The eigenvectors are as follows:

Pauli $Z: |0\rangle, |1\rangle$

Pauli $X: |0\rangle + |1\rangle, |0\rangle - |1\rangle$ Pauli $Y: |0\rangle + i |1\rangle, |0\rangle - i |1\rangle$ Bloch sphere representations:

1

Exercise 4.2

$$\exp(iAx) = \sum_{n} (iAx)^n = \sum_{n} (-1)^n x^{2n} I + \sum_{n} (-1)^n ix^n A = \cos(x) I + i\sin x A$$

Exercise 4.3

Up to a global phase:
$$T = \begin{bmatrix} e^{-i\pi/8} & 0 \\ 0 & e^{i\pi/8} \end{bmatrix} = \begin{bmatrix} e^{-i\frac{\pi}{4}/2} & 0 \\ 0 & e^{i\frac{\pi}{4}/2} \end{bmatrix} = R_z(\pi/4)$$

Exercise 4.4

First consider
$$R_z R_x R_z$$
:
$$R_z R_x R_z = \begin{bmatrix} \cos \frac{\theta}{2} e^{-i\theta} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} e^{i\theta} \end{bmatrix}$$
For $\theta = \frac{\pi}{2}$:
$$R_z R_x R_z = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{-i\frac{\pi}{2}} & e^{-i\frac{\pi}{2}} \\ e^{-i\frac{\pi}{2}} & e^{i\frac{\pi}{2}} \end{bmatrix}$$

For
$$\theta = \frac{\pi}{2}$$
:

$$R_z R_x R_z = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{-i\frac{\pi}{2}} & e^{-i\frac{\pi}{2}} \\ e^{-i\frac{\pi}{2}} & e^{i\frac{\pi}{2}} \end{bmatrix}$$

Hence, by multiplying by $e^{i\frac{\pi}{2}}$ we get,

$$e^{i\frac{\pi}{2}}R_zR_xR_z = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = H$$

We have
$$n_x^2 + n_y^2 + n_z^2 = 1$$

 $\hat{n} \cdot \vec{\sigma} = \begin{bmatrix} n_z & n_x - in_y \\ n_x + in_y & n_z \end{bmatrix}$
Therefore,
 $(\hat{n} \cdot \vec{\sigma})^2 = \begin{bmatrix} n_x^2 + n_y^2 + n_z^2 & 0 \\ 0 & n_x^2 + n_y^2 + n_z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
Consider, $R_n(\theta)R_n(-\theta)$
 $I = R_n(\theta)R_n(-\theta) = (\cos(\frac{\theta}{2})I - \sin(\frac{\theta}{2})\hat{n} \cdot \vec{\sigma})(\cos(\frac{\theta}{2})I + \sin(\frac{\theta}{2})\hat{n} \cdot \vec{\sigma}) = \cos^2(\frac{\theta}{2})I + \sin^2(\frac{\theta}{2})(\hat{n} \cdot \vec{\sigma})^2 = (\cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}))I = I$

Exercise 4.6

First, let's show that $R_Z(x)$ rotates around the Z-axis by an angle x. Consider the general state $|\psi\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix}$. Then,

$$R_{Z}(x) |\psi\rangle = \left(\cos \frac{x}{2} I - i \sin \frac{x}{2} Z\right) \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix} = \cos \frac{x}{2} \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix} - i \sin \frac{x}{2} \begin{pmatrix} \cos \frac{\theta}{2} \\ -e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{ix/2} e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i(\phi+x)} \sin \frac{\theta}{2} \end{pmatrix}$$

Hence, the state has been rotated by x around the Z-axis. Similarly, we get that $R_X(x)$ and $R_Y(x)$ rotate around the X and Y axis respectively.

We also have that,

 $R_n(x) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (n_x X + n_y Y + n_z Z) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y + \sin \theta_n X) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (n_x X + n_y Y + n_z Z) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \sin \theta_n Y) = \cos \frac{x}{2} I - i \sin \frac{x}{2} (\sin \theta_n \cos \phi_n X + \sin \theta_n \cos \phi_n X + \sin \theta_n \cos \phi_n X) = \cos \frac{x}{2} I - i \cos \frac{x}{2} I - i \cos \frac{x}{2} I + i \cos \frac{x}{2}$ $\cos\theta_n Z) = R_Z(\phi_n) R_X(\theta_n) (\cos\frac{x}{2} I - i\sin\frac{x}{2} Z) R_X(\theta_n)^{\dagger} R_Z(\phi_n)^{\dagger} = R_Z(\phi_n) R_X(\theta_n) R_Z(x) R_X(\theta_n)^{\dagger} R_Z(\phi_n)^{\dagger}$ Therefore, $R_n(x)$ rotates the axis of rotation to the Z axis performs the rotations by angle x and then returns the axis back to n, which is the same as rotating around n by an angle x.

Exercise 4.7

$$\{X,Y\} = 1$$
 therefore, $XYX = -XXY = -Y$. $XR_Y(\theta)X = X(\cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y)X = \cos\frac{\theta}{2}I + i\sin\frac{\theta}{2}Y = R_Y(-\theta)$

Exercise 4.8

Any 2x2 unitary matrix for $a^2+b^2+c^2+d^2=1$ can be written as, $1)U=e^{i\alpha}\begin{bmatrix} a+ib & c+id\\ -c+id & a-ib \end{bmatrix}$

$$1)U = e^{i\alpha} \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$$

$$U = e^{i\alpha} R_n(\theta) = e^{i\alpha} \begin{bmatrix} \cos\frac{\theta}{2} - i\sin\frac{\theta}{2}n_z & -\sin\frac{\theta}{2}(n_y + in_x) \\ \sin\frac{\theta}{2}(n_y - in_x) & \cos\frac{\theta}{2} + i\sin\frac{\theta}{2}n_z \end{bmatrix}$$

Consider, the given form for U, $U = e^{i\alpha} R_n(\theta) = e^{i\alpha} \begin{bmatrix} \cos\frac{\theta}{2} - i\sin\frac{\theta}{2}n_z & -\sin\frac{\theta}{2}(n_y + in_x) \\ \sin\frac{\theta}{2}(n_y - in_x) & \cos\frac{\theta}{2} + i\sin\frac{\theta}{2}n_z \end{bmatrix}$ As, $n_x^2 + n_y^2 + n_z^2 = 1$ this has the same form as the general U, hence any arbitrary 2x2unitary matrix can be written as $U = e^{i\alpha}R_n(\theta)$.

2)
$$n_z = \frac{1}{\sqrt{2}}$$
, $n_y = 0$, $n_x = \frac{1}{\sqrt{2}}$, $\alpha = 0$ and $\theta = \pi$.

3)
$$n_x, n_y = 0, n_z = 1, \alpha = \theta = \frac{\pi}{4}.$$

We can write,

$$U = \begin{bmatrix} e^{i(\alpha-\beta/2-\delta/2)}\cos\frac{\gamma}{2} & -e^{i(\alpha-\beta/2+\delta/2)}\sin\frac{\gamma}{2} \\ e^{i(\alpha+\beta/2-\delta/2)}\sin\frac{\gamma}{2} & e^{i(\alpha+\beta/2+\delta/2)}\cos\frac{\gamma}{2} \end{bmatrix} = e^{i\alpha} \begin{bmatrix} e^{i(-\beta/2-\delta/2)}\cos\frac{\gamma}{2} & -e^{i(-\beta/2+\delta/2)}\sin\frac{\gamma}{2} \\ e^{i(\beta/2-\delta/2)}\sin\frac{\gamma}{2} & e^{i(\beta/2+\delta/2)}\cos\frac{\gamma}{2} \end{bmatrix} = e^{i\alpha} \begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}$$

which is the general form of a 2x2 unitary matrix as $det(U) = \cos^2 \frac{\gamma}{2} + \sin^2 \frac{\gamma}{2} = 1$.

Exercise 4.10

$$U = e^{i\alpha} R_Z(\beta) R_X(\gamma) R_Z(\delta) = \begin{bmatrix} e^{i(\alpha - \beta/2 - \delta/2)} \cos \frac{\gamma}{2} & -ie^{i(\alpha - \beta/2 + \delta/2)} \sin \frac{\gamma}{2} \\ -ie^{i(\alpha + \beta/2 - \delta/2)} \sin \frac{\gamma}{2} & e^{i(\alpha + \beta/2 + \delta/2)} \cos \frac{\gamma}{2} \end{bmatrix}$$
 which once again is a unitary matrix.

Exercise 4.11

Exercise 4.12

From the proof of Corollary 4.2 we have, $AXBXC = R_Z(\beta)R_Y(\gamma)R_Z(\delta)$. We can see that $\alpha = \gamma = \delta = \frac{\pi}{2}$ and $\beta = 0$ gives H. Hence, we can take $A = R_Y(\frac{\pi}{4}), B = R_Y(-\frac{\pi}{4})R_Z(-\frac{\pi}{4})$ and $C = R_Z(\frac{\pi}{4})$.

Exercise 4.13

$$\begin{split} HXH &= \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = Z \\ HYH &= \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & 2i \\ -2i & 0 \end{bmatrix} = -Y \ HZH = HHXHH = X \end{split}$$

Exercise 4.14

$$T = R_Z(\frac{\pi}{4}) HTH = HR_Z(\frac{\pi}{4})H = H(\cos\frac{\pi}{8} - i\sin\frac{\pi}{8}Z)H = \cos\frac{\pi}{8} - i\sin\frac{\pi}{8}X = R_X(\frac{\pi}{4})$$

Exercise 4.15

(Check Errata for the sign in the second equation) $1)R_{\hat{n}_2}(\beta_2)R_{\hat{n}_1}(\beta_1) = (c_2I - is_2\hat{n}_2.\sigma)(c_1I - is_1\hat{n}_1.\sigma) = c_1c_2I - s_1s_2(\hat{n}_2.\sigma)(\hat{n}_1.\sigma) - ic_2s_1\hat{n}_1.\sigma - ic_1s_2\hat{n}_2.\sigma = c_1c_2I - s_1s_2(\hat{n}_1.\hat{n}_2I + i(\hat{n}_2 \times \hat{n}_1).\sigma) - ic_2s_1\hat{n}_1.\sigma - ic_1s_2\hat{n}_2.\sigma = (c_1c_2 - s_1s_2\hat{n}_1.\hat{n}_2)I - i(c_2s_1\hat{n}_1 + c_1s_2\hat{n}_2 + s_1s_2\hat{n}_2 \times \hat{n}_1).\sigma$ Therefore,

$$c_{12} = c_1c_2 - s_1s_2\hat{n}_1.\hat{n}_2$$

$$s_{12}\hat{n}_{12} = c_2s_1\hat{n}_1 + c_1s_2\hat{n}_2 + s_1s_2\hat{n}_2 \times \hat{n}_1$$

$$2)\beta_1 = \beta_2 \text{ and } \hat{n}_1 = \hat{z}, \text{ hence } c_1 = c_2 = c \text{ and } s_1 = s_2 = s. \text{ Therefore,}$$

$$c_{12} = c^2 - s^2\hat{z}.\hat{n}_2$$

$$s_{12}\hat{n}_{12} = cs(\hat{z} + \hat{n}_2) + s^2\hat{n}_2 \times \hat{z}$$

$$H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} I & I \\ I & -I \end{bmatrix}$$

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} H & 0 \\ 0 & H \end{bmatrix}$$

Exercise 4.17

$$\begin{bmatrix} H & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & Z \end{bmatrix} \begin{bmatrix} H & 0 \\ 0 & H \end{bmatrix} = \begin{bmatrix} HH & 0 \\ 0 & HZH \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix} = CNOT$$

Exercise 4.18

When the second qubit is the control we have the following representation,

$$CZ_{2} = |00\rangle\langle00| + |01\rangle\langle01| - |11\rangle\langle11| + |10\rangle\langle10| = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Exercise 4.19

$$CNOT \rho CNOT = \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix} = \begin{bmatrix} A & XB \\ XC & XDX \end{bmatrix}$$

X only rearranges elements, hence the CNOT only rearranges the elements of ρ .

Exercise 4.20

$$(H_{1} \otimes H_{2}) \text{CNOT}(H_{1} \otimes H_{2}) = \frac{1}{2} \begin{bmatrix} H & H \\ H & -H \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} H & H \\ H & -H \end{bmatrix} = \frac{1}{2} \begin{bmatrix} HH + HXH & HH - HXH \\ HH - HXH & HH + HXH \end{bmatrix} = \frac{1}{2} \begin{bmatrix} I + Z & I - Z \\ I - Z & I + Z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \text{CNOT}(2^{\text{nd}} \text{ qubit control})$$

The left circuit transforms between the $|0\rangle,|1\rangle$ and $|+\rangle,|-\rangle$ basis applies a CNOT and transforms back. Hence, the effect of the CNOT on the $|\pm\rangle|\pm\rangle$ is the same as applying the CNOT with the 2nd qubit as target to the state in the $|0\rangle,|1\rangle$ basis and then replacing 0 with + and 1 with -. This process does indeed give the equations 4.24-4.27.

4

Exercise 4.21

Consider all the possible inputs,

$$|00\psi\rangle \to |00\psi\rangle \to |00\psi\rangle \to |00\psi\rangle \to |00\psi\rangle \to |00\psi\rangle \to |00\psi\rangle$$

$$|01\psi\rangle \to |01(V\psi)\rangle \to |01(V\psi)\rangle \to |01(V^{\dagger}V\psi)\rangle \to |01\psi\rangle \to |01\psi\rangle$$

$$|10\psi\rangle \rightarrow |10\psi\rangle \rightarrow |11\psi\rangle \rightarrow |11(V^{\dagger}\psi)\rangle \rightarrow |10(VV^{\dagger}\psi)\rangle \rightarrow |10\psi\rangle$$

$$|11\psi\rangle \rightarrow |11(V\psi)\rangle \rightarrow |10(V\psi)\rangle \rightarrow |11(V\psi)\rangle \rightarrow |11(VV\psi)\rangle \rightarrow |11U\psi\rangle$$

Hence, the circuit does perform the $C^2(U)$ operation.

Firstly, we apply the circuit in figure 4.6 to the circuit in figure 4.8 for $V = e^{i\alpha}AXBXC$, which gives,

We move the 6th CNOT left from the 4th one, which involves adding CNOTs after the 4th and 5th CNOTs from first to third qubit, which is due to,

and can be checked by considering all the possible inputs. We also see that $AA^{\dagger}=CC^{\dagger}=I.$ Hence we get the following circuit.

The dashed section is diagonal hence commutes with the rest of the components therefore can be moved to the end for convenience.

CNOTs 2 and 3, and 6 and 7 cancel each other, hence we're left with the circuit.

This has 8 single qubit gates and 6 CNOTs as desired.

The circuit performs the operation, $AXBXB^{\dagger}XBXC = (VC^{\dagger})B^{\dagger}(A^{\dagger}V) = V(ABC)^{\dagger} = V^2 = U$. Therefore, the circuit performs the $C^2(U)$ operation.

Exercise 4.23