2021-2022 学年 第二学期期末试卷 2022年6月5日

姓名 成绩

一、单项选择题(每小题 4 分,满分 20 分)

1、设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,当c = ()时, $\hat{\mu}^2 = \overline{X}^2 + c\hat{\sigma}^2$

是 μ^2 的无偏估计,其中 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 。

- (A) $-\frac{1}{n}$, (B) $\frac{1}{n-1}$, (C) $-\frac{1}{n-1}$, (D) $\frac{1}{n}$.
- 2、设 X_1, X_2, X_3 为总体X的一组样本,在下列估计量中,总体均值 μ 的最小方 差无偏估计是().

(A)
$$\frac{2}{9}X_1 + \frac{2}{3}X_2 + \frac{1}{9}X_3$$
 (B) $\frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$

(B)
$$\frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$$

(C)
$$\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$
 (D) $\frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$

(D)
$$\frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$$

- 3、总体 X 的数学期望 μ 的置信度为 $1-\alpha$,置信上下限分别为 $T_2(X_1,X_2,\cdots,X_n)$, $T_1(X_1,X_2,\cdots,X_n)$ 的置信区间为 $[T_1,T_2]$ 的意义是(

 - (A) $P\{T_1 \le X \le T_2\} = 1 \alpha$ (B) $P\{T_1 \le \overline{X} \mu \le T_2\} = 1 \alpha$
 - (C) $P\{T_1 \le \overline{X} \mu \le T_2\} = \alpha$ (D) $P\{T_1 \le \mu \le T_2\} = 1 \alpha$
- 4、设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为总体 X 的一个样本, \overline{X} 为样本均值, S^2 为样本方差,则下列结论中成立的是(

 - (A) $2X_2 X_1 \sim N(\mu, \sigma^2)$ (B) $\frac{X \mu}{S} \sqrt{n-1} \sim t(n-1)$

(C)
$$\frac{n(\overline{X} - \mu)^2}{S^2} \sim F(1, n-1)$$
 (D) $\frac{S^2}{\sigma^2} \sim \chi^2(n-1)$

(D)
$$\frac{S^2}{\sigma^2} \sim \chi^2 (n-1)$$

5、某四因素二水平试验,选择正交表 $L_8(2^7)$,已填好 D,B,C 三个因子,分别 在第一,第四,第七列,若要避免"混杂",应安排因子 A 在第()列。 (交互作用表附后)

A \	2
A)	

B) 3

D) 6

 $L_{\circ}(2^7)$ 交互作用表:

1	2	3	4	5	6	7
(1)	3	2	5	4	7	6
	(2)	1	6	7	4	5
		(3)	7	6	5	4
			(4)	1	2	3
				(5)	3	2
					(6)	
						(7)

- 二、填空题(每小题5分,共25分)
 - 变量 $a(\overline{x}-\mu)^2+bs^2\sim \gamma^2(n)$ 。
 - 2. 在运用贝叶斯估计进行参数估计时,统计推断应该建立在 的基 础上。
- 3. 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$,又 x_1, x_2, \cdots, x_n 为来自于 总体 X 的样本值, 则参数 θ 的极大似然估计 $\hat{\theta}$ =
- 4. 在 p个水平的单因素方差分析中,在每个水平下做 r 次独立重复试验,对所 得 n = pr 个数据 x_{ij} 进行方差分析,得到方差分解式为 $S_T = S_A + S_E$,其中

$$S_T = \sum_{j=1}^p \sum_{i=1}^r (x_{ij} - \overline{x})^2, \quad S_E = \sum_{j=1}^p \sum_{i=1}^r (x_{ij} - \overline{x}_j)^2, \quad S_A = r \sum_{j=1}^p (\overline{x}_j - \overline{x})^2.$$

则 S_T , S_A , S_E 的自由度分别为 (, ,)。

5. 设总体 X 服从 $[0, \theta]$ 上的均匀分布,则参数 θ 的矩估计是

三、(15 分)设 x_1, x_2, \cdots, x_m 是来自正态总体 $N(\mu, 1)$ 的简单样本, y_1, y_2, \cdots, y_n 是来自正态总体 $N(2\mu, 1)$ 的简单样本,两样本独立,其中 μ 是未知参数。将两样本合并成样本容量为m+n样本 $x_1, x_2, \cdots, x_m, y_1, y_2, \cdots, y_n$ 。(1)证明 $T_1 = \frac{1}{2}(\overline{x} + \frac{\overline{y}}{2})$ 是 μ 的无偏估计;(2)求 μ 的一致最小方差无偏估计 T_2 ;(3)问 T_2 是否为 μ 的有效估计?证明你的结论。

四、 $(10\, eta)$ 设 x_1,x_2,\cdots,x_n 是来自正态总体 $N(0,\sigma^2)$ 的简单样本, σ^2 未知。试求假设检验问题

$$H_0: \sigma^2 = 4$$
 $H_1: \sigma^2 = 8$

的水平为 α 的 MPT。

五、(10 分)设有某种产品,其长度服从正态分布,现从该种产品中随机抽取 25 件,得样本均值 \bar{x} =9.28 (cm),样本标准差 s=0.36 (cm),问:这批产品的长度能否认为是 9cm?(已知 $z_{0.95}$ =1.645; $z_{0.975}$ =1.96; $t_{0.975}$ (24)=2.064, $t_{0.975}$ (25)=2.060; $t_{0.95}$ (24)=1.711; $t_{0.95}$ (25)=1.708)

六、(本题 10 分) 考虑某四因子二水平试验,除考察因子 A,B,C,D 外,还需考察 交互作用 $A\times B$ 及 $A\times C$ 。今选用表 $L_8(2^7)$,表头设计及试验数据如表所示,所考虑 的指标是越大越好。试用极差分析方法指出因子的主次顺序和较优工艺条件。

列号 试验号	<i>A</i> 1	<i>B</i> 2	$A \times B$	C 4	A×C 5	T D 6	7	实验数据
1	1	1	1	1	1	1	1	350
2	1	1	1	2	2	2	2	325
3	1	2	2	1	1	2	2	425
4	1	2	2	2	2	1	1	425
5	2	1	2	1	2	1	2	200
6	2	1	2	2	1	2	1	250
7	2	2	1	1	2	2	1	275
8	2	2	1	2	1	1	2	375

七、(本题 10 分) 随机向量 (x_1, x_2, x_3) 的协方差矩阵

$$\Sigma = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 18 \end{pmatrix}$$

- (1) 根据主成分85%的选取标准,应选取几个主成分?
- (2) 试求(1) 中所选的主成分。