Correctness of the compiler

ASM for Java

ASM for the JVM

```
collection of packages \pi \overset{compiler}{\longmapsto} cenv class environment \mathfrak{A}_0 \mathfrak{B}_0 \vdots \mathfrak{A}_m \mathfrak{B}_{\sigma(m)} \vdots states (Java) states (JVM)
```

Compiler correctness proof:

Construction of mapping $\sigma: \mathbb{N} \to \mathbb{N}$ such that

- $lacktriangledown m \leq n \implies \sigma(m) \leq \sigma(n)$
- state \mathfrak{A}_m of Java is equivalent to state $\mathfrak{B}_{\sigma(m)}$ of the JVM

Dynamic states of Java and the JVM

Java	JVM
pos	pc
restbody	lop d
locals	reg
meth	meth
frames	stack
classState	classState
globals	globals
heap	heap
	switch

Equivalence?

Equivalence of states

Equivalence of pos and pc:

Associate to each position in method body an interval in code array.

$$\alpha \longmapsto [code(i) \mid beg_{\alpha} \leq i < end_{\alpha}]$$

- $ightharpoonup restbody_n/lpha$ not evaluated $\implies pc_{\sigma(n)} = \mathrm{beg}_{lpha}$
- $ightharpoonup restbody_n/lpha$ evaluated $\implies pc_{\sigma(n)} = \operatorname{end}_{lpha}$

Equivalence of restbody and opd:

The operand stack of the JVM can be extracted from restbody.

$$javaOpd(\underbrace{restbody}, \alpha) = [15, 2]$$

Equivalence of states (continued)

Equivalence of *locals* and *reg*:

Define $locals \approx reg$ iff for each $x \in dom(locals)$:

- If $size(\mathcal{T}(x)) = 1$, then $jvmVal(locals(x)) = [reg(\overline{x})]$.
- If $size(\mathcal{T}(x)) = 2$, then $jvmVal(locals(x)) = [reg(\overline{x}), reg(\overline{x} + 1)]$.

Equivalence of *frames* and *stack*:

 $[] \approx [].$

Assume that

- 1. $frames \approx stack$,
- 2. $locals \approx reg$,
- 3. reg contains correct return addresses for pos in restbody,
- 4. $pc = \log_{pos}$ or $pc = \operatorname{end}_{pos}$ depending on restbody/pos. Then

 $frames \cdot (meth, restbody, pos, locals) \approx stack \cdot (pc, reg, opd, meth).$

Problem: Correctness of subroutine return addresses.

General case: restbody

```
c/m(...) {
    abr finally {
        Norm finally {
            Exc(r) finally {
                pos
```

Theorem: Correctness of the compiler

Theorem. The following invariants are true for $\alpha = pos_n$:

- (reg) $locals_n \approx reg_{\sigma(n)}$
- (stack) $frames_n \approx stack_{\sigma(n)}$
- **(beg)** If $restbody_n/\alpha$ is not evaluated, then
 - 1. $pc_{\sigma(n)} = \operatorname{beg}_{\alpha}$, or $\operatorname{beg}_{\alpha} < \operatorname{end}_{\alpha}$ and $code(\operatorname{beg}_{\alpha}) = Goto(pc_{\sigma(n)})$,
 - 2. $opd_{\sigma(n)} = javaOpd(restbody_n, \alpha)$.
- (exp) If α is an \mathcal{E} -position, $restbody_n/\alpha = v$ and v is a value or a finite sequence of values, then
 - 1. $pc_{\sigma(n)} = \operatorname{end}_{\alpha}$,
 - 2. $opd_{\sigma(n)} = javaOpd(restbody_n, \alpha) \cdot jvmVal(v)$.

Theorem: Correctness of the compiler (continued)

- **(bool1)** If α is a $\mathcal{B}_1(lab)$ -position and $restbody_n/\alpha = True$, or if α is a $\mathcal{B}_0(lab)$ -position and $restbody_n/\alpha = False$, then
 - 1. $pc_{\sigma(n)} = lab$,
 - 2. $opd_{\sigma(n)} = javaOpd(restbody_n, \alpha)$.
- **(bool2)** If α is a $\mathcal{B}_1(lab)$ -position and $restbody_n/\alpha = False$, or if α is a $\mathcal{B}_0(lab)$ -position and $restbody_n/\alpha = True$, then
 - 1. $pc_{\sigma(n)} = \operatorname{end}_{\alpha}$,
 - 2. $opd_{\sigma(n)} = javaOpd(restbody_n, \alpha)$.
- (new) If $body(meth_n)/\alpha = \text{new } c$ and $restbody_n/\alpha = ref$, then
 - 1. $pc_{\sigma(n)} = \operatorname{end}_{\alpha}$,
 - 2. $opd_{\sigma(n)} = javaOpd(restbody_n, \alpha) \cdot [ref, ref].$

Theorem: Correctness of the compiler (continued)

- (stm) If α is an \mathcal{S} -position and $restbody_n/\alpha = Norm$, then
 - 1. $pc_{\sigma(n)} = \operatorname{end}_{\alpha}$,
 - 2. $opd_{\sigma(n)} = [].$
- (abr) If $restbody_n/\alpha = abr$ and abr is not an exception, then
 - 1. $opd_{\sigma(n)} = []$,
 - 2. $pc_{\sigma(n)}$ is a continuation for abr at position α wrt. $reg_{\sigma(n)}$.
- (exc) If $restbody_n/\alpha = Exc(r)$ and $body(meth_n)/\alpha \neq \texttt{static}_{-}$, then
 - 1. $switch_{\sigma(n)} = Throw(r)$,
 - 2. $\operatorname{beg}_{\alpha} \leq pc_{\sigma(n)}$,
 - 3. $pc_{\sigma(n)} < \operatorname{end}_{\alpha}$, or α is an \mathcal{E} -position and $pc_{\sigma(n)} < \operatorname{end}_{up(\alpha)}$,
 - 4. there is no $(f, u, _, c) \in \mathcal{X}(\alpha)$ such that $f \leq pc_{\sigma(n)} < u$ and $classOf(r) \preceq_{\mathrm{h}} c$.

Theorem: Correctness of the compiler (continued)

```
(exc-clinit) If restbody_n/\alpha = Exc(r) and body(meth_n)/\alpha = {\tt static\_}, then switch_{\sigma(n)} = ThrowInit(r).
```

```
(clinit) Assume that restbody_n/\alpha = \mathtt{static}_- and c = classNm(meth_n). If c \neq \mathtt{Object} and not initialized(super(c)), then switch_{\sigma(n)} = InitClass(super(c)), otherwise switch_{\sigma(n)} = Noswitch.
```

(fin) $reg_{\sigma(n)}$ contains correct return addresses for α in $restbody_n$.

If nothing is said about switch, then $switch_{\sigma(n)} = Noswitch$.

Proof. By induction on n. 83 cases on 22 pages. \square

Properties of the exception table $\mathcal{X}(^{\alpha}stm)$

Lemma. The exception table has the following properties:

- 1. If $(f, u, _, _) \in \mathcal{X}(\alpha)$, then $\operatorname{beg}_{\alpha} \leq f$ and $u \leq \operatorname{end}_{\alpha}$.
- 2. If β is a position inside ${}^{\alpha}stm$ and h is a handler which occurs in the table $\mathcal{X}(\alpha)$ before the subtable $\mathcal{X}(\beta)$, then the interval protected by h is disjoint to the interval $\{i \mid \text{beg}_{\beta} \leq i < \text{end}_{\beta}\}.$
- 3. If β is a direct subposition of αstm and β is not the position of a try Block, or a try-catch statement, then the intervals of handlers in $\mathcal{X}(\alpha)$ which do not belong to $\mathcal{X}(\beta)$ are disjoint to $\{i \mid \text{beg}_{\beta} \leq i < \text{end}_{\beta}\}.$
- **1.** $\{i \mid f \leq i < u\} \subseteq \{i \mid \text{beg}_{\alpha} \leq i < \text{end}_{\alpha}\}$
- **2.** $\mathcal{X}(\alpha) = [\dots, Exc(f, u, h, t), \dots, \mathcal{X}(\beta)]$
- **3.** $\mathcal{X}(\alpha) = [\dots, Exc(f, u, h, t), \dots, Exc(f, u, h, t), \dots]$

Continuations

Continuations for break. Code index i is a continuation for an abruption Break(lab) at position α , if $finallyLabsUntil(\alpha, lab) = [fin_1, \dots, fin_k]$ and $code(i) = Jsr(fin_1)$ $\vdots \qquad \vdots \\ code(i+k-1) = Jsr(fin_k) \\ code(i+k) = Goto(lab_h).$

Continuations for continue. Code index i is a continuation for an abruption Continue(lab) at position α , if $finallyLabsUntil(\alpha, lab) = [fin_1, \dots, fin_k]$ and $code(i) = Jsr(fin_1)$ $\vdots \qquad \vdots \\ code(i+k-1) = Jsr(fin_k) \\ code(i+k) = Goto(lab_c).$

Continuations (continued)

Continuations for return void. Code index i is a continuation for an abruption Return at position α , if $finallyLabs(\alpha) = [fin_1, \ldots, fin_k]$ and

$$code(i) = Jsr(fin_1)$$
 $code(i+k-1) = Jsr(fin_k)$
 $code(i+k) = Return(void)$

Continuations for return value. Code index i is a continuation for a Return(val) at position α wrt. reg, if $finallyLabs(\alpha) = [fin_1, \ldots, fin_k]$ and

Correct return addresses

Definition. We say that reg contains correct return addresses for position α in restbody, if the following conditions are satisfied:

- (fin-norm) For each β , if $restbody/\beta = (Norm \text{ finally } s)$ and α is in s, then $code(reg(\overline{ret}_{\beta})) = Goto(end_{\beta})$.
- (fin-abr) For each β , if $restbody/\beta = (abr \ finally \ s)$, abr is not an exception and α is in s, then $reg(\overline{ret}_{\beta})$ is a continuation for abr at position β with respect to reg.
- (fin-exc) For each β , if $restbody/\beta = (Exc(r) \text{ finally } s)$ and α is in s, then $reg(\overline{\operatorname{ret}}_{\beta}) = \operatorname{default}_{\beta} + 2$ and $reg(\overline{\operatorname{exc}}_{\beta}) = r$.