ACCURATE NAVIGATION OF A UAV USING KALMAN FILTER BASED GPS / INS INTEGRATION

SAROD 2011 16-18 November, 2011

Anuj Sharma, Sc B, Aerial Delivery Research and Development Establishment, Agra
Puneet Kumar, Sc B, Advanced Systems Laboratory, Hyderabad
Sushil Mohan Ratnaker, Sc B, Aeronautical Development Establishment, Bangalore
Dr S E Talole, Sc F, Defence Institute of Advanced Technology, Pune

BRIEF OUTLINE OF THE WORK

	Inertial Navigation System (INS)	Global Positioning System (GPS)	Kalman Filter	
	 Measures inertial angular rates and acceleration Integration of angular rates and acceleration to get attitude, position and velocity using known values of attitude, position and velocity at some reference time. 	signals from GPS satellites	A filtering technique which operates on two systems of measurement and integrates the two systems into one system which has better accuracy.	
Name of Control of	Errors in INS based navigation grow with time	Errors in GPS based navigation don't grow with time	Kalman Filter has been used to integrate INS and GPS	
	State Estimate at t _k IMU Measuremen		Teasurements	
Accelerat Angular i			Position	
	Inertial Navigation System (INS)	Position Velocity Attitude	State Estimate at t _{k+1} post correction	

FLIGHT PATH

• Starting location : 15^o Latitude, 22.5^o Longitude, 1 km Altitude

• Flight Altitude : 1 km

• Flight path : Along the constant 22.50 longitude at

constant 50 angle of attack

• Speed : 60 m/sec

• Duration of Flight : 2 hours

• INS : 100 Hz

• GPS : 1 Hz

ASSUMPTIONS

- · Point Mass model of the UAV has been considered
- Spherical model of the earth has been considered
- Navigation equations considered in the local NED (North, East and Down)
 frame attached with the UAV
- Ideal control: no control is considered and that the flight path is maintained
- Low grade INS has been considered
- Axes of accelerometers and gyroscopes aligned with the body axes
- Fixed bias and zero mean white noise in accelerometers and gyroscopes have been considered in IMU modelling
- GPS errors considered as Gauss Markov process

INERTIAL NAVIGATION SYSTEM (INS)

Ctata	Vac	40.74	V
State	Vec ₁	w	Λ

Velocity	Position	Attitude	Estimated	Estimated
(North,	(Latitude,	(Roll,	Accelerometer	Gyroscope
East,	Longitude,	Pitch,	Bias	Bias
Down)	Altitude)	Yaw)	(in X, Y, Z)	(in X, Y, Z)
V_N, V_E, V_D	L, l, h	Φ , θ , ψ	acc _{bias}	gyro _{bias}

$$X = \begin{bmatrix} V_{N} & V_{E} & V_{D} & L & l & h & \phi & \theta & \psi & acc_{bias}^{T} & gyro_{bias}^{T} \end{bmatrix}^{T}$$

$$acc_{bias} = \begin{bmatrix} acc_{bias,X} & acc_{bias,Y} & acc_{bias,Z} \end{bmatrix}^{T}$$

$$gyro_{bias} = \begin{bmatrix} gyro_{bias,X} & gyro_{bias,Y} & gyro_{bias,Z} \end{bmatrix}^{T}$$

Rate of Change of State Vector X

$$\dot{X} = [0 \ 0 \ 0 \ \frac{V_N}{R_e + h} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T$$

NED Frame

Low Grade INS			
	Accelerometer	meter Gyroscope	
Bias	Zero mean White Noise PSD	Bias	Zero mean White Noise PSD
0.001 g	$9.6236 \times 10^{-9} (\text{m/sec}^2)^2 / \text{Hz}$	10 deg/hr	2.3504 x 10 ⁻¹³ (rad/sec) ² /Hz

(Courtesy: Integrated Navigation and Guidance Systems by Daniel J. Biezad)

EQUATIONS OF MOTION IN NAVIGATION FRAME

Rate of change of Position

$$\begin{bmatrix} \dot{L} & \dot{l} & \dot{h} \end{bmatrix}^T = \begin{bmatrix} \frac{V_N}{R_e + h} & \frac{V_E \sec L}{R_e + h} & -V_D \end{bmatrix}^T$$

Rate of change of Velocity

$$\begin{pmatrix} \dot{V}_{N} \\ \dot{V}_{E} \\ \dot{V}_{D} \end{pmatrix} = \begin{pmatrix} f_{N} \\ f_{E} \\ f_{D} \end{pmatrix} + \begin{pmatrix} -2\omega_{e}V_{E}\sin L + \frac{V_{N}V_{D} - V_{E}^{2}\tan L}{R_{e} + h} - \frac{\omega_{e}^{2}(R_{e} + h)}{2}\sin(2L) \\ -2\omega_{e}(V_{N}\sin L + V_{D}\cos L) + \frac{V_{E}}{R_{e} + h}(V_{D} + V_{D}\tan L) \\ -2\omega_{e}V_{E}\cos L - \frac{V_{E}^{2} + V_{N}^{2}}{R_{e} + h} + g - \frac{\omega_{e}^{2}(R_{e} + h)}{2}(1 + \cos(2L)) \end{pmatrix}$$

$$(f_{N} \quad f_{E} \quad f_{D})^{T} = C_{b,NED}^{T} f_{b}^{F_{b}} \qquad f_{b,IMU}^{F_{b}} = f_{b}^{F_{b}} + acc_{bias} + acc_{white}$$

$$f_{b,corrected}^{F_{b}} = f_{b}^{F_{b}} - acc_{bias,estimated}$$

Rate of change of Attitude

$$\begin{pmatrix}
1 & 0 & -\sin\theta \\
0 & \cos\phi & \sin\phi\cos\theta \\
0 & -\sin\phi & \cos\phi\cos\theta
\end{pmatrix} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} - C_{b,NED} \begin{pmatrix} \frac{V_E}{R_e + h} \\ -\frac{V_N}{R_e + h} \\ -\frac{V_E \tan L}{R_e + h} \end{pmatrix} - C_{b,NED} \begin{pmatrix} \omega_e \cos L \\ 0 \\ -\omega_e \sin L \end{pmatrix}$$

$$\omega_{b,I}^{F_b} = \begin{pmatrix} p & q & r \end{pmatrix}^T \qquad \omega_{b,I,IMU}^{F_b} = \omega_{b,I}^{F_b} + gyro_{bias} + gyro_{white}$$

$$\omega_{b,I,corrected}^{F_b} = \omega_{b,I}^{F_b} - gyro_{bias,estimated}$$

Rate of change of Position

$$\begin{bmatrix} \dot{L} & \dot{l} & \dot{h} \end{bmatrix}^T = \begin{bmatrix} \frac{V_N}{R_e + h} & \frac{V_E \sec L}{R_e + h} & -V_D \end{bmatrix}^T$$

Rate of change of Velocity
$$\begin{pmatrix} \dot{V}_{N} \\ \dot{V}_{E} \\ \dot{V}_{D} \end{pmatrix} = C_{b,NED}^{T} \left(f_{b,corrected}^{F_{b}} \right) + \begin{pmatrix} -2\omega_{e}V_{E}\sin L + \frac{V_{N}V_{D} - V_{E}^{2}\tan L}{R_{e} + h} - \frac{\omega_{e}^{2}(R_{e} + h)}{2}\sin(2L) \\ -2\omega_{e}(V_{N}\sin L + V_{D}\cos L) + \frac{V_{E}}{R_{e} + h}(V_{D} + V_{D}\tan L) \\ -2\omega_{e}V_{E}\cos L - \frac{V_{E}^{2} + V_{N}^{2}}{R_{e} + h} + g - \frac{\omega_{e}^{2}(R_{e} + h)}{2}(1 + \cos(2L)) \end{pmatrix}$$

Rate of change of Attitude
$$\begin{pmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{pmatrix} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \omega_{b,I,corrected}^{F_b} - C_{b,NED} \begin{pmatrix} \frac{V_E}{R_e + h} \\ -\frac{V_N}{R_e + h} \\ -\frac{V_E \tan L}{R_e + h} \end{pmatrix} - C_{b,NED} \begin{pmatrix} \omega_e \cos L \\ 0 \\ -\omega_e \sin L \end{pmatrix}$$

Rate of change of **Estimated Accelerometer** Bias

$$a\dot{c}c_{bias} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$

Rate of change of Estimated Gyroscope Bias

$$g\dot{y}ro_{bias} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$

INITIAL TRUE AND ESTIMATED STATE VECTOR

Parameters of the State Vector	True State Vector (X ₀)	Estimated State Vector (\hat{X}_0)	Error in State Vector ΔX_0
North Velocity (V _N , m/sec)	60	40	20
East Velocity (V _E , m/sec)	0	40	40
Down Velocity (V _D , m/sec)	0	40	40
Latitude (L, deg)	15	15.1	0.1
Longitude (l, deg)	22.5	22.6	0.1
Altitude (h, m)	1000	2000	1000
Roll (deg)	0	10	10
Pitch (deg)	5	10	5
Yaw (deg)	0	10	10
Acc bias in X _b (acc _{bias,X} , m/sec ²)	0.001 g	0.0005 g	0.0005 g
Acc bias in Y _b (acc _{bias,Y} , m/sec ²)	0.001 g	0.0008 g	0.0002 g
Acc bias in Z _b (acc _{bias,Z} , m/sec ²)	0.001 g	0.0008 g	0.0002 g
Gyro bias in X _b (gyro _{bias,X} , deg/hr)	10	8	2
Gyro bias in Y _b (gyro _{bias,Y} , deg/hr)	10	5	5
Gyro bias in Z _b (gyro _{bias,Z} , deg/hr)	10	5	5

GLOBAL POSITIONING SYSTEM (GPS)

- GPS constellation is modelled with the following errors [1, 2]:
 - Bias
 - o Clock offset
 - o Ephemeris errors
 - o Atmospheric propagation errors through troposphere and ionosphere
 - Zero mean white noise
 - o Multipath
 - o Receiver's noise errors
- GPS errors modelled as Gauss Markov processes

$$b_k = b_{k-1} \exp(-\beta_b \Delta t) + w_{b,k-1}$$

True Range from the UAV to the GPS satellites is determined

$$\begin{pmatrix} R_1 \\ R_2 \\ R_3 \end{pmatrix} = \begin{pmatrix} \sqrt{(X_1 - X)^2 + (Y_1 - Y)^2 + (Z_1 - Z)^2} \\ \sqrt{(X_2 - X)^2 + (Y_2 - Y)^2 + (Z_2 - Z)^2} \\ \sqrt{(X_3 - X)^2 + (Y_3 - Y)^2 + (Z_3 - Z)^2} \end{pmatrix}$$

• Pseudorange is determined using the true range and the modelled GPS errors and is used as GPS measurement $(z) = (\sqrt{(X_1 - X_1)^2 + (Y_2 - Y_1)^2 + (Z_2 - Z_2)^2} + b_2 + v_3)$

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} \sqrt{(X_1 - X)^2 + (Y_1 - Y)^2 + (Z_1 - Z)^2} + b_1 + v_1 \\ \sqrt{(X_2 - X)^2 + (Y_2 - Y)^2 + (Z_2 - Z)^2} + b_2 + v_2 \\ \sqrt{(X_3 - X)^2 + (Y_3 - Y)^2 + (Z_3 - Z)^2} + b_3 + v_3 \end{pmatrix}$$

- 1. Misra, Pratap, Enge, Per (2006): 'Global Positioning System: Signals, Measurements, and Performance'
- 2. Hablani, Hari B., (2009), 'Autonomous Inertial Relative Navigation with Sight-Line-Stabilized Integrated Sensors for Spacecraft Rendezvous', Journal of Guidance, Control, and Dynamics, Vol. 32, No.1, January-February, 2009

EXTENDED KALMAN FILTER (EKF) BASED GPS/INS INTEGRATION

RESULTS

North and East Position Error

15 m error in north and east position estimation

