AKS алгоритм проверки числа на простоту

Рубаненко Евгений

2017

Аннотация

В данной работе рассматривается тест Агравала - Каяла - Саксены проверки числа на простоту. Алгоритм работает за полиномиальное время. Приведено доказательство корректности и сравнение с другими алгоритмами проверки числа на простоту.

1 Введение

Долгое время считалось, что изучение простых чисел - пример "чистой" математики. Но в 70-ых годах XX века выяснилось, что простые числа могут быть использованы при создании криптографических алгоритмов. Это послужило толчком в развитии данной области. Для поиска простых чисел существует множество алгоритмов: простых и сложных. Но только в 2002 году был предложен алгоритм, который ответил на вопрос принадлежности задачи распознавания простоты классу Р. Основное свойство теста AKS заключается в том, что он одновременно универсален (то есть может использоваться для проверки простоты любых чисел), полиномиален, детерминирован (что гарантирует получение уникального предопределенного результата) и безусловен (то есть корректность алгоритма не зависит от каких-либо недоказанных гипотез), предыдущие алгоритмы обладали лишь тремя из этих четырех свойств.

2 Идея

Идея алгоритма основана на следующей лемме.

Лемма 2.1. Пусть $a \in \mathbb{Z}, n \in \mathbb{N}$ и (a,n) = 1. Тогда n простое тогда и только тогда, когда

$$(X+a)^n = X^n + a \pmod{n} \tag{1}$$

Доказательство Леммы 2.1. Посмотрим на коэффициент перед X^i , $i \in \{0, \dots, n-1\}$ в многочлене $((X+a)^n-(X^n+a))$. Он равен $\binom{n}{i}a^{n-i}$. Тогда, если n простое, то $\binom{n}{i}=0 \pmod n$ и сравнение (1) верно. Если n составное, то обозначим q - простой делитель n, входящий в его разложение на простые в степени k. Тогда $q^k \nmid \binom{n}{q}$ и $(q, a^{n-q}) = 1$, откуда получаем, что коэффициент при X^q не равен нулю. Но тогда многочлен $((X+a)^n-(X^n+a))$ не равен тождественно нулю, что заверашает доказательство леммы.

Тогда можно придумать следующий тривиальный алгоритм: выбрать a и проверить (1). Проблема заключается в том, что он не эффективен - в худшем случае придется вычислить n коэффициентов в левой части (1).

Идея теста Агравала - Каяла - Саксены заключается в том, чтобы проверять следующее соотношение

$$(X+a)^n = X^n + a \pmod{X^r - 1, n},$$
 (2)

где r - специально подобранное число. Теперь проблема заключается в том, что соотношению (2) могут удовлетворять не только простые n. Дальше будет показано, что можно проверить дополнительные условия, из которых будет следовать, что n простое.

3 Используемые обозначения

Большинство используемых обозначений являются общеизвестными. Дополнительную информацию можно найти в [1].

В работе используется символ $O^{\sim}(t(n))$, что есть $O(t(n) \cdot poly(log\ t(n)))$. Через HOK(m) обозначен $HOK(1,2,\ldots,m)$.

4 Алгоритм

```
Data: n: integer
Result: True, если п простое, False - иначе
if n = a^b, \varepsilon \partial e \ a \in \mathbb{N}, b > 1 then
   return False;
else
   r := \min\{r \mid o_r(n) > \log^2 n\};
   if 1 < (a, n) < n, для какого-то a \le r then
       return False;
   else
       if n \leq r then
         return True;
           for a := 1 to |\sqrt{\phi(r)} \log n| do
               if ((X+a)^n \neq X^n + a \pmod{X^r-1}, n) then
                return False;
           return True;
    end
end
```

Algorithm 1: AKS алгоритм

5 Доказательство корректности

Лемма 5.1. $HOK(m) \ge 2^m$ при $m \ge 9$. **Доказательство Леммы 5.1.** Доказательство можно найти в [2].

Лемма 5.2. Существует $r \leq max\{3, \lceil log^5n \rceil\}$ такое, что $o_r(n) > log^2n$. **Доказательство Леммы 5.2.** При n=2 \exists r=3, и утверждение верно. Будем считать, что n>2. Обозначим $B=\lceil log^5n \rceil$ и рассмотрим произведение

$$P = n \cdot \prod_{i=1}^{\lfloor \log^2 n \rfloor} (n^i - 1)$$

Oценим P сверху

$$P < n \cdot \prod_{i=1}^{\lfloor log^2n \rfloor} n^i = \prod_{i=2}^{\lfloor log^2n \rfloor + 1} n^i < n^{\frac{1}{2}log^2n \cdot (log^2n + 3)} \le n^{log^4n} \le 2^{log^5n} \le 2^B$$

Так как $B = \lceil log^5n \rceil > 10$, то можно воспользоваться Леммой 5.1. Значит, P < HOK(B), так что среди чисел от 1 до B есть число s, на которое P не делится. Если (s,n) = 1, то положим r = s. Если же (s,n) > 1, то рассмотрим $r = \frac{s}{(s,n)}$. Выбранное таким образом r тоже удовлетворяет условию $r \nmid P$ $(n \mid P, s \nmid P, (n,s) \mid P \Longrightarrow r \nmid P)$, причем (r,n) = 1. Так как $r \nmid n^i - 1$, $1 < i < \lfloor log^2n \rfloor$, то $o_r(n) > log^2n$.

Определение 5.1. Пусть r - некоторое, а p - простое числа. Назовем число $m \in \mathbb{N}$ особым по отношению к многочлену f(X), если

$$f^m(X) = f(X^m) \ mod(X^r - 1, \ p)$$

Лемма 5.3. Если m и m являются особыми для многочлена f(X), то $m \cdot m$ также является особым по отношению к f(X).

Доказательство Леммы 5.3. Так как m является особым для f(X), имеем

$$f^{m \cdot m'}(X) = f^{m'}(X^m) \pmod{X^r - 1}, p$$

Так как m является особым для f(X), то заменяя X на X^m в определении, получим

$$f^{m'}(X^m) = f(X^{m \cdot m'}) \pmod{X^{m \cdot r} - 1}, \ p) = f(X^{m \cdot m'}) \pmod{X^r - 1}, \ p$$

где последнее равентсво получено исходя из того, что $X^r - 1|X^{m \cdot r} - 1$. Объединяя, получаем

$$f^{m \cdot m'}(X) = f(X^{m \cdot m'}) \pmod{X^r - 1, p}$$

Лемма 5.4. Если m является особым для многочленов f(X) и g(X), то оно также является особым для многочлена $f(X) \cdot g(X)$.

Доказательтво Леммы 5.4.

$$(f(X) \cdot g(X))^m = f^m(X) \cdot g^m(X) = f(X^m) \cdot g(X^m) \pmod{X^r - 1}, \ p)$$

Теорема 5.1. Если n простое, то алгоритм возвращает True.

Доказательство Теоремы 5.1. Очевидно.

Теорема 5.2. Если алгоритм вернул True, то n простое.

Доказательство Теоремы 5.2. Очевидно.

6 Анализ временной сложности алгоритма

Теорема 6.1. Алгоритм определяет простоту числа за время $O^{\sim}(\log^{\frac{21}{2}}n)$.

Лемма 6.1. Первый шаг алгоритма работает за время $O^{\sim}(log^3n)$.

Доказательство Леммы 6.1. На первом шаге проверяется, что $n \neq a^b$. Для этого надо перебрать $O(\log n)$ вариантов для a. Для конкретного a с помощью бинарного поиска проверяется, что не существует подходящего b. Перебор b требует $O(\log n)$ времени, а вычисление каждого числа вида a^b - $O^{\sim}(\log n)$. Тогда общая сложность первого шага составит $O^{\sim}(\log^3 n)$.

Лемма 6.2. Второй шаг алгоритма работает за время $O^{\sim}(log^7n)$.

Доказательство Леммы 6.2. На втором шаге алгоритма находится такое r, что $o_r(n) > log^2n$. Это можно сделать следующим образом: в цикле по r будем проверять, что $n^k \neq 1 (mod\ r)$ для всех $k \leq log^2n$. Для конкретного r потребуется не больше $O(log^2n)$ умножений по модулю r, откуда сложность одной итерации - $O^\sim(log^2n\ log\ r)$. Согласно Лемме 5.2., необходимое r найдется, причем перебрать придется всего $O(log^5n)$ значений. Тогда общая

Лемма 6.3. Третий шаг алгоритма работает за время $O(log^6n)$.

Доказательство Леммы 6.3. Третий шаг алгоритма - цикл из r итераций. На каждой итерации вычисляется НОД двух чисел, что требует $O(\log n)$ времени. Тогда общая сложность третьего шага составит $O(r \log n) = O(\log^6 n)$.

Лемма 6.4. Пятый шаг алгоритма работает за время $O^{\sim}(\log^{\frac{21}{2}}n)$.

Доказательство Леммы 6.4. Пятый шаг алгоритма - цикл из $\lfloor \sqrt{\phi(r)} \log n \rfloor$ итераций. На каждой итерации полином степени r возводится в степень n (что требует $O(\log n)$ времени); его коэффициенты можно оценить как $O(\log n)$. Таким образом, каждая итерация требует $O^{\sim}(r \log^2 n)$ времени. Тогда общая сложность пятого шага составит

$$O^{\sim}(r\sqrt{\phi(r)}\ log^3n) = O^{\sim}(r^{\frac{3}{2}}log^3n) = O^{\sim}(log^{\frac{21}{2}}n)$$

Доказательство Теоремы 6.1. Так как четвертый шаг алгоритма выполняется за $O(\log n)$, то из Лемм 1 - 4 следует, что временная сложность алгоритма составляет $O^{\sim}(\log^{\frac{21}{2}}n)$.

7 Сравнение с другими алгоритмами

8 Источники информации

- [1] Э.Б. Винберг, Курс алгебры (2011)
- [2] M. Nair. On Chebyshev-type inequalities for primes. Amer. Math. Monthly, 89:126–129, 1982.