Sine Qua Non for Large Theory Reasoning

Kryštof Hoder Andrei Voronkov

Large Theory Reasoning in First-Order Logic

- Traditional FO problems
 - Not too many axioms
 - Axiomatizations of algebras, set theory
- Large theory problems
 - Many axioms, but most of them are irrelevant to the conjecture
- Axiom selection
 - attempts to remove the irrelevant and keep the important

Structure of a First-Order problem

Sources of Large Theory Problems

- Ontology reasoning
 - SUMO, YAGO, CyC

- Up to 10m axioms
- Proofs involve few axioms, almost no equalities
- Mathematical libraries
 - Mizar Mathematical Library

- Tens of thousands axioms
- More complex proofs, equalities

Idea: Simple Relevance

- Based on mutual occurrences of symbols in axioms
- Symbol s is 0-relevant if it occurs in the goal
- If s is d-relevant and appears in A, A and its symbols are (d+1)relevant
- Select axioms d-relevant to the conjecture (and assumptions)

$$d \in \{1,...,\infty\}$$

subclass(beverage, liquid) subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)

Problem: Common Symbols

- With this notion of relevance almost all axioms are usually selected
- Common symbols (such as 'subclass' or 'subsumes') make relevant otherwise unrelated symbols

subclass(beverage, liquid)
subclass(beer, beverage)
subclass(chair, furniture)

? subclass(beer, liquid)

Solution: Trigger-Based Selection

- We had
 If s is d-relevant and appears in A, A and its symbols are (d+1)-relevant
- Assuming a 'triggers' relation between symbols and axioms, we can write

If s is d-relevant and triggers A, A and its symbols are (d+1)-relevant

subclass(beverage, liquid) subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)

We want:

0: subclass beer liquid

1: beverage

What Is a Common Symbol?

- There is no a priori information on symbol commonness
- We approximate it by number of occurrences
 - more common symbols appear in more axioms

subclass(beverage, liquid)
subclass(beer, beverage)
subclass(chair, furniture)

Occ.	Symbols
3	subclass
2	beverage
1	liquid, beer, chair, furniture

'Triggers' relation

Occ.	Symbols
3	subclass
2	beverage
1	liquid, beer, chair, furniture

- Should penalize common symbols
- But not ignore them completely

```
subclass(x, y) \land subclass(y, z) \rightarrow subclass(x, z)
```

Our solution:

Only the least common symbols trigger an axiom.

subclass(beverage, liquid) subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)

O: subclass beer liquid

1: beverage

Incompleteness, Unstability

 Small difference in number of occurrences can lead to loss of important axioms 1: $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$

subclass(petrol, liquid)

-subclass(stone, liquid)

2: subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer)

Occ.	Symbols			
7	subclass			
3	liquid			
2	beer, beverage			
1	petrol, stone, guinness			

? subclass(beer,liquid)

0: subclass beer liquid

1: beverage

Incompleteness, Unstability

- Small difference in number of occurrences can lead to loss of important axioms
- Or simply too little axioms may be selected
- We need a possibility to extend the 'triggers' relation

1: $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$

subclass(petrol, liquid)
-subclass(stone, liquid)
subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer) subclass(pilsner,beer)

Occ.	Symbols
7	subclass
3	liquid, beer
2	beverage
1	petrol, stone, guinness, pilsner

? subclass(beer,liquid)

0: subclass beer liquid

Tolerance

t=1.5:

- We had
 Only the least common symbols trigger an axiom
- Having tolerance parameter t
 - Only symbols with t times more occurrences than the least common symbol trigger an axiom
- For t=∞ the selection degrades to the simple relevance

1: $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$

subclass (petrol, liquid)

¬subclass<mark>(stone,</mark>liquid)

2: subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer) subclass(pilsner,beer)

Occ.	Symbols			
7	subclass			
3	liquid, beer			
2	beverage			
1	petrol, stone, guinness, pilsner			

? subclass(beer,liquid)

0: subclass

beer liquid

1:

beverage

Experiments

Two parameters:

- **t** Tolerance
- **d** Depth limit (selects *d*-relevant axioms)

Problem sizes

problems	average size (axioms)	average size (atoms)
SUMO	298,420	323,170
CYC	3,341,990	5,328,216
Mizar	44,925	332,143

CYC:

$d \backslash t$	1.0	1.2	1.5	2.0	3.0	5.0
1	29	35	41	47	60	72
2	142	287	442	607	1027	1476
3	505	937	1451	2484	5311	10482
4	1784	3232	5716	11603	29963	69015
5	4432	8870	16806	37599	110186	249192
7	10698	25607	56337	150277	431875	832935
∞	36356	495360	1310965	1562064	1822427	2057597

Numbers of selected axioms

SUMO:

$d \backslash t$	1.0	1.2	1.5	2.0	3.0	5.0
1	12	13	14	16	21	28
2	70	82	115	158	272	654
3	188	230	372	762	1950	5980
4	316	470	942	3021	8720	23440
5	540	979	2417	8179	22644	52241
7	1027	2708	8517	24445	54958	97481
∞	1116	8361	26959	57322	82379	107926

Mizar:

$d \backslash t$	1.0	1.2	1.5	2.0	3.0	5.0
1	4903	4911	4921		4973	5038
2	5296	5395	5553	5823	6427	7743
3	6118	6451	7068	8280	10841	16337
4	6893	7556	9001	12176	18300	28878
5	7432	8517	11165	16945	26842	37284
7	7897	9991	15788	26203	36507	41443
∞	8047	15987	28353	35345	39389	41762

Experiments

Solved problems

atoms	only with Sine	only without Sine	together
10,000	243	64	721
20,000	217	10	542
40,000	208	7	464
80,000	187	3	373
160,000	138	1	243
320,000	80	1	168
640,000	50	0	100
1,280,000	50	0	50
rating 1	232	25	402

Implemented in Vampire (http://vprover.org)