1 Basic Group Theory

1.1 Homomorphisms and Isomorphisms

- A function $\varphi \colon H \to G$ is a group <u>homomorphism</u> if for all $a, b \in H$ $\varphi(a \star_H b) = \varphi(a) \star_G \varphi(b)$
 - We call a homomorphism an isomorphism if it is injective.
 - We say that two groups G and K are isomorphic if there exists an isomorphism $\varphi \colon G \to K$
- $\operatorname{Ker}(\varphi) \triangleleft H$ and $\operatorname{Im}(\varphi) \leq G$ for any homomorphism $\varphi \colon H \to G$

1.2 Direct Products

- \bullet Direct Products give us a way to form a group which has two particular subgroups, G and H
- The direct product of two groups G and H is the set $G \times H$ with the operation of component-wise composition:

$$(g_1, h_1) \star (g_2, h_2) = (g_1 \star_G g_2, h_1 \star_H h_2)$$

Clearly then the groups $G \times \{e_H\}$ and $\{e_G\} \times H$ are subgroups of $G \times H$ and are also isomorphic to G and H respectively

- The direct product theorem states that for $H, K \leq G$ if the following properties hold, $H \times K \cong G$:
 - 1. $\forall q \in G \ \exists h \in H, k \in K \ \text{such that } hk = q$
 - 2. $\forall h \in H, k \in K, hk = kh$
 - 3. $H \cap K = \{e\}$
 - The theorem can be shown to be true by the isomorphism $\varphi \colon H \times K \to G$ given by $(h,k) \mapsto hk$
 - Note that this is only one such isomorphism and the converse of the direct product theorem does not hold

2 Examples of Groups

2.1 Permutation groups

- Every $\sigma \in S_n$ is expressible in disjoint cycle notation
 - This can be shown by taking some $x \in \{1, 2, ..., n\}$ and considering $\langle x \rangle$. Then pick some $y \in \{1, 2, ..., n\}, y \notin \langle x \rangle$ and consider $\langle y \rangle$. Repeat until every element of $\{1, 2, ..., n\}$ is in exactly one cycle.
 - It is easy to show that this is unique as it is a union of cyclic groups
- Every $\sigma \in S_n$ is expressible as a product of transpositions
 - This can be shown easily by writing σ in disjoint cycle notation and noting that $(a_1a_2a_3 \dots a_k) = (a_1a_2)(a_2a_3) \dots (a_{k-1}a_k)$
 - This product is not necessarily unique
- By considering $\#(\tau\sigma)$ for $\sigma \in S_n$ and a transposition τ it may be shown that when σ is written as a product of transpositions, the number of transpositions is either always even or always odd

2.2 Mobius Groups

• The Mobius Group \mathcal{M} is the set of functions $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form:

$$f(z) = \frac{az+b}{cz+d}$$

And with $ad - bc \neq 0$ under the group operation $f \star g = f \circ g$ for $f, g \in \mathcal{M}$

3 Lagrange's Theorem

• The left cosets of H in G are the sets of the form $gH = \{gh : h \in H\}$ for $g \in G$

• Lagrange's Theorem says that for a subgroup $H \leq G$:

$$|G| = |H| \cdot |G:H|$$

Where |G:H| is the number of distinct cosets of H in G

 The theorem can be proven by showing that the cosets are disjoint and of the same size

4 Quotients of Groups

- Note that for $N \triangleleft G$, the cosets of N in G form a group under the operation $aN \star bN = abN$
 - The condition that N is normal in G is necessary to ensure that the operation is well-defined
 - This group is called the quotient group of G by N, written G/N
- The quotient group can be thought of as the group found by partitioning elements of G into equivalence classes with the equivalence relation $aRb \iff aN = bN$
- All of this leads towards the 1st Isomorphism Theorem: Let $\varphi \colon G \to H$ be a homomorphism. Then $G/\mathrm{Ker}\varphi \cong \mathrm{Im}\varphi$
 - This can be shown by considering the isomorphism $\phi \colon G/\mathrm{Ker}\varphi \to \mathrm{Im}\varphi$ defined by $g \cdot \mathrm{Ker}\varphi \mapsto \varphi(g)$
- Correspondence Theorem: Let $N \triangleleft G$, then the subgroups of G/N are in bijective correspondence with the subgroups of G containing N.

Proven by considering some $H \leq G/N$ and the map

$$\pi\colon G\to G/N$$

• 2nd Isomorphism Theorem: Let $H \leq G$, $N \triangleleft G$. Then

$$H \cap N \triangleleft H$$
 and $\frac{H}{H \cap N} \cong \frac{HN}{N}$

Proven by considering the surjective homom $\varphi \colon H \to \frac{HN}{N}$ defined by $h \mapsto hN$ with $\operatorname{Ker} \varphi = H \cap N$

• 3rd Isomorphism Theorem: Let $N \leq M \leq G$ such that $N \triangleleft G$, $M \triangleleft G$. Then

$$\frac{M}{N} \cong \frac{G}{N} \text{ and } \frac{\frac{G}{N}}{\frac{M}{N}} \cong \frac{G}{M}$$

Proven by considering the surjective homom $\varphi \colon G/N \to G/M$ given by $gN \mapsto gM$. This has kernel M/N so the result follows

5 Group Actions

- Let G be a group and X a set. An <u>action</u> of G on X is a function $\alpha \colon G \times X \to X$ defined by $(g, x) \mapsto \alpha_g(x)$ satisfying:
 - 1. $\alpha_a(x) \in X \ \forall q \in G, \forall x \in X$
 - 2. $\alpha_e(x) = x \ \forall x \in X$
 - 3. $\alpha_g \circ \alpha_h(x) = \alpha_{gh}(x) \ \forall g, h \in G, \forall x \in X$
- The <u>orbit</u> of some $x \in X$ is $Orb(x) = \{g(x) : g \in G\}$
- The stabiliser of x is $Stab(x) = \{g \in G \colon g(x) = x\} \le G$
- Orbit-Stabiliser Theorem:

Let the finite group G act on the set X. Then for any $x \in X$:

$$|G| = |\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)|$$