Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Пог	решности	3
	1.1	Погрешности приближенных вычислений	3
		1.1.1 Погрешности арифметических действий	3
		1.1.2 Обратная задача погрешности	4
		1.1.3 Статистический подход	4
		1.1.4 Примеры неустойчивых задач и методов	4
2	Лин	ейные уравнения	5
	2.1	Решение систем линейных уравнений	5
		2.1.1 Число обусловленности	6
		2.1.2 Метод Гаусса	6
		2.1.3 LU-разложение	6
		2.1.4 QR-разложение	6
		2.1.5 Итерационные методы решения СЛАУ	8
3	Нел	инейные уравнения	10
	3.1		10
	3.2		10
	3.3		10
	3.4		11
	3.5		11
4	Инт	ерполяция и приближение функций	12
	4.1		12
	4.2		12
		1 1	13
			13

Погрешности 1

1.1Погрешности приближенных вычислений

- 1) Погрешность начальных данных (задачи, измерений).
- 2) Методическая погрешность.
- 3) Вычислительная погрешность.

Определение 1.1. Если a — приближенное значение, A — точное, тогда $\Delta a = |A - a|$ абсолютная погрешность.

Определение 1.2. $\delta a = \frac{\Delta a}{|a|}$ — относительная погрешность. Она показывает, сколько верных знаков в записи числа

Рассмотрим, как погрешности ведут себя при вычислениях.

1.1.1 Погрешности арифметических действий

 $x_1 \pm \Delta x_1$ и $x_2 \pm \Delta x_2$ — неточные числа.

Тогда:

1)
$$(x_1 + x_2) + \Delta(x_1 + x_2) = x_1 + \Delta x_1 + x_2 + \Delta x_2 \Rightarrow \Delta_+ = x_1 + x_2$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \le \delta x_1 + \delta x_2$$

Таким образом, $|\Delta_{\pm}| \leq |\Delta x_1| \pm |\Delta x_2|$. Отсюда абсолютная: $\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \leq \delta x_1 + \delta x_2$. Если $x_1, x_2 > 0$, то $\delta_+ \leq \max \delta x_i$. А вот для вычитания $\frac{\Delta(x_1-x_2)}{(x_1-x_2)}$ и возникает большая проблема для относительной погрешности.

2)
$$(x_1x_2) + \Delta(x_1x_2) = x_1x_2 + x_1\Delta x_2 + x_2\Delta x_1 + \Delta x_1\Delta x_2 \Rightarrow \Delta_+ \approx x_1\Delta x_2 + x_2\Delta x_1$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1, x_2)}{x_1 x_2} \approx \frac{\Delta x_2}{x_2} + \frac{\Delta x_1}{x_1} \Rightarrow |\delta| \leq |\delta x_1| + |\delta x_2|$$
. Пусть $f(\overline{x_1}, ..., \overline{x_n})$, где $\overline{x_1} = x_1 + \Delta x_1, ..., \overline{x_n} = x_n + \Delta x_n$.

Пусть
$$f(\overline{x_1},...,\overline{x_n})$$
, где $\overline{x_1}^2 = x_1 + \Delta x_1,...,\overline{x_n} = x_n + \Delta x_n$

Посчитаем

$$\Delta f = f(x_1, ..., x_n) - f(\overline{x_1}, ..., \overline{x_n}) = \left[\frac{\partial f}{\partial x_1}(x_1, ..., x_n) \Delta x_1 + ... + \frac{\partial f}{\partial x_n}(x_1, ..., x_n) \Delta x_n \right] + o\left((\Delta x)^2\right)$$

откуда абсолютная погрешность:

$$|\Delta f| \le \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right| |\Delta x_i|$$

Рассмотрим относительную:

$$\frac{\Delta f}{f} = \delta f = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \cdot \frac{1}{f} \right| |\Delta x_i| = \sum_{i=1}^{n} \left| \frac{\partial \ln f}{\partial x_i} \Delta x_i \right|$$

где
$$\frac{\partial \ln f}{\partial x_i} = \frac{\partial f}{f \partial x_i}$$
.

Отсюда
$$\ln(x_1 \cdot \dots \cdot x_n) = \ln x_1 + \dots + \ln x_n \Rightarrow \frac{\partial \ln(x_1 \cdot \dots x_n)}{\partial x_i} = \frac{1}{x_i}$$
.

To есть для деления $|\delta_{\div}| \leq |\delta x_1| + |\delta x_2|$.

1.1.2 Обратная задача погрешности

Проблема. По требуемой на Δf (δf) найти допустимые Δx (δx).

Пример 1.1.

1) Принцип равных влияний: считаем, что вклад всех слагаемых в погрешность одинаков:

$$\left| \frac{\partial f}{\partial x_1} \right| \cdot \Delta x_1 = \left| \frac{\partial f}{\partial x_2} \right| \cdot \Delta x_2 = \dots = \text{const}$$

Откуда

$$\Delta x_i \le \frac{|\Delta f|}{n \left| \frac{\partial f}{\partial x_i} \right|}$$

2) Принцип равных погрешностей: требуем одинаковых Δx_i :

$$\Delta x_1 = \Delta x_2 = \dots = \text{const} = \Delta x$$

Откуда

$$|\Delta x| \le \frac{|\Delta f|}{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right|}$$

1.1.3 Статистический подход

 $\Delta S_n \div \sqrt{n}$, где S_n — сумма n слагаемых (n > 10). Тогда $\Delta S_n \approx \sqrt{3n} \cdot 0.5 \cdot 10^{-m}$ если $\Delta x_i \le 0.5 \cdot 10^{-m}$.

Таким образом, при статистическом подходе погрешность $\frac{\Delta S_n}{n} \to 0 \ n \to \infty$.

1.1.4 Примеры неустойчивых задач и методов

1) Требуется решить $(x-a)^n=\varepsilon$, где a,n,ε — заданные числа, при этом $n>>1,\,n\in\mathbb{N},$ $0<\varepsilon<1$

x = a — приближенное.

 $\Delta x = \sqrt[n]{\varepsilon}$ если $\varepsilon \approx 10^{-16}$, $n \approx 10$, $\Delta x \approx 10^{-2}$.

2) (x-1)(x-2)...(x-20) — полином. Раскроем: $x^{20}-210x^{19}+...+20!$. А вот если мы получили погрешность округления вида $210+10^{-7}$. Тогда корни этого полинома не просто изменятся, но будут иметь вид:

$$x = 1.000$$

:

$$x_7 = 7.000$$

$$x_8 = 8.007$$

$$x_9 = 8.897$$

$$x_{\overline{10,19}} \in \mathbb{C}$$

$$x_{20} = 20.847$$

3) Линейная система:

$$\int x + 10y = 11$$

$$)100x + 1001y = 1101$$

Решение очевидно: x = 1, y = 1.

Добавим погрешность:

$$\begin{cases} x + 10y = 11.01\\ 100x + 1001y = 1101 \end{cases}$$

Решение получилось: x = 11.01, y = 0.

4) Вычислить набор интегралов

$$\frac{1}{e} \int_0^1 x^n e^x dx$$

где n = 0, 1, ...

Пусть I_n — этот интеграл. Тогда запишем рекуррентную формулу:

$$I_n = 1 - nI_{n-1}, \ I_0 = 1 - \frac{1}{e}$$

На старых машинах при n=14 уже получались неверные ответы. Альтернатива: перевернуть формулу и записать ее в виде

$$I_{n-1} = \frac{1}{n}(1 - I_n)$$

2 Линейные уравнения

2.1Решение систем линейных уравнений

Определение 2.1. Норма: ||.||;

- 1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- $2) ||\lambda x|| = |\lambda| \cdot ||x||;$
- 3) $||x+y|| \le ||x|| + ||y||$;

Пример 2.1. Нормы векторов

 $\|x\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$ — долгая и неблагодарная норма; $\|x\|_1 = |x_1| + \ldots + |x_n|$ — более простая норма; $\|x\|_p = (|X_1|^p + \ldots + |x_n|^p)^{1/p}$ — строгая математическая норма; $\|x\|_{\infty} = \max_{i=\overline{1,n}} |x_i|$ — наиболее частоиспользуемая норма.

Все эти нормы эквивалентны, то есть $\|.\|_{\alpha}$, $\|.\|_{\beta}$ эквивалентны, если $\exists c_1, c_2 : \forall x$ выполняется $c_1 ||x||_{\beta} \le ||x||_{\alpha} \le c_2 ||x||_{\beta}$.

Определение 2.2. Рассмотрим линейный оператор A; здесь $||Ax|| \leq C$. Тогда $\min_x C =$ ||A|| — норма матрицы, согласованная с нормой вектора, если $||Ax|| \le ||A|| \, ||x||$.

Определение 2.3. Норма матрицы, подчиненная норме вектора:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

Пример 2.2.

- 1) $||A||_1 = \max_{j=\overline{1,n}} \sum_{i=1}^n |a_{ij}|;$
- 2) $||A||_2 = \sqrt{\max_{i=\overline{1,n}} \lambda(A^T A)};$
- 3) $||A||_{\infty} = \max_{i=\overline{1,n}} \sum_{j=1}^{n} |a_{ij}|.$

Норма Фробениуса: $\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2}$.

Число обусловленности 2.1.1

Рассмотрим систему Ax = b и пусть $b + \Delta b$. Как Δb повлияет на Δx ?

$$A(x + \Delta x) = b + \Delta b; A\Delta x = \Delta b.$$

 $||A\Delta x|| = ||\Delta b||$, раскрыв скобки, $||A|| \, ||\Delta x|| \ge ||\Delta b||$;

Откуда $\|\Delta x\| \leq \|A^{-1}\| \cdot \|\Delta b\|$. Но это абсолютная погрешность. Что с относительной?

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\| \|\Delta b\|}{\|b\|}$$

и тогда $\nu(A) = \|A^{-1}\| \, \|A\|$ — число обусловленности системы.

И если $\nu(A) >> 1$, то система плохо обусловлена.

Есть способы т.н. предобусловлевания систем, однако мы их смотреть пока не будем.

Пример плохо обусловленной системы:

$$\left(\begin{array}{cc} 1 & 10 \\ 100 & 1001 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 11 \\ 11.01 \end{array}\right)$$

2.1.2 Метод Гаусса

Обычный метод Гаусса.

LU-разложение 2.1.3

A = LU, где L — нижнетреугольная матрица, а U — верхнетреугольная. Потребуем, чтобы на главной диагонали L стояли единицы для однозначного разложения.

U — матрица, получающаяся в ходе прямого разложения Гаусса. L получается, как матрица, в которой запомнены коэффициенты, на которые мы домножали: $\frac{a_{21}}{a_{11}}$, к примеру. Но если наше разложение наткнется на нуль на диагонали, будет больно.

Поэтому используют $A = P^{-1}LU$, где P —матрица перестановка с аналогичными желаемым перестановками.

Для решения уравнения будем использовать PAx = Pb. Затем Ly = Pb.

Как ее построить? Если мы переставляли строки в исходной матрице, то аналогично должны переставить в матрице P. Затем воспользуемся тем, что P ортогональна: P^{-1} P^{T} .

QR-разложение 2.1.4

Метод вращений Гивенса:

Строим QR = A, где R — верхнетреугольная матрица, а Q — ортонормированная.

Строим QR = A, где n — верапотрој $\begin{pmatrix} a_{11}^{(0)} \\ 0 \\ a_{31}^{(0)} \\ \vdots \\ n \end{pmatrix}$. Матрицы поворота выгля-

$$\left(\begin{array}{c} a_{n1}^{(0)} \end{array}\right)$$
 дят так: $\left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right)$. Матрица обратного поворота, аналогично, $\left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right)$.

Теперь, если мы домножим на матрицу $Q_{21}=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\alpha&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}$. Тогда обнулится элемент a_{21} . Аналогично, далее используем матрицу $Q_{31}=\begin{pmatrix}\cos\alpha&0&-\sin\alpha&0\\0&1&0&0\\\sin\alpha&0&\cos\alpha&0\\0&0&0&1\end{pmatrix}$ и так

далее. Таким образом, $Q_{n,n-1}Q_{n,n-2},...,Q_{21}$.

Это разложение нам понадобится для решения уравнения вида Ax=b решая уравнение Rx = Qb.

Как найти α ? У нас есть a_{11} и a_{21} и мы именно этот вектор хотим домножить на матрицу вращения. Уравнение:

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} a_{11}^{(1)} \\ 0 \end{pmatrix}$$

Легко выводится, что $\begin{cases} \sin\alpha a_{11} + \cos\alpha a_{21} = 0\\ \sin^2\alpha + \cos^2\alpha = 1 \end{cases}, \sin\alpha = -\frac{\cos\alpha a_{21}}{a_{11}}, \cos^2\alpha + \cos^2\alpha (\frac{a_{21}}{a_{11}}) = 1,$ откуда $\cos^2\alpha = \frac{a_{11}}{a_{21}^2 + a_{21}^2}$, отсюда $\cos\alpha = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \sin\alpha = -\frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}.$

Плюсы в сравнении с методом Гаусса: не нужно выбирать ве, вычислительная погрешность. Из минусов: работает в 4 раза медленнее.

Метод отражений Хаусхольдера:

Рассмотрим вспомогательный вектор
$$\omega$$
 — вектор единичной длины. $\omega^T \omega = 1$. Рассмотрим $U = E - 2\omega\omega^T$, $U^T U = E - 4\omega\omega^T + 4\omega\underbrace{\omega^T \omega}_{;} \omega^T = E \Rightarrow U^{-1} = U^T$.

 $U_{\omega} = (E \cdot 2\omega\omega^T)\omega = \omega - 2\omega = -\omega \Rightarrow \omega$ — собственный вектор с собственным числом

 $v\perp\omega$, то есть $v^T\omega=0$ или $\omega^Tv=0,~U_v=\left(E-2\omega\omega^T\right)v=v-2\omega\omega^Tv=v\Rightarrow v$ собственный вектор с собственным числом 1.

Таким образом, $y = v + \alpha \omega \Rightarrow Uy = v - \alpha \omega$, то есть матрица U отражает вектор.

Пусть y, z - ... векторы. Нам нужно найти U, такую, что $Uy = \alpha z$. Смотрим:

$$||Uy|| = ||y|| = ||\alpha z|| \Rightarrow \alpha = \frac{||y||}{||z||}$$

$$\omega = \frac{y - \alpha z}{\|y - \alpha z\|}$$

Теперь, используя A_1 как y, e_1 как z, строим $U_1 = E - 2\omega\omega^T$. Тогда U_1A будет иметь нулевой первый столбец (исключая элемент $a_{11}^{(1)}$).

Тогда $Q = U_{n-1} \cdot \ldots \cdot U_1$.

Тогда решением Ax = b будет являться $Rx = Q^T b$.

Симметричная матрица — метод квадратного корня.

 $A = S^T S$, где S — верхнетреугольная. Такое разложение возможно и единственно только для симметричной матрицы.

Рассмотрим A — положительно определенная матрица, следовательно, $s_{ij} \in \mathbb{R}$. Просто расписав матрицы, получим $s_{11}^2=a_{11},\ s_{11}s_{12}=a_{12},...,s_{11}s_{1n}=a_{1n}.$ Теперь посмотрим на вторую строку: $s_{22}^2 + s_{12}^2 = a_{22}$, $s_{23}s_{22} + s_{12}s_{13} = a_{23}$ и так далее.

Метод квадратного корня требует в 2 раза меньше операций, чем в методе Гаусса + $n_{\checkmark}/.$

2.1.5 Итерационные методы решения СЛАУ

Это методы, в которых мы находим начальное приближение к решению и, итерируя, уточняем его.

Рассматриваемая нами система Ax = b путем неких изменений может быть приведена к форме x = Bx + c. И задача нахождения x становится задачей нахождения неподвижной точки.

Допустим, мы преобразовали наше уравнение ко второму виду. Теперь мы строим итератор:

$$x^{(k+1)} = Bx^{(k)} + c$$

Интуитивно понятно, что ||B|| > 1 влечет $||x_k|| \to \infty$.

Лемма 2.1. Все собственные числа матрицы B по модулю меньше единицы тогда и только тогда, когда

1)
$$B^k \to_{k\to\infty} 0$$
;

2)
$$\exists (I-B)^{-1} = (I+B+B^2+...+B^k+...);$$

Лемма 2.2. Если $||B|| \le q < 1$, то $(I - B)^{-1}$ существует, равна $\sum_{i=1}^{\infty} B^i$ и $||(I - B)^{-1}|| \le \frac{1}{1-q}$.

Доказательство. $||B|| \le q < 1 \Rightarrow ||i+B+...+B^k+...|| \le ||I|| + ||B|| + ... + ||B^k|| + ... \le ||I|| + ||B|| + ... + ||B||^k + ... \le 1 + q + ... + q^k + ... = \frac{1}{1-q}$, следовательно, существует $V = \sum_{k=0}^{\infty} B^i$, такое, что $||V|| \le \frac{1}{1-q}$.

Тогда
$$(I-B)V=IV-BV=I+B+B^2+...+B^k+...-B-B^2-...-B^k-...=I,$$
 следовательно $\|(I-B)^{-1}\| \leq \frac{1}{1-a}.$

Теорема 2.1. Необходимым и достаточным условием сходимости метода простой итерации с любым начальным приближением $x^{(0)}$ $\kappa \, x^* : x^* = B x^* + c$ является ограниченность собственных чисел матрицы B числом, меньшим единицы.

Доказательство.

Достаточность:

$$x^{(1)} = Bx^{(0)} + c$$

$$x^{(2)} = B(Bx^{(0)} + c) + c = B^2x^{(0)} + Bc + c$$

$$x^{(k)} = B^k x^{(0)} + (B^{(k-1)} + \dots + I)c$$

Из условий 1) $B^k \to_{k\to\infty} 0; 2)$ $\exists (I-B)^{-1} = \sum_{i=0}^{\infty} B^i$ следует, что при $k\to\infty$ выполняется $x^{(k)} \to (I-B)^{-1}c$.

Преобразуем $x = Bx + c \Leftrightarrow (I - B)x = c$, следовательно, $(E - B)^{-1}c$ является решением. Пусть $\exists x^{**} -$ другое решение. Тогда $x^* = Bx^* + c$, $x^{**} = Bx^{**} + c$ и $x^* - x^{**} = B(x^* - x^{**})$, следовательно, $\lambda = 1$ является собственным числом B с собственным вектором $x^* - x^{**}$, а это противоречие.

Необходимость:

 $x^{(k)} \to_{k \to \infty} x^* \Rightarrow I + B + ... + B^k + ... = V, V$ — конечная матрица и $V = (I - B)^{-1}$. Тогда $x^* = \lim_{k \to \infty} B^k x^{(0)} + (I - B)^{-1}c$, подставив в уравнение, получим $(I - B)x^* = c$, откуда $(I - B)(I - B)^1c + (I - B)\lim_{k \to \infty} B^k x^{(0)} = c$ следовательно, $\lim_{k \to \infty} B^k$, следовательно, собственные числе матрицы равны ???

Теорема 2.2. Пусть $||B|| \le q < 1$, тогда МПИ сходится $\forall x^{(0)} \ \kappa \ x^* : x^* = Bx^* + c \ u$ верны следующие оценки:

 $\|x^* - x^{(k)}\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\| - anocmepuop$ ная оценка;

2)
$$||x^* - x^{(k)}|| \le \frac{q^k}{1-q} ||x^{(1)} - x^{(0)}|| - anpuophas oценка.$$

Доказательство. $x^{(k-1)} - x^{(k)} = Bx^{(k)} + c - Bx^{(k-1)} + c = B(x^{(k)} - x^{(k-1)}) \Rightarrow ||x^{(k+1)} - x^{(k)}|| \le c$ $q \|x^{(k)} - x^{(k-1)}\|$

 $q^k \| x^{(1)} - x^{(0)} \|$. Таким образом, при $k \to \infty$ последовательность сходится в себе, \mathbb{R}^n полное, следовательно, существует $x^* = \lim_{k \to \infty} x^{(k)}$.

$$(I-B) \left(B^k x^{(0)} + (I-B)^{-1} c \right) = c, \ B^k x^{(0)} = 0, \ \text{так как } \|B\| \le q \Rightarrow \|B^k\| \le q^k.$$
 И в результате $\|x^* - x^{(k)}\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|$

Замечание 2.1. Апостериорная оценка точнее, чем априорная.

Замечание 2.2. Другая априорная оценка: $x^* = (I-B)^{-1}c = (I+B+...+B^k+...)c$, соответственно, $x^{(k)} = B^k x^{(0)} + (I+...+B^k)c$. Тогда $x^* - x^{(k)} = B^k x^{(0)} + (B^k+B^{k-1}+...)c$. Если взять норму: $\|x^* - x^{(k)}\| \le q^k \|x^{(0)}\| + q^k \|(I - B)^{-1}\| c \le q^k (\|x^0\| + \frac{\|c\|}{1-q})$. Кажется,

Замечание 2.3. Как выбрать $x^{(0)}$?

Метод Якоби:

Ax = b.

Берем матрицу и делим каждую из ее строк на диагональный элемент в этой строке. Мы в каждой строке получим x с соответствующим номером с единичным коэффициентом.

$$x_1 = -\frac{a_{12}}{a_{11}} x_2 - \dots - \frac{a_{1m}}{a_{11}} x_m + \frac{b_1}{a_{11}}$$

$$x_2 = -\frac{a_{21}}{a_{22}} x_1 - \frac{a_{23}}{a_{22}} x_3 \dots - \frac{a_{2m}}{a_{22}} x_m + \frac{b_2}{a_{22}}$$

 $x_1=-\frac{a_{12}}{a_{11}}x_2-\ldots-\frac{a_{1m}}{a_{11}}x_m+\frac{b_1}{a_{11}}$ $x_2=-\frac{a_{21}}{a_{22}}x_1-\frac{a_{23}}{a_{22}}x_3\ldots-\frac{a_{2m}}{a_{22}}x_m+\frac{b_2}{a_{22}}$ и так далее. Теперь матрица B будет иметь нули на диагонали. Соответственно, метод Якоби есть МПИ в такой системе.

Теорема 2.3. Для матрицы с диагональным преобладанием метод Якоби сходится.

Определение 2.4. Матрица с диагональным преобладанием — матрица, такая, что

$$\forall i = \overline{1, n} : |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

$$\delta = \min_{i=1,n} \left(|a_{ii}| - \sum_{i=1}^{n} |a_{ij}| \right)$$

— величина диагонального преобладания. Чем больше, тем быстрее матрица сойдется.

Теорема 2.4. Метод Якоби сходится тогда и только тогда, когда все корни уравнения

$$\det \begin{pmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{pmatrix}$$

Метод Зейделя:

Когда мы применяем метод простой итерации, мы строим $x_1^{(k+1)} = b_{11}x_1^{(k)} + b_{12}x^{(k)} + \dots + b_{1n}x_n^{(k)} + c_1$. Остальное аналогично с другими сторками.

3 Нелинейные уравнения

f(x) = 0 — поиск корней нелинейной функции.

3.1 Метод половинного деления

Рассматриваем отрезок [a,b], на котором есть корни, то есть f(a)f(b) < 0. Вычисляем $c = \frac{a+b}{2}$, f(c) и сравниваем:

- $1)^{2} f(a) f(c) < 0 \Rightarrow b := c, \ f(b) := f(c)$ и рекуррентно выполняем.
- 2) f(a) f(c) > 0. Все то же самое, но наоборот.
- 3) f(a)f(c) = 0 вернуть c.

Делаем, пока $\frac{b-a}{2} > \varepsilon$.

3.2 Метод простой итерации

Переформулируем f(x) = 0 в x = S(x) и выбрав x_0 будем искать неподвижную точку: $x_{k+1} = S(x_k)$.

Например, $S(x) = x - \tau(x) - f(x)$, $\tau(x) \neq 0$ в окрестности x^* . Если $\tau(x) \equiv \tau \neq 0$ $S(x) = x - \tau f(x)$.

Теорема 3.1. Если f(x) липшицова $c \ q \in (0,1)$ на отрезке $V_r(a) \ u \ |S(a) - a| \le (1-q)r$, то уравнение x = S(x) имеет на $V_r(a)$ единственное решение x^* , МПИ сходится $\forall x_0 \in V_r(x)$ $u \ |x^* - x_k| \le q^k \ |x^* - x_0|$.

Если S(x) непрерывно дифференцируема на отрезке $u |S'(x)| \le q < 1$ и выполнено условие $|S(a) - a| \le (1 - q)r$, то решение существует $u \ \forall x_0$ метод простой итерации сходится.

3.3 Метод Ньютона

f(x) = 0.

Разложим функцию $f(x^*)$ в ряд по $(x_k - x^*)$. x_k — приближение к решению.

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + f''(x_k)\frac{(x^* - x_k)^2}{2} + \dots$$

отсюда

$$x^* \approx x_k - \frac{f(x_k)}{f'(x_k)} = x_{k+1}$$

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, то есть $S(x) = \frac{f(x)}{f'(x)}$, если $|S'(x)| \le q \le 1$ в некоторой окрестности, то МПИ сходится.

$$S'(x) = -\frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} + 1$$

то есть $S'(x) = \frac{f(x)f'(x)}{(f'(x))^2}$. Таким образом,

$$\left| \frac{f(x)f''(x)}{(f'(x))^2} \right| < 1$$

то есть МПИ сходится в некоторой окрестности x^* . Оценим скорость сходимости:

$$f(x_k) + f'(x_k)(x^* - x_k) = F(x_k)$$

$$F(x) = f(x) + f'(x)(x^* - x); \ F(x^*) = 0$$

$$F(x_k) = F(x^*) + \int_{x^*}^{x_k} F'(x) dx$$

$$F'(x) = f'(x) + f''(x)(x^* - x) + f'(x)(-1) = f''(x)(x^* - x)$$

$$F(x_k) = \int_{x^*}^{x_k} f''(x)(x^* - x) dx = f''(\xi) \int_{x^*}^{x_k} (x^* - x) dx = f''(\xi) \frac{(x^* - x_k)^2}{2}$$

$$x^* - x_{k+1} = x^* - x_k + \frac{f(x_k)}{f'(x_k)}$$

$$f'(x)(x^* - x_{k+1}) = F(x_k)$$

$$|x^* - x_{k+1}| \le \frac{M_2}{f'(x_k)} |x^* - x_k|^2$$

таким образом,

$$|x^* - x_{k+1}| \le \frac{q^{2^{(k+1)}-1}}{1-q} |x^* - x_0|$$

Теорема 3.2. Если на отрезке [a,b] существует корень, $f'(x) \neq 0$ на [a,b] и $f''(x) \neq 0$, то метод Ньютона сходится $\forall x_0$, такого, что $f(x_0)f''(x_0) > 0$.

Метод Ньютона имеет так называемую квадратичную сходимость для простых корней.

3.4 Метод секущих

Применяется в случае, если не работает метод Ньютона. //дописать про метод Ньютона

3.5 Модифицированный метод Ньютона

Фиксируем матрицу Якоби $J(x^{(m)})$ и далее используем ее (часто берут m=0). Переназначим: $J(x^{(k)})=J_k, \ F(x^{(k)})=F_k$. Тогда метод Ньютона говорит, что $J_k\Delta x^{(k+1)}=-F_k$, а модифицированный метод Ньютона: $J_m\Delta x^{(k+1)}=-F_k$.

Сходимость модифицированного метода Ньютона линейная (геометрическая прогрессия), но экономия достигается на вычислении J_k и LU разложении.

Часто методу Ньютона задают ограничение на число итераций.

4 Интерполяция и приближение функций

4.1 Общие задачи интерполяции

f(x) задана на [a,b] и f(x) — «сложная» или таблично задана в точках $\{\overline{x_1},...,\overline{x_n}\}$. Наша задача — быстро вычислять приближение к f(x) или просто f(x) в $x \notin \{\overline{x_1},...,\overline{x_n}\}$. Для этого f заменяется на $a_0\varphi_0+...+a_n\varphi_n$, где $\varphi_0,...,\varphi_n$ — «простые» функции, причем $a_0\varphi_0(x_i)+...+a_n\varphi_n(x_i)=f(x_i)$ для некоторых $\{x_0,...,x_n\}\subset [a,b]$ или из $\{\overline{x_1},...,\overline{x_n}\}$. Такой прием называется интерполяцией.

Интерполяционный полином $a_0\varphi_0 + ... + a_n\varphi_n$ может быть построен для заданной точности, только если функции $\varphi_0, ..., \varphi_n$ обладают следующими свойствами:

- $1) \varphi_0, ..., \varphi_n, ...$ линейно независимы, то есть любой конечный набор из них линейно независим.
- 2) $\varphi_0, ..., \varphi_n, ...$ полная система функций в некотором рассматриваемом функциональном пространстве, то есть $\forall f \; \exists b_0, ..., b_n, ... \; f = \sum_{i=0}^{\infty} b_i \varphi_i$.

Пример 4.1. Попытка приблизить f(x) = |x| на [-1,1] по равноотстоящим узлам провалена, как и попытка показать нам, что это будет.

При этом существует единственный интерполяционный полином $a_0\varphi_0 + ... + a_n\varphi_n = \varphi$, удовлетворяющий условию $\varphi(x_i) = f(x_i)$, $i = \overline{0,n}$, если все x_i различны и φ_i линейно независимы, который находится решением СЛАУ с матрицей

$$\begin{pmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_n) & \varphi_0(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

Определение 4.1. Интерполяционный процесс — последовательное приближение f по

узлам
$$\begin{pmatrix} x_0^{(0)} & & & \\ x_0^{(1)} & x_1^{(1)} & & & \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & & \\ & \ddots & \ddots & \ddots & \dots \end{pmatrix}$$
 с помощью полиномов (дописать). Говорят, что интерполя-

ционный полином по X для $\{\varphi_i\}$ $i=\overline{0,\infty}$ сходится на [a,b] если $0\forall f\exists x$: интерполяционный полином сходится и $\forall x\exists f$ не сходится (WAT).

4.2 Алгебраическое интерполирование

Основная схема: $\varphi_i = x^i, \ i = \overline{0, \infty}$. Линейно независимы $1, x, x^2, ..., x^n, ...$ и

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

— определитель Вандермонда который не равен 0 для различных x_i . При этом $1, x, x^2, \dots$ полная система функций в пространстве $C_{\mathbb{R}}$.

Рассмотрим построение интерполяционного полинома степени n по n+1 узлу $x_0, ..., x_n$ и ... $f_0, ..., f_n$, где $f_i = f(x_i)$.

4.2.1 Интерполяционный полином Лагранжа

Будем обозначать такой полином степени n как L_n .

Итак, должно выполняться $L_n(x_i) = f(x_i)$. Представим $L_n(x) = l_i(x)f(x_i)$, где $l_i(x_j) = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$ — символ Кронекера.

Для того, чтобы построить такой полином, нам нужно, чтобы у $l_i(x)$ корнями являлись $x_0,...,x_{i-1},x_{i+1},...x_n$. Тогда

$$l_i(x) = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

Запишем более кратко:

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

откуда

$$L_n(x) = \sum_{i=0}^{n} \left(\prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)} \right) f(x_i)$$

Если ввести $\omega(x)$ — угловой многочлен, который равен $\omega_n(x) = (x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)$, то

$$l_i(x) = \frac{\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$

и тогда

$$L_n(x) = \sum_{i=0}^{n} \frac{f(x_i)\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$

4.2.2 Погрешность интерполяционного полинома Лагранжа

Погрешность $r_n(x) = L_n(x) - f(x)$. Рассмотрим вспомогательную функцию $\Delta(x) = r_n(x) - K\omega_n(x)$.

Выясним, чему равна $r_n(x^*)$, где $x^* \in [a,b]$ и $x^* \neq x_i$.

Потребуем, чтобы $\Delta(x^*)=0$, то есть

$$K = \frac{r_n(x^*)}{\omega_n(x^*)}$$

 $\Delta(x)$ имеет n+2 корня на [a,b], следовательно, по теореме Ролля $\Delta'(x)$ имеет n+1 корень между $\min(x_0,x^*)$ и $\max(x_n,x^*)$. У $\Delta^{(n+1)}(x)$ существует 1 корень и он в [a,b]. Пусть это некоторая точка ξ . То есть $\Delta^{(n+1)}(\xi) = r_n^{(n+1)}(\xi) - K \cdot (n+1)! = -f^{(n+1)}(\xi) - K(n+1)! = 0$, отсюда $r_n(x^*) = -\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_n(x^*)$. И теперь в силу произвольности, так как x^* — любое, то

$$\Gamma_n(x) = -\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_n(x)$$