Apprentice Lectures

Daniil Rudenko

LATEX by Agustin Esteva

July 19, 2024

Contents

1	Lecture 1- Combinatorics and Isometries	3		
	1.1 Combinatorics	3		
	1.2 Isometries	5		
2	Lecture 2- The Binomial Theorem/Formula and Groups	7		
	2.1 The Binomial Formula	7		
	2.2 Introduction to Groups	9		
3	Lecture 3- Groups and Catalan Numbers	10		
	3.1 Groups	10		
	3.2 Catalan Numbers	13		
4	Lecture 4- Symmetries of Shapes and Modulo Arithmetic	17		
	4.1 Symmetries	17		
	4.2 Modulo Arithmetic	21		
5	Lecture 5- Orientation Preserving Symmetries with $\mathbb{Z}/n\mathbb{Z}$ and Complex			
	Numbers	22		
	5.1 Orientation Preserving Symmetries	22		
	5.2 Complex Numbers	24		
	5.3 A Complex Isometry	26		
6	Lecture 6- Roots of Unity and Classifications of Isometries	27		
	6.1 Roots of Unity	27		
7	Lecture 7- Fundamental Theorem of Arithmetic and Euler's Function for			
	$\mathbb{Z}/n\mathbb{Z}.$	31		
	7.1 Prime Numbers and FTA	31		
	7.2 $\mathbb{Z}/n\mathbb{Z}$ Rings	34		
8	Lecture 8- Fields and Polynomials, Inversions	36		
	8.1 Fields and Polynomials	36		
	8.2 Inversions	39		
9	Lecture 9- Roots of Polynomials, Lagrange Interpolation, and Mobius			
	Groups	41		
	9.1 Roots of Polynomials	41		

CONTENTS 2

	9.2	Lagrange Interpolation	42
	9.3	Mobius Groups and Fractional Linear functions	43
10	Lagi	range's Theorem and The Gauss Theorem for Cyclic Groups	44
	10.1	Lagrange's Theorem	44
	10.2	Cyclic Groups and Gauss' Theorem	45
11	Lect	cure 11- Quadratic Residuals and Projective Geometry	46
	11.1	Quadratic Residuals	46
12	Lect	cure 12	47

Chapter 1

Lecture 1- Combinatorics and Isometries

1.1 Combinatorics

Example.

How many subsets of $A = \{1, 2, \dots, n\}$? 2^n .

Proof. (By Induction)

- 1. If $A=\{1\}$ then there exists \emptyset and $\{1\}$ as subsets of A. Thus there exist $2^1=2$ subsets.
- 2. If $A = \{1, 2, \dots, n-1\}$, then assume that there exist 2^{n-1} subsets of A.
- 3. If n, then let $Y = \{1, 2, ..., n-1\}$ and $X = \{1, 2, ..., n\}$. Evidently, there exists an isomorphism between Y and A, and thus there are 2^{n-1} subsets in Y. Let $f: X \to X \setminus \{n\}$. Now, X is in bijective correspondence with A, and thus there are 2^{n-1} subsets in X. Therefore, there are $2^{n-1} + 2^{n-1} = 2^n$

Proof. (With Linear Algebra)

It will suffice to show that $[2^n]$ (the power set of any set with cardinality n, is isomorphic to \mathbb{F}_2^n .)

First, to show that $[2^n]$ is a valid vector field of \mathbb{F}_2 with multiplication and addition defined as follows: If $X, Y \in [2^n]$, then:

$$X + Y = X\Delta Y = (X \setminus Y) \cup (Y \setminus X)$$
 $1 \cdot X = X$ $0 \cdot X = \emptyset$

1. Commutativity, to prove that X+Y=Y+X, it will suffice to show that the symmetric difference is commutative, which it is.

- 2. Δ is associative.
- 3. There exists a \emptyset in $[2^n]$ such that $X + \emptyset = X\Delta\emptyset = X$.
- 4. The additive inverse is -X = X. To prove this, note that $-X + X = X\Delta X = \emptyset$.
- 5. 1 is multiplicative identity by definition.
- 6. All the rest of the axioms are similarly proved.

Definition 1.1.1: Binomial Coefficients

The number of subsets of size k in the set $\{1, 2, \dots, n\}$, usually denoted by $\binom{n}{k}$

Remark.

From the previous example, it is evident that

$$\sum_{i=1}^{n} \binom{n}{i} = 2^n$$

Theorem 1.1.2: Binomial Coefficient Identity

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof. Let X be a subset of $A = \{1, 2, ..., n\}$ of size k. Let $f: X \to A \setminus X$ be a function and $g: Y \to A \setminus Y$ be a function, where Y is a set in the domain of f. It will suffice to show that $g \circ f$ is a bijection. Let $gf(X_1) = gf(X_2)$. Therefore, because $A \setminus (A \setminus X_1) = X_1$ and $A \setminus (A \setminus X_2) = X_2$, then $X_1 = X_2$, and so $g \circ f$ is injective. Assume that there exists some X such that $X \neq A \setminus (A \setminus X)$. However, this is impossible.

Remark.

This result (and the next) lead to an interesting way to represent binomial coefficients:

Figure 1.1: Pascal's Triangle for Binom. Coefficients

Theorem 1.1.3: Morgan's Identity

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof. Let X be the subsets of size k containing the element n and let Y be the subsets of size k not containing n. Like in Example 1, Y is in bijective correspondence with the subsets of $\{1, 2, \ldots, n-1\}$ of size k. Moreover, X is also in bijective correspondence with subsets of $\{1, 2, \ldots, n-1\}$ of size k-1 (since you must take away an element, the sizes of the subsets decreases).

1.2 Isometries

Definition 1.2.1: Isometry

A map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry if:

- 1. It is bijective.
- 2. Distance is preserved, i.e, for all $x, y \in \mathbb{R}^2$, |xy| = |f(x)f(y)|

Example.

- 1. The identity map is an example of an isometry.
- 2. We call the map $\mathbb{S}_O : \mathbb{R}^2 \to \mathbb{R}^2$ a symmetric difference, as it reflects points across some specified point, O. Thus, $\mathbb{S}_O(X) = Y$, where O is the middle of the segment [XY]. Note that \mathbb{S}_O preserves distances as given any $X_1, X_2 \in \mathbb{R}^2$, the triangles $\triangle X_1 O X_2 \sim Y_1 O Y_2$, and thus $|X_1 X_2| = |Y_1 Y_2|$.

Remark.

$$\mathbb{S}_O \circ \mathbb{S}_O = \mathrm{Id}$$

3. A translation, or a parallel transport, is a function, $T_{\mathbf{v}}: \mathbb{R}^2 \to \mathbb{R}^2$ such that given some vector \mathbf{v} and some $X \in \mathbb{R}^2$, then $T_{\mathbf{v}}(X) = Y$ such that $\overrightarrow{XY} = \mathbf{v}$.

Remark.

A vector, \mathbf{v} , is defined as follows:

(a)

$$\mathbf{v} = (\text{segment} + \text{orientation}) \mod \sim \sim \sim \sim$$

where, given any $ABCD \in \mathbb{R}^2$, \sim is defined by:

- i. |AB||||CD|| (equivalent vectors are parallel).
- ii. |AB| = |CD| (equivalent vectors have the same magnitude).
- iii. B, D are on the same side of AC (equivalent vectors have the same orientation).
- 4. A rotation around some point, $O \in \mathbb{R}^2$, by φ degrees, is a map $R_O^{\varphi}(X) = Y$ such that |OX| = |XY| and there is a counterclockwise rotation from \overline{OX} to \overline{XY} by φ degrees

Fact 1.2.2

If $f, g \in \text{Isom}(\mathbb{R}^2)$, then $f \circ g \in \text{Isom}(\mathbb{R}^2)$.

- **Proof.** 1. The compositions of bijections is a bijection, and thus $f \circ g$ is a bijection.
 - 2. Given any $X_1X_2 \in \mathbb{R}^2$, since g and f preserves distances since it's an isometry, then

$$|(f \circ g)(X_1)(f \circ g)(X_2)| = |fg(X_1)fg(X_2)| = |g(X_1)g(X_2)| = |X_1X_2|.$$

Chapter 2

Lecture 2- The Binomial Theorem/Formula and Groups

2.1 The Binomial Formula

Theorem 2.1.1: The Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Before this proof, it will be useful to understand how this works for $(a+b)^3$. To do this, let's decompose the expression:

$$(a+b)^3 = (a+b) \cdot (a+b) \cdot (a+b)$$

This, of course, yields

$$aaa + aab + aba + baa + abb + bba + bab + bbb$$

and this is equal to

$$a^3 + 3a^2b + 3ab^2 + b^3$$
.

Note that if we count the brackets in the first expression as say, 1, 2, 3, thus we have the set $\{1, 2, 3\}$, where each element encodes a pair of brackets, then for the second expression we could denote this as all the possible subsets of $\{1, 2, 3\}$, where if the element appears, an a is placed, and if not, then a b is placed. Thus, the subset $\{1, 3\}$ corresponds to aba and the emptyset corresponds to bbb. Therefore,

$$a^3 + 3a^2b + 3ab^2 + b^3 = \sum_{X \subseteq \{1,2,3\}} \prod_{1 \le i \le 3} (\text{an } a \text{ if } i \in X \text{ and } b \text{ if } i \notin X.) = \sum_{X \in \{1,2,3\}} a^{|X|} b^{3-|X|}$$

Proof. As the example above hows,

$$(a+b)^n = (a+b) \cdot (a+b) \cdot \cdots (a+b) \{\text{n-times}\} = \sum_{X \subseteq \text{set of } \{1,2,3,\ldots,n\}} a^{|X|} b^{n-|X|} = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Remark.

One could pretty easily do binomial expansion using Pascal's Triangle, the coefficients are just the numbers in the triangle.

Corollary 2.1.2

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Proof.

$$2^{n} = (1+1)^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Theorem 2.1.3: The Binomial Coefficient Formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Before this proof, consider 5 = 5. This is a trivial statement, but it can mean a lot of things. Do 5 crocodiles equal 5 ducks? That's ridiculous! 5 = 5 but not in a unique way. In fact,

permuting a set of n obects = # bijections from $\{1, 2, ..., n\}$ to itself = $n! = \mathbb{S}_n$

Proof. Count the number of permutations in two different ways. The first is by permuting everything using a factorial. The second is to choose k elements out of the n, then seeing how many permutations can occur within those k elements, then seeing how many can occur in the n-k elements. Thus $n! = \binom{n}{k} k! (n-k)!$, and we are done, as rearranging this yields the thesis.

Corollary 2.1.4

A set of size n has 2^{n-1} even subsets

Proof. 1. If n is even, then $(-1+1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 0$, and so by moving all the negative terms to the right,

$$\sum_{k=2i} \binom{n}{k} = \sum_{k=2i+1} \binom{n}{k}$$

and thus because there are the same number of even and odd subsets, we get 2^{n-1} subsets.

2. If n is odd, then let $f: 2^A \to 2^A$ such that if $X \in 2^A$, then $f(X) = A \setminus X$, and thus because this map is bijective, then there are the same number of X as $A \setminus (X)$, and since those have different parity, then there are the same number of even and odd sets.

Remark.

One could also try this using Linear Algebra, as consider the subspace $W \subseteq 2^A = V$ of all the even subsets. Note that because addition was defined on this vector space as Δ , and Δ is mantains parity of evens, then W is a valid subspace. Consider that $|V| = 2^n = 2^{\dim(V)}$. Thus, $|W| = 2^{\dim(W)}$. Consider that $\beta = \{\{1, 2\}, \{2, 3\}, \dots, \{n-1, n\}\}$ is a valid basis of W, and thus we are done.

2.2 Introduction to Groups

Example.

Consider the following two statements:

$$T_{\mathbf{v}} \circ T_{\mathbf{w}} = T_{\mathbf{v}+\mathbf{w}} \qquad S_{O_2} \circ S_{O_2} = T_{2\overrightarrow{O_1O_2}}$$

These proves should be clear geometrically.

Definition 2.2.1: Group

A group, G, is a set with an operation $G \times G \to G$ such that $(g_1, g_2) \to g_1 * g_2$ such that:

- 1. For all $g_1, g_2, g_3 \in G$, $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$.
- 2. There exists a unit, $e \in G$, such at that g * e = e * g = g.
- 3. For all $g \in G$, there exists a g', usually denoted as g^{-1} , or then inverse of g, such that $g * g^{-1} = e$.

	Object	Operation $(*)$
1	${\mathbb Z}$	+
2	$\mathbb R$	+
3	$\mathbb{R}\setminus\{0\}$	×
4	$\mathrm{Isom}(\mathbb{R}^2)$	0
5	\mathbb{S}_n	0
6	$GL_n(F)$, or Invertible matrices of size $n \times n$	×

Table 2.1: Common Groups

Chapter 3

Lecture 3- Groups and Catalan Numbers

3.1 Groups

Definition 3.1.1: Abelian Group

An Abelian Group is a group in which, *, the operation of the group, is commutative.

$\mathbf{E}\mathbf{x}$ ample.

For Isom(\mathbb{R}^2), it is generally not the case that $f \circ g = g \circ f$, as is evidenced by the first example in 2.2

Example.

More examples of groups:

- 1. $G = \{e\}$
- 2. $G=\{e,x\}$ and thus x must be its own inverse. Some examples include $G=\{-1,1\}, \times$ and $G=\{0,1\}\subset \mathbb{F}_2, +$
- 3. $G = \{e, x, y\}$

Table for ex 2:

 $\begin{array}{cccc} * & e & x \\ e & e & x \\ r & r & e \end{array}$

Table for ex 3:

Definition 3.1.2: Isomorphism

Let G_1, G_2 be 2 groups. A map: $\varphi: G_1 \to G_2$ is an isomorphism if:

- 1. φ is a bijection.
- 2. For all $g_1, g_2 \in G_1$, $\varphi(g_1 *_{G_1} g_2) = \varphi(g_1) *_{G_2} \varphi(g_2)$.

For example, example $G = \{e, x\}$ only has one isomorphism, as the multiplication table is unique, but something like |G| = 4, which has 2 multiplication tables, has two isomorphism.

Corollary 3.1.3

The following are properties of any group, G:

- 1. The identity element is unique.
- 2. If g' is an inverse such that g * g' = e, then g' * g = e.
- 3. Inverses are unique.

Proof.:

- 1. Let e, e' be identity elements of a group, then e = e * e' = e.
- 2. Let g' be the inverse of g and g'' the inverse of g'.

$$g * g' = e$$

$$g' * (g * g') = g' * e$$

$$(g' * g) * g' = g'$$

$$(g' * g) * g' * g'' = g' * g''$$

$$(g' * g) * e = e$$

$$g' * g = e$$

3. Let g' and g'' be inverses of g, then:

$$g * g' = g * g''$$

$$g' * (g * g') = g' * (g * g'')$$

$$(g' * g) * g' = (g' * g) * g''$$

$$e * g' = e * g''$$

$$g'g''$$

3.2 Catalan Numbers

How many ways are there to arrange parenthesis on

$$g_1 * g_2 * g_3 * g_4$$
?

- 1. $(((g_1 * g_2) * g_3) * g_4)$
- 2. $((g_1 * (g_2 * g_3)) * g_4)$
- 3. $(g_1 * (g_2 * (g_3 * (g_4))))$
- 4. $(g_1 * ((g_2 * g_3) * g_4))$
- 5. $(g_1 * g_2) * (g_3 * g_4)$

Thus, we can let C_{n-1} be the number of ways to arrange parenthesis on $g_1 * g_2 * \cdots * g_n$ (By the exercise above, $C_3 = 5$.)

Fact 3.2.1

There exists a bijection between the number of ways to put parenthesis in $g_1 * g_2 * \cdots * g_n$ and number of ways to triangulate an n+1 polygon

Remark.

Note that in an n+1-gon, there are n-1 triangles

Example.

For the n=4 case:

Thus, because there are 5 ways to triangulate a polygon, then there are 5 ways to rearrange the parenthesis.

Example.

For the n = 5 case, consider a hexagon:

There are two possible combinations of this triangulation:

6 possible combinations of this triangulation:

and 6 more combinations of this triangulation:

Thus, $C_5 = 14$.

Theorem 3.2.2: Catalan Numbers Formula

$$C_{n-1} = \sum_{i+j=n-1} C_i C_j$$

Proof.

One can create different polygons with each different line, so for example, with the red line, C_5 , then with the orange, and so on and on.

Chapter 4

Lecture 4- Symmetries of Shapes and Modulo Arithmetic

4.1 Symmetries

Definition 4.1.1: A figure

A figure \mathcal{F} is a subset of \mathbb{R}^2 . $\mathcal{F} \subset \mathbb{R}^2$.

Example.

 \triangle

Definition 4.1.2: Symmetry

A symmetry is defined as $\operatorname{Sym}(\mathcal{F}) = \{ f \in \operatorname{Isom}(\mathbb{R}^2) | f(\mathcal{F}) = \mathcal{F} \}$

Definition 4.1.3: Subgroup

We define H to be a group, G, if:

- 1. $e \in H$.
- 2. For all $h_1, h_2 \in H$, $h_1 * h_2 \in H$.
- 3. For all $h \in H$, there exists a $h^{-1} \in H$.

Remark.

Note that symmetries are subgroups of Isom(\mathbb{R}^2).

Example.

Various symmetries:

1. $|\operatorname{Sym}(\triangle)| = 6$. 2. $|\operatorname{Sym}(\square)| = 8$.

3. Sym(rectangle) = 4.

4. Sym(pentagon) = 10.

But how do we prove, say, that $Sym(\triangle) = 6$? Consider the following reference:

The key is that any symmetry, $f(\Delta) = \Delta$, will send vertices to vertices, that is $f(\{A, B, C\}) = \{A, B, C\}$. That is to say, f is a bijection from $\{A, B, C\}$ to itself, and so it permutes $\{A, B, C\}$. Therefore, we can construct a map

$$\varphi: \mathrm{Sym}(\triangle) \to \mathbb{S}_n$$

, where \mathbb{S}_3 is defined as in Theorem 2.1.3.

Proposition 4.1.4

 $\varphi: \mathrm{Sym}(\triangle) \to \mathbb{S}_n$ is an isomorphism

- **Proof.** 1. To first show that φ is a homomorphism, that is, $\varphi(g_1 * g_2) = \varphi(g_1) * \varphi(g_2)$, it is obvious that the composition of symmetries is the same as the symmetry of compositions.
 - 2. To show that φ is surjective, consider first the space of all possible ways to permute \mathbb{S}_3 :

$$\begin{pmatrix} A & B & C \\ A & B & C \\ \varphi(\mathrm{Id}) \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ A & C & B \\ \varphi(\mathbb{S}_{OA}) \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ B & A & C \\ \varphi(\mathbb{S}_{OC}) \end{pmatrix}$$

$$\begin{pmatrix} A & B & C \\ B & C & A \\ \varphi(R_O^{240^\circ}) \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ C & A & B \\ \varphi(R_O^{120^\circ}) \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ C & B & C \\ \varphi(\mathbb{S}_{OC}) \end{pmatrix}$$

And thus, because every permutation has some symmetry relating to it, then φ is surjective.

3. Before proving that φ is injective, it will be helpful to prove a little lemma and a corollarly:

Lemma 4.1.5

If $A, B, C \in \mathbb{R}^2$ are not on the same line and $f \in \text{Isom}(\mathbb{R}^2)$ such that f(A) = A, f(B) = B, and f(C) = C, then f = Id

Proof. Consider two circles of the same size, C_1 and C_2 , who's centers are at A and B, respectively. Consider then a third circle at C, C_3 , that is a bit bigger. Then let $x \in C_1 \cap C_2 \cap C_3$, and because $f \in \text{Isom}(\mathbb{R}^3,)$, then it preserves distances, and so $f(x) \in C - 1 \cap C_2 \cap C_3$. Consider just C_1 and C_2 , if they touch at just one point, then it is impossible for f(x) to be such point, since C_C doesn't intersect the circle as both points. If they touch at all points, then $C_1 = C_2$ and so $A = C_3$. Therefore, they must touch at two points and f(x) = x with a geometric argument.

Corollary 4.1.6

If $A, B, C \in \mathbb{R}^2$ are not on the same line and $f, g \in \text{Isom}(\mathbb{R}^2)$ such that f(A) = g(A), f(B) = g(B), and f(C) = g(C), then f = g

Proof. Consider that f(A) = g(A), and so $fg^{-1}(A) = A$, and the same for the rest, and so by the lemma, $fg^{-1} = Id$, and thus f = g.

Thus, back to the proof: Suppose $\varphi(g_1) = \varphi(g_2)$, then by the corollary above, $g_1 = g_2$, and so φ is injective.

However, this bijection does not hold for something like a square! Specifically, the surjectiveness breaks down, since, for example, there exists the permutation of vertices $\{A, B, C, D\}$ into vertices $\{A, B, D, C\}$, but that is impossible as a symmetry, as is clear by just trying to think of a symmetry which only change two vertices but not the other.

Fact 4.1.7

A symmetry keeps vertices together

Theorem 4.1.8: $Sym(P_n) = 2n$

A regular polygon has 2n symmetries, were n is the number of vertices of a polygon.

Proof. Consider that a symmetry, f, must send $f(A_i) = \{A_1, A_2, \dots, A_n\}$. Therefore, if $A_1 = A_k$, then, by the fact above, either:

- 1. $f(A_2) = A_{k-1}$ and $f(A_n) = A_{k+1}$
- 2. $f(A_2) = A_{k+1}$ and $f(A_n) = A_{k-1}$

(Note that by the corollary above, this is enough to construct the symmetry)

1. In the second case, we are dealing with a rotation by $\frac{2\pi}{n}(k-1)$, or $R_O^{\frac{2\pi}{n}(k-1)}$.

2. In the second case, we can think of it as the same rotation as the first case, and then a symmetry across the A_k line:

Thus, because we can do these two symmetries for any $i \in [n]$, then we get 2n symmetries.

Now, think of a cube, which has 48 symmetries, however, only 24 of which are *orientation* preserving (symmetries not due to reflections). This is 4!, which makes sense, since we are reflecting across the inner diagonals.

4.2 Modulo Arithmetic

Theorem 4.2.1: Division with Remainder Theorem

Let $a, b \in \mathbb{Z}$, then there exists unique $q, r \in \mathbb{Z}$ such that:

$$a = qb + r$$
 $0 \le r \le |b|$

Proof. :

1. Existence: Let $A = \{a - qb \in \mathbb{Z} | a - qb \ge 0\} \ne \emptyset$. By the Minimal Element Principle, since every subset of the integers contains its infemum, then let $r = \inf(A) \in A$. Thus:

$$r = a - qb \implies a = qb + r$$

Assume that $r \geq |b|$:

- (a) If b > 0, then $r b \in A$
- (b) If b < 0, then $r + b \in A$

which is a contradiction because both those terms are less than r, the minimum term of A.

2. Uniqueness: Let $a=q_1b+r_1$ and $a=q_2b+r_2$, (where $0 \le r_1, r_2 \le |b|$). Then $q_1b+r_1=q_2b+r_2$, and thus $|q_1-q_2|b=|r_2-r_1|$. Note that this is possible if an only if $|q_1-q_2|=0$, which implies that $q_1=q_2$ and $r_1=r_2$.)

Definition 4.2.2: Congruency Classes

If $a, b \in \mathbb{Z}$, then we say that $a \equiv b$ if n|a-b if and only if there exists a $q \in \mathbb{Z}$ such that a-b=qn.

Remark.

We denote the class containing a by [a]

Example.

In $\mathbb{Z}/5n\mathbb{Z} = [[0], [1], [2], [3], [4]].$

Chapter 5

Lecture 5- Orientation Preserving Symmetries with $\mathbb{Z}/n\mathbb{Z}$ and Complex Numbers

5.1 Orientation Preserving Symmetries

Definition 5.1.1: A cyclic group of order n

$$\operatorname{Sym}^{+}(\mathbb{P}_{n}) = \{ R_{O}^{\frac{2\pi}{n}k} | 0 < k < n-1 \}$$

Lemma 5.1.2

If $a \equiv b$ and $c \equiv d$, then:

1.
$$a+b \equiv c+d$$
.

$$2. \ a-c \equiv b-d.$$

3.
$$ac \equiv bd$$
.

4.
$$ka \equiv kb$$
.

5.
$$a^k \equiv b^k$$

Proof.

2)
$$(a-b) = q_1 n$$
 $(b-d) = q_2 n$, and thus $(a-b) - (c-d) = (q_1 - q_2) n$, and thus $(a-b) \equiv (c-d)$.

3)
$$ac \cdot bd = (q_1n + b)(q_2n + d) - bd = n[q_1q_2n + bq_2 + dq_1].$$

Example.

What are the last digits of:

- 1. 9^{100} . Notice that $9 \equiv -1$, and thus by the lemma, $9^{100} \equiv -1^{100} = 1$.
- $2. 2^{300}$. Notice that

$$2^0 \quad 2^1 \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^7 \quad 2^8$$

and thus consider that 300 $\mod 4 = 0,$ and thus it is the first one in the sequence, which is 6.

Definition 5.1.3

If $[a], [b] \in \mathbb{Z}/n\mathbb{Z}$, then:

- 1. [a] + b = [a + b].
- 2. [a] [b] = [a b].
- 3. $[a] \cdot [b] = [ab]$.

Definition 5.1.4: Ring

A ring is has the same axioms as a field, except without there is no inverse required axiom.

Example.

- $1. \mathbb{Z}.$
- 2. $\mathbb{Z}/n\mathbb{Z}$ is a ring without inverses for non-prime n.

Define $\varphi: \mathbb{Z}/n\mathbb{Z} \to \operatorname{Sym}^+(P_n)$ such that if $[k] \in \mathbb{Z}/n\mathbb{Z}$, then $\varphi([k]) \to R_O^{\frac{2\pi k}{n}}$

Proposition 5.1.5

 φ is an isomorphism

Proof.:

- 1. φ is obviously surjective.
- 2. φ is injective because $|\mathbb{Z}/n\mathbb{Z}| = |\operatorname{Sym}(P_n)|$.
- 3. φ is a homomorphism because:

$$\varphi([k_1] + [k_2]) = \varphi([k_1 + k_2]) = R_O 6\left[\frac{2\pi}{n}(k_1 + k_2)\right] = R_O^{\frac{2\pi k_1}{n}} \circ R_O^{\frac{2\pi k_2}{n}}$$

5.2 Complex Numbers

Definition 5.2.1: Complex Numbers

The *complex numbers* are defined as $\mathbb{C} = \mathbb{R}^2\{(a,b) \in \mathbb{R}^2\}$. Multiplication and addition is defined as follows:

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b)(c,d) = (ac - bd, ad - bc)$$

Figure 5.1: Complex Plane

Remark.

A complex number, (a, b), is usually denoted by z = (a, b) = a + bi.

Remark.

One can check to verify that \mathbb{C} is indeed a field.

Theorem 5.2.2: $i^2 = 1$

We denote i = (0, 1). Thus, by definition:

$$i^2 = (0,1)(0,1) = (-1,0) = -1$$

Remark.

Note that the only tricky axiom to check in the above remark is the inverse one, as division is tricky with complex numbers. However, as long as $a^2 + b^2 \neq 0$, then we can write $(a+bi)(\frac{a-bi}{a^2+b^2}) = 1$

Definition 5.2.3: —**z**— and arg(z)

$$r = |z| = \sqrt{a^2 + b^2}$$

$$\phi = \angle = \arg(z)$$

Proposition 5.2.4

 $a = |z|\cos(\varphi), b = |z|\sin(\varphi), \text{ and thus } z = a + bi = |z|(\cos(var\phi) + i\sin(\varphi)).$

Fact 5.2.5

- 1. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- 2. $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$.

Multiplying complex numbers scales them by multiplying their magnitudes and adds the angles.

Definition 5.2.6: Conjugate Complex Number

Given $z = a + bi \in \mathbb{C}$, we define its *conjugate*, \overline{z} , to be $\overline{z} = a - bi$.

Corollary 5.2.7

$$\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$$

$$\overline{z_1} \cdot \overline{z_2} = \overline{z_1 z_2}$$

Lemma 5.2.8: Powers

$$(\cos(\varphi) + i\sin(\varphi))^n = \cos(n\phi) + i\sin(n\phi)$$

Proof. Apply the above remark n times

Definition 5.2.9: Exponents

We define $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$

Remark.

From this, we get the identity that:

$$cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 $cos(x) = \frac{e^{ix} - e^{-ix}}{2i}$

Lemma 5.2.10: Euler's Identity

$$e^{i\pi} = -1$$

5.3 A Complex Isometry

Theorem 5.3.1: All complex isometries

Let $f: \mathbb{C} \to \mathbb{C}$ be a function. f(z) = mz + b is an isometry if an only if |m = 1|.

Proof. Let f(z) = w. This is only possible if and only if $z = \frac{w-b}{m}$. Note that because an explicit inverse formula was given, then f is a bijection. Moreover,

$$|f(z_1) - f(z_2)| = |mz_1 + b - mz_2 - b| = |m(z_1 - z_2)| = |z_1 - z_2|.$$

Theorem 5.3.2: All \mathbb{R}^2 isometries

Any isometry $f: \mathbb{R}^2 \to \mathbb{R}^2$ is either z = mz + b or $z = m\overline{z} + b$ for |m| = 1.

Example.

1.
$$z \to z + b$$
 (T_b).

$$2. z \rightarrow -z$$
 $(S_O).$

3.
$$z \to mz$$
 (R_O^{ϕ}) .

4.
$$z \to \overline{z}$$
 (S_R).

Chapter 6

Lecture 6- Roots of Unity and Classifications of Isometries

6.1 Roots of Unity

Theorem 6.1.1: Fundamental Theorem of Algebra

If P(x) is a polynomial $(P(x) \in \mathbb{P}[x])$, then it has a complex root

Example.

Consider $x^n - a = 0$. Let

$$a = r(\cos(\varphi) + i\sin(\varphi))$$
 $x = R((\cos(\Theta) + i\sin(\Theta))$

It is evident that $R = \sqrt{n}$ and $\Theta = \frac{\varphi}{n} + 2\pi \frac{k}{n}$, for $0 \le k \le n - 1$.

Example.

With the same example as above, consider a=1. Then if $\varepsilon_k=\cos(\frac{2\pi k}{n})+i\sin(\frac{2\pi k}{n})=e^{\frac{2\pi ik}{n}}$, then $\mu_0=\{\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{n-1}\}$ are the verticities of n-regular polygons

Figure 6.1: Roots of Unity

Example.

If n=3, then $x^3-1=0$, and so $(x-1)(x^2+x+1)=0$, and thus $x=\{1,\frac{-1\pm\sqrt{3}}{2}\}$

Theorem 6.1.2

 $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to μ_n .

Proof. Let $\varphi:[k] \to \varepsilon_k$.

1.

$$\varepsilon_k \varepsilon_\ell = (\cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n}))(\cos(\frac{2\pi \ell}{n}) + i\sin(\frac{2\pi \ell}{n})) = \cos(\frac{2\pi (k+\ell)}{n}) + i\sin(\frac{2\pi (k+\ell)}{n}) = \varepsilon_{k+\ell}$$

2. This is obviously bijective since $|\mu_0| = |\mathbb{Z}/n\mathbb{Z}|$.

Theorem 6.1.3: Classifications of Isometries

Every isometry $f: \mathbb{C} \to \mathbb{C}$ is one of the following:

- 1. $z \to mz + b$ (orientation-preserving).
- 2. $z \to m\overline{z} + b$ (orientation-reversing).

Proof. Let f be an isometry and consider f(0), f(1), and f(i). Define $f_1(z) = f(z) - f(0)$, and notice that

$$f_1(0) = 0$$

 $f_1(1) = 1 \implies |1 - 0| = |f_1(1) - f_1(0)| = |f_1(1)| = 1$

Define:

$$f_2(z) = \frac{f(z) - f(0)}{f(1) - f(0)} \implies f(0) = 0, \quad f(1) = 1$$

Thus, there are two cases:

- 1. If $z = \frac{f(z) f(0)}{f(1) f(0)}$, then f(z) = (f(1) f(0))z + f(0).
- 2. If $\overline{z} = \frac{f(z) f(0)}{f(1) f(0)}$, then $f(z) = (f(1) f(0))\overline{z} + f(0)$.

Theorem 6.1.4: Classification of Orientation Preserving Isometries

 $\operatorname{Isom}(\mathbb{R}^2)$ is a subgroup, and every element in Isom^+ is either:

- 1. An identity.
- 2. A translation.
- 3. A rotation.

Proof. 1. Consider that if $f_1, f_2 \in \text{Isom}^+(\mathbb{R}^2)$, then $f_1 \circ f_2 = m((m)z + b') + b' = mm'z + (m'b + b')$, $f_I = f(z) = mz$, m = 1.

- 2. f(z) = z + b is a translation.
- 3. f(z) = mz + b is a rotation, with a fixed point at $z_0 = \frac{b}{1-m}$

Theorem 6.1.5: Chasle's Theorem

Every isometry $f: \mathbb{R}^2 \to \mathbb{R}^2$ is one of the following:

- 1. Identity
- 2. Rotation
- 3. $T_{\mathbf{v}}$
- $4. \, \mathbb{S}_{\ell}$
- 5. $\mathbb{S}_{\ell}T_{\mathbf{v}}$

Corollary 6.1.6

$$R_{O_1}^{\varphi_1} \circ R_{O_2}^{\varphi_2} = \begin{cases} R_{O_3}^{\varphi_1 + \varphi_3} & \varphi_1 + \varphi_2 \neq 2\pi k \\ T_{\mathbf{v}} & \varphi_1 + \varphi_2 = 2\pi k \end{cases}$$

Proof. Consider the following functions:

$$z \to e^{i\varphi_1}z + b_1$$
 $z \to e^{i\varphi_2}z + b_2$

and thus by multiplying, $e^{i(\varphi_1+\varphi_2)z+(b_1e^{i\varphi_2}+b_2)}$.

Theorem 6.1.7: Napoleon's Theorem

Given a $\triangle ABC$ and creating equilateral triangles on each edge and having the center points be O_A, O_B, O_C , then $\triangle O_A O_B O_C$ is a regular triangle.

Figure 6.2: Napoleon's Theorem

 \mathbf{S}

Definition 6.1.8: Similarities

A function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a similarity if there exists a $k \in \mathbb{R}$ such that for all $A, B \in \mathbb{R}^2$,

$$|f(A)f(B)| = k|AB|$$

Example.

Given $H_O^{\lambda}: \mathbb{R}^2 \to \mathbb{R}^2$, with $\lambda \neq 0$ such that $H_O^{\lambda}(X) = Y$ with $\lambda \overrightarrow{OX} = \overrightarrow{OY}$

Chapter 7

Lecture 7- Fundamental Theorem of Arithmetic and Euler's Function for $\mathbb{Z}/n\mathbb{Z}$.

7.1 Prime Numbers and FTA.

Recall the integer remained theorem:

Fact 7.1.1

For all $a, b \in \mathbb{Z}$, with $b \neq 0$, there exists unique $q, r \in \mathbb{Z}$ such that a = qb + r and $0 \leq r \leq |b|$.

Remark.

We say that b|a if and only if there exists a $q \in \mathbb{Z}$ such that a = bq. Moreover, we say that $a_1 \equiv a_2$ if and only if $n|(a_1 - a_2)$

Definition 7.1.2: Greatest Common Divisor

The greatest common divisor, or gcd, between $a,b\in\mathbb{Z}$, is $\gcd(a,b)=(a,b)=\max\{d\in\mathbb{N}|d|a,d|b\}$

Proposition 7.1.3

- 1. (a,b) = (a-b,b).
- 2. (a,b) = (b,a).
- 3. (3,0) = 3.

Theorem 7.1.4: Euclid's Algorithm

- 1. If b = 0, then (a, b) = a.
- 2. Use fact 7.1.1 to write $(a, b) = (q_1b + r_1, b) = (r_1, b) = (b, r_1)$. If $r_1 = 0$, then (a, b) = b.
- 3. Use fact 7.1.1 to write $(b, r_1) = (q_2r_1 + r_2, r_1)$, and keep going until $r_n = 0$, and thus $(a, b) = r_{n-1}$. Note that this process terminates eventually because integers eventually decrease down to 0.

Corollary 7.1.5

Suppose $a, b \in \mathbb{Z}$ with (a, b) = d, then there exists $u, v \in \mathbb{Z}$ such that d = ua + vb.

Proof. This comes from the fact that in Euclid's Algorithm, $d = \langle r_{n-1}, r_n \rangle$, and so on and on.

Example.

(31,22)

$$(31, 22) = (9, 22)$$

= $(9, 4)$
= $(1, 4)$

And thus (31, 22) = 1. Moreover, we can write 1 as

$$1 = 9 - (2 \cdot 4) = (9 - 2 \cdot (22 - 9 \cdot 2)) = 5 \cdot 9 - 2 \cdot 22 = 5(31 - 22) - 2(22) = 5(31) - 7(22)$$

Definition 7.1.6: Coprime

We say that $a, b \in \mathbb{Z}$ are coprime if (a, b) = 1.

Remark.

By the above corollary, $a, b \in \mathbb{Z}$ are coprime if and only if there exist $u, v \in \mathbb{Z}$ such that 1 = ua + vb.

Definition 7.1.7: Prime

We say that $p \in \mathbb{N}$ is prime if an only if p has exactly two divisors, namely, 1 and p.

Theorem 7.1.8

Every $n \in \mathbb{Z}$ is a product of primes

Proof. induct

Proposition 7.1.9

There exists an infinite amount of prime numbers

Proof. Assume there exists N primes. Therefore, consider $a = p_1 p_2 \cdots p_N + 1$. By the above theorem, there exists some p_i prime such that $p_i|a$. However, this is a contradiction, as any prime dividing a would result with remainder 1.

Theorem 7.1.10

For any $a \in \mathbb{Z}$, either p|a or (p, a) = 1.

Theorem 7.1.11

The following statements hold:

- 1. If $ma \equiv mb$ and (m, n) = 1, then $a \equiv b$.
- 2. If n|(ma) and (m, n) = 1, then n|a.
- 3. If p|(ab), then p|a or p|b.

Proof. 1. Because $ma \equiv mb$ implies that n|(a-b)m, then by (2), we have that n|(a-b), and thus $a \equiv b$

2. Because (m, n) = 1, then

$$1 = um + vn \implies a = uma + vna$$

Because the RHS is divisible by n (n|(ma)), then n|a.

3. If p|a, we are done. If not, assume $p \not|b$, then we have, by Theorem 7.1.10, that p|a, which is a contradiction.

Theorem 7.1.12: Fundamental Theorem of Arithmetic

If $a \in \mathbb{Z}$ and $a \neq 0$, then we can write $a = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$ in 1 distinct way (up to the ordering of the factors)

Proof. 1. Already proven in Theorem 7.1.8.

2. Assume

$$a = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k} = s_1^{n_1} \cdot s_2^{n_2} \cdots s_k^{n_k}.$$

If $q_s \notin \{p_1, \ldots, p_k\}$, then q_s is coprime with all p. Because $q_s | p_1 \cdots p_k$, then by Theorem 7.1.11.3, we are done.

7.2 $\mathbb{Z}/n\mathbb{Z}$ Rings

Recall that $\mathbb{Z}/n\mathbb{Z}$ is a ring.

Define $R^* = \{x \in R | \exists y \in R; xy = 1\}$. Note that R^* is therefore an Abelian Group.

Remark.

Note that R is a field if and only if for all $x \in R$ such that $x \neq 0$, we have that $x \in R^*$.

Theorem 7.2.1: When is [a] Invertible?

 $[a] \in (\mathbb{Z}/n\mathbb{Z})^*$ if and only if (an) = 1, that is, a, n coprime.

Proof. Consider that [a] is invertible if and only if there exists a $[b] \in \mathbb{Z}/n\mathbb{Z}$ such that [a][b] = 1, which exists if and only if there exists a b such that n|((a-b)-1), which exists if an only if there exists $b, q \in \mathbb{Z}$ such that (a-b)-1=qn, and thus 1=ab-qn.

Example.

What is $[22]^{-1}$ in $\mathbb{Z}/31\mathbb{Z}$? Consider that 1 = 5(31) - 7(22), and thus [1] = [5][31] - [7][22] = [-7][22], and so $[22]^{-1} = [-7] = [24]$.

Corollary 7.2.2

- 1. $|\mathbb{Z}/n\mathbb{Z}| = \varpi(n)$ (Euler's function). Note that $|\mathbb{Z}/p\mathbb{Z}| = p-1$ where p is prime.
- 2. $\mathbb{Z}/p\mathbb{Z}$ is a field.

Theorem 7.2.3: Euler's Theorem

Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that (a, n) = 1, then $a^{\varphi(n)} \equiv 1$.

Proof. Suppose $(\mathbb{Z}/n\mathbb{Z}) = \{[a_1], [a_2], \dots, [a_{\varphi(n)}]\}.$

Let $A = \{[a][a_1], [a][a_2], \ldots, [a][a_{\varphi(n)}]\}$. I claim that these are the same set, up to the order of the elements. This holds because (1) the first question on PSET 3 and (2) because for any $i \neq j \in [\varphi(n)]$, we have that $[a][a_i] = [a][a_j]$, then $[a_i] = [a_j]$. Therefore:

$$[a_1], [a_2], \dots, [a_{\varphi(n)}] = [a][a_1], [a][a_2], \dots, [a][a_{\varphi(n)}]$$

, and thus

$$[1] = [a]^{\varphi(n)}$$

Theorem 7.2.4: Fermat's Last Theorem

If p is a prime and (a, p) = 1, then $a^{p-1} n1$

Corollary 7.2.5

(Wilson's Theorem) Let p be a prime and $p\geq 3,$ then $(p-1)! \begin{subarray}{c} -1 \\ n \end{subarray}$

Proof. Consider that

$$[(p-1)!] = [p-1][p-2] \cdots [2][1] = [1][p-1] \prod_{1 < x < p-1} [x][x]^{-1} = -1 \cdot 1$$

Consider that $[x] = [x]^{-1}$ when $[x^2] = 1$ when $p|x^2 - 1$, and thus p|x - 1 or p|x + 1, and thus either [x] = [1] or [x] = -1. Therefore, the last equality holds.

Lecture 8- Fields and Polynomials, Inversions

8.1 Fields and Polynomials

Example.

Examples of Fields:

- 1. $\mathbb{C}, \mathbb{R}, \mathbb{Q}$;
- 2. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$, where inverses are defined by multiplying by conjugates: $\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2}$.
- 3. \mathbb{F}_2 .

Definition 8.1.1: Characteristics of Fields

1. We say a field, F, has characteristic zero if

$$\underbrace{1+1+\cdots+1}_{n \text{ times}} \neq 0, \qquad \forall n \in \mathbb{N}$$

Remark.

With such a field we can build an injective map $\mathbb{Q} \to F$ by sending

$$\frac{n}{m} \to \underbrace{(1+1+\dots+1)^{-1}}_{m \text{ times}} \underbrace{(1+1+\dots+1)}_{n \text{ times}}$$

Therefore, we get a notion of Inclusion of Fields, which implies that a 'copy' of \mathbb{Q} is found in every field of characteristic zero.

2. We say a field, F, has characteristic p, if there exists some $N \in \mathbb{N}$ such that

$$\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0.$$

Remark.

We know the smallest such n must be prime, as otherwise, either factor of n would be the one contributing the zero, which is a contradiction, since if its a factor, then its smaller than n. Thus, we can build an injective map $\mathbb{Z}/p\mathbb{Z} \to F$ by sending

$$[k] \to \underbrace{1 + 1 + \dots + 1}_{k \text{ times}},$$

and thus we get the notion that $\mathbb{F}_p \subset F$.

Theorem 8.1.2

Suppose F is a finite field, then $|F|^p = p^n$ for some $n \in \mathbb{N}$.

Proof. F cannot have characteristic 0, as it is finite, and thus $\operatorname{char}(F) = p$ for some p prime. Notice then that F is a vector space of \mathbb{F}_p , and we know also that because $\dim(F) < \infty$, then $\dim(F) = n$ for some $n \in \mathbb{N}$. Therefore, we know that $F \cong F_p^n$, and thus $|F| = |F_p^n| = p^n$. \square

Definition 8.1.3: Polynomial

A polynomial with coefficients in F is a sequence $(a_0, a_1, ...)$ with each $a_i \in F$ such that there exists some $N \in \mathbb{N}$ with all $n \geq N$ yielding $a_n = 0$. Addition and multiplication are defined as follows:

$$+:((a_0,a_1,\ldots)+(b_0,b_1,\ldots)=(a_0+b_0,a_1+b_1,\ldots)$$

$$\times : (a_0, a_1, \dots) \times (b_0, b_1, \dots) = (a_0b_0, a_0b_1 + a_1b_0, \dots)$$

Fact 8.1.4

A polynomial is a ring

Proof. While tedious, it is useful to note that the identity element is

$$1 = (1, 0, 0, \dots),$$

and to arrive at a usual notion of a polynomial, simply use the fact that:

$$x = (0, 1, 0 \dots)$$

and thus

$$x^n = (\underbrace{0, 0, \dots, 1}_{n+1 \text{ times}}, 0, \dots)$$

8.2 Inversions

Definition 8.2.1: Inversion

Let S be a circle of radius R and with a center at O. Then we define as inversion to be the map $I_S: \mathbb{R}^2 \setminus \{O\} \to \mathbb{R}^2 \setminus \{O\}$ such that $I_S(X) = Y$ if:

- 1. $Y \in \text{line connecting } O, X$.
- 2. $|OX||OY| = R^2$.

Figure 8.1: Inversion

Proposition 8.2.2

- 1. Points on S are fixed;
- 2. Points inside of S are mapped outside, and vice-versa;
- 3. $I_S^2 = \text{Id};$
- 4. If $A, B \in \mathbb{R}^2$, then

$$\frac{|OA|}{OI(B)} = \frac{|OB|}{|OI(A)|}$$

i.e, Figure 8.2 below;

- 5. Lines containing O are unchanged under inversions;
- 6. Lines not containing O are sent to circles with A, B, O on the circle;
- 7. Circles not containing O are sent to circles containing O.

Figure 8.2: Triangle Inversion

Definition 8.2.3: Riemann Sphere

A Riemann sphere, or a projective line over \mathbb{C} , is $\mathbb{C} \cup \{\infty\} = \tilde{\mathbb{C}} = \mathbb{P}'_{\mathbb{C}}$.

Remark.

A line in \mathbb{R}^2 is mapped to a line $\cup \{\infty\}$, and

$$I_S(\infty) = 0, \qquad I_S(0) = \infty.$$

Lecture 9- Roots of Polynomials, Lagrange Interpolation, and Mobius Groups

9.1 Roots of Polynomials

Theorem 9.1.1: Polynomial Division with Remainder Theorem

If $A(x), B(x) \in F[x]$, and $Q(x) \neq 0$, then there exists unique polynomials R(x), Q(x) such that A(x) = Q(x)B(x) + R(x) and $0 < \deg(R(x)) < \deg(B(x))$.

Proof. The proof follows exactly the same as Theorem 4.2.1, but just with polynomials and degrees. \Box

Definition 9.1.2: Roots

Given that $P(x) \in F[x]$ and $x_0 \in F$, we say that x_0 is a root of P(x) if $P(x_0) = 0$.

Definition 9.1.3: Polynomial Divisions

Suppose $A(x), B(x) \in P(x)$, then we say that A(x)|B(x) if and only if there exists a $Q(x) \in F[x]$ such that B(x) = A(x)B(x).

Lemma 9.1.4

Suppose that $P(x) \in F[x]$, then $x_0 \in F$ is a root of P(x) if and only if $(x - x_0)|P(x)$.

Proof. • (\Longrightarrow :) Divide P(x) by $(x-x_0)$ with remainder. Then $P(x)=Q(x)(x-x_0)$

 $(x_0) + R(x)$, and thus $P(x_0) = 0 = Q(x_0)(x_0 - x_0) + R(x)$, and thus R(x) = 0, meaning that there is no remainder, and thus $(x - x_0)|P(x)$.

• (\iff :) If $(x-x_0)|P(x)$, then $P(x)=(x-x_0)Q(x)$, and thus, $P(x_0)=0$.

Corollary 9.1.5

:

- 1. Suppose $P(x) \in F[x]$ and $\deg(P(x)) = n$, then P(x) has at most n roots.
- 2. If $P(x) \in F[x]$ has roots x_1, \ldots, x_n and is of degree n, then we can write:

$$P(x) = (x - x_1)P_1(x) = (x - x_0)(x - x_2)P_2(x) = \dots = a_n(x - x_1)\dots(x - x_n)$$

3. If $P(x) = a_n(x - x_1) \cdots (x - x_n)$, then

$$\frac{-a_{n-1}}{a_n} = x_1 + \dots + x_n, \frac{\pm a_{n-k}}{a_n} = \sum_{1 < < k} x_1 \cdots x_k, \qquad (-1)^n \frac{a_1}{a_n} = x_1 \cdots x_n$$

4. Let $P(x), Q(x) \in F[x]$ and $\deg(P, Q) \leq n$ and let there exist (n+1) distinct $x_1, \ldots, x_{n+1} \in F$ such that $P(x_i) = Q(x_j)$, then P = Q.

Proof. Proofs mostly use previous lemma.

Theorem 9.1.6

Let F be an infinite field. If for all $a \in F$, P(a) = Q(a), then P = Q.

Proof. Let P, Q, have degree n, then because there exists more than n + 1 such $a \in F$ (since it is infinite), by the last part of the corollary, we are done.

9.2 Lagrange Interpolation

Theorem 9.2.1: Lagrange Interpolation Theorem

Let x_0, x_1, \ldots, x_n and y_0, y_1, \ldots, y_n be elements of F. Then There exists a unique $P(x) \le F[x]$ such that $P(x_1) = y_1, \ldots, P(x_n) = y_n$ of $\deg(P) < n-1$

Remark.

Intuitively, this says that if we have n points, say 3, we can create a unique polynomial of degree n-1, say a quadratic, that passes through all those points

Proof. Uniqueness by Corollary. Consider

$$P(x) = y_1 \frac{(x - x_2)(x - x_3) \cdots (x - x_n)}{(x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)} + y_2 \frac{(x - x_1)(x - x_3) \cdots (x - x_n)}{(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)} + \dots + y_n \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_n - x_1)(x_n - x_2) \cdots (x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)(x_n - x_n)}{(x_n - x_n)(x_n - x_n)} + \dots + y_n \frac{(x - x_n)$$

Example.

Fermat's Little Theorem:

1.

$$\mathbb{F}_3: \qquad x^2 - [1] = (x - [1])(x - [2])$$

2.

$$\mathbb{F}_5: \qquad x^4 - [1] = (x - [1])(x - [2])(x - [3])(x - [4])$$

3.

$$\mathbb{F}_p$$
: $x^{p-1} - [1] = (x - [1])(x - [2]) \cdots (x - [p-1])$

9.3 Mobius Groups and Fractional Linear functions

Definition 9.3.1: Mobius Group

Consider the group of bijections $\mathbb{P}'_{\mathbb{C}} \to \mathbb{P}'_{\mathbb{C}}$, then we define a *Mobius Group* to be the subgroup generated by $\operatorname{Sym}(\mathbb{R}^2)$ and inversions.

Definition 9.3.2: Fractional Linear Functions

A fractional linear function is a map $f: \mathbb{P}'_{\mathbb{C}} \to \mathbb{P}'_{\mathbb{C}}$ such that $f(z) = \frac{az+b}{cz+d}$ given that $ad-bc \neq 0$ and

- 1. If c = 0, then we have that $z \to \frac{az}{d} + \frac{b}{d}$ and $\infty \to \infty$.
- 2. If $c \neq 0$, then we have that $f(\frac{-d}{c}) = \infty$ and $f(\infty) = \frac{a}{c}$.

Theorem 9.3.3

Fractional linear functions form a group (denoted by $PGL_Q(\mathbb{C})$.)

Lagrange's Theorem and The Gauss Theorem for Cyclic Groups

10.1 Lagrange's Theorem

Theorem 10.1.1: Lagrange's Theorem

Let G be a finite group and let $a \in G$, then $a^{|G|} = e$.

Corollary 10.1.2

Fermat's Little Theorem: Consider any $a \in (\mathbb{Z}/p\mathbb{Z})^*$, then $[a]^{p-1} = [1]$ if and only if $p|a^{p-1}$

Proof. Let $a \in G$, and let $G = \{g_1, g_2, \dots, g_n\}$. Consider a graph where $g_i \to g_j$ if there is an edge whenever $g_i = ag_j$. Note that for every vertex, there exists a unique outgoing and incoming edge. Therefore, the group creates various loops. For example, $g_1, ag_1, a^2g_1, \dots, a^{k-1}g_1$ is a loop where each element is distinct and $a^kg_1 = g_1$. Define

$$k := \{ S_{\geq 1} : a^S = e \} =: \operatorname{ord}(a)$$

, then |G|=k(# cycles), and thus $a^k=a^{|G|}=e$ for any $a\in G.$

Corollary 10.1.3

Let $a \in G$ and G be finite, then $\operatorname{ord}(a)||G|$.

Corollary 10.1.4

If |G| = p, then $G \cong (\mathbb{Z}/p\mathbb{Z}, +)$

Proof. The map sends $[k] \to a^k$.

10.2 Cyclic Groups and Gauss' Theorem

Definition 10.2.1: Cyclic Groups

A group G is cyclic if it is generated by 1 element, i.e, there exists an $a \in G$ such that for all $g \in G$, g is a power of a.

Proposition 10.2.2

If G is cyclic, then either $G \cong (\mathbb{Z}, +)$ or $G \cong (\mathbb{Z}/n\mathbb{Z}, +)$

Theorem 10.2.3: Gauss' Theorem

If $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, then it is isomorphic to $(\mathbb{Z}/(p-1)\mathbb{Z},+)$.

Lemma 10.2.4

Consider the cyclic group of order n, $\mathbb{Z}/n\mathbb{Z}$. Then there exists $\varphi(d)$ number of elements with order d.

Proof. This proof is mostly done by exploring examples, but an important corollary is

$$n = \sum_{d|n} \varphi(d)$$

Proof. Proof for Gauss consists of showing that $\Psi(p-1) \neq 0$, where Ψ is the number of elements of order d in \mathbb{F}_p^* .

Definition 10.2.5: Action

An action of a group G on a set X is a map

$$G \times X \to X$$

such that $(g,x) \to gx$ that satisfies $g_1(g_2x) = (g_1g_2)x$ and (e,x) = x.

Remark.

Every element in G defines a bijection $X \to X$ by $x \to gx$.

Lecture 11- Quadratic Residuals and Projective Geometry

11.1 Quadratic Residuals

Definition 11.1.1: Quadratic Residue

We say that $[a] \in \mathbb{F}_p$ is quadratic residue if there exists an x such that apx^2 .

Example.

- 1. If p = 5, then QR: $[1]\underline{5}[1]$, $[4]\underline{5}[2]$.
- 2. If p = 7, then QR: $[1]_{\underline{7}}[1]$, $[2]_{\underline{7}}[4]$, $[4]_{\underline{7}}[2]$.

Definition 11.1.2: Legendre Symbol

Lecture 12

Definition 12.0.1: Determinants

The determinant of a matrix, det(A), where $A \in M_{n \times n}$ is defined as follows,

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)}, \dots, a_{n,\sigma(n)}$$

Example.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $\det(A) = ad - bc$

Example.

Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, then $\det(A) = aei + bfg - ceg + cdh - bdi - afh$

Proposition 12.0.2

Let $A, B \in M_{n \times n}$, then $\det(AB) = \det(A \det(B))$.

Definition 12.0.3: Alternating Polynomials

We say that a polynomial in n-variables, $P(x_1, ..., x_n)$ is alternating if for any permutation, $\sigma \in \mathbb{S}_n$,

$$P(x_1,\ldots,x_n) = \operatorname{sgn}(\sigma)P(x_{\sigma(1)},\ldots,x_{\sigma})$$

Example.

For n = 2, consider $P(x_1, x_2) = x_1 - x_2$.

Definition 12.0.4: Alternation of a Polynomial

Let $P(x_1, \ldots, x_n)$ be a polynomial, then we define

$$Alt(P) = \sum_{\sigma \in \mathbb{S}_n} sgn(\sigma) P(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

Example.

Consider $P(x_1, x_2, x_3) = x_1$, then

$$Alt(x_1) = x_1 - x_2 - x_3 - x_1 + x_2 + x_3 = 0$$

Example.

Consider $P(x_1, x_2) = x_1 x_2$, then

Alt =
$$x_1x_2 - x_1x_2 - x_3x_2 - x_1x_3 + x_2x_3 + x_1x_3 = 0$$

Example.

Consider $P(x_1, x_2) = x_1 - x_2$, then

Fact 12.0.5

 $Alt(P(x_1,...,x_n))$ is always an alternating polynomial

Remark.

Suppose $\alpha_1 > \alpha_2 \cdots > \alpha_n$ is a decreasing sequence of natural numbers, then consider

$$x_1^{\alpha_1}, \dots, x_2^{\alpha_n},$$

then define

$$A_{\alpha} := \operatorname{Alt}(x_1^{\alpha_1}, \dots, x_2^{\alpha_n}) = \det \begin{pmatrix} \begin{bmatrix} x_1^{\alpha_1} & x_2^{\alpha_1} & \dots & x_n^{\alpha_1} \\ x_1^{\alpha_2} & x_2^{\alpha_2} & \dots & x_n^{\alpha_2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{\alpha_n} & x_2^{\alpha_n} & \dots & x_n^{\alpha_n} \end{bmatrix} \end{pmatrix}.$$

Let

 $\delta := (n-1, n-2, \dots, 1, 0)$

 $A_{\delta} = \det \begin{pmatrix} \begin{bmatrix} x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \dots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ 1 & 1 & 1 & 1 \end{bmatrix} = \prod_{i < j} (x_i - x_j)$

This is famously known as the Vandermonde determinant.

Definition 12.0.6: Schur Polynomial

Let $\lambda = {\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n-1} \ge \lambda_n}$, where $\lambda_i = \alpha_i - (n-i)$, and α is defined as above be a partition of some natural number. Then we define the *Schur polynomial* to be

 $S_{\lambda} = \frac{A_{\lambda + \delta}}{A_{\delta}}$

Theorem 12.0.7

Schur polynomials are symmetric