Complex surfaces, home assignment 2: Cohomology of local systems

Rules: This is a class assignment for this week, for discussion in class Wednesday next week.

Remark 2.1. Throughout this assignment, all manifolds are assumed to be connected.

Exercise 2.1. Let $\lambda > 0$ be a real number. Define weight λ homogeneous forms on $\mathbb{R}^n \setminus 0$ as differential forms η which satisfy $\rho_t^* \eta = \lambda^t \eta$, where ρ_t is a homothety map $z \longrightarrow tz$, t > 0. Prove that a closed weight λ form is a differential of an exact weight λ form any $\lambda \neq 0$.

Hint. Use Cartan's formula $\text{Lie}_v(\alpha) = di_v \alpha + i_v d\alpha$.

Exercise 2.2. Let $M = \mathbb{R}^n \setminus 0/(x \sim 2x)$ be a Hopf manifold, θ a closed, non-exact 1-form, $d_{\theta} = d + \theta$, and $H_{\theta}^*(M)$ cohomology of the complex $\Lambda^*(M)$, d_{θ} ("Morse-Novikov cohomology"). Prove that $H_{\theta}^i(M) = 0$ for all i.

Hint. Use the previous exercise.

Exercise 2.3. Let θ be an exact 1-form on a manifold M. Construct an isomorphism between the complexes $(\Lambda^i(M), d_{\theta})$ and $(\Lambda^i(M), d)$.

Exercise 2.4. Let θ be a closed 1-form on a connected manifold. Prove that $H^0_{\theta}(M) \neq 0$ if and only if θ is exact.

Definition 2.1. A complex of vector spaces is a collection of $\{A_i, i \in \mathbb{Z}\}$ of vector spaces equipped with **the differential** $d: A_i \longrightarrow A_{i+1}$ such that $d^2 = 0$; its **cohomology groups** are $\frac{\ker d}{\operatorname{im} d}$. **Morphism of complexes** $\phi: (A_*, d_A) \longrightarrow (B_*, d_B)$ is a collection of homomorphisms $\phi_i: A_i \longrightarrow B_i$ commuting with the differentials. **The cone** of such a morphism is a complex $C_i := B_i \oplus A_{i+1}$ with the differential $d_B + (-1)^i d_A + \phi: B_i \oplus A_{i+1} \longrightarrow B_{i+1} \oplus A_{i+2}$.

Exercise 2.5. Let $A_* \stackrel{\phi}{\longrightarrow} B_*$ be a morphism of complexes of vector spaces, and C_* its cone. Construct a long exact sequence

$$\ldots \longrightarrow H^{i-1}(C_*) \longrightarrow H^i(A_*) \longrightarrow H^i(B_*) \longrightarrow H^i(C_*) \longrightarrow H^{i+1}(A_*) \longrightarrow \ldots$$

Exercise 2.6. Let X be a manifold, $M:=X\times S^1$, and $\pi:M\longrightarrow S^1$ the standard projection. Denote by $T^1_X(M)$ the bundle of vectors tangent to the fibers of π , $\Lambda^1_X(M)$ its dual, and $\Lambda^*_X(M)$ the corresponding Grassmann algebra. Consider the de Rham differential d_X acting on $\Lambda^*_X(M)$ fiberwise along X.

- a. Prove that the cohomology of $(\Lambda_X^*(M), d_X)$ is isomorphic to $H^*(X) \otimes C^{\infty}S^1$.
- b. Let $\frac{d}{dt}$ be the derivative along the circle. Prove that $\frac{d}{dt}$ commutes with d_X .
- c. Let $C_0^\infty S^1$ denote the functions which average to zero. Prove that $\frac{d}{dt}$ is invertible on $C_0^\infty S^1$.
- d. Prove that the kernel and the cokernel of $H^*(X) \otimes C^{\infty} S^1 \xrightarrow{d/dt} H^*(X) \otimes C^{\infty} S^1$ are naturally isomorphic to $H^*(X)$.
- e. Prove that the map $\frac{d}{dt} + \operatorname{Id}: C^{\infty}S^{1} \longrightarrow C^{\infty}S^{1}$ is an isomorphism.

Exercise 2.7. We work in assumptions of the previous exercise.

- a. Prove that $\Lambda^*(M)$ is (as a graded vector bundle) naturally isomorphic to $\Lambda_X^*(M) \oplus \Lambda_X^*(M) \wedge dt$, where dt is the constant coordinate 1-form on S^1 lifted to M.
- b. Let $\Phi: \Lambda_X^*(M) \longrightarrow \Lambda_X^*(M) \wedge dt$ denote the operator $\alpha \mapsto \frac{d}{dt}\alpha \wedge dt$. Prove that

$$\Phi: (\Lambda_X^*(M), d_X) \longrightarrow (\Lambda_X^*(M) \wedge dt, d_X)$$

is a morphism of complexes, and the de Rham algebra of M is naturally isomorphic to its cone.

- c. Let $\theta := dt$, and let $d_{\theta} : \Lambda^*(M) \longrightarrow \Lambda^*(M)$ be the corresponding Morse-Novikov differential. Prove that $(\Lambda^*(M), d_{\theta})$ is isomorphic to the cone of $\Phi + \mathbb{I}$, where $\mathbb{I}(\alpha) = \alpha \wedge dt$.
- d. Using the previous exercise, prove that Φ acts on the cohomology $H^*(X) \otimes C^{\infty}S^1$ of $(\Lambda_X^*(M), d_X)$ as $\frac{d}{dt}$, and $\Phi + \mathbb{I}$ acts as an isomorphism.

Exercise 2.8. Let X be a compact manifold, and $M = X \times S^1$, $\pi : M \longrightarrow S^1$ the standard projection, $\theta := \pi^* dt$. Prove that $H^i_{\theta}(M) = 0$ for all i

Hint. Use the previous exercise.