第4回 知能システム学特論レポート

15344203 有田 裕太 15344206 緒形 裕太 15344209 株丹 亮 12104125 宮本 和

西田研究室,計算力学研究室

2015年6月29日

進捗状況

理論研究の進捗

人工ニューラルネットワークの理論について

プログラミングの進捗

なし

活性化 (シグモイド) 関数

Figure: 典型的なシグモイド関数

マックスアウト

マックスアウト関数

$$u_{jk} = \sum w_{jik} z_i + b_{jk} \quad (1...K)$$
 (1)

$$f(u_i) = \max_{k=1\dots K} (u_{ik}) \tag{2}$$

- ユニットをまとめたような構造を持つ。
- 異なる重みとバイアスを持つそれぞれの総入力を別々に計算し 最大値をユニットの出力とする。

多層ネットワーク

Figure: 2層のネットワーク

- 入力 u^(l), 出力 z^(l)
- 各層間の結合重み $oldsymbol{W}^{(l)}$ $(l=2,\cdots,L)$
- ullet ユニットのバイアス $oldsymbol{b}^{(l)}$ $(l=2,\cdots,L)$

多層ネットワーク

Figure: 2層のネットワーク

中間層
$$(l=2)$$
,出力層 $(l=3)$ はそれぞれ $m{u}^{(2)} = m{W}^{(2)}m{x} + m{b}^{(2)}$ $m{z}^{(2)} = m{f}(m{u}^{(2)})$ $m{u}^{(3)} = m{W}^{(3)}m{z}^{(2)} + m{b}^{(3)}$ $m{z}^{(3)} = m{f}(m{u}^{(3)})$

多層ネットワーク

任意の階層 L のネットワークに一般化すると

$$egin{array}{lll} m{u}^{(l+1)} & = & m{W}^{(l+1)} m{z}^{(l)} + m{b}^{(l+1)} \ m{z}^{(l+1)} & = & m{f}(m{u}^{(l+1)}) \end{array}$$

- $l=1,\ 2,\ 3,\cdots,L-1$ の順に繰り返していくと最終的な出力 $m{y}$ を決定することができる.
- 各層間の結合重み $oldsymbol{W}^{(l)}$ とユニットのバイアス $oldsymbol{b}^{(l)}$ を成分に持つベクトル $oldsymbol{w}$ を定義する.
- これを y(x; w) と表現する.

今後の課題

理論研究

DNN, CNN, caffe について理解を深める

プログラミング

中間層の出力, 可視化