Grassmannians	Tool: Wedging map
Gr,n = { r-planes in V= kn}	x e MV
Goal: this is proj. alg var.	$\sim \varphi_{\times} : V \longrightarrow \bigwedge^{c+1} V$
Plücker embedding	V \ V_X
$F: G_{r,n} \longrightarrow \mathbb{P}(\Lambda^r \vee)$	Have $c_{\ell x} \in Hom_k(V, \Lambda^{r * i} V)$
Span {v,,vr} -> [Vin AVr]	Lemma, x & ArV, x \$0.
To show: OF inj 1 Im F closed.	Then ① dim ter $q_x \le r$. Im Fclosed = ② equality \iff x tot. dec. Finj = ③ If $x = a \cdot v_1 \wedge \cdots \wedge v_r$ tot dec
Note: Im F = { tot. dec. elts }	Ker Qx = Span {vi,, vr}

Lemma, X & ArV, X \$0.	
Then ① dim ter $q_x \leq r$. Given ② equality $\iff x \text{ tot. dec.} \iff$ ③ If $x = a \cdot v_1 \wedge \dots \wedge v_r$ tot dec Ver $q_x = \text{Span}\{v_1, \dots, v_r\}$ Proof that ② $\implies \text{Im } F \text{ closed}:$ Have $\Lambda'V \longrightarrow \text{Homk}(V, \Lambda^{r+1}V)$	$rk \varphi_{k} \leq n-r$ $H: \mathbb{P}(\Lambda^{r}) \xrightarrow{linear} \mathbb{P}(H_{omk}(V, \Lambda^{r+1}V))$
injective & linear (check). Liuses r <n. apply="" can="" p<="" so="" td=""><td>Grin = Z(H*(minor conditions)) = H-1(Wn Im H)</td></n.>	Grin = Z(H*(minor conditions)) = H-1(Wn Im H)

1 151/ 45	(a (a:) = a = a = a = b = idT
Lemma, x & ArV, x \$0.	$\varphi_{x}(ei) = 0 \iff \alpha_{I} = 0 \text{ when } i \notin I$
Then @ dim ter qx &r.	i.e. every non-0 term of x has an ei.
2) equality \iff x tot. dec	Since true for i { {1,, s}
3) If x = a · VIA ··· AVr tot dec	every non7ero term uses e,, es
Ker Qx = Span {vi,, vr}	⇒ Sér
Pf. Choose basis ei,, en for V	Pf of @ Suppose S= r.
~ basis eI For 1 V	Then x is a mult. of ein
Assume e.,, es is basis for ter q;	x other dir: X = VIAAVr apply 0
Prof 1 Want SET	Trof 3 Span Ev.,, vr] = ker ex
Say x = Eaili	but dim's same by 2.
Fix some i & {1,, s}	Fact. XAX = 0 x tot dec.

Local coords on Grassmannian	Only the bije; with je J contribute to any
Consider chart on ImF where	Further: On is the left most minor
at \$0. WLOG at = ar. (others differ by permuting coords).	(J=1r) e.g. B=(b11 b12 b13 b14) b21 b22 b23 b24) T=1,2
Let B = rxn matrix of rank r	m pripas eives + pispai esvel +
(row B = pt in Gr,n) F(row (B)) is	= (b11 b22 - b12 b21) e1 1 e2 +
(prier. prinen) (prier. prinen) (prier. prinen)	So at \$0 > leftmost rxr matrix is invertible. Is can mult. B on left to get (Ir bi,r+1 - bi,n bis copy of A copy of A br,r+1 - br,n copy of A

It's a bijection since RREF unique. The incidence correspondence It's also = of aff. alg vors. I = {(W, V): W & Grin, V& P(W)} Thm. I is a proj subvar of The az are minors. Need to get bij as polys in OI Applications

(1) V = Grin subver One example $a_{23}...r_{j} = \begin{bmatrix} 0 & 0 & 0 & b_{1j} \\ 1 & 0 & ... & \vdots \\ 0 & 1 & ... & \vdots \\ \vdots & \vdots & \vdots & b_{r_{j}} \end{bmatrix} = (-1)^{r_{1}} b_{1j}$ ⇒ U W ⊆ Pⁿ⁻¹is a subvar. Pf idea: T T_2 $T_{20}T_{1}^{-1}(V)$ $T_{20}T_{1}^{-1}(V)$ other cases similar.

② $X \subseteq \mathbb{P}^n$ pav. $L_r(X) = locus of proj r-planes$ meeting X.

Prop. Lr(X) is a proj subvar of

Gr+1,n+1, hence ~>
par in Pⁿ by prer appl.

 $\mathcal{I}_{\pi_{1}} \xrightarrow{T} L_{r}(X) \circ \pi_{1} \circ \pi_{2}^{-1}(X)$