CS13 Makhimeter 3.0

Anusha Khan 21B-032-CS
AbdulRauf Siddiqui 21B-046-CS
Areeba Aamir 21B-133-CS
Areesha Mallick 21B-208-CS
Syed Hadeed Khalid 21B-217-CS

Feature List

Features are defined in four areas (input, output, process, and nonfunctional requirements), each statement can be written as

As a < type of user >, I want < some goal > so that < some reason >.

With acceptance criteria

For help: https://www.mountaingoatsoftware.com/agile/user-stories

https://www.altexsoft.com/blog/business/acceptance-criteria-purposes-formats-and-best-practices/

. Inputs

Inputs are essential data sources and interactions that Makhimeter relies on to perform automated analysis of *Drosophila melanogaster* images. These inputs come from users, external sources, and internal systems.

1.1 User Inputs

• Image Data Entry

User Story: As a Researcher or Lab Technician, I want to upload images of *Drosophila melanogaster* so that the system can analyze genetic traits and behavioral patterns. **Acceptance Criteria:** The system should provide a user-friendly interface for image uploads with real-time feedback on the image format and resolution.

• Parameter Configuration

User Story: As a Bioinformatics Specialist, I want to configure analysis parameters (e.g., segmentation thresholds, model settings) to customize the image analysis for specific research needs.

Acceptance Criteria: The system should allow parameter configuration through a visual interface, providing options for default and custom settings.

• Genotype Classification Input

User Story: As a Researcher, I want to input movement video data to predict the fly's genotype based on its flight trajectory.

Acceptance Criteria: The system should accept structured input data for flight analysis and apply the trained model to predict genotypes accurately.

1.2 External Inputs

Image Datasets from External Sources

- **User Story:** As a Researcher, I want to integrate external datasets of *Drosophila* images from the DOW Fly Lab to enhance model training and validation.
- Acceptance Criteria: The system should support importing image datasets from external sources in common formats (e.g., JPEG, PNG) and validate them for consistency and quality.

1.3 Internal Inputs

Internal Database Storage

User Story: As a System Administrator, I want to store preprocessed and augmented images in an internal database to maintain a consistent and accessible data repository for model training.

Acceptance Criteria: The database should support efficient data storage, retrieval, and backup mechanisms to ensure data integrity and accessibility.

Data Processing Parameters

User Story: As a Bioinformatics Specialist, I want to adjust data parameters (e.g., segmentation threshold values, image dimensions) to optimize the model's input data.

Acceptance Criteria: The system should allow dynamic adjustment of data processing parameters with minimal disruption to ongoing analyses.

Process: Steps of the Project

1. Data Collection and Preprocessing

- Description: Gather datasets from researchers and external sources, perform data augmentation, and preprocess images to create a consistent and diverse dataset.
- **Outcome:** A high-quality dataset ready for training and analysis, stored in the internal database.

2. Model Development and Training

- Description: Design and train Convolutional Neural Network (CNN) models for tasks such as wing segmentation, brain scan classification, and fly trajectory analysis.
- Outcome: Trained models that are accurate and reliable for analyzing
 Drosophila melanogaster images.

3. Cross-Validation

- Description: Implement cross-validation to ensure models generalize across different datasets.
- Outcome: Optimized models with improved accuracy and generalization capabilities.

4. Integration of Analysis Modules

- Description: Combine different analytical modules (wing segmentation, brain scan classification, fly trajectory analysis) into a cohesive software tool.
- **Outcome:** An integrated system that provides comprehensive analysis features for researchers.

5. User Interface Development

- Description: Develop a web-based interface that allows users to upload images, configure analysis settings, and view results in real-time.
- **Outcome:** A responsive and user-friendly interface that facilitates easy interaction with the system.

6. Integration and Testing

- Description: Integrate all system components and conduct thorough testing, including unit testing, integration testing, and user acceptance testing.
- o **Outcome:** A fully integrated and tested system, ready for deployment.

7. Deployment and Maintenance

 Description: Deploy the application on a cloud platform or local servers, provide training to users, and gather feedback for continuous improvement. Outcome: A live system accessible to users, with ongoing support and maintenance.

Outputs: Reports, Outcomes, Responses, and Notifications

1. Reports

Analysis Reports:

- Wing Segmentation Report
 - Description: Provide a report containing labeled segments of healthy or defected wings.
 - Outcome: Enables researchers to identify genetic mutations and developmental abnormalities.

Brain Scan Report

- **Description:** Present a report detailing the number and types of spots identified in brain scans.
- Outcome: Helps in understanding neurodegenerative diseases and brain functions.

Genotype Classification Report

- **Description:** Generate a report predicting the fly's genotype based on flight trajectory analysis.
- Outcome: Supports research on behavioral genetics and phenotypegenotype correlations.

• Data Export:

- Description: Allow users to export analysis reports in formats such as PDF or images.
- o **Outcome:** Facilitates sharing and further analysis of research data.

2. Outcomes

Automated Analysis Results

- Description: Provide real-time analysis results based on user inputs and configured parameters.
- Outcome: Reduces manual effort and accelerates research processes.

3. Responses

Real-Time Feedback

- Description: Validate user inputs and provide immediate feedback on errors or missing information.
- Outcome: Reduces data entry errors and ensures accurate and reliable data input.

Error Messages and Alerts

- **Description:** Provide clear and actionable error messages when user actions fail or inputs are invalid.
- Outcome: Guides users in correcting mistakes, improving overall system usability.

4. Notifications

- System Status Updates
 - Description: Inform users about system status changes, such as analysis completion, errors, or downtime.
 - o **Outcome:** Keeps users informed and engaged with the system.
- Model Improvement Notifications
 - Description: Notify users of any updates or improvements made to the models or system.
 - o **Outcome:** Encourages users to utilize new features and capabilities.

Non-Functional Requirements (NFRs)

1. Reliability:

- Input: Ensure robust data validation to prevent system crashes or data corruption.
- **Output:** Reports should be generated consistently without failure, providing accurate and reliable insights.
- **Process:** The system must handle concurrent operations without performance degradation.

2. Audit Trail:

- Input: Log user activities related to data entry, updates, and deletions.
- Output: Maintain logs of report generation and access for compliance and security.
- **Process:** Securely store audit logs to trace user actions and system changes.

3. Continuity of Processing:

- **Input:** Ensure data entry can recover from interruptions without loss.
- Output: Report generation should resume automatically after interruptions.
- **Process:** Use automatic backups and transaction logging for continuous operations.

4. Service Level:

- **Input:** Ensure 99.9% system availability.
- Output: Deliver reports and notifications within specified timeframes.
- **Process:** Monitor system performance to meet SLAs.

5. Methodology:

- **Input:** Follow agile development methodologies for continuous integration.
- Output: Ensure quality through automated testing.
- Process: Use DevOps practices for quick deployment and updates.

6. Correctness:

- Input: Apply data validation rules to ensure input correctness.
- Output: Reports should accurately reflect the state of analysis.
- Process: Regularly review and test business logic and algorithms.

7. Ease of Use:

- **Input:** Provide an intuitive user interface with feedback mechanisms.
- **Output:** Simplify report generation with customizable templates.
- **Process:** Offer user-friendly navigation and help documentation.

8. Maintainable:

- **Input:** Use modular code for easy updates and maintenance.
- Output: Ensure reports and notifications are easily customizable.
- Process: Document the codebase and system components thoroughly.

9. Portable:

- **Input:** Ensure the platform runs on various operating systems.
- Output: Ensure compatibility with different file formats and devices.
- Process: Use platform-independent technologies to support portability.

10. Coupling:

• **Input:** Minimize dependencies between input modules.

- **Output:** Ensure output generation modules are loosely coupled.
- **Process:** Design components to be flexible and scalable.

11. Performance:

- Input: Optimize data entry forms for quick responses.
- Output: Generate reports and notifications with minimal latency.
- **Process:** Optimize queries and algorithms for performance under load.

12. Ease of Operation:

- **Input:** Provide intuitive data entry fields and options.
- Output: Simplify report and notification management tools.
- **Process:** Ensure easy management of operations through a user interface or scripts.

Supervisor Name and signature

MUHAMMAD WASIM