Techniques like Code refactoring can enhance readability. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Many applications use a mix of several languages in their construction and use. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. It is usually easier to code in "high-level" languages than in "low-level" ones. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Techniques like Code refactoring can enhance readability. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Code-breaking algorithms have also existed for centuries. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Different programming languages support different styles of programming (called programming paradigms).