Toy Model #4

The equations that define the simple Toy Model are described in Equations 1 and 2.

$$\frac{d\Phi}{dt} = -\beta V + \frac{\Phi^3}{3} - \Phi = L_{\Phi} \tag{1}$$

$$\frac{dV}{dt} = \beta \Phi + \alpha = L_V \tag{2}$$

Then with diffusion added Equations 1 and 2 become 3 and 4 as follows;

$$\frac{d\Phi}{dt} = D\frac{d^2\Phi}{dx^2} + L_{\Phi} \tag{3}$$

$$\frac{dV}{dt} = D\frac{d^2V}{dx^2} + L_V \tag{4}$$

Where α and β are variable parameters

Results 1

Due to there being two parameters it is important to view the interaction between the two. First if you hold α constant and vary β :

Figure 1: Holding α constant at 0 and varying β linearaly between $\{0,1\}$

From here α was changed to 0.5 and again varied β . For Figure 2 the scale has been fixed {-4,4} and thus in the dark blue region which heads to negative infinity is not viewed.

Phi, [µM]

1
0.9
0.8
0.7
× 0.6
1
1
0.3
0.2
0.1
0
5 10 15 20

Figure 2: Holding α constant at 0.5 and varying β linearaly between $\{0,1\}$

Figure 3: Holding α constant at 0.5 and varying β linearaly between {0.5,2}

Figure 4: Holding α constant at 1 and varying β linearaly between $\{0,1\}$

Figure 5: Holding α constant at 1 and varying β linearaly between $\{0.98,2\}$

Next holding Beta constant and varying alpha had an equal but opposite effect

Figure 6: Holding β constant at 1 and varying α linearaly between $\{0,1\}$

Results 3

Creating zero osculation's; to view the diffusion it is important to have a region that initially had no osculation's. To do this the rate of changes of Φ and V to zero for the initial conditions ($\Phi = V = 1$).

$$\frac{d\Phi}{dt} = -\beta V + \frac{\Phi^3}{3} - \Phi = 0$$
 &
$$\frac{dV}{dt} = \beta \Phi + \alpha = 0$$

$$-\beta \times 1 + \frac{1^3}{3} - 1 = 0 \quad \therefore \quad \beta = -\frac{2}{3}$$

$$\beta \times 1 + \alpha = 0 \quad \therefore \quad \alpha = \frac{2}{3}$$

Figure 7 shows Beta and alpha varying over x to obtain zero osculating.

Figure 7: Alpha and Beta varying over x to obtain zero osculation's between 0<x<0.2 and 0.8<x<1.

Figure 8: α and β determined by Figure 7 and Equations 1 and 2; Zero Diffusion

Figure 9: α and β determined by Figure 7 and Equations 3 and 4; Simple Diffusion 200e-6

Figure 10: A few x points of Figure 8 potted over time.

Results 4

Changing the diffusion constant, D.

Figure 11-14: D = {1e-6, 5e-6, 10e-6, 100e-6}

Results 5Simulated over a long period of time

Figure 15: Diffusion, D = 5e-6 and long time, $t=\{0:500\}$

Figure 16: x points from Figure 15 plotted over time.

Discussion

- Increasing alpha from 0 to 1 shows that there is an increasing instability in the results.
- At low diffusion constants the waves do not protrude into the unexpected region
- however they do form the triangle pattern of diffusion.