THE SHOCK AND VIBRATION DIGEST

A PUBLICATION OF THE SHOCK AND VIBRATION INFORMATION CENTER NAVAL RESEARCH LABORATORY WASHINGTON, D.C.

OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING

83 01 11 038

THE COPY

Approved for public release; distribution unlimited.

A publication of

THE SHOCK AND VIBRATION INFORMATION CENTER

Code 5804, Naval Research Laboratory Washington, DC 20375 (202) 767-2220

> Henry C. Pusey Director

Rudolph H. Volin

J. Gordon Showalter

Jessica P. Hileman

Elizabeth A. McLaughlin

THE SHOCK AND VIBRATION DIGEST

Volume 14, No. 12 December 1982

STAFF

SHOCK AND VIBRATION INFORMATION CENTER

EDITORIAL ADVISOR: Henry C. Pusey

VIBRATION INSTITUTE

TECHNICAL EDITOR:

Ronald L. Eshleman

EDITOR:

Judith Nagle-Eshleman

RESEARCH EDITOR:

Milda Z. Tamulionis

PRODUCTION:

Deborah K, Howard Gwen Wassilak

Vicki Pate

BOARD OF **EDITORS**

R Belsheim

W.D. Pilkey

R.L. Bort

E. Sevin

J.D.C. Crisp D.J. Johns

J.G. Showaiter R.A. Skop

K.E. McKee

R.H. Volin

C.T. Morrow H.E. von Gierke

The Shock and Vibration Digest is a monthly publication of the Shock and Vibration Information Center. The goal of the Digest is to provide efficient transfer of sound, shock, and vibration technology among researchers and practicing engineers. Subjective and objective analyses of the literature are provided along with news and editorial material. News items and articles to be considered for publication should be submitted to

> Dr. R.L. Eshleman Vibration Institute Suite 206, 101 West 55th Street Clarendon Hills, Illinois 60514 (312) 654-2254

Copies of articles abstracted are not available from the Shock and Vibration Information Center (except for those generated by SVIC), Inquiries should be directed to library resources, authors, or the original publishers.

This periodical is for sale on subscription at an annual rate of \$140.00. For foreign subscribers, there is an additional 25 percent charge for overseas delivery on both regular subscriptions and back issues. Subscriptions are accepted for the calendar year, beginning with the January issue. Back issues are available - Volumes 9 through 12 - for \$20.00. Orders may be forwarded at any time to SVIC, Code 5804, Naval Research Laboratory, Washington, D.C. 20375. Issuance of this periodical is approved in accordance with the Department of the Navy Publications and Printing Regulations, NAVEXOS P-35.

SVIC NOTES

TRANSPORTATION VIBRATION

There are many reasons for testing to simulate common carrier transportation environment, but in spite of these, some tend to take these tests for granted. One reason why these tests are important is all equipment experiences common carrier transportation, mostly as secured cargo, at some stage of its life cycle. Another reason is that these tests can be early indicators of the structural integrity or the fragility of the equipment. If the equipment won't survive common carrier secured cargo transportation, will it be able to survive the dynamic environment when it is installed in its intended vehicle? Thus the most important reason is to ensure that it can be handled and transported without damage.

Transportation environmental tests should be designed to simulate the <u>normal</u> shock and vibration conditions that equipment will encounter during shipment. Each mode of transportation (truck, rail, air and sea) generates its own shock and vibration environment, but the maximum potential for damage due to shock, and the maximum potential for damage due to vibration, is different in each mode of common carrier transportation. Nevertheless, we still desire assurance that equipment can survive any mode of common carrier transportation, and this raises the following questions: Should environmental tests for simulating common carrier transportation be tailored? How should laboratory test requirements be set?

To answer the first question, test tailoring implies that the intended mode of common carrier transportation is known or can be specified in advance. This is rarely the case. However, one might still develop a test to simulate the air suspension trailer vibration environment, as opposed to simulating the more severe vibration environment of a trailer with a conventional suspension system. But what would happen to the equipment if it is shipped in such a trailer and the air suspension system fails enroute? This is one example of the risk one takes in tailoring transportation environment tests. In light of the previous discussion about transportability, I believe tailoring such tests is ill advised.

To answer the second question, measured shock and vibration data should be used to derive laboratory tests for simulating the transportation environment. A report by Ostrem and Godshal* summarizes data incident to the most severe transportation shock and vibration conditions, railroad car coupling and truck vibration respectively. The report also contains a plot summarizing vibration measurements made on trucks by three sets of investigators. There is reasonable agreement on the truck vibration environment below 20 Hz and this raises two questions. What are the effects of the high frequency vibrations on secured cargo? What is a realistic upper vibration test frequency? It will be necessary to answer both questions before realistic tests can ever be developed for simulating the transportation environment for secured cargo.

Availability Codes pepar

Strem, F.E. and Godshel, W.D., "An Assessment of the Common Carrier Shipping Environment," General Technical Report FPL 22, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Medison, WI (1979).

R.H.V.

1

Avail and/or

Special

خ ۾

A21

NTIC

DTIC TA

EDITORS RATTLE SPACE

ENGINEERING EDUCATION WITH THE COMPUTER

The development and marketing of the personal computer have created a new fad in the United States. Even in these difficult times many personal computers are being used to perform menial mathematical tasks, store records, process words, and play games. People are interested in small computers. The schools have not been untouched by this mania. From elementary to graduate level educators are using computers as part of the educational process. It is not clear to me how the computer aids in this process -- except that the students master use of the computer itself.

A recent announcement that several colleges will require each engineering student to own a specific personal computer is indicative of the outlook of some faculty members. Although no reason was cited for this decision, college educators apparently believe that use of a computer will benefit the education of their students. My question is whether widespread use of the computer will be an aid to education or a distraction. I also wonder how the typical college graduate will benefit from computer training. Will such training be given in lieu of fundamentals? It has been said that there is no more room in the college curriculum for specialized subjects—in fact such communication skills as speech and writing have been sacrificed in the technical programs of many colleges and universities. Does this mean that the trend is continuing toward training engineers who find themselves buried in technical trivialities and unable to communicate with others.

On the positive side, however, I can envision that the personal computer will save students time in many design-oriented courses. Rather than waiting in line at computer centers the student will be able to perform computations at his own convenience. The student could even learn to use the computer on experiments – process control, data processing, and data display. The negative side of this computer availability is the tendency of many students and engineers to use the trial-and-error process in problem solution – the "throw it in and try it" syndrome.

Only time will tell whether this trend is an overreaction to the availability of powerful computational tools or will lead to a different type of engineering education. New applications of the computer in the engineering process will be of interest, however, because many of the engineering students working on computers will develop new computational techniques as well as new data storage and processing capabilities.

R.L.E.

DYNAMIC BALANCING WITH MICRO PROCESSORS

D.G. Stadelbauer

Abstract. This article describes the use of micro processors in balancing.

The nearly universal change from soft-bearing to hard-bearing balancing machines during the last 15 years was made economically feasible by the advent of transistorized and integrated circuitry, because hard-bearing machines require considerably more sophisticated filtering and amplification of the unbalance signal than the formerly prevalent soft-bearing machines.

Different approaches are used to measure the effects of unbalance in soft- and hard-bearing balancing machines. Soft-bearing machines measure unbalance in terms of vibration amplitude; hard-bearing machines measure in terms of centrifugal force. Force measurement provides the hard-bearing machine with the attractive feature of "permanent calibration." It is officially defined in ISO 1925 as "the property of a hard-bearing balancing machine that permits the machine to be calibrated once and for all and remain calibrated for any rotor within the capacity of the machine." Permanent calibration is accomplished by the manufacturer prior to shipment, so that the user only has to check it at periodic intervals.

Permanent calibration is useful with on-line computers because appropriately conditioned output signals from the balancing machine pickups represent a direct measure of the centrifugal force generated by unbalance. At a given balancing speed this force can be directly related to an unbalance; i.e., a certain mass at a certain radius. A given pickup voltage thus always means the same ounce inch (or, gram inch) unbalance in the bearing plane. The computer accurately calculates equivalent unbalances for any two arbitrarily selected correction planes; the slight inaccuracies that are usually present in analog plane separation devices are thus eliminated. The computer could also be used to account for the increase in

centrifugal force proportionate to the square of the balancing speed. However, integrator circuits between balancing machine pickups and computer input provide constant unbalance readout over a wide speed range and suppress harmonics and extraneous noise signals.

Figure 1 shows a typical installation of a Hewlett Packard model HP 9845A in the control console of a balancing machine. The manual instrumentation with vectormeter readout above the HP 9845A furnishes part of the signal conditioning for the computer and also serves as a backup.

Figure 1. Hard-bearing Balancing Machine with Combination Computer and Standard Instrumentation

Because table top computers were not designed specifically for use on a balancing machine, many of their capabilities are wasted. Furthermore, the many keys sometimes confuse the operator and possibly do not provide the most foolproof way of using the

^{*}Executive Vice President, Schenck Trebel Corporation, Deer Perk, NY 11729; Chairman, ISO/TC108/Subcommittee on Balancing and Balancing Machines

balancing machine. In recognition of these short-comings, balancing machine manufacturers have begun to develop their own micro processor-based instrumentation. One example is the CAB 500, marketed by Schenck Trebel Corp. and shown in Figure 2.

Figure 2, Micro Processor Instrumentation for Balancing Machine with Display Screen

Benefits of the CAB 500 include prompting of the operator with a CRT display, setup data storage in memory files for different rotor types, choice of unbalance correction methods in polar or component form, preselection of unbalance tolerance, and optional printout of data for a permanent record. The CAB 500 can be installed in the field to upgrade older hard-bearing machines.

Prompting guides the operator through the rotor data entry phase; the CAB 500 is thus easy to use. A curser always flashes at the next field at which data must be entered although such nonessential fields as the rotor code can be bypassed. Units for ABC or radius dimensions automatically go to inches and units for tolerances to gram-inches unless entered differently.

Preselection of the balance tolerance for each plane provides continuous comparison with the residual unbalance. After each run the operator is told if tolerance has been attained, thereby preventing unnecessary correction.

Indication of unbalance is provided in either English units, metric units, or a combination of the two (e.g., gram-inches). If unbalance is to be indicated and corrected in components, the total number of components can be individually selected for each

plane. The reference angle of the first correction point in each plane can also be selected in case components are skewed, as they sometimes are on armatures or roots-type blowers.

Such built-in programs as error analysis routines facilitate troubleshooting and permit periodic verification of calibration with automatic recalibration if necessary. As with manual instrumentation the readout can be retained for an unlimited period of time and translated into other correction planes without running the rotor again.

Unbalance can be indicated in terms of dynamic unbalance or static/couple unbalance with digital or analog display. The latter is unique in that a vectormeter display is simulated on the CRT. Amount and angle of unbalance are indicated simultaneously by small targets surrounded by semicircles (Figure 3). This display shows a direct relationship of magnitude and position of unbalance in the two correction planes. On the right side of the display are stated the scale factor (maximum indication = 50g), exact unbalance data, and multiples of the tolerances represented by the readings.

Figure 3. Simulated Vector Display of Unbalance

In the usual sequence of operation the display is used as shown in Figure 4. At this point all rotor data have been entered by the operator via the keyboard and the measuring run has been made; i.e., the rotor has been accelerated to balancing speed and unbalance readings have been taken.

Figure 4. Setup and Unbalance Data

During the entry of the rotor data the operator is prompted by a moving curser. Appropriate keys on the keyboard permit control of the curser.

A detailed explanation of the display follows.

Line (1): F1 (Field 1) permits identification of the balancing machine operator.

Line (2): F2 ROTOR DATA is the heading for the entire Field 2 extending from line (2) to (7). Line (2) also permits identification of the rotor type, in this case No. 14.

Line (3): The A-B-C rotor dimensions as entered by the operator refer to dimensions illustrated in Figure 5.

Line (4): R1 refers to the radius in the left correction plane at which the unbalance is being measured. R2 refers to the right plane.

Also listed are the indication (or correction) methods M1 and M2; i.e., P for polar correction (single correction at the indicated angular position) in the left plane and K for component correction in the right plane. Component correction usually requires two corrections because the unbalance falls between two component

positions. Plus or minus designations preceding P or K indicate that correction is to take place by weight removal (-) or addition (+).

Line (5): T1 and T2 list the unbalance tolerance for each plane (3.70 g $^{\circ}$ in. each).

Figure 5. Rotor Configuration Examples

Line (6): Balancing speed is variable. It can be designated by the balancing specification. If not, the operator usually selects the lowest balancing speed at which the indicating sensitivity of the instrumentation is sufficient for the specified balance

Line (7): F3 lists additional information for the component correction in the right plane (P2). Thus there are 12 equally spaced positions at which component correction can take place; the angular position of the first (or starting) component is at 8°.

Line (8): Field 4 permits identification of the rotor serial number (here 31).

Line (9): Field 5 Unbalance: This is the heading for lines (9) - (12).

Line (9) also shows the actual balancing speed.

Line (10)/

Line (11): The left column indicates the amount of unbalance (U1 = 28.0 g) in the left correction plane and its angular location (120°). The right column lists the two component positions (Nos. 8 and 9) in the right plane with their respective unbalance values (4.40 g and 19.6 g).

Line (12): States that the unbalance in both correction planes is out of tolerance.

The required unbalance correction is applied to the rotor; a second run is usually made to ascertain that the specified tolerance has been reached in both planes.

If more than one rotor of the same type is balanced, the rotor data in Field 2 are recalled and therefore need not be entered again. Only the new rotor serial number (F4) need be entered. Unbalance data for that rotor is then immediately displayed in Field 5 on the first run. If rotors of a different type are to be balanced, the rotor data of the first type can be stored in a memory file for later recall in case that type of rotor must be balanced again.

After the first run the rotor data and initial unbalance can be recorded in the form of the printed record shown in Figure 6. The record identifies the operator (F1); lists the rotor data (F2), (F3), (F4), and the initial unbalance (F5); and indicates whether or not the rotor is in tolerance. Thereafter, each run -- i.e., the new residual unbalance resulting from the previous unbalance correction -- can be added to the printed record.

F1	OPERATOR NUMBER	:5
F٤	ROTOR DATA	DN= 14
	A≃ >2.80IN B= 1	0.5IN C= <3.15IN
		R2= 3.75IN M2=+
	T1= 3.70GIN	T2= 3.70GIN
	BAL'G SPEED	N= 630. RPM
F3		P2≈12START @ 8.
F4	ROTOR SER.NO RN=	31
	RUN 1	
F5	UNBALANCE:	N= 627. RPM
	U1= 28.0G DEG=120.	POS 8 4.40G
	DEG=120.	POS 9 19.6G
		OUT OF TOL
	RUN 2	
F5	UNBALANCE:	N= 627. RPM
	U1= 2.75G	POS 12 462.MG
		POS 1 28.0MG
	OUT OF TOL	IN TOL
	RUN 3	
F5	UNBALANCE:	N= 627, RPM
		POS 12 303.MG
	IN TOL	POS 1 199.MG IN TOL
	/	· ·

Figure 6. Typical Printout of Complete Balancing
Cycle

The final printout registers the history of the unbalance measurements and corrections; the above example totaled three runs. Run 1 measured the initial unbalance; Run 2 measured the residual unbalance after correction was made in both planes. Note that the amount of unbalance now reads in milligrams in the right plane and is in tolerance. In the left plane a second correction was required because the initial unbalance was more than 10:1 larger than the specified tolerance. Run 3 measured the residual unbalance after the second correction was made in the left plane. (No further correction took place in the right plane.) The residual unbalance is now in tolerance in both planes, and the balancing operation is completed.

For mass production balancing a programmable micro processor instrumentation model CAB 600 is available. It permits subroutines directly applicable to different methods of unbalance correction. For

instance, the program can be made to interface with a drilling machine and control drill depth. The amount of unbalance, therefore, directly controls the material removal.

If the drive system of the balancing machine contains an indexing feature, the CAB 600 can be used to

accomplish the proper indexing of the rotor so that the heavy spot, where material is to be removed, will be directly under the correction unit -- e.g., drill, milling machine, welder. Such features make the micro processor a highly flexible tool that will have a significant impact on developments in the balancing field

LITERATURE REVIEW: survey and analysis of the Shock and Vibration literature

The monthly Literature Review, a subjective critique and summary of the literature, consists of two to four review articles each month, 3,000 to 4,000 words in length. The purpose of this section is to present a "digest" of literature over a period of three years. Planned by the Technical Editor, this section provides the DIGEST reader with up-to-date insights into current technology in more than 150 topic areas. Review articles include technical information from articles, reports, and unpublished proceedings. Each article also contains a minor tutorial of the technical area under discussion, a survey and evaluation of the new literature, and recommendations. Review articles are written by experts in the shock and vibration field.

This issue of the DIGEST contains articles about optimization of structures under shock and vibration environment, and recent investigations of the propagation of finite amplitude multi-dimensional acoustic waves.

Dr. S.S. Rao of San Diego State University, San Diego, California has written an article defining a general structural optimization problem. A classification of structural optimization applications is based on the nature of the major behavior constraint. Recent work in each class of problems is reviewed. Developments in the area of optimization methods and sensitivity analysis are discussed.

Professor J.H. Ginsberg of Georgia Institute of Technology, Atlanta, Georgia has written a paper describing phenomena that arise in multi-dimensional systems in which wave intensity is not uniform transverse to the direction of propagation. Use of the direct method and applications of integral transforms in the analysis of wave propagation are described.

OPTIMIZATION OF STRUCTURES UNDER SHOCK AND VIBRATION ENVIRONMENT

S.S. Rao*

Abstract. A general structural optimization problem is defined. A classification of structural optimization applications is based on the nature of the major behavior constraint. Recent work in each class of problems is reviewed. Developments in the area of optimization methods and sensitivity analysis are discussed. Structural optimization problems that need further investigation are summarized.

A general structural optimization problem involves the determination of a set of design variables x_i , $i=1,2,\ldots,n$ that minimize the objective functions $f_1(\vec{X}), f_2(\vec{X}),\ldots,f_k(\vec{X})$ and satisfy the constraints $g_j(\vec{X}) \leq 0, j=1,2,\ldots,p$ and $l_j(\vec{X})=0, j=1,2,\ldots,q$. \vec{X} is the design variable vector with $\vec{X}^T=\{x_1,x_2,\ldots,x_n\},g_j(\vec{X})$ is the j^{th} inequality constraint, and $l_j(\vec{X})$ is the j^{th} equality constraint. Most structural optimization investigations consider only one objective function with no equality constraints. In some cases the design variables x_j are considered functions of such parameters as spatial coordinates; the problem then becomes a trajectory optimization problem [56].

This paper presents a review of recent work in the field of structural optimization with dynamic constraints. It is convenient to classify structural optimization problems according to the major behavior constraint as follows:

- problems with natural frequency constraints
- problems with dynamic response restrictions
- problems with flutter constraints
- problems with reliability constraints
- design of vibration isolators and absorbers

A summary of recent work in each class is given below.

DESIGN PROBLEMS WITH NATURAL FREQUENCY CONSTRAINTS

Control and resonance of natural frequencies are important considerations in the design / ⁴namic systems. Structural optimization techs have been applied to reduce the external vibi as of a gas turbine engine [1]. An exterior penalunction method, coupled with the Gauss methor unconstrained optimization, has been applied minimum mass design of truss structure e frequency of vibration has been considered [3, 4] in the unimodal and bimodal optimal design of extensible arches and columns. The minimum weight design of structural members having lower bounds on the eigenvalues has been considered [5].

Optimal control (maximization) of the fundamental frequency of a plate of fixed weight with upper and lower bounds on the thickness has been discussed [6]. The thickness distribution of an axisymmetric plate has been determined by minimizing its volume for a given value of the fundamental natural frequency [7]. A method for an optimal design of symmetric fiber-reinforced composite laminates subjected to constraints on natural frequencies has been presented [8].

The design optimization of axially loaded, simply supported, stiffened cylindrical and conical shells for minimum weight has been considered by Rao and Reddy [9, 10]. Shell wall thickness, thickness and depth of rings and stringers, and number/spacing of rings and stringers were determined when natural frequencies, buckling strength, and direct stress were constrained. The use of allowable stress algorithms for a simple structural optimization problem with a single frequency constraint and a constant mass matrix has been discussed [11]. An optimality criterion method has been presented for obtaining the

^{*}Professor, Department of Mechanical Engineering, San Diego State University, San Diego, California 92182

optimum configuration of structural elements undergoing large amplitude oscillations and subjected to a frequency constraint [12].

DESIGN PROBLEMS WITH DYNAMIC RESPONSE RESTRICTIONS

Limiting the dynamic response becomes important when a structure is subjected to wind loads, earthquakes, impacts, gusts, or blast waves. Minimization of the maximum deflection of beams subjected to harmonic excitation has been considered [13]. A formulation of an earthquake-resistant design for structural systems has been presented [14]. On the basis of current design philosophy two levels of performance constraints were imposed on the problem. The design problem was formulated as a minmax problem; then a general strategy was presented to transcribe the problem to the canonical form of a nonlinear programming problem. An interactive software system for the optimal design of civil engineering structures has been given [15]; the example used was the optimal design of a nonlinear single-degreeof-freedom impact absorber.

Optimum bearing-support damping for rotor/bearing systems from stability maps has been determined [16]. The dynamic response of a multimass, large-scale, flexible rotor mounted on antifriction bearings and a variable force friction damper has been investigated [19]. Experimental results indicated optimized damping for the system.

The optimal design of dynamically loaded rigidplastic structures has been considered [18, 21]. A state space method for optimal design of structures under transient dynamic excitation was developed, and three problems were solved [17]. The optimization of damped dynamic structures has been considered [20]. An efficient technique has been presented by Masri and Safford [22] for optimizing the selection of pulse train characteristics to simulate the response of general types of structural systems to arbitrary dynamic environments. An adaptive random search algorithm was used that incorporated a periodic exploratory search for the optimal step-size variance. The same authors have presented an active control method for reducing the oscillations of distributed parameter systems subjected to arbitrary dynamic environments [23].

Mechanical dampers for the control of self-excited galloping of transmission lines have been considered by Rowbottom [24]. He recommends two dampers -- an in-span damper and a resilient mounting. Both dampers have been optimized either by maximizing the negative damping excitation that the damped system can withstand or by choosing the smaller logarithmic decrement of oscillation of the system to be as large as possible in the absence of excitation.

DESIGN PROBLEMS WITH FLUTTER CONSIDERATIONS

The control of flutter is important in such aircraft structures as wings, tails, and control surfaces, which are subjected to large lateral aerodynamic loads. The ideas presented by Haug and Arora [52] were used to determine the true optimal designs for structures undergoing flutter in the presence of damping [25]. A procedure for sizing an airframe for flutter-free performance has been demonstrated on a large flexible supersonic transport aircraft [26]. A two-level reduced basis or modal technique was used to reduce the computational cost of the repetitive flutter analysis.

A numerical procedure has been developed for minimizing the structural mass of an aircraft structure that must have a specified minimum flutter velocity or divergence velocity [27]. The arrangement of structural members was kept constant while the stiffness parameters were varied.

DESIGN OF VIBRATION ISOLATORS AND ABSORBERS

Vibration isolators and absorbers are devices that reduce or eliminate the unwanted effects of shock and vibration disturbances on critical elements of a mechanical system. A procedure to formulate redesign recommendations for suspending mass transport cars has been presented [28]. The objective of this study was to improve the performance of the suspension system under dynamic conditions so as to yield resonant velocities outside the range of most frequent operation. A state space method of optimal design of vibration isolators subjected to transient loads has been developed and applied [29]. Bullock and Cooley [30] described the design process followed in

developing a 100-ton freight car truck suspension system having Coulomb damping. The optimization of the actual design parameters and comparison to existing truck suspensions were accomplished using a late vehicle model.

A comparative study of various ride comfort criteria for the optimum design of a vehicle traveling on randomly profiled roads has been made by Dahlberg [31]. An optimization technique has been applied to evaluate the optimum values of the many parameters involved in the design of a pneumatic vibration isolation system; the maximum transmitted motion to the body would be minimum over a broad frequency range [32]. The optimal suspension structure for a simple one-degree-of-freedom vehicle model has been derived using linear-quadratic regulator theory [33].

An optimization system [34] to minimize the forced vibrational response of large-scale finite element models involves adjustment of isolator elements. This technique can be applied to models under steady state harmonic response and stationary random response.

Game theory has been used in optimization of shock and vibration isolation systems [35]. Results have been obtained for a three-degree-of-freedom system with an exponentially decaying base disturbance. A single-degree-of-freedom system was also used to evaluate the relative worth of a multi-degree-of-freedom system. Dual dynamic dampers have been proposed to replace viscous damping elements in isolators [36].

It has been shown that the equations of motion for a Lanchester damper can be modified to include the effects of both a damper slug rolling inside a cavity within the parent body and the kinetic energy of the damping fluid [37]. Slug rolling reduces the performance of the damper below that predicted by standard theory; a different value for damping is required at the optimum condition.

Warburton [47] determined the optimum parameters of absorbers. When they are attached to one mass of a main system with two degrees of freedom, the absorbers minimize the harmonic response of that mass. He also compared absorber parameters that were determined by either treating the main system

as an equivalent one-degree-of-freedom system or using classical theory. He also showed how the optimum parameters of absorbers, which are attached to beams, plates, and cylindrical shells, can be obtained accurately from parameters of an equivalent single-degree-of-freedom main system [38, 48].

The problem of designing an optimum Lanchester damper for a viscously damped single-degree-of-freedom system subjected to inertial harmonic excitation has been investigated [39, 41]. The optimum design of an untuned viscous dynamic vibration absorber has been considered [40, 44]. The vertical and horizontal vibrations of a periodically forced vibration system with a magnetic absorber system (M.D.) have been analyzed [42]. The most favorable state in the principal mass was also discussed.

Computational graphs that can be used to determine the optimal linear vibration absorber for a linearly damped primary system have been presented [43]. A graphical procedure (frequency locus method) has been used [45, 46] to optimize an untuned viscous dynamic vibration absorber [40].

DESIGN PROBLEMS WITH RELIABILITY CONSTRAINTS

The weight optimization of indeterminate structures subjected to deterministic transient dynamic loads and reliability constraints has been determined [49]. Optimization algorithms, which incorporate analyses based on numerical integration of equations of motion and shock spectra, have been utilized. A mathematical programming method for formulating an optimum design problem for structural systems using random parameters has been presented by Rao [50]; the systems are subjected to random vibration. The method was applied to the optimum design of a cantilever beam with a tip mass and a truss structure supporting a water tank. The time parameter that appears in the random vibration-based constraints was eliminated by replacing the probabilities of failure by suitable upper bounds.

OPTIMIZATION METHODS

Various optimization methods, including nonlinear programming and optimal control techniques have been compiled, as have their applications to structural and machine design problems [52, 54]. Various optimum design methods and their applications to engineering problems have been given [56]. Stochastic programming methods, which are useful for structural design problems involving random variables and random processes, are discussed in detail.

A survey of the applications and uses of optimization in aeronautical structural design has been presented [51]. Ideas and trends in optimization have been summarized [53]. An evaluation of the optimization software available in engineering design has been published [55], as has a discussion of the current state and future prospects of optimization in design [58]. The latter paper emphasizes the use of computerized algorithms and evolutionary and intuitive processes in optimal design.

A multilevel approach has been applied to the minimum weight structural design of wing box structures with fiber-composite stiffened-panel components [57]. The optimum sensitivity problem, which involves determination of derivatives of the optimal objective function and design variables with respect to physical quantities that are kept constant as problem parameters during optimization, has been considered [59]. The sensitivity equations derived in this work are applicable to optimum solutions obtained by direct search methods as well as those generated by SUMT methods. Recent developments in analytical, noniterative, and global optimization methodologies have been given by Wilde [60].

CONCLUSION

This review of recent work on structural optimization under shock and vibration environments indicates that the following problems need further investigation:

- the solution of design problems with discrete or integer design variables
- the application of multilevel and decomposition techniques for the solution of large-scale design problems with dynamic constraints
- reliability-based design problems involving stochastic processes with non-Gaussian inputs

REFERENCES

- Bedrossian, H. and Phoenix, R., "Application of Structural Optimization Technique to Reduce the External Vibrations of a Gas-Turbine Engine," ASME Paper No. 81-DET-143 (1981).
- Z. Bellagamba, L. and Yang, T.Y., "Minimum-Mass Truss Structures with Constraints on Fundamental Natural Frequency," AIAA J., 19 (11), pp 1452-1458 (1981).
- Blachut, J. and Gajewski, A., "Unimodal and Bimodal Optimal Design of Extensible Arches with Respect to Buckling and Vibrations," Optimal Control Applic. Methods, <u>2</u> (4), p 383 (1981).
- Gajewski, A., "A Note on Unimodal and Bimodal Optimal Design of Vibrating Compressed Columns," Intl. J. Mech. Sci., <u>23</u> (1), pp 11-16 (1981).
- Karihaloo, B.L. and Parbery, R.D., "Minimum Weight Members for Given Lower Bounds on Eigenvalues," J. Engrg. Optimiz., <u>5</u> (3), p 199 (1981).
- Litvinov, V.G., "Optimial Control of the Natural Frequency of a Plate of Variable Thickness," U.S.S.R. Computational Math. Math. Phys. (translated by Pergamon Press), 19 (4), pp 70-86 (Nov 1980).
- Olhoff, N., Lurie, K.A., Cherkaev, A.V., and Federov, A.V., "Sliding Regimes and Anisotropy in Optimal Design of Vibrating Axisymmetric Plates," Intl. J. Solids Struc., 17 (10), pp 931-948 (1981).
- Rao, S.S. and Kultar Singh, "Optimum Design of Laminates with Natural Frequency Constraints," J. Sound Vib., 67, pp 101-112 (1979).
- 9. Rao, S.S. and Reddy, E.S., "Optimum Design of Stiffened Cylincrical Shells with Natural Frequency Constraints," Computers Struc., 12, pp 211-219 (1980).
- Rao, S.S. and Reddy, E.S., "Optimum Design of Stiffened Conical Shells with Natural Frequency

- Constraints," Computers Struc., <u>14</u> (1/2), pp 103-110 (1981).
- Spillers, W.R., Singh, S., and Levy, R., "Optimization with Frequency Constraint," ASCE J. Struc. Div., 107 (12), pp 2337-2347 (Dec 1981).
- Venkateswara Rao, G. and Narayanaswami, R., "Optimization of Simply Supported Beams in Large Amplitude Vibration to a Frequency," J. Sound Vib., 74 (1), pp 139-142 (1981).
- Adali, S., "Minimum-Maximum Deflection and Stress Design of Beams under Harmonic Excitation by Mathematical Programming," J. Engrg. Optimiz., <u>5</u> (4), pp 223-234 (1982).
- Bhatti, M.A. and Pister, K.S., "A Dual Criteria Approach for Optimal Design of Earthquake Resistant Structural Systems," Intl. J. Earthquake Engrg. Struc. Dynam., 9 (6), pp 557-572 (1981).
- Bhatti, M.A., Pister, K.S., and Polak, E., "Interactive Optimal Design of Dynamically Loaded Structures," ASCE Preprint No. 80-635 (1981).
- Chari, P.S., Reddy, C.P., and Reddy, G.M., "Optimum Bearing-Support Damping for Rotor-Bearing Systems for Maximum Stable Operating Speed Range," ASME Paper No. 81-DET-69 (1981).
- Haug, E.J., Arora, J.S., and Feng, T.T., "Sensitivity Analysis and Optimization of Structures for Dynamic Response," J. Mech. Des., Trans. ASME, 100 (2), pp 311-318 (Apr 1978).
- Heinloo, M. and Kaliszky, S., "Optimal Design of Dynamically Loaded Rigid-Plastic Structures; Application: Thick-Walled Concrete Tube," J. Struc. Mech., 9 (3), pp 235-252 (1981).
- Hibner, D.H., Dhat, S.T., and Buono, D.F., "Optimum Friction Damping of a Flexible Rotor," ASME Paper No. 81-GT-156 (1981).
- Kim, S.W. and Kwak, B.M., "Optimal Design of Damped Dynamic Stuctures," Optimal Control Applic. Methods, <u>2</u> (4), pp 335-350 (1981).

- Lepik, U., "Optimal Design of Rigid-Plastic Simply Supported Beams under Impulsive Loading," Intl. J. Solids Struc., 17 (6), pp 617-630 (1981).
- Masri, S.F. and Safford, F.B., "Optimization Procedure for Pulse-Simulated Response," ASCE J. Struc. Div., 107 (9), pp 1743-1761 (Sept 1981).
- Masri, S.F., Bekey, G.A., and Caughey, T.K., "Optimum Pulse Control of Flexible Structures,"
 J. Appl. Mech., Trans. ASME, 48 (3), pp 619-626 (Sept 1981).
- Rowbottom, M.D., "The Optimization of Mechanical Dampers to Control Self-Excited Galloping Oscillations," J. Sound Vib., 75 (4), pp 559-576 (1981).
- Claudon, J.L. and Sunakawa, M., "Optimizing Distributed Structures for Maximum Flutter Load," AIAA J., 19 (7), pp 957-959 (1981).
- Greene, W.H. and Sobieski, J.S., "Minimum Mass Sizing of a Large Low-Aspect Ratio Airframe for Flutter-Free Performance," J. Aircraft, 19 (3), pp 228-234 (Mar 1982).
- Rudisill, C.S., "Optimization of Fiber Reinforced Structures to Satisfy Aeroelastic Requirements," NASA-CR-164536 (1981).
- Angeles, J. and Espinosa, I., "Suspension System Synthesis for Mass Transport Vehicles with Prescribed Dynamical Behavior," ASME Paper No. 81-DET-44 (1981).
- Hsiao, M.H., Haug, Jr., E.J., and Arora, J.S., "A State Space Method for Optimal Design of Vibration Isolators," J. Mech. Des., Trans. ASME, 101 (2), pp 309-314 (Apr 1979).
- Bullock, R.L. and Cooley, D.B., "Optimizing Railroad Freight Car Truck Suspension System Having Coulomb Damping," J. Engrg. Indus., Trans. ASME, 100 (3), pp 311-317 (Aug 1978).
- Dahlberg, T., "Comparison of Ride Comfort Criteria for Computer Optimization of Vehicle Travelling on Randomly Profiled Roads," Vehicle Syst. Dynam., 9 (6), pp 291-308 (1980).

- Esmailzadeh, E., "Optimization of Pneumatic Vibration Isolation System for Vehicle Suspension," J. Mech. Des., Trans. ASME, 100 (3), pp 500-506 (July 1978).
- Hrovat, D. and Hubbard, M., "Optimum Vehicle Suspensions Minimizing RMS Rattlespace, Sprung-Mass Acceleration and Jerk," J. Dynam. Syst., Meas. Control, Trans. ASME, 103 (3), pp 228-236 (Sept 1981).
- Nack, W.V., "Vibrational Isolation of Large Scale Finite Element Models Using Optimization," Computers Struc., 14 (1/2), pp 149-152 (1981).
- Rao, S.S. and Hati, S.K., "Optimum Design of Shock and Vibration Isolation Systems Using Game Theory," J. Engrg. Optimiz., 4, pp 1-12 (1980).
- Seto, K. and Iwanami, K., "An Investigation of the Vibration Isolator Equipped with Dual Dynamic Dampers as a Damping Element," (1st Report, Optimum Adjustment Condition for Dual Dynamic Dampers), Bull. JSME, <u>24</u> (197), pp 2013-2019 (Nov 1981).
- Au, Y.H.J., Ng, K.W., and New, R.W., "The Lanchester Damper -- A Design Procedure for Optimizing the Damping Ratio for a Cylindrical Slug Damper Fitted to a Machine Element," J. Mech. Des., Trans. ASME, 101 (2), pp 291-297 (Apr 1979).
- 38. Ayorinde, E.O. and Warburton, G.B., "Minimizing Structural Vibrations with Absorbers," Intl. J. Earthquake Engrg. Struc. Dynam., 8 (3), pp 219-236 (1980).
- Bapat, V.A. and Prabhu, P., "Optimum Design of a Lanchester Damper for a Viscously Damped Single Degree of Freedom System Subjected to Inertial Excitation," J. Sound Vib., 73 (1), pp 113-124 (1980).
- Bapat, V.A. and Kumaraswamy, H.V., "Effect of Primary System Damping on the Optimum Design of an Untuned Viscous Dynamic Vibration Absorber," J. Sound Vib., 63, pp 469-474 (1979).

- 41. Bapat, V.A. and Prabhu, P, "Optimum Design of Lanchester Damper for a Viscously Damped Single Degree of Freedom System by Using Minimum Force Transmissibility Criterion," J. Sound Vib., 67, pp 113-119 (1979).
- Kurakake, Y., Hara, Y., and Fukuda, S., "Working of Magnetic Dynamic Absorber," (Optimal Damping of M.D. with a Viscous Damper), Bull. JSME, <u>24</u> (193), pp 1239-1246 (July 1981).
- Randall, S.E., Halsted III, D.M., and Taylor, D.L., "Optimum Vibration Absorbers for Linear Damped Systems," J. Mech. Des., Trans. ASME, 103 (4), pp 908-913 (Oct 1981).
- Soom, A., "Optimum Design of Linear and Nonlinear Vibration Absorbers for Damped Systems," Paper No. 81-DET-83 (1981).
- Thompson, A.G., "Optimizing the Untuned Viscous Dynamic Vibration Absorber with Primary System Damping: A Frequency Locus Method," J. Sound Vib., <u>73</u> (3), pp 469-471 (1980).
- Thompson, A.G., "Optimum Tuning and Damping of a Dynamic Vibration Absorber Applied to a Force Excited and Damped Primary System," J. Sound Vib., 77 (3), pp 403-415 (1981).
- Warburton, G.B., "Optimum Absorber Parameters for Minimizing Vibration Response," Intl.
 J. Earthquake Engrg. Struc. Dynam., 9 (3), pp 251-262 (1981).
- Warburton, G.B. and Ayorinde, E.O., "Optimum Absorber Parameters for Simple Systems," Intl. J. Earthquake Engrg. Struc. Dynam., 8 (3), pp 197-217 (1980).
- 49. Davidson, J.W., Felton, L.P., and Hart, G.C., "Reliability Based Optimization for Dynamic Loads," ASCE J. Struc. Div., 103, pp 2021-2035 (1977).
- 50. Rao, S.S., "Reliability-Based Optimization under Random Vibration Environment," Computers Struc., 14 (5/6), pp 345-356 (1981).

- 51. Ashley, H., "On Making Things the Best -- Aeronautical Uses of Optimization," J. Aircraft, 19 (1), pp 5-28 (Jan 1982).
- 52. Haug, E.J. and Arora, J.S., <u>Applied Optimal Design</u>, Wiley-Interscience, NY (1979).
- Johnson, G.E., "Future Trends in Optimization,"
 J. Mech. Des., Trans. ASME, <u>103</u> (4), pp 677-682 (Oct 1981).
- 54. Kirsch, U., Optimum Structural Design, McGraw-Hill, NY (1981).
- Ragsdell, K.M., "The Evaluation of Optimization Software for Engineering Design," Math. Programming Soc. Mtg: Testing and Validating Algorithms and Software, Boulder, CO´ (Jan 1981).

- 56. Rao, S.S., Optimization: Theory and Applications, Wiley, NY (1978).
- 57. Schmit, L.A. and Mehrinfar, M., "Multilevel Optimum Design of Structures with Fiber-Composite Stiffened-Panel Components," AIAA J., 20 (1), pp 138-147 (1982).
- 58. Siddall, J.N., "Frontiers of Optimum Design," J. Mech. Des., Trans. ASME, <u>101</u> (4), pp 674-681 (Oct 1979).
- Sobieski, J.S., Batthelemy, J.F., and Riley, K.M., "Sensitivity of Optimum Solutions to Problem Parameters," AIAA Paper No. 81-0548, pres. at 22nd AIAA/ASME/ASCE/AHS Struc., Struc. Dynam. Matls. Conf., Atlanta, GA (Apr 6-8, 1981).
- 60. Wilde, D.J., Globally Optimal Design, Wiley-Interscience, NY (1978).

RECENT INVESTIGATIONS OF THE PROPAGATION OF FINITE AMPLITUDE MULTI-DIMENSIONAL ACOUSTIC WAVES

J.H. Ginsberg*

Abstract. Phenomena are described that arise in multi-dimensional systems in which wave intensity is not uniform transverse to the direction of propagation. Use of the direct method and applications of integral transforms in the analysis of wave propagation are described.

Earlier review articles [1, 2] described a variety of interesting phenomena that arise when acoustical waves have reasonably large amplitudes; e.g., in excess of 120 dB (re 20 μ Pa) in air or 210 dB (re 1 μ Pa) in water. The phenomena of wave steepening and formation of shocks in planar waves are well-documented.

The effects that arise in multi-dimensional systems, in which wave intensity is not uniform transverse to the direction of propagation, are less familiar but equally dramatic. Various techniques have been employed to evaluate these effects. Multi-dimensional systems have resisted exact analytical solutions. As a result analytical solutions using perturbation methods have received a great deal of attention.

GENERAL CONCEPTS

Consider the case of linear waves when the signal strength is infinitesimal. In general, the acoustic medium is nondispersive; that is, a one-dimensional wave having infinitesimal amplitude will propagate at the speed of sound regardless of its wavelength. However, the speed at which nonuniform waves propagate is dependent on the rates of variation in the propagating and transverse directions, as might be measured by a ratio of wavelengths. In fact, waves having comparatively small transverse wavelengths decay exponentially rather than propagate [3]. Because the phase speed for propagating waves is

dependent on a ratio of wavelengths in orthogonal directions, individual waves are often found to propagate jointly. Thus an acoustic wave can be considered to be comprised of groups of waves having different wave speeds.

Let p denote the acoustic pressure and v_1 , v_2 , v_3 the particle velocity components. Then

$$\begin{cases}
p \\
v_1 \\
v_2 \\
v_3
\end{cases} = \begin{bmatrix}
M \\
\Sigma \\
i = 1
\end{bmatrix} \quad
\begin{cases}
p \\
v_1 \\
v_2 \\
v_3
\end{cases}$$
(1)

where i represents the group number. Each group has a unique phase speed, which is denoted as c;.

Let x_1 be the direction of propagation. Then each group can be written as

$$\begin{pmatrix}
p \\
v_1 \\
v_2 \\
v_3
\end{pmatrix}_{i} = \sum_{j=1}^{M} \begin{cases}
(p)_{ij} \\
(v_1)_{ij} \\
(v_2)_{ij} \\
(v_3)_{ij}
\end{cases} (2)$$

The terms to the right of the equality sign are functions of $t \sim x_1/c_1$, x_2 , and x_3 .

The lack of dispersion for the individual contributors to a specific group i has a profound nonlinear effect. For discussion purposes nonlinearity can be considered to create source terms that excite a second order linear signal. Because these source terms propagate at the speed of the group from which they are formed, a resonant-like condition is established. This leads to a cumulative growth of distortion effects as the group propagates.

^{*}School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

PERIODIC GEOMETRIES

The direct method described in preceding surveys [1, 2] has been particularly successful in evaluating nonlinear effects. The first step in the direct method is to formulate the problem in terms of the nonlinear hyperbolic wave equation governing the velocity potential [4]. This partial differential equation is solved asymptotically using a singular perturbation method [5]. Most investigators have used the method of renormalization, in which coordinate straining transformations are introduced to describe the distortion associated with nonlinearity.

The systems treated in this section have repetitive geometric configurations. This permits the use of separation of variables to solve the linear differential equations.

The study of two-dimensional waves in a hard-walled duct [6] was significant in the development of the direct method because of the general nature of the excitation. An arbitrary periodic input excited a variety of duct modes that were grouped according to phase speeds. It was found that the distortion of each mode forming a nondispersive group is a consequence of all modes in that group. Furthermore, the distortion is not influenced by the responses in other groups. This conclusion resulted from the fact that a different coordinate straining was found for each group. Because the system was two dimensional, two strained coordinates were introduced. For group i, they had the form

$$t-x_1/c_j = \alpha_i + F_i x_1 (v_1)_i$$

 $x_2 = \beta_i + G_i x_1 (v_2)_i$
(3)

where F_i and G_i are constants. Each term $(p)_{ij}$, $(v_1)_{ij}$, and $(v_2)_{ij}$ $(j=1,2,\ldots,N)$ depends on the values of α_i and β_i . A constant value of α_i defines a wave front for group i, and constant β_i is a ray. Thus, equations (3) define a phenomenon of self-refraction, in which the wave fronts and rays for a group are distorted by the response in the group.

A similar conclusion was obtained in an analysis of the acoustical waves that result when oppositely traveling waves propagate along an infinite plate [7]. That investigation followed the method of renormalization for an inviscid medium. However, the method of multiple scales, with its increased generality and complexity was required to develop the coordinate straining in the presence of dissipation.

The tendency for non-dispersive groups to interact only with themselves has been identified in general cylindrical [8, 9] and spherical [10, 11] waves. These analyses developed the solutions in terms of eigenmodes of the respective curvilinear coordinate system. The analytical techniques employed followed the grouping concepts developed for the duct problem. The method for evaluating the second order potential function in curvilinear coordinates was identical to that derived for excitation in a single cylinder harmonic [12, 13]. In that procedure the asymptotic expansion of the response in the far field is used to ascertain the coordinate straining. The result is then matched to the expansion of the response in the near field.

The primary differences in the analyses of cylindrical and spherical waves arise from differences in the nature of the dispersion. In the far field, infinitesimal spherical waves propagate at the speed of sound, regardless of the spherical harmonic to which they correspond. Thus, only a single wave group existed in the spherical geometry.

APPLICATIONS FEATURING INTEGRAL TRANSFORMS

A key element in the foregoing analyses was the identification of the portion of the second order potential that grows as the wave propagates. Identification was expedited by the fact that the analogous linearized system could be analyzed by separating variables in the governing partial differential equation. Many systems encountered in practice require more general solution techniques. The feasibility of using integral transforms in the context of the direct method was demonstrated in a study of planar waves [14]. The Laplace transform was used in the analysis to treat an arbitrary time dependence. The coordinate straining, which was performed in terms of the transform, was shown to reduce to the result obtained by more conventional methods.

Integral transforms have been implemented in the analysis of systems related to the infinite baffle problem. Such systems feature the oscillation of a

flat boundary, which results in a confined beam of sound when the frequency is sufficiently high. The linear solution of these problems is usually formulated in terms of source theory, which leads to the Rayleigh integral [3]. However, an alternative formulation using integral transforms has proven to be more convenient for nonlinear problems.

The case of an infinitely long strip on the boundary was treated first. A Fourier cosine transform was used in an evaluation of the growth of harmonics [15] to treat the variation transverse to the axis of propagation. The propagating part of the first order signal was

$$\phi_1 = \int_0^1 \frac{V_k}{\lambda_k} \cos(t - \lambda_k x_1) \cos(k x_2) dk \qquad (4)$$

where $\lambda_k = (1 - k^2)^{1/2}$ and V_k is a transform parameter for the excitation. A comparison of this representation with equations (1) and (2) reveals that the sound beam is composed of a continuous spectrum of infinitesimal wave groups. Each group consists of a single harmonic that propagates at the non-dimensional speed $1/\lambda_k$.

Equation (4) leads to source terms occupying a double spectrum of transverse wave numbers k. An analysis [15] reduced the double spectrum to a single one by means of an asymptotic integration (the method of stationary phase). In essence this procedure describes the cancellations resulting from destructive interference between higher harmonics. The part found in the integration represents the primary contribution to the far field.

The potential function that resulted from this analysis was the starting point for a companion study [16] to determine coordinate straining. It was found that the transformation is dependent on the transverse wave number, specifically

$$t - \lambda_k x_1 = \psi_k - \epsilon s_k x_1^{\frac{1}{2}} \sin(\psi_k - \pi/4)\cos(\eta_k)$$

$$k x_2 = \eta_k - \epsilon s_k x_1^{\frac{1}{2}} \cos(\psi_k - \pi/4)\sin(\eta_k)$$
(5)

where ψ_k and η_k are the strained coordinates, and s_k is a coefficient that depends on V_k and λ_k . The variables ψ_k and η_k replace $t-\lambda_k x_1$ and kx_2 respectively in equation (4).

This result is consistent with the earlier observation regarding wave groups. Each infinitesimal segment

in the spectrum of transverse wavelets forms a wavelet. Because the phase speed of the wavelet is an analytical function of its wave number, it forms an individually propagating group. The distortion of each group is independent of the response in other groups.

The same type of analysis was employed to study the more realistic problem of axisymmetric sound beams [17]. The unique feature was the treatment of the variation of the signal transverse to the beam axis. Because it was convenient to use cylindrical coordinates to treat the spatial dependence, a Hankel (Fourier-Hankel) transform was used. The analysis of the second order potential was achieved off the beam axis in order to simplify the representation of the Bessel functions that appear in the integral vansform. The method whereby the off-axis response was matched to the on-axis result is derived from the treatment of cylindrical waves that propagate in the radial direction [12].

The waveform in both the strip and axisymmetric beam configurations displayed a type of distortion that is not observed in periodic geometries. Wave steepening due to amplitude dispersion occurs even in one-dimensional waves [3]. The figure displays some typical waveforms for the axisymmetric sound beam; it exhibits such distortion. (The dotted curves are the predictions of linear theory.) It can be seen that the shape of the compression phase is high and narrow; the rarefaction phase is broad. This prediction is consistent with experimental observations [18, 19].

Waveforms on Axis in an Intense Sound Beam in Water, ka = 20; maximum pressure, 240 dB

Comparable predictions have been reported in the Soviet literature [20-25]. In these analyses finite difference techniques were used to solve a modified version of Burger [26] that is often used as a prototypical equation for nonlinear waves. The modification [27, 28] is intended to account for spreading transverse to the beam axis. However, the assumptions made in the derivation of the modified equation are prone to error when small scale diffraction effects are involved.

Analyses and experimental observations of sound beams indicate that the asymmetry in the profile occurs when the excitation is sufficiently strong to cause significant distortion in the near field, where the beam resembles a quasi-planar wave [19]. Less strong excitations result in a transition of the sound beam to a quasi-spherical in the far field [3]. The mechanism underlying this change in distortion type is a current research topic.

ACKNOWLEDGMENT

These investigations were supported by the National Science Foundation under grants CME-8026496 and MEA-8101106.

REFERENCES

- Ginsberg, J.H., "Recent Development for the Nonlinear Distortion of Non-dispersive Acoustic Waves; Part 1: Planar Waves and the Direct Method," Shock Vib. Dig., 11 (7), pp 3-8 (1979).
- Ginsberg, J.H., "Recent Developments for the Nonlinear Distortion of Non-dispersive Acoustic Waves; Part II: Multi-dimensional Systems," Shock Vib. Dig., 11 (8), pp 3-12 (1979).
- 3. Pierce, A.D., Acoustics, McGraw-Hill, NY (1981).
- Goldstein, S., <u>Lectures in Fluid Mechanics</u>, Wiley-Interscience, NY (1960).
- Nayfeh, A.H., <u>Perturbation Methods</u>, Wiley-Interscience, NY (1973).
- 6. Ginsberg, J.H., "Finite Amplitude Two-Dimensional Waves in a Rectangular Duct Induced by

- Arbitrary Periodic Excitation," J. Acoust. Soc. Amer., 65, pp 1127-1133 (1978).
- Nayfeh, A.H., "Non-linear Propagation of Waves Induced by General Vibrations of Plates," J. Sound Vib., 79 (3), pp 429-437 (1981).
- Kelly, S.G. and Nayfeh, A.H., "Non-linear Propagation of General Directional Cylindrical Waves,"
 J. Sound Vib., 79, pp 415-428 (1981).
- Obermann, S.W., "Propagation of Nonlinear Three-Dimensional Acoustic Waves Induced by Arbitrary Periodic Excitation of a Cylinder," M.S. Thesis, Purdue University (1980).
- Kelly, S.G. and Nayfeh, A.H., "Non-linear Propagation of Directional and Spherical Waves," J. Sound Vib., 72, pp 25-37 (1980).
- Kelly, S.G. and Nayfeh, A.H., "Non-linear Propagation of General Directional Spherical Waves,"
 J. Sound Vib., 79, pp 145-156 (1981).
- Ginsberg, J.H., "Propagation of Nonlinear Acoustic Waves Induced by a Vibrating Cylinder; Part I: The Two-Dimensional Case," J. Acoust. Soc. Amer., 64, pp 1671-1678 (1978).
- Ginsberg, J.H., "Propagation of Nonlinear Acoustic Waves Induced by a Vibrating Cylinder; Part II: The Three-Dimensional Case," J. Acoust. Soc. Amer., 64, pp 1679-1687 (1978).
- Ginsberg, J.H., "An Integral Transform Derivation of Simple Non-linear Planar Waves in an Acoustic Medium," J. Sound Vib., <u>69</u>, pp 622-625 (1980).
- Ginsberg, J.H., "On the Nonlinear Generation of Harmonics in Sound Radiation from a Vibrating Planar Boundary," J. Acoust. Soc. Amer., 69, pp 60-65 (1981).
- Ginsberg, J.H., "Uniformly Accurate Description of Finite Amplitude Sound Radiation from a Harmonically Vibrating Planar Boundary," J. Acoust. Soc. Amer., 69, pp 929-936 (1981).
- Ginsberg, J.H., "Axisymmetric, Finite Amplitude Sound Beams Generated by Harmonic Trans-

- ducer Excitation," J. Acoust. Soc. Amer., (in press).
- Browning, D.G. and Mellen, R.H., "Finite-Amplitude Distortion of 150-kHz Acoustic Waves in Water," J. Acoust. Soc. Amer., <u>44</u>, pp 644-646 (1968).
- Campanella, A.J., "Finite Amplitude Distortion of Spherically Diverging Intense Sound Waves in Air," J. Acoust. Soc. Amer., <u>67</u>, pp 6-14 (1980).
- Ostrovskii, L.A. and Sutin, A.M., "Focusing of Finite-Amplitude Acoustic Waves," Sov. Phys. Dokl., 20, pp 275-279 (1975).
- Bakhvalov, N.S., Zhileikin, Ya. M., Zabolotskaya, E.A., and Khokhlov, R.V., "Nonlinear Propagation of a Sound Beam in a Nondissipative Medium," Sov. Phys. Acoust., 22, pp 272-274 (1976).
- Bakhvalov, N.S., Zhileikin, Ya. M., Zabolotskaya, E.A., and Khokhlov, R.V., "Propagation of Finite Amplitude Sound Beams in a Dissipative Medium," Sov. Phys. Acoust., <u>24</u>, pp 271-275 (1978).
- 23. Bakhvalov, N.S., Zhileikin, Ya. M., Zabolotskaya, E.A., and Khokhlov, R.V., "Focused High-

- Amplitude Sound Beams," Sov. Phys. Acoust., 24, pp 10-15 (1978).
- Bakhvalov, N.S., Zhileikin, Ya. M., Zabolotskaya, E.A., and Khokhlov, R.V., "Harmonic Generation in Sound Beams," Sov. Phys. Acoust., <u>25</u>, pp 101-106 (1979).
- Zhileikin, Ya. M., Zhuravleva, T.M., and Rudenko, O.V., "Nonlinear Effects in the Propagation of High-Frequency Sound Waves in Tubes," Sov. Phys. Acoust., 26, pp 32-34 (1980).
- 26. Whitham, G.B., <u>Linear and Nonlinear Waves</u>, Wiley-Interscience, NY (1974).
- Zabolotskaya, E.A. and Khokhlov, R.V., "Quasiplane Waves in the Nonlinear Acoustics of Confined Beams," Sov. Phys. Acoust., <u>15</u>, pp 35-40 (1969).
- Zabolotskaya, E.A. and Khokhlov, R.V., "Convergent and Divergent Sound Beams in Nonlinear Media," Sov. Phys. Acoust., 19, pp 39-42 (1970).
- 29. Zemanek, J., "Beam Behavior within the Nearfield of a Vibrating Piston," J. Acoust. Soc. Amer., 49, pp 181-191 (1971).

ANNUAL ARTICLE INDEX

FEATURE ARTICLES

	ISSUE	PAGES
Rieger, N.F. The Literature of Vibration Engineering	1	5-13
Singh, R. Acoustic Impedance Measurement Methods	2	3-9
Beltzer, A.I. Random Waves in Solid Media	3	3-6
Abramson, H.N. The Changing Dimensions of Qualification Testing	4	3-19
Bagci, C. Fatigue Design of Machine Elements	5	3-11
Lund, J.W. Current Topics in Rotordynamics Research	6	3-7
Platzer, M.F. Transonic Blade Flutter: A Survey of New Developments	7	3-8
Lyon, R.H. and Slack, J.W. A Review of Structural Noise Transmission	8	3-11
Plunkett, R. Shock and Vibration Instrumentation	9	3-5
Arndt, R.E.A. and Long, D.F. Coherent Structure and Jet Noise	10	3-10
Baker, W.E. Approximate Techniques for Plastic Deformation of Structures under Impulsive Loading, III	11	3-11
Stadelbauer, D.G. Dynamic Relancing with Micro Processors	12	3-7

LITERATURE REVIEWS

	ISSUE	PAGES
Nielsen, L.E. Mechanical Damping of Filled Plastics	1	15-16
De, S. Seismic Waves	1	17-33
Mazumdar, J. A Review of Approximate Methods for Determining the Vibrational Modes of Membranes	2	11-17
Mote, C.D., Jr., Schajer, G.S., and Wu, W.Z. Band Saw and Circular Saw Vibration and Stability	2	19-25
Etsion, I. A Review of Mechanical Face Seal Dynamics	3	9-14
Malanoski, S.B. Subsynchronous Vibrations of Rotor Systems	3	15-21
Rades, M. Analysis of Measured Structural Frequency Response Data	4	21-32
Chung, T.J. Recent Developments in Hygrothermoviscoelastic Analysis of Composites	4	33-40
Jones, D.I.G. High Temperature Damping of Dynamic Systems	5	13-15
Kelly, J.M. Asciamic Base Isolation	5	17-25
Beards, C.F. Damping in Structural Joints	6	9-11
Srinivasan, V. and Soni, A.H. Seismic Analysis of Rotating Mechanical Systems - A Review	6	13-19
McLean, D. Active Control Technology in Aircraft	7	11-22
Johns, D.J. Wind Excited Behaviour of Structures III	7	23-38
Vaicaitis, R. Recent Research on Noise Transmission into Aircraft	8	13-18

LITERATURE REVIEWS (CONTINUED)

	ISSUE	PAGES
Sathyamoorthy, M. Nonlinear Analysis of Beams. Part I: A Survey of Recent Advances	8	19-35
Sathyamoorthy, M. Nonlinear Analysis of Beams. Part II: Finite Element Methods	9	7-18
Migliore, H. and Webster, R.L. Current Methods for Analyzing Dynamic Cable Response 1979 to the Present	9	19-24
Hobaica, E.C. Behavior of Elastomeric Materials under Dynamics Loads - III	10	13-16
Bert, C.W. Research on Dynamics of Composite and Sandwich Plates, 1979-81	10	17-34
Krajcinovic, D. Spall Fracture of Solids	11	13-17
Pilkey, W.D., Kitis, L., and Wang, B.P. Optimal Vibration Reduction over a Frequency Range	11	19-27
Rao, S.S. Optimization of Structures under Shock and Vibration Environment	12	9-15
Ginsberg, J.H. Recent Investigations of the Propagation of Finite Amplitude Multi- Dimensional Acoustic Waves	12	17-21

BOOK REVIEWS

SNUBBER DESIGN APPLICATIONS AND MINIMIZATION METHODS

F.M. Fredrickson, Editor ASME Publ. PVP Vol. 55, New York, NY 1981, 75 pages, \$14.00

A snubber is a dynamic or shock restraint device; it is used in large numbers to support piping systems and equipment in the nuclear power industry. A snubber allows essentially free motion to low rates of relative displacement between its two ends. It resists shock or vibration sensed by either relative acceleration or relative velocity between its two ends.

The book is comprised of seven independent papers covering various topics on snubbers. All were written by practicing engineers in the industry. The book is easily understood; essentially no mathematics are involved.

- E.J. Renkey reports that tests on low level vibration indicate an increase in the breakaway force due to contamination by wear particles. He states that inspections performed on seismic restraints installed in high vibration areas have verified wearing in those snubbers.
- F.E. DiCola presents a program for establishing examination and testing criteria for verifying snubber operability. He identifies both the sources of data to be used for establishing such criteria and the contents of the criteria. The author recommends that criterion values specific to location rather than generic criteria be used. No actual criterion data are presented in the paper.
- L.S. Rapel discusses the need for consideration of lateral loading of snubber assemblies. He provides methods for qualifying the assemblies for lateral load. The author points out that lateral loads result in shortening the allowable pin-to-pin dimension of a snubber assembly and that a stiffer extension member may be required.

In 25 pages G.T. Jirak and C.L. Braff describe a wide range of problems related to snubbers encountered at Diablo Canyon Nuclear Power Plant; the resolutions of the problems are also given. Those who want to improve their snubber inspection or surveillance check lists will find this article worth reading.

- R.T. Anderson and W.W. Van Meter describe the functions, mechanisms, and characteristics of various types of snubbers currently used in the industry. They present a concept for an electro-mechanically controlled snubber. The authors also describe the advantages and benefits that might be realized by use of an electro-mechanical snubber. The disadvantages -- including the requirement for a redundant power supply for safety-related systems and possible disastrous consequences to control room operators -- are not mentioned.
- H.J. Thailer presents the necessary considerations associated with the design of a rigid pipe clamp assembly more engineered than the band clamps traditionally used. The paper is different from typical design textbooks or journals in that neither a design analysis procedure nor a computer code used for optimum design is given. The reader will find the content of the article strictly limited to considerations.
- D.J. Graziano and R.M. ElBeshbeshy present methods for reducing the number of snubbers in designing piping systems. The methods include accounting for support stiffness, accounting for gaps between support and pipe, strategic placement of support, and full use of material strength allowed by codes.

The book should benefit those who participate in design, analysis, installation, and inspection of pipe and pipe supports involving snubber applications, including snubber vendors.

M.Z. Lee Gilbert/Commonwealth P.O. Box 1498 Reading, PA 19603

FLUID TRANSIENTS AND STRUCTURAL INTERACTIONS IN PIPING SYSTEMS

P.H. Rothe and D.C. Wiggert, Editors ASME Publ., New York, NY Book No. G00198, 1981, 53 pages, \$14.00

Vibrations of piping due to fluid transients and fluid-pipe interactions are two significant causes of pipe failures; they affect safety, reliability, and availability of nuclear power and certain other process plants. The six papers illustrate recent progress related to the description and analysis of fluid transients and how they interact with piping.

The first paper describes a numerical analysis approach that simulates the effects of fluid-acoustic and fluid-piping interaction. The analysis utilizes a piping structure finite element analysis code; the fluid in the pipe is represented by spar elements.

The second paper presents a numerical analysis approach using existing dynamic structural analysis computer codes. The method for studying dynamic fluid-piping interaction by separate analyses of fluid and solid components is followed by modal synthesis of the component solutions.

The third paper deals with two methods for calculating overall transfer matrix and pressure pulsation amplitude at certain locations within a special parallel bridge type network. The technique was applied to simulate and analyze the acoustic performance of a piping system. It was also used to attenuate pressure pulsation through acoustic performance of a piping system and to attenuate pressure pulsation through acoustic tuning.

The fourth paper utilizes a two phase thermal hydraulic code, RELAP4, and a water hammer code to analyze a blowdown terminated by check valve closure. The authors point out that piping components, their relative locations, and the values of their characteristics dictate the phenomena and the analysis method involving two-phase fluid transients.

The authors of the fifth paper report their experience in using RELAP4/MOD5 and REPIPE for calculating piping loads on a feedwater line due to check valve closure. Conclusions on nodalization, time-step,

frequency of printout, and spurious oscillation of solutions are applicable to more recent similar codes such as RELAP5/MOD1 - REFORC developed for safety and relief valve evaluation.

In the sixth paper the authors report that a laboratory scale apparatus had provided repeatable data on waterhammer transients of bubble collapse. They state that experimental results are consistent with simple, one-dimensional theoretical analysis of both bubble collapse dynamics and piping structural responses.

The book contains results of good research work and some original data. Theoretical treatment, illustrative examples, and suggestions on optimum system design parameters are well balanced. Fifty references are listed in the second and the third papers alone. The book should benefit university researchers and engineering specialists interested in keeping abreast of the state of the art in the subject field.

M.Z. Lee Gilbert/Commonwealth P.O. Box 1498 Reading, PA 19603

BEARING DESIGN -- HISTORICAL ASPECTS, PRESENT TECHNOLOGY AND FUTURE PROBLEMS

W.J. Anderson, Editor ASME Publ., New York, NY Book No. H00160, 1980, 212 pages, \$30.00

This book, edited by W.J. Anderson, is a collection of six papers originally presented at the ASME Century 2 - Emerging Technology Conferences held at San Francisco, August 18-21, 1980. The papers outline the achievements of the last decade and provide direction for future developments in bearing materials, bearing design, operating performance prediction capability, extension of bearing life, and reliability. Emphasis is on dynamically loaded bearings.

The first three papers discuss aspects of materials, analysis, and lubrication of rolling element bearings.

In a paper on materials for rolling element bearings E.N. Bamberger reviews the development of bearing materials from the invention of the rolling contact bearing to the present. He illustrates advances with examples from his industrial experience in the aircraft industry. The various material aspects discussed include fracture toughness, surface hardened materials, through hardened materials, hollow rolling elements, ceramics, and metallurgical and chemical effects. The author admits that his review is from a narrow viewpoint in that the work mainly relates to high performance aircraft engine bearings; but many applications in general industry could operate under similar conditions.

The second paper is on computerized analysis and design methodology for rolling element bearing load support systems. J. Pirvis describes advances in the computer analysis of rolling element bearings and presents a survey of the software used by various workers. He advocates system design as opposed to component design and describes the use of computer software packages for selecting rolling element bearings. Three appendices provide details of software suitable for prototype design of a system, typical input/output computer information, and shaft bearing analysis. A minor discrepancy is that the first word in the title of the paper is different from the title in the contents page.

In the third paper R.J. Parker provides a broad survey of the lubrication of rolling element bearings. He covers the basic function of a liquid lubricant and describes the state of technology and limitations of the following methods of lubrication: solid film, grease, jet, splash and bath, wick lubrication, and air/oil mist. Parker outlines the gains that have been made in the last decade to extend the speed capability of rolling element bearings. He also explains how the useful temperature range can be extended with the use of under-race and outer-race cooling. Lubrication-related surface failure modes are illustrated with good photographs.

The fourth paper on journal bearing design for high speed turbomachinery by P.E. Allaire and R.D. Flack outlines the problems that can arise in plain journal bearings operating at very high speeds. Considerable discussion is devoted to the type of bearing that can

be used to reduce or eliminate vibrations; the types include multi-lobe bearings, tilting pad bearings, hydrostatic bearings, offset bearings, partial bearings, and elliptical bearings. Theoretical and experimental data for some of these bearings are presented to demonstrate vibration reducing characteristics at high speed. A useful summary chart outlines the advantages and disadvantages of various types of bearing geometries. Detailed descriptions of experimental rotor test rigs and related instrumentation are given in the appendices.

The fifth paper on turbulent flow bearing design and energy losses by C.M. Taylor contains a considerable literature survey on the subject. He reviews theoretical and experimental work relating to energy losses due to non-laminar flow. Experimental data on bearing temperatures and the transition from laminar to superlaminar flow conditions in journal bearings are discussed. The author provides a critique of four design procedures on the analysis of bearings operating in turbulent regimes and guidance on selecting the geometry of bearings to minimize power loss during operation in the turbulent flow conditions. An appendix contains a brief background to currently available lubrication theories and a summary of the development of philosophies and their limitations.

The final paper on fluid-film bearing response to dynamic loading was written by W. Shapiro. He uses examples to illustrate the time transient method, which traces the history of the motion of a bearing system under subjected loading. He also describes the analysis of incompressible and compressible fluid-film bearings operating under dynamic loading conditions by such techniques as numerical solutions of lubrication equations, field mapping of bearing characteristics, and short bearing approximations.

The book contains a useful literature survey and many references and therefore should be ideal for postgraduate students who are beginning research into bearing design.

D. Koshal
Department of Mechanical and Production
Engineering
Brighton Polytechnic
Brighton, Sussex BN2 4GJ, England

BOOK REVIEWS: 1982

Anderson, W.J., ed., <u>Bearing Design -- Historical Aspects, Present Technology and Future Problems</u>, ASME Publ., New York, NY, 1980; Reviewed by D. Koshal, SVD, <u>14</u> (12), pp 26-27 (Dec 1982)

Armen, H. and Stiansen, S., eds., Computational Methods for Off-shore Structures, ASME Publ. AMD - Vol. 37, New York, NY, 1980; Reviewed by H. Saunders, SVD, 14 (7), pp 40-41 (July 1982)

Bickford, J.H., An Introduction to the Design and Behaviour of Bolted Joints, Marcel Dekker Inc., New York, NY, 1981; Reviewed by C.F. Beards, SVD, 14 (10), pp 36-37 (Oct 1982)

Box, G.E.P. and Jenkins, G.M., <u>Time Series Analysis -- Forecasting and Control</u>, Holden-Day Inc., San Francisco, CA, 1976, revised edition; Reviewed by H. Saunders, SVD, 14 (6), p 22 (June 1982)

Brebbia, C.A. and Walker, S., <u>Dynamic Analysis of Offshore Structures</u>, Butterworths Inc., Woburn, MA, 1979; Reviewed by H. Saunders, SVD, 14 (2), pp 27-28 (Feb 1982)

Chenoweth, J.M., ed., Flow-Induced Heat Exchanger Tube Vibration, ASME Publ. HTD - Vol. 9, New York, NY, 1980; Reviewed by H. Saunders, SVD, 14 (7), pp 39-40 (July 1982)

Faupel, J.H. and Fisher, F.E., Engineering Design, John Wiley and Sons, New York, NY, 1981, 2nd edition; Reviewed by H. Saunders, SVD, 14 (4), pp 41-42 (Apr 1982)

Fredrickson, F.M., ed., Snubber Design Applications and Minimization Methods, ASME Publ. PVP Vol. 55, New York, NY, 1981; Reviewed by M.Z. Lee, SVD, 14 (12), p 25 (Dec 1982)

Fuchs, H.O. and Stephens, R.I., Metal Fatigue in Engineering, John Wiley and Sons, Somerset, NJ, 1980; Reviewed by B.I. Sandor, SVD, 14 (8), pp 36-37 (Aug 1982)

Gorman, D.J., Free Vibration Analysis of Rectangular Plates, Elsevier-North Holland Publ. Co., New York, NY, 1982; Reviewed by A. Leissa, SVD, 14 (11), p 28 (Nov 1982)

Hagedorn, P. (Stadler, W., translator and ed.), Non-Linear Oscillations, Oxford University Press, New York, NY, 1981; Reviewed by R.A. Ibrahim, SVD, 14 (6), pp 21-22 (June 1982)

Irvine, H.M., Cable Structures, M.I.T. Press, Cambridge, MA, 1981; Reviewed by F. Rosenthal, SVD, 14 (2), p 28 (Feb 1982)

LaSalle, J.P., <u>The Stability of Dynamical Systems</u>, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976; Reviewed by P. Holmes, SVD, <u>14</u> (9), pp 25-26 (Sept 1982)

Leipholz, H., Stability of Elastic Systems, Sijthoff & Noordhoff, The Netherlands, 1980; Reviewed by M. Slemrod, SVD, 14 (4), pp 43-44 (Apr 1982)

Lord, H., Gatley, W.S., and Evensen, H.A., Noise Control for Engineers, McGraw-Hill Book Co., New York, NY, 1980; Reviewed by H. Saunders, SVD, 14 (8), pp 37-38 (Aug 1982)

Ludema, K.C., Glaeser, W.A., and Rhee, S.K., eds., Wear of Metals, ASME Publ., New York, NY, 1979; Reviewed by H. Saunders, SVD, 14 (9), p 27 (Sept 1982)

Meirovitch, L., Computational Methods in Structural Dynamics, Sijthoff and Noordhoff Intl. Publishers, The Netherlands and Rockville, MD, 1980; Reviewed by R.A. Ibrahim, SVD, 14 (2), pp 26-27 (Feb 1982)

Miller, R.K., Noise Control Solutions for the Construction Industry, Fairmont Press, Atlanta, GA, 1981; Reviewed by R.J. Peppin, SVD, 14 (6), pp 20-21 (June 1982)

Nemat-Nasser, S., ed., Mechanics Today, Volume 4, Pergamon Press, Inc., Elmsford, NY, 1978; Reviewed by L.Y. Bahar, SVD, 14 (5), pp 26-27 (May 1982)

Nemat-Nasser, S., ed., Mechanics Today, Volume 5, Pergamon Press, Inc., Elmsford, NY, 1980; Reviewed by L.Y. Bahar, SVD, 14 (5), pp 27-28 (May 1982)

O'Connor, P.D.T., <u>Practical Reliability Engineering</u>, Heyden & Sons Ltd., London and Philadelphia, 1981; Reviewed by W. Tustin, SVD, 14 (4), pp 42-43 (Apr 1982)

Oden, J.T. and Ripperger, E.A., Mechanics of Elastic Structures, McGraw-Hill Book Co., New York, NY, 1980, 2nd edition; Reviewed by R.A. Scott, SVD, 14 (3), pp 22-24 (Mar 1982)

Pilant, W., Elastic Waves in the Earth, Elsevier-North Holland Publ. Co., New York, NY, 1979; Reviewed by S.K. Datta, SVD, 14 (9), p 25 (Sept 1982)

Pomeroy, C.D., ed., <u>Creep of Engineering Materials</u>, Mechanical Engineering Publications Ltd., London, 1978; Reviewed by K.E. Hofer, SVD, <u>14</u> (1), pp 34-36 (Jan 1982)

Reiff, D.D., ed., Component Support Snubbers -- Design, Application and Testing, ASME Publ. PVP-42, 1980; Reviewed by H. Saunders, SVD, 14 (1), p 36 (Jan 1982)

Rothe, P.H. and Wiggert, D.C., eds., Fluid Transients and Structural Interactions in Piping Systems, ASME Publ., New York, NY, 1981; Reviewed by M.Z. Lee, SVD, 14 (12), p 26 (Dec 1982)

Schaeffer, H.G., MSC/NASTRAN Primer Static and Normal Modes Analysis, Schaeffer Analysis, Inc., Mt. Vernon, NH, 1979, 2nd printing; Reviewed by H. Saunders, SVD, 14 (3), pp 24-25 (Mar 1982)

Soedel, W., Vibrations of Shells and Plates, Marcel Dekker, Inc., New York, NY, 1981; Reviewed by A. Leissa, SVD, 14 (11), pp 28-29 (Nov 1982)

Torvik, P.J., ed., <u>Damping Applications for Vibration Control</u>, ASME Publ. AMD - Vol. 38, New York, NY, 1980; Reviewed by D. Beskos, SVD, 14 (3), p 22 (Mar 1982)

Torvik, P.J., ed., <u>Damping Applications for Vibration Control</u>, ASME Publ. AMD - Vol. 38, New York, NY, 1980; Reviewed by H. Saunders, SVD, <u>14</u> (8), pp 38-39 (Aug 1982)

Waterhouse, R.B., ed., Fretting Fatigue, Applied Science Publ., Barking, Essex, England, 1981; Reviewed by H. Saunders, SVD, 14 (10), pp 37-38 (Oct 1982)

Williams, R.V., <u>Acoustic Emission</u>, Heyden & Son, Ltd., Philadelphia, PA, 1980; Reviewed by B.C. Baird, SVD, 14 (10), pp 35-36 (Oct 1982)

A General Introduction to Fracture Mechanics, A "Journal of Strain Analysis" Monograph, Mechanical Engineering Publications Ltd., London, 1978; Reviewed by S.N. Atluri, SVD, 14 (1), p 34 (Jan 1982)

Bond Graph Techniques for Dynamic Systems in Engineering and Biology, Special Issue of the Journal of the Franklin Institute, Vol. 308, No. 3, Philadelphia, PA, 1979; Reviewed by M. Hubbard, SVD, 14 (7), pp 41-43 (July 1982)

Fatigue of Composite Materials, ASTM STP-569, Philadelphia, PA, 1975; Reviewed by K. Hofer, SVD, 14 (5), pp 28-30 (May 1982)

SHORT COURSES

JANUARY

RELIABILITY METHODS IN MECHANICAL AND STRUCTURAL DESIGN

Dates: January 10-14, 1983 Place: Tucson, Arizona

Objective: The objective of this short course and workshop is to review the elements of probability and statistics and the recent theoretical and practical developments in the application of probability theory and statistics to engineering design. Special emphasis will be given to fatigue and fracture reliability.

Contact: Special Professional Education, Harvill Building No. 76, Room 237, College of Engineering, The University of Arizona, Tucson, AZ 85721 - (602) 626-3054.

FEBRUARY

VIBRATION AND SHOCK SURVIVABILITY, TESTING, MEASUREMENT, ANALYSIS, AND CALIBRATION

Dates: February 7-11, 1983
Place: Santa Barbara, California

Dates: March 7-11, 1983 Place: Washington, DC

Objective: Topics to be covered are resonance and fragility phenomena, and environmental vibration and shock measurement and analysis; also vibration and shock environmental testing to prove survivability. This course will concentrate upon equipments and techniques, rather than upon mathematics and theory.

Contact: Wayne Tustin, 22 East Los Olivos St., Santa Barbara, CA 93105 - (805) 682-7171.

PERIPHERAL ARRAY PROCESSORS FOR SIGNAL PROCESSING AND SIMULATION

Dates: February 15-18, 1983 Place: Los Angeles, California Objective The primary emphasis of this course is on the application of peripheral array processors to the principal problems arising in the processing of sampled analog signals. These include particularly the problems of spectral analysis (Fast Fourier Transform), filtering, and autocorrelation, which are typical of signal processing applications.

Contact: Short Course Program Office, UCLA Extension, P.O. Box 24901, Los Angeles, CA 90024 - (213) 825-1295 or 825-3344.

MACHINERY VIBRATION ANALYSIS

Dates. February 22-25, 1983
Place. Tampa, Florida
Dates: June 14-17, 1983
Place: Nashville, Tennessee
Dates: August 16-19, 1983
Place: New Orleans, Louisiana
Dates: November 15-18, 1983

Place: Chicago, Illinois

Objective: In this four-day course on practical machinery vibration analysis, savings in production losses and equipment costs through vibration analysis and correction will be stressed. Techniques will be reviewed along with examples and case histories to illustrate their use. Demonstrations of measurement and analysis equipment will be conducted during the course. The course will include lectures on test equipment selection and use, vibration measurement and analysis including the latest information on spectral analysis, balancing, alignment, isolation, and damping. Plant predictive maintenance programs, monitoring equipment and programs, and equipment evaluation are topics included. Specific components and equipment covered in the lectures include gears, bearings (fluid film and antifriction), shafts, couplings, motors, turbines, engines, pumps, compressors, fluid drives, gearboxes, and slow-speed paper rolls.

Contact. Dr. Ronald L. Eshleman, Vibration Institute, 101 W. 55th St., Suite 206, Clarendon Hills, IL 60514 - (312) 654-2254.

SYSTEMATIC APPROACH TO IMPROVING MACHINERY RELIABILITY IN PROCESS PLANTS

Dates February 23-25, 1983
Place San Francisco, California

Objective: This seminar is intended to guide machinery engineers, plant designers, maintenance administrators, and operating management toward results-oriented specifications, selection, design review, installation, commissioning, and post start-up management of major machinery systems for continued reliable operations. Emphasis will be on pumps, compressors, and drivers.

Contact: Sherry Theriot, Professional Seminars International, P.O. Box 156, Orange, TX 77630 - (713) 746-3506.

MARCH

EXPLOSION HAZARDS EVALUATION

Dates: March 14-18, 1983
Place: San Antonio, Texas

Objective: Fundamentals of combustion and transition to explosion including recent experimentation

on large-scale systems, current testing techniques and their utility, accidental explosions, and preventive measures are reviewed. Free-field explosions and their characteristics including definition of an explosion, characteristics of explosions, and the fallacy of "TNT" equivalence are defined. Loading from blast waves such as reflected waves -- both normal and oblique, diffraction and diffracted loads, internal blast loading, and effects of venting will be covered. Structural response to blast and non-penetrating impact including approximate methods, the P-i concept, Bigg's methods, numerical methods, and applicable computer codes will be reviewed. Fragmentation and missile effects (trajectories and impact conditions), thermal effects (fireballs from explosions and radiation propagation), damage criteria (buildings, vehicles, and people), and design for blast and impact resistance (general guidelines, design using approximate methods, and computer-aided design) will be reviewed.

Contact: Ms. Deborah Stowitts, Southwest Research Institute, P.O. Drawer 28510, 6220 Culebra Road, San Antonio, TX 78284 - (512) 684-5111.

NEWS BRIEFS: news on current and Future Shock and Vibration activities and events

INTERNATIONAL CONFERENCE ON CONSTITUTIVE LAWS FOR ENGINEERING MATERIALS -- THEORY AND APPLICATION January 10-14, 1983 Tucson, Arizona

An International Conference on Constitutive Laws for Engineering Materials -- Theory and Application will be held January 10-14, 1983 at the Ramada Inn, 404 North Freeway, Tucson, Arizona. This conference is sponsored by University of Arizona, College of Engineering, Tucson, Arizona with financial support from the National Science Foundation, Washington, DC.

The importance of constitutive laws of engineering materials for reliable solutions from analytical and computational procedures has been recognized by the researcher and practitioner. This growing recognition has resulted in significant recent activity towards theoretical and experimental research, and implementation of the laws in various solution procedures.

The major objective of the conference is to provide a bridge between theoretical developments and implementation in order to enhance the potential for applications of various constitutive laws to the solution of engineering problems.

About 100 papers will be presented in the areas of: general theory; metals and composites; geological materials; discontinuous media, interfaces, joints; concrete; granular materials and aggregates; and implementation and evaluation. Papers on elasticity/hypoelasticity, plasticity, viscoelasticity/plasticity, rate type, endochronic and micromechanics/damage models are included under the seven topics. Participants include some of the outstanding persons active in theoretical developments and applications of constitutive laws of a wide range of engineering materials.

For further information contact: Office of Special Professional Education, College of Engineering, Harvill Building, University of Arizona, Tucson, Arizona 85721 - (602) 626-3054.

ABSTRACT CATEGORIES

MECHANICAL SYSTEMS

Rotating Machines
Reciprocating Machines
Power Transmission Systems
Metal Working and Forming
Isolation and Absorption
Electromechanical Systems
Optical Systems

Materials Handling Equipment

Tires and Wheels Blades Bearings Beits Gears Clutches Couplings Fasteners Linkages Valves Seals

Cams

Vibration Excitation Thermal Excitation

MECHANICAL PROPERTIES

Damping Fatigue Elasticity and Plasticity

STRUCTURAL SYSTEMS

Bridges
Buildings
Towers
Foundations
Underground Structures
Harbors and Dams
Roads and Tracks
Construction Equipment
Pressure Vessels
Power Plants
Off-shore Structures

VEHICLE SYSTEMS

Ground Vehicles
Ships
Aircraft
Missiles and Spacecraft

BIOLOGICAL SYSTEMS

Human Animal

STRUCTURAL COMPONENTS

Strings and Ropes

Cables
Bars and Rods
Beams
Cylinders
Columns
Frames and Arches
Membranes, Films, and Webs
Panels
Plates
Shells
Rings

Building Components

Pipes and Tubes

Ducts

ELECTRIC COMPONENTS

Controls (Switches, Circuit Breakers)
Motors
Generators
Transformers
Relays
Electronic Components

EXPERIMENTATION

Measurement and Analysis Dynamic Tests Scaling and Modeling Diagnostics Balancing Monitoring

ANALYSIS AND DESIGN

Analogs and Analog
Computation
Analytical Methods
Modeling Techniques
Nonlinear Analysis
Numerical Methods
Statistical Methods
Parameter Identification
Mobility/Impedance Methods
Optimization Techniques
Design Techniques
Computer Programs

MECHANICAL COMPONENTS DYNAMIC ENVIRONMENT

Absorbers and Isolators Springs

Acoustic Excitation Shock Excitation

GENERAL TOPICS

Conference Proceedings Tutorials and Reviews Criteria, Standards, and Specifications Bibliographies Useful Applications

ABSTRACTS FROM THE CURRENT LITERATURE

Copies of articles abstracted in the DIGEST are not available from the SVIC or the Vibration Institute (except those generated by either organization). Inquiries should be directed to library resources. Government reports can be obtained from the National Technical Information Service, Springfield, VA 22151, by citing the AD-, PB-, or N- number. Doctoral dissertations are available from University Microfilms (DA), 313 N. Fir St., Ann Arbor, MI; U.S. Patents from the Commissioner of Patents, Washington, DC 20231. Addresses following the authors' names in the citation refer only to the first author. The list of periodicals scanned by this journal is printed in issues 1,6, and 12.

ABSTRACT CONTENTS

MECHANICAL SYSTEMS36	MECHANICAL COMPONENTS. 49	MECHANICAL PROPERTIES 70	
Rotating Machines	Absorbers and Isolators	Damping	
STRUCTURAL SYSTEMS 37		EXPERIMENTATION 71	
Bridges	STRUCTURAL COMPONENTS. 52 Strings and Ropes .52 Cables .53 Bars and Rods .53 Beams .54	Measurement and Analysis . 71 Scaling and Modeling 75 Balancing	
Power Plants	Cylinders	ANALYSIS AND DESIGN 76 Analytical Methods 76	
VEHICLE SYSTEMS .42 Ground Vehicles .42 Ships .45 Aircraft .45 Missiles and Spacecraft .47	Plates	Numerical Methods	
	DYNAMIC ENVIRONMENT64	GENERAL TOPICS 80	
BIOLOGICAL SYSTEMS 48	Acoustic Excitation 64 Shock Excitation 67	Criteria, Standards, and	
Human 48	Vibration Excitation 68	Specifications 80	

MECHANICAL SYSTEMS

ROTATING MACHINES

(Also see Nos. 2497, 2556)

82-2490

A Remark on the Stability of Linear-Viscoelastic Rotating Shafts (Eine Anmerkung zur Stabilität linear-viskoelastischer rotierender Wellen)

D. Ottl

Lehrstuhl A f. Mechanik der TU Braunschweig, Postfach 3329, D-3300 Braunschweig, Bundesrepublik Deutschland, Ing. Arch., <u>52</u> (3/4), pp 275-285 (1982) 7 figs, 10 refs (In German)

Key Words: Shafts, Rotors, Viscoelastic properties, Stability

The stability of rotating shefts is investigated by means of a perturbation technique and the results assuming a Voigt-Kelvin-material and a linear-viscoelastic material are compared.

82-2491

Finite-Element Analysis for Rotating Equipment

Reliance Electric Co., Greenville, SC, Mach. Des., 54 (15), pp 63-65 (June 24, 1982)

Key Words: Rotors, Centrifugal forces, Computer programs

A procedure which modifies general purpose computer programs to account for centrifugal forces in high speed rotating machinery is presented.

82-2492

A Velocity Parameter for the Correlation of Axial Fan Noise

T, Wright

Fluid Systems Lab., Westinghouse Electric Corp., 1291 Cumberland Ave., West Lafayette, IN 47906,

Noise Control Engrg., 19 (1), pp 17-25 (July-Aug 1982) 9 figs, 2 tables, 19 refs

Key Words: Fan noise, Blades, Noise prediction

An aerodynamic parameter is proposed to relate subsonic axial fan noise to the fundamental flow behavior in the blade row of the fan. This parameter is the peak or maximum blade surface velocity in the rotating reference frame and includes, either explicitly or implicitly, the influence of tip speed, volume flow rate, pressure rise, shaft horsepower and efficiency. Correlation of the noise associated with a very broad range of axial fans – ranging from very lightly loaded household fans to high-speed, high-pressure industrial fans and aircraft propulsion fans – yields good agreement and collapse of data when compared to currently-used correlation methods. Use of this parameter, rather than those based on overall performance, allows trade-off studies to be made within a given performance requirement so that a minimum noise configuration may be designed or selected.

82-2493

An Iterative Finite Element - Integral Technique for Predicting Sound Propagation from Turbofan Inlets S.J. Horowitz

Ph.D. Thesis, Georgia Inst. of Tech., 305 pp (1982) DA8215262

Key Words: Turbofans, Sound propagation, Wave propagation, Finite element technique, Iteration

A new approach to solving the problem of predicting the sound field radiated from a turbofan inlet in flight has been developed. The sound field is divided into two regions: the sound field within the inlet (internal problem) which is modeled using finite elements and the radiation field outside the inlet (external problem) which is modeled using an integral technique. A complete solution is obtained by assuming the distribution of the radiation impedence along the interface between the internal and external regions and then iterating the finite element and integral solutions until convergence is obtained.

METAL WORKING AND FORMING

82-2494

Workpiece Response in Turning due to Spatially Moving Random Metal Cutting Forces

R.B. Bhat, A.M. Sharan, and T.S. Sankar

Dept. of Mech. Engrg., Concordia Univ., Montreal, Quebec, Canada, Mech. Mach. Theory, 17 (4), pp 249-254 (1982) 3 figs, 9 refs

Key Words: Machine tools, Interaction: machine tool-work-piece, Cutting

The nonstationary random response of a workpiece subjected to a constantly varying cutting tool contact in a metal turning operation is investigated. The ensemble of the applied forces is modeled as a white noise process. The workpiece is considered to be a uniform beam with fixed-hinged boundaries and with viscous damping. The results indicate that the workpiece response at the cutting tool contact is not significantly influenced by the tool feed rate for normal metal turning operations.

82-2495

Machine Tool Chatter

M.K. Das

Mech. Engrg. Dept., Univ. of Birmingham, UK, Chartered Mech. Engrg., 28 (8), pp 22-27 (Sept 1981) 11 figs, 1 table, 22 refs

Key Words: Machine tools, Chatter, Self-excited vibrations

The metal removal capacity of machine tools is often limited by self-induced vibration or chatter. This article discusses the reasons for it and how it can be reduced.

82-2496

A Theoretical Method of Minimizing Vibration and Noise Generation of a High Energy Rate Forming Machine Structure

H.F. Vasconcelos and S. Taylor

Dept. of Mech. Engrg., Paraiba Univ., Brazil, IMechE, Proc., Vol. 196, pp 183-190 (June 1982) 4 figs, 8 tables, 12 refs

Key Words: Noise reduction, Vibration control, Machine tools, Finite element technique, Optimization

A technique for the numerical optimization of a finite element model of a high energy rate forming machine is introduced. Both the nature of the impulsive loading and selected structural dimensions are optimized with respect to a simple measure of the noise created during a forging operation. The authors conclude that the technique could be applied to other structures or could be based on a more

sophisticated noise criterion although dynamic finite element analyses demand considerable computing power.

82-2497

Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines

M. Mello

Cold Regions Res. and Engrg. Lab., Hanover, NH, Rept. No. CRREL-81-26, 47 pp (Dec 1981) AD-A113 931

Key Words: Drills, Machine tools

This report deals with force, energy and power in machines such as drills and boring devices, where the cutting head rotates about a central axis while penetrating parallel to that axis. Starting from a consideration of the forces developed on individual cutting tools, or segments of cutters, the thrust and torque on a complete cutting head is assessed, and simple relationships between thrust and torque are derived. Similarly, the energy and power needed to drive the cutting head are estimated and related to tool characteristics. Design characteristics of existing machines are compiled and analyzed to give indications of thrust, torque, power, effective tool forces, nominal thrust pressure, power density, and specific energy.

STRUCTURAL SYSTEMS

BRIDGES

82-2498

Prediction and Control of Pedestrian-Induced Vibration in Footbridges

J.E. Wheeler

Bridge Des. Main Roads Dept., Waterloo Crescent, East Perth, Western Australia 6000, ASCE J. Struc. Div., 108 (9), pp 2045-2065 (Sept 1982) 15 figs, 1 table, 19 refs

Key Words: Bridges, Traffic-induced vibrations, Vibration prediction, Vibration control

Footbridges vibrate because the forces imparted by the user are applied with the frequency of the pace; and movement,

however small, is therefore a forced vibration. In instances where the pace coincides with a structure resonant frequency dynamic movement can be quite large and the user may be disturbed or even alarmed. Vibration is recognized as a serviceability limit state and a process that can be employed as a design tool permitting an early assessment of behavior is proposed. The subject is investigated in terms of the pedestrian excitation source, the structure response, and acceptance criteria. Calculated response compares favorably with test results. Remedial or preventative options in the form of various damping devices are reviewed.

82-2499

Lateral-Distribution Factors for Fatigue Design

C.G. Schilling

Res. Lab., U.S. Steel Corp., Monroeville, PA 15146, ASCE J. Struc. Div., 108 (9), pp 2015-2033 (Sept 1982) 8 figs, 3 tables, 21 refs

Key Words: Bridges, Beams, Steel, Fatigue life, Finite element technique

An extensive finite-element parametric study developed a chart giving lateral-distribution factors for the fatigue design of steel highway bridges. The chart gives conservative upper-limit factors for interior and exterior beams. The factor for interior beams is 0.5. The factor for exterior beams varies with the distance from the beam to the outer traffic lane and reaches a value of 0.9 when the center of the lane is directly over the beam. These upper-limit values can be used to make an initial fatigue check.

82-2500

Impact Factors for Fatigue Desim

C.G. Schilling

Res. Lab., U.S. Steel Corp., Monroeville. PA 15146, ASCE J. Struc. Div., 108 (9), pp 2034-2044 (Sept 1982) 4 figs, 2 tables, 27 refs

Key Words: Bridges, Steel, Fatigue life, Impact shock, Traffic-induced vibrations

Theoretical and experimental information is presented on impact factors for the fatigue design of steel highway bridges. Theoretical studies suggest that the impact factors for individual trucks in actual traffic should generally be less than 0.25, but that much higher factors would occur occasionally due to unusual conditions, such as a bump at a critical location. Measurement of impact factors in actual steel bridges confirms these theoretical conclusions.

82-2501

Spectra of Road Surface Roughness on Bridges

H. Honda, Y. Kajikawa, and T. Kobori Dept. of Civil Engrg., Kanazawa Inst. of Tech., 7-1 Ogigaoka, Nonoichi-Machi, Ishikawa 920, Japan, ASCE J. Struc. Div., 108 (9), pp 1956-1966 (Sept 1982) 11 figs, 1 table, 16 refs

Key Words: Bridges, Surface roughness, Power spectral density, Moving loads

The power spectral density (PSD) of road surface roughness on highway bridges is presented. Eighty-four lines on 56 bridges were measured and the road surface roughness was measured by surveyor's level. The PSD is assumed by a stationary normal probability process with a zero mean value, and is calculated by a maximum entropy method (MEM) to a measured value of road surface roughness. Numerical examples are presented to obtain the information of road surface roughness on bridges in spectral characteristics, and to give the appropriate PSD using the dynamic response analysis of bridges under moving vehicles.

BUILDINGS

82-2502

Airborne Sound Insulation and Graphical Indices

J. Parmanen and H.T. Tuominen

Technical Res. Ctr. of Finland, SF-02150 Espoo 15, Finland, J. Sound Vib., <u>82</u> (2), pp 235-245 (May 22, 1982) 2 figs, 5 refs

Key Words: Buildings, Structural members, Acoustic insula-

The use of graphical indices is interpreted as an approximate approach to the estimation of sound insulation performance of building elements. Differences of weighted sound pressure levels are considered as quantitative measures for subjective sound insulation. The indices considered are formed by thifting a reference curve until the highest position is found at which certain specifications, or rules, are met. General expressions are mathematically derived for the maximum differences between graindices and sound insulation in two cases: a maximum who have sum rule for unfavorable deviations, and a combine... or restriction of the maximum single deviation. The results indicate that the maximum deviation rule limits the variation between sound insulation and indices in a very efficient way.

82-2503

The Prediction of Sound Transmission through Buildings Using Statistical Energy Analysis

R J.M. Craik

Dept. of Building, Heriot-Watt Univ., Edinburgh, EH1 1HX, UK, J. Sound Vib., <u>82</u> (4), pp 505-516 (June 22, 1982) 13 figs, 15 refs

Key Words: Buildings, Sound transmission, Statistical energy analysis

Measurements were carried out on a building to evaluate the uses of statistical energy analysis for determining sound transmission performance. Coupling loss factors were measured and compared with predicted values. It was found that, in general, good agreement was obtained. The coupling loss factors were also used to calculate the sound pressure level, or surface velocity, of each subsystem in the building for a number of different sources. Comparison with the measured results gave an average error of 4 dB.

82-2504

Understanding Noise Control, Part II. Principles and Procedures for Reducing Exterior Noise

R. Moulder

Acoustical Res. Lab., Owens-Corning Fiberglass Corp., Granville, OH, Plant Engrg., pp 57-58 (Sept 2, 1982) 4 figs

Key Words: Buildings, Noise reduction

Means for controlling structure-borne and airborne exterior noise in buildings are described,

82-2505

Identification of Cladding-Structure Interaction in Highrise Buildings Using Parameter Estimation Methods

M. Meyyappa

Ph.D. Thesis, Georgia Inst. of Tech., 212 pp (1982) DA8215266

Key Words: Buildings, Multistory buildings, Cladding effect, Parameter identification technique

The influence of cladding on the dynamic response of two highrise buildings is investigated by studying its effect on the model parameters. Ambient tests conducted in one of the

buildings at different stages of construction during installation of cladding are described. The estimation of modal parameters from output data is carried out by curve fitting the analytical form of magnitude of the frequency response function to the measured response Fourier amplitude spectra, using the least squares criterion. An attempt is made to correlate the observed changes in the modal parameters with construction to the amount of cladding that had been installed on various test dates. It is noted that the effect of cladding could be to increase the frequencies of the higher modes slightly. The second building is used to evaluate the cladding performance analytically.

82-2506

Dynamic Characteristics of Coupled Wall-Frame Systems

A.K. Basu and G.Q. Dar

Indian Inst. of Tech., Delhi, India, Intl. J. Earthquake Engrg. Struc. Dynam., 10 (4), pp 615-631 (July/Aug 1982) 20 figs, 6 refs

Key Words: Buildings, Multistory buildings, Natural frequencies, Mode shapes

The paper presents the first three natural frequencies and the corresponding mode shapes for fixed-base multistory buildings which can be idealized as an equivalent planar coupled shear wall connected in series to an equivalent frame. The coupled wall is modeled as a continuum of uniform properties and the frame as a uniform shear beam, the connection between the two elements being taken as continuous. Solutions are obtained by treating the structure as a lumped parameter system with twenty equidistant discrete masses having only translational inertia. The relevant flexibility matrix is, however, generated from the exact solution of the governing differential equation for the continuum subjected to point loading. The results are presented for various combinations of the three non-dimensional parameters which are sufficient to describe all the geometric and materia' re-operties of the system.

82-2507

Eccentric Bracing in Tall Buildings

A.T. Merovich, J.P. Nicoletti, and E. Hartle John A. Blume and Assoc., Engrs., 130 Jessie St., San Francisco, CA 94105, ASCE J. Struc. Div., 108 (9), pp 2066-2080 (Sept 1982) 10 figs, 4 tables, 11 refs

Key Words: Buildings, Multistory buildings, Seismic design, Braces

Primary concerns in the design of high-rise buildings, particularly those located in seismically active regions, are the control of interstory drift and the ability of the structure to withstand inelastic deformations. This paper describes how an eccentric bracing scheme was used to satisfy the requirements for both drift control and ductility in the design of a high-rise structure located in a zone of high seismic exposure.

82-2508

Methodology for Mitigation of Seismic Hazards in Existing Unreinforced Masonry Buildings Wall Testing, Out-of-Plane

ABK, El Segundo, CA, Rept. No. ABK-TR-04, 382 pp (Aug 1981) PB82-213687

Key Words: Buildings, Masonry, Seismic design, Dynamic tests, Walls

This report describes an experimental program conducted on unreinforced masonry walls subjected to dynamic, out-of-plane motions. The experimental program is one of several tasks in an overall research program, sponsored by the National Science Foundation, whose objective is to develop a methodology for mitigation of seismic hazards in existing unreinforced masonry buildings.

82-2509

Methodology for Mitigation of Seismic Hazards in Existing Unreinforced Masonry Buildings: Diaphragm Testing

ABK, El Segundo, CA, Rept. No. ABK-TR-03, 445 pp (Dec 1981) PB82-213679

Key Words: Buildings, Masonry, Seismic design, Dynamic tests

This report describes an experimental program conducted on horizontal diaphragms subjected to quasi-static, cyclic, inplane displacement and dynamic, in-plane earthquake shaking. The experimental program is one of several tasks in an overall research program, sponsored by the National Science Foundation, whose objective is to develop a methodology for mitigation of seismic hazards in existing unreinforced masonry buildings.

TOWERS

82-2510

Analyses of Cooling Tower Dynamics

R.L. Nelson

Central Electricity Res. Labs., Central Electricity Generating Board, Leatherhead KT22 7SE, UK, J. Sound Vib., 79 (4), pp 501-518 (Dec 22, 1981) 3 figs, 8 tables, 22 refs

Key Words: Towers, Cooling towers, Chimneys, Vibration analysis, Seismic excitation, Wind-induced excitation, Finite element technique

A finite element method for analyzing accurately the free vibrations of cooling towers (with column-supports) is shown to give results that are in good agreement with the experimental data obtained on both a full scale cooling tower and the corresponding model structure. The theoretical method is also used successfully to explain the apparent discrepancies between the respective experimental results obtained for both model and full scale structures. The effect of foundation elasticity can be included in the method and it is shown to have a significant effect on the lower modes of a cooling tower. The usefulness of the method as a design tool is demonstrated, and as an example, the effects of changing the dimensions of the cornice, ring-beam and column-supports are studied.

82-2511

Natural Frequencies of Cooling Tower Shells

C.R. Calladine

Dept. of Engrg., Univ. of Cambridge, Cambridge CB2 1PZ, UK, J. Sound Vib., <u>82</u> (3), pp 345-369 (June 8, 1982) 12 figs, 2 tables, 16 refs

Key Words: Towers, Cooling towers, Shells, Natural frequencies

Approximate explicit formulae are presented for the fundamental natural frequency of vibration of a uniform hyperboloidal cooling tower shell mounted on a rigid base, and for the circumferential wavenumber associated with fundamental mode. These formulae agree well with results previously obtained by finite element computation and they may be adapted readily for use with cooling tower shells mounted on non-rigid supports. The simplicity of the formulae is a consequence of various approximations which are made in the analysis.

82-2512

Studies of Dynamic Response of a Guyed Tower

G.R. Darbre Ph.D. Thesis, Rice Univ., 486 pp (1982) DA8216308

Key Words: Towers, Guyed structures, Off-shore structures, Cables

The objective of this investigation was to contribute to improved understanding of the dynamic response of offshore guyed towers. This was accomplished through studies of the following interrelated problems: effects of cable and foundation constraints on the natural frequencies and modes of vibration of representative structural systems; low-amplitude harmonic stiffness and free vibrational characteristics of inclined parabolic cables; effects of cable-tower interaction on the dynamic response of the tower; and response of representative guyed tower models to simulated wave loadings.

FOUNDATIONS

82-2513

An Analytical Method to Determine the Underground-Coupling Between Rigid Strip-Foundations Bonded to the Surface of a Half-Space Subjected to Harmonic Excitation (Ein analytisches Verfahren zur Berechnung der Untergrundkopplung von mehreren starren, auf der Halbraumoberfläche liegenden Streifenfundamenten bei harmonischer Erregung) Th. Triantafyllidis

Inst. f. Bodenmechanik und Felsmechanik der Universitat Karlsruhe, Kaiserstrasse 12, D-7500 Karlsruhe, Bundesrepublik Deutschland, Ing. Arch., <u>52</u> (3/4), pp 145-157 (1982) 5 figs, 17 refs (In German)

Key Words: Interaction: soil-foundation, Half-space, Harmonic excitation

A finite number of dynamically coupled rigid strip foundations is considered, which are perfectly bonded to the surface of a linear-elastic isotropic and homogeneous half space, representing a mixed two-dimensional boundary value problem. The resulting loads between the rigid inertialess strip foundations and the half space due to harmonic displacement excitation are calculated. The mixed boundary value problem is transformed into a system of coupled Fredholm integral equations of the first kind, the kernels being the unknown surface stresses under the foundations. An approximate solution of the integral equations is obtained using the general-

ized Bubnov-Galerkin method. It is demonstrated that the results provide a simple means for studying the motions of a finite number of adjacent foundations with varying inertia properties.

CONSTRUCTION EQUIPMENT

82-2514

Finite Element Analysis of Soil Compaction Resulting from Vibratory Tillage

H. Vazin

Ph.D. Thesis, The Univ. of Tennessee, 93 pp (1982) DA8215405

Key Words: Agricultural machinery, Soil compacting, Finite element technique

Factors governing performance of a vibratory plow are vibration frequency, amplitude and direction, speed, and angle and shape of the plow blade, Soil is assumed to be a linearly elastic, isotropic, homogeneous, and layered medium. A finite element mesh was selected to represent the soil. To idealize the action of a vibratory plow in soil, sinusoidal forcing function was applied to the mesh. Compaction of the selected area of the mesh under the action of the forcing function then was taken as a means of representing or mpaction of the soil under the action of a vibratory plow. This analysis was performed for vertical and horizontal directions of the forcing function, idealizing vertical and horizontal directions of vibration of the plaw. To verify results obtained from the model, a vibratory plow with the capability of vibrating in either a horizontal or vertical direction, along with the capacity of providing a frequency range of 0-50 Hz and an amplitude range of 0-25 mm, was designed and constructed. The plow was tested in a field with soil having the same parameters used in the model analysis.

POWER PLANTS

82-2515

Computerized Method for Estimation of the Frequency Response of a Nuclear Reactor

F. Baldeweg and G. Steingroewer
Zentralinstitut f. Kernforschung, Rossendorf bei
Dresden, German Dem. Rep., 8 pp (Feb 1981)
ZfK-435
(In German)

Key Words: Nuclear reactors, Frequency response, Computer-aided techniques, Periodic excitation

A computerized method for the measurement of the frequency response of nuclear reactors is described. The sinusoidal input signal is realized by computer control of the automatic controller. The upper frequency limit is given by the inertness of the control rod system.

solution is obtained by a perturbation technique. Results are compared with those of linearization and time domain simulation. The appearance of higher order convolutions of the wave spectra in the present approach leads to increased excitation near the fundamental natural frequency of typical space frame structures, in comparison with linear solutions. The implied hydrodynamic damping, however, plays a major part in limiting resonant responses.

OFF-SHORE STRUCTURES

82-2516

Wave Loading on Offshore Structures: A Review R.G. Standing

National Maritime Inst., Feltham, UK, Rept. No. NMI-R-102, OT-R-8113, 142 pp (Feb 1981) N82-21554

Key Words: Off-shore structures, Wave forces, Cylinders, Fatigue life

Research relevant to design, particularly of deep water structures, is reviewed. Morison's equation and forces on tubular members obtained from large scale experiments in the laboratory and at sea are discussed. Effects of marine growth and surface roughness, slamming on horizontal members, and vortex shedding (including lift forces) are considered. The wave diffraction method for estimating wave loads on members of large diameter and unusual shape and second order wave drift forces, affecting the low frequency response of structures and mooring loads, are included. Structural response and probabilistic methods, which are assuming a greater importance as dynamic loading and fatigue become more critical in design, are also covered.

82-2517

Dynamics of Offshore Structures, Part 1: Perturbation Analysis

R. Eatock Taylor and A. Rajagopalan Dept. of Mech. Engrg., Univ. College London, London WC1E 7JE, UK, J. Sound Vib., <u>83</u> (3), pp 401-416 (Aug 8, 1982) 7 figs, 1 table, 12 refs

Key Words: Off-shore structures, Perturbation theory

An assessment of the nonlinear effects implied by the modified Morison equation is made and a spectral approach is adopted. The wave excitation is taken as a nonlinear function of the Gaussian wave kinematics, while the implied hydrodynamic damping is taken to be linear but time varying. The

82-2518

Dynamics of Offshore Structures, Part II: Stochastic Averaging Analysis

A. Rajagopalan and R. Eatock Taylor Dept. of Mech. Engrg., Univ. College London, London WC1E 7JE, UK, J. Sound Vib., <u>83</u> (3), pp 417-431 (Aug 8, 1982) 3 figs, 3 tables, 6 refs

Key Words: Off-shore structures, Stochastic processes, Statistical analysis

This paper is concerned with an investigation into the nonlinear dynamics of drag dominated offshore structures excited by waves. The equations of motion are approximated by a linear system with a time varying damping term; the excitation however is a nonlinear function of the wave particle kinematics. To study the effect of the time varying damping, the resonant response is examined by means of a narrow band idealization. A stochastic averaging of the governing equations is applied, and the Fokker-Planck equation for the response amplitude probability densities is thereby obtained. From the stationery solution of this equation, second order statistics are derived, together with an expression for the hydrodynamic damping which is equivalent to the time varying term. Numerical results are given to illustrate the magnitude of this term for a typical framed structure, and to provide comparisons with results obtained by the conventional technique of linearization.

VEHICLE SYSTEMS

GROUND VEHICLES

(Also see Nos. 2543, 2546, 2600, 2648)

82-2519

The Department of Transpers Attitude Towards Road Noise

R.A.F. Smith, R. Hales, and P.G. Fanner

Dept. of Transport, Pretoria, South Africa, 18 pp (1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conference Ctr., Pretoria, Oct 21-23, 1981)

PB82-206079

Key Words: Traffic noise, Noise reduction, Regulations

The effects of transportation on the environment have caused problems which may be considered under two main headings—those that arise from the impact of transport infrastructure and those that arise from the use of the infrastructure by vehicles—fumes, vibration, noise and dirt. Transport policies in the major metropolitan areas of the Republic have been formulated around 4 main goals; namely, mobility, convenience for the user, reasonable costs and minimum side effects. From these goals each metropolitan transport area has formulated numerous objectives for the transport plan for the particular area.

82-2520

Traffic Noise Generation of Asphalt Road Surfaces A.T. Visser and R.N. Walker

Natl. Inst. for Transport and Road Res., Pretoria, South Africa, 16 pp (Oct 1981) (Pres. at Inst. of Math. and its Appl. Conf. on Power from Sea Waves, Edinburgh, June 1979)

PB82-206053

Key Words: Traffic noise, Noise reduction, Regulations

Road traffic noise is becoming a matter of concern, particularly in the urban environment. The aim of this study was to evaluate the noise generating properties of different asphalt road surfacing types. Road surfacing type has a minor effect on the noise level inside vehicles at the higher speeds tested, but is more important at lower speeds. However, the surfacing type greatly determines the noise level measured alongside the road at low as well as high vehicle speeds. More noise is generated when the surface texture of surfacings that exhibit random asperities is increased.

82-2521

Traffic Noise Reduction by Means of Surface Wave Exclusion above Parallel Grooves in the Roadside

L.A.M. van der Heijden and M.J.M. Martens

Dept. of Botany, Experimental Ecology Section, Catholic Univ., Toernooiveld, 6525 ED Nijmegen, The Netherlands, Appl. Acoust., 15 (5), pp 329-339 (Sept 1982) 11 figs, 1 table, 18 refs

Key Words: Traffic noise, Noise reduction, Acoustic impedance, Noise barriers, Walls

A new method to reduce traffic noise by means of an invisible wall was investigated theoretically and experimentally. A formula was derived for the frequency dependent impedance of an infinite structure of parallel ribs on an impedance boundary. From the definition of surface waves it followed that these waves can only exist for certain combinations of frequencies, heights of ribs and phases of the complex reflection coefficient of the underlying surface. Upon making this surface softer, more low frequency sound is absorbed. Outdoor experiments above an array of 16 or 21 low brick walls showed a considerable absorption of sound.

82-2522

Sources of Brake Squeal in Motor Vehicles

R.K. Goatley

Ferodo (Pty) Ltd., Durban, South Africa, 14 pp (1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206145

Key Words: Brakes (motion arresters), Noise generation, Friction excitation

Squeal has been identified as a frictional vibration dependent on the coefficient of friction of the lining and its contact geometry. The mass and stiffness of related parts such as drum, shoe, and caliper, are contributory factors. Their influence on squeal in both disc and drum brake installations is discussed. Practical solutions to the problem are considered within limitations imposed by brake performance requirements.

82-2523

Motorcycle Noise - A Review of Current Practice

Pretoria Univ., South Africa, 10 pp (1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206061

Key Words: Motorcycles, Noise reduction

To keep the noise level as low as possible a motorcycle designer has a number of conflicting requirements to consider and this paper investigates some of these parameters. The serious problem of the noise-polluting effect of non-standard exhaust systems is examined and an enforcement solution is suggested.

82-2524

Performance Limits of Rail Passenger Vehicles: Conventional, Radial and Innovative Trucks

J.K. Hedrick, D.N. Wormley, R.R. Kim, A.K. Kar, and W. Baum

Dept. of Mech. Engrg., Massachusetts Inst. of Tech., Cambridge, MA, Rept. No. DOT/RSPA/DPB-50/81/ 28, 239 pp (Mar 1982) PB82-202466

Key Words: Trucks, Ride dynamics, Stability, Cornering effects

The dynamic performance capability of conventional, radial, and innovative passenger trucks is identified and optimized with respect to ride quality, stability, and curve negotiation.

82-2525

Comparative Investigation of Vehicle Vibrations on Three-Dimensional Vehicle Models (Vergleichende Untersuchung von Fahrzeugschwingungen an räumlichen Ersatzmodellen)

E. Kreuzer and G. Rill

Inst. B f. Mechanik, Universität Stuttgart, Pfaffenwaldring 9, D-7000 Stuttgart 80, Bundesrepublik Deutschland, Ing. Arch., <u>52</u> (3/4), pp 205-219 (1982) 9 figs, 2 tables, 13 refs (In German)

Key Words: Ground vehicles, Interaction: road-vehicle, Mathematical models, Stochastic processes

An exact simulation of vehicle vibrations can only be done with three-dimensional models. In this paper four vehicle models of different complexity and excited stochastically by means of an appropriately modeled three-dimensional roadway are investigated. It is shown how variations in modeling produce different ride comfort and ride safety criteria.

82-2526

The Effects of Track Modulus on Vehicle-Track Dynamic Interaction

D.R. Ahlbeck

Battelle Columbus Labs., Columbus, OH, ASME Faper No. 82-RT-3

Key Words: Interaction: rail-vehicle

Track dynamic modulus has long been recognized as an important factor in rail vehicle ride quality and operating safety. A qualitative definition of track dynamic modulus is presented in this paper, along with numerical values besed on recent laboratory and field measurement experiments. Results from mathematical models using these values are presented to explore vehicle-track dynamic interactions.

82-2527

Validating Rail Vehicle Dynamic Models: A Case Study

A. Gilan and J.K. Hedrick Raphael, Haifa, Israel, ASME Paper No. 82-RT-6

Key Words: Railroad cars, Interaction: rail-vehicle

This paper describes the evaluation of lateral tangent track dynamic models by comparing them to experimental data. The models were developed to predict the response of conventional and self-steering radial passenger trucks to random alignment and cross-level track irregularities.

82-2528

Estimation and Control of Ground Vibrations from Trains on Concrete Elevated Structures

D.A. Towers

Bolt, Beranek and Newman Inc., 10 Moulton St., Cambridge, MA 02238, Noise Control Engrg., 19 (1), pp 26-33 (July-Aug 1982) 7 figs, 8 refs

Key Words: Ground vibration, Railroad trains, Trafficinduced vibrations, Elevated railroads, Rapid transit railways

Concrete elevated structures currently make up approximately 48 km (30 route miles) of all newer US urban rail transit systems. The proposed Metropolitan Dade County (Miami) Rapid Transit System will include an additional 32 km (20 miles) of concrete elevated guideway, passing near potentially vibration sensitive areas such as residences, hospitals and research buildings. The estimation and control of ground vibration from the proposed system elevated structures are based on measurements conducted at the Port Authority Transit Corporation (PATCC) rail transit system in Camden County, New Jersey. Future ground vibrations were estimated by adjusting the PATCO measurement results for small differences in system-specific parameters. The results provide a basis for the evaluation of practical vibration control design alternatives.

SHIPS

82-2529

Fluid/Structure Interaction Analysis in the Consideration of Directivity Patterns of Hull-Mounted Transducers

B.E. Sandman, A. Harari, and J.S. Griffin Naval Underwater Systems Ctr., Newport, RI 02840, J. Acoust. Soc. Amer., <u>72</u> (2), pp 625-632 (Aug 1982) 5 figs. 9 refs

Key Words: Transducers, Interaction: structure-fluid, Ship hulls, Submerged structures, Shells, Cylindrical shells

For an acoustic transducer mounted on the exterior of a submerged hull structure, the effect of dynamic hull mobility upon directivity patterns is a subject of considerable interest to array design engineers. Cylindrical geometry, mounting point impedance, and structural dispersion are possible significant factors in beam pattern distortion. This analytical study utilizes a fundamental fluid/structure interaction model of submerged cylindrical shells to investigate the role of hull vibrations induced by the reactive excitation of a transducer element. It is shown that hull vibration can alter a single-element directivity pattern significantly. The model employed for this study possesses sufficient generality to consider the additional effects of hull damping, transducer isolation, and array beam forming.

AIRCRAFT

(Also see Nos. 2553, 2554, 2555, 2560)

82-2530

Trailing-Edge Noise from Hovering Rotors

Y.N. Kim and A.R. George Cornell Univ., Ithaca, NY, AIA'A J., 20 (9), pp 1167-1174 (Sept 1982) 7 figs, 34 refs

Key Words: Rotors, Helicopters, Noise prediction

A method has been developed to predict the high-frequency broadband noise due to the interaction of convecting turbulent eddies with the trailing edges of a hovering rotor. The trailing-edge noise from each blade was modeled as moving point dipole noise with spanwise loading corrections. This point dipole approximation was checked by applying the concept to a stationary airfoil in a moving medium with excellent results. In order to estimate the strength of the point dipole, the trailing-edge noise theory of Amiet was used. The method was applied specifically to blade boundary-layer turbulence and compared to incident atmospheric turbulence noise. The results indicate that the relative impor-

tance of these two mechanisms is related to the intensities and the magnitudes of the length scales of the inflow and boundary-layer turbulence.

82-2531

Acoustic Evaluation of the AGUSTA 109A Helicopter in Compliance with the Proposed ICAO Annex 16/Chapter 8 Regulations

W.R. Splettstoesser and S.R. Nagaraja Deutsche Forschungs- und Versuchsanstalt f. Luftund Raumfahrt e.V., Brunswick, Fed. Rep. Germany, Rept. No. DFVLR-MITT-81-24, 122 pp (Sept 1981) N82-22993 (In German)

Key Words: Helicopter noise, Noise measurement, Regulations

Noise measurements on the AGUSTA 109A helicopter were performed in order to determine the effective perceived noise levels (EPNL) in compliance with proposed regulations, investigate flight altitu '9 effects on EPNL, and evaluate the effect of different takeoif power settings on EPNL. EPNL values for operational modes are close to the proposed noise limits.

82-2532

Ground Reflection Effects in Measuring Propeller Aircraft Flyover Noise

W. Dobrzynski

Deutsche Forschungs- und Versuchsanstalt f. Luftund Raumfahrt e.V., Brunswick, Fed. Rep. Germany, Rept. No. DFVLR-FB-81-28, ESA-TT-742, 85 pp (Aug 1981)

N82-22990

(In German)

Key Words: Aircratt noise, Measurement techniques, Ground effect

In measuring flyover noise for purposes of propeller aircraft noise certification, microphones are positioned 1.2 m above the ground. The influence of ground reflection on the maximum A weighted aircraft noise level was investigated. Ground reflection induces level differences of up to 3 db (A), depending on rotational speed and number of blades. Since reflection corrections cannot successfully be applied to propeller noise signatures, alternative measuring arrangements, such as microphones in close proximity to the ground, were investigated.

82-2533

Recommendations for Field Measurements of Aircraft Noise

A.H. Marsh

DyTec Engrg., Inc., Long Beach, CA, Rept. No. NASA-CR-3540, 94 pp (Apr 1982) N82-22955

Key Words: Aircraft noise, Measurement techniques, Noise measurement

Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

82-2534

Aerodynamic Noise Generated by Jet-Wing/Flap Interactions of the External USB Configuration of STOL Aircraft, Part 1: Eight Percent Scale Cold-Flow Model Analysis

M. Maita and S. Shindo Natl. Aerospace Lab., Tokyo, Japan, Rept. No. NAL-TR-685T, 29 pp (Oct 1981) N82-22953

Key Words: Aircraft noise, Noise reduction

The acoustic characteristics of the external upper surface blowing (USB) concept of a powered high lift system (PHLS) were studied experimentally using an 8%-scale static cold flow model. Observations of exhaust jet flow attachment and spreading characteristics on wing/flap surface were also carried out using several flow visualization techniques. Noise reduction data were chained by optimizing basic jet nozzle wing/flap structural geometries for the lowest noise.

82-2535

Analytical Prediction of the Interior Noise for Cylin-

drical Models of Aircraft Fuselages for Prescribed Exterior Noise Fields, Phase 2: Models for Sidewall Trim, Stiffened Structures and Cabin Acoustics with Floor Partition

L.D. Pope and E.G. Wilby

Bolt, Beranek and Newman, Inc., Canoga Park, CA, Rept. No. NASA-CR-165869, 212 pp (Apr 1982) N82-22952

Key Words: Aircraft noise, Noise prediction, Interior noise

An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify appropriate noise control methods. Models for stiffened structures and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim.

82-2536

Development and Validation of Preliminary Analytical Models for Aircraft Interior Noise Prediction L.D. Pope, D.C. Rennison, C.M. Willis, and W.H. Mayes

Bolt, Beranek and Newman, Inc., Canoga Park, CA 91305, J. Sound Vib., <u>82</u> (4), pp 541-575 (June 22, 1982) 18 figs, 7 tables, 19 refs

Key Words: Aircraft noise, Interior noise, Noise prediction

A preliminary version of an airplane interior noise prediction model has been developed. This model is based on a power flow type of analysis. For validation of the model, predictions are made of the sound transmission into a simple unpressured, unstiffened cylinder under random and harmonic excitations. These are compared against experimental results and statistically significant differences between predictions and measurements are identified. It is concluded that these differences are related primarily to input data deficiencies.

82-2537

Recent Research on Noise Transmission into Aircraft R. Vaicaitis

Inst. of Flight Structures, Columbia Univ., New York, NY 10027, Shock Vib. Dig., 14 (8), pp 13-18 (Aug 1982) 85 refs

Key Words: Aircraft, Interior noise, Noise transmission,

This paper surveys literature concerning noise transmission prediction into aircraft. Papers from 1960 through early 1982 are reviewed. Special attention is given to noise transmission and cabin noise optimization for a propeller driven aircraft.

82-2538

Flutter and Oscillatory Pressure Tests on a 727 Aileron in a Wind Tunnel

K.S. Nagaraja, G.C. Lakin, and J.B. Bartley Boeing Commerical Airplane Co., Seattle, WA, J. Aircraft, 19 (9), pp 781-786 (Sept 1982) 14 figs, 3 refs

Key Words: Aircraft wings, Flutter, Wind tunnel testing

This paper presents the subcritical flutter characteristics of a rigid, full-scale 727 wing segment with inboard alleron and tab that was tested in a low-speed wind tunnel. The airplane lateral control system was simulated, and testing was performed with and without the internal pressure balance panel. Subcritical damping characteristics of the binary flutter mode were measured for three cases of tab mass balance and compared with analyses. In addition, oscillatory pressures in the region of the control surface and aileron hinge moments were measured for a wide range of reduced frequencies.

82-2539

Experiment on Active Flutter Suppression of a Cantilever Wing

T. Kikuchi and H.K. Lee
Natl. Aerospace Lab., Tokyo, Japan, Rept. No.
NAL-TR-690, 10 pp (Dec 1981)
N82-22282
(In Japanese)

Key Words: Aircraft wings, Active flutter control, Flutter, Cantilever plates

An experiment on active flutter suppression of a cantilever wing with the control surface at the wing tip is described. The experiment was done in a low subsonic wind tunnel. The deflection of the wing was measured by strain gages located near the root of the wing. The alleron was driven by a servomotor. Comparison was made between the present and previous results.

82-2540

Crashworthiness Studies: Cabin, Seat, Restraint, and Injury Findings in Selected General Aviation Accidents

W.R. Kirkham, S.M. Wicks, and D.L. Lowrey Office of Aviation Medicine, Fed. Aviation Administration, Washington, DC, Rept. No. FAA-AM-82-7, 24 pp (Mar 1982) AD-A114 878

Key Words: Crash research (aircraft), Crashworthiness

This report reviews 47 survivable or partly survivable accidents investigated since 1973 by personnel from the Civil Aeromedical Institute. The accidents were reviewed for a number of features of crashworthiness and, in particular, for injuries to occupants in relation to the severity of the impact and the performance of cabin and restraint systems. Opinions were rendered by trained crash injury investigators as to the role or expected role in seats and upper torso restraints in adding to or lessening the injuries. The data support the general concepts that nonoccupiable portions of the aircraft receive greater physical damage than occupiable areas.

MISSILES AND SPACECRAFT

82-2541

Analytical and Experimental Evaluations of Space Shuttle TPS Tile Vibration Response

A.G. Piersol and L.D. Pope Bolt, Beranek and Newman, Inc., Canoga Park, CA 91303, J. Sound Vib., <u>83</u> (1), pp 37-51 (July 8, 1982) 11 figs, 2 tables, 3 refs

Key Words: Space shuttles, Thermal protection systems (spacecraft), Tiles, Acoustic excitation, Vibration response

Analytical studies and laboratory experiments have been performed to evaluate the vibration response of the space shuttle thermal protection system (TPS) tiles due to the intense rocket generated acoustic noise during lift-off. The TPS tiles are mounted over the exterior of the space shuttle orbiter structure through strain isolation pads (SIP) which protect the tiles from thermal induced shear loads at their interface. The analytical predictions indicate that the response of a typical tile is governed by the structural vibration inputs through the SIP under the tile at frequencies below 150 Hz, and by the direct acoustic excitation over the exterior surface of the tile at frequencies above 250 Hz.

BIOLOGICAL SYSTEMS

HUMAN

82-2542

Subjective Responses of Chinese to Aircraft Noise N.W.M. Ko and P.C.K. Lei

Dept. of Mech. Engrg., Univ. of Hong Kong, Hong Kong, Appl. Acoust., 15 (4), pp 251-261 (July 1982) 6 figs, 3 tables, 14 refs

Key Words: Aircraft noise, Human response

A social study was undertaken of the subjective responses to aircraft noise of 909 Chinese in Hong Kong. The study population lives near, or adjacent to, the flight-paths of aircraft landing at, or taking off from, the international airport of Kai Tak. The subjective responses of the Chinese correlate well with the Noise and Number Index. Comparisons of the responses of the Chinese group with those of teachers and firemen in the city and with Londoners have been attempted.

82-2543

Aspects of Train Noise in South Africa

H.R. Raad

Council for Scientific and Industrial Res., Pretoria, South Africa, 30 pp (1981) PB82-204272

Key Words: Railroad trains, Noise generation, Human response

A brief look is taken at the major sources of train noise including those from planned high speed trains. Factors affecting community response to train noise are discussed and some case histories of complaints concerning railway noise are presented. Possible implementations of control techniques to train noise are reviewed.

82-2544

Subjective Effects of Traffic Noise Exposure, II: Comparisons of Noise Indices, Response Scales, and the Effects of Changes in Noise Levels F.J. Langdon and I.D. Griffiths

Building Res. Establishment, Garston, Watford WD2 7JR, UK, J. Sound Vib., <u>83</u> (2), pp 171-180 (July 22, 1982) 1 fig. 6 tables, 15 refs

Key Words: Traffic noise, Urban noise, Human response

Traffic noise and social surveys were carried out at eight London suburban sites. Dwellings at the selected sites were exposed to noise from freely flowing traffic at various levels. The study was designed to obtain noise measurements and subjective responses from residents on four repeated occasions throughout the year.

82-2545

Community Noise Impact Indicators: A Framework with Examples

M. Maurin

Inst. de Recherche des Transports, Centre d'Evaluation et de Recherche des Nuisances et de l'Energie, 69672 Bron Cedex, France, J. Sound Vib., 79 (4), pp 479-499 (Dec 22, 1981) 11 figs, 5 tables, 26 refs

Key Words: Traffic noise, Human response

Road traffic noise is widely spread in urban areas resulting in an acoustic impact on the whole population. When different conditions of this situation (action on traffic, road networks, buildings, etc.) are changed, each person's exposure changes and a new situation with a new impact is obtained. The objective is to obtain means to estimate the impacts, the importance of changes and even the evolution of collective acoustic situations, and to improve the general exposure as well as that in the noisiest cases. In this paper a sequence of such tools is examined, with emphasis on different ways of data presentation and essential steps in the collection and processing of the data relative to noise and the exposed population.

82-2540

Occupant Survivability in Heavy-Truck Crashes

B. Wolf, K.L. Campbell, and J. O'Day Highway Safety Res. Inst., Univ. of Michigan, Ann Arbor, MI, Rept. No. UM-HSRI-81-55, MVMA-1164, 31 pp (Nov 1981) PB82-202383

Key Words: Collision research (automotive), Trucks, Safety restraint systems, Seat belts

Rollover and ejection are associated with heavy-truck occupant fatalities about twice as frequently as for passenger-car occupant fatalities. A panel reviewed 41 in-depth cases to assess the possible effectiveness of restraint use and the contribution of rollover and ejection to the fatal injuries. The panel's responses indicated that belt use was expected to be particularly effective in preventing fatalities resulting from occupant ejection.

MECHANICAL COMPONENTS

ABSORBERS AND ISOLATORS

(Also see No. 2584)

82-2547

A Lumped Parameter Model for the Iterative Analysis of Cylinderlike Antivibration Mounts

C. lanniello and L. Maffei

Istituto di Fisica Tecnica, Facolta di Ingegneria, Universita di Napoli, 80125 Napoli, Italy, J. Acoust. Soc. Amer., 72 (2), pp 482-487 (Aug 1982) 6 figs, 3 refs

Key Words: Mountings, Vibration isolation, Elastomers, Dynamic stiffness, Stiffness coefficients, Damping coefficients, Lumped parameter method

It is known that wave effects in antivibration mounts result in differences between the force transmissibility, calculated for a one-degree-of-freedom system having constant spring and dashpot parameters, and the experimentally measured one. An evaluation method which allows one to obtain the above mentioned parameters as functions of the frequency for simple rubber systems is presented. The method takes into account the high-frequency interaction between the distributed mass and elasticity which is responsible for the wave effects in the mount. Some experimental evidence about the validity of the method is given.

82-2548

Lead-Rubber Hysteretic Bearings Suitable for Protecting Structures During Earthquakes

W.H. Robinson

Physics and Engrg. Lab., Dept. of Scientific and Industrial Res., Lower Hutt, New Zealand, Intl.

J. Earthquake Engrg. Struc. Dynam., 10 (4), pp 593-604 (July/Aug 1982) 14 figs, 1 table, 20 refs

Key Words: Base isolation, Buildings, Elastomeric bearings, Bearings

Lead-rubber hysteretic bearings provide in a single unit the combined features of vertical load support, horizontal flexibility and energy absorbing capacity required for the base isolation of structures from earthquake attack. The lead-rubber hysteretic bearing is a laminated elastomeric bearing of the type used in bridge structures, with a lead plug down its center. This paper describes the tests on the lead-rubber bearings, the results and a design procedure for selecting the size of the lead plug.

SPRINGS

82-2549 Sizing Torsional Leaf Springs

R. Lilliston

Martin Marietta Aerospace, Orlando, FL, Mach. Des., 54 (15), pp 67-71 (June 24, 1982) 3 figs, 3 refs

Key Words: Leaf springs, Torsion bars, Design procedures

Design calculations for torsional leaf springs are presented. The procedure applies only to blades having identical dimensions, but it is more straightforward than the procedure described in SAE manual for leaf springs consisting of blades with either the same or different widths and thicknesses.

82-2550

On the Dynamic Behaviour of Axially Excited Helical Springs

L.D. Pietra and S.D. Valle

Istituto di Meccanica applicata, Univ. of Naples, Naples, Italy, Meccanica, 17 (1), pp 31-43 (Mar 1982) 11 figs, 2 tables, 8 refs

Key Words: Springs, Helical springs, Natural frequencies

Wittrick's theory on the propagation of deformation waves in a coiled wire is used -- taking into account only the coupling between the displacements of the wire cross-section along the tangent and along the binormal of the average helix -- in order to show how the natural frequencies of the axial and rotational modes of a cylindrical helical spring vary according to a nonlinear function of the wave number. It

is also demonstrated that the natural frequencies resulting from the proposed theory for the natural modes, to which correspond wave lengths greater than two coils, do not differ much from those which can be calculated by considering the spring as a periodic discrete system. Theoretical results are finally tested by an appropriate experimental investigation.

discussed. Comparison of the results indicates a quicker convergence and better mode shapes by the Reissner method than the classical potential energy method.

TIRES AND WHEELS

82-2551 Tire/Road Noise

G.J. Kind

Goodyear Intl. Tire Technical Ctr., Luxembourg, 22 pp (1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206137

Key Words: Tires, Noise generation, Interaction: tire-pavement, Noise measurement

This paper discusses the different mechanisms that are at the origin of tire to surface noise. Various tire noise measurement and analysis techniques are described and analyzed regarding their correlation to subjective testing. Means to reduce tire noise are proposed and discussed in the context of other important tire properties.

BLADES

82-2552

Analysis of Lateral Vibrations of Rotating Cantilever Blades Allowing for Shear Deflection and Rotary Inertia by Reissner and Potential Energy Methods K.B. Subrahmanyam, S.V. Kulkarni, and J.S. Rao Dept. of Mech. Engrg., Regional Engrg. College, Kurukshetra, India, Mech. Mach. Theory, 17 (4), pp 235-241 (1982) 3 figs, 4 tables, 30 refs

Key Words: Blades, Cantilever plates, Rotating structures, Lateral vibration, Transverse shear deformation effects, Rotatory inertia effects

The lateral vibrations of a uniform rotating blade have been analyzed applying the Reissner and the potential energy methods. Shear deflection and rotary inertia are taken into account. A convergence study of the two methods is made and the effects of shear deflection, rotary inertia, rotation and stagger angle on the blade vibration characteristics are

82-2553

Tail Rotor Studies for Satisfactory Performance: Strength and Dynamic Behavior

G. Blachere and F. Dambra

Societe Nationale Industrielle Aerospatiale, Marignane, France, Rept. No. SNIAS-821-210-108, 13 pp (1981) (Pres. at 7th European Rotorcraft and Powered Lift Aircraft Forum, Garmisch-Partenkirchen, W. Germany, Sept 8-11, 1981) N82-22258

Key Words: Blades, Rotors, Propeller blades, Helicopters

Flexbeam, teetered, cantilevered and semirigid two bladed rotors were studied in flight, on whirl test stands and theoretically. The blades are compared with conventional helicopter blades. For 2 ton helicopters, the tested blades have fewer parts, and weigh less than conventional ones. Blade life is increased, manufacturing and maintenance costs are lowered. For 8 ton helicopters, similar improvements were achieved, but at the expense of larger control forces and limited lifetime for the flexbeam.

82-2554

A Complete Method for Computation of Blade Mode Characteristics and Responses in Forward Flight J.P. Lefrancq and B. Masure

Societe Nationale Industrielle Aerospatiale, Marignane, France, Rept. No. SNIAS-821-210-101, 10 pp (1981) (Pres. at 7th European Rotorcraft and Powered Lift Aircraft Forum, Garmisch-Partenkirchen, W. Germany, Sept 8-11, 1981) N82-22254

Key Words: Blades, Propeller blades, Rotors, Modal analysis

The modal approach to rotor dynamic behavior is outlined, and an azimuth method is presented. The azimuth method applies to stabilized flights, in particular those in which rotor configuration is considered repeatable after one revolution.

82-2555

Helicopter Rotor Blade Tips (Les Extremities de Pales d'Helicopteres)

R. Lvothier

Assn. Aeronautique et Astronautique de France, Paris, France, Rept. No. AAAF-NT-81-19, 25 pp (Nov 1981)
PB82-213455
(In French)

Key Words: Blades, Rotor blades (turbomachinery), Helicopters, Rotors, Noise reduction, Geometric effects

Appreciable improvement in the performance and vibration level of helicopters can be attained by means of rotor blade tips of particular shape. The principle involved is to reduce the extent of the supersonic zone which appears on the advancing blade as well as the vortex interaction. After a preliminary choice of shapes by calculation, measurements of performance and stresses were effected upon a rotor model of the most promising shape in the wind tunnel. The perceived parameters for most improved characteristics are the shape in plan to limit the supersonic zone and attenuate shock waves, and rotor twist and taper ratio to reduce the effects of vortex interaction.

82-2556

National Transonic Facility (NTF) Prototype Fan Blade Fatigue Test

E.H. Dean, A.J. Gustafson, and D.M. Saylor Army Aviation Res. and Dev. Command, St. Louis, MO, Rept. No. USAAVRADCOM-TR-82-D-5, 18 pp (Mar 1982) AD-A114 405

Key Words: Blades, Fan blades, Composite structures, Fatigue tests

Fatigue tests were conducted on a composite fan blade designed for use in the new NTF wind tunnel being constructed at NASA-Langley. The tests were performed using the root end fatigue machine which was modified for ground-air-ground testing. Simulated centrifugal and aerodynamic (bending) load tests were performed.

82-2557

Structural Dynamics of Shroudless, Hollow Fan Blades with Composite In-Lays

R.A. Aiello, M.S. Hirschbein, and C.C. Chamis

NASA Lewis Res. Ctr., Cleveland, OH, Rept. No. E-1163, NASA-TM-82816, 12 pp (1982) (Pres. at 27th Ann. Intl. Gas Turbine Conf., London, Apr 18-22, 1982) N82-22266

Key Words: Blades, Fan blades, Aircraft engines, Vibration analysis, Bird strikes, Computer programs

Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented.

82-2558

Alternating Stress Measurements on Model and Actual Turbine Blades

M. Glober and W. Maly Rolls-Royce Ltd., Derby, UK, Rept. No. PNR-90101, TRANS-15784/TLT-00835, 28 pp (Sept 1981) (Pres. at 6th Intl. Conf. on Exptl. Stress Anal., 1978) N82-22534

Key Words: Blades, Turbine blades, Natural frequencies, Measurement techniques

Methods of measuring the natural frequencies and dynamic stresses of axial turbine blades under operational conditions are described. Holographic interferometry, alternating stress distribution measurement, using strain gages, and natural frequency analysis on static blades and on rotating blades fitted with piezoelectric gages are discussed. Model turbines for determining nonsteady blade forces when guide vanes are partially impinged, a model of a low pressure turbine with trailer turbine, slip ring transmission measuring devices, and high frequency signal tests of blade vibration are treated.

82-2559

Measuring Rotating Blade Vibration of Large Low Pressure Steam Turbines

V. Donato, R.L. Bannister, and J.F. DeMartini Westinghouse Electric Corp., PA, Chartered Mech. Engr., 28 (7), pp 46-49 (July 1981) 8 figs, 8 refs

Key Words: Blades, Turbine blades, Steam turbines, Vibration measurement

Turbine generators in operation today can generate more than 1300 MW or enough electricity to supply the residential needs of over four million people, so their reliability is of utmost importance in the economics of electrical energy generation. This article reviews the experimental techniques and instrumentation developments evolved over four decades by one turbine manufacturer to measure the dynamic behavior of rotating low pressure steam turbine blades.

FASTENERS

82-2560

Fatigue Behavior of Weldbonded Joints

G.V. Scarich and G.R. Chanani Northrop Corp., Hawthorne, CA, J. Aircraft, 19 (9), pp 773-780 (Sept 1982) 14 figs, 7 tables, 7 refs

Key Words: Joints (junctions), Welded joints, Fatigue life, Aircraft

The efforts of material and process variables on fatigue behavior were determined for a newly developed, low-cost weldbounding process for the assembly of durable aircraft structures. The weldbonding process involves spot-welding components through a previously applied adhesive, and then oven-curing the assembly to achieve a bonded structure. Both low-load and high-load transfer specimen geometries with each of two alloy combinations were evaluated. Fatigue behavior of weldbonded specimens with different nugget sizes and different manufacturing defects was compared with that of riveted and adhesive-bonded specimens.

82-2561

Bolted Connections Dynamically Loaded in Tension L.P. Bouwman

Dept. of Civil Engrg., Delft Univ. of Tech., Delft, The Netherlands, ASCE J. Struc. Div., 108 (9), pp 2117-2129 (Sept 1982) 15 figs, 2 refs

Key Words: Bolts, Bolted joints, Joints (junctions), Fatigue life

A report of fatigue tests on tensile loaded bolted connections is presented. The tests demonstrate clearly that the structural design is of major importance with regard to the fatigue strength of such connections. By designing connections which are structurally well-detailed, it is possible to eliminate entirely bolt fatigue in tension.

82-2562

Inelastic Cyclic Behavior of Steel Bracing Members

H. Gugerli

Ph.D. Thesis, Univ. of Michigan, 380 pp (1980) DA8215001

Key Words: Braces, Steel, Cyclic loading

The inelastic cyclic behavior of steel bracing members under severe axial deformation has been studied by several investigators in the past. To verify these results under more realistic conditions diagonally mounted members with rigid end connections were subjected to horizontal cyclic displacements. Nine commercially available wide-flange shapes and structural tubes with different slenderness and width-thickness ratios were tested. The influence of different cross sections was studied using an existing theoretical model with more realistic plasticity conditions at the location of plastic hinges.

STRUCTURAL COMPONENTS

STRINGS AND ROPES

82-2563

In-Plane Vibrations of an Extensible and Flexible Chain of Particles: Application to a Thin and Curved Rod

P.-E. Ouellette

College de Saint-Laurent, Saint-Laurent, Quebec, Canada, J. Sound Vib., <u>83</u> (3), pp 379-399 (Aug 8, 1982) 11 figs, 5 tables, 11 refs

Key Words: Chains, Rods, Curved rods, Longitudinal vibra-

The derivation of the exact normal modes of oscillation of a linear chain of N identical particles connected by identical springs (extensible chain), but with arbitrary springs connecting the end particles to rigid walls, is now classical. The corresponding analysis of the extensible polygonal chain, where the respective angles formed by the successive bonds are less than π , has not been previously done. It is realized here through the invention of an appropriate co-ordinate system where the position of each particle of the chain is determined by its respective distances to the equilibrium positions of the two nearest particles. As the straight extensible chain is a valid (if N tends to infinity) model of the straight, extensible and thin rod, the curved, extensible and

thin rod, can be viewed, in the limit, as a polygonal extensible chain. Therefore, through the limit process, its normal modes of oscillations can be derived. The consideration of a polygonal (or straight) chain which is flexible (existent elastic interaction between the adjacent bonds of the chain) is much more difficult. This is due to the presence of high order finite difference equations. However, the co-ordinate system used here permits, when the chain is closed (the limit case being the thin ring), a complete treatment both of the flexible chain and of the flexible and extensible chain.

nonlinearities are solved through the multiple time scale perturbation technique. The monofrequent oscillations of the system are studied in order to analyze the modification of frequency and motion amplitude of the modal oscillations due to geometric nonlinearities in the absence of internal resonance. The possibility that effects arise due to nonlinear coupling is examined.

CABLES

(Also see No. 2512)

82-2564

Analysis of Static and Dynamic Wind Tunnel Tests of the Shuttle Cable Trays

J.P. Reding and L.E. Ericsson Lockheed Missiles and Space Co., Inc., Sunnyvale, CA, J. Spacecraft, 12 (5), pp. 412-418 (Sept-Oct 1982) 18 figs, 13 refs

Key Words: Cables, Wind tunnel testing, Space shuttles

Results of a study aimed at determining the possible aeroelastic instability of the Space Shuttle cable trays are presented. Cross flow over the trays, caused by unique flow interference effects, was found to be the potential source of the aero-elastic instability. Selected data from static and dynamic wind tunnel tests of cable tray sections, which furnished the essential input into the aero-elastic analysis, are presented and analyzed.

82-2565

Monofrequent Oscillations of a Non-Linear Model of a Suspended Cable

A. Luongo, G. Rega, and F. Vestroni Instituto di Scienza delle Costruzioni, Universitá di Roma, Roma 00184, Italy, J. Sound Vib., <u>82</u> (2), pp 247-259 (May 22, 1982) 8 figs, 14 refs

Key Words: Cables, Two degree of freedom systems, Non-linear theories

A two-degree-of-freedom nonlinear elastic model is considered to analyze the effects of nonlinearities on the free motion of a suspended cable. The discretized model is obtained by referring to simplified kinematics of the cable; the equations of motion which show quadratic and cubic

82-2566

On the Computation of Damped Wind-Excited Vibrations of Overhead Transmission Lines

P. Hagedorn

Inst. f. Mechanik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany, J. Sound Vib., <u>83</u> (2), pp 253-271 (July 22, 1982) 12 figs, 11 refs

Key Words: Transmission lines, Wind-induced excitation, Vortex shedding, Dampers, Fatigue life

In the calculation of wind-excited overhead transmission line vibrations with Stockbridge dampers the damper behavior is usually represented by its impedance corresponding to a vertical translatory damper clamp motion. The moments introduced by the damper clamp into the cable are normally disregarded. In this paper the dampers are characterized by means of a 2 \times 2 complex impedance matrix which can be experimentally determined in the laboratory and which includes the effects of the rotatory motion of the clamp. The energy balance method is then adapted to this case and the bending strains in the cable are calculated at the dangerous points.

BARS AND RODS

(Also see No. 2563)

82-2567

Transient Longitudinal Vibrations of a Finite Cylindrical Rod Connected to an Elastic Half-Space

H. Wada

Dept. of Mech. Engrg., Tohoku Univ., Sendai 980, Japan, J. Sound Vib., $\underline{82}$ (3), pp 383-390 (June 8, 1982) 4 figs, 15 refs

Key Words: Rods, Elastic half-space, Longitudinal vibration, Harmonic excitation, Seismic response

An analysis is presented of the transient longitudinal vibrations of a cylindrical rod connected to an elastic half-space under the condition that an arbitrarily shaped free field vertical acceleration is given as an input. By applying Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the rod acceleration at the interface and at the free end are obtained.

BEAMS

(Also see No. 2610)

Flexural Waves and Deflection Mode Shapes of Periodic and Disordered Beams

A.S. Bansal

82-2568

Dept. of Mech. Engrg., Punjab Agricultural Univ., Ludhiana-141004, India, J. Acoust. Soc. Amer., 72 (2), pp 476-481 (Aug 182) 4 figs, 11 refs

Key Words: Beams, Periodic structures, Flexural vibration, Material frequencies, Mode shapes

This paper deals with free flexural wave motion and natural deflection mode shapes of simply supported infinite uniform periodic beams consisting of repeating units that are identical finite beams having equal and unequal span lengths. Governing equations for the natural frequencies and that for the wave propagation constant have first been setup in terms of the receptances of the individual beam elements. The equations are then applied to compute the natural frequencies and deflection mode shapes together with the propagation constants for some specific disordered periodic beams that include four-span and eight-span periodic and disordered beams, Relationship between the natural frequencies of the symmetric finite repeating beam units and the bounding frequencies of the propagation and attenuation zones has been studied,

82-2569

Transient Response of a Thick Beam of Bimodular Material

C.W. Bert and A.D. Tran

School of Aerospace, Mechanical and Nuclear Engrg., Univ. of Oklahoma, Norman, OK, Intl. J. Earthquake Engrg. Struc, Dynam., 10 (4), pp 551-560 (July/Aug 1982) 7 figs, 2 tables, 15 refs

Key Words: Beams, Bimodular properties, Transient response

Certain materials have different elastic behavior when they are loaded in tension as compared to compression. As an engineering approximation, they are usually modeled as a

bimodular material; i.e., a bilinear material having different Young's moduli in tension and in compression. All of the previous analyses of bimodular beams known to the present investigators have been concerned with either static loading or harmonic vibration. Thus, the present work is believed to be the first to consider transient response of such beams. The transfer-matrix method is used to discretize spatially, while the timewise discretization is accomplished by use of the Newmark beta method.

82-2570

Comparison of Analytical and Experimental Results for Free Vibration of Non-Uniform Composite Beams

L.A. Taber and D.C. Viano

Biomedical Sci. Dept., General Motors Res. Labs., Warren, MI 48090, J. Sound Vib., <u>83</u> (2), pp 219-228 (July 22, 1982) 9 figs, 2 tables, 17 refs

Key Words: Beams, Cantilever beams, Composite structures, Variable cross section, Resonant frequencies, Mode shapes, Timoshenko theory, Flexural vibration

Resonant frequencies and mode shapes were calculated by a transfer matrix technique for Timoshenko beams of varying cross section. With the non-uniform beam represented by a series of uniform segments, results are given for longitudinal, torsional, and flexural vibration. Comparison with numerical results from the literature confirms the accuracy of the solution for transverse vibration of a homogeneous, tapered cantilever beam.

82-2571

A Comparison of Some Equations for the Flexural Vibration of Damped Sandwich Beams

D.J. Mead

Dept. of Aeronautics and Astronautics, Univ. of Southampton, Southampton S09 5NH, UK, J. Sound Vib., <u>83</u> (3), pp 363-377 (Aug 8, 1982) 7 figs, 15 refs

Key Words: Beams, Sandwich structures, Damped structures, Flexural vibration

The theories of flexural vibration of damped, three-layer sandwich beams are compared. Depending on the assumptions made about the internal shear stress distribution, the differential equation of transverse flexural displacement is either of fourth or sixth order. The inclusion of the effects of face-plate shear deformation and longitudinal inertia in the analysis yields a sixth order differential equation if the beam section is symmetric, and an eighth order equation if

the section is unsymmetric. Flexural wave speeds and loss factors computed from the theories are presented and compared.

82-2572

Coupled Bending-Bending Vibrations of Pretwisted Tapered Cantilever Beams Treated by the Reissner Method

K.B. Subrahmanyam and J.S. Rao

Dept. of Mech. Engrg., NBKR Inst. of Sci. and Tech., Vidyanagar 524 413, India, J. Sound Vib., <u>82</u> (4), pp 577-592 (June 22, 1982) 3 figs, 5 tables, 35 refs

Key Words: Beams, Cantilever beams, Variable cross-section, Natural frequencies, Mode shapes, Flexural vibration, Reissner method

Theoretical natural frequencies and mode shapes of the first four coupled modes of a uniform pretwisted cantilever blade and the first five coupled flexural frequencies of pretwisted tapered blading are determined by using the Reissner method. The shape functions for the bending moments and deflections are developed in series form and with these used in the dynamic Reissner functional, the frequency equation is obtained by minimizing it through the Ritz process. A convergence study made in the case of the pretwisted uniform blade indicates that there appears to be a quicker convergence of the natural frequencies and that a five-term solution yields a set of results that are in good agreement with the theoretical and experimental values of other authors, available in the literature.

82-2573

Vibrations of a Beam Elastically Restrained Against Rotation at One End and Carrying a Guided Mass at the Other

P.L. Vernière de Irassar and P.A.A. Laura Inst. of Appl. Mech., Puerto Belgrano Naval Base, Argentina, Appl. Acoust., 15 (4), pp 243-249 (July 1982) 5 figs, 1 table, 4 refs

Key Words: Beams, Natural frequencies, Mode shapes

An exact solution to the title problem is obtained using classical beam theory. Natural frequencies and mode shapes are determined as a function of the end flexibility coefficient and of the ratio concerned, end mass/beam mass.

82-2574

Minimum Maximum Deflection and Stress Design of Beams under Harmonic Excitation by Mathematical Programming

S. Adali

Natl. Res. Inst. for Math. Sciences, Pretoria, South Africa, Rept. No. CSIR-TWISK-214, 31 pp (July 1981)

N82-22518

Key Words: Beams, Harmonic excitation, Optimization

The optimal distribution of the cross sectional area of a beam subject to harmonically oscillating loads of the same forcing frequency is computed. The objective function minimized is the maximum dynamic deflection or stress of the beam. The cross sectional area is approximated by splines of order zero or one, and the values of the splines at the knots serve as design variables. The design algorithm consists of successive stages of analysis and optimization. The analysis for a given cross sectional shape is carried out by iteratively solving an equivalent integral equation formulation of the problem. The optimization stage is carried out by using a quasi-Newton minimization routine.

82-2575

Nonlinear Analysis of Beams. Part I: A Survey of Recent Advances

M. Sathyamoorthy

Dept. of Mech. and Industrial Engrg., Clarkson College of Technology, Potsdam, NY 13676, Shock Vib. Dig., 14 (8), pp 19-35 (Aug 1982) 280 refs

Key Words: Beams, Nonlinear theories, Reviews

This survey of literature on nonlinear analyses of beams is limited to papers published since 1972. Geometric, material, and other types of nonlinearities are considered. This paper deals with literature concerning classical nonlinear methods.

82-2576

Destabilizing Effect of Coulomb Friction on Vibration of a Beam Supported at an Axially Oscillating Mount

J. Zajaczkowski

Lodz Technical Univ., Lodz, Poland, J. Sound Vib., 79 (4), pp 575-580 (Dec 22, 1981) 5 figs, 4 refs

Key Words: Beams, Coulomb friction, Parametric excitation

This paper is concerned with parametric vibration of a beam having one end supported at a motionless mount and the other at an axially oscillating mount. It is shown that the time-history of the motion of the beam may be expressed in terms of Jacobi elliptic functions. The effect of the friction force resulting from the relative motion of the mount and the beam, on the vibration is studied. The instability regions are found and plotted.

A general methodology and an associated computer system are developed for the static and dynamic nonlinear analysis of framed structures. The nonlinearity includes both finite deformation effects and elasto-plasticity. Lagrangian displacement based beam-column finite elements are developed. A consistent nonlinear frame theory is developed based on Lagrangian mechanics. The result of this development is a variety of kinematic models which incorporate different levels of geometric nonlinearity. The models are used as the basis for a family of planar and spatial beam-column finite elements.

CYLINDERS

(See No. 2602)

MEMBRANES, FILMS, AND WEBS

(See No. 2580)

FRAMES AND ARCHES

82-2577

Separation of Element Spaces by Contraction and an Application to Determination of Bounds to Natural Frequencies of Frames

E. Dokumaci

Faculty of Mech. Engrg., Ege Univ., Izmir, Turkey, J. Sound Vib., 82 (3), pp 445-457 (June 8, 1982) 3 tables, 5 refs

Key Words: Frames, Natural frequencies, Boundary value problems

This paper presents the application of a new method to the determination of lower bounds to natural frequencies of continuous systems which admit the formulation of elastically orthogonally refined finite elements that yield upper bounds to the natural frequencies. This method can also be seen as a direct method of separation of element spaces. The utility of the process is shown with reference to vibration problems of frames,

PLATES (Also see Nos. 2593, 2610, 2678)

82-2579

Large Amplitude Flexural Vibration of Layered **Composite Plates with Cutouts**

J.N. Reddy

Dept. of Engrg. Sci. and Mech., Virginia Polytechnic Inst. and State Univ., Blacksburg, VA 24061, J. Sound Vib., 83 (1), pp 1-10 (July 8, 1982) 5 figs, 3 tables, 11 refs

Key Words: Plates, Composite structures, Layered materials, Flexural vibration, Large amplitudes

The large amplitude flexural vibration of rectangular plates is investigated. A finite element based on a Reissner-Mindlin type of shear deformable theory governing laminated anisotropic composite plates, and the nonlinear (large rotations) strain-displacement relations of the von Karman theory are employed. Numerical results are presented for rectangular plates with rectangular cutouts. The parametric effects of side to thickness ratio (shear deformation), aspect ratio, plate side to cutout side ratio, anisotropy, and lamination on linear and nonlinear frequencies are investigated.

Nonlinear Dynamic Analysis of Framed Structures Using a Finite Element Method

D.W. Keck

Ph.D. Thesis, Georgia Inst. of Tech., 374 pp (1982)

Key Words: Framed structures, Finite element technique, Nonlinear theories, Computer programs

Vibrations of Cross-Shaped, I-Shaped, and L-Shaped Membranes and Plates

T. Irie, G. Yamada, and K. Ashida Dept. of Mech. Engrg., Faculty of Engrg., Hokkaido Univ., Sapporo, 060, Japan, J. Acoust. Soc. Amer., <u>72</u> (2), pp 460-465 (Aug 1982) 7 figs, 3 tables, 14 refs

Key Words: Membranes (structural members), Plates, Natural frequencies, Mode shapes

The natural frequencies (eigenvalues of vibration) and mode shapes are presented for cross-shaped, I-shaped, and L-shaped membranes and simply supported plates. An irregularly shaped membrane is formed on a rectangular base membrane by fixing several segments. The reaction forces acting on the edges of an actual membrane are expanded into Fourier series with unknown coefficients, and homogeneous equations for the coefficients are derived by the restraint conditions on the edges. The natural frequencies and mode shapes of the actual membrane are determined by calculating the eigenvalues and eigenvectors of the equations. The numerical values obtained for membranes can be immediately converted into those of simply supported plates by the dynamical analogy between membrane and plate.

82-2581

On the "Overlapping Resonances" Concept of Acoustic Transmission through an Elastic Plate, I: An Examination of Properties

A. Freedman

65 Mount Pleasant Ave., Weymouth, Dorset DT3 5JF, UK, J. Sound Vib., <u>82</u> (2), pp 181-195 (May 22, 1982) 5 figs, 1 table, 28 refs

Key Words: Plates, Elastic properties, Submerged structures, Acoustic transmission

The Fiorito, Madigosky and Uberall approximate representation of the acoustic transmission coefficient of an infinite, isotropic, elastic plate by resonances associated with Lamb modes is examined and clarification of its properties is obtained. Some theoretical extension is provided which validates coherent addition of these overlapping resonances. Minor limitations shown are that the theory is inapplicable near grazing incidence and that it gives only a partial solution at incidence beyond the second critical angle when the frequency thickness product is the variable.

82-2582

On the "Overlapping Resonances" Concept of Acoustic Transmission through an Elastic Plate, II: Numerical Examples and Physical Implications

A. Freedman

65 Mount Pleasant Ave., Weymouth, Dorset DT3 5JF, UK, J. Sound Vib., 82 (2), pp 197-213 (May 22, 1982) 14 figs, 14 refs

Key Words: Plates, Elastic properties, Submerged structures, Acoustic transmission

In a companion paper the Fiorito, Madigosky and Uberall approximate theory of transmittivity of an infinite, isotropic, elastic plate in terms of Lamb mode resonances is examined, and extended by validating coherent addition of these overlapping resonances. This paper provides numerical and heuristic tests which yield convincing proof of the applicability of the overlapping resonances concept. At various thicknesses of a water-immersed, steel plate, including the half-space and zero thickness limits, the behavior is shown to be compatible with known exact behavior. Overlapping resonances explain the reduction towards zero of the transmittivity near the coincidence angles of the zero order Lamb modes as these converge to the Rayleigh angle.

82-2583

Axisymmetric Vibrations of Polar Orthotropic Annular Plates of Variable Thickness

R. Lal and U.S. Gupta

Dept. of Math., Univ. of Roorkee, Roorkee 247672, India, J. Sound Vib., <u>83</u> (2), pp 229-240 (July 22, 1982) 5 figs, 4 tables, 14 refs

Key Words: Plates, Annular plates, Variable cross section, Axisymmetric vibration, Natural frequencies, Mode shapes

In this study of the free axisymmetric vibrations of polar orthotropic annular plates of linearly varying thickness, on the basis of the classical theory of plates, the Chebyshev collocation technique has been employed to solve the differential equation governing the transverse motion of such plates. Frequencies, mode shapes and moments have been computed for three different boundary conditions for various values of the rigidity ratios, the radii ratio and the taper parameter for the first two modes of vibration.

82-2584

Air Elastic Vibrations of a Metal Plate Supported on Air Cushions (Vibrations Aero-Elastiques d'une Tole sur Coussins d'Air)

J.P. Allioud

Association Aeronautique et Astronautique de France, Paris, France, Rept. No. AAAF-NT-81-08,

40 pp (Nov 1981) (Pres. at Colloque d'Aerodynamique Appliquee (18th), Poitiers, Nov 18-20, 1981) PB82-204280 (In French)

Key Words: Plates, Vibration isolation

Painted metal plates supported on air cushions improve the efficiency of industrial installations, because the process is not limited by the weak level of the chain furnaces and the constraints of traction in the metal sheet. Tests have shown considerable transversal air elastic instabilities; these phenomena studied through experiments are, therefore, the subject of a theory using the Galerkin formulation as a means of bidimensional model.

82-2585

Vibration and Stability of Stiffened Annular Plates

T. Irie, G. Yamada, and S. Aomura

Dept. of Mech. Engrg., Faculty of Engrg., Hokkaido Univ., Sapporo, 060 Japan, J. Acoust. Soc. Amer., 72 (2), pp 466-471 (Aug 1982) 4 figs, 2 tables, 12 refs

Key Words: Plates, Annular plates, Stiffened plates, Stiffener effects, Natural frequencies, Mode shapes, Dynamic buckling

The vibration and stability of radially stiffened annular plates subjected to an in-plane force uniformly distributed at the edges are analyzed by the energy method. For this purpose, the transverse deflection of a stiffened annular plate is written in a series of the products of the deflection function of a sectorial beam with a small angle and the trigonometric function of angular coordinate. The deflection function of the sectorial beam is approximately expressed by a quintic spline function satisfying the boundary conditions at the edges, and the frequency equation of the plate is derived by the Ritz method. The method is applied to annular plates with several stiffeners of uniform rectangular cross section located at equal angular intervals; the natural frequencies and the critical buckling loads are calculated numerically and the effects of stiffeners on them are studied.

82-2586

Nonlinear Flexural Vibration of Moderately Thick-Orthotropic Circular Plates

M. Sathyamoorthy and C.Y. Chia Dept. of Civil Engrg., The Univ. of Calgary, Calgary, Alberta, T2N 1N4, Canada, Ing. Arch., <u>52</u> (3/4), pp 237-243 (1982) 5 figs, 2 tables, 12 refs Key Words: Plates, Circular plates, Orthotropism, Transverse shear deformation effects, Rotatory inertia effects, Flexural vibration

A nonlinear vibration theory which includes the effects of transverse shear deformation and rotatory inertia is formulated for rectilinearly orthotropic circular plates using Berger's method. A solution to the governing equations for rigidly clamped plates is obtained on the basis of a single-mode approach by use of Galerkin's method and numerical Runge-Kutta procedure. A good agreement is found between present results and those obtained by a more accurate theory for nonlinear static and dynamic cases.

82-2587

Sound Power and Radiation Efficiency of a Circular Plate

S. Czarnecki, Z. Engel, and R. Panuszka Dept. of Aeroacoustics, Inst. of Fundamental Technological Res., Polish Academy of Sciences, 00-049 Warsaw, Poland, Arch. Acoust., <u>6</u> (4), pp 339-358 (1981) 10 figs, 2 tables, 14 refs

Key Words: Plates, Circular plates, Vibrating structures, Sound waves, Wave propagation

The problem of estimating the sound radiation by vibrating surfaces in the case of a circular plate clamped on the circumference is considered. The aim of this paper is to verify the values of the equivalent surfaces of the plate, which were obtained theoretically, with the experimental values obtained in the free field and reverberant field conditions.

82-2588

Vibration of a Rigid Disc on a Transversely Isotropic Elastic Half Space

D.J. Kirkner

Dept. of Civil Engrg., Univ. of Notre Dame, Notre Dame, IN 46556, Intl. J. Numer. Anal. Methods Geomech., <u>6</u> (3), pp 293-306 (July-Sept 1982) 7 figs, 24 refs

Key Words: Disks (shapes), Harmonic response, Vibrating structures

The problem of a massless, rigid disc vibrating harmonically on a constrained transversely isotropic elastic half space is considered. The material is called constrained because it is assumed that the elastic constants satisfy a certain equation. The problem for each mode of vibration is reduced to the solution of a Fredholm integral equation of the second kind. Results are presented to show the general effect of the material anisotropy.

82-2589

An Analytical Solution for the Free Vibration Analysis of Rectangular Plates Resting on Symmetrically Distributed Point Supports

D.J. Gorman

Dept. of Mech. Engrg., Univ. of Ottawa, Ottawa, Ontario, Canada K1N 6N5, J. Sound Vib., 79 (4), pp 561-574 (Dec 22, 1981) 8 figs, 4 tables, 8 refs

Key Words: Plates, Rectangular plates, Free vibration, Vibration analysis

A general analytical solution is obtained for the free vibration of rectangular plates supported on their lateral surface by symmetrically distributed point supports. Highly accurate eigenvalues are provided for a square plate supported at various points along the diagonal. Results are compared with earlier findings obtained by a finite element method. It is shown that the method may be extended to solve various other problems. The tabulation of eigenvalues appears to be the most comprehensive yet made for a square plate with point supports on the diagonals.

82-2590

Large Amplitude Vibrations of a Clamped Orthotropic Square Plate Carrying a Concentrated Mass B. Banerjee

Dept. of Math., Jalpaiguri Government Engrg. College, Jalpaiguri, West Bengal, India, J. Sound Vib., 82 (3), pp 329-333 (June 8, 1982) 1 fig, 10 refs

Key Words: Plates, Rectangular plates, Mass-plate systems, Vibration analysis, Large amplitudes

The nonlinear vibration of a clamped orthotropic square plate carrying a concentrated mass has been investigated. Von Kármán's equations expressed in terms of displacement components have been used. Numerical results, shown in the form of graphs, are discussed.

82-2591

Frequency and Loss Factor of Rectangular Plates Reinforced by Intermediate Viscoelastic Line Supports

H. Saito and H. Yamaguchi

Dept. of Mech. Engrg., Tohoku Univ., Sendai, Japan, J. Sound Vib., <u>83</u> (2), pp 157-162 (July 22, 1982) 5 figs, 4 refs

Key Words: Plates, Rectangular plates, Stiffened plates, Viscoelastic damping

Free vibrations of rectangular plates supported with intermediate viscoelastic line supports which are placed in a row parallel to one of the edges of the plate are discussed. In the analysis, the intermediate viscoelastic line supports are considered as massless line springs. On the assumption that the edges of the plate normal to the line supports are simply supported, the frequency equation is derived using a transfer matrix method. The effects of the number and the stiffness of the viscoelastic line supports on the damped natural frequency and logarithmic decrement of the system are investigated.

SHELLS

(Also see Nos. 2511, 2610)

82-2592

Dynamic Response of an Orthotropic Cylindrical Shell to Rapid Heating

K. Shirakawa

Dept. of Mech. Engrg., Univ. of Osaka Prefecture, Mozu-Umemachi, Sakai, Osaka 591, Japan, J. Sound Vib., 83 (1), pp 27-35 (July 8, 1982) 6 figs, 9 refs

Key Words: Shells, Cylindrical shells, Temperature effects

The dynamic response of the thermal displacements and stresses in a homogeneous, orthotropic cylindrical shell subjected to rapid heating are studied. Equations containing both thermal and inertia terms are developed and the solutions are obtained using Fourier and Laplace transform methods, after finding the temperature distribution by solving the non-stationary equation of heat conduction. Numerical examples are presented to examine the effects of thermal and mechanical orthotropic properties.

82-2593

On the Vibration of Shells with Timoshenko-Mindlin Type Shear Deflections and Rotatory Inertia

W. Soedel

School of Mech. Engrg., Purdue Univ., West Lafayette, IN 47907, J. Sound Vib., <u>83</u> (1), pp 67-79 (July 8, 1982) 21 refs

Key Words: Shells, Cylindrical shells, Vibration analysis, Plates, Timoshenko theory, Mindlin theory, Transverse shear deformation effects, Rotatory inertia effects

Equations of motion of shells are formulated in curvilinear co-ordinates that are consistent with assumptions made in the Timoshenko beam and also the Mindlin plate equation. This consistency is proven by obtaining the Timoshenko and Mindlin equations from the derived shell equations by geometrical reduction. The implication of the Timoshenko type shear is illustrated by contrasting the free vibration behavior of the special case of a cylindrical shell with the behavior of the Timoshenko beam and the Mindlin plate.

82-2594

Buckling and Vibration of Cross-Ply Laminated Non-Circular Cylindrical Shells

K.P. Soldatos and G.J. Tzivanidis Dept. of Mech., Univ. of Ioannina, Greece, J. Sound Vib., 82 (3), pp 425-434 (June 8, 1982) 3 figs, 4 tables, 18 refs

Key Words: Free vibration, Shells, Cylindrical shells

The free vibration problem of a thin composite cross-ply laminated non-circular cylindrical shell subjected to an axial compression is studied. The equations of motion are derived, in the framework of the Donnell-type theory, in terms of the shell middle surface displacement components. The differential equations of motion have variable coefficients and are solved by employing Galerkin's method. As an application, the problem of the free vibrations and buckling of cross-ply laminated oval cylinders is studied. Numerical results for antisymmetric and unsymmetric cross-ply laminated shellls of graphite-epoxy are presented and discussed.

82-2595

On the Dynamic Response of Fluid Coupled Coaxial Cylinders

S.J. Brown Ph.D. Thesis, Univ. of Akron, 342 pp (1982) DA8215186

Key Words: Shells, Circular shells, Concentric structures, Submerged structures

The Navier-Stokes equations are used to derive inertia and damping forces as a function of the oscillating circular co-axial shell mode shapes which bound viscous fluid within a

finite length annular region. Simple expression axial mode coefficients are derived that may be used with the virtual mass and damping approach. A comprehensive survey of the significant experimental, theoretical, and numerical investigations into this area is presented. Technical milestones are discussed and pertinent theoretical formulae are briefly outlined.

82-2596

Natural Frequencies of an Elastic Spherical Shell Submerged in a Compressible Viscous Fluid Medium T.C. Su

Dept. of Civil Engrg., Texas A&M Univ., College Station, TX 77843, J. Sound Vib., 83 (2), pp 163-169 (July 22, 1982) 3 figs, 4 refs

Key Words: Shells, Spherical shells, Submerged structures, Viscous damping, Sound waves

The frequency equations previously derived for free, axisymmetric vibrations of an elastic spherical shell submerged in a compressible viscous fluid are reduced to a simple polynomial expression. Its complete solutions are numerically obtained and presented for a steel shell submerged in water.

82-2597

Dynamic Instability of Truncated Conical Shells, with Variable Modulus of Elasticity, under Periodic Compressive Forces

C. Massalas, A. Dalamangas, and G. Tzivanidis Dept. of Mech., Univ. of Ioannina, Ioannina, Greece, J. Sound Vib., 79 (4), pp 519-528 (Dec 22, 1981) 6 figs, 1 table, 6 refs

Key Words: Shells, Conical shells, Variable material properties, Modulus of elasticity, Periodic excitation, Vibration analysis

The dynamic instability of truncated conical shells with variable modulus of elasticity, subjected to periodic axial compressive forces, is studied. The formulation of the problem is based on the dynamic version of Donnell type basic equations with bending deformations neglected before instability. By applying Galerkin's method, the basic equations are reduced to a system of coupled Mathieu-Hill equations, from which the principal instability regions are determined by using Bolotin's method. The free vibration problem, as well as the classical buckling problem of the shell considered are also discussed.

PIPES AND TUBES

82-2598

Pipe Whip Dynamics: An Experimental and Analytical Investigation

D. Peterson Ph.D. Thesis, Univ. of Akron, 192 pp (1982) DA8216612

Key Words: Pipes (tubes), Whipping phenomena, Nuclear power plants, Computer programs, Finite element techniques

Several experiments and analyses are performed in support of finite element analysis modeling of postulated pipe whip in nuclear power plants. A number of static and higher strainrate tensile tests are conducted in this study to characterize the material properties of SA-106 carbon steel pipes. Results of finite element analyses are compared with the displacements and strains measured during static inelastic bending experiments. Analytical and experimental studies of the dynamic response of a system with material and geometric nonlinearity are described.

82-2599

The Radiation of High Frequency Sound Out of a Jet Pine

A.M. Cargill

Noise Dept., Rolls-Royce Ltd., Derby DE2 8BJ, UK, J. Sound Vib., <u>83</u> (3), pp 313-337 (Aug 8, 1982) 11 figs, 32 refs

Key Words: Ducts, Pipes (tubes), Sound waves, Wave propagation

A simple model problem is discussed: the radiation of sound out of a semi-infinite cylindrical pipe, with internal and external flows. Two approximate high frequency solutions are presented, one based on Kirchhoff's approximation and the other in the spirit of the geometrical theory of diffraction, and are compared with Munt's exact solution by the Wiener-Hopf technique. The radiation from a jet emerging from an orifice in a baffle plate is also discussed. The differences between this simple model and an aero engine configuration are considered, showing how the results are modified by the presence of a secondary flow (e.g., the fan stream on a turbofan engine), by the contraction of the final nozzle, and by the presence of many duct modes in the pipe.

82-2600

Low Frequency Acoustic Radiation from a Jet Pipe -- A Second Order Theory

A.M. Cargill

Noise Dept., Rolls-Royce Ltd., Derby DE2 8BJ, UK, J. Sound Vib., <u>83</u> (3), pp 339-354 (Aug 8, 1982) 5 figs, 26 refs

Key Words: Pipes (tubes), Ducts, Aircraft noise, Jet noise, Engine noise, Sound waves, Wave propagation

In several recent papers, Munt has solved the problem of the radiation of sound out of a jet pipe by the Wiener-Hopf technique. In this extension of his work explicit formulae are given for both the far field radiation and the sound reflected back up the pipe for an incident plane wave. These formulae, which are valid to second order in the ratio of duct diameter to wavelength, are shown to be in excellent agreement with Munt's exact numerical computations.

82-2601

Thermal Acoustic Oscillation in Annular Flow of Low Temperature Helium

J.A. Liburdy Clemson Univ., Clemson, SC, AS

Clemson Univ., Clemson, SC, ASME Paper No. 82-HT-12

Key Words: Pipes (tubes), Fluid-induced excitation

Cryogenic flow lines have traditionally been plagued with the existence of thermally driven acoustic oscillations when the fluid experiences a downstream thermal energy input. This energy gain is manifested in a net rise in the upstream energy content of the cryogen. The transport process is one of low frequency pressure and density waves characterized by the tube geometry, fluid properties and boundary conditions. This phenomenon has been studied for the cases of circular tube flow and annular flow conditions.

82-2602

Low Frequency Two Dimensional Flows through a Sparse Array of Bodies

T.F. Balsa

General Electric Corporate Res. and Dev., Schenectady, NY, J. Sound Vib., <u>82</u> (4), pp 489-504 (June 22, 1982) 4 figs, 10 refs

Key Words: Cylinders, Tube arrays, Fluid-induced excitation, Low frequencies A low frequency and weak interaction theory is developed to study certain types of unsteady two-dimensional flows through an array of bodies. The results, together with the Taylor transformation, provide a simple and systematic yet powerful technique for obtaining solutions for an important, but otherwise extremely difficult, class of problems. The general results are applied to two specific examples in order to illustrate the approach and to produce some interesting results.

82-2603

Guided Waves in a Circular Duct Containing an Assembly of Circular Cylinders

W.H. Lin

Components Tech. Div., Argonne Natl. Lab., Argonne, IL 60439, J. Sound Vib., <u>79</u> (4), pp 463-477 (Dec. 22, 1981) 7 figs, 4 tables, 28 refs

Key Words. Ducts, Cylinders, Tube arrays, Sound waves, Wave propagation, Nuclear reactors, Acoustic excitation

This paper provides an analytical scheme to calculate the admissible acoustic propagation modes of fluid in a circular duct containing an assembly of circular cylinders, as might occur in gas-cooled fast breeder reactors and advanced gas-cooled reactors. The duct wall and cylinders are assumed to be stationary, and their axes are assumed to be parallel to each other. The solution to the acoustic wave equation is expressed in a sum of the partial fluid velocity potentials associated with each rod co-ordinate and duct co-ordinate. The technique of transformation of cylindrical wave functions is then used to solve the boundary value problem. Two kinds of acoustic boundary conditions are considered, acoustically hard and acoustically soft, respectively.

DUCTS

(Also see Nos. 2599, 2600, 2603, 2635, 2657)

82-2604

Oscillations of an Impinging Turbulent Jet: Coherence Characterization via Conditional Sampling

D. Rockwell and H. Karadogan

Dept. of Mech. Engrg. and Mech., Lehigh Univ., Bethlehem, PA 18015, J. Sound Vib., <u>83</u> (1), pp 111-124 (July 8, 1982) 8 figs, 11 refs

Key Words: Ducts, Fluid-induced excitation, Statistical analysis

By using zero crossing statistics, in conjunction with recursive digital filtering, to determine self- and cross-probability densities of velocity and pressure, the degree of phase fluctuation of organized oscillations of turbulent jet flow through a cavity is characterized as a function of mean phase deviation from the lock-on condition; lock-on, producing maximum pressure amplitude, corresponds to a time-averaged phase difference between organized velocities at the exit and entrance of the cavity of $2n\pi$. As a frequency jump is approached, there is mean phase deviation from this $2n\pi$ condition, and the degree of phase (or period) fluctuation increases; at the jump, cross-probability densities show no discernible coherence. Concerning the evolution of the jet in the streamwise direction, growth of the time-averaged organized wave amplitude, obtained by using a wave-education method, is shown to be associated with a decrease in phase fluctuation of the velocity. However, self-probabilities of pressure, and cross-probabilities between pressure and exit velocity, are essentially invariant between cavity exit and inlet, reflecting dominance of the acoustic contribution to the unsteady pressure field at separation.

82-2605

Conversion of Acoustic Energy by Lossless Liners W. Mohring and W. Eversman

Max-Planck-Institut f. Stromungsforschung, D-3400 Göttingen, Germany, J. Sound Vib., <u>82</u> (3), pp 371-381 (June 8, 1982) 3 figs, 16 refs

Key Words: Ducts, Acoustic linings, Mechanical admittance

The Blokhintzev acoustic energy equation is applied to a two-dimensional duct containing a uniform flow with a finite length lining. It is shown that the difference of the incident and outgoing acoustic energy differs in general from the energy dissipated in the liner, the difference being related to the displacements at the liner's edges, It is shown that in the case of a locally reacting lossless liner for frequencies below the first cut-off frequency and for low Mach number acoustic energy is generated if the flow and the incident sound wave are in the same direction and is absorbed if these two directions are opposite unless special edge conditions are met. It is also shown under the same conditions that the ratio of the reflection coefficient at finite flow velocity to the reflection coefficient at vanishing velocity is to first order in Mach number independent of the liner characteristics. A numerical calculation confirms these predictions at least for mass-like liner admittance.

82-2606

Noise Generated by Flow over Perforated Surfaces P.A. Nelson

Inst. of Sound and Vib. Res., Univ. of Southampton, Southampton S09 5NH, UK, J. Sound Vib., 83 (1), pp 11-26 (July 8, 1982) 11 figs, 22 refs

Key Words: Ducts, Acoustic linings, Hole-containing media, Fluid-induced excitation, Noise generation

This work deals with the prediction of the noise generated by unsteady flow over the surface of acoustically absorbent duct linings. Ffowcs Williams' analysis of the acoustics of turbulence near sound absorbent linings is used as a theoretical basis. An equivalent source model is used to describe the radiated sound in terms of the mass flow driven through the circular perforations of a liner surface by hydrodynamic pressure fluctuations.

A computational technique was developed for the method of characteristics solution of a one-dimensional compressible, unsteady flow in a duct as applied to the wave action in an engine exhaust system. By using the method it was possible to compute the detailed flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operating engine has been achieved in the calculation of both the third-octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems.

82-2607

Verification of a One-Dimensional Analysis of Sound Propagation in a Variable Area Duct without Flow J.H. Miles

NASA Lewis Res. Ctr., Cleveland, OH 44118, J. Acoust. Soc. Amer., 72 (2), pp 621-624 (Aug 1982) 3 figs. 11 refs

Key Words: Ducts, Variable cross section, Sound propaga-

A predicted standing wave pressure and phase angle profile for a hard wall rectangular duct with a region of converging-diverging area variation is compared to published experimental measurements in a study of sound propagation without flow. The factor of 1/2 area variation used is of sufficient magnitude to produce large reflections. The prediction is based on a transmission matrix approach developed for the analysis of sound propagation in a variable area duct with and without flow. The agreement between the measured and predicted results is shown to be excellent.

82-2609

A Study of Resonant-Cavity and Fiberglass-Filled Parallel Baffles as Duct Silencers

P.T. Soderman

NASA Ames Res. Ctr., Moffett Field, CA, Rept. No. NASA-A-8363, NASA-TP-1970, USAAVRADCOM-TR-81-A-2, 67 pp (Apr 1982) AD-A114 328

Key Words: Baffles, Noise reduction, Ducts

Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts-resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in a wind tunnel at flow speeds from 0 to 41 m/sec. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements,

BUILDING COMPONENTS

(Also see No. 2676)

82-2608

Determination of Two-Stroke Engine Exhaust Noise by the Method of Characteristics

A.D. Jones and G.L. Brown

Dept. of Mech. Engrg., Univ. of Adelaide, Adelaide, South Australia, Australia, J. Sound Vib., <u>82</u> (3), pp 305-327 (June 8, 1982) 14 figs, 23 refs

Key Words: Ducts, Exhaust systems, Reciprocating engines, Noise generation, Method of characteristics

82-2610

Mechanics of Bimodular Composite Structures

C.W. Bert and J.N. Reddy Univ. of Oklahoma, Norman, OK 73019, Rept. No. OU-AMNE-82-4, 15 pp (July 1982)

Key Words: Composite structures, Fiber composites, Beams, Plates, Shells, Transverse shear deformation effects, Rotatory inertia effects

This report is a survey of the mechanics of beam and plate structures laminated of fiber-reinforced composite materials having different elastic and thermoelastic properties in tension and compression. Examples of such materials include tire cord-rubber, wire-reinforced solid propellants, and soft biological materials. Specific topics covered include: mathematical models of fiber-reinforced bimodular materials and their experimental verification; static and dynamic analysis of laminated and sandwich beams; plane elasticity; analysis of deflection and free and transient vibration of laminated plates and shells. In all of these analyses, thickness-shear deformation and rotatory inertia are included. The solution methods used include closed-form, transfer-matrix, and finite-element techniques.

15 (5), pp 377-388 (Sept 1982) 8 figs, 4 tables, 3 refs

Key Words: Noise source identification

A technique applicable to situations with different noise sources is developed on the basis of a series of limited data (short-term L_{eq}). This technique makes acoustic monitoring of a site possible, identifying and evaluating the respective contributions of the different components of the environment studied.

82-2611

Influence of Specimen Frame on Sound Transmission Loss Measurement

A.C.C. Warnock

Div. of Bldg. Res., Natl. Res. Council of Canada, Ottawa, Canada, Appl. Acoust., 15 (4), pp 307-314 (July 1982) 5 figs, 4 refs

Key Words: Sound transmission loss, Measurement techniques. Walls

Increased sound transmission through several wall specimens as a result of interaction with the specimen mounting frame is described. The effect of the frame is reduced by shielding it from the sound fields.

82-2613

A Recursive Method for the Determination of the Output Power Spectrum of Some Nonlinear Systems A. Gabor and J. Zarzycki

Inst. of Telecommunication and Acoustics, Technical Univ. of Wroclaw, 50-317 Wroclaw, Poland, Arch. Acoust., 6 (4), pp 329-338 (1981) 1 fig, 8 refs

Key Words: Power spectral density, Noise source identifica-

This paper presents a new method for the determination of the output power spectral density of different types of cascading a linear system with memory and a nonlinear system without memory, with a stationary Gaussian input. This method permits uniform determination of the output spectrum for each type of the systems mentioned above. The recursive form of the resulting expressions also permits fast calculation of the output spectral density for higher orders of nonlinearity.

DYNAMIC ENVIRONMENT

ACOUSTIC EXCITATION

(Also see Nos. 2519, 2520, 2521, 2651, 2676, 2683, 2684)

82-2612

Application of the Short-Term L_{eq} to the Identification and Quantification of Several Sources Constituting an Environment

P. Luquet

Dept. of Environmental Acoustics, Laboratoire National D'Essais, Paris, France, Appl. Acoust.,

82-2614

Sound Propagation over Ground: Analytical Approximations and Experimental Results

D. Habault

Laboratoire de Mécanique et d'Acoustique, Centre National de la Recherche Scientifique, 13277 Marseille Cedex 9, France, J. Sound Vib., 79 (4), pp 551-560 (Dec 22, 1981) 4 figs, 14 refs

Key Words: Sound waves, Point source excitation, Wave propagation, Numerical analysis, Experimental test data

Approximations of the sound field emitted by a point source in the presence of the ground have recently been developed. These analytical expressions, slightly improved for computation, are compared with an exact representation of the

sound pressure and two kinds of experimental results. The approximations, easy to compute, provide a reasonable accuracy for predictions of the sound levels in the asymptotic and intermediate (preceding the asymptotic) regions. Numerical techniques (an optimization method) are presented for obtaining the best value of the ground normal impedance, from data obtained in Kundt's tube and far field measurements.

profiles. The performance of an inhomogeneous matching layer with an exponential impedance profile is compared with a quarter-wevelength matching plate. The general case in which both sound speed and density of the inhomogeneous matching layer may vary is analyzed; the specific acoustic impedance profile as a function of travel time is found to be a principal factor, determining the transmission and reflection properties. The spatial functions of the acoustic parameters are determined for the case where both density and sound speed vary exponentially with travel time.

82-2615

Detection of Rotating Machinery from Acoustic and Vibrational Energy

J.P. Reilly and R.J. Taylor

Appl. Physics Lab., Johns-Hopkins Univ., Laurel, MD, Rept. No. JHU/APL/CPE-8108, 54 pp (Nov 1981)

PB82-179979

Key Words: Rotating machinery, Noise generation, Acoustic detection, Noise reduction

This study analyzes detection ranges for a 30 kW dieselelectric generator placed in a forested area having good propagation characteristics and low ambient noise levels. Detection from both acoustic and vibrational energy is analyzed. Detector models are based on human aural detection, and also on automatic detection by a signal processing unit. Quieting necessary to limit the detection range to 500 m is determined.

82-2616

Impedance-Matching Properties of an Inhomogeneous Matching Layer with Continuously Changing Acoustic Impedance

P.C. Pedersen, O. Tretiak, and P. He Biomedical Engrg. and Science Inst., Drexel Univ., Philadelphia, PA 19104, J. Acoust. Soc. Amer., 72 (2), pp 327-336 (Aug 1982) 6 figs, 9 refs

Key Words: Impedance-matching technique, Acoustic impedance, Transducers

This paper analyzes the impedance-matching properties of an inhomogeneous layer whose specific acoustic impedance varies smoothly across the layer, from the effective value of the transducer specific acoustic impedance to the value of the output medium specific acoustic impedance. The energy reflection and transmission coefficients for an inhomogeneous layer with no attenuation and constant propagation speed are derived, and the results are presented for selected

82.2617

Understanding Noise Control: Part 1, Principles and Methods for Reducing Inplant Noise

R. Moulde

Acoustical Res., Owens-Corning Fiberglas Corp., Granville, OH, Plant Engrg., 36 (17), pp 75-77 (Aug 19, 1982) 5 figs

Key Words: Industrial facilities, Noise generation, Noise measurement, Noise reduction

This article is the first of two describing how industrial noise can be controlled. It discusses acoustical principles, sound measuring techniques, and methods for reducing noise levels inside a plant.

82-2618

Sound Propagation above an Impedance Boundary

T. Kawai, T. Hidaka, and T. Nakajima Takenaka Tech. Res. Lab., Tokyo 136, Japan, J.

Sound Vib., <u>83</u> (1), pp 125-138 (July 8, 1982) 4 figs, 3 tables, 25 refs

Key Words: Sound waves, Wave propagation, Point source excitation

An asymptotic solution of the scalar wave field due to a point source above a locally reacting plane surface is obtained by a modified saddle point method. Numerical calculation indicates that the relatively simple solution is more accurate than the Thomasson asymptotic solution and the Chien-Soroka solution.

82-2619

An Approximation to the Three-Dimensional Parabolic-Equation Method for Acoustic Propagation J.S. Perkins and R.N. Baer Large Aperture Acoustics Branch, Naval Res. Lab., Washington, DC 20375, J. Acoust. Soc. Amer., 72 (2), pp 515-522 (Aug 1982) 14 figs, 22 refs

Key Words: Sound waves, Wave propagation

Reported previously was an algorithm, based on the parabolic approximation to the reduced wave equation, for the propagation of sound in three dimensions in the ocean. Presented here is a simpler algorithm; solve N two-dimensional problems and combine the results to form an approximate threedimensional solution. Analytic and numerical results show that this N x 2D approach is an excellent approximation to the original algorithm for realistic ocean environments, even those where fronts and eddies are present, provided redirection of energy in azimuth due to boundary interaction is not important. The two computer models are compared based on these algorithms for several test cases by considering how they distribute energy spatially, and by simulating the performance of a hypothetical horizontal array of hydrophones placed in the calculated complex-valued acoustic fields.

82-2620

Ground Effect Analysis: Surface Wave and Layer Potential Representations

D. Habault and P.J.T. Filippi

Laboratoire de Mécanique et d'Acoustique, Centre National de la Recherche Scientifique, 13277 Marseille Cedex 9, France, J. Sound Vib., 79 (4), pp 529-550 (Dec 22, 1981) 2 figs, 27 refs

Key Words: Sound reflection, Sound waves, Numerical analysis

This paper presents two kinds of analytical exact expressions of the sound field reflected by a plane boundary, as obtained by using either surface wave or layer potentials representations. Both solutions are first expressed as a sum of integrals which have a form suitable for numerical computation. These integrals are then expanded into convergent series which provide analytical approximations of the solution. Numerical techniques are proposed for computing the surface wave representation and the approximation deduced from the layer potentials representation. This approximation and the classical one (sum of the surface wave and the first two terms of the asymptotic series) are compared with the exact solution. Several examples show that the approximate formulas established here are valid on a range much wider than the validity domain of the classical ones,

82-2621

Linearized Supersonic Motion under a Lorentz-Like Transformation

T.S. Shankara and S.N. Majhi

Dept. of Math., Indian Inst. of Tech., Madras-600036, India, J. Sound Vib., <u>82</u> (3), pp 391-400 (June 8, 1982) 5 figs. 10 refs

Key Words: Sound waves, Wave propagation

The symmetry of the Lorentz transformation is shown to be inherent in the acoustics of sources in subsonic motion. The symmetry in the supersonic case is expressed in terms of a Lorentz-like transformation. The linearized wave equation describing the motion of a point source and a thin airfoil in supersonic motion is discussed by using this new transformation. Results in the paper suggest that there is a unified relativistic foundation for the acoustics of both subsonic and supersonic sources.

82-2622

Coupled Amplitude Theory of Nonlinear Surface Acoustic Waves

N. Kalyanasundaram, R. Ravindran, and P. Prasad Dept. of Applied Math., Indian Inst. of Science, Bangalore – 560, 012, India, J. Acoust. Soc. Amer., 72 (2), pp 488-493 (Aug 1982) 3 figs, 5 refs

Key Words: Sound waves, Wave propagation, Boundary value problems

The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.

82-2623

Phase Statistics and Phase Correlation of Sinusoidal Signals in Reverberant Rooms

K.J. Ebeling

Third Physical Inst., Univ. of Gottingen, D-3400 Gottingen, Fed. Rep. Germany, J. Sound Vib., <u>83</u> (3), pp 355-361 (Aug 8, 1982) 4 figs, 11 refs

Key Words: Sound waves, Reverberation chambers, Statistical analysis

Statistical properties of the phase in sinusoidal diffuse sound fields in reverberant rooms are considered. An exact form for the distribution density of the phase difference measured at two space points is obtained, and from second order phase statistics the spatial phase correlation function is derived. The theoretical results are examined experimentally.

82-2624

Digital Spectral Analysis of the Noise from Short Duration Impulsively Started Jets

I.S. Hodge, D.J. Smith, and N.H. Johannesen Dept. of the Mechanics of Fluids, Univ. of Manchester, Manchester M13 9PL, UK, J. Sound Vib., 82 (2), pp 171-179 (May 22, 1982) 3 figs, 1 ref

Key Words: Spectrum analysis, Jet noise

Techniques in which a shock tube is used to produce short duration jets are discussed briefly. The method adopted involves using the shock tube as a static reservoir with the jet exhausting through a nozzle originally closed by a diaphragm. Short duration noise samples of a Mach 0 9 air jet are recorded digitally and narrow band and one-third octave spectra are evaluated. Average spectra from a number of samples are presented. Comparison with both digital and analogue spectra from the equivalent continuous jet demonstrates that it is possible to obtain meaningful spectra by averaging short duration samples of impulsively started jets.

82-2625

The Measurement of Structure-Borne Sound Transmission Using Impulsive Sources

R.J.M. Craik

Dept. of Bldg., Heriot-Watt Univ., Edinburgh, UK, Appl. Acoust., 15 (5), pp 355-361 (Sept 1982) 7 figs, 5 refs

Key Words: Structure-borne noise, Measurement techniques

A simple method to measure structure-borne sound transmission is described. Measurement is made of the level difference in the acceleration between two structural elements using a plastic headed hammer as a noise source. The method is at least as accurate as conventional measurements made under steady-state conditions using continuous noise sources and can be carried out with less instrumentation on site and in about a tenth of the time. The portability of the source greatly simplifies the measurements as a hammer can be used to hit structures in a wide variety of positions whereas shakers can be used only in limited situations.

82-2626

An Improved Method for Determination of Radiatesi Sound Power and Sound Transmission from Large Sources

M. Alster

FDO-Engineering Consultants, P.O. Box 379, 1000 AJ Amsterdam, The Netherlands, J. Sound Vib., 82 (2), pp 261-274 (May 22, 1982) 7 figs, 4 tables, 3 refs

Key Words: Sound power level, Sound transmission, Measurement techniques

The proposed method is an improvement of the methods for measurement of sound power level, in which the real sound source is represented by an equivalent monopole. It is based on a new concept, the equivalent acoustical center, which is introduced and defined in the paper. The main assets of the method in comparison with the existing monopole-methods are a higher accuracy, a possibility of measuring at considerably shorter distances from the noise source, and a certain freedom in the choice of the measuring points around the source.

82-2627

A Review of Structural Noise Transmission

R.H. Lyon and J.W. Slack

Dept. of Mech. Engrg., Massachusetts Inst. of Tech., Cambridge, MA 02139, Shock Vib. Dig., 14 (8), pp 3-11 (Aug 1982) 11 figs. 20 refs

Key Words: Noise transmission, Sound transmission, Reviews

This article characterizes theoretical and experimental analyses of noise transmission in structures. The transmission path and vibratory response are discussed, as are the uses of broadband transfer functions to estimate time-varying response and of signal processing to diagnose vibration sources and paths.

SHOCK EXCITATION

82-2628

Generalized "Shock Structure" in a Non Linear Viscoelastic Medium

A. Donato and G. Vermiglio

Istituto di Matematica dell'Universita di Messina, via Tommaso-Cannizzaro, 98100 Messina, Italy, J. de Mecanique, 1 (2), pp 359-367 (1982) 5 refs

Key Words: Shock wave propagation, Viscoelastic media

An asymptotic expansion is constructed which generalizes the classical shock structure solution in a nonlinear visco-elastic medium. The method can be used in order to obtain solutions, valid everywhere; also when a known shock line divides two different materials that are both viscoelastic or one is elastic and the other, viscoelastic.

A simplified shock design method has been developed which employs the shock spectrum as the fundamental measure of both the severity of a shock environment and the hardness of a particular piece of equipment (the hardness is the equipment's capacity to survive a shock environment). Both the severity and the hardness are given as shock spectrum plots on four-coordinate paper and are thus directly comparable. The method uses a tracing method of recording the fact that the hardness exceeds the severity and thus equipment survival is assured.

VIBRATION EXCITATION

(Also see No. 2675)

82-2629

Diffraction of Plane SH Waves in a Half-Space

A.H. Shah, K.C. Wong, and S.K. Datta Dept. of Civil Engrg., Univ. of Manitoba, Winnipeg, Canada, Intl. J. Earthquake Engrg. Struc. Dynam., 10 (4), pp 519-528 (July/Aug 1982) 8 figs, 1 table, 14 refs

Key Words: Shear waves, Wav⁻ diffraction, Ground motion, Discontinuity-containing media, Tunnels, Seismic waves

Scattering of antiplane shear waves in two dimensions by surface and near-surface defects in a homogeneous, isotropic elastic semi-infinite medium has been studied. Attention has been focused here in the range of medium to long wavelengths. A combined finite element and analytical technique has been used to study the problems of scattering by semicircular and triangular canyons. The results for the former case are compared with the known exact solution and those for the latter case are compared with some available approximate solutions. A problem of multiple scattering by a triangular anyon and a nearby circular tunnel is studied, Numerical results are presented showing the effects of multiple scattering and different angles of incidence.

82-2630

Simplified Shock Design for Installation of Equipment

H.A. Gaberson and R.A. Eubanks Naval Civil Engry. Lab., Port Hueneme, CA, Rept. No. CEL-TN-1622, 170 pp (Mar 1982) AD-A114 331

Key Words: Hardened installations, Equipment response, Shock response

82-2631

On the Self-Stressing Modes in Free Vibration Analysis

S. Idelsohn and M. Geradin Universidad National Rosario, Argentina, J. Sound Vib., <u>83</u> (2), pp 143-155 (July 22, 1982) 2 figs, 3 tables, 10 refs

Key Words: Free vibration, Vibration analysis

The type of convergence to the eigenspectrum of a structure calculated from a finite element analysis is examined in light of the variational properties of the Rayleigh quotient and of Courant's maximum-minimum principle. The influence of the self-stressing modes on the solution is first demonstrated theoretically and then shown practically on the results obtained via a family of equilibrium elements in which the number of self-stressing modes relative to the number of vibration modes may be varied as a parameter,

82-2632

Confinement of Vibration by Structural Irregularity

C.H. Hodge

Topexpress Limited, 1 Portugal Place, Cambridge CB5 8AF, UK, J. Sound Vib., <u>82</u> (3), pp 411-424 (June 8, 1982) 5 figs, 22 refs

Key Words: Vibration control, Geometric effects

The propagation of vibrations in structures with some degree of extended disorder; i.e., departure from regularity or strict periodicity extended throughout the structure, is discussed. An account is given of the phenomenon of normal mode localization, caused under certain circumstances by the disorder. This phenomenon means that vibrational energy injected into the structure by an external source cannot

propagate to arbitrarily large distances, but is instead substantially confined to a region close to the source. Specifically, it is shown that the steady state response of the structure decays exponentially away from the source.

moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense.

82-2633

Vibration of Modified Discrete Systems: The Modal Constraint Method

J.G.M. Kerstens

Space Div., Fokker B.V., Schiphol-Oost, The Netherlands, J. Sound Vib., <u>83</u> (1), pp 81-92 (July 8, 1982) 3 figs, 5 tables, 5 refs

Key Words: Lumped parameter method, Modal constraint method, Structural modification effects

In an earlier paper a method was presented for calculating eigenfrequencies and modes of a vibrating system whose modifications consist of adding point supports. In another paper generalization of the method was presented for establishing vibration characteristics for complex continuous systems which are composed of several (base or known) continuous systems. In this paper this method (the modal constraint method) is applied to discrete systems. The eigenfrequencies and modes of the base systems calculated with the aid of, for instance, the finite element method are used to establish the vibrational characteristics of the modified systems. The modifications may consist of addition or removal of base systems and/or adding supports. The reduction of work as compared with direct solving of the modified system problems is significant, especially for large degree-offreedom problems.

82-2634

Analysis of Randomly Time Varying Systems by Gaussian Closure Technique

P.K. Dash and R.N. Iyengar

Material Sci. Div., Natl. Aeronautical Lab., Bangalore 560 017, India, J. Sound Vib., <u>83</u> (2), pp 241-251 (July 22, 1982) 4 figs, 11 refs

Key Words: Multidegree of freedom systems, Time-dependent parameters, Random response, Stochastic processes

The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response

82-2635

Stored Energy in an Enclosure Driven by Externally Placed Drives

G. Maidanik and L.J. Maga

David Taylor Naval Ship Res. and Dev. Ctr., Bethesda, MD 20084, J. Sound Vib., <u>82</u> (3), pp 335-344 (June 8, 1982) 5 figs, 1 table, 2 refs

Key Words: Enclosures, External reverberation, Internal reverberation, Reverberation chambers

In a recent paper a formalism was developed relating to the transition between a non-reverberant and a reverberant dynamic system. In this paper the formalism is extended to allow for externally placed drives to act on the dynamic system. A simulated example that incorporates the extension is cited. To accommodate the example the formalism is converted from its one-dimensional format to the three-dimensional format. The converted formalism is then employed to assess whether the relative contributions to the stored energy in the three-dimensional dynamic system an enclosure – can be deciphered by artificially modifying the reverberation state of the enclosure. The example serves to illustrate the manner by which the reverberation can be modified and the way the relative contributions can be assessed.

82-2636

Response of Self-Excited Oscillators to Multifrequency Excitations

K.R. Asfar, A.H. Nayfeh, and D.T. Mook Yarmouk University, Irbid, Jordan, J. Sound Vib., 79 (4), pp 589-604 (Dec 22, 1982) 11 figs, 5 refs

Key Words: Van der Pol metho 1, Harmonic excitation

The method of multiple scales is used to determine the response of a self-excited system having a single degree of freedom to multi-frequency harmonic excitations. Many cases, including combination and simultaneous resonances, are considered. The perturbation results are found to be in good agreement with those obtained by numerically integrating the governing differential equation. The response consists of two parts – a forced oscillation part and a free oscillation part with an amplitude and phase that are functions of the excitations.

MECHANICAL PROPERTIES

DAMPING

82-2637

Dynamic Behaviour of a Damper Consisting of a Saturated Porous Medium (Comportement Dynamique d'un Amortisseur Compose d'un Milieu Poreux Sature)

J.L. Auriault and C. Avallet
Institut de Mecanique de Grenoble, B.P. 53 X, 38041
Grenoble Cedex, J. de Mecanique, <u>1</u> (2), pp 269-290
(1982) 4 figs, 5 graphs, 1 table, 11 refs
(In French)

Key Words: Dampers, Porous materials

By means of the method of homogenization of a small periodical porous matrix, equations are obtained which describe the macroscopic dynamic behavior of an elastic porous solid saturated by a newtonian viscous fluid. Theoretical results are compared with experimental data from a saturated porous damper with periodical matrix. The dynamic permeability of the damper is calculated.

82-2638

Distinctions between Boundary and Distributed Damping in a Waveguide with a Cutoff Frequency P.W. Smith, Jr.

Bolt, Beranek and Newman, Inc., Cambridge, MA 02138, J. Acoust. Soc. Amer., <u>72</u> (2), pp 472-475 (Aug 1982) 3 figs, 8 refs

Key Words: Waveguide analysis, Damping effects

The precise, closed-form solution for response of a finite one-dimensional waveguide with cutoff (string on an elastic foundation) is examined for cases where damping is either uniformly distributed or concentrated in the ends. No marked spatial concentration of response at the driven point is found unless the damping is distributed and also the wave attenuation in one round trip through the system is large. Increased dispersion, as frequency approaches the cutoff, increases the round-trip attenuation caused by distributed viscous damping, but it decreases the attenuation caused by boundary damping (at the ends of the waveguide).

82-2639

Torsional Damper for Maximum Energy Absorption with Equilibrated Polydimethylsiloxanes as Damping Fluids

R. Andra and J.H. Spurk

Technische Hochschule Darmstadt, Technische Stromungslehre, D6100 Darmstadt, Germany, J. Sound Vib., 82 (4), pp 465-472 (June 22, 1982) 7 figs, 4 refs

Key Words: Viscous damping, Torsional vibration

Shear viscosity and effective shear modulus, quantities related to the complex viscosity, have been measured as functions of frequency for five polydimethylsiloxanes commonly used as damper fluids. Maximum energy dissipation is obtained by realizing a damper whose damping constant times the shear viscosity divided by the product of effective shear modulus and moment of inertia of the inertia member equals one. Experiments show that in this tuning the dissipated energy when polydimethylsiloxanes are used as damping fluids can be as much as a factor of two higher than the maximum dissipated energy when using Newtonian fluid.

82-2640

Development of Vibration Dampers that Reduce Riveting Noise in Aircraft Construction

N. Kosuch

Messerschmitt-Boelkow-Blohm GmbH, Hamburg, Fed. Rep. Germany, Rept. No. BMFT-FB-HA-81-017, 63 pp (Dec 1981)

N82-22503

(In German)

Key Words: Vibration dampers, Noise reduction, Construction industry, Aircraft

The origin and properties of riveting noise were examined, Vibration absorbers for the reduction of noise levels during riveting on thin metal sheets were developed. Commercial damping materials were used in conjunction with fastening by negative pressure.

FATIGUE

82-2641

Fatigue Strength under Multi Axial Excitation -- Possibilities and Limits of the Torsional Stress Intensity

Hypothesis (Dauerschwingfestigkeit bei mehrachsiger Beanspruchung – Möglichkeiten und Grenzen der Schubspannungsintensitätshypothese)

J.O. Nökleby and A.Ö. Walöen

Det norske Veritas, Oslo, Norway, Konstruktion,

34 (8), pp 311-312 (Aug 1982) 2 figs, 5 refs
(In German)

Key Words: Fatigue life, Torsional excitation

The torsional stress intensity hypothesis for the calculation of fatigue strength under multiaxial excitation is discussed. Different versions of the hypothesis, its possibilities and its limitations, are described. The authors observe that the basic three-dimensional version of the hypothesis has more advantages and fewer disadvantages than the others.

ELASTICITY AND PLASTICITY

82-2642

Dynamic Fracture of Idealized Fiber-Reinforced Materials

L.F. Mannion Ph.D. Thesis, Brown Univ., 106 pp (1981) DA8215589

Key Words: Fracture properties, Fiber composites, Beams

A model for the dynamic fracture of a material reinforced by two orthogonal sets of straight, parallel fibers is presented. The model is a continuum theory, in the sense that no distinction is made between particles lying on a fiber or in the matrix; the fibers are assumed to be inextensible and continuously distributed. The theory may be interpreted as an asymptotic approximation to anisotropic elasticity.

82-2643

An Experimental Investigation into the Mechanics of Dynamic Fracture

K. RaviChandar

Ph.D. Thesis, California Inst. of Fech., 136 pp (1982) DA8213901

Key Words: Fracture properties, Crack propagation

Current theories of dynamic fracture are based on elastodynamic analyses of mathematically sharp plane cracks and as such do not explain the observed terminal velocities or the phenomenon of crack branching satisfactorily. The present investigation addresses the above problems by using both microscopic and macroscopic interpretations. The experimental scheme that is used in this investigation is the configuration of a pressure loaded semi-infinite crack in an infinite medium. The loading is achieved through an electromagnetic device which provides highly repeatable loading. The method of caustics is used in conjunction with a high speed camera to obtain the time histories of the crack tip stress intensity factor and the crack position. The problems of crack initiation and crack arrest are explored.

EXPERIMENTATION

MEASUREMENT AND ANALYSIS

(Also see Nos. 2529, 2533, 2611, 2616, 2677)

82-2644

Electro Optical Transducer for Monitoring Biaxial Displacement

G.E. Warren

Naval Civil Engrg. Lab., Port Hueneme, CA, Exptl. Techniques, <u>6</u> (4), pp 1-3 (Aug 1982) 6 figs, 1 table, 6 refs

Key Words: Measuring instruments, Transducers

Dual-axis, position-sensitive, semiconductor detectors are described which can be employed as deflection-measurement alternatives to mechanical and LVDT devices. A position sensor provides a continuous, direct electrical analog of the X and Y displacement of a light spot moving across its active area. With appropriate optics and electronics, biaxial position sensors can be used for measuring dynamic, lateral and angular displacements of inaccessible structures.

82-2645

A Real-Time Active Vibration Controller

M.R. Serbyn and W.B. Penzes

Ctr. for Manufacturing Engrg., Natl. Bureau of Standards, ISA Trans., <u>21</u> (3), pp 55-59 (1982) 7 figs, 5 refs

Key Words: Interferometers, Active vibration control, Real time spectrum analyzers

The Michelson interferometer is viewed as a noisy system whose noise input results from unwanted changes in the optical path lengths of its beams, and whose desired output is a constant optical path-length difference. A technique for maintaining this quality at a value equal to a multiple of quarter wavelengths of the light is described.

82-2646

Analysis and Design of Periodically Time-Varying Digital Filters

C.M. Loeffler Ph.D. Thesis, Rice Univ., 134 pp (1982) DA8216337

Key Words: Digital filters, Time-dependent parameters

A description of periodically time-varying systems was developed which completely characterizes the relationship between the spectra of the input and output signals of these systems. The description is the bi-frequency map. This description completely separates the time-invariant and time-varying portions of the system. It can be used to analyze each of these portions of the system.

82-2647

A Quick and Simple Method for Estimating the Transmission or Insertion Loss of an Acoustic Filter S. Soderovist

IFM Akustikbyran, Warfvinges Vag 26, S-112 51 Stockholm, Sweden, Appl. Acoust., 15 (5), pp 347-354 (Sept 1982) 9 figs

Key Words: Acoustic filters, Sound transmission loss, Sound insertion loss

A method is presented by which the dominating term in the expression for TL or IL can be set up without using the complete equation system. This dominating term is the one that contains the highest power of $A_{\rm c}/A_{\rm p}$ (chamber area divided by pipe area). The approximation is valid everywhere except at the filter resonances where sine and cosine, factors contained in the term tend to zero. The approximation is also invalid at low frequencies where the length of chambers and pipes is smaller than about 12.5 percent of the wavelength. If this frequency region is of interest a lumped-element description of the filter can be used.

82-2648

ACORA -- A Computer-Aided System of Instruments

for Real-Time Signal Analysis During Transient Operation (ACORA -- Ein Messsystem zur schnellen Signalanalyse bei instationären Fahrzustanden)

J. Kolerus

Automobiltech. Z., <u>84</u> (7/8), pp 371 576 (July/Aug 1982) 4 figs, 1 table, 5 refs (In German)

Key Words: Real time spectrum analyzers, Vibration analyzers, Ground vehicles

ACORA (Akustic Computer Real Time Analyzer) is a mobile system for analysis of sounds and vibrations from vehicles operating in transient states. It was developed for Volkswagen AG based on experience with off-line computation. There are two remarkable features of the system: its extremely high data-acquisition rate and its versatility as a module in different applications. It is designed for use in many departments: research and development, quality control and production control. This article describes aspects of the system relevant for the user, giving typical examples of its application.

82-2649

A New Approach to the Integration of Accelerometer Data

D.M. Trujillo and A.L. Carter Trucomp, Fountain Valley, CA, Intl. J. Earthquake Engrg. Struc. Dynam., 10 (4), pp 529-535 (July/ Aug 1982) 3 figs, 4 refs

Key Words: Accelerometers, Data processing

A direct approach to the integration of accelerometer data is presented which depends only on the fact that the final velocity and possibly, the final displacement are known. Using a dynamic programming formulation, the accelerometer record is corrected to account for these cases. The formulation is presented for the general case where velocity, displacement, as well as accelerometer data, are available. A numerical example is included.

82-2650

Systematic Measurement Errors with Two Microphone Sound Intensity Meters

J.C. Pascal and C. Carles

Laboratoire d'Acoustique, Conservatoire National des Arts et Métiers, 292 Rue Saint Martin, 75003

Paris, France, J. Sound Vib., <u>83</u> (1), pp 53-65 (July 8, 1982) 8 figs, 22 refs

Key Words: Sound level meters, Error analysis

Acoustic intensity meters in which two closely spaced microphones are used are sensitive to an instrumental convolution effect due to the finite difference approximation. This consequence of the working principle leads to a theoretical high frequency cut-off. Two methods are available to obtain the approximate intensity: the direct two microphone method and the sum-difference method. In all cases, it is shown that phase distortions induced by measuring equipment affects the intensity meter frequency response and its directivity pattern. In addition, specific phase mismatch with the second method render intensity measurements sensitive to reactive fields. From this analysis, requirements are deduced for equipment design.

82-2651

Phase Shift Errors in the Theory and Practice of Surface Intensity Measurements

M.C. McGary and M.J. Crocker NASA Langley Res. Ctr., Hampton, VA 23665, J. Sound Vib., 82 (2), pp 275-288 (May 22, 1982) 13 figs, 16 refs

Key Words: Noise path diagnostics, Noise source identification, Acoustic intensity method, Cross spectral method

The surface acoustical intensity method (sometimes known as the microphone-accelerometer cross-spectral method) is a relatively new noise source/path identification tool. Several researchers have had difficulties implementing this method because of instrumentation phase mis-match. A simple technique for measuring and correcting instrumentation phase mis-match has been developed. This new technique has been tested recently on a noise source identification problem of practical interest. The results of the experiments indicate that the surface acoustic intensity method produces reliable data and can be applied to a variety of noise source/path problems.

82-2652

Rotating Valve for Velocity-Coupled Combustion Response Measurements

R.S. Brown, R.C. Waugh, and V.L. Kelly United Technologies, Sunnyvale, CA, J. Spacecraft, 19 (5), pp 437-444 (Sept-Oct 1982) 13 figs, 1 table, 29 refs Key Words: Solid rocket propellants, Acoustic response, Measurement techniques

A dual rotating valve apparatus has been investigated for measuring the velocity-coupled response function of solid propellants. Bulk mode velocity oscillations are generated by operating rotating valves 180 deg out of phase at each end of a combustion chamber. Analytical studies were conducted using both a linear and a nonlinear velocity-coupling model to demonstrate feasibility and to develop data reduction methods. A method for extracting the linear response from oscillatory pressure measurements was demonstrated.

82-2653

An Instrument for Vibration Mode Analysis Using Electronic Speckle Pattern Interferometry

A.P.M. Hurden

Electro-optics Div. of W. Vinten Ltd., Western Way, Bury St. Edmunds, Suffolk IP33 3TB, UK, Non-destructive Testing Intl., 15 (3), pp 143-148 (June 1982) 12 figs, 18 refs

Key Words: Measuring instruments, Vibration measurement, Electronic test equipment, Proximity probes

The use of electronic speckle pattern interferometry as a non-destructive testing technique for measuring small displacements of a variety of objects has been widely reported. A description is given of an instrument which, with the use of a micro-computer, can now produce an isometric view of an object vibrating in a resonant mode, thus making the results easier to interpret. The instrument provides a real-time, non-contacting alternative to other mode analysis equipment and can detect high-order modes as easily as low-order modes.

82-2654

Selecting Dynamic Instrumentation

W. Tustii

Tustin Inst. of Tech., Santa Barbara, CA, Test, <u>44</u> (4), pp 10, 12, 13 (Aug/Sept 1982) 7 figs

Key Words: Vibration measurement, Measuring instruments

Vibration instrumentation for use in sinusoidal vibration testing, random testing, shock testing, or for measuring transportation or service vibration is described.

82-2655

Studying Sources of Brake Noise with Coherent Optical and Holographic Measuring Techniques

A. Felske

Natl. Inst. for Transport and Road Res., Pretoria, South Africa, 18 pp (Oct 1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206152

Key Words: Brakes (motion arresters), Noise generation, Vibration analysis, Vibration measurement, Holographic techniques

The analysis of vibrations on squealing brake systems is mainly covered by new optical measuring techniques: laser doppler velocimetry, image derotation and holographic interferometry. Noise sources can be localized, elaborated vibration centers can be measured quantitatively by the sensitive laser doppler technique on rotating and non-rotating components. Demonstrating the efficiency of these methods some results in preventing brake squeal of disk and drum brakes are discussed.

82-2656

Ultrasonic Imaging System Using Coppler-Modulated Wave Fronts

O. Sasaki, Y. Kirii, and Y. Kitazawa Niigata Univ., Faculty of Engrg., 8050 Ikarashi 2, Niigata-shi, Japan, J. Acoust. Soc. Amer., 72 (2), pp 431-435 (Aug 1982) 9 figs, 4 refs

Key Words: Vibration analysis, Signal processing techniques, Ultrasonic techniques, Holographic techniques

A new imaging method is proposed which reconstructs a stationary image at any time of a vibrating object from a hologram synthesized with Fourier coefficients of the detected signal over a few periods of the vibration. This signal arises from receiving time-varying ultrasonic waves frequency shifted by the Doppler effect. The signal processing of the new method produces some special features such as reduction of noise, elimination of stationary objects, and selective reconstruction of the object vibrating with a specified frequency. The computer simulations and the basic experimental results show the effectiveness of the imaging method.

82-2657
Acoustic Modal Analysis Experiment
J.J. Nieter and R. Singh

Dept. of Mech. Engrg., Ohio State Univ., Columbus, OH 43210, J. Acoust. Soc. Amer., <u>72</u> (2), pp 319-326 (Aug 1982) 7 figs, 1 table, 21 refs

Key Words: Model analysis, Ducts, Mufflers, Resonators, Measurement techniques, Natural frequencies, Mode shapes

This paper proposes an experimental modal technique for acoustic ducts, mufflers, and resonators over the plane-wave frequency regime. Global modal properties, such as natural frequencies and modes of gas oscillation, are extracted from the coincident-quadrature response curves of measured cross-point acoustic impedances at a number of observation locations. The acoustic system is excited by a vibrating piston which is driven by an electromagnetic shaker with band-limited binary random noise signal. The acoustic impedance is determined using two transducers: an accelerometer attached to the piston — its signal is processed to yield volume velocity information, and a microphone traverse. Digital data acquisition and processing techniques are used to generate the necessary impedance data at a number of locations for modal analysis.

82,2658

Non-Stationary Random Responses of a Multi-Degree-of-Freedom System by the Theory of Evolutionary Spectra

C.W.S. To

Dept. of Mech. Engrg., Univ. of Calgary, Calgary, Alberta, Canada T2N 1N4, J. Sound Vib., <u>83</u> (2), pp 273-291 (July 22, 1982) 5 figs, 1 table, 18 refs

Key Words: Multi degree of freedom systems, Random response, Spectrum analysis

General expressions for the closed form transient receptance, evolutionary spectral and cross-spectral densities required in the non-stationary random analysis of structures, discretized by the finite element method, to non-stationary random excitations are presented. Application of the derived results to the non-stationary random analysis of a mast antenna structure subjected to base excitations treated as a uniformly modulated random process is made. The computed results of evolutionary spectral and cross-spectral densities are presented graphically.

82-2659

Frequency Analysis of Structures by Integrated Force Method

S.N. Patnaik and S. Yadagiri

INSAT, Space Segment Project Office, Dept. of Space, Bangalore, India, J. Sound Vib., <u>83</u> (1), pp 93-109 (July 8, 1982) 9 figs, 7 tables, 13 refs

Key Words: Frequency analysis, Integrated force method

The integrated force method (IFM) is extended to vibration analysis of structures, with the concept of force mode shape used as the primary analysis variable. The potential of IFM to simplify structural design under frequency constraint is illustrated. Frequency analysis by IFM is illustrated by taking examples such as a spring mass system, a truss, a beam and a plate. The necessity to develop an energy expression for IFM is pointed out.

82-2660

Free Vibration Analysis of Coupled Structures by Modal Synthesis (Schwingungsberechnung zusammengesetzter Systeme durch modale Synthese)

P. Ruge

Mechanikzenstrum, Lehrstuhl f. Mechanik und Festigkeitslehre der TU Braunschweig, Pockelsstrasse 4, D-3300 Braunschweig, Bundesrepublik Deutschland, Ing. Arch., 52 (3/4), pp 177-182 (1982) 2 figs, 2 tables, 6 refs (In German)

Key Words: Modal synthesis, Substructuring methods, Component mode synthesis

Substructure coupling by component mode synthesis leads to a rational algebraic eigenvalue problem with series of partial fractions. An iterative process using the trace-theorem is given along with a method to avoid poles.

SCALING AND MODELING

82-2661

Design of Dynamically-Scaled, Asymmetrical Wind Tunnel Models

M.E. Bevers

Natl. Inst. for Aeronautics and Systems Tech., Pretoria, South Africa, Rept. No. NIAST-78/18, 18 pp (Aug 6, 1981) N82-22285

Key Words: Scaling, Test models, Wind tunnel testing, Wing stores

Dynamically scaled models are used in aerodynamic studies, notably in aircraft/store or stage separation studies. Techniques were developed for the design of free flight models in three general categories: dynamic stability free flight models, high maneuverability models optimized for non-oscillatory motion studies, and dynamic separation models. Dynamic scaling with fully simulated mass asymmetries play an important part in each of the three categories, particularly when nonplanar motions are simulated.

BALANCING

82-2662

Evaluation of a Balancing Machine Performance S.G. Braun, B.B. Seth, and N.L. Field Metal Forming and Joining Dept., Ford Motor Co., Dearborn, MI 48239, J. Sound Vib., <u>83</u> (3), pp 301-312 (Aug 8, 1982) 2 figs, 3 tables, 8 refs

Key Words: Balancing machines, Rigid rotors

A systematic approach for the characterization of a balancing machine performance is described. The objective of this study is to determine the achievable accuracy in balancing similar rigid rotating machines. Along with the theoretical work, experimental examples are presented for the identification of calibration, random and systematic inaccuracies.

MONITORING

82-2663

Rotating Tool Wear Monitoring Apparatus

K.W. Yee

Dept. of Commerce, Washington, DC, U.S. Patent Appl. No. 6-364 944, 19 pp (Apr 2, 1982)

Key Words: Monitoring techniques, Wear, Computer-aided techniques

A system is provided for predicting when the failure of a rotating machine tool or part is imminent or when a tool is worn. The system includes a transducer for producing an output related to the workpiece vibrations caused by the machine tool and an analog comparator which compares this output with a threshold signal related to the normal operation of the tool and established by a microcomputer which determines whether further signals which exceed the threshold are produced during each of a predetermined number of subsequent time intervals related to the rotational

speed of the tool. If so, a 'failure' signal is produced which may be used, for example, to cause retraction of the tool.

ANALYSIS AND DESIGN

ANALYTICAL METHODS

(Also see No. 2493)

82-2664

A Newtonian Procedure for the Solutions of $Ex=\lambda Ax$ A. Simpson

Dept. of Aeronautical Engrg., Univ. of Bristol, Bristol BS8 1TR, UK, J. Sound Vib., <u>82</u> (2), pp 161-170 (May 22, 1982) 1 fig, 3 refs

Key Words: Eigenvalue problems

Newtonian iteration on a scalar function, which is obtained by condensation of the pencil $E=\lambda A$, is used in conjunction with Sturm sequence properties of the pencil to provide an infallible, quadratically convergent algorithm for all eigenvalues of $A^{-1}E$ within any stated λ -range. The algorithm has been programmed for use on a desk-top machine and large (sparse matrix) eigenvalue problems have been solved. A brief outline of the essential steps in the program is given along with some particular solutions.

82-2665

Lagrangian Formulation and First Integrals of Piecewise Linear Dissipative Systems

F. Badrakhan

College of Engrg. and Petroleum, Kuwait Univ., Kuwait, J. Sound Vib., <u>82</u> (2), pp 227-234 (May 22, 1982) 2 figs, 9 refs

Key Words: Oscillators, Damped structures, Lagrange equations

The Lagrangian description of the motion of a damped oscillator is used as a starting point for deducing the canonical formulation and studying the existence of first integrals according to Noether's generalized theorem. It is shown that first integrals exist only if the restoring force is linear. Finally, results are applied to the study of some important linear or piecewise-linear cases such as the Reid oscillator and the oscillator with bilinear hysteresis.

82-2666

Bounds on the Eigenvalues for Certain Classes of Dynamic Systems

M.A. Zeid

Ph.D. Thesis, Michigan State Univ., 173 pp (1982) DA8216603

Key Words: Eigenvalue problems, Boundary value problems, Bond graph technique

To estimate bounds on the eigenvalues of a system from a pictorial model, classical methods were used to derive the state equations; then from the state matrix the bounds on the largest eigenvalue were obtained. For a class of systems, the bounds on the largest real part and the largest imaginary part of the eigenvalues were obtained by inspecting a graphical model of these systems. The graphical model used is a canonical form of the bond graph; namely the gyrobond-graph. The yield of this work is the reduction in the computational effort required to obtain the bounds. This reduction becomes of major importance when the bounds are estimated for large scale systems.

82-2667

Almost Sure Stable Oscillations in a Large System of Randomly Coupled Equations

S. Geman

Div. of Appl. Math., Brown Univ., Providence, RI 02912, SIAM J. Appl. Math., 42 (4), pp 695-703 (Aug 1982) 1 fig. 7 refs

Key Words: Differential equations, Random parameters

This paper is about limiting (large system) behavior of a set of differential equations with random coefficients. Under certain conditions the behavior of the entire system is well described by a small number of prototype equations, and these can be derived, heuristically, by applying a law of large numbers to the original system. An application of this theorem is the specification of a small number of parameters which guarantee that sufficiently large versions of the systems studied will oscillate with a predicted period and wave form.

82-2668

Distribution of the Natural Frequencies in Matrix-Characterized Structures

M.E. Gaylard

Dept. of Mech. Engrg., Brunel Univ., Uxbridge UB8 3PH, UK, J. Sound Vib., <u>82</u> (3), pp 435-444 (June 8, 1982) 5 figs, 20 refs

Key Words: Natural frequencies, Matrix methods, Stiffness coefficients, Mass coefficients

The distribution of the natural frequencies has a recognized importance in the statistical energy analysis of vibrations of continuous structures. A method is introduced for approximating to the distribution of the natural frequencies for structures characterized by matrices of stiffness and mass coefficients, without resolving specific frequencies. Simple examples are given. Potential uses include frequency analysis for incompletely defined or sampled structural matrices.

82-2669

Parametric Excitation Stability via Hamilton's Action Principle

J.G. Papastavridis

School of Engrg. Sci. and Mech., Georgia Inst. of Tech., Atlanta, GA 30332, J. Sound Vib., <u>82</u> (3), pp 401-410 (June 8, 1982) 1 fig, 17 refs

Key Words: Parametric excitation, Hamiltonian principle

A Hamilton's principle based direct variational method for the asymptotic determination of the well-known stability/instability boundaries of Mathieu's equation is presented. The presence of time-dependent parameters in the system of the Lagrangian necessitates a generalization of the conventional Hamilton's principle: this consists in treating these variable system parameters as additional generalized co-ordinates, and subjecting them to similar variations. The interpretation of the resulting energetic expressions leads to the formulation of a new time-integral-of-energy stability criterion and a parametric invariance theorem. Its relation/equivalence with existing non-conservative system energy tests is pointed out.

NUMERICAL METHODS

(Also see Nos. 2614, 2620)

82-2670

On the Structure of Duffing's Equation without Dissipation (Sur La Structure d L'Equation de Duffing sans Dissipation)

B.V. Schmitt

Dept. of Math., Univ. de Metz, Ile du Saulcy, 5700 Metz, France et Institut de Recherche Mathématique Avancée, 7 rue René-Descartes, 67084 Strasbourg, France, Siam J. Appl. Math., 42 (4), pp 868-894 (Aug 1982) 21 figs, 4 tables, 14 refs (In French)

Key Words: Numerical analysis, Duffing's differential equation

Certain types of periodic harmonic and subharmonic solutions of Duffing's equation are determined numerically without dissipation — even solutions or solutions which are out of phase by $\pi/2$ from an odd function. The numerical technique used, which is new and very simple, is explained in detail. It is based on the symmetries of the equation and of the periodic solutions sought for. The results are presented in the form of graphs which show the initial conditions and the stability (for the harmonics) of the periodic solutions in the space of parameters of the equations.

82-2671

Another Kind of Numerical Instabilities of the Integral Approach to the Interior Boundary-Value Problem for the Two-Dimensional Helmholtz Equation

F. Mattioli

Istituto di Geofisica dell'Universita di Bologna, Bologna, Italy, Intl. J. Numer. Methods Engrg., 18 (8), pp 1115-1130 (Aug 1982) 3 figs, 15 refs

Key Words: Numerical analysis, Boundary value problems, Helmholtz integral method, Harbors, Wave forces

In a previous paper it has been proved that the integral equations arising from the application of Green's formula to the Helmholtz equation in a limited domain can show a certain type of numerical instability, if a real Green's function is used. It has been also proved that such instabilities cannot arise if a complex Green's function is employed. However, it has been found in the latter case that numerical instabilities can occur. This has been proved and thoroughly analyzed for a circular domain, and a technique of avoiding these instabilities has been devised. When this technique is followed, very accurate results can be obtained, regardless of wavenumber used.

82-2672

Error Growth in Transient Large Displacement Calculations

J.P. Wright and J.L. Baylor

Weidlinger Associates, East 59th St., New York, NY, Intl. J. Numer. Methods Engrg., 18 (8), pp 1131-1143 (Aug 1982) 8 figs, 2 tables, 13 refs

Key Words: Numerical analysis, Nonlinear response, Error analysis

Nonlinear problems are widely acknowledged as being more difficult to solve numerically than linear problems. Various kinds of errors contribute to this difficulty and in this paper some of these errors will be described and illustrated by solving certain large displacement problems using eight-noded isoparametric brick elements in space and an explicit integration method in time. Approximation errors in time integration are illustrated, with violation of energy conservation being used as an indicator of the increased difficulties encountered in solving large displacement problems. Round-off errors and order of operations are discussed and illustrated for the case of a cube that is impulsively set in rotation about its center of mass. Finally, approximation errors in spatial discretization, especially those associated with incomplete or inconsistent integration over the element volume, are illustrated for a large deflection beam problem.

82-2673

Scattering of Rayleigh Surface Waves by Edge Cracks: Numerical Simulation and Experiment

M. Hirao and H. Fukuoka

Dept. of Mech. Engrg., Faculty of Engrg. Science, Osaka Univ., Toyonaka, Osaka 560, Japan, J. Acoust. Soc. Amer., 72 (2), pp 602-606 (Aug 1982) 7 figs, 12 refs

Key Words: Wave diffraction, Cracked media, Numerical

Scattering of Rayleigh surface waves by surface edge cracks is numerically simulated in a two-dimensional geometry, using the finite-difference method and the FFT algorithm. The numerical solutions are in good agreement with the experimental observations based on the ultrasonic spectrum analysis and the time-of-flight measurements for the artificial cracks in mild-steel test pieces.

22-2674

The ρ -Family of Algorithms for Time-Step Integration with Improved Numerical Dissipation

G. Bazzi and E. Anderheggen Swiss Fed. Inst. of Tech., Zurich, Switzerland, Intl. J. Earthquake Engrg. Struc. Dynam., 10 (4), pp 537-550 (July/Aug 1982) 8 figs, 2 tables, 18 refs

Key Words: Numerical analysis, Finite element techniques, Equations of motion, Time domain method, Nonlinear systems

The dynamic analysis of complex nonlinear structural systems by the finite element approach requires the use of time-step algorithms for solving the equations of motion in the time domain. Both an implicit and an explicit version of such a time-step algorithm, called the ρ -method, the parameter ρ being used for controlling numerical damping in the higher modes, are presented in this paper. For the implicit family of algorithms unconditional stability, consistency, convergence, accuracy and overshoot properties are first discussed and proved. On the basis of the algorithmic damping ratio (dissipation) and period elongation (dispersion) the ρ -method is then compared with the well-known implicit algorithms of Hilber, Newmark, Wilson, Park and Houbolt.

82-2675

An Approximate Method of Analysis of Parametric Vibration

J. Zajaczkowski

Lodz Technical Univ., Lodz, Zwirki 36, Poland, J. Sound Vib., 79 (4), pp 581-588 (Dec 22, 1981) 4 tables, 8 refs

Key Words: Approximation methods, Parametric excitation

This paper is concerned with the stability of vibration of parametrically excited systems. A simple approximate procedure is proposed for determining the characteristic exponents of a set of linear differential equations with periodically varying coefficients.

STATISTICAL METHODS

(Also see No. 2623)

82-2676

Improvement of the Method of Statistical Energy Analysis for the Calculation of Sound Insulation at Low Frequencies

A. Elmallawany

Bldg. Res. Ctr., El Tahreer St., Dokky, P.O. Box 1770, Cairo, Egypt, Appl. Acoust., <u>15</u> (5), pp 341-345 (Sept 1982) 5 figs, 7 refs

Key Words: Statistical energy methods, Sound transmission loss. Walls, Low frequencies

In the application of the statistical energy analysis theory to the calculation of sound insulation it has been determined that there is a great discrepancy between the measured and theoretical values at low frequencies. This is one of the disadvantages of statistical energy analysis. Therefore, it was necessary to improve this method at low frequencies. The measured and theoretical values of the sound transmission loss at low frequencies are made to reach good agreement by the introduction of a correction factor.

The ability of the Ibrahim time domain identification algorithm to identify a complete set of structural modal parameters, using a large number of free-response time histories simultaneously in one analysis and assuming an identification model with a high number of degrees of freedom, has been studied. Identification results using simulated free responses of a uniform rectangular plate, with 225 measurement stations, and experimental responses from a ground vibration test of the long duration exposure facility Space Shuttle payload, with 142 measurement stations, are presented.

PARAMETER IDENTIFICATION

82-2677

Modal Vector Estimation for Closely Spaced Frequency Modes

R.R. Craig, Jr., Y.T. Chung, and M. Blair Univ. of Texas at Arlington, Arlington, TX, Rept. No. NASA-CR-162001, 41 pp (Feb 1, 1982) N82-22517

Key Words: Modal analysis, Parameter identification technique

Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom curve fit procedure, the usefulness of the single shaker approach can be extended.

82-2678

Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique

S.R. Ibrahim and R.S. Pappa Old Dominion Univ., Norfolk, VA, J. Spacecraft, 19 (5), pp 459-465 (Sept-Oct 1982) 5 figs, 3 tables, 6 refs

Key Words: Parameter identification technique, Time-domain method, Plates, Rectangular plates

MOBILITY/IMPEDANCE METHODS

82-2679

On Effective Mobilities in the Prediction of Structure-Borne Sound Transmission between a Source Structure and a Receiving Structure, Part 1: Theoretical Background and Basic Experimental Studies

B. Petersson and J. Plunt

Dept. of Bldg. Acoustics, Chalmers Univ. of Tech., S-412 96 Gothenburg, Sweden, J. Sound Vib., 82 (4), pp 517-529 (June 22, 1982) 13 figs, 9 refs

Key Words: Mobility functions, Sound transmission, Structure-borne noise

The general mobility matrix formulation of the problem of multi-point, coupled structures is discussed and some of the disadvantages are emphasized. Two principally different ways of rearranging the general mobility matrix into corresponding effective mobilities, useful for expressing the vibratory power input to the receiving structure, are investigated theoretically. The two concepts of effective mobility; namely effective point mobility in which the points are considered individually with the interaction between the points taken into account and effective overall mobility in which a space averaged point mobility is deduced, have also been verified experimentally.

82-2680

On Effective Mobilities in the Prediction of Structure-Borne Sound Transmission between a Source Structure and a Receiving Structure, Part II: Procedures for the Estimation of Mobilities

B. Petersson and J. Plunt

Dept. of Bldg. Acoustics, Chalmers Univ. of Tech., S-142 96 Gothenburg, Sweden, J. Sound Vib., <u>82</u> (4), pp 531-540 (June 22, 1982) 13 figs, 11 refs

Key Words: Mobility functions, Sound transmission, Structure-borne noise

The structure-borne sound power transmission between multi-point, coupled structures can theoretically be described by effective mobility. The results from full scale measurements of transfer and point mobilities of compound structures show that in some cases the effective point mobility can be approximated by the ordinary point mobility. Estimation procedures for the ordinary point mobilities containing manageable expressions for engineering applications have been developed and some examples are presented. The basic reasoning behind these procedures are described.

SF

COMPUTER PROGRAMS

82-2681

Description of a Simulation System DYSIM for Continuous Dynamic Processes

P. la Cour Christensen

Risoe Natl. Lab., Roskilde, Denmark, 27 pp (Jan 1981)

RISO-M-2271

Key Words: Computer programs, DYSYS (computer programs), Simulation

A general purpose simulation system DYSIM for continuous dynamic processes has been worked out. The new system has been made in order to improve the performance by excluding unused features and including new ones, and speed up the computations by a careful programming of the essential routines for integration and administration.

82-2682

Engine Dynamic Analysis with General Nonlinear Finite Element Codes, Part II: Bearing Element Implementation, Overall Numerical Characteristics and Benchmarking

J. Padovan, M. Adams, D. Fertis, I. Zeid, and P. Lam The Univ. of Akron, Akron, OH, ASME Paper No. 82-GT-292

Key Words: Computer programs, Finite element technique, Engines, Rotors

In an attempt to increase jet engine efficiencies, typically smaller rotor-stator-running clearances are being employed. Because of this and the ever present need to improve maintenance, reliability and structural integrity under various modes of operation, more sophisticated analysis tools are required to model the engine. Due to the widespread usage

GENERAL TOPICS

of general purpose finite element codes, this paper seeks to

adapt the procedure to use in modeling turbine rotor-bearing-

CRITERIA, STANDARDS, AND SPECIFICATIONS

82-2683

stator structure.

Transportation Noise, Its Impact, Planning and Regulation

J. Manuel

Ontario Ministry of the Environment, Toronto, Ontario, Canada, 21 pp (Oct 1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206111

Key Words: Traffic noise, Noise reduction, Regulations

An overview of the different sources of transportation noise in urban environments, the noise levels, human response to noise, and remedial actions taken to reduce noise pollution is presented.

82-2684

Noise Regulation and Enforcement

J. Manue

Ontario Ministry of the Environment, Toronto, Ontario, Canada, 19 pp (Oct 1981) (Pres. at Intl. Symp. on Transportation Noise, CSIR Conf. Ctr., Pretoria, Oct 21-23, 1981) PB82-206103

Key Words: Traffic noise, Noise reduction, Regulations

This paper discusses the development and implementation of the environmental noise control program in Ontario. It discusses the legislation, the delegation of powers to other political units, and the development of policy. The assessment and approval of new land uses and new industrial and commercial projects is also described. The paper demonstrates the need for a strong enforcement policy and the need for regular transfer of technology and for public education. Control of occupational noise and deficiencies in the construction codes with respect to noise control in Ontario is also discussed.

ANNUAL AUTHOR INDEX

Α	Albrecht, P 1264	Aranda, G.R 1698
	Alexander, A	Argyris, J.H 2060, 2064, 2084
	Alexander, A.M 1786	Ari-Gur, J
Abbott, W.Y 1791	Alexander, J.V	Aristizabal-Ochoa, J.D. 244, 1477,
Abdel-Ghaffar, A.M 953, 1863,	Alfarou-Bou, E	1479, 2404
	Allaire, P.E 808, 1005	Armor, A.F
Abdelhamid, A.N 2292	Allemang, R.J 1787	Armstrong, E.L 1416
Abdelkader, M.A 1915	Allen, J.J 1544	Arndt, E.M.v 1932
Abdul-Wahed, N	Allen, R.R919, 1304	Arnold, A
Abe, T	Allioud, J.P	Arnold, C
Abel, I	Almajan, I.T	Aron, J
Aboudi, J	Alshamani, K.M.M 1503	Arszman, J.H
Abramson, H.N	Alshits, V.I	Arthur, S 1791
Abramson, P 43, 44	Alster, M	Asaba, E
Achenbach, J.D 685, 710, 711	Alston, J.D	Asami, T
Adali, S	Amazigo, G.O 1019	Asano, M
Adams, G.G 646	Amier, R.K	Asano, N
Adams, J.H 2001, 2003	Amiet, R.K	Asaro, R.J 1520
Adams, M	Ammann, H	Asay, J.R
Adams, M.L	Anagnostopoulos, S.A. 289, 2094,	Asfar, K.R
Adams, R.D 1432		Ashida, K
Adeli, H	Anderheggen, E 2674	Aspelund, C.A
Adenigba, A.B	Andersen, C.M	Assedo, R
Adeyefa, B.A	Andersen, P.K 1561	Astley, R.J 1740
Adham, S.A	Anderson, G.R., II	Athre, K
Aganović, I 1040	Anderson, L.R 1559	Atkatsh, R.S 2185
Agar, T.J.A	Anderson, M.J	Atkinson, F.B 723
Agent, K.R 1648	Anderson, M.S 542, 1546	Atluri, S.N
Ahlbeck, D.R	Anderson, R.W	Atsumo, H 200
Ahmad, J 1522	Anderson, W.J	Attenborough, K 859, 1976
Ahmad, S.H	Ando, Y	Attlfellner, S
Ahtye, W.F 1885	Andrá, R	Audibert, J.M.E 951
Aida, T	Andry, A.N., Jr 2238	Auersch, L 2039
Aiello, R.A 2366, 2557	Ang, A.HS	August, R 1417
Akagawa, K	Ang, A.O.Hs 2418	Auld, B.A 1277
Akay, A 1201	Ang, K.K 1220, 2190	Auriault, J.L 2637
Åkesson, B.A 288, 527, 1408	Angeles, J	Auslander, D.M 2061
Akhverdiyev, K 1591, 1592	Anthony, J.M 1098	Austin, F 2168
Akiskalos, G 2071	Anwar, I	Au-Yang, M.K 1639
Akiyama, H 2308	Anyiwo, J.C 2217	Avallet, C 2637
Akiyarna, Y	Anzai, E	Avioli, M.J 503, 1797
Akiyoshi, T	Aoki, K	Axisa 1599
Aksu, G 1709	Aoki, S	Ayoub, W.T
Aktan, A.E 1051	Aomura, S	Azevedo, S.G
Albertini, C 2023	Arai, N 631	Azzoni, A

В	Barker, T.G 1486	Beckmann, T
_	Barlow, J.B 1394	Bedrossian, H
	Barlow, J.R	Beers, R.J., Jr 150
	Barman, N.C 1823, 1824	Behring, M.A
Baber, T.T	Barmatz, M.B 1615	Bekey, G.A 616, 1317
Babkin, G.I 2470	Barnaby, B.E 1235	Belgaumkar, B.M 460
Bach, L.J	Barney, G.B 1477	Bell, C.E
Bache, T.C 1486	Barrett, L.E	Bell, J.F 2446
Bacher, R 1725	Barrett, L.E	Bellamy, R.A
Bacynski, R	Barry, K.E	Beltzer, A.I 1763
Badlani, M	Bar-shalom, Y 1660	Beltzer, A.J
Badrakhan, F	Barsikow, B	Belyi, V.A
Baer, R.N	Bart, M	Belytschko, T
Bagci, C 751, 1809, 2002	Bartels, B.C	Benckert, H
Baghdadi, S 1348	Bartels, H 2163	Benda, B.J
Bahadur, S 2442	Barthelemy, B.M 10	Bendat, J.S 2273
Bahar, L.Y	Bartholomae, R.C28	Bender, E.K967
Bahgat B.M	Bartley, J.B	Benerjee, B
Bahr, U	Basu, A.K	Beneš, J 2467
Baik, J.M	Barton, J.C	Benham, R.A
Bailey, J.R	Basci, M.I	Benjamin, K.C
Bain, K.R	Bassett, R.B	Benner, H
Bainum, P.M	Bassim, A	Bennett, J.C
Baker, W.E	Basu, P.K	Bennett, R.L
Balachandran, P 2116	Basu, S 1014	Bennett, R.M
Balas, M.J	Batenburg, A 1531	Benson, R.G
Baldeweg, F	Bauer, H.F 1037, 2323	Bently, D.E
Baldwin, N.J	Bauer, J.W	Benveniste, Y
Balena, F.J	Baughan, C.J 2138	Bercovits, A
Balendra, T 22, 1220, 2190	Baum, J.D	Berger, H 500
Ballard, J.D 1171	Baum, W	Berman, A918, 1827
Ballard, R.F., Jr 26	Bauman, R.A	Bernanti, A 489
Ballard, R.S	Baumeister, K.J 1740	Berner, W.E
Balsa, T.F 2602	Baumgarten, J.R 1254	Bernitsas, M.M
Banda, S.S 1389	Baumeister, K.J 145, 1050, 1231	Bernstein, M 2069
Bandyopadhyay, K.K 1943	Baumgartner, R.J.,	Bert, C.W
Bankhead, H.R	Baunach, W 721	
Banks, S.P	Baur, P.S	Bertero, V.V
Bannister, R.L 2559	Baxter, S.M 1476	Berthier, Y
Banon, H 124, 1481	Baylor, J.L 2672	Bertoni, H.L 695, 845, 846
Bansal, A.S	Bazhenova, T.V	Beryozkina, M.K 162
Bansevičius, R	Bazzi, G	Berzak, N
Bapat, C.N	Bean, S.P	Beskos, D.E1112, 2315, 2391
Barber, D	Beards, C.F	Besner, E
Barcilon, V	Beavers, (Bettess, P
Barclay, B	Becher, J	Beucke, K.E
Barclay, D.W	Beck, R.R 1816, 1823, 1824 Becker, R.I 1934	Bevilacqua, S
Barez, F	Becker, R.S	Bhaduri, S
Barger, R.L	Beckmann, J 801	Bhat, R.B
Dergo, 11.2 901	DOCKINGHI, J	Dilat, 11.0 1130, 1077, 2434

DI . 0 T	2 1 . 211	5 1400
Bhat, S.T 1994	Borcherts, R.H	Brown, M.G
Bhatti, M.A	Borisenko, A 1593	Brown, R1631, 1633, 1636
Biancardi, R 1944	Borough, R 569	1637, 1638
Biehn, K	Borshchevsky, A	Brown, R.S
Bielk, J.R 1595	Bort, R.L 1032	Brown, S.J 2595
Biggs, J.M	Bose, S 2312	Brown, W.G 625
Bilgin, O 1726	Bose, T.K 1893	Brown, W.H
Billings, S.A	Bosmans, R.F 731	Brull, M.A
Bilý, M 177, 228, 229, 2048	Botcherby, S.C.L 24, 25	Brunson, B.A
Birnie, S.E	Botman, M	Bryant, E.L
Bishop, R.A	Botseas, G	Bryant Moodie, T 407
	Botter, B.J 1971	Bucciarelli, L.L 2058
Bishop, R.E.D		
Bistritz, Y	Bouts, D	Buch, A
Bjork, T	Bouwkamp, J.G 14, 944	Bucher, K.M
Blachere, G	Bouwman, L.P	Buch, L.H 1875
Blachut, J 1436	Bowden, T.J	Buchanan, T.D
Black, G.R 544	Bowersock, R.G719	Buchholdt, H.A 1011
Black, R.G 146	Bowlby, W	Buck, O 197
Blackmore, P.A 2435	Bowman, B.M 1899	Buckingham, S.L 491
Blair, M 2677	Bozorginia, Y	Bugg, F
Blake, B.B	Brach, R.M 702	Buggele, A.E 1072
Blake, R.K 2020	Brambilla, L 1381	Buhlert, K.J 824
Blakely, K.D 1826	Brancaleoni, F271	Buhr, D
Blankenship, G.L 585	Brasfield, R.G 1096	Bui-Quoc, T
Blaser, D.A 1869, 1970	Bratton, J.L 2310	Bullen, R 1487
Blazier, W.E., Jr 1327	Braun, K.A 2060, 2064, 2084	Buller, I.B 839
Blech, J.J 2396, 2464	Braun, S	Bunyan, T.W 303
Blevins, R.D 1465	Braun, S.G	Buono, D.F
Blondet, J.M 2307, 2390	Breuer, B	Burger, C.P 198, 1806
Blondet, S.J.M	Brewer, K.J 1875	Burgess, J.C 679
Bloom, M.C	Brill, D	Burke, J.S
	Brillhart, R 1945	Burks, J.A
Blouin, S	Brind, R.J	Burman, N.M
Bock, D.T	Brisken, T.A	Burner, A.W 1541
Boehm, M.J	Brocher, E	Burris, R.L
Boerner, WM	Brock, L.M	Burrows, C.R
Bogar, F.D 1077		
Boghani, A.B 1671	Brockman, R.A 540, 1545	Burton, T.D 356, 1184, 2042
Bogner, F.K	Broek, D 173, 1517, 1519	Busch, B.D
Bogorod, E 1589, 1596	Brogan, F.A	Buschmann, H
Bohm, G.J	Broniarek, C.A361, 2431	Busch-Vishniac, I.J 1215, 1243
Bohn, A.J	Bronowicki, A.J	Bushnell, D.M
Bohn, L.H	Bronsdon, R.L967	Butson, G.J
Boissin, B 1283, 2340	Brose, J.F 2127	Button, M.R 2281
Boisson, C	Brotherton, T 2280	Butzel, L.M55
Bolding, R.M	Brotton, D.M 271	Buxbaum, O 2443
Boldman, D.R 1072	Brown, C.B 566	Byrne, K.P 696
Bolds, P 2110	Brown, C.E 1562	Byström, BO 2140
Bolleter, U 1465	Brown, C.K	
Bolt, B.A 1494	Brown, D.L	
Bolton Seed, H 241	Brown, G.L1743, 2608	
Bolukbasi, A.O	Brown, J.C 1046, 1097	

. C	Caves, J.L. 1473 Cederfeldt, L. 1312 Cederkvist, J. 215	Cherkaev, A.V
	Celep, Z	Chesi, C
Cabannes, H 1427	Celniker, G.W	Cheung, Y.K 1269, 1482, 2174
Cabelli, A 677, 680, 2201	Cempel, C	Chhabildas, L.C
Cacko, J 177, 228, 229, 2048	Chadha, J.A	Chi, G.Y.H
Cadell, D.M	Chakraborty, M 2312	Chi, M 1014
Calapodas, N 326	Chalmers, G.W	Chia, C.Y 655, 2586
Caldwell, W.N 1647	Chalmers, R.H 302	Chiam, T.C 1553
Çalişal, S.M	Chambers, J.J 1085	Chiang, F.P 1278
Caliskan, M 894	Chamis, C.C 622, 2366, 2557	Chiatti, G 214
Calladine, C.R 1950, 2511	Chan, A.L	Chiba, M
Callahan, J.C	Chan, M.Y.T	Chikamori, S
Callow, C.D	Chanani, G.R	Childs, D.W1585, 1684
Caltagirone, J.P 821	Chandrasekaran, K 1718	Chindaprasirt, P 2004
Calvert, W.J	Chaney, M.J 1890	Chinn, J
Campany, D	Chang, CJ	Chinn, J.M 1657, 1780
Campbell, D.W	Chang, C.S	Chiu, L.YB
Campbell, E	Chang, J.C	Chonan, S 654, 831, 1445, 2382
Campbell, K.L	Chang, J.C.H	Chong, K.P
Campbell, R.B 1642, 1805	Chang, L.K	Chopra, A.K 274, 954, 1147,
Canay, M	Chang, M.T	
Cann, R.G	Chao, C.H.C	Chopra, I
Canning, T.N	Chao, W.C	Chou, D.C
Caplikas, P	Chapkis, R.L 585	Chow, K.N
Cappel, K	Chari, P.S	Chow, T.Y
Captain, K.M	Chattopadhyay, A 2312	Choy, K.C
Carden, H.D 599	Chaturvedi, G.K 1812	Christensen, D.R 566
Cardozo, B.L	Chaudhuri, S.K 825	Christiano, P 1212, 1457
Cargill, A.M 607, 2599, 2600	Chausonnet, J 2331	Chrulski, D.D
Cargill, G.S., III 499	Che, W.Y 2480	Chu, F.H147, 1598
Carles, C	Cheatham, R.L32	Chu, K 2301
Carlomagno, G.M 1741	Chen, C.H 1500, 1726	Chu, KH 2222
Carne, T.G 642	Chen, F.Y	Chuang, T.Y
Carnegie, W.D 557	Chen, H.M	Chung, C.H 1956
Carr, J	Chen, J	Chung, H.H497, 762
Carre, J.C 207	Chen, JC 450	Chung, J.S 1646
Carrington, C.K 255	Chen, J.H 2371	Chung, J.Y 1970
Carroll, M.J 1895	Chen, S	Chung, T.J 2253
Carta, F.O2361, 2362	Chen, S.S 386, 673, 1734	Chung, Y.T
Carter, A.L 2649	Chen, T.W 1073	Cies, J
Carter, A.M., Jr	Chen, W.F	Clapis, A
Carter, O	Chen, WH 522	Clark, A.V., Jr 1247
Caruthers, J.E 61	Chen, Y.N	Clark, B.J
Castellani, A	Cheng, R.M.H 467	Clark, S.K
Castleberry, G.A	Cheng, R.S	Clark, T.L
Catherines, J	Chenoweth, H.B 1781, 2043	Clark, W.H 1257
Caughey, T.K	Chenoweth, J.M 421	Clarkson, B.L
Caveny, L.H 1402	Cherchas, D.B 2325	Clevenson, S.A

Clinard, R.L	Cronkhite, J.D 600, 1170	Davenport, A.G
Clough, R.B	Crooker, T.W	Davies, H.G
Clough, R.W1218, 1372, 2307	Crouse, J.E 2054	Davies, I.L
Coats, D.W	Croxen, H.H1321, 1322, 1323	Davis, C.M., Jr 2261
Coe, C.F	Cryan, F.B 1890	Davis, D.A 879
Cogliano, V.J 2277	Cubaud, M 2415	Davis, R 579
Cohen, D 1883	Culbertson, A.R 2094	Davis, S 35, 292, 293, 1882
Cohen, J 43, 44	Cummings, A 836, 1210, 1229	Davy, J.L 684
Cohen, M	Curry, D.T 1928	Dawe, D.J 2177
Coleby, J.R 653, 1456	Curtis, A.J	Day, S.M
Colijn, H554	Curtis, D.J	De, S 1029, 1325
Colombo, O.L	Cutler, C.R 1829	Dean, A.R 1670
Colsher, R	Cyran, F.B	Dean, E.H
Coltman, J.W 601	Czarnecki, S	Debchaudhury, A 1018, 2275
Conklin, J.C 239	Czyryca, E.J 879	DeBra, D.B 1991
Connors, H.J	Czyryca, E.J	Dedhia, D.D
Consigny, H		Deerhake, A.C
Conway, J	•	Deinum, P.J 2090
Coody, M.C	D	DeJong, R.G 1855
Cook, M.F		Dekoning, A.U 186
Cook, R	Dadfar, M.B	Delalot, G
Cooke, M.P	Dagle, R.I	del Cid, L
Cookson, R.A 628	Dahl, H	DeLeys, N.J
Cooley, D.E	Dahlberg, T	Deloach, R
Cooper, P.A	Daidola, J.C	DeLosh, R.G 1875
Cooperrider, N.K	Daigle, G.A	De Lucchi, D
	Dalamangas, A	DeMartini, J.F
Coppolino, R.N 2015	Dale, P.C	de Meersman, C 613
Corlay, B	Dalton, J.W	Dempsey, T.K
Corley, W.G 244, 1477, 1479	Dambra, F	den Hollander, J.G 1891
	Damongeot, A	Denne, A
Cornell, C.R 2046	Dandage, S 1921	de Oliveira, J.G 1204
Corti, M	Daněk, O	Deravi, P 1995
Cotter, S.L	Daniel, B.R	Derecho, A.T 1622, 1744
Coulter, S.M 1091	Daniel, J.H	de Regt, M.J.A.M 580
Cox, P.A	Daniel, J.I	Der Hagopian, J 2068
Coy, J.J	Daniels, E.F	Der Kiureghian, A517
Craig, J.I	Danner, W.F	DeRuntz, J.A 1832, 2052
Craig, R.R., Jr 1534, 2677	Dar, G.Q	de Sa, A
Craik, R.J.M 148, 2503, 2625	Darbre, G.R	Desai, K.D
Crampin, S	Darlow, M 612	Desmarais, R.N
Crandall, S.H	Darlow, M.S 488, 1810, 2457	Despeyroux, J 2304
Craven, P.G	Darve, F 1862	Detmer, C.A 1093
Crawford, S.L	Das, D.K	Devlukia, J.N
Crease, A.B 809	Das, M.K	DeVor, R.E
Crespodasilva, M.R.M 604, 606	Dash, P.K	Dhagat, S.K
Crispell, C	Dashevskyj, R 1593	Dhat, S.T
Crocker, M.J 562, 987, 1662	Das Vikal, R.C 1696	Dick, D
	Dass, W.C	Di Giacinto, M
Crolla, D.A	Datta, S.K 1306, 1737, 1961,	DiGiacomo, A.F 1088
Cronin, D.L		Dijiauw, L.K 2032
Cronin, D.L		Dijiauw, L.N

DiMaggio, F	Difference To	
DiMaggio, F.L		El-Akily, N 1737
Dimarogonas, A		,
Dincă, D	,, ,	TOLZ
Dittmar 14 155 204 2422		El-Kamshoshy, F.M 942
Dittmar, J.H 155, 324, 2108	Dugundji, J 1164	Elkins, J.A 2324
2109, 2368	Dulevicius, J 1685	Elliott, J.L 1290
Dittrich, G	Dulikravich, D.S 538	Elliott, S.J 1056
Diven, B.C	Dunayevsky, V711	Ellis, B.R 2090
Doak, P.E	Duncan, A.E 1909	Ellman, D.D 1615
Dobbs, M.W	Duncan, J.H 1562	ElMadany, M.M 299, 963, 1870
Dobinda, I	Duncan, L.B 1758	El-Magd, E 478, 2249
Dobry, R 1495	Dundas, R.E 2363	Elmallawany, A 2676
Dobrzynski, W 2532	Dungar, R 2090	El Menoufy, M
Dobrzynski, W.M 1396	Dunlap, R 434	El-Raheb, M 676, 1206, 1207,
Dodd, V.R 2031	Dunlap, T.F965	
Dodge, R.N 998	Dunwoody, A.B 1805	El-Shafee, O.M., 1717, 1830, 1831,
Doelling, N 1868	Duponchel, J.P 607	
Döge, S	Dupree, J.F	El-Sharkawi, M.A.A 957
Doherty, C.S 1787	Dupuis, B 1612	Elston, S.T
Doi, Y 630	Durbin, P.A	Emami-Naeini, A 519
Dokumaci, E 2577	Durnin, J 695	Emerson, P.D
Dominick, F.L	Duzich, J.J 913	Emery, A.F 1729
Donald, G.H 1603	Dyba, R 2226	Emson, C
Donato, A		Endebrock, E 1053
Donato, V		Enflo, B.O
Donea, J 1836, 1865, 2481	E	Engel 7
	E	Enger, Z
Doner, M 2003	_	Engel, Z
Doner, M	E	English, G.W 2325
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375	East, J.R	English, G.W
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103		English, G.W
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587	East, J.R	English, G.W. 2325 English, R. .999 Enns, J.B. 2448 Epstein, A.H. 1845
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68	East, J.R	English, G.W. 2325 English, R. .999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. .657
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109	East, J.R	English, G.W. 2325 English, R. .999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. .657 Ericsson, L.E. .1508, 1664, 2564
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Eronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Eronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Eronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Eronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429 Evans, J.W. 1417
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846 Drucker, D.C. 571	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evans, J.W. 1417 Evensen, H.A. 266 Everett, D. 1887
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846 Drucker, D.C. 571 Druhak, G. 2069	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429 Evans, J.W. 1417 Evensen, H.A. 266 Everett, D. 1887 Eversman, W. 1740, 2401, 2605
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846 Drucker, D.C. 571 Druhak, G. 2069 D'Souza, A.F. 617	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429 Evans, J.W. 1417 Evensen, H.A. 266 Everett, D. 1887 Eversman, W. 1740, 2401, 2605 Every, M.J. 1380
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846 Drucker, D.C. 571 Druhak, G. 2069 D'Souza, A.F. 617 Du, Zs. 1851	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429 Evans, J.W. 1417 Evensen, H.A. 266 Everett, D. 1887 Eversman, W. 1740, 2401, 2605 Every, M.J. 1380 Ewins, D.J. 898
Doner, M. 2003 Dong, R.G. 2244 Dong, Z.Y. 2375 Dongarra, J.J. 1103 Donham, R.E. 587 Dooley, L.W. 68 Doroff, S.W. 109 Dost, S. 2389 Doughty, S. 1583 Dove, R. 1053 Dover, A.A. 951 Dovey, H.H. 2053 Dowell, E.H. 1510 Doyle, G.R., Jr. 1897 Dragonette, L.R. 1968 Drake, M.L. 2237 Dreher, R.C. 2330 Dreyer, W. 577 Drigant, B. 1632 Dring, R.P. 1846 Drucker, D.C. 571 Druhak, G. 2069 D'Souza, A.F. 617	East, J.R	English, G.W. 2325 English, R. 999 Enns, J.B. 2448 Epstein, A.H. 1845 Ercoli, L. 657 Ericsson, L.E. 1508, 1664, 2564 Fronini, I.E. 2061, 2221 Ertel, H. 117 Ertepinar, A. 674, 1440 Erzurum, H. 469 Eshleman, R.L. 2257, 2266 Espinosa, I. 351 Essawi, M. 1548 Essert, R.D., Jr. 419 Etsion, I. 815, 1424 Eubanks, R.A. 2630 Evan-Iwanowski, R.M. 1705 Evans, A.G. 429 Evans, J.W. 1417 Evensen, H.A. 266 Everett, D. 1887 Eversman, W. 1740, 2401, 2605 Every, M.J. 1380

F	Fitzgerald, G.W	Frohrib, D.A. 2173 Frolov, K. 1666 Frolov, K.V. 2353 Frost, W. 61
Fabunmi, J.A	Flaherty, J 1724	Frottier, JP
Fagerlund, A.C406, 1048	Flaig, H	Frydrychowicz, W 1015, 1937
Fahy, F.J 1038, 1056, 2189	Flanagan, D.P 1113	Fu, KS
Faison, T.K 243	Flannelly, W.G 320, 323, 1827	Fu, Z.F
Fakhouri, S.Y 1116	Flax, L	Fujii, T
Falconer, D.R 751	Fleck, N.A 2438	Fujikawa, T
Fancher, P.S 1386	Fleeter, S 9, 1674	Fujino, Y 2418
Fanner, P.G 2519	Fleischer, C.C 668	Fujisawa, F 206, 1588, 2029
Farassat, F 5, 1121	Fleischman, R.N 844	Fujita, K 135, 670, 1026, 1926
Fardeau, 1599	Fleischmann, S. ï	
Farley, H.L 1671	Fleming, D.P 2164	Fukuda, M 129, 1343
Farmer, M.G	Focke, K.C	Fukuda, S96
Fasanella, E.L 602	Fohrer, W 1653	Fukuhara, K 1984
Fash, J 2434	Fokeev, V.P	Fukumoto, Y
Fasoli-Stella, P 1836	Fomenti, D 2014	Fukuoka, H
Faulkner, G.M	Foord, C.A 629	Fukushima, M 1910
Faulkner, L.L	Ford, R.A.J 629	Fuller, C.R 1038, 1039, 2189
Fedorov, A.V	Forssen, B	Fuller, W.R 1631, 1633, 1636,
Fehlau, R 935, 2293, 2294 Fehr, V.S 1260	Forsyth, T.J	1637, 1638
· · · · · · · · · · · · · · · · · · ·	Foster, K	Fung, Y.T
Feifarek, M.J	Fouts, P.G	Funk, G.E
Felinna (° A 1832	Foy R I 010	Furuva V 700
Felippa, C.A	Fox, R.L	Furuya, Y
Felske, A	Foxlee, T.F	Furuya, Y
Felske, A	Foxlee, T.F	
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139	Fu-Sheng, C
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971	
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139	Fu-Sheng, C
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789	Fu-Sheng, C
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835	Fu-Sheng, C
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417	G Gaafar, M.L.A
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F259, 543
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201,900	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Fridman, V.E. 1767	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Gallardo, V.C. 259, 543, 544
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744 Fiorato, A.E. 244, 1477, 1479	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78, 82, 789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Fridman, V.E. 1767 Fried, I. 1691	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Gallardo, V.C. 259, 543, 544 Galloway, W.J. 309
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744 Fiorato, A.E. 244, 1477, 1479 Fischer, G. 2356	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Fridman, V.E. 1767 Fried, I. 1691 Friedland, I.M. 1264	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Gallardo, V.C. 259, 543, 544 Galloway, W.J. 309 Gamziukas, V. 1616
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744 Fiorato, A.E. 244, 1477, 1479 Fischer, G. 2356 Fisher, E.M. 1086	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Fridman, V.E. 1767 Fried, I. 1691 Friedland, I.M. 1264 Friedmann, P.O. 2367	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Galloway, W.J. 309 Gamziukas, V. 1616 Ganapathi, M. 2398
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744 Fiorato, A.E. 244, 1477, 1479 Fischer, G. 2356 Fisher, E.M. 1086 Fisher, H.D. 1294	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Friedman, V.E. 1767 Fried, I. 1691 Friedland, I.M. 1264 Friedrich, HP. 933	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Gallardo, V.C. 259, 543, 544 Galloway, W.J. 309 Gamziukas, V. 1616 Ganapathi, M. 2398 Gao, TF. 1488
Felske, A. 2655 Fenwick, J.R. 2134 Ferebee, R.C. 2129, 2452 Ferguson, T.F.W. 1875 Ferris, R.H. 678 Ferritto, J.M. 1122, 2225 Fertis, D. 2682 Fertis, D.G. 468 Fesko, D.G. 2032 Fiagbedzi, Y.A. 2153 Ficcadenti, G.M. 391 Field, N.L. 2662 Fields, J.M. 2136 Fields, S.R. 443 Fietz, P. 201, 900 Filippi, P.J.T. 2620 Finkelstein, K. 956 Fintel, M. 941, 1744 Fiorato, A.E. 244, 1477, 1479 Fischer, G. 2356 Fisher, E.M. 1086	Foxlee, T.F. 2022 Franchini, E. 575 Francis, D.T.I. 1139 Franco, L. 971 Francois, J. 78,82,789 Franey, G.R. 835 Frank, R.L. 736 Franke, M.E. 835 Frater, J.L. 1417 Freedman, A. 2581, 2582 Freeman, R.A. 1298 Freise, W. 890 French, S.E. 651 Freudenberg, C. 1932 Freund, L.B. 179 Freymann, R. 1167 Fricke, F. 1487, 2211 Fridman, V.E. 1767 Fried, I. 1691 Friedland, I.M. 1264 Friedmann, P.O. 2367	Gaafar, M.L.A. 1906 Gabadadze, D. 1769 Gaberson, H.A. 2630 Gabor, A. 2613 Gabriele, A. 1703 Gabrielson, T.B. 2476 Gadda, E. 489 Gaffney, E.F. 259, 543 Gai, B. 2461 Gaillochet, M. 511 Galinskas, A. 1680, 1681 Galloway, W.J. 309 Gamziukas, V. 1616 Ganapathi, M. 2398

0 00	0 0	
Garg, D.P	Giles, G.L	Graves, M.J
Garg, R.D 1584	Gill, H.S 765	Graviss, K
Garg, V.K 617, 1385, 2301	Gill, W.D 2169	Gray, S
Garinther, G.R 67, 773	Gillham, J.K 2448	Gray, T.W 2291
Garivaltis, D.S 617	Gimmestad, D.W 1787	Green, D.W 1234, 1959
Garrick, I.E 597	Girard 1599	Greene, G.C
Gartner, J.R	Girard, A 1283, 2340	Green, R.E., Jr
Gartner, R.F	Giuliani, S 1836, 1865, 2481	Greene, W.H 1391
Gasparini, D 2159	Gjaevenes, K	Greenhill, L.M 1774
Gasparini, D.A 1018, 2275	Glass, I.I	Greenhill, M 1668
Gaspariunas, J 1681	Glass, J.T	
-		Gregor, V
Gates, F.L	Glassburn, L.E 843	Gregory, W.S
Gaul, L	Gle, D.R	Greitzer, E.M
Gaunaurd, G.C	Glegg, S.A.L 1399	Greve, F 1400
Gaunt, J.T	Gliebe, P.R 260	Griffin, J
Gavane, S.S 1197	Glienicke, J 804, 1187	Griffin, J.N 635
Gaylard, M.E 2668	Glober, M 2558	Griffin, J.S 2529
Gazetas, G 21, 1018, 1367, 1864	Glockner, P.G 2389	Griffin, M.J
Geer, J.F 2243	Gloyna, F.L	Griffin, O.M 1379, 1380, 1644
Geers, T.L	Go, G.D 1914	Griffiths, I.D 2544
Geisler, D 1163	Goad, W.K 1541	Griggs, G.A
Geissler, W	Goatley, R.K	Grigoriu, M 272
Geman, S 2667	Goldman, A 897, 1168, 1956	Grigorova, N 1609
Genin, J 2073	Goldsmith, W1043, 1735	Groesbeck, D
Gentile, T 216, 217, 218	Goldstein, M.E 1490	Groesbeck, D.E
George, A.R	Golovinov, A	Groom, N.J 107
George, D.L	Goncharevitch, I	
		Grootenhuis, P278, 2167
Georgiadis, C	Gondran, J.P	Grossi, R.O
Geradin, M	Goodall, R.M	Grosveld, F
Gerardi, T.G	Goodman, D.L	Grover, A.S
Gergely, P 1442	Goodman, N 1799	Grubišić, V 2356
Gericke, O.R 194	Goodno, B.J 838	Gruel, R.L
Gersch, W	Goodyer, M.J	Gruhl, S 2066, 2295
Geschwindner, L.F., Jr 1012	Gopalakrishnan, S 935, 2293,	Gu, RR
Ghafory-Ashtiany, M 764		Guenther, C.J 1093
Ghavami, K	Gordis, K 1721	Gugerli, H
Ghosh, A 1911	Gorga, J 1727	Guidez, M.J
Ghosh, S.K	Gorman, D.J1463, 1470, 2589	Guillaume, M.E 1792
Giacofci, T.A	Gorrell, W.T 2054	Guinn, W.A
Giannopoulos, F 1900	Goruschkin, V	Guj, G 2375
Giansante, N 326, 1827	Gossmann, E 2230	Gumpert, W
Gibbs, B.M 389, 390, 816	Gould, P.L 1717, 1830, 1831,	Gundy, W.E
Gibert, 1599	2186	Gunter, E.J 104, 1595, 2458
Gibson, D.C	Grabowska, A 690	Gunter, R.R
Gibson, R.F	Graham, D.A	Gupta, A.P 1452
Giers, A	Graham, L.J	Gupta, B.K 1922
Giesing, J.P 1321, 1322, 1323 Gilan, A	Gran, S	Gupta, D.C
	Granet, P	Gupta, K.N
Gilbert, D.A.M	Granquist, T.E	Gupta, N.K 1860
Gilbertsen, N.D	Grasman, J	Gupta, P.K 2369
Gilchrist, A.J 1870	Graunke, K	Gupta, R.B 1357

Gupta, S	Hammond, S.A. .773 Hammons, T.J. .739 Hamon, P. .1865 Han, DC. .804 Hancy, J.P. .1972 Hand, D.H. .769	Havlicek, V. 188 Hawker, K.E. 154, 426 Hayakawa, H. 895 Hayashi, N. 2179 Hayashi, T. 2178 Hayaski, Y. 1854, 1986
Gurr, S	Handa, K	Hayduk, R.J
Gustafson, A.J	Hanna, S.Y	Hayes, C.D
Guyader, J.L 2183, 2184	Hannant, D.J 440	Haynes, F.D
Guzman, R	Hansen, C.H1411, 1974, 1975	Hazony, D
Gvaldiene, D 1747, 1748	Hansen, J.E	He, P
Gvozdeva, L.G	Hansen, R.J	Heavner, J.W
	Hara, Y96	Hedges, R
н	Harada, S 631	Hedrick, J.K 92, 295, 775, 1183,
••	Harari, A	
	Haraux, A	Heidelberg, L.J
Haas, T.J	Hardin, L.W	Heiderbrecht, A.C
Habault, D	Harrell, J.P	Heins, C.P
Habibullah, A 2053 Haddon, E.W 400	Harris, A.S	Hejazi, M.S
Hagiwara, Y	Harris, D.O 1099, 1226	Helle, H.P.E
Hahn, H.T	Harris, P	Helou, A.H 403
Hadj-Hamou, T 19	Harris, W.L 610	Henderson, F.M 2405
Hadjian, A.H 1310	Harrison, H.R 1902	Henderson, J 1749
Hagedorn, P	Harrold, R.T	Hendricks, S.L
Haibach, E	Hart, F.D	Hendricks, W
Halanay, A	Hartman, W.F 209	Henke, R
Hale, A.L	Haruyama, Y	Hennigs, G 907
Hale, J.K	Hasegawa, H 1453	Herman, G.C 1242, 2413
Hales, R 2519	Hashimoto, F	Hermann, L
Hall, F.L	Hashimoto, H 2156	Herrmann, G1221, 1707
Hall, J.F 1370, 1371 Hall, J.O	Hashimoto, T	Herrmann, H.G 1884 Heshmat, H 1920
Hall, P.S	Hashish, E 2, 1678, 1679	Hibbert, A.P
Hall, S.A	Hasselman, T.K 2045	Hibbs, J.E
Hall, W.J	Hatanaka, K 878	Hibner, D.H
Halle, H	Hatano, S 2384	Hickling, R 1869
Haller, R.L	Hatheway, A.E 1752	Hickman, C.E
Halleux, J.P 1836, 1865, 2481	Hatsuzawa, T	Hidaka, T
Halliwell, N.A	Hattori, T	Hieber, G.M
Halsted, D.M., III 614	Haug, E.H	Hill, E.v.K1485, 1964
Halwes, D.R 341	Haug, E.J 1292, 1297, 1816,	Hiller, M
Hamada, H 2455		Himelblau, H
Hamidzadeh-Eraghi, H.R 278	Hauger, W	Himeno, Y 2429
Hammitt, A.G 297	Haughton, D.M 1702	Hinchey, M.J
Hammond, C.E 2111	Haviland, J.K	Hines, D.E56

Hinton, E. 1030 Hirabayashi, H. 1933 Hirano, Y. 647 Hirao, M. 2673 Hirschbein, M.S. 2366, 2557 Hirt, M.A. 2444 Hitch, H.P.Y. 65 Hjorth-Hansen, E. 1474 Ho, CM. 431, 1256	Horton, C.W. 2213 Horton, T.E. 306, 1643 Hoshikawa, N. 772 Hottman, S.D. 1630 Houjoh, H. 632, 2212 Hounjet, M.H.L 160, 1773 House, M.E. 79 Housner, G.W. 2081 Housner, J.M. 1896, 2123	Huttelmaier, H.P. 1708 Huttsell, L.J. 596, 1651, 1888 Hwang, D.G. 471 Hyde, J. 212 Hyer, M.W. 1993 Hyland, D.C. 219
Hoa, S.V	Houston, J.R	1
Hobbs, G.K	Houwink, R1654, 2105	•
Hobbs, R.E 1689	Howard, M.S 428	
Hobdell, A.C 1138	Howard, P.J980, 2329	Ianniello, C 1741, 2547
Hobson, D.E 1423	Howe, M.S	Ibrahim, R.A230, 2269
Hodge, D.C 67	Howell, L.J 1384	Ib. ahim, S.R 2271, 2678
Hodge, I.S	Hoyniak, D 1674	Ichi, S 2154
Hodges, G.E	Hrastar, J.A., Sr 205	Ida, M
Hoeppner, D.W 477	Hrovat, D	Idczak, W 1949
Hoernqvist, N	Hsia, L.M 634	Idelsohn, S
Hog, H	Hsieh, B.J 497, 762, 873, 1270	Igarashi, T
Holbeche, T.A	Hsieh, J.S	Ignaczak, J 190
Holdren, E.J	Hsieh, P.Y	Iguchi, M 20, 1461, 1462
Holehouse, I	Hsu, C.S	Ihara, S
Holford, R.L	Hsu, J.C	lida, S
Hollburg, U	Hu, A.S	lino, T
Hollenbaugh, D.D 2111	Huang, C.L	Ikeda, T
Hollifield, P.J 68	Huang, H	Ikeuchi, K
Hollingworth, G.H 1483	Huang, N.C 1205, 1626	Ikeuchi, T
Hollowell, S.J 396	Huang, S.N	Ikkai, H
Holman, R.E 1758	Huang, T	Ikushima, T
Holmes, C 914	Huang, Wh	Hiff, K.W
Holmes, C.A 1118	Huang, Ys	Imaichi, K 262, 1347, 2072
Holmes, P	Hubbard, J.E., Jr 610	Imam, E 2068
Holt, D.J	Hubbard, M	Imasu, K
Holyoak, J.N	Huber, P.W 143	Imazu, A
Homyak, 1	Huber, R.F	Imbert, J.F 73, 1283, 2340
Honaker J.D68	Huber, S.W	Imtiaz, S. K 925
Honda, H 2501	Huck, M	Inagaki, T 1587
Hong Chen, SJ	Hudson, C.C	Ingels, F.M 892
Hongo, K	Hui, W.H	Inger, G.R
Honlinger, H	Hull, M.L	Ingolfsson, K706
Hooker, R.J	Hull, R.L	Inman, D.J
Hooker, R.J	Humar, J.L	Inoue, J
Horak, D	Hundal, M.S 2146, 2209 Hunger, H	Inoue, R
Hori, M	Huntley, E	Inoue, Y
Horler, H	Hurden, A.P.M 2653	loannides, E
Horne, M.P	Hurwitz, M.M 1566	Irie, T 666, 1938, 2180, 2191
Hornung, G	Hurwitz, W.M	
Horowitz, S.J	Hutchinson, J.R	Irretier, H
, 0.0	1.010.11.10011, 0,11., 1, 1, 1, 1, 1, 1, 1202	

Irvine, H.M 124	Jeffers, J	Jordan, P.G
Irving, P.E 2433	Jeffrey, A 701	Joshi, S.M
Irwin, G.R	Jeffery, P.A.E	Joslyn, H.D
Ishac, H.F 1233	Jeffery, R.W 782	Jovanovski, J
Ishida, S 1027	Jefferys, E.R 1010	Jowitt, S.P.N.F
Ishida, T	Jeffrey, A 1692	Juarbe, F.M
Ishida, Y	Jeffries, R.A 1004	Jur, T.A
Ishihama, M	Jendrzejczyk, J.A 673, 1734	Juricic, D
Ishii, A	Jennings, A	Jutras, R.R
Ishii, N	Jennings, P.C	
Ishii, S	Jennings, P.W	
Ishizaki, H	Jensen, F.B	K
Ishizuka, M 760	Jensen, J.J	
Israelson, H 454	Jeong, Y.H 1797	
Itaya, M 444	Jeracki, R.J324, 2108	Kaga, M 1988
Ito, H	Jessel, M 2347	Kagawa, T
Ito, Y	Jewell, R.E 2134	Kagohashi, Y
Itoh, S 444	Jeyapalan, R.K 157	Kairiunas, R 1794
Itoh, T	Jezequel, L 644	Kajikawa, Y
Itou, S 699	Jiang, Zr	Kajita, T
Iwan, W.D	Jingu, T	Kalambur, S.G
Iwanami, K 1075	Joachim, C.A	Kaldas, M.M
Iwata, Y	Johannesen, N.H	Kalev, I
Iwatsubo, T 748, 749, 1337	Johns, D.J	Kalevras, V.C
Iyengar, R.N	Johnson, H.C 1084	Kalinowski, A.J 1557
Iyer, M.S	Johnson, E.R	Kalman, T.P 1321, 1322, 1323
Iyer, M.S	Johnson, E.S	Kalyanasundaram, N 2622
Iyer, M.S	Johnson, E.S	Kaiyanasundaram, N 2622 Kamei, H 2456
J Iyer, M.S	Johnson, E.S	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374
	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912
J	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274
	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912
J	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160	Kaiyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293	Kaiyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613
Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336 Johnston, J.F. .587	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336 Johnston, J.F. .587 Joly, R. .296	Kalyanasundaram, N.2622Kamei, H.2456Kamel, A.1374Kamph, E.1912Kan, C.L.274Kana, D.D.1311Kanada, K.2341Kanapenas, R.M.1613Kaneko, Y.2191Kaneta, K.368, 1929Kanki, H.263, 1587Kanninen, M.F.1522
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336 Johnston, J.F. .587 Joly, R. .296 Jonasson, J.E. .1251	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336 Johnston, J.F. .587 Joly, R. .296 Jonasson, J.E. .1251 Jones, A.D. .1743, 2608	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042
J Jackson, C	Johnson, E.S. .58 Johnson, J.C. .86, 1665 Johnson, J.J. .23, 1152, 1373 Johnson, J.N. .404 Johnson, J.R. .1046 Johnson, M.R. .1160 Johnson, N. .35, 293 Johnson, R. .721 Johnson, R.A. .408 Johnson, W. .786, 2289, 2336 Johnston, J.F. .587 Joly, R. .296 Jonasson, J.E. .1251 Jones, A.D. .1743, 2608 Jones, A.V. .1836	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390
J Jackson, C	Johnson, E.S	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784
J Jackson, C	Johnson, E.S	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903
J Jackson, C	Johnson, E.S	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641
J Jackson, C	Johnson, E.S	Karyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505
Jackson, C	Johnson, E.S	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505 Kapoor, S.G. 268
Jackson, C	Johnson, E.S	Kalyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505 Kapoor, S.G. 268 Kapp, J.A. 1437
Jackson, C	Johnson, E.S	Kaiyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505 Kapoor, S.G. 268 Kapp, J.A. 1437 Kapur, A.D. 823
Jackson, C	Johnson, E.S	Kaiyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505 Kapoor, S.G. 268 Kapp, J.A. 1437 Kapur, A.D. 823 Kar, A.K. 2524
Jackson, C	Johnson, E.S	Kaiyanasundaram, N. 2622 Kamei, H. 2456 Kamel, A. 1374 Kamph, E. 1912 Kan, C.L. 274 Kana, D.D. 1311 Kanada, K. 2341 Kanapenas, R.M. 1613 Kaneko, Y. 2191 Kaneta, K. 368, 1929 Kanki, H. 263, 1587 Kanninen, M.F. 1522 Kanoh, H. 141 Kanoria, M. 1042 Kanou, T. 1390 Kantola, R.A. 784 Kao, B.G. 1903 Kao, S. 1641 Kaplan, B.Z. 1505 Kapoor, S.G. 268 Kapp, J.A. 1437 Kapur, A.D. 823

Karadagan H. 2604	Kalls II 422 1059 2202	Kirls B.C. 1000
Karadogan, H	Kelly, J.J 422, 1958, 2202	Kirk, R.G
Karam, D	Kelly, J.M 87, 91, 1913	Kirkham, W.R
Karamchandani, K.C 1860	Kelly, S.G	Kirkner, D.J 2588
Kareem, A	Kelly, V.L	Kirsch, P.A 1878
Karihaloo, B.L	Kelpp, H.J	Kishida, K
Karlsen, L.K 2378	Kelsnil, M 176	Kishida, M
Karpel, M 1502, 1672	Keltie, R.F 1185	Kishima, A
Karpp, R.R 1460	Kelzon, A 1589, 1596, 1785	Kishimoto, R
Karshenas, S 1363	Kempner, L., Jr 373	Kitagawa, H
Karsick, R.V 937	Kendig, R.P 697	Kitamura, A 444
Kasper, P.K	Kennedy, D.S 970	Kitazawa, I 1428
Kasuba, R 1417	Kennedy, J.L2097, 2098	Kitazawa, Y
Katayama, T 1252	Kennedy, J.S	Kitis, L
Katinas, V.J	Kerber, G	Kiureghian, A.D 459, 1071
Kato, B	Kerlick, G.D	Klaber, K
Kato, O	Kerlin, R.L	Klatte, R.J 591
Katsamanis, F 1735		
	Kermes, J	Kleckner, R.J
Katz, R	Kern, D.L	Kligman, R.L
Kaul, R.K	Kerr, A.H	Kliman, V
Kausel, E	Kerstens, J.G.M 2633	Kline, W.A
Kausinis, S 1794, 1795	Kesler, J.K	Kloster, M
Kavazanjian, E., Jr 19	Khalil, T.B 2142	Kluesener, M.F
Kawabata, N 2155	Khalvati, M 1100	Klyatskin, V.I 2470
Kawachi, K	Khan, E.U	Knauss, W.G 1082
Kawahara, Y 1933	Kholodilov, O.V505	Knight, W.C
Kawai, R 748, 749, 1337	Khuri-Yakub, B.T	Knudson, W.C
Kawai, S 1007	Kida, S 1203	Ko, D.R 1154
Kawai, T	Kielb, R.E	Ko, N.W.M 2542
Kawamoto, S 410	Kietczyński, P 703	Ko, P.L
Kawamura, T 833	Kiger, S.A	Kobatake, K 1472
Kawano, O 165	Kikuchi, K 1341	Kobayakawa, M 1390, 1393
Kawarada, H 2456	Kikuchi, T	Kobayashi, A.S 1729
Kawata, Y	Kim, CH	Kobayashi, H
Kawatani, R 1255	Kim, H.R 1195	Kobayashi, M
Kawatani, T	Kim, K.S 1082	Kobayashi, Y
Kay, S.M	Kim, K.U	Kobayaski, A.S 1528
Kaya, I 2082	Kim, R.R 2524	Kobori, T 2501
Kaza, K.R.V 2359, 2360	Kim, YH	Kobori, Y
Kazamaki, T 1410	Kim, Y.N 2530	Koch, R.A426, 2409
Kazao, Y	Kind, G.J 2551	Koch, T
Kazi, M.H	King, J.O 1799	Koh, AS 953
Keast, D.S	King, R	Kohler, W.E
Keck, D.W	King, R.J 588	Kohzu, I
Keefe, R.T	King, R.K	Koishikawa, A 1472
Keer, L.M	Kingsbury, D.L 855	Koizumi, H
Keighley, J 896	Kino, G.S 429	Kojima, E 1353
Keith, S.E795; 2345	Kioma, K	Kojima, N
Kellenberger, W 1344	Kiraly, R.L	Kolerus, J
Keller, C 506	Kirby, S.J	Költzsch, P 2066, 2295
Keller, C.L	Kirchgaessner, B 2060, 2064	Konami, S 1856
Keller, G.R 1908	Kirii, Y	Kopec, J.W 2403
,	,	12p 20p 21771 1 1 1 1 1 1 1 1 1 2 400

•		
Kosiński, W 1982	Kulesz, J.J	Lal, R
Koss, L.L 1358	Kulkarni, S.V 101, 2552	Lalanne, M 2068
Kolář, J	Kumar, A	Lallemand, J.P 1090, 1275, 2025
Kolesnikov, I	Kumar, B.R.K 2288	Lallement, G 1135
Koleyni, G	Kumar, M 2188	Lam, P 2682
Kollegger, J.P 14, 944	Kumar, V.K	Lambert, R.G 1078, 2248
Kondo, Y	Kume, Y	Lameris, J
König, J.A	Kummrow, R	Lamure, C
Konno, M	Kunar, R.R	Landolt, J.P714, 725
Koopmann, G.H 1244, 1245	Kundert, W.R 889	Landy, M.A
	Kundig, A	Lanes, R.F 1339, 2059
Kortüm, W 48	Kundu, T	Lang, G.F
Kosawada, T	Kunick, A 1987	Lang, M.A
Kossa, S.S 628	Kunio, T	Lang, O.R 805
Kostrov, V 1746	Kuno, T	Langdon, F.J 839, 2544
Kosuch, N 2640	Kunz, D.L	Langhout, E.K.O 977
Koszarny, Z	Kuo, C.P	Lapini, G.L
Kot, C.A 497, 762, 873	Kuo, P.S	Larder, R.A
Kottke, J.J 730	Kurakake, Y	Lardner, R.W
Koumousis, V.K	Kurian, J	Large, J.B
Kovac, J	Kurihara, K	Lark, R.F 622
Koval, L.R 984	Kurilo, R 1616	LaRocca, P.W 2454
Kovari, Y 2396	Kurimoto, K 576	La Rosa, J.A
Koyama, T 416	Kurkov, A.P 1606	Larsen, O.C
Kozánek, J 2479	Kuroda, M	Larson, E.W 2120, 2132
Kraan, A.N 1654, 2105	Kurohashi, M	Lasagna, P.L 2368
Krassovskaya, I.V 162	Kurzweil, L.G 50	LaSalle, F.R
Krause, W	Kusama, H 1946	Lassiter, W.S 618
Krauter, A.I	Kushner, A.S 2419	Latorre, R
Krawinkler, H 1094, 1232	Kuttler, J.R 658	Lau, S.L
Kreiss, HO	Kuzmin, A 1596, 1785	Lauer, E.W
Krenk, S	1.02/11/17/1.	Laura, P.A.A 391, 528, 656, 657,
Kreuzer, E		2395, 2573
Krishna, R	•	Lauson, R.J 437
Krishnan, A920	L	Law, E.H
Kritzner, B		Law, G.E
Kropac, O	Laananen, D.H601	Lawrence, W 1272
Kroschel, K	Labanieh, S 1862	Layman, W.E
Kross, D		Leach, J.W 1493
Kross, D.A	la Cour Christensen, P 2681	Leatherwood, J.D 2111
Krouse, J.K 534	Lagally, H.O	Leaver, D.E
Krousgrill, C.M., Jr 2402	Lagarde, A	Lecoanet, H
Kruger, W.D	Lagasse, B.K 1758	Ledbetter, H.M 899
Kruzins, E	Lager, D.L	Lee, B.J
Ku, CC	Lagerkvist, L	Lee, C.S
Kubie, J	Lagorio, H.J 547	Lee, D 688
Kubozuka, T 1854	Lagutov, Y.P	Lee, E.G.S
Kucinskas, B1772, 1818, 1819	Lai, SS.P	Lee, G
	Laithier, B.E	Lee, H.K
Kuculay, F 1006		
	Lakin G.C. 2538	ee -W
Kugler, B.A 1974, 1975	Lakin, G.C	Lee, JW

Lee, JY	Lim, E.Y1226, 1319	Luckey, R.W 2410
Lee, L.H.N 2187	Lin, C.J 1278	Luco, J.E 20, 161, 1102, 1362
Lee, M.Z	Lin, H.C 1270	Ludwig, L.P
Lee, P.Y 1757	Lin, IJ	Lueke, J.E
Lee, SC	Lin, J.H 2480	Luhrs, H 1759
Lee, SL 22, 1220, 2190	Lin, P.L 1828	Luhrs, H.N
Lee, S.Y 593	Lin, S 2491	Luk, Y.W
Lee, T.S 2421	Lin, T.H 1523	Luker, L.D 196
Lee, V.W 1861	Lin, T.W	Lukose, K
Lee, YC 273	Lin, W.H	Luksyte, V 1680
Leech, C.M 2424	Lin, Y.K 940, 1364, 2080, 2170	Lund, H.T
Lees, A.W 1435	Lindgren, G574	Lund, J.W 2057
Lefrancg, J.P 2554	Lingener, A 2233	Lundberg, B
Leggat, L.J 2097, 2098	Linhart, V	Lunden, R 382, 1511, 1912
Łęgowski, Z	Link, M 604	Luongo, A
Lehman, L.L	Lipowczan, A	Luquet, P 1530, 2612
Lei, P.C.K	Lips, K.W	Lurie, K.A
Leimbach, K.R	List, H.A	Luz, E
Leipholz, H.H.E 126, 2247	Listvinsky, G 1720, 1724	Lynch, J.F
Leis, B.N	Liszka, E.G 1966	Lyon, R.H., 844, 1243, 1804, 2627
Leissa, A.W 127, 627, 659, 669,	Little, L.L	Lyothier, R
	Liu, D	Lysmer, J 241, 450, 1567
Lemon, D.K	Liu, D.K	Lyttle, H
Lensing, J		Lyttle, n
_	Liu, HW	
Lenz, E	Liu, K.C	
Leon, N.L	Liu, S.C 943	M
	1 % V 6	171
Leonard, J.W 2380	Liu, Xh	101
Leonard, J.W	Liu, YC 1954	
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940	Liu, YC	Ma, J.J
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467	Liu, YC	Ma, J.J
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. .26 Llorens, R.F. 1941	Ma, J.J
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380	Ma, J.J
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, U. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39,
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, U. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059	Liu, YC.1954Livesey, J.L.1503Llopis, J.L.26Llorens, R.F.1941Lo, A.1935, 2380Lo, T.Y.1152Locke, G.E.951Lodge, J.H.1537Loeffler, C.M.2646Loewenthal, S.H.105Loewy, R.1703Longinow, A.2222	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39. . 1883 Madan, V.P. 407
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39 . 1883 Madan, V.P. 407 Madarame, H. 675, 1047
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294 Lothe, J. 430	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madrame, H. .675, 1047 Maddah, E. .73
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. .1149
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. .1149 Madden, R. .28
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39. . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. .1149 Madden, R. .28 Madigosky, W.M. .708
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, U. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39. . 1883 Madan, V.P. 407 Madarame, H. 675, 1047 Maddah, E. 73 Madden, P.A. 1149 Madden, R. 28 Madigosky, W.M. 708 Madsen, P.H. 2423
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, U. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601 Licht, L. 109	Liu, YC	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39. . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. 1149 Madden, R. .28 Madigosky, W.M. .708 Madsen, P.H. .2423 Maeaetaenen, M. 305
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601 Licht, L. 109 Lichtenberg, G. 1590	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294 Lothe, J. 430 Love, W.J. 1729 Lovegrove, J.M. 1020 Lowak, H. 2443 Lowen, G.G. 735 Lowrey, D.L. 2540 Lozzi, A. 792	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39. . 1883 Madan, V.P. 407 Madarame, H. 675, 1047 Maddah, E. .73 Madden, P.A. 1149 Madden, R. .28 Madigosky, W.M. .708 Madsen, P.H. .2423 Maeaetaenen, M. 305 Maeda, T. 1856
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601 Licht, L. 109 Lichtenberg, G. 1590 Liebich, R.E. 156	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294 Lothe, J. 430 Love, W.J. 1729 Lovegrove, J.M. 1020 Lowak, H. 2443 Lowen, G.G. 735 Lowrey, D.L. 2540 Lozzi, A. 792 Lu, L.K.H. 810	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. 1149 Madden, R. .28 Madigosky, W.M. .708 Madsen, P.H. 2423 Maeaetaenen, M. 305 Maeda, T. 1856 Maekawa, S. 1397
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601 Licht, L. 109 Lichtenberg, G. 1590 Liebich, R.E. 156 Lifshitz, J.M. 1953	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294 Lothe, J. 430 Love, W.J. 1729 Lovegrove, J.M. 1020 Lowak, H. 2443 Lowen, G.G. 735 Lowrey, D.L. 2540 Lozzi, A. 792 Lu, L.K.H. 810 Lu, LW. 681	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. 1149 Madden, P.A. 1149 Madsen, P.H. 2423 Maeaetaenen, M. 305 Maeda, T. 1856 Maewal, A. 671
Leonard, J.W. 2380 Leonhard, M. 804 Lepik, Ü. 1940 LeQuoc, S. 467 Lester, S.A. 2197 Lesueur, C. 2183, 2184 Leventhall, H.G. 1957 Levin, H. 547 Levine, J.N. 2278 Levy, R. 1119 Lew, H.S. 246 Lewis, D. 1301 Lewis, D.W. 2059 Leyendecker, H.W. 515 Li, D.F. 104 Li, Pz. 1058 Li, Y.P. 2240 Liasjø, K.H. 2204 Liburdy, J.A. 2601 Licht, L. 109 Lichtenberg, G. 1590 Liebich, R.E. 156	Liu, YC. 1954 Livesey, J.L. 1503 Llopis, J.L. 26 Llorens, R.F. 1941 Lo, A. 1935, 2380 Lo, T.Y. 1152 Locke, G.E. 951 Lodge, J.H. 1537 Loeffler, C.M. 2646 Loewenthal, S.H. 105 Loewy, R. 1703 Longinow, A. 2222 Lorett, J. 935, 2293, 2294 Lothe, J. 430 Love, W.J. 1729 Lovegrove, J.M. 1020 Lowak, H. 2443 Lowen, G.G. 735 Lowrey, D.L. 2540 Lozzi, A. 792 Lu, L.K.H. 810	Ma, J.J. 2354 Ma, S.M. 286, 1225 Maa, Dy. 1058 Maass, D.P. 185 MacAdam, C.C. 1386 MacBain, J.C. 303 Mace, B.R. 1031 Macinante, J.A. 996 MacLaughlin, T.F. 36, 37, 39, . 1883 Madan, V.P. 407 Madarame, H. .675, 1047 Maddah, E. .73 Madden, P.A. 1149 Madden, R. .28 Madigosky, W.M. .708 Madsen, P.H. 2423 Maeaetaenen, M. 305 Maeda, T. 1856 Maekawa, S. 1397

Maffei, L	Marshall, D.B	McCormick, D
Maga, L.J 446, 615, 2635	Marshall, R.D	McCoy, J.J 1966
Magin, W479	Marston, P.L 855	Mccroskey, W.J 170
Mahin, S.A 17, 33, 2307	Martelli, F	McCune, J.E 1845
Mahmoud, M.AM.M 395	Martens, M.J.M 2521	Mccurdy, D.A 2343
Mahrenholtz, O 620	Marti, J	McCutchen, D.K
Maidanik, G 615, 1944, 2635	Martin, D.J 2138	Mccutcheon, W.A
Maier, G	Martin, D.U	McDaniel, S.T
Maiguma, T	Martin, J.B 456	McDaniel, T.J 1895
Maine, R.E 531, 535, 923	Martin, R.M	McDonald, J.R
Maino, G	Martin, V	Mcelman, J.A
		McElroy, J.W
Maita, M	Martinek, F	• •
Majerowicz, S 891	Martinez, D.R	Mcgary, M.C
Majhi, S.N	Martini, W.R	McGary, M.C 2651
Major, R.A	Martins, J.A.C 822	Mcgehee, C.R
Mak, R.YP	Maruyama, N	McGevna, V.G 2317
Makarewicz, R 158, 2210	Marzetta, T 847	McGinty, J.R 192
Makay, E 807	Masri, S.F 222, 616, 1317	McGrew, J.A1321, 1322, 1323
Mal, A.K	Massalas, C 2597	McGuinn, E.J 1046
Malanoski, S.B	Masubuchi, M 141, 994, 1255	McIntosh, S.C., Jr
Malik, M	Masure, B 2554	McKinnis, G.C 2115
Mallik, A.K 1911	Matkowsky, R.J 1033	McKinnon, R.A 58
Maly, W 2558	Matsukura, Y1	McLain, D.A 912
Mandl, G	Matsumura, M 2451	McLaughlin, D.K 307
Manfrida, G	Matsushita, O	McLean, D 2328
Mang, H.A	Matsuzaki, Y	McIlveen, E.R
Mangiavacchi, A 961	Matteo, N.J	McMechan, G.A 2422
Mannion, L.F	Matthees, W	McNiven, H.D 1701, 2082
Manuel, J	Matthew, G.K 635	McQuillen, E.J 1941
Manolis, G.D	Mattioli, F	McReynolds, E
Manor, H	Maurin, M	McSmith, D.D 2349
Manrod, W.E 949	May, T.W 1494	Mead, D.J
Mansfield, E.H 1886, 2333	Mayer, K.P	Meade, K.P
Mantay , W.R 1594	Mayes, R.L 2303	Mechel, F.P
Mantus, M 2056	Mayes, W. 1	Medaglia, J.M
Manuel, J 2684	Mayne, R.W	Medina, F
Mar, J.W 185	Mayo, R.A	Medina-Melo, F.J 1109
Marais, J.J	Maziarka, S	Medžiauskiene, A.A 2027
Marcotte, P 1647	Mazlack, S.W 636	Meechum, W.C
Marino, P 2069	Mazumdar, J 653, 1208, 1456	Meeks, C.R
Mark, W.D	McAllister, W.J	Mehta, K.C 567
Markauskaite, G 1719	Mcardle, J.G 1062	Mei, C 2175
Markert, R	McCarthy, M.F 1980, 2472	Meier, HE 1289
Markus, S	McCarty, J.L99	Meirovitch, L
Marple, S.L., Jr 893	McCarty, P.E 1002	Mejia, L.H
Marquart, E.J 1091	McCauley, W.R 1760	Mellor, M 2497
Marquis, E.L 1022, 1023	McClintock, F.A	Mellen, R.H
Marsh, A.H	Mccloud, J.L	Meltzer, G 2139
Marsh, C 2078	Mccloud, J.L., III 1171	Menck, H.C
Marsh, K.J	Mccolgan, C.J 265	Menning, R.H
Marshall, A 1423	McConnell, K.G 1942, 2379	Menthe, R.W

44		14 : 5 :
Meridith, R.W 1060	Mixson, J.S	Morris, R.L 1352
Merklinger, H.M 2098	Miyake, Y	Morrison, D
Merovich, A.T 2507	Miyazono, S 833	Morrison, D.G 811, 1054
Merrill, W 2478	Mizuno, M	Morrow, C.T 2216
Merritt, R.G 1889	Mizusawa, T 2477	Morton, K
Mertz, D.R	Mizutani, K	Mosimann, J 800
Messinger, R.H 1927	Mlakar, P.F 1092	Moss, G.M
Mestre, V	Modig, C	Mota Soares, C.A 822
Metcalfe, R	Moe, G	Mote, C.D., Jr 1140, 1141
		Motegi, M
Metwalli, S.M	Moehle, J.P	
Metzger, F.B	Moes, J	Motogi, S
Meyers, B.L	Moffa, A.L	Moulder, R 2504, 2617
Меууарра, М	Moffatt, J.A 1358	Muffoletto, A.J 2484
Mgana, C.V.M 2408	Moffett, M.B 848	Mühlbauer, K
Micci, M.M 1402	Mogil, E 2120	Mukhopadhyay, M 1448
Michalak, R.F 1787	Mohammad, A.Q 384	Mulcahy, H.W 1901
Michalopoulos, D 258	Mohammadi, J 2198	Mulcahy, T.M 1272, 1376
Michalson, G.M 1072	Mohan, D 1899	Mulder, J.A 1891
Michelberger, P 2322	Mohapatra, R.B 439	Muleski, G.E 412
Michimura, S 1000	Möhring, W 2401, 2605	Muller, G 502
Micklow, J	Moite, S.M	Müller, P.C
Midha, A	Moler, C.B	Munasamy, K
Miedlar, M.J 1658	Möller, E	Munjal, M.L 1742, 2095, 2152
Mielke, S	Molnar, A.J 2062	Mura, T
		Muraca, R.J
Migliore, H	Molusis, J	
Mih, D.T	Moncarz, P.D 501, 1094	Murakami, H
Miles, J.H	Montagnani, M	Muramoto, Y
Miles, J.W 2475	Montano, C	Murata, M
Miller, C.J	Montgomery, E 1727	Murata, S
Miller, D.W 1258	Montroll, M.L	Murdoch, A 216, 217, 218
Miller, G.N 1536	Moog, R 2126	Murin, J 172
Miller, J.W734, 1096	Mook, D.T 2636	Muro, H 1412
Miller, N.P 1327, 1360	Moore, E.F 835	Murphy, A.C 62, 63
Miller, R.M 2017	Moossavinejad, S 1011	Murphy, B.T 555
Miller, V.R 783, 1657, 1780	Mor, G 1953	Murphy, J.R
Miller, W.H 909	Moran, D.D 2065	Murphy, R.C 1603
Miller, W.R 1885	Mörch, M 1016	Murray, R.C 286
Millot, P 2184	Mordfin, L 509	Murri, W.J
Mills, R.S 1620	Moreira, T	Mustin, G.S
Milukiene, V 1617, 1768	Morelli, T.A	Muszynska, A 799
Minagawa, S	Moretti, P.M 1736	Muthuraman, G 2116
Minamida, K	Morfey, C.L837	Myklebust, A
Mioduchowski, A	Morgan, R.M	Wykiebust, A
Mirghaderi, R	Morganstein, D.R	
Misra, A.K	Mori, H	N
Mitchell, L.D	Morisako, K	
Mitchell, R.A	Morisawa, M	
Mitchell, S.K	Moriwaki, N	Naab, K
Mitsopoulou, E	Morman, K.N., Jr 1903	Nachman, A 1431
Miura, H 1766	Morris, D.L 2112	Nack, W.V 93, 220
Miwa, T 2341	Morris, I.R 2177	Nagaike, M 936

Nagakura, H 1353	Nelson, T.A	Norville, H.S
Nagamatsu, A 530, 936, 1000,	Nemat-Nasser, S 221, 277, 869	Nour-Omid, B 459
	Nemec, J 187	Nowinski, J.L 1443
Nagamatsu, B	Nemecek, J 790	Nowotny, B
Nagamori, K 1926	Nepomuceno, L.X 1291	Numrich, S.K
Nagar, A.K 2205	Netuka, H 2462	Nuspl, S.P 611
Nagaraj, V.T 1409	Neu, J.C 168	Nyby, D.W 280
Nagaraja, K.S	Neubert, J.A	
Nagaraja, S.R	Newaz, G.M	
Nagarkar, A.P 2440	Newbrough, D.E 2130	0
Nagaya, K 643, 647, 1693	Newcombe, W.R 1195	
Nagpal, A.K	Newlon, C.E	
Nagtegaal, J.C 1903	Newman, J.S 609	Oba, T
Nagy, E.J 320, 323, 533, 1827	Newsom, J.R315, 316	Obeid, V
Nahman, N.S 1792	Newton, R.E 442	Oberkampf, W.L310
Nair, S 1385	Nezu, K 1449	O'Brien, W.F., Jr 6
Nakagawa, K 1996	Ng, W.K 139	OConnell, J.M 2406
Nakai, E 2106	Nguyen, T.C 672	O'Connell, W.J
Nakai, M 435, 436, 2426	Ni, CM	O'Connor, G.M 2132
Nakajima, T	Ni, Hl	Oda, J 1203
Nakamura, H 1525	Niazy, A	O'Day, J
Nakamura, T 1027	Nicolas, D	Ogasawara, T
Nakamura, Y 1186	Nicholas, J.C 108, 1603	Ogata, K
Nakashima, M 681	Nicholson, D.W 2272	Ógüt, T 1286
Nakasone, Y 1527	Nicklason, G 871	Ohashi, H 1350, 1604
Nakaya, H	Nicoletti, J.P 2507	O'Hearne, C.S 2148
Nakazawa, H 1525	Nielsen, A	Ohmae, H 1382
Nakkula, W., Jr 569	Nielsen, M.T 2088	Ohmi, M1461, 1462
Nakra, B.C 1696	Nielson, C.E 1351	Ohno, H 1871
Namura, K 1675	Nielsen, J.N	Ohtake, Y
Nanasi, T 1694	Nielsen, L.E 1261	Ohtsu, M 1963
Nara, H	Nieter, J.J 2657	Okada, K 576
Naraikin, O 1733	Nigel Priestley, M.J.N 2169	Okami, Y 1382
Narayanan, G.V 1112	Nigm, M.M	Okamoto, N 1007
Narayanan, S 650, 1444	Nilsson, A 2140	Okaue, M
Narita, M 630	Nishimura, T 1529	O'Keefe, E 570
Narita, Y	Nishioka, T 887	O'Keefe, W 142
Navaneethan, R	Nisitani, H	O'Keeffe, J.M 1873
Nayfeh, A.H 864, 1025, 1036,	Niwa, A 1218, 1372	Okubo, H 1390
	Niwa, Y 1963	Okubo, T 2154
Neal, T.R 1460	Nixon, D	Okumoto, S 2451
Neathammer, R.D437	Niyogi, A.K	Okumura, K 1547
Nefske, D.J 1384, 1879	Noback, R	Olhoff, N
Neidhardt, R 1418	Noble, D.F 1762	Olivier, R 1782, 1783
Neise, W 7, 1349, 1847, 1848,	Noble, G.T 508	Olsen, C.W 1064
	Noda, T 413	Olsen, W.A
Nellessen, E	Nökleby, J.O	Olsson, E 2140
Nelson, H.D	NoII, T.E	Olszewski, J.S 1098
Nelson, P.A 837, 874, 1406, 2606	Nordgren, R.P 1645	On, F.J
Nelson, R.B	Norris, T.R	Onesto, A.T
Nelson, R.L1044, 2510	Norton, M.P	Onishi, H 1988

Ono, T	Pandit, S.M 758	Pedersen, P.C 2616
Ookuma, M 530	Panicker, V.B 1742	Pedersen, P.T
Oppenheim, B.W 1426	Panuszka, R	Peirce, S 1882
Oppenheim, T 1123, 1124	Papadakis, J.S 688	Pekau, O.A 1708
Orahata, I 1461	Papageorgiou, E.A 1217	Pekeris, C.L
Ordubadi, A 1804	Papastavridis, J.G 1549, 2669	Pekrul, P.J 1542
O'Rourke, M.J 1495	Pappa, R.S 2678	Peleg, K
Ortolano, R.J 102	Paramasivam, P 1220, 2190	Peloubet, R.P., Jr 1166
Oshima, M	Paramonov, A 1796	Pennise, S 1542
Osman, M.O.M 466, 1678, 1679	Parbery, R.D 1939	Pennock, G.R 634
Osmundsen, E	Pardee, W.J 197	Penzes, W.B2012, 2645
Oster, P 906	Parhi, H	Penzien, J
Ostiguy, G.L 1705	Park, K.C 537, 1896	Perkins, J.S
Osugwu, C.C 1803	Park, R	Permezel, P 1865
Ota, H	Park, S.K	Perraud, J.C
-	Park, YS	Perrault, J.E 536
Otomo, K		
Ott, J.H	Parker, R.J	Perry, B
Ottl, D 2490	Parkus, H	Persoon, A.J
Ouellette, PE	Parmanen, J	Persson, J
Outlaw, D.G	Parmelee, R.A 1622	Peterson, B
Overvik, T	Parmigiani, F	Peterson, D
Owen, G.N	Parnes, R 376, 377, 2165	Petersson, B2679, 2680
Ozguven, H.N 482	Pascal, J.C	Petrauskas, KR 1818, 1819
	Parsell, J.K 1005	Pettigrew, M.J 1463, 1471
	Parsons, N.E 1855	Petyt, M
P	Pascal, M.T 1191	Pfeiffer, R
	D : 11	Maridana I/ A000
	Pasic, H	Pfleiderer, K
	Pasricha, M.S557	Pfutzner, H 870
Pacejka, H.B 100	Pasricha, M.S	Pfutzner, H
Pacejka, H.B 100 Pachter, M 1934	Pasricha, M.S.	Pfutzner, H
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010	Pfutzner, H.
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030
Pacejka, H.B. . 100 Pachter, M. . 1934 Paddy, R.H. . 2021 Padgaonkar, A.J. . 1881 Padmanaban, K. . 1893	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659	Pfutzner, H. .870 Philips, G.J. .2030 Phillis, Y.A. .2047 Phoenix, R. .743 Pica, A. .1030 Pickett, M.A. .1182, 2351
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746	Pfutzner, H. .870 Philips, G.J. .2030 Phillis, Y.A. .2047 Phoenix, R. .743 Pica, A. .1030 Pickett, M.A. .1182, 2351 Piechor, K. .1979
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860	Pfutzner, H. .870 Philips, G.J. .2030 Phillis, Y.A. .2047 Phoenix, R. .743 Pica, A. .1030 Pickett, M.A. .1182, 2351 Piechor, K. .1979 Piegert, H.G. .1611
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. .743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. .665
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. 665 Pietra, L.D. 2550
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308	Pfutzner, H. 870 Phillips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. 665 Pietra, L.D. 2550 Pifko, A.B. 2056
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. 665 Pietra, L.D. 2550 Pifko, A.B. 2056 Pilgrim, R. 563
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. 665 Pietra, L.D. 2550 Pifko, A.B. 2056 Pilgrim, R. 563 Pilkey, W.D147, 233, 1598, 1894,
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432	Pfutzner, H
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509	Pfutzner, H
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393	Pfutzner, H
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713 Pall, A.S. 2078	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, R.E. .1739	Pfutzner, H
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713 Pall, A.S. 2078 Palladino, J.A. 2291	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, R.E. .1739 Peacock, T.V. .51	Pfutzner, H
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Paulschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, R.E. .1739 Peacock, T.V. .51 Pearce, H.T. .745	Pfutzner, H
Pacejka, H.B	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pawlowska, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, R.E. .1739 Peacock, T.V. .51 Pearson, D.S. .2019	Pfutzner, H. 870 Philips, G.J. 2030 Phillis, Y.A. 2047 Phoenix, R. 743 Pica, A. 1030 Pickett, M.A. 1182, 2351 Piechor, K. 1979 Piegert, H.G. 1611 Piersol, A.G. 322, 2273, 2541 Pierucci, M. 665 Pietra, L.D. 2550 Pifko, A.B. 2056 Pilgrim, R. 563 Pilkey, W.D. 147, 233, 1598, 1894, 2227, 2337 Pines, S. 1392 Pinkus, O. 1924, 1931 Pinnington, R.J. 1667, 2255 Pinsòn, L.D. 2119 Pipes, R.B. 2440 Pirvics, J. 1192
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713 Pall, A.S. 2078 Palladino, J.A. 2291 Palm, W.E. 2127 Palmberg, B. 2373 Palmer, J.E. 1178	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, T.V. .51 Pearce, H.T. .745 Pearson, D.S. .2019 Pearsons, K.S. .59	Pfutzner, H
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713 Patl, A.S. 2078 Palladino, J.A. 2291 Palm, W.E. 2127 Palmberg, B. 2373 Palmer, J.E. 1178 Palumbo, D.L. 88	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, R.E. .1739 Peacock, T.V. .51 Pearson, D.S. .2019 Pearsons, K.S. .59 Peck, L.G. .2107	Pfutzner, H
Pacejka, H.B. 100 Pachter, M. 1934 Paddy, R.H. 2021 Padgaonkar, A.J. 1881 Padmanaban, K. 1893 Padovan, J. 468, 1303, 1313, 1504, 2682 Pafelias, T.A. 361 Paidoussis, M.P. 817, 1464 Paladino, R.C. 31 Palaniswami, S.A. 2116 Palazotta, A.N. 300 Palazzolo, A. 1894 Palazzolo, A.B. 518, 2458 Palgen, L. 571 Paliunas, V. 1713 Pall, A.S. 2078 Palladino, J.A. 2291 Palm, W.E. 2127 Palmberg, B. 2373 Palmer, J.E. 1178	Pasricha, M.S. .557 Pastel, R.L. .61 Patasiene, L. .1602, 1719 Patel, M.H. .1010 Pater, L.L. .2417 Patnaik, S.N. .2659 Patrick, R.P. .746 Pattabiraman, J. .1860 Patten, A.J. .369 Paul, B. .47 Paul, D.B. .2175 Paul, H.S. .1308 Pausch, E. .2282 Pauschke, J.M. .1859 Pawlowska, V.I. .432 Payne, B.F. .509 Payne, P.R. .393 Peacock, T.V. .51 Pearce, H.T. .745 Pearson, D.S. .2019 Pearsons, K.S. .59	Pfutzner, H

Piva, R 2044	Purcell, W.E 2487	Ranta, D.E 2419
Platzer, M.F1395, 2358	Pust, L 1694	Rao, A.K 1900
Plaut, R.H	Putnick, L.J 1033	Rao, A.R 481
Play, D 1415	Pyatt, K.D 1486	Rao, B.K.N 2141
	1 yatt, N.D 1400	
Plotkin, K.J 159, 1634, 1635		Rao, J.S 4, 1132, 1677, 2552,
Pluchino, S 2420		
Plundrich, J	Q	Rao, S.S
Plunt, J		Raske, D.T
Plzak, G.A 1657, 1780		Rasmussen, G 2342
Pochylý, F 1776, 2462	Qin, Y.W	Rasmussen, K.B 860, 2096
	Quam, D.L	•
Pocius, Z.J 2027		Ratekin, G.H
Polak, E	Queeney, R.A 1080	Rath, R.C
Polák, J 176	Quinn, B	Rathgeber, R.K 586
Pollock, S.J	Quinn, D.W 1738	Raupach, E946
Pontius, P.E 484		Rausch, H
Pope, J 1869		RaviChandar, K 2643
Pope, L.D 1411, 2535, 2536,	R	Ravindran, R
	•••	Ravner, H 1004
Pope, R.J 661		Rawls, E.A 2133
Popescu, M 958	Raad, H.R	Raymund, M 1104
Popov, E.P 33, 146, 1232	Raasch, W 1284	Ready, J.M 2171
Popov, M.M 1295	Rades, M	Rebello, C.A 2386
Popplewell, N	Radhakrishnan, N	Rebello, C.J
Porter, C.S	Radkiewicz, R.J	Reddy, A.S.S.R 989
Porter, R.P	Radlinski, R.P 1216	Reddy, C.P
Potochi, M.L	Radon, J.C	Reddy, E.S
Pototzky, A.S	Rafajfowicz, E 1565	Reddy, G.M
Poulos, H.G 2311	Ragan, C.E 863	Reddy, J.N 128, 133, 667, 829,
Powell, B.E 1079	Ragulskiene, V., 1747, 1748, 1772,	1034, 1710, 1711, 2181, 2182,
Powell, C.A		
Prasad, B	Ragulskis, K 1602, 1616, 1617,	Reding, J.P 1508, 1664, 2564
Prasad, P 1881, 2622	1768, 1795	Reed, G.A.L 2090
Prasertsan, S	Rahl, R.G 1723	Reed, J.W 455
Pratt, H.K	Rains, D.J	Reed, R.E., Jr 872
Pratt-barlow, C.R 64	Rajagopalan, A2517, 2518	Reed, W.H., III595, 597
Prendergast, J.D	Rajski, C	Rega, G
		Reichert, J.K
Presles, HN	Raju, D.P	•
Pretlove, A.J	Raju, P.K	Reilly, J.P
Price, J.M 2339	Ram, C.S.N	Reinfurt, D.W
Price, W.G	RamaChandran, P.V 299, 963,	Reinhart, T.E 2070
Pridham, R.G927		Reiss, E.L
Prins, D 956	Ramamurti, V 1718	Reitherman, R
Priser, D.B	Ramaswami, R 2453	Remington, P.J 967
Pritz, T	Ramberg, S.E	Renger, A 2049
Proctor, T.M., Jr	Ramchandani, M 1727	Rennison, D.C
Proepper, U	Ramulu, M	Renkey, E.J
	-	Rennie, J.M
Prohl, M.A	Rand, J.L	
Proskovec, J	Rand, R.H	Rennison, D.C
Prucz, J	Randall, R.B 1813	Retka, T.J
Prybutok, R	Randall, S.E 614	Rettig, T
Psycharis, I.N 2305	Randolph, M.F 2311	Revach, S

Revell, J.D	Rogers, S.C	Ruspa, G
Rice, E.J 144, 1059, 2109	Rohn, D.A 105	Russell, R.E
Rice, J.S	Rohr, P.R 1899	Rutenberg, A234, 2081
Rice, N.E	Rohwer, K 1120	Rutherford, S.R
Rice, R.C 1517, 1519	Roland, J 2400	Rutishauser, H.J 1671
Rich, M	Rolsma, B 766	Ruzicka, G.C164
Richard, J 296	Romo-Organista, M.P 241	Rybicki, E.F 1224
Richards, E.J 683	Rood, J.D 2075	Rymarz, Cz
Richman, R.H 2283	Rooke, J.H 1595	Rymers, P.C 2259
Richmond, J.A51	Rooney, G.T 1995	
Richter, B 577	Rosakis, A.J 179	
Ricketts, D 716	Rosati, V.J 2352	S
Rickley, E.J 46, 978	Rose, J.L 1797	
Rieger, M	Rosen, B.W 2440	
Rieger, N.F 520, 521, 1326	Rosenbaum, E.S 2113	Saatcioglu, M1478, 1622
Riegner, D.A 1777, 2006	Rosenhouse, G	Sabatauskiene, V 1772, 1821
Ries, J.P 648	Rosenthal, F 641	Sachs, G 1653
Riffel, R.E 9, 1917	Roskam, J	Sack, R.L
Rihal, S.S 840	Rostafinski, W	Sackman, J.L
Riley, N 400	Rosman, R 275	Sackmann, G.W 1262
Rill, G 2525	Ross, C.F 1491, 1492	Sadek, M.M 267, 564, 757, 1138,
Rind, E	Ross, D.F	
Ringh, U 1853	Ross, H.E., Jr 1024, 1880	Safford, F.B
Rippel, H.C	Rossini, T 489	Saito, H 2591
Ritchie, N	Rossmanith, H.P	Sagendorph, F544
Ritchie, R.O 1345	Rothrock, M.D 1917	Sae-Ung, S
Rittenbach, O.E	Rothschild, R.S 1802	Saga, Y
Ritter, J.E., Jr	Rotzstein, Y 1174	Saha, P 1236
Ritter, W	Roubik, S.G 432	Sahinkaya, M.N 1923
Rix, O 1169	Roure, A	Sahu, N 1409
Rixleben, J.H	Rousselet, J	Saiidi, M
Roberts, E.H 820	Roussos, L.A 1993	Saito, S
Robertson, R.G 1024	Rovetta, A 2298	Sakai, H
Robinson, A.R	Rowe, C.N	Sakai, T 630
Robinson, A.Z 691	Royston, D.L 1607	Sakamoto, H 1910
Robinson, E.E 863	Rubanik, V 1820	Sakamoto, L.W 1758
Robinson, W.H	Rubin, D	Sakata, T
Robson, J.D 2465	Rubin, L.I	Salah el din, A.S
Roche, J.P82	Rudder, F.F., Jr 1619	Salama, M 1548, 1822
Rock, S.M	Rudgers, A.J	Salim, AH 1480
Rockhausen, L	Rudiger, G 1989	Sallet, D.W
Rockwell, D 2604	Rudisill, C.S	Salmon, V
Rodabaugh, E.C	Rudowski, J 2229	Salmond, D.J
Rodal, J.J.A 651	Ruff, L.J	Salmonte, A.J 1496
Rodden, W.P 872, 1321, 1322,	Ruge, P	Salomone, L.A
	Ruhlin, C.L	Samaha, M.A
Rodman, C.W 2459	Rumble, R.H	Samali, B
Roehrle, H	Runyan, H.L.,	Samis, R.A
Roennberg, K	Rupert, C.L	Sánchez-Sesma, F.J 1983
Roesset, M	Ruschau, J.J	Sandler, BZ
Rogers, L 1724	Rusin, T.M 997	Sandler, I.S 1248, 1551

Sendmen, B.E 2529	Schmidt, H 1214	Seshadri, R
Sandström, S	Schmitt, B.V	Sessa, V.A
Senkar, S 2149	Schmitt, V 2335	Sestieri, A214, 2044
Senkar, T.S 466, 1198, 1677,	Schneider, C.P 1175	Setchell, R.E 493
	Schneider, L.W	Seth, B.B 2662
Sankewitsch, V 90	Schoen, D.W 2316	Seto, K
Santosa, F	Schoenberg, M847	Sevaldsen, E 1055
Serabudia, N.R 1101	Scholaert, H.S.B795, 2345	Severin, D
Sarlet, W	Scholes, W.E 839	Severn, R.T
Sarmiento, G.S 528	Scholl, R.E 952	Severud, L.K 408
Sasaki, O	Schomer, P.D335, 432, 437,	Sexton, M.R 6
Sasor, S.R968		Seybert, A.F 1608
Sassi, H	Schorpp, A 2157	Shah, A.H 1701, 1737, 1961,
Sathyamoorthy, M 130, 655,	Schott, G 178, 2250	2473, 2629
1211, 1706, 2575, 2586	Schoutens, J.E 1538	Shah, V.N
Šatkus, R 1616	Schreckenbach, H	Shaked, U
Sato, H 165, 1021, 1977	Schröder, KF 2436	Shalashilin, V
Sato, K	Schuetz, P.H 2119	Shanbhag, R.L650, 1444
Sato, S	Schuller, W.M 1061, 2206	Shang, EC 1488
Sato, T	Schultz, T.J	Shankara, T.S 2621
Sato, T.B	Schumacker, B 946	Shapiro, W 1920
Saul, R.A 36, 37, 39, 1883	Schumann, U	Sharan, A.M 2494
Saunders, D.S	Schurz, J.R 2010	Sharma, C.B
Savitskas, J 1629	Schutz, W	Sharma, J.P 1306
Savkar, S.D	Schwartz, H.S 2162	Sharma, S.M
Savulian, G	Schwartz, J.W	Sharman, P.W 1907
Sawdy, D.T	Schwerdlin, H	Sharp, B.H
Sayar, B.A	Schwetlick, H 1307	Sharpe, R.L
Saylor, D.M	Schwieger, E	Shave, D.F 1422
Scanlan, R.H 1990	Schwier, C	Shea, J.W
Scardina, V.M 1690	Schwirian, R.E834, 1560	Shearin, J.G54
Scarich, G.V	Scott, I.G	Shepard, W.L
Scarth, D.A	Scott, L.P	Shephard, G.D
Scavuzzo, R.J	Scott, R	Shepherd, I.C
Scawthorn, C.R	Šebková, H	Shepherd, K.P
Scerbakov, A	Seed, H.B	Shepherd, W.T 1405
Schaffar, M	Sehitoglu, H	Sherry, C.W1234, 1959
Schajer, G.S	Seibert, W	Sheta, M.A
• •	Seidman, H 541	Shibata, K
Schaufeld, J		
Schäufele, H	Seireg, A	Shibata, T
Schechter, R.S	Sekiguchi, H	Shieh, L.C
Scheelke, I	Selby, K	Shieh, R.C
Scheidt, D.C	Semenchuk, A	Shih, CF
Schenk, V	Semenov, A.N	Shih, TY
Scherger, A	Semrau W.R	Shimada, H
Schiehlen, W	Sensburg, O	Shimogo, T
Schilling, C.G2499, 2500	Senter, P.K	Shinar, J
Schilling, U	Seo, YT	Shindo, S
Schliekelmann, R.J 905	Seon, C	Shinomiya, Y994
Schlinker, R.H	Serbyn, M.R 2012, 2645	Shiohata, K 206, 1588, 2029
Schmerr, L.W 198	Sergeyev, V.I 2353	Shiomi, H

0.1.0	011	0. 14.0
Shioya, S	Skinner, G.T 1052	Soper, W.G
Shiraki, K	Skinner, M.S 2245	Sorek, S 2464
Shirai, M	Slabber, M.J.J 2296	Sotiropoulos, D.A161
Shirakawa, K1041, 2592	Slack, J.W 2627	Sotomayer, W.A 1888
Shiu, K.N 1477, 1479	Slagis, G.C	Sozen, M.A 811
Shladover, S.E 1158	Slazak, M , 590, 2327	Spanos, P-T.D 514
Shockey, D.A 182	Sliwinski, A	Spanos, T.D
Shoji, H 1604	Slotboom, D.R8	Sparks, J.F 524
Shoup, T.E 1686	Smalley, A.J 1810	Spector, J 1760
Shovlin, M.D	Smallwood, D.O	Spence, J.P 2466
Shuaib, A.N	Smiley, R.G726, 2013	Spence, P.W
Shukla, A 812	Smith, B.L	Spencer, R.H
Siddiqui, F.M.A 2381	Smith, C.C 1250	Speziale, C.G
Sidey, R 195	Smith, C.E 1697	Spies, K.H
Siekmann, J	Smith, D.A	Spilker, R.L
	•	·
Sigbjörnsson, R	Smith, D.J	Spillers, W.R
Sigillito, V.G 658, 1451	Smith, E.G 2330	Splettstoesser, W.R 2531
Sigman, R.K	Smith, I.F.C 1081	Sprinkle, D.R
Simiu, E 545, 546, 1366	Smith, J.W 2428	Spurk, J.H
Simkins, T.E 2270	Smith, M.H 584	Spychala, A
Simko, R.J 1531	Smith, M.J.T 1663	Spyrakos, C.C 2391
Simmons, H	Smith, P.D	Squire, L.C
Simmons, J.A 1965	Smith, P.R 2223	Srinivasan, K
Simmons, P.E 1605, 2372	Smith, P.W., Jr	Srinivasan, M.G
Simon, M.M 1216	Smith, R.A 1081, 2438	Srinivasan, V 2067
Simonis, J.C 420, 1046, 1097,	Smith, R.A.F	Staiano, M.A
	Smith, R.L 106	Stalford, H.L
Simons, N 216, 217, 218	Smith, R.S., III 365	Stallone, M.J 259, 358, 543
Simpson, A 2664	Smith, S	Standing, R.G 2516
Simpson, M.A 698	Snow, W.L 1541	Stange, W.A
Sinai, Y.L	Sobieczky, H538	Stanway, R
Sinclair, J.H	Sobieszczanski-Sobieski, J 1391	Stapp, J.P
Siney, A.V	Socie, D.F	Starkey, M.S
Singer, I.L	Sock, F.E	Staubli, T 1699
- •	Soda, N	Stavrinidis, C
Singer, J 385, 1213, 1458,		•
	Soderman, P.T	Stea, W
Singer, A 198, 199, 1806, 1922	Soderqvist, S	Steeb, WH
Singh, C	Soedel, W	Steele, J.M
Singh, D.V	Sogabe, Y 1996	Stefanides, E.J 1669
Singh, J.P 1063	Sol, J.C 207	Stefanou, G.D 1199
Singh, M.C 116, 1015, 1937	Solari, G	Steffen, W
Singh, R 1276, 2657	Soldatos, K.P	Stein, H 43, 44
Singh, R.P	Sollmann, H 2232	Steinberg, D.S 1753
Singh, S 1119	Somerton, W.H 2061	Steingroewer, G 2515
Singh, Y.P	Soni, A.H 2067	Stepanishen, P.R 686, 1271,
Singley, G.T., III 603, 1170	Soni, M.L 1833	1952, 2041
Sinha, P 806	Sonobe, T	Stephen, R.M 14, 944
Sinhasan, R 362, 370, 2370	Soo, H.SW	Stern, D 1779
Sitka, R	Soom, A	Sternfield, H., Jr
Sivaneri, N.T 1673	Soong, T.T 1052, 2150	Steussy, D
Skaistis, S.S	Soovere, J 1398	Stevens, R.A 2131
•		

Cananana I D 2006	Syck, J.M	Taoka, G.T 1618
Stevenson, J.D 286 Stevenson, S	Swamidas, A.S.J 1867	Taplin, L.B
Stewart, N.D	Swanger, H.J	Tassoulas, J.L 1554
Stone, J.R	Swanson, C	Tatara, Y
Storace, A.S	Syshchikova, M.P 162	Tate, R.B
Strang, J.M	Szata, W	Taubald, R
Straub, F.K	Szczerbicki, E 1650	Taylor, D.L 614, 757, 1260, 2288
Stravinskas, S	Szuwarzynski, A	Taylor, H.R 487
Strechenbach, J.M 2332	Ozdivalzynski, A	Taylor, J.I
Streeter, B		Taylor, R.E
Streit, R.D	т	Taylor, R.J
Striz, A.G 1499, 1501	•	Taylor, S
Strnad, M		Taylor, S.M 1178, 2137
Strenkowski, J.S	Tabaie, S	Teasdale, W.A
Striz, A.G	Taber, L.A	Tei, N
Stroud, R.C	Tadjbakhsh, I.G 2354	Tenma, K
Stroud, W.J	Tadros, R.N	Teplitzky, A.M
Strozeski, B 1271	Taflove, A	Terao, K
Stubbs, S.M	Tagart, S.W 1377	Terasaka, H
Stura, D	Tajirian, F.F 2087	Tesar, D 1290, 1298
Su, T.C	Takabatake, S 2072	Testa, A 1806
Subbaraj, K	Takagi, Y 1529	Tham, L.G 2174
Subrahmanyam, K.B 101, 2552,	Takahara, S 1468	Thasanatorn, C
	Takahashi, K 707	Thinnes, G.L
Succi, G.P	Takahashi, S 115, 832, 1045,	Thomas, D.L150, 1435
Sueoka, A		Thomas, D.W1803, 1812
Sugai, T 895	Takemiya, H 279	Thomas, G.D
Sugihara, K 1986	Takemura, M 928	Thomas, T.J 1385
Sugiura, I 1412	Takemori, M.T	Thomopoulos, N.T 2222
Sugiyama, Y 413	Takeshita, M	Thompkins, W.T., Jr 1845
Suh, C-M	Takeuchi, T	Thompson, A.G 348
Suhendra, R 961	Takezono, S 2397	Thompson, B.S 861
Sulkowski, W.J 1403	Taleb, I.A	Thompson, J.W., Jr 1002
Sullivan, B.R 1092	Tam, C.K.W 1069, 1892	Thornhill, R.J 1250
Sullivan, J.P	Tameo, R.P	Thornton, E.A 1993
Sullivan, P.A	Tamura, H742, 2287	Thornton, H.T., Jr 2119
Sun, F	Tan, C.S 1845	Thresher, R.W 1697
Sun, F.Z 1649	Tan, YP	Thunder, T.D 842
Sunada, W.H 1758	Tanahashi, T 410	Tian, Q
Sundararajan, C 1222	Tanaka, H 140, 1144, 1468	Tichy, J
Sung, S.H 1872	Tanaka, K 427, 1516, 1524, 1988	Tichy, J.A
Suryoutomo, H 1725	Tanaka, M 1419	Tidbury, G.H
Sutcliffe, W.G 1873	Tanaka, T	Tien, J.J.W 429
Sutton, C.D 1858	Tanaka, Y	Ting, E.C 2073
Suzuki, H	Tanglis, E 1241	Tischler, M.B
Suzuki, K 115, 832, 1045, 2318	Tani, S	Tischler, V.A
Suzuki, M	Tanna, H.K 1069, 1892	Tjøtta, J.N 1973
Suzuki, Y 1871	Tanner, J.A	Tiptta, S
Svalbonas, V 2093	Tanner, S.N	To, C.W.S
Sviridyonok, A.J 505	Tao, G	Tobe, T
Svoboda, C.M 991	Tao, K 2397	Tobias, S.A 1139, 1610

Tobin, K.A	Turner, R.L556	Vance, J.M 555
Tobler, W.E	Turrian, V	van den Berg, P.M
Toda, A 1986	Tustin, W 1789, 2654	van der Heijden, L.A.M 2521
Töenshoff, H.K 939	Tutka, J	Van der Woude, F 2299
Toma, S 2172	Tweed, L.W	Vandiver, J.K 960, 1642, 1805
Tomar, J.S 1447	Tyn, N.Q	Vandoren, P 613
Tominage, A 2155	Tylee, J.L	Van Duyne, D.A
Tomita, K	Tzivanidis, G	Van Gaasbeek, J.R 68, 1835
Tomita, N	Tzong, TJ	
Tomizuka, M	1201 y , 15	VanHandle, H.R
·		Van Khang, N 1008
Tondl, A		van Lieshout, R.A.J.M76
Topper, T.H 2247	U	van Nunen, J.W.G 1359
Torizumi, Y		Varadan, T.K
Torres, M.R 1378		Varadan, V.K 854, 1558, 1968,
Toth, S	Udwadia, F.E1067, 1068, 1563	
Toussi, S	Ueberall, H 1241	Varadan, V.V 854, 1558, 1968,
Towers, D.A 1327, 2528	Ulozas, RV1627, 1628, 1629	
Townend, M.S 2040	Ulrich, P.C	Vary, A
Townsend, P.E 2215	Ulsoy, A.G 1140	Vasconcelos, H.F 2496
Tran, A.D 2569	Umashankar, K.R	Vasiljev, P 1629
Trauth, W 1932	Umezawa, K 632, 2212, 2456	Vasu, R
Travis, J.P 903	Underwood, J.H1437	Vasudevan, R
Trethewey, M.W 266	Underwood, M.A 2026	Vaughan, N.D
Tretiak, O	Underwood, M.C.P	Vayda, J.P
Trevino, G	Underwood, P 537	Vazin, H
Triantatyllidis, Th	Ungar, E.E	
Triantafyllou, M.S 1430	- ·	Veneziano, D
	Unger, A	Venkayya, V.B
Tricamo, S.J	Unger, E	Venter, A
Trifunac, M.D 1861	Unruh, J.F 345, 1311, 2262	Venter, J
Trinh, E 1615	Urata, E	Verma, M.K
Trivett, D.H	Ushijima, R	Vermiglio, G
Troger, H	Ushijima, Y 1986	Verniere de Irassar, P657, 2573
Troost, A	Utku, S	Verona, R.W
Trubert, M 1548		Vestroni, F 2565
Truchnij, A.D 2436		Veteris, V 1772, 1818, 1819,
Trujillo, D.M 1817, 2649	V	
Trykoski, M.A		Viano, D.C 2142, 2570
Tsai, C.F		Vidmar, P.J426, 2409
Tsai, N.T	Vafa, Z	Vigneron, F.R 2117
Tsay, CS 1704	Vaičaitis, R 590, 2327, 2537	Vigo, P 1741
Tsuchida, E 441	Vaidya, P.G	Vilnay, O
Tsuchiya, K	Vajpayee, S 564, 1138, 1142,	Vishnevetskij, I 1609
Tsuda, Y		Visser, A.T 2520
Tsujimoto, Y1347, 2072	Valanis, K.C 1514	Viswanathan, K 1306
Tsukamoto, H 1350	Valdimarsson, H 1701	Vitaliano, W.J 1756
Tsushima, N 1412	Valentin, R.A	Viterna, L.A
Tulegenov, M1731, 1732, 1733	Vallas, M	Vik, F
Tuncel, O	Valle, S.D	Vogel, S 1655
Tuominen, H.T	Valsh, A.K 1222	Vojtišek, J
Turnage, K.G	van Arkel, J 1971	von Arx, A.V
Turner, C.D	Van Buren, A.L 196	Von Arx, G.A
1 UTT 1997 1. 17 2 1U.S 21U.S	van buren, A.L 196	VUII ATX, U,A 1 <i>3</i> 00

Vonglahn, U	Warnock, A.C.C 2611	Wicks, S.M 2540
Vonpragenau, G.L 2432	Warren, A.H 1475	Widdifield, R.G 492
von Sivers, R 563	Warren, G.E 2644	Wiederrich, J.L 638, 1597
Votaw, C.W	Warrick, J.C	Wilbeck, J.S598, 2416
Vrbka, J 1936	Wassell, M 800	Wilby, E.G 2535
Vujanovič, B	Wasserman, Y 2392	Wilby, J.F309, 322
Vulfson, I	Watanabe, K 191, 712, 2007	Wildfeuer, E
	Watawala, L	Wildheim, J
Vulkan, G		*
Vysniauskiene, Z 1713	Watson, L.T 1958, 2202	Wildheim, S.J
	Watson, W.R	Wilk, R.A 1751
w	Wauer, J	Wilkinson, D.H
**	Waugh, R.C	Wilkinson, J.H 1103
	Weaver, H.J 1273	Williams, A.O., Jr 687
Waberski, A	Weaver, T.O	Williams, D 1620
Wachter, J 623, 626, 801	Webb, S.W 1473	Williams, F.W 2118
Wada, H 1529, 2567	Webbon, W.W 975	Williams, J.M 1181
Wada, S 2156	Weber, S.F 1619	Williams, L.J 203
Waddington, D 126	Weeks, R.J 1901	Williams, M 166
Wagner, G 284	Weertman, J 1518	Williams, M.S
Wagner, J.H 1846	Weger, D	Williams, R 1850
Wagner, P 2195	Wehage, R.A1297, 1816, 1824	Willis, C.M
Wagner, S.E353	Wehrli, B	Willshire, W.L., Jr57
Wahab, M.A	Weidenhammer, F 2038	Willis, C.M
Wahl, R.E	Weidlinger, P	Wilson, C.A
Waldeck, D	Welaratna, S 2014	Wilson, D.S 539
Walker, J.G	Welch, C.R	Wilson, E.L
	Welch, W.P	Wilson, P.A 1426
Walker, R.E	Weller, T	Winkel, B.V
Walker, R.N		
Waller, H	Wells, W.R	Winkler, W
Waloen, A.O	Wellstead, P.E	Winter, H
Walowit, J.A 1924, 1931	Wen, YK 745, 1108, 2083	Winter, R 1170, 2056
Walsh, R 2440	Wentz, K.R 2175	Wiriyachai, A270, 2301
Walter, H 882, 883, 1550	West, J	Wise, J.L
Walther, R	West, W.M., Jr 2268	Witherell, P.G 648
Wambsganss, M.W 421, 1272	Westermo, B.D	Witmer, E.A 651
Wamsley, R.M 1122	Westine, P.S 2416	Wittig, L.E 50
Wang, A.J 627, 669, 1916	Westphal, R	Wittrick, W.H
Wang, B.P 1894, 2227	Weydert, J.C 1765	Włódarczyk, E 704, 1978, 1985
Wang, CH 522	Wheeler, J.E 2498	Woelfl, G.A
Wang, D.F	Whiston, G.S 1770, 2199	Wöhle, W
Wang, H.T	White, C.W	Wohlrab, R 1344
Wang, J.L.C	White, J.W	Wojtowicz, V.J
Wang, C.Y	White, M.F	Wolf, B
Wang, T.G 1615	White, R.C., Jr 349	Wolf, J.A., Jr1384, 1879
Wang, Y.S	White, R.G	Wolf, J.P1149, 1365, 2085
Warburton, G.B 2145	White, R.N 1442	Wolf, S.W.D 1280
Warlick, M.V	White, T.D	Wolfe, H.F
Warmbrodt, W	Whitis, D	Wolff, F.H
Warnaka, G.E	Whitman, A.M 1247	Wolfs, J 626
		Wołoszyńska, K 1981
Warner, P.C	Whittaker, A.R	
Warnix, J.L	Whittaker, W.L 1212, 1457	Wong, E.H

Wong, F.S 2239	Yamaki, N	Young, D.S 1722
Wong, H.L 1362	Yamamoto, Ki 630	Young, J.C
Wong, H.Y 2309	Yamamoto, T 118, 120, 755,	Young, SS.D 1686
Wong, K.C		Young, S.W
Wong, K.M	Yamamoto, Y 875, 1933	Youngdahl, C.K873
Wood, L.A 696	Yamashita, Y	Youroukos, E 1395, 1454
Wood, R.H 820	Yan, M.J	Youssef, N.A.N
Woodhouse, J 1114	Yanabe, S 558	Yu, Y.S 2480
Woods, P	Yanagisawa, S 1604	Yuan, KY
Woodward, C	Yancey, C.W.C	
Woodward, K	Yandell, W.O 1259	_
Woolley, B.L 664	Yang, A.T	Z
Woolley, C.T 107	Yang, J.N 940, 943, 1364	
Wormley, D.N 48, 1161, 2524	Yang, Js 1851	Zabriski, W.L 1536
	Yang, SH	-
Wright, A.D 1697		
Wright, J.H 498	Yang, T.C	Zaghlool, S.A 1089, 1315
Wright, J.P 2672	Yang, TL	Zaheeruddin, Kh 360
Wright, R.P 1080	Yang, T.Y	Zajaczkowski, J 76, 2675
Wright, T 2492	Yaniv, S.L	Zak, M.A 1498
Wu, C.L 1814	Yao, J.T.P 15, 18, 760, 761	Zankin, V.G 1259
Wu, J.J	Yao, S.S	Zarek, J.H.B 816
Wu, RS	Yap, K.T	Zaretsky, E.V 103
Wu, S.M	Yarbrough, D.W 498	Zarkades, A
Wu, W.Z	Yasuda, I 1003	Zarzycki, J
Wu, Y.C	Yasuda, K 118, 120, 2179, 2385	Zayas, V.A
Wylie, E.B	Yates, E.C., Jr	Zegeer, C.V
Wynne, E.C		Zeid, I
wyrine, E.C	Yau, A	
	Yavin, Y	Zeid, M.A
	Yazaki, K 1910	Zeman, K
X	Yeager, L.L	Zemke, W.P
	Yeager, W.T	Zhakharov, V
	Yee, K.W 2663	Zhang, YQ
Xistris, G.D	Yeh, C.S 1111	Ziebarth, H
Xu, Jz 1851	Yeh, Yg 401	Ziedelis, S 1685
	Yeh, Y.G	Zienkiewicz, O.C 1553
	Yerheij, Y.W	Zietsman, J
Y	Yeung, R.W	Zimmer, R.A
•	Ying, SJ 1898	Zimmerli, R
	Ying, Z	Zinn, B.T
Yadagiri, S 2659	Yoda, K	Zinober, A.S.I
_		
Yaghmai, I	Yoder, G.R 1077	Ziomek, L.J
Yamada, G 666, 1938, 2180,	Yokoi, M 435, 436, 2426	Ziołkowski, W 1532
2191, 2194, 2580, 2585	Yokoyama, N	Zmitrowicz, A 1001
Yamada, K 2444	Yonekawa, Y	Zobel, R
Yamada, M	Yoneya, T	Zobnin, A
Yamada, R 1102	Yoshida, A 1926	Zola, C.L
Yamada, T	Yoshida, I	Zoltogorski, B 2226
Yamada, Y 279	Yoshida, K 1640	Zorzi, E 612
Yamaguchi, H 2591	Yoshida, Y 1347	Zubritsky, P.D 110
Yamaguchi, T 1984	Yoshino, T. , 1948	Zuckerwar, A.J 732
Yamaguchi, Y	Yoshitoshi, A200	Zwaan, R.J 1654, 2105
rannagacin, r	· opiniosin, m 200	

ANNUAL SUBJECT INDEX

			A of Bulance
	-A·		Acoustic Filters 2647
bsorbers (Equipment) 1911	2145 96 2355		Acoustic Holography 1130 2212
heorbers (Materials) 350		2 48 7	Acoustic Impedance 1060 901 1742 1136 1307 858 1231 1276 2521 1956
Acceleration Analysis			2616 Acoustic Insulation
Accelerometers			2502 2033 975 839
193		2258 1289 2649	Acoustic Intensity Method
Acoustic Absorption	144 2345 1476	1287 2348	Acoustic Liners use Acoustic Linings
1060 1210 1960	2346		Acoustic Linings 1230 2401 1312 144 1855 2606 618
Acoustic Arrays 852			2202 2605 858 1228 1958
Acoustic Attenuation			2348
use Acoustic Abso	erption		Acoustic Measurement
Acoustic Detection		1000	2452 2129
1240	2615	1288	Acoustic Pulses
Acoustic Diffraction	077 076	ora	1973
570 1962 853 Acoustic Emission	855 856	857	Acoustic Reflection 2201
200 211 1092 513 210 881 1542 903 1490 891 2032 176		197 248 209 1287 1328 1099 1507 1139	Acoustic Resonance 1560 676
1291 1965 1801 2011			Acoustic Response 680 2652 675 1047 2166 1715 2317
Acoustic Excitation 2541 132 260	3 434 2175	1897 2107	Acoustic Scattering 1240 1241 152 153 694 855 1216 697 1968 1489 693 854 2405 1966 1967 1639
Acoustic Fatigue 1780 2131 2160		1398	Acoustic Signatures 903 1804 1486 587
Abstract Numbers: 1-254-255-55	4 555-746 747-927	928-1131 1132-1335	1333-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-268
Volume 14			7 8 9 10 11 12
Issue: 1 <u>2</u>	3 4	5 6	7 8 9 10 11 12

Acoustic Techniques 1142	1615	208 2028		35 1846 357 2228
Acoustic Tests 201	2135	499 2129	1393 1653 1673 1773	1917
Acoustic Transmission 2581 2582			Aerodynamic Response use Aerodynamic Stability	
Acoustic Waves 690 551 1402			Aerodynamic Stability 2361 2362	1167 2309
Acoustical Data use Experimental E	Data		Aeroelasticity 1990 244	
Active Absorption	2345 2346 2	347	Agricultural Machinery	2367
Active Control 1491 1492 1183		347 2328 979	283 2514 993	1148 1179
	1.	167 1149	Air Bags (Safety Restraint Systems)
Active Flutter Control			1381	
1651 342 313 1672 2102	316 1166	2539	Air Blast	55
Active Isolation			Airborne Equipment Response	
92		2149	2110	
Active Noise Control	795 2346 2 2345 2	207 347	Air Compressors use Compressors	
A.A When a community			Air Conditioning Equipment	004 055
Active Vibration Control 750 1052 2150 2352	2645 616 2336 1	347 518 2139 067	Air Cushion Landing Systems	836 977
Adhesives			1671	
2160		2159		65 316 597 308 319
Aerial Rudders	1574		980 601 342 603 984 58	35 596 987 318 309 85 986 1167 1168 599 95 1576 1397 1658 1169
Aerodynamic Characterist 41 252	tics			B5 1656 1657 1888 1389
251			2330 1651 2112 1653 2374 181 2560 1661 2252 2103 234	45 2327 2329
Aerodynamic Excitation	1574 1575 986		2640 1891 2373 2443	2537
	555-746 747-927 92	8-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057	7-2284 2285-2489 2490-2684
Volume 14	3 4	5 6	7 8 9	10 11 12
1ssue: 1 2	3 4	<u> </u>	· · · · · · · · · · · · · · · · · · ·	11 12

Aircraft Engines 321	2366 2557 2	598 2019 2478	Airframes 1170	1336	89
Aircraft Equipment	265		Airport Noise use Airports		
Aircraft Equipment Response 2020 1754	495	1889	Airports 80 81 82 1661 2112	985	78 79 789
			2101		.07
Aircraft Landing Areas 282			Aligning use Alignment		
Aircraft Noise			use Anginnent		
60 81 82 583 54	55 56 57	58 59	Alignment		
80 591 212 783 584 590 1401 592 983 784	335 66 77	78 79	361 752 1413		489
590 1401 592 983 784 1400 2101 782 1663 2534	345 586 307 795 1396 587 1	88 249 1318 589	371		
2100 2331 982 2343	985 2136 607		Aluminum		
2600 1662 2533	1165 977	2408	1080 2162 187	4 186 1907	•
1892	1405 2137		1520 2192		
2332	1885 2537				
2532 2542	2355 2535		Amphibious Vehicles 1493		
Aircraft Propellers			Amplitude Analysis		
•		1919	801 1833 20 1341	4	
Aircraft Seats					
600 601 602		2349	Amplitude Attenuation	1055	0460
Aircraft Tires				1977	2469
		98 99	Amplitude Data		
		998	72 2232		
Aircraft Vibration			Amplitude Measurement		
320 491 2214	56		621		
2110	86				
A 6 - 127			Analog Filters		
Aircraft Wings 61 312 313 594	315 1166 317	1398 979	71	4	
311 1392 1393 1454			Angular Velocity		
1652 1773 1654				805	
1893 2104					
2333 2334			Angular Vibration		
2484	2335		use Torsional Vibration	ı	
Airfoils			Anisotropic Properties		
160 311 1072 433 1574		358 1499	use Anisotropy		
170 461 2362 1893		458			
1500 1501 1991 2361		538	Anisotropy 2181		449 659
Abstract Numbers: 1-254 255-554 555-7	46 747-927 928-113	1 1132-1335	1336-1582 1583-1844 1845-2056	2057-2284 2285-2489	2490-2684
	46 747-927 928-113	1 1132-1335	1336-1582 1583-1844 1845-2056	2057-2284 2285-2489	2490-2684

issue: 1	2	3		4	5	6		7		8	9		10		11		12
Abstract Numbers: 1-254 25 Volume 14	5-554	555-74	6 747	7.927	928-1131	1132-1	335 1	336-1582	1583	·1844	1845-2	2056 2	2057-22	84 2	285-248	9 249	90-2684
Automobile Bodies		1874						Balanc	•	achine 2662	·		735	506	1807	1808	.
Augers				2316				Balanci	•	lancin	g Tech	nique	ı				
Asymptotic Series					13	308		Baffles									2609
Asymmetry					747			Backla		ects 2372						928	
Asymmetric Excita	tion				1207				_		·		B -				
Asymmetric Bodies	1					93	29										
Articulated Vehicle 40	:8					29	99	Axiayn		ic Vibi 1452		ı	1045		1447		
Arches 2392		954				64	49	Axisyn	nmetri	ie Exci	itation			1206			
Approximation Me 2040	thods 213		2675	1006		208 038		Axisyn	nmetri	ic Bod	ies		215				
Approximate Meth use Approxi	mation	Metho	oda					Axial \	/ibrati	ion				1006			2379
Anvils					1357			Axial l 1600	Excita	tion							
Antiresonant Frequ	ienciei]			2227			Autom 630	otive	512	nissior	15 2284					
Anti-Resonant Ana	•			2016						2022							1019
Antifriction Bearin use Rolling (Contac	t Beari	n g					:	2021	882 1872	1873 1903	574 1384 1874		-	1877	1878	779 1329 1879
Anthropomorphic 292	Dumm		1155		18	38 898		Autom	obile	Seat B	elts	294				38	
	1703							Auton	obile 771	Noise 772 972						788	569
Annular Plates 1452		654 1034			1	448		Auton 1910	obile	Engine		2284	525				1869

	cing T 1811	echniq	nes 733	734	205	206	2457		909 1809 2029	Beat F	•	332 732							
Ball B 2030	earing	,		204	755										365				
					2455					Beits (Movie	%)							
Bars																		1198	
470 540		1432	643 1693		375	1936				Bernou	dli-Eu	der Me 122	thod			646			
Base I	Excita	tion								Biblio	raphi	88							
				134 1374				388 1068		250 550	251 551	252 552		1334 1574		1576	1577	248 548	
Reec 1	solatie	on.								1130		-			1313				1129
				1374				2548		1330 1580			1843	2314					1329 1579
			2143	2354						1840		.010							2489
Beam	Colum	nns 1232								Bicyck	D6								
		2172																	579
Beam	•									Bifure	ntion '	Theory	,						
10 120	121 381	122 382	383 1203	384 644	645 1135	646 816	117 147	118 378	119 379	:	2471		463	914					
240	681	682	1433	814	1435	1436	647		1019	Bimod	ular P	ropert	ies						
				1204 1434				1018 1728				_							2569
				1694						Bird S	trikes								
	-	1532 1912	2573	2384 2574	2575		1697 1907									2366	2557		
2200	2311	2282		2017			2167											1918	
2570		2382 2572				2576	2387			Blade l	Loss I	Dynam	ics						
2610		2642					2477						543	544				288 1408	259
	gless !	Rotors	i							Blades									
930										620	101	102	623	524	625	606	357	358	
Bearin	•	_		_				• • •		800 1000	261 621	622 802	803 1673		1575 1675	626 1186	627 1387	538 598	669 799
360 510	361 1191	2 362		4 104		106 556		108 628	109 359	1140	801	1002	2153	1164		1626	1917	798	1079
750	1411	912	363	204	805	806	807	748	489	2360									1409
		1192			1005			808	629			2492 2552	4005	2054		2366	4337		1919 2559
				804 1004		4100		1678	749 809					2254		2556		_	
1920		_	1923	1774	2155			2548	1189					2364 2554					
2030 2370			2163	1924 2044	2455				1339 1679					_007					
									2059	Blast E	ffect	•				1044			
Abstra	ct .								2369							1066			
	rs: 1-	254 25	55-554	555-74	16 747	-927 (928-113	11 113	2-1335	1336-1582	1583	1844	1845-2	2056 2	2057-22	84 22	85-248	9 249	0-2684
lssue:	e 1 →	1	2	3		4	5		6	7	1	8	9		10		11		12

Boilers 270 1841 2072 2303 1144 2075 796 1857 2498 1359 420 572 766 2150 2301 2302 2074 2076 2159	Riast Loads	432	195 1065		2397			ovul.	y C	onditi 392 832			1555	1556		528 1448	
Blast Resistant Structures Boundary Value Problems 821 1122 1765 2416 2270 2671 1982 223 2474 2445 2666 277 2470 2622 453 2577 2577 2470 2622 453 2577			ctures					Boun	dary E			nique					
821 1122 1765 2416 2270 2671 1982 223 2474 2445 2666 277 2470 2622 453 2577 Bast Response 2222 2416 Box Beams 1023 Block Pulse Functions 1117 Box Care 963 Braces 2562 2507 Souts 301 Brakes (Motion Arresters) 2330 1871 2522 2655 337 Sodies of Revolution 770 1715 Braking Effects 1986 577 Solier Tubes 1046 1097 1098 Bridges 10 271 1842 2073 1014 1495 566 1407 1858 279 Soliers 270 1841 2072 2303 1144 2075 796 1857 2498 1359 420 572 766 2150 2301 2302 2074 2076 2159 Solier 1466 2300 2501 2454 2299 Solied Joints 2561 1928 Buffeting 1990 Solied Structures 831 Buildings 150 11 12 13 14 15 16 17 18 149 Solied Graph Technique 500 666 940 1361 942 273 243 495 246 247 148 1619 Solied Graph Technique 840 941 762 273 274 275 946 947 1618 2079 Solied Graph Technique 840 941 762 343 764 425 276 567 948 1859 Solied Graph Technique 840 941 762 343 764 425 276 507 948 1859 Solied Graph Technique 840 941 762 343 764 425 276 507 948 1859 Solie 1360 1621 1362 943 1364 1495 2506 2077 2308 Solies 1360 1621 1362 943 1364 1495 2507 2548		•	ctures					Boun	dary L	•		ion					
State Response 222			1765	2416				2270	•	1982	223	2474	2445	2666	-		
Section Sect	•			2416					leams						2011		
Braces 2063 Braces 2562 2507	lock Puise Fu	anctions .			1117			Box (ars								
State Stat	lowers	2063						Brace	•	2562	,				2507		
Redies of Revolution 770 1715 Braking Effects 1386 577 Roller Tubes 1046 1097 1098 Bridges 10 271 1842 2073 1014 1495 566 1407 1858 279 Rollers 270 1841 2072 2303 1144 2075 796 1857 2498 1359 420 572 766 2150 2301 2302 2074 2076 2159 1466 2300 2501 2454 2299 Rolled Joints 2561 1419 Bubble Dynamics 2561 1928 Buffeting 1990 Rolled Structures 831 Buildings 150 11 12 13 14 15 16 17 18 149 Roll Graphs 150 161 222 243 234 95 246 247 148 1619 Roll Graphs 150 161 272 253 244 245 276 567 948 1859 Roll Graph Technique 1760 681 272 253 244 245 276 567 948 1859 Roll Graph Technique 1840 941 762 343 764 945 2306 1027 2078 2506 Roll Graph Technique 1840 941 762 343 764 945 2306 1027 2078 2506 Roll Graph Technique 1860 1621 1362 943 1364 1495 2307 2508 Roll Graph Technique 1860 1621 1362 943 1364 1495 2307 2508 Roll Roll Graph Technique 1860 1621 1362 943 1364 1495 2307 2508									•	ion Ar	rester	•)	94 E E				
10 271 1842 2073 1014 1495 566 1407 1858 279 270 1841 2072 2303 1144 2075 796 1857 2498 1359 2400 572 766 2150 2301 2302 2074 2076 2159 2500 2454 2299 2500 2459 2500 2499 2500 2499 2500 2499 2501 2454 2072 2303 2302 2454 2076 2159 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2500 2499 2501 2454 2500 2501 2454 2501 25		olution	1715										2033	1204			
10 271 1842 2073 1014 1495 566 1407 1858 279 10 270 1841 2072 2303 1144 2075 796 1857 2498 1359 420 572 766 2150 2301 2302 2074 2076 2159 1466 2300 2501 2454 2076 2159 150 2500 2500 2459 16185 2561 1419 Bubble Dynamics 663 1618 2561 1928 Buffeting 1990 150 11 12 13 14 15 16 17 18 149 150 11 12 13 14 15 16 17 18 149 150 11 12 13 14 15 16 17 18 149 150 11 12 22 243 234 95 246 247 148 1619 150 11 12 253 244 245 276 567 948 1859 150 160 452 273 274 275 946 947 1618 2079 150 160 452 273 274 275 946 947 1618 2079 150 2666 940 1361 942 763 944 1365 2506 2077 2308 150 160 1621 1362 943 1364 1495 2307 2508 150 160 1621 1362 943 1364 1495 2307 2508	loiler Tubes													1260	577		
420 572 766 2150 2301 2302 2074 2076 2159 1466 2300 2501 2454 2299 2499 2500 2501 2454 2299 2499 2500 2501 2454 2299 2499 2500 2501 2454 2454 2499 2499 2501 2501 2501 2454 2499 2499 2501 2501 2501 2501 2501 2501 2501 2501				1046	1097	1098		_		1842	2073	1014	1495	566	1407	1858	279
1419 Bubble Dynamics 663		572						2150 2300	2301		2303	2074	2075		1857	2498	2159 2299
2561 1928 Buffeting 1990 onded Structures 831 Buildings 150 11 12 13 14 15 16 17 18 149 ond Graphs 550 161 222 243 234 95 246 247 148 1619 use Bond Graph Technique 760 681 272 253 244 245 276 567 948 1859 820 761 452 273 274 275 946 947 1618 2079 ond Graph Technique 840 941 762 343 764 945 2306 1027 2078 2509 150 2666 940 1361 942 763 944 1365 2506 2077 2308 ooster Rockets	-						1419		e Dyn	amice	443						
831 Buildings 150 11 12 13 14 15 16 17 18 149 ond Graphs use Bond Graph Technique 760 681 272 253 244 245 276 567 948 1859 820 761 452 273 274 275 946 947 1618 2079 ond Graph Technique 840 941 762 343 764 945 2306 1027 2078 2509 150 2666 940 1361 942 763 944 1365 2506 2077 2308 ooster Rockets 1620 1701 1622 1363 2184 2305 2507 2548					1	1928			ting		003						
ond Graphs 550 161 222 243 234 95 246 247 148 1619 use Bond Graph Technique 760 681 272 253 244 245 276 567 948 1859 end Graph Technique 840 941 762 343 764 945 2306 1027 2078 2509 150 2666 940 1361 942 763 944 1365 2506 2077 2308 1360 1621 1362 943 1364 1495 2307 2508 coaster Rockets 1620 1701 1622 1363 2184 2305 2507 2548		ures							-	19	12	14	15	16	17	10	140
150 2666 940 1361 942 763 944 1365 2506 2077 2308 150 1360 1621 1362 943 1364 1495 2307 2508 150 1620 1701 1622 1363 2184 2305 2507 2548	•	d Graph Techni	que					550 760	161 681	222 272	243 253	234 244	95 245	246 276	247 567	148 948	1619 1859
Coaster Rockets 1620 1701 1622 1363 2184 2305 2507 2548	-	echnique		2666				840 940	941 1361	762 942	343 763	764 944	945 1365	2306	1027 2077	2078 2308	
(cont'd	ooster Rocke		2125	21 2 6				1620	1701	1622	1363	2184	2305			2548	A1

Buildings (cont'd) 2080 2081 2082 2183 2304 2150 2502 2503 2504 2280	Cantilever Plates 2552 624 396 2539 Cargo Ships 2098
Humpers 42 43 44	Cascades
42 43 44	2360 2361 1072 524 2359
Buoys	2362
1562	0.1
Buses	Casings 1852
971 84	1002
, · · ·	Catenaries
	640
	Cavitation
- C -	560 2451 442 873 1248 2069
	300 2301 432 010
	Cavitation Noise
Cables	560
2380 641 642 1013 114 1935 876 1287 1428 1199	1540
1011 1012 374 2565 2377 2378 1429	Cavities
1691 2482 1014 2379	1102 1384
2512 2564	2422
Cable-Stayed Bridges	
1857 1359	Cavity-Containing Media 2473
	24/3
Cable-Stiffened Structures 1546	Cavity Resonators 1872
Cadavers 38	Cell-to-Cell Mapping 741
a w	
Calibrating 196 509	Central Processing Units 488
889	400
	Centrifugal Compressors
Calibration	2292 1603 809
use Calibrating	
A 7.11	Centrifugal Forces
Cam Followers 1196 1197 638 639	2491
1687 1009	Centrifugal Pumps
	1350 2293 1604 935
Came	
515 1686 637 639	Cepstrum Analysis
1195	892 483 1804
Cantilever Beams	1813
270 101 1822 1433 2084 1205 2166 378 1939	Ceramics
121 2572 1018	2121 1333 1334 475 1896 1897 429
1221	2123
Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	
_	7 8 9 10 11 12
Issue: 1 2 3 4 5 6	7 8 9 10 11 12

Chains	2563							Collis			(Aircr search	•	raft)				
Chatter	1143	2234	165 2495				759	Cellis 770 1880	991	42 292	(Auto 43 293 1123	34 44	35 575 1155	36 576 1876	37 577 717	38 718 1898	39 719 769
Chimneys 2510				1366		1698	2309			1382 1882	1883	1124	2055		1127 1877		1899
Circuit Boards 1690 2020						1758	1759	Collis	ion Re	earch	(Railre	oed)	2325			778	
Circular Cylinders 1440	1			386		1438	1439	Collie 780		search 582 1162	(Shipe)					
Circular Plates 130 391	1893	1214 2154	655		827 1447 1947		1109 1949 2179	Collec		Metho	d				2377		
Circular Sawa					2587						123	1054		1026 1346		238 6	2169 2389
1141	1853			1356				Comb	ustion	Engin	es			2406	1257		
Circular Shells 400		:	259 5					Comb	ustion	Excit	ntion				1257		2459
Circular Tubes 1731 1732	1733							Comb	urtion	Noise		1854		2406			2459
Cladding Effect			2505					Comp	action	Equip	ment				1627		
Clays 1862	1							Comp	lex Fu 2461	nction	Meth	əd					
Clearance Effects				466			809	Comp 1510	onent	Mode	Analy	áo					
Coal Handling Eq	aipmon	t					29	530	enent	Mode	Synthe	esis					
Coatings 1791								2660 Comp	osite l	Beams 122							
Coefficient of Frie 1531	etion									Materia							
Collapse use Failure	Analys	io							211 1331	632 1172 2162	1263		2175		1507 1777 1797		1189
Abstract Numbers: 1-254 2	55-554	555-746	6 747	927	928-113	1 113	12-1335	1336-1582	1583	-1844	1845-2	056	2057-22	84 22	86-248	9 249	0-2684
Volume 14	2	3		4	5		6	7		8	9		10		11		12
1,000				-			<u> </u>			-							<u>''</u>

Compressive Structures 1710 221 133 22 133 884 1545 1906 667 708 829 2440 1711 2032 2253 2355 2366 917 869 2470 1711 2032 2253 2355 2366 917 869 2570 2393 2556 2579 2610 Compressive Waves Compressive Strength 1881 1874 1878 Compressore 261 1002 2363 2054 2365 1079 262 203 1074 2365 6 358 809 1851 222 1703 184 235 1386 1348 1739 2372 1799 2191 1043 137 1718 2190 1331 1762 2663 194 525 2256 488 21180 2002 1095 538 2022 2515 1758 2022 2448 240 241 32 233 234 535 186 227 68 49 250 60 601 542 1125 544 555 536 307 458 259 1120 651 582 1173 834 925 596 537 538 269 1120 1121 612 123 124 1125 744 487 885 539 1220 1122 1122 123 124 1125 744 487 885 539 1230 1251 1122 123 124 1125 744 487 885 539 1230 1251 1122 123 124 1125 744 487 885 539 1230 1251 1122 123 1744 1545 1566 1567 1318 579 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 18	Comp	posite	2472								Computerized Simulation 794 1875 1876 1: 2214	899
Compression Waves	1710 2440 2570	221	1332	133 2253	884		2386	917	708	869	Concentric Structures 400 2595	
Compressor Blades		reagic	n Wave	ts						1249	440 681 1092 343 124 95 146 27 1818 1981 1963 1054 1786 18	819 859 169
Compressor Same Conformal Mapping Compressors Same Sa	Comp			gth	1874				1878			
Compressors	Comp	261	1002		2054	2365				1079		
1850 261 262 203 1074 2365 6 338 809 1851 292 1603 756 1348 1739 Conical Shells 2372 1799 2191 1043 137 1718 2377 Computer-Aided Techniques 850 511 232 1703 184 235 1386 448 Conjugate Gradient Method 1280 1531 1762 2663 194 525 2256 488 1011 180 2002 1695 538 2022 2515 1758 Connectors (Electronic Equipment) 2262 2448 2452 Constitutive Equations 1862 2023 Computer Programs 240 241 32 233 234 535 186 227 68 49 Construction Equipment 540 541 432 543 534 585 236 237 238 239 570 1632 956 55 600 601 542 1123 544 555 536 307 458 259 1120 651 582 1173 834 925 596 537 538 269 1120 1251 1122 1323 1744 1545 1566 1567 1318 579 1830 1321 1162 1823 1824 1635 1826 1837 1478 599 1330 1831 1192 1831 1834 1835 1836 1867 1568 909 2360 2051 1322 1903 1974 1975 1936 2087 1638 1309 2481 1832 2483 2484 2185 2366 2537 2128 1369 2681 2052 2485 2485 2168 1589 2482 2488 1599 2482 2488 1599 2482 2488 1599 2482 2578 1649 Containers Computer Systems Hardware 2020 135 135 1264 255-554 565-748 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2058 2057-2284 2285-2489 2490-26 Volume 14	Comm										•	
850 511 232 1703 184 235 1386 448	1850	261 1851	262 2292 2372	1603		2365				1739	2191 1043 137 1718	
1280 1531 1762 2663 194 525 2256 488 1011 1080 2002 1095 538 1758 Connectors (Electronic Equipment) 1751 2032 2462 2448 2452 2452 2452 2448 2452 2452 2452 2468 2462 2233 234 535 186 227 68 49 Construction Equipment 240 241 32 233 234 535 186 227 68 49 Construction Equipment 2540 541 432 543 534 585 236 237 238 239 570 1632 956 560 601 542 1123 544 555 536 307 458 259 1120 651 582 1173 834 925 596 537 538 269 Construction Industry 1270 121 602 1253 1124 1125 746 487 858 539 1630 1631 1633 1634 1635 1636 1637 1638 1320 1251 1122 1323 1744 1545 1566 1567 1318 579 2640 2310 1831 192 1833 1834 1835 1836 1857 1588 1399 2491 2381 1822 2053 2054 2055 2056 2447 1918 1319 2481 1832 2483 2484 2185 2366 2557 2128 1369 2682 2482 2483 1599 2578 1649 Containers 1751 2682 2482 2598 1729 1040 2323 297 2369 2369 2369 2360 2057 2284 2285 2366 2557 2368 1399 2369 2369 2369 2369 2360 2369 2360 2369 23	•				-	235	1386		448		Conjugate Gradient Method	
2022 2515 1758 Connectors (Electronic Equipment) 2032 1908 1751 2262 2448 2452 Constitutive Equations 1862 2023 Computer Programs 240 241 32 233 234 535 186 227 68 49 Construction Equipment 540 541 432 543 534 585 236 237 238 239 570 1632 956 5 600 601 542 1123 544 555 536 307 458 259 1120 651 582 1173 834 925 596 537 538 269 Construction Industry 1270 1121 602 1253 1124 1125 746 487 858 539 1630 1631 1633 1634 1635 1636 1637 1638 1320 1251 1122 1323 1744 1545 1566 1567 1318 579 2640 1830 1321 1162 1823 1824 1635 1826 1857 1478 599 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 1192 1833 1834 1835 1836 1867 1568 909 2310 1831 122 2053 2054 2055 2056 2447 1918 1319 2481 1832 2483 2484 2185 2366 2557 2128 1369 2481 1832 2483 2484 2185 2366 2557 2128 1369 2482 2485 2168 1599 2482 2485 2168 1599 2482 2578 1649 Containers 2682 2598 1729 1040 2323 297 2369 1037 Computer Systems Hardware 2020 135 135 23 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-24 Volume 14		1531			194		2256					
Computer Programs 240 241 32 233 234 535 186 227 68 49	1180		2022 2032 2262						1758 1908		1751	
240 241 32 233 234 535 186 227 68 49	Comm	ustan I										
1120 651 582 1173 834 925 596 537 538 269	240 540	241 541	32 432	233 543	534	585	236	237	238	239	• •	569
1830 1321 1162 1823 1824 1635 1826 1857 1478 599 2310 1831 1192 1833 1834 1835 1836 1867 1568 909	1120 1270	651 1121	582 602	1173 1 25 3	834 1124	925 1125	596 746	537 487	538	269	1630 1631 1633 1634 1635 1636 1637 1638	
2360 2051 1322 1903 1974 1975 1936 2087 1658 1309 14 2491 2381 1822 2053 2054 2055 2056 2447 1918 1319 2481 1832 2483 2484 2185 2366 2557 2128 1369 Contact Vibration 2681 2052 2485 2168 1589 1751 2282 2488 1599 2482 2578 1649 Containers 2682 2598 1729 1040 2323 297 2369 1037 Computer Systems Hardware Containers (Tanks) 2020 135 23 Abstract Numbers: 1-254 256-554 556-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1846-2056 2057-2284 2285-2489 2490-26 Volume 14	1830	1321	1162	1823	1824	1635	1826	1857	1478	599		
2681 2052 2485 2168 1589 1751 2282 2488 1599 2482 2578 1649 Containers 2682 2596 1729 1040 2323 297 2369 1037 Computer Systems Hardware Containers (Tanks) 2020 135 23 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-26 Volume 14	2360	2051 2381	1322 1822	1903 2053	1974 2054	1975 2055	1936 2056	2087 2447	1658 1918	1319		419
2482 2578 1649 Containers 2682 2598 1729 1040 2323 297 2369 1037 Computer Systems Hardware Containers (Tanks) 2020 135 23 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-24 Volume 14			2052		2484		2366	2557	2168	1589		
2020 135 23 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-26 Volume 14			2482						2578	1649 1729	1040 2323 297	
Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-20 Volume 14		uter S	ystem	a Hard	ware							399
	Numbe	ers: 1	-254 2	55-554	555-74	16 747	927	928-113	1 113	12-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2	2684
	Volum	e 14	1	2	3		4	5		6	7 8 9 10 11 12	,

Containment Structures 1460 1152			1836	87			Couple	ed Syr	tems	2183	164					459
1362			1866				C1	·								
Continuous Parameter Me	abad						Coupli 110	ngs 51						367		
	unoa 1324]	1865			2118		110	31						1007		
2201		2285			2110									2257		
Continuous Systems							Covari	ance !	Function							
380				1107			2230			2423						
Control Equipment							cQC	use C	omnlet	e Oua	dratic :	Combi	nation	Metho	d)	
1502			536			989 1559			_						-,	
							Crack	Detec	202					1587	738	199
Control Systems use Control Equipn	nent								-02					200.	1288	-//
							Crack	Propa	gation							
Conveyors				00-			210	711	1082	593	184	_	176		1518	179
	1	565 1615		337			1080	1521			884	395		1077		709
	•	1010					1520		1522	2003				1517		879
Cooling Fans										2043		1205		1527	2456	1729
use Fans and Coolin	ng Syst	ems									4999		1526 1626			243
Cooling Systems													1020			
200							Crack	ed Me							100	
Cooling Towers							180 660		522	1943 2673		685			198	429 439
2510 2511	:	2085	2186	1717			710			2013						699
Coring																1449
			956				Crane	(Hoi	sts)		284	1925		2297		
Cornering Effects			•	1445								-,				
	2524	295 775		1647		299	Crank	hafte 751	262		1854		936	557		
Correlation Techniques													2286			
			1876		1618		CRAS	H (Ca 20 51	mpute	r Prog 1123						
Coulomb Damping																
					1768		Crash 600	Resea 601	rch (A 602	ircraft) 603	•					599
Coulomb Friction							1170	981								
490 1001 172 3 800 2143			2236		2078	799	2540									
			2576				Crash	Senso	re							
Coupled Response														717	718	719
940 802 1653 2360	274		446			2379	Crash	Victia	n Simu	lation		1155			1898	
Abstract Numbers: 1-254 255-554	555-74	6 747	7-927	928-11:	31 11:	32-1335	1336-1582	1583	3-1844	1845-2	2056	2057-22	284 2	285-248	9 24	90-268
Volume 14																

Crashworthiness 600 601 292 603 2540 981 1382	3	575	36 37 1877		39	Cutting		2494	1355	1356		268	939
Cratering			1077	1538	•	Cyclic Lose 571	1442	1884		1676		758	1739
Critical Damping 2242			·				1862 2172 2562	2004					
Critical Speeds 751 1132 1303 1161 1342 2293 1341 2291	3 2294	555 29 935 156 1585	96 1467 36	558 15 1468	200	Cylinders 1440 661 1700 1441 1951	1852	463 1484 943 1714 463	2005 2405 2475	876		818 1308	
Cross Correlation Techn		885										1908	
Cross Spectral Method 1970 2651	•				(Cylindrical	Bearings 1922						٠
Cruisers					(Cylindrical use C	Bodies ylinders						
2113	•				(Cylindrical	Cavities						
Current Collectors 2431		,				1971							
and t					(Cylindrical							
Carve Fitting	1534	150) 6		1	400 401 690 831 1220 1041	832 2	593 954			817 1217 1737	398 648 798	399 419 669
Curved Beams		115 695				2190 1951			1185			1038 1218 1458 2188	1039 1459 2189
Curved Ducts											,		2529
2201 1312				1228	(Cylindrical '	Tubes						
Curved Pipes					·	•		and Tubes					
	1734 2 1954	195											
Curved Plates			2177		-			- 1	D.				
Curved Rods 1200 2563	3				ı		diction 402 1252	124		906	567 947		
Cushioning	. Imm-1-4! -	_				1101	1414				741		
use Impact Shock	. inglistic	MI			I	Damped Str		.	0445				0000
Cushioning Materials use Packaging Ma	teriale							583 614 833 1444	2065	816	;	518 2088	2039
Abstract Numbers: 1-254 255-554	555-746	747-927	928-113	1132-1	336 1336	1582 158	3-1844 1	845-2056	2057-22	84 22	85-2489	249	0.2684
olume 14													
Issue: 1 2	3		5	6		7	8	9	10		11		12

Dampers			Density (Mass/Volume)	
	1774 2236 467 1258 1944 2566 2637	}		498
	1994		Design Procedures	25.40
Damping •			331	2549
1510 1511 1512	14 1785 786 877 1358		Design Techniques	
1700 2102 1860 2242	364 944	2239 2429		108 1439
2372	7-4	474/	1760 1571 612 1683 1464 1375 1376 807 2120 1761 672 1753 1744 1605 1686 1377	288 1749 538
				948
Damping Coefficients 370 361 22 73	2164 625 1776 267 18	1779	1762 1843 1824 1657 1	
	2204 2155 2156 2547 148		2002 1844 1757 1 2054 1	.668 .758
	2244 2245 348	3		908
2280 993	708			
2430 1623 2243	1618 1868		Detectors	
2470	1000	*	484	
Damping Effects	1404 110F		Diagnostic Instrumentation	
	1494 1185 2398 2184 2638			208 1799
2241	2104 2000	,		
			Diagnostic Techniques 730 731 202 203 204 505 2266 907	000 1990
Damping Values			730 731 202 203 204 505 2266 907 1800 1801 502 503 504 1095 2456 1287 2	908 1289 2028
use Damping Coeffi	icients		732 1803 2265 1587 2	
Dams			2455	
1370 1371 1372 953	24 25 26 1147	2089	Dr. and Prophers	
2090 1841 1842 1063 2091 2092 1863	954 1826 1567		Diesel Engines 2070 2071 562 1855 2286 557 1	608 1869
2091 2092 1003	1004		2296 1137	
Dashpots			Diet D. d.	
	467		Difference Equations 920	
Data Processing			,	
510 721 432	454 55 717 978	_	Differential Equations	
2252	714 725 2127 2448		1301 1934 1915 1297 2667	
	1084 2274	2329 2649	2001	
	32. 7	2017	Digital Filters	
Data Recorders			1491 1492 713 714 2646 1537	
1093			Digital Simulation	
Data Reduction				658 679
use Data Processing	3		Digital Tanknings	
DDAM (Committee Brown	······································		Digital Techniques 2410 491 2453 2214 725 726 487	
DBAM (Computer Progra	1566		721 1095	
			Pilos A.S. Assessation (Physike 1)	
Deceleration 870			Direct Integration Technique	598
U(V			•	
Abstract				
	555-746 747-927 928-1131 11	32-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489	2490-2684
Volume 14				
Issue: 1 2	3 4 5	6	7 8 9 10 11	12
				

Discontinuity-Containing Medi			Ducte
15 2 683 1042	1806	198 439 2629	680 1231 422 1743 144 145 346 677 678 679 1050 2201 1312 2203 1544 1475 836 837 1228 1049
Diece			1230 2401 2202 2603 2604 1865 1476 1957 1738 1229 1740 2195 1956 2347 1958 1739
use Disks (Shapes)			2400 2415 2346 2607 2608 2189
Disks (Shapes)			2600 2605 2606 2657 2599 2609
1000 802 803 2062 1443 1853	2025 2176 397 2 2396	588 619 799	Duffing's Differential Equation 2670 914
Displacement Analysis 284	,		Dynamic Absorbers 96
Displacement Measurement 2450		509	Dynamic Analysis 1394 2064
Displacement Transducers		1279	Dynamic Balancing 733 506
Dissipation Factor	2037	339	Dynamic Buckling 2171 682 1213 2585 1217 1218
Doors	1765		1907 2388 2187 2398
Doubly Asymptotic Approximation 2052		138 2419	Dynamic Excitation use Dynamic Response
Drilling Platforms 290 2172 1380	1826	289 2319	Dynamic Loads use Dynamic Response
1640 2320		2017	Dynamic Matrix Control 1829
Drille 2061 1814	995 1076 2497		Dynamic Modulus of Elasticity 899
Drillships use Drills and Ships			Dynamic Photoelasticity 2467
Drive Line Vibrations 772			Dynamic Properties 1083 1684 2357 19
Drive Shafts	1597		Dynamic Relaxation
Drop Teets (Impact Tests)	4	198	Dynamic Response 1150 182 1113 1174 525 1146 568 639 2240 962 2163 1884 2055 1816 838 2089
Ductile Materials	15	518	2322 1904 2185 1068 2402 2375
Abstract Numbers: 1-254 255-554 555-7	46 747-927 928-1131	1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14 lssue: 1 2 3	4 5	6	7 8 9 10 11 12
1 2 3			7 8 9 10 11 12

D					~		_							
Dynamic Stability 1890 1731 2392	1175		1128	139	Earth :	Struct	rures					1567		
	1355			2389								200.		
					Eartho	uake	Damage	e						
Dynamic Stiffness							1372		2304	1495		947	1218	1319
	2315	2547				1701				2245				1859
Dynamic Stress Concentration					:	2081							2308	
180 2461		887		179	Fartha	ka	Regista:	nt Da						
							erthque			Struc	tures			
Dynamic Structural Analysis					•					Durac				
220 1292 1703 1304 1010	2045		918	2339	Eartho	uake	Rezista	nt Str	ucture	·4				
1270		1567	2168		1480				1744	_		1477	948	1479
1320			2100				1622						1478	2079
					P. 41		_							
Dynamic Structural Response					•		Respon 402		1154	95		1547	240	1000
use Dynamic Response					1370				1364	375		1567	300 1478	1929
Dynamic Synthesis						1481		955 1863	1004	1365			2318	
2460														
D					Earthq	uake	Simulat	tion						
Dynamic Systems 741 1823 1824		2037		519			222							
1101 2034		2047		1299		_								
1101 2009		4071		1477	Earthq	uake)							0.100
Dynamic Tests									2094		616 2076			2489
811 762 123 24	405 496	497	98	899							2486			
1091 1092 373	785 2376	2307		1539										
1882 1093			2508	2059	Edge E	ffect								
2023 2263				2509							1296			
2200											1306			
Dynamic Vibration Absorption		•			* ***********************************			_						
1181	2355 228 6	1407	348		740		roblem		1104	225	916	1107	518	
Demanially Tenad Structures					1550					1565		1101	528	
Dynamically Tuned Structures 164								1583			2666			
DYSYS (Computer Programs) 2681					Eigenv	_	igonvalu	. P.	Llama					
2001					•		Port.		Lec Maj					
					Elastic	Core	-Contair	ning !	dedia					
								823						
•	E.				Flaatio	Fe	dation							
					1590	. 		-	924			387	1198	649
									2194			647		=
Ears												1447		
334					Elastic	Half	Smann							
Earth Handling Equipment							1212		1214			1457		
				1179					7			2567		
Abstract														
	46 747-927	928-113	31 11	32-1336	1336-1582	1583	3-1844	1845	2056	2057-2	284 2	285-248	9 24	90-2684
Volume 14														
	4	5		6	7		8	9		10		11		12
Issue: 1 2 3		<u>-</u> _		<u> </u>			 -							-14

Elastic 1980	Media 191	404	1737	2008		Electromagnetic Properties 841 1552
	831		1937 2007			Electronic Instrumentation use Electronic Test Equipment
Elastic-	Plastic Properties					use Mechanic Less Edulament
	_			1568		Electronic Equipment use Electronic Test Equipment
	Properties 2581 712	1785 2446			2189	
4	1262 2582	1103 2490	•		2107	Electronic Test Equipment 1750 1751 1752 1753 1756 1757 1758 1749 1760 1761 2653 1759
Elastic	Systems				1269	Elevated Railroads 2528
Elastic	Waves					Enclosures
430	422 483			848		570 2211 2212 2635
660	1242 1763 2202 2413		•		849 1969	1960
	2312					Energy Absorbers
Elastod	lynamic Respons	•				use Energy Absorption
	522 1102		277			Energy Absorption 440 991 42 43 44 95 2056 97 948 599
Elastoi 710	nydrodyn am ic Pro	perties				440 991 42 43 44 95 2056 97 948 599 600 1881 602 343 994 1877 1878 2349 1562 2143 1874 1907
2370						France Dalama Machadana
ElA	Baaria					Energy Balance Technique 1674 1626
ETRICOE	neric Bearings 91	1374		2548	1539	
		1924				Energy Conversion 994 1255
Elastor						Process Process and an
	612 613 1083		87 97	2148		Energy Dissipation 2189
	1903		1647			2.07
			2547			Energy Methods 1718 2399
Elasto	plastic Properties	885				Energy Transfer
		003				1038
Electri	c Components	100				Energy Transmission
		123	D			2183 2184
Electri	c Generators					
1	use Power Plants ((Facilities)				Engine Mounts 1910
	c Power Plants					Engine Noise
,	use Power Plants	(Facilities)				1780 71 1343 345 2296 937 1059
Electri	c Vehicles					2070 2071 1743 1165 977
		1235				2600 1855
Abstrac Number		555-746 747-927	928-11	31 11:	32-1335	1338-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume	14					
Issue:	1 2	3 4	5		6	7 8 9 10 11 12

Engine Vibration 1 Engines	343 22	284	1986					2252 2452	1633 2113			1466 1846 1876	1657		
1602					238		Forder C								
2682							Explosion C	ontain	ment			1066			
Environmental Effective 302 2							Explosion D				etectio	а			
Environment Simula	tion								-						
T 4' 6M-4'		254			2128		Explosion E 1460 2220	ffects 1032			1065			1538	
Equations of Motion 1110 2321		24	226	537	1298										
2040		04	866		1548		Explosions								
	26	74	1106 1426	1297							445				
E							External Da	mping				2166	747		
Equipment		1285					m								
							External Re	verbera	tion		0695				
Equipment Mounts 550		94									2635				
Equipment Respons	e														
2630 1752	943 17	54 1 755	1156			459					F.				
Equivalent Lineariza 2402		thod													
F 4 1 1							Failure Anal	•					567		
Error Analysis 1960 2672		84 1795	1916	487		1279	510 2371	932					557 1227		
2650		01 1.70	1010	1197		1289									
				•		2279	Failure Dete 1541	ection	503		1095	1806	1287	2268	
Exhaust Noise															
1742							Fan Blades	622	2153				2557	1918	
Exhaust Systems					2608							2556			
1742					2008		Fan Noise								
Experimental Result	te						2400	2492		934			7		
use Experime		t Data													
•							Fans								
Experimental Safety 292		es					561				2065	1606 2066	1847		9 1349
Experimental Test D)ata										2295			1848	
1890 1681 302		34 455	36	37	358	39	Fast Fourier	Trans	form						
		64 1155	46	87	998	749	1000 2041		1273						1309
872	293 18	74 2005	56	827	1218	2129 cont'd)	2391		1793 2453	1534					1389
Abstract Numbers: 1-254 25	5-554 5	55-746 74	7.927	928-11	`	<u>_</u>	1336-1582 158	3-1844	1845	2056	2057-2	284 2	285-24	89 24	90-268
Volume 14															

Fatigue Life																				
Fatigue Life						513	Į								m	ransfoi	arier T	ust For	use Fa	
Fatigue Life 10 111 102 103 174 105 176 27 178 189 150 471 472 173 184 175 476 197 188 359 210 481 1232 183 474 185 566 477 328 579 250 631 1252 1263 1084 925 1416 107 1268 379 290 1521 1522 1263 1084 925 1416 107 1518 959 290 1521 1522 1263 1084 925 1416 1397 1518 959 960 2251 1782 1523 1514 1345 1526 1437 1948 1079 290 1521 1522 1253 1514 1345 1526 1437 1948 1079 290 1521 1522 1263 1084 925 1416 1397 1518 959 960 2251 1782 1523 1524 1265 1516 1397 1518 959 960 2251 1782 1523 1524 1265 1516 1397 1518 959 960 2251 1782 1523 2241 1245 1576 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 2561 2032 2003 1714 1515 1676 1527 2158 1519 160 261 1202 453 1044 1435 2056 160 2419 2270 2422 2363 2284 1725 2249 120 1111 1872 1313 1704 1625 2276 1256 2434 2055 2356 2399 1010 751 1312 743 1384 1545 2056 160 2441 205 2276 160 2441 205 2276 160 2441 205 2076 2499 1320 1711 1262 133 2144 1955 2346 1740 2481 1993 2514 1830 2473 2491 1370 1831 1903 2469 1370 1831 1903 2469 1370 1831 1903 2469 1370 1831 1903 2469 1370 1831 1903 2469 1370 1831 1482 1380 181 882 473 884 1926 177 1078 469 1390 881 2162 833 1784 2556 1077 1398 479 130 181 181 181 181 181 181 181 181 181 18	=				l	ethod	e M	renc	Diffe	Finite	1410						010	909	ners	
10 111 102 103 174 105 176 27 178 189 1740 1552 763 145 150 471 472 173 184 175 476 197 188 359 210 481 1232 183 474 185 566 477 328 579 250 631 1262 593 504 475 1076 617 368 629 270 931 1412 813 1014 605 1266 1007 478 709 280 1521 1522 1263 1084 925 1416 1267 1268 739 480 1781 1752 1513 1264 1265 1516 1397 1518 959 960 2251 1782 1523 1514 1345 1526 1437 1948 1079 220 241 12002 1783 1524 1385 1566 1517 1998 1379 220 221 1382 93 114 145 366 1200 2441 2002 1783 1524 1385 1566 1517 1998 1379 220 221 382 93 114 145 366 1200 2441 2002 1783 1524 1385 1566 1517 1998 1379 220 221 382 93 114 145 366 1200 2441 2002 1783 1524 1385 1566 1517 1998 1379 220 221 322 233 244 1955 2066 1527 2158 1519 1200 2442 2363 2244 1755 2246 2247 2328 1689 1200 2443 2005 2356 1200 2443 2005 2356 1200 2443 2005 2356 1200 2443 2005 2356 1200 2443 2006 2373 2444 1955 2366 2277 1998 1379 1200 2440 2438 2005 2356 1200 2440 2438 2005 2356 1200 2443 2005 2356 1200 2440 2438 2005 2356 1200 2443 2005 2356 1200 2438 1704 1625 276 1200 2441 1883 2434 395 186 2437 878 879 1200 1201 111 1872 1313 1704 1625 2276 1200 2441 1883 2434 395 186 2437 878 879 1200 1201 1201 2433 2314 1935 1200 2441 1883 2434 395 186 2437 878 879 1200 240 240 240 240 240 240 240 240 240	407	46 2407	1740								1419						813	202		420
150					ine	chnic	e To	renc	Diffe	Finite				•					e Life	atigu
210	688 12			145		763	2	155		1740										10
250 631 1262 593 504 475 1076 617 368 629 270 931 1412 813 1014 605 1266 1007 478 709 280 1521 1522 1263 1084 925 1416 1267 1268 739 480 1781 1752 1513 1264 1265 1516 1397 1518 959 960 2251 1782 1523 1514 1345 1526 1437 1948 1079 202 2441 2002 1783 1524 1385 1656 1517 1998 1379 202 241 502 203 1714 1515 1676 1527 2158 1519 203 241 2162 2093 2074 1525 2006 2107 2248 1569 2420 2641 2162 2093 2074 1525 2006 2107 2248 1569 2430 2444 1925 2326 2237 1929 2443 2005 2356 1999 2436 2131 2433 244 1925 2366 2199 2436 2150 2440 2005 2356 1999 2436 2150 2440 2005 2356 1999 2436 2151 2437 2436 2159 2440 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11																-			
270 931 1412 813 1014 605 1266 1007 478 709																				
290 1521 1522 1263 1084 925 1416 1267 1268 739 480 1781 1752 1513 1264 1265 1516 1397 1518 959 60 2251 1782 1523 1514 1345 1526 1437 1448 1079 202 2441 2002 1783 1524 1385 1656 1517 1998 1379 208 241 502 133 214 145 1556 6020 2441 2002 1783 1524 1385 1656 1517 1998 1379 209 241 502 133 214 215 1556 6420 2641 2162 2093 2074 1525 2006 2107 2248 1569 520 2422 2363 2284 1755 2246 2247 2328 1689 6690 2373 2444 1925 2326 2237 1929 640 631 1152 523 1154 1435 1936 6690 2373 2444 1925 2326 2237 1929 640 631 1152 523 1154 1435 1936 6690 2438 2005 2356 1999 1010 751 1312 743 1348 1545 2056 6250 2442 2436 2159 6250 2516 2249 6260 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2448 2005 2566 2329 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2249 6270 1010 751 1312 743 1348 1545 2056 6270 2516 25276 6270 2518 1527 1528 1529 6270 1010 751 1312 743 1348 1545 2056 6270 2516 2510 2518 1519 100 861 1822 753 1541 1585 2186 6270 2516 2516 2516 2516 2516 2516 2516 2516						•				Finite										
480 1781 1752 1513 1264 1265 1516 1397 1518 959 960 2251 1782 1523 1514 1345 1526 1437 1948 1079 960 2251 1782 1523 1514 1345 1526 1517 1998 1379 960 2251 1782 1523 1514 1345 1526 1517 1998 1379 970 2241 2002 1783 1524 1385 1656 1517 1998 1379 1160 2561 2032 2003 1714 1515 1676 1527 2158 1519 1270 2422 2363 2284 1755 2246 2247 2328 1689 1270 2422 2363 2284 1755 2246 2247 2328 1689 1270 2422 2363 2284 1755 2246 2247 2328 1689 1270 1690 2373 2444 1925 2366 2237 1929 1270 1691 1322 743 1384 1545 2056 1270 2432 2035 256 1999 1270 1691 2282 1673 1914 1865 2496 1270 1831 1903 2464 1740 2481 1993 2514 1830 2473 2674 1840 481 883 2434 395 186 2437 878 879 1830 1081 2433 2444 1925 2376 1831 1903 2464 1740 2481 1993 2514 1830 2473 2674 1830 2473 2674 1830 2473 2674 1840 481 882 473 884 1926 177 1078 469 1830 2270 2493 1830 181 882 473 884 1926 177 1078 469 1840 2001 2252 2374 2434 2556 1077 1398 479 1830 2001 2252 2374 2434 5256 1077 1398 479 1830 2372 1841 Detection 1850 181 882 473 884 1926 177 1078 469 1860 881 2162 833 1784 2556 1077 1398 479 1850 2372 1850 2372 1850 2441 2481 1993 2514 1850 2473 2674 1860 2481 2499 1300 1418 1850 2473 2674 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2514 1860 2481 1993 2464 1760 2481 1993 2514 1860 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1993 2464 1760 2481 1994 1860 2481 2494 1860 2481 2494 1860 2481 2494 186			:	hnique	ce Tec	ieren	Dif	inite	use F											
960 2251 1782 1523 1514 1345 1526 1437 1948 1079					_	!	Pl	1	E1	E:_:a-										
1000	237 108 5	66 927	266	145		-														
160 2561 2032 2003 1714 1515 1676 1527 2158 1519 520 321 802 223 534 645 1566 1420 2641 2162 2093 2074 1525 2046 2107 2248 1569 530 521 942 373 834 915 1336 1369 1309	667 468 8						_													
1420 2641 2162 2093 2074 1525 2006 2107 2248 1569 530 521 942 373 834 915 1836 1520 2422 2363 2244 1755 2246 2247 2328 1689 540 621 1102 453 1044 1435 1936 1690 2373 2444 1925 2326 2237 1929 640 631 152 232 1154 1545 2056 1000 2443 2005 2356 2159 1100 861 1822 793 1544 1545 2186 1250 2249 1220 111 1872 1313 1704 1625 2276 1240 12	997 528 12	_	_		_		_													
1520							_													
1690							-	-												
1750																				
2516	1738 24	56	2056	1545	1384	743	2	131	751	1010	1999			2356	2005		2443			1750
2566 2329 1270 1691 2282 1673 1914 1865 2496 2500 2499 1320 1711 2682 1833 2314 1935 2560 1370 1831 1903 2464 1740 2481 1993 2514 2480 481 883 2434 395 186 2437 878 879 2270 2493 2880 1081 2433 2435 2438 1729 2370 2439 2380 2510 Fatigue Strength use Fatigue Life Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2434 2158 2434 Flanges Fatigue Composites 440 221 2642 1263 1874 905 2006 1927 988 899 Flexible Couplings Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 Flexible Foundations 1682 Flexible Foundations 20 22 946	2008	.86	2186	1585	1544	793	2	182	861	1100	2159			2436						2000
2499 1320 1711 2682 1833 2314 1935 2560 1370 1831 1903 2464 1740 2481 1993 2514 Fatigue (Materials) 1830 2473 2674 480 481 883 2434 395 186 2437 878 879 2270 2493 880 1081 2433 2435 2438 1729 2370 2439 2380 2510 Fatigue Strength use Fatigue Life Finite Strip Method 131 1482 Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 1682 Flexible Foundations 20 22 946	2068	76	2276	1625	1704	1313	2	187	1111	1220	2249			2516						2250
1370 1831 1903 2464 1740 2481 1993 2514 1830 2473 2674 1830 2473 2870 1830 2473 2674 1830 2473 2473 2674 1830 2473 2473 2473 2473 2473 2473 2473 2473	2578	196	2496	1865	1914	1673	12	228	1691	1270	2329			2566						2440
Fatigue (Materials) 1740 2481 1993 2514 1830 2473 2674 480 481 883 2434 395 186 2437 878 879 2270 2493 880 1081 2433 2435 2438 1729 2370 1080 2371 2439 2380 2510 Fatigue Strength use Fatigue Life Finite Strip Method 131 1482 Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Finite Strip Method 131 1482 Flanges 1605 Flexible Couplings 1682 Flexible Foundations 1682 Flexible Foundations 20 22 946	2598			1935	2314	833	2	268			2499									
Retigue (Materials) 480 481 883 2434 395 186 2437 878 879 2270 2493 880 1081 2433 2435 2438 1729 2370 1080 2371 2439 2380 2510 Fatigue Strength use Fatigue Life Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 Fault Detection use Failure Detection use Failure Detection Finite Strip Method 131 1482 Flanges						-														2560
480 481 883 2434 395 186 2437 878 879 2270 2493 880 1081 2433 2435 2438 1729 2370 1080 2371 2439 2380 2510 Fatigue Strength use Fatigue Life Finite Strip Method									2481											
880 1081					2674						0.50	050	0 4 0 -	100				terials)	•	_
2439 2380 2510 Fatigue Strength use Fatigue Life Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 2439 2380 2510 Finite Strip Method 131 1482 Flanges Flanges Flanges Flanges Flanges Flexibility Coefficients 2372 Flexible Couplings Flexible Foundations 20 22 946						1493	2			_			2437	180		2434				
Fatigue Strength use Fatigue Life Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946												2458			2435		2433			
Fatigue Strength use Fatigue Life Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946											24 39								Z 3 (1	LUOU
use Fatigue Life Finite Strip Method Fatigue Tests 880 181 882 473 884 1926 177 1078 469 Flanges 980 881 2162 833 1784 2556 1077 1398 479 1605 2320 2001 2252 2374 2158 2158 2372 Fault Detection Flexible Coefficients use Failure Detection Flexible Couplings Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 20 22 946										2310								neth	e Stre	Fation
Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 1682 Flexible Foundations 20 22 946						i	hod	Met	Strin	Finite							Life	_	_	
Fatigue Tests 880 181 882 473 884 1926 177 1078 469 980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946	2177 168	2177							-											
980 881 2162 833 1784 2556 1077 1398 479 2320 2001 2252 2374 2158 2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946							_											8	ie Test	Fatig
980 881 2162 833 1784 2556 1077 1398 479 1605 2320 2001 2252 2374 2158 Fault Detection 2372 Fiber Composites 1682 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946									8	Flang	469	1078	177	1926		884	473	882	181	880
2434 Flexibility Coefficients 2372 Fault Detection use Failure Detection Flexible Couplings 1682 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946				1605							479		1077	2556			833			
Fault Detection use Failure Detection Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 2372 Flexible Couplings 1682 Flexible Foundations 20 22 946												2158						2252	2001	2320
Fault Detection use Failure Detection Flexible Couplings 1682 Fiber Composites 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 20 22 946						nts	ficie	Coef	ility (Flexil						2434				
use Failure Detection Flexible Couplings Fiber Composites 1682 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 2610 2441 2441 2441 946							2	237										ion	Datas	F14
Fiber Composites 1682 440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 26 10 2441 20 22 946																ion	Detect		_	r aunt
## Composites 440 221 2642 1263 1874 905 2006 1927 988 899							•	-	le Co	Flexil						lVIII.	Detect	indie :	use r	
440 221 2642 1263 1874 905 2006 1927 988 899 1710 1961 2355 Flexible Foundations 2610 2441 20 22 946	367	367					12	168										osites	Comp	Fiber
1710 1901 2355 2610 2441 20 22 946										·-	899	988	1927	2006	905	1874	1263			
201U 2441		146	046			18			le Fo						2355				1961	1710
		140	940		,		:Z	2											2441	2610
Fiberglass 899 Flexible Rotors								tors	le Ro	Flexi	800								glass	Fiber
077	057 2458	206 2057	206	255		3	2				ひプブ									
Fiber Optics 1810 1922 2030	20 20							192										I	Optice	

Fibers

Fast Fourier Transformation

12_

10

11

Flexible Shafts 2287	Flow-Induced Vibration use Fluid-Induced Excitation
Flexural Vibration	Fluid Damping
380 101 262 463 394 655 826 127 128 659 1140 121 1202 1013 824 665 1706 707 1198 829	use Viscous Damping
1140 121 1202 1013 824 665 1706 707 1198 829 2180 831 1452 1443 1134 1035 1946 827 2568 1019	Fluid Drives
2360 391 2232 1713 1344 1465 2586 1947 1029	1609
2570 631 2572 2234 1645 1939	
841 2384 2359	Fluid-Filled Containers
1201 2579 1211	830 2422 413 134 135 2196 407 1038 1039 1040 2323 1954 255 817 1738 1219
1431	1220 1735 1037 2189
2181	1590 2197
2571	D1. 13 D11. 3 8g. 31.
Flexural Waves	Fluid-Filled Media 1971
1693 814	1714
1070 017	Fluid-Film Bearings
Flight Simulation	2290 4 258 749
1891 1664 1887	748 2269
Flight Tast Data	Fluid-Induced Excitation
Flight Test Data 531 316 2127	140 421 652 663 414 415 386 207 818 269
2131	1380 801 662 673 434 665 676 387 1378 559
	1470 1031 1032 1073 664 875 756 1037 1428 659 1560 1221 1272 1353 874 1375 876 1347 1438 819
Flight Tests	1570 1421 1462 1393 1194 1845 1046 1377 1468 1439
491 2113 58 68	1990 1441 1472 1463 1464 1256 1467 1469
98	2200 1461 1942 1503 1734 1376 1599
Flight Vehicle Equipment Response	2380 1471 1952 1954 1466 1739
913	1571 2292 2334 1536 2601 2602 2604 1676
	2606
Flight Vehicles 913	· · ·
713	Fluid-Induced Vibrations
Floating Bodies	use Fluid-Induced Excitation
use Floating Structures	Fluid-Inertia Forces
The extension of the control of the	1410
Floating Bridges use Pontoon Bridges	Divid Maria
use I ontoon Daviges	Fluid Mass 1254
Floating Floors	1,803
1406	Flutter
FD - st Ct - st.	1500 261 62 63 64 315 126 317 358 9
Floating Structures 2463 269	1600 271 342 413 314 595 386 597 458 1359 1990 311 652 1673 524 1445 396 1888 1499
2400	2300 1221 872 2103 1574 1575 596 2228 1549
Floors	2360 1391 1072 1654 2105 1166 2358 1559
600 681 1233 2204 1745 148	1501 1392 2104 2425 1576 2328 2359
Film Indianal Production	1991 1502 2134 1606 2538 2539
Flow-Induced Excitation use Fluid-Induced Excitation	1672 2484 2106 2102
Abstract	
	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	7 8 9 10 11 12
Issue: 1 2 3 4 5 6	, 6 7 10 11 12

Foams		1906 897	7	Fourier Techniques use Fourier Analysis
Foil Bearings			109	Fourier Transformation 1271 945 2216 868
Follower Forces				1511
1600		126 813 2166	7	Fourier Transforms use Fourier Transformation
Footings				Fracture Properties
21				440 2221 182 123 1224 1225 176 187 1529
Force Coefficients	284 565	5		812 1203 1714 1335 1226 647 1082 1223 1656 1227 2642 2643 1577
Force Correction Metho	d	1813	7	Framed Structures 2391 2205 388
Force Measurement	484			2315 1028 2078 2578
Forced Vibration				Frames
1042 1992 2062	1964 1485	5 1506	1989	820 1701 2173 124 146 1027 2390 234 2577
2002 2182				Free Vibration
2272				2631 2594 825 666 2229
n . n				1545 2589
Forcing Function	464 2125			Freight Cars
	707 2120	•		1870 1901 962 233 964 1385 297 298 49
Forging Machinery				1647 299
1142		266 757	7 938 1139 1138	Frequencies 2102 1514
Fossil Power Plants				2102 1314
			1099	Frequency Analysis
Foundation Excitation	_			1343 896 2659 2266
tile Date Excitatio	11			Frequency Constraints
Foundations				1119
	1624 1495			P D
1840 2311 253 1623	2314 2305	1146 1367	7 1138	Frequency Domain 1370 1371
		1414	7 1368	Frequency Domain Method
Four Bar Mechanisms				331 1792 1923 1624 915 516 1537 888 49
1193 2163	1304 2375	5	2068	431 2273 1715 536 2087 1389 2015 2266 2277
Fourier Analysis				Frequency Equation
2022	1534	726		1693
Abstract Numbers: 1-254 255-554	555-746 74	7-927 928-11	31 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14				
Issue: 1 2	3	4 5	6	7 8 9 10 11 12

Frequency Filters				·G·
1792		1289		
Frequency Measurement 2010			Galerkin Method	826 1409
Frequency Meters	487		Galloping 1990	2425
Frequency Response 240 172 443	835 2256 457 418		Gas Bearings 1680 1681 1613	
	1255 1826 2255 2515	B 5 29	Gas Turbine Blades 621	
Frequency Response Function 1250 1793	1 2268	•	Gas Turbine Engines 743	
1250 1793 Frequency Transfer Function	2200	D	Gas Turbines 203	1079
requency manager runction		2479	Gear Boxes 630 2212	
Fretting Corrosion	477		Gear Drives	
Friction				
460 1771	505 106 1415		Gear Noise 772	
Friction Bearings	, 106		Gear Teeth 631	366 2157 2158
Friction Excitation				906 1926
2522	435 436 2426		Gears	2456
Fuel Tanks	1037		810 511 632 1813 118 631 2372 1843 184 2371	
Fulcrum	1785		Generators 2283	1346
			Geometric Effects	
Fundamental Frequency 394	2395 1736	1939		14 1695 8 1339 14 1795 1948 2555
	1886		Geometric Imperfection Effe	cts
Fuzes (Ordnance) 2114	ı		•	385 707 1458 1548
Abstract Numbers: 1-254 255-554 555-7	46 747-927 928-1131 11	32-1335	1336-1582 1583-1844 1845-2056	2057-2284 2285-2489 2490-2684
Volume 14				
Issue: 1 2 3	4 5	6	7 8 9	10 11 12

Girders	1695		Ground Vibration	2528
Glass 1513		197	Guard Rails 1022 293 1024 10 1882 1023	B77
Glass Reinforced Plastics		8 9 7 1678	1883	
Gradient Methods		G7 (10 (0	Guided Missiles 865	
Granular Motorials	1064			017 2148 1889 417
Graphic Methoda 240 842 850	235		Guyed Structures 961 2512 2084	
Grass 860			Gyroscopes	1808
Gravity Effects 383			Gyroscopic Excitation 671	
Gravity Method 2430			- M -	
Green Function 1453	1965		Half Plane	
Grids (Beam Grids)			II MILE	699
Grinding Machinery	1546		Half-Space 710 441 712 2513 384	278
1143 Ground Effect 2532			Hamiltonian Principle 2040 2464 866	2669
Ground Effect Machines	774 1575	548 549	Hammers 1610 1142 564 1:	357 1 798
1493 Ground Motion	2065		Handbooks use Manuals and Handbooks	
450 161 272 1723 2261	1744 1764	1147 2629	Hand Tools	2139
Ground Shock 2220		2219	Harbors 2671 955	
Ground Vehicles 900 201 2322 1871	965 1156 2525	977 2648 1869	Hardened Installations 1330 2630	
Abstract Numbers: 1-254 255-554 Volume 14	565-746 747-927 (028-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285	-2489 2490-2684
Issue: 1 2	3 4	5 6	7 8 9 10	11 12

larmonic Analysi			14					70 71	66	327	_	609
1212		634					1499	1131 2111 2531			978	
		1314						Helicopter Rotors				
tarmonic Balance 1021 742		d		826	707	1388		use Helicopters and Rote	ors			
1911 1482				1336				Helicopters	e 204	4.7	۷0	40
larmonic Excitat	ion							90 1171 72 323 604 610 1791 1172 1673 1834		67 1387	68 328	69 89
120 1911	563	846	705	1796	1457	118	169	930 2553 1894	_		988	329
400	2513	2574	2385	2636	2567	278	279	1170	1575	1927	1388	1659
950						958	1109 2179	1660	1665	2367	2338	2289
							2179	2530	1835 2555			
larmonic Function	D na	1544						Halianaan Wihaaian				
		1077						Helicopter Vibration 2111	1665 2336	2337		
łarmonic Respon (340—461		1504	1815		1987	118		Malm etc				
671	70	1004	1010			2588		Helmets	86	ı		1899
larmonic Waves								Helmholtz Integral Method				
221	643						869		1245			
1961								Helmholtz Resonators				
lead (Anatomy)								neimnoitz Resonators	425			2069
2141 2142	2					1898			2415			
leat Exchangers								High Frequencies				
140 141	1463	1464	1465	1736	1467		1469		1295 1616	1617	2408	
1470 421 1471						1438	2199	551-5 57				
1441								High Frequency Excitation			1768	
leat Radiators												
462	4	504						High Frequency Response 262				
leat Shields 1541 2122	2 2123	2124						High Speed Rotors				
2121								804				
leat Transfer								High Speed Transportation Sys	tems			
400 1592	2	1934								997		
Heaviside Functio	one							Highway Transportation				
1300									1976)		
Helical Springs								Hingeless Rotors				
2550									786)		2289
lelicopter Blades use Propell		e s						Hinges 2163				
Abstract Numbers: 1-254 2		EEE 7	10 74	7 027	020 112		1225	1226 1582 1582 1844 1845 885	2057 2024 -			
	:UD-DD4	222-74	10 /4/	-82/	a42-113	113	1335 1335	1336-1582 1583-1844 1845-2056	2057-2284 2	285-248	₩ 249	0-2684
/olume 14	2	3					6					

Hitches use Drawbers			Hydraulic Servomechanisms	416 417
Hole-Containing Media 1210 901 793	185 2606	1947	Hydraulic Systems	1607 2069
Holes	1956		Hydrodynamic Bearings 1132	1677
Holographic Techniques 621	724 1275 2656 2025 2655		Hydrodynamic Excitation 1370 301 2092 514 411 954 1 1371 2091	805 1646 269 1475 1649
Holonomic Systems	1297		Hydroelectric Power Plants	556 958
Honeycomb Structures	845 846	618	Hydrofoil Craft 393	
Housings 1411			Hydrophones	196 716
Hovercraft use Ground Effect !	Machines		Hydrostatic Bearings	
Human Hand 2140			Hydrostatic Drives	1509
Human Head use Head (Anatomy	y)		Hyperbolic Parabolic Shells	2046
Human Organs	l\		1044	
790 791 2342 1403 2331 2542 1573	84 75 76 67 1404 85 86 77	7 78 1179 7 578 1899	Hysteretic Damping 2000 761 123 1054 2241 613 1053	1775 1896 1108 1259 2088 1699
2341 2343 2543	2545	2138		1.
Hunting Motion 963 Hydraulic Dampers	964 296 164	7 298	Ice	305 1818 689 1205 1819
2151 Hydraulic Equipment 1142 263	1856 33	7 2028	Icebreakers (Ships)	305
Hydrautic Seals	1685		Ice Removai	1626
Abstract Numbers: 1-254 255-554	555-746 747-927 928-1	131 1132-1335	1336-1582 1583-1844 1845-2056	2057-2284 2285-2489 2490-2684
Votume 14 Issue: 1 2	3 4 5	66	7 8 9	10 11 12

Impact Dampers use Shock Absorbers	Incremental Methods
Impact Force	Indicial Method
1704	2440
	Indirect Fourier Transform
Impact Load Prediction 1250	2216
1250	Industrial Facilities
Impact Noise 564 696	550 611 842 843 844 156 2617 2208 949 1061 1403 1129
ř	2209
Impact Paris 1905	Industrial Noise use Industrial Facilities and Noise Generation
Impact Response	Inertial Forces
	29 1733 2044 2156
	39 99 - Infinite Domain
2221 2446 2007 11	Institute Dolpani
Impact Shock	
2500 51 2133 1884	Infinite Element Technique 523
Impact Testing	1553
use Impact Tests	
	Influence Coefficient Matrix
Impact Tests 440 622 1023 714 725 1906 1877 598 76	use Influence Coefficient Method
770 992 1043 1024	Influence Coefficient Method
1090 1022 1083	1810 1392 2315 2457 909
1160	Initial Deformation Effects
Impedance Technique	1200 1195 1197 1459
331 1532 905 936 1857	
1535 1506 1625	Initial Value Problems use Boundary Value Problems
Impedance-Matching Technique	Instrumentation
2616	912
Impellers	Instrumentation Mounts
1604 1676 1347	2148
Impulse Intensity	Instruments
438	use Instrumentation
Incipient Failure Detection 1803	Insulation 498
Inclusion	Integral Equations
1042	1299
Abstract Numbers 1.254 255.554 565.746 247.027 029.1121 1122.15	335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
	335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	
Issue: 1 2 3 4 5 6	7 8 9 10 11 12

Integrated Force Method	2659	Interaction: Tire-Pavement 2551 354
Integration 224		Interaction: Vehicle-Guideway
Interaction: Machine Tool-Workpiece 2494		Interferometers 2012 2645
Interaction: Rail-Vehicle 242 2526 2527	1159	Interior Noise
Interaction: Rail-Wheel 50 1161 2152 933 2324 295 356 47 777	2049	590 1872 583 984 55 56 67 589 783 1384 795 776 2537 983 2535 2536 1163
Interaction: Road Vehicle 2525		Intermittent Motion 1292
Interaction: Rotor-Stator 1846 468	1	Internal Combustion Engines 936 1608
Interaction: Soil-Foundation 20 2513		1136 Internal Damping
Interaction: Soil-Structure 280 21 1112 23 384 945 376 247 378 450 241 523 1624 1125 2086 377 1698		2180 413 2194 2166 747 1938 2058
950 951 1623 2314 1145 1717 1100 1111 2313 1365 1867 1330 1831 1625 2087	2239	Internal Friction 895 899
1830 2225 2310		Internal Pressure 1731 1732 674
Interaction: Solid-Fluid 1952 875		Internal Reverberation 2635
Interaction: Structure-Fluid	1000	
1100 401 402 873 834 1375 1026 1147 1038 1370 961 2323 1604 1675 1606 1237 1248	-	Isolation 1913 1374 615
1151 1674 1715 1836 1247 1838		2033
1371 1684 1865 1557	1739	
2151 2224 2315	2529	Isolators
2405		90 91 2353 87 948 89
Interaction: Structure-Foundation		340 341 2487 339
21 22 14 945 16 1147 1768 561 2314	1	Isotropy 692
Interaction: Structure-Medium		
1551 1552 1553 1554 1555 1556 1557 1558	3	Iteration
1861 1572 1715		1311 2493 1305
Abstract Numbers: 1-254 256-554 555-746 747-927 928-1131 11	32-1335 13	336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14		
lenie: 1 2 3 4 5	6	7 R Q 10 11 12

	Laplace Transformation
.J.	- 1042 2315 119
	1112 2039
Jet Engines	2462
1994 1399	Large Amplitudes
Tot Notice	2590 1414 825 1456 1429
Jet Noise 2600 1741 982 784 307 1058 1069	1706 2579
1892 2624 1057 1399	T
2407	Lasers 24 25 336 1808 2259
Joints (Junctions)	
390 111 812 423 424 1995 117 368 389	Lateral Response
2560 811 1232 2173 814 1927 1928 1929	100
1081 1442 2373 1054 2159	Lateral Vibration
2161 1582 2094	2552 556 747
2561 2162 2374	1687
Journal Bearings	Lathes
360 361 1922 1413 1005 806 807 808 1769	1354
750 1921 1425 2156 2287 1678 2059	
1920	Launchers
2370	992 2116
	Launching
	1282
-1.	Launching Response
	. 1176
Lagrange Equations	Layered Damping
740 2665	482
Laminates	Layered Materials
use Layered Materials	1710 221 532 2393 1434 185 136 128 279
• •	2440 471 2382 425 886 428 829
Landing 2331 2133	701 2175 1718 869
2331 2133	1951 2315 2579
Landing Fields	1961 2181
use Aircraft Landing Areas	4101
•	Leaf Springs
Landing Gear 65	2549
03	Load Sayana Makad
Landing Impact	Least Squares Method 735 206 2477 1828 2029
use Landing and Impact Shock	2015
T 1' C1 1	
Landing Shock use Landing and Impact Shock	Liapunov's Method use Lyapunov Functions
	use Lyapunov Punctions
Landing Simulation	Life Line Systems
use Landing and Simulation	1737 2198
Abstract Numbers: 1-254 255-554 555-748 747-927 928-1131 1132-1335	1999 1503 1503 1044 1045 0050 2073 0000 2007 0000
	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	
Issue: 1 2 3 4 5 6	7 B 9 10 11 12

Lifting Surfa	ace Theory 2072				Low F	requencies 2602	1873	795 20	576	2408	1589
Line Source	Excitation							2125		2418	
			427		Lubrio	cation					
Linear Analy	ysis inear Theories				360 1410	1591 1412 1592			116 757		359 629
Linear Dam use V	ping iscous Dampin	g				ed Mass Met use Lumped		Method			
Linear Syste	ems				-	ed Paramete			445	0110	
1510	2462	1115	88	38		1881	283 413			2118 2238	
Linear Theo	ries						2633		2011		
		2055	747								
Lining											
Linings	1262		160	8 1059							
	<u>-</u>							- M			
Linkages	633	634 735	100)8 89			_	_			
	1193	034 133	100	09	Machi	ne Diagnosti	CS				
						use Diagnos		ues			
•	d Containers	ē.•									
use r	luid Filled Con	tamers			Machi	ne Drives 1601					
Locomotive						1001					
			617	1869	Machi	ne Elements					
I	l Parramas					use Machine	ery Compor	ients			
Longitudina 100	i response 1013			1169	Machi	ne Foundati	one				
	1213			/	Much	1912		4	1367		
Longitudina	d Vibration 1432 953		2567	1939		ne Noise	Noise				
	1863		2001	1707		use Machine	ery Nome				
	2563				Machi	ne Tools					
						1611	1143 249	4 1355 24		268	759
Longitudina	l Waves 1693							2495	2497	:	2269
	1070				Machi	nery					
Loosening					1610	•	223	4			339
				1419	** **						
Loss Factor					Machi	nery Compo 2002	nents 183	99	276		
661						2002	200	22			
						nery Found					
Loss-of-Coo	lant Accident			1639		use Machine	Foundation	ons			
				1037	Machi	nery Noise					
Loves Shell	Theory					861	683 124			1358	
1950							197	4 1975	1327		
Abstract Numbers: 1-	254 255-554 5	555-746 747-927	928-1131 1	132-1335	1336-1582	1583-1844	1845-2056	2057 2284	2285 248	9 2490	2684
Volume 14											
Issue:	1 2	34	5	6	7	88	9	10	11		12

Machinery Vibration 533		996 1406 1666			509 919	2590		System						
		2266				[A1488-12]	beniß	System	18		1915			
Magnetic Bearings			107			Materia 800			1433		2235	1996	877 1777	
Magnetic Damping		96				Mass T		ortatio	n					
Magnetic Properties 2450						Mataha	351		ia Ewa		n Task			
Magnetic Vehicle Suspen	sions			540	F 40	Marcife	AU AUS	ymptot	ю ехр 2473	MILENO	n tecn	undrie		
Magnetoelastic Vibration	8 1455			548	549	Materii	d Dai	mping					1997 2487	
Magnetoelasticity	1775					Materia	uls		2023					1088
Magnetohydrodynamics 1402						Materia	ds Ha	andling	Equip	ment 554	565 1615			
Mailboxes 1880								al Mode	•	odela (
Mappings (Mathematics) 1311 2203						Mather	natic	al Mode	els					
Marine Engines 810 752 753			557			80 1	1561 1891	972 1352 2142	283	744	525 1625 1825 2045		217 267 917 957	48 2 158 9 218 10 918 11
Marine Propellers		2326	2097			1560 1870 2140	,0 0 1		933 2123	974	2525		1827	1678 18
Marine Risers	1.74 1645 1644	1646			1429							1776 2476		
Masonry						Mather	natic	al Progr	ammi	ng				1158
1480			:	2508	2509	B# .1.1	_							1130
Mass Beam Systems	2095	1436				Mathie	u Fui	nctions						1118
Mass Coefficients	635			2668		Matrix	Func	tions		224			1547	
Mass Matrices		2036	•	-000		Matrix 2350	Meth	ode			215 2465	1546		2668
Abstract Numbers: 1-254 255-554			928-113	113	32-1335	1336-1582	1583	3-1844	1845-2	2056	2057-22	284 2	285-248	9 2490-2
Volume 14														-
Issue: 1 2	3	4	5		6	7		8	9		10		11	12

Maximax Response		1357 140	8	Mechan	nical System 2272	15			
Maximum Entropy Method				Mechan	isms				
1642				1290	1292	1683 136	04	466	2068 1809
Maniana I thattha ad Mark a									
Maximum Likelihood Method 922				Membra	anes				
922				u	ıse Membra	nes (Struc	tural Memb	егв)	
Maxwell Modeling Technique							_		
	2245				nes (Struct		•		-
				540	1702		1935		1208 1029
Mean Square Response				1140		1443		2177	
-			219	2580		1703			
				M-4-1 W	V l . !				
Measurement Instruments				Metal V	1 1612	-	٠,		000 000
use Measuring Instrume	nts			470	1 1012	9	64		938 939
Manuscrapt Taskainas				Metals					
Measurement Techniques 490 691 1272 193 94	625 1126	1667 19	8 969	2250 1	771	883	1775 1	996 187	188
970 891 2342 2533 1794			8 1869		2001	003			1518
1060 1081 2532	1535 1276			-	,001		٤.	990 447 877	1310
1530 1531 2652	2255 1476	2031 233	2259					1077	
2060 2021	2625 2256		2239					1011	
2430 2611	2626			Method	of Charact	eristics			
2400 2011	2020					1743			2608
Measuring Instrumentation						-1120			
use Measuring Instrume	nte			Method	of Steepes	t Descent			
					se Steepest	_	Method		
Measuring Instruments					•				
890 1791 192 193 24	25 196	487 48	8 489	Military	Facilities				
900 1272 1533 1084	195 486	2257 89	8 889	-	451 452			437	
1620 2653 2644	485 1536	244	8 2009						
2220 2654	895		2449	Mindlin	Theory				
2410	1085			1030		2593			
	2235								
				Mines (Excavation	8)			
Measuring Techniques									29
use Measurement Techn	iques								
				Minima	x Techniqu	e			
Mechanical Admittance							735		
824	1535				***				
	2605				m Weight [-			1110
44 1 1 15 1				2480	772	3.	14		1119
Mechanical Drives	105 1006								1939
	105 1096			Mining	Equipment				
	365			Minnig	ndarbment	2093			28 29
Mechanical Impedance						4070			20 27
	1215 1336	90	8 1819	Min-Ma	x Technigu	e			
1000 024	1210 1300	181			a roomiya				948
		101	·						
Mechanical Reliability				Missile (Component	8			
use Reliability					•		1175		
									
Abstract Numbers: 1-254 255-554 555-7	46 747-027	Q28.1131 1	132-1335	1336-1582	1583,1844	1845-2056	2057-2284	2205 2404	2400.2604
	70 171-041	320-1131	132-1333	1930-1902	1303-1844	1040-2000	2007-2289	2285-2489	2490-2684
Volume 14									
Issue: 1 2 3	4	5	6	7	8	9	10	11	12

Abstrac Iumber		254 2	55-554	555-74	46 747	·927 g	928-113	11 113	2-1335	1336-1582	1583	1844	1845-2	056 2	057-228	4 22	85-248	9 249	0-26
						2396 2506				Moving	g Strip)\$						1198	
570 580			2573 2583	1094	4000	1446 1916		4300		Moving	g ocati	iciels							148
220 460				1694 1834		816 936	2657	2118 2568		Masi-	- C4	• ances							
000	• -		1833	1044	1895	666	1697	1358									1857		
			1163		1835		1107		4477		2501 2501	1002	2383	2014			1407		
620 820		1712 1732			1045 1825	456 626	897 1087		1709 2299	1490		122 1852		644			427 1017	1858	
530	101	392	723	14	275	326	267	378	459	Movinį		de							
ode S	Shape	:4																	19
odal	Tests		1873		1945		1087	2268		Mount	ings			94		996	2547	2148	3:
660												552	553	344				728	
10dal 240	synti	re sts								Motor	Vehic	:les							
											0-71		4170		*****			1778	
		rpositi 1012	on Me	thod						Motor	841		1193		1235		1747	1748	
odal	Mode	els							1909	970					:	2136			
			1833							Motor	Vehic	:le Noi	se						
lodal 960	Dam		1163	964	2245				459	Motor	Vehic	le Eng 1352	ines						
			•				347			Motor	cycles 41		2523						18
odal	Cont	roi Te	chniqu	e						1430									
IOUZI	Cons	traunt	2633	_						1010	0					1426			
lad-1	Cana	tuai-+	Metho						-	Moorie	ngs								
odal	tsalar	icing T	echnic	pue		206		2458	2029	2030								-070	41.5
	. .									510 2010		1542					1097	738 1098	
				2014 2554						250	511	912	913			1096	737	508	7
		2462		1534	2275		2677			Monito 210	oring i 211		ques 513	1814		736	207	208	2
UJU	661	482			2015 2265		847 2657	036	2219										
lodal 050	Analy 321	•	723	504	9015	326	0.47	420	2279	Moire	Effect 1541	te						1278	
	.,							898				1532	-				2597		
lahili	ty Me	thad								Modul	us of l	Elastic	itv						
lobili 680	ty Fu	nction	18	2204					2679	Model		odel T	esting						
				1664								1382	123	1094					
330					2115				1889		41	62	33	64			87		7:

Mufflers	703		9457		Natural Vibrations
	793	995	2657		2384
Multibea	m Systems		193	8	Navier-Stokes Equations 2044
•	ree of Freedom Multidegree o	Structures f Freedom Syst	ems		Noise Analyzers 2317 2447
Multidee	ee of Freedom	Systems			
_	61 2423	•	106 517 636 707 1006 1066 2236 2656	8 2229 8 8	Noise Barriers 291 1762 765 856 697 698 859 2521 1962 857 2408 1487 2487
M-Miss-	D 9.3:				Noise Control
	y Buildings 61 222 273	14 1495 2	506 17 1618	R 1619	use Noise Reduction
	41 942 763	944 2205 3 1364 2505	1027 2507	1859	Noise Generation 1610 611 432 433 324 85 436 237 308 29 1630 771 662 1243 354 265 1236 607 648 129 2210 1031 842 1353 844 355 1356 1387 968 999 1401 982 1403 894 435 2206 2617 1028 1919 1661 1612 1493 1904 765 2606 1138 2209 1741 1892 1973 1944 965 2108
		- N -			1871 2522 2543 1235 2208 2071 2615 2338
					2371 2655 2368
Narrow-E	and Excitation	304			2551 2608 Noise Measurement
N/A COMPLA	N 40	n			560 71 722 333 54 55 56 987 1638 59 900 691 1662 1633 2344 1085 776 1157 1648 609
NASTKA	N (Computer I 1872 743		566 1257 1557		970 1631 2022 2533 1396 1637 969 1400 2021 1636 2617 1839 1530 2111 2406 1869
Natural F	requencies				1630 2531 2449
	01 392 113		326 137 18		2551
640 10		1044 1465	666 267 298 786 897 378	8 619	Noise Meters use Sound Level Meters
				8 1219 8 1700	
1000 25	11 1732 993	2254 1825 1	346 1697 668	8 1709 8 1909	Noise Path Diagnostics 2651
1120 1220	1772 1013 2572 1163		.596 2117 798 .746 2177 828	8 1939 8 2299	Noise Prediction
2280	1583		886 2227 120		1610 71 432 783 584 5 586 7 1058 59
2460	1713		916 2577 1868		1650 2211 1662 1483 1634 155 1186 157 1318 79
2550	1833		2176 2657 2118		2530 2492 1974 325 1976 327 1848 159
2580	1863 2173 2573 2583	3 2 3	2396 2178 2506 2418 2558 2568 2668	8 8 8	2344 585 2536 437 2109 2364 1245 987 1635 2327 1975 2535
Abstract Numbers: Volume 1		555-746 747-9	927 928-1131 1	132-1335 1	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Issue:	1 2	3 4	5	6	7 8 9 10 11 12

Noise	Propa	gation								Nonde	struct	tive Te	sts						
	use So	ound P	ropagi	ition						500	1331	902	503	1334	1335	1096	727	248	199
Noise	Reduc	ation								1130 1580	1581	1332 1582	903			1786	1797	1578	499 1579
50	31	592	53	144	75	66	57	28	29	1000		1002	1963						1317
550	541	862	573	334	345	156		88	309				1700						
570	591	972	773	344	425	366	747	308	569	Nonlin	A	nalysis							
590		1062	843	784	795	766		588	589			online:		neina					
630		1492	973	844	985	966	967	618	679		use IV	OILLIGICA	rt Tile	UI JCS					
	1061				1165		977	698	939	Nonlin	eer N	ampin							
			_	1944			-	938	999	Lionin	CEL D	-inhud	5					1678	1679
				2274				-	1059									1010	1017
1910		2002		2284						Nonlie	ar R	espons	•						
2210				2504								1012	HC .		1705				
2520				2534							1011	2672			2055				
2640	2021			2684		4490		2208	-			2012			2033				
2040			2003	2004	2013			2200		No-li-	C	·: cc	_						
							1637		1879	Монт	iear 3	tiffnese	,					1/70	1650
							1847		2209									1018	1679
							1957		2519	167 14									
							2097		2609	Nonlin	iear S	ystems							
							2207						2273	2674					2269
							2327					1302							
							2407												
							2417			Nonlin	near T	heories	3						
							2487					872		1704	1935		1817	1548	
							2617								2565			2578	
															2575				
Noise	Shield	ing																	
		_					1137			Nonlin	iear V	ibratio	n						
										1450					2035	1456		2038	1269
Noise	Source	e Ideni	tificati	on															
1970	2651	562	2613			66			1399	Nonpa	ramet	ric Ide	ntifica	tion T	echniq	ue			
2070		1802				266			1869	•			1563						
		1972							1879										
		2022								Norma	d Den	aitv Fu	ınction	1.6					
		2612										,		_		916			
																,,,			
Noise	Tolera	nce								Norma	l Mod	les							
					75	76					2271				1485	626	2117		
						2136										2476			
Noise	Transı	nissio	1							Nozzle	:8								
							2327		839		1741	1892							
							2537												
							2627			Nuclea	ır Exp	losion	Detect	tion					
											_			454					
Nonce	onserva	ative F	огсев																
						1446				Nuclea	ır Exp	losion	Effect	8					
											1321	1322	863						
Nonco	ontacti	ng Pro	bes										1323						
	use Pr	oximi	ty Prol	es							_								
										Nuclea	ır Exp	losions	3						
	estruct									700					445	746			2219
	use No	ondest	ructive	Tests												1486			2419
Abstra																			
		254 2	55.554	555.74	6 74	7.927	928.11	31 11	32-1335	1336-1582	158	3-1844	184	4° 6	2057-22	284 2	285-248	Q 240	90-2684
		, ,		550 / 7			J-9 . ,	''		.555 .552	. 55					4		27	
Volum	ne 14																		
Issue:		1	2	3		4	5		6	1		8	9)	10		11		12
		<u> </u>		- -					_ -			<u> </u>							_ _

Nuclear Fuel Elements				Off-Highway Vehicles
	1464		768	993 45 578
			1438	
Nuclear Power Plants				Off-Shore Structures
30 1721 272 106	2 1994 99	85 16 287	408 1149	250 961 1642 33 1154 1016 1867 1868 289
1720 1841 352 115			1098	290 1641 2172 223 2094 1426 2517 2088 959 780 2311 2512 1643 1826 2518 1379
		25 1046 1097		780 2311 2512 1643 1826 2518 1379 960 2516 2319
		25 1226 1227		1010
1152 222	3	1466	2318	1380
1362 226	3	1726	2598	1640
1722		1866		1850
1842				2320
2262				
Nuclear Denotes Comm				Oil Whip Phenomena
Nuclear Reactor Comp 200 1151 1222 51		95 1996 907	2318 209	2287
1421 1272 115		75 1376 1227	369	
2262 122		65 1836 1377	007	Opening-Containing Media
172				1479
Nuclear Reactor Conta				Openings
34	3	1866		1560
Nuclear Reactors				Optical Methods
200 32 34	3 29	85 16 20 7	239	1627 179
1150 51		65 1536 767	1319	
123		B5 1866 2317	1639	Optimization
202				350 1931 93 1324 2145 536 1758 1119
260	3			1940 533 1824 1196 1779
				2480 1823 2574 2026 1909
Nuclear Weapons Effec				2353 2496
125	3			
Numerical Analysis				Optimum Control Theory
2620 1511 1562 22	3 224 95	55 226 227	529	219
2670 2201 2672 170		1816	027	1829
	3 1584			Optimum Design
	2614			394 1436 137 518
	2674			1677
Numerical Methods		507	9970	Orthotropic Plates
		321	2278	use Plates and Orthotropism
				Orthotropism
				130 392 1713 1215 2586 2178
				- 1450
	.0.			
				Oscillating Conveyors 1617
Oceans				1011
15	3 694	687	689	Oscillation
69				330 674
Abstract	· · · · · · · · · · · · · · · · · · ·			
Numbers: 1-254 255-55	4 555-746	747-927 928-11:	31 1132-1335	5 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14				
Issue: 1 2	3	4 5	6	7 8 9 10 11 12
1 2	`			, 0 0 10 11 (2

Oscillators									Passenger	Vehicles							
	2042		464			1247										1878	1879
	2352			1505 2665	1856		438		Passive Is	olation							
Oscilloscop	es.																2149
ожиожор	-			715					Pattern R	ecognitio	n Teci	hnique					
Oda											503	1	-				
Overdampi	ng						2238										
									Pavement	is 282					27		
										902					21		
			-	Ρ.					Pendulun			1054					
									193	11		1254					
D									Periodic l	Excitation	n						
Packaging 1750	1752								130	01	113		1305				1999
1100	02								154	41		1894	1905				
Packaging N	laterial	8									2123		2515	1946	2597	2038	
			2144				1908	•	Periodic I	Response							
Panel-Cavit	v Respo	onae							1200	-	1173		1305			958	49
650	, recep.	,							2180	1482						1008	1269
										1772						1368	
Panels										1942							
590 651			1444			897	398	1209	Periodic S	Structure	4						
650 821	052	1103	1574	1945 2355					1 chodic i	oti de tai e	•	264	1895	136		2568	619
			2174	2000								644 2254	2095				
Pantograph	8																
640									Perturbat 920	ion Theo	•	3.45.4	705	144	167	160	
Da Da.a.J.									1450		1033	1454	705 1005	100	167 1217	1118	
Paper Produ	ICIB	1243							2700			1001	1105			2228	
		120											2035				
Parameter l	dentific	ation	Techn	ique													
1390 141		923	1354			1117		1389	Phase Dat	_	1833						
1660 231 2050 531	922 1352		1564			2677		1659 2279		132	1099						
	1622			2505	1826		2010	2479	Phase Eff	ects							
1891				2000						2232							
_		_							Dhara Mar	.L.J							
Parametric		ion		1700	0==	1545		0440	Phase Met 2430	tnoa							
1601				2675	2576	1547	1118	2009	2430								
				2013					Photoelas	tic Analy	sis						
Parametric	Respon	se										724	1275	1806		198	199
300	-		1134				1388									1528	
Parametric 230	Vibratio	on							Photograp	phic Tech	nique	1794					
Abstract																	
	-254 25	55-554	555-7	46 74	7.927	928-110	31 11	32-1335	1336-1582 1	583-1844	1845-2	2056	2057-22	84 2:	285-248	9 249	90-268
Volume 14	-	-			-				- -			-			- /-		
		•	_			_		•	•	•	_						4.5
Issue:	1	2	3		4	5		6	7	8	9		10				12

Piers	279	Plastic Deformation 1251
Piezoelectric Gages	95	Plasticity Theory 1270
Piezoelectric Transducers 720 2011	716	Plastics 1261 2006 897
Piezoelectricity	1277 1308	Plates 10 131 132 133 394 125 126 127 128 129
Pile Drivers	65	130 151 392 393 654 395 396 147 658 389 390 171 662 643 664 655 656 657 828 659 530 391 682 663 824 665 666 667 1448 829
Pile Driving 281 951		540 661 822 823 884 825 826 827 1708 1109 660 1031 1032 1033 1034 1035 1036 1447 1948 1209 1030 1181 1212 1213 1054 1215 1446 1457 2178 1269 1120 1211 1452 1453 1214 1445 1456 1707 2678 1449
	279 .45 2086 1867 2088 .65	1140 1451 1712 1713 1434 1455 1706 1947 1709
Pipeline Systems use Pipelines		2181 2584 2580 2590 2610
Pipelines 411 412 1473 834 14 2454	195 1379 1429	Pneumatic Dampers 467
1330 1461 1742 833 1224 6 1730 2601 1223 1474 12		2200
2600 1954 21	95 1096 1227 1226 1737 2196 2197	Pneumatic Tires 100 45
	05 1726 1727 1728 1319 115 1837 125	Pogo Effect 2134
1222 1723 17		Pogo Oscillation use Pogo Effect
Pistons	1608	Point Source Excitation 1490 191 533 2614 1215 278 2618
Plain Bearings 804	106	Poisson's Ratio 1064
Abstract Numbers: 1-254 255-554 555-746 Volume 14	747-927 928-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Issue: 1 2 3	4 5 6	789 10 11 12

Polyphase Operation	1505	Printing 1243
Polymers 211	1998	Probability Density Function 1797 228
Polyurethane Resins	1906	2048
Pontoon Bridges		Probability Theory 1481 1197 269
Pontryagin's Principle	1436	Proceedings 1570 1571 242 2283 1324 926 1837 1838 1569 1572 2284 1126
Porous Materials	07.05	2486
360	2637	Propellants
Power Generators (Electric use Electric Power P		74
Power Plants (Facilities)		Propeller Blades 610 1791 72 1673 604 5 606 2367 2338 69
1470 31 272 1373 1570 91 352 1930 611 1472 1471 1562	556 497 1	1099 1172 2553 1164 1835 1186 2368 1409 1379 1834 1469 2064 2554
Power Series Method 2243		Propeller Induced Excitation 322 983
Power Spectra 1311 1	764 318	Propeller Noise 1540 591 592 155 586 587 608 589
Power Spectral Density 1790 2501 2613		1121
Power Transmission System		Propellers 324 2108 1919 2109
512	10	1009
Prediction Techniques 962	1175 476 2128 2- 2438	Propulsion Systems 2439 251 252
Presses	1358	Protective Shelters 2222
Pressure Gages	1538	Protective Shields 1160 1173 2115 1896 1897
Pressure Vessels 571		Proximity Probes 2450 2653 636 508
	070 1000 1	Pulse Analyzers
Prestressed Structures	1	194 1199 1274
	555-746 747-927 928-1131 1132-	12-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14		
Issue: 1 2	3 4 5	6 7 8 9 10 11 12

Table Tabl	Pulse Excitation							Railro	ad Tra	ins							
Sof 1351 263 1684 935 556 287 559 1353 2294 1605 1607 1849 1930 2293 2069 2069 Railroad Vehicles 1647 1849 1930 2293 1647 1647 1649 1647 1647 1649 1647	720	1043		745	616			50		92			775	296		1158	349
Pyrotechnic Shock Environment 787	560 1351 1350	1353			556		1849		use Ra ad Vel	uil Tra	nsport						
Columber	Pyrotechnic Shoo	k Envir	onmen	t		787						-			1647		
Comparison Com								Rails	use Ra	uilroad	Track	i.g					
Q-Factor 1341 Quadratic Damping 2042 Random Decrement Technique 1805 Random Excitation 950 781 132 1503 174 2175 696 177 388 189 2200 1641 272 1733 574 2275 1266 617 578 379 2123 2226 1317 2228 959 2233 2246 1897 2248 1749 2273 2233 2246 1897 2248 1749 2273 2233 2246 1897 2248 1749 2273 2233 2246 1897 2248 1749 2273 2247 2039 Radial Bearings 2254 Random Parameters 764 2667 2468 2269 2273 2247 2039 2268 1899 2273 2254 2275 2268 2269 2275 2268 2269 2275 2275 2288 2295 2275 2275 2288 2295 2275 2275 2288 2295 2275 2275 2288 2295 2275 2288 2295 2275 2275 2288 2295 2275 2275 2288 2295 2275 2288 2295 2295 2295 2295 2295 2295 229			- (۵٠				Railw	ny Veh	icles							
Comparison Com						,			•		Train	8					
Quasi-Harmonic Vibration 214 Random Excitation 950 781 132 1503 174 2175 696 177 388 189 2200 1641 272 1733 574 2275 1266 617 578 379 2123 2233 2246 1897 2248 1749 2273 2273 2247 2039 Radial Bearings 1681 Random Parameters 764 2667 2468 2269 Radioactive Materials 443 Random Response Radioactive Materials 443 1073 1173 Rail-Sleeper Systems 2095 Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 299 Rail Transportation 297 1760 2083 1754 2077 1018 1769 Railroad Cars 1160 51 962 443 964 2325 776 2527 49 2020 1278 1180 1161 963 1839 2130 2128 Rapid Transit Railways Railroad Tracks Rapid Transit Railways Railroad Tracks Rapid Transit Railways Railroad Tracks Rapid Transit Railways Abstract Numbers: 1:254 255:554 555:746 747:927 928:1131 1132:1335 1336-1582 1583-1844 1846-2056 2057-2284 2285-2489 2490-2684 Volume 14	-							Railw	•								
214 950 781 132 1503 174 2175 696 177 388 189 2200 1641 272 1733 574 2275 1266 617 578 379 2223 2226 1897 2248 1749 2273 2246 1897 2248 1749 2273 2246 1897 2248 1749 2273 2246 1897 2248 1749 2273 2246 1897 2248 1749 2273 2246 1897 2248 1749 2274 2039 Radial Bearings 1681 Random Parameters Random Response Radioactive Materials 443 993 2634 916 317 2048 49 443 1173 1173 1507 2658 1909 Rail-Sleeper Systems 2095 Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 1750 1753 654 2465 1756 1757 868 1759 1790 2083 1754 2077 1018 1769 1820 1790 2394 1108 1769 1820 1278 1160 51 962 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 2230 2018 Railroad Care 1160 51 962 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 2130 2018 Railroad Tracks Rapid Transit Railways 2528 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	-	-						Rando	om Dec	cremei	ıt Tecl	nnique					
2200 1641 272 1733 574 2275 1266 617 578 379 2123 2226 1317 2228 959 2233 2246 1897 2248 1749 2273 2273 2247 2039 Random Parameters 764 2667 2468 2269 Radial Bearings 1681 Random Response Random Response Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1760 2083 1754 2075 1158 1759 1881 1769 Railroad Cars 1160 51962 443 964 2325 776 2527 49 2020 1278 1180 1161 963 1839 2130 2018 Railroad Tracks Rapid Transit Railways Railroad Tracks Rapid Transit Railways 1517 1519 Rapid Transit Railways 2528 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	Quasi-Harmonic V	Vibratio															
Random Parameters 2233 2246 1807 2248 1749			214														
Radial Bearings 1681 Random Response Radioactive Materials 443 Random Response Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1750 1753 1750 1753 1754 2077 1018 1769 1790 2394 1108 1769 1790 2394 1108 1769 1810 1161 963 1839 2130								2200	1041	~		0.4	22.0				
Radial Bearings 1681 Random Response Radioactive Materials 443 Random Response Random Response Random Response Random Response Random Response Random Response Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1760 297 1760 298 1750 1790 1790 2394 1108 1789 Railroad Care 1820 1820 1820 1820 1820 1820 1820 1828 1828 1820 1828 1828 1820 1828 1828 1820 1839 1839 1830 1810 18														2246		2248	
Radial Bearings 1681 Random Response Radioactive Materials 443 Rail-Sleeper Systems 2095 Random Vibration 1750 1751 1790 2093 1764 2254 Random Response Random Vibration 1750 1753 654 2465 1755 1326 1757 1868 1759 1790 2394 1081 1081 1788 1180 1161 1963 1879 1910 1183 1879 1910 1881 1891 1891 1891 1891 1891 189			١٠١	₹ .					_								
Radioactive Materials Rail-Sleeper Systems 2095 Rail Transportation 297 1750 1								Kando	m Par	amete	re.	764			2667	2468	2269
Radioactive Materials 93 2634 916 317 2048 49 443 1073 1507 2658 1909 Rail-Sleeper Systems 2095 Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 1750 1753 654 2465 1756 1757 868 1759 297 1760 2083 1754 2077 1018 1769 1790 2394 1108 1789 Railroad Cars 1160 51 962 443 964 2325 776 2527 49 2020 1278 1160 51 962 443 964 2325 776 2527 49 2020 1278 1180 1161 963 1839 2130 1988 1870 1901 1183 2230 230 2018 Railroad Tracks Rapid Transit Railways Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684												2254					
Rail-Sleeper Systems 2095 Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1760 2083 1754 2465 1756 1757 868 1759 1790 2083 1754 2077 1018 1769 1790 2083 1754 2077 1018 1769 1820 1278 1160 51 962 443 964 2325 776 2527 49 2020 1278 1160 51 963 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 1988 1870 1901 1183 2230 2018 Railroad Tracks Railroad Tracks Rapid Transit Railways Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684	1081							Rando	m Res	ponse							
Rail-Sleeper Systems 2095 Random Vibration 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1760 2083 1754 2077 1018 1769 1790 2394 2077 1018 1769 Railroad Cars 1820 1278 1100 51 962 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 1988 1870 1901 1183 Railroad Tracks Rapid Transit Railways 1517 1519 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684	Radioactive Mate									•	1073	2634		916			
Rail Transportation 1690 1761 1752 943 254 1755 1326 517 228 229 Rail Transportation 297 1760 2083 1754 2077 1018 1769 1790 2394 1108 1789 Railroad Cars 1820 1278 1160 51 962 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 1988 1870 1901 1183 2230 2018 Railroad Tracks Rapid Transit Railways 1517 1519 2528 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	Rail-Sleeper Syste	ems															
Rail Transportation 1750 1753 654 2465 1756 1757 868 1759 297 1760 2083 1754 2077 1018 1769 1790 2394 1108 1789 1108 1789 1160 51 962 443 964 2325 776 2527 49 2020 1278 1180 1161 963 1839 2130 1988 1870 1901 1183 2230 2018 2018 2018 2018 2018 2018 2018 201				2095								254	1755	1396	517	228	990
Railroad Cars	Rail Transportation	o n				297		1750 1760	1101	1102	1~53	654 1754			1757	868 1018	1759 1769
1160 51 962 443 964 2325 776 2527 49 2020 1788 1180 1161 963 1839 2130 1988 1870 1901 1183 2230 2018 Railroad Tracks Rapid Transit Railways Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	Railroad Care											2394					1789
1870 1901 1183 2230 2018 Railroad Tracks Rapid Transit Railways 1517 1519 2528 Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	1160 51 962		964	2325	776	2527	-	2020								1788	
Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14							1839										
Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335 1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684 Volume 14	Railroad Tracks					1517	1510	Rapid	Transi	it Rail	ways					252R	
Volume 14	Abstract													 -			
issue: 1 2 3 4 5 6 7 8 9 10 11 12	Numbers: 1-254	255-554	555-74	6 747	-927	928-1131	1132-1335	1336-1582	1583	1844	1845-2	2056	2057-22	284 2	285-248	9 249	90-2684
	Issue: 1	2	3		4	5	6	7	(В	9		10		11		12

Rating 333 Rattle Space	2115		Reinforced Concrete 1020 681 1122 123 124 375 146 2307 1859 2390 811 1362 1054 2085 2306 1051 1442 2264 1481 2404
Rayleigh Method 2200			2241 Reinforced Structures 244
Rayleigh-Ritz Method 1822	2395	1718 1029 1409	Reissner Method 101 2572
Rayleigh Waves 1950			Relaxation Method (Mathematics) 1113
Real Time Spectrum Ana 1802 713	•	488 2648	Reliability 1071 1265 1266 1267 1268 1781
Reciprocating Engines	794	2608 1799	Residual Mode Method 1496
Reciprocity Principle 1810			Resonance 1277
Rectangular Bodies	1964 1485 836		Resonance Pass Through 1586 558
Rectangular Ducts	1475		Resonance Tests 905 897 1168
Rectangular Plates 530 1451 392 1033 1450 1711 2182 2181 2591 2590	125 126 1035 656 1 1705 2175	657 2678 1449 707 2589	Resonant Bar Technique use Resonance Bar Technique Resonant Cavities use Cavity Resonators
Reduction Methods	2395	828	Resonant Frequencies 1700 901 383 14 166 167 168 2570 623 944 626 637 648
Re-Entry Vehicles	2114		1173 1786 1667 1868 Resonant Response 1871 802 874 955 706
Regression Analysis	584 586		2232 1164 1675 1616 Resonstors
Regulations 2520 2531 243 1663 2683	2684	247 2519	2063 2657 Response Limiting 1068
Abstract Numbers: 1-254 255-554 Volume 14	555-746 747-927 92	8-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Issue: 1 2	3 4	5 6	7 8 9 10 11 12

•	onse Sp 1311	ectra	1233			1496	517		289			•	Dynami namics						
Restit	tution (Coeffi	cient					2218		Roads	(Pave	ments) 1633	1634	1635	1626			
Resto	ring Fa	ctors								Rocke	t Engi	ines							
						296)		339		•								2339
Rever	beratio	n			615				1489	Rocke 300	t Sled	ls							
Rever	beratio	on Cha	mbera							Rocks									
1960			2623		2635							1632			445				
Revie																			
	521 1261	682	83 173	1424	545 1325	426 546			659 819	Rods	1421	1272	2563		435	116	147		
	1141		893			1276			013	2200	1701	1692	2000		1015	376	377		
	2161		1573				1127								2165		1937		
			1913			2256	1267	1208									2567		
			2253			2296	1507			Dalla-	Daari								
			2263					1508		Roller 2030	Deari	ngs 1192							629
							2067	2358		2000		/-							0- /
							2487			Roller	s (Cor	npacti	on Equi	ipmen	t)				
							2537											1628	1629
							2627			Rollin	g Con	tact Be	earings						
												1412	3		105				2369
Kide .	Dynam	ics		2524	45		577		299				103 1803		1515				
Rigid	Bodier	702								Rollin	g Fric 481	tion	1313		1515			648	1259
Rigid	Found	lations	,							Root !	Mean (Cubes			1755				
	1001														1.00				
Rigid	Rotor	•								Root!	Mean S	Square	6						
		2				1596		2288	1339									868	
		1922 2662								Dotem	· Incor	tia Effe	a a ta						
		2002											y Inerti	a Effe	cts				
Ringe	671	672		2194		1546	1807		1719	Rotary		-	r Blade	B					
Ritz I	Method												_						
						1916	627					ides (T otor B	'urboma lades	achine	ery)				
Ritz-(Galerki		hod																
		1432								Rotati									
Road	Rough	nces				776				1260	731	612	1583	734	2615		507 737 2067		1509 2009
Abstra Numb		254 25	35-554	555-74	6 747	.927	 928-11.	31 113	32-1335	1336-1582	1583	-1844	1845-20	D56 2	2057-22	84 22	85-2489	249	0-2684
Volum	ne 14																		
Issue:		1	2	3		4	5		6	7		8	9		10		11		12
			-																16

Rotating Structures 801 1702 1443	264	2285	2176	2387	1548		· S ·
1431 1822			2396		2068		
2282					2118		- 4 4
2552							Safety Belts
							use Seat Belts
Rotatory Inertia Effects	1004		170/		100	620	Safety Devices
130 101 682 823 620 1211 2552 2393	1204		1706 2586		120	659 829	372
2610 2593		655				1019	
2010 2393		1045				1019	Safety Factor
		1040					18
Rotor Bearing Systems							Safety Restraint Systems
use Rotors							1381 34 2546
							294
Rotor Blades (Turbomac	-				250	1409	
	1374	2555			1408	1409	Sand
					1400		1862 2312
Ratar Blades (Ratary Wi	inge\						2312
Rotor Blades (Rotary Wi							Sandwich Laminates
use Propenci Diau	CB						use Sandwich Structures
Rotor Bow							0.1415
		1595					Sandwich Panels
-							use Panels and Sandwich Structures
Rotors		_	204		۷۵	00	Sandwich Structures
90 171 2 3 260 341 72 1133		5 255	206 256	257 747	68 258	89 109	650 2571 1452 823 1444 125 1696 897
340 931 1132 1593		555		1337	748	259	1712 2174 1545 2386 2167
610 1171 1342 2553				1387		539	
750 1341 1852			1336			749	Satellite Antennao
910 1591 2062			1586		_	929	use Spacecraft Antennas
930 1811 2682	1774	2555	1596		2458	1339	
1590 1851	1994					1589	Satellites
1810 2291	2164					2029	990 332 1283 1037
2060 2491	2554					2059	
2290						2289	Saws
2490							1140 1141 1853 1356 2140
2530							2140
Rotors (Machine Elemen	tal						Scaling
use Rotors	,						1540 2661 1382 54 1376 729
40- 00000							
Rubber							Scotch Yoke Mechanism
use Elastomers							1597
Runge-Kutta Method							Screening
113						1629	2020 1789
							_
Runways							Screws
				27			813
Abstract Numbers: 1-254 255-554	555-74	6 747	7.927	928-113	31 113	32-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	55574	.5 ,4,	J., ,			500	2430/2004
lecule: 1 2	3		4	5		6	7 8 9 10 11 12

volum Issue:	· = 1		1	2	3		4	5		6	7		8	9	ı	10		11		12
Abstra Numb	ers:		254 25	55-554	555-74	16 747	-927	928-113	31 113	32-1335	1336-1582	158	83-1844	1845-2	2056	2057-22	84 22	285-248	9 249	0-268
1310	17	701	1232	273	1364	1365	376	1737		2399 cont'd)		128	1				486		1368	124 262
840	14	181	1152	403	1094	1225	286	767	1108	1859	Shear									
150 450		241 581	402 412	23 33	274 764	15 135	26 276	377 517		1149 1369		use '	Transve	rse She	ar Def	ormati	on Eff	ects		
		-	onse										ormatio							
Seism	ic I	leola 91	ition					87			2340 2390		2262	1873	2264			2307		211
		_			# 7 07						Shake	TS								
					2354 2404											885				
			2422		2094	, 40			2308		Shake	dow	n Theor	em						
1860 2390	18		1112 1222	1063	124 1884	915 945	16 2076	797	18 1068	459		use :	Shafts							
Sei s m	ic l	Exci	itation									•	chine E	lement	a)					
										2509	2490		1592							
				2303						2169	1600			2043	. / 44			,	2058	
	22	281		1913 2143			2306	2507	2508	1479 2079	1260 1340	160		1133 1593		2285		2267 2287	738 1598	
		521		943						1149	730	17			1134			1597	558	
2090 2190			9 32	353		2305			1478		370		1 262	263	754	755	2286	1007	508	159
1840 2090	-)41)51	942 952	253 343		285 2085	246 496	247	948 1068		Shafta									
3 0	5	501	352	243	244	245	146	17	408							1595				
Seiam	ic l	Desi	gn								Shaft	Run	out							
					1494								1722	1823	1824		1686			
Seiann	ic l	Вап	iers								Sensit	ivity	Analys	is						
	18	341	1842					2067								2495				
Seimm			lyais 452	453		1725	1496	1507		949					1194	465				226
٠.											Self-E	xcite 87	ed Vibra 1	tions	774	165	1856			1989
շ շ ջու 1260	ent	ea i	Film D	aunper	•						0.45	••	1 77-1							
D			Pil. P		_							140	•			1770				2629
Seats				993								16 128		1983		1325 1495		1457		44 ⁹ 246 ⁹
											Seismi	ic W	aves							
	13	381			34 294		2546													289
Seat I											Seismi	ic Re	esponse	Spectr	a					
					2164									1863						
	15	931	1932 2432		1424	1425 1685	2376							1253 1373		2485				
370	_			1933	1194									1233		2225			2418	
Seals											2170			1153 1223				2567	2198 2318	
													~~~							

Shell Theories			Shock Absorption
1950	1916		2144
Shells 400 401 412 133 540 671 682 1043 1040 831 832 1953	404 385 1216 627	138 399 398 669 668 989	Shock Excitation 1852 1984 2215 1949 1892
1120 1041 1042 2193	1704 1715 2186 1217 2594 2185 2596 1717 1	798 1039	Shock Isolators 2146
1830 2191 2192 1950 2511 2412 2190 2592	2397 2	718 2189 188 2399 398 2529	Shock Loads use Shock Excitation
2610			Shock Measurement
Shells of Revolution			use Measurement Techniques and Shock Response
1830 1831	2186 1717		Shock Resistant Design
Ship Anchors			1566
	1884		Shock Response
Ship Cabins 580			2630 2391 312 193
			Shock Response Spectra
Ship Hulls 582 303		2529	443 2216
Ship Noise			Shock Tests 492 493 494 1156 1798
1540			492 493 494 1156 1798 904 2026
Ship Rolling			Shock Tube Testing
		2429	163 444 1497
Ship Vibration	85		2223
	-		Shock Tubes
Shipboard Equipment Ro 2171 302	esponse 975 1096		Shock Wave Propagation
	1566		1070 401 162 703 704 455 1246 447 1248 2109
Shipboard Machinery	94		1090 1981 864 1475 1766 1977 1978 1980 2421 1064 1985 2217 2278 2628
Shipping Containers			Shock Wave Reflection
443			163 865 1979 1985
Ships 580 581 52 53 780 781 582	304 85 976 227 974 305 2097 2		Shock Waves 160 191 1032 653 704 2365 746 1497 138 1069
1650 1031	865		2420 701 1832 703 1767 448 1249 1351 2052 863 1639
Shock Absorbers 40 2351 232 1933	1904 1905 97	338 339	1851
1670 992	337	1329	Shrouds
1932	797	1669	102 624 626
	555-746 747-927 928-1131	1132-1335 13	36-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-268
Volume 14	2 4 5	e	7 0 0 10 11 12
Issue: 1 2	3 4 5	6	7 8 9 10 11 12

	894 1	805 265	6 587 927	1328	1309	Slip Joi 1	nts 421						
	1804 1814		921			Sloshing 670	3						1219
Signature Analysis 730			197										2399
Silencers						Small A	mplitudes				1767	9100	
1180 971	794	34	16	58							1767	<b>4100</b>	
Silos (Missile) use Missile Silos						Snubbe 1670 2	rs 351 1182		1904		797	338	
Simulation						Soil Co	mpacting						
1850 1641 222	514 1	195 204	6 1887	48	2219				2514				
2631 1282	1664 2214		2277	228 448 2048	2369	Soil Me	chanics 281						
	_					2 "							
Single Degree of Freedom 350 742 870 2242 1300	n Systen 164	ns	867 1067		459 1989 2269	Soils 2260	1862		1554 1624	195	1367	2088	19 1369
						Solar A	ггаув						
Single-Plane Balancing	<b>-</b> 0.											1498	
	734					Solid Pr	opellant R	ocket I	Engines	<b>:</b>			
Single Point Excitation T		le 1945					-		434			2278	
CI - Da a						Solid R	ocket Prop 1402	ellants					
Skew Plates				828			2652						
				2178									
Skin-Stringer Method				668			rfeld Numb 921	er					
				000		Sonic B	oom						
Skin (Structural Member 1173	s)						11	1893					249
Slabs						Sonic F	atigue				1657		
1122					439						1051		
						Sound A	Attenuation						
Slamming	2224						692 1312	2213		695		858	859
Slider Crank Mechanism 1200	634	635			1019	Sound (	Generation	1423					
Sliding Friction 1771						Sound l	Insertion L	Oss			2647		
Abstract Numbers 1-254 255-554 Volume 14	555-746	747.927	928-113	31 11:	32-1335	1336-1582	1583-1844	1845-2	056 20	057-2284	2285-2489	249	0-2684
Issue. 1 2	3	4	5		6	7	8	9		10	11		12

Sound Insulation use Acoustic Insulation	Spacecraft Components 1284
Sound Level Meters 2400 212 2650	Spacecraft Equipment
	Spacecraft Equipment Response
Sound Measurement 1970 1885 196 889	1755
2410 1056	
2710	Space Shuttles
Sound Power Levels	2120 1541 322 1173 74 1945 1896 1897 2128 2119
1960 1244 1245 2066	2130 2121 2122 2123 2124 2125 2126 2127 2268 2129
2626	2131 2132 2133 2134 2135 2339 2541 2564
Sound Pressure Levels	2007
2211 2295 157	Spark Ignition Engines
22/0 201	1352
Sound Propagation	
860 851 842 1743 154 145 856 677 8	Spectral Analysis
1050 1201 1312 2203 1544 695 1236 687 158	use Spectrum Analysis
1060 1231 1952 2493 1976 837 688	
1971 2072 2096 2607 1228	Spectral Densities
2041 2202 2196 1738	2423
1958	Spectral Energy Distribution Techniques
Sound Reflection	943 1764 1618 229
2620 151 1237 1049	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1271	Spectral Moments Method 1618
Sound Transmission	1016
390 831 2212 13 94 406 117 1048 389	Spectrum Analysis
650 1271 423 684 2626 987 1049	1040 491 893 204 505 266 617 2658 1309
2680 2201 583 1444 2627 1229	1641 1812 1303 2254 1745 2226
2503 1959	1813 2624
2679	2273
Sound Transmission Loss	Spectrum Analyzers
850 2611 2403 1234 2676 2647 678	192 2013
Sound Waves	Spheres
1050 1271 422 483 694 686 427 428 429	1314 1968
1740 2621 632 663 854 1206 1207 848 849	2218
2600 2412 693 1484 1216 2587 1488 2599	
2620 2622 1973 2614 2476 2618 2619	Spherical Bearings
2413 2596	2155
2603	Cultural Chatte
2623	Spherical Shells 2142 404 2596 2187 138
Spacecraft	2142 404 2596 2187 138 2192 1254 2398
990 331 322 73 74 1575 1176 787 1548 989	
2150 1781 732 1283 1564 1895 1286 2117 2118	Spherical Waves
2340 1282 1563 1664	864
Abstract Numbers: 1-254 255-554 555-746 747-927 928-1131 1132-1335	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14	
fssue: 1 2 3 4 5 6	7 8 9 10 11 12
13300 1 2 3 4 3 0	7 8 9 10 11 12

Spindles			36	5		2208		Standa		andaro	is and	Codes					
									_								
<b>Spring Cons</b>				_				Standa 1360		nd Cod 42	les 43	44	515		67		889
361	112		63			348		1840	1031	44	253	***	313		1327		1839
			239	5				1040			1573				1887		2169
Spring-Mass	Systems							Start 1	ii- Da								
use M	lass-Sprin	g Systen	18					Start 1	op ne	2132							1849
Springs								Statist	ical A	nalwaia							
2550	372	162	4 191	5		68		940	iicai A	272		1764	475	086	1977	228	229
	2282	191	4 230	5		1728		1640			1783		710	700	2047		1489
		219	4					1650		1012	2453	2007			2071		2099
								1030			2623					2518	2077
Springs (Ela		.=0 41				1//0											
	352	353 41	4			1668		Statist	ical E	nergy .	-						
											2503	1114					
Spur Gears					1417	2158		Statist	ical E	nerov l	Metho	da					
					141.	2150		810	.icai D	iici 6y	423	424		2676			379
Squeeze Fil	m Rearin	re .						0.0			783						
360			4	806	6	628											
000	_	141						Steady	v State	Excit	ation						
		215								eriodic		ation					
			-														
Squeeze Fil	m Dampe	rs						Steady	y-State	Resp	onse						
2291	•	141	4			468	1509			eriodic		nse					
		177	4			628											
		199	4			2288		Steam	Gene use B								
Stability									usc D	Oncis							
2490 1171	1302	80	4 25	5 41	6 417	68	749	Steam	Turb	ines							
		158	4 29	5	637	748	1339	800		102	623	1344		636			239
		252	4 77	5	1337		1679				1413			736			2559
			139	5			2059										
			228	5	2047	2278		Steel									
								10		1612	903	474	95	146		368	189
Stability Ar	nalysis							880			2023	1264	2005		1517	878	879
use S	tability							2500		2562		1714				1578	
									1801			1874		2436	2437	1618	
Stability Mo																	2179
1101																	2249
om 4 oo 40																	2439
STAGS (Co	mputer F 2052	rogram)														2438	2499
	2002																
Stalling								Steeri	ng Eff	ects							
170				(	6								775	1386			
Standard D	eviation							Steeri	ng Ge	ar							
1790	mitsV8L							2.0011	- B	-	1873					1898	
Abasas																	
Abstract Numbers: 1	.254 255	RRA RES	.7AR 7	47.027	928.11	31 11	32.1335	1336-1582	1597	-1844	1845-2	2056	2057-22	84 21	285-248	19 240	90-2684
	207 200	JJ- JJ:	·/-U /	71-021	920.11	· 11.		1000-1002	, 500		1040-1			21	. J.J. 2.70	242	.5 2004
Volume 14										_							
Issue:	1 :	<u> </u>	3	4	5		6	7		8	9		10		11		12

Step Functi Step Respondatio Stick-Slip Edited Stick-Slip R 460	nse	404		1456				830									
410 Stick-Slip E Stick-Slip R		404		1456				1220									
410 Stick-Slip E Stick-Slip R				1400				2190									
Stick-Slip E								Strain		8							
Stick-Slip R				416	417			2260	2261								
-	excitation	1924						Strain	Harde 481	ening				886			
-	lesnonse							Strain	Rate								
	copouse					258						1514					
Cairran J D.								Strain	ed Co	ordinat	e Tect	ınique	•				
Stiffened Be	eams				1697											2228	
Stiffened Pa	anels 542							Stress	Analy	/aia 1002							
	J <b>4</b> 2							Stress	Inten	sity Fac	ctors						
Stiffened Pla							1 = 0.0			•							1529
1031 <b>259</b> 1			2585	656			1709	Stress	Waves						2467		
Stiffened Sh																	
401			385	1716	1217	1458		String	8		112	1934			1497	1688	
Stiffened St											-10	2,04			1721	1000	
	113	1264						Strips		152							
Stiffener Ef	fects									102							
	1613		2585			1728		Struct	ural A	nalog !	<b>Metho</b>	ð	2405				
Stiffeners													2403				
				1716						ompon tructura		bers					
Stiffness Co.		94	1825	1776	2547	2668		Struct	neel N	amping							
370 2311		2164			2071	2000		Stiuci	urai D		1993						
1410	1623			2176				s									
Stiffness Eff	fects									lement ructurs		bers					
		1694															
Stiffness Me	ethods		215	1546				Struct 540 840	581	lembers 1052 1232	423	424	95	476 876	147	838 1078	2159
				2036				1020	1051	2402				1656			
Stochastic P	тосемея								1481	2502				1746			
230 141	1763	2634	745			2518	219		ural M	lodifica		-	Ì				
290 921 1660	2083		2245 2525	1016			1089 2049	320		:	2633	1894 2014			267		
Abstract	-254 255-554	555-74		7-927	928-113	11 11		1336-1592	1583	-1844	1845-2		 2057-22	984 23	95.249	240	0.2684
Volume 14	204 200004	555-7-	, 171	UL, ;		,,,	J2 1000	1000-1002	, 303	. 10-17	,0-10-2	J-0-3	.001.22	24		g	~· ∠0 <del>0</del> 4
Issue:	1 2	3		4	5		6	7		8	9						

Structural Response 1482	7 <b>4</b> 5 1715	568		Support Location Optimization 2227
Structural Synthesis	635		519	Supports 620 352 353 284 1745 1726 287 408 929 1890 1222 1153 364 1727 1728 1472 2383 414
Structure-Borne Noise 580 12 2680	2625	2	2679	1694 2024 Surface Roughness 300 2501 2112 574 435 2426 1148 359
Struts	595			1900 1004 1909 Surveys
Subharmonic Oscillation	u			use Reviews
120 920	1344 1504	867	2179	Suspension Bridges         2300         271         2075         2076         2299
Submarines 1032				Suspension Systems (Vehicles) 40 351 92 993 1914 1386 617 349 350 1901 1902 1183 1329
Submerged Structures 690 381 442 1643 2581 1832 1942 2052	374 1025 30 1944 1375 102 2244 1715 259 2595	6 1237 2	1649 2529	1900 2151 1933 Symposia use Proceedings
2582	2070	2197		Synchronous Motors 2157 928
Substructure Coupling use Component M	lode Synthesis			System Identification
Substructuring Methods 2460 1111 73 2660		6 1708	619	System Identification Techniques  2082 15 1116 1317 18 319 1115 1826 1827 1158 1659
Subsynchronous Vibrati 1603	on 754	1338		1565 1618 1828
Successive Approximation 1551	on Method			
Sum and Difference Fre	quencies 2385	118		-T-
Superharmonic Vibratio	n 1504			Takeoff 2100 2331
Supersonic Aircraft		607 58 2	2109	Tank Cars 1160 2323
Supersonic Frequencies		307		Tanks (Combat Vehicles)
Abstract Numbers: 1-254 255-554	555-746 747-927	928-1131 1132	2-1335	1336-1582 1583-1844 1845-2056 2057 2284 2285-2489 2490-2684
Volume 14  Issue: 1 2	2 4	5	£	7 8 9 10 11 12
issue: 1 2	3 4		6	7 8 9 10 11 12

Tanks (Containers) 670 402 403 Taxiing Effects 282	1154	65		1219	Testing Te 200 128 840 1090 1850 2340	782 782 902 1282 1532	1283 1843 1873 2263	1284 1784 1844 2114	495 905	726 7		8 499
T-Beams			117			2122		2454				
					Textile Lo	oms		894			102	B 1129
Temperature Effects	054	47E	1047	1279								
1041 1192 2592	254 2144	013	1041	1217	Textile Sp use	indles Spindles	1					
Test Data					Textiles							
use Experimental	Data							2424				
Test Equipment and Ins	trumenta	tion			Thermal E	ffects						
181 252	904			248 469					1385			
251 492 1532			1	798 1799	Thermal E	eritatio	<b>.</b>					
2262						Tempera		ffects				
Test Facilities					Thermal I	nsulation						
900 201 722 493	334	128	6	1539			1173					
901 2022 1093 1091	494				Thermal P 254		n Syste	ms (S _j	pacecraf	t)		
Text Fixtures use Test Facilities					Thermoela 190	⊌ticity						
Test Instrumentation use Test Equipme	nt and In	strument	stion		Thermovia 198	-	c Media	ı				
Test Models					Thickness	Effects						
501 2661	974				use	Geomet	ric Effe	ects				
					Thomson-	Baron F	ormula					
Test Stands 201									1755			
201					Three Din	ensional	Proble	ms				
Testing Apparatus					228	1						
use Test Equipme	nt and In	øtrument	tion		Thrust Be	aringa						
Testing Equipment					1410		1413		2155		118	8
use Test Equipme	nt and In	strument	ation									
Testing Instrumentation use Test Equipment	nt and In	strument	ation		Tiles 154 254		2123	2124	1	896 18	97	
Testing Machines use Test Equipme	nt and In	strument	etion		Time-Dep	endent E			1015	19	37	
Abstract Numbers: 1-254 255-554	555-746	747.927	928-1131	1132-1335	1336-1582 15	83-1844	1845-2	056	2057-2284	4 2285	2489 2	490-2684
Volume 14												
Issue: 1 2	3		5	6	7		9		10		1	12

Tilting Pad Bearings 362 363	100	)5 80 <b>?</b>		Towed Bodies use Towed Systems
Time-Dependent Parame	eters			Toronal Constants
2060	2144 2634	<b>2646</b> 537	888 1299	Towed Systems 2482 1428 2378
Time Domain Method				Towers
2270 331 272 893 431 1552 2463 961 1792 2102 2482	-	516 2147 1556 2317 2266	2678 1089	1860 961 642 373 2084 2075 1016 1717 288 2230 2511 2512 2085 1366 1867 1618 2510
				Tracked Vehicles
Timoshenko Theory				773 45 1156 1297
620 1202 2173 2200 2382 2593 2570		)5   5	119 1019	Traction Drives 1262
Tire Characteristics				Tractors 1179
	4	5	99	•••,
_				Traffic Induced Vibrations
Tires 40 2551 1313 100	354 35 118		98 99 999	2500 2302 1858 2138 2498 2528
Torpedos				2020
2193	i e			Traffic Noise 790 291 972 573 2344 2545 1976 1157 158 159 2210 791 1762 973 2544 2096 2137 698 2519
563	ı			2520 1561 1483 2684 2136 1178 2521 2683 1648
Torsion Bars			2549	2138
			40-17	Trailera
Torsional Excitation				40 297
2641 712 1353	1134	1007	1999	Trains
Torsional Response				use Railroad Trains
940 1852 1013	274	606	1928 739	
2372 2333	6C4	1146		Transducers
Torsional Vibration				720 2011 2644 485 486 2529 2010 2616
	524 48	5 136 397	928 1409	2010 2616
	2234 177		1418 2259	Transfer Functions
1140 1951 1943		1886 707	2359	1273
1440 2061 2360		2286 1917	2379 2639	2033
2300			2039	Transfer Matrix Method
Torsional Waves 1693				240 1021 1703 214 555 1598 1271 2194 1938
Abstract Numbers: 1-254 255-554	555-746 7	/47-927 <b>928</b> -113	1 1132-1335 1	1336-1582 1583-1844 1845-2056 2057-2284 2285-2489 2490-2684
Volume 14				
Issue: 1 2	3	4 5	6	7 8 9 10 11 12

Transformers	1795 1236 2206	Truck Tires	355 1185
	2200		1163
Transient Excitation 950 1201 32 1473 1422	1456 1347	Trucks 900 1901	344 965 966 967 968 299 934 976 969
Transient Response 1030 191 572 653 4 1200 651 712 2393		119 599	2524 1386 1329 2546 1869 1909
1350 1711 822 2423 1710 1991 1832 2463 2290 2321 1902	1747 728 12 2007 1598 18	349	
2481	1748 20 25	Tube Arrays	3 1464 1026 1467 208 1439
Transient Sound	1056	1470 2602 1463 2200 2603	
Translational Response 940		Tubes 420 421 1732 1733	
Transmissibility use Transmissivity		1731	1734 1465 1736 1097 1098 419 1735
Transmission Lines	0.00	Tuned Dampers	796
2381 373	2566	Tuned Frequencies	
Transmission Systems 512		_	164
Transportation Systems use Transportation of	Transportation Vehicles	Tuning 2360 803	3 1534 348 799 1894
Transportation Vehicles 1383	46 18	Tunnels 369 1330 952	2629
Transverse Shear Deformati	on Effects	Turbine Blades	
130 101 682 2393 12 620 1211 2552 2593 1710	645 2586	559 800 801 102 543 329 1000 1001 2363 319	3 544 625 626 1917 2558 259 3 2364 1675 2559
2610	1045 2205	Turbine Components 730 1191	2265 738 559
Trapezoidal Bodies	658	Turbine Engines 543	3 104 1187 259 544
Trees (Plants) 291	1487 8	359 Turbines 510 2291 642 2283	
Triangular Bodies	825 658	JIU 2271 U42 2203	1846 288 239 2436 1408 1918
Abstract Numbers: 1-254 255-554 5	i5-746 747-927 928-1131 1132-1	1335 1338-1582 1583-1844 1845-	-2056 2057-2284 2285-2489 2490-2684
Volume 14			
Issue 1 2	3 4 5 6	7 8 9	9 10 11 12

Turbofan Engines		1606	237	2478		Underdamping 1087
Turbofans 260 2493					9	Underground Explosions 700 1723 1064
Turbogenerators	754	1346			489	Underground Structures           952         1495         1287         2219           2315         1737         2239
Turbomachinery 1351 2432 1603 Turbomachinery Blades	1194 555 1604 1345 1674 1675 1684 1845		1807	1838	1599 1699 1739	Underride Guards
Turbomaciniery mades	2254	1916	357 627		669 799	Underwater Pipelines
Turbomachinery Noise 1062						Underwater Sound 1240 851 1832 2213 154 1055 426 687 688 689 2410 2411 2412 2098 1239 2409
260 61 1962 1293 1730 1441 Two-Degree of Freedom 413	Systems	986	317 2217	318	69 1469	Underwater Structures 1330 411 412 403 374 306 387 678 139 2380 442
Two-Mass Systems 1682	1614	2	2027			Unified Balancing Approach 1810
	- U -					Urban Noise 1404 1177 2544
Ultrasonic Techniques 880 1992 503		1806 2656	727			Urban Transportation 1383 46 USA (Computer Program) 2052
Ultrasonic Tests use Testing Techn	iques					2052
Unbalanced Mass Respon	nse 104 1595 1774				259 2059	· V ·
Undamped Structures 2483						Valve Actuators 369
	555-746 74	7.927 9	128-11:	31 11	32-1335	1336 1582 1583 1844 1845 2056 2057 2284 2285-2489 2490 2684
Volume 14 Issue: 1 2	3	4	5		6	7 8 9 10 11 12

Valves			Vibration Absorption (Materials)	
1930 1422 1423		287	1667	
Van der Pol Method 871 2042 2043 2243 Van der Pol Oscillators	705 2636	1727	Vibration Analysis       530 1351 832 133 894 1575 1696 527 1498 14       810 1821 1702 1273 1034 2255 2036 1367 1718 25       1590 2631 2593 1574 2465 2256 2267 1858       1770 2655 2656 2387 2488       1950 257	
	464		2510 2597 2590	
Vanes		055		
		357	Vibration Analyzers 2648	
Vans 1882			Vibration Control	
Variable Amplitude Exc	itation 1266	<b>5</b>	110 271 1392 563 2274 315 596 807 518 18' 140 1611 2012 1903 2284 2215 2496 1067 808 2291 2102 2193 2027 988	i79
Variable Cross Section 410 391 832 2203 620 1021 1452 2333 1740 2191 1692 2583 1940 2572 2570	2384 645 2166	5 1447 2168 659 5 1697 2607	2632 2337 1358 2487 1388 1888 1928 2298 2498	
2570			Vibration Dampers	
Varible Material Propert 2060 1951	ies	1697 2188 929	2640 1074 2428	
Variational Methods		2597	Vibration Damping 2161 382 1003 615 1326 2297 642 1075 2487	
1133	1746	528 1269 1549	Vibration Excitation	
Vehicle Response			560 2341 2342 83 84 305 1188 13 683 355 113	
Vehicle Wheels	1385		Vibration Frequencies 225	
Ventilation 2223			Vibration Isolation 1912 93 2584 345 336 2147 628 213 1903 615 1326 2487	39
Vibrating Structures 1190 2041 1602	1944 1036	5 1427 1688 1189 5 1627 2588 1919 5 2587 2039	2033 2547  Vibration Isolators 2353 1075 996 2148 33	
Vibration Absorbers			1406 177	79
use Vibration Abs	orption (Equipmen	nt)	Vibration Measurement	.00
Vibration Absorption (E		1407	1791 192 193 414 25 46 487 1098 200 2111 1002 1593 1724 365 56 1097 1428 201 (cont	19
Abstract Numbers: 1-254 255-554	1 555-746 747-927	928-1131 1132-1338	5 1336 1582 1583 1844 1845 2056 2057 2284 2285 2489 2490 2	2684
Volume 14				
1ssue: 1 2	3 4	5 6	7 8 9 10 11 12	2

Vibra	tion !		rement		•					Vibrat	ion T	ransfer		_					
		24	52 185						2129				2183	2184	•	1986	•		
			265	3 2654 3		1400 2116		2258	2559 2559	Vibrat	ion T	uning							
			200	•		2256			2007										1909
Vibra	tion N	Actor								Vibrat	ors (N	lachine	ery)						
		1000	-					488	1	2090		1632	1613	1614	l.	1616	1617	2298	1769
																1796			
Vibra	tion N	lonit	oring							Vibrat	ory C	onveyo	ors						
							507		509		•	-		hiner	y) and				
Vibrat	tion P	redic	tion								M	aterial	s Hand	lling F	Equipm	ent			
2120			210	3				2498		Vibrat	orv T	echnia	ues						
											, -			554	1	956		1628	1629
Vibrat			8																
	2451								509	Vincer	ıt Circ	le Met							
Vibrat	tion F	teduc	tion										533						
			tion Co	ntrol						Viscoe	lastic	Core-C	ontair	ring N	1edia				
														•		1696	2167		
Vibrat				_															
	use N	atur	al Frequ	uencies						Viscoe		Dampi	ng	1444		1776	0007		
Vibrat	tion R	esno	nse							•	2591			1444		1770	2237		
2140		-	2 2383	3 1254	115	236		1458	1459					1474					
	2141	46	2	1914	215			2188		Viscoe	lastic	Media							
	2541			2174	2115					1090	1271	1082						2628	
		219								=7.		_							
		238	<b>2</b>							Viscoel 2200		_		74		1996		700	2389
Vibrat	ion R	emo	nse Spe	ctra						2200	1771		2253	4-4	,	1770		100	2309
		Офо	443					1788											
										Viscoe	lastici	ty The	огу						
Vibrat	ion S	ignat	ures										1903						
		154	2		1805		587	2028		Viscon	14:-	D	4:						
										Viscopi 2490	lastic	rroper	ties		2185	886	2397		
Vibrat		•			_					2770					2100	000	2071		
	use V	ibrat	ion Re	ponse	Spectra	l.				Viscosi	ity Ef	fects							
Vibrat	ion T											1592							
420			2 1283	3 254	415	726	1787	498	1089	Viccon	- D	<b></b>							
1720	421		2313				2017			Viscou		րտց 1342		1604	1915	96		1770	1779
1750				1284	1285	1286		1378	2119	2	2231	1012			1985			1110	2639
1790				1724	1675			1788	2129							2596			
2090 2120					2135	1376		2018											
2120 2130						2386				Viscou	s Fric	tion							
2340																		1768	
••										Vortex	-Indu	ced Ex	citatio	n					
Vibrat	ion T	olera	nce							, 011111			-		1645				
									2139					2454					
Abstra	ct						<del>-</del> -												
		-254	255-55	4 555-7	746 74	7-927	928-11	31 11	32-1335	1336-1582	1583	-1844	1845-2	2056	2057-2	284 2	285-248	39 24	90-2684
Volum	e 14																		
Issue:		1	2	3	ı	4	5		6	7		8	9		10		11		12
· • • • • • • • • • • • • • • • • • • •		<u> </u>				<del></del>				<del></del>		<del>-</del>			10				12

1380 1560				1474				1508	1379	-0-0		1642 1942				2516	1867		2099
1990																			2319
Vortex	Noise	•			2295					Wave	Genera 1281	ation							
										Wave	Numb	er							
Vortex	Shede	ding										requen	су						
170 1470				434 1014		2566		818	819 1359	Wave	Propa	tion							
				1644					1439	430	161		223	404	845	116	1207	428	419
									1699	690		1692	453		1015		1277		
										1740 2600		2472					1307 1507		449 869
										2000	1961	2622					1937		
											2421				2095		1977		
				-	W -						2471		1763		2165		2197		2599
											2621		2493 2603				2467 2587		2619
Valls										Wave	Reflec	tion							
150 1	1051		423	424	175	146	987	148	149	430		2312			865			2468	
840 2				1234	2205		1477	858		<b>W</b> 1	D.4.	•!							
1480 2	2011		2403	1744 2404		2676			1479 1959	Wave	Refrac	ction					1767		
								2508	1707								2.0.		
										Wave	Scatte	•							
Vankel	Engi	nes										2412			685				
							2157			Wave	Transi	mission	1						
Water														814				2468	
W = 101						1246				<b>W</b> /									
										w ave	guide A	Analysi		2474	2165	2476	1287	2638	1629
Water i	lamm																	•	
		142	143	1984						Weap	or-Ef								
Water V	Vaves											432							
	301	52	223	304	955	306			269	Weat	ons Sy	atems							
960	781	1562		514	1255	1016			329		- LL C ,	492		2114					
2	2471			994		1426													
Wave D		eio-								Wear	1761	0440	0669		505				110
	431		223	1484	2475	1216		1558	1969	1190	1751	2442	2003		505 1415				118
2350			1543			1306			2469						1110				
			1983						2629	Wedg									
			2413							370		162							
			2473 2673							Walde	ed Join	te.							
			40.0								-	1782	1783	2444	1035			368	1579
Wave E		on									1081	•						•	1929
2470	871			1294			1947				1581								
Abstrac Number		254 2	255-554	555-7	46 74	17-927	928-11	31 11	32-1336	1338-1582	2 158	3-1844	1845-	2056	2057-2	284 2	285-248	9 24	90-26
Volume	14																		

Wheel Shimmy	1184	Wind Tunnel Tests use Wind Tunnel Testing
Wheels 2152 73:		Wind Tunnels 901
Wheelsets	356	Wind Turbines 2049 642 2084 288 2364 1408
Whipping Phenomena	2598	Windows 425 838 1479
Whirling 1920 1342 2043	4 1425 1677 1164 2057 1604	2199 Wing Stores 2661 2104 595 596 1887 1888 1166
940 2391 1052 46	1014 545 546 567 2328 1144 1655 1366 1027 2084 2425 2186 2077	Winkler Foundations 384 2086 1359 644 2309 2379 Wire 1690 2381 1689 Wood 245
Wind Tunnel Testing 260 41 62 1280 1091 1052 1171 2661	64 315 1166 297 58 594 785 1387 2368 1144 2105 1467 2538 1594 1654 2024 2564	

Abstract Numbers:	1-254	255-554	555-746	747-927	928-1131	1132-1335	1336-1582	1583-1844	1845-2056	2057-2284	2285-2489	2490-2684
Volume 14	ı											
Issue:	1	2	3	4	5	66	7	8	9	10	11	12

#### PERIODICALS SCANNED

ACTA MECHANICA (Acta Mech.) Springer-Verlag New York, Inc. 175 Fifth Ave. New York, NY 10010

ACTA MECHANICA SOLIDA SINICA
(Acta Mech. Solida Sinica, Chinese Soc. Theo. Appl. Mech.)
Chinese Society of Theoretical and Applied Mechanics
Guozi Shudian
P.O. Box 399
Beijing, China

ACUSTICA (Acustica) S. Hirzel Verlag, Postfach 347 D-700 Stuttgart 1 W. Germany

AERONAUTICAL JOURNAL (Aeronaut, J.) Royal Aeronautical Society 4 Hamilton Place London W1V OBQ, UK

AERONAUTICAL QUARTERLY (Aeronaut. Quart.) Royal Aeronautical Society 4 Hamilton Place

Royal Aeronautical Society
4 Hamilton Place
London W1V OBQ, UK
AIAA JOURNAL

(AIAA J.)
American Institute of Aeronautics and Astronautics
1290 Avenue of the Americas
New York, NY 10104

AMERICAN SOCIETY OF CIVIL ENGINEERS, PROCEEDINGS ASCE United Engineering Center 345 E. 47th St. New York, NY 10017

JOURNAL OF ENGINEERING MECHANICS DIVISION (ASCE J. Engrg. Mech. Div.)

JOURNAL OF STRUCTURAL DIVISION (ASCE J. Struc. Div.)

AMERICAN SOCIETY OF LUBRICATING ENGINEERS, TRANSACTIONS (ASLE, Trans.)
Academic Press
111 Fifth Ave.
New York, NY 10019

AMERICAN SOCIETY OF MECHANICAL ENGINEERS, TRANSACTIONS
ASME
United Engineering Center
345 E, 47th St.
New York, NY 10017

JOURNAL OF APPLIED MECHANICS (J. Appl. Mech., Trans. ASME)

JOURNAL OF DYNAMIC SYSTEMS, MEASURE-MENT AND CONTROL (J. Dynam. Syst., Meas. Control, Trans. ASME) JOURNAL OF ENERGY RESOURCES TECHNOLOGY
(J. Energy Resources Tech., Trans. ASME)

JOURNAL OF ENGINEERING FOR INDUSTRY (J. Engrg. Indus., Trans. ASME)

JOURNAL OF ENGINEERING FOR POWER (J. Engrg. Power, Trans. ASME)

JOURNAL OF LUBRICATION TECHNOLOGY (J. Lubric, Tech., Trans. ASME)

JOURNAL OF MECHANICAL DESIGN (J. Mech. Des., Trans. ASME)

JOURNAL OF PRESSURE VESSEL TECHNOLOGY (J. Pressure Vessel Tech., Trans. ASME)

JOURNAL OF VIBRATION, STRESS, AND RELIABILITY IN DESIGN
(J. Vib. Stress Rel. Des., Trans. ASME)

APPLIED ACOUSTICS
(Appl. Acoust.)
Applied Science Publishers, Ltd.
Ripple Road, Barking
Essex, UK

ARCHIVES OF ACOUSTICS (Arch. Acoust.) Ars Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland

ARCHIVES OF MECHANICS (ARCHIWUM MECHANIKI STOSOWANEJ) (Arch. Mech.) Export and Import Enterprise Ruch UL, Wronia 23, Warsaw, Poland

ASTRONAUTICS AND AERONAUTICS (Astronaut, Aeronaut.) AIAA EDP 1290 Avenue of the Americas New York, NY 10019

AUTOMOBILTECHNISCHE ZEITSCHRIFT (Automobiltech. Z.) Franckh'sche Verlagshandlung Abteilung Technik 7000 Stuttgart 1 Pfizerstrasse 5-7 W. Germany

AUTOMOTIVE ENGINEER (SAE)
(Auto, Engr. (SAE))
Society of Automotive Engineers, Inc.
400 Commonwealth Dr.
Warrendale, PA 15096

BALL BEARING JOURNAL (English Edition)
(Ball Bearing J.)
SKF (U.K.) Ltd.
Luton, Bedfordshire LU3 1JF, UK

BROWN BOVERI REVIEW (Brown Boveri Rev.) Brown Boveri and Co., Ltd. CH-5401, Baden, Switzerland BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES, SERIES DES SCIENCES TECHNIQUES (Bull. Acad. Polon. Sci., Ser. Sci. Tech.)

Ars Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland

BULLETIN OF JAPAN SOCIETY OF MECHANICAL ENGINEERS

(Bull, JSME)

Japan Society of Mechanical Engineers Sanshin Hokusei Bldg. H-9 Yoyogi 2-chome Shibuya-ku Tokyo 151, Japan

BULLETIN OF SEISMOLOGICAL SOCIETY OF AMERICA (Bull, Seismol, Soc. Amer.)
Bruce A. Bolt

Bruce A. Bolt Box 826 Berkeley, CA 94705

CIVIL ENGINEERING (NEW YORK)
(Civ. Engrg. (N.Y.))
ASCE
United Engineering Center

345 E. 47th St. New York, NY 10017

COMPUTERS AND STRUCTURES (Computers Struc.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523

DESIGN ENGINEERING
(Des. Engrg.)
Morgan-Grampian Publishing Co

Morgan-Grampian Publishing Co. Berkshire Common Pittsfield, MA 02101

DESIGN NEWS
(Des. News)
Cahners Publishing Co., Inc.
221 Columbus Ave.
Boston, MA 02116

DIESEL AND GAS TURBINE PROGRESS (Diesel Gas Turbine Prog.) Diesel Engines, Inc. P.O. Box 7406 Milwaukee, WI 53213

ENGINEERING STRUCTURES
(Engrg. Struc.)
IPC Science and Technology Press Ltd.
Westbury House
P.O. Box 63, Bury Street
Guildford, Surrey GU2 5BH, UK

EXPERIMENTAL MECHANICS (Exptl. Mech.) Society for Experimental Stress Analysis 21 Bridge Sq., P.O. Box 277 Westport, CT 06880

FEINWERKTECHNIK U. MESSTECHNIK (Feinwerk u. Messtechnik) Carl Hanser Verlag Postfach 860420 D-8000 München 86 Fed. Rep. Germany

FORSCHUNG IM INGENIEURWESEN (Forsch. Ingenieurwegen) Verein Deutscher Ingenieur, GmbH Postfach 1139 Graf-Recke Str. 84 4 Düsseldorf 1 W. Germany

GUMMI ASBEST KUNSTSTOFFE (Gummi Asbest Kunstst.) A.W. Gentner Verlag GmbH & Co. KG Forststrasse 131, 7000 Stuttgart 1 Stuttgart, Germany

HEATING/PIPING/AIR CONDITIONING (Heating/Piping/Air Cond.) Circulation Dept. 614 Superior Ave. West Cleveland, OH 44113

HYDRAULICS AND PNEUMATICS (Hydraul, Pneumat.) Penton/IPC, Inc. 614 Superior Ave. West Cleveland, OH 44113

HYDROCARBON PROCESSING (Hydrocarbon Processing) Gulf Publishing Co. Box. 2608 Houston, TX 77001

IBM JOURNAL OF RESEARCH AND DEVELOPMENT (IBM J. Res. Dev.)
International Business Machines Corp.
Armonk, NY 10504

INDUSTRIAL LUBRICATION AND TRIBOLOGY (Indus. Lubric. Trib.)
Peterson Publishing Co. Ltd.
Peterson Phouse, Northbank,
Berryhill Industrial Estate,
Droitwich, Worcs WR9 9BL.
England

INGENIEUR-ARCHIV (Ing. Arch.) Springer-Verlag New York, Inc. 175 Fifth Ave: New York, NY 10010

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, PROCEEDINGS
(IEEE, Proc.)
IEEE
United Engineering Center
345 E. 47th St.
New York, NY 10017

INSTITUTE OF MARINE ENGINEERS, TRANSACTIONS (TM)
(Inst. Marine Engr., Trans. (TM))
Institute of Marine Engineers
76 Mark Lane
London EC3R 7JN, UK

INSTITUTE OF MEASUREMENT AND CONTROL, TRANSACTIONS (Inst. Meas. Control, Trans.)
Institute of Measurement and Control 20 Peel St.
London W8 7PD, UK

INSTITUTION OF ENGINEERS, AUSTRALIA, MECHANI-CAL ENGINEERING, TRANSACTIONS (Instn. Engr., Australia, Mech. Engrg., Trans.) Institution of Engineers, Australia 11 National Circuit Barton, A.C.T. 2600 Australia INSTITUTION OF MECHANICAL ENGINEERS, (LONDON), PROCEEDINGS (IMechE, Proc.)

Institution of Mechanical Engineers 1 Birdcage Walk, Westminster, London SW1, UK

INSTRUMENT SOCIETY OF AMERICA, TRANSACTIONS (ISA, Trans.)

Instrument Society of America 400 Stanwix St. Pittsburgh, PA 15222

INSTRUMENTATION TECHNOLOGY (Instrum. Tech.) Instrument Society of America 67 Alexander Dr. P.O. Box 12277 Research Triangle Park, NC 27709

INTERNATIONAL JOURNAL OF CONTROL (Intl. J. Control) Taylor and Francis Ltd, 10-14 Macklin St. London WC2B 5NF, UK

INTERNATIONAL JOURNAL OF EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS (Intl. J. Earthquake Engrg. Struc. Dynam.)
John Wiley and Sons Ltd.
Baffins Lane
Chichester, Sussex PO19 1UD, England

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES

(Intl. J. Engrg. Sci.)
Pergamon Press Inc.
Maxwell House, Fairview Park
Elmsford, NY 10523

INTERNATIONAL JOURNAL OF FATIGUE (Inti, J. Fatigue) IPC Science and Technology Press Ltd.

IPC Science and Technology Press Ltd. P.O. Box 63, Westbury House, Bury Street Guildford, Surrey GU2 5BH, England

INTERNATIONAL JOURNAL OF MACHINE TOOL DESIGN AND RESEARCH (Intl. J. Mach. Tool Des. Res.)
Pergamon Press Inc.
Ms. well House, Fairview Park

Elmsford, NY 10523

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
(Intl. J. Mech. Sci.)

Pergamon Press, Inc. Maxwell House, Fairview Park Elmsford, NY 10523

INTERNATIONAL JOURNAL OF NONLINEAR MECHANICS

(Intl. J. Nonlin, Mech.)
Pergamon Press Inc.
Maxwell House, Fairvic w Park
Elmsford, NY 10523

INTERNATIONAL JOURNAL FOR NUMERICAL METH-ODS IN ENGINEERING (Intl. J. Numer. Methods Engrg.) John Wiley and Sons Ltd. Baffins Lane

Baffins Lane Chichester, Sussex PO19 1UD, England

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS (Intl. J. Numer, Anal. Methods Geomech.)

John Wiley and Sons Ltd. Baffins Lane Chichester, Sussex PO19 1UD, England

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
(Intl. J. Solids Struc.)

Persamon Press Inc.

Pergamon Press Inc.
Maxwell House, Fairview Park
Elmsford, NY 10523

INTERNATIONAL JOURNAL OF VEHICLE DESIGN (Intl. J. Vehicle Des.)

Inderscience Enterprises Ltd. La Motte Chambers, St. Helier, Jersey, Channel Islands, U.K.

ISRAEL JOURNAL OF TECHNOLOGY

(Israel J. Tech.)
Weizmann Science Press of Israel
Box 801
Jerusalem, Israel

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA

(J. Acoust. Soc. Amer.)
American Institute of Physics
335 E. 45th St.
New York, NY 10010

JOURNAL OF AIRCRAFT

(J. Aircraft)
American Institute of Aeronautics and Astronautics)
1290 Avenue of the Americas
New York, NY 10104

JOURNAL OF THE AMERICAN HELICOPTER SOCIETY (J. Amer. Helicopter Soc.) American Helicopter Society, Inc. 30 E, 42nd St. New York, NY 10017

JOURNAL OF ENGINEERING MATHEMATICS (J. Engrg. Math.) Academic Press 198 Ash St. Reading, MA 01867

JOURNAL OF ENVIRONMENTAL SCIENCES (J. Environ. Sci.) Institute of Environmental Sciences 940 E. Northwest Highway Mt. Prospect, IL 60056

JOURNAL OF FLUID MECHANICS (J. Fluid Mech.) Cambridge University Press 32 E. 57th St. New York, NY 10022

JOURNAL OF THE FRANKLIN INSTITUTE (J. Franklin Inst.)
Pergamon Press Inc.

Maxwell House, Fairview Park Elmsford, NY 10523

JOURNAL OF THE INSTITUTE OF ENGINEERS, AUSTRALIA (J. Inst. Engr., Australia) Science House, 157 Gluncter

Science House, 157 Gloucter Sydney, Australia 2000

JOURNAL DE MÉCANIQUE (J. de Mécanique) Gauthier-Villars C.D.R. - Centrale des Revues B.P. No. 119, 93104 Montreuil Cedex-France JOURNAL OF MECHANICAL ENGINEERING SCIENCE (J. Mech. Engrg. Sci.) Institution of Mechanical Engineers 1 Birdcage Walk, Westminster London SW1 H9 UK

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
(J. Mech. Phys. Solids)
Pergamon Press Inc.

Maxwell House, Fairview Park Elmsford, NY 10523

JOURNAL OF PETROLEUM TECHNOLOGY (J. Pet. Tech.) Society of Petroleum Engineers 6200 N. Central Expressway Dallas, TX 75206

JOURNAL OF PHYSICS: E SCIENTIFIC INSTRUMENTS (J. Phys.: E Sci. Instrum.)
American Institute of Physics
335 E. 45th St.
New York, NY 10017

JOURNAL OF SHIP RESEARCH
(J. Ship Res.)
Society of Naval Architects and Marine Engineers
One World Trade Center
Suite 1369
New York, NY 10048

JOURNAL OF SOUND AND VIBRATION (J. Sound Vib.) Academic Press Inc. 111 Fifth Ave. New York, NY 10003

JOURNAL OF SPACECRAFT AND ROCKETS
(J. Spacecraft Rockets)
American Institute of Aeronautics and Astronautics
1290 Avenue of the Americas
New York, NY 10104

JOURNAL OF TECHNICAL PHYSICS (J. Ter '), Phys.) Ats Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland

JOURNAL OF TESTING AND EVALUATION (ASTM)
(J. Test Eval. (ASTM))
American Society for Testing and Materials
1916 Race St.
Philadelphia, PA 19103

KONSTRUKTION (Konstruktion) Springer-Verlag 3133 Connecticut Ave., N.W., Suite 712 Washington, DC 20008

LUBRICATION ENGINEERING (Lubric, Engrg.) American Society of Lubrication Engineers 838 Busse Highway Park Ridge, IL 60068

MACHINE DESIGN (Mach, Des.) Penton/IPC, Inc. Penton Plaza, 1111 Chester Ave. Cleveland, OH 44114 MASCHINENBAUTECHNIK (Maschinenbautechnik) VEB Verlag Technik Oranienburger Str. 13/14 1020 Berlin, E. Germany

Pergamon Press Inc.

New York, NY 10017

MECCANICA

(Meccanica)

Elmsford, NY 10523

MECHANICAL ENGINEERING
(Mech. Engrg.)

American Society of Mechanical Engineers
United Engineering Center
345 E, 47th St.

Maxwell House, Fairview Park

MECHANICS RESEARCH AND COMMUNICATIONS (Mech. Res. Comm.)
Pergamon Press Inc.
Maxwell House, Fairview Park
Elmsford, NY 10523

MECHANISM AND MACHINE THEORY (Mech, Mach, Theory) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523

MEMOIRES OF THE FACULTY OF ENGINEERING, KYOTO UNIVERSITY (Mem. Fac. Engrg., Kyoto Univ.)
Kyoto University
Kyoto, Japan

MEMOIRES OF THE FACULTY OF ENGINEERING, KYUSHU UNIVERSITY (Mem. Fac. Engrg., Kyushu Univ.)
Kyushu University
Kyushu, Japan

MEMOIRES OF THE FACULTY OF ENGINEERING, NAGOYA UNIVERSITY (Mem. Fac. Engrg., Nagoya Univ.)
Nagoya University
Nagoya, Japan

MTZ MOTORTECHNISCHE ZEITSCHRIFT (MTZ Motortech, Z.) Franckh sche Verlagshandlung Pfizerstrasse 5-7 7000 Stuttgart 1 W. Germany

NAVAL ENGINEERS . URNAL (Naval Engr. J.) American Society of Naval Engineers, Inc. Suite 507, Continental Building 1012 14th St., N.W. Washington, DC 20005

NOISE CONTROL ENGINEERING (Noise Control Engrg.) P.O. Box 3206, Arlington Branch Poughkeepsie, NY 12603

NORTHEAST COAST INSTITUTION OF ENGINEERS AND SHIPBUILDERS, TRANSACTIONS (NE Coast Instn. Engr. Shipbidr., Trans.)
Bolbec Hall
Newcastle upon Tyne 1, UK

NUCLEAR ENGINEERING AND DESIGN (Nucl. Engrg. Des.) North-Holland Publishing Co. P.O. Box 3489 Amsterdan, The Netherlands

OIL AND GAS JOURNAL (Oil Gas J.) PennWell Publishing Co. 1421 S. Sheridan Rd. P.O. Box 1260 Tulss, OK 74101

PACKAGE ENGINEERING (Package Engrg.) 270 St. Paul St. Denver, CO 80206

PAPER TECHNOLOGY AND INDUSTRY (Paper Tech. Indus.) 3, Plough Place, Fetter Lane London EC4A 1AL, UK

PLANT ENGINEERING (Plant Engrg.) Technical Publishing Company 1301 S. Grove Ave, Barrington, IL 60010

POWER (Power) P.O. Box 430 Hightstown, NJ 08520

POWER TRANSMISSION DESIGN (Power Transm. Des.) 614 Superior Ave., West Cleveland, OH 44113

QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS
(Quart, J. Mech. Appl. Math.)
Wm. Dawson & Sons, Ltd.

Wm. Dawson & Sons, Ltd.
Cannon House
Folkestone, Kent, UK

REVUE ROUMAINE DES SCIENCES TECHNIQUES, SERIE DE MECANIQUE APPLIQUEE (Rev. Roumaine Sci. Tech., Mecanique Appl.) Editions De L'Academie De La Republique Socialiste de Roumaine 3 Bis Str., Gutenberg, Bucharest, Romania

REVIEW OF SCIENTIFIC INSTRUMENTS (Rev. Scientific Instrum.) American Institute of Physics 335 E. 45th St. New York, NY 10017

SAE TECHNICAL LITERATURE ABSTRACTS (SAE Tech. Lit. Abstracts) Society of Automotive Engineers 400 Commonwealth Dr. Warrendale, PA 15086

THE SHOCK AND VIBRATION DIGEST (Shock Vib. Dig.) Shock and Vibration Information Center Naval Research Laborstory, Code 5804 Washington, DC 20375

SIAM JOURNAL ON APPLIED MATHEMATICS (SIAM J. Appl. Math.) Society for industrial and Applied Mathematics 1405 Architects Building 117 S. 17th St. Philadelphia, PA 19103 SIAM JOURNAL ON NUMERICAL ANALYSIS (SIAM J. Numer. Anal.)
Society for industrial and Applied Mathematics 1405 Architects Building 117 S. 17th St.
Philadelphia, PA 19103

SIEMENS RESEARCH AND DEVELOPMENT REPORTS (Siemens Res. Dev. Repts.) Springer-Verlag New York Inc. 175 Fifth Ave., New York, NY 10010

STROJNÍCKY ČASOPIS (Strojnícky Časopis) Redakcia Strojníckeho Časopisu ČSAV a SAV Ústav Mechaniky Strojov SAV Bratislava-Patrónka, Dúbravská cesta, ČSSR Czechoslovakia

THE STRUCTURAL ENGINEER
(Struc. Engr.)
The Institution of Structural Engineers
11 Upper Belgrave St.
London SW1X 8BH

S/V, SOUND AND VIBRATION (S/V, Sound Vib.) Acoustic Publications, Inc. 27101 E. Oviat Rd. P.O. Box 40416 Bay Village, OH 44140

TECHNISCHES MESSEN - TM (Techn. Messen-TM) R. Oldenbourg Verlag GmbH Rosenheimer Strasse 145 8000 München 80, W. Germany

TEST (Test) Mattingley Publishing Co., Inc. 61 Monmouth Rd. Oakhurst, NJ 07755

TRIBOLOGY INTERNATIONAL (Tribology Intl.) IPC Science and Technology Press Ltd. P.O. Box 63, Westbury House, Bury Street Guildford, Surrey GU2 5BH, England

VDI FORSCHUNGSHEFT (VDI Forsch.) Verein Deutscher Ingenieur GmbH Postfach 1139, Graf-Recke Str. 84 4 Düsseldorf 1, Germany

VDI ZEITSCHRIFT (VDI Z.) Verein Deutscher Ingenieur GmbH Postfach 1139, Graf-Recke Str. 84 4 Düsseldorf 1, Germany

VEHICLE SYSTEM DYNAMICS (Vehicle Syst. Dynam.) Swets & Zeitlinger B.V. Publishing Department 347 B, Heereweg, 2161 CA LISSE The Netherlands

VIBROTECHNIKA (Vibrotechnika) Kauno Polytechnikos Institutas 2 Donelaičio g-ve 17 233000 Kaunas Lithuanian SSR WAVE MOTION
(Wave Motion)
North-Holland Publishing Co.
Journal Division
Molenwerf 1, P.O. Box 211
1000 AE Amsterdam
The Netherlands

WEAR (Wear) Elsevier Sequoia S.A. P.O. Box 851 1001 Lausanne 1, Switzerland ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK (Z. angew, Math. Mech.) Akademie Verlag GmbH Liepziger Str. 3-4 108 Berlin, Germany

ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN
(Z. Flugwiss.)
DFVLR
D-3300 Braunschweig
Flughafen, Postfach 3267
W. Germany

### SECONDARY PUBLICATIONS SCANNED

DISSERTATION ABSTRACTS INTERNATIONAL (DA) University Microfilms International 300 N, Zeeb Rd. Ann Arbor, MI 48106 GOVERNMENT REPORTS ANNOUNCEMENTS & INDEX (GRA)

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.
Springfield, VA 22161

# **PROCEEDINGS SCANNED**

INSTITUTE OF ENVIRONMENTAL SCIENCES, ANNUAL PROCEEDINGS (Inst. Environ, Sci., Proc.)
Institute of Environmental Sciences
940 E. Northwest Highway
Mt. Prospect, IL 60056

INTERNATIONAL CONFERENCE, VIBRATIONS IN ROTATING MACHINERY
(Intl. Conf., Vib. Rotating Mach.)
The Institution of Mechanical Engineers
1 Birdage Welk Westminster

The Institution of Mechanical Engine 1 Birdcage Walk, Westminster London SW1H 9JJ, UK

Poughkeepsie, NY 12603

INTER-NOISE PROCEEDINGS, INTERNATIONAL CON-FERENCE ON NOISE CONTROL ENGINEERING (Inter-Noise) Noise Control Foundation P.O. Box 3469 Arlington Branch

MACHINERY VIBRATION MONITORING AND ANALY-SIS MEETING, PROCEEDINGS (Mach. Vib. Monit. Anal., Proc.) The Vibration Institute 101 W. 55th St., Suite 206 Clarendon Hills, IL 60514 NOISE CONTROL PROCEEDINGS, NATIONAL CONFERENCE ON NOISE CONTROL ENGINEERING (Noise Cont.)

Noise Control Foundation

P.O. Box 3469 Arlington Branch
Poughkeepsie, NY 12603

THE SHOCK AND VIBRATION BULLETIN, UNITED STATES NAVAL RESEARCH LABORATORIES, ANNUAL PROCEEDINGS (Shock Vib. Bull., U.S. Naval Res. Lab., Proc.) Shock and Vibration Information Center Naval Research Lab., Code 5804 Washington, DC 20375

TURBOMACHINERY SYMPOSIUM (Turbomach, Symp.) Gas Turbine Labs. Texas A&M University College Station, TX 77843

# **CALENDAR**

# **JANUARY 1983**

10-14 International Conference on Constitutive Laws for Engineering Materials Theory and Application [University of Arizona and National Science Foundation] Tucson, AZ (Office of Special Professional Education, College of Engineering, Harvill Bldg., University of Arizona, Tucson, AZ 85721 - (602) 626-3054)

#### **FEBRUARY 1983**

28 - SAE Congress & Exposition [SAE] Detroit, MI Mar 4 (SAE Hqs.)

#### **MARCH 1983**

- 21-23 NOISE-CON 83 [Institute of Noise Control Engineering] Cambridge, MA (NOISE-CON 83, Massachusetts Inst. of Tech., Inst. Information Services, 77 Massachusetts Ave., Cambridge, MA 02139 (617) 253-1703)
- 28-31 Design Engineering Conference and Show [ASME] Chicago, IL (ASME Hqs.)

#### **APRIL 1983**

- 18-20 Materials Conference [ASME] Albany, NY (ASME Hqs.)
- 18-21 Institute of Environmental Sciences' 29th Annual Technical Meeting [IES] Los Angeles, CA (IES, 940 E. Northwest Highway, Mount Prospect, IL 60056 (312) 255-1561)
- 21-22 14th Annual Modeling and Simulation Conference [Univ. of Pittsburgh] Pittsburgh, PA (William G. Vogt, Modeling and Simulation Conf., 348 Benedum Engineering Hall, Univ. of Pittsburgh, Pittsburgh, PA 15261)

#### **MAY 1983**

- 9-13 Acoustical Society of America, Spring Meeting [ASA] Cincinnati, OH (ASA Hqs.)
- 9-13 Symposium on Interaction of Non-Nuclear Munitions with Structures [U.S. Air Force] Colorado Springs, CO (Dr. C.A. Ross, P.O. Box 1918, Eglin AFB, Florida 32542 (904) 882-5614)
- 17-19 Fifth Metal Matrix Composites Technology Conference [Office of the Undersecretary of Defense for Research and Engineering] Naval Surface Weapons

Center, Silver Spring, MD (MMCIAC - Kamen Tempo, P.O. Drawer QQ, Santa Barbara, CA 93102 - (805) 963-6455/6497)

#### **JUNE 1983**

- 6-10 Passenger Car Meeting [SAE] Dearborn, Mi (SAE
- 20-22 Applied Mechanics, Bioengineering & Fluids Engineering Conference [ASME] Houston, TX (ASME Hqs.)

#### **JULY 1983**

11-13 13th Intersociety Conference on Environmental Systems [SAE] San Francisco, CA (SAE Hgs.)

#### **AUGUST 1983**

- 8-11 Computer Engineering Conference and Exhibit [ASME] Chicago, IL (ASME Hqs.)
- 8-11 West Coast International Meeting [SAE] Vancouver, B.C. (SAE Hgs.)

#### SEPTEMBER 1983

- 11-13 Petroleum Workshop and Conference [ASME]
  Tulsa, OK (ASME Hgs.)
- 11-14 Design Engineering Technical Conference [ASME]
  Dearborn, MI (ASME Hqs.)
- 12-15 International Off-Highway Meeting & Exposition [SAE] Milwaukee, WI (SAE Hgs.)
- 14-16 International Symposium on Structural Crashworthiness [University of Liverpool] Liverpool, UK (Prof. Norman Jones, Dept. of Mech. Engrg., The Univ. of Liverpool, P.O. Box 147, Liverpool L69 3BX, England)
- 25-29 Power Generation Conference [ASME] Indianapolis, IN (ASME Hqs.)

#### OCTOBER 1983

- 17-19 Stapp Car Crash Conference [SAE] San Diego, CA (SAE Hqs.)
- 17-20 Lubrication Conference [ASME] Hartford, CT (ASME Hqs.)

#### CALENDAR ACRONYM DEFINITIONS AND ADDRESSES OF SOCIETY HEADQUARTERS

AFIPS: American Federation of Information **Processing Societies** 

210 Summit Ave., Montvale, NJ 07645

AGMA: American Gear Manufacturers Association

> 1330 Mass Ave., N.W. Washington, D.C.

AHS: American Helicopter Society

1325 18 St. N.W.

Washington, D.C. 20036

American Institute of Aeronautics and AIAA:

Astronautics, 1290 Sixth Ave.

New York, NY 10019

AIChE: American Institute of Chemical Engineers

345 E. 47th St. New York, NY 10017

AREA: American Railway Engineering Association

59 E. Van Buren St. Chicago, IL 60605

ARPA: Advanced Research Projects Agency

ASA: Acoustical Society of America

335 E. 45th St. New York, NY 10017

ASCE: American Society of Civil Engineers

> 345 E. 45th St. New York, NY 10017

ASME: American Society of Mechanical Engineers

345 E. 45th St.

New York, NY 10017

ASNT: American Society for Nondestructive Testing

> 914 Chicaor, Ave. Evans. - _ 60202

ASQC: American Society for Quality Control

161 W. Wisconsin Ave. Milwaukee, WI 53203

ASTM: American Society for Testing and Materials

1916 Race St.

Philadelphia, PA 19103

CCCAM: Chairman, c/o Dept. ME, Univ. Toronto,

Toronto 5, Ontario, Canada

International Congress on Fracture ICF:

Tohoku Univ. Sendai, Japan

IEEE:

Institute of Electrical and Electronics

Engineers 345 E. 47th St. New York, NY 10017

IES:

Institute of Environmental Sciences 940 E. Northwest Highway

Mt. Prospect, IL 60056

IFToMM: International Federation for Theory of

> Machines and Mechanisms U.S. Council for TMM c/o Univ. Mass., Dept. ME Amherst, MA 01002

INCE:

Institute of Noise Control Engineering

P.O. Box 3206, Arlington Branch

Poughkeepsie, NY 12603

ISA: Instrument Society of America

400 Stanwix St. Pittsburgh, PA 15222

ONR: Office of Naval Research

> Code 40084, Dept. Navv Arlington, VA 22217

SAE: Society of Automotive Engineers

400 Commonwealth Drive Warrendale, PA 15096

SEE: Society of Environmental Engineers

6 Conduit St.

London W1R 9TG, UK

SESA: Society for Experimental Stress Analysis

21 Bridge Sq. Westport, CT 06880

SNAME: Society of Naval Architects and Marine

> Engineers 74 Trinity Pl. New York, NY 10006

SPF -Society of Petroleum Engineers

6200 N. Central Expressway

Dallas, TX 75206

SVIC: Shock and Vibration Information Center

Naval Research Lab., Code 5804

Washington, D.C. 20375

URSI-USNC: International Union of Radio Science -

U.S. National Committee c/o MIT Lincoln Lab. Lexington, MA 02173

#### **PUBLICATION POLICY**

Unsolicited articles are accepted for publication in the Shock and Vibration Digest. Feature articles should be tutorials and/or reviews of areas of interest to shock and vibration engineers. Literature review articles should provide a subjective critique/summary of papers, patents, proceedings, and reports of a pertinent topic in the shock and vibration field. A literature review should stress important recent technology. Only pertinent literature should be cited. Illustrations are encouraged, Detailed mathematical derivations are discouraged; rather, simple formulas representing results should be used. When complex formulas cannot be avoided, a functional form should be used so that readers will understand the interaction between parameters and variables.

Manuscripts must be typed (double-spaced) and figures attached. It is strongly recommended that line figures be rendered in ink or heavy pencil and heatly labeled. Photographs must be unscreened glossy black and white prints. The format for references shown in DIGEST articles is to be followed.

Manuscripts must begin with a brief abstract, or summary. Only material referred to in the text should be included in the list of References at the end of the article. References should be cited in text by consecutive numbers in brackets, as in the example below.

Unfortunately, such information is often unreliable, particularly statistical data pertinent to a reliability assessment, as has been previously noted [1].

Critical and certain related excitations were first applied to the problem of assessing system reliability almost a decade ago [2]. Since then, the variations that have been developed and the practical applications that have been explored [3-7] indicate that . . .

The format and style for the list of References at the end of the article are as follows:

- each citation number as it appears in text (not in alphabetical order)
- last name of author/editor followed by initials or first name
- titles of articles within quotations, titles of books underlined

- abbreviated title of journal in which article was published (see Periodicals Scanned list in January, June, and December issues)
- volume, number or issue, and pages for journals; publisher for books
- year of publication in perentheses

A sample reference list is given below.

- Platzer, M.F., "Transonic Blade Flutter A Survey," Shock Vib. Dig., 7 (7), pp 97-106 (July 1975).
- Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., <u>Aeroelasticity</u>, <u>Addision-Wesley</u> (1955).
- Jones, W.P., (Ed.), "Manual on Aeroelasticity," Part II, Aerodynamic Aspects, Advisory Group Aeronaut, Res. Devel. (1962).
- Lin, C.C., Reissner, E., and Tsien, H., "On Two-Dimensional Nonsteady Motion of a Stender Body in a Compressible Fluid," J. Math. Phys., 27 (3), pp 220-231 (1948).
- Landahl, M., <u>Unsteady Transonic Flow</u>, Pergamon Press (1961).
- Miles, J.W., "The Compressible Flow Past an Oscillating Airfoil in a Wind Tunnel," J. Aeronaut. Sci., 23 (7), pp 671-678 (1956).
- Lane, F., "Supersonic Flow Past an Oscillating Cascade with Supersonic Leading Edge Locus," J. Aeronaut. Sci., 24 (1), pp 65-66 (1957).

Articles for the DIGEST will be reviewed for technical content and edited for style and format. Before an article is submitted, the topic area should be cleared with the editors of the DIGEST. Literature review topics are assigned on a first come basis. Topics should be narrow and well-defined. Articles should be 1500 to 2500 words in length. For additional information on topics and editorial policies, please contact:

Milda Z. Tamulionis
Research Editor
Vibration Institute
101 11.55th Street, Suite 206
Clarendon Hills, Illinois 60514

# NAVAL RESEARCH LABORATORY, CODE 5804 SHOCK AND VIBRATION INFORMATION CENTER Washington, D.C. 20375

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID DEPARTMENT OF THE NAVY DOD-316



THIRD CLASS MAIL

DEFENSE DOCUMENTATION CENTER CAMERON STATION ALEXANDRIA, VA 22314

#### THE SHOCK AND VIBRATION DIGEST December 1982 **VOLUME 14, No. 12** Annual Article Index **EDITORIAL** 22 25 Book Reviews Book Reviews: 1982 1 **SVIC Notes** 28 **Editors Rattle Space ARTICLES AND REVIEWS CURRENT NEWS** Feature Article - DYNAMIC BALANC-**Short Courses** 31 ING WITH MICRO PROCESSORS 33 News Briefs D.G. Stadelbauer ABSTRACTS FROM THE CURRENT Literature Review LITERATURE **OPTIMIZATION OF STRUCTURES** UNDER SHOCK AND VIBRATION 34 **Abstract Categories ENVIRONMENT** Abstract Contents 35 Abstracts: 82-2490 to 82-2684 S.S. Rao 36 Annual Author Index 81 RECENT INVESTIGATIONS OF 107 Annual Subject Index 17 THE PROPAGATION OF FINITE 162 Periodicals Scanned AMPLITUDE MUTLI-DIMENSIONAL **ACOUSTIC WAVES CALENDAR** J.H. Ginsberg