Dérivation (1): Nombre dérivé

1	Nombre dérivé					
2						
	2.1	Rappel : Pente d'une droite	2			
	2.2	Fonction dérivable	3			
	2.3	Méthode : Démontrer qu'une fonction est dérivable	4			
	2.4	Tangente à une courbe	4			
	2.5	Méthode : Déterminer la pente d'une tangente à une courbe	5			
	2.6	Méthode : Déterminer une équation d'une tangente à une courbe	6			

1 Limite en zéro d'une fonction

Ex.:

Soit
$$f$$
 définie sur $]-\infty;0[\,\cup\,]0;+\infty[$ par $f(x)=\frac{((x+1)^2-1)}{x}.$

L'image de 0 par f n'existe pas.

On s'intéresse cependant aux valeurs de f(x) lorsque x se **rapproche** de 0.

\overline{x}	-0, 5	-0, 1	-0,01	-0,001		0,001	0,01	0, 1	0,5
f(x)	1, 5	1,9	1,99	1,999	?	2,001	2,01	2, 1	2, 5

On constate que f(x) se rapproche de 2 lorsque x se rapproche de 0.

On dit que la **limite** de f lorsque x **tend vers** 0 est égale à 2 et on note :

$$\lim_{x\to 0} f(x) = 2$$

Ex.:

Soit
$$g$$
 définie sur $]-\infty;0[\,\cup\,]0;+\infty[\,\operatorname{par} g(x)=\frac{1}{x^2}$

A l'aide de la calculatrice, on constate que g(x) devient de plus en plus grand lorsque x se **rapproche** de 0.

On dit que la **limite** de g lorsque x tend vers 0 est égale à $+\infty$ et on note :

$$\lim_{x\to 0}g(x)=+\infty$$

$\operatorname{Calcul} \operatorname{de} f(0.001)$

Déf.:

On dit que f(x) a pour limite L lorsque x tend vers 0 si les valeurs de f(x) peuvent être aussi proche de L que l'on veut pourvu que x soit suffisamment proche de 0.

On note:

$$\lim_{x\to 0} f(x) = L$$

et on lit : "La limite de f(x) lorsque x tend vers 0 est égale à L".

2 Nombre dérivé

2.1 Rappel: Pente d'une droite

Soit f définie sur I. Soit deux réels a et b appartenant à I tels que a < b.

Soit A et B deux points de \mathcal{C}_f d'abscisses respectives a et b.

La pente (ou le coefficient directeur) de la droite (AB) est égal à :

2.2 Fonction dérivable

Soit f définie sur I. Soit un réel $a \in I$.

Soit A et M deux points de \mathcal{C}_f d'abscisses respectives (a) et (a+h) , avec $h\neq 0.$

La pente de la droite (AM) est égale à :

$$\frac{f(a+h) - f(a)}{h}$$

Lorsque le point M se rapproche du point A, la pente de la droite (AM) est égale à la **limite** de $\left(\frac{f(a+h)-f(a)}{h}\right)$ lorsque h tend vers 0.

Cette **pente** s'appelle le **nombre dérivé** de f en a et se note f'(a).

Déf.:

On dit que la fonction f est dérivable en a s'il existe un nombre réel L, tel que :

$$\lim_{h\to 0}\left(\frac{f(a+h)-f(a)}{h}\right)=L$$

L est appelé **le nombre dérivé** de f en a et se note $f^{\prime}(a)$

$$\boxed{f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h}\right)}$$

2.3 Méthode : Démontrer qu'une fonction est dérivable

Soit f définie sur $\mathbb R$ par $f(x)=x^2+2x-3.$

Pour démontrer que f est dérivable en x=2 , calculons $\left(\frac{f(2+h)-f(2)}{h}\right)$ pour $h\neq 0$:

$$\begin{split} \frac{f(2+h)-f(2)}{h} &= \frac{\left((2+h)^2+2(2+h)-3\right)-\left(2^2+2\times2-3\right)}{h} \\ &= \frac{(4+4h+h^2+4+2h-3)-(5)}{h} \\ &= \frac{6h+h^2}{h} \\ &= \frac{h(6+h)}{h} \quad = 6+h \end{split}$$

Donc

$$f'(2) = \lim_{h \to 0} \left(\frac{f(2+h) - f(2)}{h} \right) = \lim_{h \to 0} (6+h) = 6$$

On en déduit que f est dérivable en x=2.

Le **nombre dérivé** de f en 2 vaut 6 et on note : $f^{\prime}(2)=6$

2.4 Tangente à une courbe

Déf.:

Soit f définie sur I et dérivable en un nombre réel $a \in I$.

f'(a) est le **nombre dérivé** de f en a.

A est un point d'abscisse a appartenant à \mathcal{C}_f .

La **tangente** à \mathcal{C}_f au point A est la droite passant par A de pente le nombre dérivé f'(a).

1	(2)	(3)	4	(5)	6	7	8	9	10
\equiv	12	13	14	15	16	(17)	18	19	20
21	22	23	24	25	26	27	28	29)	30
(31)	32	33	34	35	36	37)	38	39	40
(41)	42	43	44	45	46	(47)	48	49	50
51	52	53	54	55	56	51	58	59	60
(b1)	62	63	64	65	66	67)	68	69	70
(71)	72	(73)	74	75	76	TI	78	79)	80
81					86			89	90
91	92	93	94	95	96	97)	98	99	100

2.5 Méthode : Déterminer la pente d'une tangente à une courbe Soit f définie sur $\mathbb R$ par ...

$$f(x) = x^2 + 2x - 3$$

 \dots dérivable en x=2.

On a vu que le nombre dérivé de f en 2 vaut 6 : $\ f'(2)=6$.

Ainsi la tangente à \mathcal{C}_f au point A d'abscisse 2 est la droite passant par A et de pente 6.

Propriété:

Une équation de la tangente à \mathcal{C}_f en $A\left(a\,;\,f(a)\right)$ est :

$$\boxed{y = f'(a)(x-a) + f(a)}$$

Démonstration au programme :

La tangente a pour pente $f^{\prime}(a)$ donc son équation est de la forme :

 $y=f'(a)x+b \quad \ \mbox{où } b \mbox{ est l'ordonnée à l'origine.}$

La tangente passe par le point $A\Big(a\,;\,f(a)\Big)$, donc :

$$f(a) = f'(a) \times a + b \quad \Leftrightarrow \quad b = \Big(f(a) - f'(a) \times a\Big)$$

On en déduit que l'équation de la tangente peut s'écrire :

$$y = f'(a)x + \left(f(a) - f'(a) \times a\right) \qquad \Leftrightarrow \quad y = f'(a) \times x - f'(a) \times a + f(a)$$

$$\Leftrightarrow \quad y = f'(a)(x - a) + f(a)$$

2.6 Méthode : Déterminer une équation d'une tangente à une courbe

Soit f définie sur $\mathbb R$ par $f(x)=x^2+2x-3$

On a vu que f'(2)=6.

Donc son équation est de la forme :

$$y = 6(x-2) + f(2)$$

$$\Leftrightarrow y = 6(x-2) + (2^2 + 2 \times 2 - 3)$$

$$\Leftrightarrow y = 6x - 12 + 5$$

$$\Leftrightarrow y = 6x - 7$$

Une équation de tangente à \mathcal{C}_f au point A d'abscisse 2 est $\,y=6x-7.$

