3D POINT CLOUD PROCESSING FOR FLOOR TYPE DETECTION

3D POINT CLOUD PROCESSING FOR FLOOI

Technical Documentation and IP Rights

PROPRIETARY & CONFIDENTIAL

NaviFloor Robotics, Inc.

Document Version: 3.2

Last Updated: January 11, 2024

1. OVERVIEW AND SCOPE

1. This document describes the proprietary technology and methodological
2. The intellectual property described herein is protected under U.S. F
2. TECHNICAL SPECIFICATIONS
1. **Data Acquisition System**
-
LiDAR sensor array configuration: 16-beam vertical resolution
-
Scanning frequency: 20Hz nominal
-
Point cloud density: Minimum 2,000 points/m at 5m range
-
Vertical field of view: 30 (+15 to -15)

- -2-

Distance accuracy: 2cm at 20m range

2. **Processing Architecture**

-

Real-time point cloud segmentation using proprietary NaviScan(TM) a

-

Multi-threaded processing on edge computing hardware

-

Maximum latency: 50ms from scan to classification

-

Memory footprint: 256MB per processing instance

3. PROPRIETARY ALGORITHMS

1. **Surface Normal Extraction**
The system employs Company's patented adaptive neighborhood se

for robust normal vector estimation, specifically optimized for industria

2. **Feature Detection**

surfaces.

Geometric feature extraction using modified RANSAC implementation

Surface roughness quantification using proprietary metrics

Material property inference from reflection intensity data

Dynamic threshold adaptation based on environmental conditions

3. **Classification Engine**
Protected machine learning model incorporating:
-
Supervised learning on labeled industrial surface types
-
Real-time classification updates at 10Hz
-
Minimum classification accuracy of 98% under specified conditions
-
Support for 12 distinct surface type categories
4. INTELLECTUAL PROPERTY RIGHTS

1. All algorithms, methodologies, and implementations described here

2. **Protected Components**		
-		
NaviScan(TM) point cloud processing pipeline		
-		
Adaptive surface normal estimation algorithm		
-		
Dynamic feature extraction methodology		
-		
Classification model architecture and weights		
-		
Training data preprocessing techniques		
3. **Trade Secrets**		
The following elements are maintained as trade secrets:		
-		

5. USAGE RESTRICTIONS
Performance optimization strategies
-
Model architecture modifications
-
Training data augmentation methods
-
Parameter optimization techniques

1. This technology shall only be used in Company-authorized product

2. No reverse engineering, decompilation, or modification of any protest

3. Usage metrics and performance data are automatically collected at

6. COMPLIANCE AND CERTIFICATION

- 8 -

Compliance logging and reporting mandatory

7. WARRANTY AND DISCLAIMER

- 1. The Company warrants that the technology will perform substantial
- 2. THE COMPANY MAKES NO OTHER WARRANTIES, EXPRESS (

8. CONFIDENTIALITY

- 1. This document contains confidential and proprietary information of
- 2. Distribution limited to authorized personnel under NDA only.

EXECUTION

IN WITNESS WHEREOF, the undersigned acknowledges the confidend document and agrees to maintain its confidentiality.
NAVIFLOOR ROBOTICS, INC.
By: _
Name: Dr. Elena Kovacs
Title: Chief Research Officer
Date: _
RECIPIENT:
By: _
Name: _

Title: _10 -

Date: _
