中国自动驾驶市场专题分析2018

2018年10月

分析定义与分析方法

分析定义

中国自动驾驶行业:是指通过在车辆上搭载不同类型的传感器,实现车辆对周边交通状况的感知和识别,进一步通过芯片算法做出相应的决策,通过把决策信号传递给车辆控制系统的方式,对车辆实现不同级别的控制。

分析范畴

- 分析对象: 中国自动驾驶行业。
- 本分析内容涉及的关键字:自动驾驶、人工智能、深度学习、传感器、 芯片、算法等。
- 本分析内容的国家和区域主要包括: 中国大陆,不包括港澳台地区

数据说明

易观干帆"A3"算法升级说明:易观干帆"A3"算法引入了机器学习的方法,使易观干帆的数据更加准确地还原用户的真实行为、更加客观地评价产品的价值。整个算法的升级涉及到数据采集、清洗、计算的全过程:1、采集端:升级SDK以适应安卓7.0以上操作系统的开放API;通过机器学习算法,升级"非用户主观行为"的过滤算法,在更准确识别的同时,避免"误杀"。2、数据处理端:通过机器学习算法,实现用户碎片行为的补全算法、升级设备唯一性识别算法、增加异常设备行为过滤算法等。3、算法模型:引入外部数据源结合易观自有数据形成混合数据源,训练Ai算法机器人,部分指标的算法也进行了调整。

中国自动驾驶市场发展概况

中国自动驾驶市场发展现状

中国自动驾驶市场未来趋势

PART 1

中国自动驾驶市场发展概况

© Analysys 易观

www.analysys.cn

九成以上的交通事故因驾驶不慎导致,自动驾驶技术可减少交 Chalysys 易观 通事故发生率

Analysys易观分析认为,司机驾驶原因导致交通事故的占比超过90%,自动驾驶的出现可以减少因 司机驾驶问题所导致的交通事故,大大提升出行安全,同时自动驾驶的实时路径规划可以为车辆选择 最优的行驶路线,减少交通拥堵,提升交通运输效率。

减少因违反交通法 规或酒驾、毒驾所 造成的交通事故。

通过对全局和局部 路径规划,选择最 优路线到达目的地。 躲避交通拥堵。

路径规划

减少因超速或刻意缓慢 行驶造成的交通事故或 交通拥堵。

防止因疲劳驾驶 或驾驶员注意力 不集中所导致的 交通事故发生。

自动驾驶

疲劳驾驶

01

03

05

随意变道

酒后驾驶

超速

未保持安全车距

注意力不集中

别聚焦在SAE规定的L2-L4阶段

■ NHTSA NATIONAL RIGHWAY TRAFFIC SAFETY ADMINISTRATION	L0 无自动驾驶功能	L1 单一功能辅助驾驶	L2 多功能协同辅助驾驶	L3 有限自动驾驶		_4 动驾驶
INTERNATIONAL 38	LO 无自动驾驶功能	L1 驾驶员辅助	L2 部分自动驾驶	L3 有限自动驾驶	L4 高度自动驾驶	L5 完全自动驾驶
《中国制造2025》	DA 驾驶辅助		PA 部分自动驾驶		HA 高度自动驾驶	FA 完全自动驾驶
功能	无	ABS/ESP/CCS/AC C/LKA	转向+速度控制	自动驾驶(有条件)	自动驾驶(限制场景)	自动驾驶
操控	人类控制	人类 (主) 车辆 (辅)	人类 (主) 车辆 (辅)	人类+车辆	车辆 (主) 人类 (辅)	车辆控制
自动驾驶应用场景	无	限定场景				全部场景

Analysys易观分析认为,实现人类控制向自动驾驶汽车转变将是一个漫长的过程,这里不仅是在技术层面的突破,更是各个国家在政策支持、交通驾驶环境以及 通讯设施部署等方面的考量。

全球多个国家为自动驾驶立法,提供强有力的政策支持

你要的数据分析

法国

第一批自动驾驶立法草案将于2018年年底制定完成

德国

通过自动驾驶路 测法案

英国

提出《自动和电动车辆法案》,聚焦保险问题;在公共道路上的无人驾驶合法化

芬兰

批准自动驾驶公交车在公共道 路上测试

瑞典

完成《自动驾驶公共 道路测试规范》初稿

丹麦

修改"丹麦道路交通法案",允许自动驾驶车辆在公路上测试

加拿大

安大略省宣布允许在公共道路进行测试

美国

33个州开放自动驾驶路测,加州 和亚利桑那州允许没有驾驶员陪 同的自动驾驶汽车上路行驶

荷兰

开放自动驾驶道路测试,允许 自动驾驶车辆无驾驶员陪同

日本

颁布《自动驾驶汽车道路测试指南》 允许自动驾驶汽车路测

中国

9个城市出台自动驾驶路 测政策,并陆续开放相关 道路测试

韩国

《韩国汽车管理法》出台,允许自动驾驶汽车 在城市道路上测试

新加坡

通过道路交通法修正案,允许自动驾驶汽车在公共道路进行测试

澳大利亚

正为自动驾驶汽车制定全国性法律法规

全国9城陆续出台自动驾驶法规,北京成为首个出台自动驾驶法规的城市

2017年12月,北京市印发《北京市关于加快推进自动驾驶车辆道路测试有关工作的指导意见(试行)》和《北京市自动驾驶车辆道路测试管理实施细则 (试行)》,成为全国首个出台自动驾驶路测指导意见和管理细则的城市。此后,又有8个城市陆续出台了相关路测指导意见。

管理机构职责

成立联席工作小组,负责自动驾驶路测实施与监督工作

测试申请条件

按测试主体、驾驶人员和驾驶车辆分别提出路测申请条件

测试申请流程

提供城市自动驾驶路测申请材料和申请流程说明

测试管理

自动驾驶路测实施过程中的规章制度及监管细则

违规操作责任

自动驾驶测试主题违规操作责任认定及相关处罚措施

- ◆ 《上海市智能网联汽车道路测试管理办法(试行)》
- ◆ 《广州市关于智能网联汽车道路测试有关工作的指导意见 (征求意见稿)》
- ◆ 《深圳市关于规范自动驾驶车辆道路测试有关工作的指导意见(征求意见稿)》
- ◆《重庆市自动驾驶道路测试管理实施细则(试行)》
- ◆ 《长沙市智能网联汽车道路测试管理实施细则(试行)》
- ◆ 《长春市智能网联汽车道路测试管理办法》
- ◆ 《关于做好自动驾驶车辆道路测试工作的指导意见》
- ◆《平潭综合实验区无人驾驶汽车道路测试管理办法(试行)》

京

7

自动驾驶分阶段实现,基于传感器和人工智能算法是现阶段研^{企nalysys}易观 发重点,V2X车联网环境助力自动驾驶智能化升级

诵过传感器组合实现对周边环境

的探测,通过车辆定位技术实现

该阶段实现自动驾驶依赖传感器

成本的降低和人工智能算法的准

车辆精准定位。

确性。

传感器组合

摄像头 (单目/双目/三

毫米波雷达

目)

超声波雷达

激光雷达 (机械/固态)

车辆定位

V2X

GPS卫星定位 高精度地图(ADAS级

/HAD级)

阶段-

汽车视觉

人工智能算法

行驶路径规划 车辆行为规划

渐进式 (ADAS)

- a. 车企/OEM主导
- b. 研发成本低 (传感器、算法)

跨越式 (L4以上)

- a. 科技企业主导
- b. 技术壁垒高 (传感器、高精地图、算法)

车辆控制

加速、制动 变道、转向

特点

- 不依赖智能基础交通设 施建设, 因此该路径更 接近商业化;
- 强调对周边环境的识别 精度,因此更加注重对 传感器组合和车辆定位 的准确性;
- 仅通过传感器感知路况, 缺少对交通数据的获取, 更加依赖人工智能算法。

阶段二

车联网环境

(V2I/V2V/V2P)

5G通讯网络

在第一种自动驾驶路径的基础上 诵过V2X技术实现车车诵信、车 路通信等场景的数据传输, 辆探测到交通状况之前, 取路网信息,进行后台决策。

特点

- 优先感知前方路网信息,提前规划路线或对车辆做出速度调整,提高出 行效率,增加乘车舒适度,避免急减速等状况出现;
- 依赖交通基础设施的智能化改造和通讯网络的全面布局,因此第二种自 动驾驶路径的落地时间不确定,但却是全面实现无人驾驶的必由之路。

自动驾驶行业壁垒高,解决方案围绕三个技术层面展开研发

10

Analysys易观分析认为,自动驾驶是一个拥有很高技术壁垒的行业,其技术架构包括了车辆感知的传感器组合、车辆决策的自动驾驶算法和芯片 技术、还有车辆控制所涉及到的线控技术。

感知层

自动驾驶感知层通过多种传感器

实现车辆对周边交通主体的感知。

激光雷达

三维场景成像

毫米波雷达

超声波雷达

摄像头

识别道路标识

决策层

自动驾驶决策层分为交通识别和路径规 划,以芯片作为载体搭载算法技术实现。

路径 决策

Step1:分析传感器感知数据,识别交通状况;

Step2:根据交通状况,进行路线规划。

控制层

自动驾驶执行层将驾驶指令通过车辆控制系 统传至各个电子控制单元,实现车辆控制。

感知层:多传感器融合是实现车辆环境感知的主流方式,各类 Chalysys 易观 传感器在各自应用场景下实现特定功能

摄像头

超声波雷达

毫米波雷达

激光雷达

应用场景: 车辆行驶过程

功能:车道探测、交通标识探测、

行人探测

应用场景: 泊车、刹车辅助

功能: 近距离探测, 提高车辆对

盲点区域的掌控

应用场景: 车辆行驶过程

功能: 车辆、行人探测, 识别速

度和距离变化

应用场景: 车辆行驶过程

功能: 周边场景3D图像测绘

多传感器融合

优势

成本低

根据物体形状识别分类

识别精度高、距离远

成本低

测距方法简单

全天候工作

识别运动轨迹

探测被遮挡物体

探测范围广, 识别精度高

建立3D模型

可夜间使用

劣势

易受光线、环境影响

传播速度易受天气影响

探测方向性差

无法识别静止非金属物体

成本高

恶劣天气影响识别精度

决策层: 算法是自动驾驶技术的"大脑", 反复训练使其在应用阶段有效处理数据, 识别交通环境完成路径规划

你要的数据分析

自动驾驶算法训练可以提升自动驾驶算法与传感数据之间的协同。通过实际路测和虚拟路测两种路径,完善算法的环境感知和路径规划能力,将可能发生的事故率降到最低。

搭载自动驾驶解决 方案的车辆在真实 的交通环境下行驶 并进行测试。

实际路测

算法训练

自动驾驶解决方案 在虚拟环境下进行 多种低频、危险系 数高的场景测试。

虚拟路测

Analysys易观分析认为

自动驾驶算法是考验自动驾驶能力的重要环节, 自动驾驶算法对数据处理、交通识别、路径规划 以及安全出行意义重大。

应用阶段

训练阶段

交通识别

- 行车道、交通标志
- 车辆、行人
- 障碍物
- 突发情况

数据融合、处理

路径规划

- 上层路径规划
- 中层路径规划
- 下层路径规划

机器学习算法

决策矩阵算法 (AdaBoost)

聚类算法 (K-means)

模式识别算法 (PCA、HOG、SVM)

回归算法(决策森林、神经网络、贝叶斯)

路径规划:根据GPS定位和电子地图信息,规划由起始点到目的地之间的最优路径

驾驶行为规划:根据主车感兴趣道路及区域,动态规划最优行驶行为路线

轨迹规划:根据车辆当前所处行车环境,规划车辆运动轨迹

控制层: 车辆控制是自动驾驶的"腿脚" 总线实现驱动控制和车身控制

Analysys易观分析认为,车辆线控技术主要掌握在以博世、大陆为代表的tire1厂商手中,且对外开放程度低,国内的车辆线控技术缺失。因此,国内的自 动驾驶解决方案研发更多集中在自动驾驶大脑研发。

PART 2

中国自动驾驶市场发展现状

© Analysys 易观

www.analysys.cn

中国自动驾驶行业处于探索期,未来发展依赖政策环境、技术 Chalysys 易观 进展、基础设施建设等多方支持

■ Analysys易观分析认为,自动驾驶市场是技术驱动型市场,自动驾驶落地后技术成熟与否直接关乎人类生命财产安全,整体市场需要更多的时间进行技 术研发,中国城市道路复杂多变,自动驾驶研发商需反复训练算法,以便车辆更好地适应驾驶环境。高级别自动驾驶技术有望率先落地特定道路场景, 如: 货运物流、公共交通等, 伴随车联网环境的完善, 无人驾驶车辆上路可计日而待。

自动驾驶"大脑"是自动驾驶行业的核心环节,承接环境感知 为车企和出行服务商提供自动驾驶解决方案

环境感知

激光雷达 Velodyne

其他传感器(毫米波、 摄像头、 超声波)

SAMSUNG

MAGNA

高精地图与定位服务

V2X-5G

自动驾驶"大脑"

自动驾驶芯片 (intel

Cambricon

7//

MOBILEYE

场景: Robo-taxi

NVIDIA

场景: 货运物流

低速、封闭式场景

ADAS

车辆控制

车企

国内车企

线控技术

国外车企

造车新势力

出行运营商

自动驾驶行业投资集中在早期,单笔项目融资金额高

你要的数据分析

Analysys 易观分析认为,中国自动驾驶企业融资集中在A轮以前,早期融资 数量占比较高。整体市场处于发展初期,融入资本多用于技术研发和人才引 进,融资情况呈现单笔融资金额大的特点,整体行业呈现较高的技术壁垒, 一旦行业护城河形成,进入市场较晚的玩家发展阻力加大。

2018年中国自动驾驶单笔融资金额top3

Roadstar.ai (A轮)

2018年5月, Roadstar.ai完成1.28亿美元A轮融资, 折合人民币8.12亿 元,达到自动驾驶领域最大单笔融资。本轮融资由深创投和双湖资本领 投, 元璟资本、云启资本、招银国际跟投。

Pony.ai (A轮)

2018年1月, Pony.ai完成1.12亿美元A轮融资, 本轮融资由晨星资本和 君联资本领投, IDG、普华资本、联想资本等也参加了本轮投资, 奇迹 资本是本轮融资的独家FA。

Pony.ai (A+轮)

2018年7月, Pony.ai完成1.02亿美元A+轮融资, 本轮融资由锴明投资 和斯道资本领投,松禾资本、招商局资本、红点创投(中国)、红杉中 国、晨兴资本等参加了本轮投资。

行业热点事件聚焦政策、市场、技术和投资4个维度,助力自动驾驶行业快速发展

Analysys易观分析认为,政策环境、战略合作、技术进展和投融资是决定行业发展的重要因素,现阶段自动驾驶行业在各个方面的动作都比较频繁,政策环境有望不断完善,各个玩家在自己的赛道中不断发展探索,推动行业格局的形成。

政策热点

- ▶ 中国在全国开放9个城市路测
- ▶ 美国发布自动驾驶第三版指导政策
- ▶上海市自首次开放智能网联车路测道路后, 扩大31.6公里的路测 道路

市场热点

- ➤ Waymo分别向FCA和捷 豹采购6.2万辆和2万辆 汽车
- ➤ Uber向沃尔沃采购2.4万 辆SUV
- ▶ 丰田、软银组建自动驾 驶公司Monet

技术热点

- ▶ 百度Apollo系统版本升 级到3.0
- ➤ Tesla自研自动驾驶专用 AI芯片
- ➤ 地平线推出自动驾驶AI 芯片
- ➤ 英伟达推出新一代超级 计算机Drive Xavier

投资热点

- ▶ 英特尔153亿美元收购 Mobileye,收购图商 HERE15%的股份
- ▶ 通用Cruise陆续获得软 银和本田价值22.5亿美 元和7.5亿美元的投资

自动驾驶车辆事故频发,安全保障是自动驾驶的应用前提

你要的数据分析

UBER

 $\widehat{m{ au}}$ TESLA

Navya旗下无人巴士与货运卡 通用Cruise与摩托车发生碰撞, 车相撞,无人员伤亡。 摩托车司机肩部受伤。

Waymo旗下自动驾驶汽车与 轿车相撞,测试员受轻伤。

一名女子被搭载uber自动驾 驶技术的汽车撞倒致死。

特斯拉Model S撞上路边消防 车,无人员伤亡。

事 故 原 大 分 析

传感器组合缺陷

机器学习训练不足

驾驶员接管不及时

一些自动驾驶车辆为降低生产成本,没有搭配成本较高 的激光雷达,导致对环境的识别存在漏洞。

车辆在算法训练时对识别特殊形态车辆或车身两侧图像 训练不足,造成行驶过程中的识别漏洞。

非完全无人驾驶需要驾驶员随时接管车辆, 动驾驶过度依赖, 酿成车祸事故。

Analysys易观分析认为, 保障驾驶 安全是自动驾驶的应用前提。通过 公开资料整理显示,即便是自动驾 驶行业的头部企业Waymo,也依然 存在交通事故隐患。事故发生的原 因主要归结为三个层面: 传感器组 合缺陷、机器学习训练不足以及驾 驶员接管不及时。

百度Apollo平台助力合作伙伴快速构建自动驾驶解决方案

Analysys易观分析认为,百度Apollo平台不仅仅是一家自动驾驶解决方案研发商,还通过开源平台的软硬件服务和技术代码吸引行业内各类厂商接入 Apollo生态,促进自动驾驶行业发展,降低自动驾驶研发门槛,助力合作伙伴构建自动驾驶解决方案。

技术

Apollo为合作伙伴提供完整的软硬件服务,并开放环境感知、路径规划、车辆控制等功能的代码或能力。

资源

Apollo在传感器等领域为接入Apollo平台的合作伙伴推荐协同性更好的供应商。

赋能

互利共赢

apollo

推进技术进步

共享

Apollo生态中的各类厂商在研发过程中 将脱敏后的数据贡献出来,有助于提升 Apollo平台自身的技术水平,加速推进 自动驾驶技术研发。

Robo-taxi场景落地对自动驾驶行业意义重大,国内3家初创 公司专注于该场景自动驾驶技术研发

你要的数据分析

用户出行痛点

司机成本在打车费用中占很大一部分比例, 路会增加用户的出行时间成本。

Analysys易观分析认为, Robo-taxi是自 动驾驶中较为复杂的应用场景,对自动驾 驶算法、传感器组合以及高精度地图的要 求更高,目前国内有3三家自动驾驶初创公 司专注于Robo-taxi场景下的自动驾驶技术 研发, 该场景的落地可以有效解决用户的 出行痛点,并为行业创造价值。

- ◆提高出租车、专车和共享汽车的调度效率
- ◆ 突破高级自动驾驶城市道路场景
- ◆ 优化交通出行结构

行业价值

Robo-taxi场景的落地对自动驾驶行业乃至交通出 行领域的意义重大。

JingChi

景|驰|科|技

- 激光雷达*3【64线*1、16线*2】
- ✓ 毫米波雷达
- ✓ 摄像头

- 激光雷达*1【64线*1】
- ✓ 毫米波雷达
- ✓ 摄像头

- √ 激光雷达*5【40线*1、16线*4】
- ✓ 毫米波雷达
- ✓ 摄像头

自动驾驶货运场景更易实现,场景落地有助于推进货运物流行。Chalysys 易观 业发展

你要的数据分析

Analysys易观分析认为,自动驾驶货运场景相比城市交通场景更易实现,该场景相对封闭,多为端到端的高速路段或集中在港口码头一类的固定场景,发生因 路况复杂、陌生所造成行车环境难以感知的情况概率较低,各个厂商对自动驾驶货运场景的推进速度也会更快。此外,自动驾驶货运场景的落地将有效推进货 运物流行业发展,为其创造更多的价值。

货运物流场景多为高速或港口码头, 此类驾驶场景较为封 闭,路况较城市路况简单,交通参与主体单一。

固定路线

货运物流场景多为固定路线, 车辆按既定路线往复行驶, 减少陌生环境出现影响车辆对周边环境的感知。

降低物流成本

司机成本在物流成本中占比很高,自动驾驶可以减少劳动 用工,削减财务支出。

提升物流效率

自动驾驶有助于提升物流运输效率, 货车可不间断行驶, 无需考虑人员更替或休息。

减少事故发生

货运场景自动驾驶可减少因司机疲劳驾驶所导致的车祸事 故, 提升驾驶安全系数。

特点

低速自动驾驶围绕限定场景展开布局,提升用户出行体验

Analysys易观分析认为,相比其他自动驾驶场景,围绕限定场景展开低速自动驾驶解决方案的研发门槛较低,更易推动自动驾驶技术的场景化落地,因此国内 很多自动驾驶初创企业聚集于此,针对自动驾驶大脑、传感器组合,结合应用场景展开探索。

低速自动驾驶

应用场景

价值点

自动泊车

汽车自动寻找可停放车位,并安全 泊车,全程无需人工干预。

Horizon Robotics

- ✓ 节省寻找车位的时间
- ✓ 方便新司机停车入位
- ✓ 减少因驾驶不善导致的人 员伤亡和财产损失

摆渡车

在机场、客运码头、园区等场景, 摆渡车搭载乘客按既定线路自动行 驶至固定站点,

UISEE

- ✓ 提升客运流通速度
- ✓ 方便乘客抵达目的地

车辆调度

共享汽车按用户出行需求自动行驶 至停车点,

- ✓ 提升车辆运营效率
- ✓ 节省人工调度成本

PART 3

中国自动驾驶市场未来趋势

© Analysys 易观

www.analysys.cn

趋势: 自动驾驶将按场景分步落地

Analysys 易观分析认为,由于算法、传感器、基础设施、网络环境等因素尚不成熟,现阶段还无法实现全场景的完全自动驾驶,因此,按不同应用场景分布落地成 为了自动驾驶的主要实现路径。由低速驾驶场景到限定性场景再到城市复杂路段,对自动驾驶算法以及传感器组合也提出了越来越高的要求,自动驾驶解决方案的 落地时间也随着场景的复杂程度发生变化。

城市道路路况复杂, 违规行驶的 非机动车和行人众多, 因此对该 场景下的自动驾驶解决方案提出 了更高的要求。

城市 路段

无人巴士沿城市固定道路 行驶, 固定站点接送乘客

Robo-taxi无固定驾驶路线 按需接送乘客至目的地

限定场景的驾驶环境简 单,成为低级别自动驾 驶向高级别自动驾驶进 阶的纽带。

货运场景实现货车在多 个仓库间的运输需求

港口场景自动驾驶实现在 该港口内的货物调度

低速 场景

低速场景技术壁垒偏低, 该场景有望成 为最早落地的自动驾驶场景。

自动泊车帮助用户倒车入 库,实现车辆自动存取

摆渡车实现园区、机场场 景下的最后一公里客运

数据驱动精益成长

- 易观方舟
- 易观干帆
- 易观万像
- 易观标签云

易观方舟试用

易观干帆试用

易观订阅号

网址: www.analysys.cn

客户热线: 4006-515-715

www. baogaoba. xyz 獨家收集 百萬報告 实时更新 日更千篇