tsf third one

Kevork Sulahian November 1, 2019

```
library(readxl)
library(forecast)
```

```
library(readxl)

df <- read_xlsx("ts-3.xlsx")

ts = ts(df,start=c(2011,1), frequency = c(12))</pre>
```


In this case, it appears that an additive model is not appropriate for describing this time series, since the size of the seasonal fluctuations and random fluctuations seem to increase with the level of the time series. Thus, we may need to transform the time series in order to get a transformed time series that can be described using an additive model. For example, we can transform the time series by calculating the natural log of the original data:

```
log_ts <- log(ts)
plot.ts(log_ts)</pre>
```


Decomposing Time Series

Decomposing a time series means separating it into its constituent components, which are usually a trend component and an irregular component, and if it is a seasonal time series, a seasonal component.

Decomposing Seasonal Data

A seasonal time series consists of a trend component, a seasonal component and an irregular component. Decomposing the time series means separating the time series into these three components: that is, estimating these three components.

```
ts_components <- decompose(ts)
```

we can print out the estimated values of the seasonal component

ts_components\$seasonal

##	Jan	Feb	Mar	Apr	May	Jun
## 2011	0.5750496	0.8766121	0.8458829	0.6603919	0.3955109	0.3014633
## 2012	0.5750496	0.8766121	0.8458829	0.6603919	0.3955109	0.3014633
## 2013	0.5750496	0.8766121	0.8458829	0.6603919	0.3955109	0.3014633
## 2014	0.5750496	0.8766121	0.8458829	0.6603919	0.3955109	0.3014633
## 2015	0 5750496	0.8766121	0 8458820	0 6603010	0 3055100	0 3014633

```
0.5750496
                    0.8766121
                                0.8458829
                                           0.6603919
                                                       0.3955109
                                                                  0.3014633
                                0.8458829
                                                       0.3955109
  2017
         0.5750496
                    0.8766121
                                           0.6603919
                                                                  0.3014633
  2018
         0.5750496
                    0.8766121
                                0.8458829
                                           0.6603919
                                                       0.3955109
                                                                  0.3014633
  2019
                                           0.6603919
##
         0.5750496
                    0.8766121
                                0.8458829
                                                       0.3955109
                                                                  0.3014633
##
               Jul
                           Aug
                                      Sep
                                                  Oct
                                                             Nov
                                                                         Dec
## 2011
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
## 2012
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
## 2013
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
  2014
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
  2015
  2016
         0.0859871 \ -0.2192212 \ -0.6598462 \ -0.8275546 \ -1.0103671 \ -1.0239087
  2017
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
  2018
         0.0859871 -0.2192212 -0.6598462 -0.8275546 -1.0103671 -1.0239087
         0.0859871 -0.2192212 -0.6598462
## 2019
```

Decomposition of additive time series

The plot above shows the original time series (top), the estimated trend component (second from top), the estimated seasonal component (third from top), and the estimated irregular component (bottom)

Seasonally Adjusting

```
ts_seasonall <- ts - ts_components$seasonal
```


Holt-Winters Exponential Smoothing

```
ts_forcaste <- HoltWinters(ts)</pre>
ts_forcaste
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = ts)
##
## Smoothing parameters:
    alpha: 0.9411093
    beta : 0.01283223
##
##
    gamma: 0.897372
## Coefficients:
##
               [,1]
       107.12241937
## a
         0.08333205
## b
## s1
        -0.30721959
## s2
        -0.85329682
        -1.15373938
## s3
## s4
         0.46560241
```

```
## s5
         0.77946235
##
  s6
         0.35089672
##
         0.15409626
##
         0.16395033
  s8
##
   s9
         0.19235885
        -0.17674411
##
  s10
## s11
        -0.20105992
        -0.02136745
## s12
```

#

this is not true i need to change

The value of alpha (0.35) is relatively low, indicating that the estimate of the level at the current time point is based upon both recent observations and some observations in the more distant past. The value of beta is 0.01, indicating that the estimate of the slope b of the trend component is updated but doesn't have much effect over the time series, and instead is set equal to its initial value. This makes good intuitive sense, as the level changes quite a bit over the time series, but the slope b of the trend component remains roughly the same. In contrast, the value of gamma (0.38) is high, indicating that the estimate of the seasonal component at the current time point is not just based upon very recent observations

ts_forcaste\$SSE

[1] 110.9689

Holt-Winters filtering


```
ts_forcaste2 = forecast:::forecast.HoltWinters(ts_forcaste, h= 15)
(as.data.frame(ts_forcaste2))[1]
```

```
Point Forecast
## Oct 2019
                   106.8985
## Nov 2019
                   106.4358
## Dec 2019
                   106.2187
## Jan 2020
                   107.9213
## Feb 2020
                   108.3185
## Mar 2020
                   107.9733
## Apr 2020
                   107.8598
## May 2020
                   107.9530
## Jun 2020
                   108.0648
## Jul 2020
                   107.7790
## Aug 2020
                   107.8380
## Sep 2020
                   108.1010
## Oct 2020
                   107.8985
## Nov 2020
                   107.4358
## Dec 2020
                   107.2187
```

Forecasts from HoltWinters

Growth

```
year_2019 <- window(ts, 2019)
year_2019_predict_HW <- (as.data.frame(ts_forcaste2))[1][c(1:3),]
sum_year_2019 = sum(c(year_2019,year_2019_predict_HW))
year_2020 = (as.data.frame(ts_forcaste2))[1][c(4:15),]</pre>
```

```
growth_HW <- growth(sum(year_2020),sum_year_2019)
growth_HW</pre>
```

[1] 0.01054675

We can investigate whether the predictive model can be improved upon by checking whether the in-sample forecast errors show non-zero autocorrelations at lags 1-20, by making a correlogram and carrying out the Ljung-Box test:


```
##
## Box-Ljung test
##
## data: ts_forcaste2$residuals
## X-squared = 19.024, df = 20, p-value = 0.5203
```

p-value is 0.5 instead of 0.9

The correlogram shows that the autocorrelations for the in-sample forecast errors do not exceed the significance bounds for lags 1-20. Furthermore, the p-value for Ljung-Box test is 0.9, indicating that there is no evidence of non-zero autocorrelations at lags 1-20.

We can check whether the forecast errors have constant variance over time, and are normally distributed with mean zero, by making a time plot of the forecast errors and a histogram (with overlaid normal curve):

plotForecastErrors(ts_forcaste2\$residuals)

Histogram of forecasterrors

From the time plot, it appears plausible that the forecast errors have constant variance over time. From the histogram of forecast errors, it seems plausible that the forecast errors are normally distributed with mean zero.

Thus, there is little evidence of autocorrelation at lags 1-20 for the forecast errors, and the forecast errors appear to be normally distributed with mean zero and constant variance over time. This suggests that Holt-Winters exponential smoothing provides an adequate predictive model of the log of total productivity, which probably cannot be improved upon. Furthermore, the assumptions upon which the prediction intervals were based are probably valid.

plot.ts(ts)


```
ts_diff1 <- diff(ts, differences = 1)
plot.ts(ts_diff1)</pre>
```


The time series of differences (above) does appear to be stationary in mean and variance, as the level of the series stays roughly constant over time, and the variance of the series appears roughly constant over time

acf(ts_diff1, lag.max=20) # plot a correlogram

df

We see from the correlogram that the autocorrelation exceeds the significance bound 3 times but all the others do not exceed

```
acf(ts_diff1, lag.max=20, plot=FALSE) # get the autocorrelation values
```

```
##
## Autocorrelations of series 'ts_diff1', by lag
##
## 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500
## 1.000 0.030 0.050 -0.118 -0.048 -0.109 -0.096 -0.118 -0.016 0.034
## 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833
## -0.027 -0.033 0.271 -0.050 -0.032 -0.166 -0.060 -0.101 0.050 0.006
## 1.6667
## -0.004
```

pacf(ts_diff1, lag.max=20) # plot a partial correlogram

Series ts_diff1

pacf(ts_diff1, lag.max=20, plot=FALSE) # get the partial autocorrelation values

```
## ## Partial autocorrelations of series 'ts_diff1', by lag

## 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333

## 0.030 0.049 -0.121 -0.044 -0.095 -0.103 -0.120 -0.033 0.009 -0.080

## 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 1.6667

## -0.077 0.259 -0.103 -0.094 -0.116 -0.063 -0.103 0.035 0.024 -0.094
```

Arima, 0,1,0

```
ts_arima = Arima(ts, order=c(0,1,0),seasonal = list(order = c(0,1,0)))
ts_arima

## Series: ts
## ARIMA(0,1,0)(0,1,0)[12]
##
## sigma^2 estimated as 1.752: log likelihood=-156.28
## AIC=314.57 AICc=314.61 BIC=317.09
```

```
ts_arima_forecast = forecast(ts_arima,h = 15)
ts_arima_forecast
```

```
##
            Point Forecast
                               Lo 80
                                        Hi 80
                                                  Lo 95
                                                           Hi 95
                     106.6 104.90392 108.2961 104.00607 109.1939
## Oct 2019
## Nov 2019
                     106.4 104.00138 108.7986 102.73162 110.0684
## Dec 2019
                     106.4 103.46230 109.3377 101.90717 110.8928
## Jan 2020
                     106.6 103.20783 109.9922 101.41213 111.7879
## Feb 2020
                     107.6 103.80744 111.3926 101.79979 113.4002
## Mar 2020
                     107.3 103.14546 111.4545 100.94618 113.6538
## Apr 2020
                     108.1 103.61259 112.5874 101.23709 114.9629
## May 2020
                     108.1 103.30275 112.8972 100.76325 115.4368
## Jun 2020
                     107.4 102.31175 112.4882
                                               99.61820 115.1818
## Jul 2020
                     107.7 102.33652 113.0635
                                               99.49726 115.9027
## Aug 2020
                     107.8 102.17473 113.4253
                                               99.19689 116.4031
## Sep 2020
                     107.9 102.02460 113.7754
                                               98.91435 116.8857
## Oct 2020
                     107.4 100.61567 114.1843
                                               97.02426 117.7757
## Nov 2020
                     107.2 99.61489 114.7851
                                               95.59957 118.8004
## Dec 2020
                     107.2 98.89093 115.5091
                                               94.49237 119.9076
```

forecast:::plot.forecast(ts_arima_forecast)

Forecasts from ARIMA(0,1,0)(0,1,0)[12]

Growth

```
this_year_predict_ARIMA <- (as.data.frame(ts_arima_forecast))[1]

year_2019_predict_ARIMA <- (as.data.frame(ts_arima_forecast))[1][c(1:3),]
sum_year_2019 = sum(c(year_2019, year_2019_predict_ARIMA))
year_2020 = (as.data.frame(ts_arima_forecast))[1][c(4:15),]
growth_ARIMA <- growth(sum_year_2019, sum(year_2020))
-growth_ARIMA</pre>
```

[1] 0.00744013

As in the case of exponential smoothing models, it is a good idea to investigate whether the forecast errors of an ARIMA model are normally distributed with mean zero and constant variance, and whether the are correlations between successive forecast errors.

For example, we can make a correlogram of the forecast errors for our ARIMA(0,1,1) model, and perform the Ljung-Box test for lags 1-20, by typing:

```
acf(ts_arima_forecast$residuals, lag.max=20)
```

Series ts_arima_forecast\$residuals

Box.test(ts_arima_forecast\$residuals, lag=20, type="Ljung-Box")

```
##
## Box-Ljung test
##
## data: ts_arima_forecast$residuals
## X-squared = 24.615, df = 20, p-value = 0.2166
```

p value too high to reject

```
plot.ts(ts_arima_forecast$residuals) # make time plot of forecast errors
```


plotForecastErrors(ts_arima_forecast\$residuals)

Histogram of forecasterrors

A model chosen automatically

```
fit3 <- auto.arima(ts, seasonal = T)</pre>
fit3
## Series: ts
## ARIMA(2,0,1)(0,0,1)[12] with non-zero mean
## Coefficients:
##
            ar1
                     ar2
                             ma1
                                     sma1
                                              mean
         1.7778 -0.8309 -0.7565 0.5550
                                          105.8879
## s.e. 0.1010 0.0908
                         0.1269 0.1205
## sigma^2 estimated as 0.9316: log likelihood=-145.54
## AIC=303.08 AICc=303.94
                            BIC=319.01
fit_forecast = forecast(fit3,h=15)
plot(fit_forecast)
```

Forecasts from ARIMA(2,0,1)(0,0,1)[12] with non-zero mean

str(fit)

Growth

```
year_2019_predict_auto.arima <- (as.data.frame(fit_forecast))[1][c(1:3),]
year_2019_predict_auto.arima_95_low <- (as.data.frame(fit_forecast))[4][c(1:3),]
year_2019_predict_auto.arima_95_high <- (as.data.frame(fit_forecast))[5][c(1:3),]
sum_year_2019 = sum(c(year_2019,year_2019_predict_auto.arima))
sum_year_2019_low = sum(c(year_2019,year_2019_predict_auto.arima_95_low))
sum_year_2019_high = sum(c(year_2019,year_2019_predict_auto.arima_95_high))

year_2020_predict_auto.arima <- (as.data.frame(fit_forecast))[1][c(4:15),]
year_2020_predict_auto.arima_95_low <- (as.data.frame(fit_forecast))[5][c(4:15),]
year_2020_predict_auto.arima_95_high <- (as.data.frame(fit_forecast))[5][c(4:15),]
growth_auto.arima <- growth(sum(year_2020_predict_auto.arima),sum_year_2019)
growth_auto.arima_95_low <- growth(sum(year_2020_predict_auto.arima_95_high),sum_year_2019_high)
growth_auto.arima_95_high <- growth(sum(year_2020_predict_auto.arima_95_high),sum_year_2019_high)
growth_auto.arima</pre>
```

[1] -0.004994184

growth_auto.arima_95_low

[1] -0.03904977

growth_auto.arima_95_high

[1] 0.02864472

-growth_ARIMA

[1] 0.00744013

growth_auto.arima

[1] -0.004994184

growth_HW

[1] 0.01054675