Exercice 1. Quand il joue au bowling, Arthur a une probabilité de 0, 1 pour faire un strike. Il lance 10 fois la boule de manière indépendante. Pour tout entier i entre 1 et $10, X_i$ est la variable aléatoire prenant 1 s'il réussit un strike et 0 sinon, au i—ème lancer.

- 1. Que peut-on dire de la variable aléatoire X définie par $X = X_1 + X_2 + X_3 + \cdots + X_{10}$?
- **2.** Calculer E(X) et V(X).

Exercice 2. On lance 30 dés équilibrés à 6 faces numérotées de 1 à 6. On considère la variable aléatoire Z donnant le nombre de 4 obtenu sur les 30 dés.

- 1. Déterminer une loi de probabilité associée à 30 variables aléatoires indépendantes $Z_1, Z_2, \cdots Z_{30}$ telle que $Z = Z_1 + Z_2 + Z_3 + \cdots + Z_{30}$.
- **2.** Calculer E(Z) et en donner une interprétation.

Exercice 3. On lance 100 dés équilibrés à 6 faces numérotées de 1 à 6. On considère la variable aléatoire X donnant la somme des résultats de tous les dés.

- 1. Décomposer X en une somme de variables aléatoires indépendantes suivant toutes une même loi de probabilité que l'on précisera.
- **2.** Calculer E(X) et interpréter ce résultat.

Exercice 4. X est une variable aléatoire d'espérance 5,6 et d'écart-type $\frac{1}{4}$. On considère un échantillon de taille n, $(X_1; \dots X_n)$ de variables aléatoires suivant la loi de X ainsi que les variables aléatoires $S_n = X_1 + X_2 + \dots + X_n$ est $M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$.

- **1.** Calculer $E(S_n)$ et $V(S_n)$.
- **2.** Calculer $E(M_n)$ et $V(M_n)$.

Exercice 5. Soit Y une variable aléatoire. Compléter les pointillés :

- 1. $Y \in]0; 10[\iff |Y \cdots| < \cdots]$
- **2.** $Y \in [45; 51] \iff |Y \cdots| \leqslant \cdots$
- 3. $Y \in]-\infty$; $12] \cup [16; +\infty[\iff |Y-\cdots| \geqslant \cdots]$
- **4.** $Y \in]-\infty$; $2[\cup]24$; $+\infty[\iff |Y-\cdots|>\cdots$

Exercice 6. Soit B une variable aléatoire telle que $p(|B+12| \ge 12) \le 0, 11$. Donner une minoration de p(|B+12| < 12).

Exercice 7. Soit Z une variable aléatoire tel que $p(Z \in [7; 8]) = 0.25$ et $p(Z \in [8; 13]) = 0.3$;

- 1. Déterminer $p(|Z-10| \leq 3)$.
- **2.** En déduire p(|Z 10| > 3).