

❷ 学习目标

- >能够识记并解释操作系统的四大特征:并发、共 享、虚拟、异步
- > 能够分析操作系统特征之间的关联

♣ 目标评价

- 1. 说出操作系统的四大特征
- 2. 举例分析并发和并行的区别
- 3. 如何理解异步特征?

4.1 并发

并发(Concurrence)

▶ 并行性: 两个或多个事件在同一时刻发生

并发性:两个或多个事件在同一时间间隔内发生

4.2 共享

共享(Sharing)

系统中的资源可供内存中多个并发执行的进程共同使用

- ▶互斥共享方式
- ▶同时访问方式

4.3 虚拟

虚拟(Virtual)

> 时分复用技术:虚拟处理机、虚拟设备

> 空分复用技术: 虚拟存储

4.4 异步

异步(Asynchronism)

- > 进程是以人们不可预知的速度向前推进的
- 也称不确定性,指进程的执行顺序和执行时间的不确定性。

程序A

语句A1 语句A2 语句A3 语句A4 语句A5

程序B

语句B1 语句B2 语句B3 语句B4

程序C

语句C1 语句C2 语句C3 语句C4 语句C5

❷ 学习目标

- ▶能够说出操作系统四大功能
- > 理解操作系统课程的知识结构

5.1 操作系统功能

5.2 处理机管理

01

创建进程、 撤消(终止)进程、状态 转换

进程同步

▶ 信号量机制

进程通信

直接通信、间接通信

调度

- > 作业调度
- > 进程调度

5.2 内存管理

内存分配和回收

内存保护

地址映射

内存扩充 (虚拟存储技术)

- > 内存分配
- 内存回收
- 确保每个用户程序仅 在自己的内存空间运 行
- 绝不允许用户程序访问操作系统的程序和数据
- 》 逻辑地址转换 为物理地址
- 请求调入功能
- > 置换功能

5.3 设备管理

01

▶ 协调CPU和 设备速度差 异

设备独立性

用户层设备独立于具体物理设备

设备分配

> 设备分配回收

设备处理

- 接收设备访问 请求
- ➤ 完成I/O操作

5.4 文件管理

❷ 学习目标

- > 能够说出目前主流的操作系统
- ➤ 能够安装部署Linux操作系统环境

6.1 三大主流操作系统

- Windows操作系统
- UNIX操作系统
- 自由软件和Linux操作系统

6.2 Windows

年份	1085年 NZ 10	阿州採作亦坑	
2000年	WindowsXP的前身WindowsWhistler开始研发。	•	
2001年	微软发布WindowsXP。		
2002年	微软推出WindowsXPSP1补丁包。	-: io	
2004年	微软推出WindowsXPSP2补丁包。	Windows NT 3.1(NT 第1版)	1993年
2005年	微软发布支持64位处理器的WindowsXP。	Windows NT 3.5(NT 第2版)	1994年
2007年	Windows Vista发布, 随后微软首次提到停止XP发售的计划。	Windows NT 3.51(NT 第3版)	1995年
2008年	4月,微软推出XPSP3补丁包,并宣布这是为XP的最后一次升级。 同年6月30日,微软停止XP销售。	Windows NT 4.0(NT 第4版) Windows CE	1996年 1998年
2009年	4月14日,微软停止WindowsXP的技术支持。 10月,Windows7操作系统正式上市。	Windows 2000 (NT 5.0)	2000年2月
2013年	微软宣布WindowsXP将于2014年4月8日停止服务。		
2014年	WWW.chinaTbaogao.com 4月8日,服役13年的WindowsXP正式"退休"。	Windows XP	
7	资料来源:三胜咨询整理		

个人操作系统

商田操作系统

6.3 Unix

- 多用户操作系统
- 跨越从PC到巨型机范围的唯一操作系统

6.3 Unix

- 产生: 69年AT&T公司贝尔实验室 Thompson&Ritchie, PDP-7
- 第二阶段 (73-79) : 免费扩散
- 第三阶段(75 85): 商用版本的出现(77年)和 三大主线的形成
- 第四阶段 (80年代后期): 两大阵营和标准化
- 第五阶段(90年代至今):共同面对外来竞争、两大 阵营淡化

6.4 Linux

- 自由软件: GNU的含义GNU is not UNIX
- 多任务多用户自由OS
- UNIX的克隆 (clone)

6.4 Linux

■ 1990 - 91: 芬兰赫尔辛基大学计算机系大学生Linus Torvalds

■ 91年底: Linus在赫尔辛基大学FTP服务器:

■ 93年: Linux 1.0, 完全自由版权

■ 93年底:加入GPL

■ 98年开始: Linux热

6.4 Linux

■ Linux30年

硬核致敬Linux! 30岁生日快乐!

6.4 Linux

6.4 Linux

■ Linux发行版本

阿里开源操作系统社区龙蜥社区

https://openanolis.cn/

华为开源操作系统OpenEuler

https://www.openeuler.org/zh/

6.4 Linux

- Linux安装
- Ubuntu
- CentOS
- OpenEuler

6.4 Linux

虚拟机软件: Vmware16/17, Virtualbox

https://www.vmware.com/

https://access.broadcom.com/default/ui/v1/signin/

Linux系统: Ubuntu 20/22/24, CentOS 7,

OpenEuler24

https://ubuntu.com/#download

https://www.centos.org/download/

https://www.openeuler.org/zh/

≥ 总结

- > 操作系统的地位和作用
- > 操作系统的发展历程
- > 操作系统的特征
- ➤ CPU、内存工作方式
- ➤ 脱机I/O技术、多道程序设计技术、分时、实时、 系统调用

课程习题

课后习题

》(考研题)26.一个多道批处理系统中仅有P1和P2两个作业, P2比P1晚5ms到达,它们的计算和I/O操作顺序如下。

P1:计算60ms, I/O操作80ms, 计算20ms

P2:计算120ms, I/O操作40ms, 计算40ms

不考虑调度和切换时间,请计算完成两个作业需要的最少时间。

课程习题

课后习题

- 》(<mark>考研题</mark>)28.若某计算问题的执行情况如图所示。请回答下列问题:
- (1) 叙述该计算问题中处理机、输入机和打印机是如何协同工作的
 - (2) 计算图中执行情况下处理机的利用率
 - (3) 简述处理机利用率不高的原因
 - (4) 请画出能提高处理机利用率的执行方案

