

POCS: Blocking Internet Flooding

Prof. Katerina Argyraki

School of Computer & Communication Sciences

Bandwidth flooding

Target: tail-circuit bandwidth

Network filtering

State: {A, R}

Functionality: if ({packet.src, packet.dst} in State) block packet;

Block attackers at the receiver's gateway

State

State: {attacker, receiver} pairs

Where: receiver's gateway

Managed: locally

Internet routers

Network filtering is expensive

Network filtering

State: {A, R}

Functionality: if ({packet.src, packet.dst} in State) block packet;

Block attackers at the receiver's gateway

Distributed flooding

Target: filtering resources + tail circuit

Distributed filtering

Identify routers close to attack sources
Ask them to block attack traffic

Need a filter-propagation protocol

Filter propagation

Filter propagation

Filter propagation

Malicious filtering requests?

Filter propagation continued

Filter propagation continued

GR proves it is on the path by 3-way handshake

Busy attackers?

Busy attackers?

Busy attackers?

Filter propagation continued

Keep in-network filters temporarily

Filter propagation continued

Disconnection = cheap filtering

Keep filtering state in the control plane

Non-cooperative networks?

Non-cooperative networks?

... get disconnected from R

State

State: {attacker, receiver} pairs

Where: control plane of attacker's gateway

Managed: filter-propagation protocol

Distributed flooding

Target: filtering resources + tail circuit

Ticket-based authorization

Give tickets to well behaved senders

Verify tickets inside the network

Need ticket distribution and verification

Ticket distribution

Ticket verification

Ticket verification

Ticket construction

S cannot guess the value of a valid ticket

Stateless filtering

State: Functionality: if (not verify(ticket))
block packet;

State

State: {sender, receiver} pairs

Where: senders

Managed: ticket-distribution protocol

Denial of ticket

Target: tail circuit + ticket distribution

Tickets + network filtering

Block attackers in the network

Distributed denial of ticket

Target: filtering resources

- + tail circuit
- + ticket distribution

Tickets + distributed filtering

Need a filter-propagation protocol

State

State: {sender/attacker, receiver} pairs

Where: senders + network

Managed: ticket distribution + filtering propagation

Outsource ticket distribution

Outsource ticket distribution

Outsource ticket distribution

Target: the DNS infrastructure

Fair-share the Internet

- Fixed number of connections per sender
- Reduces filtering state

Changes the nature of the Internet

Katerina Argyraki Principles of Computer Systems Fall 2019