Do Explains Reflect Decisions?

A Machine-centric Strategy to Quantify the Performance of Explainability Algorithms

Zhong Qiu Lin, Mohammad Javad Shafiee, Stanislav Bochkarev, Michael St. Jules, Xiao Yu Wang, Alexander Wong https://arxiv.org/abs/1910.07387

EXPLAINABILITY EXAMPLE:

- An edge-case in our autonomous vehicle work
- Predict to turn left, if sky is purple

The Solution?

Problem: How can we know a network is using the right features?

Explainability Algorithms!

What Does Explainability Mean?

Critical factors highlighted with red contour

For this talk:

- Critical Factors: the most important subset features of a given input for the model's prediction
- Saliency Map: the heat map where values for each feature representing how important that feature is
- Thinking in counterfactuals: what would the output be, if it weren't for these features.

Should We Blindly Trust Explainability Algorithms?

- No, at least not at the moment.
- Problem with explainability algorithms
 - Trade-off between stability and efficiency
 - Inconsistent explanation
 - Reliance on human verification
 - Time-consuming
 - Subjective

Evaluation of Explainability Algorithms

Solution to reliance on human verifications?

- Machine-centric Evaluation Metric
 - Define quality of explanations Quantitatively
 - Compare quality of explanations between algorithms

Terminologies

- Denote the following:
 - N: Neural network
 - x: Input to the network
 - o y: Prediction of the network
 - z: Confidence of the prediction
 - o c: Critical factors

$$(y,z) = N(x)$$

$$c = M(x, N) \subseteq x$$

$$x' = x - c$$

x without c, by setting the critical factors to 0

$$(y', z') = N(x')$$

Our Metric: Impact Score

Two types of impact are considered:

- Decision-level impact:
 - y' ≠ y => Decision changes
 without the critical factors
- Confidence-level impact:
 - o $z' \le z \tau$ => Confidence drops by a given constant ($\tau = 0.5$ in our experiment)

• Strict Impact Score I_{strict}:

$$I_{strict} = \frac{1}{n} \sum_{i=1}^{n} (y_i' \neq y_i)$$

• Impact Score I:

$$I = \frac{1}{n} \sum_{i=1}^{n} ((y_i' \neq y_i) \lor (z_i' \leq \tau z_i))$$

Our Metric: Impact Score

Our Metric: Impact Coverage

$$c = M(x, N) \subseteq x$$

where x has an adversarial patch as in (Brown et al., 2017) applied to it.

 α : the adversarial patch in x

- Apply adversarial patch as in (Brown et al., 2017) on the input image
- Impact Coverage:
 - The mean IOU between adversarial patches and the critical factors

$$I_{coverage} = mean \ IOU = \frac{1}{n} \sum_{i=1}^{n} \frac{|a_i \cap c_i|}{|a_i \cup c_i|}$$

Our Metric: Impact Coverage

Suit / Cup

Experiment 1:

Method	I	I_{Strict}
LIME [12]	38.05%	35.12%
SHAP [9]	44.15%	40.24%
Expected Gradients [4]	51.22%	47.80%
GSInquire [21]	76.10%	50.73%

Experiment 2:

Patch Scale	Ground Truth / Adversarial Label	LIME [12]	SHAP [9]	Expected Gradients [4]	GSInquire [21]
0.30	Television / Monitor		TE		
0.40	Suit / Cup				
0.50	Necklace / Cup				
0.60	Sweatshirt / Monitor				
0.70	Cup / Necklace				

Scale	LIME [12]			SHAP [9]		
Scale	Icoverage	I	I_{strict}	$I_{coverage}$	I	I_{strict}
0.3	0.64%	9.70%	9.80%	3.53%	40.41%	41.32%
0.4	1.53%	9.90%	10.00%	3.33%	36.73%	37.54%
0.5	0.67%	8.70%	8.80%	3.08%	36.28%	36.62%
0.6	0.37%	10.50%	10.60%	3.04%	38.20%	38.78%
0.7	0.41%	10.80%	10.80%	2.87%	43.16%	43.61%
	Expected Gradient [4]		GSInquire [21]			
	$I_{coverage}$	I	I_{strict}	$I_{coverage}$	I	I_{strict}
	2.57%	36.00%	36.80%	13.90%	66.90%	68.00%
	2.31%	35.00%	35.40%	19.24%	64.50%	65.80%
	2.09%	39.20%	39.40%	20.02%	66.90%	67.80%
	1.88%	39.00%	39.40%	19.09%	67.20%	67.90%
	1.80%	42.80%	43.20%	17.29%	68.90%	69.70%

Conclusion and Future Work

- Some of the most popular and widely-used explainability methods may produce explanations that may not be as reflective for the decision
- Extend this framework to different task domains such as natural language processing and audio understanding.