Sensor Fusion With Deep Learning

Motivation

- What is Sensor Fusion
- Why Fuse sensors Data
- 1)Reliability(check potential partial sensor failure & improve redundancy)
- 2)Robustness against noise (detect sensor exposed to noise & attenuate effect on system)
- 3)Extended spatial coverage
- 4)Extended temporal coverage (Each sensors update a different time interval)
- 5)Increased Resolution(combine data to increase resolution of measurement)

Benefits of using DL in Sensor Fusion

- The continuously train DL model helps to identify any potential changes in system behavior
- The DL model can predict possible sources of failures, which helps with preventative maintenance.

Different Types of Sensor Fusion

- Early Fusion
- Intermediate Fusion
- Late Fusion

Sensors Interaction Classification

Complementary(work independent with possibility to combine their data)

Competitive(sensors measure the same parameter & each of them will give its

own measurement)

Cooperative

Practical Case: Forward vehicle SF with Matlab

- Model Subsystems
- 1)Sensors and Environment (configuration related to the type of scene, vehicles and sensors)
- 2)Forward Vehicle Sensor Fusion(for camera, radar fusion and decision making related to the detection of objects)
- 3) Evaluate Tracker Metrics (check how good vehicles are dectected)

Sensors and Environment Block

Evaluate Tracker Metrics Block

Simulation

Limitations of using DL in Sensor Fusion

Continuous Training with new data to make correct prediction