Datenkommunikation und Informationssysteme, Übung 8

Domenic Quirl 354437

Julian Schakib 353889 Daniel Schleiz 356092

Übungsgruppe 14

Aufgabe 1

(a)

(b) i)

ii)

(c)

A1: / 6

Aufgabe 2

- (a) i) Bei einen passiven Angreifer bleibt der Diffie-Hellman Schlüsselaustausch sicher. Der Angreifer hat keine Kenntnis über die jeweils zufällig gewählten Zahlen S_A und S_B von Alice und Bob und ist auch nicht in der Lage, Nachrichten zu manipulieren. Aufgrunddessen kann der Angreifer den Schlüssel $g^{S_A \cdot S_B}$ mod p nur herausfinden, indem er S_A und S_B durch diskretes Logarithmen von $T_A = g^{S_A}$ mod p und T_B berechnet. Dies ist jedoch nicht effizient möglich, weshalb auch die Berechnung des Schlüssels nicht effizient möglich ist.
 - ii) Bei einem aktiven Angreifer ist der Diffie-Hellman Schlüsselaustausch nicht mehr sicher. Da Pakete manipuliert werden können, kann der Angreifer sich selber eine gültige Zufallszahl S_M generieren und jeweils die Übertragung von T_A und T_B stoppen und an dessen Stelle $T_M = g^{S_M} \mod p$ weiterleiten. A und B besitzen jeweils unterschiedliche Schlüssel $K_1 = T_M = g^{S_M \cdot S_A} \mod p$ und $T_M = g^{S_M \cdot S_B} \mod p$, jedoch ist es für den Angreifer möglich, unter Kenntnis von S_M , K_1 und K_2 zu berechnen.
- (b) Alice berechnet $T_A = 3^3 \equiv_{17} 10$ und übertragt diese Zahl an Bob, während Bob $T_B = 3^2 \equiv_{17} 9$ berechnet und dies an Alice überträgt. Nun berechnen Alice und Bob $T_B^{S_A}$ bzw. $T_A^{S_B}$, was in beiden Fällen gleich $3^{S_A \cdot S_B} = 3^6 = 3^3 \cdot 3^3 \equiv_{17} 10 \cdot 10 \equiv_{17} 15$. Also ist der (symmetrische) Schlüssel bestimmt durch 15.

A2:	/ 4

Aufgabe 3

(a)

Da p=13 und q=23, ist $n=p\cdot q=299$. Der public key ist also $\langle 61,299\rangle$. Zudem ist $\Phi(299)=(13-1)\cdot (23-1)=264$. Finde nun d so, dass $d\cdot e=d\cdot 61\equiv_{264}1$. Verwende den erweiterten Algorithmus von Euklid:

$$264 = 4 \cdot 61 + 20$$

$$61 = 3 \cdot 20 + 1$$

$$20 = 20 \cdot 1 + 0$$

$$1 = 61 - 3 \cdot 20$$

$$= 61 - 3 \cdot (264 - 4 \cdot 61)$$

$$= -3 \cdot 264 + 13 \cdot 61$$

$$\equiv_{264} 13 \cdot 61$$

Nun folgt also, dass der private key $\langle 13, 299 \rangle$ ist.

- Verschlüssele $m_1 = 21$: $c_1 = 21^{61} \equiv_{299} 281$.
- Entschlüssele $c_2 = 291$: $m_2 = 291^{13} \equiv_{299} 5$.
- (b) Es ist bekannt, dass n=91. Finde durch geschicktes Ausprobieren heraus, dass die Primfaktorzerlegung von n gegeben ist durch $p=7,\ q=13,\ da\ 91=7\cdot 13.$ Außerdem ist $\Phi(n)=6\cdot 12=72.$ Suche nun d, sodass $d\cdot e=d\cdot 29\equiv_{72}1.$ Verwende erneut den erweiterten Algorithmus von Euklid:

$$72 = 2 \cdot 29 + 14$$

$$29 = 2 \cdot 14 + 1$$

$$1 = 29 - 2 \cdot 14$$

$$= 29 - 2 \cdot (72 - 2 \cdot 29)$$

$$= -2 \cdot 72 + 5 \cdot 29$$

$$\equiv_{72} 5 \cdot 29$$

Es folgt, dass der private key gegeben ist durch $\langle 5, 91 \rangle$.

• Dekodiere c=3 zu $m=3^5\equiv_{91}61$.

A3: / 5