Umjetne neuronske mreže	– podsjetnik; kolegij	Umjetna inteligencija	, predavanje 2012-05-1	7, AG 2011/2012

*

Neuronske mreže proučavaju se u računarstvu u okviru područja <u>Meulo-la culacita</u> koje je dio
grane
prosjeku s 4500 neurona. Obrada informacija u mozgu dominantno se odvija Patalelno.
Dva su pristupa u razvoju inteligentnih sustava: simboliculi i uneletivisticuli.
Neuronske mreže dobro rješavaju probleme <u>Was Fluge</u> i <u>predvi fapja</u> .
Dvije su faze u radu s neuronskom mrežom: faza vičenja i faza obrade podataha.
Tijekom učenja, jedno predočavanja svih uzoraka naziva se Ohm. Razlikujemo dva načina
učenja: Pokdinačno kod kojeg se promjena događa nakon svakog predočenog uzorka te grupno
kod kojeg se promjena događa tek nakon što se mreži predoče svi uzorci. Znanje neuronske mreže pohranjeno je u
terinama leta Acutana. Dva su načina učenja: ako mreži dajemo parove (ulaz, izlaz)
govorimo o Nodram viero a ako mreži dajemo samo ulaz, govorimo o
Nerwhirmon veryo. Skup primjera za učenje dijelimo na skup za (1) verye, skup za (2)
te na skup za (3) Proger . Kada pogreška na skupu (2) počinje rasti a na skupu (1)
i dalje pada, kažemo da je došlo do <u>Metronicuno</u> neuronske mreže.
Prvi model umjetnog neurona iz 1943. autora Mcalbahi Pitts je Mesholl Logic Unit . Jakost .
sinapse kod njega je opisana tetrskop forkejon, tijelo stanice je modelirano supon tetrski fja dok je
akson modeliran <u>Phensman Finhajom</u> . Izlaz umjetnog neurona opisan je izrazom
$o=f(net)=f(\underbrace{\sum u_i x_i})$. Kada govorimo o ADALINE-umjetnom neuronu, $f(net)=\underline{net}$. Kod
TLU-umjetnog neurona $f(net) = N(Net)$.
Svaki uzorak opisujemo nizom 60 jeva . Klasifikaciju uobičajeno činimo na temelju svih?/nekih?
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su wynikotivnost i su suprotan i Razred "Dobra tajnica" predstavit ćemo brojem su a suprotan
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su wynikotivnost i su suprotan i Razred "Dobra tajnica" predstavit ćemo brojem su a suprotan
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su womentotivnost i Razred "Dobra tajnica" predstavit ćemo brojem a suprotan
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su
značajki. Značajke korištene za definiranje koncepta "Dobra tajnica" su

											100	
Unaprijedne neuronske mreže gradimo uporabom neurona s linearnim?/nelinearnim? prijenosnim funkcijama.												
Sigmoidalna prijenosna funkcija definirana je izrazom $f(x) = \frac{1}{1 + e^{-c_n e t}}$ a njezina je derivacija												
$df(x)/dx = \frac{f(x)(1-f(x))}{}$. Ta je funkcija <u>derivasilna</u> pa u svakoj točki ima												
definiran gradijent. Pravilo učenja koje je riješilo problem <u>bojele 765 lega</u>												
zove se <u>bachpropagation</u> . Ukupna pogrešką nad svim uzorcima kod												
višeizlazne unaprijedne neuronske mreže definirana je izrazom: $E(\vec{w}) = \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (-t_{ij})^{-j}$.												
Pogreška izlaznog neurona $\delta_j = 0$ $(4-9)$ $(4-9)$. Pogreška neurona koji nije u izlaznom												
sloju pogrešku računa temeljem izračunatih pogrešaka neurona kojima je on ulazni neuron, i to prema izrazu												
$\delta_{i} = O((1 - O)) \cdot ZW_{ij} \delta_{f}$. Težina w_{ij} tada se korigira za iznos $\Delta w_{ij} = N \delta_{i} \delta_{i}$.												
Za slobodne težinske faktore o _i = 1. Kod pojedinačnog učenja, ugađanje težina se radi												
Pojelinocho; takva izvedba algoritma poznata je												
pod nazivom statische bacheronagation . Kod grupnog učenja, korekcija težina												
se Vrs. tele ration sto su presi predocen svi prinjeri ta uceqie												
i primjenjuje s faktorom tek nakon što su mreži predočeni svi uzorci.												
priningengage is rancoroni ton markon see sa infezir preaecent is vir azeron.												
$\eta = 0.02, \{(x_2, x_1) = o\} = \{(2, 5) = 1, (5, 2) = 1, (1, 5) = -1, (5, 1) = -1\}, w_i(k+1) = W_i(k) + \eta(f - o) \times (k)$												
Br.	W ₂	w_1	w_0	x_2	x_1	x_0	$t_{\rm out}$	net	O St	Kor?	$\eta(t-p)$	Račun
1	1	1.3	-5.85	9	55	1	1	2.65	1	ME	0	
2	1	1.3	-5.85	5	2	1	1	175	1	NE		
3	0.16	1.3	-5.85	1	5	1	-1	1.65	1	NA	-0.04	
4	0,96	1.1	-5.89	5	1	1	-/	0.01	1	DA	-0.04	
1	0.76	1.06	-5.33	2	5.	1	1	0.83	1	NE	-	
2 .	0.76	1:06	-5.93	5	2	1	Silvery Company	-6.01	-1	AA	0.04	
3	0.96	1.14	=5.89	1	5	1		0.77	1	DA	-0,04	
4	0.92	0.94	-5.53	5	1	1		-0.39	-1	NE		
1	052	0.54	55.33	2	5	1	1	0.61	1	NE		
2	0.52	034	-5.53	5	2	1		0.55	1	NE		
3	0.11	0.54	-5.52	1	5	/	MELTINE.	-0.3/	-1	NE		

.