STT 465 (Fall, 2015): Bayesian Statistical Methods

⇒ Instructor: Gustavo de los Campos (Asoc. Prof., EPI-Biostat & Statistics)

Contact: gustavoc@msu.edu

Primary office: 909 Fee Rd. Room B637

Websites:

⇒ Office Hours: Mostly by appointment

⇒ Course website: https://github.com/gdlc/stt465

⇒ Syllabus: see course website for info about the course, pre-requisites,

grading, etc.

⇒ Pre-requisites, rules, exams & grading policy (see syllabus)

Tentative Schedule

Week	Day		Date	Chapter	Events
Week 1	W		2-Sep	Ch. 1	1st class
	M	_	7-Sep		No class
Week 2	W	_	9-Sep	Ch. 2	
	M	,	14-Sep	Ch. 3	
	W		16-Sep		HW1 due
	M		21-Sep	Ch. 4	
Week 3	W	_	23-Sep		
	M		28-Sep	Ch. 5	
Week 4	W	·	30-Sep		HW2 due
	M		5-Oct	Ch. 6	
Week 5	W		7-Oct		
	M	-	12-Oct	Ch. 7	
Week 6	W	Ĺ	14-Oct		HW2 due
	M	-	19-Oct	Ch. 9	
Week 7	W		21-Oct		
	M	-	26-Oct		
Week 8	W		28-Oct		Midterm
	M		2-Nov	Ch. 10	
Week 9	W		4-Nov		Proposal due
	M		9-Nov	Ch. 12	
Week 10	W		11-Nov		
	M		16-Nov	Multivariate Mixed Models	
Week 11	W		18-Nov		
	M		23-Nov		
Week 12	W		25-Nov		Final project due
	М	-	30-Nov		
Week 13	W		2-Dec		
	М	-	7-Dec		
Week 14	W		9-Dec		Final project presentations
	M		14-Dec		Final project presentations
Week 15	W		16-Dec		

Statistical Inference

- ⇒ Review of basic concepts:
 - Population
 - Sample
 - Estimator
- ⇒ Inference: we make statements about population parameters based on data.
- ⇒ Two approaches:
 - Classical (frequentist) inference: statements are based on the sampling distribution of the estimator over conceptual repeated sampling
 - Bayesian: statements are conditional on the observed data (the only sample we have drawn from the population).
- \Rightarrow Discuss the problem of estimating the mean of Y in a population.

Frequentist approach

Model
$$p(y|\theta)$$

Sample
$$Y_s = \{y_i\}$$
 Estimator $\hat{\theta}(Y_s)$

$$MSE(\hat{\theta}) = \left[E(\hat{\theta}) - \theta\right]^2 + E\left[\hat{\theta} - E(\hat{\theta})\right]^2$$

Squared-Bias

Variance

Bias-Variance Tradeoffs