

SWIFT

A Transparent and Flexible communication Layer for PCle-coupled Accelerators and (Co-)Processors

05/19/2014

Simon Pickartz, Pablo Reble, Carsten Clauß, and Stefan Lankes

Today's HPC Systems

- Homogeneous hardware landscape
- Separate computer systems connected to increase the aggregated compute power
- Different interconnects for LAN and SAN
- RDMA capabilities

→ For portability concerns one standardised interface to layers on top is sufficient (e.g. uDAPL)

Tomorrow's HPC Systems

- Intra-rack network connecting
 - Hosts
 - **■** I/O devices
 - **■** Storage
- Heterogeneous compute nodes
 - **≡** CPUs
 - GPUs
 - Accelerators
 - **≡** Etc.
- Peer-to-peer communication
- RDMA and RMA capabilities
- Still different interconnects
 - → Computer systems connected to share resources and to increase the aggregated compute power

Agenda

- Socket Wheeled Intelligent Fabric Transport (SWIFT)
- Hardware
- Results
- Outlook

- Support for heterogeneous network landscapes
- High portability
- Supply of different programming models
- Consideration of the hardware's RDMA and RMA capabilities
- High performance

- Support for heterogeneous network landscapes
 - → A transparent solution is targeted
- High portability
- Supply of different programming models
- Consideration of the hardware's RDMA and RMA capabilities
- High performance

- Support for heterogeneous network landscapes
 - → A transparent solution is targeted
- High portability
 - → Hardware abstraction
- Supply of different programming models
- Consideration of the hardware's RDMA and RMA capabilities
- High performance

- Support for heterogeneous network landscapes
 - → A transparent solution is targeted
- High portability
 - → Hardware abstraction
- Supply of different programming models
 - → Service-oriented, SPMD, etc.
- Consideration of the hardware's RDMA and RMA capabilities
- High performance

- Support for heterogeneous network landscapes
 - → A transparent solution is targeted
- High portability
 - → Hardware abstraction
- Supply of different programming models
 - → Service-oriented, SPMD, etc.
- Consideration of the hardware's RDMA and RMA capabilities
 - → Offer one-sided communication primitives
- High performance

- Support for heterogeneous network landscapes
 - → A transparent solution is targeted
- High portability
 - → Hardware abstraction
- Supply of different programming models
 - → Service-oriented, SPMD, etc.
- Consideration of the hardware's RDMA and RMA capabilities
 - → Offer one-sided communication primitives
- High performance
 - → Low latencies and high data rates

SWIFT – Basic Concepts

- Topology
 - Hosts
 - Nodes
 - **■** Endpoints
- Communication modes
 - Asynchronous signaling via mails
 - Non-blocking two-sided communication
 - One-sided communication (including atomics)
- Gateway-based fabric connection

Topology

Topology

Topology

Layered Architecture

- Application layer
 - Higher level libraries (e. g. MPI)
 - **■** Parallel applications
 - Service-oriented apps
- SWIFT layer
 - **■** Routing
 - Topology
 - Messaging services
- Device layer
 - **■** Hardware abstraction
 - Optimization
 - → Well-defined interfaces to layers above and below

SWIFT Device

- Small interface (around 20 prototypes only)
- Administration module
 - Constructor and destructor
 - Automatic discovery of fabric nodes
- Channel module
 - Bi-directional FIFO channel
 - Fixed channel size
 - Asynchronous connection establishment via create() and connect()
 - Three transfer modes: PIO, DMA, and AUTO
- → High portability

- A distributed Directory Service (DS)
 - Dedicated process for holding topology information
 - Automatically maintains connections to other DS on neighbor hosts
 - Manages node IDs for the local nodes
 - No single point of failure
- On-demand connection setup via DS
 - Direct communication between nodes on different hosts
 - → Minimization of the hop count
 - Automatically connect to destination DS if necessary
 - A bit of proactivity

The ACS Cluster

Mapping SWIFT onto the Cluster

SWIFT Overhead - Latencies

SWIFT Overhead - Throughput

SWIFT Overhead - Throughput

Multi-Hop PingPong - Latency

- Latencies accumulate
- Average throughput equals that of the bottleneck link

- Latencies accumulate
- Average throughput equals that of the bottleneck link

- Latencies accumulate
- Average throughput equals that of the bottleneck link

- → Asymetric links
- → Average throughput corresponds to the *harmonic* mean of the two bottleneck links

What we have ...

- Support for heterogeneous network landscapes
- High portability

Supply of different programming models

Consideration of the hardware's RDMA and RMA capabilities

High performance

What we have ...

- Support for heterogeneous network landscapes
- High portability
 - Device abstraction
 - Three devices: SCIF, SISCI, and SHMEM
- Supply of different programming models

Consideration of the hardware's RDMA and RMA capabilities

High performance

What we have

- Support for heterogeneous network landscapes
- High portability
 - **■** Device abstraction
 - Three devices: SCIF, SISCI, and SHMEM
- Supply of different programming models
 - Three-layered topology
 - Automatic node ID assignment
- Consideration of the hardware's RDMA and RMA capabilities

High performance

What we have

- Support for heterogeneous network landscapes
- High portability
 - **■** Device abstraction
 - Three devices: SCIF, SISCI, and SHMEM
- Supply of different programming models
 - Three-layered topology
 - Automatic node ID assignment
- Consideration of the hardware's RDMA and RMA capabilities
 - One-sided communication
 - Zero-copy forwarding
- High performance

What we have

- Support for heterogeneous network landscapes
- High portability
 - Device abstraction
 - Three devices: SCIF, SISCI, and SHMEM
- Supply of different programming models
 - Three-layered topology
 - Automatic node ID assignment
- Consideration of the hardware's RDMA and RMA capabilities
 - One-sided communication
 - Zero-copy forwarding
- High performance
 - **≡** Good latency results (asynchronous signaling)
 - **■** Promising multi-hop throughput results

What we need

- DMA over the whole platform
 - Implementation of swift_put()/_get() (w.i.p.)
- Multicast or PUB/SUB communication mode
- Dynamic routing (e.g. Bellman-Ford)

Thank you for your kind attention!

Simon Pickartz – spickartz@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems E.ON Energy Research Center, RWTH Aachen University Mathieustraße 10 52074 Aachen

www.eonerc.rwth-aachen.de

Asymmetric Channels

■ time to send a message of length *L* from A to B and back

$$T = \frac{L}{t_{AB}} + \frac{L}{t_{BA}}$$

resulting throughput

$$t_{res} = \frac{L}{\frac{T}{2}} = \frac{2L}{\frac{L}{t_{AB}} + \frac{L}{t_{BA}}} = 2 \cdot \frac{t_{AB} \cdot t_{BA}}{t_{AB} + t_{BA}}$$

RDMA Results

