Predictive Model for March Madness Wins

In past years, the winning and losing scores of teams that have played in March Madness

appear to have a gamma distribution. Given the γ and ϕ of the winning and losing scores, as

well as various other covariates (turnovers, offensive rebounds, defensive rebounds, field goal

percentage, free throw percentage, and three-point percentage for both $Team_i$ and $Team_j$),

can we predict whether $Team_i$ or $Team_j$ will win in a game?

Essentially, we are trying to find the posterior distribution of $Score_{ij}|data$, where

 $Score_{ij}$ is the ith team's score against $Team_j$.

Prior: $Score_{ij} \sim Gamma(\gamma, \phi)$

Predictive Posterior: $(Score_{ij} > Score_{ij} | data) \sim Bernoulli(p_{ij})$

Additionally, each covariate for $Team_i$ and $Team_j$ will have its own posterior

distribution estimates: turnovers, offensive rebounds, and defensive rebounds will all have

gamma conjugate prior distributions, while field goal percentage, free throw percentage, and

three-point percentage will all have beta conjugate prior distributions.

We want to estimate p_{ij} , the probability $Team_i$ will win against $Team_j$ —can we

predict the outcome of any given NCAA Division I matchup controlling for these effects?

Our sources of data can be found on:

1. March Madness Learning Mania 2023:

https://www.kaggle.com/competitions/march-machine-learning-mania-2023

2. 2024 Customizable T-Rank and Tempo-Free Stats:

https://www.barttorvik.com/#