TEMA 11. INTRODUCCIÓN A HEP.

La Ténice de partéculas (o ténica de Altas Energias - HEP-) es un campo de las ciencias naturales que busca desentration la estonolura veltima de la materia.

¿ Cômo se comique?

i) Buscer pontículas elementales (les viltimos constitujentes de la materia)

1i) Clarificar que interacciones actuan sobre distras particulas elementales para formas la materia tal y como la consemos.

Vannos a hacer un repaso listórico de la listoria moderna de las ponticulas elementeles

S-XIX	10 -10 m	Stomo	Experimentes
1892	Thomson	e-	Rayos Cartódicos.
1911	Putlo ford	model, atouico	Isotopos.
1932	chaduick	neutosn	Isotopot.
1937	Anderson etal.	món	Naps edsuricos.
1947	Powell etd.	72 y extravos	Roups idanicos.
1955	Segre	P	Bevatrón
1956	Cowan	J	Dearter
1964	Scruiss et al.	-2	Reactor BNL
1974	Ting et al.	JM&C	BNL
1975	Pearl	2	Spear
1978	be der dann	8 2 6	Fernilab
1983	Rubbia eta	l. W& 20	SPPS
1994	Mudios	E	Tevatosa ZEP
1998	Totsuka et	d. Posil.	Rayos Cosmios
2012	Muchos	Higgs	Aflers, ems
		(10-19n	n) = 1 = 10 m

-121-

1911	Rutherford	Modelo atónico
P29-30	Heisemberg	QFT
1930	Dirac	Ec. Dorac
1930	Pauli	Neutrino
1934	Ferni	Weak int.
1935	YnKana	meson theory
1946-49	Tomonega Schuingen	QED
	Feynman	
454	young, Mills	Non abelian JM th.
1976	young, bee	tiplación paridad
KT8	Feynman et al.	Vector-Axial Heory
1960	Nambe	Rupt. espout. sinetia.
1964	Gell-Maura et d.	and K model
1964		Violenciai CP
1964	Miggs et al.	Mecaniano Mizgs.
1961-69		Unificación electrodetril
1971	Weinberg.	off Renormalização y EN

1973

Kabayashi

KM model CP

Mas Kawa

1973

Politer, Gross

aco, litertad asistótica.

Wilczek

i y ahora? Nada.

Propie da des les ponticules elementales:

(1) Una particula està "esperialmente bralizada en cada instante" y su nínero es contable.

 $E = \frac{mc^2}{\sqrt{1-s^2}}, \quad p' = \frac{mv'}{\sqrt{1-s^2c^2}}$

Défininces massa y relocidad a pontir de

energier y momento

 $E^{2} = (pc)^{2} + (mc^{2})^{2}$ $\int = p^{2} \frac{c^{2}}{E}$ V = c

(2) Una ponticula puede ser creada o aniqui-

 $e^{+} + e^{-} \rightarrow \gamma + \gamma$ $\pi^{-} + \rho \rightarrow \kappa^{\circ} + \Lambda$ $\pi^{+} \longrightarrow \mu^{+} + \lambda_{\mu}$

Concluioù importante: no nos sirve Schrödinger porque il la probabilided de aistencia de ma ponticula no se conserva!!

Cr bre forter QFT (tiene en wenta creación y destrucción de jonticular).

(3) Corolonno de 2. Una partícula no es necescrienmente exteble.

la probabilidad de que la penticuler "mueren"

en dt ni su violer media es 2= $\frac{dN}{N} = -\frac{dt}{2}$ = N(t) = NSC - t/2

Pero, en Mecanica Cuantica, la "probabilidad de existencia" de ma jonticular es 2/4/2, loeg s 1412 2 e - +/2 Consderemos ma particula en mantrate do de

Y(xit) a Y(x) e - i Et/k

Magaurs E= Eo-in. Entrues:

|4(+1) = 14(x) e - i (Eo - i P/2) t/t |2 =

= 14(x) 12 e- Pt/th , lugo

1- to/2 y se tieve que

Ineitable => E & d con I = Im (E)>0

d' Como sera la destubución de mason (energier) de la jourticuler?

(4) Una ponticula tiene spin y otros grados de libertad.
· (E,pi): gl. externos es simetimes
· (conga, spin, color, isospin,): 3.l. internos
(5) Lada particula tiene su correspondiente
antiponticula.
p(m, z, s) - p(m, z, s)
P(S2, hint) -> F (-Sz, hint)
(conventario Ta (PT).
6 Clarificación Steptones: no la neuten.
Hadrones Sementero: bariones: p, n, 1, 5, = 1 Hadrones Sentiero: mesones: 12, K, l recomprentos de generks (S=1/2)

- 127-

Resi	men !	ponticul	as			
	Spin	Q	I ₃	Gei	neración	
	•			I	I	III
gnarks	12	+2/3	+1/2	u	C	t
1	1/2	-113	- 1/2	d	S	6
leptones	1/2	0	+1/2	Ve) gr	Vz
	2	-1	- 1/2	e	p	Z

No Sunen
interminous
fundamentales

(* sin	Simetro	Teoria	Portador	Potenical	Remgo (m) &*	Interioded	Frente	Tueza	
significado	SU(3)	RCD.	gluón (S=1,8 tps)	でナス2つ	8	0.1	Recolor	Tueste	
(+ sin significado si d>10-15 m par el epoto		(Yukawar)	(messin tz)	(e-m25)	(10-15)	(10)	(hardson)	(Nuclear)	
m par el	100) V		(S=1)	\ -	8	11137	Qe	M	
aporto de	U(1) X SU(2)		W+ 70	7 May 5	10-18	10-5	Edehil	dehil	
confirmients de que	Grupo Poincase	Nel- Several	2 grantor ?	5/-	8	10-42	Top	Samuelas	