Objekterkennung am Beispiel des Viola-Jones-Objektdetektors

Andreas Unterweger

Vertiefung Medieninformatik Studiengang ITS FH Salzburg

Wintersemester 2014/15

Objekterkennung (engl. object detection)

- Ziel: Finden eines bestimmten Objektes bzw. mehrerer bestimmter Objekte in einem Bild
- Wichtiger Spezialfall: Objektklassenerkennung
 - Klasse: Zusammengehörige Gruppe von Objekten mit gemeinsamen Eigenschaften (z.B. Dreiecke: 3 geschlossen verbundene gerade Linien)
 - Ziel: Erkennung aller Objekte der Klasse
 - Nebenkriterium: Keine Erkennung anderer Objekte
- Menschliche Wahrnehmung ist gut bei Objekt(-klassen-)erkennung
- Herausforderungen
 - Fähigkeiten der menschlichen Wahrnehmung digital nachbilden
 - Eindeutige Objektklassenbeschreibungen finden
 - Blickwinkel und Verzerrungen

Objektklassenbeispiel

Quelle: Yan, P. und Khan, S. M.: 3D Model based Object Class Detection in An Arbitrary View. http://vision.eecs.ucf.edu/projects/3D_Model_based_Object_Detection/ObjectDetection.html (28.6.2014), 2007.

Begriffe

- Positive (Treffer): Erkennung durch Algorithmus
- Negative: Nichterkennung durch Algorithmus
- Korrektheit der Erkennung (boolesch): True/false

	Erkannt	Nicht erkannt
Ist Objekt	True Positive	False Negative
Ist kein Objekt	False Positive	True Negative

• Typische Abkürzungen: TP, FP, TN, FN

Metriken I

 Präzision (engl. precision): Wahrscheinlichkeit, dass ein Treffer tatsächlich ein Objekt ist

$$p = \frac{TP}{TP + FP}$$

 Sensitivität (engl. sensitivity): Wahrscheinlichkeit, dass ein Objekt einen Treffer verursacht

$$sns = \frac{TP}{TP + FN}$$

 Spezifizität (engl. specificity): Wahrscheinlichkeit, dass "kein Objekt" keinen Treffer verursacht

$$spc = \frac{TN}{FP + TN}$$

Metriken II

 Genauigkeit (engl. accuracy): Gütemaß für korrekte Trefferzuordnung (Treffer bei Vorhandensein eines Objektes und kein Treffer bei Nichtvorhandensein eines Objektes)

$$a = \frac{TP + TN}{TP + FP + TN + FN}$$

F₁-Score: Harmonisches Mittel aus Präzision und Sensitivität

$$F_{1} = \frac{2}{\frac{1}{p} + \frac{1}{sns}} = \frac{2}{\frac{1}{\frac{TP}{TP + FP}}} + \frac{2}{\frac{TP}{TP + FN}} = \frac{2}{\frac{TP + FP}{TP}} = \frac{2}{\frac{2 \cdot TP + FP + FN}{TP}} = \frac{2}{\frac{2 \cdot TP + FP + FN}{TP}} = \frac{2}{2 \cdot TP + FP + FN}$$

Metriken III

Receiver Operating Characteristic (ROC):

Quelle: http://commons.wikimedia.org/wiki/File:ROC_space.png

Metriken IV

ROC-Kurve: Trefferrate bei variabler Falscherkennungsrate:

Quelle: Weiss, J.: Lecture 22 - Wednesday, November 10, 2010. http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22.htm (28.6.2014), 2010.

Überblick zum Viola-Jones-Objektdetektor

- Merkmale: Abfolgen von Hell-Dunkel-Unterschieden im Objekt
- Beispiel: Gesichtserkennung
 - Vertikal: Augen: Dunkel, Wangen: Hell
 - Horizontal: Augen: Dunkel, Nase: Hell, Augen: Dunkel
 - ...

Quelle: Viola, P. and Jones, M. J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), pp. 137–154, 2004.

Merkmale I

- Rechteckige Bereiche
 - Pixel in weiß markierten Bereichen addieren
 - Pixel in schwarz markierten Bereichen subtrahieren
 - → Summe ist in gesuchten Objekten hoch, ansonsten niedriger
 - → Finden von Objekten über Schwellwert möglich
- Mehrere verschiedene Merkmale:

Quelle: http://commons.wikimedia.org/wiki/File:VJ_featureTypes.svg

 Suche in einem Bild: Verschieben eines Rechteckfensters an alle möglichen Positionen; dann jeweils Merkmalsanwendung

Merkmale II

 Beispielhafte Rechteckfensterpositionen (vereinfachte Darstellung für ein Merkmal; Animation: http://vimeo.com/12774628):

Adaptiert von: Dev, R.: [Virtual Reality: Tutorial #4] Face Detection & Face Recognition. http://www.durofy.com/virtual-reality-face-recognition/ (28.6.2014), 2012.

Einschub: Integralbilder I

- Häufige Addition/Subtraktion von Pixeln ist zeitaufwändig
- Viele Additionen/Subtraktionen werden mehrfach ausgeführt
- → Vereinfachung durch Integralbilder (engl. *integral images*)
 - Integralbild II: Jedes Pixel entspricht der Summe aller darüber- und links davon liegenden Pixel des Ausgangsbildes I mit Auflösung $m \cdot n$:

$$II(x,y) = \sum_{x'=0}^{x-1} \sum_{y'=0}^{y-1} I(x',y'), 0 \le x \le n, 0 \le y \le m$$

- Praktische Nachteile von Integralbildern:
 - Sind um je ein Pixel breiter und höher als ihre jeweiligen Ausgangsbilder
 - Der Wertebereich jeder Integralbildpixel ist deutlich höher (abhängig von der Originalbildgröße!) als der der Ausgangsbildpixel

Einschub: Integralbilder II

• Erlauben Berechnung der Summe S_R aller Bildpixel in einem rechteckigen Bereich R in konstanter Zeit:

$$S_R = II(x_r, y_b) - II(x_l, y_b) - II(x_r, y_t) + II(x_l, y_t)$$

Adaptiert von: Crow, F. C.: Summed-area tables for texture mapping. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '84, pp. 207–212, New York, NY, USA. 1984.

Detektorkaskadierung I

- Ein Detektor pro Feature
- Kaskadierung (Hintereinanderschaltung) von Detektoren:
 - Liefert ein Detektor 0 ("kein Objekt gefunden") zurück → Abbruch
 - ullet Liefern alle Detektoren 1 ("Objekt gefunden") o Objekt erkannt
- Entwurfsprinzipien:
 - Hohe Sensitivität pro Detektor
 - Weniger aufwändige Detektoren weiter vorne in Kaskade reihen
- Vorteile:
 - Sehr schnell
 - FP-Rate jedes Detektors kann relativ hoch sein (Spezifizität niedrig)
- Nachteile
 - TP-Rate jedes Detektors muss relativ hoch sein
 - FN-Rate jedes Detektors muss relativ niedrig sein
 - Objektähnliche Muster bedürfen mehr Zeitaufwand durch Kaskade

Detektorkaskadierung II

Adaptiert von: Dev, R.: [Virtual Reality: Tutorial #4] Face Detection & Face Recognition. http://www.durofy.com/virtual-reality-face-recognition/ (28.6.2014), 2012.

Skalierung I

- Objekte in Bildern haben unterschiedliche Größen → Erkennung in mehreren Auflösungen (engl. Multi-scale detection); Prinzip:
 - Beginne in Originalauflösung
 - Berechne Integralbild
 - Erkenne Objekte mittels Detektorkaskade
 - Reduziere Auflösung um einen konstanten Faktor und wiederhole (Abbruchkriterium ist typischerweise Bildauflösung = Merkmalgröße)
- Praktische Alternative: Features skalieren (oft weniger aufwändig)
- Parameter:
 - Skalierungsfaktor pro Schritt (beeinflusst Gesamtgeschwindigkeit)
 - Toleranz zum Zusammenfassen erkannter Objekte in verschiedenen Auflösungen (auch bei Rechteckfenstern innerhalb einer Auflösung)

Skalierung II

 $\label{eq:Quelle:MathWorks: vision.CascadeObjectDetector System object.} \\ \text{http://www.mathworks.de/de/help/vision/ref/vision.cascadeobjectdetector-class.html (28.6.2014), 2014.}$

Skalierung III

Erweiterungen

Erweiterung: Diagonale Features (nach Lienhart und Maydt):

Quelle: opencv dev team: vision.CascadeObjectDetector System object. http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html (28.6.2014), 2014.

Realisierung mittels diagonaler Integralbilder (ohne Details)

Danke für die Aufmerksamkeit!

Fragen?