

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4 1 5 8 9 4 4 3 1 5

COMPUTER SCIENCE

9618/13

Paper 1 Theory Fundamentals

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must **not** be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

- 1 Text and numbers are examples of data stored in a computer.
 - (a) A character set is used to represent characters in a computer.

(i)	Describe what is meant by a character set .
	All of the characters/symbols that the computer can use/represent
	Each character has a unique number/binary number/hexadecimal number
	[2]
(ii)	Identify two character sets and state one difference between them. Character set 1 Character set 1
	Character set 2 ASCII has 7 bits whereas UNICODE has 16 bits
	Difference Extended ASCII has 8 bits whereas UNICODE has 16 bits
	ASCII has 7 bits whereas extended ASCII has 8 bits [3]
(iii)	Describe how lossless compression can be used to reduce the file size of a text file.
	Can use run-length encoding
	Identifies groups of repeated characters replaces them with one copy
	of the character and the number of times it occurs
	[2]
(iv)	Explain why lossy compression should not be used on a text file. None of the original data can be lost / deleted
	The (text) file would be corrupted // the (text) file cannot be opened
	[2]

(b) A computer can represent numerical data in different forms.

Complete the table by writing the answer to each statement.

Statement	Answer
The hexadecimal value 11 represented in denary	17
The smallest denary number that can be represented by an unsigned 8-bit binary integer	0
The denary number 87 represented in Binary Coded Decimal (BCD)	1000 0111
The denary number 240 represented in hexadecimal	F0
The denary number –20 represented in 8-bit two's complement binary	1110 1100
	[5]

Working space

2 (a) The Fetch-Execute (F-E) cycle is represented in register transfer notation.

Describe each of the given steps.

Step	Description
	Address in PC is incremented
PC ← [PC] + 1	
	The data in the address held in the MAR is copied
MDR ← [[MAR]]	to the MDR
	The contents of the PC are copied to the MAR
MAR ← [PC]	
	[3]

Explain how interrupts are handled during the F-E cycle.
Check for interrupt at start/end of an F-E cycle Priority is checked
If lower priority than current process continue with F-E cycle
If higher priority than current process state of current process is stored on stack
Location/type of interrupt identified Appropriate ISR is called to handle the interrupt
When ISR finished, check for further interrupts (of higher priority)
Otherwise load data from stack and continue with next F-E cycle (of process

BLANK PAGE

3 (a) The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Instru	ıction	Evalenation		
Opcode Operand		Explanation		
LDM	#n	Immediate addressing. Load the number n to ACC		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
LDI	<address></address>	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC		
<address> can be an absolute or symbolic address</address>				

<address> can be an absolute or symbolic address # denotes a denary number, e.g. #123

The current contents of main memory are:

Address

100	101
101	67
102	104
103	100
104	68

Complete the table by writing the value stored in the accumulator after the execution of each instruction.

Instruction	Accumulator
LDM #103	103
LDD 102	104
LDI 103	101

[3]

(b) The instructions in part (a) are examples of the data movement group.

1. Input and output of data

Takes an input from the user // outputs the character of the binary number

2. Arithmetic operations

Perform addition and subtraction

3. Unconditional and conditional instructions

Move to another instruction (identified by a label)

[4]

4. Compare instructions

Describe **two other** instruction groups.

Compare the result to another value

(c) The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Instru	ıction	Explanation		
Opcode Operand		Explanation		
AND	Bn	Bitwise AND operation of the contents of ACC with the operand		
XOR	Bn	Bitwise XOR operation of the contents of ACC with the operand		
OR	Bn	Bitwise OR operation of the contents of ACC with the operand		
B denotes a binary number, e.g. B01001010				

The binary value 00111101 is stored in the memory address 200.

Each instruction in the diagram is performed on the data in memory address 200.

Draw one line from each instruction to its correct result.

	A co	omputer has system software including an operating system.	
_	(a)	Describe the key management tasks of an operating system.	
		Memory management	
		Controls the movement of data between RAM, processor, VM etc	
		Allocates memory to processes	
		File management	
		Creates files/ folders Renames files/folders	
		Security management	
		Creates accounts/passwords Provide/upgrade firewall / anti-malware	
		Hardware management	
		Receives data from input devices ///sends data to output device	
		Use of device drivers	
	(b)	Process Management Decides which process to run next supports multitasking Utility software is a type of system software. [4]	
		(i) Describe the purpose of back-up software and defragmentation software.	
		Back-up software	
		To make a copy of data at regular intervals	
		So that if it is lost/corrupted it can be retrieved	
		Defragmentation software	hei
		Improve disk access times // Data/files can be loaded faster	101
		improve disk access times // Data/illes can be loaded faster	
		[4]	
		(ii) Give one other example of utility software.	
		Compression software (Hard) disk formatter Virus checker [1]	
		Disk analysis software Disk repair software	

1 mark for identifying task, max 2 for each description Max 2 for only identifying tasks without

9

descriptions

5

a)	(i)	State why data needs to be kept secure.
		To stop the data being lost / corrupted / amended
		To make sure it can be recovered To prevent unauthorised access [1]
	(ii)	One way the data stored in a computer can be kept secure is by using back-up software.
		Give two other ways the data stored in a computer can be kept secure.
		1 Install / run a firewall
		Up to date Anti-virus / anti-malware
		2 (Username and) (strong) password
		Encryption
		[2]
b)		data about the employees is currently stored on paper. The data needs to be transferred the computer system.
	Data	a validation and verification are used to help maintain the integrity of the data.
	(i)	Identify and describe one method of data verification that can be used when transferring the data from paper to the computer.
		Method Visual check
		Description Manually compare the data entered with the original (document)
		Double data entry
	Е	nter the data twice and the system compares them to see if they are the same
	(ii)	The company needs to transfer the date of birth of each employee into the computer system.
		Give one example of how each of the following data validation rules can be used to validate the date of birth when it is entered into the system.
		Range check Make sure it is after and before a specific date
		Presence check Make sure the date of birth has been entered
		Length check Must be 8 characters /

(iii)	Explain why the data in the system may not be correct even after validating and verifying the data.
	Validation checks data is reasonable/within bounds it does not check
	that accurate data has been entered
	Verification checks if the data matches the data given it does not check
	if the original data is accurate
	[2]
	Need to write both of the above points

6 A relational database, TECHNOLOGY, stores data about the staff in a company and the computer devices used by the staff.

The database has the following tables:

STAFF(StaffID,	FirstName	, LastName,	DateOfBirth,	JobTitle;
DEVICE (Dovi coll		atoDurahago	d CtaffID)	
DEVICE (DeviceII	J, IYPE, D	aterurchase	a, Stallid)	

(a) Describe the relationship between the two tables. Refer to the primary and foreign keys in your answer.

Primary key StaffID in STAFF links to foreign key StaffID in DEVICE
One staff member can have many devices
Each device can only be with one member of staff
[4]

- (b) The database uses a Data Definition Language (DDL) and Data Manipulation Language (DML).
 - (i) Complete the SQL script to return the number of devices stored in the database for the staff member with the first name 'Ali' and last name 'Khan'.

```
SELECT COUNT (STAFF.StaffID)

STAFF

FROM STAFF.

INNER JOIN DEVICE

ON STAFF.StaffID = DEVICE.StaffID

WHERE STAFF.FirstName = 'Ali'

AND STAFF.LastName = 'Khan';
```

© UCLES 2022 9618/13/M/J/22

[4]

	(ii)	The table <code>DEVICE</code> needs a new attribute to store whether the device has been returned by the staff member, or not.
		Write a Structured Query Language (SQL) script to insert the new attribute into the table DEVICE.
		ALTER TABLE DEVICE
		ADD Returned Boolean;
		[2]
(c)	The	e database is in Third Normal Form (3NF).
	Cor	mplete the table by describing the three normal forms.

Normal Form	Description
	No repeating groups or repeating attributes
First Normal Form (1NF)	
Second Normal Form (2NF)	All attributes must be fully dependent on the
	(composite) primary key // No partial dependencies
Third Normal Form (3NF)	All attributes must be fully dependent on the
	primary key and no other attributes // no non-key
	dependencies // no transitive dependencies

7 (a) Write the logic expression for the following logic circuit.

	••
13	21
	ונ

(b) Complete the truth table for the following logic expression:

X = (A NAND B) OR (A AND NOT C)

Α	В	С	Working space	X
0	0	0		1
0	0	1		1
0	1	0		1
0	1	1		1
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		0

[2]

А	company uses cloud computing.
(a)	Define cloud computing.
	Accessing a service/files/software on a remote server
	[1]
(b)	State what is meant by a public cloud and a private cloud.
	Public cloud Computing services offered by 3rd party provider over the public Internet
	Private cloud Computing services offered either over the Internet or a private
	internal network [2]
(c)	Give two benefits and one drawback of using cloud computing.
	Benefit 1 Can be accessed anywhere with Internet access
	Can have multiple people working on the same document
	Can easily share documents Benefit 2
	Do not need to install security // security might be better
	You cannot access it if no internet access Drawback
	Cannot access if server goes down
	[3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.