Lecture 11: Quadratic Forms and Singular Value Decomposition

Baboo J. Cui, Yangang Cao July 18, 2019

Contents

1	Symmetric and Skew Symmetric Matrices	2
2	Quadratic Forms	2
3	Bounds of Quadratic Forms	2
4	Positive/Negative Definite Matrices	2
5	Characterizing Positive Definite Matrices	3
6	Comparison of Symmetric Matrices	3
7	Ellipsoids	3
8	(Induced) Matrix Norm	3
9	Properties of Induced Matrix Norm	4
10	Characterizing L^2 Matrix Norm	4
11	Singular Value Decomposition (SVD)	4
12	Finding U and V in SVD	4
13	Constructive Proof of SVD	5
14	Transformation Interpretation of SVD	5
15	Pseudo-Inverse	5
16	Least Square Solutions of Linear Equations	6
17	Least Norm Solutions of Linear Equations	6
18	Lower Rank Approximations	6

1 Symmetric and Skew Symmetric Matrices

 $A \in \mathbb{R}^{n \times n}$ is **symmetric** if $A^T = A$.

Fact:

For a symmetric matrix A, all of its eigenvalues are real and all of its eigenvectors are orthogonal. \bullet Symmetric A can be diagonalized by an orthogonal matrix Q:

 $Q^{-1}AQ = Q^TAQ = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

A is skew symmetric if $A^T = -A$.

Fact

For a skew symmetric matrix A, all of its eigenvalues are purely imaginary.

- \bullet If n is odd, then A has at least a zero eigenvalue
- \bullet Skew symmetric A can be diagonalized (by a unitary matrix)5

2 Quadratic Forms

Quadratic form corresponding to a symmetric $A \in \mathbb{R}^{n \times n}$ is the function

$$f(x) = \langle x, Ax \rangle = x^T A x, \forall x \in \mathbb{R}^n$$

• Uniqueness of matrix representation: For symmetric $A, \tilde{A} \in \mathbb{R}^{n \times n}$

$$x^T A x = x^T \tilde{A} x, \forall x \in \mathbb{R}^n \quad \Leftrightarrow \quad A = \tilde{A}$$

• Why limiting to symmetric A?

3 Bounds of Quadratic Forms

Given $A = A^T \in \mathbb{R}^{n \times n}$, with sorted (real) eigenvalues $\lambda_{\min} \leq \cdots \leq \lambda_{\max}$

Fact

$$\lambda_{min}||x||^2 \le x^T Ax \le \lambda_{max}||x||^2, \, \forall x \in \mathbb{R}^n$$

4 Positive/Negative Definite Matrices

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called

- positive semidefinite if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$
 - Denoted $A \succ 0$
- positive definite if $x^T A x > 0$ for all $x \in \mathbb{R}^n, x \neq 0$
 - Denoted $A \succ 0$
- negative semidefinite if $-A \succeq 0$
 - Denoted $A \leq 0$
- negative definite if $-A \succ 0$
 - Denoted $A \prec 0$

5 Characterizing Positive Definite Matrices

That $A = A^T$ is positive semidefinite $(A \succeq 0)$ is equivalent to

- \bullet All eigenvalues of A are nonnegative
- All principal minors of A are nonnegative
- $A = BB^T$ for some $B \in \mathbb{R}^{n \times m}$

6 Comparison of Symmetric Matrices

Given two symmetric matrices A and \tilde{A} of the same dimension

- Denote $A \succeq \tilde{A}$ if $A \tilde{A} \succeq 0$
- Denote $A \succ \tilde{A}$ if $A \tilde{A} \succ 0$
- Denote $A \preceq \tilde{A}$ if $A \tilde{A} \preceq 0$
- Denote $A \prec \tilde{A}$ if $A \tilde{A} \prec 0$
- $A \succeq \tilde{A}$ means the quadratic forms $x^T A x \geq x^T \tilde{A} x, \forall x$
- $A \succ \tilde{A}$ means the quadratic forms $x^T A x > x^T \tilde{A} x, \forall x \neq 0$
- These relations are transitive, e.g., $A \succeq B$ and $B \succeq C \Rightarrow A \succeq C$

7 Ellipsoids

Each $A \succ 0$ is represented by an ellipsoid in \mathbb{R}^n centered at the origin:

$$\mathcal{E}_A := \left\{ x \in \mathbb{R}^n | x^T A x \le 1 \right\}$$

- Eigenvectors $v_i, i = 1, ..., n$, determine directions of semi-axes
- Eigenvalues $\lambda_i, i = 1, \dots, n$, determine lengths of semi-axes: semi-axis along v_i has length $\left(\frac{1}{\sqrt{\lambda_i}}\right)$

8 (Induced) Matrix Norm

Given $A \in \mathbb{R}^{m \times n}$ and the Euclidean vector norms $\|\cdot\|$ on \mathbb{R}^n and \mathbb{R}^m

Definition (Induced Matrix Norm):

The norm of the matrix $A \in \mathbb{R}^{m \times n}$ induced from the vector norm $\|\cdot\|$ is:

$$\|A\|:=\sup_{x\in\mathbb{R}^n,x\neq 0}\frac{\|Ax\|}{\|x\|}$$

• Induced matrix norm is called the spectrum norm (or L^2 norm)

9 Properties of Induced Matrix Norm

Induced matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$:

- $\|\alpha A\| = |\alpha| \|A\|, \forall \alpha \in \mathbb{R}$
- $||A + B|| \le ||A|| + ||B||$ (Triangle Inequality)
- ||A|| = 0 if and only if A = 0

Moreover, it has the additional properties:

- $||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$
- $||AB|| \le ||A|| \cdot ||B||$ (assume the product makes sense)

10 Characterizing L^2 Matrix Norm

For
$$A \in \mathbb{R}^{m \times n}$$
, $||A||^2 = \sup_{x \neq 0} \frac{||Ax||^2}{||x||^2} = \sup_{x \neq 0} \frac{x^\top A^T A x}{x^T x} = \lambda_{\max} \left(A^T A \right)$

Fact

The L^2 norm of matrix $A \in \mathbb{R}^{m \times n}$ is

$$||A|| = \sqrt{\lambda_{\max}(A^T A)}$$

11 Singular Value Decomposition (SVD)

Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$A = U\Sigma V^T$$

- $U = \begin{bmatrix} u_1 & \dots & u_m \end{bmatrix} \in \mathbb{R}^{m \times m}$ is orthogonal: $U^T U = U U^T = I_m$
- $V = [v_1 \cdots v_n] \in \mathbb{R}^{n \times n}$ is orthogonal: $V^T V = V V^T = I_n$
- $\Sigma = \begin{bmatrix} \Sigma_{+} & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{m \times n}$ where $\Sigma_{+} = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{r})$ with $\sigma_{1} \geq \dots \geq \sigma_{r} > 0$ and $r = \operatorname{rank}(A)$

12 Finding U and V in SVD

$$A^T A = V \Sigma^T \Sigma V^T$$
, $AA^T = U \Sigma \Sigma^T U^T$

Fact:

The L^2 norm of $A \in \mathbb{R}^{m \times n}$ is its largest singular value:

$$||A|| = \sigma_{\max}(A) = \sqrt{\lambda_{\max}(AA^T)} = \sqrt{\lambda_{\max}(A^TA)}$$

13 Constructive Proof of SVD

14 Transformation Interpretation of SVD

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T = U_1 \Sigma_+ V_1^T = \sum_{i=1}^r \sigma_r u_i v_i^T$$

Considered as a linear map from \mathbb{R}^n to \mathbb{R}^m

- \bullet maps v_1 to $\sigma_1 u_1$ (most sensitive input/output direction)
- ...
- maps v_r to $\sigma_r u_r$
- maps v_{r+1}, \ldots, v_n to 0
- The range space of A is $\mathcal{R}(A) = \mathcal{R}(U_1) = \operatorname{span}\{u_1, \dots, u_r\}$
- The null space of A is $\mathcal{N}(A) = \mathcal{R}(V_2) = \operatorname{span}\{v_{r+1}, \dots, v_n\}$

15 Pseudo-Inverse

For any $A \in \mathbb{R}^{m \times n}$ with the SVD

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T = U_1 \Sigma_+ V_1^T$$

its **pseudo-inverse** (or **Moore-Penrose** inverse) is defined as

$$A^{\dagger} := \left[\begin{array}{cc} V_1 & V_2 \end{array} \right] \left[\begin{array}{cc} \Sigma_+^{-1} & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} U_1 & U_2 \end{array} \right]^T = V_1 \Sigma_+^{-1} U_1^T \in \mathbb{R}^{n \times m}$$

Properties of pseudo-inverse:

- $\bullet \ \left(A^{\dagger} \right)^{\dagger} = A$
- $(\alpha A)^{\dagger} = \alpha^{-1} A^{\dagger}$ for $\alpha \neq 0$
- $\bullet \ \left(A^T\right)^\dagger = \left(A^\dagger\right)^T$
- AA^{\dagger} is the projection matrix onto $\mathcal{R}(A)$
- $A^{\dagger}A$ is the projection matrix onto $\mathcal{N}(A)^{\perp}$
- $AA^{\dagger}A = A$, and $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- For nonsingular square matrix $A, A^{\dagger} = A^{-1}$

16 Least Square Solutions of Linear Equations

For $A \in \mathbb{R}^{m \times n}$, consider the linear equation

$$Ax = y$$

Its **least square solution** is defined as

$$x^* = \operatorname{argmin}_x ||Ax - y||^2$$

Fact:

A least square solution is given by $x^* = A^{\dagger}y$

In the special case when A is one-to-one (tall, $m \ge n$, and full rank, r = n)

$$A^{\dagger} = \left(A^T A\right)^{-1} A^T$$

- In this case, A^{\dagger} is a left inverse of $A: (A^{\dagger}A) = I_n$
- x^* is the only least square solution

17 Least Norm Solutions of Linear Equations

For $A \in \mathbb{R}^{m \times n}$, consider the linear equation

$$Ax = i$$

Assume $y \in \mathcal{R}(A)$. The **least norm solution** is defined as

$$x^* = \operatorname{argmin}_{x \text{ such that } Ax = y} ||x||$$

Fact:

The least norm solution is given by $x^* = A^{\dagger}y$

If in particular A is onto, i.e., A is fat $(m \le n)$ and full rank (r = m)

$$A^{\dagger} = A^T \left(A A^T \right)^{-1}$$

• In this case, A^{\dagger} is a right inverse of $A: (AA^{\dagger}) = I_m$

18 Lower Rank Approximations

Suppose $A \in \mathbb{R}^{m \times n}$, rank(A) = r, has SVD

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Problem: Find a lower rank matrix \hat{A} , rank $(\hat{A}) = p < r$, such that $\hat{A} \simeq A$ in the sense that \hat{A} is the solution of the following optimization problem:

$$\min_{\hat{A}} \|A - \hat{A}\|$$

Solution: The optimal rank-p approximator of A is

$$\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^T$$

Interpretation of singular values: singular value $\sigma_i, i=1,\ldots,r$, is the distance of A to the nearest rank-(r-i) matrix:

$$\sigma_i = \min\{\|A - \hat{A}\||\operatorname{rank}(\hat{A}) = r - i\}$$