The Euclid ecosystem for software development and data processing

Martin Kümmel

Content

- Motivation
- Introduction to Euclid
- Software Development
- Processing
- What's in for you?

Motivation

- Euclid is a BIG project!
- Astronomy/science evolves towards BIG projects:

```
2MASS → SDSS → BOSS → DES → Euclid → RUBIN/LSST → ????
```

- What is BIG: Euclid Consortium > 1000 scientists, 100 developer;
- BIG projects have common (BIG?) problems!
- BIG projects find similar solutions!
- You might find items or even solutions presented here in your current/next BIG project!

Motivation (cont.)

Even if you never find yourself in a **BIG** project:

- Some Euclid solutions might be interested for:
 - Your project (master/PhD);
 - Your work;
 - Your group;

The Euclid satellite

Telescope	1.2m Korsch, 3 mirror anastigmat., f=24.5m				
Instrument	VIS	NIR			
Field-of- View	0.787x0.7 09 deg ²	0.763x0.722 deg ²			
Capability	Visual Imaging	NIR Imaging Photometry			NIR Spectrosc opy
Wavelengt h range	550-900 nm	Y (920- 1146 nm)	J (1146- 1372 nm)	H (1372- 2000 nm)	1100-2000 nm
Detector Technology	36 arrays 4k x 4k CCD	16 arrays 2k x 2k NIR sensitive HgCdTe detectors			
Pixel Size/FWHM	0.1" / 0.2"	0.3 " / 0.3"			0.3 "/
Spectr. Res.	-		-		R=250

Euclid Mission

- 1.2-m Korsch telescope
- VIS instrument 550-900nm
- NISP instrument:
 - photometry in Y, J, H
 - slitless spectroscopy Δλ/λ ~250
- FOV: 0.54deg² VIS+NISP
- 15,000 deg² wide survey
- 40 deg² deep survey
- External data from ground based surveys (for photo-z):
 - DES
 - LSST
 - Pan-STARRS
 - UNIONS

Launch: June 2024

Euclid Science

- Determine the expansion of the Universe at various cosmic ages
- Weak lensing analysis
- Galaxy clustering
- Redshifts (griz) are required:
 - From NISP slitless spectroscopy
 - From photo-z
- Legacy science!

Software development: environment

- "Miracle software" phenomenon: you get best software ever, but you cant get it installed...
- → a stable, robust and reproducible environment must be provided to:
 - Facilitate SW development for many developers;
 - Do all necessary testing;
 - Run the code on different scales (up to production);
- The Euclid solution: EDEN (**E**uclid **D**evelopment **En**vironment)
 - common standards (O/S, libs, ...);
 - rules (coding standards, Software Engineering guide, ...)
 - tools (compilers, packaging, ...)
- Distributed as:
 - Virtual Machine;
 - Docker container;

Software development: libs/cvmfs

- EDEN-3.0 system: **CentOS7.9/gcc-c++ 9.3.0/python3.9.9**
- EDEN-3.0 libs: DEMO (https://euclid.roe.ac.uk/projects/codeen-users/wiki/EDEN_v30)
- Central in EDEN-3.0: Cern VM File System (https://cernvm.cern.ch/fs/):
 - software distribution service;
 - server/client solution;
 - software and libs centrally installed on the server
 - software and libs locally mounted by client at "/cvmfs"
 - environments are set accordingly;
 - → system is automatically updated!
 - DEMO (cvmfs file system)

Software development: make/install

- Central for Software Development: Elements (https://github.com/astrorama/Elements)
- Elements does:
 - Build python/c++ executables and libraries;
 - Package the various python/C++ projects with management of their dependencies
- Elements:
 - Came from CERN (I think...);
 - Is based on CMAKE;
 - Supports version specific dependencies;
 - Hierarchical search path for dependencies;
 - Offers helper scripts to create software stubs;
 - Contains executables to run software!
 - DEMO Elements;

Software development: deployment

- Software storage: privately hosted gitlab repository (https://gitlab.euclidsgs.uk/)
- Development model:
 - Main branch "develop";
 - Active development on feature branches;
 - Version tagging from "develop";
 - Numbering scheme for tags;
 - DEMO Euclid development model;
- SW deployment Jenkins:
 - Continuous integration via automatic:
 - Code update;
 - Code compilation;
 - Code deployment to cvmfs;
 - Version control!
 - DEMO Jenkins

Software development: quality control

- SonarQube (https://www.sonarqube.org/);
- Maturity levels;
- Maturity assessments;
- DEMO (https://euclid.roe.ac.uk/projects/quality-tools/wiki/Wiki);

Processing

- Data model:
 - Definition of the entities;
 - Definition of the products;
- Archive:
 - EAS: Euclid Archive system;
 - Used for processing and storage!
 - Data model is mapped onto the EAS!
- Processing:
 - In the Science Data Centers (SDC);
 - One SDC per country (~9 in total);
 - ~5000 cores per **SDC**;
 - SDC's are inhomogeneous (dedicated vs. general purpose);
 - No GPU's;

Processing overview

What is in for you!

- For everyone: git/svn/cvs!
- For everyone: choose a good build system (maybe Elements?);
- For PhD project and larger: automatic compiling and testing (Jenkins);
- For PhD project and larger: develop/run in a VM or container;
- For larger projects (from group level on): archive support;
- For big projects:
 - Use cvmfs or similar systems;
 - Code inspection and maturity levels;
 - Archive driven processing;

