Pomiar krzywizny soczewki (pierścienie Newtona)

Kacper Kłos

26 kwietnia 2025

W raporcie opisujemy metodę wyznaczania promienia krzywizny soczewki na podstawie analizy pierścieni Newtona. Soczewkę umieszczono na płytce szklanej pod mikroskopem, a skalę dopasowano na podstawie papieru milimetrowego położonego na płytce. Układ oświetlano światłem czerwonym, zielonym i niebieskim. Po zmierzeniu średnic k-tych pierścieni dopasowano zależność $D_k^2(k)$. Widmo lampy pozwoliło określić długości fal λ . Na tej podstawie obliczono promienie krzywizny dla każdego z kolorów, a średnia ważona dała wynik $R=(6,613\pm0,014)\,\mathrm{m}$.

1 Wyniki pomiarów

W tabeli 1 zestawiono średnice pierścieni (mierzone do środka geometrycznego).

Nr	D_r [cm]		$D_g [\mathrm{cm}]$		$D_b [cm]$	
	1	2	1	2	1	2
1	0,33	0,32	0,29	0,30	0,22	0,22
2	0,44	$0,\!44$	0,39	$0,\!40$	0,34	$0,\!34$
3	0,52	$0,\!52$	0,47	$0,\!48$	0,42	$0,\!42$
4	0,60	0,60	0,54	$0,\!54$	0,49	$0,\!49$
5	0,67	$0,\!67$	0,59	0,60	0,55	$0,\!55$
6	0,74	0,73	0,65	$0,\!66$	0,61	0,61
7	0,78	0,78	0,70	0,70	0,66	0,66
8	0,84	0,84	0,75	0,76	0,71	0,71
9	0,88	0,88	0,79	0,79	0,75	0,75
10	0,92	0,92	0,84	0,84	0,79	0,79

Tablica 1: Średnice pierścieni Newtona dla serii pomiarowych 1 i 2. Numery nieparzyste odpowiadają pierścieniom jasnym, parzyste – ciemnym.

Niepewność pojedynczego odczytu przyjęto na poziomie $0.01\,\mathrm{cm}$ (dla dwóch pierwszych jasnych pierścieni $0.02\,\mathrm{cm}$ ze względu na ich większą grubość oraz pomiar średnicy przez środek geometryczny).

1.1 Dopasowanie liniowe

Wzór teoretyczny podany w [1] ma postać

$$D_k^2 = \frac{k\lambda R}{8},\tag{1}$$

gdzie D_k – średnica k-tego pierścienia, λ – długość fali, R – promień krzywizny. Średnie wartości z pomiarów (tab. 1) dla każdego koloru dopasowujemy do równania $D_k^2 = ak + b$.

Rysunek 1: Dopasowanie liniowe $D_k^2(k)$ dla trzech barw.

kolor	$a [10^{-9}]$	$b [10^{-9}]$
czerwony	210 ± 18	59 ± 7
zielony	170 ± 10	49 ± 4
niebieski	161 ± 8	-37 ± 3

Tablica 2: Parametry dopasowania $D_k^2 = ak + b$.

1.2 Wyznaczenie długości fali

Długość fali określano z widm lampy: maksimum intensywności oraz punkty o 50% tej wartości wyznaczały λ i jej niepewność. Wykresy widm przedstawiono na rysunkach 2, 3 i 4, odpowiadających kolejno światłu czerwonemu, zielonemu i niebieskiemu.

Rysunek 2: Widmo światła czerwonego.

Rysunek 3: Widmo światła zielonego.

Rysunek 4: Widmo światła niebieskiego.

kolor	$\lambda [\mathrm{nm}]$		
czerwony zielony niebieski			

Tablica 3: Długości fal użytych świateł.

1.3 Promień krzywizny

Ze wzorów

$$R = 8 \frac{a}{\lambda}, \qquad u(R) = R\sqrt{\left(\frac{u(\lambda)}{\lambda}\right)^2 + \left(\frac{u(a)}{a}\right)^2},$$

otrzymujemy

kolor	R[m]		
czerwony	$6,58 \pm 0,14$		
zielony	$6,59 \pm 0,40$		
niebieski	$6,86 \pm 0,30$		

Tablica 4: Promień krzywizny dla poszczególnych barw.

Średnia ważona (na podstawie tabeli 4) daje

$$R = 6.613 \pm 0.014 \,\mathrm{m}$$
.

1.4 Dyskusja niepewności

Dominującym źródłem niepewności jest dokładność wyznaczenia λ . Choć dopasowanie dla światła czerwonego ma największy błąd współczynnika a, to najmniejsza niepewność λ sprawia, że wynik ten jest najdokładniejszy. Najbardziej odstaje wartość dla koloru niebieskiego. W szczególności problematyczny jest parametr b<0, co jest sprzeczne z teorią przedstawioną w [1] i wskazuje na dodatkowy błąd przypadkowy w tej serii pomiarów. Występuje także błąd systematyczny wynikający z kalibracji skali względem papieru milimetrowego.

Literatura

[1] Interferencyjny Pomiar Krzywizny Soczewki (Pierścienie Newtona), Uniwersytet Warszawski.