Di Yue

Homepage: https://tnediserp.github.io

Email: di_yue@stu.pku.edu.cn \diamond Tel: (+86)18380578521

EDUCATION

Peking University

Beijing, China

Candidate for Bachelor of Science

September 2021 - Present

School of Electronics Engineering And Computer Science

GPA: 3.83/4.0

RESEARCH INTERESTS

Theoretical Computer Science, Approximation Algorithm, High-dimensional Computational Geometry, Metric Embedding.

PUBLICATIONS (In theoretical computer science, authors are listed in alphabetical order.)

Near-Optimal Dimension Reduction for Facility Location

Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, Di Yue.

Submitted to the 36th ACM-SIAM Symposium on Discrete Algorithms (SODA 2025).

RESEARCH EXPERIENCE

Visiting Student at Weizmann Institute of Science.

July 2024 - Present

Advisor: Robert Krauthgamer

Weizmann Institute of Science, Israel

- Gave a talk on the UFL work in the algorithm seminar.
- Study dimension reduction for MST and Steiner tree problems. Did some literature research.

Near-Optimal Dimension Reduction for Facility Location

July 2023 - July 2024

Advisor: Shaofeng Jiang

Peking University, China

- Proved that target dimension $m = \tilde{O}(\varepsilon^{-2} ddim)$ suffices to $(1 + \varepsilon)$ -approximate the optimal value of uniform facility location (UFL) on high-dimensional inputs whose doubling dimension is bounded by ddim.
- Proposed the first PTAS for Euclidean UFL on doubling subsets, where the facilities are allowed to lie in the (high-dimensional) ambient space \mathbb{R}^d .
- Generalized our PTAS to doubling metrics without vector representations, which improves the $2^{2^{O(\text{ddim}^2)}}n$ running time in [Cohen-Addad, Feldmann and Saulpic, JACM 2021] to $2^{2^{\tilde{O}(\text{ddim})}}n$.
- This work is submitted to SODA 2025.

Preserving the Diameter via Dimension Reduction

 $January\ 2023\ \text{-}\ April\ 2023$

Academic Advisor: Shaofeng Jiang

Peking University, China

• Proved that target dimension $m = O(\varepsilon^{-2} ddim)$ suffices to $(1 + \varepsilon)$ -approximate the diameter of a high-dimensional doubling subset whose *doubling dimension* is bounded by ddim.

HONOURS AND AWARDS

Second C	ass Scholarship of Peking University (10%)	$\dots \dots 2022$
Merit Stu	lent (10%)	2022
Study Ex	ellence Award (20%)	2023