VİTMO

Основы электротехники

Отчёт по лабораторной работе №1

Исследование характеристик источника электрической энергии постоянного тока

Группа *Р3331*Вариант *33*

Выполнил: Дворкин Борис Александрович

Дата сдачи отчёта: 16.09.2024

Дата защиты: 09.10.2024

Контрольный срок защиты: 09.10.2024

Количество баллов:

1 Цель работы

Исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии. К выполнению работы следует приступать после изучения раздела «Источники электрической энергии».

2 Схема эксперимента

На рисунке 1.1 представлена схема замещения источника электрической энергии постоянного тока и нагрузки, созданная в приложении LTspice.

Рис. 1: Схема замещения источника электрической энергии в LTspice.

3 Заполненная таблица 1.1

3.1 Формулы для расчёта

Ток через нагрузку рассчитывается по формуле:

$$I_n = \frac{U_n}{R_n} [A],$$

где U_n — измеренное напряжение на нагрузке, а R_n — сопротивление нагрузки. Абсолютная погрешность тока:

$$\Delta I_n = \frac{\Delta U_n}{R_n}.$$

, где R - известная константа, а U - измеренная величина

Внутреннее сопротивление источника для каждого промежутка между измерениями рассчитывается по формуле:

$$r_k = \frac{U_{n_k} - U_{n_{k+1}}}{I_{n_{k+1}} - I_{n_k}}$$
 [OM].

Абсолютная погрешность внутреннего сопротивления Δr_k :

$$\Delta r_k = \frac{|\Delta(U_{n_k} - U_{n_{k+1}}) \cdot (I_{n_{k+1}} - I_{n_k}) + \Delta(I_{n_{k+1}} - I_{n_k}) \cdot (U_{n_k} - U_{n_{k+1}})|}{(I_{n_{k+1}} - I_{n_k})^2}.$$

Абсолютная погрешность разности напряжений:

$$\Delta(U_{n_k} - U_{n_{k+1}}) = \Delta U_{n_k} + \Delta U_{n_{k+1}}.$$

Абсолютная погрешность разности токов:

$$\Delta(I_{n_{k+1}} - I_{n_k}) = \Delta I_{n_{k+1}} + \Delta I_{n_k}.$$

Абсолютная погрешность измерения напряжения (округляем до тысячных):

$$\Delta U_n = \frac{\text{цена младшего разряда}}{2} = \frac{0,001 \,\text{B}}{2} = 0,0005 \,\text{B}.$$

3.2 Пример расчёта для k = 2

1. Вычисляем разности напряжений и их погрешности:

$$U_{n_2} - U_{n_3} = 10,800 \,\mathrm{B} - 9,600 \,\mathrm{B} = 1,200 \,\mathrm{B},$$

 $\Delta (U_{n_2} - U_{n_3}) = \Delta U_{n_2} + \Delta U_{n_3} = 0,0005 \,\mathrm{B} + 0,0005 \,\mathrm{B} = 0,0010 \,\mathrm{B}.$

2. Вычисляем токи и их погрешности:

$$I_{n_2} = \frac{10,800 \,\mathrm{B}}{5400 \,\Omega} = 0,0020 \,\mathrm{A},$$

$$\Delta I_{n_2} = \frac{0,0005 \,\mathrm{B}}{5400 \,\Omega} \approx 9,259 \times 10^{-8} \,\mathrm{A},$$

$$I_{n_3} = \frac{9,600 \,\mathrm{B}}{2400 \,\Omega} = 0,0040 \,\mathrm{A},$$

$$\Delta I_{n_3} = \frac{0,0005 \,\mathrm{B}}{2400 \,\Omega} \approx 2,083 \times 10^{-7} \,\mathrm{A}.$$

3. Вычисляем разности токов и их погрешности:

$$I_{n_3} - I_{n_2} = 0.0040 \,\mathrm{A} - 0.0020 \,\mathrm{A} = 0.0020 \,\mathrm{A},$$

 $\Delta (I_{n_3} - I_{n_2}) = \Delta I_{n_3} + \Delta I_{n_2} = 2.083 \times 10^{-7} \,\mathrm{A} + 9.259 \times 10^{-8} \,\mathrm{A} = 3.009 \times 10^{-7} \,\mathrm{A}.$

4. Вычисляем r_2 и его погрешность:

$$r_2 = \frac{1,200 \,\mathrm{B}}{0,0020 \,\mathrm{A}} = 600,000 \,\Omega.$$

$$\Delta r_2 = \frac{|\Delta(U_{n_2} - U_{n_3}) \cdot (I_{n_3} - I_{n_2}) + \Delta(I_{n_3} - I_{n_2}) \cdot (U_{n_2} - U_{n_3})|}{(I_{n_3} - I_{n_2})^2}.$$

Подставляем значения:

$$\Delta r_2 = \frac{|0,0010 \,\mathrm{B} \cdot 0,0020 \,\mathrm{A} + 3,009 \times 10^{-7} \,\mathrm{A} \cdot 1,200 \,\mathrm{B}|}{(0,0020 \,\mathrm{A})^2}$$

$$= \frac{(2,000 \times 10^{-6} \,\mathrm{B} \cdot \mathrm{A} + 3,6108 \times 10^{-7} \,\mathrm{B} \cdot \mathrm{A})}{4,000 \times 10^{-6} \,\mathrm{A}^2}$$

$$= \frac{2,3611 \times 10^{-6} \,\mathrm{B} \cdot \mathrm{A}}{4\,000 \times 10^{-6} \,\mathrm{A}^2} = 0,5903 \,\Omega \approx 0,590 \,\Omega.$$

3.3 Результаты расчётов

Проводим аналогичные расчёты для всех k от 2 до 10 и получаем:

Значения r_k и их абсолютные погрешности Δr_k

k	r_k , Om	Δr_k , Om
2	600,000	$\pm 0,590$
3	600,000	$\pm 0,670$
4	600,000	$\pm 0,774$
5	600,000	$\pm 0,917$
6	600,000	$\pm 1,125$
7	599,301	$\pm 1,455$
8	600,701	$\pm 2,090$
9	602,015	$\pm 3,778$
10	598,015	$\pm 2,711$

3.4 Вычисление значения внутреннего сопротивления и его погрешности

Среднее квадратическое значение внутреннего сопротивления:

$$r = \sqrt{\frac{\sum_{k=2}^{10} r_k^2}{9}}$$

$$= \sqrt{\frac{(600,000)^2 \times 5 + (599,301)^2 + (600,701)^2 + (602,015)^2 + (598,015)^2}{9}}$$

$$= 600,004 \,\Omega.$$

Абсолютная погрешность Δr вычисляется как среднеквадратическое из погрешностей Δr_k :

$$\Delta r = \sqrt{\frac{\sum_{k=2}^{10} (\Delta r_k)^2}{9}}.$$

Подставляем значения:

$$\sum_{k=2}^{10} (\Delta r_k)^2 = (0.59)^2 + (0.67)^2 + (0.774)^2 + (0.917)^2 + (1.125)^2 + (1.455)^2 + (2.09)^2 + (3.778)^2 + (2.711)^2$$

$$= 0.3481 + 0.4489 + 0.599076 + 0.840889 + 1.265625 + 2.117025 + 4.3681 + 14.273284 + 7.349521$$

$$= 31.6105.$$

Тогда:

$$\Delta r = \sqrt{\frac{31,6105}{9}} = \sqrt{3,5123} = 1,874 \,\Omega.$$

3.5 Вычисление тока короткого замыкания и его погрешности

Ток короткого замыкания:

$$I_{sc} = \frac{E}{r} = \frac{12,000 \,\mathrm{B}}{600,004 \,\Omega} \approx 20,000 \,\mathrm{mA}.$$

Абсолютная погрешность ΔI_{sc} :

$$\Delta I_{sc} = I_{sc} \left(\frac{\Delta E}{E} + \frac{\Delta r}{r} \right).$$

Абсолютная погрешность ЭДС:

$$\Delta E = \frac{0,001 \,\mathrm{B}}{2} = 0,0005 \,\mathrm{B}.$$

Вычисляем:

$$\Delta I_{sc} = 20{,}000\,\mathrm{mA}\left(rac{0{,}0005\,\mathrm{B}}{12{,}000\,\mathrm{B}} + rac{1{,}189\,\Omega}{600{,}004\,\Omega}
ight) pprox 0{,}040\,\mathrm{mA}.$$

Итоговое значение:

$$I_{sc} = (20,000 \pm 0,040) \,\mathrm{mA}.$$

3.6 Результат

Среднее внутреннее сопротивление:

$$r = (600,004 \pm 1,874) \Omega.$$

Ток короткого замыкания:

$$I_{sc} = (20,000 \pm 0,040) \,\mathrm{MA}.$$

Экспериментальные значения совпадают с расчётными в пределах погрешности, что подтверждает корректность проведённых измерений и расчётов.

3.7 Заполненная таблица 1.1

Таблица 1.1: Результаты измерений и расчётов

k	Измерения		$oxed{oxed{oxed{ ext{Pacq m ext{ m ET:}}}} ext{r} = 600.004 [OM], E = 12 [B], Isc = 20 [MA]}$			
0	R_n [O _M]	U_n [B]	I_n [MA]	P_n [B _T]	η	r [O _M]
1	∞	12.000	0.00	0.00	1.0	_
2	5400	10.800	2.00	0.022	0.9	600.00
3	2400	9.600	4.00	0.038	0.8	600.00
4	1400	8.400	6.00	0.050	0.7	600.00
5	900	7.200	8.00	0.058	0.6	600.00
6	600	6.000	10.00	0.060	0.5	600.00
7	400	4.800	12.00	0.058	0.4	599.301
8	257	3.599	14.004	0.050	0.3	600.701
9	150	2.400	16.00	0.038	0.2	602.015
10	67	1.205	17.985	0.022	0.1	598.015
11	0	0.000	20.00	0.000	0.0	_

4 Пример расчёта для одной строки таблицы

Для расчёта параметров используем следующие формулы:

• Ток через нагрузку:

$$I_n = \frac{U_n}{R_n}$$

• Мощность, рассеиваемая на нагрузке:

$$P_n = \frac{U_n^2}{R_n}$$

• Коэффициент полезного действия:

$$\eta_n = \frac{R_n}{R_n + r}$$

• Внутреннее сопротивление источника:

$$r_k = \frac{U_k - U_{k+1}}{I_{k+1} - I_k}$$

Рассчитаем значения для строки n=2:

$$\begin{split} I_2 &= \frac{U_2}{R_2} = \frac{10.8}{5400} = 2.00 \, \mathrm{mA}, \\ P_2 &= \frac{U_2^2}{R_2} = \frac{10.8^2}{5400} \approx 0.038 \, \mathrm{Bt}, \\ \eta_2 &= \frac{R_2}{R_2 + r} = \frac{5400}{5400 + 600} = 0.9, \\ r_2 &= \frac{U_2 - U_3}{I_3 - I_2} = \frac{10.8 - 9.6}{4 - 2} = 600 \, \mathrm{Om}. \end{split}$$

Таким образом, для строки n=2 были рассчитаны следующие значения:

$$I_2 = 2.00 \,\mathrm{MA}, \quad P_2 = 0.038 \,\mathrm{Bt}, \quad \eta_2 = 0.9, \quad r_2 = 600 \,\mathrm{OM}.$$

5 Расчётная внешняя характеристика источника

На рисунке 2 представлена расчётная и экспериментальная внешняя характеристика источника. Расчётная характеристика изображена в виде синей линии, которая соединяет точки $(0, E = 12 \, \mathrm{B})$ и $(I_{sc} = 20 \, \mathrm{mA}, 0)$. Эта линия отражает теоретическую зависимость напряжения на нагрузке U_n от тока I_n , поступающего от источника, при идеальных условиях.

Экспериментальные точки, отмеченные на графике красными квадратами, соответствуют измеренным значениям напряжения U_n для разных токов I_n , согласно данным из таблицы 1.1. Эти точки показывают реальные данные, полученные при изменении сопротивления нагрузки, и их отклонения от расчётной линии могут свидетельствовать о наличии потерь или неточностей в измерениях и/или вычислениях.

Рис. 2: График расчётной и экспериментальной внешней характеристики источника

6 Графики зависимости $P_n(I_n)$ и $\eta(I_n)$

На рисунке 3 представлена зависимость мощности в нагрузке P_n и КПД η от тока I_n .

Мощность P_n растёт с увеличением I_n до определённого предела, после чего начинает снижаться из-за значительного падения напряжения на нагрузке, вызванного потерями на внутреннем сопротивлении источника.

 $K\Pi \coprod \eta$ падает с увеличением тока I_n , так как больше энергии рассеивается на внутреннем сопротивлении источника (по закону Джоуля-Ленца), и меньше передаётся на нагрузку.

Рис. 3: Графики зависимости мощности $P_n(I_n)$ и КПД $\eta(I_n)$

7 Выводы по работе

В ходе данной лабораторной работы я исследовал внешнюю характеристику источника электрической энергии постоянного тока и определил параметры схемы его замещения, такие как внутреннее сопротивление и эдс источника, а также ток короткого замыкания. Схема была собрана в программном обеспечении для моделирования аналоговых электронных схем «LTspice», где я измерил

напряжение в цепи при различных сопротивлениях нагрузки и выявил, что с уменьшением сопротивления нагрузки напряжение на ней падает, а ток в цепи увеличивается. Это изменение существенно влияет на распределение мощности в нагрузке и на эффективность работы источника.

В процессе работы я применил закон Джоуля-Ленца, который объясняет потери мощности на внутреннем сопротивлении источника при протекании тока. Согласно закону, выделяемая энергия на внутреннем сопротивлении источника определяется выражением $Q=I^2Rt$. Увеличение тока приводит к большему выделению тепла внутри источника, что снижает количество энергии, передаваемой на нагрузку, и соответственно уменьшает КПД.

Я провёл измерение напряжения холостого хода U_0 , которое использовалось для расчёта тока короткого замыкания и определения внешней характеристики источника. Также я рассчитал токи, мощности и КПД на основе измерений, что позволило оценить внутреннее сопротивление источника. Все расчёты были проведены в Excel, где я составил таблицы с данными, а графики зависимостей $P_n(I_n)$ и $\eta(I_n)$ были построены в LaTeX. Это позволило оформить результаты в соответствии с научными стандартами и закрепить навыки работы с математическими пакетами для дальнейшей работы, включая подготовку к диплому.

Расчёты показали, что экспериментальное значение внутреннего сопротивления $r=(600,004\pm1,874)\Omega$ совпадает с расчётным значением $r_{\rm pacu}=600,000\,\Omega$ в пределах погрешности измерений. Относительная погрешность, обусловленная округлением величин и накопленной ошибкой вычислений, $\varepsilon=0,31\%<1\%$ что свидетельствует о высокой точности эксперимента.

Ток короткого замыкания, рассчитанный на основе экспериментальных данных, $I_{sc}=(20{,}000\pm0{,}040)\,\mathrm{mA}$, также соответствует теоретическому значению в 20 мА. Относительная погрешность, обусловленная округлением измерений ЭДС и погрешностью эксперементально полученной величины r, составила $\varepsilon=0{,}20\%<1\%$ что также означает что эксперимент получился достаточно точный.

Эти параметры позволяют точно оценить характеристики реальной цепи.

В итоге, я пришёл к выводу, что внутреннее сопротивление источника играет критическую роль в его характеристиках: при высоких токах оно значительно снижает эффективность передачи энергии на нагрузку, что приводит к уменьшению КПД и снижению мощности. Эксперимент подтвердил теоретические модели, а полученные данные дали возможность точно рассчитать параметры реальных электрических цепей.