BAYES class = ang maxy P(y/x) = ang maxy P(x1|y) - f(xj/y) - P(xn/y) P(y) f(xjly) > consider a value of y (label)

take all its datapoint • estimate μ, σ • $f(\bullet|y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\cdot - \mu)^2}{2\sigma^2}}$ captace estimator > BAYES CATEGORICAL

Ortlook Temp Humidity Windy May (class)

	we create: +1((laplace) I if we don't he					rave Os			LAPLACE
- Angelowski	Outlook			Temp			Humidity			Windy			Play	
COUNTS	Sunny Overcout Rainy	2+1 4+1 3+1	N 3+1 0+1 2+1	Hot Mild Cool	2+1	N 2+1 2+1 1+1	High Normal	Y 3+1 6+1	N 4+1 1+1	141	Y 6+1 3+1	N 2+1 3+1	Y 3	N 5
FREA	Sunny Overlart Rainy	1/4 5/12 1/3	41z 418 318	Hot Mild Cool	5/12	318 318 14	Kigh Normal	4/11	8/7 2/7	FT	7/11 4/11	3/7		$() = \frac{9}{14}$

l(YIX) = IP(SUNNYIY) IP(cooliy) IP(wighty) IP(TIY) IP(Y) l (N/2) =

$$P(Y|\vec{x}) = \frac{l(Y|\vec{x})}{l(Y|\vec{x}) + l(N|\vec{x})}$$

NORMALIZATION!

$$IP(Y|\vec{x}) = \frac{l(Y|\vec{x})}{l(Y|\vec{x})+l(N|\vec{x})}, \quad IP(N|\vec{x}) = \frac{l(N|\vec{x})}{l(Y|\vec{x})+l(N|\vec{x})}$$

- Change	Outlook	Temperature	Herwindity	Windy	May	
	Sunny Overlast Rainy	64.68 65.71 68.70 72.80 72. 85,	Y N 67.70 70.85 70.78 90.81 80 85	F	Y N 3 S	
	f (temperature		$\frac{1}{\sqrt{2\pi}(62)^2}e^{-\frac{1}{2}}$	$\frac{(66-73)^2}{2\cdot(6\cdot2)^2}$	1P(Y) =	
-	> Outlook	Temperature 66	Humidity 80	Windy Pla	4	

$$\ell(Y|\vec{x}) = \ell(\delta v n n y | Y) + f_r(66|Y) + f_r(66|Y) + f_r(66|Y) + \ell(70|Y) + \ell(70|Y)$$

normalization:
$$IP(Y|\vec{x}) = \frac{L(Y|\vec{x})}{L(Y|\vec{x}) + l(N|\vec{x})}$$
, $IP(N|\vec{x}) = 1 - IP(Y|\vec{x})$