

- Sound equalizer
 - ✔ Condenser mic.에 음성(speech)/음악(music)을 핸드폰, 노트북 등으로 재생
 - ✓ Speaker에 핸드폰, 노트북 등 녹음이 가능한 기기를 이용하여 녹음
 - m4a로 저장되는 경우 https://convertio.co/kr/m4a-wav/ 또는 https://online-audio-converter.com/ko/ 등을 이용하여 wav 확장자명으로 저장
 - 최대한 조용한 환경에서 재생/녹음 진행
 - 가급적 재생/녹음 시작과 중지 모두 동시에 진행
 - 재생 음원이 녹음 장치에 녹음되지 않도록 주의

2

Source

- 실험 분석
 - ✓ 아래 github 주소에서 음원 및 스크립트 다운로드
 - https://github.com/seohyeonShin/elec_exp
 - ✓ 실험 방법은 개인 PC에서 실행하는 방법과 Google Colab을 이용하여 온라인에서 진행하는 방법 이 있음
 - Colab에서 진행하는 방법은 PC에 설치를 요구하는 것이 없음
 - 자세한 내용은 github의 readme.md 참조
 - ✓ 음원 샘플은 총 5개이며, samples폴더에 존재하고 파일 이름에 샘플 번호가 아래와 같이 표기
 - Ex) mixed_1.wav (1번 음원 샘플)

o mixed_1.wav	2023-11-08 오전 2:11	WAV 파일	409KB
mixed_2.wav	2023-11-08 오전 2:28	WAV 파일	320KB
mixed_3.wav	2023-11-08 오전 2:33	WAV 파일	472KB
mixed_4.wav	2023-11-08 오전 2:37	WAV 파일	472KB
mixed_5.wav	2023-11-08 오전 2:39	WAV 파일	378KB

Using Colab : Upload to your drive

- 실험 분석
 - ✓ 녹음된 오디오 파일을 아래와 같은 경로에 저장
 - 설계한 회로에서 재생되는 음원을 wav 파일로 변환한 뒤, recorded 폴더에 mixed_{sampld_idx}_{filter}.wav로 저장
 - · {sample_idx}에는 샘플 음원의 번호를, {filter}에는 실험하는 filter의 종류를 삽입
 - · Ex) mixed_1.wav 파일 (음원 샘플 1번)으로 lowpass를 실험하는 경우 mixed_1_lowpass.wav

audio_source	Add files via upload	last year
exps	Add files via upload	last year
recorded	Add files via upload	last year
references	Add files via upload	last year
samples	Add files via upload	last year
☐ README.md	Update README.md	last year
how to use.pdf	Add files via upload	last year
main.ipynb	Update main.ipynb	last year
main.py	Update main.py	last year
requirements.txt	Add files via upload	3 years ago

■ 실험 분석

Check the real path

■ 실험 분석

colab_basedir must match the left folder path

- 실험 분석
 - ✔ main.py 또는 main.ipynb에서 'sample_idx' 와 'filter_mode' 변수만을 수정
 - 'sample_idx'는 음원 샘플의 index를 나타내는 것으로 1~5사이의 정수 값을 입력
 - Lowpass를 실험하는 경우 'filter_mode'를 'lowpass', highpass를 실험하는 경우 'highpass', bandpass를 실험하는 경우 'bandpass'로 설정하여 실험

```
/ [4] # MODIFY THE SAMPLE AND FILTER
sample_idx = 1 # 1 ~ 5
filter_mode = 'lowpass' # lowpass, highpass, or bandpass
```

- 실험 분석
 - ✓ 입력 신호(source signal), 이상적인 필터 통과 신호(ideal signal), designed 필터 통과 신호 에 대한 waveform 및 spectrogram 비교
 - Spectrogram은 시간-주파수에 대한 표현으로 x축은 시간, y축은 주파수를 표기
 - 스크립트 실행 시, 우측 그림과 같은 그림 파일 생성
 - 제일 상단은 source signal, 가운데는 ideal signal, 제일 하단은 designed signal을 나타냄

- 실험 분석
 - ✓ Signal-invariant signal-to-noise ratio (SI-SNR) 객관적 지표를 사용하여, ideal 신호와 designed 신호와의 유사도 평가
 - 처리 과정에서 발생된 왜곡된 신호에 대한 비율을 나타내는 객관적 지표

$$SI - SNR \coloneqq 10 \log_{10} \left(\frac{\|S_{target}\|^2}{\|e_{noise}\|^2} \right)$$
, 분모(오차)가 작을 수록 큰 수치를 나타냄 $S_{target} = \frac{\langle \widehat{S}, S \rangle}{\|S\|^2} S$ Ideal 신호를 designed 신호의 크기로 정규화 $P_{noise} = \widehat{S} - S_{target}$ 정규화된 ideal 신호와 designed 신호와의 차 $P_{noise} = \widehat{S} - S_{target}$

where, S: ideal signal (이상적인 신호),

Ŝ: filtered signal (설계한 필터를 통과한 신호)

- Designed 신호가 ideal 신호와 유사할 수록 높은 score를 나타냄
 - Second order butterworth digital filter를 이용한 경우 SI-SNR: 7.98dB
 - Analog filter로 설계된 경우 녹음 방법 등으로 인해 해당 수치보다 낮을 수 도 있음

