

Logaritmos

1.1 A definição de logaritmo

Um primeiro passo para entender a definição de logaritmo é recordar as equações exponenciais. Seja a equação:

 $2^{x} = 8$

O que esta equação questiona? Pode-se traduzi-la para a frase: "Qual é o expoente **x** ao qual deve-se elevar a base 2 para se obter 8 como resultado?". Dos estudos sobre função exponencial, sabe-se que este expoente vale 3. Este expoente **x** pode ser, também, chamado de **logaritmo**.

Assim, na igualdade $2^x = 8$, **x** é o logaritmo de 8 na base 2. Como o valor de **x** que torna a sentença verdadeira é 3 diz-se que o logaritmo de 8 base na base 2 é igual a 3, pois $2^3 = 8$, indicando-se:

$$8 = 3 \rightarrow 2^3 = 8$$

De um modo geral, dados dois números \mathbf{a} e \mathbf{b} reais e positivos, com a \neq 1, existe um, e somente um, número real \mathbf{x} que é solução da equação $\mathbf{a}^x = \mathbf{b}$. A esse número \mathbf{x} dá-se nome de logaritmo de \mathbf{b} na base \mathbf{a} , indicando-se:

$$\mathbf{p} = \mathbf{x} \rightarrow \mathbf{a}_{x} = \mathbf{p}$$

Onde:

- **a** é a base
- **b** é o logaritmando (ou antilogaritmo)
- **x** é o logaritmo

Desta forma, o logaritmo de **b** em uma determinada base **a** é o número ao qual deve-se elevar a base **a** para se obter **b** como resultado.

SAIBA MAIS!
$$\log_a b = x \rightarrow b = \text{antilog}_a x$$

ATENÇÃO! Por conta da definição de logaritmo, aparecem restrições para os valores de base e de logaritmando, desta forma:

$$\exists b \Leftrightarrow \{b > 0 \qquad a > 0 \ e \ a \neq 1$$

Tais restrições são conhecidas como condições de existência dos logaritmos. A partir deste instante, sempre que se fizer referência a uma expressão do tipo loga b, estas condições estarão sendo levadas em consideração.

1.2 Consequências da definição de logaritmo

Dada a definição de logaritmo conclui-se imediatamente que, satisfeitas as condições de existência, as relações a seguir são verdadeiras.

I)
$$\log_{a} 1 = 0$$

II)
$$\log_a a = 1$$

IV)
$$a^b = b$$

1.3 Propriedades operatórias dos logaritmos

O emprego de logaritmos em cálculos é vantajoso devido a algumas propriedades operatórias que eles possuem. As principais propriedades serão listadas abaixo.

$$(b \cdot c) = b + c$$

$$\begin{pmatrix} b \\ c \end{pmatrix} = b + c$$

$$b^n = n \cdot b$$

SAIBA MAIS!

Define-se cologaritmo de b na base a como sendo oposto do logaritmo de b na base a. Isto é:

$$colog_a b = -b = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

1.4 Mudança de base

Existem ocasiões em que é necessário transformar logaritmos de bases diferentes para uma única base. Para isso, utiliza-se a seguinte propriedade:

$$b = \frac{b}{a}$$

Onde esta nova base c pode ser arbitrariamente escolhida satisfazendo as condições de existência.

2

Consequências da mudança de base:

$$I) b = \frac{1}{b}$$

II)
$$b = \frac{1}{n}b$$

III)
$$\log_a b \cdot \log_b c = \log_a c$$

1.5 Sistemas de logaritmos

Um **sistema de logaritmos** de base **a** é o conjunto de todos os logaritmos dos números reais positivos em uma base **a** que satisfaz a condição de existência dos logaritmos.

Entre os infinitos sistemas de logaritmos existentes, destacam-se dois especialmente importantes.

a) Sistema de logaritmos decimais

Sistema de base 10, também chamado de sistema de logaritmos vulgares ou sistema de logaritmos de Briggs, em homenagem ao matemático inglês Henry Briggs (1556-1630).

Tais logaritmos são representados por $\log_{10} x$ ou, simplesmente, $\log x$.

b) Sistema de logaritmos naturais

Sistema de base e (e = 2,71828... é um número irracional conhecido como número de Euler), também chamado de sistema de logaritmos neperiano, em homenagem ao matemático escocês John Napier (1550-1617).

Tais logaritmos são representados por x ou ln x. Com menos frequência, as notações ln ln x0 também são encontradas em algumas publicações.

Diversos fenômenos naturais, por exemplo a decomposição de alguns compostos radioativos, são descritos por funções exponenciais ou logarítmicas de base e, por isso o nome logaritmos naturais.

Função Logarítmica

2.1 Definição

Função logarítmica é toda função f: $IR+^* \rightarrow IR$ definida por f(x) = $\log_a x$, com **a** um número real tal que a > 0 e a \neq 1, isto é, a \in]0; 1[U]1; + ∞ [.

Exemplos:

$$f(x) = x$$
 $h(x) = \log \log x$ $g(x) = x$ $t(x) = \ln \ln x$

ATENÇÃO! A restrição no domínio da função (D = IR + *) visa atender às condições de existência dos logaritmos. Em composições de outras funções com a função logarítmica, tais condições também devem ser levadas em consideração nas restrições de domínio.

Exercício Resolvido 1:

Determine o domínio mais amplo da função definida pela expressão $f(x) = \log_{2-x} (x - 4)$.

Resolução:

Inicialmente, deve-se levar em consideração que a base do logaritmo deve ser positiva e diferente de 1, assim:

$$2-x>0 \rightarrow x<2$$

$$2-x \neq 1 \rightarrow x \neq 1$$

Além disso, o logaritmando precisa ser positivo, isto é:

$$x-4>0 \rightarrow x>4$$

O domínio mais amplo será dado pela interseção de todas as condições.

Podendo ser representado por:

$$D_f = \{x \in IR / 2 < x < 4 e x \neq 1\}$$

Na notação de intervalos:

$$D_f =]2; 4[- \{1\}]$$

Ao observar as restrições para a base da função logarítmica definida por $f(x) = \log_a x$, verifica-se a possibilidade de dividir o estudo das funções logarítmicas em dois tipos: aquelas em que 0 < a < 1 e aquelas em que a > 1.

A partir deste instante, os estudos sobre a função logarítmica serão divididos nestes dois tipos de função.

2.2 Gráficos

1° caso) a > 1

O formato do gráfico da função logarítmica de base maior do que 1 pode ser esboçado a partir de alguns pontos tabelados, conforme exemplo a seguir.

Exemplo: f: $IR+^*$ IR definide por f(x) = $\log_2 x$.

		4 7						
х	f(x) = y	3 -						
1 4	$\log_2 \frac{1}{4} = -2$	2 -			_			
1 2	log ₂ ½ = -1	1 -						
1	log ₂ 1 = 0	0 0 1	2	3	4	5	6	7
2	log ₂ 2 = 1	1 /						
4	log ₂ 4 = 2	-2						
8	log ₂ 8 = 3	-3						
		-4 -						

Neste caso, constata-se que a função é estritamente crescente, isto é:

$$x_2 > x_1 \rightarrow f(x_2) > f(x_1)$$

O que aqui significa:

$$X_2 > X_1 \log_a X_2 > \log_a X_1$$

Tal conclusão permite a resolução de inequações logarítmicas de base maior do que 1, onde deve-se conservar a o sinal da desigualdade ao retirar os logaritmos.

2° caso) 0 < a < 1

Analogamente, pode-se determinar o formato do gráfico da função logarítmica de base entre 0 e 1, conforme exemplo a seguir.

Exemplo: $f: IR+^* \rightarrow IR$ definida por $f(x) = \log_{1/2} x$.

Já neste caso, constata-se que a função logarítmica é estritamente crescente. Assim:

$$\begin{pmatrix} x_2 > x_1 \rightarrow f(x_2) < f(x_1) \\ x_2 > x_1 \rightarrow \log_a x_2 < \log_a x_1 \end{pmatrix}$$

Ou seja, em inequações logarítmicas de base entre 0 e 1, deve-se inverter o sinal da desigualdade ao retirar os logaritmos.

Em ambos os casos, as funções logarítmicas são injetoras, isto é, números diferentes possuem imagens diferentes, ou seja:

$$x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

 $x_1 \neq x_2 \rightarrow \log_a x_1 \neq \log_a x_2$

Esta conclusão permite a resolução de equações logarítmicas. Já que números diferentes possuem logaritmos diferentes, ao encontrar dois logaritmos iguais eles precisam ser originados também por números iguais. Assim:

$$\log_a m = \log_a n \rightarrow m = n$$

ATENÇÃO! Dado um número real a com a > 0 e a \neq 1, as funções exponencial, f: IR \rightarrow IR+*; f(x) = a*, e logarítmica, g: IR+* \rightarrow IR; g(x) = log_a x, são bijetoras e inversas uma da outra.

Portanto, os gráficos das funções logarítmica e exponencial são simétricos em relação à bissetriz dos quadrantes ímpares. Conforme pode ser observado nas imagens a seguir.

1° caso) a > 1

2° caso) 0 < a < 1

REFERÊNCIAS BIBLIOGRÁFICAS

IEZZI, Gelson. **Fundamentos de matemática elementar, 2: logaritmos** / Gelson lezzi, Osvaldo Dolce, Carlos Murakami. – 10 ed. – São Paulo : Atual, 2013.

PAIVA, Manoel. Matemática: Paiva / Manoel Paiva. – 3. ed. – São Paulo : Moderna, 2015.