Programmation fonctionnelle – TD2

$$S5 - 2023/2024$$

1 Typage d'expressions $[\star]$

Pour chacune de ces expressions, déterminez le type puis donnez la preuve de typage :

- 1. 3 + (5 + 1)
- 2. if (3 < 1) then true else (2 < 3)
- 3. (if false then 1 else (2+4)) < 2
- 4. 5 + (if (1 < (2+1)) then 1 else 2)

2 Lambda-termes typés [★]

Pour chacun de ces types, donnez un exemple de lambda-terme :

- 1. N
- 2. B
- 3. $\mathbb{N} \to \mathbb{B}$
- 4. $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
- 5. $(\mathbb{N} \to \mathbb{B}) \to \mathbb{N} \to \mathbb{B}$

3 Vérification de type $[\star]$

Pour chacun de ces jugements de typage, donnez une preuve :

- $1. \vdash \lambda(n:\mathbb{N}). n+1:\mathbb{N} \to \mathbb{N}$
- 2. $\vdash (\lambda(b : \mathbb{B}). if b then 0 else 1) false : \mathbb{N}$
- 3. $\vdash \lambda(n_1 : \mathbb{N}).\lambda(n_2 : \mathbb{N}).$ if $(n_1 < n_2)$ then n_1 else $n_2 : \mathbb{N} \to \mathbb{N}$
- 4. $f: \mathbb{N} \to \mathbb{N} \to \mathbb{N} \vdash f(5+2): \mathbb{N} \to \mathbb{N}$
- 5. $g: \mathbb{N} \to \mathbb{B} \to \mathbb{N} \vdash \lambda(b:\mathbb{B}). \lambda(n:nat). gnb: \mathbb{B} \to \mathbb{N} \to \mathbb{N}$

4 Inférence de type [★★]

Pour chacun de ces lambda-termes, déterminez le type puis donnez la preuve de typage :

- 1. $\lambda(x:\mathbb{N}).x+1$
- 2. $(\lambda(x : \mathbb{N}). x < 0)$ 3
- 3. $\lambda(p:\mathbb{N}\to\mathbb{B}).\lambda(n:\mathbb{N}).$ if (pn) then n else 0
- 4. $\lambda(b:\mathbb{B})$. if b then $(\lambda(n:\mathbb{N}), n+1)$ else $(\lambda(n:\mathbb{N}), 2)$

5 Programmer avec des types abstraits $[\star\star]$

On étend le système de typage avec trois types α , β et γ , dont on ignore les valeurs. Pour chacun des types suivants, donnez un lambda-terme :

- 1. $\alpha \to \alpha$
- 2. $\alpha \to \mathbb{N}$
- 3. $\alpha \to \beta \to \alpha$
- 4. $(\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma$
- 5. $(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$

6 Les limites du lambda calcul typé [★★]

Dans le TD précédent, nous avons vu que le lambda-terme $(\lambda x. x. x)$ permettait une forme basique de récursion. Est-il possible de trouver une type $T_?$ qui permette de typer le terme suivant? Expliquez pourquoi.

$$\lambda(x:T_?).xx$$

7 Pairs typées [★★★]

Dans le TD précédent, nous avons utilisé les termes pair, first, second, true et false pour coder des paires.

- 1. Dans le lambda-calcul typé, on souhaite à présent coder des paires d'éléments de type N. Déterminez le type des cinq lambda-termes précédents qui permette ce codage (il faudra ajouter des annotations de type pour les variables des lambda-abstractions).
- 2. Est-il possible de changer les types afin de coder des paires où le premier élément est de type \mathbb{N} et le second de type \mathbb{B} ? Expliquez pourquoi.