Convex Functions (III)

Lecture 5, Nonlinear Programming

National Taiwan University

October 18, 2016

Table of contents

- Operations that Preserve Convexity
 - Basic Operations that Preserve Convexity
 - Pointwise maximum and supremum
 - Composition
 - Minimization
- 2 Conjugate functions and Other Related Topics
 - Conjugate functions
 - Quasiconvex functions
 - Log-convex and log-concave functions
- Optimization Problems
 - Basic Terminologies
 - Standard Forms
 - Equivalent Problems

Basic Operations that Preserve Convexity

- If f is convex and $\alpha \geq 0$, then αf is also convex.
- If both f_1 and f_2 are convex, then $f_1 + f_2$ is also convex.
- More generally, if $f_1, ..., f_n$ are convex functions, then any of their "conic combinations",

$$f = w_1 f_1 + \cdots + w_n f_n,$$

is also convex (with $w_1, ..., w_n \ge 0$). This is also called the nonnegative weighted sum.

• Extension: if f(x, y) is convex in x for any $y \in \mathcal{A}$, and $w(y) \ge 0$ for any $y \in \mathcal{A}$, then the function

$$g(x) = \int_{A} w(y)f(x,y)dy$$

is convex in x.

Basic Operations that Preserve Convexity

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by

$$g(x) = f(Ax + b)$$

with dom
$$g = \left\{ x \mid Ax + b \in \text{dom } f \right\}$$
.

- If f is convex, then g is also convex.
- If f is concave, so is g.

Pointwise maximum

• If f_1 and f_2 are convex functions then their **pointwise maximum** f, defined as

$$f(x) = \max\{f_1(x), f_2(x)\},\$$

with **dom** f =**dom** $f_1 \cap$ **dom** f_2 , is also convex.

Proof:

$$f(\theta x + (1 - \theta)y) = \\ \leq \\ \leq \\ = \theta f(x) + (1 - \theta)f(y).$$

• It can be easily extended: if $f_1, ..., f_m$ are convex, then their pointwise maximum

$$f(x) = \max\{f_1(x), ..., f_m(x)\},\$$

is also convex.

Pointwise maximum – Examples

Piecewise-linear functions

A piecewise-linear function $f(x) = \max \{a_1^T x + b_1, ..., a_L^T x + b_L\}$ is convex, since the affine functions $a_i^T x + b_i$ are all convex.

Sum of r largest components

For $x \in \mathbb{R}^n$, we denote by $x_{[i]}$ the *i*th largest component of x, i.e.,

$$x_{[1]} \geq x_{[2]} \geq \cdots \geq x_{[n]}$$

are the components of x sorted in nonincreasing order $(\{x_{[1]},...,x_{[n]}\}=\{x_1,...,x_n\})$. Then the function $f(x)=\sum_{i=1}^r x_{[i]}$ is convex.

• Note that, as a generalization, the function $f(x) = \sum_{i=1}^{r} w_i x_{[i]}$ is also convex as long as $w_1 > w_2 > ... > w_r > 0$.

Pointwise supremum

• If for each $y \in A$, f(x, y) is convex in x, then the function g, defined as

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x. Here

$$\operatorname{dom} g = \left\{ x \mid (x, y) \in \operatorname{dom} f, \ \forall y \in \mathcal{A}, \ \sup_{y \in \mathcal{A}} f(x, y) < \infty \right\}.$$

 Similarly, the pointwise infimum of a set of concave functions is a concave function.

Note: the supremum and infimum of a set is defined as

$$\sup A = \min \{ y \mid y \ge x, \forall x \in A \}$$
, (i.e., the minimum upper bound of A)

inf
$$A = \max\{y \mid y \le x, \forall x \in A\}$$
, (i.e., the maximum lower bound of A)

respectively.

Pointwise supremum

• In terms of epigraphs, the pointwise supremum of functions corresponds to the intersection of epigraphs: if

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y),$$

then we have

$$\mathsf{epi}\ g = \bigcap_{y \in \mathcal{A}} \mathsf{epi}\ f(\cdot, y).$$

 Thus, the result follows from the fact that the intersection of a family of convex sets is convex.

Pointwise supremum – Examples

Support function of a set

Let $C \subseteq \mathbb{R}^n$ with $C \neq \phi$. The support function S_C associated with the set C, defined as

$$S_C(x) = \sup \left\{ x^T y \mid y \in C \right\},$$

with dom $S_C = \{x \mid \sup_{y \in C} x^T y < \infty \}$, is convex.

Distance to farthest point of a set

Let $C \subseteq \mathbb{R}^n$. The distance (in any norm) to the farthest point of C,

$$f(x) = \sup_{y \in C} ||x - y||,$$

is convex.

Pointwise supremum – Examples

Maximum eigenvalue of a symmetric matrix

The function $f(X) = \lambda_{max}(X)$, with **dom** $f = S^m$, is convex.

Proof:

$$f(X) = \sup \{ y^T X y \mid ||y||_2 = 1 \}.$$

Norm of a matrix

The function $f(X) = ||X||_2$ with **dom** $f = \mathbb{R}^{p \times q}$, where $||\cdot||_2$ denotes the spectral norm or maximum singular value, is convex.

Proof:

$$f(X) = \sup \left\{ u^T X v \mid ||u||_2 = 1, ||v||_2 = 1 \right\},$$

is the pointwise supremum of a family of linear functions of X.

Convexity of composition of functions

Convexity of composition of functions

Let $h : \mathbf{R} \to \mathbf{R}$, and $g : \mathbf{R} \to \mathbf{R}$ and $f = h \circ g : \mathbf{R} \to \mathbf{R}$, f(x) = h(g(x)). Let **dom** f = **dom** g = **dom** h = **R** and f, g, h be differentialle. Then,

- f is convex if h is convex and nondecreasing, and g is convex,
- f is convex if h is convex and nonincreasing, and g is concave,
- f is concave if h is concave and nondecreasing, and g is concave,
- f is concave if h is concave and nonincreasing, and g is convex.

Proof (for the case where h and g are both twice differentiable):

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x).$$

Examples – Convexity of composition of functions

- If g is convex then $\exp g(x)$ is convex.
- If g is concave and positive, then $\log g(x)$ is concave.
- If g is concave and positive, then 1/g(x) is convex.
- If g is convex and nonnegative and $p \ge 1$, then $g(x)^p$ is convex.
- If g is convex then $-\log(-g(x))$ is convex on $\{x \mid g(x) < 0\}$.

A generalization

Convexity of composition of functions

Let $h: \mathbb{R} \to \mathbb{R}$, and $g: \mathbb{R}^n \to \mathbb{R}$ and $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$, f(x) = h(g(x)). Let dom $f = \text{dom } g = \mathbb{R}^n, \text{dom } h = \mathbb{R}$, and f, g, h be differentible. Then,

- f is convex if h is convex and nondecreasing, and g is convex,
- f is convex if h is convex and nonincreasing, and g is concave,
- f is concave if h is concave and nondecreasing, and g is concave,
- f is concave if h is concave and nonincreasing, and g is convex.

Proof idea: convexity is determined by the behavior of a function on arbitrary lines that intersect its domain.

Vector composition – A further generalization

Vector Composition

Suppose $f(x) = h(g(x)) = h(g_1(x), ..., g_k(x))$, with $h : \mathbb{R}^k \to \mathbb{R}, g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, ..., k$. Then,

- f is convex if h is convex, h is nondecreasing in each argument, and g; are convex,
- f is convex if h is convex, h is nonincreasing in each argument, and g_i are concave,
- f is concave if h is concave, h is nondecreasing in each argument, and g_i are concave.

Proof: W.l.o.g., we can assume n = 1.

$$f''(x) = g'(x)^T \nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x),$$

Vector composition examples

- Let $h(z) = z_{[1]} + ... + z_{[r]}$, the sum of the r largest components of $z \in \mathbb{R}^k$. Then h is convex and nondecreasing in each argument.
- Suppose $g_1, ..., g_k$ are convex functions on \mathbb{R}^n . Then the composition function $f = h \circ g$, i.e., the pointwise sum of the r largest g_i 's, is convex.
- The function $h(z) = \log(\sum_{i=1}^k e^{z_i})$ is convex and nondecreasing in each argument, so $\log(\sum_{i=1}^k e^{g_i})$ is convex whenever g_i are.
- For $0 , the function <math>h(z) = (\sum_{i=1}^k z_i^p)^{1/p}$ on \mathbb{R}_+^k is concave, and its extension (which has the value $-\infty$ for $z \not\succeq 0$) is nondecreasing in each component. So if g_i are concave and nonnegative, we conclude that $f(x) = (\sum_{i=1}^k g_i(x)^p)^{1/p}$ is concave.

Vector composition examples

- Suppose $p \ge 1$, and $g_1, ..., g_k$ are convex and nonnegative. Then the function $(\sum_{i=1}^k g_i(x)^p)^{1/p}$ is convex.
 - Proof idea: The I_p -norm is convex, and is nondecreasing in each argument if the considered domain is **dom** $||\cdot||_p = \mathbf{R}_+$.
- The geometric mean $h(z) = (\prod_{i=1}^k z_i)^{1/k}$ on \mathbb{R}_+^k is concave and its extension is nondecreasing in each argument. It follows that if $g_1, ..., g_k$ are nonnegative concave functions, then so is their geometric mean,

$$\left(\prod_{i=1}^k g_i\right)^{1/k}.$$

Minimization

Minimization and convexity

If f is convex in (x, y), and C is a convex nonempty set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex in x, provided $g(x) > -\infty$ for some x (which implies $g(x) > -\infty$ for all x), with

$$\mathbf{dom}\ g = \{x \mid (x,y) \in \mathbf{dom}\ f,\ \exists y \in C\}.$$

• Proof: For $x_1, x_2 \in \operatorname{dom} g$. Let $\epsilon > 0$. Then $\exists y_1, y_2 \in C$ such that $f(x_i, y_i) \leq g(x_i) + \epsilon$ for i = 1, 2. For any $\theta, 0 \leq \theta \leq 1$, we have

$$g(\theta x_{1} + (1 - \theta)x_{2}) = \inf_{y \in C} f(\theta x_{1} + (1 - \theta)x_{2}, y)$$

$$\leq f(\theta x_{1} + (1 - \theta)x_{2}, \theta y_{1} + (1 - \theta)y_{2})$$

$$\leq \theta f(x_{1}, y_{1}) + (1 - \theta)f(x_{2}, y_{2})$$

$$\leq \theta g(x_{1}) + (1 - \theta)g(x_{2}) + \epsilon$$

Minimization

Minimization and convexity

If f is convex in (x, y), and C is a convex nonempty set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex in x, provided $g(x) > -\infty$ for some x (which implies $g(x) > -\infty$ for all x), with

$$\operatorname{dom} g = \{x \mid (x, y) \in \operatorname{dom} f, \exists y \in C\}.$$

• Alternative proof (based on epigraph): Since

$$g(x) = \inf_{y \in C} f(x, y),$$

we have

$$epi g = \{(x, t) \mid (x, y, t) \in epi f, \exists y \in C\}.$$

Basic Operations that Preserve Convexity Pointwise maximum and supremum Composition Minimization

Example – Distance to a set

• The distance of a point x to a set $S \subseteq \mathbb{R}^n$, in the norm $||\cdot||$, is defined as

$$\mathsf{dist}\ (x,S) = \inf_{y \in S} ||x - y||.$$

• The function ||x - y|| is convex in (x, y), so if the set S is convex, the distance function **dist** (x, S) is a convex function of x.

Basic Operations that Preserve Convexity Pointwise maximum and supremum Composition Minimization

Example

ullet Suppose h is convex. Then the function g defined as

$$g(x) = \inf \{h(y) \mid Ay = x\}$$

is convex.

• Proof: we define f by

$$f(x,y) = \begin{cases} h(y) & \text{if } Ay = x \\ \infty & \text{otherwise} \end{cases}$$

which is convex in (x, y). Then g is the minimum of f over y, and hence is convex. (It is not hard to show directly that g is convex.)

Conjugate functions

Conjugate functions

Let $f: \mathbb{R}^n \to \mathbb{R}$. The function $f^*: \mathbb{R}^n \to \mathbb{R}$, defined as

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(y^T x - f(x) \right),$$

is called the **conjugate** of the function f. The domain of f^* is

$$\mathbf{dom} \ f^* = \Big\{ y \in \mathbf{R}^n \ \big| \ \exists z \in \mathbf{R} \ \text{s.t.} \ \forall x \in \mathbf{dom} \ f, \ y^T x - f(x) < z \Big\}$$

Example:

$$f: \mathbf{R}^{1} \to \mathbf{R}, f^{*}: \mathbf{R}^{1} \to \mathbf{R}$$

Example - Revenue and Profit Functions

- Let $r = (r_1, ..., r_n)$ denote the vector of resource quantities consumed, S(r) denote the sales revenue derived from the product produced, $p = (p_1, ..., p_n)$ denote the vector of unit prices of resources.
- Then the profit is

$$S(r) - p^T r$$
.

• Given the price vector p, the maximum profit is given by

$$M(p) = \sup_{r} \left(S(r) - p^{T} r \right),$$

or

$$M(p) = (-S)^*(-p).$$

Conjugate functions

Conjugate functions

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(y^T x - f(x) \right)$$

are convex.

- : it is the pointwise supremum of a family of convex (indeed, affine) functions of y.
- This is true whether or not f is convex.
- Note that when f is convex, the subscript $x \in \operatorname{dom} f$ is not necessary since $y^Tx f(x) = -\infty$ for $x \notin \operatorname{dom} f$.

Conjugate Functions – Examples for $f : \mathbf{R} \to \mathbf{R}$

- Affine function f(x) = ax + b. The function, yx ax b is bounded if and only if y = a. Therefore **dom** $f^* = \{a\}$, and $f^*(a) = -b$.
- Negative logarithm. $f(x) = -\log x$, with dom $f = R_{++}$. The function $xy + \log x$ is unbounded above if $y \ge 0$ and reaches its maximum at x = -1/y otherwise. Therefore, dom $f^* = \{y \mid y < 0\} = -R_{++}$ and $f^*(y) = -\log(-y) 1$ for y < 0.
- Exponential. $f(x) = e^x$. $xy e^x$ is unbounded if y < 0. It can be shown that **dom** $f^* = \mathbb{R}_+$ and

$$f^*(y) = \begin{cases} y \log y - y, & y > 0 \\ 0, & y = 0 \end{cases}.$$

Conjugate Functions – Examples for $f : \mathbf{R} \to \mathbf{R}$

- Negative entropy. $f(x) = x \log x$, with dom $f = R_+$ (and f(0) = 0). The function $xy x \log x$ is bounded above on R_+ for all y, hence dom $f^* = R$. It attains its maximum at $x = e^{y-1}$, and substituting we find $f^*(y) = e^{y-1}$.
- Inverse. f(x) = 1/x on \mathbb{R}_{++} . For y > 0, yx 1/x is unbounded above. For y = 0 this function has supremum 0; for y < 0 the supremum is attained at $x = (-y)^{-1/2}$. Therefore we have $f^*(y) = -2(-y)^{1/2}$, with dom $f^* = -\mathbb{R}_+$.

Conjugate Functions – Examples for $f: \mathbb{R}^n \to \mathbb{R}$

• Strictly convex quadratic function. Consider $f(x) = \frac{1}{2}x^TQx$, with $Q \in \mathbf{S}_{++}^n$. The function $y^Tx - \frac{1}{2}x^TQx$ is bounded above as a function of x for all y. It attains its maximum at $x = Q^{-1}y$, so

$$f^*(y) = \frac{1}{2}y^T Q^{-1}y.$$

• Log-sum-exp function. Consider

$$f(x) = \log\left(\sum_{i=1}^{n} e^{x_i}\right).$$

Then, dom $f^* = \{y \mid \mathbf{1}^T y = 1, y \succeq 0\}$ and

$$f^*(y) = \begin{cases} \sum_{i=1}^n y_i \log y_i, & \text{if } y \succeq 0 \text{ and } \mathbf{1}^T y = 1 \\ \infty & \text{otherwise} \end{cases}$$

Conjugate Functions – Examples for $f: \mathbf{S}_{++}^n \to \mathbf{R}$

• Log-determinant. We consider $f(X) = \log \det X^{-1}$ on \mathbf{S}_{++}^n . The conjugate function is defined as

$$f^*(Y) = \sup_{X \succ 0} (\operatorname{tr} (YX) + \log \det X),$$

since $\operatorname{tr}(YX)$ is the standard inner product on S^n . It can be shown that $\operatorname{dom} f^* = -S^n_{++}$ and

$$f^*(Y) = \log \det(-Y)^{-1} - n.$$

Quasiconvex functions

Quasiconvex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **quasiconvex** if its domain and all its sublevel sets

$$S_{\alpha} = \{ x \in \text{dom } f \mid f(x) \leq \alpha \},$$

for $\alpha \in \mathbb{R}$, are convex sets.

Quasiconcave and quasilinear functions

Quasiconcave and quasilinear functions

- A function is quasiconcave if -f is quasiconvex, i.e., every superlevel set $\{x|f(x) \ge \alpha\}$ is convex.
- A function that is both quasiconvex and quasiconcave is called quasilinear.
- If a function f is quasilinear, then its domain, and every level set $\{x \mid f(x) = \alpha\}$ is convex.

Convex functions are quasiconvex functions

- For a function on R, quasiconvexity requires that each sublevel set be an interval (including an infinite interval).
- Convex functions have convex sublevel sets, and so are quasiconvex. But the converse is not true.

Quasiconvex functions – Examples

Some examples on R:

- Logarithm. $\log x$ on R_{++} is quasiconvex (and quasiconcave, hence quasilinear).
- Ceiling function. $ceil(x) = \inf \{z \in Z | z \ge x\}$ is quasiconvex (and quasiconcave).

An example on \mathbb{R}^n :

• The length of $x \in \mathbb{R}^n$, defined as the largest index of a nonzero component, i.e.,

$$f(x) = \begin{cases} \max\{i \mid x_i \neq 0\} & x \neq 0 \\ 0 & x = 0 \end{cases},$$

is quasiconvex.

Quasiconvex functions – Examples

• Consider $f: \mathbb{R}^2 \to \mathbb{R}$, with dom $f = \mathbb{R}^2_+$ and $f(x_1, x_2) = x_1 x_2$. Then, f is neither convex nor concave since

$$\nabla^2 f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

has eigenvalues ± 1 (not definite).

• But f is quasiconcave on \mathbb{R}^2_+ , since the superlevel sets

$$\left\{x \in \mathbf{R}_+^2 \mid x_1 x_2 \ge \alpha\right\}$$

are convex sets for all α .

Quasiconvex functions – Basic Properties

Jensen's inequality for quasiconvex functions

A function f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for any $x,y\in\operatorname{dom} f$ and $0\leq\theta\leq1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}.$$

Quasiconvex functions – Basic Properties

Continuous quasiconvex functions on R

A continuous function $f : \mathbf{R} \to \mathbf{R}$ is quasiconvex if and only if at least one of the following conditions holds:

- f is nondecreasing.
- f is nonincreasing.
- there is a point $c \in \operatorname{dom} f$ such that for $t \le c$ (and $t \in \operatorname{dom} f$), f is nonincreasing, and for $t \ge c$ (and $t \in \operatorname{dom} f$), f is nondecreasing.

Differentiable quasiconvex functions

First-Order Conditions

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f$

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y - x) \le 0.$$

Proof Idea: It suffices to prove the result for a function on R; the general result follows by restriction to an arbitrary line.

Representation via family of convex functions

Representation via family of convex functions

We can always find a family of convex functions $\phi_t : \mathbf{R}^n \to \mathbf{R}$, indexed by $t \in \mathbf{R}$, with

$$f(x) \leq t \iff \phi_t(x) \leq 0,$$

i.e., the *t*-sublevel set of the quasiconvex function f is the 0-sublevel set of the convex function ϕ_t .

- Evidently ϕ_t must satisfy the property that for all $x \in \mathbb{R}^n$, $\phi_t(x) \leq 0 \Rightarrow \phi_s(x) \leq 0$ for $s \geq t$. This is satisfied if for each x, $\phi_t(x)$ is a nonincreasing function of t, i.e., $\phi_s(x) \leq \phi_t(x)$ whenever $s \geq t$.
- One (straightforwards) example:

$$\phi_t(x) = \left\{ \begin{array}{ll} 0 & f(x) \le t \\ \infty & \text{otherwise,} \end{array} \right.$$

Another example: if the sublevel sets of f are closed, we can take

$$\phi_t(x) = \text{dist } (x, \{z | f(z) \leq t\}).$$

We are usually interested in a family ϕ_t with nice properties, such as differentiability.

Log-convex and log-concave functions

Log-convex and log-concave functions

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is logarithmically concave or log-concave if f(x) > 0 for all $x \in \operatorname{dom} f$ and $\log f$ is concave.
- It is said to be logarithmically convex or log-convex if log f is convex.
- f is log-convex if and only if 1/f is log-concave.

Log-concavity

A function $f: \mathbf{R}^n \to \mathbf{R}$, with convex domain and f(x) > 0 for all $x \in \operatorname{dom} f$, is $\operatorname{log-concave}$ if and only if $\forall x, y \in \operatorname{dom} f$ and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$

• The value of a log-concave function at the average of two points is at least the geometric mean of the values at the two points.

Log-convex and log-concave functions – Some Properties

- A log-convex function is convex (since e^h is convex if h is convex).
- A nonnegative concave function is log-concave.
- A log-convex function is quasiconvex; a log-concave function is quasiconcave (since the logarithm is monotone increasing).

Optimization Problems

The notation

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

is used to describe an optimization problem of finding an x that minimizes $f_0(x)$ among all x that satisfy the conditions $f_i(x) \le 0$, i = 1, ..., m and $h_i(x) = 0$, i = 1, ..., p.

- $x \in \mathbb{R}^n$: the optimization variables.
- $f_0: \mathbb{R}^n \to \mathbb{R}$: the objective function.
- $f_i: \mathbb{R}^n \to \mathbb{R}$: the inequality constraint functions.
 - $f_i(x) \le 0$: the inequality constraints.
- $h_i: \mathbb{R}^n \to \mathbb{R}$: the equality constraint functions.
 - $h_i(x) = 0$: the **equality constraints**.

Optimization Problems

Optimization Problems

Consider the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p.$

The set

$$\mathcal{D} = \bigcap_{i=0}^m \mathsf{dom} \ f_i \cap \bigcap_{i=1}^p \mathsf{dom} \ h_i$$

is called the domain of the problem.

- A point $x \in \mathcal{D}$ is **feasible** if $f_i(x) \leq 0$ for all i = 1, ..., m and $h_i(x) = 0$ for all i = 1, ..., p.
- The problem is called feasible if there exists $x \in \mathcal{D}$ that is feasible; the problem is called infeasible if there is no feasible point in \mathcal{D} .
- The set of all feasible points is called the feasible set.
- If there are no constraints (i.e., m = p = 0), then the feasible set equals $\mathcal{D} = \operatorname{dom} f_0$, and the problem is called unconstrained.

Optimization Problems – Optimal Values

Optimal Values

In the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$,

• the **optimal value** p^* is defined as

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p \}.$$

- If the problem is infeasible, we have $p^* = \infty$.
- If there are feasible points x_k with $f_0(x_k) \to -\infty$ as $k \to \infty$, then $p^* = -\infty$, and the problem is said to be **unbounded below**.

Optimization Problems – Optimal Points

Optimal Point

Suppose the optimal value of the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1,...,m$
 $h_i(x) = 0, \quad i = 1,...,p$

is p^* . Then we say x^* is an **optimal point** if

- x* is feasible, and
- $f_0(x^*) = p^*$.
- The set of all optimal points is the optimal set, denoted

$$X_{opt} = \{x \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p, f_0(x) = p^* \}.$$

Optimization Problems - Optimal Points

- If there exists an optimal point for an optimal problem, we say the optimal value is attained or achieved, and the problem is solvable.
- If X_{opt} is empty, we say the optimal value is not attained or not achieved.
 - e.g., this always occurs when the problem is unbounded below.
- A feasible point x with $f_0(x) \le p^* + \epsilon$ (where $\epsilon > 0$) is called ϵ -suboptimal.
 - The set of all ϵ -suboptimal points is called the ϵ -suboptimal set for the optimization problem.

Optimization Problem

 We say a feasible point x is locally optimal if there exists an R > 0 such that

$$f_0(x) = \inf \{ f_0(z) \mid f_i(z) \le 0, i = 1, ..., m, h_i(z) = 0, i = 1, ..., p, ||z - x||_2 \le R \}.$$

- This means x minimizes f₀ over nearby points in the feasible set.
- If x is feasible and $f_i(x) = 0$, we say the *i*th inequality constraint $f_i(x) \le 0$ is active at x.
- If $f_i(x) < 0$, we say the constraint $f_i(x) \le 0$ is inactive.
- We say that a constraint is redundant if deleting it does not change the feasible set.

Optimization Problems – Examples

We consider the following unconstrained problems as examples, with $f_0 : \mathbb{R} \to \mathbb{R}$ and dom $f_0 = \mathbb{R}_{++}$. Recall that

$$p^* = \inf \{ f_0(x) \mid x \text{ is feasible} \}.$$

- $f_0(x) = 1/x$: $p^* = 0$, but the optimal value is not achieved.
- $f_0(x) = -\log x : p^* = -\infty$, so this problem is unbounded below.
- $f_0(x) = x \log x$: $p^* = -1/e$, achieved at the (unique) optimal point $x^* = 1/e$.

Feasibility problems

- If the objective function is identically zero, the optimal value is either
 - 0, if the feasible set is nonempty, or
 - $\bullet \infty$, if the feasible set is empty.
- We call this the feasibility problem, and will sometimes write it as

find
$$x$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$.

 The feasibility problem is thus to determine whether the constraints are consistent, and if so, find a point that satisfies them.

Expressing Problems in Standard Forms

An optimization problem in the form of

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$,

is called in the **standard form**, i.e., the righthand side of the inequality and equality constraints are zeros.

- An equality constraint in a non-standard form $g_i(x) = \tilde{g}_i(x)$ can be reformulated as $h_i(x) = 0$ where $h_i(x) = g_i(x) \tilde{g}_i(x)$.
- An inequality constraint of the form $f_i(x) \ge 0$ can be rewritten as $-f_i(x) \le 0$.

Expressing Problems in Standard Forms – Examples

The optimization problem

minimize
$$f_0(x)$$

subject to $I_i \le x_i \le u_i, i = 1,...,n$

can be expressed in standard form as

minimize
$$f_0(x)$$

subject to $l_i - x_i \le 0$ $i = 1, ..., n$
 $x_i - u_i \le 0$ $i = 1, ..., n$

There are 2n inequality constraint functions:

$$f_i(x) = I_i - x_i$$
 $i = 1, ..., n$

and

$$i(x) - x_i = u_i$$
 $i - n \pm 1$ $2n$

Expressing Problems in Standard Forms – Examples

The maximization problem

maximize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

can be solved by minimizing the function $-f_0(x)$ subject to the same constraints.

Equivalent Problems

We call two problems **equivalent** (informally) if from a solution of one, a solution of the other is readily found, and vice versa.

Example

minimize
$$ilde{f}(x)=lpha_0f_0(x)$$
 subject to $ilde{f}_i(x)=lpha_if_i(x)\leq 0,\quad i=1,...,m$ $ilde{h}_i(x)=eta_ih_i(x)=0,\quad i=1,...,p,$ (where $lpha_i>0,i=0,...,m,\ eta_i
eq 0,i=1,...,p)$ and minimize $ilde{f}_0(x)$

subject to $f_i(x) \leq 0$, i = 1, ..., m

 $h_i(x)=0, \quad i=1,...,p$

are equivalent problems.

Change of Variables

- Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, with image covering the problem domain \mathcal{D} , i.e., $\mathcal{D} \subseteq \phi(\operatorname{dom} \phi)$.
- Now consider the problem

minimize
$$ilde{f_0}(z)$$
 subject to $ilde{f_i}(z) \leq 0, i=1,...,m$ $ilde{h_i}(z)=0, i=1,...,p,$

with variable z, where we define functions \tilde{f}_i and \tilde{h}_i as $\tilde{f}_i(z) = f_i(\phi(z)), i = 0, ..., m, \tilde{h}_i(z) = h_i(\phi(z)), i = 1, ..., p$.

• Then, we say that the problem and the standard form problem are equivalent and related by the change of variable or substitution of variable $x = \phi(z)$.

Transformation of objective and constraint functions

- Suppose that
 - $\phi_0 : \mathbf{R} \to \mathbf{R}$ is monotone increasing,
 - $\phi_1,...,\phi_m: \mathbf{R} \to \mathbf{R}$ satisfy $\phi_i(u) \leq 0$ if and only if $u \leq 0$, and
 - $\phi_{m+1},...,\phi_{m+p}: \mathbf{R} \to \mathbf{R}$ satisfy $\phi_i(u) = 0$ if and only if u = 0.
- We define functions \tilde{f}_i and \tilde{h}_i as the compositions
 - $\tilde{f}_i(x) = \phi_i(f_i(x)), i = 0, ..., m,$
 - $\tilde{h}_i(x) = \phi_{m+i}(h_i(x)), i = 1, ..., p.$
- Then, the associated problem

minimize
$$ilde{f_0}(x)$$

subject to $ilde{f_i}(x) \leq 0, i = 1, ..., m$
 $ilde{h_i}(x) = 0, i = 1, ..., p$

and the standard form problem are equivalent.

Slack variables

- Observation: $f_i(x) \le 0$ if and only if there is an $s_i \ge 0$ that satisfies $f_i(x) + s_i = 0$.
- Based on the observation we obtain the transformed problem

minimize
$$f_0(x)$$

subject to $s_i \geq 0, i = 1,...,m$
 $f_i(x) + s_i = 0, i = 1,...,m$
 $h_i(x) = 0, i = 1,...,p,$

where the variables are $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$.

- This problem has n + m variables, m inequality constraints (the nonnegativity constraints on s_i), and m + p equality constraints.
- The new variable s_i is called the slack variable associated with the original inequality constraint $f_i(x) \le 0$.

Eliminating equality constraints

- Suppose the function $\phi: \mathbf{R}^k \to \mathbf{R}^n$ is such that x satisfies $h_i(x) = 0, i = 1, ..., p$ if and only if there is some $z \in \mathbf{R}^k$ such that $x = \phi(z)$.
- Then, the optimization problem

minimize
$$ilde{f_0}(z) = f_0(\phi(z))$$

subject to $ilde{f_i}(z) = f_i(\phi(z)) \leq 0, i = 1,...,m$

is then equivalent to the original standard form problem.

- This transformed problem has variable $z \in \mathbb{R}^k$, m inequality constraints, and no equality constraints.
- If z is optimal for the transformed problem, then $x = \phi(z)$ is optimal for the original problem.
- Conversely, if x is optimal for the original problem, then any z that satisfies $x = \phi(z)$ is optimal for the transformed problem.

Eliminating linear equality constraints

Consider the standard form problem with linear equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b.$

- Suppose Ax = b is consistent. Then the solution set of Ax = b can be parametrized as $\{Fz + x_0 \mid z \in \mathbf{R}^k\}$ where $F \in \mathbf{R}^{n \times k}$ is chosen to be any full rank matrix with $\mathcal{R}(F) = \mathcal{N}(A)$ (i.e., k = n rank A), and x_0 is any particular solution of Ax = b.
- Then we can eliminate these linear constraints and create an equivalent problem, as in

minimize
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, i = 1, ..., m$

where we introduced new variables $z \in \mathbf{R}^k$.

Introducing equality constraints (1/2)

- We can also introduce equality constraints and new variables into a problem.
- As a typical example, consider the problem

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \leq 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p,$

where $x \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{k_i \times n}$, and $f_i : \mathbb{R}^{k_i} \to \mathbb{R}$. In this problem the objective and constraint functions are given as compositions of the functions f_i with affine transformations defined by $A_i x + b_i$.

Introducing equality constraints (2/2)

• We introduce new variables $y_i \in \mathbb{R}^{k_i}$, as well as new equality constraints $y_i = A_i x + b_i$, for i = 0, ..., m, and form the equivalent problem

minimize
$$f_0(y_0)$$

subject to $f_i(y_i) \le 0, i = 1, ..., m$
 $y_i = A_i x + b_i, i = 0, ..., m$
 $h_i(x) = 0, i = 1, ..., p.$

- This problem has $k_0 + ... + k_m$ new variables, $y_0 \in \mathbb{R}^{k_0}, ..., y_m \in \mathbb{R}^{k_m}$, and $k_0 + ... + k_m$ new equality constraints, $y_0 = A_0x + b_0, ..., y_m = A_mx + b_m$.
- The objective and inequality constraints in this problem are independent, i.e., involve different optimization variables.

Optimizing over some variables (1/2)

Note that we always have

$$\inf_{x,y} \{f(x,y)\} = \inf_{x} \tilde{f}(x)$$

where
$$\tilde{f}(x) = \inf_{y} f(x, y)$$
.

• Therefore, we can always minimize a function by first minimizing over some of the variables, and then minimizing over the remaining ones.

Optimizing over some variables (2/2)

• Suppose the variable $x \in \mathbb{R}^n$ is partitioned as $x = (x_1, x_2)$, with $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$, and $n_1 + n_2 = n$. Consider the problem

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0, i = 1, ..., m_1$
 $\tilde{f_i}(x_2) \leq 0, i = 1, ..., m_2,$

in which the constraints are independent, in the sense that each constraint function depends on x_1 or x_2 .

ullet We first minimize over x_2 . Define the function $ilde{f_0}$ of x_1 by

$$\tilde{f}_0(x_1) = \inf \left\{ f_0(x_1, z) \mid \tilde{f}_i(z) \le 0, i = 1, ..., m_2 \right\}.$$

Then the problem is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, i = 1, ..., m_1$.

Epigraph problem form (1/2)

The epigraph form of the standard problem is the problem

minimize
$$t$$

subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$,

with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$.

• It is equivalent to the original problem: (x, t) is optimal for the epigraph form problem if and only if x is optimal for the original problem and $t = f_0(x)$.

Epigraph problem form (2/2)

- Note that the objective function of the epigraph form problem is a linear function of the variables x, t.
- The epigraph form problem can be interpreted geometrically as an optimization problem in the 'graph space' (x, t):

