Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

Excess deaths as a Z score:

 $0.07\% \times 14 = 0.980\%$

Above based on Z score of two year standard deviation from 2017-2019. What follows is cumulative plot of same.

False Positives Demonstration

Data in recent weeks are incomplete. Only 60% of death records are submitted to NCHS within 10 days of the date of death, and completeness varies by jurisdiction. Data are not weighted and counts are likely

Use 0.07% as estimated daily incidence

Prevalence estimated as avg. infected period of 2 weeks X incidence

99% accuracy of test

Positive	Negative		
test pos	0.970%	0.990%	1.96%
test neg	0.010%	98.030%	98.04%
0.980%	99.020%	100.00%	

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

 $\underline{https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data}$

US mortality vs. India 200:100,000 180:100,000 160:100,000 140:100,000 120:100,000 100:100,000 80:100,000 60:100,000 40:100,000 20:100,000 0:100,000 10-Mar 18-Jun 26-Sep 4-Jan 14-Apr 23-Jul 31-Oct 1-Dec —— US cum. fit per 100k —— India cum. fit per 100k

USA Excess Deaths, 2020 (from CDC data):

Annualized on 52 weeks

		All Cause	All Cause, excl. CV19	CV19
3	yr average before 2020	859:100,000	859:100,000	-
	2020	1016:100,000	905:100,000	-
	Diff	157:100 000	46:100 000	111.100 000

3 yr average	
859:100 000	

29% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

USA Excess Deaths to date (from CDC data):

	28 weeks	All Cause	All C	ause, excl. CV19	CV19
3	yr average before 2020	455:10	00,000	455:100,000	-
	2021	539:10	00,000	467:100,000	-
	Diff.	84:10	0,000	12:100,000	72:100,000

3 yr average 859:100,000

14% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

K = 0.318 R_o : R: gamma = 0.171 $R_o = \exp(K/\text{gamma}) = 6.42$ 84% gamma = 0.286 $R > 1 - 1/R_o = 3.04$ 67%

R is recovered variable.

Here are some demonstrations of SIR model, using $\rm R_{\rm e}$, gamma, and beta

CDC data on week indicated new cases by % fully vaccinated.

https://covid.cdc.gov/covid-data-tracker/#vaccination-case-rate

 $\underline{https://data.cdc.gov/NCHS/Weekly-Counts-of-Deaths-by-State-and-Select-Causes/muzy-jte6/data}$