

Description

The VST15N560 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =150V,I_D =20A

 $R_{DS(ON)}$ =56m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =68m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity	
VST15N560-T2	VST15N560	TO-252	Ø330mm	12mm	2500 units	

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	20	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	14	Α	
Pulsed Drain Current	I _{DM}	80	А	
Maximum Power Dissipation	P _D	68	W	
Derating factor		0.45	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	30	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R ₀ JC	2.2	°C/W	
---	-------------------	-----	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics				•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)				•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.3	1.9	2.5	V	
Drain Source On State Begintance	R _{DS(ON)}	V _{GS} =10V, I _D =10A	-	56	62	mΩ	
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =10A		68	82		
Forward Transconductance	G FS	V _{DS} =5V,I _D =10A	-	15	-	S	
Dynamic Characteristics (Note4)	·						
Input Capacitance	C _{lss}	\/ 75\/\/ 0\/	-	799		PF	
Output Capacitance	C _{oss}	V_{DS} =75V, V_{GS} =0V, F=1.0MHz	-	74.4		PF	
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	11.1		PF	
Switching Characteristics (Note 4)			<u>.</u>	•			
Turn-on Delay Time	t _{d(on)}		-	10.5	-	nS	
Turn-on Rise Time	t _r	V_{DD} =75 V , R_L =7.5 Ω	-	6	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	14.5	-	nS	
Turn-Off Fall Time	t _f		-	3.5	-	nS	
Total Gate Charge	Qg	\/ -75\/ -404	-	15	-	nC	
Gate-Source Charge	Q _{gs}	$V_{DS}=75V,I_{D}=10A,$	-	4.5	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	3	-	nC	
Drain-Source Diode Characteristics			•			•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	20	А	
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	29.5	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	132	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \leq 10 \; \text{sec.}$
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance