1: Radiation laws

Clara E. Alonso Alonso

September 29, 2011

Classical Theory of the Black Body Radiation	2
Wien Law	7
Stefan or Stefan-Boltzmann Law	11
Rayleigh-Jeans Theory	13
Planck Theory	17
	24
Bibliography	25
	26

- Black body (b.b., imaginary):
 - $\circ~$ body that absorbs 100 % of the radiation that reaches it
 - \circ if its temperature is different from 0 it emits thermal radiation (E.M.)
 - o if it is in thermal equilibrium it emits at every wavelength (λ)
 - $\circ\quad$ the emitted energy depends on λ and T
- Practically, a rough cavity or enclosure with a small hole and uniform temperature T behaves as a b.b. (emits b.b. radiation)

- In the cavity the radiation is:
 - o isotropic (its flux does not depend on the direction)
 - homogeneous (equal in every point)
 - \circ equal in different cavities with equal T
- We define
 - Spectral radiancy $\tilde{E}(\lambda,T)$ emitted energy per unit λ , per unit area and per unit time with λ between λ and $\lambda+d\lambda$. It is a universal function (does not depend on the material of which it is made the cavity)
 - \circ Spectral energy density $\tilde{\rho}(\lambda,T)$ energy per unit volume and per unit λ , with λ between λ and $\lambda+d\lambda$

$$\tilde{\rho}(\lambda, T) = \frac{4}{c}\tilde{E}(\lambda, T)$$

5 / 26

Wien Law 7 / 26

W.L. $\tilde{\rho}(\lambda,T)=\lambda^{-5}\,f(\lambda T)\,=\,T^5\,f'(\lambda T)\quad \, (T\text{ absolute})$

Figure 1-1. Experimental verification of (1.2) in the form of $\mathcal{J}(\lambda, T)/T^5 = a$ universal function of λT .

8/26

We can define spectral radiancy and spectral energy density of energy per unit ν , $E(\nu,T)$ y $\rho(\nu,T)$ (e.m. radiation $\lambda=\frac{c}{\nu}$)

Also

$$\rho(\nu, T) = \frac{4}{c}E(\nu, T)$$

Energy per unit volume in corresponding intervals of ν or λ are equal

$$\rho(\nu, T)|d\nu| = \tilde{\rho}(\lambda, T)|d\lambda|$$

$$\rho(\nu, T) = \tilde{\rho}(\lambda, T) \left| \frac{d\lambda}{d\nu} \right|$$

$$\rho(\nu, T) = \frac{c}{\nu^2} \tilde{\rho}(\lambda, T)$$

W.L. (alternative as a function of ν)

$$\rho(\nu, T) = \nu^3 g(\frac{\nu}{T}) = T^3 g'(\frac{\nu}{T})$$

(equivalent to the former one, now as a function of ν) The maximum of $\tilde{\rho}(\lambda,T)$ (and $\tilde{E}(\lambda,T)$) is given by the Wien's displacement law:

$$\lambda_{max}(T) = \frac{b}{T}$$

 $b=0.2898\ cmK$ is the constant of Wien

The maximum of $\rho(\nu,T)$ (and $E(\nu,T)$):

$$\nu_{max}(T) = 5.89 \ 10^{10} \ \frac{Hz}{K} T$$

 $\lambda_{max} \nu_{max} \neq c!$

Wien gives $g(\frac{\nu}{T}) = Ce^{-\frac{\beta\nu}{T}}$ (it fits well at high frecuencies)

10 / 26

Stefan or Stefan-Boltzmann Law

11/26

We define energy density, or total radiated energy per unit volume

$$\rho(T) = \int_0^\infty \tilde{\rho}(\lambda, T) d\lambda = \int_0^\infty \rho(\nu, T) d\nu$$

Stefan-Boltzmann Law $\rho(T) = a \ T^4 \ a = 7.56 \ 10^{-16} \frac{J}{m^3 K^4}$

Total Radiancy

$$E(T) = \int_0^\infty \tilde{E}(\lambda, T) d\lambda = \int_0^\infty E(\nu, T) d\nu$$

Stefan-Boltzmann Law $E(T) = \sigma T^4$

 $\sigma = 5.67 \; 10^{-8} \frac{J}{m^2 s K^4}$ (Stefan-Boltzmann constant)

Rayleigh and Jeans derive

$$\begin{split} \rho_{R-J}(\nu,T) &= \frac{8 \; \pi \; \nu^2}{c^3} k \; T \\ k &= k_B = 1.381 \; 10^{-23} \frac{J}{K} \; = \; 8.617 \; 10^{-5} \frac{eV}{K}, \end{split}$$

using

- 1. the classical law of equipartition of energy (Boltzmann's distribution) $\bar{\mathcal{E}}=k\,T$ (by degree of freedom, system in thermodynamic equilibrium)
- 2. number of modes (charged mechanical oscillators) per unit volume and per unit frecuency, with frequency between ν and $\nu+d\nu$ for e.m. radiation in a cavity $\rightarrow \frac{8\ \pi\ \nu^2}{c^3}$
 - Reproduces experimental data for low ν
 - Fails for high ν
 - ullet ho(T) becomes infinite ightarrow ultraviolet catastrophe

14 / 26

Boltzmann Distribution

$$P(\mathcal{E}) = \frac{e^{-\frac{\mathcal{E}}{kT}}}{kT}$$

Planck Theory 17 / 26

$$\rho_{Planck}(\nu, T) = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{\frac{h\nu}{kT}} - 1}$$

 $h=6.63 \ 10^{-34} \ J \ s$ (Planck constant)

 $\begin{array}{ll} \bullet & \text{ If } \frac{h\; \nu}{k\; T} >> 1 & \rho_{Planck}(\nu,T) \simeq \frac{8\pi\; h}{c^3} \nu^3 e^{-\frac{h\nu}{kT}} \\ \text{ coincides with } & \rho_{Wien}(\nu,T) \text{ with } \\ & C = \frac{8\pi h}{c^3} \text{ and } \beta = \frac{h}{k} \\ \bullet & \text{ If } \frac{h\; \nu}{k\; T} << 1 & \rho_{Planck}(\nu,T) \rightarrow \rho_{R-J}(\nu,T) \\ \bullet & \rho_{Planck}(\nu,T) = \frac{8\pi \nu^2}{c^3} \frac{h\; \nu}{e^{\frac{h\nu}{kT}}-1} \rightarrow \bar{\mathcal{E}} = \frac{h\; \nu}{e^{\frac{h\nu}{kT}}-1} \\ & \bar{\mathcal{E}} \text{ depends on } \nu \end{array}$

 $ar{\mathcal{E}}$ depends on $\,
u$

$$\lim_{\nu \to \infty} \bar{\mathcal{E}} = 0$$

$$\rho(T) = \int_0^\infty \rho(\nu, T) d\nu = \frac{8\pi^5 k^4}{15h^3 c^3} T^4$$

coincides with Stefan-Boltzmann's law and ν_{max} corresponds to Wien's displacement law

$$\bar{\mathcal{E}} = \sum_{\mathcal{E}} \mathcal{E} P(\mathcal{E}) = \frac{\sum_{n=0}^{\infty} n \, \epsilon \, e^{-\frac{n \, \epsilon}{kT}}}{\sum_{m=0}^{\infty} e^{-\frac{m \, \epsilon}{kT}}} = \frac{\epsilon}{e^{\frac{\epsilon}{kT}} - 1}$$

 $\epsilon \, = \, h \, \, \nu \,$ quantum of energy (photons)

Like many other astronomical objects, the sun radiates energy almost as though it were a true blackbody (the output of a 5800K blackbody is in red, that of the sun in blue.

Bibliography 25 / 26

- [1] R. Eisberg y R. Resnick, "Física cuántica", Ed. Limusa, 2004
- [2] C. Sánchez del Río, "Física cuántica", Ed. Pirámide, 2003
- [3] S. Gasiorowicz, "Quantum Physics", Ed. John Wiley, 1995
- [4] "http://descartes.cnice.mec.es/materiales_didacticos/ Los_numeros_complejos/index.htm"
- [5] "http://demonstrations.wolfram.com/topic.html?topic= Quantum+Mechanics&limit=20"
- [6] http://phet.colorado.edu/sims/blackbody-spectrum/blackbody-spectrum_en.html