COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 07 Exercises

Dr. William M. Farmer McMaster University

Revised: February 14, 2020

Exercises

- 1. Construct deterministic finite automata $M = (Q, \Sigma, \delta, s, F)$ such that:
 - a. $\Sigma = \{a, b, \dots, z\}$ and L(M) contains the single string calculemus.
 - b. $\Sigma = \{a, b\} \text{ and } L(M) = \{x \in \Sigma^* \mid |x| \equiv 0 \text{ mod } 3\}.$
 - c. $\Sigma = \{0, 1\}$ and $L(M) = \{x \in \Sigma^* \mid x \text{ contains the string } 101\}.$
 - d. $\Sigma = \{0,1\}$ and L(M) is set of strings in Σ^* of the form 0^m1^n where $m,n \geq 1$.
 - e. $\Sigma = \{a, b\}$ and L(M) is the set of strings in Σ^* that contain at least three occurrences of bbb. Note: Overlapping is permitted so $bbbbb \in L(M)$.
 - f. $\Sigma = \{a, b\}$ and $L(M) = \{x_1 a x_2 \mid |x_1| \ge 3 \text{ and } |x_2| \le 4\}.$
- 2. Let $M=(Q,\Sigma,\delta,s,F)$ and $M'=(Q,\Sigma,\delta,s,Q\setminus F)$ be DFAs. Prove that $L(M')=\sim L(M)$.
- 3. Let Σ be a finite alphabet and $B \subseteq \Sigma^*$. B is reflexive if $\epsilon \in B$ and is transitive if $BB \subseteq B$. Prove that, if $A \subseteq \Sigma^*$, then A^* is smallest reflexive and transitive set containing A. That is, show that (1) $A \subseteq A^*$, (2) A^* is reflexive, (3) A^* is transitive, and (4) if B is any other reflexive and transitive set containing A, then $A^* \subseteq B$.
- 4. Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA. Prove by induction on |y| that, for all $x, y \in \Sigma^*$ and $q \in Q$,

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).$$