Multivariate Normal Distribution

With a brief introduction to other probability distributions

Univariate Normal (Gaussian) Distribution

- Bell-shaped distribution with tendency for individuals to clump around the group median/mean
- Used to model many biological phenomena
- Many estimators have approximate normal sampling distributions (see Central Limit Theorem)
- Notation: $X \sim N(\mu, \sigma^2)$ where μ is mean and σ^2 is the variance

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

Obtaining Probabilities and Quantiles in R:

To obtain: $F(x) = P(X \le x)$ Use Function: pnorm(x, μ, σ) To obtain the pth quantile: $P(X \le x_0) = p$ Use Function: qnorm(p, μ, σ)

Virtually all statistics textbooks give the cdf (or upper tail probabilities) for standardized normal random variables: $z=(x-\mu)/\sigma \sim N(0,1)$

Normal Distribution – Density Functions (pdf)

Empirical Rule

Second Deçimal Place of z

8 Appendix

.ABLE 1 STANDARD NORMAL PROBABILITIES

P[Z≤z] 0 z

Integer part and first decimal place of z

					0	z				
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	,5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	5398	.5438	.5478	.5517	.5557	.5596	.5636.	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	.7794	.7823	.7852
8.	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
2.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
₹.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
19	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
_ .0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
~ 2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
4.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
~ 6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
4.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
ا 1.د	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
^ 3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
∃.4	.9997	.9997	.9997	.9997	`.9997	.9997	.9997	.9997	.9997	.9998
ر.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998

Chi-Square Distribution

- Indexed by "degrees of freedom (v)" $X \sim \chi_v^2$
- $Z^{\sim}N(0,1) \Rightarrow Z^{2} \sim \chi_{1}^{2}$
- Assuming Independence:

$$X_1,...,X_n \sim \chi_{\nu_i}^2$$
 $i = 1,...,n$ \Rightarrow $\sum_{i=1}^n X_i \sim \chi_{\sum \nu_i}^2$

Density Function:

$$f(x) = \frac{1}{\Gamma(\frac{\nu}{2})2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2} \quad x > 0, \nu > 0 \qquad E\{X\} = \nu \quad V\{X\} = 2\nu$$

Obtaining Probabilities in R:

To obtain: 1-F(x) = P(X \ge x) Use Function: $\frac{\text{pchisq}(x, v)}{\text{pchisq}(x, v)}$

To obtain quantiles: $P(X \le x_p) = p$ Use Function: qchisq(x, v)

Virtually all statistics textbooks give upper tail cut-off values for commonly used upper (and sometimes lower) tail probabilities

Chi-Square Distributions

Critical Values for Chi-Square Distributions (Mean=v, Variance=2v)

3 Appendix

"BLE 3 χ^2 DISTRIBUTION PERCENTAGE POINTS

	r								
a.f.	000	050	000	500	α 100	050	00.5	0.4.0	
. "	.990	.950	.900	.500	.100	.050	025	.010	.005
ŧ	.0002	.004	.02	.45	2.71	3.84	5.02	6.63	7.88
2	.02	.10	.21	1.39	4.61	5.99	7.38	9.21	10.60
,	.11	.35	.58	2.37	6.25	7.81	9.35	11.34	12.84
4.	.30	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	.55	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
ن	.87	1.64	2.20	5.35	10.64	12.59	14.45	16.81	18.55
	1.24	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
વ	1.65	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.95
ij.	2.09	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
4.1	2.56	3.94	4.87	9.34	15.99	18.31	20.48	23,21	25.19
	3.05	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
13	3.57	5,23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	4.11	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
	4.66	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
	5.23	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
14	5.81	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	6.41	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
-:	7.01	9.39	10.86	17.34	25.99	28.87	31.53	34.81	37.16
- ^ -	7.63	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	8.26	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
'21	8.90	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
	9.54	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
~~	10.20	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	10.86	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
رے	11.52	14.61	16.47	24.34	34.38	37.65	40.65	44.31	46.93
	12.20	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
	12.88	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.64
28	13.56	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
ري	14.26	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52,34
	14.95	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
10	22.16	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
ίú	29.71	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
,,,	37.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
	45.44	51.74	55.33	69.33	85.53	90.53	95.02	100.43	104.21
in.	53.54	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
T)	61.75	69.13	73.29	89.33	107.57	113.15	118.14	124.12	128.30
.,	70.06	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

Student's t-Distribution

- Indexed by "degrees of freedom (v)" $X \sim t_v$
- $Z \sim N(0,1)$, $X \sim \chi_v^2$
- Assuming Independence of Z and X:

$$T = \frac{Z}{\sqrt{X/\nu}} \sim t_{\nu}$$

Density Function:

$$f\left(t\right) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} - \infty < t < \infty \quad \nu > 0 \qquad E\left\{T\right\} = 0 \quad (\nu > 1) \quad V\left\{T\right\} = \frac{\nu}{\nu - 2} \quad (\nu > 2)$$

Obtaining Probabilities /Quantiles in R:

To obtain: $F(t) = P(T \le t)$ pt(t, v)To obtain: p^{th} quantile qt(p, v)

Virtually all statistics textbooks give upper tail cut-off values for commonly used upper tail probabilities

t distributions

Critical Values for Student's t-Distributions

Appendix

TABLE 2 STUDENT'S t-DISTRIBUTION PERCENTAGE POINTS

d.f.					α					
ν	.250	.100	.050	.025	.010	.00833	.00625	.005	.0025	
1	1.000	3.078	6.314	12.706	31.821	38.190	50.923	63.657	127.321	
2	.816	1.886	2.920	4.303	6.965	7.649	8.860	9.925	14.089	
3	.765	1.638	2.353	3.182	4.541	4.857	5.392	5.841	7.453	
4	.741	1.533	2.132	2.776	3.747	3.961	4.315	4.604	5. 598	
5	.727	1.476	2.015	2.571	3.365	3.534	3.810	4.032	4.773	
6	.718	1.440	1.943	2.447	3.143	3.287	3.521	3.707	4.317	
7	.711	1.415	1.895	2.365	2.998	3.128	3.335	3.499	4.029	
8	.706	1.397	1.860	2.306	2.896	3.016	3.206	3.355	3.833	
9	.703	1.383	1.833	2.262	2.821	2.933	3.111	3.250	3.690	
10	.700	1,372	1.812	2.228	2.764	2.870	3.038	3.169	3.581	
11	.697	1.363	1.796	2.201	2.718	2.820	2.981	3.106	3.497	
12	.695	1.356	1.782	2.179	2,681	2.779	2.934	3.055	3.428	
13	.694	1,350	1.771	2.160	2.650	2.746	2.896	3.012	3.372	
14	.692	1.345	1.761	2.145	2.624	2.718	2.864	2.977	3.326	
15	.691	1.341	1.753	2.131	2.602	2.694	2.837	2.947	3.286	
16	.690	1.337	1.746	2.120	2.583	2.673	2.813	2.921	3.252	
17	.689	1.333	1.740	2.110	2.567	2,655	2.793	2.898	3.222	
18	.688	1.330	1.734	2.101	2.552	2.639	2.775	2.878	3.197	
19	.688	1.328	1.729	2,093	2.539	2.625	2.759	2.861	3.174	
20	.687	1.325	1.725	2.086	2.528	2.613	2.744	2.845	3.153	
21	.686	1.323	1.721	2.080	2.518	2.601	2.732	2.831	3.135	
22	.686	1.321	1.717	2.074	2.508	2.591	2.720	2.819	3.119	
23	.685	1.319	1.714	2.069	2.500	2.582	2.710	2.807	3.104	
24	.685	1.318	1.711	2.064	2.492	2.574	2.700	2.797	3.091	
25	.684	1.316	1.708	2.060	2,485	2.566	2.692	2.787	3.078	
26	.684	1.315	1,706	2.056	2.479	2.559	2.684	2.779	3.067	
27	.684	1.314	1.703	2.052	2.473	2,552	2.676	2.771	3.057	
28	.683	1.313	1.701	2.048	2.467	2,546	2.669	2.763	3.047	
29	.683	1.311	1,699	2.045	2.462	2.541	2.663	2.756	3.038	
30	.683	1.310	1.697	2.042	2.457	2.536	2.657	2.750	3.030	
40	.681	1.303	1.684	2.021	2.423	2.499	2.616	2.704	2.971	
60	.679	1:296	1.671	2.000	2.390	2.463	2.575	2.660	2.915	
120	.677	1.289	1.658	1.980	2.358	2.428	2.536	2.617	2.860	
00	.674	1.282	1.645	1.960	2.326	2.394	2.498	2.576	2.813	

F-Distribution

- Indexed by 2 "degrees of freedom (v_1, v_2) " W~F_{v_1, v_2}
- $X_1 \sim \chi_{v1}^2$, $X_2 \sim \chi_{v2}^2$
- Assuming Independence of X₁ and X₂:

$$W = \frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{\nu_1,\nu_2}$$

Density Function:

$$f(w) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} w^{\frac{v_1}{2} - 1} \left(\frac{1}{2^{\frac{v_1 + v_2}{2}}}\right) \left(\frac{1}{2}\right)^{-\frac{v_1 + v_2}{2}} \left[1 + \frac{wv_1}{v_2}\right]^{-\frac{v_1 + v_2}{2}} w > 0 \quad v_1, v_2 > 0$$

$$E\{W\} = \frac{v_2}{v_2 - 2} \quad (v_2 > 2) \qquad V\{W\} = \left(\frac{v_2}{v_2 - 2}\right)^2 \frac{v_1 + v_2 - 2}{v_1(v_2 - 4)} \quad (v_2 > 4)$$

Obtaining Probabilities/Quantiles in R:

To obtain: $F(w) = P(W \le w)$: $pf(w, v_1, v_2)$

pth quantile: $qf(p, v_1, v_2)$

Virtually all statistics textbooks give upper tail cut-off values for some upper probabilities

Critical Values for F-distributions $P(F \le Table \ Value) = 0.95$

Appendix

ABLE 5 F-DISTRIBUTION PERCENTAGE POINTS ($\alpha = .05$)

.05																	
$F_{\nu_1,\nu_2}(.05)$ F																	
\ V1	1	2	3	4	5	6	7	8	9	10	12	15	20	25	30	40	60
	161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 246.0 248.0 249.3 250.1 251.1 252.2																
•	18.51			19.25											19.46		19.48
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.63	8.62	8.59	8.57
4	7,71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69
ز	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.52	4.50	4.46	4.43
,	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.83	3.81	3.77	3.74
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.40	3.38	3.34	3.30
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3,44	3.39	3.35	3.28	3.22	3.15	3.11	3.08	3.04	3.01
į	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.89	2.86	2.83	2.79
)	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.73	2.70	2.66	2.62
*1	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.60	2.57	2.53	2.49
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.50	2.47	2.43	2.38
43	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2,71	2.67	2.60	2.53	2.46	2.41	2,38	2.34	2.30
-	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.34	2.31	2.27	2.22
٢.	4.54	3.68	3.29	3.06	2,90	2,79	2,71	2.64	2.59	2.54	2,48	2.40	2.33	2.28	2.25	2.20	2.16
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.23	2.19	2.15	2.11
./	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.18	2.15	2.10	2.06
;	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.14 2.11	2.11	2.06	2.02 1.98
7	4.38 4.35	3.52 3.49	3.13 3.10	2.90	2.74	2.63 2.60	2.54	2.45	2.42	2.38 2.35	2.31	2.23	2.16 2.12	2.11	2.04	1.99	1.95
20	4.33	3.49	3.07	2.84	2.68	2.57	2.49	2.43	2.37	2.33	2.25	2.18	2.12	2.05	2.04	1.96	1.92
اب !	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.02	1.98	1.94	1.89
-1	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.00	1.96	1.91	1.86
74	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.97	1.94	1.89	1.84
ຜ	4.24	3.39	2.99	2,76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82
<u>ت</u>	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.94	1.90	1.85	1.80
-7	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.92	1.88	1.84	1.79
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77
رَ	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.89	1.85	1.81	1.75
}	4.17	3.32	2,92	2,69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.88	1.84	1.79	1.74
9	4.08	3.23	2,84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1,92	1.84	1.78	1.74	1.69	1.64
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.69	1.65	1.59	1.53
0ء،	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.60	1.55	1.50	1.43
,	3,84	3.00	2.61	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.51	1.46	1.39	1.32

Multivariate Normal Distribution

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{bmatrix}, \mu_X = E(X) = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix}, \Sigma_X = \sigma^2(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1p} & \sigma_{2p} & \cdots & \sigma_{pp} \end{bmatrix}$$

Multivariate normal density function:

$$f(x) = (2\pi)^{-p/2} \left| \Sigma_X^{-1/2} \right| e^{-\frac{1}{2}(X - \mu_X)' \Sigma_X^{-1}(X - \mu_X)}$$

Notation: $X \sim N_p(\mu_X, \Sigma_X)$

Results:

$$X_i \sim N(\mu_i, \sigma_{ii}), \qquad i = 1, ..., p$$

 $\operatorname{cov}(X_i, X_j) = \sigma_{ij}, \qquad i \neq j$

Note: If A is a full rank matrix of constants, then:

$$W = AX \sim N(A_{\mu x}, A\Sigma_{x}A')$$

Results Involving Multivariate Normal - I

If $\Sigma_{\mathbf{x}}$ is positive definite with eigenvalue/eigenvector pairs $(\lambda_i, \mathbf{e}_i)$ i = 1, ..., pThen $\Sigma_{\mathbf{x}}^{-1}$ is positive definite with eigenvalue/eigenvector pairs $(1/\lambda_i, \mathbf{e}_i)$ i = 1, ..., p $\Rightarrow \quad \mathbf{\Sigma}_{\mathbf{X}} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{\mathsf{T}} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{\mathsf{T}} \qquad \mathbf{\Sigma}_{\mathbf{X}}^{-1} = \sum_{i=1}^{n} \left(\frac{1}{\lambda_{i}} \right) \mathbf{e}_{i} \mathbf{e}_{i}^{\mathsf{T}} = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}^{\mathsf{T}}$ where $\mathbf{P} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{L} & \mathbf{e}_p \end{bmatrix}$ $\mathbf{\Lambda} = \operatorname{diag} \{\lambda_i\}$ Contours of constant density for *p*-dim MVN are ellipsoids wrt **x** s.t. $(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})'\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) = c^2$ Ellipsoids cenetered at $\mu_{\mathbf{x}}$ with axes $\pm c\sqrt{\lambda_i}\mathbf{e}_i$ i = 1,..., pSetting $c^2 = \chi_p^2(\alpha)$ s.t. $P(\chi_p^2 \ge \chi_p^2(\alpha)) = \alpha$ \Rightarrow the solid ellipsoid $(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})' \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}}) \leq \chi_{p}^{2}(\alpha)$ has probability $1 - \alpha$ $COV\{X_i, X_i\} = 0 \implies X_i, X_i \text{ independent}$

Results Involving Multivariate Normal - II

Conditional Distributions of components are MVN:
$$(\mathbf{X}_1 \equiv q \times 1, \ \mathbf{X}_2 \equiv (p-q) \times 1)$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim N_p (\mathbf{\mu}_{\mathbf{X}}, \mathbf{\Sigma}_{\mathbf{X}}) \qquad \mathbf{\mu}_{\mathbf{X}} = \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix} \qquad \mathbf{\Sigma}_{\mathbf{X}} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \qquad \text{s.t.} \quad |\mathbf{\Sigma}_{22}| > 0$$

$$\Rightarrow \quad \mathbf{X}_1 | \mathbf{X}_2 = \mathbf{x}_2 \sim N_q \quad \text{with}$$

$$\text{Mean: } \mathbf{\mu}_1 + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \mathbf{\mu}_2) = \mathbf{\mu}_{183} \quad \text{and Variance-Covariance Matrix: } \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} = \mathbf{\Sigma}_{1182}$$

$$\Rightarrow \quad f(\mathbf{x}_1 | \mathbf{x}_2) = (2\pi)^{-q/2} |\mathbf{\Sigma}_{1182}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \mathbf{\mu}_{182})^{\mathsf{T}} \mathbf{\Sigma}_{1182}^{-1} (\mathbf{x}_1 - \mathbf{\mu}_{182})\right\} \quad -\infty < x_{1i} < \infty \ i = 1, ..., q$$
Note that the conditional mean depends on the specific level(s) \mathbf{x}_2 , the conditional variance does not.

Special Case: $p = 2, q = 1$

$$X_1 | X_2 = x_2 \sim N(\mu_{182}, \sigma_{1182})$$

$$\mu_{182} = \mu_1 + \frac{\sigma_{12}}{\sigma_{22}} (x_2 - \mu_2) \qquad \sigma_{1182} = \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}} = \sigma_{11} - \left(\frac{\sigma_{11}}{\sigma_{11}}\right) \frac{\sigma_{12}^2}{\sigma_{22}} = \sigma_{11} \left(1 - \rho_{12}^2\right)$$

$$\Rightarrow \quad f(x_1, x_2) = \frac{1}{\sqrt{2\pi\sigma_{11}(1 - \rho_{12}^2)}} \exp\left\{-\frac{1}{2\sigma_{11}(1 - \rho_{12}^2)} \left(x_1 - \left(\mu_1 + \frac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2)\right)\right)\right)^2\right\} \quad -\infty < x_1 < \infty$$

Example with p = 2

Joint Distribution:

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2(1-\rho^2)}} \exp \left\{ -\left(\frac{1}{2(1-\rho^2)}\right) \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right\} - \infty < x_1, x_2 < \infty$$

Marginal (aka Unconditional) Distributions:

$$f_1(x_1) = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left\{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}\right\} - \infty < x_1 < \infty$$

$$f_2(x_2) = \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left\{-\frac{(x_2 - \mu_2)^2}{2\sigma_2^2}\right\} - \infty < x_2 < \infty$$

$$X_1 \sim N\left(\mu_1, \sigma_1^2\right)$$
 $X_2 \sim N\left(\mu_2, \sigma_2^2\right)$

Conditional Distributions:

$$f(x_2 | x_1) = \frac{1}{\sqrt{2\pi\sigma_2^2(1-\rho^2)}} \exp\left\{-\left(\frac{1}{2(1-\rho^2)\sigma_2^2}\right) \left[x_2 - \left(\mu_2 + \frac{(x_1 - \mu_1)\rho\sigma_2}{\sigma_1}\right)\right]^2\right\} - \infty < x_2 < \infty$$

$$f(x_1 | x_2) = \frac{1}{\sqrt{2\pi\sigma_1^2(1-\rho^2)}} \exp\left\{-\left(\frac{1}{2(1-\rho^2)\sigma_1^2}\right) \left[x_1 - \left(\mu_1 + \frac{(x_2 - \mu_2)\rho\sigma_1}{\sigma_2}\right)\right]^2\right\} - \infty < x_1 < \infty$$

$$X_{2} \mid X_{1} = x_{1} \sim N \left[\mu_{2} + \frac{(x_{1} - \mu_{1})\rho\sigma_{2}}{\sigma_{1}}, \sigma_{2}^{2}(1 - \rho^{2}) \right] \qquad X_{1} \mid X_{2} = x_{2} \sim N \left[\mu_{1} + \frac{(x_{2} - \mu_{2})\rho\sigma_{1}}{\sigma_{2}}, \sigma_{1}^{2}(1 - \rho^{2}) \right]$$

Results Involving Multivariate Normal - III

 $\mathbf{X}_1,...,\mathbf{X}_n$ independent with common variance matrices: $\mathbf{X}_j \sim N_p\left(\mathbf{\mu}_j, \mathbf{\Sigma}\right)$

$$\mathbf{W}_1 = a_1 \mathbf{X}_1 + \dots + a_n \mathbf{X}_n \sim N_p \left(\sum_{j=1}^n a_j \boldsymbol{\mu}_j, \left(\sum_{j=1}^n a_j^2 \right) \boldsymbol{\Sigma} \right)$$

$$\mathbf{W}_2 = b_1 \mathbf{X}_1 + \dots + b_n \mathbf{X}_n \sim N_p \left(\sum_{j=1}^n b_j \boldsymbol{\mu}_j, \left(\sum_{j=1}^n b_j^2 \right) \boldsymbol{\Sigma} \right)$$

 $\mathbf{W}_1, \mathbf{W}_2$ are jointly distributed normal with

$$\mathbf{\mu}_{\mathbf{W}_{1}\mathbf{W}_{2}} = \begin{bmatrix} \sum_{j=1}^{n} a_{j} \mathbf{\mu}_{j} \\ \sum_{j=1}^{n} b_{j} \mathbf{\mu}_{j} \end{bmatrix} \text{ and } \mathbf{\Sigma}_{\mathbf{W}_{1}\mathbf{W}_{2}} = \begin{bmatrix} \left(\sum_{j=1}^{n} a_{j}^{2}\right) \mathbf{\Sigma} & \left(\sum_{j=1}^{n} a_{j} b_{j}\right) \mathbf{\Sigma} \\ \left(\sum_{j=1}^{n} a_{j} b_{j}\right) \mathbf{\Sigma} & \left(\sum_{j=1}^{n} b_{j}^{2}\right) \mathbf{\Sigma} \end{bmatrix}$$

Results Involving Multivariate Normal - IV

Theorem (p. 163): Let $X \sim N_p(\mu, \Sigma)$. Then:

- (a) $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi^2_p$
- (b) The probability that **X** is inside the solid ellipsoid

$$\{X: (X - \mu)' \Sigma^{-1}(X - \mu) \le \chi^2_{p}(\alpha)\}$$

is 1 - α , where $\chi^2_p(\alpha)$ denotes the upper α percentile of the χ^2_p distribution.

Exercise

Let X_1, \ldots, X_{60} be a random sample of size 60 from a four-variate normal distribution with mean μ and covariance matrix Σ . Specify the distribution of:

- (a) \overline{X}
- (b) $(X_1 \mu)' \Sigma^{-1}(X_1 \mu)$
- (c) $n(\overline{X} \mu)' \Sigma^{-1}(\overline{X} \mu)$

Multivariate Normal Likelihood Function

 $\mathbf{X}_{1},...,\mathbf{X}_{n} = \text{random sample from } N_{p}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \text{ with joint density:}$

$$\prod_{j=1}^{n} \left[(2\pi)^{-p/2} |\mathbf{\Sigma}|^{-1/2} \exp \left\{ -\frac{1}{2} (\mathbf{x}_{j} - \mathbf{\mu})^{2} \mathbf{\Sigma}^{-1} (\mathbf{x}_{j} - \mathbf{\mu}) \right\} \right] = (2\pi)^{-np/2} |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{n} (\mathbf{x}_{j} - \mathbf{\mu})^{2} \mathbf{\Sigma}^{-1} (\mathbf{x}_{j} - \mathbf{\mu}) \right\}$$

Exponential term multiplied by -1/2:

$$\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \boldsymbol{\mu} \right) \cdot \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{j} - \boldsymbol{\mu} \right) = \operatorname{tr} \left\{ \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \boldsymbol{\mu} \right) \cdot \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{j} - \boldsymbol{\mu} \right) \right\} = \operatorname{tr} \left\{ \sum_{j=1}^{n} \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{j} - \boldsymbol{\mu} \right) \cdot \boldsymbol$$

$$\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \mathbf{\mu} \right) \left(\mathbf{x}_{j} - \mathbf{\mu} \right)' = \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} + \overline{\mathbf{x}} - \mathbf{\mu} \right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}} + \overline{\mathbf{x}} - \mathbf{\mu} \right)' = \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right)' + \sum_{j=1}^{n} \left(\overline{\mathbf{x}} - \mathbf{\mu} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' + 2 \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}} - \overline{\mathbf{x$$

$$= \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right)' + \sum_{j=1}^{n} \left(\overline{\mathbf{x}} - \mathbf{\mu}\right) \left(\overline{\mathbf{x}} - \mathbf{\mu}\right)' + 2 \left(\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right)\right) \left(\overline{\mathbf{x}} - \mathbf{\mu}\right)' = \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right)' + n \left(\overline{\mathbf{x}} - \mathbf{\mu}\right) \left(\overline{\mathbf{x}} - \mathbf{\mu}\right)' + 0$$

Joint Density / Likelihood Function:

$$\left(2\pi\right)^{-np/2} \left|\mathbf{\Sigma}\right|^{-n/2} \exp \left\{-\frac{1}{2} \operatorname{tr} \left\{\mathbf{\Sigma}^{-1} \left[\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right)' + n\left(\overline{\mathbf{x}} - \mathbf{\mu}\right) \left(\overline{\mathbf{x}} - \mathbf{\mu}\right)'\right]\right\}\right\}$$

Maximum Likelihood Estimator of μ

Likelihood Function:

$$(2\pi)^{-np/2} \left| \mathbf{\Sigma} \right|^{-n/2} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left\{ \mathbf{\Sigma}^{-1} \left[\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right)' + n \left(\overline{\mathbf{x}} - \mathbf{\mu} \right) \left(\overline{\mathbf{x}} - \mathbf{\mu} \right)' \right] \right\} \right\} = 0$$

$$(2\pi)^{-np/2} |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left\{ \mathbf{\Sigma}^{-1} \left[\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\mathsf{T}} \right] \right\} + \operatorname{tr} \left\{ \mathbf{\Sigma}^{-1} n (\overline{\mathbf{x}} - \mathbf{\mu}) (\overline{\mathbf{x}} - \mathbf{\mu})^{\mathsf{T}} \right\} \right] \right\}$$

$$(2\pi)^{-np/2} |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left\{ \mathbf{\Sigma}^{-1} \left[\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\mathsf{T}} \right] \right\} + n(\overline{\mathbf{x}} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \mathbf{\mu}) \right] \right\}$$

Maximum Likelihood Estimator for μ :

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-np/2} |\boldsymbol{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left\{ \boldsymbol{\Sigma}^{-1} \left[\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\top} \right] \right\} \right] \right\} \exp \left\{ -\frac{1}{2} \left[n(\overline{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}) \right] \right\}$$

maximized when
$$\mu = \overline{X} \implies$$

$$\exp\left\{-\frac{1}{2}\left[n\left(\mathbf{x}-\mathbf{\mu}\right)'\mathbf{\Sigma}^{-1}\left(\mathbf{x}-\mathbf{\mu}\right)\right]\right\}=1 \text{ is at its maximum since } \mathbf{\Sigma}^{-1} \text{ is positive definite}$$

Maximum Likelihood Estimator of Σ

Result: $\mathbf{B} = p \times p$ positive definite, scalar b > 0, $\Sigma = positive definite$:

$$\frac{1}{|\mathbf{\Sigma}|^{b}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left\{\mathbf{\Sigma}^{-1}\mathbf{B}\right\}\right\} \leq \frac{1}{|\mathbf{B}|^{b}} (2b)^{bp} e^{-bp} \quad \text{with equality holding at } \mathbf{\Sigma} = \left(\frac{1}{2b}\right) \mathbf{B}$$

Maximum Likelihood Estimator for Σ evaluated at μ :

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-np/2} |\boldsymbol{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left\{ \boldsymbol{\Sigma}^{-1} \left[\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\mathsf{T}} \right] \right\} \right] \right\} \quad \text{setting} \quad \boldsymbol{b} = \frac{n}{2} \quad \mathbf{B} = \sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\mathsf{T}} (\mathbf{x}_{j} - \overline{\mathbf{x}})^{\mathsf{T}} \right\}$$

$$\Rightarrow \hat{\Sigma} = \left(\frac{1}{2(n/2)}\right) \sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})' = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})' = \frac{n-1}{n} \mathbf{S}$$

Likelihood Function evaluated at the observed ML estimates:

$$L\left(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}}\right) = (2\pi)^{-np/2} \left| \hat{\boldsymbol{\Sigma}} \right|^{-n/2} \exp\left\{-\frac{1}{2} \left[\operatorname{tr}\left\{\left(\hat{\boldsymbol{\Sigma}}\right)^{-1} \left[\sum_{j=1}^{n} \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right) \left(\mathbf{x}_{j} - \overline{\mathbf{x}}\right)^{-1} \right] \right\} \right] \right\} = (2\pi)^{-np/2} \left| \hat{\boldsymbol{\Sigma}} \right|^{-n/2} e^{-np/2}$$

Note:
$$\left| \hat{\Sigma} \right| = \left| \frac{n-1}{n} \mathbf{S} \right| = \left(\frac{n-1}{n} \right)^p |\mathbf{S}| \implies$$

$$L\left(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}}\right) = (2\pi)^{-np/2} e^{-np/2} \left(\frac{n-1}{n}\right)^p |\mathbf{S}| = \text{constant} \times \text{generalized inverse}$$

Results for ML Estimators and Large-Sample Properties

 θ = Parameter vector $h(\theta)$ = function of θ

ML Estimate of
$$h(\theta) \equiv h(\hat{\theta})$$

Sufficient Statistics: Joint density of $\mathbf{x}_1, ..., \mathbf{x}_n$ depends only on the observed data through:

$$\overline{\mathbf{x}}$$
 and $(n-1)\mathbf{S} = \sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}})'(\mathbf{x}_{j} - \overline{\mathbf{x}}) \implies \overline{\mathbf{X}}$ and \mathbf{S} are Sufficient Statistics

Sampling Distributions of $\overline{\mathbf{X}}$ and \mathbf{S} under Normality and Independence:

$$\overline{\mathbf{X}} \sim N_p \left(\mathbf{\mu}, \frac{1}{n} \mathbf{\Sigma} \right)$$
 $\left(n-1 \right) \mathbf{S} \sim \text{Wishart w/ df} = n-1$ $\overline{\mathbf{X}}$ and \mathbf{S} are independent

Wishart distribution with m d.f.: Distribution of $\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}$ where $\mathbf{Z}_{j} \sim NID(\mathbf{0}, \mathbf{\Sigma})$

 $\mathbf{X}_1,...,\mathbf{X}_n$ independent with mean $\mathbf{\mu}$ and finite variance-covariance $\mathbf{\Sigma}$ with Large n and n-p:

$$\sqrt{n}\left(\overline{\mathbf{X}} - \mathbf{\mu}\right)$$
 is approximately distributed $N_p\left(\mathbf{0}, \mathbf{\Sigma}\right)$

$$n(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$
 is approximately distributed χ_p^2

Assessing the Assumption of Normality

Evaluating normality of the univariate distributions:

- Histogram: compare bin proportions with empirical rule;
- Q-Q Plot: plot ordered sample observation $x_{(j)}$ vs. the (j-3/8)/(n+1/4) quantile of the normal distribution (should be a 45-degree line);
- Hypotheses tests (Shapiro-Wilks, Anderson-Darling, Kolmogorov-Smirnov, ...): note small p-value rejects normality!

Data – Heights of Adult Children and Parents

- Adult Children Heights are reported by inch, in a manner so that the median of the grouped values is used for each (62.2",...,73.2" are reported by Galton).
 - He adjusts female heights by a multiple of 1.08
 - We use 61.2" for his "Below"
 - We use 74.2" for his "Above"
- Mid-Parents Heights are the average of the two parents' heights (after female adjusted). Grouped values at median (64.5",...,72.5" by Galton)
 - We use 63.5" for "Below"
 - We use 73.5" for "Above"

Adult Child vs Mid-Parent Height

Mid-Parent Height

Adult Child Heights

Joint Density Function

$$\mu_1 = \mu_2 = 0$$
 $\sigma_1 = \sigma_2 = 1$ $\rho = 0.4$