

BHARAT ACHARYA EDUCATION

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

IMPORTANT POINTS TO REMEMBER FOR I/O DESIGNING

- Normally I/O devices are mapped using I/O mapped I/O which means I/O devices are given I/O addresses
- Here I/O addresses can be either 8-bit or 16 bit.
- If the question says direct addressing mode or fixed port addressing,
 Then use an 8-bit address like 80H (A7-A0).
- If the question says indirect addressing or variable port addressing,
 Then use 16-bit address like 8000H (A15-A0).
- If nothing is mentioned, use any of the above techniques.
- If <u>memory mapped I/O</u> is asked (Very rare), then remember the following changes
 Give the I/O device a 20-bit unused memory address like 80000H (A19-A0)
 Connect MEMR# and MEMW# signals to the I/O device instead of the usual IOR# and IOW# signals

Differentiate between

	I/O MAPPED I/O	MEMORY MAPPED I/O
1	I/O device is treated as an I/O device and hence given an I/O address .	I/O device is treated like a memory device and hence given a memory address .
2	I/O device has an 8 or 16 bit I/O address.	I/O device has a 20 bit Memory address.
3	I/O device is given IOR# and IOW# control signals	I/O device is given MEMR# and MEMW# control signals
4	Decoding is easier due to lesser address lines	Decoding is more complex due to more address lines
5	Decoding is cheaper	Decoding is more expensive
6	Works faster due to less delays	More gates add more delays hence slower
7	Allows max 2¹⁶ = 65536 I/O devices	Allows many more I/O devices as I/O addresses are now 20 bits.
8	I/O devices can only be accessed by IN and OUT instructions.	I/O devices can now be accessed using any memory instruction.
9	ONLY AL/ AH/ AX registers can be used to transfer data with the I/O device.	Any register can be used to transfer data with the I/O device.
10	Popular technique in Microprocessors .	Popular technique in Microcontrollers.