TABLE 2							
x	у	z	хy	ī	$F(x, y, z) = xy + \overline{z}$		
1	1	1	1	0	1		
1	1	0	1	1	1		
1	0	1	0	0	0		
1	0	0	0	1	1		
0	1	1	0	0	0		
0	1	0	0	1	1		
0	0	1	0	0	0		
0	0	0	0	1	1		

TABLE 5 Boolean Identities.					
Identity	Name				
$\overline{x} = x$	Law of the double complement				
$x + x = x$ $x \cdot x = x$	Idempotent laws				
$x + 0 = x$ $x \cdot 1 = x$	Identity laws				
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws				
x + y = y + x $xy = yx$	Commutative laws				
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws				
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws				
$\frac{\overline{(xy)} = \overline{x} + \overline{y}}{(x+y) = \overline{x}\overline{y}}$	De Morgan's laws				
x + xy = x $x(x + y) = x$	Absorption laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

A *Boolean algebra* is a set B with two binary operations \vee and \wedge , elements 0 and 1, and a unary operation $\bar{}$ such that these properties hold for all x, y, and z in B:

$$x \lor 0 = x \\ x \land 1 = x$$
 Identity laws
$$x \lor \overline{x} = 1 \\ x \land \overline{x} = 0$$
 Complement laws
$$(x \lor y) \lor z = x \lor (y \lor z) \\ (x \land y) \land z = x \land (y \land z)$$
 Associative laws
$$x \lor y = y \lor x \\ x \land y = y \land x$$
 Commutative laws
$$x \lor (y \land z) = (x \lor y) \land (x \lor z) \\ x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 Distributive laws

EXCLUSIVE OR

Inp	uts	Outputs			
Α	В	S	С		
0	0	0	0		
1	0	1	0		
0	1	1	0		
1	1	0	1		
Truth table					

A ——		<u>s</u> 0
В		Cour
	<u> </u>	— 0

Input			Output			
A B		Cin	Sum	Carry		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0 0 1		0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Inputs				Outputs					
	Α	В	С	D	W	Х	Υ	Z	
0×0	0	0	0	0	0	0	0	0	0
0×1	0	0	0	1	0	0	0	0	0
0×2	0	0	1	0	0	0	0	0	0
0×3	0	0	1	1	0	0	0	0	0
1×0	0	1	0	0	0	0	0	0	0
1×1	0	1	0	1	0	0	0	1	1
1×2	0	1	1	0	0	0	1	0	2
1×3	0	1	1	1	0	0	1	1	3
2×0	1	0	0	0	0	0	0	0	0
2×1	1	0	0	1	0	0	1	0	2
2×2	1	0	1	0	0	1	0	0	4
2×3	1	0	1	1	0	1	1	0	6
3×0	1	1	0	0	0	0	0	0	0
3×1	1	1	0	1	0	0	1	1	3
3×2	1	1	1	0	0	1	1	0	6
3x3	1	1	1	1	1	0	0	1	9

