Examen 1. Computo Estadistico

Radel Rojas B

12 de octubre de 2017

Instrucciones Los ejercicio se entregaran con el script de R y con un reporte que incluya los resultados obrtenidos y las respuestas solicitadas. El script y el reporte se subirán al drive en la carpeta marcada con su nombre.

Ejercicios

1) Considerando el conjunto de datos de **carSeats** de la libreria *ISLR*, Contruye un modelo para predecir las ventas considerando las restantes variables como preditoras

Solución Utilizando R se cargan las librerias y datos necesarios

```
library(ISLR) #Contiene la base de datos a utilizar
library(leaps)
data = Carseats #base de datos
dim(Carseats) # matriz de 777 observaciones(universidades) - 18 variables
## [1] 400 11
colnames(Carseats)
    [1] "Sales"
                      "CompPrice"
                                     "Income"
                                                   "Advertising" "Population"
   [6] "Price"
                      "ShelveLoc"
                                                                  "Urban"
##
                                     "Age"
                                                   "Education"
## [11] "US"
set.seed(1) # usamos esta función para fijar una semilla
#para los generadores de numeros aleaorios en R
```

Se Divide el conjunto de datos en un conjunto de entrenamiento y un conjunto de prueba

```
train =sample(400,200) # Se escoge un conjunto de entrenamiento de 200 datos aprox la mitad test=-train #datos de prueba attach(Carseats)
```

Se ajusta el modelo de regresión de Ridge sobre el conjunto de entrenamiento, con λ elegido por validacion cruzada. se Reporta el error de prueba obtenido.

```
library(glmnet)

## Loading required package: Matrix

## Loading required package: foreach

## Loaded glmnet 2.0-12

#contiene los procedimientos de regresion Ridge

x=model.matrix (Sales~.,Carseats )[,-1]

cv.out=cv.glmnet(x[train,],Sales[train],alpha =0)

#funcion que realiza la validacion cruzada k-fold, por default usa k=10

plot(cv.out)
```



```
#grafica los MSE para cada valor de lamda
bestlam=cv.out$lambda.min
#elige el valor de lamda que tiene el MSE mas pequeño
bestlam
## [1] 0.1423627
ridge.mod=glmnet(x[train,],Sales[train],lambda = bestlam)
ridge=predict(ridge.mod,s=bestlam,newx=x[test,])
error.ridge=mean((ridge-Sales[test])^2)
error.ridge
## [1] 1.327669
#calcula el MSE asociado al mejor valor de lamda
out=glmnet(x,Sales,alpha=0)
predict(out,type="coefficients",s=bestlam)
## 12 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                    6.3131495430
## CompPrice
                    0.0805889042
## Income
                    0.0146489990
## Advertising
                    0.1115192505
                    0.0001899445
## Population
## Price
                   -0.0859391726
## ShelveLocGood
                    4.4155940236
```

```
## ShelveLocMedium 1.6697637915

## Age -0.0434043360

## Education -0.0209757603

## UrbanYes 0.0967790955

## USYes -0.0741752218
```

#calcula los coeficientes

Se ajusta un modelo de LASSO en el conjunto de entrenamiento, con λ elegido por validación cruzada. se reporta el error de prueba obtenido, junto con el número de estimación de coeficientes no nulos.

```
cv.out=cv.glmnet(x[train,],Sales[train],alpha =1)
#funcion que realiza la validacion cruzada k-fold, por default usa k=10
plot(cv.out)
```



```
#grafica los MSE para cada valor de lamda
bestlam=cv.out$lambda.min
#elige el valor de lamda que tiene el MSE mas pequeño
bestlam

## [1] 0.008534418
lasso.mod=glmnet(x[train,],Sales[train],lambda = bestlam)
lasso=predict(lasso.mod,s=bestlam,newx=x[test,])
error.lasso=mean((lasso-Sales[test])^2)
error.lasso
```

[1] 1.03146

```
#calcula el MSE asociado al mejor valor de lamda
out=glmnet(x,Sales,alpha=1)
predict(out,type="coefficients",s=bestlam)
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                    5.7318441089
## CompPrice
                    0.0913604642
## Income
                    0.0154261754
## Advertising
                    0.1192249821
## Population
                    0.0001721316
## Price
                   -0.0944033173
## ShelveLocGood
                    4.7967775109
## ShelveLocMedium 1.9145728770
                   -0.0454957307
## Education
                   -0.0179439191
## UrbanYes
                    0.1012877251
## USYes
                   -0.1259129485
#determina los coeficientes de lasso
Se ajusta modelo PCR en el conjunto de entrenamiento, con M elegido por validación cruzada. Reporta el
error de prueba obtenido, junto con el valor de M seleccionado.
library(pls)
## Warning: package 'pls' was built under R version 3.4.2
##
## Attaching package: 'pls'
  The following object is masked from 'package:stats':
##
##
       loadings
#contiene las funciones que realizann PCR y PLS
pcr.fit=pcr(Sales~.,data=Carseats,subset=train,scale=TRUE,validation ="CV")
summary(pcr.fit)
            X dimension: 200 11
## Data:
## Y dimension: 200 1
## Fit method: svdpc
## Number of components considered: 11
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept) 1 comps 2 comps 3 comps
##
                                                    4 comps 5 comps
                                                                      6 comps
## CV
                2.777
                          2.710
                                   2.555
                                            2.504
                                                      2.524
                                                               2.479
                                                                         2.446
                2.777
                          2.718
                                                               2.476
                                                                         2.450
## adjCV
                                   2.543
                                            2.501
                                                      2.524
##
                   8 comps
                            9 comps
                                      10 comps
                                                11 comps
          7 comps
            2.407
                      2.355
                               2.367
                                                    1.080
## CV
                                         1.112
## adjCV
            2.358
                      2.352
                               2.367
                                         1.083
                                                    1.077
##
## TRAINING: % variance explained
##
          1 comps 2 comps 3 comps
                                     4 comps
                                               5 comps
                                                         6 comps
## X
           17.827
                      32.95
                               46.94
                                        57.36
                                                  66.38
                                                           74.58
                                                                    82.46
```

```
## Sales
                               20.42
                                         20.53
                                                                      33.71
            4.925
                      17.15
                                                   23.37
                                                            26.33
##
          8 comps 9 comps
                             10 comps
                                        11 comps
## X
            90.21
                                          100.00
                      94.39
                                97.48
## Sales
            34.41
                      34.80
                                 86.18
                                           86.26
validationplot(pcr.fit,val.type="MSEP")
```

Sales


```
# grafica los valores de los errores de VC para cada M, componentes principales.

pcr.pred=predict(pcr.fit,x[test,],ncomp =10) # esta funcion predice
#los valores de prueba de acuerdo al modelo ajustado con 10
#componentes
error.pcr=mean((pcr.pred-Sales[test])^2) # se calcula el error de prueba
error.pcr
```

[1] 1.072627

De los modelos anteriores, se observa en la siguiente grafica que la regresion Lasso, logra disminuir el error cuadratico al minimo, en contraste con los otros modelos

Comparativa del error diferentes métodos


```
error.ridge

## [1] 1.327669

error.lasso

## [1] 1.03146

error.pcr

## [1] 1.072627

Lo anterior, aunado a una menor dispersión de los datos resultantes (como se aprecia en el boxplot)
```

boxplot(data.frame(Sales[test]-ridge,Sales[test]-lasso,Sales[test]-pcr.pred),xaxt="n")
axis(1, at=c(1:3),labels = c("Ridge","Lasso","Pcr"))
points(1:3,c(error.ridge,error.lasso,error.pcr)^(0.5),cex=1,pch=16,col="red")

invita a utilizar regresión Lasson $\sqrt{(Errorcuadraticomedio)}$. Considerando aquellos coeficentes mas significativos para nuestra regresión

```
predict(out,type="coefficients",s=bestlam)
```

```
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                    5.7318441089
## CompPrice
                    0.0913604642
## Income
                    0.0154261754
## Advertising
                    0.1192249821
## Population
                    0.0001721316
## Price
                   -0.0944033173
## ShelveLocGood
                    4.7967775109
## ShelveLocMedium
                    1.9145728770
## Age
                   -0.0454957307
## Education
                   -0.0179439191
## UrbanYes
                    0.1012877251
## USYes
                   -0.1259129485
```

Escogemos: Advertising, ShelveLocGood, ShelveLocMedium, UrbanYes. Las cuales corresponden a los mayores coeficientes. Se propone un modelo de tipo sales = 5.73 + 4.79 * ShelveLocGood + 1.91 * ShelveLocMedium + 0.11 * Advertising + 0.10 * UrbanYes + USyes * -0.12 Se observa que no se incluyen todas las carateristicas, dado que de acuerdo a nuestros metodos, estas no estan directamente relacionadas con la variable respuesta y por tanto no explican de forma adecuada las ventas. Aplicando regresión con las variables determinandas se tiene el modelo

```
betas= c(5.7318441089,0.1192249821,4.7967775109,1.9145728770,0.1012877251,-0.1259129485)
Y=as.matrix(data.frame(1,x[,3],x[,6],x[,7],x[,10],x[,11]))%*%(as.matrix(betas)) #vector respuestas
```

Luego se determina la aproximación de las respuestas

```
plot(Sales-Y) #Grafico de errores
```


1-mean((Sales-Y)[test]^2)/mean((Sales-Y)^2) #no te que se tiene un coeficiente R^2 cercano a cero, de d
[1] 0.0783195

cor(Sales,Y) # Como era de esperarse se tiene una correlacion de al menos un 60 % entre los datos origi
[,1]
[1,] 0.6111092