固——RFID

- · 给你口袋/钱包里的RFID卡增加一个RFID屏蔽卡套,防止近 距离复制
- 避免使用Mfiare Classic芯片卡,而采用更强加密算法的芯片卡,比如CPU卡
- 涉及金额等敏感数据应进行加密处理,禁止明文存储
- 读卡器与后端主机数据库实行线上作业,采用即时连线的方式进行系统核查
- 结合uid进行加密,并设置uid白名单,提高攻击者破解成本, 但可能被特殊卡绕过
- 对全扇区采用非默认密码加密,提高破解成本,但可能通过 DarkSide方式暴力破解

ref: http://security.tencent.com/index.php/blog/msg/52

参考资料

- Dan Veeneman, Vulnerabilities of Cellular and Satellite-based Voice and Data Networks, Blackhat 2002 USA.
- http://seclists.org/fulldisclosure/2011/Aug/76
- http://wulujia.com/2013/11/10/OsmocomBB-Guide/

延伸阅读

- http://www.cellcrypt.com/gsm-cracking
- http://www.freebuf.com/articles/wireless/28686.html