Оптимальная загрузка при жестких, стохастических ограничениях на ликвидность

Аннотация

В данной статье рассматривается новый подход к задаче оптимальной загрузки позиции. Строится модель, в которой одновременно учитывается стохастический характер поведения чистой цены базового актива, price impact, жёсткие ограничения на ликвидность, имеющие стохастический и однородный по времени характер и коммиссия за каждую ненулевую транзакцию. Для построенной модели вводится понятие оптимальной стратегии и явно вычисляется её ассимптотическое поведение и значение функционала ценности.

Ключевые слова: Оптимальная загрузка позиции, limit order рынок, price impact модель, модель стохастической ликвидности

1 Введение.

При работе с низколиквидными активами, перед трейдером часто стоит непростая задача, закрыть всю желаемую позицию за фиксированный промежуток времени (сутки, неделя, месяц и т.д.), не слишком завысив цену актива price impact'ом своих транзакций. На данный момент, имеется общирный список литературы, посвященной этой проблеме. Большая часть авторов рассматривает одну из двух моделей рынка. Первый - в котором рассматривается мнгновенный и временный ргice impact, например у Almgren and Chriss (2001), Almgren (2003, 2012) и Ankirchner и Kruse (2015) в различных усложнённых вариациях этой модели.

Во второй группе моделей параметр resilience (затухания) конечен и отделен от параметров limit order book (LOB), что позволяет рассматривать более сложные модели, в которых воздействие price impact'a от покупки в момент времени t продолжает оказывать влияние на все последующие цены. Подобные модели называют обобщающим термином LOB driven liquidity. Большая часть существующий сейчас литературы, изучающая LOB driven liquidity модели, предпологает параметры постоянными величинами, например: Bouchaud, Gefen, Potters, и Wyart (2004), Obizhaeva и Wang (2013), Alfonsi, Fruth, и Schied (2010) и Predoiu, Shaikhet, и Shreve (2011). Более же современные статьи этих и других авторов: Alfonsi и Acevedo (2014), Bank и Fruth (2014) и Fruth, Schöneborn, и Urusov (2014) позволили расширить модель на случай детерменированных, непостоянных параметров ликвидности. Совсем недавно Fruth, Schöneborn, и Urusov (2017) или Dirk Becherer, Todor Bilarev и Peter Frentrup (2017) удалось обобщить полученные результаты нахождения оптимального управления и на случай стохастических параметров ликвидности.

Однако, при работе с неликвидными активами, иногда и таких ограничений на ликвидность рынка бывает недостаточно. Ситуация, при которой оптимальный алгоритм загрузки предлагает купить больше shares актива чем может предложить рынок на любом из уровней LOB в данный момент,

не редки(?) (здесь видимо нужно объяснить почему имеет смысл ставить задачу так, как мы её ставим). Тогда естсественно задаться вопросом минимизации функционала ценности (value function), на ограниченом и случайном множестве значений стратегии. При такой постановке вопроса оказывается возможной ситуация, при которой полная загрузка позиции невозможна, например если сумма всего предложения за промежуток времени меньше, чем величина желаемой позиции. С другой стороны может оказаться, что полная загрузка окажется убыточной, ввиду чрезмерно высокой цены актива. Чтобы избежать подобных казусов в модели рассматривается функционал с дополнительным квадратичным членом - штрафом за неполную загрузку позиции.

Опишем модель в терминах "Е.Б. Дынкин, А.А. Юшкевич, 1975, Управляемые марковские процессы и их приложения"и будем пользоваться разработанным в данной книге инструментарием.

2 Описание модели в соответствии с ДЮ

Рассмотрим модели стохастического, марковского, оптимального управления $Z_0, Z_1, Z_2, ..., Z_n$. Опишем модель Z_t , задав фазавое простанство - множество состояний X_t и управлений A_t , введя функции распределения вероятностей при выборе управления - p(*|a) и функции плат за управления и финальные состояния.

- а) Пространством состояний X назовем объединение множеств $X = \bigcup_{t=1}^n X_t$, где X_t множество упорядоченных пар вида (W_t, q_t) действительные числа.
- б) Пространство управлений A назовем объединение множеств $A = \bigcup_{t=1}^{n}, A_t$ множество допустимых управлений в момент времени t. Пространство упорядоченных пар (X_t, A_t) назовём фазовым, причем (X_t, A_t) измеримое пространство с сигма-алгеброй \mathcal{F}_t .
- в) Чтобы определить понятие допустимости введем оператор соответсвия j^{-1} ставящий в соответсвие состоянию $x_t \in X_t$ множество допустимых управлений из состояния x_t в момент времени t, а именно: $j^{-1}(x_t) = j^{-1}(W_t, q_t) = [0, q_t]$, причем отображение j обратно-измеримо, то есть: образ всякого измеримого множества измермое множество. Так же мы будем пользоваться обратным оператором соответсвия j, который управлению a_{t+1} ставит в соответсвие все состояния x_t , для которых a_{t+1} допустимо.
- г) Распределение вероятностей при выборе управления a_{t+1} из состояния $x_t = (W_t, q_t)$ определим явно задав поведение x_{t+1} : $x_{t+1} = (W_{t+1}, q_{t+1}) = (W_t a_{t+1}, q_t a_{t+1} + \xi_t)$, где $\{\xi_t\}$ последовательность н.о.р.с.в., причем $\xi_t \in \mathcal{F}_t$. Распределение вероятностей на X_{t+1} порождаемое случайным вектором $(W_t a_{t+1}, q_t a_{t+1} + \xi_t)$ называем распределением вероятности на X_{t+1} при выборе управления $a_{t+1}(x_t)$ и обозначаем $p(*|a_{t+1}(x_t))$.
 - д) Цена управления:

$$q(a_t(x_{t-1}) = \mathbb{E}(P_{t+1}a_t + c_2\mathbf{1}(a_t > 0)) = \mathbb{E}\left(\left(P_0 + (W_0 - W_t)\theta_1 + \sum_{k=1}^t \varepsilon_k\right)a_t + c_2\mathbf{1}(a_t > 0)\right)$$

и цена финального состояния $r(x_n) = c_1 W_n^2$. Где $\{\varepsilon_t\}$ - последовательность н.о.р.с.в. с $\mathbb{E}\varepsilon_t = 0$ и конечным вторым моментом, причем $\varepsilon_t \in \mathcal{F}_t$.

Из условий на случайные величины ε_t и ξ_t имеем, что функция распределения вероятностей при выборе стрелки $a_{t+1} \in A_{t+1}$ и цены управления являются \mathcal{F}_t измеримыми функциями, значит выполнены все посылки для рассмотрения модели классического оптимального марковского управления (Е.Б. Дынкин, А.А. Юшкевич, 1975, Управляемые марковские процессы и их приложения стр. 66).

Отметим, что мы рассматриваем модель с двумя источниками случайности: их генерируют последовательности случайных величин ε_t и ξ_t , первая последовательность вносит долю случайности в формирование временного ряда цен, вторая в формирование ликвидности соответсвенно.

3 Операторы перехода в соответсвии с ДЮ.

Определим функционалы ценности (оценки) стратегии, модели, переходные функционалы моделей и вычислим их явно.

Пусть l_t - путь в фазовом пространстве модели Z_t : $l_t = x_t a_{t+1} x_{t+1} ... x_{n-1} a_n x_n$, его оценкой назовем функцию $w_t(l) = \sum_{k=t}^n q(a_{t+1}) + r(x_n)$. Где q и r определены в д). Аналогично определяется и оценка марковской стратегии π_t :

$$w_t(\pi) = \mathbb{E}\left(\sum_{k=t}^n q(a_{t+1}) + r(x_n)\right) = \mathbb{E}\left(\sum_{k=t}^n \left(P_0 + (W_0 - W_t)\theta_1 + \sum_{l=1}^t \varepsilon_l\right) a_k + c_2 \mathbf{1}(a_t > 0) + c_1 W_n^2\right)$$

Оптимальной для модели Z_t назовём стратегию π_t^* , такую что, для неё выполнено равенство: $w_t(\pi_t^*) = \sup_{\pi_t} (w_t(\pi_t))$. Обозначим $v_t = w(\pi_t^*)$ и назовём оценкой модели Z_t .

Определим оператор U_t отображающий функции f на множестве состояний X_t в функции на множестве управлений A_{t+1} по формуле:

$$(U_t f)(a_{t+1}) = q(a_{t+1}) + \mathbb{E}(f(x_t)|a_{t+1}) = q(a_{t+1}) + \int_{X_{t+1}} f(j(a_{t+1}))p(d(j(a_{t+1}))|a_{t+1}).$$

Определим оператор V_t отображающий функции g на множестве управлений A_{t+1} в функции на множестве состояний X_t по формуле:

$$(V_t g)(x_t) = \inf_{a_{t+1} \in A_{t+1}(x_t)} g(a_{t+1})$$

Пусть оператор T_t определён формулой $T_t = V_t U_t$, тогда этот оператор является оператором переноса функционала ценности модели Z_t на Z_{t-1} :

$$v_{t-1} = T_t(v_t) = \inf_{a_t \in j^{-1}(x_t)} \left(q(a_t) + \int_{X_t} v_t(y) p(dy|a_t) \right)$$

.

Мы составили "общий вид" оператора переноса функционала ценности модели. Теперь используя условия на пространства A_{t+1}, X_{t+1} , а так же функции $q(a_{t+1})$ и $p(*|a_{t+1})$, описанные в пункте 2 получим вид оператора переноса в терминах функций распределения случайных велечин ε_t и ξ_t , а так же постоянных параметров модели.

4 Вычисление явного вида оператора перехода.

В этой части мы вычислим значение оператора переноса в терминах параметров модели, а именно: функции распределения случайной величины - восстановления ликвидности $F_{\xi}(y)$, функции распределения случайного изменения цен $F_{\varepsilon}(y)$, а также постоянных параметров начальных условий и относительных коэфициентов.

Для начала нам потребуется понять как выглядит распределение вероятностей при выборе управления $p(*|a_t)$. Это распределение двумерного вектора $(W_t - a_{t+1}, q_t - a_{t+1} + \xi_t)$, заметим, что первая его компонента - велична постоянная, поэтому дальше будем считать, что $p(*|a_t)$ - распределение одномерное (лишь по второй компоненте) - $z_t = q_t - a_{t+1} + \xi_t$. Тогда:

$$p(dy|a_t) = d\mathbf{P}(q_{t-1} - a_t + \xi_{t-1} < y) = d\mathbf{P}(\xi_{t-1} < y + a_t - q_{t-1}) = dF_{\xi}(y + a_t - q_{t-1})$$

$$\int_{X_t} v_t(y) p(dy|a_t) = \int_{X_t} v_t(y + q_t - a_{t+1}) dF_{\xi}(y)$$

Учитывая, что:
$$q(a_t(x_{t-1}) = \mathbb{E}\left(\left(P_0 + (W_0 - W_t)\theta_1 + \sum_{k=1}^t \varepsilon_k\right)a_t + c_2\mathbf{1}(a_t > 0)\right)$$
, тогда.

$$T_{t}(v_{t}) = \inf_{a_{t} \in [0, q_{t}]} \left(\mathbb{E}\left(\left(P_{0} + (W_{0} - W_{t})\theta_{1} + \sum_{k=1}^{t} \varepsilon_{k} \right) a_{t} + c_{2} \mathbf{1}(a_{t} > 0) \right) + \int_{X_{t}} v_{t}(y + q_{t} - a_{t+1}) dF_{\xi}(y) \right) =$$

$$= \inf_{a_{t} \in [0, q_{t}]} \left(\mathbb{E}\left((P_{0} + (W_{0} - W_{t})\theta_{1}) a_{t} + c_{2} \mathbf{1}(a_{t} > 0) \right) + \int_{X_{t}} v_{t}(y + q_{t} - a_{t+1}) dF_{\xi}(y) \right)$$

Действительно, мы получили оператор, действующий на функциях ценности, аргументами которых являются состояния - пары (W_t,q_t) . Здесь мы так же видим явную зависимость от функции распределения величины ε , лишь через её математическое ожидание (которое мы предполагаем равным нулю), так же в явный вид оператора переноса входят постоянные значения: P_0 , W_0 , c_2 и θ_1 . Заметим, что нам пока не встретилась постоянная c_1 , она даст о себе знать, когда мы будем вычислять значение функционала в крайних точках временного промежутка, а именно в финальный момент времени - t=n, там же мы увидим зависимость и от самой длины интервала оптимизации.

Список литературы

Е.Б. Дынкин, А.А. Юшкевич, 1975, Управляемые марковские процессы и их приложения. Издательство "Наука академия наук СССР.

Здесь должен быть список литературы.