© E20000C / E20

PN - JP63211014 A 19880901

TI - CORRECTION SYSTEM FOR INCLINATION OF DIGITIZED PEN

PD - 1988-09-01

PR - JP19870044384 19870227

OPD - 1987-02-27

ic - G06F3/03; G06F3/033in - KOBAKO MASAHIKO

PA - PFULTD

CPA1/APO

PN - JP63211014 A 19880901

PD - 1988-09-01

TI - CORRECTION SYSTEM FOR INCLINATION OF DIGITIZED PEN

PURPOSE:To easily detect the accurate position of the tip of a pen by providing a
digitized pen with plural coils, finding the inclination of the pen tip by using the distance
between the peak values of an electromotive force induced by a sense coil with the
magnetic field of the coils, and correcting and calculating the pen tip position.

- CONSTITUTION:Information is accurately inputted the display unit composed of protection glass 1, a liquid crystal display 2, and a digitizer 3 provided with the sense coil 4 by using the digitized pen. This pen is constituted by providing a main coil 5 and an auxiliary coil 6 which differs in inclination from it in the pen, and the distance DELTAI between the peak values of the electromotive force generated by the sense coil 4 with the magnetic field of them is found. At this time, the real position PP is detected as a position PL1 from the inclination of the pen, so an error (PP-PL1) is generated. This value is expressed as a function of DELTAI and the angle between the coils 5 and 6, so this function is used to easily correct the pen tip position.

AP - JP19870044384 19870227

IN - KOBAKO MASAHIKO

PA - PFULTD

- G06F3/03 ;G06F3/033

19日本国特許庁(JP)

①特許出願公開

@ 公 開 特 許 公 報 (A) 昭63-211014

@Int_Cl_1		識別記号	庁内整理番号	•	⑪公開	昭和63年(198	8)9月1日
G 06 F	3/03	3 2 5	Q - 7927 - 5B B - 7927 - 5B					
	3/033	3 5 0	D - 7927 - 5B	審査請求	未請求	発明の数	1	(全6頁)

9発明の名称 デジタイズペンの傾き補正方式

②特 願 昭62-44384

②出 類 昭62(1987) 2月27日

の発 明 者 小 箱 雅 彦 石川県河北郡宇ノ気町字宇野気ヌ98番地の 2 ユーザック 電子工業株式会社内

①出 願 人 株式会社ピーエフユー 石川県河北郡宇ノ気町字字野気ヌ98番地の2

②代理人 弁理士 長谷川 文廣 外2名

明 細 書

1. 発明の名称

デジタイズペンの傾き補正方式

2. 特許請求の範囲

センスコイル (4) をモなえた電磁誘導型のデジタイザに用いるデジタイズベンの傾き補正方式 において、

デジタイズベン内に、複数個の磁界発生用コイルを互いに所定の距離だけ難して、かつ、各々の向きが平行に、あるいは、所定の角度をなすように設け、

各磁界発生用電流を流して、

各磁界発生用コイルがセンスコイル (4) に発生させる各々の誘導起電力のピークポイント間の 距離からペン先の傾き角度を求め、

このベン先の傾き角度からベン先位置を補正算 出することを特徴とするデジタイズベンの傾き補 正方式。

3. 発明の詳細な説明

(概要)

電磁鉄準型デジタイザのセンスコイルとデジタイズペンのペン先との間に無視できない距離がある場合。ペンの傾きが変化すると、ペン先位置に 誤差が生じる。このため、ペン内に磁界発生用コイルを複数個設け、各磁界発生用コイルによりセンスコイルに誘導される各起電力のピークポイント間の距離からペン先の傾き角度を求め、このペン先の傾き角度からさらにペン先位置を視正質出することにより、正確なペン先位置を求めるものである。

(産業上の利用分野)

本発明は、電磁鉄準型のデジタイザに用いるデ ジタイズペンの傾き補正方式に関する。

(従来の技術)

近年、デジタイザは、LSI設計の際のグラフ

. *

ィック・ディスプレイに対する人力、地図その他の図面情報の人力、印刷用の植字、和文タイプのための漢字人力等に登んに用いられている。

デジタイザには、電磁鉄運型、炉電結合型、磁気検出型、圧電型、超音波型等各級のものがあり、 それぞれの特徴に応じて使い分けられている。

第5回は、従来例を示す図である。

この例は、液晶ディスプレイと一体に構成した 電磁誘導型デジタイツである。

第5回において、51は保護ガラス、52は液 品ディスプレイ、53はデジタイザ、54はセン スコイル、55はデジタイズベン、56は世界発 生用コイルである。

保護ガラス51は、液晶ディスプレイ52及び デジタイザ53をデジタイズベンのベン先から保 渡するためのものである。

液晶ディスプレイ52には、デジクイザ53に より入力すべき文字や図面が描かれている。

デジタイザ53は、液晶ディスプレイ52に描 かれている文字や図面をデジタイズペンを用いて

なわち、デジタイズベン 5 5 の傾きにより、ベンの先端位置座復(P $_{*}$) とデジタイジング座復(D $_{*}$) との間に誤変(Δ P $_{*}$) が生じる。

この思差は、文字認識等においては認識率の低 下を招き、直線をデジタイズした時には直線に亞 等が発生する原因となる等、操作性を著しく低下 させるという問題があった。

. (問題点を解決するための手段)

本発明は、電磁鉄運型のデジタイザに用いるデジタイズペンの傾き補正方式において、デジタイズペンの傾き補正方式において、デジタイズペン内に磁界発生用コイルを複数個数け、各磁界発生用コイルがセンスコイルに発生させる各々の誘導起電力のピークポイント間の距離からペン先の傾き角度を求め、このペン先の傾き角度からペン先位置を補正算出することにより、正確にペン先位置を知ることができるようにするものである。

第1図は、本発明の基本構成を示す図である。 第1図において、1は保護ガラス、2は液晶デ 入力するためのものである。

センスコイル54は、デジタイザ53中に埋め込まれている。これにより、デジタイズベン55をデジタイザ53に近接させると、デジタイズベン55の中に設けられた世界発生用コイル56が発生する世界によりデジタイザ53のベン先近俯邸分のセンスコイル54に誘導起電力を生じる。この誘惑起電力を検出することにより、ベンチや図形を入力し、入力した結果を直ちに液晶ディスプレイ52に変示出力することにより、入力に見れたかも文字や図形が書かれているかのように見せたり、あるいは、文字の学習などでは、予め液器ディスプレイ52に文字を表示しておいて、それをデジタイズベン55でなぞの利用ができる。

(発明が解決しようとする問題点)

第5回に示すように、デジタイザ53の上に液 品ディスプレイ52を置くと、液晶ディスプレイ 52の厚さは無視できないほどのものとなる。す

ィスプレイ、3 はデジタイザ、4 はセンスコイル、5 は磁界発生用の主コイル (L l) 、6 は磁界発生用補助コイル (L 2) である。

保護ガラス1は、液晶ディスプレイ2及びデジタイザ3をデジタイズベンのベン先から保護する ためのものである。

液晶ディスプレイでには、デジタイザでにより 人力すべき文字や図面が描かれている。

デジタイザ3は、液晶ディスプレイ2に描かれている文字や図面をデジタイズベンを用いて人力するためのものである。

センスコイル(は、デジタイザ3中に埋め込まれており、主コイル(L 1)5及び補助コイル (L 2) 6が発生する磁界によりその中に誘導起 電力を生じるように構成されている。

主コイル(LI) 5は、デジタイズベンの中に 設けられ、基本となる磁界を発生する。

補助コイル (L 2) G は、主コイル (L 1) 5 が発生する低界とは異なる方向へ磁界を発生する ように設けられており、主コイル (L 1) 5 とと もにデジタイズベンのベン先の正しい位置を求め るために用いられる。

(作用)

第1 図において、主コイル(L 1) 5 及び補助コイル(L 2) 6 は、各々矢印の方向へ避界を発生する。ここで、各コイルが発生する避界を区別するため、それぞれが避界を発生する時間をずらすなどの方法がとられる。

生コイル (L 1) 5及び補助コイル (L 2) 6 が発生する各々の磁界がデジタイザ3中に埋め込まれたセンスコイル4に生ずる誘惑起電力 (V...) は、図示したようになる。各誘導起電力 (V..., V...) は、それぞれピークを有し、その 座標は、主コイル (L 1) 5によるものがP...であり、補助コイル (L 2) 6によるものがP...である。

主コイル (L 1) 5 による誘導起電力 (V L 1) のピークの座標 (P L 1) と補助コイル (L 2) 5 による誘導起電力 (V L 2) のピークの座標 (P L

おはベン先の傾きの角度、αは主コイル(L 1)5が発生する磁界の方向を示す線と補助コイル(L2)6が発生する磁界の方向を示す線と 交差角である。

ベン先位置の座標は、 **を求めることにより知ることができる。

第2図から次の2式が成り立つ。

$$1 + y = \frac{x \sin (\alpha + \theta)}{\sin \alpha}$$

$$x = \frac{x \sin \alpha + d \cos \alpha}{\sin \alpha}$$

x. 1. α及びdは既知数であるから。上記の 2式より z は x の関数となり(z - f (z)). x を知ることにより z を求めることができる。

即ち、xは主コイル (L !) 5による誘導起電力 (V_{ιι}) のピークの座頂 (P_{ιι}) と補助コイル (L 2) 6による誘導起電力 (V_{ιι}) のピークの 座摂 (P_{ιι}) 間の距離 (Δ !) に相当し、 x はペ

。) 間の距離 (Δ1) からペン先の傾きの角度が 求まり、このペン先の傾きの角度からペン先の位 置座標 (P。) を補正算出する。

第2回は、ベン先位置算出図である。これを用いて、ベン先位置の買出方法を登場する。

第2回において、直線ABは保護ガラス1の上面、直線CDはセンスコイル4の位置する面、直線EFはベン先位置に重直の線。直線GHは主コイル(し1)5が発生する磁界の方向を示す線。直線JKは補助コイル(し2)6が発生する磁界の方向を示す線。点Pはベン先の位置に対応するセンスコイル上の位置。点Qは主コイル(し1)5による誘導起程力(Vii)のピークの座標(Pii)。点Rは補助コイル(し2)6による誘導起程力(Vii)のピークの座標(Pii)。点Sはベン先の位置。点Tは主コイル(し1)5が発生する磁界の方向を示す線と横助コイル(し2)6が発生する磁界の方向を示す線との交点である。

d. l. x. y及び z は、それぞれの距離を表す。

ン先の位置を偲(P。)に相当するから、主コイル(L 1) 5 による誘導起電力(V ii)のピークの座標(P ii)と補助コイル(L 2) 5 による誘導起電力(V ii)間の距離(Δ 1)を測定することにより、ベン先の位置を模(P。)を知ることができる。

次に、主コイル (L1) 5による誘導起電力 (Vu) と補助コイル (L2) 6による誘導起電力 (Vu) とを区別する方法について説明する。 第3回(a). (b) は、誘導起電力を区別する方法を示す図である。

(a) は、発振周波数により区別する方法である。この場合、主コイル(L1)は周波数(1の電流で駆動し、補助コイル(L2)は周波数(2の電流で駆動する。その結果得られた誘惑起電力は、バンドバスフィルタ(BPF)を通して周波数(1及び周波数(2の成分に分離される。これにより、主コイル(L1)5による誘導起電力(Vu)と補助コイル(L2)6による誘導起電力(Vu)と補助コイル(L2)6による誘導起電力(Vu)とを区別する。

(b) は、時分割制部により区別する方法である。この場合、主コイル (L 1) 及び補助コイル (L 2) は、同じ周波数で発張タイミングをすらせた電波で駆動される。受信電圧は、図に示すように、L1としてによるものが交互に現れる。

(実施例)

第4図 (a) ~ (c) は、本発明の実施例を示す図である。

(a) は、主コイル(L l) から所定の距離だけ想して補助コイル(L 2)を2個設けたものである。

この例では、補助コイル (L 2) が主コイル (L 1) に対して所定の角度を有しているが、これは、主コイル (L 1) の低界と補助コイル (L 2) の低界が重ならないようにしたものである。補助コイル (L 2) を主コイル (L 1) と平行にしても、位置をずらしておけば、主コイル (L 1) の磁界と補助コイル (L 2) の磁界が重ならないから検出は可能である。

なる。この楕円の長径はベンの傾き角度の関数で あるから、これからベン先の位置座標を知ること ができる。

(発明の効果)

本発明では、磁昇発生用コイルを複数個設けただけであるから、従来のデジタイズペンの構造を あまり変更することなく、簡単な構成でデジタイ ズベンの傾きによる誤差を補正することができる。

4.図面の簡単な説明

第1回は本発明の基本構成を示す図、第2回はベン先位置算出図、第3回(a)及び(b)は誘導起電力を区別する方法を示す図、第4回(a)~(c)は本発明の実施例を示す図、第5回は従来例を示す図である。

第1図において.

しは保護ガラス

2は液晶ディスプレイ

3 はデジタイザ

また、この例では補助コイル(L 2)が2個しかないので、デジタイズベンの持ち方によっては補正が充分に行われないという心配が残るが、デジタイズベンの時面形状を楕円形にして、デジタイズベンの持ち方を強制的に決めてしまうことにより、補助コイル(L 2)が2個でも充分に補正することが可能になる。

(b) は、主コイル、補助コイルという区別を 無くし、3個の磁界発生用コイル ≠ 1. ≠ 2及び ≠ 3 を放射状に設けたものである。

この例では、3個の磁界発生用コイル θ 1、 θ 2及び θ 3がセンスコイルに生じる標準起電力のピークの位置は、 $V \theta$ 1 (x1、y1)、 $V \theta$ 2 (x2、y2)及び $V \theta$ 3 (x3、y3)として求められ、これらの値からペン先の位置座理 P (x. y)を知ることができる。

(c) は、多数個の磁界発生用コイルを同一円 上に連続して設けたものである。

この例では、各磁界発生用コイルがセンスコイルに生じる誘導起電力のピークの位置は楕円形と

1 はセンスコイル

5は主コイル

6 は補助コイル

特許出願人 ユーザック電子工業株式会社 代理人弁理士 長谷川 文廣(外2名)

特開昭63-211014 (5)

特開昭63-211014 (6)

本卷明の実施例

75 4 图

從汞例

***5** 5 🗷

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.