

Continuous Assessment Test - 2 (CAT 2) - December 2022

Programme	B.Tech.	Semester	:	FALL 2022 - '23
Course	Basic Electrical and Electronics	Code	:	BEEE102L
	Engineering	Slot	:	B1
Faculty	: Dr. D. R. Binu Ben Jose	Class Number	:	CH2022231700078
	Dr. S. Kuruseelan			CH2022231700076
	Prof. AN. Abhirami			CH2022231700070
	Dr. P. Sri Ramalakshmi			CH2022231700080
	Prof. V. Ananthakrishnan			CH2022231700084
	Dr. K. Iyswarya Annaporani			CH2022231700068
	Dr. Rupa Mishra			CH2022231700072
	Dr. D. Subbulekshmi			CH2022231700074
	Dr. G. Kanimozhi			CH2022231700082
Time	: 1 hour, 30 minutes	Max. Marks	:	50

Q. No.	Question Description	Marks
1.	In a simple three phase balanced 3 wire system, the phase sequence is abc and	
	the source voltage is $V_{AB} = 120 < 30 \text{ V}$ (lead by 30°). The supply is connected to a	
	three phase delta load. If the line current is 4.8<20 A (lead by 20°), find the power	•
	factor and the per phase resistance and reactance of the delta load.	
	$I_{aA} = 4.8 \angle 20^{\circ} A$	
maken et one () but of Verticeable-fine for desire parameter due verticeable estitut of the	JAB A LCA Z Z Z	

2. For the magnetic circuit shown below has a coil of 1000 turns with the core thickness of 5 cm and exciting current of 0.5 A. Find the flux density and flux in each of the outer limbs and the central limb. Assume the relative permeability for iron of the core to be infinity (∞).

10

10

3. Write a complete set of phasor mesh equations for the circuit shown below

10

4. Simplify the expression

i.
$$Y = \overline{A}B + ABD + A\overline{B}C\overline{D} + BC$$

$$f = \overline{xz} + \overline{yz} + \overline{yz} + xyz$$

iii.
$$f = \overline{AB} + AB + A\overline{B}$$

10

- 5. a. Using K-map, minimize the function F (A, B, C, D) given in SOP representation.
 - b. Draw a logic diagram for the reduced function using basic gates.

F (A, B, C, D) =
$$\Sigma(2,5,7,8,10,12,13,15)$$
.

10