As you can see, for each split, each group is either entirely in the training set or entirely in the test set:

In[16]:

mglearn.plots.plot_label_kfold()

Figure 5-4. Label-dependent splitting with GroupKFold

There are more splitting strategies for cross-validation in scikit-learn, which allow for an even greater variety of use cases (you can find these in the scikit-learn user guide). However, the standard KFold, StratifiedKFold, and GroupKFold are by far the most commonly used ones.

Grid Search

Now that we know how to evaluate how well a model generalizes, we can take the next step and improve the model's generalization performance by tuning its parameters. We discussed the parameter settings of many of the algorithms in scikit-learn in Chapters 2 and 3, and it is important to understand what the parameters mean before trying to adjust them. Finding the values of the important parameters of a model (the ones that provide the best generalization performance) is a tricky task, but necessary for almost all models and datasets. Because it is such a common task, there are standard methods in scikit-learn to help you with it. The most commonly used method is *grid search*, which basically means trying all possible combinations of the parameters of interest.

Consider the case of a kernel SVM with an RBF (radial basis function) kernel, as implemented in the SVC class. As we discussed in Chapter 2, there are two important parameters: the kernel bandwidth, gamma, and the regularization parameter, C. Say we want to try the values 0.001, 0.01, 0.1, 1, 10, and 100 for the parameter C, and the same for gamma. Because we have six different settings for C and gamma that we want to try, we have 36 combinations of parameters in total. Looking at all possible combinations creates a table (or grid) of parameter settings for the SVM, as shown here:

	C = 0.001	C = 0.01	 C = 10
gamma=0.001	SVC(C=0.001, gamma=0.001)	SVC(C=0.01, gamma=0.001)	 SVC(C=10, gamma=0.001)
gamma=0.01	SVC(C=0.001, gamma=0.01)	SVC(C=0.01, gamma=0.01)	 SVC(C=10, gamma=0.01)
	•••	•••	 •••
gamma=100	SVC(C=0.001, gamma=100)	SVC(C=0.01, gamma=100)	 SVC(C=10, gamma=100)

Simple Grid Search

We can implement a simple grid search just as for loops over the two parameters, training and evaluating a classifier for each combination:

In[18]:

```
# naive grid search implementation
    from sklearn.svm import SVC
    X train, X test, y train, y test = train test split(
        iris.data, iris.target, random_state=0)
    print("Size of training set: {} size of test set: {}".format(
          X_train.shape[0], X_test.shape[0]))
    best score = 0
    for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
        for C in [0.001, 0.01, 0.1, 1, 10, 100]:
            # for each combination of parameters, train an SVC
            svm = SVC(gamma=gamma, C=C)
            svm.fit(X_train, y_train)
            # evaluate the SVC on the test set
            score = svm.score(X_test, y_test)
            # if we got a better score, store the score and parameters
            if score > best score:
                best_score = score
                best_parameters = {'C': C, 'gamma': gamma}
    print("Best score: {:.2f}".format(best_score))
    print("Best parameters: {}".format(best_parameters))
Out[18]:
    Size of training set: 112
                                size of test set: 38
    Best score: 0.97
    Best parameters: {'C': 100, 'gamma': 0.001}
```

The Danger of Overfitting the Parameters and the Validation Set

Given this result, we might be tempted to report that we found a model that performs with 97% accuracy on our dataset. However, this claim could be overly optimistic (or just wrong), for the following reason: we tried many different parameters and