EJERCICIO 1) (2.5 puntos) Resolver el siguiente problema de Cauchy

$$\begin{cases} yu_y - (x+1)u_x = u + 2x \\ u(1,y) = y. \end{cases}$$

Solución. La ecuación diferencial de las curvas características es

$$\frac{dy}{dx} = -\frac{1}{x+1}y$$

cuyas soluciones son

$$y = ce^{-\int \frac{1}{x+1} dx} = \frac{c}{x+1},$$

con lo que la ecuación de las características es

$$(x+1)y = c.$$

(0,5pt por hallar las características). Hacemos el cambio de variables

$$\begin{cases} \xi = (x+1)y \\ \eta = y. \end{cases}$$

El cambio inverso es

$$\begin{cases} x = x(\xi, \eta) = \frac{\xi}{\eta} - 1 \\ y = y(\xi, \eta) = \eta. \end{cases}$$

Vamos a escribir detalladamente los pasos: Sea $U(\xi,\eta) := u(x(\xi,\eta),y(\xi,\eta))$. Entonces se tiene que

$$\begin{split} u_x = & U_\xi \xi_x + U_\eta \eta_x = \eta U_\eta \\ u_y = & U_\xi \xi_y + U_\eta \eta_y = \frac{\xi}{\eta} U_\xi + U_\eta. \end{split}$$

Esto es

$$U_{\eta} - \frac{U}{\eta} = \frac{2\xi}{\eta^2} - \frac{2}{\eta}.$$

Una solución U_h de la homogénea $U_\eta - \frac{U}{\eta} = 0$ es

$$U_h = p(\xi)e^{\int \frac{1}{\eta}d\eta} = p(\xi)\eta.$$

(0,5pt por hallar las soluciones generales en las nuevas variables).

Supongamos que U_p es una solución particular; entonces siempre se tiene que

$$\left(\frac{U_p}{U_h}\right)_{\eta} = \frac{U_h(U_p)_{\eta} - (U_h)_{\eta}U_p}{(U_h)^2} = \frac{(U_p)_{\eta} - U_p/\eta}{U_h} = \frac{1}{U_h} \left(\frac{2\xi}{\eta^2} - \frac{2}{\eta}\right).$$

Así que, tomando $U_h = \eta$,

$$U_p = \eta \int \left(\frac{2\xi}{\eta^3} - \frac{2}{\eta^2}\right) d\eta = -\frac{\xi}{\eta} + 2.$$

En conclusión

$$U(\xi, \eta) = p(\xi)\eta - \frac{\xi}{\eta} + 2. \tag{1}$$

La condición u(1,y) = y para todo y se convierte en

$$U(2\eta, \eta) = \eta \ para \ todo \ \eta \tag{2}$$

ya que x = 1 es la curva $x = 2\eta$. Por tanto,

$$\eta = U(2\eta, \eta) = p(2\eta)\eta - \frac{2\eta}{\eta} + 2 = p(2\eta)\eta,$$
(3)

así que p(t) = 1 para todo t (utilizando continuidad de p en t = 0). Utilizando esto en (1),

$$U(\xi, \eta) = \eta - \frac{\xi}{\eta} + 2.$$

Utilizando el cambio inverso,

$$u(x,y) = y - (x+1) + 2 = y - x + 1.$$
(4)

(1pt por hallar la solución). Para la unicidad de la solución (4): La curva $\Gamma := \{x = 1\}$ nunca es tangente a ninguna característica $\kappa_C := \{(x+1)y = C\}$ ya que en un punto arbitrario $(x_0, y_0) \in \Gamma$ (i.e. $x_0 = 1$) un vector tangente a Γ es (0,1) y un vector tangente a κ_C es $(-x_0 - 1, y_0) = (-2, y_0)$, que no son proporcionales (otra manera: (0,1) es proporcional a $(-2, y_0)$ si y solo si (0,1) es perpendicular a $(y_0, 2)$ si y solo si (0,1), $(y_0, 2)$ = 0, lo que no es cierto). (0,5pt por unicidad).

EJERCICIO 2) (3.5 puntos) utilizando el método de variables separadas, hallar las soluciones del siguiente problema

$$\begin{cases} u_{xx} + u_{yy} + u = 0, & (x, y) \in (0, \pi) \times (0, \pi) \\ u_y(x, 0) = u_y(x, \pi) = 0 \\ u(0, y) = 0 \\ u(\pi, y) = \cos(2y) \end{cases}$$

Solución. Pongamos una posible solución como u(x,y) = F(x)G(y). La edp se transforma en

$$F''(x)G(y) + F(x)G''(y) + F(x)G(y) = 0$$

y por tanto

$$\frac{F''(x) + F(x)}{F(x)} = -\frac{G''(y)}{G(y)} = \lambda \in \mathbb{R}$$
 (5)

ya que la primera parte depende exclusivamente de x y la segunda de y. (0,5pt por llegar a la expresión anterior). Las restricciones se transforman como

$$\begin{cases} 0 = u_y(x,0) = F(x)G'(0) & y \text{ como } F \text{ no es constante igual a 0 se tiene que } G'(0) = 0 \\ 0 = u_y(x,\pi) = F(x)G'(\pi) & y \text{ como } F \text{ no es constante igual a 0 se tiene que } G'(\pi) = 0. \end{cases}$$

De (5) y de lo anterior tenemos

$$\begin{cases} G'' + \lambda G = 0 \\ G'(0) = G'(\pi) = 0. \end{cases}$$

$$\tag{6}$$

Los autovalores y autofunciones son $\lambda_n = n^2$ y $G_n(y) = \cos(ny)$ para todo $n \in \mathbb{N}$. (1pt por hallar estas funciones). Sabemos que cualquier solución al problema inicial será

$$\sum_{n>0} F_n(x)\cos(ny)$$

Similarmente, de (5), para cada $n \in \mathbb{N}$ (y sin contar la condición $u(\pi, y) = \cos(2y)$) tenemos los siguientes problemas en F

(P_n)
$$\begin{cases} F'' + (1 - \lambda_n)F = 0 \\ F(0) = 0 \end{cases}$$

Para n=0 el problema (P_0) tie
e como solución $F_0(x)=c_0\sin x,\,c_0\in\mathbb{R};$ para $n>0,\,F''+(1-\lambda_n)F=0$ tiene como solución general

$$d_1 e^{\sqrt{n^2-1}x} + d_2 e^{\sqrt{n^2-1}x}$$

y utilizando que F(0) = 0, se llega a $c_1 = -c_2$, por tanto la solución a $(P_n)_n$ es

$$F_n(x) = c_n \sinh((\sqrt{n^2 - 1})x).$$

(1pt por hallar estas funciones). Así que para cada n, la solución (sin la condición $u(\pi, y) = \cos(2y)$) es

$$F_n(x)G_n(y) = \begin{cases} c_0 \sin(x) & \text{si } n = 0\\ c_n \sinh((\sqrt{n^2 - 1})x)\cos(ny) & \text{si } n > 0 \end{cases}$$

y la solución al problema original, sin la condición $u(\pi, y) = \cos(2y)$ es

$$F(x,y) = c_0 \sin x + \sum_{n>1} c_n \sinh((\sqrt{n^2 - 1})x) \cos(ny).$$

Utilizando $u(\pi, y) = \cos(2y)$,

$$\cos(2y) = u(\pi, y) = \sum_{n \ge 1} c_n \sinh((\sqrt{n^2 - 1})\pi) \cos(ny).$$

Como $\sinh((\sqrt{n^2-1})\pi) \neq 0$ para todo $n \geq 1$ y como hay unicidad en los coeficientes de Fourier, se tiene que

$$c_n = \begin{cases} 0 & \text{si } n \neq 2\\ \frac{1}{\sinh(\sqrt{3}\pi)} & \text{si } n = 2. \end{cases}$$

y las soluciones son

$$u(x,y) = c \sin x + \frac{1}{\sinh(\sqrt{3}\pi)} \sinh((\sqrt{3})x) \cos(2y)$$

para cualquier $c \in \mathbb{R}$. (1pt por hallar las soluciones).

EJERCICIO 3) (4 puntos) Dada una función $g : \mathbb{R} \to \mathbb{R}$ absolutamente integrable en \mathbb{R} , denotemos por \widehat{g} su transformada de Fourier.

(3.1) (1pt). Sea f una función absolutamente integrable en \mathbb{R} y de clase C^2 . Demostrar que la transformada de Fourier $\widehat{f''}(\xi)$ de f'' es la función $-\xi^2 \widehat{f}(\xi)$.

- (3.2) (1pt) Utilizando que la transformada de Fourier de la función $f(x) := e^{-ax^2}$ es $\widehat{f}(\xi) = (1/\sqrt{2a})e^{-\xi^2/4a}$, calcular la transformada de Fourier de la función $(x^2 1)e^{-x^2/2}$.
- (3.3) Aplicando la transformada de Fourier, hallar la solución del siguiente problema

$$\begin{cases} u_t - u_{xx} = (x^2 - 1)e^{-\frac{x^2}{2}}, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = 0, & u \text{ acotada.} \end{cases}$$

Solución. (3.1): Tenemos, integrando por partes

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{i\xi x} dx = \left. \frac{1}{\sqrt{2\pi}} f(x)e^{i\xi x} \right|_{-\infty}^{\infty} - i\xi \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\xi x} dx = -i\xi \widehat{f}(\xi),$$

donde hemos utilizado que como $\int_{\mathbb{R}} |f| < \infty$, se tiene que $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$, y también que $|e^{i\theta}| = 1$ para todo $\theta \in \mathbb{R}$. Por tanto,

$$\widehat{f''}(\xi) = -i\xi \widehat{f'}(\xi) = -\xi^2 \widehat{f}(\xi).$$

(3.2): Notemos que si $f(x) = e^{-x^2/2}$, entonces se tiene que

$$f''(x) = (-xe^{-\frac{x^2}{2}})' = -e^{-\frac{x^2}{2}} + x^2e^{-\frac{x^2}{2}} = (x^2 - 1)e^{-\frac{x^2}{2}}.$$

Pongamos $g(x) = (x^2 - 1)e^{-\frac{x^2}{2}}$. Entonces, por lo anterior, f'' = g y por tanto,

$$\widehat{g}(\xi) = \widehat{f''}(\xi) = -\xi^2 \widehat{f}(\xi) = -\xi^2 e^{-\frac{\xi^2}{2}}.$$

(3.3): Supongamos que u(x,t) es solución de

$$\begin{cases} u_t - u_{xx} = (x^2 - 1)e^{-\frac{x^2}{2}}, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = 0, \end{cases}$$
 (7)

sea $\widehat{u}(\xi)$ la transformada de Fourier de u(x,t) con respecto a x. Aplicando esta transformada, el problema (7) se transforma en

$$\begin{cases} \widehat{u}_t + \xi^2 \widehat{u} = -\xi^2 e^{-\frac{\xi^2}{2}}, & \xi \in \mathbb{R}, t > 0 \\ \widehat{u}(\xi, 0) = 0, \end{cases}$$
 (8)

(0,5pt por hallar el nuevo problema en \widehat{u}). Una ecuación lineal y'(x) + ay(x) + b = 0 a coeficientes constantes (con $a \neq 0$) es sencilla de resolver. Se considera la homogénea y'+ay = 0, que tiene por solución $y_0(x) = ce^{-ax}$ y la solución general será $y = y_0 + d$ para cierto $c \in \mathbb{R}$, que pasamos a calcular:

$$0 = (y_0 + d)'a(y_0 + d) + b = ad + b$$

o sea d = -b/a; aplicando esto a (8), se tiene que

$$\widehat{u}(\xi, t) = ce^{-\xi^2 t} - e^{-\frac{\xi^2}{2}}.$$

Utilizando $\widehat{u}(\xi,0) = 0$, se tiene que $c = e^{-\frac{\xi^2}{2}}$. O sea,

$$\widehat{u}(\xi,t) = e^{-\xi^2(t+\frac{1}{2})} - e^{-\frac{\xi^2}{2}}.$$

(0,5pt por hallar $\widehat{u}(\xi,t)$). Sabemos que $\widehat{f}(\xi) = (1/\sqrt{2a})e^{-\xi^2/2}$, para $f(x) = e^{-ax^2}$; por tanto, $\widehat{g}(\xi) = e^{-\xi^2(\frac{1}{2}+t)} \ para \ g(x) = \frac{1}{\sqrt{1+2t}} e^{-\frac{x^2}{2+4t}}$ $\widehat{h}(\xi) = e^{-\frac{\xi^2}{2}} \ para \ g(x) = e^{-\frac{x^2}{2}}$

y la solución es

$$u(x,t) = \frac{1}{\sqrt{1+2t}}e^{-\frac{x^2}{2+4t}} - e^{-\frac{x^2}{2}}$$

(1pt por hallar u(x,t)).