Principal Component Analysis

Data:

permous some "Uss important" variables:

(LASSO, Decision free, Forest, Gradient boosting...)

Reduction

Variable schedien | Feature schedients from the original variables: PEA...

Variable extraology | Features extraology brahniques

$$\frac{\alpha \operatorname{Tru} \mathcal{K}}{1} = \left(\frac{\chi_1 + 2\chi_2 - \chi_3}{u_1} \right)^2 + \cos\left(\frac{\chi_1 + \zeta \chi_5}{u_2} \right) + \varepsilon$$

$$E(\forall | y_1, y_2 ... l_s) = E(\forall | u_1, u_2)$$

$$y_1 = \chi_1 + 2\chi_2 - \chi_3$$

Dimension Reduction

Patrol

Y |
$$x_2$$
 | x_3 | x_4 | x_5

Five various of the dimension is 5
 $d=5$

Various Gelection

Oato 2

 $u_1 = u_2 = \frac{2x_1 + x_3}{4} = \frac{x_4 + 6x_5}{4} = \frac{2x_1 + x_3}{4} + \log(x_4 + 6x_5)^2$

PCA in a view or coordinate rotation

Variance of the Projection

Dorta

- V(x) = 1.67
- V(y) = 7.58
- Total variance: V(x) + V(y) = 9.25

[1] 9.25

Rotation Matrix or PC Loading

```
\Phi =
```

```
PC1 PC2
x 0.42 -0.91
y 0.91 0.42
```

PC Scores

$$Z = X \cdot \Phi =$$

PC1 PC2 [1,] 1.33 -0.49 [2,] 2.66 -0.97 [3,] 5.80 -0.62 [4,] 8.03 -0.68

- ▶ What direction maximizes the variance?
- ► The first principal component

Formula

Write down matrix form of the example

$$X \to X \cdot \phi = Z$$

- $ightharpoonup \phi$ is PC loading
- \triangleright z is PC scores

In general

Original data matrix (fat matrix!)

$$\underline{X_1} \quad \underline{X_2} \quad \cdots \quad \underline{X_p}$$

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & \cdots & x_{np} \end{pmatrix}$$

×.

New data matrix (thin matrix!)

$$\underline{Z_1} \quad \cdots \quad \underline{Z_M}$$

$$\begin{pmatrix} z_{11} & \cdots & z_{1M} \\ z_{21} & \cdots & z_{2M} \\ \vdots & \ddots & \vdots \\ z_{n1} & \cdots & z_{nM} \end{pmatrix}$$

$$\mathbf{X}\boldsymbol{\phi}_1 \ \cdots \ \mathbf{X}\boldsymbol{\phi}_M$$

Example

	Independent variables		
Observation	X_1	X_2	
1	-2	2	
2	2	-2	

- The data set consists of only these two observations.
- The first principal component loading for X_1 , ϕ_{11} , is 0.7071.
- The first principal component loading for X_2 , ϕ_{21} , is negative.

Calculate the first principal component score for Observation 1.

PC Loadings

First PC	Second PC
0.5359	-0.4182
0.5832	-0.1880
0.2782	0.8728
0.5434	0.1673
	0.5359 0.5832 0.2782

How many PC should we use?

▶ Performance during two sporting events

X100m	Long.jump	Shot.put	High.jump	X400m	X110m.hurdle	Discus
11.04	7.58	14.83	2.07	49.81	14.69	43.75
10.76	7.40	14.26	1.86	49.37	14.05	50.72
11.02	7.23	14.25	1.92	48.93	14.99	40.87
11.34	7.09	15.19	2.10	50.42	15.31	46.26
11.13	7.30	13.48	2.01	48.62	14.17	45.67
10.83	7.31	13.76	2.13	49.91	14.38	44.41

Scree Plot

