COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously

Exchanging keys and public key encryption

One-way Security

Semantic Security

CPA Security

Theorem: An encryption scheme (**Gen,Enc,Dec**) is semantically secure if and only if it is CPA secure

CCA Security

One-way Encryption from RSA

Gen():

- Choose random primes p,q
- Let N=pq
- Choose e,d .s.t ed=1 mod (p-1)(q-1)
- Output pk=(N,e), sk=(N,d)

Enc(pk,m): Output $c = m^e \mod N$

Dec(sk,c): Output m' = cd mod N

Goldwasser-Micali

Gen():

- Choose random primes p,q
- Let N=pq
- Choose x a quadratic non-residue mod p and q
- Output pk=(N,x), sk=(p,q)

Enc(pk,m= $\{0,1\}$): r $\leftarrow \mathbb{Z}_N^*$, c $\leftarrow x^m r^2 \mod N$

- If **m=0**, then c is a quadratic residue
- If **m=1**, then c is a non-residue

ElGamal

Group **G** of order **p**, generator **g** Message space = **G**

Gen():

- Choose random $a \leftarrow \mathbb{Z}_p^*$, let $h \leftarrow g^a$
- pk=h, sk=a

Enc(pk,m∈{0,1}):

- $\cdot r \leftarrow \mathbb{Z}_{p}$ $\cdot c = (g^{r}, h^{r} \times m)$

Dec?

Today

Trapdoor Permutations: abstracting RSA

CCA-secure Encryption in the ROM

Begin: digital signatures

Trapdoor Permutations

Domain X

Gen(): outputs (pk,sk)

$$F(pk,x \in X) = y \in X$$

 $F^{-1}(sk,y) = x$

Correctness:

$$Pr[F^{-1}(sk, F(pk, x)) = x : (pk,sk) \leftarrow Gen()] = 1$$

Correctness implies **F,F**⁻¹ are deterministic, permutations

Trapdoor Permutation Security

One-way Encryption from TDPs

$$Gen_{Enc}() = Gen()$$

 $Enc(pk,x) = F(pk, x)$
 $Dec(sk,c) = F^{-1}(sk, c)$

Thus, TDPs are special case of one-way encryption where **Enc** is deterministic and C = M

CPA-Secure Encryption from TDPs

Let h be a hardcore bit for the one-way function $x \rightarrow F(pk,x)$

$$Enc(pk,b) = F(pk,r), h(r) \oplus b$$

Constructing TDPs with hardcore bits?

- $\cdot F'(pk, (r,x)) = (r, F(pk,x))$
- $h(r,x) = r \oplus b$

Trapdoor Permutations from RSA

Gen():

- Choose random primes p,q
- Let N=pq
- Choose e,d .s.t ed=1 mod (p-1)(q-1)
- Output pk=(N,e), sk=(N,d)

$$F(pk,x)$$
: Output $y = x^e \mod N$

$$F^{-1}(sk,c)$$
: Output $x = y^d \mod N$

Caveats

RSA is not a true TDP as defined

- Why???
- What's the domain?

Nonetheless, distinction is not crucial to most applications

Other TDPs?

For long time, none known

- Still interesting object:
 - Useful abstraction in protocol design
 - Maybe more will be discovered...

Using obfuscation:

- Let **P** be a PRP
- sk = k, $pk = Obf(P(k, \cdot))$

Relaxation: Injective Trapdoor Functions

Domain X, range Y

Gen(): outputs (pk,sk)

$$F(pk,x \in X) = y \in Y$$
, deterministic
 $F^{-1}(sk,y) = x$

Correctness:

$$\Pr[F^{-1}(sk, F(pk, x)) = x : (pk,sk) \leftarrow Gen()] = 1$$

Correctness implies **F** is injective

Notation:

Let
$$A \in \mathbb{Z}_p^{n \times n}$$

 $g^A \in G^{n \times n}$, $(g^A)_{i,j} := g^{A_{i,j}}$

Let
$$H \in G^{n \times n}$$
, $v \in \mathbb{Z}_p^n$
 $H^v \in G^n$, $(H^v)_i := \Pi_j H_{i,j}^{v_j}$

Note:
$$((g^A)^v)_i = \Pi_j g^{A_i,j^vj} = g^{(A\cdot v)_i}$$
, so $(g^A)^v = g^{A\cdot v}$

Notation:

Let
$$h \in G^n$$
, $A \in \mathbb{Z}_q^{n \times n}$
 $^{A}h \in G^n$, $(^{A}h)_i := \Pi_j h_j^{A_{i,j}}$
 $^{A}(g^v)$?
 $(^{A}(g^v))_i = \Pi_i g^{A_{i,j}v_j} = g^{(A\cdot v)_i}$, so $^{A}(g^v) = g^{A\cdot v}$

First Attempt:

Gen(): choose random
$$A \leftarrow \mathbb{Z}_q^{n \times n}$$

 $sk = A$, $pk = H = g^A$

$$F(pk, x \in \mathbb{Z}_q^n) = H^x (= g^{A \cdot x})$$

$$F^{-1}(sk, h): y \leftarrow A^{-1}h (= g^{A^{-1} \cdot A \cdot x} = g^x)$$
Then Dlog?????

Theorem: If DDH holds, then (Gen,F,F⁻¹) is an injective TDF

Gen(): choose random
$$A \leftarrow \mathbb{Z}_q^{n \times n}$$

 $sk = A, pk = H = g^A$

$$F(pk, x \in \{0,1\}^n) = H^x (= g^{A \cdot x})$$

F⁻¹(sk, h):
$$y \leftarrow A^{-1}h$$
 (= $g^{A^{-1}\cdot A\cdot x} = g^x$)
Then Dlog each component to recover x

Injective TDFs

Known constructions from most number theoretic problems

Useful in many cases where TDPs are used (but not all)

CCA Secure PKE from TDPs

Let (Enc_{SKE}, Dec_{SKE}) be a CCA-secure secret key encryption scheme.

Let (Gen,F,F⁻¹) be a TDP

Let **H** be a hash function (we'll pretend it's a random oracle)

CCA Secure PKE from TDPs

```
Gen_{PKE}() = Gen()
Enc<sub>PKE</sub>(pk, m):

    Choose random r

• Let c_0 \leftarrow F(pk,r)
• Let c_1 \leftarrow Enc_{SKE}(H(r), m)
• Output (c_0,c_1)
Dec_{PKE}(sk, (c_0, c_1)):
• Let r \leftarrow F^{-1}(sk, c_0)
• Let m \leftarrow Dec_{SKF}(H(r), c_1)
```

CCA Secure PKE from TDPs

Theorem: If (Enc_{SKE}, Dec_{SKE}) is a CCA-secure secret key encryption scheme, (Gen,F,F⁻¹) is a TDP, and H is modeled as a random oracle, then (Gen_{PKE}, Enc_{PKE}, Dec_{PKE}) is a CCA secure public key encryption scheme

Proof

H

Step 1: sample **H** as follows:

- Choose a random function H'
- Let H(x) = H'(F(pk, x))

Since $F(pk, \cdot)$ is a permutation, all outputs of H(x) are independent and uniform

Therefore, H(x) is still a random oracle

Observation: now Charlie doesn't need **sk** to run experiment

Consider two cases:

Case 1: adversary makes a RO query to \mathbf{H} on $\mathbf{r}^* = \mathbf{F}^{-1}(\mathbf{s}\mathbf{k}, \mathbf{c_0}^*)$

Case 2: adversary never makes a RO query on r*

Case 1: construct TDP adversary &

Case 2: construct **Enc_{ske}** adversary

Case 2: construct **Enc**_{SKE} adversary

Case 2: construct **Enc_{ske}** adversary

Case 2: construct **Enc_{ske}** adversary

Analysis:

- Effectively set $H'(c_0^*) = k$, where k is (unknown) challenger key
- Answers all queries correctly, provided adversary never queries RO on c_0^*
- Therefore, breaks security of Enc_{ske} in case 2

OAEP

Insecure OAEP Variants

Insecure OAEP Variants

Why padding?

All ciphertexts decrypt to valid messages

 Makes it hard to argue security

High Level Proof Sketch

Claim: For any valid ctxt c queried by adv, adv must have created c by running Enc(pk,m;r). In this case, m can be decoded by looking at queries to G,H

Advantages of RSA-OAEP

RSA domain is at least 2048 bits

In hybrid encryption, ciphertext overhead =2048 bits

With OAEP (optimal asymmetric encryption padding), plaintext size can be, say 2048-256 bits with ciphertext size = 2048 bits

Overhead = 256 bits

Digital Signatures

(aka public key MACs)

Message Integrity

Goal: If Eve changed **m**, Bob should reject

Syntax and Correctness

Algorithms:

- Gen() \rightarrow (sk,pk)
- Sign(sk,m) $\rightarrow \sigma$
- Ver(pk,m, σ) \rightarrow 0/1

Correctness:

 $Pr[Ver(pk,m,Sign(sk,m))=1: (sk,pk) \leftarrow Gen()] = 1$

Security Notions?

Much the same as MACs, except adversary gets verification key

1-time Security For MACs

Unbounded Use MACs

Signatures from TDPs?

$$Gen_{Sig}() = Gen()$$

$$Sign(sk,m) = F^{-1}(sk,m)$$

$$Ver(pk,m,\sigma)$$
: $F(pk,\sigma) == m$

Signatures from TDPs

Gen_{Sig}() = Gen()
Sign(sk,m) =
$$F^{-1}$$
(sk, H(m))
Ver(pk,m, σ): F (pk, σ) == H(m)

Theorem: If (Gen,F,F⁻¹) is a secure TDP, and H is modeled as a random oracle, then (Gen_{Sig},Sign,Ver) is CMA-secure

Signatures from Injective TDFs?

What goes wrong?

Next Time

More digital signatures