Perth Modern School

Yr 12 Maths Specialist Pertl

Page 1

Year 12 Specialist
TEST 1
Friday 9 February 2018
Classpads allowed!
Classpads allowed!

Independent Public School Exceptional schooling. Exceptional students. PERTH MODERN SCHOOL	

	 	 Теасћег:
-	 	 ivanic

Note: All part questions worth more than 2 marks require working to obtain full marks.

Some useful Formulae

	$x = \sec^2 x = 1$	$I = x^{2} \pi i s + x^{2} sos$	
	$\frac{\lambda_i}{\lambda}$, for λ an integer	$\frac{p}{a + \theta} \operatorname{mis} i + \frac{p}{a + \theta} \operatorname{sod} \frac{1}{a} = \frac{1}{a} z$	
	θn mis $i + \theta n$ so $a = n(\theta \text{ sign})$	$(\theta n) \sin^n z = nz$	
		De Moivres theorem	
	$\frac{1}{\theta \sin} = (\theta -) \sin \theta$	$cis(\theta_1 + \theta_2) = cis(\theta_1 cis(\theta_2))$	
	$(\overline{z}_{\theta} - \overline{z}_{\theta}) \sin \frac{\overline{z}_{\theta}}{\overline{z}_{\theta}} = \frac{1}{z}$	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	
	$(\theta -)$ sig $\gamma = \overline{z}$	θ sis $\gamma = (\theta$ mis $i + \theta$ sos) $\gamma = id + \rho = z$	
		Polar form	
	$\frac{z_z}{z} \frac{1}{z} = \frac{z_z}{z} \frac{1}{z}$	$\underline{z} + \underline{t}\underline{z} = \underline{z} + \underline{t}\underline{z}$	
	$\frac{z z }{\underline{z}} = \frac{1}{z} = z - z$	$z z =\overline{z}z$	
	$\operatorname{arg}\left(\frac{z}{1}\right) = \operatorname{arg}\left(z\right) - \operatorname{arg}\left(z\right)$	$\operatorname{arg}\left(z_{1}z_{2}\right) \equiv \operatorname{arg}\left(z_{1}\right) + \operatorname{arg}\left(z_{2}\right)$	
	$\frac{\left \frac{z_{Z}}{z_{Z}}\right }{\left \frac{z_{Z}}{z_{Z}}\right } = \left \frac{z_{Z}}{z_{Z}}\right $	$ z ^{T}z = z ^{T}z $	
	$\pi \ge \theta > \pi -$, $\frac{d}{n} = \theta$ and $\theta = (z)$ give	$A = \underline{zq + zv} \land = z = (z) \text{ poly}(z)$	
	$iq - v = \underline{z}$	iQ + v = z	
	Cartesian form		
ormulae			

$((A-h)nis - (A+h)nis)\frac{1}{2} = A \text{ mis } h \text{ soo}$	$((B + k) \cos - (B - k) \cos) \frac{1}{2} = B \text{ mis } k \text{ mis}$	
$((A - k)nis + (A + k)nis)\frac{1}{2} = A \cos k \text{ mis}$	$((B + A) \cos A + (B - A) \cos A + \cos A + \cos A)$	
$\frac{x \cot 2}{x \cot 2} = x 2 \cot$	$\frac{\sqrt{\det x \pm x \cot \pm 1}}{\sqrt{\det x \pm x \cot \pm 1}} = (\sqrt{x \pm x}) \cot$	
$x \cos x \operatorname{mis} 2 = x 2 \operatorname{mis}$	\sqrt{x} mis $x \cos \pm \sqrt{x} \cos x$ mis $= (\sqrt{x})$ mis	
$x^2 \operatorname{mis} - x^2 \operatorname{soo} = x \operatorname{soo}$ $1 - x^2 \operatorname{soo} $	$\cos(x + x) = \cos x \cos x + \sin x \sin x.$	
x^2 39s = x^2 HeI + I	$I = x^2 mis + x^2 soo$	
$\frac{1}{z^4} = \frac{1}{r^4} \left(\cos \lambda \sin \frac{\theta + 2\pi k}{p} + i \sin \frac{\theta + 2\pi k}{p} \right) - \int_0^1 \int_0^1 dt dt dt dt dt dt dt dt $		
θn mis $i + \theta n$ so $a = n(\theta \text{ sign})$	$z^{n} = z ^{n} \operatorname{cis}(\theta \theta)$	
	Noivres theorem	
$\frac{1}{\theta \text{sio}} = (\theta -) \text{sio}$	$\operatorname{cis}(\theta_1 + \theta_2) = \operatorname{cis} \theta_1 \operatorname{cis} \theta_2$	
7 7		

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1) (2, 2, 2, 2 & 1 = 9 marks)
If
$$w = 2 - 2i$$
 and $z = 9 - 5i$ determine exactly:

- b) $\frac{w}{z}$
- c) ZW
- d) $W\overline{Z}$
- e) What do you notice about (c) and (d)?

Q2 (2 & 2 = 4 marks)

Express each of the following into Cartesian form, a + bi

7cis
$$\left| -\frac{2\pi}{3} \right|$$

 $Q4 \ (3 \ \text{marks})$ Defermine z in polar form given that w and zw have been drawn below.

Q5 (5, 3 & 3 = 11 marks) a) Determine all the roots of the equation $z^5=I^{-i}$, expressing them all in polar form with $r\ge 0$ and $-\tau<\Lambda$ rgz $\le \pi$

b) Plot the roots on the diagram below. (Note: each minor angle is $\frac{\pi}{20}$ radians.)

Page 4

Yr 12 Maths Specialist

Perth Modern School

c) The roots form the vertices of a pentagon. Determine the value for the perimeter of the pentagon to two decimal places.

Q6 (5 marks)

Determine, using de Moivre's theorem, an expression for $\sin 3\theta$ in terms of $\sin \theta$ only. {Hint: start with $(\cos \theta + i \sin \theta)^{\dagger}$ }

Page 5 Yr 12 Maths Specialist Perth Modern School

Q7 (5 marks)

Consider the points A and B in the complex plane. The perpendicular bisector of the line AB is represented by Im(z) = 3Re(z) - 1

If point A is 5+ci and point B is d-7i in the complex plane, determine the values of the constants c and d.