



### CS773-2022-Autumn: Computer Architecture for Performance and Security

Lecture 9: CAOS (friends forever)



# Operating System and Architecture: Bandish 101

Case 1: Programmer wants to run 100 things

CPU says I am alone 😊

OS says I can create an illusion of multiple CPUs ©

Case 2: Programmer wants 100s of GBs of data

Memory says I am just 10 GB ☺

OS says, never mind, I can create an illusion of TBs ©

# Operating System and Architecture: Bandish 101

Case 3: Programmer wants protection/security of data

OS says I can do it but need your support 😊

CPU says sure ©

Case 4: Programmer wants parallelism

OS says, why not © but the cost of parallelism ©

CPU says I will take care by providing instructions ©

# Operating System and Architecture: Bandish 101

Case 5: OS needs clflush, why?

User needs clflush, why?

CPU says sure, why not? ©

#### From a program to a process

Process: A program that is alive and not-dead (running, waiting ..) ©

OS creates, manages, schedules them

Allocates memory and initialize CPU state (PC) to kickstart

OS can run multiple processes concurrently even on a single core

#### Virtual World: Illusion



Printf ("%d", &a);

Virtual address

CASPER

### Virtual Memory



### A bit of detour towards OS: Paging

Memory space divided into pages.

Typical page size: 4KB

Huge page: 2MB, 1GB pages

A software table that stores the paging information: Page table

An entry in the page table is known as pagetable entry (PTE)



### Per process page table (stored in memory)

| Virtual page | Physical page |
|--------------|---------------|
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |





#### Page Table



#### Can We Cache Translations too?



Translation Look-aside Buffers (TLBs)

#### The Processor Pipeline with the TLBs



TLB miss? Page Fault? Protection violation?

TLB miss? Page Fault? Protection violation?

#### Memory Hierarchy with the TLBs

There are Page Walker Caches (PWCs) too ©



#### Caches: Virtual or Physical

