I. Production Order Reconstruction

in Smart Manufacturing Line

Constraint: Time Limit: 1 seconds, Memory: 64MB

Background

The robot manufacturing company *FuturaMech* operates an automated assembly line consisting of **n stages** ($1 \le n \le 100000$) numbered from 1 to n.

Each stage has a **priority level** (determined by its index: a stage with a smaller index has lower priority) and different **completion times**.

Due to a system failure, the file recording the completion order of stages has been lost. However, the control department has retained one important piece of information:

For each stage i $(1 \le i \le n)$, there are exactly a_i stages with lower priority (index j < i) that were **completed earlier** than stage i $(-10^9 \le a_i \le 10^9)$. Data is considered valid if and only if: $0 \le a_i \le i - 1$ for all i = 1, 2, ..., n

Requirements

Write a program to **reconstruct the completion order** of the stages based on the given information.

Note: If the data is invalid (violates logical constraints), the program must detect and report an error.

Input/Output Format

Input	Output
■ Line 1: Integer n - number of stages	• If data is valid:
Line 2: n integers $a_1, a_2,, a_n$	Print n integers $p_1, p_2,, p_n$ which is a permutation of 1, 2,, n, where: p_i is the stage completed at position i (in
	chronological order) • If data is invalid: Print -1

Examples

Testcase 01

Input	Output
5	5 4 1 3 2
0 1 1 0 0	

Output order q = [5, 4, 1, 3, 2].

Positions: pos(5)=1, pos(4)=2, pos(1)=3, pos(3)=4, pos(2)=5.

For each stage i, a_i counts how many **lower-priority** stages j<i finish **earlier** (i.e., pos(j) < pos(i)):

- i=1: lower-priority set is empty $\Rightarrow a_1=0$.
- i=2: lower-priority $\{1\}$; pos $(1)=3 < pos(2)=5 \Rightarrow count 1 \Rightarrow a_2=1$.
- i=3: lower-priority $\{1,2\}$; only 1 is earlier $(3 < 4) \Rightarrow$ count $1 \Rightarrow a_3=1$.
- i=4: lower-priority $\{1,2,3\}$; all appear after $pos(4)=2 \Rightarrow count 0 \Rightarrow a_4=0$.
- i=5: lower-priority $\{1,2,3,4\}$; all appear after $pos(5)=1 \Rightarrow count 0 \Rightarrow as=0$.

All counts match a = [0, 1, 1, 0, 0], so the output is valid.

Testcase 02

Input	Output
3	-1
0 2 1	

Stage 2 has only one lower-priority stage ({1}), so the maximum possible value for a_2 is 1 (when stage 1 finishes before stage 2). Since $a_2 = 2 > 1$, this violates the bound $a_i \le i-1$, hence no valid completion order exists.