a) Identifique as linhas que possuem conflitos de dados e descreva qual é a causa do conflito.

Na linha 08 quando está lendo o valor de t0 ele ainda está em fase de decodificação na linha 07.

b) Identifique as linhas que possuem conflitos de controle e descreva a causa do conflito.

Na linha 09 a instrução JAL salvando o próximo endereço de PC em RA e desvia para a linha 24.

Na linha 27 a instrução BGT pode alterar o valor de PC e desviar para a linha 31 ou continuar para a próxima instrução na linha de baixo.

Na linha 29 a instrução RET altera o valor de PC para o valor salvo em RA e retorna para a linha 10.

Na linha 31 a instrução BEQ, assim como a BGT, pode desviar para a linha 38 (mudar PC) ou continuar para a próxima linha.

Na linha 36 a instrução J muda o valor de PC e desvia para a linha 31.

Na linha 39 a instrução RET muda o valor de PC para o valor que foi salvo em RA e retorna a execução do programa para a linha 10.

c) Reescreva e apresente a função Fibonacci inserindo NOPs para resolver os conflitos de dados e de controle, considerando que o pipeline não faz detecção e tratamento dos conflitos.

```
fibonacci:
addi t1, zero, 1
addi t2, zero, 1
addi t3, zero, 2
bgt a0, t3, calcula
nop
add s0, zero, t1
ret
nop
nop
calcula:
beq t3, a0, terminou
nop
nop
add t4, t1, t2 #soma
add t1, zero, t2
add t2, zero, t4
addi t3, t3, 1
j calcula
nop
nop
terminou:
add a0, zero, t4
ret
nop
```

nop

d) Apresente o diagrama de tempo do Pipeline para a execução dos 20 primeiros ciclos de clock da função Fibonacci. Considere que o Pipeline com detecção e tratamento de conflitos.

fibonacci:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
addi t1, zero, 1 #fib1	IF	ID	EX	MEM	WB																			
addi t2, zero, 1 #fib2		IF	ID	EX	MEM	WB																		
addi t3, zero, 2			IF	ID	EX	MEM	WB																	
bgt a0, t3, calcula				IF	ID	EX	MEM	WB																
add s0, zero, t1					NOP	IF	ID	EX	MEM	WB	precisa de um nop pois o valor de t1 ainda não está pronto													
ret							IF	ID	EX	MEM	WB													
calcula:																								
beq t3, a0, terminou								nop	nop	IF	ID	EX	MEM	WB										
add t4, t1, t2 #soma											nop	nop	IF	ID	EX	MEM	WB							
add t1, zero, t2														IF	ID	EX	MEM	WB						
add t2, zero, t4															IF	ID	EX	MEM	WB					
addi t3, t3, 1																IF	ID	EX	MEM	WB				
j calcula																	IF	ID	EX	MEM	WB			
terminou:																								
add a0, zero, t4																	nop	nop	IF	ID	EX	MEM	WB	
ret																				IF	ID	EX	MEM	WB

- e) Em relação a execução da função fibonacci original no modo 5-Stage Processor:
- e1) Quantos NOPs são inseridos pelo simulador durante a execução da função devido a conflitos de dados:

nenhum

e2) Quantos NOPs são inseridos pelo simulador durante a execução da função devido a conflitos de controle:

16

- e3) Qual o total de ciclos de clock que a função leva para executar?
- 55 ciclos
- e4) Quantas instruções são executadas?
- 37 instruções
- e5) Qual a CPI da função?

1.48