MULTI-TASK LEARNING ON FINBERT FOR FINANCIAL FINE-GRAINED SENTIMENT ANALYSIS

Christelle George , David Lemieux , Marc-Antoine Provost

INTRODUCTION

Context

- > Era of fast and continuous information flow
- Importance of capturing and extracting the right information in finance as it can determine future stock prices
- Sentiment analysis used by traders, portfolio managers and investors

Challenges

- ➤ Lack of labeled data
- Domain-specific vocabulary
- > Ineffectiveness of traditional models such as BERT

Hypothesis

- Multi-task learning approach offers better performance compared to original FinBERT model in the financial field
- The unfreezing strategy should be part of the hyperparameter tuning step as it is expected to boost the performance

KEY CONTRIBUTIONS

Multitask Learning approach with FinBERT

Impact of different strategies of de-freezing layers

Weight & biases platform for hyper parameter tuning

DATASET

METHODOLOGY

Benchmark

RNN GRU

- Pre-trained word embeddings GloVe
- ➤ Embedding's dimension 300 ➤ 25 epochs

Hyper Parameter Tuning

FinBERT

Optimizer Scheduler
Learning rate

Batch Size

De-Freezing

FinBERT

- ➤ The best learning rates from the previous original FinBERT model is used
- ➤ Analyze multiple unfreezing strategies as a good structure can provide extra performance :

no freezing / all freezing / ascending freezing / descending freezing / random layer freezing

Multi-Task

- > Drop the output layer of the regular FinBERT
- > Add a multi head with the following approach:
 - 1- Determine the neutrality of the data (presence of sentiment)
 - 2- Determine the polarity of the data (positive or negative)
- ➤ Non-deterministic approach for the train data

RESULTS

> Experimental results on the Financial PhraseBank dataset

Model	Accuracy	F1 score		
		Negative	Neutral	Positive
GRU - Benchmark	62,30	1,20	45,30	3,40
FinBERT - Paper	86	84 (Global)		
FinBERT - Single Task	87,92	80,89	88,62	90,74
FinBERT - Multi Task	88,96	83,07	89,43	91,42

Superiority of the Multitask Learning approach with the FinBERT with all performance metrics

Confusion matrix of the Multitask Learning FinBERT

> Experimental results of different freeze strategies

Strategy	Accuracy	F1 Score	Optimal
Freeze all	89,17	88,02	Strategy
Descending freezing	87,60	86,88	Strategy
Random layer freezing 1	88,33	85,21	
Random layer freezing 2	86,46	87,11	
Random layer freezing 3	87,29	85,89	
No freezing	59,58	24,88	Catastrophical
Ascending freezing	59,58	24,88	forgetting

RECOMMENDATIONS

- > Broader hyper parameter search for model selection
- > Data augmentation or loss weighting for the negative and neutral classes to tackle the class imbalance
- > Hierarchical approach for the multi-task learning

REFERENCES

- https://github.com/dlemieux89/Deep_Learning2
- Yifan Peng, Qingyu Chen, and Zhiyong Lu. "An Empirical Study of Multi-Task Learning on BERT for Biomedical Text Mining".2020.
- Georgios Balikas, Simon Moura, and Massih-Reza Amini. "Multitask learning for fine-grained twitter sentiment analysis". 2017.
- Pekka Malo et al. "Good debt or bad debt: Detecting semantic orientations in eco-nomic texts". 2014.