Задание 2 по курсу «Байесовский выбор моделей»

Общая информация

- Время сдачи задания: 22е октября, 23:59 по Москве;
- Максимальная базовая оценка за задание 50 баллов, так что при желании можно выполнять не всё;
- Оценка автора наилучшей работы удваивается (с учетом баллов сверх 50), но не более, чем до 125 баллов;
- Вопросы и само задание принимаются по почте: aduenko1@gmail.com & iakovlev.kd@phystech.edu (отправлять на обе сразу);
- Тема письма: вопрос по заданию #2 или решение задания #2;
- Опоздание на неделю снижает оценку в 2 раза, опоздание на час на $0.5^{1/(7\cdot24)}=0.41\%$;
- Работы опоздавших не участвуют в конкурсе на лучшую работу;
- Задание не принимается после его разбора и / или после объявления об этом.

Задача 1 (10 баллов). Пусть есть НОР (i.i.d.) выборка $x_1, \ldots, x_n, n > 100$ из нормального распределения со средним m и неизвестной дисперсией σ . На уровне значимости α проверить гипотезу H_0 о том, что m=0. Выписать критическую область и сосчитать мощность критерия W в зависимости от истинных m и σ .

Задача 2 (20 баллов). Пусть имеется обучающая и тестовая выборки $(\mathbf{X}_1, \mathbf{y}_1), \mathbf{X}_1 \in \mathbb{R}^{m_1 \times n}, \mathbf{y}_1 \in [-1, 1]^{m_1}, (\mathbf{X}_2, \mathbf{y}_2), \mathbf{X}_2 \in \mathbb{R}^{m_2 \times n}, \mathbf{y}_2 \in [-1, 1]^{m_2},$ полученные из общей модели генерации данных с совместным правдоподобием

$$p(\mathbf{y}, \mathbf{w}, \mathbf{X} | \alpha) = \prod_{j} \mathcal{N}(\mathbf{x}_{i} | \mathbf{0}, \sigma^{2} \mathbf{I}_{n}) \mathcal{N}(\mathbf{w} | \mathbf{0}, \alpha^{-1} \mathbf{I}_{n}) \prod_{j} p(y_{j} | \mathbf{x}_{j}, \mathbf{w}),$$

где $p(y_i|\mathbf{x}_i,\mathbf{w})$ дается моделью логистической регрессии, то есть

$$\mathbb{P}(y_j = 1) = \frac{1}{1 + \exp(-\mathbf{w}^\mathsf{T} \mathbf{x}_j)}.$$

- а) Пусть Вам известен настоящий вектор \mathbf{w} , полученный из априорного распределения $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}_n)$. Вычислите ожидаемое максимальное качество в терминах AUC на тестовой выборке при $m_2 \to \infty$ сэмплированием (4 балла), аналитически (6 баллов).
- б) Пусть Вами случайно выбран некоторый вектор \mathbf{w}_0 , независимо от настоящего \mathbf{w} . Вычислить в этом случае для разных m_2 ожидаемое качество в терминах AUC $\mathbb{E}(AUC)$ для разных m_2 сэмплированием (4 балла), аналитически (6 баллов).

Задача 3 (10 баллов). В обозначениях задачи 2

- а) Доказать, что Ассигасу (ACC) (доля правильно предсказанных классов объектов) частный случай ASY(P) (см. определение из практического задания 1) (2 балла);
- б) Пусть класс объектов y_j не зависит от \mathbf{x}_j , то есть выборка шумовая.
 - Построить наилучший прогноз $\hat{\mathbf{y}}_2$ на тестовой выборке в терминах АСС, если $\mathbb{P}(y_j = 1) = p$. (2 балла).
 - Построить наилучший прогноз $\hat{\mathbf{y}}_2$ на тестовой выборке в терминах $\mathrm{ASY}(\mathbf{P})$ в общем случае, если $\mathbb{P}(y_j=1)=p$? (4 балла)

• Как оценить p по обучающей выборке и что делать, если оценка не отличается значимо от 0.5? (2 балла)

Задача 4 (25 баллов). Пусть имеется выборка $\mathbf{x}_1^0, \ldots, \mathbf{x}_{m_1}^0$ объектов класса 0 размера m_0 и выборка $\mathbf{x}_1^1, \ldots, \mathbf{x}_{m_2}^1$ объектов класса 1 размера m_1 . Пусть известно, что признаки независимы в совокупности в обеих выборках, а также, что признаки имеют нормальное распределение с дисперсиями σ_j^2 , одинаковой для одного и того же признака в разных классах, и, возможно, разной между признаками. Пусть требуется проверить гипотезу о том, что мат. ожидание значения признака с номером j совпадает для обоих классов.

- а) Пусть $\sigma_j^2 = \sigma^2$ известно. Проверить гипотезу о равенстве мат. ожиданий не уровне значимости $\alpha = 0.05$ (3 балла).
- б) Та же задача, что и в пункте а, но $\sigma_j^2 = \sigma^2$ неизвестно (5 баллов).
- в) Пусть n=100, $\sigma_j^2=j$. Для каждой пары m_1 , m_2 сгенерировать выборку с такими параметрами, сделав мат. ожидания всех признаков кроме j^* одинаковыми, а для признака j^* сделать разницу мат. ожиданий равной 1. Считая σ_j^2 неизвестными, реализовать метод, предложенный в п. б) и использовать его для проверки гипотез о равенстве мат. ожиданий для каждого из n=100 признаков (4 балла). Применить поправку на множественное тестирование Бенджамини-Хохберга (2 балла) и изучить зависимость количества ложных положительных и настоящих положительных отклонений гипотезы о равенстве мат. ожидания от m_1 , m_2 (6 баллов).
- г) Предложите метод решения этой задачи, если признаки не имеют нормального распределения (5 баллов).

Задача 5 (15 баллов). Пусть имеется матрица признаков X размера $m \times n$.

- а) Что такое метод главных компонент? Какую задачу он решает? (3 балла)
- б) Описать (доказательно) результат применения (какие будут главные компоненты и соответствующие им собственные числа) метода главных компонент к матрице \mathbf{X} , если m > n, объекты независимы, а $\mathbf{x}_i \in \mathcal{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ (4 балла).
- в) Пусть **X** состоит из n-1 зашумленной копии некоторого признака χ_1 , а также из шкалированного признака χ_2 , то есть $\mathbf{X} = [\chi_1 + \varepsilon_1, \ldots, \chi_1 + \varepsilon_{n-1}, \kappa \chi_2]$, где $\chi_1, \chi_2, \varepsilon_1, \ldots, \varepsilon_{n-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ и независимы в совокупности, а $\kappa > 0$ коэффициент шкалирования.

Вычислить в зависимости от коэффициента шкалирования κ ожидаемую первую главную компоненту матрицы \mathbf{X} , а также ожидаемую долю дисперсии, ею объясняемую, аналитически (5 баллов) и сэмплированием (1 балл). Какой практический вывод можно сделать из полученного результата? (2 балла)