CS-204

Sorting

Heap Sort

Special Types of Trees

 Def: Full binary tree = a binary tree in which each node is either a leaf or has degree exactly 2.

• Def: Complete binary tree = a binary tree in which all leaves are on the same level and all internal nodes have degree 2.

Complete binary tree

Almost Complete Binary Tree

 Canonical labeling of nodes: Label the Nodes in the levelwise fashion from left to right, as shown below

• Almost Complete Binary Tree: A binary tree made up of the first n nodes of a canonically labeled complete Binary Tree is called Almost Complete Binary Tree.

Definitions

- Height of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- Height of tree = height of root node

Useful Properties

- ➤ There are at most 2¹ nodes at level (or depth) I of a binary tree
- ➤ A binary tree with maximum level d has at most 2^{d+1} 1 nodes

The Heap Data Structure

- **Def:** A **heap** is an <u>almost complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Max (Min) heap property: for any node x, Parent(x) $\ge x$ (Parent(x)<=x)

Max Heap

From the heap property, it follows that: The root is the maximum (minimum) element of the maxheap (min-heap)

Array Representation of Heaps

- A heap can be stored as an array
 A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] ≤ length[A]
- The elements in the subarray $A[(\lfloor n/2 \rfloor +1) ... n]$ are leaves

Heap Types

- Max-heaps (largest element at root), have the max-heap property:
 - for all nodes i, excluding the root:

$$A[PARENT(i)] \ge A[i]$$

- Min-heaps (smallest element at root), have the min-heap property:
 - for all nodes i, excluding the root:

$$A[PARENT(i)] \leq A[i]$$

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right to left)

Operations on Heaps

- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children

Example

MAX-HEAPIFY(A, 2, 10)

 $A[2] \leftrightarrow A[4]$

A[2] violates the heap property

A[4] violates the heap property

Heap property restored

Maintaining the Heap Property

Assumptions:

- Left and Right subtrees of i are max-heaps
- A[i] may be smaller than its children

Alg: MAX-HEAPIFY(A, i, n)

- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $| \leq n$ and A[l] > A[i]
- 4. then largest \leftarrow l
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. then largest \leftarrow r
- 8. if largest \neq i
- 9. then exchange $A[i] \rightarrow A[largest]$
- 10. MAX-HEAPIFY(A, largest, n)

MAX-HEAPIFY Running Time

 It checks a path starting from current node to leaf node. At every level it performs exactly 2 comparisons.
 At max length of this path is h. So total number of comparisons is at most 2h. So complexity is O(h) or O(logn)

Running time of MAX-HEAPIFY is O(lqn)

Building a Max-Heap

Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) ... n]$ are leaves
- Apply MAX-HEAPIFY on elements between 1 and $\lfloor n/2 \rfloor$

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)

A: 4 1 3 2 16 9 10 14 8 7

Example:

A

Running Time of BUILD MAX HEAP

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. **do** MAX-HEAPIFY**(***A*, i, n**)**

$$O(|gn)$$
 $O(n)$

- \Rightarrow Running time: O(nlgn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

• HEAPIFY takes $O(h) \Rightarrow$ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree

 $h_i = h - i$ height of the heap rooted at level i $n_i = 2^i$ number of nodes at level i

Running Time of BUILD MAX HEAP

$$T(n) = \sum_{i=0}^{h} n_i h_i$$

 $T(n) = \sum_{i=1}^{n} n_i h_i$ Cost of HEAPIFY at level i * number of nodes at that level

$$=\sum_{i=0}^h 2^i (h-i)$$

 $= \sum_{i=1}^{h} 2^{i} (h - i)$ Replace the values of n_{i} and h_{i} computed before

$$=\sum_{i=0}^{h}\frac{h-i}{2^{h-i}}2^{h}$$

 $=\sum_{i=0}^{h}\frac{h-i}{2^{h-i}}2^{h}$ Multiply by 2^{h-i} both at the nominator and denominator

$$=2^{h}\sum_{k=0}^{h}\frac{k}{2^{k}}$$

 $=2^{h}\sum_{k=0}^{h}\frac{k}{2^{k}}$ Change variables: k = h - i

$$\leq n \sum_{k=0}^{\infty} \frac{k}{2^k}$$

The sum above is smaller than the sum of all elements to ∞

$$= O(n)$$

The sum above is smaller than 2

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
for $|x| < 1$.

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

Goal:

Sort an array using heap representations

Idea:

- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Example:

A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4)

MAX-HEAPIFY(A, 1, 3)

MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)

Alg: HEAPSORT(A)

• Running time: O(nlgn) --- Can be shown to be $\Theta(nlgn)$

Priority Queues

Properties

- Each element is associated with a value (priority)
- The key with the highest (or lowest) priority is extracted first

Operations on Priority Queues

- Max-priority queues support the following operations:
 - INSERT(5, x): inserts element x into set 5
 - EXTRACT-MAX(S): removes and returns element of S
 with largest key
 - MAXIMUM(S): returns element of S with largest key
 - INCREASE-KEY(S, x, k): increases value of element x's key to k (Assume $k \ge x$'s current key value)

HEAP-MAXIMUM

Goal:

Return the largest element of the heap

Running time: O(1)

Alg: HEAP-MAXIMUM(A)

1. return *A*[1]

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

Example: HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

- 1. if n < 1
- 2. **then error** "heap underflow"
- 3. $\max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(A, 1, n-1)

remakes heap

Running time: O(Ign)

HEAP-INCREASE-KEY

Goal:

Increases the key of an element i in the heap

• Idea:

- Increment the key of A[i] to its new value
- If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

Example: HEAP-INCREASE-KEY

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

- 1. **if** key < A[i]
- 2. **then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow \text{key}$
- 4. **while** i > 1 and A[PARENT(i)] < A[i]
- 5. **do** exchange $A[i] \rightarrow A[PARENT(i)]$
- 6. $i \leftarrow PARENT(i)$
- Running time: O(lgn)

MAX-HEAP-INSERT

Goal:

Inserts a new element into a max-heap

Idea:

- Expand the max-heap with a new element whose key is -∞
- Calls HEAP-INCREASE-KEY to set the key of the new node to its correct value and maintain the max-heap property

Example: MAX-HEAP-INSERT

Insert value 15:

- Start by inserting -∞

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

The restored heap containing the newly added element

MAX-HEAP-INSERT

10

Alg: MAX-HEAP-INSERT(A, key, n)

Running time: O(Ign)

Summary

We can perform the following operations on heaps:

– MAX-HEAPIFYO(Ign)

- BUILD-MAX-HEAP O(n)

HEAP-SORTO(nlgn)

- MAX-HEAP-INSERT O(lgn)

HEAP-EXTRACT-MAXO(Ign)

HEAP-INCREASE-KEYO(Ign)

- HEAP-MAXIMUM O(1)

Average O(lgn)

Quick Sort

QuickSort Design

- Follows the divide-and-conquer paradigm.
- **Divide:** Partition (separate) the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1..r].
 - Each element in $A[p..q-1] \leq A[q]$.
 - -A[q] < each element in A[q+1..r].
 - Index q is computed as part of the partitioning procedure.
- Conquer: Sort the two subarrays by recursive calls to quicksort.
- Combine: The subarrays are sorted in place no work is needed to combine them.
- How do the divide and conquer steps of quicksort compare with those of merge sort?

Pseudocode

```
Quicksort(A, p, r)

if p < r then

q := Partition(A, p, r);

Quicksort(A, p, q - 1);

Quicksort(A, q + 1, r)
```



```
\begin{aligned} & \underline{\text{Partition}(A, p, r)} \\ & & \text{x:= A[r]} \\ & & \text{i=p-1;} \\ & & \text{for j := p to r-1 do} \\ & & \text{if A[j]} \leq x \text{ then} \\ & & \text{i := i+1;} \\ & & \text{A[i]} \leftrightarrow \text{A[j]} \\ & & \text{A[i]} \leftrightarrow \text{A[r];} \\ & & \text{return i+1} \end{aligned}
```


Example

Position of i and j after of line 3

```
2 5 8 3 9 4 1 7 10 6
initially:
next iteration:
                    2 5 8 3 9 4 1 7 10 6
next iteration:
                     2 5 8 3 9 4 1 7 10 6
next iteration:
                     2 5 8 3 9 4 1 7 10 6
next iteration:
                    2 5 3 8 9 4 1 7 10 6
```

note: pivot (x) = 6

Example (Continued)

```
      next iteration:
      2 5 3 8 9 4 1 7 10 6

      next iteration:
      2 5 3 4 9 8 1 7 10 6

      next iteration:
      2 5 3 4 1 8 9 7 10 6

      next iteration:
      2 5 3 4 1 8 9 7 10 6

      next iteration:
      2 5 3 4 1 8 9 7 10 6

      i
      j

      after final swap:
      2 5 3 4 1 6 9 7 10 8

      i
      j
```

```
\begin{array}{l} \underline{Partition(A,\,p,\,r)} \\ x \coloneqq A[r] \\ i = p-1; \\ \textbf{for} \ j \coloneqq p \ \textbf{to} \ r-1 \ \textbf{do} \\ \textbf{if} \ A[j] \le x \ \textbf{then} \\ i \coloneqq i+1; \\ A[i] \longleftrightarrow A[j] \\ A[i+1] \longleftrightarrow A[r]; \\ \textbf{return} \ i+1 \end{array}
```

Partitioning

- Select the last element A[r] in the subarray A[p..r] as the pivot the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions.
 - 1. A[p..i] All entries in this region are \leftarrow pivot.
 - 2. A[i+1..j-1] All entries in this region are > pivot.
 - 3. A[r] = pivot.
 - 4. A[j..r-1] Not known how they compare to *pivot*.
- The above hold before each iteration of the for loop, and constitute a loop invariant.

- Use loop invariant.
- Initialization:
 - Before first iteration
 - A[p..i] and A[i+1..j-1] are empty Conds. 1 and 2 are satisfied (trivially).
 - *r* is the index of the *pivot*
 - Cond. 3 is satisfied.

Maintenance:

- Case 1: A[j] > x
 - Increment j only.
 - Loop Invariant is maintained.

```
\begin{array}{l} \underline{Partition(A,\,p,\,r)} \\ x \coloneqq A[r] \\ i = p-1; \\ \textbf{for} \ j \coloneqq p \ \textbf{to} \ r-1 \ \textbf{do} \\ \textbf{if} \ A[j] \le x \ \textbf{then} \\ i \coloneqq i+1; \\ A[i] \longleftrightarrow A[j] \\ A[i+1] \longleftrightarrow A[r]; \\ \textbf{return} \ i+1 \end{array}
```

Case 1:

- Case 2: $A[j] \leq x$
 - Increment i
 - Swap A[i] and A[j]
 - Condition 1 is maintained.

- Increment j
 - Condition 2 is maintained.
- A[r] is unaltered.
 - Condition 3 is maintained.

• Termination:

- When the loop terminates, j = r, so all elements in A are partitioned into one of the three cases:
 - *A*[*p*..*i*] ≤ *pivot*
 - A[i+1..j-1] > pivot
 - A[r] = pivot
- The last two lines swap A[i+1] and A[r].
 - Pivot moves from the end of the array to between the two subarrays.
 - Thus, procedure partition correctly performs the divide step.

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition? O(n)

- Assume that keys are random, uniformly distributed.
- Recurrence relation $T(n)=2T(n/2)+\Theta(n)$
- Running time: O(n log₂n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition?

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition? O(n)

- Assume that keys are random, uniformly distributed.
- Recurrence Relation $T(n)=T(n-1)+\Theta(n)$
- Worst case running time: O(n²)

Balanced partitioning

mix of "good" and "bad" splits

A randomized version of quicksort

- RANDOMIZED-PARTITION (A, p, r)
 - 1. i = RANDOM(p, r)
 - 2. exchange A[r] with A[i]
 - **3.** return PARTITION(A, p, r)
- RANDOMIZED-QUICKSORT(A,p,r)
 - 1. if p < r
 - 1. q = RANDOMIZED-PARTITION(A,p,r)
 - RANDOMIZED-QUICKSORT(A,p,q -1)
 - 3. RANDOMIZED-QUICKSORT(A,q+1, r)

Expected running time

- The running time of QUICKSORT is dominated by the time spent in the PARTITION procedure.
- Each time the PARTITION procedure is called, it selects a pivot element, and this element is never included in any future recursive calls to QUICKSORT and PARTITION.
- Thus, there can be at most n calls to PARTITION over the entire execution of the quicksort algorithm.

Expected Running Time of Partition

 One call to PARTITION takes O(1) time plus an amount of time that is proportional to the number of iterations of the **for** loop in lines 3–6

if we can count the total number of times that line 4 is executed, we can bound the total time spent in the for loop during the entire execution of QUICKSORT.

```
Partition(A, p, r)

1. x:=A[r],

2. i=p-1;

3. for j:=p to r-1 do

4. if A[j] \le x then

5. i:=i+1;

6. A[i] \leftrightarrow A[j]

7. A[i+1] \leftrightarrow A[r];

8. return i+1
```

- Assume line 4 is executed for X times
- We rename the elements of the array A as z_1 , z_2 , ..., z_n , with z_i being the i^{th} smallest element.

• We also define the set $Z_{ij} = \{z_{i, z_{i+1, ..., z_j}}\}$ to be the set of elements between z_i and z_j , inclusive.

When does the algorithm compare z_i and z_j ?

- X_{ij} = 1 {z_i is compared to z_j};
- $X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$
- $E[X] = E[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}]$

$$=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}E[Xij]$$

 $=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n} \text{Prob}\{\text{zi is compared to zj}\}\$

- once a pivot x is chosen with z_i < x < z_j, we know that z_i and z_j will not be compared at any subsequent time.
- Pr $\{z_i \text{ is compared to } z_j\} = Pr \{z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}\}$
- = Pr $\{z_i \text{ is the first pivot chosen from } Z_{ij} \}$ + Pr $\{z_j \text{ is the first pivot chosen from } Z_{ij} \}$ = 1/(i-i+1)+1/(i-i+1)=2/(i-i+1)

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n).$$

Linear Sorts

Counting sort

Bucket sort

Radix sort

Comparison Sorting

- Given a set of n values, there can be n! permutations of these values.
- So if we look at the behavior of the sorting algorithm over all possible n! inputs we can determine the worst-case complexity of the algorithm.

Decision Tree

- Decision tree model
 - Full binary tree
 - Internal node represents a comparison.
 - Each leaf represents one possible result (a permutation of the elements in sorted order).
 - The height of the tree (i.e., longest path) is the lower bound.

Decision Tree Model

Internal node i:j indicates comparison between a_i and a_j . suppose three elements < a1, a2, a3> with instance <6,8,5> Leaf node $<\pi(1), \pi(2), \pi(3)>$ indicates ordering $a_{\pi(1)} \le a_{\pi(2)} \le a_{\pi(3)}$. Path of **bold lines** indicates sorting path for <6,8,5>. There are total 3!=6 possible permutations (paths).

Decision Tree Model

- The longest path is the worst case number of comparisons. The length of the longest path is the height of the decision tree.
- Theorem 8.1: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof:

- Suppose height of a decision tree is h, and number of paths (i,e,, permutations) is n!.
- Since a binary tree of height h has at most 2^h leaves,
 - $n! \le 2^h$, so $h \ge \lg (n!)$

Decision Tree Model

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

 $\lg(n!) = \Theta(n \lg n)$,

 That is to say: any comparison sort in the worst case needs at least nlg n comparisons.

Linear Sorts

 We will study algorithms that do not depend only on comparing whole keys to be sorted.

- Counting sort
- Bucket sort
- Radix sort

Counting sort

Assumptions:

- n records
- Each record has a key and a value
- All keys are in the range of 1 to k

Space

- The unsorted list is stored in A, the sorted list will be stored in an additional array B
- Uses an additional array C of size k

Counting sort

Main idea:

- 1. For each key value i, i = 1,...,k, count the number of times the keys occurs in the unsorted input array A.
 - Store results in an auxiliary array, C
- 2. Use these counts to compute the offset. Offset $_i$ is used to calculate the location where the record with key value i will be stored in the sorted output list B.
 - The offset, value has the location where the last key, .
- When would you use counting sort?
- How much memory is needed?

Counting Sort

```
Input: A [1..n], A[J] \in \{1,2,...,k\}
```

Output: *B* [1 .. *n*], sorted

Uses C [1 .. k], auxiliary storage

Counting-Sort(A, B, k)

- 1. for $i \leftarrow 1$ to k
- 2. **do** $C[i] \leftarrow 0$
- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$
- 5. for $i \leftarrow 2$ to k
- 6. **do** $C[i] \leftarrow C[i] + C[i-1]$
- 7. **for** $j \leftarrow length[A]$ **down** 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] -1$

Analysis:

$$k = 4$$
, $length = 6$

C 0 0 0 0

after lines 1-2

 $C \mid 1 \mid 0 \mid 2 \mid 3$

after lines 3-4

C 1 1 3 6

after lines 5-6

Counting-Sort(A, B, k)

- 1. for $i \leftarrow 1$ to k
- 2. **do** $C[i] \leftarrow 0$
- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$
- 5. for $i \leftarrow 2$ to k
- 6. **do** $C[i] \leftarrow C[i] + C[i-1]$

J=6

J=5

7. for j← length[A] down 1
 8. do B[C[A[j]]]← A[j]
 9. C[A[j]]]← C[A[j]]-1

J=4

B 3 3 4 5 6 <-1-> <-- 3 --> <-- 4 -->

J=3

J=1

Analysis:

- O(k + n) time
 What if k = O(n)
- But Sorting takes Ω ($n \lg n$) ????
- Requires k + n extra storage.
- This is a stable sort: It preserves the original order of equal keys.
- Clearly no good for sorting 32 bit values.

Bucket sort

Keys are distributed uniformly in interval [0, 1)

The records are distributed into n buckets

The buckets are sorted using one of the well known sorts

Finally the buckets are combined

Bucket sort

Step3 combine

Analysis

- P = 1/n, probability that the key goes to bucket *i*.
- Expected size of bucket is np = n * 1/n = 1

• The expected time to sort one bucket is $\Theta(1)$.

• Overall expected time is $\Theta(n)$.

Radix sort

- Main idea
 - Break key into "digit" representation

$$\text{key} = i_d, i_{d-1}, ..., i_2, i_1$$

- "digit" can be a number in any base, a character, etc
- Radix sort:

```
for i= 1 to d
  sort "digit" i using a stable sort
```

Analysis : ⊕(d * (stable sort time)) where d is the number of "digit"s

Radix sort

- Which stable sort?
 - Since the range of values of a digit is small the best stable sort to use is Counting Sort.
 - When counting sort is used the time complexity is $\Theta(d * (n + k))$ where k is the range of a "digit".
 - When $k \in O(n)$, $\Theta(d * n)$

Radix sort- with decimal digits

