Построение карты связности функциональных групп в задаче декодирования сигналов головного мозга

Вареник Наталия

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. В.В. Стрижов

Москва, 2021

Графовое представление сигналов

Задача: Построить модель анализа активности головного мозга, учитывающую пространственную структуру сигналов.

Проблема: Существующие решения на основе сверточных моделей определены в канально-временном домене, не содержащем информацию о расположении электродов.

Обработка сигналов сверточной моделью.

Решение: Предлагается рассмотреть графовое представление сигналов для учета функциональных взаимосвязей различных частей мозга в пространстве.

Исследуются методы построения карты связности электродов для ее последующего использования графовой моделью.

Основные работы

Оценка связи электродов

 Sakkalis V., Tsiaras V., Tollis I. Graph Analysis and Visualization for Brain Function Characterization Using EEG Data. // Journal of Healthcare Engineering, 2010

Моделирование последовательностей пространственной структуры

- Seo Y., Defferrard M., Vandergheynst P., Bresson X. Structured Sequence Modeling with Graph Convolutional Recurrent Networks. // Neural Information Processing, 2018
- Ruiz, L., Gama, F., & Ribeiro, A. Gated Graph Recurrent Neural Networks. // IEEE Transactions on Signal Processing. 2020

Постановка задачи

Построение карты связности

 $\mathbf{X}_m \in \mathbb{R}^{N \times E}$, $m \in \overline{1, M}$ - исходный сигнал, N - количество отсчетов времени, E - количество электродов, M - количество примеров в выборке \mathbf{X} . Дополнительно известна матрица координат электродов $\mathbf{Z} \in \mathbb{R}^{E \times 3}$.

Рассмотрим граф $\mathcal{G}_m=(\mathcal{V}_m,\mathcal{E}_m)$, в котором \mathcal{V}_m есть множество электродов, а множество ребер \mathcal{E}_m и их веса определяются из матрицы смежности $\mathbf{A}_{\mathbf{X}_m,\mathbf{Z}}$. Требуется построить функцию:

$$f_{\mathcal{A}}: (X_m, Z) \rightarrow A_{X_m, Z}$$

Построение графового представления сигнала.

Постановка задачи

Классификация сигнала

Данные сигналов: $\mathbf{X} = \{\mathbf{X}_m\}_{m=1}^M$, $\mathbf{X}_m = \{\mathbf{x}_t\}_{t \in T}$, $\mathbf{x}_t \in \mathbb{R}^E$, $T = \{t_n\}_{n=1}^N$, $t_n \in \mathbb{R}$, где N - количество отсчетов времени, E - количество электродов, M - количество объектов.

Координаты электродов: $\mathbf{Z} = \{\mathbf{z}_j\}_{j=1}^E$, $\mathbf{z}_j \in \mathbb{R}^{E \times 3}$.

Целевая переменная: $\mathbf{y} = \{y_m\}_{m=1}^M, \ y_m \in \{1, \dots C\}, \ C$ - количество классов.

Рассматривается класс графовых нейронный сетей:

$$g_{ heta}: (\mathbf{X}, \mathbf{A}_{\mathbf{X}, \mathbf{Z}})
ightarrow \mathbf{y}.$$

Функции ошибки - кросс-энтропия:

$$\mathcal{L} = -\frac{1}{M} \sum_{m=1}^{M} \left[\sum_{c=0}^{C} y_m^c \log(p_m^c) \right]$$

 $p_m^c = g_{ heta}(\mathbf{X}_m, \mathbf{A}_{\mathbf{X}_m, \mathbf{Z}})$ - вероятность класса c для \mathbf{X}_m с матрицей смежности $\mathbf{A}_{\mathbf{X}_m, \mathbf{Z}}.$

Оптимизационная задача:

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta, \mathbf{X}, \mathbf{A}_{\mathbf{X}, \mathbf{Z}}).$$

Оценка матрицы смежности: базовые методы

Рассмотрим произвольную пару электродов $\mathbf{z}_i, \mathbf{z}_j$ с сигналами $\mathbf{x}_i, \mathbf{x}_j$.

• Евклидово расстояние:

$$d_{ij} = \exp\Big(rac{-||\mathbf{z}_i - \mathbf{z}_j||_2^2}{2\sigma^2}\Big), a_{ij} = egin{cases} d_{ij}, & ext{если } d_{ij} \geq
ho_d \ 0, & ext{иначе}. \end{cases}$$

• Корреляция Пирсона:

$$r_{ij} = rac{\sum\limits_{n=1}^{N} (x_i(t_n) - \overline{\mathbf{x}}_i)(x_j(t_n) - \overline{\mathbf{x}}_j)}{\sqrt{\sum\limits_{n=1}^{N} (x_i(t_n) - \overline{\mathbf{x}}_i)^2 \sum\limits_{n=1}^{N} (x_j(t_n) - \overline{\mathbf{x}}_j)^2}}, a_{ij} = egin{cases} r_{ij}, & \text{если } r_{ij} \geq
ho_r \ 0, & \text{иначе.} \end{cases}$$

• Когерентность:

$$\gamma_{\mathsf{x}_i\mathsf{x}_j}(f) = rac{|\mathcal{S}_{\mathsf{x}_i\mathsf{x}_j}(f)|^2}{\mathcal{S}_{\mathsf{x}_i\mathsf{x}_i}(f)\mathcal{S}_{\mathsf{x}_j\mathsf{x}_j}(f)}, a_{ij} = egin{cases} \gamma_{\mathsf{x}_i\mathsf{x}_j}, & \text{если } \gamma_{\mathsf{x}_i\mathsf{x}_j} \geq
ho_{\gamma} \\ 0, & \text{иначе}. \end{cases}$$
, где

$$S_{\mathsf{x}_i\mathsf{x}_i}(f) = \int\limits_{-\infty}^{\infty} R_{\mathsf{x}_i\mathsf{x}_i}(\tau) e^{-i2\pi f \tau} d\tau, \ S_{\mathsf{x}_i\mathsf{x}_j}(f) = \int\limits_{-\infty}^{\infty} R_{\mathsf{x}_i\mathsf{x}_j}(\tau) e^{-i2\pi f \tau} d\tau$$

- авто и кросс-спектральная функции плотности, $R_{\mathbf{x};\mathbf{x}_j}(au)$ - функция корреляции.

Частично направленная когерентность

Пусть набор временных рядов $\mathbf{x}(t) = [x_1(t), \dots, x_E(t)]^T$ адекватно описывается векторной регрессионной моделью порядка p:

$$\mathbf{x}(t) = \sum_{k=1}^{p} \mathbf{W}_k \mathbf{x}(t-k) + \mathbf{b}(t)$$
, где

$$\mathbf{W}_k = egin{bmatrix} w_{11}(k) & \dots & w_{1E}(k) \\ \vdots & \ddots & \vdots \\ w_{E1}(k) & \dots & w_{EE}(k) \end{bmatrix}$$
 — матрица авторегрессионных коэффициентов,

$$\mathbf{b}(t) = \begin{bmatrix} b_1(t) & \dots & b_E(t) \end{bmatrix}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma_b}).$$

Коэффициенты $w_{ij}(k)$ отображают влияние $x_j(t-k)$ на $x_i(t)$.

$$\mathbf{W}(\lambda) = \sum_{k=1}^p \mathbf{W}_k e^{-i2\pi\lambda k}$$
 — преобразование Фурье матрицы коэффициентов.

Интенсивность информационного потока из канала ј в канал і:

$$\pi_{i \leftarrow j}(\lambda) = rac{rac{1}{\sigma_i} |\overline{\mathbf{W}}_{ij}(\lambda)|}{\sqrt{\sum\limits_{m=1}^p rac{1}{\sigma_m^2} \overline{\mathbf{W}}_{mj}(\lambda) \overline{\mathbf{W}}_{mj}^H(\lambda)}}, \pi_{ij} = rac{1}{2} (\pi_{i \leftarrow j} + \pi_{j \leftarrow i}),$$
 $\overline{\mathbf{W}}(\lambda) = \mathbf{I} - \mathbf{W}(\lambda), \ \sigma_i^2 -$ дисперсия $b_i(t)$.

Мера синхронизации фаз (Phase Locking Value)

Две динамические системы могут иметь синхронизацию фаз, даже если их амплитуды независимы. Синхронизация фаз понимается как:

$$|\phi_{\times i}(t) - \phi_{\times j}(t)| = const.$$

Аналитическое представление сигнала:

$$H(t) = x(t) + i\tilde{x}(t)$$
, где

$$ilde{x}(t) = rac{1}{\pi} v.p. \int\limits_{-\infty}^{\infty} rac{x(t')}{t-t'} dt'$$
 — преобразование Гильберта сигнала $x(t)$.

Фаза аналитического сигнала определяется как:

$$\phi(t) = \arctan\left(\frac{\tilde{x}(t)}{x(t)}\right).$$

Таким образом, для двух сигналов $x_i(t)$, $x_j(t)$ равной продолжительности с фазами $\phi_{x_i}(t)$, $\phi_{x_j}(t)$ мера PLV задается уравнением:

$$PLV_{x_ix_j} = \left| \frac{1}{N} \sum_{n=0}^{N-1} \exp(i(\phi_{xi}(n\Delta t) - \phi_{xj}(n\Delta t))) \right|$$

где Δt - шаг по времени, а N - количество наблюдений сигнала.

Вычислительный эксперимент

Цели:

- Построить матрицу связей электродов предложенными методами,
- Сравнить качество работы графовой модели в задаче декодирования с использованием полученных оценок матрицы смежности.

Данные: выборка BCI Competition 2020 по двигательным образам, связанных с верхними конечностями. Эксперимент проводился 3 дня, на группе из 15 человек, которые выполняли заданиния по представлению захвата предмета (цилиндрической, сферической и плоской формы). EEG сигнал измерялся 60 каналами, расположенными по системе 10-20 с частотой сэмплирования 250 Нг.

Графовая модель: CNN+LSTM

•
$$\mathbf{x}_t^{CNN} = CNN_{\mathcal{G}}(\mathbf{x}_t) = g(\widetilde{\mathbf{D}}^{-1}\widetilde{\mathbf{A}}\mathbf{x}_t\mathbf{W}), \ \widetilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}, \ \widetilde{\mathbf{D}} = diag(d_{ii}), \ d_{ii} = \sum_i \widetilde{\mathbf{A}}_{ij}$$

$$\bullet \ \mathbf{i}_t = \sigma(\mathbf{W}_{xi}\mathbf{x}_t^{CNN} + \mathbf{W}_{hi}\mathbf{h}_{t-1} + \mathbf{w}_{ci} \odot \mathbf{c}_{t-1} + \mathbf{b}_i),$$

•
$$\mathbf{f}_t = \sigma(\mathbf{W}_{xf}\mathbf{x}_t^{CNN} + \mathbf{W}_{hf}\mathbf{h}_{t-1} + \mathbf{w}_{cf} \odot \mathbf{c}_{t-1} + \mathbf{b}_f),$$

•
$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot tanh(\mathbf{W}_{xc}\mathbf{x}_t^{CNN} + \mathbf{W}_{hc}\mathbf{h}_{t-1} + \mathbf{b}_c)$$
,

•
$$\mathbf{o}_t = \sigma(\mathbf{W}_{xo}\mathbf{x}_t^{CNN} + \mathbf{W}_{ho}\mathbf{h}_{t-1} + \mathbf{w}_{co} \odot \mathbf{c}_t + \mathbf{b}_o),$$

•
$$\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{c}_t)$$
.

Результаты оценки матрицы связности

