Exercise Number: 2.4.3

Proposition. Define

 $\mathcal{J} = \{ \text{all intervals contained in } [0, 1] \}.$

Let \mathbb{P} be defined as the "length" of I. Then \mathbb{P} as defined here is countably monotonic: that is to say, for any set $A \in \mathcal{J}$ and any countable collection of sets $\{A_i\}$ that are all subsets of \mathcal{J} and $A \subseteq \bigcup_{\forall i} A_i$, we have

$$P(A) \le \sum_{\forall i} \mathbb{P}(A_i).$$

Proof. We demonstrate this in several steps, as outlined by the text.

- 1. First we demonstrate that if $I_1, I_2, ..., I_n$ is a finite collection of intervals, and if $\bigcup_{j=1}^n I_j \supseteq I$ for some interval I, then $\sum_{j=1}^n \mathbb{P}(I_j) \ge \mathbb{P}(I)$.
- 2.
- 3.