Q2a: Suppose that f is uniformly continuous. Then we have that for each $\varepsilon>0$ there exists some $\delta>0$ such that $|x-t|<\delta \Longrightarrow |f(x)-f(t)|<\varepsilon$. Now if we fix x in the domain of f, we have continuity of f at x. This is true for any x in the domain of f so f is continuous. We now claim that $f(x):(0,1)\to\mathbb{R}$ defined by $x\mapsto\sin(\frac{1}{x})$ is continuous yet not uniformly continuous. It is easy to see that it is continuous, as it is the composition of two continuous maps. Choose $\varepsilon=1$. Then for every $\delta>0$, we can find $x,t\in(0,\delta)$ where f(x)=1 and f(t)=-1 in the following way. Choose x so that $\frac{1}{x}>\frac{1}{\delta}$, and x is of the form $\frac{1}{x}=\frac{\pi}{2}+2k\pi$ for sufficiently large k. Similarly, choose $\frac{1}{t}=\frac{\pi}{2}+(2k+1)\pi$ for sufficiently large k. We have that $|f(x)-f(t)|=2>\varepsilon$

Q2b: We claim f(x) = 2x is uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$ be given. Choose $\delta = \frac{\varepsilon}{2}$. For any $x, y \in \mathbb{R}$ we compute that

$$|x-y|<rac{arepsilon}{2} \implies |2x-2y|$$

Hence f is uniformly continuous.

Q2c: We claim $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . Choosing $\varepsilon = 1$, and choose $x = y + \frac{\delta}{2}$. We have $|x - y| = |\frac{\delta}{2}| < \delta$. We see that for sufficiently large y, $|f(x) - f(y)| = |\frac{\delta^2}{4} + \delta y| > 1$. Hence f will not be uniformly continuous.