ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

SHORTEST PATH ALGORITHMS

SHORTEST PATH PROBLEM

Input:

- Directed graph G = (V, E)
- Weight function $w: E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$
- $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$

$$\delta(u,v) = \min \begin{cases} w(p) : u \stackrel{p}{\leadsto} v & \text{if there exists a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

• Note: there might be multiple shortest paths from u to v

VARIANTS OF SHORTEST PATHS

Single-source shortest paths

- G = (V, E): find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest paths

- Find a shortest path to a given destination vertex t from each vertex v
- Reversing the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v

All-pairs shortest-paths

- Find a shortest path from u to v for every pair of vertices u and v

NEGATIVE-WEIGHT EDGES

- Negative-weight edges may form negative-weight cycles
- If such cycles are reachable from the source, then $\delta(s,v)$ is not properly defined!
 - Keep going around the cycle, and get $w(s, v) = -\infty$ for all v on the cycle

NEGATIVE-WEIGHT EDGES

• $s \rightarrow a$: only one path

$$\delta(s,a) = w(s,a) = 3$$

• $s \rightarrow b$: only one path

$$\delta(s,b) = w(s,a) + w(a,b) = -1$$

• $s \rightarrow c$: infinitely many paths

$$\langle s, c \rangle, \langle s, c, d, c \rangle, \langle s, c, d, c, d, c \rangle$$

cycle has positive weight (6 - 3 = 3)

 $\langle s, c \rangle$ is shortest path with weight $\delta(s, c) = w(s, c) = 5$

NEGATIVE-WEIGHT EDGES

- $s \rightarrow e$: infinitely many paths:
 - $-\langle s,e\rangle,\langle s,e,f,e\rangle,\langle s,e,f,e,f,e\rangle$
 - cycle $\langle e, f, e \rangle$ has negative weight:

$$3 + (-6) = -3$$

- can find paths from s to e with arbitrarily
 large negative weights
- $-\delta(s,e) = -\infty \Rightarrow$ no shortest path exists between s and e
- Similarly: $\delta(s, f) = -\infty$, $\delta(s, g) = -\infty$

CYCLES

- Can shortest paths contain cycles?
- Negative-weight cycles
 - Shortest path is not well defined
- Positive-weight cycles:
 - By removing the cycle, we can get a shorter path
- Zero-weight cycles
 - No reason to use them
 - Can remove them to obtain a path with same weight

OPTIMAL SUBSTRUCTURE THEOREM

Given:

- A weighted, directed graph G = (V, E)
- A weight function $w: E \to R$,
- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k
- A subpath of $p: p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Proof:
$$p = v_1 \stackrel{p_{1i}}{\smile} v_i \stackrel{p_{ij}}{\smile} v_j \stackrel{p_{jk}}{\smile} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}$ from v_i to v_j with $w(p_{ij}) < w(p_{ij})$

$$\Rightarrow w(p') = w(p_{1i}) + w(p_{ij}) + w(p_{jk}) < w(p)$$
 contradiction!

TRIANGLE INEQUALITY

For all $(u, v) \in E$, we have:

$$\delta(s,v) \leq \delta(s,u) + \delta(u,v)$$

- If u is on the shortest path to v we have the equality sign

ALGORITHMS

- Bellman-Ford algorithm
 - Negative weights are allowed
 - Negative cycles reachable from the source are not allowed.
- Dijkstra's algorithm
 - Negative weights are not allowed
- Operations common in both algorithms:
 - Initialization
 - Relaxation

SHORTEST-PATHS NOTATION

For each vertex $v \in V$:

- $\delta(s, v)$: shortest-path weight
- d[v]: shortest-path weight **estimate**
 - Initially, $d[v] = \infty$
 - $d[v] \rightarrow \delta(s, v)$ as algorithm progresses
- $\pi[v] = \mathbf{predecessor}$ of v on a shortest path from s
 - If no predecessor, $\pi[v] = NIL$
 - π induces a tree—shortest-path tree

INITIALIZATION

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$ do
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

RELAXATION STEP

• Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If
$$d[v] > d[u] + w(u,v)$$

we can improve the shortest path to v

$$\Rightarrow d[v] = d[u] + w(u, v)$$

$$\Rightarrow \pi[v] \leftarrow u$$

After relaxation:

$$d[v] \le d[u] + w(u, v)$$

BELLMAN-FORD ALGORITHM

- Single-source shortest path problem
 - Computes $\delta(s, v)$ and $\pi[v]$ for all $v \in V$
- Allows negative edge weights can detect negative cycles.
 - Returns TRUE if no negative-weight cycles are reachable from the source s
 - Returns FALSE otherwise ⇒ no solution exists

BELLMAN-FORD ALGORITHM (CONT'D)

Idea:

- Each edge is relaxed |V-1| times by making |V-1| passes over the whole edge set.
- To ensure that each edge is relaxed exactly |V 1| times, it puts the edges in an unordered list and goes over the list |V 1| times.

$$(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)$$

BELLMAN-FORD(V, E, W, S)

E: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

EXAMPLE

(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

DETECTING NEGATIVE CYCLES

- \square (perform extra test after V-1 iterations)
 - for each edge $(u, v) \in E$ do
 - if d[v] > d[u] + w(u,v)
 - then return FALSE
 - return TRUE

Look at edge
$$(s,b)$$
:

$$d[b] = -1$$

$$d[s] + w(s,b) = -4$$

$$\Rightarrow d[b] > d[s] + w(s,b)$$

BELLMAN-FORD(V, E, W, S)

```
1. INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
          i \leftarrow 1 \text{ to } |V| - 1 \qquad \leftarrow o(V)
do for each edge (u, v) \in E \qquad \leftarrow o(E) o(VE)
2. for i \leftarrow 1 to |V| - 1
3.
                   do RELAX(u, v, w)
   for each edge (u, v) \in E
                                                       \leftarrow O(E)
          do if d[v] > d[u] + w(u, v)
6.
                 then return FALSE
     return TRUE
```

Running time:
$$O(V + VE + E) = O(VE)$$

Visualization Implementation

DIJKSTRA'S ALGORITHM

- Single-source shortest path problem:
 - No negative-weight edges: w(u, v) > 0, $\forall (u, v) \in E$
- Each edge is relaxed only once!
- Maintains two sets of vertices:

DIJKSTRA'S ALGORITHM (CONT.)

- Vertices in V S reside in a min-priority queue
 - Keys in Q are estimates of shortest-path weights d[u]
- Repeatedly select a vertex $u \in V S$, with the minimum shortest-path estimate d[u]
- Relax all edges leaving u
- Steps
 - 1) Extract a vertex u from Q (i.e., u has the highest priority)
 - 2) Insert u to S
 - 3) Relax all edges leaving u
 - 4) Update *Q*

DIJKSTRA (G, W, S)

EXAMPLE (CONT.)

$$S = < s, y > Q = < z, t, x >$$
 $S = < s, y, z > Q = < t, x >$

$$S = \langle s, y, z \rangle Q = \langle t, x \rangle$$

EXAMPLE (CONT.)

$$S = < s, y, z, t > Q = < x >$$
 $S = < s, y, z, t, x > Q = < >$

$$S = \langle s, y, z, t, x \rangle Q = \langle \rangle$$

DIJKSTRA (G, W, S)

```
INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
2. S ← Ø
3. Q \leftarrow V[G] \leftarrow O(V) build min-heap
     while Q \neq \emptyset 	— Executed O(V) times
                                                       O(VlgV)
        do u \leftarrow EXTRACT-MIN(Q) \leftarrow O(lgV)
5.
           S \leftarrow S \cup \{u\}
6.
            for each vertex v \in Adj[u] \leftarrow O(E) times
7.
                                                (total)
                                                              O(ElgV)
                do RELAX(u, v, w)
8.
                Update Q (DECREASE_KEY) \leftarrow O(lgV)
```

Running time: O(VlgV + ElgV) = O(ElgV)

9.

DIJKSTRA (G,W,S)

Look at different Q implementation, as did for Prim's algorithm

	Q	T _{E-MIN}	T _{D-KEY}	TOTAL
•	Linear			
	Unsorted	O(V)	O(1)	$O(V^2 + E)$
	Array:			
•	Binary Heap:	O(lgV)	O(log V)	O(VlgV + ElgV) = O(ElgV)
•	Fibonacci heap:	O(lgV)	O(1)	O(VlgV + E)

DIJKSTRA'S ALGORITHM FOR SHORTEST PATHS.

Observe:

- Each vertex is extracted from Q and inserted into S exactly once
- Each edge is relaxed exactly once
- S = set of vertices whose final shortest paths have already been determined
 - $i.e., S = \{v \hat{I} V : d[v] = \delta(s, v) \neq \infty \}$

DIJKSTRA'S ALGORITHM FOR SHORTEST PATHS.

- Similar to BFS algorithm: S corresponds to the set of black vertices in BFS, which have their correct breadth-first distances already computed
- Greedy strategy: Always chooses the closest(lightest) vertex in Q = V S to insert into S
- Relaxation may reset d[v] values thus updating Q = DECREASE KEY operation.

DIJKSTRA'S ALGORITHM FOR SHORTEST PATHS.

- Similar to Prim's MST algorithm: Both algorithms use a priority queue to find the lightest vertex outside a given set *S*
- Insert this vertex into the set
- Adjust weights of remaining adjacent vertices outside the set accordingly

Visualization
 Implementation

QUESTIONS/ANSWERS

