

Digitalisation de données

Pourquoi?

Faciliter l'entrée de données sur notre plateforme.

Comment?

Digitaliser des logs manuscrits des fermiers.

Quoi?

Développer un modèle de reconnaissance de texte manuscrit.

Date	Master- Hand	Actual	-	Machine-C	QB		5	
13/06/18	20000	20000	Count-1	Count-2	Count-3	Count-1	Machine-BD	
13/06/18	30000	30000				- X	Count-2 C	
13/06/18		40000				20997	18816 1 23.237 21	9068
3/06/18	50000	50000				15.750	27.911 29	044
3/06/18	60000	60000						839
3/06/18	70000	70000	-		4	10. 83D	28.641 29	205
3/06/18	80000	80000	-		5	3.091 4	297 50	644
3/06/18	90000	90000	-	-		8.322	5.570 65	
/06/18		100000	-		17	1.090 6	9.30 10.	07010

Réseaux de neurones: récapitulatif

Le neurone sigmoide

Réseaux de neurones: récapitulatif

Réseau de neurones "fully connected"

Réseaux de neurones: récapitulatif

Entraînement par descente du gradient

Données d'entraînement

Image annotée:

Vérité: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Prédictions et fonction de coût:

Séquences manuscrites: formulation du problème

"123.456"

Chiffres 0-9 + séparateur décimal

Partie entière et décimale de longueur inconnue

Largeur et position des caractères inconnues

Superposition possible entre les caractères

Approche sélectionnée: Modèle de type CRNN (arXiv:1507.05717)

Ingrédient 1: Réseaux de neurones convolutionnels (CNNs)

Pour les problèmes de vision numérique.

Utilise la cohérence spatiale pour réduire les connexions.

Apprentissage de *kernels* de convolution.

Ingrédient 2: Réseaux de neurones récurrents (RNNs)

Pour les problèmes de prédiction de séquences.

Peut être vu comme une succession de copies du même réseau, chacun passant un "message" à son successeur.

État interne pour l'apprentissage de corrélations temporelles

Ingrédient 3: Transcription CTC

Méthode d'encodage / décodage de séquences

Caractère immatériel de séparation "-" pour distinguer les caractères identiques adjacents.

Décodage en 2 étapes:

- Combinaison des caractères identiques adjacents.
- 2. Retrait des "-" pour obtenir le mot final.

Exemple de décodage:

"---1111--222-2222**"**

Ingrédient 3: Transcription CTC

Méthode d'encodage / décodage de séquences

Caractère immatériel de séparation "-" pour distinguer les caractères identiques adjacents.

Décodage en 2 étapes:

- Combinaison des caractères identiques adjacents.
- 2. Retrait des "-" pour obtenir le mot final.

Encodages valides:

"12-2", "1122-22", "--1--2---2"

Encodages invalides:

"122", "1-22", "112222"

CTC: Calcul des probabilités et fonction de coût

Prédiction = distribution de probabilités

CTC: Calcul des probabilités et fonction de coût

Prédiction = distribution de probabilités

Modèle entraînable end-to-end

Pas nécessaire de segmenter les caractères

Facile de quantifier l'incertitude de la prédiction

- Formulaires "pré-annotés"
- 2. Génération d'images synthétiques (avec MNIST)

