RealAnalysis

John Lu

2019年9月11日

目录

1	Cardinality	2
2	The Second Chapter	6

Chapter 1

Cardinality

Definition (Cardinality) Let A, B be two (non-empty) sets, we say $|A| \le |B|$ if there exists a injective map $f: A \to B$ Similarly we have $|A| \le |B| \Leftrightarrow$ there exists a surjective map $g: B \to A$ We say |A| = |B|

Lemma (Set Decomposition Under Mapping) Let $f: X \to Y$, $g: Y \to X$ there exists decomposition such that,

$$X = A \cup A^{\sim}, Y = B \cup B^{\sim}$$

where $f(A) = B, g(B^{\sim}) = A^{\sim}, A \cap A^{\sim} = \emptyset$ and $B \cap B^{\sim} = \emptyset$

Proof For a subset E of X, W.O.L.G. $Y \setminus f(E) \neq \emptyset$, if E satisfy,

$$E \cap g(Y \backslash f(E)) = \emptyset$$

we call E a seperate set of X, now denote the set of all seperate set as Γ , and make union,

$$A = \bigcup_{E \in \Gamma} E$$

We have $A \in \Gamma$, Actually for any $E \in \Gamma$, as $A \supset E$, so from,

$$E \cap g(Y \setminus f(E)) = \emptyset$$

we know that $E \cap g(Y \setminus f(A)) = \emptyset$, since A is larger than E, so actually $g(Y \setminus f(A)) \subseteq g(Y \setminus f(E))$, thus $A \cap g(Y \setminus f(A)) = \emptyset$. This shows that A is also a separate set in X and the largest element in Γ .

Now let $f(A) = B, Y \setminus B = B^{\sim}$ and $g(B^{\sim}) = A^{\sim}$. First we know that.

$$Y = B \cup B^{\sim}$$

Secondly, as $A \cap A^{\sim} = \emptyset \Leftrightarrow A \cap g(Y \setminus f(A)) = \emptyset$, so we know $A \cup A^{\sim} = X$. We can assume $A \cup A^{\sim} \neq X$, then there exists $x_0 \in X$ such that $x_0 \notin A \cup A^{\sim}$. Let $A_0 = A \cup x_0$ we have,

$$B = f(A) \subset f(A_0), B^{\sim} \supset Y \backslash f(A_0)$$

so that $A^{\sim} \supset g(Y \setminus f(A_0))$, which means A and $g(Y \setminus f(A_0))$ do not intersect. So

$$A_0 \cap g(Y \backslash f(A_0)) = \emptyset$$

 $(A_0$ 多了一个元素 x_0 ,但该元素在 A^{\sim} 中不存在并且 $A^{\sim} \supset A_0^{\sim} = g(B_0^{\sim}) = g(Y \setminus f(A_0))$ which is contradict to A is the largest element in Γ

Theorem (Schröder–Bernstein theorem) If $|X| \le |Y|$ and $|Y| \le |X|$, then |X| = |Y|

Proof We need to show if there exists an injective map $f: X \to Y$ and an injective map $g: Y \to X$ then there exists a bijective map $h: X \to Y$.

Define $X = A \cup A^{\sim}, Y = B \cup B^{\sim}, f(A) = B(Surjective \ to \ B), g(B^{\sim}) = A^{\sim}(Surjective \ to \ A^{\sim})(Using \ decomposition \ lemma)$ For any $a \in X$, define a map h.

$$h(x) = \begin{cases} f(x) & x \in A \\ g^{-1}(x) & x \in A^{\sim} \end{cases}$$

which shows $X \sim Y$

Definition (Arithmetic Operation of Cardinal Number) Suppose a, b are two cardinal numbers, where a = |A|, b = |B|.

1. $a + b \triangleq |A \cup B|$ where A, B are disjoint sets.

2.
$$a \cdot b \triangleq |A \times B|$$

3.
$$a^b = |A^B| = \prod_B A$$
 where $A^B = \{all \ maps \ \phi : B \to A\}$

Proposal $c = m^{\aleph_0}, \forall m \in \mathbb{N}, m \geq 2$

Proof We view R.H.S. as $|\{0,1,2,...,m-1\}^{\mathbb{N}}| = |\{f: \mathbb{N} \to \{0,1,...,m-1\}\}|$. Actually, R.H.S. can be viewed as a map from i_{th} digit index to the i_{th} digit itself and L.H.S. as |(0,1]|.

Recall that $\forall r \in (0,1]$ we have a sequence $\{r_n\}$, each $r_n \in \{0,1,...,m-1\}$ such that

$$r = \sum_{n=1}^{\infty} \frac{r_n}{m_n}$$

(闭区间套: the principle of nested intervals)

The sequence $\{r_n\}$ is unique if we require it has infinite many non-zero numbers.

This means that we have an injective map.

$$\Phi:(0,1]\to\{0,1,...,m-1\}^{\mathbb{N}}$$

 $Im\Phi = \{f: \ there \ are \ infinitely \ many \ n \ with \ f(n) \neq 0\}$

Let
$$A_N = \{ f : \exists N \text{ s.t. } f(n) = 0 \ \forall n > N \}, \text{ so } |A_N| = m^N < \infty$$

$$|(Im\Phi)^{\complement}| = |\bigcup_{N=0}^{\infty} A_N| = \aleph_0$$

So, now we have shown,

$$L.H.S. = c = c + \aleph_0 = m_0^{\aleph} = R.H.S.$$

Definition (Power Set) $P(A) \triangleq \{subsets \ of \ A\} \triangleq \{0,1\}^A = \{f : A \rightarrow \{0,1\}\}$

Theorem (P(A) > |A|) First, $P(A) \ge |A|$, because there exists a injective map $f: a \to \{a\}$. we will show $|P(A)| \ne |A|$, hence |P(A)| > |A|. Otherwise, |P(A)| = |A| and hence there exists a bijective map $\phi: A \to P(A)$. Consider the subset $B = \{a \in A | a \notin \phi(a)\}$, thus $B \in P(A)$.

Let b be the pre-image of B under ϕ .

If $b \in B$ then by the construction of B, then $b \notin \phi(b) = B$.

If $b \notin B$ then by the construction of B, then $b \in \phi(b) = B$.

Therefore, such bijective map ϕ does not exist.

Chapter 2

The Second Chapter