Задача 1.1. Найдите ядро и образ линейного оператора $f: \operatorname{Mat}_{2\times 2}(\mathbb{R}) \to \operatorname{Mat}_{2\times 2}(\mathbb{R}), f(X) = XA$, где $A = \left(\begin{smallmatrix} 1 & 3 \\ -1 & 3 \end{smallmatrix} \right)$.

Задача 1.2. Линейный оператор $F:\mathbb{R}[x]_2 \to \mathbb{R}[x]_2$ в базисе, состоящем из многочленов

$$f_1(x) = 1$$
, $f_2(x) = x - 2$, $f_3(x) = -x^2 - x + 1$

задаётся матрицей

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 3 & -1 & 0 \end{pmatrix}$$

Найдите $F(x^2-1)$. Ответ надо записать в виде многочлена, но я не расстроюсь, если вы его не будете упрощать (раскрывать скобки, приводить подобные члены и так далее).

Указание. Решение состоит из нескольких этапов. Сначала вам нужно найти координаты вектора x^2-1 в базисе f_1, f_2, f_3 (для этого запишите многочлены как столбцы из коэффициентов, а потом вспомните, как мы искали с вами координаты вектора в заданном базисе). Далее надо умножить матрицу из условия на столбец координат (применить формулу y=Ax). Наконец, по полученному столбцу координат образа надо написать сам образ в виде многочлена, то есть просто сложить f_1, f_2, f_3 с коэффициентами, равными этим координатам.

Задача 1.3. Докажите, что существует единственный линейный оператор, переводящий векторы $(1,1,1)^T$, $(0,1,0)^T$ и $(1,0,2)^T$ в векторы $(0,1,0)^T$, $(1,0,1)^T$ и $(1,1,1)^T$ соответственно, и напишите его матрицу.

 $У \kappa a з a н u e$. Давайте попробуем найти матрицу A нашего оператора. Мы знаем, что он переводит векторы u_1, u_2, u_3 соответственно в векторы w_1, w_2, w_3 , то есть

$$Au_1 = w_1, \quad Au_2 = w_2, \quad Au_3 = w_3$$

Как мы помним, такую систему можно переписать в виде

$$A(u_1 \ u_2 \ u_3) = (w_1 \ w_2 \ w_3),$$

где $(u_1\ u_2\ u_3)$ — матрица, составленная из столбцов u_i . А это матричное уравнение, из которого матрица A находится и в этой задаче единственным образом.

Задача 1.4. Существует ли отображение $\varphi : \mathbb{R}[x]_3 \to \mathbb{R}[x]_3$, для которого

$$\varphi(x^3 - x^2 - x + 1) = x + 1,$$

$$\varphi(x^3 + x - 2) = x^2 + 1,$$

$$\varphi(x^3 + x^2 - 2) = x^3 + 1,$$

$$\varphi(x^3 - 1) = -2?$$

Указание. В этой задаче ответ "нет".

Задача 1.5. Линейное отображение $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ имеет в базисах $u_1=(0,0,1), u_2=(0,-1,2), u_3=(1,-2,1)$ и $w_1=(3,1), w_2=(2,1)$ этих пространств матрицу

$$\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix}$$

Найдите $\varphi((-1,1,1))$, где координаты вектора (-1,1,1) заданы в исходном базисе (то есть в том, в котором e_1 имеет координаты (1,0,0) и т.д.).

Указание. Я бы написал матрицу отображения в исходных базисах, то есть сделал бы замену координат.

Задача 1.6. Линейный оператор на пространстве $\mathbb{R}[x]_2$ многочленов степени не выше 2 имеет в базисе $1, x, x^2$ матрицу

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Найдите его матрицу в базисе $3x^2 + 2x + 1$, $x^2 + 3x + 2$, $2x^2 + x + 3$.

Задача 1.7. Линейный оператор в пространстве \mathbb{R}^2 имеет в базисе $(1,6)^T$, $(1,5)^T$ матрицу

$$\begin{pmatrix} 2 & -3 \\ 1 & 0 \end{pmatrix}$$

Найдите его матрицу в базисе $(5,2)^T$, $(3,1)^T$.

Задачи 2.1 и 2.2. Докажите, каждое подпространство является ядром какого-нибудь отображения. Докажите, каждое подпространство является образом какого-нибудь отображения.

Задача 2.3. Может ли ядро линейного оператора совпадать с его образом? Задачи 2.4-6. Могут ли матрицы

$$(4) \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \text{ } \text{ } \text{ } \text{ } \text{ } \begin{pmatrix} 4 & 7 \\ -5 & 3 \end{pmatrix}$$

$$(5) \begin{pmatrix} -2 & 4 \\ 1 & 3 \end{pmatrix} \text{ } \text{ } \text{ } \text{ } \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix}$$

$$(6) \begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & -4 \\ -3 & 1 & -2 \end{pmatrix} \text{ } \text{ } \text{ } \text{ } \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

быть матрицами одного и того же линейного оператора в разных базисах?

Указание. Везде ответ "нет". Попробуйте придумать какие-то инварианты, которые бы принимали разные значения для этих матриц (напоминаю, что инвариант — это некоторая функция от матрицы, которая не зависит от базиса; примеры инвариантов — это ранг, определитель и след). Заметим, что определитель является инвариантом, так как $\det(C^{-1}AC) = \det C^{-1} \det A \det C = \det A$, а след — так как $\operatorname{tr}(C^{-1}AC) = (ACC^{-1}) = \operatorname{tr}(A)$ — здесь мы использовали то, что $\operatorname{tr}(XY) = \operatorname{tr}(YX)$.

Задача 2.7. Могут ли матрицы

$$\begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \text{ } \text{ } \text{ } \text{ } \text{ } \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

быть матрицами одного и того же линейного оператора в разных базисах?

Указание. А вот тут ответ "да", а это значит, что вам надо придумать замену координат, которая бы превращала одну из матриц в другую (а лучше не придумать, а найти: для этого надо понять, существует ли матрица X, для которой $A' = X^{-1}AX$, то есть XA' = AX — это даёт вам систему линейных уравнений на X).

Задача 2.8. Как вам, вероятно, доказывали на лекции, если φ — линейный оператор на конечномерном пространстве V, то $\ker \varphi = 0 \iff \operatorname{Im} \varphi = V \iff \exists \varphi^{-1}$. Но для бесконечномерных пространств это не так. Приведите пример оператора φ на бесконечномерном пространстве V, для которого (a) $\ker \varphi \neq 0$, но $\operatorname{Im} \varphi = V$ (существует ли у него обратный?) и (б) $\operatorname{Im} \varphi \neq V$, но $\ker \varphi = 0$ (существует ли у него обратный?).

 $У \kappa a з a н u e$. Вы, например, можете взять в качестве V линейную оболочку счётного набора линейно независимых векторов e_1, e_2, e_3, \ldots и определить φ значениями на этих базисных векторах.