

IGAWorks BIG DATA COMPETITION

CTR Prediction

팀명: 한강수

팀원: 김연강, 이승한, 차수만

목차

01	Introduction 데이터 소개 & EDA
02	Data Preprocessing 변수 선택
03	Modeling DeepFM (Deep Factorization Machine)
04	Result

1. train, test

학습/평가기간 노출 로그 데이터

(train: 5,500,000 rows,

test: 550,000 rows)

2. audience_profile

오디언스 관련 정보 모음

(10,000,001 rows)

1. Train.csv & Test.csv

구분	변수명	변수 설명	카테고리 개수
	ssp_id	SSP 아이디	17
	campaign_id	캠페인 아이디	196
	adset_id	광고 아이디	924
	placement_type	광고 타입	4
광고	media_id	미디어 아이디	6010
데이터	media_name	미디어 한글이름	7031
	media_bundle	미디어 앱명	6504
	media_domain	미디어 도메인	162
	publisher_id	매체사 아이디	4062
	publisher_name	매체사 이름	1249
	advertisement_id	광고주 아이디	31

1. 데이터 소개

1. Train.csv & Test.csv

구분	변수명	변수 설명	카테고리 개수
	device_ifa	기기 구별 아이디	1,869,137
	device_os	기기 OS	2
	device_os_version	기기 OS 버전	125
	device_model	기기 모델명	1,664
	device_carrier	기기 통신사	536
기기	device_make	기기 제조사	299
데이터	device_connection_type	기기 연결방식	8
	device_language	기기 언어	33
	device_country	기기 국가	1
	device_region	기기 지역	148
	device_city	기기 도시	1,326
기타	click	클릭 여부	2
데이터	event_datetime	로그 발생 시간	5,478,966

1. 데이터 소개

2. audience_profile.csv

구분	변수명	변수 설명	카테고리 개수
	device_ifa	기기 구별 아이디	1,869,137
	age	연령 (추정)	12
고객	gender	성별 (추정)	2
데이터	marry	기혼여부 (추정)	2
	install_pack	설치된 앱 정보	767,235
	cate_code	IGAW 카테고리별 등급	767,235
	predicted_house_price	자산 가격 (추정)	3466

Problem

Train과 Test의 bid_id가, audience_profile에 전부 있는 것은 아님

Problem

Train과 Test의 bid_id가, audience_profile에 전부 있는 것은 아님

Solution

223만

277만

audience_profile 정보가 **있는** 사람과 **없는** 사람으로 구분

[Data 1] **train** (기존과 동일)

[Data 2] train & audience_profile를 merge

[Data 1] train/test

train 데이터 전체

(**5,500,000** rows)

audience 정보가 **없는** test 데이터 (366,391 rows)

[Data 2] train/test & audience_profile

audience 정보가 있는 train 데이터만

(**2,232,520** rows)

audience 정보가 **있는** test 데이터만 (183,609 rows)

No_aud_merged (5,866,391 rows)

aud_merged (2,416,129 rows)

1-2. EDA

GOAL: 유저가 특정 광고를 클릭할 지 여부를 파악! (y = click)

1. 날짜 데이터

요일 별로 다른 click 비율

시간대(0~23시) 별로 다른 click 비율

1. 날짜 데이터

요일 별로 다른 click 비율

시간대(0~23시) 별로 다른 click 비율

2. 광고 데이터

ssp_id, adset_id, campaign_id 별로 다른 click 비율

2. 광고 데이터

placement_type, media_domain 별로 다른 click 비율

2. 광고 데이터

publisher_name, publisher_id 별로 다른 click 비율

2. 광고 데이터

media

 media_id
 media_name
 media_bundle
 media_domain

 lyDyyhXBnW
 dAWR8DOmzo
 V8yCzbCKcB
 pjBT3sDGbH

publisher

publisher_id publisher_name

YOSTF4U4h4 tXBXkBEsgT

다중공산성 문제?

2. 광고 데이터

media

 media_id
 media_name
 media_bundle
 media_domain

 lyDyyhXBnW
 dAWR8DOmzo
 V8yCzbCKcB
 pjBT3sDGbH

publisher

publisher_id publisher_name

YOSTF4U4h4 tXBXkBEsgT

다중공산성 문제?

BUT 특정 변수를 <mark>버리지 않는 것</mark>이 더 나은 결과를 가져왔음

+ 다른 변수와의 상호작용 고려 시, 다른 영향을 가질 수도

전부 사용!

3. 기기 데이터

각 종 기기(device) 정보 별로 다른 click률!

(device_os , device_os_version,
 device_model, device_carrier)

3. 기기 데이터

각 종 기기(device) 정보 별로 다른 click률!

(device_connection_type, device_region,

Device_language, device_make)

4. 기타 데이터

광고(advertisement) 정보 별로 다른 click률!
(adset_id & advertisement_id)

4. 기타 데이터

광고(advertisement) 정보 별로 다른 click률!

(adset_id & advertisement_id)

두 변수 중 하나만 사용하는 것 보다,

둘 다 사용했을 때 더 좋은 결과!

1. 개인 정보

나이(age), 성별(gender), 결혼 여부(marry)에 따라 click률에 큰 차이가 있음

2. 앱 설치 정보

install_pack

train_merged_aud['install_pack'].value_counts()

n201500, n228570, n128570, n178589, p164849, n254830, n257850, p128200, p48200, p.91020, p.216160, p.268440, p.268570, p.16850, p.68550, p

Name: install_pack, Length: 767235, dtype: int64

mean = np.mean(pack_psudeo_length100/pack_length100)
mean

7.853241826853476

(평균적으로 7.85개의 앱을 설치)

[PROBLEM] 너무 많은 '설치한 앱' 종류 & 개인 별로 상이한 '설치한 앱의 종류'

2. 앱 설치 정보

install_pack

mean = np.mean(pack psudeo length100/pack length100) mean

이렇게 다양한 categorical 변수들을,

(평균적으로 7.85개의 앱을 설치)

ᄣ설치한 앱의개수(pack_length)"라는 하나의 numeric 변수로!

2. 앱 설치 정보

새로운 변수, "pack_length" (설치한 앱의 개수)

Click률에 있어서 유의미한 차이를 보이는 pack_length

Data Overview Summary

너무 많은 변수들!
(버리는 변수들 거의 없음 & category들 간의 grouping도 안함)

+ 심지어 categorical variables들의 dummy화까지 하게 되면?

Data Overview Summary

```
너무 많은 변수들!
(버리는 변수들 거의 없음 & category들 간의 grouping도 안함)
```

+ 심지어 categorical variables들의 dummy화까지 하게 되면?

NO WORRY! Pre-trained Model을 사용!

Data2 기준으로 소개

(Data1도 audience_profile의 feature 없다는 점 제외하고 동일)

1. Data Merge (공통 column인 Bid_id를 기준으로)

[Train / Test]

[Audience_Profile]

Bid_id	특징1	특징2	
Α			
В			
С			

Bid_id	특징3	특징4
Α		
С		
F		

Data2 기준으로 소개

(Data1도 audience_profile의 feature 없다는 점 제외하고 동일)

1. Data Merge (공통 column인 Bid_id를 기준으로)

[Train / Test]

Bid_id	특징1	특징2
Α		
В		
С		

[Audience_Profile]

Bid_id	특징3	특징4
Α		
С		
F		

[Data 2 (aud_merged)]

Bid_id	특징1	특징2	특징3	특징4
Α				
С				

Data2 기준으로 소개

(Data1도 audience_profile의 feature 없다는 점 제외하고 동일)

1. Data Merge (공통 column인 Bid_id를 기준으로)

 Bid_id
 특징1
 특징2
 특징3
 특징4

 A
 ...
 ...

 C
 ...
 ...

[Data 2 (aud_merged)]

그대로 사용

Bid_id	특징1	특징2
Α		
В		••
С		

[Data 1 (no_aud_merged)]

2. 변수 추가 및 제거

변수 추가

- 1. hour(로그 발생 시간(시)) 접속한 시간대 (대낮에 길가면서 핸드폰 할 때 vs 자기 직전에 핸드폰 할 때)
- 2. dayofweek(로그 발생 요일) 홍보하는 기업에 따라 맞춤형 요일이 있을 수도!

변수 제거

- 1. device_country 모든 data가 동일한 값을 가짐
- 2. device_ifa 너무 많은 unique 값!
- 3. event_datetime 위에서 hour & min을 뽑아서 사용함
- 4. predicted_house_price 추가 시 오히려 성능 저하 (영향을 미치지 않는 요소 or 추정치의 신뢰 문제)
- 5. cate_code
- 6. install_pack

3. Label Encoding

(추후에 사용할 DeepFM이라는 모델을 위해서 필요한 전처리 과정)

	adset_id	advertisement_id	age	bid_id	campaign_id	cate_code
0	109	19	7	aAEDD9Aelv	3	537223
1	109	19	7	120KZBpPEp	3	537223
2	117	19	7	AMFiNF3X7r	3	537223
3	187	18	7	Mza3hx3DOX	110	537223
4	117	19	7	4GbWwwNnJZ	3	537223

3. Modeling

Deep FM

Deep FM

[Deep FM] Deep Factorization Machine

Factorization Machine

example

	취미	전공	Y
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

Factorization Machine

Linear model W_{독서} + W_{경영}

[Deep FM] Deep Factorization Machine

	취미	전공	Υ
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

[Deep FM] Deep Factorization Machine

Factorization Machine

	취미	전공	Υ
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

[Deep FM] Deep Factorization Machine

Factorization Machine

취미전공YA독서경영1B골프컴과0C야구철학1

Polynomial model
$$W_{\text{독서}} + W_{\text{경영}} + W_{\text{독서,경영}}$$

[Deep FM] Deep Factorization Machine

Factorization Machine

	취미	전공	Υ
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

W_{독서} + W_{경영} → Too Simple Linear model

Polynomial model
$$W_{\mathrm{{ iny 4}}}$$
 + $W_{\mathrm{{ iny 36}}}$ + $W_{\mathrm{{ iny 4}},\mathrm{{ iny 36}}}$

Overfitting & Unseen Data (ex. 골프&경영)

[Deep FM] Deep Factorization Machine

Factorization Machine

	취미	전공	Υ
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

Linear model W_{독서} + W_{경영} → Too Simple

Polynomial model W_{독서} + W_{경영} + W_{독서 경영} → Overfitting & Unseen Data (ex. 골프&경영)

[Deep FM] Deep Factorization Machine

Factorization Machine

	취미	전공	Υ
Α	독서	경영	1
В	골프	컴과	0
С	야구	철학	1

Linear model W_{독서} + W_{경영} → Too Simple

Polynomial model W_{독서} + W_{경영} + W_{독서,경영} → Overfitting & Unseen Data (ex. 골프&경영)

Factorization Machine W₅₄ + W

각각의 값들이 "latent vector" 를 가지고 있음!

(unseen data를 다룰 수 있음! (ex. 이전에는 없던 "취미가 독서"이고 "전공이 컴과:인 사람))

Modeling

[Deep FM] Deep Factorization Machine

[핵심] 어떻게 latent vectors들을 훈련시킬 것인가?

FM은 "Click Prediction"에서 특히 잘 작동!

(각기 다른 선호도를 가지고, 방문한 사이트들과 설치 앱들이 다른 유저들)

(ADIC 10 UCAI WILL UNSCEN UALA! (ex. 쉬미 : 독서, 전공 : 검과) /

How to train latent vectors?

How to train latent vectors?

with "Neural Network"

Deep FM

Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr prediction[J]. arXiv preprint arXiv:1703.04247, 2017.

why DeepFM?

- 1. 대부분의 feature들이 categorical variable
 - dummy화 할 경우, 매우 sparse해지는 문제 발생!

why DeepFM?

- 1. 대부분의 feature들이 categorical variable
 - dummy화 할 경우, 매우 sparse해지는 문제 발생!

저차원으로 embedding (4-dim)

why DeepFM?

- 1. 대부분의 feature들이 categorical variable
 - dummy화 할 경우, 매우 sparse해지는 문제 발생!

- 2. Unseen Data들을 다룰 수 있음
- ex) "A형"에 "럭비"가 취미인 "20kg"의 "6살"아이..

why DeepFM?

- 1. 대부분의 feature들이 categorical variable
 - dummy화 할 경우, 매우 sparse해지는 문제 발생!
- 2. Unseen Data들을 다룰 수 있음
- ex) "A형"에 "럭비"가 취미인 "20kg"의 "6살"아이..

why DeepFM?

- 1. 대부분의 feature들이 categorical variable
 - dummy화 할 경우, 매우 sparse해지는 문제 발생!

➡ 저차원으로 embedding (4-dim)

- 2. Unseen Data들을 다룰 수 있음
- ex) "A형"에 "럭비"가 취미인 "한국"에 사는 "남자"

V_{A형} ■ V_{럭비} ■ V_{한국} ■ V_{남자}

- 3. Pretrained Model
 - 한 번 학습 이후, 새로운 데이터에 대해 빠르게 적용 가능

$$y_{FM} = \langle w, x \rangle + \sum_{i=1}^{d} \sum_{j=i+1}^{d} \langle V_i, V_j \rangle x_i \cdot x_j$$

Example)

야구

Thank you

Insert the title of your subtitle Here