Overview of the "Barrier Approach" to lower the upper bound of the de Bruijn-Newman constant.

D.H.J. Polymath

June 2018

High level storyline

- \triangleright The basic De Bruijn idea leading to the function H_t(x+iy).
- \triangleright How to effectively bound a good estimate for H_t?
- \triangleright Some observations on the zeros of H_t.
- \triangleright How could zeros of H_t be 'blocked' to lower the Λ upper bound.
- The key ideas behind the "Barrier approach".
- ➤ How to ensure no zeros have passed the Barrier?
- \triangleright How to show that H_t doesn't vanish from the Barrier to N_b?
- \triangleright Numerical results showing Λ < 0.19 (0.14 conditionally on RH < 10^17).
- > Software used, optimizations, and detailed results available.

Basic idea by De Bruijn

Estimating and effectively bounding H₊(x+iy)

Main estimate

$$A(x+iy) := M_t(\frac{1-y+ix}{2}) \sum_{n=1}^{N} \frac{b_n^t}{n^{\frac{1-y+ix}{2} + \frac{t}{2}\alpha(\frac{1-y+ix}{2})}}$$

$$B(x+iy) := M_t(\frac{1+y-ix}{2}) \sum_{n=1}^{N} \frac{b_n^t}{n^{\frac{1+y-ix}{2}} + \frac{t}{2}\alpha(\frac{1+y-ix}{2})}$$

Optionally: a more effective C-term is available

Designed for: $0 < t \le \frac{1}{2}$; $0 \le y \le 1$; $x \ge 200$.

Error terms

Error upper bounds

$$E_A(x+iy) := |M_t(\frac{1-y+ix}{2})| \sum_{n=1}^N \frac{b_n^t}{n^{\frac{1-y}{2}} + \frac{t}{2} \operatorname{Re}\alpha(\frac{1-y+ix}{2})} \varepsilon_{t,n}(\frac{1-y+ix}{2})$$

$$E_B(x+iy) := |M_t(\frac{1+y+ix}{2})| \sum_{n=1}^N \frac{b_n^t}{n^{\frac{1+y}{2}+\frac{t}{2}\operatorname{Re}\alpha(\frac{1+y+ix}{2})}} \varepsilon_{t,n}(\frac{1+y+ix}{2})$$

$$E_{C,0}(x+iy) := \exp\left(\frac{t\pi^2}{64}\right) |M_0(iT')| (1+\tilde{\varepsilon}(\frac{1-y+ix}{2}) + \tilde{\varepsilon}(\frac{1+y+ix}{2})).$$

$$H_t(x+iy) = A(x+iy) + B(x+iy) + O_{\leq}(E_A(x+iy) + E_B(x+iy) + E_{C,0}(x+iy))$$

Normalize by B₀ and bound effectively

$$\frac{H_t(x+iy)}{B_0(x+iy)} = \sum_{n=1}^N \frac{b_n^t}{n^{s_*}} + \gamma \sum_{n=1}^N n^y \frac{b_n^t}{n^{\overline{s_*} + \kappa}} + \overline{O_{\leq}(e_A + e_B + e_{C,0})}$$

Main estimate lower bound

$$\text{(triangle)}\ |f_t(x+iy)| \geq 1 - |\gamma| - \sum_{n=2}^N \frac{b_n^t}{n^\sigma} (1 + |\gamma| n^{\gamma - \operatorname{Re}(\kappa)}),$$

$$(\text{lemma}) \quad |f_t(x+iy)| \geq \left(\left|\sum_{n=1}^N \frac{b_n^t}{n^{s_\star}}\right| - \left|\sum_{n=1}^N \frac{|\gamma| b_n^t n^y}{n^{s_\star}}\right|\right)_+ - |\gamma| \sum_{n=1}^N \frac{b_n^t (n^{|\kappa|}-1)}{n^{\sigma-y}}.$$

Hence,

$$\begin{split} e_A + e_B &\leq \sum_{n=1}^N (1 + |\gamma| N^{|\kappa|} n^y) \frac{b_n^t}{n^{\text{Re}(s_*)}} \left(\exp\left(\frac{\frac{t^2}{16} \log^2 \frac{x}{4\pi n^2} + 0.626}{x - 6.66}\right) - 1 \right) \\ e_{C,0} &\leq \left(\frac{x}{4\pi}\right)^{-\frac{1+y}{4}} \exp\left(-\frac{t}{16} \log^2 \frac{x}{4\pi} + \frac{1.24 \times (3^y + 3^{-y})}{N - 0.125} + \frac{3|\log \frac{x}{4\pi} + i\frac{\pi}{2}| + 10.44}{x - 8.52}\right) \end{split}$$

$$\sum_{d=1}^{D} \frac{\lambda_d}{d^s} = \prod_{p \le P} \left(1 - \frac{b_p^t}{p^s} \right) \checkmark$$

Choice of 'Euler mollifiers

If Lower bound \geq Upper bound then $H_t(x+iy) \neq 0$

Real example of trajectories of real and complex zeros of H_t(x+iy)

Zeroes get denser as one moves away from the origin, so there are more zeros to the right of x_n then to the left, hence their trajectories "lean" leftwards.

Once a zero becomes real, it stays real forever and ends up roughly equally spaced with:

$$z_{j+1}(t) - z_j(t) = (1 + o(1)) \frac{4\pi}{\log z_j(t)}$$

The complex parts of zeros attract each other and the real parts repel each other. From isolating the imaginary "force", it can be derived that all complex zeroes will be forced into the real axis in a finite time leading to the bound:

$$\Lambda \le t + \frac{1}{2}\sigma_{max}^2(t)$$

The De Bruijn – Newman Λ and a 'ceiling' the complex zeroes can't cross

Possible trajectory of a complex zero $(H_t(x+i|y|_{>0})=0)$

Possible trajectories of a complex zeros that should be "blocked".

"Barrier" approach: how to clear the barrier?

"Barrier" approach: how to verify the area from the barrier up to N_h ?

Possible trajectory of a complex zeros that should be "blocked".

Optimizations

Barrier Optimizations

2.

A larger t step

$$t_{next} = t_{curr} + \frac{\min(mesh|(A+B)/B0|) - 0.5}{ddtbound}$$

is allowed due to a conservatively chosen mesh gap 1/ddzbound

ddzbound and ddtbound are monotonous in X,y,t. Hence replacing the slow \quad with numerically integrated fast conservative $\sum_{n=1}^{N} summand(n) \longrightarrow summand(1) + \int\limits_{1}^{N} summand(n)dn$

Euler Bounds Optimizations

1. Fast conservative error bound for $[N_{min}, N_{max}]$

 $3N_{max}\max(e_{B}summand(\mathbf{n}=1,\mathbf{X}=\mathbf{X}_{\mathbf{N}_{min}}),e_{B}summand(\mathbf{n}=\mathbf{N}_{max},\mathbf{X}=\mathbf{X}_{\mathbf{N}_{min}}))+e_{C,0}(\mathbf{X}=\mathbf{X}_{\mathbf{N}_{min}})$

The Barrier model in action: some real numbers (wip)

Selected with Barrier Location optimizer								Selected wi		Selected N _b Locatio		
								<u> </u>				
х	Barrier offset	RH verified?	to	y o	٨	Winding number	mollifier primes	Lemma bound value	Na	Triangle bound value	Nb	
6.00E+10	155019	yes	0.20	0.20	0.22	0	(2,3,5,7)	0.067	69098	0.077	1.7E+06	_
1.00E+11	78031	yes	0.19	0.20	0.21	0	(2,3,5,7)	0.067	89206	0.081	6.0E+06	√
1.00E+12	46880	yes	0.18	0.20	0.20	0	(2,3,5)	0.135	282094	0.089	1.3E+07	√
5.00E+12	194858	yes 1)	0.17	0.20	0.19	0	(2,3,5)	0.180	630783	0.116	1.5E+07	√
1.00E+13	9995	not yet	0.16	0.20	0.18	0	(2,3,5)	0.109	892062	0.091	3.0E+07	√
1.00E+14	2659	not yet	0.15	0.20	0.17	0	(2,3,5)	0.195	2820947	0.076	7.0E+07	
1.00E+15	21104	not yet	0.14	0.20	0.16	0	(2,3,5)	0.251	8920620	0.073	2.0E+08	
1.00E+16	172302	not yet	0.13	0.20	0.15	0	(2,3,5)	0.278	28209479	0.077	7.0E+08	
1.00E+17	31656	not yet	0.12	0.20	0.14	0	(2,3,5)	0.279	89206205	0.080	3.0E+09	
1.00E+18	44592	not yet	0.11	0.20	0.13	0	(2,3)	0.207	282094791	0.103	2.0E+10	
1.00E+19	12010	not yet	0.10	0.20	0.12	tbd	(2,3)	0.128	892062059	0.097	1.5E+11	
1.00E+20	37221	not yet	0.09	0.20	0.11	tbd	(2,3,5)	0.037	2820947918	0.075	1.5E+12	

¹⁾ Gourdon-Demichel 2004

Software used and useful links

All software was developed in two languages and all results were reconciled:

- > Symbolic math programming language pari/gp (https://pari.math.u-bordeaux.fr)
 - Short development time
 - Relatively fast
- > Arithmetic Balls C-based library Arb (http://arblib.org)
 - Longer development time
 - Very fast (up to 20 x pari/gp)

All software and results are free to use (under the LGPL-terms) and can be found here:

https://github.com/km-git-acc/dbn_upper_bound