

Universidad Nacional Autónoma de México

Facultad de Ingeniería

Base de Datos Tarea de Normalización

Alumno: Hernández Hernández Cristian

Profesor: Ing. Fernando Arreola Franco

Grupo: 1 Semestre: 2022-2

17 de abril de 2022

Relación del caso 1 con el caso 2 de la tarea 20

A	В	C	D	E	F	G
staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S3250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 – 8th Avenue, New York, NY 10012	212-371-3000

Caso 1:

Utilizando PK: A

A -> {B, C, D, E, F, G} A -> {B, C, D, E} E -> {F, G}

Caso 1:

PK: {A}

1FN

- ¿hay atributos multivaluados? NO
 ¿hay apos de repetición? NO
- ¿hay gpos de repetición? NO Cumple 1FN

2FN - ¿La pk es simple? SÍ Cumple 2FN

3FN

- ¿Hay transitividad entre atts no principales?
(M,1) Sí hay transitividad -> No cumple 3FN

Finalmente se obtienen las siguientes tablas:

staffNo	name	position	salary	branchNo
S1500	Tom Daniels	Manager	46000	B001
S0003	Sally Adams	Assistant	30000	B001
S0010	Mary Martinez	Manager	50000	B002
S3250	Robert Chin	Supervisor	32000	B002
S2250	Sally Stern	Manager	48000	B004
S0415	Art Peters	Manager	41000	B003

branchNo	branchAddress	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
B003	14 – 8th Avenue, New York, NY 10012	212-371-3000

En este primer caso tenemos como resultado 2 tablas, una representa a la entidad empleado y otra a la entidad sucursal. Pero notamos que la tabla de la sucursal propagó su llave primaria como llave foránea a la tabla del empleado, de esto deducimos que se trata del tipo de relación uno a muchos, es decir, que en una sucursal pueden trabajar muchos empleados, mientras que empleado puede trabajar en una sola sucursal. Por lo que en este caso sólo se podrá relacionar un trabajador con una sola sucursal.

Caso 2:

Finalmente se obtienen las siguientes tablas:

staffNo	name	position	salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistant	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415	Art Peters	Manager	41000

branchNo	branchAddress	telNo
B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

staffNo	branchNo
S1500	B001
S0003	B001
S0010	B002
S3250	B002
S2250	B004
S0415	B003

En este otro caso observamos que la primera tabla pertenece a la entidad empleado mientras que la segunda pertenece a la entidad sucursal, pero ahora no se propaga la llave principal de la sucursal al empleado, sino que las llaves principales de ambas tablas se propagan a una nueva por lo que daría paso a una relación muchos a muchos. Esto quiere decir que un empleado puede trabajar en múltiples sucursales y que en una sucursal pueden trabajar muchos empleados.

Comparando este resultado con el anterior, podemos mencionar que el caso 1 es un subcaso del caso 2 puesto que en el caso 2 se podría almacenar por cada empleado solo una sucursal, pero se tendría un espacio de almacenamiento mal administrado por la tercera tabla, por lo que conviene utilizar el caso 1. Concluimos que ambas soluciones son equivalentes cuando sólo se requiera relacionar por cada empleado una sucursal. Cabe mencionar que cada caso se adapta mejor a su tipo de relación.

Ejercicio de normalización

Caso 1:

Utilizando PK: A

A B C D E F G H I

ld_orden	Fecha	ld_cliente	Nom_cliente	Estado	Num_art	Nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

Primero identificamos todas las dependencias:

$$A \rightarrow \{B, C, D, E, F, G, H, I\}$$

$$A \rightarrow \{B, C\}$$

$$C \rightarrow \{D, E\}$$

$$F \rightarrow \{G, I\}$$

$$\{A, F\} \rightarrow H$$

Diagrama de dependencias:

Analizando si cumple la primera forma normal (1 FN)

¿Hay atributos multivaluados? : No ¿Hay grupos de repetición? : Sí, existen varias columnas que tienen el mismo valor incluyendo la PK

Por lo tanto, no cumple con la 1 FN

Podemos normalizarlo separando los atributos en dos tablas.

TABLA 1

<u>Id_orden</u>	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

TABLA 2

<u>Id_orden</u>	Num_art	Nom_art	cant	Precio
2301	3786	Red	3	35,00
2301	4011	Raqueta	6	65,00
2301	9132	Paq-3	8	4,75
2302	5794	Paq-6	4	5,00
2303	4011	Raqueta	2	65,00
2303	3141	Funda	2	10,00

Analizando si cumple la segunda forma normal (2 FN)

Análisis tabla 1:

¿La PK es simple? : Si Por lo tanto, cumple con la 2FN

Análisis tabla 2:

¿La PK es simple? : No

Como la tabla 2 no tiene PK simple, entonces analizamos si hay dependencias parciales.

$$\begin{aligned} \{\textbf{A},\textbf{F}\} &\rightarrow \{\textbf{G},\textbf{H},\textbf{I}\} \\ & \textbf{A} &\rightarrow \{\} \\ & \textbf{F} &\rightarrow \{\textbf{G},\textbf{I}\} \\ & \{\textbf{A},\textbf{F}\} &\rightarrow \textbf{H} \end{aligned}$$

Diagrama de dependencias:

No cumple con 2 FN ya que existen dependencias parciales

Normalizando obtenemos:

TABLA 3

Num_art	Nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
3141	Funda	10,00

TABLA 4

<u>Id_orden</u>	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

Junto con:

TABLA 1

<u>Id_orden</u>	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

Analizando si cumple la tercera forma normal (3 FN)

Análisis tabla 3:

¿Existe transitividad entre los atributos no principales? : No Por lo tanto, cumple con 3 FN

Análisis tabla 4:

¿Existe transitividad entre los atributos no principales? : No Por lo tanto, cumple con 3 FN

Análisis tabla 1:

¿Existe transitividad entre los atributos no principales? : Si, C, D y E son atributos no principales. Por lo tanto, no cumple con 3 FN

Identificamos todas las dependencias transitivas para la tabla 1:

$$A \rightarrow \{B, C, D, E\}$$

 $A \rightarrow \{B, C\}$
 $C \rightarrow \{D, E\}$

Diagrama de dependencias funcionales:

Normalizando:

TABLA 5

<u>Id_orden</u>	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

TABLA 6

<u>Id_cliente</u>	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

Finalmente, al realizar las normalizaciones quedaría:

<u>Id_orden</u>	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

<u>Id_cliente</u>	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

Num art	Nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
3141	Funda	10,00

<u>Id_orden</u>	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

CASO 2:

 \mathbf{A}

Utilizando PK: {A, F}

В

<u>ld orden</u>	Fecha	ld_cliente	Nom_cliente	Estado	Num_art	Nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

 \mathbf{E}

 \mathbf{F}

 \mathbf{G}

Η

Ι

D

Primero identificamos todas las dependencias:

 \mathbf{C}

$$\{A, F\} \rightarrow \{B, C, D, E, G, H, I\}$$

$$A \rightarrow \{B, C\}$$

$$C \rightarrow \{D, E\}$$

$$F \rightarrow \{G, I\}$$

$$\{A, F\} \rightarrow H$$

Diagrama de dependencias:

Analizando si cumple la primera forma normal (1 FN)

¿Hay atributos multivaluados? : No ¿Hay grupos de repetición? : No

Por lo tanto, cumple con la 1 FN

Analizando si cumple la segunda forma normal (2 FN)

¿La PK es simple? : No

Como la tabla no tiene PK simple, entonces analizamos si hay dependencias parciales.

$$\{A, F\} \rightarrow \{B, C, D, E, G, H, I\}$$

 $A \rightarrow \{B, C\}$
 $F \rightarrow \{G, I\}$
 $\{A, F\} \rightarrow H$

Diagrama de dependencias parciales:

Normalizando, tenemos:

TABLA 1

<u>Id_orden</u>	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

TABLA 2

Num_art	Nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
3141	Funda	10,00

TABLA 3

<u>Id_orden</u>	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

Analizando si cumple la tercera forma normal (3 FN)

Análisis tabla 1:

¿Existe transitividad entre los atributos no principales? : Si, C, D y E son atributos no principales. Por lo tanto, no cumple con 3 FN

Identificamos todas las dependencias transitivas para la tabla 1:

$$A \rightarrow \{B, C, D, E\}$$

 $A \rightarrow \{B, C\}$
 $C \rightarrow \{D, E\}$

Diagrama de dependencias funcionales:

Normalizando:

TABLA 4

<u>Id_orden</u>	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

TABLA 5

<u>Id_cliente</u>	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

Análisis tabla 2:

¿Existe transitividad entre los atributos no principales? : No Por lo tanto, cumple con 3 FN

Análisis tabla 3:

¿Existe transitividad entre los atributos no principales? : No Por lo tanto, cumple con 3 FN

Finalmente, con las normalizaciones quedaría de la siguiente manera:

<u>Id_orden</u>	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

<u>Id_cliente</u>	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

Num_art	Nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
3141	Funda	10,00

<u>Id_orden</u>	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2