

1. Redes Funções de Base Radial

Aspectos de arquitetura

- As redes denominadas Funções de Base Radial, convencionalmente conhecidas como RBF (Radial Basis Function), são de arquitetura feedforward de camadas múltiplas.
- A RBF podem ser também empregadas em quase todos os tipos de problemas tratados pelo PMC, ou sejam:
 - > Problemas envolvendo aproximação funcional.
 - > Problemas envolvendo classificação de padrões.
 - Problemas envolvendo sistemas variantes no tempo.
- Diferentemente das redes PMC, as quais podem ser compostas de VÁRIAS camadas intermediárias, a estrutura típica da RBF é composta por apenas UMA dessas camadas:
 - As funções de ativação dos neurônios da camada intermediária são do tipo GAUSSIANÁ.
 - As funções de ativação dos neurônios da camada de saída são do tipo LINEAR.
- O treinamento da RBF é também executada de forma SUPERVISIONADA.

2. Processo de Treinamento da RBF

Aspectos do algoritmo de treinamento

- O princípio de funcionamento das redes RBF é também SIMILAR àquele do PMC, em que cada uma de suas entradas, representando os sinais advindos da aplicação, será então propagada pela referida camada intermediária, em direção à camada de saída.
- Entretanto, diferentemente do PMC, a estratégia de treinamento da RBF é constituída de DUAS FASES ou estágios bem distintos entre si.
- Primeiro Estágio
 Ajustes dos pesos dos neurônios da camada intermediária:
 - Adota um método de aprendizagem AUTO-ORGANIZADO (nãosupervisionado), que é dependente apenas das características dos dados de entrada.
 - Este ajuste está diretamente relacionado com a ALOCAÇÃO das funções de ativação de base radial.
- - Utiliza um critério de aprendizagem similar àquele usado na última camada do PMC, ou seja, a REGRA DELTA GENERALIZADA.

3. Treinamento da RBF / 1º Estágio

Primeiro estágio de treinamento (I)

Ajustes dos neurônios da camada intermediária (ATIVAÇÃO)

- Conforme mencionado, os neurônios pertencentes à camada intermediária da RBF possuem funções de ativação do tipo base radiais, sendo que a função GAUSSIANA é uma das mais usadas.
- A expressão que define uma função de ativação do tipo gaussiana é representada por:

$$g(u) = e^{-\frac{(u-c)^2}{2\sigma^2}}$$

onde c define o **CENTRO** da gaussiana e σ^2 denota a **VARIÂNCIA** (em que σ equivale ao desvio padrão), a qual indica o quão disperso está o potencial de ativação {u} em relação ao seu centro {c}.

3. Treinamento da RBF / 1º Estágio

Primeiro estágio de treinamento (II)

Ajustes dos neurônios da camada intermediária (RESPOSTA)

- Considerando-se a expressão da gaussiana, os PARÂMETROS LIVRES a serem ajustados seriam então o centro c e a variância σ².
- De fato, levando-se em conta o diagrama da *RBF*, juntamente com a configuração dos seus neurônios escondidos, o centro *c* está diretamente associado aos seus próprios **PESOS**.
- Nesta situação, a ENTRADA u⁽¹⁾ de cada um deles será o próprio vetor de entrada x, a qual representa os n sinais externos.
- Conseqüentemente, a SAÍDA de cada neurônio j desta camada é dada por:

$$g_{j}^{(1)}(u_{j}^{(1)}) = g_{j}^{(1)}(\mathbf{x}) = e^{-\frac{\sum_{j=1}^{n} (x_{i} - W_{ji}^{(1)})}{2\sigma_{j}^{2}}}$$

3. Treinamento da RBF / 1º Estágio

Primeiro estágio de treinamento (III)

Ajustes dos neurônios da camada intermediária (CAMPO)

- Para propósitos de ilustração, a figura seguinte mostra uma função de ativação gaussiana em relação a DOIS SINAIS de entrada x₁ e x₂, os quais compõem uma amostra x.
- Observa-se aqui que quanto mais próxima esteja uma determinada amostra (padrão) do CENTRO DA GAUSSIANA, mais significante será o valor produzido pelo campo receptivo radial da função de ativação, a qual tenderá para o valor 1.
- Em tal condição, o neurônio produzirá respostas similares para todos aqueles padrões que estejam a uma mesma DISTÂNCIA RADIAL do centro da gaussiana.
- Assim, para a RBF, as fronteiras delimitadoras são então definidas por CAMPOS RECEPTIVOS HIPERESFÉRICOS.

3. Treinamento da RBF / 1º Estágio

Primeiro estágio de treinamento (IV)

Ajustes dos neurônios da camada intermediária (PMC x RBF)

- Em se tratando de problemas de classificação de padrões, o PMC computa as fronteiras de delimitação de classes por intermédio de uma COMBINAÇÃO DE HIPERPLANOS.
- Já na RBF, com funções de ativação do tipo GAUSSIANA, as fronteiras delimitadoras são definidas por CAMPOS RECEPTIVOS HIPERESFÉRICOS.
- Neste caso, considerando somente duas entradas {x₁ e x₂}, a fronteira de separabilidade do PMC será formada de segmentos de RETA, ao passo que na RBF esta seria delimitada por um campo receptivo que pode ser representado por uma CIRCUNFERÊNCIA.

3. Treinamento da RBF / 1º Estágio

Primeiro estágio de treinamento (V)

Ajustes dos neurônios da camada intermediária (K-MEANS)

- Em suma, o principal objetivo dos neurônios da camada intermediária é POSICIONAR os centros de suas gaussianas de forma mais apropriada possível.
- Um dos métodos mais bem utilizado para esta finalidade é denominado de K-MEANS (k-médias), cujo propósito é posicionar os centros de k-gaussianas em regiões que as amostras de entrada tenderão a se agrupar.
- Vale aqui ressaltar que o valor do parâmetro K é igual ao NÚMERO DE NEURÔNIOS da camada intermediária.
- De fato, a função de ativação de cada um deles é uma gaussiana, sendo que os centros delas serão representados pelos seus respectivos VETORES DE PESO.

3. Treinamento da RBF / 1º Estágio Primeiro estágio de treinamento (VI) <1> Obter o conjunto de amostras de treinamento { $x^{(k)}$ }: <2> Iniciar o vetor de pesos de cada neurônio da camada intermediária com os valores das n_1 primeiras amostras de treinamento; <3> Repetir as instruções: <3.1> Para todas as amostras de treinamento $\{x^{(k)}\}$, fazer: <3.1.1> Calcular as distâncias euclidianas entre $x^{(k)}$ e $W_{ii}^{(1)}$, considerando-se cada j-ésimo neurônio por vez; <3.1.2> Selecionar o neurônio j, que contenha a menor distância, com o intuito de agrupar a referida **Algoritmo** amostra junto ao centro mais próximo; K-MEANS <3.1.3> Atribuir a amostra $\mathbf{x}^{(k)}$ ao grupo $\Omega^{(j)}$; <3.2> Para todos $W_{ii}^{(1)}$, onde $j = 1,...,n_1$, fazer: (1º Estágio) <3.2.1> Ajustar $W_{ii}^{(1)}$ de acordo com as amostras em $\Omega^{(j)}$: $W_{ji}^{(1)} = \frac{1}{m^{(j)}} \sum_{\mathbf{x}^{(K)} \in \Omega^{(j)}} \mathbf{x}^{(K)} \ \{ m^{(j)} \ \text{\'e o no. de amostras em } \Omega^{(j)} \}$ Até que: não haja mudanças nos grupos $\Omega^{(j)}$ entre as iterações; <4> Para todos $W_{ii}^{(1)}$, onde $j = 1,...,n_1$, fazer: <4.1> Calcular a variância de cada uma das funções de ativação $\sigma_j^2 = \frac{1}{m^{(j)}} \sum_{x^{(k)} \in \Omega^{(j)}} \sum_{i=1}^n (x_i^{(k)} - W_{ji}^{(1)})^2$

3. Treinamento da RBF / 1º Estágio Primeiro estágio de treinamento (VII) Ajustes dos neurônios da camada intermediária (Ex/Amostras) • Como exemplo do primeiro estágio de treinamento da RBF e do método de agrupamento (clustering) K-MEANS, considera-se um problema aplicativo constituído de duas entradas x₁ e x₂, com amostras de treinamento representadas na figura seguinte. • Para este exemplo ilustrativo, a RBF será composta de apenas dois neurônios em sua camada intermediária (n₁ = 2).

4. Treinamento da RBF / 2º Estágio

Segundo estágio de treinamento (I)

- A aplicação dos passos de ajuste referentes aos pesos dos neurônios da CAMADA DE SAÍDA deve ser executada, em seqüência, somente após a finalização do primeiro estágio de treinamento.
- Assim, o 2º estágio de treinamento é efetivado utilizando os mesmos procedimentos usados para a camada de saída do PMC.
- Diferentemente do primeiro estágio de treinamento da RBF, este 2º estágio utiliza um processo de aprendizado SUPERVISIONADO.
- O conjunto de treinamento para os neurônios de saída será então constituído por PARES de entrada e saída desejada.
- As entradas desta camada são as RESPOSTAS dadas pelas funções de ativação gaussianas dos neurônios da camada intermediária, ou seja:

$$u_j^{(2)} = \sum_{i=1}^{n_1} \underbrace{W_{ji}^{(2)}}_{\text{parcela (i)}} \cdot \underbrace{g_i^{(1)}(u_i^{(1)})}_{\text{parcela (ii)}} - \theta_j \;,$$

4. Treinamento da RBF / 2º Estágio

Segundo estágio de treinamento (II)

Início {Algoritmo RBF – Segundo Estágio de Treinamento}

- <1> Obter o conjunto original de amostras de treinamento { $x^{(k)}$ };
 - <2> Obter o vetor de saída desejada $\{\mathbf{d}^{(k)}\}$ para cada amostra;
 - <3> Iniciar $W_{ii}^{(2)}$ com valores aleatórios pequenos;
- <4> Especificar taxa de aprendizagem {η} e precisão requerida {ε};
- <5> Para todas as amostras { $x^{(k)}$ }, fazer:
 - <5.1> Obter os valores de $g_i^{(1)}$ em relação à $\mathbf{x}^{(k)}$; {conforme (6.2)}
 - <5.2> Assumir $\mathbf{z}^{(k)} = [g_1^{(1)} \ g_2^{(1)} ... \ g_{n_k}^{(1)}]^T$; {pseudo-amostras}
 - <6> Iniciar o contador de número de épocas $\{época \leftarrow 0\}$;
- <7> Repetir as instruções:

$$\begin{cases} <7.1> E_M^{anterior} \leftarrow E_M; & \{\text{conforme (5.8)}\} \end{cases}$$

<7.2> Para todos os pares de treinamento $\{z^{(k)}, d^{(k)}\}$, fazer: $\int Ajustar W_{ij}^{(2)} e \theta_j \text{ aplicando os mesmos passos usados}$

na camada de saída do PMC (Subseção 5.3.1)

 $<7.3> E_M^{atual} \leftarrow E_M$; {conforme (5.8)}

<7.4> época ← época + 1;

Até que: $|E_M^{atual} - E_M^{anterior}| \le \varepsilon$

Fim {Algoritmo RBF - Segundo Estágio de Treinamento}

