Numerical Methods

Python program to find a root of a function in many different ways

Ahmed Ali Elsayed Saber ID: 07

Ahmed Ayman Mohamed ID: 03

Islam Yousry Abdelwhaid ID: 14

Mahmoud Ibrahim elsayed ID:58

Hamza Hassan Mohammed Ali ID:26

1.Root finder

a. General description

It's a python program that is divided into 3 parts

- i) find a root with a specific numerical method and boundaries.
- ii) find all possible roots for a polynomial function.
- iii) plot a function in a given interval.

As it appears in the previous figure.

How does this program work?

It follows the next flow chart.

So at first the user should determine his wish solving any given function that may contain constants, polynomials, power function, logarithmic function, sin, cos, tan...etc.

Or solve a polynomial with Birge Vieta method with no given initial guess. Or plotting the function in a given interval.

b. Methods description

i.Bisection

ii. False-position

iii. Fixed point

g(x):

We get all polynomial terms and use it to make a corresponding g(x)

For example:

$$-7*x^3 + x^2 + 10x + 13$$

g(x) are:

$$g(x)= ((x^2+10x+13)/-7)^1/3$$

 $g(x)= (-(-7*x^3+10x+13))^1/2$
 $g(x)= -(-7*x^3+x^2+13)/10$
 $g(x)=x-(-7*x^3+x^2+10x+13)$

Then the answer converge from the first g(x) To 1.667487796411278 (Correct)

iv. Newton-Raphson

v. Secant

c. Analysis for the behavior

• Example 1: Input : $exp(x)+x^{**}2-x-4$.

x = 0, x = 5 (for bracketing methods and secant)

Max iteration: 100

Eps: .00001

method	Execution time (s)
Bisection	0.03169
False Position	0.07284
Fixed Point	diverge
Newton Raphson	0.02394
Secant	Division by zero

Note: if we changed the initial guesses at secant method it may converge.

Xprev 0.0	Xcur 3.0	F(Xprev) -3.00000000000000	F(Xcur) 3.0	Xnext 0.358772468277563	1		
3.0	0.358772468277563	22.0855369231877	0.358772468277563	0.674639041890469	1		
0.358772468277563	0.674639041890469	-3 -2	0.674639041890469	1.30637218911628			
0.674639041890469 Number of Iterations is	1.30637218911628	1 -2	1.30637218911628	1.30637218911628	ı		
	gorithm is 0.02892 seconds						
output precision is le-0							
1							

• Example 2:

<u>Input</u>: -2*x**2+10.

XI = 1 , xu = 10 (for bracketing methods)

Initial guess = 1

Max iteration = 50

Eps = .00001

method	Execution time (s)
Bisection	0.01374
False Position	0.01557
Fixed Point	0.00100
Newton Raphson	0.00694
Secant	0.00153

Example 3: Input: x**2-4.

XI = 0, xu = 4 (for bracketing methods)

<u>Initial guess</u>: 1.5 <u>Max iteration</u>: 50

Eps: 0.00005

method	Execution time (s)
Bisection	0.00994
False Position	0.01097
Fixed Point	0.00099
Newton Raphson	0.00997
Secant	0.00689

^{*}the screens of this example is provided below

d. GUI and simple runs

1-Comprehensive

Example:

L	r	f(1)	f(r)	mid	f(mid)	1	1
0.0	1 4.0	1 -4.00000000000000	1 12.0000000000000	1 2.0	1 0	1	
0.0	1 2.0	-4.0000000000000	12.0000000000000	1 1.0	-3.00000000000000	1	
1.0	1 2.0	1 -4.00000000000000	1 12.0000000000000	1.5	-1.75000000000000	1	
1.5	1 2.0	-4.00000000000000	12.0000000000000	1 1.75	-0.937500000000000	i	
1.75	1 2.0	-4.00000000000000	1 12.0000000000000	1.875	-0.484375000000000	i i	
1.875	1 2.0	-4.00000000000000	12.0000000000000	1.9375	-0.246093750000000	i i	
1.9375	1 2.0	-4.0000000000000	12.0000000000000	1.96875	-0.124023437500000	1	
1.96875	1 2.0	-4.00000000000000	12.0000000000000	1.984375	-0.0622558593750000	1	
1.984375	1 2.0	-4.00000000000000	1 12.0000000000000	1.9921875	-0.0311889648437500	1	
1.9921875	1 2.0	-4.00000000000000	1 12.0000000000000	1.99609375	-0.0156097412109375	1	
1.99609375	1 2.0	-4.0000000000000	1 12.00000000000000	1.998046875	-0.00780868530273438	1	
1.998046875	1 2.0	-4.00000000000000	12.0000000000000	1.9990234375	-0.00390529632568359	1	
1.9990234375	1 2.0	-4.00000000000000	12.0000000000000	1 1.99951171875	-0.00195288658142090	ľ	
1.99951171875	1 2.0	-4.0000000000000	12.0000000000000	1.999755859375	-0.000976502895355225	1	
.999755859375	1 2.0	-4.0000000000000	12.0000000000000	1.9998779296875	-0.000488266348838806	Ĭ.	
1.9998779296875	1 2.0	-4.00000000000000	1 12.0000000000000	1.99993896484375	-0.000244136899709702	1	
1.99993896484375	1 2.0	-4.0000000000000	12.0000000000000	1.999969482421875	-0.000122069381177425	1	
1.999969482421875	1 2.0	-4.00000000000000	12.0000000000000	1.9999847412109375	-6.10349234193563e-5	1	
1.9999847412109375	1 2.0	-4.00000000000000	12.0000000000000	1.9999923706054688	-3.05175199173391e-5	1	
Number of Iterations i	5 19						
execution time of the	algorithm is 0.00994	seconds					
output precision is le	-05						

Xl	Xu	F(X1)	F(Xu)	Xr	F(Xr)	1
0.0	-4.00000000000000	1 4.0	12.000000000000	1.00000000000000	-3.00000000000000	1
1.00000000000000	-3.00000000000000	1 4.0	12.000000000000	1.60000000000000	-1.44000000000000	1
1.60000000000000	-1.44000000000000	1 4.0	12.000000000000	1.85714285714286	-0.551020408163265	1
1.85714285714286	-0.551020408163265	1 4.0	1 12.0000000000000	1.95121951219512	-0.192742415229031	1
1.95121951219512	-0.192742415229031	1 4.0	1 12.0000000000000	1.98360655737705	-0.0653050255307712	i i
1.98360655737705	-0.0653050255307712	1 4.0	1 12.0000000000000	1.99452054794521	-0.0218877838243574	i i
1.99452054794521	-0.0218877838243574	1 4.0	12.000000000000	1.99817184643510	-0.00730927211414167	1
1.99817184643510	-0.00730927211414167	1 4.0	12.000000000000	1.99939042974703	-0.00243790943599409	1
1.99939042974703	-0.00243790943599409	1 4.0	1 12.0000000000000	1.99979678927047	-0.000812801623504278	1
1.99979678927047	-0.000812801623504278	1 4.0	1 12.0000000000000	1.99993226079594	-0.000270952227657162	1
1.99993226079594	-0.000270952227657162	1 4.0	12.000000000000	1.99997742001039	-9.03194485961656e-5	1
1.99997742001039	-9.03194485961656e-5	1 4.0	1 12.0000000000000	1.99999247330847	-3.01067094663487e-5	1
1.99999247330847	-3.01067094663487e-5	1 4.0	1 12.0000000000000	1.99999749109968	-1.00355950012343e-5	1
Number of Iterations	is 13					
Execution time of the	algorithm is 0.01097 seconds					
output precision is 1	e-05					

						\times
Xprev (1.0 11.5 (2.200000000000000000000000000000000000	Xcur 1.5 2.200000000000000000000000000000000000	F(Xprev) -3.000000000000000000000000000000000000	F(Xcur) 1.5 2.20000000000000 1.94545454545455	Xnext 2.2000000000000 1.9454545454555 1.945454545455		
output precision is le	e-05					

Problematic functions

1- In the equation " $Y = e^{**}x + x^{**}2 - x - 4$ ", we noted that the number of iterations in false position Is almost twice the times of the number of iterations the bisection method took to get the find the root. A suggested solution to this problem, as stated in the reference, is to get the middle of the left and the right of the interval and make this midpoint the left or the right according to the equation and then we can implement the false position procedure.

2- Quadratic Convergence In case of the equations that have multiplicity, the Newton method converges linearly.

-One possible solution to this problem is to modify the way we get the next point Y(x) = Xi - m * (f(x)/f'(x)) where m is the multiplicity of the equation.