H19T2A2

Betrachte die Funktion $\gamma: \mathbb{R} \to \mathbb{R}^3$, $t \mapsto \gamma(t) = (\cos(t), \sin(t), t)$ (Schraubenlinie) und versehen \mathbb{R}^3 mit der euklidischen Norm $||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Zeige:

- a) $\gamma(\mathbb{R})$ ist eine abgeschlossene Teilmenge von \mathbb{R}^3 .
- b) Für jeden Punkt $p \in \mathbb{R}^3$ existiert ein $t_p \in \mathbb{R}$, so dass

$$||\gamma(t_p) - p|| = \min\{||\gamma(t_p) - p|| : t \in \mathbb{R}\}.$$
 (1)

c) Erfüllt t_p die Bedingung (??) aus b), so gilt:

$$\gamma'(t_p) \perp (\gamma(t_p) - p).$$

d) Bestimme für p=(2,0,0) alle Lösungen t_p von $(\ref{eq:condition})$. Begründe insbesondere die Vollständigkeit der Lösungen.

Zu a):

Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge in $\gamma(\mathbb{R})$ so dass $x_n \xrightarrow[n\to\infty]{} x \in \mathbb{R}^3$

$$\gamma(t_n) = \begin{pmatrix} \cos(t_n) \\ \sin(t_n) \\ t_n \end{pmatrix} \xrightarrow[n \to \infty]{} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\Rightarrow t_n \xrightarrow[n \to \infty]{} x_3$$

Da cos, sin stetig sind, folgt $\cos(t_n) \xrightarrow[n \to \infty]{} \cos(x_3)$, $\sin(t_n) \xrightarrow[n \to \infty]{} \sin(x_3)$

$$\Rightarrow \quad \gamma(t_n) = \begin{pmatrix} \cos(t_n) \\ \sin(t_n) \\ t_n \end{pmatrix} \xrightarrow[n \to \infty]{} \begin{pmatrix} \cos(x_3) \\ \sin(x_3) \\ x_3 \end{pmatrix} \in \gamma(\mathbb{R})$$

Alternative zu a):

 $\gamma(\mathbb{R})$ ist abgeschlossen, wenn jede konvergente Folge einen Grenzwert in $\gamma(\mathbb{R})$ besitzt. Es sei $(\gamma(t_n))_n$ eine beliebige konvergente Folge in $\gamma(\mathbb{R})$, die gegen ein $c=(c_1,c_2,c_3)\in\mathbb{R}^3$ konvergiert. Dann ist insbesondere $\lim_{n\to\infty}t_n=\lim_{n\to\infty}\gamma_3(t_n)=c_3$. Mit dem Folgenkriterium ergibt sich $c_1=\lim_{n\to\infty}\gamma_1(t_n)=\lim_{n\to\infty}\cos t_n=\cos c_3$ und $c_2=\lim_{n\to\infty}\gamma_2(t_n)=\lim_{n\to\infty}\sin t_n=\sin c_3$. Also ist $c=(\cos c_3,\sin c_3,c_3)\in\gamma(\mathbb{R})$ und damit $\gamma(\mathbb{R})$ abgeschlossen.

Zu b):

Ist
$$p = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \in \mathbb{R}^3$$
, $p_3 \in [2\pi k, 2\pi(k+1)]$ mit $k \in \mathbb{Z}$

$$||p-\gamma(2\pi k+t)|| = \sqrt{(p_1 - \cos(2\pi k + t))^2 + (p_2 - \sin(2\pi k + t))^2 + (p_3 - (2\pi k + t))^2}$$
$$= \sqrt{(p_1 - \cos(t))^2 + (p_2 - \sin(t))^2 + (p_3 - (2\pi k + t))^2} \le ||p-\gamma(2\pi l + t)||$$

für alle $l \in \mathbb{Z} \setminus \{k, k+1, k-1\}$

$$\Rightarrow \inf\underbrace{\{||\gamma(t)-p||:\ t\in\mathbb{R}\}}_{\neq\emptyset,\ \text{z.B. durch 0 nach unten beschränkt}} = \inf\{||\gamma(t)-p||:\ t\in[2\pi(k-1),2\pi(k+2)]\}$$

$$= \min\{||\gamma(t) - p||: \ t \in [2\pi(k-1), 2\pi(k+2)]\}\$$

da die stetige Funktion $\mathbb{R} \to [0, \infty[, t \mapsto ||\gamma(t) - p||]$ auf der kompakten Menge $[2\pi(k-1), 2\pi(k+2)]$ ein Minimum annimmt.

Alternative zu b):

Es sei $m := \inf\{||\gamma(t) - p|| : t \in \mathbb{R}\} \ge 0.$

Es gibt eine Folge $(t_n)_n$ in \mathbb{R} mit $\lim_{n\to\infty} ||\gamma(t_n)-p||=m$.

Nach geeigneter Teilfolgenauswahl kann man annehmen, dass $(t_n)_n$ gegen ein $t_p \in \mathbb{R} \cup \{\pm \infty\}$ (evtl. im uneigentlichen Sinne) konvergiert. Wegen

$$|t_p - p_3| = |\gamma_3(t_n) - p_3| \le ||\gamma(t_n) - p|| \stackrel{n \to \infty}{\longrightarrow} m$$

scheidet der Fall $t_p = \pm \infty$ aus. Also ist $t_p \in \mathbb{R}$.

Es folgt $\lim_{n\to\infty} \gamma(t_n) = \gamma(t_p)$ und damit $m = \lim_{n\to\infty} ||\gamma(t_n) - p|| = ||\gamma(t_p) - p||$. Dies zeigt b).

Zu c):

Da $[0,\infty[\to [0,\infty[,\,y\mapsto y^2 \text{ streng monoton steigend ist, gilt}$

$$||\gamma(t_p) - p||^2 = \min\{||\gamma(t_p) - p||^2: t \in \mathbb{R}\}$$

d.h. t_p ist (lokales) Minimum von $g: \mathbb{R} \to [0, \infty[, t \mapsto ||\gamma(t_p) - p||^2 = \langle \gamma(t) - p, \gamma(t) - p \rangle$

$$g'(t) = \langle \gamma'(t), \gamma(t) - p \rangle + \langle \gamma(t) - p, \gamma'(t) \rangle = 2\langle \gamma'(t), \gamma(t) - p \rangle$$

 t_p lokales Minimum von $g \Rightarrow g'(t_p) \stackrel{!}{=} 0 = 2\langle \gamma'(t_p), \gamma(t_p) - p \rangle$, d.h. $\gamma'(t_p) \perp \gamma(t_p) - p$

Alternative zu c):

Es sei $\min\{||\gamma(t)-p||:t\in\mathbb{R}\}=||\gamma(t_p)-p||$. Dann hat $h(t):=||\gamma(t)-p||^2$ in $t=t_p$ ein lokales Extremum, d.h. es ist

$$0 = h'(t_p) = \frac{d}{dt} \langle \gamma(t) - p, \gamma - p \rangle |_{t=t_p} = 2 \langle \gamma'(t_p), \gamma(t_p) - p \rangle$$

Dies zeigt $\gamma'(t_p) \perp \gamma(t_p) - p$.

Zu d):

$$g_{(2,0,0)} =: g : \mathbb{R} \to [0, \infty[, t \mapsto \left| \left| \begin{pmatrix} \cos(t) - 2 \\ \sin(t) \\ t \end{pmatrix} \right| \right|^2 = (\cos(t) - 2)^2 + (\sin(t))^2 + t^2$$

$$g': \mathbb{R} \to \mathbb{R}, \quad t \mapsto 2\langle \begin{pmatrix} -\sin(t) \\ \cos(t) \\ 1 \end{pmatrix}, \begin{pmatrix} \cos(t) - 2 \\ \sin(t) \\ t \end{pmatrix} \rangle = 2(2\sin(t) + t)$$

Wegen $\sin(t) \in [-1,1]$ liegen alle Nullstellen von g' in [-2,2]; t=0 ist eine Nullstelle.

$$g'' = 4\cos(t) + 2 > 0 \text{ für } t \in]-\frac{2\pi}{3}, \frac{2\pi}{3}[$$

$$\Rightarrow g'(t) = \int_{0}^{t} g''(s)ds \neq 0 \text{ für } t \in [-2, 2] \setminus \{0\}$$

 $\Rightarrow t = 0$ ist der einzige kritische Punkt von g.

 $\Rightarrow t_{(2,0,0)} = 0$ da $t_{(2,0,0)}$ laut b) existiert und laut c) ein kritischer Punkt von $g_{(2,0,0)}$

Alternative zu d):

Es sei p = (2, 0, 0). Mit c) folgt dann

$$0 = \left\langle \begin{pmatrix} -\sin t_p \\ \cos t_p \\ 1 \end{pmatrix}, \begin{pmatrix} \cos t_p - 1 \\ \sin t_p \\ t_p \end{pmatrix} \right\rangle = 2\sin t_p + t_p.$$

Offensichtlich folgt hieraus $t_p=0$ (denn wegen $|\sin t_p|\leq 1$ ist $t_p\in [-2,2]$, und hierfür ist die Aussage (mit Skizze) klar.

