PART II: MATRICES

MATRICES

Create a matrix:

The entries are written, using brackets

- The rows of a matrix are separated by a semicolon
- the entries of each row are separated by an empty space or a comma

Transpose a matrix:

```
>> B = A'
B =

1    5    9
2    6    10
3    7    11
4    8    12
```

SPECIAL FUNCTIONS GENERATING MATRICES

- eye(n): returns the identity matrix of size <u>n-by-n</u>
- zeros(n): returns a square <u>n-by-n</u> matrix whose entries are zeros (often used to preallocate a matrix)
- zeros(m,n): returns an <u>m-by-n</u> matrix whose elements are zeros (often used to preallocate a matrix)
- ones(n): returns a square <u>n-by-n</u> matrix whose elements are ones
- ones(m,n): returns an <u>m-by-n</u> matrix whose elements are all ones.

rand(m,n): generates an matrix, where all entries are pseudo-random numbers in [0,1).

rand(n): generates an <u>n-by-n</u> matrix of pseudo-random numbers in [0,1).

fix(rand(n)*10) and fix(rand(m,n)*10): generate matrices, where all entries are pseudo-random integers ranging between 0 and 9.

• magic(n): generates a square $\underline{n-by-n}$ matrix (n>2), where the n elements in all rows, all columns, and both diagonals sum to the same (constant sum = $n(n^2+1)/2$).

N.B: magic matrices of order n, where <u>n is odd</u>, are <u>invertible</u>.

- hilb(n): generates a square $\underline{n-by-n}$ Hilbert matrix, with entries: H(i,j) = 1/(i+j-1).
- pascal(n): generates a square n-by-n Pascal matrix with integer entries taken from Pascal's triangle.

(entries of the inverse matrix are also integers).

N.B: Hilbert and Pascal matrices are symmetric and positive definite, therefore invertible.

- triu(A,k): returns all elements on and above the kth diagonal of a square matrix A and assigns the value 0 to the remaining elements of A.
 - triu(A) or triu(A,0): returns the upper triangular part of a square matrix A and assigns the value 0 to the remaining elements of the A.
- tril(A,k): returns all elements on and below the kth diagonal of a square matrix A and assigns the value 0 to the remaining elements of A.
 - tril(A) or tril(A,0): returns the lower triangular part of a square matrix A and assigns the value 0 to the remaining elements of A.
- diag(v,k): returns a square matrix with the elements of the vector v on its kth diagonal and assigns the value 0 to the remaining elements of A.(k is a positive integer for diagonals above the main one, or < 0 below it)
 - diag(v) or diag(v,0): returns a square diagonal matrix with the elements of the vector v on its main diagonal.

SPECIAL FUNCTIONS ON MATRICES

- size(A): returns the sizes of each dimension of the matrix A, in a vector.
 [m,n] = size(A) returns the size of the matrix A in separate variables m and n.
- sum(A): returns a row vector with the sum over each column of A.
 - sum(A'): returns a row vector with the sum over each row of A.
 sum(sum(A)) returns the sum of all the elements of A.
- max(A): returns a row vector with the maximum element from each column of A.
 - max(A') returns a row vector with the maximum element from each row of A.
 - max(A')' returns a column vector with the maximum element from each row of A.
 - max(max(A)) returns the maximum element of A.
 - $[M,I] = \max(A)$ returns the maximum element of each column of A, and its row index, in respectively 2 row vectors M and I.
 - $[m,ik]=\max(A(:,j))$: returns the maximum value m and the row index ik, of the j^{th} column.
 - $[m,jk] = \max(A(i,:))$: returns the maximum value m and the column index jk, of the ith row.
- diag(A,k): returns a column vector formed from the elements of the kth diagonal of a square matrix A. (k is a positive integer for diagonals located above the main one, or < 0 below it)
 - diag(A) or diag(A,0): returns a column vector formed from the elements of the main diagonal of A.

HOW TO ACCESS SUBMATRICES

The colon notation is used to access submatrices of a matrix. A colon by itself denotes an entire row or column.

Examples:

- A(1:4,3) is the column vector consisting of the first four entries of the third column of A.
- v = A(:,3) returns a column vector equal to the third column of A.
- \bullet v = A(3,:) returns a row vector equal to the third row of A.
- B = A(1:4,:) returns a matrix made of the first four rows of
 A.
- B = A (:, [2 4]) returns a matrix containing 2 columns:
 columns 2 and 4 of A.

Example: Row & Column Permutations

<u>Permute</u>: two rows or two columns

			>> A([1 2],:)=A([2 1],:)				>>A(:,[1 2])=A(:,[2 1])			
A =			A =				A =			
1	5	4	8	3	9		5	1	4	
8	3	9	1	5	4		3	8	9	
1	1	-5	1	1	-5		1	1	-5	
2	-3	6	2	-3	6		-3	2	6	

Let A be an *m-by-n* matrix

- If the index vector IV is a permutation of the integers {1,2,...,m}, then
 A = A(IV,:) permutes the rows of A, in the order given by IV
- If the index vector IV is a permutation of the integers {1,2,...,n}, then
 A = A(:, IV) permutes the columns of A, in the order given by IV