

SEMICONDUCTOR TECHNICAL DATA

KIC7W32FK

SILICON MONOLITHIC CMOS DIGITAL INTEGRATED CIRCUIT

DUAL 2-INPUT OR GATE

The KIC7W32FK is a high speed C²MOS 2-INPUT OR GATE fabricated with silicon gate C²MOS technology. It achieves the high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power dissipation. The internal circuit is composed of 3 stage including buffer output, which enables high noise immunity and stable output. All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES

- High Speed : t_{pd} =6ns(Typ.) at V_{CC} =5V.
- Low Power Dissipation : $I_{CC}=1\mu A(Max.)$ at $Ta=25^{\circ}C$.
- + High Noise Immunity : V_{NIH} = V_{NIL} =28% $V_{\text{CC}}(\text{Min.})$.
- Output Drive Capability: 10 LSTTL Loads.
- Symmetrical Output Impedance : |I_{OH}|=I_{OL}=4mA(Min.)
- Balanced Propagation Delays : t_{pLH}≒t_{pHL}
- · Wide Operating Voltage Range: V_{CC(opr)}=2~6V.

B C DIM MILLIMETERS A 2.0±0.1 B 3.1±0.1 C 2.3±0.1 D 0.5 E 0.2+0.05/-0.04 F 0.7±0.1 G 0.12±0.04 H 0 ~ 0.1

MAXIMUM RATINGS (Ta=25℃)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	$ m V_{IN}$	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	V _{OUT}	-0.5~V _{CC} +0.5	V
Input Diode Current	\mathbf{I}_{IK}	±20	mA
Output Diode Current	$I_{ m OK}$	±20	mA
DC Output Current	$I_{ m OUT}$	±25	mA
DC V _{CC} /Ground Current	$I_{\rm CC}$	±25	mA
Power Dissipation	P_{D}	200	mW
Storage Temperature	T_{stg}	-65~150	$^{\circ}$
Lead Temperature (10s)	T_{L}	260	${\mathbb C}$

MARKING

PIN CONNECTION(TOP VIEW)

KIC7W32FK

LOGIC DIAGRAM

TRUTH TABLE

A	В	Y
Н	Н	Н
L	Н	Н
Н	L	Н
L	L	L

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V_{CC}	2~6	V
Input Voltage	$ m V_{IN}$	$0 \sim V_{CC}$	V
Output Voltage	V _{OUT}	$0 \sim V_{CC}$	V
Operating Temperature	T_{opr}	T_{opr} $-40 \sim 85$	
Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 \text{ (V}_{\text{CC}} = 2.0\text{V)}$ $0 \sim 500 \text{ (V}_{\text{CC}} = 4.5\text{V)}$ $0 \sim 400 \text{ (V}_{\text{CC}} = 6.0\text{V)}$	ns

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC SY	CYAMBOI	anno a	TEST CONDITION		Ta=25℃			Ta=-40~85℃		
	SYMBOL	TEST			MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level				2.0	1.5	-	-	1.5	-	
Input Voltage	$ m V_{IH}$		_	4.5	3.15	_	_	3.15	_	V
Input Voltage				6.0	4.2	_	_	4.2	_	
Low-Level					_	_	0.5	_	0.5	
Input Voltage	$ m V_{IL}$	-		4.5	_	_	1.35	_	1.35	V
input voitage			T	6.0	-	-	1.8	-	1.8	
		$\begin{array}{c} V_{\text{IN}} = V_{\text{IH}} \\ \text{or} \ \ V_{\text{IL}} \end{array}$	I _{OH} =-20μA	2.0	1.9	2.0	_	1.9	_	V
High-Level Output Voltage	V _{OH}			4.5	4.4	4.5	_	4.4	-	
				6.0	5.9	6.0	_	5.9	_	
			I_{OH} =-4mA	4.5	4.18	4.31	_	4.13	_	
			I_{OH} =-5.2mA	6.0	5.68	5.80	_	5.63	-	
		$ m V_{IN}=V_{IL}$	I _{OL} =20μA	2.0	-	0.0	0.1	-	0.1	
T T1				4.5	-	0.0	0.1	-	0.1	
Low-Level Output Voltage	V_{OL}			6.0	-	0.0	0.1	-	0.1	V
			I _{OL} =4mA	4.5	-	0.17	0.26	-	0.33	
			I _{OL} =5.2mA	6.0	-	0.18	0.26	_	0.33	
Input Leakage Current	I_{IN}	V _{IN} =V _{CC} or GND		6.0	_	-	±0.1	-	±1.0	Δ
Quiescent Supply Current	I_{CC}	V _{IN} =V _{CC} or GND		6.0	_	-	1.0	-	10.0	μA

KIC7W32FK

AC ELECTRICAL CHARACTERISTICS (C_L=15pF, V_{CC}=5V, Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION		UNIT		
		TEST CONDITION	MIN.	TYP.	MAX.	UNII
Output Transition Time	t_{TLH} t_{THL}	_	ı	4	8	ns
Propagation Delay Time	t _{pLH} t _{pHL}	-	-	6	12	ns

AC ELECTRICAL CHARACTERISTICS (C_L =50pF, Input t_r = t_f =6ns)

CHARACTERISTIC	CVADOL	TEST CONDITION		Ta=25℃			Ta=-40	UNIT	
CHARACTERISTIC SYMBO	SYMBOL		V_{CC}	MIN.	TYP.	MAX.	MIN.	MAX.	
Output Transition Time	t _{TLH} t _{THL}	-	2.0 4.5 6.0	- - -	25 7 6	75 15 13	- - -	95 19 16	ns
Propagation Delay Time	t _{pLH} t _{pHL}	-	2.0 4.5 6.0	-	27 8 7	75 15 13	- - -	95 19 16	ns
Input Capacitance	C _{IN}	_		-	5	10	-	10	-
Power Dissipation Capacitance	C_{PD}	(Note 1)		_	21	_	_	_	pF

Note 1: C_{PD} is defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit.) Average operating current can be obtained by the equation hereunder. $I_{CC(opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2 \text{ (per gate)}$