Vorlesung Betriebssysteme I

Thema 4: Grundlegende Begriffe, Teil 2

Robert Baumgartl

16. November 2015

Begriffe: Schnittstelle

- beschreibt den statischen Aspekt einer Kommunikationsbeziehung
- Kommunikation über Schnittstelle kann synchron und asynchron erfolgen
- kann in Hardware oder in Software vorliegen

Hardwareschnittstellen - Beispiele

- Peripheral Component Interconnect (PCI)
- Controller Area Network (CAN)
- InfiniBand

Softwareschnittstellen = Gesamtheit aller nutzbaren Funktionen einer Bibliothek, eines Betriebssystems, einer Middleware (aka API – **A**pplication **P**rogrammer's **I**nterface) Beispiele: POSIX, Win32, Qt-API

Begriffe: Protokoll

- beschreibt den dynamischen Aspekt einer Kommunikation (also den Ablauf)
- ▶ Beispiele
 - Timingdiagramme für das Signalspiel
 - Semantikbeschreibung von Systemrufen
 - Präzedenzen für den Aufruf von Funktionen

Protokoll und Schnittstelle bedingen einander! Es gibt *proprietäre* und *offene* Schnittstellen und Protokolle.

Beispiel für (Teil einer) Protokollbeschreibung

Abbildung: Typische Präzedenzen bei Funktionen eines Dateisystems

Protokollbeispiel

Kommunikation eines Kunden mit dem Clerk bei McDonald's

Aktivitäten und Ressourcen

In einem Rechensystem gibt es zwei Kategorien von grundsätzlichen Objekten

- 1. Aktivitäten: das, was abgearbeitet wird
 - Task
 - Prozess
 - Thread
 - Routine
 - ▶ ..
 - ► (siehe später)
- 2. Ressourcen: das, was Aktivitäten "zum Leben" benötigen

Ressourcen

- "alles das, was keine Aktivität ist"
- Aktivitäten konkurrieren um Ressourcen
- existieren in allen Schichten eines Systems
- Beispiele: Datei, Festplatte, Programmcode, Hauptspeicherblock
- = Hardware und alle passiven Abstraktionen eines Rechensystems (d. h. auch CPU und Geräte)
- besitzen zu jedem Zeitpunkt einen inneren Zustand (z. B. CPU: Gesamtheit der Inhalte aller Register)
- ► Ressourcen werden durch Aktivitäten angefordert,durch eine zentrale Instanz zugeteilt und nach Nutzung durch die Aktivität zurückgegeben(← Protokoll!)

Entziehbare Ressourcen

Def. Eine *entziehbare Ressource* kann nach ihrer Zuteilung der Aktivität jederzeit entzogen werden. Der Vorgang ist für die Aktivität transparent.

Ablauf:

- 1. Aktivität anhalten
- 2. Zustand der Ressource sichern (z.B. auf Datenträger schreiben)
- 3. [Ressource anderweitig verwenden]
- 4. Zustand der Ressource restaurieren
- Aktivität fortsetzen

Voraussetzung für Entziehbarkeit:

- Zustand der Ressource ist vollständig auslesbar
- Zustand der Ressource kann beliebig manipuliert werden.

Entziehbare Ressourcen - Beispiele

- CPU (Zustand kann in den Hauptspeicher ausgelagert werden)
- Hauptspeicherblock (Zustand kann auf Massenspeicher ausgelagert werden)
- Datei

Die meisten Ressourcen sind nicht entziehbar:

- ▶ CPU-Cache
- Drucker
- Netzwerkkarte

Exklusiv nutzbare Ressourcen

Def. Eine *exklusiv nutzbare* Ressource darf zu jedem Zeitpunkt maximal von *einer* Aktivität genutzt werden.

- Beispiele: Hardware, (beschreibbarer) Speicher, zum Schreiben eröffnete Datei
- ▶ BS muss Exklusivität durchsetzen (→ Synchronisationsmechanismen)
- Zuteilung kann mittels verschiedener Strategien erfolgen:
 - Fairness
 - Minimierung der Wartezeit
 - Garantie einer maximalen Wartezeit

Klassifikation und Beispiele für Ressourcen

entziehbar	nicht entziehbar
Prozessor, Speicher	Datei, alle verbrauchbaren BM
gleichzeitig nutzbar	exklusiv nutzbar
Programmcode, Datei, Speicher	Prozessor, Drucker, Signal
wiederverwendbar	verbrauchbar
Prozessor, Datei, Speicher	Signal, Nachricht, Interrupt
physisch	logisch oder virtuell
Prozessor, Speicher, Geräte	Datei, Signal, Prozessor (!)

Tabelle: Klassifikation von Ressourcen

Ressourcentransformation

Abbildung: Transformation der Ressource physischer Sektor in Datei

Es kann dabei sogar eine neue Qualität entstehen:

Speicher + Identifikator + Programmcode = neuer Prozess

User Mode und Kernel Mode

- Idee: nur in einem privilegierten Modus (Kernel Mode) dürfen alle Operationen ausgeführt werden (z.B. Zugriff auf die Hardware, Manipulation von systemrelevanten Datenstrukturen wie der Prozesstabelle)
- dieser ist dem Betriebssystem vorbehalten
- Applikationen werden in einem restriktiven Modus (*User Mode*) ausgeführt (z.B. erfolgt automatische Prüfung der Gültigkeit jeder Speicherreferenz)
- bei Verletzung der Restriktionen wird die Applikation abgebrochen
- Unterscheidung Kernel Mode vs. User Mode analog zur Einteilung Administratoren vs. gewöhnliche Nutzer
- Ziel: Etablierung eines grundlegenden Schutzkonzeptes

User Mode und Kernel Mode

Was darf man nur im Kernel Mode?

- neuen Prozess erzeugen
- Treiber ins System laden oder daraus entfernen
- generell: Diensterbringung des Betriebssystems
- nicht jedoch: typische Adminaufgaben

Die CPU muss User Mode/Kernel Mode unterstützen, d.h., verschiedene Privilegierungsmodi unterscheiden.

Systemruf

Damit der "gewöhnliche" Nutzer die Funktionen des Kernels überhaupt anwenden darf, gibt es den Mechanismus des Systemrufs.

- BS bietet dem Programmierer Funktionen, diese werden über Systemrufe zur Verfügung gestellt
- Gesamtheit aller Systemrufe eines BS ist dessen Application Programmer's Interface (API)
- Nutzung analog den Funktionen einer Bibliothek mit einem Unterschied: Diensterbringung erfolgt im Kernel Mode
- → gewöhnlicher Funktionsaufruf als Mechanismus unbrauchbar!
- Systemrufe können blockieren!

Prinzip eines Systemrufs

Ablauf eines Systemrufs

Abbildung: Allgemeiner Ablauf eines Systemrufs read ()

Ablauf von WriteFile() in Windows 2000/XP/Vista

Quelle: David Solomon, *Inside Windows XP*, Microsoft Press, 2000

Was haben wir gelernt?

- 1. Protokoll und Schnittstelle
- 2. Ressourcen
 - entziehbare
 - exklusiv nutzbare
 - Ressourcentransformation
- 3. Kernel Mode und User Mode
- 4. Was ist ein Systemruf?