Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Компьютерные сети»

Выполнил студент: Мишутин Дмитрий Валерьевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2024 г.

Содержание

1	Постановка задачи		2	
2	Teo	рия	2 2	
3	Реализация		2	
4	Результаты		2	
5	Выводы		5	
6	Литература		5	
7	Приложения		5	
C	пис	ок иллюстраций		
	1	Зависимость числа сообщений от вероятности потери сооб-	ว	
	2	Зависимость времени работы от вероятности потери сообщения	3	
	3	Зависимость числа сообщений от ширины окна	4	
	4	Зависимость времени работы от ширины окна	5	

1 Постановка задачи

Требуется реализовать систему из 2-х объектов — отправителя (Sender) и получателя (Receiver) —, в которой участники будут обмениваться сообщениями по каналу связи с помощью протоколов автоматического запроса повторной передачи со скользящего окном: "Go-Back-N" и "Selective Repeat".

Необходимо выяснить зависимость времени работы и количество посланных сообщений от размера плавающего окна и вероятности потери сообщения для каждого протокола и сравнить их друг с другом.

2 Теория

Протоколы "Go-Back-N" и "Selective Repeat" являются протоколами скользящего окна: доставка сообщений происходит в рамках некоторого окна фиксированного размера. Ошибки выявляются и исправляются в рамках окна.

Основное различие между этими 2-мя протоколами в том, что после обнаружения подозрительного или поврежденного сообщения протокол "Go-Back-N" повторно передает все сообщения, не получившие подтверждения о получении, тогда как протокол "Selective Repeat" повторно передает только то сообщение, которое оказалось повреждено.

3 Реализация

Из языка Python 3.12.2 были использованы следующие модули:

- "numpy" генерация множества чисел;
- "matplotlib.pyplot" построение и отображение графиков;
- "time" замерка времени выполнения;
- "enum" создание типа с ограниченным множеством значений;
- "Thread" многопоточность.

4 Результаты

Оценка эффективности использования протоколов производится по числу сообщений, которые пришлось отправить, и по времени работы,

необходимому для получения всех сообщений без ошибок. Рассматриваются зависимости этих метрик от ширины окна и вероятности потери сообщения.

Рассмотрим зависимость этих метрик от размера окна и вероятности потери сообщения.

По умолчанию число сообщений равно 100, ширина окна 15, вероятность потери сообщения 0.3.

Рис. 1: Зависимость числа сообщений от вероятности потери сообщения

Рис. 2: Зависимость времени работы от вероятности потери сообщения

Рис. 3: Зависимость числа сообщений от ширины окна

Рис. 4: Зависимость времени работы от ширины окна

5 Выводы

По вышеизложенным результатам можно заметить, что в одинаковых условиях протоколу "Selective Repeat" требуется отправить меньше сообщений, чем протоколу "Go-Back-N".

Что ожидаемо, в силу разной обработки и повторной передачи потерянных сообщений. Протокол "Selective Repeat" работает значительно быстрее протокола "Go-Back-N".

6 Литература

- Баженов А.Н. «Интервальный анализ. Основы теории и учебные примеры: учебное пособие»;
- Баженов А.Н. «Естественнонаучные и технические применения интервального анализа: учебное пособие»;
- Баженов А.Н. Репозиторий "ComputerNetworks" на GitHub;

7 Приложения

Исходники лабораторной работы выложены на GitHub.