

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Methyl 4-[N-(5-bromopyrimidin-2-yl)-carbamoyl]benzoate

Hui-Ling Hu, Chia-Jun Wu, Chun-Wei Yeh and Jhy-Der Chen*

Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 7 June 2012; accepted 14 July 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.034; wR factor = 0.076; data-to-parameter ratio = 11.8.

In the title compound, $C_{13}H_{10}BrN_3O_3$, the pyrimidine and benzene rings are twisted with an interplanar angle of 58.4 (1)°. The secondary amide group adopts a *cis* conformation with an H-N-C-O torsion angle of 14.8 (1)°. In the crystal, molecules are connected into inversion dimers *via* pairs of $N-H\cdots N$ hydrogen bonds, generating an $R_2^2(8)$ motif. The dimers are further connected through a $C-Br\cdots O$ interaction [3.136 (1) Å and 169.31 (1)°] into a chain along [110]. Weak $C-H\cdots N$ hydrogen bonds between the methyl benzoate groups and pyrimidine rings are also observed in the crystal structure.

Related literature

For methyl-4-(5-bromopyrimidin-2-ylcarbamoyl)benzoate and its metal complexes, see: Wu *et al.* (2011). For the conformation of related amides, see Forbes *et al.* (2001); Oertli *et al.* (1992); Lu *et al.* (2011*a,b*). For C—Br···O interactions, see: Rowland & Taylor (1996).

Experimental

Crystal data C₁₃H₁₀BrN₃O₃

 $M_r=336.15$

Triclinic, $P\overline{1}$	$V = 633.58 (12) \text{ Å}^3$
a = 5.9398 (6) Å	Z = 2
b = 7.4137 (7) Å	Mo $K\alpha$ radiation
c = 15.897 (2) Å	$\mu = 3.26 \text{ mm}^{-1}$
$\alpha = 77.846 \ (9)^{\circ}$	T = 295 K
$\beta = 81.613 \ (7)^{\circ}$	$0.4 \times 0.3 \times 0.2 \text{ mm}$
$\nu = 68.185 (9)^{\circ}$	

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (XSCANS; Siemens, 1995) $T_{\min} = 0.953, T_{\max} = 0.984$ 2880 measured reflections 2192 independent reflections 1841 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$ 3 standard reflections every 97 reflections intensity decay: none

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.034 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.076 & \text{independent and constrained} \\ S=1.05 & \text{refinement} \\ 2192 \text{ reflections} & \Delta\rho_{\max}=0.30 \text{ e Å}^{-3} \\ 186 \text{ parameters} & \Delta\rho_{\min}=-0.41 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N3 - H3A \cdots N1^{i} \\ C13 - H13B \cdots N2^{ii} \end{array} $	0.84 (4)	2.14 (1)	2.98 (1)	175 (1)
	0.96	2.58	3.37 (1)	139

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: *XSCANS* (Siemens, 1995); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Council of the Republic of China for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2122).

References

Forbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett. 3, 3595–3598.
Lu, C.-H., Wu, C.-J., Yeh, C.-W. & Chen, J.-D. (2011a). Acta Cryst. E67, o1872.
Lu, C.-H., Wu, C.-J., Yeh, C.-W., Hu, H.-L. & Chen, J.-D. (2011b). Acta Cryst. E67, o1858.

Oertli, G., Meyer, W. R., Suter, U. W., Joho, F. B., Gramlich, V. & Petter, W. (1992). *Helv. Chim. Acta*, **75**, 184–189.

Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wu, C.-J., Sie, M.-J., Hsiao, H.-L. & Chen, J.-D. (2011). CrystEngComm, 13, 4121–4130.

Acta Cryst. (2012). E68, o2497 [doi:10.1107/S1600536812032102]

Methyl 4-[N-(5-bromopyrimidin-2-yl)carbamoyl]benzoate

Hui-Ling Hu, Chia-Jun Wu, Chun-Wei Yeh and Jhy-Der Chen

Comment

Several silver(I) complexes containg Methyl-4-(5-halopyrimidin-2-ylcarbamoyl)benzoate ligands have been reported, which show two-dimensional structures (Wu, *et al.*, 2011). Within this project the crystal structure of the title compound was determined (Fig.1). The pyrimidyl and phenyl rings are not coplanar but twisted with an interplanar angle of 58.4 (1)°. Several C—O lengths are found in the title compound for amide [C5—O1 = 1.220 (4) Å] and methyl benzoate groups [C12—O3 = 1.200 (4), C12—O2 = 1.335 (4) and C13—O2 = 1.448 (4) Å], and the C—N—C angles in pyrimidyl group [C1—N1—C2 = 116.1 (3) and C1—N2—C4 = 116.5 (3)°] is smaller than that in amide group [C1—N3—C5 = 131.2 (3)°]. In its crystal structure intermolecular N—H···N hydrogen bonds are found (Tab. 1) and the molecules are also interlinked through C—Br···O van der Waals interactions [3.136 (1) Å and 169.31 (1)°] (Rowland *et al.*, 1996). The weak C—H···N hydrogen bonds among the methyl benzoate and pyrimidyl rings are also found in the solid state (Fig. 2). In the crystal structure of the title compound the amide group adopts *cis* conformation with the H3A—N3—C5—O1 torsion angle of 14.8 (1)°, which is same as the chloro one (Lu, *et al.*, 2011*a*). This conformation is different from that in the Ag complex, which is *trans* (Wu, *et al.*, 2011; Lu, *et al.*, 2011*b*).

Experimental

The title compound was prepared according to a published procedure (Wu *et al.*, 2011). Block crystals suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution of the title compound in methanol.

Refinement

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 Å, and with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. The amine hydrogen atom (H3A) that is involved in the N—H···N hydrogen bond was freely refined.

Computing details

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acta Cryst. (2012). E68, o2497 Sup-1

Figure 1Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level.

Figure 2 Partial packing diagram showing C—H···N and N—H···N hydrogen bonds and C—Br···O interactions among the molecule, with atom labeling. Symmetric code: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) -1 + x, -1 + y, z.

Acta Cryst. (2012). E68, o2497 sup-2

Methyl 4-[N-(5-bromopyrimidin-2-yl)carbamoyl]benzoate

Crystal data

Z = 2 $C_{13}H_{10}BrN_3O_3$ $M_r = 336.15$ F(000) = 336Triclinic, P1 $D_x = 1.762 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1 a = 5.9398 (6) Å Cell parameters from 26 reflections b = 7.4137 (7) Å θ = 4.9–13.5° $\mu = 3.26 \text{ mm}^{-1}$ c = 15.897 (2) Å $\alpha = 77.846 (9)^{\circ}$ T = 295 K $\beta = 81.613 (7)^{\circ}$ Block, colourless $y = 68.185 (9)^{\circ}$ $0.4 \times 0.3 \times 0.2 \text{ mm}$ $V = 633.58 (12) \text{ Å}^3$

Data collection

Siemens P4
diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator $\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ Absorption correction: ψ scan (VSCANS): Signature 1905) $\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$

Absorption correction: ψ scan $k = -8 \rightarrow 8$ (XSCANS; Siemens, 1995) $l = -18 \rightarrow 18$ $T_{\text{min}} = 0.953$, $T_{\text{max}} = 0.984$ 3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: inferred from $wR(F^2) = 0.076$ neighbouring sites S = 1.05H atoms treated by a mixture of independent 2192 reflections and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0258P)^2 + 0.579P]$ 186 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e Å}^{-3}$ direct methods $\Delta \rho_{\min} = -0.41 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Br	0.90598 (7)	0.62807 (6)	0.37876 (2)	0.04607 (14)
C1	0.5123 (6)	0.2085 (4)	0.37807 (18)	0.0302 (7)

Acta Cryst. (2012). E68, o2497 Sup-3

G2	0.7200 (6)	0.2054 (5)	0.4404.(2)	0.0401 (0)
C2	0.7390 (6)	0.3054 (5)	0.4494 (2)	0.0401 (8)
H2A	0.8184	0.2926	0.4978	0.048*
C3	0.7438 (6)	0.4513 (5)	0.3806 (2)	0.0341 (7)
C4	0.6228 (6)	0.4664 (5)	0.3101 (2)	0.0373 (8)
H4A	0.6241	0.5631	0.2622	0.045*
C5	0.2842 (6)	0.0432 (5)	0.3186 (2)	0.0346 (7)
C6	0.3460 (6)	0.1063 (4)	0.22515 (19)	0.0307 (7)
C7	0.5876 (6)	0.0638 (5)	0.1926(2)	0.0354 (7)
H7A	0.7120	0.0004	0.2295	0.043*
C8	0.6427 (6)	0.1155 (5)	0.1058 (2)	0.0345 (7)
H8A	0.8040	0.0861	0.0840	0.041*
C9	0.4556 (6)	0.2120 (4)	0.05051 (18)	0.0298 (7)
C10	0.2152 (6)	0.2496 (5)	0.0825 (2)	0.0360 (8)
H10A	0.0907	0.3107	0.0455	0.043*
C11	0.1611 (6)	0.1958 (5)	0.1703 (2)	0.0358 (7)
H11A	0.0003	0.2202	0.1918	0.043*
C12	0.5083 (6)	0.2803 (5)	-0.0433(2)	0.0329 (7)
C13	0.8156 (7)	0.3160 (5)	-0.1514(2)	0.0426 (8)
H13A	0.9781	0.3168	-0.1554	0.064*
H13B	0.7063	0.4464	-0.1713	0.064*
H13C	0.8100	0.2271	-0.1864	0.064*
N1	0.6247 (5)	0.1816 (4)	0.44924 (16)	0.0370 (6)
N2	0.5040 (5)	0.3454 (4)	0.30896 (16)	0.0384 (7)
N3	0.3906 (5)	0.0797 (4)	0.38148 (17)	0.0342 (6)
O1	0.1470 (5)	-0.0495 (4)	0.34026 (15)	0.0528 (7)
O2	0.7440 (4)	0.2520(3)	-0.06249 (13)	0.0405 (6)
O3	0.3578 (5)	0.3532 (4)	-0.09519 (15)	0.0528 (7)
НЗА	0.383 (7)	0.012 (6)	0.431 (3)	0.048 (11)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0571 (2)	0.0489(2)	0.0434(2)	-0.03436 (18)	-0.01250 (16)	0.00359 (15)
C1	0.0366 (18)	0.0300 (16)	0.0243 (16)	-0.0142 (14)	-0.0003(13)	-0.0018 (12)
C2	0.048(2)	0.052(2)	0.0272 (17)	-0.0276 (18)	-0.0105 (15)	0.0027 (15)
C3	0.0395 (18)	0.0342 (17)	0.0308 (17)	-0.0177 (15)	-0.0031 (14)	-0.0009(13)
C4	0.051(2)	0.0373 (18)	0.0284 (17)	-0.0243(17)	-0.0072(15)	0.0032 (14)
C5	0.0408 (19)	0.0347 (17)	0.0309 (17)	-0.0198 (16)	0.0003 (14)	-0.0014(14)
C6	0.0410 (19)	0.0309 (16)	0.0271 (16)	-0.0214 (14)	-0.0034(14)	-0.0029(13)
C7	0.0390 (19)	0.0389 (18)	0.0291 (17)	-0.0163(15)	-0.0089(14)	0.0020 (14)
C8	0.0333 (18)	0.0404 (18)	0.0318 (17)	-0.0164 (15)	-0.0023 (14)	-0.0042(14)
C9	0.0382 (18)	0.0309 (16)	0.0241 (15)	-0.0169(14)	-0.0059(13)	-0.0015 (12)
C10	0.0368 (19)	0.0447 (19)	0.0307 (17)	-0.0196 (16)	-0.0090(14)	-0.0013 (14)
C11	0.0332 (18)	0.0456 (19)	0.0337 (17)	-0.0206(15)	-0.0035 (14)	-0.0042(14)
C12	0.0383 (19)	0.0331 (17)	0.0310 (17)	-0.0171 (15)	-0.0070(15)	-0.0018(13)
C13	0.050(2)	0.052(2)	0.0258 (17)	-0.0240 (18)	-0.0018 (15)	0.0047 (15)
N1	0.0472 (17)	0.0451 (16)	0.0244 (13)	-0.0269 (14)	-0.0052(12)	0.0033 (12)
N2	0.0566 (18)	0.0393 (15)	0.0264 (14)	-0.0267 (14)	-0.0134(13)	0.0049 (12)
N3	0.0481 (17)	0.0404 (16)	0.0215 (13)	-0.0281 (14)	-0.0050 (12)	0.0037 (12)
O1	0.0677 (17)	0.0703 (18)	0.0384 (14)	-0.0513 (15)	0.0006 (12)	-0.0005 (12)

Acta Cryst. (2012). E68, o2497

O2 O3	0.0412 (14) 0.0464 (15)	0.0524 (14) 0.0795 (19)	0.0252 (11) 0.0324 (13)	-0.0196 (11) -0.0284 (14)	-0.0037 (10) -0.0129 (12)	0.0059 (10) 0.0089 (12)	
	0,0,10,1 (10)	0,07,0 (15)	0,002 (10)	0.0201(11)	0.0129 (12)	0.0005 (12)	
Geome	etric parameters (2	Å, °)					
Br—C	3	1.887	(3)	C7—H7A		0.9300	
C1—N	12	1.322	(4)	C8—C9		1.395 (4)	
C1—N	V 1	1.339	(4)	C8—H8A		0.9300	
C1—N	13	1.385	(4)	C9—C10		1.388 (4)	
C2—N	V1	1.329	(4)	C9—C12		1.498 (4)	
C2—C	23	1.372	(4)	C10—C11		1.392 (4)	
C2—H	I2A	0.930	0	C10—H10A		0.9300	
C3—C	24	1.382	(4)	C11—H11A		0.9300	
C4—N	12	1.336	(4)	C12—O3		1.200 (4)	
C4—H	I4A	0.930	0	C12—O2		1.335 (4)	
C5—C	01	1.220	(4)	C13—O2		1.448 (4)	
C5—N	13	1.377	(4)	C13—H13A		0.9600	
C5—C	C6	1.495	(4)	C13—H13B		0.9600	
C6—C	211	1.379	(4)	C13—H13C		0.9600	
C6—C	7	1.394	(5)	N3—H3A		0.84 (4)	
C7—C	28	1.377	(4)				
N2—C	C1—N1	126.4	(3)	C10—C9—C8		120.0 (3)	
N2—C	C1—N3	119.5		C10—C9—C12		118.8 (3)	
N1—C	C1—N3	114.2	* *	C8—C9—C12		121.2 (3)	
N1—C	C2—C3	122.2		C9-C10-C11		119.8 (3)	
N1—C	C2—H2A	118.9	,	C9—C10—H10A		120.1	
C3—C	C2—H2A	118.9	118.9			120.1	
C2—C	C3—C4	117.3 (3)		C6—C11—C10		120.0 (3)	
C2—C	23—Br	123.2	` '	C6—C11—H11A		120.0	
C4—C	23—Br	119.6		C10—C11—H11A		120.0	
	C4—C3	121.5	* *	O3—C12—O2		123.8 (3)	
	C4—H4A	119.2		O3—C12—C9		124.5 (3)	
	C4—H4A	119.2		O2—C12—C9		111.7 (3)	
	C5—N3	118.9		O2—C13—H13A		109.5	
	C5—C6	120.4				109.5	
	C5—C6	120.6		H13A—C13—H13B		109.5	
	C6—C7	120.1		O2—C13—H13C		109.5	
	1—C6—C5 119.0 (3)		H13A—C13—H13C		109.5		
	C6—C5	120.7		H13B—C13—H13C		109.5	
	28—C7—C6 120.2 (3)		C2—N1—C1		116.1 (3)		
	C8—C7—H7A 119.9		C1—N2—C4		116.5 (3)		
	C6—C7—H7A 119.9		C5—N3—C1		131.2 (3)		
	C7—C8—C9 119.8 (3)				115 (3)		
	C8—H8A	120.1	` '	C1—N3—H3A		113 (3)	
		120.1			C12—O2—C13 116.6 (

Acta Cryst. (2012). E**68**, o2497

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>A</i> ···N1 ⁱ	0.84 (4)	2.14(1)	2.98 (1)	175 (1)
C13—H13 <i>B</i> ···N2 ⁱⁱ	0.96	2.58	3.37 (1)	139

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z.

Acta Cryst. (2012). E68, o2497 Sup-6