Rasterized Image Databases for Image Compression

Zoya Bylinskii*, Maria Shugrina*, Andrew Spielberg*, Wei Zhao*

bigdata@CSAIL
MIT BIG DATA INITIATIVE

6.830
Database Systems
Final Project

MOTIVATION

- More than 1.8 billion images uploaded to the internet every day
- Redundancy in large image collections can lead to more efficient storage

PATCH-BASED IMAGE CODING

- Lossy compression
- Compression savings INCREASE as the database size INCREASES
- Rasterization is a simple operation easily deconstruct and reconstruct images using patches

DATABASE SCHEMA

PARAMETER SELECTION

RESULTS

APPLICATIONS

APPROACH

Algorithm 1 Insert Image I into database

- 1: $Patches \leftarrow CutIntoPatches(I, patch_size=n)$
- 2: for P in Patches do
- 3: $SimPat \leftarrow FindLikelySimilarPatches(P)$
- 4: $P_{closest} \leftarrow argmin\{S(P, P_i)\}$
- 5: if then $S(P, P_i) > T$
- 6: insert P into patches

Computing similarity per color channel: $S(P_1, P_2, i) = \frac{||P_1(i) - P_2(i)||^2}{n^2}$

CIE (LUV) color space

• Threshold per color channel: $S(P_1,P_2,i) < T_i$

The importance of the right color space and a thresholding each color channel:

The importance of the right similarity function and threshold:

The importance of the right patch size:

