

Intermediate code generation

- Abstract Syntax Tree
- Direct acyclic Graph
- -postfix
 - 3 address code

Types of three address statements:

Example 01:
$$x = (a * b) + (c * d)$$

Assignment
$$x = y \text{ op } x$$

$$x = \text{op } z$$

$$x = \text{op } z$$

$$x = y$$
Jump conditional: if x then goto L
unconditional: goto L
$$x = y \text{ op } x$$

$$y = y \text{ op } x$$

$$x = y \text{ op$$

$$t_1 = b + c$$
 $t_2 = uminus t_1$
 $t_3 = d \times t_2$

Example 3: a = b + c * d

```
operator ____
  arg1 —
  arg2—
  result
 a = b * - c + b * - c
\Upsilon 1 = uminus c
t2 = b * t1
\sim t3 = uminus c
- t4 = b * t3
-t5 = t2 + t4
-a = t5
```

Quadruples

	ор	arg1	arg2	result
(८)	uminus	(-)		<u> </u>
(1)	X	b	t. u	4 5
(4 -)	uminus			とら
છો	\times	7	4.3	ty
त्री	+	. /	+ 1 N	45
(J		₹~.		, ot

□ t1= uminus c
$\int t2 = b * t1$
$\frac{1}{2}$ t3 = uminus c
$\frac{9}{5}$ t4 = b * t3
1/15 = t2 + t4
$\sqrt{a} = t5$

			Q1-37	Val 3
		uminus		
_		· X	0	(0)
	(2)	uminus	C	
~	~ (⁵)		\ <u>\</u>	(5)
	(4)	1	(1)	
	(2)		(4)	

$$\frac{(a+b)^{*}(c+d) - (a+b+c)}{(a+b+c)}$$

$$t1 = a+b$$

$$t2 = c+d$$

$$t3 = t1 * t2$$

$$2 * t4 = t1 + c$$

$$2 * t5 = t3 - t4$$

$$4$$

$$Quadruple$$

$$(a+b)^{*}(c+d) - (a+b+c)$$

$$2 * t4 = t1 + c$$

$$2 * t4 = t1 + c$$

$$2 * t5 = t3 - t4$$

$$4 * t5 = t4$$

$$4 * t6 = t4$$

$$4 * t7 = t4$$

Triple

			<u> </u>	_
		Cl 1	12	_
(©)	+	<u>a</u>	<u> </u>	
[1)	+			
(5)	X	(0)) (1)	-
(3)	1	(0)) [
(4))	(7	(3)	
				_
	1	ı		
			1	