AI 中的数学 第十八讲

方聪, 概率统计部分参考章复熹和张原老师课件

2024 年秋季

- 1 无偏估计的优良性
- 2 充分统计量
- **3** UMVUE

- 1 无偏估计的优良性
- 2 充分统计量
- 3 UMVUE

设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x) (\theta \in \Theta)$ 为统计模型, $g(\theta)$ 为待估量, $g(\theta)$ 的估计量 $T(X_1, \dots, X_n)$ 的均方误差定义为

$$R(\theta,T)=E_{\theta}[T(X_1,\cdots,X_n)-g(\theta)]^2.$$

估计的均方误差有时也称为风险函数。

例: 设 $X_1, \dots, X_n \sim \text{iid } N(\mu, \sigma^2), \ \mu \in (+\infty, -\infty), \ \sigma^2 > 0, \ \epsilon$ 这个统计模型中, μ 的 ML 估计为 $\hat{\mu} = \bar{X}$,其均方误差或风险函数为

$$E(\bar{X} - \mu)^2 = \operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \operatorname{var}(X_i) = \frac{\sigma^2}{n}.$$

它是不随 μ 的变化而变化的。

例:设 $X_1, \dots, X_n \sim \text{iid} B(1, p)$,即 $X_i (i = 1, \dots, n)$ 以概率 p 取 1,以概率 1 - p 取 0。该统计模型在实际应用中是很常见的,我们已经求得参数 p 的 ML 估计为 $\hat{p} = \bar{X}$,不难验证 \hat{p} 也是 p 的无偏估计,其均方误差为

$$E(\bar{X} - p)^2 = var(\bar{X}) = \frac{1}{n}var(X_1) = \frac{p(1-p)}{n}.$$

由此可知,估计 \bar{X} 的风险函数为 $R(p,\bar{X}) = \frac{p(1-p)}{n}$ 。

注意:对于任何一个待估参数 $g(\theta)$,可以定义估计 $g(\theta_0)$,它将保证在 θ_0 处,风险函数最小,这意味着一个估计如果要成为最优估计,它的风险函数必须处处为 0。

但是这是不可能的,为此我们需要考虑限制估计类。考虑无偏估计类:设 T(X) 是 $g(\theta)$ 的无偏估计,其均方误差变成方差:

$$R(\theta,T) = E_{\theta}[T - g(\theta)]^2 = E_{\theta}[T - E_{\theta}(T)]^2 = \operatorname{var}_{\theta}(T).$$

定义:设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x) (\theta \in \Theta)$ 为统计模型, $g(\theta)$ 为待估量, $g(\theta)$ 的一个估计量为 $T(X_1, \dots, X_n)$ 如果

- (1) T 是 $g(\theta)$ 的无偏估计,
- (2) 对于 $g(\theta)$ 的任意无偏估计 $T = T(X_1, \dots, X_n)$, 都有

$$\operatorname{var}_{\theta}(T) \leqslant \operatorname{var}_{\theta}(\tilde{T}), \quad \forall \theta \in \Theta.$$

则称 T 为 g(heta) 的 (一致) 最小方差无偏估计 (Uniformly Minimum Variance Unbiased, UMVU).

寻求 (优化) 一个映射 T, 要求对每一个 θ 方差最小

- 1 无偏估计的优良性
- 2 充分统计量
- **3** UMVUE

记

$$F_{\theta}(t) = P_{\theta}(T \leqslant t)$$

为统计量 T 的分布。

定义: 假设统计量 $T = T(X_1, \dots, X_n)$ 满足: 对任意统计量 $\tilde{T} = \tilde{T}(X_1, \dots, X_n)$ 都有,

在T = t 的条件下, \tilde{T} 的分布与参数 θ 无关,

那么, 称T 为充分统计量。

例: (对应郑书例 4.3) 设总体: $X \sim B(1,p)$, 样本量: n. 考虑 $T = X_1 + \cdots + X_n$. 易知 T 的分布为二项分布,现在讨论 T 的充分性。

例: (对应郑书例 4.3) 设总体: $X \sim B(1,p)$, 样本量: n. 考虑 $T = X_1 + \cdots + X_n$. 易知 T 的分布为二项分布, 现在讨论 T 的充分性。

对 $t=0,1,\cdots,n$, 令

$$S_t := \{(x_1, \dots, x_n) : x_i \in \{0, 1\}, \forall i; \ \mathbb{L}x_1 + \dots + x_n = t\}.$$

那么, $\forall (x_1, \dots, x_n) \in S_t$,

$$P_{p}(X_{1} = x_{1}, \dots, X_{n} = x_{n} \mid T = t)$$

$$= \frac{P_{p}(X_{1} = x_{1}, \dots, X_{n} = x_{n})}{P_{p}(T = t)} = \frac{p^{t}(1 - p)^{n - t}}{C_{n}^{t}p^{t}(1 - p)^{n - t}} = \frac{1}{C_{n}^{t}}.$$

因此 $\forall t$, 在 T = t 的条件下, (X_1, \dots, X_n) 服从 S_t 上的均匀分布. 该分布与 p 无关. 因此, T 是充分统计量.

定理: (因子分解定理) 设 $X_1, \dots, X_n \sim \text{iid} p(x, \theta)$, 其中 $p(x, \theta)$ 为分布密度或分布列。若 $T = T(X_1, \dots, X_n)$ 满足:

$$\prod_{i=1}^{n} p(x_i, \theta) = q_{\theta} (T(x_1, \dots, x_n)) h(x_1, \dots, x_n)$$

则 T 是充分统计量。

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n. 联合密度为

$$\prod_{i=1}^{n} p(x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2}\right\}.$$

指数上的部分可以写为
$$\left(\bar{X}, \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}\right)$$
 的函数。因此, $\left(\bar{X}, \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}\right)$ 是充分统计量.

若总体改为 $X \sim N(\mu, 1)$.

若总体改为 $X \sim N(\mu, 1)$.

$$\prod_{i=1}^{n} p(x_i, \theta) = \frac{1}{\sqrt{2\pi^n}} \exp\left\{-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2}\right\}
= \frac{1}{\sqrt{2\pi^n}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} x_i^2\right\} \exp\left\{\mu \sum_{i=1}^{n} x_i\right\} \exp\left\{-\frac{n}{2} \mu^2\right\}.$$

因此, X 是充分统计量.

例:假设二维随机向量 (X,Y) 服从二元正态分布,参数 $\theta = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,从总体中抽取一个样本 $((X_1, Y_1), \cdots, (X_n, Y_n))$,样本量为 n,其联合密度为

$$\prod_{i=1}^{n} p(x_i, y_i; \theta) = \left(\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\right)^n \cdot \exp$$

$$\left\{ -\frac{1}{2(1-\rho^2)} \sum_{i=1}^{n} \left[\left(\frac{x_i - \mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x_i - \mu_1)(y_i - \mu_2)}{\sigma_1 \sigma_2} + \left(\frac{y_i - \mu_2}{\sigma_2} \right)^2 \right] \right\},\,$$

 $x_i - \mu_1 = x_i - \bar{x} + \bar{x} - \mu_1$ 和 $y_i - \mu_2 = y_i - \bar{y} + \bar{y} - \mu_2$ 代入上式 e 指数上的表达式中, 化简, 表达式可以写为

$$\left(\bar{x}, \bar{y}, \sum_{i=1}^{n} (x_i - \bar{x})^2, \sum_{i=1}^{n} (y_i - \bar{y})^2, \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})\right)$$

的函数.

因此联合密度具有形式

$$\prod_{i=1}^{n} p(x_i, y_i; \theta) = q_{\theta} \left(\bar{x}, \bar{y}, \sum_{i=1}^{n} (x_i - \bar{x})^2, \sum_{i=1}^{n} (y_i - \bar{y})^2, \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \right)$$

由因子分解定理知

$$T = \left(\bar{X}, \bar{Y}, \sum_{i=1}^{n} (X_i - \bar{X})^2, \sum_{i=1}^{n} (Y_i - \bar{Y})^2, \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})\right)$$

例:设总体: $X \sim \text{Exp}(\lambda)$,样本量:n. 联合密度具有形式

$$p_{\lambda}(x_1, \dots, x_n) = \lambda^n \exp \left\{-\lambda \sum_{i=1}^n x_i\right\} \cdot 1_{\{x_1, \dots, x_n > 0\}}.$$

其中 $1_{\{x_1,\dots,x_n>0\}}$ 是示性函数,, 当所有 x_i 大于 0 时取 1, 否则为 0。显然该函数与参数无关,因此由因子分解定理有,令 $T=T(X_1,\dots,X_n)=X_1+\dots+X_n$.则 T 是充分统计量.

注意充分统计量不唯一,没有起到数据压缩的作用。

定义:设 $X_1, \dots, X_n \sim \text{iid} p(x, \theta)$,又设 $T = T(X_1, \dots, X_n)$ 为充分统计量.若对任意 ϕ ,

$$E_{\theta}\phi(T) = 0, \forall \theta \in \Theta \text{ of } \text{if } \text{if } P_{\theta}(\phi(T) = 0) = 1, \forall \theta \in \Theta.$$

则称 T 为完全充分统计量.

例: 设总体 $X \sim N(\theta, 1)$,样本量为 n。由因子分解定理知, $T_1 = \sum_{i=1}^n X_i$ 是一个充分统计量, $T_2 = (T_1, X_1 - X_2)$ 也是充分统计量。取 $\phi(T_2) = X_1 - X_2$,易知

$$E_{\theta}[\phi(T_2)] = E_{\theta}(X_1) - E_{\theta}(X_2) \equiv 0$$

但是
$$P(\phi(T_2) = 0) = P(X_1 = X_2) \neq 1$$
, 这说明 $T_2 = (T_1, X_1 - X_2)$ 不是完全充分统计量。

定理:设 $T = T(X_1, \dots, X_n)$ 为完全充分统计量. 若

$$E_{\theta}(\phi(T)) = g(\theta), \forall \theta,$$

则 $\phi(T)$ 是 $g(\theta)$ 的 UMVU 估计. 该定理说明, 对于待估量 $g(\theta)$,

只要找到依赖于完全充分统计量的函数 $\phi(T)$,使得 $\phi(T)$ 是 $g(\theta)$ 的无偏估计,则 $\phi(T)$ 就是 $g(\theta)$ 的 UMVU 估计。因此,要 找到 $g(\theta)$ 的 UMVU 估计,只需在完全充分统计量中寻找即可。

例:设总体 $\xi \sim U(0,\theta)$,已经证明样本量为 n 的样本的最大值为 θ 的充分统计量,记为 $\xi(n)$,证明 $\xi(n)$ 也为 θ 的完全充分统计量。

证明:因为 $\xi_{(n)}$ 的密度为

$$f_{\xi_{(n)}}(x;\theta) = nf(x;\theta)[F(x;\theta)]^{n-1} = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \leqslant x \leqslant \theta, \\ 0, & \text{ i.e. } \end{cases}$$

如果有函数 g(x), 使得对一切 $0 < \theta$, 有

$$E_{\theta}[g(\xi_{(n)})] = 0,$$

即

$$0 \equiv \int_0^\theta g(x) f_{\xi_{(n)}}(x;\theta) dx = \frac{n}{\theta^n} \int_0^\theta g(x) x^{n-1} dx,$$

故

$$\int_0^\theta g(x)x^{n-1}dx \equiv 0.$$

对两侧求导得

$$g(\theta)\theta^{n-1} \equiv 0.$$

从而对一切 $\theta > 0$, $g(\theta) = 0$, 因此 $\xi_{(n)}$ 是完全充分统计量。

- 1 无偏估计的优良性
- 2 充分统计量
- **3** UMVUE

定义: 若密度或分布列 $p(x,\theta)$ 能进行如下分解:

$$p(x,\theta) = S(\theta)h(x) \exp\left\{\sum_{k=1}^{m} C_k(\theta)T_k(x)\right\}, \quad (\theta \in \Theta)$$

则称 $p(x,\theta), \theta \in \Theta$ 为指数族分布.

注: x 可为高维向量, 于是 $p(x,\theta)$ 为联合密度/联合分布列.

例:设总体: $X \sim N(\mu, \sigma^2)$,样本量:n,参数 $\theta = (\mu, \sigma^2)$,分布密度具有形式:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\mu^2}{2\sigma^2}} e^{\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2}.$$

显然,它具有指数分布的形式。

例:设总体: X 服从参数为 p 的二项分布, 样本量: n.

例:设总体: X 服从参数为 p 的二项分布, 样本量: n.

$$P(X = x) = C_n^x p^x (1 - p)^{n - x}$$
$$= (1 - p)^n C_n^x \exp\left\{x \ln \frac{p}{1 - p}\right\}$$

P(X=x) 所表示的三个因子的乘积符合指数族分布的要求。

例: 设总体 $X \sim N(\mu, \sigma^2)$, 可得 (X_1, \dots, X_n) 的联合分布密度为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n p(x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{n\mu^2}{2\sigma^2}\right\} \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n x_i\right\},.$$

故正态分布的一个样本的联合分布也是指数族分布。直接使用引理也可以得证。

定理: 总体 X 具有指数族分布, $\Theta \in \mathbb{R}^m$ 且含内点; (C_1, \dots, C_m) 是在 Θ 上一对一、连续的函数; 诸 C_i 之间 $(T_i$ 之间) 无线性关系.则

$$\left(\sum_{i=1}^{n} T_{1}\left(X_{i}\right), \cdots, \sum_{i=1}^{n} T_{k}\left(X_{i}\right)\right)$$

是完全充分统计量.

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n, 参数 $\theta = (\mu, \sigma^2)$ 。 设 $T_1 = \sum_{i=1}^n X_i$, $T_2 = \sum_{i=1}^n X_i^2$, 则由上面的定理知 (T_1, T_2) 是完全充分统计量.

 \bar{X} , S^2 是 μ , σ^2 的 UMVU 估计, 其中:

$$\bar{X} = \frac{1}{n}T_1, \quad S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1}\left(T_2 - \frac{1}{n}T_1^2\right)$$

是 (T_1, T_2) 的函数,并且是 μ, σ^2 的无偏估计.

改为已知 μ (例如, 已知 $\mu = 1$). 则 $\theta = \sigma^2, m = 1$:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-1)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-1)^2}.$$

$$T_1 = \sum_{i=1}^n (X_i - \mu)^2$$
 是完全充分统计量.

 $\hat{\sigma}^2$ 是 σ^2 的 UMVU 估计, 其中

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2.$$

例:某工人生产 20 件产品,其中 1 件为次品. 求:次品率的 UMVU 估计.

解: 由题意, 总体: $Y \sim B(1, p)$, 参数 $p = \theta \in [0, 1]$, 样本量: n = 20.

分布列: (记 $k = y_1 + \cdots + y_n$)

$$P_{p}(Y_{1} = y_{1}, \dots, Y_{n} = y_{n}) = \prod_{i=1}^{n} p^{y_{i}} (1 - p)^{1 - y_{i}}$$

$$= p^{k} (1 - p)^{n - k} = e^{k \cdot \log p + (n - k) \log(1 - p)} = e^{n \log(1 - p)} e^{(\log p - \log(1 - p))k}$$

可见 Y 的分布列具有指数族分布的形式. 因此,

 $T_1 = X = Y_1 + \dots + Y_{20}$ 是完全充分统计量.

又由于 E(X) = nE(Y) = np, 即 $\frac{X}{n}$ 是 p 的无偏估计, 因此, $\hat{p} = X/20$ 是 UMVU 估计.

p = X/20 足 UM V U 福刊

例: (对应郑书例 4.15) 总体: $X \sim N(\mu, 1)$, 样本量: n, 求 μ^2 的 UMVU 估计.

例: (对应郑书例 4.15) 总体: $X \sim N(\mu, 1)$, 样本量: n, 求 μ^2 的 UMVU 估计.

解: 参数 $\theta = \mu$, 联合密度为:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mu^2} e^{-\frac{1}{2}x^2} e^{\mu x}.$$

 $T_1 = \sum_{i=1}^{n} X_i$ 是完全充分统计量, 因此 \bar{X} 也是完全充分统计量. 由 $var(Y) = E(Y^2) - (E(Y))^2$ 知,

$$\mu^2 = (E_\mu \bar{X})^2 = E_\mu \bar{X}^2 - \text{var}_\mu(\bar{X}) = E_\mu \bar{X}^2 - \frac{1}{n} = E_\mu \left(\bar{X}^2 - \frac{1}{n}\right)$$

因此, $\bar{X}^2 - \frac{1}{n}$ 是 μ^2 的 UMVU 估计.

例: 设总体 $Y \sim N(X\beta, \sigma^2 I_n)$, 其中 $Y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p} (p \leq n), \beta \in \mathbb{R}^{p \times 1}$ 。 X 已知。 (β, σ^2) 是参数。设 $\hat{\beta} = (X^\top X)^{-1} X^\top Y$, $\hat{\sigma}^2 = \frac{1}{n-p} (Y - X\hat{\beta})^\top (Y - X\hat{\beta})$,证明 $(\hat{\beta}, \hat{\sigma}^2)$ 为 (β, σ^2) 的 UMVU 估计。

例:设总体 $Y \sim N(X\beta, \sigma^2 I_n)$, 其中 $Y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p} (p \leq n), \beta \in \mathbb{R}^{p \times 1}$ 。X 已知。 (β, σ^2) 是参数。 设 $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$, $\hat{\sigma}^2 = \frac{1}{n-n}(Y - X\hat{\beta})^{\top}(Y - X\hat{\beta})$, 证明 $(\hat{\beta}, \hat{\sigma}^2)$ 为 (β, σ^2) 的 UMVU 估计。

证明: Y_1, \dots, Y_n 的联合密度函数为

$$p(y_1, \dots, y_n; \beta, \sigma^2) = (\sqrt{2\pi}\sigma)^{-n} \exp\left\{-\frac{1}{2\sigma^2}||Y - X\beta||_2^2\right\}$$
$$= Q(\theta) \exp\{\theta_1 T_1(Y) + \theta_2 T_2(Y)\}.$$

其中 $\theta_1 = -\frac{1}{2\sigma^2}$, $\theta_2 = \frac{\beta}{\sigma^2}$, $T_1(Y) = Y^\top Y$, $T_2(Y) = X^\top Y$, $Q(\theta) = (\sqrt{2\pi}\sigma)^{-n} \cdot \exp\left\{-\frac{1}{2\sigma^2}(X\beta)^{\top}(X\beta)\right\}.$ 由指数分布族的性质知, $T_1(Y)$ 和 $T_2(Y)$ 为完全充分统计量. 而

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = (X^{\top}X)^{-1}T_{2}(Y)$$

$$\hat{\sigma}^{2} = \frac{1}{n-p}(Y - X\hat{\beta})^{\top}(Y - X\hat{\beta})$$

$$= \frac{1}{n-p}(Y^{\top}Y - 2Y^{\top}X\hat{\beta} + \hat{\beta}X^{\top}X\hat{\beta})$$

$$\frac{1}{n-p}(T_{1}(Y) - T_{2}^{\top}(Y)(X^{\top}X)^{-1}T_{2}(Y))$$

这表明 $(\hat{\beta}, \hat{\sigma}^2)$ 都是完全充分统计量的函数,又由于它们分别是 β 和 σ^2 的无偏估计,可知 $\hat{\beta}$ 和 $\hat{\sigma}^2$ 分别是 β 和 σ^2 的 UMVU 估计。