Math 104B Homework 4

Rad Mallari

May 10, 2022

1 Problem 1

Find α so that

$$A = \begin{bmatrix} \alpha & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 4 \end{bmatrix}$$

is positive definite.

Proof. Letting $\alpha = 4$, we have that a symmetric matrices, and using $A \cdot x = \lambda \cdot x$, we find that the eigenvalues are $\lambda = 5, 4, 1$. Therefore, since we have a symmetric matrix with positive eigenvalues, A is positive definite by definition.

2 Problem 2

Let A and B be $n \times n$ matrices. Prove that

$$||A+B||_{\infty} \le ||A||_{\infty} + ||B||_{\infty}$$

Proof. We know by triangle inequality that

$$||u_i + v_i|| \le ||u_i|| + ||v_i||$$

Meanwhile, definition of infinity norm is given by:

$$||v||_{\infty} := \lim_{p \to \infty} ||v||_p = \max\{|v_i|, i = 1, 2, ..., n\}$$

Furthermore, it is obvious that

$$||A_i + B_i|| \le \max\{|A_i + B_i|, i \in \mathbb{N}\}$$

where A_i and B_i are the components of A, B respectively. Similarly,

$$||A_i|| + ||B_i|| \le \max\{A_i, i \in \mathbb{N}\} + \max\{B_i, i \in \mathbb{N}\}$$

Therefore, by triangle inequality:

$$||A_i + B_i|| \le \max\{|A_i + B_i|, i \in \mathbb{N}\}$$

$$\le ||A_i|| + ||B_i||$$

$$\le \max\{A_i, i \in \mathbb{N}\} + \max\{B_i, i \in \mathbb{N}\}$$

$$(1)$$

Which, by the second and last inequality, along with the definition of infinity norms, imply that

$$||A+B||_{\infty} \le ||A||_{\infty} + ||B||_{\infty}$$

3 Problem 3

Let

$$A = \begin{bmatrix} 2 & 1 & -10 \\ 1 & 2 & 1 \\ -5 & 1 & 4 \end{bmatrix}$$

Find $||A||_1$ and $||A||_{\infty}$.

Proof. We define $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$ therefore:

$$||A||_1 = \max(|2| + |1| + |-5|, |1| + |2| + |1|, |-10| + |1| + |4|)$$

= $\max(8, 4, 15)$
= 15

And $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$, therefore:

$$||A||_{1} = \max(|2| + |1| + |-10|, |1| + |2| + |1|, |-5| + |1| + |4|)$$

$$= \max(13, 4, 11)$$

$$= 13$$
(3)

4 Problem 4

Let S be a nonsingular $n \times n$ matrix and let $||\cdot||$ be an induced matrix norm. Prove that $||S^{-1}AS||$ defines a matrix norm for all $n \times n$ matrices A.

Proof. If $||\cdot||$ is an induced matrix norm, then we know that

$$||Ax|| \le ||A|| ||x||$$

and

$$||AB|| \le ||A|| ||B||$$

Then letting x be an arbitraty matrix..?

5 Problem 5

Let I be the $n \times n$ identity matrix. Prove that ||I|| = 1 for all induced norms.

Proof. We know that for some arbitrary vector x, ||Ix|| = ||x||, and using the definition from the previous problem, clearly:

$$||I|| = \max_{x \neq 0} \frac{||x||}{||x||} = 1$$

and

$$||I|| = \max ||x|| = 1||Ix|| = ||I||$$

Thereby satisfying the definition in the previous problem.

6 Problem 6

Prove that the condition number of a nonsingular $n \times n$ matrix A is at least 1, i.e. $1 \le ||A|| ||A^{-1}||$, for all induced matrix norms.

Proof. The condition number of a matrix A is defined as:

$$\kappa(A) = ||A||||A^{-1}||$$

By **Theorem 9.3(b)**, which states that if $||\cdot||$ is an induced matrix norm, then $||AB|| \le ||A||||B||$, so we know that

$$||A||||A^{-1}|| \ge ||AA^{-1}||$$

= $||I||$
= 1

7 Problem 7

Let

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

Find $||A||_2$.

Proof. We define $||A||_2$ as the square root of the largest eigenvalue of A^TA , but if $A^T = A$, then $||A||_2$ is simply the largest eigenvalue. Using the same equation in **Problem 1**, we find that the eigenvalues of A in this problem are $\lambda = 4, 2$. Since $A^T = A$, it must be the case that $\max \lambda = 4 = ||A||_2$. \square

8 Problem 8

Compute the condition number $\kappa_1(A) = ||A||_1 ||A^{-1}||_1$ for

$$A = \begin{bmatrix} 1 & 1 + \epsilon \\ 1 - \epsilon & 1 \end{bmatrix}$$

Proof. By the same process as **Problem 3**, we find $||A||_1$ using:

$$||A||_{1} = \max(1 + |1 - \epsilon|, 1 + \epsilon + 1)$$

= \text{max}(1 + |1 - \epsilon|, 2 + \epsilon) = 2 + \epsilon \text{ (for } \epsilon > 0)

Now, A^{-1} is

$$A^{-1} = \frac{1}{\epsilon^2} \begin{bmatrix} 1 & -1 - \epsilon \\ -1 + \epsilon & 1 \end{bmatrix}$$

So, $||A^{-1}||$ is given by

$$||A^{-1}||_{1} = \max\left(\left|\frac{1}{\epsilon^{2}}\right| + \left|\frac{1}{\epsilon^{2}} - \frac{1}{\epsilon}\right|, \left|\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon}\right| + \left|\frac{1}{\epsilon^{2}}\right|\right)$$

$$= \frac{2}{\epsilon^{2}} + \frac{1}{\epsilon}$$
(6)

Therefore, our condition number is

$$\kappa_1(A) = ||A||_1 ||A^{-1}||_1 = (2 + \epsilon) \left(\frac{2}{\epsilon^2} + \frac{1}{\epsilon}\right)$$

9 Problem 9

Prove that the condition number satisfies the property $\kappa(\lambda A) = \kappa(A)$ for all nonzero λ , scalar.

Proof. By definition, the left side of the equation is

$$\kappa(\lambda A) = \|\lambda A\| \|\frac{1}{\lambda}A^{-1}\|$$

Since λ is a scalar, by **9.5(iii)** in the textbook,

$$\|\lambda A\| \|\frac{1}{\lambda} A^{-1}\| = |\lambda| \|A\| |\frac{1}{\lambda}| \|A^{-1}\|$$

$$= |\frac{\lambda}{\lambda}| \|A\| \|A^{-1}\|$$

$$= \|A\| \|A^{-1}\|$$

$$= \kappa(A) \quad \text{(by definition of condition number)}$$
(7)

Thereby proving the property $\kappa(\lambda A) = \kappa(A)$