1 Rappel de probabilité

Certaines lois à savoir

Loi	$Pr(X = x)$ ou $f_X(x)$	E[X]	Var(X)	$M_X(t)$
Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	пр	np(1-p)	$\left((1-p) + p^t \right)^n$
$Pois(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$e^{\lambda(t-1)}$
$Gamma(\alpha,\lambda)$	$\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$
Normale (μ, σ^2)	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$

> gl

Moments à savoir

$$\mu'_{k} = E\left[X^{k}\right]$$

$$\mu_{k} = E\left[(X - \mu)^{k}\right]$$

$$CV = \frac{\sigma}{E\left[X\right]}$$

$$\gamma_{1} = \frac{\mu_{3}}{\sigma^{3}}$$

$$\gamma_{2} = \frac{\mu_{4}}{\sigma^{4}}$$