

Profesor: Jose Daniel Ramirez Soto

Tarea #: 1

Tema: Exploración de datos, PCA y regresión básica

Fecha entrega: 03/26/2025 11:55 PM

Objetivo: Utilizar conceptos estadísticos para entender la relación entre las variables de una base de datos. Adicionalmente, utilizar python como herramienta de exploración de datos y validación de hipótesis.

Entrega: Crear un repositorio en su github personal. Dentro del proyecto debe existir una carpeta llamada tarea 1, dentro debe tener una carpeta doc con este documento incluyendo todas las respuestas y los gráficos. Adicionalmente, debe existir una carpeta src con el código del notebook utilizado. Debe adicionar la cuenta jdramirez como colaborador del proyecto y enviar un email antes de q se termine el dia indicando el commit desea le sea calificado.

1. Utilizas el siguiente set de datos para calcular paso por paso (mostrar procedimiento y fórmulas):

City	GDP (USD Billion)	Population (Millions)	Unemployment Rate (%)	Average Age	Women (%)	Men (%)	Budget (USD Billion)	initial label	training
Bogotá	103.5	7.18	10.5	32	52	48	18	2	Yes
Medellín	44.1	2.57	11.2	31	53	47	7.5	3	Yes
Cali	22.4	2.23	13.8	30	52	48	4.2	2	Yes
Barranquilla	16.8	1.23	12.4	29	51	49	3.1	3	Yes
Cartagena	10.5	1.03	10.9	30	51	49	2.8	1	Yes
Bucaraman ga	7.3	0.58	9.2	33	52	48	1.5	2	No
Pereira	6.2	0.48	12	32	52	48	1.3	1	Yes
Cúcuta	5.1	0.76	16.3	28	51	49	1.2	1	No
Ibagué	4.8	0.53	13.4	31	52	48	1.1	3	No
Santa Marta	4	0.52	11.6	29	51	49	0.9	3	Yes
Manizales	3.8	0.43	10.7	32	53	47	0.8	2	Yes
Villavicencio	3.5	0.5	13	30	51	49	0.8	0	No

Profesor: Jose Daniel Ramirez Soto

Pasto	3.2	0.45	12.9	31	52	48	0.7	1	No
Montoría	3	0.40	12.5	20	E1	40	0.7	2	Voc
Montería	3	0.49	13.5	29	51	49	0.7	3	Yes
Valledupar	2.8	0.47	14.8	28	51	49	0.6	2	Yes
Neiva	2.5	0.35	14.1	30	52	48	0.6	3	Yes
Popayán	2.3	0.33	15.2	31	52	48	0.5	1	Yes
Armenia	2.1	0.3	13.3	32	53	47	0.5	0	Yes
Sincelejo	2	0.28	16.5	29	51	49	0.5	1	Yes
Tunja	1.8	0.25	10	31	52	48	0.4	2	Yes
Florencia	1.7	0.2	17.5	28	51	49	0.4	2	Yes
Riohacha	1.5	0.22	15.7	27	51	49	0.3	3	No
Quibdó	1.3	0.13	18.2	26	52	48	0.3	1	Yes
San Andrés	1.2	0.08	14	27	50	50	0.2	2	Yes
Yopal	1.1	0.15	11.5	29	51	49	0.2	0	Yes
Leticia	1	0.05	13.6	26	51	49	0.1	3	Yes
Arauca	0.9	0.08	12.2	29	51	49	0.1	2	No
Мосоа	0.8	0.04	15	28	52	48	0.1	0	No
Mitú	0.7	0.01	20	25	51	49	0.05	2	Yes
Puerto Carreño	0.6	0.01	22	24	50	50	0.05	0	No

 $\textbf{Tabla tomada del DANE} \ \underline{\text{https://www.dane.gov.co/files/operaciones/PIB/departamental/anex-PIBDep-TotalDepartamento-2022pr.xlsx}.$

Profesor: Jose Daniel Ramirez Soto

 ¿Cuál es la media, mediana y desviación estándar?, y la moda y los valores repeticiones de la moda para los datos categóricos.
 MEDIA

GDP	8.750000
Population	0.731000
Unemploymer	nt Rate 13.435333
Average Age	29.233333
Women (%)	51.500000
Men (%)	48.500000
Budget	1.650000
Initial Label	1.700000

MEDIANA

GDP	2.65
Population	0.39
Unemployment	Rate 13.45
Average Age	29.00
Women (%)	51.00
Men (%)	49.00
Budget	0.60

DESVIACION ESTANDAR

GDP	19.914433		
Population	1.352832		
Unemployment	Rate 3.869034		
Average Age	2.238893		
Women (%)	0.776819		
Men (%)	0.776819		
Budget	3.451187		

MODA

City	Arauca				
GDP	0.6				
Population	0.01				
Unemployme	ent Rate 0.58				
Average Age	29.0				
Women (%)	51.0				
Men (%)	49.0				
Budget	0.1				

Profesor: Jose Daniel Ramirez Soto

1.2. Dibujar un boxplot a mano. Utilizando los datos de la tabla 1 y las siguientes proporciones.

1.3. Cual es la covarianza entre las 2 variables X1, X2

 $(OV(x,y) = \{ (x; -x)(y; -y) \}$ $\{ (x; -x)(y; -y) \}$ $\{ (x; -x) = 107.242 \}$

1.4. Cuál es la correlación entre la variable x1 y x2 (Calcularla a mano). Correlación puede ser escrita también como:

Mn = 60P	Corlx,y) = _	€ i=1(X:	-x)(4:-1)		
Me = Population	1 12	En (x: -x)2	VE1=1(4:-	712	
x = 8, 450 ->	773.841			/ ()	
7 = 0,737	(707,242) (7,285)	-> 0.49051	(or (x)	4)=0.99054	
(x:+x)(y:-y)=7	13.877				
(K, -X) = 707. 242					

Profesor: Jose Daniel Ramirez Soto

1.5. Explica la relación entre covarianza y correlación.

La covarianza indica la dirección de la relación entre las dos variables. La correlación indica tanto la dirección como la fuerza de la relación, y es más útil para interpretar y comparar.

1.6. Calcule el resultado del algoritmo K-means sobre este set de datos a mano como lo hicimos en excel o con python sin utilizar librerías. Vamos a crear 4 grupos, es decir, k=4 (clusters).

City	new-label
Bogotá	2
Medellín	2
Cali	0
Barranquilla	3
Cartagena	3
Pereira	0
Santa Marta	3
Manizales	0
Montería	3
Valledupar	1
Neiva	0
Popayán	0
Armenia	0
Sincelejo	1
Tunja	0
Florencia	1
Quibdó	1
San Andrés	1
Yopal	3
Leticia	1
Mitú	1

Profesor: Jose Daniel Ramirez Soto

1.7. Calcula el resultado de un dendrograma utilizando la distancia máxima (complete) en python.

- 2. PCA. Utilizar los datos de la tabla 1, para calcular PCA y reducir la dimensionalidad de 2 dimensiones a 1. Para este ejercicio se debe utilizar las variables GDP (USD Billion) y Population (Millions) para crear un vector con una sola dimensión.
 - 2.1. Cual es la matriz de covarianza

	GDP	Population
GDP	396.584655	26.685224
Population	26.685224	1.830154

2.2. Cuales son los eigenvalues

Eigenvalue 1: 3.98380395e+02 Eigenvalue 2: 3.44139937e-02

2.3. Cuál es la varianza explicada por el eigenvalue.

CP1: 9.99913623e-01 CP2: 8.63772954e-05

Profesor: Jose Daniel Ramirez Soto

2.4. Cual es el valor del eigenvector eigenvector 1: 0.99774346 -0.06714158 eigenvector 2: 0.06714158 0.99774346

2.5. Cuál es la matriz proyectada.

[[9.49691887e+01 7.27833176e-02]

[3.53937046e+01 -5.38604462e-01]

[1.37198434e+01 5.79134943e-01]

[8.06533849e+00 -4.26156942e-02]

[1.76612638e+00 1.80827538e-01]

[-1.45686639e+00 -5.33039783e-02]

[-2.56109835e+00 -7.92225914e-02]

[-3.63981652e+00 2.74001310e-01]

[-3.95458212e+00 6.46627867e-02]

[-4.75344830e+00 1.08398612e-01]

[-4.95903973e+00 3.20300160e-02]

[-5.25366286e+00 1.22014531e-01]

[-5.55634298e+00 9.22698303e-02]

[-5.75320601e+00 1.45607884e-01]

[-5.95409753e+00 1.39081330e-01]

[-6.26147756e+00 3.94945871e-02]

[-6.46236908e+00 3.29680329e-02]

[-6.66393202e+00 1.64640442e-02]

[-6.76504919e+00 3.22333254e-03]

[-6.96661213e+00 -1.32806562e-02]

[-7.06974356e+00 -5.64536716e-02]

[-7.26794942e+00 -2.30704874e-02]

[-7.47354085e+00 -9.94390836e-02]

[-7.57667228e+00 -1.42612099e-01]

[-7.67174671e+00 -6.60558994e-02]

[-7.77823522e+00 -1.59116088e-01]

[-7.87599531e+00 -1.22469626e-01]

[-7.97845532e+00 -1.55665207e-01]

[-8.08024392e+00 -1.78883354e-01]

[-8.18001826e+00 -1.72169196e-01]]

2.6. Cual es el error o diferencia entre la matriz proyectada

Profesor: Jose Daniel Ramirez Soto

	GDP	Ро	pu	lation	1
_	F0004	4	_	4070	

		ODITIO	palation
()	8.530811	7.107217
1		8.706295	3.108604
2	2	8.680157	1.650865
3	3	8.734662	1.272616
4	1	8.733874	0.849172
Ę	5	8.756866	0.633304
6	6	8.761098	0.559223
7	7	8.739817	0.485999
8	3	8.754582	0.465337
ξ)	8.753448	0.411601
1	0	8.759040	0.397970
1	11	8.753663	0.377985
1	2	8.756343	0.357730
1	13	8.753206	0.344392
1	4	8.754098	0.330919
1	15	8.761478	0.310505
1	16	8.762369	0.297032
1	17	8.763932	0.283536
1	8	8.765049	0.276777
1	9	8.766612	0.263281
2	20	8.769744	0.256454
2	21	8.767949	0.243070
2	22	8.773541	0.229439
2	23	8.776672	0.222612
2	24	8.771747	0.216056
2	25	8.778235	0.209116
2	26	8.775995	0.202470
2	27	8.778455	0.195665
2	28		0.188883
2	29	8.780018	0.182169

Profesor: Jose Daniel Ramirez Soto

2.7. Pintar todas las ciudades en 1 dimensión.

2.8. Utilizar python para pintar todas las ciudades en 2 dimensiones,

Profesor: Jose Daniel Ramirez Soto

- 3. Regression. Utiliza las variables GDP (USD Billion) y Population (Millions) para crear una regresión. X es la población, y es el GDP.
 - 3.1. Calcular b0, b1 sin librerías.

b0 (intercepto): -1.91

b1 (pendiente): 14.58

3.2. Graficar la línea y los puntos

4. PCA

Utiliza solo las caras de entrenamiento para los siguientes puntos:

1. Calcular la mean face. Que es la cara con el promedio de los pixeles y visualizarla.

Profesor: Jose Daniel Ramirez Soto

2. Centrar los datos, utilizar PCA. ¿Cuántos componentes se deben utilizar para mantener el 95% de las características?. Crear una tabla para mostrar las primeras 5 caras utilizando, la mean face + los datos reconstruidos utilizando la primera componente, después con 3 componentes, después con las primeras 20 componentes, después con las componentes que explican el 95% de la varianza y por último con el numero de componentes que tiene el 99% de la varianza. ¿Qué se puede concluir de los resultados?

Profesor: Jose Daniel Ramirez Soto

Se están tomando los componentes principales que aportan más características a la imagen, entre más componentes principales se utilicen, mejor será la calidad de la imagen reconstruida. En este sentido, el PCA optimiza el equilibrio entre eficiencia y precisión, haciendo posible trabajar con grandes volúmenes de datos de manera simplificada sin comprometer demasiado la calidad.

- 5. Utilizando el dataset del <u>amazon</u> data/amazon_products.csv crear: **Utilizar la librería de plotly**.
 - 5.1. Distribución de cada variables:
 - 5.1.1. Para las variables categóricas un gráfico de barras. Categoría numero de observaciones.

Profesor: Jose Daniel Ramirez Soto

Distribución de is_best_seller

Distribución de is_amazon_choice

Distribución de is_prime

Profesor: Jose Daniel Ramirez Soto

Distribución de climate_pledge_friendly

Distribución de has_variations

Distribución de currency

Profesor: Jose Daniel Ramirez Soto

Para las variables numéricas crear histogramas. Listar los productos que están más lejos de 5 estándares de desviación, y serían considerados outliers. Hacer test de si es una distribución normal o no.

Histograma de product_price

Histograma de product_original_price

Histograma de product_star_rating

Profesor: Jose Daniel Ramirez Soto

Histograma de product_num_ratings

Histograma de product_num_offers

Histograma de product_minimum_offer_price

Profesor: Jose Daniel Ramirez Soto

Histograma de sales_volume

Histograma de unit_price

Histograma de unit_count

Profesor: Jose Daniel Ramirez Soto

Outliers en product_original_price: asin product_original_price

B0CGTD5KVT 699.0

Outliers en product_num_ratings:
asin product_num_ratings
B07Y8SJGCV 1015448

Outliers en sales_volume:
 asin sales_volume
B0D5FZGY8W 100000.0

B0B31 20 10W 100000.0

Outliers en unit_price: asin_unit_price B0CS12LZLS 1.91

B0CV4FQPY1 2.05

Test de Shapiro-Wilk para product_price: p-value = 1.573030422468821e-11

-> No es normal

Test de Shapiro-Wilk para product_original_price: p-value = 2.0741459881388667e-13 -> No es normal

Test de Shapiro-Wilk para product_star_rating: p-value = 1.6984222005346795e-07 -> No es normal

Test de Shapiro-Wilk para product_num_ratings: p-value = 4.9289427177438526e-15 -> No es normal

Test de Shapiro-Wilk para product_num_offers: p-value = 8.132068399110867e-13 -> No es normal

Test de Shapiro-Wilk para product_minimum_offer_price: p-value = 4.580891980997434e-11 -> No es normal

Test de Shapiro-Wilk para sales_volume: p-value = 2.5402611702158015e-14 -> No es normal

Test de Shapiro-Wilk para unit_price: p-value = 1.8278396662200194e-16 -> No es normal

Test de Shapiro-Wilk para unit_count: p-value = 0.0067438087882866465 -> No es normal

Profesor: Jose Daniel Ramirez Soto

5.2. Gráfico de la relación de cada variable con respecto al sales_volume (convertir a numero):

5.2.1. Variables categóricas debes crear un boxplot. Explique cómo interpreta el gráfico

Boxplot de currency vs Sales Volume

Boxplot de is_best_seller vs Sales Volume

Boxplot de is_amazon_choice vs Sales Volume

is_amazon_choice

Profesor: Jose Daniel Ramirez Soto

Boxplot de is_prime vs Sales Volume

Boxplot de has_variations vs Sales Volume

Comparando categorías, se puede identificar si unas presentan volúmenes de ventas consistentemente más altos o con menor dispersión, lo que indica una influencia del factor categórico sobre el desempeño de ventas (productos que son amigables con el medio ambiente y lo que son Amazon Choice).

Profesor: Jose Daniel Ramirez Soto

5.2.2. Variables numéricas vas a crear un scatter plot. Explique cómo interpreta el gráfico

Scatter plot de product_price vs Sales Volume

Scatter plot de product_original_price vs Sales Volume

Scatter plot de product_star_rating vs Sales Volume

Profesor: Jose Daniel Ramirez Soto

Scatter plot de product_num_ratings vs Sales Volume

Scatter plot de product_num_offers vs Sales Volume

Scatter plot de product_minimum_offer_price vs Sales Volume

Profesor: Jose Daniel Ramirez Soto

Scatter plot de unit_price vs Sales Volume

Scatter plot de unit_count vs Sales Volume

Al interpretar el gráfico, se observa si existe una tendencia en el que el volumen de ventas es alto para las vairables numéricas con un valor bajo

5.3. Matriz de correlación.

5.3.1. Cree la matriz de correlación, cuales son las variables más importantes para explicar la variabilidad de las sales_volume. Explique por qué el coeficiente es negativo o positivo.

Profesor: Jose Daniel Ramirez Soto

Matriz de Correlación

El precio unitario y el conteo por unidad son las variables que capturan la mayor parte de la variabilidad del volumen de ventas. El coeficiente es positivo cuando, al aumentar la variable independiente, la dependiente también aumenta; es negativo cuando, al crecer la independiente, la dependiente disminuye.

5.3.2. Cree las dummy variables para todas las variables categóricas y genere la matriz de correlación nuevamente. ¿Cuál es el valor de variable categórica con mayor correlación?

Matriz de Correlación con Dummies

La mayor correlación entre las variables dummy es de 0.3355778 y se presenta entre "climate_pledge_friendly" y "has_variations".

Profesor: Jose Daniel Ramirez Soto

5.3.3. Utilizar python para imputar los valores nulos con la media.

Después dividir los datos en train y test. Por ultimo hacer una regresión entre x que es product_num_ratings y y product_star_rating qué es la calificación. Cual es el coeficiente b1 y b0. Describir resultados.

Coeficiente b0 (intercepto): 4.2559 Coeficiente b1 (pendiente): 0.0000

Se observa que la línea de regresión, obtenida a partir del 80% de los datos de entrenamiento, predice de manera precisa los valores del conjunto de testing. Los datos de testing se ajustan bien a la tendencia marcada por el modelo, lo que indica una buena capacidad de generalización y desempeño del modelo.