Proof: 没序号的

McEliece's book[?]:

引理 1 For $1 \le e \le m$,

$$\gcd(2^e + 1, 2^m - 1) = \begin{cases} 1, & \text{if } \gcd(2e, m) = \gcd(e, m) \\ 2^{\gcd(e, m)} + 1, & \text{if } \gcd(2e, m) = 2\gcd(e, m) \end{cases}$$

AES 硬件加速的实现方法: 下面给出 $A = a_0 Y + a_1 Y^{16} \in \mathbb{F}_{2^8}$ 的取逆操作,其中 $a_0, a_1 \in \mathbb{F}_{2^4}$:

- 1. 设 (W, W^2) 是 \mathbb{F}_{2^2} 的基, (Z^2, Z^8) 是 \mathbb{F}_{2^4} 的基, (Y, Y^{16}) 是 \mathbb{F}_{2^8} 的基。
- 2. 计算 A 的逆元素的方法是: $A^{-1} = (AA^{16})^{-1}A^{16} = ((a_0 + a_1)^2WZ + a_0a_1)^{-1}(a_1Y + a_0Y^{16})$

算法思想: 这里需要计算的有 $T_1 = (a_0 + a_1); T_2 = (WZ)(T_1)^2; T_3 = a_0a_1; T_4 = T_2 + T_3; T_5 = (T_4)^{-1}; T_6 = T_5a_1; T_7 = T_5a_0$. 所有的操作都是在 \mathbb{F}_{2^4} 上,所以等同于对长度为 4 的向量进行操作。

- 1. T_1 和 T_4 是向量加法;
- 2. T_2 是标量乘法,使用变换矩阵 $P = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ 即可;
- 3. T_3 , T_6 和 T_7 是向量乘法,需要定义向量乘法 z = x * y,具体操作如下页所示;
- 4. T_5 是有限域取逆操作的硬件实现,具体操作如下页所示。

向量乘法 $z=(z_0,z_1,z_2,z_3)=x\star y=(x_0,x_1,x_2,x_3)\star(y_0,y_1,y_2,y_3)$ 结果如下:

$$z_0 = x_1 y_1 + (x_0 + x_2)(y_0 + y_2) + x_3 y_2 + x_2 y_3 + x_0 y_3 + x_3 y_0 + x_1 y_2 + x_2 y_1$$

$$z_1 = x_0 y_0 + (x_0 + x_2)(y_0 + y_2) + x_0 y_1 + x_1 y_0 + (x_1 + x_3)(y_1 + y_3)$$

$$z_2 = x_3 y_3 + (x_0 + x_2)(y_0 + y_2) + x_0 y_1 + x_1 y_0 + x_0 y_3 + x_3 y_0 + x_1 y_2 + x_2 y_1$$

$$z_3 = x_2 y_2 + (x_0 + x_2)(y_0 + y_2) + x_3 y_2 + x_2 y_3 + (x_1 + x_3)(y_1 + y_3)$$

可以暂时优化一下,得到10次乘法的结果

$$z_0 = (x_1 + x_2)(y_1 + y_2) + (x_0 + x_2)(y_0 + y_2) + (x_2 + x_3)(y_2 + y_3) + (x_0 + x_3)(y_0 + y_3) + x_0 y_0$$

$$z_1 = (x_1 + x_3)(y_1 + y_3) + (x_0 + x_2)(y_0 + y_2) + (x_0 + x_1)(y_0 + y_1) + x_1 y_1$$

$$z_2 = (x_0 + x_3)(y_0 + y_3) + (x_0 + x_2)(y_0 + y_2) + (x_0 + x_1)(y_0 + y_1) + (x_1 + x_2)(y_1 + y_2) + x_2 y_2$$

$$z_3 = (x_1 + x_3)(y_1 + y_3) + (x_0 + x_2)(y_0 + y_2) + (x_2 + x_3)(y_2 + y_3) + x_3 y_3$$
取逆操作 $y = (y_0, y_1, y_2, y_3) = x^{-1} = (x_0, x_1, x_2, x_3)^{-1}$ 结果如下 (直观上看

着是 8 次乘法):

$$\begin{cases}
-y_0 = x_1 x_2 x_3 + x_0 x_2 + x_1 x_2 + x_2 + x_3 \\
-y_1 = x_0 x_2 x_3 + x_0 x_2 + x_1 x_2 + x_1 x_3 + x_3 \\
-y_2 = x_1 x_0 x_3 + x_0 x_2 + x_0 x_3 + x_0 + x_1 \\
-y_3 = x_1 x_2 x_0 + x_0 x_2 + x_0 x_3 + x_1 x_3 + x_1
\end{cases}$$

注意可以使用复用来减少乘法的次数 (5 次乘法)

$$\begin{cases}
-y_1 = (x_0x_2 + x_1)(x_2 + x_3) + x_3 \\
-y_3 = (x_0x_2 + x_3)(x_0 + x_1) + x_1 \\
-y_0 = (x_0x_2 + y_1)x_3 + y_1 + x_2 + x_3 \\
-y_2 = (x_0x_2 + y_3)x_3 + y_3 + x_0 + x_1
\end{cases}$$

现在寻求能不能继续减少乘法的数量: 先尝试把所有的 T_i 表示出来吧.

$$a_0 = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}, a_1 = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}, T_1 = x + y = \begin{pmatrix} x_0 + y_0 \\ x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}.$$

$$T_2 = \begin{pmatrix} x_1 + y_1 + x_3 + y_3 \\ x_0 + y_0 + x_2 + y_2 \\ x_0 + y_0 + x_1 + y_1 \\ x_1 + y_1 \end{pmatrix}.$$

 $T_3 =$

$$\begin{pmatrix} (x_1+x_2)(y_1+y_2) + (x_0+x_2)(y_0+y_2) + (x_2+x_3)(y_2+y_3) + (x_0+x_3)(y_0+y_3) + x_0y_0 \\ (x_1+x_3)(y_1+y_3) + (x_0+x_2)(y_0+y_2) + (x_0+x_1)(y_0+y_1) + x_1y_1 \\ (x_0+x_3)(y_0+y_3) + (x_0+x_2)(y_0+y_2) + (x_0+x_1)(y_0+y_1) + (x_1+x_2)(y_1+y_2) + x_2y_2 \\ (x_1+x_3)(y_1+y_3) + (x_0+x_2)(y_0+y_2) + (x_2+x_3)(y_2+y_3) + x_3y_3 \end{pmatrix}$$

$$T_4 = T_2 + T_3 =$$

$$\begin{pmatrix} (x_1+x_2)(y_1+y_2) + (x_0+x_2)(y_0+y_2) + (x_2+x_3)(y_2+y_3) + (x_0+x_3)(y_0+y_3) + x_0y_0 + x_1 + y_1 + (x_1+x_3)(y_1+y_3) + (x_0+x_2+1)(y_0+y_2+1) + (x_0+x_1)(y_0+y_1) + x_1y_1 + 1 \\ (x_0+x_3)(y_0+y_3) + (x_0+x_2)(y_0+y_2) + (x_0+x_1+1)(y_0+y_1+1) + (x_1+x_2)(y_1+y_2) + x_2y_2 \\ (x_1+x_3)(y_1+y_3) + (x_0+x_2)(y_0+y_2) + (x_2+x_3)(y_2+y_3) + x_3y_3 + x_1 + y_1 \end{pmatrix}$$

感觉看着就不大行,不大能继续化简的样子

Lylia APN function[?]

$$\left(x + Tr_1^n \left(x^{2^{i+1}}\right)\right)^{2^{i+1}}$$

has covered all APN function(when n = 8)

$$\left(x + Tr_1^n \left(x^{2^i + 1}\right)\right)^{2^j + 1}$$

where $1 \le i \ne j \le n-1$ and n is even. So we guess all functions like this form have been covered.

$$\left(x+Tr_1^n\left(x^{2^i+1}\right)\right)^{2^{2j}-2^j+1}$$

also are CCZ-equivalent to Kasami APN function.

1. EA-equivalent functions are CCZ-equivalent

- 2. if a function F is a permutation then F is CCZ-equivalent to F^{-1} [?]
- 3. CCZ-equivalence coincides with
 - (a) EA-equivalence for planar functions [36, 38];
 - (b) linear equivalence for DO planar functions [36, 38];
 - (c) EA-equivalence for all functions whose derivatives are surjective [36];
 - (d) EA-equivalence for all Boolean functions [24];
 - (e) EA-equivalence for all vectorial bent Boolean functions [25];
 - (f) EA-equivalence for two quadratic APN functions (conjectured by Edel, proven by Yoshiara [145]).

定理 1 (Carlet, Charpin, Zinoviev 1998) Let $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ with F(0) = 0 and u be a primitive element of \mathbb{F}_{2^n} . Then F is APN iff the binary linear code C_F defined by the parity check matrix

$$H_F = \begin{bmatrix} u & u^2 & \cdots & u^{2^n - 1} \\ F(u) & F(u^2) & \cdots & F(u^{2^n - 1}) \end{bmatrix}$$

has minimum distance 5.

alent

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are CCZ equivalent iff G_F and G_G are affine-equivalent,

i.e. if the extended codes with parity check matrices

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & u & \cdots & u^{2^{n}-1} \\ F(0) & F(u) & \cdots & F(u^{2^{n}-1}) \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & u & \cdots & u^{2^{n}-1} \\ G(0) & G(u) & \cdots & G(u^{2^{n}-1}) \end{bmatrix} \text{ are equiv-}$$

定理 2 Let $k \in \mathbb{Z}^+$, $\epsilon > 0$. Let $P : \mathbb{F}_2^n \to \mathbb{F}_2$ be a polynomial of degree at most k, and $f : \mathbb{F}_2^n \to \mathbb{R}$. Suppose $|\mathbb{E}_x \left[f(x)(-1)^{P(x)} \right]| \geq \epsilon$, then $||f||_{U_{k+1}} \geq \epsilon$.

In 2003, algebraic attacks to LFSRs based on stream ciphers, by finding a way of solving the over defined system of multivariate equations whose unknowns are the secret key bits, were proposed by Courtois and Meier¹. In 2004, the algebraic immunity of a Boolean function, representing its ability to resist this type of attacks, was introduced by Meier².

Let n=2k and $\mathbb{F}_{2^n}=\mathbb{F}_{2^k}^2$. For any $\beta\in\mathbb{F}_{2^k}$ with $\mathrm{Tr}_1^k(\beta)=1$, then any element X of \mathbb{F}_{2^n} can be written as $X = x + \mu y$ where $x, y \in \mathbb{F}_{2^k}$ and μ is a root of the equation $\mu^2 + \mu + \beta = 0$ over \mathbb{F}_{2^n} . Thus, the inverse function X^{2^n-2} can be decomposed (using $(x+\mu y)(x'+\mu y')=1$ and $0+0y=0\in\mathbb{F}_{2^n}$ or computing $(x + \mu y)^{2^{n}-2}$, see for examples [?] and [?, Theorem 5]) as $(x,y) \mapsto (x(y^2 + xy + \beta x^2)^d, (x+y)(y^2 + xy + \beta x^2)^d)$ ((x,y) should be (y,x)), where $d=2^k-2$ (clearly such mapping is bijective and is CCZequivalent to the inverse function over \mathbb{F}_{2^n}). Experiments show that when d has the form 2^i this mapping is a differentially 4-uniform bijection for some integers n and i. We now express this mapping with the univariate representation. Assume that μ is a root of the $\mu^2 + \mu + \beta = 0$ over \mathbb{F}_{2^n} . Then the mapping $(x,y) \mapsto (x(y^2+xy+\beta x^2)^d,(x+y)(y^2+xy+\beta x^2)^d)$ can be written as $x + \mu y \mapsto x(y^2 + xy + \beta x^2)^d + \mu(x+y)(y^2 + xy + \beta x^2)^d$. We have $\mu^2 = \mu + \beta, \mu^4 = \mu + \beta + \beta^2, \mu^8 = \mu + \beta + \beta^2 + \beta^4, \cdots, \mu^{2^k} = \mu + \operatorname{Tr}_1^k(\beta).$ Let $X = x + \mu y$. We have $X^{2^k} = x^{2^k} + \mu^{2^k} y^{2^k} = x + (\mu + 1)y = X + y$ and so $y = X + X^{2^k}$. We have $x = X + \mu y = X + \mu (X + X^{2^k}) = (\mu + 1)X + \mu X^{2^k}$. By taking $d=2^i$, we could obtain the function F defined over \mathbb{F}_{2^n} with the univariate representation, which is given in (1).

Let n=2k. For any $\beta\in\mathbb{F}_{2^k}$ with $\mathrm{Tr}_1^k(\beta)=1$ (so $\mathrm{Tr}_1^n(\beta)=0$), μ is a

¹Courtois N., Meier W.: Algebraic Attacks on Stream Ciphers with Linear Feedback EUROCRYPT 2003, LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003).

²Meier W., Pasalic E., Carlet C.: Algebraic attacks and decomposition of Boolean functions. In: Advances in Cryptology-EUROCRYPT 2004, LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

root of the equation $\mu^2 + \mu + \beta = 0$ over \mathbb{F}_{2^n} .

$$y^{2} + xy + \beta x^{2} = (\beta + 1)(\beta + \mu)x^{2} + (\beta + \mu + 1)(\beta + 1)x^{2^{k+1}} + x^{2^{k+1}}$$
$$x + \mu(x + y) = (\beta + 1)x + (\beta + \mu)x^{2^{k}}$$

Then we define a polynomial over \mathbb{F}_{2^n} as follows:

$$F(x) = (1+\beta)^2 x^{2^{k+i+1}+1} + (1+\beta)^2 x^{2^{i+1}+1} + (1+\beta) x^{2^{k+i}+2^i+1}$$

$$+(\beta+\mu)(\beta+1) x^{2^{k+i+1}+2^k} + (\beta+\mu)(\beta+1) x^{2^{i+1}+2^k} + (\beta+\mu) x^{2^{k+i}+2^i+2^k}.$$
(1)

We now consider the equation $\mu^2 + \mu + \beta = 0$. Note that $\operatorname{Tr}_1^k(\beta) = \operatorname{Tr}_1^k(\mu^2 + \mu) = \mu + \mu^{2^k}$. If we want to get $\operatorname{Tr}_1^k(\beta) = 1$ with $\beta \in \mathbb{F}_{2^k}$ then we only need to find an element $\mu \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^k}$ such that $\mu + \mu^{2^k} = 1$. Assume that $\mu = x + \alpha y$ (α is a primitive element of \mathbb{F}_{2^n} and clearly we have $\alpha \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^k}$; indeed, primitive element α can replaced by any element in $\alpha \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^k}$), we have $\mu + \mu^{2^k} = y(\alpha + \alpha^{2^k}) = 1$ and thus $y = (\alpha + \alpha^{2^k})^{2^n - 2} \in \mathbb{F}_{2^k}$ since $(\alpha + \alpha^{2^k})^{2^k} = (\alpha + \alpha^{2^k})$. Thus μ can take $\alpha(\alpha + \alpha^{2^k})^{2^n - 2} = \frac{\alpha}{\alpha + \alpha^{2^k}}$. Thus we have $\beta = \frac{\alpha}{\alpha + \alpha^{2^k}} + \frac{\alpha^2}{(\alpha + \alpha^{2^k})^2} = \frac{\alpha^{2^k + 1}}{(\alpha + \alpha^{2^k})^2} \in \mathbb{F}_{2^k}$ (we also need to assume that $\beta \neq 1$ since (1), for doing this we only need to check that β is a generator of $\mathbb{F}_{2^k}^*$). So the conditions become: 1) any $\alpha \in \mathbb{F}_{2^n}$ such that $\alpha + \alpha^{2^k} \neq 1$ and $\frac{\alpha^{2^k + 1}}{(\alpha + \alpha^{2^k})^2} \neq 1$; 2) $\mu = \alpha(\alpha + \alpha^{2^k})^{2^n - 2} = \frac{\alpha}{\alpha + \alpha^{2^k}}$ in (1); 3) $\beta = \frac{\alpha^{2^k + 1}}{(\alpha + \alpha^{2^k})^2}$. How to choose i to ensure F is a differentially 4-uniform bijection?

Another way to rewrite (1) is as follows: For n=2k, $\mu \in \mathbb{F}_{2^n}$ is such that $\mu + \mu^{2^k} = 1$, $\mu + \mu^2 \neq 1$ ($\mu + \mu^2 \neq 1$ is equivalent to $\mu \notin \mathbb{F}_4$; we have $\mu + \mu^{2^k} = 1$ implies that $\mu \notin \mathbb{F}_{2^k}$), and $\mu + \mu^2 \in \mathbb{F}_{2^k}$. Let $\beta = \mu + \mu^2$ (this implies that $\mathrm{Tr}_1^k(\beta) = \mu + \mu^{2^k} = 1$). Then we define a polynomial over \mathbb{F}_{2^n} as follows:

$$F(x) = (1+\beta)^2 x^{2^{k+i+1}+1} + (1+\beta)^2 x^{2^{i+1}+1} + (1+\beta) x^{2^{k+i}+2^i+1}$$
(2)

$$+(\beta+\mu)(\beta+1) x^{2^{k+i+1}+2^k} + (\beta+\mu)(\beta+1) x^{2^{i+1}+2^k} + (\beta+\mu) x^{2^{k+i}+2^i+2^k}.$$

How to choose i?

Simulations for (1):

- For n=6, we take $\beta=1$ and i=2 have F(x) is CCZ-equivalent to x^{11} and x^{23} .
- For n=10, we take β such that $\operatorname{Tr}_1^5(\beta)=1$ and i=0 (then F is quadratic) have F(x) is differentially 4-uniform bijection. F(x) is CCZ-inequivalent to x^3 . We must consider if this function is CCZ-equivalent to x^{2^k+2} since all terms include z^3 ($z \in \mathbb{F}_{2^k}$) when decomposing this function in to $\mathbb{F}_{2^k}^2$ ($2^k+2=3 \pmod{2^k-1}$).
- For n = 12, by taking β such that $\operatorname{Tr}_1^6(\beta) = 1$ and $d = 2^i = 8$, then F(x) is a differentially 4-uniform bijection.

The quadratic case with four terms (i.e. i = 0):

For n = 2k (k odd), $\mu \in \mathbb{F}_{2^n} \setminus \mathbb{F}_4$ is such that $\mu + \mu^{2^k} = 1$. Let i = 0, we have

$$F(x) = (1 + \beta + \beta^2 + \mu)x^{2^{k+1}+1} + (1 + \beta^2)x^3 + (1 + \beta^2 + \mu\beta + \mu)x^{2^k+2}$$

$$+(\beta^2 + \beta + \mu\beta + \mu)x^{3 \cdot 2^k}$$

$$= (1 + \mu^4)x^{2^{k+1}+1} + (1 + \mu + \mu^3 + \mu^4)x^{2^k+2} + (\mu^2 + \mu^3 + \mu^4)x^{3 \cdot 2^k} + (1 + \mu^2 + \mu^4)x^3$$

F is a quadratic bijection over \mathbb{F}_{2^n} , we checked by n = 6, 10, 14, 18, 22 and this function may be CCZ-equivalent to x^3 .

Remark 1 Indeed, the function $(x+ax+bx^{2^k})^3$ includes similar polynomials and the bijections in [?,?]. and the functions in [?]. The bijections in [?], Theorem 1-(2)] are included in class Γ_1 in [?] which have boomerang uniformity four. It seems that these bijections can be given by the function $(x+ax+bx^{2^k})^3$. Some recent results in [?,?]-[?].

apn functions:

1. $x^3 + \omega x^{36}$, $\omega \in \{u\mathbb{F}_{2^5}^*\} \cup \{u^2\mathbb{F}_{2^5}^*\}$ where $u \in \mathbb{F}_{2^5}^*$ of order 3 in theorem 2 of [?]

- 2. Let s and k be positive integers with $\gcd(s,3k)=1$ and let $t\in\{1,2\}$, i=3-t. Let further a=2s+1 and $b=2^{ik}+2^{tk+s}$ and let $\omega=\alpha^{2k}-1$ for a primitive element $\alpha\in\mathbb{F}^*_{2^{3k}}$. If $\gcd(2^{3k}-1,(b-a)/(2^k-1))\neq\gcd(2^k-1,(b-a)/(2^k-1))$, the function $F:\mathbb{F}_{2^{3k}}\to\mathbb{F}_{2^{3k}},x\mapsto x^a+\omega x^b$ is APN in theorem 1 of [?].
- 3. Let s and k be positive integers such that $s \leq 4k-1$, $\gcd(k,2) = \gcd(s,2k) = 1$, and $i = sk \mod 4, t = 4-i$. Let further $a = 2^s + 1$ and $b = 2^{ik} + 2^{tk+s}$ and let $\omega = \alpha^{2^k-1}$ for a primitive element $\alpha \in \mathbb{F}_{2^{4k}}^*$. Then, the function $F : \mathbb{F}_{2^{4k}} \to \mathbb{F}_{2^{4k}}, x \mapsto x^a + \omega x^b$ is APN in theorem 2 of [?].
- 4. Let k and s be odd integers with gcd(k,s)=1. Let $b \in \mathbb{F}_{2^{2k}}$ which is not a cube, $c \in \mathbb{F}_{2^{2k}} \setminus \mathbb{F}_{2^k}$ and $r_i \in \mathbb{F}_{2^k}$ for all $i \in \{1, ..., k-1\}$, then the function $F: \mathbb{F}_{2^{2k}} \to \mathbb{F}_{2^{2k}}, x \mapsto bx^{2^s+1} + b^{2^k}x^{2^{k+s}+x^k+cx^{2^k+1}} + \sum_{i=1}^{k-1} r_i x^{2^{i+k}+2^i}$ is APN in Theorem 1 of [?]
- 5. Let k and s be positive integers such that $k + s = 0 \mod 3$ and $\gcd(s, 3k) = \gcd(3, k) = 1$. Let further $u \in \mathbb{F}_{2^{3k}}^*$ be primitive and let $v, w \in \mathbb{F}_{2^k}$ with $vw \neq 1$. Then, the function

$$F: \mathbb{F}_{2^{3k}} \to \mathbb{F}_{2^{3k}}$$
$$x \mapsto ux^{2^s+1} + u^{2^k}x^{2^{2k}+2^{k+s}} + vx^{2^{2k}+1} + wu^{2^k+1}x^{2^{k+s}+2^s}$$

is APN in Theorem 2.1 of [?]

6.