Evaluating the Effect of Model Inductive Bias and Training Data in Predicting Human Reading Times

Ethan Wilcox+, Jon Gauthier+, Peng Qian+, Jennifer Hu+, and Roger Levy+

* Linguistics, Harvard University, * Brain and Cognitive Sciences, MIT

Language Models of Sentence Processing

Language Modeling: P(xi | x1 ... xi-1)

Background: What leads to good predictive power of human reading times?

Perplexity -

- How good is the language model at predicting the upcoming token? (lower = better)
- Models with lower perplexity have a better predictive power (Fossum & Levy, 2012)
- Linear relationship between perplexity and Predictive Power (Goodkind and Bicknell, 2018)

Inductive Bias

- Is the model trained with explicit structural supervision?
- Models without hierarchical bias have better predictive power (Frank & Bod, 2011)

Previous Work: Focuses on *n*-gram models. Do results hold for state-of-the-art neural network models?

Result 1: Surprisal as a linking function

Reading time is *linearly correlated* with **surprisal** (Smith & Levy, 2013) Surprisal = $-log(P(x_i \mid x_1 ... x_{i-1}))$

GAM regression shows linear relationship between surprisal & reading time for all models tested.

Methods

12 Architecture X Training Data Pairs

_'	ag	Name	Type	Inductive Bias
		N-Gram	Statistical	Local Window Only
		LSTM	Neural Network	Linear locality+unstructured memory store
		RNNG	Neural Network	Supervised with Penn- Treebank style parses

Architecture

Training Size	Millions of Tokens	
Extra Small	1	
Small	5	
Medium	14	
Large	42	

Test Corpus	Data Type	Text Type
Dundee	Eye-Tracking	News Text
Natural Stories	Self-Paced Reading	Stories with rare syntactic structures
Brown	Self-Paced Reading	Stories

Measuring Model Predictive Power

ΔLogLiklihood: difference between baseline and LM-Derived linear regression models following Frank & Bod (2011); Goodkind & Bicknell (2018)

lm(read time ~ word length + word frequency)
lm(read time ~ surprisal + word length + word frequency)

Current + Previous word (eye-tracking) / Current + 2 Previous Words (SPR)

Result 2 ALogLik vs. Perplexity Brown Dundee Natural Stories N-gram overperforms relative to perplexity 120 N-gram overperforms

- Model perplexity is strongly correlated with predictive power
- n-gram model over performs based on its perplexity

Predictive Power vs. Syntactic Generalizations

Syntactic Generalization Score

- Performance on targeted syntactic evaluation tests (Marvin & Linzen, 2018)
- Average accuracy across ~700 hand-crafted test items over 6 syntactic categories

Example: Negative Polarity Items. Is P(ever | context) less in (a) than in (b) ?

- (a) *The senator who we liked ever supported...
- (b) ✓No senator who we liked ever supported...

Result 3 ΔLogLik vs. SG Score

 Supports hypothesis that eye movements are more sensitive to n-gram probabilities (McDonald & Shillcock 2003)

Discussion

- Linear relationship between reading time and surprisal in new neural network models
- Model perplexity is correlated with predictive power
- No strong relationship between Inductive Bias / Syntactic Generalization and predictive power.