0.ApiExps 基础接口类实验

本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。

序号	实验名称	简介	文件地址	版本
1	资源文件安装	该文件夹中主要是包含有本讲(或平台)实验中,所用	0.ResourcesFile\Readme.pdf	免费版
		到的驱动、软件以及各种学习资源。		
2	软件在环仿真	熟悉 Simulink 控制器与仿真平台, 该例程提供了一套	1.SoftwareSimExps\Readme.pdf	免费版
		基于 Simulink/RflySim3D 的较为逼真的仿真环境例		
		程。		
3	QGC 实时调整控制器参	在进行硬件在环仿真和真机实验时,常常需要在QGC	10.QGC-Param-Tune\Readme.pdf	免费版
	数	地面站中观察飞行状态,并对控制器参数进行实时调		
		整,以使得飞机达到最佳的控制效果。		
4	传感器数据读取	通过 RflySim 的底层开发接口,可获取的传感器数据	11.SenorDataGet\Readme.pdf	免费版
		包含磁力计、加速度计、陀螺仪、气压计和时间戳以		
		及 GPS 数据等信息。本实验将进行上述传感器部分		
		数据的获取,以此思路可订阅更加多样的传感器数		
		据。		
5	自驾仪 CPU 使用率查看	在使用 RflySim 平台进行底层开发的时,通常是需要	12.AutopilotCPUUsageGet\Readme.pdf	免费版
		在自驾仪硬件上验证我们自己开发的算法,但在		
		Simulink 中搭建的算法模型在自动代码生成自驾仪		
		固件时,可能会因算法的复杂度和模型搭建的合理		
		性,造成自驾仪系统的 CPU 占用率超负载,从而导		

				I
		致实验失败, 如下图。本实验将演示如何查看自己自		
		驾仪系统的 CPU 占用率情况。		
6	Simulink 中 M-Fucnction	PX4 固件的飞控系统都是基于 Nuttx 这个操作系统	13.Simulink_MS_FuncVS\Readme.pdf	免费版
	和S-Function对自驾仪系	的。Nuttx 是一个实时嵌入式操作系统(Embedded		
	统资源占用对比	RTOS), 它很小巧, 在微控制器环境中使用。Nuttx 完		
		全可扩展, 可从从小型 (8位) 至中型嵌入式 (32位)		
		系统。它的设计目的还在于完全符合 POSIX 标准, 完		
		全实时,并完全开放。以 Holybro Pixhawk 6C 为例,		
		其所使用主处理器为 STM32H743,频率为 480MHz,		
		内存为 2MB, 协处理器 STM32F103, 频率为 72MHz,		
		静态随机存取存储器(Static Random-Access		
		Memory, SRAM)为 64KB。因此在运行较大的算法程		
		序时,可能会造成内存使用爆满,CPU 超载等情况。		
		本实验将分别烧录由 M-Fucnction 和 S-Function 搭		
		建的 Simulink 模型, 通过分析自驾仪系统的资源占用		
		情况,可得 S-Function 搭建的 Simulink 模型占用自		
		驾仪资源更少。		
7	SITL 验证自动代码生成代	Simulink 的自动代码机制可以直接一键生成目标硬	14.SITLVeriGenCodeFirm\Readme.pdf	免费版
	码	件的所有代码并调用相关的编译器自动生成工程文		
		件, 省去了模型应用层代码和底层驱动关联的工作环		
		节。TLC (Target Language Compiler) 语言在 Simulink		
		中是连接模型和目标代码的桥梁,是一种解释性语		
		言。本实验将使用前面实验的文件		
		(\3.DesignExps\Exp4_AttitudeSystemCodeGen.slx)进		
		行自动代码生成,说明基于 RflySim 平台的 SITL 仿真		
		环境下验证自动生成的代码。		
				•

8	PSP 官方提供	熟悉 PSP 官方提供的实验资源,通过对px4demo_input_rc.slx 实验的讲解,了解硬件在环仿真流程。本例程是为了方便调参与测试,在 PSP 工具箱提供访问飞控内部参数的方法,这样可以在飞行测试实验中,通过地面站软件来修改 Simulink 生成控制器参数。(注:本文档以 px4demo_input_rc.slx 为主进行讲解,其余实验请参见Pixhawk_Pilot_Support_Package.pdf 文件或关注本平台其余课程实验;本节其他例程在后续例程有更详细的讲解,此文档只做对 PSP 工具箱访问飞控内部参数和自动生成代码配置的说明)	2.PSPOfficialExps\Readme.pdf	免费版
9	姿态控制器设计	熟悉 Simulink 控制器与仿真平台、软件在环仿真、硬件在环仿真以及实飞实验的流程, 本实验以一个设计好的姿态控制系统为例, 介绍整个实验的基本操作流程。	3.DesignExps\Readme.pdf	免费版
10	飞控固件上传	熟悉飞控固件还原的方法和途径。	4.PX4Firmwares\Readme.pdf	免费版
11	log 数据记录与读取	使用二进制日志记录模块: binary_logger, 完成飞行数据写入与读取, log 数据记录, 以 RflySim 平台设定了 20s 的四维随机数据, 数据存储位置飞控板内的片上外设存储卡内(路径为/fs/microsd/log/pixhawk), 熟悉 PX4 飞控的底层运行逻辑。	5.Log-Write-Read\Readme.pdf	免费版
12	uORB 消息读取与写入	自定义 uORB 消息,PX4 的 uORB 消息系统是提供了非常强大且方便的内部模块间数据交互能力,本例程是通过创建一个自定义的 uORB 消息实现读写功能,以此熟悉并掌握 PX4 的 uORB 消息系统。	6.uORB-Read-Write\Readme.pdf	免费版

13	自定义 uORB 消息	通过创建一个自定义的 uORB 消息实现读写功能,以此熟悉并掌握 PX4 的 uORB 消息系统。	7.uORB-Create\Readme.pdf	免费版
14	回传提示消息	在飞控中,我们时常需要向外发布一些文字消息,来反映系统当前的运行状态,这个功能可以通过发送"mavlink_log"的 uORB 消息来实现。	8.Mavlink-Msg-Echo\Readme.pdf	免费版
15	PX4 控制器的外部通信	本例程以外部发送的 rfly_ctrl 数据来作为遥控器输入,同时会将收到的数据向 rfly_px4 发送出去,回传给外部程序。	9.PX4CtrlExternalTune\Readme.pdf	免费版
16	第 01 讲_课程介绍	RflySim 底层飞行控制算法开发系列课程总体介绍。	第 01 讲_课程介绍.pdf	免费版
17	第 02 讲_实验平台配置	本章内容主要面对独立学习的读者或者实验课程老师,需要完成代码生成环境的部署工作并准备好实际飞行实验的平台。如果已经有配置好的实验平台,读者也可以跳过本章的内容,直接在搭建好的平台上按照后续章节内容完成实验课程。本书提供的实验平台总体可以分成两个部分:硬件平台和软件平台。下面将依次介绍各个部分的基本组成,以及详细的平台部署步骤。	第 02 讲_实验平台配置.pdf	免费版
18	第 03 讲_实验平台使用	首先来介绍一下平台的整体组成,本次课程主要是使用 RflySim 平台的第 5 讲部分内容,本次课程中主要用到 RflySim 平台的部分功能和资料有如下: Simulink控制器设计与仿真系统、Pixhawk 自驾仪硬件系统、多旋翼处理器在环仿真器实验指导包。本节将详细讲解实验平台的使用方法。	第 03 讲_实验平台使用.pdf	免费版

19	第 04 讲_实验流程介绍	本章内容主要面对独立学习的读者或者实验课程老	 免费版
		师, 需要完成代码生成环境的部署工作并准备好实际	
		飞行实验的平台。如果已经有配置好的实验平台,读	
		者也可以跳过本章的内容,直接在搭建好的平台上按	
		照后续章节内容完成实验课程。本书提供的实验平台	
		总体可以分成两个部分:硬件平台和软件平台。下面	
		将依次介绍各个部分的基本组成,以及详细的平台部	
		署步骤。	

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的实验, 旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。	Readme.pdf	免费版
2	第 01 讲_课程介绍	RflySim 底层飞行控制算法开发系列课程总体介绍。	第 01 讲_课程介绍.pdf	免费版
3	第 02 讲_实验平台配置	本章内容主要面对独立学习的读者或者实验课程老师,需要完成代码生成环境的部署工作并准备好实际飞行实验的平台。如果已经有配置好的实验平台,读者也可以跳过本章的内容,直接在搭建好的平台上按照后续章节内容完成实验课程。本书提供的实验平台总体可以分成两个部分:硬件平台和软件平台。下面将依次介绍各个部分的基本组成,以及详细的平台部署步骤。	第 02 讲_实验平台配置.pdf	免费版
4	第 03 讲_实验平台使用	首先来介绍一下平台的整体组成,本次课程主要是使用 RflySim 平台的第 5 讲部分内容,本次课程中主要用到 RflySim 平台的部分功能和资料有如下:Simulink 控制器设计与仿真系统、Pixhawk 自驾仪硬件系统、多旋翼处理器在环仿真器实验指导包。本节将详细讲解实验平台的使用方法。	第 03 讲_实验平台使用.pdf	免费版

5	第 04 讲_实验流程介绍	本章内容主要面对独立学习的读者或者实验课程老	第 04 讲_实验流程介绍.pdf	免费版
		师,需要完成代码生成环境的部署工作并准备好实		
		际飞行实验的平台。如果已经有配置好的实验平台,		
		读者也可以跳过本章的内容,直接在搭建好的平台		
		上按照后续章节内容完成实验课程。本书提供的实		
		验平台总体可以分成两个部分: 硬件平台和软件平		
		台。下面将依次介绍各个部分的基本组成, 以及详细		
		的平台部署步骤。		
6	资源文件安装	该文件夹中主要是包含有本讲(或平台)实验中, 所用	0.ResourcesFile\Readme.pdf	免费版
		到的驱动、软件以及各种学习资源。		
7	软件在环仿真	熟悉 Simulink 控制器与仿真平台,该例程提供了一	1.SoftwareSimExps\Readme.pdf	免费版
		套基于 Simulink/RflySim3D 的较为逼真的仿真环境		
		例程。		
8	QGC 实时调整控制器参	在进行硬件在环仿真和真机实验时,常常需要在	10.QGC-Param-Tune\Readme.pdf	免费版
	数	QGC 地面站中观察飞行状态,并对控制器参数进行		
		实时调整,以使得飞机达到最佳的控制效果。		
9	传感器数据读取	通过 RflySim 的底层开发接口,可获取的传感器数据	11.SenorDataGet\Readme.pdf	免费版
		包含磁力计、加速度计、陀螺仪、气压计和时间戳以		
		及 GPS 数据等信息。本实验将进行上述传感器部分		
		数据的获取,以此思路可订阅更加多样的传感器数		
		据。		
10	自驾仪 CPU 使用率查看	在使用 RflySim 平台进行底层开发的时, 通常是需要	12.AutopilotCPUUsageGet\Readme.pdf	免费版
		在自驾仪硬件上验证我们自己开发的算法,但在		
		Simulink 中搭建的算法模型在自动代码生成自驾仪		
		固件时,可能会因算法的复杂度和模型搭建的合理		

		性,造成自驾仪系统的 CPU 占用率超负载,从而导		
		致实验失败,如下图。本实验将演示如何查看自己自 驾仪系统的 CPU 占用率情况。		
11	Simulink 中 M-Fucnction	PX4 固件的飞控系统都是基于 Nuttx 这个操作系统	13.Simulink_MS_FuncVS\Readme.pdf	免费版
	和 S-Function 对自驾仪	的。Nuttx 是一个实时嵌入式操作系统(Embedded		
	系统资源占用对比	RTOS),它很小巧,在微控制器环境中使用。Nuttx		
		完全可扩展,可从从小型(8位)至中型嵌入式(32		
		位)系统。它的设计目的还在于完全符合 POSIX 标		
		准,完全实时,并完全开放。以 Holybro Pixhawk 6C		
		为例,其所使用主处理器为 STM32H743,频率为		
		480MHz, 内存为 2MB, 协处理器 STM32F103, 频率		
		为 72MHz,静态随机存取存储器(Static Random-		
		Access Memory, SRAM)为 64KB。因此在运行较大的		
		算法程序时,可能会造成内存使用爆满,CPU 超载		
		等情况。本实验将分别烧录由 M-Fucnction 和 S-		
		Function 搭建的 Simulink 模型,通过分析自驾仪系		
		统的资源占用情况,可得 S-Function 搭建的 Simulink		
		模型占用自驾仪资源更少。		
12	SITL 验证自动代码生成	Simulink 的自动代码机制可以直接一键生成目标硬	14.SITLVeriGenCodeFirm\Readme.pdf	免费版
	代码	件的所有代码并调用相关的编译器自动生成工程文		
		件,省去了模型应用层代码和底层驱动关联的工作		
		环节。TLC(Target Language Compiler)语言在		
		Simulink 中是连接模型和目标代码的桥梁,是一种		
		解释性语言。本实验将使用前面实验的文件		
		(\3.DesignExps\Exp4_AttitudeSystemCodeGen.slx)		
		进行自动代码生成,说明基于 RflySim 平台的 SITL 仿		

		真环境下验证自动生成的代码。		
13	PSP 官方提供	熟悉 PSP 官方提供的实验资源,通过对px4demo_input_rc.slx实验的讲解,了解硬件在环仿真流程。本例程是为了方便调参与测试,在 PSP 工具箱提供访问飞控内部参数的方法,这样可以在飞行测试实验中,通过地面站软件来修改 Simulink 生成控制器参数。(注:本文档以 px4demo_input_rc.slx 为 主进行讲解, 其余实验请参见Pixhawk_Pilot_Support_Package.pdf文件或关注本平台其余课程实验;本节其他例程在后续例程有更详细的讲解,此文档只做对 PSP 工具箱访问飞控内部参数和自动生成代码配置的说明)	2.PSPOfficialExps\Readme.pdf	免费版
14	姿态控制器设计	熟悉 Simulink 控制器与仿真平台、软件在环仿真、硬件在环仿真以及实飞实验的流程,本实验以一个设计好的姿态控制系统为例,介绍整个实验的基本操作流程。	3.DesignExps\Readme.pdf	免费版
15	飞控固件上传	熟悉飞控固件还原的方法和途径。	4.PX4Firmwares\Readme.pdf	免费版
16	log 数据记录与读取	使用二进制日志记录模块: binary_logger, 完成飞行数据写入与读取, log 数据记录, 以 RflySim 平台设定了 20s 的四维随机数据,数据存储位置飞控板内的 片上外设存储卡内(路径为/fs/microsd/log/pixhawk),熟悉 PX4 飞控的底层运行逻辑。	5.Log-Write-Read\Readme.pdf	免费版
17	uORB 消息读取与写入	自定义 uORB 消息, PX4 的 uORB 消息系统是提供了非常强大且方便的内部模块间数据交互能力,本例程是通过创建一个自定义的 uORB 消息实现读写功	6.uORB-Read-Write\Readme.pdf	免费版

		能,以此熟悉并掌握 PX4 的 uORB 消息系统。		
18	自定义 uORB 消息	通过创建一个自定义的 uORB 消息实现读写功能,	7.uORB-Create\Readme.pdf	免费版
		以此熟悉并掌握 PX4 的 uORB 消息系统。		
19	回传提示消息	在飞控中, 我们时常需要向外发布一些文字消息, 来	8.Mavlink-Msg-Echo\Readme.pdf	免费版
		反映系统当前的运行状态,这个功能可以通过发送		
		"mavlink_log"的 uORB 消息来实现。		
20	PX4 控制器的外部通信	本例程以外部发送的 rfly_ctrl 数据来作为遥控器输	9.PX4CtrlExternalTune\Readme.pdf	免费版
		入,同时会将收到的数据向 rfly_px4 发送出去,回传		
		给外部程序。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。