Assignment 3: Database Design (Spring 2019)

Instructor: Zhaonian Zou (znzou@hit.edu.cn)

Name:	Student ID:	Grade:
ranic.	Student 1D.	Grade.

Question	1	2(a)	2(b)	2(c)	2(d)	2(e)	3(a)	3(b)	3(c)	3(d)	3(e)	4	Total
Score													

Notes

- Print the assignment on A4 paper and answer the questions.
- Assignment due date: April 3, 2019.

Questions

1. (2 Points) Given the database schema R(A,B,C), and a relation r on the schema R, write an SQL query to test whether the functional dependency $B \to C$ holds on relation r (the query returns 1 if $B \to C$ holds on r and 0 otherwise). Hint: the following SQL query returns 1 if its result is non-empty; otherwise, it returns 0.

- 2. (10 Points) Prove or disprove the following inference rules for functional dependencies. A proof can be made by using Armstrong's axioms. A disproof should be performed by demonstrating a relation instance that satisfies the conditions and functional dependencies in the left-hand side of the inference rule but does not satisfy the dependencies in the right-hand side.
 - (a) (2 Points) $\{W \to Y, X \to Z\} \models \{WX \to Y\}$
 - (b) (2 Points) $\{X \to Y, X \to W, WY \to Z\} \vDash \{X \to Z\}$
 - (c) (2 Points) $\{X \to Z, Y \to Z\} \models \{X \to Y\}$
 - (d) (2 Points) $\{X \to Y, Z \to W\} \models \{XZ \to YW\}$
 - (e) (2 Points) $\{X \to Y, Y \to Z\} \models \{X \to YZ\}$
- 3. (15 Points) Consider the following set F of functional dependencies on the relation schema R(A, B, C, D, E):

$$A \rightarrow B$$

$$A \to C$$

$$BC \to A$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

Answer the following questions:

- (a) (3 Points) Compute $(BC)_F^+$.
- (b) (3 Points) List the candidate keys for R. Prove that they are candidate keys using Armstrong's axioms.
- (c) (3 Points) Compute a canonical cover for F; give each step of your derivation with an explanation.
- (d) (3 Points) Suppose that R is decomposed into $R_1(A, B, C)$ and $R_2(C, D, E)$. Show that this decomposition is not a lossless decomposition. Hint: Give an example of a relation r on schema R such that

$$\Pi_{A,B,C}(r) \bowtie \Pi_{C,D,E}(r) \neq r.$$

- (e) (3 Points) Give a 3NF decomposition of R based on the canonical cover for F.
- 4. (3 Points) Let $R_1(U_1), R_2(U_2), \ldots, R_n(U_n)$ be a decomposition of schema R(U). Let r be a relation on schema R, and let $r_i = \Pi_{U_i}(r)$. Show that

$$r \subseteq r_1 \bowtie r_2 \bowtie \cdots \bowtie r_n$$
.

Answers

- 1. SELECT IF(COUNT(*), 1, 0)
 FROM R R1 JOIN R R2 ON (R1.B = R2.B AND R1.C != R2.C)
 LIMIT 1;
- 2. (a) Correct.
 - It is certain that $WX \to W$.
 - $\{WX \to W, W \to Y\} \models \{WX \to Y\}.$
 - (b) Correct.
 - $\{X \to Y, X \to W\} \models \{X \to WY\}.$
 - $\{X \to WY, WY \to Z\} \models \{X \to Z\}.$
 - (c) Incorrect. Suppose a relation R(X,Y,Z) contians two tupes $\{(x,y,z),(x,y',z)\}$, where $y\neq y'$.
 - (d) Correct.
 - $\{X \to Y\} \models \{XZ \to YZ\}.$
 - $\{Z \to W\} \models \{YZ \to YW\}.$
 - $\{XZ \to YZ, YZ \to YW\} \models \{XZ \to YW\}.$
 - (e) Correct.
 - $\{Y \to Z\} \models \{Y \to YZ\}.$
 - $\{X \to Y, Y \to YZ\} \models \{X \to YZ\}.$
- 3. (a) i. $X^{(0)} = BC$.
 - ii. $X^{(1)} = X^{(0)} \cup AD = ABCD$.
 - iii. $X^{(2)} = X^{(1)} \cup BCE = ABCDE$. Because $X^{(2)}$ contains all attributes in R, we have $(BC)_F^+ = ABCDE$.
 - (b) A is a candidate key.
 - \bullet BC is a candidate key.
 - *CD* is a candidate key.
 - \bullet E is a candidate key.

The proofs are omitted.

- (c) $BC \to A$ is a redundant FD because $F \{BC \to A\} \models \{BC \to A\}$. Thus, $F = \{A \to B, A \to C, CD \to E, B \to D, E \to A\}$.
 - \bullet No redundant attribute is found on the left-hand side of each FD left in F.

- $A \to B$ and $A \to C$ should be merged, so $F = \{A \to BC, CD \to E, B \to D, E \to A\}$.
- No more redundant FDs, redundant attributes, and mergable FDs can be fould, so the canonical cover for F is $\{A \to BC, CD \to E, B \to D, E \to A\}$.
- (d) Let $r = \{(a, b, c, d, e), (a', b', c, d', e')\}$. We have

$$\Pi_{A,B,C}(r) \bowtie \Pi_{C,D,E}(r) = \{(a,b,c,d,e), (a',b',c,d',e'), (a,b,c,d',e'), (a',b',c,d,e)\}.$$

- (e) $\{R_1(A, B, C), R_2(C, D, E), R_3(B, D), R_4(A, E)\}$ is a 3NF decomposition of R.
- 4. The proof is omitted.