This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

到日本分類 D Int · Cl · G 02 b 27/00 104 G 0 G 03 b 21/56 103 D 83 C 09 k 1/02 13(9) C 12 C 09 k 1/04 13(9) C 11 C 01 g 57/00 15 P 0

19日本国特許庁

①特 許 出 頭 公 告

3749-1221

公

④公告 昭和 49 年(1974) 1月 12 日

発明の数

号証 国第

(全10頁)

1

のディスプレイ装置

顧 昭45-44570 2)特

路45(1970)5月26日 纽出 優先権主張、翌1969年5月26日33アメリ 5

力国到827644 391970年1月19日33アメリ

カ国303636

*ダグ*ラス・アーサー・ピノオ 眀 考 ⑫発 アメリカ合衆国ニュージャーシイ 10

0 7 9 2 2 ユニオン・パークレイ・

スイツ・ボーリイ・グレン・ビー ンサウス78

リグランド・ジエラルド・ヴアン・ 同

ウイタート -アメリカ合衆国ニユージャーシイ 07960モリス・モリスタウン・

テーリイ・ドライプ 2 ウエスターン・エレクトリンク・ ①出 願 人

アメリカ合衆国ニューヨーク州ニ

ユーヨーク10007プロード・ ウエー195

仍代 理 人 弁理士 岡部正夫

図面の簡単な説明

第1図は変調されていないセリウム・ドープの YAG による発光及び励起スペクトルを、ミクロ ン単位の波長と最大強度を100とする比較強度 *30* の座標によつて表わしたものである。第2図は、 4880 Aのレーザー光線で励起された例示発色 物質の発光をオングストローム単位の波長と比較 強度の座標によつて表わしたものである。第3図 は、いくつかの特に有用な燐発光性の座標を表わ 35 スクリーンを用いることによる。一つの構成には す角度図である。第4図は本発明による装置の透 視図である。

発明の詳細な説明

本発明は投射デイスプレイ装置に関し、主とし て非コヒーレントは照射による黒白像を作る装置 に関する。

2

可視或は紫外領域でのレーザ・ビームの走査及 び、可視領域に発光する光ルミネツセンス・スク リーンを用いる投射法によつて単色デイスプレイ が作られる。燐光の結合によつて白色或は所望の 色を出すことができる。

レーザ・デイスプレイ装置の利点は、スクリー ンの大きさが本質的に制限されないことにある。 そのような装置に必要な要素の多くは現在手に入 れることができるものである。可視スペクトル内 の種々の周波数で動作する高い強度のレーザは、 15 多くの投射法に用いられる充分な変調及び走査法 を有することは明白である。

可視レーザ発光の直接映写による画像形成は 1 つの著名な技術であるが2つの欠点を有する。そ の第1は、像は特殊な一定な波長の単色であり、 カムパニー・インコーポレーテツ 20 例えばアルゴン・イオンレーザを用いて作られる 像は、青及び黒色である。第2は、取出されたコ ヒーレントなレーザの反射により、散乱されたピ ームの周期的強化による斑点を有する画像を生ず ることである。ペルシステム・テクニカル・ジヤ 25 ーナル誌 (Bell System Technical Journal) 第46巻1479頁(1967年9月)を参照。

知る限りでは、斑点問題のない黒白画像を作る レーザ・可視デイスプレイ装置は公知でなく、或 は提案されていない。

レーザ・デイスプレイ装置によつて、斑点形成 を排除した黒白画像が得られる。本発明の装置は スクリーンからの 発光 光よりいくらか短い波長 での可視領域で発光するレーザによりエネルギー を付与されたセリウム活性化ガーネットの湧光体 セリウムを含有するイツトリウム・アルミニウム・ ガーネットを用いる。肉眼には、この療力性物質

からの発光は帯黄色である特性であり、レーザ発 光の一部を故意に反射させることによつてより白 色に近いように修正される。

構成分に関する観点から、本発明の一具体例は、 4 8 8 0 Å に発光するように配置されたアルゴン·5 は光ルミネツセンス有機染料及び顔料を含むもの イオン・レーザによつてエネルギー付与されたセ リウム・ドープのイツトリウムアルミニウム・ガ ーネット(YAG)で被膜されたスクリーンを用

心を持つ広い波長領域にわたつて発光する。

変更例は、4416Aに発光できるカドミウム ーイオンレーザのような他のレーザ原を、燐光物質 「の組成分の変更と同じように包含する。そのよう ネット構造(即ちY₃ AI₅ O₁₂の構造) のホスト を利用する。これは適当な色と輝度の再発光を与 物質の吸収ピークは特殊なエネルギー付与原によ そしてこの目的の為に、アルミニウムの一部をガ リウムで置換して吸収波長をより短い方へ移動さ せる。或るいはイツトリウムの全部又は一部をガ ドリウムで置換しより長い波長へ吸収ピークを移 動させる。吸収ピークの移動は同方向での相当す 25 る発光変化を起こし、レーザ・ピームの一部の反 射による色修正(例えば、白色像を作るため)が 容易に続けられる。他の変更例を論ずる。

本発明の他の配置構成では、燐発光組成物の範 囲は少なくとも一部が有機物であるものを利用す 30 クトルである。 る。本発明装置は1以上の波長の、そのうち少な くとも一つは可視或は紫外スペクトル内で、燐発 光の主要部分の波長よりいくらか短かい波長で発 光するレーザ・エネルギの利用に依存している。

により、エネルギ付与しレーザの性質に関する制 限はほとんどない。適当なレーザは4880Aで 発光するアルコン・イオン及び4416Aで発光 するカドミウム・イオン・レーザを包含する。有 用な単色デイスプレイの為の適当な励起波長領域 40 レーザ線は垂直な直線で示した。 は約2500~5500Aである。

この広い範囲の特定波長は燐光特性に従つて選 択される。

適当な燐光のいくつかは以上に述べられる。

一般的に含えば、適当な材料は、市販されてい る又広く用いられている有機染料或は顔料である。 本明細書の記載では、"発色物質"或は"有機 発色物質 " の言葉を用いることにする。この言葉 であることが理解されるべきである。顔料は特に 有用であり、染料を縮合される有機樹脂溶液中に 溶解することによつて形成される。ある場合では、 染料が、ゲル繊維或は高分子量ポリマーの粒子の セリウムー活性化燐光物質は約5500Åに中 10 形を取るコロイドに吸収されたときルミネツセン ス効率が上がる。

YAGーセリウム燐発光ディスプレイでは、溝 光物質の吸収帯が一般的に広く、発光ピークはエ ネルギー付与波長の変化には比較的に鈍感である。 なすべての組成物はセリウム活性化されて、ガー 15 この現象は見かけ発光色の著しい変化がなく、レ ーザ源の置換を可能にするため非常に有用である。

本発明の以上のような構成はこのような有機発 -----えると知られている結合であるからである。燐光 --- 色物質の利用を広く前提とする。モノクコのディ スプレイは均質燐光スクリーンの使用により得ら りょく順応するように移動させることができる。 20 れる。それらは定形体或は被膜として与えられ、 望ましい約合いになるに必要な発色物質の1つ又 はその結合によつて作製される。同様に、反射シ ーザ照射**の量は燐光物質中の『**不活性『成分の定 められた量によつて変えられる。

> 例とば、滑石のような充填物により、変換エネ ルギーに対する反射エネルギーの比を上げること ができる。

> 第1図について説明すると、示されたデードは セリウム・ドープYAGによる発光及び計2日本ペ

発光スペクトルは破線により、約0.55~~5 ンの波長に最大値を有する広いピークを持った。 線で示す励起スペクトルは多種のポンプでは誤っ 示される発光強度の測定である。最大では る。亦 2つの顕著なレーザ線の発光度量が

第1は、アルゴン・イオンレーザによう 0.488ミクロンであり、第2は、ホー イオン・レーザによる 0.4 4 1 6 ミクロー

第2図について説明すると、示された。 2つの有機燐光物質とその50-50-00 ついての発光スペクトルである。それとし アミノ1・8 ーナフトール・ローギー

-176-

(5300Aでピーク)(曲線A)及びロータミ ン (6 0 5 0 Åでピーク) (曲線 B) である。 2 つの燐光物質とも4800A励起で高い効率 (50%以上)を有する。 破線はそれらの 2つの 燐光物質の特殊な 5 0 − 5 0混合物を示す。各々 5 の燐光体は黄緑色及び赤色のルミネソセンスを発 する。それらの結合色は橙色である。例えばアル コン・イオン レーザ照射を用いるときは、反射 物質を添加することにより4880Aレーザ照射 の反対の一部分を増加させてスクリーンからの照 10 (4880A)からの散乱光及びローダミン染料 射の青色分を髙める。このようにして、全ての効 果により肉眼で白色に見えるようにする。

第3図は国際的に認められたCIE色度図(ア プライド・オプテイクス:ア・ガイド・トウ・モ ダン・オプテイカル・システム・デザイン (Applied Optics : A Guide to Modern Optical System Design)(ジー・ウイレエイ・ 1968)第1章、エル・レピイ (L. Levi)著 を参照)であり、デイスプレイ装置の色質を評価 20 MgO はピリレン含有材料或は 7 ジエチルアミノ、 - するガイドとして用いられうる。この図では、飽 和色 (モノクロ)は馬蹄型の周辺に位置している が、飽和が減少した色調は平均的太陽光の発光に 等しい白色光である発光体Cに近づく。各々の自 然色は、そのスペクトルが複雑であるにもかかわ 25 から、本当の白色光を得るに要する条件は、照射 らず、この図に関しては自然色を表わすことがで きた。2点(第1次点)を結ぶ直線は割合を変え ながら混合することによつて得られることのでき る色の軌跡を表わす。同様に、2以上の第1次点 の組合せによつて可能な色度の全領域は各々の第 30 角形中に発光体でを包含させることは不可能であ 1 次点を結んだ直線によつて定められる多角形内 にある部分である。

例えば第3図の点線の三角形はシャドウマスク 色CRTの色度全領域を明らかにしている。比較 のため、4416A,4880A及び5145 35 イオンレーザによる。投射ビーム11は第1にビ Aのカドミウム及びアルゴン・レーザの -主波長、 YAG:Ce 燐光体の発光及び3つの有機染料 (4-アミノ、1・8-ナフタール p-キセニ ルイミドに関する):及び燐光体(3485, 3 4 8 3及び 3 4 8 4はロードミン・ペースの顔 40 料である。)について示す。3485染料発光に 関する矢印はフタロシアニントナーを忝加した効 果を示すものであり、それは発光の皮長の長い黄 色及び赤色の部分を選択的に吸収し、より自然な

緑色を出すものである。それらの青色レーザ光源 からの光と3483A及び3485Aからの発光 の組合せにより、色陰極線管と同じ色度領域が得 られる。

燐光体および粉末 MgO 或は滑石のような直接 散乱材料の適当な混合物によつて被膜された可視 スクリーン上に単色光レーザを走査させることに より黒白デイスプレイを得ることができる。例え は、青色アルゴン・イオン・レーザピーム

燐光体からの青色から赤色への変換光の組合せに より白色光を作ることができ、色度図上のそれら の第1次点を結んだ直線は発光体Cの非常に近く を通過している。

亦 2 以上の第 1 次点の結合は白色光を作り出す のに用いることができる。例えば Cd-He レーザ ピームは MgO 及び3484A及び3485Aの 染料燐光体の正確な割合の混合物を照射すること により、白色光を得ることに用いられりる。更に、 4 一メチルクマリンー含有材料(各々青色-青色 及び紫外一青色変換燐光体であり、完全に斑点は 除去される)で置換しえる。

多くの燐光体を用いるにもかかわらず、色度図 レーザ・ピームは約4950Aより短い波長を有 することであることは明らかである。

他の点では、周波数降下変換によつて得られる 長波長の組合わせと 光源による第 1 次点による多 る。

第4回は本発明による単純な装置の透視図であ る。エネルギー付与光はレーザ10により、例え ば、アルゴン・イオンレーザ或いはカドミウム・ -- 4の振幅変調をする、示されていない手段によ つて変調信号を備えている変調器12に入る。変 調は電気・光学、音響・光学或は出気・光学技術 によつて達成される。

適当な音響・光学的装置は、ヘル・システム・ テクニカル・ジャーナル (Bell System Journal)第46巻367頁(1967年2月) に記載されている。適当な電気・光学的蒸費へ記 載はジャーナル・オブ・アプライン・マス・ニー

R

ス(Journal of Applied Physics)第38巻 1611~1617頁(1967年3月)にある。 変調器に結合した分析器を通過させ特定な極性 の偏光の全量を変化させることにより或は、音響・ 光学的に偏向された光量を調節することにより変. 5 トルは上記のレーザに適応するように、或は他の 調は達成される。

変調器12より出て、ピーム(13で示す)は 偏向器14に入り、適当な水平及び垂直に偏向さ れてスクリーン15に達する。偏向器14は音響・ 光学的原理によつて動作されるのが有利であり、 10 換することにより変更しえる。 例えば、プロシイーデイング・オブ・ジ・アイ・ 1- ·1 - ·1 - (Proceeding of the I E E E)第57巻160頁(1969年2月)を参照。 偏向器14は、変調機能をはたし、別の変調器 12の必要性を除くことができる。初期の偏向器 15 るが、有用な励起は約0.30ミクロンから0.5 3 系は、機械的な、ときには、モータ駆動の走査器 を用いていた。

いる燐光体スクリーン15の性質を前提としてい る。第 4 図の一般的性質のレーザ・ディスプレイ 20 好適な設計具体例には、発光ピークは約 $0.5~2~{
m i}$ ____装置は現存の科学文献に詳細に記載されている。_____クロン(ブルミニウムを約4-5原子パーセントガ 例えば、アイ・イー・イー・イー・スペクトラム・ リウムで置換して変えたYAG成分によつて得ら フォア・デセンバ(I E E E Spectrum for December)1968 第39頁~を参照。 このスクリーンの化学的性質は以下に詳細に論 25 と同じ観点から燐光体は約0.58 μ以上の液長の じる。

本発明装置の一つの構成は、適当なホスト中の 3 価セリウムを含有する燐光体スクリーンに依存 している。

しかし、多分YAGのようなガーネット中の大き な結晶場分裂により、発光が可視に変化されるる ことが知られている。第1図に示されるように、 YAG: Ce³⁺の発光は約 0.5 5 ミクロン (帯費 白色)にピークのある非常に広いパンドを有する。35 により用いられる適当な燐光体組成物は、セリウ 約 0.4 6ミクロンに中心を持つ格子のピーク吸収 及びこの吸収スペクトルはアルコン(0.488μ) 或は、カドミウム(0.44164)レーザの両方 に適している。以下の部分で論じるように、レー ザ発光波長に吸収波長を精密に一致するように変 40 るので、同量でこの成分の量を減少させる。) 化させることによつて得られる特別な利益はない。

" 吸収 スペクトル " に関して書及すると、前記 のごとき、可視発光へ変換される吸収エネルギー のみが本発明の目的のために重要である。このよ

うな形で変換に有用な吸収エネルギーは、『励起 スペクトル"によつて表わされ、それは、第1図 のデータに示されるものの中にある。

セリウムードープ・ガーネット中の励起スペク レーザ源をより効率よく利用するように変動しえ る。この目的の為、原型組成Y,Al,〇12 はアル ミニウムに対して一部又は全部ガリウムで置換し、 及び/又はイットリウムに対してガトリニウムで置

前者は励起ピークを短い波長に移動する効果が あり、後者は逆の効果がある。このような方法で 励起スペクトルのピークは、約0.33ミクロンか - ら約 0.48ミクロンの範囲内で、任意に変化でき ミクロンの広い範囲にわたり為されるものである。 励起スペクトルの変動は約 0.5 1 ~約 0.6 1 ミ -----本発明の進歩性は多く、全装置に取入れられて、一クロンの範囲にある発光範囲内の発光スペクトル に変動を与える。白色又は近白色像を得るための れる約0.43ミクロンの励起ピークに相当する) 以下の波長にすべきではない。この好適な具体例 励起ピークを得るように変更されるべきでない (より適当なエネルギー付与でも、その限度を越 えられない。) その理由は効果的でない変換のた めであり、また少し長い波長の光となり、そのた Ce^{3+} の発光は一般的に近紫外領域である。 30 め反射発光に黄色味を帯びさすためである。 70原子%のイントリウムがガトリニウムにより置換 されたYAGは、この条件に相当しておりしたが つて、この限度は好適な具体例の最大のガドリニ ウムの非補償部分置換を示すものである。本発明 ム活性化に常に依存している。適当なセリウムの 範囲は、約0001~約015原子/ガーネット の化学式1単位(化学量論的Y, Al, O, に基づ く)である。(Ce^{3十} はイツトリウムを置換す

セリウム含有分の最小限度は、容易に識別でき る再発光像が得られる最小濃度を示す。

そして最大値は、ほぼガーネット中の溶解暖度 に一致する。好適なセリウムの範囲は、0.005

識別できる再発光像が得られる最小優度に基づく。 そして、その上限はさらに増加しても改良されな い点である。この限度は、経済性(上記の広い最 大値範囲と比較すると)に大きく依存している。 5 以上の考察から、すべての燐光体範囲は次のよ うに表わされる。

Y_{3-x}-y Ce_xGd_yAl_{5-z} G_{az O₁₂}

(式中

xは0.001~0.15又は好適な範囲は 0.005~0.10であり、 yは0~2.999であり、 zは0~3.0である。)

更に他の置換が可能である。 例えば、ルテシウム或はランタナムはイツトリ 一部アルミニウムを置換しえる。しかし乍ら、よ*(られうる。

から 0.1 0 である。最小限度は通常の室内照明で、* り通常で経済的な Y A G 又は置換 Y A G 系では、 適当な励却と発光スペクトルが得られるので、こ の上の変更が工業的使用に用いられることは期待 されない。

本発明装置の他の配置法は少なくとも一つの登 光有機染料又は顔料を含有する燐光体スクリーン に依存する。フルオレセンスを発する代表的な材 料および色素はピリレン(青色);フルオレセイ ン(黄緑色);エオシン(黄色);ローダミンー 10 B (赤色);ローダミンー 6 G (黄色);アクリ ジン(青色);アクリフラピン(黄緑色);ナフ タレン・レッド(赤色):オーラミンー0(黄緑 色);4-アミノ、1·8-ナフタール p-ギ セニルイミド(黄緑色)及び1ージエチルアミノ、 15 4ーメチルクマリン(青色)である。選択された 染料の吸収及び発光に関するデータは第Ⅰ表に与 えられる。このようなデータは所定レーザ源に対 ヴムを置換しえ、インジウム又はスカンジウムは するスクリーン成分を最適に選択するために用い...

染料の水又はアルコール容液中の吸収及び螢光パンド (Aでパンドの大体の幅とかつこ内にパンドのピークを記す)

•	•		
		螢	光
化合物	主吸収バンド	パンド	色
I.キサンテン系			
フルオラン	U.V.	2900-4600)
フルオレセイン (ジヒドロキシフル オラン)	(4940)	5100-590	_
エオシン (テトラプロモフル オレセイン)	4500-5600	5 2 0 0 - 6 0 0	0 黄 色 S.
エリトロシン (テトラヨード フルオレセイン)	4600-5560 (5165)	5 1 8 0 - 5 8 8 (5 3 7 5)	0 黄色色 ₩. ————
ローズペンガル (テトラヨードテト ラクロロフルオレセ (イン)	(5438)	5500-670	v.w.
ローダミンBエキストラ	(5500)	55.00-700 (6050)	_
	-179-		

ローダミン6G 4800-5900 5360-6020 3 (5260) (5550) アクリジンレッド 4550-6000 5600-6800 性 1.アクリジンズ アクリジンス 3000-4500 4000-4800 常 アクリジンイエロー U.V5200 4750-6400 緑 1-クリジン U.V5400 5050-6700 緑 アクリフラピン U.V5100 4700-6500 様 1.アクリフラピン U.V5000 4850-6600 横	t き い き m .
ローダミン6G 4800-5900 5360-6020 7クリジンレッド 4550-6000 5600-6800 だ (5550) アクリジンレッド 4550-6000 5600-6800 だ (500) 7クリジン系 3000-4500 4000-4800 で アクリジンイエロー U.V5200 4750-6400 緑 (5850) レオニンA U.V5100 4700-6500 様 (5850)	S. 色 m.
(5260) (5550) アクリジンレッド 4550-6000 5600-6800 だ 1 1.アクリジン系 アクリジン 3000-4500 4000-4800 育 アクリジンイエロー U.V5200 4750-6400 緑 1 -クリジン U.V5400 (5850) レオニンA U.V5100 4700-6500 様 7クリフラビン (トリパフラビン) U.V5-000 4850-6600 黄	S. m.
アクリジンレッド 4550-6000 5600-6800 性 ロリンB 5400-5900 5600+6500 性 アクリジン系 3000-4500 4000-4800 常 アクリジンイエロー U.V5200 4750-6400 緑 ユークリシン U.V5400 5050-6700 緑 (5850) レオニンA U.V5100 4700-6500 様 アクリフラビン (トリバフラビン) U.V5-000 4850-6600 黄	新 m.
ピロリンB 5400-5900 5600+6500 性 II.アクリジン系 3000-4500 4000-4800 常 アクリジンイエロー U.V5200 4750-6400 緑 ユークリシン U.V5400 5050-6700 緑 (5850) レオニンA U.V5100 4700-6500 様	m.
II.アクリジン系 アクリジン 3000-4500 4000-4800 常 アクリジンイエロー U.V5200 4750-6400 緑 ユークリシン U.V5400 5050-6700 緑 (5850) レオニンA U.V5100 4700-6500 様 アクリフラビン (トリバフラビン) U.V5-000 4850-6600	
アクリジン 3000-4500 4000-4800 常 アクリジンイエロー U.V5200 4750-6400 緑 ユークリシン U.V5400 5050-6700 緑 (5850) レオニンA U.V5100 4700-6500 様 アクリフラビン U.V5-000 4850-6600	
アクリジンイエロー U.V5200 4750-6400 緑 ユークリシン U.V5400 5050-6700 緑 (5850) レオニンA U.V5100 4700-6500 様 アクリフラビン U.V5-000 4850-6600	
ユークリシン U.V5400 5050-6700 緑 (5850) U.V5100 4700-6500 様 アクリフラビン (トリバフラビン) U.V5-000 4850-6600 黄	紫色 m.
レオニンA U.V5100 4700-6500 様 アクリフラビン U.V5-000 4850-6600 黄	æ
アクリフラビン (トリバフラビン) U.V5-000 4850-6600 黄	黄色 m .
(トリパフラビジ) U · V · -5-000 4850-6600 ^/	含 W.
***************************************	禄色 S.
皿.アジン系	
マグダラレッド 4000-6000 5500-7000 赤 (5240) (6000)	含 S.
サフラニン (5390) 黄疸	产色
Ⅳ. チアジン系	
チオニン 4800-6300 橙 (5800)	色
メチレンブルー 5500-7000 赤	_

ナフタールイミド染料;4ーアミノ、1・8 - 35 及び一部の緑部のすべてにわたつている。それら ナフタール pーキセニルイミド (黄緑色)及び 2つのローダミン染料(橙色及び赤色)は模範的 なものである。それらの4880A線の励起によ る発光スペクトルは各々 5 3 0 0 Å (黄緑色)、 6 0 5 0 Å (橙赤色) 及び 6 2 0 0 Å (赤色) に 40 担体の型を変えることによりいくらか変更され得、 ピークを示す。それらの寿命は1マイクロ秒より 相当小さく、それらの吸収横断面は、約0.1㎜の 厚さの薄膜内に全レーザビームが吸収される程大 きい。それらの吸収パンドは非常に広く、芸、青

の量子効率は50%以上であると計算される。

故に、これらの材料はレーザディスプレイ装置 に非常に適当している。

これらの螢光染料の色は顔料成形に用いられる 領料が含まれる担体或は結合材の型を変えること により小さい幅で変更することができる。螢光性 染料は、発光スペクトルの一部を選択的に最次す る非螢光性染料と組合せることにより色を変更す

ることができる。例えば第2図に示される、ナフタ ールイミト染料(タイプ3485)は緑色の 5300Aにピークがある。通常、この螢光は、 黄及び赤色に伸びている発光スペクトルの為に黄 緑色を示すが、この伸長部はフタロシアニンのよ 5 吸収 (励起パンド内で)にして、像の強度をより うな黄及び赤色に吸収のある非螢光性緑色トナー の添加により基本的に感少させることができる。 その結果スペクトル内容を制限すると、輝度が落 ちる。

光染料は少ないのが普通である。しかし乍ら、希 釈アルコール溶液中のピリレンを実験すると、ア ルコン・レーザの4579A発光又はカドミウム・ レーザの4416A発光のような短波長の青い光 により励起されると、青い螢光を示すが、アルゴ 15 "不活性"反射材料を入れることによつて高めら ン・レーザの4880A線のような長波長の青い 光で励起されると、緑の螢光になる。更に近紫外 -- で励起されると青い螢光を出すクマリン顔料が市・ 販より得られる。彩色されるか、あるいは十分に (1) 可視スペクトル内の波長に発光する為のレー 白くない像を作ることが望まれるとき、本発明の 20 意義は、白色または近似白色像に関している。

アルゴン或はカドミウム・レーザを用いる非変 更YAG: Ce 系では、第2次黄色発光を、レー ザ発光のより短波長の一部反射によつて補償する ことにより白色像が得られる。このような事情で、25 全部の吸収にならないように、層の厚さ及び成分 を設計し、又は一部反射が起るようにすることが 望ましい。

「アルゴン又はカドミウム・レーザを用いる装置」 では、スクリーン成分を調節し、黄色発光に対し 30 (3) 該燐発光組成物及びスクリーンは、スクリー て、青い反射光を加えてより白い像を得るように する。

しかし乍ら、燐光体の適当な選択によつては、 補償は必要でないようにすることが容易にできる。

体を特定の混合物に混合することによつて達成で きる。ガリウムアルミニウムはYAG: Ce 系の 式単位当り20~60%の範囲で部分的に置換で きる。このような事情で、燐光体層をほとんど反 射のないように設計される。

これは、本質的に完全吸収と最小反射にするこ とによつて達成され得る。

一つの実験配置設計として、組成物 Y 2. 99 Ce 0. 01 Al 5 O12 を用いることにより見 掛け上白色の像が得られた。1ワットのアルコン・ ピームのエネルギーの約50%が約 0.4 畑の厚さ の層に吸収されたものと分つた。ミラー・バッキ ンクを備えてレーザ・エネルギーの約15%の全 高くすることができる。変換器レーザ・エネルギ 一の約25%で、再発光の黄色照射を補償するこ とが十分できる。

燐光体スクリーンの最終設計は、出力レベル・ 黄及び赤色発光染料は多いのに対して、青色発 10 レーザ波長、燐光体吸収レベル及び発光波長に依 存することは明白である。

> 非変換レーザ・発光の反射は、薄膜を用いるこ と、反射パツキング(しかし乍ら、これは逆行中 に付加第2次発光を起こす)及び滑石のような

> 本発明は次の如き実施態様を包有するものであ

ザ、そのようなレーザの出力を振幅変調する為 の第1の手段、該ピームを偏向する為の第2の 手段及びスクリーンよりなる可視ディスプレイ 装置に於いて、

該スクリーンは本質的に少なくとも1つの有 機発色物質よりなる燐発光組成物の層を含むこ とを特徴とするデイスプレイ装置。

- (2) 該レーザは0.3~0.53 4の波長で発光し、 該構発光組成物は肉眼にとつて、燐光が本質的「 に白色に見えることを特徴とする第(1)項の装置。
- ンからの燐発光及び反射レーサ発光の結合によ り、ほぼ白色に見えるようにレーザ発光の一部 が変換されないように設計することを特徴とす る第(2)項の装置。
- これは、例えば、青色、黄色及び赤色発光燐光 35 (4) レーザはアルゴン・イオン・レーザである第 (2)項の装置。
 - (5) レーザはカドミウムイオン・レーブである第 (2)項の装置。
 - (6) 燐光体組成物は、クマリン、キサンテン、ア クリジン、ローダミン・ナフタールイミドCア 40 ジン、チアジンなどの系の化合物よりなる鮮く り選択される少なくとも1つの螢光有機収分を 含有することよりなる第(2)項の装置。
 - (7) 該成分はピリレン、7ージエチルアミン

16

ーメチル・クマリン、ローダミン B、ローダミ ン 6 G、アクリジン、4 ーアミノ 1 · 8 ー ナフタール ローキセニルイミドよりなる群か ら選択されることを特徴とする第(6)項の装置。

- (8) 該第1の手段は電気・光学的変調器であり、 5 該第2の手段は音響・光学的偏向器である第(2) 項の装置。
- (9) 該第1及び2の手段が音響・光学的干渉に依 存していることを特徴とする第(2)項の装置。
- の装置。
- (1) 可視スペクトル内の波長に発行する為のレー ザ、そのようなレーザの出力を振幅変調する為 の第1の手段、該ピームを偏向する為の第2の 手段、及びスクリーンよりなる可視ディスプレ 15 イおよび前記燐光体組成物からの本質的に斑点の イ装置に於いて、

該スクリーンは、式

 $Y_3 - x - y$ Ce $_X$ Gd $_Y$ Al $_5 - _z$ Ga $_z$ O₁₂

xは0.001~0.15であり、

yは0~2.999であり、

zは0~3.0である。)

で表わされる材料よりなる燐光性組成物の層を 25 含むことを特徴とするデイスプレイ装置。

- 12 該レーザは 0.3 ~ 0.5 3 μの間の波長を発光 し、該燐光性組成物は約0.55μの発光ピーク を有することよりなる第四項の装置。
- ーザ発光が変換されないようにし、反射レーザ・ 発光及びスクリーンからのμ発光の結合により、 ほぼ白色になるように設計することを第02項の 特徴とする。
- 12項の装置。
- 05 レーザはカドミウム・イオン・レーザである ことを含む第12項の装置。
- (16) 燐光体組成物は本質的に

Y₃ - x Ce x Al₅ O₁₂ よりなることを含む第02 40 項の装置。

(17) 該第1の手段は電気光学的変調器であり、該 第2の手段は音響・光学的偏向器であることよ

りなる第12項の装置。

- (18) 第1及び第2の手段が音響・光学的干渉に依 存していることを特象とする第02項の装置。
- (19) 該第1及び第2の手段は単一体よりなる第位 項の装置。

切特許請求の範囲

1 0.3~0.5 3 4 の放長の放射ビームを発する レーザ、そのビームの位置を定める偏向手段、そ の偏向ピームをうける燐光体材料を有するスクリ (10) 該第1及び2の手段が単一体よりなる第 項 10 ーンおよびレーザ出力ピームを変調してスクリー ンの発光強度を変化させる手段を具える可視ディ スプレイ装置において、

> 前記スクリーンは、少なくとも一つの有機色素、 前記偏向レーザ・ピームから得られるデイスプレ ない発光を具備することを特徴とする可視ディス プレイ装置。

2 0.3 ~ 0.5 3 4 の波長の放射ヒームを発する レーザ、そのビームの位置を定める偏向手段、そ - 20 の偏向ビームをうける燐光体材料を有するスクリ --- ーンおよびレーザ出力ビームを変調してスクリー ンの発光強度を変化させる手段を具える可視ディ スプレイ装置において、

前記スクリーンは、

 $Y_3 - x - y$ $Ce_X Gd_Y M_5 - zGa_z O_{12}$

(式中 Yはイツトリウム、ルテシウムまたはラン (13) 該**燐光性組成物及びスクリーンは、一部のレ 30 タナムま**たはそれらの混合物であり;Mはアルミ ニウムまたはアルミニウム・インジウムあるいは アルミニウム・スカンシウムの混合物であり:x は0.001~0.15であり、yは2.999以下で あり、2は3.0以下である)

04 レーザはアルゴン・イオン・レーザである第 35 で示される材料を本質的に有し、前記偏向レーザ・ ピームから得られるデイスプレイおよび前記爆光 体組成物からの本質的に斑点のない発光を具備す ることを特徴とする可視ディスプレイ装置。

59引用文献

公 昭38-11085

第1図

第2図

第4図

