Ewiwilem Tochukwu Solomon ENG1603875

Question:

Minimize the door combination lock (sequential example: finite-state machine) state table, using an online Quine McCluskey tool.

Solution:

Fig. 1: Door combination lock state diagram

Symbolic states

			`		next	
reset	new	equal	state	state	mux	open/closed
1	-	-	-	S1	C1	closed
0	0	-	51	51	C1	closed
0	1	0	51	ERR	-	closed
0	1	1	51	52	C2	closed
0	0	-	52	52	C2	closed
0	1	0	52	ERR	-	closed
0	1	1	52	53	<i>C</i> 3	closed
O	0	_	53	53	C3	closed
Ö	1	0	53	ERR	-	closed
0	1	1	53	OPEN	_	closed
0	_	_	OPEN	OPEN	_	open
0	_	_	ERR	ERR	_	closed

Fig. 2: State Transition Table

SYMBOLS	ENCODING
S1	000
S2	001
S3	010
OPEN	011
ERR	100
C1	00
C2	01
C3	10
	I

Fig. 3: Encoding states Table

Reset New	Equal Current S s0, s1, s2	Next State n0, n1, n2		Open / Closed
1 0	000	000	00 00	0 0

Reset	New Equal	Reset	Current State s0, s1, s2	Next State n0, n1, n2	Next Mux c0, c1	Open / Closed
			50, 51, 52	110, 111, 112		
0	1 0	0	000	100		0
0	1 1	0	000	001	01	0
0	0	0	001	001	01	0
0	$1 \qquad \overline{0}$	0	001	100		0
0	1 1	0	001	010	$\overline{10}$	0
0	0	0	010	010	10	0
0	$1 \qquad \overline{0}$	0	010	100		0
0	1 1	0	010	011		0
0		0	011	011		1
0		0	100	100		0
					_	0

Fig. 4: Encoded State Transition Table

The outputs: n0, n1, n2, c0, c1 and Open. The input variables: r, n, e, s0, s1, s2.

<u>AtozMath's Online Quine McCluskey tool</u> was used to find the minimal expression for each output as shown in the following sections.

For n0

Minterm = 16,17,18,4,12,20,28

Don't Care = 5,6,7,13,14,15,21,22,23,29,30,31

Variable = r,n,e,s0,s1,s2 using Quine-McCluskey

See solution here

Prime implicant chart

PIs\Minterms	4	12	16	17	18	20	28	r,n,e,s0,s1,s2
16,17,20,21			X	X		X		010-0-
16,18,20,22			X		X	X		0100
4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31	X	X				X	X	01

Extracted essential prime implicants: 0--1--,010-0-,010--0

All extracted essential prime implicants : 0--1--,010-0-,010--0 Minimal QuineMcCluskey Expression = r's0 + r'ne's1' + r'ne's2'

For n1

Minterm = 25,2,10,26,3,11,19,27 Don't Care = 5,6,7,13,14,15,21,22,23,29,30,31 Variable = r,n,e,s0,s1,s2 using Quine-McCluskey See solution here

Prime implicant chart

PIs\Minterms	2	3	10	11	19	25	26	27	r,n,e,s0,s1,s2
25,27,29,31						X		X	0111
2,3,6,7,10,11,14,15	X	X	X	X					001-
3,7,11,15,19,23,27,31		X		X	X			X	011
10,11,14,15,26,27,30,31			X	X			X	X	0-1-1-
5,7,13,15,21,23,29,31									01-1
6,7,14,15,22,23,30,31									011-

Extracted essential prime implicants: 00--1-,0---11,011--1,0-1-1-

All extracted essential prime implicants : 00-1-0-1101-10-1-1Minimal QuineMcCluskey Expression = r'n's1 + r's1s2 + r'nes2 + r'es1

For n2

Minterm = 24,1,9,26,3,11,19,27 Don't Care = 5,6,7,13,14,15,21,22,23,29,30,31 Variable = r,n,e,s0,s1,s2 using Quine-McCluskey <u>See solution here</u>

Prime implicant chart

PIs\Minterms	1	3	9	11	19	24	26	27	r,n,e,s0,s1,s2
24,26						X	X		0110-0
26,27,30,31							X	X	011-1-
1,3,5,7,9,11,13,15	X	X	X	X					001
3,7,11,15,19,23,27,31		X		X	X			X	011
5,7,13,15,21,23,29,31									01-1
6,7,14,15,22,23,30,31									011-

Extracted essential prime implicants: 00---1,0---11,0110-0

All extracted essential prime implicants: 00---1,0---11,0110-0

Minimal QuineMcCluskey Expression = r'n's2 + r's1s2 + r'nes0's2'

For c0

Minterm = 25,2,10

DontCare = 16,17,18,26,4,12,20,28,3,11,19,27,5,6,7,13,14,15,21,22,23,29,30,31

Variable = r,n,e,s0,s1,s2

using Quine-McCluskey

See solution here

Prime implicant chart

PIs\Minterms	2	10	25	r,n,e,s0,s1,s2
16,17,18,19,20,21,22,23				010
17,19,21,23,25,27,29,31			X	011
2,3,6,7,10,11,14,15,18,19,22,23,26,27,30,31	X	X		01-
4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31				01

Extracted essential prime implicants: 0---1-,01---1

All extracted essential prime implicants : 0---1-,01---1Minimal QuineMcCluskey Expression = r's1 + r'ns2

For c1

Minterm = 24,1,9 DontCare = 16,17,18,26,4,12,20,28,3,11,19,27,5,6,7,13,14,15,21,22,23,29,30,31 Variable = r,n,e,s0,s1,s2 using Quine-McCluskey See solution here

Prime implicant chart

PIs\Minterms	1	9	24	r,n,e,s0,s1,s2
1,3,5,7,9,11,13,15	X	X		001
1,3,5,7,17,19,21,23	X			0-01
16,18,20,22,24,26,28,30			X	010
16,17,18,19,20,21,22,23				010
3,7,11,15,19,23,27,31				011
18,19,22,23,26,27,30,31				011-
4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31				01

Extracted essential prime implicants: 00---1,01---0

All extracted essential prime implicants : 00-1,01-0Minimal QuineMcCluskey Expression = r'n's2 + r'ns2'

For Open

Minterm = 3,11,19,27 DontCare = 5,6,7,13,14,15,21,22,23,29,30,31 Variable = r,n,e,s0,s1,s2 using Quine-McCluskey <u>See solution here</u>

Prime implicant chart

PIs\Minterms	3	11	19	27	r,n,e,s0,s1,s2
3,7,11,15,19,23,27,31	X	X	X	X	011
5,7,13,15,21,23,29,31					01-1
6,7,14,15,22,23,30,31					011-

Extracted essential prime implicants : 0---11

All extracted essential prime implicants : 0---11 Minimal QuineMcCluskey Expression = r's1s2