常见概率分布的期望和方差

分布	定义	E(X)	D(X)
0-1 分布	$P{X = k} = p^{k} (1-p)^{1-k}, k = 0,1$	p	p(1-p)
二项分布	$P\{X=k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n$	пр	np(1-p)
几何分布	$P{X = k} = (1-p)^{k-1} p, k = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
泊松分布	$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\cdots$	λ	λ
均匀分布	$f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, 其他 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2

宋浩的口诀:

正态分布最正宗, μ , σ^2 易知晓

泊松分布最轻松, 2,2 都相同

均匀分布好理解,数学期望是中点 $(\frac{a+b}{2})$

若你想要求方差,长度平方除 12 ($\frac{(b-a)^2}{12}$)

- 0-1 分布期望 p , 二项分布期望 np
- 0-1 分布方差 pq, 二项分布期望 npq

几何和指数落了单, 他们期望取倒数

几何方差不好记,p 方分之1-p ($\frac{p^2}{1-p}$) 指数分布方差为 $\frac{1}{\lambda^2}$