

C L A I M S

1. An encoding device characterized by

2 comprising:

3 wavelet transforming means for dividing a two-dimensional

4 signal into subbands as a plurality of frequency regions;

5 coefficient extracting means for extracting sets of coefficients for

6 every predetermined number of sets of coefficients which belong to the same

7 spatial position from a plurality of subbands which belong to a wavelet

8 decomposition level of the same hierarchy; and

9 coefficient encoding means for encoding the extracted coefficient

10 sets.

2. An encoding device according to claim 1,

3 characterized in that said coefficient extracting means sequentially extracts a

4 predetermined number of coefficient sets at a time in a scan line direction of the

4 two-dimensional signal.

3. An encoding device according to claim 1,

2 characterized in that said coefficient extracting means sequentially extracts

3 coefficient sets one by one.

4. An encoding device characterized by

2 comprising:

3 element extracting means for sequentially extracting $2m \times 2$ (m

4 is an integer: $m \geq 1$) spatially adjacent elements from a two-dimensional signal;

5 wavelet transforming means for dividing the $2m \times 2$ elements

6 into a plurality of subband coefficient sets;

7 coefficient encoding means for encoding the coefficient sets; and

8 code output means for rearranging the encoded coefficient sets in

9 order from a low-resolution subband, and outputting the rearranged coefficient

10 sets.

5. An encoding device according to claim 1,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient encoding means encodes each component of a
5 coefficient, and generates a code by concatenating a code of each component
6 below each coefficient.

6. An encoding device according to claim 4,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient encoding means encodes each component of a
5 coefficient, and generates a code by concatenating a code of each component
6 below each coefficient.

7. An encoding device according to claim 1,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient encoding means encodes each component of a
5 coefficient, and generates a code by concatenating a code of each coefficient
6 below each component.

8. An encoding device according to claim 4,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient encoding means encodes each component of a
5 coefficient, and generates a code by concatenating a code of each coefficient
6 below each component.

9. An encoding device according to claim 1,
2 characterized by further comprising coefficient thinning map generating means

3 for generating a coefficient thinning map in which resolution at each spatial
4 coordinate of the two-dimensional signal is set,
5 wherein said coefficient extracting means refers to the coefficient
6 thinning map, and extracts coefficients by thinning the coefficients to the
7 resolution set for the coordinate.

10. An encoding device according to claim 4,
2 characterized by further comprising coefficient thinning map generating means
3 for generating a coefficient thinning map in which resolution at each spatial
4 coordinate of the two-dimensional signal is set,
5 wherein said coefficient extracting means refers to the coefficient
6 thinning map, and extracts coefficients by thinning the coefficients to the
7 resolution set for the coordinate.

11. An encoding device according to claim 9,
2 characterized in that in the coefficient thinning map, resolution of a photograph
3 region of the two-dimensional signal differs from resolution of a region other
4 than a photograph.

12. An encoding device according to claim 10,
2 characterized in that in the coefficient thinning map, resolution of a photograph
3 region of the two-dimensional signal differs from resolution of a region other
4 than a photograph.

13. An encoding device according to claim 11,
2 characterized in that in the coefficient thinning map, the resolution of the
3 photograph region of the two-dimensional signal is set lower than the resolution
4 of the region other than a photograph.

14. An encoding device according to claim 12,
2 characterized in that in the coefficient thinning map, the resolution of the
3 photograph region of the two-dimensional signal is set lower than the resolution

4 of the region other than a photograph.

15. An encoding device according to claim 9,
2 characterized in that in the coefficient thinning map, resolution of a region in
3 which a displacement of an adjacent element value is relatively large differs
4 from resolution of a region in which the displacement is relatively small in the
5 two-dimensional signal.

16. An encoding device according to claim 10,
2 characterized in that in the coefficient thinning map, resolution of a region in
3 which a displacement of an adjacent element value is relatively large differs
4 from resolution of a region in which the displacement is relatively small in the
5 two-dimensional signal.

17. An encoding device according to claim 16,
2 characterized in that in the coefficient thinning map, the resolution of the region
3 in which the displacement of the adjacent element value is relatively large is set
4 lower than the resolution of the region in which the displacement is relatively
5 small in the two-dimensional signal.

18. An encoding device according to claim 9,
2 characterized by further comprising updated region detecting means for
3 detecting a updated region from a plurality of sequential frames of a sequence of
4 a
5

5 plurality of frames forming the two-dimensional signal,
6 wherein said coefficient thinning map generating means
7 generates a coefficient thinning map in which resolution of the updated region
8 differs from resolution of a region other than the updated region.

19. An encoding device according to claim 10,
2 characterized by further comprising updated region detecting means for
3 detecting a updated region from a plurality of sequential frames of a sequence of
4 a plurality of frames forming the two-dimensional signal,
5 wherein said coefficient thinning map generating means
6 generates a coefficient thinning map in which resolution of the updated region
7 differs from resolution of a region other than the updated region.

20. An encoding device according to claim 18,
2 characterized in that
3 said updated region detecting means detects, as a updated region,
4 a region in which a signal value is updated in said plurality of sequential frames,
5 and
6 said coefficient thinning map generating means sets resolution of
7 the detected updated region lower than resolution of a region other than the
8 updated region.

21. An encoding device according to claim 19,
2 characterized in that
3 said updated region detecting means detects, as a updated region,
4 a region in which a signal value is updated in said plurality of sequential frames,
5 and
6 said coefficient thinning map generating means sets resolution of
7 the detected updated region lower than resolution of a region other than the
8 updated region.

22. An encoding device according to claim 18,

2 characterized in that

3 said updated region detecting means obtains a period during
4 which a signal value changes in each partial region from said plurality of
5 sequential frames, and

6 said coefficient thinning map generating means sets resolution of
7 the coefficient thinning map on the basis of the changing period.

23. An encoding device according to claim 18,

2 characterized in that

3 said updated region detecting means obtains a period during
4 which a signal value changes in each partial region from said plurality of
5 sequential frames, and

6 said coefficient thinning map generating means sets resolution of
7 the coefficient thinning map on the basis of the changing period.

24. An encoding device according to claim 22,

2 characterized in that said coefficient thinning map generating means sets low
3 resolution in a region in which the changing period is long.

25. An encoding device according to claim 23,

2 characterized in that said coefficient thinning map generating means sets low
3 resolution in a region in which the changing period is long.

26. An encoding device according to claim 1,

2 characterized by further comprising:

3 coefficient quantization map generating means for generating a
4 coefficient quantization map indicating quantization accuracy at each spatial
5 coordinate of the two-dimensional signal; and

6 coefficient quantizing means for quantizing a coefficient to
7 quantization accuracy corresponding to a spatial coordinate of the coefficient by

8 referring to the coefficient quantization map,
9 wherein said coefficient encoding means encodes a set of the
10 quantized coefficients.

27. An encoding device according to claim 4,
2 characterized by further comprising:
3 coefficient quantization map generating means for generating a
4 coefficient quantization map indicating quantization accuracy at each spatial
5 coordinate of the two-dimensional signal; and
6 coefficient quantizing means for quantizing a coefficient to
7 quantization accuracy corresponding to a spatial coordinate of the coefficient by
8 referring to the coefficient quantization map,
9 wherein said coefficient encoding means encodes a set of the
10 quantized coefficients.

28. An encoding device according to claim 26,
2 characterized in that in the coefficient quantization map, quantization accuracy
3 of a photograph region of the two-dimensional signal differs from quantization
4 accuracy of a region other than a photograph.

29. An encoding device according to claim 27,
2 characterized in that in the coefficient quantization map, quantization accuracy
3 of a photograph region of the two-dimensional signal differs from quantization
4 accuracy of a region other than a photograph.

30. An encoding device according to claim 28,
2 characterized in that in the coefficient quantization map, the quantization
3 accuracy of the photograph region is set lower than the quantization accuracy of
4 the region other than a photograph.

31. An encoding device according to claim 29,
2 characterized in that in the coefficient quantization map, the quantization

3 accuracy of the photograph region is set lower than the quantization accuracy of
4 the region other than a photograph.

32. An encoding device according to claim 27,
2 characterized in that in the coefficient quantization map, quantization accuracy
3 of a first region, in which a displacement of an adjacent element value is larger
4 than a threshold value, of the two-dimensional signal differs from quantization
5 accuracy of a second region in which the displacement is smaller than the
6 threshold value.

33. An encoding device according to claim 32,
2 characterized in that in the coefficient quantization map, the quantization
3 accuracy of the second region is set lower than the quantization accuracy of the
4 first region.

34. An encoding device according to claim 26,
2 characterized by further comprising updated region detecting means for
3 detecting a updated region from a plurality of sequential frames of a sequence of
4 a plurality of frames forming the two-dimensional signal,
5 wherein said coefficient quantization map generating means
6 generates a coefficient quantization map in which quantization accuracy of the
7 updated region differs from quantization accuracy of a region other than the
8 updated region.

35. An encoding device according to claim 27,
2 characterized by further comprising updated region detecting means for
3 detecting a updated region from a plurality of sequential frames of a sequence of
4 a plurality of frames forming the two-dimensional signal,
5 wherein said coefficient quantization map generating means
6 generates a coefficient quantization map in which quantization accuracy of the
7 updated region differs from quantization accuracy of a region other than the

8 updated region.

36. An encoding device according to claim 34,
2 characterized in that

3 said updated region detecting means detects, as a updated region,
4 a region in which a signal value is updated in said plurality of sequential frames,
5 and

6 said coefficient thinning map generating means sets quantization
7 accuracy of the detected updated region lower than quantization accuracy of a
8 region other than the updated region.

37. An encoding device according to claim 35,
2 characterized in that

3 said updated region detecting means detects, as a updated region,
4 a region in which a signal value is updated in said plurality of sequential frames,
5 and

6 said coefficient thinning map generating means sets quantization
7 accuracy of the detected updated region lower than quantization accuracy of a
8 region other than the updated region.

38. An encoding device according to claim 34,
2 characterized in that

3 said updated region detecting means obtains a period during
4 which a signal value changes in each partial region from said plurality of
5 sequential frames, and

6 said coefficient quantization map generating means sets
7 quantization accuracy of the coefficient quantization map on the basis of the
8 changing period.

39. An encoding device according to claim 35,
2 characterized in that

3 said updated region detecting means obtains a period during
4 which a signal value changes in each partial region from said plurality of
5 sequential frames, and

6 said coefficient quantization map generating means sets
7 quantization accuracy of the coefficient quantization map on the basis of the
8 changing period.

40. An encoding device according to claim 38,
2 characterized in that said coefficient thinning map generating means sets low
3 quantization accuracy in a region in which the changing period is long.

41. An encoding device according to claim 39,
2 characterized in that said coefficient thinning map generating means sets low
3 quantization accuracy in a region in which the changing period is long.

42. An encoding device according to claim 18,
2 characterized in that said updated region detecting means detects a updated
3 region by calculating a difference between said plurality of sequential frames.

43. An encoding device according to claim 19,
2 characterized in that said updated region detecting means detects a updated
3 region by calculating a difference between said plurality of sequential frames.

44. An encoding device according to claim 34,
2 characterized in that said updated region detecting means detects a updated
3 region by calculating a difference between said plurality of sequential frames.

45. An encoding device according to claim 35,
2 characterized in that said updated region detecting means detects a updated
3 region by calculating a difference between said plurality of sequential frames.

46. An encoding device according to claim 18,
2 characterized in that said updated region detecting means detects, as a updated
3 region, an overlapping region of a region to be encoded of a preceding frame

4 and a region to be encoded of a succeeding frame.

47. An encoding device according to claim 19,
2 characterized in that said updated region detecting means detects, as a updated
3 region, an overlapping region of a region to be encoded of a preceding frame
4 and a region to be encoded of a succeeding frame.

48. An encoding device according to claim 34,
2 characterized in that said updated region detecting means detects, as a updated
3 region, an overlapping region of a region to be encoded of a preceding frame
4 and a region to be encoded of a succeeding frame.

49. An encoding device according to claim 35,
2 characterized in that said updated region detecting means detects, as a updated
3 region, an overlapping region of a region to be encoded of a preceding frame
4 and a region to be encoded of a succeeding frame.

50. A decoding device characterized by
2 comprising:

3 initial coefficient decoding means for receiving a code sequence
4 formed by encoding coefficients of a plurality of subbands obtained by wavelet
5 transform, and decoding a coefficient of a lowest-frequency subband from a
6 code sequence corresponding to the lowest-frequency subband;

7 coefficient decoding means for decoding sets of coefficients for
8 every predetermined number of sets of coefficients which belong to the same
9 spatial position in a plurality of subbands which belong to a wavelet transform
10 level of the same hierarchy from a code sequence following the
11 lowest-frequency subband code sequence; and

12 inverse wavelet transforming means for performing inverse
13 wavelet transform whenever the coefficient set is decoded, thereby generating
14 the original two-dimensional signal.

51. A decoding device according to claim 50,
2 characterized in that said coefficient decoding means sequentially decodes a
3 predetermined number of coefficient sets at a time in a scan line direction of the
4 two-dimensional signal.

52. A decoding device according to claim 51,
2 characterized in that said coefficient decoding means sequentially decodes the
3 coefficient sets one by one.

53. A decoding device according to claim 52,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient decoding means decodes each component of a
5 coefficient, and concatenates each component below each coefficient.

54. A decoding device according to claim 52,
2 characterized in that
3 each coefficient comprises a plurality of components, and
4 said coefficient decoding means decodes each component of a
5 coefficient.

55. An encoding method characterized by
2 comprising the steps of:
3 dividing a two-dimensional signal into subbands as a plurality of
4 frequency regions by wavelet transform;
5 extracting sets of coefficients for every predetermined number of
6 sets of coefficients which belong to the same spatial position from a plurality of
7 subbands which belong to a wavelet decomposition level of the same hierarchy;
8 and
9 encoding the extracted coefficient sets.

56. An encoding method according to claim 55,

2 characterized in that in the extracting step, a predetermined number of
3 coefficient sets are sequentially extracted at a time in a scan line direction of the
4 two-dimensional signal.

57. An encoding method according to claim 55,
2 characterized in that in the extracting step, coefficient sets are sequentially
3 extracted one by one.

58. An encoding method characterized by
2 comprising the steps of:
3 sequentially extracting $2m \times 2$ (m is an integer: $m \geq 1$) spatially
4 adjacent elements from a two-dimensional signal;
5 dividing the $2m \times 2$ elements into a plurality of subband
6 coefficient sets by wavelet transform;
7 encoding the coefficient sets; and
8 rearranging the encoded coefficient sets in order from a
9 low-resolution subband, and outputting the rearranged coefficient sets.

59. An encoding method according to claim 55,
2 characterized by further comprising the step of generating a coefficient thinning
3 map in which resolution at each spatial coordinate of the two-dimensional signal
4 is set,
5 wherein in the extracting step, the coefficients which belong to
6 the same spatial position are extracted after being thinned to the resolution set
7 for the coordinate by referring to the coefficient thinning map.

60. An encoding method according to claim 58,
2 characterized by further comprising the step of generating a coefficient thinning
3 map in which resolution at each spatial coordinate of the two-dimensional signal
4 is set,
5 wherein in the extracting step, the coefficients of the $2m \times 2$

6 elements are extracted after being thinned to the resolution set for the coordinate
7 by referring to the coefficient thinning map.

61. An encoding method according to claim 59,
2 characterized by further comprising the step of detecting a updated region from
3 a plurality of sequential frames of a sequence of a plurality of frames forming
4 the two-dimensional signal,

5 wherein in the step of generating the coefficient thinning map, a
6 coefficient thinning map in which resolution of the updated region differs from
7 resolution of a region other than the updated region is generated.

62. An encoding method according to claim 60,
2 characterized by further comprising the step of detecting a updated region from
3 a plurality of sequential frames of a sequence of a plurality of frames forming
4 the two-dimensional signal,

5 wherein in the step of generating the coefficient thinning map, a
6 coefficient thinning map in which resolution of the updated region differs from
7 resolution of a region other than the updated region is generated.

63. An encoding method according to claim 55,
2 characterized by further comprising the steps of:
3 generating a coefficient quantization map indicating quantization
4 accuracy at each spatial coordinate of the two-dimensional signal; and
5 quantizing coefficients which belong to the same spatial position
6 to quantization accuracy corresponding to spatial coordinates of the coefficients
7 by referring to the coefficient quantization map,
8 wherein in the encoding step, a set of the quantized coefficients
9 are encoded.

64. An encoding method according to claim 58,
2 characterized by further comprising the steps of:

3 generating a coefficient quantization map in which quantization
4 accuracy at each spatial coordinate of the two-dimensional signal is set; and
5 quantizing coefficients of the $2m \times 2$ elements to quantization
6 accuracy corresponding to spatial coordinates of the coefficients by referring to
7 the coefficient quantization map,
8 wherein in the encoding step, a set of the quantized coefficients
9 are encoded.

65. An encoding method according to claim 63,
2 characterized by further comprising the step of detecting a updated region from
3 a plurality of sequential frames of a sequence of a plurality of frames forming
4 the two-dimensional signal,
5 wherein in the step of generating the coefficient quantization
6 map, a coefficient quantization map in which quantization accuracy of the
7 updated region differs from quantization accuracy of a region other than the
8 updated region is generated.

66. An encoding method according to claim 64,
2 characterized by further comprising the step of detecting a updated region from
3 a plurality of sequential frames of a sequence of a plurality of frames forming
4 the two-dimensional signal,
5 wherein in the step of generating the coefficient quantization
6 map, a coefficient quantization map in which quantization accuracy of the
7 updated region differs from quantization accuracy of a region other than the
8 updated region is generated.

67. An encoding method according to claim 65,
2 characterized in that the step of generating the coefficient quantization map is
3 executed before the step of encoding a subband coefficient set.

68. An encoding method according to claim 66,

2 characterized in that the step of generating the coefficient quantization map is
3 executed before the step of encoding a subband coefficient set.

69. An encoding method according to claim 67,
2 characterized in that the step of generating the coefficient quantization map is
3 executed before all steps of encoding a subband coefficient set.

70. An encoding method according to claim 68,
2 characterized in that the step of generating the coefficient quantization map is
3 executed before all steps of encoding a subband coefficient set.

71. A decoding method characterized by
2 comprising the steps of:
3 receiving a code sequence formed by encoding coefficients of a
4 plurality of subbands obtained by wavelet transform;
5 decoding a coefficient of a lowest-frequency subband from a
6 code sequence corresponding to the lowest-frequency subband;
7 decoding sets of coefficients for every predetermined number of
8 sets of coefficients which belong to the same spatial position in a plurality of
9 subbands which belong to a wavelet transform level of the same hierarchy from
10 a code sequence following the lowest-frequency subband code sequence; and
11 performing inverse wavelet transform whenever the coefficient
12 set is decoded, thereby generating the original two-dimensional signal.

72. A decoding method according to claim 71,
2 characterized in that in the decoding step, a predetermined number of coefficient
3 sets are sequentially decoded at a time in a scan line direction of the
4 two-dimensional signal.

73. A decoding method according to claim 72,
2 characterized in that in the decoding step, the coefficient sets are sequentially
3 decoded one by one.

74. An encoding program characterized by

2 causing a computer to execute the steps of:

3 dividing a two-dimensional signal into subbands as a plurality of

4 frequency regions by wavelet transform;

5 extracting sets of coefficients for every predetermined number of

6 sets of coefficients which belong to the same spatial position from a plurality of

7 subbands which belong to a wavelet decomposition level of the same hierarchy;

8 and

9 encoding the extracted coefficient sets.

75. An encoding program characterized by

2 causing a computer to execute the steps of:

3 sequentially extracting $2m \times 2$ (m is an integer: $m \geq 1$) spatially

4 adjacent elements from a two-dimensional signal;

5 dividing the $2m \times 2$ elements into a plurality of subband

6 coefficient sets by wavelet transform;

7 encoding the coefficient sets; and

8 rearranging the encoded coefficient sets in order from a

9 low-resolution subband, and outputting the rearranged coefficient sets.

76. An encoding program according to claim

2 74, characterized by causing the computer to execute the steps of:

3 generating a coefficient thinning map in which resolution at each

4 spatial coordinate of the two-dimensional signal is set; and

5 extracting the coefficients which belong to the same spatial

6 position by thinning the coefficients to the resolution set for the coordinate by

7 referring to the coefficient thinning map.

77. An encoding program according to claim

2 75, characterized by causing the computer to execute the steps of:

3 generating a coefficient thinning map in which resolution at each
4 spatial coordinate of the two-dimensional signal is set; and
5 extracting coefficients of the $2m \times 2$ elements by thinning the
6 coefficients to the resolution set for the coordinate by referring to the coefficient
7 thinning map.

78. An encoding program according to claim

2 76, characterized by causing the computer to execute the steps of:

3 detecting a updated region from a plurality of sequential frames
4 of a sequence of a plurality of frames forming the two-dimensional signal; and
5 generating a coefficient thinning map in which resolution of the
6 updated region differs from resolution of a region other than the updated region.

79. An encoding program according to claim

2 77, characterized by causing the computer to execute the steps of:

3 detecting a updated region from a plurality of sequential frames
4 of a sequence of a plurality of frames forming the two-dimensional signal; and
5 generating a coefficient thinning map in which resolution of the
6 updated region differs from resolution of a region other than the updated region.

80. An encoding program according to claim

2 74, characterized by causing the computer to execute the steps of:

3 generating a coefficient quantization map in which quantization
4 accuracy of a coefficient at each spatial coordinate of the two-dimensional signal
5 is set; and
6 quantizing the coefficients which belong to the same spatial
7 position to the quantization accuracy set for the coordinate by referring to the
8 coefficient quantization map, and encoding the quantized coefficients.

81. An encoding program according to claim

2 75, characterized by causing the computer to execute the steps of:

3 generating a coefficient quantization map in which quantization
4 accuracy of a coefficient at each spatial coordinate of the two-dimensional signal
5 is set; and

6 quantizing the coefficients which belong to the same spatial
7 position to the quantization accuracy set for the coordinate by referring to the
8 coefficient quantization map, and encoding the quantized coefficients.

82. An encoding program according to claim

2 80, characterized by causing the computer to execute the steps of:

3 detecting a updated region from a plurality of sequential frames
4 of a sequence of a plurality of frames forming the two-dimensional signal; and
5 generating a coefficient quantization map in which quantization
6 accuracy of the updated region differs from quantization accuracy of a region
7 other than the updated region.

83. An encoding program according to claim

2 81, characterized by causing the computer to execute the steps of:

3 detecting a updated region from a plurality of sequential frames
4 of a sequence of a plurality of frames forming the two-dimensional signal; and
5 generating a coefficient quantization map in which quantization
6 accuracy of the updated region differs from quantization accuracy of a region
7 other than the updated region.

84. A decoding program characterized by

2 causing a computer to execute the steps of:

3 receiving a code sequence formed by encoding coefficients of a
4 plurality of subbands obtained by wavelet transform;
5 decoding a coefficient of a lowest-frequency subband from a
6 code sequence corresponding to the lowest-frequency subband;
7 decoding sets of coefficients for every predetermined number of

8 sets of coefficients which belong to the same spatial position in a plurality of
9 subbands which belong to a wavelet transform level of the same hierarchy from
10 a code sequence following the lowest-frequency subband code sequence; and
11 performing inverse wavelet transform whenever the coefficient
12 set is decoded, thereby generating the original two-dimensional signal.

85. A communication terminal characterized by

2 comprising:

3 image input means;

4 communicating means for transmitting and receiving an encoded

5 image signal;

6 wavelet transforming means for dividing an image signal to be

7 transmitted, which is input by said image input means, into subbands as a

8 plurality of frequency regions;

9 coefficient extracting means for extracting sets of coefficients for

10 every predetermined number of sets of coefficients which belong to the same

11 spatial position from a plurality of subbands which belong to a wavelet

12 decomposition level of the same hierarchy;

13 coefficient encoding means for encoding the extracted coefficient

14 sets, and outputting the encoded coefficient sets to said communicating means;

15 initial coefficient decoding means for decoding a coefficient of a

16 lowest-frequency subband of a received image signal from a code sequence

17 corresponding to the lowest-frequency subband;

18 coefficient decoding means for decoding sets of coefficients for

19 every predetermined number of sets of coefficients which belong to the same

20 spatial position in a plurality of subbands which belong to a wavelet transform

21 level of the same hierarchy from a code sequence following the

22 lowest-frequency subband code sequence;

23 inverse wavelet transforming means for performing inverse
24 wavelet transform whenever the coefficient set is decoded, thereby generating
25 the received image signal; and
26 image display means for displaying a received image on the basis
27 of the received image signal.