HW5

1. (15%) A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$D_A=X'B'+XY', D_B=A'+Y'B, Z=YA'B$$

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

prese	nt state	in	out	next	state	output
A(+)	B(t)	· x	y	A(ti)		Z
0	0	0	0	1	1	0
0	0	0	1	1	1	0
0	0	1	0	1	1	0
0	0	1.	1	0	1	0
D		0	0	0	1	0
0		0	1	0	1	1
D	1	1	0		1	0
0-	1	T	1	0	V	1
1	0	D	0	i i i i i i i i i i i i i i i i i i i	0	0
1	0	0	1	11	0	0
1-	0	- 1	0	1	0	0
1	0	- (1	0	0	0
1-	1	0	0	0		0
1	1	D	1	0	0	0
1	1	1	D			0
1	/	1	1	0	0	0

(c) Derive the state diagram.

2. (10%) Design a sequential circuit with two D flip-flops A and B and one input X. When X = 1, the state of the circuit remains the same. When X = 0, the circuit goes through the state transitions from 00 to 11 to 01 to 10, back to 00, and then repeats.

3. (20%) For the D-type positive edge-triggered flip-flop and D-type positive level-sensitive (level-triggered) latch with the same clock (clk), asynchronous reset signal (rst, active low), and input (Data) below. Assume the initial state of both the flip-flop and latch are '0', and both devices are with 0 D-to-Q delay. Point out the incorrect parts for Q1 and Q2 in the timing diagram and redraw the correct timing diagram.

Incorrect parts:

Correct timing diagram:

4. (10%) A sequential circuit has two flip-flops A and B, one input X, and one output Y. The state diagram is shown in figure below. Design the circuit with D flip-flops.

Ans1:

Logic Diagram (Optional):

ANS2:

5. (10%) Draw the state diagram of the sequential circuit specified by the following state table.

Present State		Inpu	ıts	Next	Output		
A	В	X	Y	A	В	z	
0	0	0	0	0	0	0	
0	0	0	1	O	1	0	
0	0	1	0	1	0	1	
0	0	1	1	1	1	1	
0	1	0	0	0	1	1	
0	1	0	1	1	0	1	
0	1	1	0	1	0	0	
0	1	1	1	0	0	0	
1	0	0	0	1	1	1	
1	0	0	1	1	1	0	
1	0	1	0	1	1	1	
1	0	1	1	1	0	0	
ī	1	0	0	0	0	0	
1	î	0	1	0	0	1	
1	1	1	0	0	0	0	
1	1	1	1	0	1	1	

Ans:

6. (15%) Design a recognizer that recognizes an input sequence that has at least three 1's. The recognizer has a single input X, and a single output Y, and one asynchronous Reset input signal. The recognizer sets the output Y to 1 if the input signal X was equal to 1 in at least 3 clock cycles after reset. (a) Derive the state diagram. (b) Encode the states to minimize the combinational logic. (c) Draw the logic diagram using D flip-flops.

*本題使用 Moore Machine 或 Mealy Machine 皆可,解答以 Mealy Machine 為例

(a)

(b)

ĺ.,			ı						
	nrocent	ototo.	next :	state₽	output y₽ ₽				
	present state«		x=0₽	k=1₽	x=0+3	x=1+2+2			
	S0₽		00₽	01₽		0e e			
	S1₽	01₽	00₽	10₽	0₽	0₽₽			
	S2₽	10₽	00₽	11₽	0₽	10 0			

(c)

7. (20%) Reduce the number of states in the following state table and tabulate the reduced state table.

Present	Nex	t State	Output			
State	x=0	x=1	x=0	x=1		
a	f	b	0	0		
b	d	e	1	0		
с	f	е	0	0		
d	g	a	1	0		
e	d	e	1	0		
f	f	b	1	1		
g	g	a	1	0		
h	g	С	0	0		

Show that the same output sequences are obtained for both the state table of the previous problem and the reduced state table from the previous problem. The state-circuit starts from state a, and the input sequence is 10110101001.

Ans:

1st turn								2	2nd	turn				
	Present state		Next state		Output			Г			Next state		Output	
			x=0	x=1	x=1 x=0				Present state		x=0	x=1	x=0	x=1
			f	ь	0	0			a		f	b	0	0
	b		d	∕e b	1	0			b		d	b	1	0
	С		f	e	0	0		Т		С	f	b	0	0
	d		g	a	1	0			d f		\v_d	a	1	0
*	e		d	е	1	0								
	f		f	ь	1	1					f	ь	1	1
	g		М	a	1	0		A		g	g	a	1	0
	h		g	С	0	0				h	\g d		0	0
3st turn								R	Redu	iced table	:			
	Present state		Next state		Output						_	state	Out	put
			x=0	x=1	x=0	x=1		1	Present state		x=0	x=1	x=0	x=1
			f	b	0	0			a		f	b	0	0
			d	ь	1	ŏ		$^{+}$	Ъ		d	ь	1	0
			f	ь	0	ŏ		+		d	d	a	1	0
	C							-†		f	f	b	1	1
	d		d	a 1.	1	0		-†		h	d	a	0	0
	f		f	b	1	1				п	α	a	U	0
	h		d	κa	0	0								
Brfore Reduced														
Time	1	2	3		4	5	6	7	7	8	9	10	1	.1
Present state	a	b	d		a	b	d	a	ì	f	b	d		g
Input	1	0	1		1	0	1	0		1	0	0		1
Next State	ь	d	a		b	d	a	f		ь	d	g		a
Output	0	1	0		0	1	0	0)	1	1	1		0
After Reduced														
Time	1	2	3		4	5	6	7		8	9	10	_	.1
Present state	a	b	d		a	Ь	d	a		f	b	d		d
Input	1	0	1		1	0	1	0	_	1	0	0		1
Next State	b	d	a		b	d	a	f		ь	d	d		a
Output	0	1	0		0	1	0	0)	1	1	1		0