Ravenstack Churn Prediction Analysis

Scott Hu

October 31, 2025

1 Technical Methodology

1.1 Objective

To identify leading indicators of customer churn and build a predictive model to flag at-risk accounts ahead of time using customer, product usage, and support datasets.

1.2 Data Sources

We combined the provided CSV files to construct a unified customer activity model:

- accounts.csv: Industry, region, signup details
- subscriptions.csv: Plan tier, seats, MRR changes
- feature_usage.csv: Daily feature usage across product functions
- support_tickets.csv: Customer support volume, SLA breaches
- churn_events.csv: Account churn dates and reasons

1.3 Label Definition

Binary classification target:

$$churn_next_30d = \begin{cases} 1 & account churns within next 30 days \\ 0 & otherwise \end{cases}$$

1.4 Feature Engineering

We built a daily account panel and aggregated to weekly frequency. Key feature categories:

- \bullet Usage Intensity: weekly events, 4-week events, usage momentum
- Engagement Recency: weeks since last product use or support interaction
- Support Friction: tickets in 4 weeks, SLA breaches
- Commercial Signals: seats, weekly seat change, MRR
- Stability: errors in rolling window

1.5 Modeling Approach

- Time-based split (train: before 2024-10-01, test: after)
- Gradient boosting classifier (XGBoost fallback: HistGradientBoosting)
- Class imbalance handled with scale_pos_weight
- Eval metrics: AUC, AUPRC, Precision@K

1.6 Results

Metric	Score
AUC	0.6264
AUPRC (vs. base 0.0482)	0.0875
Precision@Top 10%	0.1204

Table 1: Weekly Model Performance

Performance shows $\sim 1.8x$ lift vs. baseline churn rate.

1.7 Top Predictive Signals

- 1. Weeks since last product use
- 2. Weeks since last support interaction
- 3. MRR level
- 4. Seat count and weekly seat change
- 5. 4-week usage volume
- 6. 4-week ticket volume
- 7. Usage momentum (decline)

These signals typically appear 4–8 weeks before churn.

2 Stakeholder Summary

2.1 Headline

We can identify churn risk **2x better than random**, allowing proactive outreach and retention plays.

2.2 Top Feature Signals

Figure 1: Top 10 features predicting churn

2.3 Key Insights

- Disengagement drives churn: inactivity > 2 weeks is the strongest signal.
- Seat reduction precedes churn: declining seat usage is an early warning.
- Silent churn exists: accounts without support touchpoints quietly leave.
- Support friction matters: ticket spikes + no follow-up = higher churn risk.
- High-value accounts require attention: lost seats in high-MRR accounts are costly.

2.4 Recommended Actions

2.5 Next Steps

- Deploy churn risk dashboard in CS CRM
- In-app nudges for idle users
- Automated alerts on seat loss trends
- \bullet Incorporate sentiment from support ticket text

Trigger	Playbook	
>2 weeks since usage	CSM outreach + product re-	
	engagement workflow	
Seat drop detected	Value review and right-sizing conversa-	
	tion	
Ticket spike or SLA breach	Escalate support + recovery communi-	
	cation	
Low product adoption	Enablement + guided onboarding to	
	core features	

Table 2: CSM Intervention Strategy

2.6 Business Value

- \bullet Increased retention and ARR
- Prioritized CSM workflows
- Reduced "silent churn"
- Clear playbooks tied to measurable leading indicators