Deep Learning: Unsupervised Learning

Adam Moss
School of Physics and Astronomy
adam.moss@nottingham.ac.uk

Unsupervised Learning

- Much more unlabelled than labelled data
- Labelling can be subjective
- Unsupervised learning finds the most important features in the dataset

- Examples of unsupervised learning
 - Auto-encoders and variational auto-encoders (generative)
 - Adversarial networks (generative)
 - Boltzmann machines (generative)
 - Reinforcement learning (self-supervised)

Auto-encoders

latent vector / variables

- Data compression algorithm
 - Data specific (will only be able to compress data similar to what they are trained on)
 - Lossy (decompressed output degraded compared to input)
 - No labelling required

Auto-encoders

- ► Latent space should have fewer dimensions
 - Under-complete representation
 - Bottleneck architecture
- Otherwise over-complete representation might just learn the identity function

MNIST

- Used Keras Python library
- Discard labels
- Normalised values between 0 and 1 and reshape into 784 vector as before
- Encoding dimension 32, corresponds to compression factor of 24.5
- Can visualise reconstructed inputs from the test set

```
Model
                           mnist
(x_train, _), (x_test, _) = mnist.load_data()
\texttt{ctrain} = \texttt{x_train.astype('float32') / 255.}
 _test = x_test.astype('float32') / 255.
 _train = x_train.reshape((len(x_train), np.prod(x_train.shape(1:))))
 test = x test.reshape((len(x test), np.prod(x test.shape[1:])))
     x test.shape
encoding_dim = 32
input_img = Input(shape=(784,))
encoded = Dense(encoding_dim, activation='relu')(input_ing)
decoded = Dense(784, activation='signoid')(encoded)
 this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', lass='binary_crossentropy')
autoencoder.fit(x_train, x_train,
                 alidation_data=(x_test, x_test))
decoded_imgs = autoencoder.predict(x_test)
```


Losing detail with this approach - how do we improve it?

CNN Auto-encoder

- Since inputs and outputs are images it makes sense to use convolutional network as encoder and decoder
- We also do not have to limit ourselves to a single latent layer
- Both encoder and decoder are stacked CNNS
- Loss function significantly improved (0.094 vs 0.11)

```
keras, layers
       keras.models
                                  Conv2D, MaxPooling2D, UpSampling2D
       keras. layers
                    ort backend as K
       keras.datasets
                                   t mnist
        t numpy as np
(x train, ), (x test, ) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x train = np.reshape(x train, (len(x train), 28, 28, 1))
x \text{ test} = \text{rp.reshape}(x \text{ test}, (\text{len}(x \text{ test}), 28, 28, 1))
input_img = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_ing)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)

x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='signoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
autoencoder.fit(x_train, x_train,
                               tion_data=(x_test, x_test))
```


Variational AE

- An auto-encoder represents data in latent space
- Can't generate anything yet, since we do not know how to create latent vectors
- Variational AE adds constraints on latent space, i.e. it learns a latent model such as a Gaussian probability density
- If you then sample points from this probability density, you can generate new samples

Variational AE

- First encoder turns inputs into 2 parameters in latent space - z_mean and z_var_log
- Randomly sample from latent space which is assumed to generate data
- Decoder maps these back to original inputs
- Loss function has 2 components usual reconstruction loss and Kullback-Leibler divergence between learnt latent distribution and latent model

```
original_din = 784
latent_din = 7
intermediate_dim = 256
epsilon std = 1.8
    Input(shape=(original_dim,))
Derse(intermediate_dim, activ
                                           vation="relu")(x)
z_mean = Dense(latent_din)(h)
2 log var = Dense(latent dim)(h)
 ef sampling(args):
     z mean, z log var = ares
     z nean + K.exp(z log var / 2) + epsilon
    ote that "output_shape" isn't necessary with the TensorFlow backero
- Lambda(sampling, output_shape=(latent_dim,))([z_nean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
 _decoded = decoder_h(z)
 decoded_mean = decoder_mean(h_decoded)
 Lass CustonVariationalLayer(Layer):
     def __init__(self, ****wargs):
    self.is_placeholder = True
           super(CustomVariationalLayer, self).__init__(sekwargs)
     def vae_loss(self, x, x_decoded_mean):
    xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
          kl_loss = - 0.5 * K.sum(1 + z_log_var - K.squere(z_mean) - K.exp(z_log_var), exis=-1)
return K.mean(xent_loss + kl_loss)
     def cell(self, inputs):
           x = inputs[8]
          x_decoded_mean = inputs[1]
          loss = self.vae_loss(x, x_decoded_mean)
self.add_loss(loss, input=inputs)
# We won't actually use the output.
   OustonVariationalLayer()([x, x_decoded_mean])
 vae = Model(x, y)
vae.compile(optimizer-'rmsprop', lass-None)
```

Variational AE

► Since latent space is 2D can visualise it (each coloured cluster is digit)

Generated digits

Adversarial Networks

- VAEs are easy to train and have a tractable likelihood, but can produce images with lower fidelity
- GANs (Generative Adversarial Network) produce richer images but are much more difficult to train
- A GAN consists of 2 networks a generator and discriminator, that compete and co-operate
- Real word example counterfeiter (generator) and police (discriminator)
- Counterfeiter produces fakes, police give feedback why money is fake
- Counterfeiter improves fakes to trick police based on feedback
- At same time police are improving how to better tell apart real and fake money

GAN

Discriminator tells if something is generative or real, e.g money, MNIST digits. Example is CNN

Generator synthesises fakes. Input is generated from noise

GAN

Adversarial model is generator + discriminator stacked together with generator trying to fool the discriminator (images are labelled as real when in fact they are fakes)

GAN

► Full discriminator model is generator + discriminator with both real and fake data correctly labelled

Samples

Other Examples

Boltzmann Machines

- Another type of generative network
- ► Important difference is that it is **stochastic**, i.e. activations in network have a probabilistic element
- Restricted Boltzmann Machine (RBM) consists of one visible layer and one hidden layer (contained latent factors)
- ► E.g. we have 6 movies and ask people which ones they want to watch. We will learn 2 latent variables

Boltzmann Machines

input

- In forward pass compute weighted activation a
- Let $p_i = \sigma(a_i)$ be probability that we turn on unit i
- In update of weights during training this means that it doesn't guarantee a hidden unit will be turned on
- ► In backwards pass data is generated from hidden units, but will not always get the same data

Multiple Inputs

Reinforcement Learning

- Self-supervised learning, reward based feedback
- E.g. breakout game. Goal is to get ball though the blocks
- Can teach neural network how to play by giving the image of the screen as an input to the network
- Network will then decide which action to take (move paddle left or right) to maximise future possible reward

Reinforcement Learning

- ► In general have an agent in an environment
- Environment is in certain state
- Agent can perform actions. These sometimes result in a reward
- Actions transform environment and lead to new state
- ightharpoonup Sequence of states, actions, rewards $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$
- ► A full sequence before terminal state is called an episode
- Rules for how to choose actions is called a policy

Q Learning

► Total discounted future reward in episode from time t onwards

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

► Define Q function as maximum possible discounted future reward when we perform an action a in state s at time t

$$Q(s_t, a_t) = \max R_t$$

Can be iteratively estimated using the Bellman equation

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

▶ No neural network yet - could be done with a table of states vs actions

Deep Q Network

► Can train a neural network to estimate the Q function by playing out many episodes of a game

Several subtleties - e.g. training using experience replay