Theorem (1.6.25). There does not exist a rational number r such that $r^3 + r + 1 = 0$.

Proof. By contradiction. Assume that there exists a rational number r satisfying the equation $r^3+r+1=0$. By definition there exist integers a and b (b is nonzero,) such that $\frac{a^3}{b^3}+\frac{a}{b}+1=a^3+ab^2+b^3=0$. Clearly $a^3=-(ab^2+b^3)$ and $b^3=-(a^3+ab^2)$. So we have $-(ab^2+b^3)+ab^2-(a^3+ab^2)=0$. Simplifying we find that $-a^3-ab^2-b^3=a^3+ab^2+b^3$. This can only happen when b=0, but b=0 is a contradiction because b is a divisor in r.