Setup

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.cluster import KMeans
        from sklearn.impute import SimpleImputer
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean squared error, r2 score
        from sklearn.linear_model import Ridge, Lasso
        from sklearn.model_selection import KFold
        from xgboost import XGBRegressor
In [2]: df = pd.read_csv('../data/tod-on-main.csv')
In [3]: y1 = df["n movers out"]
        y2 = df["n_movers_out_Lowincome"]
In [4]: before_df = df.filter(regex=r'^(Before)', axis=1)
        after_df = df.filter(regex=r'^(After)', axis=1)
In [5]: def calculating_average_bedrooms(df, before = True):
            word = "Before" if before else "After"
            null rows = df[df[f"{word} Average number of bedrooms per dwelling"].isr
            weighted_sum = (0.5 * null_rows[f"{word} 0 to 1 bedroom"] + 2 * null_row
            total = (null_rows[[f"{word} 0 to 1 bedroom", f"{word} 2 bedrooms", f"{w
            null rows[f"{word} Average number of bedrooms per dwelling"] = weighted
            df.loc[null_rows.index, f"{word} Average number of bedrooms per dwelling
In [6]: calculating_average_bedrooms(before_df)
        calculating average bedrooms(after df, False)
```

```
/var/folders/qd/w0jg42cx76sc6s81d9zfb7t80000gn/T/ipykernel_40568/1411688805.
       py:6: SettingWithCopyWarning:
       A value is trying to be set on a copy of a slice from a DataFrame.
       Try using .loc[row indexer,col indexer] = value instead
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
       stable/user guide/indexing.html#returning-a-view-versus-a-copy
         null_rows[f"{word} Average number of bedrooms per dwelling"] = weighted_su
       m / total
       /var/folders/gd/w0jg42cx76sc6s81d9zfb7t80000gn/T/ipykernel 40568/1411688805.
       py:7: SettingWithCopyWarning:
       A value is trying to be set on a copy of a slice from a DataFrame
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
       stable/user_guide/indexing.html#returning-a-view-versus-a-copy
         df.loc[null rows.index, f"{word} Average number of bedrooms per dwelling"]
       = null rows[f"{word} Average number of bedrooms per dwelling"]
       /var/folders/qd/w0jg42cx76sc6s81d9zfb7t80000gn/T/ipykernel_40568/1411688805.
       py:6: SettingWithCopyWarning:
       A value is trying to be set on a copy of a slice from a DataFrame.
       Try using .loc[row_indexer,col_indexer] = value instead
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
       stable/user_guide/indexing.html#returning-a-view-versus-a-copy
         null_rows[f"{word} Average number of bedrooms per dwelling"] = weighted_su
       m / total
       /var/folders/qd/w0jg42cx76sc6s81d9zfb7t80000gn/T/ipykernel_40568/1411688805.
       py:7: SettingWithCopyWarning:
       A value is trying to be set on a copy of a slice from a DataFrame
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
       stable/user_guide/indexing.html#returning-a-view-versus-a-copy
         df.loc[null_rows.index, f"{word} Average number of bedrooms per dwelling"]
       = null_rows[f"{word} Average number of bedrooms per dwelling"]
In [7]: # Drop all the individual bedroom columns
        cols_to_drop = before_df.filter(regex='bedrooms?$', axis=1).columns
        before df = before df.drop(columns = cols to drop)
        cols_to_drop = after_df.filter(regex='bedrooms?$', axis=1).columns
        after_df = after_df.drop(columns = cols_to_drop)
In [8]: # Removing values that either introduce collinearity or have many missing va
        before_df = before_df.drop(["Before Apartment", "Before Other dwelling", "Be
```

Dwelling Characteristics Before and After($X_{D,t=A}$ and $X_{D,t=B}$)

after_df = after_df.drop(["After Other dwelling", "After Other attached dwel

Basic Information

```
In [9]: print("Shape is", before_df.shape)
         print(before_df.info())
       Shape is (70, 13)
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 70 entries, 0 to 69
       Data columns (total 13 columns):
            Column
                                                                        Non-Null C
       ount Dtype
       ---
           Before Population Density per square kilometre
                                                                        70 non-nul
        l
            float64
                                                                        42 non-nul
            Before Dwellings
        1
        l
            float64
        2 Before Total Occupied Private Dwellings
                                                                        70 non-nul
       l
        3
            Before Single-detached house
                                                                        70 non-nul
        l
            float64
            Before Semi-detached house
                                                                        68 non-nul
        4
            float64
        1
        5
                                                                        68 non-nul
            Before Row house
        l
            float64
            Before Apartment, duplex
                                                                        68 non-nul
        6
        l
            float64
           Before Apartment, building that has fewer than five storeys 67 non-nul
        7
        l
            Before Apartment, building that has five or more storeys
                                                                        69 non-nul
            float64
        l
                                                                        70 non-nul
        9
            Before Movable dwelling
       l
            float64
        10 Before Average number of bedrooms per dwelling
                                                                        67 non-nul
       l
            float64
        11 Before Owned
                                                                        70 non-nul
             float64
                                                                        70 non-nul
        12 Before Rented
             float64
       dtypes: float64(13)
       memory usage: 7.2 KB
In [10]: print("Shape is", after_df.shape)
         print(after_df.info())
```

```
Shape is (70, 13)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70 entries, 0 to 69
Data columns (total 13 columns):
    Column
                                                                Non-Null Co
unt Dtype
____
 O After Population Density per square kilometre
                                                                70 non-null
float64
                                                                67 non-null
 1 After Dwellings
float64
    After Total Occupied Private Dwellings
                                                                70 non-null
float64
                                                                70 non-null
    After Single-detached house
float64
    After Semi-detached house
                                                                69 non-null
float64
                                                                69 non-null
 5
   After Row house
float64
   After Apartment, duplex
                                                                69 non-null
float64
    After Apartment, building that has fewer than five storeys 69 non-null
7
    After Apartment, building that has five or more storeys
                                                                70 non-null
float64
    After Movable dwelling
                                                                70 non-null
float64
 10 After Average number of bedrooms per dwelling
                                                                69 non-null
float64
 11 After Owned
                                                                70 non-null
float64
 12 After Rented
                                                                70 non-null
float64
dtypes: float64(13)
memory usage: 7.2 KB
None
```

Descriptive Statistics

In [11]: before_df.describe()

	Before Population Density per square kilometre	Before Dwellings	Before Total Occupied Private Dwellings	Before Single- detached house	Before Semi- detached house	B Row I
count	70.000000	42.000000	70.000000	70.000000	68.000000	68.00
mean	57324.865634	3098.206985	2377.092768	631.330071	106.456011	122.8
std	113216.390124	3194.219870	2443.470807	475.698510	289.957670	116.3
min	11.416007	25.342501	23.201693	5.000000	0.000000	0.00
25%	1466.122390	1312.711342	753.392018	291.053291	11.674445	46.98
50%	12583.949928	2102.862406	1651.476544	507.219473	36.670702	83.1
75%	49266.737562	3958.129184	2363.522913	913.379267	77.453149	171.45
max	646168.395259	15586.510605	13367.434463	2680.843792	2184.042565	530.0′

In [12]: after_df.describe()

Out[12]:

	After Population Density per square kilometre	After Dwellings	After Total Occupied Private Dwellings	After Single- detached house	After Semi- detached house	After h
count	70.000000	67.000000	70.000000	70.000000	69.000000	69.00
mean	83624.500274	3454.156110	3071.057221	549.088128	100.673967	165.75
std	142428.398970	3622.260092	3172.590281	395.692437	186.987633	147.98
min	43.457565	120.044240	114.496750	0.000000	0.000000	0.00
25%	14117.821398	1364.931211	1330.202504	199.576745	11.158394	63.85
50%	36723.365589	2047.696021	1897.681001	487.073987	37.753862	138.40
75 %	72629.650488	4011.115867	3434.903365	772.408622	108.807448	202.67
max	908077.330189	20128.428244	18201.958223	1806.899375	1049.457765	729.97

Correlations

```
In [13]: temp_before_df = before_df.copy()
  temp_after_df = after_df.copy()

In [14]: temp_before_df["n_movers_out"] = y1
  temp_before_df["n_movers_out_Lowincome"] = y2
```

```
temp_after_df["n_movers_out"] = y1
                  temp_after_df["n_movers_out_Lowincome"] = y2
In [15]: b corr = temp before df.corr()
                  a corr = temp after df.corr()
In [16]: plt.figure(figsize=(10, 8))
                  sns.heatmap(b corr, annot=True, cmap='coolwarm', fmt=".2f")
                  plt.title("Correlation Matrix")
                  plt.show()
                                                                                                   Correlation Matrix
                                                                                                                                                               1.0
                          Before Population Density per square kilometre - 1.00 0.95 0.88 -0.11 0.48 0.29 0.15 0.33 0.87 -0.04 0.55 0.83 0.82 0.31 0.31
                                                     Before Dwellings - 0.95 1.00 0.99 -0.17 0.32 0.44 0.22 0.50 0.90 0.09 0.38 0.91 0.95 0.45 0.47
                                Before Total Occupied Private Dwellings - 0.88 0.99 1.00 0.00 0.39 0.44 0.25 0.60 0.84 0.01 0.45 0.91 0.96 0.48 0.50
                                                                                                                                                              - 0.8
                                         Before Single-detached house - 0.11 -0.17 | 0.00 | 1.00 | 0.26 | 0.33 | 0.22 | -0.21 | -0.26 | -0.14 | 0.24 | 0.24 | -0.13 | -0.24 | -0.20
                                          Before Semi-detached house - 0.48 0.32 0.39 0.26 1.00 0.30 0.37 0.25 0.09 -0.09 0.58 0.34 0.39 -0.09 -0.03
                                                                                                                                                              - 0.6
                                                    Before Row house - 0.29 0.44 0.44 0.33 0.30 1.00 -0.02 0.17 0.33 0.09 0.34 0.53 0.35 0.14 0.14
                                             Before Apartment, duplex - 0.15 0.22 0.25 0.22 0.37 -0.02 1.00 0.30 -0.04 -0.15 0.28 0.17 0.29 -0.04 0.11
                                                                                                                                                              - 0.4
               Before Apartment, building that has fewer than five storeys - 0.33 0.50 0.60 -0.21 0.25 0.17 0.30 1.00 0.17 0.11 0.25 0.42 0.68 0.46 0.46
                 Before Apartment, building that has five or more storeys - 0.87 0.90 0.84 -0.26 0.09 0.33 -0.04 0.17 1.00 -0.00 0.25 0.80 0.77 0.42 0.41
                                              Before Movable dwelling --0.04 0.09 0.01 -0.14 -0.09 0.09 -0.15 0.11 -0.00 1.00 -0.12 0.02 0.01 0.16 0.10
                       Before Average number of bedrooms per dwelling - 0.55 0.38 0.45 0.24 0.58 0.34 0.28 0.25 0.25 0.25 -0.12 1.00 0.49 0.40 -0.01 0.00
                                                        Before Owned - 0.83 0.91 0.91 0.24 0.34 0.53 0.17 0.42 0.80 0.02 0.49 1.00 0.76
                                                                                                                                                              0.0
                                                       Before Rented - 0.82 0.95 0.96 -0.13 0.39 0.35 0.29 0.68 0.77 0.01 0.40 0.76 1.00 0.48 0.51
                                                        n_movers_out - 0.31 0.45 0.48 -0.24 -0.09 0.14 -0.04 0.46 0.42 0.16 -0.01 0.40 0.48 1.00 0.94
                                             Before Population Density per square kilometre
                                                                            Before Dwellings
                                                                                 Before Total Occupied Private Dwellings
                                                                                      Before Single-detached house
                                                                                            Before Semi-detached house
                                                                                                 Before Row house
                                                                                                      Before Apartment, duplex
                                                                                                            Before Apartment, building that has fewer than five storeys
                                                                                                                      Before Movable dwelling
                                                                                                                            Before Average number of bedrooms per dwelling
                                                                                                                                 Before Owned
                                                                                                                                      Before Rented
                                                                                                                                            n_movers_out
                                                                                                                                                 n_movers_out_Lowincome
                                                                                                                 Before Apartment, building that has five or more storeys
 In [ ]:
In [17]: plt.figure(figsize=(10, 8))
                  sns.heatmap(a corr, annot=True, cmap='coolwarm', fmt=".2f")
                  plt.title("Correlation Matrix")
                  plt.show()
```


Visualizations

```
In [18]: for col in before_df.columns:
    plt.figure(figsize=(10, 4))

# Histogram
    plt.subplot(1, 2, 1)
    sns.histplot(before_df[col], kde=True, bins=30, color='skyblue')
    plt.title(f'{col}')
    plt.xlabel(col)

# Boxplot
    plt.subplot(1, 2, 2)
    sns.boxplot(x=before_df[col], color='lightcoral')
    plt.title(f'{col}')
    plt.xlabel(col)

plt.tight_layout()
    plt.show()
```



```
In [19]: for col in after_df.columns:
    plt.figure(figsize=(10, 4))

# Histogram
    plt.subplot(1, 2, 1)
    sns.histplot(after_df[col], kde=True, bins=30, color='skyblue')
    plt.title(f'{col}')
    plt.xlabel(col)

# Boxplot
    plt.subplot(1, 2, 2)
    sns.boxplot(x=after_df[col], color='lightcoral')
    plt.title(f'{col}')
    plt.xlabel(col)

plt.tight_layout()
    plt.show()
```


Change in Dwelling Characteristics ($X_{D,t=B}-X_{D,t=A}$)

```
In [20]: before_combied_df = before_df.copy()
after_combined_df = after_df.copy()
```

```
In [21]: before_combied_df.columns = before_combied_df.columns.str.replace(r'^\w+\s+'
    after_combined_df.columns = after_combined_df.columns.str.replace(r'^\w+\s+'

In [22]: change_df = after_combined_df - before_combied_df
```

Basic Information

```
In [23]: print("Shape is", change_df.shape)
         print(change_df.info())
        Shape is (70, 13)
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 70 entries, 0 to 69
        Data columns (total 13 columns):
            Column
                                                                          Non-Null C
        ount Dtype
         0
            Change Population Density per square kilometre
                                                                          70 non-nul
        l
             float64
                                                                          42 non-nul
         1
            Change Dwellings
        l
             float64
             Change Total Occupied Private Dwellings
                                                                          70 non-nul
        l
             float64
         3
                                                                          70 non-nul
            Change Single-detached house
        l
             float64
                                                                          67 non-nul
         4
             Change Semi-detached house
        1
             float64
         5
            Change Row house
                                                                          67 non-nul
             float64
        l
                                                                          67 non-nul
         6
             Change Apartment, duplex
        l
             float64
             Change Apartment, building that has fewer than five storeys 67 non-nul
        7
        1
             float64
             Change Apartment, building that has five or more storeys
                                                                          69 non-nul
         8
        l
             float64
                                                                          70 non-nul
         9
             Change Movable dwelling
        l
             float64
                                                                          67 non-nul
         10 Change Average number of bedrooms per dwelling
        l
             float64
                                                                          70 non-nul
         11 Change Owned
        l
             float64
                                                                          70 non-nul
         12 Change Rented
              float64
        dtypes: float64(13)
        memory usage: 7.2 KB
        None
```

Descriptive Statistics

```
In [24]: change_df.describe()
```

Out[24]:

	Change Population Density per square kilometre	Change Dwellings	Change Total Occupied Private Dwellings	Change Single- detached house	Change Semi- detached house	C Row
count	70.000000	42.000000	70.000000	70.000000	67.000000	67.0
mean	26299.634640	883.319497	693.964453	-82.241943	-0.833926	52.6
std	60371.696622	1336.536040	1270.095669	312.538167	150.808506	102.
min	-114328.566760	-134.520004	-3232.366353	-1744.971817	-1134.584800	-182.3
25%	323.224019	101.644461	64.381509	-111.097820	-7.404296	-4.5
50%	12068.849501	308.709050	308.536828	-42.882578	0.732230	14.3
75 %	24253.407984	866.104584	889.228913	2.040854	17.634644	97.
max	265403.516472	6360.438617	6448.940354	717.692927	298.465238	414.3

Correlations

```
In [25]: temp_change_df = change_df.copy()

In [26]: temp_change_df["n_movers_out"] = y1
    temp_change_df["n_movers_out_Lowincome"] = y2

In [27]: c_corr = temp_change_df.corr()

In [28]: plt.figure(figsize=(10, 8))
    sns.heatmap(c_corr, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title("Correlation Matrix")
    plt.show()
```


Visualizations

```
In [29]: for col in change_df.columns:
    plt.figure(figsize=(10, 4))

# Histogram
    plt.subplot(1, 2, 1)
    sns.histplot(change_df[col], kde=True, bins=30, color='skyblue')
    plt.title(f'{col}')
    plt.xlabel(col)

# Boxplot
    plt.subplot(1, 2, 2)
    sns.boxplot(x=change_df[col], color='lightcoral')
    plt.title(f'{col}')
    plt.xlabel(col)
    plt.xlabel(col)
    plt.tight_layout()
    plt.show()
```


Dependent Variables

The 2 dependent variables we are looking at are:

```
1. Y_1 = n_movers_out

2. Y_2 = n_movers_out_Lowincome

3. Y_1' = %n_movers_out

4. Y_2' = %n_movers_out_Lowincome
```

```
In [30]: original_population = df["n_movers_out"] + df["n_stayers"]
    original_low_income_population = df["n_movers_out_Lowincome"] + df["n_stayer]
In [31]: y1_percent = y1 / original_population
    y2_percent = y2 / original_low_income_population
In [32]: y1_percent.name = "%n_movers_out"
    y2_percent.name = "%n_movers_out_Lowincome"
In [33]: dependent_variables = pd.concat([y1, y2, y1_percent, y2_percent], axis=1)
In [34]: dependent_variables.describe()
```

Out[34]: n_movers_out n_movers_out_Lowincome 9	%n_movers_out	%n_movers_out_L
--	---------------	-----------------

count	68.000000	68.000000	54.000000	Ę
mean	53754.044118	17288.161765	0.607632	
std	41481.434485	14208.638609	0.160230	
min	8495.000000	2465.000000	0.328788	
25%	25452.500000	6362.500000	0.465190	
50%	41452.500000	12812.500000	0.612212	
75%	67363.750000	23213.750000	0.723530	
max	206545.000000	63385.000000	0.968148	

```
In [35]: for col in dependent_variables.columns:
    plt.figure(figsize=(10, 4))

# Histogram
    plt.subplot(1, 2, 1)
    sns.histplot(dependent_variables[col], kde=True, bins=30, color='skyblue
    plt.title(f'{col}')
    plt.xlabel(col)

# Boxplot
    plt.subplot(1, 2, 2)
    sns.boxplot(x=dependent_variables[col], color='lightcoral')
    plt.title(f'{col}')
    plt.xlabel(col)
    plt.tight_layout()
    plt.show()
```


