ML Assignment 2

Kushagra Arora

September 2017

1 Visualisation

1. **Date_1.h5**

The above data are simply two concentric circles. The decision boundary shows that there is not much noise there is not much noise. The kernel used here is rbf since a circle with plotted in a large number of dimensions.

2. **Data_2.h5**

The kernel used is rbf. This can also be done using a polynomial kernel of a dimension greater than equal to 3. The data is clean and noiseless and there are no outliers. $\sigma = 0.8$ in rbf kernel.

3. **Data_3.h5**

The kernel used is linear. The data is clean and there are no outliers.

4. **Data_4.h5**

The kernel used in rbf. The data has outliers.

After outlier removal

5. **Data_5.h5**

The kernel used in rbf. The data has outliers.

After outlier removal

2 Analysing Data Sets

• Hyperparamter tuning

The hyperparameters are searched using grid search on C and gamma.

Evaluation metric : Accouracy score.

Classifer used: One Vs Rest

1. Data_1

- Kernel = linear
 - Best parameter = C = 0.5
 - Accuracy = 42.42
- Kernel = rbf
 - Best paramter = C = 0.3, gamma = 1.0
 - Accuracy = 48.4848

2. Data_2

- Kernel = linear
 - Best parameter = C = 0.3
 - Accuracy = 81.81
- Kernel = rbf
 - Best paramter = C = 0.3, gamma = 1.0
 - Accuracy = 69.7

3. Data_3

- Kernel = linear
 - Best parameter = C = 0.1
 - Accuracy = 100.00
- Kernel = rbf
 - Best paramter = C = 0.1, gamma = 0.5
 - Accuracy = 75.75

4. Data_4

- Kernel = linear
 - Best parameter = C = 0.1
 - Accuracy = 45.75
- Kernel = rbf
 - Best paramter = C = 0.1, gamma = 0.5
 - Accuracy = 48.4

5. Data_5

- Kernel = linear
 - Best parameter = C = 0.5
 - Accuracy = 83.93
- Kernel = rbf
 - Best paramter = C = 0.1, gamma = 1.0
 - Accuracy = 77.57

$6. \ \, Part_A_train$

- Kernel = linear
 - Best parameter = C = 0.3
 - Accuracy = 81.81

- Kernel = rbf Best paramter = C = 0.3, gamma = 1.0 Accuracy = 69.7

Classifier used: One Vs One

- 1. Data_1
 - Kernel = linear Best parameter = C = 0.5Accuracy = 42.75
 - Kernel = rbf Best paramter = C = 0.3, gamma = 1.0 Accuracy = 48.4848
- 2. Data_2
 - $$\begin{split} \text{ Kernel} &= \text{linear} \\ \text{ Best parameter} &= \text{C} = 0.3 \\ \text{ Accuracy} &= 81.81 \end{split}$$
 - Kernel = rbf Best paramter = C = 0.3, gamma = 1.0 Accuracy = 69.7
- 3. Data_3
 - Kernel = linear Best parameter = C = 0.1Accuracy = 100.00
 - Kernel = rbf Best paramter = C = 0.1, gamma = 0.5Accuracy = 75.75
- 4. Data_4
 - Kernel = linear Best parameter = C = 0.1Accuracy = 45.75
 - $\begin{array}{l} \ \mathrm{Kernel} = \mathrm{rbf} \\ \mathrm{Best \ paramter} = \mathrm{C} = 0.1, \, \mathrm{gamma} = 0.5 \\ \mathrm{Accuracy} = 48.4 \end{array}$
- 5. Data_5
 - Kernel = linear Best parameter = C = 0.5Accuracy = 83.93
 - Kernel = rbf Best paramter = C = 0.1, gamma = 1.0 Accuracy = 77.57
- 6. Part_A_train
 - Kernel = linear Best parameter = C = 0.3Accuracy = 81.81
 - Kernel = rbf
 Best paramter = C = 0.3, gamma = 1.0
 Accuracy = 69.7

• Confusion Matrix

