Building community developed open source infrastructure to support large-scale biology

Brad Chapman
Bioinformatics Core, Harvard Chan School
https://bcb.io
http://j.mp/bcbiolinks

23 September 2015

Overview

- My background
- Research scientist at a core facility
- The open source bioinformatics community
- Why you want to work as a research scientist
- How to prepare yourself

Undergrad Michigan State (Ecology)

https://en.wikipedia.org/wiki/Pinus_nigra

Undergrad Michigan State (Plant transformation)

PhD University of Georgia (Duplicate evolution)

Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication

*Plant Genome Mapping Laboratory and Departments of

[†]Plant Biology,

[‡]Genetics, and

§Crop and Soil Science, University of Georgia, Athens, GA 30602

Synthetic biology startup (2004-2009)

http://www.synthesis.cc/2009/04/on-the-demise-of-condon-devices.html

Bioinformatics core - Harvard Chan School

Powerful ideas for a healthier world

http://bioinformatics.sph.harvard.edu/

Overview

- My background
- Research scientist at a core facility
- The open source bioinformatics community
- Why you want to work as a research scientist
- How to prepare yourself

Practical

- Work in a support core
- Consulting
- Team of 8 researchers http://bioinformatics.sph.harvard.edu/people/
- Specialize, but also overlap
- Research scientists

http://www.sciencedirect.com/science/article/pii/S0968000414001728

Who we work with?

- Academic Researchers: Harvard Stem Cell Institute, Harvard Medical School, Harvard NeuroDiscovery Center, Massachusetts General Hospital
- Large consortium projects: Cure Alzheimer's, Global Alliance for Genomic Health
- Industry: AstraZeneca, Biogen, Merck
- Startups

Day to day work

- Collaboration with researchers
- Data analysis
- Teaching and training
- Large scale infrastructure development

Biological questions

- Alzheimer's large populations of affected families
- Cancer treatment detection of driver mutations, relapse after treatment
- HIV detection of low frequency drug resistant sub-populations

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

Scale: exome to whole genome

The haploid human genome sequence

https://www.flickr.com/photos/119980645@N06/

Overview

- My background
- Research scientist at a core facility
- The open source bioinformatics community
- Why you want to work as a research scientist
- How to prepare yourself

Large scale infrastructure development

- Find shared problems
- Community developed analyses
- Validation
- Scaling
- Supporting a community of users

White box software

Overview

https://github.com/chapmanb/bcbio-nextgen

Provides

- Community collected set of expertise
- Tool integration
- Validation outputs + automated evaluation
- Scaling
- Installation of tools and data

Solution

http://www.amazon.com/Community-Structure-Belonging-Peter-Block/dp/1605092770

Community: contribution

https://github.com/chapmanb/bcbio-nextgen

Community: documentation

https://bcbio-nextgen.readthedocs.org

Sustainability

A piece of software is being sustained if people are using it, fixing it, and improving it rather than replacing it.

http://software-carpentry.org/blog/2014/08/sustainability.html

Overview

- My background
- Research scientist at a core facility
- The open source bioinformatics community
- Why you want to work as a research scientist
- How to prepare yourself

Research scientist as a career - pros

- Wide range of projects
- Collaboration
- Respected
- Help others
- Grow and learn

Open source communities – pros

- Work on problems with impact
- Large set of peers
- Fortuitous interactions
- Transferable skills

Research scientist - cons

- Less control over overall biological questions
- Juggle more simultaneous projects

Overview

- My background
- Research scientist at a core facility
- The open source bioinformatics community
- Why you want to work as a research scientist
- How to prepare yourself

http://software-carpentry.org
http://mozillascience.org

Atlassian

http://github.com

https://bitbucket.org

Reproducible environments


```
http://jupyter.org/
http://ipython.org
http://www.rstudio.com/
```

Good practices = good science

http://shop.oreilly.com/product/0636920030157.do

OIBIF


```
http://www.open-bio.org
http://www.open-bio.org/wiki/BOSC_2014
http://usegalaxy.org
https://wiki.galaxyproject.org/Events/GCC2014
```

Summary

- Bioinformatics core at Harvard Chan School
- Collaborative research work
- Open source community
- Contribute to public health research

```
https://bcb.io
https://j.mp/bcbiolinks
```