Задание 4 (на 28.09).

ML 17. Существует ли алгоритм, проверяющий, что данная программа считает полиномиально вычислимую функцию. (т.е. такую функцию, для которой существует алгоритм, вычисляющий ее, который работает полиномиальное время).

[ML 18.] (простые множества Поста) Назовем множество *иммунным*, если оно бесконечно, но не содержит бесконечных перечислимых подмножеств. Перечислимое множество называется *простым*, если его дополнение иммунно. Докажите, что простые множества существуют.

ML 19. Докажите, что существует:

- (а) три
- (б) счетное число не пересекающихся перечислимых множеств, никакие два из которых нельзя

отделить разрешимым.

ML 20. Является ли перечислимым множество всех программ, вычисляющих инъективные функции. А его дополнение?

ML 21. Задача Поста состоит в следующем: есть доминошки n видов $\begin{bmatrix} \frac{s_1}{t_1} \end{bmatrix}$, $\begin{bmatrix} \frac{s_n}{t_n} \end{bmatrix}$, s_i и t_i — конечные строки, есть неограниченный запас доминошек каждого вида, доминошки переворачивать нельзя. Требуется определить, можно ли составить несколько доминошек так, чтобы в верхней и нижней их половине читалась одна и та же строка, такие последовательности доминошек будем называть согласованными. Докажите, что задача Поста алгоритмически неразрешима.

[ML 22.] В алфавите есть буквы Rи S. Для каждого слова разрешается вычеркивать или дописывать в произвольные места подслова RRR и SS. Также можно заменять подслово SRS на RR и наоборот. Придумайте алгоритм, который по двум словам в этом алфавите проверит, можно ли по этим правилам одно получить из другого.

ML 9. Существует ли алгоритм, проверяющий, работает ли данная программа полиномиальное время? (т.е. на каждом входе алгоритм делает не более p(|x|) шагов, где p — полином, а x — вход алгоритма).