

RRUL 11 B4 – Remote Radio Unit AWS Radio Compliance FCC CFR 47 Part 27 Test Report

Version: 1.0

Date: 03 June 2010

Document: RRUL 11 B4 FCC 47 Part 27_TR

Status: Approved

Pages: 143

Editor: David Bolzon

File: RRUL 11 B4 FCC TR_A.doc

CONFIDENTIAL INFORMATION RESTRICTED USE AND DUPLICATION © Ericsson Canada Inc. All Rights Reserved.

The information contained in this document is the property of Ericsson Canada. Except as specifically authorized in writing by Ericsson, the holder of this document shall keep all information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to all third parties.

Approvals and Key Reviewers

Name	Function	Role	Status
David Bolzon	Regulatory Prime	Author / Approver	Approved
David Webster	Regulatory Prime	Reviewer	03 June 2010
Radu Trandafir	SPIR TL	Reviewer	03 June 2010

Revision History

Version: 1.0

Status: Approved

Issue	Description of change	Changed by	Date
0.1	Draft	David Bolzon	31 May 2010
1.0	Reviewed and Approved	David Bolzon	03 June 2010

RRUL 11 B4 AWS FCC ID: VZTAKRC131143-1

Reference Documents

- 1. FCC 47 CFR Part 27 "Wireless Communications Services"
- 2. FCC 47 CFR Part 15 "Unintentional Radiators"
- 3. ICES-003 "Digital Apparatus" EMC
- 4. EN 50385:2002—Product Standard to Demonstrate the Compliance of Radio Base Stations and Fixed Terminal Stations for Wireless Telecommunication Systems with the Basic Restrictions or the Reference Levels Related to Human Exposure to Radio-Frequency Electromagnetic Fields (110 MHz–40 GHz)—General Public
- EN 55022, Limits and methods of measurement of radio disturbance characteristics of information technology equipment (CISPR22: 1997), 1998, European Committee for Electro-technical Standardization
- 6. SM.328: "Spectra and bandwidth of emissions".
- 7. CISPR 22: "Limits and methods of measurement of radio disturbance characteristics of information technology equipment".
- CISPR 16-1-1: "Specification for radio disturbance and immunity measuring apparatus and methods -Measuring apparatus".
- 9. ETSI TS 136 141 V8.2.0 (2009-04) LTE; Evolved Universal Radio Access (E-UTRA); Base Station (BS) conformance testing (3GPP TS 36.141 version 8.2.0 Release 8)
- 10. ETSI TS 136 104 V8.5.0 (2009-04) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 8.5.0 Release 8)
- 11. ETSI TS 136 113 V8.1.0 (2009-01) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) and repeater Electro Magnetic Compatibility (EMC) (3GPP TS 36.113 version 8.1.0 Release 8)
- 12. 3GPP TS 36.141 V9.0.0 (2009-05): 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing (Release 9).
- 13. 3GPP TS 36.104 V9.0.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 9)
- 14. 3GPP TS 36.113 V9.0.0(2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) and repeater Electro Magnetic Compatibility (EMC) (Release 9)
- 15. 3GPP TS 36.211 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)
- 3GPP TS 36.212 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)
- 17. 3GPP TS 36.213 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)
- 18. AWS LTE Remote Radio Unit, System Design Specification (RRUL 11 B4)

Table of Contents

A	Approvals and Key Reviewers	2
R	Revision History	2
R	Reference Documents	3
Ta	Table of Contents	4
Li	List of Tables	5
Li	List of Figures	6
A	Acronyms	11
1	1 Summary	12
2	2 Introduction	13
3	3 Equipment Under Test	14
	3.1 Product Identification	14
	3.2 Technical Specifications of the EUT	14
	3.3 Technical Description	14
4	4 Test Conditions	
	4.1 Specifications	17
	4.2 Test Environment	17
	4.3 Test Equipment	17
5	5 Applicable Tests	19
	5.1 FCC Part 27: Test Parameters	19
6	6 Test Results	20
	6.1 Effective Radiated Power	20
	Physical Channels	
	6.2 RF Safety (Reference 27.52)	
	6.3 Occupied Bandwidth	
	6.4 Spurious Emissions at the Antenna Terminal	
	6.5 Field Strength of Spurious Radiation	
	6.6 Frequency Stability	
	6.7 Submission Exhibits	143

Version: 1.0

List of Tables

Table 3-1: Applicable FCC AWS Blocks	15
Table 4-1: Conducted Emissions - List of Test Equipment	17
Table 4-2 Radiated Emissions - List of Test Equipment	18
Table 5-1: Applicable Test Parameters / Results Summary	19
Table 6-1: Setting / Measurement Results – 5MHz Channel Power	22
Table 6-2: Setting / Measurement Results – 10MHz Channel Power	22
Table 6-3: Setting / Measurement Results – Occupied Bandwidth 5MHz	49
Table 6-4: Setting / Measurement Results – Occupied Bandwidth 10MHz	49
Table 6-5: Setting / Measurement Results – Spurious Emissions Band Edge BW = 5MHz	69
Table 6-6: Setting / Measurement Results – Spurious Emissions Band Edge BW = 10MHz	69
Table 6-7: Setting / Results – BW = 5MHz, Spurious Emissions 30MHz - 26.5GHz	70
Table 6-8: Setting / Results – BW = 10MHz, Spurious Emissions 30MHz – 26.5GHz	70
Table 6-9 Spurious Emissions ERP	135
Table 6-10: Frequency Stability vs. Temperature / Voltage Variation	137

List of Figures

Version: 1.0

Status: Approved

Figure 3-1: UUT – Block Diagram RRUL 11 B4 AWS	16
Figure 6-1 RRU Radio Compliance Set Up / Configuration	21
Figure 6-2: 5MHz BW Modulation TX1_QPSK at 2112.5 MHz	23
Figure 6-3: 5MHz BW Channel Power TX1_QPSK at 2112.5 MHz	
Figure 6-4: 5MHz BW Modulation TX2_QPSK at 2112.5 MHz	
Figure 6-5: 5MHz BW Channel Power TX2_QPSK at 2112.5 MHz	
Figure 6-6: 5MHz BW Modulation TX1_16QAM at 2112.5 MHz	
Figure 6-7: 5MHz BW Channel Power TX1_16QAM at 2112.5 MHz	
Figure 6-8: 5MHz BW Modulation TX2_16QAM at 2112.5 MHz	
Figure 6-9: 5MHz BW Channel Power TX2_16QAM at 2112.5 MHz	
Figure 6-10: 5MHz BW Modulation TX1_64QAM at 2112.5 MHz	
Figure 6-11: 5MHz BW Channel Power TX1_64QAM at 2112.5 MHz	
Figure 6-12: 5MHz BW Modulation TX2_64QAM at 2112.5 MHz	
Figure 6-13: 5MHz BW Channel Power TX2_64QAM at 2112.5 MHz	
Figure 6-14: 5MHz BW Channel Power TX1_QPSK at 2132.5 MHz	
Figure 6-15 : 5MHz BW Channel Power TX2_QPSK at 2132.5 MHz	
Figure 6-16: 5MHz BW Channel Power TX1_16QAM at 2132.5 MHz	
Figure 6-17: 5MHz BW Channel Power TX2_16QAM at 2132.5 MHz	
Figure 6-18: 5MHz BW Channel Power TX1_64QAM at 2132.5 MHz	
Figure 6-19: 5MHz BW Channel Power TX2_64QAM at 2132.5 MHz	
Figure 6-20: 5MHz BW Channel Power TX1_QPSK at 2152.5 MHz	
Figure 6-21: 5MHz BW Channel Power TX2_QPSK at 2152.5 MHz	
Figure 6-22: 5MHz BW Channel Power TX1_16QAM at 2152.5 MHz	
Figure 6-23: 5MHz BW Channel Power TX2_16QAM at 2152.5 MHz	33
Figure 6-24: 5MHz BW Channel Power TX1_64QAM at 2152.5 MHz	
Figure 6-25 : 5MHz BW Channel Power TX2_64QAM at 2152.5 MHzFigure 6-26 : 10MHz BW Channel Power TX1_QPSK at 2115.0 MHz	
Figure 6-27: 10MHz BW Channel Power TX2_QPSK at 2115.0 MHz	
Figure 6-28: 10MHz BW Channel Power TX1_16QAM at 2115.0 MHz	
Figure 6-29: 10MHz BW Channel Power TX2_16QAM at 2115.0 MHz	
Figure 6-30: 10MHz BW Channel Power TX1_64QAM at 2115.0 MHz	
Figure 6-31: 10MHz BW Channel Power TX2_64QAM at 2115.0 MHz	
Figure 6-32 : 10MHz BW Modulation TX1_QPSK at 2132.5 MHz	
Figure 6-33: 10MHz BW Channel Power TX1_QPSK at 2132.5 MHz	
Figure 6-34: 10MHz BW Modulation TX2_QPSK at 2132.5MHz	
Figure 6-35: 10MHz BW Channel Power TX2_QPSK at 2132.5 MHz	
Figure 6-36: 10MHz BW Modulation TX1_16QAM at 2132.5 MHz	
Figure 6-37: 10MHz BW Channel Power TX1_16QAM at 2132.5 MHz	
Figure 6-38: 10MHz BW Modulation TX2_16QAM at 2132.5MHz	
Figure 6-39: 10MHz BW Channel Power TX2_16QAM at 2132.5 MHz	
Figure 6-40: 10MHz BW Modulation TX1_64QAM at 2132.5 MHz	
Figure 6-41: 10MHz BW Channel Power TX1_64QAM at 2132.5MHz	42
Figure 6-42: 10MHz BW Modulation TX2_64QAM at 2132.5MHz	43
Figure 6-43: 10MHz BW Channel Power TX2_64QAM at 2132.5MHz	
Figure 6-44: 10MHz BW Channel Power TX1_QPSK at 2150.0 MHz	
Figure 6-45: 10MHz BW Channel Power TX2_QPSK at 2150.0 MHz	
Figure 6-46: 10MHz BW Channel Power TX1_16QAM at 2150.0 MHz	
Figure 6-47: 10MHz BW Channel Power TX2_16QAM at 2150.0 MHz	
Figure 6-48: 10MHz BW Channel Power TX1 64QAM at 2150.0 MHz	46

Figure 6-49: 10MHz BW Channel Power TX2_64QAM at 2150.0 MHz	46
Figure 6-50 RRU Radio Compliance Set Up / Configuration	48
Figure 6-51: 5MHz Occupied Bandwidth TX1_QPSK at 2112.5 MHz	50
Figure 6-52: 5MHz Occupied Bandwidth TX2_QPSK at 2112.5 MHz	50
Figure 6-53: 5MHz Occupied Bandwidth TX1_16QAM at 2112.5 MHz	51
Figure 6-54: 5MHz Occupied Bandwidth TX2_16QAM at 2112.5 MHz	
Figure 6-55: 5MHz Occupied Bandwidth TX1_64QAM at 2112.5 MHz	
Figure 6-56: 5MHz Occupied Bandwidth TX2_64QAM at 2112.5 MHz	
Figure 6-57: 5MHz Occupied Bandwidth TX1_QPSK at 2132.5 MHz	
Figure 6-58: 5MHz Occupied Bandwidth TX2_QPSK at 2132.5 MHz	53
Figure 6-59: 5MHz Occupied Bandwidth TX1_16QAM at 2132.5 MHz	
Figure 6-60: 5MHz Occupied Bandwidth TX2_16QAM at 2132.5 MHz	
Figure 6-61: 5MHz Occupied Bandwidth TX1_64QAM at 2132.5 MHz	
Figure 6-62: 5MHz Occupied Bandwidth TX2_64QAM at 2132.5 MHz	
Figure 6-63: 5MHz Occupied Bandwidth TX1_QPSK at 2152.5 MHz	
Figure 6-64: 5MHz Occupied Bandwidth TX2_QPSK at 2152.5 MHz	
Figure 6-65: 5MHz Occupied Bandwidth TX1_16QAM at 2152.5 MHz	
Figure 6-66: 5MHz Occupied Bandwidth TX2_16QAM at 2152.5 MHz	
Figure 6-67: 5MHz Occupied Bandwidth TX1_64QAM at 2152.5 MHz	
Figure 6-68: 5MHz Occupied Bandwidth TX2_64QAM at 2152.5 MHz	
Figure 6-69: 10MHz Occupied Bandwidth TX1_QPSK at 2115.0 MHz	
Figure 6-70: 10MHz Occupied Bandwidth TX2_QPSK at 2115.0 MHz	59
Figure 6-71: 10MHz Occupied Bandwidth TX1_16QAM at 2115.0 MHz	
Figure 6-72: 10MHz Occupied Bandwidth TX2_16QAM at 2115.0 MHz	
Figure 6-73: 10MHz Occupied Bandwidth TX1_64QAM at 2115.0 MHz	
Figure 6-74: 10MHz Occupied Bandwidth TX2_64QAM at 2115.0 MHz	
Figure 6-75: 10MHz Occupied Bandwidth TX1_QPSK at 2132.5 MHz	
Figure 6-76: 10MHz Occupied Bandwidth TX2_QPSK at 2132.5 MHz	
Figure 6-77: 10MHz Occupied Bandwidth TX1_16QAM at 2132.5 MHz	
Figure 6-78: 10MHz Occupied Bandwidth TX2_16QAM at 2132.5 MHz	
Figure 6-79: 10MHz Occupied Bandwidth TX1_64QAM at 2132.5 MHz	
Figure 6-80: 10MHz Occupied Bandwidth TX2_64QAM at 2132.5 MHz	
Figure 6-81: 10MHz Occupied Bandwidth TX1_QPSK at 2150.0 MHz	
Figure 6-82: 10MHz Occupied Bandwidth TX2_QPSK at 2150.0 MHz	
Figure 6-83: 10MHz Occupied Bandwidth TX1_16QAM at 2150.0 MHz	
Figure 6-84: 10MHz Occupied Bandwidth TX2_16QAM at 2150.0 MHz	
Figure 6-85: 10MHz Occupied Bandwidth TX1_64QAM at 2150.0 MHz	
Figure 6-86: 10MHz Occupied Bandwidth TX2_64QAM at 2150.0 MHz	67
Figure 6-87 RRU Radio Compliance Set Up / Configuration	
Figure 6-88 Spurious Emissions 2112.5MHz TX1_QPSK 5MHz Band Edge (ACP 15kHz - 550kHz)	71
Figure 6-89 Spurious Emissions 2112.5MHz TX1_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)	71
Figure 6-90 Spurious Emissions 2112.5MHz TX2_QPSK 5MHz Band Edge (ACP 15kHz - 550kHz)	
Figure 6-91 Spurious Emissions 2112.5MHz TX2_QPSK 5MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-92 Spurious Emissions 2112.5MHz TX1_16QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	
Figure 6-93 Spurious Emissions 2112.5MHz TX1_16QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	73
Figure 6-94 Spurious Emissions 2112.5MHz TX2_16QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	
Figure 6-95 Spurious Emissions 2112.5MHz TX2_16QAM 5MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-96 Spurious Emissions 2112.5MHz TX1_64QAM 5MHz Band Edge (ACP 15kHz – 550kHz)	
Figure 6-97 Spurious Emissions 2112.5MHz TX1_64QAM 5MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-98 Spurious Emissions 2112.5MHz TX2_64QAM 5MHz Band Edge (ACP 15kHz -550kHz)	
Figure 6-99 Spurious Emissions 2112.5MHz TX2_64QAM 5MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-100 Spurious Emissions 2132.5MHz TX1_QPSK 5MHz Band Edge (ACP 15kHz – 550kHz)	
Figure 6-101 Spurious Emissions 2132.5MHz TX1_QPSK 5MHz Band Edge (ACP 650kHz – 2MHz)	

Version: 1.0

Status: Approved

Figure 6-102 Spurious Emissions 2132.5MHz TX2_QPSK 5MHz Band Edge (ACP 15kHz – 550kHz)	78
Figure 6-103 Spurious Emissions 2132.5MHz TX2_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)	78
Figure 6-104 Spurious Emissions 2132.5MHz TX1_16QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	79
Figure 6-105 Spurious Emissions 2132.5MHz TX1_16QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	79
Figure 6-106 Spurious Emissions 2132.5MHz TX2_16QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	80
Figure 6-107 Spurious Emissions 2132.5MHz TX2_16QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	80
Figure 6-108 Spurious Emissions 2132.5MHz TX1_64QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	81
Figure 6-109 Spurious Emissions 2132.5MHz TX1_64QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-110 Spurious Emissions 2132.5MHz TX2_64QAM 5MHz Band Edge (ACP 15kHz - 550kHz)	
Figure 6-111 Spurious Emissions 2132.5MHz TX2_64QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	82
Figure 6-112 Spurious Emissions 2152.5MHz TX1_QPSK 5MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-113 Spurious Emissions 2152.5MHz TX1_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)	83
Figure 6-114 Spurious Emissions 2152.5MHz TX2_QPSK 5MHz Band Edge (ACP 15kHz - 550KHz)	84
Figure 6-115 Spurious Emissions 2152.5MHz TX2_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)	84
Figure 6-116 Spurious Emissions 2152.5MHz TX1_16QAM 5MHz Band Edge (ACP 15kHz - 550KHz)	85
Figure 6-117 Spurious Emissions 2152.5MHz TX1_16QAM 5MHz Band Edge (ACP 650KHz - 2MHz)	
Figure 6-118 Spurious Emissions 2152.5MHz TX2_16QAM 5MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-119 Spurious Emissions 2152.5MHz TX2_16QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-120 Spurious Emissions 2152.5MHz TX1_64QAM 5MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-121 Spurious Emissions 2152.5MHz TX1_64QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-122 Spurious Emissions 2152.5MHz TX2_64QAM 5MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-123 Spurious Emissions 2152.5MHz TX2_64QAM 5MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-124 MXA (TX1) Noise Floor Reference (30MHz - 4GHz)	
Figure 6-125 Spurious Emission TX1 64QAM 2112.5MHz - 5MHz (30MHz - 4GHz)	
Figure 6-126 Spurious Emission TX1 64QAM 2152.5MHz – 5MHz (30MHz - 4GHz)	
Figure 6-127 MXA (TX2) Noise Floor Reference (30MHz - 4GHz)	
Figure 6-128 Spurious Emission TX2 64QAM 2112.5MHz - 5MHz (30MHz - 4GHz)	
Figure 6-129 Spurious Emission TX2 64QAM 2152.5MHz – 5MHz (30MHz - 4GHz)	
Figure 6-130 MXA (TX1) Noise Floor Reference (3.5GHz – 8.4GHz)	
Figure 6-131 Spurious Emission TX1 64QAM 2112.5MHz - 5MHz (3.5GHz – 8.4GHz)	
Figure 6-132 Spurious Emission TX1 64QAM 2152.5MHz – 5MHz (3.5GHz – 8.4GHz)	
Figure 6-133 MXA (TX2) Noise Floor Reference (3.5GHz – 8.4GHz)	
Figure 6-134 Spurious Emission TX2 64QAM 2112.5MHz - 5MHz (3.5GHz – 8.4GHz)	
Figure 6-135 Spurious Emission TX2 64QAM 2152.5MHz – 5MHz (3.5GHz – 8.4GHz)	94
Figure 6-136 MXA (TX1) Noise Floor Reference (8GHz- 16GHz)	95
Figure 6-137 Spurious Emission TX1 64QAM 2112.5MHz - 5MHz (8GHz- 16GHz)	
Figure 6-138 Spurious Emission TX1 64QAM 2152.5MHz – 5MHz (8GHz- 16GHz)	
Figure 6-139 MXA (TX2) Noise Floor Reference (8GHz- 16GHz)	
Figure 6-140 Spurious Emission TX2 64QAM 2112.5MHz - 5MHz (8GHz- 16GHz)	
Figure 6-141 Spurious Emission TX2 64QAM 2152.5MHz – 5MHz (8GHz- 16GHz)	
Figure 6-142 MXA (TX1) Noise Floor Reference (15.5GHz – 26.5GHz)	
Figure 6-143 Spurious Emission TX1 64QAM 2112.5MHz - 5MHz (15.5GHz – 26.5GHz)	
Figure 6-144 Spurious Emission TX1 64QAM 2152.5MHz – 5MHz (15.5GHz – 26.5GHz)	
Figure 6-145 MXA (TX2) Noise Floor Reference (15.5GHz – 26.5GHz)	
Figure 6-146 Spurious Emission TX2 64QAM 2112.5MHz - 5MHz (15.5GHz – 26.5GHz)	
Figure 6-147 Spurious Emission TX2 64QAM 2152.5MHz – 5MHz (15.5GHz – 26.5GHz)	
Figure 6-148 Spurious Emissions 2115.0MHz TX1_QPSK 10MHz Band Edge (ACP 15kHz – 550KHz)	
Figure 6-149 Spurious Emissions 2115.0MHz TX1_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-150 Spurious Emissions 2115.0MHz TX2_QPSK 10MHz Band Edge (ACP 15kHz – 550KHz)	
Figure 6-151 Spurious Emissions 2115.0MHz TX2_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-152 Spurious Emissions 2115.0MHz TX1_16QAM 10MHz Band Edge (ACP 15kHz – 550KHz)	
Figure 6-153 Spurious Emissions 2115.0MHz TX1_16QAM 10MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-154 Spurious Emissions 2115.0MHz TX2 16QAM 10MHz Band Edge (ACP 15kHz – 550KHz)	

Figure 6-156 Spurious Emissions 2115.0MHz TX1_64QAM 10MHz Band Edge (ACP 15kHz – 550KHz)	105 106 107 107 108 108 109
Figure 6-158 Spurious Emissions 2115.0MHz TX2_64QAM 10MHz Band Edge (ACP 15kHz – 550KHz)	106 107 107 108 108 109 110
Figure 6-159 Spurious Emissions 2115.0MHz TX2_64QAM 10MHz Band Edge (ACP 650kHz – 2MHz)	106 107 107 108 108 109 110
Figure 6-160 Spurious Emissions 2132.5MHz TX1_QPSK 10MHz Band Edge (ACP 15kHz – 550KHz)	107 107 108 108 109 109
Figure 6-161 Spurious Emissions 2132.5MHz TX1_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz) Figure 6-162 Spurious Emissions 2132.5MHz TX2_QPSK 10MHz Band Edge (ACP 15kHz – 550KHz) Figure 6-163 Spurious Emissions 2132.5MHz TX2_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	107 108 108 109 109
Figure 6-162 Spurious Emissions 2132.5MHz TX2_QPSK 10MHz Band Edge (ACP 15kHz – 550KHz)Figure 6-163 Spurious Emissions 2132.5MHz TX2_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	108 108 109 109
Figure 6-163 Spurious Emissions 2132.5MHz TX2_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	108 109 109 110
	109 109 110
Figure 6-164 Spurious Emissions 2132 5MHz TX1 16OAM 10MHz Band Edge (ACP 15kHz = 550KHz)	109 110
- 15 and 0 10 . Spanious Emissions Elsestine 1111_10 21 mil 10mile Band Eage (1101 15 kill 550 kill)	110
Figure 6-165 Spurious Emissions 2132.5MHz TX1_16QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-166 Spurious Emissions 2132.5MHz TX2_16QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	110
Figure 6-167 Spurious Emissions 2132.5MHz TX2_16QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-168 Spurious Emissions 2132.5MHz TX1_64QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	111
Figure 6-169 Spurious Emissions 2132.5MHz TX1_64QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	111
Figure 6-170 Spurious Emissions 2132.5MHz TX2_64QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	112
Figure 6-171 Spurious Emissions 2132.5MHz TX2_64QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	112
Figure 6-172 Spurious Emissions 2150.0MHz TX1_QPSK 10MHz Band Edge (ACP 15kHz - 550KHz)	113
Figure 6-173 Spurious Emissions 2150.0MHz TX1_QPSK 10MHz Band Edge (ACP 650kHz - 2MHz)	113
Figure 6-174 Spurious Emissions 2150.0MHz TX2_QPSK 10MHz Band Edge (ACP 15kHz - 550KHz)	114
Figure 6-175 Spurious Emissions 2150.0MHz TX2_QPSK 10MHz Band Edge (ACP 650kHz – 2MHz)	
Figure 6-176 Spurious Emissions 2150.0MHz TX1_16QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-177 Spurious Emissions 2150.0MHz TX1_16QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-178 Spurious Emissions 2150.0MHz TX2_16QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-179 Spurious Emissions 2150.0MHz TX2_16QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	116
Figure 6-180 Spurious Emissions 2150.0MHz TX1_64QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-181 Spurious Emissions 2150.0MHz TX1_64QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	
Figure 6-182 Spurious Emissions 2150.0MHz TX2_64QAM 10MHz Band Edge (ACP 15kHz - 550KHz)	
Figure 6-183 Spurious Emissions 2150.0MHz TX2_64QAM 10MHz Band Edge (ACP 650kHz - 2MHz)	118
Figure 6-184 MXA (TX1) Noise Floor Reference (30MHz - 4GHz)	
Figure 6-185 Spurious Emission TX1 64QAM 2115.0MHz - 10MHz (30MHz - 4GHz)	119
Figure 6-186 Spurious Emission TX1 64QAM 2150.0MHz - 10MHz (30MHz - 4GHz)	
Figure 6-187 MXA (TX2) Noise Floor Reference (30MHz - 4GHz)	
Figure 6-188 Spurious Emission TX2 64QAM 2115.0MHz - 10MHz (30MHz - 4GHz)	
Figure 6-189 Spurious Emission TX2 64QAM 2150.0MHz - 10MHz (30MHz - 4GHz)	121
Figure 6-190 MXA (TX1) Noise Floor Reference (3.5GHz – 8.4GHz)	122
Figure 6-191 Spurious Emission TX1 64QAM 2115.0MHz - 10MHz (3.5GHz - 8.4GHz)	122
Figure 6-192 Spurious Emission TX1 64QAM 2150.0MHz - 10MHz (3.5GHz - 8.4GHz)	123
Figure 6-193 MXA (TX2) Noise Floor Reference (3.5GHz – 8.4GHz)	123
Figure 6-194 Spurious Emission TX2 64QAM 2115.0MHz - 10MHz (3.5GHz - 8.4GHz)	124
Figure 6-195 Spurious Emission TX2 64QAM 2150.0MHz – 10MHz (3.5GHz – 8.4GHz)	124
Figure 6-196 MXA (TX1) Noise Floor Reference (8GHz- 16GHz)	
Figure 6-197 Spurious Emission TX1 64QAM 2115.0MHz - 10MHz (8GHz- 16GHz)	125
Figure 6-198 Spurious Emission TX1 64QAM 2150.0MHz – 10MHz (8GHz- 16GHz)	
Figure 6-199 MXA (TX2) Noise Floor Reference (8GHz- 16GHz)	
Figure 6-200 Spurious Emission TX2 64QAM 2115.0MHz - 10MHz (8GHz- 16GHz)	127
Figure 6-201 Spurious Emission TX2 64QAM 2150.0MHz – 10MHz (8GHz- 16GHz)	127
Figure 6-202 MXA (TX1) Noise Floor Reference (15.5GHz – 26.5GHz)	
Figure 6-203 Spurious Emission TX1 64QAM 2115.0MHz - 10MHz (15.5GHz - 26.5GHz)	128
Figure 6-204 Spurious Emission TX1 64QAM 2150.0MHz – 10MHz (15.5GHz – 26.5GHz)	129
Figure 6-205 MXA (TX2) Noise Floor Reference (15.5GHz – 26.5GHz)	
Figure 6-206 Spurious Emission TX2 64QAM 2115.0MHz - 10MHz (15.5GHz – 26.5GHz)	130
Figure 6-207 Spurious Emission TX2 64QAM 2150.0MHz – 10MHz (15.5GHz – 26.5GHz)	130

Figure 6-208 RRU Field Strength Set Up / Configuration	131
Figure 6-209 RRU EMC Set Up / Configuration	134
Figure 6-210 Radiated Emissions Set Up Photo	
Figure 6-211 RRU Stability Set Up / Configuration	
Figure 6-212 Stability - 10MHz @ -30C	
Figure 6-213 Stability 10MHz @ -20C	138
Figure 6-214 Stability 10MHz @ -10C	
Figure 6-215 Stability 10MHz @ 0C	139
Figure 6-216 Stability 10MHz @ +10C	140
Figure 6-217 Stability 10MHz @ +20C	140
Figure 6-218 Stability 10MHz @ +30C	141
Figure 6-219 Stability 10MHz @ +40C	141
Figure 6-220 Stability 10MHz @ +50C	

Acronyms

RRU Remote Radio Unit **RRUL** Remote Radio Unit LTE **UDM** Universal Digital Module **DDM Dual Duplexer Module Base Station Transceiver** BTS **EUT Equipment Under Test** LTE Long Term Evolution **ACP** Adjacent Channel Power

CPRI Common Public Radio Interface

NIST National Institute of Standards and Technology NRTL National Recognized Testing Laboratory

NVLAP National Voluntary Laboratory Accreditation Program

LAP Laboratory Accreditation Programs

IC Industry Canada

FCC Federal Communication Commission
CFR Code of Federal Regulations (US)
CAB Conformity assessment body
EMC Electromagnetic Compatibility
EMI Electromagnetic interference

RTTE Radio and Telecommunications Terminal Equipment

TTE Telecommunications equipment
TCB Telecom Certification Body
CCB Canadian Certification Body

IECEE International Electro-technical Committee for Conformity Testing to Standards for Electrical

Equipment

NCB National Certification Bodies

CBTL CB Test Laboratory

ITL Independent Test Laboratory

ITE Information Technology Equipment

1 Summary

Applicant:Ericsson Canada

3500 Carling Ave.

Ottawa, On Canada K2H 8E9

Apparatus: KRC 131 143/1 (RRUL11 B4 AWS) **Application:** Fixed Wireless Base Station Transceiver

FCC ID: VZTAKRC131143-1

In Accordance With: FCC CFR 47 Part 27 Miscellaneous Wireless

Communications Services

This test report has been prepared for the purpose of demonstrating compliance with FCC CFR Title 47 Part 27. Conducted measurements have been performed in accordance with ANSI TIA-603-B-2002. Radiated tests have been conducted is accordance with ANSI C63.4-2003. Radiated emissions are assessed and measured at an accredited ITL in a 3 meter or 10 meter Semi-Anechoic chamber. Conducted Emissions have been assessed at Ericsson Carling facilities using calibrated equipment in accordance with Part 27 Requirements.

The assessment summary is as follows:

Apparatus Assessed: KRC 131 143/1 (RRUL 11 B4 Remote Radio Unit - AWS)

Specification: FCC CFR 47 Part 27 Miscellaneous Wireless

Communications Services

Compliance Status: Complies

Exclusions: None

Non-compliances: None

Report Release History: Original Release

RRUL 11 B4 AWS FCC ID: VZTAKRC131143-1

2 Introduction

This document supports the FCC test process and filing requirements for North American approvals. Measurements are conducted to satisfy and demonstrate compliance to the Essential parameters for Radio Compliance and Conformance to the following standards:

- FCC CFR 47 Part 27 Subpart C, Miscellaneous Wireless Communications Services.
- FCC CFR 47, Subpart 2, Subpart J, Equipment Authorization Procedures Equipment Authorization.

The initial RRU deployment will support a 5MHz and 10MHz BW for Fixed Wireless Base Station (BTS) applications with a rated output power of 30W (44.8dBm) in a 2 x 2 MIMO configuration. Frequency band for authorization will address the US AWS Block.

Hardware Description

The BTS equipment is comprised of the following:

- 1) KRC 131 143/1 RRUL 11 B4: LTE Remote Radio Unit [RRUL] EUT
- 2) CPRI Modem Emulator (RU-Master LPC 102 400/5 R1B S/N T01E684487)

RRU Details

Frequency: FCC AWS Band

 $Transmit \ / \ Downlink: \ 2110MHz - 2155MHz - AWS \ Block$

- Modulation: OFDMA, QPSK, 16QAM, 64QAM
- BW: 5/10 MHz
- MIMO, 2 x 2 (Spatial Multiplexing)
- Diversity, 2 Way Transmit
- Throughput: Up to 60 Mbps
- Power: 44.8dBm (30W)
- PAPR: 7dB

Duplex: FDD (30MHz)

Frequency Stability: +/-0.05ppm

Channel Raster: 100 kHz

Receive / Uplink: 1710 - 1755MHz – AWS: Block

• Modulation: SC-FDMA, QPSK, 16QAM

• BW: 5/10 MHz

• MIMO, 2 x 2, Multi-User

• Throughput: Up to 20Mbps

• Diversity, 2 and (4 Branch Receive)

RRU Physical Details:

PWR: -48V (typical) DC 350W (max), Size: 17" x 11.3" x 8.7" (H x W x D), Weight: 53lbs

3 Equipment Under Test

3.1 Product Identification

The Equipment Under Test (UUT) is identified for Fixed Base Station operation as follows: Ericsson Remote Radio Unit RRUL 11 B4 (AWS 2110MHz – 2155MHz) KRC 131 143/1

3.2 Technical Specifications of the EUT

Manufacturer: Ericsson Canada

Operating Frequency: Downlink ...TX: 2110 – 2155MHz (5/10MHz)

UplinkRX: 1710 – 1755MHz (5/10MHz)

Emission Designator: 5MHz: 5M00 W7D

10MHz: 10M0 W7D

Modulation: LTE OFDMA, QPSK, 16QAM, 64QAM

(Two transmitters, 2 receivers per sector)

Antenna Data: (for reference only)

Andrew HBX-6513DS-T6M

13.2dBd, 15.3dBi (max)

Beam-width – Horizontal 65°

3.3 Technical Description

The Ericsson LTE RRU (RRUL) is a single sector Transceiver (2 transmitter, 2 receivers per radio / sector) operating in FDD mode which will be introduced as part of Ericsson's next generation BTS product line. The initial RRU product offering addresses the LTE air interface, while the RRU radio architecture will be 4G agnostic to support OFDM based air interfaces including the long term evolution of GSM/UMTS (LTE), 802.16e OFDMA standards with Multiple Inputs Multiple Outputs (MIMO) operation. Transmitter outputs (TX1, TX2) are isolated and non-correlated for external interface to customer furnished antenna.

The Radio design will address outdoor installations for pole and building/wall mount deployment. RRU electronics are housed in a weather protected environmental enclosure intended for co-location in proximity to the customer furnished antenna. The RRU has an integrated active duplexer for enhanced up link performance and antenna interface. Compliance and performance testing will include a band / spectrum dependent DDM (duplexer) integrated with the RRU product offering.

The RRU operates over the North American AWS band employing a band specific duplexer designed to limit operations to specific customer requirements. The initial RRU product offering will operate over a Down Link (DL) transmit frequency band from 2110MHz to 2155MHz, for channel bandwidths of 5 and

RRUL 11 B4 AWS FCC ID: VZTAKRC131143-1

10MHz. LTE modulation formats OFDMA QPSK, 16QAM and 64QAM will be assessed at a rated output of 30W per transmitter.

The recommended customer furnished antenna detail is as follows:

MFG: Andrew Antenna Model: HBX-6513DS-T6M Gain: 13.2dBd (15.3dBi) Beam width: Horizontal 65°

The Ericsson RRU design consists of logical sections comprised of Digital, RF, Power Amplifiers, and a Power Supply and distribution housed in a single outdoor enclosure. Heat fins on the enclosure external surface provide convection cooling for thermal and environmental control. For protection against solar impact, a sun shield mounted on the unit provides additional thermal protection to limit direct solar exposure. The unit operates over an ambient temperature of -40°C to +55°C including sun loading.

The digital section provides processing resources to the RRU CPRI based optical link to the Modem and Soft Radio Core. This single sector Radio is targeted to support up to 20MHz base band data bandwidth. (Initial deployment will be limited to 10MHz) The digital section of the transceiver card provides the processing solution for the 4G Radio.

The PSU provides primary power conversion from a nominal input of -48VDC (350W) for the internal PCB circuit requirements. The PA board produces the RF output power for BTS transmission at a rated power up to 30W per transmitter port. The RRU consists of a Radio transceiver and integrated active Duplexer combination for applicable FCC compliance. All compliance measurements and ratings are referenced at the antenna ports / duplexer interface.

Radio Standard is LTE, OFDMA TX, (SC-FDMA RX) configured for a 2x2 MIMO operating mode with an output rated power of 30W (44.8dBm) at the antenna port. Transmit outputs 1 and 2 are isolated, non-correlated outputs connected to two isolated customer furnished antenna and are measured/verified independently.

The TX Modulation schemes of QPSK, 16QAM, and 64QAM will be supported along with an operational bandwidth of 5MHz and 10MHz for initial product release in the AWS Block spectrum. QPSK, 16QAM, and 64 QAM will employ 3/4 CTC data rate coding. The RRU employs a CPRI (Common Public Radio Interface) for interoperability and standardization of the radio protocol interface. To demonstrate compliance, appropriate LTE waveforms will be utilized to generate the RF output, rated power and bandwidth requirements with respect to the modulation variables. Bandwidths of 5MHz and 10MHz will be assessed for operation within the AWS block.

Table 3-1: Applicable FCC AWS Blocks

Band	Bandwidth	Frequency
4	45MHz	2110 – 2155MHz and 1710 – 1755MHz

Test Units

Part 27: UUT KRC 131 143/1 RRUL 11 B4 AWS, SN: CH50000123 CA05 CPRI Modem interface with LTE Test Vectors and traffic (RUMA LPC 102 400/5)

Part 15/27: UUT KRC 131 143/1 RRUL 11 B4 AWS, SN: CH50000117 CA05 CPRI Modem interface with LTE Test Vectors and traffic (RUMA LPC 102 400/5)

Figure 3-1: UUT – Block Diagram RRUL 11 B4 AWS

4 Test Conditions

4.1 Specifications

The apparatus has been assessed against the following specifications: FCC CFR 47 Part 27 Miscellaneous Wireless Communications Services

4.2 Test Environment

All tests are performed under the following environmental conditions:

Temperature range : 15-30 °C Humidity range : 20-75 % Pressure range : 86-106 kPa

Power supply range : \pm +/- 5% of rated voltages

4.3 Test Equipment

Table 4-1: Conducted Emissions - List of Test Equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Cal Due
Signal Analyzer (20Hz-8.4GHz)	Agilent	MXA N9020A	1084944/MY48010211	15 Feb 2012
Signal Analyzer (20Hz-8.4GHz)	Agilent	MXA N9020A	1081485/MY47380104	15 Feb 2012
Signal Analyzer (20Hz-26.5GHz)	Agilent	MXA N9020A	1081485/MY47380593	02 Nov 2011
Power Meter	HP	438A	L0544032	24 Nov 2010
Power Sensor	HP	8481A	US37290233	24 Nov 2010
Attenuator 30dB (Qty=2)	Narda	769-30	NA	NA
Attenuator 20dB (Qty=2)	Meca	650-20-1F4	NA	NA
Network Analyzer (Path Loss Calibration)	Agilent	N5230	MY45000798	16 Nov 2010
Climatic Chamber	Burnsco	RTC-37P-3-3	07-07	27 Oct 2010
Power Supply	Xantrex	XHR 60-18	62016	NCR
Digital Volt Meter	Fluke			

Table 4-2 Radiated Emissions - List of Test Equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next Cal.
10 m EMI Test Chamber				
Bilog Antenna	ARA	LPB 2520	SSG012772	12/21/2010
Horn Antenna, Double ridged	EMCO	3115	SSG012298	02/19/2011
Receiver/Spectrum Analyzer	Hewlett Packard	8566B	SSG012521	03/02/2011
Spec. A, RF Pre-selector	Hewlett Packard	85685A	SSG012010	03/02/2011
Spectrum Analyzer Display	Hewlett Packard	85662A	SSG012433	03/02/2011
Quasi Peak Adaptor	Hewlett Packard	85650A	SSG012620	03/02/2011
RF Amplifier	Hewlett Packard	8447D	SSG013045	09/24/2010
Signal Generator	Anritsu	69369A	SSG012138	09/28/2010
50 Coax cable	HUBER + SUHNER	104PEA	SSG013019	08/17/2010
50 Coax cable	HUBER + SUHNER	104PEA	SSG012131	10/29/2010
50 Coax cable	HUBER + SUHNER	104PEA	SSG012041	10/29/2010
50 Coax cable	HUBER + SUHNER	104PEA	SSG012409	01/27/2011
Bilog Antenna	Chase CBL6111	LPB 2520A	SSG012564	10/06/2010
Horn Antenna, Double ridged	EMCO	3115	SSG012267	03/12/2011
Power Supply	Hewlett Packard	6216A	SSG013063	NR
Active Loop Antenna (H Field)	EMCO	6502	SSG012080	12/01/2010
Active Monopole Antenna	EMCO	3301B	SSG012683	07/02/2010
Pre-Amplifier	BNR	LNA	SSG012360	02/15/2011
Attenuator	Aeroflex/Weinschel	6070-10	SSG012140	10/29/2010
High Pass RF Filter	Microwave Circuits Inc.	H1G013G1	SSG013705	04/20/2011
Radio Frequency Filter	FSY Microwave	DC 9371	SSG013702	02/10/2011
High Pass Filter	Microwave Circuits Inc.	H3G02G1	SSG012728	03/22/2011
Band Pass Filter	Hewlett Packard	8430A	SSG012120	02/10/2011

Version: 1.0 FCC CFR 47 Part 27 Test Report
Status: Approved D. Bolzon

5 Applicable Tests

This section contains the following:

FCC CFR 47 Part 27: Test Requirements

The column headed 'Required' indicates whether the associated clauses were invoked for the apparatus under test. The following abbreviations are used:

No: Not Applicable / Not Relevant.

Y Yes: Mandatory i.e. the apparatus shall conform to these tests.

N/T Not Tested

The results compiled in this document are in accordance and representative of the operation of the apparatus as originally submitted.

5.1 FCC Part 27: Test Parameters

Table 5-1: Applicable Test Parameters / Results Summary

Clause	Test Method	Test description	Required	Result
27.50(d)	2.1046	RF Output Power	Y	Pass
	2.1047	Modulation Characteristics	Y	Pass
	2.1049	Occupied Bandwidth	Y	Pass
27.53(h)	2.1051	Band Edge Compliance	Y	Pass
27.53(h)	2.1051	Spurious Emissions at the Antenna Terminal	Y	Pass
27.53(h)	2.1053, 2.1057	Field Strength of Spurious Emissions	Y	Pass
27.54	2.1055	Frequency Stability	Y	Pass

6 Test Results

6.1 Effective Radiated Power

Clause 27.50(d) Limits: FCC CFR Part 2.1046 Fixed Base Station

- (d) The following power and antenna height requirements apply to stations transmitting in the 1710–1755 MHz and 2110–2155 MHz bands:
 - (1) The power of each fixed or base station transmitting in the 2110–2155 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to a peak equivalent isotropically radiated power (EIRP) of 3280 watts. The power of each fixed or base station transmitting in the 2110–2155 MHz band from any other location is limited to a peak EIRP of 1640 watts. A licensee operating a base or fixed station utilizing a power of more than 1640 watts EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025–2110 MHz band. Operations above 1640 watts EIRP must also be coordinated in advance with the following licensees within 120 kilometers (75 miles) of the base or fixed station: all Broadband Radio Service (BRS) licensees authorized under part 27 in the 2155–2160 MHz band and all AWS licensees in the 2110–2155 MHz band.

Test Conditions:

All modulation (QPSK, 16QAM, and 64QAM) modes and different data rates are evaluated using representative waveforms of all modulation schemes. The test results shall include 5MHz and 10MHz bandwidths configurations for Lower, Middle and Upper band frequency offsets as applicable.

Physical Channels

A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211 [15]. The following downlink physical channels are defined:

- Physical Downlink Shared Channel, PDSCH QPSK, 16QAM, 64QAM
- Physical Broadcast Channel, PBCH QPSK
- Physical Downlink Control Channel, PDCCH QPSK
- Physical Control Format Indicator Channel, PCFICH QPSK
- Physical Hybrid ARQ Indicator Channel, PHICH BPSK

LTE standard defines BPSK as an ARQ Indicator Channel, thus being embedded into the LTE signal and does not contain traffic data. As BPSK is embedded in each modulation scheme, waveforms tested represent the worst case conditions.

Test Setup

Figure 6-1 RRU Radio Compliance Set Up / Configuration

Procedure:

Channel Power measurements for each output shall be conducted for the applicable bandwidths and modulation schemes for the Lower, Middle and Upper frequency offsets as warranted. The following tables are used to summarize recorded results in addition to applicable captured plots.

Table 6-1: Setting / Measurement Results – 5MHz Channel Power

		5MHz Channel Power Output (dBm)						
Setting			QPSK		16 QAM		64 QAM	
			TX1	TX2	TX1	TX2	TX1	TX2
Frequency	(Lower CH_1975)	2112.5MHz	44.65	44.57	44.62	44.87	44.50	44.55
Frequency	(Middle CH_2175)	2132.5MHz	44.50	44.59	44.24	44.37	44.44	44.28
Frequency	(Upper CH_2375)	2152.5MHz	44.31	44.25	44.49	44.47	44.61	44.35
RBW		180kHz						
VBW		1.8MHz						
CH BW		5MHz						
Span		20MHz						
Sweep		1ms						
Reference Level Offset		53.2dB						
Detector RMS		RMS	Aggregate Power =10^(10*LOG(10^(TX1/10)+10^(TX2/10))/10)/1000					
Attenuation		10dB	57.82W		59.66W		56.69W	

Table 6-2: Setting / Measurement Results – 10MHz Channel Power

Setting		10MHz Channel Power Output (dBm)						
		QPSK		16 QAM		64 QAM		
			TX1	TX2	TX1	TX2	TX1	TX2
Frequency	(Lower CH_2000)	2115.0MHz	44.38	44.55	44.67	44.54	44.27	44.30
Frequency	(Middle CH_2175)	2132.5MHz	44.46	44.11	44.56	44.16	44.36	44.12
Frequency	(Upper CH_2350)	2150.0MHz	44.36	44.54	44.35	44.71	44.17	44.23
RBW		180kHz						
VBW		1.8MHz						
CH BW		10MHz						
Span		20MHz						
Sweep		1ms						
Reference Level Offset		53.2dB						
Detector R		RMS	Aggregate Power =10^(10*LOG(10^(TX1/10)+10^(TX2/10))/10)/1			0)/1000		
Attenuation		10dB	55.93W		57.75W		53.65W	

5MHz Aggregate Power = TX1 + TX2= $10*log(10^(44.62/10) + 10^(44.87/10)) = 47.76dBm/5MHz = 10^(47.76/10)/1000 =$ **59.66W/5MHz** 10MHz Aggregate Power = <math>TX1 + TX2= $10*log(10^(44.67/10) + 10^(44.54/10)) = 47.62dBm/5MHz = 10^(47.62/10)/1000 =$ **57.75W/10MHz**

04/06/2010

Page 23 of 143

Figure 6-2: 5MHz BW Modulation TX1_QPSK at 2112.5 MHz

Figure 6-3: 5MHz BW Channel Power TX1_QPSK at 2112.5 MHz

Figure 6-4: 5MHz BW Modulation TX2_QPSK at 2112.5 MHz

Figure 6-5: 5MHz BW Channel Power TX2_QPSK at 2112.5 MHz

Figure 6-6: 5MHz BW Modulation TX1_16QAM at 2112.5 MHz

Figure 6-7: 5MHz BW Channel Power TX1_16QAM at 2112.5 MHz

Figure 6-8: 5MHz BW Modulation TX2_16QAM at 2112.5 MHz

Figure 6-9: 5MHz BW Channel Power TX2_16QAM at 2112.5 MHz

Figure 6-10: 5MHz BW Modulation TX1_64QAM at 2112.5 MHz

Figure 6-11: 5MHz BW Channel Power TX1_64QAM at 2112.5 MHz

Figure 6-12: 5MHz BW Modulation TX2_64QAM at 2112.5 MHz

Figure 6-13: 5MHz BW Channel Power TX2_64QAM at 2112.5 MHz

Figure 6-14: 5MHz BW Channel Power TX1_QPSK at 2132.5 MHz

Figure 6-15: 5MHz BW Channel Power TX2_QPSK at 2132.5 MHz

Figure 6-16: 5MHz BW Channel Power TX1_16QAM at 2132.5 MHz

Figure 6-17: 5MHz BW Channel Power TX2_16QAM at 2132.5 MHz

Figure 6-18: 5MHz BW Channel Power TX1_64QAM at 2132.5 MHz

Figure 6-19: 5MHz BW Channel Power TX2_64QAM at 2132.5 MHz

Figure 6-20: 5MHz BW Channel Power TX1_QPSK at 2152.5 MHz

Figure 6-21: 5MHz BW Channel Power TX2_QPSK at 2152.5 MHz

Figure 6-22: 5MHz BW Channel Power TX1_16QAM at 2152.5 MHz

Figure 6-23: 5MHz BW Channel Power TX2_16QAM at 2152.5 MHz

Figure 6-24: 5MHz BW Channel Power TX1_64QAM at 2152.5 MHz

Figure 6-25: 5MHz BW Channel Power TX2_64QAM at 2152.5 MHz

Figure 6-26: 10MHz BW Channel Power TX1_QPSK at 2115.0 MHz

Figure 6-27: 10MHz BW Channel Power TX2_QPSK at 2115.0 MHz

Figure 6-28: 10MHz BW Channel Power TX1_16QAM at 2115.0 MHz

Figure 6-29: 10MHz BW Channel Power TX2_16QAM at 2115.0 MHz

Figure 6-30: 10MHz BW Channel Power TX1_64QAM at 2115.0 MHz

Figure 6-31: 10MHz BW Channel Power TX2_64QAM at 2115.0 MHz

Figure 6-32: 10MHz BW Modulation TX1_QPSK at 2132.5 MHz

Figure 6-33: 10MHz BW Channel Power TX1 QPSK at 2132.5 MHz

Figure 6-34: 10MHz BW Modulation TX2_QPSK at 2132.5MHz

Figure 6-35: 10MHz BW Channel Power TX2_QPSK at 2132.5 MHz

Figure 6-36: 10MHz BW Modulation TX1_16QAM at 2132.5 MHz

Figure 6-37: 10MHz BW Channel Power TX1_16QAM at 2132.5 MHz

Figure 6-38: 10MHz BW Modulation TX2_16QAM at 2132.5MHz

Figure 6-39: 10MHz BW Channel Power TX2_16QAM at 2132.5 MHz

Figure 6-40: 10MHz BW Modulation TX1_64QAM at 2132.5 MHz

Figure 6-41: 10MHz BW Channel Power TX1_64QAM at 2132.5MHz

Figure 6-42: 10MHz BW Modulation TX2_64QAM at 2132.5MHz

Figure 6-43: 10MHz BW Channel Power TX2_64QAM at 2132.5MHz

Figure 6-44: 10MHz BW Channel Power TX1_QPSK at 2150.0 MHz

Figure 6-45: 10MHz BW Channel Power TX2_QPSK at 2150.0 MHz

Figure 6-46: 10MHz BW Channel Power TX1_16QAM at 2150.0 MHz

Figure 6-47: 10MHz BW Channel Power TX2_16QAM at 2150.0 MHz

Figure 6-48: 10MHz BW Channel Power TX1_64QAM at 2150.0 MHz

Figure 6-49: 10MHz BW Channel Power TX2_64QAM at 2150.0 MHz

6.2 RF Safety (Reference 27.52)

Licensees and manufacturers are subject to the radio frequency radiation exposure requirements specified in sections 1.1307(b), 2.1091, and 2.1093 of this chapter, as appropriate.

Technical information showing the basis for this statement must be submitted to the Commission upon request.

The following spread sheet shows an example of the required calculation for MPE (Maximum Permissible Exposure) for RF safety submissions. This calculation is required as a separate exhibit under the FCC submission.

RF Safety: Based on the rated output power and 15.3dB antenna gain, a minimum distance of 3.0 meters to the operating antenna must be maintained.

RRUL 11 B4 AWS

FCC ID: VZTAKRC131143-1

Prediction of MPE limit at a given distance

Reference_1: Equation from page 51 of EN 50385: Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz - 40 GHz)

Reference 2: Equation from page 18 of OET Bulletin 65, Edition 97-01: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.

$$S \beta \frac{PG}{4\beta R^2}$$

RRUL 11 B4: 2110-2155MHz

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 44.80 (dBm)

Maximum peak output power at antenna input terminal: 30199.5172 (mW)

Antenna gain(typical): 15.3 (dBi)

Maximum antenna gain: 33.88441561 (numeric)

Prediction distance: 300 (cm)

Prediction frequency: 2155 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Power density at prediction frequency: 0.904790 (mW/cm^2)

Maximum allowable antenna gain: 15.73452373 (dBi)

Margin of Compliance: 0.434523735

Version: 1.0FCC CFR 47 Part 27 Test Results04/06/2010Status: ApprovedD. BolzonPage 47 of 143

6.3 Occupied Bandwidth

Clause 27.50 2.1049

(a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied BW is the portion of the spectrum which contains 99% of the emitted energy (.5% of the remaining is above and .5% is below the occupied BW). The occupied bandwidth may not exceed the authorized bandwidth in the radio service rules. The occupied bandwidth test should be performed for each type of emission listed on the grant.

Procedure:

The following procedure and conditions shall apply for Occupied Bandwidth measurements. As applicable, Lower, Middle and Upper frequency offsets, modulation, and bandwidths shall be assessed and recorded along with the relevant captured plots.

Test Setup

Figure 6-50 RRU Radio Compliance Set Up / Configuration

The following tables are used to summarize recorded results in addition to applicable captured plots.

Table 6-3: Setting / Measurement Results – Occupied Bandwidth 5MHz

			Occupied Bandwidth (MHz)							
	Setting			QPSK		16 QAM		AM		
			TX1	TX2	TX1	TX2	TX1	TX2		
Frequency	(Lower CH_1975)	2112.5MHz	4.549	4.580	4.559	4.569	4.568	4.558		
Frequency	(Middle CH_2175)	2132.5MHz	4.555	4.544	4.544	4.539	4.559	4.553		
Frequency	(Upper CH_2375)	2152.5MHz	4.549	4.573	4.534	4.574	4.545	4.555		
RBW		180kHz								
VBW		1.8MHz								
CH BW		5MHz								
Span		20MHz								
Sweep		1ms								
Reference Level Offset		53.2dB								
Detector		Peak								
Attenuation		10dB								

Table 6-4: Setting / Measurement Results – Occupied Bandwidth 10MHz

			Occupied Bandwidth (MHz)							
	Setting			QPSK		16 QAM		QAM		
			TX1	TX2	TX1	TX2	TX1	TX2		
Frequency	(Lower CH_2000)	2115.0MHz	8.965	8.972	8.951	8.970	8.959	8.949		
Frequency	(Middle CH_2175)	2132.5MHz	8.980	8.980	8.992	8.968	8.972	8.924		
Frequency	(Upper CH_2350)	2150.0MHz	8.944	8.980	8.996	8.938	8.942	8.965		
RBW		180kHz								
VBW		1.8MHz								
CH BW		10MHz								
Span		20MHz								
Sweep		1ms								
Reference Level Offset		53.2dB								
Detector		Peak								
Attenuation		10dB								

Figure 6-51: 5MHz Occupied Bandwidth TX1_QPSK at 2112.5 MHz

Figure 6-52: 5MHz Occupied Bandwidth TX2_QPSK at 2112.5 MHz

Figure 6-53: 5MHz Occupied Bandwidth TX1_16QAM at 2112.5 MHz

Figure 6-54: 5MHz Occupied Bandwidth TX2_16QAM at 2112.5 MHz

Figure 6-55: 5MHz Occupied Bandwidth TX1_64QAM at 2112.5 MHz

Figure 6-56: 5MHz Occupied Bandwidth TX2_64QAM at 2112.5 MHz

Figure 6-57: 5MHz Occupied Bandwidth TX1_QPSK at 2132.5 MHz

Figure 6-58: 5MHz Occupied Bandwidth TX2_QPSK at 2132.5 MHz

Figure 6-59: 5MHz Occupied Bandwidth TX1_16QAM at 2132.5 MHz

Figure 6-60: 5MHz Occupied Bandwidth TX2_16QAM at 2132.5 MHz

Figure 6-61: 5MHz Occupied Bandwidth TX1_64QAM at 2132.5 MHz

Figure 6-62: 5MHz Occupied Bandwidth TX2_64QAM at 2132.5 MHz

Figure 6-63: 5MHz Occupied Bandwidth TX1_QPSK at 2152.5 MHz

Figure 6-64: 5MHz Occupied Bandwidth TX2_QPSK at 2152.5 MHz

Figure 6-65: 5MHz Occupied Bandwidth TX1_16QAM at 2152.5 MHz

Figure 6-66: 5MHz Occupied Bandwidth TX2_16QAM at 2152.5 MHz

Figure 6-67: 5MHz Occupied Bandwidth TX1_64QAM at 2152.5 MHz

Figure 6-68: 5MHz Occupied Bandwidth TX2_64QAM at 2152.5 MHz

Figure 6-69: 10MHz Occupied Bandwidth TX1_QPSK at 2115.0 MHz

Figure 6-70: 10MHz Occupied Bandwidth TX2_QPSK at 2115.0 MHz

Figure 6-71: 10MHz Occupied Bandwidth TX1_16QAM at 2115.0 MHz

Figure 6-72: 10MHz Occupied Bandwidth TX2_16QAM at 2115.0 MHz

Figure 6-73: 10MHz Occupied Bandwidth TX1_64QAM at 2115.0 MHz

Figure 6-74: 10MHz Occupied Bandwidth TX2_64QAM at 2115.0 MHz

Figure 6-75: 10MHz Occupied Bandwidth TX1_QPSK at 2132.5 MHz

Figure 6-76: 10MHz Occupied Bandwidth TX2_QPSK at 2132.5 MHz

Figure 6-77: 10MHz Occupied Bandwidth TX1_16QAM at 2132.5 MHz

Figure 6-78: 10MHz Occupied Bandwidth TX2_16QAM at 2132.5 MHz

Figure 6-79: 10MHz Occupied Bandwidth TX1_64QAM at 2132.5 MHz

Figure 6-80: 10MHz Occupied Bandwidth TX2_64QAM at 2132.5 MHz

Figure 6-81: 10MHz Occupied Bandwidth TX1_QPSK at 2150.0 MHz

Figure 6-82: 10MHz Occupied Bandwidth TX2_QPSK at 2150.0 MHz

Figure 6-83: 10MHz Occupied Bandwidth TX1_16QAM at 2150.0 MHz

Figure 6-84: 10MHz Occupied Bandwidth TX2_16QAM at 2150.0 MHz

Figure 6-85: 10MHz Occupied Bandwidth TX1_64QAM at 2150.0 MHz

Figure 6-86: 10MHz Occupied Bandwidth TX2_64QAM at 2150.0 MHz

6.4 Spurious Emissions at the Antenna Terminal

Clause 27.53(h) 2.1051

- (h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log 10$ (P) dB.
 - (1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
 - (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
 - (3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
 - (i) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

Test Setup:

Figure 6-87 RRU Radio Compliance Set Up / Configuration

Procedure:

The following procedure and conditions shall apply for Spurious Emission measurements. As applicable, lower and high side offsets from the channel shall be assessed with respect to all modulation, and bandwidths as well as all emissions up to 26.5GHz. Results shall be compiled and recorded along with the relevant captured plots.

FCC Limit = PWR (dBm) - [43 + 10log(PWR (W))] = 44.8 - 43 + 10log(30) = -13dBm

Table 6-5: Setting / Measurement Results – Spurious Emissions Band Edge BW = 5MHz

Setting		Spurious Emissions (dBm) FCC Limit -13dBm						
		QPSK		16 QAM		64 QAM		
Measurement ACP <	TX1	TX2	TX1	TX2	TX1	TX2		
		Lower Edge Emission						
Frequency (Lower CH_1975)	2112.5MHz	-19.85	-21.80	-22.38	-20.67	-21.87	-19.80	
Frequency (Middle CH_2175)	2132.5MHz	-21.18	-21.97	-19.35	-20.01	-21.99	-20.52	
Frequency (Upper CH_2375)	2152.5MHz	-19.90	-20.36	-19.00	-19.50	-18.34	-19.19	
		Upper Edge Emission						
Frequency (Lower CH_1975)	2112.5MHz	-22.46	-22.34	-23.67	-21.98	-22.81	-21.14	
Frequency (Middle CH_2175)	2132.5MHz	-23.30	-22.66	-20.87	-20.13	-22.60	-22.32	
Frequency (Upper CH_2375)	2152.5MHz	-22.57	-22.18	-21.82	-19.93	-18.87	-21.16	
RBW (MBW=50/100kHz)	30kHz							
VBW	30kHz							
CH BW	CH BW 5MHz		Lower Margin to FCC Limit (dB)					
Reference Level Offset 53.2dB		6.85	8.80	6.00	6.50	5.34	6.19	
Detector	Upper Margin to FCC Limit (dB)							
Attenuation	6dB	9.46	9.18	7.87	6.93	5.87	8.14	

Table 6-6: Setting / Measurement Results – Spurious Emissions Band Edge BW = 10MHz

Setting			Spurious Emissions (dBm) FCC Limit -13dBm						
				SK	16 QAM		64 QAM		
Measurement ACP < 2MHz		TX1	TX2	TX1	TX2	TX1	TX2		
]	Lower Edg	ge Emission	1		
Frequency	(Lower CH_2000)	2115.0MHz	-25.16	-25.13	-25.13	-25.37	-25.47	-24.03	
Frequency	(Middle CH_2175)	2132.5MHz	-22.31	-24.72	-24.32	-24.91	-23.21	-25.95	
Frequency	(Upper CH_2350)	2150.0MHz	-22.80	-24.53	-22.67	-24.48	-25.53	-22.84	
			Upper Edge Emission						
Frequency	(Lower CH_2000)	2115.0MHz	-26.27	-26.09	-26.51	-25.41	-26.79	-25.64	
Frequency	(Middle CH_2175)	2132.5MHz	-21.91	-25.69	-25.88	-25.82	-24.22	-25.92	
Frequency	(Upper CH_2350)	2150.0MHz	-24.51	-24.85	-24.72	-24.62	-25.76	-22.84	
RBW	(MBW=100kHz)	30kHz							
VBW		30kHz							
CH BW 10MHz		Lower Margin to FCC Limit (dB)							
Reference Level Offset 53.2dB		53.2dB	9.31	11.53	9.67	11.48	10.21	9.84	
Detector RMS		Upper Margin to FCC Limit (dB)							
Attenuation	-	6dB	8.91	11.85	11.72	11.62	11.22	9.84	

Table 6-7: Setting / Results – BW = 5MHz, Spurious Emissions 30MHz - 26.5GHz

Setting			Spurious Emissions (dBm) FCC Limit -13dBm					
			64 (64 QAM				
Measurei	Measurement 30MHz – 26.5GHz		TX1	TX2				
Frequency	(Lower CH_1975)	2112.5MHz	All emissions were below MXA noise floor					
Frequency	(Upper CH_2375)	2152.5MHz	All emissions were below MXA noise floor					
RBW 3.0MHz								
VBW								
CH BW		5MHz						
Reference Level Offset		53.2 dB						
Detector RMS		Margin to FCC Limit (dB)						
Attenuation 6dB		> 8.0)dB					

Table 6-8: Setting / Results – BW = 10MHz, Spurious Emissions 30MHz – 26.5GHz

Setting			Spurious Emissions (dBm) FCC Limit -13dBm					
			64 QAM					
Measurement	Measurement 30MHz – 26.5GHz		TX1	TX1				
Frequency (Lov	wer CH_2000)	2115.0MHz	2115.0MHz All emissions were below MXA noise floor					
Frequency (Up)	per CH_2350)	2150.0MHz	All emissions were below MXA noise floor					
RBW 3.0MHz								
VBW								
CH BW		10MHz						
Reference Level Offset		53.2dB						
Detector RMS		RMS	Margin t	o FCC Lin	nit (dB)			
Attenuation 6dB		6dB	> 8.0)dB				

Figure 6-88 Spurious Emissions 2112.5MHz TX1_QPSK 5MHz Band Edge (ACP 15kHz - 550kHz)

Figure 6-89 Spurious Emissions 2112.5MHz TX1_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)

Figure 6-90 Spurious Emissions 2112.5MHz TX2_QPSK 5MHz Band Edge (ACP 15kHz - 550kHz)

Figure 6-91 Spurious Emissions 2112.5MHz TX2_QPSK 5MHz Band Edge (ACP 650kHz - 2MHz)