Short INDELS: genetic markers for adaptive divergence

Questions:

- 1. Can we incorporate short INDELs as genetic markers in studies of adaptive divergence?
- 2. What is their distribution across the genome?
- 3. What is the proportion of selectively neutral, deleterious and beneficial INDELs?

Original aspects:

- Divergent natural selection vs neutral processes
- Species with high diversity
- Systems with imperfect genomes can still contain useful functional information

INDEL-SNP comparisons:

- 1. Clustering of INDEL and SNP markers
- 2. Unfolded allele frequency spectra (uAFS)
- 3. Outlier sharing
- 4. Distribution of cline parameters

1. Clustering of INDEL and SNP markers

Dashed line = 0.2 which is obtained from the ratio of the total number of INDELs and the total number of SNPs for a given ecotype in each island

Blue cloud: expected relationship given the ratio between INDEL and SNP count

Red dot: the observed relationship consists of a higher concentration of INDELs in fewer regions

A way to summarise...

Tajima's D < 0: excess of low frequencies

Fay and Wu's H > 0: deficit of moderate- and high-frequencies

... And test for similarity of the patterns

One linear model for each of the four category where

y = D or H

x = factor with two levels, INDELs and SNPs

* = slope is significantly different from 0

INDELs and SNPs differed significantly for D and/or H

SNPs					
INDELS	D,H	All	Non- coding	Coding	Non- synony mous
	All	*,			
	Non- coding		* ,		
	Coding			* *	
	Non- synony mous				* *

$$S = Strong = G \text{ or } C$$
 $W = Weak = A \text{ or } T$

WS = less low and more high frequencies

SW = more low and less high frequencies

CZA WAVE LEFT just as an example

U-norm = normalised U statistic as in Katzman et al 2011 and Lachance and Tishkoff 2014

D: WS > SW WW SS

H: WS < SW WW SS

3. Outlier sharing

4. Distribution of cline parameters

