EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 07

Path Delay Testing

Definitions & Concept

Key Issues

- Delay test definition
- Circuit delays and event propagation
- Path-delay tests
 - Non-robust test
 - Robust test
 - Five-valued logic and test generation
- Path-delay fault (PDF) and other fault models
- Test application methods
 - Combinational, enhanced-scan and normal-scan
 - Variable-clock and rated-clock methods
- Advanced Techniques

Delay Test Definition

- A circuit that passes delay test must produce correct outputs when inputs are applied and outputs observed with specified timing.
- For a combinational or synchronous sequential circuit, delay test verifies the limits of delay in combinational logic.
- Delay test problem for asynchronous circuits is complex and not well understood.

Digital Circuit Timing

Circuit Delays

- Switching or inertial delay is the interval between input change and output change of a gate:
 - Depends on input capacitance, device (transistor) characteristics and output capacitance of gate.
 - Also depends on input rise or fall times and states of other inputs (second-order effects).
 - Approximation: fixed rise and fall delays (or min-max delay range, or single fixed delay) for gate output.
- Propagation or interconnect delay is the time a transition takes to travel between gates:
 - Depends on transmission line effects (distributed R, L, C parameters, length and loading) of routing paths.
 - Approximation: modeled as lumped delays for gate inputs.
- See next slide for some timing models.

Options for Inertial Delay (e.g. NAND)

Event Propagation Delays

- Single lumped inertial delay modeled for each gate
- PI transitions assumed to occur without time skew

Circuit Outputs

- Each path can potentially produce one signal transition at the output.
- The location of an output transition in time is determined by the delay of the path.
 - Fast transitions: transitions with delay $\leq T_{ck}$
 - Slow transitions: transitions with delay $> T_{ck}$
- If delay of a path increases/decreases, the corresponding output transitions move to right/left.

Key Assumption

- We usually assume the gate propagation delay is fixed and independent of input logic values. Therefore, it is assumed that if the circuit passes the test for a given fault, then that fault will not cause any incorrect circuit operation for any other sequence of input patterns.
 - —This may not be strictly what happens in a circuit but we need this assumption to make path-delay testing tractable.

Robust and Non-Robust Test

Robust vs. Non-Robust Test

- A two-pattern test (V1,V2) is a **non-robust** test for a path-delay fault (PDF), if and only if it satisfies the following conditions:
 - 1. It launches the desired logic transition in PIs of the targeted path
 - All off-path (side) inputs of the targeted path settle on the noncontrolling values under V2.
- A test for delay fault is said to be **robust** if it can detect a PDF independent of the delays in the rest of the circuit. It must satisfy:
 - 1. The conditions for the non-robust test
 - Whenever the logic transition at an on-path input is from a noncontrolling to a controlling, each corresponding off-path input should maintain a steady non-controlling value.

Singly-Testable Paths (Non-Robust Test)

- The delay of a target path is tested if the test propagates a transition via path to a path destination.
- Delay test is a combinational vector-pair, (V1,V2), that:
 - Produces a transition at path input.

don't

- Produces static sensitization -- All off-path inputs assume non-controlling states in V2.
 - A non-robust test allows the output to change before the on-path transition propagates along the tested path.
 - Due to propagation delay of the gate, a $1 \rightarrow 0$ is still created.

Static sensitization guarantees a test when the target path is the only faulty path. The test is, therefore, called non-robust. It is a test with minimal restriction. A path with no such test is a false path.

Robust Test

- A robust test guarantees the detection of a delay fault of the target path, irrespective of delay faults on other paths.
- A robust test is a combinational vector-pair, (V1,V2), that satisfies following conditions:
 - Produce real events (different steady-state values for V1 and V2) on all on-path signals.
 - All on-path signals must have controlling events arriving via the target path.
- A robust test is also a non-robust test.
- Concept of robust test is general robust tests for other fault models can be defined.

Robust Test Conditions

- Real events on target path.
- Controlling events via target path.

Robust vs. Non-Robust Test

 Another repetition of figures for an AND gate to show robust versus non-robust test better.

A Five-Valued Algebra (Robust & Non-Robust)

- Signal States: S0, U0 (F0), S1, U1 (R1), XX.
- On-path signals: U0=F0 (1 \rightarrow 0) and U1=R1 (0 \rightarrow 1).
- Off-path signals: U0 and U1.

Sensitizing Input Values

Robust

Non-Robust

gate type			
on-input transition	AND or NAND	OR or NOR.	
Rising(U1)	U1	U0	Off-path
Falling(U0)	U1	UO	inputs needed

- In backward propagation
 - In robust: S0 and U0 (also S1 and U1) are considered a conflict.
 - In non-robust, S0 and U0 are not a conflict and we will not have any S0 or S1 at the end.

Example (PDF: Rising on $x_3 \rightarrow c_2 \rightarrow c_3 \rightarrow z$)

Robust

— Test Vector $(x_1x_2x_3x_4x_5)$: $(V_1,V_2)=\{(0x00x),(0x100)\}$ OR $(V_1,V_2)=(S0,XX,U1,S0,U0)$

Non-Robust

—S0 becomes U0 for off-path inputs, requiring non-controlling only for the second vector

- Test Vector $(x_1x_2x_3x_4x_5)$: $(V_1,V_2)=\{(xx0xx),(0x100)\}$ OR $(V_1,V_2)=(U0,XX,U1,U0,U0)$

Robust Test Generation (Path P3)

Test for \downarrow P3 – falling transition through path P3: Steps A through E

Non-Robust Test Generation (Path P3)

Test for \downarrow P3 – falling transition through path P3: Steps A through E

Robust Test Generation Fails (Path P2)

Non-Robust Test Generation (Path P2)

Fault ↑P2 – rising transition through path P2 has no robust test.

(V1,V2)=(x0x,110)

Advanced Techniques

Slow-Clock Test

Review - Scan as a DFT Method

- In scan DFT (design for testability) methodology, flip-flops (or latches) designed to support two modes
 - Normal mode: Flip-flops configured as in the original circuit
 - —<u>Test mode</u>: Flip-flops configured as one or more shiftregisters, called <u>scan registers</u> or <u>scan chains</u>
- Most Common SSF cell

Review - Scan Structure

- Testing using scan
 - In normal mode, responses at state outputs captured in flip-flops
 - Circuit then configured in the test mode
 - Scan registers clocked
 - The output of the last flip-flop in scan chain observed
 - At the same time, values to be applied at state inputs in the subsequent test shifted into flip-flops

Normal-Scan Test – Two Special Cases

- V2 state/vector is generated
 - (A) scan-shift delay test: V2 = one-bit scan shift of V1, or
 - (B) broad-side delay test: V2 = f(V1) = V1 applied in functional mode.

latched V2 PIs V1 PIs applied applied Path Result Gen. V2 Scanin tested scanout V1 states I states Slow clock Rated CK period TC Scan mode Scan mode **(A)** Slow CK period TC Normal mode Scan mode Scan mode **(B)**

CK: system clock

TC: test control (TC=1 normal mode)

SFF: scan flip-flop

Result

Enhanced-Scan Test – General Case

- Shift the state bits of V1 serially (TC=0 and apply CK). Use slow clock to minimize power dissipation.
- Transfer V1 to hold latches by activating HOLD while the PI bits of V1 are applied at PI.
- Shift the state bits of V2. Activate HOLD and apply PI bits of V2. This makes V1 \rightarrow V2

Enhanced-Scan Test (cont.)

- Structure and operation of scan-hold flip-flop (SHFF):
 - The control input *HOLD* keeps the output steady at previous state of flip-flop.
 - —Applications:
 - + Reduce power dissipation during scan
 - + Isolate asynchronous parts during scan test
 - + Delay testing (applying V1→V2 pair)

At-Speed Test

- At-speed test means application of test vectors at the rated-clock speed.
- Two methods of at-speed test.
- External test:
 - Vectors may test one or more functional critical (longest delay) paths and a large percentage (~100%) of transition faults.
 - High-speed testers are expensive.
- Built-in self-test (BIST):
 - Hardware-generated random vectors applied to combinational or sequential logic.
 - Only clock is externally supplied.
 - Non-functional paths that are longer than the functional critical path can be activated and cause a good circuit to fail.
 - Some circuits have initialization problem.

Timing Design & Delay Test

- Timing simulation:
 - Critical paths are identified by static (vector-less) timing analysis tools like *Primetime* (Synopsys).
 - Timing or circuit-level simulation using designer-generated functional vectors verifies the design.
- Layout optimization: Critical path data are used in placement and routing. Delay parameter extraction, timing simulation and layout are repeated for iterative improvement.
- Testing: Some form of at-speed test is necessary. PDFs for critical paths and all transition faults are tested.

Simplifications in Path-Delay Test

- Nodes unrelated to the path may affect the path delay (e.g. due to capacitive couplings, etc.)
- Different gate inputs are not equivalent from the electrical point of view. E.g. in CMOS NAND, delay of 11→00 can be 60-90% higher than 11→01 (or 11→10).
- Transitions at off-path fanouts may result in considerably longer (or shorter) delays on the path under test.

Output Waveform Analysis

- A post-sampling waveform analysis is performed to conclude the test result.
 - The output of a fault-free circuit will be stable after the sampling time
 - The output of a faulty circuit will have transitions which will be caught.
- When (V1,V2) is applied, after clock period (T_c), if an incorrect value is latched then the PDF is detected. A stability checker can detect hazards or faulty transitions even if the correct value is latched.

Digital Oscillation Testing

- Make sure there are an odd number of inverters in the test loop. DF and SAF manifest themselves by causing a deviation from the fault-free oscillation frequency.
 - The $x_2c_1c_2z$ path is sensitized and converted to an oscillator by test vector $(x_1,x_2,x_3,x_4)=(0,z,0,1)$. Note that SA0 or SA1 on this path will not cause any oscillation.
 - To sensitize x_1c_2z , use an external inverter. The vector that sensitize this path is: $(x_1,x_2,x_3,x_4)=(z,1,x,1)$.

Generalization of Oscillation Testing

