

WHAT IS CLAIMED IS:

1 1. An *in vivo* method of affinity maturation by competitive activation to
2 obtain a binding molecule that has an enhanced affinity for a target binding ensemble
3 member relative to that of a reference binding molecule, the method comprising:
4 (a) recombinantly altering a population of host cells by
5 (i) introducing into the host cells a library of genes encoding candidate
6 binding molecules;
7 (ii) introducing into the host cells a competitive activation system
8 comprising a nucleic acid encoding a responder molecule linked to the target binding
9 ensemble member, and a nucleic acid encoding a competitor binding molecule linked to an
10 inhibitor of the responder complex;
11 (b) incubating the host cells under conditions in which the library and
12 competitive activation system are expressed and where the responder molecule is activated
13 when a candidate binding molecule binds to the target binding ensemble member; and
14 (c) detecting cells having a signal from the responder molecule that
15 corresponds to a candidate binding molecule binding affinity for the target binding ensemble
16 member that is greater than that of the reference binding molecule, thereby identifying a
17 candidate binding molecule with an enhanced affinity for the target binding ensemble
18 member.

1 2. The method of claim 1, wherein the reference binding molecule is a
2 reference antibody and the target binding ensemble member is an antigen to which the
3 reference antibody specifically binds.

1 3. The method of claim 2, further wherein the competitor binding
2 molecule is the reference antibody.

1 4. The method of claim 3, wherein the reference antibody is an Fab
2 fragment.

1 5. The method of claim 3, wherein the reference antibody is a single
2 chain Fv.

1 6. The method of claim 2, further wherein the candidate binding
2 molecules are single chain Fvs.

1 7. The method of claim 2, further wherein the candidate binding
2 molecules are Fab fragments.

1 8. The method of claim 2, further wherein the candidate binding
2 molecules are single V-region domains.

1 9. The method of claim 1, wherein the candidate binding molecules are
2 scaffolded peptides.

1 10. The method of claim 1, wherein the candidate binding molecules are
2 mutagenized natural ligands of the target binding ensemble member.

1 11. The method of claim 2, further wherein the library of candidate
2 binding molecules comprises hybrid antibodies that have at least one CDR in a V_H or V_L that
3 is different from the reference antibody and is from a natural antibody repertoire.

1 12. The method of claim 11, wherein the hybrid antibodies have either a
2 V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural
3 antibody repertoire.

1 13. The method of claim 2, further wherein the competitor binding
2 molecule is a nonhuman antibody and the candidate binding molecules are antibodies having
3 at least one human variable region.

1 14. The method of claim 2, further wherein the competitor binding
2 molecule is a natural ligand of the antigen that competes with the reference antibody for
3 binding to the antigen.

1 15. The method of claim 2, wherein the competitor binding molecule is an
2 artificial non-antibody ligand of the antigen that competes with the reference antibody for
3 binding to the antigen.

1 16. The method of claim 1, wherein the responder molecule is an enzyme.

1 17. An *in vivo* method of affinity maturation by competitive activation to
2 obtain a binding molecule that has an enhanced affinity for a target binding ensemble
3 member relative to that of a reference binding molecule, the method comprising:

1 18. The method of claim 17, wherein the reference binding molecule is a
2 reference antibody and the target binding ensemble member is an antigen to which the
3 reference antibody specifically binds.

1 19. The method of claim 18, further wherein the competitor binding
2 molecule is the reference antibody.

1 20. The method of claim 19, wherein the reference antibody is an Fab
2 fragment.

1 21. The method of claim 19, wherein the reference antibody is a single
2 chain Fv.

1 22. The method of claim 18, further wherein the candidate binding
2 molecules are single chain Fvs.

1 23. The method of claim 18, further wherein the candidate binding
2 molecules are Fab fragments.

1 24. The method of claim 18, further wherein the candidate binding
2 molecules are single V-region domains.

1 25. The method of claim 17, further wherein the candidate binding
2 molecules are scaffolded peptides.

1 26. The method of claim 17, further wherein the candidate binding
2 molecules are mutagenized natural ligands of the target binding ensemble member.

1 27. The method of claim 18, further wherein the library of candidate
2 binding molecules comprises hybrid antibodies that have at least one CDR in a V_H or V_L that
3 is different from the reference antibody and is from a natural antibody repertoire.

1 28. The method of claim 27, wherein the hybrid antibodies have either a
2 V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural
3 antibody repertoire.

1 29. The method of claim 18, further wherein the competitor binding
2 molecule is a nonhuman antibody and the candidate binding molecules are antibodies having
3 at least one human variable region.

1 30. The method of claim 18, further wherein the competitor binding
2 molecule is an artificial non antibody ligand of the antigen that competes with the reference
3 antibody for binding to the antigen.

1 31. The method of claim 18, wherein the competitor binding molecule is
2 an artificial non-antibody ligand of the target antigen that competes with the reference
3 antibody for binding to the target antigen.

1 32. The method of claim 18, wherein the responder molecule is an
2 enzyme.

1 33. An *in vivo* method of affinity maturation by auto-inhibited reactivation
2 to obtain a binding molecule that has an enhanced affinity for a target binding ensemble
3 member relative to a reference binding molecule, the method comprising:
4 (a) recombinantly altering a population of host cells by
5 (i) introducing into the host cells a competitor that binds to the target
6 binding ensemble member with the same specificity as a reference binding molecule;

1 34. The method of claim 33, wherein the reference binding molecule is an
2 antibody and the target binding ensemble member is an antigen to which the reference
3 antibody specifically binds.

1 35. The method of claim 34, further wherein the competitor is the
2 reference antibody.

1 36. The method of claim 35, further wherein the reference antibody is an
2 Fab fragment.

1 37. The method of claim 35, further wherein the reference antibody is a
2 single chain Fv (scFv).

1 38. The method of claim 34, further wherein the candidate binding
2 molecules are single chain Fvs.

1 39. The method of claim 34, further wherein the candidate binding
2 molecules are Fab fragments.

1 40. The method of claim 34, further wherein the candidate binding
2 molecules are single V-region domains.

1 41. The method of claim 33, wherein the candidate binding molecules are
2 scaffolded peptides.

1 42. The method of claim 33, wherein the candidate binding molecules are
2 mutagenized ligands.

1 43. The method of claim 34, further wherein the candidate binding
2 molecules are hybrid antibodies that have at least one CDR in a V_H or V_L that is different
3 from the reference antibody and is from a natural antibody repertoire.

1 44. The method of claim 43, wherein the hybrid antibodies have either a
2 V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural
3 antibody repertoire.

1 45. The method of claim 34, further wherein the competitor is a nonhuman
2 antibody and the candidate binding molecules comprise antibodies having at least one human
3 variable region.

1 46. The method of claim 34, further wherein the competitor is a scaffolded
2 peptide that competes with the reference antibody for binding to the antigen.

1 47. The method of claim 34, further wherein the competitor is an artificial
2 non-antibody ligand of the antigen that competes with the reference antibody for binding to
3 the antigen.

1 48. A method of affinity maturation by self-inhibited reactivation to obtain
2 a binding molecule that has a higher affinity for a target binding ensemble member than that
3 of a reference binding molecule, the method comprising:
4 (a) recombinantly altering a population of host cells by
5 (i) introducing into the host cells a competitor binding molecule that
6 binds to a target binding ensemble member with the same specificity as the reference binding
7 molecule,
8 (ii) introducing into the host cells a nucleic acid encoding an auto-
9 inhibited responder complex comprising a responder molecule linked to an inhibitor and to
10 the target binding ensemble member,

(b) incubating the host cells under conditions in which the competitor, the auto-inhibited responder-target binding ensemble member complex, and the reactivator library complex are expressed and where the responder molecule is activated when a candidate binding molecule binds to the target binding ensemble member; and

18 (c) detecting cells having a signal from the responder molecule that
19 corresponds to a candidate binding molecule affinity for the target binding ensemble member
20 that is greater than that of the reference binding molecule, thereby identifying a candidate
21 binding molecule with an enhanced affinity for the target binding ensemble member.

1 49. The method of claim 47, wherein the reference binding molecule is a
2 reference antibody and the target binding ensemble member is an antigen to which the
3 reference antibody specifically binds.

1 50. The method of claim 49, further wherein the competitor is the
2 reference antibody.

1 51. The method of claim 49, wherein the reference antibody is an Fab
2 fragment.

1 52. The method of claim 49, wherein the reference antibody is a single
2 chain Fv (scFv).

1 53. The method of claim 49, further wherein the candidate binding
2 molecules are single chain Fvs.

1 54. The method of claim 49, wherein the candidate binding molecules are
2 Fab fragments.

1 55. The method of claim 49, wherein the candidate binding molecules are
2 single V-region domains.

1 56. The method of claim 47, wherein the candidate binding molecules are
2 scaffolded peptides.

1 57. The method of claim 47, wherein the candidate binding molecules are
2 mutagenized natural ligands that specifically bind the target binding ensemble member.

1 58. The method of claim 49, further wherein the candidate binding
2 molecules are hybrid antibodies that have at least one CDR in a V_H or V_L that is different
3 from the reference antibody and is from a natural antibody repertoire.

1 59. The method of claim 58, wherein the hybrid antibodies have either a
2 V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural
3 antibody repertoire.

1 60. The method of claim 49, further wherein the reference antibody is a
2 nonhuman antibody and the candidate binding molecules are antibodies having at least one
3 human variable region.

1 61. The method of claim 49, further wherein the competitor is a natural
2 ligand of the target antigen that competes with the reference antibody for binding to the
3 antigen.

1 62. The method of claim 49, wherein the competitor is a natural ligand of
2 the antigen that competes with the reference antibody for binding to the antigen.