

September 18, 2019

3주차 실험 GPIO 제어

실험의 목적

- 임베디드 시스템 설계의 기본 원리 습득
- 디버깅 툴 사용방법 습득 및 레지스터 제어를 통한 임베디드 펌웨어 개발

3주차 실험

- 개발 환경 구축
- DS-5에서 프로젝트 생성 및 설정
- Datasheet 및 Reference Manual을 참고하여 해당 레지스터 및 주소에 대한 설정 이해
- GPIO(general-purpose input/output)를 사용하여 LED제어
- 오실로스코프에 대한 이해와 DebugPin설정
- **실험과정 스크린샷, 사진 많이 찍어두세요. 결과보고서 작성시 필요합니다.

실험 주의사항

- 실험 장비들을 연결할 때 반드시 모든 전원을 끄고 연결해주세요.
- 장비사용시 충격이 가해지지 않도록 주의해주세요.
- 자리는 항상 깔끔하게 유지하고 반드시 정리 후 퇴실해주세요.
- 실험 소스 코드는 백업 후 반드시 삭제해주세요.
- 장비 관리, 뒷정리가 제대로 되지 않을 경우 해당 조에게 감점이 주어집니다.
- Dstream의 플랫케이블 절대 뽑지말것
- Dstream는 전원(5V,5A)사용하고 보드는 USBPort나 전원(5V,1A)를 사용할것 (전원을 바꿔서 사용시 보드가 탐 -> 감점)
- Dstream의 Status LED가 점멸되다가 지속적으로 들어오고나서 보드 전원을 킬것
- ->지켜지지 않을 시 해당 조 감점

보드 연결 및 해제 순서

연결 과정

- 보드와 DSTREAM JTAG 연결
- 보드 전원선만 연결 (보드의 전원은 OFF 상태)
- DSTREAM 전원 연결 및 ON
- DSTREAM Status LED 점등 확인
- 보드 전원 ON
- DSTREAM Target LED 점등 확인
- DS-5에서 'connect target'

분리 과정

- DS-5에서 'disconnect target'
- 보드 전원 OFF
- DSTREAM 전원 해제 및 OFF
- 보드 전원선 분리
- DSTREAM과 보드 JTAG 분리

2

오실로스코프

데이터 베이스 설정

Dstream를 USB로 컴퓨터에 연결하고 Debug Hardware config에서 보드를 connect한다.

보드를 연결한 이후 Auto Configure를 클릭하여 설정을 진행한다.

상단의"File -Save as" 메뉴를 클릭하여 파일로 저장한다.(rvc파일) (한글경로 절대금지)

- Win+Pause를 눌러 왼쪽 탭 에 고급 시스템 설정을 클 릭
- 환경변수 > PATH 부분에
- C:₩Program Files₩DS-5₩bin
- 추가
- › RVC가 있는 폴더에서 다음 과 같이 명령문 작성
- 원하는 이름으로 입력

cdbimporter

- Win+Pause를 눌러 왼쪽 탭 에 고급 시스템 설정을 클 릭
- 환경변수 > PATH 부분에
- C:₩Program Files₩DS-5₩bin
- · 추가
- RVC가 있는 폴더에서 다음 과 같이 명령문 작성
- 원하는 이름으로 입력

데이터 베이스 등록

- 1) Eclipse for DS-5
- 2) Windows Preferences
- 3) DS-5 Configuration Database
- 4) Add -> 사용자 데이터베이스 디렉토리 지정
- 5) Rebuild database

*.rvc 파일을 저장한 디렉터리를 지정합니다.

File-> New -> C++ Project 새프로젝트생성

Project type:

Bare-metal Executable -> Empty Project

Toolchains: Arm Compiler 5

CORTEX-M3

CORTEX-M3

main, cortex-m3

0x20000000 0x20008000

보드 연결

Dstream(5V,5A)전원인가후 Status LED가 점 멸

점멸이 끝난후 불이계속해서 들어올때 보드 의 전원을 킴

디버그 설정

- 1) Run-> Debug Configuration
- 2) DS-5 Debugger Platform 선택 Browse 타겟 선택

실행

코드는 반드시 C로 작성 (not C++)

*.axf 파일은 파일을 작성하고 빌드(ctrl+B) 한 뒤에 만들어집니다. 환경설정시 파일이 없는게 맞습니다.

실행

실행

Start하면 실행

GPIO 설정

- 1. RCC (reset and clock control)를 사용하여 사용하고자하는 GPIO에 클럭을 인가 한다.
- 2. GPIO를 어떻게 사용할것인가에 대해서 설정한다.
- 3. GPIO의 Input, output를 통하여 LED를 제어하고 오실로스코프로 확인한다.

Datasheet & reference

데이터시트와 레퍼런스 문서를 통하여 임베디드 보드를 제어하는 능력향상

4 Memory mapping

The memory map is shown in Figure 5.

- 데이터시트에 각 레지스터에 대한 메모리맵핑 주소가 나와 이으
- APB2에 각 GPIO포트가 할당되 어있는것을 확인할수 있음
- 각 할당된 주소에 offset을 더하 면 해당 레지스터 주소가 됨

Datasheet & reference

데이터시트와 레퍼런스 문서를 직접리딩하여 임베디드 보드를 제어하는 능력향상

7.3.7 APB2 peripheral clock enable register (RCC APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral is finished.

Note:

When the peripheral clock is not active, the peripheral register values may not be readable by software and the returned value is always 0x0.

레퍼런스 문서에

각 레지스터 설정값과 설명들이 나와있음

General-purpose and alternate-function I/Os (GPIOs and AFIOs)

RM0008

9.2 **GPIO** registers

Refer to Section 2.1 on page 47 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

Port configuration register low (GPIOx CRL) (x=A..G) 9.2.1

> Address offset: 0x00 Reset value: 0x4444 4444

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I	CNF7[1:0]		MODE7[1:0]		CNF6[1:0]		MODE6[1:0]		CNF5[1:0]		MODE5[1:0]		CNF4[1:0]		MODE4[1:0]	
I	W	ΓW	rw	rw	ΓW	rw	ΓW	ΓW	rw	TW	rw	rw	rw	ΓW	ΓW	rw
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	CNF3[1:0]		MODE3[1:0]		CNF2[1:0]		MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF0[1:0]		MODE0[1:0]	
Ī	rw	ΓW	rw	rw	rw	rw	ΓW	ΓW	TW	TW	rw	rw	ΓW	ΓW	rw	rw

Bits 31:30, 27:26, CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

11:10, 7:6, 3:2

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table on page 161.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] \geq 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12, These bits are written by software to configure the corresponding I/O port.

9:8, 5:4, 1:0

Refer to Table 20: Port bit configuration table on page 161.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

Output mode, max speed 50 MHz.

Datasheet & reference

데이터시트와 레퍼런스 문서를 직접리딩하여 임베디드 보드를 제어하는 능력향상

9.2.3 Port input data register (GPIOx IDR) (x=A..G)

Address offset: 0x08h Reset value: 0x0000 XXXX

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
·	IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
	-	г	r	r	r	r	r	r	r	r	r	r	r	r	r	г

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

레퍼런스 문서에

각 레지스터설명과, 원하는 설정을 위한 bit Setting 값이 나와있음.

General-purpose and alternate-function I/Os (GPIOs and AFIOs)

RM0008

9.2.4 Port output data register (GPIOx ODR) (x=A..G)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to the GPIOx_BSRR register (x = A .. G).

9.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BH8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x Set bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

두문서를 참고하여 DS-5에서 레지스터를 제어하여 펌웨어를 보드에 올리면 동작

Schematic

실험미션

조이스틱을 이용하여 LED에 불켜고 오실로스코프 디지털핀을 이용하여 확인하기

실험 검사

- 1. 정확한 장비 설정 유무 확인
- 2. 레지스터 및 주소 설정 이해 확인
- 3. LED제어 원리 이해 및 동작 확인
- 4. 오실로스코프 디지털 핀 사용법 이해

이번 주 실험 결과 보고서

- A. 이론부터 실습까지 전반적인 내용을 포함하도록 작성
- B. 금요일 (9.23) 24시까지 제출
- C. 다음 실험시간에 하드카피 제출

이번 주 토요일 1시 예비조 두팀 실험 진행합니다~