Student Depression: A Statistical Analysis

Gavin B. Jack B. Nathan C.

Background - The Ideas Behind the Project

 We chose to use a data set on student depression: https://www.kaggle.com/datasets/adilshamim8/student-depression-dataset

- This data set has 18 variables all about students with the main category being a binary answer on whether or not a student has depression
- We wanted to do something original so rather than looking at gpa we looked at work hours, gender, and financial situations

Background - The Data Set

We shortened the dataset to fit our needs down to just 4 variables:

Quantitative:

- Work Study Hours (Continuous variable representing the number of hours worked/studied, containing numbers 0-12)
- Financial Stress (Continuous variable representing the financial stress level, containing integers 1-5)

Qualitative:

- Gender (Categorical variable: Male/Female)
- Depression (Binary categorical variable: 1 = Depressed, 0 = Not Depressed)

In total there are about 27900 total observations

Header of the data set

Gender	Work Study Hours	Financial Stress	Depression
Male	3	1	1
Female	3	2	0
Male	9	1	0
Female	4	5	1
Male	1	1	0
Female	4	1	0

Goal of our Study

Main Goal: To investigate how different factors - specifically financial stress, work study hours, and gender-relate to depression among students in a large academic dataset.

Specific Objectives:

- Understand the relationship between financial stress and the likelihood of experiencing depression
- Explore whether hours spent in work study programs are associated with depression levels
- Examine if gender plays a role in the prevalence of depression

Why this Matters:

- Student mental health is a growing concern in academic settings
- Identifying key risk factors can help guide better support systems policy decisions and mental health interventions on campuses.

Hypothesis

Hypothesis 1: Financial Stress

- Null (H₀): There is no significant difference in financial stress between students who are depressed and those who are not.
- Alternative (H₁): Students who are depressed report significantly higher financial stress than those who are not.

Hypothesis 2: Work Study Hours

- Null (H₀): There is no significant difference in work study hours between students who are depressed and those who are not.
- Alternative (H₁): Students who are depressed work significantly more hours in work study programs than those who are not.

Hypothesis 3: Gender

- Null (H₀): There is no association between gender and depression.
- Alternative (H₁): Depression rates differ significantly between male and female students.

Model Assumptions

T-tests Assumptions:

- Data is approximately normally distributed
- No significant outliers
- Independence of observations
- Homogeneity of variance (Welch's t-test used if violated)
- Variables are continuous or treated as continuous

Logistic Regression Assumptions:

- Binary dependent variable
- Independence of observations
- No multicollinearity
- Linear relationship between continuous independent variables and the logit of the outcome
- Large sample size ensures model stability

Chi-Square Test Assumptions

- 1. Categorical Variables: Both variables (Gender and Depression) are categorical.
- 2. Independence: Each observation is independent of others (no student is counted more than once).
- 3. Expected Frequencies: Expected counts in each cell of the contingency table should generally be ≥ 5.
- 4. Random Sampling: The data should come from a random or representative sample.

Quantitative Data - Descriptive statistics via R

	>sun	nmary(data\$	Financial.St	res <mark>s</mark>)	
Min.	1st Quart.	Median	Mean	3rd Quart.	Max.
1.00	2.00	3.00	3.14	4.00	5.00
	>sum	mary(data\$V	Vork.Study.F	Hours)	
Min.	1st Quart.	Median	Mean	3rd Quart.	Max.
0.00	4.00	8.00	7.16	10.00	12.00

Qualitative Data - Descriptive Stats via R

Table of	Gender
Female	Male
12354	15547

Table of D	Table of Depression				
0	1				
11565	16336				

Proportion Ta	ble of Gender
Female	Male
0.4427798	0.5572202

Proportion Table	Proportion Table of Depression				
0	1				
0.4145013	0.5854987				

Descriptive Statistics Recap

Financial Stress:

Mean: 3.14

Median: 3

• Range: 1 to 5

Gender Distribution:

• Female: 44.3%

Male: 55.7%

Work Study Hours:

Mean: 7.16

Median: 8

Range: 0 to 12

Depression Prevalence:

• Depressed: 58.5%

• Not Depressed: 41.5%

Regression Model - Hypo 1

- Hypothesis: Higher financial stress increases the likelihood of depression among students
- Findings:
 - o <u>Financial Stress Effect</u>: Each unit increases in financial stress raises the odds of depression
 - \sim ~73.9% (odds ratio 1.739, p < 0.001), strongly supporting the hypothesis
 - Statistical Significance: financial stress is highly sufficient (p < 2e-16) confirming a robust association with depression
 - Model Fit: Financial stress explains substantial variability in depression
 - Deviance reduced by 3,82, improving model fit (AIC = 34,038)
- Implication: Higher financial stress is a significant risk factor for depression, suggesting interventions like financial aid could help reduce depression among students

Hypothesis 1 in R

	Welch Two Sa	ample t-test
data:	Financial Stre	ss by Depression
t = -65.076	df = 24739	p-value < 2.2e-16

Alternative Hypothesis: true difference in means between group 0 and group 1 is not equal to 0

95% Confide	ence Interval:
-1.092781	-1.028878
Sample E	Estimates:
Sample E Mean Group 0	stimates: Mean Group 1

		Coefficients:		
	Estimate	Standard Error	Z Value	Pr(> z)
(Intercept)	-1.344531	0.031176	-43.13	<2e-16
Financial Stress	0.553700	0.009516	58.19	<2e-16
Signif Codes		0 '*** 0.001 '** 0.01	'*' 0.05 '.' 0.1 ' ' 1	

Null Deviance:	37855 on 27897 df
Residual Deviance:	34034 on 27896 df
(3 observations delete	d due to missingness)
AIC: 3	34038
Number of Fisher S	Scoring Iterations: 4

Hypothesis 1 - Financial Stress and Depression

T-test Results:

- Mean Financial Stress (Depressed): 3.58
- Mean Financial Stress (Not Depressed): 2.52
- t = -65.08, p < 2.2e-16

Logistic Regression:

- Coefficient: 0.554
- Odds Ratio: exp(0.554) ≈ 1.74
- Interpretation: Each unit increase in financial stress increases the odds of depression by approximately 74%.

Interpretation:

 Significant difference in financial stress levels between depressed and non-depressed students.

Regression Hypothesis 2

- Hypothesis: Higher work study hours increase the likelihood of depression among students
- Findings:
 - \circ Effect: each additional hour of work-study increase the odds of depression by ~12.3 (odds ratio = 1.123, p< 0.001) which supports the hypothesis
 - <u>Statistical Significance:</u> Work-study hours are highly significant (p < 2e-166) confirming a strong association with depression
 - Model Fit: Work-study hours explain some variability in depression (deviance reduced by 1,218) improving model fit (AIC = 36,515)
- **Implication:** More work-study hours are a significant risk factor for depression, suggesting that reducing work study demands could help lower depression rates among students

Hypothesis 2 in R

	Welch Two Sa	imple t test
data:	Financial Stre	ss by Depression
t = -34.994	df = 23107	p-value < 2.2e-16
	Alternative H	ypothesis:
true dif	ference in means	between group 0 and

	Estimate	Standard Error	7 \/alua	D / 1 D
		Standard EIIO	Z Value	Pr(> z)
(Intercept)	-0.470281	0.026564	-17.70	<2e-16
Work Study Hours	0.115767	0.003373	34.32	<2e-16
Signif Codes		0 '*** 0.001 '** 0.01	'*' 0.05 '.' 0.1 ' ' 1	

95%	Confidence	Interval
-----	------------	----------

group 1 is not equal to 0

-1.657688	-1.481599

Sample E	:stimates:	
Mean Group 0	Mean Group 1	
6.237959	7.807603	

Null Deviance:	37859 on 27900 df	
Residual Deviance:	36641 on 27899 df	
AIC:	36645	
Number of Fisher Scoring Iterations: 4		

Hypothesis 2 - Work Study Hours and Depression

T-test Results:

- Mean Work Study Hours (Depressed): 7.81
- Mean Work Study Hours (Not Depressed): 6.24
- t = -34.94, p < 2.2e-16

Logistic Regression:

- Coefficient: 0.116
- Odds Ratio: exp(0.116) ≈ 1.12
- Interpretation: Each additional work study hour increases the odds of depression by approximately 12%.

Interpretation:

 Significant difference in work study hours between depressed and non-depressed students.

Regression Hypo 3

- Hypothesis: Being male increases the likelihood of depression among students
- Findings:
 - Effect: Being male increases the odds of depression by ~0.7% (odds ratio = 1.007, p = 0.764), but the effect is negligible and not significant
 - Failing to support the hypothesis
 - <u>Statistical Significance:</u> Gender is not significant (p = 0.764) indicating no association with depression
 - Model Fit: Gender does not explain any variability in depression showing no improvement over a null model
- Implication: Gender is not a meaningful risk factor for depression among students
 - Suggests other factors should be prioritized

Hypothesis 3 in R

	0	1
Female	5133	7221
Male	6432	9115

		Coefficients:		
	Estimate	Standard Error	Z Value	Pr(> z)
(Intercept)	0.341303	0.018257	18.70	<2e-16
Gender Male	0.007333	0.024464	0.3	0.764
Signif Codes		0 '*** 0.001 '** 0.01	'*' 0.05 '.' 0.1 ' ' 1	

Pearson's Chi-Square Test with Yat	es Continuity Correction
Data: table_gender_d	epression
X^2 = 0.082658, df = 1, p-	value = 0.7737

Null Deviance:	37859 on 27900 df
Residual Deviance:	32859 on 27899 df
AIC:	37863
Number of Fisher S	Scoring Iterations: 4

Hypothesis 3 - Gender and Depression

Chi-Square Test:

- Contingency Table:
 - Female: 5133 Not Depressed, 7221 Depressed
 - o Male: 6432 Not Depressed, 9115 Depressed
- $\chi^2 = 0.082658$, df = 1, p = 0.7737

Logistic Regression:

- Coefficient for Gender (Male): 0.00733
- p = 0.764
- Interpretation: Gender is not a significant predictor of depression.

Interpretation:

 No significant association between gender and depression.

Regression Model - All together

- **Hypothesis**: Being male, higher financial stress, and more work-study hours increase the likelihood of depression among students
- Findings:
 - Gender/Male Effect: Being male increases the odds of depression by ~0.6%
 - Financial Stress Effect: Each unit increase in financial stress raises the odds of depression by ~74.0%
 - Work Study Hours Effect: Each additional hour of work-study increases the odds of depression by ~12.3%
 - Statistical Significance: Financial stress and work-study hours are highly significant, while gender is not
 - Model Fit: The model explains substantial variability in depression with financial stress and work-study hours driving the improvement
- **Implication**: Higher financial stress and more work-study hours are significant risk factors for depression among students, warranting interventions like financial aid and reduced work demands

		Coefficients:		
	Estimate	Standard Error	Z Value	Pr(> z)
(Intercept)	-2.165933	0.044514	-48.66	<2e-16
Gender Male	0.006276	0.026796	0.234	0.815
Financial Stress	0.553960	0.009716	57.016	<2e-16
Work Study Hours	0.115919	0.003622	32.008	<2e-16
Signif Codes		0 '***' 0.001 '**' 0.01	'*' 0.05 '.' 0.1 ' ' 1	
	Dispersion para	ameter for binomial fami	ly taken to be 1	

Null Deviance:	37855 on 27897 df
Residual Deviance:	32973 on 27894 df
(3 observations dele	eted due to missingness)
AIC	D: 32981
Number of Fishe	er Scoring Iterations: 4

Model Diagnostics 1

Accuracy: The model correctly classified approximately **60.06**% of observations. This indicates moderate predictive ability, but not strong.

Pseudo R² (McFadden's): The model had a pseudo R² value of **0.129**, suggesting that about 12.9% of the variation in depression status is explained by Gender, Financial Stress, and Work Study Hours.

Limitation: The model's predictive power is relatively low and may benefit from additional predictors or better data cleaning.

```
> II_model <- logLik(model)
> II_null <- logLik(gIm(Depression ~ 1, data = data, family = "binomial"))
> pseudo_r2 <- 1 - as.numeric(II_model / II_null)
> pseudo_r2
[1] 0.12905
```

Model Diagnostics 2 - Confusion Table

1113 3131 2 1319113		

Predicted: Not Depressed (0)

Actual: Not Depressed (0)

6,375 (True Negative)

Actual: Depressed (1)

3,807 (False Negative)

Predicted: Not Depressed (0)

Predicted: Depressed (1)

5,188 (False Positive)

12,528 (True Positive)

Summary:

- Model performs reasonably well at identifying depression based on gender, financial stress, and work study hours.
- However, the false positive rate is high—potentially labeling healthy individuals as depressed.
- Improvement Ideas:

Confusion Table

- Adjust classification threshold (currently 0.5).
- Add more predictors or use a different model.
- Evaluate sensitivity and specificity to fine-tune accuracy.

Limitations

Sample Size & Scope: The dataset was limited in size and only included a specific population, which may limit generalizability.

Binary Outcome: Depression was treated as a binary variable (1 = Depressed, 0 = Not Depressed), which may oversimplify the complexity of mental health.

Unmeasured Confounders: Other important factors (e.g., social support, academic stress, pre-existing mental health conditions) were not included in the model.

Cross-Sectional Data: The data was cross-sectional, preventing us from making causal inferences between financial stress and depression.

Self-Reported Measures: Financial stress and depression were based on self-report, which can introduce reporting bias.

Conclusion

This study investigated how financial stress and work-study hours relate to depression among college students using logistic regression.

Results showed that financial stress was a significant predictor of depression, indicating that students with higher levels of financial stress were more likely to experience depressive symptoms.

In contrast, work-study hours were not significantly associated, suggesting that the number of hours worked alone may not be a direct driver of depression.

These findings reinforce the idea that subjective financial strain, rather than objective workload, has a stronger impact on student well-being.

The analysis contributes to growing evidence that financial stress is a key risk factor for mental health challenges in higher education settings.

Targeted interventions addressing financial anxiety and access to resources could be effective in reducing depression risk.

Relevant Links

https://github.com/gavin-barro/math268-final-proj

https://www.kaggle.com/datasets/adilshamim8/student-depression-dataset

Questions?