Homework 1 Binomial Tree

黄秉茨

I. Binomial Model Derivation

(20%) In the binomial model, suppose that the initial stock price is S_0 , and the life of the option is $T \cdot S_0$ can either move up from S_0 to a new level, $S_0 u$, where u > 1, or down to a new level, $S_0 d$, where 0 < d < 1. Suppose the payoff from option is f_u in the up state, and is f_d in the down state. Denote the risk-free rate by r.

Please construct a riskless portfolio in a one-step tree and show in detail

that
$$f = e^{-rT} [pf_u + (1-p)f_d]$$
 where $p = \frac{e^{rT} - d}{u - d}$

II. Binomial Trees in Practice

Consider a non-dividend-paying stock with current stock price S_0 =\$50, volatility σ =0.3, strike price K=\$52, time to maturity T=2 years, interest rate r=5%.

Please use binomial model to price European put options. You may refer to the materials in Section 18.1 of the textbook. Consider the following three alternative settings of time steps: $\Delta t = 1$ month (12*T steps); 1 week (52*T steps); and 1 day (252*T steps).

- (a) (10%) First compute the up step size u, the down step size d, and the probability of up move p under these three settings.
- (b) (40%) Use binomial model to compute the put option prices under these three settings. Report your results and compare them with that of the Black-Scholes formula. Briefly explain your findings.
- (c) (20%) Modify your program in (b) to compute the American put option values. Report your result.
- (d) (10%) Change the number of time steps from 1 to 2 to 3 all the way to 252. Plot your results as well as the Black-Scholes closed form solution. Briefly explain your findings.

Bonus: (20%) For 6, 12, and 52 time steps, compute the terminal stock prices as well as their corresponding probabilities. Plot the terminal stock price distribution. Briefly explain your findings.

Matlab function and syntax:

- 1. zeros(): to create an matrix of all zeros. e.g. S = zeros(m,n)
- 2. sqrt(): square root
- 3. exp(): exponential function
- 4. max(): max function
- 5. for loop

for j=1:1:10 statement end

*You have to submit the results of your homework in a word (or pdf) file as well as **programs by e3**. Your computer program is part of this assignment. You can use either C++ or Matlab for programming.

$$h = \frac{fu - fd}{sou - sod}$$

$$= \left(S_0 \cdot \frac{fu - fd}{S_0 u - S_0 cl} \right) \left(e^{rT} - u \right) + fu \right) e^{-rT}$$

$$=\left(\frac{\mathsf{fu}^{-}\mathsf{fd}}{\mathsf{u}^{-}\mathsf{d}}\left(\mathsf{e}^{\mathsf{r}^{\mathsf{T}}}-\mathsf{u}\right)+\mathsf{fu}\right)\mathsf{e}^{-\mathsf{r}^{\mathsf{T}}}$$

$$= \left[\frac{fu(e^{rT}-d)+fd(u-e^{rT})}{u-d}\right]e^{-rT}$$

$$=\left(\frac{e^{rT}-d}{u-d}fu+\frac{u-e^{rT}}{u-d}fd\right)e^{-rT}$$

$$=\left(\frac{e^{rT}-d}{u-d}fu+\frac{u-d+d-e^{rT}}{u-d}fd\right)e^{-rT}$$

$$=\left(\frac{e^{rT}-d}{u-d}fu+\left(1+\frac{d-e^{rT}}{u-d}\right)fd\right)e^{-rT}$$

$$= \left[\frac{e^{rT} - d}{u - d} f_u + \left(1 - \frac{e^{rT} - d}{u - d} \right) f_d \right] e^{-rT}$$

where
$$p = \frac{e^{rT} - d}{N - cl}$$


```
(a) First compute the up step size u, the down step size d, and the probability of up move p under these three settings.
When 24 time steps, u = 1.09046, d = 0.917041, p = 0.502439.
When 104 time steps, u = 1.04248, d = 0.959251, p = 0.50116.
When 504 time steps, u = 1.01908, d = 0.981279, p = 0.500527.
```

(b)

兩者十分接近

越多step兩者的差距越小

有時binomial 比較大有時Black-Scholes比較大

```
(b) Use binomial model to compute the put option prices under these three settings. Report your results and compare them with that of the Black-Scholes formula. Briefly explain your findings.

When 24 time steps:

The put option prices of the binomial model: 6.78743

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: -0.0272865

When 104 time steps:

The put option prices of the binomial model: 6.77744

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: -0.0173011

When 504 time steps:

The put option prices of the binomial model: 6.75653

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: 0.00360775
```

(())

兩者十分接近 越多step兩者的差距越小 沒有early exercise 的情形發生

```
(c) Modify your program in (b) to compute the American put option values. Report your result. When 24 time steps:

The put option prices of the binomial model: 6.78743

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: -0.0272865

When 104 time steps:

The put option prices of the binomial model: 6.77744

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: -0.0173011

When 504 time steps:

The put option prices of the binomial model: 6.75653

The put option prices of the Black-Scholes formula: 6.76014

The difference between them: 0.00360775
```


terminal stock price

12 time steps probability distribution

52 time steps probability distribution

step越多越趨向常態分佈 stock price範圍越廣 期望值在s0 * exp(r * T) = 55.26 附近