

WORKSHOP INTRODUCTION TO DEEP LEARNING

Tue Vu, PhD Research & Data Science Services SMU OIT

Outline

- 1. Convolution Neural Network
- 2. Recurrent Neural Network
- 3. Long-Short Term Memory

- CNNs are one type of ANN which utilize the neuron, kernel, activation function.
- Inputs must be in images (or assumed to be images in 2D format)
- Using Forward & Backpropagation technique with certain property to process it faster
- CNNs best for object detection, image classification, computer vision

Architecture of MLPs

- Previous examples (MNIST, Fashion MNIST) use fully connected MLP NN to predict the images
- The accuracy/loss are ok but not so great

Fully connected (Dense) Layer

Architecture of CNNs

Architecture of CNNs

- Convolutional Layers
- Pooling Layers
- Flatten Layer

<u>Hyper-parameters</u> of Convolutional Layers (Conv2D):

- Depth
- Filter/kernel
- Stride
- Padding

Hyper-Parameters of Conv2D: depth

Depth = 1

Depth = 3 (RGB)

Width: 4 Units (Pixels) MNIST Fashion MNIST

Hyper-Parameters of Conv2D: filter & kernel

Hyper-Parameters of Conv2D: filter & kernel

dot product

Hyper-Parameters of Conv2D: filter & kernel

Kernel size (3,3)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blur filter

Hyper-Parameters of Conv2D: filter & kernel

Kernel size (3,3)

0	-1	0
-1	5	-1
0	-1	0

Sharp filter

Hyper-Parameters of Conv2D: filter & kernel

Kernel size (3,3)

-1	-2	-1
0	0	0
1	2	1
Н	nizont	-al

-1	0	1
-2	0	2
-1	0	1
1	/ertica	1

Edge detection

Hyper-Parameters of Conv2D: filter & kernel

Convolved Feature with filter

- CNN uses the Convolved Feature to reduce the image size by dot product with given kernel (filter)
- The image reduction without losing features and easier to process for good prediction
- In CNNs, filters are not defined. The value of each filter is learned during the training process.

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Hyper-Parameters of Conv2D: filter & kernel

Hyper-Parameters of Conv2D: stride

Stride tuned for the compression of images and video data

Stride = (1,1)

Hyper-Parameters of Conv2D: stride

Stride tuned for the compression of images and video data

Hyper-Parameters of Conv2D: stride

Stride tuned for the compression of images and video data

Hyper-Parameters of Conv2D: padding

- The pixels located on the corners and the edges are used much less than those in the middle => the information on borders and edges are note preserved

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Hyper-Parameters of Conv2D: padding

- The pixels located on the corners and the edges are used much less than those in the middle => the information on borders and edges are note preserved

1 _{×1}	1,0	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Solution?

Hyper-Parameters of Conv2D: padding

- The pixels located on the corners and the edges are used much less than those in the middle => the information on borders and edges are not preserved

Solution?

- Add rows and columns of 0 to the input images
- The image on left was added with padding parameter P=2

(W, H) (W + 2P, H + 2P)

Hyper-Parameters of Conv2D: padding

- The pixels located on the corners and the edges are used much less than those in the middle => the information on borders and edges are not preserved

In Keras

- padding = "valid": no padding
- padding = "same": padding with 0 evenly left/right, up/down
- padding = "same" with strides = (1,1):
 output has same size as input

(W, H) (W + 2P, H + 2P)

Hyper-Parameters of Conv2D:

- Depth (L): 3 or 1
- Number of Filter: F
- kernel: (K, K): (3,3) or (5,5)
- Stride (S, S): (1,1) or (2,2)
- Padding (P)_W

H

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	

Formulation to compute the output size of a convolutional layer from an image with size (W, H)?

Hyper-Parameters of Conv2D:

- Depth (L): 3 or 1
- Number of Filter: F
- kernel: (K, K): (3,3) or (5,5)
- Stride (S, S): (1,1) or (2,2)
- Padding (P) W_{in}

Hin

 Formulation to compute the output size of a convolutional layer from an image with size (W, H)?

How to add Conv2D in keras?

```
model = Sequential()
model.add(Conv2D(F, (K, K), strides=(S, S), activation='relu', padding="same", input_shape=(32, 32, L)))
```


Convolutional Layer (CNN or ConvNet):

- The CNN will reduce the original RGB images to its Convolutional Layer
- Multiple layers can be applied

Pooling Layer

- Pooling Layer should follow Convolutional Layer
- Similar to the Convolutional Layer, the Pooling layer is responsible for reducing the spatial size of the Convolved Feature.
- This is to decrease the computational power required to process the data through dimensionality reduction
- Two types of Pooling: Max Pooling & Average Pooling.

Pooling Layer

In which Max Pooling performs a lot better than Average Pooling.

Pooling Layer

•The image after Max Pooling layer would look like:

Flatten Layer

- Once the images have passed through Convolution Layer and Pooling Layer, its size has been reduced greatly and ready for MLP training (or to another Convolution steps).
- The image is then flatten to a column vector and passed through feed-forward NN and BackPropagation applied to every iteration.
- Softmax activation function is applied to classified the multi-output/multi-labels

Some other useful layers?

Batch Normalization

- A process to make Deep neural networks faster and more stable through adding extra layers in a deep neural network.
- The new layer performs the standardizing and normalizing operations on the input of a layer coming from a previous layer.
- Normalize the amounts of weights trained between layers during training
- It usually goes after Conv2D layers or after Dense layer

```
from tensorflow.keras.layers BatchNormalization

model = Sequential()

model.add(Conv2D(75, (3, 3), strides=1, activation="relu", input_shape=(28, 28, 1)))

model.add(BatchNormalization())

model.add(MaxPool2D((2, 2), strides=2))
```

Dropout

- Dropout is a regularization method that approximates training a large number of neural networks with different architectures in parallel.
- Dropout helps to avoid Overfitting
- Dropout is implemented per layer in the NN
- Dropout is not used after training when making a prediction with the fit network.

```
from tensorflow.keras.layers BatchNormalization
model = Sequential()
model.add(Conv2D(75, (3, 3), strides=1, activation="relu", input_shape=(28, 28, 1)))
model.add(Dropout(0.2))
```

A Sample of CNN:

Lenet-5 (1998) by Yann LeCun

- LeNet-5 is designed for handwritten and machine-printed character recognition
- Input of 32x32x1
- Total parameters: 60k
- Activation function: tanh

Lenet-5 (1998) by Yann LeCun


```
model = Sequential()
model.add(Conv2D(6, (5, 5), strides=(1, 1), activation='tanh', padding="valid", input_shape=(32, 32, 1)))
model.add(AveragePooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Conv2D(16, (5, 5), strides=(1, 1), activation='tanh', padding="valid"))
model.add(AveragePooling2D(pool_size=(2,2), strides=(2,2))
model.add(Conv2D(120, (5, 5), strides=(1, 1), activation='tanh', padding="valid"))
model.add(Flatten())
model.add(Dense(84,activation='tanh'))
model.add(Dense(10,activation='softmax'))
```

AlexNet (2012) by Hinton Alex Krizhevsky

AlexNet won the 2012 ImageNet challenge

Input of 227x227x3

Total parameters: 60M

Activation: ReLU

AlexNet (2012) by Hinton Alex Krizhevsky

VGG16 (2014) - Visual Geometry Group

- VGG16 runner up of 2014 ImageNet challenge
- 16 layers: 13 ConvNet, 3 Fully Connected

Total Parameters: 130M

GoogleNet (2014)

- GoogleNet won the 2014 ImageNet challenge
- Introduced Inception Network

Introduction

- RNNs are type of Deep Learning models with <u>built-in feedback</u> mechanism.
- The output of a particular layer can be re-fed as the input in order to predict the output.
- This is different from traditional ML where output/predictand cannot be used as input

 This is different from traditional ML where output/predictand cannot be used as input

Introduction

Unroll the RNN loop

Type of RNNs

Applications

It is specifically designed for Sequential problem Weather forecast, Stock forecast, Image captioning, Natural Language Processing, Speech/Voice Recognition

Some Disadvantages of RNN:

- Computationally Expensive and large memory requested
- RNN is sensitive to changes in parameters and having gradient problem such as Exploding Gradient or Vanishing Gradient
- In order to resolve the <u>gradient problem</u> of RNN, a method Long-Short Term Memory (LSTM) is proposed.

In this limited workshop, we only cover LSTM for timeseries forecast problem (stock forecast and weather forecast)

Long-Short Term Memory model - LSTM

- LSTMs are a special kind of RNN capable of learning long-term dependencies by remembering information for long periods is the default behavior.
- They were introduced by Hochreiter & Schmidhuber (1997) and were refined and popularized by many people
- LSTMs are explicitly designed to avoid the long-term dependency problem.

Comparison between traditional RNN and LSTM

Comparison between traditional RNN and LSTM

model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))
model.add(LSTM(64, return_sequences=False))

Hands-on section