WO 2004/050905

PCT/GB2003/005272

EUKARYOTIC BIOSENSOR MAKING USE OF A CALCIUM REGULATED LIGHT EMITTING ENZYME

•	
2	
3	The present invention provides a method of using
4	transformed eukaryotic cells or organisms for
5	determining the presence or absence of at least one
6	toxic substance in a sample and for assisting in the
7	identification of the toxicant(s). More
8	specifically there is provided a toxicity assay for
9	various uses including determining the presence of
10	toxins, general cytotoxicity testing of pure
11	chemicals and chemical mixtures in particular for
12	drug development testing, testing of food and drink
13	products, cosmetics testing and identification of
14	organisms in particular of fungal strains
15	
16	The release of contaminating substances into an
17	environment such as a waterway or an area of
18	agricultural land can have serious effects on the
19	ecosystems found in that environment. It is
20	important to be able to analyse these effects both
21	prior to the release of such contaminants so as to

2

1 manage their treatment or release, and after release so as to determine and counteract their effects. 2 3 Current methods used to monitor water quality and 4 screen effluent generally involve chemical toxicity 5 However, these tests require a general idea 6 7 of the type of contaminant being tested for and can 8 be very expensive. 9 Similarly the presence of contaminating substances 10 or toxins can be problematic in other areas such as 11 food and drink manufacture and cosmetics 12 manufacture. There are also instances, such as in 13 drug development and cosmetic industry, where the 14 substance of interest i.e. the potential new drug 15 may itself be a contaminating substance or toxin and 16 17 this needs to be checked. 18 Biosensors are used for toxicity testing and are 19 well known in the field. Toxicity depends on a 20 variety of factors including pH, temperature, 21 salinity and contaminant concentration, but depends 22 especially on the test organism used in the sensor. 23 24 One of the most commonly used organisms is the 25 bioluminescent bacterium, Vibrio fischeri. 26 bioluminescence involved is mediated by the 27 luciferin-luciferase enzyme system wherein light 28 emission is dependent on the electron transfer 29 Any disruption to the electron transfer 30 chain. chain, for example on exposure to a toxicant, 31 affects light emission. Light emission at the time a 32

1	substance is added is therefore indicative of the
2	presence of a toxic substance.
3	
4	This system, however, only provides a simple
5	indication of whether a contaminant is toxic or not.
6	No detailed information is obtained on how toxic the
7	contaminant is, nor is the contaminant identified.
8	
9	The terms toxicant and toxin as herein described
10	relate to compounds, chemicals and mixtures of
11	chemicals which have an effect on eukaryotic cells
12	or organisms and in particular which are toxic to
13	eukaryotic organisms such as fungus or which have
14	anti-fungal activity.
15	
16	The term eukaryote as herein described relates to
17	eukaryotic cells or organisms.
18	
19	According to a first aspect of the present invention
20	there is provided a method of determining the
21	presence of a toxicant in a test sample, comprising
22	the steps of;
23	 exposing a eukaryote that has been
24	transformed with a light emitting Ca ²⁺
25	regulated photoprotein gene to a test sample
26	- measuring the light produced by the
27	transformed cell/organism
28	- determining whether the amount of light is
29	above or below a defined threshold at the
30	time of exposure.
31	
32	

1	Optionally the eukaryote is a fungi.
2	(throughout this document fungi should be considered
3	under its typical classification as covering both
4	multicellular organisms and unicellular organisms
5	such as the yeast Saccharomyces cerviseae
6	Preferably the fungi is a filamentous fungi.
7	
8	More preferably the fungi is of the Aspergillus
9	species.
10	
11	
12	Alternatively the eukaryote is a mammalian cell.
13	
14	A further alternative is that the eukaryote is a
15	plant cell.
16	Preferably the test sample comprises a toxicant.
17 18	
19	Preferably the light emitting Ca ²⁺ regulated
20	photoprotein gene is a recombinant gene.
21	P.1000 P.2000 M.100 P.200 P.
22	Preferably the light emitting Ca ²⁺ regulated
23	photoprotein gene is selected from the group
24	comprising;
25	- aequorin gene
26	- halistaurin (mitrocomin) gene
27	- phialidin (clytin) gene
28	- obelin gene
29	- mnemiopsin gene
30	- berovin gene
31	-

1	Optionally, the light emitting Ca2+ regulated
2	photoprotein gene may be a functional homologue of a
3	gene selected from the group comprising;
4	- aequorin gene
5	- halistaurin (mitrocomin) gene
6	- phialidin (clytin) gene
7	- obelin gene
8	- mnemiopsin gene
9	- berovin gene
10	
11	Most preferably the light emitting Ca ²⁺ regulated
12	photoprotein gene is an aequorin gene.
13	
14	More preferably the light emitting Ca2+ regulated
15	photoprotein gene is a recombinant aequorin gene.
16	
17	Preferably the light that is measured is in the form
18	of luminescence.
19	
20	Optionally the test sample is added in advance of
21	the application of a stimulus to the test sample.
22	
23	Preferably the stimulus is at least one or more from
24	the group comprising; mechanical perturbation, hypo-
25	osmotic shock, and change in external calcium
26	chloride concentration, temperature shock, pH shock.
27	
28	Preferably the test sample is added 1 minute to 1
29	hour prior to the application of the stimulus.
30	
31	More preferably the test sample is added 5 minutes
32	prior to the application of the stimulus.

1	
2	More preferably the test sample is added 30 minutes
3	prior to the application of the stimulus.
4	•
5	According to a second aspect of the present
6	invention there is provided a method of determining
7	the presence of a toxicant in a test sample,
8	comprising the steps of;
9	 exposing a eukaryote that has been
10	transformed with a light emitting Ca ²⁺
11	regulated photoprotein gene to a test sample
12	- measuring the light produced by the
13	transformed cell/organism
14	- determining whether the amount of light is
15	above a defined threshold at a specified
16	time after the time of exposure.
17	•
18	Optionally the method comprises the step of
19	determining whether the amount of light is below a
20	defined threshold.
21	
22	Optionally the specified time after the time of
23	exposure is 11 minutes.
24	
25	Optionally the eukaryote is a fungi.
26	
27	Preferably the fungi is a filamentous fungi.
28	
29	More preferably the fungi is of the Aspergillus
30	species.
31	

PCT/GB2003/005272

1 2	Alternatively the eukaryote is a mammalian cell.
3	A further alternative is that the eukaryote is a
4	plant cell.
5	
6	Preferably the test sample comprises a toxicant.
7	
8	Preferably the light emitting Ca ²⁺ regulated
9	photoprotein gene is a recombinant gene.
10	
11	Preferably the light emitting Ca ²⁺ regulated
12	photoprotein gene is selected from the group
13	comprising;
14	- aequorin gene
15	- halistaurin (mitrocomin) gene
16	- phialidin (clytin) gene
17	- obelin gene
18	- mnemiopsin gene
19	- berovin gene
20	
21	Optionally, the light emitting Ca2+ regulated
22	photoprotein gene may be a functional homologue of a
23	gene selected from the group comprising;
24	- aequorin gene
25	- halistaurin (mitrocomin) gene
26	- phialidin (clytin) gene
27	- obelin gene
28	- mnemiopsin gene
29	- berovin gene
30	

1	Most preferably the light emitting Ca2+ regulated
2	photoprotein gene is an aequorin gene.
3	
4	More preferably the light emitting Ca2+ regulated
5	photoprotein gene is a recombinant aequorin gene.
6	
7	Preferably the light that is measured is in the form
8	of luminescence.
9	\cdot
10	Optionally the test sample is added in advance of
11	the application of a stimulus to the test sample.
12	
13	Preferably the stimulus is at least one or more from
14	the group comprising; mechanical perturbation, hypo-
15	osmotic shock, change in external calcium chloride
16	concentration, temperature shock, pH shock.
17	
18	Preferably the test sample is added 1 minute to 1
19	hour prior to the application of the stimulus.
20	
21	More preferably the test sample is added 5 minutes
22	prior to the application of the stimulus.
23	
24	More preferably the test sample is added 30 minutes
25	prior to the application of the stimulus.
26	
27	According to a third aspect of the present invention
28	there is provided a method of determining the
29	presence of a toxicant in a test sample, comprising
30	the steps of;

1	- exposing a eukaryote that has been
2	transformed with a light emitting Ca ²⁺
3	regulated photoprotein gene to a test sample
4	- measuring the light produced by the
5	transformed cell/organism
6	- and comparing at least one parameter of the
7	light measurement data with a bank of known
8	toxicity reference data.
9	
10	Optionally the method comprises the step of
1	determining whether the amount of light is below a
12	defined threshold.
13	
14	Optionally the specified time after the time of
15	exposure is 11 minutes.
16	
17	Optionally the eukaryote is a fungi.
18	
19	Preferably the fungi is a filamentous fungi.
20	•
21	More preferably the fungi is of the Aspergillus
22	species.
23	Do we need next two sentences
24	Most preferably the fungi is Aspergillus awamori.
25	
26	Most preferably the strain of Aspergillus awamori is
27	strain 66A.
28	
29	Alternatively the eukaryote is a mammalian cell.
30	•
31	A further alternative is that the eukaryote is a
32	plant cell.

1	
2	Preferably the test sample comprises a toxicant.
3	
4	Preferably the light emitting Ca ²⁺ regulated
5	photoprotein gene is a recombinant gene.
6	
7	Preferably the light emitting Ca ²⁺ regulated
8	photoprotein gene is selected from the group
9	comprising;
10	- aequorin gene
11	- halistaurin (mitrocomin) gene
12	- phialidin (clytin) gene
13	- obelin gene
14	- mnemiopsin gene
15	- berovin gene
16	
17	Optionally, the light emitting Ca ²⁺ regulated
18	photoprotein gene may be a functional homologue of
19	gene selected from the group comprising;
20	- aequorin gene
21	- halistaurin (mitrocomin) gene
22	- phialidin (clytin) gene
23	- obelin gene
24	- mnemiopsin gene
25	- berovin gene
26	
27	Most preferably the light emitting Ca2+ regulated
28	photoprotein gene is an aequorin gene.
29	
30	More preferably the light emitting Ca2+ regulated
31	photoprotein gene is a recombinant aequorin gene.

11

1 Preferably the light that is measured is in the form 2 3 of luminescence. 4 Optionally the test sample is added in advance of 5 the application of a stimulus to the test sample. 6 7 Preferably the stimulus is at least one or more from 8 the group comprising; mechanical perturbation, hypo-9 osmotic shock, change in external calcium chloride 10 concentration, temperture shock, pH shock. 11 12 Preferably the test sample is added 1 minute to 1 13 hour prior to the application of the stimulus. 14 15 More preferably the test sample is added 5 minutes 16 prior to the application of the stimulus. 17 18 More preferably the test sample is added 30 minutes 19 20 prior to the application of the stimulus. 21 Preferably, the method is used to determine the 22 amount of toxicant in the sample. 23 24 25 Optionally, the method is used to identify the toxicant in the sample. 26 27 According to a fourth aspect of the present 28 invention there is provided a method of determining 29 30 the presence of a toxicant in a test sample, 31 comprising the steps of;

1	- exposing a eukaryote that has been
2	transformed with a light emitting Ca ²⁺
3	regulated photoprotein gene to a test sample
4	- measuring the light produced by the
5	transformed cell/organism
6	- converting the light data into a cytosolic
7	free calcium ion concentration trace,
8	- and comparing at least one parameter of the
9	cytosolic free calcium ion concentration
10	trace with a bank of known toxicity
11	reference data.
12	
13	Optionally the method comprises the step of
14	determining whether the amount of light is below a
15	defined threshold.
16	
17	Optionally the specified time after the time of
18	exposure is 11 minutes.
19	
20	Optionally the eukaryote is a fungi.
21	
22	Preferably the fungi is a filamentous fungi.
23	
24	More preferably the fungi is of the Aspergillus
25	species.
26	
27	
28	Alternatively the eukaryote is a mammalian cell.
29	
30	A further alternative is that the eukaryote is a
31	plant cell.
32	

PCT/GB2003/005272

1	Preferably the test sample comprises a toxicant.
2	
3	Preferably the light emitting Ca ²⁺ regulated
4	photoprotein gene is a recombinant gene.
5	
6	Preferably the light emitting Ca ²⁺ regulated
7	photoprotein gene is selected from the group
8	comprising;
9	- aequorin gene
10	- halistaurin (mitrocomin) gene
11	- phialidin (clytin) gene
12	- obelin gene
13	- mnemiopsin gene
14	- berovin gene
15	
16	Optionally, the light emitting Ca ²⁺ regulated
17	photoprotein gene may be a functional homologue of
18	gene selected from the group comprising;
19	- aequorin gene
20	- halistaurin (mitrocomin) gene
21	- phialidin (clytin) gene
22	- obelin gene
23	- mnemiopsin gene
24	- berovin gene
25	
26	Most preferably the light emitting Ca2+ regulated
27	photoprotein gene is an aequorin gene.
28	
29	More preferably the light emitting Ca ²⁺ regulated
30	photoprotein gene is a recombinant aequorin gene.
31	

1	Preferably the light that is measured is in the form
2	of luminescence.
3	
4	Optionally the test sample is added in advance of
5	the application of a stimulus to the test sample.
6	
7	Preferably the stimulus is at least one or more from
8	the group comprising; mechanical perturbation, hypo-
9	osmotic shock, change in external calcium chloride
10	concentration, temperature shock, pH shock.
11	
12	Preferably the test sample is added 1 minute to 1
13	hour prior to the application of the stimulus.
14	
15	More preferably the test sample is added 5 minutes
16	prior to the application of the stimulus.
17	
18	More preferably the test sample is added 30 minutes
19	prior to the application of the stimulus.
20	Preferably light is measured for between 1 minute
21	and 5 hours following the application of the
22	stimulus.
23	
24	More preferably light is measured for 5 minutes
25	following the application of the stimulus.
26	
27	Preferably, the cytosolic free calcium ion trace is
28	a plot of the cytosolic free calcium ion
29	concentration against time.
30	
31	Preferably the parameter is at least one or more
32	selected from the group comprising;

1	- lag time
2	- rise time
3	- absolute amplitude
4	- relative amplitude
5	- Length of transient
6	- number of cytosolic free calcium ion
7	concentration increases
8	- percentage increase in final cytosolic free
9	calcium ion concentration resting level
10	 percentage increase in recovery time
11	 percentage increase in pre-stimulating
12	cytosolic free calcium ion concentration
13	resting level
14	- Total concentration of Ca ²⁺ released.
15	
16	Preferably, the method is used to determine the
17	amount of toxicant in the sample.
18	a '
19	Optionally, the method is used to identify the
20	toxicant in the sample.
21	
22	According to a fifth aspect of the present invention
23	there is provided an assay for use in determining
24	the presence of a known toxicant in a test sample,
25	the assay comprising the steps of;
26	- exposing a fungi transformed with a
27	recombinant aequorin gene to a test sample of
28	a substance,
29	
30	 measuring the luminescence produced by the
31	fungi.

WO 2004/050905

16

PCT/GB2003/005272

1	
2	- converting the luminescence data into a
3	cytosolic free calcium ion concentration
4	trace,
5	
6	 and comparing at least one parameter of the
7	cytosolic free calcium ion concentration
8	trace with a bank of known toxicity reference
9	data.
10	
11	Preferably the cytosolic free calcium ion trace is a
12	plot of the cytosolic free calcium ion concentration
13	against time.
14	
15	Preferably the fungi transformed with a recombinant
16	aequorin gene is a filamentous fungi.
17	
18	More preferably the fungi is of the Aspergillus
19	species.
20	
21	
22	Preferably the substance is a contaminant.
23	
24	Preferably the substance is a contaminated sample.
25	
26	Preferably the parameter is at least one or more
27	selected from the group comprising; lag time, rise
28	time, absolute amplitude, relative amplitude, length
29	of transient at 20%, 50% and 80% of maximum
30	amplitude , number of cytosolic free calcium ion
31	concentration increases, percentage increase in
32	final cytosolic free calcium ion concentration

17

resting level, percentage increase in recovery time 1 and percentage increase in the total amount of Ca2+ 2 3 released. 4 Optionally, the test sample is added in advance of 5 the application of a stimulus to the test sample. 6 7 Preferably the stimulus is at least one or more from 8 the group comprising; mechanical perturbation, hypo-9 osmotic shock, change in external calcium chloride 10 concentration, temperature shock and pH shock. 11 12 Preferably the test sample is added 1 minute to 1 13 hour prior to the application of the stimulus. 14 15 More preferably the test sample is added 5 minutes 16 prior to the application of the stimulus. 17 18 More preferably the test sample is added 30 minutes 19 prior to the application of the stimulus. 20 21 In such instances, the parameters may include at 22 least one or more selected from the group 23 comprising; lag time, rise time, absolute amplitude, 24 relative amplitude Length of transient at 20%, 50% 25 and 80% of maximum amplitude, number of cytosolic 26 free calcium ion concentration increases, percentage 27 increase in final cytosolic free calcium ion 28 concentration resting level, percentage increase in 29 recovery time, percentage increase in pre-30 stimulating cytosolic free calcium ion concentration 31

18

1 resting level and percentage increase in the total amount of Ca2+ released. 2 3 4 Preferably luminescence is measured for between 1 5 minute and 5 hours following the application of the 6 stimulus. 7 8 More preferably luminescence is measured for 5 9 minutes following the application of the stimulus. 10 11 Preferably, the method is used to determine the 12 amount of toxicant in the sample. 13 14 Optionally, the method is used to identify the 15 toxicant in the sample. 16 17 In order to further explain the present invention 18 details of a number of experiments are provided. 19 A first experiment comprises testing the effect of 20 21 pre-incubation of Aspergillus awamori with toxicants 22 on cytosolic free calcium ion concentration response 23 to an increase in external calcium chloride. 24 25 A further set of experiments described herein shows 26 attempts to obtain characteristic data for a range 27 of different toxicants at a number of different 28 concentrations. The results demonstrate that each 29 toxicant at each concentration produces a 30 distinctive cytosolic free calcium ion concentration 31 trace whose traits could be used to identify and 32 characterise a toxicant present in a test sample.

PCT/GB2003/005272

1 2 A final experiment attempts to determine whether it 3 is possible to identify and characterise individual 4 toxicants from testing samples of mixtures of 5 toxicants in different proportions. The traces 6 produced are distinct for each mixture. 7 8 These results show that it is possible to 9 characterise and identify a specific toxicant from a 10 test sample by using the characteristic data 11 obtained from a cytosolic free calcium ion 12 concentration trace. 13 14 It is also possible to characterise and identify a 15 specific toxicant from a test sample by using the 16 characteristic data obtained from light readings. 17 The main difference between doing light emission and 18 cytosolic free calcium ion concentrations is the 19 removing the step of converting the luminescence 20 data into a cytosolic free calcium ion concentration 21 trace". 22 23 So the method is: 24 25 An assay for use in determining the presence of a 26 known toxicant in a test sample, the assay 27 comprising the steps of; 28 exposing a fungi transformed with a 29 recombinant aequorin gene to a test sample of 30 a substance, 31 - measuring the luminescence produced by the 32 fungi in relative light units (RLU),

20

1 - and calculating the following parameters: lag 2 time, rise time, length of transient 3 $(LT_{20},LT_{50},\ LT_{80})$, absolute amplitude, relative 4 amplitude, recover time, final level 5 luminescence, initial level of luminescence, 6 total luminescence. 7 8 Since RLU are not normalised with regard to the 9 biomass, the parameters measured in relative light 10 units (RLU) are different from the cytosolic free 11 calcium ion concentration [Ca²⁺]. Figs 24 and 25 show 12 that the decrease in amplitude caused by 260 mg/l Cr^{6+} is 75% in RLU, and only 65% in Ca^{2+} 13 14 concentration. Other parameters would differ in a 15 similar way. 16 17 Most of the toxicity testing for environmental 18 pollutants is usually carried out using RLU and a 19 therefore the light-emitting essay would be 20 particularly helpful if used alongside other 21 existing biosensors. 22 23 The parameters referred to herein relate to the 24 following; 25 26 Lag Time, the time from addition of the test sample 27 to the time when the cytosolic free calcium ion 28 concentration, [Ca²⁺]_c, began to rise; 29 Rise Time, the time from addition of the test sample 30 to the time at which maximum [Ca2+]c was reached; 31 32

PCT/GB2003/005272

21

WO 2004/050905

1	
2	
3	Number of $[Ca^{2+}]_c$ Rises, the number of peaks in
4	[Ca ²⁺] _c ;
5	
6	Percentage Increase in Final [Ca ²⁺]c Resting Level,
7	the percentage increase in resting $[Ca^{2+}]_c$ at the end
8	of the experiment, where the control value is taken
9	to be 100%;
10	
11	Percentage Increase in Recovery Time, percentage
12	increase in recovery time where recovery time
13	represents the total amount of $[Ca^{2+}]_c$ released
14	during the period of time from the point when the
15	maximum amplitude following calcium chloride
16	treatment was achieved to the point when the $[Ca^{2+}]_c$
17	reached its final resting level. Recovery time was
18	initially calculated for control cultures. In the
19	control this period of time was calculated as 250
20	seconds. For the cultures subjected to the
21	treatment with toxicant(s) the total amount of
22	$[Ca^{2+}]_c$ was calculated for the same period of 250
23	seconds starting from the maximum amplitude. The
24	recovery time of the control cultures was therefore:
25	
26	total amount of $[Ca^{2+}]_c$ (µM) for the toxicant-treated
27	samples over 250 seconds x 100
28	total amount of $[Ca^{2+}]_c$ (μM) for the control sample
29	over 250 seconds
30	
31	Percentage Increase in pre-Stimulating [Ca ²⁺]c
32	Resting Level, the percentage increase in [Ca2+]c

22

1 prior to the stimulus, where the control value is 2 taken to be 100%. 3 4 in total amount of calcium Percentage change stage 5 1 released during the transient at 6 calculated by integration of the all luminescence 7 obtained after addition of the compounds of interest 8 before subsequent stimulation with physico-chemical 9 stimuli. 10 amount of calcium 11 change in total Percentage 12 released during the transient at stage 2 calculated by integration of the all luminescence 13 obtained after the fungus is stimulated with one of 14 15 the physico-chemical stimuli. 16 17 change in total amount of calcium Percentage 18 released during the whole transient - calculated by. integration of the all luminescence obtained during 19 20 the period of experiment. 21 22 Length of transient (LT) - this parameter describes 23 the length of the transient when the amplitude of the response is equal a certain percentage from the 24 25 maximum amplitude. LT_{20} (Length of transient at Amplitude=20% of maximum 26 27 Amplitude) LT_{50} (Length of transient at Amplitude=50% of maximum 28 29 Amplitude) LT_{80} (Length of transient at Amplitude=80% of maximum 30 31 Amplitude)

23

1 All secondary increases have to be analysed by the 2 same parameters as primary increases during stages 1 3 and 2. 4 E.g. Amplitude, length, rise time, lag time, 5 6 Percentage change in amplitude should be assessed as 7 the absolute value from point 0 (Aa) and as the relative value from the initial resting level (Ar). 8 9 The relative changes assess the ability of of the 10 eukaryote to respond to the physiological stimuli. 11 This parameter is important to assess the physiological state of the eukaryote. 12 There is also the possibility of combining one or 13 more of these parameters to obtain further values 14 which can be used for identification of the 15 16 toxicants in the mixture. For example, the 17 summation of amplitude and recovery time will give 18 the value of total cytosolic free calcium ions emitted from the time when [Ca2+]c reaches its peak. 19 Also summation of lag time and rise time will give 20 the total time required for [Ca2+]c to reach its 21 peak. The division of final [Ca²⁺]_c resting level 22 onto the pre-stimulation [Ca2+]c resting level will 23 show how many times the [Ca2+] c resting level has 24 changed after stimulation. Similarly, a division of 25 26 the final [Ca²⁺]_c resting level onto the initial 27 [Ca²⁺]_c resting level prior to the addition of toxicant(s) gives further identifying data. 28 Additionally, the summation of all the data points 29 30 of the trace gives the total amount of cytosolic free calcium ions released during the monitoring 31 32 period.

i	As mammalian cells are more complex than other
2	eukaryotes such as fungi or plants typically more
3	parameters will be considered.
4	
5	The present invention will now be described with
6	reference to the following non-limiting examples and
7	with reference to the figures, wherein:
8	
9	Figure 1 shows the characteristic $[Ca^{2+}]_c$ trace
10	produced on addition of $5mM$ external $CaCl_2$,
11	following a 5 minute pre-incubation with
12	different concentrations of 3,5-DCP.
13	
14	Figure 2 shows the characteristic $[Ca^{2+}]_c$ trace
15	produced on addition of 5mM external CaCl2,
16	following a 5 minute pre-incubation with
17	different concentrations of Cr6+.
18	
19	Figure 3 shows the characteristic [Ca2+]c trace
20	produced on addition of 5mM external CaCl2,
21	following a 5 minute pre-incubation with
22	different concentrations of Zn2+.
23	
24	Figure 4 shows the characteristic [Ca ²⁺] _c trace
25	produced on addition of 5mM external CaCl2,
26	following a 30 minute pre-incubation with
27	different concentrations of 3,5-DCP.
28	
29	Figure 5 shows the characteristic [Ca ²⁺]c trace
30	produced on addition of 5mM external CaCl ₂ ,
	-

1	following a 30 minute pre-incubation with
2	different concentrations of Cr^{6+} .
3	
4	Figure 6 shows the characteristic $[Ca^{2+}]_c$ trace
5	produced on addition of 5mM external CaCl2,
6	following a 30 minute pre-incubation with
7	different concentrations of Zn2+.
8	
9	Figure 7 shows the characteristic cytosolic free
10	calcium ion concentration, [Ca2+]c, trace
11	produced on addition of $5mM$ CaCl ₂ following a 5
12	minute pre-incubation with different
13	concentrations of 3,5-dichlorophenol, 3,5-DCP.
14	
15	Figure 8 shows the characteristic $[Ca^{2+}]_c$ trace
16	produced on addition of $5mM$ CaCl ₂ , following a
17	30 minute pre-incubation with different
18	concentrations of 3,5-DCP.
19	
20	Figure 9 shows the characteristic $[Ca^{2+}]_c$ trace
21	produced on addition of $5mM$ CaCl ₂ , following a 5
22	minute pre-incubation with different
23	concentrations of chromium ions, Cr^{6+} .
24	
25	Figure 10 shows the characteristic $[Ca^{2+}]_c$ trace
26	produced on addition of $5mM$ CaCl ₂ , following a
27	30 minute pre-incubation with different
28	concentrations of chromium ions, Cr^{6+} .
29	
30	Figure 11 shows the characteristic $[Ca^{2+}]_c$ trace
31	produced on addition of 5mM CaCl2, following a 5

1	minute pre-incubation with different
2	concentrations of zinc ions, Zn2+.
3	
4	Figure 12 shows the characteristic $[Ca^{2+}]_c$ trace
5	produced on addition of $5mM$ CaCl ₂ , following a
6	30 minute pre-incubation with different
7	concentrations of zinc ions, Zn2+.
8	
9	Figure 13 shows the values of $[Ca^{2+}]_c$ trace
10	parameters characteristic for different
11	concentrations of pentochlorophenol, PCP; sodium
12	dodecyl sulphate, SDS; and Toluene. Parameters
13	assessed are Lag Time, LT; Rise Time, RT;
14	Amplitude, A; Length of transient, LT50;
15	Percentage Increase in pre-Stimulating [Ca ²⁺]c
16	Resting Level, %IpreSRL; Percentage Increase in
17	Final [Ca ²⁺] _c Resting Level, %IFRL; Percentage
18	Increase in Recovery Time, %IRT; and Number of
19	[Ca ²⁺] _c Increases.
20	
21	Figure 14 shows the values of [Ca ²⁺] _c trace
22	parameters characteristic for 3,5-DCP, PCP, Zn ²⁺ ,
23	Cr6+, Toluene, and SDS. Parameters assessed are
24	Lag Time, LT; Rise Time, RT; Amplitude, A;
25	Length of transient, LT50; Percentage Increase
26	in pre-Stimulating [Ca ²⁺] _c Resting Level,
27	%IpreSRL; Percentage Increase in Final [Ca ²⁺]c
28	Resting Level, %IFRL; Percentage Increase in
29	Recovery Time, %IRT; and Number of [Ca2+]c
30	Increases.
31	

1	Figure 15 shows the values of [Ca ²⁺] _c trace
2	parameters characteristic for different mixtures
3	of toxicants. Parameters assessed are Lag Time,
4	LT; Rise Time, RT; Amplitude, A; Length of
5	transient, LT50; Percentage Increase in pre-
6	Stimulating [Ca ²⁺] _c Resting Level, %IpreSRL;
7	Percentage Increase in Final [Ca ²⁺]c Resting
8	Level, %IFRL; Percentage Increase in Recovery
9	Time, %IRT; and Number of [Ca2+]c Increases.
10	
11	Effect of pre-incubation of Aspergillus awamori with
12	toxicants on [Ca2+] c response to external calcium
13	chloride
14	
15	12 ml of sterile VS medium was inoculated with 1 \times
16	10^5 spores per ml <i>A. awamori</i> strain 66A. 100 μ l of
17	the inoculated medium was added to each well of a
18	96-well plate and cultured in a humidity chamber in
19	the presence of free water at 30 °C for 24 hours.
20	
21	The following toxicants were tested: 3,5-
22	dichlorophenol, zinc sulphate, and potassium
23	dichromate. Each toxicant was added in a total
24	volume of 25 μ l VS medium or water 5 or 30 minutes
25	before addition of 5 mM calcium chloride.
26	
27	Luminescence was monitored for 5 minutes following
28	addition of $CaCl_2$. Aequorin was completely
29	discharged by adding 3M calcium chloride in 20%
30	ethanol. The total concentration is thus 1.5 M
31	calcium chloride in 10% ethanol.
32	

1	Luminometry was performed using an EG & G Berthold
2	(Bad Wildbad, Germany) LB96P Microlumat luminometer.
3	Luminescence data was converted from real light
4	units to $[Ca^{2+}]_c$ values using the following equation:
5	
6	PCa = 0.332588 (-log k) + 5.5593,
7	
8	where k = luminescence counts per second/total
9	luminescence counts. Total luminescence is measured
10	as an integral of all luminescence up to complete
11	aequorin discharge.
12	
13	The Equation is first described in Fricker, M.D.,
14	Plieth, C., Knight, H., Blancaflor, E., Knight,
15	M.R., White, N.S., and Gilroy, S. 1999. Fluorescence
16	and Luminescence Techniques to Probe Ion Activities
17	in Living Plant Cells. In Mason, W.T., editor,
18	Fluorescent and Luminescent Probes. Academic Press.
19	London. pp. 569-596.
20	The following parameters were assessed:
21	Rise Time, Amplitude, Length of transient, LT50 and
22	Final [Ca ²⁺] _c Resting Level.
23	
24	Effects of different concentrations of toxicants on
25	[Ca ²⁺] _c traces
26	
27	Aspergillus awamori were transformed with an
28	expression vector (pAEQ1-15) comprising a gene for
29	synthetic apoaequorin (aeqS) under the control of
30	the constitutive glucose-6-phosphate dehydrogenase
31	promoter (gpdA).
32	

29

These transformants were cultured in 100 µl of
Vogel's medium with 1% sucrose (VS medium) in
microwell plates for 24 hours before addition of a
toxicant or a control of distilled water. Toxicants
were dissolved in water to give the concentrations
shown below. 25 µl of the each of the following
concentrations were added to each culture:

8

TOXICANT	CONCENTRATIONS (mg/1)
3,5-dichlorophenol (3,5-	0.112, 11.2, 112
DCP)	
Chromium ions (Cr ⁶⁺)	15, 120, 260
Zinc ions (Zn ²⁺)	180, 350, 700, 1300

9

10 The cultures were incubated for 5 or 30 minutes
11 before addition of 100 µl 5mM CaCl₂. Luminescence
12 was measured for 5 minutes using a plate
13 luminometer. Luminescence data was manually

14 converted from relative light units to cytosolic

free calcium ion concentration, [Ca²⁺]_c. This was

then plotted against time and parameters of this

17 trace were analysed. Parameters assessed were as

18 follows:

19

20 Rise Time, the time from addition of CaCl₂ to the

21 moment when maximum [Ca²⁺]_c was achieved;

22 Amplitude, the maximum [Ca²⁺]_c reached during the

23 experiment;

Length of transient, at 50% of maximum amplitude the

25 width of the transient at the point where the

26 amplitude equals half of the maximum amplitude of

27 the transient;

and Final Resting [Ca²⁺]_c Level, the resting [Ca²⁺]_c

at the end of the experiment.

Effects of further toxicants on [Ca2+]c traces

. 9

Cultures of Aspergillus awamori as described above were used to test the effects of further toxicants. The concentrations of toxicants tested were made up as follows in water, where the concentrations tested were based on Dutch target and intervention values for toxicants and Kelly Guidelines for the classification of contaminated soils:

TOXICANT	CONCENTRATION (mg/1)
Pentochlorophenol, PCP	0.01, 0.1, 1, 5, 10
Sodium dodecyl sulphate,	1, 10, 50, 100, 500
SDS	
Toluene	1, 25
3,5-DCP	10
Zn ²⁺	700
Cr ⁶⁺	15

In the first set-up (S1), 100 μ l of each toxicant concentration or of the control (VS medium) were added to the cultures through built-in injectors and luminescence monitored for 5 minutes. In a second set of experiments (S2), cultures were pre-incubated with the toxicant or control for 5 minutes before addition of 5mM CaCl₂ in a total volume of 25 μ l distilled water (pre-incubation can be anywhere between 1 minute and 96 hours). Luminescence was

1	monitored for 5 minutes following addition of $CaCl_2$.
2	(monitoring can be anywhere between 1 minute and 96
3	hours). Luminescence data was converted from
4	relative light units to $[Ca^{2+}]_c$ values as described
5	above. The following parameters were assessed in
6	s1:
7	Lag Time, the time from addition of $CaCl_2$ to the
8	time when [Ca ²⁺] _c began to rise;
9	Rise Time;
10	Absolute amplitude;
11	Relative amplitude
12	Length of transient (LT20, LT50, LT80);
13	Percentage Increase in Final [Ca2+]c Resting Level,
14	where the control value was taken to be 100%;
15	Percentage Increase in Recovery Time, where the
16	control value was taken to be 100%;
17 [.]	and Number of $[Ca^{2+}]_c$ Increases, the number of $[Ca^{2+}]_c$
18	transients.
19	Total Ca ²⁺ concentration
20	
21	In S2, the Percentage Increase in pre-Stimulating
22	$[Ca^{2+}]_c$ Resting Level, where the control value was
23	taken to be 100%, was assessed in addition to all of
24	the parameters tested in S1.
25	
26	Effects of mixtures containing different proportions
27	of toxicants on [Ca2+] c traces
28	
29	The experiments described when examining the effects
30	of further toxicants were repeated for different
31	mixtures of toxicants. The following mixtures were
32	made up in water for testing:

```
1
  2
       6 mg/l 3,5-DCP + 12 mg/l Cr^{6+}
       30 mg/l Cr^{6+} + 350 mg/l Zn^{2+}
  3
       10 \text{ mg/l } 3,5-DCP + 350 \text{ mg/l } Zn^{2+}
  4
       6 mg/l 3,5-DCP + 12 mg/l Cr^{6+} + 350 mg/l Zn^{2+}
  5
  6
                       20 mg/l Cadmium
       Mixture 1:
  7
                        100 mg/l Copper
  8
                        50 mg/l Chromium
  9
                        250 mg/l Zinc
 10
                        500 mg/l SDS
                        20 mg/l Cadmium
 11
       Mixture 2:
 12
                        100 mg/l Copper
 13
                        50 mg/l Chromium
                        250 mg/l Zinc
 14
 15
        These experiments demonstrate a novel finding that
 16
. 17
        each toxicant results in a different and
        characteristic [Ca<sup>2+</sup>]<sub>c</sub> transient. Additionally each
 18
        concentration of toxicant produces a unique [Ca2+]c
 19
 20
        transient. From these characteristic fingerprint
 21
        responses a profile of data can be built up and used
 22
        to create a bank of data for each toxicant. Results
 23
        from testing samples can be compared with this data
  24
        bank and the presence of a particular toxicant can
  25
        thus be determined. Furthermore, details such as
  26
        the mode of action of the toxicant, and the amount
        of toxicant present can be deduced from a comparison
  27
  28
        with the bank of pre-gathered data.
  29
  30
        Examples of types of testing that can be carried out
  31
        according to the present invention
  32
```

1	Specific examples of types of test that can be
2	carried out according to the present invention are
3	given below. Although the tests below describe the
4	use of aequorin expressed fungi according to the
5	present invention, it can be seen that any
6	appropriate eukaryotic cell or organism could be
7	used (i.e. mammalian cells in place of the fungi)
8	which has been transformed with any appropriate gene
9	according to the present invention (i.e. halistaurin
10	in place of aequorin)
11	
12	The examples refer to the following figures in
13	which;
14	
15	Figure 16 shows a graph indicating the effect of 6
16	environmental samples on [Ca ²⁺] _c ;
17	
18	Figure 17 shows a graph indicating the effect of
19	ibuprofen analogue on [Ca ²⁺] _c ;
20	
21	Figure 18 shows a graph indicating the effect of
22	verpamil on [Ca ²⁺] _c ;
23	
24	Figure 19 is a table summarising the profiles of the
25	ibuprofen TM ((S)-(-)- o-Acetulmandelic acid) and
26	verapamil™ (Verapamil hydrochloride) analogues;
27	
28	Figure 20 is a table summarising profiles of
29	cyclopiazonic acid (CPA) and KP4 (mycotoxin produced
30	by Ustilago spp);
31	

```
1
     Figure 21 is a graph showing the dose-dependent
2
     effect of KP4 on the [Ca2+] response to 5 mM
3
     external CaCl<sub>2</sub> (results represent mean ± SE);
4
5
     Figure 22a is a graph showing the effect of known
6
     antifungal drugs on [Ca2+]c in Aspergillus nidulans;
7
8
     Figure 22b is a graph showing the effect of known
9
     antifungal drugs on [Ca<sup>2+</sup>]<sub>c</sub> in Aspergillus niger;
10
11
      Figure 22c is a graph showing the effect of known
12
      antifungal drugs on [Ca2+]c in Aspergillus awamori;
13
      and
14
15
      Figure 23 is a graph showing the effect of
16
      amphotericin B on [Ca^{2+}]_c (results represent mean \pm
17
      SE).
18
      Figure 24 shows a graph showing the ffect of Cr6+ (5
19
20
      min preincubation) on aequorin light emission in
21
      response to the addition of external CaCl<sub>2</sub> (5 mM).
22
      Results represent mean ± SE.
23
24
      Figure 25 shows a graph showing the effect of Cr6+ (5
      min preincubation) on [Ca2+]c in response to the
25
26
      addition of external CaCl<sub>2</sub> (5 mM). Results represent
27
      mean \pm SE.
28
29
      General cytotoxicity
30
      - pure chemicals and chemical mixtures can be tested
31
      for their toxicity using aequorin-expressed fungi.
32
      Procedure:
```

1	i. Add compound(s) of interest to fungus
2	ii. Monitor [Ca ²⁺] _c for 5 min
3	iii. Then stimulate fungus with mechanical
4	perturbation, hypo-osmotic, hyper-
5	osmotic shock
6	iv. Monitor $[Ca^{2+}]_c$ for further 5 min
7	
8	The parameter to be assessed is $[Ca^{2+}]_c$ final resting
9	level. If [Ca ²⁺] _c resting level is still elevated
10	more then 50% after the 11 min measurements the
11	compound(s) are toxic. The level of toxicity can be
12	assessed by subsequent monitoring of $[Ca^{2+}]_c$ for
13	several hours. The longer the $[Ca^{2+}]_c$ concentration
14	is out of normal the more toxic the compound(s) are.
15	This way there is no need for complicated software
16	and this type of approach is ideally suitable for
17	binary answer, based on 1 parameter.
1.8	
19	Figure 16 shows a graph indicating the effect of 6
20	environmental samples on [Ca ²⁺] _c . The graph
21	indicates that sample 006 is toxic as the $[Ca^{2+}]_c$
22	final resting level is increased by more than 150%
23	compared with the control.
24	
25	Another parameter for the analysis of general
26	toxicity is the total amount of $[Ca^{2+}]_c$ emitted.
27	Based on this parameter it is very easy to build
28	dose response curves (see Fig. 21).
29	
30	High information multiparameters analysis
31	- In cases when the binary answer is not sufficient
32	aequorin-based biosensor can produce much more

36

detailed data characterising not only the general 1 cytotoxicity but also penetrability (by analysing 2 the time between administration of the compound to 3 the point when [Ca2+]c starts to increase) and modes-4 5 of-action of the compounds (by comparing the profile of [Ca²⁺]_c changes of the compound(s) of interest to 6 the library of profiles). If the mode-of-action of 7 the compound(s) of interest is unique and unknown 8 than the present invention can suggest whether the 9 compound(s) causes the permeabilization of 10 membrane, opening of ion channels or the alteration 11 in behaviour of Ca²⁺ carriers. This approach is 12 ideally suitable for analysis of combinations of 13 14 compounds.

15

24

25

26

27

28

29

30

31

32

This approach can be used for both pollutants 16 monitoring as previously described but also for the 17 ibuprofen and drug toxicity. e.g. 18 analysis of Figures 17 and 18 show the effect of 19 verapamil. ibuprofen and verapamil analogues on the [Ca2+]c and 20 the table shown in Figure 19 further summarises the 21 profiles of the ibuprofen and verapamil analogues. 22

23 Profiling compounds of interest and creating the

libraries of fingerprints of compounds

- The present invention is ideally suitable for creating the library of profiles for certain substances. These profiles are unique to a compound with the particular mode-of-action. Also they are unique to the strain of fungus used, which allows creating very details and reproducible fingerprint of a particular compound using the present invention. The profiles can be created with

1	different physico-chemical stimuli (e.g. mechanical
2	perturbation, hypo-osmotic, hyper-osmotic shock,
3	cold shock, heat shock, pH shock). These
4	fingerprints can be programmed into the software and
5	any compounds or mixtures of interest can be
6	screened to match the desired fingerprint.
7	
8	Procedure to create the fingerprint:
9	 Monitor initial [Ca²⁺]_c resting level for 1
10	min
11	 Add compound(s) of interest to fungus
12	 Monitor [Ca²⁺]_c for 5 min
13	 Then stimulate fungus with mechanical
14	perturbation, hypo-osmotic, hyper-osmotic
15	shock
16	 Monitor [Ca²⁺]_c for further 5 min
17	 Based on the data obtained the following
18^	parameters can be quantified for each
19	$[Ca^{2+}]_c$ increase occurring during the
20	experiment.
21	Lag time
22	Rise time
23	Amplitude absolute
24	Amplitude relative
25	Length of transient (LT $_{20}$, LT $_{50}$,
26	LT ₈₀)
27	Initial [Ca ²⁺] _c level
28	Final [Ca ²⁺] _c resting level
29	Recovery time
30	Total concentration of [Ca2+]c

1	 Above 6 steps can be performed on
2	different strains
3	 Compound can be tested at different
4	concentrations
5	
6	Considering the nature of the experiment the minimum
7	number of parameters produced by one compound at a
8	particular concentration on one fungal strain is
9	equal 22.
10	
11	Analysis of food and drink products for the presence
12	of mycotoxins
13	- Fungi transformed with aequorin gene can be also
14	used for the analysis of food and drink products for
15	the presence of mycotoxins since these toxins affect
16	[Ca ²⁺] _c . Examples of such effects are shown in Figure
17 .	20 where the effects of cyclopiazonic acid (CPA) and
18	KP4 (mycotoxins produced by <i>Ustilago spp</i>) are
19	summarised.
20	
21	Cosmetics safety testing
22	- Since EU regulations forbid the use of animal
23	testing for cosmetics industry the manufacturers are
24	looking at the alternative methods to assess the
25	effect of new products. As the present invention is
26	ideally suited for analysis of not only pure
27	compounds but also their mixtures, it could be used
28	for analysis of the safety of novel cosmetic
29	products. The present invention is also ideal for a
30	long term monitoring of the effects of compounds (up
31	to 96 h), which therefore allows analysis of the
32	longer-term togicity than bacterial biogeneous who

39

invention is 1 present also suitable for use 2 substrates such solid and liquid different as 3 supports. 4 5 Identification of different fungal strains - It has been found that each particular compound 6 7 produces a different fingerprint when added fungal species. This can be used 8 different to 9 diagnose the unknown fungus. 10 11 Procedure: • The fungus can be either transformed with 12 the recombinant aequorin gene or can be 13 injected with the active aequorin. 14 . • Then this fungus can be subjected to a 15 range of the antifungal drugs, profiles of 16 which have already been created. 17 • Obtained profiles can be compared with the 18 library of the fingerprints and this way 19 20 the fungal species can be identified. Figures 22a, b and c show that 5 known antifungal 21 drugs (ketoconazole, clotrimazole, amphotericin B, 22 23 nystatin and filipin) caused a different [Ca2+]c response in 3 different species of Aspergillus (A. 24 25 nidulans, A. niger, A. awamori). 26 Optimisation of the current antifungal treatments 27 - In order to administer drugs in the best possible 28 determine no effect 29 way it is important to concentration curves, 30 and dose response and in 31 frequency for administration of drugs. Also, 32 view of the developing resistance of fungus

40

other eukaryotes to currently available drugs, 1 2 clinicians are looking into using combination of drugs. The present invention is ideally suitable for 3 4 such studies. 5 Identification of compounds which would prevent 6 7 fungal growth on plastics, metals and 8 materials - Since the present invention is suitable for long 9 term measurements it is possible to monitor the 10 development and growth of fungi on different 11 materials and plastics treated with different 12 It is possible to monitor the state of 13 agents. fungal physiology by subjecting the organism to 14 different physico chemical treatments and analysis 15 16 of the profiles obtained. 17 18 Although the invention has been particularly shown and described with reference to particular examples, 19 it will be understood by those skilled in the art 20 that various changes in the form and details may be 21 made therein without departing from the scope of the 22 present invention. 23