Lösungen zur Exercise 3

Künstliche Intelligenz

Exercise 6: Truth Tables

Use a truth table to prove that $\neg p$ is a logical consequence of the set $q \lor r, q \Rightarrow \neg p, \neg (r \land p)$.

$q \cdot (q \cdot q \cdot$							
p	q	r	$q \lor p$	$q \Rightarrow \neg p$	$\neg(r \land p)$	{}	$\{\} \Rightarrow \neg p$
0	0	0	0	1	1	0	1
0	0	1	0	1	1	0	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	1	1	0	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1

Exercise 7: SLD

Give SLD-resolution refutations for the following sets of clauses:

a)
$$\{P1\}, \{P2\}, \{P3\}, \{P4\}, \{\neg P1, \neg P2, P6\}, \{\neg P3, \neg P4, P7\}, \{\neg P6, \neg P7, P8\}, \{\neg P8\}$$

$$\frac{\{\neg P8\}, \{\neg P6, \neg P7, P8\}}{\{\neg P6, \neg P7\}, \{\neg P1, \neg P2, P6\}}$$

$$\frac{\{\neg P1, \neg P2, \neg P7\}, \{P2\}}{\{\neg P1, \neg P7\}, \{P1\}}$$

$$\{\neg P7\},$$

$$\frac{\{\neg P7\}, \{P1\}}{\{\neg P7\}, \{\neg P3, \neg P4, P7\}} \\
\underline{\{\neg P3, \neg P4\}, \{P3\}} \\
\underline{\{\neg P4\}, \{P4\}}$$

b)
$$\{\neg P2, P3\}, \{\neg P3, P4\}, \{\neg P4, P5\}, \{P3\}, \{P1\}, \{P2\}, \{\neg P1\}, \{\neg P3, P6\}, \{\neg P3, P7\}, \{\neg P3, P8\}$$

$$\frac{\{\neg P1\}, \{P1\}}{\{\}}$$

Exercise 8: DPLL I

Are the following formulas satisfiable? Use the DPLL procedure:

a)
$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b)$$

[]
$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b)$$
 | Pure-Literal $\neg a$ [$\neg a$] $(\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b)$ | Pure-Literal $\neg c$ [$\neg a, \neg c$] $(\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b)$ | Split $\neg e$ [$\neg a, \neg c, \neg c$]

b)
$$(p \lor q \lor r \lor s) \land (\neg p \lor q \lor \neg r) \land (\neg q \lor \neg r \lor s) \land (p \lor \neg q \lor r \lor s) \land (q \lor \neg r \lor \neg s) \land (\neg p \lor \neg r \lor s) \land (\neg p \lor \neg s) \land (p \lor \neg q)$$
 Split s

$$[s] \qquad (\neg p \lor q \lor \neg r) \land (q \lor \neg r) \land (p) \land (p \lor \neg q) \quad | \text{Unitprop } \neg p \\ [s, \neg p] \qquad (q \lor \neg r) \land (\neg q) \quad | \text{Unitprop } \neg q \\ [s, \neg p, \neg q] \qquad (\neg r) \quad | \text{Unitprop } \neg r \\ [s, \neg p, \neg q, \neg r] \qquad \emptyset$$

Exercise 9: DPLL II

Can you present a formula that well illustrates the worst case.

Der aufwändigste Fall, ist wenn man nie Pure-Literal/Unit-Propagation anwenden kann, sondern nur Split mit Backtrack und keine Lösung funktioniert, sodass man alle ausprobieren muss.

Für n Variablen, erstelle man also alle Teilformeln der Länge n wo alle Variablen vorkommen mit allen kombinationen von direkt/negiert. Dadurch erhält man 2^n teilformeln und die Formel ist nicht erfüllbar.

Wenn man eine beliebige Formel entfernt, dann ist die Gesamtformel erfüllbar mit der negation der entfernten Formel als Belegung.

Exercise 10: Pythagoreans Triple Problem

Find out and explain how the pythagoreans triple problem was represented in SAT by Heule and colleagues.

 F_n repräsentiert das Problem die Zahlen 1...n so mit 2 Farben einzufärben, dass es kein einfarbiges Pythagoreisches Tripel gibt. Um dieses Problem in SAT abzubilden, werden die Variablen $x_i \in \{1...n\}$, die durch ihre Belegung (True/False) repräsentieren, wie die entsprechende Zahl i eingefärbt wird. Heißt: True entspricht Farbe 1 und False Farbe 2. Für jedes Pthagoreisches Tripel (a, b, c) mit $a^2 + b^2 = c^2$ ergeben sich folgende Klauseln:

$$(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b \lor \neg x_c)$$

All diese Klauseln zusammen ergeben das zu F_n äquivalente SAT-Problem.