Fast Estimation and Selection of Autologistic Regression Models via Penalized Pseudo-Likelihood

Rao Fu^a, Andrew L. Thurman^b, Michelle M. Steen-Adams^c, Jun Zhu^d

^aDepartment of Statistics, University of Wisconsin at Madison, Madison, WI 53706

^bDepartment of Statistics, University of Wisconsin at Madison, Madison, WI 53706

^cDepartment of Environmental Studies, University of New England, Biddeford, ME 04005

^dDepartment of Statistics and Department of Entomology, University of Wisconsin at Madison, Madison, WI 53706

Abstract

XXX

Key words: XXX

1. Introduction

2. Autologistic Regression Models

- 2.1. Autologistic Regression
- 2.2. Centered Model

3. Estimation and Selection of Autologistic Models

- 3.1. Maximum Pseudolikelihood
- 3.2. Variable Selection
- 3.3. Variance Estimation

Let $\mathcal{J}(\beta) = \frac{\partial \ell_{\mathbf{p}}(\boldsymbol{\theta})}{\partial \beta} \{ \frac{\partial \ell_{\mathbf{p}}(\boldsymbol{\theta})}{\partial \beta} \}'$. By arguments similar to Banerjee *et al.* (2004), the following central limit theory holds for the MPLE $\hat{\beta}_{\mathbf{p}}$:

$$\{\mathcal{J}(\widehat{\boldsymbol{\beta}}_{p})\}^{-1/2}\mathcal{I}(\widehat{\boldsymbol{\beta}}_{p})\{\widehat{\boldsymbol{\beta}}_{p}-\boldsymbol{\beta}\} \to_{d} \mathcal{N}_{p}(0, \boldsymbol{I}_{p+1}).$$
 (1)

Email addresses: rfu7@wisc.edu (Rao Fu), athurman@wisc.edu (Andrew L. Thurman), msteenadams@une.edu (Michelle M. Steen-Adams), jzhu@stat.wisc.edu (Jun Zhu)

Therefore, an estimate of the variance of $\widehat{\boldsymbol{\beta}}_p$ is

$$\widehat{Var}(\widehat{\boldsymbol{\beta}}_{p}) \approx \mathcal{I}(\widehat{\boldsymbol{\beta}}_{p})^{-1} \mathcal{J}(\widehat{\boldsymbol{\beta}}_{p}) \mathcal{I}(\widehat{\boldsymbol{\beta}}_{p})^{-1}.$$
 (2)

For the MPPLE, we replace the MPLE $\hat{\beta}_p$ in the variance formula (2) with the vector of non-zero entries of the MPPLE $\hat{\beta}_{pp}$. The operations involved in the variance estimation are of dimension $(p+1)\times(p+1)$ and generally manageable. We will show by a simulation study that these variance estimates perform reasonably well for finite samples.

In particular under the uncentered model for the 0-1 coding of the response variable, the first-order and second-order derivatives of $\ell_p(\boldsymbol{\theta})$ with respect to $\boldsymbol{\beta}$ are

$$\mathcal{I}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \frac{\exp(\boldsymbol{x}_{i}'\boldsymbol{\beta} + \eta \sum_{i' \sim i} Z_{i'})}{\{1 + \exp(\boldsymbol{x}_{i}'\boldsymbol{\beta} + \eta \sum_{i' \sim i} Z_{i'})\}^{2}} \text{ and}$$

$$\mathcal{J}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \sum_{i' \sim i, i' = i} \left[\boldsymbol{x}_{i} \left\{ Z_{i} - \frac{\exp(\boldsymbol{x}_{i}'\boldsymbol{\beta} + \eta \sum_{i' \sim i} Z_{i'})}{1 + \exp(\boldsymbol{x}_{i}'\boldsymbol{\beta} + \eta \sum_{i' \sim i} Z_{i'})} \right\} \right]$$

$$\left[\boldsymbol{x}_{i'}' \left\{ Z_{i'} - \frac{\exp(\boldsymbol{x}_{i'}'\boldsymbol{\beta} + \eta \sum_{i'' \sim i'} Z_{i''})}{1 + \exp(\boldsymbol{x}_{i'}'\boldsymbol{\beta} + \eta \sum_{i'' \sim i'} Z_{i''})} \right\} \right]'.$$

Under the centered model for the 0-1 coding of the response variable, the first-order and secondorder derivatives of $\ell_p(\boldsymbol{\theta})$ with respect to $\boldsymbol{\beta}$ are

$$\mathcal{I}(\beta) = \sum_{i=1}^{n} \left[x_{i} - \eta \sum_{i' \sim i} \frac{\exp(x'_{i'}\beta)}{\{1 + \exp(x'_{i'}\beta)\}^{2}} x_{i'} \right] \left[x_{i} - \eta \sum_{i' \sim i} \frac{\exp(x'_{i'}\beta)}{\{1 + \exp(x'_{i'}\beta)\}^{2}} x_{i'} \right] \right] \\
- \frac{\exp(x'_{i}\beta + \eta \sum_{i' \sim i} (Z_{i'} - \mu_{i'}))}{\{1 + \exp(x'_{i}\beta + \eta \sum_{i' \sim i} (Z_{i'} - \mu_{i'}))\}^{2}} - \sum_{i=1}^{n} \sum_{i' \sim i} \eta \left\{ Z_{i} - \frac{\exp(x'_{i}\beta + \eta \sum_{i'' \sim i} (Z_{i''} - \mu_{i''}))}{1 + \exp(x'_{i}\beta + \eta \sum_{i'' \sim i} (Z_{i''} - \mu_{i''}))} \right\} \\
- \frac{\exp(x'_{i'}\beta) - \{\exp(x'_{i'}\beta)\}^{2}}{\{1 + \exp(x'_{i'}\beta)\}^{3}} x_{i'} x'_{i'} \\$$

$$\mathcal{J}(\beta) = \sum_{i=1}^{n} \sum_{i' \sim i, i' = i} \left[\left\{ x_{i} - \eta \sum_{i' \sim i} \frac{\exp(x'_{i'}\beta)}{(1 + \exp(x'_{i'}\beta))^{2}} x_{i'} \right\} \left\{ Z_{i} - \frac{\exp(x'_{i}\beta + \eta \sum_{i' \sim i} (Z_{i'} - \mu_{i'}))}{1 + \exp(x'_{i}\beta + \eta \sum_{i'' \sim i'} (Z_{i''} - \mu_{i''}))} \right\} \right] \\
\left[\left\{ x_{i'} - \eta \sum_{i'' \sim i'} \frac{\exp(x'_{i''}\beta)}{(1 + \exp(x'_{i''}\beta))^{2}} x_{i''} \right\} \left\{ Z_{i'} - \frac{\exp(x'_{i'}\beta + \eta \sum_{i'' \sim i'} (Z_{i''} - \mu_{i''}))}{1 + \exp(x'_{i'}\beta + \eta \sum_{i'' \sim i'} (Z_{i''} - \mu_{i''}))} \right\} \right]'.$$

Under the alternative ± 1 coding, the variance estimation can be obtained in analogy to (2)

$$\widehat{Var}(\widehat{\hat{\boldsymbol{\beta}}}_{p}) \approx \mathcal{I}(\widehat{\hat{\boldsymbol{\beta}}}_{p})^{-1} \mathcal{J}(\widehat{\hat{\boldsymbol{\beta}}}_{p}) \mathcal{I}(\widehat{\hat{\boldsymbol{\beta}}}_{p})^{-1}.$$
(3)

Under uncentered model , the first-order and second-order derivatives of $\ell_p(\tilde{\boldsymbol{\theta}})$ with respect to $\tilde{\boldsymbol{\beta}}$ are

$$\mathcal{I}(\tilde{\boldsymbol{\beta}}) = \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \left[1 - \left\{ \frac{\sinh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i' \sim i} \tilde{Z}_{i'})}{\cosh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i' \sim i} \tilde{Z}_{i'})} \right\}^{2} \right] \\
\mathcal{J}(\tilde{\boldsymbol{\beta}}) = \sum_{i=1}^{n} \sum_{i' \sim i, i' = i} \left[\boldsymbol{x}_{i} \left\{ \tilde{Z}_{i} - \frac{\sinh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i' \sim i} \tilde{Z}_{i'})}{\cosh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i' \sim i} \tilde{Z}_{i'})} \right\} \right] \\
\left[\boldsymbol{x}_{i'} \left\{ \tilde{Z}_{i'} - \frac{\sinh(\boldsymbol{x}_{i'}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i'' \sim i'} \tilde{Z}_{i''})}{\cosh(\boldsymbol{x}_{i'}'\tilde{\boldsymbol{\beta}} + \tilde{\eta} \sum_{i'' \sim i'} \tilde{Z}_{i''})} \right\} \right]'.$$

4. Simulation Study

4.1. Simulation Set-up

We conducted a simulation study to examine the finite-sample properties of the method developed in Sections 2–3. Consider an $m \times m$ square lattice, where m = 15 or 30, corresponding to sample sizes n = 225 or 900. For spatial dependence, the neighborhood structure is of the first order and the autoregression coefficient η is either 0.3 or 0.7, corresponding to weaker or stronger spatial dependence.

Let $u_j = (u_{j1}, \dots, u_{jn})'$ denote the jth covariate vector such that $\{u_{ji} : i = 1, \dots, n\}$ is a Gaussian random field with mean 0 and an exponential covariance function

$$Cov(u_{ji}, u_{ji'}) = \sigma^2 \exp(-|i - i'|/\tau), \tag{4}$$

where we let the variance parameter be $\sigma^2 = 1$ and the range parameter be $\tau = 0.1$. To obtain cross-covariate correlation, let $\mathbf{u}_i = (u_{1i}, \dots, u_{pi})'$ and $\mathbf{x}_i = \mathbf{A}\mathbf{u}_i$ for site i, where $\mathbf{A}\mathbf{A}' = [\rho^{|j-j'|}]_{j,j'=1}^p$ and $\rho = 0.4$.

Let p = 10 be the number of covariates. The regression coefficients is set to be $\beta = (1, \beta_1, 1, 1, \mathbf{0}'_7)'$, that is, 3 out of 10 coefficients are non-zero and the remaining 7 coefficients are zero. For the 0-1

coding, we adopt the notion of an average large-scale structure as the average of μ_i over all sites and covariates (Fan and Li, 2001). Let

$$\bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mu_i = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp(\mathbf{x}_i'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i'\boldsymbol{\beta})}$$
 (5)

The large-scale structure is considered to be weak when $\bar{\mu}$ is around 0.5 and strong otherwise. For the ± 1 coding, we define the average large-scale structure analogously as

$$\bar{\tilde{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\mu}_{i} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sinh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}})}{\cosh(\boldsymbol{x}_{i}'\tilde{\boldsymbol{\beta}})}$$
(6)

In this case, the large-scale structure is considered to be weak if $\bar{\mu}$ is close to 0 but strong otherwise. Here, we let $\beta_1 = 1$ or 5, which corresponds to a stronger or weaker large-scale structure, respectively.

4.2. Simulation Results

Table 1 provides the results of variable selection for sample size n = 225 and 900 in terms of the average numbers of correctly identified zero-valued and non-zero regression coefficients. The true number of non-zero and zero regression coefficients are 3 and 7, respectively.

5. Data Example

Banerjee et al. (2004) did this ... The arguments are like this (Banerjee et al., 2004). Equation (2) implies this...

6. Conclusions and Discussion

Acknowledgments

References

Banerjee, S., and Carlin, B.P., and Gelfand, A.E. (2004) Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall: Boca Raton.

- Besag, J. (1972) Nearest-neighbour systems and the auto-logistic model for binary data. *Journal* of the Royal Statistical Society Series B, **34**, 75–83.
- Diggle, P.J. and Ribeiro, P.J. (2007) Model-based Geostatistics, New York: Springer.
- Efron, B., Hastie, T., and Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). *Annals of Statistics*, **32**, 407–499.
- Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. *Journal of the American Statistical Association*, **96**, 1348–1360.
- Steen-Adams, M.M. (2005) Change on a Northern Wisconsin Landscape: Legacies of Human History. University of Wisconsin, Madison, Wisconsin, USA.

Table 1: Average number of correctly identified non-zero and zero regression coefficients when $\beta_1 = 5$ (weak large-scale structure) for uncentered and centered model, sample size n = 225 or 900 and antoregression coefficient $\eta = 0.3$ or 0.7.

	$\{\beta_j\}$	Number of non-zero estimates		Number of zero estimates	
Model	n	$\eta = 0.3$	$\eta = 0.7$	$\eta = 0.3$	$\eta = 0.7$
Uncentered	255	2.77	2.69	6.12	6.14
	900	3.00	3.00	6.81	6.88
Centered	255	2.75	2.67	6.21	6.17
	900	3.00	3.00	6.87	6.82

Figure 1: Box plot of the MPPLE $\widehat{\beta}_0$ (row 1), $\widehat{\beta}_1$ (row 2), $\widehat{\beta}_2$ (row 3) and $\widehat{\eta}$ (row 4) from the 100 simulations with sample size n=225. Column (a): uncentered model with $\beta_1=5$ (weak large-scale structure); (b): uncentered model with $\beta_1=1$ (strong large-scale structure); (c): centered model with $\beta_1=5$ (weak large-scale structure); (d): centered model with $\beta_1=1$ (strong large-scale structure). The true values are $\beta_0=1$, $\beta_1=1$ or 5, $\beta_2=1$, $\beta_3=1$, and $\eta=0.3$ or 0.7. The box plot of $\widehat{\beta}_3$ is similar to $\widehat{\beta}_2$ but omitted to save space.