ASSIGNMENT-2

UNNATI GUPTA

Download all python codes from

https://github.com/unnatigupta2320/Assignment-2/tree/master/codes

and latex-tikz codes from

https://github.com/unnatigupta2320/Assignment-2/tree/master

1 Question No. 2.36

Construct a quadrilateral MIST where MI = 3.5, IS = 6.5, $\angle M = 75^{\circ}$, $\angle I = 105^{\circ}$ and $\angle S = 120^{\circ}$.

2 SOLUTION

For this quadrilateral MIST we have,

$$\angle M + \angle I = 75^{\circ} + 105^{\circ} = 180^{\circ},$$
 (2.0.1)

 \implies MT || IS (:: MI being the transversal)

As, sum of adjacent angle on same side is 180° only when lines are parallel. Now, considering ST as another transversal on parallel lines MT and IS then $\angle S$ and $\angle T$ being on same side of transversal, we get

$$\implies \angle S + \angle T = 180^{\circ}, \qquad (2.0.2)$$

$$\implies \angle T = 60^{\circ}$$
 (2.0.3)

Now taking sum of all the angles given and (2.0.3) we get

$$\angle M + \angle I + \angle S + \angle T = 360^{\circ} \tag{2.0.4}$$

So construction of given quadrilateral is possible as sum of all the angles is equal to 360° .

Now, Using cosine formula we can find SM:

$$\|\mathbf{S} - \mathbf{M}\|^2 = \|\mathbf{M} - \mathbf{I}\|^2 + \|\mathbf{I} - \mathbf{S}\|^2 - 2 \times \|\mathbf{M} - \mathbf{I}\| \times \|\mathbf{I} - \mathbf{S}\| \cos I$$
(2.0.5)

$$\implies SM = 8.14$$
 (2.0.6)

Also, using sine formula in $\triangle MIS$, we have

$$\frac{\sin M}{m} = \frac{\sin I}{i} = \frac{\sin S}{s} \tag{2.0.7}$$

$$\angle M = \arcsin 0.7713;$$
 (2.0.8)

$$\angle M = 50.47^{\circ};$$
 (2.0.9)

1

Now, polar coordinates of vertex S of $\triangle MISbe$ (SM $\cos M$, SM $\sin M$)

$$weget, S(5.18, 6.27)$$
 (2.0.10)

Similarly, we can get vertex T of $\triangle MTS$ as

$$T(2.42, 9.03)$$
 (2.0.11)

- Now, we have the coordinate of vertices M,I,S,T as M(0,0); I(3.5,0); S(5.18,6.27);T(2.42,9.03);
- We can construct the quadrilateral.On constructing the given quadrilateral we, get:

Fig. 2.1: Quadrilateral MIST