

GPU Graphics Pipeline (Part I)

Computer Graphics Yu-Ting Wu

Outline

GPU graphics pipeline

(Part I)

OpenGL graphics pipeline 1.x

(Part II)

- OpenGL graphics pipeline 2.0
- OpenGL and shader implementation

Recap: Transformations

Recap: NDC

What about the z coordinate? You can find the point will only be visible if its z value is within [-1, 1]

Outline

- GPU graphics pipeline
- OpenGL graphics pipeline 1.x
- OpenGL graphics pipeline 2.0
- OpenGL and shader implementation

CPU v.s. GPU

Good at

- Serial processing
- Control (branching)
- Larger cache

Good at

- Parallel processing
- SIMD
- Higher throughput

CPU v.s. GPU (cont.)

Pipeline

GPU Graphics Pipeline Overview

- Responsible for the fixed routines of bringing triangles to pixels
- Can be roughly categorized into 3 stages

- Physical simulation
- Animation
- Collision detection
- Global acceleration
- · etc.

GPU Graphics Pipeline Overview (cont.)

- Responsible for the fixed routines of bringing triangles to pixels
- Can be roughly categorized into 3 stages

Application Geometry Processing Rasterization Processing GPU

- Vertex transform and projection
- Vertex lighting and shading (rarely used now)
- Geometry assembly
- Clipping
- Culling

GPU Graphics Pipeline Overview (cont.)

- Responsible for the fixed routines of bringing triangles to pixels
- Can be roughly categorized into 3 stages

- Fragments (pixels) generation
 - Attribute interpolation

Depth testing

Alpha blending

GPU Graphics Pipeline Overview (cont.)

- Responsible for the fixed routines of bringing triangles to pixels
- Can be roughly categorized into 3 stages

GPU Graphics Pipeline Overview (cont.)

- In this topic, we will first introduce the GPU rendering pipeline revealed in OpenGL 1.x
- After that, we will show why (and how) some stages become programmable in OpenGL 2.0

Outline

- GPU graphics pipeline
- OpenGL graphics pipeline 1.x
- OpenGL graphics pipeline 2.0
- OpenGL and shader implementation

OpenGL (1.x) Fixed Function Pipeline

- Used when OpenGL was first introduced
- All the functions performed by OpenGL are fixed and could not be modified except through the manipulation of the rendering states

The stages shown in green have been replaced by shaders

OpenGL (1.x) Fixed Function Pipeline

Vertex Data

- Send the vertex data to the GPU
- Vertex attributes include vertex position, vertex normal, texture coordinate, vertex color, fog coordinate, etc.
- The vertex data processed by the GPU is referred to as the vertex stream

OpenGL (1.x) Fixed Function Pipeline

Primitive Processing

- Vertex stream is processed per primitive
- OpenGL supports several types of primitives, including points, lines, triangles, quads, and polygons (deprecated after OpenGL 3.1)

Primitive Processing (cont.)

primitive types in OpenGL 1.1

Primitive Processing (cont.)

glBegin(GL POINTS); //starts drawing of points

```
glVertex3f(1.0f,1.0f,0.0f);//upper-right corner
glVertex3f(-1.0f,-1.0f,0.0f);//lower-left corner
glEnd();//end drawing of points

glBegin(GL_TRIANGLES);//start drawing triangles
glVertex3f(-1.0f,-0.25f,0.0f);//triangle one first vertex
glVertex3f(-0.5f,-0.25f,0.0f);//triangle one second vertex
glVertex3f(-0.75f,0.25f,0.0f);//triangle one third vertex
//drawing a new triangle
glVertex3f(0.5f,-0.25f,0.0f);//triangle two first vertex
glVertex3f(1.0f,-0.25f,0.0f);//triangle two second vertex
glVertex3f(0.75f,0.25f,0.0f);//triangle two third vertex
glVertex3f(0.75f,0.25f,0.0f);//triangle two third vertex
glEnd();//end drawing of triangles
```

```
glBegin(GL_POLYGON);//begin drawing of polygon
glVertex3f(-0.5f,0.5f,0.0f);//first vertex
glVertex3f(0.5f,0.5f,0.0f);//second vertex
glVertex3f(1.0f,0.0f,0.0f);//third vertex
glVertex3f(0.5f,-0.5f,0.0f);//fourth vertex
glVertex3f(-0.5f,-0.5f,0.0f);//fifth vertex
glVertex3f(-1.0f,0.0f,0.0f);//sixth vertex
glEnd();//end drawing of polygon
```

primitive drawing in OpenGL 1.1 (deprecated, DO NOT USE!)

OpenGL (1.x) Fixed Function Pipeline

Transform and Lighting

- Vertex is transformed to camera space by the current ModelView matrix
- Lighting is computed at each vertex (Gouraud shading)

Transform and Lighting (cont.)

Transform in OpenGL 1.x (deprecated, DO NOT USE!)

```
void display(void)
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
                     /* clear the matrix */
   glLoadIdentity ();
          /* viewing transformation */

y gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

M glScalef (1.0, 2.0, 1.0); /* modeling transformation */
  glutWireCube (1.0);
  glFlush ();
void reshape (int w, int h)
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
  glMatrixMode (GL PROJECTION);
   glLoadIdentity ();
glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
  glMatrixMode (GL MODELVIEW);
```

OpenGL (1.x) Fixed Function Pipeline

Primitive Assembly

- Convert primitives from the basic primitive types (e.g., triangle strip) into triangles
- Triangles are transformed to NDC and got clipped to fit within the viewport boundaries

Primitive Assembly (cont.)

Clipping

 In OpenGL, clipping is performed by adding new vertices and triangulation

Primitive Assembly (cont.)

- Back-face culling
 - If a triangle is facing away from the camera, it will never be seen
 - We can cull these back-facing triangles for saving unnecessary computation

Primitive Assembly (cont.)

Screen mapping (OpenGL will handle this!)

OpenGL NDC

 $x_s = w(x_{ndc} + 1)/2$ $y_s = h(y_{ndc} + 1)/2$ $z_s = (z_{ndc} + 1)/2$ $w_s = w_{ndc}$

OpenGL (1.x) Fixed Function Pipeline

Rasterization

- Convert triangles (continuous) into fragments (discrete)
 - For each pixel that is inside the triangle in the screen space, generate a fragment

Rasterization (cont.)

- Convert triangles (continuous) into fragments (discrete)
 - For each pixel that is inside the triangle in the screen space, generate a fragment
- Obtain per-fragment data using interpolation: vertex attributes are interpolated across the face, such as
 - (Lighting) color used for per-vertex lighting
 - Texture coordinate
 - Position

 used for per-fragment lighting
 - Normal (after OpenGL 2.0)
 - Anything you want to interpolate

Scanline Rasterization

Find edge pixels

- DDA [link]
- Bresenham [link]

Attributes interpolation of edge pixels using vertices

Attributes interpolation of inner pixels using edge points

Digital Differential Analyzer (DDA)

• Draw a line segment passing through $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (7, 5)$

$$y = mx + b$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$
 slope

$$\Delta y = m\Delta x = m$$
 (if $\Delta x = 1$)

$$x_a = 2 \rightarrow y_a = y_1 + m = 1.667 \rightarrow (2, 1.667)$$
 (2, 2)

$$x_b = 3 \rightarrow y_b = y_a + m = 2.333 \rightarrow (3, 2.333)$$
 (3, 2)

$$x_c = 4 \rightarrow y_c = y_b + m = 3.000 \rightarrow (4, 3.000)$$
 (4, 3)

$$x_d = 5 \rightarrow y_d = y_c + m = 3.667 \rightarrow (5, 3.667)$$
 (5, 4)

$$x_e = 6 \implies y_e = y_d + m = 4.333 \implies (6, 4.333)$$
 (6, 4)

floating-point addition / comparison

Bresenham Algorithm

• Draw a line segment passing through $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (7, 5)$

$$y = mx + b$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

$$d1 = y - y_i = (m(x_i + 1) + b) - y_i$$

$$d2 = (y_i + 1) - y = y_i + 1 - (m(x_i + 1) + b)$$

 $d1 - d2 = 2m(x_i + 1) - 2y_i + 2b - 1$ $\Delta x(d1 - d2) = 2\Delta y x_i - 2\Delta x y_i + c$

integer multiplication / comparison

Scanline Rasterization (cont.)

https://www.youtube.com/watch?v=t7Ztio8cwqM

Barycentric Coordinates

Barycentric coordinates inside a triangle

$$p = p_0 + \beta(p_1 - p_0) + \gamma(p_2 - p_0)$$

$$= (1 - \beta - \gamma)p_0 + \beta p_1 + \gamma p_2$$

$$= \alpha p_0 + \beta p_1 + \gamma p_2$$

$$\alpha + \beta + \gamma = 1$$

The values α , β , $\gamma \in [0, 1]$ if and only if p is inside the triangle

Barycentric Coordinates (cont.)

- Compute the 2D bounding box of the 2D triangle
- For each pixel inside the bounding box, compute its barycentric coordinates [link]

 If the coordinates are all ≥ 0 and ≤ 1, the pixel is covered by the triangle

The barycentric coordinates α , β , γ can be used to interpolate vertex attributes directly

$$p = p_0 + \beta(p_1 - p_0) + \gamma(p_2 - p_0) = \alpha p_0 + \beta p_1 + \gamma p_2$$

Recap: Texturing

- Textures are used to describe complex materials
- A (vertex) texture coordinate is used to look up the texture
 - The way to map a point on the 3D surface to a pixel (texel) on a 2D image texture

Texture Environment and Color Sum

- Texture Environment
 - Apply the textures to the fragments
- Color Sum
 - Used to add-in a secondary color to the geometry after the textures have been applied

Fog

- Simulate the effect of geometry fadeout as dimmed by fog
- Blend the fragment color with the fog color according to object distance

Fog in Games

Fog in Games (cont.)

Alpha Test

Discard fragments if their alpha values are below a certain threshold

Alpha Test (cont.)

Discard fragments if their alpha values are below a certain threshold

Depth Test

- Used for hidden surface removal
 - Only show the closest surfaces to the camera at each pixel

Depth Test (cont.)

- Used for hidden surface removal
 - Only show the closest surfaces to the camera at each pixel
- Earlier approach: painter's algorithm

Depth Test (cont.)

Z-buffer

- An additional buffer used to maintain the z value of the closest surface to a pixel
- Discard fragments if they have larger depth values than the ones stored in their corresponding positions in the Z buffer

color frame buffer

Z (depth) buffer

Z-Buffer

Z-buffer update

Z-Buffer (cont.)

https://www.youtube.com/watch?v=yhwg_O5HBwQ

Stencil Test

 Used to discard fragments that fail a stencil comparison, based on the content of the stencil buffer

stencil buffer

Color Buffer Blending

 Blend the color of fragments with the previous results in the frame buffer based on the alpha values of the current fragments, as well as the blend function and the blend equations

Color Buffer Blending (cont.)

 Blend the color of fragments with the previous results in the frame buffer based on the alpha values of the current fragments, as well as the blend function and the blend

equations

$$ar{C}_{result} = ar{C}_{source} * ar{F}_{source} + ar{C}_{destination} * ar{F}_{destination}$$
 GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

Dither

- If a color palette is used, OpenGL will try to simulate a larger color palette by mixing colors in close proximity
- Areas of a single color are replaced by a pattern of dots of several different colors, in such a way that optical mixing in the eye produces a color close to the desired one

Summary of Fixed Function Pipeline

- An 3D object will come to the screen with a series of "fixed" steps
 - Fixed transformation (MVP matrix)
 - How about user interface on the screen?
 - Fixed (Phong) lighting model on vertices
 - Fixed modulation of lighting color and texture color
 - Color = Lighting × Texture

- We would like more flexibility!
- In Part II, we will introduce how to add flexibility by using shaders

Spoiler: OpenGL 1.x to OpenGL 2.0

- All the functions performed by OpenGL are fixed and could not be modified except through the manipulation of the rendering states
- The stages shown in green have been replaced by shaders

Spoiler: OpenGL 1.x to OpenGL 2.0 (cont.)

- Released in 2004
- Provide the ability to programmatically define the vertex transformation and lighting and the fragment operations (with small GPU programs called shaders)

