Nom:	Prénom:	Groupe:
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA ANTIPOLIS		
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2015/2016	Note
École d'ingénieurs		
POLYTECH' NICE-SOPHIA	Devoir à la maison N°1	

Devoirs à faire durant les vacances d'automne et à rendre le lundi 2 nov à 8h devant les amphis

- 1. Apprendre (ou revoir s'il a été déjà été appris) le cours
- 2. Faire les exercices ci-dessous (proprement et correctement).
- 3. Je prendrai la copie, la corrigerai (pour voir si vous avez fait des erreurs et vous le signaler) puis je vous convoquerai pour vous interroger à l'oral sur les exercices afin de savoir si vous avez compris. Votre note sera celle de votre prestation à l'oral.

REMARQUES:

- Rendez un devoir PROPRE : aucune correction ne sera faite sinon.
- N'oubliez pas les unités.
- Faites des schémas clairs et propres, mettez les tensions et courants (avec leurs flèches).
- Si vous avez des questions ou des doutes, n'hésitez pas à poser des questions : <u>anne.vigouroux@polytech.unice.fr</u>.
 L'objectif est que vous réussissiez à tout faire.
- Le DM est à rendre le lundi 2 nov à 8h.
- Utilisez les diviseurs de courant et tension lorsque cela est possible
- Donnez les expressions des formules utilisées pour faire les calculs.

EXERCICE I : Comparaison des méthodes d'analyse des circuits

But : calculer les courants I_1 , I_2 , I_3 par différentes méthodes.

Réponse : I_1 =3A ; I_2 =2A ; I_3 =1A

I.1. Méthode de Millman: 5pts

Aide:

- Calcul du potentiel en A (VA) par rapport à la masse.
- Remarquer que U_{AB} = U_{R3} (puisque le point B est relié à la masse)
- En déduire I₃.
- En déduire I₂ (après calcul de la tension sur R₂)
- En déduire I₁ (après calcul de la tension sur R₁)
- Vérifiez la loi des nœuds

I.2. Méthode de superposition : 5 pts

Aide:

- Contribution de U₁ : calcul de I'₁, de I'₂ et I'₃ dues à U₁ (faites le ou les schémas qui vous sont utiles)
- Contribution de U₂: calcul de I"₁, de I"₂ et I"₃ dues à U₂ (faites le ou les schémas qui vous sont utiles)
- Somme des contributions.

I.3. Transformation de circuit: 3 pts

Indication **si vous n'avez aucune idée** : utilisez les transformations de source et leur propriété d'additivité afin de n'avoir plus qu'une seule source. Calculez ensuite le courant I_3 et la tension sur cette branche ($U_{R3}=U_{AB}$). Cette tension (U_{AB}) vous sert ensuite à calculer les autres courants en revenant au circuit original.

EXERCICE II : Equivalent de Thévenin

Soit le circuit ci-contre :

On souhaite déterminer Uch et Ich aux bornes de l'élément non linéaire (hachuré sur la figure).

II.1. Déterminez l'équivalent de Thévenin aux bornes A et B.

- Calcul de Rt
- $r\'eponse: 11,75~\Omega$
- Calcul de U_T par la méthode de **Millman** (si vous n'y arrivez pas, faites une autre méthode, mais vous n'aurez pas la totalité des points) *réponse : 27.5 V*
- Dessinez le circuit équivalent de Thévenin (avec U_T et R_T), ajoutez l'élément non linéaire entre les points A et B. Ecrivez la loi des mailles et exprimez Ich en fonction de Uch.

II.2. La caractéristique courant/tension de l'élément non linéaire est donné sur le graphe cidessous. Tracez la droite de source dont vous avez déterminé l'équation en II.1.

Déterminez Uch et Ich

