Visual Computing – 2D-/3D-Transformationen

Yvonne Jung

Problemstellung

- HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES
- Typische Probleme bei Szenenerstellung / Modellierung
 - 1. Graphische Objekte in 2D- oder 3D-Szene platzieren
 - 2. Beziehungen zwischen virtuellen Objekten modellieren
- Lösung
 - 1. Transformationen für 2D- bzw. 3D-Modellierung
 - Repräsentiert durch Abbildungsmatrizen
 - Demo zum interaktiven Ausprobieren: https://www.realtimerendering.com/udacity/transforms.html
 - 2. Hierarchische Modellierung räumlicher Beziehungen
 - Mittels spezieller Datenstruktur: Szenengraph
 - Knoten beschreiben durch ihre Ausprägung 3D-Szene

... dann in 3D-Szene platziert

Anordnung der Objekte im Raum

Beispiel: Erzeugen eines 3D-Objekts

Pinguinkopf im lokalen Koordinatensystem

Dreiecke für Flügel und Füße im lokalen Koordinatensystem

Becher im lokalen Koordinatensystem

Beispiel: Erzeugen eines 3D-Objekts

Was fehlt noch zur vollständigen Modellierung des Pinguins?

- Neben geometrischen Größen müssen noch grafischen Attribute zugeordnet werden – diese beziehen sich auf das "Aussehen"
- Beispiele für graphische Attribute sind etwa Farbe und Textur (z.B. JPEG-Bild) auf Fläche gemappt (abgebildet, "geklebt")

Wie kann man die Primitive im lokalen Koordinatensystem "manipulieren", um einen Pinguin zu konstruieren?

- Man kann sie verschieben (translieren),
- ...drehen (rotieren) sowie
- …vergrößern und verkleinern (skalieren)
- Diese Manipulationen nennt man Transformationen

Transformationen

Skalierung

Translation

Transformationen lassen sich auch miteinander kombinieren...

Transformationen: Rotation

Um welche Achse wird die Geometrie bei dieser Rotation gedreht?

Wenn der Daumen der rechten Hand die Koordinatenachse bildet, zeigen die angewinkelten Finger die Drehrichtung an

Zusammensetzen eines Modells

 Aufbau eines Koordinatenkreuzes durch Transformation von je zwei Grundprimitiven (Zylinder und Kegel/Cone)

Geometrische Transformationen

- Operationen, die auf die geometrische Beschreibung virtueller Objekte angewendet werden, um Position, Orientierung oder Größe zu ändern
 - Beispiel: Animationsdesigner erstellt Videosequenz durch Bewegen der Kameraposition entlang eines Pfades
 - Transformation M bildet Punkt von einem Koordinatenraum auf Punkt p' in einem anderen ab: (x', y', z') = M(x, y, z)
- Transformationen werden mittels Multiplikation einer Matrix mit einem Vektor umgesetzt

Ablauf Bilderzeugung bei 3D-Graphik

- Transformationen für Modellierung
 - ...der Eckpunkte \vec{p} eines Objekts von Objekt- in Weltkoordinaten, mit $\vec{p} = \begin{pmatrix} y \\ z \end{pmatrix}$
 - ...dann von Welt- in Kamerakoordinaten
- Transformationen für Darstellung

2D-Transformationen

Skalierung

 Stauchen oder Strecken der Eckpunkte eines Objekts entlang der Koordinatenachsen mit Faktor s

Skalierung

- Bei uniformer Skalierung ist s für alle Achsen gleich
 - Bei nicht-uniformen Skalierungen ist Faktor $s_x \neq s_y$
- Berechnung möglich über komponentenweise Multiplikation mit Vektor s
 - Für alle Eckpunkte: $\vec{v}' = \vec{s} \otimes \vec{v}$ bzw. $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} S_x \\ S_y \end{pmatrix} \otimes \begin{pmatrix} x \\ y \end{pmatrix}$
 - ⊗ komponentenweise Multiplikation
 - Es gilt also: $x' = s_x \cdot x$ und $y' = s_y \cdot y$
 - Bzw. für Spezialfall uniformer Skalierung: $\vec{v}' = s \cdot \vec{v}$
- Allgemein wird aber Matrixschreibweise genutzt

$$\bullet \quad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Skalierung nur bzgl. Nullvektor invariant (Nur der Ursprung wird für $s_x, s_y \neq 1$ auf sich selbst abgebildet)

Rotation

- Drehung der Eckpunkte um Winkel α (um Ursprung)
 - Entspricht bei Erweiterung auf 3D der Drehung um z-Achse
 - Allgemein im 3D: Drehung um eine der Koordinatenachsen

Rotation

- Rotieren aller Eckpunkte eines 2D-Objekts um Winkel α (um gedachte z-Achse) gegen Uhrzeigersinn
 - 1. Einheitsvektor e₁ drehen:

$$e_1' = R_\alpha ((1, 0)^T) = (\cos \alpha, \sin \alpha)^T$$

• 2. Einheitsvektor e₂ drehen:

$$e_{2}' = R_{\alpha} ((0, 1)^{T}) = (-\sin \alpha, \cos \alpha)^{T}$$

• Allgemein für $\vec{v} = (x, y)^T$:

$$x' = x \cdot \cos \alpha - y \cdot \sin \alpha$$
$$y' = x \cdot \sin \alpha + y \cdot \cos \alpha$$

Matrixschreibweise

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Neue Spaltenvektoren sind Bilder der ursprünglichen Basisvektoren

Übung 1

- Gegeben sei ein Quadrat mit den Eckpunkten A(-1, -1), B(1, -1), C(1, 1) und D(-1, 1). Tragen Sie das Quadrat in ein Koordinatensystem ein. Multiplizieren Sie alle vier Eckpunkte mit der Matrix $S = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ und tragen selbige ebenfalls in das Koordinatensystem ein (inkl. Kanten).
- Geg. sei die Matrix $R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Setzen Sie für α in 60°-Schritten Werte zwischen 0° und 360° ein und multiplizieren Sie die sich je ergebende Matrix mit dem Ortsvektor $\vec{p} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Zeichnen Sie das Ergebnis $\overrightarrow{p_{\alpha}}'$ wieder in ein Koordinatensystem ein und verbinden Sie je aufeinanderfolgende Ergebnispunkte. Was fällt Ihnen auf?

Übung 2

- Bestimmen Sie folgende Transformationen in 2D
 - Spiegelung an x-Achse
 - Rotation um Winkel α entgegen Uhrzeigersinn
 - Spiegelung an Gerade $y = \sqrt{3} \cdot x = \tan(60^\circ) \cdot x$
 - Setzen Sie Gesamttransformation aus mehreren, nacheinander anzuwendenden Transformationen zusammen
 - Zur Erinnerung: $m = dy / dx = (y2 y1) / (x2 x1) = tan(\alpha)$
 - Geben Sie je die Transformationsmatrix M an
- Hilfreiche Mathe-Regeln
 - $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x)$, $\sin(60^\circ) = \frac{\sqrt{3}}{2}$, $\cos(60^\circ) = \frac{1}{2}$

Translation

- Verschiebung aller Eckpunkte um Richtungsvektor t
- Berechnung über komponentenweise Addition von *t*

• Für alle Eckpunkte: $\vec{v}' = \vec{v} + \vec{t}$ bzw. $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$

Translation verändert Nullvektor! (Ursprung verschoben)

2D-Transformationen

Translation:

Nicht als 2x2-Matrix darstellbar

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} x_{alt} + t_x \\ y_{alt} + t_y \end{pmatrix}$$

• Rotation um α :

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} \cos \alpha x_{alt} - \sin \alpha y_{alt} \\ \sin \alpha x_{alt} + \cos \alpha y_{alt} \end{pmatrix}$$

• Uniforme Skalierung:

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = s \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} sx_{alt} \\ sy_{alt} \end{pmatrix}$$

• Allgemeine Skalierung:

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} s_x x_{alt} \\ s_y y_{alt} \end{pmatrix}$$

• Scherung (entlang x):

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} x_{alt} + my_{alt} \\ y_{alt} \end{pmatrix}$$

Affine Beschreibung

- Beschreibung von Skalierung, Rotation (und Scherung) über 2×2 -Matrix
 - Skalierung, Rotation (und Scherung) belegen die gleichen Koeffizienten der Matrix
- Wie kann nun 2D-Translation beschrieben werden?
 - Addition problematisch: Bei linearen Abbildungen $M: V \to W$ wird Nullvektor von V abgebildet auf Nullvektor von Vektorraum W (Nullvektor ist invariant)

$$\vec{v}' = \mathbf{M} \cdot \vec{v} + \vec{t}$$

Es existiert keine 2×2 Matrix mit $T \cdot \vec{v} = \vec{v}'$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Matrix
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 beschreibt lineare Abbildung (Skalierung, Rotation, Scherung)

Vektor
$$\begin{pmatrix} t_x \\ t_y \end{pmatrix}$$
 beschreibt Translation;

Bild des Nullvektors dadurch kein Nullvektor mehr

Homogene Beschreibung

- Affine Beschreibung von Transformationen erfordert unnötigen Rechenaufwand
 - Matrix-Vektor-Multiplikation plus Vektor-Vektor-Addition bedeutet schlechtere Performance bei Kombination mehrerer Transformationen
- Beschreibung der Translation in 2x2-Matrix M nicht möglich
 - Zudem Vektoren und Punkte nicht voneinander unterscheidbar
- Lösung: Erweiterung von Vektoren und Matrizen um eine weitere Dimension

$$\vec{v}' = M \cdot \vec{v} \qquad \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

immer 1 in der untere punkt und die translation gilt nur für punkte!

- Homogene Beschreibung aller Transformationen mittels einer einzigen Matrix möglich
 - Vektor-Vektor-Addition der affinen Beschreibung entfällt ©
- Dazu Beschreibung der Vektoren durch sog. homogene Koordinaten
 - Zusätzliche Komponente der "Vektoren" i.d.R. 1 (→ für Punkte im Raum)
 - Achtung: Richtungsvektoren haben als letzte Komponente 0 (statt 1)

Homogene Koordinaten

- Punkt im \mathbb{R}^2 repräsentiert als homogener Vektor im \mathbb{R}^3
 - D.h., 2D \rightarrow 3D (und analog 3D \rightarrow 4D)

•
$$P_{\mathfrak{R}^2} = \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow P_{\mathfrak{R}^3} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 \wedge $P_{\mathfrak{R}^3} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow P_{\mathfrak{R}^4} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}_{\mathsf{W}}$

- Warum homogene Koordinaten?
 - Alle Elementartransformationen (Rotation, Skalierung, Translation) können somit gleichartig behandelt werden: vereinfacht Implementierung ☺
 - Orts- und Richtungsvektoren können gleichartig behandelt, aber unterschieden werden
 - Komplexe Transformationen durch Konkatenation von Elementartransformationen
 - Zusammenfassen von Transformationen via Matrixmultiplikation: $M = A \cdot B$
 - Multiplikationsreihenfolge entsprechend Reihenfolge anzuwendender Transformationen

Translation in homogenen Koordinaten n da

Affine Beschreibung

Homogene Beschreibung

$$p' = M p$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Lineare Abbildung

- Skalierung
- Rotation
- Translation

Reine 2D-Translation:

$$\begin{pmatrix} x_{neu} \\ y_{neu} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \\ 1 \end{pmatrix} = \begin{pmatrix} x_{alt} + t_x \\ y_{alt} + t_y \\ 1 \end{pmatrix}$$

Übung 3

• Ein Quadrat soll um $\binom{5}{2}$ verschoben werden

- Wie lauten die transformierten Punkte a' und c'?
- Wie sieht die Matrix *M* aus, um die Punkte *a* und *c* zu transformieren?

1 0 5 M=0 1 2

001

Weiteres Beispiel Skalierung

Skalierung um Faktor 2 um y-Achse

Beispielhaft f
ür obere rechte Ecke bei P(0.6, 0.4)

$$M \cdot \vec{p} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.6 \\ 0.4 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \\ 1 \end{bmatrix} = \overrightarrow{p'}$$

Neutrales Element der Multiplikation 1

Homogene Koordinate 1 bei Punkten/Ortsvektoren

- Das Objekt wird nicht nur in y-Richtung skaliert, sondern verändert hier auch seine Position
 - Abstand zum Nullpunkt wird mit skaliert
 - Skalierung ist nur gegenüber Nullpunkt invariant
 - Gilt analog auch für die Rotation
 - Drehung und Skalierung immer relativ zum Ursprung!

Eindeutigkeit von Transformationen

Welche Transformation wird gesucht?

Rotation

 Ohne Beschriftung der Eckpunkte gibt es hier mehrere Lösungen

Übung 4

- Entwickeln Sie eine Abbildungsvorschrift, mit der das Quadrat Q = ((-1,-1), (1,-1), (1,1), (-1,1)) übergeht in das Rechteck R = ((2,4), (4,2), (8,6), (6,8))
 - Tipp: Tragen Sie zur Anschauung Q und R zeichnerisch in ein Koordinatensystem ein
 - Welche Einzeltransformationen sind nötig?
 - Wie lautet die Gesamttransformation M?
 - Wie ändert sich Nullvektor? Zur Erinnerung (Berechnung Mittelpunkt einer Box): $\overrightarrow{mid} = \overrightarrow{min} + \frac{1}{2}(\overrightarrow{max} \overrightarrow{min}) = \frac{1}{2}(\overrightarrow{min} + \overrightarrow{max})$
 - Auch hilfreich: $\sin(45^\circ) = \frac{1}{\sqrt{2}}$, $\cos(45^\circ) = \frac{1}{\sqrt{2}}$

Transformationen kombinieren

Bsp.: Skalierung und Translation

Matrixmult.:
$$p' = T(Sp) = (TS)p = Mp$$

$$TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

translation ist immer zum schluss

Achtung: Matrixmultiplikation nicht kommutativ

Nicht kommutative Kombination

assoziativ

Translation zuerst: p' = S(Tp) = (ST)p

Nicht kommutative Kombination

Skalierung zuerst:
$$p' = T(Sp) = TSp$$

$$TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Translation zuerst: p' = S(Tp) = STp

$$ST = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Gelbes Rechteck soll verschoben und gedreht werden

Translation T

$$p' = T \cdot p$$

$$p' = R \cdot T \cdot p$$

$$p' = R \cdot T \cdot p$$

Komplexe Transformationen

• Welche Transformationen sind nötig, um Rechteck, wie vorgegeben, zu drehen?

Reihenfolge der Transformationen ist entscheidend

Drehen u. Skalieren mit Referenzpunkt ist dreistufiger Algorithmus:

- 1. Verschieben von Referenzpunkt in Ursprung
- 2. Rotation um 60° (um z-Achse)
- 3. Zurückschieben von Referenzpunkt auf ursprüngliche Position

- Verkettung von Transformationen notwendig
 - Aber Anwendung einer Transformation nach der anderen auf jeden Eckpunkt dauert lange und führt zu Rundungsfehlern
 - Daher Einzeltransformationen zu akkumulierter Transformationsmatrix zusammenfassen und nur diese auf alle ursprünglichen Eckpunkte anwenden

Transformationsreihenfolge

 Reihenfolge "Skalierung – Rotation – Translation" erlaubt intuitive Positionierung von Objekten in 2D- oder 3D-Szene

• Berechnung: $p' = T \cdot R \cdot S \cdot p$

• Für alle Eckpunkte p

Transformationen Starrkörper-

Affine Transformationen in der CG

• Identität

• Translation

Rotation

- Spiegelung
- Skalierung
 - Uniform
 - Nicht-uniform
- Scherung
 - → selten genutzt

Affine Transformationen

- Abbildung $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ heißt affine Abbildung (Transformation),
 - ...wenn Φ in der Form $\Phi(\vec{v}) = A \cdot \vec{v} + \vec{b}$ darstellbar ist,
 - ...wobei A lineare Abbildung ist und $\vec{v}, \vec{b} \in \mathbb{R}^n$
 - A lineare Abb., wenn $\forall \vec{u}, \vec{v} \in \mathbb{R}^n \land \forall \lambda, \mu \in \mathbb{R}$ gilt: $A(\lambda \vec{u} + \mu \vec{v}) = \lambda A(\vec{u}) + \mu A(\vec{v})$
- Affine Abbildung besteht aus linearer Abbildung (multiplikativer Teil) und Translation (additiver Teil – ist Parallelverschiebung)

 - Kompaktere Darstellung durch homogene Koordinaten

Klassifikation von Transformationen

Transformationen starrer Körper

- Abstände bleiben erhalten
- Winkel bleiben erhalten
- Affine Transformationen
 - Geraden bleiben Geraden
 - Parallele Objekte bleiben parallel
 - Längenverhältnisse bleiben erhalten

3D-Transformationen

Affine Transformations in 3D

- Transformation can be represented by Matrix M
- Transforming a vertex (i.e., a 3d point): $p' = M \cdot p$

Matrix invertible, iff $det(\mathbf{M}) \neq 0$

Rigid Body
Transformations
Similarity
Transformations

Projective Transformations

Affine Transformations

Translation in homogenen Koordinaten 🗖

Affine Beschreibung

$$p' = M \quad p + t
 \left(x'\right) = \begin{cases} a \quad b \quad c \\ d \quad e \quad f \\ z' \end{cases} x + \begin{bmatrix} t_x \\ t_y \\ t_z \end{cases}$$

Homogene Beschreibung

- Homogene Beschreibung von Vektoren
 - Bei Punkten/Ortsvektoren ist homogene Koordinate w = 1 (bei Richtungsvektoren 0)

3D Translation

• We can translate points in space to new positions by adding offsets to

their coordinates:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \rightarrow \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Difference between vector and point:
 - Point has homogenous coordinate w = 1
 - Vector has homogenous coordinate w = 0
 - No translation of direction vectors!

Homogenen Punkt wieder
zurückführen in euklidischen
Raum durch Teilen von x, y, z
durch w-Koordinate (w ≠ 0)

3D Scaling

- Objects can be scaled to different sizes
 - If scaling is uniform, the shape is preserved
 - Scaling relative to origin:

Nicht mit 0 skalieren, denn dann ist Matrix nicht mehr invertierbar

3D Rotation about z-axis

$$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Z does not change

Rotation is assumed positive in a right-hand sense (counterclockwise from x to y)

$$x' = x \cos \varphi - y \sin \varphi$$
$$y' = x \sin \varphi + y \cos \varphi$$

3D Rotation about x-axis

Rotation is assumed positive in a right-hand sense (counterclockwise from y to z)

$$y' = y \cos \varphi - z \sin \varphi$$
$$z' = y \sin \varphi + z \cos \varphi$$

3D Rotation about y-axis

Note: signs of sine terms reversed to maintain positive right-hand rule convention (counterclockwise from z to x; with original matrix written for x to z)

$$z' = z \cos \varphi - x \sin \varphi$$
$$x' = z \sin \varphi + x \cos \varphi$$

Elementare 3D-Rotationen

- 3D-Rotationen um Koordinatenachsen
 - X-Achse: dreht nur y und z Koordinaten
 - Y-Achse: dreht nur z und x Koordinaten
 - Z-Achse: dreht nur x und y Koordinaten
- Räumliche Orientierung von 3D-Objekten kann damit auch angegeben werden durch drei Winkel (→ Eulerwinkel)
 - Beschreiben, um wieviel Grad sich Objekt um jeweils x-, y- und z-Achse dreht
 - Multiplikation dreier Matrizen für Gesamtdrehung: $R = R_z(r) R_y(y) R_x(p)$
 - Sehr anschaulich, hat aber sog. "Gimbal-Lock-Problem"

Orientierung geg. durch die Winkel roll, pitch u. yaw

Ausblick: Matrizen vs. Quaternionen

- Problem bei Rotationen: "Gimbal Lock"
 - Verlust eines Freiheitsgrades (eine Achse rotiert auf andere Achse)

- Lösung: Quaternionen statt Matrizen
 - Haben wie komplexe Zahlen Real- und Imaginärteil

$$q = i v_x + j v_y + k v_z + w = (v_x, v_y, v_z, w) = (v, w)$$

- Einheitsquaternionen beschreiben Drehungen im \mathbb{R}^3
 - Lassen sich darstellen durch $q = \left(\cos\frac{\alpha}{2}, \vec{r}\sin\frac{\alpha}{2}\right)$
 - q entspricht Rotation um Winkel α mit normiérter Drehachse r

Anwendung bei Interaktion und Animation (muss für Rendering in Matrix umgerechnet werden)

Einschub: Basistransformation

• Multipliziert man Einheitsvektoren $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$ des \mathbb{R}^3 mit Matrix A, stehen Bilder der Basisvektoren bzgl. der linearen Abbildung A in den Spalten der A

beschreibenden Matrix

• X-Achse:

• Y-Achse:

• Z-Achse:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \mathbf{a}_{13} \\ a_{21} & a_{22} & \mathbf{a}_{23} \\ a_{31} & a_{32} & \mathbf{a}_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$$

Neue Spaltenvektoren sind Bilder der ursprünglichen Basisvektoren

Einschub: Basistransformation

Beispiel im 2D:

• Ergibt Transformation der 2D-Basisvektoren $\overrightarrow{b_x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ u. $\overrightarrow{b_y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ z.B. die Bilder

 $\overrightarrow{b_x'} = \binom{2}{2}$ und $\overrightarrow{b_y'} = \binom{-1}{2}$, dann wird zugehörige lineare Abbildung beschrieben

durch Matrix B = $\begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$

Herleitung 3D-Rotation

- Übertragen des Beispiels auf Rotation um z-Achse?
 - Basisvektor x-Achse: $\begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix}$
 - Basisvektor y-Achse: $\begin{pmatrix} -\sin \alpha \\ \cos \alpha \\ 0 \end{pmatrix}$

- z-Achse wird bei Rotation um sich selbst nicht verändert!
- Eintragen der Bilder der Basisvektoren des \mathbb{R}^3 in Spalten der Matrix liefert:

$$R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Hinweise zum Rechnen mit Matrizen h da

- Einheitsmatrix E ist neutrales Element der Matrixmultiplikation
- Rotationsmatrizen sind orthonormal: wenn R^{-1} Inverse einer 3x3-Matrix R ist, dann ist R^{-1} gleich der Transponierten R^T
 - Transponierte viel schneller zu berechnen als allgemeine Berechnung der Inversen einer Matrix

* Transponierte vier schneiler zu berechnen als aligemeine Berechnung der Inversen einer Matrix
$$R = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow R^{-1} = R^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} & 0 \\ a_{12} & a_{22} & a_{32} & 0 \\ a_{13} & a_{23} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
• Inverse der Translationsmatrix T um Vektor \boldsymbol{t} ist Matrix T^{-1}
$$T^{-1} = T_{-t} = \begin{pmatrix} 1 & 0 & 0 & -t_{x} \\ 0 & 1 & 0 & -t_{y} \\ 0 & 0 & 1 & -t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
mit Translation um $-\boldsymbol{t}$:

- Inverse bei Multiplikation: $(T \cdot R)^{-1} = R^{-1} \cdot T^{-1} = R^T \cdot (T(t))^{-1} = R^T \cdot T(-t)$

Übung 5

- Gegeben ist Rotation **R** von α =30° um y-Achse und Translation **T** entlang Vektor $\vec{t} = (1, -2, 1/2)^T$
 - Wie lautet Gesamttransformation M = T · R?
 - Geben Sie erst R und T an!
 - Hinweis: $\sin 30^\circ = 1/2$ und $\cos 30^\circ = \sqrt{3}/2$
- Sie möchten ein 3D-Objekt erst um den lokalen Ursprung drehen und es dann verschieben
 - Begründen Sie, welche der beiden Matrizen, N = R · T oder M = T · R, Sie nehmen würden, oder ist es egal?
- Geben Sie zu **R** und **T** die inverse Matrix **R**⁻¹ und **T**⁻¹ an
 - Wie lautet die Inverse von M = T · R?

Rotation um beliebigen Punkt

- Auch bei Elementarrotationen ist Ursprung Rotationszentrum
 - Rotationen lassen Ursprung fest (ist invariant bzgl. Rotation)
- Allgemeiner Fall: beliebiges Rotationszentrum (Pivot-Punkt)
 - Transliere Objekt so, dass Pivot-Punkt c in Ursprung liegt
 - Rotiere Objekt um Ursprung (als neuem Rotationszentrum)
 - Undo der Translation (d.h., transliere alles zurück zu Pivot c)
- Sei C Translationsmatrix zu Pivot: $p' = T \cdot C \cdot R \cdot S \cdot C^{-1} \cdot p$

Rotation um beliebige Achse

- Rotation about arbitrary axis by multiplying basic rotations
- General 3D rotation often defined by rotation angle and axis
 - Unit vector r indicates axis of rotation (points on axis remain unchanged)
 - Scalar θ indicates angle of rotation
 - We assume that rotation axis passes through origin
 - Otherwise, first translate such that **r** is passing through origin

Rotation um beliebige Achse

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

- Drehung $R_{\alpha}(\mathbf{r})$ um Winkel α um beliebige Achse, gegeben durch normierten Vektor $\mathbf{r} = (x, y, z)^{T}$
 - Drehachse **r** mit Matrix R^{-1} auf (z-, y- oder) x-Achse drehen
 - Um Winkel α um (z-, y- oder) x-Achse rotieren
 - Von x- (oder z- bzw. y-) Achse mit Matrix R zurück auf r drehen

•
$$p' = R \cdot R_{\alpha}(x) \cdot R^{-1} \cdot p = R_{\alpha}(r) \cdot p$$

Rotation um beliebige Achse u. Punkt

- Rotationsachse *r* durch beliebigen Pivot-Punkt
 - Verschiebung des Rotationszentrums c in Ursprung
 - Anschließende Rotation $R_{\alpha}(\mathbf{r})$ wie zuvor beschrieben
 - Zurückverschiebung mit Matrix C um Rotationszentrum c

•
$$p' = C \cdot R_{\alpha}(r) \cdot C^{-1} \cdot p$$

Model (bzw. World) Matrix

- Beschreibung der Transformationen eines 3D-Modells in 3D-Welt durch sog.
 Model-Matrix M
 - Kombinationen von Position, Orientierung und Skalierung
 - Typische Reihenfolge bei Rotationszentrum c ungleich Nullvektor: $p' = T \cdot C \cdot R \cdot S \cdot C^{-1} \cdot p$
 - Matrix *M* überführt lokale Koordinaten in Weltkoordinaten
 - Berechnung für alle Eckpunkte p erfolgt normalerweise auf GPU
- Verschiedene Modell-Instanzen mit unterschiedlichen Transformationen möglich

Koordinaten-Transformationen in 3D

Objekte normalerweise in "lokalem" Ursprung erzeugt

Car Body Engine Wheels Wheel Wheel Wheel Wheel Transform Transform Transform Transform Wheel **Wheel** Wheel Wheek Geometry Geometry Geometry Geometry

Szenengraphen

Aufbau und Traversierung

Zwei Beispiele für Szenengraphen

Anwendung bei Modellierung

Gerichteter zyklenfreier Graph

Szenengraph (SG)

- Hierarchische Modellierung einer 3D-Szene
 - Durch gerichteten azyklischen Graphen (DAG) mit Eltern-Kind Beziehungen
 - Modelliert räumliche Beziehung zwischen (Teil-)Objekten
 - Erlaubt z.B. hierarchisches Frustum Culling
- Besteht aus mindestens drei Knotentypen (darstellbare Primitive in Blättern)
 - Gruppen
 - Geometrien (inkl. Materialeigenschaften)
 - Transformationen
- Dient zur Verwaltung einer komplexeren Szene
 - Gruppierung von Geometrien zu Gruppen
 - Gruppierung von Gruppen zu Gruppen
 - Gruppierung von Gruppen zu einer Szene

Szenengraph traversieren

- Den Knoten sind Koordinatensysteme zugeordnet
 - Innere (Transformations-)Knoten halten Matrizen M_i , gruppieren Objekte (Teilgraph)
- Gesamttransformation M durch Traversierung je von Wurzel bis Blattknoten
 - Transformationsmatrizen werden beim Depth First Traversal aufmultipliziert
 - Blätter halten Geometrie je in lokalem Objektraum

Order of Transformations in SG

• Starting from root other elements are inserted as children or siblings

• Geometry in leaf nodes, with inheritance of attributes in inner nodes

- Each SG node inherits transformation of its parent and so on
- Transform nodes help to group and reposition objects
 - Translation, rotation, scale most important properties
 - Transformations are specified in reverse order as applied
- Core idea of SG: transformation hierarchy
 - Accumulated matrix obtained by depth first traversal (root to leaf)
 - Transformations applied to each vertex from leaf to root node
 - Transforms geometry to world space

$$p' = T_1 \cdot T_2 \cdot T_4 \cdot p = M \cdot p$$

 \rightarrow = Child of

Coordinate Transformations

- Let S world and O_1 , O_2 , O_3 geometric objects (with transformation matrices M_1 , M_2 , M_3 , C)
- Then it holds for world coordinates:

•
$$O_{1_{WC}} = M_1 \cdot Q_1$$

• $O_{2_{WC}} = M_2 \cdot M_3 \cdot Q_2$
• $O_{3_{WC}} = C \cdot Q_3$ Model Matrix M

• And for local coordinates in C:

•
$$O_{1|c} = C^{-1} \cdot O_{1wc} = C^{-1} \cdot M_1 \cdot O_1$$

• $O_{2|c} = C^{-1} \cdot O_{2wc} = C^{-1} \cdot M_2 \cdot M_3 \cdot O_2$

• \rightarrow Transformation in O₃'s local space:

•
$$v_1 = C^{-1} \cdot M \cdot v$$

Where M is accumulated matrix

Übung 6

- Was sind die für die Computergraphik wichtigen Typen affiner Abbildungen?
 - Wie lassen sich diese kompakt darstellen?
- Gegeben ist der skizzierte Szenengraph
 - Wie werden die Transformationen auf alle Eckpunkte p von Geometrie O₁ angewendet?
 - Wie transformieren Sie die zu O₁ gehörigen Eckpunkte ins Koordinatensystem von O₂?
 - Sei T_2 Rotation um Winkel α um x-Achse und T_1 , T_3 Translationen
 - Wie lautet die Gesamtmatrix M?

Pinguin mittels Szenengraph erzeugen h da

Einführung in Qt 3D

Szenengraphen mit Qt erstellen

Qt 3D Modul

- Teilmodule (Namespaces):
 - Qt3DCore, Qt3DRender, Qt3DExtras, ...

- https://doc.qt.io/qt-6/qt3d-index.html
- https://doc.qt.io/qt-6/qt3d-overview.html
- Kameraverhalten: https://doc.qt.io/qt-6/qt3dextras-qorbitcameracontroller.html#details
- C++-Beispiele
 - https://doc.qt.io/qt-6/qt3d-examples.html (unten)
- Mathe-Klassen
 - Matrix: https://doc.qt.io/qt-6/qmatrix4x4.html
 - Vector3D: https://doc.qt.io/qt-6/qvector3d.html

Qt 3D Architektur

- Nutzt primär Aggregation statt Vererbung, um dynamisch Objekteigenschaften festzulegen
 - QEntity (repräsentiert Objekt) hat Komponenten (QComponent)
 - Statt DAG Baum aus QEntity Knoten (parametriert durch QComponent)
- Sog. ECS (Entity Component System)
 - Renderer sucht für Darstellung nach Entities mit Mesh, Material und Transform Komponenten

Simulated object. Aggregates components

Entity Component System

Aufbauen des Szenengraphen (1)

- Hierarchie von Szenengraph-Knoten
- Gebildet durch Angabe des Parent-Knotens
 - Qt3DCore::QEntity *node = new Qt3DCore::QEntity(parent);
 - Wurzelknoten hat keinen Elternknoten
 - Qt3DCore::QEntity *root = new Qt3DCore::QEntity();

Mesh: Qt3DExtras::QSphereMesh *mesh = new Qt3DExtras::QSphereMesh();

Material: Qt3DExtras::QPhongMaterial *mat = new Qt3DExtras::QPhongMaterial();

• Transform: Qt3DCore::QTransform *trafo = new Qt3DCore::QTransform();

Hinzufügen: node->addComponent(trafo);

Rest analog, z.B.: node->addComponent(mesh);

Aufbauen des Szenengraphen (2)

N_i: Szenengraphknoten (Qt3DCore::QEntity)

M_i: Meshes (Polygonnetze für 3D-Objekte)

T_i: Transformationen (Translation, Rotation...)

Transformieren mit Qt (Variante 1)


```
Qt3DExtras::QCuboidMesh *cubeMesh = new Qt3DExtras::QCuboidMesh();
cubeMesh->setXExtent(2);
cubeMesh->setYExtent(2);
cubeMesh->setZExtent(2);
Qt3DExtras::QPhongMaterial *mat = new Qt3DExtras::QPhongMaterial();
mat->setDiffuse(QColor(255, 0, 0));
Qt3DCore::QTransform *cubeTransform = new Qt3DCore::QTransform();
cubeTransform->setMatrix(QMatrix4x4(1, 0, 0, 0,
                                    0, 0, 1, -3, 0, -1, 0, 0,
Qt3DCore::QEntity *node = new Qt3DCore::QEntity(root);
node->addComponent(cubeMesh);
node->addComponent(mat);
node->addComponent(cubeTransform);
```

Transformieren mit Qt (Variante 2)


```
Qt3DExtras::QCuboidMesh *cubeMesh = new Qt3DExtras::QCuboidMesh();
cubeMesh->setXExtent(2);
cubeMesh->setYExtent(2);
cubeMesh->setZExtent(2);
Qt3DExtras::QPhongMaterial *mat = new Qt3DExtras::QPhongMaterial();
mat->setDiffuse(QColor(255, 0, 0));
Qt3DCore::QTransform *cubeTransform = new Qt3DCore::QTransform();
cubeTransform->setTranslation(QVector3D(0, -3, 0));
cubeTransform->setRotationX(90);
Qt3DCore::QEntity *node = new Qt3DCore::QEntity(root);
node->addComponent(cubeMesh);
node->addComponent(mat);
node->addComponent(cubeTransform);
```

Sonderfall für M = T ⋅ R ⋅ S → interne Transformations-Reihenfolge fest eingebaut, also erst Skalierung, dann Rotation, zuletzt Translation (neu Setzen von z.B. Rotation überschreibt nur alten Wert)

Transformieren mit Qt (Variante 3)


```
Qt3DExtras::QCuboidMesh *cubeMesh = new Qt3DExtras::QCuboidMesh();
cubeMesh->setXExtent(2);
cubeMesh->setYExtent(2);
cubeMesh->setZExtent(2);
Qt3DExtras::QPhongMaterial *mat = new Qt3DExtras::QPhongMaterial();
mat->setDiffuse(QColor(255, 0, 0));
Qt3DCore::QTransform *cubeTransform = new Qt3DCore::QTransform();
cubeTransform->setTranslation(QVector3D(0, -3, 0));
Qt3DCore::QEntity *node = new Qt3DCore::QEntity(root);
node->addComponent(cubeTransform);
Qt3DCore::QTransform *trafo = new Qt3DCore::QTransform();
trafo->setRotationX(90);
Qt3DCore::QEntity *child = new Qt3DCore::QEntity(node);
child->addComponent(cubeMesh);
child->addComponent(mat);
child->addComponent(trafo);
```


Vielen Dank!

Noch Fragen?