2024 高教社杯全国大学生数学建模竞赛

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称"竞赛章程和参赛规则",可从 http://www.mcm.edu.cn 下载)。

我们完全清楚,在竞赛开始后参赛队员不能以任何方式,包括电话、电子邮件、"贴吧"、QQ群、微信群等,与队外的任何人(包括指导教师)交流、讨论与赛题有关的问题,无论主动参与讨论还是被动接收讨论信息都是严重违反竞赛纪律的行为。

我们完全清楚,在竞赛中必须合法合规地使用文献资料和软件工具,不能有任何侵犯知识产权的行为。否则我们将失去评奖资格,并可能受到严肃处理。

我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从 A/B/C/D/E 中选择一项均	真写): _	C			
我们的报名参赛队号(12位数字全国统一编号):	C202	4090012	213		
参赛学校(完整的学校全称,不含院系名):		复旦大	学		
参赛队员 (打印并签名): 1. 王思宇 1111					
2 吕天一					
3 周思远					
指导教师或指导教师组负责人(打印并签名):					
(指导教师签名意味着对参赛队的行为和论文的	真实性兒	负责)			
-	¬ ₩п	2024	F 0	п л	П
	∃期:	2024	年 9	月 7	H

(请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面, 注意电子版论

文中不得出现此页。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

赛区评阅编号:	全国评阅编号:	
(由赛区填写)	(全国组委会填写)	
-		

2024 高教社杯全国大学生数学建模竞赛

编号专用页

赛区评阅记录 (可供赛区评阅时使用):

	· · · · · · · · · · · · · · · · · · ·			
评阅人				
备注				

送全国评阅统一编号: (赛区组委会填写)

(请勿改动此页内容和格式。此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页。)

基于规划模型的农作物种植策略优化

摘要

农业作为乡村经济的核心产业,其种植策略的优化不仅影响着农民的收益,也对生态环境和资源的合理利用起着关键作用。本文通过建立受多种因素影响的种植策略规划模型,研究在有限的耕地资源上制定合理的农作物种植策略具有重大的现实意义。

本研究针对华北山区某乡村的农作物种植策略优化问题,旨在制定 2024-2030 年期间的最优种植方案,以最大化经济效益,并应对市场不确定性、政策变化及环境保护需求。在农业发展面临气候变化、市场波动和资源限制的背景下,优化种植策略对于提高农业生产效率、增加农民收入以及促进乡村经济的可持续发展具有重要意义。本文通过建立一系列数学模型,系统分析了不同情境下的农作物种植策略,并为该乡村提供了科学的决策依据和实际指导。

首先,针对问题一,我们假设未来农作物的销售量、种植成本、亩产量和销售价格保持相对稳定,构建了一个线性规划模型,将种植面积和作物种类作为决策变量,目标是最大化总收益(作物销售收入减去种植成本)。模型的约束条件包括不同类型土地(如平旱地、梯田、山坡地和水浇地)和大棚的种植限制、重茬限制(防止相同作物连续种植导致的减产)、豆类作物的种植要求(三年内至少种植一次豆类作物),以及作物产量和销售量的限制。通过求解该模型,得到了在稳定市场条件下的最优种植方案。结果显示,在所有地块合理分配作物后,总收益较 2023 年提升了?,并且农作物的分布更为均匀,有效降低了管理成本和风险。

关键字: 农作物种植优化,线性规划,鲁棒优化,多目标优化,不确定性分析,政策与环境因素

一、问题重述

本研究聚焦于华北山区某乡村的农作物种植策略优化问题,旨在通过科学的模型和方法提升乡村的经济效益。研究的核心问题是如何在未来七年(2024-2030年)内,在多种市场和环境条件下,优化农作物的种植方案,以实现经济收益最大化。

具体来说,本研究将问题划分为以下几个部分:最优种植方案的制定:在假设未来销售量、种植成本、亩产量和销售价格稳定的条件下,确定各类土地和大棚上最优的作物种植组合,目标是最大化总收益。应对不确定性条件的优化:在考虑未来销售量、价格、气候变化和种植成本等不确定因素的影响下,优化种植策略以确保收益的稳定性和风险的最小化。综合考虑作物间关系的优化:进一步分析作物之间的替代性和互补性,以及销售量、价格和成本之间的相关性,制定一个综合效益更高的种植方案。(政策与环境因素的整合:纳入政策变化和环境保护要求(如碳排放和水资源限制),制定一个在经济效益、政策合规性和环境友好性方面表现最佳的种植策略。)本研究将通过建立线性规划模型和多目标优化模型,对上述问题进行系统分析和优化。

二、问题分析

问题一的分析在假设未来几年农作物的销售量、种植成本、亩产量和销售价格保持相对稳定的前提下,问题的目标是为该乡村在 2024-2030 年期间制定一个最优的农作物种植方案,以最大化其经济效益。

2.1 问题一的分析

在假设未来几年农作物的销售量、种植成本、亩产量和销售价格保持相对稳定的前提下,问题一的目标是为该乡村在 2024-2030 年期间制定最大化其经济效益的农作物种植方案。因此,该方案需要综合考虑多种因素,包括不同土地类型的种植条件、作物的分布均匀性以及种植过程中所涉及的各种限制条件。为实现本目标,我们采用线性规划模型,将作物种类对应的种植面积以及是否种植该作物作为决策变量,并将模型的目标函数设定为总收益,即所有作物的销售收入减去相应的种植成本,目标函数可以表示为:

$$\zeta = \sum_{c=1}^{n} \sum_{r=1}^{m} (P_{c,s} \cdot Y_{c,r} \cdot A_{c,r,y,s} - C_{c,r} \cdot A_{c,r,y,s}) \tag{1}$$

该模型的约束条件包括多方面的要求: 首先,不同类型的土地(如平旱地、梯田、山坡 地和水浇地)和大棚具有各自适宜种植的作物类型,因此需限制作物的种植地;其次, 需遵循重茬限制,确保同一地块内不允许连续种植相同的作物,以避免减产风险;此外, 还要满足豆类作物的种植要求,即在 2024-2030 年期间,每个地块或大棚三年内至少种植一次豆类作物;其次,考虑到市场销售情况,每种作物的总产量不能超过其预期销售量,以避免因产量过剩而导致的滞销或降价处理的经济损失;同时,方案还需考虑作物分布的均匀性,确保种植过程便于管理,避免过于分散或种植面积过小的情况。在模型构建中,需要假设未来几年内各类作物的销售量和价格保持稳定,每种作物的亩产量和种植成本不变。这意味着可以使用 2023 年的数据作为模型输入,包括各类作物的亩产量、种植成本、销售价格和销售量,以及各个地块和大棚的类型、面积和种植历史数据,这些数据将用来设定模型的参数和约束条件。总而言之,我们需要构建一个以最大化总收益为目标的目标函数,同时建立相应的涵盖种植类型、重茬限制、豆类种植要求等多个方面的约束条件。通过使用线性规划求解算法来求解该模型,并验证结果是否符合所有的约束条件。最终,通过调整模型参数和约束条件,可以进一步优化方案,以确保其在实际操作中具备可行性和最大化经济效益的潜力。通过这样的分析方式,可以得出符合 2024-2030 年经济效益最大化目标的最优种植方案。

三、模型假设

假设在 2024 至 2030 年期间,所有农作物的销售价格和预期销售量保持相对稳定,波动范围在 $\pm 5\%$ 以内。对于特定作物(如小麦和玉米),其未来的预期销售量平均年增长率为 5% 至 10%。

四、符号说明

以下是模型中使用的主要符号:

符号	说明	单位
$P_{c,s}$	指定作物在指定季节的 单位重量销售价格	元/斤
$Y_{c,r}$	指定作物在指定地块的 单位面积产量	斤/亩
$C_{c,r}$	指定作物在指定地块的 单位面积成本	元/亩
$A_{c,r,y,s}$	指定作物在指定地块在指定年份在指定季节的种植面积(决策变量)	亩
$E_{c,s}$	指定作物在指定季节的 预期销售量	斤
r	reduction rate	
ζ	总收益	元

五、准备工作/预处理

5.1.csv 文件的生成

我们发现即使 panda 库中有 read_excel() 函数可以直接读取附件中的.xlsx 文件,但是其有一系列问题,例如.xlsx 中合并的单元格会导致数据读取错误,只有第一个单元格的数据能被读取,并且读取的速度较慢等,因此我们选择将数据转换为.csv 格式。.csv 作为文本格式,相较于.xlsx 格式更加方便处理。因此,我们将原始数据转换为.csv 格式,以便于后续的数据处理和模型构建。src/utils/xlsx to csv/main.py 中详细记录了生成.csv 文件的源代码。

5.2 full table.csv 的生成

在仔细阅读附件中的数据后,我们发现附件中的数据分为两部分,一部分是各类农作物的种植成本、亩产量、销售价格和预期销售量等数据,另一部分是各地块和大棚的类型、面积和种植历史数据。有一个很大的问题是为了方便后续的数据处理和模型构建,我们将这两部分数据合并为一个完整的数据表,即 full_table.csv。full_table.csv 中包含以下数据:种植地块,作物编号,作物名称,作物类型,种植面积/亩,种植季次,地块类型,亩产量/斤,种植成本/(元/亩),销售单价/(元/斤),预期销售量/斤,平均价格/(元/斤)。src/utils/generate_full_table/generate_full_table.py 中详细记录了生成 full_table.csv 的源代码。

5.3 附件 1 乡村种植的农作物.csv 的格式优化

在阅读附件 1_乡村种植的农作物.csv 后,我们发现该文件中的数据格式不够规范,例如有些数据中包含了多余的空格,有些数据中的数字格式不统一等。为了方便后续的数据处理和模型构建,我们对附件 1_乡村种植的农作物.csv 进行了格式优化。具体优化后的格式统一为: (([地块类型](:"第一季"("第二季")?)?);)+(([地块类型](:"第一季"("第二季")?)?)) src/utils/attachment1_format_optimization/main.py 中详细记录了优化附件 1_乡村种植的农作物.csv 的源代码。

六、 模型的建立与求解

6.1 问题一模型的建立与求解

问题一要求在假设未来各类农作物的预期销售量、种植成本、亩产量和销售价格相较于 2023 年保持稳定的前提下,针对产量超过需求导致滞销或产量超过需求后按 50%价格进行促销的两种情况来为该乡村提供 2024 至 2030 年农作物的最优种植方案。本文

首先计算预期销售量,由 2023 年各作物种植面积乘对应亩产量计算得到各作物的预期销售量。在制定最优方案时,需要同时考虑如何在最小化滞销成本的同时,实现年收益最大化。此外,还需兼顾供需关系、地块面积等多种约束条件。由此可见,问题情景具有明确目标和约束条件,故可以通过建立规划模型进行求解。

6.1.1 模型的建立

在模型建立之前,需要定义决策变量、目标函数和约束条件,关于决策变量和相应的参数,具体如下表所示:

类型	参数	具体含义		
决策变量	$x_{c,r,y,s}$	表示作物 c(crop) 在地块 r(region) 于第 y(year) 年第 s(season) 季的种植面积		
伏尔文里	24	表示地块 r 于第 y 年第 s 季是否种植作物 c 的二值变量,		
	$y_{c,r,y,s}$	加入它可以让建模过程更清晰健壮		
参数	$P_{c,y,s}$	表示作物 c 于第 y 年第 s 季的销售价格		
	$Y_{c,y,s}$	表示作物 c 于第 y 年第 s 季的单位面积产量(亩产量)		
	$S_{c,y,s}$	表示作物c于第y年第s季的预期销售量		
	A_c	表示地块c的总可用种植面积		
	M_c	表示地块c的作物种植面积下限		

目标函数为使得如下的变量最大,也即使总利润最大:

$$Total_profit = \sum_{c,y} \begin{cases} profit(r,s), & \text{if condition 1} \\ other_profit(r,s), & \text{if condition 2} \end{cases}$$
 (2)

其中:

$$production(r,s) = \sum_{r,s} Y_{c,r} \cdot x_{c,r,y,s}$$
 (3)

6.1.2 模型的求解

单纯形法(Simplex Algorithm)是最常用的线性规划求解算法,基于迭代移动的方法,在可行解的顶点之间跳跃,直到找到最优解。它适用于线性规划问题,并且非常有效。