

The BRAKER3 Genome Annotation Pipeline

Plant and Animal Genomes XXX January 15th 2023

> Lars Gabriel Katharina J. Hoff Tomáš Brůna Alexandre Lomsadze Mark Borodovsky Mario Stanke

Presenting author e-mail: lars.gabriel@uni-greifswald.de

Vorkflow

Results

Cummaru

BRAKER - Genome Annotation

Task

- Find locations of protein-coding genes
- Predict their gene structure

Evidence

Intrinsic: Nucleotide sequence:

• Predict gene structures ab initio using statistical models

Extrinsic: RNA-Seq reads, homologous proteins:

• E.g. infer exon borders from spliced alignments

PAG XXX

Overview

Overview

BRAKER - Overview

BRAKER

- Automated annotation of novel eukaryotic genomes
- Integrates extrinsic evidence, i.e. short read RNA-Seq, proteins

Gene Prediction Tools

- GeneMark: suite of self-training tools
- AUGUSTUS: highly accurate tool that requires a training gene set

TSEBRA

Combiner tool for BRAKER predictions

BRAKER1: Hoff et al. 2016. Bioinformatics. 32(5):767–9.
BRAKER2: Brûna, Hoff et al. 2021. NAR Genomics and Bioinform. 3(1):lqaa108.
TSEBRA: Gabriel et al. 2021. BMC Bioinformatics. 22: 566.

BRAKER3 - Experiments

Experiments

Accuracy assessment using genome-wide predictions of 6 species:

Species	Genome Size (Mb)	# Genes in Annotation
Arabidopsis thaliana (thale cress)	119	27,444
Caenorhabditis elegans (nematode)	100	20,172
Drosophila melanogaster (fruit fly)	137	13,928
Gallus gallus (chicken)	1,040	17,279
Mus musculus (mouse)	2,650	22,378
Solanum lycopersicum (tomato)	772	33,562

Accuracy metrics

Specificity [Sp]: Percentage of correctly found genes/transcripts/exons in the predicted gene set. Sensitivity [Sn]: Percentage of correctly found genes/transcripts/exons in the reference annotation.

BRAKER3 - Training Genes

Average specificity of training genes

High-Confidents (HC) training genes

- Inferred from assembled short read RNA-Seg
- Used to train AUGUSTUS and GeneMark gene models

Species: Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Gallus gallus, Mus musculus, and Solanum lycopersicum

BRAKER3 - TSEBRA

Average accuracy of genome-wide predictions

TSEBRA: Transcript selector for BRAKER

- Combines GeneMark-ETP and AUGUSTUS gene sets
- Uses the extrinsic evidence to compare and filter transcripts
- Enforces training genes

Species: Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Gallus gallus, Mus musculus, and Solanum lycopersicum

BRAKER3 Accuracy

Average accuracy of genome-wide predictions

Species: Arabidopsis thaliana Caenorhabditis elegans Drosophila melanogaster

Extrinsic evidence:

- Paired RNA-Seq short reads
- OrthoDB protein database (order excluded)

Regulte

BRAKER3 Accuracy

Average accuracy of genome-wide predictions

Species: Gallus gallus Mus musculus Solanum lycopersicum

Extrinsic evidence:

- Paired RNA-Seq short reads
- OrthoDB protein database (order excluded)

BRAKER3 - Usage and Runtime

Usage

Command line:

Runtime

- Average runtime for Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Gallus gallus, Mus musculus, Solanum lycopersicum.
- Runtime on a 48 core cluster:

	BRAKER1	BRAKER2	GM-ETP+	BRAKER3
Runtime [h]	06:26	09:01	06:03	17:55

Regulte

Regulte

BRAKER3 - Availability

BRAKER3

GitHub:

https://github.com/Gaius-Augustus/BRAKER

Singularity:

singularity build braker3.sif docker://teambraker/braker3:latest

singularity exec braker3.sif braker.pl [OPTIONS]

GeneMark-FTP

https://topaz.gatech.edu/GeneMark/etp.for_braker.tar.gz

Other Projects: GALBA

Availability

GitHub:

https://github.com/ Gaius-Augustus/GALBA

Singularity:

docker://katharinahoff/
galba-notebook:latest

Miniprot: Li, Heng. 2022. arXiv preprint. ar-Xiv:2210.08052.

GALBA with miniprot in Drosophila melanogaster

Other Projects

Summary

BRAKER - Fully automated genome annotation pipeline

Depending on available extrinsic evidence, executes one of three pipelines:

	short read RNA-Seq	protein database
BRAKER1	X	
BRAKER2		Χ
BRAKER3	X	X

Availability

GitHub:

https://github.com/ Gaius-Augustus/BRAKER/

• Singularity: docker:// teambraker/braker3:latest

Poster numbers: PE0922, PE0162

BRAKER3

- Much higher accuracy than previous BRAKER predictions, especially for large and complex genomes.
- Adds automated download and alignment of RNA-Seg libraries.

Summary

Acknowledgements

Funding

This research is supported by US National Institutes of Health grant GM128145 to Mark Borodovsky and Mario Stanke.

Co-Authors

Katharina J. Hoff Tomáš Brůna Alexandre Lomsadze Mark Borodovsky Mario Stanke

Availability

• BRAKER: https://github.com/Gaius-Augustus/BRAKER/

• GeneMark-ETP: https://topaz.gatech.edu/GeneMark/etp.for_braker.tar.gz

AUGUSTUS: https://github.com/Gaius-Augustus/Augustus
 TSEBRA: https://github.com/Gaius-Augustus/TSEBRA
 GALBA: https://github.com/Gaius-Augustus/Galba

Summary

References

Lomsadze et al. "Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm." Nucleic acids research 42.15 (2014): e119-e119.

Bruna et al. "GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins." NAR genomics and bioinformatics 2.2 (2020): Iqaa026.

Stanke et al. "Using native and syntenically mapped cDNA alignments to improve de novo gene finding." Bioinformatics 24.5 (2008): 637-644.

Hoff et al. "BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS." Bioinformatics 32.5 (2016): 767-769.

Brůna et al. "BRAKER2: Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database." NAR genomics and bioinformatics 3.1 (2021): Iqaa108.

Gabriel et al. "TSEBRA: Transcript Selector for BRAKER." BMC Bioinformatics 22: 566 (2021).

Tang et al. "Identification of protein coding regions in RNA transcripts." Nucleic acids research 43.12 (2015): e78-e78.

Wöhner et al. "The draft chromosome-level genome assembly of tetraploid ground cherry (Prunus fruticosa Pall.) from long reads." Genomics 113.6 (2021):4173-4183.

Kim, Daehwan, et al. "Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype." Nature Biotechnology 37.8 (2019): 907-915.

SRA Toolkit Development Team. "SRA Toolkit". (2020): https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit.

Li, Heng. "Protein-to-genome alignment with miniprot." arXiv preprint arXiv:2210.08052 (2022).

Vorkflow

Other Projects
Summary

PAG XXX