

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 January 2003 (23.01.2003)

PCT

(10) International Publication Number
WO 03/006574 A1

(51) International Patent Classification⁷: C09K 19/30,
C07C 43/184, C09K 19/34, G02F 1/13357

[GB/GB]; School of Chemistry, University of Hull, Hull
HU6 7RX (GB). DUFFY, Warren, Lee [GB/GB]; School
of Chemistry, University of Hull, Hull HU6 7RX (GB).

(21) International Application Number: PCT/GB02/03165

(74) Agent: RUSHTON, David, John; IP QinetiQ Formalities,
Cody Technology Park, A4 Building Ively Road, Farnbor-
ough, Hampshire GU14 0LX (GB).

(25) Filing Language: English

(81) Designated States (national): JP, US.

(26) Publication Language:

English

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE, SK, TR).

(30) Priority Data:

0116991.1 12 July 2001 (12.07.2001) GB

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): KELLY, Stephen,
Malcolm [GB/GB]; School of Chemistry, University of
Hull, Hull HU6 7RX (GB). CAMPBELL, Neil, Lester

(54) Title: LIQUID CRYSTAL COMPOUNDS

WO 03/006574 A1

(57) **Abstract:** The use of a compound of formula (I) wherein R¹ is an alkyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R² is an alkyl or alkenyl group, Y' and Y'' are independently selected from oxygen or sulphur, n is an integer from 1 to 5, X is a direct bond or a C₁₋₄alkylene or C₂₋₄alkylene chain, and A is group comprising one or two rings which are independently selected from aryl, heterocyclic or cycloalkyl rings, and when there are two rings, they are bonded together directly or by way of a C₁₋₄alkylene or C₂₋₄alkylene group, for increasing the u.v. stability of a liquid crystal mixture. The compounds of formula (I) are u.v. stable and are useful in liquid crystal devices which are exposed to high levels of u.v. light such as phosphor display cells. Certain compounds are novel and these form a further aspect of the invention.

Liquid Crystal Compounds

The present invention relates to liquid crystal mixtures which are stable to u.v. light, to liquid crystal devices containing these and to methods for increasing the u.v. 5 stability of liquid crystal mixtures. Certain compounds useful in these mixtures are novel and these, together with processes for their preparation, form a further aspect of the invention.

The term "liquid crystals" is well known. It refers to compounds which, as a result of their structure, will align themselves in a similar orientation, preferably at 10 working temperatures, for example of from -40 to 200°C. These materials are useful in various devices, in particular the liquid crystal display devices or LCDs.

Liquid crystals can exist in various phases. In essence there are three different classes of liquid crystalline material, each possessing a characteristic molecular arrangement. These classes are nematic, chiral nematic (cholesteric) and smectic.

15 Broadly speaking, the molecules of nematic compounds will align themselves in a particular orientation in a bulk material. Smectic materials, in addition to being orientated in a similar way, will align themselves closely in layers.

A wide range of smectic phases exists, for example smectic A and smectic C. In the former, the molecules are aligned perpendicularly to a base or support, whilst in the 20 latter, molecules may be inclined to the support. Some liquid crystal materials possess a number of liquid crystal phases on varying the temperature. Others have just one phase. For example, a liquid crystal material may show the following phases on being cooled from the isotropic phase:- isotropic - nematic - smectic A - smectic C - solid. If a material is described as being smectic A then it means that the material possesses a smectic A 25 phase over a useful working temperature range.

Such materials are useful, in particular in display devices where their ability to align themselves and to change their alignment under the influence of voltage, is used to impact on the path of polarised light, thus giving rise to liquid crystal displays. These are widely used in devices such as watches, calculators, display boards or hoardings, 30 computer screens, in particular laptop computer screens etc. The properties of the compounds which impact on the speed with which the compounds respond to voltage charges include molecule size, viscosity (Δn), dipole moments ($\Delta \epsilon$), conductivity etc.

In some cases however, the devices are subject to high levels of radiation such as ultra-violet radiation. Many liquid crystal compounds are not stable under these circumstances and can deteriorate rapidly.

Some examples of alkylene glycol liquid crystal compounds are found in EP-A-5 0385471 and JP-64-22835. EP-A-0824141 describes a complex series of liquid crystal mixtures, some of which may contain alkylene glycol compounds.

The applicants have found that certain of these structural types, as well as having useful liquid crystal properties, also have particularly good resistance to u.v. light, and so may be used to enhance the u.v. stability of liquid crystal mixtures.

10 The present invention provides the use of a compound of formula (I)

15 wherein R¹ is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R² is an alkyl or alkenyl group, Y' and Y'' are independently selected from oxygen or sulphur, n is an integer from 1 to 5, X is a direct bond or a C₁₋₄alkylene or C₂₋₄alkenylene chain, and A is group comprising one or two rings which are independently selected from aryl, heterocyclic or cycloalkyl rings,
20 and when there are two rings, they are bonded together directly or by way of a C₁₋₄alkylene or C₂₋₄alkenylene group, for increasing the u.v. stability of a liquid crystal mixture.

As used herein the term "alkyl" refers to straight or branched chain alkyl groups, suitably containing up to 20, more suitably up to 10 and preferably up to 6 carbon atoms. The term "alkylene" refers to alkyl groups which are divalent and "cycloalkyl" refers to alkyl groups which have at least 3 carbon atoms, and which are cyclic in structure. The term "alkenyl" refers to straight or branched unsaturated chains having from 2 to 20 and preferably from 2 to 10 carbon atoms. The term "aryl" refers to aromatic rings such as phenyl and naphthyl, but preferably phenyl.

References to "heterocyclic groups" refer to rings, which suitably contain from 4 to 8 atoms, up to three of which are heteroatoms selected from oxygen, nitrogen or sulphur. They may be saturated or unsaturated, but are preferably saturated.

Suitably, rings in group A are para substituted, and where they are saturated, substituents are preferably in a trans relationship to each other. Particularly preferred examples of group A in formula (I) are groups of formula (i), (ii), (iii), (iv) or (v)

where X' , X'' and X''' are each selected from a direct bond, a C_{1-4} alkylene chain or a C_{2-4} alkenylene chain, and each group R_a , R_b , R_c and R_d are independently selected from CH_2 or oxygen. In particular where one of R_a or R_b , or R_c or R_d is oxygen, the other is also oxygen so that the group A is or includes a dioxane ring.

In particular however, R_a , R_b , R_c and R_d , where present, are CH_2 groups.

Suitably Y' and Y'' are oxygen.

In a particularly preferred embodiment, n is 2.

Suitably R^2 is a C_{1-10} alkyl, preferably C_{1-6} alkyl and most preferably C_{1-3} alkyl.

Alternatively, R^2 is alkyl having at least 5 carbon atoms, for example from 5 to 10 carbon atoms.

Preferably, X is a direct bond or a C_{1-2} alkylene chain, and most preferably X is a direct bond.

Where X is a C_{2-4} alkenylene chain, it is suitably a group of sub-formula (x), (xi) or (xii)

(x)

(xi)

(xii)

The cyclohexyl ring illustrated in Figure 1 is suitably in the trans configuration. Thus, in particular, the compound of formula (I) is suitably a compound of formula (IA)

where R^1 , R^2 , A , X , Y' , Y'' and n are as defined above.

In a preferred embodiment, R^1 is a straight chain C_{1-6} alkyl group and most preferably a C_{3-5} alkyl group, which optionally contains one or two oxygen or sulphur atoms. For example, a particular example of a group R^1 is a group of formula (II)

where n' is an integer from 1 to 5, Y''' and Y'' are independently selected from oxygen or sulphur and R^3 is alkyl, in particular C_{1-4} alkyl. Preferably n' is 2. Preferably Y''' and Y'' are oxygen.

Other particular examples of groups R^1 are C_{3-5} alkyl.
Yet further examples are C_{8-20} alkyl.

In an alternative embodiment, R^1 is an alkenyl group and in particular a C_{2-10} alkenyl group. Suitably the alkenyl group contains two or more double bonds, and is preferably a diene of formula (VI)

(VI)

where m and p are 0 or an integer from 1-5, provided that $m+p$ does not exceed 5.
Preferably m and p are 0.

Particularly suitable rings A in formula (I) are groups of sub-formula (i), (iii) and (v), and preferred rings A are groups of sub-formula (i). In groups of sub-formula (iii), (iv) and (v), X' , X'' and X''' are suitably direct bonds or C_{1-2} alkylene groups. Particularly, these are direct bonds. Where these are C_{2-4} alkenylene groups, these are suitably selected from groups (x), (xi) and (xii) as listed above in relation to X .

Thus particular examples of compounds of formula (I) are compounds of formula (III)

where R^1 and R^2 are as defined above.

Particular examples of compounds of formula (III) are set out in Table 1.

5

Table 1

Compound No.	R^1	R^2
1	C_3H_7	CH_3
2	C_5H_{11}	CH_3
3	C_3H_7	C_2H_5
4	C_5H_{11}	C_2H_5
5	C_3H_5	C_3H_7

These compounds are suitably added to liquid crystal mixtures in order to increase the u.v. stability of those mixtures. Other components of the mixture will include liquid crystal compounds of various structures as are well known in the art.

10 Suitably the compound of formula (I) is added in sufficient quantities to produce a significant effect on the u.v. stability of the mixture. Therefore, the mixture will suitably contain the compound of formula (I) in an amount of from 5-80%, preferably from 5-40%, and most preferably from 10-30% by weight.

Compounds of formula (I) may be prepared by conventional methods.

15 However, in accordance with an aspect of the invention, they are prepared by reacting a compound of formula (IV)

20

where R^1 , A , X and Y' are as defined in relation to formula (I); with a compound of formula (V)

(V)

where Y'' and R^2 is as defined in relation to formula (I) and Z is a leaving group. The reaction is suitably effected in an organic solvent such as tetrahydrofuran in the

5 presence of a strong base such as an alkali metal hydride for instance, sodium hydride. Suitable leaving groups Z include halo such as chloro, bromo or iodo, mesylate and tosylate, and in particular are halo groups such as bromo.

Compounds of formula (IV) are either known compounds or they can be prepared from known compounds by conventional methods.

10 Compounds of formula (I) have liquid crystal properties and in particular are nematic compounds. Thus they may be included in mixtures used in liquid crystal devices including liquid crystal display cells, such as twisted nematic cells (TN) (such as standard TN cells), supertwist nematic cells (STN) and supertwist birefringence effect (SBE) cells.

15 Such devices form a further aspect of the invention.

The compounds of formula (I) have good stability in the presence of radiation such as ultraviolet radiation. In particular they do not absorb radiation at the wavelengths used in many liquid crystal devices. These properties make them particularly useful, either alone or in mixture with other liquid crystal compounds, in
20 liquid crystalline displays that are exposed to high levels of ultraviolet radiation, such as those used in outdoor displays. In addition, they may be utilized in conjunction with phosphorescent substrates or phosphor layer liquid crystal devices, such as those described in US Patent No. 4,830,469, WO 95/27920, EP-A-185495 and European Patent No 0755532.

25 These devices are particularly suitable for display cells and especially colour display cells as they overcome problems associated with the use of liquid crystals as shutters for transmitting light to a viewer. The light scattering or birefringent properties of these compounds is useful in this respect and may be controlled by application of an electrical field. However the liquid crystal material is sensitive to the angle at which
30 light passes through it, and therefore there may be difficulties with viewing angle when these are viewed directly.

These problems are overcome in devices such as those mentioned above, by directing light from a light source, usually an ultraviolet light source, through the liquid crystal layer onto self-radiating elements or phosphors. These are activated by light reaching them through the liquid crystal layer, and thereafter emit light at a desirable viewing angle. Each phosphor therefore can constitute a pixel in a display or a combination of red, blue and green phosphors may be grouped to form a pixel which can emit light at any colour of the spectrum, depending upon the relative stimulation of each.

Thus a preferred liquid crystal device according to the invention is a display cell comprising a layer of a liquid crystal material wherein the liquid crystal material comprises a compound of formula (I), means for addressing the liquid crystal material so as to allow light to pass through it when appropriately addressed, and an emitting layer comprising phosphor elements, arranged to receive light passing through the liquid crystal layer.

Such devices are illustrated schematically in Figure 1 hereinafter. These devices may be arranged differently depending upon the intended application.

Suitably in these devices, the liquid crystal material is contained between two parallel, spatially separated transparent substrate plates (1), either in individual cells or in a continuous panel. Liquid crystal material (2), such as a compound of the present invention is provided in the cell, and the orientation is controllable by addressing means such as electrodes arranged on either side of the layer (not shown). Light from a light source is supplied in the direction of the arrow, and is either internally reflected by the liquid crystal material, or diverted to phosphors (3) on an emitting layer (4), depending upon the activation of the liquid crystal material. The phosphors may then emit light at a preferred viewing angle.

Devices may also contain polarisers and/or dichroic ultraviolet light absorbers (as described in US Patent No. 4,830,469).

A particularly preferred device further comprises means for collimating activating light towards the phosphors. Various arrangements for such collimating means are described in WO 95/27920. They include lenses, which may be arranged in or on one of the layers.

Light from an ultra-violet light source, is supplied to the liquid crystal layer, either directly onto the back or from the edge using for example the transparent backing

plate as a light guide. The addressing means control the orientation of the liquid crystal material, within each cell or region of the panel as is well understood in the art. As a result, light may or may not be directed onto a particular phosphor element, which is either activated to emit light or remain dark, respectively. By appropriate control of the 5 addressing means, each pixel point has individual visible light output characteristics at any given point in time.

Such devices may include computer or television screens, and these may contain hundreds of thousands of individual pixels, which control the amount of red, green or blue light reaching a very small area of the screen, for example of 100 μm or less. In 10 such cases, one of the electrodes used to address the liquid crystal material may be connected together in columns, and the other connected in rows (where rows and columns are perpendicular to each other) in order to reduce the number of electrical connections required. However, in order to ensure that pixels are controlled individually, these need to be multiplexed as understood in the art. Multiplexing 15 is generally achieved by applying a voltage which cycles between the desired voltage and zero many times per second. As each row receives the required voltage, a positive or negative voltage is applied to each column so that individual pixels within the row are addressed in the required manner. This means that the liquid crystal of all the "on" pixels will be subject to a voltage in excess of the threshold voltage for that compound. 20 All rows in the display are scanned to refresh the pixels.

Certain compounds of formula (I) are novel and these form a further aspect of the invention. In particular, the invention further provides a compound of formula (VII)

25 wherein R¹⁰ is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R¹¹ is an alkyl or alkenyl group, Y', Y'', n, X and A are as defined above in relation to formula (I) provided that when A is cycloalkyl, X is a direct bond or a C₂alkylene chain, n is 2, Y' and Y'' are both oxygen, 30 R¹¹ is methyl, and R¹⁰ is an alkyl group, it contains more than 3 carbon atoms.

Particular groups of compounds of formula (VII) are compounds of formula (VIIA)

5 wherein R¹² is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R¹³ is an alkyl or alkenyl group, Y', Y'', n, and X, and A is a group comprising one or two rings which are independently selected from aryl or heterocyclic, and when there are two rings, they are bonded together directly or by way of a C₁₋₄alkylene or C₂₋₄alkenylene group.

10 Preferred examples of R¹² and R¹³ are as defined above in relation to R¹ and R². Similarly preferred examples of X, Y', Y'' and n are as defined above in relation to corresponding variables in formula (I). Preferred examples of A' are groups of sub-formula (ii), (iii), (iv) or (v) as defined above. Alternatively, A' may be a dioxane ring.

An alternative group of compounds of formula (VII) are compounds of formula
15 (VIIB)

where X, Y', Y'' and n are as defined above in relation to formula (I), R¹⁴ is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, and R¹⁵ is an alkyl or alkenyl group, provided that when R¹⁵ is methyl
20 and R¹⁴ is alkyl of at least 4 and preferably at least 8 carbon atoms.

Suitably R¹⁴ is alkenyl.

More suitably R¹⁴ is alkyl of at least 4 and preferably at least 8 carbon atoms.

Suitably R¹⁵ is alkenyl

25 More suitably R¹⁵ is alkyl of at least 2 and preferably at least 5 carbon atoms.

Preferred variables for X, Y', Y'' and n are as defined above in relation to formula (I).

Compounds of formula (VII), (VIIA) and (VIIB) may be prepared by conventional methods, for example by methods analogous to those described above in

relation to formula (I). These novel compounds have liquid crystal properties and therefore their use in liquid crystal devices, either alone or in admixture with other liquid crystal compounds forms a further aspect of the invention.

The invention will now be particularly described by way of example.

5

Example 1

Preparation of *trans, trans*-4'-(2-methoxyethoxy)-4-pentylbicyclohexane (Compound No. 2 in Table 1)

A solution of *trans*-4-(4-pentylcyclohexyl)-1-cyclohexanol (1.00 g, 3.97×10^{-3} mol) in 10 terahydrofuran (10 cm³) was added dropwise to a suspension of sodium hydride (0.14 g, 5.95×10^{-3} mol) in terahydrofuran (15 cm³) at room temperature and under a nitrogen atmosphere. The solution was then left to stir (2hrs) before 1-bromo-2-methoxyethane (0.83 g, 5.95×10^{-3} mol) and potassium iodide (0.07 g, 3.97×10^{-4} mol) were added dropwise and the reaction mixture then refluxed (48 hrs). Methanol (20 cm³) was then 15 added to the reaction mixture followed by water (75 cm³). The product was then extracted into ether ($3 \times 30\text{cm}^3$) and then the combined organic layers were washed with brine ($2 \times 20\text{cm}^3$) and dried over magnesium sulphate. The solution was then filtered and the solvent removed under reduced pressure and the crude product purified by column chromatography on silica gel using a 3:7 ethylacetate/hexane mixture as eluent 20 and recrystallised from cold propanone, producing the desired white crystalline product. Yield 0.44 g (36 %) GC purity (99.9 %).

Cr-I = 65 °C S_B-I = 64 °C

Example 2

25 Using analogous methods to that described in Example 1 but with different starting materials, the following compounds were prepared.

trans, trans-4'-(2-ethoxyethoxy)-4-pentylbicyclohexane (Compound 4 in Table 1)

Yield 0.43 g (33 %) GC purity (99.8 %).

30 Cr-I = 25 °C

trans, trans-4'-(2-methoxyethoxy)-4-propylbicyclohexane (Compound 1 in Table 1)

Yield 0.29 g (22 %) GC purity (100 %).

Cr-I = 47 °C N-I = 44 °C

5 *trans, trans-4'-(2-ethoxyethoxy)-4-propylbicyclohexane (Compound 3 in Table 1)*

Yield 0.15 g (11 %) GC purity (99.6 %).

Cr-I = 20 °C N-I = 7 °C

trans, trans-4'-(2-propoxyethoxy)-4-propylbicyclohexane (Compound 5 in Table 1)

Yield 0.08 g (12 %) GC purity (100%).

10 Cr-I = 90°C

Example 3

Liquid Crystal Properties

The liquid crystal properties of the compounds of the invention were tested using
15 conventional methods. In particular the melting and clearing points of compounds of the
invention and structurally similar compounds were determined for comparison purposes.
The results are shown in Tables 2-6.

Table 2 shows for the *trans, trans*-4-propyl,4'-R-bicyclohexyl core compound the effect
20 of the position and number of oxygen atoms incorporated in the 5 atom end chain. All
members of the series except the ethyleneoxy derivative exhibit a smectic B phase.
Trans, trans- 4-propyl,4'-pentylbicyclohexane shows only a smectic B phase. This is
also the behaviour when one of the carbons in the pentyl chain is replaced with an
oxygen. When, however, two carbons are replaced as in the methyl ethyleneoxy
25 derivative Compound No 1, the smectic B phase is lost and a monotropic nematic phase
is observed.

Table 3 shows for both the propyl and pentyl cyclohexyl analogues the effect of
extending the ethyleneoxy chain by 1 carbon unit at the terminus. Extending the
30 terminal chain by only 1 carbon atom has a very large effect on the melting point, which
is substantially reduced in the C3 and C5 homologues Compounds 3 and 4 when
compared with the shorter chain of Compounds 1 and 2.

Table 2

Compound No.	R	Cr	SmB	N	Iso Liq
Comparative		•	23	•	96
Example A		•	32	•	74
Comparative		•	15	•	42
Example B		•	25	•	85
Comparative		•	47	(• 44)	•
Example C		•	47	(• 44)	•
Comparative		•	25	•	85
Example D		•	47	(• 44)	•
Compound no 1		•	47	(• 44)	•

5

Table 3

Compound No. (Table 1)	Cr	SmB	N	Iso Liq
1	• 47	•	(• 44)	•
3	• 20	•	(• 7)	•
2	• 65 (• 64)			•
4	• 25			•
5	• 90			•

Table 4 shows the effect of the ethyleneoxy end chain with a number of different cores. Replacement of the cyclohexyl group with a phenyl group in Comparative Example 1A leads to a reduction in the stability of the nematic phase, which remains a monotropic transition, as it does in the tolane. A nematic phase is not observed in the biphenyl derivative.

Table 4

Compound No.	Structure	Cr	N	Iso
				Liq
Compound No 1		• 47	• (44)	•
Comparative Example 1A		• 41	• (13)	•
Comparative Example 1B		• 97		•

A similar trend in melting and clearing points was found in the pentyl derivatives.

5 Table 5 shows the same cores and end chain as Table 4 but here the ethyleneoxy chain is extended by 1 carbon unit, to terminate in an ethyl group instead of a methyl group. The overall trends are again dependant on the core, the melting points are however reduced. None of the compounds exhibit an enantiotropic nematic phase.

Table 5

Compound No.	Structure	Cr	N	Iso
				Liq
3		• 20	• (7)	•
Comparative Example 3		• 13	• (<-20)	•

In Table 6, the ethyleneoxy end chain is sequentially increased by 1 carbon unit from methyloxy- to propyloxy- ethenyloxy- bicyclohexyl. The melting point falls and then rises substantially in a typical manner as the end chain is increased in length.

Table 6

Compound No. (Table 1)	Cr	N	Iso
			Liq
1	• 47	• (44)	•
3	• 20	• (7)	•
5	• 90		•

Example 4Physical Properties

5 The physical properties of a number of the compounds described were evaluated using conventional methods.

The dipole moments of the two compounds Comparative Example 2 and Compound No 2 were determined from extrapolation in solution in PCH₃ at 25°C at 4, 6, 8 and 10% 10 concentrations measured in a 9 µm cell. The dipole moments for the two compounds appear very similar and are shown in Table 7.

Table 7

Compound No.	Structure	μ(D)
Comparative Example 2	C ₃ H ₇ — — O — CH = CH ₂	2.32
Compound No 2	C ₅ H ₁₁ — — O — CH = CH ₂	2.26

Example 5Properties of Mixtures

Mixtures of dicyclohexyl ethyleneoxy compounds in a standard basic mixture ethyl linked phenyl cyclohexanes were made and the phase behaviour, permittivities and birefringence determined. The mixtures, phase behaviour and structure of the 20 compounds is listed in Table 8. None of the mixtures exhibited higher order smectic phases.

Table 8

Mixture number, % of compound	Compound No and transition temperatures	Structure	Clearing point of mixture (°C)
I 9.75%	2 K65(SmB 64)		49.9
II 9.94%	4 K27.2I		46.5

The permittivities of the mixtures are shown in Table 9.

Table 9

Mixture	$\epsilon_{\perp\perp}$	ϵ_{\perp}	$\Delta\epsilon$
I	11.8684	5.1236	6.75
II	11.6578	5.1522	6.51
Mixture ethyl linked phenyl cyclohexanes	12.95	5.13	7.82

5

The birefringence of the mixtures of 25°C and 30° below the clearing point of the mixture are given in Table 10. All mixtures show low birefringence.

Table 10

Mixture	Temperature (°C)	n_e	n_o	Δn
I	25	1.5713	1.4833	0.088
	19.9	1.5755	1.4841	0.091
II	25	1.5683	1.4841	0.084
	16.5	1.5750	1.4853	0.0897

Claims

1. The use of a compound of formula (I)

wherein R¹ is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R² is an alkyl or alkenyl group, Y' and Y'' are independently selected from oxygen or sulphur, n is an integer from 1 to 5, X is a direct bond or a C₁₋₄alkylene or C₂₋₄alkenylene chain, and A is group comprising one or two rings which are independently selected from aryl, heterocyclic or cycloalkyl rings, and when there are two rings, they are bonded together directly or by way of a C₁₋₄alkylene or C₂₋₄alkenylene group, for increasing the u.v. stability of a liquid crystal mixture.

15

2. The use according to claim 1 wherein the group A in formula (I) is selected from a group of formula (i), (ii), (iii), (iv) or (v)

where X', X'' and X''' are each selected from a direct bond, a C₁₋₄alkylene chain or a C₂₋₄alkenylene chain, and each group R_a, R_b, R_c and R_d are independently selected from CH₂ or oxygen.

3. The use according to claim 2 wherein R_a, R_b, R_c and R_d, where present, are CH₂ groups.

4. The use according to any one of the preceding claims wherein Y' and Y" in formula (I) are oxygen.

5. The use according to any one of the preceding claims wherein n in formula (I) is 2.

10 6. The use according to any one of the preceding claims wherein R² in formula (I) is a C₁₋₁₀alkyl.

7. The use according to claim 6 wherein R² in formula (I) is C₁₋₃alkyl.

15 8. The use compound according to any one of the preceding claims wherein X in formula (I) is a direct bond or a C₁₋₂alkylene chain.

9. The use according to claim 8 wherein X in formula (I) is a direct bond.

20 10. The use according to any one of claims 1 to 7 wherein X is a C₂₋₄alkenylene chain of formula (x), (xi) or (xii)

(x)

(xi)

(xii)

11. The use according to any one of the preceding claims wherein the compound of formula (I) is a compound of formula (IA)

where R¹, R², A, X, Y', Y" and n are as defined in claim 1.

12. The use according to any one of the preceding claims wherein R¹ in formula (I) is a straight chain C₁₋₆alkyl group which optionally contains one or two oxygen or sulphur atoms.

5 13. The use according to any one of claims 1 to 11 wherein R¹ in formula (I) is a C₂₋₁₀alkenyl group.

14. The use according to claim 13 wherein the alkenyl group R¹ contains two double bonds.

10 15. The use according to claim 14 wherein the alkenyl group R¹ is a diene of formula (VI)

$$-(\text{CH}_2)_m-\text{CH}=\text{CH}-\text{CH}=\text{CH}-(\text{CH}_2)_p-\text{CH}_3 \quad (\text{VI})$$

15 where m and p are 0 or an integer from 1-5, provided that m+p does not exceed 5.

16. The use according to any one of the preceding claims wherein the compound of formula (I) is a compound of formula (III)

20

where R¹ and R² are as defined in claim 1.

17. A method for preparing a compound of formula (I) as defined in anyone of the preceding claims which comprises reacting a compound of formula (IV)

30

where R¹, A, X and Y' are as defined in relation to formula (I) in claim 1; with a compound of formula (V)

5 where Y'' and R² is as defined in claim 1 and Z is a leaving group.

18. A liquid crystal device comprising an outdoor liquid crystal display device, or a device comprising a phosphorescent substrate or a phosphor layer, said device comprising a compound of formula (I) as defined in any one of claims 1 to 16.

10

19. A liquid crystal device according to claim 18 wherein the compound of formula (I) is in admixture with other liquid crystal compounds.

20. A liquid crystal device which comprises a display cell comprising a layer of a liquid crystal material wherein the liquid crystal material comprises a compound of formula (I) as defined in claim 1, means for addressing the liquid crystal material so as to allow light to pass through it when appropriately addressed, and an emitting layer comprising phosphor elements, arranged to receive light passing through the liquid crystal layer.

15
20

21. A compound of formula (VII)

25 wherein R¹⁰ is an alkyl or alkenyl group, either of which may be optionally interposed with one or more oxygen or sulphur atoms, R¹¹ is an alkyl or alkenyl group, Y', Y'', n, X and A are as defined in claim 1, provided that when A is cycloalkyl, X is a direct bond or a C₂alkylene chain, n is 2, Y' and Y'' are both oxygen, R¹¹ is methyl, and R¹⁰ is an alkyl group, it contains more than 3 carbon atoms.

30

22. A compound according to claim 21 of formula (VIIA)

wherein R¹² is an alkyl or alkenyl group, either of which may be optionally interposed
 5 with one or more oxygen or sulphur atoms, R¹³ is an alkyl or alkenyl group, Y', Y'', n,
 and X are as defined in claim 1, and A is a group comprising one or two rings which
 are independently selected from aryl or heterocyclic, and when there are two rings, they
 are bonded together directly or by way of a C₁₋₄alkylene or C₂₋₄alkenylene group.

10 23. A compound according to claim 21 of formula (VIIB)

where X, Y', Y'' and n are as defined in claim 1, R¹⁴ is an alkyl or alkenyl group, either
 of which may be optionally interposed with one or more oxygen or sulphur atoms, and
 15 R¹⁵ is an alkyl or alkenyl group, provided that when R¹⁵ is methyl and R¹⁴ is alkyl of at
 least 4.

1/1

Fig.1.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 02/03165

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C09K19/30 C07C43/184 C09K19/34 G02F1/13357

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C09K C07C G02F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 132 553 A (MERCK PATENT GMBH ;SECR DEFENCE BRIT (GB)) 13 February 1985 (1985-02-13) page 4, line 4 - line 22; claims ---	21-23
Y	WO 93 02152 A (MERCK PATENT GMBH) 4 February 1993 (1993-02-04) page 5, line 20 - line 31 page 7; claims ---	1-20
Y	PATENT ABSTRACTS OF JAPAN vol. 013, no. 205 (C-595), 15 May 1989 (1989-05-15) & JP 01 022835 A (DAINIPPON INK & CHEM INC), 25 January 1989 (1989-01-25) cited in the application abstract ----	1-20
X	-----	21-23
Y	-----	1,11,16
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

25 October 2002

11 OCTOBER 2002

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Serbetsoglou, A

INTERNATIONAL SEARCH REPORT

Intern	Application No
PCT/GB	02/03165

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 385 471 A (DAINIPPON INK & CHEMICALS) 5 September 1990 (1990-09-05) cited in the application claims ---	1-23
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 392 (C-0873), 4 October 1991 (1991-10-04) & JP 03 161453 A (DAINIPPON INK & CHEM INC), 11 July 1991 (1991-07-11) abstract ---	1-17, 21-23
A	EP 0 315 050 A (HOFFMANN LA ROCHE) 10 May 1989 (1989-05-10) page 9 -page 12; claims ---	1-23
A	US 5 746 940 A (COATES DAVID ET AL) 5 May 1998 (1998-05-05) column 1, line 1 -column 3, line 43; claims 1-5,12 ---	1-23
A	WO 87 07266 A (MERCK PATENT GMBH) 3 December 1987 (1987-12-03) page 4, line 20 -page 6, line 5; claims ---	1,21
A	KELLY S M: "THE SYNTHESIS AND LIQUID CRYSTAL TRANSITION TEMPERATURES OF SOME WEAKLY POLAR NEMATIC TRANS-4-SUBSTITUTED-CYCLOHEXYL (E)-ALK-2- ENOATES" LIQUID CRYSTALS, TAYLOR AND FRANCIS LTD, LONDON, GB, vol. 17, no. 2, 1 August 1994 (1994-08-01), pages 211-225, XP000460892 ISSN: 0267-8292 tables 1,6 ---	1-16, 21-23
A	SCHADT M ET AL: "MATERIAL PROPERTIES, STRUCTURAL RELATIONS WITH MOLECULAR ENSEMBLES AND ELECTRO-OPTICAL PERFORMANCE OF NEW BICYCLOHEXANE LIQUID CRYSTALS IN FIELD-EFFECT LIQUID CRYSTAL DISPLAYS" LIQUID CRYSTALS, BASINGSTOKE, HAMPSHIRE, GB, vol. 5, no. 1, 1989, pages 293-312, XP000210415 table 2 ---	1-16, 21-23
A	WO 90 04622 A (MERCK PATENT GMBH) 3 May 1990 (1990-05-03) claims; examples 1,4-6,9,10 ---	1-16, 21-23
		-/-

INTERNATIONAL SEARCH REPORT

Intern - Application No
PCT/US 02/03165

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 830 469 A (BREDDELS PAULUS A ET AL) 16 May 1989 (1989-05-16) cited in the application claims -----	18-20
A	WO 95 27920 A (CROSSLAND WILLIAM ALDEN; DIXON ALAN COLIN; THOMAS JOHN) 19 October 1995 (1995-10-19) cited in the application claims -----	18-20

INTERNATIONAL SEARCH REPORT

Intern.	Application No
PCT/GB	02/03165

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0132553	A	13-02-1985	DE DE DE EP HK JP JP JP JP JP JP JP US US	3321373 A1 3348305 C2 3469294 D1 0132553 A1 103988 A 1822352 C 5020418 B 60016940 A 6025669 A 7108976 B 4622164 A 4868341 A		20-12-1984 17-06-1992 17-03-1988 13-02-1985 30-12-1988 10-02-1994 19-03-1993 28-01-1985 01-02-1994 22-11-1995 11-11-1986 19-09-1989
WO 9302152	A	04-02-1993	DE DE WO EP	4123389 A1 59209379 D1 9302152 A1 0548318 A1		21-01-1993 23-07-1998 04-02-1993 30-06-1993
JP 01022835	A	25-01-1989		NONE		
EP 0385471	A	05-09-1990	JP JP JP JP JP JP JP JP JP JP JP JP JP JP JP JP DE DE EP HK US	2229127 A 2701426 B2 2229129 A 2701427 B2 2233635 A 2782762 B2 2255636 A 2701439 B2 2273638 A 2311441 A 2715549 B2 2715554 B2 3017038 A 69002775 D1 69002775 T2 0385471 A1 1005313 A1 5178794 A		11-09-1990 21-01-1998 11-09-1990 21-01-1998 17-09-1990 06-08-1998 16-10-1990 21-01-1998 08-11-1990 27-12-1990 18-02-1998 18-02-1998 25-01-1991 23-09-1993 05-01-1994 05-09-1990 31-12-1998 12-01-1993
JP 03161453	A	11-07-1991		NONE		
EP 0315050	A	10-05-1989	DE EP HK JP JP KR SG US	3883705 D1 0315050 A2 33195 A 1151531 A 2693525 B2 214791 B1 181194 G 5013477 A		07-10-1993 10-05-1989 17-03-1995 14-06-1989 24-12-1997 02-08-1999 12-05-1995 07-05-1991
US 5746940	A	05-05-1998	GB JP	2297556 A 8239666 A		07-08-1996 17-09-1996
WO 8707266	A	03-12-1987	DE WO EP	3617431 A1 8707266 A2 0270580 A1		26-11-1987 03-12-1987 15-06-1988
WO 9004622	A	03-05-1990	DE	3835804 A1		26-04-1990

INTERNATIONAL SEARCH REPORT

Intern PCT/GB	Application No 02/03165
------------------	----------------------------

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9004622	A		AT 113308 T CA 2000926 A1 CN 1042173 A DD 288613 A5 DE 58908566 D1 WO 9004622 A1 EP 0366985 A1 EP 0394417 A1 ES 2063095 T3 HK 69195 A JP 2709859 B2 JP 3504139 T KR 153124 B1 SG 37095 G US 6210760 B1 US 5876626 A US 5387369 A	15-11-1994 20-04-1990 16-05-1990 04-04-1991 01-12-1994 03-05-1990 09-05-1990 31-10-1990 01-01-1995 12-05-1995 04-02-1998 12-09-1991 02-11-1998 01-09-1995 03-04-2001 02-03-1999 07-02-1995
US 4830469	A	16-05-1989	DE 8801498 U1 EP 0282109 A1 JP 63216029 A	26-05-1988 14-09-1988 08-09-1988
WO 9527920	A	19-10-1995	AU 2112195 A BR 9507295 A CA 2187156 A1 DE 69506240 D1 DE 69506240 T2 EP 0755532 A1 WO 9527920 A1 GB 2301928 A ,B HK 1011417 A1 IL 113286 A JP 9511588 T ZA 9502852 A	30-10-1995 30-09-1997 19-10-1995 07-01-1999 22-04-1999 29-01-1997 19-10-1995 18-12-1996 28-04-2000 08-02-1998 18-11-1997 04-01-1996