Stat 134: Section 15 Adam Lucas March 14, 2018	
Happy PI(e) Day!	
Problem 1	
Suppose U has uniform $(0,1)$ distribution. Let $W = -\log U$. Find the density of W .	Do you recognize the distribution of W?
Problem 2	
Suppose X has uniform $(-1,2)$ distribution. Find the density of X^2 . $Ex\ 4.4.5$ in $Pitman's\ Probability$	Is this a one-to-one transformation?

Problem 3

Let Z be a standard normal random variable. Find formulae for the densities of each of the following random variables:

- a. |Z|;
- b. Z^2 ;
- c. $1/Z^2$.

Ex 4.4.10 in Pitman's Probability

Problem 4

Geometric from Exponential

- a. Show that if *T* has exponential distribution with rate λ , then int(T), the greatest integer less than or equal to T, has a geometric(p) distribution on $\{0,1,2,...\}$, and find p in terms of λ .
- b. Let $T_m = int(mT)/m$, the greatest multiple of 1/m less than or equal to T. Show that T has exponential distribution on $(0, \infty)$ for some λ , if and only if for every m there is some p_m such that mT_m has geometric (p_m) distribution on $\{0,1,2,...\}$. Find p_m in terms of λ.

Ex 4.2.10 in Pitman's Probability