Kapitel 3.

Differentiale

Es seien M und N glatte Mannigfaltigkeiten und $\Phi \colon M \to N$ eine glatte Abbildung. Sind $p \in M$ und $X_p \in \mathcal{T}_p M$, so ist

$$\Phi_{*p}X_p\colon C^\infty(N)\to\mathbb{R}$$
 $f\mapsto X_p(\underbrace{f\circ\Phi}_{\in C^\infty(N)}).$

ein Tangentialvektor an N in $\Phi(p)$:

$$\Phi_{*p}X_p(fg) = X_p((f \circ \Phi)(g \circ \Phi)) = X_p(f \circ \Phi)(g \circ \Phi)(p) + (f \circ \Phi)(p)X_p(g \circ \Phi)$$
$$= \Phi_{*p}X_p(f)g(\Phi(p)) + f(\Phi(p))\Phi_{*p}X_p(g).$$

Definition 3.1 Die lineare Abbildung $\Phi_{*p} \colon T_p M \to T_{\Phi(p)} N$ heißt das **Differential** von Φ in p. Der Rang von Φ_{*p} bezeichnet man als den Rang von Φ in p.

Lemma 3.2 (Differentiale in lokalen Koordinaten) $Sind \varphi \ und \psi \ Karten \ von M \ und N \ um \ p \ und \ \Phi(p) = q, \ sowie \left. \frac{\partial}{\partial x^i} \right|_p \ und \left. \frac{\partial}{\partial y^i} \right|_q \ die \ Standardbasen \ von \ T_p \ M \ und \ T_q \ N \ bezüglich \ der \ Karten \ \varphi \ und \ \psi, \ so \ gilt:$

$$\Phi_{*p} \left. \frac{\partial}{\partial x^i} \right|_p = \sum \partial_i \left(\psi^j \circ \Phi \circ \varphi^{-1} \right) \left(\varphi(p) \right) \left. \frac{\partial}{\partial y^j} \right|_q.$$

Die partielle Ableitung $\partial_i(\psi^j \circ \Phi \circ \varphi^{-1})(\varphi(p))$ bezeichnet man auch kurz $\frac{\partial \Phi^j}{\partial x^i}(p)$.

Bemerkung Aus der Linearität von Φ_{*p} folgt, dass für $X_p = \sum \xi^i \frac{\partial}{\partial x^i} \Big|_p \in T_p M$ und $\Phi_{*p} X_p = \sum \eta^j \frac{\partial}{\partial y^j} \Big|_q$ gilt:

$$\eta^j = \sum \frac{\partial \Phi^j}{\partial x^i} \xi^i$$
, beziehungsweise $\eta = D(\psi \circ \Phi \circ \varphi^{-1}) \xi$.

Beweis

$$\underbrace{\left(\Phi_{*p} \frac{\partial}{\partial x^{i}}\Big|_{p}\right)}_{\in \mathbf{T}_{q} N} (\psi^{j}) = \frac{\partial}{\partial x^{i}}\Big|_{p} (\psi^{j} \circ \Phi) = \partial_{i} (\psi^{j} \circ \Phi \circ \varphi^{-1})(\varphi(p)) = \frac{\partial \Phi^{j}}{\partial y^{i}}(p). \qquad \Box$$

Bemerkung (Charakterisierung durch Kurven) Ist $[c] \in T_p M$, so gilt für $f \in C^{\infty}(N)$:

$$\Phi_{*p}[c](f) = [c](f \circ \Phi) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \underbrace{\left(\underbrace{f \circ \Phi \circ c}_{\text{glatte Kurve}} = [\Phi \circ c](f) \right)}_{\text{glatte N}}$$

also $\Phi_{*p}[c] = [\Phi \circ c].$

Bemerkung (Tangentialräume an Untermannigfaltigkeiten des \mathbb{R}^n) Ist U eine Untermannigfaltigkeit in \mathbb{R}^n mit den Eigenschaften

- (i) $F: U \to M \cap F(U)$ ist ein Homöomorphismus,
- (ii) $\operatorname{D} F|_x \colon \mathbb{R}^m \to \mathbb{R}^{m+k}$ ist injektiv für alle $x \in U$.

 \mathbb{R}^m Dann ist $\psi = F^{-1}$ eine Karte von M. Es bezeichnen $\frac{\partial}{\partial y^i}\Big|_p$ die Standardbasis bezüglich ψ und $\frac{\partial}{\partial x^i}\Big|_x$ die Standardbasis bezüglich der kanonischen Karte $\mathrm{id}_{\mathbb{R}^m}$ des \mathbb{R}^m .

Dann gilt für $g \in C^{\infty}(M)$ beliebig:

$$\left. \frac{\partial}{\partial y^i} \right|_p (g) = \partial_i (g \circ \psi^{-1}) (\underbrace{\psi(p)}_{=x}) = \partial_i (g \circ F)(x) = F_{*x} \left(\left. \frac{\partial}{\partial x_i} \right|_p \right) (f)$$

$$F_{*x}\left(\frac{\partial}{\partial x^{i}}\Big|_{p}\right) = F_{*x}[t \mapsto x + te_{i}] = [t \mapsto F(x + te_{i})]$$
$$\sim \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} F(x + te_{i}) = \mathrm{D}F|_{x}(e_{i}) = \partial_{i}F|_{x}$$

 $T_n M_n = (\langle \partial_1 F |_x, \dots, \partial_m F |_x)$

Eigenschaften des Differentials

(i) (Kettenregel) Sind $\Phi \colon M \to N$ und $\Psi \colon N \to P$ glatt, so gilt:

$$(\Psi \circ \Phi)_{*p} = \Psi_{*\Phi(p)} \circ \Phi_{*p}.$$

- (ii) Ist $\Phi \colon M \to N$ ein Diffeomorphismus, so ist Φ_{*p} ein Vektorraumisomorphismus.
- (iii) (Satz von der Umkehrabbildung) Ist $\Phi \colon M \to N$ glatt und Φ_{*p} bijektiv, so existieren Umgebungen U von p und V von $\Phi(p)$, so dass $\Phi|_U \colon U \to V$ ein Diffeomorphismus ist.

Definition 3.3 (Reguläre Punkte, Submersion, Immersion) Es sei $\Phi \colon M \to N$ glatt.

- (i) Es Punkt $p \in M$ heißt **regulärer Punkt** von Φ , wenn Φ_{*p} surjektiv ist. Ein Punkt $q \in N$ heißt **regulärer Wert**, wenn jeder Punkt $p \in \Phi^{-1}(q)$ regulär ist.
- (ii) Die Abbildung Φ heißt **Submersion**, wenn Φ surjektiv ist und alle $p \in M$ reguläre Punkte sind.
- (iii) Die Abbildung Φ heißt **Immersion**, wenn für alle $p \in M$ Φ_{*p} injektiv ist.
- (iv) Die Abbildung Φ heißt **Einbettung**, wenn Φ Immersion und Homöomorphismus auf sein Bild ist.

Beispiel 1) Betrachte eine Abbildung Φ

Immersion: $\frac{d}{dt}$ Basis von $T_x \mathbb{R}$, $\Phi_{*x} \left(\frac{d}{dt} \right)$,=" $\frac{d}{dt} \Phi$

- 2) $\mathbb{R} \to \mathbb{R}^2 \cong \mathbb{C}, t \mapsto e^{it}$ ist eine Immersion aber ebenfalls nicht injektiv.
- 3) $\mathbb{R} \to S^1 \subset \mathbb{C}, t \mapsto e^{it}$ ist Immersion und Submersion.
- 4) $\mathbb{R} \to S^1 \times \mathbb{R}, t \mapsto (e^{it}, t)$ ist eine Einbettung.

- 5) Ist $M \subset N$ Untermannigfaltigkeit, so ist $i: M \hookrightarrow N$ eine Einbettung.
- **Satz 3.4** Es seien M und N glatte Mannigfaltigkeiten, $\Phi: M \to N$ eine glatte Abbildung und $p \in M$, sowie $q = \Phi(p)$. Es bezeichnen m und n die Dimensionen von M und N und r den Rang von Φ in p. Dann gelten folgende Aussagen:
- (i) Zu jeder Karte ψ von N um q mit $\psi(q) = 0$ existiert eine Karte α von M um p mit $\alpha(p) = 0$ und glatte Funktionen f^{r+1}, \ldots, f^n mit

$$\left(\psi \circ \Phi \circ \alpha^{-1}\right)\left(x^1, \dots, x^m\right) = \left(x^1, \dots, x^r, f^{r+1}(x), \dots, f^n(x)\right).$$

(ii) Falls der Rang von Φ auf einer Umgebung von p konstant r ist, so existieren Karten α um p mit $\alpha(p) = 0$ und β um q mit $\beta(q) = 0$, so dass

$$\left(\beta \circ \Phi \circ \alpha^{-1}\right)\left(x^1, \dots, x^m\right) = \left(x^1, \dots, x^r, 0, \dots, 0\right).$$

- **Korollar 3.5** (i) Falls Φ auf einer offenen Umgebung von $P = \Phi^{-1}(q)$ konstanten Rang r hat, so ist P eine Untermannigfaltigkeit der Kodimension r.
- (ii) Ist q ein regulärer Wert von Φ , so ist $P = \Phi^{-1}(q)$ eine Untermannigfaltigkeit von M der Kodimension n.

Beispiel: $\|\cdot\|^{-1}(1) = S^n \supset \mathbb{R}^{n+1} \to \mathbb{R}, x \mapsto \|x\|$.

- (iii) Ist Φ_{*p} injektiv, so existiert eine Umgebung U von p, so dass $\Phi(U) = Q \subset N$ eine Untermannigfaltigkeit von N ist.
- (iv) Ist Φ eine Einbettung, so ist $Q = \Phi(M)$ eine m-dimensionale Untermannigfaltigkeit von M und $\Phi \colon M \to Q$ ist ein Diffeomorphismus.

Beweis (i) Sei $p \in P = \Phi^{-1}(q)$. Nach Satz 3.4 (ii) existieren Karten $(\alpha, U), (\beta, V)$ mit

$$(\beta \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^m) = (x^1, \dots, x^r, 0, \dots, 0)$$

und es gilt:

$$\alpha(P \cap U) = (\alpha \circ \Phi^{-1} \circ \beta^{-1})(0)$$

= $\{x \in \alpha(U) \mid x^1 = \dots = x^r = 0\} = \alpha(U) \cap \{0\} \times \mathbb{R}^{m-r}$.

(ii) Ist q ein regulärer Wert von Φ , so existieren nach Satz 3.4 (i) Karten ψ , α mit

$$(\psi \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^m) = (x^1, \dots, x^n) \qquad (m \ge n = r)$$

für alle $x \in \alpha(U)$. Es gilt also für alle $u \in U$:

$$\operatorname{Rang} \Phi_{*u} = \operatorname{Rang} D(\psi \circ \Phi \circ \alpha^{-1})|_{x} = \operatorname{Rang} \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} = n$$

Damit folgt die Behauptung aus (i).

(iii) Φ_{*p} ist injektiv $\Rightarrow r = m \le n$. Nach Wahl von Karten wie in (ii):

$$(\psi \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^m) = (x^1, \dots, x^m, f^{m+1}(x), \dots, f^n(x))$$

$$\operatorname{Rang} \Phi_{*u} = \operatorname{Rang} \begin{pmatrix} 1 & 0 \\ & \ddots & \\ & 0 & 1 \end{pmatrix} = m$$

Nach der ersten Aussage des letzten Satzes erhalten wir spezielle Karten:

$$(\beta \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^m) = (x^1, \dots, x^m, 0, \dots, 0) \in \mathbb{R}^m \times \{0\},\$$

wobei β eine adaptierte Karte für $\Phi(U) = Q$ ist.

Beweis (von Satz 3.4) (i) Es sei (ψ, V) eine Karte von N um q mit $\psi(q) = 0$. Ist dann (φ, U) eine Karte von M um p mit $\varphi(p) = 0$, so kann man ohne Einschränkung annehmen, dass

$$\partial_i(\psi^j \circ \Phi \circ \varphi^{-1}) = \left(\frac{\partial \Phi^j}{\partial x^i}\right)_{i,j \le r}$$

invertierbar ist. Es sei $\alpha \colon U \to \mathbb{R}^m$ gegeben durch

$$\alpha^j = \begin{cases} \psi^j \circ \Phi & \text{für } j \le r \\ \varphi^j & \text{sonst} \end{cases}$$

Betrachte nun den Kartenwechsel

$$\left(\frac{\partial \alpha^{j}}{\partial x^{i}}\right)_{i,j} = \left(\partial_{i}(\alpha^{j} \circ \varphi^{-1})(0)\right)_{i,j} = \begin{pmatrix} \frac{\left(\frac{\partial \Phi^{j}}{\partial x^{i}}\right)_{i,j \leq r} & * & \\ & 1 & 0 \\ & & 0 & & \ddots \\ & & & 0 & 1 \end{pmatrix}$$

Der Rang von α in p ist damit gleich m. Nach dem Umkehrsatz ist α ein lokaler Diffeomorphismus, also eine Karte von M. Ferner gilt für $j \leq r$:

$$\left((\psi \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^m)\right)^j = (\psi^j \circ \Phi \circ \alpha^{-1})(\alpha(U)) = (\psi^j \circ \Phi)(U) = \alpha^j(U) = x^j.$$

Damit hat $\psi \circ \Phi \circ \alpha^{-1}$ die gesuchte Darstellung.

(ii) Der Rang von Φ sei auf U konstant gleich r. Dann gilt für alle $x \in \alpha(U)$.

$$r = \operatorname{Rang} D(\psi \circ \Phi \circ \alpha^{-1})|_{x} = \left(\begin{array}{ccc} 1 & 0 & \\ & \ddots & 0 \\ 0 & 1 & \\ & * & \underbrace{\left(\frac{\partial f^{r+j}}{\partial x^{r+i}}\right)}_{\sim \operatorname{Rang} 0} \end{array}\right)$$

Somit gilt auf einer Umgebung der 0 für alle i,j>r: $\frac{\partial f^j}{\partial x^i}\equiv 0$. Es gibt also glatte Funktionen g^{r+1},\ldots,g^n mit $g^{r+j}(x^1,\ldots,x^r)=f^{r+j}(x^1,\ldots,x^n)$. Setzt man nun

$$\beta^{j} = \begin{cases} \psi^{j} & j \leq r \\ \psi^{j} - g^{j} \circ (\psi^{1}, \dots, \psi^{r}) & \text{sonst} \end{cases},$$

so gilt:

$$\left(\frac{\partial \beta^{j}}{\partial y^{i}}(q)\right)_{i,j} = \left(\begin{array}{c|c} \left(\frac{\partial \psi^{j}}{\partial y^{i}}\right)_{i,j \leq r} = \delta^{j}_{i} & 0 \\ * & \left(\frac{\partial \psi^{j}}{\partial y^{i}}\right) - \left(\frac{\partial g^{j}}{\partial x^{i}}\right) \\ = \delta^{j}_{i} & = 0 \end{array}\right)$$

Damit gilt $\left(\frac{\partial \beta^j}{\partial y^i}\right)_{i,j} = \delta_i^j$ und nach dem Umkehrsatz definiert β in einer Umgebung von q eine Karte von N. Wie oben rechnet man nach:

$$(\beta \circ \Phi \circ \alpha^{-1})(x^1, \dots, x^n) = (x^1, \dots, x^r, 0, \dots, 0).$$

Bemerkung Ist $\Phi \colon M \to N$ glatt mit konstantem Rang r auf einer Umgebung von $P = \Phi^{-1}(q)$, so ist P eine (m-r)-dimensionale Untermannigfaltigkeit von M. Der Tangentialraum $T_p P$ in p an P ist ein Untervektorrraum von $T_p M$ und es gilt:

Ist $X_p = \dot{c}(0) \in \mathcal{T}_p P$, so ist c glatt als Abbildung $\mathcal{I} \to M$ und ebenso $\Phi \circ c \equiv q$. Damit gilt:

$$\Phi_{*p}(\dot{c}(0)) = \underbrace{\overline{\Phi \circ c}}_{\equiv q}(0) = 0,$$

also $T_p P \subseteq \text{Kern } \Phi_{*p}$. Es gilt:

$$\dim T_p P = \dim P = m - r = \dim T_p M - \operatorname{Rang} \Phi_{*p} = \dim \operatorname{Kern} \Phi_{*p}.$$

Beispiel 3.6 Die *n*-dimensionale Sphäre $S^n \subset \mathbb{R}^{n+1}$ ist das reguläre Urbild der glatten Abbildung $\Phi \colon \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}_{>0}, x \mapsto \|x\|^2; \ S^n = \Phi^{-1}(1)$. Der Tangentialraum $T_x \mathbb{R}^{n+1}$ ist vermöge der Abbildung

$$\mathbb{R}^{n+1} \ni V \mapsto [t \mapsto x + tv] \in \mathcal{T}_x \mathbb{R}^{n+1}$$
.

gegeben. Damit gilt genau dann $v \in T_x S^n$, wenn $[x + tv] \in \text{Kern } \Phi_{*x}$.

$$0 = \Phi_{*x}[x + tv] = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Phi(x + tv) = \partial_v \Phi(x) = \mathrm{D} \Phi|_x(v) = \langle \operatorname{grad} \Phi(x), v \rangle.$$

Es gilt grad $\Phi(x) = (2x^1, \dots, 2x^{n+1}) = 2x$, also gilt $v \in T_x S^n$, genau dann, wenn $v \perp x$.