Now we want to bound each term in (* A) Recall: Lo (h) = [= ND [l(h, z)] $L_s(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$ Important: each zi is sampled i.i.d. From $\mathbb{E}\left[\ell(h,z_i)\right] = \mathbb{E}_{z \sim 0}\left[\ell(h,z)\right] = L_0(h)$ Therefore: (E[Ls(h)]= # [1 2 L(h,zi)] by def. of Ls(h)
by literating = 1 = 1 | E[l(h, 2i)]
of expectation $=\frac{1}{m}$, m, $L_0(h) = L_0(h)$ Let o; be the r.v. given by l(h, &i) ith elver of S Since h is fixed and z; is sampled i.i.d. from D

> 00,02,..., om the i.i.d. t.v. Note that: $L_s(h) = \frac{1}{m} \sum_{i=1}^{m} O_i$. Let's define $\mu = L_0(h)$ Given assumption that $l: \mathcal{H} \times \mathcal{Z} \rightarrow [0,1]$ we have $0: \in [0,1], \mathcal{H}:=1,...m$. We can apply floethding's inequality with a = 0, b = 1 ti=1-m $\mathbb{O}\left(\left\{S:\left|L_{S}(\mathbb{A})-L_{O}(\mathbb{A})\right|>\mathcal{E}\right\}\right)=\mathsf{Pr}\left[\left|\left(\frac{1}{m},\sum_{i=1}^{m}\theta_{i}\right)-\mu_{i}\right|>\mathcal{E}\right]$

by the Holy's ineq. $\rightarrow \leq 2 \cdot e$ Combining the inequality obove with (AA) $O(95: \exists heH, |Ls(h)-L_0(h)| > \epsilon) \leq \sum_{heH} 2e^{-2\ln \epsilon^2}$

$$=2|\mathcal{H}|e^{-2m\mathcal{E}^2}$$

$$\begin{array}{l}
\left(\frac{7}{3}S: \exists h \in \mathcal{H}, |L_{5}(h) - L_{0}(h)| \gamma \varepsilon\right) \leq \\
\leq 2 |\mathcal{H}| e^{-2\varepsilon^{2}} l_{3} \left(\frac{2|\mathcal{H}|}{\delta}\right) \cdot \frac{1}{2\varepsilon^{2}} \\
= 2 |\mathcal{H}| e^{-\left|\frac{2}{3}\left|\frac{\mathcal{H}|}{\delta}\right|} \\
= 2 |\mathcal{H}| \cdot \frac{\varepsilon}{2|\mathcal{H}|} = \delta
\end{array}$$

for example:
$$m = \left[\frac{1}{5}\left(\frac{2|\mathcal{H}|}{5}\right) \frac{1}{2\xi^2}\right]$$

Machine Learning

Bias-Complexity Trade-off

Fabio Vandin

November 10th, 2023

Our Goal in Learning

Given:

- training set: $S = ((x_1, y_1), \dots, (x_m, y_m))$
- loss function: $\ell(h,(x,y))$

Want: a function \hat{h} such that $L_{\mathcal{D}}(\hat{h})$ is small

We can pick: the learning algorithm A, that given S will produce $\hat{h} = A(S)$

Note: A comprises:

- the hypothesis set H
- the procedure to pick $\hat{h} = A(S)$ from \mathcal{H}

Question: is there a *universal learner*, i.e., an (implementable) algorithm \underline{A} that predicts the best \hat{h} for any distribution $\underline{\mathcal{D}}$?

The No Free Lunch Theorem

The following answers the previous question for some specific settings.

Theorem (No-Free Lunch)

Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- there exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$
- with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

Note: there are similar results for other learning tasks.

No Free Lunch and Prior Knowledge

Corollary

Let \mathcal{X} be an infinite domain set and let \mathcal{H} be the set of all functions from \mathcal{X} to $\{0,1\}$. Then, \mathcal{H} is not PAC learnable.

What's the implication?

We need to use our prior knowledge about \mathcal{D} to pick a *good* hypothesis set.

How do we choose \mathcal{H} ?

- we would like \mathcal{H} to be *large*, so that it may contain a function h with small $L_{\mathcal{D}}(h)$
- no free lunch ⇒ H cannot be too large!

Error Decomposition

Let h_S be an ERM_H hypothesis.

Then

$$L_{\mathcal{D}}(h_{\mathcal{S}}) = \epsilon_{\mathsf{app}} + \epsilon_{\mathsf{est}}$$

where

- $\epsilon_{\mathsf{app}} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ (approximation error)
- $\epsilon_{\mathsf{est}} = L_{\mathcal{D}}(h_{\mathsf{S}}) \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ (estimation error)

Approximation error: $\epsilon_{app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

- derives from our choice of \mathcal{H}
- once we have chosen $\mathcal{H} \Rightarrow \epsilon_{app}$ is unavoidable!
- to decrease it, chose a "larger" ${\cal H}$

Estimation error. $\epsilon_{\text{est}} = L_{\mathcal{D}}(h_S) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

- could be avoided if had chosen the best hypothesis!
- to decrease, we need a low number of hypotheses in H so that training error is good estimate of generalization error for all of them ⇒ need a "small" H

Complexity of \mathcal{H} and Error Decomposition

Estimating $L_{\mathcal{D}}(h_{\mathcal{S}})$

How can we estimate the generalization error $L_D(h)$ for a function h, for example $h_S \in ERM_H$?

We can use a **test set**: new set of samples not used for picking h_S (=the training set).

Notes:

- the test must not be looked at until we have picked our final hypothesis!
- in practice: we have 1 set of samples and we split it in training set and test set.

Machine Learning

Model Selection and Validation

Fabio Vandin

November 10th, 2023

Model Selection

When we have to solve a machine learning task:

- there are different algorithms/classes
- algorithms have parameters

Question: how do we choose a algorithm or value of the parameters?

Example

Regression task, $\mathcal{X} = \mathbb{R}, Y = \mathbb{R}$

Decision: $\mathcal{H} = \text{polynomials}$.

Note: can be done using the linear regression machinery we have seen!

How do we pick the degree d of the polynomial?

What about considering the empirical risk of best hypothesis of various degrees (e.g., d=2, 3, 10)?

Best hypotheses for degree $d \in \{2, 3, 10\}$

Empirical risk is not enough!

Approach we will consider: validation!