# Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, Физико-механический институт

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по лабораторной работе №4 по дисциплине «Интервальный анализ»

Выполнил студент гр. 5030102/80201 Кирпиченко С. Р. Руководитель Баженов А. Н.

## Содержание

|          | Страни                                                                  | ща |
|----------|-------------------------------------------------------------------------|----|
| 1        | Постановка задачи                                                       | 4  |
|          | 1.1 Использование теоремы Зюзина                                        | 4  |
|          | 1.2 Использование субдифференциального метода Ньютона                   | 4  |
| <b>2</b> | Теория                                                                  | 4  |
|          | 2.1 Теорема Зюзина                                                      | 4  |
|          | 2.2 Субдифференциальный метод Ньютона                                   |    |
| 3        | Реализация                                                              | 5  |
| 4        | Результаты                                                              | 5  |
|          | 4.1 Итерационный процесс с разложением матрицы на диагональную и недиа- |    |
|          | гональную части                                                         | 5  |
|          | 4.2 Итерационный процесс по субградиентному методу Ньютона              |    |
| 5        | Обсуждение                                                              | 7  |

# Список иллюстраций

|   | Страни                                                                    | ца |
|---|---------------------------------------------------------------------------|----|
| 1 | Изображение брусов при решении задачи (1)                                 | 5  |
| 2 | Зависимость радиусов брусов от числа итераций при решении задачи (1).     | 5  |
| 3 | Решение задачи (2) субградиентным методом Ньютона, $\tau = 1 \dots \dots$ | 6  |
| 4 | Решение задачи (3) субградиентным методом Ньютона, $\tau = 1 \dots \dots$ | 6  |
| 5 | Решение задачи (3) субградиентным методом Ньютона, $\tau = 0.05$          | 7  |
|   |                                                                           |    |

#### 1 Постановка задачи

#### 1.1 Использование теоремы Зюзина

Дана ИСЛАУ

$$\begin{cases} [1, 4] \cdot x_1 + [0.5, 0.7] \cdot x_2 = [-1, 1] \\ [0.8, 1.2] \cdot x_1 + [3, 5] \cdot x_2 = [-3, 3] \end{cases}$$
 (1)

Для нее необходимо построить итерационную схему с разложением матрицы на диагональную и недиагональную части по теореме Зюзина, а также провести вычисления и привести иллюстрации:

- Брусов итерационного процесса
- Радиусов решения в зависимости от номера итерации

#### 1.2 Использование субдифференциального метода Ньютона

Даны две ИСЛАУ:

$$\begin{cases} [3, 4] \cdot x_1 + [5, 6] \cdot x_2 = [-3, 3] \\ [-1, 1] \cdot x_1 + [-3, 1] \cdot x_2 = [-1, 2] \end{cases}$$
 (2)

$$\begin{cases} [3, 4] \cdot x_1 + [5, 6] \cdot x_2 = [-3, 4] \\ [-1, 1] \cdot x_1 + [-3, 1] \cdot x_2 = [-1, 2] \end{cases}$$
(3)

Необходимо построить итерационную схему субдифференциального метода Ньютона, провести вычисления и привести иллюстрации брусов итерационного процесса, а также сравнить полученные результаты для систем (2) и (3).

#### 2 Теория

#### 2.1 Теорема Зюзина

Пусть в интервальной линейной системе уравнений

$$\mathbf{C}x = \mathbf{d}, \quad \mathbf{C} \in \mathbb{K}\mathbb{R}^{n \times n}, \ \mathbf{d} \in \mathbb{K}\mathbb{R}^n$$

правильная проекция матрицы  ${\bf C}$  имеет диагональное преобладание. Тогда формальное решение системы существует и единственно.

Итерационный процесс строится следующим образом

$$\mathbf{D} = \operatorname{diag} \{ \mathbf{c}_{ii} \}_{i=1}^{n} \quad \mathbf{E} = \mathbf{C} \ominus \mathbf{D}$$
$$\mathbf{C}x = \mathbf{d} \Leftrightarrow \mathbf{D}x = \mathbf{d} \ominus \mathbf{E}x$$
$$\mathbf{x}^{k+1} = \operatorname{inv} \mathbf{D} \cdot (\mathbf{d} \ominus \mathbf{E}\mathbf{x}^{k}), \ k = 0, 1, \dots$$

#### 2.2 Субдифференциальный метод Ньютона

Итерационная процедура субдифференциального метода Ньютона описывается следующей формулой:

$$x^{k} = x^{k-1} - \tau(D^{k-1})^{-1} \mathcal{F}(x^{k-1}),$$

где  $\mathcal{F}(x) = \mathrm{sti} (\mathbf{C} \cdot \mathrm{sti}^{-1}(x)) - x + \mathrm{sti} (\mathbf{d})$  (sti - операция стандартного погружения, отображения из  $\mathbb{K}\mathbb{R}^n$  в  $\mathbb{R}^{2n}$ ),  $D^{k-1}$  - какой-нибудь субградиент отображения  $\mathcal{F}$  в точке  $x^{k-1}$ ,  $\tau$  - константа, в данной работе выбрана единицей.

#### 3 Реализация

Для осуществления вычислений и визуализации результатов использовалась среда Octave с библиотекой полной интервальной арифметики kinterval.

#### 4 Результаты

# 4.1 Итерационный процесс с разложением матрицы на диагональную и недиагональную части

Здесь и далее пунктиром обозначено допусковое множество  $\Xi_{\rm tol}$  рассматриваемой ИСЛАУ. Также здесь и далее начальный брус обозначен синим цветом. Число итераций - 10.



Рис. 1: Изображение брусов при решении задачи (1)



Рис. 2: Зависимость радиусов брусов от числа итераций при решении задачи (1)

#### 4.2 Итерационный процесс по субградиентному методу Ньютона

Здесь и далее брусы, полученные по мере итераций обозначены пунктирными линиями с мелкой штриховкой, последний брус - сплошной линией красного цвета. При решении задачи (2) использовался параметр  $\tau=1$ , финальный брус получен на четвертой итерации метода.



Рис. 3: Решение задачи (2) субградиентным методом Ньютона,  $\tau=1$ 

Решение задачи (3) с параметром  $\tau = 1$ . Число итераций - 300.



Рис. 4: Решение задачи (3) субградиентным методом Ньютона,  $\tau=1$ 



Рис. 5: Решение задачи (3) субградиентным методом Ньютона,  $\tau=0.05$ 

#### 5 Обсуждение

- 1. Сопоставляя графики 1 и 2, обнаруживаем, что на второй итерации метод выдал более адекватную внутреннюю оценку  $\Xi_{\rm tol}$ , чем на последней. Финальный результат выходит за пределы допускового множества. Середина брусов практически не меняется по мере итераций. После пятой итерации наблюдается стагнация в размере брусов.
- 2. При решении задачи 2 получена точная внутренняя оценка  $\Xi_{\rm tol}$ , субградиентный метод Ньютона сошелся очень быстро после четвертой итерации итерационный процесс остановился.
- 3. При решении задачи 3 не была получена внутренняя оценка  $\Xi_{\rm tol}$ . Тем не менее, результат адекватный около 85% площади полученного бруса находится внутри допускового множества. Метод проделал все 300 итераций вплоть до заданных извне ограничений.
- 4. При уменьшении параметра  $\tau$  получен другой брус. Он все еще не является строгой внутренней оценкой  $\Xi_{\rm tol}$ , но эта оценка более удачна, так как полученный брус больше по площади, чем предыдущий, и еще большая его часть лежит внутри допускового множества.
- 5. С меньшим параметром  $\tau$  изменение брусов по мере итераций меньше, эти изменения более плавные. Судя по графику 5, можно предположить, что при устремлении

числа итераций к бесконечности, все же можно получить точную внутреннюю оценку. Такой вывод нельзя сделать, опираясь на график 4.

### Исходный код

C исходным кодом программы и отчета можно ознакомиться в репозитории https://github.com/Stasychbr/IntervalArith.