LINGUAGGI E PROGRAMMAZIONE ORIENTATA AGLI OGGETTI

RICCARDO CEREGHINO

Appunti Settembre 2019 – classicthesis v4.6

INTRODUZIONE AGLI ELEMENTI DI UN LINGUAGGIO DI PROGRAMMAZIONE

I motivi della creazione ed utilizzo di un linguaggio di programmazione di alto livello sono: di fornire una descrizione precisa, ovvero una specifica formale; offrire un interpretazione tramite interprete da compilare.

Le caratteristiche principali che categorizzano i linguaggi di programmazione sono la sintassi e la semantica, la quale può essere statica o dinamica.

1.1 LINGUAGGI STATICAMENTE TIPATI

Nei linguaggi tipizzati staticamente il *tipo* di variabile viene stabilito nel codice sorgente, per cui si rende necessario che:

- gli operatori e le assegnazioni devono essere usati coerentemente con il *tipo* dichiarato;
- le variabili siano usate consistentemente rispetto la loro dichiarazione.

I vantaggi della staticità risiedono nella preventiva rilevazione degli errori e nell'efficienza di calcolo risultante dalla coerenza tra codice e compilatore.

1.2 LINGUAGGI DINAMICAMENTE TIPATI

Nei linguaggi di programmazione dinamicamente tipati le variabili sono assegnate ai *tipi* durente l'esecuzione del programma, ne consegue che:

- la semantica statica non è definita;
- un utilizzo incosistenze di variabili, operazioni o assegnazioni generano errori dinamici basati sui tipi.

I linguaggi dinamici per questi motivi risultano essere più semplici ed espressivi.

1.2.1 Esempi di errori

Listing 1.1: Errore di sintassi

 $\| \mathbf{x} = \mathbf{y} \|$

Un errore sintattico generico a molti linguaggi è un espressione formattata erroneamente.

Listing 1.2: Errore statico

```
int x=0;
if(y<0) x=3; else x="three"</pre>
```

In un linguaggio statico come *Java* l'esempio precedente darebbe un errore in quanto una stringa non può essere convertita in un tipo intero.

Listing 1.3: Errore Dinamico

```
x = null;
if(y<0) y=1; else y=x.value;</pre>
```

Parte I

SINTASSI

2

Definizione 1 *Un alfabeto A è un insieme finito non vuoto di simboli.*

Definizione 2 Sia una stringa in un alfabeto A la successione di simboli in u:

$$u:[1\ldots n]\to A$$

Sia:

• [1...n] = m, l'intervallo dei numeri naturali tale che:

$$1 \le m \ge n$$
;

- u sia una funzione totale;
- n sia la lunghezza di u: length(u) = n.

Definizione 3 Definizione 4 *Un programma è una stringa in un alfabeto A.*

- 2.1 ESEMPIO DI STRINGHE
- 2.1.1 Stringa vuota

$$u:[1\ldots 0]\to A$$

Esiste un unica funzione u : $0 \rightarrow A$

Le notazioni standard di una stringa vuoto sono: ε , λ

2.1.2 Stringa non vuota

Si consideri $A = \{'a', \ldots, 'z'\} \cup \{'A', \ldots, 'Z'\}$, l'alfabeto inglese di lettere minuscole e maiuscole. La funzione $u : [1 \ldots 4] \to A$ rappresenta la stringa "Word" con:

- u(1) = 'W'
- u(1) = 'o'
- u(1) = 'r'
- u(1) = 'd'

2.1.3 Concatenazione di stringhe

Definizione 5

$$length(u \cdot v) = length(u) + length(v)$$
 $Per \ ogni \ i \in [1 \dots length(u) + length(v)]$
 $(u \cdot v)(i) = if \ i \le < length(u) then \ u(i) else \ v(i - length(u))$

Monoide

La concatenazione è associativa, ma non commutativa. La stringa vuota è l'identità dell'elemento.

Induzione

La definizione di u^n per induzione su $n \in \mathbb{N}$:

Base:
$$u^0 = \lambda$$

Passo induttivo: $u^{n+1} = u \cdot u^n$ Per cui u^n si concatena con se stesso n volte.

2.1.4 Insiemi di stringhe

Definizione 6 Sia A un alfabeto:

- $A^n = l'$ insieme di tutte le stringhe in A con lunghezza n;
- $A^+ = l'$ insieme di tutte le stringhe in A con lunghezza maggiore di 0;
- $A^* = l'$ insieme di tutte le stringhe in A;
- $A^+ = \bigcup_{n>0} A^n$;
- $A^* = \bigcup_{n>0} A^n = A^0 \cup A^+$

2.2 LINGUAGGIO FORMALE

Definizione 7 (Nozione sintattica di linguaggio) *Un linguaggio* L *in un alfabeto* A *è un sottoinsieme di* A*

ESEMPIO: L'insieme L_{id} di tutti gli identificatori di variabile:

$$A = \{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\} \cup \{'0', \dots, '9'\}$$

$$L_{id} = \{'a', b', \dots, 'a0', 'a1', \dots\}$$

2.2.1 Composizione di operatori tra linguaggi

Le operazioni possono essere di concatenazione o di unione:

- Concatenazione: $L_1 \cdot L_2 = \{u \cdot w | u \in L_1, w \in L_2\};$
- Unione: $L_1 \cup L_2$.

2.2.2 Intuizione

Unione

 $L = L_1 \cup L_2$: qualsiasi stringa L è una stringa di L_1 o di L_2 .

ESEMPIO:

$$L' = \{'a', \ldots, 'z'\} \cup \{'A', \ldots, 'Z'\}$$

Concatenazione

 $L = L_1 \cdot L_2$: qualsiasi stringa L è una stringa di L_1 , seguita da una stringa di L_2 .

ESEMPIO:

$$\{'a', 'ab'\} \cdot \{\lambda, '1'\} = \{'a', 'ab', 'a1', 'ab1'\}$$

$$L_{id} = L' \cdot A^* \text{ con } A = \{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\} \cup \{'0', \dots, '9'\}$$

2.2.3 Monoide

La concatenazione è associativa, ma non commutativa.

 $A^0(=\{\lambda\})$ è l'identità dell'elemento; quindi A^0 non è l'elemento neutro, l'elemento neuro è $0=\{\}.$

2.2.4 Passo induttivo

 L^n è definito per induzione su $n \in \mathbb{N}$: Base: $L^0 = A^0 (= \{\lambda\},$ Passo induttivo: $L^{n+1} = L \cdot L^n$.

- 2.2.5 *Operatori* + *e* *
 - Addizione: $L^+ = \bigcup_{n>0} L^n$;
 - Moltiplicazione: * viene chiamata Kleen star, stella di Kleen.

$$L^* = \bigcup_{n \ge 0} L^n$$

Sono equivalenti $L^* = L^0 \cup L^+$, $L \cdot L^*$.

Intuizione

- Qualsiasi stringa di L^+ è ottenuta concatenando una o più stringhe di L;
- Qualsiasi stringa di *L** è ottenuta concatenando 0 o più stringhe di *L*: *Concatenando zero stringhe si ottiene la stringa vuota*.

ESPRESSIONI REGOLARI

Le espressioni regolari sono un formalismo comunamente utilizzato per definire linguaggi semplici.

Definizione 8 La definizione induttiva di un espressione regolare su un alfabeto A:

BASE:

- 0 è un espressione regolare di A;
- λ è un espressione regolare di A;
- per ogni $\sigma \in A$, σ è un espressione regolare in A.

PASSO INDUTTIVO:

- se e₁ ed e₂ sono espressioni regolare di A,
 allora e₁|e₂ è un espressione regolare di A;
- se e₁ ed e₂ sono espressioni regolare di A,
 allora e₁e₂ è un espressione regolare di A;
- se e è un espressione regolare di A,
 allora e* è un espressione regolarare di A.