I. Let \mathcal{X} be the set of all bounded and unbounded sequences of complex numbers. Show that the function d given by

$$\forall x = (\xi_j), \forall y = (\eta_j), d(x, y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|}$$

is a metric on \mathcal{X}

Solution:

$$\forall x = (\xi_i), \forall y = (\eta_i), \forall z = (\zeta_i)$$

(1)non-negativity:

$$\forall j \in \mathbb{N}^+, \ \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} \ge 0 \ \Rightarrow d(x, y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} \ge 0$$

(2)identity of indiscernible:

x = y: 可知

$$\forall j \in \mathbb{N}^+, \ \xi_j = \eta_j \Rightarrow \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} = 0 \Rightarrow d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} = 0$$

• $d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} = 0$:

$$\forall j \in \mathbb{N}^+, \ \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} \ge 0 \Rightarrow \forall j \in \mathbb{N}^+, \ \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} = 0 \Rightarrow \forall j \in \mathbb{N}^+, \ \xi_j = \eta_j \Rightarrow x = y$$

所以

$$x = y \Leftrightarrow d(x, y) = 0$$

(3)symmetry:

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\eta_j - \xi_j|}{1 + |\eta_j - \xi_j|} = d(y,x)$$

(4)triangel inequality:

$$d(x,z) = \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\xi_{j} - \zeta_{j}|}{1 + |\xi_{j} - \zeta_{j}|}$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\xi_{j} - \eta_{j}| + |\eta_{j} - \zeta_{j}|}{1 + |\xi_{j} - \eta_{j}| + |\eta_{j} - \zeta_{j}|}$$

$$= \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\xi_{j} - \eta_{j}|}{1 + |\xi_{j} - \eta_{j}| + |\eta_{j} - \zeta_{j}|} + \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\eta_{j} - \zeta_{j}|}{1 + |\xi_{j} - \eta_{j}| + |\eta_{j} - \zeta_{j}|}$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\xi_{j} - \eta_{j}|}{1 + |\xi_{j} - \eta_{j}|} + \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{|\eta_{j} - \zeta_{j}|}{1 + |\eta_{j} - \zeta_{j}|} = d(x, y) + d(y, z)$$

II. The completeness depends on the metric. For the metric $d_1(x,y) = \int_a^b |x(t) - y(t)| dt$, show that the metric space $(\mathcal{C}[a,b],d_1)$ is not complete.

Solution:

定义函数列 $\{f_n\}$, 其中

$$f_n = \begin{cases} e^{\frac{n(x-a)}{x-b}}, & \text{if } a \le x < b \\ 0, & \text{if } x = b \end{cases}$$

因为 $\forall n \in \mathbb{N}^+$ 给定, $\lim_{x \to b} e^{\frac{n(x-a)}{x-b}} = 0$, 所以 $\forall n \in \mathbb{N}^+$, $f_n \in \mathcal{C}[a,b]$ 再取

$$f = \begin{cases} 1, & \text{if } x = a \\ 0, & \text{if } a < x \le b \end{cases}$$

可知 $\forall x \in [a, b]$ 给定, $\lim_{n \to \infty} f_n(x) = f(x)$

下面将证明 $\lim_{x\to\infty} f_n = f$:

 $orall \epsilon > 0$,因为 orall a < x < b, $\lim_{n \to \infty} e^{\frac{n(x-a)}{x-b}} = 0$, $\exists N > 0, \forall n > N$,s.t. $f_n(a + \frac{\epsilon}{2}) = e^{\frac{n\epsilon}{2(a-b)+\epsilon}} < \frac{\epsilon}{2(b-a)}$ 又可知 f_n 单减,那么 $\forall a + \frac{\epsilon}{2} \le x \le b$, $|f_n(x) - f(x)| < \frac{\epsilon}{2(b-a)}$ 而 $\forall a \le x \le a + \frac{\epsilon}{2}$, $|f_n(x) - f(x)| < 1$ 所以

$$d_1(f_n, f) = \int_a^b |f_n(t) - f(t)| dt$$

$$< \int_a^{a + \frac{\epsilon}{2}} |f_n(t) - f(t)| dt + \int_{a + \frac{\epsilon}{2}}^b |f_n(t) - f(t)| dt$$

$$< \frac{\epsilon}{2} \cdot 1 + \frac{\epsilon}{2(b-a)} \cdot (b-a)$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

可以得到函数列 $\{f_n\}$ 按 d_1 收敛到 f,但是 f 不是 [a,b] 上的连续函数,所以 $(\mathcal{C}[a,b],d_1)$ 不完备

III. Show that the ℓ^p space in is complete for $p \geq 1$

Solution:

假设
$$\{x^{(n)}\}=\{(x_1^{(n)},x_2^{(n)},\cdots)\}$$
 是 ℓ^p 中任意的 $Cauchy$ 列, $\forall N\in\mathbb{N}^+$, $\sum_{j=1}^\infty|x_j^{(n)}|^p<\infty$ 假设 $\lim_{n\to\infty}x=(x_1,x_2,\cdots)$,那么 $\forall \epsilon>0$, $\exists N>0$, $\forall n>N$, $d(x^{(n)},x)=(\sum_{j=1}^\infty|x_j^{(n)}-x_j|^p)^{\frac{1}{p}}<\epsilon$ 固定 $k\in\mathbb{N}^+$, $(\sum_{j=1}^k|x_j^{(n)}-x_j|^p)^{\frac{1}{p}}\leq (\sum_{j=1}^\infty|x_j^{(n)}-x_j|^p)^{\frac{1}{p}}<\epsilon$ 由 Minkowski 不等式可知 $(\sum_{j=1}^k|x_j|^p)^{\frac{1}{p}}\leq (\sum_{j=1}^k|x_j-x_j^{(n)}|^p)^{\frac{1}{p}}+(\sum_{j=1}^k|x_j^{(n)}|^p)^{\frac{1}{p}}<\epsilon+(\sum_{j=1}^\infty|x_j^{(n)}|^p)^{\frac{1}{p}}<\infty$ 令 $k\to\infty$,得 $(\sum_{j=1}^\infty|x_j|^p)^{\frac{1}{p}}\leq\epsilon+(\sum_{j=1}^\infty|x_j^{(n)}|^p)^{\frac{1}{p}}<\infty$ $\Rightarrow x\in\ell^p$ 所以 ℓ^p 空间是完备的

IV. Show that the sequence space c_{00} is a dense subset of ℓ^p with $p \in [1, \infty)$

Solution:

$$\forall x = (x_1, x_2, \cdots) \in \ell^p, \ \sum_{j=1}^{\infty} |x_j|^p < \infty$$

那么
$$\forall \epsilon > 0$$
, $\exists N > 0$, $\forall n > N$, $\sum_{j=n}^{\infty} |x_j|^p < \epsilon^p$ 取 $x^N = (x_1, x_2, \cdots, x_N, 0, 0, \cdots)$ 可知 $x_N \in c_{00}$ 所以 $d(x, x^N) = (\sum_{j=1}^{\infty} |x_j - x_j^N|^p)^{\frac{1}{p}} = (\sum_{j=N+1}^{\infty} |x_j|^p)^{\frac{1}{p}} < \epsilon$ 所以 c_{00} 是 $\ell^p(p < \infty)$ 的稠密子集

V. Show that \emptyset and \mathcal{X} are both open and closed

Solution:

 $\forall r > 0$, $\forall x \in \mathcal{X}$, $B_r(x) = \{y \in \mathcal{X} : d(x,y) < r\} \subset \mathcal{X}$, 所以 \mathcal{X} 是开集 $\forall r > 0$, $\forall x \in \emptyset$ (假定有这样一个虚拟的元素) 因为这样的 x 不存在,所以 $B_r(x) = \{y \in \mathcal{X} : d(x,y) < r\} = \emptyset \subset \emptyset$,所以 \emptyset 是开集 那么就可以知道 $\mathcal{X}^c = \mathcal{X} \setminus \mathcal{X} = \emptyset$ 是开集,所以 \mathcal{X} 是闭集 $\emptyset^c = \mathcal{X} \setminus \emptyset = \mathcal{X}$ 是开集,所以 \emptyset 是闭集

VI. If a closed set F in a metric space \mathcal{X} does not contain any nonempty open set, then $\mathcal{X} \setminus F$ is dense in \mathcal{X}

Solution:

 $\forall x \in F, x$ 即不是内点也不是孤立点若 x 是内点,那么 $\exists r > 0, \ B_r(x) \subset F$ 是 F 的非空开子集,矛盾若 x 是孤立点,那么 $\exists r > 0, \ B_r(x) = \{x\} \subset F$ 是 F 的非空开子集,矛盾那么 $\forall x \in F, \ \forall \epsilon > 0, \ B_{\epsilon}(x) \cap (\mathcal{X} \setminus F) \neq \emptyset, \exists y \in \mathcal{X} \setminus F, \ s.t. \ d(x,y) < \epsilon$ 所以 $\mathcal{X} \setminus F$ 在 \mathcal{X} 上是稠密的

VII. What is the connection between the uniformly continuous and Lipschitz continuous

Solution:

若函数 Lipschitz 连续那么一定一致连续

Proof:

函数 $f: \mathcal{X} \to \mathcal{Y}$ Lipschitz 连续,那么有

 $\exists L > 0 \text{ s.t. } \forall x, y \in \mathcal{X}, \ d_{\mathcal{Y}}(f(x), f(y)) < Ld_{\mathcal{X}}(x, y)$

那么 $\forall \epsilon > 0$,取 $\delta = \frac{\epsilon}{L}$,那么 $\forall x, y \in \mathcal{X}, \ d_{\mathcal{X}}(x,y) < \delta \Rightarrow d_{\mathcal{Y}}(f(x),f(y)) < Ld_{\mathcal{X}}(x,y) < L\frac{\epsilon}{L} = \epsilon$

VIII. Show that the Hilbert cube in the metric space ℓ^2 ,

$$C := \left\{ (x_n)_{n \in \mathbb{N}^+} : x_n \in \left[0, \frac{1}{n}\right] \right\}$$

is sequentially compact

Solution:

 $\forall x \in C, \ \sum_{j}^{\infty} |x_{n}|^{2} \leq \sum_{j}^{\infty} \frac{1}{n^{2}} < \infty \ \text{所以} \ C \subset \ell^{2}, \ \ell^{2} \ \text{完备}, \ \text{又有} \ C \ \text{是闭集}, \ \text{那么只用证明} \ C \ \text{完全有界}$ $\forall \epsilon > 0, \ \exists N > 0, \forall n > N, \ \sum_{j=n}^{\infty} |x_{n}|^{2} < \frac{\epsilon^{2}}{N+1}$ 定义 $Y := \{(y_{1}, y_{2}, \cdots, y_{N}, 0, 0, \cdots) : y_{k} \in \{i\epsilon : i = 1, 2, \cdots, \lfloor \frac{\sqrt{N+1}}{k\epsilon} \rfloor\}\}, \ Y \ \text{是有限集}$ 又有 $x_{k} \in [0, \frac{1}{k}], \ \exists \ y \in Y, \ s.t. \ |x_{k} - y_{k}| < \frac{\epsilon}{\sqrt{N+1}}$ 所以 $\forall x \in C, \ \exists y \in Y, \ s.t. \ d(x, y) = (\sum_{j=1}^{\infty} |x_{j} - y_{j}|^{2})^{\frac{1}{2}} < (\sum_{j=1}^{N} \frac{\epsilon^{2}}{N+1} + \frac{\epsilon^{2}}{N+1})^{\frac{1}{2}} = \epsilon$ 所以 $Y \ \text{是} \ C \ \text{的}$ 一个有限的 $\epsilon - net$ 所以 $C \ \text{完全有界}, \ \mathcal{M}$ 而证明了 $C \ \text{is sequentially compact}$

IX. Denote by $\Omega \subset \mathbb{R}^n$ a bounded open convex set. For $M_1, M_2 \in \mathcal{R}^+$, Show that the set

$$\mathcal{F} := \{ f \in \mathcal{C}^{(1)}(\bar{\Omega}) : \forall x \in \Omega, |f(x)| \le M_1; ||\nabla f(x)|| \le M_2 \}$$

is sequentially compact

Solution:

 $\bar{\Omega}$ 是 \mathbb{R}^n 上的有界闭集,所以 $\bar{\Omega}$ 是紧集,所以 $\forall f \in \mathcal{C}^{(1)}(\bar{\Omega})$,f 和 ∇f 在 $\bar{\Omega}$ 一致连续那么就可以知道 $\mathcal{C}^{(1)}(\bar{\Omega})$ 的子集 \mathcal{F} 一致有界,而 \mathcal{F} 是闭集且 $\mathcal{C}^{(1)}(\bar{\Omega})$ 完备,只用证明 \mathcal{F} 等度连续由范数的等价性可知 $\exists A>0$, $\forall x\in\mathbb{R}^n$, $\|x\|_2\leq A\|x\|$,那么 $\forall f\in\mathcal{F}$, $\|\nabla f\|_2\leq AM_2$ $\forall \epsilon>0$, $\delta=\frac{\epsilon}{A^2M_2}$, $\forall f\in\mathcal{F}$, $\forall x,y\in\bar{\Omega}$, $\|x-y\|<\delta$, $|f(x)-f(y)|\leq \|x\|AM_2< A\delta AM_2=\epsilon$ 所以 \mathcal{F} 等度连续,所以 \mathcal{F} is sequentially compact

X. If the radius of convergence of f in Example D.171 is $+\infty$, does $(T_n)_{n\in\mathbb{N}^+}$ converge to f uniformly or locally uniformly

Solution:

局部收敛

显然满足 Example D.171 条件的函数一定是局部收敛的,那么只用找到反例证明其不一致收敛即可考虑函数 $f(x) = e^x$,给定一点 x = a,在该点的泰勒多项式列为 $T_n = \sum_{k=1}^n \frac{e^a}{k!} (x-a)^k$ 取某个 0 < r < 1, $\forall \epsilon > 0$,取定任意某个 $\bar{x} \in \mathbb{R}$ 取 N > 0,s.t. $\frac{e^{\bar{x}+1}}{(N+1)!} (|\bar{x}-a|+1)^{N+1} < \epsilon$,有 $\forall x \in (\bar{x}-r,\bar{x}+r)$, $\exists N > 0$ $\forall n > N, \ |e^x - \sum_{k=1}^n \frac{e^a}{k!} (x-a)^k| = |\frac{e^{\xi}}{(n+1)!} (x-a)^{n+1}| < \frac{e^{\bar{x}+1}}{(N+1)!} (|\bar{x}-a|+1)^{N+1} < \epsilon$, $\xi \in (\bar{x}-r,\bar{x}+r)$ 由 $\lim_{n \to \infty} \frac{a^n}{n^n} = 0$ 可知,满足上述条件的 N 一定存在 所以任意一点的泰勒多项式列 $\{T_n\}$ 局部收敛至 $f(x) = e^x$,且收敛半径为 $+\infty$ 但是我们固定 N > 0 考虑 $E_N(x) = |T_N(x) - f(x)| = |\sum_{n=0}^N t_n x^n - e^x|$ 因为多项式的增长阶为 0 而 e^x 的增长阶为 1,所以 $\lim_{x \to \infty} E_N(x) = \infty$ 所以不存在 N > 0, $\forall n > N$, $\forall x \in \mathbb{R}$,s.t. $E_n(x) < \epsilon$ 即 $\{T_n\}$ 不在 \mathbb{R} 上一致收敛至 $f(x) = e^x$,只能局部收敛至 $f(x) = e^x$