

Tarification des contrats d'assurance automobile

Guy Tsang, Axel Gardahaut & Léo Dutertre-Ladurée

INTRODUCTION CONTEXTUALISATION ET PRÉSENTATION DES DONNÉES

NATURE DES DONNÉES

Les variables sont anonymisées :

- Variables concernant l'assuré
- Variables concernant la région de l'assuré
- Variables concernant la voiture de l'assuré
- Variables calculées

BASE D'APPRENTISSAGE

Nombre de variables : 57

Nombre d'individus: 416 648

• VARIABLE CIBLE

Réclamation dans un délai d'un an :

- Proportion de 1 dans la base d'apprentissage :
- 3.67%
- Proportion de 1 dans la base de test : 3.60%

MÉTRIQUE CHOISIE

Coefficient normalisé de Giini :

 $Gini = 2 \times AUC - 1$

PLAN

I/. DÉMARCHE

- A) Benchmark
- B) Pré-traitement des données
- C) Sélection des variables
- D) Traitement des données

II/. MODÈLES

- A) Régression logistique pénalisée
- B) XGboost
- C) LightGBM
- D) Stacking

III/. RÉSULTATS

- A) Comparaison des modèles
- B) Sélection du meilleur modèle & Performance

I/. DÉMARCHE A) BENCHMARK

- Seuil à absolument dépasser avec :
 - Le traitement de la base de données
 - La sélection de variables
 - L'utilisation de modèles alternatifs
 - L'hyperparamétrisation des modèles
- Benchmark par LightGBM
 - Sans hyperparamétrisation (définis selon des valeurs usuelles en pratique)
 - Première étude de l'importance des variables du jeu de données
 - Coefficient Normalisé de Gini en validation croisée 5 blocs : 0.2719

I/. DÉMARCHE B) PRÉ-TRAITEMENT DES DONNÉES

Pertinence des transformations

• Construire une variable dichotomique indiquant si la valeur est manquante?

• Considérer les valeurs manquantes comme une modalité de la variable ?

• Remplacer par une médiane?

• Imputation sophistiquée ?

- 2 variables qualitatives
- Remplacement des NA par une nouvelle modalité spéciale (-999)

Imputation

- Variables à faible taux de NA
- Imputation par forêt aléatoire
- Apprentissage sur la base train

Bases de données initiales

- Identification des variables présentant des valeurs manquantes.
- Décision sur le traitement adapté selon la part représentée par les valeurs manquantes.

Bases de données sans valeurs manquantes

Comparaison des distributions avant/après

- Changements sur les fréquences relatives des modalités des variables qualitatives
- Changements sur la distribution des variables quantitatives

I/. DÉMARCHE c) sélection des variables

I/. DÉMARCHE D) TRAITEMENT DES DONNÉES

II/. MODÈLES

A) RÉGRESSION LOGISTIQUE PÉNALISÉE

Modélisation :

$$\min_{\beta} -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \ln p_i + (1 - y_i) \ln (1 - p_i) \right] + R(\beta)$$
sous contraintes : $R(\beta) \le \tau$

- Avantages
 - Restriction de l'erreur quadratique moyenne par rapport à régression logistique classique
 - ✓ Interprétabilité du modèle et littérature abondante pour les tests notamment
 - ✓ Possibilité d'intégrer des interactions entre variables
 - Mécanisme de sélection de variable possible
- Inconvénients
 - X Difficulté à gérer automatiquement les phénomènes non-linéaires
 - × Problèmes en grande dimension
 - × Moins performant dans ce cas de figure

II/. MODÈLES

B) XGBOOST (2016): BOOSTING + GRADIENT DESCENT

Modélisation :

$$\mathcal{L} = \sum_{i} l\left(\hat{y}_{i}, y_{i}\right) + \sum_{k} \Omega\left(f_{k}\right)$$

Avantages

- ✓ Très efficace
- ✓ Gère automatiquement les phénomènes non-linéaires
- ✓ Très customisable car un grand nombre de paramètres
- Mécanisme de sélection de variable possible

Inconvénients

- × Interprétabilité du modèle
- × Risques d'overfitting
- × Scalable mais problèmes en très grande dimension
- × Justification théorique des performances complexe (basée sur des heuristiques)

Source: Yatai Horizon Consulting

II/. MODÈLES C) LIGHT GBM (2017): FAST TREE GRADIENT BOOSTING

- Même principe que XGboost
- Modélisation : 2 approches différentes
 - GOSS: Sélection des individus les plus informatifs
 - EFB: Réduction des features par regroupement
- Avantages
 - ✓ Avantages du XGboost
 - ✓ Très efficace et rapide (50x plus rapide que XGboost)
 - Mécanisme de sélection de variable et échantillonnage intégré
 - ✓ Justification théorique de certains résultats
- Inconvénients
 - × Interprétabilité du modèle encore moins évidente
 - × Risques d'overfitting accru

II/. MODÈLES D) STACKING ET AUTRES MODÈLES

Principe

- Agrégation de modèles différents construits à partir d'un méta-classifieur
- Les modèles n'ont pas besoin d'être de même nature (LDA + Arbre par exemple)
- Possibilité d'avoir plusieurs couches de stacking

Avantages

- ✓ Permet d'améliorer les prédictions en cas d'informations complémentaires
- Rapidement implémentable à partir des prédictions faites des modèles à agréger

Inconvénients

- × Interprétabilité du modèle encore moins évidente
- × Risques d'overfitting accru

III/. RÉSULTATS A) COMPARAISON DES MODÈLES

III/. RÉSULTATS

B) SÉLECTION DU MEILLEUR MODÈLE & PERFORMANCE

- Modèle combinaison de scores
 - Modèle issu d'une combinaison linéaire des prédictions CV du LightGBM (10%) et ceux du XGB (90%)
 - Pour information : AUC sur la base test égale à 0.6440
- Classification à partir du modèle retenu
 - Cut obtenu en optimisant le score F1 sur la base train
 - Matrice de confusion et performances de classification

		Observé	
		0	1
Prédiction	0	152 542	4 827
	1	19 596	1 599

	F1	Rappel
Validation	0.1176	0.2482
Test	0.1158	0.2488

Annexes

Guy Tsang, Axel Gardahaut & Léo Dutertre-Ladurée

ANNEXES (1/5) HYPERPARAMETRES DU LGBM DE BENCHMARK

- Hyperparamètres
 - Taux d'apprentissage : 0.01
 - Profondeur maximale d'un arbre : 10
 - Nombre maximal de feuilles par arbre : 20
 - Nombre minimal d'observations dans une feuille : 10
 - Part de variables à utiliser par itération : 0.8
 - Bagging sur les observations : 0.8

ANNEXES (2/5) STRATEGIE DE FUSION PAR AFDM

ANNEXES (3/5) STRATEGIE DE FUSION PAR TABLEAUX CROISES

Fréquences marginales par modalité (ps_car_06_cat)

Les modalités en rouge ont une fréquence inférieure à 5%

ANNEXES (4/5)

CORRELATION ET DEPENDANCE ENTRE VARIABLES

ANNEXES (5/5)

GRILLES D'HYPERPARAMETRISATION DES MODELES

- Arbre de décision
 - ✓ Profondeur maximale : 1 à 5 par 1
- Elastic Net
 - ✓ Alpha (pénalisation) : 0 à 1 par 0.1
 - ✓ Lambda (poids pénalisation) : 0 à 3 par 0.2
- K plus proches voisins
 - ✓ Nombre de voisins : 3
- SVM
 - ✓ Kernel : non linéaire (RBF)
 - ✓ Sigma (noyau): 1
 - ✓ C (précision de la marge) : 1

- Forêt aléatoire
 - ✓ Variables par itération : 3 à 28 (80%) par 1
 - ✓ Fonction d'entropie : gini
 - ✓ Nombre minimal d'obs par feuille : 1

GBM

- ✓ Nombre d'arbres : 300 à 600 par 100
- ✓ Profondeur maximale: 1 à 6 par 1
- ✓ Taux d'apprentissage : 0.1
- ✓ Nombre min d'obs par feuille : 1
- AdaBoosting
 - ✓ Nombre d'itérations : 500
 - Profondeur maximale : 5
 - ✓ Taux d'apprentissage : 0.1

- LGB
 - ✓ Profondeur maximale : 5 à 15 par 5
 - Nombre max de feuilles : 10 à 25 par 5
 - ✓ Fraction de variables : 0.7 à 0.9 par 0.1
 - ✓ Fraction d'observations : 0.6 à 0.8 par 0.1

XGB

- Nombre d'itérations : 100 à 500 par 100
- ✓ Taux d'apprentissage : 0.05 ou 0.1
- ✓ Profondeur maximale : 4 à 6 par 1
- Gamma (seuil de gain minimal pour découpe) : 0
- ✓ Part de variables à utiliser par arbre : 0.7
- ✓ Poids minimal des feuilles enfant pour découpe : 0
- ✓ Part des observations par itération : 0.7