Partiel 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (7 points – pas de point négatif)

Entourez la ou les bonnes réponses.

- Q1. Quelle est la résistance vue entre A et B?
 - a. $\frac{15}{23}R$
 - b. $\frac{3}{5}R$
 - c. $\frac{5}{2}R$
 - d. $\frac{5}{3}R$

- Q2. Quelle est la résistance vue entre A et B?
 - a. 3*R*
 - b. *R*
 - c. $\frac{3}{2}R$
 - d. $\frac{2}{3}R$

- **Q3.** Si on applique la loi d'Ohm avec la résistance en $M\Omega$ et la tension en V, on obtient directement le courant en :
 - a. *A*
 - b. mV

- c. mA
- d. μA

- **Q4.** Soit le circuit ci-contre. Que vaut U?
 - a- 20 V

c- 4 V

b- -4V

d- -8 V

Soit le circuit ci contre :

Q5. Quelle est l'expression de U_4 lorsqu'on annule E et qu'on conserve I_2 ?

a-
$$U_4=R_4.I_2$$

b- $U_4=\frac{R_4^2}{R_1+R_2+R_3+R_4}I_2$

c-
$$U_4 = \frac{(R_1 + R_2 + R_3).R_4}{R_1 + R_2 + R_3 + R_4} I_2$$

d-
$$U_4 = \frac{R_4}{R_1 + R_2 + R_3 + R_4} I_2$$

Q6. Quelle est l'expression de U_2 lorsqu'on annule I_2 et qu'on conserve E?

a-
$$U_2 = \frac{R_2}{R_1 + R_2} E$$

c-
$$U_2 = \frac{R_2}{R_1 + R_2 + R_3 + R_4} E$$

b-
$$U_2 = \frac{R_2}{R_1 + R_2 + R_3} E$$

$$d- U_2 = R_2 E$$

Q7. Un générateur de Thévenin est formé :

- a- D'une source idéale de tension en parallèle avec une résistance.
- b- D'une source idéale de courant en série avec une résistance.
- c- D'une source idéale de courant en parallèle avec une résistance.
- d- D'une source idéale de tension en série avec une résistance..

Q8. Un générateur de Norton est formé :

- a- D'une source idéale de tension en parallèle avec une résistance.
- b- D'une source idéale de courant en série avec une résistance.
- c- D'une source idéale de courant en parallèle avec une résistance.
- d- D'une source idéale de tension en série avec une résistance..

Q9. Dans le théorème de Thévenin, la tension E_{th} du générateur est aussi appelée :

a- La tension à vide

c- Aucune de ces réponses

b- La tension de court-circuit

- **Q10.** Dans le théorème de Norton, le courant I_N du générateur est aussi appelé :
 - a- Le courant à vide

c- Aucune de ces réponses

- b- Le courant de court-circuit
- Q11. Un générateur de tension E en série avec une résistance R est équivalent à un générateur de courant I en parallèle avec une résistance r si :

a-
$$R.E = \frac{R}{r}I$$
 et $r = R$

a-
$$E = R.I$$
 et $I = \frac{E}{\left(\frac{R+r}{R.r}\right)}$

b-
$$r = R$$
 et $E = R.I$

b-
$$R = r \operatorname{et} E = \frac{I}{R}$$

Soit le montage suivant :

Q12. Le générateur de Thévenin "vu" par la résistance R_4 est tel que :

$$\text{a-} \quad E_{th} = U \text{ et } R_{th} = R_4$$

c-
$$E_{th} = \frac{E}{2} \operatorname{et} R_{th} = 2R$$

b-
$$E_{th} = E \text{ et } R_{th} = R$$

d-
$$E_{th} = \frac{E}{2} \text{ et } R_{th} = \frac{3}{2} R$$

Q13. Le générateur de Norton "vu" par la résistance R_4 est tel que :

a-
$$I_N = \frac{U}{R_4}$$
 et $R_N = R_4$

c-
$$I_N = \frac{E}{2R}$$
 et $R_N = 2R$

b-
$$I_N = \frac{E}{R} \operatorname{et} R_N = R$$

d-
$$I_N = \frac{E}{3.R}$$
 et $R_N = \frac{3}{2}$. R

Q14. Quelles sont les formules fausses ? (E_i et U en Volts, I_i en Ampères, R_i en Ohms) (2 réponses)

a.
$$I = \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot I_1$$

c.
$$U = \frac{R_1 E_1 - R_2 I_2}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$
 d.
$$U = \frac{E}{\frac{R_1}{R_2} + \frac{R_3}{R_4} + 1}$$

b.
$$U = \frac{R_1.R_2}{R_1 + R_2} I_1$$

d.
$$U = \frac{E}{\frac{R_1}{R_2} + \frac{R_3}{R_4} + 1}$$

Exercice 2. LOIS DE KIRCHOFF (6 POINTS)

Soit le circuit suivant :

Le courant I et les 3 résistances sont supposés connus.

On demande de déterminer les équations des courants DANS les 3 résistances (les indices des courants dans le tableau ci-dessous correspondent évidemment aux résistances correspondantes).

Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les courants demandés ne devront dépendre <u>QUE de I et/ou des résistances R₁, R₂ ou R₃</u> (sauf s'ils sont nuls !) <u>et PAS les uns des autres (donc PAS de loi des nœuds pour exprimer un courant en fonction d'un autre).</u>

Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!

Remarque : Les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma.

Commencez donc par les cas qui vous paraissent les plus simples!

K_1	K ₂	I_1	I_2	I ₃
О	o			
o	F			
F	o			
F	F			

NB : *O* = *Ouvert*

F = Fermé

Exercice 3. Théorèmes (7 points)

Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression du courant dans la résistance R_1 en fonction de E, I, R et R_1 .

EPITA / InfoS3	Décembre 2015

${\hbox{BONUS}\over\hbox{DONORS}}$ On considère le circuit ci-contre. Déterminez U en utilisant le théorème de Millman.	$U \uparrow \downarrow I_1 \qquad R_1 \qquad R_2 \qquad R_3$ $E_1 \uparrow \downarrow \qquad E_3 \downarrow \qquad R_4$	