Problem

Let A = { $\langle R \rangle | R$ is a regular expression describing a language containing at least one string w that has 111 as a substring (i.e., w = x111y for some x and y)}. Show that A is decidable.

Step-by-step solution

Step 1 of 3

Consider the language,

 $A = \begin{cases} \langle R \rangle | R \text{ is a regular expression describing a language which contain} \\ \text{at least one string } w \text{ containing } 111 \text{ as its substring} \end{cases}$

The decidability of the language A is proved as follows:

- Define a language S such that $S = \{w \in \Sigma^* \mid w \text{ consists } 111 \text{ as a substring}\}$.
- The regular expression (RE) for the language ${\cal S}$ is $\begin{picture}(0 \cup 1) *111(0 \cup 1) * \\ \end{picture}$
- The DFA $D_{\rm S}$ for the language S is shown below:

Comment

Step 2 of 3

- Now think about some RE R on input alphabet Σ .
- If $S \cap L(R) \neq \emptyset$, then R produces a string containing 111 as a substring. Thus, $\langle R \rangle \in A$
- Similarly, if $S \cap L(R) \neq \emptyset$ then R produces a string that does not contain 111. Thus, $\langle R \rangle$ does not belongs to A.
- Since L(R) is described by regular language, L(R) is a regular language. Both S and L(R) are regular languages.
- . $S \cap L(R)$ is regular because, regular languages are closed under intersection. Thus, $S \cap L(R)$ has some DFA $D_{S \cap L(R)}$.
- Theorem 4.4 shows that $E_{DFA} = \{\langle K \rangle | K \text{ is a DFA with } L(K) \neq \emptyset \}$ is decidable. Thus, there exists a Turing Machine TM which determines E_{DFA} .
- Relate TM T to $D_{S \cap L(R)}$ to determine if $L(R) \cap S \neq \emptyset$.

Comments (2)

Step 3 of 3

Summarization of the above discussion contributes the subsequent Turing machine *M* to decide *A*:

M = "On input $\langle R \rangle$, where R is a regular expression:

- Transform R into a DFA D_R by means of the algorithm in the proof of Kleene's Theorem.
- Build a DFA $D_{S \cap L(R)}$ for the language $S \cap L(R)$ from the DFAs D_S and D_R .
- ullet Run TM T that decides E_{DFA} on input $\left\langle D_{S \cap L(R)} \right\rangle$.

The Turing machine T	decides A . Therefore,	the language A is deci	dable.	
Comment				