IC Design HW4 report

姓名; 金家逸 系級: 電機三 學號: B10502076

(a) Simulation

minimum cycle time: 5.1ns

(b) Circuit diagram:

Range Selector:

Getshift:

Intercept:

Carry Skip Adder (6-bit):

Carry Skip Adder (4-bit):

Ripple Carry Adder:

The critical path is highlighted in read line above circuit diagram.

(c) Discussion:

(1) Introduce your design:

I using 5 piecewise-linear approximate the sigmoid function, the 5 linear function is following:

For
$$-4 \le i_x < -2.375$$
, $y(x) = 0.140625 + 0.03125 x$
For $-2.375 \le i_x < -1$, $y(x) = 0.375 + 0.125 x$
For $-1 \le i_x < 1$, $y(x) = 0.5 + 0.25 x$
For $1 \le i_x < 2.375$, $y(x) = 0.625 + 0.125 x$
For $2.375 \le i_x < 4$, $y(x) = 0.859375 + 0.03125 x$

I use shift operation to get the slope, and I use K-map to get the intercept.

- (2) How do you improve your critical path and the number of transistors?
 - 1. I use NAND \ NOR gate as much as possible, instead of using AND \ OR gate.
 - 2. Because the result of y only need the fraction bit, so the adder only add the fraction bit of two input, which make transistors of adder decreased.
 - 3. I think I use more transistor to achieve low clock time, but will cost more area. In addition, I use five piecewise linear which also increase the number of transistor.
 - 4. First time, when I shift the input i_x, I discard the bit 1, which make the approximation error so big. That is, I only use the result from adder to output o_y, and let the remaining bit all 0.

Second time, when I shift input i_x, I reserve the bit 1, and final assign to output o_y. This makes my approximation error decreases so much.