Part One: Metric Spaces

Chapter 1: Calculus Review

- **1.1** If A is a nonempty subset of \mathbb{R} that is bounded below, show that A has a greatest lower bound.
- 1.3 Establish the following apparently different (but "fancier") characterization of the supremum. Let A be a nonempty subset of \mathbb{R} that is bounded above. Prove that $s = \sup A$ if and only if (i) s is an upper bound for A, and (ii) for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s \varepsilon$. State and prove the corresponding result for the infimum of a nonempty subset of \mathbb{R} that is bounded below.
- **1.4** Let A be a nonempty subset of \mathbb{R} that is bounded above. Show that there is a sequence (x_n) of elements of A that converges to $\sup A$.
- **1.6** Prove that every convergent sequence of real numbers is bounded. Moreover, if (a_n) is convergent, show that $\inf_n a_n \leq \lim_{n \to \infty} a_n \leq \sup_n a_n$.
- **1.13** Let $a_n \geq 0$ for all n, and let $s_n = \sum_{i=1}^n a_i$. Show that (s_n) converges if and only if (s_n) is bounded.
- 1.14 Prove that a convergent sequence is Cauchy, and that any Cauchy sequence is bounded.
- 1.15 Show that a Cauchy sequence with a convergent subsequence actually converges.
- **1.17** Given real numbers a and b, establish the following formulas: $|a+b| \le |a| + |b|, ||a| |b|| \le |a-b|, \max\{a,b\} = \frac{1}{2}(a+b+|a-b|), \text{ and } \min\{a,b\} = \frac{1}{2}(a+b-|a-b|).$
- **1.21** Let $p \ge 2$ be a fixed integer, and let 0 < x < 1. If x has a finite-length base p decimal expansion, that is, if $x = a_1/p + \cdots + a_n/p^n$ with $a_n \ne 0$, prove that x has precisely two base p decimal expansions. Otherwise, show that the base p decimal expansion for x is unique. Characterize the numbers 0 < x < 1 that have repeating base p decimal expansions. How about eventually repeating?
- **1.24** Show that $\limsup_{n\to\infty} (-a_n) = -\liminf_{n\to\infty} a_n$.
- **1.25** If $\limsup_{n\to\infty} a_n = -\infty$, show that (a_n) diverges to $-\infty$. If $\limsup_{n\to\infty} = +\infty$, show that (a_n) has a *subsequence* that diverges to $+\infty$. What happens if $\liminf_{n\to\infty} a_n = \pm\infty$.
- **1.26** Prove the characterization of $\limsup \sup$ given above. That is, given a bounded sequence (a_n) , show that the number $M = \limsup_{n \to \infty} a_n$ satisfies (*) and, conversely, that any number M satisfying (*) must equal $\limsup_{n \to \infty} a_n$. State and prove the corresponding result for $m = \liminf_{n \to \infty} a_n$.
- **1.27** Prove that every sequence of real numbers (a_n) has a subsequence (a_{n_k}) that converges to $\limsup_{n\to\infty}$.

- **1.33** Show that (x_n) converges to $x \in \mathbb{R}$ if and only if every subsequence (x_{n_k}) has a further subsequence $(x_{n_{k_l}})$ that converges to x.
- **1.37** If (E_n) is a sequence of subsets of a fixed set S, we define

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right) \quad \text{and} \quad \liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right).$$

Show that

$$\liminf_{n\to\infty} E_n \subset \limsup_{n\to\infty} E_n \text{ and that } \quad \liminf_{n\to\infty} \left(E_n^c\right) = \left(\limsup_{n\to\infty} E_n\right)^c$$

- **1.45** Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that f(x)=0 whenever x is rational. Show that f(x)=0 for every x in [a,b].
- **1.46** Let $f: \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) If f(0) > 0, show that f(x) > 0 for all x in some open interval (-a, a).
 - (b) If $f(x) \ge 0$ for every rational x, show that $f(x) \ge 0$ for all real x. Will this result hold with "< 0" replaced by "> 0"? Explain.

Chapter 2: Countable and Uncountable Sets

- **2.4** Show that any infinite set has a countably infinite subset.
- **2.6** If A is infinite and B is countable, show that A and $A \cup B$ are equivalent. [Hint: No containment relation between A and B is assumed here.
- **2.13** Show that N contains infinitely many pairwise disjoint infinite subsets.
- **2.15** Show that any collection of pairwise disjoint, nonempty open intervals in \mathbb{R} is at most countable. [Hint: Each one contains a rational!]
- **2.21** Show that any ternary decimal of the form $0.a_1a_2\cdots a_n11$ (base 3), i.e., any finite-length decimal ending in two (or more) 1s, is *not* an element of Δ .
- **2.22** Show that Δ contains no (nonempty) open intervals. In particular, show that if $x, y \in \Delta$ with x < y, then there is some $z \in [0, 1] \setminus \Delta$ with x < z < y. (It follows from this that Δ is nowhere dense, which is another way of saying that Δ is "small").
- **2.23** The endpoints of Δ are those points in Δ having a finite-length base 3 decimal expansion (not necessarily in the proper form), that is, all the points in Δ of the form $a/3^n$ for some integers n and $0 \le a \le 3^n$. Show that the endpoints of Δ other than 0 and 1 can be written as $0.a_1a_2\cdots a_{n+1}$ (base 3), where each a_k is 0 or 2, except a_{n+1} , which is either 1 or 2. That is, the discarded "middle third" intervals are of the form $(0.a_1a_2\cdots a_n1, 0.a_1a_2\cdots a_n2)$, where both entries are points of Δ written in base 3.

- **2.26** Let $f: \Delta \to [0,1]$ be the Cantor function (defined above) and let $x, y \in \Delta$ with x < y. Show that $f(x) \le f(y)$. If f(x) = f(y), show that x has two distinct binary decimal expansions. Finally, show that f(x) = f(y) if and only if x and y are "consecutive" endpoints of the form $x = 0.a_1a_2 \cdots a_n1$ and $y = 0.a_1a_2 \cdots a_n2$ (base 3).
- **2.29** Prove that the extended cantor function $f:[0,1] \to [0,1]$ (as defined above) is increasing. [Hint: Consider cases.]

Chapter 3: Metrics and Norms

- **3.2** If d is a metric on M, show that $|d(x,z)-d(z,y)| \leq d(x,y)$ for any $x,y,z \in M$.
- **3.5** There are other, albeit less natural, choices for a metric on \mathbb{R} . For instance, check that $\rho(a,b) = \sqrt{|a-b|}$, $\sigma(a,b) = |a-b|/(1+|a-b|)$, and $\tau(a,b) = \min\{|a-b|,1\}$ each define metrics on \mathbb{R} . [Hint: To show that σ is a metric, you might first show that the function F(t) = t/(1+t) is increasing and satisfies $F(s+t) \leq F(s) + F(t)$ for $s,t \geq 0$. A similar approach will also work for ρ and τ .]
- **3.6** If d is any metric on M, show that $\rho(a,b) = \sqrt{d(x,y)}$, $\sigma(a,b) = d(x,y)/(1+d(x,y))$, and $\tau(a,b) = \min\{d(x,y),1\}$ are also metrics on M. [Hint: $\sigma(x,y) = F(d(x,y))$, where F is as in Exercise 5.]
- **3.14** We say that a subset A of a metric space M is **bounded** if there is some $x_0 \in M$ and some constant $C < \infty$ such that $d(a, x_0) \leq C$ for all $a \in A$. Show that a finite union of bounded sets is again bounded.
- **3.15** We define the **diameter** of a nonempty subset A of M by $diam(A) = \sup\{d(a,b) : a,b \in A\}$. Show that A is bounded if and only if diam(A) is finite.
- **3.18** Show that $||x||_{\infty} \leq ||x||_{2} \leq ||x||_{1}$ for any $x \in \mathbb{R}^{n}$. Also check that $||x||_{1} \leq n||x||_{\infty}$ and $||x||_{1} \leq \sqrt{n}||x||_{2}$.
- **3.29** Prove that A is bounded if and only if $diam(A) < \infty$.
- **3.30** If $A \subset B$, show that $diam(A) \leq diam(B)$.
- **3.32** In a normed vector space $(V, \|\cdot\|)$ show that $B_r(x) = x + B_r(0) = \{x + y : \|y\| < r\}$ and that $B_r(0) = rB_1(0) = \{rx : \|x\| < 1\}$.
- **3.34** If $x_n \to x$ in (M, d), show that $d(x_n, y) \to d(x, y)$ for any $y \in M$. More generally, if $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$.
- **3.36** A convergent sequence is Cauchy, and a Cauchy sequence is bounded (that is, the set $\{x_n : n \ge 1\}$ is bounded).
- **3.37** A Cauchy sequence with a convergent subsequence converges.
- **3.39** If every subsequence of (x_n) has a further subsequence that converges to x, then (x_n) converges to x.

- **3.42** Two metrics d and ρ on a set M are said to be **equivalent** if they generate the same convergent sequences; that is, $d(x_n, x) \to 0$ if and only if $\rho(x_n, x) \to 0$. If d is any metric on M, show that the metrics ρ, σ , and τ , defined in Exercise 6, are all equivalent to d.
- **3.43** Show that the usual metric on \mathbb{N} is equivalent to the discrete metric. Show that any metric on a *finite* set is equivalent to the discrete metric.
- **3.44** Show that the metrics induced by $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_\infty$ are all equivalent. [Hint: See Exercise 18.]
- **3.46** Given two metric spaces (M, d) and (N, ρ) , we can define a metric on the product $M \times N$ in a variety of ways. Our only requirement is that a sequence of pairs (a_n, x_n) in $M \times N$ should converge precisely when both coordinate sequences (a_n) and (x_n) (in (M, d) and (N, ρ) respectively). Show that each of the following define metrics on $M \times N$ that enjoy this property and hat all three are equivalent:

$$d_1((a, x), (b, y)) = d(a, b) + \rho(x, y),$$

$$d_2((a, x), (b, y)) = \left(d(a, b)^2 + \rho(x, y)^2\right)^{1/2},$$

$$d_\infty((a, x), (b, y)) = \max\{d(a, b), \rho(x, y)\}.$$

Chapter 4: Open Sets and Closed Sets

- **4.3** Some authors say that two metrics d and ρ on a set M are equivalent if they generate the same open sets. Prove this. (Recall that we have defined equivalence to mean that d and ρ generate the same convergent sequences. See Exercise 3.42.)
- **4.5** Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Show that $\{x: f(x) > 0\}$ is an open subset of \mathbb{R} and that $\{x: f(x) = 0\}$ is a closed subset of \mathbb{R} .
- **4.8** Show that every open interval (and hence every open set) in \mathbb{R} is a countable intersection of open intervals.
- **4.11** Let $e^{(k)} = (0, \dots, 0, 1, 0, \dots)$, where the kth entry is 1 and the rest are 0s. Show that $\{e^{(k)} : k \ge 1\}$ is closed as a subset of l_1 .
- **4.17** Show that A is open if and only if $A^{\circ} = A$ and that A is closed if and only if $\overline{A} = A$.
- **4.18** Given a nonempty bounded subset E of \mathbb{R} , show hat $\sup E$ and $\inf E$ are elements of \overline{E} . Thus $\sup E$ and $\inf E$ are elements of E whenever E is *closed*.
- **4.19** Show that $diam(A) = diam(\overline{A})$
- **4.33** Let A be a subset of M. A point $x \in M$ is called a **limit point** of A if every neighborhood of x contains a point of A that is different from x itself, that is, if $(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$ for every $\varepsilon > 0$. If x is a limit point of A, show that every neighborhood of x contains infinitely many points of A.

- **4.34** Show that x is a limit point of A if and only if there is a sequence (x_n) in A such that $x_n \to x$ and $x_n \neq x$ for all n.
- **4.46** A set A is said to be **dense** in M (or, as some authors say, everywhere dense) if $\overline{A} = M$. For example, both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} . Show that A is dense in M if and only if any of the following hold:
 - (a) Every point in M is the limit of a sequence from A.
 - **(b)** $B_{\varepsilon}(x) \cap A \neq \emptyset$ for every $x \in M$ and every $\varepsilon > 0$.
 - (c) $U \cap A \neq \emptyset$ for every nonempty open set U.
 - (d) A^c has an empty interior.
- **4.48** A metric space is called **separable** if it contains a countable dense subset. Find examples of countable dense sets in \mathbb{R} , in \mathbb{R}^2 , and in \mathbb{R}^n .
- **4.61** Complete the proof of Proposition 4.13.
- **4.62** Suppose that A is open in (M, d) and that $G \subset A$. Show that G is open in A if and only if G is open in M. Is the result still true if "open" is replaced everywhere by "closed"? Explain.

Chapter 5: Continuity

- **5.1** Given a function $f: S \to T$ and sets $A, B \subset S$ and $C, D \subset T$, establish the following:
 - (i) $A \subset f^{-1}(f(A))$, with equality for all A if and only if f is one-to-one.
 - (ii) $f(f^{-1}(C)) \subset C$, with equality for all C if and only if f is onto.
 - (iii) $f(A \cup B) = f(A) \cup f(B)$.
 - (iv) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (v) $f(A \cap B) \subset f(A) \cap f(B)$, with equality for all A and B if and only if f is one-to-one.
 - (vi) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
 - (vii) $f(A) \setminus f(B) \subset f(A \setminus B)$.
 - (viii) $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$.
- **5.2** Given a subset A of some "universal" set S, we define $\chi_A : S \to \mathbb{R}$, the **characteristic function** of A, by $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ if $x \notin A$. Prove or disprove the following formulas: $\chi_{A \cup B} = \chi_A + \chi_B$, $\chi_{A \cap B} = \chi_A \cdot \chi_B$, $\chi_{A \setminus B} = \chi_A \chi_B$. What corrections are necessary?
- **5.8** Let $f: \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) If f(0) > 0, show that f(x) > 0 for all x in some interval (-a, a).
 - (b) If $f(x) \ge 0$ for every rational x, show that $f(x) \ge 0$ for all real x. Will this result hold with " ≥ 0 " replaced by "> 0"? Explain.

- **5.9** Let $A \subset M$. Show that $f: (A, d) \to (N, \rho)$ is continuous at $a \in A$ if and only if, given $\varepsilon > 0$, there is a $\delta > 0$ such that $\rho(f(x), f(a)) < \varepsilon$ whenever $d(x, a) < \delta$ and $x \in A$. We paraphrase this statement by saying "f has a point of continuity relative to A."
- **5.17** Let $f, g: (M, d) \to (N, \rho)$ be continuous, and let D be a dense subset of M. If f(x) = g(x) for all $x \in D$, show that f(x) = g(x) for all $x \in M$. If f is onto, show that f(D) is dense in N.
- **5.19** A function $f: \mathbb{R} \to \mathbb{R}$ is said to satisfy a **Lipschitz condition** if there is a constant $K < \infty$ such that $|f(x) f(y)| \le K|x y|$ for all $x, y \in \mathbb{R}$. More economically, we may say that f is Lipschitz (or Lipschitz with constant K if a particular constant seems to matter). Show that $\sin x$ is Lipschitz with constant K = 1. Prove that a Lipschitz function is (uniformly) continuous.
- **5.20** If d is a metric on M, show that $|d(x,z) d(y,z)| \le d(x,y)$ and conclude that the function f(x) = d(x,z) is continuous on M for any fixed $x \in M$. This says that d(x,y) is separately continuous continuous in each variable separately.
- **5.25** A function $f:(M,d) \to (N,\rho)$ is called **Lipschitz** if there is a constant $K < \infty$ such that $\rho(f(x), f(y)) \le Kd(x,y)$ for all $x, y \in M$. Prove that a Lipschitz mapping is continuous.
- **5.30** Let $f:(M,d)\to (N,\rho)$. Prove that f is continuous if and only if $f(\overline{A})\subset \overline{f(A)}$ for every $A\subset M$ if and only if $f^{-1}(B^{\circ})\subset (f^{-1}(B))^{\circ}$ for every $B\subset N$. Give an example of a continuous f such that $f(\overline{A})\neq \overline{f(A)}$ for some $A\subset M$.
- **5.34** Show that d is continuous on $M \times M$, where $M \times M$ is supplied with "the" product metric (see Exercise 3.46). This says that d is *jointly* continuous, that is, continuous as a function of two variables. [Hint: If $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$.]
- **5.36** Suppose that we are given a point x and a sequence (x_n) in a metric space M, and suppose that $f(x_n) \to f(x)$ for every continuous, real-valued function f on M. Does it follow that $x_n \to x$ in M? Explain.
- **5.46** Show that every metric space is homeomorphic to one of finite diameter. [Hint: Every metric is equivalent to a bounded metric.]
- **5.48** Prove that \mathbb{R} is homeomorphic to (0,1) and that (0,1) is homeomorphic to $(0,\infty)$. Is \mathbb{R} isometric to (0,1)? to $(0,\infty)$? Explain.
- **5.52** Prove Theorem 5.5.
- **5.53** Suppose that we are given a point x and a sequence (x_n) in a metric space M, and suppose that $f(x_n) \to f(x)$ for every continuous real-valued function f on M. Prove that $x_n \to x$ in M.

- **5.54** Let $f:(M,d)\to (N,\rho)$ be one-to-one and onto. Prove that the following are equivalent: (i) f is homeomorphism and (ii) $g:N\to\mathbb{R}$ is continuous if and only if $g\circ f:M\to\mathbb{R}$ is continuous. [Hint: Use the characterization given in Theorem 5.5(ii).]
- **5.56** Let $f:(M,d)\to (N,\rho)$.
 - (i) We say that f is an **open** map if f(U) is open in N whenever U is open in M; that is, f maps open sets to open sets. Give examples of a continuous map that is not open and an open map that is not continuous. [Hint: Please note that the definition depends on the target space N.]
 - (ii) Similarly, f is called **closed** if it maps closed sets to closed sets. Give examples of a continuous map that is not closed and a closed map that is not continuous.
- **5.57** Let $f:(M,d) \to (N,\rho)$ be one-to-one and onto. Show that the following are equivalent: (i) f is open; (ii) f is closed; and (iii) f^{-1} is continuous. Consequently, f is a homeomorphism if and only if both f and f^{-1} are open (closed).

Chapter 6: Connectedness

- **6.5** If E and F are connected subsets of M with $E \cap F \neq \emptyset$, show that $E \cup F$ is connected.
- **6.6** More generally, if \mathcal{C} is a collection of connected subsets of M, all having a point in common, prove that $\bigcup \mathcal{C}$ is connected. Use this to give another proof that \mathbb{R} is connected.
- **6.7** If every pair of points in M is contained in some connected set, show that M is itself connected.
- **6.9** If $A \subset B \subset \overline{A} \subset M$, and if A is connected, show that B is connected. In particular, \overline{A} is connected.
- **6.13** If $f:[a,b] \to [a,b]$ is continuous, show that f has a fixed point: that is, show that there is some point x in [a,b] with f(x)=x.

Chapter 7: Completeness

- **7.1** If $A \subset B \subset M$, and if B is totally bounded, show that A is totally bounded.
- **7.2** Show that a subset A of \mathbb{R} is totally bounded if and only if it is bounded. In particular, if I is a closed, bounded interval in \mathbb{R} and $\varepsilon > 0$, show that I can be covered by finitely many closed subintervals J_1, \dots, J_n , each of length at most ε .
- **7.5** Prove that A is totally bounded if and only if \overline{A} is totally bounded.
- **7.9** Give an example of a closed bounded subset of l_{∞} that is not totally bounded.
- **7.10** Prove that a totally bounded metric space M is separable. [Hint: for each n, let D_n be a finite (1/n)-net for M. Show that $D = \bigcup_{n=1}^{\infty} D_n$ is a countable dense set.]

- **7.12** Let A be a subset of an arbitrary metric space (M, d). If (A, d) is complete, show that A is closed in M.
- **7.16** Prove that \mathbb{R}^n is complete under any of the norms $\|\cdot\|_1, \|\cdot\|_2$, or $\|\cdot\|_{\infty}$. [This is interesting because completeness is not usually preserved by the mere equivalence of *metrics*. Here we use the fact that all of the metrics involved are generated by *norms*. Specifically, we need the norms in question to be equivalent as functions: $\|\cdot\|_{\infty} \leq \|\cdot\|_2 \leq \|\cdot\|_1 \leq n\|\cdot\|_{\infty}$. As we will see later, *any* two norms on \mathbb{R}^n are comparable in this way.]
- **7.18** Fill in the details of the proofs that l_1 and l_{∞} are complete.
- **7.26** Just as with the nested interval theorem, it is essential that the sets F_n used in the nested set theorem be closed and bounded. Why? Is the condition $\operatorname{diam}(F_n) \to 0$ really necessary? Explain.
- **7.27** Note that the version of the Bolzano-Weierstrass theorem given in Theorem 7.11 replaced boundedness with total boundedness. Is this really necessary? Explain.

Chapter 8: Compactness

- **8.1** If K is a nonempty compact subset of \mathbb{R} , show that $\sup K$ and $\inf K$ are elements of K.
- **8.2** Let $E = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$, considered as a subset of \mathbb{Q} (with its usual metric). Show hat E is closed and bounded but *not* compact.
- **8.17** If M is compact, show that M is also separable.
- **8.20** Let E be a noncompact subset of \mathbb{R} . Find a continuous function $f: E \to \mathbb{R}$ that is (i) not bounded; (ii) bounded but has no maximum value.
- **8.23** Suppose that M is compact and that $f: M \to N$ is continuous, one-to-one, and onto. Prove that f is a homeomorphism.
- **8.30** Prove Lemma 8.8.
- **8.44** Show that any Lipschitz map $f:(M,d)\to (N,\rho)$ is uniformly continuous. In particular, any isometry is uniformly continuous.
- **8.48** Prove that a uniformly continuous map sends Cauchy sequences into Cauchy sequences.
- **8.54** Let E be a bounded, noncompact subset of \mathbb{R} . Show that there is a continuous function $f: E \to \mathbb{R}$ that is not uniformly continuous.
- **8.55** Give an example of a bounded continuous map $f : \mathbb{R} \to \mathbb{R}$ that is not uniformly continuous. Can an unbounded continuous function $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous? Explain.

- **8.57** A function $f: \mathbb{R} \to \mathbb{R}$ is said to satisfy a Lipschitz condition of order α , where $\alpha > 0$, if there is a constant $K < \infty$ such that $|f(x) f(y)| \le K|x y|^{\alpha}$ for all x, y. Prove that such a function is uniformly continuous.
- **8.58** Show that any function $f: \mathbb{R} \to \mathbb{R}$ having a bounded derivative is Lipschitz of order 1. [Hint: Use the mean value theorem.]