Contents

4	D	_																										1
1	Basi																											
	1.1	.vimrc																			•	•	٠	٠	٠	•		1
	1.2	Default B																										1
	1.3	Default K																										1
	1.4	IO Optimi	ze .				•	•			•	•		•	•					•	•	•	•	•	•			1
	1.5	PBDS									•			•							•		•	•	•			1
	1.6	Set Comp	erato	г.																								2
	1.7	Random																										2
	1.8	Python .																										2
		-																										
2	Graj	oh																										2
	2.1	2 SAT																										2
	2.2	Bellman F																										2
	2.3	Biconnect																										2
	2.4	Bridge Co																										2
	2.5	Bridge .																										2
	2.6	-																										3
		C3C4																										3
	2.7	Centroid I																										
	2.8	Close Ver																										3
	2.9	Disjoint S																										4
		Heavy Lig																										4
		KSP																										5
		LCA																										5
		Maximum																										6
		SCC Kosar																										6
		SCC Tarja																										6
	2.16	Tree Cent	roid																									6
	2.17	Virtual Tr	ee .																									6
3	Data	Structure	!																									7
	3.1	2D BIT .																										7
	3.2	2D Segme																										7
	3.3	BIT																										7
	3.4	chtholly t																										8
	3.5	LiChaoST																										8
	3.6	persisten																										8
	3.7	Sparse Ta																										8
	3.8	•																										8
	3.9	ZKW Segr																										9
	3.5	-KW Seg.			•	•	•	•	•	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	_
4	Flov	,																										9
-	4.1	Bipartite I	Match	nine																								9
	4.2	Bounded																									٠.	9
	4.3	Dinic																										10
	4.4																											10
	4.5																											
		Maximum																										10
	4.6	MCMF .																										11
	4.7	Mimum Ve																										11
	4.8	Theorem	• • •	• •	٠.	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	٠	٠	٠	•		11
_																												
5		metry																										12
5	5.1	Basic 2D																										12
5	5.1 5.2	Basic 2D Convex H	ull .																									12 13
5	5.1 5.2 5.3	Basic 2D Convex Ho Dynamic (ull . Conve	 х Н	 ull	:	:		•	•	:				:		:	:				:						12 13 13
5	5.1 5.2 5.3 5.4	Basic 2D Convex H	ull . Conve	 х Н	 ull	:	:		•	•	:				:		:	:				:						12 13 13 14
5	5.1 5.2 5.3	Basic 2D Convex Ho Dynamic (ull . Conve	 х Н	 ull	:	:		•	•	:				:		:	:				:						12 13 13
	5.1 5.2 5.3 5.4 5.5	Basic 2D Convex Ho Dynamic (Segmenta Theorem	ull . Conve	 х Н	 ull	:	:		•	•	:				:		:	:				:						12 13 13 14 14
6	5.1 5.2 5.3 5.4 5.5 Mat	Basic 2D Convex Ho Dynamic (Segmenta Theorem	ull . Conve Ition I	x H	ull erse	ect	io	n	•				 	•	:		•	•										12 13 13 14 14
	5.1 5.2 5.3 5.4 5.5 Mat 6.1	Basic 2D Convex Ho Dynamic (Segmenta Theorem h Big Int .	ull . Conve	x H	ull erse	· · ·	io	n																				12 13 13 14 14 14
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2	Basic 2D Convex Ho Dynamic (Segmenta Theorem	ull . Conve	x H	ull erse	· · ·	io	n																				12 13 13 14 14 14 14 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3	Basic 2D Convex Ho Dynamic (Segmenta Theorem h Big Int .	ull . Convention I · · · · emain	x H inte	ullerse	ect	io	n						•	:			•				• • • • • • • • • • • • • • • • • • • •	: : :			• • • • • • • • • • • • • • • • • • • •		12 13 13 14 14 14 15 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT	ull . Convention I emain	x H nte	ullerse	ect	:io	· · · · · · · · · ·																		• • • • • • • • • • • • • • • • • • • •		12 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir	ull . Convention I email	x H Inte	ull	ect	:io	· · n · · · · · ·																				12 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT	ull . Convention I email	x H Inte	ull	ect	:io	· · n · · · · · ·																				12 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir	ull . Conve stion I emair ninati	x H Inte	ull			n																				12 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Basic 2D Convex Ho Dynamic (Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir	ull . Convention I emair ninati	x H Inte	ull			· · n · · · · · · · ·																				12 13 13 14 14 15 15 15 16 16 16
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Basic 2D Convex Hi Dynamic (Segmenta Theorem h Big Int . Chinese Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix .	ull . Convention I emain nination in ation in atio	x H nte				· · n · · · · · · · · · ·																				12 13 14 14 14 15 15 15 16 16
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Basic 2D Convex H Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie	ull . Convention I emain nination in ation in atio	x H nte				· · n · · · · · · · · · ·																				12 13 13 14 14 15 15 15 16 16 16
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Basic 2D Convex Hi Dynamic (Segmenta Theorem h Big Int . Chinese Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix .	ull . Convention I email ninati ninati ve		ull			· · n · · · · · · · · · · ·																				12 13 13 14 14 14 15 15 15 16 16 16 16
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix . Miller Rab Mobius .	ull . Convention I email ninati ninati ve		ull erse		·	· · n · · · · · · · · · · · ·																				12 13 13 14 14 14 15 15 15 16 16 16 16
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rab Mobius . NTT	ull . Convention I emain ninati ninati ve	x H Inte	ull	: : : : : : : : : : : : : : : : : : :		· · n · · · · · · · · · · · · ·																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Basic 2D Convex H Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri	ull . Convention I email nination inination ve oin .	x H Inte	ull			n																				12 13 13 14 14 14 15 15 15 16 16 16 16 16 17
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 6.14	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri Primes .	ull	x H Inte	ull erse			n																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 6.14	Basic 2D Convex H Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri	ull	x H Inte	ull erse			n																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 6.14	Basic 2D Convex H Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rail Mobius . NTT . Pollard Ri Primes . Primitive	ull	x H Inte	ull erse			n																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rah Mobius . NTT Pollard RI Primes . Primitive	converse state of the converse of the con		ull erse			· · n · · · · · · · · · · · · · · ·																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 Strii	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri Primes . Primitive	ull	x H Inte	ulll erse			· · n · · · · · · · · · · · · · · · · ·																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.1 6.12 6.13 6.14 6.15 Strii 7.1	Basic 2D Convex Ho Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rab Mobius . NTT . Pollard Rh Primes . Primitive ng AC Hash	ull		ulli	·	·	n																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 5.7 7.1 7.2 7.3	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT . Pollard RI Primes . Primitive ng AC Hash KMP	ull		ulll	·	· . io	n																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.11 6.12 6.13 6.14 6.15 Strii 7.1 7.2 7.3	Basic 2D Convex H Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT . Pollard RI Primes . Primitive AC Hash KMP Manacher	ull Convertion I	inte	ull		· . io	· · n · · · · · · · · · · · · · · · · ·																				12 13 13 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6,7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rad Mobius . NTT Pollard RI Primes . Primitive g AC Hash KMP Manacher SA	ull . Convertion I	ion ion i	ull		io	n																				12 13 13 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
6	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 7.6	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rab Mobius . NTT Pollard Rh Primes . Primitive ng AC Hash KMP Manache Manache Manache SA2	ull		ull			n ·																				12 13 13 14 14 15 15 15 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.6 6.7 6.8 6.9 6.11 6.12 6.13 6.14 6.15 7.2 7.3 7.4 7.5 7.6	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT . Pollard Ri Primes . Primitive ng AC Hash KMP Manacher SA SA2 SA2	ull		ull		·	n																				12 13 13 14 14 15 15 15 15 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
6	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.11 6.12 6.13 7.1 7.2 7.3 7.4 7.5 7.7	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rai Mobius . NTT . Pollard Ri Primes . Primitive g AC Hash Manacher SA SA2 SA2 SA1S Suffix Aul	ull		ull erse	·		n																				12 13 13 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.1 5.2 5.3 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.11 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rad Mobius . NTT . Pollard RI Primes . Primitive ng AC Hash KMP Manacher SA SAIS Suffix Aul Trie	ull . Convertion I		ull erse	·		n.																				12 13 13 14 14 15 15 15 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.1 5.2 5.3 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.11 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rai Mobius . NTT . Pollard Ri Primes . Primitive g AC Hash Manacher SA SA2 SA2 SA1S Suffix Aul	ull . Convertion I		ull erse	·		n.																				12 13 13 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
7	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 7.3 7.4 7.5 7.7 7.8 7.7	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elir Gauss Elir Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Rh Primes . Primsive ng AC Hash KMP Manacher SA SA1S SA2 SA1S Suffix Aut Trie	ull . Convertion I		ull erse	·		n.																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.1 5.2 5.3 5.4 6.5 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.11 6.12 6.13 7.4 7.5 7.6 7.7 7.8 7.9 7.10 Oth	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rah Mobius . NTT . Pollard Ri Primes . Primitive AC Hash Manacher SA SA2 SA2 SA1S Suffix Aut Trie Z	ull		ulll			··n·																				12 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20
7	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Karatsuba Linear Sie Matrix . Miller Rab Mobius . NTT . Pollard RI Primes . Primitive ng AC Hash KMP Manacher SA SAIS Suffix Aul Trie Z ers Aliens .	ull		ulll			··n·																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
7	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rah Mobius . NTT . Pollard Ri Primes . Primitive AC Hash Manacher SA SA2 SA2 SA1S Suffix Aut Trie Z	ull		ulll			··n·																				12 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20
7	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.6 6.7 6.8 6.9 6.11 6.12 6.13 7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 Oth 8.12 8.12 8.13 8.14 8.14 8.15 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri Primes . Primitive ng AC Hash KMP Manacher SA SAIS SUffix Aul Trie Z ers Aliens Knapsack Mo	ull		ulll			··n·																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
7	5.1 5.2 5.3 5.4 5.5 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT . Pollard Ri Primes . Primitive ng AC Hash KMP Manacher SA SA2 SA2 SA1S SUffix Aut Trie Z ers Aliens Knapsack Mo Mono Slo	ull		ulll			n.																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
7	5.1 5.2 5.3 5.4 5.5 Mat 6.2 6.3 6.4 6.6 6.7 6.8 6.9 6.11 6.12 6.13 7.1 7.2 7.3 7.4 7.5 7.7 7.8 7.9 7.10 Oth 8.12 8.12 8.13 8.14 8.14 8.15 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	Basic 2D Convex Hi Dynamic C Segmenta Theorem h Big Int . Chinese R Extgcd . FFT Gauss Elin Gauss Elin Gauss Elin Karatsuba Linear Sie Matrix . Miller Rat Mobius . NTT Pollard Ri Primes . Primitive ng AC Hash KMP Manacher SA SAIS SUffix Aul Trie Z ers Aliens Knapsack Mo	ull		ulll			n.																				12 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17

Basic

1.1 .vimrc

```
"This file should be placed at ~/.vimrc"
se nu ai hls et ru ic is sc cul
se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a
svntax on
hi cursorline cterm=none ctermbg=89
set bg=dark
inoremap {<CR> {<CR>}<Esc>ko<tab>
```

1.2 Default Bear

```
#include <bits/stdc++.h>
 using namespace std;
 typedef long long ll;
 #define int ll
 typedef pair<int,int> pii;
 #define X first
 #define Y second
 #define pb push_back
#define All(a) a.begin(), a.end()
#define SZ(a) ((int)a.size())
#define endl '\n'
```

1.3 Default Ken

```
#include <bits/stdc++.h>
#define F first
#define S second
#define pb push_back
#define pob pop_back
#define SZ(x) (int)(x.size())
#define all(x) begin(x), end(x)
#ifdef LOCAL
#define HEHE freopen("in.txt", "r", stdin);
#define debug(...)
     {cout << #__VA_ARGS__ << " = "; dbg(__VA_ARGS__);}
#else
#define HEHE ios_base::sync_with_stdio(0), cin.tie(0);
#define debug(...) 7122;
#endif
using namespace std;
#define chmax(a, b) (a) = (a) > (b) ? (a) : (b)
#define chmin(a, b) (a) = (a) < (b) ? (a) : (b)
#define FOR(i, a, b) for (int i = (a); i <= (b); i++)
 void dbg() { cerr << '\n'; }</pre>
template < typename T, typename ...U>
 void dbg(T t, U \dotsu) { cerr << t << ' '; dbg(u\dots); }
#define int long long
signed main() {
  HEHE
}
```

1.4 IO Optimize

```
bool rit(auto& x) {
  x = 0; char c = cin.rdbuf()->sbumpc(); bool neg = 0;
while (!isdigit(c)) {
    if (c == EOF) return 0;
    if (c == '-') neg = 1;
    c = cin.rdbuf()->sbumpc();
  while (isdigit(c))
    x = x * 10 + c' - '0', c = cin.rdbuf()->sbumpc();
  return x = neg ? -x : x, 1;
void wit(auto x) {
  if (x < 0) cout.rdbuf()->sputc('-'), x = -x;
  char s[20], len = 0;
  do s[len++] = x \% 10 + '0'; while (x /= 10);
  while (len) cout.rdbuf()->sputc(s[--len]);
```

1.5 PBDS

```
#include <ext/pb_ds/assoc_container.hpp>
   #include <ext/pb_ds/tree_policy.hpp>
    // #include <bits/extc++.h>
    #include <bits/stdc++.h>
   using namespace __gnu_pbds;
   using namespace std;
22 | template <typename T>
```

```
using rbtree = tree<T, null_type, less<T</pre>
    >, rb_tree_tag, tree_order_statistics_node_update>;
  less<T> : increasing, greater<T> : decreasing
// rb_tree_tag, splay_tree_tag, ov_tree_tag
int main() {
 int x;
  rbtree<int> t, rhs, rhs2;
  t.insert(x);
  t.erase(x); // return 1 or 0
 cout << t.order_of_key(x) << '\n'; // rank</pre>
 cout << *t.find_by_order(x) << '\n'; // x-th
cout << *t.lower_bound(x) << '\n'; // iterator >= x
  cout << *t.upper_bound(x) << '\n'; // iterator > x
 t.join(rhs
      ); // merge // same type, no duplicate elements
  t.split(x, rhs2
      ); // tree : elements <= x, rhs : elements > x
```

1.6 Set Comperator

```
auto cmp = [](int a, int b) {
    return a > b;
};
set<int, decltype(cmp)> s = {1, 2, 3, 4, 5};
cout << *s.begin() << '\n';</pre>
```

1.7 Random

1.8 Python

2 **Graph** 2.1 2 SAT

struct TwoSAT {

[i] = scc.bln[2 * i] > scc.bln[2 * i ^ 1];

2.2 Bellman Ford

}

};

return assignment;

```
struct edge{
  int u, v;
  int cost;
};
vector<int> d(n, inf);
bool bellman_ford(vector<edge> &ee, int n, int s){
  d[s] = 0;
```

```
auto relax = [&](edge e){
   if(d[e.v] > d[e.u] + e.cost){
      d[e.v] = d[e.u] + e.cost;
      return 1;
   }
   return 0;
}
for(int t = 1; t <= n; ++t){
   bool update = 0;
   for(auto &e: ee)
      update |= relax(e);
   if(t == n && update) return 0;
}
return 1;
}</pre>
```

2.3 Biconnected Component

```
// beware of multiple inputs
#define ep emplace
#define eb emplace_back
const int N = 2e5 + 5;
int d[N], low[N];
vector<int> g[N];
vector<vector<int>> bcc;
stack<int> st;
void dfs(int x, int p) {
 d[x] = p ? d[p] + 1 : 1, low[x] = d[x];
  st.ep(x);
  for (const auto& i : g[x]) {
    if (i == p) continue;
    if (!d[i]) {
      dfs(i, x);
      low[x] = min(low[x], low[i]);
      if (d[x] <= low[i]) {</pre>
        int tmp;
        bcc.eb();
        do tmp = st.top(), st.pop
            (), bcc.back().eb(tmp); while (tmp != x);
        st.ep(x);
      }
    low[x] = min(low[x], d[i]);
```

2.4 Bridge Connected Component

```
#define ep emplace
constexpr int N = 2e5 + 1;
int d[N], low[N], bcc[N], nbcc;
vector<int> g[N];
stack<int> st;
void dfs(int x, int p) {
  d[x] = \neg p ? d[p] + 1 : 1, low[x] = d[x];
  st.ep(x);
  for (const auto& i : g[x]) {
    if (i == p) continue;
if (!d[i]) {
      dfs(i, x);
      low[x] = min(low[x], low[i]);
    low[x] = min(low[x], d[i]);
  if (low[x] == d[x]) {
    nbcc++;
    int tmp;
    do tmp = st.top()
         , st.pop(), bcc[tmp] = nbcc; while (tmp != x);
}
```

2.5 Bridge

```
#define eb emplace_back
using pii = pair<int, int>;
const int N = 2e5 + 5;

int d[N], low[N];
vector<int> g[N];
vector<int> ap; // articulation point
vector<pii> bridge;
```

```
National Tsing Hua University Kenapsack
void dfs(int x, int p) {
 d[x] = p ? d[p] + 1 : 1, low[x] = d[x];
  int cnt = 0;
  bool isap = 0;
  for (const auto& i : g[x]) {
    if (i == p) continue;
    if (!d[i]) {
     dfs(i, x), cnt++;
      if (d[x] <= low[i]) isap = 1;</pre>
      if (d[x] < low[i]) bridge.eb(x, i);
     low[x] = min(low[x], low[i]);
    low[x] = min(low[x], d[i]);
  if (p == -1 && cnt < 2) isap = 0;
 if (isap) ap.eb(x);
2.6 C3C4
#include <bits/stdc++.h>
using namespace std;
signed main() {
 cin.tie(0)->sync_with_stdio(0);
 int N, M;
 cin >> N >> M;
 vector<int> deg(N);
 vector<array<int, 2>> e(M);
  for (auto &[u, v] : e) {
   cin >> u >> v;
    --u, --v;
```

++deg[u], ++deg[v];

iota(all(ord), 0);

sort(all(ord)

vector<int> ord(N), rk(N);

D[u].emplace_back(v);

vector<int> vis(N);

int64_t c3 = 0, c4 = 0;

for (int x : ord) { // c3

for (int x : ord) { // c4

cout << c4 * 8 << '\n';

}

for (int y : D[x]) vis[y] = 1;

for (int y : D[x]) vis[y] = 0;

if (rk[z] > rk[x]) --vis[z];

adj[u].emplace_back(v);

adj[v].emplace_back(u);

vector<vector<int>> D(N), adj(N);

for (auto [u, v] : e) {
 if (rk[u] > rk[v]) swap(u, v);

, [&](int x, int y) { return deg[x] > deg[y]; });
for (int i = 0; i < N; i++) rk[ord[i]] = i;</pre>

// ord = sort by deg decreasing, rk[ord[i]] = i

for (int y : D[x]) for (int z : D[y]) c3 += vis[z];

both are O(M*sqrt(M)), test @ 2022 CCPC guangzhou

// D[i] = edge point from rk small to rk big

for (int y : D[x]) for (int z : adj[y])
 if (rk[z] > rk[x]) c4 += vis[z]++;

for (int y : D[x]) for (int z : adj[y])

2.7 Centroid Decomposition

```
const int MAXN = 1e5 + 5;
int n, q, vis[MAXN], sz[MAXN];
vector<int> adj[MAXN], pa[MAXN], mx[MAXN], dis[MAXN];

void dfs_sz(int x, int p) {
    sz[x] = 1;
    for (int i : adj[x]) {
        if (i == p or vis[i]) continue;
            dfs_sz(i, x);
            sz[x] += sz[i];
    }
}
int cen;
```

```
void dfs_cen(int x, int p, int all) {
   int tmp = all - sz[x];
    for (int i : adj[x]) {
         if (i == p or vis[i]) continue;
         dfs_cen(i, x, all);
         chmax(tmp, sz[i]);
    if (tmp * 2 <= all) cen = x;</pre>
void dfs(int x, int p, int d) {
    pa[x].pb(cen);
    dis[x].pb(d);
    if (d >= mx[cen].size()) mx[cen].pb(x);
    else chmax(mx[cen][d], x);
    for (int i : adj[x]) {
         if (i == p or vis[i]) continue;
         dfs(i, x, d + 1);
    }
void deco(int x, int d) {
    dfs_sz(x, x);
    dfs_cen(x, x, sz[x]);
    vis[cen] = 1;
    dfs(cen, cen, 0);
for (int i = 1; i < mx[cen].size(); i++) {</pre>
        chmax(mx[cen][i], mx[cen][i - 1]);
    for (int i : adj[cen]) {
         if (vis[i]) continue;
         deco(i, d + 1);
    }
int get(int x, int k) {
    if (!mx[x].size() or k < 0) return 0;</pre>
    return k >= mx[x].size() ? mx[x].back() : mx[x][k];
int query(int x, int k) {
    int res = get(x, k);
    for (int i = 0; i < pa[x].size(); i++) {</pre>
         int p = pa[x][i];
         int d = dis[x][i];
         chmax(res, get(p, k - d));
    return res;
}
signed main() {
    WOSHAOJI
    cin >> n >> q;
    for (int i = 1, u, v; i < n; i++) {
        cin >> u >> v;
         adj[u].pb(v);
         adj[v].pb(u);
    deco(1, 0);
    while (q--) {
        int x, k; cin >> x >> k;
         cout << query(x, k) << '\n';</pre>
2.8 Close Vertices
```

```
#include <iostream>
#include <vector>
#include <bitset>
#include <algorithm>
#include <cstring>
using namespace std;
int l, w;
vector<pair<int, short>> tree[100000];
bitset<100000> removed;
int current_centroid, BIT[100000];
// Return subtree size internally
// and
     place the discovered centroid in current centroid
int find_centroid
    (const int n, const int u, const int p = -1) {
  if (n == 1) { current_centroid = u; return 0; }
  int subtree_sum = 0;
  for (const auto
       \&[v, w] : tree[u]) if (v != p \&\& !removed[v]) {
      subtree_sum += find_centroid(n, v, u);
      if (current_centroid > -1) return 0;
      if (subtree sum >=
           n >> 1) { current_centroid = u; return 0; }
```

```
return subtree sum + 1:
void DFS(const int u, const int p, const int length,
    const int weight, vector<pair<int, int>> &record() {
  record.emplace_back(weight, length);
  for (const auto
       \&[v, w] : tree[u]) if (v != p \&\& !removed[v])
      DFS(v, u, length + 1, weight + w, record);
bool greater_size(const vector<pair</pre>
  <int, int>> &v, const vector<pair<int, int>> &w) {
return v.size() > w.size();
long long centroid_decomposition(const int n, int u) {
  long long ans = 0;
  // Step 1: find the centroid
  current_centroid = -1; find_centroid(n, u);
  removed[u = current_centroid] = true;
  // Step 2: DFS from the centroid (again)
  // and continue the centroid decomposition
  vector<vector<pair<int, int>>> root2subtree_paths;
  for (const auto \&[v, w] : tree[u]) if (!removed[v]) {
      root2subtree_paths.emplace_back();
      DFS(v, u, 1, w, root2subtree_paths.back());
      // Sort mainly according to weight
      ranges::sort(root2subtree paths.back());
      ans += centroid_decomposition
          (root2subtree_paths.back().size(), v);
  for (const auto &v : root2subtree_paths)
    for (const auto &[weight, length] : v)
      if (length <= l && weight <= w) ++ans;</pre>
  // Step 3: optimal merging
  ranges::make_heap(root2subtree_paths, greater_size);
  while (root2subtree_paths.size() > 1) {
    ranges::pop_heap(root2subtree_paths, greater_size);
    // Merge
         front() (with maybe larger size) and back()
    // Count cross-centroid paths
    memset(BIT, 0, root2subtree_paths
        .back().size() * sizeof(int));
    auto p = root2subtree_paths.front().crbegin();
    for (auto q = root2subtree_paths.back().cbegin()
        ; q != root2subtree_paths.back().cend(); ++q) {
      int L;
      while (p != root2subtree_paths.front().crend()
             && p->first + q->first > w) {
        L = min(l - p->second,
                static_cast<int>(
                     root2subtree_paths.back().size()));
        while
            (L > 0) { ans += BIT[L - 1]; L -= L & -L; }
      L = q->second;
      while (L <= static_cast</pre>
          <int>(root2subtree_paths.back().size()))
        ++BIT[L - 1]; L += L & -L;
      }
    while (p != root2subtree_paths.front().crend()) {
      int L = min(l - p++->second, static_cast
          <int>(root2subtree_paths.back().size()));
      while (L > 0) { ans += BIT[L - 1]; L -= L & -L; }
    // Actually merge the lists
    vector<pair<int, int>> buffer;
    buffer.reserve(root2subtree_paths.front
        ().size() + root2subtree_paths.back().size());
    ranges::merge
        (root2subtree_paths.front(), root2subtree_paths
        .back(), back_inserter(buffer));
    root2subtree_paths.pop_back();
    ranges::pop_heap(root2subtree_paths, greater_size);
    root2subtree_paths.back() = move(buffer);
    ranges
        ::push_heap(root2subtree_paths, greater_size);
 }
  return ans;
int main() {
  ios_base::sync_with_stdio(false);
  int n: cin >> n >> l >> w:
  for (int i = 1; i < n; ++i) {
```

```
int p; short w; cin >> p >> w;
  tree[--p].emplace_back(i, w);
  tree[i].emplace_back(p, w);
}
cout << centroid_decomposition(n, 0) << endl;
}</pre>
```

2.9 Disjoint Set

```
#include <bits/stdc++.h>
 using namespace std;
 struct disjoint_set {
   static const int maxn = (int)5e5 + 5;
   int n, fa[maxn], sz[maxn];
   vector<pair<int*, int>> h;
   vector<int> sp;
   void init(int _n) {
     n = _n;
for (int i = 0 ; i < n ; ++i)
       fa[i] = i, sz[i] = 1;
     sp.clear(); h.clear();
   void assign(int *k, int v) {
     h.push_back({k, *k});
     *k = v;
   void save() { sp.push_back((int)h.size()); }
   void undo() {
     assert(!sp.empty());
     int last = sp.back(), cnt = 0; sp.pop_back();
     while (h.size() > last) {
       auto x = h.back(); h.pop_back();
       *x.first = x.second;
       cnt++;
     n += cnt / 2;
   int f(int x) {
     while (fa[x] != x) x = fa[x];
     return x;
   bool merge(int x, int y) {
     x = f(x); y = f(y);
     if (x == y) return 0;
     if (sz[x] < sz[y]) swap(x, y);</pre>
     assign(\&sz[x], sz[x] + sz[y]);
     assign(&fa[y], x);
     n - -;
     return 1:
} djs;
```

2.10 Heavy Light Decomposition

```
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
#define eb emplace_back
int t, n, q, seg[N << 1]; // t := time-stamp</pre>
int sz[N], fa[N], dep[N], to[N], fr[N], dfn[N], arr[N];
// size, father, depth
     , to-heavy-child, from-head, dfs-order, a_i value
vector<int> g[N];
void upd(int x, int v) {
  for (seg[x += n] = v; x > 1; x >>= 1)
    seg[x \gg 1] = max(seg[x], seg[x ^ 1]);
int qry(int l, int r) { // [l, r]
  int ret = -1e9; // -max
  for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
   if (l & 1) ret = max(ret, seg[l++]);
    if (r & 1) ret = max(ret, seg[--r]);
  return ret;
void dfs(int x, int p) {
  sz[x] = 1, fa[
      x] = p, to[x] = -1, dep[x] = -p? dep[p] + 1 : 0;
  for (auto i : g[x])
    if (i != p) {
      dfs(i, x);
      if (to[x] == -1 || sz[i] > sz[to[x]]) to[x] = i;
      sz[x] += sz[i];
void dfs2(int x, int f) {
```

```
fr[x] = f, dfn[x] = ++t, upd(dfn[x], arr[x]);
if (to[x] != -1) dfs2(to[x], f);
for (auto i : g[x])
    if (i != fa[x] && i != to[x]) dfs2(i, i);
int qry2(int u, int v) { // query on tree
  int fu = fr[u], fv = fr[v], ret = -1e9;
  while (fu != fv) {
    if (dep[fu] < dep[fv]) swap(fu, fv), swap(u, v);</pre>
    ret = max(ret, qry(dfn
         [fu], dfn[u])); // interval: [dfn[fu], dfn[u]]
    u = fa[fu], fu = fr[u];
  if (dep[u] > dep[v]) swap(u, v);
  // u is the LCA
  ret = max(ret, qry(dfn[u], dfn[v]));
  return ret;
int main() {
  ios::sync_with_stdio(false), cin.tie(nullptr);
  cin >> n >> q;
  for (int i = 1; i <= n; i++) cin >> arr[i];
  for (int i = 1, a, b; i < n; i++)
    cin >> a >> b, g[a].eb(b), g[b].eb(a);
  dfs(1, -1), dfs2(1, 1);
  while (q--) {
    int op; cin >> op;
    if (op == 1) {
      int x,
           v; cin >> x >> v, arr[x] = v, upd(dfn[x], v);
    else {
       int a, b; cin >> a >> b;
       cout << qry2(a, b) << '\n';
  }
}
```

2.11 KSP

```
// from CRyptoGRapheR
// time: O(|E| \setminus g \mid E|+|V| \setminus g \mid V|+K)
// memory: O(|E| \setminus |E| + |V|)
struct KSP { // 1-base
  struct nd {
    int u, v; ll d;
nd(int ui = 0, int vi
           = 0, ll di = INF) { u = ui; v = vi; d = di; }
  struct heap { nd* edge; int dep; heap* chd[4]; };
  static int cmp(heap
       * a, heap* b) { return a->edge->d > b->edge->d; }
  struct node {
     int v; ll d; heap* H; nd* E;
     node() {}
     node(ll
    _d, int _v, nd* _E) { d = _d; v = _v; E = _E; }
node(heap* _H, ll _d) { H = _H; d = _d; }
friend bool operator <(node a, node b)
     { return a.d > b.d; }
  }:
  int n, k, s, t, dst[N]; nd *nxt[N];
  vector<nd*> g[N], rg[N]; heap *nullNd, *head[N];
  void init(int _n, int _k, int _s, int _t) {
  n = _n; k = _k; s = _s; t = _t;
  for (int i = 1; i <= n; i++) {
    g[i].clear(); rg[i].clear();
}</pre>
       nxt[i] = NULL; head[i] = NULL; dst[i] = -1;
  void addEdge(int ui, int vi, ll di) {
  nd* e = new nd(ui, vi, di);
    g[ui].push_back(e); rg[vi].push_back(e);
  queue<int> dfsQ;
  void dijkstra() {
     while (dfsQ.size()) dfsQ.pop();
     priority_queue<node> Q; Q.push(node(0, t, NULL));
     while (!Q.empty()) {
       node p = Q
             .top(); Q.pop(); if (dst[p.v] != -1)continue;
       dst[p.v] = p.d; nxt[p.v] = p.E; dfsQ.push(p.v);
       for (auto e
             : rg[p.v]) Q.push(node(p.d + e->d, e->u, e));
    }
  heap* merge(heap* curNd, heap* newNd) {
```

```
if (curNd == nullNd) return newNd;
    heap* root
          = new heap; memcpy(root, curNd, sizeof(heap));
     if (newNd->edge->d < curNd->edge->d) {
       root->edge = newNd->edge;
       root->chd[2] = newNd->chd[2];
       root->chd[3] = newNd->chd[3];
       newNd ->edge = curNd ->edge;
newNd ->chd[2] = curNd ->chd[2];
       newNd ->chd[3] = curNd ->chd[3];
     if (root->chd[0]->dep < root->chd[1]->dep)
       root->chd[0] = merge(root->chd[0], newNd);
     else root->chd[1] = merge(root->chd[1], newNd);
    root->dep = max(root->chd[0]->dep,
                      root->chd[1]->dep) + 1;
    return root;
  vector < heap*> V;
  void build() {
    nullNd = new
          heap; nullNd->dep = 0; nullNd->edge = new nd;
     fill(nullNd->chd, nullNd->chd + 4, nullNd);
    while (not dfsQ.empty()) {
       int u = dfsQ.front(); dfsQ.pop();
if (!nxt[u]) head[u] = nullNd;
       else head[u] = head[nxt[u]->v];
       V.clear();
       for (auto && e : g[u]) {
         int v = e -> v;
         if (dst[v] == -1) continue;
         e->d += dst[v] - dst[u];
         if (nxt[u] != e) {
           heap*p = new
                heap; fill(p->chd, p->chd + 4, nullNd);
           p->dep = 1; p->edge = e; V.push_back(p);
         }
       if (V.empty()) continue;
       make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)
#define R(X) ((X<<1)+2)
       for (size_t i = 0; i < V.size(); i++) {</pre>
         if (L(i) < V.size()) V[i]->chd[2] = V[L(i)];
         else V[i]->chd[2] = nullNd;
         if (R(i) < V.size()) V[i]->chd[3] = V[R(i)];
         else V[i]->chd[3] = nullNd;
       head[u] = merge(head[u], V.front());
    }
  }
  vector<ll> ans;
  void first_K() {
    ans.clear(); priority_queue < node > Q;
if (dst[s] == -1) return;
    ans.push_back(dst[s]);
     if (head[s] != nullNd)
       Q.push(node(head[s], dst[s] + head[s]->edge->d));
     for (int _ = 1; _ < k and not Q.empty(); _++) {
  node p = Q.top(), q; Q.pop(); ans.push_back(p.d);</pre>
       if (head[p.H->edge->v] != nullNd) {
         q.H = head
              [p.H->edge->v]; q.d = p.d + q.H->edge->d;
         Q.push(q);
       for (int i = 0; i < 4; i++)
  if (p.H->chd[i] != nullNd) {
           q.H = p.H->chd[i];
           q.d = p
                .d - p.H->edge->d + p.H->chd[i]->edge->d;
           Q.push(q);
    }
  }
  void
       solve() \ \{ \ // \ ans[i] \ stores \ the \ i-th \ shortest \ path
     dijkstra(); build();
    first_K(); // ans.size() might less than k
} solver;
2.12 LCA
#define eb emplace_back
const int N = 2e5 + 5, logN = lg(N) + 1, inf = 1e9;
```

```
int n, q, logn;
int dep[N], fa[N][logN];
```

```
vector<int> a[N]:
void dfs(int x, int p) {
  dep[x] = ~p ? dep[p] + 1 : 0;
  fa[x][0] = p;
  for (int i = 1; (1 << i) <= dep[x]; i++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];</pre>
  for (const auto& u : g[x])
    if (u != p) dfs(u, x);
}
int LCA(int u, int v) {
  if (dep[u] > dep[v]) swap(u, v);
  for (int i = 0; i < logn; i++)</pre>
    if ((dep[v] - dep[u]) >> i & 1) v = fa[v][i];
  if (u == v) return u;
  for (int i = logn - 1; i >= 0; i--)
    if (fa[u][i] != fa[v][i])
      u = fa[u][i], v = fa[v][i];
  return fa[u][0];
// logn =
             _lg(n) + 1
// g[a].eb(b)
// dfs(root, -1)
// query -> LCA(u, v)
// distance
     of (u, v) = dep[u] + dep[v] - 2 * dep[LCA(u, v)]
```

2.13 Maximum Clique

```
struct Maximum Clique {
  typedef bitset<MAXN> bst;
  bst N[MAXN], empty;
  int p[MAXN], n, ans;
  void BronKerbosch2(bst R, bst P, bst X) {
    if (P == empty && X == empty)
      return ans = max(ans, (int)R.count()), void();
    bst tmp = P \mid X;
    int u;
    if ((R | P | X).count() <= ans) return;</pre>
    for (int uu = \theta; uu < n; ++uu) {
      u = p[uu];
      if (tmp[u] == 1) break;
    // if (double(clock())/CLOCKS_PER_SEC > .999)
    // return;
    bst now2 = P \& \sim N[u];
    for (int vv = 0; vv < n; ++vv) {</pre>
      int v = p[vv];
      if (now2[v] == 1) {
        R[v] = 1:
        BronKerbosch2(R, P & N[v], X & N[v]);
        R[v] = 0, P[v] = 0, X[v] = 1;
    }
  }
  void init(int _n) {
    for (int i = 0; i < n; ++i) N[i].reset();</pre>
  void add_edge(int u, int v) {
    N[u][v] = N[v][u] = 1;
  int solve() { // remember srand
    bst R, P, X;
    ans = 0, P.flip();
    for (int i = 0; i < n; ++i) p[i] = i;
    random_shuffle(p, p + n), BronKerbosch2(R, P, X);
  }
};
```

2.14 SCC Kosaraju

```
#define eb emplace_back
const int N = 2e5 + 5;
vector < int > g[N], rg[N], ord;
int scc[N];
bool v[N];
void rdfs(int x) {
  v[x] = 1;
  for (const auto& i : rg[x])
      if (!v[i]) rdfs(i);
  ord.eb(x);
}
void dfs(int x, int nscc) {
  scc[x] = nscc;
```

```
for (const auto& i : g[x])
    if (scc[i] == -1) dfs(i, nscc);
}
void kosaraju(int n) {
    memset(v, 0, sizeof(v));
    memset(scc, -1, sizeof(scc));
    for (int i = 0; i < n; i++)
        if (!v[i]) rdfs(i);
    int nscc = 0;
    for (int i = n - 1; i >= 0; i--) {
        int x = ord[i];
        if (scc[x] == -1)
            dfs(x, nscc++);
    }
}
```

2.15 SCC Tarjan

```
#define ep emplace
const int N = 2e5 + 5;
int d[N], low[N], scc[N], ins[N], nscc;
vector<int> g[N];
stack<int> st;
void dfs(int x, int p) {
    d[x] = ~p? d[p] + 1 : 1, low[x] = d[x];
    st.ep(x), ins[x] = 1;
    for (const auto& i : g[x]) {
        if (!d[i]) dfs(i, x), low[x] = min(low[x], low[i]);
        else if (ins[i]) low[x] = min(low[x], d[i]);
    }
    if (d[x] == low[x]) {
        nscc++;
        int tmp;
        do tmp = st.top(), st.pop(), scc
            [tmp] = nscc, ins[tmp] = 0; while (tmp != x);
    }
}
```

2.16 Tree Centroid

2.17 Virtual Tree

```
vector<int> vG[N]:
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
}
void reset(int u) {
  for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1;
  sort(ALL(v),
  [&](int a, int b) { return dfn[a] < dfn[b]; });
for (int i : v) insert(i);</pre>
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
```

3 Data Structure

3.1 2D BIT

```
const int N = 1000 + 5;
int a[N][N];
struct BIT { // 1-based
  ll bit[N][N];
  int n, m;
  void init(int _n, int _m) { // O(nm)
    n = _n, m = _m;
for (int i = 1; i <= n; i++)</pre>
      for (int j = 1; j <= m; j++)</pre>
        bit[i][j] = a[i][j];
    for (int b = 1; b << 1 <= max(n, m); b <<= 1) {
      for (int i = b; i + b <= n; i += b << 1)
for (int j = 1; j <= m; j++)</pre>
          bit[i + b][j] += bit[i][j];
      for (int i = 1; i <= n; i++)</pre>
         for (int j = b; j + b \le m; j + b \le 1)
          bit[i][j + b] += bit[i][j];
    }
  void upd(int x, int y, int v) {
    for (int i = x; i <= n; i += i & -i)
      for (int j = y; j <= m; j += j & -j)
        bit[i][j] += v;
  ll qry(int x, int y) {
    ll ret = 0;
    for (int i = x; i; i -= i & -i)
      for (int j = y; j; j -= j & -j)
        ret += bit[i][j];
    return ret:
  ll qry(int
       x1, int y1, int x2, int y2) { // closed-interval
    return qry(x2, y2) - qry(x1
        1, y2) - qry(x2, y1 - 1) + qry(x1 - 1, y1 - 1);
  }
} tree;
// tree.init(n, m)
```

3.2 2D Segment Tree

```
const int inf = 1e9;
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
int N, M; // N : row max, M : col max
struct seg {
  vector<int> st;
  void pull(int);
  void merge(const seg&, const seg&, int, int, int);
 void build(int, int, int);
 void upd(int, int, int, int, int);
int qry(int, int, int, int, int);
 seg(int size): st(size << 2 | 1) {}</pre>
void seg::pull(int id) {
 st[id] = max(st[lc(id)], st[rc(id)]);
void seg::merge(const seg& a
      const seg& b, int id = 1, int l = 1, int r = M) {
  st[id] = max(a.st[id], b.st[id]);
  if (l == r) return;
  int m = (l + r) >> 1;
  merge(a,
       b, lc(id), l, m), merge(a, b, rc(id), m + 1, r);
void seg::build(int id = 1, int l = 1, int r = M) {
  if (l == r) {cin >> st[id]; return;}
  int m = (l + r) >> 1;
  build(lc(id), l, m), build(rc(id), m + 1, r);
 pull(id);
void seg::upd
    (int x, int v, int id = 1, int l = 1, int r = M) {
  if (l == r) {st[id] = v; return;}
  int m = (l + r) >> 1;
 if (x <= m) upd(x, v, lc(id), l, m);</pre>
  else upd(x, v, rc(id), m + 1, r);
 pull(id);
    int ql, int qr, int id = 1, int l = 1, int r = M) \{ \mid \};
  if (ql <= l && r <= qr) return st[id];</pre>
```

```
int m = (l + r) \gg 1, ret = -inf;
   if (ql
          <= m) ret = max(ret, qry(ql, qr, lc(id), l, m));
   if (qr >
        m) ret = max(ret, qry(ql, qr, rc(id), m + 1, r));
   return ret;
}
struct segseg {
   vector<seg> st;
   void pull(int, int);
   void build(int, int, int);
   void upd(int, int, int, int, int);
int qry(int, int, int, int, int, int, int);
segseg(int n, int m): st(n << 2 | 1, seg(m)) {}</pre>
};
void segseg::pull(int id, int x) {
   st[id].upd(x,
        max(st[lc(id)].qry(x, x), st[rc(id)].qry(x, x)));
void segseg::build(int id = 1, int l = 1, int r = N) {
  if (l == r) {st[id].build(); return;}
   int m = (l + r) >> 1;
build(lc(id), l, m), build(rc(id), m + 1, r);
   st[id].merge(st[lc(id)], st[rc(id)]);
}
void segseg::upd(int y
        int x, int v, int id = 1, int l = 1, int r = N) {
   if (l == r) {st[id].upd(x, v); return;}
   int m = (l + r) >> 1;
   if (y <= m) upd(y, x, v, lc(id), l, m);
else upd(y, x, v, rc(id), m + 1, r);</pre>
   pull(id, x);
 int segseg::qry(int y1, int y2,
   int x1, int x2, int id = 1, int l = 1, int r = N) {
if (y1 <= l && r <= y2) return st[id].qry(x1, x2);
   int m = (l + r) \gg 1, ret = -inf;
   if (y1 <= m) ret
         = max(ret, qry(y1, y2, x1, x2, lc(id), l, m));
   if (v2 > m) ret =
         max(ret, qry(y1, y2, x1, x2, rc(id), m + 1, r));
   return ret;
}
```

3.3 BIT

```
const int N = 2e5 + 5;
int n, a[N];
struct BIT { // 1-based
  ll bit1[N], bit2[N];
  ll sum(ll* bit, int x) {
    ll ret = 0;
    for (; x; x -= x & -x) ret += bit[x];
    return ret;
  void upd(ll* bit, int x, ll v) {
    for (; x \le n; x += x \& -x) bit[x] += v;
  ll qry(int x) {
    return (x + 1) * sum(bit1, x) - sum(bit2, x);
  ll qry(int l, int r) { // [l, r]
    return qry(r) - qry(l - 1);
  void upd(int l, int r, ll v) { // [l, r]
  upd(bit1, l, v), upd(bit2, l, l * v);
    upd(bit1
        , r + 1, -v), upd(bit2, r + 1, (r + 1) * -v);
  BIT() {
    fill_n(bit1, N, 0), fill_n(bit2, N, 0);
  BIT(int* a) { // O(n) build
    fill_n(bit1, N, 0), fill_n(bit2, N, 0);
    for (int i = 1;
         i <= n; i++) bit1[i] = a[i] - a[i - (i & -i)];
    for (int i = n; i; i--) a[i] -= a[i - 1];
    for (int
         i = 1; i \le n; i++) a[i] = a[i - 1] + a[i] * i;
    for (int i = 1;
         i <= n; i++) bit2[i] = a[i] - a[i - (i & -i)];
```

3.4 chtholly tree

```
// 存 {x, v}, 從 x 開始到下一個位置前都是v
map < int, int > s;
// [l, r)
void ins(int l, int r, int i) {
    auto it1 = s.find(l);
    auto it2 = s.find(r);
    for (auto it = it1; it != it2; it++) {

    }
    s.erase(it1, it2); // [it`, it2)
    s[l] = ;
}
void split(int pos) {
    auto it = s.lower_bound(pos);
    if (it == s.end() or it->F != pos) {
        s[pos] = prev(it)->S;
    }
}
```

3.5 LiChaoST

```
struct LiChao_min {
  struct line {
    LL m, c;
    line(LL _m = 0, LL _c = 0) {
      m = _m;
      c = _c;
    LL eval(LL x) { return m * x + c; }
  };
  struct node {
    node *l, *r;
    line f;
    node(line v) {
      f = v;
      l = r = NULL;
    }
  typedef node *pnode;
  pnode root;
  int sz;
#define mid ((l + r) >> 1)
  void insert(line &v, int l, int r, pnode &nd) {
    if (!nd) {
      nd = new node(v);
      return;
    LL trl = nd->f.eval(l), trr = nd->f.eval(r);
    LL vl = v.eval(l), vr = v.eval(r);
    if (trl <= vl && trr <= vr) return;
    if (trl > vl && trr > vr) {
      nd - > f = v;
      return:
    if (trl > vl) swap(nd->f, v);
    if (nd->f.eval(mid) < v.eval(mid))</pre>
    insert(v, mid + 1, r, nd->r);
else swap(nd->f, v), insert(v, l, mid, nd->l);
  LL query(int x, int l, int r, pnode &nd) {
    if (!nd) return LLONG_MAX;
    if (l == r) return nd->f.eval(x);
    if (mid >= x)
      return min(
        nd->f.eval(x), query(x, l, mid, nd->l));
    return min(
      nd \rightarrow f.eval(x), query(x, mid + 1, r, nd \rightarrow r));
  /* -sz <= query_x <= sz */
  void init(int _sz) {
    sz = _sz + 1;
    root = NULL;
  void add_line(LL m, LL c) {
    line v(m, c);
    insert(v, -sz, sz, root);
  LL query(LL x) { return query(x, -sz, sz, root); }
```

3.6 persistent

```
const int MAXN = 2e5 + 5;
int a[MAXN];
```

```
int sum[MAXN * 25], lc[MAXN * 25], rc[MAXN * 25];
int add_node() {
     static int now = 0;
     return ++now;
void pull(int x) {
    sum[x] = sum[lc[x]] + sum[rc[x]];
void init(int &x, int lx, int rx) {
     if (!x) x = add_node();
     if (lx + 1 == rx) return;
     int mid = (lx + rx) / 2;
     init(lc[x], lx, mid);
     init(rc[x], mid, rx);
void update(int fa, int &x, int lx, int rx, int i) {
   if (!x) x = add_node();
     if (lx + 1 == rx) return sum[x]++, void();
     int mid = (lx + rx) / 2;
     if (i < mid) {</pre>
         rc[x] = rc[fa];
         update(lc[fa], lc[x], lx, mid, i);
         lc[x] = lc[fa];
         update(rc[fa], rc[x], mid, rx, i);
     pull(x);
int query(int x, int lx, int rx, int l, int r) {
   if (lx >= r or rx <= l) return 0;
   if (lx >= l and rx <= r) return sum[x];</pre>
     int mid = (lx + rx) / 2;
     return query(lc[x],
           lx, mid, l, r) + query(rc[x], mid, rx, l, r);
}
```

3.7 Sparse Table

```
const int N = 5e5 + 5, logN = __lg(N) + 1;
int a[N];
struct sparse_table { // 0-based
  int st[logN][N];
  void init(int n) {
    copy(a, a + n, st[0]);
    for (int i = 1; (1 << i) <= n; i++)
      for (int j = 0; j + (1 << i) - 1 <= n; <math>j++)
        st[i][j] = max(st [i - 1][j + (1 << (i - 1))]);
  int qry(int l, int r) {
    int k = __lg(r - l + 1);
    return max(st[k][l], st[k][r - (1 << k) + 1]);</pre>
  }
} st;
// st.init(n)
// st.qry(l - 1, r - 1)
```

3.8 Treap

```
#include <bits/stdc++.h>
using namespace std:
mt19937 rng;
struct node {
  node *l, *r;
int v, p, s; bool t; // val, pri, size, tag
  void pull() {
     for (auto x : \{l, r\})
       if (x) s += x->s;
  void push() {
   if (t) {
       swap(l, r), t = 0;
       for (auto& x : {l, r})
          if (x) x->t ^= 1;
    }
  }
  node(int _v
         = 0): v(_v), p(rng()), s(1), t(0), l(0), r(0) {}
int sz(node* o) {return o ? o->s : 0;}
node* merge(node* a, node* b) {
  if (!a || !b) return a ? : b;
  if (a->p < b->p) return
        a \rightarrow push(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow pull(), a;
  else return
        b->push(), b->l = merge(a, b->l), b->pull(), b;
```

```
void split(node
    * o, node*& a, node*& b, int k) { // a < k, b >= k
  if (!o) return a = b = nullptr, void();
  o->push();
  if (o->v < k) a = o, split(o->r, a->r, b, k);
else b = o, split(o->l, a, b->l, k);
  o->pull();
void insert(node*& o, int k) {
  node *a, *b;
  split(
       o, a, b, k), o = merge(a, merge(new node(k), b));
void ssplit(node* o, node
    *& a, node*& b, int k) { // split first k things
    if (!o) return a = b = nullptr, void();
  o->push();
  if (sz(o->l) + 1 <= k
      ) a = o, ssplit(o->r, a->r, b, k - sz(o->l) - 1);
  else b = o, ssplit(o->l, a, b->l, k);
  o->pull();
void reverse(node* o, int l, int r) { // [l, r]
  node *a, *b, *c;
ssplit(o, a, b, l - 1), ssplit(b, b, c, r - l + 1);
  b->t ^= 1, o = merge(a, merge(b, c));
node* root = nullptr;
for (int i = 0; i < n; i++)
 root = merge(root, new node(x));
```

3.9 ZKW Segment Tree

```
const int N = 5e5 + 5;
int a[N];
struct seg_tree { // 0-based
  int seg[N << 1], n;
  void upd(int x, int v) {
    for (seg[x += n] = v; x > 1; x >>= 1)
      seg[x >> 1] = max(seg[x], seg[x ^ 1]);
  int qry(int l, int r) { // [ql, qr]
    int ret = -1e9;
    for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) ret = max(ret, seg[l++]);
      if (r & 1) ret = max(ret, seg[--r]);
    }
    return ret;
  void init(int _n) {
    n = _n;
    copy(a, a + n, seg + n);
for (int i = n - 1; i >= 0; i--)
      seg[i] = max(seg[i << 1], seg[i << 1 | 1]);
} tree;
// tree.init(n)
// tree.qry(l - 1, r - 1)
```

4 Flow

4.1 Bipartite Matching

```
// 0(E * sqrt(V))
struct Bipartite_Matching { // 0-base
 int l, r;
  int mp[MAXN], mq[MAXN];
  int dis[MAXN], cur[MAXN];
  vector<int> G[MAXN];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      int e = G[u][i];
      if (!~mq[e]
           || (dis[mq[e]] == dis[u] + 1 && dfs(mq[e])))
        return mp[mq[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
  bool bfs() {
   int rt = 0;
    queue < int > q;
    fill_n(dis, l, -1);
```

```
for (int i = 0; i < l; ++i)</pre>
       if (!~mp[i])
         q.push(i), dis[i] = 0;
     while (!q.empty()) {
       int u = q.front();
       q.pop();
       for (int e : G[u])
         if (!~mq[e])
           rt = 1
         else if (!~dis[mq[e]]) {
           q.push(mq[e]);
           dis[mq[e]] = dis[u] + 1;
    return rt;
  int matching() {
     int rt = 0;
     fill_n(mp, l, -1);
     fill_n(mq, r, -1);
     while (bfs()) {
       fill_n(cur, l, 0);
       for (int i = 0; i < l; ++i)</pre>
         if (!~mp[i] && dfs(i))
    return rt;
  void add_edge(int s, int t) {
    G[s].pb(t);
  void init(int _l, int _r) {
    l = _l, r = _r;
for (int i = 0; i < l; ++i)
       G[i].clear();
  }
};
```

4.2 Bounded Flow

```
// time complexity: same as Dinic
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
    n = _n;
for (int i = 0; i < n + 2; ++i)</pre>
       G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
  cnt[u] -= lcap, cnt[v] += lcap;
  G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
  G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
     for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
       edge &e = G[u][i];
       if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
         int df = dfs(e.to, min(e.cap - e.flow, cap));
         if (df) {
            e.flow += df, G[e.to][e.rev].flow -= df;
            return df;
         }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue < int > q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
       q.pop();
       for (edge &e : G[u])
         if (!~dis[e.to] && e.flow != e.cap)
           q.push(e.to), dis[e.to] = dis[u] + 1;
```

```
return dis[t] != -1:
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n + 3, 0);
       while ((df = dfs(s, INF))) flow += df;
    return flow;
  bool solve() {
    int sum = 0;
     for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
       add_edge(n + 1, i, cnt[i]), sum += cnt[i];
else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);
    if (sum != maxflow(n + 1, n + 2)) sum = -1;
        (int i = 0; i < n; ++i)
      if (cnt[i] > 0)
       G[n + 1].pop_back(), G[i].pop_back();else if (cnt[i] < 0)
         G[i].pop_back(), G[n + 2].pop_back();
    return sum != -1;
  int solve(int _s, int
                            _t) {
    add_edge(_t, _s, INF);
     if (!solve()) return -1; // invalid flow
     int x = G[_t].back().flow;
     return G[_t].pop_back(), G[_s].pop_back(), x;
  }
};
4.3 Dinic
// 0(V^2 * E)
// O(min(V^{(2/3)})
      E^{(1/2)} * E) for unit graph (all cap are same)
// O(E * sqrt(V)) for bipartite matching
```

```
struct MaxFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[MAXN];
  int s, t, dis[MAXN], cur[MAXN], n;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < (int)G[u].size(); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          G[e.to][e.rev].flow -= df;
          return df;
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int tmp = q.front();
      q.pop();
      for (auto &u : G[tmp])
        if (!~dis[u.to] && u.flow != u.cap) {
          q.push(u.to);
          dis[u.to] = dis[tmp] + 1;
        }
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n, 0);
while ((df = dfs(s, INF))) flow += df;
    return flow;
  }
  void init(int _n) {
   n = _n;
```

```
for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void reset() {
  for (int i = 0; i < n; ++i)</pre>
       for (auto &j : G[i]) j.flow = 0;
   void add_edge(int u, int v, int cap) {
     G[u].pb(edge\{v, cap, 0, (int)G[v].size()\});
     G[v].pb(edge{u, 0, 0, (int)G[u].size() - 1});
};
```

4.4 KM

```
// O(n^3), where n is the number
      of vertices on one side of the bipartite graph
// Finds
      the maximum weight matching in a bipartite graph
 struct KM { // 0-base
   int w[MAXN][MAXN], hl[MAXN], hr[MAXN], slk[MAXN], n;
   int fl[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], ql, qr;
   bool vl[MAXN], vr[MAXN];
   void init(int _n) {
     n = _n;
for (int i = 0; i < n; ++i)
       for (int j = 0; j < n; ++j) w[i][j] = -INF;
   void add_edge(int a, int b, int wei) {
     w[a][b] = wei;
   bool Check(int x) {
     if (vl[x] = 1, \sim fl[x])
       return vr[qu[qr++] = fl[x]] = 1;
     while (\sim x) swap(x, fr[fl[x] = pre[x]]);
     return 0;
   void Bfs(int s) {
     fill(slk, slk + n, INF);
     fill(vl, vl + n, \theta), fill(vr, vr + n, \theta);
     ql = qr = 0, qu[qr++] = s, vr[s] = 1;
     while (1) {
       int d;
       while (ql < qr)
         for (int x = 0, y = qu[ql++]; x < n; ++x)
           if (!vl[x] &&
               slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
       d = INF;
       for (int x = 0; x < n; ++x)
         if (!vl[x] \&\& d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {
         if (vl[x]) hl[x] += d;
         else slk[x] -= d;
         if (vr[x]) hr[x] -= d;
       for (int x = 0; x < n; ++x)
         if (!vl[x] && !slk[x] && !Check(x)) return;
    }
   int Solve() {
     fill(fl, fl + n, -1), fill(fr, fr + n, -1),
     fill(hr, hr + n, 0);
for (int i = 0; i < n; ++i)
      hl[i] = *max_element(w[i], w[i] + n);
     for (int i = 0; i < n; ++i) Bfs(i);</pre>
     int res = 0;
     for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
     return res:
  }
};
```

Maximum Simple Graph Matching

```
// O(V^3) , where V is the number of vertices
struct Matching { // 0-base
  queue<int> q; int n;
  vector<int> fa, s, vis, pre, match;
  vector<vector<int>> G;
  int Find(int u)
  { return u == fa[u] ? u : fa[u] = Find(fa[u]); }
  int LCA(int x, int y) {
    static int tk = 0; tk++; x = Find(x); y = Find(y);
    for (;; swap(x, y)) if (x != n) {
         if (vis[x] == tk) return x;
        vis[x] = tk;
        x = Find(pre[match[x]]);
```

```
}
  void Blossom(int x, int y, int l) {
  for (; Find(x) != l; x = pre[y]) {
       pre[x] = y, y = match[x];
if (s[y] == 1) q.push(y), s[y] = 0;
for (int z : {x, y}) if (fa[z] == z) fa[z] = l;
    }
  bool Bfs(int r) {
     iota(ALL(fa), 0); fill(ALL(s), -1);
     q = queue < int > (); q.push(r); s[r] = 0;
     for (; !q.empty(); q.pop()) {
           (int x = q.front(); int u : G[x])
         if (s[u] == -1) {
            if (pre[u] = x, s[u] = 1, match[u] == n) {
  for (int a = u, b = x, last;
                    b != n; a = last, b = pre[a])
                     match[b], match[b] = a, match[a] = b;
              return true;
            q.push(match[u]); s[match[u]] = 0;
         } else if (!s[u] && Find(u) != Find(x)) {
            int l = LCA(u, x);
            Blossom(x, u, l); Blossom(u, x, l);
     return false:
  \label{eq:matching} \text{Matching(int } \_n) \ : \ n(\_n), \ fa(n + 1), \ s(n + 1), \ vis
  (n + 1), pre(n + 1, n), match(n + 1, n), G(n) {} void add_edge(int u, int v)
  { G[u].pb(v), G[v].pb(u); }
  int solve() {
     int ans = 0;
     for (int x = 0; x < n; ++x)
       if (match[x] == n) ans += Bfs(x);
     return ans;
  } // match[x] == n means not matched
};
4.6 MCMF
// O(FE * logV), where F is
      the maximum flow, E is edges, and V is vertices.
struct MinCostMaxFlow { // 0-base
```

```
struct Edge {
  ll from, to, cap, flow, cost, rev;
} *past[N];
vector<Edge> G[N];
int inq[N], n, s, t;
ll dis[N], up[N], pot[N];
bool BellmanFord() {
  fill_n(dis, n, INF), fill_n(inq, n, 0);
  queue<int> q;
  auto relax = [&](int u, ll d, ll cap, Edge * e) {
    if (cap > 0 && dis[u] > d) {
      dis[u] = d, up[u] = cap, past[u] = e;
if (!inq[u]) inq[u] = 1, q.push(u);
    }
  };
  relax(s, 0, INF, 0);
  while (!q.empty()) {
    int u = q.front();
    q.pop(), inq[u] = 0;
    for (auto &e : G[u]) {
      ll d2 = dis[u] + e.cost + pot[u] - pot[e.to];
           (e.to, d2, min(up[u], e.cap - e.flow), &e);
    }
  }
  return dis[t] != INF;
void solve(int
  , int _t, l\bar{l} &flow, ll &cost, bool neg = true) { s = _s, t = _t, flow = 0, cost = 0;
  if (neg) BellmanFord(), copy_n(dis, n, pot);
  for (; BellmanFord(); copy_n(dis, n, pot)) {
    for (int
    \dot{i} = 0; i < n; ++i) dis[i] += pot[i] - pot[s]; flow += up[t], cost += up[t] * dis[t];
    for (int i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
  }
```

```
void init(int _n) {
     n = _n, fill_n(pot, n, 0);
for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void add_edge(ll a, ll b, ll cap, ll cost) {
     G[a].pb(Edge{a, b, cap, 0, cost, SZ(G[b])});
     G[b].pb(Edge{b, a, 0, 0, -cost, SZ(G[a]) - 1});
};
```

4.7 Mimum Vertex Cover

```
// O(VE)
struct Maximum_cardinality_matching {
  int n, k;
  int match[1005]; //right
   int vis[1005]; // left
  vector<int> adj[1005]; // left
  int dfs(int x) {
     vis[x] = 1;
     for (int i : adj[x]) {
       if (match[i] ==
             -1 or (!vis[match[i]] and dfs(match[i]))) {
         match[i] = x;
          return true;
       }
     }
     return false;
  }
  int paired[1005];
  int vis2[1005];
  void dfs2(int x) {
     vis[x] = 1;
     for (int i : adj[x]) {
       if (!vis2[i]) {
         vis2[i] = 1
         dfs2(match[i]);
       }
    }
  }
  void matching() {
     fill(match + 1, match + 1 + k, -1);
     int res = 0;
    FOR (i, 1, k) {
  fill(vis + 1, vis + 1 + k, 0);
       res += dfs(i);
     FOR (i, 1, k) {
       if (match[i] != -1) {
         paired[match[i]] = 1;
     fill(vis + 1, vis + 1 + k, 0);
    fill(vis2 + 1, vis2 + 1 + k, 0);
FOR (i, 1, k) {
       if (!paired[i]) {
         dfs2(i);
       }
    }
     vector<int> a, b;
     FOR (i, 1, k) {
       if (!vis[i]) a.pb(i);
if (vis2[i]) b.pb(i);
    cout << SZ(a) << ' ' << SZ(b) << '\n';
for (int i : a) cout << i << ' '; cout << '\n';
for (int i : b) cout << i << ' '; cout << '\n';</pre>
     assert(SZ(a) + SZ(b) == res);
```

4.8 Theorem

- Maximum Independent Set: A largest set of non-adjacent vertices.
- Maximum Matching: A largest set of edges with no shared vertices.
- Minimum Vertex Cover: A smallest set of vertices that covers all edges.
- Minimum Edge Cover: A smallest set of edges that covers all vertices.
- Maximum Clique: A largest complete subgraph.
- Properties:
 - |Maximum Matching| = |Minimum Vertex Cover|
 - $|\mathsf{Maximum}\,\mathsf{Matching}| + |\mathsf{Minimum}\,\mathsf{Edge}\,\mathsf{Cover}| = |V|$
 - |Maximum Independent Set| + |Minimum Vertex Cover| = |V|
 - |Maximum Independent Set| = |V| |Maximum Matching|
 - |Maximum Clique| = |Maximum Independent Set in the Complement Graph

5 Geometry

5.1 Basic 2D

```
// Courtesy of Jinkela
const double PI = atan2(0.0, -1.0);
template < typename T>
struct point {
 T x, y;
 point() {}
 point(const T&x, const T&y): x(x), y(y) {}
 point operator+(const point &b)const {
   return point(x + b.x, y + b.y);
 point operator-(const point &b)const {
   return point(x - b.x, y - b.y);
 point operator*(const T &b)const {
   return point(x * b, y * b);
 point operator/(const T &b)const {
   return point(x / b, y / b);
 bool operator==(const point &b)const {
   return x == b.x && y == b.y;
 T dot(const
       point &b)const { return x * b.x + y * b.y; }
 T cross(const
      point &b)const { return x * b.y - y * b.x; }
 point normal()const { //求法向量
   return point(-y, x);
 T abs2()const { return dot(*this); }
 Trad(const point &b)const { //兩向量的弧度
   return fabs(atan2(fabs(cross(b)), dot(b)));
 T getA()const { //對x軸的弧度
   T A = atan2(y, x); //超過180度會變負的
if (A <= -PI / 2)A += PI * 2;
   return A;
 }
};
template < typename T>
struct line {
 line() {}
 point<T> p1, p2;
  Га, b, c; //ax+by+c=0
 line(const
       point < T > &x, const point < T > &y): p1(x), p2(y) {}
 void pton() { //轉成一般式
   a = p1.y - p2
       .y; b = p2.x - p1.x; c = -a * p1.x - b * p1.y;
 T ori(const point<T> &p)const
       { //點和有向直匠的關E, >0左邊、=0在匠上<0右邊
    return (p2 - p1).cross(p - p1);
 T btw(const point<T> &p)const { //點投影落在 E 段上<=0
   return (p1 - p).dot(p2 - p);
  bool point_on_segment(const point<T>&p)const {
   return ori(p) == 0 && btw(p) <= 0;
 T dis2(const point<T> &p, bool
      point < T > v = p2 - p1, v1 = p - p1;
    if (is_segment) {
     point < T > v2 = p - p2;
      if (v.dot(v1) <= 0)return v1.abs2();</pre>
     if (v.dot(v2) >= 0)return v2.abs2();
    T tmp = v.cross(v1); return tmp * tmp / v.abs2();
 T seg_dis2(const line<T> &l)const { //兩 E 段 距 離 平方
   return min({dis2(l.p1, 1),
        dis2(l.p2, 1), l.dis2(p1, 1), l.dis2(p2, 1)});
  point<T> projection
      (const point <T> &p) const { //點對直匠的投影
   point<T> n = (p2 - p1).normal();
return p - n * (p - p1).dot(n) / n.abs2();
 point<T> mirror(const point<T> &p)const {
   //點對直I的鏡射,要先呼叫pton轉成一般式
```

```
point<T> R; T d = a * a + b * b;
    R.x = (b * b * p.x - b)
        a * a * p.x - 2 * a * b * p.y - 2 * a * c) / d;
    R.y = (a * a * p.y -
        b * b * p.y - 2 * a * b * p.x - 2 * b * c) / d;
    return R;
  bool parallel(const line &l)const {
    return (p1 - p2).cross(l.p1 - l.p2) == 0;
};
template < typename T>
struct polygon {
  polygon() {}
  vector<point<T> > p;//逆時針順序
  T double_signed_area()const {
    T ans = 0;
    for (int i = p
        .size() - 1, j = 0; j < (int)p.size(); i = j++)
      ans += p[i].cross(p[j]);
    return ans;
  point<T> center_of_mass()const {
    T cx = 0, cy = 0, w = 0;
for (int i = p.size
        () - 1, j = 0; j < (int)p.size(); i = j++) {
      T a = p[i].cross(p[j]);
      cx += (p[i].
          x + p[j].x) * a; cy += (p[i].y + p[j].y) * a;
      w += a;
    } return point<T>(cx / 3 / w, cy / 3 / w);
  int ahas(const point<T>& t)const { //點是否在簡
      單多邊形匠,是的話回傳1、在邊上回傳-1、否則回傳0
    int c = 0; //Works for clockwise input as well
    for (int i
        = 0, j = p.size() - 1; i < p.size(); j = i++) {
      if (line<</pre>
          T>(p[i], p[j]).point_on_segment(t))return -1;
      if ((p[i].y > t.y) != (p[j].y > t.y)) {
  T L = (t.x - p[i].x) * (p[j].y - p[i].y);
        T R = (p[j].x - p[i].x) * (t.y - p[i].y);
        if (p[j].y < p[i].y) {L = -L; R = -R;}
        if (L < R)c = !c;
      }
    } return c;
  int point_in_convex(const point<T>&x)const {
    int l = 1, r = (int)p.size() - 2;
    while (l <= r) { //點是否在凸
        多邊形匠,是的話回傳1、在邊上回傳-1、否則回傳0
      int mid = (l + r) / 2;
      T a1 = (p[mid] - p[0]).cross(x - p[0]);
      T a2 = (p[mid + 1] - p[0]).cross(x - p[0]);
      if (a1 >= 0 && a2 <= 0) {
        T res
             = (p[mid + 1] - p[mid]).cross(x - p[mid]);
        return res > 0 ? 1 : (res >= 0 ? -1 : 0);
      if (a1 < 0)r = mid - 1; else l = mid + 1;</pre>
    } return 0;
  vector<T> getA()const { //凸包邊對x軸的夾角
    vector<T>res;//一定是遞增的
    for (size_t i = 0; i < p.size(); ++i)</pre>
      res.push_back
           ((p[(i + 1) % p.size()] - p[i]).getA());
    return res;
  bool line_intersect(const
       vector<T>&A, const line<T> &l)const { //O(logN)
    int f1 = upper_bound(A.begin
        (), A.end(), (l.p1 - l.p2).getA()) - A.begin();
    int f2 = upper_bound(A.begin
         (), A.end(), (l.p2 - l.p1).getA()) - A.begin();
    return l.cross_seg(line<T>(p[f1], p[f2]));
  T diam() {
    int n = p.size(), t = 1;
    T ans = 0; p.push_back(p[0]);
    for (int i = 0; i < n; i++) {
      point<T> now = p[i + 1] - p[i];
while (now.cross(p[t + 1] - p[i]))t = (t + 1) % n;
i]) > now.cross(p[t] - p[i]))t = (t + 1) % n;
      ans = max(ans, (p[i] - p[t]).abs2());
```

```
} return p.pop back(), ans;
  T min_cover_rectangle() {
    int n = p.size(), t = 1, r = 1, l;
    if (n < 3)return 0; //也可以做最小周長矩形
    T ans = 1e99; p.push_back(p[0]);
    for (int i = 0; i < n; i++) {</pre>
      point < T > now = p[i + 1] - p[i];
      while (now.cross(p[t + 1] - p[
i]) > now.cross(p[t] - p[i]))t = (t + 1) % n;
      while (now.dot(p[r + 1] -
          p[i]) > now.dot(p[r] - p[i]))r = (r + 1) % n;
      if (!i)l = r;
      while (now.dot(p[l + 1] - p
       [i]) <= now.dot(p[l] - p[i]))l = (l + 1) % n;</pre>
      T d = now.abs2();
      T tmp = now.cross(p[t] - p[i]) * (now.
      \label{eq:dot(p[r] - p[i]) - now.dot(p[l] - p[i])) / d;} ans = min(ans, tmp);} dot(p[l] - p[i])) / d;
     return p.pop_back(), ans;
  T dis2(polygon &pl) { //凸包最近距離平方
    vector<point<T> > &P = p, &Q = pl.p;
    int n = P.size(), m = Q.size(), l = 0, r = 0;
    for (int
          i = 0; i < n; ++i)if (P[i].y < P[l].y)l = i;
    for (int
          i = 0; i < m; ++i)if (Q[i].y < Q[r].y)r = i;
    P.push_back(P[0]), Q.push_back(Q[0]);
    T ans = 1e99;
    for (int i = 0; i < n; ++i) {
      while ((P[l] - P[l + 1])
          .cross(Q[r + 1] - Q[r]) < 0)r = (r + 1) \% m;
      ans = min(ans, line<T>(P[l],
          P[l + 1]).seg_dis2(line<T>(Q[r], Q[r + 1])));
      l = (l + 1) \% n;
    } return P.pop_back(), Q.pop_back(), ans;
  }
  static int sign(const point<T>&t) {
    return (t.y ? t.y : t.x) < 0;
  static bool
       angle_cmp(const line<T>& A, const line<T>& B) {
    point<T> a = A.p2 - A.p1, b = B.p2 - B.p1;
    return sign(a) < sign</pre>
         (b) \mid \mid (sign(a) == sign(b) && a.cross(b) > 0);
  int halfplane intersection(vector<line<T> > &s) {
    sort(s.begin()
         , s.end(), angle_cmp); // E 段左側 E 該 E 段半平面
    int L, R, n = s.size();
    vector<point<T> > px(n);
    vector<line<T> > q(n);
    q[L = R = 0] = s[0];
    for (int i = 1; i < n; ++i) {
      while (L < R \&\& s[i].ori(px[R - 1]) <= 0)--R;
      while (L < R && s[i].ori(px[L]) \ll 0)++L;
      q[++R] = s[i];
      if (q[R].parallel(q[R
           - 1]) && q[--R].ori(s[i].p1) > 0)q[R] = s[i];
      if (L < R)
           px[R - 1] = q[R - 1].line_intersection(q[R]);
    while (L < R \&\& q[L].ori(px[R - 1]) <= 0)--R;
    p.clear();
    if (R - L <= 1)return 0;
    px[R] = q[R].line_intersection(q[L]);
    for (int i = L; i <= R; ++i)p.push_back(px[i]);</pre>
    return R - L + 1;
  }
};
```

5.2 Convex Hull

```
#define f first
#define s second
#define ALL(x) (x).begin(), (x).end()
template <typename T>
pair<T, T> operator
  -(const pair<T, T>& a, const pair<T, T>& b) {
return {a.f - b.f, a.s - b.s};
template <typename T>
int cross(const pair<T,</pre>
     T>& o, const pair<T, T>& a, const pair<T, T>& b) {
  auto p = a - o, q = b - o;
```

```
return p.f * q.s - q.f * p.s;
template <typename T>
    <pair<T, T>> convex_hull(vector<pair<T, T>> hull) {
  if (hull.size() <= 2) return hull;</pre>
  sort(ALL(hull));
  vector<pair<T, T>> stk;
  int n = hull.size();
  for (int i = 0; i < n; i++) {</pre>
    while (stk.size() >= 2 && cross
        (stk.end()[-2], stk.end()[-1], hull[i]) \ll 0)
      stk.pop_back();
    stk.push_back(hull[i]);
  for (
      int i = n - 2, t = stk.size() + 1; i >= 0; i--) {
    while ((int)stk.size() >= t && cross
        (stk.end()[-2], stk.end()[-1], hull[i]) <= 0)
      stk.pop_back();
    stk.push_back(hull[i]);
  return stk.pop_back(), stk;
5.3 Dynamic Convex Hull
  ll a, b, l = MIN, r = MAX;
  Line(ll a, ll b): a(a), b(b) {}
```

```
struct Line {
  ll operator()(ll x) const {
    return a * x + b;
  bool operator<(Line b) const {</pre>
    return a < b.a;</pre>
  bool operator<(ll b) const {</pre>
    return r < b;
};
ll iceil(ll a, ll b) {
  if (b < 0) a *= -1, b *= -1;
  if (a > 0) return (a + b - 1) / b;
  else return a / b;
ll intersect(Line a, Line b) {
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull {
  multiset<Line, less<>> ch;
  void add(Line ln) {
    auto it = ch.lower bound(ln);
    while (it != ch.end()) {
      Line tl = *it;
      if (tl(tl.r) <= ln(tl.r)) {</pre>
        it = ch.erase(it);
      else break;
    auto it2 = ch.lower_bound(ln);
    while (it2 != ch.begin()) {
      Line tl = *prev(it2);
      if (tl(tl.l) <= ln(tl.l)) {</pre>
        it2 = ch.erase(prev(it2));
      else break;
    it = ch.lower_bound(ln);
    if (it != ch.end()) {
      Line tl = *it;
      if (tl(tl.l) >= ln(tl.l)) ln.r = tl.l - 1;
      else {
        ll pos = intersect(ln, tl);
        tl.l = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(tl);
      }
    it2 = ch.lower_bound(ln);
    if (it2 != ch.begin()) {
      Line tl = *prev(it2);
      if (tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
```

```
else {
    ll pos = intersect(tl, ln);
    tl.r = pos - 1;
    ln.l = pos;
    ch.erase(prev(it2));
    ch.insert(tl);
    }
    if (ln.l <= ln.r) ch.insert(ln);
}

ll query(ll pos) {
    auto it = ch.lower_bound(pos);
    if (it == ch.end()) return 0;
    return (*it)(pos);
}
</pre>
```

5.4 Segmentation Intersection

```
int sign(ll x) {
  return (x > 0 ? 1 : (x < 0 ? -1 : 0));
ll cross
  (pair<ll, ll> o, pair<ll, ll> a, pair<ll, ll> b) {    return (a.first - o.first) * (b.second - o.second
      ) - (a.second - o.second) * (b.first - o.first);
bool intersect1D(ll a, ll b, ll c, ll d) {
  if (a > b) swap(a, b);
  if (c > d) swap(c, d);
  return max(a, c) <= min(b, d);</pre>
bool intersect2D(pair<ll, ll> a
     , pair<ll, ll> b, pair<ll, ll> c, pair<ll, ll> d) {
        intersect1D(a.first, b.first, c.first, d.first)
          && intersect1D
               (a.second, b.second, c.second, d.second)
          && sign(cross
               (a, b, c)) * sign(cross(a, b, d)) <= 0
          && sign(cross
               (c, d, a)) * sign(cross(c, d, b)) <= 0;
}
```

5.5 Theorem

- Pick's Theorem:
 - If a polygon has vertices with integer coordinates (lattice points), then the area is given by:

Area
$$(P) = i + \frac{1}{2}p - 1$$

where i is the number of lattice points inside the polygon, and p is the number of lattice points on the perimeter of the polygon.

6 Math

6.1 Big Int

```
#include <bits/stdc++.h>
using namespace std;
template<typename T>
inline string to_string(const T& x) {
  stringstream ss;
  return ss << x, ss.str();</pre>
using ll = long long;
struct bigN: vector<ll> {
  const static
       int base = 10000000000, width = log10(base);
  bool negative;
 bigN(const_iterator
        a, const_iterator b): vector<ll>(a, b) {}
  bigN(string s) {
    if (s.empty()) return;
if (s[0] == '-')negative = 1, s = s.substr(1);
    else negative = 0;
    for (int
          i = int(s.size()) - 1; i >= 0; i -= width) {
      ll t = 0;
      for (int j = max(0, i - width + 1); j <= i; ++j)
  t = t * 10 + s[j] - '0';</pre>
      push_back(t);
```

```
trim();
template < typename T>
bigN(const T &x): bigN(to_string(x)) {}
bigN(): negative(0) {}
void trim() {
  while (size() && !back())pop_back();
  if (empty()) negative = 0;
void carry(int _base = base) {
  for (size_t i = 0; i < size(); ++i) {</pre>
    if (at(i) >= 0 && at(i) < _base) continue;</pre>
    if (i + 1u == size())push_back(0);
    int r = at(i) % _base;
    if (r < 0)r += _base;
at(i + 1) += (at(i) - r) / _base;
    at(i) = r;
int abscmp(const bigN &b) const {
  if (size() > b.size()) return 1;
  if (size() < b.size()) return -1;</pre>
  for (int i = int(size()) - 1; i >= 0; --i) {
    if (at(i) > b[i]) return 1;
    if (at(i) < b[i]) return -1;</pre>
  }
  return 0;
int cmp(const bigN &b) const {
  if (negative
       != b.negative) return negative ? -1 : 1;
  return negative ? -abscmp(b) : abscmp(b);
bool operator
    <(const bigN&b) const {return cmp(b) < 0;}
bool operator
    >(const bigN&b) const {return cmp(b) > 0;}
bool operator
    <=(const bigN&b) const {return cmp(b) <= 0;}
bool operator
    >=(const bigN&b) const {return cmp(b) >= 0;}
bool operator==(const bigN&b) const {return !cmp(b);}
bool operator
    !=(const bigN&b) const {return cmp(b) != 0;}
bigN abs() const {
  bigN res = *this;
  return res.negative = 0, res;
bigN operator-() const {
  bigN res = *this;
  return res.negative = !negative, res.trim(), res;
bigN operator+(const bigN &b) const {
  if (negative) return -(-(*this) + (-b));
  if (b.negative) return *this - (-b);
  bigN res = *this;
  if (b.size() > size()) res.resize(b.size());
  for (size_t
       i = 0; i < b.size(); ++i) res[i] += b[i];
  return res.carry(), res.trim(), res;
bigN operator-(const bigN &b) const {
  if (negative) return -(-(*this) - (-b));
  if (b.negative) return *this + (-b);
  if (abscmp(b) < 0) return -(b - (*this));</pre>
  bigN res = *this;
  if (b.size() > size()) res.resize(b.size());
  for (size_t
       i = 0; i < b.size(); ++i) res[i] -= b[i];
  return res.carry(), res.trim(), res;
bigN convert_base
    (int old_width, int new_width) const {
  vector<
      long long> p(max(old_width, new_width) + 1, 1);
  for (size_t
       i = 1; i < p.size(); ++i)p[i] = p[i - 1] * 10;
  bigN ans;
  long long cur = 0;
  int cur_id = 0;
  for (size_t i = 0; i < size(); ++i) {</pre>
   cur += at(i) * p[cur_id];
    cur_id += old_width;
    while (cur_id >= new_width) {
      ans.push_back(cur % p[new_width]);
```

```
cur /= p[new_width];
      cur_id -= new_width;
    }
  return ans.push_back(cur), ans.trim(), ans;
bigN karatsuba(const bigN &b) const {
  bigN res; res.resize(size() * 2);
  if (size() <= 32) {
    for (size_t i = 0; i < size(); ++i)</pre>
      for (size_t j = 0; j < size(); ++j)</pre>
        res[i + j] += at(i) * b[j];
    return res;
  size_t k = size() / 2;
  bigN a1(begin(), begin() + k);
bigN a2(begin() + k, end());
  bigN b1(b.begin(), b.begin() + k);
  bigN b2(b.begin() + k, b.end());
  bigN a1b1 = a1.karatsuba(b1);
  bigN a2b2 = a2.karatsuba(b2);
  for (size_t i = 0; i < k; ++i)a2[i] += a1[i];
  for (size_t i = 0; i < k; ++i)b2[i] += b1[i];
  bigN r = a2.karatsuba(b2);
  for (size_t
       i = 0; i < a1b1.size(); ++i)r[i] -= a1b1[i];
  for (size_t
       i = 0; i < a2b2.size(); ++i)r[i] -= a2b2[i];
  for (size_t
       i = 0; i < r.size(); ++i)res[i + k] += r[i];
  for (size t
       i = 0; i < a1b1.size(); ++i)res[i] += a1b1[i];
  for (size_t i = 0; i
       < a2b2.size(); ++i)res[i + size()] += a2b2[i];
  return res;
bigN operator*(const bigN &b) const {
  const static int mul_base
       = 1000000, mul_width = log10(mul_base);
  bigN A = convert_base(width, mul_width);
  bigN B = b.convert_base(width, mul_width);
  int n = max(A.size(), B.size());
  while (n & (n - 1))++n;
  A.resize(n), B.resize(n);
  bigN res = A.karatsuba(B);
  res.negative = negative != b.negative;
  res.carry(mul_base);
  res = res.convert_base(mul_width, width);
  return res.trim(), res;
bigN operator*(long long b) const {
  bigN res = *this;
  if (b < 0)res.negative = !negative, b = -b;</pre>
  for (size_t
       i = 0, is = 0; i < res.size() || is; ++i) {
    if (i == res.size()) res.push_back(0);
    long long a = res[i] * b + is;
    is = a / base;
    res[i] = a % base;
  }
  return res.trim(), res;
bigN operator/(const bigN &b) const {
  int norm = base / (b.back() + 1);
bigN x = abs() * norm;
  bigN y = b.abs() * norm;
  bigN q, r;
  q.resize(x.size());
  for (int i = int(x.size()) - 1; i >= 0; --i) {
    r = r * base + x[i];
    int s1 = r.size() <= y.size() ? 0 : r[y.size()];</pre>
    int s2
         = r.size() < y.size() ? 0 : r[y.size() - 1];
    int d = (ll(base) * s1 + s2) / y.back();
    r = r - y * d;
    while (r.negative) r = r + y, --d;
    q[i] = d;
  q.negative = negative != b.negative;
  return q.trim(), q;
bigN operator%(const bigN &b) const {
  return *this - (*this / b) * b;
friend istream& operator>>(istream &ss, bigN &b) {
  string s;
```

```
15
     return ss >> s, b = s, ss;
   friend
        ostream& operator<<(ostream &ss, const bigN &b) {</pre>
     if (b.negative) ss << '-</pre>
     ss << (b.empty() ? 0 : b.back());</pre>
     for (int i = int(b.size()) - 2; i >= 0; --i)
    ss << setw(width) << setfill('0') << b[i];</pre>
                                           i >= 0; --i)
     return ss;
   template < typename T>
   operator T() {
     stringstream ss;
     ss << *this;
     T res;
     return ss >> res, res;
};
6.2 Chinese Remainder
 int solve(int n, vector<int> &a, vector<int> &m){
     int M = 1:
     for(auto i : m) M *= i;
     int ans = 0;
```

```
for(int i = 0; i < n; i++){</pre>
     int m1 = M / m[i], m2 = extgcd(m1, m[i]).X; ans += (a[i] * m1 * m2) % M;
ans = ans % M + M;
ans %= M;
return ans;
```

6.3 Extgcd

```
pair<ll, ll> extgcd(ll a, ll b) {
  if (b == 0) return {1, 0};
  auto [xp, yp] = extgcd(b, a % b);
  return {yp, xp - a / b * yp};
}
```

6.4 FFT

```
// Remember not to output -0
   polynomial multiply:
   DFT(a, len); DFT(b, len);
   for(int i=0;i<len;i++) c[i] = a[i]*b[i];
   iDFT(c, len);
   (len must be 2^k and = 2^m(max(a, b)))
   Hand written Cplx would be 2x faster
Cplx omega[2][N];
void init_omega(int n) {
  static constexpr llf PI = acos(-1);
  const llf arg = (PI + PI) / n;
  for (int i = 0; i < n; ++i)</pre>
    omega[0][i] = {cos(arg * i), sin(arg * i)};
  for (int i = 0; i < n; ++i)
    omega[1][i] = conj(omega[0][i]);
}
void tran(Cplx arr[], int n, Cplx omg[]) {
  for (int i = 0, j = 0; i < n; ++i) {
    if (i > j)swap(arr[i], arr[j]);
    for (int l = n >> 1; (j ^= l) < l; l >>= 1);
  for (int l = 2; l <= n; l <<= 1) {
    int m = l >> 1;
    for (auto p = arr; p != arr + n; p += l) {
      for (int i = 0; i < m; ++i) {
   Cplx t = omg[n / l * i] * p[m + i];
        p[m + i] = p[i] - t; p[i] += t;
      }
    }
  }
void DFT(Cplx arr[], int n) \{tran(arr, n, omega[\theta]);\}
void iDFT(Cplx arr[], int n) {
  tran(arr, n, omega[1]);
for (int i = 0; i < n; ++i) arr[i] /= n;
```

6.5 Gauss Elimination

```
#include <bits/stdc++.h>
std::bitset<1000> a[500];
```

```
int main() {
  int n; std::cin >> n;
  for (int i = 0; i < n; ++i) {</pre>
     for (int j = 0, t; j < n; ++j)
       std::cin >> t, a[i][j] = t;
    a[i][i + n] = 1;
  for (int i = 0; i < n; ++i) {
    int t;
     for (t = i; t < n; ++t) if (a[t][i]) break;
    if (t == n) return std::cout <<</pre>
                                           '-1\n", 0;
     std::swap(a[i], a[t]);
     for (int j
         = i + 1; j < n; ++j) if (a[j][i]) a[j] ^= a[i];
  for (int i = n - 1; i >= 0; --i)
    for (int j = i - 1; j >= 0; --j)
if (a[j][i]) a[j] ^= a[i];
  for (int i = 0; i < n; ++i) {
    std::vector<int> ans;
     for (int j = n; j < 2 *
          n; ++j) if (a[i][j]) ans.push_back(j - n + 1);
    for (size_t j = 0; j < ans.size(); ++j)
  std::cout << ans[j] << " \n"[j == ans.size()];</pre>
  }
  return 0;
}
```

6.6 Gauss Elimination2

```
using ll = long long;
const ll mod = 998244353;
ll fp(ll a, ll b) {
  ll ret = 1;
  for (; b; b >>= 1, a = a * a % mod)
    if (b & 1) ret = ret * a % mod;
  return ret;
vector<ll> gauss_elimination
    (vector<vector<ll>>& a) { // n * (n+1)
  // if a[i][j] < 0, <math>a[i][j] += mod
  int n = a.size();
  bool swp = 0;
  for (int i = 0; i < n; i++) {</pre>
    for (int k = i; k < n; k++) {
  if (a[i][i] == 0 && a[k][i] != 0) {
         swap(a[i], a[k]), swp ^= 1; // det = -det
         break;
      }
    if (a[i][i] == 0) return {}; // 0
    ll inv = fp(a[i][i], mod - 2);
    for (int j = 0; j < n; j++) {
      if (i != j) {
        ll tmp = a[j][i] * inv % mod;
         for (int k = i; k <= n; k++)
           a[j][k] = (a[
                j][k] - tmp * a[i][k] % mod + mod) % mod;
      }
    }
  // general solution
  vector<ll> ans(n);
  for (int i = 0; i < n; i++)</pre>
       ans[i] = a[i][n] * fp(a[i][i], mod - 2) % mod;
  return ans;
  // det
  // ll ret = 1;
  // for (
       int i = 0; i < n; i++) ret = ret * a[i][i] % mod;
  // return swp ? mod - ret : ret;
}
```

6.7 Karatsuba

```
copy(f.begin(), f.begin() + n / 2, f1.begin()
      ), copy(f.begin() + n / 2, f.end(), f2.begin());
 vector<ll> t1(n), t2(n), t3(n);
 karatsuba(
      f1, g1, t1, n / 2), karatsuba(f2, g2, t2, n / 2);
 for (int i = 0; i < n / 2; i++) f1[i] += f2[i];
for (int i = 0; i < n / 2; i++) g1[i] += g2[i];
  karatsuba(f1, g1, t3, n / 2);
 for (int i = 0; i < n; i++) t3[i] -= t1[i] + t2[i]; for (int i = 0; i < n; i++)
    c[i] += t1
        [i], c[i + n] += t2[i], c[i + n / 2] += t3[i];
void mul(const vector
   <ll>& a, const vector<ll>& b, vector<ll>& c) {
  int n = a.size(), m = b.size(), t = max(n, m), p = 1;
  while (p < t) p <<= 1;
  vector<ll> aa(p), bb(p);
 copy(a.begin(), a.end(), aa
      .begin()), copy(b.begin(), b.end(), bb.begin());
 c.assign(p \ll 1, 0), karatsuba(aa, bb, c, p);
  for (int i = 0; i < p; i++)
   c[i + 1] += c[i] / base, c[i] %= base;
 if (c[p]) p++;
 c.resize(p);
```

6.8 Linear Sieve

```
vector<bool> isp;
vector<int> p;
void sieve(int n) {
  p.clear(), isp.assign(n + 1, 1);
  isp[0] = isp[1] = 0;
  for (int i = 2; i <= n; i++) {
    if (isp[i]) p.eb(i);
    for (const auto& x : p) {
      if (1LL * i * x > n) break;
      isp[i * x] = 0;
      if (i % x == 0) break;
    }
}
```

6.9 Matrix

6.10 Miller Rabin

```
using ll = ll;
ll mod_mul(ll a, ll b, ll m) {
  a %= m, b %= m;
  ll y = (ll)((
      double)a * b / m + 0.5); /* fast for m < 2^58 */
  ll r = (a * b - y * m) % m;
  return r < 0 ? r + m : r;
template < typename T>
T pow(T a, T b, T mod) { //a^b mod
  T ans = 1;
  for (; b; a = mod_mul(a, a, mod), b >>= 1)
    if (b & 1) ans = mod_mul(ans, a, mod);
  return ans;
int sprp[3] = {2, 7, 61}; // range of int
int llsprp[7] = {2, 325, 9375, 28178, 450775,
     9780504, 1795265022}; // range of unsigned ll
template<typename T>
bool isprime(T n, int *sprp, int num) {
```

if (a[i]) len = max(len, i);

len + 1] += a[len] / sval, a[len] %= sval, len++;

while (a[len] >= sval) a[

}

```
if (n == 2)return 1:
                                                                 return a.resize(len + 1), a;
  if (n < 2 || n % 2 == 0) return 0;
  int t = 0;
                                                               void print(const vector<int>& v) {
  Tu = n - 1;
                                                                 if (!v.size()) return;
  for (; u % 2 == 0; ++t)u >>= 1;
                                                                 cout << v.back();</pre>
  for (int i = 0; i < num; ++i) {</pre>
                                                                 for (int i = v.size() - 2; ~i; --i)
                                                                  cout << setfill('0') << setw(split) << v[i];
    T a = sprp[i] % n;
                                                                 cout << '\n';
    if (a == 0 || a == 1 || a == n - 1) continue;
    T x = pow(a, u, n);
    if (x == 1 || x == n - 1) continue;
                                                               int main() {
                                                                 ios::sync_with_stdio(false), cin.tie(nullptr);
    for (int j = 1; j < t; ++j) {
      x = mod_mul(x, x, n);
                                                                 string stra, strb;
                                                                 while (cin >> stra >> strb) {
       if (x == 1) return 0;
       if (x == n - 1) break;
                                                                   vector<int> a((stra.size() + split - 1) / split);
                                                                   vector<int> b((strb.size() + split - 1) / split);
    if (x == n - 1) continue;
                                                                   int tmp = stra.size();
                                                                   for (auto& i : a)
    return 0;
                                                                     tmp -= split, i = atoi(stra.substr(max
     (0, tmp), min(split, split + tmp)).data());
  }
  return 1;
                                                                   tmp = strb.size();
}
                                                                   for (auto& i : b)
6.11 Mobius
                                                                     tmp -= split, i = atoi(strb.substr(max
int mu[MAXN], lp[MAXN];
                                                                          (0, tmp), min(split, split + tmp)).data());
                                                                   print(mul(a, b));
void build() {
  mu[1] = 1;
                                                                 return 0:
  FOR (i, 2, MAXN - 1) {
                                                              }
    if (!lp[i]) {
      for (int j = i; j < MAXN; j += i) {</pre>
                                                              6.13 Pollard Rho
        lp[j] = i;
      }
                                                               // does not work when n is prime
                                                               ll add(ll
    if (i / lp[i] % lp[i])
                                                                    a, ll b, ll m) {return (a += b) > m ? a - m : a;}
      mu[i] = -mu[i / lp[i]];
                                                              ll mul(ll a, ll b, ll m) {
    a %= m, b %= m;
    ll y = (ll)((
  }
}
6.12 NTT
                                                                     double)a * b / m + 0.5); /* fast for m < 2^58 */
                                                                 ll r = (a * b - y * m) % m;
const int G = 3, P = 998244353;
                                                                 return r < 0 ? r + m : r;
const int sval = 100, split = log10(sval);
int fpow(int x, int y) {
                                                               ll f(ll
  int ret = 1;
                                                                    x, ll mod) { return add(mul(x, x, mod), 1, mod); }
  for (; y; y >>= 1, x = 1LL * x * x % P)
                                                               ll pollard_rho(ll n) {
    if (y & 1) ret = 1LL * ret * x % P;
                                                                 if (!(n & 1)) return 2;
  return ret;
                                                                 while (true) {
                                                                   ll y =
void ntt(vector<int>& x, int lim, int opt) {
                                                                        2, x = rand() \% (n - 1) + 1, res = 1, tmp = 1;
  for (int i = 1, j = 0; i < lim; i++) {
  for (int k = lim >> 1; !((j ^= k) & k); k >>= 1);
                                                                   for (int sz = 2; res == 1; sz *= 2, y = x) {
                                                                     for (int
    if (i < j) swap(x[i], x[j]);</pre>
                                                                         i = 0, t = 0; i < sz && res <= 1; i++, t++) {
                                                                       x = f(x, n); tmp = mul(tmp, abs(x - y), n);
  for (int m = 2; m <= lim; m <<= 1) {</pre>
                                                                       if (!(t & 31) ||
    int k = m >> 1;
                                                                             i + 1 == sz) res = __gcd(tmp, n), tmp = 1;
     int gn = fpow(G, (P - 1) / m);
                                                                     }
    for (int i = 0; i < lim; i += m) {</pre>
      int g = 1;
                                                                   if (res != 0 && res != n) return res;
      for (int
            j = 0; j < k; ++j, g = 1LL * g * gn % P) {
        int tmp = 1LL * x[i + j + k] * g % P;

x[i + j + k] = (x[i + j] - tmp + P) % P;
                                                               6.14 Primes
        x[i + j] = (x[i + j] + tmp) % P;
                                                              /* 12721 13331 14341 75577 123457 222557
    }
                                                                    556679 999983 1097774749 1076767633 100102021
                                                                   999997771 \ 1001010013 \ 1000512343 \ 987654361 \ 999991231
  if (opt == -1) {
                                                                    999888733 98789101 987777733 999991921 1010101333
    reverse(x.begin() + 1, x.begin() + lim);
int inv = fpow(lim, P - 2);
                                                                    1010102101 1000000000039 100000000000037
                                                                    2305843009213693951 4611686018427387847
    for (int i = 0; i < lim; ++i)</pre>
                                                                    9223372036854775783 18446744073709551557 */
      x[i] = 1LL * x[i] * inv % P;
  }
                                                              6.15 Primitive Root
}
vector<int> mul(vector<int> a, vector<int> b) {
                                                              // g is O(log^6 n).
                                                               // Runtime is O(ans * log
  int lim = 1, n = a.size(), m = b.size();
  while (lim < (n + m - 1)) lim <<= 1;
                                                                   phi(n) * log n), which is approximately O(log^8 n).
  a.resize(lim + 1), b.resize(lim + 1);
                                                               // #define int long long
                                                               int fp(int a, int b, int p) {
  ntt(a, lim, 1), ntt(b, lim, 1);
  for (int i = 0; i < lim; ++i)</pre>
                                                                 int ret = 1;
    a[i] = 1LL * a[i] * b[i] % P;
                                                                 for (; b; b >>= 1, a = a * a % m)
  ntt(a, lim, -1);
                                                                   if (b & 1) ret = ret * a % m;
  int len = 0;
                                                                 return ret;
  for (int i = 0; i < lim; ++i) {</pre>
    if (a[i] >= sval) len
         = i + 1, a[i + 1] += a[i] / sval, a[i] %= sval;
                                                               int generator(int p) {
```

vector<int> fact;

if (n % i == 0) {

int phi = p - 1, n = phi;
for (int i = 2; i * i <= n; ++i)</pre>

```
fact.push_back(i);
  while (n % i == 0) n /= i;
}
if (n > 1) fact.push_back (n);

for (int res = 2; res <= p; ++res) {
  bool ok = true;
  for (size_t i = 0; i < fact.size() && ok; ++i)
    ok &= fp(res, phi / fact[i], p) != 1;
  if (ok) return res;
}
return -1;
}</pre>
```

7 String

7.1 AC

```
struct ACautomata {
  struct Node {
    int cnt;
    Node *go[26], *fail, *dic;
    Node () {
       cnt = 0, fail = 0, dic = 0;
       memset(go, \theta, sizeof(go));
  } pool[1048576], *root;
  int nMem;
  Node* new Node() {
    pool[nMem] = Node();
     return &pool[nMem++];
  void init() { nMem = 0, root = new_Node(); }
  void add(const string &str) { insert(root, str, 0); }
void insert(Node *cur, const string &str, int pos) {
  for (int i = pos; i < str.size(); i++) {</pre>
       if (!cur->go[str[i] - 'a'])
  cur->go[str[i] - 'a'] = new_Node();
       cur = cur->go[str[i] - 'a'];
    }
    cur->cnt++;
  void make_fail() {
    queue < Node *> que;
     que.push(root);
     while (!que.empty()) {
       Node* fr = que.front(); que.pop();
       for (int i = 0; i < 26; i++) {
         if (fr->go[i]) {
            Node *ptr = fr->fail;
            while (ptr && !ptr->go[i]) ptr = ptr->fail;
            fr->go[i]->
                 fail = ptr = (ptr ? ptr->go[i] : root);
            fr->go[i]->dic = (ptr->cnt ? ptr : ptr->dic);
            que.push(fr->go[i]);
       }
    }
  }
} AC;
```

7.2 Hash

7.3 KMP

```
#define pb push_back
const int N = 1e6 + 5;
int F[N];
```

7.4 Manacher

```
// P[2i] := max 2j+1: s[i-j, i+j] is palindromic
// P[2i-1] := max 2j: s[i-j, i+j) is palindromic
// maximal
     palindrome: s.substr((1 + i - P[i]) >> 1, P[i])
vector<unsigned> Manacher(const string &s) {
  unsigned L = 0, R = 1;
  vector<unsigned> P; P.reserve((s.size() << 1) - 1);</pre>
  P.push_back(1);
  for (unsigned i = 1; i < s.size(); ++i)</pre>
    for (int j = 0; j < 2; ++j) {
      if (i < R) {
        const int k = ((L + R - i) << 1) - j - 1;
        if (P[k] >> 1
            R - i - j) { P.push_back(P[k]); continue; }
        L = (i << 1) - R + j;
      }
      else R = (L = i) + j;
      while (L > 0 &&
          R < s.size() && s[L - 1] == s[R]) {--L; ++R;}
      P.push_back(R - L);
  return P;
}
```

7.5 SA

```
const int N = 2e5 + 5;
string s;
int sa[N], tmp[2][N], c[N], rk[N], h[N];
// lcp(sa[i], sa[j]) = min\{h[k]\} where i <= k <= j
void suffix_array() {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.size();
  fill(c, c + m, 0);
  for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
  partial_sum(c, c + m, c);
  for (int i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {</pre>
    fill(c, c + m, \theta);
    for (int i = 0; i < n; i++) c[x[i]]++;
    partial_sum(c, c + m, c);
    int p = 0;
    for (int i = n - k; i < n; i++) y[p++] = i;
for (int i = 0; i < n; i++)</pre>
      if (sa[i] >= k) y[p++] = sa[i] - k;
    for (int i
          = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
    y[sa[0]] = p = 0;
    for (int i = 1; i < n; i++) {
      int a = sa[i], b = sa[i - 1];
      if (x[a] != x[b] || a + k >=
           n \mid \mid b + k >= n \mid \mid x[a + k] != x[b + k]) p++;
      y[sa[i]] = p;
    if (n == p + 1) break;
    swap(x, y), m = p + 1;
}
void LCP() {
  int n = s.size(), val = 0;
  for (int i = 0; i < n; i++) rk[sa[i]] = i;</pre>
  for (int i = 0; i < n; i++) {</pre>
    if (rk[i] == 0) h[rk[i]] = 0;
    else {
```

+ p < n && s[val + i] == s[val + p]) val++;

if (val) val --

int p = sa[rk[i] - 1];

while (val + i < n && val

}

void sais(int *s, int *sa,

int *p, int *q, bool *t, int *c, int n, int z) {

```
h[rk[i]] = val;
                                                                     int nn = 0, nmxz
  }
// cin >> s, suffix_array(), LCP();
7.6 SA2
                                                                REP(i,n) if
void counting_sort
    (vector<int> &dest, const vector<int> &src
       int bucket_count, function<int(const int&)> f) {
  int *bucket_begin = new
        int[bucket_count], *buf = new int[src.size()];
  fill(bucket_begin, bucket_begin + bucket_count, 0);
  for (int i = 0; i < src.size(); ++i)</pre>
    if ((buf[i] = f(src[i])) + 1 < bucket_count)</pre>
       ++bucket_begin[buf[i] + 1];
                                                                       t[i] = (s[
  partial_sum(bucket_begin
       , bucket_begin + bucket_count, bucket_begin);
  dest.resize(src.size());
  for (int i = 0; i < src.size(); ++i)</pre>
    dest[bucket_begin[buf[i]]++] = src[i];
  delete[] bucket_begin; delete[] buf;
#define
     a 'a' // The smallest character in the alphabet
                                                                     sais(ns, nsa
#define sz 26 // The
      size of the alphabet. The alphabet is [a, a + sz)
vector<int> suffix_array(const string &s) {
  vector<int> SA, sa(s.size());
  SA.reserve(s.size()); iota(sa.begin(), sa.end(), 0);
                                                                } sa:
  counting_sort(SA;
                                                                int H[N], SA[N], RA[N];
        sa, sz, [&](const int &i) { return s[i] - a; });
  int *R = new int[SA.size()], *r = new int[SA.size()];
  R[SA[0]]
              // R = 0 is reserved for the empty string
        = 1;
  for (int i = 1; i < SA.size(); ++i)</pre>
    R[SA[i]] = s
                                                                   memcpy(H, sa.hei
        [SA[i]] == s[SA[i - 1]] ? R[SA[i - 1]] : i + 1;
  int L = 1;
  while (L < s.size()) {</pre>
    auto R2 = [&](const int &i) {
      if (i + L < SA.size()) return R[i + L];</pre>
       return 0; // so
            that when L = 1, "a" is ordered before "aa"
                                                                // O(n)
    counting_sort(sa, SA, SA.size() + 1, R2);
    counting_sort(SA, sa, SA.size
                                                                class SuffixAutomaton {
         (), [&](const int &i) { return R[i] - 1; });
                                                                public:
    r[SA[0]] = 1;
for (int i = 1; i < SA.size(); ++i)
       if (R[SA[i]] ==
                                                                   struct Node
            R[SA[i - 1]] \&\& R2(SA[i]) == R2(SA[i - 1]))
         r[SA[i]] = r[SA[i - 1]];
                                                                     int step;
       else r[SA[i]] = i + 1;
                                                                     Node() {
    swap(R, r); L <<= 1;
  delete[] R; delete[] r; return SA;
                                                                   } _mem[MAXN];
#undef a
                                                                   int size:
#undef sz
                                                                   Node *root. *tail:
                                                                   void init() {
7.7 SAIS
                                                                     size = 0;
const int N = 300010;
struct SA {
                                                                   Node* newNode() {
#define REP(i,n) for(int i=0;i<int(n);i++)</pre>
#define REP1(i,a,b) for(int i=(a);i<=int(b);i++)
bool _t[N * 2]; int _s[N * 2], _sa[N * 2];
int _c[N * 2], x[N], _p[N], _q[N * 2], hei[N], r[N];
int operator [](int i) { return _sa[i]; }
void build(int *s, int n, int m) {
                                                                     *p = Node();
                                                                     return p;
    memcpy(_s, s, sizeof(int)*n);
    sais(_s, _sa, _p, _q, _t, _c, n, m); mkhei(n);
                                                                     c = toIndex(c);
  void mkhei(int n) {
    REP(i, n) r[_sa[i]] = i;
    hei[0] = 0;
                                                                     np->step = len;
    REP(i, n) if (r[i]) {
       int ans = i > 0 ? max(hei[r[i - 1]] - 1, 0) : 0;
                                                                       p->next[c] = np;
                                                                     tail = np;
           [i + ans] == _s[_sa[r[i] - 1] + ans]) ans++;
                                                                     if (p == NULL) {
       hei[r[i]] = ans;
    }
```

```
bool uniq = t[n - 1] = true, neq;
         = -1, *nsa = sa + n, *ns = s + n, lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MSO(sa,n);\
memcpy(x,c,sizeof(int)*z); XD;\
memcpy(x+1,c,sizeof(int)*(z-1));
    (sa[i]\&\&!t[sa[i]-1]) sa[x[s[sa[i]-1]]++]=sa[i]-1;
memcpy(x,c,sizeof(int)*z);\
for(int i=n-1;i>=0;i--)
     if(sa[i]&&t[sa[i]-1]) sa[--x[s[sa[i]-1]]]=sa[i]-1;
    MSO(c, z); REP(i, n) uniq &= ++c[s[i]] < 2;
    REP(i, z - 1) c[i + 1] += c[i];
    if (uniq) { REP(i, n) sa[--c[s[i]]] = i; return; }
    for (int i = n - 2; i >= 0; i--)
          i] == s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
    REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
      neq = lst < 0 \mid \mid memcmp(s + sa[i], s + lst
            (p[q[sa[i]] + 1] - sa[i]) * sizeof(int));
      ns[q[lst = sa[i]]] = nmxz += neq;
          p + nn, q + n, t + n, c + z, nn, nmxz + 1);
    MAGIC(for (int i = nn - 1; i
         >= 0; i--) sa[--x[s[p[nsa[i]]]] = p[nsa[i]]);
void suffix_array(int* ip, int len) {
  // should padding a zero in the back
  // ip is int array, len is array length \,
  // ip[0..n-1] != 0, and ip[len]=0
  ip[len++] = 0; sa.build(ip, len, 128);
  + 1, len << 2); memcpy(SA, sa._sa + 1, len << 2); for (int i = 0; i < len; i++) RA[i] = sa.r[i] - 1;
  // resulting height, sa array \in [0,len)
7.8 Suffix Automaton
```

```
// find all suffix substrings in lexicographical order
#include <bits/stdc++.h>
  static const int MAXN = 500 << 1;</pre>
  static const int MAXC = 26;
    Node *next[MAXC], *pre;
      pre = NULL, step = 0;
      memset(next, 0, sizeof(next));
    root = tail = newNode();
    Node *p = &_mem[size++];
  int toIndex(char c) { return c - 'A'; }
  char toChar(int c) { return c + 'A'; }
  void add(char c, int len) {
    Node *p, *q, *np, *nq;
p = tail, np = newNode();
    for (; p && p->next[c] == NULL; p = p->pre)
      np->pre = root;
     else {
      if (p->next[c]->step == p->step + 1) {
        np->pre = p->next[c];
      } else {
```

```
q = p->next[c], nq = newNode();
        *nq = *q;
        nq->step = p->step + 1;
         q->pre = np->pre = nq;
        for (; p && p->next[c] == q; p = p->pre)
                                                               while(l < r){
           p->next[c] = nq;
    }
  void build(const char *s) {
                                                              */
    init();
    for (int i = 0; s[i]; i++)
      add(s[i], i + 1);
  void dfs(Node *u, int idx, char path[]) {
  for (int i = 0; i < MAXC; i++) {</pre>
      if (u->next[i]) {
        path[idx] = toChar(i);
        path[idx + 1] = '\0';
        puts(path);
        dfs(u->next[i], idx + 1, path);
      }
                                                              int n, k;
    }
  void print() {
    char s[1024];
    dfs(root, 0, s);
} SAM;
int main() {
                                                                   int l = 0;
  char s[1024];
  while (scanf("%s", s) == 1) {
    SAM.build(s);
    SAM.print();
  return 0:
7.9 Trie
                                                                       1++;
int trie[MAXN * 31][2], node;
int tag[MAXN * 31];
void add(int x) {
                                                              }
    int now = 0;
    for (int i = 30; i >= 0; i--) {
        if (!trie[now][x
              >> i & 1]) trie[now][x >> i & 1] = ++node;
        now = trie[now][x >> i & 1];
        tag[now]++;
    }
void del(int x) {
    int now = 0;
    for (int i = 30; i >= 0; i--) {
        now = trie[now][x >> i & 1];
        tag[now]--;
    }
int qry(int x) {
    int now = 0, res = 0;
                                                              }
    for (int i = 30; i >= 0; i--) {
        int id = (x >> i & 1) ^ 1;
        if (!tag[trie[now][id]]) id ^= 1;
        now = trie[now][id];
        res = res * 2 + id;
    return res;
}
                                                              #ifdef LOCAL
7.10 Z
                                                              #else
void z_value(const char *s, int len, int *z) {
  z[0] = len;
                                                              #endif
  for (int i = 1, l = 0, r = 0; i < len; i++) {
  z[i] = i < r ? (i</pre>
          - l + z[i - l] < z[l] ? z[i - l] : r - i) : 0;
    while (i
         + z[i] < len && s[i + z[i]] == s[z[i]]) ++z[i];
    if (i + z[i] > r) l = i, r = i + z[i];
  }
}
```

8 Others Aliens 8.1

```
實際上如果這邊根本是平的, 那我們只要讓二分艘找到最
    小的P讓他的切點不超過K,那就保證了這條IP會貼在上面
ll \ mid = (l+r < 0 ? (l + r) / 2: (l + r + 1) / 2)
    int m = (l + r) / 2;
    if(calc(m) <= K) r = m;</pre>
    else l = m + 1;
#include <bits/stdc++.h>
#define F first
#define S second
#define int long long
using namespace std;
bool operator < (
    const pair<int, int> &a, const pair<int, int> &b) {
    return a.F < b.F or (a.F == b.F and a.S > b.S);
#define chmax(a, b) a = (a) < (b)? (b) : (a)
int a[1000005];
pair < int , int > dp[1000005];
vector<int> last(100005, 0);
pair<int, int> DP(int penalty) {
    last.assign(100005, 0);
    pair<int, int> ans = \{0, 0\};
    for (int i = 1; i <= n; i++) {
    while (l < last[a[i]]) {</pre>
            1++:
            chmax(ans, dp[l]);
        dp[i] = {ans.F + i - l - penalty, ans.S + 1};
        last[a[i]] = i;
    while (l < n) {</pre>
        chmax(ans, dp[l]);
    return ans;
signed main() {
    ios\_base::sync\_with\_stdio(0), cin.tie(0);
    cin >> n >> k;
    for (int i = 1; i <= n; i++) cin >> a[i];
    int l = -1, r = 2000000;
    while (l < r - 1) {
        int m = (l + r) / 2;
        pair<int, int> res = DP(m);
        if (res.S <= k) {</pre>
            r = m;
        } else
            l = m;
    auto res = DP(r);
    cout << res.F + k * r << '\n';
```

8.2 Knapsack on Tree

```
#include <bits/stdc++.h>
#define F first
#define S second
#define pb push_back
#define all(x) begin(x), end(x)
#define HEHE freopen("in.txt", "r", stdin);
#define HEHE ios_base::sync_with_stdio(0), cin.tie(0);
using namespace std;
#define chmax(a, b) (a) = (a) < (b) ? (b) : (a)
#define chmin(a, b) (a) = (a) < (b) ? (a) : (b)
#define ll long long
#define FOR(i, a, b) for (int i = a; i <= b; i++)</pre>
int N, W, cur;
vector<int> w, v, sz;
vector<vector<int>> adj, dp;
```

```
void dfs(int x) {
    sz[x] = 1;
    for (int i : adj[x]) dfs(i), sz[x] += sz[i];
    cur++;
    // choose x
    FOR (i, w[x], W) {
        dp[cur][i] = dp[cur - 1][i - w[x]] + v[x];
    // not choose x
    FOR (i, 0, W) {
        chmax(dp[cur][i], dp[cur - sz[x]][i]);
signed main() {
    HEHE
    cin >> N >> W;
    adj.resize(N + 1);
    w.assign(N + 1, \theta);
    v.assign(N + 1, 0);
    sz.assign(N + 1, 0);
    dp.assign(N + 2, vector < int > (W + 1, 0));
    FOR (i, 1, N) {
        int p; cin >> p;
        adj[p].pb(i);
    FOR (i, 1, N) cin >> w[i];
    FOR (i, 1, N) cin >> v[i];
    dfs(⊕);
    cout << dp[N + 1][W] << '\n';
8.3 Mo
```

```
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5, sqN = sqrt(N) + 5;
int a[N], ans[N], n, q, sz; // maybe need blk[sqN];
struct Query {
  int ql, qr, id;
  bool operator<(const Query& b) const {</pre>
    int aa = ql / sz, bb = b.ql / sz;
    if (aa != bb) return aa < bb;</pre>
    else return qr < b.qr;</pre>
} Q[N];
void add(int x) {}
void sub(int x) {}
int qry(int k) {}
int main() {
  ios::sync_with_stdio(false), cin.tie(nullptr);
  cin >> n >> q, sz = sqrt(n);
  for (int i = 0; i < n; i++) cin >> a[i];
  for (int i = 0, ql, qr; i < q; i++)</pre>
    cin >> ql >> qr, Q[i] = \{ql - 1, qr - 1, i\};
  // Mo's algorithm
  sort(Q, Q + q); /* remember initialize arrays */
  int l = 0, r = -1;
  for (int i = 0; i < q; i++) {
    auto [ql, qr, k, id] = Q[i];
    while (r < qr) add(a[++r]);
    while (r > qr) sub(a[r--]);
    while (l < ql) sub(a[l++]);
    while (l > ql) add(a[--l]);
    ans[id] = qry(k);
  for (int i = 0; i < q; i++) cout << ans[i] << '\n';</pre>
}
```

8.4 Mono Slope

```
struct Line{
    ll a, b;
    ll l = MIN, r = MAX;
    Line(ll a, ll b): a(a), b(b) {}
    ll operator()(ll x){
        return a * x + b;
    }
};
deque<Line> dq;
```

```
ll iceil(ll a, ll b){
  if(b < 0) a *= -1, b *= -1;</pre>
  if(a > 0) return (a + b - 1) / b;
  else return a / b;
ll intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
void add(Line ln){
  while(!dq.empty
       () && ln(dq.back().l) >= dq.back()(dq.back().l)){}
    dq.pob;
  if(dq.empty()){
    dq.eb(ln);
    return;
  ll pos = intersect(ln, dq.back());
  if(pos > dq.back().r){
    if(dq.back().r != MAX){
      ln.l = dq.back().r + 1;
      dq.eb(ln);
    }
    return:
  dq.back().r = pos - 1;
  ln.l = pos;
  dq.eb(ln);
 }
ll query(ll x){
  while(dq.front().r < x) dq.pof;</pre>
  return dq.front()(x);
}
```

8.5 Partial Ordering

```
// O(n log^2 n)
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 1e5 + 5, M = 2e5 + 5;
int n, K, cnt, ans[N];
struct node {
  int x, y, z, v, ans, tag, id;
  node() { ans = tag = v = x = y = z = 0; }
  friend
       bool operator==(const node &a, const node &b) {
    return
         (a.x == b.x) && (a.y == b.y) && (a.z == b.z);
} a[N], t[N];
bool cmp1(const node &a, const node &b) {
  if (a.x != b.x) return a.x < b.x;
  if (a.y != b.y) return a.y < b.y;</pre>
  return a.z < b.z;</pre>
bool cmp2(const node &a, const node &b) {
  if (a.y != b.y) return a.y < b.y;</pre>
  if (a.tag != b.tag) return a.tag < b.tag;</pre>
  return a.id < b.id;</pre>
#define lowbit(x) (x & -x)
int bit[M]:
void add(int p, int x) {
  for (; p <= K; p += lowbit(p)) bit[p] += x;</pre>
int query(int p) {
  int ret = 0;
  for (; p; p -= lowbit(p)) ret += bit[p];
  return ret;
void CDQ(int l, int r) {
  if (l == r) return;
  int mid = (l + r) >> 1;
  CDQ(l, mid); CDQ(mid + 1, r);
  for (int i = l; i <= r; ++i) a[i].id = i;</pre>
  for (int i = l; i <= mid; ++i) a[i].tag = 0;
  for (int i = mid + 1; i <= r; ++i) a[i].tag = 1;
  sort(a + l, a + r + 1, cmp2);
  for (int i = l; i <= r; ++i) {</pre>
       (!a[i].tag) add(a[i].z, a[i].v);
    else a[i].ans += query(a[i].z);
  for (int i = l; i <= r; ++i)</pre>
```

```
if (!a[i].tag) add(a[i].z, -a[i].v);
int main() {
  cin >> n >> K;
  for (int i = 1; i <= n; ++
      i) cin >> a[i].x >> a[i].y >> a[i].z, a[i].v = 1;
  sort(a + 1, a + n + 1, cmp1);
  cnt = 1;
  for (int i = 2; i <= n; ++i) {</pre>
   if (a[i] == a[cnt]) ++a[cnt].v;
    else a[++cnt] = a[i];
  CDQ(1, cnt);
  // let ans[i] denote that the
      number of (aj<=ai && bj<=bi && cj<=ci) for i != j
  for (int i = 1; i <= cnt; ++i) ans[a[i].ans + a[i].v - 1] += a[i].v;
  for (int i = 0; i < n; ++i) cout << ans[i] << '\n';
8.6 Xor Basis
int basis[20]
bool add(int x) {
    for (int i = 19; i >= 0; i--) {
```

```
int basis[20]
bool add(int x) {
    for (int i = 19; i >= 0; i--) {
        if (!(x >> i & 1)) continue;
        if (!basis[i]) {
            basis[i] = x;
            return true;
        }
        else x ^= basis[i];
    }
    return false;
}
// 維持 basis[i] 的最高配是 i
```


