CoGrammar

Welcome to this session:

Coding Interview Workshop - Searching Algorithms

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Safeguarding & Welfare

We are committed to all our students and staff feeling safe and happy; we want to make sure there is always someone you can turn to if you are worried about anything.

If you are feeling upset or unsafe, are worried about a friend, student or family member, or you feel like something isn't right, speak to our safeguarding team:

Ian Wyles Designated Safeguarding Lead

Simone Botes

Nurhaan Snyman

Ronald Munodawafa

Scan to report a safeguarding concern

or email the Designated Safequarding Lead: Ian Wyles safeguarding@hyperiondev.com

Skills Bootcamp Coding Interview Workshop

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly. (Fundamental British
 Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you wish to ask
 any follow-up questions. Moderators are going to be answering questions as the
 session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Skills Bootcamp Coding Interview Workshop

- For all non-academic questions, please submit a query:
 <u>www.hyperiondev.com/support</u>
- Report a safeguarding incident: <u>www.hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: <u>Feedback on Lectures</u>
- If you are hearing impaired, please kindly use your computer's function through Google chrome to enable captions.

Learning Outcomes

- Differentiate between linear search, binary search, ternary search, and exponential search, and choose the optimal approach based on constraints.
- Solve search-related problems like rotated sorted array search and peak element detection.
- Implement binary search variations such as lower bound, upper bound, and search in infinite arrays.
- **Analyse the efficiency** of searching algorithms in different data distributions.

What is the time complexity of binary search in a sorted array?

- A. O(n)
- B. O(log n)
- C. O(n log n)
- D. O(1)

What does binary search return if the target element does not exist in the array?

- A. -1
- B. The nearest smaller value
- C. Index 0
- D. The last element

Lecture Overview

- → Linear Search
- → Binary Search
- → Ternary Search
- → Exponential Search
- → Lower and Upper Bound

Search Algorithms

Algorithm	Description	Use Case
Linear Search	Brute force methodCompare every element in array	- Unsorted arrays - O(n)
Binary Search	Divide and conquerEliminate half the elements in the array	- Sorted arrays - O(log n)
Ternary Search	- Divide array into 3 parts instead of 2	- Unimodal functions
Exponential Search	Double the range until upper bound > targetBinary search in range	- Infinite - Unbounded arrays

Practice searching

Let's practice different searching algorithms by solving some classic problems.

Then we'll do the following problems together:

Search in a Sorted Rotated Array

What is the time complexity of Exponential Search?

A. O(log n)

B. O(n)

C. O(n log n)

D. O(1)

Which of these can be used to find the first element greater than or equal to target?

- A. linear_search
- B. lower_bound
- C. binary_search
- D. None

Homework

Practise the skills we've developed by completing the rest of the LeetCode questions:

- Practise speaking through your solutions and explaining how you approached each problem.
- In the next lecture we'll be covering the topic: "Sorting Algorithms"

Summary

- ★ Searching efficiently isn't just about using binary search—it's about choosing the right variant.
- \star We explored linear, binary, ternary, and exponential search strategies.
- ★ Covered rotated sorted array and infinite arrays—common interview scenarios.

CoGrammar

Q & A SECTION

Please use this time to ask any questions relating to the topic, should you have any.

Thank you for attending

