

نیمسال اول ۹۹ تهیه و تنظیم: مهری رشیدی

گروه آموزشی ریاضیات عمومی تمرینات ریاضی عمومی سری سوم دانشکده ریاضی و علوم کامپیوتر

تدریسیاران محترم: لطفا ابتدا سوالات ذیل را در کلاس حل نمایید و در صورت داشتن وقت اضافه به حل سوالات منتخب خود بپردازید.

 P_n رآدامز) برای تابع مفروض $T(x) = x^n$ بر بازه مفروض $T(x) = x^n$ مقادیر ابرای تابع مفروض در آن $T(x) = x^n$ به طول $T(x) = x^n$ تقسیم می کند محاسبه کنید. نشان افرازی است که بازه را به $T(x) = x^n$ نید. نشان دهید

$$\lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n)$$

بنابراین f بر بازه $[\cdot, 1]$ انتگرال پذیر است. مقدار f چقدر است؟

۲. (آدامز) می دانیم برای تابع انتگرال پذیر f(x) بر بازه [a,b]، عددی مانند $c \in [a,b]$ وجود دارد بطوریکه f(c) . f(c) . f(c) . f(c) می نامیم. مقدار متوسط توابع زیر را بر بازه داده شده محاسبه کنید.

 $.[-\pi,\pi]$ بر بازه f(t)=1+sint (الف

ب) f(x) = |x+1|sgnx تابع علامت است و بصورت زیر تعریف می f(x) = |x+1|sgnx شود.

$$\operatorname{sgn} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

۳. حد زیر را محاسبه کنید.

$$\lim_{x\to \mathtt{T}} \left(\frac{x}{x-\mathtt{T}} \int_{\mathtt{T}}^{x} \frac{\sin t}{t} dt \right)$$

۴. اگر تابع x تابعی پیوسته باشد بطوریکه برای هر x داشته باشیم

$$\int_{\circ}^{x} f(t)dt = x \sin x + \int_{\circ}^{x} \frac{f(t)}{1+t^{7}} dt$$

ضابطه f را بیابید.

۵. (آدامز) فرض می کنیم a < b و a < b تابعی پیوسته بر [a,b] باشد. ثابت a < b و a < b کنیم کنیم a < b

$$\int_{a}^{b} (f(x) - k)^{\mathsf{T}} dx$$

نيمسال اول ٩٩ تهیه و تنظیم: مهری رشیدی

گروه آموزشی ریاضیات عمومی

تمرینات ریاضی عمومی سری سوم دانشکده ریاضی و علوم کامپیوتر

مينيمم شود.

ج. فرض کنید $x o c \in [\circ,1]$ تابعی پیوسته باشد و ۱ $x o c \in [\circ,1]$. نشان دهید $f: \mathbb{R} o \mathbb{R}$ وجود دارد بطوریکه $f(c) = r^{\prime} c^{\prime}$

الا. فرض کنید $dx=\circ$ و $f:[a,b] o \mathbb{R}$ تابعی پیوسته باشد بطوریکه $dx=\circ$ د فرض کنید $f:[a,b] o \mathbb{R}$. نشان دهید . $\int_{c}^{c} f(x) dx = c f(c)$ وجود دارد بطوریکه $c \in (a, b)$

ه. ثابت کنید اگر g(x) و g(x) دو تابع روی بازه [a,b] باشند به نحوی که g(x) تابع پیوسته و g(x) تابعی g(x)پیوسته و انتگرال پذیر باشد، در اینصورت نقطه ای مانند $x_{\circ} \in (a,b)$ وجود دارد بطوریکه

$$\int_{a}^{b} f(x) g(x) dx = g(x_{\circ}) \int_{a}^{b} f(x) dx.$$

 $F'(x) = \frac{\sin x}{1+x^7}$ ، هر x هر کنید که به ازای هر x مانند F(x) تعریف کنید که به ازای هر x استفاده از انتگرال معین، تابعی مانند F(x)و در رابطه = F(V) = 0 صدق کند.

> . را بیابید. $F(x) = \int_{1}^{1/2} \cos(\frac{1}{1+t^{1}}) dt$ را بیابید. الف) مینیمم و ماکسیمم تابع $F(x) = \int_{1}^{1/2} \cos(\frac{1}{1+t^{1}}) dt$ ب) اگر f(x) صعودی است. $f(x) = \int (1-t^{7})\cos^{7}t \ dt$ بازه است.