

Yelp-Sentiment-Analysis

By Abdulrahman & Turki

Outline:

Project Scope

Data

EDA

NLP

Topic Modeling Clustering

Sentiment Review Classification

Recommendation System

Project Scope & Tools:

• Our goal is to build unsupervised Natural Language Processing (NLP) machine learning models to predict whether a business review text is positive or negative. Also, assigns topics(clustering) based on the raw text data to find out the business domains and implementing a recommendation system

jupyter

Yelp is one of the most famous business review app in the Western Hemisphere countries, with more than 52 million visitors to its mobile sites as of December 2020

Two Datasets imported from Yelp website(review & business)

Containing 500k rows and 14 columns
Sample with 10k rows

Data

EDA

Removing duplicates

Change or remove null values

Removing unwanted columns

Stripping values

Changing stars column to positive and negative

EDA

Word Cloud

NLP Pre-Processing

Removing punctuation, digits, different languages, custom stop-words, special characters and spelling errors.

Converting to lower case.

Lemmatization.

Vectorization.

Topic Modeling

LSA

Topics(2-10)

CV & TF-IDF

NMF

Topics(2-10)

CV & TF-IDF

Corex

Topics(2-10)

CV & TF-IDF

Best model was Count Vectorizer NMF with six topics

Count Vectorizer NMF

- Topic: 0(**Food menu**) sauce, menu, cheese, fresh, dish, sweet, pork, flavor, salad, meat, taste, beef, meal, rice, fish, spicy, lunch, soup, cream, hot
- Topic: 1(bars) bar, staff, night, drinks, table, drink, beer, area, coffee, hour, friends, happy, work, location, free, line, bartender, server, parking, friend
- Topic: 2(**Automotive**) car, customer, work, manager, rental, honda, phone, cars, company, dealership, hours, vehicle, business, days, drive, oil, sales, guy, change, appointment
- Topic: 3(Italian food) pizza, cheese, crust, sauce, topping, slice, sausage, salad, pepperoni, garlic, pie, slices, fresh, italian, delivery, bread, oven, half, dough, pasta
- Topic: 4(**restaurant**) restaurant, table, menu, meal, server, dinner, waitress, restaurants, waiter, seated, dining, dishes, wine, manager, tables, dish, reservation, dessert, party, family
- Topic: 5(**Asian food**) chicken, fried, rice, sandwich, salad, spicy, sauce, crisp, lunch, fries, hot, wings, sides, curry, thai, soup, juicy, beans, cheese, dry

K-means clustering Count Vectorizer

Recommendation System:

- Positive Recommendation System
- Negative Recommendation System

Negative Recommendation System:

- simple metric
- Example:

```
User 't5SRIRU6INiAyVkiMJhRPA'

Don't go to these businesses:
[('Prides Osteria'), ('Bonchon Salem'),
("Santarpio's Pizza")]

business 'Finz Seafood & Grill '
Similar businesses:
[('Scratch Kitchen', 2), ('Howling Wolf Taqueria', 2), ('Engine House Pizza', 2)]
```

Positive Recommendation System:

- SVD
- Example:

User ID# 2 is most similar to User ID# #1335

There are 1 businesses that user ID# 2 did not visit

1 businesses for User ID# 2 to check out:

['Yamato Sushi Restaurant']

- Sample of 11 user.
- User 9,8 and 10 are close

Sentiment Review Classification

	Model	Count Vectorizer			TF-IDF		
		Train	Validation	F1-SCORE	Train	Validation	F1-SCORE
	Logistic Regression	0.944	0.936	0.959	0.940	0.937	0.960
	MultinomialNB	0.891	0.891	0.930	0.898	0.898	0.937
	BernoulliNB	0.870	0.871	0.918	0.870	0.871	0.918
	Logistic Regression Weighted	0.938	0.927	0.952	0.934	0.927	0.953
	Ada Boost	0.868	0.869	0.919	0.868	0.868	0.919

Conclusion

- There was no overfit with high f1-score.
- Logistic regression was best model.
- For topics NMF(6) with count vectorizer was the best.
- Yelp reviews is more on restaurants and food.

	Count Vectorizer				
Model	train	test	F1-SCORE		
Logistic Regression	0.944	0.934	0.958		

Thank you

Any question?