01/30/09

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

THE MATTER OF:

LYOUSSI et al

SERIAL NO:

10/594,834

FILED:

JAN 2 9 2009

September 28, 2006

TITLE:

Method and System for Determining the Density and

Dimensional Characteristics of An Object and ...

GROUP:

2884

CONF. NO: 3718

m 2884

EXAMINER:

Mark R. Gaworecki

SUBMISSION OF PRIORITY DOCUMENT

Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450

SIR:

In accordance with the request of the Examiner in the Office Communication mailed October 14, 2008 and supplemental to the Amendment filed on January 15, 2009. Applicant hereby submits a certified copy of foreign application #0450686 as required by 35 USC 119(b).

The Commissioner is authorized to charge any fees required in the prosecution of this application to Deposit Account No. 504581.

Respectfully submitted,

Eugene Lieberstein

Registration No. 24,645

Customer # 79681 BAKER & HOSTETLER LLP 45 Rockefeller Plaza New York, NY 10111

Tel: 212-589-4634 /Fax: 212-589-4201

CERTIFICATE OF EXPRESS MAIL

I hereby certify that this correspondence w/enclosure is being deposited with the U.S. Postal Service "Express Mail Post Office to Addressee" under 37 CFR 1.10 addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria VA 22313-1450, on January 29, 2009.

Addréy de Souza

É PUBLIQUE FRANÇAISE

376Wei d¹invention

Certificat d'utilité

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 2 3 JAN. 2009

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08 Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54 Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: N° D'ENREGISTREMENT NATIONAL: DÉPARTEMENT DE DÉPÔT

DATE DE DÉPÔT:

Jean LEHU BREVATOME

3, rue du Docteur Lancereaux

75008 PARIS

France

os références pour ce dossier: B14068 VD	
NATURE DE LA DEMANDE	
NATURE DE LA DEMANDE	
emande de brevet	DE DETERMINATION DE LA MASSE VOLUMIQUE
TITRE DE L'INVENTION	PROCEDE ET SYSTEME DE DETERMINATION DE LA MASSE VOLUMIQUE ET DES CARACTERISTIQUES DIMENSIONNELLES D'UN OBJET, ET APPLICATION AU CONTROLE DES PASTILLES DE COMBUSTIBLE NUCLEAIRE EN COURS DE FABRICATION.
	N°
DE PRIORITE OU	Pays ou organisation Date
B DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE D	DE
REQUETE DU BENEFICE DE LA STERIEURE	
DEPOT D'UNE DEMANDE ANTERIEURE	
FRANCAISE	A TOMOUS
4-1 DEMANDEUR	COMMISSARIAT A L'ENERGIE ATOMIQUE
Nom	31-33, rue de la Fédération
Rue	75752 PARIS 15ème
Code postal et ville	France
Pays	France tochnique et Ind
Nationalité	France Etablissement Public de Caractère Scientifique, technique et Ind
Forme juridique	TO ANICI CAIDES
4-2 DEMANDEUR	COMPAGNIE GENERALE DES MATIERES NUCLEAIRES
Nom	2 nie Paul Dautier
Rue	78140 VELIZY VILLACOUBLAY
Code postal et ville	France
Pays	France
Nationalité	Société anonyme

SA MANDATAIRE				
A MANDATAINE Prénom Qualité Cabinet ou Société Rue Code postal et ville N° de téléphone N° de télécopie Courrier électronique	LEHU Jean Liste spéciale: 422- BREVATOME 3, rue du Docteur L 75008 PARIS 01 53 83 94 00 01 45 63 83 33 brevets.patents@b	ancereaux	général: 7068	
6 DOCUMENTS ET FICHIERS JOINTS Texte du brevet Dessins	Fichier électroniqu textebrevet.pdf dessins.pdf	63 12		Détails D 46, R 16, AB 1 page 12, figures 16, Abrégé: page 2, Fig.2
Pouvoir général 7 MODE DE PAIEMENT Mode de paiement Numéro du compte client 8 RAPPORT DE RECHERCHE	Prélèvement du co	ompte courant		
Etablissement immédiat 9 REDEVANCES JOINTES 062 Dépôt 063 Rapport de recherche (R.R.) 068 Revendication à partir de la 11ème Total à acquitter	Devise EURO EURO EURO EURO	Taux 0.00 320.00 15.00	Quantité 1.00 1.00 21.00	Montant à payer 0.00 320.00 315.00 635.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par Signataire: FR, Brevatome, J.Lehu Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0 Fonction

Mandataire agréé (Mandataire 1)

BREVET D'INVENTION **CERTIFICAT D'UTILITE**

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet : X Demande de CU:

DATE DE RECEPTION	6 avril 2004	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X Dépôt sur support CD:
N° D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0450686	
Vos références pour ce dossier	B14068 VD - HD767-CO	
DEMANDEUR		
Nom ou dénomination sociale	COMMISSARIAT A L'ENERGIE ATOMIQUE	
Nombre de demandeur(s)	2	
Pays	FR	

TITRE DE L'INVENTION

PROCEDE ET SYSTEME DE DETERMINATION DE LA MASSE VOLUMIQUE ET DES CARACTERISTIQUES DIMENSIONNELLES D'UN OBJET, ET APPLICATION AU CONTROLE DES PASTILLES DE COMBUSTIBLE NUCLEAIRE EN COURS DE FABRICATION.

DOCUMENTS ENVOYES

package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	

EFFECTUE PAR	
Effectué par:	J.Lehu
Date et heure de réception électronique:	6 avril 2004 14:51:55
Empreinte officielle du dépôt	32:7D:02:1A:D2:49:35:37:1B:46:0E:EA:B4:37:A8:F5:82:41:E8:6E
	(MID) DADIO 0 - 41 D4-24 /

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL

INSTITUT 26 bis, rue de Saint Petersbourg NATIONAL DE 75800 PARIS cedex 08 LA PROPRIETE Téléphone : 01 53 04 53 04 INDUSTRIELLE Télécopie: 01 42 93 59 30

PROCEDE ET SYSTEME DE DETERMINATION DE LA MASSE

VOLUMIQUE ET DES CARACTERISTIQUES DIMENSIONNELLES D'UN

OBJET, ET APPLICATION AU CONTROLE DES PASTILLES DE

COMBUSTIBLE NUCLEAIRE EN COURS DE FABRICATION

5

25

DESCRIPTION

DOMAINE TECHNIQUE

La présente invention se rapporte au domaine des techniques d'analyse non destructives.

L'invention se rapporte plus précisément à un procédé et un système de détermination automatique de la masse volumique d'objets par atténuation photonique en ligne droite et de leurs caractéristiques dimensionnelles.

contrôle et le suivi du bon fonctionnement d'unités de fabrication et d'usinage d'objets, comme par exemple des pastilles de combustible nucléaire, tel que UOX et/ou MOX, et permet en particulier de suivre la reproductibilité de fabrication desdits objets, en ce qui concerne leur masse volumique.

Elle peut aussi être utilisée pour déterminer des gradients axiaux et radiaux de masse volumique faisant ainsi office de tomodensitomètre très précis.

ETAT DE LA TECHNIQUE ANTERIEURE

Des méthodes nucléaires non destructives actives de détermination de la masse volumique ont déjà été élaborées, notamment pour déterminer la masse

volumique d'échantillons géologiques. Dans le document « Nondestructive Soil K., Been, référencé : Attenuation », X-ray by Measurement Density Geotechnical Testing Journal, GTJODJ, Vol. 4, No. Dec. 1981, pp 169-176, l'auteur propose une mesure de 5 densité d'échantillons par atténuation photonique en ligne droite au moyen de tubes de rayons X, sans chercher à déterminer de façon précise la dimension des documents les question. Dans en échantillons T.-F.Fwa, and S.-A. Tan, référencés : 10 « Nondestroutive Density Measurements of Cylindrical Journal of by Gamma-Ray Attenuation », Specimens Testing Evaluation, JTEVA, Vol. 19, No. 2, March 1991, pp. 155-160, et : Tan, S.-A. and Fwa, T.-F., « Density Measurements of Cylindrical Specimens within a Mold by 15 Gamma-Rays », Journal of Testing Evaluation, Vol. 21, No. 4, July 1993, pp. 296-301, les auteurs densité d'échantillons de mesure une proposent géologiques par atténuation photonique en ligne droite, au moyen de rayonnement gamma. Ils ont identifié et 20 géométriques paramètres 1'impact des échantillons sur la précision de la mesure de densité, sans pour autant proposer de solution pour déterminer avec précision lesdits paramètres géométriques.

On indique que, bien que les documents cités ci-dessus s'intéressent à la densité des échantillons, il s'agit en fait de la détermination de la masse volumique desdits objets, le terme « densité » étant utilisé à la place de « masse volumique » par facilité de langage.

EXPOSÉ DE L'INVENTION

5

10

15

20

25

but la invention pour a présente La volumique d'objets masse la de détermination appartenant à un lot donné d'objets, par détermination de la variation de la masse volumique de chacun desdits objets par rapport à la masse volumique, connue, de l'un au moins desdits objets pris comme référence ou étalon.

Cette détermination de la masse volumique desdits objets est effectuée au moyen d'une technique mettant en destructive, non nucléaire et d'une de unité gamma, photons rayonnement de détermination par spectrométrie gamma, de l'intensité du faisceau de photons gamma.

La détermination de la masse volumique desdits objets passe par la détermination préalable d'au moins une dimension significative de ceux-ci.

Contrairement aux méthodes développées dans l'invention tient cité ci-dessus, antérieur compte de l'influence des paramètres géométriques, en mesurant de façon très précise au moins une dimension significative des objets dont on cherche à évaluer la utilisant cette dimension en masse volumique, et significative mesurée pour la détermination de la masse Ladite dimension contrôlés. objets volumique des significative peut être une largeur ou un diamètre, et correspond à la dimension effective traversée par le faisceau de photons gamma.

Le procédé de détermination de la dimension 30 significative de l'objet fait partie du procédé de détermination de la masse volumique dudit objet. Il met en œuvre une unité de mesure de dimension par rayonnement infrarouge.

On rappelle brièvement que le principe physique de la détermination de la masse volumique d'un objet par atténuation photonique consiste à irradier l'objet par un faisceau interrogateur de photons monochromatiques d'énergie E. L'intensité du faisceau photonique est plus ou moins atténuée en fonction de la masse volumique de l'objet traversé, de l'épaisseur de matière traversée, et de la composition chimique élémentaire de l'objet traversé. Cette intensité est fournie par l'équation :

$$I = I_o \exp(-\mu_m \rho x)$$

où:

5

10

- 15 I est l'intensité atténuée du faisceau photonique, en photons⁻¹,
 - I_o est l'intensité non atténuée du faisceau photonique à l'énergie E, en photons $^{-1}$,
- $-\mu_m \quad \text{est} \quad \text{le coefficient massique}$ 20 d'atténuation du photon d'énergie E dans l'objet, en $\text{cm}^2.\,\text{g}^{-1},$
 - $-\;\rho$ est la masse volumique de l'objet à contrôler, en g.cm $^{-3},$
- x est l'épaisseur de matière traversée par
 25 le faisceau photonique, ou dimension significative de l'objet, en cm.

L'expression de la masse volumique de l'objet s'en déduit directement par :

$$\rho = \frac{Ln \left[\frac{I_o}{I} \right]}{\mu_m x}$$

10

15

25

Ainsi la connaissance des intensités transmises avec et sans interposition de l'objet à contrôler, I et Io respectivement, du coefficient massique d'atténuation μ_m et de la dimension significative x de l'objet effectivement traversée permet de remonter à la masse volumique ρ dudit objet.

présente invention se propose La l'épaisseur de matière x de déterminer traversée par le faisceau photonique et l'intensité transmise I du faisceau photonique au niveau d'énergie E, pour calculer ensuite la variation relative de la masse volumique ρ de cet objet par rapport à la masse volumique d'au moins un objet étalon pris comme référence. Une caractéristique de l'invention réside dans le fait que ces déterminations d'épaisseur de (dimension significative de l'objet) matière d'intensité du faisceau photonique sont faites avec une précision micrométrique.

La variation relative de la masse volumique $20 \quad \rho \text{ de l'objet à contrôler est obtenue selon l'expression }$ suivante :

$$\frac{\Delta \rho}{\rho} = \frac{\rho - \rho_e}{\rho} = \frac{x_e}{x} \left[1 - \frac{L_n \frac{I}{I_e}}{\mu_m \rho_e x_e} \right],$$

où ρ_e est la masse volumique connue de l'objet pris comme étalon en masse volumique, et où x_e est la dimension significative traversée de l'objet étalon en masse volumique.

 $\mbox{Le coefficient massique d'atténuation μ_m,} \\ \mbox{qui dépend de la composition chimique de l'objet, est} \\$

déterminé à partir d'un ou plusieurs objets étalons certifiés et parfaitement connus, et ayant la même composition chimique que celle de l'objet à contrôler. Il est déterminé lors d'une étape, qui sera décrite par la suite, d'étalonnage de l'unité de détermination de l'intensité du faisceau photonique, atténuée par la traversée de l'objet étalon.

5

10

20

Lorsque l'objet à contrôler est de section circulaire, la dimension significative traversée correspond à son diamètre. Lorsque l'objet à contrôler est de forme parallélépipédique, la dimension significative traversée correspond à une largeur de l'objet.

Par la suite on convient d'utiliser les notations suivantes lorsqu'il est nécessaire de distinguer un objet i du lot d'objets 100 et/ou un objet étalon e du lot d'objets 100 :

- l'indice emas est représentatif des grandeurs relatives à un objet étalon en masse volumique, comme par exemple sa dimension significative x_{emas} ,
 - l'indice edim est représentatif des grandeurs relatives à un objet étalon en dimension , comme par exemple sa dimension significative \mathbf{x}_{edim} .
- Selon un premier aspect de l'invention, le système pour la détermination automatique de la masse volumique d'un objet appartenant à un lot d'objets comprend :
- une unité de détermination d'une 30 dimension significative dudit objet,

- une unité de détermination de l'intensité d'un faisceau photonique, atténuée par la traversée dudit objet,
- une unité d'acquisition, de traitement
 5 et d'analyse,
 - des moyens de transport de l'objet vers l'unité de détermination de sa dimension significative et vers l'unité de détermination de l'intensité du faisceau photonique atténuée,
- des premiers moyens d'ajustement de la position de l'objet relativement à l'unité de détermination de la dimension significative,
- des deuxièmes moyens d'ajustement de la position de l'objet relativement à l'unité de 15 détermination de l'intensité photonique atténuée,

lesdits premiers et deuxièmes moyens d'ajustement étant capables de déplacer l'objet avec une précision de l'ordre du micron par rapport à une plaque de support sur laquelle sont installés les éléments constitutifs du système,

20

30

et la position de l'objet relativement à l'unité de détermination de l'intensité atténuée étant ajustée en fonction de la dimension significative dudit objet.

De préférence, l'unité de détermination d'une dimension significative de l'objet est une unité de mesure par rayonnement infrarouge.

De préférence, l'unité de détermination de l'intensité d'un faisceau photonique atténuée par la traversée de l'objet est une unité de détermination par spectrométrie gamma, qui comprend :

- un ensemble formé d'une source et d'un collimateur,
- un ensemble formé d'un détecteur et d'un collimateur,
- une chaîne d'acquisition et de comptage des photons gamma.

L'invention met en œuvre des moyens de d'ajustement de ainsi des moyens que transport, position de chaque objet contrôlé par rapport à l'unité de détermination la dimension significative de l'objet et/ou par rapport à l'unité de détermination de l'intensité atténuée, lesdits moyens d'ajustement de position étant capables de fournir une précision de l'ordre du micron.

10

25

30

- Selon un deuxième aspect, l'invention concerne un procédé de mise en œuvre du système pour la détermination automatique de la masse volumique d'un objet (100) appartenant à un lot d'objets, comprend les étapes d'étalonnage suivantes :
- une étape 1 d'étalonnage de position de deux ensembles infrarouges de l'unité de détermination de la dimension significative des objets,
 - une étape 2 d'étalonnage de position d'un support d'irradiation de l'unité de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets,
 - une étape 3 d'étalonnage de mesure d'un ensemble source-détecteur de l'unité de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets,

et il comprend des étapes de détermination proprement dite de la dimension significative des objets, qui sont effectuées sur chaque objet dudit lot d'objets.

- Selon l'invention, les étapes de détermination proprement dite comprennent :
 - une étape 4 de détermination de la dimension significative de l'objet à contrôler,
- une étape 5 de transport de l'objet vers 10 un support d'irradiation,
 - une étape 6 d'ajustement de la position de l'objet par ajustement de la position du support d'irradiation par rapport à une source et un détecteur associé,
- une étape 7 de détermination de l'intensité atténuée du faisceau photonique transmis à travers l'objet,
 - une étape 8 d'acquisition, traitement et analyse du spectre obtenu,
- une 'etape 9 de d'etermination de la $variation \text{ relative } \frac{\Delta \rho}{\rho} \text{ de masse volumique de l'objet}$ $par \text{ rapport \`a celle d'un ou plusieurs objet(s)}$ 'etalon(s) en masse volumique,
- une étape 10 de transport retour de 25 l'objet jusqu'à son emplacement sur le plateau tournant.

30

Les procédés et dispositifs selon l'invention présentent l'intérêt commun d'être rapides, précis, automatiques ou automatisables, et d'une utilisation aisée.

Un avantage de l'invention réside dans le fait qu'elle associe l'atténuation photonique en ligne droite avec une métrologie micrométrique afin de pallier les incertitudes liées à la méconnaissance des épaisseurs des objets traversés, et qui affectent directement la précision de la détermination de la masse volumique.

En particulier, le positionnement de chaque objet par rapport à l'unité de détermination de l'intensité photonique atténuée par la traversée dudit objet est ajusté en fonction d'une dimension significative dudit objet, qui a été préalablement déterminée par l'unité de détermination de dimension significative.

15 BRÈVE DESCRIPTION DES DESSINS

5

10

20

L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre d'un mode de réalisation préféré, donné à titre d'exemple non limitatif, qui est illustré par les dessins annexés dans lesquels :

- la figure 1 est une vue schématique de dessus du système général de détermination de la dimension significative et de la détermination de la masse volumique des objets,
- la figure 2 est une vue schématique en perspective du système général de détermination de la dimension significative et de la détermination de masse volumique des objets,
- les figures 3, 4, et 5 illustrent en vue 30 de dessus et de façon schématique le dispositif de

détermination d'une dimension significative des objets au moyen de rayonnement infrarouge, et trois phases du procédé de détermination de cette dimension significative,

- la figure 6 est une vue en perspective et en coupe du collimateur de la source d'irradiation photonique,
- la figure 7 est une vue en perspective et en coupe du collimateur du détecteur des photons
 gamma,
 - la figure 8 est une vue schématique montrant la chaîne d'acquisition et de comptage,
 - les figures 9A et 9B illustrent l'ensemble des étapes du procédé de détermination de la masse volumique des objets ; la figure 9A illustre les étapes d'étalonnage préalables et la figure 9B illustre les étapes de détermination proprement dites ;

15

25

- la figure 10 illustre la première étape du procédé, qui est une étape d'étalonnage de position 20 de l'unité de détermination de la dimension significative;
 - la figure 11 illustre la deuxième étape du procédé, qui est une étape d'étalonnage de position de l'unité de détermination de l'intensité photonique atténuée;
 - la figure 12 illustre la troisième étape du procédé, qui est une étape d'étalonnage de mesure de l'unité de détermination de l'intensité photonique atténuée;

- la figure 13 illustre la quatrième étape du procédé, qui est une étape de détermination de la dimension significative d'un objet ;
- la figure 14 illustre la neuvième étape 5 du procédé, qui est une étape de détermination de la variation relative de masse volumique de l'objet par rapport à celle d'un ou plusieurs objets étalons ;
- la figure 15 est un graphique illustrant la variation relative de masse volumique des objets d'un lot donné d'objets par rapport à la masse volumique de l'un des objets pris comme étalon ou référence, et compare cette variation relative de masse volumique obtenue par l'invention avec la variation relative de masse volumique théorique fournie par le fabriquant d'objets. 15

20

25

EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PARTICULIER

figures 1 et 2 respectivement en vue de dessus et en perspective un mode de réalisation préféré du système général de détermination par atténuation photonique de la masse volumique de chaque objet 100 d'un lot d'objets par détermination de la variation relative de cette masse volumique par rapport à celle d'au moins un desdits objets pris comme référence ou étalon en volumique. cette détermination de masse volumique mettant en œuvre la détermination préalable d'une dimension significative x dudit objet 100, l'intensité I du faisceau photonique qui irradie et traverse ledit objet 100.

Le système comprend les composants suivants:

- une unité 2 de détermination de la dimension significative de l'objet 100,
- une unité 30 de détermination de l'intensité du faisceau photonique atténué par la traversée de l'objet 100,
 - une unité 200 d'acquisition, de traitement, et d'analyse.
- des moyens de transport 70, 72, 80, 82, 10 84, 86, 88 et des moyens d'ajustement de position 74, l'objet 96, 98 de 92, 94, 90, respectivement par rapport à l'unité 2 de détermination l'unité à par rapport et dimension détermination d'intensité, 15

L'unité 200 d'acquisition, de traitement et d'analyse est schématisée dans son ensemble à la figure 1. Elle comprend notamment un ordinateur 170 de type PC sur lequel est implanté un logiciel dédié qui exécute des séries d'instructions et des algorithmes de calcul du procédé de détermination automatique de la masse volumique d'objets 100 selon l'invention.

20

25

En se référant aux figures 3, 4, et 5, l'unité 2 de détermination par rayonnement infrarouge d'une dimension significative x de l'objet 100 comprend :

- un premier ensemble infrarouge 4, 6 constitué d'un premier émetteur infrarouge 4 et d'un premier récepteur infrarouge 6,
- o un deuxième ensemble infrarouge 8, 10

10

30

constitué d'un deuxième émetteur infrarouge 8 et d'un deuxième récepteur infrarouge 10.

Les deux ensembles infrarouges 4, 6, et 8, agencés de telle manière que les sont 10, rayonnement faisceaux de des 14 respectifs 12, infrarouges qu'ils engendrent sont parallèles entre eux, et écartés d'une distance d. Cette distance d, fixée par le constructeur, est choisie de manière à la dimension être du même ordre de grandeur que significative x des objets 100 à contrôler. Elle est faisceaux les illustré, 1'exemple Sur ajustable. infrarouges sont orientés dans le même sens, mais une configuration différente pourrait être envisagée.

L'unité 2 de détermination de la dimension rayonnement par 100 l'objet de х significative 15 infrarouge comprend en outre un troisième ensemble constitué d'un émetteur photoélectrique 16 et d'un récepteur photoélectrique 18, disposé en amont infrarouge 4, 6, par rapport premier ensemble faisceau 10, le ensemble infrarouge 8, deuxième 20 photoélectrique qu'il engendre ayant un axe 19. faisceau du 19 1'axe illustré, l'exemple photoélectrique est parallèle aux axes 12, faisceaux infrarouges, et situé dans le même plan que ceux-ci. Une configuration différente pourrait être 25 envisagée.

L'unité 2 de détermination de la dimension significative x de l'objet 100 par rayonnement infrarouge est associée à des moyens de transport et/ou à des moyens d'ajustement de position de l'objet 100 par rapport aux trois ensembles émetteurs-récepteurs 4,

6, 8, 10, 16, 18, qui seront décrits par la suite.

En fonctionnement, l'unité 2 de détermination de la dimension significative de l'objet 100 se trouve dans une situation dans laquelle les trois ensembles émetteurs-récepteurs 4, 6, 8, 10, 16, 18 sont fixes, et l'objet 100 est déplacé de manière à intercepter successivement le faisceau photoélectrique, puis le premier faisceau infrarouge, puis le deuxième faisceau infrarouge.

10 2 est étalonnée de L'unité manière établir une distance d entre les axes 12 et 14 des deux de rayonnement infrarouge qui soit faisceaux sensiblement proche de la dimension significative xedim d'un ou plusieurs objet s edim pris comme étalons en 15 dimension. Cet étalonnage sera décrit par la suite. Il s'ensuit que lors de la détermination de la dimension significative d'un objet 100 (non étalon), celui-ci se déplace relativement aux trois ensembles émetteursrécepteurs 4, 6, 8, 10, 16, 18, et passe par au moins une position dans laquelle il intercepte encore 20 moitié du premier faisceau infrarouge (figure référence 22), et n'intercepte pas encore la totalité du deuxième faisceau infrarouge, laissant une fraction du deuxième faisceau (figure 5, référence 24) qui n'est 25 pas interceptée par l'objet 100, et qui atteint le deuxième récepteur 10.

La dimension significative x de l'objet 100 se déduit de la réponse infrarouge RI correspondant à cette fraction de faisceau non interceptée. Cette dimension est obtenue par une relation du type : $x = A_4.\left(\text{RI}^4\right) + A_3.\left(\text{RI}^3\right) + A_2.\left(\text{RI}^2\right) + A_1.\left(\text{RI}^1\right) + A_0 \;,$

30

où A_4 , A_3 , A_2 , A_1 , A_0 sont des coefficients obtenus en utilisant au moins quatre objets étalons en dimension edim, et en appliquant autant de fois cette même relation, dans laquelle sont injectées la dimension significative $x_{\rm edim}$ connue et la réponse infrarouge ${\rm RI}_{\rm edim}$ mesurée de chacun desdits objets étalons en dimension edim.

5

10

15

30

figure le la représenté sur Comme troisième ensemble 16, 18 a pour fonction de déclencher automatiquement l'ajustement préalable de l'intensité des deux faisceaux infrarouges 22, 24, lorsqu'au cours du déplacement relatif selon la direction 20, l'objet 100 intercepte le faisceau photoélectrique engendré par ce troisième ensemble 16, 18. Cette opération a pour but de s'affranchir des perturbations environnementales telles que la salissure des optiques. Elle doit avoir lieu au plus tard 30 secondes avant l'opération de mesure proprement dite sur l'objet 100.

La précision de la détermination de la dimension significative x de l'objet 100 est fonction de la précision du déplacement relatif de l'objet 100 par rapport aux trois ensembles émetteurs-récepteurs 4, 6, 8, 10, 16, 18, et donc des performances et de l'étalonnage des moyens de transport et/ou d'ajustement de position, aspects qui seront décrits plus en détail par la suite.

Selon l'invention, la détermination de l'intensité I du faisceau photonique est effectuée au moyen d'une unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau photonique qui irradie et traverse les objets 100, comme illustré aux figures

1, 2 et 8. Celle-ci comprend :

15

- un ensemble formé d'une source d'irradiation photonique et d'un collimateur 32, de type connu en soi,
- un ensemble formé d'un détecteur et d'un collimateur 40, de type connu en soi,
 - une chaîne d'acquisition et de comptage 48, de type connu en soi.

Pour simplifier la description, la source 10 d'irradiation photonique sera par la suite nommée "source".

Les différents éléments constitutifs de l'unité 30 de détermination sont soumis à certaines contraintes liées à la performance souhaitée pour le système général, ainsi qu'à l'environnement dans lequel le système est destiné à fonctionner. Ces contraintes, qui concernent notamment l'intensité de la source, le type de source, et les performances de la chaîne d'acquisition et de comptage, sont les suivantes :

- la source doit avoir une intensité telle que la dispersion statistique des résultats de mesure soit nettement inférieure à la variation de comptage due à un écart de masse volumique de l'objet à contrôler par rapport à la masse volumique de l'objet étalon pris comme référence,
 - l'énergie de la source doit permettre un très bon contraste à la suite d'une légère variation de la masse volumique de l'objet à contrôler,
- la source ne doit pas présenter une
 30 période radioactive trop courte de manière à ne pas être contraignante en milieu industriel,

10

15

- enfin, l'intensité et l'énergie de la source doivent être compatibles avec les capacités de traitement de la chaîne électronique d'acquisition et de comptage (temps mort, empilement, saturation...).

Selon le mode de réalisation préféré, la source est réalisée en ¹³³Ba d'au moins 10 mCi d'activité. Pour éviter les effets de temps mort et/ou de saturation, il est préféré d'utiliser une source dont l'activité ne dépasse pas 150 mCi. La durée de mesure est inversement proportionnelle à l'activité de la source.

Un exemple de réalisation du collimateur 32 de l'ensemble source-collimateur, compatible avec ces différentes contraintes, est illustré à la figure 6. Il comprend un coffrage de protection 34, pour assurer la sécurité des personnes travaillant à proximité de la source, qui délimite une cavité 36 dans laquelle est logée la source. Le faisceau de photons gamma est guidé par une fente de collimation 38.

Selon l'exemple de réalisation illustré, le collimateur 32 de la source est réalisé en plomb et présente comme dimensions extérieures une hauteur de 60 mm, une longueur de 60 mm, et une largeur de 60 mm. La source est une source de ¹³³Ba de 10 mCi d'activité, qui est logée dans une cavité 36 ayant un diamètre de 6,1 mm et une hauteur de 9,5 mm. La fente de collimation 38 présente quant à elle une longueur de 30 mm, une largeur de 6 mm, et une hauteur de 4 mm.

Un exemple de réalisation du collimateur 40 de l'ensemble détecteur-collimateur est illustré à la figure 7. Il comprend un coffrage de protection 42 pour

10

15

que les rayons gamma, issus de la source et émis en dehors de la fente de collimation 38 ne soient pas perçus par le détecteur 49, une fente de collimation 44, et une cavité 46 de logement du détecteur 49, délimitée par le coffrage de protection 42.

Selon l'exemple de réalisation illustré, le collimateur 40 du détecteur 49 est réalisé en plomb et présente comme dimensions extérieures un diamètre de 140 mm et une longueur de 120 mm, et comme dimensions intérieures un diamètre de 80 mm et une longueur de 200 mm. La fente de collimation présente une hauteur de 4 mm, une largeur de 6 mm, et une longueur de 30 mm.

Le plomb du coffrage de protection 42 peut être remplacé par du tungstène, qui atténue davantage rayons gamma que le plomb, ce qui présente l'avantage de réduire l'épaisseur du coffrage protection 42, mais le tungstène a pour inconvénient son prix plus élevé que celui du plomb.

Par la suite, et pour simplifier la description, l'ensemble source-collimateur sera dénommé simplement « source » et référencé 32, et l'ensemble détecteur-collimateur sera dénommé simplement « détecteur » et sera référencé 40.

La distance source-détecteur est choisie de 25 façon appropriée.

Selon le mode de réalisation préféré, la chaîne d'acquisition et de comptage 48, illustrée à la figure 8, comprend :

- un détecteur 49, sous forme d'une diode 30 à germanium de haute pureté Ge [HP], ayant un préamplificateur,

- un module 50 de traitement du signal (DSP: Digital Signal Processor),
 - un module haute tension 54,
- un module réseau 56 d'acquisition et 5 d'interface (AIM : acquisition interface module),
 - un ordinateur 170 de type PC d'acquisition de données (figure 1).

De façon optionnelle la chaîne d'acquisition et de comptage comprend un cryostat 60 constitué d'un réservoir d'azote liquide, qui maintient à température constante le doigt froid de la diode Ge [HP], ce qui présente l'avantage de minimiser l'effet Doppler et d'obtenir une très bonne résolution du signal, les mesures n'étant pas perturbées par un échauffement du détecteur 49.

Le préamplificateur est de préférence incorporé dans la diode Ge [HP], ce qui présente l'avantage de minimiser l'effet de capacité dû au câble électrique et de réduire le bruit de fond électronique.

20 Il assure également le filtrage et la mise en forme du signal.

Le signal est ensuite numérisé au moyen du module de traitement du signal 50, puis mis en mémoire.

L'ensemble des informations obtenues constitue le spectre gamma, c'est à dire l'histogramme classant dans différents canaux le nombre d'impulsions en fonction de leur énergie.

(flèche 62) Les données sont transférées signal et de traitement du 50 module le entre l'ordinateur 170 de l'unité 200, d'acquisition, de 30 le module réseau 56 traitement et d'analyse, via

d'acquisition et d'interface, un émetteur-récepteur 63, et une carte réseau 59. Sur l'exemple illustré, l'unité 200 d'acquisition, de traitement et d'analyse ainsi que la chaîne 48 d'acquisition et de comptage utilisent le même ordinateur 170, mais une configuration avec deux ordinateurs distincts pourrait être envisagée.

Cette chaîne d'acquisition et de comptage 48 est particulièrement adaptée aux forts taux de comptage.

contrainte ailleurs, une autre Par 10 30 de détermination par d'utilisation de l'unité du faisceau l'intensité spectrométrie de gamma photonique qui irradie les objets 100 concerne le temps de comptage de la chaîne 48 d'acquisition et qui doit respecter cadences de les comptage, 15 fabrication des objets 100 à contrôler.

Selon l'invention, le temps de comptage peut être une donnée d'entrée du système, ou bien le résultat d'un calcul, fourni par la relation théorique suivante :

$$t = \frac{\alpha^2}{A(t) \cdot \frac{s}{4\pi D^2} \cdot \epsilon \cdot \frac{\sum_{P} \cdot R_0 \cdot (R_0^{\beta_{acc}} - 1)^2}$$

avec une approximation selon laquelle l'angle solide est égal à $4\pi \text{D}^2\,.$

où:

5

20

25 A(t) est l'activité de la source, en Bq,
D est la distance entre la source et une fenêtre de
collimation, en mm,
s est la surface de la fenêtre de collimation du
détecteur, en mm²,

lpha est la largeur de l'intervalle de confiance dans l'hypothèse où le comptage suit une loi de Poisson,

 ϵ est l'efficacité d'absorption totale du détecteur de photons,

I est l'intensité du faisceau photonique à l'énergie E, atténuée par la traversée de l'objet, en $\gamma.s^{-1}$,

 I_0 est l'intensité non atténuée du faisceau photonique à l'énergie E, en $\gamma.\,\text{s}^{-1},$

 $R_0 = \frac{I}{I_0}$ est le coefficient de transmission de l'objet

10 traversé par les photons monochromatiques issus de la source,

 Σ est le nombre total de coups enregistrés dans le spectre mesuré, en coups,

P est le nombre total de coups contenus dans le pic d'énergie E,

 $\beta_{\text{sec}} = \frac{\beta}{10}$ est une valeur de β affectée d'un facteur de sécurité égal à 10,

avec $\beta = \frac{\Delta \rho}{\rho}$,

et où ρ est la masse volumique de l'objet.

détermination la précision de 20 La l'intensité I atténuée par la traversée de l'objet 100 dépend notamment de la position dudit objet 100 par Elle dépend donc 32. source rapport à la performances et de l'étalonnage des moyens d'ajustement de position. Ces aspects seront décrits plus en détail 25 par la suite.

Les différents moyens de transport 70, 72, 80, 82, 84, 86, 88 et d'ajustement de position 74, 76, 78, 90, 92, 94, 96, 98 sont illustrés aux figures 1 et 2 montrant le système dans son ensemble. Ils ont pour fonction de transporter l'objet 100 vers chaque unité 2, 30 de détermination ou d'ajuster la position relative de l'objet 100 par rapport aux éléments constitutifs de chaque unité 2, 30 de détermination.

5

25

Une plaque de support 150 supporte les composants du système général, à savoir l'unité 2 de 10 détermination de la dimension significative, l'unité 30 de détermination de l'intensité du faisceau atténué, premiers moyens transport, les de moyens les d'ajustement, et les deuxièmes moyens d'ajustement. Les directions de déplacement sont schématisées par 15 référentiel 152 de la figure 2. Les déplacements ont lieu dans le plan horizontal (X, Y) de la plaque de direction verticale Z la selon 150, ou support perpendiculaire au plan horizontal (X, Y) de la plaque de support 150. 20

Les moyens de transport 70, 72, ont pour fonction de transporter l'objet 100 dans une première position dans laquelle l'unité 2 détermine la dimension significative dudit objet 100. Ils comprennent un plateau tournant horizontal 70 actionné par un moteur pas à pas 72, tous deux installés sur la plaque de support 150. Sur l'exemple illustré, le plateau tournant 70 comprend douze emplacements d'objets.

Les premiers moyens d'ajustement 74, 76, 78

30 ont pour fonction d'ajuster la position de l'objet 100

par rapport aux deux ensembles infrarouges 4, 6 et 8,

10, au moyen desquels est mesurée la dimension significative x de l'objet 100.

Le moyen d'ajustement 74 est une glissière orientée suivant la direction X, dans laquelle sont positionnés le socle 26 de l'unité 2 de détermination de dimension par rayonnement infrarouge, et le plateau tournant 70.

5

Les deux ensembles infrarouges 4, 6, et 8, 10 sont installés sur le socle 26 de telle manière que les axes 12, 14 des faisceaux infrarouges soient parallèles à cette direction X. Pour un lot donné d'objets dont les dimensions sont sensiblement toutes du même ordre de grandeur, les positions relatives du socle 26 et du plateau tournant 70 selon cette direction X sont de préférence fixées une fois pour toutes au début de la série de mesures pour le lot donné d'objets.

Le moyen d'ajustement 76 est un vérin dont la fonction est de rapprocher ou écarter le premier ensemble deuxième du infrarouge 4, 6 ensemble 20 infrarouge 8, 10 suivant la direction Y. Ce déplacement du premier ensemble infrarouge 4, 6 selon la direction précision une positionner avec permet de deux rapport aux 100 par l'objet micrométrique infrarouge rayonnement de faisceaux 25 détermination de sa dimension significative x, diamètre ou épaisseur.

Le moyen d'ajustement 78 est un vérin dont la fonction est de déplacer le socle 26 suivant la direction Z. L'amplitude de ce déplacement est relativement faible, afin d'éviter que le socle 26

10

15

20

25

30

sorte de la glissière 74. Le déplacement du socle selon la direction Z permet de connaître avec une précision micrométrique la cote de l'objet 100 à laquelle est effectuée la détermination de sa dimension significative x.

Les moyens de transport 70, 72, 80, 82, 84, 86, 88 ont également pour fonction de déplacer l'objet 100 de sa première position dans laquelle l'unité 2 détermine la dimension significative x vers sa deuxième position dans laquelle l'unité 30 détermine l'intensité atténuée I du faisceau photonique. Ils comprennent le plateau tournant 70 actionné par son moteur pas à pas 72. En effet, plusieurs objets 100 étant disposés en cercle sur le plateau tournant 70, la rotation dudit plateau 70 remplit deux actions simultanées consistant d'une part à transporter un objet 100 vers sa première position de mesure et d'autre part à éloigner l'objet 100 précédent de sa première position de mesure pour l'emmener vers une position intermédiaire après lui avoir fait effectuer un déplacement angulaire d'angle A. Sur l'exemple illustré aux figures 1 et 2, cet angle A est de 90°. Les moyens de transport comprennent également un bras de manutention 80 qui saisit l'objet 100 installé sur le plateau tournant 70 en sa position sur un le transporte intermédiaire et d'irradiation 90 disposé entre le collimateur 32 de la Selon détecteur. le collimateur 40 du source et de bras 2, le illustré à la figure l'exemple manutention 80 comprend une pince de préhension articulée sur un segment intermédiaire 84, articulé sur un vérin 86 capable de se déplacer en

10

15

translation selon la direction X de la plaque de le long de rails de guidage 88. Les support 150, mouvements de serrage/desserrage de la pince 82 et de pivotement de celle-ci par rapport au segment 84, ainsi que les mouvements de pivotement du segment 84 par rapport au vérin 86 sont commandés par des actionneurs (non représentés).

Les deuxièmes moyens d'ajustement 90, 92, 94, 96, 98 ont pour fonction d'ajuster la position de l'objet 100 par rapport à la source 32 et au détecteur 40 de l'unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau qui va traverser ledit objet 100. Ils comprennent le support d'irradiation 90 lequel est installé l'objet 100. Ce support d'irradiation 90 présente une face supérieure 92 à section en forme de V, ou tout autre moyen équivalent pour que l'objet 100 se trouve automatiquement installé position d'équilibre stable sur ledit d'irradiation 90, et notamment qu'il soit empêché de se déplacer par rapport au support d'irradiation 90 selon 20 la direction X de la plaque de support 150. Le support d'irradiation 90 est positionné suivant la direction X de la plaque de support 150 au moyen d'une glissière 94, qui, de préférence, est confondue avec la glissière 25 74. Pour un lot donné d'objets 100, ce positionnement est effectué une fois pour toutes au début de la série de mesures correspondant à un lot donné d'objets. Le support d'irradiation 90 peut être déplacé selon la direction Y de la plaque de support 150 au moyen d'un vérin 96 et selon la direction Z perpendiculaire à la 30 plaque de support 150 au moyen d'un vérin 98. Les

ajustements de position effectués par les vérins 96 et 98 permettent de centrer sensiblement l'objet (suivant la direction Z) entre les fentes des collimateurs

respectifs de la source 32 et du détecteur 40.

5

10

15

nécessaire il est D'autre part positionner avec une précision micrométrique l'objet suivant la direction Y de telle manière que la mesure s'effectue faisceau photonique du I d'intensité laquelle a été exactement à la cote de l'objet à dimension de sa détermination la effectuée significative x. Ce positionnement est effectué par une mise en butée de l'objet sur la face supérieure 92 du support d'irradiation 90. Cette mise en butée peut être effectuée par exemple par une opération de soufflage au moyen d'un dispositif de soufflage (non représenté, qui envoie de l'air comprimé sur l'objet, suivant direction Y, afin de plaquer celui-ci contre une butée 93 du support d'irradiation 90.

illustrées sont figure 1 1a Sur liaisons par des moyens de connexion appropriés 20 entre d'une part les différents vérins 76, 78, 86, 98 de déplacement des pièces mobiles en translation et le moteur pas à pas 72 qui entraîne en rotation le plateau tournant 70, et d'autre part des unités 160 de contrôle et de pilotage. Ces unités 160 commandent la 25 mécanique et l'automatique du système, et sont reliées à l'unité centrale 172 de l'ordinateur 170 de l'unité d'acquisition, de traitement et d'analyse, par d'autres moyens de connexion appropriés 190.

On va maintenant décrire le procédé de détermination de la masse volumique ρ de chacun des

objets d'un lot donné d'objets 100, par comparaison avec la masse volumique ρ_{emas} d'un ou plusieurs objet(s) choisi(s) comme étalon(s) ou référence(s) en masse volumique, et faisant partie du même lot d'objets 100.

Le procédé est mis en œuvre au moyen d'algorithmes traduisant des séries d'instructions qui permettent d'effectuer de manière automatique les différentes étapes du procédé.

5

10

15

Le procédé de l'invention comprend des étapes préalables d'étalonnage, qui sont effectuées une fois pour toutes avant de commencer une série de mesures sur un lot donné d'objets, et des étapes de détermination proprement dites, qui sont effectuées sur chaque objet 100 dudit lot d'objets. L'ensemble des étapes du procédé est représenté de façon synthétique sur les figures 9A et 9B.

Les étapes d'étalonnage respectent une chronologie pré-établie, et concernent les composants suivants du système :

- étape 1 : étalonnage de position des deux ensembles infrarouges 4, 6 et 8, 10 de l'unité 2 de détermination de la dimension significative des objets 100,

étape 2 : étalonnage de position du support 25 d'irradiation 90 de l'unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets 100,

- étape 3 : étalonnage de mesure de l'ensemble source-détecteur 32, 40 de l'unité 30.

10

15

20

25

30

L'étape 1 d'étalonnage de position des deux ensembles infrarouges 4, 6 et 8, 10 est illustrée sur la figure 10.

Cette étape 1 d'étalonnage consiste ajuster la position suivant la direction Y du premier ensemble infrarouge 4, 6 par rapport au deuxième ensemble infrarouge 8, 10, afin de fixer l'écartement d entre les faisceaux infrarouges émis respectivement par les deux émetteurs 4, 8, en fonction de la dimension significative x_{edim} connue précisément d'un ou plusieurs objet(s) étalon(s) en dimension edim. En pratique, l'écartement d est établi en éloignant progressivement ensemble infrarouge 4, 6 du deuxième le premier ensemble infrarouge 8, 10 suivant la direction Y, ce dernier restant fixé à une position YFIX, et en mesurant la réponse infrarouge de l'objet pour chaque position du premier ensemble infrarouge 4, 6.

L'étape 1 d'étalonnage de position des deux ensembles infrarouges 4, 6 et 8, 10 comprend tout d'abord une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif. Ces paramètres comprennent :

- la configuration des composants qui ont un déplacement micrométrique : vérins 76, 78, ce qui permet de gérer leur cinématique : position, vitesse, accélération,
- la configuration du plateau tournant 70, c'est-à-dire la nature des objets qui occupent les différents emplacements sur le plateau tournant 70 : objet quelconque 100, ou objet étalon en dimension

edim, ou objet étalon en masse volumique emas, ou emplacement libre,

- l'emplacement occupé par les objets étalons en dimension edim sur le plateau tournant 70, cet emplacement étant un nombre allant de 1 à 12 pour l'exemple illustré,
- la position Z_{mesure} suivant la direction Z du socle 26 de l'unité 2, qui correspond à une cote Z_{edim} sur l'objet edim par rapport à la base de celuici,

10

- les positions Y(1) et Y(N) bornant l'intervalle de déplacement du premier ensemble infrarouge 4, 6 suivant la direction Y,
- le pas INT exprimé en μm du déplacement du premier ensemble infrarouge 4, 6 suivant la direction Y, (il faut que $\frac{Y_{DEP}-Y_{ARR}}{INT}$ soit un nombre entier).

L'étape 1 d'étalonnage de position des deux ensembles infrarouges 4, 6 et 8, 10 comprend ensuite 20 les opérations automatisées suivantes :

- a) déplacement du socle 26 suivant la direction Z jusqu'à la position Z_{mesure} , par actionnement du vérin 78,
- b) déplacement angulaire du plateau 25 tournant 70 afin de transporter l'objet étalon en dimension edim jusqu'à sa position initiale de mesure par rapport à l'unité 2,
- c) déplacement du premier ensemble infrarouge 4, 6 suivant la direction Y jusqu'à sa position de départ Y(1), par actionnement du vérin 76,

d) déplacement progressif, par incréments successifs de INT, du premier ensemble infrarouge 4, 6 suivant la direction Y, en l'éloignant du deuxième ensemble infrarouge 8, 10 fixé à une position Y_{FIX} , entre les positions Y(1) et Y(N), et détermination simultanée de la réponse infrarouge RI(n) de l'objet edim, correspondant à chaque position Y(n), de la manière suivante :

5

d-1) déplacement angulaire du plateau tournant 70 afin de transporter l'objet étalon en dimension edim à sa position finale de mesure,

d-2) mesure de la réponse infrarouge RI(n) dudit objet étalon en dimension edim,

d-3) déplacement angulaire du plateau tournant 70 afin de ramener l'objet étalon en dimension edim à sa position initiale de mesure,

e) calcul de la réponse infrarouge optimale $RI_{\text{OPT}} = \frac{RI_{\text{MAX}} - RI_{\text{MIN}}}{2}$

où : RI_{MIN} est la valeur de la saturation minimale de la réponse infrarouge : au début de l'étalonnage, 20 l'écartement des deux ensembles infrarouges 4, 6, la dimension 10 est très inférieur à significative x_{edim} de l'objet étalon en dimension edim ; par suite, lorsque 50% du premier faisceau infrarouge est intercepté par l'objet edim, 100% 25 du deuxième faisceau infrarouge est intercepté par réponses premières les edim ; objet cet infrarouges ont alors une valeur identique RI_{MIN} dite « saturée »,

et : RI_{MAX} est la valeur de la saturation maximale de la réponse infrarouge : à la fin de l'étalonnage, l'écartement des deux ensembles infrarouges 4, 6, 10 est très supérieur à la dimension et 8, significative x_{edim} de l'objet étalon en dimension 5 edim ; par suite, lorsque 50% du premier faisceau infrarouge est intercepté par l'objet edim, 0% du deuxième faisceau infrarouge est intercepté par dernières objet edim; les infrarouges ont alors une valeur identique RI_{MAX} 10 dite « saturée »,

f) calcul de la position optimale Yorr du premier ensemble infrarouge 4, 6 par rapport au deuxième ensemble infrarouge 8, 10 : la réponse infrarouge optimale RIorr est comprise entre deux valeurs successives RI(j) et RI(k) précédemment calculées de la réponse infrarouge, qui correspondent respectivement à deux positions Y(j) et Y(k) du premier ensemble infrarouge 4, 6 ; la position optimale YOPT s'en déduit de la manière suivante :

si
$$\frac{RI_{OPT} - RI(j)}{RI_{OPT} - RI(k)} < 1$$
, alors $Y_{OPT} = Y(j)$

15

20

25

si
$$\frac{RI_{OPT} - RI(j)}{RI_{OPT} - RI(k)} > 1$$
, alors $Y_{OPT} = Y(k)$

Les opérations a) à f) ci-dessus peuvent être renouvelées avec autant d'autres objets étalons en dimension edim que nécessaire.

A l'issue de l'étape 1 d'étalonnage de position des deux ensembles infrarouges 4, 6 et 8, 10, il est crée un premier fichier d'étalonnage qui comporte, notamment, l'écartement optimal d des deux

10

15

20

25

30

ensembles infrarouges 4, 6 et 8, 10 correspondant sensiblement à la dimension significative des objets $d = \|Y_{\text{FIX}} - Y_{\text{OPT}}\|.$

L'étape 2 d'étalonnage de position du support d'irradiation 90 de l'unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets 100 est illustrée de façon synthétique sur la figure 11.

Cette étape 2 d'étalonnage consiste ajuster la position suivant la direction Z du support d'irradiation 90 par rapport à la source 32 et au détecteur 40 associé, afin de fixer la position ZOPT suivant la direction Z de la face supérieure 92 du support d'irradiation 90 sur lequel sont positionnés les objets 100 traversés par le faisceau photonique, en fonction de la masse volumique ρ connue précisément d'un ou plusieurs objet(s) étalon(s) en masse volumique En pratique, la position Z_{OPT} est établie déplaçant progressivement le support d'irradiation 90 suivant la direction Z, et en irradiant plusieurs fois l'objet étalon en masse volumique emas installé sur le support d'irradiation 90 pour chacune des positions de celui-ci. Elle résulte du calcul d'un minimum d'une régression polynomiale d'ordre 4. Elle comporte une étape de détermination de la dimension significative x_{emas} de chaque objet emas étalon en masse volumique.

L'étape 2 d'étalonnage de position du support d'irradiation 90 de l'unité 30 comprend tout d'abord une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif. Ces paramètres comprennent :

- la configuration des composants qui ont un déplacement micrométrique : vérins 96, 98, ce qui permet de gérer leur cinématique : position, vitesse, accélération,
- la configuration du plateau tournant 70, c'est-à-dire la nature des objets qui occupent les différents emplacements sur le plateau tournant 70 : objet quelconque 100, ou objet étalon en dimension edim, ou objet étalon en masse volumique emas, ou emplacement libre,
 - l'emplacement occupé par les objets étalons en masse volumique emas sur le plateau tournant 70, cet emplacement étant un nombre allant de 1 à 12 pour l'exemple illustré,
- la durée de mesure ou temps de comptage,
 - les positions Z(1) et Z(N) bornant l'intervalle de déplacement du support d'irradiation 90 suivant la direction Z,
- le nombre M de mesures de l'intensité 20 photonique atténuée par la traversée de l'objet, pour chaque position Z(i) occupée par le support d'irradiation, pour i = 1,..., N.

L'étape 2 d'étalonnage de position du support d'irradiation 90 de l'unité 30 comprend ensuite les opérations automatisées suivantes :

- a) détermination de la dimension significative x_{emas} de l'objet étalon en masse volumique, conformément à l'étape 4 qui sera décrite ci-après,
- 30 b) déplacement angulaire du plateau tournant 70, d'un angle A, afin de transporter l'objet

étalon en masse volumique emas en une position intermédiaire où il est saisi par le bras de préhension 80,

- c) positionnement de l'objet emas sur le 5 support d'irradiation 90, qui comporte les sousopérations suivantes :
 - c-1) déplacement du support d'irradiation 90, suivant la direction Z et vers le bas, par actionnement du vérin 98,
- c-2) déplacement du bras de manutention 80 depuis sa position d'attente jusqu'à la verticale de la position intermédiaire de l'objet emas, par actionnement du vérin 86,
- c-3) saisie, par le bras de 15 manutention 80, de l'objet emas, et transport de celuici jusqu'à la verticale de la face supérieure 92 du support d'irradiation 90, par actionnement du vérin 86,
- c-4) déplacement du support d'irradiation 90 jusqu'à la position Z(1), suivant la direction Z et vers le haut, par actionnement du vérin 98,
 - c-5) dépose de l'objet emas sur la face supérieure 92 du support d'irradiation 90, par le bras de manutention 80, par actionnement du vérin 86,
- c-6) déplacement retour du bras de manutention 80 jusqu'à sa position d'attente, par actionnement du vérin 86,
- c-7) mise en butée de l'objet emas sur la face supérieure 92 suivant la direction Y, par 30 exemple par une opération de soufflage, qui se déroule de la manière suivante :

- déplacement du support d'irradiation 90 suivant la direction Z et vers le bas jusqu'à une position dite de soufflage, dans laquelle l'objet se trouve en regard d'un dispositif de soufflage prévu dans le système,

- envoi d'air comprimé provenant du dispositif de soufflage sur l'objet emas, suivant la direction Y, afin de plaquer celui-ci contre une butée 93 du support d'irradiation 90,

d) ajustement proprement dit de la position du support d'irradiation 90 par rapport à la source 32 et au détecteur associé 40, qui comporte les sousopérations suivantes :

d-1) déplacement progressif du support 15 d'irradiation 90 suivant la direction Z entre la position Z(1) prédéterminée et la position Z(N) prédéterminée,

position Z(i), chaque pour d-2irradiation de l'objet étalon en masse i = 1, ..., N,volumique emas par le faisceau photonique, un nombre M 20 de fois, ce qui conduit à un ensemble de valeurs d'intensité atténuée I(i, j), où i = 1, ..., N représente le nombre de positions successives Z(i) occupées par le support d'irradiation 90 et j = 1, ..., M représente le nombre d'irradiations effectuées à chaque position 25 Z(i),

d-3) calcul de la position optimale

Z_{OPT} du support d'irradiation 90 à partir d'une
régression polynomiale d'ordre 4 des positions Z(i) par
30 rapport aux intensités atténuées I(i, j), cette
régression polynomiale d'ordre 4 étant prédéterminée et

intégrée comme une donnée de l'unité 200 d'acquisition, de traitement et d'analyse,

e) transport retour de l'objet étalon en masse volumique emas sur le plateau tournant 70, par une séquence d'opérations inverses aux sous-opérations c-1) à c-6) qui ont été détaillées ci-dessus.

5

10

A l'issue de l'étape 2 d'étalonnage de la position du support d'irradiation 90 de l'unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets 100 il est crée un deuxième fichier d'étalonnage qui comporte, notamment, la position optimale Z_{OPT} du support d'irradiation 90 suivant la direction Z.

L'étape 3 d'étalonnage de mesure de l'unité 30 de détermination par spectrométrie gamme comprend les opérations automatisées suivantes :

- a) détermination de l'intensité photonique I_{emas} atténuée par la traversée d'un objet étalon en masse volumique emas pris comme référence,
- 20 b) calcul du coefficient massique d'atténuation μ_m de l'objet étalon en masse volumique, et par suite de tous les objets du lot d'objets par la relation :

$$\rho_{\text{emas}} = -\frac{1}{\mu_{\text{m}} x_{\text{emas}}} \cdot L_{\text{n}} \frac{I_{\text{emas}}}{I_{\text{0}}} \ . \label{eq:rho_emas}$$

A l'issue de l'étape 3 d'étalonnage de mesure de l'unité 30 de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets 100, il est crée un troisième fichier d'étalonnage qui comporte, notamment,

l'intensité photonique I_{emas} atténuée par la traversée de l'objet étalon en masse volumique emas.

Les étapes de détermination proprement dites respectent elles aussi une chronologie préétablie et concernent les opérations suivantes :

- étape 4 : détermination de la dimension significative x de l'objet 100 à contrôler,
- étape 5 : transport de l'objet 100 vers le support d'irradiation 90,
- étape 6 : ajustement de la position de l'objet 100 par ajustement de la position du support d'irradiation 90 par rapport à la source 32 et au détecteur associé 40,
- étape 7 : détermination de l'intensité 15 atténuée I du faisceau photonique transmis à travers l'objet 100,
 - étape 8 : acquisition, traitement et analyse du spectre obtenu,
- 'etape 9: d'etermination de la variation $20 \quad \text{relative } \frac{\Delta \rho}{\rho} \quad \text{de masse volumique de l'objet 100 par}$ $\text{rapport \`a celle d'un ou plusieurs objet(s) \'etalon(s) en}$ masse volumique emas,
 - étape 10 : transport retour de l'objet 100 jusqu'à son emplacement sur le plateau tournant 70.
- L'étape 4 de détermination de la dimension significative x de l'objet 100 à contrôler est illustrée de façon synthétique à la figure 13. Elle comprend tout d'abord une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif. Ces paramètres comprennent :

- la configuration des composants qui ont un déplacement micrométrique : vérins 76, 78, ce qui permet de gérer leur cinématique : position, vitesse, accélération,
- la configuration du plateau tournant 70, c'est-à-dire la nature des objets qui occupent les différents emplacements sur le plateau tournant 70 : objet quelconque 100, ou objet étalon en dimension edim, ou objet étalon en masse volumique emas, ou emplacement libre,
 - l'emplacement occupé par l'objet 100 sur le plateau tournant 70, cet emplacement étant un nombre allant de 1 à 12 pour l'exemple illustré,
- la position Z_{mesure} suivant la direction Z du socle 26 de l'unité 2, qui correspond à une cote z sur l'objet 100 par rapport à la base de celui-ci,
 - le nombre P de mesures infrarouges pour chaque objet étalon en dimension edim(n), n = 1, ..., N, où N est le nombre d'objets étalons en dimension,
- le nombre Q de mesures infrarouges pour l'objet 100.

L'étape 4 de détermination de la dimension significative x de l'objet 100 à contrôler utilise aussi les données contenues dans le premier fichier d'étalonnage issu de l'étape 1.

L'étape 4 de détermination de la dimension significative x de l'objet 100 à contrôler comprend ensuite les opérations automatisées suivantes :

a) déplacement du socle 26 suivant la 30 direction Z jusqu'à la position Z_{mesure} , pzar actionnement du vérin 78,

b) déplacement du premier ensemble infrarouge 4, 6 suivant la direction Y, par actionnement du vérin 76, jusqu'à une position Y_{mesure} définie par :

 $Y_{\text{mesure}} = Y_{\text{OPT}} + (x_{\text{edim}} - x_{\text{edimMOY}})$

où:

20

 Y_{OPT} est la position optimale provenant de l'étape 1 d'étalonnage, cette valeur étant contenue dans le premier fichier d'étalonnage,

x_{edim} est la dimension de l'objet étalon en dimension edim utilisé lors de l'étape 1 d'étalonnage, cette valeur étant contenue dans le premier fichier d'étalonnage,

x_{edimMoY} est la dimension significative
15 moyenne de tous les objets edim étalons en dimension,
cette valeur étant fournie par le fabricant,

c) mesure répétée P fois de la réponse infrarouge RI(p), p=1, ..., P des N objets étalons en dimension edim(n), n=1, ... N, ce qui conduit à un ensemble de valeurs RI(n, p),

d) calcul proprement dit de la dimension significative x de l'objet 100 de la manière suivante :

d-1) calcul de la moyenne $RI_{edimMOY} = \frac{\sum RI(n, p)}{P}$

des réponses infrarouges de chaque objet étalon en dimension edim(n) dont la dimension significative $x_{\text{edim}}(n)$ est connue, et mise en œuvre d'une régression polynomiale d'ordre 4 des dimensions significatives $x_{\text{edim}}(n)$ pour calculer les coefficients A_0 , A_1 , A_2 , A_3 , A_4 d'une relation du type :

30 $x_{edim}(n) = A_4$. $(RI_{edimMOY}(n))^4 + A_3$. $(RI_{edimMOY}(n))^3 +$

 $A_2 \; . \; \left(RI_{\text{edimMOY}} \; (n)\right)^2 + A_1 \; . \; \left(RI_{\text{edimMOY}} \; (n)\right)^1 + A_0,$ $d-2) \; \text{mesure, répétée Q fois, de la réponse}$ infrarouge RI(q), q = 1, ..., Q de l'objet à contrôler $100, \; \text{calcul de la moyenne} \; RI = \frac{\sum RI \left(q\right)}{Q} \; \text{de ces réponses}$

5 infrarouges, et calcul de la dimension significative x recherchée de l'objet 100 par la relation :

 $x = A_4$. $(RI)^4 + A_3$. $(RI)^3 + A_2$. $(RI)^2 + A_1$. $(RI)^1 + A_0$ L'étape 5 de transport de l'objet 100 à contrôler vers le support d'irradiation est une étape automatisée qui reprend la séquence des sous-opérations b) et c) de l'étape 2 d'étalonnage qui ont été détaillées ci-dessus.

L'étape 6 d'ajustement de la position de l'objet 100 par rapport à la source 32 et au détecteur associé 40 est une étape automatisée qui reprend la sous-opération d) de l'étape 2 d'étalonnage qui a été détaillée ci-dessus.

15

20

25

L'étape 7 de détermination de l'intensité photonique I du faisceau photonique, atténuée par la traversée de l'objet 100 consiste en une mesure d'activité, qui est ensuite acquise, traitée et interprétée de manière connue en soi.

L'étape 8 d'acquisition, de traitement et d'analyse du spectre obtenu est une étape automatisée qui met en œuvre des algorithmes de calculs connus en soi qui sont exécutés par le logiciel dédié impanté sur l'ordinateur 170 de l'unité 200 d'acquisition, de traitement et d'analyse.

L'étape 9 de détermination de la variation relative $\frac{\Delta \rho}{\rho}$ de masse volumique de l'objet 100 par rapport à celle d'un ou plusieurs objet(s) étalon(s) en masse volumique emas est illustrée de façon synthétique à la figure 14. C'est une étape automatisée de calcul dans laquelle interviennent l'équation

$$\frac{\Delta \rho}{\rho} = \frac{x_{\text{emas}}}{x} \left[1 - \frac{L_n \frac{I}{I_{\text{emas}}}}{\mu_m \rho_{\text{emas}} x_{\text{emas}}} \right] \quad \text{et les données qui ont été}$$

déterminées aux différentes étapes précédentes.

5

15

L'étape 10 de transport retour de l'objet

10 100 sur son emplacement du plateau tournant 70 est une

étape automatisée qui reprend la sous-opération e) de

l'étape 2 d'étalonnage qui a été détaillée ci-dessus.

Le procédé qui vient d'être décrit est mis en œuvre au moyen d'un logiciel dédié. Ce logiciel comporte cinq modules indépendants, et un menu principal interactif, au moyen duquel un opérateur choisit de faire exécuter l'un des cinq modules. Les cinq modules regroupent les fonctions suivantes :

- premier module : détermination de la 20 masse volumique d'un objet, qui recouvre l'étape 3 d'étalonnage et les étapes 4 à 10 de détermination proprement dite de la masse volumique,
 - deuxième module : détermination de la dimension significative d'un objet,
- 25 troisième module : étalonnage de position de l'unité de détermination de dimension significative,

- quatrième module : étalonnage de position de l'unité de détermination de l'intensité photonique atténuée,
- cinquième module : gestion des fichiers 5 de données.

EXEMPLE

Le système et le procédé décrits précédemment ont été testés.

La source était une source de 133 Ba de 10 mCi d'activité. La durée des acquisitions était de l'ordre de 20 minutes.

Les mesures ont été effectuées sur un lot de 7 pastilles d'oxyde d'uranium (UO2) dont les caractéristiques : diamètre, hauteur, masse volumique ou densité, apparaissent dans le tableau I :

N^0 pastille : i	1	2	3 (étalon)
Diamètre (mm)	8,165	8,143	8,166
Hauteur (mm)	11,54	11,44	11,27
Masse volumique	10,260	10,130	9,900
(g.cm³)	± 0.003	± 0.003	± 0.003
écart-type	$1,99.10^{-2}$	$1,98.10^{-2}$	1,96.10-2
(g.cm³)			

Tableau I

N^0 pastille : i	4	. 5	6	7
Diamètre (mm)	8,147	8,123	8,117	8,169
Hauteur (mm)	11,49	11,29	11,54	11,59
Masse	10,150	9,950	9,960	10,070
volumique	± 0.003	± 0.003	± 0.003	± 0.003

(g.cm³)	1,98.10-2	1 95 10-2	1,93.10 ⁻²	1,97.10 ⁻²
écart-type	1,98.10	1,55.10		
(g.cm³)				

Tableau I (suite)

La pastille 3 est prise comme pastille 5 étalon.

L'objectif des mesures est la détermination précise, au moyen du système et du procédé de l'invention, de la variation relative de masse volumique des pastilles (1,2,4,5,6 et 7) par rapport à la masse volumique de la pastille étalon (pastille 3). La relation suivante s'applique :

10

15

20

$$\frac{\Delta \rho}{\rho} = \frac{x}{x_i} \left[1 - \frac{Ln\left(\frac{I_i}{I}\right)}{\mu_m \rho x} \right] - 1$$

Les diamètres des pastilles supposées «inconnues » sont obtenus par l'étape de détermination de la dimension significative, ici le diamètre des pastilles, par rayonnement infrarouge.

Les résultats des comptages obtenus par spectrométrie gamma, pour chacune des six pastilles sont exposés dans le tableau II. Ils ont été obtenus en suivant scrupuleusement la chronologie du procédé présentée précédemment.

N°	1 (611 00 11 /	ECARTS DE MASSE VOLUMIQUE
PASTILLE 1	974725 ± 1974	$(3,448633 \pm 0,017045) \cdot 10^{-2}$

2	1012550 ± 2012	$(2,286541 \pm 0,061460) \cdot 10^{-2}$
4	1009661 ± 2010	$(2,344449 \pm 0,016572) \cdot 10^{-2}$
5	1063886 ± 2063	$(6,611105 \pm 0,132441) \cdot 10^{-3}$
6	1067853 ± 2067	$(5,941459 \pm 0,122442) \cdot 10^{-3}$
7	1014895 ± 2015	$(1,873675 \pm 0,017101) \cdot 10^{-3}$

Tableau II

Les écarts types relatifs aux variations de 5 masses volumiques mesurées ont été estimés par un calcul de propagation d'incertitudes. Le tableau III est un tableau comparatif de ces résultats avec les écarts théoriques fournis par le fabriquant de pastilles.

N° Pastille	1	2	4
$[\Delta \rho/\rho]_{\text{th\'eorique}}$	3,63636.10 ⁻²	2,32323.10-2	2,52525.10-2
	$\pm 2,77.10^{-3}$	$\pm 2,78.10^{-3}$	± 2,77.10 ⁻³
$[\Delta \rho/\rho]_{\text{mesuré}}$	3,44863.10 ⁻²	2,28654.10-2	2,34445.10-2
	\pm 1,70.10 ⁻⁴	± 1,65.10 ⁻⁴	± 1,66.10 ⁻⁴

Tableau III

N° Pastille	5	6	7
[Δρ/p]théori	5,0505.10 ⁻³	6,0606.10 ⁻³	1,71717.10-2
que	± 2,79.10 ⁻⁴	± 2,77.10 ⁻⁴	$\pm 2,76.10^{-3}$
[Δρ/p]mesuré	6,611.10 ⁻³	5,9415.10 ⁻³	1,8737.10-2
	± 1,32.10 ⁻⁴	\pm 1,22.10 ⁻⁴	± 1,71.10 ⁻⁴

Tableau III (suite)

Ces résultats sont illustrés par le graphique de la figure 15. Les cercles représentent les valeurs de $\frac{\Delta \rho}{\rho}$ résultants de la mesure, alors que les croix représentent les valeurs de $\frac{\Delta \rho}{\rho}$ fournis par le fabricant. L'intervalle matérialisé représente l'écarttype calculé à partir de données fournies par le fabricant.

10 Ces résultats montrent que le système et le procédé selon l'invention permettent de détecter une variation relative de masse volumique d'environ 6.10⁻³ par rapport à la pastille choisie comme objet étalon.

REVENDICATIONS

- 1. Système, pour la détermination automatique de la masse volumique d'un objet (100) appartenant à un lot d'objets, caractérisé en ce qu'il comprend :
 - une unité (2) de détermination d'une dimension significative (x) dudit objet (100),
- une unité (30) de détermination de 10 l'intensité (I) d'un faisceau photonique, atténuée par la traversée dudit objet (100),
 - une unité d'acquisition, de traitement et d'analyse (200),
- des moyens de transport (70, 72, 80, 82, 15 84, 86, 88) de l'objet (100) vers l'unité (2) de détermination de sa dimension significative (x) et vers l'unité (30) de détermination de l'intensité photonique atténuée,
- des premiers moyens d'ajustement (74, 20 76, 78) de la position de l'objet (100) relativement à l'unité de détermination de sa dimension significative (x), et
- des deuxièmes moyens d'ajustement (90, 92, 94, 96, 98) de la position de l'objet (100) 25 relativement à l'unité (30) de détermination de l'intensité photonique atténuée,

30

en ce que lesdits premiers moyens d'ajustement et deuxièmes moyens d'ajustement sont capables de déplacer l'objet (100) avec une précision de l'ordre du micron par rapport à une plaque de

support (150) sur laquelle sont installés les éléments constitutifs du système,

et en ce que la position de l'objet (100) relativement à l'unité (30) de détermination de l'intensité atténuée (I) est ajustée en fonction de la dimension significative (x) dudit objet (100).

5

10

25

- 2. Système selon la revendication 1, caractérisé en ce que l'unité (200) d'acquisition, de traitement et d'analyse comprend un ordinateur (170) dans lequel est implanté un logiciel dédié qui exécute des séries d'instructions et des algorithmes de calcul automatique de la masse volumique de l'objet (100).
- 3. Système selon la revendication 1 ou 2, caractérisé en ce que l'unité (200) d'acquisition, de traitement et d'analyse fournit la variation relative $(\frac{\Delta \rho}{\rho}) \text{ de la masse volumique } (\rho) \text{ de l'objet (100) par rapport à celle, connue, d'au moins un objet étalon (emas) appartenant au même lot d'objets (100).}$
- 4. Système selon l'une quelconque des 20 revendications 1 à 3, caractérisé en ce que l'unité (2) de détermination de la dimension significative de l'objet (100) comprend :
 - un premier ensemble infrarouge (4, 6) constitué d'un premier émetteur infrarouge (4) et d'un premier récepteur infrarouge (6),
 - un deuxième ensemble (8, 10) constitué d'un deuxième émetteur infrarouge (8) et d'un deuxième récepteur infrarouge (10),

les deux ensembles infrarouges (4, 6; 8, 10) étant 30 éloignés l'un de l'autre d'une distance connue (d), et

10

15

20

25

où:

émettant des faisceaux infrarouges qui sont parallèles entre eux,

dimension significative de (x)la et l'objet (100) étant déduite de la réponse infrarouge obtenue lorsque l'objet (100) est déplacé de manière à intercepter successivement le premier faisceau et le selon une direction faisceau infrarouges, deuxième sensiblement perpendiculaire à celle des axes (12, 14) réponse ladite faisceaux, correspondant à la fraction (24) du deuxième faisceau encore interceptée par l'objet (100) lorsqu'il intercepte encore la moitié (22) du premier faisceau.

- la revendication 4, 5. Système selon caractérisé en ce que l'unité (2) de détermination comprend en outre un troisième ensemble (16, 18) émetteur-récepteur photoélectrique, disposé en amont du 6) par rapport au premier ensemble infrarouge (4, deuxième ensemble infrarouge (8, 10), et destiné à l'intensité deux des préalable de l'ajustement faisceaux infrarouges.
 - 6. Système selon la revendication 4 ou 5, caractérisé en ce que la dimension significative (x) de l'objet (100) est obtenue après avoir fait déplacer ledit objet QN fois et mesuré Q réponses infrarouges RI(q), pour q compris entre 1 et Q, par une relation du type :

 $x = A_4$. (moyenne RI(q)) $^4 + A_3$. (moyenne RI(q)) $^3 + A_2$. (moyenne RI(q)) $^2 + A_1$. (moyenne RI(q)) $^1 + A_0$,

30 A_0 , A_1 , A_2 , A_3 , A_4 sont des coefficients-obtenus précédemment en appliquant la même relation à

au moins quatre objets étalons en dimension (edim), pour lesquels une réponse infrarouge RI(edim) est mesurée.

- 7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'unité (30) de détermination de l'intensité atténuée d'un faisceau photonique est une unité de détermination par spectrométrie gamma, qui comprend :
- un ensemble (32) formé d'une source et 10 d'un collimateur,
 - un ensemble (40) formé d'un détecteur et d'un collimateur,
 - une chaîne d'acquisition et de comptage des photons gamma (48).
- 8. Système selon la revendication 7, caractérisé en ce que la chaîne d'acquisition et de comptage (48) comprend:
 - un détecteur à germanium de haute densité,
- un préamplificateur (50),
 - un module DSP (Digital Signal Processor) (52),
 - un module haute tension (54),
 - un module réseau (56),
- un ordinateur d'acquisition de données (170),
 - un cryostat (60).
- 9. Système selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les moyens de transport (70, 72, 80, 82, 84, 86, 88) comprennent

un plateau tournant (70) et un moteur pas à pas (72) d'entraînement dudit plateau (70).

10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les moyens de transport comprennent un bras de manutention (80).

5

15

- 11. Système selon la revendication 10, caractérisé en ce que le bras de manutention (80) est un bras articulé équipé d'une pince d'extrémité (82) destinée à saisir et déposer l'objet (100).
- 12. Système selon l'une quelconque des revendications 3 à 11, caractérisé en ce que les premiers moyens d'ajustement comprennent :
 - une glissière (74) pour fixer la position d'un socle (26) de l'unité (2) de détermination de la dimension significative de l'objet selon une direction X.
 - un vérin (76) pour déplacer le premier ensemble infrarouge (4, 6) par rapport le deuxième ensemble infrarouge (8, 10) de ladite unité (2) selon une direction Y perpendiculaire à la direction Y.
 - un vérin (78) pour déplacer ledit socle
 (26) de ladite unité (2) selon une direction Z
 perpendiculaire au plan (X, Y).
- 13. Système selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les deuxièmes moyens d'ajustement comprennent un support d'irradiation (90) sur lequel est installé l'objet (100) entre une source (32) et un détecteur (40) de l'unité (30) de détermination de l'intensité atténuée du faisceau photonique traversant l'objet (100).

- 14. Système selon la revendication 13, caractérisé en ce que les deuxièmes moyens d'ajustement comprennent :
- une glissière (94) pour fixer un support d'irradiation (90) selon une direction X,

- un vérin (96) pour déplacer, selon une direction Y perpendiculaire à la direction X, ledit support d'irradiation (90) entre une source (32) et un détecteur (40) de l'unité (30) de détermination de l'intensité atténuée du faisceau photonique traversant l'objet (100),
- un vérin (98) pour déplacer, selon une direction Z perpendiculaire au plan (X, Y), ledit support d'irradiation (90) entre une source (32) et un détecteur (40) de l'unité (30) de détermination de l'intensité atténuée du faisceau photonique traversant l'objet (100).
- pour la détermination automatique de la masse volumique d'un objet (100) appartenant à un lot d'objets selon l'une quelconque des revendications 1 à 14, ledit système comportant une unité (2) de détermination d'une dimension significative (x) d'un objet (100) et une unité (300) de détermination de l'intensité (I) d'un faisceau photonique atténué par la traversée dudit objet (100), caractérisé en ce qu'il comprend les étapes d'étalonnage suivantes :
- une étape 1 d'étalonnage de position de deux ensembles infrarouges (4, 6; 8, 10) de l'unité (2) de détermination de la dimension significative des objets (100),

- une étape 2 d'étalonnage de position d'un support d'irradiation (90) de l'unité (30) de détermination par spectrométrie gamma de l'intensité du faisceau photonique atténuée par la traversée des objets (100),
- une étape 3 d'étalonnage de mesure de l'ensemble source-détecteur (32, 40) de l'unité (30),

15

- et en ce qu'il comprend des étapes de détermination proprement dite de la dimension 10 significative (x) des objets (100), qui sont effectuées sur chaque objet (100) dudit lot d'objets.
 - 16. Procédé selon la revendication 15, caractérisé en ce que l'étape 1 d'étalonnage comporte une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif, parmi lesquels:
 - la configuration de composants qui ont un déplacement micrométrique, parmi lesquels deux vérins (76, 78),
- la configuration du plateau tournant (70), c'est-à-dire la nature des objets qui occupent différents emplacements prévus sur celui-ci,
 - l'emplacement occupé par chaque objet étalon en dimension (edim) sur le plateau tournant (70),
 - une position (Z_{mesure}) d'un socle (26) de l'unité (2) suivant la direction Z_{\star}
- des positions (Y(1), Y(N)) bornant un intervalle de déplacement du premier ensemble 30 infrarouge (4, 6) suivant la direction Y,

10

- un pas (INT) de déplacement du premier ensemble infrarouge (4, 6) suivant la direction Y.
- 17. Procédé selon la revendication 16, caractérisé en ce que l'étape 1 d'étalonnage comporte en outre les opérations suivantes :
- a) déplacement du socle (26) suivant la direction Z jusqu'à la position (Z_{mesure}) ,
- b) déplacement angulaire du plateau tournant (70) afin de transporter un objet étalon en dimension (edim) jusqu'à sa position initiale de mesure par rapport à l'unité (2),
- c) déplacement du premier ensemble infrarouge (4, 6) suivant la direction Y jusqu'à sa position de départ (Y(1)),
- d) déplacement progressif, par incréments successifs de (INT), du premier ensemble infrarouge (4, 6) suivant la direction Y, en l'éloignant du deuxième ensemble infrarouge (8, 10) fixé à une position Y_{FIX}, entre les positions Y(1) et Y(N), et détermination simultanée de la réponse infrarouge (RI(n)) de l'objet (edim), correspondant à chaque position (Y(n))
 - e) calcul de la réponse infrarouge optimale $\text{RI}_{\text{OPT}}\text{,}$
- f) calcul de la position optimale Y_{OPT} du 25 premier ensemble infrarouge (4, 6) par rapport au deuxième ensemble infrarouge (8, 10).
 - 18. Procédé selon la revendication 17, caractérisé en ce que l'opération d) de déplacement progressif comporte les sous-opérations suivantes :
- 30 d-1) déplacement angulaire du plateau tournant (70) afin de transporter l'objet

étalon en dimension (edim) à sa position finale de mesure,

d-2) mesure de la réponse infrarouge (RI(n)) dudit objet étalon en dimension (edim),

d-3) déplacement angulaire du plateau tournant (70) afin de ramener l'objet étalon en dimension (edim) à sa position initiale de mesure.

19. Procédé selon la revendication 17 ou 18, caractérisé en ce que la réponse infrarouge optimale RI_{OPT} est obtenue par la relation :

$$RI_{OPT} = \frac{RI_{MAX} - RI_{MIN}}{2}$$

5

10

15

25

où : RI_{MIN} est la valeur de la saturation minimale de la réponse infrarouge ,

et : RI_{MAX} est la valeur de la saturation maximale de la réponse infrarouge.

20. Procédé selon l'une quelconque des revendications 17 à 19, caractérisé en ce que l'opération f) de calcul de la position optimale Y_{OPT} est obtenue de la manière suivante :

20 si
$$\frac{RI_{OPT} - RI(j)}{RI_{OPT} - RI(k)} < 1$$
, alors $Y_{OPT} = Y(j)$

si
$$\frac{RI_{OPT} - RI(j)}{RI_{OPT} - RI(k)} > 1$$
 , alors $Y_{OPT} = Y(k)$

où RI(j) et RI(k) sont deux valeurs précédemment calculées de la réponse infrarouge entre lesquelles est comprise la réponse optimale recherchée RI_{OPT} , qui correspondent respectivement à deux positions Y(j) et Y(k) du premier ensemble infrarouge (4, 6).

21. Procédé selon l'une quelconque des revendications 15 à 20, caractérisé en ce que l'étape 2

30

56

d'étalonnage comporte une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif, parmi lesquels :

- la configuration de composants qui ont un déplacement micrométrique, parmi lesquels deux vérins (96, 98),
 - la configuration du plateau tournant (70), c'est-à-dire la nature des objets qui occupent différents emplacements sur celui-ci,
- l'emplacement occupé par chaque objet étalon en masse volumique (emas) sur le plateau tournant (70),
 - une durée de mesure ou temps de comptage,
- des positions Z(1) et Z(N) bornant un intervalle de déplacement d'un support d'irradiation (90) suivant la direction Z,
 - un nombre M de mesures de l'intensité photonique atténuée par la traversée de chaque objet étalon en masse volumique, pour chaque position Z(i) occupée par le support d'irradiation, pour i = 1,..., N.
 - 22. Procédé selon la revendication 21, caractérisé en ce que l'étape 2 d'étalonnage comporte en outre les opérations suivantes :
- a) détermination de la dimension $25 \quad \text{significative } (x_{mas}) \quad \text{de chaque objet étalon en masse } \\ \text{volumique (emas),}$
 - b) déplacement angulaire du plateau tournant (70), d'un angle (A), afin de transporter ledit objet étalon en masse volumique (emas) en une position intermédiaire où il est saisi par un bras de préhension (80),

- c) positionnement dudit objet (emas) sur un support d'irradiation (90),
- d) ajustement proprement dit de la position du support d'irradiation (90) par rapport à une source (32) et un détecteur associé (40),

- e) transport retour de l'objet étalon en masse volumique (emas) sur le plateau tournant (70), par une opération inverse à l'opération c).
- 23. Procédé selon la revendications 22,
 10 caractérisé en ce que l'opération c) de positionnement
 de l'objet (emas) sur le support d'irradiation (90)
 comporte les sous-opérations suivantes :
 - c-1) déplacement du support d'irradiation (90), suivant la direction Z et vers le bas,
- c-2) déplacement du bras de préhension (80) depuis sa position d'attente jusqu'à la verticale de la position intermédiaire de l'objet (emas),
 - c-3) saisie, par le bras de préhension (80), de l'objet emas, et transport de celui-ci jusqu'à la verticale d'une face supérieure (92) du support d'irradiation (90),
 - c-4) déplacement du support d'irradiation 90 jusqu'à la position Z(1), suivant la direction Z et vers le haut,
- c-5) dépose de l'objet (emas) sur la face supérieure (92) du support d'irradiation (90), par le bras de manutention 80,
 - c-6) déplacement retour du bras de manutention (80) jusqu'à sa position d'attente,
- 30 c-7) mise en butée, suivant la direction Y, de l'objet (emas) sur la face supérieure (92).

- 24. Procédé selon la revendications 22 ou 23, caractérisé en ce que l'opération d) d'ajustement proprement dit de la position du support d'irradiation (90) par rapport à la source (32) et au détecteur associé (40) comporte les sous-opérations suivantes :
- d-1) déplacement progressif du support d'irradiation (90) suivant la direction Z entre deux positions Z(1) et Z(N) prédéterminées,

5

- d-2) pour chaque position Z(i), i = 1, ...,
 10 N, irradiation de l'objet étalon en masse volumique
 (emas) par le faisceau photonique, un nombre M de fois,
 ce qui conduit à un ensemble de valeurs d'intensité
 atténuée I(i, j), où i = 1, ..., N représente le nombre
 de positions successives Z(i) occupées par le support
 15 d'irradiation (90) et j = 1, ..., M représente le nombre
 d'irradiations effectuées à chaque position Z(i),
 - d-3) calcul de la position optimale (Z_{OPT}) du support d'irradiation (90) à partir d'une régression polynomiale d'ordre 4 des positions Z(i) par rapport aux intensités atténuées I(i, j), cette régression polynomiale d'ordre 4 étant prédéterminée et intégrée comme une donnée d'une unité (200) d'acquisition, de traitement et d'analyse.
- 25. Procédé selon l'une quelconque revendications 15 à 24, caractérisé en ce que l'étape 3 25 d'étalonnage de l'unité 30 de détermination comprend opérations spectrométrie gamme les automatisées suivantes :
- a) mesure de l'intensité photonique (I_{emas}) 30 atténuée par la traversée d'un objet étalon en masse volumique (emas)

- b) calcul du coefficient massique d'atténuation (μ_m) de l'objet étalon en masse volumique, par la relation : $\rho_{emas} = -\frac{1}{\mu_m x_{emas}} \cdot L_n \frac{I_{emas}}{I_0}$
- 26. Procédé selon l'une quelconque des 5 revendications 15 à 25, caractérisé en ce que les étapes de détermination proprement dite comprennent :
 - une étape 4 de détermination de la dimension significative (x) de l'objet (100) à contrôler,
- une étape 5 de transport de l'objet (100) vers un support d'irradiation (90),
 - une étape 6 d'ajustement de la position de l'objet (100) par ajustement de la position du support d'irradiation (90) par rapport à une source (32) et un détecteur associé (40),
 - une étape 7 de détermination de l'intensité atténuée (I) du faisceau photonique transmis à travers l'objet (100),
- une étape 8 d'acquisition, traitement et 20 analyse du spectre obtenu,

- une étape 9 de détermination de la variation relative $\frac{\Delta \rho}{\rho}$ de masse volumique (ρ) de l'objet (100) par rapport à celle d'un ou plusieurs objet(s) étalon(s) en masse volumique (emas),
- une étape 10 de transport retour de l'objet (100) jusqu'à son emplacement sur le plateau tournant (70).
 - 27. Procédé selon la revendication 26, caractérisé en ce que l'étape 4 de détermination de la

dimension significative (x) de l'objet (100) à contrôler comporte une saisie par l'opérateur d'un ensemble de paramètres d'entrée au moyen d'un module interactif, parmi lesquels :

- la configuration d'un plateau tournant (70), c'est-à-dire la nature des objets qui occupent différents emplacements sur celui-ci,
 - l'emplacement occupé par l'objet (100) sur le plateau tournant (70),
- 10 une position (Z_{mesure}) suivant la direction Z du socle (26) de l'unité (2),
 - un nombre P de mesures infrarouges pour chaque objet étalon en dimension (edim(n)), n = 1, ..., N, où N est le nombre d'objets étalons en dimension,
- un nombre Q de mesures infrarouges pour l'objet (100).

20

- 28. Procédé selon la revendication 27, caractérisé en ce que l'étape 4 de détermination de la dimension significative (x) de l'objet (100) à contrôler comporte en outre les opérations suivantes :
- a) déplacement d'un socle (26) de l'unité (2) suivant la direction Z jusqu'à la position (Z_{mesure}) ,
- b) déplacement d'un premier ensemble infrarouge (4, 6) suivant la direction Y, jusqu'à une 25 position (Y_{mesure}) définie par : $Y_{mesure} = Y_{OPT} + (x_{edim} x_{edimMOY})$, où :

 Y_{OPT} est la position optimale provenant de l'étape 1 d'étalonnage,

 x_{edim} est la dimension de l'objet étalon en 30 dimension (edim) utilisé lors de l'étape 1 d'étalonnage,

 x_{edimMOY} est la dimension significative moyenne de tous les objets (edim) étalons en dimension,

- c) mesure répétée P fois de la réponse infrarouge RI(p), p=1, ..., P des N objets étalons en dimension (edim(n)), n=1, ... N, ce qui conduit à un ensemble de valeurs RI(n, p),
- d) calcul proprement dit de la dimension significative de l'objet (100).
- 29. Procédé selon la revendication 28, 10 caractérisé en ce que l'opération d) de calcul proprement dit de la dimension significative (x) de l'objet (100) est effectuée de la manière suivante :
- d-1) mise en œuvre d'une régression polynomiale d'ordre 4 des dimensions significatives $x_{\text{edim}}(n) \text{ de chacun des N objets étalons en dimension edim(n), en fonction de la moyenne des réponses infrarouges <math display="block">RI_{\text{edimMOY}} = \frac{\sum RI(n,p)}{P} \quad \text{dudit objet étalon en dimension edim(n), pour calculer les coefficients A_0, A_1, A_2, A_3, A_4 d'une relation du type :}$
- 20 $x_{edim}(n) = A_4$. $(RI_{edimMoY}(n))^4 + A_3$. $(RI_{edimMoY}(n))^3 + A_2$. $(RI_{edimMoY}(n))^2 + A_1$. $(RI_{edimMoY}(n))^1 + A_0$, d-2) mesure répétée Q fois de la réponse infrarouge RI(q), q = 1, ..., Q de l'objet à contrôler 100, calcul de la moyenne $RI = \frac{\sum RI(q)}{O}$ de ces réponses
- 25 infrarouges, et calcul de la dimension significative x de l'objet 100 par la relation :

selon l'une quelconque des revendications 15 à 29, pour le contrôle d'objets (100) en cours de fabrication.

31. Utilisation selon la revendication 30, dans laquelle les objets (100) sont des pastilles de 5 combustible nucléaire.

FIG. 8

ETALONNAGES PREALABLES

Etape 1

étalonnage de position des deux ensembles infrarouges de l'unité de détermination de la dimension significative de l'objet

Etape 2

étalonnage de position du support d'irradiation de l'unité de détermination de l'intensité du faisceau photonique atténuée par la traversée de l'objet

Etape 3

étalonnage de mesure de l'ensemble source-détecteur de l'unité de détermination de l'intensité du faisceau photonique atténuée par la traversée de l'objet

FIG. 9A

DETERMINATION PROPREMENT DITE DE LA VARIATION RELATIVE DE MASSE VOLUMIQUE

Etape 4

détermination de la dimension significative de l'objet à contrôler

Etape 5

transport de l'objet vers le support d'irradiation

Etape 6

ajustement de la position de l'objet par ajustement de la position du support d'irradiation par rapport à une source et un détecteur associé

Etape 7

détermination de l'intensité atténuée du faisceau photonique transmis à travers l'objet

Etape 8

acquisition, traitement et analyse du spectre obtenu

Etape 9

détermination de la variation relative de masse volumique de l'objet par rapport à celle d'un ou plusieurs objet(s) étalon(s) en masse volumique

Etape 10

transport retour de l'objet jusqu'à son emplacement sur le plateau tournant

FIG. 9B

Etape 1

saisie manuelle des paramètres d'entrée

séquence d'opérations automatisées :

- a) déplacement du socle suivant la direction Z jusqu'à la position Z _{mesure}
- b) déplacement angulaire du plateau tournant pour amener l'objet edim à sa position initiale de mesure
- c) déplacement du premier ensemble infrarouge suivant la direction Y jusqu'à sa position de départ Y(1)
- d) déplacement du premier ensemble infrarouge suivant la direction Y, par incréments de INT, et détermination simultanée de la réponse infrarouge RI(n) de l'objet edim, correspondant à chaque position Y(n), pour n = 1, ..., N
- e) calcul de la réponse infrarouge optimale RI_{OPT} $\frac{\text{RI}_{\text{MAX}} \text{RI}_{\text{MIN}}}{2}$
- f) calcul de la position optimale Y OPT du premier ensemble infrarouge par rapport au deuxième ensemble infrarouge, et de l'écartement optimal d entre les deux ensembles infrarouges

Etape 2

saisie manuelle des paramètres d'entrée

séquence d'opérations automatisées :

- a) mesure de la dimension significative x _{emas} de l'objet étalon en masse volumique
- b) déplacement angulaire du plateau tournant, pour amener l'objet étalon en masse volumique emas en une position intermédiaire où il est saisi par le bras de préhension,
- c) positionnement de l'objet emas sur le support d'irradiation
- d) ajustement proprement dit de la position du support d'irradiation par rapport à l'ensemble source-détecteur :
- d-1) déplacement progressif du support
 d'irradiation suivant la direction Z entre les positions
 Z(1) et Z(N) prédéterminées
- d-2) pour chaque position Z(i), irradiation M fois de l'objet emas par le faisceau photonique, et obtention des valeurs d'intensité atténuée l(i, j)
- i = 1, ..., N = nombre de positions Z(i) entre Z(1) et Z(N)
- j = 1, ..., M = nombre d'irradiations pour chaque position Z(i)
- d-3) calcul de la position optimale Z _{OPT} du support d'irradiation à partir des positions Z(i) et des intensités atténuées I(i, j)
- e) transport retour de l'objet emas sur le plateau tournant

Etape 3

- a) mesure de l'intensité photonique l_{emas} atténuée par la traversée d'un objet étalon en masse volumique emas pris comme référence
- b) calcul du coefficient massique d'atténuation μ_m de l'objet étalon en masse volumique par la relation :

$$\rho_{\text{emas}} = -\,\frac{1}{\mu_{\text{m}} x_{\text{emas}}} \cdot L_{\text{n}}\,\frac{I_{\text{emas}}}{I_{\text{0}}}$$

Etape 4

saisie manuelles des paramètres d'entrée

séquence d'opérations automatisées :

- a) déplacement du socle suivant la direction Z jusqu'à la position Z _{mesure}
- b) déplacement du premier ensemble infrarouge suivant la direction Y, jusqu'à la position $Y_{mesure} = Y_{OPT} + (x_{edim} - x_{edimMOY})$
- c) mesure répétée P fois de la réponse infrarouge RI(p), p = 1, ..., P des N objets étalons en dimension edim(n), n = 1, ... N, conduisant à un ensemble de valeurs RI(n, p),
- d) calcul proprement dit de la dimension significative x de l'objet 100 :
- d-1) calcul de la moyenne RI $_{edimMOY}$ des P réponses infrarouges de chacun desdits objets edim(n) dont les dimensions significatives $x_{edim}(n)$ sont connues, puis calcul des coefficients A_0 , A_1 , A_2 , A_3 , A_4 de la relation

 $x_{edim}(n) = A_4 \cdot (RI_{edimMOY}(n))^4 + A_3 \cdot (RI_{edimMOY}(n))^3 + A_2 \cdot (RI_{edimMOY}(n))^2 + A_1 \cdot (RI_{edimMOY}(n))^1 + A_0$

d-2) mesure de la réponse infrarouge RI(q), q = 1, ..., Q de l'objet 100, puis calcul de la moyenne des RI(q), et calcul de la dimension significative x de l'objet 100 par la relation :

 $x = A_4 . (RI)^4 + A_3 . (RI)^3 + A_2 . (RI)^2 + A_1 .$ $(RI)^1 + A_0 .$

FIG. 13

Etape 9

calcul automatisé de la variation relative $\frac{\Delta \rho}{\rho}$ de masse volumique de l'objet 100 par rapport à celle d'un ou plusieurs objet(s) étalon(s) en masse volumique emas à partir de la relation:

$$\frac{\Delta \rho}{\rho} = \frac{\mathbf{x}_{\text{emas}}}{\mathbf{x}} \left[1 - \frac{\mathbf{L}_{\text{n}} \frac{\mathbf{I}}{\mathbf{I}_{\text{emas}}}}{\mu_{\text{m}} \rho_{\text{emas}} \mathbf{x}_{\text{emas}}} \right]$$

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre Vi

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08

Téléphone : 33 (1) 53 04 53 04 Télécopie : 33 (1) 42 94 86 54

DÉSIGNATION D'INVENTEUR(S) Page N° 1../1..

(À fournir dans le cas où les demandeurs et les inventeurs ne sont pas les mêmes personnes)

Cet imprimé est à remplie liciblement à l'anne est

	Cet imprime est a rempiir lisiblement a l'encre noire	DB 113 @ W / 270601	
Vos références pour ce dossier (facultatif)	B14068.3/VD		
N° D'ENREGISTREMENT NATIONAL	04.50686 DU 06.04.2004		
TITTE BE LUMBERTON			

TITRE DE L'INVENTION (200 caractères ou espaces maximum)

PROCEDE ET SYSTEME DE DETERMINATION DE LA MASSE VOLUMIQUE ET DES CARACTERISTIQUES DIMENSIONNELLES D'UN OBJET, ET APPLICATION AU CONTROLE DES PASTILLES DE COMBUSTIBLE NUCLEAIRE EN COURS DE FABRICATION.

LE(S) DEMANDEUR(S):

COMMISSARIAT A L'ENERGIE ATOMIQUE 31-33 rue de la Fédération 75752 PARIS 15 ème COMPAGNIE GENERALE DES MATIERES NUCLEAIRES 2 rue Paul Dautier 78140 VELIZY VILLACOUBLAY.

DESIGNE(NT) EN TANT QU'INVENTEUR(S) :

		
1 Nom		LYOUSSI
Prénoms		Abdallah
Adresse	Rue	Résidence la Petite Négresse Bât B2
	Code postal et ville	[0,4,1,0,0] MANOSQUE
Société d'a	appartenance (facultatif)	
2 Nom		PAYAN
Prénoms		Emmanuel
Adresse	Rue	Résidence la Petite Négresse bât. B2 Montée des Cigales
	Code postal et ville	[0,4,1,0,0] MANOSQUE
Société d'a	ppartenance (facultatif)	
3 Nom		
Prénoms		
Adresse	Rue	
	Code postal et ville	
Société d'a	ppartenance (facultatif)	

S'il y a plus de trois inventeurs, utilisez plusieurs formulaires. Indiquez en haut à droite le N° de la page suivi du nombre de pages.

DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) **OU DU MANDATAIRE** (Nom et qualité du signataire)

PARIS LE 28 AVRIL 2004 J. LEHU

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichlers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.