

1.2 Protocolos de Enrutamiento Vector-Distancia

1- Protocolos de Enrutamiento Vector–Distancia: Funcionamiento

- Comparten información de rutas enviando actualizaciones a los vecinos directamente conectados
- No tienen conocimiento de la topología de la red
- RIPv1 envía actualizaciones periódicas a la dirección IP 255.255.255.255 (broadcast o difusión), incluso si la topología no se modifica
- Las actualizaciones consumen ancho de banda y recursos de CPU
- RIPv2 utiliza direcciones de multicast en vez de broadcast, lo que mejora el rendimiento
- RIP utiliza el algoritmo de Bellman-Ford como algoritmo de enrutamiento

Propósito de los algoritmos de routing

RIPv1 envía info a todos: Esto significa que cuando un router con RIPv1 comparte · Enviar y recibir actualizaciones. rutas, manda el mensaje a todos los Calcular la mejor ruta e instalar rutas. dispositivos de la red (como un altavoz Detectar cambios en la topología y reaccionar ante ellos. que grita para que todos escuchen). 172.16.1.0/24 172.16.2.0/24 172.16.3.0/24 RIPv2 mejora eso con multicast: En cambio, RIPv2 envía la información solo a un grudo Fa0/0 S0/0/0 específico de routers que necesitan esa información (como un mensaje en grupo privado), así se evita molestar a todos y se usa mejor la red.

Protocolos de Enrutamiento Vector–Distancia: Funcionamiento

- El algoritmo de Bellman-Ford se basa en que cada router publique las rutas que conoce, incrementando en 1 la métrica que tiene asociada en su tabla de enrutamiento dicha ruta.
 - La métrica utilizada es el número de saltos hasta el destino → Determinar el camino más corto.
- RIP: Envía de forma periódica el contenido de su tabla de enrutamiento completo a todos los vecinos conectados
- Los protocolos de enrutamiento vector distancia no tienen un mapa de la topología de red
- Son más propensos a sufrir bucles, por lo que necesitan mecanismos adicionales para 1-invalid: Marca una ruta como inválida si no recibe actualizaciones en cierto evitarlos:
 - **Temporizadores:** *invalid, hold-down* y *flush* 2-noid-down. Espera antes de aceptal cambios, para e 3-flush: Borra la ruta si no se actualiza tras un tiempo.
- 2-hold-down: Espera antes de aceptar cambios, para evitar aceptar rutas malas.
 - **Split-horizon**: la ruta que se aprende por una interfaz no se publica por dicha interfaz
 - Cuenta a infinito: definición de un valor máximo posible de métrica -> límite máximo de saltos (15 en RIP)
 - Rutas envenenadas: publicación de información de rutas que han dejado de ser alcanzables

2- Protocolos de Enrutamiento Vector-Distancia: RIP

- Envía actualizaciones de enrutamiento cada 30 segundos
 - Las actualizaciones utilizan el puerto UDP 520.
 - Distancia administrativa de 120
 - Métrica: Número de saltos
 - Limitación de 15 saltos

RIPv1 y RIPv2 no son compatibles

Comparación entre RIPv1 y RIPv2

Características y funciones	RIPv1	RIPv2	
Métrica		Ambos usan el conteo de saltos como métrica. La cantidad máxima de saltos es 15.	
Dirección a la que se envían las actualizaciones	255.255.255.255	224.0.0.9	
Admite VLSM	×	~	
Admite CIDR	×	~	
Admite sumarización	×	~	
Admite autenticación	×	~	

RIPv1

- RIPv1 envía broadcast con las actualizaciones de enrutamiento por todas las interfaces activas cada 30 segundos (excepto si se activa *passive-interface*)
 - RIPv1 es un protocolo de enrutamiento con clase:
 - Solamente publica información de la red o subred.
 - No publica la máscara de subred, lo que provoca que todas las subredes de la misma red de clase deban ser del mismo tamaño
 - Si publica información de una subred a través de una interfaz que pertenece a la misma red de clase, envía la información de cada subred individualmente.
 - Si publica va a publicar información de una o varias subredes a través de una interfaz que pertenece a otra red de clase, resume las subredes automáticamente a la red de clase (autoresumen)
 - Limitaciones:
 - Las subredes de las redes que publica RIPv1 no pueden ser discontinuas
 - Las subredes de una misma red de clase deben ser del mismo tamaño

RIPv2

- Cuando un router arranca, cada interfaz configurada con RIP envía un mensaje de solicitud de información de rutas
 - Solicita que todos los vecinos de RIP envíen las tablas de enrutamiento completas
 - Los vecinos compatibles envían un mensaje de respuesta con las redes conocidas.
 - El router receptor evalúa cada entrada de ruta según los siguientes criterios:
 - Si la entrada de ruta es nueva, la instala en la tabla de enrutamiento.
 - Si la ruta ya se encuentra en la tabla y la entrada viene de un origen diferente, reemplaza la entrada existente, si la nueva tiene un nº de saltos mejor.
 - Si la ruta ya se encuentra en la tabla y la entrada viene del mismo origen, reemplaza la entrada existente, aunque la métrica no sea mejor.
- A continuación, el router de inicio envía una actualización de tipo "triggered update" por todas las interfaces compatibles con RIP que contiene su propia tabla de enrutamiento.
 - De este modo, se informa a los vecinos de RIP de todas las rutas nuevas.
 - Después, cada 30 segundos se envían publicaciones para mantener la información de las tablas de enrutamiento actualizada