目 录

一 实验要求	2
参考内容	3
数码管显示控制电路	
彩灯控制器电路设计	
利用 Quartusll 内建宏实现 1Hz 频率的时钟信号	11
DEO 外接引脚说明	

一实验要求

要求 1:参照参考内容,用 Quartus II 软件内嵌宏函数 lpm_counter 实现 50M 分频,输出频率为 1Hz 秒脉冲信号,用实验板上绿色 LED 灯观察。

要求 2: 参照参考内容中数码管显示控制电路设计方法,用 74161 二进制计数器、7447 七段译码器和若干门电路,用原理图输入方法实现在一个 7 段数码管上显示序列: 学号。

要求 3: 参照参考内容,用 74161 二进制计数器、74194 移位寄存器 和若干门电路,用原理图输入方法实现彩灯控制器电路设计。

验收要求: 将要求 2 和要求 3 同时在实验电路上实现,验收时能够说明电路设计的原理。

注:如果有同学用的电脑软件出现 Megafunction 无法启用,可利用绑定按键开关作为时钟信号,验收时需要演示波形仿真结果。

参考内容

数码管显示控制电路

一 实验要求

能自动循环显示数字 0, 1, 2, 3, 4, 1, 3, 0, 2, 4

二 实验原理:

- 1. 利用 74LS90、74LS00、74LS20 实现输出序列逻辑;
- 2. 经过卡诺图化简实现码制转换实现所需序列;
- 3. 用 74LS47 驱动七段译码管, 共阳极数码管显示。

三 实验设计过程:

1) 74LS90产生十进制(5421BCD)计数器和所设计的0,1,2,

3.	4.	1.	3.	0.	2.	4 序列。	对应加-	下表所示
υ,	17		υ,	Ο,	,	1/1/10	/_/_ \\ \\	1 42//1/11

Q_A	Q_D	Q_{C}	Q_B	F_D	F _C	F_B	F_A
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	1	0
1	1	0	0	0	1	0	0

2)卡诺图如下:

F_B:

QaQd	0 0	01	11	10
QcQB				
00	0	0	×	0
01	0	×	0	1
11	1	×	×	1
10	1	×	×	0

$$F_B = \overline{Q}_A Q_C + Q_A \overline{Q}_D Q_B$$

F_A:

QaQd	0 0	01	11	10
QcQ _B				
00	0	0	×	1
01	1	×	0	1
11	1	×	×	0
10	0	×	×	0

 $F_A = \overline{Q}_A Q_B + Q_A \overline{Q}_D \overline{Q}_C$

由真值表直接可以看出:

$$F_C = Q_D$$

 $F_D = 0$

因此实现的逻辑表达式为:

$$F_{A} = \overline{Q}_{A}Q_{B} + Q_{A}\overline{Q}_{D}\overline{Q}_{C}$$

$$F_{B} = \overline{Q}_{A}Q_{C} + Q_{A}\overline{Q}_{D}Q_{B}$$

$$F_{C} = Q_{D}$$

$$F_{D} = 0$$

四 整体原理电路图

图 1 数码管显示控制电路图

彩灯控制器电路设计

一 实验要求

设计一个能够控制八路彩灯的逻辑电路。要求彩灯组成四种种花型,花型 I——由两边向中间对称性依次亮,全亮后仍由两边向中间依次灭;花型 II——8 路灯分两半,从左自右顺次亮,再顺次灭;花型 III——8 路灯分两半,从右向左顺次亮,再从右向左顺次灭;花型 IV——由中间向两边对称性一次亮,全亮后仍由中间向两边依次灭。并且要求这四种花型循环出现。

二 工作原理

总体电路分为四大模块:模块一由 Quartus 宏函数 1pm_counter 提供时钟脉冲信号;模块二花型节拍控制电路由两片 74LS161 组成一个 32 进制计数器;模块三花型演示电路由两片 74LS194 来控制花型;模块四花型输出显示电路。总体原理框图如下:

2.1 节拍控制电路:由两片 74LS161 四位二进制同步计数器完成。除了有二进制加法计数功能外,还具有异步清零、同步并行置数、保持等功能,如表一所示

CLK	CLRN'	LDN'	ENP	ENT	工作状态
*	0	*	*	*	置零
†	1	0	*	*	预置数
*	1	1	0	1	保持

表一 74LS161 功能表

↑	1	1	*	0	保持 (但 C = 0)
↑	1	1	1	1	计数

当 CLRN'、LDN'、ENP、ENT 等于 1 时 74LS161 实现十六进制计数功能,记录 16 个状态。两片 74LS161 级联实现从 000000 到 011111 计数功能,再利用 74LS161(1)的 Q3 对 74LS194(2)的控制端 S1, S0 进行控制,以及 74LS161(2)的 Q0 对 74LS194(1)的控制端 S1, S0 进行控制。

图 2 74LS161 引脚图

2.2 花型演示电路:

74LS194 是一个 4 位双向移位寄存器, 它具有左移, 右移, 保持, 清零等如表二所示

RD'	S1	S0	工作状态
0	*	*	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行输入

表二 74LS194 功能表

在彩灯控制电路设计中只用了 74LS194 左移右移功能,来实现彩灯的花型,双向移位寄存器 74LS194 的控制端 S1=0, S0=1 时,进行右移, S1=1, S0=0 时,进行

图 3 74LS194 引脚图

三 设计步骤及方法

3.18位彩灯分为两部分

8位彩灯分为4个一组,用两个74LS194来实现,花型I——由两边向中间对称性依次亮,全亮后仍由两边向中间依次灭;花型II——8路灯分两半,从左自右顺次亮,再顺次灭;花型III——8路灯分两半,从右向左顺次亮,再从右向左顺次灭;花型IV——由中间向两边对称性依次亮,全亮后仍由中间向两边依次灭,所以通过对花型的分析可知,其中双向移位寄存器74LS194(1)的功能是前16节拍右移,后16节拍左移即先是S1=0,S0=1,后变成S1=1,S0=0.而74LS194(2)则前16节拍为先左移后右移后16节拍也是先左移后右移。根据分析,画出图表,如表三、表四所示。

3.2 低四位彩灯控制电路设计

表三 74LS194(1)控制状态表

两片 74LS161		74LS	194(1)	花型	
74161	(2) 74161 (1)	QAQD	S1	S0	
QA	QDQCQBQA				
0	0000	1000	0	1	从左向右亮(花型 I)
0	0001	1100	0	1	从左向右亮(花型 I)
0	0010	1110	0	1	从左向右亮(花型 I)
0	0011	1111	0	1	从左向右亮(花型 I)

0	0100	0111	0 1	从左向右灭(花型 I)
0	0101	0011	0 1	从左向右灭(花型 I)
0	0110	0001	0 1	从左向右灭(花型 I)
0	0111	0000	0 1	从左向右灭(花型 I)
0	1000	1000	0 1	从左向右亮(花型II)
0	1001	1100	0 1	从左向右亮(花型 II)
0	1010	1110	0 1	从左向右亮(花型II)
0	1011	1111	0 1	从左向右亮(花型 II)
0	1100	0111	0 1	从左向右灭(花型Ⅱ)
0	1101	0011	0 1	从左向右灭(花型II)
0	1110	0001	0 1	从左向右灭(花型II)
0	1111	0000	0 1	从左向右灭(花型II)
1	0000	0001	1 0	从右向左亮(花型 III)
1	0001	0011	1 0	从右向左亮(花型 III)
1	0010	0111	1 0	从右向左亮(花型 III)
1	0011	1111	1 0	从右向左亮(花型 III)
1	0100	1110	1 0	从右向左灭(花型 III)
1	0101	1100	1 0	从右向左灭(花型 III)
1	0110	1000	1 0	从右向左灭(花型 III)
1	0111	0000	1 0	从右向左灭(花型 III)
1	1000	0001	1 0	从右向左亮(花型 IV)
1	1001	0011	1 0	从右向左亮(花型 IV)
1	1010	0111	1 0	从右向左亮(花型 IV)
1	1011	1111	1 0	从右向左亮(花型 IV)
1	1100	1110	1 0	从右向左灭(花型 IV)
1	1101	1100	1 0	从右向左灭(花型 IV)
1	1110	1000	1 0	从右向左灭(花型 IV)
1	1111	0000	1 0	从右向左灭(花型 IV)

电路图中 74LS161(2)的 QA 取反与 74LS194(1)的 SO 连在一起, 74LS161(2)

的 QA 和 S1 直接连接,74LS194(1)的 QA 取反与本片的左移输入端 SL 连在一起,QD 取反与 SR 连在一起。

3.3 高四位彩灯控制电路设计

表四 74LS194 (2) 控制状态表

表四 (4LS194 (2)							
两	j片 74LS161	74LS194(2)			花型		
74161	(2) 74161 (1)	QAQD	S1	S0			
QA	QDQCQBQA						
0	0000	0001	1	0	从右向左亮(花型 I)		
0	0001	0011	1	0	从右向左亮(花型 I)		
0	0010	0111	1	0	从右向左亮(花型 I)		
0	0011	1111	1	0	从右向左亮(花型 I)		
0	0100	1110	1	0	从右向左灭(花型 I)		
0	0101	1100	1	0	从右向左灭(花型 I)		
0	0110	1000	1	0	从右向左灭(花型 I)		
0	0111	0000	1	0	从右向左灭(花型 I)		
0	1000	1000	0	1	从左向右亮(花型Ⅱ)		
0	1001	1100	0	1	从左向右亮(花型Ⅱ)		
0	1010	1110	0	1	从左向右亮(花型 II)		
0	1011	1111	0	1	从左向右亮(花型 II)		
0	1100	0111	0	1	从左向右灭(花型II)		
0	1101	0011	0	1	从左向右灭(花型Ⅱ)		
0	1110	0001	0	1	从左向右灭(花型II)		
0	1111	0000	0	1	从左向右灭(花型II)		
1	0000	0001	1	0	从右向左亮(花型 III)		
1	0001	0011	1	0	从右向左亮(花型 III)		
1	0010	0111	1	0	从右向左亮(花型 III)		
1	0011	1111	1	0	从右向左亮(花型 III)		
1	0100	1110	1	0	从右向左灭(花型 III)		
1	0101	1100	1	0	从右向左灭(花型 III)		
					· · · · · · · · · · · · · · · · · · ·		

1	0110	1000	1 0	从右向左灭(花型 III)
1	0111	0000	1 0	从右向左灭(花型 III)
1	1000	1000	0 1	从左向右亮(花型 IV)
1	1001	1100	0 1	从左向右亮(花型 IV)
1	1010	1110	0 1	从左向右亮(花型 IV)
1	1011	1111	0 1	从左向右亮(花型 IV)
1	1100	0111	0 1	从左向右灭(花型 IV)
1	1101	0011	0 1	从左向右灭(花型 IV)
1	1110	0001	0 1	从左向右灭(花型 IV)
1	1111	0000	0 1	从左向右灭(花型 IV)

所以电路图中 74LS194(2)的 QD 取反后连在右移输入端 SR 上,74LS194(2)的 QA 取反后连在左移输入端 SL 上,74LS161(1)的 QD 取反后连在 74LS194(2)的 S1 上,74LS194(2)的 S0 直接和 74LS161(1)的 QD 连接。

四 整体原理电路图

图 4 彩灯控制器电路图

利用 Quartus II 内建宏实现 1Hz 频率的时钟信号

第一步: 新建工程,并建立原理图文件

第二步:添加元件,选择"megafunction"

选择 "arithmetic"

选择 lpm_counter 宏后,单击 OK 按键。

单击 "Next"

第三步: 配置 lpm_counter 宏,选择 "How wide should the 'q'output bus be?"选择 **26bits** "What should the counter direction be?"选择 "UP only"。

选择"Which type of counter do you want?"选择**"Module,with a count modulus of"**并输入"50,000,000";"Do you want any optional additional ports?"不选择任何选项。

单击 "Next"

单击 "Next"

单击 "Finish"

单击 "Yes"

将生成的 Imp counter 的宏放置在原理图上。

添加 Input 引脚,将 Input 端命名为 clk。在锁定引脚时将 clk 端和内部 50M 时钟(PIN_G21 引脚)绑定。将宏 Ipm_counter0 的输出 q[25..0]用总线连接,不用连接任何端口。

用鼠标右键单击该总线,从菜单栏中单击"Properties"选项。

输入q[25..0],单击确定按钮。

用同样的方法给下图 74161 的 CLK 端接入引线

选中该引线右键单击,在弹出的菜单栏中选中"Properties"

将该引线命名为 q[25]

此时 74161CLK 时钟端信号频率为 1Hz。

DEO 外接引脚说明

拨动开关与Cyclone V FPGA之间的连接

拨动开关的引脚分配表

Signal Name	FPGA Pin No.	Description	
SW0	PIN_U13	Slide Switch[0]	
SW1	PIN_V13	Slide Switch[1]	
SW2	PIN_T13	Slide Switch[2]	
SW3	PIN_T12	Slide Switch[3]	
SW4	PIN_AA15	Slide Switch[4]	
SW5	PIN_AB15	Slide Switch[5]	
SW6	PIN_AA14	Slide Switch[6]	
SW7	PIN_AA13	Slide Switch[7]	
SW8	PIN_AB13	Slide Switch[8]	
SW9	PIN_AB12	Slide Switch[9]	

图5 发光二极管与Cyclone V FPGA之间的连接 表2 发光二极管的引脚分配表

Signal Name	FPGA Pin No.	Description
LEDR0	PIN_AA2	LED [0]
LEDR1	PIN_AA1	LED [1]
LEDR2	PIN_W2	LED [2]
LEDR3	PIN_Y3	LED [3]
LEDR4	PIN_N2	LED [4]
LEDR5	PIN_N1	LED [5]
LEDR6	PIN_U2	LED [6]
LEDR7	PIN_U1	LED [7]
LEDR8	PIN_L2	LED [8]
LEDR9	PIN_L1	LED [9]

板上提供了6个7段共阳极数码管,分别以HEX0到HEX5标注。它们如图所示方式连接到FPGA芯片上。当FPGA对应输出端口为低电平时,点亮数码管相应的段;当FPGA对应输出端口为高电平时,熄灭数码管相应的段。6个7段共阳极数码管的各段引脚与FPGA引脚引脚分配如表所示。

Cinnal Name	EDO A Dim Ma	Danawinstian .
Signal Name	FPGA Pin No.	Description
HEX00	PIN_U21	Seven Segment Digit 0[0]
HEX01	PIN_V21	Seven Segment Digit 0[1]
HEX02	PIN_W22	Seven Segment Digit 0[2]
HEX03	PIN_W21	Seven Segment Digit 0[3]
HEX04	PIN_Y22	Seven Segment Digit 0[4]
HEX05	PIN_Y21	Seven Segment Digit 0[5]
HEX06	PIN_AA22	Seven Segment Digit 0[6]
HEX10	PIN_AA20	Seven Segment Digit 1[0]
HEX11	PIN_AB20	Seven Segment Digit 1[1]
HEX12	PIN_AA19	Seven Segment Digit 1[2]
HEX13	PIN_AA18	Seven Segment Digit 1[3]
HEX14	PIN_AB18	Seven Segment Digit 1[4]
HEX15	PIN_AA17	Seven Segment Digit 1[5]
HEX16	PIN_U22	Seven Segment Digit 1[6]
HEX20	PIN_Y19	Seven Segment Digit 2[0]
HEX21	PIN_AB17	Seven Segment Digit 2[1]
HEX22	PIN_AA10	Seven Segment Digit 2[2]
HEX23	PIN_Y14	Seven Segment Digit 2[3]
HEX24	PIN_V14	Seven Segment Digit 2[4]
HEX25	PIN_AB22	Seven Segment Digit 2[5]
HEX26	PIN_AB21	Seven Segment Digit 2[6]
HEX30	PIN_Y16	Seven Segment Digit 3[0]
HEX31	PIN_W16	Seven Segment Digit 3[1]
HEX32	PIN_Y17	Seven Segment Digit 3[2]
HEX33	PIN_V16	Seven Segment Digit 3[3]
HEX34	PIN_U17	Seven Segment Digit 3[4]
HEX35	PIN_V18	Seven Segment Digit 3[5]
HEX36	PIN_V19	Seven Segment Digit 3[6]

PIN_U20	Seven Segment Digit 4[0]
	ocven ocginent bigit 4[0]
PIN_Y20	Seven Segment Digit 4[1]
PIN_V20	Seven Segment Digit 4[2]
PIN_U16	Seven Segment Digit 4[3]
PIN_U15	Seven Segment Digit 4[4]
PIN_Y15	Seven Segment Digit 4[5]
PIN_P9	Seven Segment Digit 4[6]
PIN_N9	Seven Segment Digit 5[0]
PIN_M8	Seven Segment Digit 5[1]
PIN_T14	Seven Segment Digit 5[2]
PIN_P14	Seven Segment Digit 5[3]
PIN_C1	Seven Segment Digit 5[4]
PIN_C2	Seven Segment Digit 5[5]
PIN_W19	Seven Segment Digit 5[6]
	IN_V20 IN_U16 IN_U15 IN_Y15 IN_P9 IN_N9 IN_M8 IN_T14 IN_P14 IN_C1 IN_C2

板上提供一个50MHz时钟信号,该时钟信号连接到FPGA中作为用户逻辑时钟使用。 实验板时钟分配框图如图8所示。时钟输入到FPGA的I/O引脚的相关引脚分配如表4所示。 注:实验中使用用PIN_M9管脚。

FPGA时钟输入的引脚分配表

Signal Name	FPGA Pin No.	Description
CLOCK_50	PIN_M9	50 MHz clock input(Bank 3B)
CLOCK2_50	PIN_H13	50 MHz clock input(Bank 7A)
CLOCK3_50	PIN_E10	50 MHz clock input(Bank 8A)
CLOCK4_50	PIN_V15	50 MHz clock input(Bank 4A)