```
In [1]: import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]: bf = pd.read_csv(r"D:\Python\blackfriday.csv")
bf

Out[2]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Yea
	0	1000001	P00069042	F	0- 17	10	А	
	1	1000001	P00248942	F	0- 17	10	А	
	2	1000001	P00087842	F	0- 17	10	А	
	3	1000001	P00085442	F	0 - 17	10	А	
	4	1000002	P00285442	М	55+	16	С	a.
						•••	•••	
	550063	1006033	P00372445	М	51 - 55	13	В	
	550064	1006035	P00375436	F	26 - 35	1	С	
	550065	1006036	P00375436	F	26 - 35	15	В	4
	550066	1006038	P00375436	F	55+	1	С	
	550067	1006039	P00371644	F	46- 50	0	В	

550068 rows × 12 columns

In [3]: bf.describe()

n	111	+	12	١.
v	u	L	ע ו	١.

	User_ID	Occupation	Marital_Status	Product_Category_1	Product_Category_2	Pr
count	5.500680e+05	550068.000000	550068.000000	550068.000000	376430.000000	
mean	1.003029e+06	8.076707	0.409653	5.404270	9.842329	
std	1.727592e+03	6.522660	0.491770	3.936211	5.086590	
min	1.000001e+06	0.000000	0.000000	1.000000	2.000000	
25%	1.001516e+06	2.000000	0.000000	1.000000	5.000000	
50%	1.003077e+06	7.000000	0.000000	5.000000	9.000000	
75%	1.004478e+06	14.000000	1.000000	8.000000	15.000000	
max	1.006040e+06	20.000000	1.000000	20.000000	18.000000	

```
In [4]: bf.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 550068 entries, 0 to 550067
        Data columns (total 12 columns):
             Column
                                          Non-Null Count
                                                           Dtype
             _____
                                                           ----
        _ _ _
         0
             User_ID
                                          550068 non-null
                                                           int64
             Product ID
                                          550068 non-null object
         1
         2
                                          550068 non-null object
             Gender
         3
             Age
                                          550068 non-null object
         4
                                          550068 non-null
             Occupation 0
                                                           int64
         5
             City Category
                                          550068 non-null object
         6
             Stay In Current City Years 550068 non-null object
         7
             Marital Status
                                          550068 non-null int64
         8
             Product_Category_1
                                          550068 non-null int64
         9
             Product_Category_2
                                          376430 non-null float64
         10 Product Category 3
                                          166821 non-null float64
         11 Purchase
                                          550068 non-null int64
        dtypes: float64(2), int64(5), object(5)
        memory usage: 50.4+ MB
In [ ]:
In [5]: bf.isnull().sum()
Out[5]: User_ID
                                            0
                                            0
        Product ID
        Gender
                                            0
                                            0
        Age
        Occupation |
                                            0
        City_Category
                                            0
        Stay_In_Current_City_Years
                                            0
        Marital_Status
        Product_Category_1
        Product_Category_2
                                       173638
        Product_Category_3
                                       383247
        Purchase
                                            0
        dtype: int64
In [6]: bf["Product_Category_2"].isnull().sum()
Out[6]: 173638
        bf["Product Category 2"].mode()
Out[7]: 0
             8.0
        Name: Product_Category_2, dtype: float64
In [8]: bf["Product_Category_2"].unique()
Out[8]: array([nan, 6., 14., 2., 8., 15., 16., 11., 5., 3., 4., 12.,
               10., 17., 13., 7., 18.])
```

```
In [9]: bf["Product_Category_2"].info()
         <class 'pandas.core.series.Series'>
         RangeIndex: 550068 entries, 0 to 550067
         Series name: Product_Category_2
         Non-Null Count
                           Dtype
         376430 non-null float64
         dtypes: float64(1)
         memory usage: 4.2 MB
In [10]: bf.groupby('Product_Category_2').size()
Out[10]: Product_Category_2
         2.0
                 49217
         3.0
                   2884
         4.0
                  25677
         5.0
                  26235
         6.0
                  16466
         7.0
                    626
         8.0
                  64088
         9.0
                   5693
         10.0
                   3043
         11.0
                 14134
         12.0
                   5528
         13.0
                  10531
         14.0
                  55108
         15.0
                 37855
         16.0
                 43255
         17.0
                 13320
         18.0
                   2770
         dtype: int64
```

```
In [11]: sns.heatmap(bf.isnull())
```

Out[11]: <Axes: >

Handling Missing in Product_Category_2

```
In [15]: bf["Product_Category_2"].unique()
Out[15]: array([ 8., 6., 14., 2., 15., 16., 11., 5., 3., 4., 12., 9., 10.,
                      17., 13., 7., 18.])
In [16]: | sns.heatmap(bf.isnull())
Out[16]: <Axes: >
                                                                                                       - 1.0
                21157
                42314
                63471
                84628
              105785
                                                                                                      - 0.8
              126942
              148099
              169256
              211570
                                                                                                      - 0.6
              232727
              253884
              296198
                                                                                                        0.4
              359669
              380826
              401983
              423140
                                                                                                        0.2
              444297
              465454
              486611
              507768
              528925
                                      Gender
                                                  Occupation
                                Product_ID
                                                             Stay_In_Current_City_Years
                                                                                     Product_Category_3
                                                                                          Purchase
                                                        City_Category
                                                                   Marital_Status
                                                                               Product_Category_2
                                                                         Product_Category_1
```

Handling Missing in Product_Category_3

```
In [17]: bf["Product_Category_3_fill"] = bf["Product_Category_3"].ffill
In [18]: bf["Product_Category_3_fill"].isnull().sum()
Out[18]: 0
```

null value = 0

but NaN value is still there inside this column so we skip this step to fill null value because it will be very long step we have to replace nan with mode to make data clean and relevent so in next step i directly do this with mode in next step

we use mode to fill the categorical column i make special column to check this

```
In [19]: bf["Product_Category_3_fill"].unique()
Out[19]: array([<bound method Series.ffill of 0</pre>
                                                             NaN
                            14.0
                 1
                  2
                             NaN
                  3
                             NaN
                             NaN
                 550063
                             NaN
                 550064
                             NaN
                 550065
                             NaN
                 550066
                             NaN
                 550067
                             NaN
                 Name: Product_Category_3, Length: 550068, dtype: float64>],
                dtype=object)
```

we use mode to fill null value

```
bf["Product_Category_3"].isnull().sum()
In [23]:
Out[23]: 0
In [24]: sns.heatmap(bf.isnull())
Out[24]: <Axes: >
                                                                                                                      - 0.100
                  21157
                  42314
                  63471
                                                                                                                      - 0.075
                  84628
                 105785
                 126942
                                                                                                                       0.050
                                                                                                                       0.025
                                                                                                                       0.000
                                                                                                                       -0.025
                 380826
                 401983
                                                                                                                       -0.050
                 423140
                 444297
                 465454
                                                                                                                         -0.075
                 486611
                 507768
                528925
                                                                                                                         -0.100
                                          Gender
                                    Product_ID
                                                       Occupation
                                                                   Stay_In_Current_City_Years
                                                                                                  Purchase
                                                             City_Category
                                                                         Marital_Status
                                                                                                        Product_Category_3_fill
                                                                               Product_Category_
                                                                                     Product_Category_
                                                                                            Product Category
```

Now after dealing with null value we are going to drop unusual column

In [25]:	bf	.head()								
Out[25]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_Cit	ty_Years	M
	0	1000001	P00069042	F	0 - 17	10	А		2	
	1	1000001	P00248942	F	0 - 17	10	А		2	
	2	1000001	P00087842	F	0- 17	10	А		2	
	3	1000001	P00085442	F	0- 17	10	А		2	
	4	1000002	P00285442	М	55+	16	С		4+	
	4			_					•	

in this data we will work according product_id

product_id will use for which product has more no sale

there is no use user id we are going to drop user id

```
In [26]: bf.drop("User_ID",axis = 1,inplace = True)
```

now convert gender in numerical data

```
In [27]: bf["Gender"]=bf["Gender"].map({"F":0,"M":1})
In [28]: bf["Gender"].unique()
Out[28]: array([0, 1], dtype=int64)
```

now convert age column in normal interval and distribution

according to analysis of buying behaviour

```
In [29]: bf["Age"].unique()
Out[29]: array(['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25'],
                dtype=object)
In [30]: bf["Age"] = bf["Age"].map({"0-17":1,"18-25":2,"26-35":3,"36-45":4,"46-50":5,"5
In [31]: bf["Age"].unique()
Out[31]: array([1, 7, 3, 5, 6, 4, 2], dtype=int64)
In [32]:
         bf.head()
Out[32]:
             Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Stat
             P00069042
                            0
                                           10
                                                                                 2
                                                         Α
                                                                                 2
             P00248942
                            0
                                           10
                                                         Α
             P00087842
                                                                                 2
                                           10
             P00085442
                            0
                                           10
                                                                                 2
                                                         С
                                                                                4+
             P00285442
                                           16
```

now city_category change into numerical data

```
In [33]: bf["City_Category"].unique()
Out[33]: array(['A', 'C', 'B'], dtype=object)
In [34]: bf_city=pd.get_dummies(bf['City_Category'],drop_first=True)
```

now we are going to merge bf_city into bf dataframe

```
In [35]: df=pd.concat([bf,bf_city],axis=1)
    df.head()
```

Out[35]:		Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Stat
	0	P00069042	0	1	10	А	2	
	1	P00248942	0	1	10	А	2	
	2	P00087842	0	1	10	А	2	
	3	P00085442	0	1	10	А	2	
	4	P00285442	1	7	16	С	4+	
	4				_			•

now we are going to clean Stay_In_Current_City_Years column

```
In [36]: df["Stay_In_Current_City_Years"].unique()
Out[36]: array(['2', '4+', '3', '1', '0'], dtype=object)
```

no we remove all the category inside the string from Stay_In_Current_City_Years

Out[38]: array([2, 4, 3, 1, 0])

```
df["Stay_In_Current_City_Years"].info()
In [39]:
         <class 'pandas.core.series.Series'>
         RangeIndex: 550068 entries, 0 to 550067
         Series name: Stay In Current City Years
         Non-Null Count
                          Dtype
         550068 non-null int32
         dtypes: int32(1)
         memory usage: 2.1 MB
In [40]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 550068 entries, 0 to 550067
         Data columns (total 14 columns):
                                                           Dtype
              Column
                                          Non-Null Count
          0
              Product_ID
                                          550068 non-null object
              Gender
          1
                                          550068 non-null int64
          2
                                          550068 non-null int64
              Age
          3
              Occupation
                                          550068 non-null int64
              City Category
                                          550068 non-null object
          5
              Stay_In_Current_City_Years 550068 non-null int32
              Marital Status
                                          550068 non-null int64
          7
              Product Category 1
                                          550068 non-null int64
          8
              Product Category 2
                                          550068 non-null float64
              Product_Category_3
                                          550068 non-null float64
          9
          10 Purchase
                                          550068 non-null int64
                                          550068 non-null object
          11 Product_Category_3_fill
          12
                                          550068 non-null uint8
                                          550068 non-null uint8
          13
         dtypes: float64(2), int32(1), int64(6), object(3), uint8(2)
         memory usage: 49.3+ MB
```

convert B and C into int

```
In [41]: df["B"] = df["B"].astype(int)
df["C"] = df["C"].astype(int)
```

```
df.info()
In [42]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 550068 entries, 0 to 550067
         Data columns (total 14 columns):
              Column
                                          Non-Null Count
                                                           Dtype
              _____
         _ _ _
          0
              Product_ID
                                          550068 non-null object
          1
              Gender
                                          550068 non-null int64
          2
              Age
                                          550068 non-null int64
          3
              Occupation
                                          550068 non-null int64
          4
                                          550068 non-null object
              City_Category
              Stay_In_Current_City_Years 550068 non-null int32
          6
              Marital Status
                                          550068 non-null int64
          7
              Product_Category_1
                                          550068 non-null int64
                                          550068 non-null float64
              Product_Category_2
                                          550068 non-null float64
          9
              Product Category 3
          10 Purchase
                                          550068 non-null int64
          11 Product_Category_3_fill
                                          550068 non-null object
                                          550068 non-null int32
          12 B
          13 C
                                          550068 non-null int32
         dtypes: float64(2), int32(3), int64(6), object(3)
         memory usage: 52.5+ MB
```

1 Purchases are done more by men than women with respect to all age criteria.

```
In [43]: sns.barplot(x = "Age",y = "Purchase",hue = "Gender",data = df,palette = "Purpl
```

Out[43]: <Axes: xlabel='Age', ylabel='Purchase'>

In [44]:	df.	.head()						
Out[44]:	Product_ID		Gender	Age Occupation		City_Category	Stay_In_Current_City_Years	Marital_Stat
	0	P00069042	0	1	10	А	2	
	1	P00248942	0	1	10	А	2	
	2	P00087842	0	1	10	А	2	
	3	P00085442	0	1	10	А	2	
	4	P00285442	1	7	16	С	4	
	4							•

2 Which age category has highest no of buyers?

```
In [45]: sns.countplot(x = "Age",data = bf)#26-35 age category people has highest no bu
```

Out[45]: <Axes: xlabel='Age', ylabel='count'>

3 we see the purchases had made according to the occuption?

```
In [47]: sns.barplot(x = "Occupation",y ="Purchase",data = df ,palette = "winter")
```

Out[47]: <Axes: xlabel='Occupation', ylabel='Purchase'>

4 Which Age category has done highest no purchases?

According to this data 51 - 55 age people has done highest no of purchases after the overall analysis older people has done more purchases

```
In [48]: #"0-17":1,"18-25":2,"26-35":3,"36-45":4,"46-50":5,"51-55":6,"55+":7
sns.barplot(x = "Age",y ="Purchase",data = df,palette = "rainbow")
```

Out[48]: <Axes: xlabel='Age', ylabel='Purchase'>

In []:

5 how many purchases are made by people in **Product_Category_1?**

```
In [49]: sns.barplot(x = "Product_Category_1",y = "Purchase",hue = "Gender",data = df,
```

Out[49]: <Axes: xlabel='Product_Category_1', ylabel='Purchase'>


```
In [77]: sns.barplot(x = "Product_Category_1",y = "Purchase",data = df,palette = "gist
```

Out[77]: <Axes: xlabel='Product_Category_1', ylabel='Purchase'>

6 how many purchases are made by people in **Product_Category_2?**

```
In [50]: sns.barplot(x = "Product_Category_2",y = "Purchase",hue = "Gender",data = df,
```

Out[50]: <Axes: xlabel='Product_Category_2', ylabel='Purchase'>

In [51]: df.groupby(['Product_Category_2'], as_index=False)['Purchase'].max()

Out[51]:		Product_Category_2	Purchase
•	0	2.0	19708
	1	3.0	19573
	2	4.0	19612
	3	5.0	19708
	4	6.0	19708
	5	7.0	8906
	6	8.0	23959
	7	9.0	16504
	8	10.0	20690
	9	11.0	20688
	10	12.0	21034
	11	13.0	23960
	12	14.0	23939
	13	15.0	23961
	14	16.0	23960
	15	17.0	21569
	16	18.0	19695

```
In [52]: top_nreviews = df['Purchase'].nlargest(n=5).index
top_nreviews
```

Out[52]: Int64Index([87440, 93016, 370891, 292083, 321782], dtype='int64')

```
In [53]: top_rating_df = df.iloc[top_nreviews]
top_rating_df
```

Out[53]:		Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marita
	87440	P00052842	1	3	4	Α	2	
	93016	P00052842	1	3	0	С	1	
	370891	P00052842	1	3	17	С	3	
	292083	P00052842	1	5	1	В	2	
	321782	P00052842	1	7	0	С	1	
	4							

7 how many purchases are made by people in Product_Category_3?

```
In [78]: sns.barplot(x = "Product_Category_3",y = "Purchase",data = df,palette = "seis
Out[78]: <Axes: xlabel='Product_Category_3', ylabel='Purchase'>
```


How many married and unmarried buyers in this dataset

In [55]: df.groupby('Marital_Status').size()

Out[55]: Marital_Status 0 324731

1 225337 dtype: int64

```
In [56]: sns.countplot(x = "Marital_Status", hue = "Gender", data = df)#No of Unmarried a
```

Out[56]: <Axes: xlabel='Marital_Status', ylabel='count'>


```
In [76]: sns.barplot(x = "Marital_Status",y = "Purchase",data = df)
```

Out[76]: <Axes: xlabel='Marital_Status', ylabel='Purchase'>

No of Purchases done by cities? which city had done highest no purchases?

In [59]:	df							
Out[59]:		Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marita
	0	P00069042	0	1	10	А	2	
	1	P00248942	0	1	10	А	2	
	2	P00087842	0	1	10	А	2	
	3	P00085442	0	1	10	А	2	
	4	P00285442	1	7	16	С	4	
	550063	P00372445	1	6	13	В	1	
	550064	P00375436	0	3	1	С	3	
	550065	P00375436	0	3	15	В	4	
	550066	P00375436	0	7	1	С	2	
	550067	P00371644	0	5	0	В	4	
	550068	rows × 15 co	olumns					
	4	_	_	-				

Highest no of purchases done by city C?

```
In [60]: sns.barplot(x = 'City_Category_binary',y = 'Purchase',hue ="City_Category",da
```

Out[60]: <Axes: xlabel='City_Category_binary', ylabel='Purchase'>


```
In [61]: sns.histplot(x="Age" ,y = "City_Category_binary",hue = "City_Category",data =
```

Out[61]: <Axes: xlabel='Age', ylabel='City_Category_binary'>

In [62]: df["Age"].info()

<class 'pandas.core.series.Series'>
RangeIndex: 550068 entries, 0 to 550067

Series name: Age

Non-Null Count Dtype

550068 non-null int64

dtypes: int64(1)
memory usage: 4.2 MB

In [63]: sns.displot(x = "Purchase",data = df,kde = True)

Out[63]: <seaborn.axisgrid.FacetGrid at 0x2811d45cb50>


```
In [64]: sns.boxplot(x = "Purchase",data = df)
```

```
Out[64]: <Axes: xlabel='Purchase'>
```



```
In [109]: upperlimit = IQR + 3*std
upperlimit

Out[109]: 17680.66788302631

In [110]: lowerlimit = IQR - 3*std
lowerlimit

Out[110]: -5218.667883026314

In [111]: df.loc[df["Purchase"]>21300,"Purchase"] = 21300

In [112]: sns.boxplot(x = "Purchase",data = df)
```



```
In [113]: sns.displot(x = "Purchase",data = df,kde = True)
```

Out[113]: <seaborn.axisgrid.FacetGrid at 0x2811de99050>

In [73]: df.groupby(['Product_Category_2'], as_index=False)['Purchase'].max()

Product_Category_2	Purchase
2.0	13765.598091
3.0	13765.598091
4.0	13765.598091
5.0	13765.598091
6.0	13765.598091
7.0	8906.000000
8.0	13765.598091
9.0	13765.598091
10.0	13765.598091
11.0	13765.598091
12.0	13765.598091
13.0	13765.598091
14.0	13765.598091
15.0	13765.598091
16.0	13765.598091
17.0	13765.598091
	13765.598091
	2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

In [74]: df.head()

Out[74]:	rent_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Category_3	
	2	0	3	8.0	16.0	83
	2	0	1	6.0	14.0	137(
	2	0	12	8.0	16.0	142
	2	0	12	14.0	16.0	10!
	4	0	8	8.0	16.0	79(
	4					
In []:						