Sharath Matada

Email: sharath.matada@gmail.com Portfolio: www.sharathmatada.com Github: https://github.com/sharath-matada

EDUCATION

University of California, San Diego

Master of Science - Mechanical and Aerospace Engineering

La Jolla, United States of America September, 2022 - March, 2024

Relevant Coursework:

ECE276A: Sensing and Estimation in Robotics, ECE276B: Planning and Learning in Robotics, ECE271A: Statistical Learning, MAE204: Robotics, MAE207: Soft Robotics

National Institute of Technology, Karnataka(NITK)

Bachelor of Technology - Mechanical Engineering

Surathkal, India August 2014 - May, 2018

Relevent Courses: Automatic Control Engineering, Robotic Systems

Additional Courses: Deep Learning using PyTorch(IBM), Model Predictive Control

Publications

• Learning to Map Environment Representations to Value Functions for Motion Planning in Dynmaic Environments

In preparation to be submitted to NeurIPS 2024 Sharath Matada, Nikolay Atanasov

• Reconstructing Robot Motion from Video

In preparation to be submitted to **Science Robotics**Jingpei Lu, **Sharath Matada**, Yiyu Chen, Florian Ritcher, Quan Nguyen, Michael Yip Website

EXPERIENCE

• Graduate Research Assistant, Existential Robotics Lab, UCSD

Jul 2023 - Current, Advisor: Prof. Nikolav Atanasov, Assistant Professor

- Working on learning based motion planner for dynamic environments capable of real-time planning in high dimensional spaces that maps the Signed Distance Field of the environment to generate Value function based on the HJB Equation
- o Implemented a Neural SDF that can be generalized to dynamic environments using self-supervised learning

• Graduate Research Assistant, Advanced Robotics and Controls Lab, UCSD

 $0\mathrm{ct}\ 2022$ -Jun2023, Advisor: Prof. Michael Yip, Associate Professor

- Worked on reconstructing complex robot motion(dancing) from video on quadruped by Model Predictive Control(MPC) using off the shelf optimal control solvers
- \circ Successfully implemented the controller on Pybullet for Go1 robot at a frequency of 400 Hz in $\mathbf{C}++$ capable of running real-time
- Implemented State Estimator(Extended Kalman Filters) on the real Go1 Hardware Platform

• Senior Robotics Engineer, Systemantics(Collaborative Robotic Arm Maker)

Jun 2018 - Aug 2022, Advisor: Dr. Jagannath Raju, CTO

o Motion Control

- * Designed feedback controller(PID) and modeled friction, inertial and gravity effects
- * Worked on flexible joint control using full-state feedback

o Safety for Human-Robot Interaction

- * Worked on disturbance observer design to detect collisions with humans or external environment to improve safety for human-robot collaboration
- * Worked on implementation of admittance controller to achieve kinesthetic teaching (alternative method of teaching the robot by physically applying forces to the robot to move to a particular point in space) for intuitive teaching

o Robot Kinematics and Dynamics

- * Worked on optimizing kinematic architectures of hybrid mechanisms (combination of serial and parallel linkages) for maximum dexterity and minimum intertial load on each joint
- * Characterized the effect of joint elasticity on robot performance in task space

o Software Design

- st Worked on design of finite state machine and implementation of state estimator
- * Worked on trapezoidal commutation of BLDC motor

o Mechanical Design

- * Worked on integrated joint design (hollow bore) consisting of strain wave gearing, BLDC motor, output and input encoders and compact electromagnetic brakes
- * Designed compact spring-loaded electromagnetic brakes with the EM coil optimised for minimum power dissipation
- * Designed lightweight links and grippers for serial robots and precision components for the complex mechanisms

SKILLS SUMMARY

- Languages: Python, C, C++
- Simulation: CoppeliaSim, MuJoCo, PyBullet
- Machine Learning: Pytorch, Tensorflow, JAX, Keras
- Robotics Software Development: ROS2
- Others: Linux, Arduino, Raspberry Pi, MATLAB, Labview, GIT, MS Office

ECE276A: Sensing and Estimation in Robotics

University of California, San Diego

- * Conducted data synchronization between IMU and stereo camera image features for accurate and efficient measurements
- * Implemented EKF prediction for real-time positioning and orientation updates using SE(3) kinematics and IMU measurements
- * Developed EKF update step to correct landmark locations using Jacobian of observation model with visual observations
- * Simultaneously corrected car pose and landmark locations using observation model Jacobian w.r.t. car pose, feature locations
- * Analyzed sensitivity to motion and observation model noise and generated an environment map achieving 95% accuracy

ECE276B: Planning and Learning in Robotics

University of California, San Diego

- * Implemented a collision-checking mechanism for a robot's safe navigation in 3D maze-like environments towards the goal
- * Implemented and assessed weighted-A* and RRT, RRT* algorithms for the robot's goal-reaching performance
- * RRT achieved 30 % faster and more memory-efficient performance, while A* showed superior path quality with shorter path
- * Provided insights into expanded nodes, sampling method heuristic selection (Euclidean, Manhattan distance), aiding algorithm selection based on complexity, efficiency trade-offs, and graph creation efficiency in the sampling-based approach

INTERNSHIP EXPERIENCE

ABB Robotics

Bengaluru,India

Intern

May 2017 - July 2017

- * Developed a robotic system where an anthropomorphic robotic arm was attached to a 6-DOF IRB1600 ID ABB Industrial Robot to explore grasping.
- * Was involved in the mechanical design, programming and basic electronic design of the system.

NMCAD Lab, Aerospace Department, Indian Institute of Science

Bengaluru,India

IASc-INSA-NASI Joint Academies' Research Fellow (Summer Research Fellowship)

May 2016 - July 2016

- * Worked on Design of Flapping-wing type Micro Aerial Vehicles using self-actuated composites
- * The design was based on the flapping pattern of the rufous humming bird (Selasphorus Rufus) with the mechanism to allow 2 degrees of freedom for figure 8 like configuration

TEACHING EXPERIENCE

MAE3: Introduction to Mechanical Design Graduate Teaching Assistant

University of California, San Diego

Oct 2022 - Dec 2022

- * Designed bearing devices to demonstrate basic concepts of under-constraint, exact constraint and over-constraint bearing designs to students
- * Conducted physics review for MAE3 students
- * Conducted weekly office hours at the Design Studio
- * Graded clock report assignments

ACTIVITIES

Volunteer at Youth for Seva

A not-for-profit NGO in India supporting schools and other organisations in social sector

Amateur Runner and Cyclist

A weekend activity to explore new places and test personal limits

Former Secretary of Association for Computer Machinery, Student Chapter, NITK

Managed club activities such as the project expo

References

Dr.Jagannath Raju

Prof. Michael Yip

jagann ath @system antics.com.

CTO, Systemantics India Pvt. Ltd PhD, MIT

Associate Professor, UCSD

yip@ucsd.edu

Prof. Nikolay Atanasov

natan a sov@ucsd.edu

Assistant Professor, UCSD