MAE 259B Group 2 Progress Report

Siyuan Chen, Xiangzhou Kong, Long Chen https://github.com/kmxz/mae259b-project

What we did - Starting point

Start from the homework code

Adapted from the MATLAB sample code, translated into Python, with minor changes and optimizations

Build utilities

Command line interface, 3D visualization tool, code snapshot tool, etc.

(Video: hw-render) (Video: hw-nodes)

What we did - Performance optimization

Profiling shows 90% of time is spent on calculating F and J

```
def gradEbAndHessEb(xkml, ykml, xk, yk, xkpl, ykpl, ok0):
       itm1 = 2 * tan(0.5 * \omega k0)
       itm2 = ((-xk + xkp1) * (xk - xkm1) + (-yk + ykp1) * (yk - ykm1))
       itm3 = ((-xk + xkp1) * (vk - vkm1) - (xk - xkm1) * (-vk + vkp1))
       itm4 = itm3 / itm2 ** 2
                                                                                                                                                                                        30.6 \, \mathrm{s}
       itm5 = tan(0.5 * atan(itm3 / itm2))
       itm6 = (1 + itm3 ** 2 / itm2 ** 2)
       itm7 = ((ykm1 - ykp1) / itm2 + itm3 * (2 * xk - xkm1 - xkp1) / itm2 ** 2)
       itm8 = ((-xkm1 + xkp1) / itm2 + itm3 * (2 * vk - vkm1 - vkp1) / itm2 ** 2)
       itm9 = ((-xk + xkm1) / itm2 + (-yk + ykm1) * itm4)
       itm10 = ((-xk + xkm1) * itm4 + (vk - vkm1) / itm2)
       itml1 = (-itm1 + 2 * itm5) * (itm5 ** 2 + 1) * itm5 / itm6 ** 2
       itm12 = (-itm1 + 2 * itm5) * (itm5 ** 2 + 1) / itm6
                                                                                                                                                                                           7.6 \, \mathrm{s}
       itm13 = itm12 / itm6
       itm14 = itm3 ** 2 / itm2 ** 3
                                                                                                                                                                                4x faster
       F = np.empty(6)
       F[0] = 2 * ((-xk + xkp1) * itm4 + (-vk + vkp1) / itm2) * itm12
       F[1] = 2 * ((xk - xkp1) / itm2 + (-yk + ykp1) * itm4) * itm12
       F[2] = 2 * itm7 * itm12
       F[3] = 2 * itm8 * itm12
       F[4] = 2 * itm10 * itm12
       F[5] = 2 * itm9 * itm12
       J11 = 2 * ((-2 * xk + 2 * xkp1) * (-xk + xkp1) * itm3 / itm2 ** 3 + 2 * (-xk + xkp1) * (-yk + 
  vkp1) / itm2 ** 2) * itm12 + 2 * (-(-2 * xk + 2 * xkp1) * itm14 - (-2 * vk + 2 * vkp1) * itm4) *
   ((-xk + xkp1) * itm4 + (-vk + vkp1) / itm2) * itm13 + 2 * ((-xk + xkp1) * itm4 + (-vk + vkp1) /
  itm2) ** 2 * itm11 + 2 * ((-xk + xkp1) * itm4 + (-yk + ykp1) / itm2) ** 2 * (itm5 ** 2 + 1) ** 2
  / itm6 ** 2
       J12 = 2 * (-itm1 + 2 * itm5) * (itm5 ** 2 + 1) * ((-xk + xkp1) * (xk - xkp1) / itm2 ** 2 + 1)
   (-xk + xkpl) * (-2 * yk + 2 * ykpl) * itm3 / itm2 ** 3 + (-yk + ykpl) ** 2 / itm2 ** 2) / itm6 +
  2 * ((xk - xkpl) / itm2 + (-yk + ykpl) * itm4) * ((-xk + xkpl) * itm4 + (-yk + ykpl) / itm2) *
  itml1 + 2 * ((xk - xkpl) / itm2 + (-yk + ykpl) * itm4) * ((-xk + xkpl) * itm4 + (-yk + ykpl) /
  itm2) * (itm5 ** 2 + 1) ** 2 / itm6 ** 2 + 2 * ((-xk + xkp1) * itm4 + (-vk + ykp1) / itm2) *
  (-(2 * xk - 2 * xkp1) * itm4 - (-2 * yk + 2 * ykp1) * itm14) * itm13
       J13 = 2 * (-itm1 + 2 * itm5) * (itm5 ** 2 + 1) * ((-xk + xkp1) * (ykm1 - ykp1) / itm2 ** 2 + 1)
   (-xk + xkp1) * itm3 * (4 * xk - 2 * xkm1 - 2 * xkp1) / itm2 ** 3 + (-yk + ykp1) * (2 * xk - xkm1
```

- xkp1) / itm2 ** 2 - itm4) / itm6 + 2 * itm7 * ((-xk + xkp1) * itm4 + (-vk + vkp1) / itm2) *

What we did - Initial curvature

When calculating bending energy, replace $(\phi_k)^2$ with $(\phi_k - \phi_{k0})^2$

The formulas for calculating F and J need to be changed (do differentiation again)

```
from sympy import *
def \phi_k(x_{km}, x_k, x_{kp}, y_{km}, y_k, y_{kp}):
     return atan(((x_{kp} - x_k) * (y_k - y_{km}) - (x_k - x_{km}) * (y_{kp} - y_{km})
  (v_k) / ((x_{kp} - x_k) * (x_k - x_{km}) + (v_{kp} - v_k) * (v_k - v_{km}))
def Ebκ(xkm, xk, xkp, ykm, yk, ykp, φko):
     return (2 * tan(\phi_k(x_{km}, x_k, x_{kp}, y_{km}, y_k, y_{kp}) / 2.0) - 2 *
  tan(\phi_{ko} / 2.0)) ** 2
x_{km}, x_k, x_{kp}, y_{km}, y_k, y_{kp}, \phi_{ko} = symbols('xkm1 xk xkp1 ykm1 yk
 ykp1 φk0')
Eb = Eb_k(x_{km}, x_k, x_{kp}, y_{km}, y_k, y_{kp}, \phi_{ko})
F1 = diff(Eb, x_{km})
F2 = diff(Eb, y_{km})
F3 = diff(Eb, x_k)
F4 = diff(Eb, y_k)
F5 = diff(Eb, x_{kp})
F6 = diff(Eb, v_{kp})
J11 = diff(F1, x_{km})
J12 = diff(F1, v_{km})
J13 = diff(F1, x_k)
J14 = diff(F1. v_k)
J15 = diff(F1, x_{ko})
J16 = diff(F1, v_{ko})
```

What we did - Circular structure

Instead of nv-1 edges, we have nv edges.

For bending, instead of nv - 2 components, we have nv components.

For stretching, instead of nv-1 components, we have nv components.

When compositing the Jacobians, new components added to connect two ends together:

What we did - Circular structure

Verify our code by running the "hanging circle"

$$Y = 10^6 \,\mathrm{Pa}$$

$$Y=10^7\,\mathrm{Pa}$$

$$Y = 10^6 \,\mathrm{Pa}$$
 $Y = 10^7 \,\mathrm{Pa}$ $Y = 10^8 \,\mathrm{Pa}$

What we did - Inflation pressure

With \underline{x}_k and \underline{x}_{k+1} , we can easily calculate force exerted on those two points. Taking derivatives on the forces, we have the corresponding Jabobian matrix.