Tópicos de Matemática

Licenciatura em Ciências da Computação

Exame (Época de Recurso)

_____ duração: 2h15min ____

- 1. (a) Diga, justificando, se as afirmações seguintes são verdadeiras:
 - i. A variável proposicional p tem valor lógico verdadeiro só se a fórmula $\varphi: ((p \to (p \lor \neg q)) \land q) \to \neg p$ tem valor lógico verdadeiro.
 - ii. Se σ , ϕ e ψ são fórmulas proposicionais tais que uma das fórmulas $\sigma \to \neg \phi$ ou $\sigma \to \psi$ é uma tautologia, então $(\sigma \land \phi) \to \psi$ é uma tautologia.
 - (b) Considere que p representa a proposição $\exists_{x \in D} \ (\forall_{y \in D} \ (y > x \to y + x \ \text{\'e impar}))$. Diga, justificando, se p 'e verdadeira para $D = \{3,4,5,6,8\}$.
- 2. Considere os conjuntos $A = \{1, 3, 7, 8, \{5, 8\}, \{4, 7\}\}, B = \{x + 4 \mid x \in \mathbb{Z} \land 2x + 1 \in A\}$ e $C = \{1, 7, 8\}$. Justificando, determine $((A \setminus \mathcal{P}(B)) \setminus C) \times C$.
- 3. Sejam A, B e C conjuntos tais que $C \subseteq A$. Mostre que $A \setminus (B \setminus C) = (A \setminus B) \cup C$.
- 4. Prove, por indução nos naturais, que $8^n 3^n$ é um múltiplo de 5, para todo o natural n.
- 5. Considere a função $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definida por

$$f(n) = \left\{ \begin{array}{ll} (n,n+1) & \text{se } n \text{ \'e par} \\ (n+1,n+2) & \text{se } n \text{ \'e \'impar} \end{array} \right..$$

- (a) Justificando, defina por extensão, $f(\{0,1\}) \cap f(\{2,3\})$ e $f^{\leftarrow}(\{(0,1),(1,2)\})$.
- (b) Diga, justificando, se f é injetiva e se é sobrejetiva. Justifique que não existe qualquer função $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que $g \circ f = id_{\mathbb{Z}}$.
- 6. Dê exemplo de relações binárias R' e S' num conjunto A tais que $S' \circ R' \not\subseteq R' \circ S'$. Mostre que se R e S são relações binárias num conjunto A tais que R, S e $R \circ S$ são relações simétricas, então $S \circ R \subseteq R \circ S$.
- 7. Seja $A = \mathbb{R} \setminus \{0\}$.
 - (a) Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - i. Para toda a relação de equivalência ρ em A,

$$(\exists_{k \in A} [2]_{\rho} \cap [k]_{\rho} \neq \emptyset e [3]_{\rho} \cap [k]_{\rho} \neq \emptyset) \Rightarrow [2]_{\rho} = [3]_{\rho}.$$

- ii. Existe uma relação de equivalência ρ em A tal que $A/\rho = \{A, A \setminus \{1\}\}.$
- (b) Seja R a relação de equivalência definida em A por

$$x R y$$
 se só se $xy^{-1} \in \{-1, 1\}.$

Determine $[2]_R$ e A/R.

8. Considere o c.p.o. (A, \leq) , onde $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e \leq é a relação de ordem parcial definida pelo diagrama de Hasse

Indique, caso exista(m):

- (a) os elementos maximais e os elementos minimais de A, o supremo de $\{3,5\}$ e o ínfimo de $\{4,6\}$.
- (b) um subconjunto B de A tal que B tenha elemento máximo e elemento mínimo e $(B, \leq_{|B})$ não seja um reticulado.
- 9. Sejam A e B conjuntos. Mostre que se B não é contável e existe uma função sobrejetiva $f:A\to B$, então A não é contável.

Cotação