Week3: Bidirectional RRT

Zhaoliang

Works in week 3

- 1. Debugged my RRT algorithm
- 2. Developed bidirectional RRT algorithm/RRT connect
- 3. Introduction of different Motion Planning algorithms

Bugs

Something wrong with my Path Optimization Function!

Turned out the collision detection conditions were not sufficient.

Extreme Test

This map is so big (2024 * 2024) that it took 1662 s to finish processing.

Path optimization function works great!

Path length before optimized: 12564

Path length after optimized: 5867

Previous:

Bidirectional RRT algorithm/RRT connect

Basic RRT only explores space from initial point.

Bidirectional RRT simultaneously explores space from both initial and goal points.


```
1. V_1 \leftarrow \{q_{init}\}; E_1 \leftarrow \emptyset; G_1 \leftarrow (V_1, E_1);
2.V_2 \leftarrow \{q_{goal}\}; E_2 \leftarrow \emptyset; G_2 \leftarrow (V_2, E_2); i \leftarrow 0;
3. while i < N do
                   q_{rand} \leftarrow \text{Sample}(i); i \leftarrow i + 1;
                  q_{nearst} \leftarrow \text{Nearst}(G_1, q_{rand});
                 q_{new} \leftarrow \text{Steer}(q_{nearst}, q_{rand});
                   if ObstacleFree (q_{nearst}, q_{new}) then
7.
                                V_1 \leftarrow V_1 \cup \{q_{new}\};
                                E_1 \leftarrow E_1 \cup \{(q_{nearest}, q_{new})\};
                            q'_{nearst} \leftarrow Nearst(G_2, q_{new});
10.
                            q'_{new} \leftarrow \text{Steer}(q'_{nearst}, q_{new});
11.
                              if ObstacleFree(q'_{nearst}, q'_{new}) then
12.
                                           V_2 \leftarrow V_2 \cup \{q'_{new}\};
                                           E_2 \leftarrow E_2 \cup \{(q'_{nearst}, q'_{new})\};
14.
15.
                                                          q_{new}'' \leftarrow \text{Steer}(q_{new}', q_{new});
16.
                                                           if ObstacleFree(q_{new}^{"}, q_{new}^{'}) then
17.
                                                                         V_2 \leftarrow V_2 \cup \{q_{new}^{"}\};
 18.
19.
                                                                         E_2 \leftarrow E_2 \cup \{(q_{new}^{"}, q_{new}^{"})\};
20.
                                                                         q'_{new} \leftarrow q''_{new};
21.
                                                            else break:
22.
                                           while not q'_{new} = q_{new}
                              if q'_{new} = q_{new} then return (V_1, E_1);
 23.
 24.
                   if |V_2| < |V_1| then Swap(V_1, V_2);
```

Demo

Comparison (RRT vs Bi-RRT)

Bidirectional RRT:

>> main_c2

Time elapse=2.815142 Path Original Length=1348.265 Path Optimal Length = 844.000

Time elapse=2.815142 Path Original Length=1348.265 Path Optimal Length = 844.000

Different PPAs

Different PPAs

Different PPAs

GA is Genetic Algorithm
MA is Memetic Algorithm
PSO is particle swarm optimization
ACO is Ant Colony Optimization
SFLA is Shuffled Frog Leaping Algorithm

Next week

- 1. Implement RRT algorithm and its variants in 3D maps
- 2. Dig more in other PPAs, try to analyze them and make comparison of different PPAs

Q&A? Any Suggestions?