The Practical Guide to Levitation

Ahmad Salim Al-Sibahi

Advisors:

Dr. Peter Sestoft & David R. Christiansen Submitted: September 1, 2014

Abstract

Goal: Implementation of levitation in a realistic setting, with practical performance benefits.

DISCLAIMER: This is a draft and as such is incomplete, incorrect and can contain grammatical errors. Although I claim originality of this report, many underlying ideas are based on current work in the scientific community which will be correctly attributed when the work is complete.

Contents

Со	ntents		iii	
1	Intro	duction	1	
	1.1	Context	1	
	1.2	Problem definition	2	
	1.3	Aim and scope	3	
	1.4	Significance	3	
	1.5	Overview	4	
2	Gene	ric programming	5	
	2.1	The generic structure of inductive data types	5	
	2.2		16	
	2.3		20	
3	Parti	al evaluation	23	
	3.1	The static nature of programs	23	
	3.2		25	
	3.3	Dividing the static and dynamic parts of a program	28	
	3.4		30	
4	Levit	ating Idris	34	
	4.1	Creating descriptions from ordinary data declarations	34	
	4.2	Parametric extension to descriptions	34	
	4.3	Proposed Improvements	34	
5	Pract	ical examples	35	
	5.1	Generic deriving	35	
	5.2	Uniplate for Idris	35	

Contents	iv

(Optimising Idris for flight 6.1 Specialising constructors for specific types
7 I	Evaluation
8	Discussion 8.1 Future work
)ihli	ography

Introduction

1.1 Context

Algebraic datatypes such as Boolean values, lists or trees form a core part of modern functional programming. Most functions written work directly on such datatypes, but some functions like structural equality or pretty printing (see Example 1) don't directly dependent on the datatype itself. Therefore, writing such functions for each different datatype becomes a repetitive exercise. In fact it is possible to write an algorithm over the structural definition of the datatype, which the computer then could use to derive an actual function for each particular datatypes.

Example 1

Pretty printing an element of any algebraic data type follows a very simple procedure:

- 1. Print the name of the constructor
- 2. Iterate over the constructor arguments and pretty print them, with each argument surrounded by parentheses if necessary
 - a) If the argument is a recursive reference to the type itself, then call this procedure recursively (starting at point 1).
 - b) If the data element is of another type, then
 - i. Find the correct pretty printing function for that type
 - ii. Pretty print the field using the found function

Enter the world of *generic programming* where the target datatype is the one describing the structure of other datatypes, often called the *description*. While generic programming sounds promising, it is usually seen as an aspect of Haskell (Peyton Jones et al. 2003) that is challenging to use by ordinary programmers. To represent the description, it is often required to use special language extensions (Magalhães et al. 2010; Jansson and Jeuring 1997) and the programming style tends to require different abstractions than when writing ordinary programs.

However, in dependently-typed languages such as Idris (Brady 2013) or Agda (Norell 2009) it is possible to create a correct description using ordinary datatype definitions (Benke, Dybjer, and Jansson 2003). Furthermore, Chapman et al. (2010) show that it is possible to build a self-supporting closed type system which is able to convert these descriptions to ordinary types (creating so-called *described types*), while still being powerful enough to describe the description datatype itself. In such system, generic programming is just a special case of ordinary programming.

1.2 Problem definition

The current work on generic programming in dependently-typed languages presents both elegant and typesafe ways to represent the structural descriptions of datatypes. Furthermore, it allows the programmer to save both time and boilerplate code while reducing mistakes by using ordinary programming techniques to do generic programming.

However, the state of the art is heavily theoretically oriented, which might lead to some challenges when a system needs to be developed with a practical audience in mind. First of all, multiple description formats are often presented, sometimes even in the same paper, which might not be particularly attractive in a practical setting. Secondly, there has been little work done on how to integrate such descriptions in languages which contain features such as type classes and proof scripts. Finally, datatypes synthesised from descriptions create large canonical terms; thus, both type checking and runtime performance are very slow. In the end, if an efficient and easily usable framework for programming with described types could be implemented successfully, it would save programmers both the time and effort required to write repetitive functions.

1.3 Aim and scope

The aim of this research is to provide a practical and efficient implementation of described types in Idris. This project has three primary goals.

The first goal is to find a good definition of the description that supports many common datatypes. I mainly seek to reuse some of the existing work, and not to further develop underlying type theory to support more complex inductive families; neither will I focus on supporting all language features of Idris such as implicit arguments and codata definitions.

The second goal is to present realistic examples using generic functions working on described types. This mainly includes implementing functions that can be used to derive type class instances, and a Scrap Your Boilerplate-style (SYB) library for generic querying and traversal.

The final goal is to describe how partial evaluation and related techniques can be used to optimise the generic functions with regards to specific descriptions in order to achieve acceptable performance. This includes using techniques such as polyvariant partial evaluation (Jones, Gomard, and Sestoft 1993) and constructor specialisation (Mogensen 1993).

1.4 Significance

The main contributions of this thesis are:

- an example-based tutorial for understanding described types in the context of a practical programming language, namely Idris;
- an generic implementation of common operations such as decidable equality, pretty printing and functors, which can be used to provide default implementations to type class methods;
- a discussion of the challenges that arise when trying to implement a SYB-style generics library in dependently typed languages;
- optimisation techniques based on partial evaluation for reducing runtime size and time overhead for described types and accompanying generic functions;

 metrics showing that generic programming using described types is a viable option to reduce boilerplate without significant cost in performance.

1.5 Overview

The report is structured as follows. Chapter 2 presents an introduction to described types specifically focusing on recent developments using dependently-typed programming languages. Chapter 3 presents an overview of techniques for partial evaluation of functions and specialisation of datatypes. Chapter 4 discusses specifically how I implemented described types in Idris and continues with practical examples in Chapter 5. Chapter 6 presents the optimisations that can be made in order to improve the runtime performance of described types and generic functions. Evaluation of the results happens in Chapter 7 comparing the performance of generic implementations to hand-written ones. Finally, Chapter 8 discusses the challenges that still lie ahead and concludes the effort.

Generic programming

2.1 The generic structure of inductive data types

2.1.1 Anatomy of a datatype

To build an intuition that will be useful in understanding descriptions, let us first start by looking closely at how datatypes are structured. Recall from Page 2 that a description is a data value representing the structure of a particular datatype. Figure 2.1 presents an annotated version of a typical dependently-typed datatype representing vectors.

A datatype consists of a type constructor which lists what type-level arguments are required, and zero or more data constructors which describe how to create values of the datatype. The type constructor has three components: a name for the datatype, types of any possible parameters, and the types of possible indices. In Figure 2.1 there is no syntactic difference between a parameter type or an index type since Idris figures that out automatically ¹, unlike other dependently-typed languages like Agda which have a syntactic distinction.

Similarly to the type constructor, a data constructor needs a name, also called a *tag*. Following the tag, the data constructor declaration contains the types of the arguments stored in the constructor and the resulting type that must use the type constructor of the datatype. In our example two constructors are declared, Nil and Cons. The constructor Nil doesn't hold any data, so it only needs to define the resulting type which is Vec a Z (a vector with length 0). The constructor Cons contains

¹If an argument to a type constructor doesn't change in the data constructor declarations, Idris considers it a parameter, otherwise an index.

Figure 2.1: Annotated components of a datatype Declaration

three different types of arguments: an ordinary implicit argument, an ordinary explicit argument, and an explicit argument of the type itself (recursive); the resulting type for Cons is Vec a (Sn), that is, a vector of length 1+n where n is the length of the recursive argument.

The colouring scheme for code presented in this paper uses the following conventions:

Blue is used for type constructors

Green is used for data constructors

Dark Red is used for top-level declarations

Light Red is used for locally-bound variables

Purple is used for literals (integer, string, etc.)

Bold Black is used for keywords (if, data, etc.)

2.1.2 A description for datatypes

It is now possible to try to represent a suitable datatype for descriptions. Figure 2.8 presents one possible solution, influenced mainly by the work

of McBride (2010) and Diehl and Sheard (2014). Similarly based on that work, Section 2.2 will later present how to construct actual described types from these descriptions.

```
data Desc : Type where
  Ret : Desc
  Arg : (a : Type) -> (a -> Desc) -> Desc
  Rec : Desc -> Desc
```

Figure 2.2: A datatype that describes other datatypes

The description datatype Desc has three main constructors:

- Constructor Ret represents the end of a description
- Constructor Arg represents the addition of an argument of any type to a given description; the first argument of Arg is the type of argument expected and the second argument is the rest of the description dependent on a value of that type.
- Constructor Rec represents a recursive argument of the described datatype. The argument of constructor Rec is the specification of the rest of the description.

To get an idea on how descriptions for various interesting datatypes look like, the following paragraphs will show a series of examples providing a side-by-side comparison of ordinary declarations to descriptions. The declaration of the trivial singleton type Unit is shown in Figure 2.3a, and its corresponding description is shown in Figure 2.3b. Since the sole constructor MkUnit doesn't contain any arguments, Ret is used to simply end the description.

```
data Unit: Type where
MkUnit: Unit

UnitDesc: Desc
UnitDesc = Ret

(a) Declaration of Unit

(b) Description of Unit
```

Figure 2.3: The Unit datatype and its description

Constructor arguments A more interesting datatype is shown in Figure 2.4a, namely the datatype Pair representing a pair of Int and Bool. The translation to the corresponding description, as shown in Figure 2.4b, seems straightforward. For each argument of MkPair that is used (arg: a) -> b, the translation would be of the form Arg a (\arg => b). Finally, to specify the end of the description, Ret is used.

Figure 2.4: A pair of Int and Bool

A key aspect of algebraic datatypes is the ability to choose between multiple constructors. Figure 2.5a shows a simple datatype Either which provides two constructors Right and Left, than can hold a value of Int and String respectively.

Choice of constructors Since there is no explicit way to encode a choice between multiple constructor in the provided description, instead a boolean argument <code>isRight</code> is used as a tag to determine which constructor is described. If the value of <code>isRight</code> is true then the resulting description is expected to be for the <code>Right</code> constructor, otherwise is is expected to be for the <code>Left</code> constructor. The description for each constructor is then specified in a similar fashion to datatypes with one constructor, such as <code>Pair</code> described above.

Figure 2.5: the sum type of Int and String

Recursive arguments In addition to allowing the choice between multiple possible constructors, what makes algebraic datatypes interesting is the ability to have recursive (or *inductive*) instances. The simplest recursive datatype is the natural numbers Nat (shown in Figure 2.6a) which has two constructors, Zero which represents 0 and the recursively defined Succ which represents 1+n for any natural number n. The corresponding description is shown in Figure 2.6b which is mainly built up using the principles introduced before. The only addition is that the description for Succ now uses Rec to specify that it requires a recursive argument (to type Nat itself).

Figure 2.6: The Natural numbers (Nat)

Parameters Figure 2.7a shows one of the classical datatypes in functional programming languages, namely List. Unlike Pair and Either which were monomorphic in the presented examples, List is polymorphic in its elements. The way to represent parameters is by having them as arguments to the function describing the particular datatype, which allows them to be qualified over the whole description. The description itself is built using the previously described methods and is shown in Figure 2.7b. There is a Boolean argument isNil, which encodes the choice between the two constructors of the list, Nil and Cons. Like the description for Zero, the description for Nil is simply Ret since it doesn't accept any arguments. The description for Cons takes an argument of the parameter type (the head of the list), a recursive argument (the tail of the list) and then ends the description.

The reader may have noticed that the datatypes presented so far are perfectly expressible in ordinary functional languages like Haskell or Standard ML (Milner, Tofte, and Macqueen 1997). To really exploit the power of dependently-typed programming languages, it should be possible to express datatypes that may be indexed by values. This will be discussed in Section 2.1.3.

Figure 2.7: A polymorphic list of elements

2.1.3 Indexing descriptions

To allow datatypes to be indexed by values, the description structure takes a parameter that describes what the type of indices must be. Figure 2.8 shows an updated version of Figure 2.2, that contains the necessary parameter ix for indexing datatypes. The constructors Ret and Rec, must also be updated to take a value of ix in order to represent what the index of the result type and recursive argument must be respectively. Descriptions that don't require indices can be converted to indexed descriptions by using the unit type Unit (or its syntactic form ()) as index.

```
data Desc : (ix : Type) -> Type where
  Ret : ix -> Desc ix
  Arg : (a : Type) -> (a -> Desc ix) -> Desc ix
  Rec : ix -> Desc ix -> Desc ix
```

Figure 2.8: Description for datatypes with possible indices

To give an example on how an indexed datatype looks like, let us take a new look at Vec from Figure 2.1. Figure 2.9 shows the corresponding description of Vec with comparable annotations.

The type signature for the description of Vec mimics the one for the actual datatype closely, but there are nonetheless some differences. There is now an explicit distinction between parameters and indices; the type for a parameter can still be specified as an argument for the description value, whereas the type of an index must be provided to the Desc type constructor. This is to ensure that all provided indices conform to the same expected type, while still allowing the values to change inside the description.

A Boolean argument isNil is used to describe the choice between constructors Nil and Cons. The constructor Nil doesn't contain any

Figure 2.9: Described version of Vec

data so we simply use Ret Z, which indicates that the description is finished and the resulting type is expected to have index Z, analogously to Figure 2.1. The constructor Cons takes first two ordinary arguments: a Nat representing the length of the tail, i.e. the index of the recursive argument, and an argument of the parameter type a representing the head. Following these arguments we take a recursive argument representing the tail—specified using Rec—that must have the value of the input Nat argument n as index, i.e. the argument must be of type Vec a n. We finish the description with Ret and specify that the resulting index must be S n, just as in Figure 2.1.

Challenges and limitations

Even though it was possible to describe a variety of datatypes there are still a few questions that can be raised, such as: How is it possible to choose between more than two constructors? Why is there only one type for indices? Why aren't the type of parameters required to be encoded inside the description datatype itself? How is it possible to

represent more complex datatypes such as mutual recursive ones? I seek to answer these questions in the following paragraphs.

To encode the choice of more than two constructors, a simple solution could be to nest multiple Boolean values acting as a form of binary enumeration of tags. However this encoding is fairly crude: it does not capture important information such as the names of constructors, requires a series of possibly complicated tests and is not easily extendible if one wants to extend descriptions with new constructors. In Section 2.1.4, I will present a more sophisticated encoding that doesn't suffer from these limitations.

For more demanding datatypes that need more than one index, the indices must be uncurried using dependent pairs. For example, a datatype with signature $(n : Nat) \rightarrow Fin n \rightarrow Type$ must use the dependent pair (n : Nat ** Fin n) as the type of its index.

Since parameters are usually quantified over the whole datatype (*i.e.*, they do not change) it is possible to just accept them as external arguments when building a description. However, this encoding can preclude interesting generic programs from being written, such as the functorial map. In Chapter 4, I will discuss a modification to the description datatype that permits encoding the types of parameters directly.

Finally, there is the question on how more complicated datatypes are to be represented. Datatypes that require recursive functions as arguments like <code>Desc</code>, can not currently be represented in the presented encoding and the description must be extended to be able to describe types as itself (see Section 2.3). Mutual recursive datatypes cannot be represented directly, but it is possible to use indices to represent an isomorphic representation. For example, for two mutually recursive datatypes one could use a boolean argument as index which determines the actual datatype is currently described. Unfortunately, a challenge that still persists is that the most complex inductive families—such as inductive-inductive and inductive-recursive definitions—can not be represented using the presented descriptions.

2.1.4 An informative encoding of constructors

In Section 2.1.2 a Boolean variable was used to determine the choice between two constructors, and concluded that his approach had multiple disadvantages. First of all, the Boolean encoding does not capture the names of the respective constructors which might be important when it

is desired to pretty print or serialise a data structure. Secondly, when there are more than two constructors, it can quickly become complicated to provide a suitable description. Multiple Boolean arguments are required and mapping these Boolean values to description is not exactly straightforward. For example, should two Boolean values encode the choice between 3 or 4 constructors? Finally, and perhaps more importantly, it is not easy to modify the number of constructors easily with the Boolean encoding. That is, it might be desirable to compute a new description from a provided one and in that process to add a new constructor, *e.g.*, adding a default "error" constructor to each datatype. This section presents a more informative encoding of constructors, and shows how it is possible to use that encoding when describing non-trivial datatypes.

To represent which constructors are available we first are going to declare two types (heavily inspired by **Dagand\@uscore.acosmology**; Diehl and Sheard (2014)) as shown in Figure 2.10a: **CLabel** which represents a name for a constructor, and **CEnum** which represents a list of constructor names. For the sake of simplicity, the provided constructors in a **CEnum** are assumed to be provided uniquely by the user, however one could stipulate such uniqueness condition explicitly if desired. Figure 2.10b show an example of how to represent the available constructor names of **Vec**.

```
CLabel: Type
CLabel = String

CEnum: Type
CEnum = List CLabel

(a) Representation

(b) Example: Constructors of Vec
```

Figure 2.10: Constructor labels

Now that it is possible to represent the available constructors, we can encode a way of choosing a particular constructor tag. Figure 2.11 shows a datatype Tag with two constructors: TZ which represents the constructor that is on top of the current list and TS which represents a constructor further along the list. As such, Tag specifies a valid index into a (non-empty) list of constructor tags.

This encoding has multiple advantages: it ensures that all constructor labels stored in our data exist in the expected list of constructors,

it ensures that all datatypes which are dependent on a tag must have at least one constructor, and as a consequence it is possible to specify the empty type by simply requiring a tag on an empty list of expected constructors (since such value would be impossible to create). This encoding makes it possible to use tactics in Idris to automate the retrieval of a tag given a constructor label; something which saves time when constructing values manually.

```
data Tag : CLabel -> CEnum -> Type where
   TZ : Tag l (l :: e)
   TS : Tag l e -> Tag l (l' :: e)
```

Figure 2.11: Tags: A Structure for Picking a Constructor from a Label Collection

For the constructors of Vec, Figure 2.12 shows an example on what the tag values are. For Nil the value is TZ since it is the first in the list of VecCtors, and for Cons the value is TS TZ since it is the second. Since there are only two elements in VecCtors, it shouldn't be possible to create any other valid constructor tag, and as therefore it is a good representative for enumerating the constructors of Vec.

```
NilTag : Tag "Nil" VecCtors
NilTag = TZ

(a) Tag for Nil

ConsTag : Tag "Cons" VecCtors
ConsTag = TS TZ

(b) Tag for Cons
```

Figure 2.12: Example: Tags for constructors of Vec

2.1.5 A constructive type of choice

Similarly to how **if** was used to map Bool values to the descriptions of the various constructors of a datatype in Section 2.1.2, it is desirable to have a way to map Tag values to suitable values of a desired type. The following section will describe the switch function that does exactly this.

Since the count of constructors for a datatype can vary in size, it is necessary to calculate a type that allows mapping the tag of each constructor to a suitable value (shown in Figure 2.13). It is essentially a function that provides a one-to-one mapping from the list of constructors to a series of right-nested pairs ending with (). The type of the

resulting value prop can be dependent on the input constructor tag, and therefore the function is called π or the *small pi operator*. The operator π is small in the sense that unlike the dependent function type Π which allows the result to dependent on any type of input, π only allows dependencies on constructor tags.

Figure 2.13: The small pi operator: type for case analysis based on constructor tags

Given a way to map a list of constructors to a list of values using π , it is now possible to define switch which can look up the corresponding result value in the map for a particular Tag. The function switch is shown in Figure 2.14 and has two branches: if the constructor to map is the first one in a list of constructors, it simply returns the first value in the corresponding mapping, otherwise it continues the search using the rest of the provided elements (skipping the first constructor and its corresponding mapping). Since there can be no value of Tag on an empty enumeration of constructors, it is not required to handle that case.

```
switch : (e : CEnum)
    -> (prop : (1 : CLabel) -> (t : Tag l e) -> Type)
    -> SPi e prop
    -> ((l' : CLabel) -> (t' : Tag l' e) -> prop l' t')
switch (l' :: e) prop ((propz, props)) l' TZ = propz
switch (l :: e) prop ((propz, props)) l' (TS t') =
    switch e (\ l => \ t => prop l (TS t)) props l' t'
```

Figure 2.14: Calculation of a property based on a specific constructor tag

As an example, Figure 2.15 shows the description of Vec (from Figure 2.9) again, but this time using the new constructor tag encoding instead of a Boolean variable.

Figure 2.15: Description of Vec given a Constructor Tag

In summary, while the description might initially seem more complicated than before, it has a couple of clear advantages: the encoding now contain the constructor tag and it is possible to choose between more than two constructors at the same time.

2.2 Synthesising types from descriptions

In Section 2.1 I had shown how it was possible to create descriptions that support many common datatypes in Idris. In this section I will present a way to convert or *synthesise* these descriptions to actual types, that allows the programmer to construct values of these described types with actual data.

2.2.1 Datatype synthesis

It is finally time to convert the description to an actual type. Figure 2.16 shows the Synthesise function which takes a description, the final form of that datatype and the resulting index, then it returns a type which can contain the described data.

- If we reach the end of the description i.e., Ret, the only thing that
 we need to ensure is that the provided resulting index matches the
 expected index provided in the description. In order to apply such
 constraint we use the propositional equality type.
- For recursive arguments *i.e.*, Rec, we construct a dependent pair where the first argument contains a value of the fully-synthesised type with the given index and the second argument contains the synthesised version of the rest of the provided description. The

reason that we need the final form of the datatype in order to construct a recursive argument is due to the fact that if we call Synthesise recursively on that argument we would get stuck in an infinite loop!

• For ordinary arguments *i.e.*, Arg, we also create a dependent pair. The first argument of the dependent pair is a value arg of the provided type a, and the second argument is the synthesis of the rest of the provided description d given arg. This is isomorphic to how an ordinary constructor would store the data and as such the dependent pair serves a good target structure for our synthesis.

Since the dependent pair is used as the target type for the synthesis, it itself must be a core part of the type theory similarly to the propositional equality, if we want to treat all datatype declarations as describable.

Figure 2.16: Synthesising Descriptions into Actual Types

We are able to actual types using Synthesise from the provided descriptions. However, a problem occurs when we want to use Synthesise since it requires the final form of the described datatype as input but the only way to synthesise the datatype is using Synthesise itself. In order to "tie the knot" and complete input for Synthesise, we define a datatype Data that takes a description and provides the final form of the described datatype (see Figure 2.17). Data has only one constructor namely Con which takes as input the synthesised version of the description d with Data d serving as argument for the final form of the datatype in Synthesise. This works since each time we face a recursive argument it must be constructed using Con which avoids an infinite loop in Synthesise as long as the elements that are constructed are smaller in size.

Figure 2.17: Knot-tying the Synthesised Description with Itself

2.2.2 Example: Constructing vectors

To get a more concrete intuition on how it is possible to construct data values of described types, this section will look at the synthesised version of Vec. Figure 2.18 shows Vec which is a function mimicking its corresponding type constructor, and it even shares the same type signature. The function Vec returns a described type using Desc passing along the description of Vec and its required parameters (*i.e.*, VecDesc a), and additionally the expected value of the result index (*i.e.*, n).

```
Vec : (a : Type) -> Nat -> Type
Vec a n = Data (VecDesc a) n
```

Figure 2.18: Synthesised Version of Vector Description

A simple example representing the vector [1, 2, 3] is presented in Figure 2.19. Although the value might seem a bit overwhelming at first, it follows a simple pattern: each time a value of Vec is needed Con is used, followed by its required arguments in the form of nested dependent pairs, and finally with Refl, which ensures that the provided index of the value matches up with the expected one. There are 4 occurrences of Con and Refl in the example, three for Cons and one for Nil. For all cases the first two arguments represent the constructor label and associated tag. For Cons, the first following argument is the length of the rest of the vector (the value of index n) followed by the value of the list head and the list tail, ending with Refl. For Nil, the value is ended with Refl since it doesn't contain any data.

As might have become apparent there are a couple of shortcomings in the example, or rather the way values of described types are constructed. One shortcoming is that there is a lot of boilerplate required when values are constructed, which makes the result somewhat unreadable. A solution to overcome that shortcoming is presented in the next

Figure 2.19: Example vector representing [1, 2, 3] as a value of a synthesised description

paragraph. Another shortcoming is that the resulting terms become very large, and in turn slowing down program execution, compared to the original version of the datatype. For example, Nil becomes inflated to Con ("Nil" ** (TZ ** Refl)) which is significantly more complex. A description on how to improve the size of resulting terms and speed up the performance of dependent programs is presented in Chapter 6.

In order to make creation of values of described types easier and the resulting terms more readable, it is possible to use functions as synonyms for the constructors. Figure 2.20 shows Nil and Cons as synonyms for the described version of Nil and Cons respectively. Since Idris can infer the values of a and n automatically in this context, they are converted to implicit parameters in these synonyms (which further increases readability).

Figure 2.20: Functions for constructing values of synthesised vector description

Using these synonyms, the constructor of the value in example in Figure 2.19 becomes simpler and much more readable. Figure 2.21 shows the updated version, and it looks almost exactly like the original value it needed to describe [1, 2, 3].

```
exampleVec : Vec 3 Nat
exampleVec = Cons 1 (Cons 2 (Cons 3 Nil))
```

Figure 2.21: More readable version of [1, 2, 3] using aliases from Figure 2.20

2.3 The (mostly) gentle art of levitation

The previous sections presented a series of constructions that makes it possible to have described types. What may have become apparent for the reader is that many of these constructions such as Data, Tag and switch cannot themselves be described, since they are necessary building blocks for having descriptions. However, what might be surprising is that the description type Desc itself, isn't in fact limited by such a constraint and can be described using itself. This is the key point addressed by Chapman et al. (2010) in "The Gentle Art of Levitation".

The description datatype <code>Desc</code> contains many of the constructors needed to describe itself. However, one might experience trouble when trying to describe <code>Arg</code> since it requires an argument of the following type: (<code>a ->Desc ix</code>). This argument describes a function which result type is the datatype itself (a so-called higher-order inductive argument), which <code>Rec</code> isn't strong enough to express since it only permits primitive recurrences. Figure 2.22 shows a new constructor <code>HRec</code>, which allows specification of such higher-order inductive arguments, it takes a type a which specifies the expected input type of such argument in addition to the rest of arguments that are expected by <code>Rec</code>.

```
HRec : ix -> (a : Type) -> Desc ix -> Desc ix
```

Figure 2.22: A constructor for Desc to represent higher-order recursion

The function Synthesise must be extended with a clause for HRec. Figure 2.23 shows the corresponding clause, which looks very similar to the one for Rec, except the first component now requires a function from the provided type a to the datatype itself instead of just a reference to the datatype.

Finally, all the required constructors are present and it is now possible to piece together a description for Desc. Figure 2.24 shows the complete description, including for the newly added HRec constructor. The description of Desc is parametrised by the type of indices ix that

```
Synthesise (HRec j a d) x i =
   (rec : a -> x j ** Synthesise d x i)
```

Figure 2.23: Synthesising HRec to a real type

possible derived descriptions can have, and is not indexed by anything particularly interesting (the unit type () is used in the figure). The description for each constructor is translated using the same techniques presented in Section 2.1. The only interesting case is the one for Arg, which uses HRec () a (Ret ()) to represent the higher-order inductive argument (a -> Desc ix).

Figure 2.24: Describing the Desc datatype itself

Perhaps, the key thing to notice is that a function switchDesc was used instead of switch when describing Desc. Figure 2.25 shows how switchDesc is defined by specialising switch. However, if Desc is a described type based on DescDesc then such a definition would be circular. This is because the general switch requires the result type Desc to be given as an argument, but Desc is dependent on DescDesc. Therefore, Chapman et al. (2010) define switchDesc to be handled specially in their type theory, eliding the definition of the body and hard-wiring its return type to be Desc ². Now, DescDesc can be type checked without any issues and *levitation* is achieved.

²Of course, such trick only works if the type Desc is already known to be in the meta-theory. However, the knowledge of its elements is not necessarily required and it is possible to inspect these in a similar fashion to other datatypes.

Figure 2.25: A specialised version of switch which returns descriptions

Partial evaluation

The description datatype <code>Desc</code> presented in Chapter 2 was very flexible and could express many common algebraic datatypes. However as discussed in Section 2.2.2, the corresponding terms used to construct values of described types were much larger and more complex than the corresponding values of ordinary datatypes, yet they do not convey much more relevant information. The reason is that much of the contained data is static information needed solely to provide the right form for generic algorithms, but is not needed when dealing with specific structures. Therefore this chapter discusses relevant partial evaluation techniques needed to minimise the size of the large terms in order to improve runtime performance, by specialising the algorithm with regards to relevant static data when possible.

3.1 The static nature of programs

It hardly comes as a surprise, that for many programs, not all of their input might be dynamic. Sometimes it is due to the way programs are structured in a modular fashion (e.g. functions or objects), where readability and reusability are highly valued even if some of the input to these structures is static. For example, writing minutesInADay = 24 * 60 is usually seen as more preferable to writing minutesInADay = 1440, since it better captures the intent of the programmer. Other times, it may be because that the input is known ahead of time and therefore in some way hard-coded (e.g., configuration files or constants). No matter what reason, it can be said that any program p

accepts a series of static input $i_{s_0} \dots i_{s_n} \in I_s$ and a series of dynamic input $i_{d_0} \dots i_{d_m} \in I_d$, resulting in some output 0.

In many cases it is desirable to only compute programs with known input once and for all, instead of suffering a performance loss every time the program is run. One technique for static computation of programs, is called *partial evaluation* (Jones, Gomard, and Sestoft 1993). A program that does partial evaluation mix is called a *partial evaluator*, and accepts as input another program (often called the *object program*) and a series of static input for that particular program. The result of mix is a new program called the *residual program* which is *specialised* with regards to the specified static input. That is for any program p, partially evaluating it regarding its static input I_s —that is $mix p I_s$ —results in a residual program p_r . The residual program p_r accepts the remaining dynamic input I_d and produces the same expected result 0; therefore, the following equation is satisfied: $p I_s I_d \equiv (mix p I_s) I_d \equiv p_r I_d \equiv 0$.

The canonical example of partial evaluation (Jones, Gomard, and Sestoft 1993; Mogensen and Sestoft 1997; Taha 2004) is the power function which calculates x^n and is shown in Figure 3.1. In this version of power, the control flow is mostly determined by its first variable n. Therefore, if n is provided statically then it is possible to specialise power to avoid the branching dependent on n and recursion at run-time.

```
power : Int -> Int -> Int
power n x =
  if n == 0
  then 1
  else if (n `mod` 2) == 0
      then let half = power (n `div` 2) x
        in half * half
      else x * power (n - 1) x
```

Figure 3.1: The function power which calculates the value x^n for input integers x and n

Figure 3.2 shows a partially evaluated version of power, where n is fixed statically to 5. To achieve such optimisation, the partial evaluator must support various interesting optimisation techniques such as *constant folding*, *program point specialisation* and *unfolding*/*transition compression* (Jones, Gomard, and Sestoft 1993) which will be discussed further in Section 3.2.

```
power_n5 : Int -> Int
power_n5 x =
    x * let half =
        let half' = x
        in half' * half'
    in half * half
```

Figure 3.2: power specialised with regards to n set to 5

3.2 An optimising partial evaluator

Since the only requirement for a partial evaluator is that the residual program depends only on some dynamic input, it is simple to make a trivial partial evaluator. The trivial partial evaluator simply "hard-codes" the provided static input, and otherwise leaves the input object program unchanged. However, such partial evaluator is hardly interesting from a performance perspective. In order for a partial evaluator to be interesting, it must be able to utilise a set of optimisation techniques while evaluating a program. In this section, three commonly used optimisation techniques for partial evaluators are presented: constant folding, program point specialisation and unfolding.

3.2.1 Program Point Specialisation

According to Jones, Gomard, and Sestoft (1993), a program point is a referable point of execution that forms a part of a larger program. For many modern languages, a program point would be a function or procedure; however, it could also be a label in an assembly language or a clause definition in a logic language. Program point specialisation is the act of creating new versions of existing program points specialised with regards to some statically provided input. That is, a specialised version of a program point l is a pair $\langle l$, $l_s \rangle$ such that l_s is some provided static input somewhere in the program. Figure 3.5 shows a version of power where n is specialised to 5, and all recursive calls to power are partially evaluated using program point specialisation.

Polyvariant Specialisation

A program point specialisation is said to be *polyvariant* if there are multiple versions of originally the same program point specialised with vary-

ing static input (Hughes 1999; Jones, Gomard, and Sestoft 1993). For example, the power function is specialised with regards to different values for the exponent n in Figure 3.5 and is therefore polyvariant.

A special case of polyvariant specialisation, is when a program point specialisation is said to exhibit a *polyvariant division*. A division is polyvariant if the set of static arguments varies for specialised versions of that particular program point. Finding a division between static and dynamic arguments of a program point is not a trivial task, and especially not finding a polyvariant one. Section 3.3 discusses what techniques there are for finding such divisions.

3.2.2 Constant folding

Simply put, constant folding is the idea of reducing pure expressions with statically known arguments as much as possible. This includes simple primitive arithmetic and logic operations such as addition, multiplication, conjunction and equality testing; but also pruning statically-determined branching such as **if**-expressions (Wegman and Zadeck 1991; Jones, Gomard, and Sestoft 1993) or **case**-trees (Boquist 1999).

Reducing arithmetic and logical operations If all the operands of a given arithmetic or logical operator are statically determined then reducing such an operation is simply evaluating the result, *e.g.*, for an expression 2 + 2 it can simply be reduced to the value 4. However, constant propagation algorithms are often allowed to do other types of simplifying reductions where some operands are dynamic, such as reducing addition with 0, multiplication with 1 or conjunction with True.

Figure 3.3 shows power from Figure 3.1 again under specialisation with n set to 5. In the figure, all arithmetic expressions (namely mod, div and "-") and logic expressions (namely "==") have been reduced to simple integer values.

Branch pruning If a conditional is somehow reduced to a constant value by another optimisation, it is possible to completely eliminate branching in **if**- or **case**-expressions. For **if**-expressions, if the conditional is reduced to True then the whole expression is reduced to the **then** branch, otherwise (if it is reduced to False) then the whole expression is reduced to the **else** branch. For **case**-expressions, they

```
power_n5 x =
   if False
   then 1
   else if False
       then let half = power 2 x
        in half * half
       else x * power 4 x
```

Figure 3.3: Reduction of arithmetic and logical expression in power with n set to 5

are simply reduced to the branch that matches the pattern of the value provided.

Figure 3.4 shows an updated version of power_n5 from Figure 3.3. Since all **if**-expressions depended on constant values, it was possible to completely eliminate branching from the result.

```
power_n5 \times = \times * power 4 \times
```

Figure 3.4: Pruning of statically determined branches for power_n5

Using more advanced optimisation techniques, it is still possible to reduce branches of **case**-expressions if only some parts of the conditional are statically determined. If the reader is interested, please refer to Peyton Jones and Lester (1992) and Boquist (1999).

3.2.3 Unfolding

To avoid too many unnecessary indirections in specialised programs, a perhaps important technique is unfolding. Unfolding is usually done at sites where there are function calls and corresponds to inlining the body of the function that is called at the place where it is called. In addition to simply inlining the body of the function, unfolding usually needs to do renaming of local variables to avoid clashes with the external environment. For a languages with labels, transition compression serves as a good analogue to unfolding, where a jump to a label is replaced with the following instructions. While there are many advantages to unfolding, and likewise transition compression, if not careful the partial evaluator can end up in an infinite loop or the resulting code can end up with exponential size in the case of poorly chosen static variables (Jones,

Gomard, and Sestoft 1993). Therefore, unfolding cannot be seen as a generally safe technique and must be used with care in places where there are branching or similar.

```
power_n5 x = x * power_n4 x
power_n4 x =
   let half = power_n2 x
   in half * half
power_n2 x =
   let half = power_n1 x
   in half * half
power_n1 x = x * power_n0 x
power_n0 x = 1
```

Figure 3.5: The function power_n5 and necessary dependencies after program point optimisation and constant folding

Figure 3.5 shows further transformation of the code in Figure 3.4, after the completion of necessary program point specialisation and constant folding. As can be observed in the figure, there is alot of indirection in each specialisation of power requiring a new function call for all cases except when n is set to 0. It is therefore desirable to do unfolding to improve performance, and doing unfolding for power_n5 brings us back to Figure 3.2 which is the final form of the optimisation.

3.3 Dividing the static and dynamic parts of a program

In Section 3.1, an argument was made that programs usually contain both static and dynamic input. A division for a program point is specifically an assignment of a binding-time, either static or dynamic, to each argument and expression at that point. There are generally two non-exclusive ways to get the binding-time of variables, one is using a binding-time *analysis* and the other is requiring *annotation* of binding-time by the user using *e.g.*, *two-level* syntax (Nielson 1989; Jones, Gomard, and Sestoft 1993). In the broadest sense, binding-time analysis is vaguely similar to type inference while checking whether binding-time is well-annotated is vaguely similar to type checking.

3.3.1 Binding-time analysis

The core idea in a binding-time analysis (BTA) is to infer from given initial program input, what parts of a program may be executed statically. For functional programming languages like Idris, there are roughly four classes of expressions which have different set of binding-time behaviour: constants, variables, function application/operators, and conditionals/case analysis.

- Constants are always assumed to be static, independent of whether they are for primitive types such as integers or strings, or base constructors of datatypes.
- The binding time for a variable usually depends on the type of variable and the surrounding environment. If the variable is letbound or globally declared it will get the binding-time of the expression that is assigned to it. For function arguments they are assumed to be static in the function body, unless they appear dynamically in a recursive call. The partial evaluator can only optimise function calls when their arguments are known to be static, but such requirement is put where the function is called and not in the body of the function.
- The result of function and operator application is assumed to be static if all input arguments are static, otherwise it is dynamic. One must take special care of functions which perform environmental side-effects, such as those using the IO-monad in Idris, which result must always be classified as dynamic (since the result can't be determined at binding time).
- Conditionals expressions like if and case are considered to be static if the condition they depend upon is static (since that determines the control flow), otherwise dynamic.

When the BTA is complete, the partial evaluator can use such information to create a new residual program. For each function call with static arguments, it can choose to reduce all dependent static control flow and expressions; thereby creating a new program that depends solely on dynamic input.

3.3.2 Two-level syntax

Another approach to state binding-time of an expression is to allow the user to annotate programs using two-level syntax. This approach is used in Jones, Gomard, and Sestoft (1993), but is also available for popular programming languages such as OCaml (Taha 2004) and Java (Westbrook et al. 2010). The core idea behind two-level syntax is to provide static version of available expressions such as control structures, application and lambda abstractions in addition to the dynamic versions. Two-level expressions that are static are often presented as underlined versions of their dynamic counterparts (e.g., if), and usually an operator is used to distinguish between static and dynamic application such as \$ or @. In order to allow embedding of static expressions inside dynamic values a built-in annotation lift is usually provided.

```
power : Int -> Int -> Int
power n x =
    if n == 0
    then 1
    else if (n `mod` 2) == 0
        then let half = (power $ (n `div` 2)) x
        in half * half
    else x * (power $ (n - 1)) x
```

Figure 3.6: Two-level syntax annotated version of power function, where underlined operations are static

Figure 3.6 shows an annotated version of power where n is assumed to be provided statically. The annotation shows what will be reduced after a value for n is provided, and as can be seen in the specialised version (see Figure 3.2) there are no traces left of expression marked as static in the residual program. If n is to be provided at runtime, it is usually possible to forget the binding-time annotations and execute all of power dynamically.

3.4 Constructor specialisation

The previous sections focused mostly on partial evaluation as a way of optimising code, however Mogensen (1993) and Dussart, Bevers, and

De Vlaminck (1995) suggest that partial evaluation is also a useful technique to optimise data. The core idea is to specialise constructors in the same vein as specialising functions, or rather specifically, create new constructors as alternatives of algebraic datatypes where the statically provided input is fixed (or perhaps completely erased).

3.4.1 Example: Serialisation to S-expressions

Assume there is a program that serialises an association list to an S-expression and is specialised with regards to a specific schema where it is either the name and age of a person or the name of a department. Figure 3.7 shows how a reasonable result could look like after using ordinary partial evaluation techniques.

```
serialize : List (String, String) -> String
serialize [("name", name), ("age", age)] =
    "(:name " ++ show name
++ " :age " ++ show age ++ ")"
serialize [("department", department)] =
    "(:department " ++ show department ++ ")"
```

Figure 3.7: A program for serialisation serialize, specialised using classic techniques with regards to a specific schema

There are however still some drawbacks with such program: it requires pattern matching on nested constructors, and does multiple string comparisons, both of which are potentially very time consuming. Yet, much of the data is statically specified, so it seems that there is still room for improvement. Luckily, constructor specialisation permits specialisation of data by creating suitable constructors in a suitable datatype. Figure 3.8 shows how new constructors are created in a datatype Schema such that all static data is eliminated, and two suitable constructors are created: Person and Department ¹. After constructor specialisation, now the only comparison necessary is comparing tags of datatypes, something which should be much more efficient than the old solution.

¹For ease of reading, the naming is prettified compared to what automated constructor specialisation would generate

```
data Schema =
          Person String String
          Department String

serialize : Schema -> String
serialize Person name age =
          "(:name " ++ show name
          ++ " :age " ++ show age ++ ")"
serialize Department department =
          "(:department " ++ show department ++ ")"
```

Figure 3.8: A constructor specialised version of serialize

3.4.2 Algorithm for specialising constructors

Dussart, Bevers, and De Vlaminck (1995) presents a step-by-step algorithm for performing constructor specialisation that has multiple advantages compared to the original one presented in Mogensen (1993). One advantage is that it specialises constructors in a polyvariant fashion, which means that specialisation of one datatype can create multiple new datatypes. Another advantage is that it only requires one pass for calculating the fix-point calculations necessary in order to create new suitable types. The algorithm consists of three phases: finding a minimal pattern that describes the occurrences of constructors with static values, generating the necessary code operating on such values and finally creating suitable datatypes to hold the specialised constructors.

A grammar of datatypes The first phase of the algorithm is to find a possibly recursive pattern or *grammar* that describes what particular sets of constructors occur in the same expression at given program points. For the example presented in Figure 3.7, the final grammar would look like something shown in Example 2 (in BNF style notation).

```
Example 2 \langle string \rangle ::= ...
```

```
\langle schema \rangle ::= [(name, \langle string \rangle), (age, \langle string \rangle)]
```

The grammar is extracted by analysing the code structure for where data is constructed and suitably combining such data, e.g. having alternatives in the grammar where there are **case**-expressions. To avoid non-termination while partially evaluating, the analysis tries to generalise (that is specify as dynamic) places where there occur recursive references to the same datatype. The effect of that is that non-terminals in the grammar might be defined recursively, which closely mimics the structure of inductive datatypes. Following extraction of the grammar, fix-point computation techniques inspired by Jones and Mycroft (1986) are used to find a minimal function graph that depends on such grammar.

Code generation The second phase uses the minimal function graph found in the first one to construct specialised versions of functions. This happens by traversing the graph and specialising each function as normal, recursively rebuilding expressions from specialised versions. **case**-expressions are handled specially during code generation in order to accommodate the specialised datatypes, and therefore they are restructured, adding new branches, such that they fit the extracted grammar.

Defining suitable types The final phase is to group the newly generated specialised constructors into suitable type definitions. This is done in order for the residual program to be valid (type correct) and the compiler can perform other datatype optimisations. The process prestented is simple: it starts with all constructors being in their own datatype, and merges datatype as necessary when a program dependens on values from either datatype.

Levitating Idris

- 4.1 Creating descriptions from ordinary data declarations
- 4.2 Parametric extension to descriptions
- 4.3 Proposed Improvements

Practical examples

5.1 Generic deriving

Examples of generic deriving of algorithms like decidable equality, pretty printing and possibly eliminators via generic structure.

5.2 Uniplate for Idris

A version of the Uniplate library for Idris based on http: //community.haskell.org/~ndm/uniplate/ and http: //www-ps.informatik.uni-kiel.de/~sebf/projects/ traversal.html . This is useful for traversing structures in a generic fashion and especially when dealing with small changes in large data structures (such as compiler ADTs)

Optimising Idris for flight

6.1 Specialising constructors for specific types

How generalized constructors of described types, are specialised as ordinary data structures.

6.2 Online erasure of unused arguments

How some type infromation is to be erased at compile time to reduce elaboration overhead. Very hypothetical.

6.3 Static initialization of generic functions

How algorithms that are dependent on the generic structure of a datatype are optimised. Discuss benefits of having a JIT/Profiling information for future work.

Evaluation

Discussion

- 8.1 Future work
- 8.2 Conclusion

Bibliography

- Benke, Marcin, Peter Dybjer, and Patrik Jansson (2003). "Universes for Generic Programs and Proofs in Dependent Type Theory". In: *Nordic Journal of Computing* 10.4, pp. 265–289.
- Boquist, Urban (1999). "Code optimisation techniques for lazy functional languages". PhD thesis.
- Brady, Edwin (2013). "Idris, a general-purpose dependently typed programming language: Design and implementation". In: *Journal of Functional Programming* 23.05, pp. 552–593.
- Chapman, James et al. (2010). "The Gentle Art of Levitation". In: Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming. ICFP '10. Baltimore, Maryland, USA: ACM, pp. 3–14. ISBN: 978-1-60558-794-3. DOI: 10.1145/1863543.1863547. URL: http://doi.acm.org/10.1145/1863543.1863547.
- Diehl, Larry and Tim Sheard (2014). "Generic Constructors and Eliminators from Descriptions". In: WGP '14.
- Dussart, Dirk, Eddy Bevers, and Karel De Vlaminck (1995). "Polyvariant Constructor Specialisation". In: *Proceedings of the 1995 ACM SIG-PLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation*. PEPM '95. La Jolla, California, USA: ACM, pp. 54–65. ISBN: 0-89791-720-0. DOI: 10.1145/215465.215554. URL: http://doi.acm.org/10.1145/215465.215554.
- Hughes, John (1999). "A Type Specialisation Tutorial". English. In: *Partial Evaluation*. Ed. by John Hatcliff, TorbenÆ Mogensen, and Peter Thiemann. Vol. 1706. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 293–325. ISBN: 978-3-540-66710-0. DOI: 10. 1007/3-540-47018-2_12. URL: http://dx.doi.org/10.1007/3-540-47018-2_12.

Bibliography 40

Jansson, Patrik and Johan Jeuring (1997). "PolyP&Mdash;a Polytypic Programming Language Extension". In: *Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*. POPL '97. Paris, France: ACM, pp. 470–482. ISBN: 0-89791-853-3. DOI: 10.1145/263699.263763. URL: http://doi.acm.org/10.1145/263699.263763.

- Jones, Neil D., Carsten K. Gomard, and Peter Sestoft (1993). *Partial Evaluation and Automatic Program Generation*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. ISBN: 0-13-020249-5.
- Jones, Neil D. and Alan Mycroft (1986). "Data Flow Analysis of Applicative Programs Using Minimal Function Graphs". In: *Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages*. POPL '86. St. Petersburg Beach, Florida: ACM, pp. 296—306. DOI: 10.1145/512644.512672. URL: http://doi.acm.org/10.1145/512644.512672.
- Magalhães, José Pedro et al. (2010). "A generic deriving mechanism for Haskell". In: *ACM Sigplan Notices* 45.11, pp. 37–48.
- McBride, Conor (2010). "Ornamental algebras, algebraic ornaments". In: *Journal of Functional Programming*.
- Milner, Robin, Mads Tofte, and David Macqueen (1997). *The Definition of Standard ML*. Cambridge, MA, USA: MIT Press. ISBN: 0262631814.
- Mogensen, Torben Æ (1993). "Constructor Specialization". In: Proceedings of the 1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation. PEPM '93. Copenhagen, Denmark: ACM, pp. 22–32. ISBN: 0-89791-594-1. DOI: 10.1145/154630. 154633. URL: http://doi.acm.org/10.1145/154630. 154633.
- Mogensen, Torben Ægidius and Peter Sestoft (1997). "Partial evaluation: introduction what is partial evaluation?" In: *Encyclopedia of computer science and technology*. Ed. by A. Kent and J. G. Williams. Suppl. 22. Vol. 37. Marcel Dekker Incorporated, pp. 247–279.
- Nielson, F. (Dec. 1989). "Two-level Semantics and Abstract Interpretation". In: *Theor. Comput. Sci.* 69.2, pp. 117–242. ISSN: 0304-3975. DOI: 10.1016/0304-3975(89)90091-1. URL: http://dx.doi.org/10.1016/0304-3975(89)90091-1.
- Norell, Ulf (2009). "Dependently typed programming in Agda". In: *Advanced Functional Programming*. Springer, pp. 230–266.

Bibliography 41

Peyton Jones, Simon et al. (2003). "The Haskell 98 Language and Libraries: The Revised Report". In: *Journal of Functional Programming* 13.1. http://www.haskell.org/definition/, pp. 0–255.

- Peyton Jones, Simon L. and David R. Lester (1992). *Implementing Functional Languages*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. ISBN: 0-13-721952-0.
- Taha, Walid (2004). "A gentle introduction to multi-stage programming". In: *Domain-Specific Program Generation*. Springer, pp. 30–50.
- Wegman, Mark N. and F. Kenneth Zadeck (Apr. 1991). "Constant Propagation with Conditional Branches". In: *ACM Trans. Program. Lang. Syst.* 13.2, pp. 181–210. ISSN: 0164-0925. DOI: 10.1145/103135.103136. URL: http://doi.acm.org/10.1145/103135.103136.
- Westbrook, Edwin et al. (June 2010). "Mint: Java Multi-stage Programming Using Weak Separability". In: SIGPLAN Not. 45.6, pp. 400–411. ISSN: 0362-1340. DOI: 10.1145/1809028.1806642. URL: http://doi.acm.org/10.1145/1809028.1806642.