Data Structures Programming Project #2

Data Center

- A data center consists of multiple severs
- The servers are connected by switches in a local area network

Switches

- Each switch has multiple ports
- Receive and forward the packets from a port to another port

SDN-enabled Switches

• A centralized controller is introduced – software-defined networking (SDN)

Installing Rules in the SDN-enabled Switches

Routing Path Update (aka Network Update)

- Given:
 the old and new destination-based routing tree
- Update the destination-based routing tree

Node ID To

0	1	2	3	4
1	3	3	4	-1

Node ID To

0	1	2	3	4
3	3	4	2	-1

- The controller is logically-centralized
- However, the underlying mechanism is distributed
- Each switch receives the update message and updates its rule independently and asynchronously

Node ID To

0	1	2	3	4
1	3	3	4	-1

Node ID To

0	1	2	3	4
1	3	3	2	-1

- The controller is logically-centralized
- However, the underlying mechanism is distributed
- Each switch receives the update message and updates its rule independently and asynchronously
- How to solve the issue?
 - Two-phase commit (SIGCOMM 2012)
 - Round-based update for routing trees (HotNets, 2013)
 - Round-based update for single paths (TON, 2018)

[&]quot;Survey of Consistent Software-Defined Network Updates", in IEEE Communications Surveys & Tutorials, 2019

- Two-phase commit (SIGCOMM 2012)
- Drawback: waste the TCAM size during the update

• Round-based update (單純概念介紹)

Step 1: No update 1

Step 2: Update 0 and 2

Step 3: Update 3

- Input:
 - Numbers of nodes
 - Nodes in old and new routing trees
- Procedure:
 - Minimize the rounds of update
- Output:
 - Rules of each switch in each round
- The grade is inversely proportional to the number of rounds

- Input:
 - Numbers of nodes
 - Nodes in old and new routing trees
- Procedure:
 - Minimize the rounds of update
- Output:
 - Rules of each switch in each round
- The grade is inversely proportional to the number of rounds

- Input:
 - Numbers of nodes
 - Nodes in old and new routing trees
- Procedure:
 - Minimize the rounds of update
- Output:
 - Rules of each switch in each round
- The grade is inversely proportional to the number of rounds

怎麼辦

- Input:
 - Numbers of nodes
 - Nodes in old and new routing trees
- Procedure:
 - Minimize the rounds of update
- Output:
 - Rules of each switch in each round
- The grade is inversely proportional to the number of rounds

早知道不 加簽了

Programming Project #2: Round-based network update

- Input:
 - Numbers of nodes
 - Nodes in old and new routing trees
- Procedure:
 - Minimize the rounds of update
- Output:
 - Rules of each switch in each round
- Implement a given algorithm.

Round-Based Update Algorithm (HotNets, 2013)

Black line: old tree Red line: new tree

Node ID

To

0	1	2	3	4
1	3	3	4	-1

Node ID

To

0	1	2	3	4
3	3	4	2	-1

Round-Based Update Algorithm (HotNets, 2013)

Black line: old tree Red line: new tree

Node ID To

0	1	2	3	4
1	3	3	4	-1

Node ID

)	0	1	2	3	4
	3	3	3	2	-1

To

Round-Based Update Algorithm (HotNets, 2013)

Black line: old tree Red line: new tree

A node can safely update to new rules after its parent has switched

Node ID To/Parent

0	1	2	3	4
1	3	3	4	-1

Node ID	0	1	2	3	4
To/Parent	3	3	4	2	-1

Round-Based Update Algorithm (HotNets, 2013)

Black line: old tree Red line: new tree

A node can safely update to new rules after its parent

Node ID
To/Parent

0	1	2	3	4
1	3	3	4	-1

Node ID

To/Parent

0	1	2	3	4
3	3	4	2	-1

Round-Based Update Algorithm (HotNets, 2013)

1 3 4

Black line: old tree

Step 1: Update 2

Red line: new tree

Step 2: Update 3

Step 3: Update 0 and 1

Requirement

- You have to:
- Use a linked list to save the children for each node
- Use a pointer to save the parent for each node
- You can use the structure like this:

Discussion

- Minimizing the number of update rounds is NP-hard
- You cannot find an efficient algorithm for this problem unless NP = P
- There are many heuristic algorithms
- "Loop-Free Route Updates for Software-Defined Networks," in IEEE/ACM TON 2018 (上一屆實作的)
- "On Consistent Updates in Software Defined Networks", in ACM HotNets 2013. (你們要實作的)

• ...

Input Sample: use scanf

Format:

#Nodes

Tree1

Tree2

e.g.,

5

1 3 3 4 -1

3 3 4 2 -1

Node ID
To/Parent

0	1	2	3	4
3	3	4	2	-1

Output Sample: use printf

Format:

#Rounds

Tree1

Tree2

...

e.g.,

4

1 3 3 4 -1

1 3 **4** 4 -1

1 3 4 <mark>2 -1</mark>

3 3 4 2 -1

Node ID
To/Parent

 0
 1
 2
 3
 4

 1
 3
 3
 4
 -1

Node ID

To/Parent

 0
 1
 2
 3
 4

 1
 3
 4
 4
 -1

Node ID

To/Parent

 0
 1
 2
 3
 4

 1
 3
 4
 2
 -1

Node ID

To/Parent

0	1	2	3	4
3	3	4	2	-1

Note

- Superb deadline: 10/27 Tue
- Deadline: 11/03 Tue
- Submit your code to E-course2
- Demonstrate your code in 工院1館 401B
- C Source code (not C++; compiled with gcc, not g++)
- Show a good programming style