EVML

CONVOLUTIONAL NEURAL NETWORKS

JEROEN VEEN

QUIZ TIME

- Individual, multiple-choice questions
- Online: http://www.socrative.com room 1PTGB6PY
- Open book quiz, so books and slides can be consulted
- HAN student number, so NOT your name, nickname or anything else.
- Quiz starts exactly at class hour and takes 10 minutes.
- Be on time and have your equipment prepared

AGENDA

- Inspiration from the visual cortex
- CNN vs MLP
- Recap convolution
- Convolutional layer
- Pooling layer
- Normalization layer
- Dropout layer
- CNN architecture

INSPIRATION FROM THE VISUAL CORTEX

HAN_UNIVERSITY OF APPLIED SCIENCES

INSPIRATION FROM THE VISUAL CORTEX

Source: By Selket - I (Selket) made this from File:Gray728.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1679336

LOCAL RECEPTIVE FIELDS

Source: Géron, ISBN: 9781492032632

• Each neuron has a different receptive field.

INTRODUCING CNNS

- Emulate the visual cortex
- Exploit strong spatially local correlation present in natural images
- Adding convolutional layers and pooling layers to ANN
- Developed in the late 1980s and then forgotten about due to the lack of processing power

HIERARCHICAL PATTERN RECOGNITION

- Lower layers detect simple features (edges, corners)
- Middle layers combine these into patterns (textures, basic shapes)
- Higher layers identify complex objects (faces, objects)

LAYERS, LAYERS

- Input layer: rearranged image
- Convolutional layer (CONV)
- Activation layer (ACT) or non-linear activation function (ReLU)
- Pooling layer (POOL) to shrink feature image
- Fully-connected aka dense layer (FC) to map features to classes
- Batch-normalization layer (BN) to reduce volatility of learning rate
- Dropout layer (DO) to reduce overfitting
- Output layer for classification

RECAP CONVOLUTION

https://www.youtube.com/watch?v=KuXjwB4LzSA

EXAMPLE

EXAMPLE: VERTICAL SOBEL KERNEL

CONVOLUTIONAL KERNELS

- Aka convolutional matrix, filter
- Areas are highlighted that activate the filter the most

STACKING MULTIPLE FEATURE MAPS

STRIDE

Reduce hidden-layer nodes

ZERO-PADDING

Preserve image size

VISUALIZING FEATURE MAPS

EXERCISE

- Have a look at convolution_demo.py
 and play around with stride, zero-padding, kernels and input images, in
 order to appreciate the effect of the parameters.
- How does the stride value affect the output size?
- How does padding affect the output size?

CONVOLUTIONAL LAYER SUMMARY

- Local connectivity
- Shared weights
- 3D volumes of neurons,

Should be an integer number!

POOLING LAYER

- Non-linear down sampling
- Reduce number of dimensions of the feature map
- Find larger-scale detail than just edges and curves

MAX POOLING

• Select maximum value from matrix (default size is 2 X 2)

Input						
7	ന	5	2	maxpool	Output	
8	7	1	6		8	6
4	9	3	9		9	9
0	8	4	5			

AVERAGE POOLING

Take average value from matrix (default size is 2 X 2)

 $Source: http://static.zybuluo.com/mShuaiZhao/85xogdnxjl4hqd6hm3magreb/average_pooling.png$

In most of the cases, max pooling is used because its performance is much better than average pooling.

INVARIANCE TO SMALL TRANSLATIONS

FULLY CONNECTED LAYERS

- Perform classification
- Softmax activation function

EXERCISE

- Have a look at pooling_demo.py
 and play around with the type of pooling, stride, pool-size, and input
 images, in order to appreciate the effect of the parameters.
- How does pool_size affect the output size?
- How does stride affect the output size?
- Compare max vs average pooling

NORMALIZATION LAYER

- Stabilize gradients for optimal performance
- Recenter and rescale our data such that is between 0 and 1 or -1 and 1
- Normalize inputs to intermediate layers

BATCH NORMALIZATION

- Standardize the input of a layer across a single batch
- Often impractical to train on entire dataset

See e.g.

https://towardsdatascience.com/different-types-of-normalization-in-tensorflow-dac60396efb0

DROPOUT LAYERS

- Randomly removing units from the neural network during a training gradient step.
- Reduce overfitting

TYPICAL CNN ARCHITECTURE

Source: Géron, ISBN: 9781492032632

LEVERAGING PRETRAINED MODELS

- Feature extraction
 - retrieving intermediate representations produced by the pretrained model
 - E.g. higher-level attributes such as color, texture, shape
- To increase performance when using feature extraction with a pretrained model, engineers often *fine-tune* the weight parameters applied to the extracted features.
- Common architectures are discussed by Géron

LENET

Source: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278–2324.

ALEXNET

ImageNet competition

ZFNet (2013), GoogLeNet (2014), VGGNet (2014), ResNet (2015), DenseNet (2016) etc.

INSPIRATION

- https://www.tensorflow.org/hub
- https://keras.io/api/applications/
- https://www.kaggle.com/
- https://google.github.io/mediapipe/
- https://developer.ibm.com/articles/transfer-learning-for-deep-learning/