1. You start with a 100g lump of a radioactive isotope. A year later the lump has a mass of 97.7g. What is the half life of the isotope?

See next page.

2. At time t=0 minutes, a colony of E. coli has 10000 cells. The population is growing exponentially, and after 60 minutes it has 90000 members. Find a function of the form

$$p(t) = C10^{at}$$

that describes the population size.

See two pages later.

3. The function $f(x) = 2^{-3x}$ can be written in the form $f(x) = 10^{-ax}$ for a certain constant a. Determine the value of a.

$$2^{-3x} = 10^{-ax}$$

$$-3x \ln(2) = -ax \ln(10)$$

$$a = 3 \ln(2)$$

$$\ln(10)$$

$$|) m(t) = C \cdot \left(\frac{1}{2}\right)^{4} t \text{ half-life: } | /a$$

$$m(0) = 100; m(0) = C \cdot 1 = C = 7 C = 100$$

$$m(1) = 97.7; m(1) = 100 (\frac{1}{2})^{9}$$

$$= 7 100 \left(\frac{1}{2}\right)^{\alpha} = 97.7$$

$$\Rightarrow$$
 $(\frac{1}{2})^{a} = 0.977$

$$=7$$
 $a \log_{10}(\frac{1}{2}) = 0.977$

$$= 7 \frac{1}{a} = \frac{\log_{10}(1/2)}{0.977} \approx 29.78 \text{ years}$$

2)
$$P(t) = C' 10^{et}$$

 $P(0) = 10000$ given
 $P(60) = 90000$

but
$$P(0) = (.10^{a.0} = C =)[C = 10000]$$

$$10^{a\cdot 60} = 9$$

$$a = \frac{\log_{10} 9}{66} \approx 0.0159$$

4. Use the change of base formula to rewrite $log_{10}(7)$ in terms of the natural logarithm, ln.

5. Solve the following equation for x:

$$\ln(x) + \ln(x - 1) = 2.$$

$$\ln \left(x(y-1) \right) = 2$$

$$x(y-1) = e^{2}$$

$$x^{2}-x-e^{2}=0$$

- **6.** Find the inverse function of $f(x) = 1 + \sqrt{2 3x}$. Remember:
 - a) Write y = f(x).
 - b) Solve for *x*.
 - c) The resulting expression in terms of y is $f^{-1}(y)$.

$$Y = 1 + \sqrt{2 - 3x}$$

$$Y - 1 = \sqrt{2 - 3x}$$

$$(Y - 1)^{2} = 2 - 3x$$

$$-3x = 2 - (4 - 1)^{2}$$