class11

Ethan Harding (PID A15468670)

11/2/2021

Intro to PDB

```
db <- read.csv("Data Export Summary.csv", row.names=1)
head(db)</pre>
```

##		X.ray	NMR	EM	${\tt Multiple.methods}$	${\tt Neutron}$	Other	Total
##	Protein (only)	142303	11804	5999	177	70	32	160385
##	Protein/Oligosaccharide	8414	31	979	5	0	0	9429
##	Protein/NA	7491	274	1986	3	0	0	9754
##	Nucleic acid (only)	2368	1372	60	8	2	1	3811
##	Other	149	31	3	0	0	0	183
##	Oligosaccharide (only)	11	6	0	1	0	4	22

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
round(sum(db$X.ray)/ sum(db$Total) * 100, 2)
```

[1] 87.55

```
round(sum(db$EM)/ sum(db$Total) * 100, 2)
```

[1] 4.92

Q2: What proportion of structures in the PDB are protein?

```
round(db$Total[1] / sum(db$Total) * 100, 2)
```

[1] 87.36

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

There are 1828 HIV-1 protease strctures in the current PDB.

Visualizing the HIV-1 Protease structure using VMD

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

We only see just one atom per water molecule because Hydrogen is too small to be seen via X-Ray Crystallography.

Q5: There is a conserved water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have (see note below)?

Residue 308

Using Bio3D

First, load the Bio3D library

```
library(bio3d)
pdb <- read.pdb("1hsg.pdb")</pre>
pdb
##
   Call: read.pdb(file = "1hsg.pdb")
##
##
##
      Total Models#: 1
        Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
##
##
        Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
##
##
        Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
##
        Non-protein/nucleic Atoms#: 172 (residues: 128)
##
        Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
##
##
##
      Protein sequence:
         PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
##
         QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
##
         ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
##
         VNIIGRNLLTQIGCTLNF
##
##
## + attr: atom, xyz, seqres, helix, sheet,
           calpha, remark, call
aa123( pdbseq(pdb) )
     [1] "PRO" "GLN" "ILE" "THR" "LEU" "TRP" "GLN" "ARG" "PRO" "LEU" "VAL" "THR"
##
    [13] "ILE" "LYS" "ILE" "GLY" "GLY" "GLN" "LEU" "LYS" "GLU" "ALA" "LEU" "LEU"
    [25] "ASP" "THR" "GLY" "ALA" "ASP" "ASP" "THR" "VAL" "LEU" "GLU" "GLU" "MET"
    [37] "SER" "LEU" "PRO" "GLY" "ARG" "TRP" "LYS" "PRO" "LYS" "MET" "ILE" "GLY"
    [49] "GLY" "ILE" "GLY" "GLY" "PHE" "ILE" "LYS" "VAL" "ARG" "GLN" "TYR" "ASP"
##
    [61] "GLN" "ILE" "LEU" "ILE" "GLU" "ILE" "CYS" "GLY" "HIS" "LYS" "ALA" "ILE"
    [73] "GLY" "THR" "VAL" "LEU" "VAL" "GLY" "PRO" "THR" "PRO" "VAL" "ASN" "ILE"
##
    [85] "ILE" "GLY" "ARG" "ASN" "LEU" "LEU" "THR" "GLN" "ILE" "GLY" "CYS" "THR"
##
   [97] "LEU" "ASN" "PHE" "PRO" "GLN" "ILE" "THR" "LEU" "TRP" "GLN" "ARG" "PRO"
  [109] "LEU" "VAL" "THR" "ILE" "LYS" "ILE" "GLY" "GLY" "GLN" "LEU" "LYS" "GLU"
   [121] "ALA" "LEU" "LEU" "ASP" "THR" "GLY" "ALA" "ASP" "ASP" "THR" "VAL" "LEU"
   [133] "GLU" "GLU" "MET" "SER" "LEU" "PRO" "GLY" "ARG" "TRP" "LYS" "PRO" "LYS"
## [145] "MET" "ILE" "GLY" "GLY" "ILE" "GLY" "PHE" "ILE" "LYS" "VAL" "ARG"
## [157] "GLN" "TYR" "ASP" "GLN" "ILE" "LEU" "ILE" "GLU" "ILE" "CYS" "GLY" "HIS"
## [169] "LYS" "ALA" "ILE" "GLY" "THR" "VAL" "LEU" "VAL" "GLY" "PRO" "THR" "PRO"
## [181] "VAL" "ASN" "ILE" "ILE" "GLY" "ARG" "ASN" "LEU" "LEU" "THR" "GLN" "ILE"
## [193] "GLY" "CYS" "THR" "LEU" "ASN" "PHE"
```

The ATOM records

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                            X
                                                                           z o
                                                                                   b
                                                                    У
## 1 ATOM
                     N <NA>
                              PRO
                                       Α
                                              1
                                                  <NA> 29.361 39.686 5.862 1 38.10
               1
## 2 ATOM
               2
                               PRO
                                       Α
                    CA <NA>
                                              1
                                                  <NA> 30.307 38.663 5.319 1 40.62
## 3 ATOM
                     C <NA>
                              PRO
                                                  <NA> 29.760 38.071 4.022 1 42.64
               3
                                       Α
                                              1
## 4 ATOM
               4
                     O <NA>
                               PRO
                                       Α
                                              1
                                                  <NA> 28.600 38.302 3.676 1 43.40
                                                  <NA> 30.508 37.541 6.342 1 37.87
## 5 ATOM
               5
                    CB <NA>
                               PRO
                                       Α
                                              1
## 6 ATOM
               6
                    CG <NA>
                              PRO
                                              1
                                                  <NA> 29.296 37.591 7.162 1 38.40
                                       Α
##
     segid elesy charge
## 1
      <NA>
               N
                    <NA>
## 2
                С
                    <NA>
      <NA>
## 3
      <NA>
                С
                    <NA>
## 4
      <NA>
                0
                    <NA>
## 5
      <NA>
                С
                    <NA>
## 6
      <NA>
                С
                    <NA>
```

Q7: How many amino acid residues are there in this pdb object?

198 amino acid residues

Q8: Name one of the two non-protein residues?

MK1

Q9: How many protein chains are in this structure?

2 protein chains in this structure