Taller de Lógica Digital - Parte 2

Organización del Computador 1

Primer Cuatrimestre 2023

Ejercicios

1. Componentes de 3 estados

a) Completar la siguiente tabla:

A	A_{en}	В	B_{en}	\mathbf{C}	C_{en}	Estimado	Obtenido
0	0	0	0	0	0		
0	1	1	1	0	0		
1	0	1	0	1	0		
1	1	0	0	0	1		
0	1	0	1	0	1		
0	1	1	1	1	1		`
1	0	1	1	1	0		

b) Completar la siguiente tabla:

Color	Interpretación
Gris	no conectado a nada
Verde claro	1 o corriente
Verder oscuro	0 o no corriente
Azul	no asignado o incertidumbre
Rojo	error, en el cable se encuentran dos estados contracdictorios

c) Enunciar la regla:

Si dos o más compuertas de control de buffer son 1, el valor de bit de que tienen debe ser el mismo en todas las activadas para evitar la contradicción

d) Explicar cuáles son y por qué:

No vamos a tomar como valido que existan mas de 1 enable activos al mismo tiempo

2. Transferencia entre registros

a) Detallar entradas y salidas:

La salida es S

Los controles son en_force_input y el w y en_out de cada registro_salida_restringido Force input es el valor externo a escribir en los componentes de memoria Y S es el valor guardado que decido mostrar y tambien sirve como entrada para escribir

b) Secuencia de señales:

Force_Input en 1 -> Enable_Force_Input en 1 -> Write de R1 en 1 -> Hacer flanco ascendente en clock

c) Secuencia de señales:

force_input=1 ->e_Force_inpùt=1->w_R0=1->flanco_asc_clk->w_R0=0->w_R1=1->flancoAscClk->w_R1=0->w_R0=1->en_outR2=1->force_inp=0->flancoAscClk->w_R0=0->eOutR2=0->wR<mark>1=1->Cl</mark>k

- 3. Máquina de 4 registros con suma y resta.
 - a) Detallar entradas y salidas:

las entradas son: Alu_X_Write, Reg_X_Write, RegX_enableOut,

las salidas son:Reg X Debug, N, Z, V, C,

las entradas de control son: ForceInput, en Forc input, Clock, OP,

b) Detallar el contenido de cada display:

El Reg4_debug nos dice el valor que queda en el registro X, al igual que el A_debug, el B_debug y el s_debug

c) Secuencia de señales:

0100=force_input->en_force_input=1->reg2_w=1->clock->reg2_w=0 1101=force_input->en_force_input=1->reg3_w=1->clock->reg3_w=0

d) Completar la siguiente tabla:

Valor inicial	Resultado operación 1	Flags	Resultado operación 2	Flags
(4, 0)				
(7, -1)	X			
(-8, -2)				
(8, -9)	10			

Los resultados interpretados en sin signo y en complemento a 2.

e) Explicar

Corrección

Integrantes:

Nombre y Apellido:

LU:

Nombre y Apellido:

LU:

Para uso de los docentes:

1	2	3