ECE-150 Digital Logic Design, Fall 2025 Quiz 1, September 18th 2025

Problem 1 (5 pts).

- (a) Write the Octal number, 713_8 , as a sum of symbols (their equivalent decimal value) times weighting-factors (1pts).
- (b) Convert 713_8 to binary (1pt) and compute its sum with $0101\ 1010\ 0111_2\ (2pts)$.
- (c) Convert the result of (b) to Hexadecimal (1pt).

Solution.

(a)
$$713_8 = 7 \times 8^2 + 1 \times 8^1 + 3 \times 8^0$$

(b) $713_8 = 111\ 001\ 011_2 = 0001\ 1100\ 1011\ (=1CB_{16}).$

(c) We convert by groups of 4:

$$0111\ 0111\ 0010_2 = 772_{16}.$$

check: $0101\ 1010\ 0111_2 = 5A7_{16}$.

carry:
$$110_{16}$$
 $1CB_{16}$
 $+ 5A7_{16}$
 772_{16}

Problem 2 (5pts). Simplify the following boolean expression using a Karnaugh-Map.

$$X = \bar{A}\bar{B}\bar{C}\bar{D} + ABC + A\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}C\bar{D} + A\bar{B}\bar{C}D + A\bar{B}C\bar{D}$$

Solution.

We fill in a K-map with the SOP min-terms and circle-1s in powers of 2:

		CD			
		00	01	11	10
AB	00	1	1	0	1
	01	0	0	0	0
	11	0	0	1	1
	10	1	1	0	1

Each circled term gives a single expression in a simplified sum of products:

$$X = \bar{B}\bar{C} + \bar{B}\bar{D} + ABC$$