CS 430/536 Computer Graphics I

B-Splines and NURBS

Week 5, Lecture 9

David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

http://gicl.cs.drexel.edu

Outline

- · Types of Curves
 - Splines
 - B-splines
 - NURBS
- · Knot sequences
- · Effects of the weights

2

Splines

- Popularized in late 1960s in US Auto industry (GM)
 - R. Riesenfeld (1972)
 - W. Gordon
- Origin: the thin wood or metal strips used in building/ship construction
- Goal: define a curve as a set of piecewise simple polynomial functions connected together

Natural Splines

- Mathematical representation of physical splines
- C² continuous
- Interpolate all control points
- Have Global control (no local control)

.

B-splines: Basic Ideas

- · Similar to Bézier curves
 - Smooth blending function times control points
- · But:
 - Blending functions are non-zero over only a small part of the parameter range (giving us local support)
 - When nonzero, they are the "concatenation" of smooth polynomials. (They are piecewise!)

5

B-spline: Benefits

- User defines degree
 - Independent of the number of control points
- Produces a single piecewise curve of a particular degree
 - No need to stitch together separate curves at junction points
- · Continuity comes for free

6

B-splines

- · Defined similarly to Bézier curves
 - $-p_i$ are the control points
 - Computed with basis functions (Basis-splines)
 - B-spline basis functions are blending functions
 - Each point on the curve is defined by the blending of the control points
 (B_i is the i-th B-spline blending function)

$$p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_i$$

- B_i is zero for most values of t!

B-splines: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let B_{i,d}(t) denote the i-th blending function for a B-spline of degree d, then:

$$\begin{split} B_{k,0}(t) &= \begin{cases} 1, & \text{if } t_k \leq t < t_{k+1} \\ 0, & \text{otherwise} \end{cases} \\ B_{k,d}(t) &= \frac{t - t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t) \end{split}$$

B-spline Blending Functions

- $B_{k,0}(t)$ is a step function that is 1 in the interval
- $B_{k, \rm l}(t)$ spans two intervals and is a piecewise linear function that goes from 0 to 1 (and back)
- $B_{k,2}(t)$ spans three intervals and is a piecewise quadratic that grows from 0 to 1/4, then up to 3/4 in the middle of the second interval, back to 1/4, and back to 0
- $B_{k,3}(t)$ is a cubic that spans four intervals growing from 0 to 1/6 to 2/3, then back to 1/6 and to 0

Pics/Math courtesy of Dave Mount @ UMD-CP

B-spline Blending Functions: Example for 2nd Degree Splines

- Note: can't define a polynomial with these properties (both 0 and non-zero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

B-spline Blending Functions: Example for 3rd Degree Splines

- · Observe:
 - at t=0 and t=1 just four of the functions are non-zero
 - all are >=0 and sum to 1, hence the convex hull property holds for each curve segment of a B-spline

11
1994 Foley/VanDam/Finer/Hunes/Phillips IC

B-splines: Knot Selection

- Instead of working with the parameter space $0 \le t \le 1$, use $t_{\min} \le t_0 \le t_1 \le t_2 ... \le t_{m-1} \le t_{\max}$
- The knot points
 - joint points between curve segments, Q_i
 - Each has a knot value
 - m-1 knots for m+1 points

Uniform B-splines: Setting the Options

- · Specified by

 - $-m \ge 3$ m+1 control points, $P_0 \dots P_m$
 - m-2 cubic polynomial curve segments, Q₃...Q_m
 - m-1 knot points, $t_3 \dots t_{m+1}$
 - segments Qi of the B-spline curve are
 - defined over a knot interval $[t_i, t_{i+1}]$
 - defined by 4 of the control points, P_{i-3} ... P_i
 - segments Q, of the B-spline curve are blended together into smooth transitions via (the new & improved) blending functions

B-spline: Knot Sequences

- · Even distribution of knots
 - uniform B-splines
 - Curve does not interpolate end points
 - first blending function not equal to 1 at t=0
- · Uneven distribution of knots
 - non-uniform B-splines
 - Allows us to tie down the endpoints by repeating knot values (in Cox-deBoor, 0/0=0)
 - If a knot value is repeated, it increases the effect (weight) of the blending function at that point
 - If knot is repeated d times, blending function converges to 1 and

the curve interpolates the control point

B-splines: Cox-deBoor Recursion

- Cox-deBoor Algorithm: defines the blending functions for spline curves (not limited to deg 3)
 - curves are weighted avgs of lower degree curves
- Let $B_{i,d}(t)$ denote the *i*-th blending function for a B-spline of degree d, then:

$$\begin{split} B_{k,0}(t) &= \begin{cases} 1, & \text{if } t_k \leq t < t_{k+1} \\ 0, & \text{otherwise} \end{cases} \\ B_{k,d}(t) &= \frac{t - t_k}{t_{k+d} - t_k} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t) \end{split}$$

Creating a Non-Uniform B-spline: Knot Selection

- Given curve of degree d=3, with m+1 control points $\mathbf{p}_0, \dots, \mathbf{p}_m$
 - first, create m+d knot values
 - use knot values (0,0,0,1,2,..., m-2, m-1,m-1,m-1) (adding two extra 0's and m-1's)
 - Note
 - · Causes Cox-deBoor to give added weight in blending to the first and last points when t is near t_{min} and t_{max}

B-splines: Multiple Knots

- Knot Vector $\{0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0\}$
- · Several consecutive knots get the same value
- · Changes the basis functions!

$p(t) = \sum_{i=0}^{m} B_{i,d}(t) p_{i} \qquad \text{B-spline Summary}$ $B_{00} \qquad B_{k,0}(t) = \begin{cases} 1, & \text{if } t_{k} \leq t < t_{k+1} \\ 0, & \text{otherwise} \end{cases}$ $B_{01} \qquad B_{02} \qquad B_{k,d}(t) = \frac{t - t_{k}}{t_{k+d} - t_{k}} B_{k,d-1}(t) + \frac{t_{k+d+1} - t}{t_{k+d+1} - t_{k+1}} B_{k+1,d-1}(t)$ $B_{03} \qquad B_{03} \qquad C_{0} \qquad C_{$

B-splines: Continuity

• Derivatives are easy for cubics $p(u) = \sum_{k=0}^{3} u^k c_k$ • Derivative: $p'(u) = c_1 + 2c_2u + 3c_3u^2$ Easy to show C^0 , C^1 , C^2

B-splines: Setting the Options

- · How to space the knot points?
 - Uniform
 - · equal spacing of knots along the curve
 - Non-Uniform
- Which type of parametric function?
 - Rational
 - x(t), y(t), z(t) defined as ratio of cubic polynomials
 - Non-Rational

27

NURBS

- At the core of several modern CAD systems
 I-DEAS, Pro/E, Alpha_1
- Describes analytic and freeform shapes
- Accurate and efficient evaluation algorithms
- Invariant under affine and perspective transformations

NURBS

Non-uniform Rational B-splines: NURBS

- Basic idea: four dimensional non-uniform B-splines, followed by normalization via homogeneous coordinates
 If P_i is [x, y, z, 1], results are invariant wrt perspective projection
- · Also, recall in Cox-deBoor, knot spacing is arbitrary
 - knots are close together,
 - influence of some control points increases
 - Duplicate knots can cause points to interpolate
 - e.g. Knots = {0, 0, 0, 0, 1, 1, 1, 1} create a Bézier curve

30

Benefits of Rational Spline Curves

- Invariant under rotation, scale, translation, perspective transformations
 - transform just the control points, then regenerate the curve
 - (non-rationals only invariant under rotation, scale and translation)
- Can precisely define the conic sections and other analytic functions
 - conics require quadratic polynomials
 - conics only approximate with non-rationals

29

Rational Functions

· Cubic curve segments

$$x(t) = \frac{X(t)}{W(t)}, \ y(t) = \frac{Y(t)}{W(t)}, \ z(t) = \frac{Z(t)}{W(t)}$$
 where $X(t)$, $Y(t)$, $Z(t)$, $W(t)$

are all cubic polynomials with control points specified in homogenous coordinates, [x,y,z,w]

• Note: for 2D case, Z(t) = 0

31

Rational Functions: Example

• Example:

- rational function: a *ratio* of polynomials

- a rational parameterization $x(u) = \frac{1-u}{1+u^2}$ in u of a unit circle in xy-plane: $y(u) = \frac{2u}{1+u^2}$

- a unit circle in 3D homogeneous coordinates: $x(u) = 1 - u^2$

 $x(u) = 1 - u^2$ y(u) = 2u z(u) = 0

 $w(u) = 1 + u^2$

32

NURBS: Notation Alert

- · Depending on the source/reference
 - Blending functions are either $B_{i,d}(u)$ or $N_{i,d}(u)$
 - Parameter variable is either *u* or *t*
 - Curve is either C or P or Q
 - Control Points are either P_i or B_i
 - Variables for order, degree, number of control points etc are frustratingly inconsistent
 - k, i, j, m, n, p, L, d,

33

NURBS: Notation Alert

- If defined using homogenous coordinates, the 4th (3rd for 2D) dimension of each P_i is the weight
- 2. If defined as weighted euclidian, a separate constant w_i , is defined for each control point

34

NURBS

• A d-th degree NURBS curve C is def'd as:

$$C(u) = \frac{\sum_{i=0}^{n-1} w_i B_{i,d}(u) P_i}{\sum_{i=0}^{n-1} w_i B_{i,d}(u)}$$

Where

- control points, P_i
- -d-th degree B-spline blending functions, $B_{i,d}(u)$
- the weight, w_i , for control point P_i (when all w_i =1, we have a B-spline curve) 35

Observe: Weights Induce New Rational Basis Functions, *R*

• Setting: $R_i(u) = \frac{w_i B_{i,d}(u)}{\sum_{i=0}^{n-1} w_i B_{i,d}(u)}$

Allows us to write: $C(u) = \sum_{i=0}^{n-1} R_{i,d}(u) P_i$

Where $R_{i,d}(u)$ are rational basis functions

- piecewise rational basis functions on $u \in [0,1]$
- weights are incorporated into the basis fctns

Geometric Interpretation of NURBS

- With Homogeneous coordinates, a rational n-D curve is represented by polynomial curve in (n+1)-D
- Homogeneous 3D control points are written as: $P_i^w=w_ix_i,w_iy_i,w_iz_i,w_i$ in 4D where $w\neq 0$
- To get P_i , divide by w_i
 - a perspective transform with center at the origin
- Note: weights can allow final curve shape to go outside the convex hull (i.e. negative w)

NURBS: Examples

- Knot Vector {0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0}
- Several consecutive knots get the same value
- Bunches up the curve and forces it to interpolate

NURBS: Examples

- Knot Vector {0.0, 1.0, 2.0, **3.0**, **3.0**, 5.0, 6.0, 7.0}
- Several consecutive knots get the same value
- Bunches up the curve and forces it to interpolate
- · Can be done midcurve

40

The Effects of the Weights

- w_i of P_i effects only the range $[u_i, u_{i+k+1})$
- If w_i=0 then P_i does not contribute to C
- If w_i increases, point B and curve C are pulled toward P_i and pushed away from P_i
- If w_i decreases, point B and curve C are pushed away from P_i and pulled toward P_i
- If w_i approaches infinity then
 B approaches 1
 and B_i -> P_i, if u in [u_i, u_{i+k+1})

The Effects of the Weights

 Increased weight pulls the curve toward B₃

Programming assignment 3

- Input PostScript-like file containing polygons
- Output B/W XPM
- · Implement viewports
- Use Sutherland-Hodgman intersection for polygon clipping
- Implement scanline polygon filling. (You cannot use flood filling)

43