sine basis 02

Statistics:

p-values adjusted for search volume

-	oranonioni p varaos adjusted for ocuron volume													
set-level		cluster-level				peak-level					mm mm mm			
р	С	p _{FWE-corrFDR-corr} k			$p_{ m uncorr}$	$\rho_{\text{FWE-corr}\text{FDR-corr}} T \qquad (Z_{\equiv}) \ \rho_{\text{uncorr}}$								
		1.000 1.000 1.000 1.000 1.000	0.611 0.508 0.634 0.707 0.634	25 36 20 12 19 31	0.160 0.096 0.206 0.325 0.217 0.120	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.673 0.726 0.673 0.673 0.673 0.686 0.697 0.718	3.17 3.08 3.22 3.21 3.20 3.15 3.13 3.10 2.85	3.12 3.08	0.001 0.001 0.001 0.001 0.001 0.001	-6 -8 34 52 32 - 50 - 48 - 24	-48 -72 -84 -44 -14 -44 14 16	-2 -4 34 40 10 38 34 60	
		1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.677 0.508 0.624 0.508 0.774 0.803 0.634 0.677 0.784 0.508	16 41 23 34 10 7 20 17 8	0.256 0.078 0.176 0.105 0.369 0.456 0.206 0.242 0.424	1.000 1.000 1.000 1.000	0.982 0.726 0.753 0.753 0.753 0.816 0.816	2.05 2.38 3.08 3.02 3.01 3.01 2.94 2.93 2.92 2.91 2.90 2.89	2.84 2.38 3.06 3.01 3.00 2.93 2.92 2.90 2.89 2.89 2.88	0.002 0.009 0.001 0.001 0.002 0.002 0.002 0.002 0.002	-20 -30 -40 - 8 28 42 40 - 38 62 40 42	10 38 32 -80 18 52 -2 16 -38 -74	70 56 12 42 32 -12 8 34 26 -6 34	
		1.000	0.803	7	0.456	1.000 1.000	0.845 0.816	2.72 2.89	2.71 2.88	0.003 0.002	46 -2	-80 32	26 0	