Math 619 Notes

Thomas Brazelton and Mona Merling

Spring 2021 — Last modified January 28, 2021

Contents

	A preview of unstable vs stable homotopy theory				
	.1 From spaces to spectra				
	.2 Why should we care about spectra?				
2	The category of spaces				
	.1 Category theory				
	.2 Adjoint pairs of functors				
	3 Limits and colimits in categories				

1 A preview of unstable vs stable homotopy theory

Unstable homotopy theory is the study of spaces up to homotopy, whereas stable homotopy is the study of spectra, which can be viewed as stable version of spaces, or from a different perspective, as a generalization of abelian groups. We will start with constructing the category of spaces and its homotopy category and work our way up to the construction the *the stable homotopy category*.

1.1 From spaces to spectra

The basic construction that we stabilize with respect to is the suspension functor Σ , which for a based space X is defined as $\Sigma X = X \wedge S^1$. Recall that for based spaces (X, x_0) and (Y, y_0) , the smash product is defined as

$$X \wedge Y := \frac{X \times Y}{(\{x_0\} \times Y) \cup (X \times \{y_0\})}.$$

Example 1.1.1. There is a homeomorphism $S^1 \wedge S^1 \cong S^2$.

In general, we have a similar homeomorphism

$$S^n \wedge S^m \cong S^{n+m}$$

Let Ω be the loop functor, which for a based space X is defined as $\Omega X := \operatorname{Map}_*(S^1, X)$, i.e., the space of loops in X based at the basepoint of X. There is an adjunction $\Sigma \dashv \Omega$, which means that we have a natural homeomorphism

$$\operatorname{Map}_{\star}(\Sigma X, Y) \cong \operatorname{Map}_{\star}(X, \Omega Y),$$

where this homeomorphism holds in our "convenient" category of spaces. Alternatively this is the data of a unit $X \to \Omega \Sigma X$ and a counit $\Sigma \Omega X \to X$ satisfying certain triangle identities. From this adjunction, we will end up seeing that the set of homotopy classes of based maps are isomorphic:

$$[\Sigma X, Y]_* \cong [X, \Omega Y]_*$$
.

Higher homotopy groups of a space based space X are defined as homotopy classes of maps from higher dimensional spheres $\pi_n(X) = [S^n, X]_*$. The theorem that forms the bridge from unstable to stable homotopy theory is the *Freudenthal suspension theorem*. Before stating it, we need a preliminary definition.

Definition 1.1.2. X is n-connected if $\pi_i(X) = 0$ for all $i \leq n$. For example, 0-connected means path connected and 1-connected means simply connected.

We may also define a suspension map on homotopy groups

$$\Sigma : \pi_q(X) \to \pi_{q+1}(\Sigma X)$$

$$f \mapsto \left[f \wedge \operatorname{id} : S^{q+1} = S^q \wedge S^1 \to X \wedge S^1 = \Sigma X \right].$$

Theorem 1.1.3. (Freudenthal suspension theorem) Assume that X is a based space which is n-connected. Then the morphism $\Sigma : \pi_q(X) \to \pi_{q+1}(\Sigma X)$ is:

- a bijection for $q \leq 2n$
- a surjection for q = 2n + 1.

By Freudenthal, $\pi_{q+n}(\Sigma^n X)$ stabilizes as n increases. This stable value is an interesting invariant on the space X.

Definition 1.1.4. The qth stable homotopy group of a space X is defined to be

$$\pi_q^s(X) := \underset{n}{\operatorname{colim}} \pi_{q+n}(\Sigma^n X).$$

We observe that if X is (n-1)-connected, then for q < n-1, the maps in the colimit system are isomorphisms. Thus we have that $\pi_q^s(X) = \pi_{q+n}(\Sigma^n X)$ for q < n-1.

Remark 1.1.5. The computations of stable homotopy groups of spheres $\pi_q^s(S^0)$ is one of the deepest problems in algebraic topology. We will observe that these groups are deeply related to many questions throughout geometry and algebra as well.

We can take the idea of stabilizing a space that we have seen, and make the following definition of a *spectrum*, a stable analogue of a space.

Definition 1.1.6. A (pre) spectrum X is a sequence of based spaces X_0, X_1, \ldots equipped with structure maps

$$\sigma_i: \Sigma X_i \to X_{i+1}$$

for each i.

Example 1.1.7. There is a *sphere spectrum*, denoted \mathbb{S} , whose *n*th space is the *n*-sphere S^n . The structure maps are the homeomorphisms $S^1 \wedge S^n \xrightarrow{\sim} S^{n+1}$ given by Theorem 1.1.1.

Example 1.1.8. Given any based space X, we denote by $\Sigma^{\infty}X$ its suspension spectrum, whose nth space is $\Sigma^{n}X$, and whose structure maps are the obvious homeomorphisms $\Sigma\Sigma^{n}X \xrightarrow{\sim} \Sigma^{n+1}X$. As an example, we have that $\mathbb{S} = \Sigma^{\infty}S^{0}$.

Definition 1.1.9. Given a spectrum X, we may define the *nth* stable homotopy group of X as

$$\pi_n(X) = \operatorname{colim}_k \left(\cdots \to \pi_{n+k}(X_k) \to \pi_{n+k+1}(\Sigma X_k) \xrightarrow{\sigma_{k,*}} \to \cdots \right)$$

Exercise 1.1.10. If X is a based space, then its qth stable homotopy group is the qth homotopy group of its suspension spectrum.

The collection of spectra form a category.

Definition 1.1.11. A morphism of spectra $X \to Y$ is a collection of maps $f_i : X_i \to Y_i$ at each level, which commute with the structure maps:

$$\begin{array}{ccc} \Sigma X_i & \xrightarrow{\Sigma f_i} \Sigma Y_i \\ \sigma_i & & \downarrow \sigma_i \\ X_{i+1} & \xrightarrow{f_{i+1}} Y_{i+1}. \end{array}$$

Knowing what a weak homotopy equivalence of topological spaces is, we might want to define a notion of having a weak homotopy equivalence of spectra. One naive notion would be to define an equivalence to be a levelwise equivalence (i.e. $f: X \to Y$ is an equivalence if $f_i: X_i \to Y_i$ is a weak homotopy equivalence for each i). A better notion is to ask for a *stable equivalence*.

Definition 1.1.12. A stable equivalence of spectra is a morphism $f: X \to Y$ so that the induced map on homotopy groups

$$(f_q)_*: \pi_q(X) \xrightarrow{\sim} \pi_q(Y)$$

is an isomorphism for each q.

We may also define a category HoSp which is the localization of the category of spectra at the stable equivalences. That is, a functor $Sp \to HoSp$ which turns stable equivalences into isomorphisms, and is initial among functors with this property — that is, if there is another functor $Sp \to \mathscr{C}$ which sends stable equivalences to isomorphisms, we get a unique factorization

However HoSp is a difficult category to work in, since it does not have many limits or colimits.

For every abelian group G, there is an Eilenberg-Maclane spectrum HG which is described up to homotopy by the property that $\pi_0(HG) = G$ and $\pi_i(HG) = 0$ for $i \neq 0$, where $(HG)_n = K(G, n)$ for each n. We will construct this spectrum later on in the class.

1.2 Why should we care about spectra?

There is an amazing theorem called *Brown representability* that states that every cohomology theory $E^* : \text{HoCW} \to \mathbf{Ab}^{\mathbb{Z}_{\geq 0}}$, satisfying certain axioms, is represented by a spectrum E, that is,

 $E^n(X) \cong [X, E_n]$ and E is unique up to isomorphism in HoSp. Equivalently, any spectrum yields a cohomology theory. Thus we can study generalized cohomology theories by directly studying spectra.

Here are some questions and applications where spectra are key.

Example 1.2.1. The enumeration of differentiable structures on spheres S^n for $n \geq 5$ is reduced to the computation of the stable homotopy groups of spheres.

Example 1.2.2. One can impose an equivalence relation on closed manifolds called *cobordism*. (Draw picture) The classification question of closed manifolds up to cobordism is a central problem in differential topology. Amazingly, it turns out that this problem can be translated into stable homotopy theory. The groups Ω_n of closed n-manifolds up to cobordism was shown by Thom to be isomorphic to the homotopy groups homotopy groups of a spectrum MO.

Example 1.2.3. Consider the question: For which n is \mathbb{R}^n is a division algebra? Of course, we know four examples, $\mathbb{R}, \mathbb{C} = \mathbb{R}^2, \mathbb{H} = \mathbb{R}^4, \mathbb{O} = \mathbb{R}^8$), are there any others? This is also equivalent to asking when S^{n-1} is an H-space, i.e., it has a continuous multiplication map with a two-sided identity element. This question is also known as the Hopf invariant one problem because it is also equivalent to the existence of a Hopf invariant one map $S^{2n-1} \to S^n$. This question was solved by Adams, initially in a 100 page paper, where he introduced the Adams spectral sequence for $\pi_q^s(S^0)$. He later gave a much shorter solution using K-theory. Stable homotopy theory is key in both solutions.

Example 1.2.4. Consider the question: How many linearly independent everywhere nonzero vector fields can there be on S^{n-1} ? This question was answered by Adams using K-theory, an extraordinary cohomology theory. The answer is that S^{n-1} admits exactly $\rho(n) - 1$ linearly independent everywhere nonzero vector fields, where $\rho(n)$ is the Radon-Hurwitz number equal to $2^c + 8d$, where $n = (2a+1)2^b$ and b = c + 4d with $0 \le c < 4$.

Example 1.2.5. A very old question in differential topology dating back to the 1960s was: For which n does there exist a stably framed n-manifold with the Kervaire invariant one? This is known as the Kervaire invariant one problem. The Kervaire invariant of a smooth stably framed manifold is the so-called Arf-invariant of an associated quadratic form $H^{\frac{n}{2}}(M,\mathbb{Z}/2) \to \mathbb{Z}/2$. The answer to the Kervaire invariant 1 problem is yes in dimensions n = 2, 6, 14, 62 and possibly 126, but it was ruled out in all other dimensions in 2009 by a recent breakthrough result of Hill, Hopkins and Ravenel. This question can again be translated into the survival of certain elements in the Adams spectral sequence for the stable homotopy groups of spheres, and it was further translated by the authors into a question in equivariant stable homotopy theory and solved in that setting.

2 The category of spaces

We start with some recollections about basic category theory and we construct the "convenient category of topological spaces" which modern algebraic topologists work in.

2.1 Category theory Math 619 Notes

2.1 Category theory

We refer the reader to the following excellent sources for the basics of category theory: [GS],[Tor], [Rie16]. We skip the definition of category but recall a list of standard examples of categories that you have certainly encountered before.

Table 1: Examples of categories

Category	Objects	Morphisms
Set	sets	set functions
Grp	groups	group homomorphisms
Ab	abelian groups	group homomorphisms
Ring	rings	ring homomorphisms
Top	topological spaces	continuous maps
Top _*	based spaces	based continuous maps
${ t Vect}(k)$	vector spaces over a field k	linear maps
1	single object	only identity arrow
2	two objects, denoted 0 and 1	$\begin{array}{ll} \text{single} & \text{non-identity} & \text{morphism} \\ 0 \rightarrow 1. \end{array}$

Also, here are some examples of functors between some of these categories, which we have probably encountered before:

- the forgetful functor $U: \mathtt{Grp} \to \mathtt{Set}$ which forgets the group structure
- the free functor $F: \mathtt{Set} \to \mathtt{Grp}$ which takes the free group on a set
- homology $H_i : \mathsf{Top}_* \to \mathsf{Grp}$
- homotopy groups $\pi_i \colon \mathsf{Top}_* \to \mathsf{Grp}$
- cohomology $H^i: Top^* \to Grp$, which is a contravariant functor

Definition 2.1.1. For any category \mathscr{C} , we can define its *opposite category*, denoted \mathscr{C}^{op} , whose objects are the same as \mathscr{C} , but whose morphisms have the domain and codomain swapped, and whose composition is defined to mirror the composition in \mathscr{C} . That is, a morphism $x \xrightarrow{f} y$ in \mathscr{C} corresponds to a morphism $y \xrightarrow{f^{\text{op}}} x$, and we define $g^{\text{op}} \circ f^{\text{op}} := (f \circ g)^{\text{op}}$.

The construction \mathscr{C}^{op} occurs frequently in mathematics. Some interesting examples follow:

- the category of affine schemes is equivalent to Ring^{op}
- the category Top^{op} is, in some sense, equivalent to the category of frames [Wof]
- the opposite category of finite sets is equivalent to the category of finite Boolean algebras
- for any category \mathscr{C} , we have that $(\mathscr{C}^{op})^{op}$ is just \mathscr{C}

2.1 Category theory Math 619 Notes

The classical notion of a contravariant functor from $\mathscr{C} \to \mathscr{D}$ can be thought of as a covariant functor $\mathscr{C}^{\text{op}} \to \mathscr{D}$, thus so long as we specify the domain category, we may often refer to a functor with the implicit assumption that it is covariant.

Example 2.1.2. Suppose that G is a group. Then we may form a category G with one object, and whose morphism set is all of G. Composition is given by the group law. A functor $G \to \mathbf{Set}$ is exactly the data of a G-set, that is, a set equipped with an action of G. Similarly, a functor $G \to \mathscr{C}$ is referred to as a G-object in \mathscr{C} .

Definition 2.1.3. Let $F, G : \mathscr{C} \to \mathscr{D}$ be covariant functors. A natural transformation $\eta : F \Rightarrow G$ is a collection of morphisms $\eta_x : Fx \to Gx$ for each $x \in \mathscr{C}$, such that, for every $x \xrightarrow{f} y$ in \mathscr{C} , we have that the diagram commutes

$$\begin{array}{ccc}
Fx & \xrightarrow{Ff} Fy \\
\eta_x \downarrow & & \downarrow \eta_y \\
Gx & \xrightarrow{Gf} Gy.
\end{array}$$

Exercise 2.1.4. Show that the data of a natural transformation is the same as a functor $H: \mathcal{C} \times 2 \to \mathcal{D}$, such that H(-,0) = F and H(-,1) = G.

Example 2.1.5. Let $(-)^{**}: \text{Vect}(\mathbb{R}) \to \text{Vect}(\mathbb{R})$ denote the double dual functor. We have a natural transformation $\eta: \text{id}_{\text{Vect}(\mathbb{R})} \Rightarrow (-)^{**}$ whose components are the isomorphisms $\eta_V \to V^{**}$ given by $x \mapsto [\text{ev}_x: V^* \to \mathbb{R}]$. One may check that the corresponding diagram commutes, and gives a natural isomorphism.

Remark 2.1.6. For every V, there also exists an isomorphism $V \cong V^*$, however there is no natural isomorphism $\mathrm{id} \Rightarrow (-)^*$.

Definition 2.1.7. We define $\mathscr{D}^{\mathscr{C}}$ or $\operatorname{Fun}(\mathscr{C},\mathscr{D})$ as the *functor category* whose objects are functors $\mathscr{C} \to \mathscr{D}$ and whose morphisms are natural transformations.

Let $\mathscr C$ be a locally small category, meaning that $\operatorname{Hom}_{\mathscr C}(a,b)$ is a set for each pair of objects in $\mathscr C$. For each $c\in \mathscr C$, we obtain functors

$$\operatorname{Hom}_{\mathscr{C}}(c,-):\mathscr{C} \to \operatorname{Set}$$

 $\operatorname{Hom}_{\mathscr{C}}(-,c):\mathscr{C}^{\operatorname{op}} \to \operatorname{Set}$

The Yoneda lemma says that the set of natural transformations $\operatorname{Hom}_{\mathscr{C}}(-,c) \Rightarrow F$ is in bijection with F(c), naturally in c.

Lemma 2.1.8 (Yoneda Lemma, covariant version). Let $F: \mathcal{C} \to \mathsf{Set}$. There is a bijection

$$\operatorname{Hom}_{\operatorname{\mathtt{Set}}^{\mathscr{C}}}(\operatorname{Hom}_{\mathscr{C}}(c,-),F)\cong F(c),$$

naturally in both c and F.

Exercise 2.1.9. Prove the Yoneda lemma.

There is an equivalent contravariant version of the Yoneda lemma.

2.2 Adjoint pairs of functors

Definition 2.2.1. Given a pair of functors $F : \mathscr{C} \hookrightarrow \mathscr{D} : G$, we say they are *adjoint* if there exist natural transformations $\eta : \mathrm{id}_{\mathscr{C}} \Rightarrow GF$ (called the *unit*) and $\epsilon : FG \Rightarrow \mathrm{id}_{\mathscr{D}}$ (called the *counit*) satisfying the triangle identities:

$$F(a) \xrightarrow{F\eta_a} FGF(a) \qquad G(b) \xrightarrow{\eta_{G(b)}} GFG(b)$$

$$\downarrow^{\epsilon_{F(a)}} \qquad \qquad \downarrow^{G(\epsilon_b)}$$

$$F(a) \qquad \qquad G(b),$$

for each $a \in \mathcal{C}$, $b \in \mathcal{D}$.

Definition 2.2.2. Given a pair of functors $F: \mathscr{C} \hookrightarrow \mathscr{D}: G$, we say they are *adjoint* if, for each $a \in \mathscr{C}$, $b \in \mathscr{D}$, there exists an isomorphism

$$\operatorname{Hom}_{\mathscr{D}}(F(a),b) \cong \operatorname{Hom}_{\mathscr{C}}(a,G(b)),$$

which is natural in both a and b.

Exercise 2.2.3. Demonstrate the equivalence of these definitions.

The second definition only makes sense in a setting where we are allowed to compare $\operatorname{Hom}_{\mathscr{D}}(F(a),b)$ and $\operatorname{Hom}_{\mathscr{C}}(a,G(b))$, for example when \mathscr{C} and \mathscr{D} are both locally small.

Definition 2.2.4. A natural isomorphism is a natural transformation $\eta: F \Rightarrow G$ such that the components $\eta_c: Fc \xrightarrow{\cong} Gc$ is an isomorphism for each $c \in \mathscr{C}$.

Here are some examples of adjunctions:

• Fix an abelian group B. Then for any abelian groups A and C, we have a natural isomorphism of sets

$$\operatorname{Hom}_{\mathbf{Ab}}(A \otimes B, C) \cong \operatorname{Hom}_{\mathscr{C}}(A, \operatorname{Hom}_{\mathbf{Ab}}(B, C)).$$

That is, the functors $-\otimes B$ and $\operatorname{Hom}_{\mathbf{Ab}}(B,-)$ are adjoint.

- We have an free-forgetful adjunction $F : \mathtt{Set} \leftrightarrows \mathtt{Grp} : U$
- $(-)_+$: Top \leftrightarrows Top_{*}: U is an adjunction. We see this since

$$Top(X, UY) \cong Top_*(X_+, Y).$$

Proposition 2.2.5. Adjoints compose.

Definition 2.2.6. A functor $F: \mathscr{C} \to \mathscr{D}$ is an equivalence of categories if there exists $G: \mathscr{D} \to \mathscr{C}$ such that $FG \cong \mathrm{id}_{\mathscr{D}}$ and $GF \cong \mathrm{id}_{\mathscr{C}}$. We say that F is an isomorphism of categories if $FG = \mathrm{id}_{\mathscr{D}}$ and $GF = \mathrm{id}_{\mathscr{C}}$.

Proposition 2.2.7. $F: \mathscr{C} \to \mathscr{D}$ is an equivalence of categories if and only if F is:

- faithful, meaning that $\operatorname{Hom}_{\mathscr{C}}(c,c') \hookrightarrow \operatorname{Hom}_{\mathscr{D}}(Fc,Fc')$ is injective for each c,c'
- full, meaning that $\operatorname{Hom}_{\mathscr{C}}(c,c') \to \operatorname{Hom}_{\mathscr{D}}(Fc,Fc')$ is surjective for each c,c'
- essentially surjective on objects, meaning for each $d \in \mathcal{D}$ there exists $c \in \mathcal{C}$ such that $F(c) \cong \mathcal{D}$.

Exercise 2.2.8. Prove the proposition.

2.3 Limits and colimits in categories

Definition 2.3.1. Let $F: I \to \mathscr{C}$ be a functor. We call this an I-shaped diagram in \mathscr{C} . The colimit of F, denoted colim F, is an object in \mathscr{C} together with a family of morphisms $F(X) \to \operatorname{colim} F$ for each $X \in I$, such that

commutes for each $X \to Y$ in I, and moreover it satisfies a universal property so that for any other object $A \in \mathscr{C}$ with the above properties, we have that there exists a unique map colim $F \to A$ such that the diagram commutes

for each $X \to Y$.

The *limit* of a diagram $F: I \to \mathscr{C}$ is dual to this definition, meaning that a limit is a colimit in the opposite category \mathscr{C}^{op} , i.e. the colimit of the composite functor $I \xrightarrow{F} \mathscr{C} \to \mathscr{C}^{op}$.

Proposition 2.3.2. Limits and colimits, when they exist, are unique up to isomorphism.

Exercise 2.3.3. Prove the proposition.

Before moving on to many examples, we state a proposition whose usefulness is hard to underestimate. It says that left adjoints preserve colimits and right adjoints preserve limits.

Proposition 2.3.4. Let $F \dashv G$ be adjoint functors. Then F preserves colimits and G preserves limits.

Exercise 2.3.5. Prove the proposition.

Definition 2.3.6. Let $I = \bullet$ be the discrete category with two objects and no nontrivial morphisms. Then the limit over I is called the *product*, and the colimit over I is called the *coproduct*. Explicitly, where 0 and 1 denote the two objects in I, we have that

$$\lim_I F = F(0) \prod_I F(1)$$

$$\operatorname{colim}_I F = F(0) \coprod_I F(1).$$

• In Set, a functor determines two sets F(0) = A and F(1) = B, and their colimit $A \coprod B$ satisfies the universal property that, for any other set X equipped with morphisms $A \to X$ and $B \to X$, there is a unique map $A \coprod B \to X$ such that

commutes. This is exactly the coproduct of sets that we are familiar with. Dually, the limit $A \prod B$ satisfies the dual property that, for any X equipped with maps $X \to A$ and $X \to B$, there is a unique map such that

Thus the product in Set is just the cartesian product.

- In Top, the coproduct is disjoint union and the product is the product of spaces with the product topology.
- In Top_{*}, the coproduct is the wedge $A \vee B$, and the product is just the product of spaces $(A, a_0) \times (B, b_0)$ based at the point (a_0, b_0) .
- In Poset, the product $p \wedge q$ is the greatest lower bound, and the coproduct $p \vee q$ is the least upper bound (if they exist).
- In Grp, the product is the direct product, and the coproduct is the free product of groups.

Definition 2.3.7. If $I = \bullet \Rightarrow \bullet$, then the colimit over I is called the *coequalizer* and the limit over I is called the *equalizer*.

Example 2.3.8. In Top, let $E \subseteq X \times X$ be an equivalence relation on X. Then

$$\operatorname{colim}\left(E \underset{\pi_2}{\overset{\pi_1}{\Longrightarrow}} X\right) = X/\sim.$$

Definition 2.3.9. If $I = \bullet \leftarrow \bullet \rightarrow \bullet$, then the colimit over I is called the *pushout*. The limit over $I^{\text{op}} = \bullet \rightarrow \bullet \leftarrow \bullet$ is called the *pullback*. We denote these by

Here are some examples:

• In Set, the pushout

$$Z \xrightarrow{f} Y$$

$$\downarrow i_2$$

$$X \xrightarrow{i_1} X \coprod_Z Y$$

is given by $X \coprod_Z Y = (X \coprod Y)/(i_1 f(z) \sim i_2 g(z)).$

If $X, Y \subseteq S$ are both subsets of some larger set with $X \cap Y = Z$, then the pushout is $X \cup Y$.

• In Top the pushout is a gluing construction

where $Z \to X$ is some nice map like a closed inclusion, then we have that

$$X \cup_f Y = X \cup_f Y = X \coprod Y/f(z) \sim z.$$

For example, given the boundary inclusion $S^1 \to D^2$, we have that

$$\begin{array}{ccc} S^1 & \longrightarrow & D^2 \\ \downarrow & & \downarrow \\ D^2 & \longrightarrow & S^2. \end{array}$$

• In Set, the pullback

$$\begin{array}{ccc} X\times_Z Y & \longrightarrow & Y \\ \downarrow & & \downarrow \\ X & \longrightarrow & Z \end{array}$$

References Math 619 Notes

is given by

$$X \times_Z Y := \{(x, y) \in X \times Y : f(x) = g(y)\}.$$

For example, given the parity map $\mathbb{Z} \to \mathbb{Z}/2$, the pullback along the trivial map from 0 is:

$$\begin{array}{cccc} 2\mathbb{Z} & \longrightarrow & \mathbb{Z} \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & \mathbb{Z}/2. \end{array}$$

More generally, given $f: X \to A$, the pullback of f along the inclusion $* \to A$ which picks out a point $a \in A$ is given by:

$$\begin{array}{cccc}
f^{-1}(a) & \longrightarrow & A \\
\downarrow & & \downarrow f \\
* & \longrightarrow & X
\end{array}$$

References

[GS] B. Guillou and H. Skiadas, Womp 2004: Category theory.

[Rie16] E. Riehl, *Category theory in context*, Aurora: Dover Modern Math Originals, Dover Publications, 2016.

[Tor] G. Torres, Notes on category theory.

[Wof] E. Wofsey, What is the opposite category of Top?, Mathematics Stack Exchange.

References Math 619 Notes

Figure 1: The homeomorphism $S^1 \wedge S^1 \cong S^2$.

Index

```
category
opposite, 6
coequalizer, 10
colimit, 9
coproduct, 10
equalizer, 10
functor
forgetful, 6
free, 6
limit, 9
natural transformation, 7
product, 10
pullback, 11
pushout, 11
```