```
**Data Analytics - III**
```

In []:

In [49]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

dfl=pd.read_csv('/home/ubuntu/Yash/iris.csv')
dfl
```

Out[49]:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

150 rows × 5 columns

In [37]:

```
df=pd.DataFrame(df1)
df.head()
```

Out[37]:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

In [38]:

```
df.describe()
```

Out[38]:

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [39]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                    Non-Null Count
 #
     Column
                                      Dtype
- - -
     _ _ _ _ _ _
                     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
                                      ----
     sepal.length
                    150 non-null
 0
                                      float64
                    150 non-null
                                      float64
 1
     sepal.width
 2
     petal.length
                    150 non-null
                                      float64
                    150 non-null
                                      float64
 3
     petal.width
 4
     variety
                    150 non-null
                                      object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

In [40]:

df.columns

Out[40]:

In [41]:

sns.jointplot(x='sepal.length',y='sepal.length',data=df,hue='variety')

Out[41]:

<seaborn.axisgrid.JointGrid at 0x7f7c186a2af0>

In [42]:

sns.jointplot(x='petal.width',y='petal.length',data=df,hue='variety')

Out[42]:

<seaborn.axisgrid.JointGrid at 0x7f7c17f04ac0>

In [43]:

sns.pairplot(data=df,hue='variety')

Out[43]:

<seaborn.axisgrid.PairGrid at 0x7f7c161087f0>

In [44]:

```
from sklearn.model_selection import train_test_split
X=df[['sepal.length', 'sepal.width', 'petal.length', 'petal.width']]
Y=df['variety']
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_from sklearn.naive_bayes import MultinomialNB
nb=MultinomialNB()
nb.fit(X_train,y_train)
predictions=nb.predict(X_test)
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
print('Classification Report')
print('\n')
print(classification_report(y_test,predictions))
```

Classification Report

	precision	recall	f1-score	support
Setosa	1.00	1.00	1.00	19
Versicolor	0.88	1.00	0.94	15
Virginica	1.00	0.88	0.93	16
accuracy			0.96	50
macro avg	0.96	0.96	0.96	50
weighted avg	0.96	0.96	0.96	50

In [45]:

```
print('Accuracy')
print(accuracy_score(y_test,predictions))
```

Accuracy 0.96

In [48]:

```
print('Confusion Matrix')
print('\n')
print(confusion_matrix(y_test,predictions))
```

Confusion Matrix

```
[[19 0 0]
[ 0 15 0]
[ 0 2 14]]
```

In []: