Fichaz- EPTN

- 12. Sejam a e b inteiros não simultaneamente nulos. Mostre que:
 - (a) m.d.c.(a, b) = m.d.c.(a, -b) = m.d.c.(-a, b) = m.d.c.(-a, -b).
 - (b) Se m.d.c.(a, b) = d, então m.d.c. $(\frac{a}{d}, \frac{b}{d}) = 1$.

12)

a) Baske notair que es diviseres de a e-a são os reressero, assirer corero es diviseres de b e - 5. dogo, o ree de também soisser consumes.

b) w.d.c(
$$a,b$$
) = $d = 3$ are $+by = d = 3$
 $ci) \frac{a}{d}x + \frac{b}{d}z = 1 \Rightarrow \text{w.d.c}(\frac{a}{a}, \frac{b}{d}) = 1$

- 13. Verifique que, dados um inteiro positivo n e um inteiro a, $\overbrace{\mathrm{m.d.c.}(a,a+n)}$ divide n. Conclua que dois inteiros consecutivos são primos entre si.
- a) Subauros que, sepa d= ne.d.c(a,a+n), dla ndla+n e dlace + (a+n), eulos,

Sign 2=-1 e y =1, d1-a+a+ncor dln c.que

b) $n \in n+1$ são poiseos entre se, ou seça, 2e.d.c(n,n+1)=1 n+1 L n n L 1 outeo, ree.d.c(n,n+1)=1

14. Sejam $a,b\in\mathbb{Z}$ tais que $\mathrm{m.d.c.}(a,4)=\mathrm{m.d.c.}(b,4)=2$. Mostre que $\mathrm{m.d.c.}(a+b,4)=4$.

Tèrns de prénercies ter ever corda que $2y \mid 4$, para todo y que sepà pare.

Coreco res. $d \cdot c(a, 4) = 2$ e res. c(5, 4) = 2

21a ceas 4 X a

2 se = a

da farea 2n+1

pal.

1 pal.

2 lb e 4t b

2 le = b — Dree e da Porver

2 R+1

 $a + b = 2(n + y) = 2(2n + 1 + 2k + 1) = 2 \times 2(n + k + 1) = 4(k + k)$

15. Mostre que se k é um inteiro positivo, então 3k+2 e 5k+3 são números primos entre

Let
$$d : (3r+2, 5r+3) : 1$$

Sugh $d : u : d : (3r+2, 5r+3)$,

 $d : u : d : (3r+2, 5r+3)$,

 $d : u : d : (3r+2) = d(3r+2) = d($

dz 15k+10 - 15k-9 = 1, ouseja, red. c (3k+2, 5++3) = 1, pois existerer or e y heteros que tornais a expração 1= (3 x 12) x 1(5 x 13)

possing

w.d.c(a,b)=d 16. Sejam $a \in b$ números inteiros. Mostre que se $x \in b$ são inteiros tais que ax + by = b $\mathrm{m.d.c.}(a,b)$, então $\mathrm{m.d.c.}(x,y)=1$.

17. Mostre que $\mathrm{m.d.c.}(a,b)=1=\mathrm{m.d.c.}(a,c)$ se e só se $\mathrm{m.d.c.}(a,bc)=1$

18. Utilizando o Algoritmo de Euclides, determine o máximo divisor comum de cada par de inteiros a e b e escreva-o como combinação linear de a e b

(a)
$$a = 1001$$
. $b = 357$.

(b) a = 1001, b = 33

18. Utilizando o Algoritmo de Euclides, determine o máximo divisor comum de cada par de inteiros a e b e escreva-o como combinação linear de a e b:

(a)
$$a = 1001$$
, $b = 357$.

(c)
$$a = 56$$
, $b = 126$.
(e) $a = -2860$, $b = -2310$.

(d)
$$a = -90, b = 1386$$

to divisor comum de cada par de e b:
$$= 33.$$

$$= 1386.$$

$$287 \frac{70}{4}$$

$$70 \frac{7}{4}$$

$$100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$1100$$

$$\frac{(56,126)}{36} = \frac{18}{(1386,-90)} = 18$$

a)
$$2860 \frac{2310}{1}$$

19. Determine, usando o Algoritmo de Euclides, inteiros x e y que satisfaçam:

(a) m.d.c.
$$(56,72) = 56x + 72y; \longrightarrow 16$$

(b) m.d.c.
$$(24, 138) = 24x + 138y$$
.

(a) m.d.c.
$$(56,72) = 56x + 72y$$
; $\rightarrow 16$
(b) m.d.c. $(24,138) = 24x + 138y$.

16 = 2×8
19 a) 72 136 8 3

$$6 = 24 - 18 = 24 - (138 - 24 \times 5) =$$

$$= 24 \times 6 - 138 \times 1 \quad \text{se} = 6$$

4=-1

20. Determine o menor inteiro positivo k da forma k=22x+55y, jonde x e y são inteiros

21. Prove que

(a) todo o primo da forma 3n+1 é da forma 6m+1 $(m,n\in\mathbb{N});$

(b) o único primo da forma $n^3 - 1$ é o 7 $(n \in \mathbb{N})$; [Sugestão: Escreva n^3-1 como $(n-1)(n^2+n+1)$.]

(c) todo o inteiro da forma $n^4 + 4$, em que n > 1, é composto.

21)

Seja p une primo qualanes da formera [3n+1] a Grent 1]

Tener resto 1 pors

77, pg n e me sue restrants

madiviseo por 3. p7/7, pg n e ree sus restriccis Jaar pode ser 2,3, 5 / ai ver tovan de ser negativas

1) Gree X
2) Gree +1
3) Gree +2 X -> 2(3ree +1)
4) Gree +3 X -> 3(2ree +1)
5) Gree +4 X -> 2(3ree +2)
6) Gree +5 -> Gree +3 +2 -> 3(2ree +1) +2
Lb collect feel resker,
100 pcde Ser

b) $u^{3}-1$ or having prime of. $v^{3}-1=(n-1)(u^{2}+n+1)$ para u=1, (1-1)(3)=0 with u=2 of prime u=2 of u=

para n)2, (n-1) (n² + n +1) — some seja, este u° será

exprisedo por u° priveros

e vetos priveros, ou seja, será

divisivos pelos reveseros, entres, vitos será privero.

C. 5 —

22. Usando a fatorização de 507 e 1287 em fatores primos, determine m.d.c.(507,1287) e m.m.c.(507,1287).

m.d.c = 59

$$= \frac{567 \times 1287}{24} = \frac{13 \times 36}{34} \times 3 \times 11 \times 39$$

$$= 39 \times 39 \times 11 = 1521 \times 11 = 1521 + 15210 = 16931$$

23. Verifique que 701 é um número primo, testando todos os primos $p \leq \sqrt{701}$ como

Ver & 2,3,5,7,11,13, 17,19 e 23 são divisoron de 701 per contradição. (Superes que e prives tel que Vp é valual/valional so vales chegas a muchsundo que vos diz que p fere reais divisores 24) coreapsova se alève de 1 e p.)

25. Mostre que há uma infinidade de primos da forma 6n + 5.

Vans supor que há unea finidade de priver de Jorces Grets PI < Pz < 0 = 0 < pa

Seja N=6p1×p2×p3×···×pm +5 ~ ao dividiences Npor p;, i €{1,...,n} N>pre, Né o corresposto. Obternos serenjac resto 5.

De azordo coree o Teorces Fundamental da Antrestica, todo nº é excito pelo produto de primer e polícusar de primers. Careo Não pode ser excelo da forcea de produto de précesada

formes 6 m +5, só nos restames primes da formes 6 m +1 (pg se for

care os outres rostos da divisão de 6, obteres une ut composto)

Porcier, entrança defra voz nueva contradição, por N, que ado dividi.

do por 6, deixa lesso 5 e não 1.

O produto voisa da Jones (oue H, logo, entenues

O produto voisse da forme (one H, logo, entenuer nuevea contractiçõe. Ou seja, obrigatoriamente, há nome infridade de primes da forme 6n +3. ^ w^