

Institute of Mathematics and Image Computing

Jan Modersitzki, Caterina Rust

MA1500: Lineare Algebra und Diskrete Strukturen 2

Übungsblatt 10

Abgabe: Freitag, 21.06.2019, 8:30 Uhr

Aufgabe 1 (7 Punkte)

Wir betrachten den Vektorraum \mathbb{R}^4 und die folgenden Vektoren $v_1, v_2, v_3, v_4 \in \mathbb{R}^4$:

$$v_1 = \begin{pmatrix} 12 \\ 0 \\ 16 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 6 \\ 1 \\ 8 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ -1 \\ 4 \\ 5 \end{pmatrix}, v_4 = \begin{pmatrix} 9 \\ 3 \\ 12 \\ -5 \end{pmatrix}.$$

a) Bestimmen Sie mit Hilfe des Orthonormalisierungsverfahrens von Gram-Schmidt eine Orthonormalbasis für den von den Vektoren aufgespannten Vektorraum

$$V := \operatorname{spann}(v_1, v_2, v_3, v_4) \subseteq \mathbb{R}^4.$$

b) Berechnen Sie die Fourierkoeffizienten von $x=(9,0,12,5)^{\top}\in\mathbb{R}^4.$

Aufgabe 2 (5 Punkte)

Diese Aufgabe beschäftigt sich mit optimalen Approximationen in Polynomräumen.

a) Es sei $V \coloneqq \Pi_2([-1,1])$ mit dem Standard-Skalarprodukt

$$\langle f, g \rangle \coloneqq \int_{-1}^{1} f(t)g(t)dt.$$

Bestimmen Sie ausgehend von der Basis $M\coloneqq (1,t,t^2)$ eine Orthonormalbasis von V.

b) Es sei nun $V = \Pi_n([-1,1]), n \geq 4$ mit obigem Skalarprodukt gegeben. Bestimmen Sie die beste Approximation von $u: [-1,1] \to \mathbb{R}, \ u(t) := t^4$ durch ein Polynom aus $\Pi_2([-1,1])$ bezüglich der durch das Skalarprodukt induzierten Norm.

Aufgabe 3 (8 Punkte)

Sei $(V, \langle ., . \rangle)$ ein endlichdimensionaler euklidischer Vektorraum und W ein Orthonormalsystem von V. Beweisen Sie, dass folgende Aussagen äquivalent sind:

- (a) W ist eine Orthonormalbasis von V.
- (b) Ist $x \in V$ und $x \perp W$, so ist x = 0.
- (c) Für alle $x \in V$ gilt: $x = \sum_{w \in \mathcal{W}} \langle x, w \rangle w$.
- (d) Für alle $x, y \in V$ gilt: $\langle x, y \rangle = \sum_{w \in \mathcal{W}} \langle x, w \rangle \langle y, w \rangle$.