Assignment 2

October 30, 2024

1 Assignment 2

1.1 Data Management for Edge Histograms

```
[29]: import os
     import warnings
     import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import (
         accuracy_score,
         classification_report,
         confusion_matrix,
         f1_score,
     from sklearn.model_selection import StratifiedKFold, cross_val_score,
      from sklearn.naive_bayes import GaussianNB
     from sklearn.preprocessing import StandardScaler
     from sklearn.svm import LinearSVC
     from sklearn.tree import DecisionTreeClassifier
     warnings.filterwarnings("ignore")
```

```
[30]: def load_edge_histograms(edge_histograms_dir="./EdgeHistogram"):
    dog_classes = [
        "n02089078-black-and-tan_coonhound",
        "n02091831-Saluki",
        "n02092002-Scottish_deerhound",
        "n02095314-wire-haired_fox_terrier",
    ]
    dog_labels = [
        "Black and Tan Coonhound",
        "Saluki",
        "Scottish Deerhound",
        "Wire-haired Fox Terrier",
```

```
X = []
v = []
for dog_class in dog_classes:
    class_dir = os.path.join(edge_histograms_dir, dog_class)
    if not os.path.isdir(class_dir):
        print(f"Directory not found: {class_dir}")
        continue
    for file in os.listdir(class dir):
        if file.endswith(".npy"):
            histogram_path = os.path.join(class_dir, file)
            hist = np.load(histogram_path)
            X.append(hist)
            y.append(dog_class)
X = np.array(X)
y = np.array(y)
print(f"Loaded {X.shape[0]} samples with {X.shape[1]} features.")
return X, y, dog_classes, dog_labels
```

1.2 Data Preprocessing

1.3 Model Evaluation

```
annot=True,
        fmt="d",
        cmap="Blues",
        xticklabels=classes,
        yticklabels=classes,
    plt.xlabel("Predicted")
    plt.ylabel("True")
    plt.title(title)
    plt.show()
def evaluate_model(model, X_train, y_train, X_test, y_test, model_name,_
 ⇔classes):
    cv_score = perform_cross_validation(model, X_train, y_train)
    print(f"{model_name} Mean CV Accuracy: {cv_score:.4f}")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    plot_confusion_matrix(y_test, y_pred, classes, f"{model_name} Confusion_

→Matrix")
    accuracy = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred, average="weighted")
    print(f"{model_name} Test Accuracy: {accuracy:.4f}")
    print(f"{model_name} Test F1-Score: {f1:.4f}")
    print(f"{model_name} Classification Report:")
    print(classification_report(y_test, y_pred, target_names=classes))
    return accuracy, f1, cv score
```

1.4 SVM Model Selection

```
[33]: def perform_svm_cross_validation(X_train, y_train, C_values=[0.1, 1, 10, 100]):
          validation_errors_standard = []
          training_errors_standard = []
          validation_errors_stratified = []
          training_errors_stratified = []
          for C in C_values:
              svm = LinearSVC(C=C, max iter=1000, random state=42)
              scores = cross_val_score(svm, X_train, y_train, cv=5,_
       ⇔scoring="accuracy")
              validation_errors_standard.append(1 - scores.mean())
              svm.fit(X_train, y_train)
              train_pred = svm.predict(X_train)
              training errors_standard.append(1 - accuracy_score(y_train, train_pred))
          skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
          for C in C values:
              svm = LinearSVC(C=C, max_iter=1000, random_state=42)
```

```
scores = cross_val_score(svm, X_train, y_train, cv=skf,_
 ⇔scoring="accuracy")
        validation_errors_stratified.append(1 - scores.mean())
        svm.fit(X_train, y_train)
        train_pred = svm.predict(X_train)
        training_errors_stratified.append(1 - accuracy_score(y_train,_
 →train pred))
    print("Performed cross-validation for SVM with different C values.")
    return (
        validation_errors_standard,
        training_errors_standard,
        validation errors stratified,
        training_errors_stratified,
    )
def plot_svm_error_curves(C_values, errors):
    val_std, train_std, val_strat, train_strat = errors
    plt.figure(figsize=(10, 6))
    plt.plot(
        C_values,
        np.array(val_std) * 100,
        marker="o",
        label="Validation Error (Standard CV)",
    )
    plt.plot(
        C values,
        np.array(train_std) * 100,
        marker="o",
        label="Training Error (Standard CV)",
    )
    plt.plot(
        C_values,
        np.array(val_strat) * 100,
        marker="s",
        label="Validation Error (Stratified CV)",
    )
    plt.plot(
        C_values,
        np.array(train_strat) * 100,
        marker="s",
        label="Training Error (Stratified CV)",
    )
    plt.xlabel("C")
    plt.ylabel("Mean Error (%)")
    plt.title("Error Rates vs C for LinearSVC")
    plt.legend()
```

```
plt.grid(True)
plt.show()
```

1.5 Main Execution

```
[34]: X, y, dog_classes, dog_labels = load_edge_histograms()
      print(f"Total samples: {X.shape[0]}")
      print(f"Feature dimension: {X.shape[1]}")
      print(f"Classes: {np.unique(y)}")
      X_train_scaled, X_test_scaled, y_train, y_test = split_and_scale_data(X, y)
      print(f"Training samples: {X_train_scaled.shape[0]}")
      print(f"Test samples: {X_test_scaled.shape[0]}")
      models = {
          "GaussianNB": GaussianNB(),
          "DecisionTree": DecisionTreeClassifier(max_depth=10, random_state=42),
          "RandomForest": RandomForestClassifier(random state=42),
      }
      results = {}
      for name, model in models.items():
          print(f"Evaluating {name}...")
          results[name] = evaluate_model(
              model, X_train_scaled, y_train, X_test_scaled, y_test, name, dog_classes
          )
```

Loaded 794 samples with 36 features.

Total samples: 794

Feature dimension: 36

Classes: ['n02089078-black-and-tan_coonhound' 'n02091831-Saluki' 'n02092002-Scottish_deerhound' 'n02095314-wire-haired_fox_terrier']

Training samples: 635

Test samples: 159

Training samples: 635

Test samples: 159

Evaluating GaussianNB...

Cross-validation accuracy: 0.3323

GaussianNB Mean CV Accuracy: 0.3323

GaussianNB Test Accuracy: 0.3522 GaussianNB Test F1-Score: 0.3347 GaussianNB Classification Report:

	precision	recall	f1-score	support
	•			
n02089078-black-and-tan_coonhound	0.28	0.16	0.20	32
n02091831-Saluki	0.45	0.22	0.30	45
n02092002-Scottish_deerhound	0.37	0.55	0.44	49
n02095314-wire-haired_fox_terrier	0.30	0.42	0.35	33
accuracy			0.35	159
macro avg	0.35	0.34	0.32	159
weighted avg	0.36	0.35	0.33	159

Evaluating DecisionTree...

Cross-validation accuracy: 0.3244

DecisionTree Mean CV Accuracy: 0.3244

DecisionTree Test Accuracy: 0.3836 DecisionTree Test F1-Score: 0.3636 DecisionTree Classification Report:

-	precision	recall	f1-score	support
n02089078-black-and-tan_coonhound n02091831-Saluki	0.17 0.52	0.12 0.31	0.15 0.39	32 45
n02092002-Scottish_deerhound	0.45	0.69	0.54	49
n02095314-wire-haired_fox_terrier	0.27	0.27	0.27	33
accuracy			0.38	159
macro avg	0.35	0.35	0.34	159
weighted avg	0.38	0.38	0.36	159

 ${\tt Evaluating\ RandomForest...}$

Cross-validation accuracy: 0.3512 RandomForest Mean CV Accuracy: 0.3512

RandomForest Test Accuracy: 0.4088 RandomForest Test F1-Score: 0.3885 RandomForest Classification Report:

•	precision	recall	f1-score	support
n02089078-black-and-tan_coonhound	0.35	0.19	0.24	32
n02091831-Saluki	0.44	0.40	0.42	45
n02092002-Scottish_deerhound	0.45	0.67	0.54	49
n02095314-wire-haired_fox_terrier	0.30	0.24	0.27	33
accuracy			0.41	159
macro avg	0.38	0.38	0.37	159
weighted avg	0.39	0.41	0.39	159

1.5.1 Visual Comparison of Confusion Matrices

Looking at the three confusion matrices for RandomForest, DecisionTree, and GaussianNB:

- RandomForest appears to be the best method based on visual inspection because:
 - It shows the strongest diagonal values (especially for Scottish deerhound with 33 correct predictions)
 - Has fewer misclassifications off the diagonal
 - Shows more consistent performance across all classes
 - The color intensity on the diagonal is darker blue compared to other methods

1.5.2 Mean Validation Accuracies (5-fold cross-validation)

From the output shown:

- GaussianNB: 0.3323
- For RandomForest and DecisionTree, the cross-validation accuracies aren't directly visible in the provided output

Based on the available information from GaussianNB's mean validation accuracy of 0.3323 (33.23%), we cannot make a complete comparison. However, given the stronger confusion matrix performance of RandomForest, it likely has the highest mean validation accuracy.

1.5.3 Test Set Accuracies

Calculating from the confusion matrices:

RandomForest: 40.88%
DecisionTree: 38.36%
GaussianNB: 35.22%

RandomForest shows the highest test set accuracy.

1.5.4 F-measure Comparison

The F-measure (F1 score) considers both precision and recall. Looking at the confusion matrices:

RandomForest shows better balance between precision and recall across classes, especially for:

- Scottish deerhound (high true positives, lower false positives)
- Saluki (good balance between precision and recall)

Therefore, RandomForest appears to have the highest overall F-measure among the three methods.

Conclusion: RandomForest consistently performs the best across all evaluation metrics - visual inspection, test set accuracy, and F-measure analysis.

1.6 SVM Analysis for Two Classes

```
[35]: selected_classes = dog_classes[:2]
mask_train = np.isin(y_train, selected_classes)
X_train_two = X_train_scaled[mask_train]
y_train_two = y_train[mask_train]
```

```
mask_test = np.isin(y_test, selected_classes)
X_test_two = X_test_scaled[mask_test]
y_test_two = y_test[mask_test]
print(f"Selected Classes Training samples: {X_train_two.shape[0]}")
print(f"Selected Classes Test samples: {X_test_two.shape[0]}")
(
   validation errors standard,
   training_errors_standard,
   validation errors stratified,
   training_errors_stratified,
) = perform_svm_cross_validation(X_train_two, y_train_two)
# Print table of results
C_{values} = [0.1, 1, 10, 100]
print("\nResults for different C values:")
print("-" * 80)
print(
   f"{'C':<10} {'Val Error (Std)':<15} {'Train Error (Std)':<15} {'Val Error⊔
)
print("-" * 80)
for i, C in enumerate(C_values):
   print(
       f"{C:<10.1f} {validation_errors_standard[i]*100:>13.2f}%__
 ⇔{validation_errors_stratified[i]*100:>14.2f}%
 print("-" * 80)
# Plot error curves
plot_svm_error_curves(
   C_values,
       validation_errors_standard,
       training_errors_standard,
       validation_errors_stratified,
       training_errors_stratified,
   ),
)
best_C_index = np.argmin(validation_errors_stratified)
best_C = C_values[best_C_index]
print(f"\nBest C value (lowest stratified validation error): {best_C}")
```

```
final_svm = LinearSVC(C=best_C, max_iter=1000, random_state=42)
final_svm.fit(X_train_two, y_train_two)
test_pred = final_svm.predict(X_test_two)
test_error = 1 - accuracy_score(y_test_two, test_pred)
print(f"Test_Error_with_C={best_C}: {test_error*100:.2f}%")
```

Selected Classes Training samples: 305

Selected Classes Test samples: 77

Performed cross-validation for SVM with different C values.

Results for different C values:

C (Strat)	Val Error (Std)	Train Error (Std)	Val Error (Strat)	Train Error
0.1	41.97%	32.46%	42.62%	32.46%
1.0	41.31%	32.46%	43.61%	32.46%
10.0	40.98%	32.46%	43.61%	32.46%
100.0	40.98%	32.46%	43.61%	32.46%

Best C value (lowest stratified validation error): 0.1 Test Error with C=0.1: 36.36%

1.6.1 Analysis of Error Curves and C Values

1. Lowest Mean Error for Each Curve:

- Standard CV Validation Error: C = 10.0 or 100.0 (40.98%)
- Standard CV Training Error: Constant at 32.46% for all C values
- Stratified CV Validation Error: C = 0.1 (42.62%)
- Stratified CV Training Error: Constant at 32.46% for all C values

2. Model Complexity and C Parameter:

- The C parameter in SVM controls the trade-off between maximizing the margin and minimizing the classification error
- Smaller C values (e.g., 0.1):
 - Create larger margins
 - Allow more classification errors
 - Result in simpler, more regularized models
- Larger C values (e.g., 100):
 - Create smaller margins
 - Allow fewer classification errors
 - Result in more complex models

3. Overfitting/Underfitting Analysis:

- There is a consistent gap between training error (32.46%) and validation error (40-43%) across all C values
- This gap indicates some degree of overfitting, as the model performs significantly better on training data than validation data
- However, the relatively stable error rates across different C values suggest that the model's complexity isn't the main cause of overfitting
- The model doesn't show clear signs of underfitting as the training error remains stable and relatively low

1.6.2 Test Set Performance

Using the best C value (C = 0.1) from stratified cross-validation:

- Test Error: 36.36%
- This is actually better than both the validation and training errors, suggesting that the model generalizes well to unseen data despite the apparent overfitting observed during cross-validation