

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO MULTIDISCIPLINAR DE PAU DOS FERROS CURSO BACHARELADO EM TECNOLOGIA DA INFORMAÇÃO

COMPONENTE CURRICULAR: ALGORITMOS E ESTRUTURA DE DADOS DOCENTE: KENNEDY REURISON LOPES

DISCENTES: ISABEL DE PAIVA FREIRE - 2024010417

LISTA I - III UNIDADE

PAU DOS FERROS

JULHO DE 2025

- 01. Liste cinco situações que a Teoria dos Grafos podem ser utilizados naturalmente.
- 1. Redes de Computadores: Para modelar a comunicação entre computadores ou dispositivos, onde os nós são os dispositivos e as arestas representam conexões.
- 2. Mapas e Navegação: Grafos representam ruas (arestas) e interseções (vértices) para encontrar rotas mais curtas, como em GPS.
- 3. Redes Sociais: Para representar pessoas (vértices) e suas relações de amizade ou interação (arestas).
- 4. Organização de Dados: Em bancos de dados, para modelar relacionamentos entre tabelas ou entidades.
- 5. Problemas de Logística: Como planejamento de rotas de entrega ou transporte, usando grafos para otimizar caminhos e custos.
- 02. Avalie se os grafos G e H são isomorfos. Caso seja verdadeiro, indique as equivalências entre os vértices e arestas que provam a isomorfia

Conclusão: os grafos são isomorfos

v1, v2	\rightarrow	v,x
v2, v3	\rightarrow	x,v
v2,v4	\rightarrow	x,w
v2,v5	\rightarrow	x,y
v3,v3	\rightarrow	u,u
v4,v5	\rightarrow	w,y

03. Verifique as condições necessárias para Isomorfia entre os grafos e determine se realmente são. Justifique sua resposta.

São isomorfos

- 04. Seja G um grafo com os vértices V (G) = {a, b, c, d, e, f} e as arestas A(G) = {(a, b), (a, e), (b, c), (c, c), (d, e), (e, d)}
- a. Desenhe G.

I

b. G é simples?

Não, não é simples porque existe um laço em c e possui arestas múltiplas entre d e e

c. Liste os graus de cada vértices

a	2
b	2
c	3

d	2
e	3
f	-

- d. Quais são as arestas incidentes a b? ab e bc
- e. Quais são os vizinhos de a ab e ae
- f. Escreva a matriz de adjacência de G.

	a	b	c	d	e	f
a	0	1	0	0	1	0
b	1	0	1	0	0	0
c	0	1	2	0	0	0
d	0	0	0	0	2	0
e	1	0	0	2	0	0
f	0	0	0	0	0	0

05. Considere:

$$V(G) = \{a, b, c, d, e, f\}$$

$$A(G) = \{(a, d), (a, e), (b, d), (b, f), (c, d), (c, e), (c, f)\}$$

a. Escreva a matriz de adjacência;

	a	b	c	d	e	f
a	0	0	0	1	1	0
b	0	0	0	1	0	1
c	0	0	0	1	1	1
d	1	1	1	0	0	0
e	1	0	1	0	0	0
f	0	1	1	0	0	0

- b. Este grafo é bipartido? Prove? sim
- 06. Desenhe o Grafo das matrizes de adjacências abaixo:

$$M_1 = \begin{pmatrix} 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \quad M_2 = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad M_3 = \begin{pmatrix} 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 3 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \quad M_4 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

m1

	a	b	c	d
a	0	2	0	1
b	2	0	1	0
c	0	1	1	1
d	1	0	1	0

m2

	a	b	c	d
a	0	1	2	1
b	1	2	1	0
c	2	1	0	0
d	1	0	0	0

m3

	a	b	c	d	e
a	2	0	0	1	0
b	0	0	3	0	1

c	0	3	0	1	0
d	1	0	1	0	0
e	0	1	0	0	0

m4

	a	b	c	d	e
a	0	1	0	0	1
b	1	0	1	0	0
c	0	1	0	1	0
d	0	0	1	0	1
e	1	0	0	1	0

07. Apresente as correspondências entre os vértices dos dois grafos abaixo, caso sejam isomorfos.

a)

b)

- a) São isomorfos
- b) Não são isomorfos
- c) São isormorfos
- 08. Descreva os grafos em notação matricial e verifique sua bipartição.
- a. K3
- b. K4
- c. K5
- d. K1,3

- e. K3,2
- f. K4,3
- g. K4,3
- h. K3,3
- 09. Classifique como verdadeiro ou falso:
- a. Qualquer dois grafos isomorfos têm a mesma sequência de graus. Verdadeiro
- b. Qualquer grafos com a mesma sequência de graus são isomórficos. Falso
- 10. Considere o Grafo abaixo:

Determine:

- a. Matriz adjacência do Grafo
- b. Grafo Complementar a este Grafo
- c. Subgrafo induzido pelos vértices {A,B,C,D}
- d. Separação do Grafo em uma bipartição dos vértices (se possível).
- 11. Defina o fluxos na rede abaixo que descrevem a maior transferência do vértice Fonte para o vértice Sumidouro:

