COMP90054 - Week 7 tutorial

Prepared by Zijie Xu. Last updated: 13 September 2023

Best-Supporters and Relaxed plan heuristics Best-supporter functions *bs*

Definition

- Best-supporter function bs: For every fact $p \in (F \setminus s)$, returns an action that can achieve p with the cheapest cost within relaxation
- In this subject we use the two following closed well-founded best-supporter functions

$$bs_s^{\text{add}}(p) := \underset{a \in A, p \in add_a}{\operatorname{argmin}} \left(c(a) + h^{\text{add}}(s, pre_a) \right)$$

$$bs_s^{\text{max}}(p) := \underset{a \in A, p \in add_a}{\operatorname{argmin}} \left(c(a) + h^{\text{max}}(s, pre_a) \right)$$

Example

• For
$$p = t(B)$$
, $bs_s^{add}(p) = \underset{a \in \{dr(A,B),dr(C,B)\}}{\operatorname{argmin}} \left(c(a) + h^{add}(s,pre_a)\right)$
• $a = dr(A,B) \rightarrow 1 + h^{add}(t(A)) = 1$
• $a = dr(C,B) \rightarrow 1 + h^{add}(t(C)) = 3$

Relaxed plan heuristics $h^{\rm FF}$

Idea

- 1. Compute a best-supporter function *bs*
- 2. Extract a relaxed plan RPlan by applying bs to each $g \in G$ and collecting all actions
- 3. Use the relaxed plan heuristics $h^{FF} = \sum_{a \in RPlan} c(a)$ to estimate h^*

Algorithm

```
Relaxed Plan Extraction for state s and best-supporter function bs Open := G \setminus s; Closed := \emptyset; RPlan := \emptyset while Open \neq \emptyset do:

select g \in Open
Open := Open \setminus \{g\}; Closed := Closed \cup \{g\};
RPlan := RPlan \cup \{bs(g)\}; Open := Open \cup (pre_{bs(g)} \setminus (s \cup Closed)) endwhile return RPlan
```

Requires a closed well-founded best-supporter function to make sense

Properties of $h^{\rm FF}$

- h^{FF} is pessimistic: $h^{\mathrm{FF}} \geq h^+$ so $\exists \Pi, s$ such that $h^{\mathrm{FF}}(s) > h^*(s)$
- h^{FF} agrees with h^+ on ∞ : $h^{\text{FF}}(s) = \infty \Leftrightarrow h^+(s) = \infty$
- $h^{\rm FF}$ does not over-count like $h^{\rm add}$

Example

Relaxed plan extraction

g	Open	Closed	RPlan
-	{p(D)}	{}	{}
p(D)	{t(D),p(T)}	{p(D)}	{ul(D)}
t(D)	{p(T),t(C)}	{p(D),t(D)}	{dr(C,D),ul(D)}
t(C)	{p(T),t(B)}	{p(D),t(D),t(C)}	{dr(B,C),dr(C,D),ul(D)}
t(B)	{p(T)}	{p(D),t(D),t(C),t(B)}	${dr(A,B),dr(B,C),dr(C,D),ul(D)}$
p(T)	{}	{p(D),t(D),t(C),t(B),p(T)}	$\{lo(C),dr(A,B),dr(B,C),dr(C,D),ul(D)\}$

• Relaxed plan heuristics $h^{FF} = 1 + 1 + 1 + 1 + 1 = 5$

Width-based Planning

Iterated Width IW

- Uses the idea of novelty w: w(s) is the size of the smallest subset of atoms in s that is true for the first time in the search
- IW(k) is a breadth-first search that prunes generated states s with w(s) > k
- IW is an iterative/sequence of calls to IW(k) for k=0,1,2,... over problem P until problem solved or i exceeds number of variables in problem

Properties of IW

- The order of search node expansion can affect which nodes are pruned
- IW(k) expands at most $O(n^k)$ states

Example

Left->right order

• IW(1): {1,2,3}

• IW(2): {1,2,3,4}

• IW(3): {1,2,3,4}

Right->left order

• IW(1): {1,3}

• IW(2): {1,3,2,5}

• IW(3): {1,3,2,5,4}

