Universidade Tecnológica Federal do Paraná (UTFPR)

Departamento Acadêmico de Elétrica (DAELE)

Curso de Engenharia de Computação

Revisão/Introdução (Motivação e Aplicações)

Prof. Marcelo Flavio Guepfrih squepfrih@gmail.com

Pato Branco, Fevereiro de 2021.

Conteúdo

- l) Por que amplificar um sinal?
- 2) Princípio da linearidade em amplificadores
- 3) Amplificador de tensão X Amplificador de potência
- 4) De onde vem a potência extra?
- 5) Por que fazer a análise em CC?
- 6) Por que fazer a análise em CA?
- 7) Pra que servem os parâmetros em CA?
- 8) Como obter esses parâmetros?

13/07/202

ula 1

Por que amplificar um sinal?

- Na maioria das aplicações que fazem uso de sensores é necessário fazer uma amplificação. Essa amplificação se justifica pela baixa/reduzida energia disponibilizada por esses sensores.
- Assim, devido a esses sinais serem "fracos" não são confiáveis para um processamento confiável. É nesse contexto que se situam os amplificadores.
- Intensidade da Luz
- Temperatura
- Força/Pressão
- Posição
- Velocidade
- Som
- Exemplo
 4 20 mA
 0 10 V

Princípio de Linearidade

- Para que um amplificador exerça sua função de maneira adequada é imprescindível que não ocorram modificações na informação contida no sinal de entrada e que novas informações não sejam adicionadas a este sinal.
- Assim a saída de um amplificador deve ser uma réplica do sinal de entrada, exceto pela amplitude que deve ser maior.
- Exemplos de linearidade:

Para que um sinal "fraco" possa ser amplificado é preciso que o amplificador seja do tipo ideal e linear. Permitindo que todo sinal de entrada possa ser reproduzido na saída.

$$-v = R \times I$$

$$-i_C = C \times \frac{d_v}{d_t}$$

$$-v_L = L \times \frac{d_L}{d_L}$$

Princípio de Linearidade

 $--f(\omega) = a \times \omega$

13/07/2021

- $-f(a\omega)=a\ f(\omega)$ [Escalonamento, homogeneidade]
- $-f(\omega_1 + \omega_2) = f(\omega_1) + f(\omega_2)$ [Aditividade]
- Considerando a e ω números reais.

 $v_o(t) = \Delta_v \times v_i(t)$

Aulaa

- Onde Δ_v é uma constante (fator de amplificação)

Amplificador de tensão x Amplificador de potência

- Amplificador de tensão:
 - Apresenta elevado ganho de tensão (por exemplo, pré-amplificador)
- Amplificador de potência:
 - Possibilita elevado ganho de corrente e reduzido, quase nulo, ganho de tensão (por exemplo, um amplificador de potência para um alto-falante).

- Auto-falante é um transdutor (converte sinal elétrico em sinal sonoro).

13/07/2021

Aula 1

6

Por que fazer a análise em CA?

- A análise em Corrente Alternada (CA) permite obter alguns parâmetros que ajudam a quantificar o amplificador, apontando as características predominantes.
- $-Z_i$ (impedância de entrada)
- Z_o (impedância de saída)
- Δ_i (ganho de corrente)
- Δ_v (ganho de tensão)
- P_o (potência de saída)
- P_{cc} (potência da fonte CC)
- P_{loss} (potência dissipada em forma de calor)
- $-\eta$ (rendimento)

13/07/2021

13/07/2021

Aula 1

- Ganhos em decibel:

- G_v (ganho de tensão)
- G_i (ganho de corrente)
- G_n (ganho de potência)

Pra que servem os parâmetros em CA?

- Para que seja possível especificar as características do amplificador, tornando possível fazer, quando necessário, a conexão em cascata de vários estágios amplificadores — permitindo a obtenção de elevados ganhos de tensão e/ou potência.
- Para amplificar um sinal de corrente, é interessante que o amplificador apresente reduzida impedância de entrada logo, mesmo com grandes mudanças na corrente de entrada a tensão de entrada do amplificador não se altera muito.
- Para amplificar um sinal de tensão, é imprescindível que o amplificador tenha uma elevada impedância de entrada com isso é preciso de uma pequena corrente para produzir uma tensão.

 Amplificador de corrente proporciona elevado ganho de corrente e reduzido, quase nulo, ganho de tensão.

 Amplificador de tensão proporciona elevado ganho de tensão e reduzido, praticamente zero, ganho de corrente.

Referências

- BOYLESTAD, Robert & NASHELSKY, Louis. Dispositivos Eletrônicos e Teoria de Circuitos – Rio de Janeiro, Editora Prentice-Hall do Brasil Ltda.
- MALVINO, Albert Paul. Eletrônica São Paulo, McGraw-Hill do Brasil. Vol. 2.
- PERTENCE JUNIOR, Antônio. Amplificadores operacionais e filtros ativos: teoria, projetos, aplicações e laboratório. São Paulo: Ed. Mc Graw-Hill, 1996.
- DUNN, William C. Introduction to instrumentation, sensors, and process control. Boston: Artech House, 2006.
- MOHAN, N., UNDELAND, T. M., and ROBBINS, W. P. Power Electronics: Converters, Applications, and design, 3a Edition, New York, John Wiley & Sons, 2002.
- JUNG, Walter G. Op amp applications handbook. Burlington, MA: Elsevier, 2006. xvi, 878
 p. (analog devices series).
- MILLMAN, Jacob. Eletrônica: Dispositivos e Circuitos São Paulo, Editora McGraw-Hill do Brasil, 1981, 2Vol;
- SEDRA, Adel S.; SMITH, Kenneth Carless. Microeletronica. 5.ed. São Paulo: Pearson Prentice Hall, 2007.
- WEBSTER, John G., editor-in-chief, THE MEASUREMENT, instrumentation, and sensors handbook. Boca Raton, Fla.: CRC, IEEE, c1999. 2 v (Electrical engineering handbook series).

12/07/2021

Aula 1

13

Sensores/Transdutores

Grandeza	Sensor	Atuador
Intensidade da Luz	Fotoresistor (LDR) Fotodiodo Fototransistor Célula Solar	Luzes & Lâmpadas LED's & Displays Fibra Ótica
Temperatura	Par termoelétrico Termistor Termostato Dectetor de temperatura	Aquecedor Ventilador
Força/Pressão	Extensômetro Interruptor de pressão Células de carga	Eletroímã Dispositivo de vibração Elevadores
Posição	Potenciômetro Codificadores Interruptor ótico LVDT	Motor Solenoide Medidor de painel
Velocidade	Acoplador ótico Tacogerador Sensor de efeito doppler	Motores AC/DC Motor de passo Freio
Som	Microfone de carvão Cristal piezoelétrico	Alto-falante Buzzer
13/07/2021		Aula 1

14

Universidade Tecnológica Federal do Paraná (UTFPR) Departamento Acadêmico de Elétrica (DAELE) Curso de Engenharia de Computação

Revisão/Introdução (Motivação e Aplicações)

Prof. Marcelo Flavio Guepfrih <guepfrih@gmail.com>

Pato Branco, Fevereiro de 2021.