

Constructions Ex 11.1 Q1

Answer:

Given that

Determine a point which divides a line segment of length 12 cm internally in the ratio of 2:3.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment AB = 12 cm.

Step: II- We draw a ray AX making an acute angle $\angle BAX = 60^{0}$ with AB .

Step: III- Draw a ray BY parallel to AX by making an acute angle $\angle ABY = \angle BAX$.

Step IV- Mark of two points A_1, A_2 on AX and three points B_1, B_2, B_3 on BY in such a way that

$$AA_1 = A_1A_2 = BB_1 = B_1B_2 = B_2B_3$$

Step: V- Joins A_2B_3 and this line intersects AB at a point P.

Thus, P is the point dividing AB internally in the ratio of 2:3

Justification:

In ΔAA_2P and ΔBB_3P , we have

$$\angle A_2AP = \angle PBB_3 \left[\angle ABY = \angle BAX \right]$$

And $\angle APA_2 = \angle BPB_3$ [Vertically opposite angle]

So, AA similarity criterion, we have

 $\Delta A A_2 P \approx \Delta B B_3 P$,

$$\frac{AA_2}{DD} = \frac{AP}{DD}$$

$$\overline{BB_3} - \overline{BP}$$

$$\frac{AP}{BP} = \frac{2}{3}$$

Constructions Ex 11.1 Q2

Answer:

Given that

Determine a point which divides a line segment of length 9 cm internally in the ratio of 4:3.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 9 \, \mathrm{cm}$

Step: II- We draw a ray AX making an acute angle $\angle BAX = 60^{\circ}$ with AB

Step: III- Draw a ray BY parallel to AX by making an acute angle $\angle ABY = \angle BAX$.

Step IV- Mark of two points A_1, A_2, A_3, A_4 on AX and three points B_1, B_2, B_3 on BY in such a way that

$$AA_{1}=A_{1}A_{2}=A_{2}A_{3}=A_{3}A_{4}=BB_{1}=B_{1}B_{2}=B_{2}B_{3}\;.$$

Step: V- Joins A_4B_3 and this line intersects AB at a point P.

Thus, P is the point dividing AB internally in the ratio of 4:3

Justification:

In ΔAA_4P and ΔBB_3P , we have

$$\angle A_4AP = \angle PBB_3 \left[\angle ABY = \angle BAX \right]$$

And $\angle APA_4 = \angle BPB_3$ [Vertically opposite angle]

So, AA similarity criterion, we have

$$\Delta A A_4 P \approx \Delta B B_3 P$$
,

$$\frac{AA_4}{BB_3} = \frac{AP}{BP}$$

$$\frac{1}{BB} = \frac{1}{BB}$$

$$\frac{AP}{BP} = \frac{4}{3}$$

Constructions Ex 11.1 Q3

Answer:

Given that

Determine a point which divides a line segment of length 14cm internally in the ratio of 2:5.

We follow the following steps to construct the given

Step of construction

Step: I-First of all we draw a line segment $AB = 14 \, \text{cm}$.

Step: II- We draw a ray AX making an acute angle $\angle BAX = 60^{\circ}$ with AB.

Step: III- Draw a ray BY parallel to AX by making an acute angle $\angle ABY = \angle BAX$.

Step IV- Mark of two points A_1,A_2 on AX and three points B_1,B_2,B_3,B_4,B_5 on BY in such a way that

$$AA_1 = A_1A_2 = BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$$

Step: V- Joins A_2B_5 and this line intersects AB at a point P.

Thus, P is the point dividing AB internally in the ratio of 2:5

Justification:

In ΔAA_2P and ΔBB_5P , we have

$$\angle A_2AP = \angle PBB_5 \left[\angle ABY = \angle BAX \right]$$

And $\angle APA_2 = \angle BPB_s$ [Vertically opposite angle]

So, AA similarity criterion, we have

$$\Delta A A_2 P \approx \Delta B B_5 P$$
,

$$\frac{AA_2}{A} = \frac{AP}{AP}$$

$$\frac{AA_2}{BB_5} = \frac{AP}{BP}$$

$$\frac{AP}{BP} = \frac{2}{5}$$

********* END *******