Generalised Additive Models

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

How do we model these time series?

Simpson 2018

How do we model these time series?

Simpson 2018

GAMs allow us to model non-linear relationships using smooths

Generalised Linear Model (GLM):

$$y = a + bx$$

Generalised Additive Model (GAM):

$$y = a + s(x)$$

4

Modelling non-linear time series with GAM

isotopes <- readRDS("data/isotope.rds")</pre>

	Depth	d13C	TotalC	d15N	TotalN	DryWeight	Year
1	0.2	-27.57	806.49	3.05	64.21	8.2	2007.254
2	0.4	-27.67	949.33	3.01	73.26	7.6	2006.510
3	0.8	-27.63	1305.52	2.93	93.25	11.6	2004.941
4	1.2	-27.62	1136.04	2.33	86.09	9.6	2003.269
5	1.6	-27.48	1028.27	2.09	93.80	10.9	2001.496
6	2.0	-27.39	809.91	2.66	79.98	9.9	1999.626

Modelling non-linear time series with GAM

```
library("mgcv")
m <- gam(d15N ~ s(Year, k = 15), data = isotopes, method = "REML")
Family: gaussian
Link function: identity
Formula:
d15N \sim s(Year, k = 15)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.30958 0.02622 126.2 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(Year) 9.282 11.07 61.33 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.935 Deviance explained = 94.8%
-REML = 3.9734 Scale est. = 0.03299 n = 48
```

Visualising fitted GAM

visreg(m)

Checking fitted GAM

library("DHARMa")
simulateResiduals(m, plot = TRUE)

DHARMa residual diagnostics

Checking fitted GAM

gam.check(m)

Method: REML Optimizer: outer newton

Including temporal autocorrelation

R-sq.(adi) = 0.929

```
mod \leftarrow gamm(d15N \sim s(Year, k = 15), data = isotopes,
            correlation = corCAR1(form = ~ Year), method = "REML")
Family: gaussian
Link function: identity
Formula:
d15N \sim s(Year, k = 15)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.30909 0.03489 94.84 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(Year) 7.954 7.954 47.44 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Modelling infant mortality

Modelling infant mortality

```
mort <- read.csv("data/UN_GDP_infantmortality.csv")</pre>
```

	country	<pre>infant.mortality</pre>	gdp
1	Afghanistan	154	2848
2	Albania	32	863
3	Algeria	44	1531
4	American.Samoa	11	NA
5	Andorra	NA	NA
6	Angola	124	355

Modelling infant mortality with a GLM

```
library("MASS")
mort.glm <- glm.nb(infant.mortality ~ gdp, data = mort)</pre>
Call:
glm.nb(formula = infant.mortality ~ gdp, data = mort, init.theta = 2.460991808,
   link = log)
Deviance Residuals:
   Min
            10 Median 30
                                  Max
-2.8024 -1.0447 -0.3650 0.5232 2.9116
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.072e+00 5.727e-02 71.11 <2e-16 ***
    -8.675e-05 6.221e-06 -13.95 <2e-16 ***
gdp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(2.461) family taken to be 1)
```

Null deviance: 385.83 on 192 degrees of freedom

Residual deviance: 202.51 on 191 degrees of freedom

Modelling infant mortality with a GLM

Modelling infant mortality with a GLM (log.gdp)

Residual deviance: 198.03 on 191 degrees of freedom

```
mort$log.gdp <- log(mort$gdp)</pre>
mort.glm.log <- glm.nb(infant.mortality ~ log.gdp, data = mort)</pre>
Call:
glm.nb(formula = infant.mortality ~ log.gdp, data = mort, init.theta = 3.119314453,
   link = log)
Deviance Residuals:
   Min
            1Q Median 3Q Max
-2.7517 -0.8692 -0.3575 0.3090 4.5063
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.07818 0.20045 35.31 <2e-16 ***
log.gdp -0.47238 0.02647 -17.85 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(3.1193) family taken to be 1)
   Null deviance: 478.54 on 192 degrees of freedom
```

Modelling infant mortality with a GLM (log.gdp)

Modelling infant mortality with a GAM

```
librarv("mgcv")
mort.gam <- gam(infant.mortality ~ s(log.gdp), family = nb, data = mort)</pre>
Family: gaussian
Link function: identity
Formula:
d15N \sim s(Year, k = 15)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.30958 0.02622 126.2 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(Year) 9.282 11.07 61.33 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adi) = 0.935 Deviance explained = 94.8%
```

17

Modelling infant mortality with a GAM

Checking GAM

gam.check(mort.gam)

Method: REML Optimizer: outer newton

Comparing models

```
library("performance")
compare_performance(mort.glm, mort.glm.log, mort.gam)
```

Comparison of Model Performance Indices

Name		Model		AIC	I	BIC		RMSE		Sigma	I	Sco
mort.glm mort.glm.log mort.gam	Ī	negbin		1667.750	I		1	30.034	Ī	1.018	Ī	-

Generalised Additive Mixed Models (GAMM)

Reaction time with sleep deprivation

```
library("lme4")
data("sleepstudy")
```


Modelling reaction time with sleep deprivation (GAMM)

```
sgamm \leftarrow gam(Reaction \sim s(Days, Subject, k = 3, bs = "fs"),
                  data = sleepstudy, method = "REML")
Family: gaussian
Link function: identity
Formula:
Reaction ~ s(Days, Subject, k = 3, bs = "fs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 295.22 10.49 28.15 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                edf Ref.df F p-value
s(Davs.Subject) 42.2 53 16.05 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.826 Deviance explained = 86.7%
-REML = 886.71 Scale est. = 551.61 n = 180
```

Modelling reaction time with sleep deprivation (GAMM)

visreg(sgamm, xvar = "Days", by = "Subject")

