1 Условные распределения

1.1 Функции регрессии

Пусть Ω , \mathcal{F} , P - вероятностное пр-во

 Ω - мновжество элементарных методов эксперимента

 \mathcal{F} - σ алгебра событий

P - вероятностная мера; $P: \mathcal{F} \to [0;1]$

P(A) - вероятность события

Определение: Случайной величиной называется $\xi: \Omega \to \mathbb{R}$ является измеримой, т.е $\forall x \in \mathbb{R}\{\omega: \xi(\omega) < x\} \in \mathcal{F}$.

 $Onpedenehue: \Phi$ ункция распреdenehus случайной величины ξ

$$\mathcal{F}_{\xi}(x) = P\{\omega : \xi(\omega) < x\}$$

 $\underline{Onpedenehue:}_{\overline{benuuuha}}$ Функция распределения - это двумерный вектор (случайная

$$\mathcal{F}_{\xi\eta}(x,y) = P\{\omega : \xi(\omega) < x, \eta(\omega) < y\}, \forall x, y \in \mathbb{R}^2$$

Свойства:

1.
$$0 \le \mathcal{F}_{\xi\eta}(x,y) \le 1, \forall x,y \in \mathbb{R}^2$$

- 2. $\mathcal{F}_{\xi\eta}(x_0,y)$ неубывающая непрерывная слева по y
- 3. $\mathcal{F}_{\xi\eta}(x,y_0)$ неубывающая и непрерывная слева по x

4.
$$\mathcal{F}_{\xi}(x) = \lim_{y \to +\infty} \mathcal{F}_{\xi\eta}(x,y)$$

5.
$$\mathcal{F}_{\eta}(y) = \lim_{x \to +\infty} \mathcal{F}_{\xi\eta}(x,y)$$

6.
$$\lim_{x,y\to+\infty} \mathcal{F}_{\xi\eta}(x,y) = 1$$

7.
$$\lim_{y \to -\infty} \mathcal{F}_{\xi\eta}(x,y) = \lim_{y \to -\infty} \mathcal{F}_{\xi\eta}(x,y) = \lim_{x,y \to -\infty} \mathcal{F}_{\xi\eta}(x,y) = 0$$

Определение: Случайные величины ξ и η - независимые, если $\mathcal{F}_{\xi\eta}(x,y)=\mathcal{F}_{\xi}(x)\cdot\mathcal{F}_{\eta}(y)$

<u>Определение:</u> Условным респределением случайной величины η относительно случайной величины ξ называется

$$\mathcal{F}_{\eta|\xi}(x,y) = \left\{ \begin{array}{l} \frac{\mathcal{F}_{\xi\eta}(x,y)}{\mathcal{F}_{\xi}(x)}; \mathcal{F}_{\xi}(x) > 0\\ 0; \mathcal{F}_{\xi}(x) = 0 \end{array} \right\}$$