Quantum Kernel Machine Learning: applicazione alla fisica delle alte energie

Progetto finale, corso di Meccanica Quantistica Avanzata

Università degli Studi di Trieste A.A. 2021/2022

Yasmin Bougammoura
Data Science and Scientific
Computing

Francesco Tomba

Data Science and Scientific

Computing

Giacomo Zelbi Fisica Teorica

Obiettivo:

L'obiettivo del progetto è applicare **Quantum Machine Learning** a un problema di classificazione riguardante la fisica delle alte energie.

Si testano tecniche di ML - in particolare di **Kernel Support Vector Machine** - confrontando i risultati ottenuti utilizzando usando kernel implementati con tecniche di **computazione quantistica** con quelli ottenuti da uno dei kernel classici più diffusi.

Il problema da affrontare:

Si considera il processo **ttH(bb)** di produzione del bosone di Higgs tramite la collisione di una coppia top quark-antiquark.

In particolare, si vuole riconoscere quando nel processo è stato prodotto un bosone H che è poi decaduto in una coppia b-(anti-b) (**segnale**) e quando invece ciò non è avvenuto (**background**).

La classificazione è binaria.

I dati analizzati provengono da una simulazione e sono scaricabili dal sito:

https://qml-hep.github.io/qml_web/data/

*Belis, Vasileios, et al. "Higgs analysis with quantum classifiers." *arXiv preprint arXiv:2104.07692* (2021).

Il problema da affrontare: ""

Per ogni evento di collisione (osservazione) sono misurate alcune quantità fisiche dei prodotti di decadimenti.

Queste quantità sono **67** e vengono analizzate congiuntamente, con un'**analisi multivariata***.

*Informazioni più dettagliate: https://qml-hep.github.io/qml_web/data/

Pre-processazione dei dati

Riduzione della dimensionalità del dataset da 67 a 16 (o 8) features, usando 3 tecniche:

- a) **AUC**: in base del loro potere di separazione.
- b) **Principal Component Analysis**: diagonalizzazione della matrice di correlazione e proiezione sulla nuova base
- c) **Nystroem**: variante della kernel PCA che massimizza la differenza delle distribuzioni di fondo e segnale.

Obiettivo: eliminare features ridondanti e ridurre la complessità del problema

Tecnica di analisi: Support Vector Machines

Per il problema di **classificazione binaria** si sceglie di usare una generalizzazione delle **SVM**.

- Utilizzo di un iperpiano che divide in 2 lo spazio delle variabili descrittive (features).
- A ogni osservazione (punto) viene assegnata un'etichetta (label) in base alla zona dello spazio in cui si trova rispetto all'iperpiano.
- Le classi devono essere linearmente separabili.

Tecnica di analisi: Kernel Support Vector Machines

Le **Kernel SVM** estendono l'algoritmo di **SVM** a casi in cui le classi non sono linearmente separabili.

I dati sono mappati attraverso una **feature map** φ in uno spazio di dimensione più alta, dove è possibile dividerli linearmente.

Lo spazio in cui vengono mappate le features può essere uno **spazio di Hilbert**.

Tecnica di analisi: Quantum Kernel

Alla **feature map** ϕ è possibile associare un Kernel: K(x,y) con x e y vettori dai dati *d*-dimensionali che soddisfa la proprietà:

$$K(\vec{x}, \vec{y}) = |\langle \phi(\vec{x}) | \phi(\vec{y}) \rangle|^2$$

In generale non è necessaria una conoscenza esplicita di ϕ (vedi **rbf kernel**).

Se $\Phi: \mathbb{R}^d \to \mathcal{H}$ spazio di Hilbert, il kernel si può calcolare con l'implementazione di un circuito quantistico, dove le feature maps sono circuiti quantistici parametrizzati sui valori del vettore x.

$$|0\rangle \longrightarrow U^{\dagger}(\vec{x}_i) \longrightarrow U(\vec{x}_j) \longrightarrow K_{ij} = |\langle 0|U^{\dagger}(\vec{x}_i)U(\vec{x}_j)|0\rangle|^2 \qquad U(\vec{x}_j) |0\rangle = |\phi(\vec{x}_j)\rangle$$

L'approccio computazionale è **ibrido**, perché nell'algoritmo SVM si integra un componente valutato da un computer quantistico.

Quantum Feature maps: **U2Reuploading**

[1] Belis, Vasilis & González-Castillo, Samuel & Reissel, Christina & Vallecorsa, Sofia & Combarro, Elias & Dissertori, Günther & Reiter, Florentin. (2021). Higgs analysis with quantum classifiers. EPJ Web of Conferences. 251. 03070. 10.1051/epjconf/202125103070.

I 16 valori del vettore x parametrizzano dei gate U implementando una rotazione nello spazio **C**²

L'obiettivo è codificare x nei coefficienti della sovrapposizione di più stati.

In principio quindi può codificare un vettore appartenente a **R**^d utilizzando *log (d)* qubit.

Vengono utilizzati 2*log₂(d) qubit per codificare d features, perchè viene generato un circuito meno profondo. (ref. [1])

Il codice che genera il circuito della mappa è tratto dalla seguente repository

https://github.com/QML-HEP/ae_qml

Quantum Feature maps: Pauli Feature Map

Il circuito necessita di 1 qubit per ogni feature di cui fare l'encoding.

Queste feature maps implementano l'encoding di un vettore x in \mathbb{R}^n attraverso la costruzione del seguente circuito.

$$U_{\Phi(ec{x})} = \exp \left(i \sum_{S \subseteq [n]} \phi_S(ec{x}) \prod_{i \in S} P_i
ight) \qquad \qquad \phi_S(ec{x}) = \left\{ egin{aligned} x_0 & ext{if } k = 1 \ \prod_{j \in S} (\pi - x_j) & ext{otherwise} \end{aligned}
ight.$$

Dove **S** è una combinazione di lunghezza al massimo $k=1,\ldots,n$ e P_i è una matrice di pauli $\{I,X,Y,Z\}$ che agisce su q_i .

S determina l'entanglement tra diversi qubit, mentre la lunghezza massima k delle combinazioni determina lo scaling del numero di gate di singolo qubit necessari per l'implementazione del circuito.

.

Quantum Feature maps:

ZZFeatureMap

- Combinazioni di features di lunghezza k = 2
- Abbiamo usato un **entanglement lineare**, preservando cioè solo le combinazioni del tipo

La scelta è dovuta al costo in termini di tempi di CPU richiesti dal simulatore offerto da Qiskit.

Quantum Feature maps: XYFeatureMap

- Combinazioni di features di lunghezza k = 2
- entanglement lineare

Training, test e metriche di confronto

I dati utilizzati dall'algoritmo ibrido sono stati ridotti: 500 osservazioni per il training e 500 per il test.

La decisione è dovuta al costo computazionale della valutazione del kernel quantistico. Per training e test dei modelli servono $\Theta(n^2)$ valutazioni del Kernel.

Riassumendo:

- 8 o 16 features estratte con AUC, NYS, PCA
- un kernel classico, tre kernel quantistici

Le metrica di confronto per valutare l'efficacia dei modelli sono state:

- 1. il punteggio ROC-AUC
- 2. le loro **Matrici di Confusione** sui dataset di **Training** e **Test**, non presente negli articoli consultati.

Risultati: 8 features 3 runs

Model	T train [s]	T test [s]	AUC train	AUC test
auc+rbf	0.06 +- 0.01	0.01 +- 0.00	0.71 +- 0.01	0.64 +- 0.01
auc+u2	5.13 +- 0.17	5.07 +- 0.02	0.66 +- 0.02	0.64 +- 0.00
auc+xy	13.23 +- 0.21	13.67 +- 0.31	0.80 +- 0.01	0.64 +- 0.01
auc+zz	14.46 +- 0.43	14.19 +- 0.27	0.79 +- 0.01	0.63 +- 0.00
pca+rbf	0.11 +- 0.00	0.01 +- 0.00	0.77 +- 0.00	0.58 +- 0.01
pca+u2	5.52 +- 0.58	5.09 +- 0.04	0.78 +- 0.00	0.58 +- 0.02
pca+xy	13.30 +- 0.03	13.09 +- 0.04	0.66 +- 0.44	0.52 +- 0.08
pca+zz	14.56 +- 0.48	14.37 +- 0.26	0.67 +- 0.47	0.53 +- 0.06
nys+rbf	0.11 +- 0.00	0.01 +- 0.00	0.73 +- 0.01	0.58 +- 0.02
nys+u2	4.97 +- 0.04	5.02 +- 0.11	0.56 +- 0.11	0.54 +- 0.08
nys+xy	13.49 +- 0.49	13.47 +- 0.35	0.63 +- 0.04	0.59 +- 0.02
nys+zz	14.28 +- 0.12	14.04 +- 0.05	0.62 +- 0.03	0.58 +- 0.02

- I migliori risultati vengono ottenuti con la selezione delle variabili tramite AUC
- I modelli hanno le medesime prestazioni
- Il tempo di calcolo delle mappe xy e zz sono di un fattore 3 maggiori di quello della mappa u2

Risultati: 16 features 3 runs

Model	T train [s]	T test [s]	AUC train	AUC test
auc+rbf	0.07 +- 0.00	0.01 +- 0.00	0.68 +- 0.01	0.62 +- 0.04
auc+u2	9.72 +- 2.03	9.60 +- 1.78	0.66 +- 0.01	0.61 +- 0.04
auc+xy	120.80 +- 0.45	119.51 +- 0.79	0.98 +- 0.00	0.59 +- 0.01
auc+zz	129.62 +- 20.72	128.30 +- 19.37	0.98 +- 0.00	0.59 +- 0.01
pca+rbf	0.12 +- 0.00	0.01 +- 0.00	0.87 +- 0.01	0.60 +- 0.02
pca+u2	8.32 +- 0.19	8.28 +- 0.11	0.66 +- 0.46	0.53 +- 0.08
pca+xy	119.46 +- 0.58	119.47 +- 0.45	1.00 +- 0.00	0.47 +- 0.02
pca+zz	112.05 +- 2.44	112.77 +- 1.26	1.00 +- 0.00	0.47 +- 0.01
nys+rbf	0.11 +- 0.00	0.01 +- 0.00	0.79 +- 0.04	0.58 +- 0.00
nys+u2	8.29 +- 0.15	8.24 +- 0.04	0.47 +- 0.11	0.47 +- 0.05
nys+xy	121.23 +- 2.78	124.39 +- 4.97	0.66 +- 0.03	0.59 +- 0.01
nys+zz	113.45 +- 1.65	113.23 +- 0.71	0.57 +- 0.13	0.53 +- 0.08
- Control Paragraph	AND DYNAMICO OF THE PARTY OF TH	3597.W(1993	Services Services	+ Code +

- I migliori risultati vengono ottenuti con la selezione delle variabili tramite AUC
- I modelli migliori sono auc+rbf, auc+u2
- Il divario tra tempi di calcolo dei modelli si allarga.
- I tempi di xy e zz

 aumentano di un
 fattore 10 rispetto
 all'esperimento su 8
 features

Risultati:

Confronto con 16 features:

- -AUC RBF classico
- -AUC U2 quantistico

Confusion matrix sul set di test, **distribuzioni** delle probabilità assegnate

0.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4 0.6

0.8 1.0

0.0 0.2

0.0 0.2 0.4 0.6 0.8 1.0

Considerazioni:

- Avendo fatto più run dello stesso modello su dati estratti randomicamente si conclude che:
 - I risultati classici rimangono simili a quelli quantistici
 - I risultati dello stesso modello rimangono simili tra le run
- I risultati rimangono simili utilizzando 8 qubit o 16 nei circuiti quantistici
- Il tempo di calcolo della cpu è di circa 4 ordini di grandezza maggiore (110 s xy contro 0.05 s rbf) tra algoritmo quantistico e classico

Bibliografia:

- https://giskit.org/documentation/machine-learning/tutorials/index.html
- Belis, Vasilis & González-Castillo, Samuel & Reissel, Christina & Vallecorsa, Sofia & Combarro, Elias & Dissertori,
 Günther & Reiter, Florentin. (2021). Higgs analysis with quantum classifiers. EPJ Web of Conferences. 251. 03070.
 10.1051/epjconf/202125103070. https://arxiv.org/abs/2104.07692
- Wu, Sau Lan, et al. "Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC." arXiv preprint https://arxiv.org/abs/2104.05059 (2021).