EEC 417/517 Embedded Systems Cleveland State University

Lab 5
CCP Module (PWM Mode),
Program Memory Paging

Dan Simon Rick Rarick Spring 2018

Lab 5 Outline

- 1. CCP Module (PWM mode)
- 2. Lab 5 Settings
- 3. Program Memory Paging
- 4. Electrical Characteristics
- 5. Sleep and Standalone Modes

1. The CCP modules can operate in three modes:

```
a) Capture (Timer1)
```

- b) Compare (Timer1)
- c) PWM (Timer2)
- 2. In PWM mode, the PWM output is on pin
 - a) RC2 (CCP1) for the CCP1 module
 - b) RC1 (CCP2) for the CCP2 module
- 3. TRISC<1> or TRISC<2> must be configured as outputs.

Quadrature Clocks

- The oscillator input (from OSC1) is internally divided into four non-overlapping quadrature clock signals, called Q1, Q2, Q3, and Q4.
- Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4.
- 3. The instruction is decoded and executed during the following Q1 through Q4.

Figure 4-3: Clock/Instruction Cycle

Quadrature Clocks

- 1. There are four internal quadrature clocks (or Q-clocks or phase clocks).
- 2. The Q-clocks can be decoded to create a 2-bit timer which ticks on Q1, Q2, Q3, Q4.
- 3. The 2-bit timer ticks every oscillator cycle $(T_{osc}) = 0.2713 \,\mu s$.

Timer2 Block Diagram

For Lab05, *Prescale* = 1, so the TMR2 register increments once every four oscillator cycles:

1 TMR2 tick = $4 T_{osc}$

Extended Timer2

The TMR2 Extended register increments once every oscillator cycle:

1 TMR2 Extended tick = T_{osc} .

Recall: The term "duty cycle" is used loosely in the datasheet:

- 1. Definition: $\frac{\text{duty cycle}}{\text{cycle}} = \text{on-time} / \text{PWM period (e. g., DC} = 0.75 = 75\%).$
- 2. In the datasheet, "duty cycle" = on-time (in sec, e.g., DC = $200 \mu s$).
- 3. In the datasheet, "duty cycle" = on-time (in timer ticks, e. g., DC = 51).

Data sheet, p. 58

10-bit resolution: CCPR1L : CCP1CON<5:4>

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

CCP Module - PWM Mode Calculations

- 1. PWM period = (Timer2 Prescale) (PR2 + 1) (instruction period) = (Timer2 Prescale) (PR2 + 1) (4 Tosc)
- 2. PWM on-time = (CCPR1L : CCP1CON<5:4>) (Timer2 Prescale) (Tosc)

 "duty cycle"

 (in sec) (in timer ticks

 converted to decimal)
- 3. The on-time has a resolution of 10 bits, so the duty cycle has a finer resolution than the period of the PWM.
- 4. If (on-time > period), then duty cycle = 100%

PWM Resolution

Paper Mill

PWM resolution: How finely can the motor speed (duty cycle) be varied?

PWM Resolution

PWM output

- 1. We can only make discrete (step) changes in the duty cycle.
- 2. Result: can only make discrete (step) changes in average voltage.
- 3. Minimum step change in duty cycle = T_{osc}

Lab 5 Outline

- 1. CCP Module (PWM mode)
- 2. Lab 5 Settings
- 3. Program Memory Paging
- 4. Electrical Characteristics
- 5. Sleep and Standalone Modes

lab05 – PWM Scheme

The PWM period is a constant, and the on-time (duty cycle) is adjusted by the pot on the ANO analog input.

The PWM output is on pin RC2/CCP1.

lab05 - Calculations

- 1. For a 3.6864 MHz oscillator
 - a) 1 clock cycle = $Tosc = 0.2713 \,\mu s$
 - b) 1 instr. cycle = $4 \text{ Tosc} = 1.085 \,\mu\text{s}$
- 2. Lab05 uses
 - a) PR2 = 199
 - b) Timer2 Prescale = 1
 - c) CCP1CON < 5:4 > = 00
- 3. PWM period = (Timer2 Prescale) (PR2 + 1) (4 Tosc) = $(1)(200)(1.085 \mu s) = 217.0 \mu s$
- 4. PWM on-time = (CCPR1L : CCP1CON<5:4>) × Tosc

 10-bit "duty cycle"

 (Cont.)

lab05 - Calculations

- 4. PWM on-time = (CCPR1L : CCP1CON<5:4>) × 0.2713 μ s

 10-bit "duty cycle"
- 5. So, if we only use the CCPR1L register for the "duty cycle" and we set CCP1CON<5:4>=00, the on-time range is

on-time range: $0 \mu s$ to $276.7 \mu s$

- 6. Since the PWM period = $217.0 \,\mu\text{s}$, it is possible for the on-time to exceed the period.
- 7. If on-time > PWM period, then the duty cycle = 100 %.

lab05 – Duty Cycle

As the pot varies from 0 to 5 volts, the on-time varies from 0 to 276.7 μ s.

If $T_{\text{pwm}} = 217 \,\mu\text{s}$, the duty cycle reaches 100% when on-time = 217.0 μ s. So,

$$\frac{217.0}{276.7} = \frac{x}{5.00} = \frac{3.931}{5.00}$$

Lab05 – Calculation Example

- 1. Assume a 3.6864 MHz oscillator
 - a) 1 clock cycle = $Tosc = 0.271.7 \mu s$
 - b) 1 instr. cycle = 4 Tosc = $1.085 \mu s$
- 2. Assume
 - a) PR2 = 199
 - b) Prescaler = 1
 - c) CCPR1L = $1000\ 0000\ (= 128$: pot set at $2.5\ V$)
 - d) CCP1CON < 5:4 > = 00
- 3. PWM period = (PR2+1) × (Timer2 Prescale) × (4 Tosc) = $200 \times 1 \times 1.085 \ \mu s = 217.0 \ \mu s$
- 4. PWM on-time = (CCPR1L : CCP1CON<5:4>) (Timer2 Prescale) (Tosc) = $(1000\ 0000\ 00)\ (1)\ (0.271\ \mu s)$ = $(512)\ (0.2712\ \mu s) = 139\ \mu s$
- 5. Duty cycle = on-time / period = 139 / 217 = 64 %

Lab05 – RC2 output @ 2.489 volts on AN0

Lab05 – RC2 output @ 2.489 volts on AN0

lab05 - Initialization

```
Init
   movlw B'01000001'; A/D enabled at a frequency of Fosc/8
   banksel ADCONO ; ADCONO in Bank 0
   movwf ADCON0
   banksel ADCON1 ; ADCON1 in Bank 1
   movlw B'00001110'; Left justify A/D data, 1 analog channel
   movwf ADCON1 ; Use VDD and VSS for A/D references
   movlw D'199'; PWM period = (PR2+1)(Timer2 Prescale)(4 Tosc)
   movwf PR2 ; PR2 in Bank 1
   movlw B'10000000'; PWM on-time = (DC) (Timer2 Prescale) (Tosc)
                  ; DC = CCPR1L : CCP1CON<5,4>
   banksel CCPR1L ; CCPR1L in Bank 0
   movwf CCPR1L : CCPR1L = 1000 0000
   movlw B'00001100'; CCP1CON<5,4> = 00 (CCP1COn in Bank 0)
   movwf CCP1CON ; DC = 10 0000 0000
   movlw B'11111011'; Set RC2 as output for PWM signal
   banksel TRISC ; TRISC in Bank 1
   movwf TRISC ; PORTC = 1111 1011
   movlw B'10000000'; Set up TimerO for A/D acquisition delay.
   movwf OPTION REG ; TimerO prescaler = 2, rollover = 556 usec
   movlw B'00000100'; Timer2 prescaler = 1
   banksel T2CON : T2CON in Bank 0
   movwf T2CON
```

lab05 – PWM Code

```
Main
   ; TimerO delay for A/D voltage acquisition
   btfss INTCON, TOIF; Test the TIMERO interrupt flag bit (TOIF).
                      ; The INTCON register is in Bank 0.
                      ; If TOIF = 1 (TMR0 rollover), skip next
                      ; instruction (skip goto).
   goto
         Main
   bcf INTCON, TOIF; Clear the TOIF bit for the next interrupt.
   banksel ADCONO : ADCONO in Bank 0
   bsf ADCONO,GO ; Start the A/D conversion
WaitForConversion
   btfss PIR1, ADIF ; Wait for conversion to complete
   goto WaitForConversion
   bcf PIR1, ADIF
   movf ADRESH, W ; Get the A/D result
  movwf CCPR1L ; Use the A/D result for the PWM duty cycle
   goto Main ; Do it again
```

Lab 5 Outline

- 1. CCP Module (PWM mode)
- 2. Lab 5 Settings
- 3. Program Memory Paging
- 4. Electrical Characteristics
- 5. Sleep and Standalone Modes

PC<12:0> PC<12:8> PCL
CALL, RETURN
RETFIE, RETLW

13

PCLATH

```
call <label>
<label> interpreted as address
```

call k \Rightarrow 10 0kkk kkkk kkkk

11-bits

goto k \Rightarrow 10 1kkk kkkk kkkk

- 1. There are 11 bits for the address in the call and goto instructions. $(2^{11} = 2048)$
- 2. Program memory requires 13 bits. $(2^{13} = 8192)$
- 3. 11 bits only specify the **relative** address on each page.


```
      Example:

      0x0200
      Call Subl
      ; Machine code: 10 0kkk kkkk kkkk

      ...
      ; 0x0900 = 2304

      0x0900
      Subl
      ; On Page 1: 2048 < 2304 < 4095</td>

      ...
      ; 0x0900 = 0000 1001 0000 0000

      ...
      Return
      ; Machine code: 10 0001 0000 0000
```

- 1. There are not enough address bits in the call instruction to include all the bits of the Sub1 address.
- 2. The call instruction will transfer the PC to address 0x0100.
- 3. We need two more bits to specify a 13-bit address these two bits are called the "page select bits"

- 1. The page select bits PC<12:11> in the PC register cannot be accessed directly.
- 2. We must use the PCLATH<4:3> bits.

Page 26, Data Sheet

- 1. PCLATH < 4:3 > = page select bits
- 2. Before a call or goto, the PIC looks at the page select bits to decide which page to transfer to.

Don't have to change banks to select PCLATH

	File Address		File Address		File Address 256		File Address
Indirect addr.(*)	00h	Indirect addr.(*)	128 80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General Purpose	117h	(General) (Purpose)	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h 32		A0h 160		120h 288		1A0h 416
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
	_ 7Fh	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F0h 1FFh
Bank 0	127	Bank 1	FFh 255	Bank 2	383	Bank 3	511

1. Page select bits

```
00 = page 0 (starts at 0x0000)

01 = page 1 (starts at 0x0800 = 2048)

10 = page 2 (starts at 0x1000 = 4096)

11 = page 3 (starts at 0x1800 = 6144)
```

- 2. Each page has an 11-bit range of addresses: $2^{11} = 2048$
- 3. Relative range: address 0 to 0x7FF (0 to 2047)

- 1. $Sub1 = 0 \times 0900 = 0000 \ 1001 \ 0000 \ 0000$
- 2. The call instruction will transfer the PC to 0x100 relative to the start of page 1 (0x0800), which is address 0x0900.
- 3. Do we need to change the page select bits before the return statement in a call subroutine? (Homework question)

- 1. Instead of using bcf or bsf to set the page select bits in PCLATH, we can use the pagesel directive; for example, pagesel SUB1.
- 2. The pagesel directive results in two assembly code instructions:

```
pagesel SUB1 \Leftrightarrow bcf PCLATH, 4 bsf PCLATH, 3
```

Computed goto

A computed goto is any instruction which changes the program counter (PC) directly.

Any instruction with PCL as the destination (such as the addwf PCL, F instruction in LookupTable.asm) will load the PCH register with the 5 low bits PCLATH<4:0> from the PCLATH register.

Page 26, Data Sheet

Computed goto

When doing a table read using a computed goto method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block of program memory determined by the 8-bit PCL register). Refer to the application note, "Implementing a Table Read" (AN556).

Computed goto: 256 byte program memory boundary

	Address	Program Memory			PCL = PCL + W + 1
	•				
	0x0027	movlw	D'4'		
	0x0028	call	Lookup		
	0x0029	Instruct	ion 29		
	•				
Lookup	0x00FC	addwf	PCL, F	—	PCL = 252 = 0xFC
$\mathbf{W} = 0$	0x00FD	retlw	B'0000001'		= 000 1111 1100
W = 1	0x00FE	retlw	B'00000010'		
W = 2	0x00FF	retlw	B'00000100'		- 256 word boundary
W = 3	0x0100	retlw	B'00001000'		230 word boundary
W = 4	0x0101	retlw	B'00010000'		PCL = 252 + 4 + 1
W = 5	0x0102	retlw	B'00100000'		= 0x0101 $= 001 0000 0001$
					- 001 0000 0001

The example will not work because of the page boundary crossing. See datasheet.

Lab 5 Outline

- 1. CCP Module (PWM mode)
- 2. Lab 5 Settings
- 3. Program Memory Paging
- 4. Electrical Characteristics
- 5. Sleep and Standalone Modes

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	<mark>1.0 W</mark>
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, IOK (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	<mark>25 mA</mark>
Maximum output current sourced by any I/O pin	<mark>25 mA</mark>
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	<mark>200 mA</mark>
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	<mark>200 mA</mark>
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	<mark>200 mA</mark>
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA

- Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD ∑ IOH} + ∑ {(VDD VOH) x IOH} + ∑(VOI x IOL)
 - 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to Vss.
 - 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

LED Connections

Voltage drop across red LED $\approx 1.8 \text{ V}$

Suppose we turn on all 25 LEDs connected to Ports A, B, C, D. If $R = 470 \Omega$, the total current sourced is 25(6.8) = 170 mA - close to critical.

Suppose we turn on all 33 LEDs connected to Ports A, B, C, D, and E. If $R = 470 \Omega$, the current out of each I/O pin is 6.8 mA.

$$P = 33 I_{OH} V_{OH} = 33(0.0068)(5) = 1.12 W,$$

exceeding the maximum 1.0 W.

PIC Power Dissipation

- 1. Nominal operating conditions:
 - a) 4 MHz oscillator
 - b) No current sunk or sources by I/O pins
 - c) Timers off, ADC off
 - d) Nominal current draw $I_{DD} = 2 \text{ mA}$
- 2. PIC power consumed:

$$P = V_{DD}I_{DD} = (5 \text{ V}) (2 \text{ mA}) = 10 \text{ mW}$$

3. How long will the PIC last on a 9 V battery?

PIC Power Dissipation

- 1. PIC power consumed = 10 mW.
- 2. 9 V Energizer 522 battery current capacity ≈ 600 mA-h.
- 3. Battery power capacity = (9 V)(600 mA-h) = 5400 mW-h
- 4. Battery Life $\approx \frac{\text{Battery power capacity}}{\text{PIC power consumption}}$ $= \frac{5400 \text{ mW-h}}{10 \text{ mW}} = 540 \text{ hours}$ = 22.5 days
- 5. Conserve energy by going into sleep mode, also called power-down mode.

Lab 5 Outline

- 1. CCP Module (PWM mode)
- 2. Lab 5 Settings
- 3. Program Memory Paging
- 4. Electrical Characteristics
- 5. Sleep and Standalone Modes

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF873/874/876/877-04 (Commercial, Industrial)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial					
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial				
Param No.	Symbol	Characteristic/ Device	Min	Typ†	Max	Units	Conditions
IPD Power-down Current(3,5) Sleep mode							
D020		16LF87X	<u> </u>	7.5	30	μА	VDD = 3.0V, WDT enabled, -40°C to +85°C
D020		16F87X	_	10.5	42	μА	VDD = 4.0V, WDT enabled, -40°C to +85°C
D021		16LF87X		0.9	5	μА	VDD = 3.0V, WDT enabled, 0°C to +70°C
D021		16F87X		1.5	16	μА	VDD = 4.0V, WDT enabled, -40°C to +85°C
D021A		16LF87X		0.9	5	μА	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021A		16F87X		1.5	19	μА	VDD = 4.0V, WDT enabled, -40°C to +85°C
D023	∆lBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μА	BOR enabled, VDD = 5.0V

Sleep mode – Data sheet p. 154 – Current draw = $1.5 \mu A$

Sleep Mode

- 1. Normal operating mode: $I_{DD} = 2 \text{ mA}$, battery life $\approx 22.5 \text{ days}$.
- 2. Sleep mode: $I_{DD} = 1.5 \mu A$, so the battery will last $2 \text{ mA}/1.5 \mu A \approx 1333 \text{ times longer, or}$

battery life $\approx 1333 \times 22.5$ days ≈ 82 years.

- 3. The sleep instruction puts PIC in sleep mode.
- 4. Clock stops in sleep mode, instructions do not execute.
- 5. Note: Sleep mode might not work in debug mode

Standalone Mode / Release Mode

- 1. Select **Programmer** → **Select Programmer** → **PICkit3**
- 2. Program the PIC
- 3. Disconnect PIC from debugger
- 4. Reset or power cycle the PIC

End of Lab 5