

Optimization through School Geometry

1

G V V Sharma*

2

3

3

CONTENTS

1	Constrained Optimization	1
2	Convex Function	2

- **3** Gradient Descent
- 4 Lagrange Multipliers
- 5 Quadratic Programming

Abstract—This book provides an introduction to optimization based on the NCERT textbooks from Class 6-12. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ncert/optimization/codes

1 Constrained Optimization

1. Express the problem of finding the distance of the point $\mathbf{P} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ from the line

$$L: (3 -4)\mathbf{x} = 26$$
 (1.1.1)

as an optimization problem.

Solution: The given problem can be expressed as

$$\min_{\mathbf{x}} g(\mathbf{x}) = ||\mathbf{x} - \mathbf{P}||^2 \tag{1.1.2}$$

$$\mathbf{s.t.} \quad \mathbf{n}^T \mathbf{x} = c \tag{1.1.3}$$

where

$$\mathbf{n} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \tag{1.1.4}$$

$$c = 26$$
 (1.1.5)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- 2. Explain Problem 1.1 through a plot and find a graphical solution.
- 3. Solve (1.1.2) using cvxpy.

Solution:

codes/line dist cvx.py

4. Convert (1.1.2) to an *unconstrained* optimization problem.

Solution: L in (1.1.1) can be expressed in terms of the direction vector \mathbf{m} as

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m},\tag{1.4.1}$$

where A is any point on the line and

$$\mathbf{m}^T \mathbf{n} = 0 \tag{1.4.2}$$

Substituting (1.4.1) in (1.1.2), an unconstrained optimization problem

$$\min_{\lambda} f(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\|^2 \tag{1.4.3}$$

is obtained.

5. Solve (1.4.3).

Solution:

$$f(\lambda) = (\lambda \mathbf{m} + \mathbf{A} - \mathbf{P})^{T} (\lambda \mathbf{m} + \mathbf{A} - \mathbf{P}) \quad (1.5.1)$$
$$= \lambda^{2} ||\mathbf{m}||^{2} + 2\lambda \mathbf{m}^{T} (\mathbf{A} - \mathbf{P})$$
$$+ ||\mathbf{A} - \mathbf{P}||^{2} \quad (1.5.2)$$

$$\therefore f^{(2)}\lambda = 2\|\mathbf{m}\|^2 > 0 \tag{1.5.3}$$

the minimum value of $f(\lambda)$ is obtained when

$$f^{(1)}(\lambda) = 2\lambda \|\mathbf{m}\|^2 + 2\mathbf{m}^T (\mathbf{A} - \mathbf{P}) = 0$$

(1.5.4)

$$\implies \lambda_{\min} = -\frac{\mathbf{m}^T (\mathbf{A} - \mathbf{P})}{\|\mathbf{m}\|^2}$$
 (1.5.5)

Choosing A such that

$$\mathbf{m}^T (\mathbf{A} - \mathbf{P}) = 0, \tag{1.5.6}$$

substituting in (1.5.5),

$$\lambda_{\min} = 0$$
 and $(1.5.7)$

$$\mathbf{A} - \mathbf{P} = \mu \mathbf{n} \tag{1.5.8}$$

for some constant μ . (1.5.8) is a consequence of (1.4.2) and (1.5.6). Also, from (1.5.8),

$$\mathbf{n}^T (\mathbf{A} - \mathbf{P}) = \mu \|\mathbf{n}\|^2 \tag{1.5.9}$$

$$\implies \mu = \frac{\mathbf{n}^T \mathbf{A} - \mathbf{n}^T \mathbf{P}}{\|\mathbf{n}\|^2} = \frac{c - \mathbf{n}^T \mathbf{P}}{\|\mathbf{n}\|^2}$$
 (1.5.10)

from (1.1.3). Substituting $\lambda_{\min} = 0$ in (1.4.3),

$$\min_{\lambda} f(\lambda) = \|\mathbf{A} - \mathbf{P}\|^2 = \mu^2 \|\mathbf{n}\|^2 \qquad (1.5.11)$$

upon substituting from (1.5.8). The distance between **P** and *L* is then obtained from (1.5.11) as

$$\|\mathbf{A} - \mathbf{P}\| = |\mu| \|\mathbf{n}\| \tag{1.5.12}$$

$$= \frac{\left|\mathbf{n}^T \mathbf{P} - c\right|}{\|\mathbf{n}\|} \tag{1.5.13}$$

after substituting for μ from (1.5.10).

2 Convex Function

1. The following python script plots

$$f(\lambda) = a\lambda^2 + b\lambda + d \tag{2.1.1}$$

for

$$a = ||\mathbf{m}||^2 > 0 \tag{2.1.2}$$

$$b = \mathbf{m}^T (\mathbf{A} - \mathbf{P}) \tag{2.1.3}$$

$$c = ||\mathbf{A} - \mathbf{P}||^2 \tag{2.1.4}$$

where A is the intercept of the line L in (1.1.1) on the x-axis and the points

$$\mathbf{U} = \begin{pmatrix} \lambda_1 \\ f(\lambda_1) \end{pmatrix}, \mathbf{V} = \begin{pmatrix} \lambda_2 \\ f(\lambda_2) \end{pmatrix}$$
 (2.1.5)

$$\mathbf{X} = \begin{pmatrix} t\lambda_1 + (1-t)\lambda_2 \\ f[t\lambda_1 + (1-t)\lambda_2] \end{pmatrix}, \tag{2.1.6}$$

$$\mathbf{Y} = \begin{pmatrix} t\lambda_1 + (1-t)\lambda_2 \\ tf(\lambda_1) + (1-t)f(\lambda_2) \end{pmatrix}$$
 (2.1.7)

for

$$\lambda_1 = -3, \lambda_2 = 4, t = 0.3$$
 (2.1.8)

in Fig. 2.1. Geometrically, this means that any point \mathbf{Y} between the points \mathbf{U}, \mathbf{V} on the line UV is always above the point \mathbf{X} on the curve

 $f(\lambda)$. Such a function f is defined to be *convex* function

codes/optimization/1.2.py

Fig. 2.1: $f(\lambda)$ versus λ

2. Show that

$$f[t\lambda_1 + (1-t)\lambda_2] \le tf(\lambda_1) + (1-t)f(\lambda_2)$$
(2.2.1)

for 0 < t < 1. This is true for any convex function.

3. Show that

(2.2.1)
$$\implies f^{(2)}(\lambda) > 0$$
 (2.3.1)

3 Gradient Descent

Find a numerical solution for (2.1.1)
 Solution: A numerical solution for (2.1.1) is obtained as

$$\lambda_{n+1} = \lambda_n - \mu f'(\lambda_n) \tag{3.1.1}$$

$$= \lambda_n - \mu \left(2a\lambda_n + b \right) \tag{3.1.2}$$

where λ_0 is an inital guess and μ is a variable parameter. The choice of these parameters is very important since they decide how fast the algorithm converges.

2. Write a program to implement (3.1.2). **Solution:** Download and execute

codes/optimization/gd.py

3. Find a closed form solution for λ_n in (3.1.2) using the one sided Z transform.

4. Find the condition for which (3.1.2) converges, i.e.

$$\lim_{n \to \infty} |\lambda_{n+1} - \lambda_n| = 0 \tag{3.4.1}$$

4 Lagrange Multipliers

1. Find

$$\min g(\mathbf{x}) = ||\mathbf{x} - \mathbf{P}||^2 = r^2$$
 (4.1.1)

s.t.
$$h(\mathbf{x}) = \mathbf{n}^T \mathbf{x} - c = 0$$
 (4.1.2)

by plotting the circles $g(\mathbf{x})$ for different values of r along with the line $g(\mathbf{x})$.

Solution: The following code plots Fig. 4.1

codes/optimization/concirc.py

Fig. 4.1: Finding $\min_{\mathbf{x}} g(\mathbf{x})$

2. By solving the quadratic equation obtained from (4.1.1), show that

$$\min_{\mathbf{r}} r = \frac{3}{5} \tag{4.2.1}$$

and find $\mathbf{x} = \mathbf{Q}$ that minimizes r. By labeling \mathbf{Q} in Fig. 4.1, show that \mathbf{Q} is the point of contact of the line L with the circle of minimum radius $r = \frac{3}{5}$.

3. Show that

$$\nabla h(\mathbf{x}) = \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \mathbf{n} \tag{4.3.1}$$

where

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \end{pmatrix} \tag{4.3.2}$$

4. Show that

$$\nabla g(\mathbf{x}) = 2\left\{\mathbf{x} - \begin{pmatrix} 3\\ -5 \end{pmatrix}\right\} = 2\left\{\mathbf{x} - \mathbf{P}\right\} \quad (4.4.1)$$

5. From Fig. 4.1, show that

$$\nabla g(\mathbf{Q}) = \lambda \nabla h(\mathbf{Q}), \tag{4.5.1}$$

- 6. Use (4.5.1) and $\mathbf{h}(\mathbf{Q}) = 0$ from (4.1.2) to obtain \mathbf{Q} .
- 7. Define

$$C(\mathbf{x}, \lambda) = g(\mathbf{x}) - \lambda h(\mathbf{x}) \tag{4.7.1}$$

and show that \mathbf{Q} can also be obtained by solving the equations

$$\nabla C(\mathbf{x}, \lambda) = 0. \tag{4.7.2}$$

What is the sign of λ ? C is known as the Lagrangian and the above technique is known as the Method of Lagrange Multipliers.

Solution:

codes/optimization/lagmul.py

8. Obtain **Q** using gradient descent.

5 QUADRATIC PROGRAMMING

1. Find the point on the curve

$$x^2 = 2y (5.1.1)$$

nearest to the point

$$\mathbf{P} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}. \tag{5.1.2}$$

by drawing a figure.

Solution: The following code plots Fig.

2. Frame Problem 5.1.1 as an optimization problem.

Solution: The given problem can be expressed

$$\min \|\mathbf{x} - \mathbf{P}\|^2 \tag{5.2.1}$$

s.t.
$$\mathbf{x}^T \mathbf{V} \mathbf{x} + \mathbf{u}^T \mathbf{x} = 0$$
 (5.2.2)

where

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{u} \qquad = -\begin{pmatrix} 0 \\ 2 \end{pmatrix} \tag{5.2.3}$$

3. Show that the constraint in 5.2.1 is nonconvex.

4. Show that the following relaxation makes (5.2.1) a convex optimization problem.

$$\min_{\mathbf{x}} ||\mathbf{x} - \mathbf{P}||^2 \tag{5.4.1}$$

$$\min_{\mathbf{x}} ||\mathbf{x} - \mathbf{P}||^2$$
 (5.4.1)
s.t. $\mathbf{x}^T \mathbf{V} \mathbf{x} + \mathbf{u}^T \mathbf{x} \le 0$ (5.4.2)

- 5. Solve (5.4.1) using cvxpy.
- 6. Solve (5.4.1) using the method of Lagrange multipliers.
- 7. Solve (5.4.1) using gradient descent.