ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 20 febbraio 2017

Esercizio A

$R_{1} = 100 \ \Omega$ $R_{3} = 80 \ k\Omega$ $R_{4} = 1250 \ \Omega$ $R_{5} = 21 \ k\Omega$ $R_{6} = 100 \ \Omega$ $R_{7} = 900 \ \Omega$ $R_{8} = 18 \ k\Omega$	$R_{11} = 60 \text{ k}\Omega$ $R_{12} = 2 \text{ k}\Omega$ $R_{13} = 26 \text{ k}\Omega$ $R_{14} = 50 \text{ k}\Omega$ $C_1 = 2.2 \text{ nF}$ $C_2 = 1 \mu\text{F}$ $C_3 = 1 \mu\text{F}$	R ₁	V_{cc} R_2 C_1 R_3	R_{5} R_{4}	R_{ϵ} R_{γ}	V _{cc}	V_{cc} R_{12} C_4 R_{13} R_{14} R_{14} C_3 R_{10}	
	•	I Ŷ		\int_{0}^{∞}		R ₁₁	l D	
$R_9 = 9 \text{ k}\Omega$	$C_4 = 330 \text{ nF}$					nnn	, ,,,,,,	
$R_{10} = 30 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$							

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo con $V_{T2} = 1$ V con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 13 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 315588 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.26$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =1321 Hz; f_{z2} =177 Hz; f_{p2} =184 Hz; f_{z3} = f_{p3} ; f_{z4} =0 Hz; f_{p4} =9 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + B}\right)\left(C\overline{D} + D + \overline{E}\right) + \overline{A}\left(\overline{B}\overline{C}\overline{D} + B\overline{E}\right) + \overline{C}D$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 4.8 \text{ k}\Omega$
$R_2 = 15 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 47 nF
$R_4 = 9 \text{ k}\Omega$	$V_{\rm CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = -1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. R: f = 3547 Hz)