

Spring 2024

Practical Deep Learning

Week 4
Transformers & Attention

Project proposals

Propose a project, if you want:)

bit.ly/pdl24projectproposal

Take a minute to read through and I'll answer any questions you might have!

Notes

- Anonymous feedback link: <u>bit.ly/pdl24feedback</u>
- Laptops are allowed (but please be respectful!)
- Will put my slides on the course website
 - https://jxmo.io/deep-learning-workshop/

A review of softmax.

$$\sigma(\vec{z})_i = \frac{c}{\sum_{j=1}^{K} e^{z_j}}$$

This is a transformer.

Next Token

Probabilities

Every layer has the same input and output shape: a sequence of embeddings

This is a transformer.

Attention

Input: x. A sequence of embeddings.

shape $[s, d_k]$ $W_{q,k,v}$ are shape $[d_k, d_k]$

Q = x @ W_q
$$\leftarrow$$
 queries
K = x @ W_k \leftarrow keys
V = x @ W_v \leftarrow value

 d_{ν} is the hidden dimension / embedding size

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

bit.ly/cs5787-mar29-puzzle

