	Il est strictement interdit de faire passer les calculatrices entre les étudiants.
Il es	st strictement interdit d'utiliser le portable soit comme calculatrice soit pour voir l'heure.

Il est strictement inte	rdit d'utiliser le portable s	oit comme calculat	trice soit pour v	oir l'heure.					
Université de Skikda Faculté de technologie	Nom et Prénom :	$dx = \frac{9}{2} \ln \eta_{\text{out}}.$	1 2 dy	16/12/2020					
Département de technolo	gie, 2 ^{ème} ST, Module: Maths	3, Durée : 1h	7 7 7 6 7						
	Rattra	page	I Burn						
				Austria atus					
Exercice n° 1 V Chois	ir la bonne réponse, et ju s	stifier votre répon	ise.						
A. Soit $D = [a, b] \times [c]$ continue. On $a : \iint_D f(a)$, d] un rectangle fermé du (x, y)dxdy =	uplan \mathbb{R}^2 , et $f:D$	$\rightarrow \mathbb{R}$ une fonce	tion					
	$dy \qquad \qquad \boxed{\int_a^b \int_c^d f(x, y)}$	y)dydx		y)dydx					
Justification :		r beaute ngrouse, sa							
or ye[c,d]et	le Phésième de F	ubini est aff	licoble						
$2/. Soit D = [0, \pi] \times [0]$,1], l'intégrale $\iint_D 2y$ sin	1x dxdy =							
12/2	□ 5		□ 13						
Justification :									
I=(Sinxda	(1) (S dy dy)=	[- (0) x]	[y2] = .	2					
- 444	(x, y, z) dx dy dz en $coordo$ $f(r sin \varphi cos \theta; r sin \varphi s$			nnée par :					
\Box $\iiint f(\cdot)$	$r\sin\theta\cos\varphi$; $r\sin\varphi\cos$	θ ; $r\sin\varphi$) $r^2\sin\varphi$	φ drd θ d φ						
$\int \int $	$r\sin\varphi\cos\theta$; $r\sin\varphi\sin\theta$	θ ; $r\cos\varphi$) $r^2\sin\varphi$	φ drd θ d φ						
ustification:	n		.0 =	Vot + 3					
3 = 9 5in & cost	00	dr= 228	sing as	J. Servición.					
8= 2 COS 4									
II/Répondre par vrai o	u faux, et justifier votre r	éponse.							
$/. \iint_D \frac{dxdy}{y^2} = \int_1^9 \int_{\sqrt{y}}^3$	$\frac{1}{y^2}dxdy = \frac{4}{3}.$								
	Vrai	☐ Faux							
ustification: $\int_{-\infty}^{3} \frac{\Lambda}{y}$	$2 dn = \frac{1}{y^2} n \int_{\overline{y}}^{3}$	= 3 / 1/2 - 1/4 2							
3 (3/2- 15/y2) dy	$= \int_{0}^{9} \left(\frac{3}{y^{2}} - y^{-3/2} \right)$	dy= = 3 + 5	Z 19 =	4/3/1					
$\left(\frac{3}{3}2 - \frac{\sqrt{3}}{3}2\right) dy = \int_{\Lambda}^{2} \left(\frac{3}{3}2 - y^{-3/2}\right) dy = \frac{3}{3} + \frac{2}{3} + \frac{2}{3} = \frac{4}{3}$ anie 3 rivel Iříř Italiu; naie 3 limital (Iráli) napal jžú (Iráli)									

Il est strictement interdit de faire passer les calculatrices entre les étudiants. Il est strictement interdit d'utiliser le portable soit comme calculatrice soit pour voir l'heure.

2/. Soit $I = \int_{-2}^{1} \int_{x}^{2-x^2} dy dx = \frac{9}{2}$, la quantité $I = \frac{9}{2}$ est la surface de la parabole comprise

Justification: f(x,y) = 1 I = S(Arie plane)

Exercice n° 2 1/. Choisir lá bonne réponse, sans justification.

1/. L'équation	(1 +	x)ydx	+ (1	-y)dy	= 0, es	t une
----------------	------	-------	------	-------	---------	-------

- ☐ équation à variables séparées
- équation à variables séparables
- 2/. L'équation $\frac{dy}{dx} + xy = x^3y^3$ est une

 - ☐ équation linéaire ☐ équation homogène ☐ équation de Bernoulli
- 3/. La fonction $f(x,y) = \frac{x^2+y^2}{xy}$ est une fonction homogène de degré :

4/. La solution générale de l'équation y'' + 4y' + 3y = 0 est :

$$y = C_1 e^{2x} + C_2 x e^{2x}$$

$$y = C_1 e^{-x} + C_2 x e^{-3x}$$

$$y = C_1 e^{-x} + C_2 e^{-3x}$$

$$y = C_1 e^{-x} + C_2 x e^{-3x}$$

$$y = C_1 e^{-x} + C_2 e^{-3x}$$

II/. Résoudre les deux équations suivantes :

$$y^{\prime\prime} + 16y = 0.$$

Réponse: On pose
$$y = e^{\kappa x}$$
, $y' = ke^{\kappa x}$, $y'' = k^{2}e^{\kappa x}$
 $y'' + 16y = 0 \Rightarrow k^{2}e^{\kappa x}/6ke^{\kappa x} = 0 \Rightarrow (k^{2} + 16k)e^{\kappa x} = 0$
 $\Rightarrow k^{2} + 16k = 0$ (fund que $e^{kx} + 0$) $\Rightarrow k^{2} = -16 \Rightarrow 0$
 $k_{1,2} = \pm i + 0$
 $k_{2} = -16 \Rightarrow 0$
 $k_{3} = \pm i + 0$
 $k_{4} = \pm i + 0$
 $k_{5} = -16 \Rightarrow 0$
 $k_{6} = 0$