

SHENZHEN COLLEGE OF INTERNATIONAL EDUCATION

WENTHER WENTHER	SUCATION .	General	Certific	cate of E	ducation					
》, 第	****	Advance	ed Subs	sidiary Le	evel and Ad	lvanced l	_evel			
CANDI	DATE									
NAME										
	[
CENTR	E						DIDATE			
NUMBE	R					NUM	BER			
MOCK E	XAMIN	IATIONS	<u> </u>	<u> </u>					<u> </u>	
MATHEN	MATICS	8						97	09/35	ı
Paper 3	Pure M	athemati	ics (P3)				Marcl	า 2024	1
							1	hour 50	minu	tes
Additional	material	s: List o	of Formu	ılae (MF19	9)					
Please circ	cle your t	eachers' n	name							
Ryan	Yassine	e Melis	sa	Mahinur	Mathew	Tamas	Jianzhong			
Barbara	Daniel	Alph	na	Bill	Liam	Tifa	Hardeep			

READ THESE INSTRUCTIONS FIRST

Write your Candidate number, English name, Chinese name and the name of your mathematics teacher on all work that you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Question	Mark
Q1	
Q2	
Q3	
Q4	
Q5	
Q6	
Q7	
Q8	
Q9	
Q10	

This paper consists of **18** printed pages and **2** blank pages

[Turn over

	Find the quotient and remainder when x^4 is divided by $x^2 + 2x - 1$.	[3
••••		
••••		
•••		
•••		
••		
•••		
••		
••		
••		
••		••••••
		•••••
•		
••		
••		
•••		
•••		•••••
•••		•••••
•••		•••••
•••		

(spand $(2-x)(1+2x)^{-\frac{3}{2}}$ in ascending powers of x , up to and including the term in x^2 , simplifying efficients.
•••	
••	
. .	
••	
••	
••	
••	
••	
••	
••	
•••	
· • •	

	The equation of a curve is $y = x \tan^{-1}(\frac{1}{2}x)$.	
	(a) Find $\frac{dy}{dx}$.	[
•		••
•		••
		••
		••
		••
		••
		••
	(0, p). Find p .	[3
	Find p.	[3
•		

Using the substitution $u = \sqrt{x}$, find the												
	\int_{3}^{6}	∞ (x)	$\frac{1}{(x+1)\sqrt{x}}$	$\frac{1}{\overline{x}} dx$.								[6]
	•••••	••••	•••••	• • • • • •	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••		•••••
	•••••	••••	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	••••	•••••	• • • • • • •	•••••	•••••	•••••		•••••		•••••	•••••
	•••••	••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••
	•••••		•••••	•••••	•••••		•••••		•••••			
	•••••	••••	•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •		•••••
	•••••	••••			•••••		•••••	•••••	•••••	•••••		
	•••••	••••	•••••		•••••		•••••	•••••	•••••	•••••		•••••
		••••	•••••		•••••		•••••		•••••			
	•••••		•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
	•••••				•••••		•••••	•••••	•••••	•••••		•••••
		••••			•••••		•••••		•••••			
					•••••		•••••		•••••			
	•••••				•••••		•••••		•••••			
					•••••		•••••		•••••			
							•••••		•••••			
		\int_3	$\int_3^\infty \overline{\zeta} \lambda$	$\int_{3}^{\infty} \frac{1}{(x+1)\sqrt{y}}$		$\int_{3}^{\infty} \frac{1}{(x+1)\sqrt{x}} \mathrm{d}x.$						

5.	(a) Sketch, on the same diagram, the graphs of $y = 2x - 11 $ and $y = 3x - 3$.	[2]
	(b) Solve the inequality $ 2x-11 < 3x-3$.	[3]
	(c) Find the smallest integer N satisfying the inequality $ 2 \ln N - 11 < 3 \ln N - 3$.	[2]
	(c) Tind the smallest integer iv satisfying the inequality 2 in iv = 11 \(\sigma \) in iv = 3.	
		,

6.	(a) Given that $y = \ln(\ln x)$, show that	:	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x \ln x}.$	[1]
	The variables x and t satisfy the diffe		
		$x \ln x + t \frac{\mathrm{d}x}{\mathrm{d}t} = 0.$	
	It is given that $x = e$ when $t = 2$.		
	(b) Solve the differential equation answer.	obtaining an expression for	x x in terms of t , simplifying your [7]

	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
(c) Hence state what happens to the value of x as t tends to infinity.	1]

7.	(a) The complex number u is given by $u = 8 - 15i$. Showing all necessary working, find square roots of u . Give answers in the form $a + ib$, where the numbers a and b are real and	

(b) On an Argand diagram, shade the region whose points represent complex numbers satisfying both the inequalities $|z-2-\mathrm{i}| \leqslant 2$ and $0 \leqslant \arg(z-\mathrm{i}) \leqslant \frac{1}{4}\pi$. [4]

8.	The positive constant a is such that $\int_0^a x e^{-\frac{1}{2}x} dx = 2.$	
	(i) Show that a satisfies the equation $a = 2 \ln(a + 2)$.	[5]
	(ii) Verify by calculation that <i>a</i> lies between 3 and 3.5.	[2]

(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. the result of each iteration to 4 decimal places.	Give [3]
•••••		
•••••		•••••
•••••		
•••••		•••••
•••••		•••••
•••••		
•••••		•••••
•••••		
•••••		•••••
•••••		•••••
•••••		•••••
•••••		

9.	Let $f(x) = \frac{4x^2 + 7x + 4}{(2x+1)(x+2)}$.	
	(i) Express $f(x)$ in partial fractions.	[5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

(ii) Show that \int_0^4	$f(x) dx = 8 - \ln 3.$			[5]
•••••				
	•••••	 	•••••	
		 		••••••
		 		•••••
		 		•••••
	••••••	 	•••••	•••••

10.	(i) Show that $\sin 2x \cot x \equiv 2 \cos^2 x$.	[2]
		•••••
		· • • • • • •
		· • • • • • •
		•••••
		•••••
		•••••
		•••••

- (ii) Using the identity in part (i),
 - (a) find the least possible value of

 $3\sin 2x \cot x + 5\cos 2x + 8$

•			F 43
as x varies,			[4]
	 		• • • • • • • • • • • • • • • • • • • •
	 		••••••
	 		••••••
	 		• • • • • • • • • • • • • • • • • • • •
	 	•••••	• • • • • • • • • • • • • • • • • • • •
	 	•••••	••••••
	 	•••••	• • • • • • • • • • • • • • • • • • • •
	 		••••••
	 	•••••	• • • • • • • • • • • • • • • • • • • •
	 	•••••	• • • • • • • • • • • • • • • • • • • •
	 	•••••	

(b)	find the exact va	tlue of $\int_{\frac{1}{8}\pi}^{\frac{1}{6}\pi}$	cosec 4x tan 2x	$\mathrm{d}x$.			[5]
•••••		•••••			•••••		
•••••							
•••••		•••••••					••••••
•••••		••••••				••••••	••••••
•••••		••••••					•••••
•••••	•••••	••••••	•••••		•••••	•••••	
•••••							•••••
•••••		••••••					•••••
•••••		•••••					••••••
•••••							••••••
•••••	••••••	••••••	•••••		•••••	•••••	•••••
•••••		•••••					•••••
•••••							•••••
•••••		••••••					•••••
•••••		•••••					•••••
•••••		•••••					•••••
•••••							•••••

Additional Page

If you use the following line page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Blank Page