FILTER DESIGN ASSIGNMENT

EE23BTECH11011- Batchu Ishitha*

April 9, 2024

1 INTRODUCTION

We are supposed to design the equivalent FIR and IIR filter realizations for given filter number. This is a bandpass filter whose specifications are available below.

2 Filter Specifications

The sampling rate for the filter has been specified as $F_s = 48$ kHz. If the un-normalized discrete-time (natural) frequency is F, the corresponding normalized digital filter (angular) frequency is given by $\omega = 2\pi \left(\frac{F}{F_s}\right)$.

2.1 The Digital Filter

1. *Passband:* The passband of filter number j, is from $\{4 + 0.6(j)\}$ kHz to $\{4 + 0.6(j+2)\}$ kHz where

$$j = (r - 11000) \mod \sigma \tag{1}$$

where σ is sum of digits of roll number and r is roll number.

$$r = 11011$$
 (2)

$$\sigma = 4 \tag{3}$$

$$j = 3 \tag{4}$$

Substituting j=3 gives the passband range for our bandpass filter as 5.8 kHz - 7 kHz. Hence, the un-normalized discrete time filter passband frequencies are $F_{p1}=7$ kHz and $F_{p2}=5.8$ kHz. The corresponding normalized digital filter passband frequencies are

$$\omega_{p1} = 2\pi \frac{F_{p1}}{F_s} = 0.29\pi \tag{5}$$

$$\omega_{p2} = 2\pi \frac{F_{p2}}{F_{r}} = 0.24\pi \tag{6}$$

The centre frequency is then given by

$$\omega_c = \frac{\omega_{p1} + \omega_{p2}}{2} = 0.265\pi. \tag{7}$$

- 2. *Tolerances*: The passband (δ_1) and stopband (δ_2) tolerances are given to be equal, so we let $\delta_1 = \delta_2 = \delta = 0.15$.
- 3. Stopband: The transition band for bandpass filters is $\Delta F = 0.3$ kHz on either side of the passband. Hence, the un-normalized stopband frequencies are

$$F_{s1} = 7 + 0.3 = 7.3kHz \tag{8}$$

$$F_{s2} = 5.8 - 0.3 = 5.5kHz. (9)$$

The corresponding normalized frequencies are

$$\omega_{s1} = 0.3041\pi \tag{10}$$

$$\omega_{s2} = 0.2292\pi. \tag{11}$$

2.2 The Analog filter

In the bilinear transform, the analog filter frequency (Ω) is related to the corresponding digital filter frequency (ω) as

$$\Omega = \tan \frac{\omega}{2}.\tag{12}$$

Using this relation, we obtain the analog passband and stopband frequencies as $\Omega_{p1} = 0.4899$, $\Omega_{p2} = 0.3959$ and $\Omega_{s1} = 0.5177$, $\Omega_{s2} = 0.3764$ respectively.

3 The IIR Filter Design

Filter Type: We are supposed to design filters whose stopband is monotonic and passband equiripple. Hence, we use the *Chebyschev approximation* to design our bandpass IIR filter.

3.1 The Analog filter

1. Low Pass Filter Specifications: If $H_{a,BP}(j\Omega)$ be the desired analog band pass filter, with the specifications provided in Section 2.2, and $H_{a,LP}(j\Omega_L)$ be the equivalent low pass filter, then

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega} \tag{13}$$

where $\Omega_0 = \sqrt{\Omega_{p1}\Omega_{p2}} = 0.4404$ and $B = \Omega_{p1} - \Omega_{p2} = 0.094$. The low pass filter has the passband edge at $\Omega_{Lp} = 1$ and stopband edges at

$$\Omega_{Ls_1} = 1.5219 \tag{14}$$

$$\Omega_{Ls_2} = -1.4775 \tag{15}$$

We choose the stopband edge of the analog low pass filter as

$$\Omega_{Ls} = \min(|\Omega_{Ls_1}|, |\Omega_{Ls_2}|) = 1.4775.$$
(16)

2. *The Low Pass Chebyschev Filter Paramters:* The magnitude squared of the Chebyschev low pass filter is given by

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + \epsilon^2 c_N^2(\Omega_L/\Omega_{Lp})}$$
(17)

Since $\Omega_{Lp} = 1$, (17) may be rewritten as

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + \epsilon^2 c_N^2(\Omega_L)}$$
(18)

where

$$c_N(x) = \cosh(N\cosh^{-1} x) \tag{19}$$

$$c_0(x) = 1 \tag{20}$$

$$c_1(x) = x \tag{21}$$

and the integer N, which is the order of the filter, and ϵ are design paramters. There exists a recurssive relation from which all the polynomials can be found out.

$$c_{N+2} = 2xc_{N+1} - c_N (22)$$

Imposing the band restrictions on (17)

$$|H_{a,LP}(j\Omega_L)|^2 < \delta_2 \text{ for } \Omega_L = \Omega_{Ls}$$
 (23)

$$1 - \delta_1 < |H_{a,LP}(j\Omega_L)|^2 < 1 \text{ for } \Omega_L = \Omega_{Lp}$$
 (24)

we obtain:

$$\frac{\sqrt{D_2}}{c_N(\Omega_{Ls})} \le \epsilon \le \sqrt{D_1},$$

$$N \ge \left\lceil \frac{\cosh^{-1} \sqrt{D_2/D_1}}{\cosh^{-1} \Omega_{Ls}} \right\rceil,$$
(25)

where $D_1 = \frac{1}{(1-\delta)^2} - 1$ and $D_2 = \frac{1}{\delta^2} - 1$ and $\lceil . \rceil$ is known as the ceiling operator.

Parameter	Value
D_1	0.384
D_2	43.44
N	4
$c_4(x)$	$8x^4 + 8x^2 + 1$

Table 2: Parameter Table

The below code plots (17) for different values of ϵ .

 $https://github.com/BATCHUISHITHA/EE-1205/blob/main/filterdesign/codes\\/1.py$

Figure 2: The Analog Low-Pass Frequency Response for $0.31 \le \epsilon \le 0.62$

In Fig. 2 we can observe the equiripple behaviour in passband and monotonic behaviour in stopband. As the value of ϵ increases the value of $|H_{a,LP}(j\Omega_L)|$ decreases.

3. The Low Pass Chebyschev Filter: Thus, we obtain

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + 0.16c_4^2(\Omega_L)}$$
 (26)

where

$$c_4(x) = 8x^4 + 8x^2 + 1. (27)$$

The poles of the frequency response in (17) lying in the left half plane are in general obtained as $r_1 \cos \phi_k + jr_2 \sin \phi_k$, where

$$\phi_k = \frac{\pi}{2} + \frac{(2k+1)\pi}{2N}, k = 0, 1, \dots, N-1$$

$$r_1 = \frac{\beta^2 - 1}{2\beta}, r_2 = \frac{\beta^2 + 1}{2\beta}, \beta = \left[\frac{\sqrt{1 + \epsilon^2} + 1}{\epsilon}\right]^{\frac{1}{N}}$$
(28)

Thus, for N even, the low-pass stable Chebyschev filter, with a gain G has the form

$$H_{a,LP}(s_L) = \frac{G_{LP}}{\prod_{k=1}^{\frac{N}{2}-1} (s_L^2 - 2r_1 \cos \phi_k s_L + r_1^2 \cos^2 \phi_k + r_2^2 \sin^2 \phi_k)}$$
(29)

Substituting N=4, $\epsilon=0.5$ and $H_{a,LP}(j)=\frac{1}{\sqrt{1+\epsilon^2}}$, from (28) and (29), we obtain

$$H_{a,LP}(s_L) = \frac{0.3125}{s_L^4 + 1.1068s_L^3 + 1.6125s_L^2 + 0.9140s_L + 0.3366}$$
(30)

In Figure 2 we plot $|H(j\Omega)|$ using (26) and (30), thereby verifying that our low-pass Chebyschev filter design meets the specifications.