DPENCLASSROOMS

Projet 09:

Réalisez une application de recommandation de contenu

Mohamed A.

Contexte projet:

My Content est une start-up qui veut encourager la lecture en recommandant des contenus pertinents pour ses utilisateurs.

Vous êtes le CTO et cofondateur de la start-up avec Samia qui est CEO. Vous êtes en pleine construction d'un premier MVP qui prendra la forme d'une application.

Dans un premier temps, votre start-up souhaite tester une solution de recommandation d'articles et de livres à des particuliers.

Un jeu de données est fourni ainsi que deux types d'architectures (type serverless) sont proposées par Julien (développeur web)

En résumé, votre mission est la suivante :

- développer une première version de votre système de recommandation sous forme d'Azure Functions;
- réaliser une application simple de gestion du système de recommandation (interface d'affichage d'une liste d'id utilisateurs, d'appel Azure functions pour l'id choisi, et d'affichage des 5 articles recommandés)
- stocker les scripts développés dans un dossier GitHub;
- synthétiser vos premières réflexions sur :
 - l'architecture technique et la description fonctionnelle de votre application à date, et le système de recommandation,
 - l'architecture cible pour pouvoir prendre en compte l'ajout de nouveaux utilisateurs ou de nouveaux articles, que vous présenterez à Samia.

Plan de travail:

- 1- Description et exploration EDA du jeu de données.
- 2- Systèmes de recommandation
- 3- Deploiement du systeme de recommandation

Conclusion

Le lien proposé nous renvoie vers le site Kaggle

Les fichiers fournis sont représentés ci dessous :

385 fichiers "clicks" au total au niveau du dossier clicks

Name	Date modified	Туре	Size
clicks_hour_000.csv	3/20/2019 2:07 PM	Microsoft Excel Co	132 KB
clicks_hour_001.csv	3/20/2019 2:07 PM	Microsoft Excel Co	100 KB
clicks_hour_002.csv	3/20/2019 2:07 PM	Microsoft Excel Co	65 KB
clicks_hour_003.csv	3/20/2019 2:07 PM	Microsoft Excel Co	45 KB
dicks_hour_004.csv	3/20/2019 2:07 PM	Microsoft Excel Co	42 KB
dicks_hour_005.csv	3/20/2019 2:07 PM	Microsoft Excel Co	57 KB
clicks_hour_006.csv	3/20/2019 2:07 PM	Microsoft Excel Co	139 KB
clicks_hour_007.csv	3/20/2019 2:07 PM	Microsoft Excel Co	241 KB
clicks_hour_008.csv	3/20/2019 2:07 PM	Microsoft Excel Co	342 KB
dicks_hour_009.csv	3/20/2019 2:07 PM	Microsoft Excel Co	391 KB
dicks_hour_010.csv	3/20/2019 2:07 PM	Microsoft Excel Co	373 KB
clicks_hour_011.csv	3/20/2019 2:07 PM	Microsoft Excel Co	341 KB
clicks_hour_012.csv	3/20/2019 2:07 PM	Microsoft Excel Co	400 KB
clicks_hour_013.csv	3/20/2019 2:07 PM	Microsoft Excel Co	366 KB
clicks_hour_014.csv	3/20/2019 2:07 PM	Microsoft Excel Co	400 KB

La description qu'on retrouve sur l'article kaggle est affichée ci dessous :

clicks
articles_embeddings.pickl
articles_metadata.csv
clicks_sample.csv

Content

The dataset contains a sample of user interactions (page views) in G1 news portal from Oct. 1 to 16, 2017, including about 3 million clicks, distributed in more than 1 million sessions from 314,000 users who read more than 46,000 different news articles during that period.

It is composed by three files/folders:

- clicks.zip Folder with CSV files (one per hour), containing user sessions interactions in the news portal.
- articles_metadata.csv CSV file with metadata information about all (364047) published articles
- articles_embeddings.pickle Pickle (Python 3) of a NumPy matrix containing the Article Content Embeddings (250-dimensional vectors), trained upon articles' text and metadata by the CHAMELEON's ACR module (see paper for details) for 364047 published articles.

P.s. The full text of news articles could not be provided due to license restrictions, but those embeddings can be used by Neural Networks to represent their content. See this paper for a t-SNE visualization of these embeddings, colored by category.

Document: articles_metadata.csv


```
check distribution of words count :

(2016-04-15 00:02:50.833333248, 2018-03-13 12:12:30] 243418
(2014-05-18 11:53:11.666666752, 2016-04-15 00:02:50.833333248] 88834
(2012-06-19 23:43:32.500000, 2014-05-18 11:53:11.666666752] 31340
(2010-07-23 11:33:53.333333248, 2012-06-19 23:43:32.500000] 352
(2008-08-24 23:24:14.166666752, 2010-07-23 11:33:53.33333248] 54
(2006-09-23 06:48:07.524999935, 2008-08-24 23:24:14.166666752] 49
```

```
check distribution of publishers : 0 364047
```

```
check distribution of words count :

(-6.6910000000000001, 1672.5] 364022
(1672.5, 3345.0] 22
(3345.0, 5017.5] 2
(5017.5, 6690.0] 1
```

Document : clicks_sample.csv

	user_i	d	session_id	session_start	session_size	click_article_id	click_timestamp	click_environment	click_deviceGroup	click_os	click_country	click_region	click_referrer_type
0		0	1506825423271737	1506825423000	2	157541	1506826828020	4	3	20	1	20	2
1		0	1506825423271737	1506825423000	2	68866	1506826858020	4	3	20	1	20	2
2		1	1506825426267738	1506825426000	2	235840	1506827017951	4	1	17	1	16	2

On procède à la concaténation de l'ensemble des fichiers clicks pour avoir un historique complet

shape of global file : (2988181, 13)

```
Unique device group : [3 1 4 5 2]
count of "DeviceGroup" : 1 1823162
    1047086
     117640
        283
        10
Name: click_deviceGroup, dtype: int64
Unique environment : [4 2 1]
count of "Environment" : 4 2904478
      3960
Name: click_environment, dtype: int64
Unique session-size : [ 2 3 7 6 4 5 16 8 10 9 24 11 13 20 12 14 15
 18 51 26 22 19 27 23 25 21 31 36 37 30 32 17 35 39 29
 28 82 57 41 33 75 53 34 52 38 46 106 74 47 71 58 65 98
 72 59 43 60 40 48 86 62 124 92 68 44 45 67 107 94 79 56]
count of "session_size" : (1.877, 26.4] 2975898
(26.4, 50.8]
(50.8, 75.2]
                 2057
(75.2, 99.6]
(99.6, 124.0]
                 337
Name: session_size, dtype: int64
Unique OS : [20 17 2 12 13 19 5 3]
count of "Os" : 17 1738138
      788699
20
      369586
12
      60096
19
       6384
       1513
         54
Name: click_os, dtype: int64
```

```
Unique region : [20 16 24 21 17 25 12 18 19 6 9 13 8 7 28 5 4 26 15 11 10 27 2 1
14 22 3 23]
15 464236
17 464236
18 137933
18 179319
18 135793
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
19 1208824
10 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
11 1208824
12 13101
13 13997
13 43 13088
```

```
Unique country : [ 1 11 10 8 2 4 7 3 9 5 6]
count of "Countries" : 1 2852406

10 61377
11 29999
18 9556
6 7256
9 6746
2 6101
3 4540
5 3498
4 3389
7 3313
Name: click_country, dtype: int64

Unique referrer type : [2 1 5 7 6 4 3]
count of "Referrer types" : 2 1602601
1 1194321
5 80766
6 9798
6 20455
4 19820
3 420
Name: click_referrer_type, dtype: int64
```

Count of consulted articles: 46033 which represents a ratio of: 12.64 %

Les systèmes de recommandation sont une forme spécifique de filtrage de l'information (SI) visant à présenter les éléments d'information (films, musique, livres, news, images, pages Web, etc) qui sont susceptibles d'intéresser l'utilisateur.

un élément clé de l'utilité de ces systèmes est le fait d'être passé d'une ère de rareté à une ère abondance (disponibilité marchande)

Le coût de plus en plus réduit de la mise en ligne d'informations liées à chaque produit , ce qui donne naissance au phénomène nommé "Long-Tail"

Comment le livre "Into the air" a fait du livre "Touching the void" un bestseller

- Système de popularité :

c'est un système qui se base essentiellement sur le principe de popularité ou tout autre argument qui constitue une tendance.

On s'est basé dans ce projet sur l'estimation de nombre de click par article pour établir un classement de popularité.

```
# Create popularity model
def get_popularity_rec(clicks, n_reco=5):
    # Compute the five most popular articles
    df_popularity = clicks.groupby(by=['click_article_id'])['click_timestamp'].count().sort_values(ascending=False).reset_index()
    df_popularity.rename(columns = {'user_id':'popularity'}, inplace=True)
    return df_popularity.click_article_id.head(n_reco).to_list()
```

Le résultat reste liee a l'activite des users et changera selon leurs utilisation

```
# Call the function to get the most viewed articles according to users activity
# Can be used for new users with no history records on activity
get_popularity_rec(global_df, n_reco=5)
[160974, 272143, 336221, 234698, 123909]
```

- Content based:

Cet algorithme analyse un ensemble de contenu sans prendre en compte les utilisateurs (en tout cas, pas dans un premier temps) et détecte les similarités entre les contenus à des fins de recommandation en inspectant son contenu. Pour le content-based, l'analyse de contenu consiste par exemple à identifier le sujet d'un contenu en répertoriant tous les mots d'un article de presse (excepté les stop words) puis en comparant tous les mots de l'article analysés aux autres articles. Plus un article aura un nombre de mots similaires, plus ces articles seront considérés comme « proches » permettant ainsi de détecter les sujets identiques ou similaires et d'en déduire des recommandations pour le lecteur.

Read by user Similar articles Recommended

CONTENT-BASED FILTERING

Pour le projet :

- -Une matrice embeddings a été fournie et sera utilisée pour le calcul de similarité entre article. (le processus NLP pour la création de cette matrice n'est pas pris en charge dans ce projet vu que le contenu des articles n'est pas disponible, une mise à jour par contre nécessite a coup sur une revisite complète pour la mise à jour de la matrice Embeddings)
- -La fonction cosine_similarity de la librairie sklearn a été utilisée pour le calcul de similarité.
- -le principe du code établi est la création d'une liste des 5 articles similaires a l'article choisi

choosen article : 88						
	article_index	cosine				
79	79	0.862483				
9	9	0.832213				
61	61	0.825840				
76	76	0.817524				
89	90	0.807653				

- Collaborative based:

Le filtrage collaboratif repose sur l'adage : Si deux personnes ont aimé des contenus identiques par le passé, elles ont une probabilité élevée d'aimer les mêmes choses dans le futur. Les recommandations personnalisées issues du filtrage collaboratif peuvent être calculées de diverses manières. Notamment en se basant sur le profil des lecteurs (User-based), en utilisant les profiles de contenus (Item-based) ou encore en faisant de la factorisation de matrice.

pour ce projet nous avons eu recours à la librairie Implicit

1. Préparation des données input et création des ratings :

user_id	session_id	click_article_id	click_timestamp
0	1506825423271737	157541	1506826828020
0	1506825423271737	68866	1506826858020

```
def get_ratings(clicks):
    ### Compute the rating dataframe providing for each interaction a rating based on the number of clicks per article weighted by the total number of clicks per user

# Create a dataframe containing the number of clicks for each user and each article
    count_clicks_by_articles_by_user = clicks.groupby(["user_id", "click_article_id"]).agg(count_clicks_by_articles_by_user=("session_id", "count"))

# Create a dataframe containing the number of clicks for each user
    count_clicks_by_user = clicks.groupby(["user_id"]).agg(count_clicks_by_user=("session_id", "count"))

# Compute the weighted ratio of clicks
    clicks_count = count_clicks_by_articles_by_user.join(count_clicks_by_user, on="user_id")
    clicks_count['rating'] = clicks_count["count_clicks_by_articles_by_user"] / clicks_count["count_clicks_by_user"]

# Just rename columns
    ratings = clicks_count.reset_index().drop(["count_clicks_by_articles_by_user", "count_clicks_by_user"], oxis=1).rename(columns={"click_article_id":"article_id"))
    return ratings
```

matrice de Ratings

	user_id	article_id	rating
0	0	68866	0.125
1	0	87205	0.125
2	0	87224	0.125
3	0	96755	0.125
4	0	157541	0.125
2950705	322894	168401	0.500
2950706	322895	63746	0.500
2950707	322895	289197	0.500
2950708	322896	30760	0.500
2950709	322896	157507	0.500

2. Création de la sparse matrice et évaluation de divers modèles (Implicit) :

```
# Define models models_list = [AlternatingLeastSquares(), BayesianPersonalizedRanking(), LogisticMatrixFactorization()]
```

```
train_csr = csr_matrix((train_df['rating'], (train_df['user_id'], train_df['article_id'])), dim)
test_csr = csr_matrix((test_df['rating'], (test_df['user_id'], test_df['article_id'])), dim)
```

Dataframe complet

General Control of the Control of th	model	Precision@k	MAP@k	nDCG@k	train_time
0	AlternatingLeastSquares	0.10099	0.06523	0.09320	309.36034
1	BayesianPersonalizedRanking	0.12337	0.08388	0.11816	75.19970
2	LogisticMatrixFactorization	0.03130	0.01085	0.01985	52.10852

Dataframe ratio = 5% soit 147536 lignes

	model	Precision@k	MAP@k	nDCG@k	train_time
0	AlternatingLeastSquares	0.01732	0.00594	0.00874	64.59176
1	Bayesian Personalized Ranking	0.00288	0.00125	0.00165	5.96202
2	LogisticMatrixFactorization	0.06721	0.02346	0.03473	12.17533

3. Création de la fonction de prédiction :

Recommandations après input de données :

```
# Call the function, load the model and perform recommandations
userID = 34
get_cf_reco(df, userID, csr_item_user, csr_user_item, model_path="./recommender.model", n_reco=5, train=False)

[INFO] : Completed in 0.35s
(array([354086, 158535, 348111, 30730, 199376]),
```

Le modèle collaboratif a été choisi (vu sa pertinence) pour être déployé sur le cloud en utilisant aussi une Azure fonction.

Azure Functions est un service cloud disponible à la demande qui fournit l'infrastructure et les ressources mises à jour en continu qui sont nécessaires pour exécuter vos applications. Vous vous concentrez sur le code le plus important pour vous, dans le langage le plus productif pour vous, et Functions gère le reste. Functions assure un calcul serverless pour Azure. Vous pouvez utiliser Functions pour créer des API web, répondre à des modifications de base de données, traiter des flux loT, gérer des files d'attente de messages et plus encore

Déclencheur HTTP Azure Functions

Le modèle collaboratif a été choisi (vu sa pertinence) pour être déployé sur le cloud en utilisant aussi une Azure fonction.

https://cher-if-p9-app-p9-dep-ue5ria.streamlit.app/

L'image ci contre montre l'interface utilisateur de notre application déployée sur le cloud

3- Déploiement du système de recommandation : API sur pythonanywhere

3- Déploiement du système de recommandation : Activité GitHub

https://github.com/Cher-iF/P9_app.git

Conclusion:

- 1- Le projet procure une introduction intéressante pour les systèmes de recommandation. Il serait intéressant d'exploiter d'autres dataset ainsi que d'autres libraires dédiées à ce topic.
- 2- L'option azure fonction permet d'utiliser une architecture serverless pour de tels projets, et le déploiement est facile sur Microsoft Azure