Lecture 6 Introduction to SAT and SMT

Nadia Polikarpova

Logistics

Project proposals

- Due Friday (Oct 20) by the end of the day
- Upload to the Proposals directory inside the shared Google folder
- Can be a Google Doc or a PDF
- File name must be "Team-N", where N is your team ID

Why do we care?

- 1. Synthesis is combinatorial search, and so is SAT
- 2. SAT solvers are really good these days
- 3. ??? **←** this week
- 4. Profit!!!

The SAT problem

Input: propositional formula in CNF

The SAT problem

Problem: find a *satisfying assignment* (also called a *model*)

• or determine that the formula is *unsatisfiable*

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

a satisfying assignment:

$$\{a \mapsto 0, b \mapsto 1, c \mapsto 0, d \mapsto 1\}$$

can be written as a set of literals:

$$\{\neg a, b, \neg c, d\}$$

or as a formula:

$$\neg a \land b \land \neg c \land d$$

Naive solution

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

Build a truth table!

- We can't do fundamentally better: it's an NP-complete problem
- But we can do way better in practice for common instances

Intuition: Sudoku

Easy vs hard: what's the difference?

7	9					3		
					6	9		
8				3			7	6
			9	6	5			2
		5	4	1	8	7		
4			7	2	3			
6	1			9				8
		2	3					
		9					5	4

Copyright 2005 M. Feenstra, Den Haag

		9	7	4	8			
7								
	2		1		9			
		7				2	4	
	6	4		1		5	9	
	9	8				3		
			8		3		2	
								6
			2	7	5	9		

Copyright 2005 M. Feenstra, Den Haag

Most real-world SAT instances allow a lot of inference

[Davis, Logemann, Loveland '62]

State: current model M (a sequence of annotated literals)

$$M = a^{d} \neg b \ c$$
 decision literal

Transitions:

- decide $M \longrightarrow M l^d$ if / undefined in M
- unit-propagate $M \longrightarrow M \ l$ if there is a clause where are literals are false except l , which is undefined
- backtrack $Ml^dM' \longrightarrow M \neg l$ if there is a conflicting clause and M' has no decision literals
- fail $M \longrightarrow Unsat$ if there is a conflicting clause and no decision literals

DPLL: example

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

$$M = \emptyset$$
 decide a^d unit-propagate $a^d \neg b$ unit-propagate $a^d \neg b \ c$ unit-propagate $a^d \neg b \ c \ d$ backtrack $\neg a$ unit-propagate $\neg a \ d$ decide $\neg a \ d \neg c^d$ unit-propagate $\neg a \ d \neg c^d$ SAT!

DPLL + clause learning

$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b)$$

$$M = \emptyset$$

$$a^{d}$$

$$a^{d}b$$

$$a^{d}bc^{d}$$

$$a^{d}bc^{d}d$$

$$a^{d}bc^{d}de^{d}$$

$$a^{d}bc^{d}de^{d} - f$$

$$a^{d}bc^{d}d - e$$

decide
unit-propagate
decide
unit-propagate
decide
unit-propagate
decide
unit-propagate
backtrack

Wait, but why?

DPLL + clause learning

$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b) \land (\neg a \lor \neg e)$$

$$M = \emptyset$$
 decide unit-propagate $a^d b$ Bad decision! decide $a^d b c^d$ unit-propagate $a^d b c^d d$ decide $a^d b c^d d e^d$ unit-propagate $a^d b c^d d e^d$ unit-propagate $a^d b c^d d e^d$ backtrack Wait, but why? $a^d b c^d d e^d$

DPLL + clause learning

$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg e \lor \neg b) \land (\neg a \lor \neg e)$$

$$M = \emptyset$$
 decide a^d unit-propagate a^d b decide a^d b c^d unit-propagate a^d b c^d decide a^d b c^d d decide a^d b c^d d e^d unit-propagate a^d b c^d d e^d unit-propagate a^d b c^d d e^d backjump a^d b $\neg e$

Beyond propositional logic

What if our formula looks like this?

$$(p \land \neg q \lor a = f(b-c)) \land (g(g(b) \neq c \lor a - c \leq 7))$$

• talks about integers, functions, sets, lists...

One idea: bit-blast everything and use SAT

- can only find solutions within bounds
- very inefficient, so bounds are small

Better idea: combine SAT with special solvers for theories

• they "natively understand" integers, functions, etc

First-order theories

theory = <function symbols, predicate symbols, axioms>

ground first-order formulas over functions and predicates

Example: theory of Equality and Uninterpreted Functions

EUF =
$$\{f, g, h, ...\}, \{=\}, \{$$

$$\forall x. x = x$$

$$\forall x y. x = y \Rightarrow y = x$$

$$\forall x y z. x = y \land y = z \Rightarrow x = z$$

$$\forall x y. x = y \Rightarrow f(x) = f(y)$$

$$\} >$$

The SMT problem

Theories for our purpose

a = b

theory = <function symbols, predicate symbols, axioms>

can decide consistency of conjunctions of literals

$$f(a) = c$$

 $f(b) \neq d$
 $c = d$
EUF solver
Inconsistent!

Basic DPLL(T)

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

DPLL(T) optimizations

Basic

Check consistency of full propositional models

Upon inconsistency, add clause and restart

Check consistency after adding a literal

Advanced

Check consistency of partial assignment while being built

Upon inconsistency, do conflict analysis and backjump

Add a theory-propagate rule to DPLL

• like unit-propagate, but infers all literals that follow from the theory

Popular theories

Equality and Uninterpreted Functions

 $EUF = \langle \{f, g, h, ...\}, \{=\}\}$, axioms of equality & congruence>

Linear Integer Arithmetic

LIA = $\{0, 1, ..., +, -\}, \{=, \leq\}$, axioms of arithmetic>

Arrays

Arrays =
$$\langle \text{sel, store} \rangle$$
, $\{=\}$, $\forall a \ i \ v. \text{sel(store}(a, i, v), i) = v$
 $\forall a \ i \ j \ v. \ i \neq j \Rightarrow \text{sel(store}(a, i, v), j) = \text{sel}(a, j) >$

Theories can be combined!

Nelson-Oppen combination

Popular SMT solvers

Z3 (Microsoft): https://github.com/Z3Prover/z3/wiki

CVC4 (Stanford): http://cvc4.cs.stanford.edu/web/

Yices (SRI): http://yices.csl.sri.com/

SMT-LIB

Uniform format for SMT problems understood by all solvers

```
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)
```

Z3 demo

https://rise4fun.com/Z3/tutorial

Why do we care?

If we can encode a synthesis problem as SAT/SMT, we can use solvers to do the search for us

Get some inspiration from how solvers search

- Unit propagation similar to top-down propagation (pruning through inference of consequences of a guess)
- Backjumping / clause learning?
- Coarse-grained reasoning and gradual refinement like in DPLL(T)?