Možnosti využitia metód hlbokého učenia v predpovedi počasia

Juraj Mašlej

školiteľ: RNDr. Andrej Lúčny, PhD.

Cieľ

Prieskum možností využitia hlbokého učenia pri spracovaní meteorologických údajov

Rozpoznávanie oblačnosti na snímkach oblohy

Keywords

Konvolučné neurónové siete

Spracovanie obrazu

Predpoveď počasia

Konvolučné siete 1

Cieľ: rozpoznávanie objektov na obraze

Idea: biologicky motivované, visual cortex

: jedna oblasť buniek = jeden problém

Kernel, konvolučná vrstva

input neurons	
000000000000000000000000000000000000000	first hidden layer
00000	 000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000000000000000000000000000000
Visualization of 5 x 5 filter convolving around an input volume and p	roducing an activation map

Konvolučné siete 2

Násobenie v sieti

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

 $\label{eq:Multiplication} \mbox{Multiplication and Summation} = (50*30) + (50*30) + (50*30) + (50*30) + (50*30) + (50*30) = 6600 \ \mbox{(A large number!)}$

Celková chyba

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

Backward pass

$$w = w_i - \eta \frac{dL}{dW}$$

w = Weight w_i = Initial Weight η = Learning Rate

Zdroj obrázkov: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Dáta

Snímky oblohy - fisheye kamera

Label - oblačnosť v osminách

Up-to-date:

Možnosť využitia pred-trénovaných sietí

Technológie

Opencv

Tensorflow

Keras

Python

Prieskum technológií

Tensorflow

Využitie kerasu, natrénovanie jednoduchého kernelu konvolučnej vrstvy

Práca s opencv

Kompilácia

Canny filter, hough transformation, HSV format

Maska modrej pre HSV format

Original Image

Edge Image

Plánovaná práca

Získať viac dát

Postavenie modelu inšpirovaného článkom Deep Convolutional Neural Network for Cloud Coverage Estimation from Snapshot Camera Images, https://bit.ly/2L41NRj

Prieskum možností využitia predtrénovanej siete

Problémy

Vystrihnutie horizontu

Farebná škála

Dostatočné množstvo dát – pridanie labels

Literatúra

- Goodfellow, http://www.deeplearningbook.org/ kapitola 9
- Zafarifar, Weda, Horizon detection, https://bit.ly/2InTjH6
 Metódy na rozpoznávanie horizontu, hrany a farby
- Le Goff, Deep learning for Cloud Detection, https://bit.ly/2r08e2j
- Ryo Onishi, https://bit.ly/2L41NRj
 Konvolučná sieť, rozpoznávanie oblačnosti

Ďakujem za pozornosť

https://github.com/jurajmaslej/dipl