

MA-1002 CÁLCULO II SEGUNDO CICLO DE 2018 PRÁCTICA SOBRE SERIES NUMÉRICAS

1) Calcule el valor de convergencia de las siguientes series numéricas:

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \, 3^n}{2^{2n+1}}$$

$$R:\frac{2}{7}$$

(ii)
$$\sum_{n=3}^{\infty} \frac{2^{n+1}}{3^{n-1}}$$

$$R: \frac{16}{3}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \, 3^{2n-1}}{10^{n-2}} \qquad R: \, -\frac{300}{19}$$

$$R: -\frac{300}{19}$$

(iv)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

$$R: \frac{1}{2}$$

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

$$R:\frac{3}{4}$$

(vi)
$$\sum_{n=2}^{\infty} \ln\left(\frac{2n^2+n}{2n^2+n-1}\right) \qquad R: \ln\left(\frac{4}{3}\right)$$

(Sugerencia: primero verifique que:
$$ln\left(\frac{2n^2+n}{2n^2+n-1}\right) = ln\left(\frac{2n+1}{n+1}\right) - ln\left(\frac{2n-1}{n}\right)$$
)

Inspírese en el ejercicio anterior para encontrar el valor de:

$$\sum_{n=2}^{\infty} \ln\left(\frac{n^2}{n^2-1}\right)$$

- 2) Sea (y_n) , definida por: $y_n = \frac{\sqrt{n}}{n+1}$
 - (i) Muestre que (y_n) , es decreciente. (Sugerencia: Analice en variable continua.)
 - (ii) Calcule el límite de (y_n) .
 - (iii) Justifique por qué se puede afirmar que la siguiente serie es convergente.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}}{n+1}$$

(iv) Justifique por qué se puede afirmar que esta otra serie es divergente.

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$$

- (v) ¿Qué tipo de convergencia presenta la serie en (iii)?
- **3)** Sea (z_n) , definida por: $z_n = \frac{\ln n}{n}$
 - (i) Muestre que (z_n) , es decreciente $\forall n \geq 3$. (Sugerencia: Analice en variable continua.)
 - (ii) Calcule el límite de (z_n) .
 - (iii) Justifique por qué se puede afirmar que la siguiente serie es convergente.

$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{\ln n}{n}$$

(iv) Justifique por qué se puede afirmar que esta otra serie es divergente.

$$\sum_{n=3}^{\infty} \frac{\ln n}{n}$$

- (v) ¿Qué tipo de convergencia presenta la serie en (iii)?
- **4)** Sea (a_n) , definida por: $a_0 = 1$, $a_{n+1} = \frac{a_n}{3-a_n}$
 - (i) Demuestre por inducción que: $0 < a_n \le \frac{1}{2^n}$, $\forall n$.
 - (ii) Justifique por qué podemos afirmar que la siguiente serie converge absolutamente:

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

5) Muestre que las siguientes series convergen absolutamente:

(i)
$$\sum_{n=0}^{\infty} \frac{\cos(n^2+1)}{\sqrt{n^3+2}}$$

(ii)
$$\sum_{n=0}^{\infty} \frac{sen\left(\frac{n\pi}{2}\right) + cos\left(\frac{n\pi}{2}\right)}{n^p} ; con p > 1$$

6) Utilice el Criterio Integral para demostrar que la siguiente serie converge si p > 1 y diverge en caso contrario:

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^p n}$$

7) Analice la convergencia o divergencia de las siguientes series numéricas:

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2+1}}{(n+1)^2}$$

R: converge.

b)
$$\sum_{n=2}^{\infty} \left(\frac{2n+1}{n-1}\right)^n$$

R: diverge.

c)
$$\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots (2n-1)}{2^n \cdot n!}$$

R: diverge.

d)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{5 \cdot 7 \cdot 9 \cdots (2n+3)}$$

R: converge.

e)
$$\sum_{n=1}^{\infty} sen\left(\frac{1}{n^2}\right)$$

R: converge.

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

R: converge.

$$\sum_{n=1}^{\infty} \frac{n^n}{2^n \, n!}$$

R: diverge.