

A Dynamic Hardware Architecture for Future Networks

Master Thesis by Richard Huber

2nd Intermediate Presentation

Advisor: Ariane Keller

Co-Advisors: Dr. Stephan Neuhaus, Daniel Borkmann

Professor: Prof. Dr. Bernhard Plattner

Summary of 1st presentation

- ReconOS: Hardware acceleration with OS resources
- ANA: Autonomous network architecture
- Problem: Shared bus is bottleneck

Summary of 1st presentation

- ReconOS: Hardware acceleration with OS resources
- ANA: Autonomous network architecture
- Problem: Shared bus is bottleneck

Network on Chip (NoC) Architecture

NoC implemented and tested

Transfer data between HW- and SW-Threads

- Problems:
 - Synchronization
 - Serialization
 - High interrupt overhead
- ReconOS provides:
 - Shared memory for HW- and SW-Threads
 - Thread-save message passing interface

- Two possible approaches
 - a) All FB read/write data to RAM
 - b) A Pair of dedicated HW threads build a HW/SW gateway

- Two possible approaches
 - a) All FB read/write data to RAM
 - More interrupts
 - b) A Pair of dedicated HW threads build a HW/SW gateway
 - Higher latency

Principle of SW to HW gateway

- Use a part of the shared memory as ring buffer
- Exchange read/write pointers using message boxes
- HW to SW gateway similar, just the other way around

When to send write pointer to HW

- Sending pointer after every packet generates a high interrupt load
- Timely delivery of packets
- Non-blocking write access
- Delay-sensitive packets

When to send write pointer to HW

- Sending pointer after every packet generates a high interrupt load
 - Aggregate packets
- Timely delivery of packets
 - First packet starts a timer
 - Send write pointer when timer expires
 - Reset timer when sending write pointer for other reasons
- Non-blocking write access
 - Send write pointer when amount of free space below treshold
- Delay-sensitive packets
 - Packets have 'delay-sensitive' flag
 - When flag set, send write pointer immediately

Task List

- Familiarization
- Evaluation of possible architectures
- Communication between HW blocks
- Configuration interface
- Communication between SW and HW blocks
- Communication between HW blocks and SW
- Performance evaluation
- Final report

Challenges

- Simulation
 - Very complex BUS interface of HW-threads
 - Simulating overall system is a Hercules task
- Data representation in SW
 - MSB-LSB
 - Endianness
- Multithreaded SW
 - Take care of race conditions

Summary

- Network on Chip implemented for data transfer between HW threads
- Using ring buffers to transfer data from SW to HW and vice versa
- Dedicated HW and SW threads implemented for this purpose