مسابقة في الفيزياء الاسم: المدة: ثلاث ساعات الرقم:

Cette épreuve, formée de quatre exercices obligatoires, est constituée de quatre pages numérotées de 1 à 4. L'usage des calculatrices non programmables est autorisé.

<u>Premier exercice</u> (6,5 pts) Détermination d'une force de frottement

Pour déterminer la valeur d'une force de frottement existant entre un mobile de masse M=0,50 kg et une table inclinée d'un angle $\alpha=30^\circ$ par rapport à l'horizontale, on lâche le mobile au point A_0 sans vitesse initiale à l'instant $t_0=0$ pris comme origine des temps et on enregistre les différentes positions A_i de la projection de son centre d'inertie sur la table à des intervalles de temps réguliers $\tau=60$ ms, les points A_i étant portés par l'axe du mouvement x'x de vecteur unitaire \vec{i} . Prendre g=9,8 m/s².

L'enregistrement obtenu permet de dresser le tableau ci-dessous.

Instant	$t_0 = 0$	$t_1 = \tau$	$t_2 = 2 \tau$	$t_3 = 3 \tau$	$t_4 = 4 \tau$	$t_5 = 5 \tau$	$t_{6} = 6 \tau$
Position	A_0	\mathbf{A}_1	A_2	A_3	A_4	\mathbf{A}_5	A_6
Abscisse x (mm)	0	$A_0A_1 = 7,20$	$A_0A_2 = 28,9$	$A_0A_3 = 64,9$	$A_0A_4 = 115$	$A_0A_5 = 181$	$A_0A_6 = 259$
Vitesse V (m/s)	0	0,24		0,72		1,20	
Quantité de mouvement P(kg.m/s)	0	0,12		0,36		0,60	

- 1) Compléter le tableau ci-dessus en calculant, aux dates t₂ et t₄, les valeurs V₂ et V₄ de la vitesse et les valeurs P₂ et P₄ de la quantité de mouvement du mobile.
- 2) Tracer la courbe représentant les variations de P en fonction du temps, à l'échelle de 1cm en abscisse pour 0,06 s et 1 cm en ordonnée pour 0,05 kg.m/s.
- 3) Montrer que la relation liant la quantité de mouvement $\vec{P} = P\vec{i}$ au temps t est de la forme $\vec{P} = \mathbf{b} t \vec{i}$ où \mathbf{b} est une constante.
- 4) Calculer **b** en unités SI.
- 5) a. Démontrer que la table inclinée exerce sur le mobile une force de frottement \vec{f} supposée constante et parallèle à l'axe x'x.
 - **b.** Calculer la valeur f de \overrightarrow{f} .

<u>Deuxième exercice</u> (7,5 pts) Identification de dipôles

On désire identifier deux dipôles D_1 et D_2 , dont l'un est un condensateur de capacité C et l'autre une bobine d'inductance L et de résistance r. Dans ce but, on dispose d'un GBF délivrant une tension alternative sinusoïdale de valeur efficace maintenue constante durant toute la manipulation, d'un oscilloscope, d'un conducteur ohmique de résistance $R=10\Omega$ et de fils de connexion.

On réalise le montage schématisé par la figure (1), le dipôle D pouvant être D_1 ou D_2 . Les figures (2) et (3) montrent les oscillogrammes de chacune des tensions u_{AM} et u_{BM} .

On donne:

Sensibilité horizontale : 1 ms / division Sensibilité verticale de (Y₁) : 2 V / division Sensibilité verticale de (Y₂) : 1 V / division

A- Natures de D₁ et de D₂

L'oscillogramme de la figure (2) correspond au dipôle D₁. D₁ est alors la bobine. Pourquoi ?

B- Caractéristiques (L, r) de la bobine

- 1. a) Déterminer la période de la tension délivrée par le GBF et en déduire sa pulsation ω.
 - **b)** Déterminer les valeurs maximales des tensions u_{AM} et u_{BM}.
 - c) Calculer le déphasage φ entre la tension u_{AM} et l'intensité i du courant qui traverse le circuit.
- **2.** Sachant que l'intensité i du courant a pour expression : $i = I_{1m} \cos \omega t$, déterminer :
- a) les expressions de u_{BM} , u_{AB} et u_{AM} en fonction du temps t.
- **b)** la valeur de I_{1m}.
- **3.** En appliquant la loi d'additivité des tensions et en donnant à ωt deux valeurs particulières, déterminer les valeurs de r et de L.

C- Capacité C du condensateur

Le dipôle D₂ étant branché entre A et B, l'expression de la tension u_{AB} est, dans ce cas : $u_{AB} = \frac{I_{2m}}{C\omega} \sin \omega t$.

- 1. Vérifier que l'expression de l'intensité du courant est : $i = I_{2m} \cos \omega t$.
- 2. Montrer que l'expression de u_{AM} est : $u_{AM} = 8 \cos (\omega t \frac{3\pi}{8})$
- 3. Déterminer la valeur de C.

Troisième exercice (6,5 pts) Interférences lumineuses

On dispose d'une source S de lumière monochromatique de longueur d'onde λ et d'une lame de verre à faces parallèles d'épaisseur e et d'indice n =1,5.

Le but de cet exercice est de déterminer λ et e en utilisant le dispositif des fentes de Young.

A- Valeur de λ

Le dispositif des fentes de Young est constitué de deux fentes F_1 et F_2 très fines, parallèles et distantes de a=0,15 mm, et d'un écran d'observation (E) disposé parallèlement au plan des fentes à une distance D=1,5 m de ce plan .

- 1) En éclairant F₁ avec S et F₂ avec une autre source S', synchrone à S, on n'observe pas un système de franges d'interférences. Pourquoi ?
- 2) En éclairant F₁ et F₂ avec S, placée à égale distance de F₁ et F₂, on observe sur (E) un système de franges d'interférences.
- a. Décrire ce système.
- b. Au point O de l'écran, équidistant de F₁ et F₂, on observe une frange brillante. Pourquoi ?
- c. On montre qu'en un point M de (E), tel que x = OM, la différence de marche optique dans l'air ou dans le vide est donnée par $\delta = F_2M F_1M = \frac{ax}{D}$. Déterminer l'expression de x_K correspondante à la $k^{\text{lème}}$ frange brillante et en déduire l'expression de l'interfrange i.
- 3) On compte 11 franges brillantes qui s'étalent sur une distance d = 5,6 cm. Déterminer la valeur de la longueur d'onde λ .

B- Valeur de e

On place maintenant, juste derrière la fente F_1 , la lame de verre. La différence de marche optique au point M devient : $\delta' = \frac{ax}{D}$ - e(n-1).

- 1. Montrer que l'interfrange i reste le même.
- 2. a) La frange centrale ne se forme plus en O. Pourquoi?
 - b) La frange centrale se forme alors en O', position occupée par la cinquième frange sombre en l'absence de la lame. Déterminer l'épaisseur e de la lame.

3

Quatrième exercice (7 pts)

Étude du radionucléide 198 Au

On donne:

```
\begin{array}{lll} \text{masse molaire de} & ^{198}_{79} \, \text{Au} : 198 \, g \, ; & \text{nombre d'Avogadro} : 6,022 \times 10^{23} \, \, \text{mol}^{-1} \, ; \\ \text{masse de l'électron} : 5,50 \times 10^{-4} \, u \, ; & \text{célérité de la lumière dans le vide c= } 3 \times 10^8 \, \, \text{m/s} \, ; \\ 1 \, u = 931,5 \, \, \text{MeV} \, / \, c^2 = 1,66 \times 10^{-27} \, \text{kg} \, ; & \text{1 eV} = 1,6 \times 10^{-19} \, \text{J}; \\ \text{masse du noyau Au} : 197,925 \, u \, ; & \text{masse du noyau Hg} : 197,923 \, u; \\ \text{masse du neutron } m_p = 1,00728 \, u \, ; & \text{masse du neutron } m_p = 1,00866 \, u. \end{array}
```

A- Comparaison de la masse volumique du noyau d'or et de celle de l'atome d'or

- 1) a. Calculer la masse d'un atome d'or ¹⁹⁸/₇₉ Au.
 - **b.** Comparer la masse de l'atome d'or ¹⁹⁸/₇₉ Au à celle de son noyau.
- 2) Le rayon moyen d'un atome d'or est $r = 16 \times 10^{-11}$ m. Le rayon moyen d'un nucléon est $r_o = 12 \times 10^{-16}$ m. Comparer la masse volumique de l'atome d'or à celle de son noyau. Conclure à propos de la répartition de la matière dans l'atome.

B- Stabilité du noyau d'or

- **1. a)** Donner la composition du noyau ¹⁹⁸/₇₉ Au.
 - **b)** Si on brise un noyau d'or ¹⁹⁸ Au en ses nucléons, montrer que la somme des masses des nucléons, pris séparément au repos, est supérieure à celle du noyau, pris au repos. À quoi est due cette augmentation de masse ?
- 2. Sachant qu'un noyau est considéré comme stable quand son énergie de liaison par nucléon est supérieure ou égale à 8 MeV, conclure à propos de la stabilité du noyau ¹⁹⁸/₇₉ Au.

C- Étude de la désintégration du noyau d'or 198 Au

En se désintégrant, un noyau d'or $^{198}_{79}$ Au, au repos, produit un noyau fils (noyau de mercure $^{A}_{Z}Hg$) de vitesse supposée négligeable. On a pu détecter l'émission d'un photon γ d'énergie 0,412 MeV et d'une particule β d'énergie cinétique 0,824 MeV.

- 1. En précisant les lois utilisées, écrire l'équation de la réaction de désintégration du noyau d'or et déterminer A et Z.
- **2.** a) Préciser la nature physique du rayonnement γ .
 - **b)** À quoi est due l'émission γ ?
- **3. a)** Montrer, par application de la loi de conservation de l'énergie totale, l'existence d'une nouvelle particule émise accompagnant l'émission β^- .
 - **b)** Nommer cette particule.
 - c) Déduire son énergie en MeV.
- **4.** Calculer la vitesse V de la particule relativiste β sachant que son énergie cinétique est donnée par :

E_c(relativiste) = mc²(
$$\gamma$$
-1) avec $\frac{1}{\gamma} = \sqrt{1 - \frac{V^2}{c^2}}$