Теория вероятностей и математическая статистика. БПИ201. Домашнее задание №8

Автор: Сурова София, БПИ191 29 октября 2021

Замечание. Задачи взяты из задачника «Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами», А.И. Кибзун, Е.Р. Горяинова, А.В. Наумов, 2007.

стр.93, №35

Станок-автомат изготавливает валики. Контролируется их диаметр X, удовлетворительно описываемый гауссовским законом распределения со средним значением m=10мм. Каково среднеквадратическое отклонение диаметра валика, если с вероятностью 0.99 он заключен в интервале (9.7, 10.3)?

Решение

Воспользуемся следующей теоремой: пусть ξ - нормальная случайная величина с параметрами m, σ^2 , тогда

$$P\{a < \xi < b\} = \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right)$$

$$P\{9.7 < X < 10.3\} = \Phi_0\left(\frac{10.3-10}{\sigma}\right) - \Phi_0\left(\frac{9.7-10}{\sigma}\right) = 2\Phi_0\left(\frac{0.3}{\sigma}\right) = 0.99 \Rightarrow \Phi_0\left(\frac{0.3}{\sigma}\right) = 0.495 \Rightarrow$$

Смотрим в таблицу и находим значение 0.495

а	;]	0	1	2	3	4	5	6	7	8	9
0,	0	0,0000	,0039	,0079	,0119	,0159	,0199	,0239	,0279	,0318	,0358
0,	1	,0398	,0438	,0477	,0517	,0556	,0596	,0635	,0674	,0714	.0753
0,	2	,0792	,0831	,0870	,0909	,0948	,0987	,1025	,1064	,1102	,1140
0,	3	,1179	,1217	,1255	,1293	,1330	,1368	,1405	,1443	,1480	1517
0,	4	,1554	,1591	,1627	,1664	,1700	,1736	,1772	,1808	,1843	1879
0,	5	,1914	,1949	,1984	,2019	,2054	,2088	,2122	,2156	,2190	, 224
0,	6	,2257	,2290	,2323	,2356	,2389	,2421	,2453	,2485	,2517	,2549
0,	7]	,2580	,2611	,2642	,2673	,2703	,2733	,2763	,2793	,2823	,2452
- 0,	8	,2881	,2910	,2938	,2967	,2995	,3023	,3051	,3078	,3105	,3132
0,	9	,3159	,3185	,3212	,3228	,3263	,3289	,3314	,3339	,3364	,3389
1,	0	,3413	,3437	,3461	,3485	,3508	,3531	,3554	,3576	,3599	,3621
1,	1	,3643	,3665	,3686	,3707	,3728	,3749	,3769	,3790	,3810	,3829
1,	2	,3849	,3868	,3887	,3906	,3925	,3943	,3961	,3979	,3997	,40 4
1,	3	,4032	,4049	,4065	,4082	,4098	,4114	,4130	,4146	,4162	,4177
1,	4	,4192	,4207	,4222	,4236	,4250	,4264	,4278	,4292	,4305	,4; 18
1,	5	,4331	,4344	,4357	,4369	,4382	,4394	,4406	,4417	,4429	,4440
1,	6	,4452	,4463	,4473	,4484	,4495	,4505	,4515	,4525	,4535	, 544
1,	7	,4554	,4563	,4572	,4581	,4590	,4599	,4608	,4616	,4624	1632
1,	8	,4640	,4648	,4656	,4663	,4671	,4678	,4685	,4692	,4699	4706
1,	9	,4712	,4719	,4725	,4732	,4738	,4744	,4750	,4755	,4761	,4767
2,	0	,4772	,4777	,4783	,4788	,4793	,4798	,4803	,4807	,4812	,4816
2,	1	,4821	,4825	,4830	,4834	,4838	,4842	,4846	,4850	,4853	,4857
2,	2	,4861	,4864	,4867	,4871	,4874	,4877	,4880	,4884	,4887	,4889
2,	3	,4892	,4895	,4898	,4901	,4903	,4906	,4908	,4911	,4913	,4915
-0	1	,4918	,4920	,4922	,4924	,4926	,4928	,4930	,4932	,1001	,4936
2,	5	,4937	,4939	,4941	,4943	,4944	,4946	,4947	,4949	,4950	4952
2,	8	Coo	,4954	,4956	,4957	,4958	,4959	,4960	,4962	,1000	4 ,4964
2,	7	, 1965	4966	,4967	,4968	,4969	,4970	,4971	,4972	,4972	,4973
2,	8	,4974	,4975	,4976	,4976	,4977	,4978	,4978	,4979	,4980	,4980
2,	9	,4981	,4981	,4982	,4000	1000	,4984	,4984	,4985	,4985	,4986
3,	0	,49865									
3,	5	,499767									
4,	0	,4999683									
4,	5	,4999966									
5,		,499999	971								
	_	,									

$$\frac{0.3}{\sigma} = 2.58 \Rightarrow \sigma = \frac{0.3}{2.58} \approx 0.1163$$

Ответ: 0.1163

стр.93, №37

Случайная величина X имеет гауссовское распределение вероятностей со средним значением 25. Вычислить вероятность попадания этой CB в интервал (35,40), если она попадает в интервал (20,30) с вероятностью 0.2

Решение

1)
$$P\{20 < X < 30\} = \Phi_0\left(\frac{30 - 25}{\sigma}\right) - \Phi_0\left(\frac{20 - 25}{\sigma}\right) = 2\Phi_0\left(\frac{5}{\sigma}\right) = 0.2 \Rightarrow \Phi_0\left(\frac{5}{\sigma}\right) = 0.1 \Rightarrow$$
 по таблице выше $\frac{5}{\sigma} = 0.25 \Rightarrow \sigma = \frac{5}{0.25} = 20$

2)
$$P\{35 < X < 40\} = \Phi_0\left(\frac{40 - 25}{20}\right) - \Phi_0\left(\frac{35 - 25}{20}\right) = \Phi_0\left(\frac{3}{4}\right) - \Phi_0\left(\frac{1}{2}\right) = 0.2733 - 0.1914 = 0.0819$$

Ответ: 0.0819

стр.93, №43

CВ $X \sim N(0,1)$. Найти EX^3

Решение

$$EX^3=\int\limits_{-\infty}^{+\infty}x^3f(x)dx=\int\limits_{-\infty}^{+\infty}x^3\frac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}dx=0$$
, т.к. функция нечётная и интегрируется в симметричных пределах

Ответ: 0

стр.93, №44

CВ $X \sim N(2,1)$. Сравнить $P\{X < EX\}$ и $P\{X > DX\}$

Решение

$$P\{X < EX\} = P\{X < 2\} = \Phi\left(\frac{2-2}{1}\right) - \Phi\left(\frac{-\infty - 2}{1}\right) = 0 - 0 = 0$$

$$P\{X > DX\} = P\{X > 1^2\} = \Phi\left(\frac{+\infty - 2}{1}\right) - \Phi\left(\frac{1-2}{1}\right) = 1 - 0.1587 = 0.8413$$

Ответ: $P\{X < EX\} < P\{X > DX\}$

стр.91, №24

СВ
$$X \sim N(0,1)$$
, а $Y \sim R(0,1)$. Сравнить $P\{0 < X < 1\}$ и $P\{0 < Y < 1\}$

Решение

$$P\{0 < X < 1\} = \Phi_0\left(\frac{1-0}{1}\right) - \Phi_0\left(\frac{0-0}{1}\right) = 0.3413 - 0 = 0.3413$$
$$P\{0 < Y < 1\} = F(1) - F(0) = \frac{1-0}{1-0} - \frac{0-0}{1-0} = 1 - 0 = 1$$

Ответ: $P\{0 < X < 1\} < P\{0 < Y < 1\}$