Budget Overruns: First Implementation of QuickPay (2009-2012)

Sep 19, 2021

1 Note

- Below is the definition of base_and_all_options_value from the data dictionary:
 - The change (from this transaction only) to the potential contract value (i.e., the base contract and any exercised or unexercised options).
- This means that every observation in raw data shows incremental change from previous budget. So some of the values can be zero.
- We, therefore, need to calculate the new budget at each point in time (by adding all previous values). We did this in the resampling step, but mentioning here for reference.
- This is different from calculation of delays, where period_of_performance_current_end_date indicated the new deadline of the project.

2 Budget Overrun over Time

2.1 Normalized Overrun

3 Notation

- Project i, Year-Quarter t
- X_i denotes project level controls: initial duration, initial budget, number of offers received
- $\mu_t, \theta_{firm}, \lambda_{task}$: Year-Quarter, Firm, and Product/Service code Fixed effects
- $\bullet\,$ All continuous variables are winsorized at the 5% level

$$Treat_i = \begin{cases} 1, & \text{if project } i \text{ is a small business} \\ 0, & \text{otherwise} \end{cases}$$

$$Post_t = \begin{cases} 1, & \text{if year-quarter } t > \text{ April 27, 2011} \\ 0, & \text{otherwise} \end{cases}$$

4 Baseline Regressions

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \epsilon_{it}$$

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 1: Quickpay 2009-2011

	$Overrun_{it}$ (in days)							
	(1)	(2)	(3)	(4)	(5)			
$Treat_i$	$-5,606.99^{***}$ (442.41)	$-4,860.95^{***}$ (467.78)	$-4,580.56^{***}$ (463.49)	$-4,247.65^{***}$ (485.36)	$-4,727.72^{***} $ $(1,267.62)$			
$Post_t$	600.14 (373.36)	$-5,515.13^{***}$ (479.98)						
$Treat_i \times Post_t$	114.97 (484.85)	841.83 (512.87)	685.19 (510.36)	843.73* (507.59)	$404.57 \\ (532.11)$			
Constant	18,064.32*** (348.01)	6,930.79*** (439.67)						
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes			
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes			
Project Age Tercile	No	Yes	Yes	Yes	Yes			
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes			
Task Fixed Effects	No	No	No	Yes	Yes			
Firm Fixed Effects	No	No	No	No	Yes			
Observations	189,371	168,851	168,851	168,851	168,851			
R^2	0.003	0.03	0.04	0.09	0.23			
Adjusted R ²	0.003	0.03	0.04	0.08	0.17			

Note:

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

5 Percentage Overrun

$$PercentOverrun_{it} = \beta_0 + \beta_1 Treat_i + \beta_2 Post_t + \beta_3 (Treat_i \times Post_t) + e_{it}$$

$$PercentOverrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t)$$

$$+ X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

5.1 Percentage Overrun over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $PercentOverrun_{it} = 100 \times Overrun_{it}/Budget_{i,t-1}$

5.1.1 Normalized Overrun

Table 2: Effect of QuickPay on project overrun rates

	$PercentOverrun_{it}$						
	(1)	(2)	(3)	(4)	(5)		
$Treat_i$	-1.26***	-1.59***	-1.32***	-0.94^{***}	-0.72		
	(0.25)	(0.25)	(0.25)	(0.25)	(0.65)		
$Post_t$	-5.23***	-6.24***					
	(0.19)	(0.31)					
$Treat_i \times Post_t$	1.13***	1.18***	0.96***	1.05***	1.00***		
	(0.27)	(0.28)	(0.28)	(0.28)	(0.29)		
Constant	10.79***	14.22***					
	(0.18)	(0.29)					
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times (Duration, Budget, Bids)$	No	Yes	Yes	Yes	Yes		
Project age	No	Yes	Yes	Yes	Yes		
Year-Quarter fixed effects	No	No	Yes	Yes	Yes		
Task fixed effects	No	No	No	Yes	Yes		
Contractor fixed effects	No	No	No	No	Yes		
Observations	160,810	150,245	150,245	150,245	150,245		
R^2	0.01	0.03	0.05	0.08	0.19		
Adjusted R ²	0.01	0.03	0.05	0.07	0.13		

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.

Relative Overrun 6

Relative overruns over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $\bullet \ \ RelativeOverrun_{it} = RelativeOverrun_{it}/IntialDuration_i$

6.1.1 Normalized overrun

Table 3: Effect of QuickPay on project overrun rates

	$RelativeOverrun_{it}$						
	(1)	(2)	(3)	(4)	(5)		
$Treat_i$	-3.63***	-3.96***	-3.61***	-2.26***	-2.47		
	(0.67)	(0.65)	(0.65)	(0.66)	(1.63)		
$Post_t$	-8.40***	-7.83***					
v	(0.45)	(0.57)					
$Treat_i \times Post_t$	1.66***	1.13*	0.87	0.96	1.04		
· ·	(0.64)	(0.63)	(0.63)	(0.63)	(0.66)		
Constant	24.28***	28.57***					
	(0.49)	(0.57)					
Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times (Budget, Bids)$	No	Yes	Yes	Yes	Yes		
Project age	No	Yes	Yes	Yes	Yes		
Year-Quarter fixed effects	No	No	Yes	Yes	Yes		
Task fixed effects	No	No	No	Yes	Yes		
Contractor fixed effects	No	No	No	No	Yes		
Observations	189,365	189,164	189,164	189,164	189,164		
R^2	0.004	0.03	0.03	0.08	0.21		
Adjusted R ²	0.004	0.03	0.03	0.07	0.16		

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.