Package 'fitOU'

October 31, 2023

October 31, 2023			
Title The Ornstein-Uhlenbeck Model			
Version 0.0.0.9000			
Description Fit the Ornstein-Uhlenbeck model using the 'dynr' package.			
<pre>URL https://github.com/ijapesigan/fitOU,</pre>			
https://ijapesigan.github.io/fitOU/			
<pre>BugReports https://github.com/ijapesigan/fitOU/issues</pre>			
License GPL (>= 3)			
Encoding UTF-8			
LazyData true			
Roxygen list(markdown = TRUE)			
VignetteBuilder knitr			
Depends R (>= 3.5.0)			
Imports stats, dynr, parallel, pbapply			
Suggests knitr, rmarkdown, testthat			
RoxygenNote 7.2.3			
NeedsCompilation no			
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)			
Maintainer Ivan Jacob Agaloos Pesigan < r.ijapesigan@gmail.com>			
R topics documented:			
bivariate_ou			
Index			

2 FitOU

bivariate_ou

Bivariate Ornstein-Uhlenbeck Model Data

Description

Bivariate Ornstein-Uhlenbeck Model Data

Usage

bivariate_ou

Format

A dataframe with 10000 rows and 4 columns (y1, y2, id, and time) generated from the bivariate Ornstein–Uhlenbeck model from Chow et al. (2023).

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

FitOU

Fit the Ornstein-Uhlenbeck Model

Description

This is a wrapper function that makes fitting the Ornstein–Uhlenbeck model convenient using the dynr package.

Usage

```
FitOU(
  data,
  observed,
  id,
  time,
  mu0 = NULL,
  sigma0 = NULL,
  mu_start = NULL,
  phi_start = NULL,
  sigma_start = NULL,
  theta_start = NULL,
  sigma_diag = FALSE,
  center = FALSE,
  scale = FALSE,
```

FitOU 3

```
lb = NULL,
ub = NULL,
...
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), a column indicating subject-specific measurement occasions (i.e., a TIME variable), at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
time	Character string. A character string of the name of the TIME variable in the data.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$. If mu0 = NULL, a vector of zeros is used.
sigma0	Numeric matrix. Covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$. If sigma0 = NULL, an identity matrix is used.
mu_start	Numeric vector. Starting values of the mu vector, that is, the long-term mean or equilibrium level. If mu_start = NULL, a vector means of the observed variables is used.
phi_start	Numeric matrx. Starting values of the phi matrix, that is, the rate of mean reversion, determining how quickly the variable returns to its mean. If phi_start = NULL, a matrix of zeros is used.
sigma_start	Numeric matrx. Starting values of the sigma matrix, that is, the matrix of volatility or randomness in the process. If sigma_start = NULL, an identity matrix is used.
theta_start	Numeric matrix. Starting values of the theta matrix, that is, the measurement error covariance matrix (Θ) . If theta_start = NULL, an identity matrix is used.
sigma_diag	Logical. If sigma_diag = TRUE, estimate only the diagonals of Σ .
center	Logical. If center = TRUE, mean center by id.
scale	Logical. If scale = TRUE, standardize by id.
lb	Numeric vector. Optional. The lower bounds for Φ .
ub	Numeric vector. Optional. The upper bounds for Φ .
	Additional arguments to pass to dynr::dynr.cook().

Details

The measurement model is given by

$$\mathbf{y}_{i,t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t} \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

4 FitOU

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{i,t}$ is a vector of latent random variables at time t and individual i, while $\boldsymbol{\nu}$ is a vector of intercept, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of ε .

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi}\left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What's for dynr: A package for linear and nonlinear dynamic modeling in R. *The R Journal*, 11(1), 91. doi:10.32614/rj2019012

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:doi.org/10.1103/physrev.36.823

See Also

Other Fit Ornstein-Uhlenbeck Model Functions: FitOUID()

Examples

```
## Not run:
FitOU(
   data = bivariate_ou,
   observed = c("y1", "y2"),
   id = "id",
   time = "time",
   verbose = FALSE
)
## End(Not run)
```

FitOUID 5

FitOUID

Fit the Ornstein-Uhlenbeck Model for Each Individual

Description

This is a wrapper function that makes fitting the Ornstein-Uhlenbeck model for each individual convenient using the dynr package.

Usage

```
FitOUID(
   data,
   observed,
   id,
   time,
   mu0 = NULL,
   sigma0 = NULL,
   mu_start = NULL,
   phi_start = NULL,
   sigma_start = NULL,
   theta_start = NULL,
   ...,
   ncores = NULL
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), a column indicating subject-specific measurement occasions (i.e., a TIME variable), at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
time	Character string. A character string of the name of the TIME variable in the data.
mu0	Numeric vector. Mean of initial latent variable values ($\mu_{\eta 0}$). If mu0 = NULL, a vector of zeros is used.
sigma0	Numeric matrix. Covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$. If sigma0 = NULL, an identity matrix is used.
mu_start	Numeric vector. Starting values of the mu vector, that is, the long-term mean or equilibrium level. If mu_start = NULL, a vector means of the observed variables is used.
phi_start	Numeric matrx. Starting values of the phi matrix, that is, the rate of mean reversion, determining how quickly the variable returns to its mean. If phi_start = NULL, a matrix of zeros is used.

6 FitOUID

Numeric matrx. Starting values of the sigma matrix, that is, the matrix of volatility or randomness in the process. If sigma_start = NULL, an identity matrix is used.
 Numeric matrx. Starting values of the theta matrix, that is, the measurement error covariance matrix (Θ). If theta_start = NULL, an identity matrix is used.
 Additional arguments to pass to dynr::dynr.cook().
 Positive integer. Number of cores to use.

Details

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}$$
 with $\boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{i,t}$ is a vector of latent random variables at time t and individual i, and $\varepsilon_{i,t}$ is a vector of random measurement errors at time t and individual i, while $\boldsymbol{\nu}$ is a vector of intercept, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of ε .

The dynamic structure is given by

$$\mathrm{d} \boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t} \right) \mathrm{d} t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What's for dynr: A package for linear and nonlinear dynamic modeling in R. *The R Journal*, 11(1), 91. doi:10.32614/rj2019012

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:doi.org/10.1103/physrev.36.823

See Also

Other Fit Ornstein-Uhlenbeck Model Functions: FitOU()

FitOUID 7

Examples

```
## Not run:
FitOUID(
  data = bivariate_ou,
  observed = c("y1", "y2"),
  id = "id",
  time = "time",
  verbose = FALSE
)
## End(Not run)
```

Index

```
* Fit Ornstein-Uhlenbeck Model Functions
    FitOU, 2
    FitOUID, 5
* data
    bivariate_ou, 2
* fitOU
    {\tt bivariate\_ou, 2}
    FitOU, 2
    FitOUID, 5
* fit
    FitOU, 2
    FitOUID, 5
bivariate_ou, 2
dynr::dynr.cook(), 3, 6
FitOU, 2, 6
FitOUID, 4, 5
```