Worksheet # 13: Chain Rule

- 1. (a) Carefully state the chain rule using complete sentences.
 - (b) Suppose f and g are differentiable functions so that f(2) = 3, f'(2) = -1, $g(2) = \frac{1}{4}$, and g'(2) = 2. Find each of the following:
 - i. h'(2) where $h(x) = \sqrt{[f(x)]^2 + 7}$
 - ii. l'(2) where $l(x) = f(x^3 \cdot g(x))$.
- 2. Given the following functions: $f(x) = \sec(x)$, and $g(x) = x^3 2x + 1$. Find:
 - (a) f(g(x)) =
 - (b) f'(x) =
 - (c) g'(x) =
 - (d) f'(g(x)) =
 - (e) $(f \circ g)'(x) =$
- 3. Differentiate each of the following and simplify your answer.
 - (a) $f(x) = \sqrt[3]{2x^3 + 7x + 3}$
 - (b) $g(t) = \tan(\sin(t))$
 - (c) $h(u) = \sec^2(u) + \tan^2(u)$
 - (d) $f(x) = xe^{(3x^2+x)}$
 - (e) $g(x) = \sin(\sin(\sin(x)))$
- 4. Find an equation of the tangent line to the curve at the given point.
 - (a) $f(x) = x^2 e^{3x}, x = 2$
 - (b) $f(x) = \sin(x) + \sin^2(x), x = 0$
- 5. Compute the derivative of $\frac{x}{x^2+1}$ in two ways:
 - (a) Using the quotient rule.
 - (b) Rewrite the function $\frac{x}{x^2+1} = x(x^2+1)^{-1}$ and use the product and chain rule.

Check that both answers give the same result.

- 6. If $h(x) = \sqrt{4+3f(x)}$ where f(1) = 7 and f'(1) = 4, find h'(1).
- 7. Let $h(x) = f \circ g(x)$ and $k(x) = g \circ f(x)$ where some values of f and g are given by the table

x	f(x)	g(x)	f'(x)	g'(x)
-1	4	4	-1	-1
2	3	4	3	-1
3	-1	-1	3	-1
4	3	2	2	-1

Find: h'(-1), h'(3) and k'(2).

- 8. Find all x values so that $f(x) = 2\sin(x) + \sin^2(x)$ has a horizontal tangent at x.
- 9. Comprehension check for derivatives of trigonometric functions:
 - (a) True or False: If $f'(\theta) = -\sin(\theta)$, then $f(\theta) = \cos(\theta)$.
 - (b) True or False: If θ is one of the non-right angles in a right triangle and $\sin(\theta) = \frac{2}{3}$, then the hypotenuse of the triangle must have length 3.
 - (c) Differentiate both sides of the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$ to obtain a new trigonometric identity.