Rossman Store 销售额预测

潘维维 2019/10/13

模型 Kaggle 的 private score:0.11505(前 5%)

一、数据分析	4
1. 数据探索和可视化	4
1.1 数据集简介	4
1.2 数据特征探索	4
1.3 算法和基准模型	8
二、技术方法	9
1. 数据预处理	9
1.1 数据集处理	9
1.2 变量转化	10
1.3 新增变量	10
2. 特征选择	11
3. 执行过程	11
3.1 集成模型 Stacking	11
3.2 分期间模型	12
3.3 最终集成模型	13
三、结果分析	13
1. 模型评价及验证	13
2. 合理性分析	14
四、项目思考和改进	14
文献	16
附录	16

Rossmann 成立于 1972 年,是德国最大的日化用品超市,在 7 个欧洲国家有 3000 多家药店。此次项目需要解决的问题是使用 Rossman 3000 多家门店过去 2 年 半的相关数据对其未来 1 个半月的销售额进行预测。提供的历史数据集为 2013 年 1 月 1 日到 2015 年 7 月 31 日所有门店的每日销售额,包含客户量、日期、是否促销以及节假日信息。同时提供了 3000 多家门店的 StoreType、Assortment、是否连续促销、促销日期、最近竞争对手距离和竞争门店开设日期。通过以上数据,预测 2015 月 8 月 1 日到 2015 年 9 月 17 日的门店销售情况。

本篇报告会从数据分析、技术方法、结果分析和项目思考及改进四个方面进行阐述,最终获得预测模型,对 Rossman 门店的销售额进行预测。本项目使用的编程语言为 python。

模型评价指标引用了竞赛举办方提供的 Root Mean Square Percentage Error (RMSPE),公式如下:

RMSPE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2}$$
,

y_i 为每个商店每天的实际销售额, yhat_i 为对应的预算销售额。此评估指标对于日期型数据预测能稳定的进行评估。同时,销售额为0不会对此指标造成影响,可避免因销售额为0影响此指标的评估性能。

一、数据分析

1. 数据探索和可视化

1.1 数据集简介

本项目提供了三个数据集:

- a. train.csv 含有销售额的历史数据;
- b. test.csv 和 train.csv 中变量一致,但不含销售额和客户量的历史数据;
- c. store.csv 关于每个商店的一些补充信息;

以上特征变量数据类型有数值型变量,如 Store、Sales、Customers 以及 CompetitionDistance,日期型变量(Date),其他均为分类变量。

1.2 数据特征探索

本项目的目的是预测 3000 多家门店 1 个半月每日销售额,获取有良好泛化能力的预测模型,然每家门店可能具有其个性化特征,因此,数据特征探索主要从所有门店整体销售额着手,旨在提取其共有特征,而非对每家商店进行单独探索。

从日常知识推测,门店销售额会受促销、节假日、门店类别、类型和竞争对手等影响。现从数据层面探索 Rossman 门店销售额受以上因素的影响。

1.2.1 销售额整体情况

a. 所有门店销售额和偏正态分布,未发现异常值。销售额和客户量呈高度正相关性;

b. 下图为门店日销售额和其移动平均 30 天日销售额关系,相比日销售额趋势,30 天 移动平均值波动较为平稳,但其趋势变动和日销售额趋势一致。可考虑增加相关特征 变量,进行建模;

c. 门店销售额受星期几影响比较大,同时,月度销售额呈剧烈变动趋势,在3月、7月和12月会出现峰值;

1.2.2 销售额和促销及节假日关系

促销分为短期促销和连续促销

a.销售额受短期促销和节假日影响较为明显,尤其复活节促销时,销售额达到高值。

同时,发现圣诞节未参与短期促销,但其销售额仍高于其他假期类型;

b. 进行连续促销门店的销售额低于不进行连续促销门店的销售额。推测因连续促销的 门店本身销售额过低,才进行连续促销;

c. 从是否进行连续促销的门店月度销售额进行比较,发现在7月和12月进行连续促销的门店,整体销售额相比其他月份更高。值得注意是因所需预测数据为8和9月数据,考虑夏季促销可能对其有更大影响;

1.2.3 销售额和门店关系

a. 门店关门占比较大,较多是受周日及节日休息影响,但仍存在其他事件引起的关门;

b. 门店 105 在 2013 年 4 月的时候进行了近一个月时间的关闭,但在其门店重新开业后 5 天,销售额有一个激增,把此事件定义为装修效应;

c. 从下图可看到,不同的 StoreType 和 Assortment 对销售额产生一定的影响;

1.3.1 算法和技术

此次需解决的问题为回归问题,然从特征相关性图(见附录**图二**)可看,大部分特征变量和 Sales 变量相关性较小,若单独用基于相关系数的回归模型,效果较差。考虑用的是集成学习技术,通过结合多个模型的决策来提高整体性能。在集成算法中,首先考虑到的是 Boosting 算法中的 Xgboost,此算法是梯度提升算法的高级实现,被广泛推荐。

Xgboost 算法支持线性回归问题。和 GBDT 相比,它的损失函数里加入正则项,

用来控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的 score 的 L2 模的平方和,从 Bias-variance tradeoff 角度来讲,降低了模型的 variance,使学习出来的模型更加简单,防止过拟合。同时,Xgboost 利用泰勒公式进行二阶展开,能更快求解,也优化了分裂点搜索算法,还可以自定义损失函数。另外,其借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算。鉴于其多重优点,用 Xgboost 作为本项目主要算法。

1.3.2 基准模型

此项目最低要求是进入 Kaggle 前 10%排名,所以本项目我使用的基准模型是在不进行特征选择的情况下,把所有的特征和数据投入 Xgboost 模型中,把其结果作为基准模型结果。此模型使用的 CV 是 10 等分,测试集的 Private Score 为 0.12281,未能进入前 10%,验证集结果如下:

Stopping. Best iteration: [3447] train-rmse:0.076004

test-rmse:0.090768

train-rmspe:0.082206

test-rmspe:0.103659

二、技术方法

1. 数据预处理

此部分主要包括三方面:数据集处理、变量转化和新增变量。

1.1 数据集处理

a.把 train.csv 和 test.csv 数据进行了合并,组成一个数据集;

b.把组合的数据集和 Store.csv 进行左联,组成一个新的数据集;

c.剔除了门店开业时,销售额为0的数据;

d.对空缺值进行了-1填充,便于相关性计算;

1.2 变量转化

- a. 把 Sales 变量转为 log 变量,对 CompetitionDistance 进行 MinMaxScaler 标准化处理;
- b. 把类别变量 StateHoliday、StoreType、Assortment 转为 Category 变量,便于模型计算;
- c. 把 Date 变量转为日期变量,拆分为 Year、Month、Day、DayOfYear、Week 变量。因日期对销售额影响较大,拆分能更好的让模型挑选最适合的时间变量;
- d. 把 CompetitionOpenSinceYear 和 CompetitionOpenSinceMonth 两个变量进行组合,转为日期变量,再转化为 int64 格式,新增变量 CompetitionOpenInt,便于模型计算;
- e. 把 Promo2SinceYear、Promo2SinceMonth 两个变量同样转为日期变量,再最终转化为 int64 格式,新增变量 Promo2SinceFloat,便于模型计算;
- f. 把 PromoInterval 变量进行拆分,最终转为 PromoOpen (对应的日期,连续促销已持续的月份)变量,能更好的让模型对变量进行挑选;
- g. 同理新增 CompetitionOpen (对应的日期,竞争门店开业持续的月份)变量;

1.3 新增变量

以下新增变量,均来自前文中数据特征探索。

- a. 新增 IsPromoMonth 变量,为对应的销售日期,是否在进行连续促销;
- b. 新增 IsSummerPromo 变量,为对应的销售日期,是否在进行暑期促销;
- c. 新增 RefurbishEffect 变量,此变量为非节假日和周日停业,超过 4 天,然后再次 开业的 5 天,定义为 RefurbishEffect;

d. 新增了 SalesPerDay、CustomersPerDay、SalesPerCustomersPerDay 三个变量,分别为每个门店对应的日均销售额、日均客户量以及日均客单销售额; 最终变量结果见附录(**图一**)。

2. 特征选择

对训练集各特征变量计算相关系数,见附录(**图二**)。因训练模型数据均为开业数据,去掉 Open 变量。因 Week\Month\DayOfYear 关联度很高,去掉 Week 和DayOfYear 变量。同理,去掉 CustomersPerDay 变量。

通过 XGBboost 模型,进行二次特征选择,特征重要性图见附录(**图三**),在搭建 Stacking 模型时,剔除 IsSummerPromo、RefurbishEffect 特征。

3. 执行过程

3.1 Stacking 模型

因 Xgboost 基准模型,不能达到预期效果,考虑搭建二层 stacking 模型。所使用特征变量如下:

模型架构和结果如下:

一层基准模型	Rmspe
Random Forest	0.0177689
ExtraTreesRegressor	0.0173214
AdaBoost	0.0299056
XGBoost	0.106261

二层模型(CV=10)	Rmspe
XGBoost	0.078583

然此集成模型虽然在验证集结果较好,但在 Kaggle 测试集得分仍不理想,甚至不及 基准模型得分。究其原因可能是训练数据被过于训练,过拟合,导致测试集得分不理 想。此模型特征重要性见附录(**图四**)。

3.2 分期间模型

考虑到预测的数据集在 8-9 月,刚好在暑期营销季,且从之前分析中得知,销售额受 月份影响较大决定进行季节性分层建模。

分别对数据集 5-9 月数据, 1-4 月数据以及 10-12 月数据, 建立 Xgboost 模型, 再对这三个模型进行加权平均,得到最终集成模型,结果如下:

数据集	模型	验证集 Rmspe
5、6、7、8、9月		0.085292
1、2、3、4月	XGBoost	0.110792
10、11、12月		0.094005
集成模型		0.11662

最终集成模型在 kaggle 的 prive_score 为 0.11662,排名 9%左右,符合此项目要求 (权重分别为 0.6、0.15、0.25)。

如果分别把期间的三个模型结果单独的在 kaggle 计算测试集 Rmspe, 其效果均比较差, 然其集成模型效果却比较好,即使在搭配不同的权重情况下,集成模型的结果都较为稳定,原因为集成模型能更充分的利用数据,使模型预测效果变好。

3.3 最终集成模型

从 2.2.2 中的集成模型受到启发,把 2.2.1 得到的 stacking 模型纳入到 2.2.2 中的集成模型中。在调整加权系数的时候,发现比较有趣的现象,对数据集为 5-9 月的暑期效应模型赋予最大权重时,测试集得分会更好。但即使加权系数进行不断调整,整体模型结果均较为稳定,不为出现较大波动。

最终集成模型在 kaggle 的得分为 0.11505 , 进入前 5% , 权重分别为 0.25 (Stacking) 、 0.45、 0.05 和 0.25。 Kaggle 得分如下:

All Successful Selected	
Submission and Description	Private Score
rossmann_best_data_scaled14.csv a day ago by Weiwei Pan	0.11505
add submission details	

三、结果分析

1. 模型评价及验证

从特征重要性来看(见附录(**图四**)),其结果和前期特征分析结果一致。在进行建模时,均采用了 CV10 份验证,模型的验证得分均较为稳定。同时,Kaggle 测试集 Rmspe 结果,不管是 private 还是 public 得分,也未因为模型的微小调整,出现较大波动。以下为随机挑选的几个门店的预测情况。门店 2 的销售额真实值和预测值基本拟合。门店 188 和门店 666 预测值趋势基本和历史数据趋势一致。

2. 合理性分析

和基准模型相比,最终集成模型的 Rmspe 评估指标得到较为显著改善。最终的集成模型,去除了相关性较大的特征,放大了暑期数据集的影响,放小了其他期间数据集,也综合了部分因 stacking 模型导致的过拟合现象。模型性能更优。

四、项目思考和改进

1. 项目思考

此项目最有趣的地方是对项目进行了分期间数据集的独立建模,再进行加权。从最后的结果来看,暑期数据集对最终的测试结果影响较大。然若只考虑暑期数据集模型,因特征较多,虽然验证集 Rmspe 也较为理想,但因其对训练数据集过度训练,且同

时未对其他数据集物尽其用,导致最终测试结果不理想。而集成模型只选择简单的加权平均,可很好的综合独立模型之间的过度训练情况。

同时,把因过度训练的 stacking 模型加入到集成模型中,赋予权重,为最终模型结果添砖加瓦,显著改善了最终结果。

2. 项目改进

- a. 考虑引入天气变量,从 kaggle 讨论群中看,此变量非常有用;
- b. 看到第三名的神经网络分享,若能引人神经网络模型,更甚者深度学习模型,模型效果可能会有新的发现;
- c. 特征工程是提高模型效用最好的方法,在第一名的分享中,提到装修效应对模型有较好的影响。虽然我有把其加入到模型中,但其特征排名并不靠前。在另一个讨论,若去除门店相关异常值,模型效能会有显著提升。因装修效应,会造成门店出现异常值情况,若把其进行剔除处理,而非当前的变量引入,模型效果可能得到提升;
- d. 本次因各种原因,未对模型的参数进行网格搜索,所用参数可能非模型最佳;

猫文

- 1. 第1名的参考资料 https://www.kaggle.com/c/rossmann-store-sales/discussion/18024
- 2. 数据分析项目入门 https://www.cnblogs.com/majimaji/p/10265242.html
- 3. 如何进入 10% https://dnc1994.com/2016/04/rank-10-percent-in-first-kaggle-competition/
- 4. 第 72 名的参考资料 https://www.kaggle.com/c/rossmann-store-sales/discussion/17979#latest-167677
- 5. 从集成到实现集成学习 https://www.jiqizhixin.com/articles/2018-07-28-3
- 6. 增强树介绍 https://xgboost.readthedocs.io/en/latest/tutorials/model.html

附录

图一:特征变量

```
1017155 non-null float64
Customers
                                 1058243
                                          non-null datetime64[ns]
Date
DayOfWeek
                                 1058243
                                          non-null
                                                     int64
                                 41088 non-null float64
Id
                                 1058232 non-null float64
Open
Promo
                                 1058243
                                          non-null
                                                     int64
                                 1017155
                                          non-null
SchoolHoliday
                                 1058243
                                          non-null
                                                     int64
                                 1058243
Set
                                          non-null
                                                     int64
StateHoliday
                                 1058243
Store
                                 1058243
                                          non-null
                                                     int64
                                          non-null
SalesLog
Year
                                 1058243
                                          non-null
Month
                                 1058243
                                          non-null
                                                     int64
                                 1058243
Day
DavOfYear
                                 1058243
                                          non-null
                                                     int64
Week
                                 1058243
                                          non-null
DateInt
                                 1058243
                                          non-null
                                 1058243
                                          non-null
StoreType
                                                     int8
                                 1058243
CompetitionDistance
                                 1058243 non-null float64
                                 719698 non-null float64
CompetitionOpenSinceMonth
CompetitionOpenSinceYear
                                 719698 non-null float64
                                 1058243 non-null int64
Promo2
                                 532995 non-null float64
Promo2SinceWeek
                                 532995 non-null float64
1058243 non-null int64
Promo2SinceYear
CompetitionOpenInt
Promo2SinceFloat
                                 1058243 non-null int64
                                 1058243 non-null
PromoInterval
                                                     int8
PromoInterval0
PromoInterval1
                                 532995 non-null float64
PromoInterval2
                                 532995
                                         non-null float64
                                 532995 non-null float64
1058243 non-null float64
1058243 non-null float64
1058243 non-null float64
PromoInterval3
SalesPerDav
CustomersPerDay
SalesPerCustomersPerDay
PromoOpen
                                 532995 non-null float64
```

CompetitionOpen 719698 non-null float64 1058243 non-null int64 IsPromoMonth IsSummerPromo 1058243 non-null int64 IsRefurbish 1058243 non-null int64 RefurbishEffect1 60 non-null float64 RefurbishEffect2 72 non-null float64 RefurbishEffect3 81 non-null float64 RefurbishEffect4 82 non-null float64 RefurbishEffect5 82 non-null float64 RefurbishEffect 1058243 non-null int64 dtypes: datetime64[ns](1), float64(24), int64(18), int8(4)

图二:特征相关性

图三:特征选择中 XGBoost 模型特征重量性排名

Barplots of Mean Feature Importance

