Protein representation

The protein backbone and the dihedral angles

Proteins and their residues

α-Carbon is a term that applies to <u>proteins</u> and <u>amino acids</u>. It is the backbone carbon before the carbonyl carbon. Therefore, reading along the backbone of a typical protein would give a sequence of N, α-C, carbonyl C, N, α-C, carbonyl C, N, α-C, carbonyl C, etc. (when reading in the N to C direction). *The α-carbon is where the different residues are covalently linked attach*. That is, the groups hanging off the chain at the α-carbon are what give to proteins their difference in residues. These groups give the α-carbon its <u>stereogenic</u> properties for every residue except for <u>glycine</u>. Therefore, the α-carbon is a <u>stereocenter</u> for every residue except glycine. Glycine also does not have a β-carbon, while every other residue does.

The protein reduced representation and its dihedral angles

The α -carbon of a residue is significant in <u>protein folding</u>. When describing a protein (which is an ethero polymer), one often approximates the location of each residue as the location of its α -carbon. In general, α -carbons of adjacent residues in a protein are about 3.8 <u>ångströms</u> (380 <u>picometers</u>) apart.

The Ramachandran plot

Original hard-sphere, reduced-radius, and relaxed-tau φ,ψ regions from Ramachandran, with updated labels and axes

A Ramachandran plot generated from human PCNA, a trimeric DNA clamp protein that contains both β-sheet and α-helix (PDB ID 1AXC). The red, brown, and yellow regions represent the favored, allowed, and "generously allowed" regions as defined by ProCheck

European Bioinformatics Institute

About PDBsum

Databases > Structure Databases > PDBsum > Index

Top page

Protein

DNA/RNA

Ligands

Prot-prot

Clefts

"Links

- Text search
- Using RasMol
- PROMOTIF

Beta barrels

Beta sheets

Beta-alpha-beta units

Beta hairpins

Psi loops

Beta bulges

Beta strands

Helices

Helix-helix interactions

Beta turns

Gamma turns

Disulphides

- PROSITE patterns
- PROCHECK analysis

:Main

Ramachandran plot

http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/

PDBsum entry 1acx

Biological process

Biochemical function DNA binding

defense response 2 terms

1 term

PROCHECK

Ramachandran Plot

Plot statistics		
Residues in most favoured regions [A,B,L] Residues in additional allowed regions [a,b,l,p]	222 21	90.2% 7.4%
Residues in generously allowed regions [~a,~b,~l,~p] Residues in disallowed regions	3	1.2%
Number of non-glycine and non-proline residues	249	100.0%
Number of end-residues (excl. Gly and Pro)	2	
Number of glycine residues (shown as triangles) Number of proline residues	33 13	
Total number of residues	297	

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most favoured regions.