Math 325K - Lecture 22 Section 8.3 Equivalence relation

Bo Lin

November 20th, 2018

Outline

- Equivalence relations induced by partitions.
- Equivalence classes and representatives.
- Examples.

Recall: definition

Definition

A relation defined on a set A is an **equivalence relation** if it is reflexive, symmetric and transitive.

Recall: definition

Definition

A relation defined on a set A is an **equivalence relation** if it is reflexive, symmetric and transitive.

Remark

If a relation on A is an equivalence relation, then it divides elements in A into disjoint groups. And we want to study this phenomenon in details.

Relations induced by partitions

Definition

Given a partition of a set A, the **relation induced by the partition**, R, is defined on A as follows: For all $x, y \in A$, $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .

Relations induced by partitions

Definition

Given a partition of a set A, the **relation induced by the partition**, R, is defined on A as follows: For all $x, y \in A$, $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .

Remark

Note that this relation R is completely determined by the partition of A.

Theorem

Any relation induced by the partition on A is an equivalence relation.

Theorem

Any relation induced by the partition on A is an equivalence relation.

Proof.

Reflexive: for any $x \in A$, x and itself belong to the same subset in the partition.

Theorem

Any relation induced by the partition on A is an equivalence relation.

Proof.

Reflexive: for any $x \in A$, x and itself belong to the same subset in the partition.

Symmetric: for any $x, y \in A$, if x and y belong to same subset in the partition, then y and x belong to same subset in the partition.

Theorem

Any relation induced by the partition on A is an equivalence relation.

Proof.

Reflexive: for any $x \in A$, x and itself belong to the same subset in the partition.

Symmetric: for any $x,y\in A$, if x and y belong to same subset in the partition, then y and x belong to same subset in the partition. Transitive: for any $x,y,z\in A$, if x and y belong to same subset in the partition, and y and z belong to same subset in the partition, then the two sets mentioned are the same. So x and z belong to same subset in the partition.

Exercise: find the partition

Exercise

Let $A = \{1, 2, 3, 4, 5\}$ and R be an equivalence relation defined on A such that x R y if and only if $2 \mid (x - y)$. If R is also induced by a partition on A, find the partition.

Exercise: find the partition

Exercise

Let $A = \{1, 2, 3, 4, 5\}$ and R be an equivalence relation defined on A such that x R y if and only if $2 \mid (x - y)$. If R is also induced by a partition on A, find the partition.

Solution

Note that the ordered pairs in R are

$$(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5).$$

So the partition is

$$A = \{1, 3, 5\} \cup \{2, 4\}.$$

Equivalence classes

In the example of relations induced by partitions, the subsets in the partitions are very important. We have a name for them.

Equivalence classes

In the example of relations induced by partitions, the subsets in the partitions are very important. We have a name for them.

Definition

Suppose A is a set and R is an equivalence relation on A. For each element $a \in A$, the **equivalence class** of a, denoted [a] and called the class of a for short, is the set of all elements $x \in A$ such that x is related to a by R. In symbols:

$$[a] = \{ x \in A \mid x R a \}.$$

Exercise: related elements represent the same equivalence class

Exercise

Suppose R is an equivalence relation on a set A and $x, y \in A$ such that x R y. Prove that [x] = [y].

Exercise: related elements represent the same equivalence class

Exercise

Suppose R is an equivalence relation on a set A and $x,y \in A$ such that x R y. Prove that [x] = [y].

Proof.

By symmetry, it suffices to prove that $[x] \subseteq [y]$. For any $z \in [x]$, we have $z \ R \ x$. Since R is transitive and we also have $x \ R \ y$, we have $z \ R \ y$. By the definition of equivalence classes, $z \in [y]$. So $[x] \subseteq [y]$.

Representatives of equivalence classes

Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A **representative** of the class S is any element $a \in A$ such that [a] = S.

Representatives of equivalence classes

Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A **representative** of the class S is any element $a \in A$ such that [a] = S.

Remark

By the previous exercise, any element in the same equivalence class serves as its representative.

Property of equivalence classes

Proposition

Let R be an equivalence relation on a set A and S_1, S_2 are two distinct equivalence classes of R. Then $S_1 \cap S_2 = \emptyset$.

Property of equivalence classes

Proposition

Let R be an equivalence relation on a set A and S_1, S_2 are two distinct equivalence classes of R. Then $S_1 \cap S_2 = \emptyset$.

Proof.

We prove by contraposition. Suppose there is an element $x \in S_1 \cap S_2$. By definition there is an element $a_1 \in A$ such that $S_1 = [a_1]$. Since $x \in S_1$, $x R a_1$. By the previous exercise $[x] = [a_1] = S_1$. For the same reason, $[x] = S_2$. Hence $S_1 = S_2$, which is a contradiction.

Rational numbers

Example

We can define \mathbb{Q} alternatively as the set of some equivalence classes: Let $A = \mathbb{Z} \times \mathbb{Z} - \{0\}$. Define a relation R on A such that for all $(a,b),(c,d) \in A$,

$$(a,b) R(c,d) \Leftrightarrow ad = bc.$$

Congruence

Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent to n modulo d and write

$$m \equiv n \pmod{d}$$

if and only if $d \mid (m-n)$.

Congruence

Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent to n modulo d and write

$$m \equiv n \pmod{d}$$

if and only if $d \mid (m-n)$.

Remark

As we have shown, congruences modulo any positive integer \boldsymbol{d} are equivalence relations.

Definition

An equivalence class of congruence modulo d is called a congruence class.

Definition

An equivalence class of congruence modulo d is called a congruence class.

Exercise

Find all congruence classes modulo 4.

Solution

The congruence classes are characterized by the residue when divided by 4. So there are 4 congruence classes modulo 4 which form a partition of \mathbb{Z} :

$$\{4k \mid k \in \mathbb{Z}\};
 \{4k + 1 \mid k \in \mathbb{Z}\};
 \{4k + 2 \mid k \in \mathbb{Z}\};
 \{4k + 3 \mid k \in \mathbb{Z}\}.$$

Solution

The congruence classes are characterized by the residue when divided by 4. So there are 4 congruence classes modulo 4 which form a partition of \mathbb{Z} :

$$\{4k \mid k \in \mathbb{Z}\};
 \{4k+1 \mid k \in \mathbb{Z}\};
 \{4k+2 \mid k \in \mathbb{Z}\};
 \{4k+3 \mid k \in \mathbb{Z}\}.$$

Remark

For any positive integer d, there are d congruence classes modulo d.

HW # 11 of this section

Exercise 2(b), 12, 14(b), 20, 33, 39.