# MTAT.03.231 Business Process Management

### Lecture 8 – Process Redesign II

**Marlon Dumas** 

marlon.dumas ät ut.ee



## Process redesign



### Process redesign approaches

### **Exploitative Redesign (transactional)**

- Doesn't put into question the current process structure
- Seeks to identify problems and resolve them <u>incrementally</u>, one step at a time
- Example: Heuristic redesign

### **Explorative Redesign (transformational)**

- Puts into question the fundamental assumptions and principles of the existing process structure
- Aims to achieve breakthrough innovation
- Example: Business Process Reengineering (BPR)

### Heuristic process redesign

- Transactional: changes the "as is" process incrementally
- Inward-looking: operates within the scope and context of "as is" process
- Analytical: based on redesign heuristics that strike tradeoffs between:
  - Cost
  - Time
  - Quality
  - Flexibility

### Performance measures: the Devil's Quadrangle



### Flexibility

- Ability to react to changes in:
  - Workload
  - Customer demands and expectations
  - Resource and business partner availability and performance
- Example: Following natural disasters (e.g. storms), the number of home insurance claims increases by tenfold
- To address this surge, flexibility is required at:
  - Resource level: Staff redeployment, faster performance
  - Process level: Performing tasks differently to speed up the front-end
  - Management: Relaxing business rules and controls where possible

### Redesign heuristics

Task-level

- Task elimination
- Task composition/decomposition
- Triage

Flow-level

- Re-sequencing
- Parallelism enhancement

Process-level

- Specialization & standardization
- Resource optimization
- Communication optimization
- Automation

### Task-level redesign heuristics

- 1. Task elimination
- 2. Task composition/decomposition
- 3. Triage



### H1. Task elimination

Eliminate non-value-adding steps wherever these can be isolated

• Forward, send, receive, ...

Consider reducing manual control steps (checks & approvals) by:

- Skipping them where feasible
- Replacing them with statistical controls
- Skipping them selectively



#### H1. Task elimination

(T+, C+/-, Q-)

Consider trade-off between the cost of the check and the cost of not doing it

#### **Examples:**

- <u>Procure-to-pay process</u>: some types of employees are empowered to trigger isolated purchases below \$500 without supervisor approval
- Order-to-cash process: invoices from trusted suppliers under \$1000 are not checked on a one-by-one basis
- <u>University admission process</u>: authenticity check is very expensive, yet it leads to only 1% of applications being rejected

### H2. Task composition/decomposition

- Consider composing two tasks to eliminate transportation and reduce "context switches", OR
- Consider splitting a task into two and assign to separate, specialized resources



### H2. Task composition and decomposition

#### Composition example:

• <u>Procure-to-pay process</u>: Merging two checks: "Check necessity of purchase" and "Check budget"

#### Decomposition example:

• <u>Make-to-order process</u>: Separate a single thick "prepare quote" task into "prepare bill of materials", "prepare production plan" and "estimate costs and delivery time"

Composition: (T+, C+/-, F+)

Decomposition: (T-, C+, F-)

### H3. Triage

- Specialize a task: divide a *general* task into two or more <u>alternative</u> tasks
- Generalize tasks: integrate two or more alternative tasks into one general task



### H3. Triage

#### Specialization example:

• <u>Procure-to-pay process</u>: Separate approvals of *small* purchases, *medium* purchases and *large* purchases

#### Generalization example:

• <u>Make-to-order process</u>: Integrate quote preparation for two product lines into one single task

Specialization: (T+, C+/-, F-)

Generalization: (T-, C+/-, F+)

### Flow-level redesign heuristics

- 4. Re-sequencing
- 5. Parallelism enhancement



### H4. Re-sequencing

Re-order tasks according to their cost/effect ratio to minimize over-processing

- Postpone expensive tasks that may end up not being necessary until the end
- Put knock-out checks first in order to identify problems early



### H4. Re-sequencing

(T+,C+)

#### Examples:

- <u>Make-to-order process</u>: If "Prepare production plan" is time-consuming, postpone it until after the quote price has been tentatively accepted by the customer
- <u>Procure-to-pay process</u>: If "Check necessity of purchase" leads to 20% of knock-outs and "Check budget" leads to 2%, perform "Check necessity of purchase" first
- <u>University admission process</u>: authenticity check (very slow) leads to 1% of applications being rejected while committee's check leads to 80% of applications being rejected. Put committee's check first

### H5. Parallelism enhancement

Parallelize tasks where possible in order to reduce cycle time



#### H5. Parallelism enhancement

(T+,C-)

#### Examples:

- <u>Procure-to-pay process</u>: Parallelize "Approve budget" and "Approve necessity of purchase"
- <u>Make-to-order process</u>: After "Prepare bill of materials", perform "Prepare production plan" and "Estimate costs" in parallel



### Process-level redesign heuristics

- 6. Process specialization & standardization
- 7. Resource optimization
- 8. Communication optimization
- 9. Automation



### H6. Process specialization/standardization

#### **Process specialization**

- One process is split into multiple ones: by customer class, by geographic location, by time period (winter, summer), etc.
- Resources are split accordingly

#### **Process standardization**

- Two processes are integrated
- Resources are pooled together

### H6. Process specialization & standardization

#### Specialization example:

- <u>Procure-to-pay process</u>: One process for Direct procurement (e.g. raw materials) and one for Indirect procurement (MRO Maintenance, Repair and Operations)
- <u>Claims handling process</u>: One claims handling process for the summer season (stormy season peak) and one for the winter season (off-peak)

#### Standardization example:

• <u>Claims handling process</u>: Integrate claims handling for motor insurance across different brands of a group

Specialization: (C+/-, Q+/-, F-)

Standardization: (C+, Q+/-, F+)

### H7. Resource optimization

Use resources of a given type as if they were in one room

Avoid one group of people overloaded and another (similar) group idle

#### Let people do work that they are good at

However, avoid inflexibility as a result of specialization

When allocating work to resources, consider the flexibility in the near future

Allocate work to specialized resources first

#### Avoid setups as much as possible

- Chain multiple instances of the same task [sequential]
- Batch multiple instances of the same task [parallel]

### H7. Resource optimization

#### Resource integration example:

• <u>Claims handling process</u>: Share resources across different types of claims (e.g. motor and personal insurance)

#### Batching example:

- <u>Claims handling process</u>: Batch all claims for a given geographic area and assign them to the same resources
- <u>University admission process</u>: Batch all applications and handle them to the assessment committee

(T+, C+, F+/-)

Automate handling, recording and organization of messages

Monitor customer interactions, record exceptions

#### Optimize

- 1. Number of interactions with customers and business partners
- 2. Type of interaction (synchronous vs. asynchronous)
- 3. Timing of interactions

(T+,Q+,C+/-,F-)

#### 1. Optimize number of interactions

• Gather sufficient information to get to the next milestone (reduce external interactions)

#### 2. Optimize type of interaction

- Synchronous interactions effective to resolve minor defects
- Asynchronous to notify, inform, resolve major defects, request additional information to reach next milestone

- 3. Optimize timing of interactions:
- Front-loaded process: bulk of information exchange and processing happens upfront
  - Complete-kit concept
- Back-loaded process: bulk of information exchange and processing happens downstream
  - Example: CVS Pharmacy in early 2000s

Complete-Kit Concept: "Work should not begin until all pieces necessary to complete the job are available"

Boaz Ronen

#### Principles for complete-kit process design:

- Provide complete and easy-to-follow instructions for those who will initiate the process.
- If a process cannot start, the client should be notified of all defects that could be reasonably identified at the onset of the process
- Consider the tradeoff between "incomplete-kit" process initiation vs. roundtrip to revise and resubmit a request

#### H9. Automation

Use data sharing (Intranets, packaged enterprise systems) to:

- Increase availability of information to improve visibility and decision-making (subject to security/privacy requirements)
- Avoid duplicate data entry and transportation

#### Use network technology to:

- Replace physical flow (e.g. paper documents) with information flow
- Enable self-service via e.g. online forms and Web data services

#### H9. Automation

Use tracking technology to identify and locate materials and resources

• Identification: Bar code, RFID

Location: GPS, indoor positioning

Use business rules technology to automate information processing tasks (including decisions)

Automate end-to-end processes with a dedicated BPM system or system with process automation functionality

### **Example: Equipment rental process**



#### **Example: Equipment rental process**

Heuristic 1: Task elimination

• Eliminate "Request for approval" for small equipment



#### **Example: Equipment rental process**

Heuristic 1: Task elimination

- Eliminate request for approvals for small equipment
- Replace approval in all cases, with empowerment and statistical controls



#### **Example: Equipment rental process**

Heuristic 2: Task composition

 Merge equipment selection, availability check and rental request creation



#### **Example: Equipment rental process**

Heuristic 6: Process specialisation and standardisation

 Separate the process for small versus large equipment and streamline the process for small equipment

La Spreælbeigningement



**Example: Equipment rental process** 

Heuristic 8: Communication optimisation

Inform the site engineer when the equipment is dispatched



#### **Example: Equipment rental process**

**Heuristic 8: Communication optimisation** 

- Inform the site engineer when the equipment is dispatched
- Add interaction to handle extensions



### Redesign output: to-be process model

**Example: Equipment rental process** 



#### **Example: Equipment rental process**

Heuristic 9: Process automation

 Use self-service for the equipment search and availability checking

| ID of the site engineer:               | 1234                 |  |
|----------------------------------------|----------------------|--|
| Requested start date:                  | 5/22/2012            |  |
| Expected end date:                     | 5/9/2012             |  |
| Project:                               | Skydrive             |  |
| Construction site:                     | Riia 15a             |  |
| Description of the required equipment: | Motorsaw             |  |
| Expected rental cost per day:          | 66                   |  |
| Preferred supplier:                    | Rasto                |  |
| Supplier equipment reference nr:       | 12345                |  |
| Comments to the supplier:              | Must be with battery |  |

#### **Example: Equipment rental process**

**Heuristic 9: Process automation** 

- Use self-service for the equipment search and availability checking
- Use process automation to coordinate handovers





**Process Support** 

### Redesign heuristics for Equipment rental process

#### Heuristic 1

- 11. Eliminate request for approvals for small equipment
- 12. Replace approval with empowerment & stat. controls

#### Heuristic 2

• 13. Compose equipment selection, availability check and rental request creation

#### Heuristic 6

• 14. Separate process for small vs. large equipment, streamline "small" process

### Redesign heuristics for Equipment rental process

#### Heuristic 8

- 15. Inform site engineer when equipment dispatched
- 16. Ask site engineer if extension required

#### Heuristic 9

- 17. Use self-service for equipment search and availability checking
- 18. Use process automation to coordinate handovers

## Prioritizing redesign options PICK chart

