CO 250: Introduction to Optimization

Module 4: Duality Theory (Weak Duality)

© University of Waterloo 1/

Recap: Shortest Path LP

Solutions to a shortest path instance $G=(V,E),\ s,t\in V,\ c_e\geq 0$ for all $e\in E,$ correspond to feasible 0,1-solutions for the LP

$$\min \sum (c_e x_e : e \in E)$$
s.t.
$$\sum (x_e : e \in \delta(U)) \ge 1$$

$$(U \subseteq V, s \in U, t \notin U)$$

$$x > 0$$

This LP is of the form:

$$\min\{c^T x : Ax \ge b, x \ge 0\}$$

where

- b = 1:
- A has a row for every s,t-cut $\delta(U)$, and a column for every edge e; and
- $A_{Ue} = 1$ if $e \in \delta(U)$ and $A_{Ue} = 0$ otherwise.

©University of Waterloo 2/

Recap: Shortest Path Dual

$$\min\{c^T x : Ax \ge b, x \ge 0\} \quad (\mathsf{P})$$

The dual of (P) is given by

$$\max\{b^Ty\,:\,A^Ty\leq c,y\geq \mathbb{0}\}\quad \text{(D)}$$

If (P) is a shortest path LP, then we can rewrite (D) as

$$\max \sum (y_U : s \in U, t \notin U)$$
s.t.
$$\sum (y_U : e \in \delta(U)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

Theorem

If \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then $b^T \bar{y} \leq c^T \bar{x}$.

Equivalent: y feasible widths and P an s,t-path $\longrightarrow \mathbb{1}^T y \leq c(P)$

©University of Waterloo 3/2

This Lecture

Question: Can we find lower-bounds on the optimal value of a general LP?

In the LP on the right,

stands for a system of inequalities whose sign is one of \leq , = or \geq , and

indicates that variables are either non-negative, non-positive, or free.

$$\max c^T x$$
s.t. $Ax ? b$

$$x ? 0$$

Recall: in the primal-dual pair

$$\min\{c^T x : Ax \ge b, x \ge 0\}$$
 (P)

$$\max\{b^T y : A^T y \le c, y \ge 0\} \qquad (\mathsf{D})$$

- each non-negative variable, x_e, in
 (P) corresponds to a '≤'-constraint
 in (D), and
- each '≥'-constraint in (P)
 corresponds to a non-negative
 variable y_{II} in (D).

©University of Waterloo 4/

Weak Duality in General

Consider the primal LP

$$\begin{array}{c} \max \, c^T x \\ \text{s.t. } Ax ? \, b \\ x ? \, \mathbb{0} \end{array}$$

Question: What are the question marks?

A: As before:

primal variables ≡ dual constraints primal constraints ≡ dual variables

Its dual LP is given by

$$\min b^T y
s.t. A^T y ? c
y ? 0$$

©University of Waterloo 5/:

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		

Example 1:

$$\max (1,0,2)x \qquad \qquad \text{(P)}$$

$$\text{s.t. } \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$x_1, x_2 \geq 0, x_3 \text{ free}$$

Its dual LP:

min
$$(3,4)y$$
 (D)
s.t. $\begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} y$? $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$
 y ? \emptyset

©University of Waterloo 6/2

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Example 1:

$$\max (1,0,2)x \qquad (P)$$
s.t.
$$\begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$x_1, x_2 \geq 0, x_3 \text{ free}$$

Its dual LP:

$$\min (3,4)y \qquad \qquad \text{(D)}$$
s.t.
$$\begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} y \stackrel{\geq}{=} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

$$y_1 \geq 0, y_2 \text{ free}$$

©University of Waterloo 7/2

The following table shows how constraints and variables in primal and dual LPs correspond:

	(P _{max})			(P _{min})	
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{ op}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		

Example 2:

$$\min d^T y$$
 (P) s.t. $W^T y \ge e$ $y \ge 0$

To compute dual LP, check right-hand side of table:

$$\max e^T x$$
 (D) s.t. $Wx ? d$

x?0

©University of Waterloo 8/3

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Example 2:

$$\min d^T y$$
 (P) s.t. $W^T y \ge e$ $y \ge 0$

To compute dual LP, check right-hand side of table:

$$\max e^T x$$
 (D) s.t. $Wx \le d$

x > 0

©University of Waterloo 9 / 2

Example 2:

$$\min d^T y$$
 (P)
$$\text{s.t. } W^T y \ge e$$

$$y \ge 0$$

Substitute:

- $\bullet \ d \longrightarrow c$
- $\bullet \ e \longrightarrow b$
- $\bullet \ y \longrightarrow x$
- \bullet $W^T \longrightarrow A$
- $\bullet \ x \longrightarrow y$

To compute dual LP, check right-hand side of table:

$$\max e^T x$$
 (D)
$$\text{s.t. } Wx \leq d$$

$$x \geq 0$$

Example 2:

$$\min c^T x$$
 (P)
$$\text{s.t. } Ax \ge b$$

$$x \ge 0$$

Substitute:

- $\bullet \ d \longrightarrow c$
- \bullet $e \longrightarrow b$
- $\bullet \ y \longrightarrow x$
- $\bullet W^T \longrightarrow A$
- $\bullet \ x \longrightarrow y$

To compute dual LP, check right-hand side of table:

$$\max b^T x$$
 (D)
$$\text{s.t. } A^T y \leq c$$

$$y > 0$$

This is consistent with the earlier discussion we had!

©University of Waterloo

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Example 3:

$$\max (12, 26, 20)x$$
s.t.
$$\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \leq \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}$$

$$x_1 \geq 0, x_2 \text{ free}, x_3 \geq 0$$

Its dual LP:

min
$$(-2, 2, 13)y$$
 (D
s.t. $\begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} y$? $\begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$
 y ? \emptyset

©University of Waterloo 12 / 20

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Example 3:

$$\max (12, 26, 20)x$$
s.t.
$$\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \overset{\geq}{\leq} \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}$$

$$x_1 \geq 0, x_2 \text{ free}, x_3 \geq 0$$

Its dual LP:

$$\min (-2, 2, 13)y \qquad (C$$
s.t.
$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} y = \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$$

$$y_1 < 0, y_2 > 0, y_3 \text{ free}$$

©University of Waterloo

The following table shows how constraints and variables in primal and dual LPs correspond:

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	≤ constraint		•

Theorem

Let (P_{max}) and (P_{min}) represent the above. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$c^T\bar{x} \leq b^T\bar{y}$$

If $c^T \bar{x} = b^T \bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}).

©University of Waterloo 14/20

Theorem

Let (P_{max}) and (P_{min}) represent the above. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$c^T \bar{x} \le b^T \bar{y}$$

If $c^T \bar{x} = b^T \bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}).

Example 3 (continued):

Its dual LP:

$$\max (12, 26, 20)x \qquad (P) \qquad \min (-2, 2, 13)y \qquad (P)$$
s.t.
$$\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \leq \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} \geq \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$$

$$x_1 \geq 0, x_2 \text{ free, } x_3 \geq 0 \qquad y_1 \leq 0, y_2 \geq 0, y_3 \text{ free}$$

min
$$(-2, 2, 13)y$$
 (I
s.t. $\begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} y = \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$
 $y_1 < 0, y_2 > 0, y_3$ free

Feasible solutions: $\bar{x} = (5, -3, 0)^T$ and $\bar{y} = (0, 4, -2)^T$. Since $(12, 26, 20)\bar{x} = (-2, 2, 13)\bar{y} = -18 \longrightarrow \text{both are optimal!}$

Proving the General Weak Duality Theorem

	(P _{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	= constraint ≥ constraint ≥ 0 variable free variable	≥ 0 variable free variable ≤ 0 variable ≥ constraint = constraint ≤ constraint	min subject to	$b^{\top}y$ $A^{\top}y$? c y ? 0

General Primal LP:

$$\max c^T x$$
s.t.
$$\operatorname{row}_i(A)x \leq b_i \ (i \in R_1)$$

$$\operatorname{row}_i(A)x \geq b_i \ (i \in R_2)$$

$$\operatorname{row}_i(A)x = b_i \ (i \in R_3)$$

$$x_j \geq 0 \ (j \in C_1)$$

$$x_j \leq 0 \ (j \in C_2)$$

$$x_j \operatorname{free} \ (j \in C_3)$$

Its dual according to the table:

$$\min b^T y$$
s.t.
$$\operatorname{col}_j(A)^T y \ge c_j \ (j \in C_1)$$

$$\operatorname{col}_j(A)^T y \le c_j \ (j \in C_2)$$

$$\operatorname{col}_j(A)^T y = c_j \ (j \in C_3)$$

$$y_i \ge 0 \ (i \in R_1)$$

$$y_i \le 0 \ (i \in R_2)$$

$$y_i \text{ free } (i \in R_3)$$

©University of Waterloo 16/2

Proving the General Weak Duality Theorem

General Primal LP:

$$\begin{aligned} \max \, c^T x \\ \text{s.t. } & \operatorname{row}_i(A) x \leq b_i \,\, (i \in R_1) \\ & \operatorname{row}_i(A) x \geq b_i \,\, (i \in R_2) \\ & \operatorname{row}_i(A) x = b_i \,\, (i \in R_3) \\ & x_j \geq 0 \,\, (j \in C_1) \\ & x_j \leq 0 \,\, (j \in C_2) \\ & x_j \,\, \text{free} \,\, (j \in C_3) \end{aligned}$$

Its dual according to the table:

$$\begin{aligned} & \min \, b^T y \\ & \text{s.t. } \operatorname{col}_j(A)^T y \geq c_j \,\, (j \in C_1) \\ & \operatorname{col}_j(A)^T y \leq c_j \,\, (j \in C_2) \\ & \operatorname{col}_j(A)^T y = c_j \,\, (j \in C_3) \\ & y_i \geq 0 \,\, (i \in R_1) \\ & y_i \leq 0 \,\, (i \in R_2) \\ & y_i \,\, \text{free} \,\, (i \in R_3) \end{aligned}$$

We can rewrite the above LPs using slack variables!

©University of Waterloo 17 /

Proving the General Weak Duality Theorem

General Primal LP:

Its dual according to the table:

$$\begin{aligned} \max \, c^T x \\ \text{s.t. } Ax + s &= b \\ s_i &\geq 0 \; (i \in R_1) \\ s_i &\leq 0 \; (i \in R_2) \\ s_i &= 0 \; (i \in R_3) \\ x_j &\geq 0 \; (j \in C_1) \\ x_j &\leq 0 \; (j \in C_2) \\ x_j \; \text{free} \; (j \in C_3) \end{aligned}$$

$$\begin{aligned} & \min \, b^T y \\ & \text{s.t. } A^T y + w = c \\ & w_j \leq 0 \; (j \in C_1) \\ & w_j \geq 0 \; (j \in C_2) \\ & w_j = 0 \; (j \in C_3) \\ & y_i \geq 0 \; (i \in R_1) \\ & y_i \leq 0 \; (i \in R_2) \\ & y_i \; \text{free} \; (i \in R_3) \end{aligned}$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T\bar{y}$. It follows that

$$\bar{y}^Tb = \bar{y}^T(A\bar{x} + \bar{s}) = (\bar{y}^TA)\bar{x} + \bar{y}^T\bar{s} \stackrel{(\star)}{=} (c - \bar{w})^T\bar{x} + \bar{y}^T\bar{s} = c^T\bar{x} - \bar{w}^T\bar{x} + \bar{y}^T\bar{s}.$$

We can show that $\bar{w}^T \bar{x} \leq 0$ and $\bar{y}^T \bar{s} \geq 0 \longrightarrow \bar{y}^T b \geq c^T \bar{x}$

©University of Waterloo 18 /:

Consequences of Weak Duality

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$c^T\bar{x} \leq b^T\bar{y}$$

If $c^T \bar{x} = b^T \bar{y}$, then \bar{x} is optimal for ($\mathsf{P}_{\mathsf{max}}$), and \bar{y} is optimal for ($\mathsf{P}_{\mathsf{min}}$).

- (i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (P_{max}) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}). By weak duality $\longrightarrow c^T \bar{x} \leq b^T \bar{y}$ for all \bar{x} feasible for (P_{max}), and hence the latter is bounded.

- (ii) Similar to (i)
- (iii) weak duality \longrightarrow both (P_{max}) and (P_{min}) bounded

Fundamental Theorem of LP → Both LPs must have an optimal solution!

© University of Waterloo

	(P _{max})			(P _{min})	
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		\leq 0 variable	\leq constraint		

Recap

- We can use the above table to compute duals of general LPs
- Weak duality theorem: if \bar{x} and \bar{y} are feasible for (P_{max}) and (P_{min}), then:

$$c^T\bar{x} \leq b^T\bar{y}$$

Both are optimal if equality holds!