

Análisis sintáctico descendente

Felipe Restrepo Calle

ferestrepoca@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

ASD ASD predictivo Algoritmos

- 1. Análisis Sintáctico Descendente
- 2. ASD predictivo
- 3. Algoritmos

ASD predictive

Algoritmos

Algoritmos de análisis sintáctico

ASD

- Para cualquier GIC:
 - Cocke-Younger-Kasami (CYK), Earley, Tomita, ... O(n³)
- Si se desea costo temporal lineal O(n), es necesario poner restricciones a las GIC. Dos estrategias:
 - Análisis sintáctico descendente (ASD)
 - Análisis sintáctico ascendente (ASA)

ASD predictivo

Algoritmos

Análisis Sintáctico Descendente - ASD

ASD

- Análisis Sintáctico: permite decidir si una cadena dada pertenece o no a una gramática independiente del contexto (GIC).
- Descendente: parte del símbolo inicial (la raíz del árbol de derivación) y trata de llegar a la cadena de terminales dada (las hojas del árbol).
- Lee la cadena de entrada de izquierda a derecha (left-to-right), para obtener la derivación válida por la izquierda de la cadena de entrada (leftmost derivation) -> LL

ASD

ASD predictivo

Algoritmos

Ejemplo ASD:

Gramática: $S \rightarrow a A D$

 $A \rightarrow Dbc|e$

 $D \rightarrow d$

Cadena: a d b c d \$

Árbol de derivación:

ASD predictivo

Algoritmos

Análisis Sintáctico Descendente - ASD

ASD

- Siempre se tiene que tratar de derivar el no terminal más a la izquierda en la cadena de símbolos.
- Inicialmente la cadena de símbolos sólo contiene el símbolo inicial, pero según se van aplicando reglas contiene terminales y no terminales.

Ejemplo:

 $A \rightarrow a B C$

 $B \rightarrow b bas$

B → big C boss

 $C \rightarrow \epsilon$

 $C \rightarrow c$

Cadena: a b bas

Derivación por la izquierda

 $A \rightarrow a B C$

 \rightarrow a b bas C

→ ...

ASD predictivo

Algoritmos

Condiciones para el ASD en tiempo lineal

ASD

- Para realizar un análisis sintáctico lineal, el analizador debe saber en todo momento qué regla debe aplicar, no puede hacer backtracking (complejidad exponencial).
- Por tanto, debe ser:

Análisis Sintáctico Descendente Predictivo

ASD ASD predictivo

Algoritmos

Condiciones para el ASD predictivo

- A la medida que se van aplicando reglas, hay que comprobar que los símbolos terminales que aparecen (por la izquierda) coinciden (match) con los que aparecen en la cadena de entrada.
- Pero, dado un símbolo no terminal (ej: B), ¿cómo se puede predecir qué regla hay que aplicar?

Mirando los primeros símbolos de las partes derechas de las reglas de ese no terminal

Ejemplo: $B \rightarrow b$ bas

B > big C boss

ASD

ASD predictivo

Algoritmos

Condiciones para el ASD predictivo

Ejemplo:

Gramática		Entrada	Derivación	
Α	\longrightarrow a B C	a b bas c	Α	
В	\longrightarrow b bas	a b bas c	a B C	
В	\longrightarrow big C boss	b bas c	BC	
\boldsymbol{C}	\longrightarrow ϵ	b bas c	b bas C	
\boldsymbol{C}	\longrightarrow C	bas c	bas C	
		С	\boldsymbol{C}	
		С	С	

ASD

ASD predictivo

Algoritmos

Algoritmo de ASD predictivo

- 1. Inicialmente se tiene la cadena de entrada y el símbolo inicial de la gramática en la derivación.
- Repetir hasta llegar al final de la cadena de entrada (\$):
 - Si el símbolo más a la izquierda en la derivación es un terminal, hay que compararlo con el símbolo de la entrada y avanzar ¿Y si no coinciden?
 - Si el símbolo más a la izquierda en la derivación es un no terminal:
- Predecir? Predecir qué regla aplicar en función del símbolo que hay en la entrada
 - Aplicar la regla ¿Y si no hay ninguna regla aplicable?

ASI

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

Para elegir ("predecir") qué regla aplicar para un no terminal A, hay que consultar la parte derecha de las reglas de A:

```
A \rightarrow \text{all } B C {all}

A \rightarrow \text{bad} {bad}

B \rightarrow \text{big } C \text{ boss} {big}

B \rightarrow \text{bet} {bet}

C \rightarrow \text{cat} {cat}

C \rightarrow \text{cow}
```

En este caso, es muy fácil, debemos mirar el terminal de la entrada y el **no terminal** a derivar, y se elige la regla a aplicar.

ASI

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

¿y si al principio de la parte derecha hay un no terminal?

```
A \rightarrow BC {big, bet}

A \rightarrow bad {bad}

B \rightarrow bigCboss {big}

B \rightarrow bet {bet}

C \rightarrow cat {cat}

C \rightarrow cow {cow}
```

Es necesario tener calculados el conjunto de terminales que aparecen al principio de la parte derecha de las reglas de ese **no terminal**, es decir, el conjunto de terminales que aparecerían al principio de las cadenas generadas por dicho **no terminal**.

ASI

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

El conjunto de símbolos que aparecen al principio de las cadenas generadas por un **no terminal** se conoce con el nombre de **conjunto de PRIMEROS** (**FIRST**):

```
A \rightarrow BC
```

 $A \rightarrow bad$

 $B \rightarrow big C boss$

 $B \rightarrow bet$

 $C \rightarrow cat$

 $C \rightarrow cow$

PRIMEROS(B) = { big, bet }

PRIMEROS(C) = { cat, cow }

ASI

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

¿y si un no terminal genera una cadena vacía (ε)?

```
A \rightarrow BC
```

$$A \rightarrow bad$$

$$B \rightarrow big C boss$$

$$B \rightarrow \epsilon$$

$$C \rightarrow cat$$

$$C \rightarrow cow$$

PRIMEROS(B) = { big,
$$\varepsilon$$
 }

ASE

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

Resumen:

- En un momento dado del análisis, se tiene que derivar un no terminal A.
- Además, se conoce el símbolo que aparece en la cadena de entrada.
- Dado el símbolo de la entrada y el **no terminal** A, se debe elegir qué regla de A hay que aplicar para llegar a un análisis correcto sin backtracking.
- Para elegir la regla a aplicar, hay que consultar las partes derechas de las reglas de A:
 - Si la parte derecha de una regla empieza por un terminal y ese terminal coincide con el símbolo de la entrada, ésa es la regla que hay que aplicar.
 - Si la parte derecha de una regla empieza por un no terminal B, hay que consultar los símbolos que pueden ser generados por B; si el símbolo de la entrada está entre esos símbolos, ésa es la regla que hay que aplicar
 - ¿Y si B genera ε? Hay que mirar los símbolos que aparecen después de B en la regla de A.

SD ASD predictivo

Algoritmos

Algoritmo para calcular el conjunto de PRIMEROS

El cálculo del conjunto de **PRIMEROS** de una cadena α de símbolos (terminales y/o no terminales) se define formalmente así: **PRIMEROS**(α)

- 1. Si α es ε , entonces PRIMEROS(α) = { ε }
- 2. Si $\alpha = a_1 a_2 \dots a_n$ donde cada a_i puede ser un terminal o un no terminal de la gramática:
 - a. Si a_1 es un terminal, entonces PRIMEROS(α) = { a_1 }
 - b. Si a_1 es un no terminal, hay que añadir PRIMEROS(a_1) { ε } a PRIMEROS(α)
 - c. Si $\varepsilon \in PRIMEROS(a_1)$:
 - Si n = 1, es decir, α = a_1 , entonces hay que añadir ε a PRIMEROS(α)
 - Si n > 1 entonces hay que añadir PRIMEROS($a_2a_3...a_n$) a PRIMEROS(α)
 - d. Si a_1 es un no terminal A, PRIMEROS(A) = $U_{A \rightarrow \alpha_i}$ PRIMEROS(α_i)

ASD predictivo

Predicción de la regla a aplicar

¿Y si ...

... todos los símbolos de la parte derecha de la regla de A son no terminales y todos generan ε ?

$$A \rightarrow BC$$

$$A \rightarrow \dots$$

$$B \rightarrow \epsilon$$

$$B \rightarrow ...$$

$$c \rightarrow \epsilon$$

$$C \rightarrow ...$$

• ... la parte derecha de A es directamente ε? $A \rightarrow \epsilon$

$$A \rightarrow \epsilon$$

En esos casos, parece que mirando solamente los PRIMEROS no es suficiente para decidir qué regla aplicar.

ASE

ASD predictivo

Algoritmos

Predicción de la regla a aplicar

Hay dos soluciones al problema de las reglas que generan ε :

- 1. Cuando no se puede aplicar ninguna otra regla, se aplica la regla que genera ϵ (algunos compiladores lo hacen, porque si hay un error en la entrada se detectará más adelante, al emparejar terminales).
- 2. Antes de decidir si aplicar la regla que genera ε, mirar los símbolos que pueden aparecer después de A en una derivación válida. Se denomina conjunto de SIGUIENTES de A:

Ejemplo: $A \rightarrow B C$ $A \rightarrow ant A all$ $B \rightarrow big C bad$ $B \rightarrow bus A boss$ $B \rightarrow \epsilon$ $C \rightarrow cat$

 $C \rightarrow \mathbf{F}$

SIGUIENTES(A) = { all, boss, \$ }

D ASD predictivo

Algoritmos

Algoritmo para calcular el conjunto de SIGUIENTES

El conjunto de **SIGUIENTES** de un no terminal A se define así:

- 1. Si A es el símbolo inicial de la gramática, añadir \$ a SIGUIENTES(A)
- 2. Sea una regla de la gramática que contiene en su parte derecha el **no terminal** A, así: B $\rightarrow \alpha$ A β , donde B es un **no terminal**, y α y β son cadenas de terminales y no terminales de la gramática (ambas pueden ser ϵ):
 - a. Añadir PRIMEROS(β) { ϵ } a SIGUIENTES(A)
 - b. Si $\varepsilon \in PRIMEROS(\beta)$ (o bien $\beta = \varepsilon$), entonces hay que añadir los SIGUIENTES(B) a los SIGUIENTES(A)
- Repetir el paso 2 (a y b) hasta que no se puedan añadir más símbolos a SIGUIENTES(A)

D ASD predictivo

Algoritmos

Algoritmo para calcular el conjunto de predicción (PRED)

Dada una gramática G y un no terminal de la gramática A, para poder predecir en cualquier derivación qué regla de A se debe aplicar es necesario calcular el conjunto de predicción de cada regla de A:

```
PRED(A \rightarrow \alpha) =
si \epsilon \in PRIMEROS(\alpha) entonces
(PRIMEROS(\alpha) – { \epsilon }) U SIGUIENTES(A)
sino
PRIMEROS(\alpha)
```

Dado un no terminal A y un terminal de la entrada t, se aplicará la regla de A que tenga a t en su conjunto de predicción.

¿Y si hay más de una regla de A que tenga a t?

D ASD predictivo

Algoritmos

Ejemplo del cálculo de conjuntos de predicción

 $A \rightarrow BC$

 $A \rightarrow ant A all$

 $B \rightarrow big C$

 $B \rightarrow bus A boss$

 $B \rightarrow \varepsilon$

 $C \rightarrow cat$

 $C \rightarrow cow$

Para poder calcular el conjunto de PRIMEROS de las partes derechas de las reglas, primero se calculan los PRIMEROS de los no terminales:

PRIMEROS(A) = { ant, big, bus, cat, cow }
PRIMEROS(B) = { big, bus,
$$\varepsilon$$
 }

PRIMEROS(C) = { cat, cow }

ASD

ASD predictivo

Algoritmos

Ejemplo del cálculo de conjuntos de predicción

```
A \rightarrow BC
```

 $A \rightarrow ant A all$

 $B \rightarrow big C$

 $B \rightarrow bus A boss$

 $B \rightarrow \varepsilon$

 $C \rightarrow cat$

 $C \rightarrow cow$

Como hay una producción que genera **ɛ**, tenemos que calcular los SIGUIENTES de cada no terminal:

```
SIGUIENTES(A) = { all, boss, $ }
SIGUIENTES(B) = { cat, cow }
SIGUIENTES(C) = { cat, cow, all, boss, $ }
```

D ASD predictivo

Algoritmos

Ejemplo del cálculo de conjuntos de predicción

Los conjuntos de predicción de cada regla son:

```
A \rightarrow BC \qquad \{ big, bus, cat, cow \} \ PRIMEROS(BC)
A \rightarrow ant A all \qquad \{ ant \}
B \rightarrow big C \qquad \{ big \}
B \rightarrow bus A boss \qquad \{ bus \}
B \rightarrow \epsilon \qquad \{ cat, cow \} \qquad (PRIM(\epsilon) - \{\epsilon\}) \cup SIG(B)
C \rightarrow cat \qquad \{ cat \}
C \rightarrow cow \qquad \{ cow \}
```


Lenguajes de Programa

Análisis Sintáctico Descendente - ASD

ASE

ASD predictivo

Algoritmos

25

Ejemplo del cálculo de conjuntos de predicción

Los conjuntos de predicción de cada regla son:

```
A \rightarrow B C { big, bus, cat, cow } PRIMEROS(BC)

A \rightarrow \text{ant } A \text{ all} { ant }

B \rightarrow \text{big } C { big }

B \rightarrow \text{bus } A \text{ boss} { bus }

B \rightarrow \epsilon { cat, cow } (PRIM(\epsilon) - {\epsilon}) U SIG(B)

C \rightarrow \text{cat} { cat }

C \rightarrow \text{cow} { cow }
```

Derivación Entrada		Regla/acción			
A \$	ant cat all \$	Α	\longrightarrow	ant A all	
ant A all \$	ant cat all \$			emparejar	ant
A all \$	cat all \$	Α	\longrightarrow	BC	
B C all \$	cat all \$	В	\longrightarrow	ϵ	
C all \$	cat all \$	C	\longrightarrow	cat	
cat all \$	cat all \$			emparejar	cat
all \$	all \$			emparejar	all
\$	\$??OK!!	

D ASD predictivo

Algoritmos

Ejercicios

 Calcular los conjuntos de PRIMEROS y SIGUIENTES de los no terminales de la siguiente gramática, y los conjuntos de PREDICCIÓN de las reglas:

 $S \rightarrow A$ uno B C

 $S \rightarrow S \text{ dos}$

 $A \rightarrow B C D$

 $A \rightarrow A$ tres

 $A \rightarrow \epsilon$

 $B \rightarrow D$ cuatro C tres

 $B \rightarrow \epsilon$

 $C \rightarrow cinco D B$

 $C \rightarrow \epsilon$

 $D \rightarrow seis$

 $D \rightarrow \varepsilon$

D ASD predictivo

Algoritmos

Ejercicios

2. Calcular los conjuntos de PRIMEROS y SIGUIENTES de los no terminales de la siguiente gramática, y los conjuntos de PREDICCIÓN de las reglas:

 $S \rightarrow A B uno$

 $A \rightarrow dos B$

 $A \rightarrow \epsilon$

 $B \rightarrow CD$

 $B \rightarrow tres$

 $B \rightarrow \epsilon$

 $C \rightarrow cuatro A B$

 $C \rightarrow cinco$

 $D \rightarrow seis$

 $D \rightarrow \varepsilon$