设 F^k 为单凸多面体 P 的一个 k 维面, F^k 仍为单凸的,且继承了 P 染色. 记 F^k 上的 small cover 为 M_F . 下面在 dual cell structure 下,分析 $\pi_1(M_F)$ 与 $\pi_1(M_P)$ 的关系.

不妨取 F 为 P 的第一个 facet, p_0 为 F, P 任意一个共同的顶点,我们将分别将 $\{(F,l)\}_{l\in\mathbb{Z}_2^{n-1}}$ 与 $\{(P,l)\}_{l\in\mathbb{Z}_2^n}$ 在点 p_0 处粘合,得到多面体 $Q=P\times\mathbb{Z}_2^n/\sim$ 与 $Q_F=F\times\mathbb{Z}_2^{n-1}/\sim$. 则 $out(Q_F)\subset out(P), in(Q_F)\subset in(P)$. 设 $f_i=F_i\cap F\neq\varnothing$ 为 F 的一个任意的 facet, $f_i\cap f_j=F_i\cap F_j\cap F\neq\varnothing$ 为 F 的一个任意的余 2 维面.设 $f_{i,l}=F_{i,l_1}\cap F_{1,l_1}=F_{i,l_2}\cap F_{1,l_2}$ 为 Q_F 中的任意一个 facet,其中 $\{F_{1,l_1},F_{1,l_2}\}$ 为 $\{(P,l)\}_{l\in\mathbb{Z}_2^n}$ 中的 facets-pair,则 $f_{i,l}$ 在 Q_F 中对应的有向闭路与 F_{i,l_1} 和 F_{i,l_2} 在 Q_F 中对应的有向闭路为 x_{i,l_1},x_{i,l_2} 是定点同伦的,所以我们不妨记 $f_{i,l}$ 在 Q_F 中对应的有向闭路为 x_{i,l_1} 对于 Q_F 中的任意一个余 2 维面 $f_{i,l}\cap f_{j,l}=F_{i,l}\cap F_{j,l}\cap F_{1,l_2}\neq\varnothing$ 所对应的二维胞腔 V_l 与 $F_{i,l_1}\cap F_{j,l_1}$ 和 $F_{i,l_2}\cap F_{j,l_2}$ 所对应的二维胞腔 V_l , V_l 是定点同伦的,所以在 $\pi_1(M_F)$ 中, $f_{i,l}\cap f_{j,l}$ 决定的关系与 $F_{i,l_1}\cap F_{j,l_1}(\cap F_{1,l_1}\neq\varnothing)$ 或者 $F_{i,l_2}\cap F_{j,l_2}(\cap F_{1,l_2}\neq\varnothing)$ 在 $\pi_1(M_P)$ 中决定的关系对应。所以 M_F 的基本群为

$$\pi_1(M_F) = \langle x_{i,l}, i = 1, 2, \cdots, m', l \in \mathbb{Z}_2^{n-1} : x_{i,l_1} x_{i,l_2} = 1, if \ l(i) = l_1 l_2$$
$$x_{i,l} x_{j,l(i)} x_{i,l(i)l(j)} x_{j,l(j)} = 1, \forall f = f_{i,l} \cap f_{j,l} \neq \emptyset \rangle \quad (1)$$

其中 $f = f_{i,l} \cap f_{j,l} = F_{i,l_1} \cap F_{j,l_1} \cap F_{0,l_1} = F_{i,l_2} \cap F_{j,l_2} \cap F_{0,l_2} \neq \varnothing$. 即形式上 $\pi_1(M_F)$ 的生成元集 G_F 和关系集 R_F 都可为 $\pi_1(M_P)$ 的生成元集 G 和关系集 F 的子集. 事实上,由上面分析进一步知这种关系是由包含映射 $i: F \longrightarrow P$ 所诱导的,即对 $i_*: \pi_1(M_F) \longrightarrow \pi_1(M_P)$ 有 $i_*|_{G_F} = id$. 进一步由归纳知,对任意 F^k , $\pi_1(M_F)$ 和 $\pi_1(M_P)$ 都有上面的关系. 由这种关系可以看出 i_* 不一定是单同态.

如取 $P = I \times \Delta^2$ 为三棱柱,共有 5 个 facets $\{F_i\}_{i=1,2,3,4,5}$,我们给上下底面 F_1, F_2 染色 e_1 ,侧面 F_3, F_4, F_5 染色为 $e_2, e_3, e_1e_2e_3$,由 P 的 h-vector知, $\pi_1(M_P)$ 有两个生成元和两个关系,它的任意一个侧面上的 small cover基本群有两个生成元,一个关系.

$$\mathbb{H} \pi_1(M_P) = \langle x, y : x^2 = yxyx^{-1} = 1 \rangle, \pi_1(M_F) = \langle x, y : yxyx^{-1} = 1 \rangle$$

$$i_*: \pi_1(M_F) \longrightarrow \pi_1(M_P)$$

满足 $i_*(x) = x, i_*(y) = y$,但 i_* 非单.

命题 0.1 当多面体 P^n 为 flaq 时, i_* 为单同态.

证明:多面体 P 为 flag 的,是指 P 中两两相交的 facets 必有公共的交.即在 上面分析中若 $F \cap F_i \neq \emptyset$, $F \cap F_i \neq \emptyset$, 则 $F \cap F_i \cap F_i \neq \emptyset$, 即任意 F 附近的余 二维面 $f \subset Q$ 对应的关系一定可以继承到 M_F 的基本群中. 这保证了下面 定义的态射的合理性. 我们构造态射 $j_*: \pi_1(M_P) \longrightarrow \pi_1(M_F)$, 满足对任意 $x \in G - G_F$, $j_*(x) = 1$. 下面我们考虑 $\pi_1(M_P)$ 中关系文字在 j_* 下的像, 与 F相交的 facets 集 (包含 F), 我们记为 \mathcal{F}_F^1 , 与 \mathcal{F}_F^1 中 facets 相交且不包含 F 的 facets 集, 我们记为 \mathcal{F}_F^2 , 剩余的 facets 我们记为 \mathcal{F}_F^3 . 对于 Q 中的任意余二 位面 $f = F_i \cap F_i$,若 F_i , F_i 都属于 F_i ,由 P 的 flag 性质知 $f \cap F \neq \emptyset$,从而 j_* 将 $f \subset Q$ 所对应的关系映为 $\pi_1(M_F)$ 的一个关系; 若 F_i, F_j 都不属于 \mathcal{F}_F^1 , 则 对应关系在 j_* 下的像为 1; 若 F_i , F_j 分别属于 \mathcal{F}_F^1 , \mathcal{F}_F^2 , 不妨设 $F_i \subset \mathcal{F}_F^1$, $F_j \subset \mathcal{F}_F^2$ \mathcal{F}_F^2 , 设这个关系为 $x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}$, 则 $j_*(x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}) =$ $j_*(x_{i,l})j_*(x_{j,l(i)})j_*(x_{i,l(i)l(j)})j_*(x_{j,l(j)}) = x_{i,l}x_{i,l(i)l(j)} = 1$. 对于 Q 中的 facets pair, 它们同时属于或不属于 \mathcal{F}_F^1 , 所以 $\pi_1(M_P)$ 中的配对关系, 在 j_* 像 要么不变要么为 1. 所以对任意关系 $r \in \pi_1(M_P), j_*(r) \equiv 1$,即 j_* 为 welldefined. 进一步, 对任意 word $w = \Im(x: x \in G_F) \in \pi_1(M_F)$, $j_*i_*(w) =$ $j_*i_*(\partial(x:x\in G_F)) = j_*(\partial(x:x\in G_F)) = \partial(x:x\in G_F) = w\in\pi_1(M_F),$ 即 $j_*i_* = id : \pi_1(M_F) \longrightarrow \pi_1(M_F)$,故 i_* 单.

事实上,我们令 $\mathcal{F}_F^2 \cup \mathcal{F}_F^3$ 中的 facets 染色都为 \emptyset ,得到空间 $\widehat{M_F} = P \times \mathbb{Z}_2^n / \dot{\sim}$,与 M_F 是同伦等价的.

命题 **0.2** 当 P 为 flag 时, $i_*: W_F \longrightarrow W_P$ 为单的.

证明: 若 $F \cap F_i \neq \emptyset$, $F \cap F_j \neq \emptyset$, 则 $F \cap F_i \cap F_j \neq \emptyset$, 即任意 F 附近的 余二维面 $f \subset P$ 对应的关系一定可以继承到 W_P 中.

考虑 pull back

则

为可交换的.

所以当 P 为 flag 时, i_* 为单的,所以 $i_*\pi_*=\pi_*\alpha_*$ 为单的,从而 α_* 为单的. 这里的 F_* 即为面包含映射 i 所诱导的基本群同态.