



| Schletter, Inc. |                                         | 25° Tilt w/ Seismic Design |
|-----------------|-----------------------------------------|----------------------------|
| HCV             | Standard PVMax Racking System           |                            |
|                 | Representative Calculations - ASCE 7-10 |                            |

# 1. INTRODUCTION



### 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

# 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 2000 mm        | Height =    | 1900 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

### 1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

# 2. LOAD ACTIONS

### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

Self-weight of the PV modules.

# 2.2 Snow Loads

|                        | 20.00 psf | Ground Snow Load, $P_g =$      |
|------------------------|-----------|--------------------------------|
| (ASCE 7-10, Eq. 7.4-1) | 12.37 psf | Sloped Roof Snow Load, $P_s$ = |
|                        | 1.00      | I <sub>s</sub> =               |
|                        | 0.82      | $C_s =$                        |
|                        | 0.90      | $C_e =$                        |
|                        |           |                                |

 $C_t =$ 

1.20

# 2.3 Wind Loads

| Design Wind Speed, V = | 160 mph | Exposure Category = C    |
|------------------------|---------|--------------------------|
| Height <               | 15 ft   | Importance Category = II |

Peak Velocity Pressure,  $q_z = 40.19$  psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

# **Pressure Coefficients**

| Cf+ <sub>TOP</sub>    | = | 1.100                            |                                                                                                                   |
|-----------------------|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Cf+ BOTTOM            | = | 1.100<br>1.700 <i>(Pressure)</i> | Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are |
| Cf- TOP, OUTER PURLIN | = | -2.500                           | located in test report # 1127/0611-1e. Negative forces are                                                        |
| Cf- TOP, INNER PURLIN | = | -1.900 (Suction)                 | applied away from the surface.                                                                                    |
| Cf- portou            | = | -1 000                           | applied away from the carrage.                                                                                    |

### 2.4 Seismic Loads

| $S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$ | 1.67<br>1.00 | $R = 1.25$ $C_S = 0.8$ $\rho = 1.3$ $\Omega = 1.25$ | ASCE 7, Section 12.8.1.3: A maximum $S_s$ of 1.5 may be used to calculate the base shear, $C_s$ , of structures under five stories and with a period, $T_s$ , of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
|---------------------------------------|--------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>a</sub> =                      | 0.06         | $C_{d} = 1.25$                                      | calculate C <sub>s</sub> .                                                                                                                                                                                             |



### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

# Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

# Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W <sup>M</sup> (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

# 3. STRUCTURAL ANALYSIS

# 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

# 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Purlins</u> | <u>Location</u> | <b>Diagonal Struts</b> | Location        | Front Reactions Location |
|----------------|-----------------|------------------------|-----------------|--------------------------|
| M13            | Тор             | M3                     | Outer           | N7 Outer                 |
| M14            | Mid-Top         | M7                     | Inner           | N15 Inner                |
| M15            | Mid-Bottom      | M11                    | Outer           | N23 Outer                |
| M16            | Bottom          |                        |                 |                          |
|                |                 |                        |                 |                          |
| <u>Girders</u> | <b>Location</b> | Rear Struts            | <b>Location</b> | Rear Reactions Location  |
| M1             | Outer           | M2                     | Outer           | N8 Outer                 |
| M5             | Inner           | M6                     | Inner           | N16 Inner                |
| M9             | Outer           | M10                    | Outer           | N24 Outer                |
|                |                 |                        |                 |                          |
| Front Struts   | <u>Location</u> |                        |                 |                          |
| M4             | Outer           |                        |                 |                          |
| M8             | Inner           |                        |                 |                          |
| M12            | Outer           |                        |                 |                          |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

# 4. MEMBER DESIGN CALCULATIONS



### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



# 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





# 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



# 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





# 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



# 5. FOUNDATION DESIGN CALCULATIONS

# 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | <u>Front</u>  | Rear           |   |
|----------------------|---------------|----------------|---|
| Tensile Load =       | <u>723.55</u> | <u>7055.72</u> | k |
| Compressive Load =   | 3496.86       | <u>4949.98</u> | k |
| Lateral Load =       | <u>298.46</u> | 3711.43        | k |
| Moment (Weak Axis) = | 0.59          | 0.24           | k |



### 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 190293.0 in-lbs Resisting Force Required = 2661.44 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4435.74 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 856.70 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2141.75 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 856.70 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{35 \text{ in}} = \frac{35 \text{ in}}{36 \text{ in}} = \frac{37 \text{ in}}{38 \text{ in}} = \frac{38 \text{ in}}{7766 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}} = \frac{7992 \text{$ 

| ASD LC             |             | 1.0D ·      | + 1.0S      |             |             | 1.0D + 0.6W |             |             | 1.0D + 0.75L + 0.45W + 0.75S |             |             | 0.6D + 0.6W |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Width              | 35 in       | 36 in       | 37 in       | 38 in       | 35 in       | 36 in       | 37 in       | 38 in       | 35 in                        | 36 in       | 37 in       | 38 in       | 35 in       | 36 in       | 37 in       | 38 in       |
| FA                 | 775 lbs     | 775 lbs     | 775 lbs     | 775 lbs     | 1497 lbs    | 1497 lbs    | 1497 lbs    | 1497 lbs    | 1604 lbs                     | 1604 lbs    | 1604 lbs    | 1604 lbs    | -326 lbs    | -326 lbs    | -326 lbs    | -326 lbs    |
| FB                 | 791 lbs     | 791 lbs     | 791 lbs     | 791 lbs     | 2164 lbs    | 2164 lbs    | 2164 lbs    | 2164 lbs    | 2114 lbs                     | 2114 lbs    | 2114 lbs    | 2114 lbs    | -3250 lbs   | -3250 lbs   | -3250 lbs   | -3250 lbs   |
| F <sub>V</sub>     | 82 lbs      | 82 lbs      | 82 lbs      | 82 lbs      | 1523 lbs    | 1523 lbs    | 1523 lbs    | 1523 lbs    | 1194 lbs                     | 1194 lbs    | 1194 lbs    | 1194 lbs    | -1713 lbs   | -1713 lbs   | -1713 lbs   | -1713 lbs   |
| P <sub>total</sub> | 9126 lbs    | 9342 lbs    | 9558 lbs    | 9774 lbs    | 11221 lbs   | 11437 lbs   | 11653 lbs   | 11869 lbs   | 11278 lbs                    | 11494 lbs   | 11710 lbs   | 11926 lbs   | 959 lbs     | 1089 lbs    | 1218 lbs    | 1348 lbs    |
| M                  | 1903 lbs-ft | 1903 lbs-ft | 1903 lbs-ft | 1903 lbs-ft | 3856 lbs-ft | 3856 lbs-ft | 3856 lbs-ft | 3856 lbs-ft | 4074 lbs-ft                  | 4074 lbs-ft | 4074 lbs-ft | 4074 lbs-ft | 5264 lbs-ft | 5264 lbs-ft | 5264 lbs-ft | 5264 lbs-ft |
| е                  | 0.21 ft     | 0.20 ft     | 0.20 ft     | 0.19 ft     | 0.34 ft     | 0.34 ft     | 0.33 ft     | 0.32 ft     | 0.36 ft                      | 0.35 ft     | 0.35 ft     | 0.34 ft     | 5.49 ft     | 4.84 ft     | 4.32 ft     | 3.91 ft     |
| L/6                | 1.99 ft                      | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     |
| f <sub>min</sub>   | 235.0 psf   | 234.5 psf   | 234.0 psf   | 233.6 psf   | 267.0 psf   | 265.6 psf   | 264.3 psf   | 263.1 psf   | 265.5 psf                    | 264.1 psf   | 262.9 psf   | 261.7 psf   | 0.0 psf     | 0.0 psf     | 0.0 psf     | 0.0 psf     |
| f <sub>max</sub>   | 290.1 psf   | 288.1 psf   | 286.2 psf   | 284.4 psf   | 378.7 psf   | 374.2 psf   | 370.0 psf   | 366.0 psf   | 383.5 psf                    | 378.9 psf   | 374.5 psf   | 370.4 psf   | 466.8 psf   | 215.4 psf   | 160.9 psf   | 138.2 psf   |

Maximum Bearing Pressure = 467 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.



### Seismic Design

# Overturning Check

 $M_0 = 1457.9 \text{ ft-lbs}$ 

Resisting Force Required = 999.69 lbs S.F. = 1.67 Weight Required = 1666.15 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

### Bearing Pressure

| ASD LC             | 1          | .238D + 0.875 | iΕ         | 1.1785     | D + 0.65625E | + 0.75S    | 0.362D + 0.875E |            |            |  |  |
|--------------------|------------|---------------|------------|------------|--------------|------------|-----------------|------------|------------|--|--|
| Width              |            | 35 in         |            |            | 35 in        |            |                 | 35 in      |            |  |  |
| Support            | Outer      | Inner         | Outer      | Outer      | Inner        | Outer      | Outer           | Inner      | Outer      |  |  |
| F <sub>Y</sub>     | 266 lbs    | 500 lbs       | 161 lbs    | 552 lbs    | 1348 lbs     | 473 lbs    | 114 lbs         | 146 lbs    | 10 lbs     |  |  |
| F <sub>V</sub>     | 175 lbs    | 171 lbs       | 178 lbs    | 130 lbs    | 127 lbs      | 136 lbs    | 176 lbs         | 172 lbs    | 177 lbs    |  |  |
| P <sub>total</sub> | 9625 lbs   | 9859 lbs      | 9520 lbs   | 9461 lbs   | 10257 lbs    | 9382 lbs   | 2851 lbs        | 2883 lbs   | 2747 lbs   |  |  |
| M                  | 685 lbs-ft | 674 lbs-ft    | 693 lbs-ft | 512 lbs-ft | 508 lbs-ft   | 532 lbs-ft | 685 lbs-ft      | 673 lbs-ft | 687 lbs-ft |  |  |
| е                  | 0.07 ft    | 0.07 ft       | 0.07 ft    | 0.05 ft    | 0.05 ft      | 0.06 ft    | 0.24 ft         | 0.23 ft    | 0.25 ft    |  |  |
| L/6                | 0.49 ft    | 0.49 ft       | 0.49 ft    | 0.49 ft    | 0.49 ft      | 0.49 ft    | 0.49 ft         | 0.49 ft    | 0.49 ft    |  |  |
| f <sub>min</sub>   | 236.4 psf  | 243.8 psf     | 232.9 psf  | 241.9 psf  | 265.1 psf    | 238.4 psf  | 41.5 psf        | 43.1 psf   | 38.4 psf   |  |  |
| f <sub>max</sub>   | 317.5 psf  | 323.5 psf     | 314.9 psf  | 302.5 psf  | 325.1 psf    | 301.4 psf  | 122.5 psf       | 122.8 psf  | 119.7 psf  |  |  |



Maximum Bearing Pressure = 325 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 35in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

# 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.





### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.





# **6.2 Strut Connections**

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut  Maximum Axial Load =  M12 Bolt Capacity =  Strut Bearing Capacity =  Utilization =          | 2.690 k<br>12.808 k<br>7.421 k<br><u>36%</u> | Rear Strut  Maximum Axial Load = 4.806 k  M12 Bolt Capacity = 12.808 k  Strut Bearing Capacity = 7.421 k  Utilization = 65% |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Diagonal Strut  Maximum Axial Load =  M12 Bolt Shear Capacity =  Strut Bearing Capacity =  Utilization = | 2.640 k<br>12.808 k<br>7.421 k<br><u>36%</u> | Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)                                       |
|                                                                                                          | 0                                            | Struts under compression are shown to demo-<br>transfer from the girder. Single M12 bolts are                               |

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

# 7. SEISMIC DESIGN

# 7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h<sub>sx</sub> = 56.48 in Allowable Story Drift for All Other Structures,  $\Delta$  = {  $0.020h_{sx}$ 1.130 in Max Drift,  $\Delta_{MAX}$  = 0.542 in 0.542 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.



# **APPENDIX A**



# A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5** 

# Strong Axis:

# 3.4.14

$$L_b = 81 \text{ in}$$

$$J = 0.432$$

$$224.084$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \frac{1.6Dc}{1.6Dc}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
=  $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$   
 $φF_I$  = 28.5 ksi

$$b/t = 32.195$$

$$Rn - \frac{\theta_y}{\theta_y} F_{CY}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
 
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

# 3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$φF_L$$
= 1.17 $φyFcy$ 

$$\phi F_L = 38.9 \text{ ksi}$$

# 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 
$$S1 = 36.9$$

$$C_0 = 40.985$$
  
 $Cc = 41.015$ 

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$
  
2.155 in<sup>4</sup>

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

# Weak Axis:

# 3.4.14

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
  
S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 29.5$$

# 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

# 3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3 Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$Sy = 0.599 \text{ in}^3$$



### Compression

### 3.4.9

b/t = 32.195S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_1 =$ 25.1 ksi b/t = 37.0588S1 = 12.21 S2 = 32.70  $\phi F_L = (\phi ck2^*\sqrt{(BpE)})/(1.6b/t)$ 

# 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
  
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$   
 $\phi F_L = 1.84 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$   
 $\phi F_L = 1.84 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$ 

 $\varphi F_L = 21.9 \text{ ksi}$ 

# A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

# Girder = BF0

# Strong Axis: 3.4.14

# $L_b = 104.56 \text{ in}$ J = 1.08

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
  
S2 = 1701.56

$$φF_L$$
=  $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$ 

$$\phi F_L$$
= 29.0 ksi

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

# Weak Axis:

$$L_{b} = 104.56$$

$$J = 1.08$$

$$190.335$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_{I} = 28.9$$

28.9



3.4.16.1 Used Rb/t = 18.1 
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1 
$$S2 = C_t$$
 S2 = 141.0 
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

6.1 Used 3.4.16.1 N/A for Weak Direction 
$$L = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1 
$$S2 = C_t$$
S2 = 141.0 
$$pF_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$pF_L = 31.1 \text{ ksi}$$

# Compression

# 3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$  $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 =  $\phi F_L = \phi y F c y$  $\varphi F_L =$ 33.3 ksi

# 3.4.10

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$ 

# A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = **55x55** 

# Strong Axis:

# 3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
  
S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

# Weak Axis:

### 3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

# 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

# 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 = 
$$\frac{100 \text{ p}}{46.7}$$
  
 $\varphi F_L = \varphi b[\text{Bp-1.6Dp*b/t}]$ 

$$\phi F_1 = 28.2 \text{ ksi}$$

### 3.4.16.1

A.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = 1.6Dt$$

$$S2 = C_t$$
  
S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

# 3.4.16.1

N/A for Weak Direction

# 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 
$$S1 = 36.9$$
 
$$m = 0.65$$
 
$$C_0 = 27.5$$
 
$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$ 

$$0.672 \text{ in}^4$$
  
y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$ 

# 3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_{0} = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $ly = 279836 \text{ mm}^4$ 

$$Sy = 0.621 \text{ in}^3$$
  
 $M_{max}Wk = 1.460 \text{ k-ft}$ 

# SCHLETTER

# Compression

3.4.7 
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

# 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

### 3.4.10

 $\varphi F_L =$ 

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

28.2 ksi

0.0

# A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

### Strut = <u>55x55</u>

 $P_{max} =$ 

### Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

# SCHLETTER

# 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

# 3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$S1 = \begin{pmatrix} Bt - 1.17 \frac{c_y}{\theta_b} Fcy \\ 1.6Dt \end{pmatrix}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F Cy$$

$$\varphi F_L = 38.9 \text{ ksj}$$

### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$y = 27.5 \text{ mm}$$
  
 $Sx = 0.621 \text{ in}^3$   
 $M_{max}St = 1.460 \text{ k-ft}$ 

# Compression

# 3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

# 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

### 3.4.16.1

N/A for Weak Direction

h/t = 24.5  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$



# 3.4.9

$$b/t = 24.5 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 28.2 \text{ ksi} \\ b/t = 24.5 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

# 3.4.10

 $\varphi F_L =$ 

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

# A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

### Strut = <u>55x55</u>

# Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L =$ 30.0 ksi 30.0

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$



3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

# **3.4.16.1** N/A for Weak Direction

3.4.18

h/t =

Bbr -

24.5

 $-\frac{\theta_y}{\theta_b} 1.3 Fcy$ 

# **3.4.18**h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

S1 = 36.9  
m = 0.65  

$$C_0$$
 = 27.5  
 $Cc$  = 27.5  
 $S2 = \frac{k_1 Bbr}{mDbr}$   
S2 = 77.3  
 $\phi F_L$  = 1.3 $\phi y F c y$   
 $\phi F_L$  = 43.2 ksi

$$\phi F_L St = 28.2 \text{ ksi}$$
 $1x = 279836 \text{ mm}^4$ 

 $\phi F_L = 43.2 \text{ ksi}$ 

 $\phi F_L = 1.3 \phi y F c y$ 

$$0.672 \text{ in}^4$$
  
 $y = 27.5 \text{ mm}$   
 $Sx = 0.621 \text{ in}^3$   
 $M_{\text{max}}St = 1.460 \text{ k-ft}$ 

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

# Compression

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

3.4.9 
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$



# 3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left( \frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{$\phi$F}_L &= & \text{$\phi$F}_L \text{$\psi$F}_L \text{$\psi$F}$$

# **APPENDIX B**

# **B.1**

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



Schletter, Inc.HCV

Model Name : Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

# **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me. | .Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|-----------|-----------|
| 1 | Dead Load, Max       | DĽ       | •         | -1        | •         |       |       | 4         | ,         | , I       |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 4         |           |           |
| 3 | Snow Load            | SL       |           |           |           |       |       | 4         |           |           |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 4         |           |           |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 4         |           |           |
| 6 | Seismic - Lateral    | EL       |           |           | .8        |       |       | 8         |           |           |

# Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 2 | M14          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 3 | M15          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 4 | M16          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |

# Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 2 | M14          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 3 | M15          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 4 | M16          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |

# Member Distributed Loads (BLC 3 : Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -55.176                  | -55.176                | 0                    | 0                  |
| 2 | M14          | Υ         | -55.176                  | -55.176                | 0                    | 0                  |
| 3 | M15          | Υ         | -55.176                  | -55.176                | 0                    | 0                  |
| 4 | M16          | Υ         | -55.176                  | -55.176                | 0                    | 0                  |

# Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -145.059                 | -145.059               | 0                    | 0                  |
| 2 | M14          | ٧         | -145.059                 | -145.059               | 0                    | 0                  |
| 3 | M15          | V         | -224.182                 | -224.182               | 0                    | 0                  |
| 4 | M16          | V         | -224.182                 | -224.182               | 0                    | 0                  |

# Member Distributed Loads (BLC 5: Wind Load - Suction)

|   |   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| ' | 1 | M13          | V         | 329.679                  | 329.679                | 0                    | 0                  |
| 2 | 2 | M14          | V         | 250.556                  | 250.556                | 0                    | 0                  |
| ( | 3 | M15          | V         | 131.872                  | 131.872                | 0                    | 0                  |
| 4 | 4 | M16          | У         | 131.872                  | 131.872                | 0                    | 0                  |

# Member Distributed Loads (BLC 6 : Seismic - Lateral)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Ζ         | 7.874                    | 7.874                  | 0                    | 0                  |
| 2 | M14          | Ζ         | 7.874                    | 7.874                  | 0                    | 0                  |
| 3 | M15          | Ζ         | 7.874                    | 7.874                  | 0                    | 0                  |
| 4 | M16          | Ζ         | 7.874                    | 7.874                  | 0                    | 0                  |
| 5 | M13          | Ζ         | 0                        | 0                      | 0                    | 0                  |
| 6 | M14          | Z         | 0                        | 0                      | 0                    | 0                  |
| 7 | M15          | Z         | 0                        | 0                      | 0                    | 0                  |
| 8 | M16          | Z         | 0                        | 0                      | 0                    | 0                  |



Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

# **Load Combinations**

|    | Description                   | S    | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | B | Fa |
|----|-------------------------------|------|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 1  | LRFD 1.2D + 1.6S + 0.5W       | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .5  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 2  | LRFD 1.2D + 1.0W + 0.5S       | Yes  | Υ |   | 1 | 1.2  | 3 | .5  | 4 | 1   |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 3  | LRFD 0.9D + 1.0W              | Yes  | Υ |   | 2 | .9   |   |     |   |     | 5 | 1    |   |    |   |    |   |    |   |    |   |    |   |    |
| 4  | LATERAL - LRFD 1.54D + 1.3E   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 5  | LATERAL - LRFD 0.56D + 1.3E   | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   | ĺ  |
| 6  | LATERAL - LRFD 1.54D + 1.25   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 7  | LATERAL - LRFD 0.56D + 1.25E  | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 8  |                               |      |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes  | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   | i  |
| 10 | ASD 1.0D + 0.6W               | Yes  | Υ |   | 1 | 1    |   |     | 4 | .6  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.45W + 0  | Yes  | Υ |   | 1 | 1    | 3 | .75 | 4 | .45 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 0.6W               | Yes  | Υ |   | 2 | .6   |   |     |   |     | 5 | .6   |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes  | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
| 14 | LATERAL - ASD 1.1785D + 0.65. | .Yes | Υ |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes  | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |

# **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]    | LC | Z [lb]   | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|-----------|----|----------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 819.001   | 2  | 1337.018  | 2  | .439     | 1  | .002      | 1  | 0         | 1  | 0         | 1  |
| 2  |         | min | -979.769  | 3  | -1785.431 | 3  | -36.17   | 5  | 185       | 4  | 0         | 1  | 0         | 1  |
| 3  | N7      | max | .019      | 9  | 1009.447  | 1  | 572      | 10 | 001       | 10 | 0         | 1  | 0         | 1  |
| 4  |         | min | 285       | 2  | -155.205  | 3  | -230.132 | 4  | 454       | 4  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | .006      | 9  | 2833.381  | 2  | 0        | 10 | 0         | 10 | 0         | 1  | 0         | 1  |
| 6  |         | min | -2.634    | 2  | -556.574  | 3  | -219.099 | 4  | 438       | 4  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 2578.498  | 2  | 3954.952  | 2  | 0        | 12 | 0         | 1  | 0         | 1  | 0         | 1  |
| 8  |         | min | -2854.948 | 3  | -5427.477 | 3  | -36.372  | 5  | 187       | 4  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | .032      | 14 | 1009.447  | 1  | 7.31     | 1  | .015      | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 285       | 2  | -155.205  | 3  | -224.19  | 5  | 445       | 4  | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 819.001   | 2  | 1337.018  | 2  | 034      | 10 | 0         | 10 | 0         | 1  | 0         | 1  |
| 12 |         | min | -979.769  | 3  | -1785.431 | 3  | -36.784  | 5  | 186       | 4  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 4213.296  | 2  | 11424.123 | 2  | 0        | 10 |           |    |           |    |           |    |
| 14 |         | min | -4815.193 | 3  | -9865.323 | 3  | -779.044 | 5  |           |    |           |    |           |    |

# **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 1  | M13    | 1   | max | 56.105    | 4  | 448.587     | 2  | -8.229      | 12 | 0            | 15 | .137     | 4  | 0        | 4  |
| 2  |        |     | min | 2.904     | 10 | -830.573    | 3  | -135.266    | 1  | 012          | 2  | .008     | 10 | 0        | 3  |
| 3  |        | 2   | max | 47.255    | 4  | 311.784     | 2  | -6.905      | 12 | 0            | 15 | .09      | 4  | .532     | 3  |
| 4  |        |     | min | 2.904     | 10 | -587.57     | 3  | -102.968    | 1  | 012          | 2  | 0        | 10 | 285      | 2  |
| 5  |        | 3   | max | 43.299    | 1  | 174.982     | 2  | -5.582      | 12 | 0            | 15 | .056     | 5  | .881     | 3  |
| 6  |        |     | min | 2.904     | 10 | -344.568    | 3  | -70.67      | 1  | 012          | 2  | 034      | 1  | 468      | 2  |
| 7  |        | 4   | max | 43.299    | 1  | 38.18       | 2  | -2.546      | 10 | 0            | 15 | .033     | 5  | 1.049    | 3  |
| 8  |        |     | min | 2.904     | 10 | -101.565    | 3  | -39.709     | 4  | 012          | 2  | 075      | 1  | 548      | 2  |
| 9  |        | 5   | max | 43.299    | 1  | 141.437     | 3  | 1.051       | 10 | 0            | 15 | .01      | 5  | 1.034    | 3  |
| 10 |        |     | min | 2.904     | 10 | -98.622     | 2  | -30.672     | 4  | 012          | 2  | 092      | 1  | 525      | 2  |
| 11 |        | 6   | max | 43.299    | 1  | 384.44      | 3  | 26.224      | 1  | 0            | 15 | 005      | 12 | .836     | 3  |
| 12 |        |     | min | 1.148     | 15 | -235.425    | 2  | -26.555     | 5  | 012          | 2  | 084      | 1  | 4        | 2  |
| 13 |        | 7   | max | 43.299    | 1  | 627.442     | 3  | 58.522      | 1  | 0            | 15 | 003      | 10 | .457     | 3  |
| 14 |        |     | min | -7.032    | 5  | -372.227    | 2  | -24.541     | 5  | 012          | 2  | 052      | 1  | 172      | 2  |
| 15 |        | 8   | max | 43.299    | 1  | 870.445     | 3  | 90.82       | 1  | 0            | 15 | .007     | 2  | .159     | 2  |
| 16 |        |     | min | -15.883   | 5  | -509.029    | 2  | -22.527     | 5  | 012          | 2  | 048      | 4  | 105      | 3  |
| 17 |        | 9   | max | 43.299    | 1  | 1113.447    | 3  | 123.118     | 1  | 0            | 15 | .084     | 1  | .592     | 2  |
| 18 |        |     | min | -24.733   | 5  | -645.831    | 2  | -20.513     | 5  | 012          | 2  | 063      | 5  | 849      | 3  |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|          | Member | Sec |            | Axial[lb]      | LC      | y Shear[lb]         | LC | z Shear[lb]        | LC | Torque[k-ft] | LC | y-y Mome    | LC     | z-z Mome | LC |
|----------|--------|-----|------------|----------------|---------|---------------------|----|--------------------|----|--------------|----|-------------|--------|----------|----|
| 19       |        | 10  | max        | 48.641         | 4       | 1356.45             | 3  | 155.416            | 1  | .012         | 2  | .188        | 1      | 1.127    | 2  |
| 20       |        |     | min        | 2.904          | 10      | -782.634            | 2  | -97.3              | 14 | 01           | 3  | 005         | 3      | -1.775   | 3  |
| 21       |        | 11  | max        | 43.299         | 1       | 645.831             | 2  | -2.358             | 12 | .012         | 2  | .091        | 4      | .592     | 2  |
| 22       |        |     | min        | 2.904          | 10      | -1113.447           | 3  | -123.118           | 1  | 0            | 15 | 008         | 3      | 849      | 3  |
| 23       |        | 12  | max        | 43.299         | 1       | 509.029             | 2  | -1.034             | 12 | .012         | 2  | .048        | 4      | .159     | 2  |
| 24       |        |     | min        | 2.904          | 10      | -870.445            | 3  | -90.82             | 1  | 0            | 15 | 009         | 3      | 105      | 3  |
| 25       |        | 13  | max        | 43.299         | 1       | 372.227             | 2  | .861               | 3  | .012         | 2  | .023        | 5      | .457     | 3  |
| 26       |        |     | min        | 2.904          | 10      | -627.442            | 3  | -58.522            | 1  | 0            | 15 | 052         | 1_     | 172      | 2  |
| 27       |        | 14  | max        | 43.299         | 1_      | 235.425             | 2  | 2.846              | 3  | .012         | 2  | 0           | 15     | .836     | 3  |
| 28       |        |     | min        | 2.429          | 15      | -384.44             | 3  | -35.417            | 4  | 0            | 15 | 084         | 1_     | 4        | 2  |
| 29       |        | 15  | max        | 43.299         | 1       | 98.622              | 2  | 6.074              | 1  | .012         | 2  | 003         | 12     | 1.034    | 3  |
| 30       |        |     | min        | -5.174         | 5       | -141.437            | 3  | -27.613            | 5  | 0            | 15 | 092         | 1      | 525      | 2  |
| 31       |        | 16  | max        |                | 1_      | 101.565             | 3  | 38.372             | 1  | .012         | 2  | 0           | 3      | 1.049    | 3  |
| 32       |        |     | min        | -14.024        | 5       | -38.18              | 2  | -25.599            | 5  | 0            | 15 | 075         | 1      | 548      | 2  |
| 33       |        | 17  | max        | 43.299         | 1       | 344.568             | 3  | 70.67              | 1  | .012         | 2  | .005        | 3      | .881     | 3  |
| 34       |        | 40  | min        | -22.874        | 5       | -174.982            | 2  | -23.585            | 5  | 0            | 15 | 068         | 4      | 468      | 2  |
| 35       |        | 18  | max        | 43.299         | 1       | 587.57              | 3  | 102.968            | 1  | .012         | 2  | .031        | 1      | .532     | 3  |
| 36       |        | 40  | min        | -31.725        | 5       | -311.784            | 2  | -21.571            | 5  | 0            | 15 | 077         | 5      | 285      | 2  |
| 37       |        | 19  | max        | 43.299         | 1       | 830.573             | 3  | 135.266            | 1  | .012         | 2  | .12         | 1      | 0        | 2  |
| 38<br>39 | M14    | 1   | min        | -40.575        | 5       | -448.587            | 2  | -19.557            | 5  | 0            | 15 | 092         | 5<br>4 | 0        | 3  |
| 40       | IVI 14 | l   | max        | 35.09<br>2.366 | 4       | 546.794<br>-686.673 | 3  | -8.595<br>-141.762 | 12 | .016<br>017  | 2  | .207<br>.01 | 10     | 0        | 3  |
| 41       |        | 2   | min        | 30.261         | 10<br>1 | 409.992             | 2  | -7.271             | 12 | .016         | 3  | .145        | 4      | .446     | 3  |
| 42       |        |     | max<br>min | 2.366          | 10      | -503.013            | 3  | -109.464           |    | 017          | 2  | .001        | 10     | 359      | 2  |
| 43       |        | 3   | max        | 30.261         | 1       | 273.19              | 2  | -5.948             | 12 | .016         | 3  | .09         | 5      | .755     | 3  |
| 44       |        | 3   | min        | 2.366          | 10      | -319.353            | 3  | -77.166            | 1  | 017          | 2  | 015         | 1      | 615      | 2  |
| 45       |        | 4   | max        | 30.261         | 1       | 136.388             | 2  | -3.148             | 10 | .016         | 3  | .051        | 5      | .925     | 3  |
| 46       |        |     | min        | 1.269          | 15      | -135.692            | 3  | -60.975            | 4  | 017          | 2  | 061         | 1      | 769      | 2  |
| 47       |        | 5   | max        | 30.261         | 1       | 47.968              | 3  | .448               | 10 | .016         | 3  | .015        | 5      | .958     | 3  |
| 48       |        |     | min        | -6.976         | 5       | -5.33               | 1  | -51.938            | 4  | 017          | 2  | 082         | 1      | 82       | 2  |
| 49       |        | 6   | max        | 30.261         | 1       | 231.628             | 3  | 19.728             | 1  | .016         | 3  | 004         | 12     | .853     | 3  |
| 50       |        |     | min        | -15.827        | 5       | -137.217            | 2  | -46.056            | 5  | 017          | 2  | 079         | 1      | 768      | 2  |
| 51       |        | 7   | max        | 30.261         | 1       | 415.289             | 3  | 52.026             | 1  | .016         | 3  | 004         | 10     | .611     | 3  |
| 52       |        |     | min        | -24.677        | 5       | -274.019            | 2  | -44.042            | 5  | 017          | 2  | 067         | 4      | 614      | 2  |
| 53       |        | 8   | max        | 30.261         | 1       | 598.949             | 3  | 84.324             | 1  | .016         | 3  | .005        | 2      | .23      | 3  |
| 54       |        |     | min        | -33.527        | 5       | -410.821            | 2  | -42.028            | 5  | 017          | 2  | 089         | 4      | 357      | 2  |
| 55       |        | 9   | max        | 30.261         | 1       | 782.609             | 3  | 116.622            | 1  | .016         | 3  | .074        | 1      | .032     | 1  |
| 56       |        |     | min        | -42.378        | 5       | -547.624            | 2  | -40.014            | 5  | 017          | 2  | 118         | 5      | 288      | 3  |
| 57       |        | 10  | max        | 61.607         | 4       | 966.269             | 3  | 148.92             | 1  | .017         | 2  | .207        | 4      | .465     | 2  |
| 58       |        |     | min        | 2.366          | 10      | -684.426            |    | -103.734           |    | 016          | 3  | 005         | 3      | 944      | 3  |
| 59       |        | 11  | max        |                | 4       | 547.624             |    |                    | 12 |              | 2  | .143        | 4      | .032     | 1  |
| 60       |        |     | min        | 2.366          | 10      | -782.609            |    | -116.622           |    | 016          | 3  | 008         | 3      | 288      | 3  |
| 61       |        | 12  | max        |                | 4       | 410.821             | 2  | 56                 | 3  | .017         | 2  | .087        | 4      | .23      | 3  |
| 62       |        |     | min        | 2.366          | 10      | -598.949            |    | -84.324            | 1  | 016          | 3  | 009         | 3      | 357      | 2  |
| 63       |        | 13  |            | 35.056         | 4       | 274.019             | 2  | 1.425              | 3  | .017         | 2  | .048        | 5      | .611     | 3  |
| 64       |        |     | min        | 2.366          | 10      | -415.289            | 3  | -62.027            | 4  | 016          | 3  | 052         | 1_     | 614      | 2  |
| 65       |        | 14  | max        | 30.261         | 1       | 137.217             | 2  | 3.41               | 3  | .017         | 2  | .011        | 5      | .853     | 3  |
| 66       |        |     | min        | 2.366          | 10      | -231.628            |    | -52.99             | 4  | 016          | 3  | 079         | 1      | 768      | 2  |
| 67       |        | 15  |            | 30.261         | 1       | 5.33                | 1  | 12.57              | 1  | .017         | 2  | 002         | 12     | .958     | 3  |
| 68       |        | 4.0 | min        | 2.366          | 10      | -47.968             | 3  | -46.292            | 5  | 016          | 3  | 082         | 1      | 82       | 2  |
| 69       |        | 16  | max        | 30.261         | 1       | 135.692             | 3  | 44.868             | 1  | .017         | 2  | .001        | 3      | .925     | 3  |
| 70       |        | 4-  | min        | 1.052          | 15      | -136.388            | 2  | -44.278            | 5  | 016          | 3  | 072         | 4      | 769      | 2  |
| 71       |        | 17  |            |                | 1       | 319.353             | 3  | 77.166             | 1  | .017         | 2  | .008        | 3      | .755     | 3  |
| 72       |        | 4.0 | min        | -7.269         | 5       | -273.19             | 2  | -42.264            | 5  | 016          | 3  | 095         | 4      | 615      | 2  |
| 73       |        | 18  |            | 30.261         | 1       | 503.013             | 3  | 109.464            | 1  | .017         | 2  | .055        | 1      | .446     | 3  |
| 74       |        | 40  | min        | -16.119        | 5       | -409.992            | 2  | -40.25             | 5  | 016          | 3  | 122         | 5      | 359      | 2  |
| 75       |        | 19  | max        | 30.261         | 1_      | 686.673             | 3  | 141.762            | 1  | .017         | 2  | .149        | 1_     | 0        | 1  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec      |            | Axial[lb]       | LC | y Shear[lb] | LC |          | LC | Torque[k-ft] | LC |      | LC | z-z Mome |    |
|-----|--------|----------|------------|-----------------|----|-------------|----|----------|----|--------------|----|------|----|----------|----|
| 76  |        |          | min        | -24.969         | 5  | -546.794    | 2  | -38.236  | 5  | 016          | 3  | 152  | 5  | 0        | 3  |
| 77  | M15    | 1        | max        | 72.295          | 5  | 747.299     | 2  | -8.358   | 12 | .018         | 2  | .272 | 4  | 0        | 2  |
| 78  |        |          | min        | -31.542         | 1  | -387.672    | 3  | -141.798 | 1  | 013          | 3  | .011 | 10 | 0        | 3  |
| 79  |        | 2        | max        | 63.445          | 5  | 551.154     | 2  | -7.034   | 12 | .018         | 2  | .195 | 4  | .255     | 3  |
| 80  |        |          | min        | -31.542         | 1  | -293.025    | 3  | -109.5   | 1  | 013          | 3  | .002 | 10 | 487      | 2  |
| 81  |        | 3        | max        | 54.595          | 5  | 355.01      | 2  | -5.711   | 12 | .018         | 2  | .126 | 5  | .44      | 3  |
| 82  |        |          | min        | -31.542         | 1  | -198.378    | 3  | -88.548  | 4  | 013          | 3  | 015  | 1  | 827      | 2  |
| 83  |        | 4        | max        | 45.744          | 5  | 158.865     | 2  | -3.267   | 10 | .018         | 2  | .074 | 5  | .553     | 3  |
| 84  |        |          | min        | -31.542         | 1  | -103.73     | 3  | -79.511  | 4  | 013          | 3  | 061  | 1  | -1.019   | 2  |
| 85  |        | 5        | max        | 36.894          | 5  | 273         | 15 | .33      | 10 | .018         | 2  | .023 | 5  | .595     | 3  |
| 86  |        |          | min        | -31.542         | 1  | -37.279     | 2  | -70.475  | 4  | 013          | 3  | 082  | 1  | -1.065   | 2  |
| 87  |        | 6        | max        | 28.044          | 5  | 85.564      | 3  | 19.692   | 1  | .018         | 2  | 004  | 12 | .566     | 3  |
| 88  |        | <u> </u> | min        | -31.542         | 1  | -233.424    | 2  | -64.554  | 5  | 013          | 3  | 079  | 1  | 964      | 2  |
| 89  |        | 7        | max        | 19.193          | 5  | 180.212     | 3  | 51.99    | 1  | .018         | 2  | 004  | 10 | .467     | 3  |
| 90  |        |          | min        | -31.542         | 1  | -429.568    | 2  | -62.54   | 5  | 013          | 3  | 086  | 4  | 715      | 2  |
| 91  |        | 8        | max        | 10.343          | 5  | 274.859     | 3  | 84.288   | 1  | .018         | 2  | .004 | 2  | .296     | 3  |
| 92  |        |          | min        | -31.542         | 1  | -625.713    | 2  | -60.526  | 5  | 013          | 3  | 122  | 4  | 319      | 2  |
| 93  |        | 9        |            | 1.492           | 5  | 369.506     | 3  | 116.586  |    | .018         | 2  | .074 | 1  | .224     | 2  |
|     |        | 9        | max        |                 |    |             |    |          | 5  |              |    |      |    |          | 15 |
| 94  |        | 40       | min        | -31.542         | 1  | -821.857    | 2  | -58.512  |    | 013          | 3  | 164  | 5  | .002     |    |
| 95  |        | 10       | max        | -2.092          | 10 | 464.153     | 3  | 148.884  | 1  | .013         | 3  | .268 | 4  | .914     | 2  |
| 96  |        | 4.4      | min        | -31.542         | 1  | -1018.002   | 2  | -113.163 |    | 018          | 2  | 004  | 3  | 258      | 3  |
| 97  |        | 11       | max        | -2.092          | 10 | 821.857     | 2  | -2.229   | 12 | .013         | 3  | .19  | 4  | .224     | 2  |
| 98  |        | 10       | min        | -31.542         | 1  | -369.506    | 3  | -116.586 | 1  | 018          | 2  | 007  | 3  | .002     | 15 |
| 99  |        | 12       | max        | -2.092          | 10 | 625.713     | 2  | 905      | 12 | .013         | 3  | .12  | 4  | .296     | 3  |
| 100 |        | 4.0      | min        | -31.542         | 1  | -274.859    | 3  | -89.632  | 4  | 018          | 2  | 008  | 3  | 319      | 2  |
| 101 |        | 13       | max        | -2.092          | 10 | 429.568     | 2  | 1.032    | 3  | .013         | 3  | .067 | 5  | .467     | 3  |
| 102 |        |          | min        | -31.542         | 1_ | -180.212    | 3  | -80.595  | 4  | 018          | 2  | 053  | 1  | 715      | 2  |
| 103 |        | 14       | max        | -2.092          | 10 | 233.424     | 2  | 3.017    | 3  | .013         | 3  | .016 | 5  | .566     | 3  |
| 104 |        |          | min        | -40.341         | 4  | -85.564     | 3  | -71.559  | 4  | 018          | 2  | 079  | 1  | 964      | 2  |
| 105 |        | 15       | max        | -2.092          | 10 | 37.279      | 2  | 12.606   | 1  | .013         | 3  | 003  | 12 | .595     | 3  |
| 106 |        |          | min        | -49.191         | 4  | .274        | 15 | -64.791  | 5  | 018          | 2  | 082  | 1  | -1.065   | 2  |
| 107 |        | 16       | max        | -2.092          | 10 | 103.73      | 3  | 44.904   | 1  | .013         | 3  | 0    | 3  | .553     | 3  |
| 108 |        |          | min        | -58.041         | 4  | -158.865    | 2  | -62.777  | 5  | 018          | 2  | 095  | 4  | -1.019   | 2  |
| 109 |        | 17       | max        | -2.092          | 10 | 198.378     | 3  | 77.202   | 1  | .013         | 3  | .007 | 3  | .44      | 3  |
| 110 |        |          | min        | -66.892         | 4  | -355.01     | 2  | -60.763  | 5  | 018          | 2  | 132  | 4  | 827      | 2  |
| 111 |        | 18       | max        | -2.092          | 10 | 293.025     | 3  | 109.5    | 1  | .013         | 3  | .055 | 1  | .255     | 3  |
| 112 |        |          | min        | -75.742         | 4  | -551.154    | 2  | -58.749  | 5  | 018          | 2  | 172  | 5  | 487      | 2  |
| 113 |        | 19       | max        | -2.092          | 10 | 387.672     | 3  | 141.798  | 1  | .013         | 3  | .149 | 1  | 0        | 2  |
| 114 |        |          | min        | -84.592         | 4  | -747.299    | 2  | -56.735  | 5  | 018          | 2  | 216  | 5  | 0        | 5  |
| 115 | M16    | 1        | max        | 66.912          | 5  | 654.611     | 2  | -7.491   | 12 | .006         | 1  | .187 | 4  | 0        | 2  |
| 116 |        |          | min        | -48.89          | 1  | -305.07     | 3  | -135.953 | 1  | 012          | 3  | .009 | 10 | 0        | 3  |
| 117 |        | 2        | max        | 58.061          | 5  | 458.466     | 2  | -6.167   | 12 | .006         | 1  | .13  | 4  | .193     | 3  |
| 118 |        |          | min        | -48.89          | 1  | -210.423    |    | -103.655 |    | 012          | 3  | 0    | 10 | 417      | 2  |
| 119 |        | 3        | max        |                 | 5  | 262.322     | 2  | -4.844   | 12 | .006         | 1  | .085 | 5  | .316     | 3  |
| 120 |        |          | min        | -48.89          | 1  | -115.776    | 3  | -71.357  | 1  | 012          | 3  | 033  | 1  | 688      | 2  |
| 121 |        | 4        | max        |                 | 5  | 66.177      | 2  | -2.984   | 10 | .006         | 1  | .051 | 5  | .367     | 3  |
| 122 |        |          | min        | -48.89          | 1  | -21.129     | 3  | -53.921  | 4  | 012          | 3  | 074  | 1  | 811      | 2  |
| 123 |        | 5        | max        | 31.51           | 5  | 73.519      | 3  | .612     | 10 | .006         | 1  | .018 | 5  | .347     | 3  |
| 124 |        |          | min        | -48.89          | 1  | -129.967    | 2  | -44.884  | 4  | 012          | 3  | 091  | 1  | 787      | 2  |
| 125 |        | 6        | max        | 22.66           | 5  | 168.166     | 3  | 25.538   | 1  | .006         | 1  | 005  | 12 | .257     | 3  |
| 126 |        |          | min        | -48.89          | 1  | -326.112    | 2  | -40.591  | 5  | 012          | 3  | 084  | 1  | 616      | 2  |
| 127 |        | 7        | max        | 13.809          | 5  | 262.813     | 3  | 57.836   | 1  | .006         | 1  | 004  | 10 | .095     | 3  |
| 128 |        | -        | min        | -48.89          | 1  | -522.256    |    | -38.577  | 5  | 012          | 3  | 055  | 4  | 298      | 2  |
| 129 |        | 8        |            | 4.959           |    | 357.461     |    | 90.134   | 1  | .006         | 1  | .005 | 2  | .167     | 2  |
| 130 |        | 0        | max<br>min | -48.89          | 5  | -718.401    | 2  | -36.563  | 5  | 012          | 3  | 072  | 4  | 138      | 3  |
| 131 |        | 0        |            | -48.89<br>-2.58 | _  |             |    | 122.432  | 1  |              | 1  | .082 | 1  |          | 2  |
|     |        | 9        | max        |                 | 15 |             | 3  |          |    | .006         |    |      |    | .78      |    |
| 132 |        |          | min        | -48.89          | 1  | -914.545    | 2  | -34.549  | 5  | 012          | 3  | 098  | 5  | 441      | 3  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC        | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|-----------|-------------|----|--------------|----|----------|----|----------|----|
| 133 |        | 10  | max | -3.715    | 10 | 546.755     | 3         | 154.73      | 1  | .012         | 3  | .187     | 4  | 1.539    | 2  |
| 134 |        |     | min | -48.89    | 1  | -1110.69    | 2         | -104.293    | 14 | 006          | 1  | 0        | 3  | 816      | 3  |
| 135 |        | 11  | max | -1.466    | 15 | 914.545     | 2         | -3.096      | 12 | .012         | 3  | .126     | 4  | .78      | 2  |
| 136 |        |     | min | -48.89    | 1  | -452.108    | 3         | -122.432    | 1  | 006          | 1  | 004      | 3  | 441      | 3  |
| 137 |        | 12  | max | -3.715    | 10 | 718.401     | 2         | -1.772      | 12 | .012         | 3  | .072     | 4  | .167     | 2  |
| 138 |        |     | min | -48.89    | 1  | -357.461    | 3         | -90.134     | 1  | 006          | 1  | 007      | 3  | 138      | 3  |
| 139 |        | 13  | max | -3.715    | 10 | 522.256     | 2         | 369         | 3  | .012         | 3  | .036     | 5  | .095     | 3  |
| 140 |        |     | min | -48.89    | 1  | -262.813    | 3         | -58.488     | 4  | 006          | 1  | 053      | 1  | 298      | 2  |
| 141 |        | 14  | max |           | 10 | 326.112     | 2         | 1.616       | 3  | .012         | 3  | .003     | 5  | .257     | 3  |
| 142 |        |     | min | -48.89    | 1  | -168.166    | 3         | -49.451     | 4  | 006          | 1  | 084      | 1  | 616      | 2  |
| 143 |        | 15  | max | -3.715    | 10 | 129.967     | 2         | 6.76        | 1  | .012         | 3  | 003      | 12 | .347     | 3  |
| 144 |        |     | min | -49.258   | 4  | -73.519     | 3         | -41.624     | 5  | 006          | 1  | 091      | 1  | 787      | 2  |
| 145 |        | 16  | max |           | 10 | 21.129      | 3         | 39.058      | 1  | .012         | 3  | 001      | 12 | .367     | 3  |
| 146 |        |     | min | -58.109   | 4  | -66.177     | 2         | -39.61      | 5  | 006          | 1  | 076      | 4  | 811      | 2  |
| 147 |        | 17  | max | -3.715    | 10 | 115.776     | 3         | 71.357      | 1  | .012         | 3  | .003     | 3  | .316     | 3  |
| 148 |        |     | min | -66.959   | 4  | -262.322    | 2         | -37.596     | 5  | 006          | 1  | 096      | 4  | 688      | 2  |
| 149 |        | 18  | max |           | 10 | 210.423     | 3         | 103.655     | 1  | .012         | 3  | .033     | 1  | .193     | 3  |
| 150 |        | 10  | min | -75.81    | 4  | -458.466    | 2         | -35.582     | 5  | 006          | 1  | 116      | 5  | 417      | 2  |
| 151 |        | 19  | max |           | 10 | 305.07      | 3         | 135.953     | 1  | .012         | 3  | .123     | 1  | 0        | 2  |
| 152 |        | 19  | _   | -84.66    | 4  | -654.611    | 2         | -33.568     | 5  | 006          | 1  | 142      | 5  | 0        | 5  |
|     | M2     | 1   | min | 1135.679  | 2  | 2.073       | 4         | .342        | 1  | 0            | 3  | 0        | 3  | 0        | 1  |
| 153 | IVIZ   |     |     | -1578.237 |    |             |           |             |    |              |    |          | 2  | _        | 1  |
| 154 |        | 2   |     |           | 3  | .508        | <u>15</u> | -29.01      | 4  | 0            | 4  | 0        |    | 0        | -  |
| 155 |        | 2   |     | 1136.153  | 2  | 2.036       | 4         | .342        | 1  | 0            | 3  | _        | 1  | 0        | 15 |
| 156 |        | _   |     | -1577.881 | 3  | .499        | 15        | -29.422     | 4  | 0            | 4  | 009      | 4  | 0        | 4  |
| 157 |        | 3   |     | 1136.627  | 2  | 1.999       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 0        | 15 |
| 158 |        |     | min | -1577.526 | 3  | .49         | 15        | -29.833     | 4  | 0            | 4  | 019      | 4  | 001      | 4  |
| 159 |        | 4   | max |           | 2  | 1.962       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 0        | 15 |
| 160 |        | _   |     | -1577.171 | 3  | .482        | 15        | -30.244     | 4  | 0            | 4  | 028      | 4  | 002      | 4  |
| 161 |        | 5   |     | 1137.574  | 2  | 1.925       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 0        | 15 |
| 162 |        | _   |     | -1576.815 | 3  | .473        | 15        | -30.656     | 4  | 0            | 4  | 038      | 4  | 003      | 4  |
| 163 |        | 6   |     | 1138.048  | 2  | 1.888       | 4         | .342        | 1_ | 0            | 3_ | 0        | 1  | 0        | 15 |
| 164 |        |     |     | -1576.46  | 3  | .464        | 15        | -31.067     | 4  | 0            | 4  | 048      | 4  | 003      | 4  |
| 165 |        | 7   |     | 1138.522  | 2  | 1.851       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 0        | 15 |
| 166 |        |     |     | -1576.105 | 3  | .455        | 15        | -31.478     | 4  | 0            | 4  | 058      | 4  | 004      | 4  |
| 167 |        | 8   |     | 1138.995  | 2  | 1.814       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 001      | 15 |
| 168 |        |     | min | -1575.749 | 3  | .447        | 15        | -31.89      | 4  | 0            | 4  | 068      | 4  | 004      | 4  |
| 169 |        | 9   | max | 1139.469  | 2  | 1.777       | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 001      | 15 |
| 170 |        |     | min | -1575.394 | 3  | .438        | 15        | -32.301     | 4  | 0            | 4  | 078      | 4  | 005      | 4  |
| 171 |        | 10  | max | 1139.943  | 2  | 1.74        | 4         | .342        | 1  | 0            | 3  | 0        | 1  | 001      | 15 |
| 172 |        |     | min | -1575.039 | 3  | .429        | 15        | -32.712     | 4  | 0            | 4  | 089      | 4  | 005      | 4  |
| 173 |        | 11  | max | 1140.417  | 2  | 1.702       | 4         | .342        | 1  | 0            | 3  | .001     | 1  | 001      | 15 |
| 174 |        |     |     | -1574.684 | 3  | .419        | 12        | -33.124     | 4  | 0            | 4  | 099      | 4  | 006      | 4  |
| 175 |        | 12  |     | 1140.89   | 2  | 1.665       | 4         | .342        | 1  | 0            | 3  | .001     | 1  | 002      | 15 |
| 176 |        |     |     | -1574.328 | 3  | .404        | 12        | -33.535     | 4  | 0            | 4  | 11       | 4  | 007      | 4  |
| 177 |        | 13  |     | 1141.364  | 2  | 1.628       | 4         | .342        | 1  | 0            | 3  | .001     | 1  | 002      | 15 |
| 178 |        |     |     | -1573.973 | 3  | .39         | 12        | -33.946     | 4  | 0            | 4  | 121      | 4  | 007      | 4  |
| 179 |        | 14  |     | 1141.838  | 2  | 1.591       | 4         | .342        | 1  | 0            | 3  | .001     | 1  | 002      | 15 |
| 180 |        |     |     | -1573.618 | 3  | .375        | 12        | -34.358     | 4  | 0            | 4  | 132      | 4  | 008      | 4  |
| 181 |        | 15  |     | 1142.312  | 2  | 1.554       | 4         | .342        | 1  | 0            | 3  | .002     | 1  | 002      | 15 |
| 182 |        | 10  |     | -1573.262 | 3  | .361        | 12        | -34.769     | 4  | 0            | 4  | 143      | 4  | 002      | 4  |
| 183 |        | 16  |     | 1142.785  | 2  | 1.517       | 4         | .342        | 1  | 0            | 3  | .002     | 1  | 002      | 15 |
| 184 |        | 10  |     | -1572.907 | 3  | .347        | 12        | -35.18      | 4  | 0            | 4  | 154      | 4  | 002      | 4  |
| 185 |        | 17  |     | 1143.259  | 2  | 1.48        |           | .342        | 1  | 0            | 3  | .002     | 1  | 009      | 15 |
|     |        | 17  |     | -1572.552 |    |             | 4         |             |    |              |    |          |    |          |    |
| 186 |        | 40  |     |           | 3  | .332        | 12        | -35.592     | 4  | 0            | 4  | 165      | 4  | 009      | 4  |
| 187 |        | 18  |     | 1143.733  | 2  | 1.443       | 4         | .342        | 1  | 0            | 3  | .002     | 1  | 002      | 15 |
| 188 |        | 40  |     | -1572.196 | 3  | .318        | 12        | -36.003     | 4  | 0            | 4  | 177      | 4  | 01       | 4  |
| 189 |        | 19  | max | 1144.207  | 2  | 1.406       | 4         | .342        | 1  | 0            | 3  | .002     | 1  | 002      | 15 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] |   | y Shear[lb] |    |          |    | Torque[k-ft] |    |            | LC | z-z Mome |    |
|-----|--------|-----|-----|-----------|---|-------------|----|----------|----|--------------|----|------------|----|----------|----|
| 190 |        |     | min | -1571.841 | 3 | .303        | 12 | -36.414  | 4  | 0            | 4  | <u>188</u> | 4  | 01       | 4  |
| 191 | M3     | 1   | max | 773.217   | 2 | 9.027       | 4  | .164     | 1  | 0            | 10 | 0          | 1_ | .01      | 4  |
| 192 |        |     | min | -910.32   | 3 | 2.136       | 15 | 687      | 5  | 0            | 4  | 012        | 4  | .002     | 15 |
| 193 |        | 2   | max | 773.047   | 2 | 8.155       | 4  | .164     | 1  | 0            | 10 | 0          | 1  | .006     | 4  |
| 194 |        |     | min | -910.447  | 3 | 1.931       | 15 | 079      | 5  | 0            | 4  | 012        | 4  | 0        | 12 |
| 195 |        | 3   | max | 772.876   | 2 | 7.283       | 4  | .615     | 4  | 0            | 10 | 0          | 1  | .003     | 2  |
| 196 |        |     | min | -910.575  | 3 | 1.726       | 15 | .012     | 10 | 0            | 4  | 012        | 4  | 0        | 3  |
| 197 |        | 4   | max | 772.706   | 2 | 6.411       | 4  | 1.222    | 4  | 0            | 10 | 0          | 1  | 0        | 2  |
| 198 |        |     | min | -910.703  | 3 | 1.521       | 15 | .012     | 10 | 0            | 4  | 011        | 4  | 002      | 3  |
| 199 |        | 5   | max | 772.536   | 2 | 5.539       | 4  | 1.83     | 4  | 0            | 10 | 0          | 1  | 0        | 15 |
| 200 |        |     | min | -910.831  | 3 | 1.316       | 15 | .012     | 10 | 0            | 4  | 011        | 5  | 004      | 3  |
| 201 |        | 6   | max | 772.365   | 2 | 4.667       | 4  | 2.437    | 4  | 0            | 10 | 0          | 1  | 001      | 15 |
| 202 |        |     | min | -910.958  | 3 | 1.111       | 15 | .012     | 10 | 0            | 4  | 01         | 5  | 006      | 6  |
| 203 |        | 7   | max | 772.195   | 2 | 3.795       | 4  | 3.044    | 4  | 0            | 10 | 0          | 1  | 002      | 15 |
| 204 |        |     | min | -911.086  | 3 | .906        | 15 | .012     | 10 | 0            | 4  | 008        | 5  | 008      | 6  |
| 205 |        | 8   | max | 772.025   | 2 | 2.923       | 4  | 3.651    | 4  | 0            | 10 | 0          | 1  | 002      | 15 |
| 206 |        |     | min | -911.214  | 3 | .701        | 15 | .012     | 10 | 0            | 4  | 007        | 5  | 01       | 6  |
| 207 |        | 9   | max | 771.854   | 2 | 2.051       | 4  | 4.258    | 4  | 0            | 10 | 0          | 1  | 002      | 15 |
| 208 |        |     | min | -911.342  | 3 | .496        | 15 | .012     | 10 | 0            | 4  | 005        | 5  | 011      | 6  |
| 209 |        | 10  | max | 771.684   | 2 | 1.179       | 4  | 4.865    | 4  | 0            | 10 | 0          | 1  | 003      | 15 |
| 210 |        | 10  | min | -911.469  | 3 | .291        | 15 | .012     | 10 | 0            | 4  | 003        | 5  | 012      | 6  |
| 211 |        | 11  | max | 771.514   | 2 | .4          | 2  | 5.472    | 4  | 0            | 10 | 0          | 1  | 003      | 15 |
| 212 |        |     | min | -911.597  | 3 | 095         | 3  | .012     | 10 | 0            | 4  | 0          | 5  | 012      | 6  |
| 213 |        | 12  | max | 771.343   | 2 | 119         | 15 | 6.079    | 4  | 0            | 10 | .002       | 4  | 003      | 15 |
| 214 |        | 12  | min | -911.725  | 3 | 605         | 3  | .012     | 10 | 0            | 4  | 0          | 10 | 012      | 6  |
| 215 |        | 13  | max | 771.173   | 2 | 324         | 15 | 6.687    | 4  | 0            | 10 | .005       | 4  | 003      | 15 |
| 216 |        |     | min | -911.853  | 3 | -1.439      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 011      | 6  |
| 217 |        | 14  | max | 771.002   | 2 | 529         | 15 | 7.294    | 4  | 0            | 10 | .009       | 4  | 002      | 15 |
| 218 |        |     | min | -911.98   | 3 | -2.311      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 011      | 6  |
| 219 |        | 15  | max | 770.832   | 2 | 734         | 15 | 7.901    | 4  | 0            | 10 | .012       | 4  | 002      | 15 |
| 220 |        |     | min | -912.108  | 3 | -3.183      | 6  | .012     | 10 | Ö            | 4  | 0          | 10 | 009      | 6  |
| 221 |        | 16  | max | 770.662   | 2 | 939         | 15 | 8.508    | 4  | 0            | 10 | .016       | 4  | 002      | 15 |
| 222 |        |     | min | -912.236  | 3 | -4.055      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 008      | 6  |
| 223 |        | 17  | max | 770.491   | 2 | -1.144      | 15 | 9.115    | 4  | 0            | 10 | .02        | 4  | 001      | 15 |
| 224 |        |     | min | -912.364  | 3 | -4.927      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 005      | 6  |
| 225 |        | 18  | max | 770.321   | 2 | -1.349      | 15 | 9.722    | 4  | 0            | 10 | .025       | 4  | 0        | 15 |
| 226 |        |     | min | -912.492  | 3 | -5.799      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 003      | 6  |
| 227 |        | 19  | max | 770.151   | 2 | -1.554      | 15 | 10.329   | 4  | 0            | 10 | .03        | 4  | 0        | 1  |
| 228 |        |     | min | -912.619  | 3 | -6.671      | 6  | .012     | 10 | 0            | 4  | 0          | 10 | 0        | 1  |
| 229 | M4     | 1   |     | 1006.381  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | .021       | 4  | 0        | 1  |
| 230 |        |     |     | -157.505  | 3 | 0           | 1  | -228.067 |    | 0            | 1  | 0          | 10 | 0        | 1  |
| 231 |        | 2   |     | 1006.552  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 1  | 0        | 1  |
| 232 |        |     | min |           | 3 | 0           | 1  | -228.215 |    | 0            | 1  | 006        | 4  | 0        | 1  |
| 233 |        | 3   | +   | 1006.722  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 12 | 0        | 1  |
| 234 |        |     |     | -157.249  |   | 0           | 1  | -228.362 |    | 0            | 1  | 032        | 4  | 0        | 1  |
| 235 |        | 4   |     | 1006.892  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 12 | 0        | 1  |
| 236 |        |     |     | -157.122  | 3 | 0           | 1  | -228.51  | 4  | 0            | 1  | 058        | 4  | 0        | 1  |
| 237 |        | 5   | +   | 1007.063  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 10 | 0        | 1  |
| 238 |        |     |     | -156.994  | 3 | 0           | 1  | -228.658 |    | 0            | 1  | 084        | 4  | 0        | 1  |
| 239 |        | 6   |     | 1007.233  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 10 | 0        | 1  |
| 240 |        |     |     | -156.866  |   | 0           | 1  | -228.805 |    | 0            | 1  | 111        | 4  | 0        | 1  |
| 241 |        | 7   |     | 1007.403  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 10 | 0        | 1  |
| 242 |        |     | min |           | 3 | 0           | 1  | -228.953 |    | 0            | 1  | 137        | 4  | 0        | 1  |
| 243 |        | 8   |     | 1007.574  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 10 | 0        | 1  |
| 244 |        |     | min |           | 3 | 0           | 1  | -229.101 |    | 0            | 1  | 163        | 4  | 0        | 1  |
| 245 |        | 9   |     | 1007.744  | 1 | 0           | 1  | 58       | 10 | 0            | 1  | 0          | 10 | 0        | 1  |
| 246 |        |     |     | -156.483  | 3 | 0           | 1  | -229.248 | 4  | 0            | 1  | 19         | 4  | 0        | 1  |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member | Sec   |     | Axial[lb]             |               |              |    |                |               | Torque[k-ft] |               | 1 -      |         |          |   |
|------------|--------|-------|-----|-----------------------|---------------|--------------|----|----------------|---------------|--------------|---------------|----------|---------|----------|---|
| 247        |        | 10    |     | 1007.914              | _1_           | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 248        |        | 4.4   |     | -156.355              | 3             | 0            | 1  | -229.396       | 4             | 0            | 1             | 216      | 4       | 0        | 1 |
| 249        |        | 11    |     | 1008.085              | 1_            | 0            | 1_ | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 250        |        | 40    |     | -156.227              | 3             | 0            | 1_ | -229.543       | 4             | 0            | <u>1</u><br>1 | 242      | 4       | 0        | 1 |
| 251<br>252 |        | 12    |     | 1008.255<br>-156.099  | <u>1</u><br>3 | 0            | 1  | 58<br>-229.691 | 10<br>4       | 0            | 1             | 269      | 10<br>4 | 0        | 1 |
| 253        |        | 13    |     | 1008.425              | <u>ა</u><br>1 | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 254        |        | 13    |     | -155.972              | 3             | 0            | 1  | -229.839       | 4             | 0            | 1             | 295      | 4       | 0        | 1 |
| 255        |        | 14    |     | 1008.596              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 256        |        | 17    |     | -155.844              | 3             | 0            | 1  | -229.986       | 4             | 0            | 1             | 321      | 4       | 0        | 1 |
| 257        |        | 15    |     | 1008.766              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 258        |        |       |     | -155.716              | 3             | 0            | 1  | -230.134       | 4             | 0            | 1             | 348      | 4       | 0        | 1 |
| 259        |        | 16    |     | 1008.936              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 260        |        |       |     | -155.588              | 3             | 0            | 1  | -230.282       | 4             | 0            | 1             | 374      | 4       | 0        | 1 |
| 261        |        | 17    |     | 1009.107              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 0        | 10      | 0        | 1 |
| 262        |        |       |     | -155.461              | 3             | 0            | 1  | -230.429       | 4             | 0            | 1             | 401      | 4       | 0        | 1 |
| 263        |        | 18    | max | 1009.277              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 001      | 10      | 0        | 1 |
| 264        |        |       | min | -155.333              | 3             | 0            | 1  | -230.577       | 4             | 0            | 1             | 427      | 4       | 0        | 1 |
| 265        |        | 19    | max | 1009.447              | 1             | 0            | 1  | 58             | 10            | 0            | 1             | 001      | 10      | 0        | 1 |
| 266        |        |       | min | -155.205              | 3             | 0            | 1  | -230.725       | 4             | 0            | 1             | 454      | 4       | 0        | 1 |
| 267        | M6     | 1     | max | 3349.706              | 2             | 2.436        | 2  | 0              | 1             | 0            | _1_           | 0        | 4       | 0        | 1 |
| 268        |        |       | min | -4806.133             | 3             | .073         | 3  | -29.317        | 4             | 0            | 4             | 0        | 1       | 0        | 1 |
| 269        |        | 2     | max | 3350.18               | 2             | 2.407        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 270        |        |       | min |                       | 3             | .052         | 3  | -29.728        | 4             | 0            | 4             | 009      | 4       | 0        | 2 |
| 271        |        | 3     |     | 3350.654              | 2             | 2.378        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 272        |        |       | min |                       | 3             | .03          | 3  | -30.139        | 4             | 0            | 4             | 019      | 4       | 002      | 2 |
| 273        |        | 4     |     | 3351.127              | 2             | 2.349        | 2  | 0              | 1             | 0            | 1_            | 0        | 1       | 0        | 3 |
| 274        |        |       | min |                       | 3             | .008         | 3  | -30.551        | 4             | 0            | 4             | 029      | 4       | 002      | 2 |
| 275        |        | 5     |     | 3351.601              | 2             | 2.32         | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 276        |        |       | min | -4804.712             | 3             | 013          | 3  | -30.962        | 4             | 0            | 4             | 039      | 4       | 003      | 2 |
| 277        |        | 6     |     | 3352.075              | 2             | 2.291        | 2  | 0              | 1             | 0            | 1_1           | 0        | 1       | 0        | 3 |
| 278        |        | 7     | min | -4804.357<br>3352.549 | 3             | 035          | 2  | -31.373<br>0   | <u>4</u><br>1 | 0            | <u>4</u><br>1 | 049<br>0 | 1       | 004      | 2 |
| 279<br>280 |        |       | min |                       | 3             | 2.263<br>057 | 3  | -31.785        | 4             | 0            | 4             | 059      | 4       | 005      | 2 |
| 281        |        | 8     |     | 3353.022              | 2             | 2.234        | 2  | 0              | 1             | 0            | 1             | 059      | 1       | 005<br>0 | 3 |
| 282        |        | 0     | min | -4803.646             | 3             | 078          | 3  | -32.196        | 4             | 0            | 4             | 069      | 4       | 005      | 2 |
| 283        |        | 9     |     | 3353.496              | 2             | 2.205        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 284        |        |       | min |                       | 3             | 1            | 3  | -32.607        | 4             | 0            | 4             | 079      | 4       | 006      | 2 |
| 285        |        | 10    | max |                       | 2             | 2.176        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 286        |        | - ' ' | min | -4802.935             | 3             | 122          | 3  | -33.019        | 4             | 0            | 4             | 09       | 4       | 007      | 2 |
| 287        |        | 11    |     | 3354.443              | 2             | 2.147        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 288        |        |       |     | -4802.58              | 3             | 143          | 3  | -33.43         | 4             | 0            | 4             | 1        | 4       | 007      | 2 |
| 289        |        | 12    |     | 3354.917              | 2             | 2.118        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 290        |        |       |     | -4802.225             | 3             | 165          | 3  | -33.841        | 4             | 0            | 4             | 111      | 4       | 008      | 2 |
| 291        |        | 13    |     | 3355.391              | 2             | 2.089        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 292        |        |       |     | -4801.869             | 3             | 187          | 3  | -34.253        | 4             | 0            | 4             | 122      | 4       | 009      | 2 |
| 293        |        | 14    |     | 3355.865              | 2             | 2.061        | 2  | 0              | 1             | 0            | 1_            | 0        | 1       | 0        | 3 |
| 294        |        |       |     | -4801.514             | 3             | 208          | 3  | -34.664        | 4             | 0            | 4             | 133      | 4       | 009      | 2 |
| 295        |        | 15    |     | 3356.338              | 2             | 2.032        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 296        |        |       |     | -4801.159             | 3             | 23           | 3  | -35.075        | 4             | 0            | 4             | 144      | 4       | 01       | 2 |
| 297        |        | 16    |     | 3356.812              | 2             | 2.003        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 298        |        |       | min | -4800.804             | 3             | 252          | 3  | -35.487        | 4             | 0            | 4             | 155      | 4       | 011      | 2 |
| 299        |        | 17    |     | 3357.286              | 2             | 1.974        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 300        |        |       |     | -4800.448             | 3             | 273          | 3  | -35.898        | 4             | 0            | 4             | 167      | 4       | 011      | 2 |
| 301        |        | 18    |     | 3357.76               | 2             | 1.945        | 2  | 0              | 1             | 0            | 1             | 0        | 1       | 0        | 3 |
| 302        |        | 4.0   | min |                       | 3             | 295          | 3  | -36.309        | 4             | 0            | 4_            | 178      | 4       | 012      | 2 |
| 303        |        | 19    | max | 3358.233              | 2             | 1.916        | 2  | 0              | _1_           | 0            | _1_           | 0        | 1       | 0        | 3 |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec                                              |         | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC       | Torque[k-ft] | LC | y-y Mome | LC  | z-z Mome | LC |
|-----|--------|--------------------------------------------------|---------|-----------|----|-------------|----|-------------|----------|--------------|----|----------|-----|----------|----|
| 304 |        |                                                  | min     | -4799.738 | 3  | 316         | 3  | -36.721     | 4        | 0            | 4  | 19       | 4   | 013      | 2  |
| 305 | M7     | 1                                                | max     | 2449.35   | 2  | 9.017       | 6  | 0           | 1        | 0            | 1  | 0        | 1   | .013     | 2  |
| 306 |        |                                                  | min     | -2637.419 | 3  | 2.118       | 15 | 926         | 5        | 0            | 4  | 012      | 4   | 0        | 3  |
| 307 |        | 2                                                | max     | 2449.179  | 2  | 8.145       | 6  | 0           | 1        | 0            | 1  | 0        | 1   | .009     | 2  |
| 308 |        |                                                  | min     | -2637.547 | 3  | 1.913       | 15 | 319         | 5        | 0            | 4  | 012      | 4   | 003      | 3  |
| 309 |        | 3                                                | max     | 2449.009  | 2  | 7.273       | 6  | .335        | 4        | 0            | 1  | 0        | 1   | .006     | 2  |
| 310 |        |                                                  | min     | -2637.675 | 3  | 1.708       | 15 | 0           | 1        | 0            | 4  | 012      | 4   | 004      | 3  |
| 311 |        | 4                                                | max     | 2448.839  | 2  | 6.401       | 6  | .942        | 4        | 0            | 1  | 0        | 1   | .003     | 2  |
| 312 |        |                                                  | min     | -2637.802 | 3  | 1.503       | 15 | 0           | 1        | 0            | 4  | 012      | 4   | 006      | 3  |
| 313 |        | 5                                                | max     | 2448.668  | 2  | 5.529       | 6  | 1.549       | 4        | 0            | 1  | 0        | 1   | 0        | 2  |
| 314 |        |                                                  | min     | -2637.93  | 3  | 1.298       | 15 | 0           | 1        | 0            | 4  | 011      | 4   | 007      | 3  |
| 315 |        | 6                                                |         | 2448.498  | 2  | 4.657       | 6  | 2.156       | 4        | 0            | 1  | 0        | 1   | 001      | 2  |
| 316 |        |                                                  | min     | -2638.058 | 3  | 1.093       | 15 | 0           | 1        | 0            | 4  | 01       | 4   | 008      | 3  |
| 317 |        | 7                                                |         | 2448.328  | 2  | 3.785       | 6  | 2.763       | 4        | 0            | 1  | 0        | 1   | 002      | 15 |
| 318 |        |                                                  | min     | -2638.186 | 3  | .888        | 15 | 0           | 1        | 0            | 4  | 009      | 4   | 009      | 3  |
| 319 |        | 8                                                |         | 2448.157  | 2  | 2.913       | 6  | 3.371       | 4        | 0            | 1  | 0        | 1   | 002      | 15 |
| 320 |        | <u> </u>                                         | min     | -2638.313 | 3  | .675        | 12 | 0.07 1      | 1        | 0            | 4  | 008      | 4   | 01       | 4  |
| 321 |        | 9                                                |         | 2447.987  | 2  | 2.154       | 2  | 3.978       | 4        | 0            | 1  | 0        | 1   | 003      | 15 |
| 322 |        | <del>                                     </del> | min     | -2638.441 | 3  | .335        | 12 | 0.570       | 1        | 0            | 4  | 006      | 5   | 011      | 4  |
| 323 |        | 10                                               |         | 2447.816  | 2  | 1.474       | 2  | 4.585       | 4        | 0            | 1  | 0        | 1   | 003      | 15 |
| 324 |        | 10                                               | min     | -2638.569 | 3  | 082         | 3  | 0           | 1        | 0            | 4  | 004      | 5   | 012      | 4  |
| 325 |        | 11                                               | _       | 2447.646  | 2  | .795        | 2  | 5.192       | 4        | 0            | 1  | 0        | 1   | 003      | 15 |
| 326 |        |                                                  |         | -2638.697 | 3  | 592         | 3  | 0           | 1        | 0            | 4  | 002      | 5   | 012      | 4  |
|     |        | 12                                               | min     | 2447.476  | 2  |             |    |             | <u> </u> |              |    |          | 4   |          |    |
| 327 |        | 12                                               |         |           |    | .115        | 2  | 5.799       | 1        | 0            | 1  | 0        | -   | 003      | 15 |
| 328 |        | 40                                               | min     | -2638.825 | 3  | -1.102      | 3  | 0           | -        | 0            | 4  | 0        | 1_1 | 012      | 4  |
| 329 |        | 13                                               |         | 2447.305  | 2  | 342         | 15 | 6.406       | 4        | 0            | 1  | .004     | 4   | 003      | 15 |
| 330 |        | 4.4                                              | min     | -2638.952 | 3  | -1.611      | 3  | 0           | 1        | 0            | 4  | 0        | 1_  | 012      | 4  |
| 331 |        | 14                                               |         | 2447.135  | 2  | 547         | 15 | 7.013       | 4        | 0            | 1  | .007     | 4   | 003      | 15 |
| 332 |        |                                                  | min     | -2639.08  | 3_ | -2.319      | 4  | 0           | 1        | 0            | 4  | 0        | 1   | 011      | 4  |
| 333 |        | 15                                               |         | 2446.965  | 2  | 752         | 15 | 7.62        | 4        | 0            | 1  | .01      | 4   | 002      | 15 |
| 334 |        | 1.0                                              | min     | -2639.208 | 3  | -3.191      | 4  | 0           | 1        | 0            | 4  | 0        | 1   | 009      | 4  |
| 335 |        | 16                                               |         | 2446.794  | 2  | 957         | 15 | 8.228       | 4        | 0            | 1  | .014     | 4   | 002      | 15 |
| 336 |        |                                                  | min     | -2639.336 | 3  | -4.063      | 4  | 0           | 1        | 0            | 4  | 0        | 1_  | 008      | 4  |
| 337 |        | 17                                               |         | 2446.624  | 2  | -1.162      | 15 | 8.835       | 4        | 0            | 1_ | .018     | 4   | 001      | 15 |
| 338 |        |                                                  | min     | -2639.463 | 3_ | -4.935      | 4  | 0           | 1        | 0            | 4  | 0        | 1   | 005      | 4  |
| 339 |        | 18                                               | max     | 2446.454  | 2  | -1.367      | 15 | 9.442       | 4        | 0            | 1  | .022     | 4   | 0        | 15 |
| 340 |        |                                                  | min     | -2639.591 | 3  | -5.807      | 4  | 0           | 1        | 0            | 4  | 0        | 1   | 003      | 4  |
| 341 |        | 19                                               | max     | 2446.283  | 2  | -1.572      | 15 | 10.049      | 4        | 0            | 1  | .027     | 4   | 0        | 1  |
| 342 |        |                                                  | min     | -2639.719 | 3  | -6.679      | 4  | 0           | 1        | 0            | 4  | 0        | 1   | 0        | 1  |
| 343 | M8     | 1                                                |         | 2830.314  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | .019     | 4   | 0        | 1  |
| 344 |        |                                                  | min     | -558.874  | 3  | 0           | 1  | -219.553    | 4        | 0            | 1  | 0        | 1   | 0        | 1  |
| 345 |        | 2                                                | max     | 2830.485  | 2  | 0           | 1  | 0           | 1        | 0            | 1_ | 0        | 1   | 0        | 1  |
| 346 |        |                                                  | min     | -558.746  | 3  | 0           | 1  | -219.701    | 4        | 0            | 1  | 006      | 4   | 0        | 1  |
| 347 |        | 3                                                |         | 2830.655  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 348 |        |                                                  |         | -558.618  | 3  | 0           | 1  | -219.848    | 4        | 0            | 1  | 032      | 4   | 0        | 1  |
| 349 |        | 4                                                | max     | 2830.825  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 350 |        |                                                  | min     |           | 3  | 0           | 1  | -219.996    | 4        | 0            | 1  | 057      | 4   | 0        | 1  |
| 351 |        | 5                                                |         | 2830.996  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 352 |        |                                                  |         | -558.363  | 3  | 0           | 1  | -220.143    |          | 0            | 1  | 082      | 4   | 0        | 1  |
| 353 |        | 6                                                |         | 2831.166  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 354 |        |                                                  |         | -558.235  | 3  | 0           | 1  | -220.291    | 4        | 0            | 1  | 107      | 4   | 0        | 1  |
| 355 |        | 7                                                |         | 2831.336  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 356 |        |                                                  |         | -558.107  | 3  | 0           | 1  | -220.439    |          | 0            | 1  | 133      | 4   | 0        | 1  |
| 357 |        | 8                                                |         | 2831.507  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 358 |        |                                                  |         | -557.979  | 3  | 0           | 1  | -220.586    |          | 0            | 1  | 158      | 4   | 0        | 1  |
| 359 |        | 9                                                |         | 2831.677  | 2  | 0           | 1  | 0           | 1        | 0            | 1  | 0        | 1   | 0        | 1  |
| 360 |        | 3                                                |         | -557.852  | 3  | 0           | 1  | -220.734    |          | 0            | 1  | 183      | 4   | 0        | 1  |
| 300 |        |                                                  | 1111111 | -557.052  | J  | U           |    | -220.134    | +        | U            |    | 103      | +   | U        |    |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member     | Sec |     | Axial[lb] |    |       |    |          |    | Torque[k-ft] |     | 1 - | LC | _   |    |
|-----|------------|-----|-----|-----------|----|-------|----|----------|----|--------------|-----|-----|----|-----|----|
| 361 |            | 10  |     | 2831.847  | 2  | 0     | 1  | 0        | 1  | 0            | _1_ | 0   | 1  | 0   | 1  |
| 362 |            | 4.4 | min | -557.724  | 3  | 0     | 1  | -220.882 | 4  | 0            | 1   | 209 | 4  | 0   | 1  |
| 363 |            | 11  |     | 2832.018  | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 364 |            | 40  |     | -557.596  | 3  | 0     | 1  | -221.029 | 4  | 0            | 1   | 234 | 4  | 0   | 1  |
| 365 |            | 12  |     | 2832.188  | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 366 |            | 10  |     | -557.468  | 3  | 0     | 1  | -221.177 | 4  | 0            | 1   | 26  | 4  | 0   | 1  |
| 367 |            | 13  |     | 2832.358  | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 368 |            |     | min | -557.341  | 3  | 0     | 1  | -221.325 | 4  | 0            | 1   | 285 | 4  | 0   | 1  |
| 369 |            | 14  |     | 2832.529  | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 370 |            |     | min | -557.213  | 3  | 0     | 1  | -221.472 | 4  | 0            | 1   | 31  | 4  | 0   | 1  |
| 371 |            | 15  |     | 2832.699  | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 372 |            | 10  | min | -557.085  | 3  | 0     | 1  | -221.62  | 4  | 0            | 1   | 336 | 4  | 0   | 1  |
| 373 |            | 16  | max |           | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 374 |            |     |     | -556.957  | 3  | 0     | 1  | -221.767 | 4  | 0            | 1   | 361 | 4  | 0   | 1  |
| 375 |            | 17  | max | 2833.04   | 2  | 0     | 1  | 0        | 1  | 0            | _1_ | 0   | 1  | 0   | 1  |
| 376 |            |     | min | -556.83   | 3_ | 0     | 1  | -221.915 | 4  | 0            | 1   | 387 | 4  | 0   | 1  |
| 377 |            | 18  | max |           | 2  | 0     | 1  | 0        | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 378 |            |     | min | -556.702  | 3  | 0     | 1  | -222.063 | 4  | 0            | 1   | 412 | 4  | 0   | 1  |
| 379 |            | 19  |     | 2833.381  | 2  | 0     | 1_ | 0        | 1  | 0            | 1_  | 0   | 1  | 0   | 1  |
| 380 |            |     |     | -556.574  | 3  | 0     | 1  | -222.21  | 4  | 0            | 1_  | 438 | 4  | 0   | 1  |
| 381 | <u>M10</u> | 1   |     | 1135.679  | 2  | 1.98  | 6  | 023      | 10 | 0            | _1_ | 0   | 4  | 0   | 1  |
| 382 |            |     | min | -1578.237 | 3  | .445  | 15 | -29.21   | 4  | 0            | 5   | 0   | 3  | 0   | 1  |
| 383 |            | 2   |     | 1136.153  | 2  | 1.943 | 6  | 023      | 10 | 0            | _1_ | 0   | 10 | 0   | 15 |
| 384 |            |     |     | -1577.881 | 3  | .436  | 15 | -29.621  | 4  | 0            | 5   | 009 | 4  | 0   | 6  |
| 385 |            | 3   |     | 1136.627  | 2  | 1.906 | 6  | 023      | 10 | 0            | _1_ | 0   | 10 | 0   | 15 |
| 386 |            |     | min | -1577.526 | 3  | .427  | 15 | -30.032  | 4  | 0            | 5   | 019 | 4  | 001 | 6  |
| 387 |            | 4   | max | 1137.1    | 2  | 1.869 | 6  | 023      | 10 | 0            | _1_ | 0   | 10 | 0   | 15 |
| 388 |            |     | min | -1577.171 | 3  | .419  | 15 | -30.444  | 4  | 0            | 5   | 029 | 4  | 002 | 6  |
| 389 |            | 5   | max | 1137.574  | 2  | 1.832 | 6  | 023      | 10 | 0            | _1_ | 0   | 10 | 0   | 15 |
| 390 |            |     | min | -1576.815 | 3  | .41   | 15 | -30.855  | 4  | 0            | 5   | 038 | 4  | 002 | 6  |
| 391 |            | 6   | max | 1138.048  | 2  | 1.795 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 0   | 15 |
| 392 |            |     | min | -1576.46  | 3  | .401  | 15 | -31.266  | 4  | 0            | 5   | 048 | 4  | 003 | 6  |
| 393 |            | 7   | max | 1138.522  | 2  | 1.757 | 6  | 023      | 10 | 0            | _1_ | 0   | 10 | 0   | 15 |
| 394 |            |     |     | -1576.105 | 3  | .392  | 15 | -31.678  | 4  | 0            | 5   | 058 | 4  | 004 | 6  |
| 395 |            | 8   | max | 1138.995  | 2  | 1.72  | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 0   | 15 |
| 396 |            |     | min | -1575.749 | 3  | .384  | 15 | -32.089  | 4  | 0            | 5   | 069 | 4  | 004 | 6  |
| 397 |            | 9   | max | 1139.469  | 2  | 1.683 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 001 | 15 |
| 398 |            |     | min |           | 3  | .375  | 15 | -32.5    | 4  | 0            | 5   | 079 | 4  | 005 | 6  |
| 399 |            | 10  |     | 1139.943  | 2  | 1.646 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 001 | 15 |
| 400 |            |     | min | -1575.039 | 3  | .366  | 15 | -32.912  | 4  | 0            | 5   | 089 | 4  | 005 | 6  |
| 401 |            | 11  | max | 1140.417  | 2  | 1.609 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 001 | 15 |
| 402 |            |     | min | -1574.684 | 3  | .358  | 15 | -33.323  | 4  | 0            | 5   | 1   | 4  | 006 | 6  |
| 403 |            | 12  |     | 1140.89   | 2  | 1.572 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 001 | 15 |
| 404 |            |     | min | -1574.328 | 3  | .349  | 15 | -33.734  | 4  | 0            | 5   | 111 | 4  | 006 | 6  |
| 405 |            | 13  |     | 1141.364  | 2  | 1.535 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 406 |            |     |     | -1573.973 | 3  | .34   | 15 | -34.146  | 4  | 0            | 5   | 122 | 4  | 007 | 6  |
| 407 |            | 14  | max | 1141.838  | 2  | 1.498 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 408 |            |     | min | -1573.618 | 3  | .331  | 15 | -34.557  | 4  | 0            | 5   | 133 | 4  | 007 | 6  |
| 409 |            | 15  |     | 1142.312  | 2  | 1.461 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 410 |            |     | min | -1573.262 | 3  | .323  | 15 | -34.968  | 4  | 0            | 5   | 144 | 4  | 008 | 6  |
| 411 |            | 16  |     | 1142.785  | 2  | 1.424 | 6  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 412 |            |     | min | -1572.907 | 3  | .314  | 15 | -35.38   | 4  | 0            | 5   | 155 | 4  | 008 | 6  |
| 413 |            | 17  |     | 1143.259  | 2  | 1.392 | 2  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 414 |            |     |     | -1572.552 | 3  | .305  | 15 | -35.791  | 4  | 0            | 5   | 166 | 4  | 009 | 6  |
| 415 |            | 18  |     | 1143.733  | 2  | 1.363 | 2  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |
| 416 |            |     |     | -1572.196 | 3  | .297  | 15 | -36.202  | 4  | 0            | 5   | 178 | 4  | 009 | 6  |
| 417 |            | 19  |     | 1144.207  | 2  | 1.334 | 2  | 023      | 10 | 0            | 1   | 0   | 10 | 002 | 15 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |       | Axial[lb] | LC       | y Shear[lb] |    |          | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC_ |
|-----|--------|-----|-------|-----------|----------|-------------|----|----------|----|--------------|----|----------|----|----------|-----|
| 418 |        |     | min   | -1571.841 | 3        | .288        | 15 | -36.614  | 4  | 0            | 5  | 19       | 4  | 009      | 6   |
| 419 | M11    | 1   | max   | 773.217   | 2        | 8.964       | 6  | 012      | 10 | 0            | 1  | 0        | 10 | .009     | 6   |
| 420 |        |     | min   | -910.32   | 3        | 2.093       | 15 | 707      | 5  | 0            | 4  | 012      | 4  | .002     | 15  |
| 421 |        | 2   | max   | 773.047   | 2        | 8.092       | 6  | 012      | 10 | 0            | 1  | 0        | 10 | .006     | 2   |
| 422 |        |     | min   | -910.447  | 3        | 1.888       | 15 | 164      | 1  | 0            | 4  | 012      | 4  | 0        | 12  |
| 423 |        | 3   | max   | 772.876   | 2        | 7.22        | 6  | .521     | 4  | 0            | 1  | 0        | 10 | .003     | 2   |
| 424 |        |     | min   | -910.575  | 3        | 1.683       | 15 | 164      | 1  | 0            | 4  | 012      | 4  | 0        | 3   |
| 425 |        | 4   | max   | 772.706   | 2        | 6.348       | 6  | 1.128    | 4  | 0            | 1  | 0        | 10 | 0        | 2   |
| 426 |        |     | min   | -910.703  | 3        | 1.478       | 15 | 164      | 1  | 0            | 4  | 012      | 4  | 002      | 3   |
| 427 |        | 5   | max   | 772.536   | 2        | 5.476       | 6  | 1.735    | 4  | 0            | 1  | 0        | 10 | 001      | 15  |
| 428 |        |     | min   | -910.831  | 3        | 1.273       | 15 | 164      | 1  | 0            | 4  | 011      | 4  | 004      | 4   |
| 429 |        | 6   | max   | 772.365   | 2        | 4.603       | 6  | 2.342    | 4  | 0            | 1  | 0        | 10 | 002      | 15  |
| 430 |        |     | min   | -910.958  | 3        | 1.068       | 15 | 164      | 1  | 0            | 4  | 01       | 4  | 007      | 4   |
| 431 |        | 7   | max   | 772.195   | 2        | 3.731       | 6  | 2.95     | 4  | 0            | 1  | 0        | 10 | 002      | 15  |
| 432 |        |     | min   | -911.086  | 3        | .863        | 15 | 164      | 1  | 0            | 4  | 009      | 4  | 009      | 4   |
| 433 |        | 8   | max   | 772.025   | 2        | 2.859       | 6  | 3.557    | 4  | 0            | 1  | 0        | 10 | 002      | 15  |
| 434 |        |     | min   | -911.214  | 3        | .658        | 15 | 164      | 1  | 0            | 4  | 007      | 4  | 01       | 4   |
| 435 |        | 9   | max   | 771.854   | 2        | 1.987       | 6  | 4.164    | 4  | 0            | 1  | 0        | 10 | 003      | 15  |
| 436 |        |     | min   | -911.342  | 3        | .453        | 15 | 164      | 1  | 0            | 4  | 005      | 4  | 011      | 4   |
| 437 |        | 10  | max   | 771.684   | 2        | 1.115       | 6  | 4.771    | 4  | 0            | 1  | 0        | 10 | 003      | 15  |
| 438 |        |     | min   | -911.469  | 3        | .248        | 15 | 164      | 1  | 0            | 4  | 003      | 4  | 012      | 4   |
| 439 |        | 11  | max   | 771.514   | 2        | .4          | 2  | 5.378    | 4  | 0            | 1  | 0        | 10 | 003      | 15  |
| 440 |        |     | min   | -911.597  | 3        | 095         | 3  | 164      | 1  | 0            | 4  | 0        | 1  | 012      | 4   |
| 441 |        | 12  | max   | 771.343   | 2        | 162         | 15 | 5.985    | 4  | 0            | 1  | .002     | 5  | 003      | 15  |
| 442 |        |     | min   | -911.725  | 3        | 63          | 4  | 164      | 1  | 0            | 4  | 0        | 1  | 012      | 4   |
| 443 |        | 13  | max   | 771.173   | 2        | 367         | 15 | 6.592    | 4  | 0            | 1  | .005     | 5  | 003      | 15  |
| 444 |        |     | min   | -911.853  | 3        | -1.502      | 4  | 164      | 1  | 0            | 4  | 001      | 1  | 012      | 4   |
| 445 |        | 14  | max   | 771.002   | 2        | 572         | 15 | 7.199    | 4  | 0            | 1  | .008     | 5  | 003      | 15  |
| 446 |        |     | min   | -911.98   | 3        | -2.374      | 4  | 164      | 1  | 0            | 4  | 001      | 1  | 011      | 4   |
| 447 |        | 15  | max   | 770.832   | 2        | 777         | 15 | 7.806    | 4  | 0            | 1  | .012     | 5  | 002      | 15  |
| 448 |        | '   | min   | -912.108  | 3        | -3.246      | 4  | 164      | 1  | Ö            | 4  | 001      | 1  | 009      | 4   |
| 449 |        | 16  | max   | 770.662   | 2        | 982         | 15 | 8.414    | 4  | 0            | 1  | .016     | 5  | 002      | 15  |
| 450 |        | 1.0 | min   | -912.236  | 3        | -4.118      | 4  | 164      | 1  | 0            | 4  | 001      | 1  | 008      | 4   |
| 451 |        | 17  | max   | 770.491   | 2        | -1.187      | 15 | 9.021    | 4  | 0            | 1  | .02      | 5  | 001      | 15  |
| 452 |        |     | min   | -912.364  | 3        | -4.99       | 4  | 164      | 1  | 0            | 4  | 001      | 1  | 006      | 4   |
| 453 |        | 18  | max   | 770.321   | 2        | -1.392      | 15 | 9.628    | 4  | 0            | 1  | .024     | 5  | 0        | 15  |
| 454 |        |     | min   | -912.492  | 3        | -5.862      | 4  | 164      | 1  | 0            | 4  | 001      | 1  | 003      | 4   |
| 455 |        | 19  | max   | 770.151   | 2        | -1.597      | 15 | 10.235   | 4  | 0            | 1  | .029     | 5  | 0        | 1   |
| 456 |        |     | min   | -912.619  | 3        | -6.734      | 4  | 164      | 1  | 0            | 4  | 002      | 1  | 0        | 1   |
| 457 | M12    | 1   |       | 1006.381  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | .02      | 5  | 0        | 1   |
| 458 | 14112  |     |       | -157.505  |          | 0           | 1  | -223.694 |    | 0            | 1  | 001      | 1  | 0        | 1   |
| 459 |        | 2   |       | 1006.552  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | 0        | 10 | 0        | 1   |
| 460 |        | _   | min   |           | 3        | 0           | 1  | -223.842 |    | 0            | 1  | 006      | 4  | 0        | 1   |
| 461 |        | 3   |       | 1006.722  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | 0        | 1  | 0        | 1   |
| 462 |        |     |       | -157.249  |          | 0           | 1  | -223.99  | 4  | 0            | 1  | 031      | 4  | 0        | 1   |
| 463 |        | 4   |       | 1006.892  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | .002     | 1  | 0        | 1   |
| 464 |        |     |       | -157.122  | 3        | 0           | 1  | -224.137 | 4  | 0            | 1  | 057      | 4  | 0        | 1   |
| 465 |        | 5   |       | 1007.063  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | .002     | 1  | 0        | 1   |
| 466 |        |     |       | -156.994  | 3        | 0           | 1  | -224.285 |    | 0            | 1  | 083      | 4  | 0        | 1   |
| 467 |        | 6   |       | 1007.233  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | .003     | 1  | 0        | 1   |
| 468 |        |     |       | -156.866  |          | 0           | 1  | -224.433 |    | 0            | 1  | 109      | 4  | 0        | 1   |
| 469 |        | 7   |       | 1007.403  |          | 0           | 1  | 7.525    | 1  | 0            | 1  | .004     | 1  | 0        | 1   |
| 470 |        |     | min   |           | 3        | 0           | 1  | -224.58  | 4  | 0            | 1  | 134      | 4  | 0        | 1   |
| 471 |        | 8   |       | 1007.574  | 1        | 0           | 1  | 7.525    | 1  | 0            | 1  | .005     | 1  | 0        | 1   |
| 471 |        | 0   | min   |           | 3        | 0           | 1  | -224.728 |    | 0            | 1  | 16       | 4  | 0        | 1   |
| 473 |        | 9   |       | 1007.744  |          | 0           | 1  | 7.525    | 1  | 0            | 1  | .006     | 1  | 0        | 1   |
| 474 |        | 3   |       |           |          |             | 1  |          |    |              | 1  |          | 4  |          | 1   |
| 4/4 |        |     | THIII | -156.483  | <u>ა</u> | 0           |    | -224.876 | 4  | 0            |    | 186      | 4  | 0        |     |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

| 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1                                      |
| 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1                                        |
| 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1                                            |
| 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1                                              |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1                                                |
| Heat   Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1 1                                                |
| 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1                                                    |
| 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1                                                    |
| 485         15         max 1008.766         1         0         1         7.525         1         0         1         .011         1         0           486         min -155.716         3         0         1         -225.761         4         0         1         -341         4         0           487         16         max 1008.936         1         0         1         7.525         1         0         1         .012         1         0           488         min -155.588         3         0         1         -225.909         4         0         1         -367         4         0           489         17         max 1009.107         1         0         1         -225.909         4         0         1         -367         4         0           490         min -155.461         3         0         1         -226.057         4         0         1         -333         4         0           491         18         max 1009.277         1         0         1         7.525         1         0         1         -240.01         1         -2419         4         0         1         -2419               | 1 1                                                      |
| 486         min         -155.716         3         0         1         -225.761         4         0         1         -341         4         0           487         16         max         1008.936         1         0         1         -255.56         1         0         1         .012         1         0           488         min         -155.588         3         0         1         -225.909         4         0         1         -367         4         0           489         17         max         1009.107         1         0         1         -226.057         4         0         1         -393         4         0           491         18         max         1009.277         1         0         1         -525.5         1         0         1         -393         4         0           492         min         -155.333         3         0         1         -226.204         4         0         1         -419         4         0           493         19         max         100.9447         1         0         1         -526.204         0         1         -445         4                        | 1                                                        |
| 487         16         max         1008.936         1         0         1         7.525         1         0         1         .012         1         0           488         min         -155.588         3         0         1         -225.909         4         0         1         -367         4         0           489         17         max         1009.107         1         0         1         -226.057         4         0         1         -393         4         0           490         min         -155.461         3         0         1         -226.057         4         0         1         -393         4         0           491         18         max         1009.277         1         0         1         -525         1         0         1         -419         4         0           492         min         -155.333         3         0         1         -226.204         4         0         1         -419         4         0           493         19         max         1009.447         1         0         1         -526.201         0         1         -245.245         4                        |                                                          |
| 487         16         max         1008.936         1         0         1         7.525         1         0         1         .012         1         0           488         min         -155.588         3         0         1         -225.909         4         0         1         -367         4         0           489         17         max         1009.107         1         0         1         -226.057         4         0         1         -393         4         0           490         min         -155.461         3         0         1         -226.057         4         0         1         -393         4         0           491         18         max         1009.277         1         0         1         -525         1         0         1         -419         4         0           492         min         -155.333         3         0         1         -226.204         4         0         1         -419         4         0           493         19         max         1009.447         1         0         1         -526.201         0         1         -245.245         4                        |                                                          |
| 488         min         -155.588         3         0         1         -225.909         4         0         1        367         4         0           489         17         max         1009.107         1         0         1         -226.057         4         0         1         .013         1         0           490         min         -155.461         3         0         1         -226.057         4         0         1         .393         4         0           491         18         max         1009.277         1         0         1         .7525         1         0         1         .014         1         0           492         min         -155.333         3         0         1         -226.352         1         0         1         .015         1         0           494         min         -155.205         3         0         1         -226.352         4         0         1         -445         4         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3         .092         5         -012                    | 1                                                        |
| 489         17         max 1009.107         1         0         1         7.525         1         0         1         .013         1         0           490         min         -155.461         3         0         1         -226.057         4         0         1         -393         4         0           491         18         max 1009.277         1         0         1         -7.525         1         0         1         -393         4         0           492         min         -155.333         3         0         1         -226.204         4         0         1         -419         4         0           493         19         max 1009.447         1         0         1         -7.525         1         0         1         -445         4         0           494         min         -155.205         3         0         1         -226.352         4         0         1         -445         4         0           495         M1         1         max 135.271         1         830.488         3         40.536         5         0         2         .12         1         0                            | 1                                                        |
| 490         min         -155.461         3         0         1         -226.057         4         0         1        393         4         0           491         18         max 1009.277         1         0         1         7.525         1         0         1         .014         1         0           492         min         -155.333         3         0         1         -226.204         4         0         1         -419         4         0           493         19         max 1009.447         1         0         1         7.525         1         0         1         .015         1         0           494         min         -155.205         3         0         1         -226.352         4         0         1         -445         4         0           495         M1         1         max 135.271         1         830.488         3         40.536         5         0         2         .12         1         0           496         min         -19.225         5         -447.718         2         -43.245         1         0         3        067         5        521                            | 1                                                        |
| 491         18 max 1009.277         1         0         1         7.525         1         0         1         .014         1         0           492         min         -155.333         3         0         1         -226.204         4         0         1        419         4         0           493         19 max 1009.447         1         0         1         7.525         1         0         1         .015         1         0           494         min         -155.205         3         0         1         -226.352         4         0         1         -445         4         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5        012           497         2 max 135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        522           499         3 max 593.004 </td <td>1</td>   | 1                                                        |
| 492         min         -155.333         3         0         1         -226.204         4         0         1        419         4         0           493         19         max 1009.447         1         0         1         7.525         1         0         1         .015         1         0           494         min         -155.205         3         0         1         -226.322         4         0         1         .445         4         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5        011           497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1 </td <td>1</td>    | 1                                                        |
| 493         19         max         1009.447         1         0         1         7.525         1         0         1         .015         1         0           494         min         -155.205         3         0         1         -226.352         4         0         1        445         4         0           495         M1         1         max         135.271         1         830.488         3         40.536         5         0         2         .12         1         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5        012           497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3         .067         5         -524           499         3         max         593.004         3         599.415         2         15.074         5         0                  | 1                                                        |
| 494         min         -155.205         3         0         1         -226.352         4         0         1        445         4         0           495         M1         1         max         135.271         1         830.488         3         40.536         5         0         2         .12         1         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5         -017           497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1         .532           499         3         max         593.004         3         .9415         2         16.534         5                        | 1                                                        |
| 495         M1         1         max         135.271         1         830.488         3         40.536         5         0         2         .12         1         0           496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5        017           497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1         .532           500         min         -361.328         2         -646.778         3         -43.006         1         0         2        041         5         -1.02           501         4         max         593.538         3         597.888         2         16.534         5              | 1                                                        |
| 496         min         -19.557         5         -447.718         2         -43.245         1         0         3        092         5        012           497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1         .532           500         min         -361.328         2         -646.778         3         -43.006         1         0         2        041         5         -1.02           501         4         max         593.538         3         597.888         2         16.534         5         0         3         .04         1         1.62           502         min         -360.616         2         -647.923         3         -43.006         1         0         2         | 15                                                       |
| 497         2         max         135.983         1         829.342         3         41.996         5         0         2         .094         1         .266           498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1         .532           500         min         -361.328         2         -646.778         3         -43.006         1         0         2        041         5         -1.02           501         4         max         593.538         3         597.888         2         16.534         5         0         3         .04         1         1.62           502         min         -360.616         2         -647.923         3         -43.006         1         0         2        031         5        62           503         5         max         594.072         3         596.361         2         17.994         5         0 <td></td>  |                                                          |
| 498         min         -19.225         5         -449.245         2         -43.245         1         0         3        067         5        529           499         3         max         593.004         3         599.415         2         15.074         5         0         3         .067         1         .532           500         min         -361.328         2         -646.778         3         -43.006         1         0         2        041         5         -1.02           501         4         max         593.538         3         597.888         2         16.534         5         0         3         .04         1         162           502         min         -360.616         2         -647.923         3         -43.006         1         0         2        031         5        622           503         5         max         594.072         3         596.361         2         17.994         5         0         3         .013         1        002           504         min         -359.904         2         -649.068         3         -43.006         1         0                     | 2                                                        |
| 499       3       max       593.004       3       599.415       2       15.074       5       0       3       .067       1       .532         500       min       -361.328       2       -646.778       3       -43.006       1       0       2      041       5       -1.02         501       4       max       593.538       3       597.888       2       16.534       5       0       3       .04       1       .162         502       min       -360.616       2       -647.923       3       -43.006       1       0       2      031       5      62         503       5       max       594.072       3       596.361       2       17.994       5       0       3       .013       1      002         504       min       -359.904       2       -649.068       3       -43.006       1       0       2      02       5      219         505       6       max       594.606       3       594.834       2       19.454       5       0       3       0       10       .184         506       min       -359.192       2 <td></td>                                                                                                       |                                                          |
| 500         min         -361.328         2         -646.778         3         -43.006         1         0         2        041         5         -1.02           501         4         max         593.538         3         597.888         2         16.534         5         0         3         .04         1         .162           502         min         -360.616         2         -647.923         3         -43.006         1         0         2        031         5        622           503         5         max         594.072         3         596.361         2         17.994         5         0         3         .013         1        002           504         min         -359.904         2         -649.068         3         -43.006         1         0         2        02         5        219           505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .184           506         min         -359.192         2         -650.213         3         -43.006         1         0         2            | 2                                                        |
| 501         4         max         593.538         3         597.888         2         16.534         5         0         3         .04         1         .162           502         min         -360.616         2         -647.923         3         -43.006         1         0         2        031         5        622           503         5         max         594.072         3         596.361         2         17.994         5         0         3         .013         1        002           504         min         -359.904         2         -649.068         3         -43.006         1         0         2        02         5        219           505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .184           506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        576           507         7         max         595.14         3         593.307         2         20.915         5         0 <td></td>         |                                                          |
| 502         min         -360.616         2         -647.923         3         -43.006         1         0         2        031         5        62           503         5         max         594.072         3         596.361         2         17.994         5         0         3         .013         1        009           504         min         -359.904         2         -649.068         3         -43.006         1         0         2        02         5        219           505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .182           506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        576           507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2 </td <td>2</td> | 2                                                        |
| 503         5         max         594.072         3         596.361         2         17.994         5         0         3         .013         1        003           504         min         -359.904         2         -649.068         3         -43.006         1         0         2        02         5        219           505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .182           506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        576           507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0                      |                                                          |
| 504         min         -359.904         2         -649.068         3         -43.006         1         0         2        02         5        219           505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .184           506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        576           507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0         3         .017         5         .993           510         min         -357.768         2         -652.504         3         -43.006         1         0         2                 |                                                          |
| 505         6         max         594.606         3         594.834         2         19.454         5         0         3         0         10         .184           506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        578           507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0         3         .017         5         .993           510         min         -357.768         2         -652.504         3         -43.006         1         0         2        067         1         -1.31           511         9         max         609.542         3         49.67         2         48.669         5         0                  |                                                          |
| 506         min         -359.192         2         -650.213         3         -43.006         1         0         2        013         1        576           507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0         3         .017         5         .993           510         min         -357.768         2         -652.504         3         -43.006         1         0         2        067         1         -1.31           511         9         max         609.542         3         49.67         2         48.669         5         0         9         .045         1         1.15           512         min         -302.446         2         .457         15         -73.301         1         0         3                | 3                                                        |
| 507         7         max         595.14         3         593.307         2         20.915         5         0         3         .004         5         .588           508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0         3         .017         5         .993           510         min         -357.768         2         -652.504         3         -43.006         1         0         2        067         1         -1.31           511         9         max         609.542         3         49.67         2         48.669         5         0         9         .045         1         1.156           512         min         -302.446         2         .457         15         -73.301         1         0         3        111         5         -1.49           513         10         max         610.076         3         48.143         2         50.129         5         0               |                                                          |
| 508         min         -358.48         2         -651.359         3         -43.006         1         0         2        04         1        94           509         8         max         595.674         3         591.78         2         22.375         5         0         3         .017         5         .993           510         min         -357.768         2         -652.504         3         -43.006         1         0         2        067         1         -1.31           511         9         max         609.542         3         49.67         2         48.669         5         0         9         .045         1         1.156           512         min         -302.446         2         .457         15         -73.301         1         0         3        111         5         -1.49           513         10         max         610.076         3         48.143         2         50.129         5         0         9         0         10         1.13                                                                                                                                           | 3                                                        |
| 509     8     max     595.674     3     591.78     2     22.375     5     0     3     .017     5     .993       510     min     -357.768     2     -652.504     3     -43.006     1     0     2    067     1     -1.31       511     9     max     609.542     3     49.67     2     48.669     5     0     9     .045     1     1.15       512     min     -302.446     2     .457     15     -73.301     1     0     3    111     5     -1.49       513     10     max     610.076     3     48.143     2     50.129     5     0     9     0     10     1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                        |
| 510         min         -357.768         2         -652.504         3         -43.006         1         0         2        067         1         -1.31           511         9         max         609.542         3         49.67         2         48.669         5         0         9         .045         1         1.15           512         min         -302.446         2         .457         15         -73.301         1         0         3        111         5         -1.49           513         10         max         610.076         3         48.143         2         50.129         5         0         9         0         10         1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 511     9     max     609.542     3     49.67     2     48.669     5     0     9     .045     1     1.15       512     min     -302.446     2     .457     15     -73.301     1     0     3    111     5     -1.49       513     10     max     610.076     3     48.143     2     50.129     5     0     9     0     10     1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                        |
| 512         min         -302.446         2         .457         15         -73.301         1         0         3        111         5         -1.49           513         10         max         610.076         3         48.143         2         50.129         5         0         9         0         10         1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
| 513 10 max 610.076 3 48.143 2 50.129 5 0 9 0 10 1.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
| 515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 516 min -301.022 2 -1.94 4 -73.301 1 0 3059 4 -1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 518 min -245.521 2 -698.157 2 -41.766 1 0 3213 5 -1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| 519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                        |
| 520 min -244.809 2 -699.684 2 -41.766 1 0 3132 5949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                        |
| 522 min -244.097 2 -701.211 2 -41.766 1 0 305 5514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 523   15 max 625.689   3   428.407   3   134.044   5   0   2   .033   5   .173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |
| 524 min -243.385 2 -702.738 2 -41.766 1 0 3012 1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 525   16 max 626.223   3   427.262   3   135.504   5   0   2   .117   5   .358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2                                                      |
| 526 min -242.673 2 -704.265 2 -41.766 1 0 3038 1092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                        |
| 528 min -241.961 2 -705.792 2 -41.766 1 0 3064 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 2                                                      |
| 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 2                                                      |
| 530 min -136.661 1 -304.065 3 -86.109 4 0 2093 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 2 3 2                                                  |
| 531 19 max 33.567 5 655.39 2 -3.716 10 0 5 .142 5 .012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>3<br>2<br>2<br>3                                    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | Axial[lb] | LC | y Shear[lb] | LC |         | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|-----------|-----|-----|-----------|----|-------------|----|---------|----|--------------|----|----------|----|----------|----|
| 532 |           |     | min | -135.949  | 1  | -305.21     | 3  | -84.649 | 4  | 0            | 2  | 123      | 1  | 006      | 1  |
| 533 | <u>M5</u> | 1   | max | 310.823   | 1  | 2712.888    | 3  | 72.697  | 5  | 0            | 1  | 0        | 1  | .024     | 2  |
| 534 |           |     | min | 7.363     | 12 | -1561.846   | 2  | 0       | 1  | 0            | 4  | 181      | 4  | 0        | 15 |
| 535 |           | 2   | max | 311.535   | 1  | 2711.743    | 3  | 74.157  | 5  | 0            | 1  | 0        | 1  | .994     | 2  |
| 536 |           |     | min | 7.719     | 12 | -1563.373   | 2  | 0       | 1  | 0            | 4  | 136      | 4  | -1.664   | 3  |
| 537 |           | 3   | max | 1770.699  | 3  | 1511.684    | 2  | 49.261  | 4  | 0            | 4  | 0        | 1  | 1.931    | 2  |
| 538 |           |     | min | -1095.469 | 2  | -1804.905   | 3  | 0       | 1  | 0            | 1  | 09       | 4  | -3.297   | 3  |
| 539 |           | 4   | max | 1771.233  | 3  | 1510.157    | 2  | 50.722  | 4  | 0            | 4  | 0        | 1  | .994     | 2  |
| 540 |           |     | min | -1094.757 | 2  | -1806.05    | 3  | 0       | 1  | 0            | 1  | 059      | 4  | -2.177   | 3  |
| 541 |           | 5   | max | 1771.768  | 3  | 1508.63     | 2  | 52.182  | 4  | 0            | 4  | 0        | 1  | .094     | 1  |
| 542 |           |     | min | -1094.045 | 2  | -1807.195   | 3  | 0       | 1  | 0            | 1  | 027      | 4  | -1.055   | 3  |
| 543 |           | 6   | max | 1772.302  | 3  | 1507.103    | 2  | 53.642  | 4  | 0            | 4  | .006     | 4  | .067     | 3  |
| 544 |           |     | min | -1093.333 | 2  | -1808.34    | 3  | 0       | 1  | 0            | 1  | 0        | 1  | 879      | 2  |
| 545 |           | 7   | max | 1772.836  | 3  | 1505.576    | 2  | 55.102  | 4  | 0            | 4  | .04      | 4  | 1.189    | 3  |
| 546 |           |     | min | -1092.621 | 2  | -1809.486   | 3  | 0       | 1  | 0            | 1  | 0        | 1  | -1.814   | 2  |
| 547 |           | 8   | max | 1773.37   | 3  | 1504.05     | 2  | 56.562  | 4  | 0            | 4  | .074     | 4  | 2.313    | 3  |
| 548 |           |     | min | -1091.909 | 2  | -1810.631   | 3  | 0       | 1  | 0            | 1  | 0        | 1  | -2.748   | 2  |
| 549 |           | 9   | max | 1782.965  | 3  | 170.189     | 2  | 164.425 | 4  | 0            | 1  | 0        | 1  | 2.671    | 3  |
| 550 |           |     | min | -965.329  | 2  | .459        | 15 | 0       | 1  | 0            | 1  | 17       | 4  | -3.152   | 2  |
| 551 |           | 10  | max | 1783.499  | 3  | 168.662     | 2  | 165.885 | 4  | 0            | 1  | 0        | 1  | 2.571    | 3  |
| 552 |           |     | min | -964.617  | 2  | 002         | 15 | 0       | 1  | 0            | 1  | 068      | 4  | -3.257   | 2  |
| 553 |           | 11  | max | 1784.033  | 3  | 167.136     | 2  | 167.346 | 4  | 0            | 1  | .036     | 4  | 2.472    | 3  |
| 554 |           |     | min | -963.905  | 2  | -1.805      | 6  | 0       | 1  | 0            | 1  | 0        | 1  | -3.361   | 2  |
| 555 |           | 12  | max | 1794.41   | 3  | 1134.902    | 3  | 178.359 | 4  | 0            | 1  | 0        | 1  | 2.156    | 3  |
| 556 |           |     | min | -837.685  | 2  | -1841.878   | 2  | 0       | 1  | 0            | 4  | 299      | 4  | -3       | 2  |
| 557 |           | 13  | max | 1794.944  | 3  | 1133.757    | 3  | 179.82  | 4  | 0            | 1  | 0        | 1  | 1.452    | 3  |
| 558 |           |     | min | -836.973  | 2  | -1843.405   | 2  | 0       | 1  | 0            | 4  | 188      | 4  | -1.856   | 2  |
| 559 |           | 14  | max | 1795.478  | 3  | 1132.612    | 3  | 181.28  | 4  | 0            | 1  | 0        | 1  | .749     | 3  |
| 560 |           |     | min | -836.261  | 2  | -1844.932   | 2  | 0       | 1  | 0            | 4  | 076      | 4  | 712      | 2  |
| 561 |           | 15  | max | 1796.012  | 3  | 1131.467    | 3  | 182.74  | 4  | 0            | 1  | .037     | 4  | .434     | 2  |
| 562 |           |     | min | -835.549  | 2  | -1846.459   | 2  | 0       | 1  | 0            | 4  | 0        | 1  | 0        | 15 |
| 563 |           | 16  | max | 1796.546  | 3  | 1130.322    | 3  | 184.2   | 4  | 0            | 1  | .151     | 4  | 1.58     | 2  |
| 564 |           |     | min | -834.837  | 2  | -1847.986   | 2  | 0       | 1  | 0            | 4  | 0        | 1  | 656      | 3  |
| 565 |           | 17  | max | 1797.08   | 3  | 1129.177    | 3  | 185.66  | 4  | 0            | 1  | .266     | 4  | 2.727    | 2  |
| 566 |           |     | min | -834.125  | 2  | -1849.513   | 2  | 0       | 1  | 0            | 4  | 0        | 1  | -1.357   | 3  |
| 567 |           | 18  | max | -9.193    | 12 | 2225.506    | 2  | 0       | 1  | 0            | 4  | .284     | 4  | 1.39     | 2  |
| 568 |           |     | min | -310.179  | 1  | -1092.663   | 3  | -20.767 | 5  | 0            | 1  | 0        | 1  | 703      | 3  |
| 569 |           | 19  | max | -8.837    | 12 | 2223.979    | 2  | 0       | 1  | 0            | 4  | .272     | 4  | .011     | 1  |
| 570 |           |     | min | -309.467  | 1  | -1093.809   | 3  | -19.307 | 5  | 0            | 1  | 0        | 1  | 025      | 3  |
| 571 | M9        | 1   | max | 135.271   | 1  | 830.488     | 3  | 56.237  | 4  | 0            | 3  | 008      | 10 | 0        | 15 |
| 572 |           |     | min | 8.228     | 12 | -447.718    | 2  | 2.903   | 10 | 0            | 4  | 137      | 4  | 012      | 2  |
| 573 |           | 2   |     | 135.983   | 1  | 829.342     | 3  | 57.697  | 4  | 0            | 3  | 006      | 10 | .266     | 2  |
| 574 |           |     | min | 8.584     | 12 | -449.245    |    | 2.903   | 10 | 0            | 4  | 102      | 4  | 525      | 3  |
| 575 |           | 3   | max | 593.004   | 3  | 599.415     | 2  | 43.006  | 1  | 0            | 2  | 004      | 10 | .534     | 2  |
| 576 |           |     | min | -361.328  | 2  | -646.778    | 3  | 2.882   | 10 | 0            | 3  | 067      | 1  | -1.023   | 3  |
| 577 |           | 4   | max | 593.538   | 3  | 597.888     | 2  | 43.006  | 1  | 0            | 2  | 003      | 10 | .162     | 2  |
| 578 |           |     | min | -360.616  | 2  | -647.923    | 3  | 2.882   | 10 | 0            | 3  | 046      | 4  | 621      | 3  |
| 579 |           | 5   | max | 594.072   | 3  | 596.361     | 2  | 43.006  | 1  | 0            | 2  | 0        | 10 | 005      | 15 |
| 580 |           |     |     | -359.904  | 2  | -649.068    | 3  | 2.882   | 10 | 0            | 3  | 025      | 4  | 219      | 3  |
| 581 |           | 6   | max |           | 3  | 594.834     | 2  | 43.006  | 1  | 0            | 2  | .013     | 1  | .184     | 3  |
| 582 |           |     | min |           | 2  | -650.213    | 3  | 2.882   | 10 | 0            | 3  | 007      | 5  | 578      | 2  |
| 583 |           | 7   |     | 595.14    | 3  | 593.307     | 2  | 43.006  | 1  | 0            | 2  | .04      | 1  | .588     | 3  |
| 584 |           |     | min |           | 2  | -651.359    |    | 2.882   | 10 | 0            | 3  | .003     | 10 | 947      | 2  |
| 585 |           | 8   |     | 595.674   | 3  | 591.78      | 2  | 43.006  | 1  | 0            | 2  | .067     | 1  | .993     | 3  |
| 586 |           |     | min | -357.768  | 2  | -652.504    | 3  | 2.882   | 10 | 0            | 3  | .005     | 10 | -1.314   | 2  |
| 587 |           | 9   |     | 609.542   | 3  | 49.67       | 2  | 75.343  | 4  | 0            | 3  | 003      | 10 | 1.156    | 3  |
| 588 |           |     |     | -302.446  |    | .474        | 15 | 5.25    | 10 | 0            | 9  | 127      | 4  | -1.497   | 2  |
|     |           |     |     |           |    |             |    |         |    |              |    |          |    |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_

# **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 589 |        | 10  | max | 610.076   | 3  | 48.143      | 2  | 76.804      | 4  | 0            | 3  | 0        | 1  | 1.132    | 3  |
| 590 |        |     | min | -301.734  | 2  | .013        | 15 | 5.25        | 10 | 0            | 9  | 08       | 4  | -1.527   | 2  |
| 591 |        | 11  | max | 610.61    | 3  | 46.616      | 2  | 78.264      | 4  | 0            | 3  | .046     | 1  | 1.108    | 3  |
| 592 |        |     | min | -301.022  | 2  | -1.814      | 6  | 5.25        | 10 | 0            | 9  | 042      | 5  | -1.557   | 2  |
| 593 |        | 12  | max | 624.087   | 3  | 431.843     | 3  | 145.988     | 4  | 0            | 3  | 005      | 10 | .974     | 3  |
| 594 |        |     | min | -245.521  | 2  | -698.157    | 2  | 3.156       | 10 | 0            | 2  | 238      | 4  | -1.383   | 2  |
| 595 |        | 13  | max | 624.621   | 3  | 430.698     | 3  | 147.448     | 4  | 0            | 3  | 003      | 10 | .707     | 3  |
| 596 |        |     | min | -244.809  | 2  | -699.684    | 2  | 3.156       | 10 | 0            | 2  | 147      | 4  | 949      | 2  |
| 597 |        | 14  | max | 625.155   | 3  | 429.553     | 3  | 148.908     | 4  | 0            | 3  | 0        | 10 | .44      | 3  |
| 598 |        |     | min | -244.097  | 2  | -701.211    | 2  | 3.156       | 10 | 0            | 2  | 055      | 4  | 514      | 2  |
| 599 |        | 15  | max | 625.689   | 3  | 428.407     | 3  | 150.368     | 4  | 0            | 3  | .038     | 4  | .173     | 3  |
| 600 |        |     | min | -243.385  | 2  | -702.738    | 2  | 3.156       | 10 | 0            | 2  | 0        | 12 | 094      | 1  |
| 601 |        | 16  | max | 626.223   | 3  | 427.262     | 3  | 151.828     | 4  | 0            | 3  | .132     | 4  | .358     | 2  |
| 602 |        |     | min | -242.673  | 2  | -704.265    | 2  | 3.156       | 10 | 0            | 2  | .003     | 10 | 092      | 3  |
| 603 |        | 17  | max | 626.757   | 3  | 426.117     | 3  | 153.288     | 4  | 0            | 3  | .226     | 4  | .796     | 2  |
| 604 |        |     | min | -241.961  | 2  | -705.792    | 2  | 3.156       | 10 | 0            | 2  | .005     | 10 | 357      | 3  |
| 605 |        | 18  | max | -7.847    | 12 | 656.917     | 2  | 48.942      | 1  | 0            | 2  | .223     | 4  | .402     | 2  |
| 606 |        |     | min | -136.661  | 1  | -304.065    | 3  | -68.534     | 5  | 0            | 3  | .007     | 10 | 177      | 3  |
| 607 |        | 19  | max | -7.491    | 12 | 655.39      | 2  | 48.942      | 1  | 0            | 2  | .187     | 4  | .012     | 3  |
| 608 |        |     | min | -135.949  | 1  | -305.21     | 3  | -67.073     | 5  | 0            | 3  | .009     | 10 | 006      | 1  |

# **Envelope Member Section Deflections**

|    | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|----|---------------|----|---------------|----|
| 1  | M13    | 1   | max | 0      | 1  | .237   | 2  | .011   | 3  | 1.626e-2    | 2  | NC            | 1  | NC            | 1  |
| 2  |        |     | min | 564    | 4  | 071    | 3  | 007    | 2  | -4.686e-3   | 3  | NC            | 1  | NC            | 1  |
| 3  |        | 2   | max | 0      | 1  | .188   | 2  | .014   | 3  | 1.706e-2    | 2  | NC            | 4  | NC            | 1  |
| 4  |        |     | min | 564    | 4  | .005   | 15 | 008    | 5  | -4.044e-3   | 3  | 1218.868      | 3  | NC            | 1  |
| 5  |        | 3   | max | 0      | 1  | .172   | 3  | .024   | 1  | 1.787e-2    | 2  | NC            | 4  | NC            | 2  |
| 6  |        |     | min | 564    | 4  | .004   | 15 | 011    | 5  | -3.403e-3   | 3  | 667.325       | 3  | 6359.385      | 1  |
| 7  |        | 4   | max | 0      | 1  | .243   | 3  | .035   | 1  | 1.868e-2    | 2  | NC            | 5  | NC            | 2  |
| 8  |        |     | min | 564    | 4  | .003   | 15 | 009    | 5  | -2.761e-3   | 3  | 516.009       | 3  | 4398.44       | 1  |
| 9  |        | 5   | max | 0      | 1  | .268   | 3  | .04    | 1  | 1.948e-2    | 2  | NC            | 5  | NC            | 2  |
| 10 |        |     | min | 564    | 4  | .003   | 15 | 004    | 10 | -2.119e-3   | 3  | 477.87        | 3  | 3889.173      | 1  |
| 11 |        | 6   | max | 0      | 1  | .248   | 3  | .037   | 1  | 2.029e-2    | 2  | NC            | 4  | NC            | 2  |
| 12 |        |     | min | 564    | 4  | .004   | 15 | 006    | 10 | -1.478e-3   | 3  | 508.478       | 3  | 4213.501      | 1  |
| 13 |        | 7   | max | 0      | 1  | .222   | 2  | .03    | 3  | 2.11e-2     | 2  | NC            | 2  | NC            | 2  |
| 14 |        |     | min | 564    | 4  | .005   | 15 | 008    | 10 | -8.364e-4   | 3  | 619.43        | 3  | 5808.498      | 1  |
| 15 |        | 8   | max | 0      | 1  | .278   | 2  | .032   | 3  | 2.191e-2    | 2  | NC            | 4  | NC            | 1  |
| 16 |        |     | min | 564    | 4  | .006   | 15 | 013    | 2  | -1.949e-4   | 3  | 876.904       | 3  | 7914.405      | 3  |
| 17 |        | 9   | max | 0      | 1  | .326   | 2  | .033   | 3  | 2.271e-2    | 2  | NC            | 4  | NC            | 1  |
| 18 |        |     | min | 564    | 4  | .007   | 15 | 02     | 2  | 4.46e-4     | 15 | 1429.821      | 3  | 7569.166      | 3  |
| 19 |        | 10  | max | 0      | 1  | .347   | 2  | .033   | 3  | 2.352e-2    | 2  | NC            | 4  | NC            | 1  |
| 20 |        |     | min | 564    | 4  | .007   | 15 | 023    | 2  | 4.562e-4    | 15 | 1478.124      | 2  | 7477.568      | 3  |
| 21 |        | 11  | max | 0      | 10 | .326   | 2  | .033   | 3  | 2.271e-2    | 2  | NC            | 4  | NC            | 1  |
| 22 |        |     | min | 564    | 4  | .006   | 15 | 02     | 2  | 4.453e-4    | 15 | 1429.821      | 3  | 7569.166      | 3  |
| 23 |        | 12  | max | 0      | 10 | .278   | 2  | .032   | 3  | 2.191e-2    | 2  | NC            | 4  | NC            | 1  |
| 24 |        |     | min | 564    | 4  | .005   | 15 | 013    | 2  | -1.949e-4   | 3  | 876.904       | 3  | 7914.405      | 3  |
| 25 |        | 13  | max | 0      | 10 | .222   | 2  | .03    | 3  | 2.11e-2     | 2  | NC            | 2  | NC            | 2  |
| 26 |        |     | min | 564    | 4  | .004   | 15 | 008    | 10 | -8.364e-4   | 3  | 619.43        | 3  | 5808.498      | 1  |
| 27 |        | 14  | max | 0      | 10 | .248   | 3  | .037   | 1  | 2.029e-2    | 2  | NC            | 4  | NC            | 2  |
| 28 |        |     | min | 564    | 4  | .003   | 15 | 006    | 10 | -1.478e-3   | 3  | 508.478       | 3  | 4213.501      | 1  |
| 29 |        | 15  | max | 0      | 10 | .268   | 3  | .04    | 1  | 1.948e-2    | 2  | NC            | 5  | NC            | 2  |
| 30 |        |     | min | 564    | 4  | .003   | 15 | 004    | 10 | -2.119e-3   | 3  | 477.87        | 3  | 3889.173      | 1  |
| 31 |        | 16  | max | 0      | 10 | .243   | 3  | .035   | 1  | 1.868e-2    | 2  | NC            | 5  | NC            | 2  |
| 32 |        |     | min | 564    | 4  | .003   | 15 | 003    | 10 | -2.761e-3   | 3  | 516.009       | 3  | 4398.44       | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_

|          | Member | Sec |     | x [in]          | LC | y [in]                 | LC | z [in]      | LC | x Rotate [r           |   |               | LC             |                  |   |
|----------|--------|-----|-----|-----------------|----|------------------------|----|-------------|----|-----------------------|---|---------------|----------------|------------------|---|
| 33       |        | 17  | max | 00              | 10 | .172                   | 3  | .024        | 1_ | 1.787e-2              | 2 | NC            | _4_            | NC               | 2 |
| 34       |        |     | min | 564             | 4  | .003                   | 15 | 003         | 10 | -3.403e-3             | 3 | 667.325       | 3              | 6359.385         |   |
| 35       |        | 18  | max | 00              | 10 | .188                   | 2  | .014        | 3  | 1.706e-2              | 2 | NC            | _4_            | NC               | 1 |
| 36       |        |     | min | 564             | 4  | .004                   | 15 | 004         | 10 | -4.044e-3             | 3 | 1218.868      | 3              | NC               | 1 |
| 37       |        | 19  | max | 0               | 10 | .237                   | 2  | .011        | 3  | 1.626e-2              | 2 | NC            | _1_            | NC               | 1 |
| 38       |        | _   | min | 564             | 4  | 071                    | 3  | 007         | 2  | -4.686e-3             | 3 | NC            | 1_             | NC               | 1 |
| 39       | M14    | 1   | max | 0               | 1  | .486                   | 3  | .01         | 3  | 8.891e-3              | 2 | NC            | _1_            | NC               | 1 |
| 40       |        |     | min | 43              | 4  | 696                    | 2  | 006         | 2  | -7.287e-3             | 3 | NC            | _1_            | NC               | 1 |
| 41       |        | 2   | max | 0               | 1  | .666                   | 3  | .011        | 3  | 1.001e-2              | 2 | NC            | _5_            | NC               | 1 |
| 42       |        |     | min | 43              | 4  | 878                    | 2  | 013         | 5  | -8.327e-3             | 3 | 890.453       | 2              | NC               | 1 |
| 43       |        | 3   | max | 0               | 1  | .827                   | 3  | .018        | 1  | 1.112e-2              | 2 | NC            | 5              | NC               | 2 |
| 44       |        |     | min | 43              | 4  | -1.044                 | 2  | <u>017</u>  | 5  | -9.366e-3             | 3 | 465.215       | 2              | 8653.375         |   |
| 45       |        | 4   | max | 0               | 1  | .954                   | 3  | .028        | 1  | 1.224e-2              | 2 | NC            | 5              | NC NC            | 2 |
| 46       |        | _   | min | 43              | 4  | -1.184                 | 2  | 012         | 5  | -1.04e-2              | 3 | 332.34        | 2              | 5490.043         |   |
| 47       |        | 5   | max | 0               | 1  | 1.041                  | 3  | .034        | 1  | 1.335e-2              | 2 | NC            | <u>15</u>      | NC<br>1000 001   | 2 |
| 48       |        | _   | min | 43              | 4  | -1.289                 | 2  | 004         |    | -1.144e-2             | 3 | 273.301       | 2              | 4622.091         | 1 |
| 49       |        | 6   | max | 0               | 1  | 1.086                  | 3  | .032        | 1  | 1.447e-2              | 2 | NC<br>044.707 | <u>15</u>      | NC<br>10.10.10.1 | 2 |
| 50       |        | -   | min | 43              | 4  | <u>-1.358</u>          | 2  | 00 <u>5</u> | 10 |                       | 3 | 244.767       | 2              | 4848.484         |   |
| 51       |        | 7   | max | 0               | 1  | 1.093                  | 3  | .026        | 3  | 1.558e-2              | 2 | NC<br>000 400 | 15             | NC               | 2 |
| 52       |        |     | min | 43              | 4  | -1.393                 | 2  | 007         | 10 | -1.352e-2             | 3 | 232.406       | 2              | 6521.992         | 1 |
| 53       |        | 8   | max | 0               | 1  | 1.073                  | 3  | .028        | 3  | 1.67e-2               | 2 | NC<br>200.700 | <u>15</u>      | NC<br>C444 044   | 1 |
| 54       |        |     | min | 43              | 4  | -1.401                 | 2  | 012         | 2  | -1.456e-2             | 3 | 229.708       | 2              | 6411.344         |   |
| 55       |        | 9   | max | 0               | 1  | 1.043                  | 3  | .029        | 3  | 1.781e-2              | 2 | NC<br>000 400 | <u>15</u>      | NC<br>0570,000   | 1 |
| 56       |        | 40  | min | 43              | 4  | -1.394                 | 2  | 018         | 2  | -1.56e-2              | 3 | 232.132       | 2              | 8578.236         |   |
| 57       |        | 10  | max | 0               | 1  | 1.027                  | 3  | .029        | 3  | 1.893e-2              | 2 | NC<br>224 420 | <u>15</u>      | NC<br>0454 CO4   | 1 |
| 58       |        | 44  | min | 43              | 4  | -1.387                 | 2  | 021         | 2  | -1.664e-2             | 3 | 234.439       | 2              | 8451.634         |   |
| 59       |        | 11  | max | 0               | 10 | 1.043                  | 3  | .029        | 3  | 1.781e-2              | 2 | NC<br>222.422 | <u>15</u>      | NC<br>0570 000   | 1 |
| 60       |        | 40  | min | 43              | 4  | -1.394                 | 2  | 018         | 2  | -1.56e-2              | 3 | 232.132       |                | 8578.236         |   |
| 61       |        | 12  | max | 0               | 10 | 1.073                  | 3  | .028        | 3  | 1.67e-2               | 2 | NC            | <u>15</u>      | NC<br>0044 0F4   | 1 |
| 62<br>63 |        | 13  | min | 43<br>0         | 10 | <u>-1.401</u><br>1.093 | 3  | 016<br>.026 | 3  | -1.456e-2<br>1.558e-2 | 2 | 229.708<br>NC | <u>2</u><br>15 | 9041.854<br>NC   | 2 |
| 64       |        | 13  | max | 43              | 4  | -1.393                 | 2  | 026         | 5  | -1.352e-2             | 3 | 232.406       | 2              | 6521.992         | 1 |
| 65       |        | 14  | min | <del>43</del> 0 | 10 | 1.086                  | 3  | .032        | 1  | 1.447e-2              | 2 | NC            | 15             | NC               | 2 |
| 66       |        | 14  | max | 43              | 4  | -1.358                 | 2  | 005         |    | -1.248e-2             | 3 | 244.767       | 2              | 4848.484         |   |
| 67       |        | 15  |     | <del>43</del>   | 10 | 1.041                  | 3  | .034        | 1  | 1.335e-2              | 2 | NC            | 15             | NC               | 2 |
| 68       |        | 13  | max | 43              | 4  | -1.289                 | 2  | 004         |    | -1.144e-2             | 3 | 273.301       | 2              | 4622.091         | 1 |
| 69       |        | 16  | max | <del>43</del>   | 10 | .954                   | 3  | .028        | 1  | 1.224e-2              | 2 | NC            | 5              | NC               | 2 |
| 70       |        | 10  | min | 43              | 4  | -1.184                 | 2  | 003         | 10 |                       | 3 | 332.34        | 2              | 5490.043         |   |
| 71       |        | 17  | max | <del>43</del>   | 10 | .827                   | 3  | .025        | 4  | 1.112e-2              | 2 | NC            | 5              | NC               | 2 |
| 72       |        | 17  | min | 43              | 4  | -1.044                 | 2  | 003         | 10 | -9.366e-3             | 3 | 465.215       | 2              | 6212.109         |   |
| 73       |        | 18  | max | <u>43</u> 0     | 10 | .666                   | 3  | .017        |    | 1.001e-2              |   | NC            | 5              |                  | 1 |
| 74       |        | 10  | min | 43              | 4  | 878                    | 2  | 004         | 2  | -8.327e-3             |   | 890.453       | 2              | 8999.947         |   |
| 75       |        | 19  |     | 0               | 10 | .486                   | 3  | .01         | 3  | 8.891e-3              | 2 | NC            | 1              | NC               | 1 |
| 76       |        | 10  | min | 43              | 4  | 696                    | 2  | 006         | 2  | -7.287e-3             | 3 | NC            | 1              | NC               | 1 |
| 77       | M15    | 1   | max | 0               | 10 | .498                   | 3  | .009        | 3  | 6.148e-3              | 3 | NC            | 1              | NC               | 1 |
| 78       | 11110  |     | min | 354             | 4  | 695                    | 2  | 006         | 2  | -9.227e-3             | 2 | NC            | 1              | NC               | 1 |
| 79       |        | 2   | max | 0               | 10 | .636                   | 3  | .011        | 3  | 7.006e-3              | 3 | NC            | 5              | NC               | 1 |
| 80       |        |     | min | 355             | 4  | 906                    | 2  | 019         | 5  | -1.039e-2             | 2 | 766.89        | 2              | 7529.249         |   |
| 81       |        | 3   | max | 0               | 10 | .764                   | 3  | .018        | 1  | 7.864e-3              | 3 | NC            | 5              | NC               | 2 |
| 82       |        |     | min | 355             | 4  | -1.096                 | 2  | 025         | 5  | -1.156e-2             | 2 | 403.689       | 2              | 6024.788         |   |
| 83       |        | 4   | max | 0               | 10 | .872                   | 3  | .029        | 1  | 8.722e-3              | 3 | NC            | 5              | NC               | 2 |
| 84       |        |     | min | 355             | 4  | -1.25                  | 2  | 019         | 5  | -1.272e-2             | 2 | 291.893       | 2              | 5448.218         |   |
| 85       |        | 5   | max | 0               | 10 | .955                   | 3  | .034        | 1  | 9.58e-3               | 3 | NC            | 15             | NC               | 2 |
| 86       |        |     | min | 355             | 4  | -1.358                 | 2  | 007         | 5  | -1.389e-2             | 2 | 244.071       | 2              | 4583.406         |   |
| 87       |        | 6   | max | 0               | 10 | 1.013                  | 3  | .033        | 1  | 1.044e-2              | 3 | NC            | 15             | NC               | 2 |
| 88       |        | Ť   | min | 355             | 4  | -1.42                  | 2  | 005         |    | -1.505e-2             | 2 | 223.297       | 2              | 4797.092         |   |
| 89       |        | 7   | max | 0               | 10 | 1.045                  | 3  | .027        | 4  | 1.13e-2               | 3 | NC            | 15             |                  | 2 |
|          |        |     |     |                 |    |                        |    | _           | _  | _                     |   | _             |                | _                |   |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | x [in]          | LC | y [in]          | LC | z [in]      | LC x Rotate [r             |   |               |                |                |   |
|------------|--------|-----|------------|-----------------|----|-----------------|----|-------------|----------------------------|---|---------------|----------------|----------------|---|
| 90         |        |     | min        | 355             | 4  | <u>-1.439</u>   | 2  | 007         | 10 -1.622e-2               | 2 | 217.513       | 2              | 5719.822       |   |
| 91         |        | 8   | max        | 0               | 10 | 1.057           | 3  | .03         | 4 1.215e-2                 | 3 | NC            | <u>15</u>      | NC             | 1 |
| 92         |        |     | min        | 355             | 4  | <u>-1.427</u>   | 2  | 011         | 2 -1.738e-2                | 2 | 221.098       |                | 5169.907       | 4 |
| 93         |        | 9   | max        | 0               | 10 | 1.055           | 3  | .027        | 3 1.301e-2                 | 3 | NC<br>000 450 | <u>15</u>      | NC<br>CO40 F40 | 1 |
| 94         |        | 10  | min        | 355             | 1  | -1.402<br>1.052 | 3  | 017<br>.027 | 2 -1.855e-2<br>3 1.387e-2  | 2 | 229.158<br>NC | <u>2</u><br>15 | 6910.543       | 1 |
| 96         |        | 10  | max        | 0<br>355        | 4  | -1.386          | 2  | 02          | 3 1.387e-2<br>2 -1.971e-2  | 2 | 234.208       | 2              | NC<br>9153.434 |   |
| 97         |        | 11  | min<br>max | <u>333</u><br>0 | 1  | 1.055           | 3  | .027        | 3 1.301e-2                 | 3 | NC            | 15             | NC             | 1 |
| 98         |        |     | min        | 355             | 4  | -1.402          | 2  | 019         | 5 -1.855e-2                | 2 | 229.158       |                | 8565.054       |   |
| 99         |        | 12  | max        | 0               | 1  | 1.057           | 3  | .026        | 3 1.215e-2                 | 3 | NC            | 15             | NC             | 1 |
| 100        |        | 12  | min        | 355             | 4  | -1.427          | 2  | 023         | 5 -1.738e-2                | 2 | 221.098       | 2              | 7268.012       |   |
| 101        |        | 13  | max        | 0               | 1  | 1.045           | 3  | .025        | 3 1.13e-2                  | 3 | NC            | 15             | NC             | 2 |
| 102        |        | 10  | min        | 355             | 4  | -1.439          | 2  | 015         | 5 -1.622e-2                | 2 | 217.513       | 2              | 6415.953       |   |
| 103        |        | 14  | max        | 0               | 1  | 1.013           | 3  | .033        | 1 1.044e-2                 | 3 | NC            | 15             | NC             | 2 |
| 104        |        |     | min        | 355             | 4  | -1.42           | 2  | 005         | 10 -1.505e-2               | 2 | 223.297       | 2              | 4797.092       | 1 |
| 105        |        | 15  | max        | 0               | 1  | .955            | 3  | .034        | 1 9.58e-3                  | 3 | NC NC         | 15             | NC             | 2 |
| 106        |        |     | min        | 354             | 4  | -1.358          | 2  | 003         | 10 -1.389e-2               | 2 | 244.071       | 2              | 4583.406       |   |
| 107        |        | 16  | max        | 0               | 1  | .872            | 3  | .031        | 4 8.722e-3                 | 3 | NC            | 5              | NC             | 2 |
| 108        |        |     | min        | 354             | 4  | -1.25           | 2  | 003         | 10 -1.272e-2               | 2 | 291.893       | 2              | 4949.109       |   |
| 109        |        | 17  | max        | 0               | 1  | .764            | 3  | .033        | 4 7.864e-3                 | 3 | NC            | 5              | NC             | 2 |
| 110        |        |     | min        | 354             | 4  | -1.096          | 2  | 003         | 10 -1.156e-2               | 2 | 403.689       | 2              | 4697.281       | 4 |
| 111        |        | 18  | max        | 0               | 1  | .636            | 3  | .023        | 4 7.006e-3                 | 3 | NC            | 5              | NC             | 1 |
| 112        |        |     | min        | 354             | 4  | 906             | 2  | 004         | 2 -1.039e-2                | 2 | 766.89        | 2              | 6619.722       | 4 |
| 113        |        | 19  | max        | 0               | 1  | .498            | 3  | .009        | 3 6.148e-3                 | 3 | NC            | 1              | NC             | 1 |
| 114        |        |     | min        | 354             | 4  | 695             | 2  | 006         | 2 -9.227e-3                | 2 | NC            | 1              | NC             | 1 |
| 115        | M16    | 1_  | max        | 0               | 10 | .213            | 2  | .008        | 3 1.206e-2                 | 3 | NC            | _1_            | NC             | 1 |
| 116        |        |     | min        | 118             | 4  | 179             | 3  | 006         | 2 -1.391e-2                | 2 | NC            | 1_             | NC             | 1 |
| 117        |        | 2   | max        | 0               | 10 | .127            | 2  | .01         | 1 1.289e-2                 | 3 | NC            | 4_             | NC             | 1 |
| 118        |        |     | min        | 118             | 4  | 153             | 3  | 013         | 5 -1.422e-2                | 2 | 1885.629      | 2              | NC             | 1 |
| 119        |        | 3   | max        | 0               | 10 | .074            | 1  | .025        | 1 1.371e-2                 | 3 | NC            | 4_             | NC_            | 2 |
| 120        |        |     | min        | 118             | 4  | 134             | 3  | 018         | 5 -1.454e-2                | 2 | 1053.715      | 2              | 6337.77        | 1 |
| 121        |        | 4   | max        | 0               | 10 | .047            | 1  | .036        | 1 1.453e-2                 | 3 | NC            | 4_             | NC<br>1050 001 | 2 |
| 122        |        | +-  | min        | 118             | 4  | 129             | 3  | 015         | 5 -1.486e-2                | 2 | 846.302       | 2              | 4356.824       | 1 |
| 123        |        | 5   | max        | 0               | 10 | .048            | 1  | .041        | 1 1.535e-2                 | 3 | NC<br>007.447 | 4              | NC             | 2 |
| 124        |        | 6   | min        | 118             | 4  | 141             | 3  | 008         | 5 -1.518e-2                | 2 | 837.417<br>NC | 2              | 3824.638       | 2 |
| 125<br>126 |        | 6   | max        | 0<br>118        | 10 | .076<br>168     | 3  | .039<br>003 | 1 1.617e-2<br>10 -1.549e-2 | 2 | 1006.82       | 2              | NC<br>4096.945 |   |
| 127        |        | 7   | min        | 116<br>0        | 10 | .125            | 1  | .028        | 1 1.699e-2                 | 3 | NC            | 4              | NC             | 2 |
| 128        |        | +   | max<br>min | 118             | 4  | 205             | 3  | 005         | 10 -1.581e-2               | 2 | 1597.522      | 2              | 5516.071       | 1 |
| 129        |        | 8   | max        | 0               | 10 | .184            | 2  | .023        | 3 1.781e-2                 | 3 | NC            | 1              | NC             | 1 |
| 130        |        |     | min        |                 | 4  | 247             | 3  | 008         | 2 -1.613e-2                | 2 | 2384 596      |                | 8214 869       |   |
| 131        |        | 9   | max        | 0               | 10 | .248            | 2  | .023        | 3 1.863e-2                 | 3 | NC            | 4              | NC             | 1 |
| 132        |        | Ť   | min        | 118             | 4  | 283             | 3  | 015         | 2 -1.645e-2                | 2 | 1566.643      | 3              | NC             | 1 |
| 133        |        | 10  | max        | 0               | 1  | .277            | 2  | .023        | 3 1.946e-2                 | 3 | NC            | 4              | NC             | 1 |
| 134        |        |     | min        | 118             | 4  | 298             | 3  | 018         | 2 -1.676e-2                | 2 | 1362.244      | 3              | NC             | 1 |
| 135        |        | 11  | max        | 0               | 1  | .248            | 2  | .023        | 3 1.863e-2                 | 3 | NC            | 4              | NC             | 1 |
| 136        |        |     | min        | 118             | 4  | 283             | 3  | 015         | 2 -1.645e-2                | 2 | 1566.643      | 3              | NC             | 1 |
| 137        |        | 12  | max        | 0               | 1  | .184            | 2  | .023        | 3 1.781e-2                 | 3 | NC            | 1              | NC             | 1 |
| 138        |        |     | min        | 118             | 4  | 247             | 3  | 011         | 5 -1.613e-2                | 2 | 2384.596      | 3              | NC             | 1 |
| 139        |        | 13  | max        | 0               | 1  | .125            | 1  | .028        | 1 1.699e-2                 | 3 | NC            | 4              | NC             | 2 |
| 140        |        |     | min        | 118             | 4  | 205             | 3  | 005         | 10 -1.581e-2               | 2 | 1597.522      | 2              | 5516.071       | 1 |
| 141        |        | 14  | max        | 0               | 1  | .076            | 1  | .039        | 1 1.617e-2                 | 3 | NC            | 3              | NC             | 2 |
| 142        |        |     | min        | 118             | 4  | 168             | 3  | 003         | 10 -1.549e-2               | 2 | 1006.82       | 2              | 4096.945       |   |
| 143        |        | 15  | max        | 0               | 1  | .048            | 1  | .041        | 1 1.535e-2                 | 3 | NC            | 4              | NC             | 2 |
| 144        |        |     | min        | 118             | 4  | 141             | 3  | 002         | 10 -1.518e-2               | 2 | 837.417       | 2              | 3824.638       |   |
| 145        |        | 16  | max        | 0               | 1  | .047            | 1  | .036        | 1 1.453e-2                 | 3 | NC            | 4              | NC             | 2 |
| 146        |        |     | min        | 118             | 4  | 129             | 3  | 002         | 10 -1.486e-2               | 2 | 846.302       | 2              | 4356.824       | 1 |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_

|     | Member    | Sec |     | x [in]      | LC | y [in]      | LC | z [in]     |    | x Rotate [r |          |                |    |                |    |
|-----|-----------|-----|-----|-------------|----|-------------|----|------------|----|-------------|----------|----------------|----|----------------|----|
| 147 |           | 17  | max | 0           | 1  | .074        | 1  | .028       | 4  | 1.371e-2    | 3        | NC<br>1050.715 | 4  | NC             | 2  |
| 148 |           | 10  | min | <u>118</u>  | 4  | <u>134</u>  | 3  | 002        | 10 | -1.454e-2   | 2        | 1053.715       | 2  | 5500.506       | 4  |
| 149 |           | 18  | max | 0           | 1  | .127        | 2  | .019       | 4  | 1.289e-2    | 3_       | NC             | 4_ | NC             | 1  |
| 150 |           | 40  | min | <u>118</u>  | 4  | 1 <u>53</u> | 3  | 003        | 10 | -1.422e-2   | 2        | 1885.629       | 2  | 8258.509       | 4  |
| 151 |           | 19  | max | 0           | 1  | .213        | 2  | 800.       | 3  | 1.206e-2    | 3        | NC<br>NC       | 1_ | NC<br>NC       | 1  |
| 152 | MO        | 4   | min | 118         | 4  | 179         | 3  | 006        | 2  | -1.391e-2   | 2        | NC<br>NC       | 1_ | NC<br>NC       | 1  |
| 153 | M2        | 1_  | max | .008        | 2  | .011        | 2  | .006       | 1  | 1.965e-3    | 5        | NC<br>C400,000 | 1_ | NC<br>400,000  | 1  |
| 154 |           |     | min | 01          | 3  | <u>016</u>  | 3  | 532        | 4  | -1.21e-4    | _1_      | 6432.269       | 2  | 129.823        | 4  |
| 155 |           | 2   | max | .007        | 2  | .009        | 2  | .005       | 1  | 1.977e-3    | 5        | NC             | 1_ | NC             | 1  |
| 156 |           |     | min | 01          | 3  | 016         | 3  | 489        | 4  | -1.143e-4   | 1_       | 7374.517       | 2  | 141.366        | 4  |
| 157 |           | 3   | max | .007        | 2  | .008        | 2  | .005       | 1  | 1.989e-3    | 5_       | NC             | 1_ | NC<br>455,070  | 1  |
| 158 |           | 1   | min | 009         | 3  | 015         | 3  | 446        | 4  | -1.077e-4   | <u>1</u> | 8623.638       | 2  | 155.078        | 4  |
| 159 |           | 4   | max | .006        | 2  | .007        | 2  | .004       | 1  | 2.001e-3    | 5_       | NC             | 1  | NC<br>474 500  | 1  |
| 160 |           | -   | min | 009         | 3  | 015         | 3  | 403        | 4  | -1.01e-4    | 1_       | NC             | 1_ | 171.526        | 4  |
| 161 |           | 5   | max | .006        | 2  | .005        | 2  | .004       | 1  | 2.013e-3    | 5_       | NC             | 1_ | NC<br>101 101  | 1  |
| 162 |           |     | min | 008         | 3  | 014         | 3  | <u>361</u> | 4  | -9.432e-5   | <u>1</u> | NC<br>NC       | 1_ | 191.481        | 4  |
| 163 |           | 6   | max | .005        | 2  | .004        | 2  | .003       | 1  | 2.025e-3    | 5_       | NC             | 1_ | NC             | 1  |
| 164 |           | -   | min | 008         | 3  | <u>013</u>  | 3  | 32         | 4  | -8.764e-5   | _1_      | NC             | 1_ | 216.014        | 4  |
| 165 |           | 7   | max | .005        | 2  | .003        | 2  | .003       | 1  | 2.037e-3    | _5_      | NC             | 1_ | NC             | 1  |
| 166 |           |     | min | <u>007</u>  | 3  | <u>013</u>  | 3  | 28         | 4  | -8.097e-5   | 1_       | NC             | 1_ | 246.647        | 4  |
| 167 |           | 8   | max | .005        | 2  | .002        | 2  | .003       | 1  | 2.05e-3     | 4_       | NC             | 1  | NC             | 1  |
| 168 |           |     | min | 006         | 3  | 012         | 3  | 242        | 4  | -7.429e-5   | 1_       | NC             | 1_ | 285.601        | 4  |
| 169 |           | 9   | max | .004        | 2  | .001        | 2  | .002       | 1  | 2.064e-3    | 4_       | NC             | 1  | NC             | 1  |
| 170 |           | 1.0 | min | 006         | 3  | <u>011</u>  | 3  | 206        | 4  | -6.762e-5   | 1_       | NC             | 1_ | 336.226        | 4  |
| 171 |           | 10  | max | .004        | 2  | 0           | 2  | .002       | 1  | 2.077e-3    | 4_       | NC             | 1_ | NC<br>400 700  | 1  |
| 172 |           | 4.4 | min | 00 <u>5</u> | 3  | 01          | 3  | <u>171</u> | 4  | -6.094e-5   | 1_       | NC             | 1_ | 403.768        | 4  |
| 173 |           | 11  | max | .003        | 2  | 0           | 2  | .001       | 1  | 2.091e-3    | 4_       | NC             | 1  | NC             | 1  |
| 174 |           | 10  | min | 00 <u>5</u> | 3  | 009         | 3  | 139        | 4  | -5.427e-5   | _1_      | NC             | 1_ | 496.83         | 4  |
| 175 |           | 12  | max | .003        | 2  | 0           | 15 | .001       | 1  | 2.105e-3    | 4_       | NC             | 1_ | NC             | 1  |
| 176 |           | 40  | min | 004         | 3  | 009         | 3  | <u>11</u>  | 4  | -4.759e-5   | 1_       | NC             | 1_ | 630.338        | 4  |
| 177 |           | 13  | max | .003        | 2  | 0           | 15 | 0          | 1  | 2.119e-3    | 4_       | NC             | 1  | NC             | 1  |
| 178 |           |     | min | 003         | 3  | 008         | 3  | 083        | 4  | -4.092e-5   | _1_      | NC             | 1_ | 832.108        | 4  |
| 179 |           | 14  | max | .002        | 2  | 0           | 15 | 0          | 1  | 2.133e-3    | 4_       | NC             | 1  | NC<br>4450.000 | 1  |
| 180 |           | 4.5 | min | 003         | 3  | 006         | 3  | 06         | 4  | -3.424e-5   | 1_       | NC             | 1_ | 1159.023       | 4  |
| 181 |           | 15  | max | .002        | 2  | 0           | 15 | 0          | 1  | 2.146e-3    | 4_       | NC             | 1_ | NC<br>1710 107 | 1  |
| 182 |           | 40  | min | 002         | 3  | 005         | 3  | 04         | 4  | -2.757e-5   | 1_       | NC             | 1_ | 1743.167       | 4  |
| 183 |           | 16  | max | .001        | 2  | 0           | 15 | 0          | 1  | 2.16e-3     | 4_       | NC             | 1_ | NC             | 1  |
| 184 |           |     | min | 002         | 3  | 004         | 3  | 023        | 4  | -2.089e-5   | _1_      | NC             | 1_ | 2953.614       | 4  |
| 185 |           | 17  | max | 0           | 2  | 0           | 15 | 0          | 1  | 2.174e-3    | 4_       | NC             | 1_ | NC             | 1  |
| 186 |           | 40  | min | <u>001</u>  | 3  | 003         | 3  | <u>011</u> | 4  | -1.421e-5   | 1_       | NC             | 1_ | 6183.26        | 4  |
| 187 |           | 18  | max | 0           | 2  | 0           | 15 | 0          | 1  | 2.188e-3    |          | NC             | 1_ | NC             | 1  |
| 188 |           | 4.0 | min | 0           | 3  | <u>001</u>  | 3  | 003        | 4  | -7.539e-6   |          | NC             | 1_ | NC             | 1  |
| 189 |           | 19  | max | 0           | 1  | 0           | 1  | 0          | 1  | 2.202e-3    | 4_       | NC             | 1  | NC             | 1  |
| 190 | 1.40      |     | min | 0           | 1  | 0           | 1  | 0          | 1  | -1.031e-6   |          | NC             | 1_ | NC             | 1  |
| 191 | <u>M3</u> | _1_ | max | 0           | 1  | 0           | 1  | 0          | 1  | 1.036e-7    | 3_       | NC             | 1_ | NC             | 1  |
| 192 |           |     | min | 0           | 1  | 0           | 1  | 0          | 1  | -4.572e-4   |          | NC             | 1_ | NC             | 1  |
| 193 |           | 2   | max | 0           | 3  | 0           | 15 | .012       | 4  | 9.118e-5    | 4_       | NC             | 1  | NC             | 1  |
| 194 |           |     | min | 0           | 2  | 003         | 6  | 0          | 3  | 1.11e-6     | 10       | NC             | 1_ | NC             | 1  |
| 195 |           | 3   | max | 0           | 3  | 001         | 15 | .023       | 4  | 6.395e-4    | 4_       | NC             | 1_ | NC             | 1  |
| 196 |           |     | min | 0           | 2  | 005         | 6  | 0          | 3  | 2.316e-6    | 10       | NC<br>NC       | 1_ | NC<br>NC       | 1  |
| 197 |           | 4   | max | .001        | 3  | 002         | 15 | .034       | 4  | 1.188e-3    | 4        | NC             | 1_ | NC             | 1  |
| 198 |           | +_  | min | 001         | 2  | 008         | 6  | 0          | 3  | 3.523e-6    | 10       | NC             | 1_ | NC             | 1  |
| 199 |           | 5   | max | .002        | 3  | 002         | 15 | .044       | 4  | 1.736e-3    | 4        | NC             | 1_ | NC             | 1  |
| 200 |           |     | min | 002         | 2  | 011         | 6  | 0          | 3  | 4.73e-6     |          | 8998.485       | 6  | NC             | 1  |
| 201 |           | 6_  | max | .002        | 3  | 003         | 15 | .053       | 4  | 2.285e-3    | 4        | NC             | 2  | NC             | 1  |
| 202 |           | -   | min | 002         | 2  | 014         | 6  | 0          | 3  | 5.937e-6    |          | 7248.713       | 6  | NC             | 1  |
| 203 |           | 7   | max | .003        | 3  | 004         | 15 | .062       | 4  | 2.833e-3    | 4        | NC             | 5  | NC             | 1_ |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in]      |    |           |    | (n) L/y Ratio | LC |          | LC |
|-----|--------|-----|-----|--------|----|--------|----|-------------|----|-----------|----|---------------|----|----------|----|
| 204 |        |     | min | 003    | 2  | 016    | 6  | 0           | 12 | 7.144e-6  |    | 6197.166      | 6  | NC       | 1  |
| 205 |        | 8   | max | .003   | 3  | 004    | 15 | .07         | 4  | 3.381e-3  | 4  | NC            | 5  | NC       | 1_ |
| 206 |        |     | min | 003    | 2  | 018    | 6  | 0           | 12 | 8.351e-6  | 10 | 5548.141      | 6  | NC       | 1  |
| 207 |        | 9   | max | .004   | 3  | 004    | 15 | .078        | 4  | 3.93e-3   | 4  | NC            | 5  | NC       | 1  |
| 208 |        |     | min | 003    | 2  | 02     | 6  | 0           | 12 | 9.557e-6  | 10 | 5162.626      | 6  | NC       | 1  |
| 209 |        | 10  | max | .004   | 3  | 004    | 15 | .086        | 4  | 4.478e-3  | 4  | NC            | 5  | NC       | 1  |
| 210 |        |     | min | 004    | 2  | 02     | 6  | 0           | 12 | 1.076e-5  | 10 | 4972.975      | 6  | NC       | 1  |
| 211 |        | 11  | max | .005   | 3  | 004    | 15 | .093        | 4  | 5.026e-3  | 4  | NC            | 5  | NC       | 1  |
| 212 |        |     | min | 004    | 2  | 021    | 6  | 0           | 12 | 1.197e-5  | 10 | 4951.078      | 6  | NC       | 1  |
| 213 |        | 12  | max | .005   | 3  | 004    | 15 | .101        | 4  | 5.575e-3  | 4  | NC            | 5  | NC       | 1  |
| 214 |        |     | min | 005    | 2  | 02     | 6  | 0           | 12 | 1.318e-5  | 10 | 5097.553      | 6  | NC       | 1  |
| 215 |        | 13  | max | .006   | 3  | 004    | 15 | .108        | 4  | 6.123e-3  | 4  | NC            | 5  | NC       | 1  |
| 216 |        |     | min | 005    | 2  | 019    | 6  | 0           | 12 | 1.438e-5  | 10 | 5443.354      | 6  | NC       | 1  |
| 217 |        | 14  | max | .006   | 3  | 004    | 15 | .116        | 4  | 6.671e-3  | 4  | NC            | 5  | NC       | 1  |
| 218 |        |     | min | 005    | 2  | 017    | 6  | 0           | 12 | 1.559e-5  | 10 | 6065.984      | 6  | NC       | 1  |
| 219 |        | 15  | max | .007   | 3  | 003    | 15 | .124        | 4  | 7.22e-3   | 4  | NC            | 3  | NC       | 1  |
| 220 |        |     | min | 006    | 2  | 014    | 6  | 0           | 10 | 1.68e-5   | 10 | 7137.906      | 6  | NC       | 1  |
| 221 |        | 16  | max | .007   | 3  | 002    | 15 | .134        | 4  | 7.768e-3  | 4  | NC            | 1  | NC       | 1  |
| 222 |        |     | min | 006    | 2  | 011    | 6  | 0           | 10 | 1.801e-5  | 10 | 9077.332      | 6  | NC       | 1  |
| 223 |        | 17  | max | .008   | 3  | 001    | 15 | .144        | 4  | 8.316e-3  | 4  | NC            | 1  | NC       | 1  |
| 224 |        |     | min | 007    | 2  | 008    | 6  | 0           | 10 | 1.921e-5  | 10 | NC            | 1  | NC       | 1  |
| 225 |        | 18  | max | .008   | 3  | 0      | 15 | .155        | 4  | 8.865e-3  | 4  | NC            | 1  | NC       | 1  |
| 226 |        |     | min | 007    | 2  | 005    | 1  | 0           | 10 | 2.042e-5  | 10 | NC            | 1  | NC       | 1  |
| 227 |        | 19  | max | .009   | 3  | 0      | 5  | .167        | 4  | 9.413e-3  | 4  | NC            | 1  | NC       | 1  |
| 228 |        |     | min | 008    | 2  | 002    | 3  | 0           | 10 | 2.163e-5  | 10 | NC            | 1  | NC       | 1  |
| 229 | M4     | 1   | max | .002   | 1  | .007   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 230 |        |     | min | 0      | 3  | 009    | 3  | 167         | 4  | -1.246e-5 | 5  | NC            | 1  | 148.116  | 4  |
| 231 |        | 2   | max | .002   | 1  | .007   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 232 |        |     | min | 0      | 3  | 009    | 3  | 154         | 4  | -1.246e-5 | 5  | NC            | 1  | 161.079  | 4  |
| 233 |        | 3   | max | .002   | 1  | .006   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 234 |        |     | min | 0      | 3  | 008    | 3  | 141         | 4  | -1.246e-5 | 5  | NC            | 1  | 176.504  | 4  |
| 235 |        | 4   | max | .002   | 1  | .006   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 236 |        |     | min | 0      | 3  | 008    | 3  | 127         | 4  | -1.246e-5 | 5  | NC            | 1  | 195.031  | 4  |
| 237 |        | 5   | max | .002   | 1  | .006   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 238 |        |     | min | 0      | 3  | 007    | 3  | 114         | 4  | -1.246e-5 | 5  | NC            | 1  | 217.531  | 4  |
| 239 |        | 6   | max | .002   | 1  | .005   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 240 |        |     | min | 0      | 3  | 007    | 3  | 101         | 4  | -1.246e-5 | 5  | NC            | 1  | 245.208  | 4  |
| 241 |        | 7   | max | .002   | 1  | .005   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 2  |
| 242 |        |     | min | 0      | 3  | 006    | 3  | 089         | 4  | -1.246e-5 | 5  | NC            | 1  | 279,775  | 4  |
| 243 |        | 8   | max | .001   | 1  | .004   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 244 |        |     | min |        | 3  | 006    | 3  | 077         | 4  | -1.246e-5 | 5  | NC            | 1  | 323.729  | 4  |
| 245 |        | 9   | max | .001   | 1  | .004   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 246 |        |     | min | 0      | 3  | 005    | 3  | 065         | 4  | -1.246e-5 | 5  | NC            | 1  | 380.826  | 4  |
| 247 |        | 10  | max | .001   | 1  | .004   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 248 |        |     | min | 0      | 3  | 005    | 3  | 054         | 4  | -1.246e-5 | 5  | NC            | 1  | 456.942  | 4  |
| 249 |        | 11  | max | .001   | 1  | .003   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 250 |        |     | min | 0      | 3  | 004    | 3  | 044         | 4  | -1.246e-5 | 5  | NC            | 1  | 561.686  | 4  |
| 251 |        | 12  | max | 0      | 1  | .003   | 2  | 0           | 10 |           | 1  | NC            | 1  | NC       | 1  |
| 252 |        |     | min | 0      | 3  | 004    | 3  | 035         | 4  | -1.246e-5 | 5  | NC            | 1  | 711.683  | 4  |
| 253 |        | 13  | max | 0      | 1  | .002   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 254 |        |     | min | 0      | 3  | 003    | 3  | 026         | 4  | -1.246e-5 | 5  | NC            | 1  | 937.784  | 4  |
| 255 |        | 14  | max | 0      | 1  | .002   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 256 |        |     | min | 0      | 3  | 003    | 3  | 019         | 4  | -1.246e-5 | 5  | NC            | 1  | 1302.753 |    |
| 257 |        | 15  | max | 0      | 1  | .002   | 2  | 0           | 10 | 7.563e-5  | 1  | NC            | 1  | NC       | 1  |
| 258 |        |     | min | 0      | 3  | 002    | 3  | 013         | 4  | -1.246e-5 | 5  | NC            | 1  | 1951.264 |    |
| 259 |        | 16  | max | 0      | 1  | .002   | 2  | <u>.013</u> | 10 |           | 1  | NC            | 1  | NC       | 1  |
| 260 |        |     | min | 0      | 3  | 002    | 3  | 008         | 4  | -1.246e-5 | 5  | NC            | 1  | 3283.212 |    |
|     |        |     |     |        | _  | .002   |    | .000        |    | 00 0      |    |               |    | 3200.2.2 |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member | Sec |     | x [in] | LC | y [in] | LC | z [in]     |    |           | LC  | (n) L/y Ratio  | LC            |                | LC |
|------------|--------|-----|-----|--------|----|--------|----|------------|----|-----------|-----|----------------|---------------|----------------|----|
| 261        |        | 17  | max | 00     | 1  | 00     | 2  | 00         | 10 | 7.563e-5  | _1_ | NC             | _1_           | NC             | 1  |
| 262        |        |     | min | 0      | 3  | 001    | 3  | 004        | 4  | -1.246e-5 | 5   | NC             | 1_            | 6781.133       | 4  |
| 263        |        | 18  | max | 0      | 1  | 00     | 2  | 00         | 10 | 7.563e-5  | _1_ | NC             | _1_           | NC             | 1  |
| 264        |        |     | min | 0      | 3  | 0      | 3  | 001        | 4  | -1.246e-5 | 5   | NC             | 1_            | NC             | 1  |
| 265        |        | 19  | max | 0      | 1  | 00     | 1  | 0          | 1  | 7.563e-5  | _1_ | NC             | _1_           | NC             | 1  |
| 266        |        |     | min | 0      | 1  | 0      | 1  | 0          | 1  | -1.246e-5 | 5   | NC             | 1_            | NC             | 1  |
| 267        | M6     | 1   | max | .022   | 2  | .034   | 2  | 0          | 1  | 2.04e-3   | 4   | NC             | 4             | NC             | 1  |
| 268        |        |     | min | 032    | 3  | 048    | 3  | 537        | 4  | 0         | 1_  | 1433.601       | 3             | 128.58         | 4  |
| 269        |        | 2   | max | .021   | 2  | .031   | 2  | 0          | 1  | 2.05e-3   | 4   | NC             | 4             | NC             | 1  |
| 270        |        |     | min | 03     | 3  | 046    | 3  | 494        | 4  | 0         | 1   | 1518.298       | 3             | 140.014        | 4  |
| 271        |        | 3   | max | .02    | 2  | .028   | 2  | 0          | 1  | 2.061e-3  | 4   | NC             | 4             | NC             | 1  |
| 272        |        |     | min | 028    | 3  | 043    | 3  | 45         | 4  | 0         | 1   | 1613.651       | 3             | 153.595        | 4  |
| 273        |        | 4   | max | .019   | 2  | .025   | 2  | 0          | 1  | 2.071e-3  | 4   | NC             | 4             | NC             | 1  |
| 274        |        |     | min | 027    | 3  | 04     | 3  | 407        | 4  | 0         | 1   | 1721.819       | 3             | 169.887        | 4  |
| 275        |        | 5   | max | .017   | 2  | .022   | 2  | 0          | 1  | 2.081e-3  | 4   | NC             | 4             | NC             | 1  |
| 276        |        |     | min | 025    | 3  | 037    | 3  | 364        | 4  | 0         | 1   | 1845.581       | 3             | 189.653        | 4  |
| 277        |        | 6   | max | .016   | 2  | .02    | 2  | 0          | 1  | 2.092e-3  | 4   | NC             | 4             | NC             | 1  |
| 278        |        |     | min | 023    | 3  | 035    | 3  | 323        | 4  | 0         | 1   | 1988.569       | 3             | 213.954        | 4  |
| 279        |        | 7   | max | .015   | 2  | .017   | 2  | 0          | 1  | 2.102e-3  | 4   | NC             | 4             | NC             | 1  |
| 280        |        |     | min | 021    | 3  | 032    | 3  | 283        | 4  | 0         | 1   | 2155.626       | 3             | 244.298        | 4  |
| 281        |        | 8   | max | .014   | 2  | .015   | 2  | 0          | 1  | 2.113e-3  | 4   | NC             | 1             | NC             | 1  |
| 282        |        |     | min | 02     | 3  | 029    | 3  | 244        | 4  | 0         | 1   | 2353.358       | 3             | 282.884        | 4  |
| 283        |        | 9   | max | .012   | 2  | .012   | 2  | 0          | 1  | 2.123e-3  | 4   | NC             | 1             | NC             | 1  |
| 284        |        | Ť   | min | 018    | 3  | 027    | 3  | 208        | 4  | 0         | 1   | 2591.013       | 3             | 333.031        | 4  |
| 285        |        | 10  | max | .011   | 2  | .01    | 2  | 0          | 1  | 2.134e-3  | 4   | NC             | 1             | NC             | 1  |
| 286        |        | 10  | min | 016    | 3  | 024    | 3  | 173        | 4  | 0         | 1   | 2881.949       | 3             | 399.934        | 4  |
| 287        |        | 11  | max | .01    | 2  | .008   | 2  | 0          | 1  | 2.144e-3  | 4   | NC             | 1             | NC             | 1  |
| 288        |        |     | min | 014    | 3  | 021    | 3  | 14         | 4  | 0         | 1   | 3246.205       | 3             | 492.117        | 4  |
| 289        |        | 12  | max | .009   | 2  | .006   | 2  | 0          | 1  | 2.155e-3  | 4   | NC             | 1             | NC             | 1  |
| 290        |        | 12  | min | 012    | 3  | 019    | 3  | 111        | 4  | 0         | 1   | 3715.273       | 3             | 624.363        | 4  |
| 291        |        | 13  | max | .007   | 2  | .004   | 2  | 0          | 1  | 2.165e-3  | 4   | NC             | 1             | NC             | 1  |
| 292        |        | 13  | min | 011    | 3  | 016    | 3  | 084        | 4  | 0         | 1   | 4341.64        | 3             | 824.225        | 4  |
| 293        |        | 14  | max | .006   | 2  | .003   | 2  | 0004       | 1  | 2.176e-3  | 4   | NC             | <u> </u>      | NC             | 1  |
| 294        |        | 14  | min | 009    | 3  | 013    | 3  | 06         | 4  | 0         | 1   | 5219.786       | 3             | 1148.045       | 4  |
|            |        | 15  |     | .005   | 2  | .002   | 2  | 0          | 1  | 2.186e-3  | 4   | NC             | <u>ა</u><br>1 | NC             | 1  |
| 295<br>296 |        | 15  | max | 005    | 3  | 011    | 3  | 04         | 4  | 2.1006-3  | 1   | 6538.674       | 3             | 1726.646       | 4  |
|            |        | 16  | min |        |    |        |    |            |    | •         |     |                |               |                | 1  |
| 297        |        | 10  | max | .004   | 2  | 0      | 2  | 0          | 1  | 2.197e-3  | 4   | NC<br>0720 225 | 1             | NC             |    |
| 298        |        | 47  | min | 005    | 3  | 008    | 3  | 024        | 4  | 0         | 1_1 | 8739.225       | 3             | 2925.564       | 4  |
| 299        |        | 17  | max | .002   | 2  | 0      | 2  | 0          | 1  | 2.207e-3  | 4   | NC             | 1             | NC<br>0404 004 | 1  |
| 300        |        | 10  | min | 004    | 3  | 005    | 3  | <u>011</u> | 4  | 0         | 1_  | NC<br>NC       | 1_            | 6124.221       | 4  |
| 301        |        | 18  | max | .001   | 2  | 0      | 2  | 0          | 1  | 2.218e-3  |     | NC             | 1_            | NC             | 1  |
| 302        |        | 10  | min | 002    | 3  | 003    | 3  | 003        | 4  | 0         | 1   | NC             | 1_            | NC             | 1  |
| 303        |        | 19  | max | 0      | 1  | 0      | 1  | 0          | 1  | 2.228e-3  | 4   | NC             | _1_           | NC             | 1  |
| 304        |        |     | min | 0      | 1  | 0      | 1  | 0          | 1  | 0         | _1_ | NC             | 1_            | NC             | 1  |
| 305        | M7     | 1_  | max | 0      | 1  | 0      | 1  | 0          | 1  | 0         | _1_ | NC             | _1_           | NC             | 1  |
| 306        |        |     | min | 0      | 1  | 0      | 1  | 0          | 1  | -4.629e-4 | 4   | NC             | 1_            | NC             | 1  |
| 307        |        | 2   | max | .001   | 3  | 0      | 2  | .012       | 4  | 7.048e-5  | 4   | NC             | _1_           | NC             | 1  |
| 308        |        |     | min | 001    | 2  | 004    | 3  | 0          | 1  | 0         | 1_  | NC             | 1_            | NC             | 1  |
| 309        |        | 3   | max | .003   | 3  | 001    | 15 | .023       | 4  | 6.039e-4  | 4   | NC             | 1_            | NC             | 1  |
| 310        |        |     | min | 003    | 2  | 007    | 3  | 0          | 1  | 0         | 1   | NC             | 1             | NC             | 1  |
| 311        |        | 4   | max | .004   | 3  | 002    | 15 | .034       | 4  | 1.137e-3  | 4   | NC             | 1_            | NC             | 1  |
| 312        |        |     | min | 004    | 2  | 011    | 3  | 0          | 1  | 0         | 1   | NC             | 1             | NC             | 1  |
| 313        |        | 5   | max | .006   | 3  | 003    | 15 | .044       | 4  | 1.671e-3  | 4   | NC             | 1             | NC             | 1  |
| 314        |        |     | min | 005    | 2  | 014    | 3  | 0          | 1  | 0         | 1   | 7961.299       | 3             | NC             | 1  |
| 315        |        | 6   | max | .007   | 3  | 003    | 15 | .053       | 4  | 2.204e-3  | 4   | NC             | 1             | NC             | 1  |
| 316        |        |     | min | 007    | 2  | 017    | 3  | 0          | 1  | 0         | 1   | 6718.901       | 3             | NC             | 1  |
| 317        |        | 7   | max | .009   | 3  | 004    | 15 | .062       | 4  | 2.737e-3  | 4   | NC             | 1             | NC             | 1  |
|            |        |     |     |        |    |        |    |            |    |           |     |                | _             |                | _  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |        | x [in] | LC | y [in] | LC | z [in]          |   | _         |          | (n) L/y Ratio |     |          | LC |
|-----|--------|-----|--------|--------|----|--------|----|-----------------|---|-----------|----------|---------------|-----|----------|----|
| 318 |        |     | min    | 008    | 2  | 019    | 3  | 0               | 1 | 0         | _1_      | 5972.908      | 3   | NC       | 1  |
| 319 |        | 8   | max    | .01    | 3  | 004    | 15 | .07             | 4 | 3.271e-3  | _4_      | NC            | 2   | NC       | 1_ |
| 320 |        |     | min    | 009    | 2  | 02     | 3  | 0               | 1 | 0         | <u>1</u> | 5523.851      | 4   | NC       | 1  |
| 321 |        | 9   | max    | .012   | 3  | 005    | 15 | .078            | 4 | 3.804e-3  | 4        | NC            | 2   | NC       | 1  |
| 322 |        |     | min    | 011    | 2  | 022    | 3  | 0               | 1 | 0         | 1_       | 5141.522      | 4   | NC       | 1  |
| 323 |        | 10  | max    | .013   | 3  | 005    | 15 | .086            | 4 | 4.337e-3  | _4_      | NC            | 5   | NC       | 1_ |
| 324 |        |     | min    | 012    | 2  | 022    | 3  | 0               | 1 | 0         | 1_       | 4953.852      | 4   | NC       | 1  |
| 325 |        | 11  | max    | .014   | 3  | 005    | 15 | .093            | 4 | 4.871e-3  | _4_      | NC            | 5   | NC       | 1  |
| 326 |        |     | min    | 013    | 2  | 022    | 3  | 0               | 1 | 0         | 1_       | 4933.046      | 4   | NC       | 1  |
| 327 |        | 12  | max    | .016   | 3  | 005    | 15 | 1               | 4 | 5.404e-3  | _4_      | NC            | 5   | NC       | 1_ |
| 328 |        |     | min    | 015    | 2  | 021    | 3  | 0               | 1 | 0         | 1_       | 5079.86       | 4   | NC       | 1  |
| 329 |        | 13  | max    | .017   | 3  | 005    | 15 | .107            | 4 | 5.938e-3  | 4        | NC            | 5   | NC       | 1  |
| 330 |        |     | min    | 016    | 2  | 02     | 3  | 0               | 1 | 0         | 1_       | 5425.241      | 4   | NC       | 1  |
| 331 |        | 14  | max    | .019   | 3  | 004    | 15 | .115            | 4 | 6.471e-3  | 4        | NC            | 2   | NC       | 1  |
| 332 |        |     | min    | 017    | 2  | 019    | 3  | 0               | 1 | 0         | 1        | 6046.521      | 4   | NC       | 1  |
| 333 |        | 15  | max    | .02    | 3  | 004    | 15 | .122            | 4 | 7.004e-3  | 4        | NC            | _1_ | NC       | 1_ |
| 334 |        |     | min    | 019    | 2  | 017    | 3  | 0               | 1 | 0         | 1        | 7115.695      | 4   | NC       | 1  |
| 335 |        | 16  | max    | .022   | 3  | 003    | 15 | .131            | 4 | 7.538e-3  | 4        | NC            | 1_  | NC       | 1  |
| 336 |        |     | min    | 02     | 2  | 014    | 3  | 0               | 1 | 0         | 1        | 9049.777      | 4   | NC       | 1  |
| 337 |        | 17  | max    | .023   | 3  | 002    | 15 | .14             | 4 | 8.071e-3  | 4        | NC            | 1_  | NC       | 1_ |
| 338 |        |     | min    | 021    | 2  | 011    | 3  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 339 |        | 18  | max    | .024   | 3  | 001    | 15 | .15             | 4 | 8.604e-3  | 4        | NC            | 1_  | NC       | 1  |
| 340 |        |     | min    | 023    | 2  | 008    | 3  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 341 |        | 19  | max    | .026   | 3  | 0      | 10 | .162            | 4 | 9.138e-3  | 4        | NC            | 1   | NC       | 1  |
| 342 |        |     | min    | 024    | 2  | 005    | 3  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 343 | M8     | 1   | max    | .007   | 2  | .023   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 344 |        |     | min    | 001    | 3  | 026    | 3  | 162             | 4 | -1.293e-4 | 5        | NC            | 1   | 153.321  | 4  |
| 345 |        | 2   | max    | .006   | 2  | .022   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 346 |        |     | min    | 001    | 3  | 025    | 3  | 149             | 4 | -1.293e-4 | 5        | NC            | 1   | 166.754  | 4  |
| 347 |        | 3   | max    | .006   | 2  | .021   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 348 |        |     | min    | 001    | 3  | 023    | 3  | 136             | 4 | -1.293e-4 | 5        | NC            | 1   | 182.739  | 4  |
| 349 |        | 4   | max    | .006   | 2  | .019   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 350 |        |     | min    | 001    | 3  | 022    | 3  | 123             | 4 | -1.293e-4 | 5        | NC            | 1   | 201.938  | 4  |
| 351 |        | 5   | max    | .005   | 2  | .018   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 352 |        |     | min    | 001    | 3  | 021    | 3  | 11              | 4 | -1.293e-4 | 5        | NC            | 1   | 225.253  | 4  |
| 353 |        | 6   | max    | .005   | 2  | .017   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 354 |        |     | min    | 0      | 3  | 019    | 3  | 098             | 4 | -1.293e-4 | 5        | NC            | 1   | 253.932  | 4  |
| 355 |        | 7   | max    | .005   | 2  | .015   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 356 |        |     | min    | 0      | 3  | 018    | 3  | 086             | 4 | -1.293e-4 | 5        | NC            | 1   | 289.749  | 4  |
| 357 |        | 8   | max    | .004   | 2  | .014   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 358 |        |     | min    | 0      | 3  | 016    | 3  | 074             | 4 | -1.293e-4 | 5        | NC            | 1   | 335.292  | 4  |
| 359 |        | 9   | max    | .004   | 2  | .013   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 360 |        |     | min    | 0      | 3  | 015    | 3  | 063             | 4 | -1.293e-4 | 5        | NC            | 1   | 394.454  | 4  |
| 361 |        | 10  | max    | .003   | 2  | .012   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 362 |        |     | min    | 0      | 3  | 013    | 3  | 052             | 4 | -1.293e-4 | 5        | NC            | 1   | 473.324  | 4  |
| 363 |        | 11  | max    | .003   | 2  | .01    | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 364 |        |     | min    | 0      | 3  | 012    | 3  | 043             | 4 | -1.293e-4 | 5        | NC            | 1   | 581.858  | 4  |
| 365 |        | 12  | max    | .003   | 2  | .009   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 366 |        |     | min    | 0      | 3  | 01     | 3  | 034             | 4 | -1.293e-4 | 5        | NC            | 1   | 737.284  | 4  |
| 367 |        | 13  | max    | .002   | 2  | .008   | 2  | <u>.00+</u>     | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 368 |        | .0  | min    | 0      | 3  | 009    | 3  | 026             | 4 | -1.293e-4 | 5        | NC            | 1   | 971.573  | 4  |
| 369 |        | 14  | max    | .002   | 2  | .006   | 2  | 0               | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 370 |        |     | min    | 0      | 3  | 007    | 3  | 018             | 4 | -1.293e-4 | 5        | NC            | 1   | 1349.767 | 4  |
| 371 |        | 15  | max    | .002   | 2  | .005   | 2  | <u>010</u><br>0 | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 372 |        | 13  | min    | 0      | 3  | 006    | 3  | 012             | 4 | -1.293e-4 | 5        | NC<br>NC      | 1   | 2021.794 |    |
| 373 |        | 16  | max    | .001   | 2  | .004   | 2  | <u>012</u><br>0 | 1 | 0         | 1        | NC            | 1   | NC       | 1  |
| 374 |        | 10  | min    | 0      | 3  | 004    | 3  | 007             | 4 | -1.293e-4 | 5        | NC            | 1   | 3402.087 |    |
| 314 |        |     | 111111 | U      | J  | 004    | J  | 007             | + | 1.2336-4  | J        | INC           |     | UTUZ.U01 | -  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member     | Sec                                              |            | x [in]      | LC | y [in]      | LC    | z [in]      | LC | x Rotate [r          | LC             |                 | LC  |                | LC |
|------------|------------|--------------------------------------------------|------------|-------------|----|-------------|-------|-------------|----|----------------------|----------------|-----------------|-----|----------------|----|
| 375        |            | 17                                               | max        | 00          | 2  | .003        | 2     | 00          | 1  | 0                    | _1_            | NC              | _1_ | NC             | 1  |
| 376        |            |                                                  | min        | 0           | 3  | 003         | 3     | 004         | 4  | -1.293e-4            | 5              | NC              | 1_  | 7027.139       | 4  |
| 377        |            | 18                                               | max        | 0           | 2  | .001        | 2     | 0           | 1  | 0                    | _1_            | NC              | 1_  | NC             | 1  |
| 378        |            |                                                  | min        | 0           | 3  | 001         | 3     | 001         | 4  | -1.293e-4            | 5              | NC              | 1_  | NC             | 1  |
| 379        |            | 19                                               | max        | 0           | 1  | 0           | 1     | 0           | 1  | 0                    | 1_             | NC              | 1_  | NC             | 1  |
| 380        | 1440       |                                                  | min        | 0           | 1  | 0           | 1     | 0           | 1  | -1.293e-4            | 5_             | NC              | 1_  | NC             | 1  |
| 381        | <u>M10</u> | 1                                                | max        | .008        | 2  | .011        | 2     | 0           | 10 | 2.024e-3             | 4              | NC<br>0.400,000 | 1_  | NC<br>400,004  | 1  |
| 382        |            |                                                  | min        | 01          | 3  | 016         | 3     | 536         | 4  | 7.313e-6             |                | 6432.269        | 2   | 129.031        | 4  |
| 383        |            | 2                                                | max        | .007        | 2  | .009        | 2     | 0           | 10 | 2.034e-3             | 4              | NC              | 1   | NC<br>440 FOF  | 1  |
| 384        |            | 2                                                | min        | 01          | 3  | 016         | 3     | 492         | 4  | 6.896e-6             | 10             | 7374.517        | 2   | 140.505        | 4  |
| 385        |            | 3                                                | max        | .007        | 2  | .008<br>015 | 2     | 0           | 10 | 2.044e-3             | 4              | NC              | 1   | NC<br>454424   | 1  |
| 386        |            | 1                                                | min        | 009         | 3  |             | 3     | 448         | 4  | 6.48e-6              | 10             | 8623.638        | 2   | 154.134        | 4  |
| 387        |            | 4                                                | max        | .006        | 2  | .007        | 2     | 0           | 10 | 2.054e-3             | 4              | NC<br>NC        | 1_  | NC             | 1  |
| 388        |            | _                                                | min        | 009         | 3  | 01 <u>5</u> | 3     | 405         | 4  | 6.064e-6             | 10             | NC<br>NC        | 1_1 | 170.483        | 4  |
| 389        |            | 5                                                | max        | .006        | 2  | .005        | 3     | 0<br>363    | 10 | 2.064e-3             | 4              | NC<br>NC        | 1   | NC             | 1  |
| 390        |            | 6                                                | min        | 008         | 3  | 014         |       |             | 4  | 5.648e-6             | 10             |                 | _   | 190.319        | 4  |
| 391        |            | 6                                                | max        | .005        | 2  | .004        | 2     | 0           | 10 | 2.073e-3             | 4              | NC<br>NC        | 1_1 | NC             | 1  |
| 392        |            | 7                                                | min        | 008         | 3  | <u>013</u>  | 3     | 322         | 4  | 5.232e-6             | <u>10</u>      | NC<br>NC        | 1_  | 214.707        | 4  |
| 393        |            | -                                                | max        | .005        | 2  | .003        | 2     | 0           | 10 | 2.083e-3             | 4              | NC              | 1_  | NC<br>245.450  | 1  |
| 394<br>395 |            | 0                                                | min        | 007         | 2  | 013<br>.002 | 2     | 282         | 4  | 4.816e-6             | <u>10</u>      | NC<br>NC        | 1   | 245.158<br>NC  | 1  |
|            |            | 8                                                | max        | .005        | 3  | 012         |       | 0           | 10 | 2.093e-3             | 4              | NC<br>NC        | 1   |                | 4  |
| 396        |            |                                                  | min        | 006         |    |             | 3     | 243         |    | 4.4e-6               | 10             |                 | •   | 283.882        | _  |
| 397        |            | 9                                                | max        | .004        | 2  | .001        | 2     | 0           | 10 |                      | 4              | NC<br>NC        | 1   | NC<br>224 200  | 1  |
| 398        |            | 10                                               | min        | 006         | 3  | <u>011</u>  | 3     | 207         | 4  | 3.984e-6             | 10             | NC<br>NC        | •   | 334.209        | 4  |
| 399        |            | 10                                               | max        | .004        | 3  | 0<br>01     | 3     | 0<br>172    | 10 | 2.113e-3             | 4              | NC<br>NC        | 1   | NC<br>404.354  | 4  |
| 400        |            | 4.4                                              | min        | 005         |    |             |       |             | 4  | 3.568e-6             | 10             |                 | _   | 401.354        |    |
| 401        |            | 11                                               | max        | .003        | 2  | 0           | 2     | 0           | 10 | 2.123e-3             | 4              | NC<br>NC        | 1_1 | NC             | 1  |
| 402        |            | 40                                               | min        | 005         | 3  | 009         | 3     | 14          | 4  | 3.152e-6             | <u>10</u>      | NC<br>NC        | 1_  | 493.871        | 4  |
| 403        |            | 12                                               | max        | .003        | 2  | 001         | 2     | 0           | 10 | 2.133e-3             | 4              | NC<br>NC        | 1_  | NC<br>coc coc  | 1  |
| 404<br>405 |            | 13                                               | min        | 004         | 2  | 009         | 2     | <u>11</u>   | 4  | 2.736e-6             | <u>10</u>      | NC<br>NC        | 1   | 626.603<br>NC  | 1  |
|            |            | 13                                               | max        | .003        |    | 002         |       | 0           | 10 | 2.143e-3<br>2.32e-6  | 4              | NC<br>NC        | 1   | 827.208        | 4  |
| 406<br>407 |            | 1.1                                              | min        | 003<br>.002 | 2  | 008<br>002  | 3     | 084         |    |                      | 10             | NC<br>NC        | •   | NC             |    |
|            |            | 14                                               | max        |             | 3  |             | 15    | 0           | 10 | 2.153e-3             | 4              |                 | 1   |                | 1  |
| 408        |            | 4.5                                              | min        | 003         |    | 006         | 3     | 06          |    | 1.904e-6             | <u>10</u>      | NC<br>NC        | •   | 1152.251       | 4  |
| 409<br>410 |            | 15                                               | max        | .002        | 3  | 001<br>005  | 15    | 0<br>04     | 10 | 2.162e-3             | 4              | NC<br>NC        | 1   | NC<br>1733.092 | 4  |
|            |            | 16                                               | min        | 002         | 2  |             | 15    |             | 4  | 1.488e-6<br>2.172e-3 | 10             | NC<br>NC        | 1   | NC             | 1  |
| 411        |            | 16                                               | max        | .001<br>002 | 3  | 001         | 3     | 0<br>024    | 10 | 1.072e-6             | 4              | NC<br>NC        | 1   | 2936.821       |    |
|            |            | 17                                               | min        |             |    | 004         |       |             | 4  |                      | <u>10</u>      | NC<br>NC        | 1   |                | 1  |
| 413        |            | 17                                               | max        | 0           | 3  | 0           | 15    | 0           | 10 | 2.182e-3<br>6.558e-7 | 4              | NC<br>NC        | 1   | NC<br>6149.125 |    |
| 415        |            | 10                                               | min<br>max | 001<br>0    | 2  | 003<br>0    | 15    | 011<br>0    | 10 | 2.192e-3             | 10             | NC<br>NC        | 1   | NC             | 1  |
| 416        |            | 10                                               | min        | 0           | 3  | 002         | 4     | 003         | 4  | 2.192e-3<br>2.398e-7 | 10             | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 417        |            | 19                                               |            | 0           | 1  |             | 1     |             | 1  | 2.396e-7<br>2.202e-3 |                | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 418        |            | 19                                               | max<br>min | 0           | 1  | <u> </u>    | 1     | <u> </u>    | 1  | -1.763e-7            | <u>4</u><br>10 | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 419        | M11        | 1                                                |            | 0           | 1  | 0           | 1     | 0           | 1  | 6.148e-7             | 1              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 420        | IVI I I    | -                                                | max<br>min | 0           | 1  | 0           | 1     | 0           | 1  | -4.568e-4            | 4              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 421        |            | 2                                                | max        | 0           | 3  | 0           | 15    | .012        | 4  | 8.352e-5             | 5              | NC              | 1   | NC             | 1  |
| 422        |            | <del>                                     </del> | min        | 0           | 2  | 003         | 4     | 0           | 2  | -1.47e-5             | 1              | NC              | 1   | NC             | 1  |
| 423        |            | 2                                                |            | 0           | 3  | 003<br>001  | 15    | .023        |    | 6.221e-4             | 4              | NC              | 1   | NC             | 1  |
| 424        |            | 3                                                | max<br>min | 0           | 2  | 001<br>006  | 4     | <u>.023</u> | 1  | -3.002e-5            | 1              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 425        |            | 4                                                | max        | .001        | 3  | 006         | 15    | .034        | 4  | 1.162e-3             | 4              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 426        |            | 4                                                | min        | 001         | 2  | 002         | 4     | <u>.034</u> | 1  | -4.534e-5            | 1              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 427        |            | 5                                                | max        | .002        | 3  | 009<br>003  | 15    | .044        | 4  | 1.701e-3             | 4              | NC<br>NC        | 1   | NC<br>NC       | 1  |
| 427        |            | J                                                | min        | 002         | 2  | 003<br>012  | 4     | <u>.044</u> | 1  | -6.066e-5            | 1              | 8613.191        | 4   | NC<br>NC       | 1  |
| 429        |            | 6                                                |            | .002        | 3  | 012<br>004  | 15    | .053        | 4  | 2.24e-3              | 4              | NC              | 2   | NC<br>NC       | 1  |
| 430        |            | 0                                                | max<br>min | 002         | 2  | 004<br>015  | 4     | <u>.053</u> | 1  | -7.598e-5            | 1              | 6966.441        | 4   | NC<br>NC       | 1  |
| 431        |            | 7                                                |            | .003        | 3  | 015         | 15    | .062        | 4  | 2.78e-3              | 4              | NC              | 5   | NC<br>NC       | 1  |
| 401        |            | 1                                                | max        | .003        | J  | 004         | 」 I ປ | .002        | 4  | 2.708-3              | 4              | INC             | J   | INC            |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member | Sec      |            | x [in]      | LC | y [in]      | LC | z [in]                  | LC  | x Rotate [r            | LC            | (n) L/y Ratio  | LC            |               | LC |
|------------|--------|----------|------------|-------------|----|-------------|----|-------------------------|-----|------------------------|---------------|----------------|---------------|---------------|----|
| 432        |        |          | min        | 003         | 2  | 018         | 4  | 0                       | 1   | -9.13e-5               | 1_            | 5975.282       | 4             | NC            | 1  |
| 433        |        | 8        | max        | .003        | 3  | 005         | 15 | .07                     | 4   | 3.319e-3               | 4             | NC             | 5             | NC            | 1  |
| 434        |        |          | min        | 003         | 2  | 02          | 4  | 0                       | 1   | -1.066e-4              | 1_            | 5363.797       | 4             | NC            | 1  |
| 435        |        | 9        | max        | .004        | 3  | 005         | 15 | .078                    | 4   | 3.859e-3               | 4             | NC             | 5             | NC            | 1  |
| 436        |        | 40       | min        | 003         | 2  | 021         | 4  | 0                       | 1   | -1.219e-4              | 1_            | 5002.155       | 4_            | NC            | 1  |
| 437        |        | 10       | max        | .004        | 3  | 005         | 15 | .085                    | 4   | 4.398e-3               | 4             | NC<br>4007.004 | 5_            | NC<br>NC      | 1  |
| 438        |        | 44       | min        | 004         | 2  | 022         | 4  | 0                       | 1   | -1.373e-4              | 1_            | 4827.331       | 4_            | NC<br>NC      | 1  |
| 439        |        | 11       | max        | .005        | 3  | 005         | 15 | .092                    | 4   | 4.938e-3               | 4             | NC             | 5             | NC<br>NC      | 1  |
| 440        |        | 40       | min        | 004         | 2  | 022         | 4  | 001                     | 1   | -1.526e-4              | 1_            | 4813.562       | 4_            | NC<br>NC      | 1  |
| 441        |        | 12       | max        | .005        | 3  | 005<br>021  | 15 | <u>.1</u><br>001        | 1   | 5.477e-3               | 4             | NC<br>4962.467 | 5_4           | NC<br>NC      | 1  |
| 442        |        | 13       | min        | 005         | 3  |             | 15 | 001<br>.107             | 4   | -1.679e-4              | 1_1           | NC             | 4_            | NC<br>NC      | 1  |
| 444        |        | 13       | max<br>min | .006<br>005 | 2  | 005<br>02   | 4  | 002                     | 1   | 6.016e-3<br>-1.832e-4  | <u>4</u><br>1 | 5304.93        | <u>5</u>      | NC<br>NC      | 1  |
| 445        |        | 14       | max        | .006        | 3  | 02<br>005   | 15 | .115                    | 4   | 6.556e-3               | 4             | NC             | 5             | NC<br>NC      | 1  |
| 446        |        | 14       | min        | 005         | 2  | 018         | 4  | 002                     | 1   | -1.985e-4              | 1             | 5917.125       | 4             | NC            | 1  |
| 447        |        | 15       | max        | .003        | 3  | 018<br>004  | 15 | .123                    | 4   | 7.095e-3               | 4             | NC             | 3             | NC            | 1  |
| 448        |        | 10       | min        | 006         | 2  | 016         | 4  | 003                     | 1   | -2.139e-4              | 1             | 6967.923       | 4             | NC            | 1  |
| 449        |        | 16       | max        | .007        | 3  | 003         | 15 | .132                    | 4   | 7.635e-3               | 4             | NC             | 1             | NC            | 1  |
| 450        |        | 10       | min        | 006         | 2  | 013         | 4  | 003                     | 1   | -2.292e-4              | 1             | 8866.345       | 4             | NC            | 1  |
| 451        |        | 17       | max        | .008        | 3  | 002         | 15 | .141                    | 4   | 8.174e-3               | 4             | NC             | 1             | NC            | 1  |
| 452        |        | <u> </u> | min        | 007         | 2  | 009         | 4  | 004                     | 1   | -2.445e-4              | 1             | NC             | 1             | NC            | 1  |
| 453        |        | 18       | max        | .008        | 3  | 002         | 15 | .152                    | 4   | 8.714e-3               | 4             | NC             | 1             | NC            | 1  |
| 454        |        |          | min        | 007         | 2  | 005         | 4  | 005                     | 1   | -2.598e-4              | 1             | NC             | 1             | NC            | 1  |
| 455        |        | 19       | max        | .009        | 3  | 0           | 10 | .164                    | 4   | 9.253e-3               | 4             | NC             | 1             | NC            | 1  |
| 456        |        |          | min        | 008         | 2  | 002         | 3  | 005                     | 1   | -2.751e-4              | 1             | NC             | 1             | NC            | 1  |
| 457        | M12    | 1        | max        | .002        | 1  | .007        | 2  | .005                    | 1   | -5.514e-6              | 10            | NC             | 1             | NC            | 2  |
| 458        |        |          | min        | 0           | 3  | 009         | 3  | 164                     | 4   | -7.563e-5              | 1             | NC             | 1             | 150.889       | 4  |
| 459        |        | 2        | max        | .002        | 1  | .007        | 2  | .005                    | 1   | -5.514e-6              | 10            | NC             | 1             | NC            | 2  |
| 460        |        |          | min        | 0           | 3  | 009         | 3  | 151                     | 4   | -7.563e-5              | 1             | NC             | 1             | 164.098       | 4  |
| 461        |        | 3        | max        | .002        | 1  | .006        | 2  | .004                    | 1   | -5.514e-6              | 10            | NC             | 1_            | NC            | 2  |
| 462        |        |          | min        | 0           | 3  | 008         | 3  | 138                     | 4   | -7.563e-5              | 1_            | NC             | 1_            | 179.816       | 4  |
| 463        |        | 4        | max        | .002        | 1  | .006        | 2  | .004                    | 1   | -5.514e-6              | 10            | NC             | _1_           | NC            | 2  |
| 464        |        |          | min        | 0           | 3  | 008         | 3  | 125                     | 4   | -7.563e-5              | 1_            | NC             | 1_            | 198.694       | 4  |
| 465        |        | 5        | max        | .002        | 1  | .006        | 2  | .004                    | 1   | -5.514e-6              | 10            | NC             | _1_           | NC            | 2  |
| 466        |        |          | min        | 0           | 3  | 007         | 3  | 112                     | 4   | -7.563e-5              | _1_           | NC             | _1_           | 221.62        | 4  |
| 467        |        | 6        | max        | .002        | 1  | .005        | 2  | .003                    | 1   | -5.514e-6              | <u>10</u>     | NC             | _1_           | NC            | 2  |
| 468        |        | <u> </u> | min        | 0           | 3  | 007         | 3  | <u>099</u>              | 4   | -7.563e-5              | 1_            | NC             | 1_            | 249.822       | 4  |
| 469        |        | 7        | max        | .002        | 1  | .005        | 2  | .003                    | 1   | -5.514e-6              | <u>10</u>     | NC             | 1_            | NC NC         | 2  |
| 470        |        |          | min        | 0           | 3  | 006         | 3  | 087                     | 4   | -7.563e-5              | 1_            | NC             | 1_            | 285.043       | 4  |
| 471        |        | 8        | max        | .001        | 1  | .004        | 2  | .002                    | 1   | -5.514e-6              |               | NC             | 1_            | NC<br>200,000 | 1  |
| 472        |        |          | min        |             | 3  | 006         | 3  | 075                     |     | -7.563e-5              |               | NC<br>NC       | 1             | 329.829       |    |
| 473        |        | 9        | max        | .001        | 3  | .004        | 2  | .002                    | 1   | -5.514e-6              |               | NC<br>NC       | 1             | NC<br>200,007 | 1  |
| 474        |        | 10       | min        | 0           |    | 005         | 2  | 064                     | 1   | -7.563e-5              | 10            | NC<br>NC       | <u>1</u><br>1 | 388.007       | 1  |
| 475<br>476 |        | 10       | max        | .001        | 3  | .004        | 3  | .002                    | 1 1 | -5.514e-6              |               | NC<br>NC       | 1             | NC<br>465 564 |    |
| 477        |        | 11       | min<br>max | .001        | 1  | 005<br>.003 | 2  | 053<br>.001             | 1   | -7.563e-5<br>-5.514e-6 | 10            | NC<br>NC       | 1             | 465.564<br>NC | 1  |
| 478        |        |          | min        | 0           | 3  | 004         | 3  | 043                     | 4   | -7.563e-5              | 1             | NC             | 1             | 572.292       | 4  |
| 479        |        | 12       | max        | 0           | 1  | .003        | 2  | .001                    | 1   | -7.503e-5<br>-5.514e-6 |               | NC             | 1             | NC            | 1  |
| 480        |        | 12       | min        | 0           | 3  | 004         | 3  | 034                     | 4   | -7.563e-5              | 1             | NC             | 1             | 725.129       | 4  |
| 481        |        | 13       |            | 0           | 1  | .002        | 2  | _ <del>034</del> _<br>0 | 1   | -7.503e-5<br>-5.514e-6 |               | NC             | 1             | NC            | 1  |
| 482        |        | 13       | max<br>min | 0           | 3  | 002         | 3  | 026                     | 4   | -7.563e-5              | 1             | NC<br>NC       | 1             | 955.512       | 4  |
| 483        |        | 14       | max        | 0           | 1  | .002        | 2  | <u>020</u><br>0         | 1   | -7.503e-5<br>-5.514e-6 | •             | NC             | 1             | NC            | 1  |
| 484        |        | 17       | min        | 0           | 3  | 003         | 3  | 019                     | 4   | -7.563e-5              | 1             | NC             | 1             | 1327.396      | _  |
| 485        |        | 15       | max        | 0           | 1  | .002        | 2  | <u>019</u><br>0         | 1   | -7.503e-5<br>-5.514e-6 |               | NC             | 1             | NC            | 1  |
| 486        |        | 10       | min        | 0           | 3  | 002         | 3  | 012                     | 4   | -7.563e-5              | 1             | NC             | 1             | 1988.195      | 4  |
| 487        |        | 16       | max        | 0           | 1  | .002        | 2  | 0                       | 1   | -7.503e-5<br>-5.514e-6 | •             | NC             | 1             | NC            | 1  |
| 488        |        | 1.0      | min        | 0           | 3  | 002         | 3  | 007                     | 4   | -7.563e-5              | 1             | NC             | 1             | 3345.391      | 4  |
| 700        |        |          | 111111     | U           | J  | .002        | J  | .007                    |     | 1.0000-0               |               | 110            |               | 00-TU.001     |    |



Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member    | Sec         |            | x [in]       | LC | y [in]      | LC | z [in]             | LC       | x Rotate [r           |               |                | LC             |          | LC |
|------------|-----------|-------------|------------|--------------|----|-------------|----|--------------------|----------|-----------------------|---------------|----------------|----------------|----------|----|
| 489        |           | 17          | max        | 0            | 1  | 0           | 2  | 0                  | 1        | -5.514e-6             | 10            | NC             | _1_            | NC       | 1  |
| 490        |           |             | min        | 0            | 3  | 001         | 3  | 004                | 4        | -7.563e-5             | 1_            | NC             | 1_             | 6909.652 | 4  |
| 491        |           | 18          | max        | 0            | 1  | 00          | 2  | 00                 | 1        | -5.514e-6             |               | NC             | _1_            | NC       | 1  |
| 492        |           |             | min        | 0            | 3  | 0           | 3  | 001                | 4        | -7.563e-5             | 1_            | NC             | 1_             | NC       | 1  |
| 493        |           | 19          | max        | 0            | 1  | 0           | 1  | 0                  | 1        | -5.514e-6             | <u>10</u>     | NC             | _1_            | NC       | 1  |
| 494        | 244       |             | min        | 0            | 1  | 0           | 1  | 0                  | 1        | -7.563e-5             | 1_            | NC             | 1_             | NC       | 1  |
| 495        | <u>M1</u> | 1_          | max        | .011         | 3  | .237        | 2  | .564               | 4        | 5.752e-3              | 2             | NC             | 1              | NC<br>NC | 1  |
| 496        |           |             | min        | 007          | 2  | 071         | 3  | 0                  | 10       | -1.53e-2              | 3             | NC<br>NC       | <u>1</u>       | NC<br>NC | 1  |
| 497        |           | 2           | max        | .011         | 3  | .116        | 2  | .549               | 4        | 6.115e-3              | 4             | NC             | 5              | NC<br>NC | 1  |
| 498        |           | 2           | min        | 007          | 2  | 034         | 3  | <u>004</u>         | 4        | -7.597e-3             | 3             | 1113.827<br>NC | 2              | NC<br>NC | 1  |
| 499        |           | 3           | max        | .011         | 3  | .017        | 3  | .532               | 1        | 1.122e-2<br>-9.827e-5 | 4             | 540.35         | 5              | 7334.111 | 5  |
| 500<br>501 |           | 4           | min        | 007<br>.011  | 3  | 013<br>.094 | 3  | 006<br>.514        | 4        | 9.633e-3              | <u>1</u><br>4 | NC             | <u>2</u><br>15 | NC       | 1  |
| 502        |           | 4           | max        | 007          | 2  | 155         | 2  | 005                | 1        | -3.863e-3             | 3             | 344.797        | 2              | 5327.648 |    |
| 503        |           | 5           |            | .007<br>.011 | 3  | .188        | 3  | 005<br>.496        | 4        | 8.043e-3              | 4             | NC             | 15             | NC       | 1  |
| 504        |           | - 5         | max        | 007          | 2  | 302         | 2  | 004                | 1        | -7.63e-3              | 3             | 251.045        | 2              | 4306.064 |    |
| 505        |           | 6           | max        | .011         | 3  | .288        | 3  | <u>004</u><br>.477 | 4        | 1.142e-2              | 2             | 8933.173       | 15             | NC       | 1  |
| 506        |           | <b>—</b>    | min        | 007          | 2  | 443         | 2  | 002                | 1        | -1.14e-2              | 3             | 199.062        | 2              | 3672.147 | 5  |
| 507        |           | 7           | max        | .011         | 3  | .383        | 3  | .457               | 4        | 1.522e-2              | 2             | 7567.473       | 15             | NC       | 1  |
| 508        |           |             | min        | 007          | 2  | 568         | 2  | 0                  | 3        | -1.516e-2             | 3             | 168.218        | 2              | 3209.197 | 4  |
| 509        |           | 8           | max        | .01          | 3  | .461        | 3  | .438               | 4        | 1.902e-2              | 2             | 6756.963       | 15             | NC       | 1  |
| 510        |           |             | min        | 007          | 2  | 666         | 2  | 0                  | 10       | -1.893e-2             | 3             | 149.91         | 2              | 2843.761 | 4  |
| 511        |           | 9           | max        | .01          | 3  | .513        | 3  | .418               | 4        | 2.118e-2              | 2             | 6331.655       | 15             | NC       | 1  |
| 512        |           |             | min        | 006          | 2  | 729         | 2  | 0                  | 1        | -1.954e-2             | 3             | 140.347        | 2              | 2579.388 | 4  |
| 513        |           | 10          | max        | .01          | 3  | .532        | 3  | .395               | 4        | 2.224e-2              | 2             | 6201.303       | 15             | NC       | 1  |
| 514        |           |             | min        | 006          | 2  | 749         | 2  | 0                  | 10       | -1.803e-2             | 3             | 137.543        | 2              | 2478.956 | 4  |
| 515        |           | 11          | max        | .01          | 3  | .52         | 3  | .37                | 4        | 2.33e-2               | 2             | 6331.249       | 15             | NC       | 1  |
| 516        |           |             | min        | 006          | 2  | 728         | 2  | 0                  | 10       | -1.653e-2             | 3             | 140.827        | 2              | 2491.955 | 4  |
| 517        |           | 12          | max        | .009         | 3  | .477        | 3  | .343               | 4        | 2.217e-2              | 2             | 6755.992       | 15             | NC       | 1  |
| 518        |           |             | min        | 006          | 2  | 663         | 2  | 0                  | 1        | -1.447e-2             | 3             | 151.3          | 2              | 2612.752 | 4  |
| 519        |           | 13          | max        | .009         | 3  | .407        | 3  | .311               | 4        | 1.777e-2              | 2             | 7565.589       | 15             | NC       | 1  |
| 520        |           |             | min        | 006          | 2  | 561         | 2  | 0                  | 1        | -1.158e-2             | 3             | 171.459        | 2              | 3055.425 |    |
| 521        |           | 14          | max        | .009         | 3  | .318        | 3  | .275               | 4        | 1.338e-2              | 2             | 8929.752       | 15             | NC       | 1  |
| 522        |           |             | min        | 006          | 2  | 432         | 2  | 0                  | 12       | -8.684e-3             | 3             | 205.777        | 2              | 4091.664 |    |
| 523        |           | 15          | max        | .009         | 3  | .216        | 3  | .238               | 4        | 8.98e-3               | 2             | NC             | <u>15</u>      | NC       | 1  |
| 524        |           | 40          | min        | 006          | 2  | 288         | 2  | 0                  | 10       | -5.792e-3             | 3             | 264.481        | 2              | 6617.734 |    |
| 525        |           | 16          | max        | .008         | 3  | .11         | 3  | .201               | 4        | 7.641e-3              | 4_            | NC             | <u>15</u>      | NC<br>NC | 1  |
| 526        |           | 4-          | min        | 006          | 2  | <u>143</u>  | 2  | 0                  | 10       | -2.9e-3               | 3_            | 372.276        | 2              | NC       | 1  |
| 527        |           | 17          | max        | .008         | 3  | .006        | 3  | .168               | 4        | 8.78e-3               | 4             | NC<br>COO 547  | 5              | NC<br>NC | 1  |
| 528        |           | 10          | min        | 006          | 3  | 007         | 2  | 0                  | 10       | -8.511e-6             | 2             | 600.517        | 2              | NC<br>NC | 1  |
| 529        |           | 18          | max        | .008         | 2  | .108        | 3  | <u>.141</u><br>0   |          |                       |               | NC<br>1264.196 | 5              | NC<br>NC | 1  |
| 530<br>531 |           | 19          | min        | 006<br>.008  | 3  | 089<br>.213 | 2  | .118               | 10<br>4  | -1.556e-3<br>9.969e-3 | 2             | NC             | <u>2</u><br>1  | NC<br>NC | 1  |
| 532        |           | 19          | max<br>min | 006          | 2  | 179         | 3  | 0                  | 1        | -3.183e-3             | 3             | NC<br>NC       | 1              | NC<br>NC | 1  |
| 533        | M5        | 1           | max        | .033         | 3  | .347        | 2  | .564               | 4        | 0                     | <u> </u>      | NC             | 1              | NC       | 1  |
| 534        | IVIO      |             | min        | 023          | 2  | .007        | 15 | <u>.504</u>        | 1        | -1.33e-5              | 4             | NC             | 1              | NC       | 1  |
| 535        |           | 2           | max        | .033         | 3  | .169        | 2  | .553               | 4        | 5.737e-3              | 4             | NC             | 5              | NC       | 1  |
| 536        |           |             | min        | 023          | 2  | .003        | 15 | <u>.555</u>        | 1        | 0                     | 1             | 768.357        | 2              | NC       | 1  |
| 537        |           | 3           | max        | .033         | 3  | .049        | 3  | .537               | 4        | 1.135e-2              | 4             | NC             | 5              | NC       | 1  |
| 538        |           | -           | min        | 023          | 2  | 037         | 2  | 0                  | 1        | 0                     | 1             | 356.068        | 2              | 6017.463 |    |
| 539        |           | 4           | max        | .032         | 3  | .175        | 3  | .519               | 4        | 9.246e-3              | 4             | NC             | 15             | NC       | 1  |
| 540        |           |             | min        | 023          | 2  | 291         | 2  | 0                  | 1        | 0                     | 1             | 213.923        | 2              | 4674.374 | 4  |
| 541        |           | 5           | max        | .032         | 3  | .361        | 3  | .499               | 4        | 7.144e-3              | 4             | 7392.865       | 15             | NC       | 1  |
| 542        |           |             | min        | 022          | 2  | 573         | 2  | 0                  | 1        | 0                     | 1             | 148.244        | 2              | 4021.752 |    |
| 543        |           | 6           | max        | .031         | 3  | .577        | 3  | .478               | 4        | 5.042e-3              | 4             | 5646.426       | 15             | NC       | 1  |
| 544        |           |             | min        | 022          | 2  | 856         | 2  | 0                  | 1        | 0                     | 1             | 113.271        | 2              | 3604.734 | -  |
| 545        |           | 7           | max        | .03          | 3  | .79         | 3  | .457               | 4        | 2.94e-3               | 4             | 4646.312       | 15             | NC       | 1  |
|            |           | <del></del> |            |              |    |             |    |                    | <u> </u> | ,, ., .               | _             |                |                |          |    |



Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | x [in]     | LC | y [in]                 | LC | z [in]           |    | x Rotate [r           |               | (n) L/y Ratio       |                |                 |   |
|------------|--------|-----|------------|------------|----|------------------------|----|------------------|----|-----------------------|---------------|---------------------|----------------|-----------------|---|
| 546        |        |     | min        | 022        | 2  | -1.115                 | 2  | 0                | 1  | 0                     | 1_            | 93.197              | 2              | 3252.046        |   |
| 547        |        | 8   | max        | .03        | 3  | .971                   | 3  | .437             | 4  | 8.373e-4              | 4             | 4068.59             | <u>15</u>      | NC              | 1 |
| 548        |        |     | min        | 021        | 2  | -1.323                 | 2  | 0                | 1  | 0                     | 1_            | 81.582              | 2              | 2886.988        |   |
| 549        |        | 9   | max        | .029       | 3  | 1.088                  | 3  | .418             | 4  | 0                     | 1             | 3773.362            | <u>15</u>      | NC<br>OF 70 FO4 | 1 |
| 550        |        | 40  | min        | 021        | 2  | <u>-1.456</u>          | 2  | 0                | 1  | -7.901e-6             | 5             | 75.64               | 2              | 2570.591        | 4 |
| 551        |        | 10  | max        | .028       | 3  | 1.13                   | 3  | .395             | 4  | 0<br>-7.577e-6        | 1             | 3684.523            | <u>15</u>      | NC<br>2502 225  | 4 |
| 552        |        | 11  | min        | 02<br>.028 | 3  | <u>-1.502</u><br>1.102 | 3  | .37              | 4  | 0                     | <u>5</u><br>1 | 73.906<br>3773.694  | <u>2</u><br>15 | 2503.325<br>NC  | 1 |
| 553<br>554 |        |     | max        | 02         | 2  | -1.102<br>-1.457       | 2  | 3 <i>1</i>       | 1  | -7.252e-6             | 5             | 75.933              | 2              | 2532.037        |   |
| 555        |        | 12  | max        | .027       | 3  | 1.005                  | 3  | .344             | 4  | 6.215e-4              | 4             | 4069.359            | 15             | NC              | 1 |
| 556        |        | 12  | min        | 02         | 2  | -1.319                 | 2  | <u>44</u>        | 1  | 0.2136-4              | 1             | 82.567              | 2              | 2561.356        | - |
| 557        |        | 13  | max        | .026       | 3  | .848                   | 3  | .312             | 4  | 2.183e-3              | 4             | 4647.815            | 15             | NC              | 1 |
| 558        |        | 13  | min        | 019        | 2  | -1.099                 | 2  | 0                | 1  | 0                     | 1             | 95.819              | 2              | 2965.027        | 4 |
| 559        |        | 14  | max        | .025       | 3  | .652                   | 3  | .275             | 4  | 3.744e-3              | 4             | 5649.267            | 15             | NC              | 1 |
| 560        |        | 17  | min        | 019        | 2  | 827                    | 2  | 0                | 1  | 0.74400               | 1             | 119.351             | 2              | 4122.952        | 4 |
| 561        |        | 15  | max        | .025       | 3  | .435                   | 3  | .235             | 4  | 5.305e-3              | 4             | 7398.371            | 15             | NC              | 1 |
| 562        |        |     | min        | 019        | 2  | 535                    | 2  | 0                | 1  | 0                     | 1             | 161.963             | 2              | 7629.09         | 4 |
| 563        |        | 16  | max        | .024       | 3  | .216                   | 3  | .196             | 4  | 6.866e-3              | 4             | NC                  | 15             | NC              | 1 |
| 564        |        |     | min        | 018        | 2  | 255                    | 2  | 0                | 1  | 0                     | 1             | 246.354             | 2              | NC              | 1 |
| 565        |        | 17  | max        | .023       | 3  | .016                   | 3  | .162             | 4  | 8.427e-3              | 4             | NC                  | 5              | NC              | 1 |
| 566        |        |     | min        | 018        | 2  | 019                    | 2  | 0                | 1  | 0                     | 1             | 440.536             | 2              | NC              | 1 |
| 567        |        | 18  | max        | .023       | 3  | .148                   | 2  | .136             | 4  | 4.261e-3              | 4             | NC                  | 5              | NC              | 1 |
| 568        |        |     | min        | 018        | 2  | 151                    | 3  | 0                | 1  | 0                     | 1             | 1008.755            | 2              | NC              | 1 |
| 569        |        | 19  | max        | .023       | 3  | .277                   | 2  | .118             | 4  | 0                     | 1             | NC                  | 1              | NC              | 1 |
| 570        |        |     | min        | 018        | 2  | 298                    | 3  | 0                | 1  | -7.207e-6             | 4             | NC                  | 1              | NC              | 1 |
| 571        | M9     | 1   | max        | .011       | 3  | .237                   | 2  | .564             | 4  | 1.53e-2               | 3             | NC                  | 1_             | NC              | 1 |
| 572        |        |     | min        | 007        | 2  | 071                    | 3  | 0                | 1  | -5.752e-3             | 2             | NC                  | 1_             | NC              | 1 |
| 573        |        | 2   | max        | .011       | 3  | <u>.116</u>            | 2  | <u>.551</u>      | 4  | 7.597e-3              | 3             | NC                  | 5              | NC              | 1 |
| 574        |        |     | min        | 007        | 2  | 034                    | 3  | 0                | 10 | -2.824e-3             | 2             | 1113.827            | 2              | NC              | 1 |
| 575        |        | 3   | max        | .011       | 3  | .017                   | 3  | .535             | 4  | 1.13e-2               | _4_           | NC                  | _5_            | NC              | 1 |
| 576        |        |     | min        | 007        | 2  | 013                    | 2  | 0                | 10 | -2.665e-5             | <u>10</u>     | 540.35              | 2              | 6537.571        | 4 |
| 577        |        | 4   | max        | .011       | 3  | .094                   | 3  | .517             | 4  | 8.952e-3              | 5             | NC                  | <u>15</u>      | NC              | 1 |
| 578        |        |     | min        | 007        | 2  | 1 <u>55</u>            | 2  | 0                | 10 | -3.816e-3             | 2             | 344.797             | 2              | 4920.827        | 4 |
| 579        |        | 5   | max        | .011       | 3  | .188                   | 3  | .498             | 4  | 7.63e-3               | 3_            | NC<br>054.045       | <u>15</u>      | NC<br>4400,000  | 1 |
| 580        |        |     | min        | 007        | 2  | 302                    | 2  | 0                | 10 | -7.618e-3             | 2             | 251.045             | 2              | 4109.899        |   |
| 581        |        | 6   | max        | .011       | 3  | .288                   | 3  | .478             | 4  | 1.14e-2               | 3             | 8891.868            | <u>15</u>      | NC              | 1 |
| 582        |        | 7   | min        | 007        | 3  | 443                    | 3  | <u>0</u>         | 10 | -1.142e-2             | 2             | 199.062             | <u>2</u>       | 3599.048        |   |
| 583        |        |     | max        | .011       | 2  | .383                   | 2  | .457             | 1  | 1.516e-2              | 3             | 7533.329            | <u>15</u>      | NC              | 1 |
| 584<br>585 |        | 8   | min        | 007<br>.01 | 3  | <u>568</u><br>.461     | 3  | 0<br>.438        | 4  | -1.522e-2<br>1.893e-2 | 3             | 168.218<br>6726.981 | <u>2</u><br>15 | 3209.105<br>NC  | 1 |
| 586        |        | 0   | max<br>min |            | 2  | 666                    | 2  | <u>.436</u><br>0 |    | -1.902e-2             |               |                     | 2              |                 |   |
| 587        |        | 9   | max        | .01        | 3  | .513                   | 3  | .418             | 4  | 1.954e-2              | 3             | 6303.794            | 15             | NC              | 1 |
| 588        |        | 9   | min        | 006        | 2  | 729                    | 2  | 0                | 10 |                       | 2             | 140.347             |                | 2572.563        |   |
| 589        |        | 10  | max        | .01        | 3  | .532                   | 3  | .395             | 4  | 1.803e-2              | 3             | 6174.022            | 15             | NC              | 1 |
| 590        |        | 10  | min        | 006        | 2  | 749                    | 2  | 0                | 1  | -2.224e-2             | 2             | 137.543             | 2              | 2479.734        | 4 |
| 591        |        | 11  | max        | .01        | 3  | .52                    | 3  | .37              | 4  | 1.653e-2              | 3             | 6303.267            | 15             | NC              | 1 |
| 592        |        |     | min        | 006        | 2  | 728                    | 2  | 0                | 1  | -2.33e-2              | 2             | 140.827             | 2              | 2499.459        |   |
| 593        |        | 12  | max        | .009       | 3  | .477                   | 3  | .343             | 4  | 1.447e-2              | 3             | 6725.921            | 15             | NC              | 1 |
| 594        |        |     | min        | 006        | 2  | 663                    | 2  | 0                | 10 | -2.217e-2             | 2             | 151.3               | 2              | 2598.418        |   |
| 595        |        | 13  | max        | .009       | 3  | .407                   | 3  | .311             | 4  | 1.158e-2              | 3             | 7531.589            | 15             | NC              | 1 |
| 596        |        |     | min        | 006        | 2  | 561                    | 2  | 0                | 10 | -1.777e-2             | 2             | 171.459             | 2              | 3051.473        | 4 |
| 597        |        | 14  | max        | .009       | 3  | .318                   | 3  | .274             | 4  | 8.684e-3              | 3             | 8889.097            | 15             | NC              | 1 |
| 598        |        |     | min        | 006        | 2  | 432                    | 2  | 001              | 1  | -1.338e-2             | 2             | 205.777             | 2              | 4170.1          | 5 |
| 599        |        | 15  | max        | .009       | 3  | .216                   | 3  | .236             | 4  | 5.792e-3              | 3             | NC                  | 15             | NC              | 1 |
| 600        |        |     | min        | 006        | 2  | 288                    | 2  | 003              | 1  | -8.98e-3              | 2             | 264.481             | 2              | 7044.487        | 5 |
| 601        |        | 16  | max        | .008       | 3  | .11                    | 3  | .198             | 4  | 6.859e-3              | 5             | NC                  | 15             | NC              | 1 |
| 602        |        |     | min        | 006        | 2  | 143                    | 2  | 005              | 1  | -4.583e-3             | 2             | 372.276             | 2              | NC              | 1 |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|----|---------------|----|---------------|----|
| 603 |        | 17  | max | .008   | 3  | .006   | 3  | .165   | 4  | 8.586e-3    | 4  | NC            | 5  | NC            | 1  |
| 604 |        |     | min | 006    | 2  | 007    | 2  | 005    | 1  | -3.686e-4   | 1  | 600.517       | 2  | NC            | 1  |
| 605 |        | 18  | max | .008   | 3  | .108   | 2  | .138   | 4  | 4.231e-3    | 5  | NC            | 5  | NC            | 1  |
| 606 |        |     | min | 006    | 2  | 089    | 3  | 004    | 1  | -4.995e-3   | 2  | 1264.196      | 2  | NC            | 1  |
| 607 |        | 19  | max | .008   | 3  | .213   | 2  | .118   | 4  | 3.183e-3    | 3  | NC            | 1  | NC            | 1  |
| 608 |        |     | min | 006    | 2  | 179    | 3  | 0      | 10 | -9.969e-3   | 2  | NC            | 1  | NC            | 1  |



| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 1/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method: ACI 318-05 Units: Imperial units

### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c<sub>ac</sub> (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

# **Load and Geometry**

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 2/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          | •        |

<Figure 2>



# Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 3/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 1020.0                                | 27.0                                   | 565.0                                  | 565.6                                                      |  |
| Sum    | 1020.0                                | 27.0                                   | 565.0                                  | 565 6                                                      |  |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



#### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |  |
|----------------------|--------|--------------------|--|
| 8095                 | 0.75   | 6071               |  |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                           | f'c (psi)                      | h <sub>ef</sub> (in) | $N_b$ (lb)    |            |        |                    |
|-----------------------------|---------------------------------------------|--------------------------------|----------------------|---------------|------------|--------|--------------------|
| 17.0                        | 1.00                                        | 2500                           | 5.247                | 10215         |            |        |                    |
| $\phi N_{cb} = \phi (A_t)$  | Nc / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,N}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. I | D.4.1 & Eq. D-4)     | )             |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                | $\Psi_{ed,N}$                  | $\Psi_{c,N}$         | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 220.36                      | 247.75                                      | 0.967                          | 1.00                 | 1.000         | 10215      | 0.65   | 5710               |

# 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| rt-term K <sub>sat</sub> τ <sub>k,cr</sub> (psi)                              |
|-------------------------------------------------------------------------------|
| 0 1.00 1035                                                                   |
| . D-16f)                                                                      |
| (in) $h_{ef}$ (in) $N_{a0}$ (lb)                                              |
| 0 6.000 9755                                                                  |
| Ψ <sub>ed,Na</sub> Ψ <sub>p,Na</sub> N <sub>a0</sub> (Sec. D.4.1 & Eq. D-16a) |
| $\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$                                    |
|                                                                               |



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|
| Engineer: | HCV                                           | Page: | 4/5      |  |  |
| Project:  | Standard PVMax - Worst Case, 14-40 Inch Width |       |          |  |  |
| Address:  |                                               |       |          |  |  |
| Phone:    |                                               |       |          |  |  |
| E-mail:   |                                               |       |          |  |  |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

#### Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)                                         | λ                              | $f'_c$ (psi)    | c <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |  |
|-----------------------------|-------------------------------------------------------------|--------------------------------|-----------------|----------------------|---------------|--------|---------------------|--|
| 4.00                        | 0.50                                                        | 1.00                           | 2500            | 7.00                 | 6947          |        |                     |  |
| $\phi V_{cby} = \phi (A_V)$ | /c / A vco) \( \mathcal{P}_{ed, V} \( \mathcal{P}_{c, V} \) | $ eg \Psi_{h,V} V_{by} $ (Sec. | D.4.1 & Eq. D-2 | 1)                   |               |        |                     |  |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                                | $arPsi_{\sf ed,V}$             | $arPsi_{c,V}$   | $\Psi_{h,V}$         | $V_{by}$ (lb) | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 192.89                      | 220.50                                                      | 0.925                          | 1.000           | 1.000                | 6947          | 0.70   | 3934                |  |

 $V_{bx}$  (lb)

8282

#### Shear perpendicular to edge in x-direction:

| $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24) |         |      |           |          |  |  |  |  |
|------------------------------------------------------------------------------------|---------|------|-----------|----------|--|--|--|--|
| le (in)                                                                            | da (in) | λ    | f'c (psi) | Ca1 (in) |  |  |  |  |
| 4.00                                                                               | 0.50    | 1.00 | 2500      | 7.87     |  |  |  |  |

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$  (Sec. D.4.1 & Eq. D-21)

| Avc (in <sup>2</sup> ) | Avco (in <sup>2</sup> ) | $\Psi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
|------------------------|-------------------------|-------------------|--------------|--------------|---------------|--------|---------------------|
| 165.27                 | 278.72                  | 0.878             | 1.000        | 1.000        | 8282          | 0.70   | 3018                |

## Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$   $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$   $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$ 

| $\varphi \mathbf{v} \cos \varphi \left( \frac{2}{3} \right) (11)$ | 2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1) |                      |              |              |                      |        |                     |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|--------------|--------------|----------------------|--------|---------------------|
| Avc (in <sup>2</sup> )                                            | $Av\infty$ (in <sup>2</sup> )                                                    | $\varPsi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$ | V <sub>by</sub> (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 192.89                                                            | 220.50                                                                           | 1.000                | 1.000        | 1.000        | 6947                 | 0.70   | 8508                |

### Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)         | da (in)                       | λ                                | $f'_c$ (psi)      | <i>c</i> <sub>a1</sub> (in) | $V_{bx}$ (lb) |        |                     |
|-----------------------------|-------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                          | 1.00                             | 2500              | 7.87                        | 8282          |        |                     |
| $\phi V_{cby} = \phi (2)$   | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )  | $\Psi_{\sf ed,V}$                | $arPsi_{c,V}$     | $\Psi_{h,V}$                | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cby}$ (lb) |
| 165.27                      | 278.72                        | 1.000                            | 1.000             | 1.000                       | 8282          | 0.70   | 6875                |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$ 

| Kcp       | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $arPsi_{p,Na}$ | N <sub>a0</sub> (lb) | N <sub>a</sub> (lb) |        |                      |
|-----------|-----------------------------|------------------------------|--------------------|----------------|----------------------|---------------------|--------|----------------------|
| 2.0       | 109.66                      | 109.66                       | 1.000              | 1.000          | 9755                 | 9755                |        |                      |
| Anc (in²) | Ανω (in²)                   | $\Psi_{ed,N}$                | $\Psi_{c,N}$       | $arPsi_{cp,N}$ | N <sub>b</sub> (lb)  | Ncb (lb)            | $\phi$ | $\phi V_{c ho}$ (lb) |
| 220.36    | 247.75                      | 0.967                        | 1.000              | 1.000          | 10215                | 8785                | 0.70   | 12298                |



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|
| Engineer: | HCV                                           | Page: | 5/5      |  |  |
| Project:  | Standard PVMax - Worst Case, 14-40 Inch Width |       |          |  |  |
| Address:  |                                               |       |          |  |  |
| Phone:    |                                               |       |          |  |  |
| E-mail:   |                                               |       | _        |  |  |

### 11. Results

# Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio          | Status         |
|-----------------------------|-------------------------------------|---------------------------|----------------|----------------|
| Steel                       | 1020                                | 6071                      | 0.17           | Pass           |
| Concrete breakout           | 1020                                | 5710                      | 0.18           | Pass           |
| Adhesive                    | 1020                                | 5365                      | 0.19           | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio          | Status         |
| Steel                       | 566                                 | 3156                      | 0.18           | Pass (Governs) |
| T Concrete breakout y+      | 565                                 | 3934                      | 0.14           | Pass           |
| T Concrete breakout x+      | 27                                  | 3018                      | 0.01           | Pass           |
| Concrete breakout y+        | 27                                  | 8508                      | 0.00           | Pass           |
| Concrete breakout x+        | 565                                 | 6875                      | 0.08           | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.14           | Pass           |
| Pryout                      | 566                                 | 12298                     | 0.05           | Pass           |
| Interaction check Nua       | $/\phi N_n$ $V_{ua}/\phi V_n$       | Combined Rat              | io Permissible | Status         |
| Sec. D.7.1 0.1              | 9 0.00                              | 19.0 %                    | 1.0            | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|
| Engineer: | HCV                                           | Page: | 1/5      |  |  |
| Project:  | Standard PVMax - Worst Case, 32-40 Inch Width |       |          |  |  |
| Address:  |                                               |       |          |  |  |
| Phone:    |                                               |       |          |  |  |
| E-mail:   |                                               |       |          |  |  |

### 1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method: ACI 318-05 Units: Imperial units

### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c<sub>ac</sub> (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

# **Base Plate**

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28





| Company:  | Schletter, Inc.                  | Date:   | 8/1/2016 |
|-----------|----------------------------------|---------|----------|
| Engineer: | HCV                              | Page:   | 2/5      |
| Project:  | Standard PVMax - Worst Case, 32- | 40 Inch | Width    |
| Address:  |                                  |         |          |
| Phone:    |                                  |         |          |
| E-mail:   |                                  |         |          |

<Figure 2>



# **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                 | Date:    | 8/1/2016 |
|-----------|---------------------------------|----------|----------|
| Engineer: | HCV                             | Page:    | 3/5      |
| Project:  | Standard PVMax - Worst Case, 32 | -40 Inch | Width    |
| Address:  |                                 |          |          |
| Phone:    |                                 |          |          |
| E-mail:   |                                 |          |          |

#### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|
| 1      | 2732.0                                | 1650.0                                 | 0.0                                    | 1650.0                                                     |
| 2      | 2732.0                                | 1650.0                                 | 0.0                                    | 1650.0                                                     |
| Sum    | 5464.0                                | 3300.0                                 | 0.0                                    | 3300.0                                                     |

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



#### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$ 

| Kc                          | λ                                                           | ť (psi)                            | h <sub>ef</sub> (in) | $N_b$ (lb)   |                |            |        |                     |
|-----------------------------|-------------------------------------------------------------|------------------------------------|----------------------|--------------|----------------|------------|--------|---------------------|
| 17.0                        | 1.00                                                        | 2500                               | 6.000                | 12492        |                |            |        |                     |
| $\phi N_{cbg} = \phi (A_I)$ | $_{ m Nc}$ / $A_{ m Nco}$ ) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$ | I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ ( | Sec. D.4.1 & Eq      | . D-5)       |                |            |        |                     |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                                | $arPsi_{ec,N}$                     | $\mathscr{V}_{ed,N}$ | $\Psi_{c,N}$ | $arPsi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (lb) |
| 408.24                      | 324.00                                                      | 1.000                              | 1.000                | 1.00         | 1.000          | 12492      | 0.65   | 10231               |

## 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| $	au_{k,cr}$ (psi)               | $f_{	extit{short-term}}$                   | K <sub>sat</sub>                      | τ <sub>k,cr</sub> (psi)     |        |
|----------------------------------|--------------------------------------------|---------------------------------------|-----------------------------|--------|
| 1035                             | 1.00                                       | 1.00                                  | 1035                        | _      |
| $N_{a0} = \tau_{k,cr} \pi d_{a}$ | hef (Eq. D-16f)                            |                                       |                             |        |
| τ <sub>k,cr</sub> (psi)          | d <sub>a</sub> (in)                        | h <sub>ef</sub> (in)                  | <i>N</i> <sub>a0</sub> (lb) |        |
| 1035                             | 0.50                                       | 6.000                                 | 9755                        | _      |
| $\phi N_{ag} = \phi (A_{Na})$    | $_{a}$ / $A_{Na0}$ ) $\Psi_{ed,Na}$ $\Psi$ | $Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$ | ao (Sec. D.4.1 & Eq.        | D-16b) |

| $A_{Na}$ (in <sup>2</sup> ) | A <sub>Na0</sub> (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $\Psi_{g,Na}$ | $\Psi_{ec,Na}$ | $arPsi_{	extsf{p},	extsf{Na}}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |  |
|-----------------------------|-------------------------------------|--------------------|---------------|----------------|--------------------------------|--------------|--------|--------------------|--|
| 158.66                      | 109.66                              | 1.000              | 1.043         | 1.000          | 1.000                          | 9755         | 0.55   | 8093               |  |



| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 4/5      |
| Project:  | Standard PVMax - Worst Case, 32- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

### Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)       | da (in)                      | λ                                          | $f'_c$ (psi)            | Ca1 (in)                      | $V_{bx}$ (lb) |               |        |                      |
|---------------------------|------------------------------|--------------------------------------------|-------------------------|-------------------------------|---------------|---------------|--------|----------------------|
| 4.00                      | 0.50                         | 1.00                                       | 2500                    | 12.00                         | 15593         |               |        |                      |
| $\phi V_{cbgx} = \phi (A$ | Avc/Avco) Yec, v Ye          | $_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$ | (Sec. D.4.1 & Ed        | ą. D-22)                      |               |               |        |                      |
| Avc (in <sup>2</sup> )    | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ec,V}$                              | $\mathscr{\Psi}_{ed,V}$ | $arPsi_{	extsf{c},	extsf{V}}$ | $\Psi_{h,V}$  | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbgx}$ (lb) |
| 576.00                    | 648.00                       | 1.000                                      | 0.928                   | 1.000                         | 1.000         | 15593         | 0.70   | 9001                 |

#### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| le (in)                     | da (in)                       | λ                                | f'c (psi)         | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|-------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                          | 1.00                             | 2500              | 13.66                       | 18939         |        |                     |
| $\phi V_{cbx} = \phi (2)$   | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )  | $\Psi_{\sf ed,V}$                | $\Psi_{c,V}$      | $arPsi_{h,V}$               | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 737.64                      | 839.68                        | 1.000                            | 1.000             | 1.000                       | 18939         | 0.70   | 23292               |

## 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$ 

| , ,,,                 | 1 1 3 7 1                           |                              | (                  | 3,            | r, , , , , , , , | , ,                      |                             |         |
|-----------------------|-------------------------------------|------------------------------|--------------------|---------------|------------------|--------------------------|-----------------------------|---------|
| Kcp                   | $A_{Na}$ (in <sup>2</sup> )         | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $\Psi_{g,Na}$ | $\Psi_{ec,Na}$   | $\Psi_{ m 	extsf{p},Na}$ | <i>N</i> <sub>a0</sub> (lb) | Na (lb) |
| 2.0                   | 158.66                              | 109.66                       | 1.000              | 1.043         | 1.000            | 1.000                    | 9755                        | 14715   |
| A <sub>Nc</sub> (in²) | A <sub>Nco</sub> (in <sup>2</sup> ) | $\Psi_{ec,N}$                | $\Psi_{\sf ed,N}$  | $\Psi_{c,N}$  | $\Psi_{cp,N}$    | N <sub>b</sub> (lb)      | N <sub>cb</sub> (lb)        | $\phi$  |
| 408.24                | 324.00                              | 1.000                        | 1.000              | 1.000         | 1.000            | 12492                    | 15740                       | 0.70    |

φV<sub>cpg</sub> (lb) 20601

### 11. Results

### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio | Status         |
|------------------------|-------------------------------------|---------------------------|-------|----------------|
| Steel                  | 2732                                | 6071                      | 0.45  | Pass           |
| Concrete breakout      | 5464                                | 10231                     | 0.53  | Pass           |
| Adhesive               | 5464                                | 8093                      | 0.68  | Pass (Governs) |
| Shear                  | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio | Status         |
| Steel                  | 1650                                | 3156                      | 0.52  | Pass (Governs) |
| T Concrete breakout x+ | 3300                                | 9001                      | 0.37  | Pass           |



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|
| Engineer: | HCV                                           | Page: | 5/5      |  |  |
| Project:  | Standard PVMax - Worst Case, 32-40 Inch Width |       |          |  |  |
| Address:  |                                               |       |          |  |  |
| Phone:    |                                               |       |          |  |  |
| E-mail:   |                                               |       |          |  |  |

| Concrete breako   | ut y- 1650        | 23292             | 2 0.0          | 07          | Pass     |  |
|-------------------|-------------------|-------------------|----------------|-------------|----------|--|
| Pryout            | 3300              | 20601             | 0.1            | 16          | Pass     |  |
|                   |                   |                   |                |             | <b>-</b> |  |
| Interaction check | $N_{ua}/\phi N_n$ | $V_{ua}/\phi V_n$ | Combined Ratio | Permissible | Status   |  |
| Sec. D.7.3        | 0.68              | 0.52              | 119.8 %        | 1.2         | Pass     |  |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.