Homework Set No. 4

ECE 642 Dr. Bijan Jabbari

- 1-4. Problems 2.8, 2.9, 2.10, 2.11 from M. Schwartz chapter 2 (see below)
- 5. Show that P_n and P_0 are the same for queues with discouragement and $M/M/\infty$
- 6-8. Following problems from Bertsekas-Gallager chapter 3: 3.8, 3.9, 3.10

Problem 1

Consider the M/M/1 queue analysis. Show that the stationary state probability p_n is given by : $p_n = \rho^n p_0$ where $\rho = \lambda/\mu$ in two ways.

1. Show that this solution for p_n satisfies the following equation governing the queue operation.

$$(\lambda + \mu)p_n = \lambda p_{n-1} + \mu p_{n+1} \ n \ge 1 \cdots (a)$$

2. Show that the balanced equation $\lambda p_n = \mu p_{n+1}$ or $p_{n+1} = \rho p_n$ satisfies the above equation (a). Then iterate n times.

Calculate p_0 for the finite M/M/1 queue and show that p_n is given by the following equation: $p_n = (1 - \rho)\rho^n/(1 - \rho^{N+1})$

Problem 2

Show that the blocking probability P_B of the finite M/M/1 queue is given by $P_B = p_N$ by equating the net arrival rate $\lambda(1 - P_B)$ to the average departure rate $\mu(1 - p_0)$ and solving for P_B .

Problem 3

Consider a finite M/M/1 queue capable of accommodating N packets (customers). Calculate the values of N required for the following situations:

1.
$$\rho = 0.5 P_B = 10^{-3}, 10^{-6}$$

2.
$$\rho = 0.8 \ P_B = 10^{-3}, \ 10^{-6}$$

Compare the results obtained.

Problem 4

The probability p_n that an infinite M/M/1 queue is in state n is given by: $p_n = (1 - \rho)\rho^n$, $\rho = \lambda/\mu$.

- **a** Show that the average queue occupancy is given by $E(n) = \sum_{n} n p_n = \rho(1 \rho)$
- **b** Plot P_n as a function of n for $\rho = 0.8$
- **c** Plot E(N) versus ρ