

HCC

SEQUENCE LISTING

<110> SOULARD, PATRICIA

<120> POLYPEPTIDES EXHIBITING PDE7 ACTIVITY AND THEIR USE FOR
SELECTING COMPOUNDS WHICH INHIBIT PDE7 ENZYME ACTIVITY

<130> A0000281US

<140> 09/966781

<141> 2001-09-28

<150> EP004026837

<151> 2000-09-28

<160> 35

<170> PatentIn Ver. 2.1

<210> 1

<211> 426

<212> PRT

<213> Homo sapiens

<400> 1

Asp Gln Thr Ala Leu Tyr Ile Arg Met Leu Gly Asp Val Arg Val Arg
1 5 10 15

Ser Arg Ala Gly Phe Glu Ser Glu Arg Arg Gly Ser His Pro Tyr Ile
20 25 30

Asp Phe Arg Ile Phe His Ser Gln Ser Glu Ile Glu Val Ser Val Ser
35 40 45

Ala Arg Asn Ile Arg Arg Leu Leu Ser Phe Gln Arg Tyr Leu Arg Ser
50 55 60

Ser Arg Phe Phe Arg Gly Thr Ala Val Ser Asn Ser Leu Asn Ile Leu
65 70 75 80

Asp Asp Asp Tyr Asn Gly Gln Ala Lys Cys Met Leu Glu Lys Val Gly
85 90 95

Asn Trp Asn Phe Asp Ile Phe Leu Phe Asp Arg Leu Thr Asn Gly Asn
100 105 110

Ser Leu Val Ser Leu Thr Phe His Leu Phe Ser Leu His Gly Leu Ile
115 120 125

EXPRESS MAIL NO. EF378128691US
PD-A0000281-66-MG

Glu Tyr Phe His Leu Asp Met Met Lys Leu Arg Arg Phe Leu Val Met
130 135 140

Ile Gln Glu Asp Tyr His Ser Gln Asn Pro Tyr His Asn Ala Val His
145 150 155 160

Ala Ala Asp Val Thr Gln Ala Met His Cys Tyr Leu Lys Glu Pro Lys
165 170 175

Leu Ala Asn Ser Val Thr Pro Trp Asp Ile Leu Leu Ser Leu Ile Ala
180 185 190

Ala Ala Thr His Asp Leu Asp His Pro Gly Val Asn Gln Pro Phe Leu
195 200 205

Ile Lys Thr Asn His Tyr Leu Ala Thr Leu Tyr Lys Asn Thr Ser Val
210 215 220

Leu Glu Asn His His Trp Arg Ser Ala Val Gly Leu Leu Arg Glu Ser
225 230 235 240

Gly Leu Phe Ser His Leu Pro Leu Glu Ser Arg Gln Gln Met Glu Thr
245 250 255

Gln Ile Gly Ala Leu Ile Leu Ala Thr Asp Ile Ser Arg Gln Asn Glu
260 265 270

Tyr Leu Ser Leu Phe Arg Ser His Leu Asp Arg Gly Asp Leu Cys Leu
275 280 285

Glu Asp Thr Arg His Arg His Leu Val Leu Gln Met Ala Leu Lys Cys
290 295 300

Ala Asp Ile Cys Asn Pro Cys Arg Thr Trp Glu Leu Ser Lys Gln Trp
305 310 315 320

Ser Glu Lys Val Thr Glu Glu Phe Phe His Gln Gly Asp Ile Glu Lys
325 330 335

Lys Tyr His Leu Gly Val Ser Pro Leu Cys Asp Arg His Thr Glu Ser
340 345 350

Ile Ala Asn Ile Gln Ile Gly Phe Met Thr Tyr Leu Val Glu Pro Leu
355 360 365

Phe Thr Glu Trp Ala Arg Phe Ser Asn Thr Arg Leu Ser Gln Thr Met
370 375 380

Leu Gly His Val Gly Leu Asn Lys Ala Ser Trp Lys Gly Leu Gln Arg
385 390 395 400

Glu Gln Ser Ser Ser Glu Asp Thr Asp Ala Ala Phe Glu Leu Asn Ser
405 410 415

Gln Leu Leu Pro Gln Glu Asn Arg Leu Ser
420 425

<210> 2

<211> 426

<212> PRT

<213> Mus sp.

<400> 2

Asp Gln Thr Ala Leu Tyr Ile Arg Met Leu Gly Asp Val Arg Val Arg
1 5 10 15

Ser Arg Ala Gly Phe Glu Thr Glu Arg Arg Gly Ser His Pro Tyr Ile
20 25 30

Asp Phe Arg Ile Phe His Ser Gln Ser Asp Ile Glu Ala Ser Val Ser
35 40 45

Ala Arg Asn Ile Arg Arg Leu Leu Ser Phe Gln Arg Tyr Leu Arg Ser
50 55 60

Ser Arg Val Phe Arg Gly Ala Thr Val Cys Ser Ser Leu Asp Ile Leu
65 70 75 80

Asp Glu Asp Tyr Asn Gly Gln Ala Lys Cys Met Leu Glu Lys Val Gly
85 90 95

Asn Trp Asn Phe Asp Ile Phe Leu Phe Asp Arg Leu Thr Asn Gly Asn
100 105 110

Ser Leu Val Ser Leu Thr Phe His Leu Phe Ser Leu His Gly Leu Ile
115 120 125

Glu Tyr Phe His Leu Asp Met Val Lys Leu Arg Arg Phe Leu Val Met
130 135 140

Ile Gln Glu Asp Tyr His Ser Gln Asn Pro Tyr His Asn Ala Val His
145 150 155 160

Ala Ala Asp Val Thr Gln Ala Met His Cys Tyr Leu Lys Glu Pro Lys

	165	170	175
Leu Ala Ser Ser Val Thr Pro Trp Asp Ile Leu Leu Ser Leu Ile Ala			
180	185	190	
Ala Ala Thr His Asp Leu Asp His Pro Gly Val Asn Gln Pro Phe Leu			
195	200	205	
Ile Lys Thr Asn His Tyr Leu Ala Thr Leu Tyr Lys Asn Ser Ser Val			
210	215	220	
Leu Glu Asn His His Trp Arg Ser Ala Val Gly Leu Leu Arg Glu Ser			
225	230	235	240
Gly Leu Phe Ser His Leu Pro Leu Glu Ser Arg Gln Glu Met Glu Ala			
245	250	255	
Gln Ile Gly Ala Leu Ile Leu Ala Thr Asp Ile Ser Arg Gln Asn Glu			
260	265	270	
Tyr Leu Ser Leu Phe Arg Ser His Leu Asp Lys Gly Asp Leu His Leu			
275	280	285	
Asp Asp Gly Arg His Arg His Leu Val Leu Gln Met Ala Leu Lys Cys			
290	295	300	
Ala Asp Ile Cys Asn Pro Cys Arg Asn Trp Glu Leu Ser Lys Gln Trp			
305	310	315	320
Ser Glu Lys Val Thr Glu Glu Phe Phe His Gln Gly Asp Ile Glu Lys			
325	330	335	
Lys Tyr His Leu Gly Val Ser Pro Leu Cys Asp Arg Gln Thr Glu Ser			
340	345	350	
Ile Ala Asn Ile Gln Ile Gly Phe Met Thr Tyr Leu Val Glu Pro Leu			
355	360	365	
Phe Thr Glu Trp Ala Arg Phe Ser Ala Thr Arg Leu Ser Gln Thr Met			
370	375	380	
Leu Gly His Val Gly Leu Asn Lys Ala Ser Trp Lys Gly Leu Gln Arg			
385	390	395	400
Gln Gln Pro Ser Ser Glu Asp Ala Asn Ala Ala Phe Glu Leu Asn Ser			
405	410	415	
Gln Leu Leu Thr Gln Glu Asn Arg Leu Ser			

420

425

<210> 3
<211> 426
<212> PRT
<213> Rattus sp.

<400> 3
Asp Gln Thr Ala Leu Tyr Ile Arg Met Leu Gly Asp Val Arg Val Arg
1 5 10 15

Ser Arg Ala Gly Phe Glu Thr Glu Arg Arg Gly Ser His Pro Tyr Ile
20 25 30

Asp Phe Arg Ile Phe His Ala Gln Ser Glu Ile Glu Ala Ser Val Ser
35 40 45

Ala Arg Asn Ile Arg Arg Leu Leu Ser Phe Gln Arg Tyr Leu Arg Ser
50 55 60

Ser Arg Phe Phe Arg Gly Ala Thr Val Cys Arg Ser Leu Asn Ile Leu
65 70 75 80

Asp Glu Asp Tyr Asn Gly Gln Ala Lys Cys Met Leu Glu Lys Val Gly
85 90 95

Asn Trp Asn Phe Asp Ile Phe Leu Phe Asp Arg Leu Thr Asn Gly Asn
100 105 110

Ser Leu Val Ser Leu Thr Phe His Leu Phe Ser Leu His Gly Leu Ile
115 120 125

Glu Tyr Phe His Leu Asp Met Val Lys Leu Arg Arg Phe Leu Val Met
130 135 140

Ile Gln Glu Asp Tyr His Ser Gln Asn Pro Tyr His Asn Ala Val His
145 150 155 160

Ala Ala Asp Val Thr Gln Ala Met His Cys Tyr Leu Lys Glu Pro Lys
165 170 175

Leu Ala Asn Ser Val Thr Pro Trp Asp Ile Leu Leu Ser Leu Ile Ala
180 185 190

Ala Ala Thr His Asp Leu Asp His Pro Gly Val Asn Gln Pro Phe Leu
195 200 205

Ile Lys Thr Asn His Tyr Leu Ala Thr Leu Tyr Lys Asn Thr Ser Val
210 215 220

Leu Glu Asn His His Trp Arg Ser Ala Val Gly Leu Leu Arg Glu Ser
225 230 235 240

Gly Leu Phe Ser His Leu Pro Leu Glu Ser Arg His Glu Met Glu Ala
245 250 255

Gln Ile Gly Ala Leu Ile Leu Ala Thr Asp Ile Ser Arg Gln Asn Glu
260 265 270

Tyr Leu Ser Leu Phe Arg Ser His Leu Asp Lys Gly Asp Leu His Leu
275 280 285

Asp Asp Gly Arg His Arg His Leu Val Leu Gln Met Ala Leu Lys Cys
290 295 300

Ala Asp Ile Cys Asn Pro Cys Arg Asn Trp Glu Leu Ser Lys Gln Trp
305 310 315 320

Ser Glu Lys Val Thr Glu Glu Phe Phe His Gln Gly Asp Ile Glu Lys
325 330 335

Lys Tyr His Leu Gly Val Ser Pro Leu Cys Asp Arg Gln Thr Glu Ser
340 345 350

Ile Ala Asn Ile Gln Ile Gly Phe Met Thr Tyr Leu Gln Glu Pro Leu
355 360 365

Phe Thr Glu Trp Ala Arg Phe Ser Asp Thr Arg Leu Ser Gln Thr Met
370 375 380

Leu Gly His Val Gly Leu Asn Lys Ala Ser Trp Lys Gly Leu Gln Arg
385 390 395 400

Gln Gln Pro Ser Ser Glu Asp Ala Ser Ala Ala Phe Glu Leu Asn Ser
405 410 415

Gln Leu Leu Thr Gln Glu Asn Arg Leu Ser
420 425

<210> 4
<211> 1281
<212> DNA
<213> Homo sapiens

<400> 4

gatcagactg cattatacat tcgtatgcta ggagatgtac gtgtaaggag ccgagcagga 60
tttgaatcat aaagaagagg ttctcaccca tatattgatt ttcgtatccc 120
tctgaaattg aagtgtctgt ctctgcaagg aatatcagaa ggctactaag ttccagcga 180
tatcttagat cttcacgctt tttcggtgt actgcgggtt caaattccct aaacatttt 240
gatgatgatt ataatggaca agccaagtgt atgctggaaa aagttggaaa ttgaaatccc 300
gatatcttc tatttgatag actaacaat gaaatagtc tagtaagctt aacccatcat 360
ttatggatc ttcatggatt aattgagttc ttccatggat atatgatgaa acttcgtaga 420
tttttagtta tgattcaaga agattaccac agtcaaaatc cttaccataa cgccgtccac 480
gctgcggatg ttactcaggg catgcactgt tacttaaagg aacctaagct tgccaaattct 540
gtaactcctt gggatatctt gctgagctt attgcagctg ccactcatga tctggatcat 600
ccaggtgtta atcaacctt ccttattaaa actaaccatt acttggcaac ttatacaag 660
aataacctcg tactggaaaa tcaccactgg agatctgcag tggcatttt gagagaatca 720
ggcttattct cacatctgcc attagaaagc aggcaacaaa tggagacaca gataggtgct 780
ctgatactag ccacagacat cagtcggccag aatgagttc tgtctttgtt taggtcccat 840
ttggatagag gtgattttatg cctagaagac accagacaca gacattttgtt ttacagatg 900
gcttgaaat gtgctgatat ttgttaaccca tgcggacgt gggatataag caagcgtgg 960
agtggaaaaaa taacggagga attcttccat caaggagata tagggaaaaaa atatcatttg 1020
ggtgtgagtc cacttgcga tcgtcacact gaatcttattt ccaacatcca gattgggttt 1080
atgacttacc tagtggagcc ttatattaca gaatgggcca gttttccaa tacaaggctt 1140
tcccagacaa tgcttgaca cgtggggctg aataaagcca gctgaaagg actgcagaga 1200
gaacagtcga gcagtggagga cactgatgt gcatttgagt tgaactcaca gttattacct 1260
caggaaaaatc ggttatcata a 1281

<210> 5

<211> 1281

<212> DNA

<213> Mus sp.

<400> 5

gatcagactg cattatacat tcgtatgcta ggagatgtac gtgtaaggag ccgagcagga 60
tttgaatcat aaagaagagg ttctcaccca tatattgatt ttcgtatccc 120
tctgaaattg aagtgtctgt ctctgcaagg aatatcagaa ggctactaag ttccagcga 180
tatcttagat cttcacgctt tttcggtgt actgcgggtt caaattccct aaacatttt 240
gatgatgatt ataatggaca agccaagtgt atgctggaaa aagttggaaa ttgaaatccc 300
gatatcttc tatttgatag actaacaat gaaatagtc tagtaagctt aacccatcat 360
ttatggatc ttcatggatt aattgagttc ttccatggat atatgatgaa acttcgtaga 420
tttttagtta tgattcaaga agattaccac agtcaaaatc cttaccataa cgccgtccac 480
gctgcggatg ttactcaggg catgcactgt tacttaaagg aacctaagct tgccaaattct 540
gtaactcctt gggatatctt gctgagctt attgcagctg ccactcatga tctggatcat 600
ccaggtgtta atcaacctt ccttattaaa actaaccatt acttggcaac ttatacaag 660
aataacctcg tactggaaaa tcaccactgg agatctgcag tggcatttt gagagaatca 720
ggcttattct cacatctgcc attagaaagc aggcaacaaa tggagacaca gataggtgct 780
ctgatactag ccacagacat cagtcggccag aatgagttc tgtctttgtt taggtcccat 840
ttggatagag gtgattttatg cctagaagac accagacaca gacattttgtt ttacagatg 900
gcttgaaat gtgctgatat ttgttaaccca tgcggacgt gggatataag caagcgtgg 960
agtggaaaaaa taacggagga attcttccat caaggagata tagggaaaaaa atatcatttg 1020

ggtgtgagtc cacttgcga tcgtcacact gaatctattg ccaacatcca gattggttt 1080
atgacttacc tagtgagcc ttatttaca gaatggcca ggtttccaa tacaaggcta 1140
tcccagacaa tgcttggaca cgtggggctg aataaagcca gctggaaggg actgcagaga 1200
gaacagtgcga gcagtgagga cactgatgct gcatttgagt tgaactcaca gttattacct 1260
caggaaaatc ggttatcata a 1281

<210> 6
<211> 1281
<212> DNA
<213> Rattus sp.

<400> 6
gatcagactg cgtttatata tcgtatgcta ggagatgtcc gagtgaggag ccgagcagga 60
tttgagacag aaagaagagg ttcccacccg tacattgact tccgtatTT tcacgctcaa 120
tctgaaattg aagcatccgt ctccgcccaga aacatcagaa ggctgctcag ttccagcgg 180
tatctcagat cctcacgatt ttttgggggt gccacagttt gtagatctt aaatattta 240
gatgaggatt acaatggaca agccaagtgt atgctggaaa aagttggaaa ttggaatttt 300
gatatcttc tgTTTgatag actaacaat gaaaaatagtc tagtaagctt aacctttcat 360
ttatTTtagtc ttcatggatt gattgagtagtac ttccatTTtag atatggtaa actccgtcga 420
tttttagtta tgattcaaga agattaccac agtcaaaatc cttaccacaa tgcagtccat 480
gctgcagatg ttacccaggc catgcactgt tacttaaagg aacctaagct tgccaattct 540
gtaactccctt gggatatctt gctgagctta attgcagctg ccactcatga tctggatcac 600
ccaggtgtta atcagccatt tctcattaaa accaaccatt acttggcaac ttatatacaag 660
aatacctcag tcctggagaa tcaccactgg agatctgccg tggctgtt gagagaatct 720
ggtctgttct cacacttgcc attggaaagc aggcatgaga tggaggctca gataggtgct 780
ttgatactag ccacggacat cagtcggccag aatgagtacc tgtcatTTgtt tagatctcac 840
ttggataaaag gtgacttaca ctttgacgtat ggcagacata ggcatttggt tctacagatg 900
gccttgaat gtgctgatat ttgtAACCCt tgcggactt gggatTTaaag caagcagtgg 960
agtggaaaat taacggagga attcttccac caaggcgata tagaaaaaaa gtaccatttg 1020
ggtgtgagtc cacttTgtga tcgtcagact gagtctattg ccaacatcca gattggTTT 1080
atgacttacc ttcaGGGAGCC ttatTTaca gagtgggcca ggTTTcaga cacgaggctg 1140
tcacagacga tgctcggaca cgtggggctg aataaagcca gctggaaggg actacaaaga 1200
caacagccta gcagcgagga tgccagtgtc gcatttgagt tgaactcaca gctattaact 1260
caggaaaatc ggttatcata a 1281

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 7
aatggaaaat agtcttagtaa

20

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 8
aattcttgta taaagttgct agata 25

<210> 9
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 9
acatgggtta caaatatcag caca 24

<210> 10
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 10
ctttatttac agagtgggcc aggtttcag c 31

<210> 11
<211> 3165
<212> DNA
<213> Mus sp.

<400> 11
ctctcttcgc cctggggagg ctgttattca ccggactcct tcaggagaga ggatgtggtg 60
gacctcttgt tgatccaatg ggaatcaatt tgatctggtg tctggcttg gttctgatca 120
agtggatcac ctctaagaga cgtggagcta tttccatga cagttctgat cagactgcgt 180
tatatatattcg tatgttagga gatgtccgcg tgaggagccg agcaggattt gaaacagaaa 240
gaagaggttc ccatccgtac attgacttcc gtatTTTCA ctctcaatct gacattgaag 300

catcagtctc cgccaggaac atcagaagg tactaagttt ccagagatat ctcagatcct 360
cacgagttt tcgggggcc acagttgt a gttctctaga cattttagat gaggattaca 420
atggacaagc caagtgtatg ctggaaaaag ttggaaattt gaattttgtat atctttctgt 480
ttgatagact aacaaatgga aatagtctag taagccta ac cttcattta tttagtctc 540
atggattgtatg tgagtacttc cat tagata tggtaactt ccgtcggtt ttagttatga 600
ttcaagaaga ttaccacagt caaaaatcctt accacaatgc agtccatgtt gcagacgtt 660
ctcaggccat gcactgttac ttaaaggAAC ctaagcttgc cagttctgtc actccttggg 720
atatcttgcg gagtttaattt gcagccgcca ctcacgatctt ggatcaccca ggtgttaatc 780
agccgttctt tattaaaacc aaccattatc tagcaactttt atacaagaat tcctcagtcc 840
tggagaatca ccactggaga tctgcagtgg gcttgttaag agaatctggg ttgttctcac 900
acttgcattt ggaaaggcagg caagagatgg aggtcagat aggtgtttt atattagcca 960
cgatatacg tcgcccagaac gaggatctgtt cattgttttagt atctcacttg gataaagggt 1020
acttacacctt tgacgtatggc agacataggc atttgggttctt acagatggcc ttggaaatgtg 1080
ctgatatttga taacccatgtt cggaacttggg aattaagcaa gcagtggagt gaaaaaggtaa 1140
cgaggaaattt cttccacca ggagatata gaaaaaggta ccattttgggt gtgagtccac 1200
tttgcgtatcg tcagactgag tctattgcca acatccagat tggttttatg acttacctag 1260
tggagcctt atttacagag tggccaggtt ttcagccac acggctgtca cagacgtgc 1320
ttggacatgtt ggggctgaat aaagccagctt ggaaggactt gcagagacaa cagcccgca 1380
gcgaggatgc caatgttca tttgagttga actcagatctt actaactcag gaaaatcggt 1440
tatcataacc ctgaaccagt gggacaactc cctcctgcaaa cattgtggaa atgtgaaatg 1500
gtcttgagtgtt gaaacttggg ttctgactgc tgagggttcc aagggttgc tgccagcatt 1560
atctatcaag atgtttctgtt ttagatcata cgagcgcacg ttttaatgtt agacatgaat 1620
atacagcaat atgcatttgc ctttgtatgtt aaaccttaag tctgttaatgc tcagcaggag 1680
aaccacaaag ggttcttaac gaaggaagat gatgttttagt gtgtgcattt tgctttcaga 1740
gtgtgtgtcc ttcaagccctt gaaacttgc ctcacacca gcagcaatctt tgatgcaacc 1800
agtccagttcc aacagcgcattt ccgtcccttc cactacattt tctctgagaa aacagaaatg 1860
tgaagtgcctt agcctctgca ctctgcaaga atcaatcaaa tggtttacaaa tcaaatttgc 1920
actattgggtt cttaatttgc tcggagcatc gttggaaaggaccactgacc gttctcagct 1980
gagctggaga ctgcaagctt ttcgcagcat ttgccttttgc ttctccatgtt gtcaatgtca 2040
tcatcgccctt ccacactgtt ctctgctctg tgcctggaga ctgagcatattt atttaccaca 2100
gacgccccacac gaagcttttca actccagcgtt ggttggcaat gcagatttctt ttttaactgt 2160
ttagtttttca acatgggggtt ggagggaaagg aacaccactg tctctgatgtt gttctgactc 2220
tgcagtgaag acactgttcatg ttgttttccatgtt tactatacactt ttgacccatca catgcaaggaa 2280
aaaggtggct tgggtttccatgtt tccataagga gctcaggggat tttgccaatc tggaaataaaag 2340
tggcttaggg aagtgtgtcc ttcaaatcaaa gggtaactaaa gtccctttcg ctgcagtgtt 2400
tgagaggtt gttgtgtatgtt gctgtatggat tgggtgttttgc cgtgcatttttgc tggcatgtt 2460
tggctgttca tgggtttccatgtt atccatgttgc gaaaggcttta gaagtgttac gtttttattttt 2520
ttgttcttgc atgtgacata gtgagcagcc acacttgggg gggggaaagg taggtgaagc 2580
tgtaagatttgc ctccagatgc cttaaactat gcacaaaagctt aagtgcacca acttcttattt 2640
ttgatttgc aagtgcatttgc ttttcttgc cccccccccc cactttgtatg aaacatttacc 2700
ctttggcgac cttttgcatttgc gcaatgttgc gtttttcttgc ataaaatttgc aggactaattt 2760
tttagacttac aacatttccatgttgc ttttgcatttgc ttttgcatttgc gtttttcttgc atttcccttgc 2820
caactgttac ctatgttgc agaaacgggttgc ctttgcatttgc gtttttcttgc atttcccttgc 2880
ttactgttgc agactgttac ttatgttgc ttttgcatttgc aacagccatc ttggggagaga 2940
acttgcatttgc aaagccatgttgc gtgaaggcttgc tgggcacactt cgtttaaaca cgtgccttgc 3000
gtttccatgttgc ctgatttgc aataaaaaccg gtctttgcatttgc atttgcatttgc ctttgcactt 3060
tacccatgttgc ctccatgttgc ttggaaatgttgc catgctggat tcttaggttgc tggcatgtt 3120
gttgccttgc ccgttgcatttgc ctgggttatttgc tggcatgttgc 3165

<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 12
cggggatcca tggaaagtgtg ttaccag 27

<210> 13
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 13
cgcgtctaga ttatgataac cgattttcct gaggtaa 37

<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 14
cgggatccgc caccatggaa gtgtgttacc 30

<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 15
ccgggggtac cggcgccgc ggcagggcgg gcgccg 36

<210> 16
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 16
gggggatcct gaatacgccc gccctgcctc cg 32

<210> 17
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 17
gggtctagac cccagaacca gtgggacaaa ctgcctcct 39

<210> 18
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 18
ggcgggcctt ggagaaacat aacatgcacg tcac 34

<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 19
ccgggatccg acaggccggt cccccagcac gtcctc 36

<210> 20
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 20
cgcgtctaga ttatgataac cgatttcct gagg 34

<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 21
ccgggatccc cccggcagct ctctcagagg cgt 33

<210> 22
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 22
ccgggatccc tatacattcg tatgcttagga g 31

<210> 23
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 23
ccgggatcca gaagaggttc tcacccatat a 31

<210> 24
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 24
ccggggatcc gtgtctgtct ctgcaaggaa tatcaga 37

<210> 25
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 25
ccggggatcc atgtcacgct ttttcgtgg tactg 35

<210> 26
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 26
ccggggatcc aatggacaag ccaagtgtat gct 33

<210> 27
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 27
ccggggatcc atggtaagct taaccttca ttta 34

<210> 28
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 28
cgcgtaga ttagctggct ttattcagcc 30

<210> 29
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 29
cgcgtaga ttacctggcc cattctgtaa ataaa 35

<210> 30
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 30
cgcgtaga ttataggtaa gtcataaac caatct 36

<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 31
gggtttactg tgctctcca 19

<210> 32
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 32
tgccaccaca ctctgctct

19

<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 33
aaaaactaac taactaacta aa

22

<210> 34
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:oligonucleotide

<400> 34
cttctataaca ttggcttgat tg

22

<210> 35
<211> 2939
<212> DNA
<213> Mus sp.

<220>
<221> unsure
<222> (1428)
<223> Unknown

<220>
<221> unsure
<222> (1505)
<223> Unknown

<220>
<221> unsure
<222> (1709)
<223> Unknown

<220>
<221> unsure
<222> (1739)
<223> Unknown

<220>
<221> unsure
<222> (1752)
<223> Unknown

<220>
<221> unsure
<222> (1826)
<223> Unknown

<220>
<221> unsure
<222> (1850)
<223> Unknown

<220>
<221> unsure
<222> (1890)
<223> Unknown

<220>
<221> unsure
<222> (1895)
<223> Unknown

<220>
<221> unsure
<222> (1912)
<223> Unknown

<220>
<221> unsure
<222> (1916)

<223> Unknow

<220>
<221> unsure
<222> (1949)
<223> Unknown

<220>
<221> unsure
<222> (1963)
<223> Unknown

<220>
<221> unsure
<222> (1999)
<223> Unknown

<220>
<221> unsure
<222> (2019)
<223> Unknown

<220>
<221> unsure
<222> (2034)
<223> Unknown

<220>
<221> unsure
<222> (2120)
<223> Unknown

<220>
<221> unsure
<222> (2262)
<223> Unknown

<220>
<221> unsure
<222> (2519)
<223> Unknown

<220>
<221> unsure
<222> (2530)
<223> Unknown

<220>

<221> unsure
<222> (2588)
<223> Unknown

<220>
<221> unsure
<222> (2632)
<223> Unknown

<220>
<221> unsure
<222> (2653)
<223> Unknown

<220>
<221> unsure
<222> (2656)
<223> Unknown

<400> 35

gaattccctcc gttactttt cactccactg ctgccttaat tcccagggtt gacatgggtt 60
acaatataatca gcacatttca aggccatcta gcaaacaaaa tattaaaagg gtgttaagga 120
agaaaagatc tcattgtacc aagtttaaat cgactccagc aatgggaaag agcaactgaag 180
agagagagga gcccctgaca tgggtgttc agtgtgcattt ggatccagaa ccaagtaaaa 240
ttaaaagcca gcaaagaaga ggaaaacact gtgcagaaaa aatcaactgtg acattaactt 300
catgctgcta ctgatctacc aagtatcggt gcagaaggct cacagggagc taactctgta 360
gaattaccct tgacaatcca aaggagacac aatgactgac cagtcagaaaa atacaaacaa 420
atccagagac accatataact ccttgccctt ctttcatga ggaaaactcat cagatagtca 480
ctgttgcactg gacggcattc tcagaamctt gagtaggaaa agtcccaaag ccacatgcct 540
ctccctgtatg ttcttggagg gaacgtgctg tctgtggac ctccttcctc ccaacttacc 600
ctgaaaaaaaaa gatctgctat atttcatctt tggatctaccc gtcacatgtat ttacccttgg 660
aacaatcttt gcaagttgca gaactttacc tggatggacca aatgcctatg tctgccccatcg 720
tcaagggtta agtcacccctt atccaagtga gatctaaaca atgacaggta ctgcgttctgg 780
cgactgatat ccgtggctaa tatcaaagca cctatctgag cctccatctc ttgcctggaa 840
ttacagaaaaat aatgagacat ttagtacttt caattttttt tctcttttggatggat 900
tcagaaagct ttacaaaacc ctaagatact ctgaaagttt cttgaacctt gatataaag 960
aaagtattttt gaagagtgc tttaaaaata ttaaaataac taaagtaaaa ctaagagttt 1020
tcagggaaat actacaatgc aaagatgcc aagaagcgt ctgttatgcgt cagccaaag 1080
tcaaattttt tgcttaaaag gagggaaacaa ccmacctaatt accattatgc tggatggaa 1140
aattcttaag aattttctga gatattctt tttgtataac aaacaacattt tggatggat 1200
tttgggtgcctt aggacctaaa aaaagatca ggcagagaaa atattaattt tctgtgaga 1260
catctgagaa agatgcttaa tgcttataatgc aataagcatc ttaataaaat tctactcagc 1320
agtttgcatac agggccaga gatgggtca gcaattttt gataggctc tttttcttggat 1380
gggtgggtcc caactccctc atggcagctt acccataagg taattccntt ttcagagat 1440
tccttcactt ctcctggctc tggatctacc accatggatg tggatggatgg atatacatgt 1500
aagcnaaata cacatgcacc taaaataatc aagagtca gatctgtt gatataattca 1560
aattttatctg gagggaaaaat gtcacatgtt aatacagaca gcacatatac tgcattttt 1620
ttaaaacggc cttatgcatac tttaaaaaaaa aaaaaccctc acagagtcac aataagatta 1680

tcttggttatt aatggtaaca agaagacnt tgagatggct cacaggagtc cttgcctcnt 1740
gaggcctgatg gncttagaggt catccttggg accccagagg aagcagacca aaggwctgct 1800
gaaggcaatc ctcagacactg ttgtgnccac agcacacactg ttgctgagtn cacacacaca 1860
cacacacatt ttagtcacat tcggaaaaan ccaanacagg ttcaaacaaa cncaanactg 1920
aatatttaca cacaaggtt aaaatccang ccggcaaggt ttnaaatgtt tttgccaaca 1980
ccatcatatt ggacttattt aacttttagt tttcttctna tgccaccaaa atgncccttag 2040
tccttagtat taaatttattt tttaagctat tttctgttgt tttatttcatt atccttcacg 2100
acagctccaa agcgatcatn agggcacagg nccttattat ccttgtttta ctggctttgc 2160
atatgttgtg gtctgaatat atcttggat gcactgtcnc tttctgtgtt atctttcagg 2220
tatgcacactg aaccctttat tagaaaaggt acgtacaccc antgagccat tatgtgtgaa 2280
gtgactttc acagtactca aaaagggtt tcttcataa aaataaatacg ccaatgtaaa 2340
agcgacaact acgtacgagg cttaagaatt tgggtataac ttccttggg tttccagtgt 2400
atctgtgtt ggctcacatt tatgtatgtg tgccatgtgt agatatctgt gagctatcat 2460
gtggggagct gggaaactgaa cccagatctt ctccctagaac agcaaaaatt ctaaactgnt 2520
gagccnttn tccagcacca caattttgat aattttgtt tttttttttt tttttttttt 2580
tgcttctnga gacagggtt ttctgtatag ccctggctgt cctggaaactc antctgtaga 2640
ccaggctggc ctngantcag aaatctgcct gcttctgcct cccaaagagct gggattaaag 2700
gcgtgccacg cccagctaat cttgatttt aaaaagatac gtttagttt atgaaacggg 2760
aagctatgga gcagctgaat aacatattt tatcttaatt agtaacttta tttccatagg 2820
caatgcattt gtttaagcc accttacactg cttccaatg gcaagtgtga gaacaaacca 2880
gattctctta acaagccccac tgcagatctc cagtggtgtt ctccaggact gaggaattc 2939