PRC Stats Consultants workshop: Exploratory Data Analysis

Shih-Yi Chao

Exploratory data analysis

Created by: Shih-Yi Chao

Date created: October 18, 2018

Source data: all.dta (user created)

. clear

. set more off

. cd "C:\Users\sychao\Dropbox\16_2018Fall\PRC TA\Data for the Talk" C:\Users\sychao\Dropbox\16_2018Fall\PRC TA\Data for the Talk

. use all.dta, clear

Explore data

1. Missing value

summarizes # of missing values

. mdesc

Variable	Missing	Total	Percent Missing
country	0	26,282	0.00
hp5	114	26,282	0.43
female	9	26,282	0.03
age	30	26,282	0.11
age2	30	26,282	0.11
partner	41	26,282	0.16
hedu	86	26,282	0.33
fulltime	7,818	26,282	29.75
employed	549	26,282	2.09
selfemp	524	26,282	1.99
profs	3,659	26,282	13.92
agri	3,659	26,282	13.92
finc_d	1,449	26,282	5.51
pt60	230	26,282	0.88
urban	14,954	26,282	56.90
familism	89	26,282	0.34
extend	290	26,282	1.10
GDP_p	0	26,282	0.00
TFR	0	26,282	0.00
wlabor	0	26,282	0.00
CPI3	0	26,282	0.00
GINI	0	26,282	0.00
mc_fam	0	26,282	0.00
<pre>mc_ext</pre>	0	26,282	0.00
wkhr	0	26,282	0.00

|--|

summarizes missing pattern

Missing for |

. misschk hp5 female age partner hedu fulltime employed profs finc_d pt60, gen(miss)

Variables examined for missing values

#	Variable	# Missin	g % Missing
1	hp5	114	0.4
2	female	9	0.0
3	age	30	0.1
4	partner	41	0.2
5	hedu	86	0.3
6	fulltime	7818	29.7
7	employed	549	2.1
8	profs	3659	13.9
9	finc_d	1449	5.5
10	pt60	230	0.9

Warning: this output does not differentiate among extended missing. To generate patterns for extended missing, use extmiss option.

which variables?	Freq.	Percent	Cum.
12 5	1	0.00	0.00
1 34 90	1	0.00	0.01
1_36789_	1	0.00	0.01
145	1	0.00	0.02
1_40	1	0.00	0.02
15 6789_	1	0.00	0.02
15 67	1	0.00	0.03
159_	1	0.00	0.03
1 6789_	1	0.00	0.03
1 67_9_	1	0.00	0.04
1 67	2	0.01	0.05
1 690	1	0.00	0.05
1 69_	1	0.00	0.05
1 6	7	0.03	0.08
189_	6	0.02	0.10
18	14	0.05	0.16
19_	10	0.04	0.19
1	63	0.24	0.43
_2345 67890	1	0.00	0.44
_2345 67_9_	1	0.00	0.44
_23_5 6789_	1	0.00	0.45
_23_58	1	0.00	0.45
239	1	0.00	0.45
_2	3	0.01	0.46
3_5	1	0.00	0.47
3 678_0	1	0.00	0.47
3 678	1	0.00	0.48
3 67_9_	1	0.00	0.48
389_	1	0.00	0.48
38	1	0.00	0.49
390	1	0.00	0.49
39_	3	0.01	0.50
3	13	0.05	0.55
458	1	0.00	0.56
4_ 678	1	0.00	0.56
4_ 6	1	0.00	0.56
4890	2	0.01	0.57

489_	3	0.01	0.58
48_0	1	0.00	0.59
48	3	0.01	0.60
490	4	0.02	0.61
40	6	0.02	0.64
4	14	0.05	0.69
5 67890	1	0.00	0.69
5 678	1	0.00	0.70
5 67	3	0.01	0.71
5 69_	1	0.00	0.71
5 6	4	0.02	0.73
5890	1	0.00	0.73
589_	1	0.00	0.73
58_0	1	0.00 0.05	0.74 0.78
58	12	0.05 0.01	0.78 0.79
590	2	0.01 0.03	0.79 0.82
59_ 5	8 5	0.03 a a2	0.82 0.84
!		0.02 0.13	0.84 a 97
5 67890	35 1	0.13	0.97 a 98
67890	1	0.00 0.07	0.98 1.05
6789_ 678_0	19 8	0.07 0.03	1.05
678_0 678	8 133	0.03 0.51	1.08 1.59
678 67_90	133 2	0.51 0.01	1.59 1.59
67_90 67_9	55	0.01	1.89
67_9_ 670	55 4	0.21	1.80
670 67	308	1.17	2.99
690	3	0.01	3.00
69_	259	0.99	3.99
60	8	0.03	4.02
6	6,984	26.57	30.59
890	9	0.03	30.63
	158	0.60	31.23
8 0	46	0.18	31.40
	3,227	12.28	43.68
90	12	0.05	43.73
9_	874	3.33	47.05
	108	0.41	47.46
	13,808	52.54	100.00
+			
Total	26,282	100.00	
Missing for			
how many			
variables?	Freq.	Percent	Cum.
+			
0	13,808	52.54	52.54
1	11,321	43.08	95.61
2	866	3.30	98.91
3	237	0.90	99.81
4	40	0.15	99.96
5	4	0.02	99.98
6	3	0.01	99.99
	2	0.01	100.00
7			
	1	0.00	100.00
7		0.00 100.00	100.00

2. Examine whether the model violates OLS assumptions

Research Question: whether family policy is associated with the gap between parents and nonparents, country-level analysis

Method: OLS

Model: happiness gap | family policy index, GDP, TFR, extend family, work hours

A. Normal Distribution of the Dependent Variable: happiness gap (countinuous)

B. inflential cases: if you remove the cases from analysis, the estimates have huge changes.

B-1 Scatterplots

B-2 Two Tests for the Post estimation

Cook's D: threshold 4/n=4/20=0.2 or 1

```
. reg pardiffhp5 CPI3 GDP_p TFR mc_ext wkhr
                  df
                            Number of obs
  Source
                       MS
                            F(5, 14)
                                         1.10
  0.4043
                  14 .009222402 R-squared
 Residual | .129113621
                                        0.2817
                            Adj R-squared
                                        0.0252
  .09603
pardiffhp5 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
   CPI3 |
         .07767 .0396367 1.96 0.070 -.0073422
  .0000113
                                       .1634927
  mc_ext
                                       .0100666
                                       .0291151
   _cons | -.4426499 .5959823 -0.74 0.470 -1.720905 .8356051
   predict dfit,dfits
  predict d, cooksd
   list country data d if abs(d)>.2
```

DFBETAS: threshold 2/sqrt(n) or 1

C. Multicollinearity: the independent variables have no perfect correlations

vif (the variance inflation factor = 2.5)

```
Variable | VIF 1/VIF

GDP_p | 4.87 0.205394

wkhr | 3.19 0.313701

TFR | 3.17 0.315393

mc_ext | 1.69 0.590375

CPI3 | 1.29 0.777307

Mean VIF | 2.84
```

There are three situations in which a high VIF is not a problem

- 1. The variables with high VIFs are control variables and the variables of interest do not have high VIFs
- 2. The high VIFs are caused by the inclusion of powers or products of other variables
- 3. The variables with high VIFs are indicators (dummy) variables that represent a categorical variable with three or more categories

D. Heteroskedasticity: the error variance is not constant for all observations

E. Omitted Variable: endogeneity

F. Specification Error

. scatter pardiffhp5 CPI3 ||lowess pardiffhp5 CPI3

