

Quantum gates and notation

/tbabej

@tomasbabej

Tomas Babej & Mark Fingerhuth ProteinQure Inc.

> Creative Destruction Lab Toronto, CA July 12, 2018

/m-fingerhuth in

pyQuil & QUIL: Low-level quantum programming

Bloch sphere | Quantum gates | Quantum circuits | Notation

A two-dimensional quantum bit revisited

Bloch sphere | Quantum gates | Quantum circuits | Notation

We can write a two-dimensional **qubit** as the vector:

A two-dimensional quantum bit revisited

Bloch sphere | Quantum gates | Quantum circuits | Notation

We can **always** drop the **global phase** since it's immeasurable:

$$|\psi
angle = e^{i\gamma} ig(lpha |0
angle + eta |1
angle ig) = e^{i\gamma} ig[lpha |0
angle + eta |1
angle ig)$$
 since

$$\left|e^{i\gamma}lpha
ight|^2=e^{i\gamma}lpha e^{-i\gamma}lpha^\dagger=e^{i\gamma-i\gamma}lphalpha^\dagger=lphalpha^\dagger$$

Bloch sphere

Bloch sphere | Quantum gates | Quantum circuits | Notation

Bloch sphere

Bloch sphere | Quantum gates | Quantum circuits | Notation

Quantum gates rotate the Bloch vector

The Bloch sphere provides a **visual tool** to understand quantum gate operations.

The Bloch sphere **only applies to single qubit states**. Visualizing multi-qubit states is out of the scope of this tutorial.

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Classical NOT Gate

Input	Output	
0	1	
1	0	

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Quantum X (NOT) Gate

Input	Output	
0	1	
1	0	

$$\ket{\psi}=lpha\ket{0}+eta\ket{1}=egin{bmatrix}lpha\eta\end{bmatrix}$$
 ? $imesegin{bmatrix}1\0\end{pmatrix} oegin{bmatrix}0\1\end{bmatrix}$

Bloch sphere | Quantum gates | Quantum circuits | Notation

Quantum X (NOT) Gate

Input	Output	
0	1	
1	0	

$$\ket{\psi} = \alpha \ket{0} + \beta \ket{1} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

X (NOT) Gate

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Pauli Z

$$egin{aligned} Z\ket{0} &= \ket{0} \ Z\ket{1} &= -\ket{1} \end{aligned}$$

$$egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} imes egin{bmatrix} lpha \ eta \end{bmatrix} = egin{bmatrix} lpha \ -eta \end{bmatrix}$$

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Pauli Y

$$egin{aligned} Y\ket{0} &= i\ket{1} \ Y\ket{1} &= -i\ket{0} \end{aligned}$$

$$egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix} imes egin{bmatrix} lpha \ eta \end{bmatrix} = egin{bmatrix} -ieta \ ilpha \end{bmatrix}$$

swaps amplitudes & adds phase!

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

$$|\langle \Psi \mid \Psi \rangle|^2 = 1$$

The **Bohr rule** states that the inner product **must equal to unity**.

Bloch sphere | Quantum gates | Quantum circuits | Notation

$$ig|\Psi'ig
angle=Uig|\Psi
angle \ |ra{\Psi'}|\Psi'
angle|^2=1$$

Quantum gates must preserve normalization.

Bloch sphere | Quantum gates | Quantum circuits | Notation

The only requirement for a quantum gate is **unitarity**. **Hence**, **there are infinitely many quantum gates!**

Bloch sphere | Quantum gates | Quantum circuits | Notation

Quantum gates must be **unitary**:

$$UU^\dagger=U^\dagger U=\mathbb{I}$$

Example:

$$S = egin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix}$$
 $S^\dagger = egin{bmatrix} 1 & 0 \ 0 & -i \end{bmatrix}$ conjugate

Hermitian

$$SS^\dagger = egin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & -i \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & -i^2 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \mathbb{I}$$

Bloch sphere | Quantum gates | Quantum circuits | Notation

Some quantum gates (e.g. Pauli gates) are hermitian:

$$U=U^{\dagger}$$

Example:

$$X = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} = X^\dagger = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

Elementary single-qubit gates

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Hadamard	$- \boxed{H} -$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	>>> from pyquil.gates import H
Pauli- X	-X	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	>>> from pyquil.gates import X
Pauli- Y	$-\overline{Y}$	$\left[egin{matrix} 0 & -i \ i & 0 \end{array} ight]$	>>> from pyquil.gates import Y
Pauli- Z	$ \boxed{Z}$ $-$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	>>> from pyquil.gates import Z
Phase	$-\overline{[S]}-$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	>>> from pyquil.gates import S
$\pi/8$	$ \boxed{T}$ $-$	$\left[egin{matrix} 1 & 0 \ 0 & e^{i\pi/4} \end{smallmatrix} ight]$	>>> from pyquil.gates import T
			+ many more!

A lot of quantum gates are already implemented in pyQuil.

Multi-qubit quantum gates

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Controlled-NOT (CNOT) gate

>>> **from** pyquil.gates **import** CNOT

Target qubit	Control qubit	Output
0	0	00
0	1	11
1	0	10
1	1	01

Essential for **entangling** two qubits!

Multi-qubit quantum gates

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

SWAP gate

>>> **from** pyquil.gates **import** SWAP

The SWAP operation allows us to **move qubits on the quantum processor!**

Multi-qubit quantum gates

Bloch sphere | **Quantum gates** | Quantum circuits | Notation

Toffoli (CCNOT) gate

Target qubit	Control qubit #1	Control qubit #2	Output
0	1	0	010
0	0	1	001
0	1	1	111

>>> **from** pyquil.gates **import** CCNOT

Bloch sphere | Quantum gates | **Quantum circuits** | Notation

Initial qubit state ($|000\rangle$)

Bloch sphere | Quantum gates | **Quantum circuits** | Notation

Bloch sphere | Quantum gates | **Quantum circuits** | Notation

controlled-NOT (CNOT)

Bloch sphere | Quantum gates | **Quantum circuits** | Notation

Bloch sphere | Quantum gates | **Quantum circuits** | Notation

Rigetti's shared memory makes such operations very easy!

Notation

Bloch sphere | Quantum gates | Quantum circuits | Notation

 $|000\rangle$

Is the **super lazy** physicist's version of

$$\ket{0}\ket{0}\ket{0}$$

which is the **lazy** physicist's version of

$$|0
angle \otimes |0
angle \otimes |0
angle$$

Notation

Bloch sphere | Quantum gates | Quantum circuits | **Notation**

This is a **common convention** in quantum computing. You will explore the reasoning behind this in the next tutorial.

Notation

Bloch sphere | Quantum gates | Quantum circuits | **Notation**

$$Z_0\otimes Z_1\otimes Z_2$$

is the **lazy** physicist's version of

$$\sigma_0^Z\otimes\sigma_1^Z\otimes\sigma_2^Z$$

Bloch sphere | Quantum gates | Quantum circuits | Notation

To finish it up, let's put it all together and walk through a **quantum circuit with pen & paper!**

Bloch sphere | Quantum gates | Quantum circuits | Notation

In a multi-qubit system don't forget the tensor product with the identity matrix!

Bloch sphere | Quantum gates | Quantum circuits | Notation

Pay attention to the **order of operations!**

Bloch sphere | Quantum gates | Quantum circuits | Notation

$$ext{CNOT}(0,1)(\mathbb{I}\otimes H)\ket{00}= ext{CNOT}(0,1)igl[rac{1}{\sqrt{2}}\ket{00}+rac{1}{\sqrt{2}}\ket{01}igr]$$

Apply the Hadamard to the Oth qubit only and don't apply CNOT yet.

Bloch sphere | Quantum gates | Quantum circuits | Notation

$$|q_0\rangle$$
 H

$$ext{CNOT}(0,1)(\mathbb{I}\otimes H)\ket{00} = ext{CNOT}(0,1)igl[rac{1}{\sqrt{2}}\ket{00} + rac{1}{\sqrt{2}}\ket{01}igr] \ = rac{1}{\sqrt{2}}\ket{00} + rac{1}{\sqrt{2}}\ket{11} = \ket{\Phi^+}$$

Applying the CNOT results in a maximally entangled state.

It's often called the **first Bell state**.

rigetti

Now, please start working through the exercises in the Jupyter Notebook for

Tutorial 2

Brought to you by

/tbabej

/m-fingerhuth

@tomasbabej

amark_fingerhuth

