Malaria case study - Part 1

Table of contents

1	Intr	oduction	2
	1.1	Overview	2
	1.2	Learning objectives	2
2	Mal	aria research questions	2
3	Get	ting started	2
	3.1	Access the Quarto template	2
		3.1.1 Quarto resources	3
	3.2	Dataset description	3
	3.3	Data collection	3
	3.4	Data preparation	5
	3.5	Import the data	5
		Exercise 1	5
4	Pop	pulation characteristics	6
	4.1	Codebook	6
	4.2	Structure of the data	7
		Exercise 2	7
		Exercise 3	7
		Exercise 4	9
	4.3	Missing values	10
5	Hea	althcare provider actions	11
	5.1	Codebook	11
	5.2	Structure of the data	12^{-1}
		5.2.1 Exercise 5	
		5.2.2 R	12

	$5.2.3$ Exercise $3 \ldots \ldots \ldots \ldots \ldots$	13
	5.2.4 Exercise 6	13
6	Number of consultations by facility	14
	6.1 Exercise 6	14
	6.2 Age pyramid	15
7	Fever assessment	16
	7.1 Facility F4153	16
	7.2 Facility F9222	16
8	Malaria tests	19
9	Malaria treatments	20

1 Introduction

1.1 Overview

These pages will demonstrate how to use Quarto to data from Tanzania.

1.2 Learning objectives

 \bullet Test

2 Malaria research questions

Research questions in an enumerated list

3 Getting started

3.1 Access the Quarto template

Download the Quarto template used for this case study (add link) using GitHub.

3.1.1 Quarto resources

Review the R Basics page "Reading a RMarkdown Script", or reference these resources: Rmarkdown introduction and Rmarkdown authoring basics.

```
install.packages("ggplot2")
install.packages("ggthemes")
install.packages("networkD3")
install.packages("apyramid")
```

3.2 Dataset description

We will be using data and examples from a real consultation data which occurred in Tanzania between **2021-07-29** and **2021-12-17** within the Integrated Management of Childhood Illness (TIMCI) project.

! Important

Data are made available by the Ifakara Health Institute (IHI) for training purposes only. Please note, that some data has been adapted in order to best achieve training objectives. No personally indentifiable information have been kept in this dataset.

Information about the consultations of 10,308 children [1 day - 59 months] from 18 facilities (dispensaries and health centres) in Kaliua District, Sengerema District and Tanga District, Tanzania.

3.3 Data collection

Data were collected using *ODK* (ODK Collect, ODK Central) between **2021-07-29** and **2021-12-17**. Research assistants recorded the following information from different sources.

Figure 1: Study area

Table 1: Types and sources of information

Information	Prefix	Source		
Context	CTX	Metadata		
Sociodemographics	SDC	Caregiver		
Clinical presentation	CLIN	Caregiver		
Laboratory	TEST	Child booklet or facility		
investigations		MTUHA book		
Diagnoses	DX	Child booklet or facility		
		MTUHA book		
Treatments	RX			
• before		Caregiver		
consultationas a result of the consultation		Child booklet or facility MTUHA book		
Referral advice	MGMT			
		Caregiver		
		Child booklet or facility		
		MTUHA book		

3.4 Data preparation

Data cleaning and data de-identification

Personally identifiable information (PII) were removed.

3.5 Import the data

Data are stored in dataset1.dta.

Exercise 1

- 1. Import the dataset and store it into a data frame called ${f df}.$
- 2. Select columns child_ID, CTX_month, CTX_district, SDC_age_in_months for the first 5 rows in data frame df.
- 3. Display in a table with the following characteristics:

- a. Align the content of the first column to the left and the content of the other 3 columns to the centre.
- b. Add a caption.

Table 2: Extract of the database

child_ID	CTX_month	CTX_district	SDC_age_in_months
1	7	Kaliua	10
2	7	Kaliua	6
3	7	Kaliua	6
4	7	Kaliua	11
5	8	Kaliua	21

4 Population characteristics

4.1 Codebook

Variable	Coding			
SDC_age_in_months				
SDC_sex	1: male			
	2: female			
	98:			
	unknown			
CLIN_fever	0: no			
	1: yes			
	98: not sure			
CLIN_fever_onset				
CLIN_cough	0: no			
	1: yes			
	98: not sure			
CLIN_diarrhoea	0: no			
	1: yes			
	98: not sure			
$RX_preconsult_antibiotics$				
$RX_preconsult_antimalarials$				
CTX_district Kaliua Sengerema				
Tanga				
CTX_area urban rural				

Variable	Coding				
CTX_facility_type health centre	dispensary				

4.2 Structure of the data

Exercise 2

Add the following two new variables to data frame df

Coding
<2 months
2-11 months
12-23 months
24-35 months
36-47 months
48-59 months
ateg 42 ydays
2-3 days
4-6 days
7 days

- Stata: use the gen command
- R: use the mutate and case_when functions from the dplyr package

Exercise 3

Examine the structure of the data, including variable names, labels.

- Stata: use the codebook command
- R: use the skim function from the skimr package

Table 5: Data summary

Name Number of rows Number of columns	Piped data 10308 53
Column type frequency: factor numeric	10
Group variables	None

Variable type: factor

skim_variable i	n_missi	nogmplet	e <u>order</u> ed	_un	ictor counts
SDC_sex	4	1.0	FALSE	2	1: 5229, 2: 5075
$CLIN_fever$	0	1.0	FALSE	3	1: 7225, 0: 3068,
					98: 15
CLIN_fever_ons	30 83	0.7	FALSE	15	2: 2469, 1: 1997,
					3: 1917, 4: 337
CLIN_diarrhoea	ı 0	1.0	FALSE	3	0: 7982, 1: 2306,
					98: 20
CLIN_cough	0	1.0	FALSE	3	1: 5635, 0: 4658,
					98: 15
$RX_preconsult_$	_an ti bio	tics1.0	FALSE	2	0: 8573, 1: 1735
$RX_preconsult_$	_an ti ma	lari al0	FALSE	2	0: 9866, 1: 442
$CTX_district$	0	1.0	FALSE	3	Tan: 5176, Sen:
					2703, Kal: 2429
CTX_area	0	1.0	FALSE	2	urb: 6220, rur:
					4088
CTX_facility_ty	ype0	1.0	FALSE	2	dis: 5599, hea:
					4709

Variable type: numeric

skim_vaniahlessingpletneanade p0	p25	5 p50) p75	p10hist
SDC_age_0in_mohth\$8.7514.90	7	15	27	59

Exercise 4

Display descriptive statistics for the population characteristics.

- Stata
- \bullet R: use the <code>tbl_summary</code> function from the <code>gtsummary</code> package

Characteristic	N = 10,308
SDC_age_category	
<2 months	597 (5.8%)
02-11 months	3,576 (35%)
12-23 months	2,947 (29%)
24-35 months	1,529 (15%)
36-47 months	980 (9.5%)
48-59 months	679~(6.6%)
SDC sex	,
1	5,229 (51%)
2	5,075 (49%)
(Missing)	4
CLIN_fever	
0	3,068 (30%)
1	7,225 (70%)
98	15 (0.1%)
CLIN_fever_onset_category	
	3,083 (30%)
<2 days	$1,998 \ (19\%)$
>=7 days	$343 \ (3.3\%)$
2-3 days	4,386 (43%)
4-6 days	$498 \ (4.8\%)$
CLIN_diarrhoea	
0	7,982 (77%)
1	2,306 (22%)
98	20~(0.2%)
CLIN_cough	
0	$4,658 \ (45\%)$
1	$5,635 \ (55\%)$

Characteristic	N = 10,308
98	15 (0.1%)
$RX_preconsult_antibiotics$	
0	8,573 (83%)
1	$1,735 \ (17\%)$
$RX_preconsult_antimalarials$	
0	9,866 (96%)
1	$442 \ (4.3\%)$
CTX_district	
Kaliua	2,429 (24%)
Sengerema	$2,703\ (26\%)$
Tanga	5,176 (50%)
CTX_area	
rural	4,088 (40%)
urban	$6,220 \ (60\%)$
CTX_facility_type	
dispensary	5,599 (54%)
health center	4,709 (46%)

4.3 Missing values

Identify missing values in each variable: missing_plot

5 Healthcare provider actions

5.1 Codebook

- Temperature measured
 - Fever measured
- Fever (temp or history)
- Malaria test
- Any severe diagnosis
- Malaria diagnosis
- Malaria treatment
- Referral

Variable	Coding
MEAG	

MEAS_temperature

Variable	Coding
TEST_malaria_result	0: negative
	1: positive
	2: indeterminate
	95: unreadable
	result
	98: not sure
DX_malaria	0: no
	1: yes
RX_antimalarials	0: no
	1: yes
MGMT_referral_src_care	egiver
$\underline{MGMT_referral_src_region}$	stry

5.2 Structure of the data

5.2.1 Exercise 5

Examine the structure of the data, including variable names, labels.

- Stata: use the codebook command
- R: use the skim function from the skimr package

5.2.2 R

Table 10: Data summary

Name	Piped data
Number of rows	10308
Number of columns	53
Column type frequency:	
factor	1
numeric	6

Table 10: Data summary

Variable type: factor

skim_variablen_missingom	plete_	_r ate lered n_	_uniq	uteop_counts
TEST_malaria_dof@e	1	FALSE	2	1: 5763, 0:
				4545

Variable type: numeric

$skim_varia\underline{ble}missimplettee\underline{a} \texttt{rad} tep0 p25 \ p50$	0p 75 p 10 0hist
MEAS_temp27eiratrife 37.08.9834.536.537	37.542.5
TEST_ma l 556_0r56ult1.209.930.0 0.0 0	0.0 98.0
DX_malaria0 1.00 0.170.380.0 0.0 0	0.0 1.0
RX_antimal@rials00 0.130.330.0 0.0 0	0.0 1.0
MGMT_referrall_00c_0a22gi500.0 0.0 0	0.0 98.0
MGMT_referral1.00c_0eg1strt/00.0 0.0 0	0.0 1.0

5.2.3 Exercise 3

Add the following two new variables to data frame df

- MEAS_fever
- Fever (temp or history)

- Stata: use the gen command
- R: use the mutate function from the dplyr package

5.2.4 Exercise 6

Display descriptive statistics for the following healthcare provider actions:

• R: use the tbl_summary function from the gtsummary package

Characteristic	N = 10,308
CALC_temperature_measured	1,037 (10%)
CALC_fever	326 (31%)
(Missing)	$9,\!271$
CALC_fever_or_temp	7,252 (97%)
(Missing)	2,842
TEST_malaria_done	
0	$4,545 \ (44\%)$
1	5,763~(56%)
TEST_malaria_result	
0	$4,665 \ (81\%)$
1	$1,032 \ (18\%)$
2	1 (< 0.1%)
95	3 (< 0.1%)
98	57 (1.0%)
(Missing)	$4,\!550$
DX_malaria	$1,800 \ (17\%)$
RX_antimalarials	$1,290 \ (13\%)$
MGMT_referral_src_caregiver	
0	$10,122 \ (98\%)$
1	$164 \ (1.6\%)$
97	9 (< 0.1%)
98	13~(0.1%)
${\bf MGMT_referral_src_registry}$	114 (1.1%)

6 Number of consultations by facility

6.1 Exercise 6

Plot the number of consultations by facility in bars, grouped by district.

6.2 Age pyramid

7 Fever assessment

Comparison of systems effectiveness decay for malaria assessment and treatment in facilities. Steps reflecting adherence to guidelines are shown in blue, non-adherence shown in red, and not applicable in grey.

7.1 Facility F4153

7.2 Facility F9222

Sequence

• temp measurement by reported fever; by facility

Pearson's Chi-squared test

data: df\$CLIN_fever and df\$TEST_malaria_result
X-squared = 61.449, df = 8, p-value = 2.42e-10

F5479719457476F99454000F166G470433823623653820454966589, N N N N N N N N N N N N N N N N N N N

$$\begin{split} \text{MEATSNOABABBASSIONS.SIT.OB.SIT.OT.257.OT.OB.OB.259.OT.OB.SIT.OB.000.001} \\ & (37 (00\text{A}39 (256, 366, 007, 007, 006, 507, 007, 007, 007, 007, 007, 008, 256, 566, 566, 566, 566, 00, 37.50\text{A}39.757) 007) 009) 538) 038) 838) 007) 538) 339) 538) 007) 507) 507) 00) \\ \text{Un} 2 \pm 082 \pm 1952 86 \ 46733844558677620283799538578 \ 322297880594 \end{split}$$

• also showing 'prevalence' of fever when of whole clinic vs of those who measure to indicate bias

8 Malaria tests

• malaria tests of those with history or measured fever

	0	1	2	95	98
FALSE	70	2	0	1	1
TRUF.	3952	966	1	2	47

Pearson's Chi-squared test

data: df\$CALC_fever_or_temp and df\$TEST_malaria_result
X-squared = 33.92, df = 4, p-value = 7.74e-07

F5479F99F57476F99F54000F119754F704F88F236F30F947849F65589,

Cha9a58e786tiie740620935846749130155060327062 358330683416

TEST_malaria_result

0 83 15131912528513515937122621322134621 32 242225511287 (67%33%54%82%75%98%95%95%95%96%97%97%25%57%92%91%90%97%)

	N	N	Ň	N	NT	NT	Ň	Ň	Ň	Ń	Ń	Ń	Ń	Ň	Ń	Ň	N	N
	IN	ΙN	IN	IN	IN	ΙN	IN	11	ΙN	IN	IN	ΙN	IN	IN	IN	IN	IN	IN
	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
Ck	1 49 (a58	e7&	9419 2	7400	620	935	846	749	130	155	060	3270	062	358	833	068	3416
	38	30	027	028	95	0	2	25	7	4	6	6	59	20	20	21	55	10
	(31	%)	5%4)	6%1)8	(2)	(0)	7()1.	2(%).	B(26.)9(%)	8(26.)	6(%.	7(%)	(3)6	(7)	6(%).	5(%).	7(%.)4
	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(0°)	Z(())	Z()).	2(%)	Z(O)	300°	Z(D)	%()O;	Z(D)	7(0)	7(O)	Z()09	7()0%	Z(()0%	(D)	Z()0°	Z(()0%	% 0%
5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(0.	8(%)	MO.	2(%)	Z(()0%	300°	Z(O)Z	7(0)	Z(O)	7(0)	7(O)	7(0)	7()0%	Z(()0%	(D)	700	7(O)	% 0%
8	2	5	1	0	0	3	6	2	6	6	0	3	5	4	0	1	3	0
	(1.	6(%).	1(%).	2(%)	Z(D)	ď2.	2%.)6(98).	5(26.)5(%).	7(%)	K()0.	8(%).	9(%.)	1(98%	M)0.	4(%).	5(%)
n	•	` ′	` ′	844			,		` `	,	` ′		` ′	` '	` ′	*	` ′	4119

9 Malaria treatments

 $\bullet\,$ malaria diagnoses vs. positive tests vs. treatment.

Var1	Var2	Var3	Freq
0	0	0	3890
1	0	0	15
2	0	0	1
95	0	0	2
98	0	0	31
0	1	0	645
1	1	0	49
2	1	0	0
95	1	0	1
98	1	0	17
0	0	1	99
1	0	1	50
2	0	1	0
95	0	1	0
98	0	1	2
0	1	1	31
1	1	1	918
2	1	1	0
95	1	1	0

Var1	Var2	Var3	Freq
98	1	1	7

Pearson's Chi-squared test

data: df\$TEST_malaria_result and df\$DX_malaria
X-squared = 2582, df = 4, p-value < 2.2e-16</pre>

Pearson's Chi-squared test

data: df\$TEST_malaria_result and df\$RX_antimalarials X-squared = 4508.8, df = 4, p-value < 2.2e-16

	$\overline{\mathbf{F}5}$	479	75F19	4557	474	3F 9	95 754	40 701)[11	640	41 77	1937	8423	30-25	10 53	F 49	178 4	- 197665589
	N	N	N	N	N	N	N	N	Ń	N	N	N	N	Ń	N	N	N	N
	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
Ch	á ta	a & 2(8 26	81218	105	50	2	25	7	4	6	9	61	21	22	21	59	13
DX	<u>40</u> n	n 31 a	128	527	71	0	2	17	5	4	6	6	59	21	22	21	57	13
	(98)	(9)7	(9)	9(9)6	%8	(A)	AM)(068	(7)	(1)	NO))(6%	7(9)7	(a)	M	M	M977	% (1)00%)
RX	<u>40</u> a	1 28 f	328	326a	l s 04	40	2	23	5	2	4	5	57	21	21	21	55	11
	(98)	(19) ((9)	8%93	%9 9	%N	ĄИ)(092)(7)	1%)) (6)	7(%)	5 %9)3	% 1)C	0 95)(a)(0093	(8 5%)