Predicting Bankruptcy & Detecting Money Laundering using Machine Learning

PRESENTED BY:

AMAN SINGH

VISHAL SINGH

Paper: Cognitive Modelling of Bankruptcy Risk

- Objective: Predict company bankruptcy using machine learning
- □ Dataset: US Company Bankruptcy Prediction Dataset (20 years of US company data from Kaggle)
- ☐ Size: 78,682 instances, 21 attributes
- □ Target Variable: status_label (alive: 1, failed: 0)
- Models used:
 - Logistic Regression
 - K-Nearest Neighbors
 - Decision Tree
 - Support Vector Machine (Linear & RBF)
 - Neural Network (Model Excluded)
 - Random Forest

Results of the Original Study

Best Performing Models

- •K-Nearest Neighbors (KNN): Highest accuracy and strong balance across all metrics
- •Random Forest: Best ROC-AUC, highly precise and stable

TABLE I. COMPARISON OF SEVEN MACHINE LEARNING ALGORITHMS

Models	Accurac y	Precisio n	Recall	F1 Score	ROC- AUC
Logistic Regressio n	0.936011	0.93664 1	0.99925	0.96693 5	0.66762
KNN	0.944144	0.95069	0.99178 8	0.97080 4	0.80453 7
Decision Tree	0.899028	0.95045 2	0.94122 8	0.94581 8	0.60983 6
SVM (Linear Kernel)	0.936328	0.93632 8	1.0	0.96711 7	0.59186
SVM (RBF Kernel)	0.936583	0.93662 2	0.99993	0.96724 2	0.59916 2
Neural Network	0.936519	0.93778 7	0.99843 9	0.96716 3	0.73367 2
Random Forest	0.941158	0.94121	0.99959 3	0.96952 3	0.85307 6

Results of the Original Study

- •Random Forest: Highest AUC → 0.853
- •KNN: AUC of 0.804
- •Logistic Regression & SVMs: Lower AUCs (~0.59–0.66)

Logistic Regression – Model Evaluation

Model	Linear Regression
Accuracy	0.9335
Precision	0.9343
Recall	0.9992
F1 Score	0.9656
ROC-AUC	0.6578

K-Nearest Neighbors (KNN) – Model Evaluation

Model	KNN
Accuracy	0.9418
Precision	0.9488
Recall	0.9912
F1 Score	0.9695
ROC-AUC	0.7951

Decision Tree - Model Evaluation

Model	Decision Tree
Accuracy	0.8923
Precision	0.9443
Recall	0.9399
F1 Score	0.9421
ROC-AUC	0.5893

SVM (Linear Kernel) – Model Evaluation

Model	SVM(Linear Kernel)
Accuracy	0.9321
Precision	0.9321
Recall	1.0
F1 Score	0.9649
ROC-AUC	0.5748

SVM (RBF Kernel) – Model Evaluation

Model	SVM (RBF Kernel)
Accuracy	0.9325
Precision	0.9324
Recall	1.0
F1 Score	0.9650
ROC-AUC	0.5630

Random Forest – Model Evaluation

Model	Random Forest
Accuracy	0.9364
Precision	0.9364
Recall	0.9996
F1 Score	0.9669
ROC-AUC	0.8541

Comparative Conclusion

Original Research Findings (IEEE 2024)

- ➤ Best Model: K-Nearest Neighbors (KNN)
- ➤ Top Accuracy: 94.41%
- ➤ Random Forest showed strong performance with the highest ROC-AUC (85.31%)
- >SVMs and Logistic Regression had high recall but relatively lower ROC-AUC scores

Our Replication Findings

- ➤ KNN replicated as the most accurate model, matching the research outcome
- ➤ Random Forest consistently delivered the highest ROC-AUC, reinforcing its reliability.
- Logistic Regression and SVMs maintained similar trends: high recall, weaker AUC
- Consistency Across Metrics: Accuracy, recall, and AUC values followed the same patterns

Paper: Machine Learning Model for Detecting Money Laundering in Bitcoin Blockchain Transactions

- Objective: Identify suspicious (money laundering) transactions
- □ Dataset used in Paper: 2,906 instances from Kaggle, 24 attributes each.
- □ Dataset adopted for our study: Elliptic Data Set (203768 instances, 167 attributes each)
- □ Labels in Elliptic dataset: Illicit: 1, licit: 2, unknown: 0
- Models used:
 - K-Nearest Neighbors
 - Random Forest (Implemented an Additional Model)

Results of the Original Study

- •KNN Model demonstrates high precision in flagging money laundering activity.
- Low error rate of only 2%.

Techniques Used:

- •K-Means Clustering → Unsupervised grouping of transactions
- •K-Nearest Neighbors (KNN) → Classification based on clustering results

Model	KNN
Accuracy	0.99
Precision	0.97
Recall	1.0
F-Score	1.0
Error Rate	0.020

KNN Accuracy Evaluation

- ✓ The accuracy steadily increased up to k = 7, where it peaked at 0.9044, indicating the best performance.
- ✓ Beyond k = 7, the accuracy slightly declines, indicating potential oversmoothing.

Best k: 7 with Accuracy: 0.9044

Our Findings - Model Evaluation

Model	KNN	Random Forest
Accuracy	0.9044	0.9509
Precision	0.8202	0.9429
Recall	0.7431	0.8434
F1 Score	0.7764	0.8864
Error Rate	0.0955	0.0490

- Random Forest model outperformed KNN, achieving the highest accuracy at 95.09% and the lowest error rate at 4.90%.
- ➤ KNN also demonstrated strong performance with an accuracy of 90.44%.
- Random Forest is highly effective for high-dimensional classification tasks

Comparative Conclusion

Original Study (JAAI 2024 - Ogunleye et al.):

- ➤ Models Used:
 - Unsupervised: K-Means (to label data)
 - Supervised: K-Nearest Neighbors (KNN) only
- ➤ KNN was reported to be extremely accurate and robust.

Our Replication Findings:

- ➤ Using a much larger dataset, our replication suggests the superior performance of **Random Forest**, with the highest accuracy (0.9509) and lowest error rate (0.0490).
- **KNN** also performed well with 0.9044 accuracy closely aligning with the original study.

References

- 1. Ogunleye, O. S., Oyelade, O. N., & Adebayo, S. O. (2024). *Machine Learning Model for Detecting Money Laundering in Bitcoin Blockchain Transactions*. Journal of Advanced Artificial Intelligence (JAAI), 12(3), 144–159.
- 2. Vandana. (2012). *Machine Learning Techniques for Financial Fraud Detection: A Review*. International Journal of Computer Applications, 45(21), 25–30.
- 3. IEEE (2024). Cognitive Modelling of Bankruptcy Risk Using Machine Learning Algorithms. Proceedings of the IEEE Conference on Cognitive Computing, pp. 101–110.
- Kaggle. (n.d.). US Company Bankruptcy Prediction Dataset. Retrieved from: https://www.kaggle.com/datasets/utkarshx27/american-companies-bankruptcy-prediction-dataset4
- 5. Elliptic. (2020). *Elliptic Dataset for Bitcoin Money Laundering Detection*. Retrieved from: https://www.kaggle.com/code/smlopezza/elliptic-data-set-eda-graphs-random-forest/input?select=elliptic_bitcoin_dataset