Alex Valentino

Line 14

Beals Summer Packet

3.4.7 (a) Find a disconnected set whose closure is connected: $(1,2) \cup (2,3)$ is a disconnected set as proven by exercise 3.4.5. Clearly $[1,2] \cup [2,3]$ are not disconnected as they form the interval [1,3], which by theorem 3.4.7 is in fact connected.

- (b) If A is connected, is \overline{A} connected? If A is perfect is \overline{A} perfect too?
 - As shown by theorem 3.4.7, all connected sets correspond with intervals. Therefore the only interval which will gain points would be an open interval, say A = (a, b). Since $\overline{A} = [a, b]$ is still an interval, then \overline{A} is connected
 - If A is perfect, then by definition it is closed. Therefore \overline{A} doesn't gain any new points, as all limit points of A are already self contained. Therefore \overline{A} is still perfect.