Absolute Value Inequalities

Objectives

Solve absolute value equations

2 Solve absolute value inequalities

Solving Absolute Value Equations

When solving absolute value equations, you will typically get 2 distinct answers to your equation.

Solving Absolute Value Equations

When solving absolute value equations, you will typically get 2 distinct answers to your equation.

Try to get the absolute value expression alone and break into 2 cases.

Solve
$$|3x - 1| = 6$$

Solve
$$|3x - 1| = 6$$

$$3x - 1 = 6$$

$$3x - 1 = -6$$

Solve
$$|3x - 1| = 6$$

$$3x - 1 = 6$$

$$3x = 7$$

$$3x - 1 = -6$$

$$3x = -5$$

Solve
$$|3x - 1| = 6$$

$$3x - 1 = 6$$

$$3x = 7$$

$$x=\frac{7}{3}$$

$$3x - 1 = -6$$

$$3x = -5$$

$$x = -\frac{5}{3}$$

Objectives

Solve absolute value equations

Solve absolute value inequalities

General Method of Solving Inequalities

To solve inequalities, we can solve their equation equivalent.

Then we can use test values to determine which values make the original inequality true.

(a)
$$|x-1| \ge 3$$

(a)
$$|x-1| \ge 3$$
 $x-1=3$ $x-1=-3$

(a)
$$|x-1| \ge 3$$

 $x-1=3$ $x=4$ $x=-2$

(a)
$$|x-1| \ge 3$$

$$x-1=3 \qquad x-1=-3$$

$$x=4 \qquad x=-2$$

$$-2 \qquad 4$$

$$(-\infty,-2] \cup [4,\infty)$$

Graphical Interpretation of Example 2a

Given two functions f(x) and g(x):

• f(x) > g(x): Where f(x) is above g(x)

- f(x) > g(x): Where f(x) is above g(x)
- $f(x) \ge g(x)$: Where f(x) is at or above g(x)

- f(x) > g(x): Where f(x) is above g(x)
- $f(x) \ge g(x)$: Where f(x) is at or above g(x)
- f(x) < g(x): Where f(x) is below g(x)

- f(x) > g(x): Where f(x) is above g(x)
- $f(x) \ge g(x)$: Where f(x) is at or above g(x)
- f(x) < g(x): Where f(x) is below g(x)
- $f(x) \le g(x)$: Where f(x) is at or below g(x)

(b)
$$4-3|2x+1|>-2$$

(b)
$$4-3|2x+1| > -2$$

$$4-3|2x+1| = -2$$

(b)
$$4-3|2x+1| > -2$$

$$4-3|2x+1| = -2$$

$$-3|2x+1| = -6$$

(b)
$$4-3|2x+1| > -2$$

$$4-3|2x+1| = -2$$

$$-3|2x+1| = -6$$

$$|2x+1| = 2$$

(b)
$$4-3|2x+1| > -2$$

$$4-3|2x+1| = -2$$

$$-3|2x+1| = -6$$

$$|2x+1| = 2$$

$$2x+1 = 2$$

$$2x+1 = -2$$

(b)
$$4-3|2x+1| > -2$$

 $4-3|2x+1| = -2$
 $-3|2x+1| = -6$
 $|2x+1| = 2$
 $2x+1=2$ $2x+1=-2$
 $x=\frac{1}{2}$ $x=-\frac{3}{2}$

(b)
$$4-3|2x+1| > -2$$

$$x = \frac{1}{2} \quad x = -\frac{3}{2}$$

(b)
$$4-3|2x+1|>-2$$

$$x = \frac{1}{2} \quad x = -\frac{3}{2}$$

(b)
$$4-3|2x+1| > -2$$

$$x = \frac{1}{2} \quad x = -\frac{3}{2}$$

(b)
$$4-3|2x+1|>-2$$

$$x = \frac{1}{2} \quad x = -\frac{3}{2}$$

$$\left(-\frac{3}{2},\frac{1}{2}\right)$$

(b)
$$4-3|2x+1| > -2$$

(c)
$$2 < |x-1| \le 5$$

(c)
$$2<|x-1|\leq 5$$

$$2<|x-1| \quad \text{and} \quad |x-1|\leq 5$$

(c)
$$2<|x-1|\le 5$$

$$2<|x-1| \text{ and } |x-1|\le 5$$

$$x-1=-2$$
 $x-1=2$ $x-1=5$ $x-1=-5$

(c)
$$2<|x-1|\le 5$$

$$2<|x-1| \text{ and } |x-1|\le 5$$

$$x-1=-2$$
 $x-1=2$ $x-1=5$ $x-1=-5$
 $x=-1$ $x=3$ $x=6$ $x=-4$

(c)
$$2<|x-1|\le 5$$

$$2<|x-1| \text{ and } |x-1|\le 5$$

$$x-1=-2$$
 $x-1=2$ $x-1=5$ $x-1=-5$
 $x=-1$ $x=3$ $x=6$ $x=-4$

(c)
$$2<|x-1|\le 5$$

$$2<|x-1| \quad \text{and} \quad |x-1|\le 5$$

$$x-1 = -2$$
 $x-1 = 2$ $x-1 = 5$ $x-1 = -5$
 $x = -1$ $x = 3$ $x = 6$ $x = -4$

(c)
$$2 < |x-1| \le 5$$
 $2 < |x-1|$ and $|x-1| \le 5$

$$x-1=-2$$
 $x-1=2$ $x-1=5$ $x-1=-5$
 $x=-1$ $x=3$ $x=6$ $x=-4$

(c)
$$2 < |x-1| \le 5$$

(d)
$$|x+1| \geq \frac{x+4}{2}$$

(d)
$$|x+1| \ge \frac{x+4}{2}$$
 $x+1 = \frac{x+4}{2}$ $x+1 = -\frac{x+4}{2}$

(d)
$$|x+1| \ge \frac{x+4}{2}$$

 $x+1 = \frac{x+4}{2}$ $x+1 = -\frac{x+4}{2}$
 $2x+2 = x+4$ $-2x-2 = x+4$

(d)
$$|x+1| \ge \frac{x+4}{2}$$

 $x+1 = \frac{x+4}{2}$
 $2x+2 = x+4$
 $x=2$
 $x+1 = -\frac{x+4}{2}$
 $-2x-2 = x+4$
 $x=-2$

(d)
$$|x+1| \ge \frac{x+4}{2}$$

 $x+1 = \frac{x+4}{2}$
 $2x+2 = x+4$
 $x=2$
 $x+1 = -\frac{x+4}{2}$
 $-2x-2 = x+4$
 $x=-2$

(d)
$$|x+1| \ge \frac{x+4}{2}$$

 $x+1 = \frac{x+4}{2}$ $x+1 = -\frac{x+4}{2}$
 $2x+2 = x+4$ $-2x-2 = x+4$
 $x = 2$ $x = -2$

(d)
$$|x+1| \ge \frac{x+4}{2}$$

 $x+1 = \frac{x+4}{2}$ $x+1 = -\frac{x+4}{2}$
 $2x+2 = x+4$ $-2x-2 = x+4$
 $x = 2$ $x = -2$
 -2 $(-\infty, -2] \cup [2, \infty)$

$$(\mathsf{d}) \quad |x+1| \geq \frac{x+4}{2}$$

