

Introducción

¿Qué es una fuente de alimentación?

Componente **crítico** en cualquier sistema informático

Función principal

Transforma corriente alterna de la red en corriente continua que soporta un PC

! Importancia

- Corazón energético del equipo
- Proporciona voltajes estables
- Protege componentes de daños
- Afecta estabilidad y eficiencia del sistema

Tipos de fuentes de alimentación: SFX, TFX, ATX, Flex ATX

Función Principal: Transformación de Corriente

Definición fundamental

Dispositivo que convierte corriente alterna (AC) de la red eléctrica en corriente continua (DC) para componentes electrónicos

(1) ¿Por qué es necesaria?

- La energía de la red es alterna: fluye en ambos sentidos
- Los componentes electrónicos necesitan corriente continua
- La corriente alterna dañaría los componentes del equipo

Importancia crítica

Proporciona voltajes estables necesarios para el funcionamiento correcto de todos los componentes del sistema

Proceso de transformación de corriente alterna (AC) a corriente continua (DC)

Proceso de conversión

- 1. Transformación: Reduce la tensión de entrada
- 2. Rectificación: Convierte AC a DC pulsante
- 3. Filtrado: Elimina oscilaciones
- 4. Estabilización: Mantiene voltaje constante

Procesos Internos de una Fuente de Alimentación

Transformación

Reduce la tensión de entrada (110-240V AC) mediante un transformador

Rectificación

Convierte corriente alterna en continua mediante puente rectificador o de Graetz

Filtrado

Aplana la señal de corriente continua eliminando oscilaciones mediante condensadores

Estabilización

Asegura voltajes estables mediante reguladores que compensan variaciones

Diagrama de bloques de los cuatro procesos fundamentales

Innovaciones actuales

- Transformadores de alta eficiencia
- Rectificación activa en fuentes premium
- Condensadores de polímero sólido
- Control digital mediante ICs especializados

Componentes Clave de una Fuente Moderna

Características Técnicas Relevantes

- PFC (Power Factor Correction)
- ✓ PFC Pasivo: Fuentes económicas, eficiencia ~80%
- PFC Activo: Estándar en fuentes de calidad, eficiencia >90%
- Ventajas: Menor consumo, menos calor, reduce interferencias

- Ruido y Refrigeración
- Modo Zero RPM: Ventilador detenido bajo cargas bajas
- **Curvas personalizables:** Ajuste mediante software
- Diseños acústicos: Carcasas con aislamiento

Eficiencia Energética

- La eficiencia determina cuánta energía se pierde como calor
- 1000W con 90% eficiencia consume 1111W de la red

 80 PLUS
 Bronze
 Silver

 >80%
 >82%
 >85%

 Gold
 Platinum
 Titanium

 >87%
 >90%
 >94%

Eficiencia	80 PLUS	80 PLUS BRONZE	80 PLUS SILVER	80 PLUS GOLD	80 PLUS PLATINUM	80 PLUS TITANIUM
Carga	White	Bronze	Silver	Gold	Platinum	Titanium
20%	80%	82%	85%	87%	90%	94%
50%	80%	85%	88%	90%	92%	96%
100%	80%	82%	85%	87%	97%	91%

Tabla de comparación de eficiencia según certificación 80 PLUS

Tipos de Fuentes de Alimentación Modernas

Conectores Modernos

ATX Principal

- **24 pines** para placa base
- Proporciona energía principal
- O Compatible con conectores de 20 pines
- Diseño con bloqueo seguro

ATX 12V

- **4+4 pines** para procesador
- ♦ Suministra 12V al CPU
- **1** Formato flexible: 4 u 8 pines
- ★ 8+8 pines en fuentes premium

PCle

- ## 6+2 pines para GPU
- ♥ Hasta 300W por conector
- 16-pin (12VHPWR) para GPUs de alta gama
- (••) Monitoreo de potencia en modelos premium

¡ADVERTENCIA IMPORTANTE!

No confundir el conector ATX 12V 8 pines con el PCIe 6+2. Su intercambio puede dañar la tarjeta gráfica y la placa base. Los conectores modernos ya incluyen protecciones físicas para evitar este error.

Consideraciones para la Selección

© CPU: 250W+

GPU: 450W+

Discos: HDD 10W, SSD 5W

** Refrigeración: +10-30W

Overclocking: +20-40%

Margen: +20-30%

Calidad vs. Precio

Componentes: Condensadores de mejor calidad

• Protecciones: Más completas y precisas

Eficiencia: Mayor (80 PLUS Gold/Titanium)

Ruido: Ventiladores de mejor calidad

Garantía: 10-12 años vs 3-5 años

Herramienta recomendada

Utiliza calculadoras online de potencia (Newegg, Be Quiet!) para estimar el consumo exacto de tu configuración

Tendencias Futuras

- **Mayor Eficiencia**
- 80 PLUS Super Titanium
- ▲ GaN (Nitruro de Galio)

- Diseños digitales avanzados
- Menor pérdida energética

- Integración con Sistemas Inteligentes
 - Monitoreo en tiempo real
- Control de carga inteligente
- Compatibilidad UPS mejorada
- Alertas preventivas

- Diseños Modulares y Personalizables
- ← Módulos intercambiables
- Gestión de cables integrada
- Personalización estética
- iluminación personalizable
- El futuro de las fuentes

Las fuentes de alimentación evolucionarán hacia sistemas más eficientes, inteligentes y personalizables, integrándose completamente con el ecosistema del PC para ofrecer una gestión energética óptima.