Matroid Theory Fundamentals for Combinatorial Optimization

Morteza Alimi

Table of Contents

- Fundamentals
- Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Table of Contents

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- 6 Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Matroid definition

Definition

Given a set S and a non-empty collection \mathcal{I} of subsets of S, the pair (S, \mathcal{I}) is called a *matroid* if the following two conditions are satisfied:

- 1 If $T \in \mathcal{I}$ and $U \subseteq T$, then $U \in \mathcal{I}$.
- 2 If $U, T \in \mathcal{I}$ and |T| > |U| then there exists $x \in T \setminus U$ such that $U + x \in \mathcal{I}$.

Matroid definition

Condition 2 is equivalent to the following weaker version:

- 2' If $U, T \in \mathcal{I}$, $|T \setminus U| = 2$, and $|U \setminus T| = 1$, then there exists $x \in T \setminus U$ such that $U + x \in \mathcal{I}$.
- To prove $2' \to 2$, given 1, we use induction on $k = |U \setminus T|$ (given $U, T \in \mathcal{I}, |T| > |U|$). We can assume |T| = |U| + 1.
- The case k = 0 is trivial, and k = 1 is equivalent to 2'. So assume k > 1.
- A certain degree of manuevring does the job! Take $y,z\in T\setminus U$. By the induction hypothesis, there is $x\in U\setminus T$ such that $V=(T-y-z)+x\in \mathcal{I}$. Now, 2' means $w\in T\setminus V=\{y,z\}$ exists such that W=V+w is independent. Now, |W|=|T| and $|U\setminus W|<|U\setminus T|$, so by the induction hypothesis $s\in W\setminus U\subseteq T\setminus U$ exists such that $U+s\in \mathcal{I}$.

Bases, Circuits

Definition

- Given matroid $M = (S, \mathcal{I})$, a base for a subset $U \subseteq S$ is a maximal independent set contained in U. A base (without any qualifications) indicates a base for S.
- A circuit is a minimal dependent set.
- The collection of bases and circuits of a matroid are usually denoted by $\mathcal B$ and $\mathcal C$ (when the matroid is understood).

Base Characterization

- Assuming condition 1, condition 2 is equivalent to the following: 3 For any $U \subseteq S$, the bases of U have the same size.
- Proof: Straightforward. Think about it!

Unique Circuit Characterization

- Assuming condition 1, condition 2 is equivalent to the following:
 - 4 For any independent set $I \in \mathcal{I}$, and $x \in S \setminus I$, I + x contains at most one circuit.

Proof.

 $4 \rightarrow 2'$:

- Take independent sets T+x and T+y+z. Suppose T+x+y and T+x+z are both dependent.
- Then there are circuits $C_y \ni y$ and $C_z \ni z$ with $C_y \subseteq T + x + y$, and $C_z \subseteq T + x + z$.
- But then adding x to T + y + z creates two distinct circuits C_y and C_z , which contradicts 4.

Unique Circuit Characterization

Proof (Continued).

 $2 \rightarrow 4$:

- Suppose $I \in \mathcal{I}$, and I + x contains distinct circuits C_1 and C_2 .
- Take $y \in C_1 \setminus C_2$. Extend $C_1 y$ to a maximal independent set X of I+x.
- I is also a maximal independent subset of I + x. Hence, |X| = |I|.
- But then we should have X = I + x f. As $C_2 \subseteq I + x$ and $f \notin C_2$, we have $C_2 \subseteq X$. Contradiction.

Matroid Theory

Greedy Algorithm I

- Let be given matroid $M=(S,\mathcal{I})$ on set $S=\{s_1,\ldots,s_n\}$, together with a weight function $w:S\to R$. Assume the elements of S are indexed such that $w(s_1)\geq w(s_2)\geq \ldots \geq w(s_n)$. The objective is to find a base of M haveing maximum total weight.
- The greedy algorithm is defined as follows.

```
egin{aligned} \mathcal{T} \leftarrow \emptyset \ & 	ext{for } i=1 	ext{ to } n 	ext{ do} \ & & 	ext{if } \mathcal{T} \cup \{s_i\} \in \mathcal{I} 	ext{ then} \ & & 	ext{if } \mathcal{T} \leftarrow \mathcal{T} \cup \{s_i\} \ & 	ext{end} \ & 	ext{end} \ & 	ext{return } \mathcal{T} \end{aligned}
```

Greedy Algorithm II

Theorem

The greedy algorithm finds a maximum weight base for every weight function if and only if M is a matroid.

Rank Function

Definition

Given a matroid $M = (S, \mathcal{I})$, the rank function of M is a function $r: 2^S \to \mathbb{Z}_+$ defined as $r(U) = max\{|I| \mid I \subseteq U, I \in \mathcal{I}\}.$

Theorem

The rank function of any matroid $M = (S, \mathcal{I})$ is submodular:

$$r(X) + r(Y) \ge r(X \cup Y) + r(X \cap Y), \quad \forall X, Y \subseteq S$$

Proof.

- Let B_{\cap} be a base for $X \cap Y$.
- Grow B_{\cap} to a get a base $B_{\cup} \supseteq B_{\cap}$ for $X \cup Y$.
- We have $r(X) \ge |B_{\cup} \cap X|$, and $r(Y) \ge |B_{\cup} \cap Y|$.
- Hence

$$r(X)+r(Y) \ge |B_{\cup} \cap X|+|B_{\cup} \cap Y|=|B_{\cup}|+|B_{\cap}|=r(X \cup Y)+r(X \cap Y).$$

Morteza Alimi Matroid Theory 12

Table of Contents

- Fundamentals
- Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- 6 Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Linear Matroid

• Take a fixed matrix A. Let S denote the set of columns of A. Then $M = (S, \mathcal{I})$ is a matroid, where a set of columns of A is independent if they are linearly independent.

Graphic Matroid

- Let G = (V, E) be an undirected graph.
- Then $M = (E, \mathcal{I})$ is a matroid, where $\mathcal{I} = \{ F \subseteq E \mid (V, F) \text{ is a forest. } \}.$
- *M* is said to be the *cycle matroid* of *G*. A matroid that is the cycle matroid of some graph is called a *graphic matroid*.

Partition Matroid

• Let $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$ be a partition of S, and let k_1, \dots, k_n be nonnegative integers. Take $I \subseteq S$ to be independent if $I \cap A_i \le k_i$ for each i. It can easily be seen that (S, \mathcal{I}) is a matroid, called a partition matroid.

Morteza Alimi Matroid Theory 16 / 48

Transversal Matroid

- Let $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$ be a collection of subsets of S. Take $I \subseteq S$ to be independent if I is a partial transversal for \mathcal{A} . Let \mathcal{I} denote such I's. It can be shown that $M = (S, \mathcal{I})$ is a matroid.
- A partition matroid is a special case of a transversal matroid where the A_i 's are disjoint.

Matching Matroid I

- Given a graph G = (V, E), the collection of matchings of G is not necessarily a matroid (taking E as the ground set), as a maximal matching is not necessarily a maximum matching.
- However, there is a way to define a matching matroid on the vertices of G.
- Let $M = (V, \mathcal{I})$, where a set $U \subseteq V$ belongs to \mathcal{I} , iff there is a matching covering U (and possibly some other vertices). We claim M is a matroid.
- Property 1 of matroids is easy to check. To prove property 2, suppose $U_1, U_2 \in \mathcal{I}, |U_1| > |U_2|$. Let matchings N_1 and N_2 cover U_1 and U_2 respectively.
- We can assume N_2 does not cover any vertex in $U_1 \setminus U_2$ (Otherwise we are done).

Matching Matroid II

- Let $N = N_1 \triangle N_2$. Each vertex $u \in U_1 \setminus U_2$ is an endpoint of a path P_u in (V, N).
- Not all these paths can have a vertex in $U_2 \setminus U_1$ as their other endpoint (because $|U_1| > |U_2|$). Let $v \in U_1 \setminus U_2$ be such that P_v does not end at a vertex in $U_2 \setminus U_1$.
- Then $N_2 \triangle P_v$ is a matching that covers $U_2 \cup \{v\}$.

Table of Contents

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- 6 Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Dual matroid

Theorem

Let $M = (S, \mathcal{I})$ be a matroid. Let $\mathcal{I}^* = \{I \mid r_M(S \setminus I) = r_M(S)\}$. Then $M^* = (S, \mathcal{I}^*)$ is again a matroid, called the dual of M.

Dual matroid

Proof.

- Take sets T+x and T+y+z in \mathcal{I}^* . We need to show that one of T+x+y or T+x+z is in \mathcal{I}^* .
- Let B_1 be a base of M contained in $S \setminus (T + x)$, and let B_2 be a base of M contained in $S \setminus (T + y + z)$.
- If either of y or z is not contained in B_1 , the corresponding element can be added to T+x and keep it independent in M^* . So assume $y,z\in B_1$.
- We show how to build a set $B \in \mathcal{B}$ avoiding T, x, and either y or z.
- We have $(B_1 \setminus \{y,z\}) + u + v \in I^*$ for some $u, v \in B_2 \setminus B_1$.
- If $x \notin \{u, v\}$ we are done. Otherwise, $B' = B x + w \in \mathcal{B}$ is the desired set, where $w \in B_1 \setminus B$.

It can be seen that $M^{**} = M$.

The rank function of the dual matroid

Theorem

Let $M = (S, \mathcal{I})$ be a matroid, and let $M^* = (S, \mathcal{I}^*)$ be its dual. Then

$$r_{M^*}(U) = |U| - (r_M(S) - r_M(S \setminus U)).$$

Proof.

$$r_{M^*}(U) = \max\{|I| \mid I \subseteq U, r(S \setminus I) = r(S)\}$$

$$= |U| - \min\{B \cap U \mid B \in \mathcal{B}\}$$

$$= |U| + r(S) - \max\{B \cap (S \setminus U) \mid B \in \mathcal{B}\}$$

$$= |U| + r(S) - r(S \setminus U)$$

Morteza Alimi Matroid Theory 23 / 48

Table of Contents

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- 6 Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Deletion and Truncation

Definition

Given a matroid $M=(S,\mathcal{I})$ and a set $Z\subseteq S$, the matroid $M\setminus Z$ is the pair $(S\setminus Z,\mathcal{I}')$ where $\mathcal{I}'=\{U\subseteq S\setminus Z\mid U\in\mathcal{I}\}$. The matroid $M\setminus Z$ is said to be obtained from M by deleting Z. If $Y=S\setminus Z$, $M\setminus Z$ might also be denoted as M|Y.

Definition

Given a matroid $M=(S,\mathcal{I})$ and natural number k, defined $\mathcal{I}'=\{I\in\mathcal{I}\mid |I|\leq k\}$. Then (S,\mathcal{I}') is again a matroid, called the k-truncation of M.

Contraction

Definition

Given a matroid $M=(S,\mathcal{I})$ and a set $Z\subseteq S$, the matroid denoted by M/Z, said to obtain from M by contracting Z, is the matroid $(M^*\setminus Z)^*$.

Theorem

$$r_{M/Z}(X) = r_M(X \cup Z) - r_M(Z), \quad \text{for } X \subseteq S \setminus Z.$$

Proof.

$$r_{M/Z}(X) = |X| - r_{M^* \setminus Z}(S \setminus Z) + r_{M^* \setminus Z}((S \setminus Z) \setminus X)$$

$$= |X| - r_{M^*}(S \setminus Z) + r_{M^*}((S \setminus Z) \setminus X)$$

$$= |X| - (|S \setminus Z| - r_M(S) + r_M(Z)) + |(S \setminus Z) \setminus X| - r_M(S) + r_M(X \cup Z)$$

$$= |X| + |(S \setminus Z) \setminus X| - |S \setminus Z| + r_M(S) - r_M(S) - r_M(Z) + r_M(X \cup Z)$$

$$= r_M(X \cup Z) - r_M(Z)$$

Contraction

- Suppose W is a base of set Z. Then a set $X \subseteq S \setminus Z$ is independent in M/Z iff $X \cup W$ is independent in M.
- It can be shown that deletion and contraction commute.
- If matroid M' arises from M by a series of deletions and contractions, M' is called a minor of M.

Table of Contents

- Fundamentals
- Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- 6 Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Matroid Polytope I

Definition

Let $M = (S, \mathcal{I})$ be a Matroid. Define the *matroid polytope* (or the independent set polytope) associated with M as $P(M) = CH(\{\chi^I \mid I \in \mathcal{I}\})$.

Theorem

The matroid polytope P(M) of a matroid $M=(S,\mathcal{I})$ is equal to the polytope Q defined as

$$x(U) \le r(U), \forall U \subseteq S$$

 $x \ge 0$

Matroid Polytope II

Proof

- It is easy to see that the characteristic vector of any intependent set belongs to Q, and hence $P(M) \subseteq Q$.
- For the converse, take the dual pair of LPs

maximize
$$w^T x$$
 subject to $x(U) \le r(U)$, $\forall U \subseteq S$ $x \ge 0$.

and

minimize
$$\sum_{U\subseteq S} r(U)y_U$$
 subject to
$$\sum_{U\subseteq S, U\ni s} y_U \ge w(s), \quad s\in S$$

$$y>0.$$

Matroid Polytope III

- For any weight function w, we find integer solutions for the primal and dual LPs with equal value.
- Assume $w \ge 0$, and that the items are sorted accroding to their weights, i.e. $w(s_1) \ge w(s_2) \ge ... \ge w(s_n)$. For the primal solution, take the output I of the greedy algorithm, that is, $s_i \in I$ iff $r(U_i) > r(U_{i-1})$. Here U_i is the set consisting of the first i elements. Let x be the characteristic vector of I.
- For the dual solution, take $y_{U_i} = w(s_i) w(s_{i+1})$. For all other $U \subset S$, $y_{U} = 0$.

Matroid Polytope IV

Then,

$$w^{T}x = \sum_{i=1}^{n} w(s_{i})(r(U_{i}) - r(U_{i-1}))$$

=
$$\sum_{i=1}^{n} r(U_{i})(w(s_{i}) - w(s_{i+1}))$$

=
$$\sum_{U \subseteq S} r(U)y_{U}.$$

So, both solutions are optimal.

• If $w(s_i) < 0$ for some i, setting $w(s_i) = 0$ does not change the primal optimum solution. So, there is always an integer primal optimum solution. This means that all vertices of Q are integer, which should correspond to characteristic vectors of independent sets.

Table of Contents

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Matroid intersection

- Given Matroids $M=(S,\mathcal{I}_1)$ and $M=(S,\mathcal{I}_2)$, $(S,\mathcal{I}_1\cap\mathcal{I}_2)$ is not necessarily a matroid. For example, the set of matchings in the graph P_3 (path of length 3) do not comprise a matroid (on the set of edges), but they can be represented as the intersection of two matroids (see the next slide).
- We will see that there exist efficient algorithms for finding a maximum independent set of two matroids.

Matroid intersection examples

Bipartite Matching

Let G = (V, E) be a bipartite graph with color classes U_1 and U_2 . For i=1,2, define $M_i=(E,\mathcal{I}_i)$, with $F\in\mathcal{I}_i$ if each vertex in U_i is covered by at most one edge in F. It can be seen that a common independent set of M_1 and M_2 is a matching of G.

Arborescence Given a directed graph D = (V, A), and $r \in V$, an r-arborescence is defined as a directed tree rooted at r, with all its edges pointing away from r. The r-arborescences are precisely the common bases of the graphic matroid of D (ignoring the direction of the edges), and the partition matroid (A, \mathcal{I}) , with

$$\mathcal{I} = \{ F \subseteq A \mid F \cap \delta^{-}(v) \le 1, \ \forall r \ne v \in V \}.$$

Intersection of three matroids

Using a similar modeling technique as the arborescence problem, it is not difficult to see that hamiltonian paths in a digraph can be represented as the intersection of three matroids, and hence finding a maximum cardinality independent set in the intersection of more than two matroids is NP-Hard.

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Matroid intersection theorem

Theorem

Let $M_1=(S,\mathcal{I}_1)$ and $M_2=(S,\mathcal{I}_2)$ be two matroids. Then the maximum size k of a set $I\in\mathcal{I}_1\cap\mathcal{I}_2$ is equal to:

$$k = \min_{E \subset S} (r_1(E) + r_2(S \setminus E)).$$

Morteza Alimi Matroid Theory 38 / 48

Matroid intersection theorem (proof)

- Let the two matroids be $M_1=(S,\mathcal{I}_1)$ and $M_2=(S,\mathcal{I}_2)$.
- The fact that the maximum is no more than the minimum is easy to see. Let $I \in \mathcal{I}_1 \cap \mathcal{I}_2$, and let $U \subseteq S$. Then

$$|I| = |I \cap U| + |I \setminus U| \le r_1(U) + r_2(S \setminus U).$$

- Now we prove the converse. Let $k = \min_{U \subset S} (r_1(U) + r_2(S \setminus U))$
- Choose $x \in S$ such that $r_1(\{x\}) = r_2(\{x\}) = 1$ (if no such x exists, it can easily be seen that both min and max are zero).
- We may assume the matroids $M_1 \setminus \{x\}$ and $M_2 \setminus \{x\}$ have no common independent set of size k (otherwise the same set would work for M_1 and M_2 and we are done). So, by the induction hypothesis,

$$r_1(A_1) + r_2(A_2) \le k - 1$$

for some partition (A_1, A_2) of $S \setminus \{x\}$.

Morteza Alimi Matroid Theory 39 / 48

Matroid intersection theorem (proof - continued)

• Likewise, the contractions $M_1/\{x\}$ and $M_2/\{x\}$ have no common independent set of size k-1 (otherwise, by adding x, we obtain a common independent set of size k for M_1 and M_2). So,

$$r_1(B_1 \cup \{x\}) - 1 + r_2(B_2 \cup \{x\}) - 1 \le k - 2,$$

for some partition (B_1, B_2) of $S \setminus \{x\}$.

By submodularity we have

$$r_1(A_1 \cap B_1) + r_1(A_1 \cup B_1 \cup \{x\}) \le r_1(A_1) + r_1(B_1 \cup \{x\}),$$

 $r_2(A_2 \cap B_2) + r_2(A_2 \cup B_2 \cup \{x\}) \le r_2(A_2) + r_2(B_2 \cup \{x\}).$

• Also, because $A_1 \cap B_1$ and $A_2 \cup B_2 \cup \{x\}$ form a partition of S, and likewise $A_2 \cap B_2$ and $A_l \cup B_1 \cup \{x\}$, we have

$$k \le r_1(A_1 \cap B_1) + r_2(A_2 \cup B_2 \cup \{x\}),$$

 $k \le r_1(A_2 \cap B_2) + r_2(A_1 \cup B_1 \cup \{x\}),$

• So, we have $2k \le 2k - 1$, a contradiction.

Morteza Alimi Matroid Theory 40 / 48

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Konig's theorem

- Let G = (V, E) be a bipartite graph with color classes U_1 and U_2 . For i = 1, 2, define $M_i = (E, \mathcal{I}_i)$, with $F \in \mathcal{I}_i$ if each vertex in U_i is covered by at most one edge in F.
- It can be seen that a common independent set of M_1 and M_2 is a matching of G.
- The matroid intersection theorem implies the size of the largest matching equals the minimum value of $r_1(F) + r_2(E \setminus F)$. The latter is equal to the size of minimum vertex cover. Hence we have Konig's theorem.

Morteza Alimi Matroid Theory 42 / 48

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Matroid Intersection Polytope

Let
$$M_1 = (S, \mathcal{I}_1), M_2 = (S, \mathcal{I}_2)$$
. Define $P(M_1 \cap M_2) = CH(\{\chi^I \mid I \in \mathcal{I}_1 \cap \mathcal{I}_2\})$.

Theorem

$$P(M_1 \cap M_2) = P(M_1) \cap P(M_2)$$

Morteza Alimi Matroid Theory 44 / 48

Matroid Intersection Polytope (proof) I

- \subseteq : Easy! Let x be a vertex of $P(M_1 \cap M_2)$. Then $x = \chi^I$, with $I \in \mathcal{I}_1 \cap \mathcal{I}_2$. So $x \in P(M_1)$ and $x \in P(M_2)$.
- ⊇: [sketch]
 - Let x be a vertex of $P(M_1 \cap M_2)$.
 - If x has a 0 or 1 component, use the induction hypothesis for $M \setminus \{x\}$ or $M/\{x\}$ to deduce $x \in P(M_1 \cap M_2)$.
 - ullet So, we can assume all components of x are fractional.
 - As x is a vertex, there exist n = |S| linearly independent tight inequalities for x.
 - These exist chains $\mathcal C$ and $\mathcal D$ the characteristic vectors of which generate all tight inequalities (proof omitted). Hence $|\mathcal C|+|\mathcal D|=n$.

Morteza Alimi Matroid Theory 45 / 48

Matroid Intersection Polytope (proof) II

- As each $0 < x_i < 1$, and the rank function is integer, $C_i \setminus C_{i-1}$ contains at least two elements, and likewise for D_i 's.
- Hence $|\mathcal{C}| \leq n/2$, and $|\mathcal{D}| \leq n/2$. Therefore, $|\mathcal{C}| = n/2$, and $|\mathcal{D}| = n/2$.

Morteza Alimi Matroid Theory 46 / 48

- Fundamentals
- 2 Matroid Examples
- The Dual Matroid
- Operations on Matroids
- Matroid Polytope
- Matroid Intersection
 - Matroid intersection theorem
 - Applications
 - Matroid Intersection Polytope
 - Algorithms

Cardinality matroid intersection algorithm

- Input: Matroids $M_1=(S,\mathcal{I}_1)$, $M_2=(S,\mathcal{I}_2)$, and $I\in\mathcal{I}_1\cap\mathcal{I}_2$. Output: $J\in\mathcal{I}_1\cap\mathcal{I}_2$, with |J|=|I|+1 if such a set exists.
- Build a directed graph D with vertex set S, with $y \to x$ iff $y \in I$, $x \notin I$, and $I y + x \in \mathcal{I}_1$. And $y \leftarrow x$ iff $y \notin I$, $x \in I$, and $I x + y \in \mathcal{I}_2$.
- Define $X_1 = \{x \in S \setminus I \mid I + x \in \mathcal{I}_1\}$, and $X_2 = \{x \in S \setminus I \mid I + x \in \mathcal{I}_2\}$.
- If there exists a path P from X_1 to X_2 in D: Let P be the shortest such path. Set $I \leftarrow I \triangle VP$. (Here VP denotes the vertices of P). Otherwise, I is maximum.

Morteza Alimi Matroid Theory 48 / 48