A tutorial on the polaron transformed Redfield equation

Huo Chen

April 19, 2021

0.1 Correlation function in the polaron frame

This tutorial demonstrates how to use the polaron transformed Redfield equation (PTRE) in HOQST. For more details on the PTRE, see [1] Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach.

We solve both the Redfield equation and the PTRE for a single qubit Hamiltonian

$$H_{\rm S} = \epsilon \sigma_z + \Delta \sigma_x$$

coupled to an Ohmic bath via σ_z interaction:

$$H = H_{\rm S} + \sigma_z \otimes B + H_{\rm B}$$
.

Loosely, the main difference between the Redfield equation and PTRE is that they have different bath correlation functions. For the Redfield equation, the bath correlation function is

$$C(t_1, t_2) = \langle B(t_1)B(t_2) \rangle$$
.

In the polaron frame, however, the bath correlation function becomes

$$K(t_1, t_2) = \exp \left\{ -4 \int_0^t \int_{-\infty}^0 C(t_1, t_2) dt_1 dt_2 \right\}.$$

Interested readers can refer to [2] Macroscopic Resonant Tunneling in the Presence of Low Frequency Noise and [3] Dynamics of the dissipative two-state system for more details.

0.1.1 Error bound on the second-order master equation

The most straightforward analysis is to compare the error bounds given in [4] Completely positive master equation for arbitrary driving and small level spacing between the Redfield equation and PTRE. We define the error scaling parameter as

$$error = \frac{\tau_{\rm B}}{\tau_{\rm SB}}$$
.

Then we plot the error ratio between the Redfield equation and the PTRE

$$R = \frac{error_{\text{Redfield}}}{error_{\text{PTRE}}} ,$$

vs. the system bath coupling strength ηg^2 while fixing other parameters in the Ohmic bath.

```
using OrdinaryDiffEq, OpenQuantumTools, Plots
using LaTeXStrings
function err_bound(tf, cfun)
    tsb, esb = \tau_SB(cfun)
    tb, eb = \tau_B(cfun, tf, tsb)
    tb / tsb
end
fc = 4; T = 12; tf = 1000;
\etalist = log_uniform(1e-3, 5, 1000)
err_ratio = []
err_clist = []
err_klist = []
for \eta in \etalist
   bath = Ohmic(\eta, fc, T)
    cfun = (x)->correlation(x, bath)
    pfun = (x)->polaron_correlation(x, bath)
    err_c = err_bound(tf, cfun)
    err_k = err_bound(tf, pfun)
    push!(err_clist, err_c)
    push!(err_klist, err_k)
    push!(err_ratio, err_c/err_k)
end
idx = findfirst((x)->x>=1, err_ratio)
plot(\etalist, err_ratio, xscale=:log10, yscale=:log10, label="", linewidth=2)
vline!([ηlist[idx]], label="", linestyle=:dash, linewidth=2)
annotate!([(0.5, 1.0, Plots.text("polaron")), (0.01, 1.0, Plots.text("Redfield"))])
xlabel!(L"\eta g^2")
ylabel!("R")
```


From the above figure we observe that when the system-bath coupling strength is larger than 10^{-1} , the PTRE should have better error scaling than the standard form of the Redfield equation. We also plot the corresponding error values for both the Redfield equation and the PTRE:

```
plot(\etalist, err_clist, xscale=:log10, yscale=:log10, label="Redfield", linewidth=2) plot!(\etalist, err_klist, xscale=:log10, yscale=:log10, label="PTRE", linewidth=2) xlabel!(L"\eta g^2") ylabel!("error")
```


The above figure confirms that the Redfield equation applies to the weak-coupling regime while the PTRE applies to the strong coupling regime.

0.1.2 Solving PTRE

Since the Redfield equation and the PTRE have identical forms, solve_redfield can also be used for the PTRE. To see this, let's first write down the PTRE for our example.

$$\dot{\rho}_{\rm S} = \epsilon \sigma_z + [\sigma_i, \Lambda_i(t)\rho_{\rm S}(t)] + h.c.$$

where $i, j \in [+, -], i \neq j$ and

$$\Lambda_i(t) = \Delta^2 \int_0^t K(t-\tau)U(t,\tau)\sigma_j U^{\dagger}(t,\tau)d\tau .$$

From the above equations, it is clear that the following steps are needed to define an evolution in the polaron frame:

- 1. define a new Hamiltonian $H = \epsilon \sigma_z$;
- 2. define new coupling operators σ_{-} and σ_{+} ;
- 3. define a new correlated bath with two-point correlation $K_{i,j}(t_1,t_2)$;

The following code block illustrates how this can be done in HOQST:

```
# assume \epsilon = 1 const \Delta = 0.1 # define the Ohmic bath in the polaron transformed frame
```

```
\eta = 0.5; bath = Ohmic(\eta, fc, T)
K(t1, t2) = \Delta^2 * polaron_correlation(t1-t2, bath)
cfun = [nothing K; K nothing]
pbath = CorrelatedBath(((1,2),(2,1)), correlation=cfun)
# define coupling as \sigma+ and \sigma- operators
\sigma p = [0 \ 1; 0 \ 0.0im]; \ \sigma m = [0 \ 0; 1 \ 0.0im]
coupling = ConstantCouplings([\sigmap, \sigmam])
# manually define the unitary operator
U(t) = \exp(-2.0im * \pi * \sigma z * t)
H = DenseHamiltonian([(s)->1.0], [\sigma z])
u0 = PauliVec[3][1]
annealing = Annealing(H, u0, coupling = coupling, bath = pbath)
tf = 100
sol_ptre = solve_redfield(annealing, tf, U, alg=Tsit5(), Ta=2, reltol=1e-5)
pop_e = [real(s[1,1]) for s in sol_ptre.u]
plot(sol_ptre.t, pop_e, xlabel=L"t\ (\mathrm{ns})", ylabel=L"P_0(t)", label="",
linewidth = 2)
```


For historical reasons, this is known as an example of "incoherent tunneling". The off-diagonal elements of the density matrix in the computational basis (the Z-basis) vanish during the entire evolution (shown in the next section).

0.1.3 Redfield equation

What happens to the Redfield equation in this regime? We can also try:

```
\label{eq:coupling} \begin{array}{l} \texttt{H} = \texttt{DenseHamiltonian}([(s)->1.0], [\sigma z+0.1*\sigma x]) \\ \texttt{coupling} = \texttt{ConstantCouplings}(["Z"]) \\ \texttt{annealing} = \texttt{Annealing}(\texttt{H}, u0, \texttt{coupling} = \texttt{coupling}, \texttt{bath} = \texttt{bath}) \\ \texttt{tf} = 100 \\ \texttt{\# manually define the unitary operator} \end{array}
```

```
U(t) = \exp(-2.0im * \pi * (\sigma z + 0.1 * \sigma x) * t)
sol_redfield = solve_redfield(annealing, tf, U, alg=Tsit5(), Ta=40, reltol=1e-5,
callback=PositivityCheckCallback())
retcode: Terminated
Interpolation: specialized 4th order "free" interpolation
t: 22-element Vector{Float64}:
 0.003928759496976375
  0.005712702105779054
  0.00868538284690315
  0.010748436797295107
  0.013343972909612483
  0.015630574875531853
  0.018040070229891184
  0.020327710050893358
  0.022614512268462634
  0.03126733644196358
  0.03336262989102297
  0.03544603050483967
  0.03752137951197164
  0.03959565980312375
 0.04167340886800694
 0.04375982866539185
  0.04585917830352944
 0.04797576487851534
u: 22-element Vector{Matrix{ComplexF64}}:
  [1.0 + 0.0im 0.0 + 0.0im; 0.0 + 0.0im 0.0 + 0.0im]
  [0.9999942655705363 + 0.0im 2.3405168745021195e-5 + 0.00219374300574346im;
 2.3405168745021195e-5 - 0.00219374300574346im 5.734429463642047e-6 + 0.0im
  [0.9999885526527795 + 0.0im -1.6098894434093695e-5 + 0.0028681886770785987
im; -1.6098894434093695e-5 - 0.0028681886770785987im 1.1447347220274872e-5
  [0.9999762824915798 + 0.0im -0.00026798716109694765 + 0.003654533478940986
im: -0.00026798716109694765 - 0.003654533478940986im 2.3717508419724734e-5
+ 0.0im]
   [0.9999662031906074 + 0.0 im -0.0005842937299489406 + 0.004120304221198509 im -0.004120304221198509 im -0.00412030421198509 im -0.00412030421198500 im -0.004120304219 im -0.00412030419 im -0.0041200419 im -0.00410
m; -0.0005842937299489406 - 0.004120304221198509im 3.379680939219504e-5 + 0
  [0.9999517825461793 + 0.0im -0.001115605899581189 + 0.004729454751473413im]
; -0.001115605899581189 - 0.004729454751473413im 4.82174538193727e-5 + 0.0i
m]
  [0.9999373816728743 + 0.0im -0.0016835737348890997 + 0.005297796662131235i
m; -0.0016835737348890997 - 0.005297796662131235im 6.261832712481899e-5 + 0
  [0.9999204146273409 + 0.0im -0.0023717853091745696 + 0.005910253580108264i
[0.9999025905694068 + 0.0im -0.003105230981241366 + 0.006488770467415236im
; -0.003105230981241366 - 0.006488770467415236im 9.740943059240977e-5 + 0.0
im]
  [0.999883126735672 + 0.0im -0.003913250858523132 + 0.007054790877644963im;
  -0.003913250858523132 - 0.007054790877644963im 0.00011687326432621205 + 0.
Oim]
  [0.9997954625649402 + 0.0im -0.007593216989156528 + 0.009016925074664294im
```

```
; -0.007593216989156528 - 0.009016925074664294im 0.000204537435058375 + 0.0
iml
 [0.9997711556620502 + 0.0im - 0.008619684963591303 + 0.009442538470109785im]
; -0.008619684963591303 - 0.009442538470109785im 0.00022884433794879795 + 0
.Oiml
 [0.9997459018236546 + 0.0im -0.009687884470117376 + 0.009845730915410916im]
; -0.009687884470117376 - 0.009845730915410916im 0.00025409817634431124 + 0
 [0.9997197219479761 + 0.0im - 0.010796892837049153 + 0.010227599257367563im]
; -0.010796892837049153 - 0.010227599257367563im 0.0002802780520233289 + 0.
 [0.9996925858837132 + 0.0im -0.011948024515996868 + 0.010589794153091936im
; -0.011948024515996868 - 0.010589794153091936im 0.0003074141162859749 + 0.
Oiml
 [0.9996644830460419 + 0.0im -0.01314181747724239 + 0.010933448746627866im;
-0.01314181747724239 - 0.010933448746627866im 0.0003355169539566007 + 0.0i
 [0.9996353847581846 + 0.0im -0.014379622631485891 + 0.011259742442199539im
; -0.014379622631485891 - 0.011259742442199539im 0.0003646152418134799 + 0.
Oim]
 [0.999605267069751 + 0.0im -0.015662623261621465 + 0.011569632687661376im;
-0.015662623261621465 - 0.011569632687661376im 0.0003947329302471738 + 0.0
 [0.9995740985607838 + 0.0im -0.016992346716545714 + 0.011864024725645031im
; -0.016992346716545714 - 0.011864024725645031im 0.0004259014392143201 + 0.
```

The Redfield equation becomes non-positive in a very short evolution time. To fix this issue, we use the coarse-grained master equation (CGME) instead.

```
tf = 50
solc = solve_cgme(annealing, tf, U, alg=Tsit5(), reltol=1e-3, int_atol=1e-3,
int_rtol=1e-3)
t_axis = range(0,50,length=200)
pop_e = [real(sol_ptre(t)[1,1]) for t in t_axis]
pop_e_cg = [real(solc(t)[1,1]) for t in t_axis]
plot(t_axis, pop_e, xlabel=L"t\ (\mathrm{ns})", ylabel=L"P_0(t)", label="PTRE",
linewidth = 2)
plot!(t_axis, pop_e_cg, xlabel=L"t\ (\mathrm{ns})", ylabel=L"P_0(t)", label="CGME",
linewidth = 2)
```


The PTRE gives a much stronger decay than the Redfield equation for the parameters chosen in this example. One can also verify the amplitude of the off-diagonal elements during the evolution. Unlike the PTRE, the solution of the CGME has non-vanishing off-diagonal elements of the density matrix.

```
t_axis = range(0, 0.2, length=100)
off_diag_ptre = [abs(sol_ptre(t)[1,2]) for t in t_axis]
off_diag_cg = [abs(solc(t)[1,2]) for t in t_axis]
plot(t_axis, off_diag_ptre, xlabel=L"t\ (\mathrm{ns})", ylabel=L"\lvert \rho_{12}\\rvert|(t)", label="PTRE", linewidth = 2, legend=:right)
plot!(t_axis, off_diag_cg, xlabel=L"t\ (\mathrm{ns})", ylabel=L"|\rho_{12}(t)|", label="CGME", linewidth = 2)
```


0.2 Appendix

This tutorial is part of the HOQSTTutorials.jl repository, found at: https://github.com/USCqserver/HOQTO locally run this tutorial, do the following commands:

```
using HOQSTTutorials
HOQSTTutorials.weave_file("introduction","04-polaron_transformed_redfield.jmd")
```

Computer Information:

```
Julia Version 1.6.0

Commit f9720dc2eb (2021-03-24 12:55 UTC)

Platform Info:

OS: Windows (x86_64-w64-mingw32)

CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

WORD_SIZE: 64

LIBM: libopenlibm
```

LLVM: libLLVM-11.0.1 (ORCJIT, skylake)

Package Information:

```
Status `tutorials\introduction\Project.toml` [2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91] StatsBase 0.33.4
```

```
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.52.2
[e429f160-8886-11e9-20cb-0dbe84e78965] OpenQuantumTools 0.6.2
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.11.2
[b964fa9f-0449-5b57-a5c2-d3ea65f4040f] LaTeXStrings 1.2.1
[1fd47b50-473d-5c70-9696-f719f8f3bcdc] QuadGK 2.4.1
```