DEEP LEARNING

FOR COMPUTER VISION

Day 4 Lecture 2

3D Reconstruction

telecom BCN Supported by **vilynx**.

+ info: http://bit.ly/dlcv2018

http://bit.ly/dlcv2018

Eduard Ramon eduard.ramon.maldonado@upc.edu

#DLUPC

Outline

- Introduction
- Motivation
- Classical methods
 - Geometric and Stereo
 - Limitations
- Deep learning approaches
 - Volumetric grids: 3D-R2N2
 - o Point clouds: PointOutNet
 - Meshes: Pixel2Mesh

Introduction

3D Reconstruction is the process of obtaining the geometric properties of a scene by processing and combining visual cues from a set of views.

- Surface
- Camera poses
- Albedo (percentage of reflected radiation or base color)
- Illumination
- .

Multi-view Stereo: A tutorial. - Carlos Hernández, Google Inc.

Motivation

There's a bunch of applications which may benefit from 3D reconstruction algorithms.

Classical methods: Multiview Geometry

http://www.theia-sfm.org/sfm.html

Classical methods: Multiview Stereo

Output from Multiview Stereo

Classical methods: Limitations

When do they fail?

- Not enough images with enough overlap.
- Featureless or reflecting surfaces.
- Pure rotations.
- Repeated structures.
- Thin structures.
- Non-Lambertian surfaces.

Deep Learning:

- More descriptive, robust and problem specific image representations.
- Encoding of prior knowledge.

Deep learning approaches

Goal: Estimate an irregular surface and its properties from a set of RGB images.

Irregular surfaces do not lie on an **Euclidean Space** and, in principle, we cannot use the standard convolution to model them.

Volumetric grids: 3D-R2N2

$$L(\mathcal{X}, y) = \sum_{i,j,k} y_{(i,j,k)} \log(p_{(i,j,k)}) + (1 - y_{(i,j,k)}) \log(1 - p_{(i,j,k)})$$

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction [ECCV 2016]

Volumetric grids: 3D-R2N2

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tanh(W_{s}x_{t} + U_{s}h_{t-1} + b_{s})$$

$$h_{t} = o_{t} \odot \tanh(s_{t})$$

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction [ECCV 2016]

Volumetric grids: 3D-R2N2

Reconstruction quality with respect the texture strength, averaging results from 20, 30 and 40 views.

Reconstruction quality with respect the number of views, averaging on all texture strengths.

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction [ECCV 2016]

Limitations

- Inefficient use of the representation space.
- Limited resolution 32^3 due to memory constraints (cubic growth).
- Modeling views as sequences instead of sets.
- Requires 3D supervision.
- Requires post-processing.

A Point Set Generation Network for 3D Object Reconstruction from a Single Image [CVPR 2017]

A Point Set Generation Network for 3D Object Reconstruction from a Single Image [CVPR 2017]

Data terms (not both at the same time):

• Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

• Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

Statistical term (not both at the same time):

• Minimum-of-N (MoN)

$$\underset{\Theta}{\operatorname{minimize}} \quad \sum_{\substack{r_j \sim \mathbb{N}(\mathbf{0}, \mathbf{I}) \\ 1 \leq i \leq r}} \{d(\mathbb{G}(I_k, r_j; \Theta), S_k^{gt})\}$$

Conditional VAE

input image	ours	ours (post- processed)	ground truth	3D-R2N2	
				and the same of th	
	-	Party.	Jan		
7			a Chron		
			MILE	de la	

category	Ours		3D-R2N2			
category	1 view	1 view	3 views	5 views		
plane	0.601	0.513	0.549	0.561		
bench	0.550	0.421	0.502	0.527		
cabinet	0.771	0.716	0.763	0.772		
car	0.831	0.798	0.829	0.836		
chair	0.544	0.466	0.533	0.550		
monitor	0.552	0.468	0.545	0.565		
lamp	0.462	0.381	0.415	0.421		
speaker	0.737	0.662	0.708	0.717		
firearm	0.604	0.544	0.593	0.600		
couch	0.708	0.628	0.690	0.706		
table	0.606	0.513	0.564	0.580		
cellphone	0.749	0.661	0.732	0.754		
watercraft	0.611	0.513	0.596	0.610		
mean	0.640	0.560	0.617	0.631		

Intersection over Union (IoU) on ShapeNet

A Point Set Generation Network for 3D Object Reconstruction from a Single Image [CVPR 2017]

Limitations

- Lack of details.
- Single view.
- Poor performance on unseen categories.
- Struggling with compositionality.
- Requires post-processing.

$$f_p^{l+1} = w_0 f_p^l + \sum_{q \in \mathcal{N}(p)} w_1 f_q^l$$

Uses vertex position c_{i-1} and known camera pose to project to feature space and estimate features using bilinear interpolation.

Data terms:

• Chamfer loss
$$l_c = \sum_p \min_q \|p-q\|_2^2 + \sum_p \min_q \|p-q\|_2^2$$

$$ullet$$
 Normal loss $l_n = \sum_p \sum_{q = rg \min_p (\|p-q\|_2^2)} \|\langle p-k, \mathbf{n}_q
angle\|_2^2$

Regularizations

$$ullet$$
 Laplacian loss $l_{lap} = \sum_p \|\delta_p' - \delta_p\|_2^2$ $\delta_p = p - \sum_{k \in \mathcal{N}(p)} rac{1}{\|\mathcal{N}(p)\|} k_p$

• Edge length loss
$$l_{loc} = \sum_{p} \sum_{k \in \mathcal{N}(p)} \|p - k\|_2^2$$

Threshold	au				2τ			
Category	3D-R2N2	PSG	N3MR	Ours	3D-R2N2	PSG	N3MR	Ours
plane	41.46	68.20	62.10	71.12	63.23	81.22	77.15	81.38
bench	34.09	49.29	35.84	57.57	48.89	69.17	49.58	71.86
cabinet	49.88	39.93	21.04	60.39	64.83	67.03	35.16	77.19
car	37.80	50.70	36.66	67.86	54.84	77.79	53.93	84.15
chair	40.22	41.60	30.25	54.38	55.20	63.70	44.59	70.42
monitor	34.38	40.53	28.77	51.39	48.23	63.64	42.76	67.01
lamp	32.35	41.40	27.97	48.15	44.37	58.84	39.41	61.50
speaker	45.30	32.61	19.46	48.84	57.86	56.79	32.20	65.61
firearm	28.34	69.96	52.22	73.20	46.87	82.65	63.28	83.47
couch	40.01	36.59	25.04	51.90	53.42	62.95	39.90	69.83
table	43.79	53.44	28.40	66.30	59.49	73.10	41.73	79.20
cellphone	42.31	55.95	27.96	70.24	60.88	79.63	41.83	82.86
watercraft	37.10	51.28	43.71	55.12	52.19	70.63	58.85	69.99
mean	39.01	48.58	33.80	59.72	54.62	69.78	47.72	74.19

F-score (%) on ShapeNet

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images [arXiv 2018]

Limitations

- Single view.
- Graph convolutional not based on geometric operator.
- Generates only meshes with genus 0.

Outline

- Introduction
- Motivation
- Classical methods
 - Geometric and Stereo
 - Limitations
- Deep learning approaches
 - Volumetric grids: 3D-R2N2
 - o Point clouds: PointOutNet
 - Meshes: Pixel2Mesh

THANK YOU!

Q & A