Joint Mirror Procedure Controlling FDR for Simultaneous Signals

Linsui Deng

joint-work with Kejun He and Xianyang Zhang

2025年8月9日

- Introduction
 - Motivation
 - Setup
 - Target and Challenges
- Joint Mirror Procedure
 - 1-dim Mirror
 - k-Dim Mirror and Composite FDR
 - Joint Mirror Procedure
 - Composite FDR
- Result
 - Theory
 - Simulation
 - RealData
- Summary

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

Mediation Analysis

BackGround 1. Which **DNA methylation sites** are simultaneously influenced by **smoking** and contribute to **lung function** deficiency?

JM Procedure 2025 年 8 月 9 日 JM Procedure 2 / 45

Replicacibility Study

BackGround 2. Which **SNPs** are simultaneously associated with **Crohn's disease** in all eight studies?

JM Procedure 2025 年 8 月 9 日 JM Procedure 3 / 45

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

Setup: Simultaneous Hypothesis

- m hypotheses to be tested ⇒ multiple testing;
- Null hypotheses have special structures ⇒ Composite Null.

JM Procedure 2025 年 8 月 9 日 JM Procedure 5 / 45

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Multiple Hypothesis Testing

- ★ Why multiple testing? Type-I error rate control is not adequate
 - P(Rejecting the null hypothesis|the null hypothesis is true)
- Given selection set $\mathcal{S} \subset \{1, \cdots, m\}$, the number of false discoveries:

$$FD = \sum_{i=1}^{m} \mathbf{1} \{ H_i = 0, i \in \mathcal{S} \}$$

- Two error criterion:
 - Family-wise error rate (Tukey, 1953): $FWER = \mathbb{P}(FD \ge 1)$.
 - ✓ False discovery rate (Benjamini and Hochberg, 1995)

$$FDR = \mathbb{E} \{FDP\} = \mathbb{E} \left\{ \frac{FD}{|\mathcal{S}| \vee 1} \right\}.$$

JM Procedure 2025 年 8 月 9 日 JM Procedure 6

Recent Approaches

- * For each *i*, calculate a *p*-value by merging (p_{i1}, \dots, p_{iK}) :
- Ensure validity: Uniform conservatism $\mathbb{P}(p_i^{merge} \leq t \mid H_i = 0) \leq t$
 - e.g., $\mathbb{P}(\max(p_{i1},\cdots,p_{iK}) \leq t \mid H_i = 0) \leq \mathbb{P}(p_{ik} \leq t \mid H_{ik} = 0) \leq t$
- Improve power:
 - Est. the FDP by approx. the dist. of p^{merge} for null (Dai et al., 2020).
 - Reconstruct $p_i^{merge} \mid H_i = 0 \approx U[0,1]$ (Liu et al., 2021; Dickhaus et al., 2021; Wang et al., 2022).
 - Apply standard multiple testing approaches (Benjamini and Hochberg, 1995).

JM Procedure 2025 年 8 月 9 日 JM Procedure 7 / 45

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

Target & Challenges

Merging may lose information

We have $(p_{i1}, p_{i2}, \cdots, p_{iK})$ for feature *i*.

- Old: Obtain p_i^{merge} by merging $(p_{i1}, p_{i2}, \dots, p_{iK})$;
 - \bigcirc p_i^{merge} does not consider the *signal strengths* across different studies.
 - **?** Can we work on $(p_{i1}, p_{i2}, \dots, p_{iK})$ directly?

Error Criterion

The null components of H_1, \dots, H_m may be different.

- Old: Simple FDR.
 - **?** Should we treat H_1, \dots, H_m equally?

- Introduction
 - Motivation
 - Setup
 - Target and Challenges
- Joint Mirror Procedure
 - 1-dim Mirror
 - k-Dim Mirror and Composite FDR
 - Joint Mirror Procedure
 - Composite FDR
- Result
 - Theory
 - Simulation
 - RealData
- Summary

Warm Up: Approximate FD

★ Let us examine the number of false discoveries (FD) firstly:

$$FD = \sum_{i=1}^{m} \mathbf{1} \{ H_i = 0, i \in \mathcal{S} \}$$

$$\leq \sum_{i=1}^{m} \sum_{k=1}^{K} \mathbf{1} \{ H_{ik} = 0, i \in \mathcal{S} \} = \sum_{k=1}^{K} \sum_{i=1}^{m} \mathbf{1} \{ H_{ik} = 0, i \in \mathcal{S} \}$$

 \star Let ${\mathcal R}$ be the rejection region, then

$$FD = \sum_{k=1}^{K} \sum_{i=1}^{m} \mathbf{1} \{ H_{ik} = 0, (p_{i1}, p_{i2}, \dots, p_{iK}) \in \mathcal{R} \}$$

 \star (a) Estimate the FD within each study + (b) Sum up the FDs.

11 / 45

JM Procedure 2025 年 8 月 9 日 JM Procedure

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

1-dim Mirror

- ⋆ Consider only one study first.
- What is 1-dim mirror procedure (Lei and Fithian, 2016) and how it works?
 - p-value p_i , covariate x_i and hypothesis H_i .
 - $p_i \mid x_i \sim U[0,1]$, if $H_i = 0$.

- R: Rejection region
- A: Mirror/ Control region

Upper Bound

FD =#
$$\{i: H_i = 0, p_i \in \mathcal{R}(x_i)\}$$

 $\approx \#\{i: H_i = 0, p_i \in \mathcal{A}(x_i)\}$
 $\lesssim \#\{i: p_i \in \mathcal{A}(x_i)\}$

13 / 45

JM Procedure 2025 年 8 月 9 日 JM Procedure

Mirror Conservatism

Univariate mirror conservatism (Lei and Fithian, 2016)

If
$$H_i = 0$$
, $\mathbb{P}(p_i \in [a_1, a_2] \mid x_i) \leq \mathbb{P}(p_i \in [1 - a_2, 1 - a_1] \mid x_i)$

- (a) Permutation p-values;
- (b) One-sided tests for univariate parameters with monotone likelihood ratio.

Conditional mirror Conservatism

If $H_{ik} = 0$, for p_{ik} , we have

$$\mathbb{P}_{\boldsymbol{\theta},k|-k} \left(p_{ik} \in [a_1, a_2] \mid \mathbf{p}_{i,-k} = \mathbf{t} \right)$$

$$\leq \mathbb{P}_{\boldsymbol{\theta},k|-k} \left(p_{ik} \in [1 - a_2, 1 - a_1] \mid \mathbf{p}_{i,-k} = \mathbf{t} \right)$$

• Univariate mirror conservatism + independent study.

JM Procedure 2025 年 8 月 9 日 JM Procedure

1-dim Mirror \Rightarrow 2-dim Mirror

Consider two studies:

- Paired p-value (p_{i1}, p_{i2}) ;
- $p_{i1} \stackrel{H_{i1}=0}{\sim} U[0,1] + p_{i2} \stackrel{H_{i2}=0}{\sim} U[0,1]$

- R: Rejection region
- A_1 : Mirror region for 1st study
- A_2 : Mirror region for 2st study
- $A_1 \cup A_2$: Control region

Upper Bound

1st :#
$$\{i: H_{i1} = 0, (p_{i1}, p_{i2}) \in \mathcal{R}\}\$$

 $\lesssim \#\{i: (p_{i1}, p_{i2}) \in \mathcal{A}_1\}\$

$$\#\{i: H_{i} = 0, (p_{i1}, p_{i2}) \in \mathcal{R}\}
\leq \#\{i: H_{i1} = 0, (p_{i1}, p_{i2}) \in \mathcal{R}\} + \#\{i: H_{i2} = 0, (p_{i1}, p_{i2}) \in \mathcal{R}\}
\leq \#\{i: (p_{i1}, p_{i2}) \in \mathcal{A}_{1}\} + \#\{i: (p_{i1}, p_{i2}) \in \mathcal{A}_{2}\} = \#\{i: (p_{i1}, p_{i2}) \in \mathcal{A}_{1} \cup \mathcal{A}_{2}\}$$

- Introduction
 - Motivation
 - Setup
 - Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

16 / 45

k-dim Mirror

Define
$$A_k = \{(t_1, \dots, t_{k-1}, 1 - t_k, t_{k+1}, \dots, t_K) : (t_1, \dots, t_K) \in \mathcal{R}\}$$

$$FDP(\mathcal{R}) = \frac{|\#\{i : H_i = 0, (p_{i1}, \dots, p_{iK}) \in \mathcal{R}\}|}{\#\{i : (p_{i1}, \dots, p_{iK}) \in \mathcal{R}\} \vee 1}$$

$$\lesssim \frac{|\#\{i : (p_{i1}, \dots, p_{iK}) \in \bigcup_{k=1}^K \mathcal{A}_k\}|}{\#\{i : (p_{i1}, \dots, p_{iK}) \in \mathcal{R}\} \vee 1} := \widehat{FDP}(\mathcal{R})$$

- K=3
- R: Rejection region
- $\bigcup_{k=1}^K A_k$: Control region

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

18 / 45

Joint Mirror Procedure under FDR level α

- 1. Initialize \mathcal{R}_0 , \mathcal{A}_0^k , $k=1,\cdots,K$;
- 2. While $\widehat{FDP}(\mathcal{R}_t) > \alpha$ and $\mathcal{R}_t \neq \emptyset$:
 - **1** Update \mathcal{R}_{t+1} (\mathcal{A}_{t+1}^k) satisfying

$$\mathcal{R}_{t+1} \subset \mathcal{R}_t$$

P.II Partial masking principle:

$$\mathcal{R}_{t+1} \in \sigma\left\{\left(\tilde{\mathbf{p}}_{t,i}\right)_{i=1}^{\textit{m}}, \textit{A}_{t}, \textit{R}_{t}, \mathcal{M}_{t}\right\} := \mathcal{F}_{t}$$

- $\tilde{\mathbf{p}}_{t,i} = \begin{cases} (\min(p_{i1}, 1 p_{i1}), \cdots, \min(p_{iK}, 1 p_{iK})), & \text{if } i \in \mathcal{M}_t \\ (p_{i1}, \cdots, p_{iK}), & \text{otherwise} \end{cases}$
- Mask Set: $\mathcal{M}_t = \{i : (p_{i1}, \cdots, p_{iK}) \in \mathcal{R}_t \cup \bigcup_{k=1}^K \mathcal{A}_t\}.$
- Num of Rej: $R_t = \#\{i: (p_{i1}, \cdots, p_{iK}) \in \mathcal{R}_t\}$.
- Num of Control: $A_t = \#\{i : (p_{i1}, \dots, p_{iK}) \in \bigcup_{k=1}^K A_t^k\}.$
- **2** Update t = t + 1.
- 3. Output: Select $\mathbf{p}_i \in \mathcal{R}_t$.

JM Procedure 2025 年 8 月 9 日 JM Procedure 19 / 45

An Equivalent Form: Revealing Order

- P.I Shrinkage \Leftrightarrow Remove one from mask set \mathcal{M}_t (in \mathcal{R}_t or in $\cup_{k=1}^K \mathcal{A}_t^k$).
- P.II Partial masking \Leftrightarrow Selection subject to partial information \mathcal{F}_t .

Given \mathcal{F}_t , select *i* that is most possible to be in $\bigcup_{k=1}^K \mathcal{A}_t^k$

$$\widehat{\mathrm{FDP}}(\mathcal{R}) \downarrow = \frac{|\#\{i: (p_{i1}, \cdots, p_{iK}) \in \bigcup_{k=1}^{K} \mathcal{A}_k\}| \downarrow}{\#\{i: (p_{i1}, \cdots, p_{iK}) \in \mathcal{R}\} \vee 1}$$

◆ロト ◆昼ト ◆星ト ◆星ト ■ めへで

JM Procedure 2025 年 8 月 9 日

Kernel Regression for Choosing i

- Any method: kernel regression $\mathbf{1}\{(p_{i1},\cdots,p_{ik})\in\mathcal{R}_t\}$.
 - Interpretable + Computational Efficient.
- Target: Let $\tilde{\mathbf{p}} = \operatorname{Proj}(\mathbf{p}) = (\min(\mathbf{p}_1, 1 \mathbf{p}_1), \cdots, \min(\mathbf{p}_K, 1 \mathbf{p}_K))$

Select
$$i^{\star} = \arg\min_{i \in \mathcal{M}_t} q_i$$
 with $q_i = \mathbb{P}\left(\mathbf{p} = \tilde{\mathbf{p}}_i \mid \tilde{\mathbf{p}} = \tilde{\mathbf{p}}_i\right)$

• A kernel-based estimator for q_i at step t defined as

$$\hat{q}_{t,i} = \frac{\sum_{i' \in \mathcal{U}_t \cap \mathcal{M}_{-1}} \mathbf{1} \left\{ \mathbf{p}_{i'} \in \mathcal{R}_{-1} \right\} v_H \left(\tilde{\mathbf{p}}_{i}, \tilde{\mathbf{p}}_{i'} \right)}{\sum_{i' \in \mathcal{U}_t \cap \mathcal{M}_{-1}} v_H \left(\tilde{\mathbf{p}}_{i}, \tilde{\mathbf{p}}_{i'} \right)}, i = 1, \dots, m$$

- $\mathcal{U}_t = [m] \setminus \mathcal{M}_t$, $\mathcal{M}_{-1} = \left\{ i : \sum_{k=1}^K \mathbf{1}(p_{ki} \le 1/2) \le 1 \right\}$.
- $v_H(\mathbf{x}, \mathbf{x}') = \mathcal{K}_H(\mathbf{x} \mathbf{x}') / \mathcal{K}_H(\mathbf{0})$
 - $\bullet \ \mathcal{K}_{\textit{H}}(t) = \det(\textit{H})^{-1/2} \mathcal{K} \left(\textit{H}^{-1/2} t\right)$
 - $H \in \mathbb{R}^{K \times K}$ is a positive definite bandwidth matrix
 - $\mathcal{K}: \mathbb{R}^K \to \mathbb{R}$ is a positive, bounded and symmetric kernel function.

 \blacksquare Complexity: Update the denominator & enumerator separately.

JM Procedure 2025 年 8 月 9 日 JM Procedure 21 / 45

Partial Order and 3 Realizations

- Intuition: When K = 1, $\mathcal{R} = [0, t]$.
- * Partial order + Kernel regression.
 - P JM.Max: $(t_1, \dots, t_K) \prec (s_1, \dots, s_K)$ iff $\max t_k < \max s_k$.
- K+P JM.Product: $(t_1, \dots, t_K) \prec (s_1, \dots, s_K)$ iff $t_1 < s_1, \dots, t_K < s_K$. K JM.EmptyPoset: non-comparable.

图: Left: JM.Max

Right: JM.Product

JM Procedure 2025 年 8 月 9 日 JM Procedure 22 / 45

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

23 / 45

Composite FDR: A quick look: K = 2

* How conservative our estimator is?

- * If $(H_{i1}, H_{i2}) = (0, 0)$
- → The estimated FD approx. counted twice.

$$\sum_{i=1}^{m} \mathbf{1} \{ H_{i1} = 0, H_{i2} = 1, \mathbf{p}_{i} \in \mathcal{A}_{1} \cup \mathcal{A}_{2} \}$$

$$+ \sum_{i=1}^{m} \mathbf{1} \{ H_{i1} = 1, H_{i2} = 0, \mathbf{p}_{i} \in \mathcal{A}_{1} \cup \mathcal{A}_{2} \}$$

$$+ \sum_{i=1}^{m} \mathbf{1} \{ H_{i1} = 0, H_{i2} = 0, \mathbf{p}_{i} \in \mathcal{A}_{1} \cup \mathcal{A}_{2} \}$$

$$\approx \sum_{i=1}^{m} \mathbf{1} \{ H_{i1} = 0, H_{i2} = 1, \mathbf{p}_{i} \in \mathcal{R} \}$$

$$+ \sum_{i=1}^{m} \mathbf{1} \{ H_{i1} = 1, H_{i2} = 0, \mathbf{p}_{i} \in \mathcal{R} \}$$

$$+2 \times \sum_{m=1}^{m} 1\{H_{i1} = 0, H_{i2} = 0, p_{i} \in \mathcal{R}\}\$$

JM Procedure 2025 年 8 月 9 日 JM Procedure 24 / 45

Composite FDR: Formal Definition

Define
$$\mathcal{H}^{(\kappa)} = \left\{ i \in [m] : \sum_{k=1}^K \mathbf{1}\{H_{ik} = 0\} = \kappa \right\}$$
 for $\kappa = 0, 1, \dots, K$.

定义 1 (Composite FDR)

The composite FDR is defined as

$$cFDR(\widehat{S}) = \mathbb{E}\{cFDP(\widehat{S})\} = \mathbb{E}\left\{\frac{\sum_{\kappa=1}^{K} \kappa \left|\widehat{S} \cap \mathcal{H}^{(\kappa)}\right|}{|\widehat{S}| \vee 1}\right\}$$

where the numerator is the number of weighted false discoveries.

 $\kappa = 0$

 $\kappa = 4$

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

26 / 45

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

27 / 45

Beyond Simultaneous Signals

Partial Conjunction Hypothesis (Friston et al., 2005, PCH)

Null hypotheses defined as $\mathcal{H}_0^{\kappa,\mathsf{partial}} = \cup_{k=\kappa}^K \mathcal{H}^{(k)}$,

- where $\mathcal{H}^{(\kappa)} = \left\{ i \in [m] : \sum_{k=1}^K \mathbf{1}\{H_{ik} = 0\} = \kappa \right\}$ for $\kappa = 0, 1, \dots, K$.
- Special cases: $\mathcal{H}_0 = \mathcal{H}_0^{1, \mathsf{partial}}$ and $\mathcal{H}_1 = \mathcal{H}_1^{1, \mathsf{partial}} = \mathcal{H}^{(0)}$.
- Intuition: $i \in \mathcal{H}_0^{\kappa, \mathsf{partial}} \Rightarrow \#\{\mathsf{null} \; \mathsf{components} \; \mathsf{of} \; \{H_{ik}\}_{k=1}^K\} \geq \kappa.$

 ✓ □ ▶ ✓ □ ▶ ✓ □ ▶ ✓ □ ▶ ✓ □ ▶ ✓ □ ▶

 JM Procedure
 2025 年 8 月 9 日

 JM Procedure
 28 / 45

FDR Control

定理 2 (Finite Sample FDR Control for PCH)

Suppose that (a) Independence. Suppose

$$\mathbf{p}_i \perp \mathbf{p}_j$$
 for $i, j \in \mathcal{H}_0^{\kappa, partial} + \{\mathbf{p}_i\}_{i \in \mathcal{H}_0^{\kappa, partial}} \perp \{\mathbf{p}_i\}_{i \in \mathcal{H}_1^{\kappa, partial}}$

- (b) \mathbf{p}_i is conditionally mirror conservative for all $i \in \mathcal{H}_0^{\kappa,partial}$.
- \Rightarrow Under $\mathcal{H}_0^{\kappa,partial}$, $\mathrm{FDR} \leq q/\kappa \quad \Rightarrow \quad \textit{Under } \mathcal{H}_0$, $\mathrm{FDR} \leq q$.

Martingale Technique. (Barber and Candès, 2015) Notice that

$$\mathbb{E}\left\{ \text{FDP}\left(\mathcal{R}_{\tau}\right) \right\} = \mathbb{E}\left\{ \widehat{\text{FDP}}\left(\mathcal{R}_{\tau}\right) \frac{\sum_{i \in \mathcal{H}_{0}^{\kappa, \mathsf{partial}}} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{R}_{\tau}\right)}{\sum_{k=1}^{K} \sum_{i=1}^{m} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{A}_{\tau}^{k}\right) + 1} \right\}$$

$$^{1} \leq q \mathbb{E}\left\{ \frac{\sum_{i \in \mathcal{H}_{0}^{\kappa, \mathsf{partial}}} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{R}_{\tau}\right)}{\sum_{i \in \mathcal{H}_{0}^{\kappa, \mathsf{partial}}} \sum_{k=1}^{K} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{A}_{\tau}^{k}\right) + 1} \right\}$$

$$\leq q \mathbb{E}\left\{ \frac{\sum_{i \in \mathcal{H}_{0}^{\kappa, \mathsf{partial}}} \sum_{k=1}^{K} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{R}_{0}\right)}{\sum_{i \in \mathcal{H}_{0}^{\kappa, \mathsf{partial}}} \sum_{k=1}^{K} \mathbf{1}\left(\mathbf{p}_{i} \in \mathcal{A}_{0}^{k}\right) + 1} \right\} \leq q/\kappa$$

 $^1 au:=\inf\{t:\widehat{\mathrm{FDP}}(\mathcal{R}_t)\leq q\}$ is a stopping time for a backwards super martingale.

FDR Control

$$\mathbb{E}\left\{\frac{\sum_{i \in \mathcal{H}_0^{\kappa, \mathsf{partial}}} \mathbf{1}\left(\mathbf{p}_i \in \mathcal{R}_0\right)}{\sum_{i \in \mathcal{H}_0^{\kappa, \mathsf{partial}}} \sum_{k=1}^{K} \mathbf{1}\left(\mathbf{p}_i \in \mathcal{A}_0^k\right) + 1}\right\} \leq 1/\kappa$$

• $\mathbf{1}(\mathbf{p}_i \in \mathcal{R}_0) \mid \tilde{\mathbf{p}}_i \sim \mathsf{Bernoulli}(1/(\kappa+1)).$

Test $\mathcal{H}_0^{1, extit{partial}} \ / \ \mathcal{H}_0$

- $\mathcal{H}_0^{1,partial}$: gray + blue + green
- $\mathcal{H}_1^{1,partial}$: red

Test $\mathcal{H}_0^{2,partial}$

- $\mathcal{H}_0^{2,partial}$: gray
- $\mathcal{H}_1^{2,partial}$: blue + green+red

Composite FDR Control

What about cFDR? We require a stringent principle for selecting ${\cal R}.$

定理 3 (Finite Sample cFDR Control)

Under the same condition in Theorem 2,

- If additionally $\mathcal{R}_t \in \sigma\left\{\left(\tilde{\mathbf{p}}_i\right)_{i=1}^m\right\}$ with $\tilde{\mathbf{p}}_i = \operatorname{Proj}(\mathbf{p}_i)$, e.g., JM.Max,
- \Rightarrow cFDR $\leq q$.

Leave-one-out Technique.(Benjamini and Hochberg, 1995; Barber et al., 2020) Notice that

$$\begin{aligned} \text{cFDP} &= \frac{\sum_{\kappa=1}^{K} \kappa \left| \widehat{\mathcal{S}} \cap \mathcal{H}^{(\kappa)} \right|}{\left| \widehat{\mathcal{S}} \right| \vee 1} = \frac{\sum_{i \in \mathcal{H}_0} \kappa_i \mathbf{1} \left\{ \mathbf{p}_i \in \mathcal{R}_{-1}, \tilde{\mathbf{p}}_i \in \mathcal{R}^{\left\{ \mathbf{p}_i \right\}_{i=1}^m} \right\}}{\sum_{i=1}^{m} \mathbf{1} \left\{ \mathbf{p}_i \in \mathcal{R}_{-1}, \tilde{\mathbf{p}}_i \in \mathcal{R}^{\left\{ \mathbf{p}_i \right\}_{i=1}^m} \right\} \vee 1}, \\ &\leq q \frac{\sum_{i \in \mathcal{H}_0} \kappa_i \mathbf{1} \left\{ \mathbf{p}_i \in \mathcal{R}_{-1}, \tilde{\mathbf{p}}_i \in \mathcal{R}^{\left\{ \mathbf{p}_i \right\}_{i=1}^m} \right\}}{1 + \sum_{i \in \mathcal{H}_0} \mathbf{1} \left\{ \mathbf{p}_i \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_i \in \mathcal{R}^{\left\{ \mathbf{p}_i \right\}_{i=1}^m} \right\}} := q \mathcal{E} \left(\mathcal{R}^{\left\{ \mathbf{p}_i \right\}_{i=1}^m} \right) \end{aligned}$$

- $A_{-1} = \bigcup_{k=1}^K A_{-1}^k$ is the control side.
- $\mathcal{R}^{\{\mathbf{p}_i\}_{i=1}^m}$ is the final rejection region with the p-values set $\{\mathbf{p}_i\}_{i=1}^m$.
- Prove $\mathbb{E}\left\{\mathcal{E}\left(\mathcal{R}^{\{\mathbf{p}_i\}_{i=1}^m}\right)\right\} \leq 1 \Rightarrow \text{cFDR} \leq q$.

JM Procedure 2025 年 8 月 9 日 JM Procedure 31 / 45

Proof of cFDR Control

Key 1 The leave-one-out p-values $\{\mathbf{p}_{(-i)}, \tilde{\mathbf{p}}_i\} = \{\mathbf{p}_1, \cdots, \mathbf{p}_{i-1}, \tilde{\mathbf{p}}_i, \cdots, \mathbf{p}_m\}$.

Kev 2 $\mathcal{R}^{\{p_i\}_{i=1}^m}$ and $\mathcal{R}^{(-i)} = \mathcal{R}^{p_{(-i)},\tilde{p}_i}$ should be one of the candidate rejection regions.

Proof of cFDR Control

• $\mathbb{E}\left\{\mathcal{E}\left(\mathcal{R}^{\left\{\mathbf{p}_{i}\right\}_{i=1}^{m}}\right)\right\}$ can be bounded as follows:

$$\begin{split} & \frac{\mathbf{p}_{i} \in \mathcal{R}_{-1}}{\Rightarrow \mathbf{p}_{i} \notin \mathcal{A}_{-1}} \sum_{i \in \mathcal{H}_{0}} \mathbb{E} \left(\frac{\kappa_{i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{R}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left\{ \mathbf{p}_{i} \right\}_{i=1}^{m}} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left\{ \mathbf{p}_{j} \right\}_{i=1}^{m}} \right\}} \right) \\ & \stackrel{\mathbf{p}_{i} \in \mathcal{R}_{-1}}{\Rightarrow \mathbf{p}_{i} = \tilde{\mathbf{p}}_{i}} \sum_{i \in \mathcal{H}_{0}} \mathbb{E} \left(\frac{\kappa_{i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{R}_{-1} \right\} \mathbf{1} \left\{ \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left(-i\right)} \right\}} \right) \\ & \stackrel{\text{tower}}{= l_{\text{aw}}} \sum_{i \in \mathcal{H}_{0}} \mathbb{E} \left(\frac{\kappa_{i} \mathbb{P} \left\{ \mathbf{p}_{i} \in \mathcal{R}_{-1} \mid \tilde{\mathbf{p}}_{i}, \mathbf{p}_{\left(-i\right)} \right\} \mathbf{1} \left\{ \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left(-i\right)} \right\}} \right) \\ & \stackrel{\text{mirror}}{\leq} \sum_{i \in \mathcal{H}_{0}} \mathbb{E} \left(\frac{\mathbb{P} \left\{ \mathbf{p}_{i} \in \mathcal{A}_{-1} \mid \tilde{\mathbf{p}}_{i}, \mathbf{p}_{\left(-i\right)} \right\} \mathbf{1} \left\{ \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left(-i\right)} \right\}} \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left(-i\right)} \right\}} \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{\left(-i\right)} \right\}} \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{\left(-i\right)} \right\}} \right\} \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \in \mathcal{H}_{0}, j \in \mathcal{H}_{0}} \right\} \right\} \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \neq i} \mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \in \mathcal{H}_{0}} \right\} \right) \right) \\ & \stackrel{\text{tower}}{=} \mathbb{E} \left(\sum_{i \in \mathcal{H}_{0}} \frac{\mathbf{1} \left\{ \mathbf{p}_{i} \in \mathcal{H}_{0}, j \in \mathcal{H}_{0}, j \in$$

JM Procedure 2025 年 8 月 9 日 JM Procedure

Proof of cFDR Control

$$\sum_{i \in \mathcal{H}_{0}} \frac{1\left\{\left[\mathbf{p}_{i} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{(-i)}\right]\right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} 1\left\{\left[\mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{(-i)}\right]\right\}}$$

$$\sum_{i \in \mathcal{H}_{0}} \frac{1\left\{\left[\mathbf{p}_{i} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{i} \in \mathcal{R}^{(-i)}\right]\right\}}{1 + \sum_{j \in \mathcal{H}_{0}, j \neq i} 1\left\{\left[\mathbf{p}_{j} \in \mathcal{A}_{-1}, \tilde{\mathbf{p}}_{j} \in \mathcal{R}^{(-j)}\right]\right\}} \leq 1,$$

• (*) holds because: under the condition \Box , $\Box \iff \Box$.

34 / 45

Power Improvement

- Easy to notice $KFDR \ge cFDR \ge FDR$.
- Will the JM procedure be too conservative?

An example with a general K.

Suppose $H_i = 0$ iff $H_{ki} = 0$ for all k. Let $m_0 = \#\{i : H_i = 0\}$

- $\mathbb{E}(\text{FD}) = \sum_{i:H_i=0} \mathbb{P}\{\max(p_{i1},\cdots,p_{iK}) \leq t\} = m_0 t^K$
- JM procedure: $\widehat{\mathrm{FD}}_{JM} \approx \mathit{Km}_{0} \mathit{t}^{\mathit{K}}$
- Traditionally: $\mathbb{E}(\text{FD}) \lesssim \sum_{i:H_i=0} \mathbb{P}\{p_{ik} \leq t \text{ for some } k\} = m_0 t$
- Recently: either (a) need to est m_0 precisely (b) no comprehensive analysis.
- JM capture the correct power of t!

Content

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

36 / 45

Simulation: Replicability Study

97% null: FDR& cFDR

- K: num of study; π_0^{global} : prop. of K studies are null; b: strength of correlation; w_0 : signal strength disequilibrium; q: FDR level.
- All methods can control FDR & cFDR;

Simulation: Replicability Study

97% null: Power

• Three JM methods deliver the highest power, esp, $K \ge 4$ or $w_0 = 0.5$.

Content

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData
- Summary

Cigarate Smoking, DNA methylation, and Lung Diseases

12

 $-\log_{10}(p_{\beta})$

- FDR level: 0.2
- Used by DACT (Liu et al., 2021)
- DACT (21), JM.Max (27), JM.Product (32), JM.EmptyPoset (37)
 - Null

Method • DACT+JM.Max+JM.EmptyPoset+JM.Product ×

- DACT+JM.EmptvPoset+JM.Product
 - Rejection Region

A DACT+JIM.Max+JIM.Product Δ JIM.EmptyPoset

DACT+JM.Max+JM.Product \(^{\textstyle JM.EmptyPoset}\)
JM.EmptyPoset+JM.Product

- JM.EmptyPoset+JM.Max
- JM.Max JM.Product

< □ > < ₫

GWAS for Crohn's Disease

- 8 studies + 953,241 SNPs + FDR level: 0.05.
- Collected by Franke et al. (2010), analyzed by cPC (Dickhaus et al., 2021) in PCH framework.
- Find SNPs that are statistically significant in all 8 studies.

JM Procedure 2025 年 8 月 9 日 JM Procedure 41 / 45

Content

Introduction

- Motivation
- Setup
- Target and Challenges

Joint Mirror Procedure

- 1-dim Mirror
- k-Dim Mirror and Composite FDR
- Joint Mirror Procedure
- Composite FDR

Result

- Theory
- Simulation
- RealData

Summary

42 / 45

Contribution

Targets

- **?** Can we work on $(p_{i1}, p_{i2}, \dots, p_{iK})$ directly?
- ♦ Construct K-dimensional rejection region.
- **?** Should we treat H_1, \dots, H_m equally?
- Counting the number of null components Composite FDR.

Contributions

- A new FDP estimator for simultaneous signals.
- A new error criterion Composite FDR.
- Partial-order oriented data-driven rejection region. (Indeed reflect the data pattern.)
- FDR (marginal technique) and cFDR (leave-one-out technique) control in finite samples.
- © Easy interpretation + Significant power improvement.

Future Directions

- * The following points highlight our future directions:
 - Asymmetric mirror region;
 - Incorporate side information;
 - Apply on test statistics directly Directional FDR;
 - Using Z-values can be more efficient (Leung and Sun, 2021; Leung, 2022).
 - Data splitting strategy (Dai et al., 2022; Guo et al., 2021)
 - Knockoff strategy (Dai and Zheng, 2023)
 - Consider the dependency of Stat. in mediation analysis.
 - Proper rejection region and less conservative procedure to control PCH.

Thank You!

Reference I

- Barber, R. F. and Candès, E. J. (2015), "Controlling the false discovery rate via knockoffs," *The Annals of Statistics*, 43, 2055–2085.
- Barber, R. F., Candes, E. J., and Samworth, R. J. (2020), "Robust inference with knockoffs," The Annals of Statistics. 48, 1409–1431.
- Benjamini, Y. and Hochberg, Y. (1995), "Controlling the false discovery rate: A practical and powerful approach to multiple testing," *Journal of the Royal Statistical Society: Series B* (Methodological), 57, 289–300.
- Dai, C., Lin, B., Xing, X., and Liu, J. S. (2022), "False Discovery Rate Control via Data Splitting," Journal of the American Statistical Association, 1–18.
- Dai, J. Y., Stanford, J. L., and LeBlanc, M. (2020), "A multiple-testing procedure for high-dimensional mediation hypotheses," *Journal of the American Statistical Association*, 117, 198–213.
- Dai, R. and Zheng, C. (2023), "False discovery rate-controlled multiple testing for union null hypotheses: a knockoff-based approach," *Biometrics*, 0, 1–13.
- Dickhaus, T., Heller, R., and Hoang, A.-T. (2021), "Multiple testing of partial conjunction null hypotheses with conditional p-values based on combination test statistics," arXiv preprint arXiv:2110.06692.
- Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T., Lees, C. W., Balschun, T., Lee, J., and Roberts, R. (2010), "Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci," *Nature Genetics*, 42, 1118–1125.
- Friston, K. J., Penny, W. D., and Glaser, D. E. (2005), "Conjunction revisited," *Neuroimage*, 25, 661–667.
- Guo, X., Ren, H., Zou, C., and Li, R. (2021), "Threshold selection in feature screening for error rate control," *Journal of the American Statistical Association*, 1–37.

Reference II

- Lei, L. and Fithian, W. (2016), "AdaPT: An interactive procedure for multiple testing with side information," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80, 649–679.
- Leung, D. (2022), "Z-value directional false discovery rate control with data masking," arXiv preprint arXiv:2201.05828.
- Leung, D. and Sun, W. (2021), "ZAP: Z-value adaptive procedures for false discovery rate control with side information," arXiv preprint arXiv:2108.12623.
- Liu, Z., Shen, J., Barfield, R., Schwartz, J., Baccarelli, A. A., and Lin, X. (2021), "Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic studies," *Journal of the American Statistical Association*, 117, 67–81.
- Tukey, J. W. (1953), "The problem of multiple comparisons." .
- Wang, J., Gui, L., Su, W. J., Sabatti, C., and Owen, A. B. (2022), "Detecting multiple replicating signals using adaptive filtering procedures," The Annals of Statistics, 50, 1890–1909.