Компьютерное Зрение Лекция №4, осень 2021

Глобальные характеристики изображений

План лекции

- Задача сравнения изображений. Признаковые пространства
- Цветовые признаки
- Текстурные признаки
- Контурные признаки

Задача сравнения изображений

Мотивация решать задачу сравнения изображений:

- создание поисковых систем;
- один из способов классификации образов;
- один из способов распознавания образов.

Методы решение задачи:

- попиксельное сравнение;
- сравнение наборов признаков некоторые отличительные особенности изображений

Признаки изображений

В машинном обучении и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления

Признаки изображений:

- текстовое описание;
- визуальное описание.

Свойства признаков:

- информативность;
- инвариантность;
- компактность.

Признаки изображений

Текстовые признаки:

- тэги и аннотации;
- метаданные изображения (дата съемки, параметры сенсора и тп.).

Визуальные признаки:

- цветовые признаки;
- текстурные признаки;
- контурные признаки;
- пространственные признаки.

Признаки изображений

Разделяют признаки на 2 типа:

- <u>Глобальные</u> признаки, описывающие общее представление о изображении или его части.
- <u>Локальные</u> признаки, описывающие представление в специально выбранных областях или точках изображения.

Признаковое пространство

Признаковое пространство — множество векторов признаков с заданной мерой подобия Вектор признаков — n-мерный вектор числовых признаков, который представляет некоторый объект

Сопоставление признаков

Если ввести <u>меру подобия признаков</u>, то так будет задана <u>мера сходства изображений</u> в выбранном признаковом пространстве с заданной мерой

План лекции

- Задача сравнения изображений. Признаковые пространства
- Цветовые признаки
- Текстурные признаки
- Контурные признаки

Гистограммы: прямое сравнение

Гистограммы являются признаком изображения с размерностью равной количеству интервалов разбиения

Меры сравнения гистограмм:

1. Пересечение $d(H_1, H_2) = 1 - \sum_{I} \min(H_1(I), H_2(I))$

2. Корреляция
$$d(H_1,H_2)=rac{\sum_I (H_1(I)-ar{H_1})(H_2(I)-ar{H_2})}{\sqrt{\sum_I (H_1(I)-ar{H_1})^2\sum_I (H_2(I)-ar{H_2})^2}}$$
, где $ar{H_k}=rac{1}{N}\sum_J H_k(J)$

3. Хи-квадрат $d(H_1, H_2) = \sum_I \frac{(H_1(I) - H_2(I))^2}{H_1(I)}$

Важна нормализация гистограмм

Гистограммы: проблемы применения

Квантование гистограмм

- Сетки: быстрые, но применимые только с несколькими размерами
- Кластеризация: медленнее, но может квантовать данные в более высоких измерениях

Много интервалов квантования:

- нужно больше данных
- более детальное представление

Совмещение гистограмм:

- Мера Пересечение или Евклидово расстояние работает быстро
- Хи-квадрат часто работает лучше

Мало интервалов квантования:

- нужно меньше данных
- более грубое представление

Гистограммы: проблемы применения

Гистограммы не содержат пространственную информацию о расположении цветов

Гистограммы для изображений выше будут равны, хотя их структура различается

Гистограммы: проблемы применения

Гистограммы не содержат семантической информации – не получится в явном виде задать эту информацию

На обоих изображениях видны самолеты, но разного применения – военного и гражданского

Гистограммы: учет недостатков

Пространственное расположение объектов в гистограммах можно учитытвать с помощью:

- разбиения изображения на зоны интереса;
- выделение нечетких областей.

Разбиение на зона интереса – сегментация

Выделение нечетких областей

План лекции

- Задача сравнения изображений. Признаковые пространства
- Цветовые признаки
- Текстурные признаки
- Контурные признаки

Текстуры изображений

Выделим примеры типов структур на изображениях:

Матрица смежности

Для того, чтобы численно описать визуальное представление о текстуре используют матрицу смежности - Grey Level Co-occurrence Matrices (GLCM)

Матрица частот пар пикселей определенной яркости, расположенных на изображении определенным образом относительно друг друга

$$C_M = \sum_{k=1}^{m-1} \sum_{k=1}^{m-1} \begin{cases} 1, & \text{if } I(n, m) = k \text{ and } I(n + D_x, m + D_y) = k \\ 0, & \text{otherwise} \end{cases}$$

где D_x , D_y параметр сдвига, задающий взаимное расположение пикселей I(n,m) — уровень яркости пикселя изображения, расположенного в точке (n, m)

Характеристики матрицы смежности

В качестве признаков для анализы выделяют характеристики матрицы GLCM:

$$Contrast = \sum_{i,j=0}^{levels-1} C_{i,j} (i-j)^2$$

Контраст является мерой локального изменения интенсивности

Dissimilarity =
$$\sum_{i,j=0}^{levels-1} C_{i,j} |i-j|$$

Отражает меру несимметричности элементов в GLCM

$$Homogeneity = \sum_{i,j=0}^{levels-1} \frac{C_{i,j}}{1+(i-j)^2}$$

Отражает близость распределения элементов в GLCM

$$Entropy = -\sum_{i,j=0}^{levels-1} C_{i,j} log_2 C_{i,j}$$

Совместная энтропия - это мера случайности, изменчивости значений интенсивности соседства

План лекции

- Задача сравнения изображений. Признаковые пространства
- Цветовые признаки
- Текстурные признаки
- Контурные признаки

Границы объектов на изображениях

Разрывы и перепады значений яркости пикселей означают <u>границы</u> между образами объектов

- Границы содержат больше семантической информации, чем однородные области
- Границы имеют более компактный вариант представления семантики на изображении

Контур образа человека

Границы объектов на изображениях

Рассмотрим пример для того, чтобы понять, что означают границы

Исходное изображение

Значения пикселей по выделенному направлению

Первая производная значений пикселей

Градиенты изображения

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Градиент направлен в сторону наибольшего изменения интенсивности

Направление градиента:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Величина градиента:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Фильтры для вычисления градиента

Для функции двух переменных f(x,y), частная производная по x:

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

Приближение разностной производной:

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

Частная производная линейна и инвариантна к переносу => м.б. выражена через операцию свертки

что является сверткой с ядром:

Фильтры для вычисления градиента

Дискретный случай:

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

zı	z ₂	z ₃	
74	75		
27	z 8	Z9	

Операторы для приближенного вычисления первых частных производных:

Roberts:

Prewitt:

$$G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$

$$G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

Sobel:

$$G_x = (z_9 - z_5)$$
 $G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$ $G_x = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$

$$G_y = (z_8 - z_6)$$
 $G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$ $G_y = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$

- 1	0	0	-1
0	1	1	0

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Фильтры для вычисления градиента

Вычисление второй производной: Лапласиан

$$\nabla^2 f = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

z ₁	<i>z</i> ₂	<i>z</i> ₃
74	75	z ₆
27	z 8	Z9

• Маски Лапласиана:

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$$

$$\nabla^2 f = 8z_5 - (z_1 + z_2 + z_3 + z_4 + z_6 + z_7 + z_8 + z_9)$$

Влияние шума

Влияние шума

Сглаживание шума

Сглаживание шума

Воспользуемся свойствами свертки:

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

Производная Гауссова фильтра

Проблемы выделения границ

Как локализовать то, что мы видим на картинке как край?

Как сделать этот край таким, чтобы он рисовал полную границу объекта?

Свойства детектора границ

- Good localization: найденный край должен быть как можно ближе к истинному краю
- Single response: детектор должен выдавать единственную точку для одной точки истинного края, минимизировать число локальных максимумов рядом с истинным краем

Детектор границ Canny

Алгоритм детектора Canny:

- 1. Свертка изображения с производной фильтра Гаусса
- 2. Поиск значения и направления градиента
- 3. Выделение локальных максимумов (non-maximum suppression): «Утоньшение» края
- 4. Связывание краев и обрезание по порогу (hysteresis):
 - Определяем два порога: нижний и верхний
 - Используем верхний порог для начала построения кривой, нижний для продолжения

Детектор границ Canny: пример

Детектор границ Canny: вычисление градиента

Детектор границ Canny: пороговое правило

Детектор границ Canny: non-maximum suppression

Контурные признаки

Требования к признаками:

- Инвариантность к параллельному переносу
- Инвариантность к изменению масштаба
- Инвариантность к повороту
- Устойчивость к незначительным изменениям формы
- Простота вычисления
- Простота сравнения

Контурные признаки

Примеры признаков:

- Периметр (длина) число пикселей, принадлежащих контуру
- Диаметр большая ось границы
- Эксцентриситет степень отклонения от окружности, отношение длины большой оси к длине малой
- Кривизна скорость изменения угла наклона, вторая производная в каждой точке кривой
- Площадь число пикселей, принадлежащих области
- Центр масс координаты центра масс области
- Компактность отношение квадрата периметра к площади
- Число Эйлера разность между числом компонент связности и числом отверстий

Заключение

- Рассмотрены понятие признакового пространства и идея для решения задачи сравнения изображений
- Выделены 4 типа признаков:
 - цветовые
 - текстурные
 - контурные
 - пространственные
- Изучены методы текстурного и контурного анализа