Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 7

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Проверка закона Бойля-Мариотта»

Цель работы.

Исследовать изотермический процесс

Задачи, решаемы при выполнении работы.

- Получить зависимость давления от высоты поршня
- Повторить опыт при разных температурах
- Экстраполировать полученные данные и сравнить их с ожидаемыми
- Сделать выводы

Объект исследования.

Модель идеального газа

Метод экспериментального исследования.

Изотермическое сжатие газа

Исходные данные.

Пусть S - площадь цилиндра, а l - высота, на которой находится поршень. Применяя модель идеального газа для воздуха, получаем:

$$PV = \frac{m}{\mu}RT$$

$$P = \frac{\rho V_0}{\mu}RT \cdot \frac{1}{V}$$

$$P = \frac{\rho S l_0}{\mu}RT \cdot \frac{1}{Sl}$$

$$P = \frac{\rho l_0}{\mu}RT \cdot \frac{1}{l}$$

При $l_0=35$ (см) у нас $P=P_0$ (P_0 - атмосферное давление), поэтому в итоге:

$$\Delta P(l) = A \cdot \frac{1}{l} - P_0$$

, где ΔP - давление над атмосферным; $A=\frac{\rho l_0}{\mu}RT.$

Таким образом, ожидаемые коэффициенты А для соответствующих температур равны

$$A(301) = \frac{1, 2 \cdot 35 \cdot 8, 31 \cdot 301}{29 \cdot 10^{-3} \cdot 10^{3}} \approx 3623 \ (\text{кПа} \cdot \text{см})$$

$$A(306) \approx 3683 \ (\text{кПа} \cdot \text{см})$$

$$A(312) \approx 3755 \ (\text{кПа} \cdot \text{см})$$

Результаты прямых измерений.

$T = 28 ^{\circ}C$	
l, см	ΔP , к Πa
35	0
34	2,2
33	4,7
32	7,9
31	11,5
30	15,4
29	20,5
28	26,0
27	32,0

$T = 33 ^{\circ}C$		
l, cm	ΔP , к Πa	
35	0	
34	2,4	
33	5,3	
32	8,7	
31	12,4	
30	16,6	
29	21,3	
28	27,5	
27	33,2	
26	41,0	
	<u>I</u>	

$T = 39 ^{\circ}C$	
l, см	ΔP , к Π а
35	0
34	1,3
33	4,0
32	7,0
31	11,5
30	15,4
29	19,8
28	25,8
27	34,0
26	43,0

Обработка результатов.

Изотермы при разных температурах

24

26

Выводы и анализ результатов.

Мы провели несколько изотермических сжатий идеального газа для проверки закона Бойля-Мариотта. Экстраполяция полученных данных дала коэффициенты, которые по порядку величины совпадают с ожидаемыми.

28

30

l, см

32

34

36

Полученные изотермы оказались не очень «параллельными», потому что в опыте есть несколько недостатков: масса газа оставалась не постоянной, так как установка пропускала воздух, что заставляло нас сжимать газ с большой скоростью, а это не является квазистатическим процессом.