Sohrab Hossain East Delta University, Chittagong, Bangladesh

CSE 225 Database Management System Lecture 1

Chapter 1: Introduction

Outline

- Definition of DBMS
- Goals of DBMS
- The Need for Databases
- Data Models
- Relational Databases
- Database Design

Data = A set of Values

Data

• Data can be <u>facts</u> related to <u>any</u> object <u>inconsideration</u>. For example your name, age, height, weight, etc are related to you. A picture, image, file, PDF etc can also be considered data.

Database

 Adatabase is a <u>systematic collection</u> of <u>data</u> that is organized so that it can easily be accessed, managed, and updated.

DBMS

• A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data.

Goals of a database

 The primary goal of a DBMS is to provide a way to store and retrieve database information that is both convenient and efficient.

• The database system must ensure the safety of the information stored, despite system crashes or attempts at unauthorized access.

• If data are to be shared among several users, the system must avoid possible anomalous results.

Database System Applications

- Banking: For customer information, accounts, and loans, and banking transactions.
- Airlines: For reservations and schedule information.
- Universities: For student information, course registrations, and grades
- Credit card transactions: For purchases on credit cards and generation of monthly statements.
- Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling cards, and storing information about the communication networks.
- Finance: For storing information about holdings, sales, and purchases of financial instruments such as stocks and bonds.
- **✓ Sales:** For customer, product, and purchase information.
- Manufacturing: For management of supply chain and for tracking production of items in factories, inventories of items in warehouses/stores, and orders for items.
- Human resources: For information about employees, salaries, payroll taxes and benefits, and for generation of paychecks.

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems

Drawbacks of using file systems to store data

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance > 0)
 become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Drawbacks of using file systems to store data (Cont.)

- Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
- Security problems ~
 - Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

Drawbacks of using file systems to store data (Cont.)

Durability

 In database systems, durability is the ACID property which guarantees that transactions that have committed will survive permanently. For example, if a flight booking reports that a seat has successfully been booked, then the seat will remain booked even if the system crashes. Durability can be achieved by flushing the transaction's log records to non-volatile storage before acknowledging commitment.

Levels of Abstraction

Abstraction = Data Hidden

- Physical level: describes how a record (e.g., instructor) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

```
type instructor = record
ID : string;
name : string;
dept_name : string;
salary : integer;
end;
```

• View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

Data Abstraction = It is a process of hiding unwanted or irrelevant details from the end user. Used to enhance the security of data

View of Data

An architecture for a database system

Instances and **Schemas**

- Similar to types and variables in programming languages
- Logical Schema the overall logical structure of the database
 - Example: The database consists of information about a set of customers and accounts in a bank and the relationship between them
 - 4 Analogous to type information of a variable in a program
- Physical schema— the overall physical structure of the database
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Data Models

- * There are 6 data models -
 - A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
 - Relational model ~
 - Entity-Relationship data model (mainly for database design) -
 - Object-based data models (Object-oriented and Object-relational) ~
 - Semistructured data model (XML)
 - Other older models:

 - Network modelHierarchical model

Relational Model

Columns

• All the data is stored in various tables.

Example of tabular data in the relational model

	Columns			
	April 1995			
ID	name	dept_name	salary	
22222	Einstein	Physics	95000	Rows
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	/
76766	Crick	Biology	72000	/
10101	Srinivasan	Comp. Sci.	65000	/
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	/
33456	Gold	Physics	87000	
76543	Singh	Finance	80000]

(a) The *instructor* table

A Sample Relational Database

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The department table

ER diagram symbols

relationship.

For example, in a school database, a student is considered as an entity. Student has various attributes like name, age, class, etc.

ER diagram symbols

Data Definition Language (DDL)

Specification notation for defining the database schema

```
Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))
```

DDL compiler generates a set of table templates stored in a data

dictionary

- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Authorization
 - Who can access what

DDL = It is Data Definition Language which is used to define data structures. For example: create table, alter table are instructions in SQL.

Data Manipulation Language (DML)

- Language for <u>accessing</u> and <u>manipulating</u> the data organized by the appropriate data model
 - DML also known as query language
- Two classes of languages
 - Pure used for proving properties about computational power and for optimization
 - Relational Algebra
 - Tuple relational calculus
 - Domain relational calculus
 - Commercial used in commercial systems
 - SQL is the most widely used commercial language

DML = DML is Data Manipulation Language which is used to manipulate data itself. For example: insert, update, delete are instructions in SQL.

SQL

- The most widely used commercial language
- SQL is NOT a Turing machine equivalent language
- To be able to compute complex functions SQL is usually embedded in some higher-level language
- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g., ODBC/JDBC)
 which allow SQL queries to be sent to a database

Database Design

The process of designing the general structure of the database:

- Logical Design Deciding on the database schema.
 Database design requires that we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

System structure

Application Architectures

Database Design (Cont.)

Is there any problem with this relation?

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Design Approaches

- Need to come up with a methodology to ensure that each of the relations in the database is "good"
- Two ways of doing so:
 - Entity Relationship Model (Chapter 7)
 - Models an enterprise as a collection of entities and relationships
 - Represented diagrammatically by an entity-relationship diagram:
 - Normalization Theory (Chapter 8)
 - Formalize what designs are bad, and test for them

Object-Relational Data Models

- Relational model: flat, "atomic" values
- Object Relational Data Models
 - Extend the relational data model by including object orientation and constructs to deal with added data types.
 - Allow attributes of tuples to have complex types, including non-atomic values such as nested relations.
 - Preserve relational foundations, in particular the declarative access to data, while extending modeling power.
 - Provide upward compatibility with existing relational languages.

Database Engine

- Storage manager
- Query processing
- Transaction manager

Storage Management

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - Interaction with the OS file manager
 - Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

- 1 Parsing and translation
- 2 Optimization
- 3. Evaluation

Query Processing (Cont.)

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

Transaction Management

- What if the system fails?
- What if more than one user is concurrently updating the same data?
- Atransaction is a collection of operations that performs a single logical function in a database application.

Transaction Management

- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database Users

Naive users are unsophisticated users who interact with the system by invoking one of the application programs that have been written previously.

Application programmers are computer professionals who write application programs. Application programmers can choose from many tools to develop user interfaces.

Sophisticated users interact with the system without writing programs. Instead, they form their requests in a database query language

• Specialized users are sophisticated users who write specialized database applications that do not fit into the traditional data-processing framework.

Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and the programs that access those data. A person who has such central control over the system is called a database administrator (DBA).

The functions of a DBA include:

- •Schema definition. The DBA creates the original database schema by executing a set of data definition statements in the DDL.
- **✓**Storage structure and access-method definition.
- •Schema and physical-organization modification. The DBA carries out changes to the schema and physical organization to reflect the changing needs of the organization, or to alter the physical organization to improve performance.

Database Administrator.

- Granting of authorization for data access. By granting different types of authorization, the database administrator can regulate which parts of the database various users can access.
- •Routine maintenance. Examples of the database administrator's routine maintenance activities are: Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss of data in case of disasters such as flooding.
 - Ensuring that enough free disk space is available for normal operations, and upgrading disk space as required.
 - Monitoring jobs running on the database and ensuring that performances not degraded by very expensive tasks submitted by some users

Database Architecture

The architecture of a database systems is greatly influenced by

the underlying computer system on which the database is running:

- Centralized
- Client-server
- Parallel (multi-processor)
- Distributed

History of Database Systems

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provided only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allowed direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

History (cont.)

• 1980s:

- Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
- Parallel and distributed database systems
- Object-oriented database systems

• 1990s:

- Large decision support and data-mining applications
- Large multi-terabyte data warehouses
- Emergence of Web commerce

• Early 2000s:

- XML and XQuery standards
- Automated database administration

Later 2000s:

- Giant data storage systems
 - Google BigTable, Yahoo PNuts, Amazon, ...

End of Chapter 1