信号与系统分析知识点汇总 2025.6 edit by xhy 常用输入信号的特解形式

一、基本概念

连续时间信号

- 模拟信号: 时间幅值均连续: 数字信号: 时间幅值均离散: 采样信号: 时间离散幅值连续
- ・能量 (有限) 信号: $E = \int_{-\infty}^{\infty} |f(t)|^2 dt$ (阶跃能量无穷
- •功率 (有限) 信号: $P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{T}}^{\frac{1}{2}} f(t)^2 dt$
- 采样信号 $Sa(t) = \frac{\sin(t)}{t}$; 偶函数; $t = \pm \pi, \pm 2\pi, ...$ 时 Sa(t) = 0; $\int_{-\infty}^{\infty} Sa(t)dt = \pi$; $\int_{0}^{\infty} Sa(t)dt = \frac{\pi}{2}$; $\bigcup_{t=0}^{\infty} \frac{1}{t}$ \Re
- 正余弦和指数: $sin(\omega t) = \frac{1}{2j}(e^{j\omega t} e^{-j\omega t});$ $cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$
- 单位阶跃信号 u(t), 注意 u(0) = 0.5
- 单位斜变信号 f(t) = tu(t)
- 符号函数 sgn(t) = 2u(t) 1 = u(t) u(-t)
- 单位脉冲信号 $\delta(t) = \lim_{\tau \to 0} \frac{1}{\tau} \left[u(t + \frac{\tau}{2}) u(t \frac{\tau}{2}) \right]$
- 1. $\int_{-\infty}^{\infty}\delta(t)dt=1;\delta(t)=0,t\neq0$ 狄拉克 (Dirac) 定义
- 2. $\int_{-\infty}^{\infty} \delta(t-t_0) f(t) dt = f(t_0) \ \text{\ \ } \delta(t) f(t) = \delta(t) f(0) \text{\ \ \ }$ 3. 偶函数 $\delta(t) = \delta(-t)$; 导数为奇函数 $\delta'(t) = -\delta'(-t)$
- 5. $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau; \int_{0}^{\infty} \delta(t \sigma) d\sigma = u(t)$
- 6. $\delta(at) = \frac{1}{|a|}\delta(t)$
- 7. $\delta'(t) = \lim_{\tau \to 0} \, \frac{1}{\tau} \left[\delta(t + \frac{\tau}{2}) \delta(t \frac{\tau}{2}) \right] = \frac{d\delta(t)}{dt}$
- 8. $\delta'(0_{-}) = +\infty; \delta'(0_{+}) = -\infty$
- 9. $\int_{-\infty}^{\infty} \delta'(t)dt = 0; \delta(t) = \int_{-\infty}^{t} \delta'(\tau)d\tau$ 10. $\int_{-\infty}^{\infty} \delta'(t-t_0)f(t)dt = -f'(t_0)$ 抽样特性
- 11. $\delta'(t)f(t) = \delta'(t)f(0) f'(0)\delta(t)$ 抽样特性
- 信号分解(正交分解、能量守恒)

- $jf_i(t) = \frac{1}{2}[f(t) f^*(t)]$
- $|f(t)|^2 = f(t)f^*(t) = f_t^2(t) + f_i^2(t)$ 4. 脉冲分解 (i.e. 抽样特性)
- $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$ $f(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)d\tau$
- 5. 周期信号级数分解、复指数信号分解

离散时间信号

- 单位阶跃序列 u[n] ($u[0] = 1 \neq 0.5$) 单位斜变序列 x[n] = nu[n]

- 单位脉冲序列 (单位样值序列) $\delta[n] = u[n] u[n-1]$ 2. $u[n] = \Sigma_{m=-\infty}^{\infty} \delta[n-m]$: $u[n] = \Sigma_{m=-\infty}^{n} \delta[m]$ 4. $x[n]\delta[n] = x[0]\delta[n]$
- $5. \delta[0] = 1 \neq \infty$ 指数序列 $x[n] = \alpha^n u[n]$

- 复指数信号 $x[n] = e^{j\Omega n} = \cos[\Omega n] + j\sin[\Omega n]$
- 1. 低频/慢变化序列发生在 π 的偶数倍附近 2. 高频/快变化序列发生在 π 的奇数倍附近
- 3. 不一定是周期信号,要求 $\frac{\Omega}{2\pi} = \frac{m}{n}$ (有理数) 周期:
- mn; m,n 互质
- 5. 归一化频率 $\omega_0 = \frac{\Omega_0}{f_c} = \Omega_0 T_s$

信号运算

微分、差分(突出边缘、变化、噪声增加)

- $\nabla^k x[n] = \nabla^{k-1} x[n] \nabla^{k-1} x[n-1] \text{ (k 阶后向差分)}$ $\Delta x[n] = x[n+1] - x[n]$ (一阶前向差分) 积分、累加 (噪声减少、累积平均)
- $y(t) = \int_{-\infty}^{t} x(\tau)d\tau; y[n] = \sum_{k=-\infty}^{n} x[k]$ 比例变换: y[n] = x[kn]; k > 1 丢失值; k < 1 内插零

系统分类

作大	14 W
即时(无	即时系统用代数方程描述 (包括恒等系统);
记忆)/动	动态系统用微分 (差分) 方程描述; LTI 系
态系统	统无记忆 $h(t) = c\delta(t)$;
	同时满足叠加性和齐次性,若
线性系统	$x_1(t) \rightarrow y_1(t), x_2(t) \rightarrow y_2(t)$ 则
	$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$
	输入信号有时移时,输出响应也产生同样时
不变系统	移, 若 $x(t) \rightarrow y(t)$ 则 $x(t-t_0) \rightarrow y(t-t_0)$;

反褶与尺度操作都有时变特性

线性增量 系统响应可分为零状态响应和零输入响应; 系统 零状态响应与输入成线性;零输入响应与零状态成线性

•LTI 系统性质:线性增量、时不变、微分/积分特性、 子系统交换/结合/分配律

二、特解通解形式求解微分方程/差分方程

	连续时间系统	离散时间系统
7 4 1 1 1-4	微分方程	差分方程
方程式	$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) =$	$\sum_{k=0}^{N} a_k y[n-k] =$
	$\sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t)$	$\sum_{k=0}^{M} b_k x[n-k]$
	$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y_h(t) = 0$	$\sum_{k=0}^{N} a_k y_h [n-k] = 0$
特征方程	$\sum_{k=0}^{N} a_k a^k = 0$	$\sum_{k=0}^{N} a_k a^{N-k} = 0$
齐次解	特征根 a_i 为单根时	特征根 a_i 为单根时
	$y_h(t) = \sum_{i=1}^{N} c_i e^{a_i t}$ a_i 是特征方程的	$y_h[n] = \sum_{i=1}^{N} c_i a_i^n$ a_i 是特征方程的
	k 重根时, 上式中	k 重根时, 上式中
	与 a ^j 对应的项变为	与 a ^j 对应的项变为
	$\sum_{i=0}^{k-1} d_i t^i e^{a_j t}$	$\sum_{i=0}^{k-1} d_i n^i a_j^n$

讨论共轭复根的情况: $a_1=m+jb, a_2=m-jb, y_h(t)=$ $e^{mt}(A_1cosbt + A_2sinbt), y_h[n] = a^n(A_1cosbn + A_2sinbn)$

常用输入信号的 特解 形式:			
x(t)	$y_p(t)$	x[n]	$y_p(n)$
E(常数)	C (常数)		C (常数)
	$c_1 \cos(wt) + c_2 \sin(wt)$	$\cos \Omega n + \phi$ $\sin(\Omega n + \phi)$	$c_1 \cos(\Omega n) + c_2 \sin(\Omega n)$
eat	ce ^{at} , a 不是特 征根	a ⁿ	ca ⁿ , a 不是特 征根
eat	(c ₀ t + c ₁)e ^{at} a 是单特征根	a ⁿ	(c ₀ n + c ₁)a ⁿ a 是单特征根
e ^{at}	$\sum_{i=0}^{k} c_i t^i e^{at}$ a 是 k 重特征	a ⁿ	$\sum_{i=0}^{k} c_i n^i a^n$ $a \in \mathbb{R}$ 重特征 根
t ⁿ	$\sum_{i=0}^{n} c_i t^i$	n^k	$\sum_{i=0}^{k} c_i n^i$
ATIAL () IF			

零输入响应 $y_{zi}(t)$: 激励信号为 0,由起始状态产生的

微分方程: 直接 $y^{(n)}(0_-) = y^{(n)}(0_+)$ 代入齐次解 差分方程: 直接 y[-2], y[-1] 代入齐次解

零状态响应 $y_{zs}(t)$: 零状态响应时有 $y^{(n)}(t)|_{t=0_-}=0$ 做题用 $y_{zs}(t) = y(t) - y_{zi}(t)$ 求得零状态响应

自由响应: 齐次解 系统稳定 瞬态解

强迫响应: 特解 ──── 稳态解

单位脉冲响应

单位脉冲/阶跃响应: 以 $\delta(t)/u(t)$ 作为激励产生的零状态响应,分别用 h 和 g 表示

用 δ 表示信号: $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$,

 $f(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t - \tau)d\tau$

两者关系: $h(t) = \frac{d}{dt}g(t), h[n] = g[n] - g[n-1]$ $g(t) = \int_{-\infty}^{t} h(\tau)d\tau, g[n] = \sum_{m=-\infty}^{n} h[m] =$

 $\sum_{m=0}^{\infty} h[n-m]$ $\frac{2m-6}{2}$ 注: 物理可实现系统都是因果的, 所以有 h(t) = 0(t < 0)实际的物理系统是有损耗的,所以 $\lim_{t\to +\infty} h(t) = 0$

卷积积分和卷积和

LTI 零状态响应: $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$ 卷积和: $y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m] =$ $\sum_{m=-\infty}^{\infty} x[n-m]h[m]$

卷积性质

交换、结合、分配律(对加法) 微分/差分:

 $\frac{d}{dt} [f_1(t) * f_2(t)] = f_1(t) * \frac{d}{dt} f_2(t) = \frac{d}{dt} f_1(t) * f_2(t)$ $\forall \{x_1[n] * x_2[n]\} = \forall x_1[n] * x_2[n] = x_1[n] * \forall x_2[n]$

 $\int_{-\infty}^{t} [f_1(\tau) * f_2(\tau)] d\tau = f_1(t) * \int_{-\infty}^{t} f_2(\tau) d\tau =$ $\int_{-\infty}^{t} f_1(\tau) d\tau * f_2(t)$

 $\sum_{m=-\infty}^{n} \{x_1[m] * x_2[m]\} = x_1[n] * \{\sum_{m=-\infty}^{n} x_2[m]\} = \{\sum_{m=-\infty}^{n} x_1[m]\} * x_2[n]$ 高阶导数/多重积分: $f^{(i+j)}(t) = f_1^i(t) * f_2^j(t)$

巻积积分时移特性: $f_1(t-t_1)*f_2(t-t_2) = f(t-t_1-t_2)$

 $f(t) * \delta^{(k)}(t - t_0) = f^{(k)}(t - t_0); \ f(t) * u(t) = \int_{-\infty}^{t} f(\tau) d\tau$ $f[n] * \delta[n-m] = f[n-m]; f[n] * u[n] = \sum_{m=-\infty}^{n} f[m]$ 偶卷偶/奇卷奇出偶; 偶卷奇出奇

解卷积: $x[n] = \{y[n] - \sum_{m=0}^{n-1} x[m]h[n-m]\}/h[0]$ 常考性质: y(t) = x(t) * h(t)面积为x(t)和h(t)面积之积 常考性质: y(t/2) = 1/2x(t/2) * h(t/2), 不能只变一个

三、信号的频谱分析

三角形式: $f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t)]$ $a_0 = \frac{1}{T_1} \int_{-T_1/2}^{T_1/2} f(t) dt \quad a_n = \frac{2}{T_1} \int_{-T_1/2}^{T_1/2} f(t) \cos(n\omega_1 t) dt$ $b_n = \frac{2}{T_1} \int_{-T_1/2}^{T_1/2} f(t) \sin(n\omega_1 t) dt$

 $f(t) = c_0 + \sum_{n=1}^{\infty} c_n \cos(n\omega_1 t + \varphi_n)$ $c_0 = a_0; c_n =$ $\sqrt{a_n^2 + b_n^2}$; $\tan \varphi_n = -\frac{b_n}{a_n}$; $a_n = c_n \cos \varphi_n$; $b_n = -c_n \sin \varphi_n$

指数形式: $f(t) = \sum_{n=-\infty}^{\infty} F(n\omega_1) e^{jn\omega_1 t}$ $F_n =$ $\frac{1}{T_1} \int_{-T_1/2}^{T_1/2} f(t) e^{-jn\omega_1 t} dt = \frac{1}{2} (a_n - jb_n) \quad F_0 = c_0 = a_0$
$$\begin{split} & \Gamma_1 = \Gamma_1 I_2 V^{eq} \\ & F_n = |F_n| e^{j\phi_n}; \ F_{-n} = \frac{1}{2} (a_n + jb_n) = F_n^* \quad a_n = F_n + F_{-n} \\ & b_n = j(F_n - F_{-n}) \quad c_n = |F_n| + |F_{-n}| = 4F_nF_{-n} \\ & P = f^2(t) = \frac{1}{4} \int_{t0}^{t0+T} f^2(t) dt = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{2} \int_{t0}^{t0+T} \frac{1}{2} \int_{t0}^{t0+T} \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac$$
 $c_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} c_n^2 = \sum_{n=-\infty}^{\infty} |F_n|^2$

收敛条件: 能量有限, $\int_0^T |f(t)|^2 dt < \infty$; 一个周期内信号绝对可积, $\int_{\Gamma_1} |x(t)| dt < \infty$; 极大值、极小值、间 断点有限日值有限

Gibbs 现象:有限级数项合成波形,在间断点存在趋于 跳跃值 9% 的过冲【在结构动力学实验中,锤击产生的 力脉冲在末端会出现振荡(振铃现象)】

常见信号	傅里叶级数
	$a_n = \frac{2E\tau}{T_1} Sa(\frac{n\omega_1\tau}{2}) = \frac{2E}{n\pi} \sin(\frac{n\omega_1\tau}{2}),$
$\frac{\tau}{2}$,0 ~ E , T_1)	$b_n = 0, a_0 = \frac{E\tau}{T_1}$ 頻宽 $B \approx \frac{2\pi}{\tau}$
周期锯齿 (-1/2 ~	$a_n = 0, b_n = (-1)^{n+1} \frac{E}{n\pi}$
$\frac{T_1}{2}, -\frac{E}{2} \sim \frac{E}{2}, T_1$	
周期三角 (-1/2 ~	$a_n = \frac{4E}{(n\pi)^2} \sin^2(\frac{n\pi}{2}), b_n = 0, a_0 = \frac{E}{2}$
$\frac{T_1}{2}, 0 \sim \frac{E}{2}, T_1$	
周期半波余弦	$a_n = \frac{2E}{(1-n^2)\pi} \cos(\frac{n\pi}{2}), b_n = 0, a_0 = \frac{E}{\pi}$
周期全波余弦	$a_n = (-1)^n \frac{4E}{(4n^2-1)\pi}, b_n = 0, a_0 = \frac{2E}{\pi}$
周期脉冲	$F_n = \frac{1}{T_1} = a_n, b_n = 0$

FSD 性质:

- $\bullet \ a \cdot x(t) + b \cdot y(t) \longleftrightarrow a \cdot a_k + b \cdot b_k$ $\bullet \ x(t-t_0) \longleftrightarrow a_k e^{-jk\omega_0 t_0}$
- $\bullet \; e^{jM\omega_0t}x(t) \longleftrightarrow a_{k-M}$
- $x(-t) \longleftrightarrow a_{-k}$

- $x(t) \cdot y(t) \longleftrightarrow \sum_{l=-\infty}^{\infty} a_l b_{k-l}$
- $\int_T x(\tau) \cdot y(t-\tau)d\tau \longleftrightarrow Ta_k b_k$
- $\frac{dx(t)}{dt} \longleftrightarrow jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
- $\int_{-\infty}^{t} x(\tau)d\tau \longleftrightarrow \frac{1}{ik\omega_0} a_k = \frac{1}{ik(2\pi/T)} a_k$ • $x^*(t) \longleftrightarrow a_{-k}^*$

頻率衰減与波形关系: 冲激 n^0 间断 n^1 一阶导间断 n^2 波形对称性与 FS: 偶对称 $b_n=0$, 奇对称 $a_n=0$, 加 偏移量只会有 a_0 奇谐对称: $f(t) = -f(t + \frac{T}{2})$, $a_{2k} = b_{2k} = 0$

 $F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt; \ f(t) = \tfrac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} dt$ 求 f(t) 面积 $S = \int_{-\infty}^{\infty} f(t)dt = F(0)$

对称性: $\mathcal{F}(f(t)) = F(\omega), \mathcal{F}(F(t)) = 2\pi f(-\omega)$ 变换存在条件:

1. 能量有限: $\int_{-\infty}^{\infty} |f(t)|^2 dt < +\infty$

2. Dirichlet 狄义赫利条件: 无限区间内信号绝对可积 $\int |x(t)|dt < \infty$ 、极值点个数有限、间断点有限

「义傅里叶変換(绝对可积)如阶跃函数,符号函数: 构造函数序列逼近 $f(t)=\lim_{n\to\infty}f_n(t)$

频谱衰减规律 (越来越快): 不连续—— $1/\omega$; 一阶导不连续—— $1/\omega^2$; 二阶导不连续—— $1/\omega^3$

常见信号	$F(\omega)$
$\delta(t) / 1$	$1 / 2\pi \delta(\omega)$
$u(t) / \delta'(t)$	$\frac{1}{j\omega} + \pi \delta(\omega) / j\omega$
$sgn(t) / \frac{1}{\pi t}$	$\frac{2}{j\omega}$ / $-j \cdot sgn(\omega)$
$t \cdot u(t)$	$j\pi\delta(\omega) - \frac{1}{\omega^2}$
$e^{-at}u(t) / e^{at}u(-t)$	$\frac{1}{a+j\omega} / \frac{1}{a-j\omega}$
$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$
$e^{-at}u(t) - e^{-at}u(-t)$	$\left \frac{-2j\omega}{a^2+\omega^2}\right $
矩形脉冲 $u(t+\frac{\tau}{2})-u(t-\frac{\tau}{2})$	$\tau Sa(\frac{\omega \tau}{2})$
抽样信号 Sa(Wt)	$\frac{\pi}{W}[u(\omega+W)-u(\omega-W)]$
三角脉冲 $1 - \frac{2 t }{\tau}$	$\frac{\tau}{2}Sa^2(\frac{\omega\tau}{4})$

常见信号	$F(\omega)$
升余弦 ½(1+	$\frac{E\tau}{2} \cdot \frac{Sa(\omega\tau/2)}{1-(\omega\tau/2\pi)^2}$
$\cos \frac{\omega t}{2}$), $\left[-\frac{\tau}{2}, \frac{\tau}{2}\right]$	
高斯 $E \cdot e^{-(t/\tau)^2}$	$\sqrt{\pi}E\tau \cdot e^{-(\omega\tau/2)^2}$
$e^{j\omega_1 t}$	$2\pi\delta(\omega-\omega_1)$
$sin(\omega_0 t)$	$j\pi[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$
$cos(\omega_0 t)$	$\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$
$\sin(\omega_0 t)u(t)$	$\frac{j\pi}{2} \left[\delta \left(\omega + \omega_0 \right) - \delta \left(\omega - \omega_0 \right) \right] - \frac{\omega_0}{\omega^2 - \omega_0^2}$
$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2} \left[\delta \left(\omega + \omega_0 \right) - \delta \left(\omega - \omega_0 \right) \right] - j \frac{\omega}{\omega^2 - \omega_0^2}$
周期信号	$\omega_0 \sum_{n=-\infty}^{\infty} X_1 (jn\omega_0) \delta(\omega - n\omega_0)$
$\sum_{n=-\infty}^{\infty} x_1 (t-n)$	(Γ_0)
$\delta_T(t) =$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	0)
抽样函数信号 $\sum_{n=-\infty}^{\infty} x(t)\delta(t-t)$	$\frac{1}{T} \sum_{n=-\infty}^{\infty} X[j(\omega - n\omega_s)]$
$\angle n = -\infty \times (t) \delta(t)$	mis)

奇偶虑实特性:

 $F(\omega) = |F(\omega)|e^{j\phi(\omega)} = R(\omega) + jX(\omega)$ $|F(\omega)|$ 为偶函数, $\phi(\omega)$ 为奇函数

f(t)	实偶	实奇	虚偶	虚奇
$F(\omega)$	实偶	虚奇	虚偶	实奇
$R(\omega)$	偶函数	零	零	奇函数
$X(\omega)$	零	奇函数	偶函数	零

实函数 f(t),偶分量对应 $R(\omega)$,奇分量对应 $jX(\omega)$ $\mathcal{F}(f(-t)) = F(-\omega); \mathcal{F}(f^*(t)) = F^*(-\omega)$ 信号等效脉冲宽度与频带宽度: $f(0) \cdot \tau = F(0)$; $F(0) \cdot B = 2\pi f(0)$

信号测不准原理: $\Delta t \Delta \omega \geq \frac{1}{2}$

 $f(t) \leftrightarrow \frac{1}{j\omega}\mathcal{F}(\frac{\mathrm{d}f(t)}{\mathrm{d}t}) + \pi[f(\infty) + f(-\infty)]\delta(\omega)$ 若

线性	$\sum_{i=0}^{n} a_i f_i(t) \leftrightarrow \sum_{i=0}^{n} a_i F_i(\omega)$ $f^*(t) \leftrightarrow F^*(-\omega)$
共轭对称	
比例变换特性	$f(at) \leftrightarrow \frac{1}{ a } F(\frac{\omega}{a})$
时移特性	$f(t-t_0) \leftrightarrow F(\omega)e^{-j\omega t_0}$
尺度加位移性质	$f(at - t_0) \rightarrow \frac{1}{ a } F(\frac{\omega}{a}) e^{-j\frac{\omega t_0}{a}}$
频移特性	$f(t)e^{j\omega t_0} \leftrightarrow F(\omega - \omega_0)$
Euler 公式	$f(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[F(\omega+\omega_0)+F(\omega-\omega_0)]$
	$f(t) \sin(\omega_0 t) \leftrightarrow \frac{j}{2} [F(\omega + \omega_0) - F(\omega - \omega_0)]$
微分特性	$\frac{d^n}{dt^n} f(t) \leftrightarrow (j\omega)^n F(\omega)$
	$(-jt)^n f(t) \leftrightarrow \frac{d^n}{d\omega^n} F(\omega)$
积分特性	$\int_{-\infty}^{t} f(\tau)d\tau \to \frac{F(\omega)}{i\omega} + \pi F(0)\delta(\omega)$
	若 $f(\tau)$ 面积为零,则 $F(0) = 0$
	$\left -\frac{f(t)}{jt} + \pi f(0)\delta(t) \rightarrow \int_{-\infty}^{\omega} F(\Omega)d\Omega \right $
卷积定理	$f_1(t) * f_2(t) \rightarrow F_1(\omega)F_2(\omega)$
	$f_1(t)f_2(t) \rightarrow \frac{1}{2\pi}F_1(\omega) * F_2(\omega)$
对偶性	$F(t) \leftrightarrow 2\pi f(-\omega)$
Parseval 定理	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$

周期信号傅里叶变换

一般周期信号 FT: $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_1 t}$ $\mathcal{F}[f(t)] = 2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\omega_1)$

 $F_n = \frac{1}{T_1} \int_{-T_1/2}^{T_1/2} f(t) e^{-jn\omega_1 t} dt = \frac{1}{T_1} F_0(\omega) \Big|_{\omega = n\omega_1}$

 $F_0(\omega) = \frac{1}{T_1} \int_{-T_1/2}^{T_1/2} f_0(t) e^{-j\omega t} dt$

* 求 F_n 的简便方法: 截取 f(t) 的一个周期 $f_0(t)$ = $f(t) \left(-T_1/2 < t < T_1/2 \right), F_0(\omega) = \int_{-T_1/2}^{T_1/2} f_0(t) e^{-j\omega t} dt, \text{ } \emptyset$ $F_n = \frac{1}{T_1} F_0(\omega) \big|_{\omega = n\omega_1}$

时域周期延拓: $f_0(t) \leftrightarrow f_P(t) = \sum_{n=-\infty}^{\infty} f_0\left(t-nT_0\right) =$ $f_0(t) * \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ 频域离散化: $F(\omega) \leftrightarrow F_P(\omega) = \omega_1 \sum_{n=-\infty}^{\infty} F(n\omega_1)\delta(\omega - \omega)$

四 (1) 调制与解调

抑制载波振幅调制(AM-SC)与解调 7 中四 3 人 3 不 3号 f(t),其频谱为 $F(\omega)=1/2[G(\omega+\omega_0)+G(\omega-\omega_0)]$,信号的频谱被搬移到载频 ω_0 附近,幅度减为一半。 信号的頻谱被撒移到载频 ω_0 附近,幅度减为一半。 · 同步解调,由已调信号 f(t) 恢复 出基带信号 g(t)的过程称为解调,f(t) 与 $\cos(\omega_0 t)$ 相乘使频谱左 右搬移 ω_0 (幅度减为一半),再用一个带宽大 于 ω_m ,小于 $2\omega_0$ - ω_m 的低通滤波器滤除高频分量(结果为 $1/2G(\omega)$)即可完成解调;若 \cos 相位 不一致: $w(t) = f(t)\cos(\omega_c t + \phi)\cos(\omega_c t + \theta) = \frac{1}{2}f(t)\cos(\phi - \theta) + \frac{1}{2}f(t)\cos(2\omega_c t + \phi + \theta)$, 采用理想低通滤波器(幅度为 1)得到的输出为 $v_1(t) = \frac{1}{2}\cos(\phi - \theta)f(t)$

振幅调制(调幅)(AM)与解调(非同步解调): 给 f(t) 叠加直流分量 A, A > max(|f(t)|), 通过包络检 波器、低通滤波恢复

单边带调制 (SSB)

 $y_1(t) = \frac{1}{2}\cos(\phi - \theta)f(t)$

单边带调制(SSB) 设信号为 $x(t) = A_m cos(\omega_m t)$,载波为 $f(t) = cos(\omega_c t)$,则双边带信号为 $S_{AM} = x(t) \times f(t) = \frac{1}{2} A_m [cos(\omega_m + \omega_c)t + cos(\omega_m - \omega_c)t]$,而单边带信号为 $S_{SSB} = A_m cos(\omega_m \pm \omega_c)t = \frac{1}{2} A_m cos(\omega_m t \times cos(\omega_c t \mp \frac{1}{2} A_m sin\omega_m t \times sin\omega_c t$ 其中靠近原点的叫下边带,远离原点的一半叫上边带,SSB 可以节约能量,解调方法与 AM - SC 相同。

356 可以自约正显,解明方法可加一之。而问。 脉冲波形传输—4800 比特机问题解决方法 1. 全占空脉冲传输 2. 四电平传输 3. 时域信号设计(减 小频谱旁瓣——升余弦信号)4. 单边带调制 应用举例:调制放大(交流放大增益高,抑制直流漂移、 选频电路抑制噪声;信道复用(频分——用不同频道、 时分——穿插进行、码分——分别用 cos 和 sin

四 (2) 采样和采样恢复

1. 时域理想采样 = 频域周期延拓 时域上: $f_s(t) = f(t) \cdot \delta_T(t) = f(t) \sum_{-\infty}^{\infty} \delta(t - nT_s)$

频域上: $F[f_s(t)] = 1/T_s \sum_{-\infty}^{\infty} F(\omega - n\omega_s)$ 2. 频域理想采样

類域上: $F_1(\omega) = F(\omega) \times \delta_T(\omega) = F(\omega) \sum_{-\infty}^{\infty} \delta(\omega - n\omega_1)$ 时域上: $f_1(t) = \frac{1}{\omega_1} \sum_{-\infty}^{\infty} f(t - nT_1)$

3. 使用其它周期信号进行采样

时域上: $f_s(t) = f(t) \cdot p(t)$, p(t) 的傅里叶级数系数 P_n 频域上: $\mathcal{F}[f_s(t)] = \sum_{n=-\infty}^{\infty} P_n F(\omega - n\omega_s)$ 例: 周期矩形波采样(加权的频域周期延拓) $F_s(\omega) = \frac{F\tau}{f_s} \sum_{n=-\infty}^{\infty} Sa(\frac{n\omega_s^2}{2})F(\omega - n\omega_s)$

• 平顶采样: $f_s(t) = [f(t) \cdot \delta_T(t)] * p(t)$ $F_s(\omega) = \frac{1}{2\pi} \cdot \sum_{-\infty}^{\infty} F(\omega - n\omega_s) \cdot \omega_s \cdot P(\omega) =$

 $\frac{1}{T_s} \left(\sum_{-\infty}^{\infty} F(\omega - n\omega_s) \right) \cdot P(\omega)$

4. 采样定理

如果连续时间信号 f(t) 是一个频带受限的信号,即 如果建築的 間信号 f(t) 定一个领布交换的信号,即 $|\omega| > \omega_m$ 时, $F(\omega) = 0$: f(t) 等间隔采样信号为 $f_c(t)$,则用 $f_c(t)$ 唯一表示 f(t) 的条件是,采样间隔 $T_s \leq 1/2f_m$ 或 $f_s \geq 2f_m$ 。 Nyquist 频率: $f_s = 2f_m$ 5. 频谱混叠:见一

6. 欠采样的应用

6. 久米祥的应用 · 欠采样可读器。当示波器的上升沿大于信号的上升沿 时,对观察到的周期波形进行欠采样,然后再通过适当 的低通滤波器,可以真实的显示被观察信号的波形。 · 频闪灯:通过圆盘上的径向线条的旋转方向可以判断 圆盘之速转动的周期和闪光灯周期的大小。

7. 信号的重建

1. 零阶保持: **采样序列**与 [u(t) - u(t - T_s)] 卷积; 相位 谱上会出现 $-\omega T_s/2$ 的相移,对应着恢复信号相对于原 信号 $T_s/2$ 的时移($H_0(\omega) = T_s Sa(\frac{\omega T_s}{2})e^{-j\frac{\omega T_s}{2}}$) 2. 一阶保持: 采样序列与宽度为 T_s , 高度为 1 的三角

波信号卷积 $(H_0(\omega) = T_s Sa^2(\frac{\omega T_s}{2}))$

3. 能够无損恢复出信号的滤波器的频率特性: $H(\omega) = T_s(|\omega| \le \omega_s/2); 0(else)$ 4. 补偿滤波器,在零阶保持或一阶保持后串联的滤波器,使得系统能够无损恢复出信号。其频率特性为: $H_r(\omega) = H(\omega)/H_0(\omega)$

五 (1) ZT

 $ZT: X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}; IZT: x[n] = \frac{1}{2\pi i} \oint X(z)z^{n-1} dz$

上 改成。 • 左边序列:模值最小极点决定的圆域。若为反因果序列(右端点 ≤ -1),则包含 z=0 点 • 右边序列:模值最大极点决定的空心域。若为因果序列,则包含 ∞ 点(看分子分母阶次)

*ZT 相等:表达式、收敛域均一致 IZT 求法: ・长除法求样值: 直接 X(z) 展开成 z^{-1} (右边序列时) 或 z (左边序列时)的级数 (除时升幂排列)

・留数法: 由Z反变换公式及留数定理可知: $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \sum_{m=1}^n \text{Res}[X(z) z^{n-1}]_{z=p_n}$ 一阶极点: $\operatorname{Res}[X(z)z^{n-1}]_{z=p_m} = [(z-p_m)X(z)z^{n-1}]_{z=p_m}$

s 阶极点: $\operatorname{Res}[X(z)z^{n-1}]_{z=p_m} =$ $\frac{1}{(s-1)!} \left\{ \frac{d^{s-1}}{dt^{s-1}} \left[(z - p_m)^s X(z) z^{n-1} \right] \right\}_{z=p_m}$

注意: 需讨论 \mathbf{n} 取不同值时围线 \mathbf{C} 中的极点情况。

• 部分分式法: 分解 $\frac{X(z)}{z}$ —— 先求系数: 去分母相应 极点、高阶取微分、代极点、再求各分式 IZT: 注意 $|z| < |z_i|$ 则 $\frac{z}{z-z_i} \leftrightarrow -z_i^n u[-n-1]$

常用 Z 变换对

x[n]	$X(z) = \sum_{\substack{n=0 \\ z-m}}^{\infty} x[n]z^{-n}$
$\delta \left[n-m \right] \ (m>0)$	z^{-m}
u[n]	$\frac{1}{1-z^{-1}}$
n	$\frac{z}{(z-1)^2}$
n^2	$\frac{z(z+1)}{(z-1)^3}$
a^n	1
na ⁿ	$ \frac{1-az^{-1}}{az} $ $ \frac{az}{(z-a)^2} $ $ az(z+a) $
n^2a^n	$\frac{az(z+a)}{(z-a)^3}$
$(n+1)a^n$	$ \frac{z^2}{(z-a)^3} $ $ \frac{z^2}{(z-a)^2} $ $ \frac{z^{m+1}}{z} $
$\frac{(n+1)(n+m)}{m!}a^n$	(~ a)m+1
e ^{an}	$\frac{z}{z-e^a}$
$\cos(\omega_0 n)$	$\frac{\frac{z}{z-e^a}}{\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}}$
$\sin(\omega_0 n)$	$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$

性质	Z变换对
线性	$ax_1[n] + bx_2[n] \leftrightarrow aX_1(z) + bX_2(z)$
时移特性	$x[n-k] \leftrightarrow z^{-k}X(z)$
指数加权	$a^n x[n] \leftrightarrow X(\frac{z}{a})$
序列反褶	$x[-n] \leftrightarrow X(\frac{1}{z})$
尺度 (压缩)	$x[kn] \leftrightarrow \frac{1}{k} \sum_{m=0}^{k-1} X\left(z^{1/k}e^{-j2\pi m/k}\right)$
尺度 (插零)	$x_{(k)}[n] \leftrightarrow X(z^k)$
初值定理	$x[0] = \lim_{z \to \infty} X(z)$
终值定理	$\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X(z)$
时间卷积	$x_1[n] * x_2[n] \leftrightarrow X_1(z)X_2(z)$
频率卷积	$x_1[n]x_2[n] \leftrightarrow \frac{1}{2\pi j} \oint X_1(\tau)X_2\left(\frac{z}{\tau}\right) \frac{d\tau}{\tau}$
累加	$\sum_{k=-\infty}^{n} x[k] \leftrightarrow \frac{z}{z-1} X(z)$
差分	$x[n] - x[n-1] \leftrightarrow (1-z^{-1})X(z)$
计 知店144店	空理均更求国电序列, 效估空理还更多

注: 初值/终值定理均要求因果序列; 终值定理还要求x[n] 必须收敛——X(z) 的极点必须都位于单位圆内,或者在 z=1 点有且只能有一阶极点

五 (2) LT

默认单边 LT: $F(s) = \int_{0_{-}}^{\infty} e^{-st} f(t) dt$

收敛域:以极点作为边界:单边(右)— 双边则两边分别求得极点和收敛域取交集 σ 只有下界: ILT:

1. 公式法留数法: $f(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{st} ds =$

 $\sum_{W_{cl}} Res[F(s)e^{st}]$ ——通常是 t 的函数

2. 因式分解法: 将 F(s) 化为有理真分式后(若原本 的形式分子阶次比分母阶次高则需先用长除法)进行因式分解,化为各项分子为常数、分母为 $(s-p_i)^j$ 的代数和的形式。单实根情形 $F(s) = \sum_{i=1}^{m} \frac{k_i}{s-p_i}$ 则 $k_i = F(s)(s-p_i)|_{s=p_i}; \ f(t) = \sum_{i=1}^n k_i e^{+p_i t}$

注: e^{t^2} , te^{t^2} 等比指数增长还快的信号:不存在 LT

f(t), (t>0)	$F(s) = \mathcal{L}[f(t)]$	f(t), (t > 0)	$F(s) = \mathcal{L}[f(t)]$
u(t)	$\frac{1}{s}$	te ^{-at}	$\frac{1}{(s+a)^2}$
e ^{-at}	$\frac{1}{s+a}$	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$
t ⁿ	$\frac{n!}{s^{n+1}}$	tsin(\omega t)	$\frac{2\omega s}{(s^2+\omega^2)^2}$
$sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$tcos(\omega t)$	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$
cos(ωt)	$\frac{s}{s^2 + \omega^2}$	sinh(at)	$\frac{a}{s^2-a^2}$
$e^{-at}sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	cosh(at)	$\frac{s}{s^2-a^2}$
$e^{-at}cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\delta(t) / \delta^{(n)}(t)$	1 / s ⁿ

Laplace 变换性质:

性质	公式
线性	$\mathcal{L}[k_1 f_1(t) + k_2 f_2(t)] = k_1 F_1(s) + k_2 F_2(s)$
对 t 的微分	$\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s) - f(0_{-}), \mathcal{L}\left[\frac{d^{n}f(t)}{dt^{n}}\right] =$
	$s^n F(s) - \sum_{r=0}^{n-1} s^{n-r-1} f^{(r)}(0)$
对 t 的积分	$\mathcal{L}\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s} + \frac{\int_{-\infty}^{0} f(\tau)d\tau}{s}$
时移	$\mathcal{L}[f(t-t_0)u(t-t_0)] = e^{-st_0}F(s)$
	$\mathcal{L}[f(t)e^{-at}] = F(s+a)$
	$\mathcal{L}[f(at)] = \frac{1}{a}F(\frac{s}{a}), a > 0$
初值定理	$\lim_{t\to 0+} f(t) = \lim_{s\to\infty} sF(s)$
终值定理	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$
卷积	$\mathcal{L}[f_1(t) * f_2(t)] = F_1(s) \cdot F_2(s)$
s 域卷积	$\mathcal{L}[f_1(t) \cdot f_2(t)] = \frac{1}{2\pi j} [F_1(s) * F_2(s)] =$
	$\frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F_1(p) \cdot F_2(s - p) dp$
对 s 的微分	$\mathcal{L}[-tf(t)] = \frac{dF(s)}{ds}$ $\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s)ds$
对 s 的积分	$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s)ds$

初值定理条件:求的是 $f(0_+)$ 。F(s) 是**真分式**,即分子 的次数小于分母的次数,否则需要展开成真分式。 终值定理条件: $f(\infty)$ 存在,即 F(s) 的极点都位于左半s 平面,而在 s=0 处至多有一个单极点。

五 (3) 一些关系

s 平面与 z 平面的映射关系

1. 映射关系式

设连续时间信号 x(t), 其理想采样信号 $\hat{x}(t)=x(t)\delta_T(t)=$ $\sum_{-\infty}^{\infty} x(nT)\delta(t-nT)$ 。 理想采样信号的拉普拉斯变换 $\widehat{X}(s) = \sum_{-\infty}^{\infty} x(nT)e^{-snT}$ 。 采样序列 x[n] = x(nT) 的 Z 变 换 $X(z) = \sum_{-\infty}^{\infty} x[n] z^{-n}$ 。 当 $z = e^{sT}$ 时, $\widehat{X}(s) = X(e^{sT})$ 。 s 平面直角坐标,z 平面极坐标: $s = \frac{1}{T_s} \ln z$,

 $\begin{cases} s = \sigma + j\Omega \\ z = re^{j\omega} \end{cases} \Rightarrow \begin{cases} r = e^{\sigma T} \\ \omega = \Omega T \end{cases} , 采样周期 T, 采样$

z、s 两个平面的映射: s 平面的一条横带 (虚部 [-π,π] 映射为整个 z 平面; s 平面到 z 平面的映射是多对一 x_1 (2 下画: x_2 平画的 x_3 平画 x_4 を 平画 x_4 を 平画 x_4 を 平画 x_4 を x_4 x_4

变换域之间的关系

1. 连续时间信号的 LT 与采样信号 LT 之间的关系: $\widehat{X}(s) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(s-jn\Omega_s) = \frac{1}{T} [X(s) + X(s-j\frac{2\pi}{T} +$ $X(s+j\frac{2\pi}{T}+...)$ 一在 s 平面的虚轴上, $\widehat{X}(s)$ 是周期函

2.FT 和 LT 之间的关系: LT 收敛边界位于虚轴时

 $F(s) = F_{\sigma}(s) + \sum_{n=1}^{N} \frac{k_n}{s - j\omega_n} \xrightarrow{\text{FT}} f(t) = f_{\sigma}(t) + \sum_{n=1}^{N} k_n e^{j\omega_n t} u(t)$ $s \to j\omega$ $\mathcal{F}[f(t)] = F(\omega) + \sum_{n=1}^{N} k_n \pi \delta(\omega - \omega_n)$ $\mathcal{F}[f(t)] = F(\omega) + \sum_{n=1}^{N} k_n \pi \delta(\omega - \omega_n)$ $\frac{k_0}{(s - j\omega_0)^s} \left(\frac{k_0}{(s - j\omega_0)^s}\right)$

 $\mathcal{F}\left[tu(t)\right] = -\frac{1}{\omega^2} + j\pi\delta'(\omega)\,\mathcal{F}\left[u(t)\right] = \frac{1}{j\omega} + \pi\delta(\omega)\,, \sigma > 0$

 $\begin{cases} DTFT[x[n]] = X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \end{cases}$ $x[n] = IDTFT[X(e^{j\omega})] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$ 性质:把 ZT 中的 z 换成 $e^{j\omega}$, a 换为 $e^{j\omega_0}$ (频移)

・线性加权: $DTFT[x[n] \cdot n] = j \frac{d}{d\omega} X(e^{j\omega})$

・奇偶虚实: $X(e^{j\omega}) = X^*(e^{-j\omega})$

• 频域卷积: $DTFT[x[n]h[n]] = 1/2\pi[X(e^{j\omega})*H(e^{j\omega})]$

用单位样值响应 h[n] 表示 LTI 的输出: $y[n] = x[n] \cdot h[n]$, 则离散时间系统的**传递函数** $H(z) = \frac{Y(z)}{X(z)}$

- · h(t) 波形种类仅与极点有关,幅度相角与零极点有关 • 极点虚部增加震荡频率增加; 极点实部 >0 指数增加
- h[n] 的形式仅与极点有关,幅度相角与零极点有关
- ω 增加则震荡频率增加;r>1指数增加,反之衰减

-	LT	性质描述
;	原点 $\frac{1}{s} \leftarrow u(t)$	常量
	实数 $\frac{1}{s-a}$ ← $e^{at}u(t)$	指数增/减
	虚轴共轭 $\frac{w}{s^2+w^2} \leftarrow \sin(wt)u(t)$	等幅振荡
	复共轭 $\frac{w}{(s+a)^2+w^2} \leftarrow e^{-at} \sin(wt)u(t)$	指数增/减振荡
	原点二重 $\frac{1}{s^2} \leftarrow tu(t)$	线性增加
	实数二重 $\frac{1}{(s+a)^2} \leftarrow te^{-at}u(t)$	
	虚轴二重共轭 $\frac{2ws}{(s^2+w^2)^2} \leftarrow t \sin(wt)u(t)$	
- 1	7 1 7 7 7	a7 n

 $\frac{z}{z-1} \leftarrow u[n]; \quad \frac{z}{(z-1)^2} \leftarrow n; \quad \frac{z}{z-a} \leftarrow a^n; \quad \frac{az}{(z-a)^2} \leftarrow na^n$

系统的稳定性: h(t) 绝对可积, h[n] 绝对可和 系统的稳定性: h(t) 把列刊於, h(n) 把列刊和 离散情形: 稳定系统 H(z) 的收敛域必包含单位圆; 因 果系统 H(z) 的收敛域包含无穷远(分子阶次小于分母) ⇒ 因果、稳定系统 H(s) 的极点全在单位圆内 连续: 稳定系统 H(s) 的收敛域必包含虚轴; 因果稳定 系统 H(s) 的极点均在左半 s 平面,反因果均在右半

示: 11(3) □ 双 □ 双 □ 双 □ 本 □ □ 、 双 □ 本 □ □ 任 □ 平 □ □ 下 ○ 下 ○ 系 统 稳 □ ○ 特 征 方 程 所 有 系 数 均 为 □ : 三 阶 系 统 还 要 求 a₀ a₃ > a₁ a₂ □ 临 界 稳 定 系 统 : 激励 有 界 也 可 能 无 界 (虚 轴 上 / 单 位 圆 上 存 在 一 阶 极 点)

系统频域特性分析

系统冲激响应的傅里叶变换是系统的频率响应 $H(j\omega)$, 系统冲激响应的拉氏变换是系统的系统函数 H(s),在收敛域包括虚轴的稳定系统,有 $H(j\omega)=H(s)|_{s=j\omega}$

理想低通滤波器: $H(j\omega)=e^{-j\omega t_0}$, $|\omega|\leq\omega_0$: $|H(j\omega)|$ 矩 形框, $\varphi(j\omega) = -\omega t_0, |\omega| \le \omega_0$

1. 单位冲激响应 $h(t) = \frac{\omega_0}{\pi} Sa[\omega_0(t-t_0)]$

2. 单位阶跃响应 $g(t) = \frac{1}{2} + \frac{1}{\pi} Si[\omega_0(t-t_0)]$ (9% 过冲

几何确定法:对于虚轴左侧的零极点(右侧相频相反): • 非常靠近虚轴的极点,附近幅频峰点,相频响应骤减

非常靠近虚轴的零点,附近幅频下陷,相频响应骤增影响程度近大远小

注: 对离散时间系统,用 m_o, p_o 分别表示单位圆内外零极点个数,则一个周期内的相位变化 $\Delta \varphi|_{\Delta \omega=2\pi}=-2\pi m_o+2\pi p_o$,对于因果稳定系统,有 $\Delta \varphi|_{\Delta \omega=2\pi}=-2\pi m_o$

全通系统 (因果):幅频特性为常数、相频特性单调递减;零极点关于虚轴对称/关于单位圆倒共轭分布 $z_0 \leftrightarrow \frac{1}{z_0^2}$,又由于因果,极点只能在虚轴左侧/单位圆内

最小相位系统(因果稳定):零点也都位于左半平面/单位圆内(相较于关于虚轴对称到右半平面而言) •性质:逆系统也是稳定的最小相位系统

• 频域特性: 与非……相比,幅频一致,相频全程变化最小/单周期变化为 0

最小单位系统单位阶跃响应具有负调现象,朝着反方向 **系统的分解**:最小相位系统和全通系统级联(零点去左边,挪回零点) $H(z)=H_{min}(z)\cdot H_{ap}(z)$

负调现象:非最小相位系统单位阶跃响应

方向运动

七、DFT 系列(信号数值频谱分析)

DFS: 设x[n] 的周期为 N,看成基波 $e^{j\frac{2\pi}{N}n}$ 和各次谐 波 $e^{j\frac{2\pi}{N}kn}$ 的线性组合共 N 个分量(式子见 DFT) DFT:将 DFS 用于有限长离散时间信号 $(W=e^{-j\frac{2\pi}{N}})$ $DFT[x[n]] = X[k] = \sum_{n=0}^{N-1} x[n]W^{nk}$, $0 \le k \le N-1$ $IDFT[X[k]] = x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]W^{-nk}$, $0 \le n \le N-1$ DFT 性质:

圆移位:有限长序列 x[n] 圆移位定义为 f[n] = $x((n-m))_N R_N[n]$, 其中 $R_N[n] = 1, 0 \le n \le N-1$: ・把序列 x[n] 延拓为周期序列 $x[n] \to x((n))_N$

・使 x((n)) 沿着 n 轴移动 m 位,得到 $x((n-m))_N$,取出上述主值序列

令 X[k] = DFT[x[n]], Y[k] = DFT[y[n]], 则满足1. 线性: DFT[ax[n] + by[n]] = aX[k] + bY[k], $\forall a, b$

2. 时域圆移位特性: 若 $f[n]=x((n+m))_NR_N[n], x[n] \leftrightarrow X[k], \ 则\ F[k]=DFT[f[n]]=W^{-mk}X[k]$ 3. 频域圆移位特性: 若 DFT[x[n]] = X[k], 则

 $IDFT[X(k \pm l)_N R_N[k]] = W^{\pm nl} x[n]$ 4. 时域圆卷积定理,设 $y[n] \leftrightarrow Y[k], x[n] \leftrightarrow X[k], f[n] \leftrightarrow F[k], 若 F[k] = X[k]Y[k], 则$ $f[n] = IDFT[F[k]] = \sum_{m=0}^{N-1} x[m]y((n-m))_N R_N[n] \; ,$

或 $f[n] = \sum_{m=0}^{N-1} y[m]x((n-m))_N R_N[n]$

5. 頻域圆卷积,若 y[n] = x[n]h[n],则 $Y[k] = DFT[y[n]] = \frac{1}{N} \sum_{n=0}^{N-1} X[l]H((k-l))_N R_N[k]$

或 $Y[k] = \frac{1}{N} \sum_{n=0}^{N-1} H[l]X((k-l))_N R_N[k]$

 $\begin{array}{ll} \sum\limits_{k=1}^{N-r-N} \left(\frac{1}{N} \times X_r(k) - X_r(k) + jX_i(k), \ \ \bigcup \ X_r(k) = \sum\limits_{n=0}^{N-1} x(n) \cos(\frac{2\pi nk}{N}), \ X_i(k) = -\sum\limits_{n=0}^{N-1} x(n) \sin(\frac{2\pi nk}{N}) \end{array}$

X[k] 实部为 实偶函 虚奇函 实部为 虚偶函 实奇函

	偶,虚 部为奇	数	数	奇,虚 部为偶	数	数
7	帕斯瓦尔定	N− ∓⊞ ∇	$ r[n] ^2$	_ 1 N-	1 Y[k] ²	

7. 帕斯瓦尔定理, $\sum_{n=0}^{\infty} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{\infty} |X[k]|$

当 $z = W^{-k} = e^{-\frac{2k\pi j}{N}}$ 时,x[n] 的 Z 变换就等于该序列的离散傅里叶变换,即 $x[k] = X(z)|_{z=W^{-k}}$ **频域采样不失真条件**: 频域采样点数 $N \ge M$ 序列长度 $X(z) = \sum_{k=0}^{N-1} X[k]\phi_k(z), \phi_k(z) = \frac{1}{N} \frac{1-z^{-N}}{1-W^{-k}z^{-1}}$ 内插函 数,线性相位

FFT 计算线卷积方案与复杂度

DFT 所需复数加法次数 N^2 , 复数乘法次数 N(N-1); FFT 所需复数加法次数 $N\log_2 N$, 复数乘法次数 $\frac{N}{2} \log_2 N$ 。1 次复数乘法相当于 4 次实数乘法, 2 次实 数加法;一次复数加法相当于2次实数加法。

快速卷积方案: 要计算 x[n]*h[n], 可先将 x[n] 和 h[n]快速卷积万案: 要计昇 $X[\Pi]^*\Pi[\Pi]$, 则元待 $X[\Pi]$ 杯 $\Pi[\Pi]$ 都补等到 $N = 2^M$ 长度,分别作 FFT 得到 X(k), H(k),再序列相乘得到 X(k), H(k),再对结果进行反傅里叶变换。复数乘法次数: $\frac{3N}{2}\log_2 N + N$,即两次 FFT+1 次 IFFT+ 序列相乘: 复数加法次数: $3N\log_2 N$

重叠相加法: 分段 x[n] 为长度 $m \approx N$,且 $m+N-1=2^p$ 补零 h[n] 至 m+N-1, 预计算 H[k] = FFT(h[n]) 每段 $x_i[n]$ 补零至 m+N-1,计算: $y_i[n]=$ $IFFT(FFT(x_i[n]) \cdot H[k])$

重叠相加: 相邻段重叠 N-1点, 对位相加后拼接

用 DFT 作频谱分析的参数选择与注意问题

- 采样频率 f_s 应满足奈奎斯特频率要求 (≥ 2f_m , 其中 fm 为信号最高频率)
- ・模拟信号持续时间为 $t_c=NT=N/f_s=1/\Delta f$,其中 Δf 为频率分辨率, T 为采样间隔;
- ・考点: DFT 点数 $N \geq 2 f_m / \Delta f$ (通常还要求 $N = 2^M$)
- ・栅栏效应,DFT 是 DTFT $X(e^{j\omega})$ 的采样,只给出了 离散点 $\omega = 2\pi k/N$ 的频谱值,而无法得知这些点之间的频谱内容,解决方法:补零技术,在 x[n] 后面增补

即频幅的各,解决力法: 种专权系, 在 XIII / 由即增作 若干个零值点 1. 混叠效应: 时域采样, 频域产生周期延拓, 当不满足 采样定理时会发生频谱混叠, 即欠采样现象, 此时原来 信号的高频分量会形成虚假的低频分量; 应提高采样频 率/采用抗混叠滤波器(低通, 滤除 >1/2ω_s 部分)

2. 频率泄露:对信号进行截取,本质是时域截断,用矩形窗函数作用,截取后的信号频谱的高频段和低频段都会出现波动,并会出现过渡带,应扩大采集信号的时间窗口长度、使用光滑窗口对数据进行平滑

八、数字滤波器

1. 系统可实现性

佩利一维纳准则: 如果系统频率特性平方可积 $\int_{-\infty}^{\infty} |H(j\omega)|^2 d\omega < \infty$,则 $H(j\omega)$ 物理可实现的必

- 要条件为 $\int_{-\infty}^{\infty} \frac{|\ln H|\omega|}{1+\omega^2} d\omega < \infty$ •理想低通、高週、带通、带阻滤波器都不可实现,高期特性滤波器也不可实现
 •某一限定频带内为 0——非因果,不可实现
- •一般有理多项式构成的幅频特性能满足必要条件,只 需判断是否**平方可积**
- ・因果系统的系统函数 $H(j\omega) = R(\omega) + jX(\omega)$ 満足希尔伯特变換关系: $R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{X(\lambda)}{\omega \lambda} d\lambda$,

 $X(\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(\lambda)}{\omega - \lambda} d\lambda$

2. 无失真传输 系统响应波形与激励波形相同(幅度可以改变),出现时间不同;系统函数: $H(j\omega) = Ke^{-j\omega t_0}$; 时域恒为常数 K. 频域为过原点的直线(上下移 $2k\pi$ 也等价,别的不行)

町个行) 失真传輸的应用:产生特定波形、产生升余弦信号(取 系统的频谱和升余弦信号的频谱相同,可利用窄脉冲产 生升余弦信号)、声音合成 ・ 对频带受限的信号,只需考虑频带范围内 ・ 两个元大等系统串联仍无失真,并联可能失真

定义:已知输入中可能有信号 s(t),能以最低的错误概率判断脉冲 s(t) 的有无的滤波器 实际:根据s(t)定制,增强信号分量,减弱噪声分量,

满足某一时刻输出端信噪比最大 特征: 单位冲激响应: $h(t) = ks(t_m - t)$ (s(t) 的反褶), t_m 为判决时刻,通常取 $t_m = T$, k = 1; 实质是接收信号 $r(t) = as(t - t_m) + n_0(t)$ 与 s(t) 的互相关运算,通过 检测相关结果的峰值确定信号延迟以及相应的幅值。应用条件,已知信号波形s(t); 接收信号模型为 $r(t) = as(t - t_m) + n_0(t)$,共中 $n_0(t)$ 为加性白噪声。* 匹配滤波器是线性系统中"最佳"的滤波器(改善信邮比目而)

噪比层面)

自相关。 $R_{ss}(t) = \int_{-\infty}^{\infty} s(\tau) s(t+\tau) d\tau$ 应用:雷达测距精度提高 选自相关后形状尖锐的波形(越杂乱的波形通常越好)

4. 模拟滤波器

高频滤波需要模拟滤波器;对于频率重叠的信号滤波可以使用非理想滤波器 5. 数字滤波器

- ・频率特性: $H(e^{j\omega})=\sum_{n=0}^{\infty}x[n]e^{-jn\omega}$,具有周期性, 关于 z 对称,模为偶函数,相位是奇函数 • 递归式: y[n] 的表达式中包含 y[n-k] 项
- 非递归式: y[n] 的表达式中不包含 y[n-k]

+ 无限冲激响应(IIR)数字滤波器: 递归式, 非线性相位 性相位 +有限冲激响应(FIR)数字滤波器:非递归式,线性相位

・区分: $H(z)=\frac{\sum_{r=0}^{M}b_{r}z^{-r}}{1+\sum_{k=1}^{k}a_{k}z^{-k}}$,若存在 $a_{k}\neq 0$,构成 IIR 滤波器;若 a_{k} 均为 0,对应 FIR 滤波器 IIR 结构实现

FIR 滤波器特性(FIR 是稳定系统)

・ 若有限长的实序列 h[n] 満足偶对称(h[n] = h[N-1-n])或奇对称(h[n] = -h[N-1-n])条件, 对应的频率特性具有线性相位

• h[n] 偶对称: $H(e^{j\omega}) = H_g(\omega)e^{-j\alpha\omega}, \alpha = \frac{N-1}{2}$ N 为奇数时: $H_g(\omega)$ 在 $\omega = 0, \pi, 2\pi$ 偶对称

N 为偶数时: $H_g(\omega)$ 在 $\omega=0,2\pi$ 偶对称, 在 $\omega=\pi$ 处 奇对称,且 $H_g(\pi) = 0$,无法实现高通和带阻特性

• h[n] 奇对称: $H(e^{j\omega}) = H_g(\omega)e^{j(\pi/2-\alpha\omega)}, \alpha = \frac{N-1}{2}$ N 为奇数时: $H_g(\omega)$ 在 $\omega = 0, \pi, 2\pi$ 处奇对称,且在这 些点 $H_g(\omega) = 0$, 无法实现低通、高通、带阻滤波特性 N 为偶数时: $H_g(\omega)$ 在 $\omega = 0,2\pi$ 奇对称, $H_g(0) = 0$,

线性结构直

FIR 滤波器设计——窗函数法

无法实现低通、带阻滤波器

• 目标是使设计的滤波器特性 $H(e^{j\omega})$ 与要求的频率特性 $H_d(e^{j\omega})$ 在频域均方误差最小的意义下进行逼近

 矩形加窗对低通滤波器幅频特性影响:频率泄露 形成过渡带、吉布斯现象、负峰影响阻带衰减特性(21dB);增加 N 可减小过渡带宽度

· 窗函数法设计 FIR 步骤:

由给定 $H_d(e^{j\omega})$ 求出 $h_d[n]$,根据通带频率 ω_p 、截止 频率 ω_s 、衰减要求确定过渡带宽度、窗函数 w[n] 和滤波器长度 \mathbf{N} , $h[n]=h_d[n]w[n]$ 。

截止频率 $\omega_c = \frac{1}{2}(\omega_p + \omega_s)$

 $N = \frac{2\pi}{\omega_s - \omega_p} \times R_\omega$, R_ω 为窗函数过渡带宽度系数 IIR 滤波器设计

・冲激响应不变法: $H(s) \rightarrow h(t) \rightarrow h[n] \rightarrow H(z)$

模拟滤波器系统函数部分分式展开: $H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s-s_k}$ 反拉普拉斯变换得到 $h(t) = \sum_{k=1}^{N} A_k e^{p_k t} u(t)$, 采样得 到 $h[n] = \sum_{k=1}^{N} A_k e^{p_k nT} u(nT)$, 进行 \mathbb{Z} 变换,得到对 应数字滤波器系统函数: $H(z) = \sum_{k=1}^{N} \frac{A_k}{1-e^{s_k}T_{z-1}}$

高频时发生混叠,故只适用于低通、带通滤波器;提高抽样频率可以减少混叠影响。

• 双线性变换法

$$s = \frac{2}{T} \left(\frac{1-z^{-1}}{1-z^{-1}} \right), \quad z = \frac{1+(sT/2)}{1+(sT/2)}$$

 $s=rac{2}{T}(rac{1-z^{-1}}{1+z^{-1}})$, $z=rac{1+(sT/2)}{1-(sT/2)}$ 使 s,z 域之间呈单值对应关系,是非线性变势频率特性失真、相位失真,须作预畸变校正。 是非线性变换,会引起