Generalizing the Legendre Symbol: Jacobi Symbol Extra activity

In this activity, we will learn of a generalization of the Legendre symbol, called the *Jacobi symbol*, which can help in calculating the Legendre symbol. However, before we talk about the Jacobi symbol, let us figure out $\left(\frac{3}{p}\right)$ which was the last question in the last week's activity.

1 a. Using QR express $\left(\frac{3}{p}\right)$ in terms of $\left(\frac{p}{3}\right)$.

b. The value of the term $(-1)^*$ depends on the value of p modulo _____. So we consider two cases based on these moduli.

Case 1: When p is _____ modulo ____.

In this case, $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$. But the value of $\left(\frac{p}{3}\right)$ depends on the value of p modulo 3. So we have two subcases, when $p \equiv 1 \pmod{3}$ and $p \equiv 2 \pmod{3}$. In each subcase, determine the value of $\left(\frac{3}{p}\right)$.

Case 2: When p is ____ modulo ____.

Again, consider two subcases as in the previous case, and determine the value of $\left(\frac{3}{p}\right)$ in each subcase.

c. From your results above, there are four cases of p to consider in determining the value of $\left(\frac{3}{p}\right)$. All these cases are modulo 12. Using Chinese Remainder Theorem (or trial-error) determine what each of the four cases correspond to modulo 12.

Your work from the previous problem justifies the following proposition:

Proposition 1: Let $p \neq 2, 3$ be a prime. Then

Jacobi Symbol

Let a be any integer and n a positive odd integer with prime factorization $n = p_1 p_2 \cdots p_t$, where the p_i 's are not necessarily distinct. Then the *Jacobi symbol* $\binom{a}{n}$ is defined as

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$

where the right hand side terms are all Legendre symbols.

1. Find the value of $\left(\frac{2}{15}\right)$. Does 2 have a square root modulo 15?

Properties of the Jacobi symbol: Let m, n be odd positive integers and a, b any integers. Suppose $m = q_1 q_2 \cdots q_r$ be a prime factorization of m, and $n = p_1 p_2 \cdots p_t$ be a prime factorization of n.

i.
$$\left(\frac{a}{n}\right) = 0$$
 if and only if ______.

ii.
$$\left(\frac{1}{n}\right) = 1$$
 because

iii.
$$\left(\frac{a^2}{n}\right) = 1$$
 because

iv.
$$\left(\frac{a}{mn}\right) = \left(\frac{a}{m}\right) \left(\frac{a}{n}\right)$$
 because

 $\mathbf{v} \cdot \left(\frac{-1}{n}\right) = 1$ if and only if $n \equiv 1 \pmod{4}$. This follows because $\left(\frac{-1}{p}\right) = 1$ if $p \equiv \pmod{4}$ and $\left(\frac{-1}{p}\right) = -1$ if $p \equiv \pmod{4}$. To get a result of 1 for the Jacobi symbol, there must be an even number of p_i 's such that $p_i \equiv \pmod{4}$. But then $n \equiv p_1 p_2 \cdots p_t \equiv \pmod{4}$ because $3 \cdot 3 \equiv \pmod{4}$.

vi.
$$\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) = \left(\frac{ab}{n}\right)$$
 because

vii.
$$\left(\frac{2}{n}\right) = 1$$
 if and only if $n \equiv \pm 1 \pmod{8}$.

Similar to the QR for Legendre symbols, there is a QR relation for the Jacobi symbols.

Theorem 1: (Quadratic Reciprocity for Jacobi symbols) Let a and b be positive odd integers. Then

$$\left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = (-1)^{(a-1)(b-1)/4}.$$

proof: Let us consider a special case of $a = p_1p_2$ and $b = q_1q_2q_3$ where p_i 's and q_j 's are primes. Then using the definition of the Jacobi symbol and the multiplicativity of the Legendre symbol, we find that

$$\left(\frac{a}{b}\right) =$$

Now, using the QR for Legendre symbols, we find that

$$\left(\frac{a}{b}\right) =$$

Rearranging, we see that the $\left(\frac{q_j}{p_i}\right)$'s form $\left(\frac{b}{a}\right)$. To show that the product of the rest of the terms is $(-1)^{(a-1)(b-1)/2}$, we will use the following lemma.

Lemma: Let n be a positive odd integer with prime factorization $n = p_1 p_2 \cdots p_t$. Then

$$\frac{p_1-1}{2} + \frac{p_2-2}{2} + \dots + \frac{p_t-1}{2} \equiv \frac{n-1}{2} \pmod{2}$$
.

Therefore,

$$(-1)^{(p_1-1)/2}(-1)^{(p_2-1)/2}\cdots(-1)^{(p_t-1)/2}=(-1)^{(n-1)/2}$$

If we can prove this lemma, our proof of the QR for Jacobi symbols will be completed because

$$\begin{split} \left(\frac{a}{b}\right) &= \left(\frac{b}{a}\right) \left((-1)^{(q_1-1)/2}(-1)^{(q_2-1)/2}(-1)^{(q_3-1)/2}\right)^{(p_1-1)/2} \left((-1)^{(q_1-1)/2}(-1)^{(q_2-1)/2}(-1)^{(q_3-1)/2}\right)^{(p_2-1)/2} \\ &= \left(\frac{b}{a}\right) \left((-1)^{(b-1)/2}\right)^{(p_1-1)/2} \left((-1)^{(b-1)/2}\right)^{(p_2-1)/2} \\ &= \left(\frac{b}{a}\right) \left((-1)^{(p_1-1)/2}(-1)^{(p_2-1)/2}\right)^{(b-1)/2} \\ &= \left(\frac{b}{a}\right) \left((-1)^{(a-1)/2}\right)^{(b-1)/2} = \left(\frac{b}{a}\right) (-1)^{(a-1)(b-1)/4} \end{split}$$

This is the statement of the QR for Jacobi symbols.

Now let us prove the lemma.

proof: (Lemma) Reordering the primes p_i , if necessary, assume that the first r of the primes are congruent to 3 modulo 4 and the rest are congruent to 1 modulo 4. Using the same logic as in the proof of property v of the Jacobi symbols, $n \equiv 1 \pmod{4}$ if and only if r is even. Hence $(n-1)/2 \equiv 0 \pmod{2}$ if and only if r is even.

For each of the first r primes, $(p_i-1)/2 \equiv 1 \pmod{4}$, while for the others, $(p_i-1)/2 \equiv 0 \pmod{4}$. Therefore,

$$\frac{p_1-1}{2} + \frac{p_2-1}{2} + \dots + \frac{p_t-1}{2} \equiv r \pmod{4}$$
.

So the sum is congruent to 0 modulo 2 if and only if r is even, which happens if and only if (n-1)/2 is congruent to 0 modulo 2.

The second half of the Lemma follows from the exponent properties.

Note: With the QR for Jacobi symbols, we do not have to worry about factoring either the a or b. This is especially useful when a and b are large integers and factoring them would be a lot of work.

2. Use the QR for Jacobi symbols and the properties of the Jacobi symbols to determine the following. (Note: You can use QR only for odd positive integers.)

a.
$$\left(\frac{55}{77}\right)$$

b.
$$\left(\frac{55}{79}\right)$$

c. (If time)
$$\left(\frac{481}{3977}\right)$$