OMCIT 592 Module 08 Self-Paced 01 (instructor Val Tannen)

Reference to this self-paced segment in seg.08.02

This is a segment that contains material meant to be learned at your own pace. We are trying to assist you in this endeavor by organizing the material in a manner similar to the way it is outlined in the recorded segments, however with one additional suggestion.

When you see the following marker:

we suggest that you stop and make sure you thoroughly understood the material presented so far before you proceed further.

Proofs of independence properties

Throughout this segment, let (Ω, Pr) be an arbitrary probability space, and let E, A, B, F be arbitrary events in this space.

Recall the following from the lecture segment "Probability properties":

Property P0. $Pr[E] \geq 0$

Property P1. $Pr[\Omega] = 1$

Property P2. If A, B are disjoint then $Pr[A \cup B] = Pr[A] + Pr[B]$

Property P3. If $A \subseteq B$ then $Pr[A] \leq Pr[B]$

Property P4. $Pr[\overline{E}] = 1 - Pr[E]$

Property P5. $Pr[\emptyset] = 0$

Property P6. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Property P7. $Pr[A \cup B] \leq Pr[A] + Pr[B]$

The proofs of these properties were given in the segment "Proofs of probability properties".

In the lecture segment "Independence" we stated four properties of **event independence**:

Property Ind (i). If Pr[A] = 0 then $A \perp B$ for any B.

Property Ind (ii). $\Omega \perp E$ for any E.

Property Ind (iii). If $A \perp B$ then $\Pr[A \cup B] = 1 - (1 - \Pr[A])(1 - \Pr[B])$.

Property Ind (iv). $A \perp B$ iff $\overline{A} \perp B$ iff $A \perp \overline{B}$ iff $\overline{A} \perp \overline{B}$

Properties Ind (i) and Ind (iii) were proved in lecture.

Here we prove properties Ind (ii) and Ind (iv).

Proof of Ind (ii). First, note that $\Omega \cap E = E$. Using also (P1) we obtain

$$\begin{aligned} \Pr[\Omega \cap E] &=& \Pr[E] \\ &=& \Pr[E] \cdot 1 \\ &=& \Pr[E] \cdot \Pr[\Omega] \end{aligned}$$

It follows that $\Omega \perp E$.

Proofs of independence properties (continued)

Proof of Ind (iv).

Lemma. For any two events E, F if $E \perp F$ then $\overline{E} \perp F$.

Proof (of Lemma). Observe that $F = \Omega \cap F$ and that $E \cup \overline{E} = \Omega$. Using these, and the fact that set intersection distributes over set union (check it with an Euler-Venn diagram) we obtain

$$F = (E \cup \overline{E}) \cap F = (E \cap F) \cup (\overline{E} \cap F)$$

Notice that $E \cap F$ and $\overline{E} \cap F$ are disjoint so we can apply (P2):

$$\Pr[F] = \Pr[(E \cap F) \cup (\overline{E} \cap F)] = \Pr[E \cap F] + \Pr[\overline{E} \cap F]$$

The assumption $E \perp F$ means that $\Pr[E \cap F] = \Pr[E] \cdot \Pr[F]$. Plugging this into the previous equality we obtain

$$\Pr[F] = \Pr[E] \cdot \Pr[F] + \Pr[\overline{E} \cap F]$$

Hence

$$\Pr[\overline{E} \cap F] = \Pr[F] - \Pr[E] \cdot \Pr[F] = \Pr[F](1 - \Pr[E]) = \Pr[F] \cdot \Pr[\overline{E}])$$

Therefore $\overline{E} \perp F$.

Now we apply the lemma to prove that the four independence assertions in Ind (iv) are equivalent. Because implication is transitive it will suffice to show that

$$A \perp B \ \Rightarrow \ \overline{A} \perp B \ \Rightarrow \ \overline{A} \perp \overline{B} \ \Rightarrow \ A \perp \overline{B} \ \Rightarrow \ A \perp B$$

We will also need to use the symmetry of independence, that is, $G \perp H$ iff $H \perp G$, and the fact that for any event G we have $\overline{\overline{G}} = G$.

To show $A \perp B \Rightarrow \overline{A} \perp B$ we take E = A and F = B in the lemma.

To show $\overline{A} \perp B \Rightarrow \overline{A} \perp \overline{B}$ we take E = B and $F = \overline{A}$ in the lemma.

To show $\overline{A} \perp \overline{B} \Rightarrow A \perp \overline{B}$ we take $E = \overline{A}$ and $F = \overline{B}$ in the lemma.

To show $A \perp \overline{B} \implies A \perp B$ we take $E = \overline{B}$ and F = A in the lemma.

