```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
import scipy.stats as stats
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
```

Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:

- масштабирование признаков (не менее чем тремя способами);
- обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов);
- обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным);
- отбор признаков:
 - один метод из группы методов фильтрации (filter methods);

...

- один метод из группы методов обертывания (wrapper methods);
- один метод из группы методов вложений (embedded methods).

In [2]:

```
data = pd.read_csv('/Users/da.karpov/Desktop/MAГA/УЧЕБА/2 сем/ML_MSc_1course/датасеты/top 2018.csv', sep=",")
```

In [3]:

```
data.head()
```

Out[3]:

	id	name	artists	danceability	energy	key	loudness	mode	speechiness	acousticnes
0	6DCZcSspjsKoFjzjrWoCd	God's Plan	Drake	0.754	0.449	7.0	-9.211	1.0	0.1090	0.033
1	3ee8Jmje8o58CHK66QrVC	SAD!	XXXTENTACION	0.740	0.613	8.0	-4.880	1.0	0.1450	0.258
2	0e7ipj03S05BNilyu5bRz	rockstar (feat. 21 Savage)	Post Malone	0.587	0.535	5.0	-6.090	0.0	0.0898	0.117
3	3swc6WTsr7rl9DqQKQA55	Psycho (feat. Ty Dolla \$ign)	Post Malone	0.739	0.559	8.0	-8.011	1.0	0.1170	0.580
4	2G7V7zsVDxg1yRsu7Ew9R	In My Feelings	Drake	0.835	0.626	1.0	-5.833	1.0	0.1250	0.058
4										Þ

In [4]:

```
data.describe()
```

Out[4]:

danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	liveness

```
100.00000
                    100.000000 100.000000
                                             100.000000
                                                         100.000000
                                                                       100.000000
                                                                                     100.000000
                                                                                                        100.000000
                                                                                                                    100.000000
count
       danceability
                        energy
                                               loudness
                                                              mode
                                                                     speechiness
                                                                                  acousticness instrumentalness
                                                                                                                       liveness
                                                           0.590000
mean
           0.71646
                       0.659060
                                   5.330000
                                               -5.677640
                                                                         0.115569
                                                                                       0.195701
                                                                                                          0.001584
                                                                                                                      0.158302
           0.13107
                      0.145067
                                   3.676447
                                                           0.494311
                                                                         0.104527
                                                                                       0.220946
                                                                                                          0.013449
                                                                                                                      0.111662
  std
                                               1.777577
                      0.296000
                                                                         0.023200
                                                                                                                      0.021500
 min
           0.25800
                                   0.000000
                                             -10.109000
                                                           0.000000
                                                                                       0.000282
                                                                                                          0.000000
 25%
           0.63550
                      0.562000
                                   1.750000
                                              -6.650500
                                                           0.000000
                                                                         0.045350
                                                                                       0.040225
                                                                                                          0.000000
                                                                                                                      0.094675
 50%
           0.73300
                      0.678000
                                   5.000000
                                              -5.566500
                                                           1.000000
                                                                         0.074950
                                                                                       0.109000
                                                                                                          0.000000
                                                                                                                      0.118500
                                                                                                          0.000031
                                                                                                                      0.170750
 75%
           0.79825
                      0.772250
                                   8.250000
                                              -4.363750
                                                           1.000000
                                                                         0.137000
                                                                                       0.247750
           0.96400
                      0.909000
                                  11.000000
                                              -2.384000
                                                           1.000000
                                                                         0.530000
                                                                                       0.934000
                                                                                                          0.134000
                                                                                                                      0.636000
 max
```

```
In [5]:
```

```
X_ALL = data.drop(['id', 'name', 'artists', 'liveness'], axis=1)
```

In [6]:

```
def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
    return res
```

Масштабирование признаков

StandardScaler

```
In [7]:
```

```
# Обучаем StandardScaler на всей выборке и масштабируем
csl1 = StandardScaler()
data_csl1_scaled_temp = csl1.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_csl1_scaled = arr_to_df(data_csl1_scaled_temp)
data_csl1_scaled
```

Out[7]:

	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	valence	tempo	du
0	0.287854	- 1.455314	0.456531	- 1.997753	0.833616	-0.063162	-0.739184	-0.112147	- 0.621334	- 1.491544	
1	0.180503	0.319108	0.729903	0.450984	0.833616	0.282982	0.283383	0.159656	0.055789	- 1.566444	
2	-0.992691	0.859498	0.090213	- 0.233147	1.199593	-0.247772	-0.357995	-0.113440	- 1.679294	1.394085	
3	0.172835	0.693224	0.729903	- 1.319276	0.833616	0.013759	1.748092	-0.118343	- 0.221552	0.705712	
4	0.908957	0.229043	- 1.183701	0.087840	0.833616	0.090680	-0.622280	-0.113859	0.655462	1.007767	
95	-0.248901	0.277539	1.276647	0.750486	0.833616	-0.740065	-0.564510	-0.118343	0.977238	0.179460	
96	-0.601626	0.007344	0.636957	0.362058	0.833616	-0.672759	0.224249	-0.118061	0.752970	0.517533	
97	-1.261069	0.699321	- 1.457073	0.549363	0.833616	2.177157	-0.556777	-0.118343	0.753525	0.551376	
98	-3.515443	- 1.538451	1.550019	- 0.517542	- 1.199593	-0.736219	-0.430776	-0.118248	1.890398	2.098966	
99	-1.253401	- 0.506166	1.550019	0.362623	0.833616	-0.763141	2.280300	-0.118343	0.202051	0.236629	

```
In [8]:
```

```
# Построение плотности распределения

def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

In [9]:

```
draw_kde(['tempo', 'duration_ms'], data, data_cs11_scaled, 'до масштабирования', 'после масштабирования')
```


Масштабирование "Mean Normalisation"

```
In [10]:
```

```
class MeanNormalisation:

def fit(self, param_df):
    self.means = X_train.mean(axis=0)
    maxs = X_train.max(axis=0)
    mins = X_train.min(axis=0)
    self.ranges = maxs - mins
```

```
def transform(self, param_df):
    param_df_scaled = (param_df - self.means) / self.ranges
    return param_df_scaled

def fit_transform(self, param_df):
    self.fit(param_df)
    return self.transform(param_df)
```

In [12]:

```
sc21 = MeanNormalisation()
data_cs21_scaled = sc21.fit_transform(X_ALL)
data_cs21_scaled.describe()
```

Out[12]:

	dan	nceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	valence
CO	unt 10	0.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
me	ean -	0.016824	-0.006161	-0.030227	-0.002058	0.002500	-0.007142	0.008788	-0.002752	-0.015016
:	std	0.185652	0.241376	0.334222	0.231335	0.494311	0.206249	0.250518	0.100364	0.247088
r	nin -	0.666200	-0.610254	-0.514773	-0.578758	-0.587500	-0.189402	-0.212786	-0.014570	-0.500265
2	5% -	0.131498	-0.167658	-0.355682	-0.128667	-0.587500	-0.145696	-0.167497	-0.014570	-0.186949
50	0%	0.006604	0.025354	-0.060227	0.012406	0.412500	-0.087290	-0.089517	-0.014570	-0.031729
7	5%	0.099026	0.182176	0.235227	0.168932	0.412500	0.035145	0.067803	-0.014340	0.173234
n	nax	0.333800	0.409713	0.485227	0.426578	0.412500	0.810598	0.845900	0.985430	0.520231
4)

In [13]:

```
cs22 = MeanNormalisation()
cs22.fit(X_train)
data_cs22_scaled_train = cs22.transform(X_train)
data_cs22_scaled_test = cs22.transform(X_test)
```

In [14]:

```
data_cs22_scaled_train.describe()
```

Out[14]:

	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness
count	8.000000e+01	8.000000e+01						
mean	-1.140798e- 16	-2.279427e- 16	1.457168e-17	-7.181755e- 17	1.942890e-17	3.538836e-17	2.706169e-17	6.982262e-18
std	1.742082e-01	2.318961e-01	3.348639e-01	2.281019e-01	4.953901e-01	2.164278e-01	2.333134e-01	1.121774e-01
min	-6.662004e- 01	-5.902870e- 01	-5.147727e- 01	-5.734220e- 01	-5.875000e- 01	-1.894016e- 01	-2.119261e- 01	-1.457002e-02
25%	-1.106055e- 01	-1.622504e- 01	-3.329545e- 01	-1.217367e- 01	-5.875000e- 01	-1.440188e- 01	-1.662211e- 01	-1.457002e-02
50%	1.226983e-02	2.202579e-02	3.068182e-02	-4.187272e- 03	4.125000e-01	-7.860843e- 02	-9.972150e- 02	-1.457002e-02
75%	1.007967e-01	1.701123e-01	3.034091e-01	1.692575e-01	4.125000e-01	2.823846e-02	6.780310e-02	-1.440976e-02
max	3.337996e-01	4.097130e-01	4.852273e-01	4.265780e-01	4.125000e-01	8.105984e-01	7.880739e-01	9.854300e-01
4]		Þ

In [15]:

```
draw_kde(['tempo', 'duration_ms'], data, data_cs21_scaled, 'до масштабирования', 'после масштабирования')
```


In [16]:

draw_kde(['tempo', 'duration_ms'], data_cs22_scaled_train, data_cs22_scaled_test, 'обуча ющая', 'тестовая')

MinMax-масштабирование

In [17]:

```
# Обучаем StandardScaler на всей выборке и масштабируем
cs31 = MinMaxScaler()
data_cs31_scaled_temp = cs31.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_cs31_scaled = arr_to_df(data_cs31_scaled_temp)
data_cs31_scaled.describe()
```

Out[17]:

	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	valence
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	0.649377	0.592268	0.484545	0.573639	0.590000	0.182259	0.209292	0.011818	0.475503
std	0.185652	0.236651	0.334222	0.230107	0.494311	0.206249	0.236631	0.100364	0.242125
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.534703	0.433931	0.159091	0.447702	0.000000	0.043706	0.042778	0.000000	0.307024

50%	danceability 0.672805	energy 0.623165	key 0.454545	loudness 0.588026	mode 1.000000	speechiness 0.102111	acousticness 0.116436	instrumentalness 0.000000	valence 0.459126
75%	0.765227	0.776917	0.750000	0.743722	1.000000	0.224546	0.265035	0.000230	0.659972
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
-1							100000000		00000000000

In [18]:

```
cs32 = MinMaxScaler()
cs32.fit(X_train)
data_cs32_scaled_train_temp = cs32.transform(X_train)
data_cs32_scaled_test_temp = cs32.transform(X_test)
# формируем DataFrame на основе массива
data_cs32_scaled_train = arr_to_df(data_cs32_scaled_train_temp)
data_cs32_scaled_test = arr_to_df(data_cs32_scaled_test_temp)
```

In [19]:

```
draw_kde(['tempo', 'duration_ms'], data, data_cs31_scaled, 'до масштабирования', 'после масштабирования')
```


In [20]:

draw_kde(['tempo', 'duration_ms'], data_cs32_scaled_train, data_cs32_scaled_test, 'обуча ющая', 'тестовая')

Обработка выбросов для числовых признаков

```
In [21]:
```

```
data2 = pd.read_csv('/Users/da.karpov/Desktop/MAFA/УЧЕБА/2 cem/ML_MSc_1course/датасеты/AB
_NYC_2019.csv')
```

In [22]:

```
data2.head()
```

Out[22]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	- 73.97237	Private room	149
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	- 73.98377	Entire home/apt	225
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	- 73.94190	Private room	150
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	- 73.95976	Entire home/apt	89
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	- 73.94399	Entire home/apt	80
4) Þ

In [23]:

data2.describe()

Out[23]:

	id	host_id	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_j
count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	388
mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687	7.029962	23.274466	
std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170	20.510550	44.550582	
min	2.539000e+03	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	0.000000	
25%	9.471945e+06	7.822033e+06	40.690100	-73.983070	69.000000	1.000000	1.000000	
50%	1.967728e+07	3.079382e+07	40.723070	-73.955680	106.000000	3.000000	5.000000	
75%	2.915218e+07	1.074344e+08	40.763115	-73.936275	175.000000	5.000000	24.000000	
max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000	1250.000000	629.000000	
4)

In [24]:

```
def diagnostic_plots(df, variable, title):
    fig, ax = plt.subplots(figsize=(10,7))
    # ructorpamma
    plt.subplot(2, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(2, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    # ящик с усами
    plt.subplot(2, 2, 3)
    sns.violinplot(x=df[variable])
```

```
# ящик с усами
plt.subplot(2, 2, 4)
sns.boxplot(x=df[variable])
fig.suptitle(title)
plt.show()
```

In [25]:

```
diagnostic_plots(data2, 'price', 'price - original')
```

price - original

In [26]:

diagnostic plots(data2, 'number of reviews', 'number of reviews - original')

number_of_reviews - original

In [27]:

diagnostic_plots(data2, 'reviews_per_month', 'reviews_per_month - original')

reviews_per_month - original

Явно заметны выбросы на полях: number_of_reviews, reviews_per_month, price

In [28]:

```
# Тип вычисления верхней и нижней границы выбросов
from enum import Enum
class OutlierBoundaryType (Enum):
   SIGMA = 1
   QUANTILE = 2
   IRQ = 3
```

TII [72]:

```
# Функция вычисления верхней и нижней границы выбросов

def get_outlier_boundaries(df, col):
   lower_boundary = df[col].quantile(0.05)
   upper_boundary = df[col].quantile(0.95)
   return lower_boundary, upper_boundary
```

Удаление выбросов (number_of_reviews)

In [30]:

Поле-price, метод-QUANTILE, строк-44412

Замена выбросов

In [31]:

```
# Вычисление верхней и нижней границы
lower_boundary, upper_boundary = get_outlier_boundaries(data2, "reviews_per_month")
# Изменение данных
data2["reviews_per_month"] = np.where(data2["reviews_per_month"] > upper_boundary, upper_boundary,
```

```
np.where(data2["reviews_per_month"] < lower_boundary, lower_boundar y, data2["reviews_per_month"]))
title = 'Поле-{}, метод-{}'.format("reviews_per_month", "QUANTILE")
diagnostic_plots(data2, "reviews_per_month", title)
```

Поле-reviews_per_month, метод-QUANTILE

Обработка нестандартного признака

In [32]:

10	int64
name	object
host_id	int64
host_name	object
neighbourhood_group	object
neighbourhood	object
latitude	float64
longitude	float64
room_type	object
price	int64
minimum_nights	int64
number_of_reviews	int64
last_review	object
reviews_per_month	float64
<pre>calculated_host_listings_count</pre>	int64
availability_365	int64
dtype: object	

In [33]:

```
# Сконвертируем дату и время в нужный формат data2["last_review_date"] = data2.apply(lambda x: pd.to_datetime(x["last_review"], forma t='%Y/%m/%d'), axis=1)
```

In [34]:

data2.head(5)

Out[34]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	- 73.97237	Private room	149
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	- 73.98377	Entire home/apt	225
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	- 73.94190	Private room	150
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	- 73.95976	Entire home/apt	89
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	- 73.94399	Entire home/apt	80
4										·

In [35]:

data2.dtypes

Out[35]:

```
id
                                             int64
name
                                            object
host_id
                                             int64
host_name
                                            object
neighbourhood_group
                                            object
neighbourhood
                                            object
latitude
                                           float64
longitude
                                           float64
                                            object
room_type
                                             int64
price
minimum nights
                                             int64
number of reviews
                                             int64
last review
                                            object
reviews per month
                                           float64
calculated host listings count
                                             int64
availability 36\overline{5}
                                             int64
last_review_date
                                  datetime64[ns]
dtype: object
```

In [36]:

```
# День
data2['last_review_day'] = data2['last_review_date'].dt.day
# Месяц
data2['last_review_month'] = data2['last_review_date'].dt.month
# Год
data2['last_review_year'] = data2['last_review_date'].dt.year
```

In [37]:

```
data2.head(5)
```

Out[37]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	- 73.97237	Private room	149
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	- 73.98377	Entire home/apt	225
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	- 73.94190	Private room	150
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	- 73.95976	Entire home/apt	89
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	- 73.94399	Entire home/apt	80
4)