

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein

Gabarito da EP da Aula 01

Observações:

- 1. Em algumas questões serão dadas o desenvolvimento e em outras apenas a resposta.
- 2. É importante que você tente resolver cada exercício justificando cada passo <u>antes</u> de ler o gabarito. Desta forma, você estará mais preparado para entender o raciocínio usado, será capaz de avaliar onde acertou e onde errou.
- 3. Lembre-se que muitos exercícios podem ser resolvidos usando raciocínios diferentes. Nós desenvolvemos apenas um, tente encontrar outras formas, ajuda a compreender melhor os conceitos.
- 1. Determine quais dos seguintes conjuntos são iguais:

$$A = \{a, b, -1\}$$
 $B = \{b, a, -1\}$ $C = \{b, a, b, -1\}$ $D = \{a, -1\}$

Resposta: A = B = C. Todos os elementos dos conjuntos A, B e C são iguais, as repetições não são consideradas como elementos diferentes.

2. Escreva os seguintes conjuntos explicitando seus elementos:

(i)
$$A = \{x \in \mathbb{Z} | -1 \le x \le 4\}$$

Resposta: $A = \{-1, 0, 1, 2, 3, 4\}$

(ii)
$$B = \{x \in \mathbb{N} | x \le \sqrt{10} \text{ ou } x > -2\}$$

Resposta: Como queremos números naturais, devemos obter os números naturais que que são maiores que -2 e uni-los ao conjunto de números menores ou iguais a $\sqrt{10}$. Assim, os números naturais maiores que -2 são $\{1,2,3\cdots\}$ e os números naturais menores os iguais a $\sqrt{10}$ são $\{1,2,3\}$. Note que $\{1,2,3\}\subset\{1,2,3\cdots\}$ e, portanto, a união desses dois conjuntos é o próprio conjunto $\{1,2,3\cdots\}$. Logo, $B=\{1,2,3\cdots\}$.

(iii)
$$C = \{x \in \mathbb{R} | 2x + 1 = 5\}$$

Resposta: Temos que 2x+1=5 é equivalente a dizer que $x=2\in\mathbb{R}$. Portanto, $C=\{2\}$.

(iv)
$$D = \{x \in \mathbb{R} | x^2 + 1 = 0\}$$

Resposta: Temos que $x^2 + 1 = 0$ é equivalente a dizer que $x^2 = -1$, que não tem solução no conjunto dos reais. Portanto, $D = \emptyset$.

(EXTRA)
$$J = \{x \in \mathbb{R} | 3x + 1 = 5\}$$

Resposta: Temos que 3x+1=5 é equivalente a dizer que $x=\frac{4}{3}\in\mathbb{R}$. Portanto, $C=\left\{\frac{4}{3}\right\}$.

(EXTRA)
$$K = \{x \in \mathbb{N} | 3x + 1 = 5\}$$

Resposta: $K = \emptyset$, pois a solução de 3x + 1 = 5 é $x = \frac{4}{3} \notin \mathbb{N}$.

3. Determine quais das seguintes relações de pertinência são verdadeiras:

$$(i) \sqrt{2} \in \{x \in \mathbb{R} | x \ge 2\}$$

Resposta: FALSA, pois $\sqrt{2}=1,4\ldots$, isto é, $1<\sqrt{2}<2$, e o conjunto $B=\{x\in\mathbb{R}|x\geq 2\}$ é formado pelos números maiores ou iguais que 2. Logo, $\sqrt{2}$ não é um elemento de B.

(ii)
$$3 \in \{x \in \mathbb{R} \mid |x| \le 4\}$$
, onde $|a| = a$ se $a \ge 0$ ou $|a| = -a$ se $a < 0$

Resposta: VERDADEIRA, pois $x=3\in\mathbb{R}$ e |3|=3<4. Observamos que $|x|\leq 4$ equivale a $-4\leq x\leq 4$.

$$(iii) \emptyset \notin P(A)$$
, onde $A = \{1, 2\}$

Resposta: FALSA, pois $P(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \in \emptyset$ é um elemento do conjunto P(A), logo $\emptyset \in P(A)$.

$$(iv) \{1\} \in \{x \in \mathbb{R} | x^2 = 1\}$$

Resposta: FALSA, pois $\{1\}$ não é um elemento do conjunto $\{x \in \mathbb{R} | x^2 = 1\}$, já que este conjunto é formado apenas pelos elementos 1 e -1, temos $1 \in \{x \in \mathbb{R} | x^2 = 1\}$ e $\{1\} \subseteq \{x \in \mathbb{R} | x^2 = 1\}$.

$$(v)\ \emptyset \in \{\emptyset,\{1\}\}$$

Resposta: VERDADEIRA, pois o elemento \emptyset pertence ao conjunto $\{\emptyset, \{1\}\}.$

4. Determine quais das seguintes relações de inclusão são verdadeiras:

$$(i) \{-2,0\} \subseteq \{x \in \mathbb{Z} \mid |x| \le 2\}$$

Resposta: VERDADEIRA, pois temos que $|x| \leq 2$, significa que $-2 \leq x \leq 2$. Logo, $\{x \in \mathbb{Z} | |x| \leq 2\} = \{-2, -1, 0, 1, 2\}$. Portanto, os elementos do primeiro conjunto, -2 e 0, são também elementos do segundo conjunto.

$$(ii) \{\pi\} \subset \{1, \{\pi\}, a\}$$

Resposta: FALSA. De fato, π não é um elemento de $\{1, \{\pi\}, a\}$. Portanto, a definição de inclusão estrita não é verificada.

$$(iii) \{\{\pi\}\} \subset \{1, \{\pi\}, a\}$$

Resposta: VERDADEIRA.

$$(iv) \emptyset \nsubseteq \{3,1,-7\}$$

Resposta: FALSA, pois $\emptyset \subseteq C$, para todo conjunto C.

$$(v) \emptyset \subseteq \{\emptyset, \{1\}\}$$

Resposta: VERDADEIRA.

5. Dado o conjunto $A = \{x \in \mathbb{Z} \mid |x| \le 1\} = \{-1, 0, 1\}$, determine o conjunto P(A).

Resposta: O conjunto das partes de A está formado por todos os subconjuntos de A, logo $P(A) = \{\emptyset, \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\}\}.$