Solutions de la Série N°2 : Réduction de matrices : Application à la résolution de systèmes différentiels

Exercice 1

Soit $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et f un endomorphismes de \mathbb{R}^3 défini par

$$f(e_1) = e_2$$
, $f(e_2) = e_3$ et $f(e_3) = e_1$.

- 1. Déterminer le polynôme caractéristique et le polynôme minimal de f.
- 2. Décomposer \mathbb{R}^3 en une somme directe de sous-espaces vectoriels propres stables par f.

Solution : Soit $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et f un endomorphismes de \mathbb{R}^3 défini par

$$f(e_1) = e_2, \ f(e_2) = e_3 \ \text{et} \ f(e_3) = e_1.$$

1. Le polynôme caractéristique et le polynôme minimal de f : la matrice de f relativement à la base $\{e_1,e_2,e_3\}$ est

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right)$$

d'abord la matrice A est inversible car $det(A) = 1 \neq 0$; et

• le polynôme caractéristique de f est $P_f(x) = \det(A - xI_3)$, alors

$$P_f(x) = \begin{vmatrix} -x & 0 & 1\\ 1 & -x & 0\\ 0 & 1 & -x \end{vmatrix} = 1 - x^3 = -(x-1)(x^2 + x + 1) = (1-x)R(x)$$

où R est un polynôme irréductible dans $\mathbb{R}[x]$. L'endomorphisme f admet une seule valeurs propre réelle qui est 1.

• Le polynôme minimal de f est un polynôme Q unitaire, divise le polynôme caractéristique P_f et vérifiant Q(A) est la matrice nulle; en effet, on a

$$R(A) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \neq 0_{3\times 3} \quad \text{et} \quad A - I_3 = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \neq 0_{3\times 3}$$

où $0_{3\times3}$ est la matrice nulle de taille 3×3 , donc

$$(A - I_3)R(A) = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0_{3\times3}$$

ce qui prouve que le polynôme minimale de f est $Q(x) = (x-1)R(x) = x^3 - 1$.

2. La décomposition \mathbb{R}^3 en une somme directe de sous-espaces vectoriels propres stables par f: d'après la question 1, le polynôme caractéristique de f est $P_f(x) = (1-x)(x^2+x+1)$ où le polynôme x^2+x+1 est irréductible dans $\mathbb{R}[x]$, alors le polynôme $P_f(x)$ ne se décompose pas complètement dans $\mathbb{R}[x]$, donc le seul sous-espace vectoriel propre inclu dans \mathbb{R}^3 est $E_1 = \operatorname{Ker}(f-1.\operatorname{id}_E) \neq \{0_E\}$ qui le sous-espace vectoriel propre associé à la valeur propre 1 de f.

Il existe un sous-espace vectoriel F de dimension 2 défini par

$$F = \{ y \in \mathbb{R}^3 / \forall n \in \mathbb{N}, \exists v_n \in \mathbb{R}^3 : (f - 1.\mathrm{id}_E)^n(v_n) = y \}$$

tel que $\mathbb{R}^3 = \operatorname{Ker}(f - 1.\operatorname{id}_{\mathbb{R}^3}) \oplus F$.

- Montrons que F est stable par f: soit $u \in F$ et $n \in \mathbb{N}$, alors il existe $u_n \in \mathbb{R}^3$ telle que $(f - 1.\mathrm{id}_{\mathbb{R}^3})^n(u_n) = u$; donc on a $(f - 1.\mathrm{id}_{\mathbb{R}^3})^n(f(u_n)) = f(u)$, car $f \circ \mathrm{id}_{\mathbb{R}^3} = \mathrm{id}_{\mathbb{R}^3} \circ f$ et $f \circ f^n = f^n \circ f$ c'est à dire que $f \circ (f - 1.\mathrm{id}_{\mathbb{R}^3})^n = (f - 1.\mathrm{id}_{\mathbb{R}^3})^n \circ f$. Il existe $v = f(u_n) \in \mathbb{R}^3$ tel que $(f - 1.\mathrm{id}_{\mathbb{R}^3})^n(v) = f(u)$; d'où $f(u) \in F$ c'est à dire $f(F) \subset F$.
- Montrons que $E_1 = \operatorname{Ker}(f 1.\operatorname{id}_E)$ est stable par f: soit $u \in \operatorname{Ker}(f 1.\operatorname{id}_E)$, alors il existe $(f 1.\operatorname{id}_{\mathbb{R}^3})(u) = 0_3$; donc on a $(f 1.\operatorname{id}_{\mathbb{R}^3})(f(u)) = f(0_3) = 0_3$, car $f \circ \operatorname{id}_{\mathbb{R}^3} = \operatorname{id}_{\mathbb{R}^3} \circ f$ et $f \circ f^n = f^n \circ f$. Il existe $v = f(u) \in \mathbb{R}^3$ tel que $(f 1.\operatorname{id}_{\mathbb{R}^3})(v) = 0_3$; d'où $v = f(u) \in F$ c'est à dire $f(E_1) \subset F$.

Exercice 2

Soit A une matrice de $\mathcal{M}_2(\mathbb{C})$. On suppose que la matrice A a une seule valeur propre double λ .

- 1. Montrer qu'on peut trouver une matrice B semblable à A égale à l'une des deux matrices suivantes : $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$
- 2. Calculer B^n .

Solution : Considérons une matrice A de $\mathcal{M}_2(\mathbb{C})$. On suppose que la matrice A a une seule valeur propre double λ , c'est à dire $\operatorname{Sp}(A) = \{\lambda\}$.

1. Montrons qu'on peut trouver une matrice B semblable à A égale à l'une des deux matrices suivantes : $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

 λ est l'unique valeur propre de A, alors il existe au moins un vecteur propre v de A associé à la valeur propre λ , donc $Av = \lambda v$.

En prenant une nouvelle base formée de V et d'un autre vecteur w, alors on peut poser P la matrice P=(v|w) avec $P=\begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$ vérifiant

$$T = \begin{pmatrix} \lambda & c \\ 0 & \lambda \end{pmatrix} = P^{-1}AP$$

où $Av = \lambda v$ et $Aw = \lambda w + v$. Alors deux cas se produisent

– Si w est un autre vecteur propre de A associé à λ , alors $Aw = \lambda w$, donc $\{v; w\}$ est une base formée de vecteurs propres, dans ce cas c = 0 et donc la matrice A est diagonalisable et ensuite on obtient

$$B = T = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = P^{-1}AP$$

– Si w n'est pas un vecteur propre de A (soit $c \neq 0$), alors en remplaçant w par kw on obtient $A(kw) = \lambda w + (kc)v$, donc il suffit de prendre kc = 1 soit $k = \frac{1}{c}$, d'où la matrice A n'est pas diagonalisable et ensuite elle trigonalisable au sens de Jordan, on obtient

$$B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \widetilde{P}^{-1} A \widetilde{P}$$

où
$$\widetilde{P} = \begin{pmatrix} v_1 & \frac{1}{c}w_1 \\ v_2 & \frac{1}{c}w_2 \end{pmatrix}$$

2. Calculons B^n :

(a) Si
$$B = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
, alors $B = \lambda I_3$; donc $B^n = \lambda^n I_3$.

(b) Si $B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, alors $B = \lambda I_3 + N$ où N est une matrice nilpotente d'indice de nilpotence 2 à savoir N^p est la matrice nulle pour tout $p \geq 2$; alors d'après la formule de Newton, on a

$$B^{n} = (\lambda I_{3} + N)^{n} = \sum_{i=0}^{n} C_{n}^{i} \lambda^{n-i} N^{i} = C_{n}^{0} \lambda^{n-0} I_{2} + C_{n}^{1} \lambda^{n-1} N + \sum_{i=2}^{n} C_{n}^{i} \lambda^{n-i} N^{i}$$

or
$$N^p = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 pour tout $p \ge 2$, alors

$$B^{n} = \lambda^{n} I_{2} + n\lambda^{n-1} N = \begin{pmatrix} \lambda^{n} & 0 \\ 0 & \lambda^{n} \end{pmatrix} + \begin{pmatrix} 0 & n\lambda^{n-1} \\ 0 & 0 \end{pmatrix}$$

d'où
$$B^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$$
.

Exercice 3

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A. Montrer que f est trigonalisable sur \mathbb{R} .
- 2. L'endomorphisme f est-il diagonalisable sur \mathbb{R} ?
- 3. Trouver une base de \mathbb{R}^3 dans laquelle f est triangulaire supérieure.
- 4. Calculer $(A-2I_3)^2$. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Solution : Considérons f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$

1. Le polynôme caractéristique de A est par définition $P_A(x) = \det(A - xI_3)$

$$\det(A - xI_3) = \begin{vmatrix} -x & 1 & 0 \\ -4 & 4 - x & 0 \\ -2 & 1 & 2 - x \end{vmatrix}$$

$$= -x \begin{vmatrix} 4 - x & 0 \\ 1 & 2 - x \end{vmatrix} - \begin{vmatrix} -4 & 0 \\ -2 & 2 - x \end{vmatrix}$$

$$= -x(4 - x)(2 - x) + 4(2 - x)$$

$$= (2 - x)(-x(4 - x) + 4)$$

d'où $P_A(x) = -(x-2)^3$.

- La matrice ${\cal A}$ admet une seule valeur propre d'ordre de multiplicité 3.
- les vecteurs propres de A : soit $u=(x,y,z)^T$ un vecteur propre de A associé à $\lambda=2,$ alors $A\,u=2\,u,$ donc

$$\left\{ \begin{array}{l} y = 2x \\ -4x + 4y = 2y \\ x + y + 2z = 2z \end{array} \right. \Rightarrow \left\{ \begin{array}{l} y = 2x \\ y = 2x \\ z \in \mathbb{R} \end{array} \right.$$

alors

$$u = \begin{pmatrix} x \\ 2x \\ z \end{pmatrix} = \begin{pmatrix} x \\ 2x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

on pose
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$; alors le sous-espace propre $E_2 = \text{Ker}(A - 2I_3)$ de A associé à la valeur propre 2 est engendré par le système $\{v_1; v_2\}$; donc la matrice A n'est

pas diagonalisable; d'où A est trigonalisable. 2. La matrice A n'est pas diagonalisable, alors l'endomorphisme f n'est pas diagonalisable sur

3. D'après la question 1, on a le sous-espace propre $E_2 = \text{Ker}(A - 2I_3)$ de A associé à la valeur propre 2 est engendré par le système $\{v_1; v_2\}$ où $v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, alors le

système $\{v_1; v_2\}$ est libre dans \mathbb{R}^3 ; donc d'après le théorème de la base incomplète on peut déterminer un troisième vecteur v_3 vérifiant $Av_3 = 2v_3 + v_1$ tel que le système $\{v_1; v_2; v_3\}$ soit

une base de \mathbb{R}^3 . Soit $v_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ ce vecteur, alors on peut écrire la matrice $P = (v_1|v_2|v_3)$

telle que

$$T = \begin{pmatrix} 2 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix} = P^{-1}AP \quad \text{avec} \quad P = \begin{pmatrix} 1 & 0 & x \\ 2 & 0 & y \\ 0 & 1 & z \end{pmatrix}$$

alors on a PT = AP qui implique

$$\begin{pmatrix} 1 & 0 & x \\ 2 & 0 & y \\ 0 & 1 & z \end{pmatrix} \begin{pmatrix} 2 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & a + 2x \\ 4 & 0 & 2a + 2y \\ 0 & 2 & b + 2z \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & x \\ 2 & 0 & y \\ 0 & 1 & z \end{pmatrix} = \begin{pmatrix} 2 & 0 & y \\ 4 & 0 & -4x + 4y \\ 0 & 2 & -2x + y + 2z \end{pmatrix}$$

donc

$$\left\{\begin{array}{ll} a+2x=y\\ 2a+2y=-4x+4y\\ b+2z=-2x+y+2z \end{array}\right. \Rightarrow \left\{\begin{array}{ll} a+2x=y\\ b+2x=y\\ z\in\mathbb{R} \end{array}\right. \Rightarrow \left\{\begin{array}{ll} a=b\\ a+2x=y\\ z\in\mathbb{R} \end{array}\right.$$

on prend x = 0, a = b = 1 et z = 0 alors y = 1; donc

$$T = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

d'où $P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$, et après vérification on obtient

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = T$$

4. On a

$$A - 2I_3 = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix}$$

alors

$$(A - 2I_3)^2 = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

D'après la question 3, on a
$$T=P^{-1}AP$$
 avec $T=2I_3+N$ où $N=\begin{pmatrix}0&0&1\\0&0&1\\0&0&0\end{pmatrix}$ est une

matrice nilpotente d'indice de nilpotence 2; soit $N^p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ pour tout $p \ge 2$.

Soit $n \in \mathbb{N}$, alors $T^n = (2I_3 + N)^n = P^{-1}A^nP$ avec $(2I_3 + N)^n = \sum_{i=0}^n C_n^i 2^{n-i} N^i$ car $NI_3 = I_3N$, alors

$$(2I_3 + N)^n = C_n^0 2^n I_3 + C_n^1 2^{n-1} N = \begin{pmatrix} 2^n & 0 & n 2^{n-1} \\ 0 & 2^n & n 2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix}$$

donc

$$A^{n} = PT^{n}P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 & n \, 2^{n-1} \\ 0 & 2^{n} & n \, 2^{n-1} \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$

d'où
$$A^n = \begin{pmatrix} -(n-1)2^n & n2^{n-1} & 0\\ -n2^{n+1} & (n+1)2^n & 0\\ -n2^n & n2^{n-1} & 2^n \end{pmatrix}$$
.
Vérification:

pour
$$n = 1$$
, alors $A^{1} = \begin{pmatrix} -(1-1)2^{1} & 1*2^{1-1} & 0\\ -1*2^{1+1} & (1+1)2^{1} & 0\\ -1*2^{1} & 1*2^{1-1} & 2^{1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0\\ -4 & 4 & 0\\ -2 & 1 & 2 \end{pmatrix} = A.$

Exercice 4

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ 3 & -2 & 0 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A. Montrer que f est trigonalisable sur \mathbb{R}
- 2. L'endomorphisme f est-il diagonalisable sur \mathbb{R} ?
- 3. Trouver une base de \mathbb{R}^3 dans laquelle f est triangulaire supérieure.
- 4. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Solution : On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice relativement à la base canonique

est
$$A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ 3 & -2 & 0 \end{pmatrix}$$

1. Le polynôme caractéristique de A est par définition $P_A(x) = \det(A - xI_3)$

$$\det(A - xI_3) = \begin{vmatrix} 3 - x & -1 & -1 \\ -1 & 2 - x & 0 \\ 3 & -2 & -x \end{vmatrix}$$

$$= -\begin{vmatrix} -1 & 2 - x \\ 3 & -2 \end{vmatrix} - x \begin{vmatrix} 3 - x & -1 \\ -1 & 2 - x \end{vmatrix}$$

$$= -(3x - 4) - x(x^2 - 5x + 5)$$

$$= -x^3 + 5x^2 - 8x + 4$$

d'où
$$P_A(x) = -(x-1)(x-2)^2$$
.

La matrice A a pour valeur propre 1 d'ordre de multiplicité 1 et 2 d'ordre de multiplicité 2. les vecteurs propres de A:

- soit $u=(x,y,z)^T$ un vecteur propre de A associé à $\lambda=1$, alors Au=1u, donc

$$\begin{cases} 3x - y - z = x \\ -x + 2y = y \\ 3x - 2y = z \end{cases} \Rightarrow \begin{cases} 2x - y - z = 0 \\ x = y \\ x = z \end{cases}$$

alors

$$u = \begin{pmatrix} x \\ x \\ x \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

donc on prend $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Le sous-espace propre $E_1 = \text{Ker}(A - I_3)$ de A associé à la

valeur propre 1 est la droite vectorielle de vecteur directeur $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- soit $v = (x, y, z)^T$ un vecteur propre de A associé à $\lambda = 2$, alors Au = 2u, donc

$$\begin{cases} 3x - y - z = 2x \\ -x + 2y = 2y \\ 3x - 2y = 2z \end{cases} \Rightarrow \begin{cases} x - y - z = 0 \\ x = 0 \\ y = -z \end{cases}$$

alors

$$v = \begin{pmatrix} 0 \\ y \\ -y \end{pmatrix} = y \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

donc on prend $v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. Le sous-espace propre $E_2 = \text{Ker}(A - 2I_3)$ de A associé à la

valeur propre 2 est la droite vectorielle de vecteur directeur $v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

On remarque que le sous-espace vectoriel $E=E_1\oplus E_2=\operatorname{Ker}(A-I_3)'\oplus\operatorname{Ker}(A-2I_3)$ est engendré par le système $\{u_1; v_1\}$; donc l'espace vectoriel E est de dimension 2 qui est strictement inférieure à la dimension de \mathbb{R}^3 ; donc la matrice A n'est pas diagonalisable; d'où A est trigonalisable.

- 2. L'endomorphisme f n'est pas diagonalisable sur \mathbb{R} car la matrice A de f n'est pas diagonalisable. D'où l'endomorphisme f n'est pas trigonalisable sur \mathbb{R} .
- 3. D'après la question 1, on a le sous-espace vectoriel $E = E_1 \oplus E_2 = \operatorname{Ker}(A I_3) \oplus \operatorname{Ker}(A 2I_3)$

est engendré par le système $\{u_1; v_1\}$ où $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, alors le système

 $\{u_1; v_1\}$ est libre dans \mathbb{R}^3 ; donc d'après le théorème de la base incomplète on peut déterminer un troisième vecteur w_1 vérifiant $Aw_1 = 2w_1 + v_1$ tel que le système $\{u_1; v_1; w_1\}$ soit une

base de \mathbb{R}^3 . Soit $w_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur tel que $Aw_1 = 2w_1 + v_1$, alors on a

$$\begin{cases} 3x - y - z = 2x \\ -x + 2y = 2y + 1 \\ 3x - 2y = 2z - 1 \end{cases} \Rightarrow \begin{cases} x = y + z \\ x = -1 \end{cases}$$

on prend y = 1, alors z = -2 et x = -1, donc $w_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$. Finalement, le système $\{u_1; v_1; w_1\}$ est une base de \mathbb{R}^3 formée de vecteurs propres de A

Soit $P = (u_1|v_1|w_1)$ la matrice formée de vecteurs propres en colonnes, alors

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = P^{-1}AP \quad \text{avec} \quad P = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$

la matrice P est inversible et on obtient $P^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 3 & -1 & -2 \\ -2 & 1 & 1 \end{pmatrix}$.

On vérifie bien que

$$P^{-1}AP = \begin{pmatrix} -1 & 1 & 1 \\ 3 & -1 & -2 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ 3 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = J$$

4. On a $P^{-1}AP = J$ avec J = D + N où $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

On vérifie que

$$DN = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right) = ND$$

alors d'après la formule de Newton on a $J^n = (D+N)^n = \sum_{i=0}^n C_n^i N^i D^{n-i}$.

Or la matrice N est nilpotente d'indice de nilpotence 2, alors N^p est la matrice nulle pour tout $p \geq 2$; donc

$$P^{-1}A^{n}P = J^{n} = D^{n} + nD^{n-1}N = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2^{n} & n2^{n-1}\\ 0 & 0 & 2^{n} \end{pmatrix}$$

d'où

$$A^{n} = PJ^{n}P^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & n2^{n-1} \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 3 & -1 & -2 \\ -2 & 1 & 1 \end{pmatrix}$$

finalement

$$A^{n} = \begin{pmatrix} 2^{n+1} - 1 & 1 - 2^{n} & 1 - 2^{n} \\ -1 + (1-n)2^{n} & 1 + n2^{n-1} & 1 - n2^{n-1} \\ -1 + (n+1)2^{n} & 1 - (n+2)2^{n-1} & 1 - n2^{n-1} \end{pmatrix}.$$

<u>Vérification</u>: pour n = 1, on retrouve la matrice A en remplaçant n = 1 dans l'expression de A^n .

Exercice 3

On considère les trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies sous la forme récurrente par $u_0=1,\ v_0=1,\ w_0=-1$ et pour tout $n\in\mathbb{N}$ par le système suivant

$$(S): \begin{cases} u_{n+1} &= u_n + v_n - 3w_n \\ v_{n+1} &= u_n - w_n \\ w_{n+1} &= u_n - v_n \end{cases}$$

1. Écrire le système (S) sous la forme matricielle

$$X_{n+1} = AX_n$$
 avec $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}, \forall n \in \mathbb{N}$

- 2. Calculer les valeurs propres de A. En déduire que la matrice A est diagonalisable. Proposer une base de vecteurs propres de A.
- 3. Soit P la matrice de passage de la base canonique de \mathbb{R}^3 à une basee de vecteurs propres de A. Calculer P et P^{-1} , puis expliciter la matrice $B \in \mathbb{R}^{(3\times 3)}$ définie par $B = P^{-1}AP$.
- 4. Calculer A^n pour tout $n \ge 1$.
- 5. En déduire les expressions de u_n , v_n et w_n en fonction de n.

Solution : Considérons les trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies sous la forme récurrente par $u_0=1,\ v_0=1,\ w_0=-1$ et pour tout $n\in\mathbb{N}$ par le système suivant

$$(S): \begin{cases} u_{n+1} = u_n + 6v_n - 3w_n \\ v_{n+1} = u_n - w_n \\ w_{n+1} = u_n - v_n \end{cases}$$

1. Soit $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$, alors le système (S) peut être transformer sous la forme matricielle

$$X_{n+1} = AX_n$$
 avec $A = \begin{pmatrix} 1 & 6 & -3 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$

2. – Le polynôme caractéristique de A est par définition $P_A(x) = \det(A - xI_3)$

$$\det(A - xI_3) = \begin{vmatrix} 1 - x & 6 & -3 \\ 1 & -x & -1 \\ 1 & -1 & -x \end{vmatrix}$$
$$= (1 - x)(x^2 - 1) - 6(1 - x) - 3(x - 1)$$
$$= (1 - x)(x^2 - 1 - 6 + 3)$$
$$= (1 - x)(x^2 - 4)$$

d'où $P_A(x) = -(x-1)(x-2)(x+2)$.

Les valeurs propres de A sont telles que $P_A(x) = -(x-1)(x-2)(x+2) = 0$, alors le spectre de A est $Sp(A) = \{-2; 1; 2\}$.

- La matrice A est d'orde 3 qui admet trois valeurs propres distinctes; alors on en déduit que la matrice A est diagonalisable.
- Une base de vecteurs propres de A:
 - Soit $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur propre de A associé à la valeur propre -2, alors on a Au = -2u, soit

$$\left\{ \begin{array}{l} x+6y-3z=-2x \\ x-z=-2y \\ x-y=-2z \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 3x+6y-3z=0 \\ x+2y-z=0 \\ x-y+2z=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x\in \mathbb{R} \\ y=-x \\ z=-x \end{array} \right.$$

on prend x=1, alors y=-1 et y=-1, donc $u_1=\begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}$. D'où le sous-espace propre

 $E_{-2} = \text{Ker}(A + 2I_3)$ est la droite vectorielle engendrée par le vecteur $u_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

• Soit
$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 un vecteur propre de A associé à la valeur propre 1, alors on a $Au = u$, soit

$$\begin{cases} x + 6y - 3z = x \\ x - z = y \\ x - y = z \end{cases} \Rightarrow \begin{cases} x = 3y \\ y \in \mathbb{R} \\ z = 2y \end{cases}$$

on prend
$$y=1$$
, alors $x=3$ et $z=2$, donc $v_1=\begin{pmatrix}3\\1\\2\end{pmatrix}$. D'où le sous-espace propre

$$E_1 = \text{Ker}(A - I_3)$$
 est la droite vectorielle engendrée par le vecteur $v_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

• Soit $w = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur propre de A associé à la valeur propre 2, alors on a Au = 2u, soit

$$\left\{\begin{array}{ll} x+6y-3z=2x \\ x-z=2y \\ x-y=2z \end{array}\right. \Rightarrow \left\{\begin{array}{ll} x-6y+3z=0 \\ x-2y-z=0 \\ x-y-2z=0 \end{array}\right. \Rightarrow \left\{\begin{array}{ll} x=3y \\ y\in \mathbb{R} \\ y=z \end{array}\right.$$

on prend
$$y=1$$
, alors $x=3$ et $z=1$, donc $w_1=\begin{pmatrix}3\\1\\1\end{pmatrix}$. D'où le sous-espace propre

$$E_2 = \text{Ker}(A - 2I_3)$$
 est la droite vectorielle engendrée par le vecteur $w_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

On en déduit que le système $\{u_1; v_1, w_1\}$ formé des vecteurs propres est une base de \mathbb{R}^3 ; donc \mathbb{R}^3 est la somme directe des sous-espaces propres, c'est à dire

$$\mathbb{R}^3 = \operatorname{Ker}(A + 2I_3) \oplus \operatorname{Ker}(A - I_3) \oplus \operatorname{Ker}(A - 2I_3)$$

ce qui montre que A est diagonalisable.

3. Soit P la matrice de passage de la base canonique de \mathbb{R}^3 à une basee de vecteurs propres de A, alors $P = (u_1|v_1|w_1)$ c'est à dire

$$P = \left(\begin{array}{rrr} 1 & 3 & 3 \\ -1 & 1 & 1 \\ -1 & 2 & 1 \end{array}\right)$$

on peut voir que P est inversible puisque son déterminant $det(P) = -4 \neq 0$; alors

$$P^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} & 0\\ 0 & -1 & 1\\ \frac{1}{4} & \frac{5}{4} & -1 \end{pmatrix}$$

La matrice A est diagonalisable, alors il existe une matrice $B \in \mathbb{R}^{(3\times3)}$ diagonale dont la diagonale est formée de vecteurs propres et définie par $B = P^{-1}AP$ où

$$B = \left(\begin{array}{rrr} -2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{array}\right)$$

4. Pour tout $n \ge 1$, on a $B^n = P^{-1}A^nP$; donc $A^n = PBP^{-1}$ où $B^n = \begin{pmatrix} (-2)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$; c'est à dire

$$A^{n} = \begin{pmatrix} 1 & 3 & 3 \\ -1 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} & 0 \\ 0 & -1 & 1 \\ \frac{1}{4} & \frac{5}{4} & -1 \end{pmatrix}$$

d'où pour tout $n \ge 1$ on obtient

$$A^{n} = \begin{pmatrix} (3 + (-1)^{n})2^{n-2} & (15 - 3(-1)^{n})2^{n-2} - 3 & 3(1 - 2^{n}) \\ (1 - (-1)^{n})2^{n-2} & (5 + 3(-1)^{n})2^{n-2} - 1 & 1 - 2^{n} \\ (1 - (-1)^{n})2^{n-2} & (5 + 3(-1)^{n})2^{n-2} - 2 & 2 - 2^{n} \end{pmatrix}$$

Pour n = 1, on peut retrouver facilement la matrice A.

5. Les expressions de u_n , v_n et w_n en fonction de n, en effet, pour tout $n \ge 1$ on a $X_n = AX_{n-1}$, alors on obtient $X_n = A^n X_0$ où $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et $X_0 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$; alors

$$\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \begin{pmatrix} (3 + (-1)^n)2^{n-2} & (15 - 3(-1)^n)2^{n-2} - 3 & 3(1 - 2^n) \\ (1 - (-1)^n)2^{n-2} & (5 + 3(-1)^n)2^{n-2} - 1 & 1 - 2^n \\ (1 - (-1)^n)2^{n-2} & (5 + 3(-1)^n)2^{n-2} - 2 & 2 - 2^n \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

c'est à dire que

$$\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \begin{pmatrix} 3 \cdot 2^n + (18 - 2(-1)^n) 2^{n-2} - 3 \\ 2^n + (6 + 2(-1)^n) 2^{n-2} - 2 \\ 2^n + (6 + 2(-1)^n) 2^{n-2} - 4 \end{pmatrix}$$

finalement les expressions de u_n , v_n et w_n sont

$$\begin{cases} u_n = 3 \cdot 2^n + (18 - 2(-1)^n) 2^{n-2} - 6 \\ v_n = 2^n + (6 + 2(-1)^n) 2^{n-2} - 2 \\ w_n = 2^n + (6 + 2(-1)^n) 2^{n-2} - 4 \end{cases}$$

on peut vérifier que pour n=0 on retrouve $u_0=1, v_0=1$ et $w_0=-1$

Exercice 6

On veut résoudre le système différentiel linéaire du premier ordre sans second membre suivant :

$$\begin{cases} x' = x + y \\ y' = -x + 2y + z \\ z' = x + z \end{cases}$$

On pose
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

- 1. Montrer qu'on peut écrire le système différentiel sous la forme : X'(t) = A.X(t) où A est une matrice à déterminer.
- 2. Montrer que la matrice est inversible, puis trouver le polynôme caractéristique associé à A.
- 3. Trouver les valeurs propres λ_1 , λ_2 et λ_3 de la matrice A.
- 4. Trouver les vecteurs propres v_1 , v_2 et v_3 associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 .

- 5. Trouver la solution générale X(t), puis touver la solution X(t) satisfaisant la condition initiale $X(0) = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 3 \end{pmatrix}$.
- 6. Trouver la solution $t \mapsto X(t)$ tel que $X(0) = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ où $j = e^{i\frac{2\pi}{3}}$.

Soient M, N et P des points dans le plan complexe d'afixes x(t), y(t) et z(t), le traingle MNP est-il équilatéral?

Solution : Considérons le système différentiel linéaire du premier ordre sans second membre suivant :

$$\begin{cases} x' = x + y \\ y' = -x + 2y + z \\ z' = x + z \end{cases}$$

1. Soit $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$, alors $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$, donc

$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} &1&1&0\\ -1&2&1\\ &1&0&1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

d'où on peut écrire le système différentiel sous la forme : X'(t) = A.X(t) où $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

2. La matrice A est inversible puisque $\det(A)=4\neq 0$, et le polynôme caractéristique associé à A est par définition $P_A(x)=\det(A-xI_3)$

$$\det(A - xI_3) = \begin{vmatrix} 1 - x & 1 & 0 \\ -1 & 2 - x & 1 \\ 1 & 0 & 1 - x \end{vmatrix}$$
$$= (1 - x)^2 (2 - x) - (x - 1 - 1)$$
$$= (2 - x)(1 + (x - 1)^2)$$

d'où $P_A(x) = -(x-2)(1+(x-1)^2)$.

- 3. Les valeurs propres λ_1 , λ_2 et λ_3 de la matrice A sont telles que $P_A(x) = -(x-2)(1+(x-1)^2) = 0$, alors $\lambda_1 = 2$, $\lambda_2 = 1-i$ et $\lambda_3 = 1+i=\overline{\lambda}_2$.
- 4. Les vecteurs propres v_1, v_2 et v_3 associés respectivement aux valeurs propres $\lambda_1 = 2, \lambda_2 = 1 \mathrm{i}$ et $\lambda_3 = 1 + \mathrm{i} = \overline{\lambda_2}$:
 - Soit $u=\begin{pmatrix}x\\y\\z\end{pmatrix}$ un vecteur propre de A associé à la valeur propre 2, alors on a Au=2u, soit

$$\left\{ \begin{array}{l} x+y=2x \\ -x+2y+z=2y \\ x+z=2z \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x\in \mathbb{R} \\ y=x \\ z=x \end{array} \right.$$

on prend x=1, alors y=1 et z=1, donc $u_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$. D'où le sous-espace propre

 $E_2 = \text{Ker}(A - 2I_3)$ est la droite vectorielle engendrée par le vecteur $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

– Soit
$$v=\begin{pmatrix} x\\y\\z\end{pmatrix}$$
 un vecteur propre de A associé à la valeur propre 1 – i, alors on a $A\,u=(1-\mathrm{i})\,u,$ soit

$$\begin{cases} x+y = (1-\mathrm{i})x \\ -x+2y+z = (1-\mathrm{i})y \end{cases} \Rightarrow \begin{cases} x = \mathrm{i}y \\ y \in \mathbb{R} \\ z = -y \end{cases}$$

on prend y=1, alors $x=\mathrm{i}$ et z=-1, donc $v_1=\begin{pmatrix}\mathrm{i}\\1\\-1\end{pmatrix}$. D'où le sous-espace propre

 $E_{(1-i)} = \text{Ker}(A - (1-i)I_3)$ est la droite vectorielle complexe engendrée par le vecteur

$$v_1 = \begin{pmatrix} i \\ 1 \\ -1 \end{pmatrix}.$$

– On a $v_1 = \begin{pmatrix} i \\ 1 \\ -1 \end{pmatrix}$ est un vecteur propre de A associé à $\lambda_2 = 1$ – i, alors $A v_1 = \lambda_2 v_1$; donc $A \overline{v}_1 = \overline{\lambda}_2 \overline{v}_1$,

donc $A \overline{v}_1 = \lambda_2 \overline{v}_1$, or $\overline{\lambda}_2 = \overline{1-i} = 1+i=\lambda_3$, alors $A \overline{v}_1 = \lambda_3 \overline{v}_1$; donc $\overline{v}_1 = w_1$ est un vecteur propre de A associé la valeur propre $\lambda_3 = 1+i$. Soit $w_1 = \begin{pmatrix} -i \\ 1 \\ -1 \end{pmatrix}$, d'où le sous-espace propre

 $E_{(1+i)} = \text{Ker}(A - (1+i)I_3)$ est la droite vectorielle complexe engendrée par le vecteur $w_1 = \begin{pmatrix} -i \\ 1 \\ -1 \end{pmatrix}$.

5. La solution générale X(t), puis touver la solution X(t) satisfaisant la condition initiale $X(0) = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$. On a X'(t) = AX(t), alors

$$X(t) = \alpha e^{\lambda_1 t} u_1 + \beta e^{\lambda_2 t} v_1 + \gamma e^{\lambda_3 t} w_1$$

où α , β et γ sont des paramètres à déterminer tels que $X(0)=\begin{pmatrix} 1\\ \frac{1}{2}\\ 3 \end{pmatrix}$.

On a

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \alpha e^{2t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta e^t e^{-\mathrm{i}t} \begin{pmatrix} \mathrm{i} \\ 1 \\ -1 \end{pmatrix} + \gamma e^t e^{\mathrm{i}t} \begin{pmatrix} -\mathrm{i} \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha e^{2t} + \mathrm{i}\beta e^t e^{-\mathrm{i}t} - \mathrm{i}\gamma e^t e^{\mathrm{i}t} \\ \alpha e^{2t} + \beta e^t e^{-\mathrm{i}t} + \gamma e^t e^{\mathrm{i}t} \\ \alpha e^{2t} - \beta e^t e^{-\mathrm{i}t} - \gamma e^t e^{\mathrm{i}t} \end{pmatrix}$$

alors on obtient les trois expressions suivantes

$$\begin{cases} x(t) = \alpha e^{2t} + \mathrm{i}\beta e^t e^{-\mathrm{i}t} - \mathrm{i}\gamma e^t e^{\mathrm{i}t} \\ y(t) = \alpha e^{2t} + \beta e^t e^{-\mathrm{i}t} + \gamma e^t e^{\mathrm{i}t} \\ z(t) = \alpha e^{2t} - \beta e^t e^{-\mathrm{i}t} - \gamma e^t e^{\mathrm{i}t} \end{cases}$$

donc pour t = 0, il vient

$$\left\{ \begin{array}{l} 1 = x(0) = \alpha + \mathrm{i}\beta - \mathrm{i}\gamma \\ \frac{1}{2} = y(0) = \alpha + \beta + \gamma \\ 3 = z(0) = \alpha - \beta - \gamma \end{array} \right. \Leftrightarrow \left. \left(\begin{array}{l} 1 \\ \frac{1}{2} \\ 3 \end{array} \right) = \left(\begin{array}{l} 1 & \mathrm{i} & -\mathrm{i} \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{array} \right) \left(\begin{array}{l} \alpha \\ \beta \\ \gamma \end{array} \right)$$

$$\text{d'où} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 1 & \text{i} & -\text{i} \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 3 \end{pmatrix} \text{où} \begin{pmatrix} 1 & \text{i} & -\text{i} \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2}\text{i} & \frac{1}{4}(1+\text{i}) & \frac{1}{4}(-1+\text{i}) \\ \frac{1}{2}\text{i} & \frac{1}{4}(1-\text{i}) & -\frac{1}{4}(1+\text{i}) \end{pmatrix}$$

$$\text{d'où} \begin{cases} \alpha = \frac{7}{4} \\ \beta = -\frac{5}{8} + \frac{3}{8}\text{i} \\ \gamma = -\frac{5}{8} - \frac{3}{8}\text{i} \\ \text{finalement, on obtient les solutions} \end{cases}$$
 finalement, on obtient les solutions

$$\begin{cases} x(t) = \frac{7}{4}e^{2t} + i\left(-\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{-it} + i\left(\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{it} \\ y(t) = \frac{7}{4}e^{2t} + \left(-\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{-it} - \left(\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{it} \\ z(t) = \frac{7}{4}e^{2t} - \left(-\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{-it} + \left(\frac{5}{8} + \frac{3}{8}i\right)e^{t}e^{it} \end{cases}$$

après un calcul élémentaire facile, en tenant compte des relations trigonométriques des nombres complexes, il vient

$$\begin{cases} x(t) = \frac{7}{4}e^{2t} - \frac{1}{4}e^{t} \left(3\cos(t) + 5\sin(t)\right) \\ y(t) = \frac{7}{4}e^{2t} + \frac{1}{4}e^{t} \left(-5\cos(t) + 3\sin(t)\right) \\ z(t) = \frac{7}{4}e^{2t} + \frac{1}{4}e^{t} \left(5\cos(t) - 3\sin(t)\right) \end{cases}$$

on peut vérifier que pour t=0 on obtient x(0)=1, y(0)=0.5 et z(0)=3.

6. – Trouvons la solution $t \mapsto X(t)$ tel que $X(0) = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ où $j = e^{i\frac{2\pi}{3}}$ et $j^2 = e^{-i\frac{2\pi}{3}}$. En effet,

la démarche est similaire à la question 5, on cherchera α , β et γ vérifiant le système

$$\begin{cases} 1 = x(0) = \alpha + i\beta - i\gamma \\ j = y(0) = \alpha + \beta + \gamma \\ j^2 = z(0) = \alpha - \beta - \gamma \end{cases} \Leftrightarrow \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix} = \begin{pmatrix} 1 & i & -i \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

$$\begin{array}{l} {\rm d'où} \, \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2}{\rm i} & \frac{1}{4}(1+{\rm i}) & \frac{1}{4}(-1+{\rm i}) \\ \frac{1}{2}{\rm i} & \frac{1}{4}(1-{\rm i}) & -\frac{1}{4}(1+{\rm i}) \end{pmatrix} \begin{pmatrix} 1 \\ {\rm j} \\ {\rm j}^2 \end{pmatrix} \\ {\rm d'où} \, \begin{cases} \alpha = -\frac{1}{2} \\ \beta = \frac{1}{4}{\rm i}(-3+\sqrt{3}) \\ \gamma = \frac{1}{4}{\rm i}(3+\sqrt{3}) \end{cases} \\ {\rm donc} \end{array}$$

$$\begin{cases} x(t) = -\frac{1}{2}e^{2t} - \frac{1}{4}(-3 + \sqrt{3})e^t e^{-it} + \frac{1}{4}(3 + \sqrt{3})e^t e^{it} \\ y(t) = -\frac{1}{2}e^{2t} + \frac{1}{4}i(-3 + \sqrt{3})e^t e^{-it} + \frac{1}{4}i(3 + \sqrt{3})e^t e^{it} \\ z(t) = -\frac{1}{2}e^{2t} - \frac{1}{4}i(-3 + \sqrt{3})e^t e^{-it} - \frac{1}{4}i(3 + \sqrt{3})e^t e^{it} \end{cases}$$

après un calcul élémentaire, on obtient

$$\begin{cases} x(t) = -\frac{1}{2}e^{2t} + \frac{1}{2}e^{t}(3\cos(t) + i\sqrt{3}\sin(t)) \\ y(t) = -\frac{1}{2}e^{2t} + \frac{1}{2}e^{t}(-3\sin(t) + i\sqrt{3}\cos(t)) \\ z(t) = -\frac{1}{2}e^{2t} + \frac{1}{2}e^{t}(3\sin(t) - i\sqrt{3}\cos(t)) \end{cases}$$

- Soit M, N et P sont dans le plan complexe les images de x(t), y(t) et z(t), montrons que le traingle MNP est équilatéral : en effet, le traingle MNP est équilatéral si et seulement

$$\begin{split} & \text{si } \|\overrightarrow{MN}\| = \|\overrightarrow{MP}\| = \|\overrightarrow{NP}\| \text{ c'est à dire } |x(t)-y(t)| = |x(t)-z(t)| = |z(t)-y(t)|. \text{ On a} \\ & x(t)-y(t) = \frac{1}{2}e^t \left[3(\cos(t)+\sin(t)) + \mathrm{i}\sqrt{3}(\sin(t)-\cos(t)) \right] \\ & = \sqrt{3}\,e^t \left(\sin(t)e^{\mathrm{i}\frac{\pi}{6}} + \cos(t)e^{-\mathrm{i}\frac{\pi}{6}} \right) \\ & x(t)-z(t) = \frac{1}{2}e^t \left[3(\cos(t)-\sin(t)) + \mathrm{i}\sqrt{3}(\sin(t)+\cos(t)) \right] \\ & = \sqrt{3}\,e^t \left(\cos(t)e^{\mathrm{i}\frac{\pi}{6}} - \sin(t)e^{-\mathrm{i}\frac{\pi}{6}} \right) \\ & y(t)-z(t) = e^t \left[-3\sin(t) + \mathrm{i}\sqrt{3}\cos(t) \right] \\ & = \sqrt{3}\,e^t \left(-\sqrt{3}\sin(t) + \mathrm{i}\cos(t) \right) \end{split}$$

on remarque que $|x(t)-y(t)| \neq |x(t)-z(t)| \neq |z(t)-y(t)|$, alors le traingle MNP n'est pas un triangle équilatéral.

Exercice 7

Soit (S) le système differentiel lineaire avec second membre

$$(S): \begin{cases} x'(t) &= x(t) + 2y(t) + e^t \\ y'(t) &= -3x(t) - 3y(t) + z(t) - e^t \\ z'(t) &= 2x(t) + 2y(t) - z(t) + 2e^t \end{cases}$$

où x, y et z désignent des fonctions de \mathbb{R} dans \mathbb{R}

- 1. Déterminer la solution générale, à valeurs réelles, du systeme linéaire homogène associé à (S).
- 2. Déterminer la solution particulière du système (S) pour les conditions initiales x(0) = 1, y(0) = -1 et z(0) = 1.
- 3. Déterminer la solution générale, à valeurs réelles, du système (S).

Solution : Considérons le système differentiel linéaire avec second membre (S) donné par

$$(S): \begin{cases} x'(t) &= x(t) + 2y(t) + e^t \\ y'(t) &= -3x(t) - 3y(t) + z(t) - e^t \\ z'(t) &= 2x(t) + 2y(t) - z(t) + 2e^t \end{cases}$$

où x, y et z désignent des fonctions de \mathbb{R} dans \mathbb{R} .

1. La solution générale, à valeurs réelles, du systeme linéaire homogène associé à (S): en effet, soit $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$, alors le systeme differentiel linéaire avec second membre

$$(S): \begin{cases} x'(t) &= x(t) + 2y(t) + e^t \\ y'(t) &= -3x(t) - 3y(t) + z(t) - e^t \\ z'(t) &= 2x(t) + 2y(t) - z(t) + 2e^t \end{cases}$$

est équivalent à l'écriture matricielle suivante :

$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ -3 & -3 & 1 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} + e^t \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
 d'où $X'(t) = AX(t) + e^t V_0$ où $A = \begin{pmatrix} 1 & 2 & 0 \\ -3 & -3 & 1 \\ 2 & 2 & -1 \end{pmatrix}, V_0 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ et $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$.

On s'intéresse à résoudre le système homogène issu du système (S), à savoir que le système

homogène (S_h) est donc X'(t) = AX(t). Pour résoudre le système homogène (S_h) , on va étudier la matrice A afin d'écrire la forme de la solution en se basant sur les techniques d'algèbre linéaire matricielle.

– le polynôme caractéristique associé à A est par définition $P_A(x) = \det(A - xI_3)$

$$\det(A - xI_3) = \begin{vmatrix} 1 - x & 2 & 0 \\ -3 & -3 - x & 1 \\ 2 & 2 & -1 - x \end{vmatrix}$$
$$= (1 - x)(x + 3)(x + 1) - 4(x + 1)$$

d'où $P_A(x) = -(x+1)^3$. La matrice A a une unique valeur propre (-1) d'ordre de multiplicité 3.

- Soit $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur propre de A associé à la valeur propre -1, alors on a Au = -u,

 $\begin{cases} x + 2y = -x \\ -3x - 3y + z = -y \\ 2x + 2y - z = -z \end{cases} \Rightarrow \begin{cases} x + y = 0 \\ -3x - 2y + z = 0 \end{cases} \Rightarrow \begin{cases} x \in \mathbb{R} \\ y = -x \\ z = x \end{cases}$

on prend x = 1, alors y = -1 et z = 1, donc $u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. D'où le sous-espace propre

 $E_{-1} = \operatorname{Ker}(A + I_3) \text{ est la droite vectorielle engendrée par le vecteur } u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$

– Le sous-espace propre $E_{-1} = \text{Ker}(A + I_3)$ de A associé à la valeur (-1) de A est la droite vectorielle engendrée par le vecteur $u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, alors $\dim(E_{-1} = \text{Ker}(A + I_3)) = 1 < 1$

 $3 = \dim(\mathbb{R}^3)$; donc A n'est pas diagonalisable; par contre A est triangularisable au sens de Jordan; d'où on peut trouver deux vecteurs v et w tels que $Av = -v + u_1$ et Aw = -w + v de façon que le système $\{u_1, v, w\}$ soit une base de \mathbb{R}^3 .

Soit $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur tel que $Av = -v + u_1$, alors

$$\left\{\begin{array}{ll} x+2y=-x+1\\ -3x-3y+z=-y-1\\ 2x+2y-z=-z+1 \end{array}\right. \Rightarrow \left\{\begin{array}{ll} 2(x+y)=1\\ -3x-2y+z=-1 \end{array}\right. \Rightarrow \left\{\begin{array}{ll} x\in\mathbb{R}\\ y=\frac{1}{2}-x\\ z=x \end{array}\right.$$

on prend x = 0, alors $y = \frac{1}{2}$ et z = 0, donc $v_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$.

De même, soit $w = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur tel que $Aw = -w + v_1$, alors

$$\begin{cases} x + 2y = -x \\ -3x - 3y + z = -y + \frac{1}{2} \\ 2x + 2y - z = -z \end{cases} \Rightarrow \begin{cases} 2(x+y) = 0 \\ -3x - 2y + z = \frac{1}{2} \end{cases} \Rightarrow \begin{cases} x \in \mathbb{R} \\ y = -x \\ z = x + \frac{1}{2} \end{cases}$$

on prend x = 0, alors y = 0 et $z = \frac{1}{2}$, donc $w_1 = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \end{pmatrix}$.

D'où le système $\{u_1; v_1; w_1\}$ est une base de \mathbb{R}^3 formée de vecteurs propres de A; finalement

on obtient la forme de Jordan de la matrice A:

$$J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} = P^{-1}AP \quad \text{où} \quad P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 \\ 1 & 0 & \frac{1}{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 2 \\ -2 & 0 & 2 \end{pmatrix}$$

En conclusion, la solution générale du système homogène (S_h) est $X_h(t) = \exp(tA) V$ où $V = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ est un vecteur à déterminer selon les conditions imposées à t = 0. D'où

$$X_h(t) = P \exp(tJ) P^{-1}V$$

On peut écrire la matrice J sous la forme J=D+N où $D=\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}=-I_3$ et

 $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ est une matrice nilpotente d'indice de nilpotence 3, à savoir que N^p est

la matrice nulle pour tout $p \ge 3$. Or on a $\exp(tJ) = e^{-t} \exp(tN)$ et

$$\exp(tN) = I_3 + tN + \frac{1}{2}t^2N^2 = \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

d'où

$$X_h(t) = e^{-t} \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 \\ 1 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 2 \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

c'est à dire que

$$X_h(t) = e^{-t} \begin{pmatrix} 1 + 2t - t^2 & 2t & t + t^2 \\ -3t + t^2 & 1 - 2t & 1 - t^2 \\ 2t - t^2 & 2t & 1 + t + t^2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

explicitement, on écrit

$$\begin{cases} x_h(t) = e^{-t} \left(\alpha(1 + 2t - t^2) + 2\beta t + \gamma(t + t^2) \right) \\ y_h(t) = e^{-t} \left(\alpha(-3t + t^2) + \beta(1 - 2t) + \gamma(1 - t^2) \right) \\ z_h(t) = e^{-t} \left(\alpha(2t - t^2) + 2\beta t + \gamma(1 + t + t^2) \right) \end{cases}$$

où α , β et γ sont à déterminer selon les conditions imposées à t=0.

2. Une solution particulière du système (S): -1 est une veleur propre triple de A, alors une solution particulière s'écrit

$$X_p(t) = e^{-t}(V_0 + tV_1 + t^2V_2 + t^3V_3)$$

or on cherche une solution particulière vérifiant les conditions $x_p(0) = 1$, $y_p(0) = -1$ et $x_p(0) = 1$ è t = 0, clars en obtient $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ done

$$z_p(0) = 1$$
 à $t = 0$, alors on obtient $V_0 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ donc

$$X_p(t) = e^{-t} \left[\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + t \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{pmatrix} + t^2 \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \end{pmatrix} + t^3 \begin{pmatrix} \alpha_3 \\ \beta_3 \\ \gamma_3 \end{pmatrix} \right]$$

3. La solution générale, à valeurs réelles, du système (\mathcal{S}) est $X(t) = X_h(t) + X_p(t)$; alors

$$\begin{cases} x(t) = e^{-t} \left(\alpha(1 + 2t - t^2) + 2\beta t + \gamma(t + t^2) \right) + e^{-t} \left(1 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 \right) \\ y(t) = e^{-t} \left(\alpha(-3t + t^2) + \beta(1 - 2t) + \gamma(1 - t^2) \right) + e^{-t} \left(-1 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 \right) \\ z(t) = e^{-t} \left(\alpha(2t - t^2) + 2\beta t + \gamma(1 + t + t^2) \right) + e^{-t} \left(1 + \gamma_1 t + \gamma_2 t^2 + \gamma_3 t^3 \right) \end{cases}$$