Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC104	Engineering Mechanics	05	02	-	05	01	1	06	

Course Code	Course Name	Examination Scheme							
		Theory							
		Internal Assessment			End	Term			
		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total
FEC104	Engineering Mechanics	20	20	20	80	25		25	150

Objectives

- 1. To acquaint the concept of equilibrium in two and three dimensional system.
- 2. To study and analyse motion of moving bodies.

Outcomes: Learner will be able to...

- 1. Illustrate the concept of force, moment and apply the same along with the concept of equilibrium in two and three dimensional systems with the help of FBD.
- 2. Demonstrate the understanding of Centroid and its significance and locate the same.
- 3. Correlate real life application to specific type of friction and estimate required force to overcome friction.
- 4. Establish relation between velocity and acceleration of a particle and analyse the motion by plotting the relation
- 5. Illustrate different types of motions and establish Kinematic relations for a rigid body
- 6. Analyse body in motion using force and acceleration, work-energy, impulse-momentum principles

Module	Detailed Contents			
	1.1 System of Coplanar Forces:	05		
	Resultant of concurrent forces, parallel forces, non-concurrent			
01	Non-parallel system of forces, Moment of force about a point, Couples, Varignon's			
	Theorem. Force couple system. Distributed Forces in plane.			
	1.2 Centroid for plane Laminas.	04		
1	2.1Equilibrium of System of Coplanar Forces:			
	Condition of equilibrium for concurrent forces, parallel forces and non-concurrent non-	06		
02	parallel general forces and Couples.			
	2.2Types of support : Loads, Beams, Determination of reactions at supports for various	03		
	types of loads on beams.(Excluding problems on internal hinges)			
	2.3Analysis of plane trusses : By using Method of joints and Method of sections.	05		
	(Excluding pin jointed frames).			
	3.1 Forces in space:			
	Resultant of Non-coplanar Force Systems: Resultant of concurrent force system, parallel	05		
	force system and non-concurrent non-parallel force system.			
	Equilibrium of Non-coplanar Force Systems: Equilibrium of Concurrent force system,			
03	parallel force system and non-concurrent non-parallel force system.			
03	3.2 Friction:	07		
	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane,			
	Application to problems involving wedges, ladders.			
	1.3 Principle of virtual work:	04		
	Applications on equilibrium mechanisms, pin jointed frames.			

	4.1 Kinematics of a Particle : -Rectilinear motion, Velocity & acceleration in terms of	10
04	rectangular co-ordinate system, Motion along plane curved path, Tangential& Normal	
	component of acceleration, Motion curves (a-t, v-t, s-t curves), Projectile motion.	
	5.1 Kinematics of a Rigid Body :- Introduction to general plane motion,	06
05	Instantaneous center of rotation for the velocity, velocity diagrams for bodies in plane	
	motion.	
	6.1 Kinetics of a Particle: Force and Acceleration: -Introduction to basic concepts,	04
	D'Alemberts Principle, Equations of dynamic equilibrium, Newton's second law of	
	motion.	
06	6.2 Kinetics of a Particle: Work and Energy: Principle of work and energy, Law of	03
	conservation of energy.	
	6.3 Kinetics of a Particle: Impulse and Momentum: Principle of linear impulse and	03
	momentum. Law of conservation of momentum. Impact and collision.	

List of Experiments:-

- 1. Polygon law of coplanar forces.
- 2. Non-concurrent non-parallel (General).
- 3. Bell crank lever.
- 4. Support reaction for beam.
- 5. Inclined plane (to determine coefficient of friction).
- 6. Collision of elastic bodies (Law of conservation of momentum).
- 7. Kinematics of particles
- 8. Kinetics of particles

Any other experiment based on above syllabus.

Term work:-

Term work shall consist of minimum six experiments (at least one experiments on Dynamics), assignments consisting numerical based on above syllabus, at least 3 numerical from each module.

The distribution of marks for term work shall be as follows:

Attendance (Theory and Practical) : 05 marks
Laboratory work (Experiment/ programs and journal) : 10 marks
Assignments : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

Oral Examination: - Oral examination will be based on entire syllabus

References:

- 1. Engineering Mechanics by R. C. Hibbeler.2
- 2. Engineering Mechanics by Beer & Johnston, Tata McGraw Hill
- 3. Engineering Mechanics by F. L. Singer, Harper& Raw Publication
- 4. Engineering Mechanics by Macklin & Nelson, Tata McGraw Hill
- 5. Engineering Mechanics by Shaum Series,
- 6. Engineering Mechanics by A K Tayal, Umesh Publication.
- 7. Engineering Mechanics by Kumar, Tata McGraw Hill
- 8. Engineering Mechanics (Statics) by Meriam and Kraige, Wiley Bools
- 9. Engineering Mechanics (Dynamics) by Meriam and Kraige, Wiley Bools