Importing Required Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # or MinMaxScaler, if used
from sklearn.preprocessing import LabelEncoder # if categorical labels
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_re
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import cross_val_score, KFold,GridSearchCV
from sklearn.model_selection import cross_val_score, StratifiedKFold
```

Loading dataset

```
df = pd.read_csv('spambase.csv')
```

Basic info

```
print("Dataset Info:\n", df.info())
print("\nFirst 5 rows:\n", df.head())
print("\nMissing Values:\n", df.isnull().sum())
```

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 4601 entries, 0 to 4600
 Data columns (total 58 columns):

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64
12	word_freq_people	4601 non-null	float64
13	word_freq_report	4601 non-null	float64
14	word_freq_addresses	4601 non-null	float64
15	word_freq_free	4601 non-null	float64
16	word_freq_business	4601 non-null	float64

```
17
   word freq email
                                4601 non-null
                                                float64
18
   word_freq_you
                                4601 non-null
                                                float64
19
   word_freq_credit
                                4601 non-null
                                                float64
20
   word_freq_your
                                                float64
                                4601 non-null
21
   word_freq_font
                                4601 non-null
                                                float64
22
   word_freq_000
                                4601 non-null
                                                float64
23
   word_freq_money
                                4601 non-null
                                                float64
24
   word_freq_hp
                                                float64
                                4601 non-null
25
   word_freq_hpl
                                4601 non-null
                                                float64
26
   word_freq_george
                                                float64
                                4601 non-null
                                4601 non-null
27
   word freq 650
                                                float64
28
   word_freq_lab
                                4601 non-null
                                                float64
29
   word_freq_labs
                                4601 non-null
                                                float64
   word_freq_telnet
                                4601 non-null
                                                float64
   word_freq_857
31
                                4601 non-null
                                                float64
32
   word_freq_data
                                4601 non-null
                                                float64
   word freq 415
                                4601 non-null
                                                float64
34
   word_freq_85
                                4601 non-null
                                                float64
35
   word_freq_technology
                                4601 non-null
                                                float64
36
   word_freq_1999
                                4601 non-null
                                                float64
   word_freq_parts
37
                                4601 non-null
                                                float64
38
   word_freq_pm
                                4601 non-null
                                                float64
39
   word_freq_direct
                                                float64
                                4601 non-null
40
   word_freq_cs
                                4601 non-null
                                                float64
41
   word_freq_meeting
                                4601 non-null
                                                float64
   word_freq_original
                                4601 non-null
                                                float64
43
   word freq project
                                4601 non-null
                                                float64
   word_freq_re
                                4601 non-null
                                                float64
45
   word_freq_edu
                                4601 non-null
                                                float64
46
   word_freq_table
                                4601 non-null
                                                float64
   word_freq_conference
47
                                4601 non-null
                                                float64
48
   char freq %3B
                                4601 non-null
                                                float64
49
   char freq %28
                                4601 non-null
                                                float64
   char_freq_%5B
50
                                4601 non-null
                                                float64
51
   char_freq_%21
                                                float64
                                4601 non-null
52
   char freq %24
                                4601 non-null
                                                float64
```

Handling missing values

```
imputer = SimpleImputer(strategy='mean')
df imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
```

Splitting of feature and target

```
X = df_imputed.drop('class', axis=1)
y = df imputed['class']
```

Checking Distribution

```
X = df.drop('class', axis=1) # Assuming 'class' is the target
# Chassa a for footune to visualize
```

```
# CHOOSE a LEW LEGICIES TO ATPROPRIE
sample features = X.columns[:5]
                                # First 5 features
# Plot histograms with Gaussian curve overlay
plt.figure(figsize=(15, 10))
for i, feature in enumerate(sample features):
    plt.subplot(3, 2, i + 1)
    data = X[feature]
   # Plot histogram
    count, bins, ignored = plt.hist(data, bins=30, density=True, alpha=0.6, col
   # Plot normal distribution curve
    '''mu, std = data.mean(), data.std()
   xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * std**2))
    plt.plot(x, p, 'r', linewidth=2)'''
    plt.title(f'Histogram of {feature}')
    plt.xlabel('Value')
    plt.ylabel('Density')
plt.tight_layout()
plt.suptitle('Feature Distributions vs Gaussian Curve', fontsize=16, y=1.02)
plt.show()
```


Applying min max scaling

```
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
```

Plots

→ Histogram

```
import matplotlib.pyplot as plt

plt.figure(figsize=(14, 10))
for i in range(6): # first 6 features as an example
    plt.subplot(2, 3, i + 1)
    plt.hist(X_scaled[:, i], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Scaled: {X.columns[i]}')
    plt.xlabel('Value (0 to 1)')
    plt.ylabel('Frequency')
plt.tight_layout()
plt.suptitle('Feature Distributions After MinMax Scaling', fontsize=16, y=1.02)
plt.show()
```


→ Boxplot

```
import pandas as pd

# Convert scaled array back to DataFrame for easier plotting
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

plt.figure(figsize=(14, 6))
X_scaled_df.iloc[:, :10].boxplot(rot=45)
plt.title('Boxplots of First 10 Scaled Features')
plt.ylabel('Scaled Value (0-1)')
plt.grid(True)
plt.show()
```


→ Correlation HeatMap

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Assuming X_scaled_df is your scaled DataFrame
corr matrix = X scaled df.corr()
plt.figure(figsize=(18, 15)) # Bigger figure
sns.heatmap(
    corr_matrix,
    cmap='coolwarm',
    square=True,
    annot=True,
                              # Show values inside squares
    fmt=".2f",
                              # Format to 2 decimal places
   linewidths=0.5,
annot_kws={"size": 6}
                             # Thin grid lines
                             # Smaller font size
)
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title("Feature Correlation Heatmap (After MinMax Scaling)", fontsize=16)
```

plt.tight_layout()
plt.show()

Model Training

from sklearn.metrics import (

```
accuracy_score, precision_score, recall_score,
    f1_score, confusion_matrix, roc_curve, auc,
    classification_report
)
# Split the data again (or reuse your earlier split)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
   X scaled, y, test size=0.3, stratify=y, random state=42
)
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score, f1_score,
    confusion_matrix, classification_report, roc_curve, auc
)
# Your dataset X (features) and y (labels) must already be defined
pipeline = make pipeline(
   MinMaxScaler(),
    SVC(kernel='rbf', C=10, gamma='scale')
)
cv = StratifiedKFold(n_splits=5, shuffle=True, random state=42)
scores = cross val score(pipeline, X, y, cv=cv, scoring='accuracy')
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f" Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
# Kernels to evaluate
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
results = []
def evaluate svm(kernel):
    print(f"\nQ Evaluating SVM with {kernel.upper()} kernel...")
    # Create and train SVM model
    model = SVC(kernel=kernel, probability=True, random state=42)
```

```
model.fit(X train, y train)
# Predictions
y pred = model.predict(X_test)
y prob = model.predict proba(X test)[:, 1] # for ROC
# Metrics
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
rec = recall score(y test, y pred)
f1 = f1 score(y test, y pred)
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1 Score : {f1:.4f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# Confusion Matrix
conf = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5, 4))
plt.imshow(conf, cmap='Blues')
plt.title(f'{kernel.upper()} Kernel - Confusion Matrix')
plt.colorbar()
plt.xticks([0, 1], ['Not Spam', 'Spam'])
plt.yticks([0, 1], ['Not Spam', 'Spam'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
for i in range(2):
    for j in range(2):
        plt.text(j, i, conf[i, j], ha='center', va='center')
plt.tight layout()
plt.show()
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc auc = auc(fpr, tpr)
plt.figure(figsize=(6, 5))
plt.plot(fpr, tpr, label=f'{kernel.upper()} (AUC = {roc_auc:.4f})')
plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'{kernel.upper()} Kernel - ROC Curve')
plt.legend()
plt.grid(True)
plt.show()
# Store results
results.append({
    "Kernel": kernel.capitalize(),
    "Accuracy": acc,
    "Precision": prec,
```

```
"Recall": rec,
    "F1 Score": f1,
    "AUC": roc_auc
})

# Run evaluations for all kernels
for kernel in kernels:
    evaluate_svm(kernel)
```

```
Fold 1: Accuracy = 0.9359
Fold 2: Accuracy = 0.9250
Fold 3: Accuracy = 0.9402
Fold 4: Accuracy = 0.9337
Fold 5: Accuracy = 0.9326
```

Mean Accuracy: 0.9335 ± 0.0050

Evaluating SVM with LINEAR kernel...

Accuracy: 0.8993 Precision: 0.9108 Recall: 0.8254 F1 Score: 0.8660

Classification Report:

	precision	recall	f1-score	support
0.0	0.89	0.95	0.92	837
1.0	0.91	0.83	0.87	544
accuracy			0.90	1381
macro avg	0.90	0.89	0.89	1381
weighted avg	0.90	0.90	0.90	1381

LINEAR Kernel - ROC Curve

Q Evaluating SVM with POLY kernel...

Accuracy: 0.8501 Precision: 0.9423 Recall: 0.6599 F1 Score: 0.7762

Classification Report:

Ctassificatio	precision	recall	f1-score	support
0.0	0.81	0.97	0.89	837
1.0	0.94	0.66	0.78	544
accuracy			0.85	1381
macro avg	0.88	0.82	0.83	1381
weighted avg	0.87	0.85	0.84	1381

Q Evaluating SVM with RBF kernel...

Accuracy: 0.9261 Precision: 0.9250 Recall: 0.8842 F1 Score: 0.9041

Classification Report:

Classific	atioi	precision	recall	f1-score	support
	0.0 1.0	0.93 0.93	0.95 0.88	0.94 0.90	837 544
accura macro weighted	avg	0.93 0.93	0.92 0.93	0.93 0.92 0.93	1381 1381 1381

Q Evaluating SVM with SIGMOID kernel...

Accuracy : 0.8023 Precision: 0.7694 Recall : 0.7114 F1 Score : 0.7393

Classification Report:

CCGSSTITCGCT	on Acport.			
	precision	recall	f1-score	support
0.0 1.0	0.82 0.77	0.86 0.71	0.84 0.74	837 544
1.0	0.77	0.71	0.74	344
accuracy			0.80	1381
macro avg	0.80	0.79	0.79	1381
weighted avg	0.80	0.80	0.80	1381

SIGMOID Kernel - Confusion Matrix


```
# Display tabular summary
print("\n SVM Kernel Comparison Summary:\n")
df_results = pd.DataFrame(results)
print(df_results.to_string(index=False))
```

■ SVM Kernel Comparison Summary:

Kernel Accuracy Precision Recall F1 Score AUC Linear 0.899348 0.910751 0.825368 0.865959 0.956425

```
Poly 0.850109 0.942257 0.659926 0.776216 0.950749
        Rbf 0.926140 0.925000 0.884191 0.904135 0.972150
    Sigmoid 0.802317
                        0.769384 0.711397 0.739255 0.853074
svm = SVC()
param grid = {
    'C': [0.1, 1, 10],
    'gamma': ['scale', 0.01, 0.001],
    'kernel': ['linear', 'rbf', 'poly']
}
# 5-fold CV
cv = StratifiedKFold(n_splits=5, shuffle=True, random state=42)
# Grid Search
grid = GridSearchCV(estimator=svm, param grid=param grid, cv=cv, scoring='accur
grid.fit(X train, y train)
# Best Parameters
print("  Best Parameters Found:")
print(grid.best params )
# Best Estimator
best svm = grid.best estimator
# Evaluate on test set
y pred = best svm.predict(X test)
print("\n; Classification Report (Test Set):")
print(classification_report(y_test, y_pred))
print("V Test Accuracy:", accuracy score(y test, y pred))
    Fitting 5 folds for each of 27 candidates, totalling 135 fits
    Best Parameters Found:
    {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}
    Classification Report (Test Set):
                             recall f1-score
                  precision
                                                  support
             0.0
                       0.93
                                 0.96
                                           0.94
                                                       837
             1.0
                       0.93
                                 0.88
                                           0.91
                                                       544
                                           0.93
                                                      1381
        accuracy
                       0.93
                                 0.92
                                           0.92
                                                      1381
       macro avg
    weighted avg
                       0.93
                                 0.93
                                           0.93
                                                     1381

▼ Test Accuracy: 0.9275887038377987

import numpy as np
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC
```

```
from sklearn.model selection import StratifiedKFold, cross val score
pipeline = make pipeline(
   MinMaxScaler(),
    SVC(kernel='rbf', C=10, gamma='scale')
)
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
scores = cross val score(pipeline, X, y, cv=cv, scoring='accuracy')
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f" Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
    Fold 1: Accuracy = 0.9359
    Fold 2: Accuracy = 0.9250
    Fold 3: Accuracy = 0.9402
    Fold 4: Accuracy = 0.9337
    Fold 5: Accuracy = 0.9326
    Mean Accuracy: 0.9335 ± 0.0050
import time
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
results = []
for kernel in kernels:
    params = {'kernel': kernel, 'C': 10.0, 'probability': True, 'random state':
   # Add kernel-specific hyperparameters
    if kernel == 'poly':
        params.update({'degree': 3, 'gamma': 'scale'})
    elif kernel in ['rbf', 'sigmoid']:
        params.update({'gamma': 'scale'})
   model = SVC(**params)
    start = time.time()
   model.fit(X_train, y_train)
   end = time.time()
   y_pred = model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    results.append({
        "Kernel": kernel.capitalize(),
        "Hyperparameters": str({k: v for k, v in params.items() if k != 'kernel
        "Accuracy": round(acc, 4),
        "F1 Score": round(f1, 4),
        "Training Time (s)": round(end - start, 3)
    })
# Create and display final table
```

{'C': 10.0, 'probability': True, 'random_state': 42, '

print("\nTable 4: SVM Performance with Different Kernels and Parameters")

K Fold Cross Validation

Mean Accuracy: 0.9335 ± 0.0050

Sigmoid

df table4 = pd.DataFrame(results)

```
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler # or StandardScaler
from sklearn.model selection import cross val score, StratifiedKFold
from sklearn.svm import SVC
import numpy as np
# RBF kernel SVM
svm rbf = make pipeline(MinMaxScaler(), SVC(kernel='rbf', C=10.0, gamma='scale')
# 5-fold stratified CV
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
scores = cross val score(svm rbf, X, y, cv=cv, scoring='accuracy')
# Print each fold and mean
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f"\n → Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
    Fold 1: Accuracy = 0.9359
    Fold 2: Accuracy = 0.9250
    Fold 3: Accuracy = 0.9402
    Fold 4: Accuracy = 0.9337
    Fold 5: Accuracy = 0.9326
```