

### **Description**

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

# **Application**

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

#### **General Features**

- $V_{DS}$  =85V, $I_D$  =100A  $R_{DS(ON)}$ =4.8m $\Omega$  , typical (TO-220)@  $V_{GS}$ =10V  $R_{DS(ON)}$ =4.6m $\Omega$  , typical (TO-263)@  $V_{GS}$ =10V
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 175 °C operating temperature
- Pb-free lead plating







TO-263

Schematic Diagram

#### **Package Marking and Ordering Information**

| Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity |
|----------------|-----------|----------------|-----------|------------|----------|
| VST08N048-TC   | VST08N048 | TO-220C        | -         | -          | -        |
| VST08N048-T3   | VST08N048 | TO-263         | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>C</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol                 | Limit      | Unit                 |  |
|--------------------------------------------------|------------------------|------------|----------------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>        | 85         | V                    |  |
| Gate-Source Voltage                              | V <sub>G</sub> s       | ±20        | V                    |  |
| Drain Current-Continuous                         | I <sub>D</sub>         | 100        | А                    |  |
| Drain Current-Continuous(T <sub>C</sub> =100°C)  | I <sub>D</sub> (100°C) | 73.5       | А                    |  |
| Pulsed Drain Current                             | I <sub>DM</sub>        | 400        | А                    |  |
| Maximum Power Dissipation                        | P <sub>D</sub>         | 125        | W                    |  |
| Derating factor                                  |                        | 0.83       | W/°C                 |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>        | 580        | mJ                   |  |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$       | -55 To 175 | $^{\circ}\mathbb{C}$ |  |





## **Thermal Characteristic**

| Thermal Resistance, Junction-to-Case <sup>(Note 2)</sup> | Rejc | 1.2 | °C/W |
|----------------------------------------------------------|------|-----|------|
|----------------------------------------------------------|------|-----|------|

Electrical Characteristics (T<sub>c</sub>=25°Cunless otherwise noted)

| Parameter                          | Parameter Symbol Condition |                                                                       | on     | Min | Тур  | Max  | Unit |
|------------------------------------|----------------------------|-----------------------------------------------------------------------|--------|-----|------|------|------|
| Off Characteristics                |                            |                                                                       |        | •   |      |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>          | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                             |        | 85  |      | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>           | V <sub>DS</sub> =85V,V <sub>GS</sub> =0V                              |        | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>           | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                             |        | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        |                            |                                                                       |        |     |      |      |      |
| Gate Threshold Voltage             | $V_{GS(th)}$               | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =250μA               |        | 2.0 | 3.0  | 4.0  | V    |
| Dunin Course On Otata Basistana    | -                          | V <sub>GS</sub> =10V, I <sub>D</sub> =50A                             | TO-220 | -   | 4.8  | 5.5  | mΩ   |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>        |                                                                       | TO-263 |     | 4.6  | 5.5  | mΩ   |
| Forward Transconductance           | g <sub>FS</sub>            | V <sub>DS</sub> =5V,I <sub>D</sub> =                                  | 50A    |     | 60   | -    | S    |
| Dynamic Characteristics (Note4)    |                            |                                                                       |        |     |      |      |      |
| Input Capacitance                  | C <sub>Iss</sub>           | - V <sub>DS</sub> =40V,V <sub>GS</sub> =0V,<br>- F=1.0MHz             |        | -   | 3600 | -    | PF   |
| Output Capacitance                 | Coss                       |                                                                       |        | -   | 570  | -    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>           |                                                                       |        | -   | 30   | -    | PF   |
| Switching Characteristics (Note 4) |                            |                                                                       |        |     |      |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>         | $V_{DD}$ =40V, $I_{D}$ =50A<br>$V_{GS}$ =10V, $R_{G}$ =1.6 $\Omega$   |        | -   | 18   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>             |                                                                       |        | -   | 55   | -    | nS   |
| Turn-Off Delay Time                | $t_{d(off)}$               |                                                                       |        | -   | 38   | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>             |                                                                       |        | -   | 10   | -    | nS   |
| Total Gate Charge                  | Qg                         | - V <sub>DS</sub> =40V,I <sub>D</sub> =50A,<br>- V <sub>GS</sub> =10V |        | -   | 56   | -    | nC   |
| Gate-Source Charge                 | $Q_{gs}$                   |                                                                       |        | -   | 21   |      | nC   |
| Gate-Drain Charge                  | $Q_{gd}$                   |                                                                       |        | -   | 13   |      | nC   |
| Drain-Source Diode Characteristics |                            |                                                                       |        |     |      | •    |      |
| Diode Forward Voltage (Note 3)     | $V_{SD}$                   | V <sub>GS</sub> =0V,I <sub>S</sub> =50A                               |        | -   |      | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                         |                                                                       |        | -   | -    | 100  | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>            | T <sub>J</sub> = 25°C, I <sub>F</sub> = I <sub>S</sub>                |        | -   | 64   | -    | nS   |
| Reverse Recovery Charge            | Qrr                        | $di/dt = 100A/\mu s^{(Note3)}$                                        |        | -   | 130  | -    | nC   |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\text{C}$  ,V\_DD=40V,V\_G=10V,L=0.5mH,Rg=25 $\Omega$



## **Typical Electrical and Thermal Characteristics**



Vds Drain-Source Voltage (V)

**Figure 1 Output Characteristics** 



Vgs Gate-Source Voltage (V)

**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



T<sub>J</sub>-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward





180 (M) 150 120 90 60 30 0 50 100 150 200

 $T_J$ -Junction Temperature( ${}^{\circ}$ C) Figure 9 Power De-rating

Figure 7 Capacitance vs Vds





Figure 8 Safe Operation Area

Figure 10 Current De-rating



**Figure 11 Normalized Maximum Transient Thermal Impedance**