Nemlineáris Dinamikai Modellek a Biológiában

Hodgkin-Huxley neuron modell

11. gyakorlat

Juhász János (<u>juhasz.janos@.itk.ppke.hu</u>) Schäffer Katalin (<u>sch.katalin17@gmail.com</u>)

Neuron modellek

- Cél: az idegrendszer működésének leírása, modellezése
- Egység: idegsejtek (ezek viselkedését kell ismerni)
- Idegsejt viselkedése: akciós potenciál (AP) képzés, továbbítás
- Ha tudjuk a folyamat biológiai hátterét, akkor matematikai modell alkotható ennek leírására
- Biológiai háttértudás:
 - Idegsejt axonjának membránján jellegzetes depolarizációs hullám (AP) fut végig megfelelően nagy külső inger (pl: injektált áram) hatására
 - Jellegzetes alakú, méretű (feszültség különbség) hullám
 - Különböző ioncsatornák összehangolt nyílása, záródása idézi elő a terjedő AP-t
- -> a membrán és az ioncsatornák tulajdonságait, működését kell ismerni a folyamat leírásához

Sejtmembrán fehérjék szerkezete

A SEJTMEMBRÁN FEHÉRJÉK SZERKEZETE

membrán fehérjék > ioncsatornák

paszív transzport energiát nem igényel (passziv csatorna) aktív transzport ENERGIÁT IGÉNYEL

IGÉNYEL (transzporter vagy pumpa) ligand vezérelt feszültség vezérelt ioncsatorna ioncsatorna

mechanikai erő által vezérelt ioncsatorna

Akciós potenciál I.

AKCIÓS POTENCIÁL IONCSATORNA AKTIVITÁS IONOK MOZGÁSA

Nyugalmi fázis:

- csatornák, membrán nyugalmi állapotban
- $\overline{}$ Vm=Vr

Depolarizációs fázis:

- Vm meghaladja a Na csatorna nyitási küszöbét
- Na csatorna azonnal kinyit, Na áramlik be a sejtbe
- Vm depolarizálódik
- K csatorna még zárva van, K áram nem folyik

Repolarizációs fázis:

- Na csatorna inaktiváció, Na áram megszűnik
- K csatorna kinyit, K áramlik ki a sejtből
- Vm repolarizálódik

Utóhi perpolarizációs fázis (AHP):

- Na csatorna inaktív, nyugalmi állapothoz közelít, Na áram nincs
- K csatorna továbbra is aktív marad, K áramlik ki a sejtből
- Vm hiperpolarizálódik

Akciós potenciál I.

8 Rising phase of the action potential

Depolarization opens the activation gates on most Na⁺ channels, while the K⁺ channels' activation gates remain closed. Na⁺ influx makes the inside of the membrane positive with respect to the outside.

Action -

potential

Resting potential

-50 Threshold

Time

-100

Depolarization A stimulus opens the activation gates on some Na+ channels. Na+ influx through those channels depolarizes the membrane. If the depolarization reaches the threshold, it triggers an action potential.

Resting state The activation gates on the Na⁺ and K⁺ channels are closed, and the membrane's resting potential is maintained.

4 Falling phase of the action potential

The inactivation gates on most Na+ channels close, blocking Na+ influx. The activation gates on most K+ channels open, permitting K+ efflux which again makes the inside of the cell negative.

Undershoot Both gates of the Na+ channels are closed, but the activation gates on some K+ channels are still open. As these gates close on most K+ channels, and the inactivation gates open on Na+ channels, the membrane returns to its resting state.

Akciós potenciál I.

Akciós potenciál II. (terjedés)

Propagation of an Action Potential Along an Axon

Direction of action potential propagation

Hodgkin-Huxley modell

- A fenti tudás birtokában, és a tintahal óriás axonján méréseket végezve alkották meg a modellt:
- Alap: az elektronikából ismert kábel egyenlet (axon ~ kábel)
- Paraméterezés: tintahal mérésekből
- 3 ODE + 1 PDE
 - Az ODE-k alakját kellett a PDE-hez illeszteni, hogy a méréseknek megfelelő fv alakot adják (sok lehetőség közül a legegyszerűbbet választani)
 - a mérésekkel paraméterezni is kellett a függvényeket
 - (mindezt a mai számítógépek nélkül!)

Hodgkin-Huxley modell

- 10 cm hosszú, 0.5 mm vastag idegrost, elektromos áram: $I_{axon}(t,x) + I_{membrane}(t,x)$ henger alakú vékony membrán borítja, amelyen át ionáramlás: Elektronika + Kémia
- 0.) Ohm: $\frac{\partial}{\partial x}V(t,x) = -RI_{axon}(t,x)$ és $\perp I_{membrane}(t,x) = -\frac{\partial}{\partial x}I_{axon}(t,x)$
- 1.) Ezüstdrótot helyezünk el az axon hosszában: V egyelőre csak a t időváltozótól függ
- A kémiát az axonon belül a Nerst törvény alapján mérjük
- Közönséges differenciálegyenletet írunk fel a membránon átmenő ionáramlásra
- 4.) Csatolás a fenti két egyenlethez -> reakció-diffúzió típusú egyenletrendszer a V-re
- 5.) Utazó hullámot keresünk <--> akciós potenciál: Számolt és Mért Sebesség

Hodgkin-Huxley modell

A membránt helyettesítő áramköri modell

- Istim injektált áramerősség
- См a membrán kapacitása
- RCI, RNa(V), RK(V) az egyes ionáramokra vonatkozó ellenállások
- gci, gna, gk vezetőképesség (ellenállások reciprokai)

Kirchoff csomóponti törvény: $I_{stim} = I_{C\ell} + I_{C_M} + I_{Na} + I_{K}$

$$I_{C\ell} = g_{C\ell}(V - V_{C\ell}) , I_{C_M} = C_M \dot{V} , I_{Na} = \mathbf{g_{Na}}(V - V_{Na}) , I_K = \mathbf{g_K}(V - V_K)$$

A nemlineáris vezetőképességek:

$$\mathbf{g}_{\mathbf{N}\mathbf{a}}(V) = \overline{g_{Na}} \, m^3(V) \, h(V)$$
 $\mathbf{g}_{\mathbf{K}}(V) = \overline{g_K} \, n^4(V)$

A függvény alakok is a mérések alapján

A kapott közönséges differenciál egyenlet rendszer: az AP alakját írja le:

$$C_M \dot{V} = -\overline{g_{c\ell}}(V - V_{C\ell}) - \overline{g_{Na}} m^3 h(V - V_{Na}) - \overline{g_K} n^4 (V - V_K) + I_{stim}$$

$$\dot{m} = \alpha_m(V) \cdot (1 - m) - \beta_m(V) \cdot m$$

$$\dot{h} = \alpha_h(V) \cdot (1 - h) - \beta_h(V) \cdot h$$

$$\dot{n} = \alpha_n(V) \cdot (1 - n) - \beta_n(V) \cdot n$$

Egyensúlyi potenciálok: Vci = – 68 mV

$$V_{Na} = 56 \text{ mV}$$

$$V_K = -77 \text{ mV}$$

n: K+ csatorna aktiválódási arány

m: Na+ csatorna aktiválódási arány

h: Na+ csatorna inaktiválódási arány

V: membrán potenciál

- \overline{g}_{Na} , \overline{g}_{K} , \overline{g}_{Cl} vezetőképesség max. értéke (konstans)
- n,m és h kapuváltozók, a csatornák nyitottságát/zártságát jellemzik (0-1 közötti valószínűségi érték)
- αn és βn feszültségfüggő paraméterek mért eredmények alapján meghatározva

Feladatok:

- Implementáld a HH egyenletrendszert a hhode.m fájlba!
- Állítsd be a kezdeti ingert (impulzus) (és szükség esetén a többi benenetet) (HH.m fájl), úgy hogy:
 - A) akciós potenciál (AP) alakuljon ki,
 - B) ne legyen AP (marad a nyugalmi potenciál az input után), hiperpolarizált a membrán
 - C) ne legyen AP, mert túl magas már a membránpotenciál,
 - D) "csípd el" az AP kialakulását (azt az ingerlő potenciált, ami már épp elég az AP-hez),
- Szemléltesd mi jellemző az AP alakjára, megjelenésére, az ioncsatornák aktivitására?
 - Pl: mindent vagy semmit elv, állandó jelalak, de/re/hiperpolarizáció, nyugalmi állapotba visszaállás
- Mik az ioncsatornák nyugalmi értékeik?

Nincs akciós potenciál

Jellegzetes akciós potenciál

Hodgkin-Huxley modell (3 ODE + 1 PDE)

$$C_M \dot{V} = -\overline{g_{c\ell}}(V - V_{C\ell}) - \overline{g_{Na}} m^3 h(V - V_{Na}) - \overline{g_K} n^4 (V - V_K) + I_{stim}$$

$$I_{stim} = I_{membrane}$$

$$I_{membrane}(t, x) = -\frac{\partial}{\partial x} I_{axon}(t, x)$$

$$\frac{\partial}{\partial x} V(t, x) = -R I_{axon}(t, x)$$

$$\frac{1}{R}\frac{\partial^2 V}{\partial x^2} = C_M \frac{\partial V}{\partial t} + \overline{g_{c\ell}}(V - V_{C\ell}) + \overline{g_{Na}}m^3h(V - V_{Na}) + \overline{g_K}n^4(V - V_K)$$

- A membránpotenciál egyenlet kiegészítve egy diffúziós taggal (PDE lesz)
- -> utazni kezd az AP hullám

Feladatok:

- Implementáld a parciális egyenletrendszert a hhode_parc.m fájlba!
- Állítsd be a nyugalmi állapot értékeit (előző feladat alapján) és adj ingert ad axon elejére, hogy elinduljon az AP (HH_parc.m)!
- Figyeld meg a terjedő akciós potenciált!
- A hhode_parc.m fájlban adj különböző kezdőpontokban különböző méretű 2. impulzust is az axon elejére, és figyeld meg, mikor alakul ki AP!

