CIBERSEGURIDAD

'Bootcamp IX'

Informe Práctica Módulo Machine Learning y Ciberseguridad.

Maximiliano Dariel Altamirano.

Academia KeepCoding.

INDICE

INFORME		3
Descripción de la practica		3
Desarrollo de la práctica		
PRACTICA EXTENDIDA		4
RESUMEN		5
Objetivo		5
Herramientas	* °C	5

INFORME

Descripción de la practica

Abordamos una problemática de clasificación para los datos del fichero dataset "cybersecurity_attacks.csv".

Trabajaremos, en primera instancia, con la columna "Action Taken" como objetivo a predecir. Luego en el análisis extendido sumaremos las columnas "Severity Level" y "Attack Type".

Gestionaremos los datos en el entorno JupyterLab.

Desarrollo de la práctica.

En el fichero "práctica_machine_learning.ipynb" realizamos el primer análisis y desarrollo cubriendo las expectativas básicas de la práctica. Segmentamos el análisis en:

- 1. Preparación de datos
- 2. Análisis exploratorio
- 3. Preprocesamiento/Generación de variables
- 4. División train/test
- 5. Modelado/Evaluación
- 6. Conclusiones

Entrenamos los modelos de ML:

- RandomForestClassifier
- LogisticRegression
- KNeighborsClassifier
- DecisionTreeClassifier

Este primer análisis se corresponde con los siguientes ficheros:

- práctica_machine_learning.ipynb
- cybersecurity_attacks.csv
- action_taken_test.csv
- action_taken_train.csv
- consigna_practica_final.pdf

PRACTICA EXTENDIDA

La entrega incluye un directorio "Extendido", donde intentaremos evidenciar el análisis de la misma problemática con otro enfoque.

Realizamos una breve descripción de cada fichero:

- O1_análisis exploratorio.ipynb: intentaremos ser más minusiosos en la selección de columnas, exploración de datos y transformaciones. Del análisis realizado guardaremos la información en "02_clean_cybersecurity_attacks.csv" (datos ya transformados y seleccionados) y "03_codif_cybersecurity_attacks.csv" (datos codificados).
- O4_action_taken.ipynb: entrenaremos varios modelos de ML con la columna "Action Taken" como objetivo a predecir, descartando las columnas con menor importancia.
- > 05_severity_level.ipynb: entrenaremos varios modelos de ML con la columna "Severity Level" como objetivo a predecir, descartando las columnas con menor importancia.
- O6_attack_type.ipynb: entrenaremos varios modelos de ML con la columna "Action Taken" como objetivo a predecir, descartando las columnas con menor importancia.
- O7_feature_importances.ipynb: considerando los datos obtenidos anteriormente, en este fichero planteamos trabajar con una cantidad de columnas reducidas, ahora seleccionando solo las columnas más importantes. Guardamos este análisis en el fichero "08_feature_importances.csv".

En este punto decidimos utilizar solo dos modelos a entrenar, LogisticRegression y KNeighborsClassifier, ya que obtuvimos resultados equilibrados entre los conjuntos de datos "train" y "test".

- 09_LogisticRegression.ipynb: entrenamos el modelo LogisticRegression y marcamos conclusiones con respecto a resultados anteriores
- 10_KNeighborsClassifier.ipynb: entrenamos el modelo KNeighborsClassifier y marcamos conclusiones.

RESUMEN

Objetivo

El informe pretende dejar en evidencia las herramientas y conocimientos adquiridos en el módulo entrenando un modelo de ML sobre un dataset puntual asignado con ese fin.

Herramientas

Utilizamos las siguientes herramientas:

