6. Attention-based networks

6.1. Attention mechanisms

Manel Martínez-Ramón Meenu Ajith Aswathy Rajendra Kurup

Introduction

- Attention is a core human brain functioning mechanism and a complex cognitive function.
- Attention is the ability to concentrate on information parts and not as a whole.
- For example, humans tend to focus on specific parts or aspects of a scene and to identify similarities with other scenes.
- Humans process information by selecting high-value features from huge information sources with limited resources.
- Attention networks are inspired by this behavior.
- From 2020 or so, the dominant models for all the natural language processing tasks. It is based on a form of attention mechanism.

• An attention mechanism is a system to access a dataset \mathcal{D} consisting of a set of tuples key-value $\mathbf{k}_i, \mathbf{v}_i$ through a query \mathbf{q} .

Attention
$$(\mathbf{q}, \mathbb{D}) = \sum_{i=1}^{N} \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i$$
 (1)

where $\alpha(\mathbf{q}, \mathbf{k}_i) \in \mathbb{R}$ are called *attention weights* and they measure the relevance of a key to the query.

• The weights are normalized so they produce a convex combination, i.e,

$$\sum_{i=1}^{N} \alpha\left(\mathbf{q}, \mathbf{k}_{i}\right) = 1 \tag{2}$$

• A particular form of the weights useful in deep learning is

$$\alpha\left(\mathbf{q}, \mathbf{k}_{i}\right) = \frac{\exp\left(f\left(\mathbf{q}, \mathbf{k}_{i}\right)\right)}{\sum_{j=1}^{N} \exp\left(f\left(\mathbf{q}, \mathbf{k}_{j}\right)\right)}$$
(3)

where $f(\cdot)$ is any function useful to measure some similarity between the query and the key.

 This function is itself a softmax activation and it has properties of probability mass function.

Attention pooling as a convex combination of values.

Nadaraya-Watson Regression

• A regression machine can be constructed as an attention-pooling mechanism

$$g(x) = \sum_{i=1}^{N} y_i \frac{f(x, x_i)}{\sum_{j=1}^{N} f(x, x_j)}$$
 (4)

• Regression g(x) as x as the query, and the keys are training samples x_i . The values are regressors y_i .

Nadaraya-Watson Regression

- Function $y = 2sin(x) + x + \varepsilon$ is to be approximated with the N-W regressor, where ε_i is a Gaussian noise of zero mean and unit variance.
- The training data consists of 100 samples distributed uniformly in the interval $0 \sim 4$.
- The performance is compared wrt the following kernels:

$$f(\mathbf{q}, \mathbf{k}) = \exp\left(-\frac{1}{2}\|\mathbf{q} - \mathbf{k}\|^2\right) \quad \text{Gaussian}$$

$$f(\mathbf{q}, \mathbf{k}) = 1 \text{ if } \|\mathbf{q} - \mathbf{k}\| \le 1 \quad \text{Boxcar}$$

$$f(\mathbf{q}, \mathbf{k}) = \max(0, 1 - \|\mathbf{q} - \mathbf{k}\|) \quad \text{Epanechikov}$$
(5)

Nadaraya-Watson Regression

Results of the Gaussian kernel with different width parameters.

Zhang, Lipton, Li, Smola. Dive Into Deep Learning, 2023

Attention functions

Dot product

• Euclidian distance

$$f(\mathbf{q}, \mathbf{k}) = -\|\mathbf{q} - \mathbf{k}\|^2 = \|\mathbf{q}\|^2 - \|\mathbf{k}\| + 2\mathbf{q}^{\mathsf{T}}\mathbf{k}$$
 (6)

If we assume that the norm of the keys are approximately constant, and taking into account that \mathbf{q} is the same for all keys

$$f(\mathbf{q}, \mathbf{k}) = 2\mathbf{q}^{\mathsf{T}}\mathbf{k} + \text{constant}$$
 (7)

• We can normalize the dot product with respect to the dimension *D* of the vectors and apply a softmax:

$$\alpha\left(\mathbf{q}, \mathbf{k}_{i}\right) = \frac{\exp\left(D^{-\frac{1}{2}}\mathbf{q}^{\top}\mathbf{k}_{i}\right)}{\sum_{j=1}^{N} \exp\left(D^{-\frac{1}{2}}\mathbf{q}^{\top}\mathbf{k}_{j}\right)}$$
(8)

Attention functions

Dot product

• The attention mechanism input to the sum block of slide 5 can be written as

$$\mathbf{z} = \mathbf{V}^{\top} \operatorname{softmax} \left(D^{\frac{1}{2}} \mathbf{q}^{\top} \mathbf{K} \right) \tag{9}$$

where K contains all the keys and V all the values.

• In practice, the query and the key do not have the same dimension, therefore, transformation matrices are used:

$$\mathbf{z} = \mathbf{V}^{\top} \operatorname{softmax} \left(D^{\frac{1}{2}} \mathbf{q}^{\top} \mathbf{M} \mathbf{K} \right) \in \mathbb{R}^{N}$$
 (10)

where $\mathbf{M} \in \mathbb{R}^{D_q \times D_k}$ transforms from the space of queries to the one of keys.

Attention functions

Dot product

• If $\mathbf Q$ contains a set of M queries, we can construct a set of responses as

$$\mathbf{Z} = \mathbf{V}^{\mathsf{T}} \operatorname{softmax} \left(D^{\frac{1}{2}} \mathbf{Q}^{\mathsf{T}} \mathbf{M} \mathbf{K} \right) \in \mathbb{R}^{N \times M}$$
 (11)

• This is necessary for training purposes by using mini batches.

Additive attention

• The additive attention function also assumes that the query and the key have different lengths. The scoring, in this case, is

$$f(\mathbf{q}, \mathbf{k}) = \mathbf{w}_f \tanh \left(\mathbf{W}_q^{\top} \mathbf{q} + \mathbf{W}_k^{\top} \mathbf{k} \right)$$
 (12)

• Matrices \mathbf{W}_q and \mathbf{W}_k , and vector \mathbf{w}_f are trainable parameters. Therefore, this is equivalent to a dense or fully connected network with one hidden layer with tanh activation and one linear scalar output.

Attention mechanisms

The Badanau Attention Mechanism

• Recall the RNN sequence to sequence machine translation.

Attention mechanisms

The Badanau Attention Mechanism

The main limitation of this method is the length of states
h. There may be not enough space to code long sequences.

- This limitation can be overcome with the use of attention mechanisms: when a token is predicted, a model attends only to parts of the input sequence that are relevant to the prediction.
- These parts are then used to modify the state before producing the next prediction.
- This gave rise to the idea of transformers.

Attention mechanisms

The Badanau Attention Mechanism

• The encoder RNN passes states \mathbf{h}_t to the decoder. The decoder updates its states at every step with an attention pooling.

• If $\mathbf{h}'_{t'}$ are the states of the decoder

$$\mathbf{c}_{t'} = \sum_{t=1}^{T} \alpha \left(\mathbf{h}'_{t'-1}, \mathbf{h}_{t} \right) \mathbf{h}_{t} \qquad (13)$$

- Then, \mathbf{c}'_t is passed to the dense block to generate the next state $\mathbf{h}'_{t'}$ and a new token.
- The additive attention scoring in Eq. (12) is used.

Multi head attention

- The multi-head attention combines different behaviors of the same attention mechanism into a feature space.
- The responses are linearly combined at the output.

$$\mathbf{h}_{i,j} = f\left(\mathbf{W}_{j}^{(q)^{\top}} \mathbf{q}_{i}, \mathbf{W}_{j}^{(k)^{\top}} \mathbf{k}_{i}, \mathbf{W}_{j}^{(v)^{\top}} \mathbf{v}_{i}\right), \quad \mathbf{o}_{i} = \sum_{i} \mathbf{w}_{j}^{(o)^{\top}} \mathbf{h}_{i,j} \quad (14)$$