Network Project

Project Team

Mohamed Tarek 230102535

Abdelaziz Soliman 230105666

Seif Waheed 230102645

Omar Ahmed 230104579

Asmaa Saied 230101389

1. Network Design:

The first step of the project involved designing the network topology.

2. Subnetting

Once the network design was finalized, subnetting was performed to allocate IP addresses efficiently. Each branch and department received a specific subnet to:

- Isolate traffic for security and performance.
- Ensure there were enough IP addresses for all devices within each network segment.

Now, let us choose a branch to apply the subnetting

In this branch (refer to Pic. 2), the network IP is 10.0.0.0, and there are 6 departments.

To meet the requirements, we need to subnet this IP address to accommodate the 6 departments efficiently. Each subnet will be assigned based on the number of devices per department and future scalability.

3. Subnet Calculation:

Network IP:
$$10.0.0.0.0/8$$

Network = 2^N
 $N = 3 \rightarrow this$ is number of borrowed bits

 $3 + 8 = 11$

So the new IP: $10.0.0.0/11$

Network Address Usable Host Range Broadcast Address:

 $10.0.0.0$ $10.0.0.1 - 10.31.255.254$ $10.31.255.255$
 $10.32.0.0$ $10.32.0.1 - 10.63.255.254$ $10.63.255.255$
 $10.64.0.0$ $10.64.0.1 - 10.95.255.254$ $10.95.255.255$
 $10.128.0.0$ $10.128.0.1 - 10.127.255.254$ $10.127.255.255$
 $10.160.0.0$ $10.160.0.1 - 10.191.255.254$ $10.192.55.255$
 $10.192.0.0$ $10.192.0.1 - 10.223.255.254$ $10.223.255.255$
 $10.224.0.0$ $10.224.0.1 - 10.255.255.255$ $10.255.255.255$

pic. 3

And this is for the other networks in the projects:

Network
$$IP = 172.20.0.0/16$$
 $V = 2^{n}$
 $N = 2$
 $2 + 16 = 18$
 $N = 2 + 172.20.0.0/18$

Network Address	Usable Host Range	Broadcast Address:
172.20.0.0	172.20.0.1 - 172.20.63.254	172.20.63.255
172.20.64.0	172.20.64.1 - 172.20.127.254	172.20.127.255
172.20.128.0	172.20.128.1 - 172.20.191.254	172.20.191.255
172.20.192.0	172.20.192.1 - 172.20.255.254	172.20.255.255

Network Address	Usable Host Range	Broadcast Address:
192.168.20.0	192.168.20.1 - 192.168.20.62	192.168.20.63
192.168.20.64	192.168.20.65 - 192.168.20.126	192.168.20.127
192.168.20.128	192.168.20.129 - 192.168.20.190	192.168.20.191
192.168.20.192	192.168.20.193 - 192.168.20.254	192.168.20.255

Network

$$P = 172.22.0.0 / 16$$
 $2 = 2^{M}$
 $N = 1$
 $1 + 16 = 17$

 New
 $1P = 172.22.0.0 / 17$

 Network Address
 Usable Host Range

 172.22.0.0
 172.22.0.1 - 172.22.127.254

 172.22.128.0
 172.22.128.1 - 172.22.255.254

Network
$$P = 192.168.40.0/24$$
 $S = 2^{N}$

N = 3

 $3 + 24 = 27$

Network Address Usable Host Range Broadcast Address:

192.168.40.0 192.168.40.1 - 192.168.40.30 192.168.40.31

192.168.40.32 192.168.40.33 - 192.168.40.62 192.168.40.63

192.168.40.64 192.168.40.65 - 192.168.40.94 192.168.40.95

192.168.40.96 192.168.40.97 - 192.168.40.126 192.168.40.127

192.168.40.128 192.168.40.129 - 192.168.40.158 192.168.40.159

192.168.40.120 192.168.40.161 - 192.168.40.190 192.168.40.191

192.168.40.192 192.168.40.193 - 192.168.40.222 192.168.40.223

192.168.40.224 192.168.40.225 - 192.168.40.254 192.168.40.255

4. Configuration:

After subnetting, the configuration phase began.

1 - Router Configuration:

Configured sub interfaces for inter-VLAN routing:

2 - Switch Configuration:

Set up VLANs for each department :

```
Switch>en
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 1
Switch(config-vlan)#exit
Switch(config) #vlan 2
Switch(config-vlan) #exit
Switch(config) #vlan 3
Switch(config-vlan) #exit
Switch(config) #vlan 4
Switch(config-vlan) #exit
Switch(config) #vlan 5
Switch(config-vlan) #exit
Switch(config) #vlan 6
Switch(config-vlan) #exit
Switch(config)#
```

Assign Ports to VLANs and configure Trunking on the Switch-Router Link:

```
Switch(config) #interface FastEthernet0/1
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 1
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 1
Switch(config-if) #exit
Switch(config)#interface FastEthernet0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/4
Switch(config-if) #switchport mode access
Switch(config-if)#
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config)#interface FastEthernet0/5
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/6
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/7
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 4
Switch (config-if) #exit
Switch(config) #interface FastEthernet0/8
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 4
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/9
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 5
Switch(config-if) #exit
Switch(config)#interface FastEthernet0/10
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 5
Switch(config-if) #exit
Switch(config) #interface FastEthernet0/11
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 6
Switch(config-if) #exit
Switch(config)#interface FastEthernet0/12
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 6
Switch(config-if)#
Switch(config-if) #exit
Switch(config) #interface GigabitEthernet0/1
Switch(config-if) #switchport mode trunk
Switch(config-if) #exit
Switch (config) #
```

3 - Set up each devices:

By assigning the IP address and the default gateway.

Now the network is complete, we repeated the process for the other networks.

5. Router OSPF implementation

now we will choose one of these routers

Steps to Implement OSPF:

Router Configuration CLI:

```
Router>enable
Router#onf
Router#onf
Router#conf
Router#configure t
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) #inter
Router(config) #interface se
Router(config) #interface serial0/1/0
Router(config-if)#ip
Router(config-if) #ip add
Router(config-if) #ip address 192.168.5.1 255.255.255.0
Router(config-if) #no sh
Router(config-if) #no shutdown
%LINK-5-CHANGED: Interface Serial0/1/0, changed state to down
Router(config-if) #exit
Router(config) #interface serial0/1/1
Router(config-if)#ip address 192.168.1.2 255.255.255.0
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface Serial0/1/1, changed state to up
Router(config-if)#ex
Router(config-if) #exit
Router(config)#
```

OSPF Protocol Configuration CLI:

```
Router>ena
Router>enable
Router#conf
Router#configure t
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #rout
Router(config) #router ospf 1
Router(config-router) #rout
Router(config-router) #router-id 2.2.2.2
Router(config-router) #net
Router(config-router) #network 1922.168.1.2 0.0.0.255 area 0
% Invalid input detected at '^' marker.
Router(config-router) #network 192.168.1.2 0.0.0.255 area 0
Router(config-router) #network 192.168.1.2 0.0.0.255 area 0
01:03:31: %OSPF-5-ADJCHG: Process 1, Nbr 1.1.1.1 on Serial0/1/lnetwork 192.168.5.1
0.0.0.255 area 0
Router(config-router) #network 192.168.40.1 0.0.0.255 area 0
Router(config-router) #end
Router#
%SYS-5-CONFIG_I: Configured from console by console
write memory
Building configuration...
[OK]
Router#
```

We do the same with all router's

6. Ping:

To verify connectivity between the two networks, we will perform a ping test.

1 2

3