Решить симплексным методом с использованием дополнительных переменных следующие симметричные и двойственные к ним задачи линейного программирования:

$$a)\ max
ightarrow x_1 \ + \ x_2 \ x_1 \ - \ x_2 \le 1 \ 5x_1 + x_2 \le 1 \ x_j \ge 0, \ j = 1, 2.$$

Преобразуем задачу к каноническому виду. Добавим в левые части неравенств системы дополнительные переменные x_{2+1} , x_{2+2} . Получим каноническую задачу ЛП.

$$max < c, x >$$
 $< a_i, x > + x_{n+i} = b_i, i = 1, 2$
 $x_j \ge 0, j = 1, ..., 2 + 2$

Построим симплексную матрицу:

Пошаговая реализация симплекс-метода

Есть отрицательные оценки. Продолжаем процесс.

Принимаем k=1.

Строим
$$B_1^+ = \{i: i \in B, g_{i,1} > 0\} = \{3, 4\}$$

Поскольку построенное множество не пусто, выбираем $l \in B$:

$$\frac{\frac{x_{l}}{g_{l,1}} = min(\frac{x_{l}}{g_{l,1}}), i \in B_{1}^{+}}{\frac{x_{3}}{g_{3,1}} = \frac{1}{1}}$$

$$\frac{\frac{x_{4}}{g_{4,1}} = \frac{1}{5}}{3}$$

$$\Rightarrow l = 4$$

Переходим к новому базису $B' = B \setminus \{l\} + \{k\} = \{1, 3\}$. Пересчитаем симплексную таблицу:

Пошаговая реализация симплекс-метода

Есть отрицательные оценки. Базис не оптимален.

$$k = 2.$$

Строим
$$B_2^+ = \{i: i \in B, g_{i,2} > 0\} = \{1\}$$

Поскольку построенное множество не пусто, выбираем $l \in B$:

$$\Rightarrow l = 1$$

Переходим к новому базису $B' = B \setminus \{l\} + \{k\} = \{2, 3\}$. Пересчитаем симплексную таблицу:

Пошаговая реализация симплекс-метода

Нет отрицательных оценок. Базис оптимален.

Решением двойственной задачи будут оценки $y^* = (\Delta_{n+1}, \Delta_{n+2}) = (0, 1)$

Ответ:
$$x^* = (0, 1), f^* = 1, y^* = (0, 1).$$

$$b)\ max
ightarrow x_1 \ - \ 2x_2$$

$$x_1 + x_2 \leq 12$$

$$x_1 - x_2 \leq 8$$

$$x_j \ge 0, \ j = 1, 2.$$

			1	-2	0	0	
$A_{_{B}}$	$c_{_B}$	$x_{_B}$	1	2	3	4	$x_{i}/g_{i,k}$
3	0	12	1	1	1	0	12/1
4	0	8	1	-1	0	1	8/1
		0	-1	2	0	0	

Есть отрицательные оценки. Базис неоптимальный.

$$k = 1$$

Строим
$$\boldsymbol{B}_{1}^{+} = \{i: i \in \boldsymbol{B}, \boldsymbol{g}_{i,1} > 0\} = \{3, 4\}$$

Поскольку построенное множество не пусто, выбираем $l \in B$:

$$\frac{x_{i}}{g_{i,1}} = min(\frac{x_{i}}{g_{i,1}}), i \in B_{1}^{+}$$

$$\frac{x_{3}}{g_{3,1}} = \frac{12}{1}$$

$$\frac{x_{4}}{g_{4,1}} = \frac{8}{1}$$

 $\Rightarrow l = 4$ Переходим к новому базису $B' = B \setminus \{l\} + \{k\} = \{1, 3\}.$ Пересчитаем симплексную таблицу:

			1	-2	0	0	
A_{B}	$c_{_B}$	$x_{_B}$	1	2	3	4	
3	0	4	0	2	1	-1	
1	1	8	1	-1	0	1	
		8	0	1	0	1	

Итак, нет отрицательных оценок. Базис оптимален.
Ответ:
$$x^*=(8,0), \ f^*=8, \ y^*=(0,1).$$