Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО РАБОТЕ №2.4 дисциплины «Основы кроссплатформенного программирования»

	Выполнил: Кондратенко Даниил Витальевич 1 курс, группа ИТС-б-о-22-1, 11.03.02 «Инфокоммуникационные технологии и системы связи», направленность (профиль) «Инфокоммуникационные системы и сети», очная форма обучения
	(подпись)
	Руководитель практики: Воронкин Р.А., канд. тех. наук, доцент, доцент кафедры инфокоммуникаций
	(подпись)
Отчет защищен с оценкой	Дата защиты

Ставрополь, 2023 г.

Тема: работа со списками в языке Python.

Цель работы: работы: приобретение навыков по работе со списками при написании программ с помощью языка программирования Python версии 3.х.Порядок выполнения работы:

Задание 1.

Изучил теоретический материал работы, создал общедоступный репозиторий на GitHub, в котором использована лицензий МІТ и язык программирования Python, также добавил файл .gitignore с необходимыми правилами.

Рисунок 1 – Новый репозиторий

Залание 2.

Проклонировал репозиторий на свой компьютер.

```
C:\Users\HUAWEI>git config --global user.name "Daniil"

C:\Users\HUAWEI>git config --global user.email "kondratenko_danil.23@mail.ru"

C:\Users\HUAWEI>git clone https://github.com/DaniiGit23/Lab.Rab.2.4.git

Cloning into 'Lab.Rab.2.4'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (5/5), done.

C:\Users\HUAWEI>cd C:\Users\HUAWEI\Lab.Rab.2.4
```

Рисунок 2 – Клонирование репозитория

Задание 3.

Организовал свой репозиторий в соответствие с моделью ветвления gitflow, появилась новая ветка develop.

```
C:\Users\HUAWEI\Lab.Rab.2.4>git flow init

Which branch should be used for bringing forth production releases?
- main

Branch name for production releases: [main]

Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]

Bugfix branches? [bugfix/]

Release branches? [sugfix/]

Release branches? [notfix/]

Support branches? [support/]

Version tag prefix? [] t

Hooks and filters directory? [C:/Users/HUAWEI/Lab.Rab.2.4/.git/hooks]

C:\Users\HUAWEI\Lab.Rab.2.4>git branch
* develop
main
```

Рисунок 3 – Модель ветвления git-flow

Реализовывал примеры и индивидуальные задания на основе ветки develop, без создания дополнительной ветки feature/(название ветки) по указанию преподавателя.

Задание 4.

Создал проект PyCharm в папке репозитория.

Работа с примером №1.

Добавил новый файл primer1.py.

Условие примера: Ввести список A из 10 элементов, найти сумму элементов, меньших по модулю 5, и вывести ее на экран.

Рисунок 4 – Проект РуСharm и новый файл primer1.py

Рисунок 5 – Программа и ее результат

Задание 5.

Создал новый файл по названием *primer2.py*

Работа с примером №2.

Условие примера: написать программу, которая для целочисленного списка определяет, сколько положительных элементов располагается между его максимальным и минимальным элементами.

Рисунок 6 – Программа и ее результат

Задание 6.

Выполнение индивидуального задание №1.

Создал новый файл под названием individual 1.py

Вариант 12 (по списку группы).

Условие задания: ввести список A из 10 элементов, найти сумму элементов, больших 2 и меньших 20 и кратных 8, их количество и вывести результаты на экран.

```
| Second Second
```

Рисунок 7 – Программа и ее результат

Задание 7.

Выполнение индивидуального задание №1.

Создал новый файл под названием individual2.py

Вариант 12 (по списку группы).

Условие задания: в списке, состоящем из вещественных элементов, вычислить:

- 1. количество элементов списка, лежащих в диапазоне от А до В;
- 2. сумму элементов списка, расположенных после максимального элемента.

Упорядочить элементы списка по убыванию модулей элементов.

Код программы:

```
| See | See
```

Рисунок 8 – Код

Рисунок 9 – Результат программы

Задание 8.

Слил ветку develop с веткой main и отправил на удаленный сервер.

Рисунок 10 – Слияние ветки develop с основной веткой main

Ссылка на репозиторий: https://github.com/DaniiGit23/Lab.Rab.2.4.git

Контрольные вопросы:

1. Что такое списки в языке Python?

Список (list) — это структура данных для хранения объектов различных типов. В нем можно хранить объекты различных типов. Размер списка неё статичен, его можно изменять. Список по своей природе является изменяемым типом данных. Переменная, определяемая как список, содержит ссылку на структуру в памяти, которая в свою очередь хранит на какие-либо другие объекты или структуры.

2. Как осуществляется создание списка в Python?

Для создания списка нужно заключить элементы в квадратные скобки.

3. Как организовано хранение списков в оперативной памяти?

При создании списка в памяти резервируется область, которую можно условно назвать некоторым "контейнером", в котором хранятся ссылки другие элементы данных в памяти. В отличии от таких типов данных число или строка, содержимое "контейнера" списка можно менять.

4. Каким образом можно перебрать все элементы списка? Читать элементы списка можно с помощью следующего цикла:my_list = ['один', 'два', 'три', 'четыре', 'пять']

for elem in my_list: print(elem)

- Какие существуют арифметические операции со списками?
 Для объединения списков можно использовать оператор сложения (+).
 Список можно повторить с помощью оператора умножения (*).
- 6. Как проверить есть ли элемент в списке?

Для того, чтобы проверить, есть ли заданный элемент в списке Python необходимо использовать оператор in.

7. Как определить число вхождений заданного элемента в списке?

Метод count можно использовать для определения числа сколько раз данный элемент встречается в списке.

- 8. Как осуществляется добавление (вставка) элемента в список? Метод append можно использовать для добавления элемента в список. Метод insert можно использовать, чтобы вставить элемент в список.
- 9. Как выполнить сортировку списка?

Для сортировки списка нужно использовать метод sort. Для сортировки списка в порядке убывания необходимо вызвать метод sort с аргументом reverse=True.

10. Как удалить один или несколько элементов из списка?

Удалить элемент можно, написав его индекс в методе рор. Если не указывать индекс, то функция удалит последний элемент. Элемент можно удалить с помощью метода remove. Оператор del можно использовать для тех же целей.

Можно удалить несколько элементов с помощью оператора среза.

Можно удалить все элементы из списка с помощью метода clear.

11. Что такое списковое включение и как с его помощью осуществлять обработку списков?

List Comprehensions чаще всего на русский язык переводят как абстракция списков или списковое включение, является частью синтаксиса языка, которая предоставляет простой способ построения списков.

В языке Python есть две очень мощные функции для работы с коллекциями: тар и filter. Они позволяют использовать функциональный стиль программирования, не прибегая к помощи циклов, для работы с такими типами как list, tuple, set, dict и т.п. Списковое включение позволяет обойтись без этих функций.

- 12. Какие существуют функции агрегации для работы со списками? Для работы со списками Python предоставляет следующие функции:
- 1. len(L) получить число элементов в списке L
- 2. $\min(L)$ получить минимальный элемент списка L
- 3. max(L) получить максимальный элемент списка L
- 4. sum(L) получить сумму элементов списка L, если список Lсодержит

только числовые значения.

- 13. Как создать копию списка? сору.сору(х)
- 14. Самостоятельно изучите функцию sorted языка Python. В чем ее отличие от метода sort списков?

Функция sorted() в Python возвращает отсортированный список из элементов в итерируемом объекте. list.sort() на 13% быстрее, чем sorted().

15. Самостоятельно изучите функцию sorted языка Python. В чем ее отличие от метода sort списков?

Функция sort() очень похожа на sorted (), но в отличие от sorted она ничего не возвращает и не вносит изменений в исходную последовательность. Более того, sort() является методом класса list и может использоваться только со списками. Синтаксис: List_name.sort(key, reverse=False) Параметры: ключ: Функция, которая служит ключом для сравнения сортировки. реверс: Если true, то список сортируется в порядке убывания.

Вывод: в ходе выполнения лабораторной работы приобретены навыки по работе со списками при написании программ с помощью языка программирования Python версии 3.х.