Logic Gates

Logic Design

Logic Gates

- Perform logic functions:
 - -inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - -AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

A	Y
0	0
1	1

Two-Input Logic Gates

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

XNOR

$$Y = \overline{A + B}$$

	Α	В	Y
•	0	0	
	0	1	
	1	0	
	1	1	

Multiple-Input Logic Gates

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- **Example:** a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

The Static Discipline

- With logically valid inputs, every circuit element must produce logically valid outputs
- Use limited ranges of voltages to represent discrete values
 - —The driver produces a **LOW** (0) output in the range of 0 to V_{OL}
 - —The driver produces a **HIGH** (1) output in the range of V_{OH} to V_{DD} .
 - —If the receiver gets an input in the range of 0 to $V_{\rm IL}$, it will consider the input to be **LOW** (0).
 - If the receiver gets an input in the range of V_{IH} to V_{DD} , it will consider the input to be **HIGH** (1).

The Static Discipline

The **noise margin** is the amount of noise that could be added to a worst-case output such that the signal can still be interpreted as a valid input.

High Noise Margin: $NM_H = V_{OH} - V_{IH}$

Low Noise Margin: $NM_L = V_{IL} - V_{OL}$

DC Transfer Characteristics

V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - -Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V...
 - Be careful connecting chips with different supply voltages

7408 Quad 2 Input AND

Logic Family Examples

Logic Family	V _{DD}	V _{IL}	V _{IH}	V _{OL}	V _{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - If arsenic (As) is added an extra electron
 - If boron (B) is added missing an electron (a hole)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be metal) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Transistors: pMOS

pMOS transistor is opposite

- -ON when Gate = 0
- -**OFF** when **Gate = 1**

Transistor Function

nMOS

pMOS

$$g = 0$$

$$g = 1$$

Transistor Function

- nMOS: pass good 0's, so connect source to GND
- pMOS: pass good 1's, so connect source to V_{DD}

CMOS Gates: NOT Gate

$$Y = \overline{A}$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

NOR3 Gate

How do you build a three-input NOR gate? (NOR3)

AND2 Gate

How do you build a two-input AND gate?

Gordon Moore, 1929-

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: number of transistors on a computer chip doubles every year (observed in 1965)
- Since 1975, transistor counts have doubled every two years.

Moore's Law

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ." (Robert Cringely, Infoworld)

Robert Cringley

Power Consumption

Power = Energy consumed per unit time

- Dynamic power consumption
- Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - -Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption: $P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD} (also called the leakage current)
- Static power consumption: $P_{static} = I_{DD}V_{DD}$

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

```
-V_{DD} = 1.2 \text{ V}
-C = 20 \text{ nF}
-f = 1 \text{ GHz}
-I_{DD} = 20 \text{ mA}
P = \frac{1}{2}CV_{DD}^{2}f + I_{DD}V_{DD}
= \frac{1}{2}(20 \text{ nF})(1.2 \text{ V})^{2}(1 \text{ GHz}) + (20 \text{ mA})(1.2 \text{ V})
= (14.4 + 0.024) \text{ W} \approx 14.4 \text{ W}
```