This note describes the programs

```
o_roots_Univariate.m and o_gcd_Univariate_2Polys.m
```

- 1. The first file is used in the computation of a polynomial's roots and corresponding multiplicities, where the given polynomial is in Bernstein form.
- 2. The second file is used in teh computation of the Greatest Common Divisor (GCD) of two polynomials in Bernstein form.

The programs are executed by typing

where

ex_num A String typically containing an integer, which defines the example to be run.

emin Minimum signal : noise ratio

emax Maximum signal: noise ratio

mean_method Method used to compute the mean of the entries of the partitions of the Sylvester subresultant matrix

None No mean method used

Geometric Mean My Method : Fast method

Geometric Mean Matlab Method : Standard Matlab method

Arithmetic Mean:

bool_alpha_theta

true: Preprocess polynomials false: Exclude preprocessing

low_rank_approx_method

None

Standard SNTLN

Standard STLN

Root Specific SNTLN

apf_method

None

Standard Linear APF

Standard NonLinear APF

Sylvester_Build_Method

```
T: The matrix T_k(f(x), g(x))
```

 $\mathtt{DT:} \ \ \mathsf{The \ matrix} \ D_{m+n-k}^{-1} T_k \left(f(x), g(x) \right)$

DTQ: The matrix $D_{m+n-k}^{-1}T_{k}\left(f,g\right)\hat{Q}$

TQ: The matrix $T_k(f,g) \hat{Q}$

DTQ Rearranged: The matrix $S_k\left(f(x),g(x)\right)=D_{m+n-k}^{-1}T_k\left(f(x),g(x)\right)\hat{Q}$ where the entries are computed in a rearranged form.

DTQ Rearranged Denom Removed : $\tilde{S}\left(f(x),g(x).\right)$

Examples of executing the programs are

```
o_gcd_Univariate_2Polys('1', 1e-10, 1e-12, 'Geometric Mean Matlab Method', true, 'None', 'None', 'DTQ')
```

o_roots_Univariate('1', 1e-12, 1e-10, 'Geometric Mean Matlab Method', true, 'None', 'DTQ')

The programs produce the following output:

1 Points of Interest

1.1 Limits

The code makes frequent use of variables t_limits and k_limits.

- t_limits: In the computation of the factorisation of $\hat{f}_0(x)$, many GCD computations are required to generate the sequence $\hat{f}_i(x) = GCD\left(\hat{f}_{i-1}(x), \hat{f}'_{i-1}(x)\right)$. The degree of $GCD\left(\hat{f}_i(x), \hat{f}'_i(x)\right)$ is bound by the number of distinct roots of $\hat{f}_i(x)$, and the number of distinct roots is always less than or equal to the number of distinct roots of $\hat{f}_{i-1}(x)$.
- k_limits: This variable defines the range of Sylvester subresultant matrices $S_k\left(\hat{f}_i(x), \hat{f}'_i(x)\right)$ considered in the computation of the degree of the GCD. By default this range is set between 1 and $\min(m,n)$, however limits_t can also be used since it is known that all subresultant matrices outside this range are known to be singular.

1.2 Computing the Degree of the GCD

There are several methods considered for the computation of the degree of the GCD. A global variable SETTINGS.RANK_REVEALING_METRIC defined in the file SetGlobalVariables.m determines which method is used.

Singular Values:

R1 Row Norms:

R1 Row Diagonals:

Residuals: