

CSCI467 – Data Mining

Lab 04

Table of Contents

- Association rules mining:
 - Apriori Algorithm.
 - FP-Growth Algorithm.
 - ECLAT Algorithm.

Apriori Algorithm.

Association Rules Mining

Imagine that you are a sales manager, and you are talking to a customer who recently bought a **PC** and a **digital camera** from the store.

What should you **recommend** to her next?

Information about which products are **frequently purchased** by your customers **following** their purchases of a **PC and a digital camera** in sequence would be very helpful in making your recommendation.

Frequent patterns and **association rules** are the knowledge that you want to mine in such a scenario.

Frequent patterns are patterns that appear frequently in a dataset.

For example, a set of items, such as **milk** and **bread**, that appear frequently together in a transaction data set is a **frequent itemset**.

The discovery of **interesting relationships** among huge amounts of business **transaction** records can help in many **business decision-making** processes such as:

- Catalog design.
- Products recommendation.
- Cross-marketing.
- Customer shopping behavior analysis.
- Develop marketing strategies.
- Filling out missing data.

For example, the association rule {Bread --> Milk} has 2 parts:

- Antecedent {Bread}.
- Consequent (Milk).

For a high confidence rule: if Bread exists, then Milk will exist.

Market Baset Analysis: A Motivating Example

A typical example of frequent itemset mining is market basket analysis.

Algorithms to mine frequent patterns:

- 1. Apriori algorithm.
- 2. FP Growth algorithm.
- 3. ECLAT algorithm.

How to measure an association rules?

$$\operatorname{Support}(X) = \frac{\operatorname{Transactions containing } X}{\operatorname{Total transactions}}$$

How frequently an itemset appears in the dataset.

$$\operatorname{Confidence}(X\Rightarrow Y) = \frac{\operatorname{Support}(X\cup Y)}{\operatorname{Support}(X)}$$

For each time X appears, how many times does Y appear in the same tuple?

<u>Or</u>

The likelihood that Y is purchased given that X is purchased.

$$\operatorname{Lift}(X\Rightarrow Y) = rac{\operatorname{Confidence}(X\Rightarrow Y)}{\operatorname{Support}(Y)}$$

Measures the strength of a rule.

>1:products are likely purchased together.

<1: products are not likely purchased together.

=1: no association (bought together by chance).

Given 5 transactions:

(1) Support:

Support of (Milk):
$$rac{3}{5}=0.6$$

Support of (Milk, Bread):
$$rac{2}{5}=0.4$$

Transaction	Items Bought
1	Milk, Bread, Butter
2	Milk, Bread
3	Bread, Butter
4	Milk
5	Bread, Butter

Given 5 transactions:

(2) Confidence: Confidence
$$(X \Rightarrow Y) = \frac{\operatorname{Support}(X \cup Y)}{\operatorname{Support}(X)}$$

Support {Milk, Bread} =
$$\frac{2}{5} = 0.4$$

Support {Milk} =
$$\frac{3}{5} = 0.6$$

Confidence (Milk --> Bread) = 0.4 / 0.6 = 0.67 (67%)

This means that 67% of customers who bought Milk also bought Bread.

Transaction	Items Bought
1	Milk, Bread, Butter
2	Milk, Bread
3	Bread, Butter
4	Milk
5	Bread, Butter

Given 5 transactions:

(3) Lift:
$$Lift(X \Rightarrow Y) = \frac{Confidence(X \Rightarrow Y)}{Support(Y)}$$

Confidence {Milk, Bread} = 0.67

Support {Bread} =
$$\frac{4}{5} = 0.8$$

Lift (Milk --> Bread) =
$$\frac{0.67}{0.8} = 0.84$$

Milk and Bread are not likely bought together.

Transaction	Items Bought
1	Milk, Bread, Butter
2	Milk, Bread
3	Bread, Butter
4	Milk
5	Bread, Butter

Apriori Algorithm:

- Any subset of **frequent** itemset; must be **frequent**.
- <u>Ex:</u> if {x,y,z} is frequent, then {y,z} also {x} is frequent.
- If any subset of itemset S is infrequent, then there is no chance for S to be frequent, hence you do **not** have to mine S.
- Applied in two steps:
 - Candidate generation (self join).
 - Pruning (filter items by the minimum support).

A database has 5 transactions. Let min sup = 60% and min conf = 80%. Use Apiriori algorithm to **find** the frequent item-sets.

TID	$items_bought$
T100	{M, O, N, K, E, Y}
T200	{D, O, N, K, E, Y}
T300	{M, A, K, E}
T400	$\{M, U, C, K, Y\}$
T500	{C, O, O, K, I, E}

At K = 1

Step 01

 Candidates 2. Pruning: generation:

M 3 M
O 3 O
N 2
K 5 K
E 4 E
Y 3 Y

At K = 2

Step 02

1. Candidates 2. Pruning generation:

MO 1
MK 3 MK
ME 2
MY 2
OK 3 OK
OE 3 OE
OY 2
KE 4 KE
KY 3 KY
EY 2

 $\begin{array}{c|c} T200 \\ T300 \\ T400 \\ T500 \end{array}$

TID

T100

{D, O, N, K, E, Y } {M, A, K, E} {M, U, C, K, Y} {C, O, O, K, I, E}

 $items_bought$

 $\{M, O, N, K, E, Y\}$

Step 03

 Candidates 2. Pruning: generation:

MKO 1

MKE 2

MKY 2

OKE 3 OKY 2

OEY 2

KEY 2

OKE

11

A 1

C 2

U 1

<u>C</u>: Candidates (all item sets).

<u>L</u>: Frequent item set.

$$C1 = \{M,O,N,K,E,Y,D,A,C,U,I\}$$

 $L1 = \{E, K, M, O, Y\}$

C2 = {EK, EM, EO, EY, KM, KO, KY, MO, MY, OY}
L2 = {EK, EO, KM, KO, KY}

$$C3 = \{EKO\}$$

 $L3 = \{EKO\}$

$$C4 = \emptyset$$
$$L4 = \emptyset$$

The complete set of frequent itemsets (all in pruning steps):

{M, O, E, K, Y, EK, EO, KM, KO, KY, EKO}

The most frequent itemset is (at highest K): {EKO}

<u>Disadvantage:</u>

We generate lots of useless combinations (candidates) that are pruned later. To overcome this limitation, use **FP Growth** algorithm.

Find the frequent item-sets and **generate** association rules on this. Assume that minimum support threshold (s = 33.33%) and minimum confident threshold (c = 60%)

Transaction ID	Items
T1	Hot Dogs, Buns, Ketchup
T2	Hot Dogs, Buns
Т3	Hot Dogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
T6	Hot Dogs, Coke, Chips

(1) Frequent item sets:

C at **K** = **1**

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

L at K = 1

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

L at K = 2

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Coke, Chips	3

<u>C at K = 2</u>

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Ketchup	1
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Buns, Ketchup	1
Buns, Coke	0
Buns, Chips	0
Ketchup, Coke	0
Ketchup, Chips	1
Coke, Chips	3

<u>C at K = 3</u>

Item set	Sup-count
Hot Dogs, Buns, Coke	0
Hot Dogs, Buns, Chips	0
Hot Dogs, Coke, Chips	2

L at K = 3

Item set	Sup-count
Hot Dogs, Coke, Chips	2

minimum support count =
$$\frac{33.33}{100} \times 6$$

= 2

The most frequent itemset (I) = {Hot Dogs, Coke, Chips}

(2) Association rules:

- •[Hot Dogs^Coke]=>[Chips]
 confidence = sup(Hot Dogs^Coke^Chips)/sup(Hot Dogs^Coke) = 2/2*100=100% Selected
- [Hot Dogs^Chips]=> [Coke] confidence = sup(Hot Dogs^Coke^Chips)/sup(Hot Dogs^Chips) = 2/2*100=100% Selected
- •[Coke^Chips]=>[Hot Dogs]
 confidence = sup(Hot Dogs^Coke^Chips)/sup(Coke^Chips) = 2/3*100=66.67% Selected
- [Hot Dogs] => [Coke^Chips] confidence = sup(Hot Dogs^Coke^Chips)/sup(Hot Dogs) = 2/4*100=**50%** Rejected

(2) Association rules:

- [Coke]=>[Hot Dogs^Chips] confidence = sup(Hot Dogs^Coke^Chips)/sup(Coke) = 2/3*100=66.67% Selected
- [Chips]=>[Hot Dogs^Coke] confidence = sup(Hot Dogs^Coke^Chips)/sup(Chips) = 2/4*100=**50% Rejected**

There are **four** strong results (minimum confidence greater than 60%).

Extra Example

Given the following transactions with missing values, use the Apriori algorithm to fill out these missing values: Butter in ID2 and Eggs in ID4.

ID	Items
ID1	Milk, Bread, Eggs
ID2	Milk, Bread, ? (Butter), Eggs
ID3	Milk, Butter, Eggs
ID4	Bread, Butter, ? (Eggs)
ID5	Milk, Bread, Butter, Eggs

Extra Example

Step 1:

Convert the dataset into a transactional format.

ID	Items
ID1	Milk, Bread, Eggs
ID2	Milk, Bread, ? (Butter), Eggs
ID3	Milk, Butter, Eggs
ID4	Bread, Butter, ? (Eggs)
ID5	Milk, Bread, Butter, Eggs

ID	Milk	Bread	Butter	Eggs
1	1	1	0	1
2	1	1	?	1
3	1	0	1	1
4	0	1	1	?
5	1	1	1	1

Extra Example

ID	Milk	Bread	Butter	Eggs
1	1	1	0	1
2	1	1	?	1
3	1	0	1	1
4	0	1	1	?
5	1	1	1	1

Step 2:

Apply Apriori Algorithm to get association rules with high confidence:

- {Milk, Bread} → {Butter} (Confidence = 85%)
- {Bread, Butter} → {Eggs} (Confidence = 90%)

Step 3:

Fill out missing values:

- ID: Since {Milk, Bread} → {Butter} is 85% confident, we can assume Butter = 1.
- **ID4**: Since {Bread, Butter} → {Eggs} is **90% confident**, we can assume **Eggs** = **1**.

Step 4:

Update the table.

ID	Milk	Bread	Butter	Eggs
1	1	1	0	1
2	1	1	1	1
3	1	0	1	1
4	0	1	1	1
5	1	1	1	1

Task

Task

Find the frequent item-sets and **generate** association rules. Assume that:

- Minimum support threshold (s = 50%)
- Minimum confident threshold (c = 70%)

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
T3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

Thank you!