1. Let \mathcal{L}_1 and \mathcal{L}_2 be two distinct lines in \mathbb{R}^2 which pass through the origin (0,0). Show that $\mathcal{L}_1 \cup \mathcal{L}_2$ is not a vector space under vector addition of vectors and usual scaling of vectors in \mathbb{R}^2 . What if we take the union of finitely many distinct lines $\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_n$ for $n \geq 3$?

$$L_i = a$$
 line in \mathbb{R}^2 , fassing through Let m_i be its slope

Then,

$$L_i = \{ (\alpha, m_i d) : d \in |R\}, \text{ if } m_i \neq \infty$$

$$\text{or } \{ (0, d) : d \in |R\}, \text{ if } m_i = \infty$$

If m, + so and m2 + so, then

$$(1, m_1), (1, m_2) \in \mathcal{L}_1 \cup \mathcal{L}_2$$

but
$$(1, m_1) + (1, m_2) = (2, m_1 + m_2) \notin L_1 \cup L_2$$

slope is $\frac{m_1+m_2}{2}$, and m_1+m_2

If $0 \neq m_1 < m_2 = \infty$, then

$$\left(\frac{1}{m_1}, 1\right), (0, 1) \in \mathcal{L}_1 \cup \mathcal{L}_2$$

but
$$\left(\frac{1}{m_1}, 1\right) + \left(0, 1\right) = \left(\frac{1}{m_1}, 2\right) \notin L_1 \cup L_2$$

slope in 2 m,

If $m_1 = 0$, $m_2 = \infty$, then

$$(1,0), (0,1) \in L_1 \cup L_2$$

but
$$(1,0) + (0,1) = (1,1) \notin L_1 \cup L_2$$

Slobe is 1

Thus LIUL is not a vector space.

The case n = 3 is similar. We may assume $m_1 < m_2 < \cdots < m_n$ and argue using m_1 and m_2 as in n = 2 case.

- 2. Consider the vector space $(\mathbb{R}[x], +, \cdot)$. If $S = \{x^n + x^m : 1 \le n, m \le 2\} \subseteq \mathbb{R}[x]$, then
 - (a) How many elements are there in the set *S*?
 - (b) What is span(S)?
 - (c) What is the dimension of the vector space span(S)?
 - (d) If $S = \{x^n + x^m : n, m \text{ are non-negative integers}\}$, then is it true that span $(S) = \mathbb{R}[x]$?

(a)
$$S = \{2x, x+x^2, 2x^2\}$$
. $S_0 \# S = 3$.

(b) A typical element of Span(S) is
$$\alpha_1(2x) + \alpha_2(x + x^2) + \alpha_3(2x^2), \text{ where}$$

$$\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$$

$$(2d_1+d_2) \times + (2d_3+d_2) \times^2$$

As α_1 , α_2 , α_3 vary over elements of \mathbb{R} , $(2\alpha_1+\alpha_2) \times + (2\alpha_3+\alpha_2) \times^2$ varies over <u>all</u> quadratic polynomials nithout constant term.

Thus,
$$span(s) = \{ \beta_1 x + \beta_2 x^2 : \beta_1, \beta_2 \in \mathbb{R} \}$$

- (c) Note that span(S) is a vector space. A minimal spanning set of span(S) is $\{x, x^2\}$. So, dimension of span(S) is 2.
- (d) Nobserve that: $2 = \pi^0 + \pi^0 \in span(S)$. Thus $1 = \frac{1}{2}(2) \in span(S)$

Abso
$$\frac{-\frac{1}{2} \left(\chi^{0} + \chi^{0} \right)}{S} + \left(\chi^{m} + \chi^{0} \right) \in S_{s}^{s}$$

$$= \chi^{m} \in S_{s}^{s} \quad \text{for all integers } m > 0.$$

Hence
$$\{1, x, x^2, x^3, -\cdots \} \subseteq span(S)$$
.

and therefore, $R[x] \subseteq span(S) \subseteq R[x]$.

i.e. $span(S) = R[x]$.

3. Consider the vector space $(M_n(\mathbb{R}), +, \cdot)$, for $n \ge 2$. Let S be the set of swapper matrices in $M_n(\mathbb{R})$. Is it true that S is a basis of $M_n(\mathbb{R})$?

Let $E_{ij} = \text{matrix whose } (i,j)^{th}$ entry so I and other entries are 0.

obsere that

 $S_i = \{ E_{ij} : 1 \le i, j \le n \}$ is a spanning set of $M_n(\mathbb{R})$.

In fact, it is a minimal spanning set. So, dimension of $M_n(IR) = \# S_1 = n^2$.

Now, if S = set of swapper matrices, then $\# S = \frac{n(n-1)}{2} \quad (\text{why?})$

Since any two basis consist of equal no. of elements, S can not be a basis of $(M_n(IR), +, \cdot)$.

- 4. For $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$, the positive real number $\ell(v) := (a^2 + b^2 + c^2)^{1/2}$ is called the *length* of
 - v. A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is called *rigid*, if $\ell(T(v)) = \ell(v)$ for all $v \in \mathbb{R}^3$.
 - (a) Show that the transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(v) = R_{x,\theta}v$ is rigid, where $R_{x,\theta}$ is the rotation matrix about *x*-axis by angle θ .
 - (b) For $v, w \in \mathbb{R}^3$, the quantity

$$\beta(v,w) := \frac{v.w}{\ell(v)\ell(w)},$$

where v.w is the dot product of v and w, is called the *angle cosine* of v and w. Show that if $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid linear transformation then it preserves angle cosine, *i.e.*, for $v, w \in \mathbb{R}^3$, we have $\beta(v, w) = \beta(T(v), T(w))$.

(a) Note that $T(v) = R_{x,0}v$ is a linear transformation.

Now,

$$T(v) = R_{x,\theta}v = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sin\theta \\ 0 & sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$= \begin{pmatrix} a \\ b \cos \theta - c \sin \theta \\ b \sin \theta + c \cos \theta \end{pmatrix}$$

 $\Rightarrow l(T(v))^{2} = a^{2} + (beos\theta - c sin \theta)^{2} + (b sin \theta + c cos \theta)^{2}$

$$= a^{2} + b^{2} \cos^{2}\theta + c^{2} \sin^{2}\theta - 2b \cos\theta \sin\theta$$
$$+ b^{2} \sin^{2}\theta + c^{2} \cos^{2}\theta + 2b \cos\theta \cos\theta$$

$$= \alpha^2 + b^2 + c^2$$

$$\Rightarrow L(T(v)) = T(v)$$

Thus T is rigid linear transformation.

(b) It is enough to show that if T is rigid, then $v \cdot w = T(v) \cdot T(w) \quad \forall \ v, w \in \mathbb{R}^3$. - why?

Since T is rigid

$$L(v+w) = L(T(v+w)) \quad \forall v, w \in \mathbb{R}^3.$$

$$-(*)$$

observe that $l(v+w)^2 = (v+w) \cdot (v+w)$ = $v \cdot v + v \cdot w + w \cdot v + w \cdot w$

Thus, from (*),

 $\nabla \cdot \nabla + 2 \nabla \cdot w + w \cdot w = T(\nabla) \cdot T(\nabla) + 2 T(\nabla) \cdot T(w) + T(w) \cdot T(w)$ $\Rightarrow \underline{l(\nabla)^{2}} + 2 \nabla \cdot w + \underline{l(w)^{2}} = \underline{l(T(\nabla))^{2}} + 2 T(\nabla) \cdot T(w) + \underline{l(T(\nabla))^{2}}$ Since T is sigid, $\underline{l(\nabla)} = \underline{l(T(\nabla))}$ and $\underline{l(w)} = \underline{l(T(W))}$.

Thus, $v \cdot w = T(v) \cdot T(w)$ $\forall v, w \in \mathbb{R}^3$.