Learning Theory, Overfitting, Bias Variance Decomposition

Machine Learning 10-601B
Seyoung Kim

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that <u>any</u> consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{H,D})

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

1

Suppose we want this probability to be at most δ

$$\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \le |H|e^{-\epsilon m}$$

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

Here ϵ is the difference between the training error and true error of the output hypothesis (the one with lowest training error)

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent flips of a coin with true Pr(heads) = θ we can bound the error ϵ in the maximum likelihood estimate $\widehat{\theta}$

$$\Pr[\theta > \hat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

Relevance to agnostic learning: for any <u>single</u> hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

• Now we assume this probability is bounded by δ . Then, we have

$$m > \frac{1}{\varepsilon^2} (\ln |H| + \ln(1/\delta))$$

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

a labeling of each member of 5 as positive or negative

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X

Each ellipse corresponds to a possible dichotomy

Positive: Inside the ellipse

Negative: Outside the ellipse

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably (1- δ) approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

Consider 1-dim real valued input X, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ or, if $a < x < b$ then $y = 0$ else $y = 1$

Consider 1-dim real valued input X, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x>a$$
 then $y=1$ else $y=0$ VC(H2)=2 or, if $x>a$ then $y=0$ else $y=1$

H2 can perfectly handle if there is 2 X sample

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

What is VC dimension of lines in a plane?

•
$$H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$$

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, $VC(H_n)$ =n+1

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|? (hint: yes)

Assume VC(H) = K, which means H can shatter K examples.

For K examples, there are 2^{K} possible labelings. Thus, $|H| \ge 2^{K}$

Thus, $K \leq \log_2 |H|$

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \varepsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution and a target concept in C, such that if L observes fewer examples than

$$\max\left[rac{1}{\epsilon}\log(1/\delta),rac{VC(C)-1}{32\epsilon}
ight]$$

Then with probability at least δ , L outputs a hypothesis with

$$error_{\mathcal{D}}(h) > \epsilon$$

Agnostic Learning: VC Bounds for Decision Tree

[Schölkopf and Smola, 2002]

With probability at least (1- δ) every $h \in H$ satisfies

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples arrive at random
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- VC dimension as a measure of complexity of H

- Conference on Learning Theory: http://www.learningtheory.org
- Avrim Blum's course on Machine Learning Theory:
 - https://www.cs.cmu.edu/~avrim/ML14/

OVERFITTING, BIAS/VARIANCE TRADE-OFF

What is a good model?

Low Robustness

Low quality /High Robustness

Robust Model

Two sources of errors

 Now let's look more closely into two sources of errors in an function approximator:

In the following we show how bias and variance decompose

Expected loss, Bias/Variance Decomposition

- Let y be the true (target) output
- Let h(x) = E[y|x] be the **optimal** predictor
- Let f(x) our actual predictor, which will incur the following expected loss

$$E(f(x) - y)^2 = \int (f(x) - y)^2 p(x,y) dxdy$$

$$= \int (f(x) - h(x) + h(x) - y)^2 p(x,y) dxdy$$

$$= \int \left[(f(x) - h(x))^2 + 2(f(x) - h(x))(h(x) - y) + (h(x) - y)^2 \right] p(x, y) dx dy$$

$$= \int (f(x) - h(x))^2 p(x) dx + \int (h(x) - y)^2 p(x, y) dx dy$$

The part we can influence by changing our predictor f(x)

a noise term, and we can do no better than this. Thus it is a lower bound of the expected loss

Expected loss, Bias/Variance Decomposition

$$E(f(x) - y)^2 = \int (f(x) - h(x))^2 p(x) dx + \int (h(x) - y)^2 p(x, y) dx dy$$

- f(x;D): We will assume f(x) = f(x|w) is a parametric model and the parameters w are fit to a training set D.
- $E_D[f(x;D)]$: The expected predictor over the multiple training datasets

Expected loss, Bias/Variance Decomposition

Proof:

$$\begin{split} E_{D}[\left(f(x;D) - h(x)\right)^{2}] &= E_{D}[\left(f(x;D) - E_{D}[f(x;D)] + E_{D}[f(x;D)] - h(x)\right)^{2}] \\ &= E_{D}[\left(f(x;D) - E_{D}[f(x;D)]\right)^{2} + \left(E_{D}[f(x;D)] - h(x)\right)^{2} \\ &+ 2\left(f(x;D) - E_{D}[f(x;D)]\right)\left(E_{D}[f(x;D)] - h(x)\right)] \\ &= \left(E_{D}[f(x;D)] - h(x)\right)^{2} + E_{D}[\left(f(x;D) - E_{D}[f(x;D)]\right)^{2}\right] \\ &= \underbrace{\left(E_{D}[f(x;D)] - h(x)\right)^{2} + E_{D}[\left(f(x;D) - E_{D}[f(x;D)]\right)^{2}\right]}_{\text{Variance}} \end{split}$$

Putting things together:

expected loss = $(bias)^2$ + variance + noise

expected loss = $(bias)^2 + variance + noise$

Regularized Regression

Recall linear regression:

gression:
$$\mathbf{y} = \mathbf{X}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\boldsymbol{\beta}^* = \operatorname{argmax}_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}^T \boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}^T \boldsymbol{\beta})$$

$$= \operatorname{argmax}_{\boldsymbol{\beta}} \| \mathbf{y} - \mathbf{X}^T \boldsymbol{\beta} \|^2$$

- Regularized LR:
 - L2-regularized LR:

$$\beta^* = \operatorname{arg\,max}_{\beta} || \mathbf{y} - \mathbf{X}^T \beta ||^2 + \lambda || \beta ||$$
 where
$$|| \beta || = \sum_i \beta_i^2$$

- L1-regularized LR: $\beta^* = \operatorname{argmax}_{\beta} \| \mathbf{y} - \mathbf{X}^T \beta \|^2 + \lambda \| \beta \|$ where

$$|\beta| = \sum_{i} |\beta_{i}|$$

 λ controls bias/variance trade off

Bias²+variance vs regularizer

- Bias²+variance predicts (shape of) test error quite well.
- However, bias and variance cannot be computed since it relies on knowing the true distribution of x and y (and hence h(x) = E[y|x]).

Bayes Error Rate

- Fundamental performance limit for classification problem
- A lower bound on classification performance of any algorithms on a given problem
 - i.e., Error rate of the optimal decision rule

Bayes Error Rate: Two Class

- For a two-class classification problem
 - x is input feature vector, and ω_1 , ω_2 are two classes
 - Then, Bayes optimal decision rule is
 - Classify as ω_1 if

$$P(\mathbf{x} \mid \omega_1)P(\omega_1) > P(\mathbf{x} \mid \omega_2)P(\omega_2)$$

• Classify as ω_2 if

$$P(\mathbf{x} \mid \omega_1)P(\omega_1) < P(\mathbf{x} \mid \omega_2)P(\omega_2)$$

Bayes Error Rate: Two Class

- For a two-class classification problem
 - x is input feature vector, and ω_1 , ω_2 are two classes
 - Given this optimal decision rule, the error rate is

$$P(error) = P(\mathbf{x} \in R_2, \omega_1) + P(\mathbf{x} \in R_1, \omega_2)$$

$$= P(\mathbf{x} \in R_2 \mid \omega_1) P(\omega_1) + P(\mathbf{x} \in R_1 \mid \omega_2) P(\omega_2)$$

$$= \int_{R_2} P(\mathbf{x} \in R_2 \mid \omega_1) P(\omega_1) d\mathbf{x} + \int_{R_2} P(\mathbf{x} \in R_1 \mid \omega_2) P(\omega_2) d\mathbf{x}$$

Bayes error rate gives the irreducible error: fundamental property of the problem, not the classifier

Classification Example

• Simple problem

Hard problem

Bayes Error Rate: Multiple Classes

For c-class classification

$$P(correct) = \sum_{i=1}^{c} P(\mathbf{x} \in R_i, \omega_i)$$

$$= \sum_{i=1}^{c} P(\mathbf{x} \in R_i \mid \omega_i) P(\omega_i)$$

$$= \sum_{i=1}^{c} \int_{R_2} P(\mathbf{x} \in R_i \mid \omega_i) P(\omega_i) d\mathbf{x}$$

$$P(error) = 1 - P(correct)$$

Summary

- Overfitting
- Bias-variance decomposition
- Bayes Error Rate