Gasser Ahmed

gasser18@vt.edu

ECE 5484, Homework 5

- 1. a. Blocks of main memory = $2^{64}/64 = 2^{64}/2^6 = \frac{2^{58}}{2^{58}}$ blocks
 - b. Since cache has $2048 = 2^{11}$ blocks, therefore size of the block = 11 bits Since each block contains $64 = 2^6$ bytes, therefore size of the offset = 6 bits Therefore, size of the tag = 64 - (11 + 6) = 64 - 17 = 47 bits
 - c. 0x0000000000163FA
 - $= 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ 0110\ 0011\ 1111\ 1010$

Block = 10110001111

Offset = 111010

Therefore, $10110001111 = \frac{0x58F}{} = \frac{Cache block 1423}{}$

- 2. a. Blocks of main memory = $2^{24} / 64 = 2^{24} / 2^6 = \frac{2^{18} \text{ blocks}}{2^{18} \text{ blocks}}$
 - b. Since each block contains $64 = 2^6$ bytes, therefore size of the offset = $\frac{6}{6}$ bits Therefore, size of the tag = $24 - 6 = \frac{18}{6}$ bits
 - c. Since it is associative cache, it can map anywhere.
- 3. a. Since number of sets = $64 / 2 = 32 = 2^5$ sets, therefore size of set = $\frac{5 \text{ bits}}{5 \text{ bits}}$ Since each block contains $4 = 2^2$ bytes, therefore size of the offset = $\frac{2 \text{ bits}}{2 \text{ bits}}$ Therefore, size of the tag = $21 (5+2) = \frac{14 \text{ bits}}{2 \text{ bits}}$
 - b. Since number of sets = $64 / 4 = 16 = 2^4$ sets, therefore size of set = $\frac{4 \text{ bits}}{2 \text{ bits}}$ Since each block contains $4 = 2^2$ bytes, therefore size of the offset = $\frac{2 \text{ bits}}{2 \text{ bits}}$ Therefore, size of the tag = $21 (4+2) = \frac{15 \text{ bit}}{2 \text{ bits}}$
- 4. a. $2^{20} / 2^8 = \frac{2^{12}}{2^{12}}$ pages
 - b. $2^{16} / 2^8 = \frac{2^8}{10^8}$ page frames
 - c. $2^{20} / 2^8 = \frac{2^{12} \text{ entries}}{2^{12} \text{ entries}}$
- 5. a. 7ns + 15ns = 22ns
 - b. EAT for Cache = Ratio for hit * (time for hit) + Ratio for miss * (time for miss) = 0.97 * (15ns) + 0.03 * (15ns + 30ns) = 15.9ns

EAT for TLB= Ratio for hit TLB * (time for hit TLB + EAT Cache)

= 0.95 * (7ns + 15.9ns) = 21.755ns

- 6. a. Since there are 32MB, or $2^5x2^{20} = 2^{25}$ addresses Therefore, we need $\frac{25}{25}$ bits for a virtual address.
 - b. Since there are 4MB, or $2^2x2^{20} = 2^{22}$ Therefore, we need 22 bits for physical address.
 - c. Since there are $2^{25}/2^{11}$ pages in virtual memory, therefore the page table can have 2^{14} entries.
 - d. 0x37F = 000000000000000 011011111111,
 Since the first 14 bits are the page, therefore the remaining bits (11 bits) are the offset
 Therefore, replace the first 14 bits (0000000000000) by (000000000000) (page 0 maps to frame 1), to get the physical address 000000000001101111111, or 0xB7F
 - e. $0x1203 = 00000000000010 \ 01000000011$ Since the first 14 bits are the frame, therefore the frame is 2. Since virtual page 4 maps to frame 2, so we will replace the first 14 bits (0000000000010) with (0000000000100), to get the virtual address 000000000010001000100000011, or 0x2203