

Set Theory Discrete Mathematic

Anders Kalhauge

Fall 2017

Set Theory

Set primitives

Notation

Ordered pairs and Cartesian product

Relations and Functions

Venn diagrams and set operations

Subsets

Set equality

Empty set and Powersets

Equality laws for sets

Set properties

Set primitives

Notation

Ordered pairs and Cartesian product

Relations and Functions

Venn diagrams and set operations

Subsets

Set equality

Empty set and Powersets

Equality laws for sets

Set properties

The sets of

- \square \mathbb{R} all real numbers
- \square \mathbb{R}^+ all positive (not 0) real numbers
- \square \mathbb{R}^- all negative (not 0) real numbers
- \square \mathbb{R}^{nonneg} all nonnegative (positive or 0) real numbers
- \square \mathbb{Z} all integers
- \square N or \mathbb{Z}^+ all positive integers
- \square \mathbb{N}_0 or \mathbb{Z}^{nonneg} all nonnegative integers
- □ ℚ all rational numbers (quotients)

Set-roster notation

$$A = \{1, 2, 3\}$$

$$= \{3, 1, 2\}$$

$$= \{1, 2, 2, 3, 3, 3\}$$

$$B = \{10, 11, 12, \dots, 119\}$$

Set-builder notation

$$M = \{x \in S | P(x)\}$$

$$A = \{x \in \mathbb{Z} | -2 < x < 7\}$$

$$B = \{x \in \mathbb{N} | x^2 < 10\}$$

$$C = \{x \in \mathbb{R}^+ | log(x) < 10\}$$

What are the members of:

$$\{x \in \mathbb{N} | x^2 + 20 < 100\}$$

Ordered pairs

defined as sets

The ordered pair

$$(a,b) \neq (b,a) \neq (a,b,c)$$

Ordered pairs

defined as sets

The ordered pair

$$(a,b) \neq (b,a) \neq (a,b,c)$$

can be defined as

$$\{\{a\}, \{a,b\}\}$$

Ordered pairs

defined as sets

The ordered pair

$$(a,b) \neq (b,a) \neq (a,b,c)$$

can be defined as

$$\{\{a\}, \{a,b\}\}$$

which is not the same as

$$\{\{b\},\{b,a\}\}$$

Equality of ordered pairs

The pairs

and

are equal if, and only if

$$a = c \wedge b = d$$

Cartesian product of A and B is $A \times B$ read "A cross B"

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Cartesian product of A and B is $A \times B$ read "A cross B"

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Example:

$$\{1,2,3\} \times \{3.4,7.2\} =$$

$$\{(1,3.4),(1,7.2),(2,3.4),(2,7.2),(3,3.4),(3,7.2)\}$$

Cartesian product of A and B and C is $A \times B \times C$

$$(A \times B) \times C = \{((a,b),c) | (a,b) \in A \times B \land c \in C\}$$

$$(A\times B)\times C=\{((a,b),c)|(a\in A\wedge b\in B)\wedge c\in C\}$$

$$A \times B \times C = \{((a,b),c) | a \in A \land b \in B \land c \in C\}$$

Short hand for the pair-pair ((a,b),c) is called a tupple:

A relation R between two sets A and B can be defined as a subset of the cartesian product.

$$R \subseteq A \times B$$

- \square A is the **domain** of R
- \square B is the **co-domain** of R

tells that

$$(x,y) \in R$$

Given a relation Persons, and the sets of IDs, FirstNames, LastNames

$$Person \subseteq IDs \times FirstNames \times LastNames$$

Where the subset is legal combinations of the three, normally defined by the tupples in a relational database.

- \square The function F from set A to set B
- is a relation with
 - \Box domain A
 - $\ \square$ and co-domain B
- $\square \ \forall x \in A, \exists y \in B, (x,y) \in F$

Set primitives

- Notation
- Ordered pairs and Cartesian product
- Relations and Functions

Venn diagrams and set operations

Subsets

- Set equality
- Empty set and Powersets
- Equality laws for sets
- Set properties

Notation

Ordered pairs and Cartesian product

Relations and Functions

Venn diagrams and set operations

Subsets

Set equality

Empty set and Powersets

Equality laws for sets

Set properties

$$A \subseteq B$$

$$A \subseteq B$$

$$A \not\subseteq B$$
 \updownarrow What should go here?

$$A \nsubseteq B$$

$$\updownarrow$$

$$\exists x, x \in A, x \notin B$$

Proof outline

- $lue{}$ suppose x is a particular, but arbitrarily chosen element of A
- \square prove that x is an element of B

 $A \subset B$

$$A \subset B$$

$$\updownarrow$$

 $A \subseteq B \land \exists x \in B, x \notin A$

Definition of set equality

Definition of set equality

$$A = B$$

$$\updownarrow$$

$$A \subset B \land B \subset A$$

Proof outline

- \square prove that $A \subseteq B$
- $\ \square$ prove that $B \subseteq A$

Create a program that

- \square Takes two sets A and B represented as arrays
- □ Evaluates wheter the sets are:
 - \square $A \subset B = -1$
 - \square A = B = 0
 - \square $A \supset B = 1$
 - □ otherwise -2

```
fun compareSets(a: IntArray, b: IntArray): Int {
 if (a.size == 0) return if (b.size == 0) 0 else -1
  if (b.size == 0) return 1
 var result = 0
 var ia = 0
 var ib = 0
  while (ia < a.size && ib < b.size) {
   if (a[ia] == b[ib]) { ia++; ib++ }
   else if (a[ia] > b[ib]) {
      if (result == 1) return -2
     ib++; result = -1 // a is subset
      }
   else if (a[ia] < b[ib]) {</pre>
      if (result == -1) return -2
      ia++; result = 1 // a is superset
  if (ia == a.size && ib == b.size) return result;
  return -2 // sets
```


$$\emptyset = \{\}$$

There is only one empty set

The set with no elements

Disjoint sets

Partitions of sets

Sets A and B are disjoint if

$$A \cap B = \emptyset$$

Partions $\{A_1, A_2, A_3, \dots, A_n\}$ of set A

$$\square A = \bigcup_{i=1}^{n} A_i$$

$$\square \ \forall a, b \in \{1, 2, 3, \dots, n\}, A_a \cap A_b = \emptyset$$

$$\mathscr{P}(A)$$

The set of all subsets of A

$$\mathscr{P}(\{a,b,c\}) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\}$$

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \subseteq B \to A \cap B = A$$

$$A \subseteq B \to A \cap B = A$$

$$A \subseteq B \to A \cup B = B$$

Set properties

Inclusion of intersection:

$$A\cap B\subseteq A$$

Inclusion in union:

$$A\subseteq A\cup B$$

Transitivity of subsets

$$A\subseteq B\wedge B\subseteq C\to A\subseteq C$$

of set operations

Intersection:

$$x \in X \cap Y \iff x \in X \land x \in Y$$

Union:

$$x \in X \cup Y \iff x \in X \lor x \in Y$$

Difference:

$$x \in X - Y \iff x \in X \land x \notin Y$$

Complement:

$$x \in X^C \iff x \notin X$$

Ordered Pair:

$$(x,y) \in X \times Y \iff x \in X \land y \in Y$$