Stock analysis for Tesla, Ford and GM

2010 - 2022

Bernard Bamidele Aghedo

```
import pandas as pd
import datetime
import matplotlib.pyplot as plt
```

```
# Setting Work directory

pwd = '/Users/mac/Desktop/Desktop/Car Stock Analysis'
```

Tesla Stock

```
# Importing Tesla stock .csv

tesla_stock = pd.read_csv("/Users/mac/Desktop/Desktop/Car Stock Analysis/TSLA.csv")

# Checking and fixing data types

tesla_stock.dtypes

tesla_stock['Date'] = tesla_stock['Date'].astype('datetime64')

# Setting index

tesla_stock = tesla_stock.set_index('Date')
```

tesla_stock

	Open	High	Low	Close	Adj Close	Volume
Date						
2010-06-29	1.266666	1.666666	1.169333	1.592666	1.592666	281749140
2010-06-30	1.730666	2.027946	1.553333	1.588666	1.588666	257915910
2010-07-01	1.666666	1.728000	1.351333	1.464000	1.464000	123251835
2010-07-02	1.533333	1.540000	1.247333	1.280000	1.280000	77036925
2010-07-06	1.333333	1.333333	1.055333	1.074000	1.074000	102789510
•••	•••		•••	•••		•••
2022-08-22	291.913330	292.399994	286.296661	289.913330	289.913330	55843347
2022-08-23	291.453339	298.826630	287.923340	296.453339	296.453339	63985044
2022-08-24	297.563324	303.646667	296.500000	297.096680	297.096680	57259716
2022-08-25	302.359985	302.959991	291.600006	296.070007	296.070007	52742375
2022-08-26	297.429993	302.000000	287.470001	288.089996	288.089996	55966452

 $3063 \text{ rows} \times 6 \text{ columns}$

```
# Tesla stock graph

tesla_stock['Open'].plot(label = 'Tesla open price',figsize=(12,7))
plt.legend()
plt.title('Tesla Stock Price')
plt.ylabel('Stock Price')
```

Text(0, 0.5, 'Stock Price')

Figure 1: png

Ford Stock

```
# importing Ford stock .csv

ford_stock = pd.read_csv("/Users/mac/Desktop/Desktop/Car Stock Analysis/F.csv")

# Checking and fixing data types

ford_stock.dtypes

ford_stock['Date'] = ford_stock['Date'].astype('datetime64')

# Setting Date as index

ford_stock = ford_stock.set_index('Date')
```

ford_stock

	Open	High	Low	Close	Adj Close	Volume
Date						
2010-01-04	10.17	10.280000	10.05	10.28	6.784906	60855800
2010-01-05	10.45	11.240000	10.40	10.96	7.233713	215620200
2010-01-06	11.21	11.460000	11.13	11.37	7.504319	200070600
2010-01-07	11.46	11.690000	11.32	11.66	7.695721	130201700
2010-01-08	11.67	11.740000	11.46	11.69	7.715520	130463000
	•••					
2022-08-22	15.08	15.210000	14.91	15.08	15.080000	71321800
2022-08-23	15.09	15.420000	15.09	15.32	15.320000	51289000
2022-08-24	15.32	15.660000	15.24	15.52	15.520000	39508700
2022-08-25	15.60	16.040001	15.58	15.93	15.930000	56401300
2022-08-26	16.01	16.090000	15.41	15.41	15.410000	54357700

 $3185 \text{ rows} \times 6 \text{ columns}$

```
# Ford stock graph

ford_stock['Open'].plot(label = 'Ford Open Price', figsize=(12,7))
plt.legend()
plt.title('Ford Stock Price')
plt.ylabel('Stock Price')
ford_stock['MA50'] = ford_stock['Open'].rolling(50).mean()
ford_stock['MA50'].plot()
plt.legend()
```

<matplotlib.legend.Legend at 0x7fee5094f0a0>

GM Stock

```
# Importing GM stock .csv

GM_stock = pd.read_csv("/Users/mac/Desktop/Desktop/Car Stock Analysis/GM.csv")

# Checking and fixing data types

GM_stock.dtypes

GM_stock['Date'] = GM_stock['Date'].astype('datetime64')

# Setting Date as index

GM_stock = GM_stock.set_index('Date')
```


Figure 2: png

${\tt GM_stock}$

	Open	High	Low	Close	Adj Close	Volume
Date						
2010-11-18	35.000000	35.990002	33.889999	34.189999	26.425234	457044300
2010-11-19	34.150002	34.500000	33.110001	34.259998	26.479338	107842000
2010-11-22	34.200001	34.480000	33.810001	34.080002	26.340214	36650600
2010-11-23	33.950001	33.990002	33.189999	33.250000	25.698719	31170200
2010-11-24	33.730000	33.799999	33.220001	33.480000	25.876484	26138000
2022-08-22	38.240002	38.820000	37.919998	38.549999	38.549999	20921400
2022-08-23	38.959999	39.410000	38.419998	38.560001	38.560001	15394400
2022-08-24	38.610001	39.730000	38.320000	39.250000	39.250000	12710300
2022-08-25	39.360001	40.779999	39.340000	40.389999	40.389999	15211900
2022-08-26	40.750000	41.090000	39.220001	39.230000	39.230000	16174600

$2963 \text{ rows} \times 6 \text{ columns}$

```
# GM stock graph

GM_stock['MA50'] = GM_stock['Open'].rolling(50).mean()
GM_stock['Open'].plot(label = 'GM Open Price', figsize=(12,7))
GM_stock['MA50'].plot()
plt.legend()
plt.title('GM Stock Price')
plt.ylabel('Stock price')
```


Figure 3: png

Stock Volume Graph

```
# Plotting all three stocks volume together

tesla_stock['Volume'].plot(label = 'Tesla', figsize=(13,7))
ford_stock['Volume'].plot(label = 'Ford')

GM_stock['Volume'].plot(label = 'GM')
plt.legend()
plt.title('Stock Volume for GM, Ford and Tesla')
plt.ylabel('Stock volume')
```

Text(0, 0.5, 'Stock volume')

```
# Highest spike in volume for tesla
tesla_stock.iloc[[tesla_stock['Volume'].argmax()]]
```

Open	High	Low	Close	Adj Close	Volume
------	------	-----	-------	-----------	--------

Date

	Open	High	Low	Close	Adj Close	Volume
2020-02-04	58.863998	64.599327	55.591999	59.137333	59.137333	914081370

```
# Price relating to the spike in volume within same time frame in tesla stock

tesla_stock.iloc[2400:2500]['Open'].plot(label = 'Tesla price', figsize=(12,7))
plt.legend()
plt.title('Tesla price Feb - June 2020')
```

Text(0.5, 1.0, 'Tesla price Feb - June 2020')

Total amount traded for each stock

```
# Calculating Total Money traded by Tesla
tesla_stock['Total traded'] = tesla_stock['Open'] * tesla_stock['Volume']
# Calculating Total Money traded by Ford
ford_stock['Total traded'] = ford_stock['Open'] * ford_stock['Volume']
# Calculating Total Money traded by GM
GM_stock['Total traded'] = GM_stock['Open'] * GM_stock['Volume']
# Plotting all three stocks total amount traded
tesla_stock['Total traded'].plot(label = 'Tesla', figsize=(13,7))
ford_stock['Total traded'].plot(label = 'Ford')
GM_stock['Total traded'].plot(label = 'GM')
plt.legend()
plt.title('Total amount traded for GM, Ford and Tesla')
plt.ylabel('Stock volume')
Text(0, 0.5, 'Stock volume')
# Highest amount traded by tesla
tesla_stock.iloc[[tesla_stock['Total traded'].argmax()]]
```

	Open	High	Low	Close	Adj Close	Volume	Total traded
Date							
2020-12-18	222.96666	231.666672	209.513336	231.666672	231.666672	666378582	$1.485802e{+11}$

Scatter plot

Figure 4: png

Figure 5: png

Figure 6: png

Tesla 2022 candle stick

```
tesla_reset = tesla_stock.loc['2022-06-01':'2022-08-28']
```


Figure 7: png

find the rows that are bullish

Figure 8: png

Daily percentage change - Stock stability

```
# Calculating all three stock daily returns

tesla_stock['returns'] = (tesla_stock['Close']/tesla_stock['Close'].shift(1)) - 1

ford_stock['returns'] = (ford_stock['Close']/ford_stock['Close'].shift(1)) - 1
```

```
GM_stock['returns'] = (GM_stock['Close']/GM_stock['Close'].shift(1)) - 1

tesla_stock['returns'].hist(bins=100, label = 'Tesla', alpha=0.5)
ford_stock['returns'].hist(bins=100, label = 'Ford', alpha=0.5)
GM_stock['returns'].hist(bins=100, label = 'GM', alpha=0.5)
plt.legend()
```

<matplotlib.legend.Legend at 0x7fee546ffd60>

Figure 9: png

```
tesla_stock['returns'].plot(kind='kde', label='Tesla',figsize=(13,6))
ford_stock['returns'].plot(kind='kde', label='Ford')
GM_stock['returns'].plot(kind='kde', label='GM')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fee545e52e0>

```
box_df = pd.concat([tesla_stock['returns'], ford_stock['returns'], GM_stock['returns']], axis = 1)
box_df.columns = ['Tesla returns', 'Ford returns', 'GM returns']
box_df.plot(kind='box', figsize=(10,6))
```

<AxesSubplot:>

Figure 10: png

Figure 11: png

```
scatter_matrix(box_df, alpha=0.25, hist_kwds={'bins':50})
```


Figure 12: png

Cumulative Returns

```
# Calculating the cumulative returns for the stocks.

tesla_stock['Cumulative returns'] = (1 + tesla_stock['returns']).cumprod()

ford_stock['Cumulative returns'] = (1 + ford_stock['returns']).cumprod()
```

```
GM_stock['Cumulative returns'] = (1 + GM_stock['returns']).cumprod()
```

```
# Plotting the Cumulative returns

tesla_stock['Cumulative returns'].plot(label = 'Tesla', figsize=(13,7))
ford_stock['Cumulative returns'].plot(label = 'Ford')

GM_stock['Cumulative returns'].plot(label = 'GM')
plt.title('Cumulative returns for (Tesla, Ford and GM) VS Time')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fee58174490>

Figure 13: png

Tesla clearly gives the highest return on the stock investment in the early years over time

Tesla had the highest spike in volume in early 2020 which resulted to a fall in Open stock price of the following month and also having its highest amount traded for the decade.