Introduction to Calculus

Prof. Dr. Noman Islam

Functions

x	0	1	2	3
у	3	4	-1	6

- $f(x) = x^2$
- Vertical line test
- Domain
- Range

Piece-wise function

$$f(x) = \begin{cases} 0, & x \le -1 \\ \sqrt{1 - x^2}, & -1 < x < 1 \\ x, & x \ge 1 \end{cases}$$

Composition

• Composition of sin x and x³

Translations

Continuous function

Derivative

- Rate of change
- Tangent to the curve
- Slope
- Velocity
- Differentiability

Some common derivatives

- Constant
- Power function
- Constant multiply by function
- Sums and differences
- Product and quotient rule
- Trigonometric function

Chain rule

Example Find dw/dt if $w = \tan x$ and $x = 4t^3 + t$.

Solution. In this case the chain rule computations take the form

$$\frac{dw}{dt} = \frac{dw}{dx} \cdot \frac{dx}{dt}$$

$$= \frac{d}{dx} [\tan x] \cdot \frac{d}{dt} [4t^3 + t]$$

$$= (\sec^2 x) \cdot (12t^2 + 1)$$

$$= [\sec^2 (4t^3 + t)] \cdot (12t^2 + 1) = (12t^2 + 1) \sec^2 (4t^3 + t)$$

Example Find dy/dx if $y = \cos(x^3)$.

Solution. Let $u = x^3$ and express y as $y = \cos u$. Applying Formula (1) yields

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \frac{d}{du} [\cos u] \cdot \frac{d}{dx} [x^3]$$

$$= (-\sin u) \cdot (3x^2)$$

$$= (-\sin(x^3)) \cdot (3x^2) = -3x^2 \sin(x^3) \blacktriangleleft$$

Integration

Extreme values

Maxima / Minima

THEOREM (Second Derivative Test) Suppose that f is twice differentiable at the point x_0 .

- (a) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a relative minimum at x_0 .
- (b) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a relative maximum at x_0 .
- (c) If $f'(x_0) = 0$ and $f''(x_0) = 0$, then the test is inconclusive; that is, f may have a relative maximum, a relative minimum, or neither at x_0 .