NEURAL NETWORKS: SHALLOW LEARNING

Evgeny Burnaev

Skoltech, Moscow, Russia

OUTLINE

- APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- **4** Ridge Regression
- 6 HESSIAN APPROXIMATION

Burnaev

- APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- 4 Ridge Regression
- **5** HESSIAN APPROXIMATION

PROBLEM STATEMENT

- Let $y=f(\mathbf{x})$ be some function, which is continuous and defined on a compact $X\subset R^N$, $N\sim 5-50$.
- \bullet The problem is to construct an approximation $\hat{f}\left(\mathbf{x}\right)$ using the train sample of size m

$$S_m = \{(\mathbf{x}_i, y_i), \, \mathbf{x}_i \in X, \, f(\mathbf{x}_i) = y_i, \, i = 1, \dots, m\}$$

Approximation should be accurate in some sense

$$f(\mathbf{x}) \approx \hat{f}(\mathbf{x}), \ \mathbf{x} \in X$$
 (1)

Note that (1) should hold for all $\mathbf{x} \in X$, not only for $\mathbf{x} \in S_m$

LINEAR EXPANSION IN A FUNCTIONAL DICTIONARY

 \bullet A model $\hat{f}\left(\mathbf{x}\right)$ is composed of functions from some parametric dictionary

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{p} \alpha_j \psi_j(\boldsymbol{\theta}_j, \mathbf{x}) + \alpha_0$$

Or, in vector notations

$$\begin{split} \hat{f}\left(\mathbf{x}\right) &= \boldsymbol{\psi}\left(\boldsymbol{\Theta}, \mathbf{x}\right) \boldsymbol{\alpha}, \quad \boldsymbol{\alpha} = \{\alpha_j\}_{j=0}^p, \quad \boldsymbol{\Theta} = \{\boldsymbol{\theta}_j\}_{j=1}^p, \\ \text{where } \boldsymbol{\psi}\left(\boldsymbol{\Theta}, \mathbf{x}\right) &= (\psi_1(\boldsymbol{\theta}_1, \mathbf{x}), \dots, \psi_p(\boldsymbol{\theta}_p, \mathbf{x})) \end{split}$$

- Thus $\hat{f}(\mathbf{x})$ is determined by
 - matrix Θ of dictionary functions parameters
 - vector of coefficients lpha in the linear expansion
 - $\psi_j(\mathbf{x})$ can be considered as the j-th transformation of \mathbf{x}

Once the dictionary $\{\psi_j(\mathbf{x})\}_{j=1}^p$ is determined, the model $\hat{f}(\mathbf{x})$ is linear in these new variables, and the fitting is similar to linear regression

Types of dictionary functions

- Polynomials: $\psi_j(\boldsymbol{\theta}_j, \mathbf{x}) = \prod_{k=1}^N x^{\theta_{j,k}}, \ \theta_j \in \{0, 1\}^N$
- Indicators for some regions:

$$\psi_j(\boldsymbol{\theta}_j, \mathbf{x}) = \prod_{k=1}^N 1\{\theta_{k,1} \le x_k \le \theta_{k,2}\}$$

Sigmoid function:

$$\psi_j(\boldsymbol{\theta}_j, \mathbf{x}) = \sigma \left(\mathbf{x}^{\mathrm{T}} \boldsymbol{\theta}_j^1 + \theta_j^0 \right),$$

where
$$\sigma\left(z\right)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$$
 or $\sigma\left(z\right)=\frac{1}{1+e^{z}}$

• Gaussian function:

$$\psi_j(\boldsymbol{\theta}_j, \mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\theta}_j^1\|^2}{(\theta_j^0)^2}\right)$$

A dictionary can include other types of functions like trigonometric functions, etc.

OBJECTIVE MEASURE: ERROR FUNCTION

 As mentioned above, the approximation should be close to the original function:

$$f(\mathbf{x}) \approx \hat{f}(\mathbf{x}), \ \mathbf{x} \in X$$

Quantitative measure of closeness is the error function

$$\hat{R} = \hat{R}\left(S_m, \hat{f}\right) = \frac{1}{2} \sum_{i=1}^m \left(y_i - \hat{f}(\mathbf{x}_i)\right)^2, \ S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$$

In the sequel we denote by #S a cardinality of a set S (number of points in the sample S)

Algorithm

- Select dictionary size p
- 2 Initialize dictionary functions parameters Θ and linear expansion coefficient α
- $\ \,$ Minimize the error function (Empirical Risk Minimization problem) $\hat{R}\left(S_m,\hat{f}\right)=\hat{R}\left(\Theta,\pmb{\alpha}\right)$

Algorithm

- Select dictionary size p
- 2 Initialize dictionary functions parameters Θ and linear expansion coefficient α
- Minimize the error function (Empirical Risk Minimization problem) $\hat{R}\left(S_{m},\hat{f}\right)=\hat{R}\left(\Theta,\boldsymbol{\alpha}\right)$

In this presentation

- Some connections to well-known models in statistics
- Specific features of the ERM problem
- Incorporate these features into the ERM algorithm to
 - Increase accuracy of approximation
 - Reduce training time

- APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- 4 RIDGE REGRESSION
- **5** HESSIAN APPROXIMATION

ADDITIVE MODELS I

We try to fit a regression function

$$\hat{f}(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = f(x_1, \dots, x_N),$$

in which every level of interaction is potentially present

 It is natural to consider analysis-of-variance (ANOVA) decompositions of the form

$$\hat{f}(x_1, \dots, x_N) = \alpha_0 + \sum_j g_j(x_j) + \sum_{k < r} g_{kr}(x_k, x_r) + \dots$$

 In order to restrict a model class we consider additive models, containing only main effect terms

$$\hat{f}(\mathbf{x}) = \alpha_0 + \sum_{j=1}^{N} g_j(\mathbf{x}_j)$$

Additive Models II

Usually backfitting procedure is used:

- 1. Initialize $g_1(x_1), \ldots, g_N(x_N)$
- 2. For j = 1, ..., N
 - (A) Calculate residuals $\epsilon_{j,i} = y_i \sum_{s \neq j} g_s(x_{s,i})$
 - (B) Fit $g_j(x_j)$ using the sample $S_j = \{(x_{j,i}, \epsilon_{j,i})\}_{i=1}^m$
- 3. If converged STOP. Else, go back to step 2

PROJECTION PURSUIT REGRESSION I

- ullet Let $\{m{ heta}_j\}_{j=1}^p$ be unit N-vectors of unknown parameters
- The projection pursuit regression model has the form

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{p} g_j(\boldsymbol{\theta}_j^{\mathrm{T}} \mathbf{x})$$

- ullet This is an additive model, but in the derived features $z_j = oldsymbol{ heta}_i^{
 m T} {f x}$
- ullet The functions g_j are unspecified and are estimated. Since

$$g(\boldsymbol{\theta}^{\mathrm{T}}\mathbf{x}) \approx g(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}}\mathbf{x}) + g'(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}}\mathbf{x})(\boldsymbol{\theta} - \boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}})\mathbf{x},$$

then

$$\sum_{i=1}^{m} [y_i - g(\boldsymbol{\theta}^{\mathrm{T}} \mathbf{x}_i)]^2 \approx$$

$$\sum_{i=1}^{m} g'(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}} \mathbf{x}_i)^2 \left[\left(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}} \mathbf{x}_i + \frac{y_i - g(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}} \mathbf{x}_i)}{g'(\boldsymbol{\theta}_{\mathrm{old}}^{\mathrm{T}} \mathbf{x}_i)} \right) - \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x}_i \right]^2$$

Projection Pursuit Regression II

- We fit the model by an iterative process:
 - A) Optimize (2) to update θ (quadratic optimization!)
 - B) Tune $g(\cdot)$ by smoothing current residuals
 - C) Repeat steps a)-b) until convergence
- Fit a new term $g(\boldsymbol{\theta}_{\text{new}}^{\text{T}}\mathbf{x})$ to the residuals, etc.

NEURAL NETWORK WITH TWO-LAYERS I

Layer 1

Layer 2 (Hidden Layer)

Layer 3 (Output Layer)

- $a_i^{(j)}$ = "activation" of unit i in layer j
- $\Theta^{(j)} = \text{weight matrix}$ controlling function mapping from layer j to layer j+1

$$\begin{aligned} a_{1}^{(2)}(\mathbf{x}) &= \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} x_{1} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3} \right) = \sigma ((\boldsymbol{\theta}_{1}^{(1)})^{\mathrm{T}} \mathbf{x}) \\ a_{2}^{(2)}(\mathbf{x}) &= \sigma \left(\theta_{20}^{(1)} + \theta_{21}^{(1)} x_{1} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3} \right) = \sigma ((\boldsymbol{\theta}_{2}^{(1)})^{\mathrm{T}} \mathbf{x}) \\ a_{3}^{(2)}(\mathbf{x}) &= \sigma \left(\theta_{30}^{(1)} + \theta_{31}^{(1)} x_{1} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3} \right) = \sigma ((\boldsymbol{\theta}_{3}^{(1)})^{\mathrm{T}} \mathbf{x}) \\ \hat{f}(\mathbf{x}) &= a_{1}^{(3)} (a_{1}^{(2)}, a_{2}^{(2)}, a_{3}^{(2)}) = \theta_{10}^{(2)} + \theta_{11}^{(2)} a_{1}^{(2)} + \theta_{12}^{(2)} a_{2}^{(2)} + \theta_{13}^{(2)} a_{3}^{(2)} \end{aligned}$$

Here we assume that bias units $a_0^{(2)}=1$ and $x_0=1$, and that $\sigma(\cdot)$ is a sigmoid function

NEURAL NETWORK WITH TWO-LAYERS II

• NN with two layers and p hidden units <u>coincides</u> with a basis expansion in a dictionary with p basis functions in case

$$\psi(\boldsymbol{\theta}_j, \mathbf{x}) = \sigma(\boldsymbol{\theta}_j^{\mathrm{T}} \mathbf{x})$$

and
$$\alpha_j = \theta_{1,j}^{(2)}$$
, $j = 0, 1, \dots, p$

 NN with two layers and p hidden units is similar to the projection pursuit regression when

$$g_j(\boldsymbol{\theta}_j^{\mathrm{T}}\mathbf{x}) = \sigma(\boldsymbol{\theta}_j^{\mathrm{T}}\mathbf{x}),$$

i.e. we consider pre-determined $g_j(\cdot) = \sigma(\cdot)$

- APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- 4 RIDGE REGRESSION
- **5** HESSIAN APPROXIMATION

LEARNING OF BASIS EXPANSIONS

Further

 We consider approximation models, defined by basis expansions in nonlinear parametric dictionaries

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{p} \alpha_j \psi_j(\boldsymbol{\theta}_j, \mathbf{x}) + \alpha_0$$

 We provide hints how to take a structure of the ERM problem into account in order to perform minimization efficiently

$$\hat{R}\left(S_m, \hat{f}\right) = \hat{R}(\Theta, \alpha) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \hat{f}(\mathbf{x}_i)\right)^2, S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^{m}$$

EARLY STOPPING I

Let S_{test} be some test sample, generated in X. Empirical indication of the overfitting is

$$\hat{R}\left(S_{test},\hat{f}\right)\gg\hat{R}\left(S_{m},\hat{f}\right)$$

EARLY STOPPING II

Let S_{test} be some test sample, generated in X. Empirical indication of the overfitting is

$$\hat{R}\left(S_{test}, \hat{f}\right) \gg \hat{R}\left(S_{m}, \hat{f}\right)$$

Early stooping prevents overfitting:

Adopted algorithm

- Divide S_m into S_{train} and S_{val}
- 2 Select dictionary size p
- (3) Initialize dictionary functions parameters Θ and linear expansion coefficients α
- $oldsymbol{0}$ Minimize the error function $\hat{R}\left(S_{train},\hat{f}\right)=\hat{R}\left(\Theta,oldsymbol{lpha}
 ight).$
- **5** Stop the optimization process when $\hat{R}\left(S_{val},\hat{f}\right)$ stops to decrease

SEPARABILITY OF VARIABLES

Let us consider the error function $\hat{R}(\Theta, \alpha)$:

$$\hat{R}\left(\Theta, \boldsymbol{\alpha}\right) = \left(\boldsymbol{\Psi}\left(\Theta\right)\boldsymbol{\alpha} - \mathbf{y}\right)^{\mathrm{T}} \left(\boldsymbol{\Psi}\left(\Theta\right)\boldsymbol{\alpha} - \mathbf{y}\right),$$

where

- $\mathbf{y} = \{y_1, \dots, y_m\},\$
- $\Psi(\Theta) = (\psi(\Theta, \mathbf{x}_1), \dots, \psi(\Theta, \mathbf{x}_m))$. Here and further $m = \#(S_{train})$ is a size of the training set

We can easily see that

- Dependence of \hat{R} on Θ is nonlinear
- ullet Dependence of \hat{R} on $oldsymbol{lpha}$ is quadratic

We can find the optimal value of α using least squares approach:

$$\alpha = \alpha(\Theta)$$

Possible explicit formulas for calculating optimal $\alpha(\Theta)$

Least squares estimate

$$\boldsymbol{\alpha}\left(\Theta\right) = \left(\Psi\left(\Theta\right)^{\mathrm{T}} \Psi\left(\Theta\right)\right)^{-1} \Psi\left(\Theta\right)^{\mathrm{T}} \mathbf{y}$$

Ridge regression

$$\boldsymbol{\alpha}\left(\Theta\right) = \left(\Psi\left(\Theta\right)^{\mathrm{T}}\Psi\left(\Theta\right) + \lambda I_{p}\right)^{-1}\Psi\left(\Theta\right)^{\mathrm{T}}\mathbf{y}$$

Ridge regression with smoothness penalty:

$$\boldsymbol{\alpha}\left(\Theta\right) = \left(\Psi\left(\Theta\right)^{\mathrm{T}} \Psi\left(\Theta\right) + \lambda \Gamma(\Theta)^{\mathrm{T}} \Gamma(\Theta)\right)^{-1} \Psi\left(\Theta\right)^{\mathrm{T}} \mathbf{y},$$

where $\Gamma(\Theta)$ is a some functional of derivatives of the approximation

Using of separability of variables

- **①** Calculate derivatives \hat{R}_{Θ} and $\hat{R}_{\Theta\Theta}$ of the error function
- ② Calculate step size d_k by some optimization algorithm using gradient \hat{R}_Θ and hessian $\hat{R}_{\Theta\Theta}$
- ① Update the matrix of dictionary functions parameters: $\Theta_{k+1} = \Theta_k + d_k$
- **1** Update linear expansion coefficients $\alpha\left(\Theta_{k+1}\right)$, applying e.g. LSQ formula

We should take into account dependence of $\alpha(\Theta)$ on Θ in step 1!

SEPARABILITY OF VARIABLES

CONSIDER A NEW OBJECTIVE FUNCTION

$$\hat{R}(\Theta) = \hat{R}(\Theta, \boldsymbol{\alpha}(\Theta)), \, \boldsymbol{\alpha}(\Theta) = \left(\Psi(\Theta)^{\mathrm{T}} \Psi(\Theta)\right)^{-1} \Psi(\Theta)^{\mathrm{T}} \mathbf{y}$$

Let us calculate derivatives of this objective function

By the definition of the least squares method

$$\hat{R}_{\alpha} = \mathbf{0}$$

• Gradient of $\hat{R}\left(\Theta\right)$

$$\hat{R}_{\Theta} = \hat{R}_{\Theta} + \hat{R}_{\alpha}\alpha_{\Theta} = \hat{R}_{\Theta} + \mathbf{0}\alpha_{\Theta} = \hat{R}_{\Theta}$$

Hessian

$$\hat{R}_{\Theta\Theta} = \hat{R}_{\Theta\Theta} + \hat{R}_{\Theta\alpha} \, \alpha_{\Theta}$$

lacktriangle We can obtain $\hat{R}_{\Theta\alpha}$ and $\hat{R}_{\Theta\Theta}$ straightforwardly

$$\hat{R}_{\Theta\alpha} = (\mathbf{e}^{\mathrm{T}}\Psi)_{\Theta} = \mathbf{e}^{\mathrm{T}} \odot \Psi_{\Theta} + \mathbf{e}_{\Theta}^{\mathrm{T}}\Psi = \mathbf{e}^{\mathrm{T}} \odot \Psi_{\Theta} + J^{\mathrm{T}}\Psi$$
$$\hat{R}_{\Theta\Theta} = J^{\mathrm{T}}J + \mathbf{e} \odot \hat{f}_{\Theta\Theta}(\mathbf{X})$$

where

$$- \mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$

$$- J \stackrel{\text{def}}{=} \mathbf{e}_{\Theta} = \hat{f}_{\Theta}(\mathbf{X})$$

— \odot is pseudo-multiplication of 3D matrix: $e^{T} \odot \hat{f}_{\theta\theta} (\mathbf{X}) = \sum_{i=1}^{m} e_{i} \hat{f}_{\theta\theta} (\mathbf{x}_{i})$

② Direct computation of α_{Θ} is rather lengthy

$$\begin{split} \hat{R}_{\alpha} &= 0 \ \Rightarrow \ d\hat{R}_{\alpha} = \hat{R}_{\alpha\alpha} d\alpha + \hat{R}_{\alpha\Theta} d\Theta \equiv \mathbf{0}, \\ \alpha_{\Theta} &= \frac{d\alpha}{d\Theta} = -(\hat{R}_{\alpha\alpha})^{-1} \hat{R}_{\alpha\Theta}, \\ \left(\text{and } \hat{R}_{\alpha\alpha} = \Psi^{T} \Psi \right) \end{split}$$

Final formula for the Hessian of \hat{R}

ullet Hessian of \hat{R}

$$\hat{R}_{\Theta\Theta} = \hat{R}_{\Theta\Theta} + \hat{R}_{\Theta\alpha}\alpha_{\Theta}$$

• After substitution:

$$\begin{split} \hat{R}_{\Theta\Theta} &= J^{\mathrm{T}}J + \mathbf{e} \odot \hat{f}_{\Theta\Theta}(\mathbf{X}) - \\ & \left(\mathbf{e}^{\mathrm{T}} \odot \Psi_{\Theta} + J^{\mathrm{T}}\Psi\right) \left(\Psi^{\mathrm{T}}\Psi\right)^{-1} \left(\mathbf{e}^{\mathrm{T}} \odot \Psi_{\Theta} + J^{\mathrm{T}}\Psi\right)^{\mathrm{T}} \end{split}$$

ullet Let us neglect the terms with residuals $e\ (epprox 0)$

$$\hat{R}_{\Theta\Theta} \approx J^{\mathrm{T}}J - \left(J^{\mathrm{T}}\Psi\right) \left(\Psi^{\mathrm{T}}\Psi\right)^{-1} \left(J^{\mathrm{T}}\Psi\right)^{\mathrm{T}}$$

- 1 APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- RIDGE REGRESSION
- **5** HESSIAN APPROXIMATION

LSQ isn't a good idea!

- ullet Matrix $\Psi\left(\Theta\right)^{\mathrm{T}}\Psi\left(\Theta\right)$ can be ill-conditioned
- LSQ estimates are unbiased but can have high variance
- In our case high variance ≡ unstable optimization process

Let us use a ridge regression to estimate linear expansion coefficients ${\boldsymbol \alpha}$

$$\boldsymbol{\alpha}\left(\boldsymbol{\Theta}\right) = \left(\boldsymbol{\Psi}\left(\boldsymbol{\Theta}\right)^{\mathrm{T}}\boldsymbol{\Psi}\left(\boldsymbol{\Theta}\right) + \lambda \mathbf{I}_{p}\right)^{-1}\boldsymbol{\Psi}\left(\boldsymbol{\Theta}\right)^{\mathrm{T}}\mathbf{y}$$

Estimating lpha with this formula is equivalent to minimization of

$$\widetilde{R}\left(\Theta, \boldsymbol{\alpha}\right) = \frac{1}{2} \Big((\mathbf{y} - \Psi \boldsymbol{\alpha}) (\mathbf{y} - \Psi \boldsymbol{\alpha}) + \lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\alpha} \Big)$$

w.r.t. α

Let us apply the same approach to the new objective function

ullet We consider the modified error function \widetilde{R}

$$\widetilde{R}\left(\Theta\right) = \widetilde{R}\left(\Theta, \boldsymbol{\alpha}\left(\Theta\right)\right)$$

• Note that $\widetilde{R}_{\alpha}=\mathbf{0}$, therefore we can use a general representation of the hessian matrix

$$\widetilde{R}_{\Theta\Theta} = \widetilde{R}_{\Theta\Theta} + \widetilde{R}_{\Theta\alpha}\alpha_{\Theta}$$

ullet Partial derivatives with respect to Θ are the same

$$\widetilde{R}_{\alpha\Theta} = \hat{R}_{\alpha\Theta}, \quad \widetilde{R}_{\Theta\Theta} = \hat{R}_{\Theta\Theta}$$

A final formula

$$\widetilde{R}_{\Theta\Theta} \approx \boldsymbol{J}^{\mathrm{T}} \boldsymbol{J} - \left(\boldsymbol{J}^{\mathrm{T}} \boldsymbol{\Psi}\right) \left(\boldsymbol{\Psi}^{\mathrm{T}} \boldsymbol{\Psi} + \lambda \mathbf{I}_{p}\right)^{-1} \left(\boldsymbol{J}^{\mathrm{T}} \boldsymbol{\Psi}\right)^{\mathrm{T}}$$

Let us compare two objective functions:

Initial error function:

$$\hat{R}\left(\Theta, \boldsymbol{\alpha}\right) = \frac{1}{2} \left(\mathbf{y} - \boldsymbol{\Psi} \boldsymbol{\alpha}\right)^{\mathrm{T}} \left(\mathbf{y} - \boldsymbol{\Psi} \boldsymbol{\alpha}\right)$$

Modified error function, based on explicit ridge regression estimate

$$\widetilde{R}(\Theta) = \frac{1}{2} (\mathbf{y} - \Psi \alpha (\Theta))^{\mathrm{T}} (\mathbf{y} - \Psi \alpha (\Theta)) + \frac{1}{2} \lambda \alpha (\Theta)^{\mathrm{T}} \alpha (\Theta),$$

$$\alpha (\Theta) = (\Psi (\Theta)^{\mathrm{T}} \Psi (\Theta) + \lambda I_{p})^{-1} \Psi (\Theta)^{\mathrm{T}} \mathbf{y}$$

Also we assume that $\mathbf{e} \approx \mathbf{0}$ in this case

We use the trust region method with a modified More-Sorensen method to solve a restricted quadratic minimization problem

Toy example: Rastrigin function I

$$f(\mathbf{x}) = An + \sum_{i=1}^{N} (x_i^2 - A\cos(2\pi x_i)), A = 10, \mathbf{x} \in [-5.12, 5.12]^N$$

TOY EXAMPLE: RASTRIGIN FUNCTION II

m=1000 points, a dictionary consists of p=128 sigmoids

	$\hat{R}\left(\Theta, \boldsymbol{\alpha}\right)$	$\widetilde{R}\left(\Theta\right)$
$\hat{R}\left(S_{test},\hat{f}\right)$	2,99E-02	5,48E-05
Iterations	1532	87

TOY EXAMPLE: RASTRIGIN FUNCTION III

Toy example: Rastrigin function IV

FIGURE: Residuals FIGURE: Sigmoid

Range of the original function is [0, 80], range of residuals is [-0.06, 0.04].

AVERAGE RESULTS

- "Time" provides values of learning time for approximation construction
- \bullet We calculate a square normalized error on some test sample S_{test}
- Ratio (for one task):

$$timeRatio(task) = \frac{\text{basic training algorithm}}{\text{improved training algoritms}}$$

ullet We consider 26 artificial tasks for each sample size m

\overline{m}	median timeRatio	median errorRatio
160	1.9	1.45
320	2.6	1.39
1000	3.2	1.54

- APPROXIMATION PROBLEM AND BASIS EXPANSIONS
- 2 Additive Models and Neural Networks
- 3 Specific features of the ERM problem
- 4 RIDGE REGRESSION
- 6 HESSIAN APPROXIMATION

HESSIAN ADDITIVITY

Let us consider the error function $\widetilde{R}\left(\Theta\right)$ and its hessian

$$\widetilde{R}(\Theta) = \widetilde{R}(\Theta, \boldsymbol{\alpha}(\Theta)) = \frac{1}{2} \Big((\mathbf{y} - \Psi \boldsymbol{\alpha}(\Theta))^{\mathrm{T}} (\mathbf{y} - \Psi \boldsymbol{\alpha}(\Theta)) + \lambda \boldsymbol{\alpha}(\Theta)^{\mathrm{T}} \boldsymbol{\alpha}(\Theta) \Big)$$

$$\widetilde{R}_{\Theta\Theta}\left(\Theta\right) \approx \mathcal{H} \stackrel{\text{def}}{=} J^{\mathrm{T}}J - \left(J^{\mathrm{T}}\Psi\right) \left(\Psi^{\mathrm{T}}\Psi + \lambda I_{p}\right)^{-1} \left(J^{\mathrm{T}}\Psi\right)^{\mathrm{T}},$$

 $J=J\left(\Theta\right)$ are derivatives $\hat{f}_{\Theta}\left(\mathbf{x}\right)$ in sample points $\mathbf{x}\in S_{m}$ Note, that \mathcal{H} is a sum of "sub-hessians" for training sample points:

$$\mathcal{H} = \sum_{i=1}^{m} J_{i}^{\mathrm{T}} J_{i} - \left(J_{i}^{\mathrm{T}} \Psi\right) \left(\Psi^{\mathrm{T}} \Psi + \lambda \mathbf{I}_{p}\right)^{-1} \left(J_{i}^{\mathrm{T}} \Psi\right)^{\mathrm{T}} = \sum_{i=1}^{m} h\left(\mathbf{x}_{i}, \Theta\right)$$

Computational complexity of

- \mathcal{H} calculation is $\sim m \, (pN)^2$,
- ullet ${\cal H}$ inversion (or Cholesky decomposition) is $\sim (pN)^3.$

where

- ullet m is the training sample size,
- ullet N is a dimensionality of ${f x}$,
- p is a number of functions in the dictionary

If $m\gg pN$ then computational complexity of the hessian calculation is significantly higher than of the hessian inversion

Let us define subsample $S_{subtrain} \subset S_{train}$ whith size $\hat{m} \ll m$ Now we can calculate approximation of the true hessian \mathcal{H} using only points from $S_{subtrain}$

$$\widehat{\mathcal{H}} = \sum_{i=1}^{\widehat{m}} h\left(\mathbf{x}_{i}, \Theta\right), \mathbf{x}_{i} \in S_{subtrain},$$

$$\widetilde{R}_{\Theta,\Theta} \approx \mathcal{H} \approx \widehat{\mathcal{H}}$$

How to select $S_{subtrain}$ from S_{train} ?

In order to approximate diagonal of the hessian with a maximal accuracy:

$$\operatorname{diag}\left(\widehat{\mathcal{H}}\right)\approx\operatorname{diag}\left(\mathcal{H}\right)$$

- 2 Include points with maximal residuals in $S_{subtrain}$
- \bullet Uniformly randomly select $S_{subtrain}$ (we use a new subsample for each iteration of the learning process)

BURNAEV

DOLAN-MORE CURVES

- Let $\{r_1, \ldots, r_n\}$ be the set of compared methods, $\{S_1, \ldots, S_T\}$ be the set of tasks (datasets), q_{ti} be the quality of the method i on the dataset t
- For each method i we introduce $p_i(\beta)$, a fraction of datasets, on which the method i is worse than the best one not more than β times:

$$p_i(\beta) = \frac{1}{T} \left| \left\{ t : q_{ti} \ge \frac{1}{\beta} \max_i q_{ti} \right\} \right|, \ \beta \ge 1$$

- ullet For example, $p_i(1)$ is a fraction of datasets where the method i is the best
- ullet A graph of $p_i(eta)$ is called Dolan-More curve for the method i
- This definition implies that the higher the curve, the better the method

• Random approximation works better than others