```
TrainMultinomialNB(\mathbb{C},\mathbb{D})
  1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
  4 do N_c \leftarrow \text{COUNTDOCSINCLASS}(\mathbb{D}, c)
  5
           prior[c] \leftarrow N_c/N
           text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
  7
           for each t \in V
  8
           do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
           \quad \text{for each } t \in V
  9
10 do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
11 return V, prior, condprob
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, cond prob, d)
1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)
2 for each c \in \mathbb{C}
    do score[c] \leftarrow log prior[c]
         for each t \in W
         do score[c] += log condprob[t][c]
   return arg max<sub>c \in \mathbb{C}</sub> score[c]
```

► Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.

assign a high probability to the *UK* class because the term Britain occurs. The problem is that the zero probability for WTO cannot be "conditioned away," no matter how strong the evidence for the class *UK* from other features. The estimate is 0 because of *sparseness*: The training data are never large enough to represent the frequency of rare events adequately, for example, the frequency of WTO occurring in *UK* documents.

ADD-ONE SMOOTHING

SPARSENESS

To eliminate zeros, we use *add-one* or *Laplace smoothing*, which simply adds one to each count (cf. Section 11.3.2):

(13.7)
$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B'}$$

where B = |V| is the number of terms in the vocabulary. Add-one smoothing can be interpreted as a uniform prior (each term occurs once for each class) that is then updated as evidence from the training data comes in. Note that this is a prior probability for the occurrence of a *term* as opposed to the prior probability of a *class* which we estimate in Equation (13.5) on the document level.

Online edition (c)2009 Cambridge UP