Carleton University

Department of Systems and Computer Engineering

SYSC 3006 (Computer Organization) Fall 2020

Lab / Assignment 5 - Answers file

Student Name: Youssef Ibrahim ID#: 101103080

Part 1 - [0.75-mark/5]

1-1 Control FSM Output Table

[0.75-mark] Complete the provided Control FSM Output Table for Part 1 for the Fetch, Decode, and Execution States for opcodes 0x01 (ADD) through 0x07 (NOT).

FSM Output ROM Table: Fetch, Decode, and Execution States for opcodes 0x01 (ADD) through 0x07 (NOT)

	3.1	3.0	2.9	2 8	2.7	26	2.5	2 4	23	2.2	2 1	2 0	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	æ	2	1	0	
State Hex encoding	(0) pesnun	IRCE	PCOE	C10E	AADD	MARCE	MAROE	MDRCE	MDROE	MDRget	MDRput	IBRead	IBWrite	AOA	ANOP	DR	SXR	SYR	RegSEL	RegLD	T1CE	T10E	T2CE	T20E	+/0	+90	05 +	Q4+	+£O	Q2+	Q1+	+00	Hex Encoding
F0 000	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1	2402 3801
F1 01	0	0	0	1	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	1B10 0602
F2 02	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	40C2 0003
Deco de 03	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	1	1	2002 2107
E0 04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	0	0	0	0	0	0	0	1	0	1	0002 B805
E1 05	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	1	1	0	0	0	0	0	0	1	1	0	0004 7606
E2 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0003 2100
Dead 07	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0000 0007

Part 2 - [0.75-mark/5]

2.1 - Control FSM Output Table

[0.75-mark] Complete the provided Control FSM Output Table for Part 2 for NOP Instruction Execution 3 States. This table will extend the Control FSM Output Table for Part 1 (same FSM Output ROM).

FSM Output ROM Table: **NOP Instruction Execution States**

	3.1	3.0	2.9	28	2.7	26	2.5	2.4	23	2.2	2.1	2 0	19	18	1.7	16	15	14	13	12	11	10	6	8	7	9		4	8	2	1	0	
State Hex encoding	Unused (0)	IRCE	PCOE	C10E	AADD	MARCE	MAROE	MDRCE	MDROE	MDRget	MDRput	IBRead	IBWrite	AOP	ANOP	DR	SXR	SYR	RegSEL	RegLD	T1CE	T10E	T2CE	T20E	Q7+	Q6+	Q5+	Q4+	+£0	Q2+	Q1+	+00	Hex Encoding
E3 08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0000 0009
E4 09	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0000 000A
E4 0A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000 0000
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Part 3 - [2.0-mark/5]

3.1 - Control FSM Output Table

[0.75-mark] Complete the provided Control FSM Output Table for Part 3 for NEG Instruction Execution States. This table will extend the Control FSM Output Table for Part 1 and 2 (same FSM Output ROM).

FSM Output ROM Table: **NEG Instruction Execution States**

	3.1	3.0	2.9	28	2.7	26	2 5	2 4	23	2.2	2 1	2 0	19	18	17	16	1.5	14	13	12	11	10	6	8	7	9	5	4	ĸ	2	1	0	
State Hex encoding	Unused (0)	IRCE	PCOE	C10E	AADD	MARCE	MAROE	MDRCE	MDROE	MDRget	MDRput	IBRead	IBWrite	AOP	ANOP	DR	SXR	SYR	RegSEL	RegLD	T1CE	T10E	T2CE	T20E	Q7+	Q6+	Q5+	Q4+	Q3+	Q2+	Q1+	O0+	Hex Encoding
E5 0B	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	0	0005 320C 0005 360C
E6 0C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	1	0003 290D
E7 OD	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	1800 060E
E8 0E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0003 2100
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3.2 -

[0.50-mark] Describe how NEG instruction is executed at each execution state.

Firstly, a not operation on the register component

Secondly, the result is stored at the same register and into T1

Thirdly, 1 C1OE is asserted into the data bus, 1 AADD then the result is stored in T2

Fourthly, T2 is stored back at the same register

3.3 - Decode ROM Table

[0.75-mark] Complete the provided FSM Decode ROM Table to show any entries that must be programmed (for all parts).

FSM Decode ROM Table

Instruction	Address (hex)	Contents (hex)
NOP	00	08
ADD	01	04
SUB	02	04
MOV	03	05
AND	04	04
OR	05	04
XOR	06	04
NOT	07	05
NEG	17	ОВ

Part 4 - Execution test [total of 1.5-mark/5]

4.1 - Instruction Table

[0.75-mark] Complete the provided Main Memory Table to contain the encodings of the Test Program instructions as indicated. Then program the words of this table into the Main Memory. Be sure to include the Main Memory contents exactly as given in the table.

Main Memory Table

Address (hex)	Instruction	Encoding (hex)
0	MOV R2 ← [R15]	0320F000
1	NOT R11 ← NOT [R2]	07B02000
2	MOV R10 ← [R15]	03A0F000
3	SUB R15 ←[R10] – [R11]	02FAB000
4	EEBB FFFF	Illegal instruction
5	NOP	0000000
6	NEG R11 ← – [R11]	17B00000

4.1 - Test Results

[0.75-mark] Cycle the System Clock through the execution of your Test program and show your logs here.

D Logisim: Log mai	in of Lab-5			- 0	×
le Edit Project Sir	nulate Window Help				
election Table File					
Current State	RAM(1060,270)[5]	RAM(1060,270)[6]	RAM(1060,270)[7]	RAM(1060,27	0)[15]
00	00000000	00000000	00000000	0000000	0
01	00000000	00000000	00000000	0000000	0
02	00000000	00000000	00000000	0000000	0
03	00000000	00000000	00000000	0000000	0
03	00000000	00000000	00000000	0000000	1
05	00000000	00000000	00000000	0000000	1
06	00000000	00000000	00000000	0000000	1
00	00000000	00000000	00000000	0000000	1
01	00000000	00000000	00000000	0000000	1
02	00000000	00000000	00000000	0000000	1
03	00000000	00000000	00000000	0000000	1
03	00000000	00000000	00000000	0000000	2
05	00000000	00000000	00000000	0000000	2
06	00000000	00000000	00000000	0000000	2
00	00000000	00000000	00000000	0000000	2
01	00000000	00000000	00000000	0000000	2
02	00000000	00000000	00000000	0000000	2
03	00000000	00000000	00000000	0000000	2
03	00000000	00000000	00000000	0000000	3
05	00000000	00000000	00000000	0000000	3
06	00000000	00000000	00000000	0000000	3
00	00000000	00000000	00000000	0000000	3
01	00000000	00000000	00000000	0000000	3
02	00000000	00000000	00000000	0000000	3
03	00000000	00000000	00000000	0000000	3
03	00000000	00000000	00000000	0000000	4
04	00000000	00000000	00000000	0000000	4
05	00000000	00000000	00000000	0000000	4
06	00000000	00000000	00000000	0000000	4
06	00000000	00000000	00000000	0000000	5

Submission deadline

Must be submitted on cuLearn, locate (Lab/Assignment 5 submission) and follow instructions. Submission exact deadline (date and time) is displayed clearly within the Lab/Assignment 5 submission on cuLearn.

Note: If you have any question please contact your respective group TA (see TA / group information posted on cuLearn) or use Discord class server.

Good Luck