

FIG. 1A

GGATTGAACA AGGACGCATT TCCCCAGTAC ATCCACAAC ATG CTG TCC ACA TCT			54
Met Leu Ser Thr Ser			
1		5	
CGT TCT CGG TTT ATC AGA AAT ACC AAC GAG AGC GGT GAA GAA GTC ACC			102
Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser Gly Glu Glu Val Thr			
10		15	20
ACC TTT TTT GAT TAT GAT TAC GGT GCT CCC TGT CAT AAA TTT GAC GTG			150
Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys His Lys Phe Asp Val			
25	30	35	
AAG CAA ATT GGG GCC CAA CTC CTG CCT CCG CTC TAC TCG CTG GTG TTC			198
Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe			
40	45	50	
ATC TTT GGT TTT GTG GGC AAC ATG CTG GTC GTC CTC ATC TTA ATA AAC			246
Ile Phe Gly Phe Val Gly Asn Met Leu Val Val Leu Ile Leu Ile Asn			
55	60	65	
TGC AAA AAG CTG AAG TGC TTG ACT GAC ATT TAC CTG CTC AAC CTG GCC			294
Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr Leu Leu Asn Leu Ala			
70	75	80	85
ATC TCT GAT CTG CTT TTT CTT ATT ACT CTC CCA TTG TGG GCT CAC TCT			342
Ile Ser Asp Leu Leu Phe Leu Ile Thr Leu Pro Leu Trp Ala His Ser			
90	95	100	
GCT GCA AAT GAG TGG GTC TTT GGG AAT GCA ATG TGC AAA TTA TTC ACA			390
Ala Ala Asn Glu Trp Val Phe Gly Asn Ala Met Cys Lys Leu Phe Thr			
105	110	115	
GGG CTG TAT CAC ATC GGT TAT TTT GGC GGA ATC TTC TTC ATC ATC CTC			438
Gly Leu Tyr His Ile Gly Tyr Phe Gly Gly Ile Phe Phe Ile Ile Leu			
120	125	130	
CTG ACA ATC GAT AGA TAC CTG GCT ATT GTC CAT GCT GTG TTT GCT TTA			486
Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu			
135	140	145	

FIG. 1B

AAA GCC AGG ACG GTC ACC TTT GGG GTG GTG ACA AGT GTG ATC ACC ACC TGG			534
Lys Ala Arg Thr Val Thr Phe Gly Val Val Thr Ser Val Ile Thr Trp			
150	155	160	165
TTG GTG GCT GTG TTT GCT TCT GTC CCA GGA ATC ATC TTT ACT AAA TGC			582
Leu Val Ala Val Phe Ala Ser Val Pro Gly Ile Ile Phe Thr Lys Cys			
170	175	180	
CAG AAA GAA GAT TCT TAT GTC TGT GGC CCT TAT TTT CCA CGA GGA			630
Gln Lys Glu Asp Ser Val Tyr Val Cys Gly Pro Tyr Phe Pro Arg Gly			
185	190	195	
TGG AAT AAT TTC CAC ACA ATA ATG AGG AAC ATT TTG GGG CTG GTC CTG			678
Trp Asn Asn Phe His Thr Ile Met Arg Asn Ile Leu Gly Leu Val Leu			
200	205	210	
CCG CTG CTC ATC ATG GTC ATC TGC TAC TCG GGA ATC CTG AAA ACC CTG			726
Pro Leu Leu Ile Met Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu			
215	220	225	
CTT CGG TGT CGA AAC GAG AAG AGG CAT AGG GCA GTG AGA GTC ATC			774
Leu Arg Cys Arg Asn Glu Lys Lys Arg His Arg Ala Val Arg Val Ile			
230	235	240	245
TTC ACC ATC ATG ATT GTT TAC TTT CTC TTC TGG ACT CCC TAT AAC ATT			822
Phe Thr Ile Met Ile Val Tyr Phe Leu Phe Trp Thr Pro Tyr Asn Ile			
250	255	260	
GTC ATT CTC CTG AAC ACC TTC CAG GAA TTC TTC GGC CTG AGT AAC TGT			870
Val Ile Leu Leu Asn Thr Phe Gln Glu Phe Phe Gly Leu Ser Asn Cys			
265	270	275	
GAA AGC ACC AGT CAA CTG GAC CAA GCC ACG CAG GTG ACA GAG ACT CTT			918
Glu Ser Thr Ser Gln Leu Asp Gln Ala Thr Gln Val Thr Glu Thr Leu			
280	285	290	
GGG ATG ACT CAC TGC TGC ATC AAT CCC ATC ATC TAT GCC TTC GTT GGG			966
Gly Met Thr His Cys Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly			
295	300	305	

FIG. 1C

GAG AAG TTC AGA AGC CTT TTT CAC ATA GCT CTT GGC TGT AGG ATT GCC	1014
Glu Lys Phe Arg Ser Leu Phe His Ile Ala Leu Gly Cys Arg Ile Ala	
310 315 320 325	
CCA CTC CAA AAA CCA GTG TGT GGA GGT CCA GGA GTG AGA CCA GGA AAG	1062
Pro Leu Gln Lys Pro Val Cys Gly Gly Pro Gly Val Arg Pro Gly Lys	
330 335 340	
AAT GTG AAA GTG ACT ACA CAA GGA CTC CTC GAT GGT CGT GGA AAA GGA	1110
Asn Val Lys Val Thr Thr Gln Gly Leu Leu Asp Gly Arg Gly Lys Gly	
345 350 355	
AAG TCA ATT GGC AGA GCC CCT GAA GCC AGT CTT CAG GAC AAA GAA GGA	1158
Lys Ser Ile Gly Arg Ala Pro Glu Ala Ser Leu Gln Asp Lys Glu Gly	
360 365 370	
GCC TAGAGACAGA AATGACAGAT CTCTGCTTG GAAATCACAC GTCTGGCTTC	1121
Ala	
ACAGATGTGT GATTACAGT GTGAATCTTG GTGTCTACGT TACCAAGGAG GAAGGCTGAG	1271
AGGAGAGAGA CTCCAGCTGG GTTGGAAAAC AGTATTTCC AAACCTACCTT CCAGTTCCCTC	1331
ATTTTGAAAT ACAGGCATAG AGTTCAGACT TTTTTAAAT AGTAAAATA AAATTAAAGC	1391
TGAAAACCTGC AACTGTAAA TGTGGTAAAG AGTTAGTTG AGTTGCTATC ATGTCAAACG	1451
TGAAAATGCT GTATTAGTCA CAGAGATAAT TCTAGCTTG AGCTTAAGAA TTTTGAGCAG	1511
GTGGTATGTT TGGGAGACTG CTGAGTCAAC CCAATAGTTG TTGATTGGCA GGAGTTGGAA	1571
GTGTGTGATC TGTGGGCACA TTAGCCTATG TGCGATGCAGC ATCTAAGTAA TGATGTCGTT	1631
TGAATCACAG TATACGCTCC ATCGCTGTCA TCTCAGCTGG ATCTCCATTG TCTCAGGCTT	1691
GCTGCCAAAA GCCTTTGTG TTTGTTTG TATCATTATG AAGTCATGCG TTTAATCACA	1751
TTCGAGTGTGTT TCAGTGCTTC GCAGATGTCC TTGATGCTCA TATTGTTCCC TAATTGCCA	1811
GTGGGAACTC CTAAATCAA TTGGCTTCTA ATCAAAGCTT TTAAACCCCTA TTGGTAAAGA	1871

DRAFT DRAFT DRAFT DRAFT DRAFT

FIG. 1D

ATGGAAGGTG GAGAAGCTCC CTGAAGTAAG CAAAGACTTT CCTCTTAGTC GAGCCAAGTT	1931
AAGAACATGTTT TTATGTTGCC CAGTGTGTTT CTGATCTGAT GCAAGCAAGA AACACTGGGC	1991
TTCTAGAACCG AGGCAACTTG GGAACTAGAC TCCCAAGCTG GACTATGGCT CTACTTCAG	2051
GCCACATGGC TAAAGAAGGT TTCAGAAAGA AGTGGGGACA GAGCAGAACT TTCACCTTCA	2111
TATATTGTA TGATCCTAAT GAATGCATAA AATGTTAAGT TGATGGTGAT GAAATGTAAA	2171
TACTGTTTTT AACAACTATG ATTTGGAAAA TAAATCAATG CTATAACTAT GTTGATAAAA	2231
G	2232

FIG. 2A

CAGGACTGCC TGAGACAAGC ACAAGCTGA ACAGAGAAAG TGGATTGAAC AAGGACGCAT 60
 TTCCCCAGTA CATCCACAAAC ATG ⁸⁴CTG TCC ACA TCT CGT TCT CGG TTT ATC 110
 Met Leu Ser Thr Ser Arg Ser Arg Phe Ile
 1 5 10
^{*33}
 AGA AAT ACC AAC GAG AGC GGT GAA GAA GTC ACC ACC TTT TTT GAT TAT 158
 Arg Asn Thr Asn Glu Ser Gly Glu Glu Val Thr Thr Phe Phe Asp Tyr
 15 20 25
 GAT TAC GGT GCT CCC TGT CAT AAA TTT GAC GTG AAG CAA ATT GGG GCC 206
 Asp Tyr Gly Ala Pro Cys His Lys Phe Asp Val Lys Gln Ile Gly Ala
 30 35 40
 CAA CTC CTG CCT CCG CTC TAC TCG CTG GTG TTC ATC TTT GGT TTT GTG 254
 Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val
 45 50 55
 GGC AAC ATG CTG GTC CTC ATC TTA ATA AAC TGC AAA AAG CTG AAG 302
 Gly Asn Met Leu Val Val Leu Ile Leu Ile Asn Cys Lys Lys Leu Lys
 60 65 70
 TGC TTG ACT GAC ATT TAC CTG CTC AAC CTG GCC ATC TCT GAT CTG CTT 350
 Cys Leu Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu
 75 80 85 90
 TTT CTT ATT ACT CTC CCA TTG TGG GCT CAC TCT GCT GCA AAT GAG TGG 398
 Phe Leu Ile Thr Leu Pro Leu Trp Ala His Ser Ala Ala Asn Glu Trp
 95 100 105
 GTC TTT GGG AAT GCA ATG TGC AAA TTA TTC ACA GGG CTG TAT CAC ATC 446
 Val Phe Gly Asn Ala Met Cys Lys Leu Phe Thr Gly Leu Tyr His Ile
 110 115 120
 GGT TAT TTT GGC GGA ATC TTC TTC ATC ATC CTC CTG ACA ATC GAT AGA 494
 Gly Tyr Phe Gly Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg
 125 130 135
 TAC CTG GCT ATT GTC CAT GCT GTG TTT GCT TTA AAA GCC AGG ACG GTC 542
 Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val
 140 145 150

DRAFT 3/23/07

FIG. 2B

00520000000000000000000000000000

ACC TTT GGG GTG GTG ACA AGT GTG ATC ACC TGG TTG GTG GCT GTG TTT		590	
Thr Phe Gly Val Val Thr Ser Val Ile Thr Trp Leu Val Ala Val Phe			
155	160	165	170
GCT TCT GTC CCA GGA ATC ATC TTT ACT AAA TGC CAG AAA GAA GAT TCT		638	
Ala Ser Val Pro Gly Ile Ile Phe Thr Lys Cys Gln Lys Glu Asp Ser			
175	180	185	
GTT TAT GTC TGT GGC CCT TAT TTT CCA CGA GGA TGG AAT AAT TTC CAC		686	
Val Tyr Val Cys Gly Pro Tyr Phe Pro Arg Gly Trp Asn Asn Phe His			
190	195	200	
ACA ATA ATG AGG AAC ATT TTG GGG CTG GTC CTG CCG CTG CTC ATC ATG		734	
Thr Ile Met Arg Asn Ile Leu Gly Leu Val Leu Pro Leu Leu Ile Met			
205	210	215	
GTC ATC TGC TAC TCG GGA ATC CTG AAA ACC CTG CTT CGG TGT CGA AAC		782	
Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys Arg Asn			
220	225	230	
GAG AAG AAG AGG CAT AGG GCA GTG AGA GTC ATC TTC ACC ATC ATG ATT		830	
Glu Lys Lys Arg His Arg Ala Val Arg Val Ile Phe Thr Ile Met Ile			
235	240	245	250
GTT TAC TTT CTC TTC TGG ACT CCC TAT AAC ATT GTC ATT CTC CTG AAC		878	
Val Tyr Phe Leu Phe Trp Thr Pro Tyr Asn Ile Val Ile Leu Leu Asn			
255	260	265	
ACC TTC CAG GAA TTC TTC GGC CTG AGT AAC TGT GAA AGC ACC AGT CAA		926	
Thr Phe Gln Glu Phe Phe Gly Leu Ser Asn Cys Glu Ser Thr Ser Gln			
270	275	280	
CTG GAC CAA GCC ACG CAG GTG ACA GAG ACT CTT GGG ATG ACT CAC TGC		974	
Leu Asp Gln Ala Thr Gln Val Thr Glu Thr Leu Gly Met Thr His Cys			
285	290	295	
TGC ATC AAT CCC ATC ATC TAT GCC TTC GTT GGG GAG AAG TTC AGA AGG		1022	
Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly Glu Lys Phe Arg Arg			
300	305	310	

FIG. 2C

TAT CTC TCG GTG TTC CGA AAG CAC ATC ACC AAG CGC TTC TGC AAA		1070
Tyr Leu Ser Val Phe Phe Arg Lys His Ile Thr Lys Arg Phe Cys Lys		
315	320	325
330		
CAA TGT CCA GTT TTC TAC AGG GAG ACA GTG GAT GGA GTG ACT TCA ACA		1118
Gln Cys Pro Val Phe Tyr Arg Glu Thr Val Asp Gly Val Thr Ser Thr		
335	340	345
AAC ACG CCT TCC ACT GGG GAG CAG GAA GTC TCG GCT GGT TTA		1160
Asn Thr Pro Ser Thr Gly Glu Gln Glu Val Ser Ala Gly Leu		
350	355	360
TAAAACGAGG AGCAGTTGA TTGTTGTTA TAAAGGGAGA TAACAATCTG TATATAACAA		1220
CAAACCTCAA GGGTTGTTG ACAATAGAA ACCTGTAAAG CAGGTGCCA GGAACCTCAG		1280
GGCTGTGTGT ACTAATACAG ACTATGTCAC CCAATGCATA TCCAACATGT GCTCAGGGAA		1340
TAATCCAGAA AAACGTGGG TAGAGACTTT GACTCTCCAG AAAGCTCATC TCAGCTCCTG		1400
AAAAATGCCT CATTACCTTG TGCTAATCCT CTTTTCTAG TCTTCATAAT TTCTTCACTC		1460
AATCTCTGAT TCTGTCAATG TCTGAAATC AAGGGCCAGC TGGAGGTGAA GAAGAGAATG		1520
TGACAGGCAC AGATGAATGG GAGTGAGGGA TAGTGGGTC AGGGCTGAGA GGAGAAGGAG		1580
GGAGACATGA GCATGGCTGA GCCTGGACAA AGACAAAGGT GAGCAAAGGG CTCACGCATT		1640
CAGCCAGGAG ATGATACTGG TCCTTAGCCC CATCTGCCAC GTGTATTAA CCTTGAAGGG		1700
TTCACCAGGT CAGGGAGAGT TTGGGAACTG CAATAACCTG GGAGTTTGG TGGAGTCCGA		1760
TGATTCTCTT TTGCATAAGT GCATGACATA TTTTGCTTT ATTACAGTTT ATCTATGGCA		1820
CCCATGCACC TTACATTGA AATCTATGAA ATATCATGCT CCATTGTTCA GATGCTTCTT		1880
AGGCCACATC CCCCTGTCTA AAAATTAGA AAATTTTGT TTATAAAAGA TGCATTATCT		1940
ATGATATGCT AATATATGTA TATGCAATAT AAAATTTAG		1979

FIG. 3(A)

FIG. 3(B)

FIG.4(A)

MCP-1RA (CCR2-A)	MLSTSRSRFIRNTNESGEEVTTIFFDYDYG--APCHKFDVKQIGAQLLPPL	48
MIP-1 α /RANTESR	M-----ETPNTEDYDTITTEFDYGDATPCQKVNERAFGAQLLPPL	40
HUMSTSR	MEGIS---IYTSDNYTEEMGS-GDYDSMK-EPCFREENANFNKIFLPTI	44
IL-8RA	MSNITDPQ-MWDFDDLNFTGMPPADEDY---SPC-MLETETLNKYVIIA	45
IL-8RB	MESDSFEDFWKGEDLSNYSYSSTLPPFLDAAPC-EPESLEINKYFVII	49
	48 1 69 79 2	
MCP-1RA (CCR2-A)	YSLVFIFGFVGMLVVLLILINCKKLKCLTDIYLLNL AISDLLFLITLPLW	98
MIP-1 α /RANTESR	YSLVFVIGLVGNILVVLLVLVQYKRLKNMTSIIYLLNL AISDLLFLITLPLW	90
HUMSTSR	YSIIFLTGIVGNGLVILVMGYQKKLRSMTDKYRHLHSVADLLFVITLPLW	94
IL-8RA	YALVFLSLLGNSLVMILVILYSRVGRSVTDVYLLNLALADLLFALTLPWIW	95
IL-8RB	YALVFLSLLGNSLVMILVILYSRVGRSVTDVYLLNLALADLLFALTLPWIW	99
	101 115 3 136	
MCP-1RA (CCR2-A)	AH-SAANEWVFGNAMCKLFTGLYHIGYFGGIFFIILLTIDRYLAIVHAVF	147
MIP-1 α /RANTESR	IDYKLKDDWVFGDAMCKILSGFYYTGLYSEIFFIILLTIDRYLAIVHAVF	140
HUMSTSR	AV-DAVANWYFGNFLCKAVHVIYTVNLYSSVLILAFISLDRLAIVHATN	143
IL-8RA	AA-SKVNGWIFGTFLCKVVSSLKEVNFYSGILLACISVDRYLAIVHATR	144
IL-8RB	AA-SKVNGWIFGTFLCKVVSSLKEVNFYSGILLACISVDRYLAIVHATR	148
	154 4 178	
MCP-1RA (CCR2-A)	ALKARTVTFGVVTSVITWLVAVFASVPGIIFTKCQKEDSVYVCGPYFP--	195
MIP-1 α /RANTESR	ALRARTVTFGVITSIIIWALAILASMPGLYFSKTQWEFTHHTCSLHFPE	190
HUMSTSR	SQRPRKLLAEKVVYVGWIPALLTIPDFIFANVSEADDRYICDRFYPN-	192
IL-8RA	TLTQKR-HLVKFVCLGCWGLSMNLSLPFFLFRQAYHPNNSSPVCYEVLG	193
IL-8RB	TLTQKRYLVKFI-CLSIWGLSLLLALPVLLFRRTVYSSNVSPACYEDMGN	197
	204 5 231	
MCP-1RA (CCR2-A)	--RGWNNFHTIMRNILGLVLPLLIMVICYSGILKTLLRCRNEKKRHRAVR	243
MIP-1 α /RANTESR	SLREWKLHQALKLNLFGLVLPLLVMICYTGIIKILLRRPNEKKS-KAVR	239
HUMSTSR	--DLWVVVFQFQHIMVGLILPGIVILFCYCIIISKLSHSKGHQKR-KALK	239
IL-8RA	DTAKWRMVLRLILPHTFGFIVPLFVMLFCYGFTLRTLFAHMGQK-HRAMR	242
IL-8RB	NTANWRMLLRILPQSFGFIVPLLIMLFCYGFTLRTLFAHMGQ-KHRAMR	246
	244 6 268	
MCP-1RA (CCR2-A)	VIIFTIMIVYFLFWTPYNIVILLNTFQEFGGLSNCESTSQLDQATQVTET	292
MIP-1 α /RANTESR	LIFVIMIIFFLFWTPYNLTILISVFQDF-LFTHECEQSRHLDLAVQVTEV	288
HUMSTSR	TTVILILAFFACWLPPYYIGISIDSFILLEIIKQGCEFENTVHKWISITEA	289
IL-8RA	VIFAVVLIFLLCWLPYNLVLLADTLMRTQVIQETCERRNNIGRALDATEI	292
IL-8RB	VIFAVVLIFLLCWLPYNLVLLADTLMRTQVIQETCERRNHIDRALDATEI	296

FIG. 4(B)

	295	7	313	
MCP-1RA (CCR2-A)	LGMTHCCINPIIYAFVGEKFRSLFHIALGCRIAPLQKPVCGGPGVRPGKN	*		342
MIP-1 α /RANTESR	IAYTHCCVNPNVIYAFVGERFRKYLRQLFHRRA			VHLVKW 327
HUMSTSR	LAFFHCCLNPIIYAFLGAKFKTSAQHALTS			VSRGSS 325
IL-8RA	LGFLHSCLNPIIYAFIGQNFRHGFLKILA			MHGLVS 327
IL-8RB	LGILHSCLNPLIYAFIGQKFRHGLLKILAIH			GLIS 331
MCP-1RA (CCR2-A)	VKVTTQGLLDGRGKGKSIGRAPEASLQDKEGA			374
MIP-1 α /RANTESR	LPFLSVDRLE-RVSSTS-PSTGEHEL-SAGF			355
HUMSTSR	LKILSKGK---RGGHSSVSTESESSS--FHSS			352
IL-8RA	KEFLARH---RVTSYT-SSSVNVS---SNL			350
IL-8RB	KDSLPKDS---RPSFVG-SSSGHTS---TTL			355

DRAFT DRAFT DRAFT

11/14

FIG. 5

FIG. 6

12/14

FIG. 7A MCP-1 RB

FIG. 7B

FIG. 8B

DISC 80 " ESS 2960

FIG. 8C

