

Лекция 11

«Общие уравнения линий и поверхностей»	«Общие	уравнения	ЛИНИЙ	и пове	ерхностей»
--	--------	-----------	-------	--------	------------

Содержание лекции:

Ключевые слова:

Авторы курса:

Свинцов М.В.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

В предыдущей лекции были рассмотрены кривые 2-го порядка: эллипс, гипербола и парабола. Уравнения этих линий были записаны в канонической системе координат, которая в первую очередь расположена относительно осей симметрии и центра симметрии (в случае эллипса и гиперболы). Очевидно, что кривые 2-го порядка могут быть ориентированы на плоскости произвольным образом, а следовательно и их уравнения будут принимать несколько иной вид.

11.1 Преобразования плоскости

Прежде чем говорить о самих линиях и их уравнениях в различных системах координат, рассмотрим несколько видов самих преобразований плоскости, которые можно выполнить.

11.1.1 Параллельный перенос

Одно из наиболее простых преобразований системы координат, которое можно ввести, носит название "параллельный перенос".

Параллельным переносом на вектор \vec{a} называется преобразование плоскости, при котором каждая точка A плоскости переходит в такую точку A', что вектор $\overrightarrow{AA'}$ принадлежит классу эквивалентности \vec{a} .

Рассмотрим две декартовы системы координат с попарно параллельными сонаправленными осями и различными началами координат. Введем обозначения

- \vec{r} радиус-вектор произвольной точки A в системе координат Oxy;
- \vec{r}' радиус-вектор этой же точки A' в системе координат Ox'y';
- \vec{a} радиус-вектор начала координат "сдвинутой" системы координат;

В векторном виде радиус-вектор преобразуется следующим образом:

$$\vec{r} = \vec{a} + \vec{r}'$$

В координатном виде это преобразование примет вид:

$$\begin{cases} x = \alpha + x' \\ y = \beta + y' \end{cases}$$

где α и β - координаты вектора сдвига системы координат. Это же преобразование может быть записано в матричном виде

$$X = A + X',$$

полагая, что

$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 $A = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ $X' = \begin{pmatrix} x' \\ y' \end{pmatrix}$

Легко может быть получено обратное преобразование в силу линейности параллельного переноса.

В векторном виде:

$$\vec{r}' = \vec{r} - \vec{a}$$

В координатном виде:

$$\begin{cases} x' = x - \alpha \\ y' = y - \beta \end{cases}$$

В матричном виде:

$$X' = X - A$$

Свойства параллельного переноса

- 1. Параллельный перенос на нулевой вектор $\vec{a} = \vec{0}$ является тождественным преобразованием.
- 2. Преобразование, обратное параллельному переносу на вектор \vec{a} , есть параллельный перенос на вектор, противоположный вектору $\vec{b} = -\vec{a}$.
- 3. Композиция двух параллельных переносов с векторами \vec{a} и \vec{b} есть параллельный перенос на вектор $\vec{c} = \vec{a} + \vec{b}$.
- 4. Параллельный перенос отображает любую прямую, не параллельную вектору переноса, на параллельную ей прямую.
- 5. Каждая прямая, параллельная вектор параллельного переноса, отображается сама на себя, т.е. является инвариантной прямой этого переноса.

Последние 2 пункта требуют пояснения. Рассмотрим прямую заданную в общем виде:

$$Ax + By + C = 0$$

Применяя параллельный перенос $\vec{r} = \vec{a} + \vec{r}'$, получаем

$$A(\alpha + x') + B(\beta + y') + C = 0$$

После преобразований, уравнение также будет представлять собой общее уравнение прямой

$$Ax' + By' + C' = 0,$$

где $C' = A\alpha + B\beta + C$. Можно обратить внимание, что вектор нормали вне зависимости от вида вектора сдвига $\vec{a} = (\alpha, \beta)$ остается неизменным. Следовательно полученная прямая будет как минимум параллельна. Однако если параллельный перенос происходит на вектор, параллельный самой прямой, то C' = C. Это становится очевидно, если заметить, что тогда \vec{a} будет ортогонален вектору нормали и их скалярное произведение равно $A\alpha + B\beta = 0$.

11.1.2 Поворот

Другим простейшим преобразованием плоскости является поворот.

Поворотом вокруг точки O на угол α называется преобразование плоскости, при котором точка O переходит в себя, а произвольная точка A, отличная от O переходит в такую точку A', что OA = OA' и ориентированный угол между лучами OA и OA' равен углу α .

Точка O называется центром поворота, а угол α - углом поворота.

Свойства поворота

- 1. Поворот на нулевой угол есть тождественное преобразование.
- 2. Поворот на угол $\alpha = 2\pi$ также есть тождественное преобразование.
- 3. Преобразование, обратное повороту, есть поворот с тем же центром на противоположный угол $\beta = -\alpha$.
- 4. Композиция двух поворотов с одним и тем же центром есть поворот с тем же центром на угол $\alpha_1 + \alpha_2$. В частности, если $\alpha_1 + \alpha_2 = 0$ или $\alpha_1 + \alpha_2 = 2\pi$, то это тождественное преобразование.

Рассмотрим две прямоугольные декартовы системы координат, где одна повернута относительно друго на некоторый угол α. Заметим, что преобразование поворота не изменяет расстояния между точками. Следовательно и длины векторов, в частности базисных, не изменяются. Также как и сохраняются углы между векторами. Можно утверждать, что лля базисных векторов новой системы координат справедливо

$$|\vec{e}_1'| = |\vec{e}_2'| = 1, \qquad (\vec{e}_1', \vec{e}_2') = 0$$

Это утверждение, а также геометрические построения, позволяют утверждать, что базис преобразуется следующим образом

$$\begin{cases} \vec{e}'_1 = \vec{e}_1 \cos \alpha + \vec{e}_2 \sin \alpha \\ \vec{e}'_2 = -\vec{e}_1 \sin \alpha + \vec{e}_2 \cos \alpha \end{cases}$$

Как преобразуется радиус-вектор \vec{r} произвольной точки?

С одной стороны, можно утверждать, что в старом базисе

$$\vec{r} = x\vec{e}_1 + y\vec{e}_2$$

В новом же базисе имеем другое представление, однако которое преобразуется к старому простейшими преобразованиями

$$\vec{r} = x'\vec{e}_1' + y'\vec{e}_2' =$$

$$= x'(\vec{e}_1\cos\alpha + \vec{e}_2\sin\alpha) + y'(-\vec{e}_1\sin\alpha + \vec{e}_2\cos\alpha) =$$

$$= \vec{e}_1(x'\cos\alpha - y'\sin\alpha) + \vec{e}_2(x'\sin\alpha + y'\cos\alpha)$$

В силу единственности разложения по базису можно сделать вывод, что координаты точки преобразуются следующим образом

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

Вводя матрицу поворота

$$T = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

преобразование поворота можно представить в матричном виде

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

или что тоже самое

$$X = TX'$$

Обратное преобразование существует всегда. Это видно в том числе и из матричного представления. Для существования обратного преобразования

$$X' = T^{-1}X$$

необходимо $\det T \neq 0$. Действительно

$$\det T = \cos^2 \alpha + \sin^2 \alpha = 1 \neq 0$$

Следовательно обратное преобразование существует. Каков его вид? Обратная матрица очевидно равна

$$T^{-1} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

но это преобразование тождественно применению поворота на противоположный угол (в силу нечетности синуса и четности косинуса), чем как раз и является обратное преобразование. В координатном виде это преобразование примет вид

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Рассмотрим поворот плоскости, содержащей прямую

$$Ax + By + C = 0$$

При применении данного преобразование уравнение также претерпит изменение

$$A(x'\cos\alpha - y'\sin\alpha) + B(x'\sin\alpha + y'\cos\alpha) + C = 0$$
$$(A\cos\alpha + B\sin\alpha)x' + (-A\sin\alpha + B\cos\alpha)y' + C = 0$$
$$A'x' + B'y' + C = 0$$

Заметим, что вектор нормали при повороте плоскости на ориентированный угол α также поворачивается на этот же угол.

11.1.3 Общее преобразование плоскости

Рассмотрим наиболее общее преобразование плоскости, при котором происходит замена базисных векторов $\vec{e_1}$ и $\vec{e_2}$ на базисные векторы $\vec{f_1}$ и $\vec{f_2}$, а также перенос начала координат.

Пусть преобразование базисных векторов можно представить в виде

$$\begin{cases} \vec{f_1} = t_1^1 \vec{e_1} + t_1^2 \vec{e_2} \\ \vec{f_2} = t_2^1 \vec{e_1} + t_2^2 \vec{e_2} \end{cases}$$

Перенос начала системы координат можно описать вектором

$$\vec{a} = \alpha^1 \vec{e}_1 + \alpha^2 \vec{e}_2$$

Пусть M - некоторая точка плоскости, имеющая в исходной системе координат координаты (ξ^1,ξ^2) . Иными словами

$$\overrightarrow{OM} = \xi^1 \vec{e}_1 + \xi^2 \vec{e}_2$$

Относительно новой системы координат эта же точка будет иметь другие координаты (ξ'^1, ξ'^2)

$$\overrightarrow{O'M} = \xi'^1 \overrightarrow{f_1} + \xi'^2 \overrightarrow{f_2}$$

Учитывая все преобразования, радиус-вектор точки в исходной системе координат можно представить следующим образом

$$\overrightarrow{OM} = \vec{a} + O'\vec{M} =$$

$$= (\alpha^1 \vec{e}_1 + \alpha^2 \vec{e}_2) + (\xi'^1 \vec{f}_1 + \xi'^2 \vec{f}_2) =$$

$$= (\alpha^1 \vec{e}_1 + \alpha^2 \vec{e}_2) + \xi'^1 (t_1^1 \vec{e}_1 + t_1^2 \vec{e}_2) + \xi'^2 (t_2^1 \vec{e}_1 + t_2^2 \vec{e}_2) =$$

$$= (\alpha^1 + t_1^1 \xi'^1 + t_2^1 \xi^2) \vec{e}_1 + (\alpha^2 + t_1^2 \xi'^1 + t_2^2 \xi^2) \vec{e}_2$$

Опять же в силу единственности разложения вектора по базису координаты равны, а следовательно преобразование можно представить в матричном виде

$$\begin{pmatrix} \xi^1 \\ \xi^2 \end{pmatrix} = \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix} + \begin{pmatrix} t_1^1 & t_2^1 \\ t_1^2 & t_2^2 \end{pmatrix} \begin{pmatrix} \xi^1 \\ \xi^2 \end{pmatrix}$$
$$X = A + TX'$$

Геометрический смысл матричного столбца A остается, как и прежде, параллельным переносом. При этом, если параллельный перенос единственное преобразование, необходимо выполняется

$$T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Если же матрица отлична от единичной, то возможно несколько других частных случаев:

1. Инверсия одной или обеих из осей

$$T = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \Longrightarrow \begin{cases} \vec{f_1} = \pm \vec{e_1} \\ \vec{f_2} = \pm \vec{e_2} \end{cases}$$

2. Сжатие-растяжение

$$T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \Longrightarrow \begin{cases} \vec{f_1} = \lambda_1 \vec{e_1} \\ \vec{f_2} = \lambda_2 \vec{e_2} \end{cases}$$

3. Поворот на угол α

$$T = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \Longrightarrow \begin{cases} \vec{e_1} = \vec{e_1} \cos \alpha + \vec{e_2} \sin \alpha \\ \vec{e_2} = -\vec{e_1} \sin \alpha + \vec{e_2} \cos \alpha \end{cases}$$

Можно рассмотреть еще один класс преобразований, обладающий схожими с поворотом свойствами - сохранение углов и расстояний между точками.

Для сохранения углов требуется, чтобы базис $(\vec{f_1}, \vec{f_2})$ также был ортогональным:

$$(\vec{f_1}, \vec{f_2}) = 0 \qquad \Rightarrow \qquad (t_1^1 \vec{e_1} + t_1^2 \vec{e_2}, t_2^1 \vec{e_1} + t_2^2 \vec{e_2}) = \mathbf{t_1^1 t_2^1} + \mathbf{t_1^2 t_2^2} = \mathbf{0}$$

Для сохранения расстояний между точками требуется, чтобы новые вектора также оставались единичными:

$$\begin{cases} |\vec{f_1}|^2 = 1 \\ |\vec{f_2}|^2 = 1 \end{cases} \Rightarrow \begin{cases} (t_1^1)^2 + (t_1^2)^2 = 1 \\ (t_2^1)^2 + (t_2^2)^2 = 1 \end{cases}$$

Оба условия можно объединить в одно матричное условие:

$$T^TT = E \iff T^T = T^{-1}$$

Матрицы, обладающие таким свойством, называют ортогональными.

Nota bene Матрица поворота является ортогональной

|| Преобразование плоскости, сохраняющее расстояния, называется **движением**. Рассмотренные ранее параллельный перенос и поворот на некоторый угол сохраняют расстояние, а значит являются движениями плоскости.

Теорема 11.1. Каковы бы ни были две декартовы прямоугольные системы координат, существует единственное движение плоскости, переводящее одну систему координат в другую.

Теорема приводится без доказательства, однако смысл ее крайне важен для нас. Следствием этого утверждения является то, что мы получим возможность привести кривую 2-го порядка, заданную в произвольной системе координат, к каноническому виду.

11.2 Уравнения кривых

Перейдем к рассмотрению кривых 2-го порядка в неканонических системах координат.

11.2.1 Уравнение через эксцентриситет

Прежде чем начнем исследовать наиболее общее уравнение кривой 2-го порядка, получим ценное уравнение, отражающее родственную связь между рассмотренными ранее эллипсом, гиперболой и параболой. Отчасти она уже наблюдалась, ведь все они описываются одним и тем же уравнением в полярных координатах. Как отразить ту же связь, но через декартовы координаты?

Для этого рассмотрим параллельный перенос канонической системы координат Ox'y' эллипса в его левую вершину. Соответствующее преобразование в новую систему координат Oxy будет иметь вид

$$\begin{cases} x = x' + a \\ y = y' \end{cases}$$

Тогда уравнение преобразуется следующим образом

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} = 1$$
$$\frac{(x-a)^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{y^2}{b^2} = 1 - \frac{(x-a)^2}{a^2}$$
$$y^2 = 2\frac{b^2}{a}x - \frac{b^2}{a^2}x^2$$

Введем некоторые новые-старые обозначения:

$$\frac{b^2}{a} = p$$
 $\frac{b^2}{a^2} = \frac{a^2 - c^2}{a^2} = 1 - \varepsilon^2$

Тогда получим окончательно

$$y^2 = 2px - (1 - \varepsilon^2)x^2$$

Аналогичное уравнение по своей форме получается и для гиперболы, если разместить новую систему координат в правой вершине гиперболы. Вспомним, что для параболы мы полагали $\varepsilon=1.$ Тогда становится очевидным, что это уравнение описывает все три кривые.

При фиксированном p и изменяющемся $\varepsilon \in [0, +\infty)$ мы последовательно получаем

- $\varepsilon = 0$ окружность
- $\varepsilon \in (0,1)$ эллипс
- \bullet $\varepsilon = 1$ парабола
- $\varepsilon \in (1, +\infty)$ гипербола

В таком случае проявляется геометрический смысл эксцентриситета - он показывает степень отличия кривой от окружности.

11.2.2 Общее уравнение кривой 2-го порядка

Уравнения эллипса, гиперболы и параболы описываются, вообще говоря, целыми алгебраическими уравнениями 2-го порядка. Следовательно, это может натолкнуть на мысль, что исследование полинома от двух букв в общем виде может содержать больше информации о кривых 2-го порядка, чем частные канонические уравнения.

Общим уравнением кривой 2-го порядка называется уравнение вида

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0$$

При чем полагается, что хотя бы один из коэффициентов A,B или C не равен нулю. Рассмотрим этого "Франкенштейна" по частям.

- Квадратичное слагаемое $Ax^2 + 2Bxy + Cy^2$. Наличие этого слагаемого, хотя бы в каком-то виде, уже нам сигнализирует о том, что перед нами кривая 2-го порядка. Более того, сравнивая это уравнение с каноническими, можно заметить, что оно может возникнуть только при повороте канонической системы координат (в силу наличия перекрестного умножения). Это для нас важный сигнал. Множитель 2 здесь введен для удобства.
- Линейное слагаемое Dx + Ey сигнализирует нам о возможном наличии параллельного переноса канонической системы координат. Опять же это становится очевидным, если применить это преобразование к любому из канонических уравнений.
- Свободный член F не играет столь большого значения относительно канонической системы координат в текущем виде уравнения, но будет иметь критически важное значение в дальнейших рассмотрениях.

Рассмотрим один из возможных алгоритмов приведения кривой к каноническому виду. Для этого нам необходимо будет сначала произвести поворот системы координат, а затем параллельный перенос. Почему именно в такой последовательности? Ответ достаточно прост. Перенос системы координат необходимо производить либо в центр симметрии (эллипс, гипербола), либо в вершину кривой (парабола). Ни ту, ни другую точку выяснить не представляется возможным. С другой стороны очевидно, что в канонических системах координат отсутствует слагаемое вида 2Bxy, а значит избавление от него точно позволит нам сделать шаг в сторону канонического уравнения.

Рассмотрим поворот плоскости на пока что неизвестный угол θ

$$\begin{cases} x = x' \cos \theta - y' \sin \theta \\ y = x' \sin \theta + y' \cos \theta, \end{cases}$$

полагая, что x' и y' - координаты точек кривой в новой системе координат. Подставим это преобразование в общее уравнение кривой 2-го порядка:

$$A(x'^{2}\cos^{2}\theta - 2x'y'\cos\theta\sin\theta + y'^{2}\sin^{2}\theta) +$$

$$+2B(x'^{2}\cos\theta\sin\theta + x'y'(\cos^{2}\theta - \sin^{2}\theta) - y'^{2}\cos\theta\sin\theta) +$$

$$+C(x'^{2}\sin^{2}\theta + 2x'y'\cos\theta\sin\theta + y'^{2}\cos^{2}\theta) +$$

$$+D(x'\cos\theta - y'\sin\theta) + E(x'\sin\theta + y'\cos\theta) + F = 0$$

Выберем угол θ такой, что коэффициент перед x'y' станет равным нулю. Попробуем выяснить, что это за угол:

$$-2A\cos\theta\sin\theta + 2B(\cos^2\theta - \sin^2\theta) + 2C\cos\theta\sin\theta = 0$$
$$2B\cos2\theta = (A - C)\sin2\theta$$
$$\tan2\theta = \frac{2B}{A - C}$$

Таким образом мы нашли значение угла, при котором слагаемое с x'y' обращается в ноль.

Nota bene Можно заметить, что при A=C обнуляется знаменатель дроби. Однако это не должно смущать, т.к. тангенс принимает значение ∞ при $\pi/2$. Следовательно искомый угол $\theta=\pi/4$

Завершая преобразование с уже найденным углом θ получим уравнение вида

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0$$

В некоторых случаях, которые обсудим далее, уже в этом случае можно остановиться в некоторых преобразованиях, но если предположить, что оба коэффициента A' и C' не равны нулю, то можно привести уравнение к окончательному виду. Это можно сделать двумя способами. Первый способ заключается в введении нового преобразования - параллельного переноса

$$\begin{cases} \xi = x_0 + x' \\ \eta = y_0 + y' \end{cases}$$

с последующим обнулением коэффициентов при линейных слагаемых. Способ в своем подходе аналогичный рассмотрению поворота.

Второй способ называется "выделение полного квадрата" и мы остановимся на нем. Сгруппируем слагаемые следующим образом

$$A'\left(x^2 + \frac{D'}{A'}x\right) + C'\left(y^2 + \frac{E'}{C'}y\right) + F = 0$$

Выражения, находящиеся в скобках можно представить таким образом, что можно воспользоваться сверткой в квадрат суммы. Тогда

$$A'\left(x + \frac{D'}{2A'}\right)^2 - \frac{D'^2}{4A'} + C'\left(y + \frac{E'}{2C'}\right)^2 - \frac{E'^2}{4C'} + F = 0$$

Вводя обозначения

$$x_0 = -\frac{D'}{2A'}$$
 $y_0 = -\frac{E'}{2C'}$ $F' = F - \frac{D'^2}{4A'} - \frac{E'^2}{4C'}$

получим уравнение кривой в канонической системе координат:

$$A'(x - x_0)^2 + C'(y - y_0)^2 + F' = 0$$

или

$$A'\xi^2 + C'\eta^2 + F' = 0$$

11.2.3 Классификация кривых 2-го порядка

Для удобства переобозначим все буквы следующим образом

$$Ax^2 + By^2 + C = 0$$

Основываясь на коэффициентах A, B и C, разделим уравнения на три группы:

1. Уравнения эллиптического типа. К уравнениям этого типа отнесем такие, в которых A и B имеют одинаковый знак

В зависимости от коэффициента C получим несколько случаев

 $\bullet\,$ Пусть C имеет отличный от A и B знак. Тогда уравнение можно переписать как

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Полученное уравнение описывает вещественный эллипс.

ullet Пусть C имеет одинаковый с A и B знак. Тогда

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

Полученное уравнение описывает **мнимый эллипс**. Данное уравнение описывает пустое множество точек на декартовой плоскости.

 \bullet Пусть C=0. Тогда

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

В таком случае имеется пара пересекающихся мнимых прямых. В вещественной плоскости этому типу уравнения удовлетворяет только одна единственная точка (0,0).

- 2. Уравнения гиперболического типа. К этому типу уравнений относят такие, что AB<0 коэффициенты имеют разный знак. Не теряя общности можем положить, что A>0. В силу того, что знак C не влияет на сам тип кривой, можно выделить два случая:
 - $C \neq 0$. В таком случае, уравнение дает **гиперболу** (при C < 0) или **двойственную ей гиперболу** (C > 0):

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad \qquad \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

• C=0. В таком случае

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

уравнение описывает две пересекающиеся прямые.

3. Уравнения параболического типа. Рассмотрим вырожденный случай - такой, что какой-то oduh из коэффициентов A или B равен нулю. Не теряя общности и здесь можем положить, например, коэффициент A равным нулю. Тогда уравнение

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0$$

параллельным переносом можно привести к виду

$$Sy^2 + Px + Q = 0$$

которое также представляет несколько типов:

• Пусть $P \neq 0$. Знакомый нам случай **параболы**:

$$y^2 = 2px$$

• Пусть P=0, а SQ <= 0. Иными словами, что S и Q имеют разный знак или же Q=0. В таком случае уравнение описывает **параллельные** (совпадающие при Q=0) прямые

$$y^2 = a^2$$

• Пусть P = 0, а PQ > 0. Тогда уравнение примет вид

$$y^2 + a^2 = 0$$

и уравнение будет описывать пустое множество на вещественной плоскости, но вообще говоря мнимые параллельные прямые.

Этим описанием ограничиваются все возможные множества точек, которые могут быть описаны общим уравнением кривой 2-го ворядка.