

Projet: iFlybot 2012

Réf.: v1.1 Version: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise

Page: 1 / 29

Identification du document

Titre du document : Spécifications d'Architecture Matérielle

Version: v1.2 Référence: v1.1 Date: 05/06/2012

Nom du fichier: SAM.docx

Identification des intervenants dans le projet

Nom: Philippe GAUSSIER Nom de la société : ETIS **Téléphone**: 01 30 73 66 10

E-mail: gaussier@ensea.fr

Adresse: Université de Cergy-

Pontoise

ETIS - UMR 8051

2 avenue Adolphe Chauvin 95302 Cergy Pontoise Cedex

Contact 1 Contact 2 Contact 3

Nom: DESSALLE **Prénom :** Bruce

Téléphone: 06 84 13 02 19 **E-mail**: bdessalle@cergy.itin.fr Prénom : Damien **Téléphone**: 06 89 88 29 14

E-mail: dpelliss@gmail.com

Nom: NOIROT **Prénom**: Julien

Téléphone : 06 84 00 35 13 **E-mail:** noirotj@gmail.com

Contact 4

Nom: NESTY Prénom : Olivier

Téléphone : 06 26 19 38 89

E-mail:

nesty.olivier@gmail.com

Contact 5 Nom: KAISER

Prénom: Florian

Nom: PELLISSON

Téléphone: 06 83 70 51 74

E-mail:

mail.de.florian.kaiser@gmail.com

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date : 05 juin 2012

Page : 2 / 29

Diffusion	Diffusion		
Société	Destinataires	Nb	
ETIS	Philippe GAUSSIER	1	
ITIN	Bruce DESSALLE	1	
Université Cergy Pontoise	Damien PELLISSON	1	
Université Cergy Pontoise	Julien NOIROT	1	
Université Cergy Pontoise	Olivier NESTY	1	
Université Cergy Pontoise	Florian KAISER	1	

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date: 05 juin 2012

Page : 3 / 29

Projet ITIN / Université de Cergy-Pontoise

Rédaction/Ch	Rédaction/Chaine de validation			
	Nom	Qualité	Date	Visa
Rédigé par :	Bruce DESSALLE	Chef de projet	18/01/12	
Approuvé par :	Bruce DESSALLE	Chef de projet	20/03/12	
Approuvé par :	Florian KAISER	Responsable Qualité		
Approuvé par :	Philippe GAUSSIER	Client		

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise

Page : 4 / 29

Evolutions du Document			
Version	Date	§ modifiés	Auteur
V0.1	18/01/12	Premier Jet	Bruce DESSALLE
v0.2	22/02/12	Mise à jour du doc ajout d'information	Bruce DESSALLE
v0.3	07/03/12	Ajout schéma	Bruce DESSALLE
v0.4	08/03/12	Ajout chapitre & information	Bruce DESSALLE
v1.0	14/03/12	Corrections Orthographiques	Olivier NESTY
V1.1	03/05/12	Correction schéma (Bus USB->SERIE)	Bruce DESSALLE
V1.2	05/06/12	Ajouts régulateur de tension	Bruce DESSALLE

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise

Page : 5 / 29

Sommaire

1	Prés	enta	tion du client	. 6
	1.1	Activ	rité du client	. 6
	1.2	Beso	in exprimé par le client	. 6
2	Obje	ectif (du document	. 7
	2.1	Port	é du document	. 7
	2.2	Réfé	rences	. 7
3	Arch	itect	ure	. 8
	3.1	Mate	ériel	. 8
	3.2	Arch	itecture quadricoptère	. 8
	3.2.1		Matériel volant	. 8
	3.2.2	2	Schéma de principe	10
	3.3	Arch	itecture hélicoptère	16
	3.3.1		Matériel volant	16
	3.3.2	2	Schéma de principe	17
	3.3.3	3	Commentaire	20
4	Mat	ériel	utiliser	21
	4.1	Carte	e Gallop 43	21
	4.1.1		Fonctionnalité	21
	4.1.2	2	Rôle	22
	4.2	Carte	e RoboVero	22
	4.2.1		Fonctionnalité	22
	4.2.2	2	Rôle	23
	4.3	Les c	carte Gumstix	23
	4.3.1		Caractéristique Air COM	23
	4.3.2	2	Caractéristique Earth COM	24
	4.3.3	3	Point commun différence	25

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 6 / 29

Projet ITIN / Université de Cergy-Pontoise

1 Présentation du client

1.1 Activité du client

Philippe GAUSSIER est responsable du laboratoire ETIS. Spécialiste en science de l'information et de la communication, il travaille sur la modélisation des mécanismes cognitifs impliqués dans la perception visuelle (vision pré-attentive et attentionnelle) et sur la modélisation de structures telles que l'hippocampe (pour des problèmes d'intégration d'informations spatio-temporelles).

Ces modèles servent de base pour imaginer des architectures de contrôle permettant à des robots mobiles d'apprendre à survivre dans un environnement à priori inconnu.

Ses robots utilisent la vision comme source principale d'information.

Les tâches étudiées sont : l'apprentissage de conditionnements visio-moteurs, la reconnaissance de lieux (retour au nid), la construction et l'utilisation de carte cognitive et enfin l'apprentissage de la discrimination d'objets et/ou de lieux.

1.2 Besoin exprimé par le client

L'objectif du client est d'avoir un drone, ici un hélicoptère, qui doit se déplacer de façon totalement autonome. Les applications possibles du drone peuvent être :

- Exploration de zone pour la recherche de personne
- Surveillance d'une zone et reconnaissance des lieux et objets
- Vol en autonomie si perte du signal radio avec retour au lieu de départ

Le projet est évidement complexe et présente beaucoup de possibilité. Le client serait très satisfait d'avoir une plateforme de développement opérationnelle et un système en boucle fermée sur l'hélicoptère qui lui permettrait des déplacements simples en toute autonomie.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 7 / 29

2 Objectif du document

2.1 Porté du document

L'objectif du document est de décrire le fonctionnement bas niveau du système, à savoir l'interaction entre les différents éléments matériels et la façon des les assemblés.

2.2 Références

Document	Notes
Spécifications des Exigences Fonctionnelles	On a ajouté le diagramme de classe.
Spécifications d'Architecture Logicielle	RAS
Note de cadrage	RAS
Plan de management	RAS

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 8 / 29

3 Architecture

3.1 Matériel

Le système utilise le matériel suivant :

- Deux plateformes au sol
 - o Une **Télécommande**, pour un contrôle standard de l'hélicoptère.
 - Un PC, pour récupérer les informations de vol, programmer un vol autonome et faire certains traitements durant les phases de test.
- Des équipements embarqués sur l'UAV
 - o Une Gumstick Gallop43.
 - o Une **Gumstick RoboVero** (ou FunPilot AscTec).
 - o Un **commutateur** ou équipement de Switch automatique/manuel.

Le projet peut être déployé sur 2 aéronefs que nous allons détailler ci-dessous, un quadricoptère et un hélicoptère. Cependant nous allons concentrer nos développements sur le quadricoptère pour des facilités de développement et de test.

3.2 Architecture quadricoptère

3.2.1 Matériel volant

Pour ce projet nous allons utiliser un quadricoptère de chez Ascending Technologies. Le modèle est un X3D-BL (BlackBird). Les principaux éléments du X3D-BL sont : l'armature en croix, la carte mère X-Base, la carte Funpilot, la carte X-ACC, les contrôleurs de moteur X-BLDC et les 4 moteurs brushless de chez HACKER Motors.

Caractéristique X3D-BL

Autonomie	12 Minutes
Charge utile	200g
Surface	53cm²
Type de Structure	Fibre de Carbonne
Masse à vide (Hors Equipment embarqué)	75g
Surface (sans les hélices)	32cm ²

Projet : iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page: 9 / 29

Projet ITIN / Université de Cergy-Pontoise

Le quadricoptère embarque 2 cartes de contrôle X-base et X-Funpilot (nous détaillerons leurs rôles dans le schéma de principe) dont voici les caractéristiques.

`	n -	
× -	ка	2

Processeur	ATMega88 16MHz
Contrôleur	Moteur X-BLDC
USB	X-USB
Radio	PPM / ACT DSL

X-Funpilot

Processeur	LPC2146 ARM7 60MHz
Capteur	3 gyroscopes / Barométrique (contrôle altitude)
USB	X-USB
Bus	I2C/SPI
Firmware	4 Sélectionnables par jumper

La carte X-ACC est une option qui est présente sur notre modèle. C'est un accéléromètre 3 axes. L'obtention des accélérations sur chaque axe permet de calculer l'orientation absolue de l'engin en tangage et roulis pour permettre de le stabiliser. Avec l'utilisation de cette carte, le quadri-rotor tend à revenir à une position horizontale.

Un moteur brushless est placé en bout de chaque branche, les caractéristiques des moteurs sont les suivantes.

HACKER Motors XBLC

Pôles	14, rotor extérieur
Intensité	Max 8 A, 1,25 nominal
Tension	12V
Masse	27,5g

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 10 / 29

Le quadri-rotor dispose de 4 contrôleurs X-BLDC pour contrôler chaque moteur. Les contrôleurs reçoivent les données par I2C.

Contrôleurs X-BLDC

Processeur	ATMege88 14,7MHz
Bus	I2C
Courent	20A Max, 12A Optimal
Tension	8-15V
Masse	8g
Temps de réponse	1ms

3.2.2 Comment vol un quadricoptère?

Le quadri-rotor possède 4 types de déplacements : déplacement vertical, tangage, roulis et lacet. Pour chaque déplacement il faut jouer sur la vitesse de rotation des moteurs. Dans notre cas, les moteurs avant et arrière tournent dans le sens horaire et les moteurs gauche et droit dans le sens antihoraire.

• Déplacement vertical : il s'obtient en augmentant ou en diminuant la vitesse de rotation des quatre moteurs.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page: 11 / 29

Projet ITIN / Université de Cergy-Pontoise

 Mouvement de tangage : il s'obtient en agissant sur les moteurs avant et arrière, en diminuant la vitesse de rotation de l'un tout en augmentant celle de l'autre. Ainsi, si l'on souhaite incliner le quadri-rotor vers l'avant, il faut diminuer la vitesse de rotation du moteur avant et augmenter celle du moteur arrière.

 Mouvement de roulis : il s'obtient de la même manière mais cette fois ci en agissant sur les moteurs gauche et droit. Ainsi, si l'on souhaite incliner le quadri-rotor vers la droite, il faut diminuer la vitesse de rotation du moteur droit et augmenter celle du moteur gauche.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 12 / 29

Projet ITIN / Université de Cergy-Pontoise

 Mouvement de lacet : il s'obtient en diminuant la vitesse de rotation d'un couple de moteurs opposés tout en augmentant celle de l'autre couple. Ainsi, pour obtenir un lacet sur la droite, il faut diminuer la vitesse de rotation des moteurs avant et arrière tout en augmentant celle des moteurs gauche et droit.

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date: 05 juin 2012

Page: 13 / 29

3.2.3 Schéma de principe

3.2.3.1 Architecture d'origine

Voici le schéma de l'architecture du quadri-rotor d'origine lors du pilotage à la manette.

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date: 05 juin 2012

Page: 14 / 29

3.2.3.2 Architecture des années précédentes

Voici un schéma qui correspond aux réalisations des années passés. Dans ce schéma la carte Gumstix récupère divers paramètre de vol et les transmets au PC de supervision qui grâce a un module Xbee connecter en USB des ordres a la carte FunPilot.

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date: 05 juin 2012

Page: 15 / 29

3.2.3.3 Architecture cible

L'architecture que nous souhaitons a pour but de ne plus avoir besoin du PC à part pour la phase de démarrage et de communication des missions. Cela confère donc une autonomie totale au drone. De cette façon l'on peu enfin parlé d'intelligence embarqué dans le drone.

Projet : iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 16 / 29

3.3 Architecture hélicoptère

3.3.1 Matériel volant

Le second matériel volant que nous avons à notre disposition est une maquette d'hélicoptère de chez Vario. Le modèle est un Benzin trainer, qui fait partie des plus gros modèles de maquette d'hélicoptère à moteur thermique.

Ses caractéristiques sont les suivantes,

Benzin trainer

Longueur	1460 mm
Largeur	200 mm (320 mm au niveau des patins d'atterrissage)
Diamètre Rotor Principal	1780 mm
Diamètre rotor d'anti-couple	310 mm
Hauteur	500 mm
Poids	7,3 kg
Charge utile	3,0 kg

Les caractéristiques motrices sont,

Zenoah G230

Cylindré	23 cm ³
Туре	2 temps
Energie	Essence 95 sans plomb
Dosage huile	1:25 durant le rodage
	1:40 normale

Comme toute maquette la conduite se fait à l'aide d'une radio commande. Notre but est donc de remplacer la radio par nos systèmes pour contrôler le modèle informatiquement. C'est ce que nous allons voir sur les schémas suivants.

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 17 / 29

3.3.2 Comment vol un hélicoptère ?

L'hélicoptère possède, tout comme un quadri-rotor, 4 types de déplacements : déplacement vertical, tangage, roulis et lacet. Pour chaque déplacement il faut jouer sur l'incidence des pales, la vitesse de rotation étant plus ou moins constante. Pour le lacet il faut agir sur le rotor d'anti-couple.

• Déplacement vertical : il s'obtient en augmentant ou en diminuant l'incidence des pales sur tous les axes du plateau cyclique.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 18 / 29

Projet ITIN / Université de Cergy-Pontoise

• Mouvement de tangage : il s'obtient en agissant sur l'incidence des pales lorsqu'elle se trouve sur l'arrière ou l'avant de l'hélicoptère. Ainsi, si l'on souhaite incliner l'hélicoptère vers l'avant, il faut diminuer l'incidence des pales sur l'avant et l'augmenter à l'arrière.

 Mouvement de roulis : il s'obtient de la même manière mais cette fois ci en agissant sur l'incidence des pales gauche ou droit. Ainsi, si l'on souhaite incliner le quadri-rotor vers la droite, il faut diminuer l'incidence des pales sur la partie droite et augmenter celle de la partie gauche.

Projet ITIN / Université de Cergy-Pontoise

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2

Date : 05 juin 2012

Page: 19 / 29

• Mouvement de lacet : il s'obtient en diminuant ou en augmentent l'incidence du rotor d'anticouple.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 20 / 29

Projet ITIN / Université de Cergy-Pontoise

3.3.3 Schéma de principe

3.3.4 Commentaire

Le schéma matériel ci-dessus représente l'architecture qui va être mis en place dans la maquette de l'hélicoptère. La réalisation du Switch matériel entre la télécommande et l'intelligence sera effectuer ultérieurement et ajouter en annexe.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page: 21 / 29

Projet ITIN / Université de Cergy-Pontoise

4 Matériel utiliser

4.1 Carte Gallop 43

4.1.1 Fonctionnalité

Galllop43

Factoria	CDC .:- the ble NEO EC dule
Features	GPS via the u-blox NEO-5G module
	3-axis accelerometer
	LCD-ready for 4.3" touch-screen
	LCD display @ 24 bits per pixel Touchscreen controller
	USB mini-AB with OTG signals
	USB mini-B console port
	Coin cell backup battery holder
	3.5-mm stereo headset jack
	MCX antenna connector for GPS
	Two (2) user-configurable LEDs
	Two (2) user-configurable push buttons
	Forty (40) signals available on 0.100" through-holes at 1.8V logic
	Two (2) two-wire serial ports
	One 1-wire port
	PWM lines
	I2C port
	SPI bus
	A/D input lines
	processor control signals
Power	Connect a 5v wall adapter to power this expansion board, the connected Overo
	COM and the attached LCD touch screen
	Alternate power jack provided for 2-cell NiMH battery pack
	Connecting both the 5v wall adapter and a MiMH battery pack will charge the NiMH
	batteries
Connections	2 x 70-pin connectors for connection of any Overo COM
	40-pin header (not populated)
Computing	Requires any Gumstix Overo COM
Temperatures	Built with components rated -20< T <70C
Size	118.2mm x 67.2mm
Weight	BRD30014 @ 36.2g
	PKG30014 @ 71g (incl. shipping case)

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 22 / 29

4.1.2 Rôle

Le rôle de cette carte est de réaliser les fonctions « haut niveau » du système telles que :

- Repérage GPS
- Calcule des trajectoires
- Stabilisation en déplacement grâce au camera
- Communication

4.2 Carte RoboVero

4.2.1 Fonctionnalité

RoboVero

Features	The new HubCommander™ interface over USB lets an external host commandeer
	the onboard USB Hub and these devices:
	Cortex-M3 JTAG
	Cortex-M3 USB Device
	Two (2) USB Standard A Jacks
	Console for the onboard Overo COM (if present)
	3-axis accelerometer
	3-axis magnetometer
	3-axis gyroscope
	Coin cell backup battery holder
	Three 3x10 headers
	Motor Header
	- 7 lines each for power and return at motor voltage,
	- 6 PWM lines at 3.3V,
	- 10 motor control lines at 3.3V
	for control of one 3-phase AC or DC motor
	AD Header
	- 7 A/D lines
	- 2 A/D reference lines
	- 3 A/D power lines
	- SPI bus
	- 7 GPIO
	- Power lines
	Communication Header
	- 2 two-wire serial ports
	- 1 four-wire serial port
	- I2C bus
	- SPI bus
	- CAN bus
	- 3 GPIO
	- Power lines
	Note that some signals are multiplexed and share the same header pin (refer to
	schematic)

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 23 / 29

Projet ITIN / Université de Cergy-Pontois	e
---	---

Computing	RoboVero comes preflashed with sample libraries from NXP and a command line interface.	
Power	Solder points for a battery with 5V < V_BATT < 17V provide ultimate mobility. Quickly switch to grid power by connecting a 5V, 3.5A wall adapter.	
Connections	2 x 70-pin connectors for connection of any Overo COM 3 x 30-pin 0.100" headers	
Temperatures	Built with components rated 0< T <70C	
Size	118.2mm x 67.2mm	
Weight	BRD30019 @ 32.2g	

4.2.2 Rôle

Cette carte a pour rôle de contrôler les fonctions « bas niveau », pour l'hélicoptère uniquement. Effectivement ce contrôle est déjà réalisé par la carte X-FunPilot sur le quadri-rotor.

Cette carte possède de nombreuses E/S contrôlées par un processeur dédié ce qui lui confère un grand avantage dans le contrôle des servomoteurs.

Ses fonctions sont donc de :

- Réaliser le contrôle des servomoteurs
- Stabiliser l'assiette

4.3 Les carte Gumstix

4.3.1 Caractéristique Air COM

Overo Air COM	
Processor:	Texas Instruments OMAP 3503 Applications Processor: - ARM Cortex-A8 CPU
Clock(MHz):	600 MHz
Performance:	Up to 1200 Dhrystone MIPS
Memory:	512MB RAM 512MB Flash
Features:	OMAP3503 Application Processor 802.11b/g wireless communications Bluetooth communications microSD card slot TPS65950 Power Management

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise

Page: 24 / 29

Expandability: via one 140-pin expansion board of Gumstix Overo series or custom,

140-pin expansion board via 27-pin camera board

Connections: - (2) 70-pin connectors with 140 signals for:

- I2C, PWM lines (6), A/D (6), 1-wire

- UART, SPI, Extra MMC lines

- Headset, Microphone

- Backup battery

- High Speed USB Host and USB OTG

(1) 27-pin connector with signals for camera board

(2) x u.fl antenna connectors

Power: Powered via expansion board (Overo series or custom) connected to

dual 70-pin connectors

Size: 17mm x 58mm x 4.2mm (0.67 in. x 2.28 in. 0.16 in.)

Weight: GUM3503A @ 42.6g (incl. shipping case & 2 x antenna)

GS3503A @ 5.6g

Products Included: GUM3503A includes:

- 1 x GS3503T (Overo Air COM))

- 2 x ANT006 (U.FL Antenna)

- 4 x retaining spacers for Overo COM (CONH0020)

Temperatures: Built with components rated 0C < T <75C

Mounting: Four (4) x #0 mounting holes for securing to Overo-series, or custom,

expansion board

4.3.2 Caractéristique Earth COM

Overo Earth COM

Processor: Texas Instruments OMAP 3503 Applications Processor:

- ARM Cortex-A8 CPU

Clock(MHz): 600 MHz

Performance: Up to 1200 Dhrystone MIPS

Memory: 512MB RAM

512MB Flash

Features: OMAP3503 Application Processor

microSD card slot

TPS65950 Power Management

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise Page : 25 / 29

Ermandale Uta	is and 140 air amount of Countin Ocean and an arrange
Expandability:	via one 140-pin expansion board of Gumstix Overo series or custom, 140-pin expansion board via 27-pin camera board
Connections:	- (2) 70-pin connectors with 140 signals for:
	- I2C, PWM lines (6), A/D (6), 1-wire
	- UART, SPI, Extra MMC lines
	- Headset, Microphone
	- Backup battery
	- High Speed USB Host and USB OTG
	(1) 27-pin connector with signals for camera board
Power:	Powered via expansion board (Overo series or custom) connected to dual 70-pin connectors
Size:	17mm x 58mm x 4.2mm (0.67 in. x 2.28 in. 0.16 in.)
Weight:	GS3503E @ 4.3g
	GUM3503E @ 15.1g (incl. shipping case)
Products Included:	GUM3503E includes:
	- 1 x GS3503E (Overo Earth COM)
	- 4 x retaining spacers for Overo COM (CONH0020)
Temperatures:	Built with components rated 0C < T <85C
Mounting:	Four (4) x $\#0$ mounting holes for securing to Overo-series, or custom, expansion board

4.3.3 Point commun différence

Les deux cartes sont toutes les deux identiques, hormis que la Air COM gère le Wifi et Bluetooth alors que la Earth COM non. De ce fait nous utilisons l'Air COM là où nous avons besoin de communiquer en sans fils avec le monde extérieur. Nous l'utilisons donc l'Air COM exclusivement avec la carte Gallop43 qui est la carte de haut niveau.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Projet ITIN / Université de Cergy-Pontoise

Page: 26 / 29

5 Bus utilisé

5.1 I2C

Le bus I2C est un bus très utilisé pour faire communiquer des composants ou des circuits imprimés proche entre eux. Il a été inventé dans les années 1980 par Thomson. Dans notre projet, il sert de bus de communication entre les composants et les cartes.

Pour plus de détails quant à son fonctionnement c'est ici : http://www.aurel32.net/elec/i2c.php

5.2 Série

La liaison série permet de faire communiquer les 2 cartes RoboVero et Gallopa43 entre elles lors de l'utilisation sur l'hélicoptère.

Elle est également utiliser sur le quadrirotor pour la communication entre la FunPilote et la Gumstix. Cette liaison permet d'envoyer les ordres de pilotage au quadrirotor et de récupéré les informations de celui-ci.

C'est une liaison simple bifilaire.

5.3 Liste des liaison série Gumstix

La gumstix possède 5 UART dont 3 sont paramétrable. (http://docwiki.gumstix.org/index.php/UART_Schematics).

Nous avons donc utilisé les ports suivant,

- ttyS0 (STUART) GPS câblé non configurable.
- ttyS1 (BTUART) Bluetooh, configurable (car pin partagé avec HWUART)
- ttyS2 (HWUART) Pin GPIO 166 & 165
- ttyS3 (HWUART) Kernel serial + GPIO 48 & 49

Pour relier un port d'un UART a une sortie :

Echo "UART DIRECTION(IN ou OUT" > /proc ou /sys + Chemin vers le pin

Les pin sont trier par type/lieu de connection etc...

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

,

Page: 27 / 29

Projet ITIN / Université de Cergy-Pontoise

6 Interface physique série FunPilot -> Gallop43

6.1 FunPilot

Le port série de la carte FunPilote est une logique TTL avec des valeurs comprise entre 5V et 0V ou 5V représente l'état 0 et 0V l'état 1.

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page: 28 / 29

Projet ITIN / Université de Cergy-Pontoise

6.2 Gallop43

Le port série de la carte Gumstix est a logique TTL avec des valeurs comprise entre 0V et 1.8V ou 1.8V représente l'état 0 et 0V l'état 1.

MISE A JOUR:

Vue que le port ttyS0 est utilisé par le GPS, nous avons déplacé le connecteur série Gumstix -> FunPilote sur le port ttyS2 (port GPIO 166/GPIO 165).

6.3 Connection

Pour la connexion final nous avons utilisé le connecteur propriétaire ASCTEC et nous l'avons soudé à l'aide de fil sur la carte gumstix. Il faut bien penser a croisé le câble série. (RX Gumxtic -> TX FunPilote, TX Gumstix -> RX FunPilote).

Projet: iFlybot 2012

Réf.: v1.1 **Version**: v1.2 **Date**: 05 juin 2012

Page : 29 / 29

Projet ITIN / Université de Cergy-Pontoise

7 Alimentation

La carte gumstix était a la base alimenté par un RIT (Régulateur de tension intégré) qui permet de lissé la tension en sortie de batterie pour donnée une alimentation « stable » atour de 5V.

Cependent vue que la batterie alimente aussi les moteur des surtensions et des accous au niveau du courent sont de la partie. L'alimentation de la gumstix étant un peu juste (le constructeur n'ayant certainement pas prévue cette usage) nous l'avons remplacé par une alimentation a découpage beaucoup plus performante et qui ne laisse pas passé cette petite imperfection d'alimentation.

7.1 Liste des composent utilisé

- PTN78000W
- Resistance 22K Ohm 1% = R1
- Condensateur electrolide 100μF 16V = C1
- Condensateur electrolide 2.2µF 16V = C2

7.2 Schéma

