Telecom Customer Churn

Improving customer retention with Machine learning

Agenda

O1 Introduction

Explain the problem regarding Customer churn.

O3 Analysis

Exploratory Data Analysis.

Conclusion
Summary and
recommendations.

O2 Data

Explain and describe the data.

04 Modeling

Describe modelling methodology and results.

01

INTRODUCTION

Explain the problem regarding Customer churn.

What is customer churn?

- Customer churn happens when customers decide to stop using products or services from an organization.
- It is a very important factor since it **costs 10 times** more to acquire new customers than it does to retain existing customers.
- Customer churn can prove to be a roadblock for an exponentially growing organization.
- Hence, a retention strategy should be decided.

Telecom vs Customer churn

- Telecommunications companies are usually not the most popular companies with consumers.
- People often express frustration with the performance of service providers.
- As a result, it is not surprising to learn that **telecommunications companies** have a **high customer churn rate**.
- Customer loyalty is the key to profitability.
- Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn.

02

DATA

Explain and describe the data.

Our Data

Numerical

Categorical

Quantitative Information

- Tenure
- Monthly Charges
- Total Charges

Customer Information

- Gender
- Partner
- Senior Citizen
- Dependents
- Etc.

Services Information

- Phone Service
- Internet Service
- Online Security
- Tech Support
- Etc.

Payment Information

- Contract
- Paperless Billing
- Payment Method

Descriptive Statistics

Total Customers

7032

27%

Avg Monthly Charges

65€

No. of Contract Types

3 contracts

Avg Tenure

32 months

No. of Payment types

4 types

03

ANALYSIS

Exploratory Data Analysis.

Distribution of Churn

- As we can see from the pie chart, the dataset is **imbalanced** in a near about **3 to 1 ratio** for Not-Churn vs Churn customers.
- Due to this, predictions will be biased towards Not-Churn customers.
- Hence, we will try to fix later this issue using an oversampling technique named SMOTE.

Numerical Features vs Churn

- Tenure and Monthly Charges kind of create a bimodal distribution with peaks present at 0 - 70 and 20 - 80, respectively.
- Customers tend to churn more when:
 - 1. tenure is between 1 5 months.
 - 2. Monthly charges range between 70-100 euros.

- It is obvious that as Tenure increases, Total Charges increases as well.
- So which customers are leaving?
 - The ones who are charged the highest of their tenure period.
 - 2. A few whose **Total Charge** rank in the **middle**.

Categorical Features vs Churn

- Since we have a lot of Categorical Variables in our dataset, we will focus on those that have the highest or lowest churn rate.
- For that purpose, we will set the **thresholds** below:
 - 1. Higher than 30% ~> tend to churn
 - 2. Lower than 10% ~> are loyal

Customer Information		Not Churn	Churn	Churn Rate %	
Senior Citizen	Yes	666	476	42 %	
	No	4497	1393	24%	
Partner	Yes	2724	669	20%	
	No	2439	1200	33%	
Dependents	Yes	1773	326	16%	
	No	3390	1543	31%	

- Nearly 1 out of 2 Senior
 Citizens tend to Churn.
- Customers with Partner and those with Dependents are less likely to churn.

Categorical Features vs Churn

Services Infe	Services Information		Churn	Churn Rate %	
Internet Service	Yes	3756	1756	32%	
	No	1407	113	7 %	
Fiber Optic	Yes	1799	1297	42 %	
	No	3364	572	15%	
Online Security	Yes	1720	295	15%	
	No	3443	1574	31%	
Tech Support	Yes	1730	310	15%	
	No	3433	1559	31%	

- Customers with no Internet
 Service does not seem to churn.
- Customers who use Fiber
 Optic as Internet Service tend
 to Churn.
- A high number of customers have switched their service provider when it comes down poor services.
- Especially, regarding Online
 Security and Tech Support, 1
 out of 3 customers tend to
 drop out.

Categorical Features vs Churn

Payment Inf	ormation	Not Churn	urn Churn Churn		
Contract	Month-to- Month	2220 1655		43 %	
	One year	1306	166	11%	
	Two year	1637	48	3 %	
Paperless Billing	Yes	2768 1400		34 %	
	No	2395	469	16%	
Electronic Check	Yes	1294	1071	45%	
	No	3869	798	17%	

- It is obvious that customers with **short-term** contract seems to **churn more**.
- Moreover, nearly 1 out of 2
 customers having month-to month contract are leaving the
 company.
- Paperless Billing displays a high number of customers being churned out, more than 1 out of 3 customers.
- Although the customers pay more with Electronic check, the churn rate is higher compared to the other types.

Summary

- The dataset is **not balanced**. Therefore, we need to take care of this issue after **training** the model.
- Customers tend to churn when the tenure is between 1-5 months and Monthly Charges range between 70-100 euros.
- In addition, customers with short-term contract seems to churn more.
- 1 out of 2 Senior Citizens seems to leave the company compared to those with a Partner or Dependents, who seem to be more loyal.
- Consumers who use Fiber Optic tend to opt out the company more.
- Moreover, Paperless Billing and Electronic
 Payment display a high number of customers being churned out.

04

MODELING

Describe modelling methodology and results.

Modeling Process

Feature Engineering

- Feature Selection using ANOVA & Chi-squared test
- Feature Scaling

02

01

Data Pre-processing

- Data Exploration
- Data Cleansing
- One-hot Encoding

Models & Evaluation

- Cross Validation
- Hyperparameter Tuning
- Modeling
- Feature Importance

04

Class Imbalance

03

 Oversampling minority class using SMOTE

Feature Selection

- We dropped the features with correlation coefficient between (-0.1, 0.1).
- Moreover, Chi-squared Test for Categorical Variables and ANOVA test for Numerical Variables showed the same result.

Feature Scaling (Numerical Variables)

Class Imbalance

- As we mentioned before, The dataset is imbalanced.
- Therefore, we fixed this issue after **training** the model to avoid changing the test set.
- We used an oversample technique called SMOTE.
- SMOTE oversample the data in the minority class by finding its k-nearest neighbors.

Models & Evaluation

Models	Precision	Recall	F1 Score	ROC	Accuracy
Logistic Regression	0.52	0.78	0.62	0.76	0.75
Kernel SVM	0.51	0.77	0.61	0.75	0.74
Gaussian NB	0.49	0.80	0.61	0.75	0.73
Adaboost	0.50	0.79	0.61	0.75	0.73
Gradient boost classifier	0.50	0.74	0.6	0.74	0.74
SVC	0.46	0.84	0.59	0.74	0.69
XGBoost Classifier	0.54	0.66	0.59	0.73	0.76
Random Forest	0.53	0.59	0.56	0.70	0.75
KNN	0.48	0.64	0.55	0.69	0.72
Decision Tree Classifier	0.46	0.52	0.49	0.65	0.71

^{*} Results are sorted by F1 Score, Recall, Accuracy

Models & Evaluation

Let's summarize the **3 best models** based on **F1 Score, Recall & Precision**:

- Logistic Regression has the best F1-score compared to the other models we used. This means that it has the best overall performance in order to balance precision and recall.
- Support Vector Classifier has the best Recall score which means that the model predict more accurate the customers that had churned.
- XGBoost Classifier has the best Precision score which means that the
 model determines more efficient how many of the predicted
 customers drop out. On the other hand, this model is more willing to
 accept a prediction with less proof which will lead us to predict some
 customers as churned but they are loyal.

Future Importance

The **important features** are almost the same for all 3 models and confirm our findings in EDA where **Tenure**, **short-term Contracts**, **Fiber Optic** and **Electronic check** are the most **important**.

05

CONCLUSION

Summary and recommendations.

What model the company should choose?

• In order to answer efficiently this question, we are going to **simulate** a **Financial Cost-Effective Strategy** that applies 2 times higher costs to False Negative than to False Positives.

Let's make some assumptions here:

- The average customer acquisition cost for telecom is 300 euros.
- Assign to the true negatives the cost of 0 euros, since the model correctly identified a happy customer.
- False negatives are the most problematic, because they incorrectly
 predict that a churning customer will stay so we will assign the value of
 300 euros.
- Finally, for customers that the **model identifies as churning**, we will assume a retention incentive in the amount of **150 euros**. This is the cost of **both true positive and false positive** outcomes. In the case of false positives (the customer is happy, but the model mistakenly predicted churn), we will assign the 150 euros concession.

To understand which is the best model for the company to use to reduce its costs we should **minimize a cost function** that looks like this:

Cost = 300FN(C) + 0TN(C) + 150FP(C) + 150TP(C), where C:Count

Logistic Regression:

Cost_LR = 300 * 81 + 0 * 758 + 150 * 275 + 150 * 293 = **109,500 euros**

Support Vector Classifier:

Cost_SVC = 300 * 58 + 0 * 660 + 150 * 373 + 150 * 316 = **120,750** euros

XGBoost Classifier:

Cost_XGBC = 300 * 129 + 0 * 826 + 150 * 207 + 150 * 245 = **106,500 euros**

