Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 11

Matrix Multiplication

Outline

- Sequential algorithms
 - ◆ Iterative, row-oriented
 - ◆ Recursive, block-oriented
- Parallel algorithms
 - ◆ Rowwise block striped decomposition
 - ◆ Cannon's algorithm

Iterative, Row-oriented Algorithm

Series of inner product (dot product) operations

Performance as n Increases

Reason:

Matrix B Gets Too Big for Cache

Computing a row of C requires accessing every element of B

Block Matrix Multiplication

Replace scalar multiplication
with matrix multiplication
Replace scalar addition with matrix addition

Recurse Until B Small Enough

Comparing Sequential Performance

First Parallel Algorithm

- Partitioning
 - ◆ Divide matrices into rows
 - ◆ Each primitive task has corresponding rows of three matrices
- Communication
 - ◆ Each task must eventually see every row of B
 - Organize tasks into a ring

First Parallel Algorithm (cont.)

- Agglomeration and mapping
 - ◆ Fixed number of tasks, each requiring same amount of computation
 - ◆ Regular communication among tasks
 - Strategy: Assign each process a contiguous group of rows

Complexity Analysis

- Algorithm has p iterations
- During each iteration a process multiplies $(n/p) \times (n/p)$ block of A by $(n/p) \times n$ block of B: $\Theta(n^3/p^2)$
- Total computation time: $\Theta(n^3 / p)$
- Each process ends up passing $(p-1)n^2/p = \Theta(n^2)$ elements of B

Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(pn^2)$

Isoefficiency relation: $n^3 \ge Cpn^2 \implies n \ge Cp$

$$M(Cp)/p = C^2p^2/p = C^2p$$

This system does not have good scalability

Weakness of Algorithm 1

- Blocks of B being manipulated have *p* times more columns than rows
- Each process must access every element of matrix B
- Ratio of computations per communication is poor: only 2n/p

Parallel Algorithm 2 (Cannon's Algorithm)

- Associate a primitive task with each matrix element
- Agglomerate tasks responsible for a square (or nearly square) block of C
- Computation-to-communication ratio rises to n/\sqrt{p}

Elements of A and B Needed to Compute a Process's Portion of C

Blocks Must Be Aligned

$$\begin{matrix}A\\0,0\\B\\0,0\end{matrix}$$

$$A_{0,I} \\ B_{0,I}$$

$$\begin{bmatrix} A \\ 0,2 \\ B \\ 0,2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$

$$A_{0,0}$$
 $B_{0,0}$

$$A_{0,1}$$
 $B_{1,1}$

$$A_{0,2}$$
 $B_{2,2}$

$$\begin{bmatrix} A \\ 0,3 \\ B \\ 3,3 \end{bmatrix}$$

$$\begin{array}{c|c}
A \\
1,3 \\
B \\
3,2
\end{array}
\qquad
\begin{array}{c|c}
A \\
1,0 \\
B \\
0,3
\end{array}$$

$$\begin{bmatrix} A \\ 2,3 \\ B \\ 2,3 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 2,2 \\ B \\ 2,0 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 2,3 \\ B \\ 3,1 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 2, \\ B \\ 0. \end{bmatrix}$$

$$\begin{bmatrix} A \\ 2,1 \\ B \\ 1,3 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 3,0 \\ B \\ 3,0 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 3,0 \\ B \\ 0,1 \end{bmatrix}$$

$$A_{3,1}$$
 $B_{1,2}$

$$\begin{bmatrix} A \\ 3,2 \\ B \\ 2,3 \end{bmatrix}$$

Before

After

Blocks Need to Be Aligned

Each triangle represents a matrix block

Only same-color triangles should be multiplied

Rearrange Blocks

Block Aij cycles left i positions

Block Bij cycles up j positions

Step 3

Complexity Analysis

- \blacksquare Algorithm has \sqrt{p} iterations
- During each iteration process multiplies two $(n/\sqrt{p}) \times (n/\sqrt{p})$ matrices: $\Theta(n^3/p^{3/2})$
- Computational complexity: $\Theta(n^3/p)$
- During each iteration process sends and receives two blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$
- Communication complexity: $\Theta(n^2/\sqrt{p})$

Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(\sqrt{pn^2})$

Isoefficiency relation: $n^3 \ge C \sqrt{pn^2} \implies n \ge C \sqrt{p}$

$$M(C\sqrt{p})/p = C^2 p/p = C^2$$

This system is highly scalable

Summary

- Considered two sequential algorithms
 - ◆ Iterative, row-oriented algorithm
 - ◆ Recursive, block-oriented algorithm
 - ◆ Second has better cache hit rate as *n* increases
- Developed two parallel algorithms
 - First based on rowwise block striped decomposition
 - Second based on checkerboard block decomposition
 - ◆ Second algorithm is scalable, while first is not