For the fixed effects model, we have

$$Y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijl}$$
 where

 $i=1,\ldots,a$ indexes levels of first factor (factor A) $j=1,\ldots,b$ indexes levels of second factor (factor B) $l=1,\ldots,n$ indexes plots (for each factor combination)

 $\varepsilon_{iil} \sim \text{i.i.d. } \mathcal{N}(0, \sigma_{\varepsilon}^2)$ represents plot error

ANOVA table:

Source	$\mathrm{d}\mathrm{f}$	SS
A	a-1	SSA
В	b-1	SSB
AB	(a-1)(b-1)	SSAB
Error	ab(n-1)	SSError
Total	abn-1	SSTot

SSA =
$$bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}...)^{2}$$

SSB = $an \sum_{j=1}^{b} (\bar{y}_{.j.} - \bar{y}...)^{2}$

SSAB =
$$n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^2$$

SSError =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{n} (y_{ijl} - \bar{y}_{ij.})^2$$
 or by subtraction

SSTotal =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{n} (y_{ijl} - \bar{y}_{...})^2$$

If we assume $\sum_{i=1}^{a} \alpha_i = 0$, $\sum_{j=1}^{b} \beta_j = 0$, $\forall j$: $\sum_{i=1}^{a} (\alpha \beta)_{ij} = 0$, and $\forall i$: $\sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$, then the expected mean squares are:

$$\mathbb{E}(\text{MSA}) = \sigma_{\varepsilon}^{2} + \frac{bn}{a-1} \sum_{i} \alpha_{i}^{2}$$

$$\mathbb{E}(\text{MSB}) = \sigma_{\varepsilon}^{2} + \frac{an}{b-1} \sum_{j} \beta_{j}^{2}$$

$$\mathbb{E}(\text{MSAB}) = \sigma_{\varepsilon}^{2} + \frac{n}{(a-1)(b-1)} \sum_{ij} (\alpha \beta)_{ij}^{2}$$

$$\mathbb{E}(\text{MSError}) = \sigma_{\varepsilon}^{2}$$

Thus, we test each of the main effects and the interaction by using the MS for Error. The model parameters are estimated by

$$\begin{array}{rcl} \hat{\mu} & = & \bar{y}..., \\ \hat{\alpha}_{i} & = & \bar{y}_{i..} - \bar{y}..., \\ \hat{\beta}_{j} & = & \bar{y}_{.j.} - \bar{y}..., \\ (\widehat{\alpha\beta})_{ij} & = & \hat{\mu}_{ij} - (\hat{\mu} + \hat{\alpha}_{i} + \hat{\beta}_{j}) = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}... \end{array}$$