Linguaggi liberi da contesto

sintassi dei linguaggi di programmazione costruzione automatica di parser

ci sono linguaggi non regolari

Il linguaggio dei palindromi $L_{pal} = \{w \mid w = w^R\}$

Per alfabeto $\{0,1\}$ contiene 0110, 11011, ϵ , ma non contiene 011 o 1010

 L_{pal} non è regolare, lo dimostriamo usando il pumping lemma

Pumping Lemma:

per ogni linguaggio regolare L, esiste una costante n (che dipende da L) e tale che per ogni w in L t.c. |w|>=n allora w=xyz t.c.

- (i) y non è ε,
- $(ii) |xy| \le n$
- (iii) per ogni $k \ge 0$, xy^kz è in L

in
$$L_{pal}$$
 c'è w= $0^{n}10^{n}$

w=xyz e dato che |xy|<=n e y non è e ε , y contiene alcuni 0 e quindi xy⁰z = xz non può essere in L_{pal} perché contiene meno 0 a sinistra del solo 1 rispetto agli n che sono a destra

per definire il linguaggio L_{pal} possiamo usare una definizione ricorsiva

Base: ϵ (stringa vuota), 0 e 1 sono in L_{pal} Induzione: se w è in L_{pal} , allora 0w0 e 1w1 sono in L_{pal}

una grammatica libera dal contesto (context-free) è una notazione formale per esprimere tali definizioni ricorsive

consiste di variabili, terminali e produzioni

Per L_{pal} definiamo G_{pal}

- 1. P -> epsilon
- 2. $P \rightarrow 0$
- 3. P -> 1
- 4. P > 0 P 0
- 5. P-> 1 P 1

base della definizione

passo induttivo

usiamo G_{pal} per generare L_{pal}

Definizione di grammatica libera da contesto

- 1. insieme finito T di simboli <u>terminali</u> che formano le stringhe del linguaggio (per $L_{pal} \ 0$ e 1)
- 2. insieme finito V di <u>variabili</u> (anche <u>nonterminali</u>); ogni variabile genera un linguaggio (per L_{pal} c'è solo la variabile P)
- 3. un simbolo iniziale (S) che genera il linguaggio da definire (in L_{pal} sarà P)
- 4. un insieme finito (P o R) di <u>produzioni</u> o regole che hanno forma: parte sinistra->parte destra

dove, la parte sinistra è una variabile e la destra è una stringa in (V U T)*, quindi anche vuota e composta di terminali e/o variabili, la chiameremo forma sentenziale

- 1. $P \rightarrow \varepsilon$
- 2. P > 0
- 3. $P \rightarrow 1$
- 4. P -> 0P0
- 5. P-> 1P1

notazione compatta:

$$P \rightarrow \epsilon | 0 | 1 | 0P0 | 1P1$$

Linguaggio di una grammatica

Una CFG serve per stabilire se determinate stringhe appartengono al linguaggio della grammatica

2 strade:

- --dalla sinistra a destra: derivazione
- --da destra a sinistra : inferenza ricorsiva

<u>derivazione</u>, indicata => è relazione tra forme sentenziali, definita come segue:

sia G=(V,T,R,S) e sia α A β dove α e β sono forme sentenziali ed A è in V, sia A-> γ in R, allora α A β => α γ β

=>* è la chiusura riflessiva e transitiva di =>

significa zero o più passi di =>

definizione di =>*

<u>base</u>: per qualsiasi forma sentenziale α , $\alpha =>* \alpha$ <u>induzione</u>: $\alpha =>* \beta$ e $\beta => \gamma$, allora $\alpha =>* \gamma$ <u>Definizione</u>: linguaggio di una grammatica Dato G=(V,T,R,S), $L(G) = \{ w \text{ in } T^* | S => * w \}$

linguaggio del nonterminale X, $L(X)= \{ w \text{ in } T^* | X => * w \}$ derivazioni di G_{pal}:

 $P \rightarrow \epsilon | 0 | 1 | 0P0 | 1P1$

P=>*0010100

inferenza ricorsiva di 0010100

etichetta	stringa	V	produzione	Str. usate
(i)	0	Р	2	
(ii)	101	P	5	(i)
(iii)	01010	Р	4	(ii)
(iv)	0010100	Р	4	(iii)

L(G) è l'insieme delle stringhe di terminali per cui esiste un'inferenza ricorsiva Teorema. $L(G_{pal})$ è l'insieme delle palindrome su $\{0,1\}$

<u>Dimostrazione</u>: w in $L(G_{pal})$ se e solo se è palindromo.

(se <=) supponiamo che w sia palindroma.

Mostriamo per induzione su |w| che w in $L(G_{pal})$.

Base: |w|=0 o 1. Se $w=\varepsilon$, allora w in $L(G_{pal})$, se w=0/1 lo stesso.

<u>Induzione</u>: supponiamo che |w|=n >=2. Poichè w=w^R, deve iniziare e finire con lo stesso simbolo, quindi w=0w'0 o 1w'1 e w' deve essere palindromo,

ma essendo |w'| < n, per ipotesi induttiva, w' è in $L(G_{pal})$ e quindi, viste le produzioni P->0P0|1P1 di G_{pal} anche w lo è.

(solo se =>) se w in $L(G_{pal})$ allora è palindromo. Induzione sulla lunghezza della derivazione. Base: 1 sola produzione, w= ϵ o 0 o 1, sono palindromi

Induzione: supponiamo che w sia generata in n+1 passi, e che l'enunciato sia vero per tutte le stringhe generate in n passi. Una tale derivazione deve iniziare con $P => 0P0 \mid 1P1$ e poi $0x0 \mid 1x1$

ma allora P=>*x in n passi e quindi per ipotesi induttiva, x è palindroma per cui anche 0x0 e 1x1 lo sono.

altro esempio: vogliamo una grammatica che generi espressioni come a+b*a1*(b1+aa0) le operazioni sono * e + e gli operandi sono identificatori che iniziano per a o b e continuano con {a,b,0,1}* Servono 2 variabili, E che descrive le espressioni e I che descrive gli identificatori. Il linguaggio generato da I è regolare:

$$(a+b)(a+b+0+1)*$$

I->a | b | Ia | Ib | I0 | I1

Le regole per E sono:

$$E -> I \mid E + E \mid E \times E \mid (E)$$

La grammatica è:

$$G=(\{E,I\}, \{a,b,0,1,*,+,(,)\}, R, E)$$

dove R contiene le regole per I e per E

esempio: derivazione di a*(a+b00)

sono possibili scelte diverse per ottenere la stessa stringa <u>leftmost derivation e rightmost derivation</u> si sceglie sempre la variabile più a sinistra/destra della forma sentenziale:

$$=>$$
lm $=>$ rm

Notazione:

- --a, b sono terminali
- --A,B,.. sono variabili
- --w, z,.. sono stringhe di terminali
- --X, Y sono o terminali o variabili
- $--\alpha,\beta,...$ sono forme sentenziali

la derivazione di a*(a+b00) che abbiamo visto è leftmost

osserva che esiste anche una derivazione rm di a*(a+b00)

forme sentenziali: data G=(V,T,P,S)

se $S = >^{rm*} \alpha$ allora α è una forma sentenziale destra

in modo simile se $S => lm* \alpha$ forma α è forma sentenziale sinistra

esistono forme sentenziali che non sono né destra né sinistra

inferenza ricorsiva di a*(a+b00)

1.
$$E -> I$$

4.
$$E \rightarrow (E)$$

5.
$$I -> a$$

6.
$$I -> b$$

9.
$$I -> I0$$

10.
$$I \rightarrow I1$$

etichetta	stringa	V	Prod	stringhe usate
(i)	а	I	5	_
(ii)	b	1	6	_
(iii)	b0	I	9	(ii)
(iv)	b00	1	9	(iii)
(v)	а	E	1	(i)
(vi)	b00	E	1	(iv)
(vii)	a + b00	E	2	(v), (vi)
(viii)	(a +b00)	E	4	(vii)
(ix)	a * (a+b00)	E	3	(v),(viii)

ESERCIZI

1) Which language is generated by the grammar G given by the productions

$$S \rightarrow aSa \mid aBa$$

$$B \rightarrow bB \mid b$$

2) Find a CFG that generates the language:

$$L(G) = \{ a^n b^m c^m d^{2n} \mid n \ge 0, m > 0 \}.$$

3) Find a CFG that generates the language

$$L(G) = \{ a^n b^m \mid 0 \le n \le m \le 2n \}.$$

4) Consider the grammar

$$S \rightarrow abScB \mid \varepsilon$$

$$B \rightarrow bB \mid b$$

What language does it generate?

Esercizi 5.1.1 trovare grammatiche per:

- a) $\{0^n1^n \mid n \ge 1\}$
- b) $\{a^ib^jc^k \mid i = j \text{ o } j = k\}$
- c) ! l'insieme di tutte le stringhe in {a,b}* t.c. non siano ww
- d) !! l'insieme di tutte le stringhe in {a,b}* con un numero doppio di b rispetto agli a

interessanti:

esercizio 5.1.2, 5.1.3 e 5.1.4