Lecture 1

Category theory: formalization of methematics Why so basic and powerful? just about our aiativity. typically: writing words is avociative and including category theory. catigory of Catigorie Great expressive power yomatry alsebra cat. theory Shing: She spaces Service a rector space colimits I duality cutting : intersection g subspaces equations. Another aspect of methematical proctice: identification: equality what a = 6 Means? .. isomorphisms. ٠٠ م · equivalence el catigorica . Armotopy (e.g. Continues deformation
of topological data) If we identify An B we want F(A) n F(B)
for any formula/expression/functor....

on - Category theory: our implementation of the very Congruese of Category theory in which mon trivial identifications can interpreted naturely.

One of the main tool of category theory is:

the Youeda lemma.

It has many interpretations which give

rise to ways to construct operators

within category theory: Kon extensions.

Universes

Definition - A universe is a set U with the following properties:

(1) $x \in Y$, $y \in U \Rightarrow x \in U$ (2) $x,y \in U \Rightarrow x,y \in U$ (2) $x,y \in U \Rightarrow x,y \in U$ (3) $x \in U \Rightarrow P(x) = x \in M$

US) X the by yimat Isi (ix) NOI (ix)

A. U-small set is an element of W. Rem: x EU (x) EU. Prop. Assume that IN & U. Then U-small sets is a model ZFC Axiom of universes (in addition to ZFC): for any set x there is a universe U with x & U. Remark: one can find within ZFC a universe U with lo,..., n \ EU for all n. =) all element of u are finit sto Convention for this betwee: We fix a universe W with NEW. We define small sets as W-small sets. a class is a set which is possibly not W- small.

Definition. A Category C is a class of objects Ob(c) and, for each xy & ob(c), a chil of maps Home (x,y) together with Han (x,y) x Hom (y, +) -, Hom (x, 2) (4,09) 1 1 to 54 = 50t 1 x ∈ Hom (x,x) + associativity and unitality C is boathy small if Home (x,4) are small brall

(x,y) = ob(c)2

. Mam . ii (=) Ub(c) I mall + C locally small

txamples: Set = { small set } is locally small but national

Cat-Ismall cationing is bely small ... Howat (A,B) = of Junctors A -> B)

Funiverse of first sets with FEW F-small sets form a small catigory.

tun(c, b) = catigory of functions C - D OL Fun(c, b) = Hom (c, b) C catigory, Cop: opposite catigory of C OP(C) = OP(Cob) Ham (x,y) = Ham Cop (y,x) Exercise: Fun(C, B) = Fun(COP, DOP) Prop. C locally small, I small = Fun (I, C) is locally small proof: F, G: I -> C functors Ham (I,C) $(F,G) \subset TT$ Ham (f(i),G(i)) $(i,j) \xrightarrow{f} ((i,j) \xrightarrow{g} ((i,j))$ V ujeHm(i) f (n) 1 2 1 (n) £ (?) \$ (C) Presheaves

Definition. Let A be a catigory.

A preshead on A is a Junctor A^{op} > Set

A - Fun (A^{op}, Set) catigory of presheares.

Notation: X presheaf on A, a E cb (A) Xa = X (a) diber of X at a s e Xa sis a section of X over a u:a - b map in A $u^{\times}:=\times(\sim):\times_{b}\to \times_{a}$ 1: X -> Y morphism of presheaves ta: Xa -> Ya induced map duc XP Jo Ar 4 " " = " " A 9 " Definition (Yorado embedding) For A locally small the Yourda embedding is defined by:

h: $A \rightarrow \widehat{A}$ $h(a) = H_{5m_A}(-, a) = h_a$ $h(a)_L = H_{5m_A}(b, a)$ Remark: if A is small than \widehat{A} is locally small

There is a Younda embedding \hat{A} -, \hat{A} .

(but \hat{A} is <u>Mot</u> Geally small).

Theorem (Yoneda Lemma) Let A be locally small. X: AOP _ Set, a eub(A) Then Hom (ha, x) => Xa is hijective. $\downarrow (1_{\circ})$ Convention: we will see this bijection or an equality! sexa we will write has X for the Corresponding map. Corollary. A locally small, h: A -> A is fully faithful. How (a, b) — How (ha, hb) A = / Lougo ruma for observe 1tan (a,b) this is the idutity.

Recollection on (co) limits. $X^{\underline{1}}: \underline{1} \to \underline{C}$ I, C categories constant functor F: I - C functor \times^{I} (i) = \times X & OP(C). A Cocone Plan Fto X is a damy $f(i) \xrightarrow{Pi} \times , i \in ob(I) = morphism of functions$ f(i) Pi . .F. -> XI. A colimit of F is an object limfli) = himf
ieT = colim to gether with a Goone p: F - s (Gim 7) I such that, for any g: F -> M there is a unique map f: lim F -> M such that fop; = 9; for all i e ob (I). Equivalently: Home (F, M) = Home (him F, M)

fun(I, c) (-Jop;) = + Han (F, (-)]) (=) lim F represents the functor

Gim F(i) - F inducing. Hom (x, lint(i)) = Hm (x, F) Example. Set has all small colinity as well as all mell limits. I discrete. Is(I)= × × set all mays in I are identifies. F. I -> Set Jamly y Lts lint= Utx GAF-TIF A J B f: I → Set lim F = 18 45/2 xny(=) x=y or Jac A . such colimitis f(v) = x called the pushent of I 2(0) = x

A come M -> F from M to F

a limit of Fis a som

is a worphism of functors MI -> F.

For any colossy I with Arr (I) swell															•										
•	•	an	4	. [fun	d	Σ ι	•	F	: .]	<u> </u>	-	5	له	- - 1	ha	.1.	Ċ.	G	M,	F	٥٨	J.	م	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	u, r	•	in	بعد	· -		•		•	•	•
•	•	•		•	1	\		•		į	41	{	Ć		Ù	•	•	•		•					
•	0	•	•	0												•	•	•							
•	•			•	. \	?	×\	·) ·	X	\{\ !	•	•	1			•	•							
•	•			•	•	•	•	•	•	•	•	•					•								
				•		۰			•	۰	•	۰	•	•	۰	۰	•	•	•	۰	•	٠		•	•
				•	•	•		•	•	•	•	•		•	•	•	•	•		•	•	•	•		
				•	•																				
•	•				•		0			0	0	•			0					•				•	•