Boundedness problems in games: a roadmap

Nathanaël Fijalkow (based on a joint work with Martin Zimmermann)

Institute of Informatics, Warsaw University - Poland

LIAFA, Université Paris 7 Denis Diderot – France

September 21st, 2012

Two-player turn-based games over finite graphs

Two-player turn-based games over **finite** graphs

Winning condition: "there exists B, such that ..."

Two-player turn-based games over **finite** graphs

Winning condition: "there exists B, such that ..."

increment: *i* or " $c \leftarrow c + 1$ "

no action: ε

reset: r or " $c \leftarrow 0$ "

decrement: " $c \leftarrow c - 1$ "

refill: " $c \leftarrow c + \omega$ "

Actions: ε , i, r.

B-conditions are conjunctions of:

- "counter c is bounded"
- Büchi(F): "F appears infinitely often"
- \bullet CoBüchi(G): "G appears finitely often"

Actions: ε , i, r.

B-conditions are conjunctions of:

- "counter c is bounded"
- Büchi(F): "F appears infinitely often"
- CoBüchi(G): "G appears finitely often"

Observation

Eve wins "counter c is bounded" if and only if she wins "Büchi(i) \Rightarrow Büchi(r)".

Actions: ε , i, r.

B-conditions are conjunctions of:

- "counter c is bounded"
- Büchi(*F*): "*F* appears infinitely often"
- CoBüchi(G): "G appears finitely often"

Observation

Eve wins "counter c is bounded" if and only if she wins "Büchi(i) \Rightarrow Büchi(r)".

Corollary

One can decide who wins a B-game and Eve needs finite memory.

The surprising: finitary parity (Alur, Henzinger)

Parity:

Almost all requests are answered.

Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

Parity:

Almost all requests are answered.

Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

Eve wins for the parity condition,

but loses for the finitary parity condition!

Parity:

Almost all requests are answered.

- Both players have positional winning strategies.
- Deciding the winner is in $NP \cap coNP$.

Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

- Eve has positional winning strategies.
- Adam needs infinite memory.
- Deciding the winner is in PTIME.

 $B(\epsilon, i, r)$

parity

finitary parity

Cost-parity conditions

Parity:

Almost all requests are answered.

Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

Parity:

Almost all requests are answered.

Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

Cost-parity:

There exists a bound b, s.t. almost all requests are answered with cost at most b.

Deciding the winner in cost-parity games

n: number of vertices

m: number of edges

d: number of colors

Theorem (F., Zimmermann 2012)

Given a parity games solver of complexity T(n, m, d), we construct a cost-parity games solver of complexity

$$O(n \cdot T(n \cdot d, m \cdot d, d + 2))$$
.

Positional determinacy for Eve

Objective: strategy optimization

Assume σ is a winning strategy.

How to construct a memoryless winning strategy σ' from σ ?

Positional determinacy for Eve

Objective: strategy optimization

Assume σ is a winning strategy. How to construct a memoryless winning strategy σ' from σ ?

Tool: scoring functions

"à la Müller and Schupp" past-oriented proof

Multi-energy

increment: *i* or " $c \leftarrow c + 1$ "

no action: ε

decrement: " $c \leftarrow c - 1$ "

(Tomáš Brázdil, Jakub Chaloupka, Krishnendu Chatterjee, Laurent Doyen, Uli Fahrenberg, Petr Jančar, Line Juhl, Antonín Kučera, Kim G. Larsen, Jean-François Raskin, Mickael Randour, Jiři Srba,...)

Consumption

inerement: i or " $c \leftarrow c + 1$ "

no action: ε

refill: " $c \longleftarrow c + \omega$ "

(Tomáš Brázdil, Krishnendu Chatterjee, Antonín Kučera, Petr Novotný, CAV'2012)

B-conditions with checks

check: "counter c is bounded on **checked** values"

increment:
$$i$$
 or " $c \leftarrow c + 1$ "

no action: ε

reset: "
$$c \leftarrow 0$$
"

max: " $c \leftarrow \max(c', c'')$ "

