Query Processing

Overview

Resolve the references,
Syntax errors etc.
Converts the query to an internal format
relational algebra like

Find the *best* way to evaluate the query
Which index to use?
What join method to use?

. . .

Read the data from the files

Do the query processing

joins, selections, aggregates

Phases of Query Processing

Dynamic versus Static Optimization

- Two times when first three phases of QP can be carried out:
 - dynamically every time query is run;
 - statically when query is first submitted.
- Advantages of dynamic QO arise from fact that information is up to date.
- Disadvantages are that performance of query is affected, time may limit finding optimum strategy.

Dynamic versus Static Optimization

- Advantages of static QO are removal of runtime overhead, and more time to find optimum strategy.
- Disadvantages arise from fact that chosen execution strategy may no longer be optimal when query is run.
- Could use a hybrid approach to overcome this.

"Cost"

- Complicated to compute
- We will focus on disk:
 - Number of I/Os ?
 - Not sufficient
 - Number of seeks matters a lot... why?
 - t_T time to transfer one block
 - t_S time for one seek
 - Cost for b block transfers plus S seeks
 b * t_T + S * t_S
 - Measured in seconds

- select * from person where SSN = "123"
- Option 1: Sequential Scan
 - Read the relation start to end and look for "123"
 - Can always be used (not true for the other options)
 - Cost
 - Let b_r = Number of relation blocks
 - Then:
 - 1 seek and br block transfers
 - So:
 - $t_S + b_r * t_T sec$
 - Improvements:
 - If SSN is a key, then can stop when found
 - So on average, b_i/2 blocks accessed

- select * from person where SSN = "123"
- Option 2 : Binary Search:
 - Pre-condition:
 - The relation is sorted on SSN
 - Selection condition is an equality
 - E.g. can't apply to "Name like '%424%'"
 - Do binary search
 - Cost of finding the first tuple that matches
 - $\lceil \log_2(b_r) \rceil * (t_T + t_S)$
 - All I/Os are random, so need a seek for all

- select * from person where SSN = "123"
- Option 3 : <u>Use Index</u>
 - Pre-condition:
 - An appropriate index must exist
 - Use the index
 - Find the first leaf page that contains the search key
 - Retrieve all the tuples that match by following the pointers
 - If primary index, the relation is sorted by the search key
 - Go to the relation and read blocks sequentially
 - If secondary index, must follow all points using the index

- Selections involving ranges
 - select * from accounts where balance > 100000
 - select * from matches where matchdate between '10/20/06' and '10/30/06'
 - Option 1: Sequential scan
 - Option 2: Using an appropriate index
 - Can't use hash indexes for this purpose
 - Cost formulas:
 - Range queries == "equality" on "non-key" attributes

- Complex selections
 - Conjunctive: select * from accounts where balance > 100000 and SSN = "123"
 - Disjunctive: select * from accounts where balance > 100000 or SSN = "123"
 - Option 1: Sequential scan
 - (Conjunctive only) Option 2: Using an appropriate index on one of the conditions
 - E.g. Use SSN index to evaluate SSN = "123". Apply the second condition to the tuples that match
 - Or do the other way around (if index on balance exists)
 - Which is better?
 - (Conjunctive only) Option 3: Choose a multi-key index
 - Not commonly available

- Complex selections
 - Conjunctive: select * from accounts where balance > 100000 and SSN = "123"
 - Disjunctive: select * from accounts where balance > 100000 or SSN = "123"
 - Option 4: Conjunction or disjunction of record identifiers
 - Use indexes to find all RIDs that match each of the conditions
 - Do an intersection (for conjunction) or a union (for disjunction)
 - Sort the records and fetch them in one shot
 - Called "Index-ANDing" or "Index-ORing"
 - Heavily used in commercial systems

Example 23.1 - Different Strategies

Find all Managers who work at a London branch.

```
FROM Staff s, Branch b
WHERE s.branchNo = b.branchNo AND
(s.position = 'Manager' AND b.city = 'London');
```

Example 23.1 - Different Strategies

Three equivalent RA queries are:

```
(1) o<sub>(position='Manager') ∧ (city='London') ∧ (Staff.branchNo=Branch.branchNo)</sub> (Staff X Branch)
```

```
(3) (σ<sub>position='Manager'</sub>(Staff)) | Staff.branchNo=Branch.branchNo (σ<sub>city='London'</sub> (Branch))
```

Example 23.1 - Different Strategies

Assume:

- 1000 tuples in Staff; 50 tuples in Branch;
- 50 Managers; 5 London branches;
- no indexes or sort keys;
- results of any intermediate operations stored on disk;
- cost of the final write is ignored;
- tuples are accessed one at a time.

Example 23.1 - Cost Comparison

Cost (in disk accesses) are:

- (1) (1000 + 50) + 2*(1000 * 50) = 101 050
- (2) 2*1000 + (1000 + 50) = 3 050
- (3) 1000 + 2*50 + 5 + (50 + 5) = 1160
- Cartesian product and join operations much more expensive than selection, and third option significantly reduces size of relations being joined together.

Analysis

- Finally, query transformed into some internal representation more suitable for processing.
- Some kind of query tree is typically chosen, constructed as follows:
 - Leaf node created for each base relation.
 - Non-leaf node created for each intermediate relation produced by RA operation.
 - Root of tree represents query result.
 - Sequence is directed from leaves to root.

Example 23.1 - R.A.T.

Query Processing

- Overview
- Selection operation
- Join operators
- Sorting
- Other operators
- Putting it all together...

Join

- select * from R, S where R.a = S.a
 - R called outer relation
 - S called inner relation
 - Called an "equi-join"
- select * from R, S where |R.a S.a | < 0.5
 - Not an "equi-join"
- Option 1: Nested-loops
 for each tuple r in R
 for each tuple s in S
 check if r.a = s.a (or whether |r.a s.a| < 0.5)
- Can be used for any join condition

Nested-loops Join

- Cost? Depends on the actual values of parameters, especially memory
- b_r , $b_s \rightarrow Number of blocks of R and S$
- n_r , $n_s \rightarrow Number$ of tuples of R and S
- Case 1: Minimum memory required = 3 blocks
 - One to hold the current R block, one for current S block, one for the result being produced
 - Blocks transferred:
 - Must scan R tuples once: b_r
 - For each tuple in R, must scan S: n_r * b_s
 - Seeks
 - \bullet $n_r + b_r$

Example

Nested-loops Join

- Case 1: Minimum memory required = 3 blocks
 - Blocks transferred: n_r * b_s + b_r
 - Seeks: $n_r + b_r$ In this case, disk blocks in R is not ordered and data tuples in a disk block are not ordered.
- Example:
 - Number of records -- R: $n_r = 10,000$, S: $n_s = 5000$
 - Number of blocks -- R: $b_r = 400$, S: $b_s = 100$
- Then:
 - blocks transferred: 10000 * 100 + 400 = 1,000,400
 - seeks: 10400
- What if we were to switch R and S?
 - 2,000,100 block transfers, 5100 seeks

Nested-loops Join

- Case 2: S fits in memory
 - Blocks transferred: $b_s + b_r$
 - Seeks: 2 (Assume that R is also sequential read into a block)
- Example:
 - Number of records -- R: $n_r = 10,000$, S: $n_s = 5000$
 - Number of blocks -- R: $b_r = 400$, S: $b_s = 100$
- Then:
 - blocks transferred: 400 + 100 = 500
 - seeks: 2
- This is orders of magnitude difference

Block Nested-loops Join

- Simple modification to "nested-loops join"
 - Block at a time

```
for each block B_r in R

for each block B_s in S

for each tuple r in Br

for each tuple s in Bs

check if r.a = s.a (or whether |r.a - s.a| < 0.5)
```

Block Nested-loops Join

- Case 1: Minimum memory required = 3 blocks
 - Blocks transferred: b_r * b_s + b_r
 - Seeks: $b_r + b_r$
- Case 2: S fits in memory
 - Blocks transferred: $b_s + b_r$
 - Seeks: 2 (Assume that R is also sequential read into a block)
- What about in between ?
 - There are 50 blocks, but S is 100 blocks

Block Nested-loops Join

Case 3: 50 blocks (S = 100 blocks) ?

```
for each block in R

for each group of 48 blocks in S

for each tuple r in one block

for each tuple s in each group of 48 blocks in S

check if r.a = s.a (or whether |r.a - s.a| < 0.5)
```

- Why is this good ?
 - We only have to read S a total of b_s/48 times (instead of b_s times)
 - Blocks transferred: b_r * (b_s / 48) + b_r
 - Seeks: 2 (if R and S are ordered files)

Index Nested-loops Join

- select * from R, S where R.a = S.a
 - Called an "equi-join"
- Nested-loops

```
for each tuple r in R

for each tuple s in S

check if r.a = s.a (or whether |r.a - s.a| < 0.5)
```

- Suppose there is an index on S.a
- Why not use the index instead of the inner loop?

for each tuple r in R

use the index to find S tuples with S.a = r.a

Index Nested-loops Join

- Cost of the join:
 - $b_r(t_T + t_S) + n_r * c$
 - c == the cost of index access
 - Computed using the formulas discussed earlier

Index Nested-loops Join

accounts.acct-number = "A-101"

- Restricted applicability
 - An appropriate index must exist
 - What about |R.a S.a| < 5?
- Great for queries with joins and selections
 select *
 from accounts, customers
 where accounts.customer-SSN = customers.customer-SSN and
- Only need to access one SSN from the other relation

Notes

- Block Nested-loops join
 - Can always be applied to various join conditions
 - If the smaller relation fits in memory, then cost:
 - $b_r + b_s$
 - This is the best we can hope if we have to read the relations once each
 - CPU cost of the inner loop is high
 - Typically used when the smaller relation is really small (few tuples) and index nested-loops can't be used
- Index Nested-loops join
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - select balance from customer, accounts where customer.name = "j. s." and customer.SSN = accounts.SSN

- Case 1: Smaller relation (S) fits in memory
- Nested-loops join:

```
for each tuple r in R
for each tuple s in S
check if r.a = s.a
```

- Cost: $b_r + b_s$ transfers, 2 seeks (R and S are sorted)
- The inner loop is not exactly cheap (high CPU cost)
- Hash join:

read S in memory and build a hash index on it for each tuple r in R use the hash index on S to find tuples such that S.a = r.a

- Case 1: Smaller relation (S) fits in memory
- Hash join:

read S in memory and build a hash index on it for each tuple r in R use the hash index on S to find tuples such that S.a = r.a

- Cost: $b_r + b_s$ transfers, 2 seeks (unchanged)
- Why good ?
 - CPU cost is much better (even though we don't care about it too much)
 - Performs much better than nested-loops join when S doesn't fit in memory

- Case 2: Smaller relation (S) doesn't fit in memory
- Two "phases"
- Phase 1:
 - Read the relation R block by block and partition it using a hash function, h1(a)
 - Create one partition for each possible value of h1(a)
 - Write the partitions to disk
 - R gets partitioned into R1, R2, ..., Rk
 - Similarly, read and partition S, and write partitions S1, S2, ..., Sk to disk
 - Only requirement:
 - Each S partition fits in memory

- Case 2: Smaller relation (S) doesn't fit in memory
- Two "phases"
- Phase 2:
 - Read S1 into memory, and bulid a hash index on it (S1 fits in memory)
 - Using a different hash function, h₂(a)
 - Read R1 block by block, and use the hash index to find matches.
 - Repeat for S2, R2, and so on.

- Case 2: Smaller relation (S) doesn't fit in memory
- Two "phases":
- Phase 1:
 - Partition the relations using one hash function, $h_1(a)$
- Phase 2:
 - Read S_i into memory, and build a hash index on it (S_i fits in memory)
 - Read R_i, and use the hash index to find matches.
- Cost
 - $3(b_r + b_s) + 4 * n_h$ block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil)$ seeks (Read 13.5.5.4 in the reference text book)
 - Where b_b is the size of each output buffer
 - Much better than Nested-loops join under the same conditions

Hash Join

Hash Join: Issues

- How to guarantee that the partitions of S all fit in memory?
 - S = 10000 blocks, Memory = M = 100 blocks
 - Use a hash function that hashes to 100 different values?
 - Eg. *h1(a)* = *a* % 100 ?
 - Problem: Impossible to guarantee uniform split
 - Some partitions will be larger than 100 blocks, some will be smaller
 - Use a hash function that hashes to 100*f different values
 - f is called fudge factor, typically around 1.2
 - So we may consider h1(a) = a % 120.
 - This is okay IF a is uniformly distributed

Hash Join: Issues

- Memory required ?
 - R = 10000 blocks, Memory = M = 100 blocks
 - 120 different partitions
 - During phase 1:
 - Need 1 block for storing R (block by block)
 - Need 120 blocks for storing each partition of R
 - At least 121 blocks of memory
 - We only have 100 blocks
- Typically need SQRT(|R| * f) blocks of memory
- If R is 10000 blocks, and f = 1.2, need 110 blocks of memory
- If memory = 10000 blocks = 10000 * 4 KB = 40MB
 - Then, R can be as large as 10000*10000/1.2 blocks = 333 GB

Hash Join: Issues

- What if we don't have enough memory?
 - Recursive Partitioning
 - Rarely used, but can be done
- What if the hash function turns out to be bad?
 - We used h1(a) = a % 100
 - Turns out all values of a are multiple of 100
 - So h1(a) is always = 0
- Called hash-table overflow
- Overflow avoidance: Use a good hash function
- Overflow resolution: Repartition using a different hash function

Hybrid Hash Join

- Motivation:
 - R = 10000 blocks, S = 101 blocks, M = 100 blocks
 - S doesn't fit in memory
- Approach: Use a hash function such that S1 = 90 blocks, and S2 = 10 blocks
 (Try to keep more data records of S in memory) (Why S?)
- Steps:
 - Read S1, and partition it
 - Write S2 to disk
 - Keep S1 in memory, and build a hash table on it
 - Read R1, and partition it
 - Write R2 to disk
 - Probe using R1 directly into the hash table
 - Saves huge amounts of I/O

So far

- Block Nested-loops join
 - Can always be applied irrespective of the join condition
- Index Nested-loops join
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - select balance from customer, accounts where customer.name = "j. s." and customer.SSN = accounts.SSN
- Hash joins
 - Join algorithm of choice when the relations are large
 - Only applies to equi-joins (since it is hash-based)
- Hybrid hash join
 - An optimization on hash join that is always implemented

Merge-Join (Sort-merge join)

- Pre-condition:
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this algorithms
- Called "sort-merge join" sometimes

```
select *
from r, s
where r.a1 = s.a1
```

Step:

- 1. Compare the tuples at pr and ps
- 2. Move pointers down the list
 - Depending on the join condition
- 3. Repeat

Merge-Join (Sort-merge join)

Cost:

- If the relations sorted, then just
 - b_r + b_s block transfers, some seeks depending on memory size
- What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join

Observation:

- The final join result will also be sorted on a1
- This might make further operations easier to do
 - E.g. duplicate elimination

Group By and Aggregation

select a, count(b) from R group by a;

- Hash-based algorithm
- Steps:
 - Create a hash table on a, and keep the count(b) so far
 - Read R tuples one by one
 - For a new R tuple, "r"
 - Check if r.a exists in the hash table
 - If yes, increment the count
 - If not, insert a new value

Group By and Aggregation

select a, count(b) from R group by a;

- Sort-based algorithm
- Steps:
 - Sort R on a
 - Now all tuples in a single group are continuous
 - Read tuples of R (sorted) one by one and compute the aggregates

Duplicate Elimination

select distinct a from R;

- Best done using sorting Can also be done using hashing
- Steps:
 - Sort the relation R
 - Read tuples of R in sorted order
 - prev = null;
 - for each tuple r in R (sorted)
 - if r!= prev then
 - Output r
 - prev = r
 - else
 - Skip *r*

Set operations

```
(select * from R) union (select * from S);
(select * from R) intersect (select * from S);
(select * from R) union all (select * from S);
(select * from R) intersect all (select * from S);
```

- Remember the rules about duplicates
- "union all": just append the tuples of R and S
- "union": append the tuples of R and S, and do duplicate elimination
- "intersection": similar to joins
 - Find tuples of R and S that are identical on all attributes
 - Can use <u>hash-based</u> or <u>sort-based</u> algorithm

Evaluation of Expressions

select customer-name from account a, customer c where a.SSN = c.SSN and a.balance < 2500

- Two options:
 - Materialization
 - Pipelining

Evaluation of Expressions

- Materialization
 - Evaluate each expression separately
 - Store its result on disk in temporary relations
 - Read it for next operation

Pipelining

- Evaluate multiple operators simultaneously
- Skip the step of going to disk
- Usually faster, but requires more memory
- Also not always possible..
 - E.g. Sort-Merge Join

Pipelining

- Iterator Interface
- Each operator implements:
 - init(): Initialize the state
 - get_next(): get the next tuple from the operator
 - close(): Finish and clean up
- Sequential Scan:
 - init(): open the file
 - get_next(): get the next tuple from file
 - close(): close the file
- Execute by repeatedly calling get_next() at the root

Conjunctive Selection operations can cascade into individual Selection operations (and vice versa).

$$\sigma_{p \wedge q \wedge r}(R) = \sigma_p(\sigma_q(\sigma_r(R)))$$

Sometimes referred to as cascade of Selection.

$$\sigma_{\text{branchNo='B003'}} \wedge \text{salary>15000}(\text{Staff}) = \sigma_{\text{branchNo='B003'}}(\sigma_{\text{salary>15000}}(\text{Staff}))$$

Commutativity of Selection.

$$\sigma_{p}(\sigma_{q}(R)) = \sigma_{q}(\sigma_{p}(R))$$

```
\sigma_{\text{branchNo='B003'}}(\sigma_{\text{salary>15000}}(\text{Staff})) = \sigma_{\text{salary>15000}}(\sigma_{\text{branchNo='B003'}}(\text{Staff}))
```

In a sequence of Projection operations, only the last in the sequence is required.

$$\Pi_{L}\Pi_{M} \dots \Pi_{N}(R) = \Pi_{L}(R)$$

$$\Pi_{\text{IName}}\Pi_{\text{branchNo, IName}}$$
(Staff) = Π_{IName} (Staff)

Commutativity of Selection and Projection.

If predicate p involves only attributes in projection list, Selection and Projection operations commute:

$$\Pi_{Ai, ..., Am}(\sigma_p(R)) = \sigma_p(\Pi_{Ai, ..., Am}(R))$$
where $p \in \{A_1, A_2, ..., A_m\}$

```
\Pi_{\text{fName, IName}}(\sigma_{\text{IName='Beech'}}(\text{Staff})) = \sigma_{\text{IName='Beech'}}(\Pi_{\text{fName,IName}}(\text{Staff}))
```

Commutativity of Theta join (and Cartesian product).

$$R \bowtie_{p} S = S \bowtie_{p} R$$

 $R \times S = S \times R$

Rule also applies to Equijoin and Natural join. For example:

Commutativity of Selection and Theta join (or Cartesian product).

If selection predicate involves only attributes of one of join relations, Selection and Join (or Cartesian product) operations commute:

$$\sigma_{p}(R \bowtie_{r} S) = (\sigma_{p}(R)) \bowtie_{r} S$$

$$\sigma_{p}(R \times S) = (\sigma_{p}(R)) \times S$$

$$\text{where } p \in \{A_{1}, A_{2}, ..., A_{n}\}$$

If selection predicate is conjunctive predicate having form (p ∧ q), where p only involves attributes of R, and q only attributes of S, Selection and Theta join operations commute as:

$$\sigma_{p \wedge q}(R \bowtie_r S) = (\sigma_p(R)) \bowtie_r (\sigma_q(S))$$

 $\sigma_{p \wedge q}(R \times S) = (\sigma_p(R)) \times (\sigma_q(S))$

```
σ<sub>position='Manager' ∧ city='London'</sub>(Staff ⋈
Staff.branchNo=Branch.branchNo Branch) =

(σ<sub>position='Manager'</sub>(Staff)) ⋈ Staff.branchNo=Branch.branchNo
(σ<sub>city='London'</sub> (Branch))
```

Commutativity of Projection and Theta join (or Cartesian product).

If projection list is of form $L = L_1 \cup L_2$, where L_1 only has attributes of R, and L_2 only has attributes of S, provided join condition only contains attributes of L, Projection and Theta join commute:

$$\Pi_{L1\cup L2}(R\bowtie_r S) = (\Pi_{L1}(R))\bowtie_r (\Pi_{L2}(S))$$

If join condition contains additional attributes not in L ($M = M_1 \cup M_2$ where M_1 only has attributes of R, and M_2 only has attributes of S), a final projection operation is required:

$$\Pi_{L1\cup L2}(R \bowtie_r S) = \Pi_{L1\cup L2}((\Pi_{L1\cup M1}(R))\bowtie_r (\Pi_{L2\cup M2}(S)))$$

For example:

```
\Pi_{\text{position,city,branchNo}} (Staff) \Pi_{\text{staff.branchNo=Branch.branchNo}} Branch) = (\Pi_{\text{position, branchNo}} (Staff)) \Pi_{\text{city, branchNo}} (Branch))
```

and using the latter rule:

```
\Pi_{\text{position, city}}(\text{Staff}) = \Pi_{\text{position, city}}((\Pi_{\text{position, branchNo}}(\text{Staff}))) \times \Pi_{\text{Staff.branchNo}}(\text{Staff.branchNo})
(\Pi_{\text{city, branchNo}}(\text{Branch}))
```

Commutativity of Union and Intersection (but not set difference).

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

Commutativity of Selection and set operations (Union, Intersection, and Set difference).

$$\sigma_{p}(R \cup S) = \sigma_{p}(S) \cup \sigma_{p}(R)$$

$$\sigma_{p}(R \cap S) = \sigma_{p}(S) \cap \sigma_{p}(R)$$

$$\sigma_{p}(R - S) = \sigma_{p}(S) - \sigma_{p}(R)$$

Commutativity of Projection and Union.

$$\Pi_{L}(R \cup S) = \Pi_{L}(S) \cup \Pi_{L}(R)$$

Associativity of Union and Intersection (but not Set difference).

$$(R \cup S) \cup T = S \cup (R \cup T)$$

$$(R \cap S) \cap T = S \cap (R \cap T)$$

Associativity of Theta join (and Cartesian product).

Cartesian product and Natural join are always associative:

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$$

 $(R \times S) \times T = R \times (S \times T)$

If join condition q involves attributes only from S and T, then Theta join is associative:

$$(R \bowtie_{p} S) \bowtie_{q \land r} T = R \bowtie_{p \land r} (S \bowtie_{q} T)$$

```
(Staff Staff.staffNo=PropertyForRent.staffNo PropertyForRent)

ownerNo=Owner.ownerNo A staff.IName=Owner.IName

Owner =
```

```
Staff staffNo=PropertyForRent.staffNo \ staff.lName=IName

(PropertyForRent ownerNo)
```

For prospective renters of flats, find properties that match requirements and owned by CO93.

Heuristic Processing Strategies

- Perform Selection operations as early as possible.
 - Keep predicates on same relation together.
- Combine Cartesian product with subsequent Selection whose predicate represents join condition into a Join operation.
- Use associativity of binary operations to rearrange leaf nodes so leaf nodes with most restrictive Selection operations executed first.

Heuristical Processing Strategies

- Perform Projection as early as possible.
 - Keep projection attributes on same relation together.
- Compute common expressions once.
 - If common expression appears more than once, and result not too large, store result and reuse it when required.
 - Useful when querying views, as same expression is used to construct view each time.

Cost Estimation for RA Operations

- Many different ways of implementing RA operations.
- Aim of QO is to choose most efficient one.
- Use formulae that estimate costs for a number of options, and select one with lowest cost.
- Consider only cost of disk access, which is usually dominant cost in QP.
- Many estimates are based on cardinality of the relation, so need to be able to estimate this.

Database Statistics

- Success of estimation depends on amount and currency of statistical information DBMS holds.
- Keeping statistics current can be problematic.
- If statistics updated every time tuple is changed, this would impact performance.
- DBMS could update statistics on a periodic basis, for example nightly, or whenever the system is idle.

Typical Statistics for Relation R

nTuples(R) - number of tuples in R.

bFactor(R) - blocking factor of R.

nBlocks(R) - number of blocks required to store R:
 nBlocks(R) = [nTuples(R)/bFactor(R)]

Typical Statistics for Attribute A of Relation R

nDistinct_A(R) - number of distinct values that appear for attribute A in R.

min_A(R), max_A(R) - minimum and maximum possible values for attribute A in R.

SC_A(R) - selection cardinality of attribute A in R.

Average number of tuples that satisfy an equality condition on attribute A.

Statistics for Multilevel Index I on Attribute A

nLevels_A(I) - number of levels in I.

 $nLfBlocks_{\Delta}(I)$ - number of leaf blocks in I.

References

SQL query optimization http://redbook.cs.berkeley.edu/redbook3/lec7. html