

Table des matières

1	Spectre maximal	5
ex	1.1 k-algèbres de types finis	6
	J'vais juste prendre des notes. J'ai du mal à noter en détail.	
	Je me disais que ce serait bien de noter les définitions en détail pour v	oii
	actement ce qu'il faut prouver à chaque fois.	

TABLE DES MATIÈRES

Chapitre 1

Spectre maximal

En général, si $f: A \to B$ est un morphisme $f^{-1}\mathfrak{m}$ est pas forcément maximal. Par exemple $\mathbb{Z} \to \mathbb{Q}$ et l'inverse de (0).

Théoreme 1.0.1. Si $f: A \to B$ est un morphisme de k-algèbres de type fini alors $f^{-1}Spm(B) \subset Spm(A)$.

Démonstration. L'idée c'est que $k \to A/f^{-1}\mathfrak{m} \to B/\mathfrak{m}$ est finie par Noether. d'où B/\mathfrak{m} est entier sur $A/f^{-1}\mathfrak{m}$ donc on obtient un corps.

Remarque 1. Attention au fait que B/A entier et A corps équivaut B corps c'est vrai quand les deux sont **intègre**. Dans le thm $f^{-1}\mathfrak{m}$ est premier donc c'est bon.

Proposition 1.0.2. Si $f: A \rightarrow B$ est entier:

- 1. $dim(B) \leq dim(A)$.
- 2. On a à nouveau $f_*: Spm(B) \to Spm(A)!$
- 3. Si f est injective, f_* est surjective.
- 4. Si f est injective dim(A) = dim(B).

 $D\acute{e}monstration$. Pour 1. faut montrer que f_* d'une chaine est une chaine. Ça a l'air de suggérer que deux idéaux envoyés sur le même idéal doivent être de même dimension.

On prends $\mathfrak{p}_0 \subset \mathfrak{p}_1$ et on veut m.q $f_*\mathfrak{p}_0 \nsubseteq f_*\mathfrak{p}_1$. On quotiente par \mathfrak{p}_0 et on doit juste montrer que $f_*\mathfrak{p}_1 \neq 0$ avec A, B intègres. Si on prends $b \in \mathfrak{p}_1 - \{0\}$. On a une relation P(b) = 0 minimale. Et on peut conclure.(on aurait potentiellement probablement pu faire plus simple?)

Pour 2. c'est l'argument habituel, les quotients sont intègres.

Pour 3., $B \otimes_A A_{\mathfrak{p}} \simeq B_{\mathfrak{p}} := (f(A-\mathfrak{p}))^{-1}B$ en tant que A-module. Reste à montrer que l'idéal maximal de $B_{\mathfrak{p}}$ s'envoie sur \mathfrak{p} , c'est clair car il est maximal par 2.. En gros

$$\begin{array}{cccc}
\mathfrak{p}A_{\mathfrak{p}} & A_{\mathfrak{p}} & \longrightarrow S^{-1}B & \mathfrak{m} \\
\uparrow & & \uparrow & & \uparrow \\
\mathfrak{p} & A & \longrightarrow B & \mathfrak{p}
\end{array}$$

faut juste prouver que $(f(A-\mathfrak{p}))^{-1}B$ est non nul mdr. On utilise le produit tensoriel pour montrer que c'est entier c'est tout.

Petite preuve que la fibre est finie maintenant : Faut utiliser que $(f_*)^{-1}(\mathfrak{p}) = (f_*)^{-1}(\cap_{\mathfrak{p}\subset\mathfrak{m}}\mathfrak{m}) = \cap (f_*)^{-1}\mathfrak{m} = \cap \mathfrak{m}_y = \mathfrak{m}_y$ pour $Z(\mathfrak{p})$ une composante de $f^{-1}y$. Là on a

$$(f_*)^{-1} \colon Spm(\mathcal{O}_X(X)) \to Spm(\mathcal{O}_Y(Y))$$

Corollaire 1.0.3 (Dimension d'hypersurface). Si $f \in k[T_1, ..., T_n] - k$ alors

$$dimk[T_1,\ldots,T_n]/(f) = dimk[T_1,\ldots,T_{n-1}]$$

Démonstration. Il dit que dans la preuve de Noether, $f=T_n^r+G$ à isomorphisme près avec $deg_{T_n}G\leq r-1$. D'où la flèche

$$k[T_1, \ldots, T_{n-1}] \to k[T_1, \ldots, T_n]/(f)$$

est finie et y ont la même dimension. Pour prouver que $dim(A^n) = n$, on peut le faire par induction, quotienter par $F \in \text{le premier idéal}$.

On peut à nouveau redéfinir les fermés de X via $f^{-1}(0)$ pour $f \in \mathcal{O}_X(X)$.

1.1 k-algèbres de types finis

Il a prouvé que le degré de transcendance est bien défini. Et que

Proposition 1.1.1. Une variété est irréductible ssi les $\mathcal{O}_X(U)$ sont intègres.

Démonstration. L'idée c'est que irred équivaut à il existe de ouverts qui se croisent pas (à voir). D'où $\mathcal{O}_X(U \cup V) \simeq \mathcal{O}_X(U) \oplus \mathcal{O}_X(V)$.

Exercices 1.1.2. Faire toutes les preuves de ce cours.

Chapitre du Gortz sur les schémas intègres.