(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 December 2001 (20.12.2001)

PCT

(10) International Publication Number WO 01/96584 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US01/18911

(22) International Filing Date:

12 June 2001 (12.06.2001)

(25) Filing Language:

English

C12N 15/82

(26) Publication Language:

English

(30) Priority Data: 60/210,917

12 June 2000 (12.06.2000) US

- (71) Applicant (for all designated States except US): AKKADEX CORPORATION [US/US]; 4204 Sorrento Valley Blvd., Suite A, San Diego, CA 92121-1412 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MUSHEGIAN, Arcady, R. [--/US]; 3987 Santa Nella Place, San Diego, CA 92130 (US). TAYLOR, Christopher, G. [---/US]; 2910-A

Luciemaga Street, Carlsbad, CA 92009 (US). FEITEL-SON, Jerald, S. [/US]; 4387 Mistral Place, San Diego, CA 92130 (US). EROSHKIN, Alexy, M. [---/US]; 3803 Ruette San Rafael, San Diego, CA 92130 (US).

- (74) Agents: LLOYD, Jeff et al.; Saliwanchik, Lloyd & Saliwanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL. 32606 (US).
- (81) Designated States (national): AL, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI., TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, MI, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MATERIALS AND METHODS FOR THE CONTROL OF NEMATODES

(57) Abstract: The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides RNAi molecules, polynucleotide sequences, and methods of using these sequences in nematode control.

WO 01/96584 A2

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCI Gazette.

1

DESCRIPTION

MATERIALS AND METHODS FOR THE CONTROL OF NEMATODES

Background of the Invention

[0001] Plant parasitic nematodes, such as root-knot nematodes (Meloidogyne species) and cyst nematodes (Globodera and Heterodera), attack nearly every food crop, and are among the world's most damaging agricultural pests. For example, root-knot nematodes parasitize more than 2,000 plant species from diverse plant families and represent a tremendous threat to crop production world-wide. These biotrophic pathogens have evolved highly specialized and complex feeding relationships with their hosts.

[0002] Nematodes cause millions of dollars of damage each year to turf grasses, omamental plants, and food crops. Efforts to eliminate or minimize damage caused by nematodes in agricultural settings have typically involved the use of soil furnigation with materials such as chloropicrin, methyl bromide, and dazomet, which volatilize to spread the active ingredient throughout the soil. Such furnigation materials can be highly toxic and may create an environmental hazard. Various non-furnigant chemicals have also been used, but these too create serious environmental problems and can be highly toxic to humans.

[0003] Some research articles have been published concerning the effects of δ-endotoxins from *B. thuringiensis* species on the viability of nematodes. See, for example, Bottjer, Bone and Gill ([1985] *Experimental Parasitology* 60:239-244); Ignoffo and Dropkin (Ignoffo, C.M., Dropkin, V.H. [1977] *J. Kans. Entomol. Soc.* 50:394-398); and Ciordia, H. and W.E. Bizzell ([1961] *Jour. of Parasitology* 47:41 [abstract]). Several patents have issued describing the control of nematodes with *B.t.* See, for example, U.S. Patent Nos. 4,948,734; 5,093,120; 5,281,530; 5,426,049; 5,439,881; 5,236,843; 5,322,932; 5,151,363; 5,270,448; 5,350,577; 5,667,993; and 5,670,365. The development of resistance by insects to *B.t.* toxins is one obstacle to the successful use of such toxins.

[0004] The pesticidal activity of avermectins is well known. The avermectins are disaccharide derivatives of pentacyclic, 16-membered lactones. They can be divided into four major compounds: A_{1a}, A_{2a}, B_{1a}, and B_{2a}; and four minor compounds: A_{1b}, A_{2b}, B_{1b}, and B_{2b}. The isolation and purification of these compounds is also described in U.S. Patent No. 4,310,519, issued January 12, 1982. Avermectin B_{2a} is active against the root-knot nematode, *Meloidogyne incognita*. It is reported to be 10-30 times as potent as commercial contact nematicides when incorporated into soil at 0.16-0.25 kg/ha (Boyce Thompson Institute for Plant Research 58th Annual Report [1981]; Putter, I. *et al.* [1981] "Avermectins: Novel Insecticides, Acaracides, and Nematicides from a Soil Microorganism," *Experientia* 37:963-964). Avermectin B_{2a} is not toxic to tomatoes or cucumbers at rates of up to 10 kg/ha.

[0005] Fatty acids are a class of natural compounds which occur abundantly in nature and which have interesting and valuable biological activities. Tarjan and Cheo (Tarjan, A.C., P.C. Cheo [1956] "Nematocidal Value of Some Fatty Acids," Bulletin 332, Contribution 884, Agricultural Experiment Station, University of Rhode Island, Kingston, 41 pp.) report the activity of certain fatty acids against nematodes. In 1977 Sitaramaiah and Singh (Sitaramaiah, K., R.S. Singh [1977] Indian J. Nematol. 7:58-65) also examined the response of nematodes to fatty acids. The results of these tests with short chain acids were equivocal, showing nematode-inhibitory action in some instances and stimulatory activity in other instances. Phytotoxicity of these acids was observed at higher concentrations. The short chain fatty acids were also examined by Malik and Jairajpuri (Malik, Z., M.S. Jairajpuri [1977] Nematol. medit. 12:73-79), who observed nematode toxicity at high concentrations of the fatty acids.

[0006] Notwithstanding the foregoing (some of the limitations of and problems associated with these approaches are discussed above), there is a need for safe and effective alternatives for controlling nematodes.

[0007] One method for disrupting normal cellular processes is by the use double-stranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). When RNAi corresponding to a sense and antisense sequence of a target mRNA is introduced into a cell, the targeted mRNA is degraded and protein translation of that message is stopped. Although not yet fully understood, the mechanism of this post-transcriptional gene

silencing appears to be at least partially due to the generation of small RNA molecules, about 21 - 25 nucleotides in length, that correspond to the sense and antisense pieces of the RNAi introduced into the cell (Bass, B. L. [2000] "Double-stranded RNA as a template for gene silencing" *Cell* 101:235-238).

[0008] The specificity of this gene silencing mechanism appears to be extremely high, blocking expression only of targeted genes, while leaving other genes unaffected. A recent example of the use of RNAi; to inhibit genetic function in plants used Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana (Chuang, C.-F. and E. M. Meyerowitz [2000] "Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana" Proc. Natl. Acad. Sci. USA 97:4985-4990). Chuang et al. describe the construction of vectors delivering variable levels of RNAi targeted to each of four genes involved in floral development. Severity of abnormal flower development varied between transgenic lines. For one of the genes, AGAMOUS (AG), a strong correlation existed between declining accumulation of mRNA and increasingly severe phenotypes, suggesting that AG-specific endogenous mRNA is the target of RNAi.

Brief Summary of the Invention

[0009] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences that encode nematode genes, RNAi that selectively targets mRNA transcripts of these essential nematode genes, and methods of using these sequences in nematode control strategies. Such sequences for use according to the subject invention are summarized in Appendix 1. RNAi molecules disclosed herein can be used to inhibit the expression of one or more of these genes in nematodes.

Brief Description of the Drawings

[00010] Figure 1: Modular Binary Construct System (MBCS): A series of six, 8-base cutter restriction enzyme sites has been placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid.

[00011] Figure 2: An exemplary shuttle vector created for cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8-base restriction sites.

[00012] Figure 3: An exemplary shuttle vector with exemplary inserts.

[00013] Figure 4: A suggested RNAi binary vector with exemplary inserts.

[00014] Figure 5: Exemplary selectable markers for MBCS.

[00015] Figure 6: Exemplary scorable markers for MCBS.

[00016] Figure 7: Exemplary RNAi binary vector.

[00017] Figure 8: Exemplary RNAi shuttle vector.

Brief Description of the Sequences

[00018] Brief Description of the Sequences can be found in Appendix I.

Detailed Disclosure of the Invention

[00019] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences and methods of using these sequences in nematode control strategies. A preferred method for controlling nematodes according to the subject invention provides materials and methods for controlling nematodes by using double-stranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). The terms RNAi and RNAi are used interchangeably herein unless otherwise noted.

[00020] In one embodiment of the invention, RNAi molecules are provided which are useful in methods of killing nematodes and/or inhibiting their growth, development, parasitism or reproduction. RNAi molecules of the invention are also useful for the regulation of levels of specific mRNA in nematodes.

[00021] dsRNA (RNAi) typically comprises a polynucleotide sequence identical to a target gene (or fragment thereof) linked directly, or indirectly, to a polynucleotide

sequence complementary to the sequence of the target gene (or fragment thereof). The dsRNA may comprise a polynucleotide linker (stuffer) sequence of sufficient length to allow for the two polynucleotide sequences to fold over and hybridize to each other; however, a linker sequence is not necessary. The linker (stuffer) sequence is designed to separate the antisense and sense strands of RNAi significantly enough to limit the effects of steric hindrances and allow for the formation of dsRNA molecules.

[00022] RNA containing a nucleotide sequence identical to a fragment of the target gene is preferred for inhibition; however, RNA sequences with insertions, deletions, and point mutations relative to the target sequence can also be used for inhibition. Sequence identity may optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFTT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a fragment of the target gene transcript.

[00023] As disclosed herein, 100% sequence identity between the RNA and the target gene is not required to practice the present invention. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.

[00024] RNA may be synthesized either *in vivo* or *in vitro*. Endogenous RNA polymerase of the cell may mediate transcription *in vivo*, or cloned RNA polymerase can be used for transcription *in vivo* or *in vitro*. For transcription from a transgene *in vivo* or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus. RNA

may be chemically or enzymatically synthesized by manual or automated reactions. The RNA may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (see, for example, WO 97/32016; U.S. Pat. Nos. 5,593,874; 5,698,425; 5,712,135; 5,789,214; and 5,804,693; and the references cited therein). If synthesized chemically or by *in vitro* enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, the RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The RNA may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

[00025] Preferably and most conveniently, RNAi can be targeted to an entire polynucleotide sequence of a gene set forth herein. Preferred RNAi molecules of the instant invention are highly homologous or identical to the polynucleotides summarized in Appendix 1. The homology is preferably greater than 90% and is most preferably greater than 95%.

[00026] Fragments of genes can also be targeted. These fragments are typically in the approximate size range of about 20 nucleotides. Thus, targeted fragments are preferably at least about 15 nucleotides. In certain embodiments, the gene fragment targeted by the RNAi molecule is about 20-25 nucleotides in length. However, other size ranges can also be used. For example, using a *C. elegans* microinjection assay, RNAi "fragments" of about 60 nucleotides with between 95 and 100% identity (to a nematode gene) were determined to cause excellent inhibition.

[00027] Thus, RNAi molecules of the subject invention are not limited to those that are targeted to the full-length polynucleotide or gene. The nematode gene product can be inhibited with a RNAi molecule that is targeted to a portion or fragment of the exemplified polynucleotides; high homology (90-95%) or identity is also preferred, but not necessarily essential, for such applications.

[00028] The polynucleotide sequences identified in Appendix A and shown in the Sequence ID listing are from genes encoding nematode proteins having the functions

shown in Appendix 1. The genes exemplified herein are representative of particular classes of proteins which are preferred targets for disruption according to the subject invention. These classes of proteins include, for example, proteins involved in ribosome assembly; neurol transmitter receptors and ligands; electron transport proteins; metabolic pathway proteins; and protein and polynucleotide production, folding, and processing proteins.

[00029] Genetic regulatory sequences, such as promoters, enhancers, and terminators, can be used in genetic constructs to practice the subject invention. Such constructs themselves can also be used for nematode control. Various constructs can be used to achieve expression in specific plant tissues (by using root specific promoters, for example) and/or to target specific nematode tissues (by using targeting elements or adjacent targeting sequences, for example).

[00030] In a specific embodiment of the subject invention, plant cells, preferably root cells, are genetically modified to produce at least one RNAi that is designed to be taken up by nematodes during feeding to block expression (or the function of) of a target gene. As is known in the art, RNAi can target and reduce (and, in some cases, prevent) the translation of a specific gene product. RNAi can be used to reduce or prevent message translation in any tissue of the nematode because of its ability to cross tissue and cellular boundaries. Thus, RNAi that is contacted with a nematode by soaking, injection, or consumption of a food source will cross tissue and cellular boundaries. RNAi can also be used as an epigenetic factor to prevent the proliferation of subsequent generations of nematodes.

[00031] Nematode polynucleotide sequences disclosed herein demonstrate conserved nucleotide motifs among different nematode genera. Conserved nucleotide motifs strongly suggest that these sequences are associated with viability and/or parasitism and are functionally conserved and expressed in both *Meloidogyne incognita* (root-knot nematode) and *Globodera rostochiensis* and *Globdera pallids* (potato cyst nematodes). The use of these polynucleotides, and RNAi inhibitors thereof, is advantageous because such RNAi can be designed to have broad RNAi specificity and are thus useful for controlling a large number of plant parasitic nematodes *in planta*. Because the genes identified in this disclosure are associated with nematode survival

and/or parasitism, RNAi inhibition of these genes (arising from contacting nematodes with compositions comprising RNAi molecules) prevents and/or reduces parasitic nematode growth, development, and or parasitism.

[00032] Methods of the subject invention include the transformation of plant cells with genes or polynucleotides of the present invention, which can be used to produce nematode inhibitors or RNAi in the plants. In one embodiment, the transformed plant or plant tissue can express RNAi molecules encoded by the gene or polynucleotide sequence introduced into the plant. Other nematode inhibitors contemplated by the invention include antisense molecules specific to the polynucleotide sequences disclosed herein. The transformation of plants with genetic constructs disclosed herein can be accomplished using techniques well known to those skilled in the art and can involve modification of the gene(s) to optimize expression in the plant to be made resistant to nematode infection and infestation. Furthermore, it is known in the art that many tissues of the transgenic plants (such as the roots) can be targeted for transformation.

[00033] RNA-mediated interference (RNAi) of gene expression. Several aspects of root-knot nematode biology make classical genetic studies difficult with this organism. Since root-knot nematodes reproduce by obligatory mitotic parthenogenesis, the opportunity to perform genetic crosses is not available. Microinjection of RNAi can be used to manipulate gene expression in *C. elegans* (Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. [1998] "Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*" Nature 391:806-811). Microinjecting (into adult nematodes) RNAi can turn off specific genes in progeny worms complementary to the coding region of the genes. Moreover, gene inhibition occurs in progeny when RNAi is injected into the body cavity of the adult, indicating the ability of the RNAi to cross cellular boundaries. This RNAi injection method provides a molecular genetic tool that allows for analysis of gene function in root-knot nematodes.

[00034] RNAi can be taken up by *C. elegans* by simply soaking the nematodes in a solution RNAi. This results in targeted inhibition of gene expression in the nematode (Maeda, I., Y. Kohara, M. Yamamoto and A. Sugimoto [1999] "RNAi screening with a non-redundant cDNA set" International Worm Meeting, Madison, WI, abstract 565). Nematodes fed *E. coli* expressing RNAi also demonstrate targeted and

9

heritable inhibition of gene expression (Sarkissian, M., H. Tabara and C. C. Mello [1999] "A mut-6 screen for RNAi deficient mutants" International Worm Meeting, Madison, WI, abstract 741; Timmons, I. and A. Fire [1998] "Specific interference by ingested dsRNA" *Nature* 395:854; WO 99/32619, hereby incorporated by reference in its entirety).

[00035] Accordingly, one aspect of the instant invention is directed to the control of nematodes comprising contacting nematodes with compositions comprising RNAi molecules specific to the nematode genes disclosed herein. The contacting step may include soaking the nematodes in a solution containing RNAi molecules, feeding nematodes RNAi molecules contained in microbes or plant cells upon which the nematode feeds, or injecting nematodes with RNAi. Nematodes can also be "contacted" and controlled by RNAi expressed in plant tissues that would be consumed, ingested, or frequented by nematodes.

[00036] The RNAi molecules provided to the nematodes may be specific to a single gene. A "cocktail" of RNAi molecules specific to various segments of a single gene can also be used. In addition, a "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) may be applied to the nematodes according to the subject invention.

[00037] In addition to RNAi uptake mediated by transgenic plants, nematodes can be directly transformed with RNAi constructs of cDNAs encoding secretory or other essential proteins to reduce expression of the corresponding gene. The transgenic animals can be assayed for inhibition of gene product using immunoassays or for reduced virulence on a host. Progeny of affected worms can also be assayed by similar methods.

[00038] Procedures that can be used for the preparation and injection of RNAi include those detailed by Fire et al., (1998; ftp://ciw1.ciwemb.edu). Root-knot nematodes can be routinely monoxenically cultured on Arabidopsis thaliana roots growing on Gamborg's B-5/Gelrite® media. This nematode-bost pathosystem is ideally suited for these microinjection experiments since limited root galling results in the parasitic stages (late J2 through adult females) developing outside of the root for easy accessibility for injecting. Another advantage is the parthenogenic reproduction of root-knot nematodes, which makes fertilization by males unnecessary for egg production. The RNAi can be injected into the body cavity of parasitic stages of root-knot nematodes

feeding on A. thaliana roots using microinjection. Control nematodes can be injected in parallel with only buffer or an unrelated RNAi. Injected nematodes can be monitored for egg production, and the eggs can be collected for the assays described below. Female root-knot nematodes will typically survive and lay more than 250 eggs following 1 μ l injection of buffer.

[00039] Alternatively, methods are available for microinjecting materials directly into the plant root cells upon which nematodes feed: giant cells or syncytial cells (Böckenhoff, A. and F.M.W. Grundler [1994] "Studies on the nutrient uptake by the beet cyst nematode *Heterodera schachtii* by *in situ* microinjection of fluorescent probes into the feeding structures in *Arabidopsis thaliana*" *Parasitology* 109:249-254). This provides an excellent test system to screen RNAi molecules for efficacy by directly inhibiting growth and development of the nematode feeding upon the microinjected plant cell, or by reducing fecundity and the ability of said nematode to generate pathogenic or viable progeny.

[00040] There are a number of strategies that can be followed to assay for RNAi gene interference. Inhibition of gene expression by RNAi inhibits the accumulation of the corresponding secretory protein in the esophageal gland cells of transgenic J2 hatched from the eggs produced by the injected nematodes. In the first assay, polyclonal antibodies to the target gene product can be used in immunolocalization studies (Hussey, R. S. [1989] "Monoclonal antibodies to secretory granules in esophageal glands of Meloidogyne species" J. Nematol. 21:392-398; Borgonie, G. E. van Driessche, C. D. Link, D. de Waele, and A. Coomans [1994] "Tissue treatment for whole mount internal lectin staining in the nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus" Histochemistry 101:379-384) to monitor the synthesis of the target protein in the gland cells of progeny of the injected nematodes, or in any other nematode tissue that fails to express the essential targeted gene. Interference of endogenous gene activity by the RNAi eliminates binding of the antibodies to secretory granules in the glands, or any other target tissue, of the transgenic nematodes, and can be monitored by these in situ hybridization experiments. Control nematodes injected only with the injection buffer can be processed similar to the RNAi treated nematodes.

11

[00041] Another assay is designed to determine the effect of the RNAi on reducing the virulence of J2 progeny of the injected females. Egg masses from injected females can be transferred singly to A. thaliana plates to assess the ability of the transgenic J2 to infect roots. The J2 hatching from the eggs transferred to the plates can be monitored; after 25 days the number of galls with egg laying females can be recorded. The A. thaliana roots can also be stained with acid fuschin to enumerate the number of nematodes in the roots. Egg masses from nematodes injected only with the injection buffer can be handled similarly and used as controls. The treatments can be replicated, and the root infection data can be analyzed statistically. These experiments can be used to assess the importance of the target genes in root-knot nematode's virulence or viability. By staining the J2 progeny of the injected females with the antibodies, it can be determined whether RNAi blocks expression of the targeted gene.

exemplified herein can be used in a variety of ways. These polynucleotides can be used in assays for additional polynucleotides and additional homologous genes, and can be used in tracking the quantitative and temporal expression of parasitism genes in nematodes. These polynucleotides can be cloned into microbes for production and isolation of their gene products. Among the many uses of the isolated gene product is the development of additional inhibitors and modifiers. The protein products of the subject polynucleotides can also be used as diagnostic tools. For example, proteins encoded by the parasitism genes, as identified herein, can be used in large scale screenings for additional peptide inhibitors. The use of peptide phage display screening is one method that can be used in this regard. Thus, the subject invention also provides new biotechnological strategies for managing nematodes under sustainable agricultural conditions.

[00043] Antisense technologies can also be used for phytopathogenic nematode control. Antisense technology can be used to interfere with expression of the disclosed endogenous nematode genes. Antisense technology can also be used to alter the components of plants used as targets by the nematodes. For example, the transformation of a plant with the reverse complement of an endogenous gene encoded by a polynucleotide exemplified herein can result in strand co-suppression and gene silencing

12

or inhibition of a target involved in the nematode infection process. Thus, the subject invention includes transgenic plants (which are preferably made nematode-resistant in this manner, and other organisms including microbes and phages) comprising RNAi or antisense molecules specific to any of the polynucleotides identified herein.

[00044] Polynucleotide probes. DNA possesses a fundamental property called base complementarity. In nature, DNA ordinarily exists in the form of pairs of antiparallel strands, the bases on each strand projecting from that strand toward the opposite strand. The base adenine (A) on one strand will always be opposed to the base thymine (T) on the other strand, and the base guanine (G) will be opposed to the base cytosine (C). The bases are held in apposition by their ability to hydrogen bond in this specific way. Though each individual bond is relatively weak, the net effect of many adjacent hydrogen bonded bases, together with base stacking effects, is a stable joining of the two complementary strands. These bonds can be broken by treatments such as high pH or high temperature, and these conditions result in the dissociation, or "denaturation," of the two strands. If the DNA is then placed in conditions which make hydrogen bonding of the bases thermodynamically favorable, the DNA strands will anneal, or "hybridize," and reform the original double-stranded DNA. If carried out under appropriate conditions, this hybridization can be highly specific. That is, only strands with a high degree of base complementarity will be able to form stable double-stranded structures. The relationship of the specificity of hybridization to reaction conditions is well known. Thus, hybridization may be used to test whether two pieces of DNA are complementary in their base sequences. It is this hybridization mechanism which facilitates the use of probes of the subject invention to readily detect and characterize DNA sequences of interest.

[00045] The specifically exemplified polynucleotides of the subject invention can themselves be used as probes. Additional polynucleotide sequences can be added to the ends of (or internally in) the exemplified polynucleotide sequences so that polynucleotides that are longer than the exemplified polynucleotides can also be used as probes. Thus, isolated polynucleotides comprising one or more of the exemplified sequences are within the scope of the subject invention. Polynucleotides that have less nucleotides than the exemplified polynucleotides can also be used and are contemplated within the scope of the present invention. For example, for some purposes, it might be

13

useful to use a conserved sequence from an exemplified polynucleotide wherein the conserved sequence comprises a portion of an exemplified sequence. Thus, polynucleotides of the subject invention can be used to find additional, homologous (wholly or partially) genes.

[00046] Probes of the subject invention may be composed of DNA, RNA, or PNA (peptide nucleic acid). The probe will normally have at least about 10 bases, more usually at least about 17 bases, and may have about 100 bases or more. Longer probes can readily be utilized, and such probes can be, for example, several kilobases in length. The probe sequence is designed to be at least substantially complementary to a portion of a gene encoding a protein of interest. The probe need not have perfect complementarity to the sequence to which it hybridizes. The probes may be labeled utilizing techniques that are well known to those skilled in this art.

[00047] One approach for the use of the subject invention as probes entails first identifying DNA segments that are homologous with the disclosed nucleotide sequences using, for example, Southern blot analysis of a gene bank. Thus, it is possible, without the aid of biological analysis, to know in advance the probable activity of many new polynucleotides, and of the individual gene products expressed by a given polynucleotide. Such an analysis provides a rapid method for identifying commercially valuable compositions.

[00048] One hybridization procedure useful according to the subject invention typically includes the initial steps of isolating the DNA sample of interest and purifying it chemically. Either lysed nematodes or total fractionated nucleic acid isolated from nematodes can be used. Cells can be treated using known techniques to liberate their DNA (and/or RNA). The DNA sample can be cut into pieces with an appropriate restriction enzyme. The pieces can be separated by size through electrophoresis in a gel, usually agarose or acrylamide. The pieces of interest can be transferred to an immobilizing membrane.

[00049] The particular hybridization technique is not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied.

PCT/US01/18911

[00050] The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong non-covalent bond between the two molecules, it can be reasonably assumed that the probe and sample are essentially identical or very similar. The probe's detectable label provides a means for determining in a known manner whether hybridization has occurred.

[00051] In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include ³²P, ³⁵S, or the like. Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. In addition, the probes can be made inherently fluorescent as described in International Application No. WO 93/16094.

[00052] Various degrees of stringency of hybridization can be employed. The more stringent the conditions, the greater the complementarity that is required for duplex formation. Stringency can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G.H., M.M. Manak (1987) *DNA Probes*, Stockton Press, New York, NY., pp. 169-170.

[00053] As used herein "moderate to high stringency" conditions for hybridization refers to conditions that achieve the same, or about the same, degree of specificity of hybridization as the conditions "as described herein." Examples of moderate to high stringency conditions are provided herein. Specifically, hybridization of immobilized DNA on Southern blots with ³²P-labeled gene-specific probes was performed using standard methods (Maniatis *et al.*). In general, hybridization and subsequent washes were carried out under moderate to high stringency conditions that

allowed for detection of target sequences with homology to sequences exemplified herein. For double-stranded DNA gene probes, hybridization was carried out overnight at 20-25° C below the melting temperature (Tm) of the DNA hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula from Beltz et al. (1983):

[00054] Tm=81.5°C+16.6 Log[Na+]+0.41(%G+C)-0.61(%formamide)-600/length of duplex in base pairs.

Washes are typically carried out as follows:

- Twice at room temperature for 15 minutes in 1X SSPE, 0.1%
 SDS (low stringency wash).
- (2) Once at Tm-20°C for 15 minutes in 0.2X SSPE, 0.1% SDS (moderate stringency wash).

[00055] For oligonucleotide probes, hybridization was carried out overnight at 10-20°C below the melting temperature (Tm) of the hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes was determined by the following formula from Suggs et al. (1981):

[00056] Tm (°C)=2(number T/A base pairs) +4(number G/C base pairs)

[00057] Washes were typically carried out as follows:

[00058] (1) Twice at room temperature for 15 minutes 1X SSPE, 0.1% SDS (low stringency wash).

[00059] (2) Once at the hybridization temperature for 15 minutes in 1X SSPE, 0.1% SDS (moderate stringency wash).

[00060] In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment of greater than about 70 or so bases in length, the following conditions can be used:

Low:

1 or 2X SSPE, room temperature

Low:

1 or 2X SSPE, 42°C

Moderate:

0.2X or 1X SSPE, 65°C

High:

0.1X SSPE, 65°C.

[00061] Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch

can be tolerated. Therefore, polynucleotide sequences of the subject invention include mutations (both single and multiple), deletions, and insertions in the described sequences, and combinations thereof, wherein said mutations, insertions, and deletions permit formation of stable hybrids with a target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence using standard methods known in the art. Other methods may become known in the future.

[00062] The mutational, insertional, and deletional variants of the polynucleotide sequences of the invention can be used in the same manner as the exemplified polynucleotide sequences so long as the variants have substantial sequence similarity with the original sequence. As used herein, substantial sequence similarity refers to the extent of nucleotide similarity that is sufficient to enable the variant polynucleotide to function in the same capacity as the original sequence. Preferably, this similarity is greater than 50%; more preferably, this similarity is greater than 75%; and most preferably, this similarity is greater than 90%. The degree of similarity needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations that are designed to improve the function of the sequence or otherwise provide a methodological advantage.

[00063] PCR technology. Polymerase Chain Reaction (PCR) is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see U.S. Patent Nos. 4,683,195; 4,683,202; and 4,800,159; Saiki et al., 1985). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3' ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5' ends of the PCR primers. Since the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA fragment produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a

few hours. By using a thermostable DNA polymerase such as *Taq* polymerase, which is isolated from the thermophilic bacterium *Thermus aquaticus*, the amplification process can be completely automated. Other enzymes that can be used are known to those skilled in the art.

[00064] The polynucleotide sequences of the subject invention (and portions thereof such as conserved regions and portions that serve to distinguish these sequences from previously-known sequences) can be used as, and/or used in the design of, primers for PCR amplification. In performing PCR amplification, a certain degree of mismatch can be tolerated between primer and template. Therefore, mutations, deletions, and insertions (especially additions of nucleotides to the 5' end) of the exemplified ppolynucleotides can be used in this manner. Mutations, insertions and deletions can be produced in a given primer by methods known to an ordinarily skilled artisan.

[00065] The polynucleotide sequences of the instant invention may be "operably linked" to regulatory sequences such as promoters and enhancers. Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is "operably linked" to DNA encoding a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is "operably linked" to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is "operably linked" to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

[00066] <u>Polynucleotides and proteins</u>. Polynucleotides of the subject invention can be defined according to several parameters. One characteristic is the biological activity of the protein products as identified herein. The proteins and genes of the subject invention can be further defined by their amino acid and nucleotide sequences. The sequences of the molecules can be defined in terms of homology to certain exemplified sequences as well as in terms of the ability to hybridize with, or be amplified by, certain

18

exemplified probes and primers. Additional primers and probes can readily be constructed by those skilled in the art such that alternate polynucleotide sequences encoding the same amino acid sequences can be used to identify and/or characterize additional genes. The proteins of the subject invention can also be identified based on their immunoreactivity with certain antibodies.

[00067] The polynucleotides and proteins of the subject invention include portions, fragments, variants, and mutants of the full-length sequences as well as fusions and chimerics, so long as the encoded protein retains the characteristic biological activity of the proteins identified herein. As used herein, the terms "variants" or "variations" of genes refer to nucleotide sequences that encode the same proteins or which encode equivalent proteins having equivalent biological activity. As used herein, the term "equivalent proteins" refers to proteins having the same or essentially the same biological activity as the exemplified proteins.

[00068] It will be apparent to a person skilled in this art that genes within the scope of the subject invention can be identified and obtained through several means. The specific genes exemplified herein may be obtained from root-knot nematodes. Genes, or portions or variants thereof, may also be artificially synthesized by, for example, a gene synthesizer.

[00069] Variations of genes may be readily constructed using standard techniques such as site-directed mutagenesis and other methods of making point mutations and by DNA shuffling, for example. In addition, gene and protein fragments can be made using commercially available exonucleases, endonucleases, and proteases according to standard procedures. For example, enzymes such as *Bal*31 can be used to systematically cut off nucleotides from the ends of genes. In addition, genes that encode fragments may be obtained using a variety of restriction enzymes. Proteases may be used to directly obtain active fragments of these proteins. Of course, molecular techniques for cloning polynucleotides and producing gene constructs of interest are also well known in the art. *In vitro* evaluation techniques, such as MAXYGEN's "Molecular Breeding" can also be applied to practice the subject invention.

[00070] Other molecular techniques can also be applied using the teachings provided herein. For example, antibodies raised against proteins encoded by

polynucleotides disclosed herein can be used to identify and isolate proteins from a mixture of proteins. Specifically, antibodies may be raised to the portions of the proteins that are conserved and most distinct from other proteins. These antibodies can then be used to specifically identify equivalent proteins by immunoprecipitation, enzyme linked immunosorbent assay (ELISA), or Western blotting. Antibodies to proteins encoded by polynucleotides disclosed herein, or to equivalent proteins, can readily be prepared using standard procedures known in the art. The genes that encode these proteins can be obtained from various organisms.

[00071] Because of the redundancy of the genetic code, a variety of different DNA sequences can encode the amino acid sequences encoded by the polynucleotide sequences disclosed herein. It is well within the skill of a person trained in the art to create these alternative DNA sequences encoding proteins having the same, or essentially the same, amino acid sequence. These variant DNA sequences are within the scope of the subject invention. As used herein, reference to "essentially the same" sequence refers to sequences that have amino acid substitutions, deletions, additions, or insertions that do not materially affect biological activity. Fragments retaining the characteristic biological activity are also included in this definition.

[00072] A further method for identifying genes and polynucleotides (and the proteins encoded thereby) of the subject invention is through the use of oligonucleotide probes. Probes provide a rapid method for identifying genes of the subject invention. The nucleotide segments that are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures.

[00073] The subject invention comprises variant or equivalent proteins (and nucleotide sequences coding for equivalent proteins or for inhibitors of the genes encoding such proteins) having the same or similar biological activity of inhibitors or proteins encoded by the exemplified polynucleotides. Equivalent proteins will have amino acid similarity with an exemplified protein (or peptide). The amino acid and/or nucleotide identity will typically be greater than 60%. Preferably, the identity will be greater than 75%. More preferably, the identity will be greater than 80%, and even more preferably greater than 90%. Most preferably, the identity will be greater than 95%. RNAi molecules will also have corresponding identities in these preferred ranges. These

identities are as determined using standard alignment techniques for determining amino acid and/or nucleotide identity. The identity/similarity will be highest in critical regions of the protein or gene including those regions that account for biological activity or that are involved in the determination of three-dimensional configuration that is ultimately responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Below is a list of examples of amino acids belonging to various classes

Class of Amino Acid	Examples of Amino Acids	
Nonpolar	Ala, Val, Leu, Ile, Pro, Met, Phe, Trp	
Uncharged Polar	Gly, Ser, Thr, Cys, Tyr, Asn, Gln	
Acidic	Asp, Glu	
Basic	Lys, Arg, His	

[00074] In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not detract from the ability to manage nematode-caused diseases.

[00075] An "isolated" or "substantially pure" nucleic acid molecule or polynucleotide is a polynucleotide that is substantially separated from other polynucleotide sequences which naturally accompany a nucleic acid molecule. The term embraces a polynucleotide sequence which was removed from its naturally occurring environment by the hand of man. This includes recombinant or cloned DNA isolates,

chemically synthesized analogues and analogues biologically synthesized by heterologous systems. An "isolated" or "purified" protein, likewise, is a protein removed from its naturally occurring environment.

[00076] Recombinant hosts. The genes, antisense, and RNAi polynucleotides within the scope of the present invention can be introduced into a wide variety of microbial or plant hosts. Plant cells can be transformed (made recombinant) in this manner. Microbes, for example, can also be used in the application of RNAi molecules of the subject invention in view of the fact that microbes are a food source for nematodes

[00077] There are many methods for introducing a heterologous gene or polynucleotide into a host cell or cells under conditions that allow for stable maintenance and expression of the gene or polynucleotide. These methods are well known to those skilled in the art. Synthetic genes, such as, for example, those genes modified to enhance expression in a heterologous host (such as by preferred codon usage or by the use of adjoining, downstream, or upstream enhancers) that are functionally equivalent to the genes (and which encode equivalent proteins) can also be used to transform hosts. Methods for the production of synthetic genes are known in the art.

[00078] Where the gene or polynucleotide of interest is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, certain host microbes are preferred. Certain microorganism hosts are known to occupy the phytosphere, phylloplane, phyllosphere, rhizosphere, and/or rhizoplane of one or more crops of interest. These microorganisms can be selected so as to be capable of successfully competing in the particular environment (crop and other habitats) with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing a polypeptide of interest, and, desirably, provide for improved protection of the protein/peptide from environmental degradation and inactivation.

[00079] A large number of microorganisms is known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots) of a wide variety of important crops. These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylophilius, Agrobacterium, Acetobacter, Lactobacillus,

Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., genera Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are the pigmented microorganisms.

[00080] Methods of the subject invention also include the transformation of plants or plant tissue with genes which encode the RNAi molecules of the present invention. In one embodiment, the transformed plant or plant tissue expresses antisense RNA and/or RNAi. Transformation of cells can be made by those skilled in the art using standard techniques. Materials necessary for these transformations are disclosed herein or are otherwise readily available to the skilled artisan.

[00081] Additional methods and formulations for control of pests. Control of nematode pests using the RNAi molecules of the instant invention can be accomplished by a variety of additional methods that would be apparent to those skilled in the art having the benefit of the subject disclosure. A "cocktail" of two or more RNAi molecules can be used to disrupt one or more of the genes identified herein. The "cocktail" of RNAi molecules may be specific to segments of a single gene or the entire gene. A "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) is also encompassed by the instant invention. In another embodiment of the instant invention, the disclosed RNAi molecules, cocktails, and/or multigene cocktails thereof, may be used in conjunction with other known nematode control agents and methodologies. Such cocktails can be used to combat the development of resistance by nematodes to a certain inhibitor or inhibitors.

[00082] Compositions of the subject invention which comprise RNAi molecules and carriers can be applied, themselves, directly or indirectly, to locations frequented by, or expected to be frequented by, nematodes. Microbial hosts which were transformed with polynucleotides that encode RNAi molecules, express said RNAi molecules, and which colonize roots (e.g., Pseudomonas, Bacillus, and other genera) can be applied to the sites of the pest, where they will proliferate and be ingested. The result is control of the pest. Thus, methods of the subject invention include, for example, the application of recombinant microbes to the pests (or their locations). The recombinant microbes may also be transformed with more than one RNAi molecule thereby delivering a "cocktail" of RNAi molecules to the nematode pests. A carrier may be any substance suitable for

- [00089] 1. Grow Agrobacterium overnight in 5 mls LB + antibiotics at 30°C on shaker (for Agrobacterium rhizogenes strain K599 no antibiotics are needed).
- [00090] 2. Use the 5 mls of overnight culture to inoculate 500 mls LB + antibiotics at 30°C on shaker. Grow overnight.
- [00091] 3. Add liquid culture in eight 50 ml polypropylene orange cap tubes.
- [00092] 4. Centrifuge 10 min., 4000 rpm, 4°C.
- [00093] 5. Resuspend cells in each tube with 20 mls 10% glycerol (on ice)
- [00094] 6. Centrifuge 10 min., 4000 rpm, 4°C.
- [00095] 7. Resuspend cells in each tube with 10 mls 10% glycerol (on ice).
- [00096] 8. Centrifuge 10 min., 4000 rpm, 4°C.
- [00097] 9. Resuspend cells in each tube with 2 mls 10% glycerol (on ice).
- [00098] 10. Aliquot 50 µl into cold Eppendorf tube and place onto dry ice.
- [00099] 11. Store electro-competent cells at -80°C. These cells can be used for up to two years.

[000100] Electroporations:

- [000101] 1. Add 1 μl to 5 μl of DNA (resuspended in H₂O and not TE or other buffer) to 50 μl of Agrobacterium electrocompetent cells and mix.
- [000102] 2. Transfer 20 µl of DNA/Agrobacterium mix to cuvette.
- [000103] 3. Electroporate:
- $25\mu F$, 400 Ω resistance, 2.5 volts (0.2cm cuvette) or 1.8 volts (0.1cm cuvette for BioRad electroporator. 330 μF , 4000 $k\Omega$, low W, fast charge rate for BRL Electroporator.
 - [000104] 4. Add 1ml of LB and transfer to Eppendorf tube.
 - [000105] 5. Shake at 30°C for 2 hours.
 - [000106] 6. Centrifuge down cells (2 min. 14 krpm).
- [000107] 7. Plate all onto LB + antibiotics (most Agrobacterium strains are naturally streptomycin resistant).

Example 3 - Protocol for Production of Transgenic Hairy Roots on Soybean

delivering the RNAi molecules to the nematode. Acceptable carriers are well known in the art and also are commercially available. For example, such acceptable carriers are described in E.W. Martin's *Remington's Pharmaceutical Science*, Mack Publishing Company, Easton, PA.

[00083] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.

[00084] Following are examples that illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1- Production of Hairy Roots for RNAi Testing

[00085] A hairy root assay system was developed for testing the anti-nematode activity of RNAi molecules.

[00086] Agrobacterium rhizogenes: Several Agrobacterium rhizogenes strains produce hairy roots on a variety of plant species. A. rhizogenes strains, A4, 15834, 8196 and LBA4404 demonstrate hairy root development on tomato and sugar beet, with A4 being the most efficient. The A. rhizogenes strain K599 demonstrated very efficient formation on transgenic soybean hairy roots and was also effective on sugar beet and Arabidopsis. However, stain K599 failed to produce hairy roots on tomato tissues possibly due to hyper-virulence.

[00087] Hairy root production: Transgenic hairy roots were identified by stable GUS expression in tomato, sugar beet, soybean and *Arabidopsis*. The construct pAKK1401 (pNOS / NPT-II / tNOS // pSU / GUS / tNOS) was used to produce hairy roots when transformed into *A. rhizogenes* strains A4 or K599. Transgenic roots were identified by GUS expression.

Example 2 — Protocol for Electro-competent Agrobacterium and Electroporation [00088] Electro-competent Agrobacterium Protocol:

[000108] Seed Sterilization. Rinse the soybean seed with 70% ETOH for 2-5 min. Remove and add 20% Clorox and shake for 20-25 min. Rinse 3X with sterile water. Plate the seed, 5 seed per plate, onto ½ MSB5 + 2% sucrose + 0.2% gel (referred to as ½ MSB5). Place seed into chamber at 25C, 16/8 photoperiod for 5-7 day (depending on genotype) germination period. After 1 week seedlings can be placed into cold room for longer storage if necessary (not to exceed 2 weeks).

[000109] Agrobacterium Preparation. For Agrobacterium rhizogenes strain K599, take a small sample from frozen glycerol into 25-50 ml of NZYM media with 50 mg/L kanamycin in a 125-250 ml Erlenmyer flask. Place onto shaker at 28-30 °C for 16-20 hours. Pour sample into centrifuge tube and centrifuge the bacterium at 4000 rpm for 10 min. Pour off supernatant and re-suspend the pellet with an equal volume of liquid ½ MSB5 + 200 µM acetosyringone. Use pipette to re-suspend the pellet and homogenize the sample (remove all clumps). To determine O.D., prepare a 1:10 dilution by putting 900 µl ½ MSB5 into cuvette and add 100 µl of bacterial sample. Determine the O.D.660 and calculate the volume needed to adjust (dilute) OD to approximately 0.2 for inoculation. Check final O.D.

[000110] Explant Preparation and inoculation. Place a sterile filter paper onto plates of 1/2 MSB5. Cut soybean cotyledons just above the shoot apex and place onto plate. Lightly scar the cotyledon's abaxial surface (flat side, upper surface that reaches toward sun) with a scalpel blade. Cut each cotyledon transversely into 2-3 pieces (no smaller than 1 cm). Add approximately 10 ml of prepared bacterial solution to each plate and allow cotyledons to incubate for 1 hr. Remove the bacteria using a vacuum aspirator fitted with sterile pipette tip, ensure that there is no standing liquid. Orient all explants with abaxial surface up and wrap plates for a 3 day co-culture, 25°C in light (16/8 photoperiod).

[000111] Hairy root selection and maintenance. After 3 day co-culture, wash explants with liquid ½ MSB5 + 500 mg/L carbenicillin. Transfer the explants abaxial side up to selection media, ½ MSB5 supplemented with 500 mg/L carbenicillin and 200 mg/L kanamycin. Roots should develop in approximately 2-3 weeks. The roots will form primarily from the cut vascular bundles with other roots developing from the small cuts on cotyledon surface. Remove roots (>1cm in length) and place onto replica media with

transfers to fresh media every 2 weeks to prevent *Agrobacterium* overgrowth. After 6-8 weeks on selection the roots can be moved to media without kanamycin, however carbenicillin must remain in media for several months for continued suppression of *Agrobacterium*. At this stage roots can be used for testing RNAi for nematode control. Sterilized nematodes can be added and observed for RNAi affects.

Example 4 — Testing of RNAi for Plant Parasitic Nematode Control.

[000112] Various types of nematodes can be used in appropriate bioassays. For example, Caenorhabditis elegans, a bacterial feeding nematode, and plant parasitic nematodes can be used for bioassay purposes. Examples of plant parasitic nematodes include a migratory endo-parasite, Pratylenchus scribneri (lesion), and two sedentary endo-parasites, Meloidogyne javanica (root-knot) and Heterodera schachtii (cyst).

[000113] C. elegans: RNAi vectors can be tested through expression of the RNAi in E. coli. C. elegans are fed E. coli and assayed for their growth by measuring growth of nematodes, production of eggs and viability of offspring. Another approach is to inject dsRNA directly into living nematodes. Finally, soaking nematodes in a solution of in vitro-prepared RNAi can quickly establish efficacy of treatment.

[000114] P. scribneri: The P. scribneri in vitro feeding assay uses a corn root exudate (CRE) as a feeding stimulus and both the red dye Amaranth or potassium, arsenate as feeding indicators. Feeding is confirmed after seven days by the presence of red stained intestinal cells in live worms exposed to the Amaranth or death of worms exposed to arsenate. This bioassay is used to test soluble toxins or RNAi. P. scribneri has also been cultured on wild type roots of corn, rice and Arabidopsis, and on A. rhizogenes-induced hairy roots of sugar beet and tomato. P. scribneri is very valuable in evaluating transgenic hairy roots because of the non-specific feeding of these worms.

[000115] *M. javanica*: Nematode eggs are sterilized using bleach and are used to inoculate hairy roots expressing RNAi. Nematodes are assessed for their growth by measuring knots, egg masses or production of viable eggs. An alternative approach is to microinject dsRNA directly into root feeding sites or into living female nematodes.

[000116] H. schachtii: Cultures of this nematode were maintained on sugar beets. Nematodes eggs are sterilized using bleach and used to inoculate hairy roots

expressing RNAi. Nematodes can be assessed for their growth by measuring knots, egg masses or production of viable eggs.

Example 5 - Plant Expression Vectors for RNAi

[000117] Modular Binary Construct System (MBCS): An important aspect of the subject disclosure is the Modular Binary Construct System. The MBCS eases the burden of construct development by creating modular pieces of DNA that can be easily added, removed, or replaced with the use of low frequency cutting restriction enzymes (8-base cutters). These constructs are useful for delivery of a variety of genes to plant cells and is not limited to the delivery of RNAi genes. To develop this system, a series of six, 8-base cutter restriction enzyme sites was placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid (Figure 1). The production of both kan^R and tet^R MCBS aids the testing of constructs using different strains of Agrobacterium rhizogenes in different plant species. In addition to the MBCS, a series of shuttle vectors were created that aid in the cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8base restriction sites (Figure 2). With six 8-base cutter sites, each site is, preferably, reserved for a particular function (Figures 3 and 4). Because of the close proximity of the Pme I and Sgf I sites to the left and right border of the binary vector, these sites are, preferably, reserved for gene tagging and enhancer trap experiments. The Not I site is, preferably, reserved for plant selectable markers (Figure 5). The Pac I site is reserved, preferably, for Plant Scorable Markers (Figure 6). The Asc I site is, preferably, reserved for RNAi experiments (Figures 7 and 8), while the SbfI site is, preferably, reserved for anti-nematode proteins. The restriction sites that are denoted in the Figures are, preferably, reserved for the denoted insertions; however, the MCBS binary and shuttle vectors do not require the restriction sites to contain these suggested inserts.

[000118] Plant Selectable Markers for MBCS: To further develop the MBCS, a series of plant selectable markers were added to the MBCS (Figure 5). Plant selectable markers that were added to the MBCS include: pNOS/NPT-II/tNOS (kan^R), pNOS/Bar/tNOS (basta^R for dicots), pUBI/Intron-Bar/tNOS (basta^R for monocots), and pUBI/Intron-PMI/tNOS (mannitol isomerase^R).

[000119] Reporter Genes for MBCS: Four exemplary reporter genes are used in the MBCS are provided in Figure 6 and Appendix 2. GUS, a nuclear localized GUS, GEP, and the anthocyanin transcriptional activator *papIC* genes into the MBCS.

[000120] <u>Promoters for MBCS</u>: We cloned several useful constitutive and nematode-inducible promoters (Figures 6, 7 and Appendix 2). Constitutive promoters include the SuperUbiquitin promoter from pine (pSU) and two promoter regions from the Strawberry Banding Vein virus (pSBV₁ and pSBV₂). Seven nematode-inducible promoters from *Arabidopsis* were also been cloned.

[000121] The following Scorable marker clones have been constructed and placed in the MBCS, NPT-II binary vector (pNOS/NPT-II/tNOS):

Intron/GUS/tNos	Intron/NLS-GUS/tNOS	Intron/GFP/tNOS
pSU/Intron/GUS/tNOS	pSU/Intron/NLS-GUS/tNOS	pSU/Intron/GFP/tNOS
pSBV ₁ /Intron/GUS/tNOS	pSBV ₁ /Intron/NLS-GUS/tNOS	pSBV ₁ /Intron/GFP/tNOS
pSBV_/Intron/GUS/tNOS	pSBV_/Intron/NLS-GUS/tNOS	pSBV ₂ /Intron/GFP/tNOS
pKT/Intron/GFP/tNOS		
pKA/Intron/GFP/tNOS		

Example 6 - Control of Plant parasitic nematodes using RNAi in planta

[000122] <u>Production of RNAi Vector</u>. The RNAi shuttle vector to be used is adapted from the Modular Binary Construct System (MBCS - See Example 5). RNAi shuttle vectors preferably comprise a promoter, intron, antisense RNAi, stuffer fragment, sense RNAi, and terminator (See Figures 7 and 8 and Appendix 2 for more details). The plant promoter can be constitutive, tissue-specific or nematode-inducible. The intron is necessary to eliminate expression in *Agrobacterium*.

[000123] The anti-sense and sense RNAi molecules comprise nematode-specific sequences and are disclosed herein. These genes are associated with pathogenesis, growth, or other cellular function in nematodes. An exemplary group of RNAi sequences for use in plant/nematode control may be based upon:

- [000124] 1. Genes specific for nematode esophageal gland cells.
- [000125] 2. Genes specific for plant parasitic nematodes but not other free living nematodes.

- [000126] 3. Genes common to all plant parasitic nematodes.
- [000127] 4. Genes common to all nematodes (nematode-specific).
- [000128] 5. Genes specific for important tissues or cell types.
- [000129] 6. Genes from large gene families.
- [000130] 7. Genes involved in nematode signal transduction or other cellular pathways.

[000131] Appropriate RNAi constructs allow for the formation of dsRNA molecules (the sense and antisense strands join to form the dsRNA). The terminator sequence adds a poly-A tail for transcriptional termination. The RNAi shuttle vector can then be subcloned into the MBCS and transformed into Agrobacterium rhizogenes.

[000132] Plant Transformation with RNAi Vectors. An exemplary transformation system for generating hairy roots using Agrobacterium rhizogenes is provided below. The RNAi vector once introduced into the MBCS can subsequently (as a binary vector) be transformed in A. rhizogenes using, for example, the electroporation protocol of Example 2. Once the A. rhizogenes is confirmed to contain the plasmid, it is then used in generating hairy roots (See Example 3). Using this protocol transgenic hairy roots expressing RNAi are isolated, cultured and tested.

[000133] Testing of RNAi Vector for Nematode or Plant Pathogen Resistance. RNAi expressing hairy roots can be inoculated with sterilized nematodes. Infested hairy roots can be observed and the effect on nematodes determined. An alternative approach involves the microinjection of RNAi directly into root feeding sites (giant-cells for root-knot nematode, and syncytia for cyst nematodes) or into living female nematodes.

Example 7 – Insertion of Genes Into Plants

[000134] One aspect of the subject invention is the transformation of plants with genes encoding proteins of the present invention. Transformation of plants as described herein can be used to improve the resistance of these plants to attack by the target pest.

[000135] Genes, polynucleotides, and/or RNAi molecules as disclosed or suggested herein can be inserted into plant cells using a variety of techniques which are

well known in the art. For example, a large number of cloning vectors, for example, pBR322, pUC series, M13mp series, pACYC184, pMON, etc., are available for preparation for the insertion of foreign genes into higher plants via injection, biolistics (microparticle bombardment), Agrobacterium tumefaciens, or Agrobacterium rhizogenesmediated transformation, or electroporation as well as other possible methods. Once the inserted DNA has been integrated into the genome, the genetically modified-cell(s) can be screened via a vector carried-selectable marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G418, bleomycin, hygromycin, chloramphenicol, or bialophos, inter alia. The transformed cell will be regenerated into a morphologically normal plant. The transgene(s) in the transgenic plant is relatively stable and can be inherited by progeny plants.

[000136] If a transformation event involves a germ line cell, then the inserted DNA an corresponding phenotypic trait(s) will be transmitted to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

[000137] It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.

We claim:

- 1. An RNAi molecule, optionally comprising a linker, wherein at least one strand of said RNAi is encoded by a DNA sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 139.
- 2. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 1.
- 3. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 2.
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 3.
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
- 7. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 6.
- 8. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 7.
- 9. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 8.
- 10. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:9.

	32
	11. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
10	

- 12. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 11.
- 13. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 12.
- 14. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 13.
- 15. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 14.
- 16. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 15.
- 17. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 16.
- 18. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 17.
- 19. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 18.
- 20. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 19.
- 21. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 20.

33 22. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 21. 23. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 22. 24. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 23. 25. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 24. 26. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 25. 27. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 26. 28. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 27. 29. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 28. 30. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 29. 31. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 30.

32. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

31.

^	
•	4

32.	34 33. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
33.	34. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
34.	35. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
35.	36. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
36.	37. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
37.	38. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
38.	39. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
39.	40. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
40.	41. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
41.	42. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
42.	43. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

35 44. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 43. 45. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 44. 46. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 45. 47. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 46. 48. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 47. 49. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 48. 50. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 49. 51. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 50. 52. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 51. 53. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 52. 54. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

53.

57. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 58. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 58. 60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 59. 61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63. 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65. 66. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 67. 68. 69. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 69. 60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 60. 61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63.	54.	55. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
58. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 57. 59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 58. 60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 59. 61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 50. 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 51. 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 52. 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 53.	55.	56. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 58. 60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 59. 61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 50. 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 51. 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 52. 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 53.	56.	57. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
 60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 	57.	58. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 66. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:	58 .	59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
 62. An RiNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63. 65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 	59.	60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
 63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 	50 .	61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:	51.	62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:	52 .	63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
•	63 .	64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
	64.	65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO

	37
65.	66. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
66.	67. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
67.	68. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
68.	69. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
69.	70. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
70.	71. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
71.	72. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
72.	73. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
73.	74. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
74.	75. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
75 .	76. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

76.	77. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
<i>7</i> 7.	78. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
78 .	79. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
79 .	80. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
80.	81. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
81.	82. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
82.	83. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
83.	84. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
84.	85. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
85.	86. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
86.	87. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

- 88. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 87.

 89. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 88.

 90. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 89.

 91. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 90.

 92. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 91.
- 93. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 92.
- 94. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 93.
- 95. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 94.
- 96. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 95.
- 97. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 96.
- 98. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 97.

- 99. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 98.
- 100. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 99.
- 101. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 100.
- 102. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 101.
- 103. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 102.
- 104. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 103.
- 105. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 104.
- 106. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 105.
- 107. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 106.
- 108. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 107.
- 109. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 108.

- 110. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 109.
- 111. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 110.
- 112. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 111.
- 113. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 112.
- 114. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 113.
- 115. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 114.
- 116. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID. NO: 115.
- 117. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 116.
- 118. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 117.
- 119. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 118.
- 120. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 119.

- 121. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 120.
- 122. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 121.
- 123. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 122.
- 124. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 123.
- 125. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 124.
- 126. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 125.
- 127. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 126.
- 128. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 127.
- 129. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 128.
- 130. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 129.
- 131. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 130.

- 132. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 131.
- 133. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 132.
- 134. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 133.
- 135. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 134.
- 136. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 135.
- 137. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 136.
- 138. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 137.
- 139. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 138.
- 140. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 139.
- 141. A transgenic plant or transgenic plant tissue comprising an RNAi molecule according to any of the preceding claims.

μ,

- 142. A method of disrupting cellular processes in a nematode comprising the steps of:
- (a) 'providing a composition comprising a compound according to any of the preceding claims; and
 - (b) contacting a nematode with said composition.
 - 143. An isolated promoter comprising the following nucleotide sequence:

aacagcccaagataacagaaaagtcaaaggtgttcgaaa qaccacttqtgactaaggatcatttcatccataattatctggtagca cagactcatgataactgcgaggaacacaagttctttacagtcgattc aaagacactttctctttacggtttcattgaaggagccgacccagaat atgtcagagaagcttttcactgtgggttaatttcattaatctatcca ggtgaaaacctcaaggagatctctcttctcccaaaagacctctacag ggcaatcaaaaactacagaaccagagtttgtagtgcacagagtagac caatctacctgagaatcacgagtaccttcctagagtgggaaaatgat gacatecttattecataceaetggattgaggtaggaetatecaatgg aaaaattccatgggacaagtcatataagaagaccgcaacagtcgagt atcttccagagataactgcactcagacctaaaaggataaaagcagta tataatcagtgtactaagatcttcgcagattcaaagaagaagcttaa ctatgctgatgacaagataattctaataagcaattattcagaattaa tcaaggagaaagaattaataactctttcagaatatgaagcccgcttt acaagtggccagctagctatcactgaaaagacagcaagacaatggtg tctcgatgcaccagaaccacatctttgcagcagatgtgaagcagcca gagtggtccacaagacgcactcagaaaaggcatcttctaccgacaca qaaaaaqacaaccacagctcatcatccaacatgtagactgtcgttat gcgtcggctgaagataagactgaccccaggccagcactaaagaagaa ataatgcaagtggtcctagctccactttagctttaataattatgttt cattattattctctgcttttgctctctatataaagagcttgtatttt catttgaaggcagaggcgaacacacacagaacctccctgcttaca aaccatgtattgtagctaaacctcttaggag.

45 144. An isolated promoter comprising the following nucleotide sequence:

tggtggggacaatggatccggtctgcgtagcaacaaggctg aaaaagattaaacagaaacctgtgatcattagcgttggaccaccacc aaaacctcctgagccaccaaagcctccagagcctgaaaaaccaaagc ctccaccagcacctgaaccaccaaagcatgtatgcaagccaccttac tgcaacagttgtgatgttgtgtctgttactacctatgaaagtggaag eggetgeaceattetttgagteatatategegtaceatageetteat gttaagtcctgtatttagccaatactaattcatcatgttctcatgct ctcccctgtttataattagtcgcttctttgacacaagaagtctcatg agttcatgctaaagaaaataaaagttcaaattaaaacaccaaatgtt tgattaatttccataaacctgtgaagcagaaagttagtcatgttgac ctgaacagagcttaggaagtccttgaaggacatatcttcaagtgcta ttgggtcgtagcactcttaggcccattaacttcattgagcccattaa attatgcaaaacaagaaatgagacatatggaaacattagggttctta caggaaaaaataggaaaaagcagggacaactaaacaaaaattcagaa acaagaggcaagtggacgaccacggcgtaagatcaacatgtggtgat gtgcatgagaccaagaccattttttctcgttcttcaacgcacacttg gtcttttcttatgtttgttgcatttctttattaggcagaccctctct cattttgagttaaaacctaaacttatagtaagcatttgtagagtgaa tttcctatacgacatctatcaacatgacctctaaccaaaaaatatt gatgaaactactttaagtagtaaaacctaaagcaattaaaatttcct ttaaattagtagtttgtgtaaattaattgacatgattgcgtcgaaag aaatcaaaacagttatatcgtgaacttaggagaatgttttatatcgt gtttcaacacatgattgctagcatatgtgtaggtgtcgtagacgtta cataacaatcatcactcgtaaatatcaaagtggtttctgagagaaac aaagggttatgattttcccaactgcactagttgtgtattgtttcttt cacacgtatgcttctgagttctgcccaaaqtqqaaattaaaqcaqaq ttgggagagatcataatttattagggttcgttatgctcaagtcatga cgtaaaatgaaaatttgtttttattctttcaccaacacaaagaatag ctagttatctcttttttatatataacaattcatgaagttgatcagc tttatacacatcatccaatcgaattgctaatctagagatggaaatat caggatagagccaataagatatcaaatccaatggacccattttctcc atgtgctaattcatacaatctgtttttgtctgctttatttgatgatg atgctgagcgtttttaagtgtgaactaagatctagctaaccaaacaa aagatggtctcttctgtctttgtcgtataagagcaagagtggttt gattcaatttttaaaattctaaataaaactccaaccqtqaatccaqc catgaaactctttttagaaaatccttttttataacaaataattcctc tgcttcttcttcttcgtttatttcaccttttttggtttctttag ctcagaaaaagcccattctttttttctattcttqtttattttaatca tactgtgcgtttctacaaagtttgttcctttcttcttcaactctctc actcacagtcacagagatctgtttcttttttttttttcactc. ttctcttccagt.

٠d

46

145. An isolated promoter comprising the following nucleotide sequence:

taatccattttcagtttttgcaggatcattcatggaggttaatgcta gtggtcagccatgggcttggatggccaaagagtctggcttgaatggc agtgaaggaataaagagcgtttgcaacttaagctctgtggaaatttc agatggaatggatccaacaatccgatgcagtggcagtattgttgaac ctaaccaatccatgtcatgcagcatatcagattcatcaaatggctca ggcgcagttctgcgtggaagctcatctacttccatggaagattggaa ccaaatgagaacccacaacagtaatagcagcgagagtggatcaacaa cgctgatcgtaaaggccagttatagagaagacactgtacgtttcaag ttcgagccatcagttgggtgtcctcagctctacaaagaagttggaaa acgttttaaactgcaggacgggtcgtttcagctgaagtacttggatg atgaagaagaatgggtgatgctggttacagattctgatctccaagaa tgtttggagatattacatggtatgggaaacactcggtgaagtttct cgttcgtgatttgtctgccctctaggtagttctggtggcagtaatg gttatgtattcccagtgaaagaatgttgtttatttctctagatatta gtatgcttataaataggcatgaaggagaaagacaattttggtatagt ggagttcagcagaaaatgtatatgttttttcgttttatatgaatcag agaataaaagttggatgttatatctacgttgctaatgttgtacctgc tcacccatctttcatataagaaaagagaacacttttagttatccctg tgatgcagaatcgtattctttgttatctctccattcctgtggaaacc aacaaagtcaactaaatttcggtttaattggttggtttttaagtcaa cgaggacttgattttagttgggcttgggcctataattgtgttcatca ttgggttttttcccccttatcagtttaacgtccatatccatatcttt ttctttttttaacggcaaagttcatatccatatcttatgatgtgcct aaaagagggagaagatgcgaagacagaattttcatatttgaaagggt tcgatatcgatattgggaaacgaatcaaggtcaaaaaactcagtcta atagttgaaatttaaaaattttattaattcaatccgattggtttcgt tttgttatggttcggttctatatcatcaaaccaatcggtttggtcct aaagataattataaatattcaccaacaccagtgttaaacacatatca acaaacctaaagttagataaacaaagaga.

· ;¦

146. An isolated promoter comprising the following nucleotide sequence:

aattggcactcttcttctgctgggttccaaaagaaacgaat caatatgtgcaacaagaagagctccagaagcagtcatcttctaaaat cttaatctaacaacagctcaagaagaaaaaaattccatagctagaga gaacacaaagtcacaagacgacgtcgtagaggcacaaagtcaaacct gaatggcttaagccgaactgagtggttttgactagaccatcatcaga aaagtctccaagacggtagtcggatgttagatcgctcaagtaatttt tggttttgttggtctcacgttttcagctgcccatttgatttcagttt gggcttttccttatctctaaaggcccaatttcatttaggtttagttt atttgatcattatccttactataaaggcttcgcctttcgagaaattt agggtttcttctgtctgtctcgtcactcaggtttgtgcctcaacgac tgcttcacttctagcttgattcttcttcttcgtttatatgtatactg tacattagattattcttgtttctcgagcttctgctatagattttgat tcttttttttgttgtctttgtttcgtttccaggatcagatcttagct aaattgagacaagctcaaaatgaggtacttgacgcatctcttacatt cactgtttaattagagaacaatacgtctctgaatcgtgattcagaga cgtattgttcttctgtcatatgcaataagtttaattagagaacaata cgtctctgaatcgtgattgttttttggatgtgcgttattgatagctt tatgatgttaatagtctaggattgacacgaagttgttctgcagtttt gcataaatgctctttactaaggcctctaaatttggatgacaaatcta tatggtagtgtctataatgtgggttgttcatgttgaggttgtcaatg ttgtgtattttgtttgtttagttaatttgcttaactctgttctttg tgggttaatacagtaagcttcagagtgaggccgttcgtgaagccatc actactatcacagggaaatccgaggcaaagaaacgtaactttgtcga gactattgagctccagatcggtctgaagaactatgaccctcaaaagg acaagcgtttcagtggatctgtcaagttaccacatatcccccgtcct aaaatgaagatetgeatgeteggagatgeecageatgttgaagaggt gatatatcttttcatggaaattgatcattttgtgctctgtttcttgt ataatggttttgtgctcatttcatttggtggctctattagtttcatt tgatgttgtatatgtcttctgaatgtagatgcatgatgttttcggaa tttggtcattgtttatttaggcttcatttcttgcataattaaatatt tgcttatttcatcttgtatcttttcgtaggctgagaagatggggttg gaaaacatggatgttgagtctctaaaaaagcttaacaagaacaagaa actcgtcaagaagcttgcaaagaaataccatgctttcttggcctctg agtctgtcattaagcagattcctcgtcttcttggtcctggtcttaac aaggcaggcaagttctggctacagctaatattccattgttcttcttt acatccgttttgattttggataggttttagtagtctatttcttttgt caatgtctttttgatacaatgccaatcctttatcctgtgagattatg cttctttgatgattcttaagtaacattcctttgctttactttacaca ggaaaattcccaactcttgtgagccaccaggaatccttggagtcaaa ggtgaatgaaacaaggcaacagtgaagttccagctgaagaaggttc tgtgcatgggagttgcagttggtaaccttt.

. .!

147. An isolated promoter comprising the following nucleotide sequence:

!tggcaaactgagatataagagggaaggtgattttcatgcaa atttttttttattttttttgaatgaatgcaaaatttattcaaaaa aaaaaaacctgggctacatcaagtacttcatttctgagtttttgaaa aatctaaagacaacaaagactttacaatttaataaaaaaataataa aaatactttatcactctcaacgaaattgttgatttaataacgtatct cttqqtaaaacaqcqttttatttqacqaaattgttataaatgaataa aatgataatagaaactagtgtggtacgtaaaatacctctcatttggc aaaataacggttatgtatcatgagtattgcatacgacagcgtgctta aataqtqtqctttcaqqaqaaaatatataccaaqttatttqctqaaa ttaccacgcaaatctgaggttcgaatggcaaaataaaaaaccaatgt catttccttaatgtattaaggtcatttaaataaaattgtacactttt ttcacctgtaagcgttccaaagtgtagaatggataactagaagggtc aaaggtataatattaataagcgaactcactttttgcccaagtgattt cacttcttacatttgcttgatataqttacccaaaagtgtatatatat tcccttatacaattgttctattttctggattataaggggaataagaa aaaagaaaagagagtatataataatacttttataaagtgatgtta gattctaatttgtaacgaaaagttcaaagtgaaagaaaaaacgaaaa agtttttctgttttgttttatatctatagccaagaaagtttctcaga tttacaagaagttaactgagaaaaacaaaaaaaaaacttatgaagca tgaaagactaattaacgaggtgattaattttgagacaaattaaacat cgaattaaaagtaacatttggagggtttatatgttatatatgtgaca tgataagtccgattcatgactaatgtatatctggaatctaacatgga agaatagagaacgaagcagagccaaggtcaacttgccaqacacgaat caacagattgtgaatgagaccaaatcaatggtcataaaccggttggg tttaaaccggcaagtcatccttggctcaattccattcgttattcctt catgcaagaccctctgatacaaccaaagactcccattacaatattct ttcgatcacgagctacttattttcaaatgtgttacctctttcgtgac tettgtgttgtgtggtaaagectagtegagatgtgteggtatatata ggcatacatatacaaatgcgacaaaataagtatattatattgtttaa tttctatattccatttctatatgcatggctgggatttttgaccaaaa ccctaattcaagaatagaatccaaaagatgggatcaaagaatataat ctaatgggctgaccacattttccgatttaattcgcatagttaatatt gaaatacagatataagatggtcgtagaaaccagtagaggaatttcat ttttcgtggataagtggaatattaataagagaatggtctttactctt tacagtgggaaatgggaatagtagcccattataatttcatcagattc tatatatgcatgtttgtataagctaaaataaatacgtttaagcattc ttcaaaaaaatttacaagttctagagactctcttaacgtcggcaatt tatattctactttacatgacactttcaggaaaagaaactatactca ctagcagatcattaaattttctttttttttttttaatgaaccttag ttgtggtttttatttttgttagctagaaacttcagtgtttttttcc gccaatggtagtgctttgatgatggtccgg.

· il

49
148. An isolated promoter comprising the following nucleotide sequence:

caatcaaggtaacgaaggaggatcagcgaaaggatgggcta tatttggagttttttcctgcgtgtaagtaatgctttgtgatcttcca tgcggacatataactgaagaataaactcaactcattgtgttctggtg tgtttcttctgatcagattcctcgttgcatctgcacttttctgctgt gggggctttatttataaaacaagagtagagcgtgtggtaatcttcat atctttctacaattccacttccattctctaattattctctcacgtga tatacacacactcaatcactgatgtactcgtatggatgcagcgtgga actgatgcattgccggggatgtcacttctatcgggcttactagaaac tqtaagtattacaagaaaactcaaaaggattccatttatgcaaaatc taagagaaagctcactgtggtctttggttacaatttatggatctctc aagagacaaatgctatgtaagctaattgattttggtcttgataaaca ggtgagtggaagtggacaaagctactcaagaactgaagacatcaaca atgettttgecaatgaagteteatgggaeegetetteegeatettet actcaagcgacaacaacacagagaccaagtgaaagaacatatggtgc gatctaattttgtcaagtgcctcacaagaggtactgtttcaagccat ggtatggcacgcttgtgatctgcgatttctggattttgctttgtatg tttattttctaccttctagaaagaggtcaaaaagttaatagcttcac cgtgagaatgttgttttcaccagattcatgtgctatgatagaaaaag acaaagcaaacaagagttctttctttgcttaggttacaagaacaaga qtatcqttataaagtcaacaaagattgaaacatatttttgtca?ggg agtggttagaatctcttcctactctcttgcctttctcactaagacaa aaaaaagacttggactttgtctaaggttttgtggatattattaacca agtccttttgcaaaagtaatattgttttttcgcattcctctttag aatttagtttaatctaggctttatattggttattactttcttgaaaa atgatetgtttattctattcatacttggttacctcgctttttatctt acttctacaaaaggattatcagtgaaagttagtctcttactctcacc ttccgaaaataaaacaaaaatatcgatacttctagatcaaaccaagt tgattaaaacatccctattccctacgattctgatcttgagatatatt atcatgttaagatctaaattgacaagaaaactgatttttcatttcta gtaggaaaaataattactattagtgatcatgattgtcgaccgtaaga ggtggtttagttactctccatctttctttgaagaagtcagaaagtca gaaattatatcaaattaaacatcaatattgaacacatatatctgtat ggttttatgtttagaaaattccaatatttatatattcctagggaaaa agaagcttattcttcaaattattgttatgagtcgttaaaatatggat aaaaatataaagtctaaatattaaaaaactcagtttgctttgctttta aaaaggtttattagtcaaacttagcatgcaatgctgggtaccaaacc caagcattagtctcttttaatcttctttttctccaataagtttttac aatttttaattgtttgcatttcccttgattatttatcttcatcccaa tttagctaataccaactccgtttcttattcttccaagtcttttccta tcttctcatttcctcat.

٠.,

50
149. An isolated promoter comprising the following nucleotide sequence:

atgttgtgagtgaaggagaagaagagggaaacaaaggtatt tatttgtagcgagttttgttttgtgacgcggttttgtctgtgttcaa tgttgacgaaacgagtgagagagtgtctgattattaaagaaaaccct aattaagtcagacccgccggttataaaaatagtcaaaaagtaggaaa acgcgtgtgtgagtgagacagacagcccattgtttgctttatggg cttataagcgagacgtgttaattgggctttttcctttatggccgaaa acaaaagaaacgtcgcctgagagattcgaactctcgcgggcagagcc catgtacttagcaggcacacgccttaaccactcggccaaagcgactt gttgctatgagttagacaaaatcattaaaaattctctattatgatttc tcatagtgtgtgtgtatattgtggatctactaaaaattctttgttat tattactttattttgtgaattagtttgatataggtaagtacaaagtt aactttattatttactcaaaatttatcagattaactgattttatatt qtttcctttggtatatagacgtactatagtttttagaaaaaccataa agacgaggaggaggactcttggttgatccagtctttacgttagacat cgacccctacatttatttgcctttctctatcaacatggcaggtaaaa atcttcattcaaccgaaccaaccaaagtctcttcccaataatattca agcaccatcctttgggaaactcatacatactacagtctacactcttt cattttctttcaacgctcaacttaacaaatgatatagtctagttgtc aattatatgttttaattagtgttttcacatcaaattctggtttgata tttgatgactattttcggaaacatctcaatgtcccgcaaatacaatc tatggcgtgatctttataatataacatatagaatcgtgtagatttat tttattttattttatatatcgcataaattgcaaaatacttatatat gtttgttatatatgatacccattttatagttacttaaaaaaagttaa gcgataatatatatatcaactttttataacaaaaagtataacac atggtaaagaaaataaaaatgaagacatggtgtgacacgaaaatgg cactaaatatacatataatagatagctacaatatcccatcataca cacttttttaattgactaatacataacttacacacttttttaattga ctaattcataactttttatcattgtcaacatgcaaattcatatttcc gttgaactattattcttattttgtttttaaaagaagggcttcctggt gttgtctggtctggtaaaatgaaaaagcaaagcgtcttggtatagaa aagtaatatactgcctcctaatttcttcgtccttctaccgaagaatc tctccactcttgccctctttcgaaaccctaaaccagaagcaccagat ttttcaactttttcccagagaacaatagaaaacccaacttgtgctc tctagggttttctttattccttctcatctttggattttcttgggtca tcattttggaagcttacccaccagcgaaaaaattataacttccatcg attectggettetetetetegetetetetgeatgtgetaaategeeg gactgatcctcactgtcacctctgtt.

150. An isolated promoter comprising the following nucleotide sequence:

gattaggggtttgagttgtcactggaaagaggtttgattgt gagtgatgatggagagattatgaaggagtttgtgtgtatttatagag gttgttgcaacttatttagagttacttgttccacaaccacaagtaag attggtcacttctaagttctaactagaaacaaccatgacacatggag tattataaaataaaatttttcacaaataaaagaactacaaaaaa gtgagaaaaataatttgataaacaaatttagaaaattagtatatcaa taaataaatttataatccgatggttttgccttttggtttggcctttg tttgaacttcgatgagtgactatgtatagcgaaaacaattcggtttg tttttggtttaattttaaaaaatacaagcgacaatatctgatgagaa taggtgaaaagcaaataatatcagtttaattggaaatatttactttt aataqtqatattqcatqqcqqaaqqtccqqaaqcaacatatctcc taaagagtgtgtgttttttttaacaaacaaggaatacattatacata tttcatatttctctcqacattgtttgtttttttaaaaaatagattaa agaqtctacgaagctaagtagctaacgaagacttgaaatgagaagaa gacgagaatcttttaatattttttgttaagcgataatattttgaaaa ttaataaatatagattaaggaaataacaataacgcagatatcggtaa qtcatagaaaaaaagaaacaacacaaacttacataaacatgtttcct ggattccaattagtaaagaactcaatgactataaataacctttaacc ctctcattatttcttactatcaattgattaagctctcgttcctaaga aagcaatagacgaacaagaacccatcgaagaacacaaatctctcttt qaaqttqtcqataatgttagtacaccgttacttcgtccaagactttt ttqccqttccgtttcttacaaaacaaggatttggttaccattacttt tgtcgtaactcctttttacatgtacgtcaaaaagtggttcctcgctc cgqcttgaagaaacgaccttcttacccacaaaaagcttattttaaac cgtctaaaaccggaaaatctcaatctaaaccggatacggttcatgag aaaccgattcaaacaccgagtgaagaagtagaattttttgatggttc cqtcacaatgtgtgctgctccttcgccaagacatgtaccgattccga tattttgtggtgtaaagatgatcaaagagtcttcaaagctaagcacg acttgaatgagaagaagaccaattactcaattagattttgtttt gtggagcaattattgtctatttatctttgtttttagcaaataatctg tatccactaatcttcacagtacttgactaacaagaagtaaagagttt tcttatttccaattgttttttaatctgatacttttttcataatttta caatgtttgatgaaaaaaaacattcaaacctaaattttcttttttg gtatgaattcaaacctgaattacttttgacgaggacccgacggtata aatagggtgatctcccaacaaacaaaagggt.

٠, إ

52 151. A transgenic plant or transgenic plant tissue comprising an isolated promoter according to any of claims 143 through 150.

54 APPENDIX 1

	APPENDIX 1		
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE	
1, 2, 3	2293133	glyceraldehyde-3-pho sphate-dehydrogenase	
4, 5, 6, 7	7143495	Histone H4	
8 & 9	7143515	ATP dependent RNA helicase, mRNA sequence	
10, 11, 12, 13	7143527	nematode specific	
14 & 15	7143602	protein serine-threonine phosphatase 1, catalytic subunit	
16 & 17	7143612	40S ribosomal protein S4	
18	7143666	cytochrome p450	
19, 20, 21, 22	7143675	Neuroendocrine protein 7B2	
23, 24, 25	7143839	nematode specific	
26	7143863	40S ribosomal protein S17	
27 & 28	7144016	vacuolar ATP synthase subunit G	
29	7144025	malate dehydrogenase	
30 & 31	7144060	J2 pcDNAII Globodera rostochiensis cDNA similar to Bystin, mRNA sequence	
32 & 33	7144225	similar to arginine kinase	
34	7144354	pyrroline-5-carboxyla te reductase	

	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
35, 36, 37, 38	C10	ribosomal protein L18a
39, 40, 41, 42, 43	C118	ribosomal protein S11
44 & 45	C122	ribosomal protein L16/L10E
46 & 47	C127	FMRFamide-related neuropeptide precursor
48	C129	ADP-ribosylation factor 1
49	C130	ribosomal protein L11
50	C137	nematode specific; conserved in C. elegans
51 & 52	C138	ribosomal protein L7
53	C145	ADP/ATP translocase
54 & 55	C148	troponin
56 & 57	C154	calponin
58	C16	translation elongation factor EF1A
59 & 60	C18	40S ribosomal protein S16
61	C27	ubiquitin
62 & 63	C46	nematode specific
64, 65, 66	C48	ribosomal protein S3AE
67	C59	40S ribosomal protein S5/S7

	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
68	C8	glyceraldehyde 3-phosphate dehydrogenase
69 & 70	C82	60S ribosomal protein 130/L7E
71	C90	glyceraldehyde 3-phosphate dehydrogenase
72	C135	nematode specific
73& 74	C206	predicted troponin
75	C227	cytochrome P450
76	C238	vacuolar ATP synthase subunit G
77	C246	40S ribosomal protein S4
78	C308	FMRFamide-like neuropeptide precursor
79	C342	ubiquitin
80 & 81	C344	nematode specific; conserved in C.elegans
82, 83, 84, 85	C370	40S ribosomal protein S5/S7
86	C426	nematode specific
87	C458	histone H4
88 & 89	C481	ribosomal protein L30E
90 & 91	C556	nematode specific; conserved in C.elegans

	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
92	C628	ribosomal protein S17E
93 & 94	C665	malate dehydrogenase
95 & 96	C669	malate dehydrogenase
97	C694	ribosomal protein S3AE
98 & 99	C709	ADP/ATP translocase
100 & 101	C714	ADP-ribosylation factor 1
102	C721	calponin
103 & 104	C726	ribosomal protein L11
105	C736	nematode specific
106 & 107	C773	troponin
108	C834	nematode specific
109	C860	bystin
110 & 111	C863	troponin
112 & 113	C883	translation elongation factor eEF-1A
116	C888	40S ribosomal protein S16
117	C898	glyceraldehyde 3-phosphate dehydrogenase
118 & 119	C935	peptidyl-glycine alpha-amidating monooxygenase
120 & 121	C937	calponin
122 & 123	C942	peptidyl-glycine alpha-amidating monooxygenase

SEQ ID NO:	APPENDIX 1 (cont.) INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
124	C954	arginine kinase
125, 126, 127	C969	calponin
128 & 129	7235653	ribosomal protein L18A
130	8005381	neuroendocrine protein
131	7235496	pyrroline-5-carboxyla te reductase
132 & 133	7275710	protein phosphatase pp1-beta catalytic subunit
134	7923685	nematode specific
135	7641370	40S ribosomal protein S11
136 & 137	7923404	nematode specific
138	7797811	ATP-dependent RNA helicase
139	7143613	predicted phospholipase D

Appendix 2:

Exemplary genes used for RNAi vectors.

Promoters:

Constitutive:

Super Ubiquitin from Pine CCCGGGAAAACCCCT CACAAATACATA AAAAAAATTCTT TATTTAATTATC AAACTCTCCACT ACCTT TCCCACCAACCGTTA CAATCCTGAATG TTGGAAAAAACT AACTACATTGAT ATAAAAAAACTA CATTA CTTCCTAAATCATAT CAAAATTGTATA AATATATCCACT CAAAGGAGTCTA GAAGATCCACTT GGACA AATTGCCCATAGTTG GAAAGATGTTCA CCAAGTCAACAA GATTTATCAATG GAAAAATCCATC TACCA AACTTACTTTCAAGA AAATCCAAGGAT TATAGAGTAAAA AATCTATGTATT ATTAAGTCAAAA AGAAA ACCANAGTGAACAAA TATTGATGTACA AGTTTGAGAGGA TAAGACATTGGA ATCGTCTAACCA GGAGG CGGAGGAATTCCCTA GACAGTTAAAAG TGGCCGGAATCC CGGTAAAAAAGA TTAAAATTTTTT TGTAG AGGGAGTGCTTGAAT CATGTTTTTTAT GATGGAAATAGA TTCAGCACCATC AAAAACATTCAG GACAC CTAAAATTTTGAAGT TTAACAAAAATA ACTTGGATCTAC AAAAATCCGTAT CGGATTTTCTCT AAATA TAACTAGAATTITCA TAACTITCAAAG CAACTCCTCCCC TAACCGTAAAACTTTTCCTACTTC ACCGT TAATTACATTCCTTA AGAGTAGATAAA GAAATAAAGTAA ATAAAAGTATTC ACAAACCAACAA TITAT TTCTTTTATTTACTT AAAAAAACAAAA AGTTTATTTATT TTACTTAAATGG CATAATGACATA TCGGA GAT CCCTCGAACGAG AATCITITATCT CCCTGGTTTIGT ATTAAAAAGTAA TITATTGTGGGG TCCAC GCGGAGTTGGAATCC TACAGACGCGCT TTACATACGTCT CGAGAAGCGTGA CGGATGTGCGAC CGGAT GACCCTGTATAACCC ACCGACACAGCC AGCGCACAGTAT ACACGTGTCATT TCTCTATTGGAA AATGT CGTTGTTATCCCCGC TGGTACGCAACC ACCGATGGTGAC AGGTCGTCTGTT GTCGTGTUGCGT AGCCG GAGAAGGGTCTCATC CAACGCTATTAA ATACTCGCCTTC ACCGCGTTACTT CTCATCTTTTCT CTTGC GITGTATAATCAGTG CGATATTCTCAG AGAGCTTTTCAT TCAACCCGGG

Strawberry Banding Vein Virus 1

aagcttttcactgtgggttaatttcattaatctatccaggtgaaaacctcaaggaga tctctcttctcccaaaagacctctacagggcaatcaaaaactacagaaccagagttt gtagtgcacagagtagaccaatctacctgagaatcacgagtaccttcctagagtggg aaaatgatgacatccttattccataccactggattgaggtaggactatccaatggaa aaattccatgggacaagtcatataagaagaccgcaacagtcgagtatcttccagaga taactgcactcagacctaaaaggataaaagcagtatataaatcagtgtactaagatct tcgcagattcaaagaagaagctt

Strawberry Banding Vein Virus 2

Gtttaaacaacagcccaagataacagaaaagtcaaaggtgttcgaaagaccacttgt gactaaggatcatttcatccataattatctggtagcacagactcatgataactgcga ggaacacaagttctttacagtcgattcaaagacactttctctttacggtttcattga aggagccgacccagaatatgtcagagaagcttttcactgtgggttaatttcattaat ctatccaggtgaaaacctcaaggagatctctctctctcccaaaagacctctacagggc aatcaaaaactacagaaccagagtttgtagtgcacagagtagaccaatctacctgag aatcacgagtaccttcctagagtgggaaaatgatgacatccttattccataccactg gattgaggtaggactatccaatggaaaaattccatgggacaagtcatataagaagac cgcaacagtcgagtatcttccagagataactgcactcagacctaaaaggataaaagc agtatataatcagtgtactaagatcttcgcagattcaaagaagaagcttaactatgc aaagacagcaagacaatggtgtctcgatgcaccagaaccacatctttgcagcagatg tgaagcagccagagtggtccacaagacgcactcagaaaaggcatcttctaccgacac agaaaaagacaaccacagctcatcatccaacatgtagactgtcgttatgcgtcggct gaagataagactgaccccaggccagcactaaagaagaaataatgcaagtggtcctag ctccactttagctttaataattatgtttcattattattctctgcttttgctctctat ataaagagettgtatttteatttgaaggeagaggegaacacacacacagaaceteee tgcttacaaaccatgtattgtagctaaacctcttaggaggatatc

Nematode Inducible:

Trypsin Inhibitor from Arabidopsis (clone#6598343) cccgggagcaaagcaacaccagagaagaagaaaagcactacagagaaaaatgtg agcttaagcgctctccaacaacacttctctgggagtctaaaggatgctgcaaaaagc cttggtggtgagacttccgcatatttccaagcatgggtttatttttgttagcacaca aactatctgaccctcgacttggattttcttctgcagtttgtccaactacattgaaac ggatatgcaggcaacatgggatcatgaggtggccatctcgtaagattaacaaagtga acaggtcactaaggaaaatacagacggtactggactcggtccaaggtgtagaaggag gactaaagttcgactcagcaactggcgaattcattgcagttagaccttttattcaag aaattgatacccaaaagggtctgtcgtctcttgataatgatgcacatgcaagaagaa gtcaggaggatatgcctgacgatacttcattcaagctccaggaagctaaatctgtcg acttctctatccataaaccatagatggagcgattagaatcttaatccattttcagtt tttgcaggatcattcatggaggttaatgctagtggtcagccatgggcttggatggcc aaagagtctggcttgaatggcagtgaaggaataaagagcgtttgcaacttaagctct gtggaaatttcagatggaatggatccaacaatccgatgcagtggcagtattgttgaa cctaaccaatccatgtcatgcagcatatcagattcatcaaatggctcaggcgcagtt ctgcgtggaagctcatctacttccatggaagattggaaccaaatgagaacccacaac agtaatagcagcgagagtggatcaacaacgctgatcgtaaaggccagttatagagaa gacactgtacgtttcaagttcgagccatcagttgggtgtcctcagctctacaaagaa gttggaaaacgttttaaactgcaggacgggtcgtttcagctgaagtacttggatgat gaagaagaatgggtgatgctggttacagattctgatctccaagaatgtttggagata ctaggtagttctggtggcagtaatggttatcttggaacaggcttatgacgtcgtaag acatagacacacagttatgtattcccagtgaaagaatgttqtttatttctctaqa tattagtatgcttataaataggcatgaaggagaaagacaattttggtatagtggagt tcagcagaaaatgtatatgttttttcgttttatatgaatcagagaataaaagttgga tgttatatctacgttgctaatgttgtacctgctcacccatctttcatataagaaaag agaacacttttagttatccctgtgatgcagaatcgtattctttgttatctctccatt aacgaggacttgattttagttgggcttgggcctataattgtgttcatcattgggttt agttcatatccatatcttatgatgtgcctaaaagagggagaagatgcgaagacagaa ttttcatatttgaaagggttcgatatcgatattgggaaacgaatcaaggtcaaaaaa ctcagtctaatagttgaaatttaaaaaattttattaattcaatccgattggtttcgtt ttgttatggttcggttctatatcatcaaaccaatcggtttggtcctaaagataatta taaatattcaccaacaccagtgttaaacacatatcaacaaacctaaagttagataaa caaaqaqacccggg

Arabidopsis Transmembrane Protein from Arabidopsis (clone#6468048)

ttatgatgttaatagtctaggattgacacgaagttgttctgcagttttgcataaatg ctctttactaaggcctctaaatttggatgacaaatctaaatcttgcctcataaaaat ttaggtgtattaagataagattattttgtatggtagtgtctataatgtgggttgttc atgttgaggttgtcaatgttgtgtatttttgtttgtttagttaatttgcttaactct gttetttgtgggttaataeagtaagetteagagtgaggeegttegtgaageeateae tactatcacagggaaatccgaggcaaagaaacgtaactttgtcgagactattgagct ccagatcggtctgaagaactatgaccctcaaaaggacaagcgtttcagtggatctgt caagttaccacatatcccccgtcctaaaatgaagatctgcatgctcqqaqatqccca gcatgttgaagaggtgatatatcttttcatggaaattgatcattttqtqctctqttt cttgtataatggttttgtgctcatttcatttggtggctctattagtttcatttgatq ttgtatatgtcttctgaatgtagatgcatgatgttttcggaatttggtcattgttta tttaggcttcatttcttgcataattaaatatttgcttatttcatcttgtatctttc gtaggctgagaagatggggttggaaaacatggatgttgagtctctaaaaaagcttaa caagaacaagaaactcgtcaagaagcttgcaaagaaataccatgctttcttggcctc tgagtctgtcattaagcagattcctcgtcttcttggtcctggtcttaacaaggcagg caagttctggctacagctaatattccattgttcttctttacatccgttttgattttg gataggttttagtagtctatttcttttgtcaatgtctttttgatacaatgccaatcc tttatcctgtgagattatgcttctttgatgattcttaagtaacattcctttgcttta ctttacacaggaaaattcccaactcttgtgagccaccaggaatccttggagtcaaag gtgaatgaaacaaaggcaacagtgaagttccagctgaagaaggttctgtgcatggga gttgcagttggtaacctttcccggg

Diaminopimelate Decarboxylase from Arabidopsis (clone#4159709)

aagtacttcatttctgagtttttgaaaaatctaaagacaacaaaagactttacaatt taataaaaaaataataaaaatactttatcactctcaacgaaattgttgatttaataa cgtatctcttggtaaaacagcgttttatttgacgaaattgttataaatgaataaaat gataatagaaactagtgtggtacgtaaaatacctctcatttggcaaaataacggtta tgtatcatgagtattgcatacgacagcgtgcttaaatagtgtgctttcaggagaaaa tatataccaagttatttgctgaaattaccacgcaaatctgaggttcgaatggcaaaa ttttttcacctgtaagcgttccaaagtgtagaatggataactagaagggtcaaaggt ataatattaataagcgaactcactttttgcccaagtgatttcacttcttacatttgc ttgatatagttacccaaaagtgtatatatattcccttatacaattgttctatttct aagtgatgttagattctaatttgtaacqaaaagttcaaagtgaaagaaaaaacgaaa aagtttttctgttttgttttatatctatagccaagaaagtttctcagatttacaaga agttaactgagaaaaacaaaaaaaacttatgaagcatgaaagactaattaacgag gtgattaattttgagacaaattaaacatcgaattaaaagtaacatttggagggttta tatgttatatatgtgacatgataagtccgattcatgactaatgtatatctggaatct aacatggaagaatagagaacgaagcagagccaaggtcaacttgccagacacgaatca acagattgtgaatgagaccaaatcaatggtcataaaccggttgggtttaaaccggca agtcatccttggctcaattccattcgttattccttcatgcaagaccctctgatacaa ccaaagactcccattacaatattctttcgatcacgagctacttattttcaaatgtgt tacctctttcgtgactcttgtgttgtgtggtaaagcctagtcgagatgtgtcggtat atataggcatacatatacaaatgcgacaaaataagtatattatattgtttaatttct atattccatttctatatgcatggctgggatttttgaccaaaaccctaattcaaqaat agaatccaaaagatgggatcaaagaatataatctaatgggctgaccacattttccga tttaattcgcatagttaatattctttccactactttatgccgcagaaatttgtaatt aagtaagacaaagaaatacagatataagatggtcgtagaaaccagtagaggaatttc atttttcgtggataagtggaatattaataagagaatggtctttactctttacagtgg gaaatgggaatagtagcccattataatttcatcagattctatatatgcatgtttgta taagctaaaataaatacgtttaagcattcttcaaaaaaatttacaagttctagagac tctcttaacgtcggcaatttatattctactttacatgacactttcaggaaaagaaaa

62

tgctttgatgatggtccggcccggg

Peroxidase from Arabidopsis (clone#4006885)

cccgggcaatcaaggtaacgaaggaggatcagcgaaaggatgggctatatttggagt tttttcctgcgtgtaagtaatgctttgtgatcttccatgcggacatataactgaaga ataaactcaactcattgtgttctggtgtttcttcttgatcagattcctcqttqcat ctgcacttttctgctgtgggggctttatttataaaacaagagtagagcgtgtggtaa tetteatatetttetacaattecaetteeattetetaattatteteteaegtgatat acacacactcaatcactgatgtactcgtatggatgcagcgtggaactgatgcattgc cggggatgtcacttctatcgggcttactagaaactgtaagtattacaagaaaactca aaaggattccatttatgcaaaatctaaqaqaaaqctcactqtqqtctttqqttacaa tttatggatctctcaagagacaaatgctatgtaagctaattgattttggtcttgata aacaggtgagtggaagtggacaaagctactcaagaactgaagacatcaacaatgctt ttgccaatgaagtctcatgggaccgctcttccgcatcttctactcaagcgacaacaa cacagagaccaagtgaaagaacatatggtgcgatctaattttgtcaagtgcctcaca agaggtactgtttcaagccatggtatggcacgcttgtqatctqcqatttctqqattt tgctttgtatgtttattttctaccttctagaaagaggtcaaaaagttaatagcttca ccgtgagaatgttgttttcaccagattcatgtgctatgatagaaaaagacaaagcaa acaagagttctttctttgcttaggttacaagaacaagagtatcgttataaagtcaac aaagattgaaacatatttttgtcaagggagtggttagaatctcttcctactctttg cctttctcactaagacaaaaaaagacttggactttgtctaaggttttgtggatatt attaaccaagtccttttgcaaaaagtaatattgttttttcgcattcctcttttagaa tttagtttaatctaggctttatattggttattactttcttgaaaaatgatctgttta ttctattcatacttggttacctcgctttttatcttacttctacaaaaggattatcag tgaaagttagtctcttactctcaccttccgaaaataaaacaaaaatatcgatacttc tagatcaaaccaagttgattaaaacatccctattccctacgattctgatcttgagat atattatcatgttaagatctaaattgacaagaaaactgatttttcatttctagtagg aaaaataattactattagtgatcatgattgtcgaccgtaagaggtggtttagttact ctccatctttctttgaagaagtcagaaagtcagaaattatatcaaattaaacatcaa tattgaacacatatatctgtatggttttatgtttagaaaattccaatatttatatat tcctagggaaaaagaagcttattcttcaaattattgttatgagtcgttaaaatatgg ataaaaatataaagtctaaatattaaaaactcagtttgctttgcttttacctctcca agtctccaaagtcaaattaattttagttaattaaaccaaaaaaggtttattagtcaa acttagcatgcaatgctgggtaccaaacccaagcattagtctcttttaatcttcttt tcatcccaatttagctaataccaactccgtttcttattcttccaaqtcttttcctat aaatacgttcttcttcccctcttatttcatatcactcaccacaaagtcttctcattt cctcatcccqqq

Mitochondrial Uncoupler from Arabidopsis (clone#4220510)

gagttttgttttgtgacgcggttttgtctgtgttcaatgttgacgaaacgagtgaga gagtgtctgattattaaagaaaaccctaattaagtcagacccgccggttataaaaat agtcaaaaagtaggaaaacgcgtgtgtgagtgagacagagacagcccattgtttgct ttatgggcttataagcgagacgtgttaattgggctttttcctttatggccgaaaaca aaagaaacgtcgcctgagagattcgaactctcgcgggcagagcccatgtacttagca ggcacacgccttaaccactcggccaaagcgacttgttgctatgagttagacaaaatc attaaaattetetattatgattteteatagtgtgtgtgtatattgtggatetaetaa aaattetttgttattattactttattttgtgaattagtttgatataggtaagtacaa agttaactttattattactcaaaatttatcagattaactgattttatattgtttcc tttggtatatagacgtactatagtttttagaaaaaccataagattcctttatatttc atagagtgaagagatgagatgtttggctggagaagaataagtttccacgagg aggactcttttttttggtgaagacgaggaggaggactcttggttgatccagtcttt acgttagacatcgacccctacatttatttgcctttctctatcaacatggcaggtaaa aatcttcattcaaccgaaccaaccaaagtctcttcccaataatattcaagcaccatc acttaacaaatgatatagtctagttgtcaattatatgttttaattagtgttttcaca

tcaaattctggtttgatatttgatgactattttcggaaacatctcaatgtcccgcaa aaaaaagtataacacatggtaaagaaaaataaaaatgaagacatggtgtgacacgaa aatggcactaaatatacatatataatagatagctacaatatcccatcatacacactt ttttaattgactaatacataacttacacacttttttaattgactaattcataacttt ttatcattgtcaacatgcaaattcatatttccgttgaactattattcttatttgtt tttaaaagaagggcttcctggtaataaaaatatgatttccaaatgacgttagagcaa aaaaaaaaaaggttgtctggtctggtaaaatgaaaaagcaaagcgtcttggtatag aaaagtaatatactgcctcctaatttcttcgtccttctaccgaagaatctctccact cttgccctctttcgaaaccctaaaccagaagcaccagattttttcaactttttccca gagaacaatagaaaacccaacttgtgctctctagggttttctttattccttctcatc tttggattttcttgggtcatcattttggaagcttacccaccagcgaaaaaattataa cttccatcgattcctggcttctctctctcgctctctctgcatgtgctaaatcgccgg actgatcctcactgtcacctctgttcccggg

Stress protein from Arabidopsis (clone#6598614)
gggattaggggtttgagttgtcactggaaagaggtttgattgtgagtg

cccggggattaggggtttgagttgtcactggaaagaggtttgattgtgagtqatqat gatgagaagtaggtttgaagaagttttgttgttgcaacttatttagagttacttgtt ccacaaccacaagtaagattggtcacttctaagttctaactagaaacaaccatgaca tataaaataaaattttcacaaataaaagaactacaaaaaagtgagaaaaataa ttttgccttttggtttggcctttgtttgaacttcgatgagtgactatgtatagcgaa aacaattcggtttgtttttggtttaattttaaaaaatacaagcgacaatatctgatg agaataggtgaaaagcaaataatatcagtttaattggaaatatttacttttttacaa tttatttgttgcgacagtatatatatgttaaaatagtgatattgcatggcggaaggt ccggaagcaacacatatctcctttttaattttttttttaacaagaataacatgttaa ttaaagagtgtgttttttttaacaaacaaggaatacattatacatatttcatatt tctctcgacattgttttttttaaaaaatagattaaagagtctacgaagctaagt agctaacgaagacttgaaatgagaagaagacgagaatcttttaatattttttgttaa gcgataatattttgaaaattaataaatatagattaaggaaataacaataacgcagat atcggtaagtcatagaaaaaagaaacaacacaaacttacataaacatgtttcctaa gtaaagaactcaatgactataaataacctttaaccctctcattatttcttactatca attgattaagetetegtteetaagaaageaataqaegaacaagaacecategaagaa cacaaatctctctttgaagttgtcgataatgttagtacaccgttacttcgtccaaga cttttttgccgttccgtttcttacaaaacaaggatttggttaccattacttttgtcg taactcctttttacatgtacgtcaaaaagtggttcctcgctccggcttgaagaaacg accttcttacccacaaaagcttattttaaaccgtctaaaaccggaaaatctcaatc taaaccggatacggttcatgagaaaccgattcaaacaccgagtgaagaagtagaatt ttttgatggttccgtcacaatgtgtgctgctccttcgccaagacatgtaccgattcc gatattttgtggtgtaaagatgatcaaagagtcttcaaagctaagcacgacttgaat gagaagaagaagaccaattactcaattagattttgttttgtggagcaattattgtct atttatctttgtttttagcaaataatctgtatccactaatcttcacagtacttgact aacaagaagtaaagagttttcttatttccaattgttttttaatctgatactttttc ataattttacaatgtttgatgaaaaaaaacattcaaacctaaattttcttttttgg tatgaattcaaacctgaattacttttgacgaggacccgacggtataaatagggtgat ctcccaacaaacaaaagggtcccggg

Pectinacetylesterase from Arabidopsis (clone#6671954)

cccgggtggtggggacaatggatccggtctgcgtagcaacaaggctgaaaaagatta

2/8

3/8

WO 01/96584

Selectable Markers

pNOS / NPT-II / tNOS

pSU / Bar / tNOS

pSU/Intron/Bar/tNOS

pUBQ3 / Intron / PMI / tNOS

Scorable Markers

¹ Construct useful for promoter analysis.

²Construct useful for high constitutive expression of genes of interest.

FIG. 6

FIG

FIG. 8

AKK110P1 SEQUENCE LISTING

```
<110> Mushegian, Arcady R.
Taylor, Christopher G.
          Feitelson, Gerald S.
          Eroshkin, Alexey M.
 <120> Materials and Methods for RNAi Control of Nematodes
 <130> AKK-110P
 <140>
 <141>
 <160> 139
 <170> PatentIn Ver. 2.1
<210> 1
<211> 165
<212> DNA
 <213> Globodera rostochiensis
 <400> 1
gtttgagatt attgactttg catatttcca accaagttca tttgaccaat attttcctgc 60
 taaacatagc aaaaatggtg aaaccgaagg tcggcattaa tggctttgga cgcattgggc 120
gcttggcgtt gcgcgctgcg gttgagaagg acaccgttca ggtgg
<210> 2
<211> 342
<212> DNA
<213> Globodera rostochiensis
cgactacatg gtatacatgt tcaactacga ctcgacccat ggccgcttca atggcaaaat 60
ttcgacaagc gccggcaatt tggtcgttga gaaaggggg aaggccacgc acaccatcaa 120 ggtgttcaac ctcaaggacc cggccgagat caaatgggct gaggtgggcg cggaatatgt 180 gatcgagtcc accggggtgt tcactaccat tgagaaggct tcggcacact tgaagggggg 240 cgccaagaag gtggtcatct ctgctccgtc cgctgatgca ccgatgtacg tgatgggcgt 300 caacgaggac aaatatgacc cggccaagga caacgtgatt ag 342
<210> 3
<211> 205
<212> DNA
<213> Globodera rostochiensis
gaagccggcc tcattggacg ccatcaaggc ggcggtgaag aaggctgccg aagggaattt 60
gaagggcatt ttgggttaca cagaggacca ggtggtgtcc acggactttc ttggagacag 120
tcgctcgtcg atcttcgacg ctggggcgtg catctcgttg aacccgcact ttgtcaagtt 180
ggtcagctgg tacgacaatg aattt 205
<210> 4
<211> 167
<212> DNA
<213> Globodera rostochiensis
ttaaacgatt tattcacacg cacggagaaa tgaggattac ctaatttgat tgagtctttc 60
tcgtccattt gtcaattgtg gccctaaaga gggccgtttg ggttagtttt ttggtgttcc 120 ttctccttgc tggctcaacc accgaagccg tacagcgtcc ggccttg . 167
```

<212> DNA

AKK110P1 <211> 41 <212> DNA <213> Globodera rostochiensis <400> 5 catggccgtc acggtcttgc gcttcgcgtg ttcgcagtat g 41 <210> 6 <211> 79 <212> DNA <213> Globodera rostochiensis <400> 6 gtttcccagg aaaactttca gcacggaacg agtctcctcg taaatgaggc cagagatgcg 60 cttaacgcct ccacgacgg <210> 7 <211> 168 <212> DNA <213> Globodera rostochiensis <400> 7 cggcttggtg atgccctgga tgttatcccg caagactttt cggtggcgtt ttgcgcctcc 60 ctttccgagt ccttttccgc cctttccgcg tccggacatt ttgttgttaa atcagaagag 120 cacagagagt aggagaaata ggaaattttg cctcgtgccg aacgtgcc 168 <210> 8 <211> 330 <212> DNA <213> Globodera rostochiensis gacagtctcc gttctggtta tgtgtcacac gcgcgaactt gctttccaaa tttctaagga 60 atacgagcga ttcaccaagt acatgccggg agtgaaggtt tccgtattct tcggagggat 120 gccgataaag aaagacgaag aggtattggc taagaacacg ccgcacattg tcgtcggaac 180 gccgggacgt cttttggcct taggacgcac tggacatctg aagctgaaag gcgtcaaatc 240 ctttgtgctg gacgaatgcg acaaaatgat tggagatgcc gacatgcgcc acgacgtgca 300 ggaaatcttc aaaatgacgc ctcaggagaa <210> 9 <211> 136 <212> DNA <213> Globodera rostochiensis actttgccgc gggagctgcg cgtcttctgc aaaaagttca tgcaggaacc aatggaggta 60 tacgtčgačg ačgaggcťaa gčttacgcťt cacggťctcc aácaaťacta cgtťágačtg 120 aaqqaaaatg agaaga <210> 10 <211> 141 <212> DNA <213> Globodera rostochiensis tattaaaata aaatacaaac aataatataa tggctgtttt ttctgtcatg tttcaagttt 60 ttgttgttca tcactttctt cagcagcgac aatacggcca atccggtgaa agggccaaag 120 tcaatagctc gctcggtacc t <210> 11 <211> 141

٠.,

```
<213> Globodera rostochiensis
   <400> 11
   acccaggeac tetgtteate treggeateg etttttggea atgteaacaa caetttgetg 60 gecattttgt ttetacagea caegeacaec gtegtetta cagegtteae etegeeaaaa 120
   ăagtagccgt atttgcgāaa t
   <210> 12
<211> 37
<212> DNA
   <213> Globodera rostochiensis
  gcgttgggtg caagctgtac acaaggtcgc ccggttt
                                                                                                                                        37
  <210> 13
<211> 161
<212> DNA
  <213> Globodera rostochiensis
  <400> 13
 gcgcgttcca tcgcccgcac cacaaaaagt cccatcgctt catatcgtag cgcaaattgt 60 ctttggtgca aatggcaaaa cggccaaaat aatggtcgaa gccgtacaca accgccaccg 120 ccacagcgcc aaccccacac caaatgcgaa atttatcgaa a 161
 <210> 14
<211> 306
<212> DNA
  <213> Globodera rostochiensis
 <400> 14
 gaattcgttt gaggtataaa taaataataa atggcagcca acgaatcgct aaatgtggac 60
 agtitigatea ctcgattgtt agaagttcgg ggttgtagac cgggaaaaac agtgcaaatg 120 gacgaatctg agatacgcac tttgtgcatc aaaacacgtg aaattttgct gtcgcagcca 180 atcttgttgg agctcgaggc acctttaaaa atttgtggtg acattcacgg acaatataat 240 gatcttctga gattgttcga atatggtggg tttccaccgg aagcgaacta tctattctt 300
 ggggac
 <210> 15
<211> 261
<212> DNA
 <213> Globodera rostochiensis
gcaaagcctt gagacgattt gtttgctgct tgcttacaag attaaatatc ctgaaaattt 60 ttttcttctt cgtggcaatc acgaatgtgc ttcaatcaat cggatttacg gattttatga 120 tgaatgcaaa cggaggttcc tcaatcaagt tgtggaagac cttcactgac tgcttcaact 180 gtctgccaat tgccgcttta acgacgaaa agatcttttg ctgccacgga ggctgtctcc 240
tgatttgcta aacatggcag c
<210> 16
<211> 151
 <212> DNA
<213> Globodera rostochiensis
<400> 16
gaattctttg agtgcattca gcgtttaatt ttttcgtatt ataataagca tggctcgcgg 60 acccaaaaag catttgaagc gacttgcagc acccaaaaaa tggatgttgg acaaattggg 120 tggcgttttt gcgccacgtc cattgtgcgg a
<210> 17
<211> 306
```

- , !

```
<212> DNA
  <213> Globodera rostochiensis
 tcaagtacgc gcagtcgtac aacgaagcgc gcatgatctg caaacagcgg ctgatcaagg 60 tggacggcaa agtgcgcacc gagatgcgct tcccgtgcgg aataatggat gtgatctcga 120
 ttgagaagac aaacgaaacg tttcgtctgg tgtacgatgt gaagggccgt tttgtcatcc 180 atcgaattca aaagctggag ggccagtaca agctgtgcaa agtgaagaag caggccgtcg 240 gggacaagca ggtccctac attgtcacac atgacgcgcg caccattcgc taccggaccg 300
                                                                                                                                 306
 <210> 18
<211> 528
<212> DNA
 <213> Globodera rostochiensis
 <400> 18
<210> 19
 <211> 335
 <212> DNA
 <213> Globodera rostochiensis
gaattetttg agaaagegga aattegtttt tggetataaa atgattetgt gggecaegat 60 tttgttgatg getttggaca ttgegttegg tggeaceaat caaatggaat ttgateagte 120 ggegeegatg tteecegaet eccagtteat egatttgatt tegegegaea tegaateett 180 etceggeeca ttgggegttg geeataaatt tatgagegge ggtgeeggtg agggegteea 240 acagetagge eccgagggge ecctttgagea geggeaaeag gtgaagagtg acaatgteet 300 eccegegtat tgegageete caaateeetg teega
<210> 20
<211> 52
<212> DNA
<213> Globodera rostochiensis
ggacggctgc acggaacagt tcgagaacac tgccgagttt tcgcgcagct ac
                                                                                                                               52
<210> 21
<211> 190
<212> DNA
<213> Globodera rostochiensis
<400> 21
gcttgtgtga ccaggagcac atgtttaact gtccgtcgaa gaacaaccgc gaggagtacg 60 agcaggatct ggagcaattg ctggccaaca acggactgca caaatcaatg attgccaaga 120 aattccatct cacgcgggcg gaggagccgc gccgtcgaaa acgctcttgt cgcccggctt 180
cggccaaccg
<210> 22
<211> 52
<212> DNA
<213> Globodera rostochiensis
```

. ;;

```
<400> 22
    ccgctacaac ccctacctgg agggcgcccc gctgaagtca gtggccaaaa ag
                                                                                                                                                                                                                                                            52
    <210> 23
    <211> 54
    <212> DNA
    <213> Globodera rostochiensis
    <400> 23
   gaattccgac tctcaaggtg gacccacgcc caaccaacag caattgtcag ctgc
                                                                                                                                                                                                                                                            54
   <210> 24
<211> 77
   <212> DNA
   <213> Globodera rostochiensis
   <400> 24
   ccgcacatgt cgaggcctcc atcttttggc actggtcatc accttccgcc tactgctaac 60
   aacagaccgg aacagca
   <210> 25
  <211> 439
<212> DNA
   <213> Globodera rostochiensis
 gtcaatcaaa aacgccgact tcgattcctc agctgatggt cagtaatgcg ctaaagggca 60 tccattccgt ctcttctaca tcagcaacac aatcacattc cacgcccagt tttatgacac 120 acaacgtgca gcagcaacat gttgttggtc aacaacagca gcaacaacag aatttccaac 180
  aaccgccgcc cctatcgtac actcacagcc accaacaaca aaaacaacca ccacaagcgt 240
 cacagtegat gttgtcaatg aaaagtggca atgttgtcgt tgttgttccg caacaatcgc 300 agcagcacca ctaccaacag cggacactga cgccactgaa gcacacatcc gcatcctcca 360 cgtccgatcg cttcgtcatc accaaaacca acagggtgct tccactcccg tcgcagcaag 420 gcgccacggc cactgatga 439
 <210> 26
<211> 539
<212> DNA
  <213> Globodera rostochiensis
query description of the control of 
<210> 27
<211> 179
<212> DNA
  <213> Globodera rostochiensis
 gaattcnaca gtttctgtga gtaatggcat ntcacactgc cggcatccaa cagttgcttg 60
 cggccgaaaa gcgtgcggca gaaaagatta atgatgcccg gaagcgaaaa gcacagcgac 120
ttaagcaggc caaacaagaa gcccaggcgg agatcgagca gtatcgncag gagagggag 179
```

```
<210> 28
  <211> 133
  <212> DNA
  <213> Globodera rostochiensis
  gcaaaattat ttgggcacgc gcgacgacat cgagcagcaa ataaagcgcg agacagaaga 60
  gtcgctggag gcaatgaatc gcaatgtcgc ggcgaacaaa cagcaggtca tigtacgtct 120
  gctgcagttg gtg
  <210> 29
<211> 482
  <212> DNA
  <213> Globodera rostochiensis
 gaattcgtga aatcaaaagc ttttttaatt tatttacaca aaaaatggtt ccaccaccaa 60
ttcgcgtgtt ggtcactggt gccgctggac aaattggcta ttcactggtt ctgcaaatcg 120 caaaaggcga tgtgtttggc aaagatcagc caattgtct cgtctctct gacattccac 180 cgatggccga agtactctct ggtgtccatt ttgaattgat ggactgtgcg ttggcaaacc 240 ttgccggtgt ggaggctgtg accacggaag agcaggcctt caaggacatt gactacgctt 300 ttcttgtcgg agcgatgccc cgaaggaggg gaatggaacg aaaggacctt ttggcggcaa 360 atgtcaaaat ttcaagtcc caaggcgaag cattggcccg ctttccaag cccgtncgtc 420 aaagttctcg tggtgggcaa cccggccaac acgaacgcgt acatttgcgc aaaatatgcc 480
 <210> 30
 <211> 605
 <212> DNA
 <213> Globodera rostochiensis
quattcaaag tgccgaaagc gttcaaaata attccggcaa tggcaaattg ggaacaaatt 60 ctagacctta cttccccga aaaatggagt tcagcggcga tgttcaagc aactcgtgtg 120 ttttctgcca ccggcacacc gtcacaatgc caaaggttca acactttggt gctgttgcca 180 cgactccgtg atgagattga cgagtacaag aagctaaact ttcatttgta tcagtgcttg 240 tttaaagcaa tgttcaagcc ggccggatt tttaagggca ttatttgcc tctttgcaaa 300 tctggcactt gcactctcg tgaagccatc atcttgggt ctgctctgcg aaagattca 360 ataccgcaac tccacgcgc tgcagcaatg ctcagcatag caaaaatgga ctactcgggc 420 gccattctt ttatcctacg tgttcttgt gaaaaaaatt acacacttc tttccgagca 480 attagacggcc tcgttttca tttcttgga atgcgctcac atcagggcga gctgccagtg 540 atttogcac agacactott gocttttgt gaacatacc caaaaagacat aaaggcgaa 600
attiggcacc agacactgtt ggcttttgic gagcgttacg caaaagacat aagigcagaa 600
cagag
<210> 31
<211> 112
<212> DNA
<213> Globodera rostochiensis
ccattcccat catcaaatta ccccgattta ctgcggcttt tgcgcggcgc cgagtcgagg 60
aatgaggaaa gtgaagcaaa tgtgcccgtt tatgcgcgta atgatgaaat qq
<210> 32
<211> 105
<212> DNA
<213> Globodera rostochiensis
gaattcgttt gagcatttat ttgacaaaat ctgaataaat ggccgtacca aaagaagtta 60
ttgacaaaat cgaggcgggt tacaagaagc ttcaggaagc gtctn
```

. .!

<210> 38 <211> 176 <212> DNA

<400> 38

<213> Globodera rostochiensis

```
PCT/US01/18911
                                                                                          AKK110P1
   <211> 425 ·
  <212> DNA
   <213> Globodera rostochiensis
  <400> 33
 aagaagtacc tcaccaagga agtcgtcgat gcctgcaagg ataagcgcac caagcttgga 60 gcgaccttgc tggatgtgat ccagtcggc gttgccaact tggacagcgg agttggggtg 120 tacgctcctg acgctgaggc ttacaccttg ttcaagccgt tgttcgaccc gatcatcaac 180 gactaccatg gtggctttgg tccgggcagc aagcagccgg caactgacct tggtgacggc 240 ataaacgcana tgctgaccgg atctcgaccc cgaggggaaa atttacaat ttcgacacgc 300 gttcgttggc gccgtttcct ttaagggata cccggttcaa cccgtgcttg acnaaaggan 360 aactacnttt ggagatggga aacnaaggtc nagggccgtt ttctaacatt ttnaagggcn 420
  atcct
 <210> 34
<211> 581
  <212> DNA
  <213> Globodera rostochiensis
  <400> 34
quartcgttt gagcgaagag ttttgtggtt gacaccggtt tatggacttt tagcccgtga 60 tccttgacgg tccaaagccg cgttcagttc cgtgccgtgt tttttaaaag aggcggagag 120 tftgacggtc attccaagca gccaataaac caccaaaacc aaataccccc cccaatcga 180 tccaccccct ccaattcctc cgcattattc gcattatcaa tttgaaaattg gcttcatcgg 300 aggcggaaag atggcccaag cattggcaag aggacttatc aggagatttg atggcgagtt gtccaaagac ggacgaggct ttactggggc gatacccggc 360 agaggaatttg atggcgagt gtccaaagac ggacgaggct ttactggggc gatacccggc 360 attggggaat atggcgagtc acgacaacac tttggtcgcg cgaggaaacg acgtcatcgt 480 attggcggtc aagccgatgc cattggtag gaattacact ttggtcgcg gaaatcgcac ccaattccg 540 gaggggaacat ttgcttattt cattgattag gaattacact t
 <210> 35
<211> 102
 <212> DNA
 <213> Globodera rostochiensis
 <400> 35
gaattcgttt gagaatttta ctttatataa ttgacgttta atcagcagcc ataagcaatg 60
 cccatcaaag catccggaga aacattaagg aagtttattg tc
<210> 36
 <211> 34
 <212> DNA
<213> Globodera rostochiensis
<400> 36
tgcaaatgat gcaaacccca cgcttcacaa qatq
                                                                                                                                                                     34
<210> 37
<211> 100
<212> DNA
<213> Globodera rostochiensis
tcatgttgtg gccaaatctc gcttctggta ctttacgagc atgctgcgtc gagttaagaa 60
aacacacgga gagatcgttt cgtgtcaaga ggttttcgag
```

Page 7

. .!

```
AKK110P1
  tgaagaactt cggaatttgg ctccgttacg attctcgtac tggacaccac aatatgtacc 60 gcgagtatcg ctgatgttac cgaggccggt gccgtgaccc aatgctatcg cgacatgggc 120 gctcgtcacc gcgctcaggc ggatcgaatt caaatcatca aagtgcaaac ctcaag 176
  <210> 39
<211> 155
<212> DNA
   <213> Globodera rostochiensis
  <400> 39
  gaattccaag tttgaggtat tgtttgttat acgatttctt acaaatgaca gaacaaactg 60 agcgcgcgtt ccaaaaacaa ccgatcgttt ttctgaacga caagttcaga acgcaaggga 120
  ttgggaagaa ggcatccaac aaggaccgtt actgg
  <210> 40
<211> 35
<212> DNA
  <213> Globodera rostochiensis
 tcctcgcgag gctattgagg gcatatatat cgaca
                                                                                                                  35
 <210> 41
 <211> 70
 <212> DNA
 <213> Globodera rostochiensis
 tggaaatgtg tccatccgcg gtcgcattct cactggggtg gtgatcaaaa acaaaatgca 60
 gcggacgatt
 <210> 42
 <211> 85
<212> DNA
 <213> Globodera rostochiensis
 tcgtaccaaa atatcgtcgc tatgagaaac gccacaaaaa catgtccgtc cactgttcgc 60
cgtgcttccg agatgtctct ctcgg
<210> 43
<211> 193
<212> DNA
<213> Globodera rostochiensis
agttcggttc aatgtgctca aggtgatcaa agcatcgggc tcgaagaaag cgttcgacaa 60 attctgagtc ggccaagcca accgcgaacg gtcatttgtt atggttccta attgttgctg 120 ttttcaatt attgtgtta aatgactgaa tttatgatca acggtatact agtattcttc 180
tgaaaaagct cga
<210> 44
<211> 219
<212> DNA
<213> Globodera rostochiensis
gaattcattt agatttgttt tgaagctaga aatctttatt ttgggagtca acgacaatgg 60 gaagacgtcc ggcgcgttgt tatcgctata ttaagaacaa gccgtatccg aagtcgcgct 120 tttgtcgcgg tgtacccgac ccaaaaattc gcattttga tttgggtaga aagcgcgcca 180 ccgttgacga attcccatgc tgcgtgcata tgatatcga
```

Page 8

٠, إ

```
<210> 45
     <211> 489
      <212> DNA
     <213> Globodera rostochiensis
     tccgaggcgc ttgaggctgc gcgaatttgt gcgaacaaat atatggtgaa gaattgcgga 60
   aaggacgggt ttcatatgcg cgtcagaatc catccatacc atgtaattcg catcaacaaa 120 atgttgtctt gcgctggtgc ggaccgtctg cagactggga tgcgtggtgc gttcggaaag 180 cctcagggac tcgtggcgcg tgtcagcatc ggtgatatgc tgatgtcagt gcgtattcgt 240 gaccaacacc aagctcacgc attggaggcg ttccgtcggg ctaaattcaa gttccctggt 300 cgtcaataca tcgtcttgtc ccgcaagtgg ggcttcacca aattcgatcg cgaggtatac 360 gagaaatacc gcaaggaggg ccgtgttatc cctgacggtg tgcattgcaa gttactcaag 420 caacacggac ccgctgaagg agtggctcaa gaaccccatt taatcttctg tttgtcttgt 480
    gactcttgg
    <210> 46
    <211> 101
    <212> DNA
    <213> Globodera rostochiensis
   gaattccccg gctcgagccg ggttgacgat gtcctcctcc acctcctctc actgcgttcc 60 gtcctccttc agccggaaat tgttcctgtg gctgttgccg g
   <210> 47
   <211> 485
   <212> DNA
   <213> Globodera rostochiensis
<400> 47
tccaccaaag tccattcgct gtcgccagtc catttattcc acaaaaagat gattccgtcg 60 tcgttccgat gacgtcgttt ggccaaccgt tgcccccgtc accgctttca ctggtgccaa 120 acccgccgct ttattttgtg ttcccagaaa acttgccgtt ggagcggccc ttcgacgagc 180 aaaacgacgg ctccgaggag gaattagccg aagaagcgat gggaacgaag gcgaagaggg 240 cgcaaacgtt cgtccgatt ggcaaaaggg cgcaaacatt tgtgcggttc ggaaagcgtg 300 cacaaacatt tgtacgcctc ggaagggaca cgcaaacgac attcgatggg aaaatgcaaa 360 gtgaacagca acagaaaaag gcttaaagca aacggcggcg actttcttt taatgaatgc 420 gcgcccaccg catgacaatt ctttgtgta atgtgttgcg attttatga tcggtaaatg 480
  taaca
  <210> 48
  <211> 651
  <212> DNA
  <213> Globodera rostochiensis
  <400> 48
 atctgttcaa gggactgttc ggcaagaagg aaatgcgcat tctgatggtt gggttggacg 60 ctgctggaaa gacgaccatt ctgtacaagt taaagctcgg cgaaattgtc accaccatcc 120
ctgctggaaa gacgaccatt ctgtacaagt taaagctcgg cgaaattgtc accaccatcc 120 caacaattgg cttcaacgtg gaaaccgtcg aatacagaaa catctcgttc actgtttggg 180 acgtgggtgg tcaagacaaa attcgtccac tttggaggca ctacttccag aacacgaagg 240 gactgatctt cgtcgtggac agcaacgatc gcgagcgtgt ggggggggcg cgtgaagagat 300 tgatgcgaat gctggcggag gacgagttgc gcgacgcggt gttgctggtg ttcgctaaca 360 aacacggattt gccgaatggg atgaacgccg ccgaactgac agacagactt ggactgcaca 420 acttgcgaaa ccgcaattgg tacatccagg ccacctggc gacttcgggc gacggactct 480 acgagggact ggactggctg agcaaccagc tcaagaacag aggctaagct gggttggtgt 540 ctgttgcact tgcccgcgga attgatgacg attgaattta tttgtgtgtt tgcgcgcgca 600 gctcttttgt gggacgtccg attaattttg ataattatt tattccgtgt t
 <210> 49
 <211> 660
  <212> DNA
  <213> Globodera rostochiensis
```

٠,;

```
gaattcccaa gtttgagatc aattcagttt cacttagaca aaaatgccgc cgaaattcga 60
  gaattcccaa gtttgagatc aattcagttt cacttagaca aaaatgccgc cgaaattcga 60 cccaactgag atcaaaatcg tgtacctgcg ttgcgtcggt ggtgaaattg gtgcaacatc 120 tgcacttgca ccaaaagttg gcccacttgg attgtcgcc aaaaaaattg gtgaagacat 180 tgcgaaggcc acacaggact ggaaagggct taaggttacc tgcaagctga caattcagaa 240 tcgtgtcgcc aagaatcgacg ttgtcccatc ggccgcctct ctgatcatca aagagttgcg 300 cgaacctccg cgagaccgca aaaaagtcaa aaacgtgaag cacaatggca acctgaccat 360 cgagcaagtg atcaacattg cgcgtcagat gcgccctcgt tcaatcgcac ggaagttgca 420 gggcaccgtg aaggaaaattt tgggaaccgc ccagtcggtt ggctgcacca tcgatggaca 480 acatccgcac gacattgtgg acgcgatcag agggggagac atcgaaatac ccgaggaata 540 aagaaaaggac ggcgcctccg attttgtgg gacggacatt gggaatttga ggtgaatga 600 ttgccaattt cattcattca tcaattgttg ttattgntgg tacggataaa tttgtaattg 660
   <210> 50
<211> 625
    <212> DNA
    <213> Globodera rostochiensis
 qtgccggaac agacgctcga ggaggttagc cgtctgcagc ggacgagctc cttgttggac 60 gtggcaatcc gggacggcgt ccctaccc ccactgcctc ctacaaaccg atcccccgaa 120 tacatgaaca tgctgaccgc ctccttctcc gtgccaaatt ccggacggt acagaccttc gttgccggt tacacttaca acacttacca cgggtacttc 240 ccctaccgca actaccgcg ctacaaccttg gcgaatgctt acctgaacga ccggatacta 300 tacttctcgc cgctgtacaa acgaagcatg ttcccaacc gcttcaaaca ttgtgactat 360 aaagcgaacc cgcactattg gcactacccg cacacctttt gggactatcc ctaccagggc 420 aaatggttcg actacgacaa ccctcccaat taccggccct actacaacca tcgccttaac 480 ggatatgctc ggcgtatca ctaccggtcc catgcgctgg cccaacttg cccaacttg cgaaggaatgg tcaggaaacg ggtctgacaa atcgacctg tccaaattga cgtrgtccgc 600 attcgaaaga agacgaaaaa agctt
  <210> 51
<211> 402
  <212> DNA
  <213> Globodera rostochiensis
gaattccaag tttgagcaac attttgaaaa tgaccgaagc caaaaaactt cccgaggtgc 60 cggaaacttt gctcaagcga cgcaaaatca gagctgcgca aaaggccgca aaagcaaaga 120 acaaattgag ttctatcaaa aaagcacgga ccaagaaggt ggaaatcttc aaaagagccg 180 agcagtattt ggtggagtac cgtcagaagc aacgccaatt gcttgcgctg aaacgtgaat 240 cgaagaaagt cggcaattat tatgtgccag aagagcccaa actcgccttt gtggtccgaa 300 tcaaaggcat caataagatt catccgcgtc ctcgcaaggt tctgcagctt ctcccacttg 360
 gtcagatcaa caacggcgtt ttcgtaaagt tgaacaaggc ga
 <210> 52
<211> 433
 <212> DNA
 <213> Globodera rostochiensis
 ccgacccgta catcgcttgg ggttatccga gtcagaagat catccgtcag ttggtctaca 60
aacgcggtta cgccaaagag aagggacagc gcattccaat aacggataac aacattgttg 120 agcgcagttt gggcaagcat gacgtgattt gtgtggagga tatgatccat cagatttgga 180 ccggtcggac cgcacttcaa acaggtgacc aacttcctat ggcctttcaa gctgagcaac 240
ccggtgggcg ggttcaagaa gaagtccaat cacttttgtg gagggaggcg attatggaaa 300 ccgcgaggac caaatcaaca aattattgga aagaatggtc taatggaagg gaagcggana 360 aagaaaggaa attgnggcgt ttttctgttg ttgttttgac gataaattgt taactccaaa 420
aaaaaaaaaa aaa
 <210> 53
<211> 768
 <212> DNA
```

· ,{

```
<213> Globodera rostochiensis
          <400> 53
     gaattcgttt gaggtcaaac tttattagcg tatttaacaa tgtccgaagg aggagcgaaa 60 aagagtagca gcggtgccaa gggggggttt gatgtcaaga aatttgcgat cgatcttgcg 120 tccggtggta ctgccggcgc tgtctccaaa actgttgttg ctcccattga acgtgtcaaa 180 ctcttgttgc aggtgcaaga tgcttccgct cacatcactg ccgacaaacg ctacaaaggc 240 attattgacg tgcttgtccg tgtgccgaaa gagcagggct ttctgtcact gtggcgtggg 300 aacttggcca acgttatccg ttatttcccg actcaagcgc tgaacttcgc cttcaaagac 360 acctacaaac gcatctttac ggagggactg gacaaaaaca agcagttctg gtcgtcttc 420 gtcatgaatt tggcctctgg aggtgcggcc ggcgccacgt cgctgacctt tgtttatccg 480 ctgggaatt ggcccactgc atcgcaaaaa tcttcaagtc ggacggtcc accggcggct tctcggggt 540 tccgcgggct ctctgtccc gtcaagaca atcttcaagtc ggacggcc accggcgcc accggccgcc tactttggat 660 gctttgacac cgcgaagatg attttcgcgc cggatggcaa ccccccc tactttggat 660 gctttgacac cgctcaggtc gtcaccgtgt cgtccggtgt cccccccc 720 catgggccat cgctcaggtc cgccggtgt cccccccc 768
         gaattcgttt gaggtcaaac tttattagcg tatttaacaa tgtccgaagg aggagcgaaa 60
      <210> 54
<211> 338
<212> DNA
        <213> Globodera rostochiensis
  gaattccagc agattaattg gaatggctga gaacatcgaa gagattcttg ccgaaatcga 60 cggctcccaa attgaggagt atcaacgctt tttcgacatg ttcgaccgcg gaaagaatgg 120 ttacattatg gccacccaaa ttggacaaat tatgaacgcg atggagcagg actttgacga 180 aaagaccctc cgaaaattga tccgcaagtt cgacgcggac ggttccggca aactggagtt 240 cgacgagttc tgcgcgttgg tgtacacggt ggccaacact gtggacaagg acactctgcg 300 aaaggagctg aaggaggcat tccgactctt tgacaagg
    <210> 55
<211> 267
<212> DNA
    <213> Globodera rostochiensis
 gaaattgcgc ccgatctcag cgacaaggat ttggaggcgg cggtcgacga aattgacgag 60 gacggcagcg ggaagatcga attcgaggag ttctgggagt tgatggcggg cgaaaccgac 120 tgagaaaaga gcaaatcgat ccaaatccaa acggacccgt cccatttcac ctccatccgt 180 ccgtcgtatt attatattt ccagtggaat tttcccatta aaattcggtg aaagtaaaat 240 aatttgacga aaaaaaaaa aaaaaaa
    <210> 56
    <211> 597
    <212> DNA
    <213> Globodera rostochiensis
querona and company as a construction of the transfer of the t
ggcggaaatt ccggaggaca ttttgctgaa aggacacggc gaggtgcgcc tgcagtccgg 480 taccaaccgg ttcgcgtccc agaagggctt cgtcgcgttc ggtaccggac gtgacgtgtg 540 ccgtgagggg gtgaacgtga acgtgctgcc gggcgacttg gagccgcttc cggagga 597
 <210> 57
 <211> 80
  <212> DNA
  <213> Globodera rostochiensis
```

```
<400> 57
   ggcattgtgc gtctgcaagc cggtacgaac aagttcgact cgcagaaggg catgaccctt 60
   ttcggtacgg gcccgtcgtg
   <210> 58
   <211> 513
   <212> DNA
   <213> Globodera rostochiensis
   <400> 58
   gaattcgcca caccgctcac atcgcgtgca aattcgccga acttaaagag aaggtggacc 60
  gncggtctgg caagaaagtt gaggacaacc cgaagtcgct gaagactggc gacgccggaa 120 ttgtcgaact gattccgacc aagccgatg gtgtggaggc attcactgac tacgcaccgc 180 tcggccgttt tgctgttcgc gacattgaggc anactgttgc cgtgggcgg atcaaatcag 240 tggagaagac ggaaggcggt ggcaaagtga ccaagccagc gcagaaggtc ggcgcgactg 300 gtggcggaa gaagacatga ccaaggggag gggcggttcc ctaagggcca accgtcgacg 360 aaaatgcgac caacctcttg tttatcgttg tcttattcag ttccttccac ccgtctctat 420 ccatattgc gttgcgttgg ataatgttt atttttgtt attgtcctgg ttggaaaata 480 aatttootca attaaaaaaa aactcorgcc gaa
  aatttggtca attaaaaaaa aactcgtgcc gaa
  <210> 59
  <211> 393
<212> DNA
  <213> Globodera rostochiensis
  <400> 59
  gaattcgttt gagcgaaaaa aacatactat acaatggcaa caactgagaa gcctcaggtg 60
 gttcaacagc Ccgtgcaggt ctttggccga aagaagacag caacagccgt tgcgttgca 120
aaaaggggca agggcttgat caaggtcaat gggcgtctt tggactacat gcagccggag 180
attctgcgca ttaagctcca ggagccaatt ctcattgttg ggaaggacaa atttgaggga 240
atcgacatac gaatccgcgt caagggcggt ggacacattg cgcaaattta tgcaattcgc 300
caagcactgg ccaaggcact ggtcgctttc taccagaaga atgtcgacga gcagagcaaa 360
aaggaactga aggagcaatt tgttgcttac gac 393
 <210> 60
<211> 154
  <212> DNA
  <213> Globodera rostochiensis
 Cacgagccaa agaaattcgg tggacccggg agctcgcgct cgctaccaga atcgtaccgt 60 taagaaataa ttttgtagat caaatgttt gatgatgatc cttgttttg ttgttgataa 120 aaaaaaattta taaaaaaaaa ccgccgatac tgac 154
 <210> 61
 <211> 666
 <212> DNA
 <213> Globodera rostochiensis
<400> 61
gataaa
```

٠,١

· 1

```
<210> 62
  <211> 213
  <212> DNA
  <213> Globodera rostochiensis
  <400> 62
 gaattcgttt gagaaacttt ttcaaccatt cattcaaatg tctcatcaag tgacacgggc 60 agcactcaac cacgggacgc gtgtactgag cgtgttggag aaggtcaagt tggtctgctg 120 gtttgaggag acacattcgt tcgcgcaagt ggctcgaaga taccgggcag aatttggtat 180 ggaaccaccg cagttggacc aagtgaagaa gtt 213
  <210> 63
  <211> 488
  <212> DNA
  <213> Globodera rostochiensis
  agcaccggct caatcctcaa tggcacaacg acggcattct ccggcatagg agacggagtc 60
ggtcttggag aacaacagcc aattcccgtc gtaagcgatt ctggcatagg tgcggaagaa 120 cagctgagaa tggccagaat gtgagccgga ggacctgaag attatgaac gaaatttcc 180 agtgaagtgg accaacgctc ttcgacttta tctgctttgt gtaaagtgta tagaatcggc 240 ttccaattca aaggctttc attccccaac ttttatttt gcgcaaaaaa tttcttagga 300 taagcgtgaa taatttattg atttgtttt tctttcttt atctccgct cgaagtcgca 360 agtgttcctt ttggcccgtt ccctttgtt ttgaatgtta ttccattcc atcccctcac 420
 tttctcatat ttgtgacatt cagctgcatt gttcgactcc catttaaaag ttgagtgaaa 480
 tgcgattg
 <210> 64
<211> 249
<212> DNA
 <213> Globodera rostochiensis
wccrgakbng aacahcdkdg vhwatnvcbn gschvbwagc rngtcsvddb wgnhnsswtg 60
gkgdyrbwnt msnwrmanrg artsstsgaa ttcccaagtt tgagagtaaa tattattagc 120 taaaaatggc agtcggaaag aataagagaa tgggcaaaaa gggagccaag aagaaggctg 180 tcgatccgtt cacacgcaaa gaatggtacg acatcaaagc gccggcgatg ttcacacatc 240
 qaāatssts
                                                                                                                                                249
<210> 65
<211> 362
 <212> DNA
 <213> Globodera rostochiensis
wcbcrbhdyb ytsgcrsnck tbdsbhcysy gcdwkmtnvk hscngdckty nyykkkvbmr 60 ntmsnwrman rgartsstsg tcaaccgtac tcagggaacg cgcatttcga gcgactttct 120 aaaaggccgc gtttacgaag tgtcactggg tgaccttaac agcactgacg ccgactttcg 180 aaagttccgc ctgatctgtg aagaggtaca gggcaagatt tgcctgacca actttcacgg 240 aatgtcgttc actcggggaca aactgtgctc tattgtcaag aagtgcgtcattga 360
ggcgaatgtg gcagtgaaga ctaccgacgg tttcatgctc cgactctttt gtatcggtss 360
<210> 66
<211> 128
<212> DNA
 <213> Globodera rostochiensis
aatcaaatta agaagacgag ctatgcaaaa gcctctcagg tgcggatgat tcgtgccaaa 60 atggtggaga tcatgcagaa agaggtctct tccggcgatc ttgaangaaa gtagtcaaca 120
agcctgat
```

```
<210> 67
   <211> 502
   <212> DNA
   <213> Globodera rostochiensis
   <400> 67
  quattccatt aaaaaactaa acgaacaaat ctaaagatgg ccaccgaagt ggaggaaaat 60 gttcctacgg ttgaccatg gggtgctgtg gaggaagtgg gtggtgaaga gtcgatgcag 120 ttggtcagcc ttgacgttac cgaggtcaaa ctgttcggaa aatggtccct taacgatgtg 180 gaagtgtccg acattcgct tgtggattat attgcggtga aggaaaaggc ggccaaatat 240 ctgccgcaca gcgccggccg ttaccaacag aagcgcttcc gcaaggccac ctgtccggtg 300 gtggaacggt tgtctttgtc aatgatgatg cacgggcgga acaacggaaa gaaactaatg 360 gcgatgacgaa ttgtaaaaca ccccttcaaa atcatcacct octaccaaa agaacccaagt 420
  gcggtgcgca ttgtgaaaca ccccttcgag atcatcacct gctaccggag agaacccagt 420 ccaagtgttg gtcaatgctg tgataaacag tgggccccnc gaagattnca cacgtatcgg 480
  acgtgcgggc actgttcgtc ga
  <210> 68
<211> 519
  <212> DNA
  <213> Meloidogyne incognita
 gcaaactttt atcaaataaa aaatttatat ttgccaaaca aatttatgaa taaaaattca 60 ttaatcatta aaactacatt taaaatatac tttttagaga atgtcgtcta aaatattctt 120
 ttctactcatta dadctacatt taddatatatc tttttagaga atgtcgtcta aaatattctt 120
ttctcccctt tatgcatcta tctaaccaga cttggaagca atatggctaa tcaagtcaac 180
aatacggcag gaatacccaa actcgttatc ataccagcta accaatttaa caaaatgcgg 240
gttgagaacc ataagagcct cggcgtcgaa aatagacgaa tgagtgtcgc caagaaagtc 300
ggtagaaaca acctggtcct cagtatatcc aagaatccct ttaagctttc cttccgaagc 360
agtcttaatt gcattcttaa tagcctcctt cgttgctggc ttctccaaac gagcagtcaa 420
atcaacaacg aaaacgtttg ggcgtcggca cacgaaaagc catttccggt aagcttccca 480
tccaattcat ggattgacct ttccaacagc ctttgcagc
 <210> 69
 <211> 218
  <212> DNA
  <213> Meloidogyne incognita
ttgattcttt attagtggac aatgacggaa gaccagaaga agttgccgat ggtgcctgag 60 actgttttga agcgaaggaa agttagggct gctcagcgtg cttctctact caagaataaa 120 ttggagaata ttaagaaggc taaggttaaa acgcaagtta tctttaaacg tgctgagcaa 180 tacttgattg catatcgacg taagcaaaag caagagtt
 <210> 70
 <211> 293
 <212> DNA
 <213> Meloidogyne incognita
 taagaaagca gggaattttt atgtcccaga tgaacctaaa cttgcttttg ttgtgcgtat 60
 taagggaatc aacaaggtta atttaaattt gctataaagt ttaggatggg tttagacaat 120
tcttctcttt taatgctttc taactttttc aaaaaagtta tgattttatc acccattaat 180 ctacaaattc tttaatttat cagatccatc ctcgtcctcg aaaagttctt caacttttcc 240
 gcttgcgtca aatcaacaat ggagttttca ttaaattgaa taaagctaca atc
<210> 71
<211> 422
<212> DNA
 <213> Meloidogyne incognita
aatgcaatta agactgcttc ggaaggaaag cttaaaggga ttcttggata tactgaggac 60 caggttgttt ctaccgactt tcttggcgac actcattcgt ctatttcga cgccgaggcg 120 taagttttga ttttctaaga ttatatttaa cctttttaat ttttcagtct tatgggtctc 180
                                                                                        Page 14
```

. , }

```
AKK110P1
   aacccgcatt ttgttaaatt ggttagctgg tatgataacg agtttgggta ttcctgccgt 240
   attyttyact tyattagcca tattycttcc aagtctygtt agatagatyc ataaagggga 300 gaaaagaata ttttagacga cattctctaa aaagtatatt ttaaatytag ttttaatyat 360 taatyaattt ttattcataa atttyttyg caaatataaa tttttattt gataaaagtt 420
   <210> 72
<211> 374
   <212> DNA
   <213> Meloidogyne incognita
 atctgagcat aaggaaactt ggcctcaagc tatagagcag accgattatg tggcaccgac 60 tgagccagtt aaactggact tcaacgttc gcttattagt gattgggctg ctgcttctga 120 gtggcctcaa gaagaggaag ctcaggttgc acctactgca ccaattggtc agccacagcc 180 tcaacagcag caaactcaac aaggaggtga ttggaactct ggtactagtg gatggtgaag 240 ggcaggaaaa ttgatagaaa gagaaattat tatggaataa atgtaatcaa tgttgttgtc 300 tgattattt gttacatata caacaagttt tattttgttg tttatttaat aaaagttgtt 360
  aattaaaaaa aaaa
  <210> 73
<211> 120
  <212> DNA
  <213> Meloidogyne incognita
 ttttttttt tttttcttca tcaatattt gaagtgaaga accagaagta gttgcattcg 60 agctttcaaa ttttgtttt tgattactct ttaaacaaga ttcaactgat ggatctactg 120
  <210> 74
  <211> 369
  <212> DNA
 <213> Meloidogyne incognita
gtctaaccaa tctagagcta ttcggttcgt ctgtctgttg attattagat gttgattgaa 60 cagcactagt ctctgatgta gttttcttca atctcattt taagtgatgt agaggaagtt 120 tagaattctg attgctatcg tcttctttct cttcttttaa tggcttttc aatttatctt 180 cttcctttct ttgtccattc ttttcttcat tctttcaa aggctcagga aatttaatt 240 cagacccgct ccttttaact gctgtatcta aagaaaaccc tctaggcaac gtcccagttc 300 cactcaaatt caattttgtt aaattttgc cagatctaag tccttcttcc ttttgaacga 360
 attgaactg
 <210> 75
<211> 529
 <212> DNA
 <213> Meloidogyne incognita
 ttttgttttt tttttttt ttatcagaaa aaagtttaat cagaaaaaaa aattaaaaca 60
 aatctaaata aggetetatt etaagtttat attittettt tacataaace gtcaaccete 120
caagtttttc aatgcttgga ggttttaatg gatcctctgg taataatttg taggctagaa 180 aaaagtttgc agcaaaaagg aaaagcatca ttcttgctaa ggcttccca gcacattgcc 240 ttttccccac accaaaagct attagctcgt cagcttttt taatttccct tcattgctca 300 tataacgttc agggtcaaaa ttttggggat ttgggtatat ctttggatca aaaagaacat 360 ccgatacttg gggtatcata aatgtacctt taggcaacac aaactttcca acattcaaat 420 cttccaaaggc taaatgcccc aaattgaaag ggactaaatt aacgagtctt aatgttcat 480
taacaacagc atttgtataa attaatttag gtctgtgttc caaactaat
 <210> 76
 <211> 449
<212> DNA
<213> Meloidogyne incognita
```

```
agttttttt tttgaataaa agacttttt ttattaaaat ggcttcgcaa actgcaggaa 60
   ttcaacaatt acttgcagca gaaaagcgtg ctgcagaaaa gattaatgag gcacgtaaaa 120 gaaaggcaca acgacttaaa caagcaaaac aggaagcgca agctgaaatt gacaaatata 180 gagagggaacg tgaaaaacgt tttaaagagt ttgaacataa ttacctcggc gctagagatg 240
   atattgctgc acaaataaag cgtgaaactg atgagacgct taatgaaatg actcgtagtg 300 ttgctgctaa taaacagcag gtaattgtc gtctacttca acttgtctgt gacattcgtc 360 cagaactgca tcacaattta caacttcaac ttaagcttaa tgaaaagcct gcctaatttg 420
    tagttgattg attataaaaa tgaaattga
   <210> 77
   <211> 643
   <212> DNA
   <213> Meloidogyne incognita
   <400> 77
   atttatattt gaacaaataa tttaacaaaa aagtatggct cgaggaccaa agaagcattt 60
 atttatattt gaacaaataa tttaacaaaa aagtatggct cgaggaccaa agaagcattt 60 gaagcgtttg gccgctccaa agaattggat gttggacaaa ttgggtggag tttttgcccc 120 acgtccatg tgcgggcctc acaagcttcg tgaatcgctt cctttattt tgttcttcg 180 taatcgtcta aaatatgcac aatcttataa tgaagctagg atgattgca aacaacgtct 240 cattaaagtt gatggcaagg tgcgtacaga aatgcgcttt ccagctggat ttatggatgt 300 ggtttccatt gagaaaactg gcgaagtctt tcgtcttctc tatgatgtca aaggacgttt 360 cattactcat cgcatacaaa aggaagaagg tcagcttaaa ttgtgcaagg tagtaaagca 420 agcgattggg ccaaaacaag ttccttatat tgttactcat gatgcccgta ctattcgcta 480 tccggatcca cacatcaagg ttgcggaac tgttgctgtt gatataaaca ctggaaaggt 540 tacagatcac attagatttg gatattggta gacatcgtga acgccacct ggt 600 gggacgtgtt ggtattggtt gacatcgtga acgccaccct ggt
  <210> 78
<211> 584
  <212> DNA
  <213> Meloidogyne incognita
  <400> 78
 atttcctcta aaaatgaatt taaaagaaca acaaatatat ttaaatattc aattattatt 60
 ttttattttg gctgtcagta gttttttgac aactaaggga agtgaagtaa aacaacgaga 120 aaataataaa ttggaatata ataaaaatga aattgagagg caaaaagagc aattaattcg 180
agatttgatt gcctccttaa cacgtgaaag gcaatattca cgagattggc aacaatcaca 240 acagcaacaa aatttcatta acagttttgg cccttcccca catttattcc cctcttcagg 300 cattgaatgg cccaacaac aacaaaaaat atttttggaa gaaggggaag tagaagaacc 360 tttagaggaa aatgagaagg aaaaaaggg acaaacttt gttcggtttg gaaagaggg acagactttt gttcggtttg gaaagaggg acagactttt gttcgatttg ggagaggattc 480 aatgaattatt taaaaatttt tttaatgatc ttttaattaa aatt
 <210> 79
<211> 556
 <212> DNA
 <213> Meloidogyne incognita
atcaagcatt aaatatgcag atttttgtaa agactctcac cggaaaaact attactctcg 60
tttgagatca gttact
```

- 1

```
<211> 424
    <212> DNA
     <213> Meloidogyne incognita
    <400> 80
   aacattgttt taattaaaat ttacccctcc tgtagcaatg acatcagaca gacttggccc 60 agtagttcca gatttgacag cccaagagac caacagactt gaacgaacta gttctttggt 120 cgatttggca attcgggatg gagttccata tccacctagg cctgcaatta ataatgttcc 180 tccatacctg aatatgttga ctcgaacgtt ttctgtacca aatgtaaatc agtacacggg 240 tgcaataggt ccttatcgac cagcaaatcc tgttatacct tattatagct ataaatgcta 300 ttttccgtat agaaattatc gaggctacac actgacggat gcttactggt acgaccgtta 360 ttattatttt tcoccaatar acaaacogtc aatottccca attagattcc ggcattcrga 420
   ttattatttt tcgccaatat acaaacggtc aatgttccca attagattcc ggcattctga 420
   ctac
   <210> 81
   <211> 89
   <212> DNA
   <213> Meloidogyne incognita
  attatccaca cacctattgg agctaccctt accaaggaaa atggtacgac tatgacaatc 60 caacanatta ccgcccattc tttgaccca
  <210> 82
<211> 168
   <212> DNA
   <213> Melcidogyne incognita
  tttttttttt taaaatttat tcattaacaa atgaccttaa cagataaaac ttaacagtca 60 aaagacaaca taatttccaa ctttttcaat attatccttt ttaacggttt gattttgcaa 120 ctcgctccaa ttcgtccttc ttcttgatag catatgaatt gctcgaac 168
  <210> 83
  <211> 67
  <212> DNA
  <213> Meloidogyne incognita
  <400> 83
 aattcatcag ccagacattc agcaattgtt ttgatattac ggaaagaagc ttcacgagac 60
  <210> 84
  <211> 42
  <212> DNA
  <213> Meloidogyne incognita
 taacacgacg aagaggcgaa acatcaacag cctgacgacg aa
                                                                                                                                                42
 <210> 85
 <211> 429
 <212> DNA
 <213> Meloidogyne incognita
 <400> 85
tatacgagta gaatcctccc gtggtcctcc attaataaca gcgccaacaa gtatttgaac 60 tggattctct ccagtcaaaa tatgtataat ttcaaaagcg tgcttcacaa tccgaacagc 120 catcaacttt ttaccattgt tacgtccatg catcatcatc gaacaaacca aacgttcaac 180 atattggcc gatttgtctt taacagcaat ataatccact acgacagcac tgtgcggcaa 240 atattggcc gatttgtctt taacagcaat ataatccact aaagaagcat cattaacttc 300 gataatcgctt aaagaccatt taccaaacaa tttaatttca ggaaaatcaa ttgtagtcat 360 ttgcaatatca ccttgtccac caagaacatc aattaccact caagaagcat catcaactta 420
ttgcatatcc ccttgtccac caggaacatc agttgcgccc caattatcat cagcgggtaa 420
                                                                             Page 17
```

286

AKK110P1 accatctcc 429 <210> 86 <211> 435 <212> DNA <213> Meloidogyne incognita tttgagtttt taaaaagtac atactattta atttttaaca aattattttg atcaatttaa 60 aattticttt tcatcatttt ttaatttaaa aaacatttta acaaattaca agaacaacaa 120 acataatttt tcatcatttt ttaatttaaa aaacatttta acaaattaca agaacaacaa 120 acataatttt tcctittta ttataaaatt taaagtttaa taagttttaa aacattctcg 180 actggagtac gtgtacttag tgttttagaa aaggcaaaat tagtttgttg gtttgaagag 240 acaaattctt ttgcacaagt agcgagaaga tatcgagcag aatttggaat ggaaccccca 300 cataatggatt tagttaaaaa attacatcaa cgtttctca acattggatt tgttctaat 360 ggaaatactg aacattttga agttaatcca acaatggaaa catcgacatc ctcaacagag 420 ggtgtagcag atccg 435 <210> 87 <211> 501 <212> DNA <213> Meloidogyne incognita gtttttttt tttttttta aacaaaatat cgagtcttta taagacaaaa ataaaagaca 60 aaagcaattt agttttatca ataaaattaa aaatagtcaa tgtctcgttt cactcattag 120 attigtggc ctaaagaggg ccgtttgggt ttggttgttg tacttcagt gccttccacc 180 attigtggcc ttaaagaggg ccgtttgggt ttggttgttg tacttcagt gccttccacc 180 aattgttcct tagccaccaa atccgtaaag agtacgtcct tggcgtttca acgcatagac 240 gacgtccatg gctgtgaccg tctttctctt ggcgtgtacg caataagtta ccgcggcgg 300 gatcacattt tcaaggaaga ctttcagaac acctcgagtc tcctcgtaaa tgagcccgga 360 aatacgtttc actccaccac gacgtgccaa tcgccggatt gccggtttgg tgataccttg 420 gatgatatca cgcaagactt ttcggtggcg cttagcgcct ccctttccaa gtccctttcc 480 gccttttact cgtccggaca t <210> 88 <211> 270 <212> DNA <213> Meloidogyne incognita ggaagtgtgt ttaagataaa tggatgatta gaaataaaaa tgaattgatt aaaaattacg 60 ttagaataat aatggaatat ataaaaataa attggatgat ttaataaaaa aaaaaaagag 120 agaactagtc tcgagtttt ttttttttt tttttaanaa ttaacaattt atctcattt 180 cctcttccat gaaaattaac aaaaagacga caacttaatc ccataattaa catcattttt 240 aagcttcagt cggcatgctt cgaataatgt <210> 89 <211> 286 <212> DNA <213> Meloidogyne incognita caagcggttc ccaactcaat gttgttgcca tgatactcgt gaacaccagt tctcgccaac 60 atagaatagt actcaatctc actgcgtcta aggctttggag tattattcga aataataaca 120 agtttagcct ttccagaacg aagagtcttc aacgtctgct tgtagcccaa acaatacttg 180 cccgatttgg taaccatggc gagacgagca ttgatatttt ctgtggactt tttctgtttt 240

```
<210> 90
<211> 391
<212> DNA
<213> Meloidogyne incognita
<400> 90
```

· (1

ccaacaacca ttgtaacgca aaattaaaat ctcttttta acaaat

```
AKK110P1
   agatatgaca tcagacagac ttggcccagt agttccagat ttgaccagcc aagagaccaa 60 tagacttgaa cgaactagtt ctttggttga tttagcaatt cgggatggag ttccatatcc 120 tcctaggcct gcaattaaca atgttcctcc atacctgaat atgttgactc gaacattttc 180
   tgtaccaaat gtaaatcagt acacgggtgc aataggtcct tatcgaccag taaatcctgt 240 ctatacttat tatagctata aatgctattt tccgtataga aactatcgag gctacacatt 300 gacggatgct tattggtacg accgttatta ttatttttcg cctatataca aacggtcaat 360 gtttccaatt agattccggc actctgacta c
   <210> 91
   <211> 131
   <212> DNA
    <213> Meloidogyne incognita
   <400> 91
  attatccaca cacctattgg agctaccctt accaaggaaa atggtatgac tatgataatc 60 caacaaatta ccgcccgttc ttcgacccac gcatcagcgc atcatttca agaccttatg 120
  attacacatc a
  <210> 92
<211> 571
   <212> DNA
   <213> Meloidogyne incognita
  ttggtgcgac aacaaaaaa ttttatttat tttttaacaa cagaaaaata tacttttaa 60
 ttggtgcgac aacaaaaaaa ttttattat ttttaacaa cagaaaaata tacttttaa 60 tttttaatat ttttccatga ttcaacagcc atactttcct catttaata cttcttaaac 120 cctcaaaaaaa ttcattatt gacgaccagc agcaggttgt tgctgctgt gttgaccacc 180 acccccttgc gcttgacctt tagtctcttg atcaacacta atagttggat gttgagaagc 300 atcaagatag gaaacttctg gaacccaatt atcacgacgc tcacgctctt cttcttgcaa 360 tttaatagaa attccacgaa accggtccttt ttcgatacgc tcacgctctt cttcttgcaa 360 tttaatagaa attccacgaa tccgtttgct aggaataaca gcaatttcct cacaaattcg 480 ttgttcaca tgaaaatcat aagtcaagcg tgtataaatat ttgtcaataa taacacgaga 540 tgctttcttg acagttttga gagaaccgat t
  <210> 93
  <211> 671
  <212> DNA
  <213> Meloidogyne incognita
  <400> 93
  tttgagaatt taacttttct aaccaaaact tttatttttg tctttgatgt ctactcaagt 60
tttgagaatt taacttttct aaccaaaact tttattttg tctttgatgt ctactcaagt 60 accaatacgc gtgctggtta ctggagcagc tggtcagatt ggttattctt tggttattca 120 aattgcaaag ggtgatgtt ttggaaagga aacgcccatt gttctggtaa tgttggatat 180 tcctccaatg gccgaagtgc ttaaaggagt ggaacttgaa ctttacgatt gtgccttggc 240 gaatcttata gctgtcgagc cagtcacgac tgaagaggca gcgttcaaag acattgatta 300 tgcttttctt gttggtgcaa tgcctcgaaa ggaaggaatg gaacgaaagg atttacttgc 360 tgctaatgtg aaaatatta aatcgcaagg attggctcta gcaaaatatt caaagccaac 420 tgttaaggtt ctggttgttg gaaatccagc aaatacaaat gctttattt gtgcaaaata 480 cgcagcagat aaaattccag caaagaatgt cagcgctatg acctcgtcttg accataaccg 540 tgcaattgcc caaataacca caaagaatgt ctgcttatcd agaacgttat 600
 tgcaattgcc caaatagctg ctcgttgtgg ggttgactgt ggatctgtga agaaagttat 600 aatttgggga aatcattcaa gtacccaatt tcctgatgtt aaacatgcta aagtaattaa 660
 aggtggcacg g
 <210> 94
 <211> 289
<212> DNA
 <213> Meloidogyne incognita
ggctgtaaat gatgtgccgt ggatacagaa tgaatttatt tcgaccgtcc aaaagcgcgg 60 agctgttatt atcgaaaaac gcaaactgtc cagcgcaatg tcggcagcaa aggcggcatg 120 tgatcacatt catgattggc actttggaac aaaagatggc gattgggttt ctatggccgt 180 tccttccgat ggttcttatg gaattccgga aggtttgatc ttctcatttc caattacaat 240
```

```
AKK110P1
         tgatgcanaa acgcgtgact ggaaaattgt acaaagatta gaactcgat
                                                                                                                                                                                                                                                      289
        <210> 95
         <211> 262
         <212> DNA
         <213> Meloidogyne incognita
        <400> 95
       aatttaactt ttctaaccaa aacttttatt tttgtctttg atgtctactc aagtaccgat 60 acgcgtgctg gttactggag cagctggtca gattggttat tctttggtta ttcaaattgc 120 aaagggagat gtttcggga aagaaacgcc catcgttctg gtaatgttgg atattcctcc 180 aatggccgaa gtgcttaaag gagtggaact tgaactttac gattgtgcct tggcaaatct 240 tatagctgtc gagccagtca cg
      <210> 96
<211> 323
<212> DNA
       <213> Meloidogyne incognita
<400> 96
     aagacattga ctatgctttt cttgttggtg caatgcctcg aaaagaagga atggaacgaa 60 aggatttact tgctgctaat gtaaaaatat ttaaatcgca aggactggct ctagcgaaat 120 attcaaagcc aactgttaag gttctggttg ttggaaatcc agcagataca aatgcttta 180 tttgtgcaaa atatgcagca gaaaaaattc cgacaaagaa tttcagcgct atgactcgtc 240 ttgaccataa ccgtgcaatt gcccaaatag ctgctcgttg tgtggttgac tgtgggtctg 300 tcaagatagt tataatgtgg gga
      <210> 97
      <211> 717
<212> DNA
      <213> Meloidogyne incognita
    aatattitta acaaacgatg taacagaaaa acaaagtti titaacaaat titcitgaac 60 cttattitti ticaaaacat tittitatti aaatttaaac cictoticat ticcitaaa 120 cactitccig aactggaggt tcataagcat ciggacgaci ticaataact titcicactig 180
     ctgtagttat agcaacttgt ccaccaccac ttccagcacc ctctccatgc atatccaaaa 240
   gttttccaag ttcaaatttt ggtttttca aaatttttac ttttcgaata taaacgtctt 300 gaagtggata gaaataagaa caagacttt caatgtctt tccaatagaa tcaggaatta 360 atttgctgac aacttcttaa agatcgcatg aagaaacctc gcgatgaata atctcaacca 420 tcctagcacg aatttgacgc acttgagacg attttgcata actagtctt ttcacttggt 480 ttggagcttt ctttgtgaag ccaatacaga acaatcgaag caaataacca tcagttgtt 540 tgacagcaac atttgcttca attaaagtat gccacttttt gacaatagaa caaagcttgt 600 ctcgagtaaa agtcattcca tggaaattgg tcaaacaaac tttgccttga acctcttcac 660 aaataagtcg aaatttgcga aagtcagctt cggtgttgtt cagatcacca agagaaa 717
    <210> 98
<211> 758
      <212> DNA
     <213> Meloidogyne incognita
     <400> 98
  <400> 98
gacaagttta accttgtgtg actttatcta tattcttgtc taaataattc taacaaattg 60
taacaacaaa caaaaatggg cgagcaagac aaaaagaaag ctggcggcgg cgatggtggc 120
aaaaagaagg atggcttcga tgccaaaaag tttgcgattg atttggcttc tggaggaact 180
gccgctgcgg tttctaagac ggctgtggcg cctattgaac gtgtcaagt gtgctacag 240
gttcaagacg cttctcagca catcgctgc gataaacgct ataaaggaat aattgatgtg 300
cttgttcgtg tgcccaaaga acagggagtc cttgctttt ggcgtggaa tttggctacag 240
gtgatccgtt acttccaac gcaagctctc aactttgcgt tcaaggacac ttacaagagg 420
atcttcatgg aaggtgttga caagaacaaa cagtttggca aattctttt gatgatgctg 480
ttatgagca aaaattcct tgtgtggaat agacctaaca gttgaagag atcttgccct 540
ctgtgatacg tatacaacac tctcttcaat tggagatca atgttgaggg gagatgctga 600
tagtaaccc tcgttacaat cacttaacaa ctcaatcaat tccaatgcca ctgctcagaa 660
ttataaactcc tcaacaatta gccaaacca ttcaacact ttcaacactg tacaacat 720
    ttataactcc tcaacaattg gccgaagcta aaaactacgt ttcaacatgc tacagctact 720
```

Page 20

-11

```
AKK110P1
 tcaaaatcga aacagattgt tttaaacgtt tgaaattt
                                                                                                                          758
 <210> 99
<211> 154
 <212> DNA
 <213> Meloidogyne incognita
 ttgagttcgt tggcacattt gttgtgttac aaaacgaaaa ttattgggaa cgggttcag 60 tgcctattct cgcaggttat tggcacttca cacatttgta ccaataacaa cgttaccgtt 120 tataatcaaa ctgttcctca aagttatgcc catt
 <210> 100
 <211> 125
<212> DNA
 <213> Meloidogyne incognita
 <400> 100
 ttcagaatac tcaaggtctt atattcgttg ttgatagtaa cgacaaagag cgtattgttg 60
 aagctcgtga ggaattgatg cgtatgttgt ctgaagacga acttcgcgat tctgtactcc 120
 tcgta
 <210> 101
<211> 219
<212> DNA
 <213> Meloidogyne incognita
 <400> 101
cttgccgaat gctatgaacg ctgctgaact tacagacaaa cttggacttc acacgctgag 60
aaatcgtaac tggtatatcc aggctacttg tgccacttca ggagatggtt tgtatgaagg 120
tttggactgg ttgagtaacc aattgaagaa tcaaggttaa atgagtctaa ataaaaatgg 180
agaggggaaa gaggagaggt taattttta aggaaaaaa
<210> 102
<211> 473
<212> DNA
 <213> Meloidogyne incognita
gttttttttt tttttttta aattccaagt tttcttccaa atgagagaat agggagaatg 60
attrittit trittitia aattocaagi tricticaa atgagagaat agggagaatg ou atgggggaaa aaataggagc aagccaaaaaa gccaaaaaaa aattritti ttaaatgatt 120 trigtaaaatg tgtgaaaagg tgtgtgtcaa ttgtagagtc aaatgcgtt gccttccttc 180 cactaaaaatt tctctttcct ttctttctc ttctaaaatt ccttcaaagt cgatccaacg 240 aaatttcagc ctcctctgga tattccaact cccaaatacg cttcaaatgt ttgcctttaa 300 cgtcacgagg agtaccaaat ccagtcatca acttttgaga gtctccctta ttccaaccgg 360 cctgggatgg aattatcgtt tctgacttct tcatatcttc atatggaagt tcgccagact 420 ccgcctcgta tgttgtgttc cttggcgttc caaaacctgt catgcccgct tgc 473
<210> 103
<211> 114
<212> DNA
<213> Meloidogyne incognita
<400> 103
ttggaccgtt aggattgtcg ccaaagaaaa ttggagaaga cattgcaaag gcaacacaag 60 actggaaagg cttaaaggtt acttgcaaat tgactatcca aaaccgaatt gcca 114
<210> 104
<211> 255
<212> DNA
<213> Meloidogyne incognita
```

· ::

```
<400> 104
   ccgcttctcg aattgtgaag gaattgaagg aacctcaccg agaccgcaaa aaagtcaaac 60 acgtaaaaca cagtggaaat ttgacgatcg agcaaattat cagcattgca cggcaaatgc 120 gacctcgttc aatggcgaaa aaaattggaa gggactgtta aggaattct tggcactgca 180
   caatctgttg ggtgtactgt tgatggacaa catccacatg atattgttga tgcaatccga 240 agtgggaaaa ttgaa 255
   <210> 105
<211> 571
<212> DNA
   <213> Meloidogyne incognita
   <400> 105
   ttttttttt tttttttt tgtcaacaat aaatttactc agaaaaatca tttaacaatt 60
   taacacacat ttttaattcc ttaatactcc aaaaaacttc tcttctttat tccctcttat 120
 taacacacat tittaaticc tiaatactcc aaaaaaacttc tctictitat tccctcttat 120 tctcccaatt catttaaagt ticagttitg tgcggcgcca atgacgacgt tittgcattat 180 agcgtatacg actgccagtt ticattcgaa cccattgcgg cagcggtcga tittgtitag 240 cagccttagc cagcttgcgc tigataataa acgtititgt tgcagccatt aaattgitga 300 cittatccaa aattgittit tigaaggcaa taaacaaatt taattitict gctcaacaag 360 tccataggag ctcatctggt caacaatctc cctcatgcgc ctcagtctcc agcgcticct 420 ctatgaatg tcaaaaacag cagcaacaac ccccagcaga acctigtgga cctictitgg 480 aagticatca atctggtcat tcaacaacaa cccticcatc tccatginct tiattacccc 540 ctccctctic titacatcct ataaatcatc g
 <210> 106
<211> 235
<212> DNA
   <213> Meloidogyne incognita
  <400> 106
 tgctttattt tcaattcttc aaccaaaaat taaatcttcc cttattttaa ttacaattcc 60
 aattttagca gcattagccc caactacttt agctgctaat aaaattgttt atgaggatgg 120
agatagtgat ggacttgata tggctaaaag tattttaaat tgaataaagg aaaaagaagc 180
attttaaaga aaattagatg gaaatgctga agaaagaaaa aaattattta ttttt 235
 <210> 107
<211> 702
  <212> DNA
  <213> Meloidogyne incognita
 <400> 107
<400> 107
ttttttcaaa aaataattcg aattttgttc ttttttattt tgctacaaat aaaatttaaa 60
tttgaaaaaa aaaaaaaaa aaaaaaaac tcgagaagaa atccttgccg aaattgacgg 120
ctctcaaatt gaggagtatc aacgtttctt cgatatgttt gaccgtggaa agaatggcta 180
tattatggct actcaaattg gggtaattat gaatgctatg gaacaagatt ttgatgaaaa 240
aactcttcgg aaattacc gaaaattcga cgcagacggc agcggcaaaa tcgaattcga 300
cgaattctgc gctttggtat acactgtggc gaatactgta gacaaggaca ctttgcggaa 360
agaattgaga gaagctttc gtctcttga caaaggagc aatggttaca tctctcgtcc 420
aacactcaaa ggattacttc acgaaatcgc cccagacctc agcgataaag acttggatgc 480
cgcagtagac gagatcgac gagatcgac gagaaaaaatt gaatttgaaa aattttggga 540
<210> 108
 <211> 423
 <212> DNA
 <213> Meloidogyne incognita
aaaattaaaa taaaagacaa acaaataaat ataaattaaa taaataatat ttaaataaac 60 acacaaataa actctccaaa cataatttt ttaaatttta ataacatttt gtcccatttg 120 agaaagaaaa tgccaaagga gatgaagaac ttgttgaaga aaaaagttca aaaatatcaa 180 ctcctccatt tgtcgtcaca ttttcttca ttattccatt tgttgtaagc tcagtaactg 240
```

```
AKK110P1
 ccccaattgt tgttgtagtc catggagaga aagcactttc cccattcgaa aatgttgaac 300 caaattggtc aaattgttgc tgttgttgac ctcgaagttc gttagaaaca gaacgaaata 360
 aattatgagg tigtigtigt teetgaegit titgatigte iggagetggg igaggateae 420
 <210> 109
<211> 994
 <212> DNA
 <213> Meloidogyne incognita
 <400> 109
 ttttattttt tatttgaaaa taatcatcac attataatta atgggaaaaa gacaaaaaat 60
 tagaacaggt gctggcgatc ttgtcacaac ccctggacct cttcataaac aaattgaaag 120 gtcaaaacta gccaagccga aattcaagcc tttaaaacgt tcaagagaag agcaaaaaga 180
gtcaaaacta gccaagccga aattcaagcc tttaaaacgt tcaagagaag agcaaaaaga 180 tgaaattgaa Cttgtcgatc catcgttaaa gggcaaaatt attataaag caaacaaaaa 240 attggaaaaaa gatgttgtgt tcaatgagga tggagaatct gataattctg aagaaattga 300 agaagaagaaga gaagacggca atgaaaagtt ggatgttgat caattagtat caaacaatt 360 ggaagattta gatgaactaa aattggatga tggcgttgaa aatgtgcgaa agataataac 420 gaaattcaga taaaaataac aaagaaagtg ttaaaataa agctgagttt gccgatatcg 480 acccaaaaat tgttgatctt tttacagaaa ttggtcaagt tttaaagaaa tatagaagtg 540 gacgtattcc caaagctttt aaagttattc caactttggt tgattgggag aaaattatcg 600 aattaactcg cccagatgat tggtcggcag ctgcaatgtt acatgctacc aaaatatttg 660 cttcaactgc tacccctact caatgccaaa ggtttataa tttgatttg ttgccacgta 720 ttcgagatga tattgacgga ttaaaaaatt acattcccat atgtatcaat gcttatttaa 780 agcattgttc aaaccagctg catttttcaa aggaatcctt ttgccgcttt gcaaatcqaa 840
agcattgttc aaaccagctg catttttcaa aggaatcctt ttgccgcttt gcaaatcgaa 840 caatttttct cttcgagaag ctgttgttct tgcttctatg cttcgtaaag cctccatccc 900 tcaattacac gcggccgcag cattgttgag tatttcttgt ttagaatata cttcttcaag 960 ggcttatatc cttcaagcat tgatagaaaa gaat
<210> 110
<211> 476
 <212> DNA
 <213> Meloidogyne incognita
 <400> 110
tttaaacact taaaaatacc ttcaaattta ttttagaacc tttttgccat taaaaaaaat 60 tttattcga aaaaatggct gagaatatag aagaaatcct tgccgaaatt gacggctctc 120 aaattgagga gtatcaacgt ttcttcgata tgtttgaccg tggaaagaat ggctatatta 180 tggccactca aattggggta attatgaatg ctatggaaca agattttgat gaaaaaactc 240 ttcgaaaatt aatccgaaaa ttcgacgcag acggcagcgg caaaatcgaa ttcgacgaat 300 tctgcgcctt ggtatacact gtggcgaata ctgtagataa ggacactttg cggaaagaat 360 tgagagaagc ttttcgtct ttcgacaagg agggtaatag ttaaaagactta cgtccaacac 420 tcaaaggatt actccacgaa atcgccccag acctcagga taaaagactta gatgcc
tcaaaggatt actccacgaa atcgccccag acctcagcga taaagacttg gatgcc
<210> 111
<211> 189
 <212> DNA
 <213> Meloidogyne incognita
cgaagacgga agcggaaaaa ttgaatttga agaattttgg gaattaatgg ctggagagac 60 tgattgaaat tttaattaga gatgaataaa aaattaacta aaatattttg ccataaaatt 120
ttggaāagtg ccaaaaatīg čctītttgag aatttttatt tttaacgtcī aaataatgaa 180
taaatggat
<210> 112
<211> 164
 <212> DNA
<213> Meloidogyne incognita
 <400> 112
ttgaggaaat ttaattttt aaacaaatat aataattacc aaacaacaaa aaagaatccc 60
aaaaacaaca tttttaaatc aaatgacaga catatatttg caataacgat gtgtggattt 120
tcttttttt taaataatta acatcttaag cctgctatti cttc
                                                                                        Page 23
```

- 1

```
<210> 113
<211> 539
  <212> DNA
   <213> Meloidogyne incognita
  <400> 113
 <400> 113
cagctttctg cgcagatttg gtaacctttc caccagcttc gaccttctcg acggccttga 60
taacaccaac agccacagtt tgacgcatgt cacgaacggc gaagcgtcca agaggagcgt 120
agtcagtaaa agcctcaaca cacattggct tggttggaat taagtcgaca ataccagcat 180
ctccagtctt caaagcctt ggattgtctt caaccttctt tccagttcga cggtcgacct 240
tctctttaag ctcagcgaac ttgcaagcaa tgtgagcagt gtgacagtca agaacaggcg 300
tgtagccagc agcaatctgc ccaggatggt tcatgatgat aacctgagca gtgaattgct 360
tggtctcctt tgctgggtca ttcatagagt cagaagtgac tgaaccacgt cggatgtcct 420
tgacagagat gttcttaacg ttaaatccaa cattgtcttc aggaacagct tcagggagag 480
actcgtggtg catctcaaca gatttaactt cagtagaaat tccttcagga gcaaaggta 539
  <210> 114
  <211> 314
  <212> DNA
  <213> Meloidogyne incognita
  gtttttaatt ttagaaaatg tctacagaaa cagaaaagga tttagaacgt tgggaggatg 60
 tccgtcgatt tactgagatt ggttcttcta aatttgccca tcccgctttt gttccaagcc 120 cggagaatct tgaaagagta aggaaatgtc cagttttggt tgttggtgct ggtgcgcttg 180 gatgtgaaat tttgaaaaat ttggccttat caggatttca aaatattgaa gttattgata 240 tggacacaat tgacctttca aatctcaaca gacagttttt gtttcgtgaa cacgatgttg 300
 gcttatacaa agca
 <210> 115
<211> 200
<212> DNA
  <213> Meloidogyne incognita
 <400> 115
ttcgaagacg tgttaaagga tgtcgtctta ctgcacataa ttgtaaaata caagataaag 60 gacttgactt ttatgggcaa ttttcaatta taatttgtgg actagattct attgatgctc 120 gaagatggtt aaacgccaca gtgtgttctt tggtcgaatt tgacgaagaa aacaagccac 180
 ggccaggcac aattattcca
 <210> 116
 <211> 471
 <212> DNA
 <213> Meloidogyne incognita
 <400> 116
tttggtcgaa aaaagactgc tactgctgtg gcatattcca aaaagggaaa aggattaatc 60 aagggcaatg gccgtccttt agaatttttg caacctgaaa ttcttcgtat taagctacaa 120 gagccattgt tgattgtagg aaaggacaaa tttgctggaa tggatattcg catccgtgtc 180 aaaggtggtg gtcatgttgc acaaatttat gcaattcgac agtcaattgc taaagttttg 240 gtggcctatt accagaaaaa cgtggatgag caaagcaaga aagaattgaa ggatcaactt 300 gttgcttatg atcgtaattt gcttgttgcc gatccgagac gtcacgagcc aaagaagttt 360 ggaggacctg gtgctcgtgc tcgttatcag aaatcttatc gttaagaagt atgaaattat 420 aaaattgtgt gttacgaatt aattgttatt ttgttgggat aaatntgaat a
<210> 117
<211> 593
<212> DNA
 <213> Meloidogyne incognita
gaattcaaaa aatattaaaa ttgtttaata taatttctaa aatqaagcca aaggttqqaa 60
                                                                                                           Page 24
```

WO 01/96584 PCT/US01/18911

```
AKK110P1
   ttaacggatt tggacgtatt ggacgtcttg ccctgcgtgc agcggtcgag aaggatactg 120
  tccaagttgt ggctgtcaat gacccgttca ttgatcttga ctatatggtc tatatgttta 180 actatgattc cacccacgga cgctttaaag gaaagattca agcaagcaat ggaaatttgg 240 tagttgagaa ggagggaaag tctactcata ctatcaaagt tttcaacttc aaagaacctg 300 aaaagattga ctgggcaggt tctggtggtg atttgttat tgagtcgact ggaggtttta 360 ctactaccga gaaagcttct gctcacttga agggcggagc caagaaagtg gttatctcg 420 ctccatctgc tgatgctcca atgttgtgg ttggtgttaa tgaggacaaa tatgatcctt 480 aggttataaa tgacgagtt ggcataatto aaaggtaaat gaccactaa tgactctgcs 540 aggttataaaa tgacgagtt ggcataatto aaaggtcgaat gactactag cac
   aggttataaa tgacgagttt ggcataattg aaagttgaat gactactgga cac
   <210> 118
   <211> 576
   <212> DNA
   <213> Meloidogyne incognita
  <400> 118
  gaattccgag ttttttttt tttttttaa aacaaaaatt aaaagattta tcgccatcct 60
  ttgccagcca tttgcccgcc atttttttgt gcacaataaa tttttttgta atttttgggg 120
tgagggggaa gtaaaatgaa agaagggaga gagatatgaa ttgttttgta atttttgggg 120
tgagggggaa gtaaaatgaa agaagggaga gagatatgaa ttggaggttt ttttgttaaa 180
ataaattttt tttttttgaa aattcttcc gtttctgagc tttttcgtct tttttcaatt 240
ttcgtttgtc gaaatactaa actttacaat ttggttaggt tctatttgtg aaacataaaat 300
atctccatta tcgctgattg caagggcatg ggcgttttcg agaccctttg caaagctatt 360
agcccttcct gtgttcatat ccattacgaa aacttgggat tctaattgac tgccttgatc 420
ttgattggtg acgccgacga ggaagtgttc tttctctcgg atagcaaaga ctcgcccaat 480
atttcagcc tttgtgaaga aagtgcctgt ggggacgtaa gcacgtctat gttggtgttg 540
agccccttct aatccacaa aaaaggccttg agggacgtaa
 agcgccttct aatccagcag aaaagcattg aatacg
 <210> 119
 <211> 559
  <212> DNA
  <213> Meloidogyne incognita
 <400> 119
<400> 119
acgcagagta agrtgagatc trcaataagg gttagagagt gtggtacgag gaattctcca 60 tttttgggtg tttcactgga gtcaggcttc ccaaattgac tgagcaatt cccatccttg 120 tcaaacttca ttattcggct attacagtaa ccatctgcca cgaaaaactc tcctgtactg 180 gcaatagcaa cgtctgtagg tttgcaaaaa tgtttgtcat ctgtcctgg aacaagcttt 240 tcgcccaaac tcataattaa tttaaaatcc ttgtcaagtt tgtggacttg atgacttcca 300 acgtcagtaa cccaactatt gccgtgggca tcgattgtta gtccatgagg catgtaaaac 360 atgcttttc cgtattctc caagactgcc cctgattccg tgctataac agcaattgtt 420 gtgtttgaaa tgatgccag ggatctgtt aggtggttgt tctcatcaaa cgaaaattca 480 tcccaaactc tgtcagatcg gtgaaaaaga acaagtcgat tcaatggatc caatgcaata 540 cccagagctt gcccaatat
cccggagctt gcccaatat
<210> 120
<211> 366
 <212> DNA
 <213> Meloidogyne incognita
<400> 120
tttaagaatt ttttaaaaat taaaacttgg actagattt aataaaatgt cagctccacg 60 tagtgttgct agcggtgttg gtgctgctgt tatgaataag caagcaagta aatacaatga 120 agttgaagga gaactccttc ttaattggat taagaaagtg acaggcgaaa atattgctat 180 aaacggaact agggaaaatt ttgtgaaaca attgaaagat ggaactctgc tctgcaaatt 240 tgctaacaaa attgtgccaa attcaatcac aaaggcacag gcaaaaccga acagcacatt 300 ccaatataatg agcaatttgg agctgttctt aacatttatt tcaagccaag gagtccctag 360
ggagga
<210> 121
<211> 661
 <212> DNA
<213> Meloidogyne incognita
<400> 121
```

24

```
AKK110P1
   ttagttgaat ctcgtgacct ctactctgtt tgtatgacat taaattctct tggccgcatt 60
 ttggaacgtc aaggaaaaac tcatccagag caggttaagt cgtcagaaat tcttaatttg 120 ggtactggag accaagtgcg ccttcgtgtt taaagatggg aaattgaaag aattttggtt 180 aaacataata aaaagacatt ttatggcaat aaaaaaatgt caaaaaagct tgtctttaa 240 atattttggc aaaacatttt actttcacaa aattttaaaa taaatttatg aagattgttc 300
  cgtcactttc atcatttccg atcgaccttt gttgttttct aagttcgttg gccaaagaaa 360 ggatatgtaa aattgaatta tgaataaaaa taaatcactc aatcagaggc attgttagtc 420 tctcacttcc tcctctttac ccattggcta accagcttta aggattttt ccataagttc 480
 aaggtgtacg taaatcgaat accgactgtg gtatcttaat ttttccatga aattctccaa 540 taaaaaaaaa tttttttat ttttttcca taatgctatc tatattttt gcttttaatc 600 ttttttggct atcaggcttt aaaatagtaa atatacttat attaatattt tattccttt 660
  <210> 122
  <211> 173
  <212> DNA
  <213> Meloidogyne incognita
  <400> 122
 ggagagtttt tcgtggcaga tggttactgt aatagtcgaa taatgaagtt tgacaaggat 60
 gggaaattgc tcagtcaatt tgggaagcct gactccagtg aaacacccaa aaatggagaa 120
ttccttgtac cacactctct aaccctcatt gaagatctca acttactttg tgt 173
  <210> 123
 <211> 584
<212> DNA
  <213> Meloidogyne incognita
 <400> 123
cgcattcaat gctttctgc tggattagaa ggcgctcaac accaacatag acgtgcttac 60 gtccccacag gcacttctt cacaaaggct gaaaatattg ggcgagtct tgctatccga 120 gagaaagaac acttcctcgt cggcgtcacc aatcaagatc agggcagtca attagaatcc 180 caagttttcg taatggatat gaacacagga agggctaata gctttgctaa gggtctagaa 240 aacgcccatg cccttgcaat cagcgataat ggagatattt atgttcaca aatagaaccc 300 aaccaaattg taaaatttag tattcgaca aacgaaaatt gagaaaaaaa aaaaaaaagc 360 tcagaaacgg gaagaatttt caagaaaaaa tttttttacc aaacaataca aaaaatttta 480 ttgtgcacaa aaaaattggg gaggaggg gagaggg gagaggg aacggggaggaggaggaggaggg gagaattta 540
 ttgtgcacaa aaaaatgggc gggcgggcga atggctgggc aaaggatggc gataaatctt 540
ttaatttttg aaaaaaaaa aaagaattcg aattatatgg ccta 584
 <210> 124
 <211> 650
 <212> DNA
 <213> Meloidogyne incognita
 <400> 124
 gtttaagaca attaaaacgt ttattttcta caatcaaaac aaatatggct gttcctcccg 60
attaaaacgt ttatttcta caatcaaaac aaatatggct gttcctccg 60 atgttatcga gaagatcgag gctgggtaca aaaagttgca ggaggcaccg gagtgcaagt 120 ctcttctcaa gaagtacttc acgaaggaag ttatggacca gtgtaaaggg ctcaaaacta 180 agcttggtgc gaacttgctt gatgtgatcc actctggagt tgcggaatct gatagcggtg 240 ttggtgttta tgcgcctgat gctgaagtct acacttctt caaaccgctt tttgacccga 300 ttattcagga ttaccacaat ggatttggac ctgaccagaa gcagccgcaa actgacttgg 360 gtgagggaaa gactcagctt ttgcctgatc tggatcctga gggtaaattc atcaacccga 420 ctcgtgttcg atgtgggcgt tctcttcagg gatatccgtt caatccgtgc ttgactaaag 480 agaattatac ggaaatgcat tacctttgg agggaatgac caaagaggtt caaactcaat 600 tgatcaagga tcacttcctc ttcaaagaag gagaccgctt tttgcaagct
 <210> 125
 <211> 1013
 <212> DNA
 <213> Meloidogyne incognita
<400> 125
```

· 1

```
AKK110P1
  tttttttttt tttgatgttt ctaatttttg tgggcaatat ttaatattat ttttaattat 60
  taaattttct tctttaittt ttaaaaaaati aiiicttaaa tttattcttc tcctcttcgt 120
  gttttgaatc aaataattaa attttaaatt atttaaacag ctacacgagg cctcagcctc 180 ccccgttgca ttcaaattgg tcggcacggt tggcgatgat aattttattt tttaggtaat 240 tttggtgaga aaatatttt aaaggtaata atgtcctttt ggacaattaa aaaaaaactc 300
 tttggtgaga aaatatttt aaaggtaata atgtcctttt ggacaattaa aaaaaaactc 300 gaggagagag tgaatatttt tacaaattat ttgaagagca gccagcctat tgttatcaac 360 aaaaaaacctt caaaatgcca gaaaatgatt atgatgagga ggaggcgcca aacgccacga 420 tggaaacaaa ggtagcttca ggtggacagc caaaacgctg ttggaaaatg gacattatcc 480 cagctgcgcc agactgatgg tataattcca tcccaggccg gttggaacaa gggagactcc 540 caaaagttga tgaccaattt tggaccca cgtaacacaa caaccaaaat tcgtgcctgaa 600 tgccttgctg atggcctga agaaattgct cttaaaagtc acggtgaagt acgcctccaa 660 tcccatacta
 tccggtacta accgttttgc ttcgcagaag ggaatggttg gatttggtac tggacgtgac 720 ttatgcagag aaggagtgtt tgtgagtcaa gacccagccg atttatagcc cctcccagaa 780 gagataatcc gtgctagcga tggaattgtt cgtctccaat ccggtaccaa caaattcgac 840
 tcccaaaagg gaatggtcag cttcggtaca aaccgacgcg aaactacaag aatgaaagac 900 accaaacatc cggaatacaa ccacgaagtt aacattgacc aaagcgaaat tcctttgcaa 960
  tctggtacaa acaaattcgc atcccaaaag ggaatgacca gcttcggtac aaa
                                                                                                                                                               1013
 <210> 126
<211> 80
  <212> DNA
  <213> Meloidogyne incognita
 <400> 126
 tgttggacac tgctcaccca gaatacagtc acgaaagcag catcgatcaa acgagcattc 60
 cttaccaaat gggatcaaat
 <210> 127
 <211> 585
 <212> DNA
 <213> Meloidogyne incognita
agggaatgac ttgctttgga cagccacgtt gggaggtgct tgacccgagc attagctacc 60
aggaccytaa atcacaagga atggtccytt gggagytgct tgacccyagc attagctacc 60 agaaccytaa atcacaagga atggtccytt tccaatccyg aacaaaccyg gtcyctcyc 120 aagcgygycat gacagyttt gggactccaa ggaacacaac atacgagycg gagtctygcg 180 aacttccata cgaagataty aagaagycay aaacgataat tccatcccay gccygttyga 240 ataagygaga ctctcaaaag ttgatgacty gatttggtac tcctcytgac gttaaagyca 300 aacatttgaa gcgtatttgg gagttyggaat acccagagga gyctgaaatt tcgttygatc 360 gactttaaag gaatttaga aggaaggaaa gaaaagagaa atttagtyga aggaaggaaa 420 cggcatttga ctctacaatt gacacaaacc ttttcacaca tttacaaat accatagycaa 420
cgacatttga ctctacaatt gacacacacc ttttcacaca tttacaaaat acattaaaaa 480 aaaattttt ttggcttttt ggcttgctcc tatttttcc ccccatcatt ctccctattc 540
<210> 128
<211> 287
 <212> DNA
<213> Meloidogyne incognita
<400> 128
catctggaga aacgttgagg caatacatcg ttattggccg taaacttcct acagagaatg 60 agccaaatcc aaaactttac aaaatgcaaa tttttgccag taatcatgtt gttgctaaat 120 cgcgtttctg gtactttact agtatgttgc gtcgtgttaa gaagactaac ggagagattg 180 tttcgtgtaa ggaggttttt gaaaagaaga taggctctgt aaagaattat ggaatttggc 240 ttcgttatga ctctcgaacc ggtcatcaca acatgtaccg tgaatac 287
<210> 129
<211> 175
<212> DNA
<213> Meloidogyne incognita
<400> 129
gctgtcactc aggcttatcg cgacatgggt gctcgtcatc gtgctcaagc cgatcgaatc 60 caaataatca aggttcaacc gatcaaggct gccgattgca aacgtactgg agttaaacag 120
                                                                                    Page 27
```

11

```
AKK110P1
 ttccacaact cttcaatcaa gtttcctttg ccgcatcgtg tgaatgacaa acgtc
                                                                                                                            175
 <210> 130
<211> 599
 <212> DNA
 <213> Meloidogyne incognita
 acttttgttt ataatcacat ttgcattact ttccgtccat ccttctttga gacagaattt 60
<210> 131
 <211> 466
 <212> DNA
 <213> Meloidogyne incognita
gaagattgga tttattggcg ctggaaagat ggcacaggca ttggccagag gactaataaa 60
gadgattgga titattggcg tiggaaagat gytacaggca tiggitagag gattataaa ou titttggacgt tatcetteca aaaattggat gytatagatge cetaagactg atyteetett 120 attggaggat tgcaagagge ttgggagtaa tacagcacat gataatgcac aagttgeteg 180 tgaaaatgat gtggtgatta tagcaggtaa accaactatt gtgeteaaag ttgeetegga 240 aattgcacca gccatcegee gagateatgt acttattee atagcattgg gcateaccat 300 acgetacatt gagcagtaat tgaceteaga atecegaatt gteegtgtaa tgccagatac 360 teetgtaggt ggtaggagea ggetgetgea gccatatate attgggatea gcategeag 420 gataggtgat geccagatag tteaagatee teetgataacg etgggg
<210> 132
 <211> 266
 <212> DNA
<213> Meloidogyne incognita
<400> 132
atgaaattcg agttctttgc atcaaggccc gtgaaatttt tctttcgcaa cctattttgc 60
tggaattgga agcgccgttg aagatttgtg gcgatattca cggtcaatac aacgaccttt 120
tgcggctttt tgaatatgga ggttttccgc ctgaagcgaa ttatttattt ttgggtgatt 180
atgtggatag aggaaagcag agcttggaga cgatttgttt gctgttggcc tacaagatca 240
aatcccccga aaattcttt tgctga
<210> 133
<211> 308
<212> DNA
<213> Meloidogyne incognita
<400> 133
tctatcaacc gaatatatgg attttacgat gaatgcaaac gcagattttc tataaaattg 60 tggaaaacat ttactgattg cttcaattgt ctgccaattg ctgctgtgat cgatgagaaa 120
atattttgtt gccatggagg tttgtcacca gatttgcaga atatggagca aattcgaaga 180 attatgcgac cgacggatgt gccagataca ggtcttctct gcgaccttct atggtctgat 240 ccagaccaag atgtccaagg attgggagaa aatgatcgtg gggtctcttt cacttttgga 300
ccagatgt
<210> 134
<211> 335
<212> DNA
<213> Meloidogyne incognita
```

```
taaatttagt ttctttctt ccatctcttt ttatgttttg aaagagtgtg ccaaaacaaa 60
 tggccgcccg tgatggaaga agcaggcaaa attatttaca agaacattca attcctcaac 120 tttttgaggg tttaatgact ggacttatat acaatcaacc aatcgatcct attcaattt 180
 tggagāatgc aatagctaaa citcgaaaaa atcctgatct tccaitaaag tgggatactt 240
 ttataagtgt ttcgcctcaa caacagcaac aacaacagac gagaatgaat actggagaaa 300 atgcagtttc ttataaacaa agcactccta tcgaa 335
 <210> 135
<211> 506
  <212> DNA
 <213> Meloidogyne incognita
 ttttttttt tttaaaaatc aacagattta ttcaagtgcc tcgggcaaat aacaacaaac 60
 atccacaaac ataatattat tgaacttttc ctttttaaaa cttatcaaag gccttctttg 120
attendade atalatetat tyadetetete ettettadad ettatedad geettettig 120 tectgagae titigateace ticaaaacat taaaacgaac agittitaete aaaggoetige 180 atteacegat egigacaata teaecaatag agatateacg gaaacatgge gaacagtgaa 240 egigacatgit titigigaegi titetegiate gaegataiti egigaacaaag tigeaaataat 300 eaegeegaat gaeaatigig egetgeatit tigitetigat aacaacacca gicaaaatac 360 ggeeacgaat tigaaacatti eeagtgaaag gaeactitit gicaatataa tigeetiega 420 tageetiegi tiggagitita aateetaace eaacateeti eeaataacga teettattit 480 teeggetnitti geeaateeti tigegie 506
<210> 136
<211> 230
 <212> DNA
 <213> Meloidogyne incognita
aattootoaa actotgocot ggotgtoott otoaaaacga caccotogot trattatoac 60 ctocagtoaa ctacgaaaat totttgogag atoaagggag taattogaca tratggatto 120 ttttgttggt tittaattgt trattitigo tactaattit cottotaatt googootaco 180
tccgttgtcg catttttggc tccgcccct acaaaaacca gttccgtcgt
<210> 137
<211> 216
 <212> DNA
<213> Meloidogyne incognita
<400> 137
acaaatacac aacaacaaaa tcattgttta ccccaaatat ccaaaagttc tcctccaact 60
tcactcgctg tttgtaccaa ctctactagc tgtaattcgt ccttagctgt gccgttaatt 120 tctagtgaat cggaagaaag tgatgaacaa caaaagacgg gggaatggac aaatctaaca 180
ttattaatta tttattctca tgattgtaaa ttgcat
<210> 138
<211> 395
<212> DNA
<213> Meloidogyne incognita
atgcattcct gaagcaattt tgggtatgga cattgtatgc caagcaaagt ctggtatggg 60
gaágacaget gtatttgtgt tögcaacáet ccaacaattg actecagttg acgggacggt 120
ctctgttctc gttatgtgtc acactcgcga acttgctttt caaatttcaa aggaatatga 180 aagatttagc aaatatatgc ccggaactaa ggtttcggtt ttctttggtg gtatgccgat 240 caagaaggac gaggagactt tggctaagaa cactccgcac attgttgtg gcactccagg 300
gcgtctgctg gcgttgggac gtacaggaca attgaagctg aaaaacatca aattcttcgt 360 tttagacgaa tgtgacaaaa tgattgggga cgctg 395
<210> 139
<211> 591
```

· .:

WO 01/96584 PCT/US01/18911

AKK110P1

<212> DNA <213> Meloidogyne incognita

<400> 139						
gaattcggcg	ttgtctcggt	gtccacgctc	aatttcaccg	aaatttttgg	ggcaggcgtc	60
	aactctgggt					
	cacttactga					
	aactgagcaa					
	ctgtttggcc					
gaaattcatt	ttggacctga	gccctcgcac	acgtacattt	cgcactcgcc	tgagaagttg	360
aacccaaagg	gcagagaaca	cgacctttcg	gccatatgct	catgcatggg	aaaagccaac	420
	gaattgcggt				J - J J	480
	attggccatc					540
aaagttgacc	tttggtgagt	ctgtggcccc	atttgaatga	acgagcgatt	t	591