Name: _	Last:

SCH3U Periodic Trends and Quantum Quiz 2016 /52

iaeniij		e choice that best completes the statement or answers the question.						
	1.	The person given credit for developing the first modern periodic table is a. Dalton c. Thomson d. Mendeleev e. Chadwick b. Democritus						
	2.	the electron:						
		a. changesb. descreases with each orbitc. is constantd. increases with each orbit						
	3.	Which of the following elements requires the least amount of energy to remove an electron from an atom to form an ion?						
		a. O b. Fr c. K d. He						
	4.	Consider the equation $X_{(g)}$ + energy \rightarrow $X^+_{(g)}$ + e ⁻ . The "energy" term in the equation represents a. electron affinity d. sublimation energy b. heat of sublimation energy e. heat of vaporization c. ionization energy						
	5.	 Why does atomic radius increase from top to bottom in a chemical family? a. Nuclear charge increases from top to bottom in a chemical family. b. The number of electrons decreases from top to bottom in a chemical family. c. The number of energy levels increases from top to bottom in a chemical family. d. The number of energy levels decreases from top to bottom in a chemical family. 						
	6.	Which of the following is the most reactive metal element? a. cesium b. lithuim c. ununoctium d. aluminum						
	7.	 Why is it easier to remove an electron from potassium than it is to remove an electron from calcium? a. Potassium has a higher electron affinity. b. Potassium has a higher ionization energy. c. Calcium has a lower electron affinity. d. Potassium has a lower nuclear charge. 						
	8.	\mathcal{E}						
		a. potassium b. helium c. fluorine d. oxygen						
	9.	Element Y has a first ionization energy of 5.695 eV. Which is more reactive?						
		a. X b. Y c. They are equally d. not enough reactive. information						

10. Elements A, B, C, and D (found in Groups 1–17) have atomic radii of 265 µm, 160 µm, 185 µm, and 175 µm, respectively. Which element will most likely have the highest ionization energy?

a. A

b. B

c. C

d D

Short Answer Answer on a separate sheet!

/42

- 11. Explain how quantization of energy is analogous to a ball on a flight of steps. /2
- 12. How can a line spectrum be used to identify the particular element(s) present in a gas sample? /1
- 13. What is meant by the term "periodic trend"? /1
- 14. <u>Show</u> your calculations for the core charge of Li and N. <u>Explain</u> how these values relate to the difference in the atomic radii of these two elements. /4
- 15. Explain why the atomic radii of non-metal ions is increased relative to their neutral atoms? /2
- 16. Explain why Ba has a lower first ionization energy than Mg. /2
- 17. Examine the following 1st, 2nd, and 3rd ionization energies below.
 - a. State which element is most likely a noble gas. /1
 - b. Which element will likely form and 2+ ion? Justify, showing calculations for this element. /2

	1st	2nd	3rd
	(eV)	(eV)	(eV)
Element X	5.139	47.286	71.64
Element Y	7.646	15.035	80.143
Element Z	21.564	40.962	63.45

- 18. Why is it difficult to determine electron affinities for metals? /1
- 19. If an element has a high electron affinity would it most likely have a high or low ionization energy? Explain. /2
- 20. Make an argument for placing hydrogen in the halogen family rather than the alkali metals. /2
- 21. Which of the following would react most vigourosly to produce hydrogen gas? Explain your answer using your knowledge of periodic trends. He, Fr, Li, F /3
- 22. The reactivity of metals **increases** moving **down** a group, while the reactivity of non-metals **decreases** moving **down** a group. Use <u>specific periodic trends</u> to explain this observation. /3
- 23. For which of these properties does Li have a larger value than potassium? Explain your answers. /2 Properties: First ionization energy, atomic radius, ionic radius

- 24. While the Bohr-Rutherford model is able to predict and explain a great deal of atomic behaviours, there are exceptions to the predictions which indicate this model is inaccurate. Describe TWO observations (exceptions) that are not explained by Bohr-Rutherford. /2
- 25. Identify 2 component of Dalton's atomic model that are still incorporated in current models of the atom. /2
- 26. Describe one significant difference between Dalton's model of the atom and all subsequent models. /1
- 27. The accepted average atomic mass for Silicon is 28.1u. The following percent abundance data was collected from a mass spectrometer. Determine the percent abundance (x) of the isotope: $^{29}_{14}Si$. /2

Isotope	³⁰ ₁₄ Si	²⁹ ₁₄ Si	28 14 Si
percent abundance	3.1%	x	92.2%

- 28. Write a full electron configuration for Nickel (Ni). /2
- 29. Consider the following electron configurations. Use your understanding of the quantum model to select the most likely configuration(s) for questions (a) to (c): /5
 - i. $1s^22s^2p^63s^2p^6d^14s^2$
 - ii. $1s^22s^2p^63s^2p^6d^24s^2$
 - iii. $1s^22s^2p^63s^2$
 - iv. $1s^22s^2p^63s^2p^6$
 - v. $1s^22s^2p^3$
 - a. Which of these configurations would you expect to have highest IE₁?
 - b. Which of these configurations would you expect to have the lowest IE₂?
 - c. Which of these configurations corresponds to Mg?
 - d. Which of these configurations would have anomalous I. E. based on a Bohr-R model? Explain