

Unsupervised Learning of Cross-lingual Word Embedding and Its Application in Machine Translation

Jiahui Geng

jiahui.geng@rwth-aachen.de

Master Thesis Mid-term Talk October 24, 2018

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

Introduction

Literature

Cross-lingual word embedding

- Supervised learning
- Unsupervised learning

Sentence Translation with cross-lingual word embedding

- Context-aware beam search
- Denoising autoencoder

Experiments

Outlook

Introduction

Motivation

- Building a machine translation system requires lots of bilingual data
- Cross-lingual word embedding offers elegant word matches between languages
- Unsupervised MT relies on back-translation which needs a long training time

Goals

- Improve the unsupervised learning algorithm for cross lingual word embedding
- ▶ Build a good unsupervised MT efficiently: combine with other models

Literature

Unsupervised cross-lingual embedding

- ► [Conneau & Lample⁺ 17] Word translation without parallel data
 - Implementation of GANs: discriminator trained to distinguish between two distributions while generator fools discriminator
- ► [Artetxe & Labaka⁺ 17a] Learning bilingual word embeddings with (almost) no bilingual data
 - A self-learning framework combining embedding mapping and dictionary induction techniques, needs seed dictionary to start

Literature

Unsupervised machine translation

- ► [Artetxe & Labaka⁺ 17b] Unsupervised Neural Machine Translation
- ► [Lample & Denoyer⁺ 17] Unsupervised Machine Translation Using Monolingual Corpora Only
 - Seq2seq model with shared encoder and decoder for both languages, also with denoising autoencoder and back-translation

Cross-lingual Word Embedding

Definition

- ► Word embedding of multiple languages in a joint embedding space
- ► Linear mapping from source embedding to target embedding (this work)

Cross-lingual Word Embedding

Roles in unsupervised neural machine translation

- Shared latent representations
 - > Shared encoder for producing a language independent representation
- ► As word or phrase table for translation

This work

► Formulate a straightforward way to combine a language model with crosslingual word similarities

Training Methods

- Mapping-based approaches (this work)
- Pseudo-multi-lingual corpora-based approaches
- **▶** Joint methods

Cross-lingual Word Embedding

Mapping based approaches

- ► Learn monolingual embedding separately
 - Skip-gram model
- ► Learn linear mapping between embedding spaces
 - Supervised learning
 - o Procrustes analysis
 - Unsupervised learning
 - Iterative self-learning framework
 - Adversarial learning
- **▶** Synthetic dictionary induction
 - Nearest neighbor search

Monolingual Embedding

Fasttext [Bojanowski & Grave+ 17]

- ► Essentially an extension of skip-gram/CBOW model
- ► Treat each word as compound of character *n*-grams
- Learn the internal structure of words

Learning with Parallel Dictionary

Assume given

- Word embedding trained independently for each language on monolingual corpora
- lacktriangle Bilingual dictionary a known dictionary with pairs of words $\{f,e\}$ size N

Learn a linear mapping $W \in \mathbb{R}^{d imes d}$ such that

$$W^* = \operatorname*{argmin}_{W \in \mathbb{R}^{d imes d}} \sum_{n=1}^N \left\| W f_n - e_n
ight\|^2$$

- ightharpoonup d: Dimension of embedding
- $ightharpoonup f_n, e_n \in \mathbb{R}^d$: the embedding pair of corresponding word pair in the dictionary

Procrustes Analysis

Constrain W to be an orthogonal matrix

- ► Enforce monolingual invariance
- ► Simplify the problem as the Procrustes problem
 - > A closed-form solution obtained from SVD
 - riangleright E , $F \in \mathbb{R}^{d imes N}$ denote embedding projection of word pairs $\{e,f\}$

$$egin{aligned} W^* &= rgmin_{W \in \mathbb{R}^{d imes d}} \|WF - E\|_F^2 = UV^T \ U oldsymbol{\Sigma} V^T &= ext{SVD}(EF^T) \end{aligned}$$

ightharpoonup Can be efficiently computed in linear time w.r.t. seed dictionary size N

Learning without Parallel Dictionary

Problem

► Large dictionary not readily available for many language pairs

Self-learning framework [Artetxe & Labaka⁺ 17a]

- 1. Given source and target embedding \mathcal{F} \mathcal{E} , seed dictionary D
- 2. Learn mapping with dictionary D
- 3. Induce dictionary D' according to mapping
- 4. D := D' and repeat step 2, 3 until converges

Performance

- Works with initial dictionary
- Achieves comparable accuracy as supervised method
- Stuck in a poor local optimum without initial dictionary

Adversarial Training

Model

- ullet $\mathcal{F}=\left\{f_1,\ldots f_{V_f}
 ight\}$ and $\mathcal{E}=\{e_1,\ldots e_{V_e}\}$: set of embeddings, not parallel
- ▶ Discriminator is trained to discriminate Wf_n and e_n with f_n , e_n randomly sampled from \mathcal{F}, \mathcal{E}
- lacktriangle Generator W is trained to prevent the discriminator from making accurate prediction

Discriminator loss

$$\mathcal{L}_D(heta_D|W) = -rac{1}{N}\sum_{n=1}^N \log P_{ heta_D}(ext{'source'}|Wf_n) - rac{1}{M}\sum_{m=1}^M \log P_{ heta_D}(ext{'target'}|e_m)$$

Generator loss

$$\mathcal{L}_W(W| heta_D) = -rac{1}{N}\sum_{n=1}^N \log P_{ heta_D}(ext{'target'}|Wf_n) - rac{1}{M}\sum_{m=1}^M \log P_{ heta_D}(ext{'source'}|e_m)$$

Corpus-based Leaning

Motivation

Vocabulary-based just looks at the mutual nearest neighbours

Intuition

- ► Integrate the translation task into the learning process
- ► Make use of language model

Online Training Algorithm


```
Algorithm 1: Online learning for corpus-based approach
 Input: F (source embeddings)
 Input: E (target embeddings)
 Input: LM<sub>e</sub> (language model)
 Input: \mathcal{F} (source corpus)
 Result: W (embedding mapping)
1 while not converge do
     Generate batch of source sentences \{f_1^J\} from \mathcal{F}
  \{e_1^I\} \leftarrow TRANSLATE(\{f_1^J\}, F, E, \mathsf{LM}_e)
4 | D \leftarrow BUILD\_DICTIONARY(\{f_1^J\}, \{e_1^I\})
   W \leftarrow LEARN\_MAPPING(D)
6 end
```

- ► Composes of mapping learning, training dictionary induction and corpus translation
- ► Efficiency turns out to be critical because of the additional translation task

Translation

Context-aware beam search

▶ Given a history h of target words before e, the score of e to be the translation of f:

$$\hat{e}_1^N = rgmax \prod_{e_1^N}^N p^{\lambda_{LM}}(e_n|e_{n-4}^{n-1}) \cdot q^{\lambda_{emb}}(f_n,e_n)$$

Lexicon score

$$q(f,e) = \frac{d(f,e)+1}{2}$$

where $d(f,e) \in [-1,1]$ cosine similarity between f and e. In experiments, lexicon score from linear scaling works better than others, e.g. sigmoid or softmax

▶ Empirically set λ_{emb} as 1, λ_{LM} as 0.1

Training Dictionary Induction

Intuition

- In vocabulary-based training, dictionary always built with nearest neighbor search
- ► In corpus-based training, using translation pairs
- In our word-by-word translation framework, we build training dictionary directly with word pairs on each position from (f_1^N,e_1^N) without considering complex alignment

$$D = egin{cases} (f_1,e_1) \ (f_2,e_2) \ \cdots \ (f_N,e_N) \end{cases}$$

Training Details

- ► Embedding Normalization Centering embedding at each dimension
- **▶** Orthogonal Constraint

$$W \leftarrow (1+eta)W - eta(WW^{ op})W$$

where $\beta=0.01$ is suggested, we find the orthogonal constraint make the training procedure converge successfully

Learning Rate Scheduling Starting with initial learning rate for each embedding training step

Improving Translation with Denoising Autoencoder UNIVERSITY

Context-aware Beam Search

► Language model

Denoising Autoencoder

- Insertion
- **▶** Deletion
- Reordering

Denoising

Basic idea

- lacktriangle Model noise (e_1^I) by injecting artificial noise into clean sentences e_1^I
- ► Neural network learns to restore more smooth sentence from word-by-word translation

Training criterion

$$\mathcal{L} = \sum_{e_1^I \in E} [-\log p(e_1^I | \mathsf{noise}(e_1^I))]$$

- ► E denotes target corpus.
- ▶ In Seq2Seq training, e_1^I as label, noise (e_1^I) as input
- Artificial noise:
 - ▶ insertion, deletion, reordering

Insertion

Insertion

- Motivation
 - ▶ Word-by-word translation always outputs a target word for every position
 - > Some common words are considered as redundant ones
- Method
 - \triangleright For each position in a sentence, insert a frequent word according from set V_{ins} to a probability distribution p_{ins}
 - Denoising network learns to delete the word when translating

Deletion

- Motivation
 - ▶ In contrary case: some words are not related to any source word
- ▶ Realization
 - hd For each position in a sentence, delete the word according to a probability distribution p_{del} as input
 - > Denoising network learns to add some potential words when translating

Reordering

- Motivation
 - ▶ Generated words are not in a correct sequence of the target language
- Method
 - hd For each position of a sentence, swap the words within a limited distance d_{per} as input
 - Denoising network learns reordering information when translating

Experiment Settings

- ▶ Word embedding and LM trained on News Crawl 2014-2017 (100M)
- ► BLEU evaluated on German ← English newstest 2016
- Word accuracy evaluated on dictionaries released by Facebook
 - Dictionary built with internal translation tool
 - ▶ Each word has 1-4 word translation(s)
 - ▶ Top-1 accuracy
- Context-aware beam search
 - ▶ Lexicon candidates: 100
 - ▶ Beam width: 10

Corpus Statistics

Train		German	English	French
	Sentences	100M	100M	100M
	Running Words	1880M	2360M	3017M
	Vocabulary	1254k	523k	660k

		newste	st2016	newstest2014		
		German	English	French	English	
Test	Sentences	2999	2999	3003	3003	
	Running Words	62506	64619	81165	71290	
	Vocabulary Size	11978	8645	10899	9200	
	OOV Rates	4116 (6.6%)	1643 (2.5%)	1731 (2.1%)	1299 (1.8%)	
	LM perplexity	211.0	109.6	51.2	84.6	

Search vocabulary in testing: 50k (src/tgt)

Experiments: Translation

Translation results on German↔English newstest2016 and French↔English newstest2014.

	de-en	en-de	fr-en	en-fr
System	BLEU [%]	BLEU [%]	BLEU [%]	BLEU [%]
Word-by-Word	11.1	6.7	10.6	7.8
+ LM (5-gram) + tgt w/ high LM score for OOV	12.9	8.9	12.7	10.0
+ LM (5-gram) + copy from src for OOV	14.5	9.9	13.6	10.9
+ Denoising (RNN)	16.2	10.6	15.8	13.3
+ Denoising (Transformer)	17.2	11.0	16.5	13.9
[Lample & Denoyer ⁺ 17]	13.3	9.6	14.3	15.1
[Artetxe & Labaka ⁺ 17b]	-	-	15.6	15.1

Experiments: Cross-lingual Word Embedding

Cross-lingual Word Retrieval Accuracy

	_	
	De-En [%]	BLEU [%
Corpus-based	61.14	13.3
Corpus-based without LM	54.36	
Adversarial	53.50	12.7
Adversarial + Refinement	64.92	14.5
Supervised	65.38	15.0

Refinement: use nearest neighbor to build training dictionary

Ablation study

Cross-lingual Word Retrieval Accuracy with frequency filtering and center normalization

Most frequent vocabulary	no centering [%]	centering [%]
500	9.79	14.8
1000	34.16	41.25
5000	58.44	59.60
10000	59.52	60.14
50000	60.37	61.14

Conclusions

Corpus-based learning of cross-lingual word embedding

- ▶ In corpus-based learning, centering normalization improves the performance
- Our method works better than adversarial training but a little behind supervised training and iterative refinement

Unsupervised sentence translation with LM and denoising autoencoder

- ► Context-aware beam search with LM helps the lexicon choice
- Denoising networks aimed at insertion/deletion/reordering noise works for such problems in a small range of sentences

In corpus-based learning, centering normalization improves the performance

Appendix

Nearest neighbor search

Hubness problem: some points (hubs) tends to be nearest neighbors of many points in high-dimensional space

Cross-domain Similarity Local Scaling (CSLS)

- ▶ Penalize the similarity score of hubs
 - $\triangleright N_T(Wf)$: target neighbours for mapped source embedding
 - $hd r_T(Wf)$: penalty for hubness

$$r_T(Wf) = rac{1}{K} \sum_{e \in N_T(Wf)} \mathbf{cos}(Wf,e)$$
 $ext{CSLS}(Wf,e) = 2 \ \mathbf{cos}(Wf,e) - r_T(Wf) - r_S(e)$

Bidirection dictionary induction

- Unidirectional dictionary might lead to local optima
- ► Include only the mutual nearest neighbors

Thank you for your attention

Jiahui Geng

jgeng@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

References

- [Adams & Makarucha⁺ 17] O. Adams, A. Makarucha, G. Neubig, S. Bird, T. Cohn: Cross-lingual word embeddings for low-resource language modeling. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers*, Vol. 1, pp. 937–947, 2017.
- [Artetxe & Labaka⁺ 17a] M. Artetxe, G. Labaka, E. Agirre: Learning bilingual word embeddings with (almost) no bilingual data. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Vol. 1, pp. 451–462, 2017.
- [Artetxe & Labaka⁺ 17b] M. Artetxe, G. Labaka, E. Agirre, K. Cho: Unsupervised neural machine translation. *arXiv preprint arXiv:1710.11041*, Vol., 2017.
- [Artetxe & Labaka⁺ 18] M. Artetxe, G. Labaka, E. Agirre: A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. *arXiv preprint arXiv:1805.06297*, Vol., 2018.
- [Bojanowski & Grave⁺ 17] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov: Enriching Word Vectors with Subword Information. *Transactions of the Association for Computational Linguistics*, Vol. 5, pp. 135–146, 2017.

- [Conneau & Lample⁺ 17] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou: Word translation without parallel data. *arXiv preprint arXiv:1710.04087*, Vol., 2017.
- [Hoshen & Wolf 18] Y. Hoshen, L. Wolf: An Iterative Closest Point Method for Unsupervised Word Translation. *arXiv preprint arXiv:1801.06126*, Vol., 2018.
- [Lample & Denoyer⁺ 17] G. Lample, L. Denoyer, M. Ranzato: Unsupervised Machine Translation Using Monolingual Corpora Only. *arXiv preprint arXiv:1711.00043*, Vol., 2017.
- [Mikolov & Sutskever⁺ 13] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean: Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pp. 3111–3119, 2013.