



Schloß Premstätten A-8141Unterpremstätten Austria

Tel (++43) 3136-500 Fax (++43) 3136-52501 Fax (++43) 3136-53650 Email rules@amsint.com

# 0.35 µm CMOS Design Rules

7 Digit Document #: 9931032

Revision #: 2.0

**Document control** 

Controlled Copy # \_\_\_\_\_

**Strictly Controlled** 



#### **Version History**

| Version        | Description                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 = Rev. N/C |                                                                                                                                                 |
| 2.0            | <ol> <li>Change version control (A -&gt; 2.0)</li> <li>Guideline: Ratio of POLY1 area to die area</li> <li>Changed Minimum pad pitch</li> </ol> |

#### **Process Family**

This document is valid for the following twin-tub 0.35 µm processes:

| process<br>name | no. of<br>mask<br>layers | CMOS<br>core<br>module* | poly<br>capacitor<br>module | 5 Volt<br>option |
|-----------------|--------------------------|-------------------------|-----------------------------|------------------|
| CSA             | 13                       | х                       |                             |                  |
| CSD             | 14                       | Х                       | Х                           |                  |
| CSF             | 14                       | Х                       |                             | х                |
| CSI             | 15                       | х                       | Х                           | х                |

<sup>\*)</sup> p-substrate, triple metal, single poly, 3.3 Volt

#### **Related Documents**

0.35 µm CMOS Process Parameters: Doc. 9933016

ESD Design Rules: Doc. 9931020 Standard Family Cells: Doc. 9931021

Assembly Related Design Rules: Doc. 9981005

#### **Note**

All data represent drawn dimensions. Graphical illustrations are not to scale.

#### Support

Technical questions on design rules should be directed to the following department:

Process Characterization: e-mail: rules@amsint.com

fax: (\*43) 3136 500 491 phone: (\*43) 3136 500 618

Doc. **9931032** Rev. **2.0** 2 of 30



## **Table of Contents**

| 1. | Defini | tions                     | 4  |
|----|--------|---------------------------|----|
| 2. | Gene   | ral Requirements          | 6  |
| 3. | Proce  | ess Layer Overview        | 7  |
| 4. | Struct | ture Rules                | 8  |
|    | 4.1.   | NDIFF                     | 8  |
|    | 4.2.   | PDIFF                     | 8  |
|    | 4.3.   | MIDOX                     | 9  |
|    | 4.4.   | POLY1, GATE               | 10 |
|    | 4.5.   | POLY2                     | 10 |
|    | 4.6.   | CONT                      | 11 |
|    | 4.7.   | MET1                      | 12 |
|    | 4.8.   | VIA                       | 14 |
|    | 4.9.   | MET2                      | 15 |
|    | 4.10.  | VIA2                      | 16 |
|    | 4.11.  | MET3                      | 17 |
| 5. | Eleme  | ent Rules                 | 18 |
|    | 5.1.   | NMOS, PMOS                | 18 |
|    | 5.2.   | NMOSM, PMOSM              | 18 |
|    | 5.3.   | CPOLY                     | 19 |
|    | 5.4.   | RPOLY2, RNWELL            | 20 |
|    | 5.5.   | NMOSH                     | 21 |
|    | 5.6.   | VERT10, LAT2              | 22 |
|    | 5.7.   | SUBDIODE, WELLDIODE, NWD  | 23 |
| 6. | Periph | nery Rules                | 24 |
|    | 6.1.   | PAD Rules                 | 24 |
|    | 6.2.   | CORNER Rules              | 26 |
|    | 6.3.   | SCRIBE Rules              |    |
| 7. | Guide  | elines                    | 28 |
| 8. |        | mmended Layout Structures |    |
|    |        |                           |    |



#### 1. Definitions

#### **Mask Layers**

NTUB WN := n-tub layer

DIFF DF := diffusion layer

FIMP IF := n-field implant layer

MIDOX XM := mid gate oxide layer ( $V_{GATE} > 3.3 Volt$ )

POLY1 P1 := poly1 layer
POLY2 P2 := poly2 layer
NPLUS IN := n+implant layer
PPLUS IP := p+implant layer

CONT CT := contact layer (connects MET1 to DIFF, POLY1, POLY2)

MET1 M1 := metal1 layer

M1HOLE M1 := metal1 slot (metal1 = MET1 and not M1HOLE)

VIA VI := via1 layer (connects MET2 to MET1)

MET2 M2 := metal2 layer

M2HOLE M2 := metal2 slot (metal2 = MET2 and not M2HOLE)

VIA2 V2 := via2 layer (connects MET3 to MET2)

MET3 M3 := metal3 layer

M3HOLE M3 := metal3 slot (metal3 = MET3 and not M3HOLE)

PAD PA := pad layer

**Note:** The 2-character symbols are used for short rule names.

#### **Definition Layers**

These layers are not used in chip production.

They are necessary for design tools, e.g. design rule check.

CAPDEF := defines sandwich capacitors

DIFCUT := excludes DIFF from device extraction

DIODE := marks protection diodes for device extraction
PO1CUT := excludes dummy POLY1 from device extraction
PO2CUT := excludes dummy POLY2 from device extraction

RESDEF := resistor definition layer RESTRM := resistor terminal layer

SFCDEF := excludes SFC from checks and automatic layer generation

ZENER := excludes Zener diodes from checks and automatic layer generation

Doc. **9931032** Rev. **2.0** 4 of 30



#### **Structures**

DIFFCON := diffusion contact (CONT & DIFF)

DIFFM := diffusion for 5 volt operation (DIFF & MIDOX)

NDIFF (DN) := n+diffusion (DIFF & NPLUS)

NDIFFCON := n+diffusion contact (CONT & NDIFF)
PADVIA1 := VIA underneath PAD (VIA & PAD)
PADVIA2 := VIA2 underneath PAD (VIA2 & PAD)

PDIFF (DP) := p+diffusion (DIFF & PPLUS)

PDIFFCON := p+diffusion contact (CONT & PDIFF)
POLY1CON := poly1 contact (CONT & POLY1)
POLY2CON := poly2 contact (CONT & POLY2)

PSUB := p-substrate

SCRIBE := scribe line border (Peripheral bus + scribe edge, example in SFC)

SCRIBECUT := scribe line border cut (example in SFC)

SFC := standard family cells

WIDE\_MET1 := MET1 width and length  $> 10 \mu m$  WIDE\_MET2 := MET2 width and length  $> 10 \mu m$  WIDE\_MET3 := MET3 width and length  $> 10 \mu m$ 

#### **Elements**

CORNER := corner cell with slotted metal busses

CPOLY := poly1-poly2 capacitor (POLY1 & POLY2)

LAT2 := lateral PNP transistor (2 µm x 2 µm emitter)

SUBDIODE := parasitic n+p- diode (NDIFF & PSUB & DIODE)

NMOS := n-channel MOSFET

NMOSM := n-channel MOSFET with mid gate oxide

NMOSH := high voltage n-channel MOSFET

NWD := parasitic n-p- diode (NTUB & PSUB & DIODE)
WELLDIODE := parasitic p+n- diode (PDIFF & NTUB & DIODE)

PMOS := p-channel MOSFET

PMOSM := p-channel MOSFET with mid gate oxide

RDIFFP3 := p+diffusion resistor in periphery cells (PDIFF & RESDEF)

RNWELL := n-tub resistor (NTUB & RESDEF)

RPOLY2 := poly2 resistor (POLY2 & RESDEF)

VERT10 := vertical PNP transistor (10 μm x 10 μm emitter)

Doc. **9931032** Rev. **2.0** 5 of 30



#### **Geometric Relations**

A width WnA := distance inside\_A - inside\_A

A spacing to B SnAB := distance outside\_A - outside\_B (different polygons)
A notch SnAA := distance outside\_A - outside\_A (same polygon)
A enclosure of B EnAB := distance inside\_A - outside\_B (A contains B)
A extension of B EnAB := distance inside\_A - outside\_B (A may intersect B)

A overlap of B OnAB := distance inside\_A - inside\_B

**Note:** The abbreviations are intended for short design rule names.



## 2. General Requirements

| RUL001 | Grid 0.05 μm                                           |
|--------|--------------------------------------------------------|
| RUL002 | Corners                                                |
| RUL003 | Data extrema including SCRIBEintegral multiple of 5 µm |

Doc. **9931032** Rev. **2.0** 6 of 30



## 3. Process Layer Overview

Note: Width and spacing are minimum values in µm.

|       | layer  | GDS# | width | spacing / notch | generation          |
|-------|--------|------|-------|-----------------|---------------------|
| rule# |        | N1y  | W1y   | S1yy            |                     |
|       |        |      | Ma    | sk Layers       |                     |
| yWN   | NTUB   | 5    | 2.0   | 3.0             | drawn               |
| yIF   | FIMP   | 8    |       |                 | =NTUB (except SFC)  |
| yDF   | DIFF   | 10   | 0.5   | 0.6             | drawn               |
| yXM   | MIDOX  | 14   | 0.6   | 0.6             | drawn               |
| yP1   | POLY1  | 20   | 0.3   | 0.6             | drawn               |
| yIN   | NPLUS  | 23   | 0.6   | 0.6             | drawn               |
| yIP   | PPLUS  | 24   | 0.6   | 0.6             | drawn               |
| yP2   | POLY2  | 30   | 0.7   | 0.5             | drawn               |
| уСТ   | CONT   | 34   | 0.4   | 0.5             | drawn               |
| yM1   | MET1   | 35   | 0.4   | 0.6             | drawn               |
| yVI   | VIA    | 36   | 0.5   | 0.5             | drawn               |
| yM2   | MET2   | 37   | 0.5   | 0.6             | drawn               |
| yV2   | VIA2   | 38   | 0.5   | 0.5             | drawn               |
| уМ3   | MET3   | 39   | 0.5   | 0.7             | drawn               |
| yPA   | PAD    | 40   | 15.0  | 15.0            | drawn               |
|       | M1HOLE | 57   |       |                 | MET1 slots          |
|       | M2HOLE | 58   |       |                 | MET2 slots          |
|       | M3HOLE | 61   |       |                 | MET3 slots          |
|       |        |      | Defin | ition Layers    |                     |
|       | SFCDEF | 42   |       |                 | SFC                 |
|       | ZENER  | 43   |       |                 | Zener diodes        |
|       | DIFCUT | 44   |       |                 | non-standard DIFF   |
|       | PO1CUT | 45   |       |                 | non-standard POLY1  |
|       | PO2CUT | 46   |       |                 | non-standard POLY2  |
|       | DIODE  | 47   |       |                 | parasitic diodes    |
|       | RESDEF | 49   |       |                 | resistors           |
|       | RESTRM | 50   |       |                 | resistor terminals  |
|       | CAPDEF | 55   |       |                 | sandwich capacitors |

e.g.: MET1 width = W1M1, MET1 spacing = S1M1M1.

Doc. **9931032** Rev. **2.0** 7 of 30



## 4. Structure Rules

## **4.1. NDIFF**

| S1INIP | Overlap of NPLUS and PPLUS is not allowed (except ZENER)  |        |
|--------|-----------------------------------------------------------|--------|
| BAD1DF | DIFF without NPLUS or PPLUS is not allowed (except ZENER) |        |
| E1INDF | Minimum NPLUS extension of DIFF                           | 0.3 µm |
| S1DFIP | Minimum DIFF spacing to PPLUS                             | 0.3 µm |
| S1DNWN | Minimum NDIFF spacing to NTUB                             | 1.2 µm |
| E1WNDN | Minimum NTUB enclosure of NDIFF                           | 0.2 µm |



#### **4.2. PDIFF**

| E1IPDF | Minimum PPLUS extension of DIFF                     | 0.3 µm |
|--------|-----------------------------------------------------|--------|
| S1DFIN | Minimum DIFF spacing to NPLUS                       | 0.3 µm |
| S1DPWN | Minimum PDIFF spacing to NTUB                       | 0.4 µm |
| E1WNDP | Minimum NTUB enclosure of PDIFF                     | 1.2 μm |
| BAD2DF | NDIFF and butting PDIFF must be connected with MET1 |        |



Doc. **9931032** Rev. **2.0** 8 of 30



## **4.3. MIDOX**

| E1XMDF | Minimum MIDOX enclosure of DIFFM | 0.6 µm |
|--------|----------------------------------|--------|
| S1DFXM | Minimum MIDOX spacing to DIFF    | 0.6 µm |
| S2DFDF | Minimum DIFFM spacing            | 1.0 um |



Doc. **9931032** Rev. **2.0** 9 of 30



## **4.4. POLY1, GATE**

| S2P1P1 | Minimum GATE spacing                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------|
| S1DFP1 | Minimum POLY1 spacing to DIFF                                                                                            |
| E1P1DF | Minimum POLY1 extension of GATE                                                                                          |
| E1DFP1 | Minimum DIFF extension of GATE                                                                                           |
| E1DNP1 | Minimum NDIFF extension of GATE when butted to PDIFF 0.6 $\mu m$                                                         |
| E1DPP1 | Minimum PDIFF extension of GATE when butted to NDIFF 0.6 $\mu m$                                                         |
| R1P1   | Maximum ratio of POLY1 area to touched GATE area100                                                                      |
|        | <b>Note:</b> POLY1 structures collect electric charge during ion-etching which can be a hazard for associated GATE oxide |



## 4.5. POLY2

| BAD1P2 | POLY2 is not allowed over DIFF |
|--------|--------------------------------|
| S1DFP2 | Minimum POLY2 spacing to DIFF  |
| S1P1P2 | Minimum POLY1 spacing to POLY2 |



Doc. **9931032** Rev. **2.0** 10 of 30



## 4.6. **CONT**

| BAD1CT | CONT without MET1 is not allowed                   |                 |
|--------|----------------------------------------------------|-----------------|
| BAD2CT | CONT without DIFF or POLY1 or POLY2 is not allowed |                 |
| BAD3CT | POLY1CON is not allowed over DIFF                  |                 |
| W2CT   | Fixed CONT size                                    | 0.4 μm x 0.4 μm |
| E1M1CT | Minimum MET1 enclosure of CONT                     | 0.1 μm          |
| E1DFCT | Minimum DIFF enclosure of CONT                     | 0.3 μm          |
| E1P1CT | Minimum POLY1 enclosure of CONT                    | 0.2 μm          |
| E1P2CT | Minimum POLY2 enclosure of CONT                    | 0.6 μm          |
| S1CTP1 | Minimum DIFFCON spacing to GATE                    | 0.4 μm          |
| S1CTDP | Minimum NDIFFCON spacing to PDIFF                  | 0.4 μm          |
| S1CTDN | Minimum PDIFFCON spacing to NDIFF                  | 0.4 μm          |
|        | Note: Butting CONTs are not allowed.               |                 |
| S1CTDF | Minimum POLY1CON spacing to DIFF                   | 0.4 μm          |
| S1CTP2 | Minimum POLY1CON spacing to POLY2                  | 1.4 μm          |



Doc. **9931032** Rev. **2.0** 11 of 30



#### 4.7. MET1



R2M1 Maximum ratio of MET1 area to connected GATE and CPOLY area .......... 100

**Note:** MET1 structures collect electric charge during ion-etching which can be a hazard for associated GATE and CPOLY oxide. Only MET1 without DIFFCONs must be considered. MET1 connected to GATE or CPOLY via MET2 and shorted CPOLY does not contribute.



Doc. **9931032** Rev. **2.0** 12 of 30

## $0.35~\mu m$ CMOS Design Rules



| BAD1M1   | Insert slots in MET1 $>$ 20 $\mu$ m $	imes$ 300 $\mu$ m                           |         |
|----------|-----------------------------------------------------------------------------------|---------|
| Note: In | sert M1HOLEs in direction of current flow. Standard cells do not contain M1HOLEs. |         |
| W2M1     | Minimum M1HOLE width                                                              | 1.0 µm  |
| W3M1     | Minimum M1HOLE length                                                             | 10.0 µm |
| S3M1M1   | Minimum M1HOLE spacing on MET1                                                    | 10.0 µm |
| F1M1M1   | Minimum MET1 enclosure of M1HOLE                                                  | 9.0 um  |



Doc. **9931032** Rev. **2.0** 13 of 30



## 4.8. VIA

| BAD1VI | VIA without MET1 is not allowed    |                   |
|--------|------------------------------------|-------------------|
| BAD2VI | VIA without MET2 is not allowed    |                   |
| BAD3VI | VIA over GATE is not allowed       |                   |
| W2VI   | Fixed VIA size                     | . 0.5 μm x 0.5 μm |
| E1M1VI | Minimum MET1 enclosure of VIA      | 0.2 μm            |
| E1M2VI | Minimum MET2 enclosure of VIA      | 0.1 μm            |
| E2M1VI | Minimum WIDE_MET1 enclosure of VIA | 0.6 µm            |
|        |                                    |                   |
|        |                                    |                   |





Doc. **9931032** Rev. **2.0** 14 of 30



#### 4.9. MET2

S2M2M2 Minimum MET2 spacing to WIDE MET2......1.1 µm





R2M2 Maximum ratio of MET2 area to connected GATE and CPOLY area .......... 100

**Note:** MET2 structures collect electric charge during ion-etching which can be a hazard for associated GATE and CPOLY oxide. Only MET2 without DIFFCONs must be considered. MET2 connected to GATE or CPOLY via MET3 and shorted CPOLY does not contribute.

Doc. **9931032** Rev. **2.0** 15 of 30



| BAD2M2    | Insert slots in MET2 $>$ 20 $\mu$ m $\times$ 300 $\mu$ m                          |         |
|-----------|-----------------------------------------------------------------------------------|---------|
| Note: Ins | sert M2HOLEs in direction of current flow. Standard cells do not contain M2HOLEs. |         |
| W2M2      | Minimum M2HOLE width                                                              | 1.1 µm  |
| W3M2      | Minimum M2HOLE length                                                             | 10.0 µm |
| S3M2M2    | Minimum M2HOLE spacing on MET2                                                    | 10.0 µm |
| F1M2M2    | Minimum MET2 enclosure of M2HOLE                                                  | 9 0 um  |



### 4.10. VIA2

| BAD1V2 | VIA2 without MET2 is not allowed    |                 |
|--------|-------------------------------------|-----------------|
| BAD2V2 | VIA2 without MET3 is not allowed    |                 |
| W2V2   | Fixed VIA2 size                     | 0.5 μm x 0.5 μm |
| E1M2V2 | Minimum MET2 enclosure of VIA2      | 0.2 μm          |
| E1M3V2 | Minimum MET3 enclosure of VIA2      | 0.1 µm          |
| E2M2V2 | Minimum WIDE_MET2 enclosure of VIA2 | 0.6 μm          |
|        |                                     |                 |
|        |                                     |                 |





Doc. **9931032** Rev. **2.0** 16 of 30



#### 4.11. MET3





Doc. **9931032** Rev. **2.0** 17 of 30



## 5. Element Rules

## 5.1. NMOS, PMOS

| W2P1 | Minimum GATE length | 0.3 μm |
|------|---------------------|--------|
| W2DF | Minimum GATE width  | 0.6 um |



### 5.2. NMOSM, PMOSM

| W3P1 | Minimum GATE length | $\dots \dots 0.5~\mu m$ |
|------|---------------------|-------------------------|
| W3DF | Minimum GATE width  | 0.6 µm                  |



Doc. **9931032** Rev. **2.0** 18 of 30



## **5.3. CPOLY**

| BAD1IN | CPOLY is not allowed over NPLUS  |        |
|--------|----------------------------------|--------|
| BAD1IP | CPOLY is not allowed over PPLUS  |        |
| W2P2   | Minimum CPOLY width              | 0.8 µm |
| S2P2P2 | Minimum CPOLY spacing            | 0.8 µm |
| E1P1P2 | Minimum POLY1 enclosure of POLY2 | 1.0 µm |
| S1INP2 | Minimum NPLUS spacing to CPOLY   | 1.0 µm |
| S1IPP2 | Minimum PPLUS spacing to CPOLY   | 1.0 µm |



**Note:** See chapter 8. for recommended layout structure of CPOLY.

Precision capacitor matching is improved with non-minimum POLY2 width and spacing.

Doc. **9931032** Rev. **2.0** 19 of 30



#### 5.4. RPOLY2, RNWELL

| BAD2IN | RPOLY2 is not allowed over NPLUS                         |
|--------|----------------------------------------------------------|
| BAD2IP | RPOLY2 is not allowed over PPLUS                         |
| S2INP2 | Minimum NPLUS spacing to RPOLY2                          |
| S2IPP2 | Minimum PPLUS spacing to RPOLY2                          |
| RUL004 | Fixed RESTRM enclosure of RESDEF edge                    |
|        | Note: RESDEF and RESTRM are necessary for all resistors. |
| Note:  | Recommended minimum number of squares                    |



**Note:** Use the following effective number of squares for resistance calculation of corners:



**Note:** See chapter 8. for recommended layout structure of poly resistors.

Doc. **9931032** Rev. **2.0** 20 of 30



#### **5.5. NMOSH**



**Note:** The layout of NMOSH is predefined and available on request. Only WIDTH may be changed.

Doc. **9931032** Rev. **2.0** 21 of 30



#### 5.6. VERT10, LAT2





Note: The layouts of VERT10 and LAT2 are predefined and available on request. They must not be changed.

Doc. **9931032** Rev. **2.0** 22 of 30



#### 5.7. SUBDIODE, WELLDIODE, NWD



**Note:** SUBDIODE, WELLDIODE, NWD are only intended for the simulation of reverse leakage currents and junction capacitances in periphery cells. It is not recommended to use these diodes as active circuit elements.

Doc. **9931032** Rev. **2.0** 23 of 30



## 6. Periphery Rules

ESD Related Rules: See Doc. 9931020.

#### 6.1. PAD Rules

| BAD1PA | PAD is not allowed over DIFF                                                                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAD2PA | PAD is not allowed over POLY1                                                                                                                                                          |
| BAD3PA | PAD is not allowed over POLY2                                                                                                                                                          |
| BAD3V2 | PADVIA2 over PADVIA1 is not allowed                                                                                                                                                    |
| W2PA   | Bond PAD size                                                                                                                                                                          |
|        | <b>Note:</b> Test PAD size 60 μm x 60 μm. Probe PAD size 15 μm x 15 μm. Bond pads and test pads must have a minimum pitch of 100 μm. The following rules are only valid for bond pads. |
| E1M1PA | Minimum MET1 enclosure of PAD                                                                                                                                                          |
| E1M2PA | Minimum MET2 enclosure of PAD                                                                                                                                                          |
| E1M3PA | Minimum MET3 enclosure of PAD                                                                                                                                                          |
| E3M1VI | Minimum MET1 enclosure of PADVIA1                                                                                                                                                      |
| E3M2VI | Minimum MET2 enclosure of PADVIA1                                                                                                                                                      |
| E3M2V2 | Minimum MET2 enclosure of PADVIA2                                                                                                                                                      |
| E3M3V2 | Minimum MET3 enclosure of PADVIA2                                                                                                                                                      |
| S2VIVI | Minimum PADVIA1 spacing                                                                                                                                                                |
| S2V2V2 | Minimum PADVIA2 spacing                                                                                                                                                                |
| S1VIV2 | Minimum PADVIA2 spacing to PADVIA1                                                                                                                                                     |
| S1DFPA | Minimum PAD spacing to DIFF10.0 μm                                                                                                                                                     |
| S1P1PA | Minimum PAD spacing to POLY110.0 μm                                                                                                                                                    |
| S1P2PA | Minimum PAD spacing to POLY210.0 μm                                                                                                                                                    |
| S1M1PA | Minimum PAD spacing to MET1 (different net)10.0 μm                                                                                                                                     |
| S1M2PA | Minimum PAD spacing to MET2 (different net)10.0 μm                                                                                                                                     |
| S1M3PA | Minimum PAD spacing to MET3 (different net)10.0 μm                                                                                                                                     |
| R1VIPA | Minimum ratio of PADVIA1 area to PAD area5 %                                                                                                                                           |
| R1V2PA | Minimum ratio of PADVIA2 area to PAD area                                                                                                                                              |
|        |                                                                                                                                                                                        |

Doc. **9931032** Rev. **2.0** 24 of 30





Doc. **9931032** Rev. **2.0** 25 of 30



#### **6.2. CORNER Rules**

RUL005 CORNER must be used for die sizes  $\geq$  4mm  $\times$  4mm.

**Note:** This prevents cracks in corners of the die during thermal stress.

RUL006 Insert a continous 2  $\mu m$  wide slot in  $\geq$  20  $\mu m$  wide MET.

RUL007 Draw MET and slots at 45°.



Note: The layout of CORNER is predefined and available on request.

Doc. **9931032** Rev. **2.0** 26 of 30



### 6.3. SCRIBE Rules

SCRIBE is a Standard Family Cell enclosing the design data. The inner edge of SCRIBE is butted to the data extrema of the design.

The SFC SCRIBE must be included in all designs without modification.

The SFC SCRIBECUT shows how to cut SCRIBE in mixed signal designs with separated supplies.

RUL008 Data extrema excluding SCRIBE ...... integral multiple of 5  $\mu$ m Note: Follows from rule RUL003 and SCRIBE width of 35.0  $\mu$ m.



Doc. **9931032** Rev. **2.0** 27 of 30

## $0.35\ \mu m$ CMOS Design Rules



## 7. Guidelines

| 7.1 | Connect NTUB with as much DIFFCON area as possible.  Maximum DIFFCON spacing50                                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 | Where area permits non-minimum geometries should be used.                                                                                                              |
|     | <b>Note:</b> This is particularly applicable to structures where the layout allows modifications without degrading circuit performance or increasing the overall size. |
| 7.3 | Minimum ratio of POLY1 area to die area                                                                                                                                |

Doc. **9931032** Rev. **2.0** 28 of 30



## 8. Recommended Layout Structures

## **Precision Resistors**





Doc. **9931032** Rev. **2.0** 29 of 30



## **Precision Capacitors**





Doc. **9931032** Rev. **2.0** 30 of 30





Schloß Premstätten A-8141Unterpremstätten Austria

Tel (++43) 3136-500 Fax (++43) 3136-52501 Fax (++43) 3136-53650 Email rules@amsint.com

# 0.35 µm CMOS Design Rules Attachment

7 Digit Document #: 9931032

Revision #: 2.0

#### Attachment to 7. Guidelines

- 7.4 Precision analog NMOS, PMOS, NMOSM, PMOSM should not be covered with MET1 or MET2. If this is not possible MET1 and MET2 covering of matching transistors should be identical.
- 7.5 Minimum channel length for critical analog NMOS transistors . . . . . . . . 0.6  $\mu$ m Minimum channel length for critical analog NMOSM transistors . . . . . . . . . 1.0  $\mu$ m

Note: Critical analog NMOS and NMOSM transistors are:

- 1. Transistors biased at  $(Vth < V_{GS} < V_{DS}/2, V_{DS} = V_{DSmax})$ . Low temperature applications are especially critical.
- 2. Transistors used in circuits sensitive to Vth shift.