TSUMMMI PREDICTIONS FOR THE COAST OF ALASKA KODIAK ISLAND TO KETCHIKAN(U) COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS P L CRAMFORD APR 87 CERC-TR-87-7 F/G 8/3 1/2 MD-8181 775 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

•

TSUNAMI PREDICTIONS FOR THE COAST OF ALASKA KODIAK ISLAND TO KETCHIKAN

by TTC FILE COPY
Peter L. Crawford

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

April 1987 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Federal Emergency Management Agency 500 "C" Street, SW Washington, DC 20472

Under Interagency Agreement EMW-85-E-1822 Project Order No. 1, Amendment No. 14

87 6 25 005

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

	Unclassified	
ECURITY	AV VICE OF MORE OF THE	S PAGE

AD-A181775

	REPORT DOCUMENTATION PAGE									
1a REPORT S	ECURITY CLAS	SIFICATION	<u> </u>		16. RESTRICTIVE MARKINGS					
Unclassif		JII ICA 1 . O.	•		TO THE PARKETS					
	CLASSIFICATIO	M AUTHO	RITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT			
26. DECLASSIFICATION / DOWNGRADING SCHEDULE					Approved found in the contract of the contract	or public re	lease;	distribution		
A PERFORMIN	IG ORGANIZAT	TION REPO	ORT NUMBE	R(S)		ORGANIZATION R	FRORT NUM	AREB/S\		
Technical							LIONI IIOI	10EN(3)		
	PERFORMING		<u> </u>	Ich occupa avados						
		ORGANIZ	AIION	6b. OFFICE SYMBOL (If applicable)	/a. NAME OF M	ONITORING ORGA	NIZATION			
USAEWES,	coastal ng Resear	oh Cen	ton	WESCR				l		
	City, State, an			POM	7b. ADDRESS (CH	y, State, and ZIP	Code)			
DO Dom 63	4		-		•	••• ••• ••• ••• ••• ••• ••• ••• ••• ••	,			
PO Box 63 Vicksburg		90 062	• •							
Ba. NAME OF ORGANIZA	FUNDING/SPO TION Feder	MSORING		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICATIO	N NUMBER		
Emergency			ncy ·		See reverse	е				
Sc. ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF	UNDING NUMBER	\$			
					PROGRAM	PROJECT	TASK	WORK UNIT		
500 "C" S					ELEMENT NO.	NO.	NO.	ACCESSION NO.		
Washingto						l.,	<u> </u>			
11. IIILE (MICH	you second t	James III, artist	yrų					ì		
Taunami I	nediation	e for	the Cas	st of Alaska: N	odiak Telan	d to Ketchik	en e			
12. PERSONAL		13 101	the coa	SU OI AIASKA. A	Odlak Iblan	a co kecenik				
Crawford.										
13a. TYPE OF			36. TIME CO	OVERED	14. DATE OF REPO	RT (Year Month I	Day) 15 P	AGE COUNT		
Final rep	ort		FROM May	85 toJuly 86	April			37		
16 SUPPLEME	NTARY NOTA	TION								
		cional	Technic	al Information S	Service, 528	5 Port Royal	. Road,	Springfield,		
VA 22161										
17 FIELD	GROUP		SROUP	18. SUBJECT TERMS (C Alaska (LC)	ontinue on reversi	<i>if necessary and</i> Tsunam	is (LC			
FIELD	GROOF	308-	SKOUP	Numerical ar	•		('		
	-			Tides (LC)		•		1		
19. ABSTRACT	(Continue on	reverse if	necessary	and identify by block n	umber)					
The	100- and	1 500-y	ear com	bined tsunami ar	nd tide elev	ations were	predict	ed at sites		
along the	coast of	. ATSK	a betwe	en Kodiak Island eration of a syr	and ketteni	kan. Lack c	oi nisto	ity in the		
Culf of A	laeka 1	rtated The gen	nbveica	l and tectonic s	setting of t	he Gulf were	nsed t	o synthesize a		
record of	tsunami	renic.	tectoni	c deformations	of the seafl	oor. A nume	rical m	odel was used		
to simula	te the ta	sunamis	result	ing from each de	formation.	Numerical s	imulati	ons of the 1964		
Alaskan t	sunami we	ere mad	le and c	ompared with his	storical tid	e gage recor	dings.	· ·		
				i activity along				re used to as-		
sign prof	nability o	of occu	rrence	to each tsunami	in the synt	hetic record	l. A nu	merical proce-		
dure was	used to	combine	the ef	fects of astrono	omical tides	and tsunami	s and t	o produce the		
				ami and tide ele				-		
· ·										
	ION/AVAILAS					CURITY CLASSIFIC	ATION			
	SIFIEDAUNLIMIT			RPT. DTIC USERS	Unclassi		i Iss. See	CE CULADO		
448. NAME O	FRESPONSIBLE	DOIVION	UAL		ZZD. TELEPHONE (Include Area Code) ZZC. OFF	ICF ZAWROF		
DO FORM 1	472		62 A6	Redition may be used un	til aubaustad					

83 APR edition may be used until exhausted All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

The study described herein was authorized by the Office, Chief of Engineers, US Army Corps of Engineers, in a letter dated 30 April 1985 and was performed for the Federal Insurance Administration (FIA), Federal Emergency Management Agency, under Interagency Agreement EMW-85-E-1822, Project Order No. 1, Amendment No. 14. The FIA Technical Monitor was Dr. Frank Tsai.

The investigation was conducted from May 1985 to July 1986 by personnel of the Research Division of the Coastal Engineering Research Center (CERC), US Army Engineer Waterways Experiment Station (WES). Mr. Peter L. Crawford, Coastal Oceanography Branch (COB) was the Principal Investigator of the study and prepared this report under direct supervision of Dr. Edward F. Thompson, Chief, COB, and Mr. H. Lee Butler, Chief, Research Division, CERC; and under general supervision of Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Chief and Assistant Chief, CERC, respectively.

This report was edited by Ms. Shirley A. J. Hanshaw, Information Products Division, Information Technology Laboratory, WES.

During publication of this report, COL Dwayne G. Lee, CE, was Commander and Director of WES. Dr. Robert W. Whalin was Technical Director.

Acces	ion For]
DTIC 1		DTIC
Dy	lbution/	COPY
	lability Codes	1
	Avail and/or Special	
A-1		

CONTENTS

	<u>Page</u>
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
BackgroundPurpose of Study	
PART II: METHODS FOR ELEVATION PREDICTION	7
Synthetic Record of Tectonic Deformations of the Seabed Numerical Model	10
PART III: EXPLANATION OF RESULTS	18
Shoreline Elevation Versus Runup Elevation	
PART IV: CONCLUSIONS AND RECOMMENDATIONS	20
Conclusions	
REFERENCES	22
TABLE 1	
PLATES 1-77	
ADDENNIY A. NOTATION	Δ1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Mon-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	<u>To Obtain</u>
degrees (angle)	0.01745329	radians
feet	0.3048	metres
miles (US statute)	1.609347	kilometres
miles (US nautical) per hour	1.852	kilometres per hour

TSUNAMI PREDICTIONS FOR THE COAST OF ALASKA KODIAK ISLAND TO KETCHIKAN

PART I: INTRODUCTION

Background

- 1. Of all water waves that occur in nature, one of the most destructive is the tsunami. The term "tsunami," originating from the Japanese words "tsu" (harbor) and "nami" (wave), is used to describe sea waves of seismic origin. When they occur along the seabed, tectonic earthquakes (i.e., earthquakes that cause a deformation of the earth's crust) appear to be the principal seismic mechanism responsible for the generation of tsunamis. Coastal and submarine landslides and volcanic eruptions also have triggered tsunamis.
- 2. Tsunamis are principally generated by undersea earthquakes of magnitude greater than 6.5 on the Richter scale with focal depths less than 30 miles.* They are very long-period waves (5 min to several hours) of low height (a few feet or less) when traversing water of oceanic depth. Consequently, they are not discernible in the deep ocean and go unnoticed by ships. Tsunamis travel at the shallow-water wave celerity equal to the square root of acceleration from gravity times water depth even in the deepest oceans because of their very long wavelengths. This speed of propagation can be in excess of 500 mph in the deep ocean.
- 3. When tsunamis approach a coastal region where the water depth decreases rapidly, wave refraction, shoaling, and bay or harbor resonance may result in significantly increased wave heights. The great periods and wavelengths of tsunamis preclude their dissipating energy as a breaking surf; instead, they are apt to appear as rapidly rising water levels and only occasionally as bores.
- 4. Over 500 tsunamis have been reported within recorded history, and virtually all of them have occurred in the Pacific Basin. Most tsunamis are associated with earthquakes, and most seismic activity beneath the oceans is concentrated in the narrow fault zones adjacent to the great oceanic trench

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

systems which are predominantly confined to the Pacific Ocean.

- 5. The loss of life and destruction of property resulting from tsunamis have been immense. The Great Hoei Tokaido-Nankaido tsunami of Japan killed 30,000 people in 1707. In 1868, the Great Peru tsunami caused 25,000 deaths and carried the frigate USS <u>Waterlee</u> 1,300 ft inland. The Great Meiji Sanriku tsunami of 1896 killed 27,122 persons in Japan and washed away over 10,000 houses.
- 6. In recent times, three tsunamis have caused major destruction in areas of the United States. The Great Aleutian tsunami of 1946 killed 173 persons in Hawaii, where heights as great as 55 ft were recorded. The 1960 Chilean tsunami killed 330 people in Chile, 61 in Hawaii, and 199 in distant Japan. The most recent major tsunami to affect the United States, the 1964 Alaskan tsunami, killed 107 people in Alaska, 4 in Oregon, and 11 in Crescent City, California, and caused over 100 million dollars in damage on the west coast of North America.

Purpose of Study

7. The purpose of this study was to establish 100- and 500-year combined tsunami and tide elevations for the coast of Alaska from (and including) Kodiak Island to Ketchikan. The study area is shown in Figure 1. The Alexander Archipelago beyond the open coast is not included in the study area. Previous reports by Houston and Garcia (1978) and Houston (1980) established the 100- and 500-year elevations for the west coast of the continental United States. The 100- and 500-year elevations are required by the Federal Insurance Administration of the Federal Emergency Management Agency (FEMA) for use in flood insurance rate determinations.

Figure 1. Study area

PART II: METHODS FOR ELEVATION PREDICTION

- 8. FEMA requires the 100- and 500-year combined tsunami and tide elevations for locations along the coast of Alaska bordering the Gulf of Alaska. Because of the isolation of the area, there are no historical data of tsunami occurrence at most of these locations. At the few locations where tsunami occurrence has been documented, the unreliability of the data and the brevity of the record made it impossible to perform the required frequency analyses. Therefore, it was necessary to synthesize a record of tsunami activity throughout the study area and to assign a probability of occurrence to each tsunami in the synthetic record.
- 9. The method for determining the 100- and 500-year combined tsunami and tide elevations is summarized in this paragraph and discussed in detail in the following sections. First, a record of tectonic deformations of the seabed was synthesized. A numerical model was then used to simulate propagation of the tsunami caused by each of the synthetic seabed deformations. The numerical model produced tsunami elevation time-histories at numerical gage locations throughout the study area. Model results were used to establish the intensity of each tsunami, and probability of occurrence was assigned to each tsunami according to its intensity. Finally, a numerical procedure was used to combine the effects of astronomical tides and tsunamis to determine the 100- and 500-year combined tsunami and tide elevations at the numerical gage locations.

Synthetic Record of Tectonic Deformations of the Seabed

10. To synthesize a record of tectonic deformations of the seabed, three characteristics of each deformation must be defined: the shape of the rupture zone (defined here as the area of the ground that is deformed by an earthquake), the distribution of uplift over the rupture zone, and the location of the rupture zone.

Rupture zone locations

11. Tsunamis of distant origin are not considered a threat to the study area. Furthermore, large tsunamis have not historically originated in the eastern Gulf of Alaska because this region borders an area of strike-slip faulting along the border of the North American and Pacific tectonic plates.

It is well known that the faulting of most tsunamigenic earthquakes is of the dip-slip type and that very few large tsunamis have been generated by strike-slip faulting. Therefore, the eastern Gulf of Alaska was not considered as a tsunamigenic region.

- 12. In the western Gulf of Alaska, the Aleutian trench-arc system represents a subduction zone where the Pacific plate sinks beneath the North American plate. Faulting along the trench is believed to be predominantly of the dip-slip type. That the trench has historically been a region of high seismic and tsunamigenic activity is well documented. In particular, in a catalogue of Alaskan tsunamis, Cox, Pararas-Carayannis, and Calebaugh (1976) list at least 10 large tsunamis that have been generated along the Aleutian trench since 1870. As discussed in the remainder of this subsection, the eastern end of the trench was considered to be the only tsunamigenic region which could produce tsunamis capable of causing great enough runup in the study area to affect the 100- and 500-year combined tsunami and tide elevations.
- 13. Rupture zones of tsunamigenic earthquakes along deep sea trenches at Pacific margins are generally elliptically shaped with the major axis of the ellipse parallel to the trench. The majority of the energy of a large tsunami will propagate from the source in a direction normal to the major axis of the ellipse. If H_a* is the wave height emitted in the direction parallel to the major axis of length a by a tsunami with an elliptically shaped rupture zone and Hb is the wave height emitted in the direction parallel to the minor generation axis of length b, then experimental research of tsunami generation has shown that $H_b/H_a \approx a/b$ (Hatori 1963). For a large tsunami H_b can be as much as five or six times greater than Ha . This fact and consideration of the alignment of the Aleutian trench relative to the study area (Figure 2) indicated that only tsunamis originating at the eastern end of the trench would cause significant runup in the study area. Furthermore, geophysical evidence (discussed in the following paragraph) permitted all rupture zones in the synthetic record to be placed coincident with that of the 1964 great Alaskan earthquake.

SECRECIAL POLICIOS PERSONAL PERSONAL PROPERTINAL PROPERTINAL PERSONAL POLICIAN PERSONAL PERSO

14. Davies, et al. (1981) state that the Alaska-Aleutian portion of the North American plate consists of tectonic blocks which are delimited along the

For convenience, symbols and abbreviations are listed in the Notation (Appendix A).

Figure 2. Aftershock area and rupture zone of the 1964 great Alaskan earthquake

trench by transverse structural features. The blocks are nearly mechanically independent of adjacent blocks. The along-trench limits of each block correspond to the along-trench limits of aftershock areas of major historical earthquakes. The only block located such that it was of concern to the study area is that associated with the 1964 great Alaskan earthquake. (The majority of the energy of tsunamis generated by faulting of the other blocks would be propagated away from the study area.) Figure 2 shows the rupture zone and the limits of the aftershock area of this earthquake. Since the rupture zone of the 1964 earthquake covered nearly the entire aftershock area of that earthquake, all rupture zones in the synthetic record of seabed deformations were located coincident with that of the 1964 earthquake.

Rupture zone shape and distribution of uplift

15. The 1964 Alaskan earthquake is one of only two (the other was the 1960 Chilean earthquake) for which detailed measurements of the deformation

of the seabed have been made. In order to define the shape of the rupture zone and the uplift distribution of each deformation in the synthesized record, it was assumed that the rupture zone and uplift of the 1964 event were appropriate to use as a model for all proposed deformations. A record of tectonic deformations of the seabed was synthesized by specifying that each deformation in the record would have not only the same location but also the same rupture zone shape and uplift distribution (but different magnitude of uplift) as that caused by the 1964 Alaskan earthquake.

Numerical Model

16. The linear nondispersive shallow-water equations used to model the propagation of tsunamis are

$$\frac{\partial u}{\partial t} = -\frac{g}{R} \frac{\partial \eta}{\partial \theta} + fv - \frac{ku}{d}$$
 (1)

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{\mathbf{g}}{\mathbf{R} \sin \theta} \frac{\partial \mathbf{\eta}}{\partial \phi} - \mathbf{f} \mathbf{u} - \frac{\mathbf{k} \mathbf{v}}{\mathbf{d}}$$
 (2)

$$\frac{\partial \eta}{\partial t} = -\frac{1}{R \sin \theta} \left\{ \frac{a \left[(d+\eta) u \sin \theta \right]}{a \theta} + \frac{a \left[(d+\eta) v \right]}{a \phi} \right\}$$
 (3)

where

u,v = vertically averaged velocity components in the θ and ϕ directions

t = time

g = acceleration because of gravity

R = radius of the Earth

 η = displacement of the water surface from the still-water level

 θ = latitude measured from 0 at the North Pole

f = Coriolis parameter

k = linear friction coefficient

d = still-water depth

♦ = longitude measured east from Greenwich

17. Kowalik and Murty (1984) used these equations to study the tsunami propagation resulting from a predicted major earthquake in the Shumagin seismic gap area of the Aleutian Island chain. These or similar linear

nondispersive equations are commonly used to study tsunami propagation in the deep ocean.

- 18. The validity of these equations over the continental shelf may be questioned. Several investigators, however, find that their use is justified. Tuck (1979) found that "...linear long-wave equations are adequate to describe most of the tsunami generation, propagation, and reception processes." In studying tsunami propagation from the deep ocean to the nearshore regions, Goring (1978) concluded that "... because of the small relative height of tsunamis and their large lengths relative to the lengths of the continental slope, the propagation of tsunamis from the deep ocean to the continental shelf-break [sic] and for some distance onto the shelf will be predicted as well by the linear nondispersive theory as by the nonlinear theories."
- 19. Studies of the behavior of tsunamis over real bathymetry have indicated also that linear nondispersive equations are appropriate. Numerical studies by Houston (1978) have shown that linear nondispersive equations govern tsunami generation, propagation over the deep ocean, and interaction with the Hawaiian Islands. Houston (1980) found from numerical experiments that nonlinear advection terms had no significant effect on tsunamis propagated from the deep ocean to the shoreline in the southern California region. Alexeev et al. (1978) studied the generation and propagation of tsunamis in the region of the South Kuril Islands. They obtained nearly identical tsunami elevation time-histories at Kunashir Island using linear and nonlinear equations. The evidence suggests that the equations used in this study accurately modeled tsunami propagation in the Gulf of Alaska.
- 20. The initial condition used in the model was that the initial deformation of the water surface was the same as that of the permanent vertical displacement caused by the tectonic deformation of the seabed, except that sharp irregularities in the profile were smoothed out. The justification for the smoothing is given by Wilson (1969). This type of initial condition has been used by many investigators, including Houston and Garcia (1974), Brandsma, Divoky, and Hwang (1978), and Aida (1981).
- 21. The model equations were solved by a system of finite difference approximations. The finite difference scheme was similar to that presented by Reid and Bodine (1968). The outline of the grid used for the computations is shown in Figure 3. Spacing between grid points was 0.065 deg along parallels and 0.04 deg along meridians. The along-meridian spacing corresponds to an

Figure 3. Boundary of the finite difference grid

arclength of 2.77 miles. The along-parallel spacing varies with latitude and takes on a minimum arclength of 2.18 miles along the northern edge of the grid and a maximum arclength of 3.06 miles along the southern edge of the grid. The grid spacing used provided resolution of such topographic features as Resurrection Bay, Port Valdez, and Sitka Sound.

22. The model was calibrated by adjusting the friction coefficient k in order to adequately reproduce the tide gage recordings made at Sitka and Yakutat during the Alaskan tsunami of March 1964. The comparisons of the actual tide gage recordings (with the astronomical tide subtracted out) and the computed tsunami elevation time-histories for Sitka and Yakutat are shown in Figures 4 and 5, respectively. The main tsunami wave, having a period of aproximately 1.7 hr, is modeled quite well. The higher frequency oscillations in the actual tide gage records represent the effects of the local scattering of the tsunami wave. They may also represent some locally generated waves caused, for example, by submarine landslides induced by the earthquake.

Figure 4. 1964 Alaskan tsunami at Sitka, Alaska

Figure 5. 1964 Alaskan tsunami at Yakutat, Alaska

Tsunami Occurrence Probabilities

- 23. Historical data on tsunami generation must be the basis for an analysis that considers the probability of tsunami generation along the Aleutian Trench. A satisfactory correlation between earthquake magnitude and tsunami intensity has never been demonstrated. Not all large earthquakes occurring in the ocean even generate noticeable tsunamis. Furthermore, earthquake parameters of importance to tsunami generation, such as focal depth and vertical ground motion, have been measured only for earthquakes occurring in recent years. Therefore, data on earthquake occurrence cannot be used to determine occurrence probabilities of tsunamis. Historical data of tsunami occurrence generation regions must be used to determine these probabilities.
- 24. The concept of tsunami intensity was put forth by Soloviev (1970). He defined intensity as

$$i = \log_2\left(\sqrt{2} H_{avg}\right) \tag{4}$$

where H_{avg} is the average maximum runup (in metres) observed along the coastline adjacent to the source region.

25. The standard assumption in both earthquake and tsunami analysis is that the logarithm of the probability of occurrence of an event is linearly related to its intensity. In the Aleutian Trench area, only large tsunamis occurring since 1788 have been reliably documented. Assuming an exponential coefficient of -0.71 for this trench area (Soloviev (1970) found this coefficient to be the mean value for areas of the Pacific with the most data on tsunamis) and using only the reliable data, Houston (1978) established the following relation for the Aleutian Trench area:

$$n(i) = 0.113 e^{-0.71i}$$
 (5)

- where n(i) is the probability that, in any given year, a tsunami having intensity i will occur somewhere along the Aleutian Trench. Equation 5 gives the ordinates of a histogram where intensities have been grouped in increments of one-half the unit intensity.
- 26. Equation 5 was derived by considering tsunamis which occurred anywhere along the Aleutian Trench. As discussed in Part II, only tsunamis

generated at the eastern end of the trench were considered important. Since tsunami generation is equally probable anywhere along the trench, the probability of generation at the eastern end of the trench was one-fifth the value predicted by Equation 5. (The eastern end of the trench is approximately one-fifth the total length of the trench.)

Use of Numerical Model

- 27. Using the vertical permanent uplift of the seabed presented by Plafker (1969), the numerical model was used to simulate the behavior of the 1964 Alaskan tsunami. Tsunami elevation time-histories predicted by the model were saved at numerical gage locations throughout the study area. The model results indicated the average runup adjacent to the source region of the 1964 tsunami to be 11.8 ft and its intensity to be 2.4.
- 28. The uplift distribution over the rupture zone of the 1964 Alaskan earthquake was used to establish a record of tectonic deformations of the seabed. Each uplift distribution was given the same shape but a different magnitude from that of the 1964 event. To synthesize the record of uplifts in accordance with the linear model equations, the ratio of the uplift heights of two different tsunamis was equal to the ratio of the average runup heights on the coast. This ratio is equal to $2^{\left(11-12\right)}$ for tsunamis with intensities in and in and in and in a since the uplift heights and intensities were determined for the 1964 event, a record of uplift heights was established by allowing tsunaming intensity to vary from -1.0 to 4.5 (incrementing by 0.5) and then calculating the associated uplift heights. The lower limit was chosen because numerical experiments indicated tsunamis having lower intensities did not affect the 100- and 500-year combined tsunami and tide elevations. The upper limit was chosen because the largest tsunami intensity ever reported was less than 4.5.
- 29. The numerical model was used to simulate propagation of the tsunamicaused by each of the 12 uplifts. For each of the 12 simulated tsunamis, 24 hr of tsunamical elevation time-history were saved at numerical gage locations throughout the study area. The intensity of each of the 12 tsunamis was calculated using the model results and Equation 4. The calculated intensity was then used to assign probability using one-fifth the value found using Equation 5.

Effect of Astronomical Tides

- 30. The maximum still-water elevation produced during tsunami activity is the result of a superposition of tsunami and astronomical tide. Therefore, the statistical effect of astronomical tides on total tsunami runup must be included in the predictive scheme presented in this report. Since the wave forms calculated by the model did not have a simple form (e.g., sinusoidal), the statistical effect of the astronomical tide on tsunami runup had to be determined through a numerical approach.
- 31. A computer program was developed to predict time-histories of the astronomical tides throughout the study area. The program was based upon the harmonic analysis methods used in the past by the National Ocean Survey (NOS) for mechanical tide-predicting machines (Schureman 1971). Tidal constants available from NOS were used as input to the computer program. A year of tidal elevations was then predicted for grid locations in the study area. The year 1964 was selected because all the major tidal components for tides in Alaska had a node factor of approximately 1.00 during this year, thus making it an average year. The node factor is associated with the revolution of the moon's node and has an 18.6-year cycle. Since a tsunami can arrive at any time during this 18.6-year period (arrival at a low of the node factor being equally as likely as an arrival at a high), the statistical effect of the temporally varying node factor on the predicted runup elevations is shown by Houston (1980) to be very small.
- 32. The tidal time-histories calculated at each numerical gage location were subdivided into 30-min segments. Each of the twelve 24-hr wave forms was allowed to arrive at the beginning of each of these 30-min segments and then superimposed upon the astronomical tide for the 24-hr period. The maximum combined tsunami and astronomical tide elevation over the 24-hr period was determined for tsunami wave forms arriving during each of these 30-min starting times. Each of these maximum elevations had an associated probability equal to the probability that a certain intensity tsunami would be generated during a particular 30-min period of the year.
- 33. The many maximum elevations with associated probabilities were used to determine exceedance frequency distributions of combined tsunami and astronomical tide elevations. The maximum elevations were ordered and frequencies summed, starting with the largest elevations, until a desired frequency was

obtained. The elevation encountered when the summed frequency reached a desired value F was the elevation that is equaled or exceeded with an average frequency of once every 1/F years. Thus, when the summed frequencies reached the value 0.01, the elevation associated with the last frequency summed was the 100-year elevation.

PART III: EXPLANATION OF RESULTS

- 34. The 100- and 500-year combined tsunami and tide elevations were predicted at 1,249 sites in the study area. The latitude and longitude of each site and the 100- and 500-year elevations (in feet) are listed in Table 1. The elevations in this report are referenced to the local mean sea level (msl) datum. The locations of the sites are shown in Plates 1-77.
- 35. At some locations an apparently contradictory result is found: the predicted 100-year combined tsunami and tide elevation is less than the maximum tide. At Anchorage, for example, the predicted 100-year elevation is 15.7 ft, and the maximum computed tide occurring in 1964 is 16.7 ft. This result is correct, however, since the predicted combined tsunami and tide elevations are determined given the occurrence of a tsunami. The combined elevation occurrence probabilities are dominated by the low probability of tsunami occurrence. The arrival of a tsunami at a time during the year when it will result in a greater water surface elevation than the maximum for the year is an event with a return period greater than 100 years. This kind of result indicates that severe tsunami damage is not likely at locations, such as Anchorage, where tsunami amplitudes are small compared to the tide range.

Shoreline Elevation Versus Runup Elevation

36. The tsunami elevations presented in Table 1 are elevations at the shoreline. They were determined by a finite difference solution to the linear shallow-water equations. Only tsunamis resulting from the tectonic-scale permanent vertical deformation of the seafloor were considered. Local phenomena such as seafloor slumping or small-scale local features of the faulting were not considered. The steepness of the tsunami associated with the tectonic-scale faulting is so small that it precludes the possibility of the tsunami breaking as it moves onshore. Hence, except as discussed in the remainder of this section, elevations presented in this report also can be considered runup elevations.

The second

- 37. Three situations in which the runup elevation is not equal to the shoreline elevation are:
 - a. Where the tsunami intrudes into a river and creates a bore.
 - b. Where dunes prevent flooding except through inlets.

c. Where the land is extremely flat and inland flooding is extensive.

The runup elevation determinations for these cases can be made as discussed in paragraphs 38 and 39.

- 38. The simulation of tsunami penetration into a river, including the prediction of bore formation, can be made using the method of characteristics (Henderson 1966). Horiguchi (1966) presents a scheme, based on the method of characteristics, for computing tsunami penetration into bays and river branches including prediction of bore formation.
- 39. Where dunes prevent flooding, except through inlets or where the land is extremely flat and inland flooding is extensive, a land flooding numerical model can be used to determine runup. A model of this type which incorporates the effects of bottom friction and irregular topography has been developed by Houston and Butler (1979).

Runup Determinations Between Listed Sites

40. The tsunami wavelengths are so great compared to the length scale of irregularities in the coastline that linear interpolation may be used to determine 100- and 500-year elevations at locations between the sites shown in Plates 1-77.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 41. To determine tsunami elevations, a record of local tectonic displacements of the seabed was synthesized. In previous studies, Houston and Garcia (1978) and Houston (1980) considered only distantly generated tsunamis. These authors concluded that only the gross shape of the ground deformation was necessary to determine tsunami elevations at distant locations. Hence, they synthesized a record of tectonically reasonable displacements of the seabed knowing that the exact shape of each deformation was unimportant. The situation was not as simple in this study since all tsunamis were locally generated.
- 42. It is obvious that, in the near field, tsunami elevations will depend on the shape of the seabed deformations. Still, the method used required that a model deformation be defined. Hence, it was necessary to assume that the standard deformation employed would result in the same 100- and 500-year combined tsunami and tide elevations as would have resulted if actual historical sources had been employed. In light of the fact that tectonic displacements are known for only two submarine earthquakes—the 1960 Chilean earthquake and the 1964 Alaskan earthquake—the assumption is not only reasonable (as discussed in Part II) but also necessary.
- 43. The numerical model used in this study accurately simulated tsunami propagation in the open ocean of the Gulf of Alaska, on the narrow shelf of the eastern Gulf of Alaska, and in Prince William Sound. In Cook Inlet the water is sufficiently shallow such that the adequacy of the linear nondispersive model equations may be questioned. Tsunami heights in the inlet, however, are fairly small since Kodiak Island, the Barren Islands, and Kenai Peninsula shelter the inlet from the major tsunami generating region. Hence, the model is considered to be adequate in Cook Inlet also.

Recommendations

44. The elevations predicted in this report are at the shoreline but can be assumed to equal runup elevations for most of the study area. There are locations where time-dependent effects (e.g., lack of sufficient time to

completely flood extensive low-lying or estuarine areas) or two-dimensional effects (e.g., flow divergence or convergence) cause tsunami runup elevations to differ from elevations at the shoreline. It is recommended that inundation limits for these areas be determined using a numerical model developed at the US Army Engineer Waterways Experiment Station (Houston and Butler 1979). This model is capable of handling land flooding for bays, harbors, developed areas such as cities, large low-lying areas, sand-dune protected areas, and other areas where there are topographical, roughness, or coastline variations. There are also locations at river mouths where the formation of a bore will affect the runup elevations. This problem can be efficiently treated using the method of characteristics.

REFERENCES

- Aida, I. 1981. "Numerical Simulation of Historical Tsunami Generated off the Tokai-District, Central Japan," <u>International Tsunami Symposium 1981</u>, Abstracts of Symposium Papers, Sendai-Ofunato-Kamaishi, Japan, pp 57-60.
- Alexeev, A. S. et al. 1978. "Numerical Simulation of Tsunami Generation and Propagation in the Ocean with Real Bathymetry, Nonlinear Model," <u>Symposium on Tsunamis, Manuscript Report Series</u>, No. 48, Department of Fisheries and the Environment, Ottawa, Canada, pp 37-51.
- Brandsma, M., Divoky, D., and Hwang, L. S. 1978. "Circumpacific Variations of Computed Tsunami Features," Symposium on Tsunamis, Manuscript Report Series, No. 48, Department of Fisheries and the Environment, Ottawa, Canada, pp 132-151.
- Cox, D. C., Pararas-Carayannis, G., and Calebaugh, J. P. 1976. <u>Catalogue of Tsunamis in Alaska</u>, World Data Center A for Solid Earth Geophysics, Report SE-1, National Oceanic and Atmospheric Administration, Asheville, N.C.
- Davies, J. et al. 1981. "Shumagin Seismic Gap, Alaska Peninsula: History of Great Earthquakes, Tectonic Setting, and Evidence for High Seismic Potential," <u>Journal of Geophysical Research</u>, Vol 86, No. 85, pp 3821-3855.
- Goring, D. G. 1978. "Tsunamis The Propagation of Long Waves onto a Shelf," Report No. KH-R-38, California Institute of Technology, Pasadena, Calif.
- Hatori, T. 1963. "Directivity of Tsunamis," <u>Bulletin of the Earthquake</u> <u>Research Institute</u>, Tokyo University, Vol 41, pp 61-81.
- Henderson, F. M. 1966. Open Channel Flow, Macmillan, New York.
- Horiguchi, T. 1966. "The Computations of Tsunami Penetrating into the Bay and Rivers," Coastal Engineering in Japan, Vol 9, pp 1-10.
- Houston, J. R. 1978. "Interaction of Tsunamis with the Hawaiian Islands Calculated by a Finite-Element Numerical Model," <u>Journal of Physical</u> Oceanography, Vol 8, No. 1, pp 93-101.
- . 1979. "State of the Art for Assessing Earthquake Hazards in the United States; Tsunamis, Seiches, and Landslide-Induced Water Waves," Miscellaneous Paper S-73-1, Report 15, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- . 1980. "Type 19 Flood Insurance Study: Tsunami Predictions for Southern California," Technical Report HL-80-18, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Houston, J. R., and Butler, H. L. 1979. "A Numerical Model for Tsunami Inundation," Technical Report HL-79-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Houston, J. R., and Garcia, A. W. 1974. "Type 16 Flood Insurance Study: Tsunami Predictions for Pacific Coastal Communities," Technical Report H-74-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- . 1978. "Type 16 Flood Insurance Study: Tsunami Predictions for the West Coast of the Continental United States," Technical Report H-78-26, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

- Kowalik, Z., and Murty, T. S. 1984. "Computation of Tsunami Amplitudes Resulting from a Predicted Major Earthquake in the Shumagin Seismic Gap," Geophysical Research Letters, Vol 11, No. 12, pp 1243-1246.
- Plafker, G. 1969. "Tectonics of the March 27, 1964, Alaska Earthquake," Geophysical Survey Professional Paper 543-I, in <u>The Great Alaska Earthquake of 1964</u>, National Academy of Sciences, Washington, DC.
- Reid, R. O., and Bodine, B. R. 1968. "Numerical Model for Storm Surges in Galveston Bay," <u>Proceedings, American Society of Civil Engineers, Journal, Waterways and Harbors Division</u>, Vol 94, No. WW1, pp 33-57.
- Schureman, Paul. 1971. Manual of Harmonic Analysis, Special Publication No. 98, US Department of Commerce, Coast and Geodetic Survey, US Government Printing Office, Washington, DC.
- Soloviev, S. L. 1970. "Recurrence of Tsunamis in the Pacific," <u>Tsunamis in the Pacific Ocean</u>, W. M. Adams, ed., East-West Center Press, Honolulu, Hawaii.
- Tuck, E. O. 1979. "Models for Predicting Tsunami Propagation," <u>Tsunamis</u>, <u>Proceedings of the National Science Foundation Workshop</u>, Coto de Caza, Calif., pp 43-48.
- Wilson, B. W. 1969. "Earthquake Occurrence and Effects in Ocean Areas," CR 69.027, Naval Civil Engineering Laboratory, Port Hueneme, Calif.

Table 1

Gage Locations and 100- and 500-Year

Combined Tsunami and Tide Elevations

Gage	Lo	ngitu	de_	La	titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u> ft </u>	<u> </u>
1 2 3 4 5	154 154 154 154 154	55 51 47 43 37	57 20 50 31	57 58 57 58 58	59 0 58 0	46 10 34 13 2	10.2 10.2 10.2 10.2 10.2	13.5 13.1 13.1 12.8 12.5
6 7 8 9	154 154 154 154 154	33 29 26 19	21 27 31 34 35	58 58 58 58 58	1 2 5 4 6	13 16 9 14 50	10.2 10.2 10.2 10.2 10.2	12.5 14.1 14.1 13.8 13.5
11	154	12	24	58	7	27	10.2	13.5
12	154	9	38	58	10	58	10.2	14.4
13	154	8	29	58	13	8	10.5	15.7
14	154	6	4	58	15	53	10.5	17.4
15	154	10	34	58	18	24	11.8	24.9
16	154	18	24	58	16	47	12.1	25.6
17	154	15	10	58	18	23	12.5	26.6
18	154	9	18	58	19	21	11.5	23.3
19	154	3	55	58	20	30	10.8	20.3
20	153	59	45	58	21	50	10.5	18.0
21 22 23 24 25	154 154 153 153 153	2 56 54 54	49 36 60 12 22	58 58 58 58 58	24 28 28 30 32	5 25 31 5 9	10.8 11.2 10.8 10.8 11.2	19.4 20.3 19.4 19.7 20.7
26	153	53	41	58	35	2	11.5	22.6
27	153	49	9	58	35	43	11.2	21.0
28	153	45	41	58	35	18	10.8	19.7
29	153	41	28	58	35	43	10.8	18.7
30	153	37	17	58	36	54	10.5	17.7
31	153	35	4	58	37	40	10.5	16.1
32	153	33	40	58	39	40	10.5	17.4
33	153	29	35	58	41	16	10.8	19.4
34	153	25	4	58	42	31	10.8	18.4
35	153	22	39	58	44	47	10.5	15.1
36	153	22	4	58	46	36	10.5	15.7
37	153	17	1	58	49	14	10.5	16.7
38	153	19	22	58	52	42	10.5	17.4
39	153	19	8	58	54	18	10.5	17.1
40	153	23	13	58	55	44	10.5	16.1

Table 1 (Continued)

Gage	Lo	Longitude			titud	e	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u>ft</u>	ft
41	153	25	50	58	57	23	10.5	17.1
42	153	28	7	58	59	21	10.5	19.0
43	153	30	33	58	59	1	10.5	19.7
##	153	35	53	59	0	2	10.8	20.7
45	153	38	60	59	1	48	10.5	19.7
46	153	41	49	59	4	16	10.5	16.4
47	153	48	16	59	4	14	10.5	16.4
48	153	50	14	59	3 3 3	14	10.5	17.1
49	153	52	47	59	3	24	10.5	18.0
50	153	56	6	59		38	10.5	19.0
51	154	0	39	59	4	19	10.8	20.0
52	154	9	56	59	5	13	11.2	20.7
53	154	10	47	59	7	12	11.2	20.3
54	154	10	49	59 50	10	2	11.2	21.0
55	154	7	36	59	11	33	11.2	21.7
56	154	8	19	59	13	45	11.2	22.3
57	154	8	4	59	15	32	11.5	22.6
58	154	6	1	59	18	4	11.5	23.3
59	154	0	40	59	19	56	11.8	24.9
60	153	56	59	59	21	7	12.1	26.9
61	153	58	47	59	23	5	11.8	24.9
62	153	56	9	59	23	19	11.8	24.6
63	153	53	1	59	24	47	11.8	25.6
64	153	50	8	59	24	50	11.5	24.9
65	153	46	16	59	25	28	11.5	23.6
66	153	44	3	59	26	6	11.5	22.3
67	153	42	1	59	27	38	11.5	23.0
68	153	46	14	59	31	35	12.1	25.9
69	153	39	28	59	32	54	11.8	23.6
70	153	34	38	59	33	15	11.8	24.0
71	153	33	9	59	35	25	12.1	24.6
72	153	32	2	59	37	26	12.5	26.6
73	153	27	50	59	39	1	12.1	24.9
74	153	24	14	59	37	55	11.8	24.0
75	153	18	1	59	37	49	11.8	23.3
76	153	14	45	59	37	44	11.5	22.3
77	153	9	31	59	38	52	11.5	22.0
78	153	8	31	59	40	7	11.2	20.3
79	153	4	33	59	41	6	10.8	17.1
80	153	2	38	59	42	2	11.2	20.0

Table 1 (Continued)

Gage	Longit	Longitude			ie .	100-Year Elevation	500-Year Elevation
Number	deg min		deg	min	sec	ft	ft
81 82 83 84 85	153 0 152 59 153 1 153 8 153 13	33 22 4 20 51	59 59 59 59 59	45 48 49 48 48	5 13 37 9 58	11.8 12.5 14.8 15.4 15.7	22.3 25.9 32.5 34.5 36.1
86 87 88 89 90	153 13 153 8 153 4 153 1 152 59	41 26 6 44 31	59 59 59 59 59	52 51 51 52 52	5 28 53 36 42	16.1 15.7 14.8 13.8 13.1	36.7 34.8 32.8 29.5 26.6
91 92 93 94 95	152 56 152 52 152 49 152 43 152 41	37 17 25 42 7	59 59 59 59 59	52 52 52 54 56	22 13 9 3	12.1 11.5 11.2 11.5 11.5	24.3 21.7 18.7 13.8 14.1
96 97 98 99 100	152 37 152 34 152 33 152 34 152 36	33 22 24 17 55	59 60 60 60	59 2 5 9 10	29 52 12 18 23	11.8 11.8 11.8 11.5 11.5	14.1 14.4 14.1 13.8 13.5
101 102 103 104 105	152 33 152 30 152 24 152 22 152 18	31 32 41 30 37	60 60 60 60	13 15 17 20 21	1 11 21 35 38	11.8 11.8 11.8 11.5 11.5	14.4 15.4 14.4 12.5 12.5
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	152 14 152 17 152 18 152 16 152 13 152 10 152 6 152 4 152 4 152 1 151 58 151 54 151 49 151 45 151 42	11 30 57 39 6 15 55 48 33 48 47 57	60 60 60 60 60 60 60 60 60	23 24 29 1 33 34 5 5 6 8 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	36 48 4 37 23 24 30 58 11 12 29 31 53 21 37	11.5 11.5 11.5 11.5 11.5 12.8 12.8 12.8 12.8 12.8 12.8	12.5 12.5 12.5 12.5 12.5 14.8 15.1 15.1 15.1 15.1

Table 1 (Continued)

Gage	La	titud	le	100-Year Elevation	500-Year Elevation		
Number	Longitudeg min	sec	deg	min	sec	<u>ft</u>	ft
121 122 123 124 125	151 43 151 46 151 48 151 47 151 41	50 26 58 32 22	60 60 60 60	46 48 51 54 57	0 32 16 57 58	12.5 12.5 12.8 12.8 12.8	14.8 14.8 15.1 15.1
126 127 128 129 130	151 37 151 34 151 29 151 26 151 23	1 2 3 29 18	60 61 61 61	59 0 0 0	47 18 57 44 38	12.8 12.8 12.8 12.8 12.5	16.1 15.7 15.4 15.1 14.8
131 132 133 134 135	151 18 151 14 151 9 151 7 151 4	27 42 38 8 17	61 61 61 61	1 2 2 4 8	43 18 49 58 6	12.5 12.5 12.5 12.5 12.5	14.8 14.4 14.1 13.8 14.1
136 137 138 139 140	151 2 151 1 150 58 150 54 150 50	37 10 31 14 14	61 61 61 61 61	9 10 11 12 13	33 37 20 21 17	12.5 12.8 12.8 12.8 12.5	15.1 15.4 15.1 15.1 14.8
141 142 143 144 145	150 47 150 44 150 39 150 35 150 28	55 17 58 58 25	61 61 61 61	13 14 16 16	51 38 26 29 18	12.5 15.7 15.7 15.7 15.7	14.4 17.4 17.4 17.1 16.7
146 147 148 149 150	150 25 150 20 150 17 150 14 150 11	7 32 29 42 5	61 61 61 61	16 17 17 17 16	48 1 48 21 49	15.7 15.7 15.7 15.7 15.7	16.7 16.7 16.7 16.7 16.7
151 152 153 154 155	150 7 150 3 150 1 149 55 149 53	24 18 14 26 22	61 61 61 61	16 16 14 15 13	48 53 33 26 48	15.7 15.7 15.7 15.7 15.7	16.7 16.7 16.7 16.7 16.7
156 157 158 159 160	149 55 149 58 150 0 150 3 149 59	45 10 45 46 52	61 61 61 61	12 11 12 9 8	15 50 8 55 11	15.7 15.7 15.7 15.7 16.1	16.7 16.7 16.7 17.1 17.7

Table 1 (Continued)

Gage	Lo	ngitu	de	La	titud	ie	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u>ft</u>	ft
161	149	55	42	61	6	40	16.1	18.0
162	149	51	38	61	5	50	16.1	18.0
163	149	49	17	61	4	3	16.1	18.4
164	149	44	29	61	1	8	16.1	18.4
165	149	41	14	61	0	15	16.1	18.0
166	149	38	18	60	59	53	16.1	17.7
167	149	34	51	60	58	54	16.1	18.0
168	149	31	40	60	58	56	16.1	19.0
169	149	29	33	60	58	56	16.1	20.0
170	149	26	20	60	57	50	16.4	21.3
171	149	22	43	60	56	52	16.4	22.6
172	149	19	11	60	55	56	16.7	23.6
173	149	12	34	60	56	29	16.7	24.6
174 176	149 149	9 3	31 46	60 60	55 53	53	16.7	25.3
175	-	_			-	48	13.8	23.0
176	149	3	22	60	51	24	13.8	22.6
177	149	7	48	60	53	14	16.7	24.9
178	149	10	32	60	53	14	16.7	24.3
179 180	149 149	15 20	38 53	60 60	53 53	39	16.7 16.4	23.6
	_					37		22.3
181	149	22	60	60	53	49	16.4	21.3
182	149	25	11	60	54	14	16.1	20.0
183 184	149 149	28 33	52 42	60 60	55 56	4 1	16.1 16.1	19.0 18.4
185	149	33 37	4 2 52	60	55 55	24	16.1	18.0
186	149	40	38	60	56	43	16.1	18.0
187	149	46	7	60	57	53	16.1	18.0
188 189	149 149	49 53	56 33	60 60	58 56	2 27	16.1 16.1	18.0 18.4
190	149	55 55	25	60	54	43	16.1	18.0
	-							
191	150 150	0	41	60	51 52	44	16.1	18.0
192 193	150 150	6 11	4 38	60 60	53 53	2 57	16.1 16.1	18.0 18.0
193	150	15	21	60	56	35	16.1	18.0
195	150	18	11	60	58	51	15.7	17.1
196 197	150 150	19 23	41 41	61 61	0 2	42 9	15.7 15.7	16.7 16.7
198	150 150	23 27	6	61	0	50	15.7 15.7	17.1
199	150	30	47	60	59	55 55	15.7	17.4
200	150	34	30	60	58	55	15.7	17.4
-		- '	J -	- •				.,.

Table 1 (Continued)

Gage	Lo	Longitude			atitu	de	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg		sec	ft	ft_
201 202 203 204 205	150 150 150 150 150	40 42 45 48 53	57 34 45 48 3	60 60 60 60	57 55 54 53 51	15 57 40 12 27	12.5 12.5 12.5 12.5 12.5	14.4 14.8 14.8 14.8
206 207 208 209 210	150 150 151 151 151	56 59 1 4 11	44 20 22 33 8	60 60 60 60	50 48 47 47 46	1 53 58 2 41	12.5 12.5 12.5 12.5 12.5	15.1 15.1 14.8 14.8 14.8
211 212 213 214 215	151 151 151 151 151	15 17 23 24 22	15 27 3 28 30	60 60 60 60	46 44 43 42 40	19 32 38 47 4	12.5 12.5 12.5 12.5 12.8	14.4 14.4 14.8 14.8 15.1
216 217 218 219 220	151 151 151 151 151	20 19 16 16 16	33 49 35 37 44	60 60 60 60	37 34 33 30 27	0 59 13 35 27	12.8 12.8 12.8 12.8 12.8	15.1 15.7 15.7 15.7 15.4
221 222 223 224 225	151 151 151 151 151	17 18 22 22 23	16 17 35 40 30	60 60 60 60	25 23 21 18 14	0 15 15 44 45	12.8 12.8 12.8 12.8 12.8	15.1 14.8 15.1 15.1 15.1
226 227 228 229 230	151 151 151 151 151	25 28 31 35 37	45 55 31 2 47	60 60 60 60	11 9 7 6 4	51 40 52 3 15	12.8 12.8 12.8 12.8 12.8	14.8 14.4 14.1 14.1 14.1
231 232 233 234 235	151 151 151 151 151	40 42 43 44 45	4 36 26 36 53	60 60 59 59 59	2 0 58 55 53	29 33 13 34 53	12.8 12.5 12.8 12.8 12.8	13.8 13.8 13.8 14.1 14.1
236 237 238 239 240	151 151 151 151 151	47 49 50 51	56 30 50 47 11	59 59 59 59 59	52 48 47 45 44	15 51 25 25 28	12.8 12.8 12.8 12.8 12.8	14.4 15.4 15.7 15.7

Table 1 (Continued)

Gage	Lo	Longitude			titud	ie	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u> </u>	ft_
241 242 243 244 245	151 151 151 151 151	50 47 42 38 33	21 26 23 24 41	59 59 59 59 59	43 41 39 38 37	34 47 54 32 59	13.1 13.1 13.5 13.5	16.4 19.0 21.0 22.0 21.7
246	151	31	0	59	37	36	13.5	21.3
247	151	25	11	59	35	46	13.1	19.0
248	151	23	24	59	40	17	13.5	20.3
249	151	17	18	59	41	41	13.5	22.0
250	151	14	37	59	42	39	13.8	23.3
251 252 253 254 255	151 151 151 151 151	10 7 4 1 4	13 22 34 2	59 59 59 59 59	44 45 46 44 42	38 54 53 20 54	15.4 16.1 16.7 16.7 16.1	30.8 35.4 37.7 37.4 35.1
256	151	6	46	59	40	49	14.4	26.6
257	151	8	27	59	39	23	14.1	24.3
258	151	11	22	59	38	17	13.5	22.3
259	151	16	4	59	35	28	13.5	20.7
260	151	17	55	59	34	21	13.1	17.4
261	151	20	36	59	33	45	13.1	18.0
262	151	22	21	59	31	54	13.1	17.7
263	151	25	55	59	32	12	11.8	17.4
264	151	27	48	59	29	18	12.1	19.7
265	151	30	9	59	28	8	12.5	21.0
266	151	35	53	59	28	9	12.5	20.7
267	151	38	50	59	28	40	12.1	20.0
268	151	42	3	59	27	48	12.1	19.7
269	151	47	3	59	26	9	12.1	19.4
270	151	52	55	59	25	16	12.1	19.0
271	151	53	3	59	22	37	12.1	19.0
272	151	53	11	59	21	14	12.1	19.4
273	151	55	47	59	20	41	12.1	18.0
274	151	59	11	59	18	9	12.1	18.4
275	151	58	34	59	16	35	12.1	19.4
276	151	57	23	59	14	40	12.1	20.0
277	151	54	38	59	13	25	12.8	23.3
278	151	51	43	59	12	28	12.8	24.0
279	151	47	38	59	12	19	13.1	24.3
280	151	44	59	59	9	41	13.1	24.9

Table 1 (Continued)

Gage	Long	itude	La	titud	le	100-Year Elevation	500-Year Elevation
Number	deg m	in sec	deg	min	sec	<u>ft</u>	ft
281 282 283 284 285	151 43 151 33 151 33 151 3	8 28 5 25 3 6	59 59 59 59 59	9 9 12 12	32 39 34 2 15	13.5 13.8 15.1 14.4 14.1	25.9 28.2 35.4 32.8 28.9
286 287 288 289 290		7 54	59 59 59 59 59	14 12 12 12 13	12 28 13 0	14.4 14.1 13.8 13.8 15.1	30.8 29.5 28.9 29.9 33.5
291 292 293 294 295	151 10 151 13 151 0		59 59 59 59 59	15 17 17 16 16	8 33 46 50 3	16.7 17.7 17.7 17.1 16.4	39.0 41.7 43.0 39.7 37.1
296 297 298 299 300	151		59 59 59 59 59	17 14 13 11	27 44 4 58 49	16.1 15.7 15.1 13.8 13.8	36.1 35.1 33.1 30.8 31.2
301 302 303 304 305	150 5: 150 5 150 4: 150 4: 150 4:	1 48 8 29 5 47	59 59 59 59	15 19 21 22 25	5 21 14 35 42	13.5 15.7 16.7 16.7 16.1	29.2 38.1 41.3 41.0 39.0
306 307 308 309 310	150 3 150 3 150 3 150 3 150 3	4 57 4 53 6 10	59 59 59 59 59	25 26 28 32 34	31 33 7 18 55	16.4 18.4 19.4 20.3 21.3	40.4 46.3 50.5 54.5 57.4
311 312 313 314 315	150 3 150 3 150 3 150 3	3 8 1 18 1 8	59 59 59 59	35 31 29 27 27	18 18 50 59 36	21.0 20.3 19.4 18.0 15.4	56.8 54.5 50.5 46.3 36.4
316 317 318 319 320	150 2° 150 2° 150 2° 150 2°	5 56 4 56 2 59	59 59 59 59 59	28 30 32 34 29	35 44 41 8 23	15.7 15.4 15.7 15.7 15.7	37.7 36.1 37.7 37.7 37.7

Table 1 (Continued)

Gage	Longitud	e La	titude	100-Year Elevation	500-Year Elevation
Number		sec deg	min sec	ft	ft
321 322 323 324 325	150 15 150 12 150 10	46 59 5 59 17 59 17 59 30 59	25 1 29 8 31 17 32 21 33 55	13.1 13.5 14.1 17.4 14.4	28.5 30.5 32.8 44.6 34.1
326 327 328 329 330	150 5 150 6 150 0 149 56 149 55	8 59 0 59 13 59 53 59 16 59	34 47 36 27 38 2 39 28 41 13	14.8 15.4 14.8 14.1 14.1	35.1 38.1 35.1 33.1 31.8
331 332 333 334 335	149 49	51 59 18 59 40 59 9 59 12 59	44 30 42 7 37 56 39 37 41 41	15.1 15.1 14.4 13.5 14.1	36.1 35.8 32.5 29.5 32.5
336 337 338 339 340	149 45 149 45 149 44	32 59 10 59 28 59 54 59 21 59	43 10 45 28 47 27 49 18 51 16	14.1 14.4 15.7 15.4 16.7	32.8 33.8 37.4 36.7 41.3
341 342 343 344 345	149 39 149 39	1 59 44 59 44 59 51 59 56 59	56 9 55 24 52 16 49 21 46 18	17.4 17.1 16.4 15.1 15.1	43.6 43.0 41.0 35.8 35.1
346 347 348 349 350	149 31 149 32 149 32	34 59 24 59 35 59 2 59 36 59	43 39 42 30 45 14 46 29 48 20	14.4 13.8 13.5 14.4 14.8	33.1 31.5 29.9 33.5 35.1
351 352 353 354 355		5 59 14 59 13 59 29 59 8 60	51 7 55 33 55 30 58 27 0 36	14.4 16.4 16.4 17.1 17.7	32.8 39.7 39.4 41.7 43.6
356 357 358 359 360	149 26 149 21 149 20	58 60 5 60 32 60 33 60 43 60	4 4 7 1 6 43 4 54 0 44	18.7 20.3 20.0 18.7 19.4	46.6 52.5 51.8 45.9 50.2

Table 1 (Continued)

Gage	Lon	gitude		atitud	le	100-Year Elevation	500-Year Elevation ft
Number		min se		min	sec	<u>ft</u>	
361 362 363 364 365	149 149 149 149 149	18 47 20 45 17 10 16 51 14 41	59 59 59 59 59	58 56 54 52 54	18 16 8 7 42	19.0 16.4 15.1 14.1 13.5	48.6 39.7 35.4 32.2 29.5
366 367 368 369 370	149 149 149 149 149	12 45 12 26 11 6 5 33 3 1	59 59 60 60 60	56 58 0 2	33 27 7 39 4	13.8 14.1 14.8 15.4 15.7	30.2 31.5 33.8 36.1 36.7
371 372 373 374 375	149 149 149 149 148	2 42 5 30 6 59 1 12 57 50	60 59 59 59 59	1 59 57 57 58	42 38 56 3 5	15.7 15.1 14.1 13.1 13.1	36.7 34.1 30.5 26.6 26.2
376 377 378 379 380	148 148 148	53 6 49 52 45 7 42 31 38 6	59 59 59 59 59	56 55 57 56 55	35 34 26 23 3	13.1 12.8 12.5 12.5 12.5	25.9 24.9 23.0 22.6 23.0
381 382 383 384 385	148 148 148	36 0 33 8 26 32 23 58 24 14	59 59 59 59 60	55 57 56 58 1	39 28 41 42 49	12.8 13.5 10.8 10.8 12.1	25.3 27.9 26.2 25.9 28.5
386 387 388 389 390	148	22 51 22 13 21 45 17 17 17 48	60 60 60 60	3 5 7 8 6	41 11 13 43 58	12.8 13.8 14.4 14.4 13.8	30.5 34.1 36.7 36.4 33.8
391 392 393 394 395	148 148 148 148 147	17 19 18 50 16 7 0 31 52 52	60 60 60 59 59	5 1 0 56 58	26 50 40 35 60	12.8 12.1 11.2 11.2 13.5	30.8 28.9 26.9 27.9 35.4
396 397 398 399 400	147	49 5 52 34 57 49 2 24 8 55	60 60 60 59 59	3 0 57 59	34 57 40 33 32	10.5 10.2 10.5 10.5 10.2	24.3 23.6 24.9 24.3 22.6

Table 1 (Continued)

Gage	_ Long	i tude	La	titud	e	100-Year Elevation	500-Year Elevation
Number		in sec	deg	min	sec	<u> </u>	ft
401 402 403 404 405	147 54 148 11 148 23 148 23	2 23 2 19 2 42	60 60 60 60	7 15 11 16 16	16 18 50 35 33	10.2 9.8 10.5 10.5 9.8	23.3 19.4 22.0 21.7 19.7
406 407 408 409 410		0 10 6 25 2 58	60 60 60 60	19 19 22 23 24	19 57 27 12 53	9.8 10.2 10.2 10.2 10.2	19.4 20.7 20.7 20.7 20.7
411 412 413 414 415	148		60 60 60 60	28 30 33 35 34	11 49 54 36 5	10.2 10.5 10.8 10.8 10.5	21.7 22.6 24.3 23.6 22.3
416 417 418 419 420	148 1. 148 1. 148 1. 148 2. 148 2.	4 48 9 31 2 25	60 60 60 60	31 30 29 30 31	54 8 34 28 37	10.5 10.8 10.8 10.8 11.2	22.6 23.3 23.3 23.3 25.3
421 422 423 425	148 26 148 3 148 3 148 3	4 19 6 37	60 60 60	31 29 28 31	50 44 17 29	11.5 11.8 12.5 12.1	25.9 26.6 29.2 27.2
426 427 428 429 430	148 3 148 3 148 2 148 2 148 1	0 41 6 52 4 3	60 60 60 60	32 33 33 32 31	21 36 48 22 24	11.5 11.5 11.5 10.8 10.8	25.6 26.2 25.6 23.6 23.3
431 432 433 434 435	148 1 148 1 148 1 148 1 148 2	1 12 3 46 7 35	60 60 60 60	34 36 45 43 40	25 10 25 38 7	10.8 10.8 12.8 13.1 13.1	23.0 24.3 30.5 31.5 31.5
436 437 438 439 440	148 2 148 2 148 2 148 2 148 3	3 25 1 51 5 2	60 60 60 60	39 42 45 45 45	30 56 24 59 26	13.1 12.8 12.8 12.8 13.5	30.8 30.8 30.8 30.2 31.8

Table 1 (Continued)

Gage	Longitude			titud	 le	100-Year Elevation	500-Year Elevation
Number	deg min		deg	min	sec	<u>ft</u>	ft
441 442 443 444 445	148 37 148 32 148 20 148 17 148 16	5 19 44 22 0	60 60 60 60	44 48 47 51 54	37 46 43 21 3	13.5 13.5 12.8 13.5 14.1	32.5 32.5 30.2 32.5 35.1
446 447 448 449 450	148 11 148 12 148 21 148 16 148 7	1 22 34 5 17	60 61 61 61	57 3 1 4 3	26 5 43 7 22	15.1 15.7 16.1 15.7 15.4	38.4 40.4 41.7 41.0 39.4
451 452 453 454 455	148 5 148 0 147 58 147 54 147 50	8 5 25 33 4	60 61 61 61	59 2 5 8 11	46 47 60 22 6	15.7 17.4 18.4 19.0 19.7	40.7 45.6 48.9 50.9 53.2
456 457 458 459 460	147 45 147 47 147 50 147 52 147 55	59 60 5 16 54	61 61 61 61	10 9 7 6 4	28 1 60 18 11	20.0 20.0 18.4 17.4 16.4	53.5 53.2 48.9 45.6 43.0
461 462 463 464 465	147 56 147 59 148 1 148 5 148 7	56 7 48 37 4	61 60 60 60	1 59 56 54 51	18 4 51 23 58	16.1 15.7 15.1 14.8 13.8	41.3 40.0 37.7 37.4 33.1
466 467 468 469 470	148 8 148 7 148 1 147 55 147 49	15 35 43 21 8	60 60 60 60	49 46 46 48 48	27 56 31 7 19	13.1 11.8 11.5 11.5 10.8	32.2 27.9 26.6 25.9 24.3
471 472 473 474 475	147 37 147 35 147 35 147 35 147 37	22 15 57 59 7	60 60 60 60	50 52 53 55 57	15 13 50 29 45	10.5 10.5 10.5 10.8 11.2	23.0 23.6 24.3 25.6
476 477 478 479 480	147 35 147 35 147 35 147 33 147 30	57 6 14 27 29	60 61 61 61	59 0 2 4	5 41 11 22 11	11.8 11.8 12.1 13.1	27.6 27.9 28.5 32.5 32.2

Table 1 (Continued)

Gage	age Longitude		L	atitud	ie	100-Year Elevation	500-Year Elevation	
Number	deg	min	sec	deg	min	sec	<u> ft </u>	ft
481 482 483 484 485	147 147 147 147 147	31 31 32 32 32	37 27 17 1	61 60 60 60	2 59 57 55 53	4 46 45 35 32	12.1 12.1 11.8 11.2 10.8	28.9 28.2 27.9 25.3 24.6
486 487 488 489 490	147 147 147 147 147	27 22 18 15	1 43 26 18 10	60 60 60 60	53 51 53 56 57	33 53 56 26 50	10.5 10.5 11.5 12.5 12.1	23.3 22.3 26.9 29.5 28.9
491 492 493 494 495	147 147 146 146 146	11 2 58 55 52	5 53 17 15 57	60 60 60 60	55 56 55 56 57	35 18 20 7 15	11.8 11.5 10.8 10.5 10.8	26.9 25.9 23.0 23.0 23.3
496 497 498 499 500	146 146 146 146 146	50 48 43 39 34	44 22 28 3 27	60 61 61 61	59 0 2 5 6	19 59 30 30 34	10.8 10.5 12.5 13.1 13.5	23.0 22.3 28.9 30.8 32.2
501 502 503 504 505	146 146 146 146 146	30 28 24 20 15	56 2 10 28 51	61 61 61 61	6 7 7 6 6	54 17 8 56 21	14.1 14.8 14.8 14.8 15.4	35.1 37.7 37.7 38.1 40.4
506 507 508 509 510	146 146 146 146 146	16 20 24 28 31	46 28 31 26 33	61 61 61 61	4 4 4	41 39 39 15 26	15.4 15.1 14.4 14.1 13.5	40.0 37.4 35.8 34.8 32.2
511 512 513 514 515	146 146 146 146 146	34 39 41 45 44	37 47 9 19 5	61 61 60 60	4 3 0 57 54	24 12 0 1 5	13.1 11.2 10.8 10.5 10.5	30.2 24.6 23.6 22.6 22.3
516 517 518 519 520	146 146 146 146 146	47 48 47 43 38	40 44 33 41 10	60 60 60 60	51 49 47 48 48	17 26 54 13 40	10.5 10.5 10.5 10.5 10.5	22.6 22.3 23.0 22.6 22.3

Table 1 (Continued)

Gage					atituo	ie	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u> </u>	ft
521 522 523 524 525	146 146 146 146	33 27 23 19	24 13 19 45 21	60 60 60 60	48 48 48 49	9 21 28 0 51	10.5 10.8 11.2 11.5 12.1	22.0 23.3 24.6 25.6 27.6
526 527 528 529 530	146 146 146 146 146	13 14 16 20 26	16 32 38 29 14	60 60 60 60	51 50 48 46 46	27 5 11 53 19	12.1 11.5 11.5 11.5 11.2	27.6 26.2 26.2 25.9 24.9
531 532 533 534 535	146 146 146 146 146	31 36 41 39 34	18 13 47 14 51	60 60 60 60	46 45 44 40 40	11 12 13 56 58	10.8 10.5 10.5 10.5 10.8	23.6 22.0 22.6 22.6 24.6
536 537 538 539 540	146 146 146 146	29 25 22 21 17	45 54 57 10 25	60 60 60 60	40 40 41 43 42	29 42 38 12 30	10.8 11.2 11.2 11.5 10.8	24.0 24.6 24.6 25.6 23.6
541 542 543 544 545	146 146 146 146	9 6 3 4 7	56 14 11 55 15	60 60 60 60	43 44 45 43 42	7 36 8 21 24	11.2 11.8 11.8 11.5 11.5	24.9 27.2 27.6 25.9 25.6
546 547 548 549 550	146 146 146 146	10 12 16 12 7	13 35 1 51 58	60 60 60 60	41 40 38 37 37	16 3 31 18 60	10.8 10.5 11.2 10.8 10.8	24.0 23.0 25.3 24.3 23.6
551 552 553 554 555	146 145 145 145 145	1 59 57 52 44	48 52 12 56 32	60 60 60 60	39 38 37 38 37	35 12 0 18 47	11.5 11.5 11.8 12.1 13.1	25.9 25.9 26.9 27.2 28.9
556 557 558 559 560	145 145 145 145 145	37 40 42 44 47	50 36 5 28 23	60 60 60 60	38 36 35 33 31	22 32 5 21 21	13.8 13.8 13.1 12.8 12.8	31.8 32.2 29.5 27.9 28.9

Table 1 (Continued)

Gage	Lo	Longitude			titud	le	100-Year Elevation	500-Year Elevation
<u>Number</u>	deg	min	sec	deg	min	sec	<u> </u>	ft
561 562 563 564 565	145 145 145 145 145	51 57 53 42 36	30 24 45 20 31	60 60 60 60	29 27 26 28 22	56 46 38 6 39	12.1 11.8 11.8 13.1	27.2 25.9 26.2 29.2 30.2
566 567 568 569 570	145 146 146 146 146	53 0 9 17 18	25 13 9 2 12	60 60 60 60	34 33 31 30 26	59 39 16 42 50	11.5 11.2 10.8 11.2 10.8	25.6 24.0 24.0 24.0 22.6
571 572 573 574 575	146 146 145 145 146	9 3 55 48 5	9 9 54 41 12	60 60 60 60	27 29 31 33 22	35 7 8 13 47	11.8 11.8 13.1 12.5 11.5	25.9 25.3 29.2 26.9 25.6
576 577 578 579 580	146 146 146 146 146	14 19 25 30 36	38 23 22 23 22	60 60 60 60	19 20 18 16 13	53 9 37 40 54	12.1 12.5 12.8 11.5 11.2	28.2 29.2 30.2 25.3 24.6
581 582 583 584 585	146 146 146 146 146	41 43 43 39 36	53 19 32 58 53	60 60 60 60	16 20 23 26 28	23 18 3 3 35	10.8 10.5 10.5 10.5 10.8	23.0 22.3 22.0 21.7 22.6
586 587 588 589 590	146 146 146 146 147	25 21 20 13 8	28 27 26 0 12	60 60 60 60	27 26 24 25 22	59 23 6 4 12	10.8 10.8 11.5 11.5 10.5	23.0 24.0 24.9 24.6 22.0
591 592 593 594 595	147 146 147 147 147	0 55 4 10 13	50 0 43 2 22	60 60 60 60	20 16 11 9 7	19 60 43 38 44	10.5 10.8 11.2 11.5 12.1	21.7 23.0 24.0 25.6 27.2
596 597 598 599 600	147 147 147 147 147	16 19 22 21 27	17 53 44 10 53	60 60 60 59 59	5 3 0 57 56	44 27 37 50 58	12.5 12.8 12.5 12.1 13.5	29.2 30.5 29.2 27.6 32.5

Table 1 (Continued)

Gage	Lo	Longitude			titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	ft	ft
601	147	26	37	59	54	2	13.1	30.8
602	147	29	33	59	51	1	12.5	28.5
603	147	33	31	59	50	57	11.8	28.9
604	147	38	17	59	50	16	11.8	29.2
605	147	40	39	59	47	56	12.1	29.9
606	147	44	26	59	48	6	13.5	33.8
607	147	48	50	59	46	40	14.4	38.1
608	147	53	11	59	45	60	14.4	38.1
609	147	53	54	59	48	55	13.8	34.8
610	147	53	7	59	51	40	13.8	36.1
611	147	48	5	59	53	27	14.8	38.4
612	147	45	19	59	56	36	13.8	35.1
613	147	42	18	59	58	53	12.5	30.8
614	147	38	9	60	0	26	11.5	27.2
615	147	34	20	60	1	41	11.8	27.6
616	147	30	53	60	3 5	38	12.5	29.9
617	147	26	39	60	5	12	12.8	31.2
618	147	23	42	60	7	24	12.5	28.9
619	147	22	15	60	9	27	11.8	26.6
620	147	18	49	60	12	55	12.5	28.2
621	147	14	10	60	13	60	12.5	27.6
622	147	11	31	60	16	17	11.8	26.6
623	147	10	12	60	18	35	11.2	24.0
624	147	12	28	60	20	22	10.8	23.3
625	147	36	5	60	29	58	10.2	21.0
626	147	37	46	60	27	13	10.5	23.0
627	147	36	38	60	25	48	10.5	23.0
628	147	37	7	60	22	49	10.5	22.3
629	147	38	15	60	20	13	10.2	22.0
630	147	40	5	60	18	23	10.8	23.6
631	147	43	9	60	15	58	10.5	23.0
632	147	42	15	60	13	33	10.5	22.3
633	147	43	48	60	11	41	10.5	23.3
634	147	45	11	60	9	49	10.2	22.6
635	147	47	21	60	9	39	10.2	23.0
636	147	50	3 3	60	11	8	9.5	18.4
637	147	53	3	60	13	20	9.5	18.4
638	147	55	52	60	16	2	9.5	19.0
639	147	52	32	60	19	35	9.8	19.4
640	147	51	1	60	23	6	9.8	19.7

Table 1 (Continued)

Gage	Lo	ngitud	le_		Latitud	de	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	de	g min	sec	<u>ft</u>	ft
641 642 643 644 645	147 147 147 147	49 47 43 38 33	34 25 8 55 2	60 60 60 60	25 27 30 32 33	27 40 5 6 12	9.8 10.2 10.8 10.5 10.2	20.7 21.3 24.0 23.3 21.0
646 647 648 649 650	147 147 147 147 147	18 21 25 29 28	42 29 60 51 45	60 60 60 60	39 37 37 38 43	10 15 13 36 3	10.2 10.2 10.2 10.5 10.2	21.7 21.3 21.0 22.3 22.0
651 652 653 654 655	147 147 147 147 147	23 21 52 56 59	15 42 12 54 55	60 60 60 60	44 41 39 39 40	3 56 47 40 46	10.2 10.2 10.8 11.2 11.5	21.7 21.3 24.3 25.3 26.6
656 657 658 659 660	148 147 147 147	0 54 16 8 4	47 37 11 41 18	60 60 60 60	43 43 51 54 53	4 41 46 13 5	11.2 10.8 10.8 11.8 10.5	25.6 23.6 23.3 26.9 23.0
661 662 663 664 665	147 147 148 148 148	8 59 5 8 5	3 31 4 18 29	60 60 60 60	50 20 16 17 21	50 39 26 14 10	10.2 9.5 9.8 9.8 9.8	21.7 18.7 19.0 19.4 19.4
666 667 668 669 670	145 145 145 145 145	30 24 21 15 8	54 13 9 39 46	60 60 60 60	19 17 16 14 13	51 43 33 27 6	13.8 13.8 13.8 13.8 12.5	32.5 32.5 33.1 31.8 27.2
671 672 673 674 675	144 144 144 144	57 50 43 41 38	1 45 49 10 42	60 60 60 60	12 12 11 8 7	25 17 26 59 11	15.1 14.4 14.8 14.1 13.5	41.0 37.7 40.0 37.1 33.8
676 677 678 679 680	144 144 144 144	34 27 20 16 12	48 22 23 35 50	60 60 60 60	6 4 6 4 3	7 49 41 38 0	12.1 12.8 13.5 13.8 14.8	28.9 30.5 33.8 34.1 38.7

Table 1 (Continued)

Gage	Longi	tude	La	titud	le	100-Year Elevation	500-Year Elevation
Number	deg mi	n sec	deg	min	sec	<u>ft</u>	ft
681 682 683 684 685	144 9 144 5 144 8 144 15 144 22	34 47 34	60 59 59 59 59	1 59 57 55 54	29 29 16 44 5	14.8 13.8 12.5 13.1 11.8	39.0 35.1 29.5 32.5 27.2
686 687 688 689 690	144 29 144 36 144 36 144 33 144 29	44 41 16 0	59 59 59 59 59	49 45 44 46 48	56 9 17 21	11.8 9.8 9.5 9.8 9.5	27.2 20.7 19.0 19.4 19.0
691 692 693 694 695	144 25 144 19 144 4 144 0 143 57	35 25 57	59 59 59 59 59	50 53 56 55 54	25 2 37 43 43	9.8 9.5 10.5 10.2 9.8	20.0 18.7 21.7 21.3 21.3
696 697 698 699 700	143 53 143 49 143 46 143 42 143 38	34 3 5	59 59 59 59 59	55 55 56 56 56	2 46 15 25 42	9.8 9.8 9.8 9.8 9.5	21.7 21.7 21.7 21.3 20.7
701 702 703 704 705	143 34 143 30 143 26 143 23 143 18	25 31 10	59 59 59 59 59	56 57 57 57 57	51 6 4 5	9.2 9.2 7.5 7.5 7.2	19.0 18.0 16.7 16.1 15.4
706 707 708 709 710	143 15 143 11 143 7 143 3 143 0	6 20 41	59 59 59 59 59	57 57 57 58 59	9 18 31 21	7.2 7.2 7.2 7.2 6.9	14.8 14.1 13.8 13.1 12.8
711 712 713 714 715	142 55 142 51 142 48 142 44 142 40	55 22 33	59 59 59 59 59	59 59 59 59	33 38 42 57 59	7.5 7.2 7.2 7.2 7.2	13.8 13.1 13.1 12.8 12.8
716 717 718 719 720	142 37 142 33 142 22 142 19 142 15	19 59 12	59 59 60 60 60	59 59 4 3	45 24 25 59 39	7.2 7.2 7.2 7.2 6.9	13.1 13.8 13.1 12.1 11.2

Table 1 (Continued)

Gage	Lo	Longitude			titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	ft	<u>ft</u>
721	142	12	14	60	3 2	14	7.2	12.8
722	142	7	19	60	2	24	7.2	13.5
723	142	3	32	60	2	1	7.2	13.8
724	141	59	33	60	1	45	7.2	13.8
725	141	55	54	60	1	20	7.2	14.1
726	141	52	35	60	0	51	7.2	13.5
727	141	48	12	59	59	29	6.9	12.1
728	141	43	52	59	57	56	6.9	10.5
729	141	39	45	59	58	2	6.9	10.8
730	141	36	21	59	58	17	6.9	10.5
731	141	32	37	59	59	12	6.9	10.8
732	141	28	38	60	0	13	7.2	11.8
733	141	23	60	60	1	13	8.9	18.7
734	141	24	4	60	3	24	9.5	21.7
735	141	27	11	60	5	34	9.8	23.0
736	141	24	35	60	8	36	10.2	24.0
737	141	22	1	60	6	11	9.8	23.6
738	141	14	3	60	7	1	10.2	23.3
739	141	19	38	60	4	2	9.5	22.0
740	141	16	11	60	0	45	9.2	20.3
741	141	16	21	59	58	59	8.9	18.7
742	141	19	50	59	56	38	8.2	16.7
743	141	26	38	59	55	54	7.2	12.1
744	141	24	31	59	52	45	6.9	11.2
745	141	20	37	59	51	48	6.9	10.5
746	141	16	56	59	50	58	6.9	10.8
747	141	12	34	59	50	1	6.9	11.8
748	141	5	48	59	48	13	6.9	11.8
749	140	57	26	59	45	46	6.9	11.5
750	140	49	31	59	44	33	6.9	11.2
751	140	45	22	59	44	9	6.9	10.8
752	140	41	55	59	43	20	6.9	11.2
753	140	37	47	59	42	49	6.9	11.2
754	140	33	45	59	42	55	6.9	10.2
755	140	30	9	59	42	60	6.9	9.8
756	140	26	20	59	42	50	6.9	10.5
757	140	22	17	59	42	43	6.9	10.2
758	140	18	54	59	41	1	6.9	10.8
759	140	13	13	59	42	9	6.9	11.8
760	140	9	20	59	43	53	7.5	14.4

Table 1 (Continued)

Gage	Lo	ngitu	de	La	titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	Sec	deg	min	sec	ft	ft
761	140	3	21	59	45	7	7.5	14.8
762	139	58	2	59	46	34	7.5	15.1
763	139	53	20	59	47	28	7.9	15.7
764	139	49	9	59	48	18	7.9	15.4
765	139	46	48	59	49	29	7.5	15.4
766	139	45	53	59	52	15	7.9	17.4
767	139	37	26	59	50	25	7.9	18.0
768	139	35	42	59	48	4	7.9	17.4
769	139	33	59	59	45	22	7.9	16.1
770	139	35	24	59	42	5	7.5	15.7
771	139	31	46	59	39	46	7.5	15.4
772	139	35	32	59	37	2	7.9	15.7
773	139	43	30	59	37	42	7.5	14.8
774	139	48	16	59 50	34	35	6.9	12.1
775	139	51	27	59	31	29	6.9	11.5
776	139	46	26	59	29	57	6.9	12.8
777	139	41	32	59	28	13	6.9	12.1
778	139	36	54	59	26	40	6.9	12.1
779	139	31	35	59	24	29	7.2	14.1
780	139	26	56	59	22	44	7.2	15.4
781	139	22	17	59	21	19	7.2	15.7
782	139	15	59	59	19	34	6.9	13.8
783	139	11	7	59 50	18	27	8.2	19.0
784 785	139	7	20	59 50	17	34	7.9	17.1
785	139	3	45	59	16	36	7.5	14.8
786	138	58	58	59	15	22	7.9	15.7
787 -82	138	55	11	59	14	22	7.9	17.1
788	138	51	35	59	13	13	7.5	15.4
789 700	138 138	47 44	31	59 59	11 10	36 4	7.5	15.7 15.7
790			9				7.5	15.7
791	138	41	1	59	8	37	7.5	15.7
792	138	31	33	59	10	24	7.5	15.4
793	138	34	26	59	6	31	7.2	15.1
794 795	138 138	30 25	9 60	59 59	5 4	34 25	7.2 7.2	13.1 13.5
						35		
796	138	21	46	59 50	3	43	7.2	14.1
797 708	138	16	57 12	59 50	2	43	7.5	15.4
798 700	138 138	13 10	12	59	1	33	7.2	13.8 14.4
799 800	138	7	50 48	59 58	0 58	13 38	7.5 7.5	14.8
500	130	•	70	90	J U	J U	1.5	17.0

Table 1 (Continued)

Gage	Lo	Longitude			titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u>ft</u>	ft
801	138	1	29	58	55	34	7.9	16.7
802	137	57	28	58	53	7	7.9	17.4
803	137	55	29	58	50	23	7.5	16.1
804	137	56	43	58	47	57	7.2	14.1
805	137	52	49	58	45	16	7.2	13.1
806	137	46	24	58	42	24	7.2	15.1
807	137	41	39	58	39	46	7.2	14.1
808	137	40	29	58	37	18	6.9	11.8
809	137	36	2	58	35	35	6.9	10.8
810	137	30	23	58	33	23	6.9	10.5
811	137	24	33	58	30	44	6.9	10.8
812	137	18	21	58	28	19	6.9	11.5
813	137	14	41	58 58	26	54 42	6.9	10.8
814 815	137 137	8 5	50 25	58 58	24 22	43 43	6.9 6.9	10.8 12.1
816 817	137	1 55	27 27	58 58	24 22	4	7.2	13.5
818	136 136	53	58	58	20	33 19	7.5 7.2	15.7 13.8
819	136	50 50	16	58	18	33	6.9	12.5
820	136	46	15	58	17	7	6.9	10.5
821	136	43	41	58	15	23	6.9	10.8
822	136	42	13	58	13	36	6.9	9.8
823	136	39	49	58	12	30	6.6	8.5
824	136	35	28	58	13	8	6.6	8.5
825	136	34	21	58	16	11	6.6	8.9
826	136	21	31	58	12	40	6.6	8.9
827	136	22	31	58	8	37	6.6	8.9
828	136	26	41	58	7	6	6.6	8.5
829	136	32	9	58	5	36	6.6	8.5
830	136	33	23	58	3	23	6.6	8.2
831	136	33	30	58	1	22	6.6	8.2
832	136	32	34	57	59	3	6.6	9.5
833	136	34	3	57	57	37	6.6	9.5
834	136	34	21	57 57	55 53	7	6.6	9.2
835	136	29	26	57	52	17	6.9	10.5
836	136	25	21	57	49	27	6.9	11.5
837 838	136	20 16	23 45	57 57	47 43	28 42	7.2	13.1
839	136 136	15	45 54	57 57	43 40	42 49	7.2 7.2	13.8 12.1
840	136	13	49	57	38	56	7.2	12.8
070	130	' 3	ד ד	וכ	JU	J0	1.6	12.0

Table 1 (Continued)

Gage	Long	gitude	La	titud	 le	100-Year Elevation	500-Year Elevation
<u>Number</u>		min sec	deg	min	sec	ft	ft
841 842 843 844 845	136 136 136 136 135	7 51 5 27 2 48 1 52 59 46	57 57 57 57 57	36 35 34 30 29	55 47 2 37 10	7.2 7.5 7.5 7.2 6.9	11.5 14.8 14.8 12.8 10.8
846 847 848 849 850	135 135 135	57 54 53 41 50 16 41 18 45 13	57 57 57 57 57	27 25 22 20 20	15 38 56 59 4	6.9 7.2 7.2 7.2 7.2	10.8 12.8 11.5 12.1 11.5
851 852 853 854 855	135 135 135	50 39 50 18 50 57 51 55 49 47	57 57 ≎57 57 57	19 17 15 12 10	44 17 13 46 22	7.2 7.2 7.2 7.2 7.2	11.8 12.5 12.8 12.8 12.8
856 857 858 859 860	135 135 135	46 30 50 39 51 3 49 20 44 15	57 57 57 56 56	6 4 1 58 59	11 22 11 56 47	6.9 6.9 6.9 6.9	12.1 11.8 11.2 9.2 9.5
861 862 863 864 865	135 135 135	38 8 36 18 34 57 33 32 29 12	57 57 57 57 57	0 2 4 7 9	11 10 37 35 19	6.9 8.2 9.2 10.2 10.2	10.5 17.4 20.0 24.3 24.6
866 867 868 869 870	135 3 135 3 135 3	23 54 23 15 23 50 21 46 17 52	57 57 57 57 57	8 6 5 3 0	12 45 28 29 19	9.8 9.8 8.9 7.9 7.5	23.3 22.6 19.7 16.4 14.4
871 872 873 874 875	135 2 135 2 135 2	23 1 23 58 22 37 22 57 18 23	56 56 56 56 56	58 56 53 50 46	33 40 7 44 16	7.5 7.5 7.2 7.2 7.5	12.8 12.8 12.5 11.8 14.8
876 877 878 879 880	135	18 30 16 30 12 23 8 59 8 6	56 56 56 56 56	43 41 39 38 36	36 40 60 31 19	7.5 7.2 7.9 8.2 7.9	13.1 12.1 15.1 17.4 15.7

Table 1 (Continued)

Gage	Lon	Longitude			le	100-Year Elevation	500-Year Elevation
<u>Number</u>	deg	min sec	deg	min	sec	<u>ft</u>	ft
881 882 883 884 885		3 21 3 31 1 18 59 3 56 28	56 56 56 56 56	33 31 29 26 24	53 31 13 35 24	7.5 7.5 7.2 7.5 7.2	14.4 12.5 11.8 12.8 12.8
886 887 888 889 890	134 ! 134 ! 134 !	55 3 53 51 50 17 49 48 48 16	56 56 56 56 56	21 19 18 16 14	46 9 38 40 20	7.2 7.2 7.5 7.2 6.9	12.1 13.1 14.1 12.5 10.2
891 892 893 894 895	134 134 134	44 2 42 19 39 56 39 15 16 6	56 56 56 56 56	12 10 9 12 14	39 42 52 49 23	6.6 6.6 6.6 6.6	8.9 8.2 8.2 8.5 9.2
896 897 898 899 900	134 134	15 9 15 22 13 40 10 15 8 23	56 56 56 56 56	11 7 4 2 0	10 49 2 20 32	6.6 6.9 6.9 6.9	9.2 9.5 9.8 9.5 10.2
901 902 903 904 905	134 134	6 40 20 6 9 37 12 41 19 28	56 55 55 55 55	1 55 55 52 50	52 30 15 2 9	6.6 7.2 6.9 6.6 6.9	8.2 12.1 10.5 8.9 9.8
906 907 908 909 910	133 ! 133 ! 133 !	56 36 53 28 50 31 53 16 45 49	55 55 55 55 56	53 56 53 50 0	42 12 29 45 0	6.6 6.6 6.6 6.6	9.2 8.2 8.9 8.5 8.5
911 912 913 914 915	133 ! 133 ! 133 :	40 34 59 36 43 25 34 31 30 11	56 56 55 55 55	4 54 58 57	36 57 5 24 4	6.9 6.6 6.6 7.2 7.5	10.2 8.5 9.2 13.1 15.1
916 917 918 919 920	133 133 133	21 36 31 2 35 15 39 26 40 8	55 55 55 55 55	50 49 49 49	44 15 60 22 4	7.5 7.5 6.9 6.9 6.6	15.1 14.1 10.8 9.5 9.2

Table 1 (Continued)

Gage	Longitude	Latitude	100-Year Elevation	500-Year Elevation
Number	deg min sec	deg min sec	<u> </u>	<u>ft</u>
921	133 41 17	55 46 35	6.9	9.8
922	133 38 36	55 43 45	6.9	9.8
923	133 31 41	55 41 44	7.5	13.8
924	133 24 45	55 40 9	7.5	15.4
925	133 23 44	55 37 56	7.5	15.4
926	133 45 1	55 32 58	7.2	13.5
927	133 49 13	55 27 18	7.5	13.5
928	133 40 35	55 22 31	7.2	11.2
929	133 39 39	55 16 30	6.9	9.2
930	133 36 26	55 14 28	6.6	9.2
931	133 32 29	55 20 10	6.9	10.5
932	133 25 58	55 19 46	7.2	11.5
933	133 14 59	55 22 17	7.2	12.1
934	133 7 21	55 27 44	7.5	15.1
935	133 9 33	55 32 42	8.2	17.1
936 937 938 939 940	133 14 22 133 28 2 133 22 17 133 15 34 133 14 11	55 35 7 55 15 32 55 13 31 55 13 9 55 11 1	8.9 6.9 6.9 6.9	20.0 9.2 10.2 11.5 11.2
941	133 13 43	55 7 39	6.9	10.8
942	133 13 20	55 4 42	6.9	10.8
943	133 9 58	54 58 58	6.9	11.5
944	133 6 59	54 55 33	7.2	14.4
945	133 3 36	54 53 49	7.2	13.5
946 947 948 949 950	133 1 52 132 59 9 132 55 2 132 52 50 132 50 24	54 51 22 54 49 7 54 46 56 54 44 31 54 41 27	6.9 6.9 6.6 6.6	11.5 10.5 10.5 9.5 8.9
951 952 953 954 955	132 45 56 132 41 7 132 41 58 132 36 34 132 20 8	54 40 35 54 39 51 54 43 49 54 46 0 54 46 55	6.6 6.6 6.6 10.2	7.9 7.9 7.9 8.2 11.5
956	132 18 4	54 43 12	10.2	11.2
957	132 13 44	54 43 11	10.2	11.2
958	132 9 57	54 41 24	10.2	11.2
959	132 5 32	54 40 55	10.2	10.8
960	132 0 52	54 41 23	10.2	10.8

Table 1 (Continued)

Gage	de	L	atitud	ie	100-Year Elevation	500-Year Elevation		
Number	deg	min	sec	deg	min	sec	<u>ft</u>	ft
961 962 963 964 965	131 131 131 131 131	59 57 59 58 58	52 54 11 46 6	54 54 54 54 54	45 49 52 54 56	59 56 22 14 54	10.2 10.2 10.2 10.2 10.2	10.8 10.8 10.8 10.8
966 967 968 969 970	131 131 132 131 131	58 58 0 58 49	54 38 31 42 18	54 55 55 55 55	59 1 7 11 10	37 53 3 23 46	10.2 10.2 10.2 10.2 10.2	10.8 10.8 10.8 10.8
971 972 973 974 975	131 131 131 131 131	45 43 40 38 35	14 22 17 23 57	55 55 55 55 55	7 10 14 16 17	37 7 43 33 55	10.2 10.2 10.2 10.2 10.2	10.8 10.8 11.2 11.2
976	131	33	9	55	17	23	10.2	11.2
977	152	20	5	58	34	16	7.9	17.4
978	152	22	28	58	31	38	8.9	20.7
979	152	25	6	58	28	34	8.5	19.4
980	152	27	52	58	27	40	9.2	21.0
981	152	33	29	58	27	55	7.5	15.4
982	152	38	42	58	29	57	6.6	12.1
983	152	38	52	58	32	37	6.6	11.2
984	152	36	30	58	35	17	6.6	10.5
985	152	32	37	58	35	38	6.6	10.5
986	152	26	46	58	36	27	6.6	11.2
987	152	19	50	58	36	49	6.6	12.1
988	152	18	5	58	24	43	8.5	19.4
989	152	13	6	58	22	5	8.9	21.0
990	152	6	54	58	22	23	9.8	24.0
991	152	6	40	58	18	35	11.5	29.9
992	152	6	16	58	15	25	12.1	32.5
993	151	59	42	58	19	39	10.2	25.9
994	151	57	58	58	17	32	9.5	23.0
995	151	57	51	58	15	18	9.2	23.6
996	151	48	1	58	14	27	8.9	20.0
997	151	48	20	58	10	51	8.5	21.7
998	151	52	39	58	9	41	9.2	23.6
999	151	58	37	58	12	33	9.2	24.0
1000	152	3	1	58	9	38	9.2	24.3

Table 1 (Continued)

Gage	Lo	ngitu	de	Lá	atitud	e	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u>ft</u>	<u>ft</u>
1001 1002 1003 1004 1005	152 152 152 152 152	5 8 13 16 17	31 25 5 25	58 58 58 58 58	8 9 10 13 11	9 12 42 32 1	10.8 11.5 12.8 13.8 15.1	29.5 31.5 36.4 40.0 44.0
1006	152	17	18	58	7	52	12.1	33.8
1007	152	16	52	58	6	35	11.2	29.9
1008	152	20	25	58	5	16	10.5	25.9
1009	152	25	31	58	6	49	11.2	28.2
1010	152	32	30	58	4	16	15.4	45.3
1011	152	33	37	58	8	12	17.4	51.2
1012	152	35	46	58	9	59	17.4	51.8
1013	152	36	7	58	7	3	15.7	45.6
1014	152	38	57	58	3	23	14.8	41.0
1015	152	45	14	58	0	45	17.7	52.5
1016	152	44	11	57	55	44	17.1	50.2
1017	152	50	45	57	51	21	27.6	83.0
1018	152	54	23	57	44	57	31.8	94.8
1019	152	50	54	57	47	51	29.9	89.9
1020	152	47	7	57	50	41	26.6	80.1
1021	152	40	26	57	51	58	18.7	56.1
1022	152	36	47	57	54	30	16.1	45.6
1023	152	25	38	57	57	27	16.4	47.6
1024	152	21	59	57	52	18	9.5	22.6
1025	152	19	49	57	48	23	9.2	21.7
1026	152	28	51	57	44	33	9.5	23.6
1027	152	26	34	57	42	36	9.5	23.0
1028	152	23	42	57	40	13	9.5	22.6
1029	152	26	33	57	34	49	9.8	24.3
1030	152	19	38	57	37	16	8.5	19.7
1031	152	14	59	57	36	12	8.5	20.0
1032	152	9	18	57	36	18	7.9	17.7
1033	152	9	30	57	34	40	8.2	18.7
1034	152	12	27	57	32	47	10.5	25.9
1035	152	16	36	57	30	48	11.2	30.2
1036	152		57	57	28	36	11.5	31.5
1037	152		31	57	25	28	11.5	30.8
1038	152		15	57	24	53	10.5	28.9
1039	152		41	57	25	30	10.8	29.5
1040	152		37	57	25	38	11.2	30.5

Table 1 (Continued)

Gage	Lor	ngitude		atitud	le	100-Year Elevation	500-Year Elevation
Number	deg	min sec	deg	min	sec	<u>ft</u>	ft_
1041	152	38 51	57	27	22	14.8	39.7
1042	152	48 7	57	29	2	17.1	49.9
1043	152	53 27	57	29	48	21.0	62.3
1044	152	52 36	57	27	35	20.0	60.4
1045	152	48 0	57	27	21	19.0	56.1
1046	152	43 27	57	25	20	15.4	43.0
1047	152	39 29	57	23	41	12.1	31.2
1048	152	36 31	57	21	17	9.8	24.6
1049	152	38 18	57	18	32	9.2	22.3
1050	152	42 15	57	16	6	9.8	25.6
1051	152	48 57	57	15	27	10.2	25.6
1052	152	52 46	57	16	48	12.1	33.5
1053	152	57 50	57	19	5	14.4	42.3
1054	153	5 3	57	18	34	15.4	45.6
1055	153	8 25	57	18	37	17.7	52.5
1056	153	7 33	57	17	15	17.1	50.2
1057	152	59 20	57	16	47	14.4	42.3
1058	152	56 30	57	14	57	11.2	29.9
1059	152	58 56	57	13	42	10.2	25.6
1060	153	1 60	57	12	54	11.2	28.9
1061	153	6 42	57	12	3	11.8	30.2
1062	153	11 6	57	12	40	12.5	33.1
1063	153	14 58	57	13	5	13.8	37.1
1064	153	19 1	57	11	9	16.1	44.9
1065	153	21 45	57	9	32	16.1	44.6
1066	153	24 25	57	8	14	15.4	43.0
1067	153	26 35	57	6	32	14.4	38.7
1068	153	21 51	57	7	3	14.1	38.4
1069	153	19 20	57	8	46	16.1	45.6
1070	153	14 4	57	11	54	13.1	34.1
1071	153	9 40	57	10	29	12.1	31.5
1072	153	3 37	57	10	34	11.2	28.9
1073	152	56 34	57	10	26	10.2	25.3
1074	152	52 10	57	8	30	9.2	21.3
1075	152	55 52	57	6	54	9.2	21.0
1076 1077 1078 1079 1080	153 153 153 153 153	1 5 4 23 7 2 12 46 12 26	57 57 57 57 57	6 5 4 1	52 59 60 4 18	9.2 10.2 10.2 11.8 10.2	20.7 24.9 26.9 33.5 25.9

Table 1 (Continued)

Gage	Lo	Longitude			Latitu	de	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	de		sec	ft	ft
1081	153	14	7	56		44	9.2	22.3
1082	153	18	33	56		5	7.9	16.7
1083	153	19	15	57		20	12.1	31.2
1084 1085	153 153	23 29	28 53	57 57		11 26	13.5	35.1
							12.8	33.5
1086	153	33	48	57	4	49	13.8	36.4
1087 1088	153 153	39 34	19 33	57 57		31 47	15.1 13.5	40.4 34.8
1089	153	3 2	33 45	56	-	49	10.8	25.9
1090	153	35	44	56	55	36	7.5	16.7
1091	153	39	45	56	55	23	8.2	18.4
1092	153	41	47	56	53	57	8.2	19.0
1093	153	40	49	56	51	44	8.2	17.7
1094	153	44	51	56	50	10	8.2	17.4
1095	153	50	15	56	49	39	8.9	20.7
1096	153	51	51	56	47	39	7.9	17.1
1097	153	54 58	5	56 56	45 44	48	7.5	16.1
1098 1099	153 154	58 6	9 10	56 56		14 19	7.5 6.6	16.1
1100	154	8	13	56	45	11	6.2	12.1 9.5
1101	154	6	3	56	47	29	6.2	9.5
1102	154	3	30	56	50	31	6.2	9.8
1103	153	58	60	56	52	34	6.2	9.2
1104	153	54	58	56	54	27	6.2	9.2
1105	153	50	16	56		23	6.6	10.8
1106	153	51	15	56	57	50	6.6	11.2
1107	153	54	21	56	57 57	4	6.6	10.2
1108 1109	153 153	58 56	2 39	56 57	57 0	40 35	6.2 6.6	9.2 10.8
1110	153	48	51	57	5	39	6.6	12.5
1111	153	49	4	57	7	43	6.6	12.8
1112	153	57	38	57	3	28	6.6	12.1
1113	154	5	16	56	57	33	6.6	10.5
1114	154	5	37	57	5	0	6.6	11.5
1115	154	9	12	57	6	40	6.6	12.8
1116	154	17	20	57	6	16	6.9	13.5
1117	154	23	28	57	2	54	6.9	14.1
1118 1119	154 154	24	34	57 57	6	41	6.9	14.1
1120	154 154	19 11	2 57	57 57	8 8	17 24	6.9 6.9	13.8 13.1
	157	' '	J 1) (J	£- 7	۷.۶	13.1

Table 1 (Continued)

Gage	Longitu	ide	<u> </u>	titud	e	100-Year Elevation	500-Year Elevation
Number	deg min	sec	deg	min	sec	ft	ft
1121 1122 1123 1124 1125	154 3 154 9 154 9 154 13 154 17	54 22 49 25 40	57 56 56 56 56	6 56 54 52 50	46 24 34 8 17	6.6 6.2 6.6 6.2	12.5 9.5 9.2 10.2 9.8
1126 1127 1128 1129 1130	154 18 154 20 154 23 154 27 154 31	22 52 5 7 16	56 56 56 56	54 55 57 58 59	21 52 6 14 46	6.2 6.6 6.2 6.2 6.2	10.5 10.8 10.2 9.5 8.5
1131 1132 1133 1134 1135	154 30 154 30 154 31 154 31 154 32	46 44 7 18 28	57 57 57 57 57	2 4 7 9 11	18 31 17 25 38	6.2 6.2 6.2 6.2	8.5 8.9 9.2 9.5 9.8
1136 1137 1138 1139 1140	154 34 154 36 154 43 154 47 154 47	2 31 48 9 28	57 57 57 57 57	13 15 15 16 20	36 30 47 44 24	10.2 9.8 9.8 9.8 9.8	12.5 11.5 10.8 10.5 10.8
1141 1142 1143 1144 1145	154 41 154 42 154 38 154 36 154 30	57 26 40 22 44	57 57 57 57 57	22 25 28 30 32	28 9 6 14 42	9.8 9.8 9.8 9.8 9.8	11.8 11.8 11.5 11.5 11.8
1146 1147 1148 1149 1150	154 25 154 22 154 18 154 15 154 11	52 31 22 1 28	57 57 57 57 57	34 36 37 38 39	8 17 34 28 9	9.8 9.8 10.2 10.2	11.8 12.1 12.5 12.5 12.8
1151 1152 1153 1154 1155	154 8 154 3 153 59 153 58 153 58	23 47 8 43 45	57 57 57 57 57	38 38 38 36 35	41 26 29 45 3	10.2 10.2 10.2 10.5 10.8	13.1 13.5 14.1 16.7 18.4
1156 1157 1158 1159 1160	153 58 153 55 153 54 153 53 153 48	4 4 19 41 18	57 57 57 57 57	33 30 27 25 20	9 25 51 22 58	11.2 11.8 12.5 13.1 14.4	20.0 22.0 24.0 25.9 30.5

Table 1 (Continued)

Gage	Lo	ngitu	de_	La	titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	<u> ft </u>	<u>ft</u>
1161	153	45	33	57	19	56	14.1	29.9
1162	153	47	43	57	23	11	13.8	28.5
1163	153	51	25	57	25	47	13.1	26.2
1164	153	52	27	57	28	24	12.5	24.0
1165	153	51	55	57	31	21	11.8	22.0
1166	153	50	23	57	33	52	11.5	20.3
1167	153	52	10	57	37	24	10.8	19.0
1168	153	46	8 6	57	38	12	10.8	18.0
1169	153	40	6	57	37	36	11.2	19.0
1170	153	35	56	57	35	28	11.5	20.3
1171	153	36	46	57	37	58	11.5	20.7
1172	153	40	40	57	39	26	11.2	19.0
1173	153	44	10	57	40	18	10.8	18.0
1174	153	47	32	57	41	3	10.8	17.4
1175	153	50	57	57	41	33	10.5	16.7
1176	153	54	48	57	42	18	10.2	13.8
1177	153	55	25	57	44	36	10.2	13.1
1178	153	55	28	57	46	49	10.2	12.5
1179	153	53	35	57	48	39	9.8	12.1
1180	153	51	5	57	49	58	10.2	12.5
1181	153	47	29	57	51	26	10.2	12.8
1182	153	43	26	57	53	9	10.2	13.5
1183	153	40	37	57	52	17	10.2	13.8
1184	153	36	56	57 57	52	8	10.2	14.4
1185	153	35	33	57	49	43	10.5	16.7
1186	153	32	57	57	46	50	11.5	21.0
1187	153	33	3	57	42	40	11.5	22.0
1188	153	31	11	57	38	41	11.8	23.3
1189	153	29	54	57	44	16	11.5	22.0
1190	153	27	9	57	45	19	11.5	22.0
1191	153	16	6	57	47	59	11.5	22.0
1192	153	18	5	57	48	43	11.5	22.0
1193	153	20	35	57	50	25	11.2	21.0
1194 1105	153	23	56	57 57	51	15	10.8	19.4
1195	153	27	40	57	52	22	10.5	15.7
1196	153	30	28	57	53	51	10.2	14.4
1197	153	31	7	57	55	55	10.2	13.5
1198	153	27	29	57 57	57	15	10.2	15.1
1199	153	23	53	57 57	56	1	11.5	24.9
1200	153	16	60	57	53	30	11.5	25.6

Table 1 (Continued)

Gage	Lo	Longitude			titud	le	100-Year Elevation	500-Year Elevation
Number	deg	min	sec	deg	min	sec	ft	ft
1201	153	12	48	57	52	44	9.8	25.9
1202	153	18	4	57	58	34	9.8	26.6
1203	153	10	45	57	57	14	9.8	26.6
1204	153	6	4	57	55	47	10.8	29.2
1205	152	58	15	57	55	53	12.5	35.4
1206	152	55	9	57	55	42	14.1	40.7
1207	152	46	51	57	58	45	15.4	44.9
1208	152	52	11	57	58	20	15.1	43.6
1209	152	55	23	57	58	13	14.1	40.0
1210	152	59	33	57	58	8	12.8	35.8
1211	153	2	55	57	58	33	10.8	29.5
1212	153	8	53	58	0	38	9.8	25.9
1213	153	13	4	58	1	57	10.8	22.6
1214	153	18	48	58	1	60	10.8	21.0
1215	153	24	29	58	2	38	10.2	13.1
1216	153	20	42	58	5	6	10.2	12.8
1217	153	17	15	58	7	53	10.2	13.5
1218	153	14	7	58	6	55	10.2	14.1
1219	153	12	41	58	10	1	10.2	13.5
1220	153	9	35	58	11	51	10.2	13.8
1221	153	2	10	58	10	58	10.2	14.1
1222	153	5	9	58	15	27	10.2	14.1
1223	152	59	24	58	16	55	10.2	14.4
1224	152	55	35	58	15	57	10.5	14.8
1225	152	50	24	58	16	6	10.5	16.1
1226	152	46	55	58	15	30	10.5	16.4
1227	152	45	23	58	15	0	10.8	17.7
1228	152	46	18	58	16	41	10.8	18.0
1229	152	48	18	58	21	10	10.5	16.7
1230	152	51	38	58	22	18	10.5	14.8
1231	152	53	2	58	23	29	10.2	14.8
1232	152	48	21	58	23	19	10.2	14.8
1233	152	45	29	58	25	12	10.5	14.8
1234	152	40	2	58	27	9	10.5	14.8
1235	152	14	43	58	53	29	11.8	18.4
1236	152	20	57	58	53	43	11.8	16.1
1237	152	15	42	58	55	45	12.1	20.0
1238	152	8	58	58	55	23	12.1	22.0
1239	153	25	33	59	19	19	10.5	16.1
1240	153	32	33	59	20	33	10.8	19.7

Table 1 (Concluded)

Gage Number	Longitude			Latitude			100-Year Elevation	500-Year Elevation
	deg	min	sec	deg	min	sec	ft	ft
1241	153	29	20	59	23	20	11.5	21.7
1242	153	23	3	.59	24	5	11.2	20.7
1243	153	20	28	59	21	56	10.5	15.4
1244	151	58	31	60	21	48	11.5	12.5
1245	152	4	20	60	20	31	11.5	12.5
1246	152	0	2	60	24	30	11.5	12.5
1247	151	58	15	60	29	15	11.5	12.8
1248	151	53	6	60	30	10	11.5	13.1
1249	151	53	58	60	26	25	11.5	12.8

PLATE 1

PLATE 3

PLATE 4

PLATE 5

PLATE 6

PLATE 7

PLATE 8

PLATE 9

PLATE 11

PLATE 13

PLATE 14

PLATE 15

PLATE 16

PLATE 17

PLATE 20

PLATE 21

PLATE 22

PLATE 23

PLATE 75

PLATE 26

PLATE 28

PLATE 29

PLATE 30

PLATE 31

PLATE 32

PLATE 33

PLATE 36

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

PLATE 39

PLATE 42

PLATE 43

PLATE 44

PLATE 45

PLATE 47

PLATE 48

PLATE 49

PLATE 50

PLATE 51

PLATE 53

PLATE 54

PLATE 55

PLATE 56

PLATE 57

PLATE 58

PLATE 59

PLATE 60

PLATE 61

PLATE 62

PLATE 63

PLATE 64

PLATE 65

PLATE 66

PLATE 67

PLATE 68

PLATE 69

PLATE 70

PLATE 71

PLATE 72

PLATE 73

PLATE 74

PLATE 75

PLATE 77

APPENDIX A: NOTATION

- a Length of major axis of elliptical rupture zone
- b Length of minor axis of elliptical rupture zone
- d Still-water depth
- f Coriolis parameter
- g Acceleration due to gravity
- Ha Wave height in direction of major axis of ellipse
- $\mathbf{H}_{\mathbf{avg}}$ Average runup over a coast, m
 - $H_{\mbox{\scriptsize b}}$ Wave height in direction of minor axis of ellipse
 - i Tsunami intensity
 - k Linear friction coefficient
- n() Tsunami probability function
 - R Earth's radius
 - t Time
 - u Depth-averaged velocity in the θ -direction
 - v Depth-averaged velocity in the φ-direction
 - η Displacement of water surface from still-water level
 - θ Latitude measured from zero at the North Pole
 - φ Longitude measured east from Greenwich

£3636363636363636363