BIOINFORMATYKA

edycja 2018 / 2019

wykład 2

Zadania bioinformatyki

dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net

Plan wykładu

- Odrobina biologii
- Najważniejsze zadanie bioinformatyki 2.
- Narzędzia programistyczne (biblioteki Bio*) 3.

Instytut Informatyki UJ

Odrobina biologii

Kwasy nukleinowe (DNA i RNA) - budowa

DNA od RNA odróżnia budowa rdzenia cukrowego oraz rodzaje zasad (azotowych).

Obrazowo: każda cząsteczka jest "nitką" (rdzeń cukrowo-fosforanowy), na którą nawleczone są koraliki czterech różnych rodzajów (zasady azotowe).

Jacek Śmietański, Kraków 2018

Zasady purynowe: adenina (A), guanina (G)

Zasady pirymidynowe: cytozyna (C), tymina (T), uracyl (U)

DNA - kwas deoksyrybonukleinowy

Pojedynczy element nici: deoksyryboza + fosforan + zasada azotowa (A,T,G,C)

DNA tworzy strukturę helisy, złożoną z dwóch komplementarnych do siebie nici.

Nić DNA syntetyzowana jest w kierunku 5' → 3'. W tej też kolejności zapisywane są zasady azotowe.

Fragment łańcucha kwasu nukleinowego

DNA – zasada komplementarności

Każdej zasadzie na jednej nici odpowiada komplementarna jej zasada na drugiej nici.

Jacek Śmietański, Kraków 2018

Replikacja

slajd 9

Tworzenie kopii nici DNA (podczas podziału komórki). Proces bardzo dokładny.

Synteza RNA na matrycy DNA

(zachowana jest zasada komplementarności)

A - UC - GG - CT - A

W RNA zamiast tyminy (T) jest uracyl (U). Zakres błędów: 1 pomyłka na 10⁴ – 10⁵ nukleotydów.

Dlaczego proces ten może być mniej dokładny niż replikacja?

slajd 10

Zasady azotowe wchodzące w skład nici RNA:

- A (adenina)

Źródło grafiki: http://bioinfo.mol.uj.edu.pl/articles/Pawlica06

NH₂

Adenine

Rodzaje RNA

mRNA

matrycowy (informacyjny), nośnik przepisanej z DNA informacji o sekwencji aminokwasów w białku. Ma cechy umożliwiające przyłączanie się do rybosomów i udział w syntezie białka. Wielkość zależna od wielkości kodowanego polipeptytdu. Zróżnicowana trwałość, raczej mało stabilny

ncRNA

biorą udział w wielu procesach komórkowych, jak: regulacja transkrypcji, replikacji DNA, obróbki i modyfikacji innych cząsteczek RNA (transkryptów), np.:

- rRNA (rybosomowy, tworzy (wraz z białkami) rybosomy. Jeden z rRNA jest katalizatorem tworzenia wiązania peptydowego (rybozymem). Różne rodzaje i wielkość (120-4700 zasad). rRNA eukariontów i prokariontów zasadniczo się różnią. Długożyjący (stabilny).
- tRNA (transportujący, mały (65-110 nt), przenosi zaktywowane aminokwasy do rybosomu)
- snRNA (małe jądrowe RNA) biorą udział w usuwaniu intronów i łączeniu egzonów;
- miRNA (mikro RNA) hamują translację;
- siRNA (małe interferencyjne RNA) ułatwiają degradację mRNA;
- -

Dojrzewanie mRNA

Proces usuwania intronów (fragmentów niekodujących) z pierwotnego transkryptu.

slajd 13

Synteza białka na matrycy dojrzałego mRNA.

Źródło: http://library.thinkquest.org/C004535/media/translation.gif

Jacek Śmietański, Kraków 2018

Każda trójka zasad koduje jeden określony aminokwas lub sygnał zakończenia translacji.

Ile jest różnych kodonów?

First Letter	Second Letter				Third
	U	C	A	G	Letter
U	phenylalanine	serine	tyrosine	cysteine	υ
	phenylalanine	serine	tyrosine	cysteine	С
	leucine	serine	stop	stop	A
	leucine	serine	stop	tryptophan	G
C	leucine	proline	histidine	arginine	U
	leucine	proline	histidine	arginine	С
	leucine	proline	glutamine	arginine	A
	leucine	proline	glutamine	arginine	G
4	isoleucine	threonine	asparagine	serine	υ
	isoleucine	threonine	asparagine	serine	С
	isoleucine	threonine	lysine	arginine	A
	(start) methionine	threonine	lysine	arginine	G
G	valine	alanine	aspartate	glycine	C
	valine	alanine	aspartate	glycine	С
	valine	alanine	glutamate	glycine	A
	valine	alanine	glutamate	glycine	G

Źródło grafiki: http://upload.wikimedia.org/wikipedia/commons/d/d4/RNA-codons.png

slajd 15

Kod genetyczny (2)

Zastanów się: Jakie konsekwencje niesie za sobą redundancja kodu genetycznego?

Źródło: http://en.wikipedia.org/wiki/File:GeneticCode21-version-2.svg

Jacek Śmietański, Kraków 2018

Aminokwasy – elementy budulcowe białek

Ogólna budowa aminokwasów:

w neutralnym pH

grupa aminowa - NH₂

grupa karboksylowa - COOH

Aminokwasy białkowe

nazwa	symbol	skrót
alanina	Α	Ala
arginina	R	Arg
asparagina	N	Asn
kw.asparaginowy	D	Asp
cysteina	С	Cys
glutamina	Q	Gln
kw.glutaminowy	Е	Glu
glicyna	G	Gly
histydyna	Н	His
izoleucyna	1	lle

nazwa	symbol	skrót
leucyna	L	Leu
lizyna	K	Lys
metionina	M	Met
fenyloalanina	F	Phe
prolina	Р	Pro
seryna	S	Ser
treonina	Т	Thr
tryptofan	W	Trp
tyrozyna	Υ	Tyr
walina	V	Val

slajd 18

Np. wielkość, ładunek, hydrofobowość, aromatyczność, ...

Powyższe właściwości można zilustrować na diagramie Venna

Ciekawostka: układ okresowy aminokwasów

Periodic Chart of Amino Acids

www.bachem.com

Acidic

C-terminus

N-terminus

H₃N⁺-Gly-Ile-Val-Cys-Glu-Gln-....-Thr-Leu-His-Lys-Asn-COO

Podstawowa jednostka budulcowa i funkcjonalna organizmu. Ciąg aminokwasów połączonych wiązaniami peptydowymi.

Struktury białek

Poziomy przestrzennej organizacji białek:

I rzędowa – liniowa sekwencja aminokwasów

II rzędowa – opisuje lokalne pofałdowanie (α -helisy, β -kartki)

III rzędowa – struktura 3D pojedynczego łańcucha

IV rzędowa – struktura 3D całego białka (połączone wszystkie łańcuchy)

slajd 22

Zwijanie białka (film): http://www.youtube.com/watch?v=fvBO3TqJ6FE

Struktura 2-rzędowa

DNA → RNA → Białko

Sekwencja → Struktura → Funkcja → Fenotyp

Individuals

Populations

Biological Information

Przepływ informacji na poziomie całej populacji w szerokiej przestrzeni czasowej

Kilka istotnych faktów

- Informacja genetyczna jest redundantna różne geny mogą kodować to samo białko
- Informacja strukturalna jest redundantna różne białka mogą mieć tą samą funkcję
- Jeden gen może mieć wiele funkcji
- Geny są jednowymiarowe, ale ich funkcja zależy od struktury trójwymiarowej kodowanego białka

Najważniejsze zadania bioinformatyki

Przeszłość – teraźniejszość - przyszłość

slajd 28

"Tak jak wiek XIX był wiekiem węgla, pary i mechaniki, a wiek XX: wiekiem atomu i fizyki, tak wszystko wskazuje na to, że wiek XXI będzie wiekiem biologii i informatyki"

(Prof. Jacek Błażewicz)

Genomika – przykładowe zadania / zastosowania

- Sekwencjonowanie DNA i RNA
- Mapowanie genomów
- Analiza i porównywanie sekwencji
- Zarządzanie dużymi bazami danych (np. GenBank, EMBL, DDBJ)
- Algorytmy i miary podobieństwa (BLAST itp.)
- Biologia ewolucyjna

Jacek Śmietański, Kraków 2018

Genomika (2)

Przykład:

Etapy analizy genomowego DNA

Jacek Śmietański, Kraków 2018

Transkryptomika – przykładowe zadania / zastosowania

- Sekwencjonowanie transkryptomów
- Analiza mikromacierzy
- Poznawanie funkcji genów
- Badanie interakcji RNA-białko
- Rola RNA różnych typów

Bioinformatyka, wykład 2

Proteomika – przykładowe zadania / zastosowania

- Klasyfikacja białek
- Przewidywanie struktury białek
- Przewidywanie funkcji białek
- Poszukiwanie miejsc wiążących
- Modelowanie molekularne
- Projektowanie leków (CADD)

slajd 32

Metabolomika – przykładowe zadania / zastosowania

czyli biologia systemów:

- Modelowanie interakcji w złożonych systemach biologicznych (szlaki metaboliczne);
- Wizualizacja, grafy, sieci zależności

Inne klasyfikacje

genomika funkcjonalna (część transkryptomiki; badanie funkcji genów)

bioinformatyka strukturalna (analiza struktur i interakcji: RNA, białka, kompleksy)

slajd 34

Narzędzia programistyczne (biblioteki Bio*)

Biblioteki dedykowane bioinformatykom

Biopython http://biopython.org

BioJava http://biojava.org

slajd 36

BioPerl http://www.bioperl.org

BioRuby http://bioruby.open-bio.org/

R http://www.r-project.org/

MatLab

http://www.mathworks.com/products/matlab/

Narzędzia do modelowania molekularnego np. gromos: http://www.gromos.net/

