Clustering par kmeans

L. Macaire -M1 IVI - RDI - Cours 8

Introduction
Principes
Algorithme

Clustering par kmeans

L. Macaire - M1 IVI - RDF - Cours 8

11 mars 2014

Motivations et objectifs du cours

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme

- Classification des données sans connaissance a priori
- Mise en oeuvre de la méthode K-means
- Segmentation d'une image multi-variée

Niveaux de gris rdf-2-classes- Niveaux de texture rdf-2-texture-1.png classes-texture-1-text.png

Motivations et objectifs du cours

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction Principes Algorithme

- Projection des pixels dans l'espace des attributs
- Mise en oeuvre de la méthode K-means

Espace d'atributs

Observations classées en 2 classes

Motivations et objectifs du cours

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction Principes Classification des pixels par comparaison des distances observations-centres de gravité

Observations classées en 2 Image segmentée en 2 classes classes

Matrice des données discrètes X

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme

■ Soient
$$N$$
 observations pour chacune des D attributs X_i , $i = 1, ..., D$.

• On peut donc représenter les N observations de l'attribut x_i sous la forme d'un vecteur

$$\mathbf{x}_i = (x_{i,1}, ..., x_i, j, ..., x_{i,N})^T$$

- On peut alors rassembler les D vecteurs d'attributs \mathbf{x}_i dans une matrice \mathbf{X} de dimension $D \times N$.
- $x_{i,j}$ est donc le *i*eme attribut de la *j*eme observation.
- *x* est une observation quelconque de dimension *D*.

Clustering par kmeans - Principes

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme

- Soit K le nombre de classes C_k à retrouver, donné par l'utilisateur.
- L'algorithme kmeans va identifier les K centres de gravité $\hat{\mu}_k$ des classes.
- Ils minimisent la distance entre les points assignés à chaque classe et les centre de gravité associés :

$$\frac{1}{N} \sum_{\mathbf{x}} (\mathbf{x} - \boldsymbol{\mu}_{\hat{\omega}(\mathbf{x})})^T . (\mathbf{x} - \boldsymbol{\mu}_{\hat{\omega}(\mathbf{x})})$$

• où $\hat{\omega}(\mathbf{x})$ est la classe d'assignation de la donnée \mathbf{x} .

Clustering par kmeans - Principes

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction Principes Algorithme Minimisation de la distance entre le centre de gravité et les points assignés à chaque classe :

$$\frac{1}{N} \sum_{\mathbf{x}} (\mathbf{x} - \boldsymbol{\mu}_{\hat{\omega}(\mathbf{x})})^T . (\mathbf{x} - \boldsymbol{\mu}_{\hat{\omega}(\mathbf{x})})$$

- où $\hat{\omega}(\mathbf{x})$ est la classe d'assignation de la donnée \mathbf{x} .
- $\hat{\omega}(\mathbf{x})$ est la classe dont le centre de gravité est le plus proche de \mathbf{x} :

$$\hat{\omega}(\mathbf{x}) = \operatorname{argmin}_k(\mathbf{x} - \boldsymbol{\mu}_k)^T.(\mathbf{x} - \boldsymbol{\mu}_k)$$

Clustering par kmeans - Algorithme

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introductio
Principes
Algorithme

- Données d'entrée : *K* et **X**.
- Soient les positions initiales des centres de gravité des classes $\hat{\pmb{\mu}}_k^{(0)}$, k=1,..,K.
- t=1
- Tant que critère d'arrêt non satisfait
 - Assignation des points aux K classes $\hat{\omega}(\mathbf{x})^{(t)} = \operatorname{argmin}_k(\mathbf{x} \boldsymbol{\mu}_k^{(t-1)})^T . (\mathbf{x} \boldsymbol{\mu}_k^{(t-1)})$
 - Soit $S_k^{(t)}$ l'ensemble des points assignés à la classe k $S_k^{(t)} = \{\mathbf{x}.tq.\hat{\omega}(\mathbf{x})^{(t)} = k\}$
 - Mise à jour des centres de gravité des K classes $\mu_k(t) = \frac{1}{|S_k^{(t)}|} \sum_{\mathbf{x} \in S_k^{(t)}} \mathbf{x}$
 - t = t + 1

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme
Exemples

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Principes
Algorithme
Exemples

Clustering par kmeans

L. Macaire -M1 IVI - RDI - Cours 8

Introduction
Principes
Algorithme
Exemples

Espace d'atributs et $\hat{oldsymbol{\mu}}_k^{(0)}$

t=1

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme
Exemples

Limites de la méthode kmeans

Clustering par kmeans

L. Macaire -M1 IVI - RDF - Cours 8

Introduction
Principes
Algorithme
Exemples

- Sensible aux positions initiales des centres de gravité
- Nécessite de préciser le nombre *K* des classes
- Critères d'arrêt :
 - Nombre max d'itérations
 - lacksquare seuil entre 2 itérations : $\sum_k (oldsymbol{\mu}_k^{(t)} oldsymbol{\mu}_k^{(t-1)})^T (oldsymbol{\mu}_k^{(t)} oldsymbol{\mu}_k^{(t-1)})$
- Adaptée aux nuages sphériques