Mathe LK Rh

Tim D.

MSS 2017-20

Inhaltsverzeichnis

I	11	/1	4			
1	Terme, Gleichungen, Ungleichungen					
	1.1	Pascalsches Dreieck	5			
	1.2	pq-Formel	5			
	1.3	abc-Formel	6			
	1.4	Satz von Vieta	6			
	1.5	Binomischer Lehrsatz	7			
	1.6	Gleichungen und Ungleichungen	7			
		1.6.1 Gleichung lösen durch Substitution	7			
	1.7	Potenzen, Wurzeln und Logarithmen	8			
		1.7.1 Potenz- und Wurzelgesetze	8			
		1.7.2 Logarithmengesetze	9			
2	Funktion - Relation - Zahlenfolge 10					
	2.1	Zahlenfolgen	10			
	2.2	Monotonie, Beschränktheit	12			
	2.3	Grenzwert einer Zahlenfolge/Funktion	14			
		2.3.1 Grenzwerte	16			
		2.3.2 Grenzwerte von Funktionen: $\lim_{x\to\infty}$; $\lim_{x\to a}$	19			
3	Analysis 22					
	3.1	Abschnittsweise definierte Funktionen - Stetigkeit	22			
	3.2	Stetigkeit einer Funktion an der Stelle x_0	24			
	3.3	Polynomdivision	26			
	3.4	Punktbrobe	26			
	3.5	Mittlere Änderungsrate	27			
	3.6	Tangentensteigung, Ableitung	29			
		3.6.1 Vom Differenzenquotienten zum Differentialquotienten	29			
		3.6.2 Ableitung	30			
	3.7	Sekanten-, Tangenten-, Normalengleichung	31			
	3.8	Ableitungsfunktion	34			

	3.9	Nullstellen
		3.9.1 Mehrfache Nullstellen 40
	3.10	Hoch-, Tief- und Sattelpunkte
	3.11	2. Ableitungsfunktion
	3.12	Wendepunkte
	3.13	Nullstellen: Polynomdivision
	3.14	Verhalten für $x \to \pm \infty$ 60
		Symmetrie
	3.16	Kurvendiskussion
		Tangente und Anwendungen
		3.17.1 Allgemeine Tangentengleichung - Herleitung 67
Ш	11	/2 71
		Optimieren unter Nebenbedingungen
		Numerisches Verfahren zur Nullstellenbestimmung
	0.13	3.19.1 Anwendungen des Newton-Verfahrens
	3 20	AB Kurvenuntersuchungen
	0.20	3.20.1 Ortslinie
	3 21	Wiederholung
		Sinus- und Kosinusfunktion
		3.22.1 Vielfachheit der Lösungen von (geniometrischen) Gleichun-
		gen
		3.22.2 Die allgemeine Sinusfunktion
		3.22.3 AB Die Funktionen $f: x \mapsto a \cdot sin(b(x-c))$ und ihre
		Graphen
		3.22.4 Ableitung der Sinusfunktion
	3.23	Neue Funktionen aus alten Funktionen
		3.23.1 Ableitungsregeln
	3.24	Exponentialfunktionen - Ableitung
		3.24.1 Basis $\neq e$
	3.25	Wiederholung
		3.25.1 Sinusfunktionen und Newton-Verfahren
		3.25.2 Produktregel
		3.25.3 Quotientenregel
		3.25.4 Kurvendiskussion
	3.26	Lineare Gleichungssysteme (LGS)
		3.26.1 Gauß-Verfahren
		3.26.2 Matrix-Schreibweise
		3.26.3 Steckbriefaufgaben
		3.26.4 Funktionenschar

4	Integ 4.1		
		4.1.1 Obersumme/Untersumme $\rightarrow lim \rightarrow$ Integral	
	4.2	Das bestimmte Integral	. 135
	4.3	Berechnung von Integralen, Hauptsatz	136
		4.3.1 Verallgemeinerung (Hauptsatz der Differenzial- und Inte-	
		gralrechnung)	136
	4.4	Integrale lösen - Anwendung	. 137
111	1.	2/1	140
•••		-/ -	
	4.5	Stammfunktion bilden, integrieren	
	4.6	bestimmtes Integral, Integralfunktion, unbestimmtes Integral	
		4.6.1 Integralfunktion	
	4.7	Rechenregeln für Integrale	
	4.8	Ableitung der Umkehrfunktion	
	4.9	Integral und Flächeninhalt	
		4.9.1 Flächeninhalt, uneigentliche Integrale	
		Integration von Produkten: partielle Integration	
	4.11	Integration durch Substitution	
		4.11.1 Wiederholung	161
	4.12	Rotationskörper	163
		4.12.1 Bestimmung des Volumens von Rotationskörpern	163
5		ytische Geometrie	167
	5.1	Punkte und Vektoren	
		5.1.1 Darstellung im 3-dimensionalen Koordinatensystem	
	5.2	Ortsvektoren und Verschiebungsvektoren	
		5.2.1 Addition, Subtraktion und Multiplikation mit einer Zahl	
		5.2.2 Vektorzüge und Linearkombinationen	. 174
	5.3	Geraden in \mathbb{R}^3	. 177
		5.3.1 Kollinearität	182
		5.3.2 Lage zweier Geraden	182
		5.3.3 Parameterpunkte und -geraden	187

Teil I

11/1

Kapitel 1

Terme, Gleichungen, Ungleichungen

1.1 Pascalsches Dreieck

1.2 pq-Formel

$$x^{2} + px + q = 0$$
$$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^{2} - q}$$

1.3 abc-Formel

$$ax^{2} + bx + c = 0$$

$$x_{1/2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

1.4 Satz von Vieta

$$0 = x^2 + px + q$$

pq-Formel:

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

*Diskriminante:

Diskriminante*

> 0 \Rightarrow zwei Lösungen

=0 \Rightarrow eine Lösung

 $< 0 \Rightarrow \text{keine L\"osung}$

$$x_1 + x_2 = -\frac{p}{2} + \sqrt{\cdots} - \frac{p}{2} - \sqrt{\cdots} = -p$$

$$x_1 \cdot x_2 = (-\frac{p}{2} + \sqrt{\cdots})(-\frac{p}{2} - \sqrt{\cdots}) = \frac{p^2}{4} - \frac{p^2}{4} + q = q$$

$$\Rightarrow x_1 + x_2 = -p \quad x_1 \cdot x_2 = q$$

$$0 = x^{2} + px + q = (x - x_{1})(x - x_{2})$$
$$= x^{2} + (-x_{1} - x_{2})x + x_{1} \cdot x_{2}$$

Beispiel

$$\frac{1}{9}x^2 - \frac{2}{3}x - 8 = \frac{1}{9}(x^2 \underbrace{-6}_{x_1 + x_2} x \underbrace{-72}_{x_1 \cdot x_2})$$

$$x_1 = 12; \ x_2 = -6$$

$$0 = \frac{1}{9} \underbrace{(x - 12)(x + 6)}_{\text{Linearfaktoren}}$$

1.5 Binomischer Lehrsatz

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

Beispiele

$$n=2$$

$$(a+b)^2 = \underbrace{\sum_{k=0}^{2}}_{k} \binom{2}{k} \cdot a^{2-k} \cdot b^k$$

Drei Summanden: k = 0: k = 1: k = 2

$$= \underbrace{\binom{5}{0}} a^2 + \underbrace{\binom{5}{1}} ab + \underbrace{\binom{5}{2}} b^2$$

$$= 1 \cdot a^2 + 2 \cdot ab + 1 \cdot b^2 = a^2 + 2ab + b^2$$

$$n = 5$$

$$(a+b)^2 = \sum_{k=0}^{5} {5 \choose k} \cdot a^{5-k} \cdot b^k$$

$$= {5 \choose 0} a^5 + {5 \choose 1} a^4 b^1 + {5 \choose 2} a^3 b^2 + {5 \choose 3} a^2 b^3 + {5 \choose 4} a^1 b^4 + {5 \choose 5} b^5$$

$$= a^5 + 5a^4 b + 10a^3 b^2 + 10a^2 b^3 + 5ab^4 + b^5$$

Binominialkoeffizienten

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

1.6 Gleichungen und Ungleichungen

1.6.1 Gleichung lösen durch Substitution

Beispiel
$$0 = 2x^4 - 3x^2 - 5$$

Lösungsmenge der Gleichung = Menge der Nullstellen (Schnitte mit der x-Achse) der Funktion mit gleichem Funktionsterm

substituiere
$$x^2=t$$
 $0=2t^2-3t-5$ $t_{1/2}=\frac{3\pm\sqrt{9+40}}{4}=\frac{3\pm7}{4}$ $t_1=2.5,\quad t_2=-1$

resubstituiere

$$t_1 = x^2 = 2.5 \qquad | \sqrt{ } \\ x_1 = \sqrt{2.5}; \ x_2 = -\sqrt{2.5} \\ t_2 = x^2 = -1 \qquad | \sqrt{ } \\ \text{keine L\"osung} \\ L = \{ \sqrt{2.5}; -\sqrt{2.5} \}$$

1.7 Potenzen, Wurzeln und Logarithmen

1.7.1 Potenz- und Wurzelgesetze

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$a^{x} : a^{y} = a^{x-y}$$

$$a^{x} \cdot b^{x} = (ab)^{x}$$

$$a^{x} : b^{x} = (\frac{a}{b})^{x}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$\sqrt[x]{a^{y}} = a^{\frac{y}{x}}$$

$$\sqrt[x]{a^{y}} = \sqrt[x]{a^{y}}$$

$$\sqrt[x]{y^{y}} = \sqrt[x]{a^{y}}$$

$$\sqrt[x]{y^{y}} = \sqrt[x]{a^{y}}$$

1.7.2 Logarithmengesetze

$$\log_a(xy) = \log_a(x) + \log_a(y)$$
$$\log_a(x^y) = \log_a(x) \cdot y$$
$$a^x = 10^{\log(a) \cdot x}$$
$$\log_a(x) = \frac{\log(x)}{\log(a)}$$

Kapitel 2

Funktion - Relation - Zahlenfolge

Eine Funktion ist eine Zuordnung (Zahlen $x \to Z$ ahlen y), die jeder Zahl x der Definitionsmenge genau eine Zahl y der Wertemenge zuordnet.

Darstellung:

- Funktionsgleichung, z. B. $f(x) = y = \underbrace{2x^2 + 5}_{\text{Funktionsterm}}$
- Graph
- Wertetabelle

Eine Relation ist eine allgemeine Zuordnung von x zu y, z. B. x=3 (senkrechte Gerade), $x^2y=y^2+x^3$

Eine Zahlenfolge ist eine Funktion mit $x \in \mathbb{N}$

2.1 Zahlenfolgen

Definitionsmenge $D = \mathbb{N}_0$ Wertemenge $W = \mathbb{R}$

 $a_n = y = \dots \leftarrow Funktionsterm$

Angabe eines Funktionsterms für alle Zahlen nennt man explizite Darstellung der Zahlenfolge.

$$a_n = (\frac{1}{2})^n$$

 $a_1 = \frac{1}{2}; \quad a_2 = \frac{1}{4}; \quad a_3 = \frac{1}{8}; \quad \dots; \quad a_{100} = 2^{-100}$

Berechnung der Folgezahlen Schritt für Schritt nennt man implizite Darsteluung der Zahlenfolge. (Rekursion)

$$\begin{aligned} a_n &= 2 \cdot a_{n-1} + 3 \cdot a_{n-2} \\ a_1 &= 1; \quad a_2 = 1 \\ a_3 &= 2 \cdot a_2 + 3 \cdot a_1 = 2 \cdot 1 + 3 \cdot 1 = 5a_4 = 2 \cdot a_3 + 3 \cdot a_2 = 2 \cdot 5 + 3 \cdot 1 = 13 \end{aligned}$$

16/1

а

$$a_n = \frac{2n}{5}$$

$$a_1 = \frac{2}{5}; \ a_2 = \frac{4}{5}; \ a_3 = 1\frac{1}{5}; \ a_4 = 1\frac{2}{5}; \ a_5 = 2;$$

$$a_6 = 2\frac{2}{5}; \ a_7 = 2\frac{4}{5}; \ a_8 = 3\frac{1}{5}; \ a_9 = 3\frac{3}{5}; \ a_{10} = 4$$

d

$$a_{n} = (\frac{1}{2})^{n}$$

$$a_{1} = \frac{1}{2}; \ a_{2} = \frac{1}{4}; \ a_{3} = 1\frac{1}{8}; \ a_{4} = \frac{1}{16}; \ a_{5} = \frac{1}{32};$$

$$a_{6} = \frac{1}{64}; \ a_{7} = \frac{1}{128}; \ a_{8} = \frac{1}{256}; \ a_{9} = \frac{1}{512}; \ a_{10} = \frac{1}{1024}$$

f

$$a_n = \sin(\frac{\pi}{2}n)$$

 $a_1 = 1$; $a_2 = 0$; $a_3 = -1$; $a_4 = 0$; $a_5 = 1$;
 $a_6 = 0$; $a_7 = -1$; $a_8 = 0$; $a_9 = 1$; $a_{10} = 0$

16/2

a

$$a_1 = 1$$
; $a_{n+1} = 2 + a_n$
 $a_1 = 1$; $a_2 = 3$; $a_3 = 5$; $a_4 = 7$; $a_5 = 9$;
 $a_6 = 11$; $a_7 = 13$; $a_8 = 15$; $a_9 = 17$; $a_{10} = 19$
 $a_n = 2n - 1$

b

$$a_1 = 1$$
; $a_{n+1} = 2 \cdot a_n$
 $a_1 = 1$; $a_2 = 3$; $a_3 = 4$; $a_4 = 8$; $a_5 = 16$;
 $a_6 = 32$; $a_7 = 64$; $a_8 = 128$; $a_9 = 512$; $a_{10} = 1024$
 $a_n = 2^{n-1}$

d

$$a_1=0;\ a_2=1;\ a_{n+2}=a_n+a_{n+1} \quad \text{(Fibonacci)}$$

$$a_1=0;\ a_2=1;\ a_3=1;\ a_4=2;\ a_5=3;$$

$$a_6=5;\ a_7=8;\ a_8=13;\ a_9=21;\ a_{10}=34$$

$$a_n=\frac{\varphi^n-\psi^n}{\varphi-\psi}$$

2.2 Monotonie, Beschränktheit

16/5

$$a_n = 200000 \in 0.98^n$$

16/7

а

$$V_0 = 1^3 = 1$$

$$V_1 = V_0 + \frac{1}{8}V_0 = 1 + \frac{1}{8} = \frac{9}{8}$$

$$V_2 = V_1 + \frac{1}{8}(\frac{1}{8}V_0) = \frac{9}{8} + \frac{1}{64} = \frac{73}{64}$$

$$V_3 = V_2 + \frac{1}{8}(\frac{1}{8}(\frac{1}{8}V_0)) = \frac{73}{64} + \frac{1}{512} = \frac{585}{512}$$

b

$$V_n = \sum_{k=0}^n 8^{-k}$$

Streng monoton fallende Zahlenfolge

- z. B. a_n von 16/5 ist eine Folge mit der Eigenschaft $a_n < a_{n-1}$ Streng monoton steigende Zahlenfolge
- z. B. V_n von 16/7 ist eine Folge mit der Eigenschaft $a_n > a_{n-1}$ Ohne "streng"entsprechend \leq bzw. \geq

18/1

а

$$a_n = 1 + \frac{1}{n}$$

 $a_1 = 2; \ a_2 = 1\frac{1}{2}; \ a_3 = 1\frac{1}{3}; \ a_4 = 1\frac{1}{4}; \ a_5 = 1\frac{1}{5}$

streng monoton fallend nach oben beschränkt (2); nach unten beschränkt (1)

b

$$a_n = (\frac{3}{4})^n$$
 $a_1 = \frac{3}{4}; \ a_2 = \frac{9}{16}; \ a_3 = \frac{27}{64}; \ a_4 = \frac{81}{256}; \ a_5 = \frac{243}{1024}$

streng monoton fallend

nach oben beschränkt $(\frac{3}{4})$; nach unten beschränkt (0)

С

$$a_n = (-1)^n$$

 $a_1 = -1$; $a_2 = 1$; $a_3 = -1$; $a_4 = 1$; $a_5 = -1$

nicht monoton

nach oben beschränkt (1); nach unten beschränkt (-1)

d

$$a_n = 1 + \frac{(-1)^n}{n}$$

 $a_1 = 0; \ a_2 = \frac{3}{2}; \ a_3 = \frac{2}{3}; \ a_4 = \frac{5}{4}; \ a_5 = \frac{4}{5}$

nicht monoton

nach oben beschränkt $(\frac{3}{2})$; nach unten beschränkt (0)

е

$$a_n = \frac{8n}{n^2 + 1}$$

 $a_1 = 4; \ a_2 = \frac{16}{5}; \ a_3 = \frac{12}{5}; \ a_4 = \frac{32}{17}; \ a_5 = \frac{20}{13}$

streng monoton fallend nach oben beschränkt (4); nach unten beschränkt (0)

2.3 Grenzwert einer Zahlenfolge/Funktion

Der Grenzwert g ist eine reelle Zahl, der sich die Folgenwerte (Funktionswerte) annähern, sodass die Folgenwerte (Funktionswerte) vom Grenzwert praktisch nicht mehr unterschieden werden können. z. B.

$$a_n = n^{-1}$$

 $a_n = \frac{1}{1}; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{1}{5}; \dots; \frac{1}{n}$

 a_n hat den Grenzwert g=0, da a_n auch streng monoton fallend ist, ist s=0 die größte untere Schranke (=,,Infimum").

Vorgehen

Ich gebe eine Genauigkeitsschranke, z. B. $\epsilon=10^{-3}$ vor (kleine positive Zahl). Zu ϵ finde ich ein $n_{\epsilon}=1001$. Alle Folgenwerte mit $n\geqslant n_{\epsilon}=1001$ (also $a_{1001},\ a_{1002},\ \dots$) liegen näher beim Grenzwert g=0 als $\epsilon=10^{-3}$ angibt. Finde ich zu jeder möglichen Genauigkeitsschranke ϵ solch ein n_{ϵ} , so ist g der Grenzwert. Ist diese Bedingung erfüllt, so notiert man

$$\lim_{n \to \infty} a_n = g \quad \text{hier: } \lim_{n \to \infty} n^{-1} = 0$$

22/2 (Abweichung
$$< \epsilon = 0.1$$
)

a

$$a_n = \frac{1+n}{n}$$
$$\left|\frac{1+n}{n} - 1\right| < 0.1$$
$$n_{\epsilon} > 10$$

b

$$a_n = \frac{n^2 - 1}{n^2}$$

$$\left| \frac{n^2 - 1}{n^2} - 1 \right| < 0.1$$
 $\epsilon > \sqrt{10} \approx 3.162 \text{ (ab 4)}$

С

$$a_n = 1 - \frac{100}{n}$$
$$|1 - \frac{100}{n} - 1| < 0.1$$
$$n_{\epsilon} > 1000$$

d

$$a_n = \frac{n-1}{n+2}$$

$$|\frac{n-1}{n+2} - 1| < 0.1$$
 $n_{\epsilon} > 28$

е

$$\begin{split} a_n &= \frac{2n^2-3}{3n^2} \\ |\frac{2n^2-3}{3n^2}-1| &< 0.1 \\ &\rightarrow \text{keine L\"osung} \end{split}$$

zu e

2.3.1 Grenzwerte

Eine Zahlenfolge mit Grenzwert ist eine konvergente Folge. Die Folge konvergiert gegen den Grenzwert. Eine Zahlenfolge ohne Grenzwert ist eine divergente Folge. Eine Nullfolge hat den Grenzwert g=0.

$$a_n = \frac{n}{n+1}$$
 $g = 1$ \rightarrow $a_n^* = \frac{n}{n+1} - 1$ $g = 0$ (Nullfolge)

22/4

а

$$|(\frac{3n-2}{n+2})-3| < \epsilon$$

$$|\frac{-8}{n+2}| < \epsilon \qquad |x^{-1}|$$

$$\frac{n+2}{8} > \frac{1}{\epsilon} \qquad |\cdot 8$$

$$n+2 > \frac{8}{\epsilon} \qquad |-2$$

$$n > \frac{8}{\epsilon} - 2$$

b

$$\left| \left(\frac{n^2 + n}{5n^2} \right) - 0.2 \right| < \epsilon$$

$$\frac{n}{5n^2} < \epsilon \qquad \left| \cdot 5 \right|$$

$$n^{-1} < 5\epsilon \qquad \left| x^{-1} \right|$$

$$n > \frac{1}{5\epsilon}$$

С

$$\begin{aligned} &|(\frac{2^{n+1}}{2^n+1}) - 2| < \epsilon \\ &|\frac{-2}{2^n+1}| < \epsilon \qquad |:2; \ x^{-1} \\ &2^n+1 > \frac{2}{\epsilon} \qquad |-1 \\ &2^n > \frac{2}{\epsilon} - 1 \qquad |\log; : \log(2) \\ &n > \frac{\log(\frac{2}{\epsilon} - 1)}{\log(2)} \end{aligned}$$

d

$$\left| \left(\frac{3 \cdot 2^n + 2}{2^{n+1}} \right) - \frac{3}{2} \right| < \epsilon$$

$$\left| \frac{3 \cdot 2^n + 2 - 3 \cdot 2^n}{2^{n+1}} \right| < \epsilon$$

$$\frac{2}{2^{[n+1]}} < \epsilon$$

$$\frac{1}{2^n} < \epsilon \qquad |x^{-1}|$$

$$2^n > \frac{1}{\epsilon} \qquad |\log : \log(2)$$

$$n > \frac{-\log(\epsilon)}{\log(2)}$$

24/2

a

$$a_n = \frac{1+2n}{1+n} = \frac{\frac{1}{n}+2}{\frac{1}{n}+n}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 2}{\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} n} = \frac{0+2}{0+1} = 2$$

b

$$a_n = \frac{7n^3 + 1}{n^3 - 10} = \frac{7 + \frac{1}{n^3}}{1 - \frac{10}{n^3}}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} 7 + \lim_{n \to \infty} \frac{1}{n^3}}{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{10}{n^3}} = \frac{7 + 0}{1 - 0} = 7$$

f

$$a_n = \frac{\sqrt{n+1}}{\sqrt{n+1}+2} = \left(\frac{\sqrt{n+1}}{\sqrt{n+1}}\right) : \left(\frac{\sqrt{n+1}}{\sqrt{n+1}} + \frac{2}{\sqrt{n+1}}\right) = \frac{1}{1 + \frac{2}{\sqrt{n+1}}}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{2}{\sqrt{n+1}}} = \frac{1}{1+0} = 1$$

g

$$a_n = \frac{(5-n)^4}{(5+n)^4} = \left(\frac{\frac{5}{n}-1}{\frac{5}{n}+1}\right)^4$$

$$\lim_{n \to \infty} a_n = \left(\lim_{n \to \infty} \left(\frac{\frac{5}{n}-1}{\frac{5}{n}+1}\right)\right)^4 = \left(\frac{\lim_{n \to \infty} \frac{5}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} 1}\right)^4 = \left(\frac{0-1}{0+1}\right)^4 = 1$$

24/3

а

$$\lim_{n \to \infty} \left(\frac{2^n - 1}{2^n}\right) = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{2^n}}{1}\right) = \frac{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 1} = \frac{1 - 0}{1} = 1$$

b

$$\lim_{n \to \infty} \left(\frac{2^n - 1}{2^{n-1}}\right) = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{2^n}}{0.5}\right) = \frac{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 0.5} = \frac{1 - 0}{0.5} = 2$$

С

$$\lim_{n \to \infty} \left(\frac{2^n}{1 + 4^n} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{2^n}}{1 + \frac{1}{4^n}} \right) = \frac{\lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{4^n}} = \frac{0}{1 + 0} = 0$$

d

$$\lim_{n \to \infty} \left(\frac{2^n + 3^{n+1}}{2^n + 3^n} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{(\frac{3}{2})^n} - 1}{\frac{1}{(\frac{3}{2})^n} + 1} \right) = \frac{\lim_{n \to \infty} \frac{1}{(\frac{3}{2})^n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{1}{(\frac{3}{2})^n} + \lim_{n \to \infty} 1} = \frac{0 - 1}{0 + 1} = -1$$

е

$$\lim_{n \to \infty} \left(\frac{2^n + 3^{n+1}}{2 \cdot 3^n}\right) = \lim_{n \to \infty} \left(\frac{\left(\frac{2}{3}\right)^n + 3}{2}\right) = \frac{\lim_{n \to \infty} \left(\frac{2}{3}\right)^n + \lim_{n \to \infty} 3}{\lim_{n \to \infty} 2} = \frac{0 + 3}{2} = \frac{3}{2}$$

2.3.2 Grenzwerte von Funktionen: $\lim_{x\to\infty}$; $\lim_{x\to a}$

$$f(x) = y = \frac{3x^2 - 3}{(x+1)(x-4)}$$
 $D = \mathbb{R} \setminus \{\underbrace{-1; 4}\}$

Nullstellen des Nenners

 $x = -1 \rightarrow \text{Nullstelle des Z\"{a}hlers und Nenners}$

 $x = 4 \rightarrow \text{Nullstelle des Nenners}$

$$f(x) = y = \frac{3(x^2 - 1)}{(x + 1)(x - 4)} = \frac{3(x + 1)(x - 1)}{(x + 1)(x - 4)} = \frac{3x - 3}{x - 4}$$

$$\lim_{x \to \infty} \frac{3x - 3}{x - 4} = \lim_{x \to \infty} \frac{\frac{3x}{x} - \frac{3}{x}}{\frac{x}{x} - \frac{4}{x}} = \lim_{x \to \infty} \frac{3 - \frac{3}{x}}{1 - \frac{4}{x}} = 3$$

$$\lim_{x \to -\infty} \dots = \lim_{x \to -\infty} \dots = \lim_{x \to -\infty} \dots = 3$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = 3$$

$$\lim_{x \to \infty} \neq \lim_{x \to -\infty}$$

Beispiel
$$f(x) = 2^x$$

$$\lim_{x \to \infty} 2^x = \infty; \ \lim_{x \to -\infty} 2^x = 0$$

$$\lim_{x \to -1} \frac{3x - 3}{x - 4} = \frac{3(-1) - 3}{-1 - 4} = \frac{-6}{-5} = 1.2$$

$$\lim_{x \to 4} \frac{3x - 3}{x - 4} = ?$$

$$\lim_{x \nearrow 4} f(x) = -\infty \qquad \lim_{x \searrow 4} f(x) = +\infty$$

 $x=4 o ext{Unendlichkeitsstelle}$, ein Pol mit Vorzeichenwechsel Der Punkt (-1|1.2) gehört nicht zum Graphen. Es ergibt sich ein Loch im Graphen.

28/6

а

$$\begin{split} f(x) &= \frac{x}{x} \\ \lim_{x \to 0} f(x) &= 1 \\ \times & \begin{vmatrix} -0.1 & -0.01 & 0.01 & 0.1 \\ y & 1 & 1 & 1 & 1 \\ \end{matrix}$$

b

$$\begin{split} f(x) &= \frac{x^3}{x} \\ \lim_{x \to 0} f(x) &= 0 \\ \times & \begin{vmatrix} -0.1 & -0.01 & 0.01 & 0.1 \\ y & -0.01 & -0.0001 & 0.0001 & 0.01 \end{vmatrix} \end{split}$$

С

$$\begin{split} f(x) &= \frac{x}{x^3} \\ \lim_{x \to 0} f(x) &= \infty \\ \times \begin{vmatrix} -0.1 & -0.01 & 0.01 & 0.1 \\ y & 100 & 10000 & 10000 & 100 \\ \end{split}$$

d

$$f(x) = \frac{2^x}{3^x}$$

$$\lim_{x \to 0} f(x) = \frac{2^0}{3^0} = 1$$

е

$$f(x) = \frac{2^x - 1}{3^x}$$
$$\lim_{x \to 0} f(x) = \frac{2^0 - 1}{3^0} = 0$$

Kapitel 3

Analysis

3.1 Abschnittsweise definierte Funktionen - Stetigkeit

$$D = \mathbb{R}$$

$$f(x) = \begin{cases} 2x & \text{für } x < -5 \\ x^2 + 10 & \text{für } -5 \leqslant x < 1 \\ -x & \text{für } x \geqslant 1 \end{cases}$$

Abschnittsweise definierte Funktionen \to Für verschiedene Abschnitte der Zahlengeraden von $\mathbb R$ sollen unterschiedliche Funktionsterme gelten.

Einschub: Ganzrationale Funktionen

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
z. B. $f(x) = 3x^4 + 5x - 7$
 $n = 4$ (Grad $n \in \mathbb{N}$)
 $a_4 = 4$
 $a_3 = a_2 = 0$
 $a_1 = 5$
 $a_0 = -7$

Grad der ganzrationalen Funktion ist die höchste Potenz, bspw. 4 Funktionsterm = Polynom Die Stetigkeit einer Funktion beschreibt die Tatsache, ob man den Graph der Funktion ohne abzusetzen zeichnen kann.

f(x) ist überall stetig

Allgemein gilt:

Ganzrationale Funktionen sind überall, d. h. $-\infty < x < \infty$, stetig.

Untersuche $f(x) = \begin{cases} \cdots \\ \cdots \\ \cdots \end{cases}$ auf Stetigkeit an den Übergangsstellen:

$$x_1 = -5; \ x_2 = 1$$

$$\lim_{x \nearrow -5} f(x) = -10$$

$$\lim_{x \searrow -5} f(x) = -35$$

 \Rightarrow unterschiedliche Grenzwerte bedeuten f(x) ist bei x=-5 unstetig

$$\lim_{x \nearrow 1} f(x) = 11$$

$$\lim_{x \searrow 1} f(x) = -1$$

 \Rightarrow unstetig bei x = 11

28/9

а

$$f(x) = \begin{cases} x^2 & \text{für } x \leqslant 3\\ 12 - x & \text{für } x > 3 \end{cases}$$

$$\lim_{x \nearrow 3} f(x) = 3^2 = 9$$

$$\lim_{x \searrow 3} f(x) = 12 - 3 = 9$$

$$\Rightarrow \text{stetig}$$

b

$$f(x) = \begin{cases} x^2 + 4x & \text{für } x \leqslant -1 \\ 2^x - 3 & \text{für } x > -1 \end{cases}$$

$$\lim_{x \nearrow -1} f(x) = (-1)^2 + 4(-1) = -3$$

$$\lim_{x \searrow -1} f(x) = 2^{-1} - 3 = -2.5$$

$$\Rightarrow \text{unstetig}$$

28/11

•

$$f(x) = \sin(\frac{1}{x}) \qquad D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0} f(x) = \sin(\infty) = -1 \text{ bis } +1 \quad \Rightarrow \text{ kein Grenzwert}$$

$$\lim_{x \to \infty} f(x) = \sin(0) = 0$$

3.2 Stetigkeit einer Funktion an der Stelle x_0

Eine Funktion ist stetig bei $x = x_0$, wenn Folgendes gilt:

$$\lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} f(x) = f(x_0)$$

29/4

a
$$a_n = \frac{n^2 - 7n - 1}{10n^2 - 7n}$$
 $\lim_{n \to \infty} a_n = \frac{1}{10}$

b
$$a_n = \frac{n^3 - 3n^2 + 3n - 1}{5n^3 - 8n + 5}$$
 $\lim_{n \to \infty} a_n = \frac{1}{5}$

$$f \ a_n = \frac{2^{n+1}}{2^n+1} \quad \lim_{n \to \infty} a_n = 2$$

$$g a_n = \frac{3^n + 1}{5^n} \lim_{n \to \infty} a_n = 0$$

29/5

$$\lim_{n\to\infty} \left(\sqrt{n+100} - \sqrt{n}\right) = 0$$

$$\mathsf{b} \lim_{n \to \infty} (\sqrt{n} \cdot (\sqrt{n+10} - \sqrt{n})) = 5$$

$$\lim_{n\to\infty} (\sqrt{4n^2 + 3n} - 2n) = \frac{3}{4}$$

30/10

a
$$\lim_{x \to 2} \frac{(x-2)^2}{x-2} = \lim_{x \to 2} (x-2) = 0$$

b
$$\lim_{x\to 2} \frac{x^2-4}{x^4-16} = \lim_{x\to 2} \frac{1}{x^2+4} = \frac{1}{8}$$

30/11

а

$$f(x) = \frac{x^2 - 2x + 1}{x - 1} = \frac{(x - 1)^2}{x - 1} = x - 1 \qquad D = \mathbb{R} \setminus \{1\}$$

$$\lim_{x \to 1} f(x) = x - 1 = 0$$

С

$$f(x) = \frac{x^4 - 1}{x^2 - 1} = x^1 + 1 \qquad D = \mathbb{R} \setminus \{1; -1\}$$

$$\lim_{x \to 1} f(x) = 1^2 + 1 = 2$$

$$\lim_{x \to -1} f(x) = (-1)^2 + 1 = 2$$

29/6
$$a_n = 0.95^n$$

a
$$a_5 = 0.95^5 = 0.77$$

b
$$0.5 = 0.95^n \Rightarrow n = \frac{\log(0.5)}{\log(0.95)} \approx 13.5$$
 $n = 13$

c

$$s(n) = 1 + \sum_{k=1}^{n-1} 2a_k$$

$$s(5) = 1 + 2a_1 + 2a_2 + 2a_3 + 2a_4$$

$$= 1 + 1.9 + 1.805 + 1.71475 + 1.6290125 = 8.0487625$$

3.3 Polynomdivision

30/11

d

$$f(x) = \frac{x^6 - 1}{x^2 - 1}$$

$$(x^6 - 1) : (x^2 - 1)$$

$$(x^6 - 1) \div (x^2 - 1) = x^4 + x^2 + 1$$

$$\frac{-x^6 + x^4}{x^4}$$

$$\frac{-x^4 + x^2}{x^2 - 1}$$

$$\frac{-x^2 + 1}{0}$$

$$\Rightarrow x^6 - 1 = (x^2 - 1)(x^4 + x^2 + 1)$$

$$f(x) = x^4 + x^2 + 1$$

$$\lim_{x \to 1} f(x) = 1^4 + 1^2 + 1 = 3$$

3.4 Punktbrobe

(erfüllt ein Punkt eine Gleichung)

z. B. P(2|3)

$$f(x) = y = 2x^2 - 5x + 3$$

Setze für x die Zahl 2 ein

$$f(x) = 8 - 10 + 3 = 1 \neq 3$$

 $\Rightarrow P$ gehört nicht zum Graphen von f

38/4

a Höhenmeter: 250m Streckenkilometer: 10km

b Gesamtanstieg: 750m

c Bei Streckenkilometer 25: Achsensymmetrie zur y-Achse

39/7

- a 1.8m
- b $D = \{x \in \mathbb{R} | 0 \le x \le 7.42 \}$
- f(2.5) = 2.425

39/11

a
$$f(x) = 1.9879 \cdot 10^{-4} + 86$$

b
$$f(-995.5) = f(995.5) = 283$$

 $f(0) = 86$

c
$$D = \{x \in \mathbb{R} | -995.5 \leqslant x \leqslant 995.5 \}$$

3.5 Mittlere Änderungsrate

Eine **Sekante** s ist eine Gerade, die eine Kurve in 2 (oder mehr) Punkten schneidet.

Eine **Sehne** s*, Teil einer Sekante, ist eine Strecke, die zwei Kurvenpunkte verbindet.

Eine Tangente t ist eine Gerade, die die Kurve in einem Punkt berührt.

Eine **Passante p** ist eine Gerade, die die Kurve nicht schneidet.

$$P(1|3) \qquad Q(10|8)$$

$$m = \frac{\Delta y}{\Delta x} = \frac{5}{9} \text{ (Steigung der Sekante durch } P \text{ und } Q\text{)}$$

Die Sekantensteigung m heißt mittlere Änderungsrate der Funktion f zwischen den Punkten P und Q.

$$\begin{split} &P(1|3)\;f(1)=3\\ &Q(10|8)\;f(10)=8\\ &x_1=1;\;x_2=10\quad \Delta x=x_2-x_1=h=9\\ &\frac{\Delta y}{\Delta x}=\underbrace{\frac{y_2-y_1}{x_2-x_1}}_{\text{Differenzenquotient}}=\frac{f(x_1+h)-f(x_1)}{h} \end{split}$$

Beispielrechnung $f(x) = 2x^2 - 3x + 5$

$$x_1 = 2; \ x_2 = 10$$

 $h = x_2 - x_1 = 8$
 $m = \frac{f(10) - f(2)}{8} = \frac{175 - 7}{8} = 21$

a
$$m = \frac{h(9) - h(1)}{8} = \frac{7}{8}$$

b
$$m = \frac{h(3) - h(1)}{2} = 0$$

d
$$m = \frac{h(6) - h(4)}{2} = 1$$

c
$$m = \frac{h(9) - h(7)}{2} = \frac{3}{2}$$

41/1
$$f(x) = \frac{1}{x} + 2$$

a
$$m = \frac{f(1) - f(0.1)}{0.9} = -10$$

b
$$m = \frac{f(12) - f(2)}{10} = -\frac{1}{24}$$

c
$$m = \frac{f(0.02) - f(0.01)}{0.01} = -5000$$

d
$$m = \frac{f(1000) - f(100)}{900} = -100000^{-1}$$

3.6 Tangentensteigung, Ableitung

- **H** Hochpunkt (waagerechte Tangente)
- W Wendepunkt (maximale/minimale Steigung)
- T Tiefpunkt (waagerechte Tangente)
- **U** Unstetigkeit (keine Tangentensteigung)
- K Knickstelle (keine Tangentensteigung)
- S Sattelpunkt (Wendepunkt mit waagerechter Tangente)

3.6.1 Vom Differenzenquotienten zum Differentialquotienten

$$f(x) = y = x^2 \quad x_0 = 2$$

$$m = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{(2+h)^2 - 2^2}{h} = 4 + h \quad \text{(Sekante)}$$

$$m = \lim_{h \to 0} (4+h) = 4 \quad \text{(Tangente)}$$

3.6.2 Ableitung

$$f(x) = 2x^{3} \quad x_{0} = 4$$

$$m_{\text{Sekante}} = \frac{f(x_{0} + h) - f(x_{0})}{h}$$

$$= \frac{2(4 + h)^{3} - 2 \cdot 4^{3}}{h}$$

$$= \frac{128 + 96h + 24h^{2} + 2h^{3} - 128}{h}$$

$$= 96 + 24h + 2h^{2}$$

Sekante durch
$$P(4|f(4))$$
, $Q(6|f(6)) \Rightarrow h=2$ $m=96+24\cdot 2+2\cdot 2^2=152$ Sekante durch $P(4|f(4))$, $Q(-1|f(-1)) \Rightarrow h=-5$ $m=96+24\cdot (-5)+2\cdot (-5)^2=26$

Die Tangentensteigung ist der Grenzwert der Sekantensteigung für $h \to 0$.

$$m_{\text{Tangente}} = \lim_{h \to 0} m_{\text{Sekante}} = \lim_{h \to 0} 96 + 24h + 2h^2 = 96$$

Die Ableitung der Funktion $f(x) = 2x^3$ bei x = 4 ist 96.

$$f'(4) = 96$$
 (Tangentensteigung)

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

46/6

a 10.15 Uhr:
$$m=\frac{500m}{15min}=33.\overline{3}\frac{m}{min}$$

10.45 Uhr:
$$m = \frac{-500m}{15min} = -33.\overline{3} \frac{m}{min}$$

11.15 Uhr:
$$m=\frac{-1000m}{15min}=-66.\overline{6}\frac{m}{min}$$

b am größten: ${\sim}10.05$ Uhr am kleinsten: ${\sim}11.20$ Uhr

48/3

a
$$x_0 = 4$$

$$\lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h} = 8$$

b
$$x_0 = 3$$

$$\lim_{h \to 0} \frac{-2(3+h)^2 - (-2) \cdot 3^2}{h} = -12$$

e
$$x_0 = -1$$

$$\lim_{h \to 0} \frac{(-1+h)^{-1} - (-1)^{-1}}{h} = -1$$

h
$$x_0 = 3$$

$$\lim_{h \to 0} \frac{(-3+h+2)-(-3+2)}{h} = -1$$

$$i x_0 = 7
\lim_{h \to 0} \frac{4-4}{h} = 0$$

3.7 Sekanten-, Tangenten-, Normalengleichung

$$f(x) = 5x^3$$
 $P_1(2|f(2))$ $P_2(4|f(4))$

Sekantengleichung

$$y = m \cdot x + b$$

$$m_s = \frac{\Delta y}{\Delta x} = \frac{f(4) - f(2)}{4 - 2} = \frac{320 - 40}{2} = 140$$

$$b = -m \cdot x + y = -140 \cdot 2 + 40 = -240$$

$$s(x) = 140x - 240$$

Tangentengleichung im Punkt $P_1(2|40)$

$$y = m \cdot x + b$$

$$m_t = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{5(2+h)^3 - 40}{h} = 60$$

$$b = -m \cdot x + y = -60 \cdot 2 + 40 = -80$$

$$t(x) = 60x - 80$$

Normalengleichung im Punkt $P_1(2|40)$

$$y = m \cdot x + b$$

$$m_n = -\frac{\Delta x}{\Delta y} = -(\frac{\Delta y}{\Delta x})^{-1} = \frac{-1}{m_t}$$

$$m_n \cdot m_t = -1$$

$$m_t = 60$$

$$m_n = -\frac{1}{60}$$

$$b = -m \cdot x + y = 40\frac{1}{30}$$

$$n(x) = -\frac{1}{60}x + 40\frac{1}{30}$$

Zwei Geraden mit m_1 und m_2 sind orthogonal, wenn gilt $m_1 \cdot m_2 = -1$

49/14

а

$$f(x) = 0.5x^{2} P(1|f(1) = 0.5)$$

$$m_{t} = \lim_{h \to 0} \frac{\frac{1}{2}(1+h)^{2} - \frac{1}{2}}{h} = \lim_{h \to 0} (1+\frac{1}{2}h) = 1$$

$$b_{t} = -m_{t} \cdot x + y = -\frac{1}{2}$$

$$y_{t} = x - \frac{1}{2}$$

$$m_{n} = -\frac{1}{m_{t}} = -1$$

$$b_{n} = -m_{n} \cdot x + y = 1.5$$

$$y_{n} = -x + 1.5$$

b

$$f(x) = 2x^{2} - 4 P(-2|f(-2) = 4)$$

$$m_{t} = \lim_{h \to 0} \frac{2(-2+h)^{2} - 4 - 4}{h} = -8$$

$$b_{t} = -m_{t} \cdot x + y = -12$$

$$y_{t} = -8x - 12$$

$$m_{n} = -\frac{1}{m_{t}} = \frac{1}{8}$$

$$b_{n} = -m_{n} \cdot x + y = 4\frac{1}{4}$$

$$y_{n} = \frac{1}{8}x + 4\frac{1}{4}$$

С

$$f(x) = \sqrt{x} \qquad P(0.5|f(0.5) = \sqrt{0.5})$$

$$m_t = \lim_{h \to 0} \frac{\sqrt{0.5 + h} - \sqrt{0.5}}{h} = \frac{\sqrt{2}}{2}$$

$$b_t = -m_t \cdot x + y = \frac{\sqrt{2}}{4}$$

$$y_t = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{4}$$

$$m_n = -\frac{1}{m_t} = -\frac{2}{\sqrt{2}}$$

$$b_n = -m_n \cdot x + y = \sqrt{2}$$

$$y_n = -\frac{2}{\sqrt{2}} \cdot x + \sqrt{2}$$

d

$$f(x) = -x^{3} + 2 P(2|f(2) = -6)$$

$$m_{t} = \lim_{h \to 0} \frac{-(2+h)^{3} + 2 + 6}{h} = -12$$

$$b_{t} = -m_{t} \cdot x + y = 18$$

$$y_{t} = -12x + 18$$

$$m_{n} = -\frac{1}{m_{t}} = \frac{1}{12}$$

$$b_{n} = -m_{n} \cdot x + y = -6\frac{1}{6}$$

$$y_{n} = \frac{1}{12}x - 6\frac{1}{6}$$

49/13
$$f(x) = -\frac{1}{x}$$

а

$$P(-1|f(-1) = 1)$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{-1+h} - 1}{h} = \lim_{h \to 0} \frac{h}{h + h^2} = 1$$

$$\alpha = atan(m_t) = 45^{\circ}$$

b

$$P(2|f(2) = -\frac{1}{2})$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{2+h} + \frac{1}{2}}{h} = \lim_{h \to 0} \frac{\frac{h}{2}}{2h + h^2} = \frac{1}{4}$$

$$\alpha = atan(m_t) = 14.04^{\circ}$$

С

$$P(0.1|f(0.1) = -10)$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{0.1+h} + 10}{h} = 100$$

$$\alpha = atan(m_t) = 89.43^{\circ}$$

49/12c

$$f(x) = -3\sqrt{x} \qquad x_0 = 8$$

$$f'(x_0) = \lim_{h \to 0} \frac{-3\sqrt{8+h} - (-3\sqrt{8})}{h}$$

$$= \lim_{h \to 0} \frac{(-\sqrt{72+9h} + \sqrt{72})(-\sqrt{72+9h} - \sqrt{72})}{h(-\sqrt{72+9h} - \sqrt{72})}$$

$$= \lim_{h \to 0} \frac{9}{-\sqrt{72+9h} - \sqrt{72}}$$

$$= \frac{9}{-2\sqrt{72}} = \frac{3}{-4\sqrt{2}} = -\frac{3}{\sqrt{32}}$$

3.8 Ableitungsfunktion

Die Ableitung von f(x) bei x_0 ist eine lokale Eigenschaft der Funktion f(x), also einer Stelle x_0 . Allerdings sind unsere Funktionen fast überall differenzierbar. Ausnahmen sind Unstetigkeitsstellen und Knickstellen. Es gibt eine Funktion $f'(x) = m_t(x)$ für alle Stellen x. Sie heißt Ableitungsfunktion.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

z. B.
$$f(x) = x^4$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - x^4}{h}$$

$$= \lim_{h \to 0} 4x^3 + 6x^2h + 4x^2 + h^3$$

$$= 4x^3$$

z. B.
$$f'(5) = 500$$

$$g(x) = x^{2}$$

$$g'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{x^{2} + xh + h^{2} - x^{2}}{h} = 2x$$

$$h(x) = x^{3}$$

$$h'(x) = \lim_{h \to 0} \frac{(x+h)^{3} - x^{3}}{h} = \lim_{h \to 0} \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}}{h} = 3x^{2}$$

$$i(x) = a \cdot x^{2}$$

$$i'(x) = \lim_{h \to 0} \frac{a(x+h)^{2} - a \cdot x^{2}}{h} = \lim_{h \to 0} \frac{ax^{2} + 2xh + ah^{2} - ax^{2}}{h} = 2ax$$

$$j(x) = \sqrt{x}$$

$$j'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$$

$$k(x) = \frac{1}{x^{2}}$$

$$k'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{-2}}{h} = \lim_{h \to 0} \frac{(x^{2} + 2xh + h^{2})^{-1} - x^{-1}}{h} = -2x^{-3}$$

$$f(x) = ax^n$$
 $f'(x) = n \cdot ax^{n-1}$

а

$$f(x) = ax^{2} + bx + c$$

$$f'(x) = 2ax + b$$

b

$$f(x) = \frac{a}{x} + c$$
$$f'(x) = -ax^{-2}$$

С

$$f(x) = x^{c+1}$$
$$f'(x) = (c+1)x^{c}$$

d

$$f(x) = t^2 + 3t$$
$$f'(x) = 2t + 3$$

е

$$f(x) = x - t$$
$$f'(x) = 1$$

f

$$f(t) = x - t$$
$$f'(t) = -1$$

55/7

С

$$f(x) = 3x^{2} + 3$$

$$f'(x) = 6x$$

$$P(0.5|f(0.5) = 3.75)$$

$$m = f'(0.5) = 3$$

$$b = -m \cdot x + y = 2.25$$

$$y = 3x + 2.25$$

d

$$f(x) = -x^{3} + 2$$

$$f'(x) = -3x^{2}$$

$$P(2|f(2) = -6)$$

$$m = f'(2) = -12$$

$$b = -m \cdot x + y = 18$$

$$y = -12x + 18$$

59/6
$$g(x) = 10 - 3x \Rightarrow m = -3$$

С

$$f(x) = -\frac{1}{100}x^3$$

$$f'(x) = -\frac{3}{100}x^2$$

$$-3 = -\frac{3}{100}x^2$$

$$x = 10$$

$$P(10|f(10) = -20)$$

d

$$f(x) = bx^{3} + c$$

$$f'(x) = 3bx^{2}$$

$$-3 = 3bx^{2}$$

$$x = \pm (-b)^{-\frac{1}{2}}$$

$$P(\pm (-b)^{-\frac{1}{2}} | f(\pm (-b)^{-\frac{1}{2}}) = \pm (-b)^{-\frac{1}{2}} + c) \qquad b < 0$$

60/12

$$H(t) = \begin{cases} 3.2 & \text{für } 0 \leqslant t \leqslant 1 \\ 3.2 - 5(t-1)^2 & \text{für } 1 \leqslant t \leqslant 1.8 \\ 0 & \text{für } 1.8 \leqslant t \leqslant 3 \end{cases}$$

а

$$H'(0.5) = 0$$

 $H'(1.5) = -10t + 10 = -5$
 $H'(2.5) = 0$

b

$$H'(1) = 0 = -10t + 10$$

 $H'(1.8) = -10t + 10 = -8 \neq H'(1.8) = 0$

67/3

a

$$\begin{array}{lll} x^5 - 20x^3 + 64x = 0 & |: x \Rightarrow x = 0 \\ x^4 - 20x^2 + 64 = 0 & |t = x^2 \\ t^2 - 20t + 64 = 0 & |pq \\ t_{1/2} = 10 \pm \sqrt{100 - 64} = 10 \pm 6 & | \text{resubst.} \\ x_{1/2/3/4} = \pm \sqrt{t_{1/2}} \\ L = \{0; \pm 2; \pm 4\} \end{array}$$

b

$$\begin{array}{lll} x^5 - 17x^3 + 16x = 0 & |: x \Rightarrow x = 0 \\ x^4 - 17x^2 + 16 = 0 & |t = x^2 \\ t^2 - 17t + 16 = 0 & |pq \\ t_{1/2} = 8.5 \pm \sqrt{72.25 - 16} = 8.5 \pm 7.5 & | \text{resubst.} \\ x_{1/2/3/4} = \pm \sqrt{t_{1/2}} \\ L = \{0; \pm 1; \pm 4\} \end{array}$$

С

$$(x - \frac{2}{3})(x^4 - \frac{13}{6}x^2 + 1) = 0$$

$$x - \frac{2}{3} = 0 \Rightarrow x = \frac{2}{3}$$

$$x^4 - \frac{13}{6}x^2 + 1 = 0 \qquad |t = x^2|$$

$$t^2 - \frac{13}{6}t + 1 = 0 \qquad |pq|$$

$$t_{1/2} = \frac{13}{12} \pm \sqrt{\frac{169}{144} - 1} = \frac{13}{12} \pm \frac{5}{12}$$

$$x_{1/2/3/4} = \pm \sqrt{t_{1/2}}$$

$$L = \{\frac{2}{3}; \pm \sqrt{\frac{2}{3}}; \pm \sqrt{\frac{3}{2}}\}$$

d

$$(x^{3} - 8)(x^{4} - \frac{14}{3}x^{2} + 5) = 0$$

$$x^{3} - 8 = 0 \Rightarrow x = \sqrt[3]{8} = 2$$

$$x^{4} - \frac{14}{3}x^{2} + 5 = 0 \qquad |t = x^{2}|$$

$$t^{2} - \frac{14}{3}t + 5 = 0 \qquad |pq|$$

$$t_{1/2} = \frac{7}{3} \pm \sqrt{\frac{49}{9} - 5} = \frac{7}{3} \pm \frac{2}{3} \qquad |\text{resubst.}$$

$$x_{1/2/3/4} = \pm \sqrt{t_{1}1/2}$$

$$L = \{2; \pm \sqrt{\frac{5}{3}}; \pm \sqrt{3}\}$$

3.9 Nullstellen

Annahme: f(x) = 0 habe $x_1 = 2$; $x_2 = -3$; $x_3 = 1$ als Lösungen, f(x) hat Grad 3.

$$f(x) = x(x-2)(x+3)(x-1)$$

= $x^3 - 7x + 6$ für $c = 1$

Würde ich die zusätzliche Nullstelle $x_4=4$ als Linearfaktor in die Funktionsgleichung einfügen, so hätte ich eine Funktion 4. Grades. Allgemein gilt: Eine ganzrationale Funktion mit Grad n hat maximal n Nullstellen. Funktionen mit ungeradzahligen Graden n=1,3,5,7 ... haben mindestens eine Nullstelle. Solche mit geradzahligen Graden n=2,4,6,8 ... haben keine Mindestzahl an Nullstellen.

3.9.1 Mehrfache Nullstellen

Beispiel f(x) habe $x_1=x_2=2$ und $x_3=1$ als Nullstellen (Grad 3).

Berührpunkt bei x=2, außerdem Extrempunkt.

Finde ich eine doppelte Nullstelle, so liegt gleichzeitig an der Stelle ein Extrempunkt vor. Eine dreifache Nullstelle ist zusätzlich ein Sattelpunkt mit waagerechter Tangente.

a

$$f(x) = x^{2} - 2x$$
$$f(0) = 0$$
$$f(x) = 0$$
$$L = \{0; 2\}$$

С

$$f(x) = x(x^2 - 9)$$

 $f(0) = 0$
 $f(x) = 0$
 $L = \{0; \pm 3\}$

f

$$f(x) = x^{4} - 13x^{2} + 36$$

$$f(0) = 36$$

$$f(x) = 0$$

$$L = \{\pm 2; \pm 3\}$$

68/13
$$f(x) = ax^3 + bx^2 + cx + d$$

а

NS: 0; -4;
$$\frac{4}{5}$$

 $a = 5$
 $f(x) = a(x-0)(x+4)(x-\frac{4}{5}) = a(x^3+3\frac{1}{5}x^2-3\frac{1}{5}x)$
 $= 5x^3+16x^2-16x$

b

NS:
$$-\frac{1}{3}$$
; 3; $\frac{10}{3}$
 $a = 9$
 $f(x) = a(x + \frac{1}{3})(x - 3)(x - \frac{10}{3}) = a(x^3 - 6x^2 - \frac{1}{9}x + 3\frac{1}{3})$
 $= 9x^3 - 72x^2 - x + 30$

NS:
$$0; -\sqrt{2}; \sqrt{2}$$

 $a = 1$
 $f(x) = a(x - 0)(x + \sqrt{2})(x - \sqrt{2}) = a(x^3 - 2x)$
 $= x^3 - 2x$

d

NS: 0;
$$-\frac{1}{\sqrt{5}}$$
; $\frac{1}{\sqrt{5}}$
 $a = 5$
 $f(x) = a(x - 0)(x + \frac{1}{\sqrt{5}})(x - \frac{1}{\sqrt{5}}) = a(x^3 - \frac{1}{5}x)$
 $= 5x^3 - x$

68/12 $f(x) = -0.08x^2 + 0.56x + 1.44$

а

$$0 = -0.08x^{2} + 0.56x + 1.44$$

$$x_{1/2} = \frac{-0.56 \pm \sqrt{0.56^{2} - 4(-0.08) \cdot 1.44}}{2(-0.08)} = \frac{-0.56 \pm 0.88}{-0.16}$$

$$(x_{1} = -2) \quad x_{2} = 9$$

b

$$1.44 = -0.08x^{2} + 0.56x + 1.44$$

$$0 = -0.08x^{2} + 0.56x$$

$$x_{1/2} = \frac{-0.56 \pm \sqrt{0.56^{2}}}{2(-0.08)} = \frac{-0.56 \pm 0.56}{-0.16}$$

$$(x_{1} = 0) \quad x_{2} = 7$$

$$f(x) = ax^{2} + c$$

$$f(0) = 2 \Rightarrow c = 2$$

$$f(5) = f(-5) = 1$$

$$f(x) = -\frac{1}{25}x^{2} + 2$$

$$f(x) = 0 \quad x = \pm\sqrt{50}$$
Breite: $2\sqrt{50} = 10\sqrt{2} \approx 14.14$

$$s = 1000m$$

 $s(t) = 30t - 0.4t^2$
 $v(t) = 30 - 0.8t$

a

$$v(t) = 0 = 30 - 0.8t \Rightarrow t = 37.5$$

 $s(37.5) = 30(37.5) - 0.4(37.5)^2 = 565.5$

b

$$s(t) = v_0 \cdot t - 0.4t^2 < 1000$$

$$v(t) = v_0 - 0.8t \Rightarrow t = \frac{v_0}{0.8}$$

$$s(t) = \frac{v_0^2}{0.8} - 0.4(\frac{v_o}{0.8})^2 = \frac{5}{8}v_0^2 < 1000$$

$$v_0 < \sqrt{1600} = 40$$

3.10 Hoch-, Tief- und Sattelpunkte

Hochpunkt: $f(x_H) \ge f(x)$ in der Nähe Tiefpunkt: $f(x_T) \le f(x)$ in der Nähe

$$f'(x_H) = f'(x_T) = f'(x_S) = 0$$

Daraus folgt ein Rechenverfahren zur Bestimmung der Stellen x mit f'(x)=0.

z. B.
$$f(x) = x^3 - 2x^2$$

 $f'(x) = 3x^2 - 4x = 0$
 $\Rightarrow x_1 = 0$ $x_2 = \frac{4}{3}$

 x_1 und x_2 sind Kandidaten für Extrema.

Umgebungsuntersuchung

für Hochpunkte gilt: $f'(x_l) > 0$ f'(x) = 0 $f'(x_r) < 0$ für Tiefpunkte gilt: $f'(x_l) < 0$ f'(x) = 0 $f'(x_r) > 0$

zu:
$$x_1 = 0$$
 $x_l = -1$ $x_r = 1$
 $f'(x_l) = f'(-1) = 7$
 $f'(x_1) = f'(0) = 0$
 $f'(x_r) = f'(1) = -1$
 $\Rightarrow H(0|0)$

zu:
$$x_2 = \frac{4}{3}$$
 $x_l = 1$ $x_r = 2$
 $f'(x_l) = f'(1) = -1$
 $f'(x_1) = f'(0) = 0$
 $f'(x_r) = f'(2) = 4$
 $\Rightarrow T(\frac{4}{3}|-1.2)$

Sonderfall Sattelpunkt (Wendepunkt mit waagerechter Tangente)

$$f'(x_l) < 0$$
 $f'(x) = 0$ $f'(x_r) < 0$ oder $f'(x_l) > 0$ $f'(x) = 0$ $f'(x_r) > 0$

73/2

е

$$f(x) = -\frac{1}{4}x^4 + x^3 - 4$$

$$f'(x) = -x^3 + 3x^2 = 0 \qquad | : x \Rightarrow x_1 = 0$$

$$0 = -x^2 + 3x \qquad | : x \Rightarrow x_2 = 0$$

$$0 = -x + 3 \qquad | -3; \cdot (-1)$$

$$3 = x$$

$$L = \{0; 3\}$$

$$\begin{split} f'(-1) &= 4 \quad f'(0) = 0 \quad f'(1) = 2 \quad \Rightarrow \mathsf{Sattelpunkt} \ S(0|f(0) = -4) \\ f'(2) &= 4 \quad f'(3) = 0 \quad f'(4) = -16 \quad \Rightarrow \mathsf{Hochpunkt} \ H(3|f(3) = 2\frac{3}{4}) \end{split}$$

b

$$f(x) = x^{4} - 4x^{3} + 4x^{2}$$

$$f'(x) = 4x^{3} - 12x^{2} + 8x$$

$$0 = 4x^{3} - 12x^{2} + 8x \qquad | : x \Rightarrow x_{1} = 0$$

$$0 = 4x^{2} - 12x + 8 \qquad |abc|$$

$$x_{2/3} = \frac{12 \pm 4}{8}$$

$$x_{2} = 1 \quad x_{3} = 2$$

$$f'(-1) = -24 \quad f'(x_1) = 0 \quad f'(\frac{1}{2}) = 1.5 \quad \Rightarrow T(0|0)$$

$$f'(\frac{1}{2}) = 1.5 \quad f'(x_2) = 0 \quad f'(\frac{3}{2}) = -1.5 \quad \Rightarrow H(1|1)$$

$$f'(\frac{3}{2}) = -1.5 \quad f'(x_3) = 0 \quad f'(3) = 24 \quad \Rightarrow T(2|0)$$

3.11 2. Ableitungsfunktion

$$f''(x) = (f'(x))'$$

Die 2. Ableitungsfunktion f''(x) beschreibt das Krümmungsverhalten der Ursprungsfunktion f(x).

f''(x) > 0 links gekrümmt

f''(x) < 0 rechts gekrümmt

f''(x) = 0 Wendepunkt

80/1

b

$$f(x) = 2x - 3x^{2}$$

$$f'(x) = 2 - 6x$$

$$f''(x) = -6$$

$$f'(x) = 0 \quad L = \{\frac{1}{3}\}$$

$$f''(\frac{1}{3}) = -6 < 0 \quad H(\frac{1}{3}|\frac{1}{3})$$

d

$$f(x) = x^4 - 4x^2 + 3$$

$$f'(x) = 2 - 6x$$

$$f''(x) = 12x^2 - 8$$

$$f'(x) = 0 \quad L = \{\pm\sqrt{2}; 0\}$$

$$f''(\pm\sqrt{2}) = 16 > 0 \quad T(\pm\sqrt{2}|-1)$$

$$f''(0) = -8 < 0 \quad H(0|3)$$

е

$$f(x) = \frac{4}{5}x^5 - \frac{10}{3}x^3 + \frac{9}{4}x$$

$$f'(x) = 4x^4 - 10x^2 + \frac{9}{4}$$

$$f''(x) = 16x^3 - 20x$$

$$f'(x) = 0 \quad L = \{\pm \frac{1}{2}; \pm \frac{3}{2}\}$$

$$f''(\frac{1}{2}) = -8 < 0 \quad H(\frac{1}{2}|\frac{11}{15})$$

$$f''(-\frac{1}{2}) = 8 > 0 \quad H(-\frac{1}{2}|-\frac{11}{15})$$

$$f''(\frac{3}{2}) = 24 > 0 \quad T(\frac{3}{2}|-\frac{9}{5})$$

$$f''(-\frac{3}{2}) = -24 < 0 \quad T(-\frac{3}{2}|\frac{9}{5})$$

3.12 Wendepunkte

Wendepunkte eines Graphen sind Punkte, an denen die Krümmung wendet. Am Wendepunkt selbst ist das Krümmungsverhalten gleich 0. Außerdem sind Wendepunkte Punkte mit maximaler bzw. minimaler Steigung.

Notwendige Bedingung: f''(x) = 0

Hinreichende Bedingung (I): Umgebungsuntersuchung $f''(x_l) > 0$ $f''(x_r) < 0$ Wechsel im Krümmungsverhalten \Rightarrow Wendepunkt WP(x|f(x)) (links-rechts)

Hinreichende Bedingung (II): $f'''(x) \neq 0$ für f'''(x) < 0 LRWP für f'''(x) > 0 RLWP für f'''(x) = 0 keine Entscheidung

a

$$f(x) = x^3 + 2$$

 $f''(x) = 6x = 0$ $L = \{0\}$
 $f'''(x) = 6 \Rightarrow RLWP(0|2)$

 $\begin{aligned} & \text{rechts: } x \in \left] - \infty; 0 \right] \\ & \text{links: } x \in \left[0; \infty \right[\end{aligned}$

b

$$\begin{split} f(x) &= 4 + 2x - x^2 \\ f''(x) &= -2 = 0 \quad L = \{\} \\ \text{rechts: } x \in \left] -\infty; \infty \right[\end{split}$$

d

$$\begin{split} f(x) &= x^5 - x^4 + x^3 \\ f''(x) &= 20x^3 - 12x^2 + 6x = 0 \quad L = \{0\} \\ f'''(x) &= 60x^2 - 24x + 6 \\ f'''(0) &= 6 \Rightarrow RLWP(0|0) \\ \text{rechts: } x \in]-\infty; 0] \end{split}$$

links: $x \in [0; \infty[$

84/2b

$$f(x) = x^{3} + 3x^{2} + 3x$$

$$f'(x) = 3x^{2} + 6x + 3$$

$$f''(x) = 6x + 6$$

$$f'''(x) = 6$$

$$f'''(x) = 0 \quad L = \{-1\}$$

$$f'''(-1) = 6 \Rightarrow RLWP(-1|f(-1) = -1)$$

$$f'(-1) = 0 \Rightarrow Sattelpunkt$$

$$f(x) = x^{3} + bx^{2} + cx + d$$

$$f'(x) = 3x^{2} + 2bx + c = 0$$

$$f''(x) = 6x + 2b = 0 \Rightarrow x = -\frac{1}{3}b$$

$$f'(x) = 3(-\frac{1}{3}b)^{2} + 2b(-\frac{1}{3}b) + c = -\frac{1}{3}b^{2} + c = 0$$

$$\Rightarrow c = \frac{b^{2}}{3}$$

а

$$f_a(x) = x^3 - ax^2$$

$$f''_a(x) = 6x - 2a = 0 \quad L = \{\frac{a}{3}\}$$

$$f'''_a(x) = 6 \quad f'''_a(\frac{a}{3}) = 6 \Rightarrow RLWP(\frac{a}{3}|f_a(\frac{a}{3}))$$

b

$$f_a(x) = x^4 - 2ax^2 + 1$$

$$f_a''(x) = 12x^2 - 4a = 0 \quad L = \{\pm \sqrt{\frac{a}{3}}\}$$

$$f_a'''(x) = 24x$$

$$f_a'''(\sqrt{\frac{a}{3}}) = 24(\sqrt{\frac{a}{3}}) > 0 \Rightarrow RLWP(\sqrt{\frac{a}{3}}|f_a(\sqrt{\frac{a}{3}}))$$

$$f_a'''(-\sqrt{\frac{a}{3}}) = 24(-\sqrt{\frac{a}{3}}) < 0 \Rightarrow LRWP(-\sqrt{\frac{a}{3}}|f_a(-\sqrt{\frac{a}{3}}))$$

89/2

A wahr, die Steigung ist negativ, d. h. die Werte werden kleiner

B falsch, die Funktion hat bei x=-1 einen Sattelpunkt, die Steigung ist davor und danach positiv

C wahr, einen Tiefpunkt bei x=2 und einen Hochpunkt bei x=0

D ?, die Funktionswerte sind an der Ableitungsfunktion nicht erkennbar

С

$$\begin{split} f(x) &= -\frac{1}{18} x^4 + x^2 \\ f(0) &= 0 \Rightarrow S(0|0) \\ f(x) &= 0 \quad L = \{0; \pm \sqrt{18}\} \Rightarrow S(0|0), S(\sqrt{18}|0), S(-\sqrt{18}|0) \\ f'(x) &= -\frac{2}{9} x^3 + 2x = 0 \quad L = \{0; \pm 3\} \\ f''(x) &= -\frac{2}{3} x^2 + 2 \\ f''(0) &= 2 \Rightarrow T(0|f(0) = 0) \\ f''(3) &= 4 \Rightarrow T(3|f(3) = \frac{9}{2}) \\ f''(-3) &= -4 \Rightarrow T(-3|f(-3) = \frac{9}{2}) \\ \text{monoton steigend } f'(x) \geqslant 0 :]-\infty; -3], [0; 3] \end{split}$$

monoton fallend $f'(x) \leq 0 : [3; 0], [3; \infty[$

d

$$\begin{split} f(x) &= \frac{1}{6}x^3 - x^2 + 1.5x \\ f(0) &= 0 \Rightarrow S(0|0) \\ f(x) &= \frac{1}{6}x^3 - x^2 + 1.5x = 0 \quad L = \{0;3\} \Rightarrow S(0|0), S(3|0) \\ f'(x) &= \frac{1}{2}x^2 - 2x + 1.5 = 0 \quad L = \{1;3\} \\ f''(x) &= x - 2 \\ f''(1) &= -1 \Rightarrow H(1|f(1) = 0.\overline{6}) \\ f''(3) &= 1 \Rightarrow T(3|f(3) = 0) \\ \text{monoton steigend } f'(x) &\geqslant 0 : [-\infty;1], [3;\infty] \\ \text{monoton fallend } f'(x) &\leqslant 0 : [1;3] \end{split}$$

$$\begin{split} f(x) &= x + \frac{5}{x} \quad D = \mathbb{R} \backslash \{0\} \quad \text{(kein Schnittpunkt mit y-Achse)} \\ f(x) &= 0 \quad L = \{\} \quad \text{(kein Schnittpunkt mit x-Achse)} \\ f'(x) &= 1 - \frac{5}{x^2} = 0 \quad L = \{\pm \sqrt{5}\} \\ f''(x) &= \frac{10}{x^3} \\ f''(\sqrt{5}) &= \frac{2}{\sqrt{5}} \Rightarrow T(\sqrt{5}|f(\sqrt{5}) = \sqrt{20}) \\ f''(-\sqrt{5}) &= -\frac{2}{\sqrt{5}} \Rightarrow T(-\sqrt{5}|f(-\sqrt{5}) = -\sqrt{20}) \\ \text{monoton steigend} \ f'(x) &\geqslant 0: \left] -\infty; -\sqrt{5} \right], \left[\sqrt{5}; \infty\right] \\ \text{monoton fallend} \ f'(x) &\leqslant 0: \left[-\sqrt{5}; 0 \right[, \left] 0; \sqrt{5} \right] \end{split}$$

3.13 Nullstellen: Polynomdivision

b
$$\left(\begin{array}{c} 2x^3 + 2x^2 - 21x + 12 \right) \div \left(x + 4\right) = 2x^2 - 6x + 3$$

$$-2x^3 - 8x^2$$

$$-6x^2 - 21x$$

$$-6x^2 + 24x$$

$$3x + 12$$

$$-3x - 12$$

c
$$\left(\begin{array}{cc} 2x^3 - 7x^2 & -x + 2 \\ \underline{-2x^3 + x^2} \\ -6x^2 & -x \\ \underline{-6x^2 - 3x} \\ \underline{-4x + 2} \\ \underline{4x - 2} \\ 0 \end{array}\right)$$

d
$$\left(\begin{array}{c} x^4 + 2x^3 - 4x^2 - 9x - 2 \\ \underline{-x^4 - 2x^3} \\ -4x^2 - 9x \\ \underline{4x^2 + 8x} \\ -x - 2 \\ \underline{x + 2} \\ 0 \end{array}\right)$$

a
$$x_1 = 1$$

$$\left(\begin{array}{c} x^3 - 6x^2 + 11x - 6 \right) \div \left(x - 1\right) = x^2 - 5x + 6 \\ \underline{-x^3 + x^2} \\ -5x^2 + 11x \\ \underline{-5x^2 - 5x} \\ 6x - 6 \\ \underline{-6x + 6} \\ 0 \end{array} \right)$$

$$x_{2/3} = \frac{5 \pm 1}{2}$$

$$x_2 = 2$$

$$x_3 = 3$$

$$f(x) = (x - 1)(x - 2)(x - 3)$$

b
$$x_1 = 2$$

 $\left(\begin{array}{c} x^3 + x^2 - 4x - 4\right) \div \left(x - 2\right) = x^2 + 3x + 2$
 $-x^3 + 2x^2$
 $3x^2 - 4x$
 $-3x^2 + 6x$
 $2x - 4$
 $-2x + 4$
 0

$$x_{2/3} = \frac{-3 \pm 1}{2}$$

$$x_2 = -2$$

$$x_3 = -1$$

$$f(x) = (x - 2)(x + 2)(x + 1)$$
c $x_1 = -2$
 $\left(\begin{array}{c} 4x^3 - 8x^2 \\ -8x^2 - 13x \\ \hline -4x^3 - 8x^2 \\ \hline -8x^2 - 13x \\ \hline & 3x + 6 \\ \hline & -3x - 6 \\ \hline & 0 \\ \end{array}\right)$

$$x_{2/3} = \frac{8 \pm 4}{8}$$

$$x_2 = \frac{1}{2}$$

$$x_3 = \frac{3}{2}$$

$$f(x) = (x + 2)(x - \frac{1}{2})(x - \frac{3}{2})$$

d
$$x_1 = 3$$

$$(4x^3 - 8x^2 - 11x - 3) \div (x - 3) = 4x^2 + 4x + 1$$

$$-4x^3 + 12x^2$$

$$-4x^2 + 12x$$

$$-x + 3$$

$$-x + 3$$

$$0$$

$$x_{2/3} = -\frac{4 \pm 0}{8}$$

$$x_{2/3} = -\frac{1}{2}$$

$$f(x) = (x - 3)(x + \frac{1}{2})$$

$$98/11 \ f(x) = x^3 - 2x^2 - 3x + 10 \qquad S(-2|0) \Rightarrow x_1 = -2$$

$$a \ (x^3 - 2x^2 - 3x + 10) \div (x + 2) = x^2 - 4x + 5$$

$$-x^3 - 2x^2$$

$$-4x^2 - 3x$$

$$-4x^2 + 8x$$

$$-5x + 10$$

$$-5x - 10$$

$$x_{2/3} = \frac{4 \pm \sqrt{-4}}{2}$$
 \Rightarrow keine Lösung

b

$$g(x) = mx + b \quad m = 2 \quad S(-2|0)$$

$$0 = 2 \cdot (-2) + b \Rightarrow b = 4$$

$$\Rightarrow g(x) = 2x + 4$$

$$f(x) = g(x)x^3 - 2x^2 - 3x + 10 = 2x + 4$$

$$0 = x^3 - 2x^2 - 5x + 6 \quad x_1 = -2$$

$$(x^{3} - 2x^{2} - 5x + 6) \div (x + 2) = x^{2} - 4x + 3$$

$$- x^{3} - 2x^{2}$$

$$- 4x^{2} - 5x$$

$$- 4x^{2} - 5x$$

$$- 4x^{2} + 8x$$

$$- 3x + 6$$

$$- 3x - 6$$

$$0$$

$$x_{2/3} = \frac{4 \pm 2}{2}$$

$$x_2 = 1 \quad S(1|6)$$

$$x_3 = 3 \quad S(3|10)$$

98/12
$$f_t(x) = 2x^3 - tx^2 + 8x$$

а

$$f_2(x) = 2x^3 - 2x^2 + 8x \qquad |: x$$

$$0 = 2x^2 - 2x + 8$$

$$x_{2/3} = \frac{2 \pm \sqrt{-60}}{4} \quad \text{keine L\"osung}$$

$$L = \{0\}$$

$$f_{10}(x) = 2x^3 - 10x^2 + 8x$$
 | : x

$$0 = 2x^2 - 10x + 8$$

$$x_{2/3} = \frac{10 \pm 6}{4}$$

$$L = \{0; 1; 4\}$$

$$f_{-10}(x) = 2x^{3} + 10x^{2} + 8x \qquad | : x$$

$$0 = 2x^{2} + 10x + 8$$

$$x_{2/3} = \frac{-10 \pm 6}{4}$$

$$L = \{0; -1; -4\}$$

b

Diskriminante > 0

С

$$t = 8$$

 $f_8(x) = 2x^3 - 8x^2 + 8x$
Nullstellen: $\{0; 2\}$

3.14 Verhalten für $x \to \pm \infty$

z. B.
$$f(x) = -2x^3 + 5x^2 - 7x + 2$$

$$\lim_{x \to \infty} f(x) \approx \lim_{x \to \infty} (-2x^3) = -\infty$$

$$\lim_{x \to -\infty} f(x) \approx \lim_{x \to -\infty} (-2x^3) = +\infty$$

⇒ unterschiedlich für ungeradzahligen Grad

z. B.
$$g(x) = 2x^4 - 5x$$

$$\lim_{x \to \infty} g(x) \approx \lim_{x \to \infty} (2x^4) = +\infty$$

$$\lim_{x \to -\infty} g(x) \approx \lim_{x \to -\infty} (2x^4) = +\infty$$
 \Rightarrow gleich für geradzahligen Grad

3.15 Symmetrie

Bsp. $f(x) = x^4 + 5x^2 - 7$

f(x) ist achsensymmetrisch zur y-Achse, weil nur geradzahlige Exponenten vorkommen.

Bsp. $g(x) = x^5 - 7x^3 + x$

g(x) ist punktsymmetrisch zum Ursprung, weil nur ungeradzahlige Exponenten vorkommen.

allgemein:

achsensymmetrisch zur y-Achse: f(x)=f(-x) punktsymmetrisch zum Ursprung: f(x)=-f(-x) ansonsten: Symmetrie nicht erkennbar

Anwendung:

Anwendung:
Bsp.
$$h(x) = \frac{3x^2 + 2x}{x^2 + 5}$$

 $h(-x) = \frac{3(-x)^2 + 2(-x)}{(-x)^2 + 5} = -\frac{3x^2 + 2x}{x^2 + 5} = -h(x)$
 \Rightarrow punktsymmetrisch

100/2

a
$$f(x) = -3x^4 - 0.2x^2 + 10$$

b
$$f(x) = 3x + 4x^3 - x^2 = 4x^3 - x^2 + 3x$$

$$f(x) = 2(x-1) \cdot x^2 = 2x^3 - 2x^2$$

d
$$f(x) = (x+1)(x^3+1) = x^4 + x^3 + x + 1$$

e
$$f(x) = -2(x^4 - x^3 - x^2) = -2x^4 + 2x^3 + 2x^2$$

$$f f(x) = x^2 \cdot (-6x - x^2) = -x^4 - 6x^3$$

d
$$f(x) = x(x^2 - 5) = x^3 - 5x \Rightarrow \text{punktsymmetrisch}$$

e
$$f(x) = (x-2)^2 + 1 = x^2 - 4x + 5 \Rightarrow$$
 nicht erkennbar

f
$$f(x) = x(x-1)(x+1) = x^3 - x \Rightarrow \text{punktsymmetrisch}$$

3.16 Kurvendiskussion

105/1

С

$$f(x) = \frac{1}{2}x^3 - 4x^2 + 8x$$

Ableitungen

$$f'(x) = \frac{3}{2}x^2 - 8x + 8$$

$$f''(x) = 3x - 8$$

$$f'''(x) = 3$$

Symmetrie

$$f(-x) \neq f(x)$$

$$-\frac{1}{2}x^3 - 4x^2 - 8x \neq \frac{1}{2}x^3 - 4x^2 + 8x$$

$$f(-x) \neq -f(x)$$

$$-\frac{1}{2}x^3 - 4x^2 - 8x \neq -\frac{1}{2}x^3 + 4x^2 - 8x$$

Nullstellen

$$f(x) = 0 = \frac{1}{2}x^3 - 4x^2 + 8x \qquad |: x \Rightarrow x_1 = 0$$
$$4 \pm \sqrt{16 - 4 \cdot \frac{1}{2} \cdot 8}$$

$$x_{2/3} = \frac{4 \pm \sqrt{16 - 4 \cdot \frac{1}{2} \cdot 8}}{2 \cdot \frac{1}{2}} = 4$$

$$L = \{0; 4\}$$

Grenzverhalten

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{2}x^3 = \infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} x^3 = -\infty$$

Extremstellen

$$f'(x) = 0 = \frac{3}{2}x^2 - 8x + 8$$

$$x_{1/2} = \frac{8 \pm \sqrt{64 - 4 \cdot \frac{3}{2} \cdot 8}}{2 \cdot \frac{3}{2}} = \frac{8 \pm 4}{3}$$

$$L = \{\frac{4}{3}; 4\}$$

$$f''(x_1) = f''(\frac{4}{3}) = -4 < 0 \quad HP(\frac{4}{3}|f(\frac{4}{3}))$$

$$f''(x_2) = f''(4) = 4 > 0 \quad TP(4|f(4))$$
Wendestellen
$$f''(x) = 0 = 3x - 8$$

$$f''(x) = 0 = 3x - 8$$

$$L = \{\frac{8}{3}\}$$

$$f'''(x_1) = f'''(\frac{8}{3}) = 3 > 0 \quad RLWP(\frac{8}{3}|f(\frac{8}{3}))$$

d

$$f(x) = \frac{1}{2}x^3 + 3x^2 - 8 = x^3 + 6x^2 - 16$$

Ableitungen

$$f'(x) = 3x^2 + 12x$$

$$f''(x) = 6x + 12$$

$$f'''(x) = 6$$

Symmetrie

$$f(-x) \neq f(x)$$

$$-x^3 + 6x^2 + 16 \neq x^3 + 6x^2 - 16$$

$$f(-x) \neq -f(x)$$

$$-x^3 + 6x^2 + 16 \neq -x^3 - 6x^2 + 16$$

Nullstellen

$$f(x) = 0 = x^3 + 6x^2 - 16$$

$$x_1 = -2$$

$$(x^{3} + 6x^{2} - 16) \div (x + 2) = x^{2} + 4x - 8$$

$$- x^{3} - 2x^{2}$$

$$- 4x^{2}$$

$$- 4x^{2} - 8x$$

$$- 8x - 16$$

$$- 8x + 16$$

$$0$$

$$x_{2/3} = \frac{-4 \pm \sqrt{16 - 4(-8)}}{2} = \frac{-4 \pm \sqrt{48}}{2}$$

$$L = \{-2; -5.46; 1.46\}$$

Grenzverhalten

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = \infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

Extremstellen

$$\begin{split} f'(x) &= 0 = 3x^2 + 12x & | : x \Rightarrow x_1 = 0 \\ 3x + 12 &= 0 \\ L &= \{0; -4\} \\ f''(x_1) &= f''(0) = 12 > 0 \quad TP(0|f(0)) \\ f''(x_2) &= f''(-4) = -12 < 0 \quad HP(-4|f(-4)) \\ \text{Wendestellen} \\ f''(x) &= 0 = 6x + 12 \\ L &= \{-2\} \\ f'''(x_1) &= f'''(-2) = 6 > 0 \quad RLWP(-2|f(-2)) \end{split}$$

$$f(x) = 187.5 - 1.579 \cdot 10^{-2} \cdot x^2 - 1.988 \cdot 190^{-6} \cdot x^4$$

a

Höhe

$$f(0) = 187.5$$

Breite

$$f(x) = 0$$

subst. $t = x^2$

$$0 = 187.5 - 1.579 \cdot 10^{-2} \cdot t - 1.988 \cdot 10^{-6} \cdot t^2$$

$$t_{1/2} = \frac{1.579 \cdot 10^{-2} \pm \sqrt{(1.579 \cdot 10^{-2})^2 - 4 \cdot (-1.988 \cdot 10^{-6}) \cdot 187.5}}{2 \cdot (-1.988 \cdot 10^{-6})}$$

$$t_1 < 0$$
 $t_2 = 6520.923541$

$$x_{1/2} = \pm \sqrt{t_2} \approx \pm 80$$

$$2 \cdot 80 = 160$$

b

$$f'(x) = -3.158 \cdot 10^{-2} \cdot x - 7.952 \cdot 10^{-6} \cdot x^{3}$$

$$f'(80) = -2.5264 - 4.071424 \approx -6.6$$

$$atan(-6.6) \approx -81^{\circ}$$

С

$$f(19) = 187.5 - 5.70019 - 0.259078148 \approx 181$$

vertikaler Abstand: $187.5 - 181 = 6.5 < 10$
 $f(9) - 10 = 177.5 - 1.579 - 0.01988 \approx 176.2$

3.17 Tangente und Anwendungen

3.17.1 Allgemeine Tangentengleichung - Herleitung

$$\begin{split} f(x) &= y = m \cdot x + b \\ \text{Stelle } u \qquad f'(u) = m \qquad f(u) = y \\ f(u) &= f'(u) \cdot u + b \quad \Rightarrow \quad b = f(u) - f'(u) \cdot u \\ t(x) &= f'(u) \cdot x + f(u) - f'(u) \cdot u \\ &= f'(u) \cdot (x - u) + f(u) \\ n(x) &= -\frac{1}{f'(u)} \cdot (x - u) + f(u) \end{split}$$

108/5

a

$$f(x) = x^{2} - x; \quad B(-2|6) \quad u = -2$$

$$f'(x) = 2x - 1 \quad f'(u) = -5$$

$$t(x) = -5 \cdot (x+2) + 6 = -5x - 4$$

$$n(x) = \frac{1}{5} \cdot (x+2) + 6 = \frac{1}{5}x + 6\frac{2}{5}$$

b

$$f(x) = \frac{4}{x} + 2; \quad B(4|3) \quad u = 4$$

$$f'(x) = -4x^{-2} \quad f'(u) = -\frac{1}{4}$$

$$t(x) = -\frac{1}{4} \cdot (x - 4) + 3 = -\frac{1}{4}x + 4$$

$$n(x) = 4 \cdot (x - 4) + 3 = 4x - 13$$

Exkurs: Quadratische Ergänzung

führt auf die Scheitelpunktform einer quadratischen Gleichung

z. B.
$$f(x) = x^2 - x$$

 $= x^2 - x + 0.25 - 0.25$
 $= (x - 0.5)^2 - 0.25$
Scheitelpunkt $S(0.5|-0.25)$

z. B.
$$g(x) = 4x^2 - 3x + 8$$

 $= 4(x^2 - \frac{3}{4}x) + 8$
 $= 4(x^2 - \frac{3}{4}x + \frac{9}{64} - \frac{9}{64}) + 8$
 $= 4(x - \frac{3}{8})^2 - 4(\frac{9}{64}) + 8$
 $= 4(x - \frac{3}{8})^2 + \frac{137}{16}$
Scheitelpunkt $S(\frac{3}{8}|\frac{137}{16})$

nimm den Koeffizienten (-1), halbiere ihn (-0.5) und quadriere anschließend (0.25).

109/10

$$f(x) = y = 4 - \frac{1}{2}x^{2}$$

$$Y(0|6)$$

$$f'(x) = -x$$

$$t(x) = f'(x_{0}) \cdot (x - x_{0}) + f(x_{0}) = \frac{x_{0}^{2}}{2} - x \cdot x_{0} + 4$$

$$0 = \frac{1}{2}x_{0}^{2} - 2 \qquad x_{0} = \pm 2$$

$$\begin{split} f(x) &= -0.002x^4 + 0.122x^2 - 1.8 \\ \text{Tiefster Punkt: } T(0|-1.8) \\ \text{Augen: } P(x_0|1.6) \\ f'(x) &= -0.008x^3 + 0.244x \\ t(x) &= 0.006u^4 - 0.122u^3 - 0.008u^3x + 0.224ux - 1.8 \\ t(0) &= -1.8 = 0.006u^4 - 0.122u^3 - 1.8 \qquad L = \{0; \pm \sqrt{\frac{61}{3}}\} \\ t(x) &= 0.366752x - 1.8 \quad fuer \ u = \sqrt{\frac{61}{3}} \\ 1.6 &= 0.366752x_0 - 1.8 \\ x_0 &= 9.2706 \end{split}$$

$$S(t) = -0.08t^3 + 3.5t^2 + 10.6t + 237$$

a

$$S'(t) = -0.24t^2 + 7t + 10.6$$

Die Ableitung gibt an, wie stark die Schulden ansteigen, also die Neuverschuldung pro Jahr.

b

$$S''(t) = -0.48t + 7$$

$$S''(t_0) = 0$$

$$t_0 = 14.58\overline{3} \quad (um \ 1994)$$

С

$$S'(t_0) = 0 = -0.24t^2 + 7t + 10.6$$

$$t_0 = \frac{1}{12}(175 + \sqrt{36985}) \approx 30.6 \quad (um\ 2010)$$

$$S''(t_0) \approx -7.69 < 0 \implies Hochpunkt$$

d Nicht die Staatsschulden, sondern die Neuverschuldung, nahm ab.

111/3

$$f(t) = 0.25t^3 - 12t^2 + 144t$$

а

$$f(t) = 0 = 0.25t^{3} - 12t^{2} + 144t \qquad L = \{0; 24\}$$

$$f'(t) = 0 = 0.75t^{2} - 24t + 144 \qquad L = \{8; 24\}$$

$$f''(t) = 1.5t - 24$$

$$f''(8) = -12 < 0 \implies HP$$

$$f''(24) = 12 > 0 \implies TP$$

$$f''(t) = 0 = 1.5t - 24 \qquad L = \{16\}$$

$$f'''(t) = 1.5 > 0 \implies RLWP$$

b

Hälfte d. Maximalwerts
$$= \frac{f(8)}{2} = \frac{512}{2} = 256$$

$$f(t) = 256 = 0.25t^3 - 12t^2 + 144t$$

$$0 = 0.25t^3 - 12t^2 + 144t - 256$$

$$\left(\frac{\frac{1}{4}t^3 - 12t^2 + 144t - 256}{-\frac{1}{4}t^3 + 4t^2} - 8t^2 + 144t - 256 \right) \div \left(t - 16 \right) = \frac{1}{4}t^2 - 8t + 16$$

$$-\frac{8t^2 - 128t}{16t - 256}$$

$$-\frac{16t + 256}{0}$$

$$L = \{2.1436; 16; (29.856)\}$$

$$f_2(t) = 0.25t^3 - 12t^2 + 144t - 256$$

$$f'_2(t) = f'(t) = 0.75t^2 - 24t + 144$$

$$f'_2(2.1436) \approx 96 > 0$$

$$f'_2(16) = -48 < 0$$

$$(f'_2(29.856) \approx 96 > 0)$$

Zeitraum: 2.1436 bis 16

Teil II

$$O(t) = -\frac{1}{300}(t^3 - 36t^2 + 324t - 5700) \qquad t \in [0; 24]$$

a

$$O'(t) = \frac{1}{100}(-t^2 + 24t - 108) = 0$$

$$t_{1/2} = \frac{-24 \pm \sqrt{24^2 - 4 \cdot 108}}{-2} = \frac{-24 \pm 12}{-2} = 12 \pm 6$$

$$t_1 = 6 \qquad t_2 = 18$$

$$O''(t) = \frac{12 - t}{50}$$

$$O''(t_1) = \frac{6}{50} > 0 \implies TP(6|O(6) = 16.12)$$

$$O''(t_2) = \frac{-6}{50} < 0 \implies HP(18|O(18) = 19)$$

b Die Steigung der Wendetangente gibt an, wie sich die Temperaturänderung ändert (Beschleunigung).

3.18 Optimieren unter Nebenbedingungen

Tunnelquerschnitt:

Länge der Randlinie (Umfang) ist 5m; A ist maximal

Hauptbedingung HB

$$A(r,h) = 2rh + \frac{1}{2}\pi r^2$$
 ($A(r)$ heißt Zielfunktion ZF)

Nebenbedingung NB

$$U = 5 = 2h + 2r + \pi r \qquad |-2r - \pi r$$

$$h = \frac{5}{2} - r - \frac{1}{2}\pi r$$

setze h in A(r,h) ein

$$A(r) = 2r(\frac{5}{2} - r - \frac{1}{2}\pi r) + \frac{1}{2}\pi r^{2}$$
$$= 5r - 2r^{2} - \pi r^{2} + \frac{1}{2}\pi r^{2}$$
$$= (-\frac{1}{2}\pi - 2) \cdot r^{2} + 5r$$

$$A'(r) = 5 - 7.14159r$$

 $A'(r) = 0$ $L = \{0.7\}$
 $h = 0.7$ fuer $r = 0.7$
 $A(r) = 1.75m^2$

114/3

$$A(l,b) = l \cdot b$$

$$U = 50 = 2(l+b) \Rightarrow b = 25 - l$$

$$A(l) = 2l \cdot (25 - l) = -2l^2 + 50l$$

$$A'(l) = -4l + 50$$

$$A'(l) = 0 \qquad L = \{12.5\}$$

$$l = b = 12.5cm$$

$$U(l,b) = 2(l+b)$$

$$A = 400 = l \cdot b \Rightarrow b = \frac{400}{l}$$

$$U(l) = 2l + \frac{800}{l}$$

$$U'(l) = 2 - 800l^{-2}$$

$$U'(l) = 0 \qquad L = \{\pm 20\}$$

$$l = b = 20cm$$

115/7

а

$$V(x) = (16 - 2x) \cdot (10 - 2x) \cdot x = 4x^3 - 52x^2 + 160x$$

$$V'(x) = 12x^2 - 104x + 160$$

$$V'(x) = 0 \qquad L = \{2; (\frac{20}{3})\}$$

$$V(2cm) = 144cm^3$$

115/8

$$U(r,h) = \pi r + 2r + 2h$$

$$A = 45 = \frac{1}{2}\pi r^2 + 2rh \Rightarrow h = \frac{45 - \frac{1}{2}\pi r^2}{2r}$$

$$U(r) = \frac{1}{2}\pi r + 2r + \frac{45}{r}$$

$$U'(r) = -45r^{-2} + \frac{1}{2}\pi + 2$$

$$U'(r) = 0 \qquad L = \{\pm 3.55\}$$

$$r = 3.55m$$

$$h = 3.55m \quad fuer \ r = 3.55m$$

$$V(r,h) = \pi r^2 h$$

$$12^2 = (2r)^2 + h^2 \Rightarrow r = \sqrt{36 - \frac{h^2}{4}}$$

$$V(h) = \pi \cdot (36 - \frac{h^2}{4}) \cdot h = 36h\pi - \frac{h^3\pi}{4}$$

$$V'(h) = -\frac{3}{4}\pi h^2 + 36\pi$$

$$V'(h) = 0 \qquad L = \{\pm 6.93\}$$

$$h = 6.93cm$$

$$r = 4.9cm \quad fuer \ h = 6.93cm$$

115/14

a ... Kantenlänge der Grundfläche

$$V(a,h) = \frac{1}{3} \cdot a^2 \cdot h$$

$$2.4^{2} = 5.76 = h_{s}^{2} + (\frac{a}{2})^{2}$$

$$h_{s}^{2} = h^{2} + (\frac{a}{2})^{2}$$

$$\Rightarrow h = \sqrt{5.76 - \frac{a^{2}}{2}}$$

$$V(a) = \frac{1}{3} \cdot a^2 \cdot \sqrt{5.76 - \frac{a^2}{2}}$$

$$V_2(a) = V(a)^2 = \frac{1}{9} \cdot a^4 \cdot (5.76 - \frac{a^2}{2}) = -\frac{1}{18}a^6 + 0.64a^4$$

$$V_2'(a) = -\frac{1}{3}a^5 + 2.56a^3$$

$$V_2'(a) = 0 \qquad L = \{0; \pm 2.771\}$$

$$V(2.771m) \approx 3.55m^3$$

Tragfähigkeit
$$T \sim b$$

Tragfähigkeit $T \sim h^2$

а

$$\begin{split} r &= 50cm \\ T(b,h) &= b \cdot h^2 \\ h^2 + b^2 &= (2r)^2 \Rightarrow h^2 = 10000 - b^2 \Rightarrow h = \sqrt{10000 - b^2} \\ T(b) &= b \cdot (10000 - b^2) = -b^3 + 10000b \\ T'(b) &= -3b^2 + 10000 \\ T'(b) &= 0 \qquad L = \{\pm \frac{100}{\sqrt{3}}\} \\ T(\frac{100}{\sqrt{3}}) &\approx 384900 \end{split}$$

$$b \approx 57.74cm$$

$$h = \sqrt{10000 - (\frac{100}{\sqrt{3}})^2} \approx 81.65cm$$

3.19 Numerisches Verfahren zur Nullstellenbestimmung

z. B.
$$f(x) = x^3 + 5x - 10$$
 probeweise:

$$f(1) = -4$$

$$f(2) = 8$$

 \Rightarrow Nullstelle zwischen 1 und 2

Vermutung $x_0 = 1.5$

Zum Rechenverfahren

Tangentengleichung
$$t(x)=f'(x_0)(x-x_0)+f(x_0)$$

$$t(x_1)=0 \qquad x_1=x_0-\frac{f(x_0)}{f'(x_0)}$$

$$\rightarrow x_2=x_1-\frac{f(x_1)}{f'(x_1)}$$

allgemeine Näherungsformel nach Newton (und Raphson)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

n beginnend bei 0

Abbruchbedingung: Nullstelle auf 3 Dezimalen genau. Das bedeutet, dass beim nächsten Schritt sich die 3. Dezimale nicht mehr ändern darf

Beispiel
$$f(x) = x^3 + 5x - 10$$

 $f'(x) = 3x^2 + 5$
 $x_0 = 1.5$
 $x_1 = 1.5 - \frac{1.5^3 + 5 \cdot 1.5 - 10}{3 \cdot 1.5^2 + 5} \approx 1.4255$
 $x_2 = \dots \approx 1.4233$
 $x_3 = \dots \approx 1.42331$

Nullstelle auf 3 Dezimalen genau: x=1.423

118/1

a

$$x^{3} + 2x - 1 = 0$$

$$f'(x) = 3x^{2} + 2$$

$$x_{0} = 0$$

$$x_{1} = 0 - \frac{-1}{2} = 0.5$$

$$x_{2} = \frac{5}{11} = 0.\overline{45}$$

$$x_{3} = \frac{1581}{3487} \approx 0.453398...$$

$$x_{4} = \frac{50302634185}{110945952227} \approx 0.453397...$$

$$x^{*} = 0.453$$

3.19.1 Anwendungen des Newton-Verfahrens

Mögliche Fragestellungen:

- Nullstellen eines Funktionsgraphen f(x) = 0, auch f(x) = a
- Nullstellen der Ableitungsfunktion f'(x) = 0, auch f'(x) = m
- ullet Schnittstellen zweier Funktionsgraphen f(x) = g(x)
- zu Zielfunktion Lösungen finden

а

$$f(x) = x^{3} - 3x - 1$$

$$f'(x) = 3x^{2} - 3$$

$$x_{0} = 2$$

$$x_{1} = 1.8889$$

$$x_{2} = 1.8795$$

$$x_{3} = 1.8794$$

$$x_{4} = 1.8794$$

$$x_{1}^{*} = 1.879$$
...
$$x_{2}^{*} = -1.532$$

$$x_{3}^{*} = -0.347$$

b

$$f(x) = x^{3} + 3x^{2} - 3$$

$$f'(x) = 3x^{2} + 6x$$

$$x_{0} = 1$$

$$x_{1} = 0.8889$$

$$x_{2} = 0.8795$$

$$x_{3} = 0.8794$$

$$x_{4} = 0.8794$$

$$x_{1}^{*} = 0.879$$
...
$$x_{2}^{*} = -2.532$$

$$x_{3}^{*} = -1.347$$

С

$$f(x) = x^4 - 2x^3 - 5x^2 + 1$$

$$f'(x) = 4x^3 - 6x^2 - 10x$$

$$x_0 = 0.5$$

$$x_1 = 0.4271$$

$$x_2 = 0.4203$$

$$x_3 = 0.4204$$

$$x_4 = 0.4204$$

$$x_1^* = 0.420$$
...
$$x_2^* = -1.332$$

$$x_3^* = -0.521$$

$$x_4^* = 3.432$$

d

$$f(x) = x^{4} + x^{3} - 4x^{2} + x + 0.5$$

$$f'(x) = 4x^{3} + 3x^{2} - 8x + 1$$

$$x_{0} = 0.5$$

$$x_{1} = 0.6071$$

$$x_{2} = 0.6030$$

$$x_{3} = 0.6030$$

$$x_{1}^{*} = 0.603$$
...
$$x_{2}^{*} = -2.635$$

$$x_{3}^{*} = -0.246$$

$$x_{4}^{*} = 1.278$$

$$f(x) = x^{5} + x^{3} + 1$$

$$f'(x) = 5x^{4} + 3x^{2}$$

$$x_{0} = -1$$

$$x_{1} = -0.8750$$

$$x_{2} = -0.8400$$

$$x_{3} = -0.8376$$

$$x_{4} = -0.8376$$

$$x^{*} = -0.838$$

118/4

а

$$g(x) = x^2;$$
 $h(x) = x^3 - 1$
 $f(x) = g(x) - h(x) = -x^3 + x^2 + 1$
 $f'(x) = -3x^2 + 2x$
 $x_0 = 1.5$
...
 $x^* = 1.466$

b

$$g(x) = x^{3}; \quad h(x) = \frac{1}{2}x^{3} - 2x + 2$$

$$f(x) = g(x) - h(x) = \frac{1}{2}x^{3} + 2x - 2$$

$$f'(x) = \frac{3}{2}x^{2} + 2$$

$$x_{0} = 1$$
...
$$x^{*} = 0.848$$

a

$$f(x) = 0.1x^{4} - x^{2} - x + 1; \quad m = 1$$

$$f'(x) = 0.4x^{3} - 2x - 1 = 1$$

$$0.4x^{3} - 2x - 2 = 0$$

$$x_{0} = 2.5$$
...
$$x^{*} = 2.627$$

b

$$f(x) = -0.1x^4 - x^3 + x^2 + 3; \quad m = -18$$

$$f'(x) = -0.4x^3 - 3x^2 + 2x = -18$$

$$-0.4x^3 - 3x^2 + 2x + 18 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.400$$

С

$$f(x) = \frac{1}{10}x^3 + \frac{1}{2}x^2 - 1 + \frac{1}{x}; \quad m = 4$$

$$f'(x) = \frac{3}{10}x^2 + x - \frac{1}{x^2} = 4$$

$$\frac{3}{10}x^2 + x - \frac{1}{x^2} - 4 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.418$$

d

$$f(x) = \sqrt{x} - \frac{1}{2}x^3 + 3; \quad m = -10$$

$$f'(x) = \frac{1}{2\sqrt{x}} - \frac{3}{2}x^2 = -10$$

$$\frac{1}{2\sqrt{x}} - \frac{3}{2}x^2 + 10 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.622$$

118/6

а

$$f(x) = x^5 + x + 1$$
$$f'(x) = 5x^4 + 1 > 0$$

Die Funktion ist streng monoton steigend, d. h. sie hat genau eine Nullstelle.

b

$$x_0 = -1$$

• • •

$$x^* \approx -0.755$$

$$r = 9cm$$

$$V_K = \frac{4}{3}\pi r^3$$

$$V_Z = h\pi R^2 = \frac{1}{4}V_K = \frac{1}{3}\pi r^3$$

$$hR^2 = \frac{1}{3}r^3$$

$$R^2 + (\frac{h}{2})^2 = r^2 \Rightarrow R^2 = r^2 - \frac{h^2}{4}$$

$$h(r^2 - \frac{h^2}{4}) = hr^2 - \frac{h^3}{4} = \frac{1}{3}r^3$$

$$81h - \frac{h^3}{4} = 243$$

$$-\frac{1}{4}h^3 + 81h - 243 = 0$$

$$(-\frac{1}{4}h^3 + 81h - 243)' = -\frac{3}{4}h^2 + 81$$
...
$$(h_1 \approx -19.345)$$

$$h_2 \approx 3.091$$

$$h_3 \approx 16.25$$

$$R_2 = \sqrt{r^2 - \frac{h_2^2}{4}} \approx 8.87$$

$$R_3 = \sqrt{r^2 - \frac{h_3^2}{4}} \approx 3.87$$

3.20 AB Kurvenuntersuchungen

AB/1

а

$$f_a(x) = x^2 - 2ax + 1$$
$$a \in \mathbb{R}, a > 0$$

Symmetrie

$$f_a(-x) = x^2 + 2ax + 1 \neq f_a(x)$$

 $-f_a(x) = -x^2 + 2ax - 1 \neq f_a(-x)$

 \Rightarrow keine Symmetrie erkennbar

Nullstellen

$$x^{2} - 2ax + 1 = 0$$

$$x_{1/2} = \frac{2a \pm \sqrt{(-2a)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = a \pm \sqrt{a^{2} - 1}$$

Extrema

$$f'_a(x) = 2x - 2a = 0$$
 $L = \{a\}$
 $f''_a(x) = 2 > 0$ $\Rightarrow TP(a|f_a(a) = -a^2 + 1)$

Wendepunkte

$$f_a''(x) = 0 \quad L = \{\}$$

b

a = 1, 1.5, 0.5

С

$$f_a'(4) = 2 \cdot 4 - 2a = 1 \implies a = 3.5$$

d

$$\begin{array}{l} x_{1/2}=a\pm\sqrt{a^2-1}\\ a^2-1<0\quad fuer\ a<1\quad\Rightarrow\quad \text{keine Nullstelle}\\ a^2-1=0\quad fuer\ a=1\quad\Rightarrow\quad 1\ \text{Nullstelle}\\ a^2-1>0\quad fuer\ a>1\quad\Rightarrow\quad 2\ \text{Nullstellen} \end{array}$$

3.20.1 Ortslinie

Der Graph, auf dem alle Tiefpunkte zu unterschiedlichen a liegen, heißt Ortslinie der Tiefpunkte:

$$T(a|-a^2+1)$$

$$x = a$$

$$y = -a^2 + 1$$

setze a aus x-Koordinate in y ein

$$f(x) = y = -x^2 + 1$$

Funktionsgleichung der Ortskurve der Tiefpunkte

AB/5

а

$$f_a(x) = \frac{1}{2}x^4 - ax^2$$
$$a > 0$$

Symmetrie

$$f_a(-x) = \frac{1}{2}x^4 - ax^2 = f_a(x)$$

⇒ Achsensymmetrie

$$-f_a(x) = -\frac{1}{2}x^4 + ax^2 \neq f_a(-x)$$

⇒ keine Punktsymmetrie erkennbar

Nullstellen

$$\frac{1}{2}x^4 - ax^2 = 0 \qquad |: x^2$$

$$\frac{1}{2}x^2 - a = 0$$

$$L = \{0; \pm \sqrt{2a}\}$$

Extrema

$$f'_a(x) = 2x^3 - 2ax = 0 \qquad |: x$$

$$2x^2 - 2a = 0$$

$$x = \pm \sqrt{a}$$

$$f''_a(x) = 6x^2 - 2a$$

$$f''_a(\pm \sqrt{a}) = 4a > 0 \Rightarrow TP$$

$$f''_a(0) = -2a < 0 \Rightarrow HP$$

Wendepunkte

$$f_a''(x) = 0 \quad L = \{\pm \sqrt{\frac{a}{3}}\}$$

$$f_a'''(x) = 12x$$

$$f_a'''(\sqrt{\frac{a}{3}}) = 12\sqrt{\frac{a}{3}} > 0 \Rightarrow RLWP$$

$$f_a'''(-\sqrt{\frac{a}{3}}) = -12\sqrt{\frac{a}{3}} < 0 \Rightarrow LRWP$$

b

$$T(\pm\sqrt{a}| - \frac{1}{2}a^2)$$
$$f_T(x) = -\frac{1}{2}x^4$$

$$W(\pm \sqrt{\frac{a}{3}}| - \frac{5a^2}{18})$$
$$f_W(x) = -\frac{5}{2}x^4$$

AB/4

а

$$\begin{split} f_a(x) &= \frac{1}{4}(x^4 - ax^2) & WP(1|f_a(1)) \\ f_a(-x) &= \frac{1}{4}(x^4 - ax^2) = f_a(x) \\ \Rightarrow \text{Achsensymmetrie} \Rightarrow \text{zweiter Wendepunkt bei } x = -1 \\ f_a''(\pm 1) &= 3 \cdot 1^2 - \frac{1}{2}a = 0 \quad \Rightarrow a = 6 \\ f_6(\pm 1) &= \frac{1}{4}(1^4 - 6 \cdot 1^2) = -\frac{5}{4} \end{split}$$

b

$$f_a''(x) = 3x^2 - \frac{1}{2}a = 0 \quad L = \{\pm \sqrt{\frac{a}{6}}\}$$

$$t_1(x) = -\frac{a}{3}\sqrt{\frac{a}{6}}x + \frac{a^2}{48}$$

$$t_2(x) = \frac{a}{3}\sqrt{\frac{a}{6}}x + \frac{a^2}{48}$$

3.21 Wiederholung

115/9

$$O(a,h) = a^{2} + 4ah$$

$$V(a,h) = a^{2} \cdot h = 40dm^{3} \implies h = \frac{40dm^{3}}{a^{2}}$$

$$O(a) = a^{2} + 160dm^{3} \cdot a^{-1}$$

$$O'(a) = 2a - 160dcm^{3} \cdot a^{-2}$$

$$a = \sqrt[3]{80dm^{3}} \approx 4.309dm$$

$$h = \frac{40dm^{3}}{\sqrt[3]{80dm^{3}}^{2}} = \sqrt[3]{10} \approx 2.154dm$$

119/8

$$h(0) = 400m$$
$$h(370) = 0$$

- a h' beschreibt das Gefälle des Flusses und gibt den Höhenverlust des Wassers pro Kilometer an
- b ein Stausee hat einen waagerechten Abschnitt des Graphen zur Folge, ein Wasserfall eine Sprungstelle
- c h' ist nicht positiv, da das Wasser ausschließlich nach unten fließt; die Einheit ist $\frac{m}{km}$

3.22 Sinus- und Kosinusfunktion

$$f(\alpha) = \sin(\alpha)$$

$$f(x) = \sin(x)$$

$$\frac{\alpha}{360^{\circ}} = \frac{x}{U} \qquad U = 2\pi r$$

$$x = \frac{\alpha \cdot 2\pi}{360^{\circ}} \qquad \alpha = \frac{x \cdot 360^{\circ}}{2\pi}$$

wichtige x-Koordinaten

$$x = 3.14... = \pi$$
 $x = 6.28... = 2\pi$
 $x = 1.57... = \frac{\pi}{2}$ $x = 4.71... = \frac{3\pi}{2}$
 $sin(x + \frac{\pi}{2}) = cos(x)$ $sin(x) = cos(x - \frac{\pi}{2})$

3.22.1 Vielfachheit der Lösungen von (geniometrischen) Gleichungen

$$sin(x) = 0.7$$

$$x = asin(0.7) \approx 0.775$$

$$x_n \approx 0.775 + n \cdot 2\pi$$

$$x_m \approx \pi - 0.775 + m \cdot 2\pi$$

$$n, m \in \mathbb{Z}$$

$$cos(x) = 0.3$$

$$x = acos(0.3) \approx 1.266$$

$$x_n \approx 1.266 + n \cdot 2\pi$$

$$x_m \approx -1.266 + n \cdot 2\pi$$

$$n, m \in \mathbb{Z}$$

a

$$sin(x) = 0.9396$$

 $x = asin(0.9396) \approx 1.221$
 $x_n \approx 1.221 + n \cdot 2\pi$
 $x_m \approx \pi - 1.221 + m \cdot 2\pi$

b

$$sin(x) = 0.5519$$

 $x = asin(0.5519) \approx 0.585$
 $x_n \approx 0.585 + n \cdot 2\pi$
 $x_m \approx \pi - 0.585 + m \cdot 2\pi$

С

$$cos(x) = 0.6294$$

 $x = asin(0.6294) \approx 0.890$
 $x_n \approx 0.890 + n \cdot 2\pi$
 $x_m \approx -0.890 + m \cdot 2\pi$

d

$$cos(x) = -0.8870$$

 $x = asin(-0.8870) \approx 2.662$
 $x_n \approx 2.662 + n \cdot 2\pi$
 $x_m \approx -2.662 + m \cdot 2\pi$

128/7

а

$$sin(x) = 0.63$$

$$x = asin(0.63) \approx 0.682$$

$$x_n \approx 0.682 + n \cdot 2\pi$$

$$x_m \approx \pi - 0.682 + m \cdot 2\pi$$

b

$$cos(x) = -0.55$$

$$x = asin(-0.55) \approx 2.153$$

$$x_n \approx 2.153 + n \cdot 2\pi$$

$$x_m \approx -2.153 + m \cdot 2\pi$$

С

$$sin(x) = -\frac{1}{2}$$

$$x = asin(-\frac{1}{2}) \approx -0.524$$

$$x_n \approx -0.524 + n \cdot 2\pi$$

$$x_m \approx \pi + 0.524 + m \cdot 2\pi$$

d

$$cos(x) = -\frac{1}{2}\sqrt{2}$$

$$x = asin(-\frac{1}{2}\sqrt{2}) \approx 2.356$$

$$x_n \approx 2.356 + n \cdot 2\pi$$

$$x_m \approx -2.356 + m \cdot 2\pi$$

3.22.2 Die allgemeine Sinusfunktion

$$f(x) = y = a \cdot \sin(b(x - c)) + d$$

- a Streckung entlang der y-Achse (Amplitude)
- b Streckung entlang der x-Achse (Perioden pro 2π , Periodenlänge $p=\frac{2\pi}{b})$
- c Verschiebung in x-Richtung (für c > 0 nach rechts)
- d Verschiebung in y-Richtung

3.22.3 AB Die Funktionen $f: x \mapsto a \cdot sin(b(x-c))$ und ihre Graphen

AB/3

a

$$f(x) = 3 \cdot \sin(\frac{1}{2}(x - \pi))$$

$$p = 4\pi$$

$$3 \cdot \sin(\frac{1}{2}(x - \pi))$$

$$x_H = 2\pi + n \cdot p$$

$$x_T = n \cdot p$$

$$x_W = \pi + \frac{n}{2} \cdot p$$

b

$$f(x) = 2 \cdot \sin(\frac{2}{3}x)$$

$$p = 3\pi$$

$$x_H = \frac{3}{4}\pi + n \cdot p$$

$$x_T = 2\frac{1}{4}\pi + n \cdot p$$

$$x_W = \frac{n}{2} \cdot p$$

С

$$f(x) = 4 \cdot \sin(x - \frac{\pi}{6})$$

$$p = 2\pi$$

$$x_H = \frac{2}{3}\pi + n \cdot p$$

$$x_T = \frac{5}{3}\pi + n \cdot p$$

$$x_W = \frac{\pi}{6} + \frac{p}{2}$$

$$f(x) = a \cdot \sin(b \cdot x + e)$$

a

$$f(x) = 20 \cdot \sin(\frac{\pi}{20} \cdot x - \frac{\pi}{2})$$

b

$$f(x) = 6 \cdot \sin(\frac{\pi}{12} \cdot x + \frac{\pi}{4})$$

С

$$f(x) = 4 \cdot \sin(\frac{\pi}{4} \cdot x - \frac{\pi}{2})$$

AB/6

$$f(t) = a \cdot \sin(b(t - c)) \qquad -2 \le t \le 13$$

a Die Sonne bewegt sich aus Sicht der Aufnahmen periodisch auf und ab. Ihr Höhenverlauf lässt sich daher über eine Sinuskurve modellieren.

b

$$f(x) = a \cdot \sin(\frac{\pi}{12} \cdot (x - 6))$$

3.22.4 Ableitung der Sinusfunktion

sin(x), cos(x)

Annäherung mit Taylorreihe

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a)^{1} + \frac{f''(a)}{2!}(x - a)^{2} + \frac{f'''(a)}{3!}(x - a)^{3} + \dots$$

$$a = x_{0} = 0$$

$$f(x_{0}) = f(0) + \frac{f'(0)}{1!}x^{1} + \frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3} + \dots$$

$$sin(x) = 0 + x^{1} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots$$

$$(sin(x))' = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} = \dots = cos(x)$$

$$f(x) = sin(x)$$

$$f'(x) = cos(x)$$

$$f''(x) = -sin(x)$$

$$f'''(x) = -cos(x)$$

$$f''''(x) = sin(x)$$

. . .

130/1

а

$$f(x) = 12 \cdot sin(x)$$

$$f'(x) = 12 \cdot cos(x)$$

b

$$f(x) = -2 \cdot cos(x)$$

$$f'(x) = -2 \cdot (-sin(x))$$

С

$$f(x) = \sqrt{5} \cdot \cos(x)$$

$$f'(x) = \sqrt{5} \cdot (-\sin(x))$$

d

$$f(x) = \frac{1}{\pi} \cdot \sin(x)$$
$$f'(x) = \frac{1}{\pi} \cdot \cos(x)$$

е

$$f(x) = 5x^3 - \sin(x)$$

$$f'(x) = 15x^2 - \cos(x)$$

f

$$f(x) = 2 \cdot cos(x) - sin(x)$$

$$f'(x) = 2 \cdot (-sin(x)) - cos(x)$$

130/3

b

$$f(x) = 3 \cdot \sin(x)$$

$$P(\frac{5\pi}{3}|?)$$

$$y = f(\frac{5\pi}{3}) \approx -2.598$$

$$f'(x) = 3 \cdot \cos(x)$$

$$m_t = f'(\frac{5\pi}{3}) = 1.5$$

$$b_t = -2.598 - 1.5 \cdot \frac{5\pi}{3} \approx -10.452$$

$$t(x) = 1.5x - 10.452$$

С

d

$$f(x) = 2 \cdot \sin(x) - \cos(x); \quad x \in [0; 2\pi]$$

$$f'(x) = 2 \cdot \cos(x) + \sin(x)$$

$$f'(x) = 0 = 2 \cdot \cos(x) + \sin(x)$$

$$2 = -\frac{\sin(x)}{\cos(x)} = -\tan(x) \quad \Rightarrow \quad x = a \tan(-2)$$

$$L = \{a \tan(-2) + n\pi\} \quad n \in \{1; 2\}$$

$$f''(x) = \cos(x) - 2 \cdot \sin(x)$$

$$f''(a \tan(-2) + \pi) \approx -2.23 < 0$$

$$HP(a \tan(-2) + \pi|f(a \tan(-2) + \pi)) = HP(2.034|2.236)$$

$$f''(a \tan(-2) + 2\pi|f(a \tan(-2) + 2\pi)) = TP(5.176| - 2.236)$$

$$TP(a \tan(-2) + 2\pi|f(a \tan(-2) + 2\pi)) = TP(5.176| - 2.236)$$

$$f(x) = 4 \cdot \cos(x) + 2x; \quad x \in [0; 2\pi]$$

$$f'(x) = -4 \cdot \sin(x) + 2$$

$$f'(x) = 0 = -4 \cdot \sin(x) + 2$$

$$0.5 = \sin(x) \quad \Rightarrow \quad x = a \sin(0.5)$$

$$L = \{a \sin(0.5); \pi - a \sin(0.5)\}$$

$$f''(x) = -4 \cdot \cos(x)$$

$$f''(a \sin(0.5)) \approx -3.46 < 0$$

$$HP(a \sin(0.5)|f(a \sin(0.5))) = HP(0.524|4.51)$$

$$f''(\pi - a \sin(0.5)|f(a \sin(0.5))) = TP(2.618|1.772)$$

3.23 Neue Funktionen aus alten Funktionen

gegeben sind

$$f(x) = \sin(x)$$

$$g(x) = \sqrt{x}$$

$$h(x) = x^2 + 5$$

Produkt

$$i(x) = f(x) \cdot g(x) = \sin(x) \cdot \sqrt{x}$$
$$j(x) = h(x) \cdot f(x) = (x^2 + 5) \cdot \sin(x)$$

Quotient

$$k(x) = \frac{g(x)}{f(x)} = \frac{\sqrt{x}}{\sin(x)}$$

$$l(x) = \frac{h(x)}{g(x)} = \frac{x^2 + 5}{\sqrt{x}}$$

Verkettung

$$m(x) = f(g(x)) = \sin(\sqrt{x})$$

$$n(x) = g(f(x)) = \sqrt{\sin(x)}$$

$$o(x) = f(g(h(x))) = sin(\sqrt{x^2 + 5})$$

3.23.1 Ableitungsregeln

Produktregel

$$k(x) = f(x) \cdot g(x)$$

$$k'(x) = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x \cdot g(x+h) + f(x) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)] \cdot g(x+h) + f(x) \cdot [g(x+h) - g(x)]}{h}$$

$$= f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Kettenregel

$$k(x) = f(g(x))$$

$$k'(x) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(z+i) - f(z)}{i} \cdot g'(x)$$

$$= f'(z) \cdot g'(x)$$

$$= f'(g(x)) \cdot g'(x)$$

$$g(x) = z \qquad g(x+h) = z+i$$

Beispiele

$$k(x) = (x^{2} + 2x - 7) \cdot \sin(x)$$

$$k'(x) = (2x + 2) \cdot \sin(x) + (x^{2} + 2x - 7) \cdot \cos(x)$$

$$k(x) = \sin(x^3 - 5x)$$

$$k'(x) = \cos(x^3 - 5x) \cdot (3x^2 - 5)$$

135/1

а

$$f(x) = (x+2)^4$$

$$f'(x) = 4(x+2)^3$$

b

$$f(x) = (8x + 2)^3$$

$$f'(x) = 3(8x + 2)^2 \cdot 8 = 24(8x + 2)^2$$

С

$$f(x) = (\frac{1}{2} - 5x)^3$$

$$f'(x) = 3(\frac{1}{2} - 5x)^2 \cdot (-5) = -15(\frac{1}{2} - 5x)^2$$

d

$$f(x) = \frac{1}{4}(x^2 - 5)^2$$
$$f'(x) = \frac{1}{2}(x^2 - 5) \cdot 2x = x^3 - 5x$$

135/2

а

$$f(x) = \frac{1}{(x-1)^2}$$
$$f'(x) = -2(x-1)^{-3}$$

b

$$f(x) = \frac{1}{(3x-1)^2}$$
$$f'(x) = -2(3x-1)^{-3} \cdot 3 = -6(3x-1)^{-3}$$

е

$$f(x) = sin(2x)$$

$$f'(x) = cos(2x) \cdot 2 = 2cos(2x)$$

f

$$f(x) = \sin(2x + \pi)$$

$$f'(x) = \cos(2x + \pi) \cdot 2 = 2\cos(2x + \pi) = -2\cos(2x)$$

138/1

g

$$f(x) = \frac{2}{x} \cdot \cos(x)$$

$$f'(x) = -2x^{-2} \cdot \cos(x) - \frac{2}{x} \cdot \sin(x)$$

h

$$f(x) = sin(x) \cdot cos(x)$$

$$f'(x) = (cos(x))^2 - (sin(x))^2 = cos(2x)$$

i

$$f(x) = x^{2} \cdot sin(x)$$

$$f'(x) = 2x \cdot sin(x) + x^{2} \cdot cos(x)$$

j

$$f(x) = \frac{1}{\sqrt{x}} \cdot \cos(x)$$
$$f'(x) = -\frac{\cos(x)}{2\sqrt{x^3}} - \frac{\sin(x)}{\sqrt{x}}$$

k

$$f(x) = \frac{\pi}{4} \cdot \sin(x) \cdot (2 - x)$$

$$f'(x) = \frac{\pi}{4} \cdot \cos(x) \cdot (2 - x) - \frac{\pi}{4} \cdot \sin(x)$$

١

$$f(x) = \sqrt{3} \cdot \sqrt{x}$$
$$f'(x) = \frac{\sqrt{3}}{2\sqrt{x}}$$

135/4

a

$$f(x) = 0.25 \cdot \sin(2x + \pi)$$

$$f'(x) = 0.25 \cdot \cos(2x + \pi) \cdot 2 = -0.5 \cdot \cos(2x)$$

b

$$f(x) = \frac{2}{3} \cdot \sin(\pi - 3x)$$

$$f'(x) = \frac{2}{3} \cdot \cos(\pi - 3x) \cdot (-3) = 2 \cdot \cos(3x)$$

С

$$f(x) = -\cos(x^2 + 1)$$

$$f'(x) = \sin(x^2 + 1) \cdot 2x$$

d

$$f(x) = \frac{1}{3} \cdot (\cos(x))^2$$

$$f'(x) = \frac{1}{3} \cdot 2 \cdot \cos(x) \cdot (-\sin(x)) = -\frac{2}{3} \cdot \cos(x) \cdot \sin(x)$$

е

$$f(x) = \sqrt{3x}$$
$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{3x}} \cdot 3 = \frac{3}{2\sqrt{3x}}$$

f

$$f(x) = \sqrt{3+x}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{3+x}} \cdot 1 = \frac{1}{2\sqrt{3+x}}$$

g

$$f(x) = \sqrt{7x - 5}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{7x - 5}} \cdot 7 = \frac{7}{2 \cdot \sqrt{7x - 5}}$$

h

$$f(x) = \sqrt{7x^2 - 5}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{7x^2 - 5}} \cdot 14x = \frac{7x}{\sqrt{7x^2 - 5}}$$

i

$$f(x) = \frac{1}{\sin(x)}$$
$$f'(x) = -\frac{1}{(\sin(x))^2} \cdot \cos(x) = -\frac{\cos(x)}{(\sin(x))^2}$$

Ableitungen mit mehr als zwei Funktionen

$$l = g \cdot [h \cdot k]$$

$$l' = g' \cdot h \cdot k + g \cdot [h' \cdot k + h \cdot k']$$

$$= g' \cdot h \cdot k + g \cdot h' \cdot k + g \cdot h \cdot k'$$

$$l = g(h(k))$$

$$l' = g'(h(k)) \cdot h'(k) \cdot k'$$

$$l = g \cdot h(k)$$

$$l' = g' \cdot h(k) + g \cdot h'(k) \cdot k'$$

$$l = g(h \cdot k)$$

$$l' = g'(h \cdot k) \cdot [h' \cdot k + h \cdot k']$$

Quotientenregel

$$\begin{split} l &= \frac{g}{h} = g \cdot h^{-1} \\ l' &= g' \cdot h^{-1} + g \cdot \left[-h^{-2} \cdot h' \right] \\ &= g' \cdot h^{-1} - g \cdot h^{-2} \cdot h' \\ &= \frac{g'}{h} - \frac{g \cdot h'}{h^2} = \frac{g' \cdot h}{h \cdot h} - \frac{g \cdot h'}{h^2} \\ &= \frac{g' \cdot h - g \cdot h'}{h^2} \end{split}$$

138/2

е

$$f(x) = (5 - 4x)^3 \cdot x^{-2}$$

$$f'(x) = 3(5 - 4x)^2 \cdot (-4) \cdot x^{-2} + (5 - 4x)^3 \cdot (-2x^{-3})$$

$$= -\frac{2 \cdot (5 - 4x)^2 \cdot (2x + 5)}{x^3}$$

f

$$f(x) = 3x \cdot cos(2x)$$

$$f'(x) = 3 \cdot cos(2x) + 3x \cdot (-sin(2x)) \cdot 2$$

$$= 3 \cdot (cos(2x) - 2x \cdot sin(2x))$$

$$f(x) = 3x \cdot (\sin(x))^2$$

$$f'(x) = 3 \cdot (\sin(x))^2 + 3x \cdot 2 \cdot \sin(x) \cdot \cos(x)$$

$$= 3 \cdot \sin(x) \cdot (\sin(x) + 2x \cdot \cos(x))$$

h

$$f(x) = (2x - 1)^{2} \cdot \sqrt{x}$$

$$f'(x) = 2(2x - 1) \cdot 2 \cdot \sqrt{x} + (2x - 1)^{2} \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{(2x - 1) \cdot (10x - 1)}{2\sqrt{x}}$$

i

$$f(x) = 0.5x^{2} \cdot \sqrt{4 - x}$$

$$f'(x) = x \cdot \sqrt{4 - x} + 0.5x^{2} \cdot \frac{1}{2\sqrt{4 - x}} \cdot (-1)$$

$$= \frac{(4 - 1.25x) \cdot x}{\sqrt{4 - x}}$$

140/2

a

$$f(x) = \frac{1 - x^2}{3x + 5}$$

$$f'(x) = \frac{-2x \cdot (3x + 5) - (1 - x^2) \cdot 3}{(3x + 5)^2}$$

$$= -\frac{(3x + 1) \cdot (x + 3)}{(3x + 5)^2}$$

b

$$g(x) = \frac{\sqrt{x}}{x+2}$$

$$g'(x) = \frac{\frac{1}{2\sqrt{x}} \cdot (x+2) - \sqrt{x} \cdot 1}{(x+2)^2}$$

$$= \frac{2-x}{2\sqrt{x} \cdot (x+2)^2}$$

$$h(x) = \frac{3 \cdot \sin(x)}{6x - 1}$$
$$h'(x) = \frac{3 \cdot \cos(x) \cdot (6x - 1) - 3 \cdot \sin(x) \cdot 6}{(6x - 1)^2}$$

d

$$k(x) = \frac{\sin(x)}{\cos(x)}$$

$$k'(x) = \frac{\cos(x) \cdot \cos(x) - \sin(x) \cdot (-\sin(x))}{(\cos(x))^2}$$

$$= 1 + (\tan(x))^2$$

3.24 Exponentialfunktionen - Ableitung

$$f(x) = 2^x \qquad f'(x) \qquad \qquad g(x) = 4^x \qquad g'(x)$$

Zwischen 2^x und 4^x liegt eine Exponentialfunktion, deren Ableitungsfunktion genau der Ursprungsfunktion entspricht. Sie wird natürliche Exponentialfunktion genannt.

$$f(x) = e^x$$
 Eulersche Zahl $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.71828$

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f''(x) = e^{x}$$

. . .

$$e^x \leftrightarrow log_e(x) = ln(x)$$

 $\Rightarrow e^{ln(x)} = ln(e^x) = x$

$$2^{x} = 5^{x \cdot \frac{\log(2)}{\log(5)}} = 5^{x \cdot \log_{5}(2)}$$
$$2^{x} = e^{x \cdot \ln(2)}$$

$$10^x = e^{x \cdot ln(10)}$$

$$f(x) = e^{x \cdot ln(2)} = 2^x$$

$$f'(x) = e^{x \cdot ln(2)} \cdot ln(2) = 2^x \cdot ln(2) \approx 2^x \cdot 0.7$$

$$f(x) = e^{x \cdot ln(4)} = 4^x$$

$$f'(x) = e^{x \cdot ln(4)} \cdot ln(4) = 4^x \cdot ln(4) \approx 4^x \cdot 1.4$$

142/3

а

$$f(x) = x \cdot e^x$$

$$f'(x) = 1 \cdot e^x + xe^x = e^x \cdot (x+1)$$

b

$$f(x) = \frac{e^x}{x}$$

$$f'(x) = \frac{e^x \cdot x - e^x \cdot 1}{x^2} = \frac{e^x \cdot (x - 1)}{x^2}$$

С

$$f(x) = \frac{x}{e^x}$$

$$f'(x) = \frac{1 \cdot e^x - x \cdot e^x}{(e^x)^2} = \frac{1 - x}{e^x}$$

$$f(x) = (x+1) \cdot e^x$$

$$f'(x) = 1 \cdot e^x + (x+1) \cdot e^x = e^x \cdot (x+2)$$

е

$$f(x) = \frac{x}{e^{-0.5x}}$$

$$f(x) = \frac{1 \cdot e^{-0.5x} - x \cdot (-0.5) \cdot e^{-0.5x}}{(e^{-0.5x})^2} = e^{0.5x} \cdot (1 + 0.5x)$$

f

$$f(x) = \frac{e^x + 1}{x}$$
$$f'(x) = \frac{e^x \cdot x - (e^x + 1) \cdot 1}{x^2} = \frac{e^x \cdot (x - 1) - 1}{x^2}$$

g

$$f(x) = \frac{e^x}{x - 1}$$
$$f'(x) = \frac{e^x \cdot (x - 1) - e^x \cdot 1}{(x - 1)^2} = \frac{e^x \cdot (x - 2)}{(x - 1)^2}$$

h

$$f(x) = \frac{e^{3x}}{x+2}$$
$$f'(x) = \frac{3 \cdot e^{3x} \cdot (x+2) - e^{3x} \cdot 1}{(x+2)^2} = \frac{e^{3x} \cdot (3x+5)}{(x+2)^2}$$

i

$$f(x) = x^{2} + x \cdot e^{0.1x} = x^{2} \cdot \left(1 + \frac{e^{0.1x}}{x}\right)$$
$$f'(x) = 2x \cdot \left(1 + \frac{e^{0.1x}}{x}\right) + x^{2} \cdot \frac{e^{0.1x} \cdot \left(0.1x - 1\right)}{x^{2}} = e^{0.1x} \cdot \left(0.1x + 1\right) + 2x$$

j

$$f(x) = x \cdot e^{-2x+1}$$

$$f'(x) = 1 \cdot e^{-2x+1} + x \cdot (-2e^{-2x+1}) = e^{1-2x} \cdot (1-2x)$$

k

$$f(x) = x^2 \cdot e^{ax}$$

$$f'(x) = 2x \cdot e^{ax} + x^2 \cdot a \cdot e^{ax} = x \cdot e^{ax} \cdot (2 + ax)$$

I

$$f(x) = x \cdot e^{2x^2 + 1}$$

$$f'(x) = 1 \cdot e^{2x^2 + 1} + x \cdot e^{2x^2 + 1} \cdot 4x = e^{2x^2 + 1} \cdot (4x^2 + 1)$$

3.24.1 Basis $\neq e$

$$f(x) = 10^{x} = (e^{z})^{x} = e^{\ln(10) \cdot x}$$
$$e^{z} = 10 \implies z = \ln(10)$$
$$\implies b^{x} = e^{\ln(b) \cdot x}$$

$$f'(x) = e^{\ln(10) \cdot x} \cdot \ln(10)$$
$$= 10^{x} \cdot \ln(10)$$
$$\Rightarrow b^{x} \cdot \ln(b)$$

145/8

f

$$\begin{array}{ll} e^{2x}+10=6.5\cdot e^x & | \text{subst. } e^x=z \\ z^2+10=6.5z & |-6.5z \\ z^2-6.5z+10=0 \\ \\ z_{1/2}=\frac{6.5\pm\sqrt{42.25-40}}{2} \\ z_1=4 & z_2=2.5 & | \text{resubst.} \end{array}$$

$$z_1 = 4 = e^x \qquad |ln$$

$$x_1 = ln(4) \approx 1.386$$

$$z_2 = 2.5 = e^x$$
 | ln
 $x_2 = ln(2.5) \approx 0.916$

a

$$e^{2x}-6\cdot e^x+8=0 \qquad |\text{subst. } e^x=z$$

$$z^2-6z+8=0$$

$$z_{1/2}=\frac{6\pm\sqrt{36-32}}{2}$$

$$z_1=4 \quad z_2=2 \qquad |\text{resubst.}$$

$$z_1=4=e^x \qquad |ln$$

$$z_1 = 4 = e$$
 | ln
 $x_1 = ln(4) \approx 1.386$

$$z_2 = 2 \qquad |ln$$

$$x_2 = ln(2) \approx 0.693$$

b

$$\begin{array}{ll} e^x - 2 - \frac{15}{e^x} = 0 & | \text{subst. } e^x = z \\ z - 2 - \frac{15}{z} = 0 & | \cdot z \\ z^2 - 2z - 15 = 0 \\ z_{1/2} = \frac{2 \pm \sqrt{4 + 60}}{2} \\ z_1 = 5 & (z_2 = -3) & | \text{resubst.} \end{array}$$

$$z_1 = 5 = e^x \qquad |ln$$

$$x_1 = ln(5) \approx 1.609$$

g

$$(e^{2x}-6)\cdot (5-e^{3x})=0$$
 |subst. $e^x=z$ $(z^2-6)\cdot (5-z^3)=0$

$$z^2-6=0$$
 $|\sqrt{z_1=\sqrt{6}}\approx 2.449$ |resubst. $z_1=\sqrt{6}=e^x$ $|ln|$ $x_1=ln(\sqrt{6})\approx 0.896$

$$5-z^3=0$$
 $|\sqrt[3]{z_2}=\sqrt[3]{5}\approx 1.710$ |resubst. $z_2=\sqrt[3]{5}=e^x$ $|ln|$

$$x_2 = ln(\sqrt[3]{5}) \approx 0.536$$

h

$$\begin{aligned} 2 \cdot e^x + 15 &= 8 \cdot e^{-x} & | \text{subst. } e^x &= z \\ 2z + 15 &= \frac{8}{z} & | -\frac{8}{z} \\ 2z + 15 - \frac{8}{z} &= 0 & | \cdot z \\ 2z^2 + 15z - 8 &= 0 \\ z_{1/2} &= \frac{-15 \pm \sqrt{225 + 64}}{4} \\ z_1 &= 0.5 \quad (z_2 = -8) & | \text{resubst.} \end{aligned}$$

$$z_1 = 0.5 = e^x$$
 | ln
 $x = ln(0.5) \approx -0.693$

146/9

$$h(t) = 0.02 \cdot e^{kt}$$

а

$$h(0) = 0.02$$

$$h(6) = 0.02 \cdot e^{6k} = 0.4$$

$$e^{6k} = 20$$

$$6k = \ln(20)$$

$$k = \frac{\ln(20)}{6} \approx 0.499$$

С

$$h(9) = 0.02 \cdot e^{0.499 \cdot 9} \approx 1.784$$

d

$$h(t) = 0.02 \cdot e^{0.499t} = 3$$

$$e^{0.499t} = 150$$

$$0.499t = \ln(150)$$

$$t = \frac{\ln(150)}{0.499} \approx 10.041$$

е

$$h(t+1) - h(t) = 1.5$$

$$0.02 \cdot e^{k \cdot (t+1)} - 0.02 \cdot e^{k \cdot t} = 1.5$$

$$0.02e^{kt} \cdot (e^k - 1) = 1.5$$

$$e^{kt} \cdot (e^k - 1) = 75$$

$$0.647e^{0.499t} = 75$$

$$e^{0.499t} = 115.92$$

$$0.499t = \ln(115.92)$$

$$t = \frac{\ln(115.92)}{0.499} \approx 9.525$$

f

$$h'(t) = 0.02k \cdot e^{kt} = 1$$

$$0.02 \cdot 0.499 \cdot e^{0.499t} = 1$$

$$e^{0.499t} = 100.2$$

$$0.499t = \ln(100.2)$$

$$t = \frac{\ln(100.2)}{0.499} \approx 9.233$$

g

$$t \geqslant 9$$

$$k(t) = 3.5 - 8.2 \cdot e^{-0.175t}$$

$$k(t) = 3.5 - 8.2 \cdot e^{-0.175t} = 3$$

$$e^{-0.175t} \approx 0.061$$

$$-0.175t \approx \ln(0.061)$$

$$t \approx \frac{\ln(0.061)}{-0.175} \approx 15.982$$

$$k(t+1) - k(t) = 0.2$$

$$3.5 - 8.2 \cdot e^{-0.175 \cdot (t+1)} - 3.5 + 8.2 \cdot e^{-0.175t} = 0.2$$

$$-8.2 \cdot e^{-0.175 \cdot (t+1)} + 8.2 \cdot e^{-0.175t} = 0.2$$

$$-8.2 \cdot e^{-0.175t} \cdot (e^{-0.175} - 1) = 0.2$$

$$1.316 \cdot e^{-0.175t} \approx 0.2$$

$$e^{-0.175t} \approx 0.152$$

$$-0.175t \approx \ln(0.152)$$

$$t \approx \frac{\ln(0.152)}{-0.175} \approx 10.765$$

3.25 Wiederholung

3.25.1 Sinusfunktionen und Newton-Verfahren

130/8

$$P(x_0|f(x_0))$$
 $Q(x_0|g(x_0))$ $0 \le x \le 2\pi$

a

$$f(x) = 2 \cdot \sin(x) \qquad g(x) = x^{2}$$

$$f'(x) = 2 \cdot \cos(x) \qquad g'(x) = 2x$$

$$h(x) = f'(x) - g'(x) = 2 \cdot \cos(x) - 2x = 0$$

$$h'(x) = -2 \cdot \sin(x) - 2$$

$$x_{0} = 0$$

$$x_{1} = x_{0} - \frac{h(x_{0})}{h'(x_{0})} = 1$$

$$x_{2} = x_{1} - \frac{h(x_{1})}{h'(x_{1})} \approx 0.75036$$

$$x_{3} = x_{2} - \frac{h(x_{2})}{h'(x_{2})} \approx 0.73911$$

$$x_{4} = x_{3} - \frac{h(x_{3})}{h'(x_{3})} \approx 0.73908$$

$$x_{5} = x_{4} - \frac{h(x_{4})}{h'(x_{4})} \approx 0.73909$$

$$x^{*} \approx 0.7391$$

$$P(x^*|f(x^*)) \approx P(0.7391|1.3472)$$

 $Q(x^*|g(x^*)) \approx Q(0.7391|0.5463)$

b

$$f(x) = \sin(x) + 2 \cdot \cos(x) \qquad g(x) = x^{3}$$

$$f'(x) = \cos(x) - 2 \cdot \sin(x) \qquad g'(x) = 3x^{2}$$

$$h(x) = f'(x) - g'(x) = \cos(x) - 2 \cdot \sin(x) - 3x^{2} = 0$$

$$h'(x) = -\sin(x) - 2 \cdot \cos(x) - 6x$$

$$x_{0} = 0$$

$$x_{1} = x_{0} - \frac{h(x_{0})}{h'(x_{0})} = 0.5$$

$$x_{2} = x_{1} - \frac{h(x_{1})}{h'(x_{1})} \approx 0.34120$$

$$x_{3} = x_{2} - \frac{h(x_{2})}{h'(x_{2})} \approx 0.32336$$

$$x_{4} = x_{3} - \frac{h(x_{3})}{h'(x_{3})} \approx 0.32311$$

$$x_{5} = x_{4} - \frac{h(x_{4})}{h'(x_{4})} \approx 0.32311$$

$$x^{*} \approx 0.3231$$

$$P(x^*|f(x^*)) \approx P(0.3231|2.2140)$$

 $Q(x^*|g(x^*)) \approx Q(0.3231|0.0337)$

3.25.2 Produktregel

138/3

a

$$f(x) = (2x - 8) \cdot \sin(x) \qquad f'(x) = 2 \cdot \cos(x)$$

$$f(x) = a \cdot b \qquad f'(x) = a' \cdot b + a \cdot b' \neq a' \cdot b'$$

$$\Rightarrow \qquad f'(x) = 2 \cdot \sin(x) + (2x - 8) \cdot \cos(x)$$

b

$$g(x) = (2x - 3) \cdot (8 - x)^{2}$$

$$g'(x) = 2 \cdot (8 - x)^{2} + (2x - 3) \cdot (16 - 2x)$$

3.25.3 Quotientenregel

140/11

а

$$f(x) = \sin(x) + \tan(x) = \sin(x) + \frac{\sin(x)}{\cos(x)}$$
$$f'(x) = \cos(x) + (\cos(x))^{-2}$$

b

$$f(x) = \sin(x) \cdot \tan(x) = \frac{(\sin(x))^2}{\cos(x)}$$
$$f'(x) = \sin(x) + \frac{\sin(x)}{(\cos(x))^2}$$

С

$$f(x) = \frac{\cos(x)}{\tan(x)} = \frac{(\cos(x))^2}{\sin(x)}$$
$$f'(x) = -2 \cdot \cos(x) - \frac{(\cos(x))^3}{(\sin(x))^2}$$

d

$$f(x) = \frac{tan(x)}{2} = \frac{sin(x)}{2 \cdot cos(x)}$$
$$f'(x) = \frac{1}{2 \cdot (cos(x))^2}$$

е

$$f(x) = tan(2x) = \frac{sin(2x)}{cos(2x)}$$
$$f'(x) = \frac{2}{(cos(2x))^2}$$

f

$$f(x) = tan(x^2) = \frac{sin(x^2)}{cos(x^2)}$$
$$f'(x) = \frac{2x}{(cos(x^2))^2}$$

g

$$f(x) = (tan(x))^{2} = \frac{(sin(x))^{2}}{(cos(x))^{2}}$$
$$f'(x) = \frac{2 \cdot sin(x)}{(cos(x))^{3}}$$

h

$$f(x) = \frac{2}{\tan(x)} = \frac{2 \cdot \cos(x)}{\sin(x)}$$
$$f'(x) = -\frac{2}{(\sin(x))^2}$$

3.25.4 Kurvendiskussion

146/13

$$f(x) = 80000 \cdot e^{0.002x}$$
$$0 = 01.10.2002$$

а

$$92 = 01.01.2003$$

 $f(92) = 80000 \cdot e^{0.002 \cdot 92} \approx 96161.27$
 $457 = 01.01.2004$
 $f(457) = 80000 \cdot e^{0.002 \cdot 457} \approx 199542.38$

b

$$f(x) = 80000 \cdot e^{0.002x} = 1000000$$

$$e^{0.002x} = 12.5$$

$$x = \frac{\ln(12.5)}{0.002} \approx 1262.86 \stackrel{?}{=} 17.03.2006$$

$$f(x) = 80000 \cdot e^{0.002x} = 1000000000$$

$$e^{0.002x} = 12500$$

$$x = \frac{\ln(12500)}{0.002} \approx 4716.74 \stackrel{?}{=} 31.08.2015$$

С

$$2 \cdot f(x_1) = f(x_2)$$

$$2 \cdot 80000 \cdot e^{0.002x_1} = 80000 \cdot e^{0.002x_2}$$

$$2 \cdot e^{0.002x_1} = e^{0.002x_2}$$

$$ln(2) + 0.002x_1 = 0.002x_2$$

$$x_2 - x_1 = \frac{ln(2)}{0.002} \approx 346.57$$

d

$$p \cdot f(x_1) = f(x_1 + 365)$$

$$p \cdot 80000 \cdot e^{0.002x_1} = 80000 \cdot e^{0.002 \cdot (x_1 + 365)}$$

$$p \cdot e^{0.002x_1} = e^{0.002x_1} \cdot e^{0.002 \cdot 365}$$

$$p = e^{0.002 \cdot 365} \approx 2.08 = 208\%$$

е

$$365 \stackrel{?}{=} 01.10.2003$$

$$f(365) - f(364) = 80000 \cdot e^{0.002 \cdot 365} - 80000 \cdot e^{0.002 \cdot 364} \approx 331.68$$

$$f'(x) = 80000 \cdot 0.002 \cdot e^{0.002x} = 160 \cdot e^{0.002x}$$

$$f(364.5) \approx 331.68$$

f

$$f(x+1) - f(x) = 400$$

$$80000 \cdot e^{0.002 \cdot (x+1)} - 80000 \cdot e^{0.002x} = 400$$

$$80000 \cdot e^{0.002x} \cdot (e^{0.002} - 1) = 400$$

$$x = ln(\frac{400}{80000 \cdot (e^{0.002} - 1)}) \cdot \frac{1}{0.002} \approx 457.65 \stackrel{?}{=} 02.01.2004$$

$$f'(x) = 160 \cdot e^{0.002x} = 400$$

 $x = ln(\frac{400}{160}) \cdot \frac{1}{0.002} \approx 458.15 = 03.01.2004$

146/10

$$v(t) = 2.5 \cdot (1 - e^{-0.1t})$$

а

$$v(0) = 0$$
$$v(10) \approx 1.58$$

b

С

$$v(t) = 2$$

 $t = -\frac{ln(0.2)}{0.1} \approx 16.09$

d

$$\lim_{t \to \infty} v(t) = 2.5$$

е

f

g

v'(2) = 0.20

$$v(t) = 2.5 \cdot (1 - e^{-0.1t})$$

$$v(t+1) = 2.5 \cdot (1 - e^{-0.1 \cdot (t+1)})$$

$$v(t) < v(t+1)$$

$$2.5 \cdot (1 - e^{-0.1t}) < 2.5 \cdot (1 - e^{-0.1 \cdot (t+1)}) \qquad |: 2.5$$

$$1 - e^{-0.1t} < 1 - e^{-0.1 \cdot (t+1)} \qquad |-1; \cdot (-1)$$

$$e^{-0.1t} > e^{-0.1 \cdot (t+1)} \qquad |ln()$$

$$-0.1t > -0.1 \cdot (t+1) \qquad |\cdot (-10)$$

$$t < t+1$$

$$\Delta v = v(t_2) - v(t_1)$$

$$= v(5) - v(2) \approx 0.98 - 0.45 = 0.53$$

$$v'(t) = 0.25 \cdot e^{-0.1t}$$

h Die Beschleunigung ist bei t=0 am größten, da sie ständig kleiner wird.

3.26 Lineare Gleichungssysteme (LGS)

z. B.
$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = & 5 \\ -x_1 & - & x_2 & + & 5x_3 & = & 15 \end{vmatrix}$$
 2x3 LGS

LGS in Stufenform

$$\begin{vmatrix} -x_2 & + & 4x_1 & + & 3x_3 & = 2 \\ 3x_2 & + & x_1 & = 5 \\ 4x_2 & = & 8 \end{vmatrix}$$
 \Rightarrow einfach zu lösen
$$\begin{aligned} & ||| & 4x_2 = 8 \rightarrow x_2 = 2 \\ & \text{eingesetzt in II} \\ & x_1 + 3 \cdot 2 = 5 \rightarrow x_1 = -1 \\ & \text{eingesetzt in I} \\ & 4 \cdot (-1) - 2 + 3x_3 = 2 \rightarrow x_3 = \frac{8}{3} \\ & L = \{(-1|2|\frac{8}{3})\} \end{aligned}$$

3.26.1 Gauß-Verfahren

Das Gauß-Verfahren dient dazu, ein LGS in Stufenform zu überführen und dann zu lösen.

256/4

a

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ 3x_1 & + & 3x_2 & + & 7x_3 & = & 13 \\ 4x_1 & - & 2x_2 & - & 3x_3 & = & -1 \end{vmatrix}$$

Eliminiere x_1 aus 2 der 3 Gleichungen

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ 3x_1 & + & 3x_2 & + & 7x_3 & = & 13 \\ 0x_1 & + & 6x_2 & - & 13x_3 & = & -7 \end{vmatrix} III - 2 \cdot I$$

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ 0x_1 & + & 18x_2 & - & 1x_3 & = & 17 \\ 0x_1 & + & 6x_2 & - & 13x_3 & = & -7 \end{vmatrix} 2 \cdot II - 3 \cdot I$$

Eliminiere x_2 aus 1 der 2 Gleichungen

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ \mathbf{0}x_1 & + & \mathbf{0}x_2 & + & 38x_3 & = & 38 \\ \mathbf{0}x_1 & + & 6x_2 & - & 13x_3 & = & -7 \end{vmatrix} II - 3 \cdot III$$

Löse LGS in Stufenform

$$\begin{vmatrix} 2x_1 & -4x_2 & +5x_3 & =& 3\\ & 38x_3 & =& 38\\ & 6x_2 & -13x_3 & =& -7 \end{vmatrix}$$
 If $38x_3 = 38 \rightarrow x_3 = 1$ eingesetzt in III
$$6x_2 - 13 \cdot 1 = -7 \rightarrow x_2 = 1$$
 eingesetzt in I
$$2x_1 - 4 \cdot 1 + 5 \cdot 1 = 3 \rightarrow x_1 = 1$$

$$L = \{(1|1|1)\}$$

3.26.2 Matrix-Schreibweise

256/4

b

$$\begin{vmatrix} -x_1 & + & 7x_2 & - & x_3 & = & 5 \\ 4x_1 & - & x_2 & + & x_3 & = & 1 \\ 5x_1 & - & 3x_2 & + & x_3 & = & -1 \end{vmatrix} \longrightarrow \begin{vmatrix} -1 & 7 & -1 & \vdots & 5 \\ 4 & -1 & 1 & \vdots & 1 \\ 5 & -3 & 1 & \vdots & -1 \end{vmatrix}$$

$$\begin{vmatrix}
-1 & 7 & -1 & \vdots & 5 \\
3 & 6 & 0 & \vdots & 6 \\
1 & -2 & 0 & \vdots & -2
\end{vmatrix} II + I; III - II$$

$$\begin{vmatrix}
-1 & 7 & -1 & \vdots & 5 \\
3 & 6 & 0 & \vdots & 6 \\
0 & 12 & 0 & \vdots & 12
\end{vmatrix} II - 3 \cdot III$$

• • •

 $L = \{0|1|2\}$

С

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 0.3 & 1.2 & 0 & 0 \\ 0.5 & 0 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 0.3 & 0 & -3.6 & -6 \\ 0.5 & 0 & 1 & 1 \end{vmatrix} II - 2 \cdot I$$

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 2.1 & 0 & 0 & -2.4 \\ 0.5 & 0 & 1 & 1 \end{vmatrix} II + 3.6 \cdot III$$

$$2.1x_1 = -2.4 \rightarrow x_1 = -\frac{8}{7}$$

$$0.5 \cdot (-\frac{8}{7}) + x_3 = 1 \rightarrow x_3 = \frac{11}{7}$$

$$0.6x_2 + 1.8 \cdot \frac{11}{7} = 3 \rightarrow x_2 = \frac{2}{7}$$

$$L = \{-\frac{8}{7}|\frac{2}{7}|\frac{11}{7}\}$$

Beispiel einer Sonderfall-Lösung

$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = & 5 \\ -x_1 & - & x_2 & + & 5x_3 & = & 15 \end{vmatrix}$$
$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = 5 \\ - & x_2 & + & 12x_3 & = 50 \end{vmatrix} I + 3 \cdot II$$

Eine Variable ist frei wählbar und wird a bezeichnet

$$x_{3} = a$$

$$II - x_{2} + 12a = 50 \rightarrow x_{2} = 12a - 50$$

$$I 3x_{1} + 2(12a - 50) - 3a = 5 \rightarrow x_{1} = -7a + 35$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} -7a + 35 \\ 12a - 50 \\ a \end{pmatrix} = \begin{pmatrix} -7a \\ 12a \\ a \end{pmatrix} + \begin{pmatrix} 35 \\ -50 \\ 0 \end{pmatrix} = \begin{pmatrix} 35 \\ -50 \\ 0 \end{pmatrix} + a \cdot \begin{pmatrix} 7 \\ 12 \\ 1 \end{pmatrix}$$

Geradengleichung im \mathbb{R}^3

3.26.3 Steckbriefaufgaben

Beispiel Gesucht ist die Funktionsgleichung einer Funktion zweiten Grades $y=ax^2+bx+c$

Merkmale:

1. verläuft durch P(2|5)

$$f(2) = 5$$

5 = $a \cdot 2^2 + b \cdot 2 + c5 = 4a + 2b + c$

2. hat bei x=3 die Steigung 10

$$f'(x) = 2ax + b = 10$$
$$10 = 6a + b$$

3. schneidet die y-Achse bei 5

$$f(0) = 5$$

$$5 = a \cdot 0^2 + b \cdot 0 + c$$

$$5 = c$$

$$c = 5$$

 $10 = 6a + b \implies b = 10 - 6a$
 $5 = 4a + 2(10 - 6a) + 5 \implies a = 2.5$
 $b = 10 - 6 \cdot 2.5 = -5$

Die gesuchte Funktion heißt $f(x) = 2.5x^2 - 5x + 5$

Beispiele für Bedingungen

• hat bei P(1|3) einen Wendepunkt

$$f(1) = 3$$
$$f''(1) = 0$$

ullet verläuft bei P(-2|3) parallel zur Geraden g(x)=4x-1

$$f'(-2) = 4$$

• hat an der Stelle x = 3 einen Sattelpunkt

$$f'(3) = 0$$
$$f''(3) = 0$$

• ist eine achsensymmetrische Funktion 4. Grades / punktsymmetrische Funktion 5. Grades

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$\Rightarrow b = d = 0$$

$$g(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$$

$$\Rightarrow b = d = f = 0$$

262/1

С

$$A(1|3)$$
 $B(-1|2)$ $C(3|2)$
 $y = ax^{2} + bx + c$
 $3 = a + b + c$
 $2 = a - b + c$
 $2 = 9a + 3b + c$

$$a - b + c = 9a + 3b + c \implies a = -\frac{1}{2}b$$

$$\frac{1}{2}b + c = -\frac{3}{2} + c + 1 \implies b = \frac{1}{2} \implies a = -\frac{1}{4}$$

$$3 = -\frac{1}{4} + \frac{1}{2} + c \implies c = 2\frac{3}{4}$$

$$y = -\frac{x}{4} + \frac{x}{2} + 2\frac{3}{4}x$$

262/4

a

$$A(0|1) \quad B(1|0) \quad C(-1|4) \quad D(2|-5)$$

$$y = ax^{3} + bx^{2} + cx + d$$

$$1 = d$$

$$0 = a + b + c + d$$

$$4 = -a + b - c + d$$

$$-5 = 8a + 4b + 2c + d$$

$$a + b + c = a + b - c + d + 8a + 4b + 2c + d \implies c = 2a + b$$

$$4 = -a + b - 2a - b + d \implies a = -1 \implies b + c = 0$$

$$c = 2a + b \implies c = -1 \implies b = 1$$

$$y = -x^{3} + x^{2} - x + 1$$

3.26.4 Funktionenschar

262/3

b

$$\begin{split} f(x) &= ax^2 + bx + c \\ A(2|0) & B(-2|0) \\ \begin{vmatrix} 4a &+ & 2b &+ & c &= & 0 \\ 4a &- & 2b &+ & c &= & 0 \\ 2x3 \text{ LGS unterbestimmt} \Rightarrow \text{ eine Variable ist frei w\"ahlbar} \\ \begin{vmatrix} 4a &+ & 2b &+ & c &= & 0 \\ 4b &&& &= & 0 \\ \end{vmatrix} & & & & I-II \\ \Rightarrow & b &= 0 \\ 4a + c &= 0 \end{split}$$
 setze $a = k$ $4k + c = 0 \Rightarrow c = -4k$

 $f_k(x) = kx^2 - 4k$ Funktionenschar, Parameterfunktion

С

$$f(x) = ax^{2} + bx + c$$

$$A(-4|0) \quad B(0|-4)$$

$$\begin{vmatrix} 16a - 4b + c &= 0 \\ c &= -4 \end{vmatrix}$$

$$\Rightarrow c = -4$$

$$16a - 4b - 4 = 0$$

$$a = k$$

$$16k - 4b = 4 \quad \Rightarrow \quad b = 4k - 1$$

$$f_{k}(x) = kx^{2} + 4kx - x - 4$$

262/8

$$f(x) = ax^{4} + bx^{3} + cx^{2} + dx + e$$

$$f(x) = -f(x) \Rightarrow b = d = 0$$

$$f(0) = -1 \Rightarrow e = -1$$

$$f(1) = -3 \qquad f'(1) = 0 \qquad f''(1) < 0$$

$$f(x) = ax^{4} + bx^{2} - 1$$

$$f(1) = a + b - 1 = -3 \Rightarrow a + b = -2$$

$$f'(x) = 4ax^{3} + 2bx$$

$$f'(1) = 4a + 2b = 2a - 4 = 0 \Rightarrow a = 2 \Rightarrow b = -4$$

$$f(x) = 2x^{4} - 4x^{2} - 1$$

$$f''(x) = 24x^{2} - 8$$

$$f''(1) = 16 > 0$$

⇒ keine Lösung

263/10

С

$$f(x) = a_2 x^2 + a_1 x + a_0$$
$$P(-3|3) Q(3|0)$$

$$f(-3) = 9a_2 - 3a_1 + a_0 = 3$$

$$f(3) = 9a_2 + 3a_1 + a_0 = 0$$

$$9a_2 - 3a_1 + a_0 = 9a_2 + 3a_1 + a_0 + 3$$

$$-a_1 = a_1 + 1 \implies a_1 = -\frac{1}{2}$$

$$9a_2 + 1.5 + a_0 = 3 \implies a_0 = 1.5 - 9a_2$$

$$a_2 = k$$

 $f_k(x) = kx^2 - 0.5x + 1.5 - 9k$

schwarz

$$f_k(1) = k - 0.5 + 1.5 - 9k = 2 \implies k = -\frac{1}{8}$$

 $f(x) = -\frac{1}{8}x^2 - \frac{1}{2}x^2 + 2.625$

rot

$$f_k(1) = k - 0.5 + 1.5 - 9k = 3 \implies k = -\frac{1}{4}$$

 $f(x) = -\frac{1}{4}x^2 - \frac{1}{2}x + 3.75$

blau

$$f_k(1) = k - 0.5 + 1.5 - 9k = -1 \implies k = \frac{1}{4}$$

 $f(x) = \frac{1}{4}x^2 - \frac{1}{2}x - 0.75$

263/11

$$f(\pm \frac{1624}{2}) = f(\pm 812) = 254 - 65 = 189$$

$$f(x) = ax^{2} + bx + c$$

$$f(x) = -f(x) \implies b = 0$$

$$f(0) = 0 \implies c = 0$$

$$f(812) = ax^{2} = 659344a = 189 \implies a \approx 2.8665 \cdot 10^{-4}$$

$$f(x) = 2.8665 \cdot 10^{-4} \cdot x^{2}$$

263/12

$$SP(-1|-1)$$
 $SP(1|1)$ \Rightarrow $f'(\pm 1) = f''(\pm 1) = 0$
 $WP(0|0)$ \Rightarrow $f''(0) = 0$
 $f(x) = ax^5 + bx^3 + cx$

$$f(1) = a + b + c = 1$$

$$f'(1) = 5a + 3b + c = 0$$

$$f''(1) = 20a + 6b = 0$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 3 & 1 & 0 \\ 20 & 6 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 0 & -1 \\ 20 & 6 & 0 & 0 \end{vmatrix} III - I$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 0 & -1 \\ 8 & 0 & 0 & 3 \end{vmatrix} III - 3 \cdot II$$

$$8a = 3 \implies a = \frac{3}{8}$$

$$\frac{3}{2} + 2b = -1 \implies b = -\frac{5}{4}$$

$$\frac{3}{8} - \frac{5}{4} + c = 1 \implies \frac{15}{8}$$

$$f(x) = \frac{3}{8}x^5 - \frac{5}{4}x^3 + \frac{15}{8}x$$

Kapitel 4 Integralrechnung

 $s=v\cdot t \qquad \text{fuer } v=const.$ Rechtecksfläche $A=5s\cdot 15\frac{m}{s}=75m$ Es gilt A=s= zurückgelegter Weg

$$s(t) = v(t) \cdot t$$

 $s=\ {\sf Summe}\ {\sf von}\ {\sf Rechtecksstreifen}\ {\sf als}\ {\sf N\"aherung}\ {\sf f\"ur}\ {\sf den}\ {\sf Fl\"acheninhalt}$

Durch Grenzwertbildung erhält man

$$s = \int_0^5 v(t) \cdot dt$$

4.1 Untersumme - Obersumme

Beispiel
$$f(x) = y = x^2$$
 $x \in [0; 1]$

Untersumme

$$U_5 = 0.2 \cdot (0 + 0.04 + 0.16 + 0.36 + 0.64) = 0.24FE$$

Der wahre Flächeninhalt ist sicher größer als $0.24FE$

Obersumme

$$O_5 = 0.2 \cdot (0.04 + 0.16 + 0.36 + 0.64 + 1) = 0.44FE$$

Der wahre Flächeninhalt ist sicher kleiner als $0.44FE$

 $5 o ext{Intervall in } 5$ gleiche Abschnitte: $I = \begin{bmatrix} 0;1 \end{bmatrix} \Rightarrow ext{Intervallbreite } 0.2 o ext{Breite der Rechtecke}$ $(0+\ldots+0.64)$ bzw. $(0.04+\ldots+1) o ext{H\"ohen der Rechtecke}$ $FE o ext{Fl\"acheneinheiten}$

$$U_{10} = 0.1 \cdot (0 + 0.01 + 0.04 + 0.09 + 0.16 + 0.25 + 0.36 + 0.49 + 0.64 + 0.81)$$

= $0.285FE$
$$O_{10} = 0.1 \cdot (0.01 + 0.04 + 0.09 + 0.16 + 0.25 + 0.36 + 0.49 + 0.64 + 0.81 + 1)$$

= $0.385FE$

4.1.1 Obersumme/Untersumme $\rightarrow lim \rightarrow$ Integral

$$f(x) = x^2$$

Teile das Intervall in n Teile

 \rightarrow Jeder Teil ist $\frac{b}{n}$ (da $b=1\rightarrow\frac{1}{n}$) Längeneinheiten breit

$$U_n = \frac{1}{n} \cdot \left(0 + \left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \left(\frac{3}{n}\right)^2 + \dots + \left(\frac{n-1}{n}\right)^2\right)$$

$$= \frac{1}{n^3} \cdot \left(0 + 1^2 + 2^2 + 3^2 + \dots + (n-1)^2\right)$$

$$= \frac{1}{n^3} \cdot \frac{1}{6} \cdot (n-1) \cdot n \cdot (2n-1)$$

$$= \frac{1}{6} \cdot \frac{n-1}{n} \cdot \frac{n}{n} \cdot \frac{2n-1}{n}$$

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} \left(\frac{1}{6} \cdot \frac{n-1}{n} \cdot \frac{n}{n} \cdot \frac{2n-1}{n}\right) = \frac{1}{6} \cdot 1 \cdot 1 \cdot 2 = \frac{1}{3}$$

$$O_{n} = \frac{1}{n} \cdot \left(\left(\frac{1}{n} \right)^{2} + \left(\frac{2}{n} \right)^{2} + \left(\frac{3}{n} \right)^{2} + \dots + \left(\frac{n-1}{n} \right)^{2} + \left(\frac{n}{n} \right)^{2} \right)$$

$$= \frac{1}{n^{3}} \cdot \left(1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} \right)$$

$$= \frac{1}{n^{3}} \cdot \frac{1}{6} \cdot n \cdot (n+1) \cdot \left(2(n+1) - 1 \right)$$

$$= \frac{1}{6} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{2(n+1) - 1}{n}$$

$$\lim_{n \to \infty} O_{n} = \lim_{n \to \infty} \left(\frac{1}{6} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{2(n+1) - 1}{n} \right) = \frac{1}{6} \cdot 1 \cdot 1 \cdot 2 = \frac{1}{3}$$

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n = \frac{1}{3}$$

Der wahre Flächeninhalt ist $A = \frac{1}{3}FE$

Wenn gilt, dass
$$\lim_{n\to\infty}U_n=\lim_{n\to\infty}O_n={\rm Zahl}=\int_a^bf(x)\cdot dx$$

Existiert ein gemeinsamer Grenzwert $(n \to \infty)$ von Untersumme und Obersumme, so nennt man den Grenzwert Integralwert des bestimmten Integrals.

160/3

a $1FE = 1000000m^3$ Wasser

b Am schnellsten zwischen 2h und 4h. Am langsamsten zwischen 8h und 10h. Nach 12h wiederholt sich der Graph periodisch.

c Der Graph wird um 25% gestreckt, die Fläche wächst also um 25%.

4.2 Das bestimmte Integral

$$\int_{a}^{b} f(x) \cdot dx$$

 $a,b\,\dots$ linke bzw. rechte Intervallgrenze

f(x) ... Integrand, zu integrierende Funktion

 $x \dots$ Integrations variable

dx ... Differenzial $\lim_{x\to 0} \Delta x = dx$

 $f(x)\cdot dx$... Fläche eines infinitesimal schmalen Rechteckstreifens mit Breite dx und Höhe f(x)

∫ ... Integralzeichen meint eine Summation

liegt f(x) unterhalb der x-Achse (< 0) im Intervall [a;b], so gilt $\int_a^b f(x) \cdot dx < 0$

Das Integral ist die Differenz oberhalb der x-Achse und unterhalb der x-Achse liegender Flächenstücke

4.3 Berechnung von Integralen, Hauptsatz

Gesucht: Flächeninhalt unter dem Graphen von $f(x)=y=\frac{2}{5}x^3$ im Intervall $\left[0;b\right]$

$$\int_0^b \frac{1}{5} x^3 \cdot dx$$

$$O_n = \frac{b}{n} \cdot \left(\frac{1}{5} \left(\frac{b}{n}\right)^3 + \frac{1}{5} \left(\frac{2b}{n}\right)^3 + \dots + \frac{1}{5} \left(\frac{(n-1) \cdot b}{n}\right)^3 + \frac{1}{5} b^3\right)$$

$$= \frac{1}{5} \cdot \frac{b^4}{n^4} \cdot \left(1^3 + 2^3 + \dots + (n-1)^3 + n^3\right)$$

$$= \frac{1}{5} \cdot \frac{b^4}{n^4} \cdot \frac{1}{4} n^2 \cdot (n+1)^2$$

$$= \frac{1}{4} \cdot \frac{1}{5} \cdot b^4 \cdot \frac{n}{n} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{n+1}{n}$$

$$\int_{0}^{b} \frac{1}{5} x^{3} \cdot dx = \lim_{n \to \infty} O_{n} = \lim_{n \to \infty} \left(\frac{1}{4} \cdot \frac{1}{5} \cdot b^{4} \cdot \frac{n}{n} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{n+1}{n} \right) = \frac{1}{20} b^{4}$$

Betrachte den Flächeninhalt zu linker Grenze a und rechter Grenze b.

$$\lim_{n \to \infty} O_n = \frac{1}{20} a^4 \quad fuer \quad [0; a]$$

$$\lim_{n \to \infty} O_n = \frac{1}{20} b^4 \quad fuer \quad [0; b]$$

$$A = \frac{1}{20} b^4 - \frac{1}{20} a^4 \quad fuer \quad [a; b]$$

$$A = \frac{1}{20}b^4 - \frac{1}{20}a^4 = \int_a^b \frac{1}{5}x^3 \cdot dx = \left[\frac{1}{20}x^4\right]_a^b$$

4.3.1 Verallgemeinerung (Hauptsatz der Differenzial- und Integralrechnung)

$$A = \int_{a}^{b} f(x) \cdot dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

dabei gilt F'(x) = f(x)

F(x) heißt Aufleitungsfunktion oder Stammfunktion von f(x).

im Beispiel:
$$F(x) = \frac{1}{20}x^4 \rightarrow (\frac{1}{20}x^4)' = \frac{d}{dx}(\frac{1}{20}x^4) = \frac{1}{5}x^3$$

167/3

а

$$f(x) = x^{2} F(x) = \frac{1}{3}x^{3}$$
$$\int_{0}^{4} x^{2} \cdot dx = F(4) - F(0) = \frac{64}{3}$$

i

$$f(x) = \frac{1}{8}x^4 \qquad F(x) = \frac{1}{40}x^5$$
$$\int_{-2}^{-1} \frac{1}{8}x^4 \cdot dx = F(-1) - F(-2) = 0.775$$

j

$$f(x) = 0.5x^{2} F(x) = \frac{1}{6}x^{3}$$
$$\int_{-4}^{4} 0.5x^{2} \cdot dx = F(4) - F(-4) = \frac{64}{3}$$

k

$$f(x) = x^5 F(x) = \frac{1}{6}x^6$$
$$\int_{-1}^{1} x^5 \cdot dx = F(1) - F(-1) = 0$$

4.4 Integrale lösen - Anwendung

168/11

$$v(t) = 9.81 \cdot t \qquad V(t) = s(t) = 4.905 \cdot t^{2}$$
$$\int_{0}^{3} v(t) \cdot dt = V(3) - V(0) = 44.145$$

168/13

a

$$f(x) = x$$
 $F(x) = 0.5x^2$

$$\int_0^z x \cdot dx = 18 = F(z) - F(0) = F(z) - 0$$
 $F(z) = 18 \implies z = 6$

b

$$f(x) = 4x$$
 $F(x) = 2x^2$

$$\int_1^z 4x \cdot dx = 30 = F(z) - F(1) = F(z) - 2$$

$$F(z) = 32 \implies z = 4$$

С

$$f(x) = 2x$$
 $F(x) = x^2$

$$\int_{z}^{10} 2x \cdot dx = 19 = F(10) - F(z) = 100 - F(z)$$
 $F(z) = 81 \implies z = 9$

d

$$f(x) = 0.4 F(x) = 0.4x$$

$$\int_0^{2z} 0.4 \cdot dx = 8 = F(2z) - F(0) = F(2z) - 0$$

$$F(2z) = 8 \Rightarrow 2z = 20 \Rightarrow z = 10$$

168/15

а

$$f(x) = -2x^{2} + 8x + 1 = 0$$

$$x_{1/2} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot (-2) \cdot 1}}{2 \cdot (-2)} = \frac{-8 \pm \sqrt{72}}{-4}$$

$$x_{1} \approx -0.1213 \qquad x_{2} \approx 4.1213$$

b

$$f(x) = (x+3)^2 \cdot (x+1) = 0$$

 $(x+3)^2 = 0 \implies x_1 = -3$
 $(x+1) = 0 \implies x_2 = -1$

С

$$f(x) = 4x^{2} \cdot (x^{2} - 10) + 4x^{2} = 8x^{4} - 40x^{2} = 0$$

$$x_{1} = 0$$

$$(x^{2} - 10) = -1 \implies x_{2/3} = \pm 3$$

d

$$f(x) = 4 \cdot (x - 0.5)^4 - 4 = 0$$

 $(x - 0.5)^4 = 1 \implies x_1 = 1.5 \qquad x_2 = -0.5$

е

$$f(x) = e^x - e^2 = 0$$
$$x = 2$$

f

$$f(x) = 0.2e^{2x} - 1 = 0$$

 $e^{2x} = 5 \implies x = \frac{\log(5)}{2} \approx 0.8047$

Teil III

12/1

4.5 Stammfunktion bilden, integrieren

$$\int_{a}^{b} x^{7} \cdot dx = \left[\frac{1}{8}x^{8}\right]_{a}^{b}$$

$$\int \frac{1}{(x+4)^{3}} \cdot dx = -\frac{1}{2} \cdot (x+4)^{-2} + c$$

$$\int \frac{5}{(3x-2)^{5}} \cdot dx = -\frac{5}{4 \cdot 3} \cdot (3x-2)^{-4} + c$$

$$\int \frac{1}{5} \cdot e^{2x} \cdot dx = \frac{1}{5 \cdot 2} \cdot e^{2x} + c$$

4.6 bestimmtes Integral, Integralfunktion, unbestimmtes Integral

$$\int_{a}^{b} \frac{1}{x} \cdot dx = \left[ln(|x|) \right]_{a}^{b}$$

sofern a,b>0 oder a,b<0 kein Problem

wenn eines größer und eines kleiner 0 ist, dann muss man genauer untersuchen (Polstelle!)

$$a = -1 \qquad b = 2$$

$$\int_a^b \frac{1}{2x - 5} \cdot dx = \left[\frac{1}{2} \cdot \ln(|2x - 5|) \right]_a^b$$

171/3

a

$$\int_{0}^{2} (2+x)^{3} \cdot dx = \left[\frac{1}{4} \cdot (2+x)^{4} \right]_{0}^{2} = \frac{1}{4} \cdot ((2+2)^{4} - (2+0)^{4}) = 60$$

b

$$\int_{2}^{3} \left(1 + \frac{1}{x^{2}}\right) \cdot dx = \left[x - \frac{1}{x}\right]_{2}^{3} = \left(3 - \frac{1}{3}\right) - \left(2 - \frac{1}{2}\right) = \frac{7}{6}$$

С

$$\int_0^2 \frac{1}{(x+1)^2} \cdot dx = \left[-(x+1)^{-1} \right]_0^2 = -(2+1)^{-1} + (0+1)^{-1} = \frac{2}{3}$$

d

$$\int_0^9 \frac{2}{5} \cdot \sqrt{x} \cdot dx = \left[\frac{4}{15} \cdot x^{\frac{3}{2}} \right]_0^9 = \frac{4}{15} \cdot 9^{\frac{3}{2}} - \frac{4}{15} \cdot 0^{\frac{3}{2}} = 7.2$$

е

$$\int_{-0.5}^{0} e^{2x+1} \cdot dx = \left[\frac{1}{2}e^{2x+1}\right]_{-0.5}^{0} = \frac{1}{2}e^{2\cdot 0+1} - \frac{1}{2}e^{2\cdot (-0.5)+1} \approx 0.8591$$

f

$$\int_0^{\pi} \sin(3x - \pi) \cdot dx = \left[-\frac{1}{3} \cdot \cos(3x - \pi) \right]_0^{\pi} = -\frac{1}{3} \cdot \cos(3\pi - \pi) + \frac{1}{3} \cdot \cos(3 \cdot 0 - \pi) = -\frac{2}{3}$$

g

$$\int_{-1}^{1} \frac{1}{5} \cdot e^{\frac{1}{2}x} \cdot dx = \left[\frac{2}{5}e^{\frac{1}{2}x}\right]_{-1}^{1} = \frac{2}{5}e^{\frac{1}{2}\cdot 1} - \frac{2}{5}e^{\frac{1}{2}\cdot (-1)} = \frac{2e-2}{5\cdot \sqrt{e}} \approx 0.4169$$

h

$$\int_{-\pi}^{\pi} \cos(3x) \cdot dx = [-3 \cdot \sin(3x)]_{-\pi}^{\pi} = -3 \cdot \sin(3\pi) + 3 \cdot \sin(3 \cdot (-\pi)) = 0$$

171/4

C

$$\int_{3}^{4} \frac{1}{2(x+1)} \cdot dx = \left[\frac{\ln(x+1)}{2} \right]_{3}^{4} = \frac{\ln(4+1)}{2} - \frac{\ln(3+1)}{2} \approx 0.1116$$

4.6.1 Integralfunktion

$$\int_{a}^{b} f(x) \cdot dx = [F(x)]_{a}^{b} = F(b) - F(a) = J$$
$$J_{a}(x) = \int_{a}^{x} f(x) \cdot dx = [F(x)]_{a}^{x} = F(x) - F(a)$$

Integralfunktion zur unteren (linken) Grenze a. Sie gibt zu jedem später eingesetzten Wert x (= b) den bestimmten Integralwert an.

$$\int f(x) \cdot dx = [F(x)]^x = F(x) + c$$

unbestimmtes Integral

175/2

4.7 Rechenregeln für Integrale

$$\int_{a}^{a} f(x) \cdot dx = 0$$

$$\int_{a}^{b} c \cdot f(x) \cdot dx = c \cdot \int_{a}^{b} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx + \int_{b}^{c} f(x) \cdot dx = \int_{a}^{c} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx = -\int_{b}^{a} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx \pm \int_{a}^{b} g(x) \cdot dx = \int_{a}^{b} (f(x) \pm g(x)) \cdot dx$$

а

$$\int_{1}^{3.3} 5x^2 \cdot dx - 10 \cdot \int_{1}^{3.3} \frac{1}{2} x^2 \cdot dx = 0$$

b

$$\int_0^1 (x - 2\sqrt{x^2 + 4}) \cdot dx + 2 \cdot \int_0^1 \sqrt{x^2 + 4} \cdot dx = \int_0^1 x \cdot dx = 0.5$$

С

$$\int_{3}^{3.7} \frac{1}{x} \cdot dx + \int_{3.7}^{4} \frac{1}{x} \cdot dx = \int_{3}^{4} \frac{1}{x} \cdot dx = \ln(4) - \ln(3) \approx 0.2877$$

176/10

$$f(t) = 50t^4 \cdot e^{-t}$$

a Die Integralfunktion gibt die Anzahl der Telefonanrufe bis zum Zeitpunkt x an

$$J_0(x) = \int_0^x f(t) \cdot dt$$
$$J_0(4) = \int_0^4 f(t) \approx 445$$

b

$$J_4(8) = J_0(8) - J_0(4) \approx 1080 - 445 = 635$$

Die Anzahl der Anrufer in der Warteschleife ist zu dem Zeitpunkt am höchsten, an dem die Anrufer pro Minute wieder unter 200 sinken (bei $t \approx 5$).

176/9

$$f(t) = \cos(\frac{2\pi}{24}(t - 12))$$
$$g(t) = \cos(\frac{2\pi}{24}(t - 6))$$

- a Zunahme (f(t) > 0) zwischen 6 und 18 Uhr Abnahme (f(t) < 0) zwischen 18 und 6 Uhr
 - Zunahme (g(t) > 0) zwischen 0 und 12 Uhr Abnahme (g(t) < 0) zwischen 12 und 24 Uhr
- b Am schnellsten um 12 Uhr (Hochpunkt) Am langsamsten um 0/24 Uhr (Tiefpunkt)

Am schnellsten um 6 Uhr (Hochpunkt) Am langsamsten um 18 Uhr (Tiefpunkt)

c Maximal um 18 Uhr (Rechts-Links-Wendepunkt) Minimal um 6 Uhr (Links-Rechts-Wendepunkt)

Maximal um 12 Uhr (Rechts-Links-Wendepunkt) Minimal um 0/24 Uhr (Links-Rechts-Wendepunkt)

d

$$F(t) = -\frac{12}{\pi} \cdot \sin(\frac{\pi}{12}t) + c$$

$$c = 20 - F_{c=0}(12) = 20$$

$$F(18) \approx 23.82 \qquad F(6) \approx 16.18$$

$$G(t) = -\frac{12}{\pi} \cdot \cos(\frac{\pi}{12}t) + c$$

$$c = 20 - G_{c=0}(12) \approx 16.1803$$

$$G(12) = 20 \qquad G(0) = G(24) \approx 12.36$$

4.8 Ableitung der Umkehrfunktion

$$f(x) = y = x^2 \Leftrightarrow \overline{f(y)} = x = \sqrt{y}$$
$$\overline{f'(y)} = \frac{1}{f'(x)}$$

Beispiele

$$f(x) = y = x^{2} \Leftrightarrow \overline{f(y)} = x = y^{\frac{1}{3}}$$
$$\overline{f'(y)} = \frac{1}{3x^{2}} = \frac{1}{3(y^{\frac{1}{3}})^{2}} = \frac{1}{3}y^{-\frac{1}{3}}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{3}x^{-\frac{1}{3}}$$

$$f(x) = y = e^x \Leftrightarrow \overline{f(y)} = x = \ln(y)$$
$$\overline{f'(y)} = \frac{1}{e^x} = \frac{1}{e^{\ln(x)}} = \frac{1}{y}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{x}$$

$$\begin{split} f(x) &= y = sin(x) \Leftrightarrow \overline{f(y)} = x = asin(y) \\ \overline{f'(y)} &= \frac{1}{cos(x)} = \frac{1}{cos(asin(y))} \\ &= \frac{1}{\sqrt{1 - sin^2(x)}} = \frac{1}{\sqrt{1 - sin^2(asin(y))}} = \frac{1}{\sqrt{1 - y^2}} \end{split}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{\sqrt{1 - x^2}}$$

$$\begin{split} f(x) &= y = cos(x) \Leftrightarrow f(y) = x = acos(y) \\ \overline{f'(y)} &= \frac{1}{-sin(x)} = \frac{1}{-sin(acos(y))} \\ &= -\frac{1}{\sqrt{1 - cos^2(x)}} = -\frac{1}{\sqrt{1 - cos^2(acos(y))}} = -\frac{1}{\sqrt{1 - y^2}} \end{split}$$

umbenennen

$$\overline{f'(x)} = -\frac{1}{\sqrt{1-x^2}}$$

$$f(x) = y = tan(x) \Leftrightarrow f(y) = x = atan(y)$$

$$f'(y) = cos^{2}(x) = cos^{2}(atan(y))$$

$$= 1 - sin^{2}(x) = 1 - sin^{2}(atan(y)) = 1 - \frac{y^{2}}{y^{2} + 1} = \frac{1}{y^{2} + 1}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{x^2 + 1}$$

4.9 Integral und Flächeninhalt

$$A = A_1 + A_2$$

$$A \neq \int_a^b f(x) \cdot dx = I$$

$$A = \left| \int_a^c f(x) \cdot dx \right| + \left| \int_c^b f(x) \cdot dx \right|$$

$$A = A_1 + A_2$$

1. Berechne die Schnittstellen a, b, c

2.
$$A = \left| \int_{a}^{b} (g(x) - f(x)) \cdot dx \right| + \left| \int_{b}^{c} (g(x) - f(x)) \cdot dx \right|$$

Wie die Flächen zur x-Achse liegen ist unwichtig, weil ich gedanklich beide Graphen gemeinsam soweit nach oben schieben kann dass die Flächen komplett oberhalb der x-Achse liegen.

$$f(x) \longrightarrow f(x) + d$$

 $g(x) \longrightarrow g(x) + d$

Durch Differenzialbildung fallen die gedanklich eingeführten Verschiebungen wieder weg.

$$\int_{a}^{b} ((f(x) + d) - (g(x) + d)) \cdot dx = \int_{a}^{b} (f(x) - g(x)) \cdot dx$$

179/2

a

$$f(x) = -0.5x^{2} + 0.5 g(x) = -1.5$$

$$F(x) = -\frac{1}{6}x^{3} + 0.5x G(x) = -1.5x$$

$$I A_{2} + A_{3}$$

$$A = \left| \int_{-1}^{1} f(x) \cdot dx \right|$$
$$= |F(1) - F(-1)| = \frac{2}{3}FE$$

II
$$A_2 + A_3 + A_4 + A_5$$

$$A = \left| \int_{-2}^{2} (f(x) - g(x)) \cdot dx \right|$$
$$= \left| (F(2) - F(-2)) - (G(2) - G(-2)) \right| = 5\frac{1}{3}FE$$

III A_3

$$A = \left| \int_0^1 f(x) \cdot dx \right|$$

= $|F(1) - F(0)| = \frac{1}{3}FE$

 $\mathsf{IV}\ A_1$

$$A = \left| \int_{-2}^{-1} f(x) \cdot dx \right|$$
$$= \left| F(-1) - F(-2) \right| = \frac{2}{3} FE$$

a

$$f(x) = x^{2} g(x) = -x^{2} + 4x$$

$$f(x) = g(x) L = \{0; 2\}$$

$$f(x) - g(x) = 2x^{2} - 4x$$

$$A = \left| \int_{0}^{2} (2x^{2} - 4x) \cdot dx \right| = \left| \left[\frac{2}{3}x^{3} - 2x^{2} \right]_{0}^{2} \right| = 2\frac{2}{3}FE$$

b

$$f(x) = -\frac{1}{x^2} \qquad g(x) = 2.5x - 5.25$$

$$f(x) = g(x) \qquad L = \{2; \sim -0.4; \sim 0.5\}$$

$$f(x) - g(x) = -2.5x + 5.25 - \frac{1}{x^2}$$

$$A \approx \left| \int_{0.5}^{2} (-2.5x + 5.25 - \frac{1}{x^2}) \cdot dx \right|$$

$$= \left| \left[-1.25x^2 + 5.25x + \frac{1}{x} \right]_{0.5}^{2} \right| \approx 1.7FE$$

4.9.1 Flächeninhalt, uneigentliche Integrale

180/8

$$f_t(x) = \frac{t}{x^2}$$
 [1;2]

$$F_t(x) = -\frac{t}{x}$$

$$A(t) = \int_1^2 -\frac{t}{x} \cdot dx = \frac{t}{2}$$

$$A(16) = 8$$

$$f_{a}(x) = a \cdot \sin(x) \qquad g_{a}(x) = -\frac{1}{a} \cdot \sin(x) \qquad x \in [0; \pi]$$

$$f_{a}(x) - g_{a}(x) = \sin(x) \cdot (a + \frac{1}{a})$$

$$A(a) = \int_{0}^{\pi} \sin(x) \cdot (a + \frac{1}{a}) \cdot dx = (a + \frac{1}{a}) \cdot [-\cos(x)]_{0}^{\pi} = (a + \frac{1}{a}) \cdot 2$$

$$A'(a) = -\frac{2}{a^{2}} + 2$$

$$A''(a) = \frac{4}{a^{3}}$$

$$A'(a) = 0 \qquad L = \{\pm 1\}$$

$$A''(1) = 4 > 0 \implies TP$$

Minimaler Flächeninhalt: A(1) = 4FE

Beispiel
$$f(x) = \frac{1}{x^2}$$
 [3; ∞ [
$$A = \lim_{z \to \infty} \int_3^z \frac{1}{x^2} \cdot dx = \lim_{z \to \infty} \left[-x^{-1} \right]_3^z$$

$$= \lim_{z \to \infty} \left(-\frac{1}{z} + \frac{1}{3} \right) = \frac{1}{3} FE$$

183/1

Fig. 1

$$\begin{split} y &= \frac{1}{(x+1)^2} \qquad [1;z] \\ A(z) &= \int_1^z \frac{1}{(x+1)^2} \cdot dx = \left[-\frac{1}{x+1} \right]_1^z = -\frac{1}{z+1} + \frac{1}{2} \\ A &= \lim_{z \to \infty} A(z) = \frac{1}{2} \end{split}$$

Fig. 2

$$y = e^{-\frac{1}{2}x}$$
 [2; z]

$$A(z) = \int_{2}^{z} e^{-\frac{1}{2}x} \cdot dx = \left[-2 \cdot e^{-\frac{1}{2}x} \right]_{2}^{z} = -2 \cdot e^{-\frac{1}{2}z} + \frac{2}{e}$$

$$A = \lim_{z \to \infty} A(z) = \frac{2}{e} \approx 0.736$$

Fig. 3

$$y = \frac{2}{x^3} \qquad [z;1]$$

$$A(z) = \int_z^1 \frac{2}{x^3} \cdot dx = \left[-\frac{1}{x^2} \right] = -1 + \frac{1}{z^2}$$

$$A = \lim_{z \to 0} A(z) = \infty$$

Fig. 4

$$y = \frac{4}{\sqrt{x}} \qquad [z; 4]$$

$$A(z) = \int_{z}^{4} \frac{4}{\sqrt{x}} \cdot dx = [8 \cdot \sqrt{x}] = 16 - 8 \cdot \sqrt{z}$$

$$A = \lim_{z \to 0} A(z) = 16$$

183/7

$$W = \int_{h_1}^{h_2} F(s) \cdot ds$$

$$F(s) = \gamma \frac{m \cdot M}{s^2}$$

$$c = \gamma \cdot m \cdot M \approx 3.982 \cdot 10^{17} \cdot \frac{m \cdot kg}{s^2}$$

$$F(s) = c \cdot s^{-2}$$

$$W = \int_{h_1}^{h_2} c \cdot s^{-2} \cdot ds = \left[-c \cdot s^{-1} \right]_{h_1}^{h_2}$$

a

$$h_1 = 6.37 \cdot 10^6 m$$
 $h_2 = 4.22 \cdot 10^7 m$
 $W = \left[-c \cdot s^{-1} \right]_{6.37 \cdot 10^6 m}^{4.22 \cdot 10^7 m} \approx 1.333 \cdot 10^{-7} \cdot c \approx 5.308 \cdot 10^{10} Nm$

b

$$h_1 = 6.37 \cdot 10^6 m \qquad h_2 \to \infty$$

$$W = \lim_{h_2 \to \infty} \left[-c \cdot s^{-1} \right]_{6.37 \cdot 10^6 m}^{h_2} \approx 1.570 \cdot 10^{-7} \cdot c \approx 6.252 \cdot 10^{10} Nm$$

a

$$\lim_{z \to \infty} \int_1^z f(x) \cdot dx = [F(x)]_1^z$$

$$I = \frac{1}{2}$$

$$II = 1$$

$$||| = \infty$$

b

$$\lim_{z \to 1} \int_{z}^{0} f(x) \cdot dx = [F(x)]_{z}^{1}$$

$$I = \infty$$

$$II = \infty$$

$$III = 2$$

180/11

$$f(x) = x^{2}$$

$$t(x) = m \cdot x + b$$

$$f'(x) = 2x \implies m = f'(a) = 2a$$

$$f(a) = a^{2} \implies b = a^{2} - 2a \cdot a = -a^{2}$$

$$\Rightarrow t(x) = 2a \cdot x - a^{2}$$

$$\int_0^a (f(x) - t(x)) \cdot dx = \int_0^a (x^2 - 2ax + a^2) \cdot dx = \left[\frac{1}{3} x^3 - ax^2 + a^2 x \right]_0^a$$
$$= \frac{1}{3} a^3$$

4.10 Integration von Produkten: partielle Integration

Ableitungs-Produktregel: $(u \cdot v)' = u' \cdot v + u \cdot v'$

$$(u \cdot v)' = u' \cdot v + u \cdot v' \qquad | -u \cdot v'$$

$$u' \cdot v = (u \cdot v)' - u \cdot v' \qquad | \int$$

$$\int u' \cdot v = \int (u \cdot v)' - \int u \cdot v'$$

$$\int u' \cdot v = u \cdot v - \int u \cdot v'$$

Beispiel

$$\int \sin(x) \cdot x \cdot dx = -\cos(x) \cdot x - \int -\cos(x) \cdot 1 \cdot dx$$
$$= -\cos(x) \cdot x + \sin(x) + c$$
$$(-\cos(x)) \cdot x + \sin(x)' = \sin(x) \cdot x$$

$$\begin{split} & \int e^{2x} \cdot x^2 \cdot dx = \frac{1}{2} e^{2x} \cdot x^2 - \int \frac{1}{2} e^{2x} \cdot 2x \cdot dx \\ & = \frac{1}{2} e^{2x} \cdot x^2 - (\frac{1}{2} e^{2x} \cdot x - \int \frac{1}{2} e^{2x} \cdot 1 \cdot dx) \\ & = \frac{1}{2} e^{2x} \cdot x^2 - \frac{1}{2} e^{2x} \cdot x + \int \frac{1}{2} e^{2x} \cdot dx \\ & = \frac{1}{2} e^{2x} \cdot x^2 - \frac{1}{2} e^{2x} \cdot x + \frac{1}{4} e^{2x} \\ & = e^{2x} \cdot (\frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{4}) \end{split}$$

Spezialfälle

$$\int 1 \cdot ln(x) \cdot dx = x \cdot ln(x) - \int x \cdot \frac{1}{x} \cdot dx$$

$$= x \cdot ln(x) - x$$
(Stammfunktion von $ln(x)$)

$$\begin{split} &\int \sin(x) \cdot \cos(x) \cdot dx = -\cos(x) \cdot \cos(x) - \int \cos(x) \cdot (-\sin(x)) \cdot dx \\ &= -\cos^2(x) - \int \sin(x) \cdot \cos(x) \cdot dx \qquad | + \int \sin(x) \cdot \cos(x) \cdot dx \\ &2 \cdot \int \sin(x) \cdot \cos(x) \cdot dx = -\cos^2(x) \qquad | : 2 \\ &\int \sin(x) \cdot \cos(x) \cdot dx = -\frac{\cos^2(x)}{2} \end{split}$$

a

$$\int_{-1}^{1} e^{x} \cdot x \cdot dx = \left[e^{x} \cdot x\right]_{-1}^{1} - \int e^{x} \cdot 1 \cdot dx = \left[e^{x} \cdot x - e^{x}\right]_{-1}^{1} = \frac{2}{e}$$

d

$$\int_0^{0.5} e^{2x+2} \cdot 4x \cdot dx = \left[\frac{1}{2} e^{2x+2} \cdot 4x \right]_0^{0.5} - \int \frac{1}{2} e^{2x+2} \cdot 4 \cdot dx$$
$$= \left[2e^{2x+2} \cdot x - e^{2x+2} \right]_0^{0.5} = e^2$$

188/2

b

$$\int_0^{\pi} \cos(x) \cdot x \cdot dx = [\sin(x) \cdot x]_0^{\pi} - \int \sin(x) \cdot 1 \cdot dx$$
$$= [\sin(x) \cdot x + \cos(x)]_0^{\pi} = -2$$

d

$$\int_0^{2\pi} \sin(0.5x) \cdot 2x \cdot dx = [-2\cos(0.5x) \cdot 2x]_0^{2\pi} - \int -2\cos(0.5x) \cdot 2 \cdot dx$$
$$= [-2\cos(0.5x) \cdot 2x + 8\sin(0.5x)]_0^{2\pi} = 8\pi$$

a

$$\int_{0}^{\pi} (\sin(x))^{2} \cdot dx = [-\cos(x) \cdot \sin(x)]_{0}^{\pi} - \int -\cos(x) \cdot \cos(x) \cdot dx$$

$$= [-\cos(x) \cdot \sin(x)]_{0}^{\pi} - \int (-\sin^{2}(x) - 1) \cdot dx$$

$$= [-\cos(x) \cdot \sin(x) + x]_{0}^{\pi} - \int \sin^{2}(x) \cdot dx \qquad | + \int_{0}^{\pi} \sin^{2}(x) \cdot dx; : 2$$

$$= \left[\frac{-\cos(x) \cdot \sin(x) + x}{2} \right]_{0}^{\pi} = \frac{\pi}{2}$$

С

$$\int_{-2}^{2} e^{x} \cdot \cos(x) \cdot dx = \left[\sin(x) \cdot e^{x} \right]_{-2}^{2} - \int \sin(x) \cdot e^{x} \cdot dx$$

$$= \left[\sin(x) \cdot e^{x} \right]_{-2}^{2} - \left(\left[-\cos(x) \cdot e^{x} \right]_{-2}^{2} - \int -\cos(x) \cdot e^{x} \cdot dx \right)$$

$$= \left[\sin(x) \cdot e^{x} + \cos(x) \cdot e^{x} \right]_{-2}^{2} - \int \cos(x) \cdot e^{x} \cdot dx$$

$$= \left[\frac{(\sin(x) + \cos(x)) \cdot e^{x}}{2} \right]_{-2}^{2} \approx 1.912$$

d

$$\int_{0}^{2} \sin(\pi x) \cdot e^{2x} \cdot dx = \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \int \frac{1}{2}e^{2x} \cdot \pi \cdot \cos(\pi x) \cdot dx$$

$$= \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \left(\left[\frac{1}{4}e^{2x} \cdot \pi \cdot \cos(\pi x)\right]_{0}^{2} - \int -\frac{1}{4}e^{2x} \cdot \pi^{2} \cdot \sin(\pi x) \cdot dx\right)$$

$$= \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \left(\left[\frac{1}{4}e^{2x} \cdot \pi \cdot \cos(\pi x) + \frac{1}{4}\pi^{2}\right]_{0}^{2} - \int e^{2x} \cdot \sin(\pi x) \cdot dx\right)$$

$$= \left[\frac{2e^{2x} \cdot \sin(\pi x) - \pi \cdot e^{2x} \cdot \cos(\pi x)}{\pi^{2} + 4}\right]_{0}^{2} = \frac{\pi}{\pi^{2} + 4} - \frac{e^{4} \cdot \pi}{\pi^{2} + 4} \approx -12.140$$

4.11 Integration durch Substitution

Kettenregel: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$

$$\begin{split} &\int f'(g(x)) \cdot g'(x) \cdot dx = \int (f(g(x)))' \cdot dx \\ &= f(g(x)) \quad \text{ Dabei ist } f \text{ die Stammfunktion von } f' \\ \Rightarrow \text{ Benenne um } f' \to f \qquad f \to F \end{split}$$

$$\int f(g(x)) \cdot g'(x) \cdot dx = F(g(x))$$

Substitution 1

$$\begin{split} &\int_a^b f(g(x)) \cdot g'(x) \cdot dx \qquad \text{ersetze } z = g(x) \qquad \frac{dz}{dx} = g'(x) \Rightarrow dz = g'(x) \cdot dx \\ &= \int_{g(a)}^{g(b)} f(z) \cdot dz = [F(z)]_{g(a)}^{g(b)} \end{split}$$

Resubstitution

$$= [F(g(x))]_a^b$$

Beispiel

$$\int_{1}^{2} \frac{5x}{\sqrt{1+3x^2}} \cdot dx$$

subst.
$$z = 1 + 3x^2$$

$$\frac{dz}{dx} = (1 + 3x^2)' = 6x \qquad dz = 6x \cdot dx$$
$$= \frac{5}{6} \int_{1}^{2} \frac{6x}{\sqrt{1 + 3x^2}} \cdot dx = \frac{5}{6} \int_{4}^{13} z^{-\frac{1}{2}} \cdot dz$$
$$= \frac{5}{6} \left[2z^{\frac{1}{2}} \right]_{4}^{13} = \frac{5}{6} \left[2 \cdot (1 + 3x^2)^{\frac{1}{2}} \right]_{1}^{2} \approx 2.676$$

а

$$\int_{0}^{2} \frac{4x}{\sqrt{1+2x^{2}}} \cdot dx; \qquad g(x) = 1 + 2x^{2}$$
subst. $z = g(x) \qquad dz = g'(x) \cdot dx$

$$= \int_{g(0)}^{g(2)} \frac{1}{\sqrt{z}} \cdot dz = \left[2 \cdot \sqrt{z}\right]_{1}^{9} = 4$$

b

$$\begin{split} &\int_{-1}^{1} \frac{-2x}{(4-3x^2)^2} \cdot dx; \qquad g(x) = 4-3x^2 \\ \text{subst. } z = g(x) \qquad dz = g'(x) \cdot dx \\ &= \int_{g(-1)}^{g(1)} \frac{1}{3z^2} \cdot dz = \left[-\frac{1}{3z} \right]_{1}^{1} = 0 \end{split}$$

191/3

е

$$\int_0^3 \frac{2x}{1+x^2} \cdot dx$$
subst. $z = 1+x^2$ $dz = 2x \cdot dx$

$$= \int_1^{10} \frac{1}{z} \cdot dz = [ln(z)]_1^{10}$$
resubst.

$$= \left[ln(1+x^2) \right]_0^3 = ln(10) \approx 2.3026$$

f

$$\begin{split} & \int_{-1}^{2} \frac{e^{x}}{2 + e^{x}} \cdot dx \\ \text{subst.} \ z = 2 + e^{x} \qquad dz = e^{x} \cdot dx \\ & = \int_{2 + e^{-1}}^{2 + e^{2}} \frac{1}{z} \cdot dz = \left[ln(z) \right]_{2 + e^{-1}}^{2 + e^{2}} \\ \text{resubst.} \\ & = \left[ln(2 + e^{x}) \right]_{-1}^{2} \approx 1.3775 \end{split}$$

$$\int_{e}^{e^{2}} \frac{4}{x \cdot ln(x)} \cdot dx$$
subst. $z = ln(x)$ $dz = \frac{1}{x} \cdot dx$

$$= \int_{1}^{2} \frac{4}{z} \cdot dz = [4 \cdot ln(z)]_{1}^{2}$$

resubst.

$$= [4 \cdot ln(ln(x))]_e^{e^2} = 4 \cdot ln(2) \approx 2.7726$$

h

$$\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\pi \cdot \cos(\pi x)}{\sin(\pi x)} \cdot dx$$
subst. $z = \sin(\pi x)$ $dz = \pi \cdot \cos(\pi x) \cdot dx$

$$= \int_{\sin(\frac{\pi}{2})}^{\sin(\frac{\pi}{2})} \frac{1}{z} \cdot dz = [\ln(z)]_{\sin(\frac{\pi}{3})}^{\sin(\frac{\pi}{2})}$$

resubst.

$$= [ln(sin(\pi x))]_{\frac{1}{3}}^{\frac{1}{2}} \approx 0.1438$$

191/8

а

$$\int_{0}^{\ln(2)} \frac{e^{2x}}{e^{2x} + 3} \cdot dx \qquad t = e^{2x} + 3 \qquad t' = \frac{dt}{dx} = 2e^{2x} \qquad dx = \frac{1}{2 \cdot e^{2x}} \cdot dt$$

$$= \int_{t(0)}^{t(\ln(2))} \frac{e^{4x}}{t} \cdot \frac{1}{2 \cdot e^{2x}} \cdot dt = \int_{t(0)}^{t(\ln(2))} \frac{e^{2x}}{2t} \cdot dt = \int_{t(0)}^{t(\ln(2))} \frac{t - 3}{2t} \cdot dt$$

$$= \left[\frac{t}{2} - \frac{3}{2} \cdot \ln(t) \right]_{1}^{7} \approx 0.6606$$

b

$$\int_{1}^{2} \frac{2x+3}{(x+2)^{2}} \cdot dx \qquad t = x+2 \qquad t' = \frac{dt}{dx} = 1 \qquad dx = dt$$

$$= \int_{t(1)}^{t(2)} \frac{2x+3}{t^{2}} \cdot dt = \int_{t(1)}^{t(2)} \frac{2t-1}{t^{2}} \cdot dt = \int_{t(1)}^{t(2)} (\frac{2}{t} - \frac{1}{t^{2}}) \cdot dt$$

$$= \left[2 \cdot \ln(t) + \frac{1}{t} \right]_{3}^{4} \approx 0.4920$$

$$\int_{0.5}^{7} \frac{x}{\sqrt{4x - 1}} \cdot dx \qquad t = 4x - 1 \qquad t' = \frac{dt}{dx} = 4 \qquad dx = \frac{dt}{4}$$

$$= \int_{t(0.5)}^{t(7)} \frac{x}{\sqrt{t}} \cdot \frac{1}{4} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{\frac{1}{4}t + \frac{1}{4}}{4 \cdot \sqrt{t}} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{t + 1}{16 \cdot \sqrt{t}} \cdot dt$$

$$= \left[\left(\frac{1}{16}t + \frac{1}{16} \right) \cdot 2 \cdot \sqrt{t} \right]_{t(0.5)}^{t(7)} - \int_{t(0.5)}^{t(7)} \frac{1}{8} \cdot \sqrt{t} \cdot dt$$

$$= \left[\left(\frac{1}{8}t + \frac{1}{8} \right) \cdot \sqrt{t} \right]_{t(0.5)}^{t(7)} - \left[\frac{1}{8} \cdot \frac{2}{3} \cdot \sqrt{t^3} \right]_{t(0.5)}^{t(7)}$$

$$= \left[\frac{1}{8} \cdot \left(t \cdot \sqrt{t} + \sqrt{t} - \frac{2}{3} \cdot \sqrt{t^3} \right) \right]_{1}^{27} \approx 6.3285$$

d

$$\int_{0}^{4} \frac{4}{1+2\cdot\sqrt{x}} \cdot dx \qquad t = 1+2\cdot\sqrt{x} \qquad t' = \frac{dt}{dx} = \frac{1}{\sqrt{x}} \qquad dx = \sqrt{x} \cdot dt$$

$$= \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \sqrt{x} \cdot dt = \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \frac{t-1}{2} \cdot dt = \int_{t(0)}^{t(4)} \frac{4t-4}{2t} \cdot dt$$

$$= \left[\frac{1}{2t} \cdot (2t^{2} - 4t)\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} -\frac{1}{2t^{2}} \cdot (2t^{2} - 4t) \cdot dt$$

$$= \left[t-2\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} (\frac{2}{t} - 1) \cdot dt$$

$$= \left[t-2 - (2 \cdot \ln(t) - t)\right]_{t(0)}^{t(4)} = \left[2 \cdot (t-1 - \ln(t))\right]_{1}^{5} \approx 4.7811$$

Substitution 2

$$\begin{split} & \int_a^b f(x) \cdot dx & \text{ersetze } x = g(z) \\ & = \int_a^b f(g(z)) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz \\ & x = g(z) \quad z = \overline{g}(x) \\ & \frac{dx}{dz} = g'(z) \quad dx = g'(z) \cdot dz \\ & = [F(g(z))]_{\overline{g}(a)}^{\overline{g}(b)} = [F(x)]_a^b \end{split}$$

Beispiel

$$\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} \cdot dx \qquad x = \sin(z) \qquad dx = \cos(z) \cdot dz$$

$$= \int_{0}^{\frac{\pi}{6}} \frac{\cos(z)}{\sqrt{1-\sin^{2}(z)}} \cdot dz = \int_{0}^{\frac{\pi}{6}} 1 \cdot dz = [z]_{0}^{\frac{\pi}{6}} = \frac{\pi}{6} \approx 0.524$$

AB/23

а

$$\int_0^1 e^x \cdot \sqrt{e^x + 1} \cdot dx$$

$$x(t) = \ln(t) \qquad t = e^x \qquad dx = \frac{1}{t} \cdot dt$$

$$= \int_{e^0}^{e^1} e^{\ln(t)} \cdot \sqrt{e^{\ln(t)} + 1} \cdot \frac{1}{t} \cdot dz = \int_1^e \sqrt{t + 1} \cdot dz$$

$$= \left[\frac{2}{3} \cdot \sqrt{(t + 1)^3} \right]_1^e \approx 2.8943$$

С

$$\int_{1}^{3} \frac{1}{x} \cdot \ln(x^{2}) \cdot dx$$

$$x(t) = e^{t} \qquad t = \ln(x) \qquad dx = e^{t} \cdot dt$$

$$= \int_{\ln(1)}^{\ln(3)} \frac{1}{e^{t}} \cdot \ln(e^{t^{2}}) \cdot e^{t} \cdot dt = \int_{0}^{\ln(3)} \ln(e^{2t}) \cdot dt = \int_{0}^{\ln(3)} 2t \cdot dt$$

$$= \left[t^{2}\right]_{0}^{\ln(3)} = (\ln(3))^{2} \approx 1.2069$$

4.11.1 Wiederholung

1. Ersetze g(x) durch z

$$\int_{a}^{b} = f(g(x)) \cdot g'(x) \cdot dx = \int_{g(a)}^{g(b)} f(z) \cdot dz$$
$$= [F(z)]_{g(a)}^{g(b)} = [F(g(x))]_{a}^{b}$$
$$z = g(x)$$

$$\frac{dz}{dx} = g'(x)$$
$$dz = g'(x) \cdot dx$$

2. Ersetze x durch g(z)

$$\int_{a}^{b} f(x) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz$$
$$= [F(g(z))]_{\overline{g}(a)}^{\overline{g}(b)} = [F(x)]_{a}^{b}$$

$$x = g(z) \Leftrightarrow z = \overline{g}(x)$$

$$\frac{dx}{dz} = g'(z)$$

$$dx = g'(z) \cdot dz$$

AB/23

d

$$\int_{1}^{2} \frac{1 + \ln(x)}{x \cdot (1 - \ln(x))} \cdot dx$$
$$x(t) = e^{t} \qquad t = \ln(x) \qquad dx = e^{t} \cdot dt$$

$$= \int_{ln(1)}^{ln(2)} \frac{1 + ln(e^t)}{e^t \cdot (1 - ln(e^t))} \cdot e^t \cdot dt = \int_0^{ln(2)} \frac{1 + t}{1 - t} \cdot dt$$
$$z = 1 - t \qquad \frac{dz}{dt} = -1 \qquad dz = -dt$$

$$= -\int_{1-0}^{1-\ln(2)} \frac{2-z}{z} \cdot dz = -\int_{1-0}^{1-\ln(2)} (\frac{2}{z} - 1) \cdot dz$$
$$= -\left[2 \cdot \ln(z) - z\right]_{1}^{1-\ln(2)} \approx 1.6696$$

g

$$\int_0^1 \frac{1}{\sqrt{4 - x^2}} \cdot dx$$

$$x(t) = 2 \cdot \sin(t) \qquad t = a\sin(\frac{x}{2}) \qquad dx = 2 \cdot \cos(t) \cdot dt$$

$$= \int_{asin(\frac{1}{2})}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{\sqrt{4 - (2 \cdot sin(t))^2}} \cdot dt = \int_{0}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{1 - (sin(t))^2}} \cdot dt$$
$$= \int_{0}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{(cos(t))^2}} \cdot dt = \int_{0}^{asin(\frac{1}{2})} 1 \cdot dt = [t]_{0}^{asin(\frac{1}{2})} = \frac{\pi}{6}$$

4.12 Rotationskörper

Rotationssymetrische Körper, die man sich dadurch entstanden vorstellen kann, dass eine Fläche um eine Achse (x-Achse) rotiert.

4.12.1 Bestimmung des Volumens von Rotationskörpern

$$f(x) = \frac{1}{2}x^2 + 1$$

$$A = \int_{a}^{b} f(x) \cdot dx$$

$$= \int_{1}^{2} (\frac{1}{2}x^{2} + 1) \cdot dx = \left[\frac{1}{6}x^{3} + x\right]_{1}^{2} = \frac{13}{6}FE \approx 2.17FE$$

$$V = \int_{a}^{b} \pi \cdot (f(x))^{2} \cdot dx$$

$$= \pi \cdot \int_{1}^{2} (\frac{1}{2}x^{2} + 1)^{2} \cdot dx = \pi \cdot \left[\frac{1}{20}x^{5} + \frac{1}{3}x^{3} + x\right]_{1}^{2} = \frac{293\pi}{60}VE \approx 15.34VE$$

a

$$y = \sqrt{x+1}$$

$$V = \pi \cdot \int_{-1}^{2} (\sqrt{x+1})^2 \cdot dx = \pi \cdot \int_{-1}^{2} (x+1) \cdot dx$$

$$= \pi \cdot \left[\frac{1}{2} x^2 + x \right]_{-1}^{2} = \pi \cdot 4.5VE \approx 14.1372VE$$

b

$$y = \frac{1}{x}$$

$$V = \pi \cdot \int_{1}^{3} (\frac{1}{x})^{2} \cdot dx = \pi \cdot \int_{1}^{3} x^{-2} \cdot dx$$

$$= \pi \cdot \left[-x^{-1} \right]_{1}^{3} = \pi \cdot \frac{2}{3} VE \approx 2.0944 VE$$

С

$$y = x^{2} - 6x + 8$$

$$y = 0 L = \{2; 4\}$$

$$V = \pi \cdot \int_{2}^{4} (x^{2} - 6x + 8)^{2} \cdot dx = \pi \cdot \int_{2}^{4} (x^{4} - 12x^{3} + 52x^{2} - 96x + 64) \cdot dx$$

$$= \pi \cdot \left[\frac{1}{5}x^{5} - 3x^{4} + \frac{52}{3}x^{3} - 48x^{2} + 64x \right]_{2}^{4} = \pi \cdot \frac{16}{15}VE \approx 3.3510VE$$

197/8

$$f(x) = 0.5x + 1$$
 $g(x) = 1.5 \cdot \sqrt{x - 1}$ [0;4]

a

$$V_W = \pi \cdot \int_1^4 (1.5 \cdot \sqrt{x - 1})^2 \cdot dx = \pi \cdot \int_1^4 (2.25x - 2.25) \cdot dx$$
$$= \pi \cdot \left[1.125x^2 - 2.25x \right]_1^4 = 10.125\pi \approx 31.8086$$
$$[V_W] = cm^3$$

b

$$V = \pi \cdot \int_0^4 (0.5x + 1)^2 \cdot dx = \pi \cdot \int_0^4 (0.25x^2 + x + 1) \cdot dx$$
$$= \pi \cdot \left[\frac{1}{12} x^3 + \frac{1}{2} x^2 + x \right]_0^4 = \frac{52\pi}{3} \approx 54.4543$$
$$V_G = V - V_W = 10.125\pi - \frac{52\pi}{3} = 22.6456$$
$$[V] = [V_G] = cm^3$$

197/9

b

$$f(x) = 3x^{2} - x^{3} g(x) = x^{2}$$

$$f(x) = g(x) L = \{0; 2\}$$

$$V = \pi \cdot ((3x^{2} - x^{3})^{2} - (x^{2})^{2}) \cdot dx = \pi \cdot (9x^{4} - 6x^{5} + x^{6} - x^{4}) \cdot dx$$

$$= \pi \left[\frac{8}{5}x^{5} - x^{6} + \frac{1}{7}x^{7} \right]_{0}^{2} = \frac{192\pi}{35} \approx 17.2339$$

188/4

b

$$f(x) = 2x \cdot \sin(x)$$

$$\int f(x) \cdot dx = -\cos(x) \cdot 2x - \int -\cos(x) \cdot 2 \cdot dx = -\cos(x) \cdot 2x + \sin(x) \cdot 2$$

188/9

b

$$\int_{1}^{e} x \cdot \ln(2x) \cdot dx$$

$$= \left[\frac{1}{2} x^{2} \cdot \ln(2x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{2} x^{2} \cdot \frac{1}{x} \cdot dx = \left[\frac{1}{2} x^{2} \cdot \ln(2x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{2} x \cdot dx$$

$$= \left[\frac{1}{2} x^{2} \cdot \ln(2x) - \frac{1}{4} x^{2} \right]_{1}^{e} \approx 4.3115$$

С

$$\int_{1}^{e^{2}} x^{2} \cdot \ln(x) \cdot dx$$

$$= \left[\frac{1}{3} x^{3} \cdot \ln(x) \right]_{1}^{e^{2}} - \int_{1}^{e^{2}} \frac{1}{3} x^{3} \cdot \frac{1}{x} \cdot dx$$

$$= \left[\frac{1}{3} x^{3} \cdot \ln(x) - \frac{1}{9} x^{3} \right]_{1}^{e^{2}} \approx 224.2382$$

Kapitel 5

Analytische Geometrie

5.1 Punkte und Vektoren

Jeder Punkt im Raum \mathbb{R}^3 ist durch 3 Koordinaten (x|y|z) oder $(x_1|x_2|x_3)$ festgelegt, sofern zuvor der Ursprung O des Koordinatensystems festgelegt wird. Den Vektor, der vom Ursprung O zum Punkt A(x|y|z) führt, nennt man Ortsvektor von A und notiert man

$$\overrightarrow{OA} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Ein Vektor ist eine Stecke (mit Länge) mit Orientierung (Pfeil).

5.1.1 Darstellung im 3-dimensionalen Koordinatensystem

A(2|3|4) B(-3|1|-2) C(3|0|2)

Alle Punkte mit (-2|1|z) liegen auf einer Geraden parallel zur z-Achse.

a+c

b

$$D(-2|-1|0)$$
 $E(-2|0|3)$ $F(1|0|3)$ $H(-2|-1|3)$

276/3

$$\begin{array}{ll} P(2|3|0) & Q(4|4|0) \\ R(0|3|1) & S(0|-2|-1) \\ T(2|0|2) & U(3|0|-1) \end{array}$$

276/10

$$A(2|0|0)$$
 $B(-1|2|-1)$ $C(-2|3|4)$ $D(3|4|-2)$

а

$$A'(2|0|0) \qquad B'(-1|2|{\color{red}1}) \qquad C'(-2|3|{\color{red}-4}) \qquad D'(3|4|{\color{red}2})$$

$$A'(-2|0|0)$$
 $B'(1|2|-1)$ $C'(2|3|4)$ $D'(-3|4|-2)$

С

$$A'(2|0|0)$$
 $B'(-1|-2|-1)$ $C'(-2|-3|4)$ $D'(3|-4|-2)$

5.2 Ortsvektoren und Verschiebungsvektoren

 \overrightarrow{OA} ist der Ortsvektor des Punktes A. Der Vektor führt vom Ursprung O zum Punkt A. \overrightarrow{BC} ist ein Verschiebungsvektor, der Punkt B auf Punkt C verschiet, bzw. B mit C verbindet und auf C zeigt. Mit Hilfe des Vektors \overrightarrow{BC} lassen sich auch andere Punkte in gleicher Weise verschieben wie Punkt B auf Punkt C.

$$\overrightarrow{BC} = \begin{pmatrix} 3\\2 \end{pmatrix} \qquad P(0|1) \quad Q(4|3) \quad R(1.5|0.5)$$

$$\overrightarrow{OP} + \overrightarrow{BC} = \overrightarrow{OP'} \qquad \begin{pmatrix} 0\\1 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 3\\3 \end{pmatrix}$$

R

5.2.1 Addition, Subtraktion und Multiplikation mit einer Zahl

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}$$

$$\vec{d} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{d} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 5 \end{pmatrix}$$

•

$$\overrightarrow{e} = \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$$
 (Gegenvektor von \overrightarrow{b})
$$\overrightarrow{e} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$

•

$$\overrightarrow{f} = 3 \cdot \overrightarrow{a}$$

$$\overrightarrow{f} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 15 \end{pmatrix}$$

Darstellung eines Vektors durch andere Vektoren (Bsp. Verbindungsvektor)

$$\vec{a} = \overrightarrow{OA} = \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix} \qquad \vec{b} = \overrightarrow{OB} = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$$

$$\vec{AB} = -\vec{a} + \vec{b} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ -4 \\ 2 \end{pmatrix}$$

a

$$A(-2|2|3) \quad B(5|5|5) \quad C(9|6|5) \quad D(2|3|3)$$

$$\overrightarrow{AB} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix} \quad \overrightarrow{DC} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{DC} \quad \Rightarrow \quad \text{Parallelogramm}$$

b

$$A(2|0|3) \quad B(4|4|4) \quad C(11|7|9) \quad D(9|3|8)$$

$$\overrightarrow{AB} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} \quad \overrightarrow{DC} = \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{DC} \quad \Rightarrow \quad \text{Parallelogramm}$$

С

$$A(2|-2|7) \quad B(6|5|1) \quad C(1|-1|1) \quad D(8|0|8)$$

$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 7 \\ -6 \end{pmatrix} \quad \overrightarrow{DC} = \begin{pmatrix} -7 \\ -1 \\ -7 \end{pmatrix}$$

$$\overrightarrow{AB} \neq \overrightarrow{DC} \quad \Rightarrow \quad \text{kein Parallelogramm}$$

а

$$A(21|-11|43) \quad B(3|7|-8) \quad C(0|4|5)$$

$$\overrightarrow{AB} = \begin{pmatrix} -18 \\ 18 \\ -51 \end{pmatrix} \quad \overrightarrow{BC} = \begin{pmatrix} -3 \\ -3 \\ 13 \end{pmatrix}$$

$$\overrightarrow{OD_1} = \overrightarrow{OA} + \overrightarrow{BC} = \begin{pmatrix} 18 \\ -14 \\ 56 \end{pmatrix}$$

$$\overrightarrow{OD_2} = \overrightarrow{OC} + \overrightarrow{AB} = \begin{pmatrix} -18 \\ 22 \\ -46 \end{pmatrix}$$

$$\overrightarrow{OD_3} = \overrightarrow{OA} - \overrightarrow{BC} = \begin{pmatrix} 24 \\ -8 \\ 30 \end{pmatrix}$$

b

$$A(-75|199|-67) \qquad B(35|0|-81) \qquad C(1|2|3)$$

$$\overrightarrow{AB} = \begin{pmatrix} 110 \\ -199 \\ 14 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} -34 \\ 2 \\ 84 \end{pmatrix}$$

$$\overrightarrow{OD_1} = \overrightarrow{OA} + \overrightarrow{BC} = \begin{pmatrix} -109 \\ 201 \\ 17 \end{pmatrix}$$

$$\overrightarrow{OD_2} = \overrightarrow{OC} + \overrightarrow{AB} = \begin{pmatrix} 111 \\ -197 \\ 17 \end{pmatrix}$$

$$\overrightarrow{OD_3} = \overrightarrow{OA} - \overrightarrow{BC} = \begin{pmatrix} -41 \\ 197 \\ -151 \end{pmatrix}$$

5.2.2 Vektorzüge und Linearkombinationen

(zu 279/6)

 M_1 ... Mittelpunkt von \overline{AB}

 M_2 ... Mittelpunkt des Parallelogramms (mit D_1)

$$\overrightarrow{OM_1} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AB} = \overrightarrow{OB} - \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OM_2} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AC} = \overrightarrow{OC} - \frac{1}{2}\overrightarrow{AC}$$

zu 6a

$$\overrightarrow{OA} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 5\\5\\5 \end{pmatrix} \qquad \overrightarrow{OC} = \begin{pmatrix} 9\\6\\5 \end{pmatrix}$$

$$\overrightarrow{OM_1} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 7\\3\\2 \end{pmatrix} = \begin{pmatrix} 1.5\\3.5\\4 \end{pmatrix}$$

$$\overrightarrow{OM_2} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 11\\4\\2 \end{pmatrix} = \begin{pmatrix} 3.5\\4\\4 \end{pmatrix}$$

zu 6b

$$\overrightarrow{OM}_{1} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 4\\4\\4 \end{pmatrix} \qquad \overrightarrow{OC} = \begin{pmatrix} 11\\7\\9 \end{pmatrix}$$

$$\overrightarrow{OM}_{1} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 2\\4\\1 \end{pmatrix} = \begin{pmatrix} 3\\2\\3.5 \end{pmatrix}$$

$$\overrightarrow{OM}_{2} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 9\\7\\6 \end{pmatrix} = \begin{pmatrix} 6.5\\3.5\\6 \end{pmatrix}$$

Setze ich mehrere Vektorpfeile, mit Koeffizienten multipliziert, aneinander, so nennt man das einen Vektorzug. Die rechnerische Summe solcher Vektoren heißt Linearkombination.

а

$$2 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

b

$$4 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

С

$$3 \cdot \begin{pmatrix} -1 \\ -2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -12 \end{pmatrix}$$

283/7

d

$$\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}$$

е

$$3 \cdot \begin{pmatrix} -1\\4\\2 \end{pmatrix} - 2 \cdot \begin{pmatrix} -2\\4\\1 \end{pmatrix} + 3 \cdot \begin{pmatrix} -1\\4\\2 \end{pmatrix} = \begin{pmatrix} -2\\16\\10 \end{pmatrix}$$

$$4 \cdot \begin{pmatrix} 0.5 \\ 3 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0.8 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6.4 \\ 30 \\ 17 \end{pmatrix}$$

$$f - (\vec{u} - \vec{v}) = \vec{v} - \vec{u}$$

$$g(2(\overrightarrow{a} + 4\overrightarrow{b}) = 4\overrightarrow{a} + 8\overrightarrow{b}$$

$$h - 4(\overrightarrow{a} - \overrightarrow{b}) - \overrightarrow{b} + \overrightarrow{a} = 3\overrightarrow{a} - 3\overrightarrow{b}$$

$$i \ 3(\overrightarrow{a} + 2(\overrightarrow{a} + \overrightarrow{b})) = 9\overrightarrow{a} + 6\overrightarrow{b}$$

$$i 6(\overrightarrow{a} - \overrightarrow{b}) + 4(\overrightarrow{a} + \overrightarrow{b}) = 10\overrightarrow{a} - 2\overrightarrow{b}$$

$$\mathsf{k} \ 7\vec{u} + 5(\vec{u} - 2(\vec{u} + \vec{v})) = 2\vec{u} - 10\vec{v}$$

284/12

a
$$\overrightarrow{AG} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{BH} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{EC} = \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$$

$$\overrightarrow{ME} = -\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} + \overrightarrow{c}$$

5.3 Geraden in \mathbb{R}^3

C

$$S_{5} \xrightarrow{A} S_{2} \xrightarrow{S_{1}} S_{3} \xrightarrow{B} S_{4}$$

$$\overrightarrow{OS_{1}} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OS_{2}} = \overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{OS_{3}} = \overrightarrow{OA} + \frac{3}{4}\overrightarrow{AB}$$

$$\overrightarrow{OS_{4}} = \overrightarrow{OA} + \frac{3}{2}\overrightarrow{AB} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OS_{5}} = \overrightarrow{OA} - \frac{1}{4}\overrightarrow{AB}$$

Gerade durch die Punkte A und B:

$$g: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} \qquad s \in \mathbb{R}$$

Parametergleichung einer Geraden g:

- g Name der Geraden
- \overrightarrow{x} Ortsvektor eines unbestimmten Punktes
- \overrightarrow{OA} Ortsvektor eines bestimmten Punktes A (heißt auch Stützvektor)
 - s Parameter $s\in\mathbb{R}$ Beim Durchlaufen aller Zahlen von \mathbb{R} werden nacheinander alle Punkte der Geraden g dargestellt
- \overrightarrow{AB} Richtungsvektor von g gibt die Richtung von g an

$$h: \vec{x} = \vec{a} + r \cdot \vec{b}$$

$$h: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$$

Beispiele für Punkte auf $\,h\,$

$$\overrightarrow{OP_1} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} \qquad r = 0$$

$$\overrightarrow{OP_2} = \begin{pmatrix} -2\\5\\4 \end{pmatrix} \qquad r = 1$$

$$\overrightarrow{OP_3} = \begin{pmatrix} -5\\10\\6 \end{pmatrix} \qquad r = 2$$

$$\overrightarrow{OP_4} = \begin{pmatrix} 4\\-5\\0 \end{pmatrix} \qquad r = -1$$

$$\overrightarrow{OQ} = \begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} \in h$$

$$\begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$$

gibt es ein r, das alle 3 Gleichungen löst?

$$3 = 1 - 3r \implies r = -\frac{2}{3}$$

$$7 = 5r \implies r = \frac{7}{5}$$

$$-1 = 2 + 2r \implies r = -\frac{3}{2}$$

$$\Rightarrow Q \notin h$$

287/2

a

$$A(1|2|2) B(5|-4|7)$$

$$g: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 1\\2\\2 \end{pmatrix} + s \cdot \begin{pmatrix} 4\\-6\\5 \end{pmatrix}$$

$$g: \overrightarrow{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 5\\-4\\7 \end{pmatrix} + s \cdot \begin{pmatrix} 4\\-6\\5 \end{pmatrix}$$

b

$$A(-3|-2|9) \qquad B(0|0|3)$$

$$g: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} -3 \\ -2 \\ 9 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

$$g: \overrightarrow{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

С

$$A(7|-2|7) \qquad B(1|1|1)$$

$$g: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 7 \\ -2 \\ 7 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 3 \\ -6 \end{pmatrix}$$

$$g: \overrightarrow{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 3 \\ -6 \end{pmatrix}$$

287/3

С

$$X(2|3|-1) \qquad g: \overrightarrow{x} = \begin{pmatrix} 7\\0\\4 \end{pmatrix} + t \cdot \begin{pmatrix} 5\\-3\\5 \end{pmatrix}$$
$$2 = 7 + t \cdot 5 \quad \Rightarrow \quad t = -1$$
$$3 = t \cdot -3 \quad \Rightarrow \quad t = -1$$
$$-1 = 4 + t \cdot 5 \quad \Rightarrow \quad t = -1$$
$$\Rightarrow \quad X \in g$$

d

$$X(2|-1|-1) g: \overrightarrow{x} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\3\\3 \end{pmatrix}$$
$$2 = 1 + t \Rightarrow t = 1$$
$$-1 = t \cdot 3 \Rightarrow t = -\frac{1}{3}$$
$$\Rightarrow X \notin g$$

288/12

a g

$$P_1(2|9|0)$$
 $P_2(-4|1|0)$ $g: \vec{x} = \begin{pmatrix} 2\\9\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\4\\0 \end{pmatrix}$

h

$$H(-4|1|3)$$
 $P(2|5|-3)$ $h: \vec{x} = \begin{pmatrix} -4\\1\\3 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\2\\-3 \end{pmatrix}$

i

$$P_1(-4|5|3)$$
 $P_2(-4|9|0)$ $i: \vec{x} = \begin{pmatrix} -4\\5\\3 \end{pmatrix} + t \cdot \begin{pmatrix} 0\\4\\-3 \end{pmatrix}$

j

$$P_1(-1|1|0)$$
 $P_2(-1|5|3)$ $j: \vec{x} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 0\\4\\3 \end{pmatrix}$

b g

$$C(-8|11|0)$$
 $P(-2|5|3)$ $g: \vec{x} = \begin{pmatrix} -8\\11\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$

h

$$P_1(-2|5|3)$$
 $P_2(-6|9|3)$ $h: \vec{x} = \begin{pmatrix} -2\\5\\3 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\2\\0 \end{pmatrix}$

i

$$B(0|11|0)$$
 $P(-6|5|3)$ $i: \vec{x} = \begin{pmatrix} 0\\11\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\-2\\1 \end{pmatrix}$

j

$$M(-4|7|0)$$
 $P(-6|5|3)$ $j: \vec{x} = \begin{pmatrix} -4\\7\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\-2\\3 \end{pmatrix}$

5.3.1 Kollinearität

$$\begin{split} g: \overrightarrow{x} &= \overrightarrow{a} + t \cdot \overrightarrow{b} \qquad t \in \mathbb{R} \\ \text{für } \overrightarrow{b} \text{ gilt: } \overrightarrow{b} \text{ kann durch } \overrightarrow{b}' &= s \cdot \overrightarrow{b} \text{ ersetzt werden } \qquad s \in \mathbb{R} \quad s \neq 0 \\ \overrightarrow{b}' \parallel \overrightarrow{b} \qquad \overrightarrow{b}' \text{ und } \overrightarrow{b} \text{ sind kollinear} \end{split}$$

Sonderfall: Gerade durch O

z. B.
$$g: \overrightarrow{x} = t \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \\ -10 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
 hier ist $\overrightarrow{a} \parallel \overrightarrow{b}$, d. h. \overrightarrow{a} und \overrightarrow{b} sind kollinear $(\overrightarrow{a} = -2 \cdot \overrightarrow{b})$

5.3.2 Lage zweier Geraden

4 Möglichkeiten unterschiedlicher Lage:

- Schnitt (Schnittpunkt)
- parallel
- identisch
- windschief

Verfahren um festzustellen, welche Lage zwei Geraden g und h haben

$$g: \vec{x} = \vec{a} + s \cdot \vec{b}$$

 $h: \vec{x} = \vec{c} + t \cdot \vec{d}$

$$\overrightarrow{b} \stackrel{?}{=} r \cdot \overrightarrow{d}$$

• wahr:

$$\vec{a} \stackrel{?}{=} \vec{c} + t \cdot \vec{d}$$
 oder $\vec{c} \stackrel{?}{=} \vec{a} + s \cdot \vec{b}$

- wenn wahr, dann sind q und h identisch
- wenn nicht wahr, dann sind g und h parallel

• nicht wahr:

$$\vec{a} + s \cdot \vec{b} = \vec{c} + t \cdot \vec{d}$$

- finde ich ein s und ein t, sodass das LGS gelöst wird, so schneiden sich g und h in einem Punkt S
- ansonsten sind g und h windschief

292/1

a

$$g: \overrightarrow{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$
$$h: \overrightarrow{x} = \begin{pmatrix} 3\\6\\4 \end{pmatrix} + t \cdot \begin{pmatrix} 4\\8\\2 \end{pmatrix}$$

$$\begin{pmatrix} 2\\4\\1 \end{pmatrix} = r \cdot \begin{pmatrix} 4\\8\\2 \end{pmatrix}$$

r = 2

 \Rightarrow identisch oder parallel

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix}$$
$$t = -\frac{1}{2}$$

 \Rightarrow identisch

a

$$g: \overrightarrow{x} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
$$h: \overrightarrow{x} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$9 + 3r = 7 + s$$

$$2r = -2 + s$$

$$6 + r = 2 + 2s$$

$$\Rightarrow r = 0 \qquad s = 2$$

$$\overrightarrow{OS} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + 0 \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix}$$

S(9|0|6)

а

$$g: \vec{x} = \begin{pmatrix} 5\\0\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$$
$$h: \vec{x} = \begin{pmatrix} 7\\1\\2 \end{pmatrix} + t \cdot \begin{pmatrix} -6\\-3\\3 \end{pmatrix}$$

$$\begin{pmatrix} 2\\1\\-1 \end{pmatrix} = r \cdot \begin{pmatrix} -6\\-3\\3 \end{pmatrix}$$

r = -3

⇒ identisch oder parallel

$$\begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} -6 \\ -3 \\ 3 \end{pmatrix}$$

$$5 = 7 + t \cdot (-6) \quad \Rightarrow \quad t = \frac{1}{3}$$

$$0 = 1 + t \cdot (-3) \quad \Rightarrow \quad t = \frac{1}{3}$$

$$1 = 2 + t \cdot 3 \quad \Rightarrow \quad t = -\frac{1}{3}$$

$$\Rightarrow \text{ parallel}$$

b

$$g: \vec{x} = t \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
$$h: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \neq r \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

 $\Rightarrow \mathsf{nicht} \; \mathsf{parallel}$

$$\begin{split} t_g \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t_h \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \\ t_g \cdot 2 &= 2 + t_h \cdot 0 \quad \Rightarrow \quad t_g = 1 \\ t_g \cdot 0 &= 3 + t_h \cdot 1 \quad \Rightarrow \quad t_h = -1 \\ t_g \cdot 1 &\neq 4 + t_h \cdot (-1) \\ \Rightarrow \text{ windschief} \end{split}$$

293/8

b

$$g: \overrightarrow{x} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
$$h: \overrightarrow{x} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
$$i: \overrightarrow{x} = t \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
$$j: \overrightarrow{x} = t \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

5.3.3 Parameterpunkte und -geraden

$$\overrightarrow{OA_b} = \begin{pmatrix} 1\\5\\b \end{pmatrix} = \begin{pmatrix} 1+b\cdot0\\5+b\cdot0\\0+b\cdot1 \end{pmatrix} = \begin{pmatrix} 1\\5\\0 \end{pmatrix} + b\cdot\begin{pmatrix}0\\0\\1 \end{pmatrix}$$

$$\overrightarrow{OC_d} = \begin{pmatrix} 2d\\1-5d\\7 \end{pmatrix} = \begin{pmatrix} 0+d\cdot2\\1+d\cdot(-5)\\7+d\cdot0 \end{pmatrix} = \begin{pmatrix} 0\\1\\7 \end{pmatrix} + d\cdot\begin{pmatrix}2\\-5\\0 \end{pmatrix}$$

$$g_a: \overrightarrow{x} = \begin{pmatrix} 2\\a\\5 \end{pmatrix} + r \begin{pmatrix} 1\\2\\0 \end{pmatrix} = \begin{pmatrix} 2\\0\\5 \end{pmatrix} + a \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} + r \cdot \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

293/10

а

$$g_a: \overrightarrow{x} = \begin{pmatrix} 3\\a\\3 \end{pmatrix} + r \cdot \begin{pmatrix} -1\\5\\7 \end{pmatrix} \qquad h_a: \overrightarrow{x} = \begin{pmatrix} 1\\0\\a \end{pmatrix} + s \cdot \begin{pmatrix} 2\\-22\\-29 \end{pmatrix}$$

$$\begin{pmatrix} -1\\5\\7 \end{pmatrix} \neq t \cdot \begin{pmatrix} 2\\-22\\-29 \end{pmatrix}$$

⇒ nicht parallel

$$\begin{pmatrix} 3 \\ a \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -22 \\ -29 \end{pmatrix}$$

$$3 - r = 1 + 2s$$

$$a + 5r = -22s$$

$$3 + 7r = a - 29s$$

$$a = 2$$
 $r = 4$ $s = -1$

$$\overrightarrow{OS} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + 4 \cdot \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} -1 \\ 22 \\ 31 \end{pmatrix}$$

b

$$g_a: \overrightarrow{x} = \begin{pmatrix} 3\\2\\a \end{pmatrix} + r \cdot \begin{pmatrix} 10\\7\\0 \end{pmatrix} \qquad h_a: \overrightarrow{x} = \begin{pmatrix} a\\-1\\3 \end{pmatrix} + s \cdot \begin{pmatrix} 6\\2\\-1 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} \neq t \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$$

⇒ nicht parallel

$$\begin{pmatrix} 3 \\ 2 \\ a \end{pmatrix} + r \cdot \begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ -1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$$

$$3 + 10r = a + 6s$$

$$2 + 7r = -1 + 2s$$

$$a = 3 - s$$

$$a = 5 \qquad r = -1 \qquad s = -2$$

$$\overrightarrow{OS} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} - \begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 \\ -5 \\ 5 \end{pmatrix}$$