不弹独出题.但必有%。

第一章 绪论

第	1章 :	绪 论	2
1.1	数字值	信号处理的定义、特点和方法	2
		数字信号定义	
1.2		数字信号处理的特点	
		数字信号处理的方法	
	数学引	· 数字信号处理的应用 预备知识	7
	1.2.1	傅立叶变换的几种形式	7
	1.2.2	常用的模拟信号	8
习	题		14

12数学预备知识

1. 傅里叶变换的 1. 种形式

傅里叶变换:从时域到频域的变换从而便子对某些信号进行处理,eq.频谱分析 (条件:信号h(t)满足绝对可积的条件,即 \cdots\lambda|h(t)|dt<∞,则傅里叶变换存在

有3种不同的形式

2. 常用模拟信号

$$u(\frac{t-to}{\alpha}) = \begin{cases} 0 & \frac{t}{\alpha} < \frac{to}{\alpha} \\ \frac{1}{2} & \frac{t}{\alpha} = \frac{to}{\alpha} \\ \frac{t}{\alpha} > \frac{ta}{\alpha} \end{cases}$$

$$S(t-t_0) = \begin{cases} 0 & t \neq t_0 \\ \infty & t = t_0 \end{cases}$$

偶函数、积分∫-∞ S(t) dt = u(t)

中認函数
$$S(t-to) = \begin{cases} 0 & t \neq to \\ \infty & t = to \end{cases}$$

$$S(t-to) = \begin{cases} 0 & t \neq to \\ \infty & t = to \end{cases}$$

$$S(t) \iff 0$$

$$S(t-to) \iff e^{-j\Omega to} \iff 2\pi S(\Omega - \Omega_0)$$