

Operating system

吴国伟 大连理工大学

内容纲要

2.3 操作系统结构

- 一、OS结构演变
- 二、单内核结构
- 三、微内核结构
- 四、混合结构

一、OS结构演变

• 所有OS功能模块均在内 核态工作

・单内核 (宏内核)

User	Applications					
Space	Libraries					
Kernel Space	File System	IPC	I/O Control	Process Management		
Hardware						

典型代表: DOS, UNIX

特点:

・单内核实例1: MS-DOS

简单结构

- 系统没有进行清晰的系统模块划分
- 应用程序与OS内核之间缺少隔离保护

混合内核

微内核

单内核

MicroKernel

一种极精简的OS内核设计,仅将内存地址空间管理、线程调度、进程间通信纳入内核,而将文件系统等模块置入用户空间

典型代表: Mach

	User Space	Applications						
		Libraries						
		File System	Process Server	Pagers	Drivers			
	Kernel Space	Microkernel						
	Hardware							

・实例: Mach

只在内核中保留如线程调度、进程间通信等核心功能, 而将其他的OS服务转移到用户态,以用户态模块的形 式实现

・单内核与微内核对比图

一、OS结构演变

四、混合结构

・混合内核代表1: XNU

Mach微内核:

CPU调度、虚存机制、I/O Kit、设备驱动

BSD内核部分:

实现文件系统、网络层、POSIX接口层

四、混合结构

·混合内核代表2: 基于NT技术的Windows

• Win2000, win7, win8, win10等

本讲小结

- 操作系统结构设计演变史
- 单内核、微内核结构、混合结构

