Grundbegriffe der Informatik Musterlösung zur Klausur am 5.3.2012

Lösungsvorschlag:

a) Eine Menge M ist unendlich, wenn es eine injektive Abbildung von M in eine echte Teilmenge von M gibt.

wahr

- b) Wenn eine Relation nicht symmetrisch ist, ist sie antisymmetrisch. falsch
- c) Sei R eine beliebige Relation auf einer nicht-leeren Menge M. R ist transitiv $\Rightarrow R \circ R \subseteq R$. wahr
- d) Sei R eine beliebige Relation auf einer nicht-leeren Menge M. $R \circ R \subseteq R \Rightarrow R$ ist transitiv. wahr
- e) Das leere Wort ϵ ist eine surjektive Abbildung: $\{\} \to \{\}$. wahr
- f) Seien L_1 und L_2 formale Sprachen. $L_1^* = L_2^* \Rightarrow L_1 = L_2$.
- g) $\sqrt{n} \in O(2^{\sqrt{\log_2(n)}})$ falsch
- h) $\sqrt{n} \in \Theta(2^{\sqrt{\log_2(n)}})$ falsch
- i) $\sqrt{n} \in \Omega(2^{\sqrt{\log_2(n)}})$ wahr

j) Gegeben seien zwei reguläre Ausdrücke $R_1=\varnothing*|0(0|1)*|(0|1)*00(0|1)*$ und $R_2=((0*1)*01*)*$ Es gilt: $\langle R_1\rangle=\langle R_2\rangle$. falsch

- k) Die Funktion $f:\mathbb{N}_+\to\mathbb{N}_+$ gibt als Funktionswert die größte Primzahl p zurück, für die gilt: $\exists k\in\mathbb{N}_+:n=k\cdot p$ Es gilt $f(n)\in O(\sqrt{n}).$ falsch
- l) Die aussagenlogische Formel $(A\Rightarrow \neg B)\vee ((B\wedge \neg C)\wedge (C\vee D))\vee A$ ist äquivalent zu $A\vee \neg A$ wahr

Lösungsvorschlag:

	f(x,y)	y=0	y=1	y=2	y=3	y=4
	x=0	0	1	2	3	4
۵)	x=1	1	0	3	2	5
a)	x=2	2	3	0	1	6
	x=3	3	2	1	0	7
	x=4	4	5	6	7	0

b) **Induktionsanfang:** Für n = 0: f(0,0) = 0, für n = 1: $f(0,1) = f(1,0) = 1 \neq 0\sqrt{.}$

Induktionsvoraussetzung:

Für alle $x + y \le n$ und beliebiges, aber festes $n \in \mathbb{N}_0$ gelte: für $x \ne y$ ist $f(x, y) \ne 0$ und für x = y ist f(x, y) = 0.

Induktionsschritt: Sei $\hat{x} + y = n + 1$: Ist $\hat{x} > y$, so ist nach IV und Definition der Funktion $f(\hat{x}, y) \neq f(y, y) = 0$.

Ist $\hat{x} < y$, so ist nach IV und Definition der Funktion $f(\hat{x}, y) \neq f(y, y) = 0$.

Ist nun $\hat{x} = y$, so ist $f(\hat{x}, y) = \min\{z \mid \forall x' < \hat{x} : z \neq f(x', y) \text{ und } \forall y' < y : z \neq f(\hat{x}, y')\}.$

Nach IV sind alle Elemente, die betrachtet werden ungleich Null, woraus folgt, dass für $\hat{x} = y$ gilt: $f(\hat{x}, y) = 0$.

Da nach Aufgabenbeschreibung gilt: $\forall x, y \in \mathbb{N}_0 : f(x, y) = f(y, x)$, gilt die Aussage für alle x, y.

$L\"{o}sungsvorschlag:$

1. a)

b)

$L\"{o}sungsvorschlag:$

$$\begin{aligned} \mathbf{a}) & \ G = (\{S, X, Y, A, B\}, \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}, S, P\} \ \mathrm{mit} \\ & \ P = \{S \rightarrow Y \mathbf{d} \mid \mathbf{a} \mathbf{b} B \mathbf{d}, \\ & \ X \rightarrow \mathbf{c} X \mid \epsilon, \\ & \ Y \rightarrow Y \mathbf{d} \mid \mathbf{a} \mathbf{b} A \mathbf{c}, \\ & \ A \rightarrow \mathbf{a} \mathbf{b} A \mathbf{c} \mid \epsilon, \\ & \ B \rightarrow \mathbf{a} \mathbf{b} B \mathbf{d} \mid \mathbf{c} X\}. \end{aligned}$$

- b) ababccd
 - ababcdd
 - abccccd
 - abcdddd

Aufgabe 2 (3+1+1=5 Punkte)

In dieser Aufgabe geht es um ungerichtete Graphen ohne Schlingen.

1. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 5 Knoten und genau 5 Kanten, die einen Weg besitzen, in dem alle Knoten vorkommen.

Suchen Sie sich einen Ihrer Graphen aus und geben Sie für ihn die Wegematrix an.

Lösungsvorschlag:

2. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 6 Knoten, die alle Grad 1 haben.

Lösungsvorschlag:

3. Wieviele ungerichtete schlingenfreie Graphen mit Knotenmenge $V = \{0, 1, 2, 3, 4, 5\}$ gibt es, bei denen alle Knoten Grad 1 haben?

Lösung: 15

Erklärung: (in der Klausur nicht erforderlich) Da jeder Knoten Grad 1 besitzt, führt zu jedem Knoten genau eine Kante. Bei der gegebenen festen Knotenmenge stehen für die Kante von Knoten 0 aus 5 Möglichkeiten zur Auswahl. Für die Kante vom kleinsten dann noch nicht verbundenen Knoten verbleiben 3 Möglichkeiten und für die letzte Kante bleibt nur eine Möglichkeit übrig.

Insgesamt gibt es also $5 \cdot 3 \cdot 1 = 15$ solcher Graphen.

Achtung: Bei den ersten beiden Teilaufgaben gibt es bei Angabe mehrerer isomorpher Graphen Punktabzug. (Aber man kann auf keine Teilaufgabe weniger als 0 Punkte bekommen.)

Aufgabe 4 (4+1+2=7 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

1. Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	3	11	24	8	7	36

(a) Zeichnen Sie den Huffman-Baum.

Lösungsvorschlag:

(b) Geben Sie die Huffman-Codierung des Wortes bad an.

Lösung:

$$h(bad) = 0000 010 10$$

2. Für $k \geq 1$ sei ein Alphabet $A = \{a_0, a_1, \ldots, a_k\}$ mit k+1 Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2^i vorkommt für $0 \leq i \leq k$.

Geben Sie die Huffman-Codierungen aller Symbole $\mathfrak{a}_{\mathfrak{i}}$ an.

Lösungsvorschlag:

$$h(\alpha_i) = \begin{cases} 0^k & \text{falls } i = 0\\ 0^{k-i} 1 & \text{sonst} \end{cases}$$

6

Aufgabe 7 (2,5+2,5+1+2=8 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{z_0, z_1, z_2, z_3, z_4\}.$
- Anfangszustand ist z_0 .
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	z_0	z_1	z_2	z_3
a	$(z_0, a, 1)$	$(z_2, \mathtt{b}, -1)$	$(z_0, a, 1)$	$(z_4,\mathtt{b},1)$
b	$(z_1,\mathtt{a},1)$	$(z_1,\mathtt{b},1)$	$(z_2, \mathbf{b}, -1)$	$(z_3,\mathtt{b},-1)$
	-	$(z_3,\square,-1)$	-	-

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen anfangs auf dem Band (von Blanksymbolen umgeben) ein Wort $w \in \{a,b\}^+$ steht.

Der Kopf der Turingmaschine stehe auf dem ersten Symbol von $w \in \{a, b\}^+$.

a) Geben Sie für die Eingaben aab, aba, baa jeweils die Anfangskonfiguration, die Endkonfiguration und jede weitere Konfiguration an, die sich während der Berechnung nach einer Änderung der Bandbeschriftung ergibt.

Lösung:

z_0 b			
b	a	a	
	z_1		
a	a	a	
z_2			
a	b	a	
		z_1	
a	a	a	
	z_2		
a	a	b	
			z_1
a	a	a	
			z_4
a	a	b	

b) Die Eingabe enthalte n mal das Zeichen a und m mal das Zeichen b. Wie viele a und wie viele b stehen auf dem Band, wenn sich die Turingmaschine im Zustand z_0, z_1, z_2, z_3, z_4 befindet?

Lösung:

c) Geben Sie eine geschlossene Formel für das Wort w' an, das am Ende der Berechnung der Turingmaschine bei Eingabe von w auf dem Band steht.

Lösung: $w' = a^{N_a(w)}b^{N_b(w)}$

d) Geben Sie eine (möglichst einfache) Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ an, so dass die Anzahl der Schritte, die die Turingmaschine bei Eingabe des Wortes $\mathbf{a}^n \mathbf{b}^n$ macht, in $\Theta(f(n))$ liegt.

 $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto n$