# PART 1 SQIsign

**WARNING!** 

- SQIsign is a difficult scheme, especially signing
- To keep this talk "down to earth", I will **simplify** a lot
- This will increase clarity and intuition by being **hand-wavy**, at the cost of rigor

# isogenies



#### Isogeny

- "nice" map  $\varphi$  (group homomorphism) between elliptic curves  $E \to E'$
- given by rational functions: a point  $(x,y) \in E$  is mapped to  $(f_1(x,y)/f_2(x,y), g_1(x,y)/g_2(x,y))$
- size of  $\ker \varphi$  is same as degree of  $\varphi$ !

## toy example

$$E: y^{2} = x^{3} + x \qquad \varphi \qquad E': y^{2} = x^{3} + 5$$

$$(x,y) \mapsto \left(\frac{x^{3} + x^{2} + x + 2}{(x-5)^{2}}, \frac{y(x^{3} - 4x^{2} + 2)}{(x-5)^{3}}\right) \quad \text{over } \mathbb{F}_{11}$$

#### **WARNING!**

- SQIsign is a difficult scheme, especially signing
- To keep this talk "down to earth", I will simplify a lot
- This will increase clarity and intuition by being hand-wavy, at the cost of rigor

# isogenies



### Isogeny

- "nice" map  $\varphi$  (group homomorphism) between elliptic curves  $E \to E'$
- given by rational functions: a point  $(x,y) \in E$  is mapped to  $(f_1(x,y)/f_2(x,y), g_1(x,y)/g_2(x,y))$
- size of  $\ker \varphi$  is same as degree of  $\varphi$ !

## toy example

$$E: y^2 = x^3 + x \qquad \qquad \varphi \qquad \qquad E': y^2 = x^3 + 5$$

$$(x,y) \mapsto \left(\frac{x^3 + x^2 + x + 2}{(x-5)^2}, \frac{y(x^3 - 4x^2 + 2)}{(x-5)^3}\right)$$
 over  $\mathbb{F}_{11}$ 

#### Can check

- this is a group homomorphism:  $\varphi(\mathcal{O}) = \mathcal{O}'$  and  $\varphi(P+Q) = \varphi(P) + \varphi(Q)$
- kernel:  $\varphi(P) = \mathscr{O}'$  when  $P = \mathscr{O}$  or  $x_P = 5$ , so P = (5,3) and P = (5,-3)
- so  $\varphi$  is of degree 3 and we can say E and E' are 3-isogenous