Ay190 – Worksheet 09 Donal O Sullivan

Date: February 10, 2014

1 Solving Large Systems of Linear Equations

1.1 Loading and Checking for Solvability

The output of my code (method: part1()) shows that the sizes of the arrays given are 10, 100, 200, 1000 and 2000 and that each one is solvable.

1.2 Coding and Testing Gauss Elimination

I tested my code implementing the Gauss Elimination algorithm on the following system of equations:

$$2x_1 + 3x_2 + 4x_3 = 29.5$$

$$x_1 - x_2 + x_3 = 7.5$$

$$x_1 + 2x_2 - x_3 = -3$$

which has the solution $x_1, x_2, x_3 = 2, \frac{1}{2}, 6$. The method 'part2()' in my code demonstrates this working. The timing bit is done more thoroughly in the last part of this worksheet.

1.3 Timing Results

As is clear from Figure 1 my own code performs poorly in comparison to NumPy and SciPy's linear systems solvers. Comparing the latter two based on the plot, I would use Scipy's linalg.solve. I was unable to find what algorithm these methods use as they do not mention it in the API or source code.

Note: I had to use time.time() instead of time.clock() because my OS is Ubuntu, which apparently has some issues with the latter.

Figure 1: Timing the Linear Systems solvers (my Gauss Elimination code, NumPy's linalg.solve and SciPy's linalg.solve