Statistiek (bij course 5a)

Boek: Statistics for the Life Sciences (fifth edition), Samuels + Witmer.

Onderwerpen:

Variabele, kansverdeling, normale verdeling, steekproef, populatie, t-verdeling, betrouwbaarheidsintervallen, toetsen van hypothesen; t-toets, F-toets, Anova en power van een toets.

Week	lesstof	Make exercises:
1	The normal distribution Ch.4	4.3.3; 4.3.4; 4.3.12 4.S.4; 4.S.5; 4.S.6
2	Sampling distributions Ch. 5.1 and 5.2	4.S.15; 4.S.16; 4.S.17 and 4.S.18 5.1.2 and 5.1.4; 5.2.4; 5.2.12
3	Confidence intervals Ch. 6.1; 6.2 and 6.3	6.2.1;6.2.3; 6.3.3; 6.3.10; 6.3.11 5.1.5
4	Hypothesis testing and the t-test Ch 7.1 ; 7.2 and 7.5 α and p-value	7.2.3 ; 7.2.9 ; 7.2.17 (use R) Beginnen met opgaven van het stencil
5	α, type 1 en type 2 error Statistical significance versus important difference Ch 7.6, exercise 7.6.1 and Ch 7.8	7.3.6 en 7.6.10
6	Ch 8.2; 8.3 Anova en F-test Ch 11.1; 11.2; 11.3; 11.4; 11.5	8.S.8; 8.S.12 proeftentamen
7	Anova en F-test proeftentamen	afronden opgaven van stencil

Answers exercises BI2 course 5a

- **4.S.16 a)** 0.4039
 - **b)** 0.1263

c)
$$0.7549 - 0.4168 = 0.3381$$

- **4.S.17** 0.2554
- **4.S.18** de helft, dat is 200
- **5.1.4**: zelf een tabel maken, zoals tabel 5.1.2 om de vragen te beantwoorden.

5.1.5 Totale

i Otale			
Gewicht	Frequentie	Kans	
84	1	1/16	
90	2	2/16	
94	2	2/16	
96	1	1/16	
100	4	4/16	
104	1	1/16	
106	2	2/16	
110	2	2/16	
116	1	1/16	

- **5.2.12** n = 36
- **8.S.15 H**₀: Gemiddelde CP is hetzelfde in "regenerating" en in "normal tissue" $(\mu_1 = \mu_2)$

Ha: Gemiddelde CP is verschillend in "regenerating" en in "normal tissue" $(\mu_1 \neq \mu_2)$

SE het verschil is $\frac{4.89}{\sqrt{8}} = 1.727$.

$$\mathbf{t_s} = \frac{4.64}{1.727} = 2.69$$

Met df = 7, opzoeken in table 4 $\mathbf{t}_{0.02}$ = 2.517 en $\mathbf{t}_{0.01}$ = 2.998.

Dus, 0.02 < P < 0.04 we verwerpen H_0 .

Er is voldoende reden (0.02 < P < 0.04) om te concluderen dat het gemiddelde CP verschillend is in "regenerating" en in "normal tissue".