

Machine Learning

Blockkurs Neuronale Netze und Deep Learning vom 7.6.2018

Mario Stanke Institut für Mathematik und Informatik Universität Greifswald Machine Learning

Mario Stanke

Problems with Fully Connected Artificial Neural Nets

Mario Stanke

Problems with Fully Connected Artificial Neural Nets

- · high number of parameters
- when images are input:

Machine Learning Mario Stanke

Problems with Fully Connected Artificial Neural Nets

- high number of parameters
- · when images are input:
 - no notion of pixel neighborhoods
 - no translation invariance

Convolution (1-dimensional)

Definition 1 (Convolution of vectors)

Let indices start at 0 and let $a=(a_0,a_1,\ldots,a_{m-1})$ and $b=(b_0,b_1,\ldots,b_{n-1})$ be vectors of dimensions m and $n\geq m$, respectively. The (n+m-1)-dimensional vector $c:=(c_0,\ldots,c_{n+m-2})$ with

$$c_i := \sum_{k \in \mathbb{Z}} a_k b_{i-k} \qquad (i = 0, \dots, n+m-2)$$

is called the convolution of a and b.

(For notational convenience set $a_i = 0$ if $i \neq \{0, \dots, m-1\}$ and $b_i = 0$ if $i \neq \{0, \dots, n-1\}$). We write

$$c = a \otimes b$$
.

Convolution (1-dimensional)

Definition 1 (Convolution of vectors)

Let indices start at 0 and let $a=(a_0,a_1,\ldots,a_{m-1})$ and $b=(b_0,b_1,\ldots,b_{n-1})$ be vectors of dimensions m and $n\geq m$, respectively. The (n+m-1)-dimensional vector $c:=(c_0,\ldots,c_{n+m-2})$ with

$$c_i := \sum_{k \in \mathbb{Z}} a_k b_{i-k} \qquad (i = 0, \dots, n+m-2)$$

is called the convolution of a and b.

(For notational convenience set $a_i = 0$ if $i \neq \{0, \dots, m-1\}$ and $b_i = 0$ if $i \neq \{0, \dots, n-1\}$). We write

$$c = a \otimes b$$
.

Example 2 (n = m = 3)

$$\begin{array}{rcl} c_0 & = & a_0b_0 \\ c_1 & = & a_0b_1 + a_1b_0 \\ c_2 & = & a_0b_2 + a_1b_1 + a_2b_0 \\ c_3 & = & a_1b_2 + a_2b_1 \\ c_4 & = & a_2b_2 \end{array}$$

Example 3

$$(1,2,3) \otimes (-2,3,4,1)$$

= $(-2,-1,4,18,14,3)$

FFT

The convolution c can be computed in time $O(n \log n)$ with the discrete fast Fourier transform (FFT).

Mario Stanke

Definition 4 (Cross-correlation (1-dimensional))

Call

$$d=(d_0,\ldots,d_{n-m})=a*b$$

with

$$d_j := \sum_{k=0}^{m-1} a_k b_{k+j}$$
 $(j = 0, ..., n-m)$

the cross-correlation of a and b.

Cross-correlation and convolution

- Up to the (quick) operations reversal, shift, cropping and zero-padding, cross-correlation and convolution are equivalent.
- In particular,

$$d_j = (\operatorname{rev}(a) \otimes b)_{j+m-1}.$$

 Although 'convolution' is eponymous (namensgebend) for CNNs, cross-correlation is a more convenient definition.

Cross-correlation (2-dimensional)

Definition 5

Let $A = (a_{ij})_{0 \le i, i \le m}$ be a square $m \times m$ -dimensional matrix and

$$B = (b_{ij}) \underset{0 < j < w}{\underset{0 \leq i \leq h}{0}}$$

be another matrix of shape $h \times w$.

The $h - n + 1 \times w - n + 1$ -dimensional matrix C with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{i'=0}^{m-1} a_{i',j'} \cdot b_{i+i',j+j'}$$

is the 2-dimensional cross-correlation of A and B. We write C = A * B.

Example 6

$$m-2$$
, $h=4$, $w=5$.

$$A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 & 0 & 2 & -1 \\ 0 & 1 & 4 & 0 & 1 \\ 2 & -2 & 7 & 3 & 0 \\ -1 & 0 & 1 & 0 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -13 & 6 & 0 \\ 9 & -28 & 9 & 5 \\ 2 & -12 & 6 & -9 \end{pmatrix}$$

Cross-Correlation of an Image

6

9 2

4

က

9 10 11 12

input image B

C = A * B

Mario Stanke

3-dimensional input

- Want to
 - 1 use multiple filters in parallel and
 - 2 stack several (convolutional) layers.
- Also, color images are naturally encoded as 3-dimensional (each pixel has a red, green and blue value).
- Solution: Define convolution for 3-dimensional tensor input as well.

March Oranda

3-dimensional cross-correlation

Let
$$B = \begin{pmatrix} b_{ijk} \end{pmatrix}$$
 $0 \le i < h \atop 0 \le j < w \atop 0 \le k < d}$ be a tensor of shape $h \times w \times d$ and

let
$$A = (a_{ijk})_{\substack{0 \le i,j < m \\ 0 \le k < d}}$$
 be another tensor ("filter").

The cross-correlation of A and B is then the $h - n + 1 \times w - n + 1$ -dimensional matrix C = A * B with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{j'=0}^{m-1} \sum_{k=0}^{d} a_{i',j',k} \cdot b_{i+i',j+j',k}.$$

 The input width and height can be conserved in the ouput layer by zero-padding of input.

- The input width and height can be conserved in the ouput layer by zero-padding of input.
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .

- The input width and height can be conserved in the ouput layer by zero-padding of input.
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters needs to be computed for BackProp (omitted).

- The input width and height can be conserved in the ouput layer by zero-padding of input.
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters needs to be computed for BackProp (omitted).
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (parameter sharing).

- The input width and height can be conserved in the ouput layer by zero-padding of input.
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters needs to be computed for BackProp (omitted).
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (parameter sharing).
- Output neurons of convolution could represent lower-level features like ("lower left corner", "pupil") and be combined in deeper layers.

Example Application

Distinguish images of {3, 4, 5, 6}-gons

- inputs x ∈ {0,..., 255}^{32×32}
 32 × 32 grayscale images (1 byte) which contain a triange, a quadrilateral, a pentagon or a hexagon with probability 1/4 each
- *n*-gons (*n*-Ecke) of the same type have the same size and shape, just the position in the image is random
- labels $y \in \{3, 4, 5, 6\}$

Examples:

This application is tailored to work well with convolution layers.

n-gon Classification

Making it harder: noise

- randomly change pixels
- for some images more than for others (details in code)

Examples:

The program createNGonExamples.py to generate

- 50000 training examples and
- 2000 test examples

and to store in LMDBs (Lightning Memory-Mapped Databases) is on the class web site.

A Classical NN Performs Poorly

ANN architecture

- L = 2 layers:
 1 hidden layer of size 3200 and output layer of size 4
- ReLU activation function in hidden layer
- barely surpasses random-guessing-accuracy (0.25)
- (improvements by adding layers conceivable, but that is not the point, here)

A Convolutional Neural Net (CNN)

CNN architecture

layers:

- convolutional with 8 filters of size13 x 13
- 2 obtain a single maximum from each of the 8 'channels'
- 3 ReLU
- 4 1 fully connected layer

Pycaffe code snippet

```
n = caffe.NetSpec()
n.data, n.label = L.Data([...]
    transform_param=dict(scale=1./255))
n.convl = L.Convolution(n.data, kernel_size=13,
    num_output=6 [...])
n.pooll = L.Pooling(n.convl, kernel_size=32,
    stride=32, pool=P.Pooling.MAX)
n.relul = L.ReLU(n.pooll, in_place=True)
n.score = L.InnerProduct(n.relul, num_output=4 [...])
n.loss = L.SoftmaxWithloss(n.score, n.label)
```

Machine Learning

Mario Stanke

ANN vs CNN

parameter numbers

- ANN: 32 · 32 · 3200 + 3200 · 4 = 3 289 600
- ullet CNN: $8 \cdot 13 \cdot 13 + 8 \cdot 4 = 1$ 384 (bias term parameters not included)

training times (CPU)

- ANN: 388 seconds
- CNN: 98 seconds

Filters

at end of training

Pycaffe program

train-angle-CNN.py producing the images from this set of slides available on class web site.

CNN performance on n-gon classification

Example predictions (CNN prediction / actual label)

Machine Learning

.

Multi-Layered CNN example

Demo: photo classification

- CNN from 2012 ("AlexNet")
- classification into 1000 categories

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, 2012

Machine Learning

Convolutional NNs

Caveats

- filters are often less clearly interpretable than in above tailored example
- recognize only translation-invariant patterns, not from other transformations (e.g. scale, rotation)