

Shahjalal University of Science & Technology, Sylhet

Department of Computer Science and Engineering

Course No: EEE-201D

Assignment No: 01

Digital Logic Design

Submitted To

Nafis Imtiaz Rahman

Lecturer

Department of Electrical & Electronic Engineering

Submitted By

Name : Jakir Hasan

Registration no: 2018331057

Section : A

Session : 2018-19

Submission date: 26/11/2020

Problem Statement:

Express each of the function in sum-of-minterms and product of maxterims form.

Solution:

a) Expression in sum-of-minterms form-

Expression in product of maxterms:

 $f(x, y, \overline{z}) = (xy+z) (y+xz)$ = (y+z) (x+z) (x+y) (y+z) $= (x\overline{x} + y + \overline{z}) (x+y\overline{y} + \overline{z}) (x+y+z\overline{z}) (x\overline{x} + y + \overline{z})$ = (x+y+z) (x+y+z) (x+y+z) (x+y+z) (x+y+z) = (x+y+z) (x+y+z) (x+y+z) (x+y+z)

= (x+y+z) (x+y+z) (x+y+z) (x+y+=)

b)

Expression in sum-of-minterms-

F(W, X, y, z) = yz+wxy+wxz+wxz+

= NXyz+WXyz+WXyz+WXyz+WXyz+WXyz +WXyz +WXyz+WXyz+Wxyz+Wxyz

= WNJ Z + WNJ

Expression in product of maxterns:

F(W, X, 8, 7) = 97+WXY+WXZ+WXZ

= m13 + m9 + m5 + m1 + m12 + m19 + m3

Scanned with CamScanner

 $= \sum (1,3,5,9,12,13,14)$

 $=\pi(2,4,6,7,8,10,11,15)$

 Problem Statement:

Simplyfy the boolean expressions using K-maps.

Solution:

a) $f(W, \chi, \chi, \xi) = \chi y + w + y + w + \chi y + \chi y$ = $(W+W) \chi y + w + (\chi+\chi) y + (\chi+\chi) +$

> =WNYZ+WNYZ+WNYZ+WNYZ+WNYZ +WNYZ+WNYZ+WNYZ+WNYZ +WNYZ+WNYZ

=N x y 7 + W x y 7 + W x y 7 + W x y 7 + w x

 $= m_{15} + m_7 + m_{14} + m_{11} + m_{10} + m_{13} + m_{12}$

The state of the s

+ m3 + m2

b)

f(w, n, y,z) = wx + yz + wy + wx y

 $f(x,y,z) = \overline{x}y + y\overline{z} + \overline{y}\overline{z}$ $= \overline{x}y(z+\overline{z}) + (x+\overline{x})y\overline{z} + (x+\overline{x})y\overline{z}$ $= \overline{x}yz + \overline{x}y\overline{z} + xy\overline{z} + \overline{x}y\overline{z} + xy\overline{z} + xy\overline{z}$ $= \overline{x}yz + \overline{x}y\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$ $= \overline{x}yz + \overline{x}yz + xy\overline{z} + xy\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$ $= m_3 + m_2 + m_6 + m_4 + m_6$

Problem statement.

Implement the functions from question 1 with a 4x1 multiplexer and external gates.

Hene,

$$I_0 = \frac{1}{3} + \frac{1}{3}$$
 $I_1 = \frac{1}{3} + \frac{1}{3}$
 $I_2 = \frac{1}{3} + \frac{1}{3}$
 $I_3 = \frac{1}{3} + \frac{1}{3}$

the same of the sa

6

f(w, x, y, z) = yz + wxy + wxz + wxz

= WXJZ + WXZZ + WZZZ + WZZ + WZZZ + WZZ + WZZ

= m₁₃ + m₉ + m₅ + m₁ + m₁₂ + m₁₄ + m₃

WX	00	01	11	10
00	0	1	1)	0
01	6	1	0	0
11	0	1)	0	1
10	0	1	0	0

Problem statement.

Design a four-bit combinational circuit 2's complementer

(The output generates the 2's complement of the input binarry number).

Solution:

	Input			Output					
W	X	<u> </u>	7		Fz	F ₂	F ₁	Fo	
0	0	0	0		0	0	G	0	
0	0	0	1		1	1	1	1	
0	6	1	0		1	1	1	0	
0	0	1	1		1	1	. 0	1	
	1	6	0		1	1	0	0	
			1		1		1	1	
0	1				1	0	1	Ô	
.0	1	1	0		1	<u>^</u>		1	
0	1	1	1					1	
1	0	0	0		7				
	0	0	1		Q,	1	1	1	
-		1	6		0	1	1	0	
1	6		4		<u>^</u>	1	0	1	
1	0	1	1			1	0		``
1	1	O	0		0				
1	1	0	1		0				
1	1	1	٥		0	0	1	0	
1	1	1	1		0	0	0	1	

Forz F3:

F3=WZ+WY+WXY+WXJZ

Fon F2:

F017 F1:

MNAS	00	01	11	10		
00	0	1	O	1		
01	0	1	6	1		
11	0	1	0	1		
10	0	1	0	1/		
F1 = 77 + 77						

Fon Fo:

1.77	. 00	0	1,	11	10
WX			1	1	0
01	0		1	1	0
11	0		1	1	0
10	0	1	1 1	1	0

Fo = 7

Henre

F3= WZ+WY+WXY+WXY= F2= XYZ+XZ+XY

F+ = 777

Fo = 7

