Algoritmo K Medias

Algoritmo K Medias

Tags: Reconocimiento de Patrones, Tecnicas de agrupamiento

Suponemos que a priori nos dan el número de medias en nuestra distribución

- Colocar aleatoriamente las M medias en nuestro espacio de búsqueda μ_1,μ_2,\ldots,μ_M
- Calcular una medida de pertenencia de una observación x_i con una clase c_k . Usar lo siguiente:

$$b_{ik} = egin{cases} 1, ext{Si} \; x_i \; ext{es el valor más cercano a la media} \; \mu_k \ 0, ext{Si no}. \end{cases}$$

Calcular las medias usando

$$\mu_k = rac{\sum_{i=1}^N x_i b_{ik}}{N_k} \qquad k=1,2,\ldots,M \qquad N_k = \sum_{i=1}^N b_{ik}$$

Repetimos los pasos 2 y 3 hasta que las medias no cambien.

Ejemplo:

Considere

$$x = \{3, 4, 2, 3, 4, 4\}$$

 $y = \{7, 8, 4, 7, 5, 8\}$

Tenemos 2 clases, o sea, 2 medias, que, de acuerdo al paso 1, se inicializan aleatoriamente

$$egin{aligned} \mu_1 &= 5 \ \mu_2 &= 7 \end{aligned}$$

Paso 2

Calcular la medida de pertenencia con b_{ik} por medio de distancias. En este caso, distancia Manhattan $D(x,y)=|x_i-\mu_k|$

Paso 3

Calcular las nuevas medias utilizando

$$\mu_k = rac{\sum_{i=1}^N x_i b_{ik}}{N_k} \qquad k=1,2,\ldots,M \qquad N_k = \sum_{i=1}^N b_{ik}$$

x_i	$D(x_i,\mu_1)$	$D(x_i,\mu_2)$	b_{i_1}	b_{i_2}	$x_ib_{i_1}$	$x_ib_{i_2}$
3	2	4	1	0	3	0
4	1	3	1	0	4	0
2	3	5	1	0	2	0
3	2	4	1	0	3	0
4	1	3	1	0	4	0
4	1	3	1	0	4	0
7	2	0	0	1	0	7
8	3	1	0	1	0	8
4	1	3	1	0	4	0
7	2	0	0	1	0	7
5	0	2	1	0	5	0
8	3	1	0	1	0	8
SUMA			8	4	29	30

$$\mu_1 = \frac{39}{N_1} = \frac{29}{8} = 3.62$$
 $\mu_2 = \frac{30}{N_2} = \frac{30}{4} = 7.5$

References

Aglomerativas

K medias difusas