

Computer Architecture and Organization

INSTRUCTOR: YAN-TSUNG PENG

DEPT. OF COMPUTER SCIENCE, NCCU

MIPS Processor Organization

MIPS R2000 CPU and FPU

Memory

Memory Operands

- ■MIPS must support Transferring data between memory and registers
 - Data transfer instruction
 - Memory is byte addressed Each address identifies an 8-bit byte
 - Addresses are multiples of 4 Word (4 bytes) must be aligned in memory
- ■MIPS is Big Endian

Byte Address

- Most-significant byte at least address of a word
- ■Memory to Register Data Transfer

0

32-bit Data - 0x12345678

Example

Little Endian

Big Endian

LSB at least address of a word

MSB at least address of a word

Ex: 0011 1001 0010 0011 1111 1010 0000 0001

 0x3
 0000 0001

 0x2
 1111 1010

 0x1
 0010 0011

 0x0
 0011 1001

Memory

Memory

Memory Operands

Memory is byte addressed

Memory Alignment

■MIPS requires that all words are aligned, meaning a word is stored at an address multiples of 4 bytes

0004	0008	000C	0010	0014	0018	001C	0020	0024
A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]

Access Specific Words from Memory

Example:

- Load A[8] from memory
- First, you have to know what base address is (&A[0] or A)
- Second, according to the index, calculating the byte offset for A[8]
 - 1 word = 4 bytes
 - &A[8] = &A[0] + 8 words = &A[0] + 8*4 bytes
 - 32(&A[0])

Hexadecimal

Λ^{1}	000C 0010 0014 0018 001C 0020 0024	018 00	14 0	0010	000C	8000	0004
$A \xrightarrow{L[O]} \{ L[1] L[2] L[2] L[O] L[O] L[O] $	A[2] A[3] A[4] A[5] A[6] A[7] A[8]	[5] A[4] A	A[3]	A[2]	A[1]	A[0]

20₁₆=32₁₀

Load a Word in Memory: lw

■C code:

$$g = h + A[8];$$

- ■g in \$s1, h in \$s2, base address of A in \$s3
- ■MIPS code:
 - Index 8 requires offset of 32
 - 4 bytes per word
 Iw \$t0,32(\$s3) # load word \$t0 gets A[8]
 offset
 add \$s1, \$s2, \$t0

Example

Load a Byte in Memory: lb

Load Instruction Syntax:

```
1b $t0,1($s0)
```

- Ib (Load Byte, load a byte in \$t0)
- \$s0 stores the base address, 1 byte is added to which, and then load the value from the memory address (\$s0+1) into \$t0
- Sign-extended to 32 bits
 - lbu \$t0,1(\$s0) #Zeros filled to 32 bits

Notes:

base register: \$s0

offset : 1

 Like an array, where the offset works as the index, and the base register stores the address pointing to the beginning of the array

Example

Store a Word in Memory: sw

■C code:

```
A[12] = h + A[8];
```

- ■h in \$s2, base address of A in \$s3
- MIPS code:

```
lw $t0, 32($s3) # load word - $t0 gets A[8]
add $t0, $s2, $t0
sw $t0, 48($s3) # store word - $t0 is stored in A[12]
```


Store a Byte in Memory: sb

C code:

```
k = (A[0]\&0x000000ff);

A[1] = (A[1]\&0xffffff00) | k;
```

- ■k in \$t0, base address of A in \$s3
- MIPS code:

```
Ib $t0, 3($s3) # load byte - $t0 gets the lsb of A[0] sb $t0, 7($s3) # store byte - $t0 is stored in lsb of A[1]
```


Example

■Swap

```
C Code
void swap( int & A[0], int & A[4] )
                      Byte Address
 register int tmp;
                                      b
                           16
 tmp = A[0];
                           12
                                      е
 A[0] = A[4];
 A[4] = tmp;
                           8
                                      d
                                      С
                           4
                           0
                                      а
                                   Memory
```

base address of A in \$s0

```
lw $t1 0($s0) #load A[0] in $t1
lw $t2 16($s0) #load A[4] in $t2
sw $t1 16($s0) #store $t1 in A[4]
sw $t2 0($s0) #store $t2 in A[0]
```


Registers vs. Memory

- MIPS has 32 registers
 - Design Principle 2: Smaller is faster
 - Having too many registers may increase the clock cycle time
- •Accessing data in registers is faster than that in memory
- Accessing data in memory requires extra instructions (lw and sw)
- Using registers as much as possible
 - only store less frequently used data in memory

Immediate Operands

Use constant data

No subtract immediate instruction

- Design Principle 3: Make the common case fast
 - Small constants are common
 - Using immediate operands avoids a load instruction

The Constant Zero

- ■MIPS register 0 (\$zero) is the constant 0
 - Cannot be overwritten
- Useful for common operations
 - E.g., move between registers add \$t2, \$s1, \$zero

Instructions: Signed and Unsigned Numbers

$$-1 \times 2^1 = 2$$

$$1 \times 2^2 = 4$$

$$-1 \times 2^3 = 8$$

$$1 \times 2^4 = 16$$

$$1 \times 2^5 = 32$$

$$11011_{ten} = 1 \times 10^4 + 1 \times 10^3 + 0 \times 10^2 + 1 \times 10^1 + 1 \times 10^0$$

$$11011_{two} = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

The value of *ith* digit $d = d \times Base^i$

Example

most significant bit

least significant bit

31	L 3	0 29	2	3 2	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	C	0 0	C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
	(32 bits wide)																															

$$0 \times 2^{31} + \dots + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 2^{3} + 2^{1} + 2^{0} = 11_{ten}$$

The maximal value of an unsigned 8-bit binary number?

$$\sum_{i=0}^{7} 2^i = 2^8 - 1$$

Signed Binary Number

Using the first bit to represent the sign of the number

Two's complement representation

```
\begin{array}{c} \text{Sign bit} \\ \text{Positive} \\ \text{O} \\ \text{
```


Two's Complement Representation

```
0111 1111 1111 1111 1111 1111 1111 1101_{\rm two} = 2,147,483,645_{\rm ten} 0111 1111 1111 1111 1111 1111 1110_{\rm two} = 2,147,483,646_{\rm ten}
1000 0000 0000 0000 0000 0000 0000 \frac{1000}{1000} = -2,147,483,647_{ten}
1000 0000 0000 0000 0000 0000 0000 0010_{two}^{sin} = -2,147,483,646_{ten}^{sin}
```


Signed Negation

-x = x + 1

x + x = -1

$$x + \overline{x} = -1$$

if x = 2, meaning x=0010
0010 + 1101 = 1111 <- -1
-x = $\overline{x} + 1$

Take 4-bit binary number as an example $-1 \rightarrow \overline{1} + 1 \rightarrow 1110 + 1 = 1111$

More examples

- **■**4₁₀= 0100
- ■What is -4?

Sign Extension

- Replicate the sign bit to the left
 - unsigned values: extend with 0s
- ■Examples: 8-bit to 16-bit
 - **+**2: 0 000 0010 => 0000 0000 0000 0010
 - -2: 1 111 1110 => 1111 1111 1111 1110

Hexadecimal (Base 16)

■Base 16

- Compact representation of bit strings
- 4 bits per hex digit

Base ₁₀	Base ₁₆	Base ₂
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	А	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

MIPS Instruction Format

- Stored-program Computer Concept
 - Instructions and data are both stored in the memory
 - Each instruction takes 32 bits
- ■For a 32-bit instruction
 - Divide 32 bits into different "fields."
 - CPU decode each field to know how to execute the instruction
- MIPS defines three types of instruction formats
 - R-type (R-format) R for registers
 - I-type (I-format) I for immediate
 - J-type (J-format) J for jump

R-type Instruction

- ■R-type Instruction
 - MIPS Fields

- Instruction fields
 - op: operation code (opcode)
 - rs: first source register number
 - rt: second source register number
 - rd: destination register number
 - shamt: shift amount (for shift instructions)
 - funct: function code
 - combined with opcode to define different functions
 - Why do we need it? Why not using a 12-bit opcode?

R-type Instruction

R-type Instruction

MIPS Fields

- Since MIPS only has 32 registers, each register takes 5 bits
- For a shift instruction
 - shamt: contains the amount a shift instruction will shift by. Shifting a 32-bit word by more than 31 is useless, so this field is only 5 bits
 - shamt only works for shift instruction. For all the other instructions, it is set to 0.

Interpreting the machine code to know this is the "add" instruction

add \$t0, \$s1, \$s2 # \$t0 = \$s1 + \$s2

Register	MIPS register name
RO	\$zero
R1	\$at
R2-R3	\$v0-\$v1
R4-R7	\$a0-\$a3
R8-R15	\$t0-\$t7
R16-R23	\$s0-\$s7
R24-R25	\$t8-\$t9
R26-R27	\$k0-\$k1
R28	\$gp
R29	\$sp
R30	\$fp
R31	\$ra

State	R18		R8						/	
MIPS (1) MIPS (2) MIPS (2) MIPS (3) Hexa- ASCII Decimal decicor Charmal acter Mail act	\$\$2		\$t0					/	/	
Decide Charmal Decided Charmal Decided Charmal Color Charmal Charmal Color Charmal Color Charmal Color Charmal C			•					_/	(3)	
opcode (31:26) Amelian Charmal mal acter mal acter mal mal acter mal mal acter mal acter mal mal acter mal acte				RSION, A	SCILS					
opcode (Arnct funct (31:26) (2:0) (5	1	3 A	~ /		Deci-			Deci-		
(31:20) (3:0				Binary					deci-	
Sub.f 00 0001 1 1 SOH 65 41 A		(1:0)								
jal srl mulf 000010 2 2 STK 66 42 B jal sra divf 000011 3 3 ETX 67 43 C beq sllv sqrtf 000100 4 4 HOT 68 44 D bne absf 000101 5 5 ENQ 69 45 E blez srlv movf 000110 6 6 ACK 70 46 F bgtz srav begf 000111 7 7 BEL 71 47 G addi jr 001000 8 BS 72 48 H addi jalr 001001 9 HT 73 49 I slti movz 001010 10 a LF 74 4a J sltiu movn 001011 11 b VT 75 4b K andi syscall round wf 001100 12 c FF 76 4c L ori break trund wf 001101 13 d CR 77 4d M xori ceil of 001101 14 e SO 78 4e N lui sync floor of 001111 16 F SI 79 4f O mfhi 010000 17 11 DCL 80 50 P lui sync floor of 01101 19 13 DC3 83 53 S	(1)	s11	-							
Jal Ska div 00 0011 3 3 E/X 67 43 C		1. \								
Deq	-	1					SIX			
Display	-		-						-	_
Diez Srlv movs 00 0110 6 6 ACK 70 46 F bgtz Srav leg 00 0111 7 7 BEL 71 47 G addi jr		sllv								-
Dgtz Srav Degf 00 0111 7 7 BEL 71 47 G addi jr										
addi jr 00 1000 8 8 8 BS 72 48 H 00 1001 9 9 HT 73 49 I 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1										-
Section Sect			neg.j							
Slti			\			8				
Sltiu movn 00 1011 11 b VT 75 4b K		_	\			19				
andi syscall rouni.w.f 00 1100 12 c FF 76 4c L ori break trund.w.f 00 1101 13 d CR 77 4d M xori ceil.wf 00 1101 14 e SO 78 4e N lui sync floor.wf 00 1111 1f f SI 79 4f O mfhi 01 0000 76 10 DLE 80 50 P 01 0001 17 11 DC1 81 51 Q mflo movz.f 01 0010 18 12 DC2 82 52 R mtlo movn.f 10 001 19 13 DC3 83 53 S			\							_
ori break trunc, w.f. 00 1101 13 d CR 77 4d M coil. If 00 1110 14 e SO 78 4e N 101 15 sync floor. If 00 1111 16 f SI 79 4f O 10 1000 16 10 DLE 80 50 P 10 1000 17 11 DC1 81 51 Q 10 1000 18 12 DC2 82 52 R 10 10 10 19 13 DC3 83 53 S										
Xori Sync Ceil. Xf 00 1110 14 e SO 78 4e N										
10 Sync floor.		Dreak				-				
(2) mthi mthi mtho movz.f 01 0000 17 11 DC1 81 51 Q 10 0010 18 12 DC2 82 52 R 10 001 19 13 DC3 83 53 S		eum c	Y .							
(2) mthi mflo movz.f 01 0001 17 11 DC1 81 51 Q 10 0010 18 12 DC2 82 52 R 10 0010 19 13 DC3 83 53 S	IUI		11001.43						-	
mflo movz.f 010010 18 12 DC2 82 52 R 100010 19 13 DC3 83 53 S	(2)		\							
The land	(2)		movz.f							
1b add cvt.sf 10 0000 32 20 Space 96 60 10 0001 33 21 97 61 a 10 0010 34 22 " 98 62 b										
lh addu wt.df 100001 33 21 ! 97 61 a 100010 34 22 " 98 62 b			v riig	17. 3011/			203	35		
lh addu wt.df 100001 33 21 ! 97 61 a 100010 34 22 " 98 62 b	Γ	$\overline{\Box}$		\ , /:						
lh addu wt.df 100001 33 21 ! 97 61 a 100010 34 22 " 98 62 b	lb	add	cvt.s.f	10 0000	32	20	Space	96	60	•
lwl sub 10 0010 34 22 " 98 62 b									-	a
							-		-	
							#			
		•		18 8188	**	**	-	100		

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
000000	10001	10010	01000	00000	100000
add	17	18	8		

sub \$t1, \$s3, \$t4

Find register code and make it binary

\$t1=R9, \$s3=R19, \$s4=R20

R9=01001, R19=10011, R20=10100

000000	10011	10100	01001	00000	100010
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

I-format Instructions

Load word

- For "lw" and "sw"
 - rt: lw: load data in rt
 - sw: write data from rt
- 16-bit constant: signed offset added to base address stored in rs

ex: Iw \$t0, 32(\$s3) #\$t0 \leftarrow A[8], \$s3:A[0] base address (constant: 32)

I-format (I-type) Instructions

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

- ☐ When an instruction needs longer fields than R-format instructions
 - ☐ The 5-bit field is too small to be useful for representing constants
 - □ 16-bit signed constant or address: -2^{15} to $+2^{15} 1$ (32, 768 bytes of the address in the base register)
 - □ ex: addi \$s1, \$s2, 120 #\$s1 ← \$s2 +120

rt: s1, rs:s2, constant: 120

Design Principle 3: Good design demands good compromises.

- Uniformity of 32-bit instructions
 - First 16 bits in R-type Instructions are the same as those in I-type ones
- I-type instructions include lw/sw and immediate instructions (addi)
- Keep formats as similar as possible

Example

Translating MIPS code into machine language

\$t1: base address of A

\$s2:h

A[300] = h + A[300]

lw \$t0, 1200(\$t1) add \$t0, \$s2, \$t0 sw \$t0, 1200(\$t1)

Register	MIPS register name
R0	\$zero
R1	\$at
R2-R3	\$v0-\$v1
R4-R7	\$a0-\$a3
R8-R15	\$t0-\$t7
R16-R23	\$s0-\$s7
R24-R25	\$t8-\$t9
R26-R27	\$k0-\$k1
R28	\$gp
R29	\$sp
R30	\$fp
R31	\$ra

Register	MIPS Reg	Code
R8	\$t0	01000
R9	\$t1	01001
R18	\$s2	10010

Ор	rs	rt	rd	address/ shamt	funct
35	9	8		1200	
0	18	8	8	0	32
43	9	8		1200	

R-format and I-format Instructions

Instruction	Format	ор	rs	rt	rd	shamt	funct	address
add	R	0	reg	reg	reg	0	32 _{ten}	n.a.
sub (subtract)	R	0	reg	reg	reg	0	34 _{ten}	n.a.
add immediate	I	8 _{ten}	reg	reg	n.a.	n.a.	n.a.	constant
ไพ (load word)	I	35 _{ten}	reg	reg	n.a.	n.a.	n.a.	address
sw (store word)	I	43 _{ten}	reg	reg	n.a.	n.a.	n.a.	address

Table is from "Computer Organization and Design, 5th version, p. 84

Logical Operations

Instructions for bitwise manipulation

Operation	С	MIPS	
Shift left	<<	sll	
(unsigned) Shift right	>>	srl	
Bitwise AND	&	and, andi	
Bitwise OR	I	or, ori	
Bitwise NOT	~	nor	

(singed shift right: sra)

Shift Operations (R-type Instruction)

Why shamt takes only 5 bits?

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Shift left logical

- Shift left and fill with 0 bits
- s11 by *i* bits == multiplies by 2^i (useful when calculating byte offset for words)

■Shift right logical

- Shift right and fill with 0 bits
- $srl by i bits == divides by 2^i (unsigned only)$

Shift Operations

shift instructions:

- sll (shift left logical): shifts left, filler: 0s
- srl (shift right logical): shifts right, filler: 0s
- sra (shift right arithmetic): shifts right, empties is filled with sign extension

sll \$t2, \$t0, 4 # \$t2 = \$s0 << 4

Shift left logical

sll rd, rt, shamt

Shift Operations (logical)

sll shift left by 4 bits $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1001_{two}\ =\ 9_{ten}$ $9 \times 2^4 = 144$ shift by 4 bits $0000\ 0000\ 0000\ 0000\ 0000\ 1001\ 0000_{two}\ =\ 144_{ten}$ Fill with 0s srl shift right by 2 bits $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1001_{two} = 9_{ten}$ shift by 2 bits 0000 0000 0000 0000 0000 0000 0010two Fill with 0s

Shift Operations (Arithmetic)

sra: shift 1 bit right (arithmetic)
Keep the sign bit the same

$$0100 \rightarrow 0010$$

$$4 \rightarrow 2$$

$$1100 \to 1110$$

$$-4 \rightarrow -2$$

Shift Left Logical

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Register	MIPS register name
RO	\$zero
R1	\$at
R2-R3	\$v0-\$v1
R4-R7	\$a0-\$a3
R8-R15	\$t0-\$t7
R16-R23	\$s0-\$s7
R24-R25	\$t8-\$t9
R26-R27	\$k0-\$k1
R28	\$gp
R29	\$sp
R30	\$fp
R31	\$ra

sll \$t2, \$s0, 4

opcode (31:26)	(1) MIPS funct (5:0)	(2) MIPS funct (5:0)	Binary	Deci- mal	Hexa- deci- mal	ASCII Char- acter	Deci- mal	Hexa- deci- mal	ASCII Char- acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
		sub.f	00 0001	1	1	SOH	65	41	A
j	srl	mul.f	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	C

	000000	00000	10000	01010	00100	000000
_	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Bitwise AND Operation

Example

and \$t0, \$t1, \$t2

MIPS register name
\$zero
\$at
\$v0-\$v1
\$a0-\$a3
\$t0-\$t7
\$s0-\$s7
\$t8-\$t9
\$k0-\$k1
\$gp
\$sp
\$fp
\$ra

OR Operations

or \$t0, \$t1, \$t2

```
$t2 | 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t0 | 0000 0000 0000 00<mark>11 11</mark>01 1100 0000

NOT Operations

- ■Inverting bits in a word (0->1, 1->0)
- ■MIPS has NOR 3-operand instruction

How to implement NOT using NOR

nor \$t0, \$t1, \$zero

NOR				
А	В	Out		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

constant or address

16 bits

Conditional/Unconditional Operations

- Branch to a labeled instruction if true
 - □Otherwise, continue sequentially
- □ beq rs, rt, L1
 - \square if (rs == rt) branch to instruction labeled L1;
- □ bne rs, rt, L1
 - ☐ if (rs!= rt) branch to instruction labeled L1;
- □ j L1
 - □jump to instruction labeled L1
 - □goto L1

j target

2 target 6 26

rt

5 bits

J-format instruction

rs

5 bits

op

6 bits

Compiling If Statements (Equal)

☐ C code:

if
$$(i==j)$$
 f = g+h;

☐ Compiled MIPS code:

Exit: ...

VAR	REG
f	\$s0
g	\$s1
h	\$s2
i	\$s3
j	\$s4

Compiling If/Else Statements

☐ C code:

Compiled MIPS code:

	\$s3, \$s0,	•	
lse:	Exit \$s0,	\$s1,	\$ s2

VAR	REG
f	\$s0
g	\$s1
h	\$s2
i	\$s3
j	\$s4

Practice

```
main:
  li $s3, 1
  li $s4, 10
  li $s0, 0
Loop:
  beq $s3, $s4, Exit
  add $s0, $s0, $s3
  addi $s3, $s3, 1
  j Loop
Exit:
  jr $ra
```

li: load immediate

li \$t0, 1 → addi \$t0, \$zero, 1

Translate it into C code

It seems not like what we would write...

Conditional Operations: Less than

- Set result to 1 if the condition is true
 - Otherwise, set to 0
- ■slt rd, rs, rt
 - if (rs < rt) rd = 1; else rd = 0;</p>
- slti rt, rs, constant
 - if (rs < constant) rt = 1; else rt = 0;</p>
- Use in combination with beq, bne

```
slt $t0, $s1, $s2  # if ($s1 < $s2) t0=1
beq $t0, $zero, ELSE  # branch to ELSE if t0==0
```

ELSE:

Observation:

Using "less than" will have one more instruction than using "equal to"

Less than and Branch Equal

- ■In C language, it is intuitive to write if(a<b) ... else Why don't we have blt (branch less than) or ble(branch less than or equal to) instead?
- branch less than basically combine a comparing instruction with a branch one, involving more work per instruction and thus more clocks
 - All other instructions would be slowed down.
- ■Good design demands good compromises

Compiling If/Else Statements (less than)

☐ C code:

☐ Compiled MIPS code:

VAR	REG
f	\$s0
g	\$s1
h	\$s2
i	\$s3
j	\$s4

```
slt $t0, $s3, $s4  #if($s3<$s4) $t0=1 else $t0=0
beq $t0, $zero, Else  #$if($t0==0) goto Else
add $s0, $s1, $s2
j  Exit
Else: sub $s0, $s1, $s2
Exit: ...</pre>
```


Loop Statements: while

■C code:

```
while (save[i] == k)
i += 1;
```

VAR	REG
i	\$s3
k	\$s5
save	\$s6

while

Loop Statements: for

■Code

■Compiled MIPS code:

VAR	REG
f	\$s0
g	\$s1
h	\$s2
i	\$s3

```
addi $s3, $zero, 1  # $s3=1
loop: slti $t0, $s3, 11  # if($s3<11) $t0=1 else $t0=0
beq $t0, $zero, Exit # if($t0==0) goto Exit
add $s0, $s1, $s2  # $s0=$s1+$s2
addi $s3, $s3, 1  # $s3=$s3+1
j loop # goto loop</pre>
Exit: ...
```