Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale

7 gennaio 2020

Seconda Prova Parziale – compito B

Cognome (stampatello)		•••••	
Nome (stampatello)			
Numero di Matricola			CFU
Registrato su ESSE3 (barrare la risposta).	SI'	NO	
Corso di Laurea e anno di iscrizione			

Problema 1. Due solenoidi, lunghi entrambi L = 50 cm, hanno raggi $R_1 = 4$ cm e $R_2 = 1$ cm e sono coassiali. I numeri totale di spire sono sul primo $N_1 = 10000$ spire e sul secondo $N_2 = 15000$. Supponendo che nel solenoide interno la corrente vari secondo la legge $i_1(t) = i_0 \cos \omega t$ dove $i_0 = 12$ A:

a) Calcolare il valore di ω perché la f.e.m. massima indotta sul solenoide interno sia di 50 V;

PER 6 CFU: Calcolare, alla frequenza trovata, l'ampiezza del campo elettrico E_{max} indotto ad una distanza $r_1 = 3$ cm dall'asse dei solenoidi tenendo conto solo della variazione di flusso prodotta dal solenoide 2.

Problema 2. Un oggetto si trova ad una distanza $p_1 = 33$ cm da una lente convergente di focale $f_1 = 15$ cm. Questa si trova ad una distanza D = 55 cm da una seconda lente convergente di focale $f_2 = 12$ cm. Calcolate posizione e ingrandimento dell'immagine finale formata dalle due lenti.

PER 6 CFU: Calcolare anche la posizione p_1 dell'oggetto necessaria ad ottenere un'immagine finale virtuale nel punto medio di D e la distanza focale del sistema ottico costituito dalle due lenti.

Problema 3 Una corda di massa m = 2.8 g è tesa tra i due morsetti di una chitarra distanti L = 70 cm.

Calcolare: a) tre valori della tensione *T* della corda necessari per produrre un LA (440 Hz) con una delle frequenze permesse, b) le corrispondenti velocità di propagazione dell'onda nella corda in corrispondenza a tale nota.

Problema 4. In un interferometro di Young con fenditure distanti d = 0.6 mm vengono prodotte due figure di interferenza con radiazioni a lunghezze d'onda $\lambda_1 = 475$ nm e $\lambda_2 = 550$ nm. Calcolare a che distanza L va posto uno schermo perché le frange di interferenza di ordine 5 delle due componenti siano distanziate almeno di $\delta x = 1.0$ mm.

- 1) Vanno consegnati i fogli con lo svolgimento e il testo stampato.
- 2) <u>Ogni foglio consegnato deve riportare nome e cognome in stampatello e il numero di matricola.</u>
- 3) Non consegnate la brutta copia.
- 4) E' obbligatorio riportare i passaggi algebrici utilizzati per arrivare alla soluzione finale corredati di un breve commento scritto che li descriva.
- 5) <u>In caso di ritiro va consegnato solo il testo stampato con scritto "Ritirato" e la firma.</u>