Обратный остаток

Обратное по модулю целого a — это такое целое число x, что произведение ax сравнимо с 1 по модулю m.

Теорема. Если (a, m) = 1, то у a есть обратный остаток по модулю m.

- $\boxed{1}$ Дано простое число p и его некоторый ненулевой остаток a.
 - (a) Докажите, что в последовательности $0 \cdot a, 1 \cdot a, 2 \cdot a, \dots, (p-1) \cdot a$ все числа дают разные остатки по модулю p.
 - (b) Докажите, что существует и при том единственный обратный остаток b
 - (с) Какие остатки совпадают со своими обратными остатками?
- [2] Решите сравнения (то есть найдите все подходящие x и докажите, что других нет)
 - (a) $5x \equiv 2 \pmod{3}$;
 - (b) $3x \equiv 2 \pmod{11}$;
 - (c) $6x \equiv 1 \pmod{13}$;
- $\boxed{3}$ Какой остаток даёт x при делении 13, если:
 - (a) $3x \equiv 4 + x \pmod{13}$;
 - (b) $7x \equiv 8 + 3x \pmod{13}$;
 - (c) $10x + 2 \equiv -x \pmod{13}$.
- [4] (Теорема Вильсона.) Докажите, что $(p-1)! \equiv -1 \pmod{p}$, если и только если p является простым числом.
- [5] Пусть p простое число и $k \leqslant p$. Докажите, что $(p-k)!(k-1)! \equiv (-1)^k$.
- [6] Для простого числа p и остатка а определим его *показатель* по модулю p как наименьшее такое натуральное число d, что $a^d \equiv 1 \bmod p$. Рассмотрим произведение всех остатков по модулю p, которые имеют одинаковый показатель. Какой остаток от деления на p даёт это произведение?
- 7 Пусть числа p и p+2 являются простыми числами-близнецами. Докажите, что справедливо $4((p-1)!+1)+p\equiv 0\pmod{p^2+2p}$.
- 8 Даны натуральные числа a, b и c такие, что ab + 9b + 81 и bc + 9c + 81 делятся на 101. Докажите, что тогда и ca + 9a + 81 тоже делится на 101.
- [9] Пусть $p \geqslant 3$ простое число. Докажите, что если сумму $\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{p-1}$ привести к общему знаменателю, то числитель получившейся дроби будет делиться на p.

- 10 На доске написаны числа $\frac{100}{1}, \frac{99}{2}, \dots, \frac{1}{100}$. Можно ли выбрать какие-то девять из них, произведение которых равняется единице?
- Докажите, что для любого простого p>3 существует бесконечно много n таких, что $2^n+3^n+6^n-1$ делится на p.