Name:

Instructions

- 1. Write your name at the top of the *first* page and your initials at the bottom of *every* page.
- 2. Do not staple the exam.
- 3. Return the exam with all the pages, arranged in ascending order.
- 4. This is a closed-book exam.
- 5. No electronic devices are permitted.
- 6. You may use the blank spaces for any scratch work.
- 7. Discussing the exam before the solutions have been posted is a violation of the Honor Code.
- 8. There are 9 problems on this exam and you have 75 minutes to answer them.
- 9. Problems 1 7 involve 19 multiple-choice questions, each worth 4 points. Each question must have *exactly one* response clearly marked in the circle provided or else your answer will be marked incorrect.
- 10. Problems 8 (worth 16 points) and 9 (worth 8 points), must be answered clearly in the boxed space provided for those problems.

Problem 1. Insert the following keys in that order into a maximum-oriented heap-ordered binary tree:

B Z Q K V F S N I

a. \	Wha	t is	the	key	with	index	1?
------	-----	------	-----	-----	------	-------	----

	В
	I
	Z
	N
	E.

Initials: 1 of 9

b.	What is	the ke	ey with ind	ex 6	?														
		Q																	
		F																	
		S																	
		K																	
		N																	
c.			a delMax() o nk down?	pera	tion	on th	ne tre	ee, w	hat is	s the	key t	that	will 1	repla	ce th	e cur	rrent 1	maxin	num
		F																	
		В																	
		I																	
		Q																	
		K																	
Pr	oblem 2	2. Cor	nsider inser	ting	the f	ollov	ving	key-	value	pair	s in	that	orde	r int	oas	ymb	ol tab	ole st.	
			key:	R	Q	J	G	L	R	М	I	Q	Н	R	V				
			value:	1	2	3	4	5	6	7	8	9	10	11	12				
a.	What is	the va	alue returne	ed by	y st.	size(0?												
		12																	
		11																	
		8																	
		9																	
		10																	
b.	What is	the va	alue return	ed by	y st.	get('	'R")?												
		6																	
		11																	
		3																	
		18																	
		1																	
			nsider inser e (BST) sy:									es to	be n	ON nı	ıll a	nd aı	rbitra	ry) in	ıto a

K

0

C M

В

Z

G

Т

J

Q

Н

Initials: 2 of 9

	_	6											
		5											
		7											
		4											
		8											
b. '	What is	the	value	ret	urned	by s	st.ra	nk("	M")?				
		5											
		8											
		7											
		6											
		4											
c. ^v	What is	the	order	in v	which	the	keys	are	visite	ed if	we t	raver	rse the BST in pre-order?
		A	В	С	G	Н	J	K	M	0	Q	Т	Z
		G	A	С	В	T	J	Н	Q	0	K	Z	М
		В	С	A	Н	М	0	K	Q	J	Z	T	G
		G	A	С	В	T	J	Н	M	K	Z	0	Q
		G	A	C	В	T	J	Н	Q	K	0	M	Z
d. '	What is	the	order	in	which	the	keys	are	visite	ed if	we t	raver	rse the BST in in-order?
		A	В	С	G	Н	J	K	M	0	Q	Т	Z
		A	В	С	G	Н	J	K	M	Z	Q	0	Т
		A	В	C	G	Н	J	K	Q	Z	Т	0	М
		В	C	A	Н	M	0	K	Q	J	Z	Т	G
		G	A	C	В	T	J	Н	Q	K	0	M	Z
e. ¹	What is	the	order	in v	which	the	keys	are	visite	ed if	we t	raver	rse the BST in post-order?
		В	С	A	Н	M	0	K	Z	Q	J	G	T
		В	C	A	Н	M	0	K	J	G	Q	Z	Т
		A	В	С	G	Н	J	K	M	0	Q	Т	Z
		В	С	A	Н	M	0	K	Q	J	Z	T	G
		G	A	C	В	T	J	Н	Q	K	0	M	Z

Initials: 3 of 9

Problem 4. Consider inserting the following keys into an initially empty 2-3 search tree.

B Q P F N W G J L H U X

- a. What is the height of the tree that results (assume root to be at height zero)?

 - 5
 - 2
 - \bigcirc 4
 - 1
- b. How many 2-nodes does the tree contain?

 - () f
 - () a
 - () 7
 - 4
- c. How many 3-nodes does the tree contain?
 - 4
 - \bigcirc
 - () 5
 - () з
 - () 7

Problem 5. Suppose you insert the key 9 into the following left-leaning red-black BST:

Allowed operations (rotations and color flip):

Initials: 4 of 9

a. What is	the third operation that results?
	Rotate 8 left
	Rotate 12 right
	Rotate 10 right
	Rotate 6 left
	Color flip 9
b. What is	the fifth operation that results?
	Rotate 12 right
	Rotate 6 left
	Rotate 10 right
	Color flip 9
	Rotate 8 left
	empty hash table of $M=5$ lists, using separate chaining. Use the hash function $h(k)=k$ transform the k th letter of the alphabet into a table index, where $1 \le k \le 26$.
a. What is	the length of the longest chain?
	1
	4
	3
	5
	2
b. Which o	f the following keys is in the longest chain?
	0
	V
	J
	W
	U

Initials: 5 of 9

Problem 7. Consider the digraph shown below. Assume that, in the internal representation, all vertices appear in ascending order in each adjacency list.

- a. Do a breadth-first search with 0 as the source vertex, and list the order in which vertices are processed by the algorithm?
 - 0 1 4 5 2 3 6
 - 0 1 2 5 4 3 6
 - 0 1 3 2 4 5 6
 - () 0 1 2 5 3 4 6
 - () 0 1 2 3 6 4 5
- b. Do a depth-first search with 0 as the source vertex, and list all vertices in pre-order.
 - () 0 1 5 6 4 2 3
 - () 0 1 2 3 5 6 4
 - 0 1 4 2 3 6 5
 - () 0 1 3 5 6 4 2
 - 0 1 4 2 3 5 6

Problem 8. (16 points) Design an efficient data structure called ThreadedSet to store a threaded set of strings, which maintains a set of strings (no duplicates) and the order in which the strings were inserted, according to the following API:

	${ m Constructor/method}$	Description
a. (6 points)	ThreadedSet()	create an empty threaded set
b. (3 points)	void add(String s)	add the string s to the set (if it is not already in the set)
c. (3 points)	boolean contains(String s)	is the string s in the set?
d. (3 points)	String previousKey(String s)	the string added to the set immediately before s (null if s is the first string added; throw java.util.NoSuchElementException if s is not in the set)

Here is an example:

```
ThreadedSet set = new ThreadedSet();
set.add("aardvark");
                             // { "aardvark" }
                             // { "aardvark",
set.add("bear");
                                              "bear" }
                                              "bear",
set.add("cat");
                             // { "aardvark",
                                                       "cat" }
                             // { "aardvark", "bear", "cat" }
set.add("bear");
                             // (adding a duplicate key has no effect)
set.contains("bear");
                             // true
set.contains("tiger");
                             // false
                             // "bear"
set.previousKey("cat");
                             // "aardvark"
set.previousKey("bear");
set.previousKey("aardvark"); // null
```

Your answer will be graded on correctness, efficiency, and clarity. You may use data types that we have considered in this course.

```
import edu.princeton.cs.algs4.*;
import java.util.NoSuchElementException;
public class ThreadedSet {
    private final static String NULL = "__NULL__";
    private String prev;
    private SeparateChainingHashST < String , String > st;
    public ThreadedSet() {
        prev = NULL;
        st = new SeparateChainingHashST < String > ();
    public void add(String s) {
        if (!contains(s)) {
            st.put(s, prev);
            prev = s;
        }
    }
    public boolean contains(String s) {
        return st.contains(s);
    public String previousKey(String s) {
        if (!contains(s)) {
```

Initials: 7 of 9

```
throw new NoSuchElementException();
        String key = st.get(s);
        return key.equals(NULL) ? null : key;
    public static void main(String[] s) {
        ThreadedSet set = new ThreadedSet();
        set.add("aardvark");
                                      // { "aardvark" }
        set.add("bear");
                                      // { "aardvark", "bear" }
                                      // { "aardvark", "bear", "cat" }
        set.add("cat");
                                      // { "aardvark", "bear", "cat" }
        set.add("bear");
                                      // (adding a duplicate key has no effect)
        StdOut.println(set.contains("bear"));
                                                      // true
        StdOut.println(set.contains("tiger"));
                                                      // false
                                                      // "bear"
        StdOut.println(set.previousKey("cat"));
        StdOut.println(set.previousKey("bear"));
                                                      // "aardvark"
        StdOut.println(set.previousKey("aardvark")); // null
    }
}
```

e. (1 point) Under reasonable technical assumptions, what is the order of growth of each of the methods as a function of the number of keys N in the data structure? Assume that the length of all strings is bounded by a constant.

Initials: 8 of 9

Problem 9. a. (6 points) Given two integer arrays a[] and b[], find an integer that appears in both arrays (or report that no such integer exists). Let m and n denote the lengths of a[] and b[], respectively, and assume that $m \le n$.

Insert the integers from \mathfrak{b} into a hashtable $\mathfrak{s}\mathfrak{t}$. Scan through the integers in \mathfrak{a} looking up each element \mathfrak{v} from \mathfrak{a} within $\mathfrak{s}\mathfrak{t}$. If the lookup succeeds, write \mathfrak{v} and stop. Otherwise, continue. If none of the lookups succeed, report that \mathfrak{a} and \mathfrak{b} do not have an integer in common.

b. (2 points) What is the order of growth of the worst case running time of your algorithm?

n+m (linear)

Initials: 9 of 9