ー軸レーザ距離センサを用いたUAVの 周辺認識についての研究

金沢工業高等専門学校

織田隆誠 木村俊介 村田涼真 伊藤恒平

はじめに

UAVの活躍

空撮、監視

運搬

偵察

地図作成

UAVの基本構造

UAVの運用条件

UAVの理想重量と大きさ

1辺300mmの正方形

100g

•研究の目的

・センサの軽量化技術の確認

・改良したセンサを使い、情報収集能力の確認

レーザセンサの種類

SICK製 LMS500 重さ3.7kg 距離65m 角度190°

VLP-16 重さ600g 距離100m超距離30m 角度360°

Velodyne製 北陽電機製 UTM-30LX 重さ210g 角度270°

一軸レーザセンサの種類

SICK製 DME3000-3 重さ980g 距離500m Sharp製GP2Y0A7 10K0F 重さ30g 距離6m

北陽電機製 PDL-120 重さ1.5kg 距離120m

実験で使用するセンサ

北陽電機製 UTM-30LX

重さ210g 30m、270°の広範囲スキャンが可能 重さ350g(ケーブルを含む)

一軸レーザ距離センサの軽量化

センサの改良

マルチエコー

マルチエコー

改良後のセンサ重量

改良後のセンサの運用法

UAV本体を回転させ 地形を読み取る

実験で使用する Quad Rotorの仕様

実験で使用するQuad Rotor

Quad Rotorの大きさ

フレーム素材変更

アルミフレーム アルミ板 4.5kg カーボンパイプ カーボン板 3kg

モータ変更

E-MAX BL2220/07

T-Moter社製 U20

バッテリー変更

11.1V 2200mAh

22.2V 3300mAh

Quad Rotorの移動方法

機体下降

機体上昇

前後左右移動

Quad Rotorの右回転

機体回転

反動トルク

反動トルク

壁と進む方向を交 互にみて障害物が ない確認する。

進行方向

周辺状況の取得実験

取得実験背景

回転テーブルでの実験結果

飛行状態での実験結果

おわりに

結言

・一軸センサの有効性 旋回して周辺の状況の取得が成功した。

・今後の課題 実際に飛行プログラムと連携し取得した データを用いながら移動する手法の検討