Текущее домашнее задание (ТДЗ) 2. «Временной ряд: введение»

БПИ227. Артемьев Александр

1)Для выполнения данного домашнего задания я взял данные из WB Russia.xls.

Показатель: Долг центрального правительства, совокупный (в % ВВП) - GC.DOD.TOTL.GD.ZS

Страна: Российская Федерация

Период: 2005 - 2021

Изучение и исследование показателя, который отражает уровень долговой нагрузки государства по отношению к его экономике, поможет понять состояния финансовой стабильности России. Мне интересна эта тема, поэтому я выбрал именно этот показатель.

Теперь рассчитаем необходимые метрики по следующим формулам:

Приросты(разности) - $\Delta Y_t = Y_t - Y_{t-1}$

Темпы прироста - $T_t = \frac{Y_t - Y_{t-1}}{Y_{t-1}} * 100\%$

Логарифмическая разность - $\Delta lnY_t = lnY_t - lnY_{t-1}$

Логарифмическая разность(в %) - $\Delta lnY_t * 100\%$

t	yt	yt-1	yt-2	yt-3	Прирост	Темп Прироста	Лог разность	Лог разность * 100 %
2005	16,66	-	-	-	-	-	-	-
2006	9,89	16,66	-	-	-6,77	-40,63	-0,52	-52,14
2007	7,16	9,89	16,66	-	-2,73	-27,63	-0,32	-32,33
2008	6,50	7,16	9,89	16,66	-0,66	-9,26	-0,10	-9,72
2009	8,70	6,50	7,16	9,89	2,20	33,91	0,29	29,20
2010	9,10	8,70	6,50	7,16	0,40	4,60	0,04	4,50
2011	8,64	9,10	8,70	6,50	-0,46	-5,02	-0,05	-5,15
2012	8,55	8,64	9,10	8,70	-0,09	-1,04	-0,01	-1,04
2013	9,07	8,55	8,64	9,10	0,52	6,03	0,06	5,86
2014	11,20	9,07	8,55	8,64	2,13	23,53	0,21	21,13
2015	13,54	11,20	9,07	8,55	2,34	20,89	0,19	18,97
2016	14,24	13,54	11,20	9,07	0,70	5,18	0,05	5,05
2017	16,33	14,24	13,54	11,20	2,08	14,63	0,14	13,65
2018	16,17	16,33	14,24	13,54	-0,16	-0,96	-0,01	-0,97
2019	17,28	16,17	16,33	14,24	1,11	6,85	0,07	6,63
2020	22,99	17,28	16,17	16,33	5,72	33,09	0,29	28,58
2021	20,94	22,99	17,28	16,17	-2,05	-8,92	-0,09	-9,35

За весь период (2005–2021): Показатель госдолга сначала снижался (2006–2008), о чем говорит отрицательный прирост. Затем показатель начал расти с 2009 года (положительный прирост), с пиковыми изменениями в 2014–2015 годах, что, вероятно, связано с экономическими потрясениями. В 2020 году зафиксирован самый высокий положительный прирост (5.72) при темпе прироста (33.09%) За последний год (2020–2021): Наблюдается снижение показателя (-2.05) и отрицательный темп прироста (-8.92%). Это может быть связано с изменением структуры госдолга. Показатель госдолга демонстрирует нестабильность, что может быть связано с экономическими кризисами

(2008, 2014, 2020) и изменениями в экономической политике. Наибольшие изменения происходили в кризисные годы, подчёркивая роль госдолга как антикризисного инструмента. В целом за весь рассматриваемый период, можем заметить тенденцию постепенного увеличения долга центрального правительства.

2) Для того чтобы рассчитать значения автокорреляции, воспользуемся следующией формулой: $\rho(\tau) = \frac{\frac{1}{T-\tau}\sum_{t=\tau+1}^T (y_t - \bar{y}_t)(y_{t-\tau} - \bar{y}_t)}{\frac{1}{T}\sum_{t=1}^T (y_t - \hat{\mu})^2}$

$$\rho(\tau) = \frac{\frac{1}{T-\tau} \sum_{t=\tau+1}^{T} (y_t - \bar{y_t})(y_{t-\tau} - \bar{y_t})}{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2}$$

Для начала найдем среднее(12,76) и дисперсию(23,17) для y_t . После чего в указанной ниже таблице посчитаем значения столбцов начиная с первого и заканчивая последним. Зная среднее значения мы можем заполнить столбцы $y_{t-\tau} - \bar{y_t}$, где τ от 0 до 3, таким образом мы заполним 1,2,4,6 столбцы. После чего находим произведения соответсвующих элементов столбцов, просуммируя которые мы получим выражание суммы из числителя - $\sum_{t= au+1}^T (y_t - ar{y}_t)(y_{t- au} - ar{y}_t)$. Для нахождения корреляции остается умножить значение суммы на $\frac{1}{T- au}$ и поделить на дисперсию y_t . Подробные расчеты в виде формул вычислений можно увидеть в приложенном excel файле.

			r1		r2		r3
	yt-сред	yt-1 - средн	произвед	yt-2 - средн	произвед	yt-3 - средн	произвед
17	-	-	-	-	-	-	-
16	-2,87	3,90	-11,193	-	-	-	-
15	-5,60	-2,87	16,084	3,90	-21,848293	-	-
14	-6,27	-5,60	35,111	-2,87	17,9874625	3,90	-24,434076
13	-4,06	-6,27	25,464	-5,60	22,7696232	-2,87	11,6649381
12	-3,66	-4,06	14,887	-6,27	22,9564293	-5,60	20,5270213
11	-4,12	-3,66	15,095	-4,06	16,7445467	-6,27	25,8202748
10	-4,21	-4,12	17,348	-3,66	15,4238765	-4,06	17,1089537
9	-3,69	-4,21	15,554	-4,12	15,2224777	-3,66	13,5340827
8	-1,56	-3,69	5,767	-4,21	6,57259318	-4,12	6,43260219
7	0,78	-1,56	-1,216	-3,69	-2,878557	-4,21	-3,2804963
6	1,48	0,78	1,153	-1,56	-2,3107046	-3,69	-5,4681835
5	3,56	1,48	5,275	0,78	2,7768458	-1,56	-5,5635112
4	3,41	3,56	12,142	1,48	5,04288881	0,78	2,65467369
3	4,51	3,41	15,381	3,56	16,0886139	1,48	6,68211729
2	10,23	4,51	46,185	3,41	34,8550649	3,56	36,4591478
1	8,18	10,23	83,674	4,51	36,9236234	3,41	27,8656777
	Сумма		296,71		186,33		130,00

В итоге мы получаем следующие значения автокорреляции:

ACF	лаг	1	2	3
ACI				
	rk	0,80	0,54	0,40
График АСБ				
	0,8			
		0,54		
			0,4	
			0,4	
	1	2	3	лаги
	1	2	3	лаги

Для маленькой выборки АСF может принимать не точные значения, из-за малого количества точек, то есть не будет отражать истинную структуру ВР. Наибольшее значение корреляции принимает для 1 лага(0.8), что говорит о сильной зависимости от предыдущего значения. Сам АСF постепенно затухает, $\rho(2)$ и $\rho(3)$ остаются значимыми но постепенно снижаются.

3) Теперь рассчитаем значения частной автокорреляционной функции, по следующим формулам: $\phi(1)=\rho(1)\quad \phi(2)=\frac{\rho(2)-\rho(1)^2}{1-\rho(1)^2}\quad \phi(3)=\frac{\rho(1)^3+\rho(3)+\rho(1)\rho(2)^2-\rho(1)^2\rho(3)-2\rho(1)\rho(2)}{1+2\rho(1)^2\rho(2)-\rho(2)^2-2\rho(1)^2}$

Подробные расчеты в виде формул вычислений можно увидеть в приложенном excel файле. Получили следующие результаты:

Наибольшее значение частная корреляция принимает для 1 лага(0.8), притом с увеличением лага абсолютное значение корреляции падает и достигает наименьшего значения для 3 лага(0.24). Для 2 лага значение автокорреляции становится отрицательным, что указывает на инверсию во временном ряду. PACF показывает, что после первого лага зависимость быстро ослабевает.

PACF	лаг	1	2	3
	rk	0,80	-0,29	0,24
График РАСБ				
	0,8			
			0,24	
	1	2	3	лаги
		-0,29		
		-0,29		