MAC0210 - Exercício-Programa 3

Vinicius Agostini - 4367487

Julho 2020

1 Computando Trabalho

A primeira tarefa do EP é aproximar a quantidade de trabalho exercida estimando a integral $\int_{x_0}^{x_n} F(x) \cos(\theta(x)) dx$, primeiro interpolando os valores fornecidos. O método de interpolação escolhido foi o método de Lagrange. Então, devemos usar esses valores para estimar a integral usando a regra do trapézio composto e a regra de Simpson composto.

Para fazer a interpolação, decidi dividir o intervalo [0,30] em n-1 intervalos e calculei os n pontos resultantes através de uma função que executa a interpolação pelo método de Lagrange.

Resultados:

	n=7	n = 19	n = 61	n = 100	n = 500
Trapezoidal	119.089250	117.347276	117.151007	117.138741	117.131902
Simpson	117.127167	117.069079	117.131612	117.069079	117.123476

Inicialmente achei que deveria utilizar valores de n tal que n=6k+1 para obter melhores aproximações já que dessa forma garantiríamos que os pontos originais estariam presentes no conjunto de pontos interpolados e que isso seria uma coisa boa, porém, conforme n aumenta, isso não se mostrou um fator tão importante. No caso da regra de Simpson, o erro relacionado a utilizar uma quantidade par ou ímpar de intervalos também se torna negligenciável conforme n aumenta.

Uso do programa:

gcc trabalho.c -o trabalho

./trabalho a b n, para calcular $\int_a^b F(x) \cos(\theta(x)) dx$ com n pontos, interpolando a partir da tabela do enunciado.

Exemplo:

./trabalho 0 30 19 (1 ponto interpolado entre cada ponto dado).

2 Integração por Monte Carlo

2.1 Integrais unidimensionais

Nesta seção do EP devemos calcular uma aproximação para integrais unidimensionais como $I = \int_0^1 g(x) dx$ escolhendo pontos aleatórios U_i no intervalo [0,1] e calculando $\hat{I} = \sum_{i=1}^n \frac{g(U_i)}{n}$, que, pela Lei Forte dos Grandes Números, se aproxima de I quando $n \to \infty$. No caso de integrais em intervalos arbitrários [a,b] é possível realizar uma troca de variável para resolver uma integral no intervalo [0,1] que tenha resultado equivalente.

Integrais a serem resolvidas e trocas de variável utilizadas:

$$\int_0^1 \sin(x) dx$$

(1)
$$\int_{0}^{1} \sin(x)dx$$
(2)
$$\int_{3}^{7} x^{3} dx = \int_{0}^{1} 4 \cdot (4y+3)^{3} dy, \quad \text{com } y = \frac{x-3}{4}$$
(3)
$$\int_{0}^{\infty} e^{-x} dx = \int_{0}^{1} \frac{e^{1-\frac{1}{y}}}{y^{2}} dy, \quad \text{com } y = \frac{1}{1+x}$$

(3)
$$\int_0^\infty e^{-x} dx = \int_0^1 \frac{e^{1-\frac{1}{y}}}{y^2} dy, \quad \text{com } y = \frac{1}{1+x}$$

Resultados:

	10^{4}	10^{5}	10^{6}	107	Valor esperado
$\int_0^1 \sin(x) dx$	0.456837	0.459729	0.459457	0.459850	≈ 0.45970
$\int_0^1 4 \cdot (4y+3)^3 dy$	575.820989	580.472969	580.176466	580.232532	580
$\int_{0}^{1} \frac{e^{1-\frac{1}{y}}}{y^{2}} dy$	0.996641	0.999422	0.999720	1.000108	1

Para esta parte foi implementada uma função única para o método de Monte Carlo que recebe uma função como parâmetro com assinatura monte_carlo(int iters, function func) onde iters é a quantidade de iterações a serem realizadas e func uma função que recebe um double e retorna um double. A definição do tipo function foi criada a partir do comando typedef double (*function)(double).

Uso do programa:

gcc monte_carlo_1d.c -o monte_carlo_1d

./monte_carlo_1d iters

Exemplo:

./monte_carlo_1d 1000

2.2 Integrais multidimensionais

Aqui o objetivo é encontrar uma estimativa para o valor de π . O método utilizado é considerar a parte do círculo unitario que está no primeiro quadrante e calcular sua área por Monte Carlo da seguinte forma, como definido no enunciado:

$$g(x,y) = \begin{cases} 1, \text{ se } x^2 + y^2 \le 1\\ 0, \text{ caso contrário} \end{cases}$$

$$\pi = 4 \cdot \int_0^1 \int_0^1 g(x, y) dx dy$$

Resultados:

	$\approx \pi$
$n = 10^4$	3.142400
$n = 10^5$	3.144680
$n = 10^6$	3.140356
$n = 10^7$	3.141540

Uso do programa:

gcc pi.c -o pi

./pi iters

Exemplo:

./pi 1000