Introduction to Stable Homotopy Theory Exercise Sheet 1

- 1. Let Y be a topological space. Show that two n-simplices $\sigma, \tau \in (\operatorname{Sing} Y)([n])$ are homotopic relative to the boundary (in the sense explained in class) if and only if, when seen as maps $|\Delta^n| \to Y$ they are homotopic relative to the subspace $|\partial \Delta^n|$.
- 2. Let X,Y,Z be Kan complexes and let $f,f:X\to Y$ and $g,g':Y\to Z$ be homotopic maps. Show that g'f' and gf are homotopic.
- 3. Let X,Y be Kan complexes and $H: X \times \Delta^1 \to Y$ be a homotopy between two maps $f = H|_{X \times \{0\}}$ and $g = H|_{X \times \{1\}}$. Then for every $x \in X$ let γ be the path $H|_{\{x\} \times \Delta^1}$. Show that there's a commutative diagram

$$\pi_n(X,x) \xrightarrow{f_*} \pi_n(Y,fx)$$

$$\downarrow^{g_*} \qquad \downarrow^{\gamma_*} \qquad ,$$

$$\pi_n(Y,gx)$$

where γ_* is the isomorphism constructed in class.

Deduce from the previous fact that homotopy equivalences induce isomorphisms between homotopy groups.