Basic Properties

Definition: A topological space M is called a *manifold* if it satisfies the following:

- M is Hausdorff (points can be separated by open sets);
- M is second countable (the basis for the topology of M is countable);
- M is locally Euclidean (every point in M has a neighborhood homeomorphic to \mathbb{R}^n for some n).

In particular, the third condition says that for every $p \in M$, there is $U \in \mathcal{O}_p$ and a homeomorphism $\varphi \colon U \to \mathbb{R}^n$. The value of n is called the *dimension* of the manifold M.

Definition: Let M be an n-manifold. A *chart* on M is a pair (U, φ) such that $U \subseteq M$ is open, $\varphi \colon U \to \mathbb{R}^n$ is a homeomorphism.

A family of charts $A = \{(U_i, \varphi_i)\}_{i \in I}$ is known as an *atlas* if

$$M = \bigcup_{i \in I} U_i$$
.

To understand the smooth structure of a manifold, we consider a point $p \in M$ and two charts (U, ϕ_U) and (V, ϕ_V) such that $p \in U$ and $p \in V$. The functions $\phi_U \colon U \to \mathbb{R}^n$ and $\phi_V \colon V \to \mathbb{R}^n$ are homeomorphism, meaning that $\phi_V \circ \phi_U^{-1} \colon \phi_U (U \cap V)^n \to \mathbb{R}^n$ defined on the (nonempty) $U \cap V$ is also a homeomorphism.

In particular, we develop the smooth structure by making sure all such pairs $\phi_V \circ \phi_U^{-1}$ are *diffeomorphisms*. To do this, we need to first develop the derivative in \mathbb{R}^n .

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function. We say f is *differentiable* at $p \in \mathbb{R}^n$ if there is a linear map $L \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\frac{\|f(p+h) - f(p) - Lh\|}{\|h\|} \to 0$$

as $h \rightarrow 0$.

The *derivative* of f is the association $f \mapsto L$ for each $p \in \mathbb{R}^n$.

A function f is called a *diffeomorphism* if it is continuously differentiable and has a continuously differentiable inverse.

Definition: If (U, φ_U) and (V, φ_V) are charts such that $U \cap V \neq \emptyset$, the function $\varphi_V \circ \varphi_U^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$ is known as the *transition map* between φ_U and φ_V .

A *smooth structure* for M is an atlas $\{(U_i,\phi_i)\}_{i\in I}$ such that for all $i,j\in I$, the transition maps $\phi_j\circ\phi_i^{-1}\colon\mathbb{R}^n\to\mathbb{R}^m$ are diffeomorphisms where defined (if not defined, then it is vacuously so). If M admits a smooth structure, then we call M a smooth manifold.

Note: From now on, we use "manifold" to refer to smooth manifolds, and will say *topological* manifolds if the manifold does not necessarily admit a smooth structure.

Definition: A map $f: M \to N$ between manifolds is called *smooth* if for any chart (U, ϕ_U) in M and corresponding chart (V, ϕ_V) in N, the map $\phi_V \circ f \circ \phi_1^{-1} \colon \mathbb{R}^n \to \mathbb{R}^k$ is continuously differentiable.

The function f is a *diffeomorphism* if f is a smooth bijection with smooth inverse, and we say the manifolds M and N are diffeomorphic if they admit a diffeomorphism.