春天的 BBQ

- 1. 甲、乙、丙、丁四名教师带领学生参加校园植树活动,教师随机分成三组,每组至少一人,则 甲、乙在同一组的概率为
 - A. $\frac{1}{6}$

- B. $\frac{1}{4}$
- C. $\frac{1}{3}$
- D. $\frac{1}{2}$

- 2. 平面向量 \mathbf{a} 和 \mathbf{b} 相互垂直,已知 $\mathbf{a} = (6, -8), |\mathbf{b}| = 5, 且 <math>\mathbf{b}$ 与向量 (1, 0) 的夹角是钝角,则 **b** =____
 - A. (-3, -4) B. (4, 3)
- C. (-4, 3) D. (-4, -3)

3. 某工厂生产的产品的质量指标服从正态分布 $N(100, \sigma^2)$ 。质量指标介于 99 至 101 之间的产品 为良品,为使这种产品的良频率达到 95.45%,则需调整生产工艺,使得 σ 至多为____。(若 $X \sim N(\mu, \sigma^2)$,则 $P\{|X - \mu| < 2\sigma\} = 0.9545)$

4. 若 P, Q 分别是抛物线 $x^2 = y$ 与圆 $(x - 3)^2 + y^2 = 1$ 上的点,则 |PQ| 的最小值为_____

- 5. 已知函数 $f(x) = \sin(\omega x + \varphi)$ 在区间 $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ 单调,其中 ω 为正整数, $|\varphi| < \frac{\pi}{2}$,且 $f\left(\frac{\pi}{2}\right) = f\left(\frac{2\pi}{3}\right)$ 。
 - (1) 求 y = f(x) 图像的一条对称轴;

$$(2) 若 f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}, 求 \varphi.$$

