Séries 5

Le symbole de sommation \sum

Le nombre $\alpha = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5}$ est une somme de termes qui sont 5.1 tous de la forme $\frac{1}{k(k+1)}$.

> Pour quelle valeur de k obtient-on le premier terme de α ? le deuxième? le troisième? le quatrième?

Notation: on écrira α sous la forme $\sum_{k=1}^{4} \frac{1}{k(k+1)}$.

Cette écriture désigne la somme de tous les termes $\frac{1}{k(k+1)}$ obtenus en remplaçant successivement k par 1, par 2, par 3 et par 4

Écrire sans le symbole de sommation \sum : 5.2

1)
$$\sum_{k=1}^{5} k^2$$

2)
$$\sum_{k=1}^{4} (-1)^{k+1} k^3$$
 3) $\sum_{k=4}^{12} 2k - 1$

3)
$$\sum_{k=4}^{12} 2k - 1$$

5.3 Écrire les sommes suivantes avec le symbole de sommation \sum :

1)
$$4 \cdot 5^2 + 5 \cdot 6^2 + 6 \cdot 7^2 + 7 \cdot 8^2 + 8 \cdot 9^2$$

2)
$$\frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{4 \cdot 5 \cdot 6} + \frac{1}{5 \cdot 6 \cdot 7} + \frac{1}{6 \cdot 7 \cdot 8} + \frac{1}{7 \cdot 8 \cdot 9} + \frac{1}{8 \cdot 9 \cdot 10} + \frac{1}{9 \cdot 10 \cdot 11}$$

3)
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \frac{1}{9 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 15}$$

Règles de calcul

$$\sum_{k=1}^{n} (u_k + v_k) = \sum_{k=1}^{n} u_k + \sum_{k=1}^{n} v_k$$

$$\sum_{k=1}^{n} \lambda u_k = \lambda \sum_{k=1}^{n} u_k$$

$$\sum_{k=1}^{n} \lambda \, u_k = \lambda \, \sum_{k=1}^{n} u_k$$

- 5.4 1) Écrire la somme des n premiers nombres impairs à l'aide du symbole de sommation.
 - 2) En rappelant que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et en utilisant les règles de calcul ci-dessus, calculer la somme des n premiers nombres impairs.

5.5 1) Écrire à l'aide du symbole de sommation la somme

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + \ldots + n(n+1)$$

2) Calculer cette somme sachant que $\sum_{i=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$

Définition d'une série

On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$.

À cette suite, on associe une nouvelle suite $(s_n)_{n\in\mathbb{N}}$ formée des sommes suivantes:

$$s_1 = u_1$$

 $s_2 = u_1 + u_2$
 $s_3 = u_1 + u_2 + u_3$

$$s_3 = u_1 + u_2 + u_3$$

$$s_4 = u_1 + u_2 + u_3 + u_4$$

Le terme général de la suite $(s_n)_{n\in\mathbb{N}}$ est donc défini par $s_n=\sum_{k=1}^n u_k$.

On appelle **série** de terme général u_k la suite $(s_n)_{n\in\mathbb{N}}$.

On dit que s_n est la n-ième somme partielle de cette série.

Si la suite $(s_n)_{n\in\mathbb{N}}$ converge, on dit que la série de terme général u_k converge. Dans ce cas, la limite S de la suite $(s_n)_{n\in\mathbb{N}}$ est la somme de la série et on utilise l'une des écritures suivantes :

$$S = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \sum_{k=1}^n u_k = \sum_{k=1}^{+\infty} u_k$$

Si une série ne converge pas, elle diverge.

5.6 Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison r avec $u_1\neq 0$.

La série de terme général u_k est-elle convergente ou divergente ? Si elle converge, que vaut sa somme?

Indication: voir les exercices 4.21 et 4.24.

5.7 Trouver la raison et, s'il y a lieu, la somme des séries géométriques suivantes :

1)
$$9+6+4+...$$

2)
$$16 - 12 + 9 - \dots$$

3)
$$3+2\sqrt{2}+\frac{8}{3}+\dots$$

4)
$$\frac{1}{120} - \frac{1}{60} + \frac{1}{20} - \dots$$

5.8 Trouver une série géométrique de premier terme 1 et de somme 3.

- 5.9 Une série géométrique a pour somme 3. Quelles sont les valeurs possibles pour son premier terme?
- **5.10** La série $\sum_{k=1}^{+\infty} (-1)^k$ est-elle convergente? Dans ce cas, que vaut sa somme?
- **5.11** On considère la série $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots$
 - 1) Quel est le terme général de cette série?
 - 2) Vérifier que $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$.
 - 3) Calculer la n-ième somme partielle s_n de cette série.
 - 4) En déduire qu'elle converge et calculer sa somme.
- **5.12** On considère la série $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots$
 - 1) Quel est le terme général de cette série?
 - 2) Vérifier que $\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left(\frac{1}{2k-1} \frac{1}{2k+1} \right)$.
 - 3) Calculer la n-ième somme partielle s_n de cette série.
 - 4) En déduire qu'elle converge et calculer sa somme.
- **5.13** On considère la série $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$
 - 1) Quel est le terme général de cette série?
 - 2) Vérifier que pour $k \geqslant 2$, $\frac{1}{k^2} < \frac{1}{k-1} \frac{1}{k}$.
 - 3) Montrer que la *n*-ième somme partielle s_n de cette série est majorée par $2 \frac{1}{n}$.
 - 4) Cette série est-elle convergente ou divergente?
- **5.14** 1) Montrer que $\frac{1}{\sqrt{k}} > 2(\sqrt{k+1} \sqrt{k})$.
 - 2) En déduire que $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > 2\left(\sqrt{n+1} 1\right).$
 - 3) La série $\sum_{k=1}^{+\infty} \frac{1}{\sqrt{k}}$ est-elle convergente ou divergente?

- On se demande si en empilant des cubes d'arêtes 1 m, $\frac{1}{2}$ m, $\frac{1}{3}$ m, etc., on peut former une pile plus grande que la Tour Eiffel (324 m antenne comprise). Soit h_n la hauteur de la pile obtenue avec les n premiers cubes, c'est-à-dire $h_n = \sum_{k=1}^{n} \frac{1}{k}$. On appelle cette série la **série harmonique**.
 - 1) (a) Montrer que $h_{n+1} = h_n + \frac{1}{n+1}$.
 - (b) En tabulant cette suite sur la calculatrice, peut-on apporter une réponse à la question de départ?
 - 2) Quelques exemples
 - (a) Écrire sous forme de sommes h_2 , h_4 , h_8 puis $h_4 h_2$, $h_8 h_4$ (ne pas effectuer les calculs).
 - (b) Vérifier que $h_2 h_1 \geqslant \frac{1}{2}$; $h_4 h_2 \geqslant \frac{1}{2}$ et $h_8 h_4 \geqslant \frac{1}{2}$. En déduire que $h_8 - h_1 \geqslant \frac{3}{2}$.
 - 3) De façon générale
 - (a) Pour $n \in \mathbb{N}$, on peut écrire de même $h_{2n} h_n$ comme somme de termes. Combien de termes composent cette somme? Quel est le plus petit d'entre eux?
 - (b) En déduire que pour tout $n \ge 1$, $h_{2n} h_n \ge \frac{1}{2}$ puis que $h_{2n} h_1 \ge n \cdot \frac{1}{2}$.
 - 4) La série harmonique est-elle convergente ou divergente? Dépassera-t-on les 324 m de la Tour Eiffel?
- **5.16** On rappelle que $k! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot k$ pour tout $k \in \mathbb{N}$.
 - 1) Montrer que $k! > 2^{k-1}$ pour tout $k \in \mathbb{N}$.
 - 2) En déduire que la série $\sum_{k=1}^{+\infty} \frac{1}{k!}$ converge et que sa somme est majorée par 2.

Le nombre $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \approx 2,718$ 281 828 459 s'appelle le *nombre de Neper* (mathématicien écossais, 1550-1617) et se note par la lettre e (notation proposée par le mathématicien suisse Euler 1707-1783).

Analyse: séries 5.4

Réponses

5.1
$$k = 1$$
 $k = 2$ $k = 3$ $k = 4$

5.2 1)
$$1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$
 2) $1^3 - 2^3 + 3^3 - 4^3 = -44$

3)
$$7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 135$$

5.3 1)
$$\sum_{k=4}^{8} k (k+1)^2$$
 2) $\sum_{k=3}^{9} \frac{1}{k (k+1) (k+2)}$ 3) $\sum_{k=1}^{7} \frac{1}{(2k-1)(2k+1)}$

5.4 1)
$$\sum_{k=1}^{n} 2k - 1$$
 2) n^2

5.5 1)
$$\sum_{k=1}^{n} k(k+1)$$
 2) $\frac{n(n+1)(n+2)}{3}$

5.6 La série diverge si $|r| \ge 1$; elle converge vers $u_1 \cdot \frac{1}{1-r}$ si |r| < 1.

5.7 1)
$$r = \frac{2}{3}$$
 S = 27 2) $r = -\frac{3}{4}$ S = $\frac{64}{7}$

3)
$$r = \frac{2\sqrt{2}}{3}$$
 S = 27 + 18 $\sqrt{2}$ 4) $r = -2$ série divergente

5.8
$$\sum_{k=1}^{+\infty} \left(\frac{2}{3}\right)^{k-1} = 3$$

5.9
$$u_1 \in]0;6[$$

5.10 La série
$$\sum_{k=1}^{+\infty} (-1)^k$$
 est divergente.

5.11 1)
$$u_k = \frac{1}{k(k+1)}$$
 3) $s_n = 1 - \frac{1}{n+1}$ 4) $S = 1$

5.12 1)
$$\frac{1}{(2k-1)(2k+1)}$$
 3) $\frac{1}{2}\left(1-\frac{1}{2n+1}\right)$ 4) $S=\frac{1}{2}$

5.13 1)
$$\frac{1}{k^2}$$
 4) Elle converge. Euler a montré en 1748 que sa somme vaut $\frac{\pi^2}{6}$.

5.14 3) Elle diverge.

5.15 La série harmonique diverge : on va dépasser la hauteur de la Tour Eiffel.