

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 4

Сети хранения данных FC SAN

Содержание лекции

- DAS
- SCSI
- SAN
 - компоненты
 - архитектура
 - топологии
 - зонирование

DAS – система хранения прямого подключения

- Внешние и внутренние
- Внешние SCSI или FC

Преимущества DAS

- Низкий порог «входа»
- Простота и быстрота развертывания
- Меньше знаний и времени для администрирования
- Нет задержек сетей, лучше производительность
- Может быть как простым диском так и интеллектуальной СХД

Недостатки DAS

- Плохо масштабируется (диски, хосты)
- Ограничение производительности
- Ограничение расстояния до хостов
- Утилизация ресурсов не оптимальна

SCSI

- 1981 SASI (Shugart Associates System Interface)
- 1986 ANSI SCSI
- Аппаратная независимость (диски, сканеры, ленты..)
- Поддержка нескольких устройств (до 16)
- Последний стандарт SCSI-3

SCSI-3

- 1. Командный протокол: общие команды для устройств, специальные команды
- 2. Протоколы транспортного уровня: правила передачи данных
- 3. Физический интерфейс: электрические сигналы, режимы

Архитектурная модель SCSI

Командный протокол

Первичные команды SCSI

Специальные команды SCSI

Транспортный уровень

Протокол SCSI-3

Протокол FC

Протокол Serial Bus

Физический уровень

Параллельный SCSI-3

FC

Serial Bus IEEE

Модель клиент-сервер

Идентификаторы устройств SCSI

- 0..15
- Назначается автоматически
- Приоритет по возрастанию
 - -8, 9, 10, 11, 12, 13, 14, 15,

0, 1, 2, 3, 4, 5, 6, 7

Адресация SCSI интерфейса

Сеть хранения данных (SAN)

- SAN высокоскоростная выделенная сеть серверов и СХД
- Как правило на основе FC (в будущем FCoE)
- Решаемые задачи:
 - доступность
 - безопасность
 - масщтабируемость
 - гибкость
 - консолидация
 - управляемость ..

Fibre Channel

- Появление 1988, стандарт 1994
- Fibre технология, Fiber оптика
- Оптоволокно для frontend-a, медь для дисковых массивов
- 1600 МБ/сек (интерфейс SCSI дисков 320 МБ/с)
- До 15 миллионов узлов

Реализация SAN

- Коммутаторы:
 - FC-AL hub
 - FC switch
 - FC director
- Удаленные участки:
 - iSCSI
 - FCIP

Эволюция FC SAN

Порты узлов

- Узлы все конечные устройства сети (хосты, СХД)
- Порт 2 соединения (передача/прием)

Кабели

- Один луч Single Mode <u>Fiber</u>
 - дорого
 - надежно
 - большие расстояния (километры)
- Много лучей Multi-mode Fiber
 - рассеивание
 - малые расстояния (500 метров)
 - дешево

MFM и SMF

Разъемы

(a) Standard Connector

(b) Lucent connector

(c) Straight Tip Connector

Коммутационные устройства

- Hub (концентратор)
 - FC-AL
 - топология: физическая звезда,логическая петля (круг)
 - данные передаются через все точки
- Switch (коммутатор)
 - передача данных только между нужными узлами
 - одновременный обмен
 - выделенный канал связи
- Director (модульный коммутатор)

Подключение FC – точка-точка

FC-AL (Arbitrated Loop)

- Кольцевая топология (физически звезда)
- До 126 узлов
- Эстафетный доступ
- Каждый момент времени только одна передача данных
- Добавление или удаление узла из кольца (петли) – реинициализация и задержки

Подключение FC-AL

Передача данных в FC-AL

Узел А договаривается со всеми о передаче данных узлу В

FC-SW (FC Switched Fabric)

- Коммутируемая сеть
- Масштабируемость
- Выделенный канал каждому
- До 15 миллионов узлов (24-битный адрес узлов)
- Каждый коммутатор в «фабрике» имеет свой «домен»

Подключение FC-SW

Многоуровневые FC-SW сети

Передача данных в FC-SW

Хост В обменивается данными с СХД D

FC порты

- N_Port узловой порт хоста или СХД
- F_Port порт фабрики, идет к N_Port
- E_Port порт расширения, между коммутаторами. Соединение между коммутаторами ISL (Inter Switch Link)
- NL_Port, FL_Port порты FC-AL
- G_Port общий, может быть N_ и F_ портом

Порты в FC-SW

Регистрация устройств в FC

FLOGI

- вход в фабрику
- между N_Port и F_Port
- узел посылает свой WWN с FC адресом FFFFFE (broadcast), коммутатор назначает ему уникальный FC адрес
- узел регистрируется в сервере имен WWN<->FC

PLOGI

- узел «знакомится» с другим узлом
- установка сессии

PRLI

- регистрация по протоколам верхнего уровня

Пакет протоколов FC (FCP)

Адресация FC

- FFFFFC сервер имен
- FFFFFE broadcast

Глобальные имена устройств в FC

- WWN (World Wide Name)
 - 64 бита
 - имя узла WWNN или имя порта (WWNP)
 - аналог MAC в Ethernet, «прожигаются»

World Wide Name - Array															
5	0	0	6	0	1	6	0	0	0	6	0	0	1	В	2
0101	0000	0000	0110	0000	0001	0110	0000	0000	0000	0110	0000	0000	0001	1011	0010
Company ID 24 bits						Port	Model Seed 32 bits								

World Wide Name - HBA																		
1	0	0	0	0	0	0	0	С	9	2	0	d	С	4	0			
	Reserved 12 bits				Company ID 24 bits							Company Specific 24 bits						

Управление потоком данных в FC

BB_Credit

- контроль максимального числа кадров в канале
- приемная сторона сообщает о количестве свободных буферов при «знакомстве»
- отправляющая сторона считает свободное количество буферов (счетчик + ACKs приемника)

EE_Credit

- аналогично BB_Credit, для сквозной передачи (инициатор-целевое устройство)

Классы сервиса

	Класс 1	Класс 2	Класс 3
Тип коммуникации	выделенное соединение	невыделенное соединение	невыделенное соединение
Управление потоками	EE_Credit	EE_Credit BB_Credit	BB_Credit
Очередность кадра	по очереди	не гарантирована	не гарантирована
Подтверждение	да	да	нет
Коэффициент загрузки	низкий	средний	высокий

Зонирование

- Объединение узлов в группы на уровне сети
- Типы
 - по WWN
 - по FC портам
- Узел или порт может входить в несколько зон

Типы зонирования

N_Port ID Virtualization

Виртуализация блоковых устройств

Виртуальные SAN (VSAN)

- VSAN объединяет группы узлов независимо от расположения
- Каждый VSAN имеет собственные зоны, FC адреса, сервер имен и т.п.
- Повышение безопасности, масштабируемости, управляемости

Fan-in и Fan-out

- Виртуализация ресурсов
- Коэффициент масштабирования
- Fan-out
 - несколько хостов подсоединены к одному порту СХД
- Fan-in
 - хост подсоединен одним портом к нескольким СХД
- Типичный Fan-out = 4:1

Топология Full Mesh

Топология Partial Mesh

Топология Core-Edge - Single Core

Топология Core-Edge - Dual Core

Спасибо!

EMAIN OF THE PROPERTY OF THE P