Vzorčenje v visokih dimenzijah: Mikrokanonični Hamiltonski Monte Carlo

Jakob Robnik

mentor: Uroš Seljak

ostali sodelavci: Eva Silverstein, Bruno De Luca, Jaime Ruiz Zapatero, Reuben Cohn-Gordon, Qijia Jiang, Adrian Bayer, Rohith Karur,

Vzorčenje

Naloga: generiraj vzorce, porazdeljene po dani porazdelitvi.

Zakaj je to pomemben problem?

Integriranje

Število izračunov funkcije za neko natančnost:

1. Marginalna porazdelitev

$$p(\boldsymbol{y}) = \int p(\boldsymbol{y}, \boldsymbol{z}) d\boldsymbol{z}$$

~~	smrtno	ni smrtno	
kobra	7 (5 %)	12 (8.5 %)	
krait	8 (5.7 %)	13 (9.2 %)	
Russellov gad	22 (15.6 %)	52 (36.9 %)	
žagast gad	3 (2.1 %)	27 (19.1 %)	
marginalno	26 %	74 %	

Chaudhari, Tejendra S., et al. "Predictors of mortality in patients of poisonous snake bite: experience from a tertiary care hospital in central India." *International journal of critical illness and injury science* 4.2 (2014): 101.

x = (začetni pogoji, gostota snovi, enačba stanja za temno energijo, ...)

Bayesovsko sklepanje: $p(\boldsymbol{x}|\mathrm{data}) \propto p(\mathrm{data}|\boldsymbol{x})p(\boldsymbol{x})$

Standard Neural Network

Bayesian Neural Network

2. Kvantna kromodinamika na mreži

- Naloga: izračun mase sestavljenih delcev (npr. protona) iz osnovnih zakonov
- Integral prek vseh možnih konfiguracij fermionskega in gluonskega kvantnega polja
- Diskretiziaramo prostor na mreži, polja aproksimiramo z visoko-dimenzionalnimi vektorji
- >10⁹ dimenzionalen integral, za izračun integranda potrebuješ 10⁵ jeder, to področje porablja 40% vse superračunalniške moči v ZDA

Kako vzorčiti?

Intermezzo: Hamiltonova dinamika

- ullet Imejmo dva vektorja $oldsymbol{x}, oldsymbol{\Pi} \in \mathbb{R}^d$ in skalarno funkcijo $H(oldsymbol{x}, oldsymbol{\Pi})$
- Naj se časovno spreminjata po diferencialnih enačbah:

$$\frac{d\boldsymbol{x}}{dt} = \frac{\partial H(\boldsymbol{x}, \boldsymbol{\Pi})}{\partial \boldsymbol{\Pi}} \qquad \frac{d\boldsymbol{\Pi}}{dt} = -\frac{\partial H(\boldsymbol{x}, \boldsymbol{\Pi})}{\partial \boldsymbol{x}}$$

- 1. $\boldsymbol{x}(t), \boldsymbol{\Pi}(t)$ vedno ostaneta na ploskvi konstantnega H
- 2. Ergodična hipoteza: $p(x, \Pi)$ je uniformna porazdelitev, omejena na ploskev konstanega H = mikrokanonična porazdelitev

Znamo vzorčit iz mikrokanonične porazdelitve!

Je to dovolj za vzorčenje iz **poljubne** porazdelitve?

Mikrokanonični Hamiltonski Monte Carlo (MCHMC)

- ullet Želimo vzorčit iz $p(oldsymbol{x})$
- ullet Vpeljemo dodatno spremenljivko $oldsymbol{\Pi}$ in funkcijo $H(oldsymbol{x},oldsymbol{\Pi})$
- Simuliramo Hamiltonovo dinamiko → konvergiramo k mikrokanonični porazdelitvi
- H nastavimo tako, da je marginalna x-porazdelitev p(x):

$$H = \frac{d}{2}\log\frac{|\mathbf{\Pi}|^2}{d} - \log p(\mathbf{x})$$

Implementacija

- Integracija Hamiltonovih enačb: kako izbrat časovni korak? napaka na energiji ↔ pristranost vzorcev
- Ergodičnost počasna ali je ni → dodajmo dekoherenco momenta! (pogoj tipa No U-turn)

Hamiltonova dinamika + šum na momentu

Hamiltonova dinamika

Canonical HMC

 $p(\mathbf{x}, \mathbf{\Pi}) \propto e^{-H(\mathbf{x}, \mathbf{\Pi})}$

Microcanonical HMC

 $p(\mathbf{x}, \mathbf{\Pi}) \propto \delta(H(\mathbf{x}, \mathbf{\Pi}) - E)$

HMC

```
Initialize x
                                                                            Initialize x
For i in range(n)
                                                                            For i in range(n):
                                                                                    u[k] \sim N(0, 1)
       u[k] \sim N(0, 1)
        xold = x
                                                                                    u = u / norm(u)
        For j in range(L):
                                                                                    For j in range(L):
                u = update_momentum(stepsize/2, u, grad_nlogp(x))
                                                                                            u = update_momentum(stepsize/2, u, grad_nlogp(x))
                x = update position(stepsize, x, u)
                                                                                            x = update position(stepsize, x, u)
                u = update momentum(stepsize/2, u, grad nlogp(x))
                                                                                            u = update momentum(stepsize/2, u, grad nlogp(x))
        x = acccept/reject(xold, x, energy change)
                                                                                            save(x)
        save(x)
def update momentum(eps, u, g):
                                                                              def update momentum(eps, u, g):
  return u - eps * g
                                                                                 g norm = sqrt(sum(square(g)))
                                                                                 e = -g/g norm
                                                                                 ue = dot(u, e)
                                                                                 delta = eps * g_norm / (d-1)
                                                                                 zeta = exp(-delta)
                                                                                 uu = e *(1-zeta)*(1+zeta + ue * (1-zeta)) + 2*zeta* u
                                                                                 return uu / sqrt(sum(square(uu)))
```

MCHMC

Želimo natančnost pričakovanih vrednosti:
$$\int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} \approx \frac{1}{n}\sum_{i=1}^n f(\mathbf{x}_i)$$

ESS = "učinkovitost" = "natančnost" / "računska cena" = efektivno število vzorcev / število evaluacij ∇*p*

HMC: $O(d^{-1/4})$ MCHMC: O(1)

Učinkovitost neodvisna od dimenzije!

1000-dimenzionalna Cauchy-jeva porazdelitev

Paralelno vzorčenje

- Namesto veliko korakov z eno verigo,
 lahko delamo malo korakov z več verigami
- Odlično za GPU in clustre CPU-jev

	NUTS	ChEES	MEADS	MCLMC
Banana	320	264	390	22
Ill Conditioned Gaussian	9846	5138	5520	402
Sparse Logistic Regression	2716	1168	610	298
Brownian Motion	2159	600	410	122
Item Response Theory	1162	537	790	454

Table 1: Grads to low max bias $(b_{\text{max}}^2 = 0.01)$, normalized per chain.

Vzorčenje ni več drago!

Visoko-dimenzionalni problemi

- Napoved vremena
- Kvantna kromodinamika
- Bayesovsko sklepanje
- Bayesovske nevronske mreže
- Molekularna dinamika

- Python (jax) in C++: https://github.com/JakobRobnik/MicroCanonicalHMC
- Julia: https://github.com/JaimeRZP/MicroCanonicalHMC.il
- Spletna stran s tutoriali: https://main--zesty-daffodil-572c7d.netlify.app/
- Delamo na vključitvi v PPL-je kot so numpyro, STAN in pymc3.
- Članki:
 - o Robnik, De Luca, Silverstein and Seljak, *Microcanonical Hamiltonian Monte Carlo*, 2022 (arXiv: 2212.08549)
 - o Robnik and Seljak, *Microcanonical Langevin Monte Carlo*, 2023 (arXiv: 2303.18221)
 - Bayer, Seljak and Modi, *Field-Level Inference with Microcanonical Langevin Monte Carlo*, 2023 (arXiv: 2307.09504)

Prvi poskus: Metropolis-Hastings algoritem

- V vsakem koraku predlagamo nov vzorec $x_{n+1} \sim q(\cdot|x_n)$ in ga sprejmemo z verjetnostjo $\min\{1, \frac{p(x_{n+1})q(x_n|x_{n+1})}{p(x_n)q(x_{n+1}|x_n)}\}$.
- Problem 1: če je korak predolg, so predlogi zavrnjeni,
 če je prekratek, se počasi premikamo
- Problem 2: ESS = O(1/d)

Hamiltonski Monte Carlo (HMC)

- ullet Želimo vzorčit iz $p(oldsymbol{x})$
- ullet Vpeljemo dodatno spremenljivko $oldsymbol{\Pi}$ in funkcijo $H(oldsymbol{x},oldsymbol{\Pi})$
- Hamiltonova dinamika omogoča učinkovito vzorčenje mikrokanonične porazdelitve
- Če dodamo občasno **prevzorčenje** momenta konvergiramo h **kanoninčni** porazdelitvi $p({m x},{m \Pi})\propto e^{-H({m x},{m \Pi})}$
- H nastavimo tako, da je marginalna x-porazdelitev p(x): $H = \frac{1}{2} |\Pi|^2 \log p(x)$

Canonical HMC

 $p(\mathbf{x}, \mathbf{\Pi}) \propto e^{-H(\mathbf{x}, \mathbf{\Pi})}$

Kako to deluje na pravih problemih?

φ⁴ teorija polja

fazni prehod

2. Statistična fizika: Boltzmanova porazdelitev

$$p(\boldsymbol{x},\boldsymbol{\Pi}) \propto e^{-H(\boldsymbol{x},\boldsymbol{\Pi})/T}$$

Formacija proteinov

