Page a by a sun a ye sun a da 5a = \$\frac{1}{2}\$ (1) when a = \$\frac{1}{2}\$, 27 - \$\frac{1}{2}\$ when a = \$\frac{1}{2}\$, 57 (1)	Question 3 Question 3 P(-1)=0 1. $1+a+b=0$ (1) $b=-a-1$ and $P(a)=0$ (2) 1. $b+ha+b=0$ (2) (1) Sub. wi (1) 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 8. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 9. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 1. $b+ha-a-1=0$ 2. $b+ha-a-1=0$ 3. $b+ha-a-1=0$ 4. $b+ha-a-1=0$ 5. $b+ha-a-1=0$ 6. $b+ha-a-1=0$ 7. $b+ha-a-1=0$ 1. $b+ha-$
. 🔻 🐣 🔿	Question 3 (a) $P(x) = x^{4} + 0x^{2} + b$ $P(-1) = 0$ $\therefore 1 + a + b = 0$ $\therefore 2 + 3x = 0$ $\therefore 2$
CTITS 3 Und AP3 (April 2000) Vestion 3 (cont) C) U. x²-1 du 2 22 du 2 22 du 2 22 du 2 24 du 2 24 du 3 24 du 4 24 du 3 24 du 3 24 du 3 24 du 4 24 du 3 24 du 4 24 du 5 24 du 6 24 du 6 24 du 6 24 du 7 2	$\int_{0}^{2} (u^{2} + u) du$ $\int_{0}^{2} (u^{2} + $
$\frac{Question \ (cos. 10s^{2})}{cos. 10s^{2}} = cos. (60^{2}+44s^{2}) = cos. (60^{2}+44s^{2}) = cos. 60^{2} cos. 4s^{2} = s. 10^{2} cos. 4s^{2} = \frac{1-\sqrt{3}}{2^{2}} = \frac{1-\sqrt{3}}{2^{2}} = \frac{1-\sqrt{3}}{2^{2}} = \frac{1-\sqrt{3}}{2^{2}} = \frac{(1-\sqrt{3})}{2^{2}}$	Question 2 a) $\frac{9 \text{ max}}{6 \text{ max}} + \frac{1}{5 \text{ max}} = \frac{3 \text{ max}}{6 \text{ max}} + \frac{1}{5 \text{ max}} = \frac{3 \text{ max}}{6 $
Question 1 Question 2 Question 2 Question 3 Question 3 Question 3 Question 3 A x x (-3 sum 3x) (1) A x x x (-3 sum 3x) (1)	b) (1) $\int \frac{dac}{7az+4js}$ = $\int (7az+4j)^{-4} + c$ = $\frac{1}{26}(7az+4j)^{-4} + c$ = $\frac{1}{26}(7az+4j)^{-4} + c$ = $\frac{1}{26}(7az+4j)^{-4} + c$ (1) = $\frac{1}{26}(7az+4j)^{-4} + c$ = $\frac{1}{26}(7az+4j)^{-4} + c$ (1)

1	(1) Let 8 = angle between the tangents.	At A , m, = et & (1) B, m2 = e-t & (1)	i. tang. et = (e-1) (1)	ţ\$	or e ^t - 1 = 2 (1)	(!) et-1, - 2=0	(et)2-2et-1=0. (1)	·· e = 2 ± 5 414 (±)	unct Page)		`	
3 OUIT APS (April	ریموماید) مهر = (مومی)» (+ عدی		(11) J 1+ logez da	= [loge(zlogez)] =	= loge (e2.2) - loge (e) = loge e2+ loge 2 - 1 (1)	= 2+log.2-1 = 1+log.2 ()		8) 18 - 1 (1) 1 - 1 (1)	in (i) tach	11) Thure are it values () 11) No. 35 > 1 when 2721	(1) The forther solutions because	
Patrick Be Jaint	2-600-1 sme	= con 0 co 2 d - 5 con 0 5 con 5 c	ù5 √= 26°34' (1)	R= 55 , d= 26° 34'	(1) 2 cos 0 - s cos 0 = 1 S cos (0+2) = 1	(1) (2) = T (2) < co	$(9+4) = 63^{\circ}26^{\circ}$, $296^{\circ}34^{\circ}$ $9 = 63^{\circ}26^{\circ} = 20^{\circ}36$	$294c^{2}8t_{4}^{1} - 2c^{2}3t_{4}^{2}$ $6^{-2} 3c^{2}52^{2}, 276^{2}$ (1)	b) $V = \pi \int_{a}^{\pi} \cos^{2}x dx$ (1) $-\frac{\pi}{4} \frac{\pi}{4}$ $= 2\pi \int_{a}^{\pi} \cos^{2}x dx$	$= 2\pi \int_{0}^{3} \frac{\cos 2x + 1}{2} dx \qquad (1)$	(1) 2 x + x (1)	$= \pi \left(\frac{\text{swill}}{2} + \frac{\pi}{2} \right) = \frac{\pi^2}{2} (1)$
Rueties 3 Unit APS (April 2000) Rueties 3 (Lond) C)	0=1, b=2, c=3, d=5 i) ptg+c====================================	(t) e	1) p=1+8-1+1-1 + 1+ 1+1-1 p=4+1+1	: 8c+ bc+ bb	da da	ક	ello nlo	d) f(x) = ex-4x-8 f'(x) = ex-4	$u_2 = a_1 - \frac{\beta(a_1)}{\beta'(a_1)}$ (1) $= 3 - \frac{\beta(a_1)}{\beta(a_2)}$	+'(3) = 3 - e 3 - 20 (1)	= 2.99468	

CTHS 3 Unit AP3 (April 2000)

Page 5

vestion 6

Now,
$$y-y_1 = m(x-x_1)$$

 $y-2 = -tano(x-1)$
 $y-2 = -xtano + tano$
or $y=2+tano-xtano(1)$

At P
$$y=0$$

$$\therefore \quad 0 = \tan \theta + 2 - \cot \theta$$

$$\cot \theta = \cot \theta + 2$$

$$\cot \theta = \cot \theta + 2$$

$$\cot \theta = \cot \theta$$

$$\cot \theta$$

$$\cot \theta = \cot \theta$$

$$\cot$$

$$P = 1 + \frac{2}{\tan \theta}$$

At Q,
$$\infty = 0$$

 $\therefore y = 2 + \tan 0$ (1)

$$= \frac{\tan \theta}{2} + 2 + \frac{2}{\tan \theta}$$
 (1)

Question 6 (cont)

c) Let
$$t = tand$$

$$A = \frac{1}{2} + 2 + \frac{2}{4}$$

Now
$$dA = 1 - 2$$
 (1)

$$\frac{d^2A}{dt^2} = \frac{4}{t^3}$$

$$\frac{dA}{dt} = 0$$
 when $\frac{1}{2} = \frac{2}{t^2}$

$$t^2 = 4$$
 $t = \pm a$

But t > 0, since
$$A > 0$$
 (1)
... when $t = 2$, $\frac{d^2A}{dt^2} = \frac{4}{23} > 0$