Project Development Phase Model Performance Test

Date	18 November 2022
Team ID	PNT2022MID09991
Project Name	Deep Learning Fundus Image Analysis for Early Detection of Diabetic Retinopathy
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in the model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 21,885,485 Trainable params: 1,024,005 Non-trainable params: 20,861,480	Attached below
2.	Accuracy	Training Accuracy - 72% Validation Accuracy - 59%	Attached below
3.	Confidence Score (Only Yolo Projects)	Class Detected - NILL Confidence Score - NILL	NILL

SCREENSHOTS:


```
File Edit View Insert Runtime Tools Help <u>Last saved at 11:42 AM</u>
```

```
+ Code + Text
     # tell the model what cost and optimization method to use
      model.compile(
        loss='categorical_crossentropy',
       optimizer='adam',
        metrics=['accuracy']
      )
 [ ] train_datagen = ImageDataGenerator(rescale = 1./255,
                                         shear_range = 0.2,
                                         zoom range = 0.2,
                                         horizontal_flip = True)
      test_datagen = ImageDataGenerator(rescale = 1./255)
 [ ] training_set = train_datagen.flow_from_directory('/content/preprocessed dataset/preprocessed dataset/training',
                                                       target_size = (299, 299),
                                                       batch_size = 32,
                                                       class_mode = 'categorical')
      test_set = test_datagen.flow_from_directory('/content/preprocessed dataset/preprocessed dataset/testing',
                                                  target_size = (299, 299),
                                                  batch_size = 32,
                                                  class_mode = 'categorical')
      Found 3662 images belonging to 5 classes.
      Found 704 impage holonaina to E electo
```


CC	→ Test_Transfer_Learning_Models.ipynb ☆ File Edit View Insert Runtime Tools Help <u>Last saved at 11:42 AM</u>	■ Comment
≡	+ Code + Text [] Img_uata.snape	Connect
Q	(1, 299, 299, 3)	
{x}	[] model.predict(img_data)	
0	1/1 [=========] - 1s 1s/step array([[1.000000e+00, 3.2964899e-14, 1.6276460e-19, 2.8887498e-18, 1.2188903e-15]], dtype=float32)	
	[] output=np.argmax(model.predict(img_data), axis=1)	
	1/1 [] - 0s 262ms/step	
	[] output==0,output==1,output==2,output==4	
	<pre>(array([True]), array([False]), array([False]), array([False]))</pre>	
<> =	<pre>[] index=['No Diabetic Retinopathy', 'Mild DR', 'Moderate DR', 'Severe DR', 'Proliferative DR'] result = str(index[output[0]]) result</pre>	
>_	'No Diabetic Retinopathy'	