

Busan science high school 2023 Ocean ICT Festival 2023 **BOIF**

QR 코드 영역 QR 삽입 후 테두리 삭제

Youtube 영상 QR

흡착제의 성질을 활용한 가장 효율적인 방류시간과 장소 제시

(1) 탐구동기

아지인 2502 김아진 2503 김지인

최근 해양오염의 심각성이 높아지고 있다. 해양오염을 일으키는 물질에는 미세플라스틱, 중금 속 등 여러 종류가 있고, 이를 흡착하여 제거하는 것에 관한 연구가 활발히 진행중이다. 연구가 진행되었을 때에 온도, 염분에 따른 효율을 알려주는 프로그램을 제작하고자 하였다.

(2) 이론적배경

-중금속

중금속이란, 주기율표 상의 아래쪽에 주로 위치하고 있으며 비중이 4 이상인 무거운 원소를 말한다. 이는 하천, 대기 등 여러 방법을 통해 지속적으로 해양으로 유입되었다. 하지만 최근 해양쓰레기의 양이 많아지면서 퇴적물 내에 포함된 여러 중금속이 다시 녹아 나오는 용출 현상이 발생하며 해양 속 중금속의 양이 늘어나고 있다. 중금속은 체내에 흡수, 축적되게 되면 중금속 중독을 일으키며 폐암과 같은 여러가지 질병의 원인이 될 수 있다.

(3) 알고리즘 및 작동 원리

(4) 파이썬 코드 및 출력 화면

[가상의 흡착제 성질, 회귀분석 코드(요약)]

[수온 회귀분석 코드(요약)]

train의 결정계수:0.993992 test의 결정계수:0.990744

[염분 회귀분석 코드(요약)]

	Α	В	С	D	Е	F	G	H	
1	salinity	temperatu	altitude						
2	30	-20	34.5						
3	30	-19	46.3						
4	30	-18	66.3						
5	30	-17	69.5						
6	30	-16	68.5						
7	30	-15	35.4						
8	30	-14	33.4						
9	30	-13	27.5						
10	30	-12	56.4						
11	30	-11	34.5						
12	30	-10	54.3						
13	30	-9	63.4						
14	30	-8	25.6						
15	30	-7	47.5						

111 [9].	<pre>import matplotlib.pyplot as plt import numpy as np import pandas as df</pre>								
In [17]:	<pre>from sklearn.linear_model import LinearRegression filename='C:/Users/biot0/Downloads/temp_date_lat.csv' data=df.read_csv(filename) data.head()</pre>								
ut[17]:			YMD	LO	LA	SRFCLYR_WTPR	SRC		
	0	01-Dec-1970 0	00:00:00	0.5	73.5	1.28	COBE-SST2		
	1	01-Jan-1970 0	00:00:00	0.5	72.5	0.47	COBE-SST2		
	2	01-Feb-1970 0	00:00:00	0.5	72.5	0.51	COBE-SST2		
	3	01-Mar-1970 0	00:00:00	0.5	72.5	0.73	COBE-SST2		
	4	01-Apr-1970 0	0:00:00	0.5	72.5	1.18	COBE-SST2		
n [41]:	fil dat		sers/bi	ot0/	Deskt/	ort LinearRegre op/salinity.csv			
	uat								
ut[41]:	uat	salinity tem	perature	alti	tude				
ut [41]:	0		perature -20		tude 34.5				
ut[41]:		salinity tem	•						
ut [41] :	0	salinity temp	-20		34.5				
ut[41]:	0	salinity temp	-20 -19		34.5 46.3				

```
in [41]: from skiearn.linear_model import Linearkegression
        |filename='C:/Users/biot0/Desktop/salinity.csv
        |data=df.read_csv(filename)
        data.head()
Out [41]
            salinity temperature altitude
                               34.5
               30
                         -19
                               46.3
                         -18
                               66.3
               30
                               69.5
                         -17
        data=np.loadtxt('C:/Users/biot0/Desktop/salinity.csv',delimiter=',',skiprows=1,encoding='UTF8')
        X=data[:,0:2]
        |Y=data[:,2]
In [53]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
Out[53]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [54]: from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error
        from sklearn.model_selection import train_test_split
         model = LinearRegression()
         model.fit(x_train, y_train)
Out[54]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
 In [52]: import pandas as pd
             import numpy as np
             from sklearn.linear_model import LinearRegression
            df = pd.DataFrame({'x': [1, 2, 3], 'y': [1,2,3]})
             X = df['x'].values.reshape(-1, 1)
             y = df['y'].values.reshape(-1, 1)
             model = LinearRegression().fit(X, y)
            print('Coefficients:', model.coef_)
```

[흡착제 성질을 이용한 최적 조건 출력]

print('Intercept:', model.intercept_)

Coefficients: [[1.]]

Intercept: [6.66133815e-16]

```
In [56]: import pandas as pd
         import numpy as np
         from sklearn.linear_model import LinearRegression
         # 시간대와 흡착제 제거 효율 데이터 생성 (임의의 예시 데이터)
         time_periods = np.array([1, 2, 3, 4, 5]) # 시간대
         removal_efficiency = np.array([85, 92, 88, 95, 90]) # 제거 효율 (%)
         df = pd.DataFrame({'Time': time_periods, 'Efficiency': removal_efficiency})
        X = df['Time'].values.reshape(-1, 1)
        y = df['Efficiency'].values.reshape(-1, 1)
         model = LinearRegression().fit(X, y)
        print('Coefficients:', model.coef_)
        print('Intercept:', model.intercept_)
        best_time = model.predict([[0]])
        print('Best Time for Maximum Removal Efficiency:', best_time[0][0], 'hours')
         Coefficients: [[1.3]]
         Intercept: [86.1]
         Best Time for Maximum Removal Efficiency: 86.1 hours
```

(5) 기대효과

- 환경의 조건 (기온, 위치, 시간) 등에 따른 수온과 염분을 예측할 수 있을 것이다. - 해양 속 중금속을 제거할 수 있는 흡착제가 개발되었을 시, 예측한 수온과 염분에 따라 어떤 시간대에 흡착제를 방류해야 가장 효과적이게 작용할 수 있는지 알아낼 수 있다.
- 중금속을 효과적으로 제거함으로서 해양오염과 이로 인해 인간에게 미치는 악영향을 최대 한 줄일 수 있다.