1 Introduction

We will review the definition of a Springer fiber and define, for a nilpotent $Y \in \mathfrak{gl}_m$, the Springer fiber at the *n*-Slodowy slice at Y. For every n and every nilpotent $Y \in \mathfrak{gl}_m$, we will find the irreducible components of the Springer fiber at the *n*-Slodowy slice at Y. Finally, we will use our results about Springer fibers at *n*-Slodowy slices to find the irreducible components of some other variety (which probably needs a name), and show that they all have the same dimension.

2 Preliminary Definitions and Facts

2.1 Conventions and Notations

We write GL_m, \mathfrak{sl}_m to denote $GL_m(\mathbb{C}), \mathfrak{sl}_m(\mathbb{C})$, and so on. By J_m we refer to the nilpotent $m \times m$ Jordan block (which, by convention, has ones below the diagonal). Given a partition $\lambda = (\lambda_1, ..., \lambda_k)$, we write $J(\lambda)$ to denote the block matrix

$$\begin{pmatrix} J_{\lambda_1} & & \\ & \ddots & \\ & & J_{\lambda_k} \end{pmatrix}$$
 .

2.2 Springer fibers

Let $G \subseteq \operatorname{GL}_m$ be a connected semisimple Lie group, and let $\mathfrak{g} \subseteq \mathfrak{gl}_m$ be its Lie algebra. (TODO: either say something interesting about the Lie group, or just get rid of it and talk only about the Lie algebra.) Let $\mathcal{N} \subseteq \mathfrak{g}$ be the subset consisting of nilpotent elements. Let \mathcal{B} be the variety of Borel subalgebras of \mathfrak{g} . Let $\widetilde{\mathcal{N}} = \{(\mathfrak{b}, n) : n \in \mathfrak{b}\} \subseteq \mathcal{B} \times \mathcal{N}$. Let $\pi : \widetilde{\mathcal{N}} \to \mathcal{N}$ be the projection onto the second coordinate. We call this the *Springer resolution*. For $n \in \mathcal{N}$, we call $\pi^{-1}(n)$ the *Springer fiber at n*.

2.3 Springer fibers in \mathfrak{gl}_m

Now we let \mathcal{N}_m be the set of nilpotent elements in \mathfrak{gl}_m , and \mathcal{B}_m the variety of Borel subalgebras of \mathfrak{gl}_m . Let $H \subseteq \mathfrak{gl}_m$ be the subalgebra of upper triangular matrices. The variety of Borel subalgebras of \mathfrak{gl}_m is $\mathcal{B} = \{gHg^{-1} : g \in GL_m\}$.

Thus, the Springer fiber at $X \in \mathcal{N}$ is

$$S_X = \{gHg^{-1} : X \in gHg^{-1}\}.$$

Definition 2.1. A flag (V_i) of \mathbb{C}^m is a sequence of subspaces

$$0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_m = \mathbb{C}^m,$$

where dim $V_i = i$.

We say that $X \in \mathfrak{gl}_m$ preserves a flag (V_i) if $\forall i. XV_i \subseteq V_i$. Note that $X \in \mathcal{N}$ preserves a flag (V_i) if and only if $\forall i. XV_i \subseteq V_{i-1}$.

The simplest flag is the standard flag (E_i) , where $E_i := \langle e_1, ..., e_i \rangle$. Note that the group H is exactly the subset of \mathfrak{gl}_m which preserves E_i .

We can think of \mathcal{B} as the set of flags of \mathbb{C}^m , via the correspondence

$$gHg^{-1} \leftrightarrow (gE_i).$$

Note that X preserves (gE_i) if and only if $X \in gHg^{-1}$. Thus, we may write the Springer fiber at $X \in \mathcal{N}$ in terms of flags, as

$$S_X = \{(gE_i) : X \in gHg^{-1}\} = \{(V_i) : \forall i. \ XV_i \subseteq V_{i-1}\}.$$

Theorem 2.2. (Needs citation!) The irreducible components of the Springer fiber at $J(\mu)$ are in bijection with the standard Young tableaus of shape μ . Further, the irreducible components are equidimensional, of dimension $\sum_{i\neq j} \min(\mu_i, \mu_j) = \sum_i (i-1)\mu_i$.

2.4 Slodowy Slices

A basis for \mathfrak{sl}_2 is

$$e' := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h' := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f' := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Given a Lie algebra \mathfrak{g} , and a homomorphism $\phi: \mathfrak{sl}_2 \to \mathfrak{g}$ sending (e',h',f') to (e,h,f), we say that (e,h,f) is an \mathfrak{sl}_2 -triple. Observe that e,f must be nilpotent, and h must be Cartan (TODO: what?) If \mathfrak{g} is semisimple, then given any nilpotent $e \in \mathfrak{g}$, the Jacobson-Morozov theorem [1, 3.7.1] says that there exist $h, f \in \mathfrak{g}$ such that (e,h,f) is an \mathfrak{sl}_2 -triple.

Given (e, h, f), we define the *Slodowy slice at* e as $S_e := e + \ker \operatorname{ad}_f$. By the Jacobson-Morozov theorem, we can always find a Slodowy slice at any nilpotent $e \in \mathfrak{g}$, when \mathfrak{g} is semisimple.

3 Linear Algebra Facts

In this section we prove linear algebra facts that will be useful later. A reader uninterested in their verification may wish to read the theorem statements and skip ahead to the next section.

3.1 The centralizer of a nilpotent matrix

Definition 3.1. A matrix Y is Toeplitz if it is constant along bands parallel to the main diagonal. That is, $\forall i, j, k$. $Y_{ij} = Y_{i+k,j+k}$.

Definition 3.2. An $m \times n$ matrix Y is lower-left Toeplitz if it is Toeplitz and, in addition, we have $y_{n-i,j-1} = 0$ whenever $i + j \ge \min(m, n)$.

That is, Y is lower-left Toeplitz if it is Toeplitz, and the only nonzero entries are those with Manhattan distance less than $\min(m, n)$ from the entry in the bottom-left corner. In yet other words, all but the leftmost (equivalently, bottommost) $\min(m, n)$ diagonal bands are zero.

Lemma 3.3. Let $\lambda = (\lambda_1, ..., \lambda_k)$ be a partition of m. The centralizer of $J(\lambda)$ in \mathfrak{gl}_m is the subalgebra consisting of matrices

$$M = \begin{pmatrix} M_{11} & \cdots & M_{1k} \\ \vdots & & \vdots \\ M_{k1} & \cdots & M_{kk} \end{pmatrix},$$

where each M_{ij} is a $\lambda_i \times \lambda_j$ matrix, such that each M_{ij} is lower-left Toeplitz.

Proof. Let

$$M = \begin{pmatrix} M_{11} & \cdots & M_{1k} \\ \vdots & & \vdots \\ M_{k1} & \cdots & M_{kk} \end{pmatrix}.$$

We need to show that $J(\lambda)M = MJ(\lambda)$ if and only if each M_{ij} is lower-left Toeplitz.

We have

$$J(\lambda)M = \begin{pmatrix} J_{\lambda_1} M_{11} & \cdots & J_{\lambda_1} M_{1k} \\ \vdots & & \vdots \\ J_{\lambda_k} M_{k1} & \cdots & J_{\lambda_k} M_{kk} \end{pmatrix}, \text{ and } MJ(\lambda) = \begin{pmatrix} M_{11} J_{\lambda_1} & \cdots & M_{1k} J_{\lambda_k} \\ \vdots & & \vdots \\ M_{k1} J_{\lambda_1} & \cdots & M_{kk} J_{\lambda_k} \end{pmatrix}.$$

So, we have $J(\lambda)M = MJ(\lambda)$ if and only if $\forall i, j.\ J_{\lambda_i}M_{ij} = M_{ij}J_{\lambda_j}$. Multiplying on the left by J_{λ_i} just shifts each row down by one, and multiplying on the right by J_{λ_j} shifts each column left by one. The matrices for which left-shifting gives the same result as down-shifting are exactly the lower-left Toeplitz matrices.

For nilpotent X in Jordan form and a in 'normalized' form (i.e., with at most one nonzero element, which is a one), we will find the centralizer of $A_{X,a,b}$ in

$$\{(A,I):A\in\mathfrak{gl}_m\}\subseteq\mathfrak{gl}_{m+n}$$
.

Note that an element of the form (A, I) commutes with $A_{X,a,b}$ if and only if A commutes with X, and aA = a, and Ab = b. So, we just have to find

$$\{A \in \mathfrak{gl}_m : AX = XA, aA = a, Ab = b\}.$$

It is just the set of $A = [A_{ij}]_{ij}$, where each A_{ij} is lower-left-Toeplitz. Let v_{ij} be the leftmost column of A_{ij} , so that

$$A_{ij} = \left(v_{ij} \stackrel{\checkmark}{\searrow} 0 \quad \cdots \quad v_{ij} \stackrel{\checkmark}{\searrow} [\lambda_j - 1]\right).$$

Since A_{ij} is lower-left-Toeplitz, v_{ij} is of the form

$$v_{ij} = \begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i,\lambda_j)}$ can be chosen freely. Now we determine which matrices of this form satisfy aA = a. For simplicity, we will instead find the matrices A such that aA = 0 (so that a(A + I) = a). (Note that $I \in C_1$, and C_1 is closed under addition, so this is really the same thing.)

In the case that a = 0, clearly every A works. Otherwise, let i_0, j_0 be such that $a_{i_0,j_0} = 1$. Now, clearly the constraint that aA = 0 is just saying that the (i_0, j_0) th row of A must be zero. That is, for each j the j_0 th row of A_{i_0j} must be zero. This just requires that for each j, we must have

$$v_{ij} = \begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i - j_0, \lambda_j)}$ can be chosen freely. So, we have now found the set

$$C_2:=\{A\in\mathfrak{gl}_m:AX=XA,aA=a\}.$$

It is the matrices of the form I + A, where A_{ij} is a block matrix of size $\lambda_i \times \lambda_j$ with

$$A_{ij} = T(v_{ij}) = T\begin{pmatrix} 0 \\ v'_{ij} \end{pmatrix},$$

where $v'_{ij} \in \mathbb{C}^{\min(\lambda_i, \lambda_j)}$ in the case $i \neq i_0$ and $v'_{ij} \in \mathbb{C}^{\min(\lambda_i - j_0, \lambda_j)}$ if $i = i_0$.

3.2 A 'normalization' fact about Jordan bases

Lemma 3.4. For any finite-dimensional V, nilpotent $A: V \to V$, and linear $f: V \to \mathbb{C}$, there is a Jordan basis e_{ij} for A such that there is at most one i such that there exists j such that $f(e_{ij}) \neq 0$.

Proof. For any Jordan basis $(e_{ij})_{ij}$ of A, define

$$S((e_{ij})_{1 \le i \le k, 1 \le j \le \lambda_i}) := \sum_{i} \begin{cases} -1, & \forall j. \ f(e_{ij}) = 0 \\ \lambda_i - \min\{j : f(e_{ij}) \ne 0\}, & \text{otherwise} \end{cases}.$$

We proceed by induction on the measure S. That is, let $(e_{ij})_{ij}$ be a Jordan basis for A. Our inductive hypothesis is that if there exists a Jordan basis $(e'_{ij})_{ij}$ with $S((e'_{ij})_{ij}) < S((e_{ij})_{ij})$, then we get the desired conclusion.

Now, we have two cases. In the first case, $(e_{ij})_{ij}$ already satisfies the desired property. In this case we are done. In the other case, there exist i_1, j_1, i_2, j_2 with $i_1 \neq i_2$, and $f(e_{i_1j_1}) \neq 0$, and $f(e_{i_2j_2}) \neq 0$. We let j_1, j_2 be minimal with this property, so that $\forall j < j_1$. $f(e_{i_1j}) = 0$, and $\forall j < j_2$. $f(e_{i_2j}) = 0$. Wlog, we assume that $\lambda_{i_1} - j_1 \leq \lambda_{i_2} - j_2$.

By our inductive hypothesis, all we need to do is find a Jordan basis $(e'_{ij})_{ij}$ with $S((e'_{ij})_{ij}) < S((e_{ij})_{ij})$. This is what we do. Define e'_{ij} as follows.

- $e'_{i_1,\lambda_1} := e_{i_1,\lambda_1} \frac{f(e_{i_1,j_1})}{f(e_{i_2,j_2})} e_{i_2,j_2+(\lambda_{i_1}-j_1)}$
- For $j < \lambda_1, e'_{i_1,j} := A^{\lambda_{i_1} j} e'_{i_1,\lambda_{i_1}}$
- For $i \neq i_1, e'_{ij} := e_{ij}$.

Clearly this is a Jordan basis for A. Further, I claim that $S((e'_{ij})_{ij}) < S((e_{ij})_{ij})$. It suffices to show that $\forall j \leq j_1$. $f(e_{i_1,j}) = 0$. We have

$$f(e'_{i_1,j}) = f\left(A^{\lambda_{i_1}-j}\left(e_{i_1,\lambda_1} - \frac{f(e_{i_1,j_1})}{f(e_{i_2,j_2})}e_{i_2,j_2+(\lambda_{i_1}-j_1)}\right)\right) =$$

$$f\left(e_{i_1,j} - \frac{f(e_{i_1,j_1})}{f(e_{i_2,j_2})}e_{i_2,j_2+(j-j_1)}\right) = f(e_{i_1,j}) - \frac{f(e_{i_1,j_1})}{f(e_{i_2,j_2})}f(e_{i_2,j_2+(j-j_1)}).$$

Clearly (by design), this expression is zero when $j = j_1$. And for $j < j_1$, we have $f(e_{i_1,j}) = f(e_{i_2,j_2+(j-j_1)}) = 0$, so it is zero then as well. Hence the measure S of this new basis is smaller, as desired.

Lemma 3.5. For any n and linear $f: \mathbb{C}^n \to \mathbb{C}$, there is a Jordan basis e_j for J_n such that there is at most one j with $f(e_j) \neq 0$.

Proof. Let e_j be a Jordan basis for J_n . If $\{j: f(e_j) \neq 0\}$ is the empty set, we are done. Otherwise, let $j_0 = \min\{j: f(e_j) \neq 0\}$. For any Jordan basis f_j with $j_0 = \min\{j: f(e_j) \neq 0\}$, define

$$S((f_j)_j) := \begin{cases} -1, & \{j > j_0 : f(e_j) \neq 0\} = \emptyset \\ n - \min\{j > j_0 : f(e_j) \neq 0\}, & \text{otherwise} \end{cases}$$

We proceed by induction on S. That is, let $(e_j)_j$ be a Jordan basis for J_n with $j_0 = \min\{j : f(e_j) \neq 0\}$. Our inductive hypothesis is that if there exists a Jordan basis $(e'_j)_j$ with $j_0 = \min\{j : f(e'_j) \neq 0\}$ and $S((e'_j)_j) < S((e_j)_j)$, then the conclusion holds.

We have two cases: either $(e_j)_j$ satisfies the desired property, or not. If not, then let $j_1 = \min\{j > j_0 : f(e_j) \neq 0\}$, and define a new Jordan basis e'_j as follows.

- $e'_n := e_n \frac{f(e_{j_1})}{f(e_{j_0})} e_{n-(j_1-j_0)}$
- For $j < n, e'_j := J_n^{n-j} e'_n$

It is straightforward to check that $j_0 = \min\{j : f(e_j) \neq 0\}$, and that $S((e'_i)_i) \leq S((e_i)_i) - 1$. By our inductive hypothesis, we are done.

Theorem 3.6. For any finite-dimensional V, nilpotent $A: V \to V$, and linear $f: V \to \mathbb{C}$, there is a Jordan basis e_{ij} for A such that there is at most one pair (i,j) with $f(e_{ij}) \neq 0$.

Proof. Lemma 3.4 provides a Jordan basis e_{ij} such that for all $i \neq i_0$ and all j, we have $f(e_{ij}) = 0$. Restricting A to $\langle e_{i_0j} \rangle_{j \text{ arbitrary}}$ gives a Jordan block, and then applying Lemma 3.5 gives the desired result.

4 Finding \mathfrak{sl}_2 -triples (E, H, F) in \mathfrak{gl}_{m+n} with a particular E.

Let

$$e = \begin{pmatrix} 0 & & & \\ 1 & 0 & & & \\ & 1 & \ddots & & \\ & & \ddots & 0 & \\ & & & 1 & 0 \end{pmatrix} \in \mathfrak{gl}_n,$$

and let $E = \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \in \mathfrak{gl}_{m+n}$. We will show that there is exactly one \mathfrak{sl}_2 -triple (E, H, F), and we will find what it looks like. First we solve the case m = 0 (so E = e), and then we use this to solve the case of arbitrary m.

Lemma 4.1. There is exactly one way to choose $h, f \in \mathfrak{gl}_n$ so that (e, h, f) is an \mathfrak{sl}_2 -triple.

Proof. Note that [h', e'] = 2e', and [e', f'] = h', and [h', f'] = -2f'. Thus e, h, f must obey the same relations. In particular, he - eh = 2e. The matrix eh is h shifted down one, and he is h shifted left one. Thus, $2e_{ij} = (he - eh)_{ij} = h_{i,j+1} - h_{i-1,j}$. We can use this to show that $h_{ij} = 0$ when $i \neq j$. Then we can use it to show that $h_{ii} = h_{i-1,i-1} + 2$, so that $h_{ii} = h_{i1} + 2(i-1)$.

Similarly, from [e, f] = h we get that $h_{ij} = (ef - fe)_{ij} = f_{i-1,j} - f_{i,j+1}$. We can use this to show that $f_{ij} = 0$ when $j \neq i+1$. Then we can use it to show that $f_{i,i+1} = f_{i+1,i+2} + h_{i+1,i+1}$, that $f_{1,2} = -h_{1,1}$, and that $f_{n-1,n} = h_{n,n}$. From the first equation we find that

$$-h_{1,1} = f_{1,2} = f_{n-1,n} + \sum_{i=1}^{n-1} h_{ii} = \sum_{i=1}^{n} h_{ii} \implies$$
$$\sum_{i} h_{ii} = 0.$$

Remark: this is just the statement that $h \in \mathfrak{sl}_n$; in other words, we will see that every choice of \mathfrak{sl}_2 -triple in \mathfrak{gl}_{m+n} is also an \mathfrak{sl}_2 -triple in \mathfrak{sl}_{m+n} . This shows that $h_{11} = n - 1, h_{22} = n - 3, ..., h_{nn} = 1 - n$. So we have determined

h; it is

$$h = \begin{pmatrix} n-1 & & & & \\ & n-3 & & & \\ & & \ddots & & \\ & & & 3-n & \\ & & & & 1-n \end{pmatrix}.$$

Now, we can use our expression for f in terms of h to obtain

$$f = \begin{pmatrix} 0 & 1-n & & & & & & & & \\ & 0 & (1-n)+(3-n) & & & & & & & \\ & & & \ddots & & & & & & \\ & & & 0 & (1-n)+\dots+(n-1) \end{pmatrix} = \begin{pmatrix} 0 & 1(1-n) & & & & & \\ & 0 & 2(2-n) & & & & \\ & & 0 & (n-2)(-2) & & & \\ & & 0 & (n-1)(-1) \end{pmatrix}.$$

Lemma 4.2. There is exactly one way to choose $H, F \in \mathfrak{gl}_{m+n}$ so that (E, H, F) is an \mathfrak{sl}_2 -triple.

Proof. Suppose we have H, F so that (E, H, F) is an \mathfrak{sl}_2 -triple. Writing $F =: \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & f \end{pmatrix}$, and similarly for H, we have

$$2E = [H, E] = \begin{pmatrix} 0 & H_{12}e \\ 0 & he \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ eH_{21} & eh \end{pmatrix},$$

$$H = [E, F] = \begin{pmatrix} 0 & 0 \\ eF_{21} & ef \end{pmatrix} - \begin{pmatrix} 0 & F_{12}e \\ 0 & fe \end{pmatrix}.$$

From these we observe that (e, h, f) must also be an \mathfrak{sl}_2 -triple, so h, f must be as in Lemma 4.1. We also see that $H_{11} = 0$. Recalling that left multiplication by e is a down-shift, and right multiplication is a left-shift, we see that H_{12}

is all zeroes except for the leftmost column, and H_{21} is all zeroes except for the bottom row. Then our final constraint is that

$$-2F = [H, F] =$$

$$\begin{pmatrix} H_{12}F_{21} & H_{12}F_{22} \\ H_{21}F_{11} + H_{22}F_{21} & H_{21}F_{12} + H_{22}F_{22} \end{pmatrix} - \begin{pmatrix} F_{12}H_{21} & F_{11}H_{12} + F_{12}H_{22} \\ F_{22}H_{21} & F_{21}H_{12} + F_{22}H_{22} \end{pmatrix}.$$

Now $H_{12} = F_{12}e$, and $H_{21} = eF_{21}$, from the equation H = [E, F]. Substituting in the equation above then,

$$-2F = \begin{pmatrix} F_{12}eF_{21} & F_{12}ef \\ eF_{21}F_{11} + hF_{21} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} F_{12}eF_{21} & F_{11}F_{12}e + F_{12}h \\ feF_{21} & F_{21}F_{12}e + fh \end{pmatrix} = \\ \begin{pmatrix} 0 & F_{12}(fe+h) \\ eF_{21}F_{11} + hF_{21} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} 0 & F_{11}F_{12}e + F_{12}h \\ (ef-h)F_{21} & F_{21}F_{12}e + fh \end{pmatrix} = \\ \begin{pmatrix} 0 & F_{12}fe \\ eF_{21}F_{11} & eF_{21}F_{12} + hf \end{pmatrix} - \begin{pmatrix} 0 & F_{11}F_{12}e \\ efF_{21} & F_{21}F_{12}e + fh \end{pmatrix}.$$

Now we see that $F_{11} = 0$, and consequently that $F_{12} = F_{21} = 0$ as well. This shows that $H_{12} = H_{21} = 0$. We conclude that H and F just have h and f in their bottom-right corners, respectively.

5 Finding the Slodowy slices with the same E

First we find ker ad_f . We have $(fX)_{ij} = i(n-i)A_{i+1,j}$, and $(Xf)_{ij} = (j-1)(n-(j-1))A_{i,j-1}$. So, for all $i,j\in\{1,...,n\}$, we have

$$i(n-i)A_{i+1,j} = (j-1)(n-(j-1))A_{i,j-1}.$$

Taking j = 1, we find that $A_{i,1} = 0$ for $i \geq 2$. Then, taking j > 1, we find that for $i, j \in \{1, ..., n-1\}$,

$$A_{i+1,j+1} = \frac{(j-1)(n-(j-1))}{i(n-i)} A_{ij}.$$

So, $\ker \operatorname{ad}_f$ is the set of matrices which are upper triangular and satisfy the above condition.

To find the Slodowy slice associated to the previous \mathfrak{sl}_2 -triple (E, H, F), we just need to find ker ad_F . We have

$$[F, X] = \begin{pmatrix} 0 & 0 \\ fX_{21} & fX_{22} \end{pmatrix} - \begin{pmatrix} 0 & X_{12}f \\ 0 & X_{22}f \end{pmatrix}.$$

Thus, X_{21} must be all zeroes except for the first row, and X_{12} must be all zeroes except for the last column, and $X_{22} \in \ker \operatorname{ad}_f$. There is no restriction on X_{11} . This describes $\ker \operatorname{ad}_F$.

For $X \in \mathcal{S}_{m,n}$, define $u(X) := X_{11}$.

5.1 Finding $\widetilde{\mathcal{N}}_{m,n}$

Let $\mathcal{N}_m \subseteq \mathfrak{gl}_m$ be the nilpotent elements. Let $\mathcal{S}'_{m,n}$ be the set of $X \in \mathcal{S}_{m,n}$ such that both X and u(X) are nilpotent. Let $\widetilde{\mathcal{N}}_{m,n} = \{(\mathfrak{b},X) : X \in \mathfrak{b}\} \subseteq \mathcal{B}_{m+n} \times \mathcal{S}'_{m,n}$. Define $\pi_{m,n} : \widetilde{\mathcal{N}}_{m,n} \to \mathcal{N}_m$ by $(\mathfrak{b},X) \mapsto X_{11}$. For $Y \in \mathfrak{gl}_m$, we call $\pi_{m,n}^{-1}(Y)$ the Springer fiber at the n-Slodowy slice at Y.

Lemma 5.1. Let J be a jordan block with zeroes along the diagonal, and let A be upper triangular and nonzero. Then J + A is not nilpotent.

Proof. It is straightforward to show by induction that if $v_i = 0$ for i < j, and $v_j \neq 0$, then $((J+A)^k v_j)_{j+k} = v_j$. Let i be such that $Ae_i \neq 0$. Then $(J+A)^{i-1}e_1$ has nonzero e_i -component. Then $(J+A)^ie_1$ has some nonzero e_i -component for some $i' \leq i$. Then $(J+A)^{i+(n-i')}e_1$ has some nonzero e_n -component. And $i + (n-i') \geq n$, so we're done.

Lemma 5.2. Let $X \in \mathfrak{gl}_m$, and let

$$Y = \begin{pmatrix} y_{11} & y_{12} & y_{13} & \cdots & y_{1,n-1} & y_{1n} \\ d_1 & y_{22} & y_{23} & \cdots & y_{2,n-1} & y_{2n} \\ & d_2 & y_{33} & \cdots & y_{3,n-1} & y_{3n} \\ & & \ddots & \cdots & \vdots & \vdots \\ & & d_{n-2} & y_{n-1,n-1} & y_{n-1,n} \\ & & & d_{n-1} & y_{nn} \end{pmatrix} \in \mathfrak{gl}_n.$$

For any $a, b \in \mathbb{C}^m$,

$$\det \begin{pmatrix} X & & | & b \\ X & & | & b \\ \hline - & a & - & | & Y \end{pmatrix} =$$

$$\det X \det Y + \left(\prod_i d_i\right) \det \begin{pmatrix} X & \begin{vmatrix} 1 \\ b \\ -a & - \end{vmatrix} 0$$

Proof. By induction on n. In the case n = 1, expanding along the last row (taking the usual interpretation of the empty product) gives the desired result.

Now suppose n > 1. Expanding along the last row, we get

Using our inductive hypothesis for the first determiniant, and using that $\det \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix} = \det A_{11} \det A_{22}$ for the second, the expression becomes

$$d_{n-1}\left(\det X\det Y_{n,n-1}+\left(\prod_{i\leq n-2}d_i\right)\det\left(\begin{array}{c|c}X&\begin{vmatrix}\\\\X&\\\\\hline\\-&a&-\end{vmatrix}0\right)\right)-y_{nn}\det X\det Y_{nn}=$$

$$(d_{n-1}Y_{n,n-1} - y_{nn} \det Y_{nn}) \det X + \left(\prod_{i} d_{i}\right) \det \begin{pmatrix} X & \begin{vmatrix} 1 \\ b \end{vmatrix} \\ -a & -\begin{vmatrix} 0 \end{vmatrix} \end{pmatrix} =$$

$$\det Y \det X + \left(\prod_i d_i\right) \det \begin{pmatrix} & & & | & | \\ & X & & | & b \\ \hline - & a & - & | & 0 \end{pmatrix}.$$

Corollary 5.3. If X is nilpotent, and

$$\begin{pmatrix}
X & & b \\
 & & | \\
 & & | \\
 & & | \\
 & & & Y
\end{pmatrix}$$

is nilpotent as well, then Y is nilpotent (TODO: and that other determinant is zero).

Proof. By the previous lemma, the characteristic polynomial of the big matrix is

$$g_X(\lambda)g_Y(\lambda) + f(\lambda),$$

where $g_X(\lambda) = \lambda^m$ is the characteristic polynomial of X, and $f(\lambda)$ is some polynomial of degree at most m-1.

Now, taking the previous corolloary and the first lemma together, we see that

$$\mathcal{S}'_{m,n} = \left\{ \left(\begin{array}{c|ccc} X & & & | \\ X & & & b \\ \hline - & a & - & 0 \\ & & 1 & 0 \\ & & & \ddots & \ddots \\ & & & 1 & 0 \\ \end{array} \right) : a,b \in \mathbb{C}^m, X \in \mathfrak{gl}_m \text{ is nilpotent} \right\}.$$

6 Simplifying the definition of a Springer fiber at a Slodowy slice

Let $\mathcal{N}_m \subseteq \mathfrak{gl}_m(\mathbb{C})$ be the subset consisting of nilpotent elements. For $X \in \mathcal{N}_m$ and $a, b \in \mathbb{C}^m$, let

$$A_{X,a,b} = \begin{pmatrix} X & & & & | \\ X & & & & b \\ - & a & - & 0 & & \\ & & & 1 & 0 & & \\ & & & 1 & \ddots & \\ & & & \ddots & 0 & \\ & & & 1 & 0 \end{pmatrix} \in \mathfrak{gl}_{m+n}(\mathbb{C}).$$

By the definition given in the previous section, we have

$$\widetilde{\mathcal{N}}_{m,n} = \{(\mathfrak{b}, X) : X \in \mathfrak{b}\} \subseteq \mathcal{B}_{m+n} \times \mathcal{S}'_{m,n},$$

and the Springer fiber at the n-Slodowy slice at a nilpotent $X \in \mathfrak{gl}_m$ is

$$\pi_{m,n}^{-1}(X) = \{(\mathfrak{b}, A_{X,a,b}) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \in \mathcal{S}'_{m,n}\}$$

$$= \{(\mathfrak{b}, A_{X,a,b}) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \text{ nilpotent}\}$$

$$\cong \{(\mathfrak{b}, a, b) : A_{X,a,b} \in \mathfrak{b}, A_{X,a,b} \text{ nilpotent}\}.$$

Using our correspondence between \mathcal{B}_{m+n} and complete flags of \mathbb{C}^{m+n} , we obtain

$$\pi_{m,n}^{-1}(X) \cong \{(V,a,b) : \forall i. \ A_{X,a,b}V_i \subseteq V_{i-1}\}.$$

7 Strategy and setup for finding the irreducible components of a Springer fiber at a Slodowy slice

Fix any $X \in \mathcal{N}$. As we have fixed X, we now write $A_{a,b} := A_{X,a,b}$. Let $(e_{ij})_{1 \leq i \leq k, 1 \leq j \leq \lambda_i}$ be a Jordan basis for X. For convenience we define $e_{i0} := 0$;

now we may express the fact that (e_{ij}) is a Jordan basis by writing $\forall i. X e_{ij} = e_{i,j-1}$.

In this section we find the irreducible components of

$$\pi^{-1}(X) \cong V := \{ (A_{a,b}, U) : \forall i. \ A_{a,b} U_{i+1} \subseteq U_i \}.$$

For $1 \le w \le k$ and $0 \le r \le \lambda_w$ (note that we allow r = 0), define

$$V_{w,r} := \{ (A_{a,b}, U) \in V : \exists P \in GL_m . \exists b'. (P^{-1}, I_n) A_{a,b}(P, I_n) = A_{e_{wr},b'} \}.$$

Lemma 7.1. $V = \bigcup_{1 \leq w \leq k, 0 \leq r \leq \lambda_w} V_{w,r}$. Further, $V_{w_1r_1} = V_{w_2r_2}$ exactly when either $r_1 = r_2 = 0$, or $\lambda_{w_1} = \lambda_{w_2} \wedge r_1 = r_2$. When $V_{w_1r_1} \neq V_{w_2r_2}$, we have $V_{w_1r_1} \cap V_{w_2r_2} = \emptyset$.

Now, fix any w and r. We will find the irreducible components of $V_{w,r}$. These will all happen to be equidimensional (with dimensions independent of w and r), so their closures in V will be the irreducible components of V.

Let

$$G := \{ P \in GL_m : P^{-1}XP = X \},$$

and

$$G_{wr} = \{ A \in G : e_{wr}A = e_{wr} \}.$$

Now, define

$$U_{wr} = \{ (A_{e_{wr},b}, U) \in V_{wr} \}.$$

Let G act on V_{wr} by

$$P \cdot (A_{e_{wr},b}, U) := ((P, I_n)A_{e_{wr},b}(P, I_n)^{-1}, (P, I_n)U) = (A_{e_{wr}P^{-1},Pb}, (P, I_n)U).$$

Consider the map $\varphi: U_{wr} \times G \to V_{wr}$ defined by

$$(x,P) \mapsto P \cdot x.$$

By restriction of G to G_{wr} and V_{wr} to U_{wr} , we obtain an action of G_{wr} on U_{wr} . Then, letting G_{wr} act on G by $g \cdot h := hg^{-1}$, we obtain an action of G_{wr} on $U_{wr} \times G$.

Lemma 7.2. As an algebraic variety, G is irreducible.

Proof. It's just $\mathbb{C}^{something}$, since its blocks are the lower-left-toeplitz matrices.

Lemma 7.3. The map φ is a principal G_{wr} -bundle.

Proof. We need to show that G_{wr} acts freely and transitively on the fibers of φ . It is obvious that G_{wr} acts freely on $U_{wr} \times G$; it is enough to note that it acts freely on G.

Let $y \in V_{wr}$. By definition of V_{wr} , there is $P_y \in G$ with $P_y \cdot y \in U_{wr}$. We have

$$\varphi^{-1}(y) = \{(x, P) : P \cdot x = y\} = \{(P^{-1}y, P) : P^{-1}y \in U_{wr}\} = \{((P^{-1}P_y^{-1}) \cdot (P_y \cdot y), P) : (P^{-1}P_y^{-1}) \cdot (P_y \cdot y) \in U_{wr}\}.$$

For any $x \in U_{wr}$ (in particular for $x = P_y \cdot y$), we have $G_{wr} = \{g \in G : g \cdot x \in U_{wr}\}$. Therefore, the fiber above becomes

$$\{((P^{-1}P_y^{-1})\cdot (P_y\cdot y),P): (P^{-1}P_y^{-1})\in G_{wr}\}.$$

Setting $Q := P^{-1}P_u^{-1}$, so that $P = P_u^{-1}Q^{-1}$, the above becomes

$$\{(Q \cdot (P_y \cdot y), P_y^{-1} Q^{-1}) : Q \in G_{wr}\} = \{Q \cdot (P_y \cdot y, P_y^{-1}) : Q \in G_{wr}\}.$$

We see that the fibers are exactly the G_{wr} -orbits; or in other words, G_{wr} acts transitively on the fibers, as desired.

Our strategy is to find the irreducible components $X \subseteq U_{wr}$, and we will then argue that the irreducible components of V_{wr} are of the form $\varphi(X \times G)$. So, we will now find the irreducible components of U_{wr} .

Actually this will be unnecessarily difficult to think about; it is easiest in the case r=0. So, we will change basis to make r=0. Let $\lambda'=(\lambda_1,...,\lambda_{w-1},\lambda_w-r,\lambda_{w+1},...,\lambda_k)$. Let X' be in Jordan normal form with shape λ' . Let $U'_{wr}=\{(A_{X',0,b},U): \forall i.A_{X',0,b}U_{i+1}\subseteq U_i\}$. Let e'_{ij} be a Jordan basis for X'. Let $f_1,...,f_n$ be a Jordan basis for the restriction of $A_{X,0,b}$ to ... Set m':=m-r, and n':=n+r. Let $f'_1,...,f'_{n'}$ blah. Define the linear map $Q_{wr}:\mathbb{C}^{m'+n'}\to\mathbb{C}^{m+n}$ by:

• For all $i, e'_{ij} \mapsto e_{ij}$.

- For $j = 1, ..., r, f'_{n+j} \mapsto e_{w,(\lambda_w r) + j}$.
- For $j = 1, ..., n, f'_{i} \mapsto f_{i} + e_{w,(\lambda_{w}-r)-n+j}$.

Observe that conjugation by Q_{wr} maps U_{wr} to U'_{wr} , and conjugation by Q_{wr}^{-1} maps U'_{wr} to U_{wr} . We conclude that $U_{wr} \cong U'_{wr}$; so to find the irreducible components of U_{wr} we just need to find the irreducible components of U'_{wr} . To clear the context, which is rather cluttered by now, and to avoid writing primes everywhere, we move to a new section.

8 Finding the irreducible components of U_0

8.1 Introduction

Let X be nilpotent with Jordan basis $(e'_{ij})_{1 \leq i \leq k, 1 \leq j \leq \lambda'_i}$. Let $V = \{(A_{a,b}, U) : \forall i. A_{a,b}U_{i+1} \subseteq U\}$. Let

$$U_0 = \{ (A_{0,b}, U) \in V \}.$$

We will find the irreducible components of U_0 .

We write b_{ij} to denote the projection of $b \in \mathbb{C}^m$ onto e_{ij} . For each row i, let $p_i(b) = \max\{j : b_{ij} \neq 0\}$ (the maximum of the empty set is zero). Then set $q_i(b) = \lambda_i - p_i(b)$. When it is clear enough from context, we will just write p_i and q_i instead of $p_i(b)$ and $q_i(b)$.

Let $I = \{i_1 < \cdots < i_r\} \subseteq \{1, ..., k\}$, and let $(\rho_i)_{i \in I}$ be any map $I \to \mathbb{N}_{>0}$ such that (1) $\rho_i \leq \lambda_i$, (2) ρ_i is decreasing with i, (3) $\lambda_i - \rho_i$ is decreasing with i, and (4) $\rho_i < n$. For notational convenience (although we assign meaning to neither i_0 nor i_{r+1}), we define $q_{i_0} := n$, and $p_{i_{r+1}} := 0$. Then, we define $B_{I,(\rho_i)}$ as the set of $b \in \mathbb{C}^m$ satisfying the following conditions.

- For all $k \in \{1, ..., r\}, p_i = \rho_i$.
- For all $k \in \{0, ..., r\}$, $p_{i_{k+1}} = \max_{i:q_i < q_{i_k}} p_i$.

Note that for any $b \in B_{I,(\rho_i)}$ we have $p_{i_1} > \cdots > p_{i_r} > p_{i_{r+1}}$, and also $q_{i_0} > q_{i_1} > \cdots > q_{i_r}$.

Let $U_{I,(\rho_i)} := \{(A_{0,b}, U) \in V : b \in B_{I,(\rho_i)}\}$. The idea here is to show that blah relation holds between U and B.

Lemma 8.1. $\mathbb{C}^m = \bigcup_{I,(\rho_i)} B_{I,(\rho_i)}$, where I ranges over all subsets of $\{1,...,k\}$, and (ρ_i) ranges over all maps $I \to \mathbb{N}_{>0}$ satisfying the conditions (1),(2),(3),(4).

Proof. TODO: redo this proof, now that I changed the definition of $B_{I,(\rho_i)}$. Let $b \in \mathbb{C}^m$. Let $I' = \{(p_i, q_i) : p_i = n > q_i \land \max_{j:q_j = q_i} p_j > \max_{j:q_j < q_i} p_j\}$. Then let $I = \{\max\{i : (p_i, q_i) = (p, q)\} : (p, q) \in I'\}$. Choosing the maximal i is an arbitrary choice; we just have to pick one. For $i \in I$, $\rho_i := p_i$. All we need to do is show that each ρ_i is positive, and that ρ_i and $\lambda_i - \rho_i$ are decreasing. Then we get that $(A_{0,b}, U) \in U_{I,(\rho_i)}$, and we are done.

Recall that by convention the maximum of the empty set is zero. So, the fact that $p_i > \max_{j>i} p_j$ tells us that $\rho_i = p_i$ is positive.

Let $i, j \in I$ with i < j. Since $\lambda_i \ge \lambda_j$, we have either $p_i \ge p_j$ or $q_i \ge q_j$. Further, since $(p_i, q_i) \ne (p_j, q_j)$ (clear from definition of I), either $p_i > p_j$ or $q_i > q_j$. And for $i, j \in I$ we clearly have $p_i > p_j \iff q_i > q_j$. So in either case, both $p_i > p_j$ and $q_i > q_j$, and consequently both $\rho_i > \rho_j$ and $\lambda_i - \rho_i > \lambda_j - \rho_j$.

Lemma 8.2. There are blah $B_{I,(\rho_i)}$ with (ρ_i) satisfying the constraints of Lemma 8.1, and none is contained in the union of the others.

Proof. seems hard to count. total number is product over L of (number of rows of length L) times (count where we assume there is only one row of each length).

8.2 A study of $B_{I(a_i)}$

Fix any I and (ρ_i) satisfying the conditions (1)–(4). As before, we write $\{i_1 < \cdots < i_r\} := I$, and $q_{i_0} := n$, and $p_{i_{r+1}} := 0$.

First, we provide an alternative characterization of $B_{I,(\rho_i)}$. Let $B'_{I,(\rho_i)}$ be the set of $b \in \mathbb{C}^m$ satisfying the following conditions.

- For all $k \in \{1, ..., r\}, p_i = \rho_i$.
- For $i \notin I$, let $S = \{k \in \{1, ..., r\} : q_{i_{k-1}} + p_{i_k} > \lambda_i\}$. If $S = \emptyset$, then $p_i \le \lambda_i q_{i_0}$. Otherwise, $p_i \le \min(p_{i_k}, \lambda_i q_{i_k})$, where $k = \min S$.

Lemma 8.3. $B_{I,(\rho_i)} = B'_{I,(\rho_i)}$.

Proof. First we show that $B_{I,(\rho_i)} \subseteq B'_{I,(\rho_i)}$. Let $b \in B_{I,(\rho_i)}$. It is clear that $\forall i \in I$. $p_i = \rho_i$. Now, I claim that for every $s \in \{0, ..., r\}$, either So, let $i \notin I$, and let $S = \{k : q_{i_{k-1}} + p_{i_k} > \lambda_i\}$. We have two cases: either S is empty, or not.

If S is empty

and let $k = \min S$. We need to show that $p_i \leq \min(p_{i_k}, \lambda_i - q_{i_k})$. That is, need to show that

Let $l \in \{0,...,r\}$, and suppose $q_i < q_{i_l}$. Then, since $\max_{j:q_j < q_{i_l}} p_j = p_{i_{l+1}}$, we have $p_i \le p_{i_{l+1}}$. This implies that

Corollary 8.4.

$$B_{I,(\rho_i)} \cong \prod_{i \in I} \mathbb{C}^{blah} \times \prod_{i \notin I}$$

8.3 A study of $U_{I,(\rho_i)}$

Fix any I and (ρ_i) satisfying the conditions of Lemma 8.1. We will find the irreducible components of $U_{I,(\rho_i)}$, and show that their closures are in fact irreducible components of U_0 .

I claim that $A_{0,b}$ has the same shape for every $(A_{0,b}, U) \in U_{I,(\rho_i)}$. Call this shape μ . By finding a algebraic map taking b to a Jordan basis for $A_{0,b}$, we will put $U_{I,(\rho_i)}$ in isomorphism with the product (choice of b) × (Springer fiber at $J(\mu)$). Then we will use our result about the usual Springer fiber at $J(\mu)$ to find the irreducible components of $U_{I,(\rho_i)}$.

So, now we find a Jordan basis for $A_{0,b}$.

Lemma 8.5. Let $P = \max_{i \in I} \rho_i$, and for $i \in I$, let $P_i = \max_{j \in I: j > i} \rho_j$. The following vectors give a Jordan basis for $A_{0,b}$. (For convenience, we write $A := A_{0,b}$ in this lemma and proof.)

- For $i \notin I$, the chain of length $p_i + q_i$ beginning with e_{i,p_i+q_i}
- The chain of length n + P beginning with $f_n (A^{n+P}f_n >> n + P)$
- For $i \in I$, the chain of length $q_i + P_i$ beginning with $v_i (A^{q_i + P_i}v_i >> q_i + P_i)$, where $v_i := A^{n-q_i}f_n \sum_{l=1}^{p_i} b_{il}e_{i,l+q_i}$

Proof. There are three things to check: (1) the chains are no longer than their claimed lengths, (2) the claimed lengths sum to m + n, and (3) the span of the chains is \mathbb{C}^{m+n} .

We have defined P and P_i in terms of the ρ_i to make it clear that they only depend on I and the ρ_i . Now we provide more useful characterizations. It is immediate from the definition of $U_{I,(\rho_i)}$ that $P = \max_{l:q_l < n} p_l$, and $P_i = \max_{l:q_l < q_i} p_l$.

Proof of (1). It is obvious that a chain beginning with e_{i,p_i+q_i} has length $p_i + q_i$.

Now consider the chain beginning with $f_n - (A^{n+P}f_n >> n+P)$. Note that $A^nf_n = b$, so $A^{n+P}f_n = A^Pb = b << P$. By shifting b left P times, we zero out all the rows i where $q_i < n$. This ensures that the operation of shifting b << P right n+P times is invertible by shifting left n+P times. That is,

$$A^{n+P}f_n = b \lt \lt P = ((b \lt \lt P) >> n+P) \lt \lt n+P = A^{n+P}(A^{n+P}f_n >> n+P).$$

This shows that the chain has length at most n + P, as desired.

Now, let $i \in I$. We have $v_i = A^{n-q_i} f_n - \sum_{l=1}^{p_i} b_{il} e_{i,l+q_i}$. First we note that $q_i < n$ by the definition of $U_{I,(\rho_i)}$, so the definition of v_i makes sense. We consider the chain beginning with $v_i - (A^{q_i + P_i} v_i >> q_i + P_i)$. Note that $A^{q_i} v_i$ is just b with row i zeroed out. For brevity, we write $b_i := A^{q_i} v_i$. Note that $b_i << P_i$ has rows l zeroed out, for all l with $q_l < q_i$. This ensures that shifting $b_i << P_i$ right $q_i + P_i$ times can be inverted by shifting left $q_i + P_i$ times. That is,

$$A^{q_i+P_i}v_i = b_i \lt \lt P_i = ((b_i \lt \lt P_i) \gt\gt q_i + P_i) \lt \lt q_i + P_i = A^{q_i+P_i}(A^{q_i+P_i}v_i \gt\gt q_i + P_i).$$

This shows that the chain has length at most $q_i + P_i$, as desired.

Proof of (2). The sum of the lengths is

$$\sum_{i \notin I} (p_i + q_i) + (n+P) + \sum_{i \in I} (q_i + P_i).$$

Writing $I = \{i_1 < \cdots < i_{|I|}\}$, we note that $P = p_{i_1}$, that $P_{i_{|I|}} = 0$, and that for l < |I| we have $P_{i_l} = p_{i_{l+1}}$. Thus, the sum above is

$$\sum_{i \notin I} (p_i + q_i) + (n + p_{i_1}) + \sum_{l=1}^{|I|} (q_{i_l} + p_{i_{l+1}}) =$$

$$\sum_{i \notin I} (p_i + q_i) + n + \sum_{l=1}^{|I|} (q_{i_l} + p_{i_l}) = n + \sum_i (q_i + p_i) = m + n.$$

Proof of (3). Let W be the span of the chains listed. We need to show that $W = \mathbb{C}^{m+n}$. Because every $i \in I$ satisfies $q_i < n$, clearly $\langle e_{ij} \rangle_{i,j:q_i \geq n} \subseteq W$.

I claim that $f_n \in W$ as well. To see this, we consider the chain beginning with $f_n - (A^{n+P}f_n >> n+P)$. As explained in the proof of (1), we have $A^{n+P}f_n \in \langle e_{ij}\rangle_{i,j:q_i\geq n}$. Consequently, $(A^{n+P}f_n >> n+P) \in \langle e_{ij}\rangle_{i,j:q_i\geq n} \subseteq W$. Because $f_n - (A^{n+P}f_n >> n+P) \in W$, this implies that $f_n \in W$.

Because $AW \subseteq W$ (obvious, since W is the span of chains), the fact that $f_n \in W$ implies that $f_i \in W$ for each i, and also $b \lt \lt l \in W$ for each $l \ge 0$.

Now we are left with showing that $\langle e_{ij} \rangle_{i,j:q_i < n} \subseteq W$. This is obvious for $i \notin I$. For $i \in I$, we do it inductively. Fix $i \in I$, and suppose we have already shown that for all $i' \in I$ with $q_{i'} > q_i$, we have $\langle e_{ij} \rangle_{j \text{ arbitrary}} \subseteq W$. We will show that $\langle e_{ij} \rangle_{j \text{ arbitrary}} \subseteq W$.

To see this, we consider the chain beginning with $v_i - (A^{q_i + P_i} v_i >> q_i + P_i)$. (Recall $v_i = A^{n-q_i} f_n - \sum_{l=1}^{p_i} b_{il} e_{i,l+q_i}$.) Because $AW \subseteq W$, and $b_{i,p_i} \neq 0$ (by definition of p_i), it suffices to show that $\sum_{l=1}^{p_i} b_{il} e_{i,k+q_i} \in W$. As explained in the proof of (1), we have $A^{q_i+P_i} v_i \in \langle e_{lj} \rangle_{q_l \geq q_i}$. And since $A^{q_i+P_i} v_i$ has row i zeroed out, in fact $A^{q_i+P_i} v_i \in \langle e_{lj} \rangle_{l:l \neq i \wedge q_l \geq q_i}$. Hence, $A^{q_i+P_i} v_i >> q_i + P_i \in \langle e_{lj} \rangle_{l:l \neq i \wedge q_l \geq q_i}$. By our inductive hypothesis, $\langle e_{lj} \rangle_{l:l \neq i \wedge q_l \geq q_i} \subseteq W$, and consequently $A^{q_i+P_i} v_i >> q_i+P_i \in W$. Since we know $v_i - (A^{q_i+P_i} v_i >> q_i+P_i) \in W$, this implies that $v_i \in W$. Because $A^{n-q_i} f_n \in W$, this then implies that $\sum_{l=1}^{p_i} b_{il} e_{i,l+q_i} \in W$, as desired.

We proved
$$(1)$$
, (2) , (3) , so we are done.

Let $\mu(I,(\rho_i))$ be the shape of the Jordan basis given in the previous lemma. Let X_{μ} be the Springer fiber at $J(\mu)$.

Lemma 8.6.
$$U_{I,(\rho_i)} \cong B_{I,(\rho_i)} \times X_{\mu}$$
.

Proof. For $b \in B_{I,(\rho_i)}$, let P_b be the change-of-basis matrix, with columns given by the Jordan basis of the previous lemma, so that $J(\mu) = P_b^{-1} A_{0,b} P_b$. From looking at the Jordan basis of the previous lemma (the basis can be expressed in terms of $A, \lambda, e_{ij}, f_i, I, \rho_i, b$), it is clear that the map $P: B_{I,(\rho_i)} \to GL_{m+n}$, given by $b \mapsto P_b$, is algebraic.

Now, we remark that the Springer fiber at $A_{0,b}$ is simply $\{P_bU : U \in X_{\mu}\}$. This gives us the isomorphism $B_{I,(\rho_i)} \times X_{\mu} \to U_{I,(\rho_i)}$.

$$(b, U) \mapsto (P_b J(\mu) P_b^{-1}, P_b U),$$

with inverse

$$(A_{0,b}, U) \mapsto (b, P_b^{-1}U).$$

8.4 Conclusion

At last we have reached the base of our recursive procedure, and we begin to propagate upwards. We write $(X_{\mu,\alpha})_{\alpha}$ to denote the irreducible components of X_{μ} .

Lemma 8.7. The irreducible components of $U_{I,(\rho_i)}$ are exactly the subvarieties

$$U_{I,(\rho_i),\alpha} := \{ (P_b J(\mu) P_b^{-1}, P_b U) : b \in B_{I,(\rho_i)}, U \in X_{\mu,\alpha} \}.$$

These are distinct. There are blah of them, and each has dimension blah.

Proof. We know from Corollary 8.4 that $B_{I,(\rho_i)}$ is irreducible. So, the components of $B_{I,(\rho_i)} \times X_{\mu}$ are obviously $B_{I,(\rho_i)} \times X_{\mu,\alpha}$. Their dimensions are blah, and there are... of them. taking image under the isomorphism gives the desired result.

Lemma 8.8. The irreducible components of U_0 are exactly the $U_{I,(\rho_i),\alpha}$. They are distinct. There are blah of them, each of dimension blah.

9 Finding the irreducible components of a springer fiber at a slodowy slice

Apply things from the previous two sections, and conclude.

10 A different variety

Define $R = \{(X, \mathfrak{b}_1, \mathfrak{b}_2) : X \in \mathfrak{b}_1 \wedge u(X) \in \mathfrak{b}_2\} \subseteq \mathcal{S}'_{m,n} \times \mathcal{B}_{m+n} \times \mathcal{B}_m$. We can obtain a subvariety of R by requiring that u(X) is in some fixed similarity class. (TODO: why is this a subvariety? Is it? Is this even the right way of explaining the significance of the m^2 ?) We expect that each of these subvarieties is an irreducible component of dimension m^2 . We will verify these things using our prvious computations of springer fibers.

10.1 TODO

• Why are SOn flags what they are.

References

[1] N. Chriss and victor ginzburg. Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser Boston, 2009.