ფაკულტეტი	საინჟინრო-ტექნიკური ფაკულტეტი
დეპარტამენტი	ენერგეტიკისა და ტელეკომუნიკაციის დეპარტამენტი
სპეციალობა	ელექტრული ინჟინერია ჯგ. 6B211-23, 6B212-23, 6B213-23,
საგანი	"ელექტრომაგნიტიზმის საფუძვლები"
პედაგოგი	ზ. მარდალეიშვილი
გამოცდის სახე	შუალედური
სემესტრი	საგაზაფხულო, სწავლების მე-2 წელი

	შეკითხვის, დავალების, საკითხის ან ტესტის შინაარსი	ტესტის შემთხვევაში ჩაწერეთ წერტილით გამოყოფილი პასუხები	საჭირო სურათი ან ნახაზი (Inline თვისების მქონე)	პასუხისათვის საჭირო სტრიქონების რაოდენობა	1, 2, 3,
1.	ერთეულთა საერთაშორისო სისტემაში (SI), მაგნიტური ინდუქციის ერთეულია:	ვებერი. ამპერი. <u>ტესლა.</u>			1
2.	რომელია ვექტორული სიდიდე:	მაგნიტური ველის ინდუქცია. დენის ძალა. ელექტრომამოძრავებელი ძალა. პოტენციალთა სხვაობა.			1
3.	მაგნიტური ინდუქციის სიდიდის გამოსათვლელ ფორმულაში B=M/(IS), რა სიდიდეა M?	<u>ჩარჩოზე მოქმედი ძალის მომენტი.</u> იმპულსის მომენტი. ძალის იმპულსი. ჩარჩოზე მოქმედი ძალა.			1
4.	თუ ბურღის ტარს ვაბრუნებთ ჩარჩოში გამავალი დენის მიმართულებით, მაშინ ბურღის წინსვლითი მოძრაობის მიმართულება გვიჩვენებს:	ჩარჩოს დადებითი ნორმალის მიმართულებას. ჩარჩოს მაბრუნებელი მომენტის მიმართულებას. ჩარჩოზე მოქმედი ძალის მომენტის მიმართულებას.			1
5.	მაგნიტური ინდუქციის ნაკადი გამოისახება ფორმულით:	$\Phi = SdB. \ \Phi = \int B_n dS. \ \Phi = \frac{B}{dS}.$			1
6.	მაგნიტური ველის აღმოსაჩენად ველში შეაქვთ:	მაგნიტური ისარი ან დენიანი <u>ჩარჩო.</u> სასინჯი მუხტი. უმრავი			

		გამტარი.		
7.	რაიმე ფართობის გამჭოლი მაგნიტური ინდუქციის წირების რაოდენობას ეწოდება:	მაგნიტური ინდუქციის ნაკადი. მაგნიტური ველის დაძაბულობის ნაკადი. ელექტრული ძალწირების ნაკადი.		1
8.	მაგნიტური ველი ხასიათდება:	დენის ძალით. <u>მაგნიტური</u> <u>ინდუქციის ვექტორით.</u> პოტენციალით.		1
9.	ამპერის ძალის გამომსახველ ფორმულაში dF=IBdlsin a , რა სიდიდეა dl?	დენიანი გამტარის მოქმედი სიგრძის ელემენტი. ჩარჩოს ფართობი. ჩარჩოს ნორმალის სიგრძე.		1
10.	ელექტრომაგნიტური ინდუქციის კანონი გამოისახება ფორმულით:	E= $d\Phi/dt$. E= $d\Phi/dx$. E= $-d\Phi/dt$.		1
11.	დენიანი ჩარჩოს მაგნიტური მომენტი გამოითვლება ფორმულით:	$\overrightarrow{\overrightarrow{p_m}} = IS\overrightarrow{n}. \overrightarrow{p_m} = ISB. \overrightarrow{p_m} = IB\overrightarrow{n}.$ $\overrightarrow{p_m} = IH\overrightarrow{n}.$		1
12.	მაგნიტურ ველს ქმნის:	<u>მოძრავი მუხტი.</u> ელექტროსტატიკური ველი. უძრავი მუხტი.		1
13.	რომელი ფიზიკური სიდიდის ერთეულია ვებერი?	მაგნიტური ინდუქციის. ძაბვის. <u>მაგნიტური ნაკადის.</u> ინდუქციურობის.		1
14.	მაგნიტური ინდუქციის ნაკადი ნეზისმიერ შეკრულ ზედაპირში ტოლია:	<u>წულის.</u> უსასრულობის. 2π.		1
15.	ერთეულთა საერთაშორისო სისტემაში, რომელია მაგნიტური მუდმივას ერთეული?	<u>36/a.</u> χ/წa. 5a.		1
16.	რომელი ფორმულით გამოისახება მაგნიტური ინდუქციის ვექტორის სიდიდე?	B=I/(MS). <u>B=M/(IS).</u> B=IS/M.		1

17	D () 1. 1. m/c	II I//OD) II D//OI) II ODI		1
17.	R რადიუსის წრიული დენის	H=I/(2R). $H=R/(2I)$. $H=2RI$.		1
	ცენტრში მაგნიტური ველის			
	დამაბულობა, ერთეულთა			
	საერთაშორისო სისტემაში,			
	გამოითვლება ფორმულით:			
18.	რომელი ფორმულით არ	$dF=IBdlsin\alpha$. $dF=IBdl$. $\underline{dF=Bl}$.		1
	გამოისახება ამპერის კანონი			
	ერთეულთა სართაშორისო			
	სისტემაში?			
19.	ლორენცის ძალის გამომსახველ	<u>მოძრავი ნაწილაკის მუხტი.</u>		1
	ფორმულაში F=qvBsinα რა სიდიდეა	უძრავი ნაწილაკის მუხტი.		
	q?	გამტარის განივკვეთში გასული		
	•	მუხტი.		
20.	დაასრულეთ განმარტება:	ორბიტალური და სპინური		1
	სრული მაგნიტური მომენტი	მაგნიტური მომენტების		
	წარმოადგენს ატომში შემავალი	გეომეტრიულ ჯამს. ორბიტალური		
	ყველა ელექტრონის	და ძალის მომენტების		
	0007 07000	გეომეტრიულ ჯამს. მხოლოდ		
		სპინური მაგნიტური მომენტების		
		გეომეტრიულ ჯამს.		
21.	მაგნიტური ინდუქციის სიდიდის	ჩარჩოზე მოქმედი ძალის მომენტი.		
	გამოსათვლელ ფორმულაში	იმპულსის მომენტი. მალის		
	B=M/(IS), რა სიდიდეა I?	იმპულსი. <u>დენის მალა.</u>		
22.	მაგნიტური ინდუქციის სიდიდის	ჩარჩოზე მოქმედი ძალის მომენტი.		
	გამოსათვლელ ფორმულაში	იმპულსის მომენტი. ძალის		
	B=M/(IS), რა სიდიდეა S?	იმპულსი. <u>ჩარჩოს ფართობი.</u>		
23.	ამპერის ძალის გამომსახველ	დენიანი გამტარის მოქმედი		
	ფორმულაში dF=IBdlsin a , რა	სიგრძის ელემენტი. ჩარჩოს		
	სიდიდეა !?	ფართობი. ჩარჩოს ნორმალის		
		სიგრძე. <u>დენის ძალა.</u>		
24.	ამპერის ძალის გამომსახველ	დენიანი გამტარის მოქმედი		
	ფორმულაში dF=IBdlsina , რა	სიგრძის ელემენტი. <u>მაგნიტური</u>		
	სიდიდეა B?	ვე <u>ლის ინდუქცია.</u> ჩარჩოს		

		ნორმალის სიგრძე. დენის ძალა.		
25.	ამპერის ძალის გამომსახველ	დენიანი გამტარის მოქმედი		
	ფორმულაში dF=IBdlsin a , რა	სიგრმის ელემენტი. <u>კუთხე დენის</u>		
	სიდიდეა α?	მიმართულებასა და მაგნიტური		
		<u>ინდუქციის ვექტორს შორის.</u>		
		ჩარჩოს ნორმალის სიგრმე. დენის		
		მალა.		
26.	ლორენცის მალის გამომსახველ	მომრავი ნაწილაკის მუხტი.		
	ფორმულაში F=qvBsinα რა სიდიდეა	უძრავი ნაწილაკის მუხტი.		
	v?	გამტარის განივკვეთში გასული		
		მუხტი. <u>დამუხტული ნაწილაკის</u>		
		<u>სიჩქარე.</u>		
27.	ლორენცის ძალის გამომსახველ	მოძრავი ნაწილაკის მუხტი.		
	ფორმულაში F=qvBsina რა სიდიდეა	უძრავი ნაწილაკის მუხტი.		
	B?	გამტარის განივკვეთში გასული		
		მუხტი. <u>მაგნიტური ინდუქციის</u>		
		<u>ვექტორის მოდული.</u>		
28.	ლორენცის ძალის გამომსახველ	მოძრავი ნაწილაკის მუხტი. <u>კუთხე</u>		
	ფორმულაში F=qvBsina რა სიდიდეა	დადებითი მუხტის სიჩქარის		
	α?	ვექტორსა და მაგნიტური		
		ინდუქციის ვექტორს შორის.		
		გამტარის განივკვეთში გასული		
		მუხტი. დამუხტული ნაწილაკის		
20		სიჩქარე.		
29.	უსასრულოდ გრმელი წრფივი	$B = \frac{2\pi\mu_0}{IR}$. $B = \frac{\mu_0 I}{2\pi R}$. $B = \frac{IR}{2\pi\mu_0}$.		
	დენის მაგნიტური ველის	$B = \mu_0 IR.$		
	ინდუქცია ერთეულთა			
	საერთაშორისო სისტემაში			
20	გამოისახება ფორმულით:	P - u ml P - u Dl P - u mu		
30.	ვაკუუმში სოლენოიდის (ან	$B_0 = \mu_0 nI$. $B_0 = \mu_0 RI$. $B_0 = \mu_0 nH$.		
	ტოროიდის) მაგნიტური ველი:	$B_0 = nI$.		

31.	ვაკუუმში მაგნიტური ინდუქციის ცირკულაცია ტოლია:	$ \oint B_{0l} dl = \mu_0 \sum I_{\underline{}} \oint B_{0l} dl = \mu_0. $ $ \oint B_{0l} dl = 0. $		
32.	ურთიერთპარალელური დენიანი გამტარები ერთმანეთს მიიზიდავენ ძალით:	$\frac{F = \frac{\mu_0 I_1 I_2 I}{2\pi d}}{F = \frac{\mu_0 I_1 I_2 B}{2\pi d}} \cdot F = \frac{\mu_0 I_1 I_2 H}{2\pi d}.$ $F = \frac{\mu_0 \mu I_1 B}{2\pi d}.$		
33.	ერთგვაროვან მაგნიტურ ველში დენიან კონტურზე მოქმედი მაბრუნებელი მომენტი გამოითვლება ფორმულით:	$\overrightarrow{M} = \left[\overrightarrow{p_m} \cdot \overrightarrow{B}\right]. \overrightarrow{M} = \left[\overrightarrow{p_m} \cdot IB\right].$ $\overrightarrow{M} = \left[\overrightarrow{p_m} \cdot Il\right]. \overrightarrow{M} = \left[\overrightarrow{p_m} \cdot \overrightarrow{F}\right].$		
34.	ბიო-სავარ-ლაპლასის ფორმულა:	$ \frac{\overrightarrow{dB} = \frac{\mu_0 \mu I}{4\pi r^3} [\overrightarrow{dl} \cdot \overrightarrow{r}]_{-} \overrightarrow{dB} = \frac{\mu_0 \mu I}{r^3} [\overrightarrow{dl} \cdot \overrightarrow{r}]}{\overrightarrow{dB} = \frac{\mu_0}{4\pi r^3} [\overrightarrow{dl} \cdot \overrightarrow{r}]}. $		
35.	მოძრავი მუხტის მაგნიტური ველი:	$ \vec{B} = \frac{\mu_0 \mu q}{4\pi r^3} [\vec{v} \cdot \vec{r}] \vec{B} = \frac{\mu_0 \mu q}{4\pi} [\vec{v} \cdot \vec{r}]. $ $ \vec{B} = \frac{\mu_0}{4\pi r^3} [\vec{v} \cdot \vec{r}]. $		

...

შენიშვნა საკითხების ცხრილის ბოლო სვეტი ივსება შემდეგნაირად საკითხს მიეწერება 1,2,3, . . . რიცხვები. რაც ნიშნავს, რომ იქმნება შესწავლილი თემების პირობითი ჯგუფები. ბილეთის ფორმირებისას პედაგოგს შეუძლია შეარჩიოს ბილეთში შემავალი საკითხების რაოდენობა და გაანაწილოს იგი სხვადასხვა ჯგუფების მიხედვით. იხილეთ მესამე ცხრილის განმარტება.

1
1

შენიშვნა ცხრილის პირველი სტრიქონი ნიშნავს, რომ მაგალითად, საგამოცდო საკითხებში პირველი, მეორე, მესამე და ა.შ. ჯგუფის ან სირთულის დავალებებია. ცხრილის მეორე სტრიქონი ნიშნავს, რომ პირველი ჯგუფიდან (სირთულიდან) ბილეთში შევა 1, მეორე ჯგუფიდან 3 და მესამედან 3 საკითხი (დავალება, ტესტი) და ა. შ.

ფაკულტეტის	დეკანი ——————
დეპარტამენტი	ს კოორდინატორი —————