Week 8: Field extensions and geometry (14.4, 14.5)

Practice Problems

- 1. Find a Galois extension K/\mathbb{Q} with $Gal(K/\mathbb{Q}) \cong C_3$.
- 2. Without appealing to the fundamental theorem of algebra, show that every polynomial in $\mathbb{R}[x]$ of odd degree has a root in \mathbb{R} . Deduce that there are no nontrivial odd-degree extensions of \mathbb{R} .
- 3. Without appealing to the fundamental theorem of algebra, show that every polynomial in $\mathbb{C}[x]$ of degree 2 has a root in \mathbb{C} . Deduce that there are no quadratic extensions of \mathbb{C} .

Presentation Problems

- 1. Let p be an odd prime and let $\zeta_p = e^{2\pi i/p}$. Show that there exists a unique quadratic extension K/\mathbb{Q} with $K \subseteq \mathbb{Q}(\zeta_p)$. What is this quadratic extension?
- 2. Show that $\sqrt[3]{2}$ is not contained in any cyclotomic field over \mathbb{Q} .
- 3. For each integer $n \ge 1$, set $K_n = \mathbb{Q}(\zeta_{2^{n+2}})$ and $K_n^+ = \mathbb{Q}(\alpha_n)$ where $\alpha_n = \zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1}$.
 - (a) Show that $K_n^+ = K_n \cap K_{n+1}^+$ and determine the degrees of the extensions in the diagram

- (b) Determine the minimal polynomials for $\zeta_{2^{n+2}}$ and α_{n+1} over K_n^+ , with coefficients in terms of α_n .
- (c) Inductively give an explict formula for α_n using nested square roots.
- 4. For each $n \geq 1$, determine $\operatorname{Tr}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\zeta_n)$ and $\operatorname{N}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\zeta_n)$. Your answer will depend on the prime factorization of n.

Tricky Problems

- 1. (a) For each $n \geq 1$, compute the lattice of subfields for the extension $\mathbb{Q}(\zeta_{2^{n+2}})/\mathbb{Q}$.
 - (b) Compute $Gal(K/\mathbb{Q})$ for each intermediate field K of the extension $\mathbb{Q}(\zeta_{2^{n+2}})/\mathbb{Q}$.
- 2. Let $f(x) \in \mathbb{C}[x]$ and let $g(x) = f(x)\overline{f}(x)$ where $\overline{f}(x)$ is given by taking the complex conjugate of the coefficients of f.
 - (a) Show that $q(x) \in \mathbb{R}[x]$.

Let K be the splitting field of g(x) over \mathbb{R} .

(b) Show that K(i) is a Galois extension of \mathbb{R} .

Let $G = \operatorname{Gal}(K(i)/\mathbb{R})$ and let P be a Sylow 2-subgroup of G.

- (c) Show that the fixed field of P is an extension of \mathbb{R} of odd degree. Deduce that G is a 2-group.
- (d) Show that if $Gal(K(i)/\mathbb{C}) \neq 1$ then there exists a quadratic extension of \mathbb{C} . Deduce that $K(i) = \mathbb{C}$.

- (e) Show that if g(x) is nonconstant then g(x) has a root in \mathbb{C} .
- (f) Show that if f(x) is nonconstant then f(x) has a root in \mathbb{C} .

This is known as the fundamental theorem of algebra.