Лабораторная работа 4.7.1 Двойное лучепреломление

Нехаев Александр, гр. 654 22 марта 2018 г.

Содержание

1.	Введение	2
2.	Теоретические основы	2
3.	Экспериментальная установка	8
4.	Ход работы	8
5.	Вывол	11

1. Введение

Цель работы: изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления n_0 — обыкновенной и n_e — необыкновенной волны в кристалле; наблюдение эффекта полного внутреннего отражения.

В работе используются: гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

2. Теоретические основы

Двойное лучепреломление. При падении световой волны на границу изотропной среды ы этой среде от границы распространяется одна волна. Если среда анизотропна, то в ней в общем случае возникают две волны, распространяющиеся от границы в разных направлениях и с разными скоростями. Это явление называется двойным лучепреломлением.

Плоские волны в кристаллах. В отсутствие электрических зарядов и токов уравнения Максвелла имеют вид

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}, \quad \operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
 (1)

Если среды прозрачны и однородны, то в них могут распространяться плоские монохроматические волны. Запишем такую волну в комплексном виде:

$$\vec{E} = \vec{E_0}e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{B} = \vec{H} = \vec{H_0}e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{D} = \vec{D_0}e^{i(\omega t - \vec{k}\vec{r})}$$
(2)

Здесь ω — круговая частота, \vec{k} — волновой вектор, а амплитуды $\vec{E_0}$, $\vec{H_0}$, $\vec{D_0}$ постоянны. Вектор \vec{B} совпадает с \vec{H} , так как $\mu=1$. Обозначим координатные орты через $\vec{e_x}$, $\vec{e_y}$, $\vec{e_z}$ и получим:

$$\operatorname{rot}\vec{H} = \begin{vmatrix} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix} = -i \begin{vmatrix} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ k_x & k_y & k_z \\ H_x & H_y & H_z \end{vmatrix} = -i \begin{bmatrix} \vec{k}\vec{H} \end{bmatrix}$$
(3)

Аналогично для $\operatorname{rot} \vec{E}$. В результате (1) перейдут в

$$\left[\vec{k}\vec{H}\right] = -\frac{\omega}{c}\vec{D}; \quad \left[\vec{k}\vec{E}\right] = \frac{\omega}{c}\vec{B} \tag{4}$$

Введем единичный вектор нормали \vec{N} к фронту волны и скорость распространения фронта в направлении этой нормали v. Тогда $\vec{k}=\frac{\omega}{v}\vec{N}$ и предыдущие соотношения перейдут в

$$\vec{D} = -\frac{c}{v} \left[\vec{N} \vec{H} \right]; \quad \vec{B} = \frac{c}{v} \left[\vec{N} \vec{E} \right]. \tag{5}$$

Отсюда видно, что векторы \vec{D} , \vec{H} , \vec{H} взаимно перпендикулярны. Значит плоские волны в кристалле поперечны в отношении векторов \vec{D} и \vec{H} . Однако в общем случае они не поперечны в отношении векторов \vec{E} .

В изотропной среде:

$$\vec{D} = \varepsilon \vec{E} \tag{6}$$

 ε — диэлектрическая проницаемость В анизотропной среде:

$$D_i = \sum_{i} \varepsilon_{ij} \quad (i, j = x, y, z)$$
 (7)

Плоскость (\vec{E}, \vec{H}) обладает тем свойством, что перпендикуляр к ней определяет направление вектора Пойнтинга $\vec{S} = \frac{c}{4\pi} \left[\vec{E} \vec{H} \right]$, т.е. направление распространения световых волн. Четыре вектора $\vec{D}, \vec{E}, \vec{N}, \vec{S}$ лежат в одной плоскости, перпендику-

Рис. 1: Расположение векторов $\vec{D}, \vec{E}, \vec{N}, \vec{S}$ в анизотропной среде

лярной вектору \vec{H} . Взаимное расположение этих векторов показано на рис. 1.

Оптически одноосные кристаллы. Всю совокупность возможных значений тензора диэлектрической проницаемости можно представить при помощи трехосного эллипса.

 e_x, e_y, e_z — главные значения диэлектрической проницаемости $\sqrt{e_x}, \sqrt{e_y}, \sqrt{e_z}$ — главные показатели преломления.

$$D_x = \varepsilon_x E_x, \quad D_y = \varepsilon_y E_y, \quad D_z = \varepsilon_z E_z$$
 (8)

В оптически одноосном кристалле эллипсоид диэлектрической проницаемости представляет собой эллипсоид вращения. В нем оптическая ось совпадает совпадает с осью вращения эллипсоида диэлектрических проницаемостей. Для главных значений диэлектрической проницаемостей приняты обозначения: $\varepsilon_z=\varepsilon_\parallel$ и $\varepsilon_x=\varepsilon_y=\varepsilon_\perp$. Связь между проекциями

векторов \vec{D} и \vec{E} на оптическую ось кристалла $(\vec{D}_{\parallel}$ и $\vec{E}_{\parallel})$ и на плоскость, перпендикулярную оси $(\vec{D}_{\perp}$ и $\vec{E}_{\perp})$:

$$\vec{D}_{\parallel} = \varepsilon_{\parallel} \vec{E}_{\parallel}, \quad \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E} \perp .$$
 (9)

Волну, распространяющуюся в одноосном кристалле, можно разделить на две линейно поляризованные волны: обыкновенную, вектор электрической индукции \vec{D}_o которой перпендикулярен главному сечению, и необыкновенную, с вектором электрической индукции \vec{D}_e , лежащим в главном сечении (рис. 2). Главным сечением кристалла называется плоскость, в которой лежит оптическая ось кристалла и нормаль к фронту волны.

Рассмотрим вначале обыкновенную волну, в которой вектор \vec{D}_o перпендикулярен главному сечению. Тогда $D_{oz}=0$, и из условия $D_z=\varepsilon_z E_z$ следует, что $E_o z=0$.

Рис. 2: Расположение векторов \vec{N} и \vec{D} в анизотропной среде: $\left(\vec{D}=\vec{D}_o+\vec{D}_e;\vec{D}_o\perp\vec{D}_e;\vec{D}\perp\vec{N}\right);$ \vec{N} и \vec{D}_e лежат в плоскости (Z,Y); \vec{D}_o перпендикулярен плсокости (Z,Y)

Кроме того, так как $D_o y = \varepsilon_{\perp} E_{oy}$ и $D_{ox} = \varepsilon_{\perp} E_{ox}$, то можно записать

$$\vec{D}_o = \varepsilon_\perp \vec{E}_o. \tag{10}$$

Таким образом, для обыкновенной волны материальное уравнение имеет такой же вид, как и в изотропной среде. Найдем с помощью этого уравнения скорость распространения обыкновенной волны и соответствующий показатель преломления. Из (5) имеем

$$D_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o \tag{11}$$

или, учитывая (10),

$$\varepsilon_{\perp} E_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o,$$
 (12)

откуда

$$v_o = \frac{c}{\sqrt{\varepsilon_\perp}}$$
 и $n_o = \frac{c}{v_o} = \sqrt{\varepsilon_\perp}$. (13)

Таким образом, скорость распространения обыкновенной волны и её показатель преломления не зависят от направления распространения.

У необыкновенной волны вектор D_e не параллелен E_e , и связь между сложнее, чем в (10).

Для того чтобы найти скорость распространения v и показателя преломления необыкновенной волны n=c/v, достаточно найти связь между вектором электрической индукции этой волны \vec{D}_e и проекцией на него вектора электрического поля волны E_{eD} . Тогда, подставляя $D_e=\varepsilon E_{eD}$ в (5), приходим к соотношениям

$$\varepsilon E_{eD} = -\frac{c}{v} H_e; \quad H_e = -\frac{c}{v} E_{eD},$$
 (14)

формально тождественным с соотношениями для обыкновенной волны. Роль величины ε_{\perp} теперь играет величина ε , а показатель преломления необыкновенной волны равен $\sqrt{\varepsilon}$.

Найдем связь между D_e и E_{eD} . Для этого разложим векторы \vec{D}_e и \vec{E}_e на составляющие, параллельные и перпендикулярные оси кристалла:

$$\vec{D}_e = \vec{D}_{e\parallel} + \vec{D}_{e\perp}.\tag{15}$$

$$\vec{E}_e = \vec{E}_{e\parallel} + \vec{E}_{e\perp}.\tag{16}$$

Учитывая (9), находим

$$E_{eD} = \frac{\vec{E}_e \vec{D}_e}{D_c} = \frac{E_{e\parallel} D_{e\parallel} + E_{e\perp} D_{e\perp}}{D_c} = \frac{D_{e\parallel}^2 / \varepsilon_{\parallel} + D_{e\perp}^2 / \varepsilon_{\perp}}{D_c}$$
(17)

или

$$E_{eD} = D_e \left(\frac{\sin^2 \theta}{\varepsilon_{\parallel}} + \frac{\cos^2 \theta}{\varepsilon_{\perp}} \right) = \frac{D_e}{\varepsilon}, \tag{18}$$

где θ — угол между оптической осью Z и волновой нормалью N (рис. 2):

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \quad \cos \theta = \frac{D_{e\perp}}{D_e}.$$
 (19)

Таким образом, ε и соответственно скорость распространения и показатель преломления необыкновенной волны зависят от угла между оптической осью кристалла и направлением распространения волны.

Выпишем выражение для показателя преломления необыкновенной волны $n = \sqrt{\varepsilon}$ через главные показатели преломления n_o , n_e и угол θ :

$$\frac{1}{\left[n\left(\theta\right)\right]^{2}} = \frac{\sin^{2}\theta}{n_{e}^{2}} + \frac{\cos^{2}\theta}{n_{o}^{2}}.$$
(20)

При $n_o-n_e\ll n_o$ и n_e (для исландского шпата $n_o=1,655,\,n_e=1,485$ для $\lambda=0,63$ мкм (20) можно упростить:

$$n(\theta) \approx n_e + (n_o - n_e)\cos^2\theta.$$
 (21)

Двойное лучепреломление в призме из исландского шпата. Рассмотрим, как по преломлению лучей в кристаллической призме можно определить показатели преломления для обыкновенной и необыкновенной волны. В работе исследуется одна из двух призм, составляющих поляризатор (рис. 3).

Рис. 3: (a) Исследуемая призма из исландского шпата. (b) Ход лучей в поляризационной призме.

В исследуемой призме ось кристалла лежит в плоскости, параллельной верхней грани призмы, причем она параллельна входной грани призмы (длинному катету). При этом в обыкновенной волне вектор \vec{D}_o перпендикулярен верхней грани призмы, а в необыкновенной волне вектор \vec{D}_e параллелен верхней грани.

Волну, падающую на входную грань призмы, можно представить в виде суммы двух волн ортогональных линейно поляризованных волн. Преломление этих двух волн на грани призмы можно рассматривать независимо. Волна, в которой вектор \vec{D} направлен вертикально (перпендикулярно верхней грани и оси кристалла), внутри кристалла будет распространяться как обыкновенная. Для этой волны выполняется закон Снеллиуса, а показатель преломления призмы для нее равен $n_o = \sqrt{\varepsilon_{\perp}}$. Волна, в которой

Рис. 4: Ход лучей в призме

вектор \vec{D} направлен горизонтально, в кристалле будет распространяться как необыкновенная. Для этой волны также будет выполняться закон Снеллиуса, но с тем отличием, что показатель преломления призмы для нее будет зависеть от угла между осью кристалла и волновой нормалью.

Значение показателя преломления и угол, под которым преломилась волна в призме, можно найти, измерив угол падения на входную грань призмы φ_1 и угол φ_2 на выходе призмы (рис. 4). Запишем закон Снеллиуса для одной из волн применительно к первой и второй граням призмы:

$$\sin \varphi_1 = n \sin \beta_1;$$

$$\sin \varphi_2 = n \sin \beta_2 = n \sin (A - \beta_1).$$

При этом мы выразили угол падения на вторую грань призмы β_2 через угол преломления на первой грани призмы β_1 и угол при вершине призмы A. Как видно из рис. 4, эти углы связаны простым соотношением $A = \beta_1 + \beta_2$. Учитывая, что угол преломления β_1 связан с углом θ между осью кристалла и волновой нормалью \vec{N} соотношением $\theta + \beta_1 = \pi/2$, находим n и θ :

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}; \qquad (22)$$
$$\cos \varphi = \frac{\sin \varphi_1}{n}.$$

Для обыкновенной волны n не будет зависеть от угла θ , а для необыкновенной волны зависимость n от θ должна описываться выражением (20).

Показатель преломления призмы из изотропного материала удобно находить по углу наименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 4) минимален для симметричного хода лучей, т.е. когда $\varphi_1 = \varphi_2$. Тогда показатель преломления можно рассчитать по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{23}$$

где ψ_m — угол наименьшего отклонения.

Если призма неизотропна, то этой формулой, строго говоря, можно воспользоваться только для обыкновенной волны, которая, как это было показано ранее, распространяется так же, как и в изотропной среде. Но если учесть, что угол при вершине призмы мал, и при угле наименьшего отклонения преломлённый луч в призме распространяется под углом к оси кристалла близким к $\pi/2$, то в качестве оценки формулу (23) можно использовать для определения n_e .

3. Экспериментальная установка

Рис. 5: Схема экспериментальной установки

Схема экспериментальной установки изображена на рис. 5. Источником излучения служит He-Ne лазер ($\lambda=0.63$ мкм). Излучение лазера, поляризовано линейно за счет наличия брюстеровских окошек в кювете лазера. Направление вектора \vec{E} в луче можно изменять с помощью поляроида, установленного на выходе лазера. Исследуемая призма из исландского шпата закреплена в центре поворотного столика с неподвижным лимбом для отсчета углов.

4. Ход работы

1) Определим угол A при вершине призмы:

$$\sin\frac{AC}{BC} = \frac{15}{23} \quad \angle A = \arcsin\frac{15}{23} = 38^{\circ}$$

2) Определим разрешенное направление поляризатора: глядя через него на отраженный от горизонтальной поверхности стола дневной свет, установим его в положение минимального пропускания. Так как отраженный свет преимущественно поляризован так, что

вектор \vec{E} направлении параллельно отражающей поверхности, у настроенного на минимум пропускания поляризатора разрешенное направление \vec{E} вертикально.

3) Получим на лимбе изображения преломлённых лучей так, как показано, на рис. 5 (падающий и преломлённый лучи отклоняются от нормалей к преломляющим граням в сторону основания призмы). Установим поляризатор в луче лазера перед призмой. Вращая поляризатор, определи, какой луч соответствует вертикально поляризованному свету, а какой — горизонтально поляризованному; определим, какой из лучей представляет обыкновенную волну, а какой — необыкновенную.

Необыкновенная волна: $\vec{E}(\rightarrow)$, Обыкновенная волна: $\vec{E}(\uparrow)$

4) Вращая столик с призмой, снимем зависимость углов отклонения на выходе из призмы для обыкновенной и необыкновенной волн от угла падения луча на призму; удобно определять координату $2\varphi_1$ луча, отраженного от входной грани призмы — длинного катет и координаты каждого из преломлённых лучей $(180^{\circ} + \psi)$ (или $180^{\circ} - \psi$.

Для проверки качества юстировки сначала проведите предварительную серию измерений, меняя угол падения φ_1 в диапазоне $10-70^\circ$ через 10° ($2\varphi_1$ — через 20° до 140°).

Для расчёта показателей преломления на компьютере с установленной программой SIGMA PLOT подготовим таблицу 1.

5) Построим графики n_o и $n_e(\theta)$ от $\cos^2\theta$ (см. рис. 6) и определим главные показатели преломления n_o и n_e . Сравним рассчитанные значения с табличными, приведенными в описании работы и оценим погрешность.

$$n_{o_0} = 1.66 \pm 0.009$$
 $n_{e_0} = 1.491 \pm 0.008$

6) Из основной серии измерений определим средние значения углов наименьшего отклонения ψ_m ; по формуле (23) рассчитаем показатели преломления n_o и n_e .

$$n_o = -1.65$$
 $n_e = -1.489$

$N_{\overline{0}}$	П	2	3	4	5	9	2	8	6	10	11	12	13	14
2	ಬ	10	15	20	25	30	35	40	45	20	55	09	65	20
ψ_0	40	33	30	29	28	27	27	28	29	30	31	32	35	37
ψ_e	25	29	31	21	20	21	21	22	23	24	25	27	30	32
φ_{2o}	73	61	53	47	41	35	30	26	22	18	14	10	∞	ಬ
φ_{2e}	28	51	44	39	33	29	24	20	16	12	∞	5	3	0
θ_o	82	83,97	80,97	78,12	75,26	72,35	69,65	67,28	64,96	62,67	60,30	58,08	56,82	55,05
θ_o	86,65	83,33	79,94	76,82	73,49	70,70	67,65	65,00	62,40	59,84	57,27	55,29	53,95	52,00
$\cos^2 \theta_o$	0,00	0,01	0,02	0,04	0.06	0,09	0,12	0,15	0,18	0,21	0.24	0,28	0,30	0,33
$\cos^2 \theta_e$	0,00	0,01	0,03	0,05	80,0	0,11	0,14	0,18	0,21	0,25	0,29	0,32	0.35	0,38
n_o	1,667	1,652	1,649	1,661	1,661	1,649	1,649	1,664	1,671	1,669	1,658	1,638	1,656	1,640
n_e	1,492	1,495	1,482	1,499	1,478		1,508	1,521	1,526	1,525	1,515	1,521	1,540	1,526

Таблица 1: Результат из SIGMA PLOT

Рис. 6: График, построенный в SIGMA PLOT

5. Вывод

Изучили зависимость показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определили главные показатели преломления.