# **Analysis Report**

This report is designed to investigate the patterns of a dataset and is structured as follows.

## **Contents**

|   | Descriptives                |    |
|---|-----------------------------|----|
|   | Missing Value analysis      |    |
|   | Outlier analysis            | Ro |
|   | Exploratory Factor Analysis | :5 |
|   | References                  | 1  |
| S | AMPLE REPORT                |    |

### **Descriptives**

The table below shows the Means, standard deviations, skewness of each variable under study, along with the sample size (N). Skewness and Kurtosis can be used to examine the normality of variables (variables that follow a normal distribution). Both values should remain between -1 and 1 to indicate normality (Hair et al., 2014). As can be seen in the table below, most values are within these thresholds, which indicates no substantial departs from normality. Only two variables show values slightly outside this range.

Descriptive Statistics

| Descriptive Statistics                                                                                              |     |      |                   |          | <i>&gt;</i> |  |
|---------------------------------------------------------------------------------------------------------------------|-----|------|-------------------|----------|-------------|--|
|                                                                                                                     | N   | Mean | Std.<br>Deviation | Skewness | Kurtosis    |  |
| I am aware of this brand.                                                                                           | 188 | 3.68 | 1.125             | -0.664   | -0.303      |  |
| I can recognize this brand among competing brands.                                                                  | 188 | 3.74 | 1.152             | -0.854   | 0.007       |  |
| I know what this brand looks like.                                                                                  | 188 | 3.80 | 1.089             | -0.982   | 0.457       |  |
| The person has a good match with the brand.                                                                         | 188 | 3.94 | 0.879             | -0.985   | 1.224       |  |
| The compatibility between the person and the brand is high.                                                         | 188 | 3.86 | 0.951             | -0.953   | 0.873       |  |
| The alignment between the person and the brand is high.                                                             | 188 | 3.88 | 0.866             | -0.610   | 0.121       |  |
| The person and the brand/product have a high fit.                                                                   | 188 | 3.88 | 0.832             | -0.622   | 0.344       |  |
| I will recommend the product to other people.                                                                       | 188 | 3.58 | 1.170             | -0.630   | -0.468      |  |
| I will say positive things about the product to other people.                                                       | 188 | 3.69 | 1.019             | -0.607   | -0.154      |  |
| I will encourage friends and relatives to buy the product.                                                          | 188 | 3.54 | 1.190             | -0.580   | -0.521      |  |
| This person makes me feel comfortable as if I am with a friend I see this person as a natural, down-to-earth person | 185 | 3.96 | 0.896             | -0.878   | 0.669       |  |
| I look forward to watching this person in his/her next video.                                                       | 185 | 3.88 | 0.913             | -0.628   | -0.096      |  |
| If this person appeared in a video on another channel, I would watch or read his/her post.                          | 185 | 3.92 | 0.902             | -0.737   | 0.349       |  |
| This person seems to understand the kind of things I want to know.                                                  | 185 | 3.84 | 0.968             | -1.024   | 1.152       |  |
| If I saw a story about this person in a newspaper or magazine, I would read it.                                     | 185 | 4.04 | 0.846             | -1.063   | 1.500       |  |
| I miss seeing this person when he/she is ill or on vacation.                                                        | 184 | 3.46 | 1.205             | -0.522   | -0.666      |  |
| I want to meet this person in real life.                                                                            | 184 | 3.74 | 1.060             | -0.659   | -0.160      |  |
| I feel sorry for this person when he/she makes a mistake.                                                           | 184 | 3.66 | 0.985             | -0.552   | -0.160      |  |
| I find this person attractive.                                                                                      | 184 | 3.85 | 1.024             | -0.803   | 0.419       |  |
| I will wait for the product to be promoted again                                                                    | 177 | 3.53 | 1.103             | -0.618   | -0.312      |  |
| I will buy the product from the promoted brand's website or store                                                   | 177 | 3.55 | 1.138             | -0.682   | -0.198      |  |
| I will wait for the product to be promoted by other influencers                                                     | 179 | 3.28 | 1.272             | -0.390   | -0.921      |  |
| In the medium term (less than 1 year)                                                                               | 179 | 3.47 | 1.177             | -0.639   | -0.385      |  |

| In the long term (more than 1 year)                                               | 178 | 3.46  | 1.135  | -0.637 | -0.325 |
|-----------------------------------------------------------------------------------|-----|-------|--------|--------|--------|
| What is the probability that you will purchase online from the same person again? | 176 | 61.41 | 26.303 | -0.477 | -0.579 |

Besides the variables that were measured on continuous scales, two additional variables were categorical. The following tables show the descriptive statistics of these variables.

#### Was it a sponsored Ad?

|         |              | Frequency | Percent | Valid Percent | Cumulative Percent |
|---------|--------------|-----------|---------|---------------|--------------------|
| Valid   | I don't know | 16        | 8.5%    | 8.6%          | 8.6%               |
|         | No           | 36        | 19.1%   | 19.3%         | 27.8%              |
|         | Yes          | 135       | 71.8%   | 72.2%         | 100.0%             |
|         | Total        | 187       | 99.5%   | 100.0%        |                    |
| Missing |              | 1         | 0.5%    | ~?            |                    |
| Total   |              | 188       | 100.0%  | 3             |                    |

## You were born between 1996 and 2002

|       |       | Frequency | Percent | Valid Percent | Cumulative Percent |
|-------|-------|-----------|---------|---------------|--------------------|
| Valid | No    | 75        | 39.9%   | 39.9%         | 39.9%              |
|       | Yes   | 113       | 60.1%   | 60.1%         | 100.0%             |
| -     | Total | 188       | 100.0%  | 100.0%        |                    |

Most of the sample (71.8%) saw a sponsored Ad and was born between 1996 and 2002 (60.1%).

#### **Missing Value analysis**

This section aims at analysing the amount of missing data present in the sample. The figure below shows a summary of missing values. Only 18 participants (9.6%) showed blank responses to at least one variable. 15 of the 25 variables had complete answers for all participants, while 10 variables showed missing values. In terms of all the cells present in the data, 98.02% of them were filled.



The table below shows the patterns of missing data per variable. The variable with the greatest number of missing cases was 'RB3\_1' (6.4% of missing cases). Only one other variable (RP2) showed more than 5% of missing cases. With this small amount of missing values, it is very unlikely that there will be any distortion on the results if any imputation method is used, such as replacing the blank values by the mean of the variables (Fowler, 2009).

Univariate Statistics

|      | N   | M      | Gri De latie   | Missing |         |  |
|------|-----|--------|----------------|---------|---------|--|
|      | N   | N Mean | Std. Deviation | Count   | Percent |  |
| BA1  | 188 | 3.68   | 1.125          | 0       | 0.0%    |  |
| BA2  | 188 | 3.74   | 1.152          | 0       | 0.0%    |  |
| BA3  | 188 | 3.80   | 1.089          | 0       | 0.0%    |  |
| IBC1 | 188 | 3.94   | 0.879          | 0       | 0.0%    |  |
| IBC2 | 188 | 3.86   | 0.951          | 0       | 0.0%    |  |
| IBC3 | 188 | 3.88   | 0.866          | 0       | 0.0%    |  |

| IBC4  | 188 | 3.88  | 0.832  | 0  | 0.0% |
|-------|-----|-------|--------|----|------|
| WOM1  | 188 | 3.58  | 1.170  | 0  | 0.0% |
| WOM2  | 188 | 3.69  | 1.019  | 0  | 0.0% |
| WOM3  | 188 | 3.54  | 1.190  | 0  | 0.0% |
| IFR1  | 185 | 3.96  | 0.896  | 3  | 1.6% |
| IFR2  | 185 | 3.88  | 0.913  | 3  | 1.6% |
| IFR3  | 185 | 3.92  | 0.902  | 3  | 1.6% |
| IFR4  | 185 | 3.84  | 0.968  | 3  | 1.6% |
| IFR5  | 185 | 4.04  | 0.846  | 3  | 1.6% |
| IFR6  | 184 | 3.46  | 1.205  | 4  | 2.1% |
| IFR7  | 184 | 3.74  | 1.060  | 4  | 2.1% |
| IFR8  | 184 | 3.66  | 0.985  | 4  | 2.1% |
| IFR9  | 184 | 3.85  | 1.024  | 4  | 2.1% |
| OPI1  | 177 | 3.53  | 1.103  | 11 | 5.9% |
| OPI2  | 177 | 3.55  | 1.138  | 11 | 5.9% |
| OPI3  | 179 | 3.28  | 1.272  | 9  | 4.8% |
| RP1   | 179 | 3.47  | 1.177  | 9  | 4.8% |
| RP2   | 178 | 3.46  | 1.135  | 10 | 5.3% |
| RB3_1 | 176 | 61.41 | 26.303 | 12 | 6.4% |
|       |     |       |        |    |      |

#### **Outlier analysis**

An additional assumption of many statistical methods is that there are no significant multivariate outliers in the data, which might distort the models. A pragmatic approach to identify outliers is suggested by Hair et al. (2014): Mahalanobis distances. These are calculated for the variables to be entered on the multiple regression analysis and their results are divided by the number of variables. When sample sizes are large (100+), coefficients above 3.5 or 4.0 can be considered outliers (Hair et al., 2014). In this study, the highest value was 3.56. Since the sample size for the Mahalanobis calculation was 173, it can be concluded that there are no extreme values in the data that would need to be deleted.

### **Exploratory Factor Analysis**

Factor analysis (FA) is a technique used to identify underlying factors present in the pattern of correlations among a set of measures. Where there is a large set of measures, factor analysis can determine whether there are subsets of items forming separate scales (Blaikie, 2008). This procedure can yield very useful results, making a further analysis

more profound and easier to interpret. What should be noted, however, is that the technique makes no reference to the conceptual meaning of a factor. This should be assessed by the researcher when looking at the empirical associations given by FA (Babbie, 1990). When the goal of the analysis is to look at the patterns of correlations among the variables, then the appropriate technique is Principal Component Analysis (PCA) (Tabachnick and Fidell, 2014).

Principal Component Analysis was performed on each scale to examine the factor structure underlying the data. Two assumptions were tested before proceeding to the analysis: the sampling adequacy and the test of Sphericity. Pallant (2010) states that the *Kaiser-Meyer-Olkin* (KMO) measure of sampling adequacy should be higher than 0.600, while *Barlett's* test of sphericity should indicate a significant value (p < .05). The test indicated no violation of these assumptions, since KMO's coefficient was 0.906 and *Barlett's* test was highly significant (p < .001) (table below).

#### KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |    |                    |          |  |  |
|--------------------------------------------------|----|--------------------|----------|--|--|
|                                                  | 40 | Approx. Chi-Square | 2370.662 |  |  |
| Bartlett's Test of Sphericity                    |    | df                 | 276      |  |  |
|                                                  |    | Sig.               | 0.000    |  |  |

A possible number of factors on the data structure was examined using the 'Eigenvalue higher than 1' criteria suggested by Hair et al. (2014). The table below shows the output of SPSS with respect to eigenvalues. The four components showed eigenvalues larger than 1.000, which suggests that a solution with 4 components would be suitable.

Total Variance Explained

| 1 of the Variative Explained |                     |               |            |         |                            |            |        |                          |            |  |
|------------------------------|---------------------|---------------|------------|---------|----------------------------|------------|--------|--------------------------|------------|--|
|                              | Initial Eigenvalues |               |            | Extra   | Extraction Sums of Squared |            |        | Rotation Sums of Squared |            |  |
| Component                    |                     | ilitiai Eigei | ivalues    |         | Loadings                   |            |        | Loadings                 |            |  |
| Component                    |                     | % of          | Cumulative | Total   | % of                       | Cumulative | TT . 1 | % of                     | Cumulative |  |
|                              | Total               | Variance      | %          | % Total | Variance                   | %          | Total  | Variance                 | %          |  |
| 1                            | 9.682               | 40.340        | 40.340     | 9.682   | 40.340                     | 40.340     | 4.733  | 19.721                   | 19.721     |  |
| 2                            | 1.831               | 7.630         | 47.970     | 1.831   | 7.630                      | 47.970     | 3.216  | 13.399                   | 33.119     |  |
| 3                            | 1.681               | 7.003         | 54.973     | 1.681   | 7.003                      | 54.973     | 3.038  | 12.657                   | 45.777     |  |
| 4                            | 1.488               | 6.198         | 61.171     | 1.488   | 6.198                      | 61.171     | 2.700  | 11.250                   | 57.027     |  |
| 5                            | 0.989               | 4.120         | 65.291     | 0.989   | 4.120                      | 65.291     | 1.716  | 7.151                    | 64.177     |  |
| 6                            | 0.868               | 3.618         | 68.909     | 0.868   | 3.618                      | 68.909     | 1.135  | 4.731                    | 68.909     |  |
| 7                            | 0.765               | 3.187         | 72.095     |         |                            |            |        |                          |            |  |
| 8                            | 0.733               | 3.056         | 75.152     |         |                            |            |        |                          |            |  |
|                              |                     |               |            |         |                            |            |        |                          |            |  |

| 9  | 0.715 | 2.978 | 78.129  |
|----|-------|-------|---------|
| 10 | 0.697 | 2.903 | 81.033  |
| 11 | 0.569 | 2.371 | 83.404  |
| 12 | 0.489 | 2.039 | 85.443  |
| 13 | 0.435 | 1.814 | 87.257  |
| 14 | 0.408 | 1.701 | 88.958  |
| 15 | 0.378 | 1.576 | 90.535  |
| 16 | 0.348 | 1.451 | 91.986  |
| 17 | 0.324 | 1.351 | 93.337  |
| 18 | 0.310 | 1.293 | 94.629  |
| 19 | 0.265 | 1.104 | 95.733  |
| 20 | 0.238 | 0.994 | 96.727  |
| 21 | 0.224 | 0.932 | 97.659  |
| 22 | 0.214 | 0.891 | 98.551  |
| 23 | 0.182 | 0.757 | 99.307  |
| 24 | 0.166 | 0.693 | 100.000 |

Extraction Method: Principal Component Analysis.

Following the indication from the eigenvalue criteria, an initial factor solution with four components was generated. The table below shows the factor loadings after a Varimax factor rotation. Factor loadings higher than 0.400 are highlighted.

Rotated Component Matrix<sup>a</sup>

|      | 0     | Comp  | onent |       |
|------|-------|-------|-------|-------|
|      | 1.0   | 2     | 3     | 4     |
| BA1  | 0.207 | 0.138 | 0.169 | 0.834 |
| BA2  | 0.220 | 0.192 | 0.148 | 0.826 |
| BA3  | 0.183 | 0.157 | 0.138 | 0.849 |
| IBC1 | 0.204 | 0.204 | 0.708 | 0.111 |
| IBC2 | 0.198 | 0.226 | 0.761 | 0.066 |
| IBC3 | 0.185 | 0.163 | 0.787 | 0.104 |
| IBC4 | 0.154 | 0.143 | 0.766 | 0.170 |
| WOM1 | 0.741 | 0.118 | 0.340 | 0.223 |
| WOM2 | 0.617 | 0.177 | 0.419 | 0.172 |
| WOM3 | 0.754 | 0.159 | 0.217 | 0.158 |
| IFR1 | 0.174 | 0.524 | 0.247 | 0.166 |
| IFR2 | 0.338 | 0.603 | 0.150 | 0.217 |
| IFR3 | 0.128 | 0.586 | 0.413 | 0.171 |
| IFR4 | 0.378 | 0.496 | 0.203 | 0.242 |
| IFR5 | 0.083 | 0.512 | 0.333 | 0.166 |
| IFR6 | 0.438 | 0.640 | 0.028 | 0.051 |
| IFR7 | 0.161 | 0.748 | 0.129 | 0.005 |
| IFR8 | 0.205 | 0.612 | 0.086 | 0.006 |
| IFR9 | 0.178 | 0.614 | 0.105 | 0.172 |
| OPI1 | 0.640 | 0.367 | 0.066 | 0.327 |
| OPI2 | 0.673 | 0.203 | 0.220 | 0.211 |
| OPI3 | 0.687 | 0.360 | 0.112 | 0.134 |
| RP1  | 0.751 | 0.304 | 0.118 | 0.094 |
| RP2  | 0.768 | 0.219 | 0.075 | 0.026 |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

The solution suggest that one factor would be composed by WOM, OPI and RP indicators, a second factor would be formed by IFR indicators, a third factor would be formed by IBC and, finally, items representing BA would form the last factor. This solution suggests that BA and IBC are factors that are substantially uncorrelated with other factors, while other factors (such as WOM, OPI and RP) are correlated.

In order to test a solution with six components (factors), which would match the theoretically expected number of factors of the study, a second solution was executed and is shown in the table below.

Rotated Component Matrix<sup>a</sup>

|      |       |       | Comp  | onent | (2)    |        |
|------|-------|-------|-------|-------|--------|--------|
|      | 1     | 2     | 3     | 4     | 5      | 6      |
| BA1  | 0.199 | 0.176 | 0.090 | 0.840 | 0.127  | -0.025 |
| BA2  | 0.209 | 0.142 | 0.186 | 0.827 | 0.041  | 0.090  |
| BA3  | 0.174 | 0.133 | 0.132 | 0.851 | 0.060  | 0.074  |
| IBC1 | 0.192 | 0.714 | 0.157 | 0.116 | 0.138  | 0.035  |
| IBC2 | 0.191 | 0.728 | 0.154 | 0.067 | 0.049  | 0.389  |
| IBC3 | 0.171 | 0.801 | 0.138 | 0.110 | 0.126  | -0.047 |
| IBC4 | 0.141 | 0.769 | 0.119 | 0.174 | 0.081  | 0.045  |
| WOM1 | 0.728 | 0.361 | 0.169 | 0.228 | 0.007  | -0.077 |
| WOM2 | 0.603 | 0.446 | 0.217 | 0.177 | 0.067  | -0.132 |
| WOM3 | 0.737 | 0.253 | 0.261 | 0.161 | 0.000  | -0.216 |
| IFR1 | 0.146 | 0.277 | 0.665 | 0.158 | 0.055  | -0.180 |
| IFR2 | 0.319 | 0.135 | 0.675 | 0.207 | 0.019  | 0.248  |
| IFR3 | 0.120 | 0.368 | 0.487 | 0.168 | 0.159  | 0.513  |
| IFR4 | 0.361 | 0.180 | 0.556 | 0.233 | -0.029 | 0.319  |
| IFR5 | 0.098 | 0.310 | 0.138 | 0.186 | 0.606  | 0.317  |
| IFR6 | 0.429 | 0.039 | 0.575 | 0.055 | 0.312  | 0.030  |
| IFR7 | 0.148 | 0.139 | 0.692 | 0.006 | 0.341  | 0.019  |
| IFR8 | 0.219 | 0.110 | 0.234 | 0.033 | 0.805  | -0.103 |
| IFR9 | 0.176 | 0.099 | 0.458 | 0.178 | 0.384  | 0.159  |
| OPI1 | 0.637 | 0.082 | 0.271 | 0.338 | 0.282  | -0.027 |
| OPI2 | 0.679 | 0.203 | 0.052 | 0.223 | 0.193  | 0.274  |
| OPI3 | 0.687 | 0.131 | 0.233 | 0.149 | 0.334  | -0.041 |
| RP1  | 0.748 | 0.108 | 0.264 | 0.099 | 0.087  | 0.223  |
| RP2  | 0.775 | 0.043 | 0.122 | 0.032 | 0.067  | 0.413  |

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Similar to what was observed in the four-factor solution, items related to BA, IBC and IFR are loading on single factors (which would be expected), while items related to WOM, OPI and RP are still forming a unique construct/factor due to being correlated. The two additional factors (factors 5 and 6) have few sparse items with loadings higher than 0.400, which do not tell much about other factors that might be present in the data.

a. Rotation converged in 9 iterations.

SAMPLE REPORT. Rafael Data Analysis Portholio

### **Correlation**

The correlation matrix is shown in the last page of this document. It contains Pearson's correlation coefficient (r), statistical significance (p) and sample size (N). The following thresholds for statistical association can be considered when examining Pearson's coefficients:

- Small (weak) r=.10 to .29
- Medium (moderate) r=.30 to .49
- large (strong) r=.50 to 1.0

### **References**

- Babbie, E., 1990. Survey Research Methods, 2nd ed. Wadsworth Publishing Company, Belomnd, California.
- Blaikie, N., 2008. Analyzing quantitative data, First. ed. SAGE Publications, London, UK.
- Fowler, F.J., 2009. Survey Research Methods, 4th ed. ed. SAGE Publications.
- Hair, J.F., Black, W., Babin, B., Anderson, R., 2014. Multivariate data analysis, Seventh. ed. Pearson Education, Inc., Edinburgh.
- Pallant, J., 2010. SPSS Survival Manual, 4th ed. McGraw-Hill, Berkshire, England.
- Tabachnick, B.G., Fidell, L.S., 2014. Using multivariate statistics / Barbara G. Tabachnick, Linda S. Fidell.

Correlations

WOM2 r 0.389 0.355 0.307 0.350 0.396 0.478 0.481

IFR3 r 0.296 0.334 0.324 0.407 0.511 0.412 0.341

IFR2 r 0.313 0.418 0.329 0.272 0.348 0.332 0.332

IFR1 r 0.305 0.267 0.252 0.357 0.302 0.326

N 188

N 188

N 185

N 185

N 185

WOM3 r 0.348 0.368 0.334 0.393 0.286

p 0.000 0.000 0.000 0.000 0.000 0.000

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p 0.000 0.000 0.001 0.000 0.000 0.000 0.000

p 0.000 0.000 0.000 0.000 0.000 0.000

p 0.000 0.000 0.000 0.000 0.000 0.000

185 185

IFR4 r 0.344 0.375 0.385 0.305 0.407 0.355 0.322 0.443 0.397 0.410 0.418 0.569 0.502

0.355

0.716

0.000

0.751

0.000

0.340

0.000

0.387

0.000

0.390 0.379

0.000 0.000

0.632

0.000

0.400

0.000

0.439

0.000

0.342

0.000

0.425

0.000 0.000

0.308 0.399 0.516

0.000 0.000 0.000

0.426

1 0.342 0.425

1 0.426

0.399

0.308

185 185

0.410 0.216

0.474 0.361

0.267

0.302

| Correlations     |   |           |       |                                         |       |       |       |       |       |       |       |       |       |               |       |       |       |       |       |       |       |       |       |       |       |       |
|------------------|---|-----------|-------|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  |   | BA1       | BA2   | BA3                                     | IBC1  | IBC2  | IBC3  | IBC4  | WOM1  | WOM2  | WOM3  | IFR1  | IFR2  | IFR3          | IFR4  | IFR5  | IFR6  | IFR7  | IFR8  | IFR9  | OPI1  | OPI2  | OPI3  | RP1   | RP2   | RB3_1 |
| BA1              | r | 1         | 0.703 | 0.695                                   | 0.284 | 0.247 | 0.305 | 0.291 | 0.414 | 0.389 | 0.348 | 0.305 | 0.313 | 0.296         | 0.344 | 0.312 | 0.208 | 0.201 | 0.225 | 0.266 | 0.471 | 0.366 | 0.333 | 0.302 | 0.255 | 0.300 |
|                  | р |           | 0.000 | 0.000                                   | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.005 | 0.006 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
|                  | Ν | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| BA2              | r | 0.703     | 1     | 0.709                                   | 0.318 | 0.283 | 0.236 | 0.325 | 0.422 | 0.355 | 0.368 | 0.267 | 0.418 | 0.334         | 0.375 | 0.301 | 0.349 | 0.241 | 0.158 | 0.265 | 0.456 | 0.400 | 0.341 | 0.294 | 0.286 | 0.300 |
|                  | р | 0.000     |       | 0.000                                   | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.000 | 0.001 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                  | Ν | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| BA3              | r | 0.695     | 0.709 | 1                                       | 0.262 | 0.251 | 0.281 | 0.299 | 0.388 | 0.307 | 0.334 | 0.252 | 0.329 | 0.324         | 0.385 | 0.233 | 0.252 | 0.171 | 0.196 | 0.318 | 0.441 | 0.389 | 0.292 | 0.334 | 0.215 | 0.241 |
|                  | р | 0.000     | 0.000 |                                         | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000         | 0.000 | 0.001 | 0.001 | 0.020 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.001 |
|                  | Ν | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| IBC1             | r | 0.284     | 0.318 | 0.262                                   | 1     | 0.598 | 0.553 | 0.488 | 0.439 | 0.350 | 0.393 | 0.357 | 0.272 | 0.407         | 0.305 | 0.310 | 0.275 | 0.310 | 0.297 | 0.235 | 0.353 | 0.358 | 0.273 | 0.348 | 0.258 | 0.328 |
|                  | р | 0.000     | 0.000 | 0.000                                   |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
|                  | N | 188       | 188   | 188                                     | 188   | 188   |       | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| IBC2             | r | 0.247     | 0.200 | 0.251                                   | 0.598 | 1     | 0.557 | 0.580 | 0.407 | 0.396 | 0.286 | 0.302 | 0.348 | 0.511         | 0.407 | 0.326 |       |       | 0.228 | 0.308 | 0.200 | 0.424 | 0 0   | 0.385 | 0.335 | 0.282 |
|                  | р | 0.001     | 0.000 | 0.001                                   | 0.000 | 0     | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.000 |       | 0.002 |       | 0.000 | 0.000 |       | 0.000 | 0.000 | 0.000 |
|                  | N | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| IBC3             | r | 0.000     | 0.200 | 0.281                                   | 0.553 | 0.557 | 1     | 0.633 | 0.408 | 0.478 | 0.355 | 0.326 | 0.00- | •··· <b>-</b> |       | J.J.  |       |       |       |       | 0.350 |       | 0.369 | 0.312 |       | 0.317 |
|                  | р | 0.000     |       |                                         | 0.000 |       |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.00- | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                  | N | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   |       | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| IBC4             | r |           |       |                                         |       | 0.580 |       | 1     | 0.361 | 0.481 | 0.302 |       |       | 0.341         |       |       | 0.269 |       |       |       | 0.200 |       |       | 0.243 |       |       |
|                  | р |           |       |                                         |       | 0.000 |       |       | 0.000 | 0.000 | 0.000 |       | 0.000 | 0.000         |       |       |       |       |       |       |       |       | 0.000 |       | 0.012 |       |
|                  | N | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| WOM <sup>2</sup> |   | • • • • • |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.439 |       | 0.408 | 0.361 | 1     | 0.716 | 0.751 | 0.340 | 0.00. | 0.390         |       |       |       | 0.314 |       |       | 0.548 |       | 0.000 | 0.610 | 0.589 | 0.584 |
|                  | р |           |       |                                         |       | 0.000 |       | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                  | N | 188       | 188   | 188                                     | 188   | 188   | 188   | 188   | 188   | 188   | 188   | 185   | 185   | 185           | 185   | 185   | 184   | 184   | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |

1 0.632 0.400 0.439 0.379 0.397 0.377 0.382 0.325 0.276 0.342 0.522 0.515 0.534 0.495 0.490 0.558

 $0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.00$ 

0.300

 $0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000$ 

1 0.516 0.569 0.323 0.530 0.489 0.275 0.395 0.495 0.402 0.464 0.452 0.444

 $0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000$ 

1 0.502 0.482 0.334 0.448 0.280 0.436 0.333 0.335 0.333 0.382 0.395 0.339

 $0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000$ 

1 0.314 0.491 0.380 0.262 0.328 0.502 0.412 0.481 0.487 0.461 0.485

0.418 0.289 0.365 0.384 0.291 0.338 0.396 0.292 0.336 0.389 0.168

 $0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000 \ \ 0.000$ 

0.287

0.543

177 177

0.511

179 179

0.586

0.580

|        | n (   | 000   | 0.000 | 0.000 | 0.000   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |       | 0.000 | 0.000 | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|--------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | N C   | 185   | 185   | 185   | 185     | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   |       | 184   | 184          | 184   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| IFR5   | r C   |       |       |       |         |       |       |       | 0.318 |       |       | _     |       |       |       |       |       | 0.335        |       |       |       |       |       |       |       | 0.248 |
| _      | -     |       |       |       |         |       |       |       | 0.000 |       | U-7-7 |       |       | -     |       | '     |       | 0.000        | -     |       |       |       |       | -     |       | 0.240 |
|        | N     | 185   | 185   | 185   | 185     | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   |       |              | 184   | 184   |       |       | 179   | 179   | 178   | 176   |
| IFR6   | r (   |       |       |       |         |       |       | 0.269 | 0.437 |       |       |       |       |       |       |       |       | 0.565        |       |       |       |       |       |       |       | 0.525 |
|        |       |       |       |       |         |       |       |       | 0.000 |       |       |       |       |       |       |       |       |              |       |       |       |       |       |       |       | 0.0-0 |
|        | N     | 184   | 184   |       | 184     | 184   |       |       |       | 184   |       | 184   |       |       |       |       | 184   | 183          |       |       |       |       | 178   | 178   | 177   | 175   |
| IFR7   | r C   |       |       |       |         |       |       | 0.267 |       |       |       | 0.384 |       |       |       | 0.335 |       |              |       |       | 0.360 |       |       |       |       | 0.386 |
|        | p C   | 0.006 | 0.001 | 0.020 | 0.000   | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |              | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|        | N     | 184   | 184   | 184   | 184     | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 183   | 184          | 183   | 183   | 176   | 176   | 178   | 178   | 177   | 175   |
| IFR8   | r C   | ).225 | 0.158 | 0.196 | 0.297   | 0.228 | 0.294 | 0.159 | 0.261 | 0.276 | 0.300 | 0.291 | 0.275 | 0.280 | 0.262 | 0.410 | 0.469 | 0.411        | 1     | 0.360 | 0.414 | 0.290 | 0.439 | 0.293 | 0.263 | 0.321 |
|        | p (   | 0.002 | 0.032 | 0.008 | 0.000   | 0.002 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000        |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|        | N     | 184   | 184   | 184   | 184     | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 183          | 184   | 183   | 176   | 176   | 178   | 178   | 177   | 175   |
| IFR9   | r C   | 0.266 | 0.265 | 0.318 | 0.235   | 0.308 | 0.204 | 0.287 | 0.312 | 0.342 | 0.287 | 0.338 | 0.395 | 0.436 | 0.328 | 0.310 | 0.361 | 0.442        | 0.360 | 1     | 0.420 | 0.296 | 0.413 | 0.402 | 0.277 | 0.277 |
|        | p (   | 0.000 | 0.000 | 0.000 | 0.001   | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|        | N     | 184   | 184   | 184   | 184     | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 184   | 183   | 183          | 183   | 184   | 177   | 177   | 179   | 179   | 178   | 176   |
| OPI1   | r C   | 0.471 | 0.456 | 0.441 | 0.353   | 0.285 | 0.350 | 0.280 | 0.548 | 0.522 | 0.543 | 0.396 | 0.495 | 0.333 | 0.502 | 0.297 | 0.466 | 0.360        | 0.414 | 0.420 | 1     | 0.588 | 0.704 | 0.629 | 0.495 | 0.559 |
|        | p C   | 0.000 | 0.000 | 0.000 | 0.000   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000        | 0.000 | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|        |       | 177   | 177   | 177   |         | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 177   |       | 177   |       | 176   |              | 176   | 177   |       | 176   | 177   | 177   | 176   | 174   |
| OPI2   |       |       |       | -     | 0.358   |       |       | 0.380 | 0.547 | 0.515 |       | 0.292 |       |       | -     |       | -     |              |       |       |       | 1     | 0.557 |       |       | 0.619 |
|        | p (   | 0.000 | 0.000 |       | 0.000   |       |       | 0.000 | 0.000 |       |       |       |       |       |       |       |       |              |       | 0.000 |       |       |       | 0.000 |       | 0.000 |
|        |       | 177   | 177   | 177   | 177     | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 177   | 176   | 176          | 176   | 177   | 176   | 177   | 177   | 177   | 176   | 174   |
| OPI3   |       |       |       | 7     |         |       | 0.369 |       | 0.596 | 0.534 |       |       |       |       |       |       |       | 0.326        |       |       |       |       | 1     |       | 0.518 | 0.505 |
|        | p (   |       |       |       |         |       |       |       | 0.000 |       |       |       |       |       |       |       |       |              |       |       |       |       |       |       | 0.000 | 0.000 |
| DD4    | N     | 179   | 179   | 179   | 179     | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 178   | 178          | 178   | 179   | 177   | 177   | 179   | 179   | 178   | 176   |
|        |       |       |       |       |         |       |       | -     | 0.610 |       |       |       |       |       |       |       |       |              |       |       |       |       |       | 1     | 0.659 | 0.653 |
|        | F 4   |       |       |       |         |       | 0.000 |       |       | 0.000 |       |       |       |       |       |       |       |              |       |       |       |       |       | 470   | 0.000 | 0.000 |
| DDO    |       | 179   | 179   | 179   | 179     | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 179   | 178   | 178          | 178   | 179   | 177   | 177   | 179   | 179   | 178   | 176   |
| RP2    | 7 7 . |       |       | -     |         |       |       | 0.188 | 0.589 | 0.490 |       |       | -     |       | -     |       | -     | 0.302        |       |       |       |       |       |       | I     | 0.671 |
|        | ρι    |       |       |       |         |       |       |       | 0.000 | 178   | 178   | 178   | 178   |       |       | 178   |       |              |       |       |       |       |       |       | 170   | 0.000 |
| RB3 1  | r C   | 178   | 178   | 178   | 178     | 178   | 178   |       |       |       |       |       |       | 178   | 178   |       | 0.525 | 177<br>0.386 | 177   | 178   | 0.550 | 176   | 178   | 178   | 178   | 175   |
|        | -     |       |       | -     |         | -     |       | -     | 0.000 |       |       |       |       |       |       | -     |       |              |       |       |       |       |       |       |       | ı     |
|        |       | 176   | 176   | 176   | 176     | 176   | 176   | 176   | 176   | 176   | 176   |       |       |       |       |       | 175   |              | 175   | 176   |       |       | 176   | 176   | 175   | 176   |
| Corrol |       |       |       |       | 0.01.16 |       |       | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 170   | 173   | 173          | 173   | 170   | 114   | 174   | 170   | 170   | 173   | 170   |

<sup>.</sup> Correlation is significant at the 0.01 level (2-tailed). . Correlation is significant at the 0.05 level (2-tailed).