Examen de Matemática Discreta 2

Miercoles 01 de Marzo de 2006, 14:00 hs. Duración: 4 horas.

N ^o . EXAMEN	Cédula	Apellido, Nombre	

No se permite el uso de ningún tipo de material salvo calculadoras.

Se solicita apagar los celulares.

El examen se aprueba con 60 puntos o más.

Ejercicio 1 (25 puntos).

Sea R un anillo conmutativo y sea $I_a = \{b \in R / ba = 0\}.$

- (1) (8 puntos) Mostrar que I_a es un ideal de R.
- (2) (7 puntos) En \mathbb{Z}_{12} hallar I_8 e I_9 .
- (3) (10 puntos) Hallar las tablas de suma y producto del anillo cociente $\frac{\mathbb{Z}_{12}}{I_8}$.

Ejercicio 2. (25 puntos).

- (1) (8 puntos) Determinar los enteros positivos m tales que $28 \equiv 52 \equiv 88(m)$.
- (2) (7 puntos) Un comerciante compró 22 camisas en x293y pesos siendo x e y dgitos. Se sabe que cada camisa cuesta más de 2500. ¿Cuál es el precio de cada camisa?
- (3) (8 puntos) Hallar el resto de dividir $8392^{477} \cdot 322^{512}$ entre 13.

Ejercicio 3. (25 puntos).

Sea G el grupo de todas las matrices 2×2 de coeficientes reales que son invertibles, con la operación producto usual de matrices. Sea N el subgrupo de todas las matrices de G que tienen determinante igual a 1.

- (1) (7 puntos) Probar que para todo $a \in N$ la clase de conjugación cl(a) de a en G está contenida en N.
- (2) (8 puntos) Sea $\mathbb{R} \setminus \{0\}$ el grupo de todos los reales distintos de cero con la operación producto de reales. Construir un homomorfismo de grupos $\Phi : G \mapsto \mathbb{R} \setminus \{0\}$, tal que $Ker(\Phi) = N$
- (3) (10 puntos) Probar que el grupo cociente G/N es isomorfo a $\mathbb{R} \setminus \{0\}$.

Ejercicio 4. (25 puntos). En $\mathbb{Z}_5[x]$ consideramos el polinomio $p(x) = x^4 + x^3 + 3x^2 + 2x + 2$.

- (1) (8 puntos) Probar que p es reducible y hallar su descomposicin como producto de factores irreducibles.
- (2) (7 puntos) Probar que $\mathbb{Z}_5[x]/(x^2+2)$ es un cuerpo y hallar cuantos elementos tiene.
- (3) (8 puntos) Hallar [p(x)] y $[x^4 + 3x^2 + 3]$ en $\mathbb{Z}_5[x]/(x^2 + 2)$.

PARA USO DOCENTE:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
Total:	Total:	Total:	Total:

TOTAL EXAMEN: