CS510 Fall 2021 Assignment #1 solutions

- 1) a) Exercise 0.3 solution:
 - a. no
 - b. yes
 - c. $\{x, y, z\}$
 - $d. \{x, y\}$
 - e. $\{(x,x), (x,y), (y,x), (y,y), (z,x), (z,y)\}$
 - f. $\{\{\}, \{x\}, \{y\}, \{x,y\}\}$
- b) Exercise 0.4 solution:

For each element x of A, the Cartesian product $A \times B$ contains exactly b pairs of the form (x, y), where y is an element of B. Since there are a elements in A, the number of pairs in the Cartesian product is ab.

c) Exercise 0.5 solution:

Power set of C is a set of subsets of C. Therefore, the size of the power set of C is equal to the number of subsets of C. If there are c elements in C, then the number of subsets of C is 2^c . This is because for each element, you have two choices: either you put it in the subset, or you don't; and these choices are independent.

- 2) Exercise 0.11(a)(b) You have to use mathematical induction.
 - a. S(n) = 1 + 2 + ... + n. Prove that $S(n) = \frac{1}{2}n(n+1)$.

Proof: Let the property P(n) be the equation $S(n) = \frac{1}{2}n(n+1)$. $\leftarrow P(n)$

Show that P(1) is true: To establish P(1), we must show that when 1 is substituted in place of n, the left-hand side equals the right-hand side. But when n = 1, the left-hand side is the sum of all the integers from 1 to 1, which is just 1. The right-hand side is $\frac{1}{2} \cdot 1(1+1)$, which also equals 1. So P(1) is true.

Show that for all integers $k \ge 1$, if P(k) is true then P(k+1) is true: Let k be any integer with $k \ge 1$.

Suppose P(k) is true. That is: $S(k) = \frac{1}{2}k(k+1)$. [This is the inductive hypothesis.]

We must show that P(k+1) is true. That is: $S(k+1) = \frac{1}{2}(k+1)(k+1+1)$. $\leftarrow P(k+1)$

The left-hand side of P(k + 1) is

S(k+1)

$$= 1 + 2 + 3 + \dots + (k+1)$$

=
$$[1+3+5+...+k]+(k+1)$$
 - by separating the last term

$$=\frac{1}{2}k(k+1)+(k+1)$$
 by the inductive hypothesis

$$= \frac{1}{2}k^2 + \frac{1}{2}k + k + 1 = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

The right-hand side of P(k+1) is

$$\frac{1}{2}(k+1)(k+1+1) = \frac{1}{2}(k+1)(k+2) = \frac{1}{2}(k^2+3k+2) = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

which is equal to the left-hand side of P(k+1) [as was to be shown.]

b.
$$C(n) = 1^3 + 2^3 + ... + n^3$$
. Prove that $C(n) = \frac{1}{4}n^2(n+1)^2$.

Proof: Let the property P(n) be the equation $C(n) = \frac{1}{4}n^2(n+1)^2$. $\leftarrow P(n)$

Show that P(1) is true: When n = 1, the left-hand side is the sum of cubes of integers from 1 to 1, which is just 1. The right-hand side is $\frac{1}{4} \cdot 1^2 (1+1)^2$, which also equals 1. So P(1) is true.

Show that for all integers $k \ge 1$, if P(k) is true then P(k+1) is true: Let k be any integer with $k \ge 1$.

Suppose P(k) is true. That is: $C(k) = \frac{1}{4}k^2(k+1)^2$. [This is the inductive hypothesis.]

We must show that P(k + 1) is true. That is: $C(k+1) = \frac{1}{4}(k+1)^2(k+1+1)^2$. $\leftarrow P(k+1)$

The left-hand side of P(k + 1) is

$$C(k+1)$$

$$=1^3+2^3+...+(k+1)^3$$

=
$$[1^3 + 2^3 + ... + k^3] + (k+1)^3$$
 - by separating the last term

$$=\frac{1}{4}k^2(k+1)^2+(k+1)^3$$
 by the inductive hypothesis

$$=\frac{1}{4}k^2(k+1)^2+\frac{1}{4}\cdot 4(k+1)^3$$

$$= \frac{1}{4}(k+1)^2(k^2+4(k+1)) = \frac{1}{4}(k+1)^2(k^2+4k+4) = \frac{1}{4}(k+1)^2(k+2)^2 = \frac{1}{4}(k+1)^2(k+1)^2$$
which is the right-hand side of $P(k+1)$ [as was to be shown.]

3) Exercise 1.4 (g) (Note: you will have 3 automata here)

Solution:

{w| w has even length}

 $\{w | w \text{ has even length and an odd number of } a's \}$

4) Exercise 1.6 (c), (f), (g), (i) (Note: one automaton for each part (c, f, g, i)) Note: in Exercise 1.6(i) positions start with position 1 (not 0). That is, string 101 is accepted

Solution:

1.6(c) {w| w contains the substring 0101}

1.6(f) {w| w doesn't contain the substring 110}

1.6(g) {w| the length of w is at most 5}

1.6(i) {w| every odd position of w is a 1}

5) Exercise 1.8 (b)

Solution:

6) Exercise 1.9 (a)

Solution:

7) Exercise 1.16 (b)

Solution:

