CHAPTER 1 - SETS

Letter denoted by set:

N	Set of natural numbers	Z	Set of integers
Z^+	Set of all positive integers	$Z^{\scriptscriptstyle{-}}$	Set of –ve integers
Q	Set of all rational numbers	$Q^{\scriptscriptstyle{+}}$	Set of all positive rational numbers
R	Set of all real numbers	R^+	Set of all positive real numbers
С	Set of all complex numbers	\overline{Q} or T	Set of irrational numbers

Notations commonly used in sets

: (or) /	Such that	⊆	Proper subset
=	Equal sets	€	Element of
⊄	not subset of	≈	Equivalent sets
∉	Not an element of	D ,	Superset
U	Universal set	<pre></pre>	Null set
\subset	Subset	A' or A ^c	Compliment of a set A
n(A)	No. of element of set A	\cap	Intersection
\cup	Union	– (or) \	Difference of sets
Δ	Symmetric difference of sets		

Types of sets

1.	Null set	{ }
2.	Singleton set	{ 5 }
3.	Finite set	{1, 2, 3, , 100}
4.	Infinite set	{1, 2, 3, }
5.	Equivalent sets	n(A) = n(B)
6.	Equal sets	Elements of both the sets are same $(A = B)$
7.	Disjoint sets	Two or more sets having different elements

Subset: Consider the sets $A=\{1,2,3\}$ and $B=\{2,3\}$. Here every element of B is an element of A. \therefore B is known as subset of A, denoted by $B \subset A$ and A is known as super set of B, denoted by $A \supset B$.

Page

Note:

1. Number of subsets if a set has n elements = 2^n

2. $n[P(A)] = 2^n$ where n = n(A)

3. No. of proper subsets = $2^n - 1$

4. Every set is a subset of itself.

5. ♦ is a subset of every set.

6. If A and B are disjoint sets, a) $A \cap B = \emptyset$ b) $A - B \neq B - A$

7. The number of elements of a power set = No. of subsets.

No. of elements	No. of
of a set	subsets
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$
i i	:
n	2^n

E.g.:

1.
$$A = \phi$$

Subsets : ϕ

2.
$$A = \{ \phi \}$$

Subsets : $\{\phi\}, \phi$

3.
$$A = \{1, 2\}$$

Subsets: $\{1,2\},\{1\},\{2\},\phi$

4.
$$A = \{1, 2, \{3\}\}$$

Subsets : $\{1,2,\{3\}\}$ $\{1,2\}$, $\{1,\{3\}\}$, $\{2,\{3\}\}$, $\{1\}$, $\{2\}$, $\{\{3\}\}$, ϕ

5.
$$A = \{1, 2, 3, 4\}$$

Subsets : $\{1,2,3,4\}$, $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$, $\{2,3,4\}$, $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, ϕ

Power Set: Set of subsets is called power set. P(A) denotes power set of the set A.

E.g.:
$$A = \{\phi\}$$

Subsets $: \{\phi\}, \phi$

Power set of A, P(A) = $\{\{\phi\}, \phi\}$

Subset as intervals of R

Let a and b be any two real numbers. If a < b, then

 $\{x: x \in R, a < x < b\}$ is known as open interval a,b. It is denoted as (a,b).

ii. $\{x: x \in R, a \le x \le b\}$ is known as closed interval a,b. It is denoted as [a,b].

Graph:

iii. $\{x: x \in R, a \le x < b\}$ is known as semi-closed interval a,b. It is denoted as [a,b).

iv. $\{x: x \in R, a < x \le b\}$ is known as semi-open interval a,b. It is denoted as (a,b].

Infinite intervals

Set builder form	Roster form	Graph
$\{x: x \in R, -\infty < x < \infty\}$	$(-\infty,\infty)$	_∞
$\{x: x \in R, -\infty < x < 0\}$	$(-\infty, 0)$	0
$\{x: x \in R, -\infty < x \le 0\}$	$(-\infty,0]$	_∞ 0
$\{x: x \in R, 0 < x < \infty\}$	$(0,\infty)$	0
$\{x: x \in R, 0 \le x < \infty\}$	$[0,\infty)$	•

Symmetric Difference of Sets: If A and B are any two sets, then $A\Delta B = (A-B) \cup (B-A)$

Laws of Algebra for operations on sets:

1.
$$A \cup A = A$$
 $A \cap A = A$

[Idempotent Laws]

2.
$$A \cup \phi = A$$
 $A \cup U = U$

[Identity Laws]

$$A \cap \phi = \phi$$
 $A \cap U = A$

3.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

[Associative Laws]

4.
$$A \cup B = B \cup A$$

$$\mathsf{A} \cap \mathsf{B} = \mathsf{B} \cap \mathsf{A}$$

[Commutative Laws]

5.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

[Distributive Law]

6. De Morgan's Law

$$(A \cup B)' = A' \cap B'$$
 $(A \cap B)' = A' \cup B'$

$$(A \cap B)' = A' \cup B$$

7.
$$A \cup A' = U$$

$$A \cap A' = \phi$$

$$\phi' = U$$

$$U' = \phi$$

[Complement Laws]

8.
$$(A')' = A$$

[Involution Law or Double complement law]

9.
$$A \cap B' = A - B$$

10. If
$$A = B$$
 then $A \cup B = A \cap B$

11. If
$$B \subset A$$
, $(A - B) \cup B = A$

12. For any two finite sets A and B, not disjoint

•
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

•
$$n(A \cup B) = n(A-B) + n(B-A) + n(A \cap B)$$

•
$$n(A) = n(A-B) + n(A \cap B)$$

•
$$n(B) = n(B-A) + n(A \cap B)$$

13. If A and B are two disjoint sets then $n(A \cup B) = n(A) + n(B)$

14. If A, B and C are any three disjoint sets, then
$$n(A \cup B \cup C) = n(A) + n(B) + n(C)$$

15. If A, B and C are any three finite sets, not disjoint, then

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

Extra Formulae:

1.
$$n(A\Delta B) = n(A) + n(B) - 2 \times n(A \cap B)$$
.

2.
$$n(A-B)=n(A)-n(A\cap B)$$

3.
$$n(A-B) = n(A \cup B) - n(B)$$

4.
$$n(B-A) = n(B) - n(A \cap B)$$

5.
$$n(B-A) = n(A \cup B) - n(A)$$

6.
$$n(A^c) = n(U) - n(A)$$

7.
$$n(A^c \cap B^c) = n(A \cup B)^c = n(U) - n(A \cup B)$$

8.
$$n(A^c \cup B^c) = n(A \cap B)^c = n(U) - n(A \cap B)$$

9.
$$n(A \text{ only}) = n(A \cap B^c \cap C^c) = n(A) - [n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)]$$

Venn diagram

It is a pictorial representation of sets. It consists of two closed figures – a rectangle for universal set and circles or oval shaped circles for sets. It was introduced by two mathematicians John Venn and Euler. Hence it is known as Venn-Euler diagram or simply Venn diagram. The following are some examples:

If A and B are disjoint sets,

Multiple choice questions: Do it yourself

- 1. The number of proper subsets of the set $\{1,2,3\}$ is
 - a) 8
- b) 7

- d) 5
- 2. A,B and C are non-empty sets, then $(A-B)\cup(B-A)$ equals
 - a) $(A \cup B) B$ b) $A (A \cap B)$
- c) $(A \cup B) (A \cap B)$ d) $(A \cap B) \cup (A \cup B)$
- 3. In a class of 100 students, 55 students have passed in Mathematics and 67 students have passed in Physics. Then the number of students who have passed in Physics only is
 - a) 22
- b) 33

c) 10

- d) 45
- 4. Out of 800 boys in a school, 224 played cricket, 240 played hockey and 336 played basket ball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is

collection				
collection				
collection				
collection				
13. The smallest A such that $A \cup \{1,2\} = \{1,2,3,5,9\}$ is?				
ments in $A \cup B$?				

SET ASSIGNMENT 1

1. Describe the following sets by roster method:

i.
$$\{x: 25x^2 + 30x + 7 = 0, x \in Q\}$$

iv.
$$\{x: x^2 + x + 1 = 0, x \in C\}$$

v. $\{x: |x| < 3, x \in Z\}$

ii.
$$\{x: 7x+9 < 55, x \in N\}$$

v.
$$\{x : |x| < 3, x \in Z\}$$

iii.
$$\{x: |x| = 4, x^2 + 16 = 0, x \in N\}$$

2. Describe the following sets by property method:

ii.
$$\left\{\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \frac{1}{12}\right\}$$

3. Which of the following sets are null sets:

i.
$$A = \{x : x < 1 \text{ and } x > 3\}$$

ii.
$$B = \{x : x^2 = 9 \text{ and } 3x = 7\}$$

iii.
$$C = \{x : x^2 - 1 = 0, x \in R\}$$

iv.
$$D = \{x : x \text{ is an even prime number}\}$$

4. Which of the following are singleton sets:

i.
$$A = \{x : 3x - 2 = 0, x \in Q\}$$

ii.
$$B = \{x : x^3 - 1 = 0, x \in R\}$$

iii.
$$C = \{x: 30x - 59 = 0, x \in N\}$$

iv.
$$D = \{x : |x| = 1, x \in Z\}$$

5. Write all the proper subsets of the set $\{-1,3,4\}$.

6. If
$$A = \{3,6,8,15,19\}$$
 and $B = \{1,2,6,8,14,15\}$, then verify that $A \triangle B = (A \cup B) - (A \cap B)$.

7. If
$$A = \{x : x^3 - 1 = 0\}$$
, $B = \{x : x^2 + x + 1 = 0\}$ find $A \cap B$ when x is a (i) real number (ii) complex number.

8. Write the following intervals in set builder form:

a)
$$[-2,3)$$

c)
$$(-1, 3)$$

9. Write the following intervals in the roster form:

a)
$$\{x: x \in R, -2 < x < 0\}$$

b)
$$\{x: x \in R, 2 \le x < 4\}$$
 c) $\{x: x \in R, 2 < x \le 4\}$

c)
$$\{x : x \in R \mid 2 < x < 4\}$$

d)
$$\{x: x \in R, -3 \le x \le 5\}$$

10. If $U = \{1,2,3,4,5,6,7,8,9\}$; $A = \{1,2,3\}$; $B = \{2,3,5\}$; $C = \{3,5,7\}$, then prove that:

i)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

ii)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

11. Using the above sets, find the following questions:

i)
$$A-(B\cup C)'$$

ii)
$$A \cap (B \cap C)'$$

- d) 32.

13. If A and B are two given sets, then $A \cap (A \cap B)^c$ is equal to

- a) A
- b) B
- c) $(A \cap B)^c$ d) ϕ

14. If A = {1,2,3,4} and B={3,4,5,6}, then shows that $n(A\triangle B) = n(A) + n(B) - 2n(A \cap B)$.

15. Draw the Venn diagrams for the following sets:

- a) $A-(B\cup C)'$
- b) $A \cup (B \cap C)$
- c) $A \cap (B \cup C)$
- d) $(A \cup B) (A \cap B)$.