VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum- 590014, Karnataka.

LAB REPORT

on

Machine Learning (23CS6PCMAL)

Submitted by

Jeevan A (1BM22CS119)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING (Autonomous Institution under VTU) BENGALURU - 560019 February 2025 – July 25

B.M.S. College of Engineering

Bull Temple Road, Bangalore 560019
(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Jeevan A (1BM22CS119)**, who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfilment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Laboratory report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Srushti C S Assistant Professor Department of CSE, BMSCE Dr. Kavitha Sooda Professor & HOD Department of CSE, BMSCE

INDEX

Sl.	Date	Experiment Title	Page No.
No.			
1	03.03.25	Write a python program to import and export data using pandas library functions.	01
2	10.03.25	Demonstrate various data pre-processing techniques for a given dataset.	03
3	24.03.25	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.	08
4	17.03.25	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset.	13
5	24.03.25	Build Logistic Regression Model for a given dataset.	18
6	07.04.25	Build KNN Classification model for a given dataset.	23
7	21.04.25	Build Support vector machine model for a given dataset.	25
8	05.05.25	Implement Random forest ensemble method on a given dataset.	31
9	05.05.25	Implement Boosting ensemble method on a given dataset.	35
10	05.05.25	Build k-Means algorithm to cluster a set of data stored in a .CSV file.	40
11	05.05.25	Implement Dimensionality reduction using Principle Component Analysis (PCA) method.	45

Github Link: Jeevan-017/ML-LAB

Write a python program to import and export data using Pandas library functions

OBSERVATION BOOK

Date 03 103125	Postosely: "Diabeles.cox" and "Adult.cox"
LABORATORY - OI	Questions :-
White a python code to import and export data veling Pandar library functions	1. Which column in the dataset had missing values of How did you handle the
(i) To load .csy file into the data frame	> print (" Missing values in Dataset diabetes:")
=> import pandar as pd	print (diabetes of isnull () · sum())
df = pd. nead car (filename)	The code checks for missing values (NON) in each column of the directs dataset
(ii) To display information of all column	and private the count of milling Values
= print ("Information of all columns") of info()	Numucod column are filled with the
(iii) To display the statistical information of all numerical column	column with the mode.
=> point (d) describe()) = describe	identify in the dataset ? How and
(iv) To display the count of unique labels for "Ocean Proximity" column	=> coting cols = adult income al delut algor (include = 1 1 object 17) - columnia
(v) To display which columns in a datalet how missing value count greater than zero	3. What is the difference between Min-Max scaling and standardization? when would you use one over the other?
= print (of isnull() . dum() (of isnule(). Sum > 07)	
Min - Max Scaling deal Specific grange Cuswelly I'i sensitive to	
5+andardization transform	
Les etts	algorithms are gratides and significant outlier
· Standardization : For	gangion data.
Jan 3	2/3/2/ Sec. 15
are as May attached and	waitan was F 125

df = pd.read_csv('/content/Dataset of Diabetes .csv')
df.head()

	ID	No_Pation	Gender	AGE	Urea	Cr	HbA1c	Chol	TG	HDL	LDL	VLDL	ВМІ	CLASS
0	502	17975	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	N
1	735	34221	М	26	4.5	62	4.9	3.7	1.4	1.1	2.1	0.6	23.0	N
2	420	47975	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	N
3	680	87656	F	50	4.7	46	4.9	4.2	0.9	2.4	1.4	0.5	24.0	N
4	504	34223	М	33	7.1	46	4.9	4.9	1.0	0.8	2.0	0.4	21.0	N

```
categorical_cols = df.select_dtypes(include=['object']).columns
print("Categorical columns identified:", categorical_cols)
if len(categorical_cols) > 0:
        df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
        print("\nDataFrame after one-hot encoding:")
        print(df.head())
        else:
        print("\nNo categorical columns found in the dataset.")
Categorical columns identified: Index(['Gender', 'CLASS'], dtype='object')
DataFrame after one-hot encoding:
                                                             BMI \
   ID No_Pation AGE Urea Cr HbA1c Chol
                                          TG HDL LDL VLDL
  502
          17975
                 50
                     4.7 46
                                4.9
                                     4.2 0.9 2.4 1.4
                                                        0.5 24.0
  735
           34221
                 26
                     4.5 62
                                4.9
                                     3.7 1.4 1.1 2.1
                                                        0.6 23.0
  420
           47975
                  50
                      4.7 46
                                4.9
                                     4.2 0.9
                                              2.4 1.4
                                                        0.5
           87656
                      4.7 46
                                4.9
                                     4.2 0.9 2.4 1.4
  680
                 50
4 504
           34223
                 33
                      7.1 46
                                4.9
                                     4.9 1.0 0.8 2.0
   Gender_M Gender_f CLASS_N CLASS_P CLASS_Y CLASS_Y
0
     False
              False
                       False
                               False
                                       False
                                                False
1
      True
              False
                       False
                               False
                                       False
                                                False
     False
              False
                       False
                               False
                                       False
                                                False
3
     False
              False
                       False
                               False
                                       False
                                                False
      True
                       False
                               False
                                       False
              False
                                                False
```

Demonstrate various data pre-processing techniques for a given dataset OBSERVATION BOOK

	LABORATORY - 02
	5-teps to build a ML-model that preduce the housing price way the California housing price dataset
	Perform the describe and info steps
	houring Date and of made can (Alepath) houring Date and of)
٠٦.	Indicate what does histogram indicate as median income and house median again
=	The histogram is right - skewed, meaning that may households have a law median income.
3.=)	France median age => The clittribution is bimodal with two peaks.
	The presence of thoup offices duggest that Certain constructions booms at specific so
3.	Stratified test Set Set granden as
	Random test set :- It splits the data naudomly without considering feature distribution

_	Stratified test set :- It you'ts date
	while breactiving the distribution of
	buile predowing the distribution of key features.
	areas and the plant of the
ц.	What does the graph indicate and housing
	prices and location
	and the same of th
=)	Housing prices prices are strongly
	location depedent, with higher
	price crually for locations closes to
	Coastal Cities and umban agrees.
5.	Analyse what the housing hours
	Analyze what the housing price
	groph indust
-1	Asseas with higher median
-/-	
	income tends to have more exponence
6.	income tends to have more expensive homes.
6.	income tends to have more expensive homes. List the features that could be
6.	income tends to have more expensive homes.
	income tends to have more expensive homes. List the features that could be combined to improve convelotion.
	income tends to have more expensive homes. List the features that could be
	income tends to have more expensive homes. List the features that could be combined to improve convelopion. The features latteributes that can be added.
	income tends to have more expensive homeil. List the features that could be combined to improve convelopion. The features latteributes that can be added. Rooms Per Household
	income tends to have more expensive homes. List the features that could be combined to improve conviolation. The features latteributes that can be added. Rooms Per Household. Bedraams Room
	income tends to have more expensive homeil. List the features that could be combined to improve convelopion. The features latteributes that can be added. Rooms Per Household
=)	income tends to have more expensive homeil. List the features that could be combined to improve connelation. The features latterisates that case be added. Rooms Per Household. Bedrooms Per Room.
=)	income tends to have more expensive homes. List the features that could be combined to improve conviolation. The features latteributes that can be added. Rooms Per Household. Bedraams Room
=) T.	income tends to have more expensive homers. List the features that could be combined to improve an enveloper. The features latterisades that are be added. Rooms Pe Household. Bedrooms Per Room Roughbrian to Household.
=)	income tends to have more expensive homers. List the features that could be combined to improve an enveloper. The features latterisates that case be added. Rooms Per Household. Bectrooms Per Room. Repulsion Per Household.

8.	Discuss the importance of feature
	Scaling
=)	. Mainly used for achieving model
/	convegence
	· Can achieue gregularization
	· Prevents features with large vale
-	()
	and outapearing
	· State Prairieg
. 61. 1	2 cranate m
	and the state of t
2010	W/ 100
	10/25
	10/3/
	No. of No
	- FILTERIA SENTENCE - PERSONAL PROPERTY - PERS
-	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
	* 1.0033
	20 194.30 to 1940-1 40 443 to
	the second ways at the parties.
	and health angulations arranged and the
	- Rome Et Watchest
	tread of marks
	the state of the s
0.5	and treat and married and a
	ASSESS TO SOLVE ASSESSED.
	could sensel set Telescope its
	the worker take to

Load the dataset into a pandas DataFrame
df = pd.read_csv('housing.csv')
Display descriptive statistics
df.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000
4						

import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, StratifiedShuffleSplit housing = pd.read_csv('housing.csv')

For this demonstration, consider only 'median_income' and 'median_house_value' housing_selected = housing[['median_income', 'median_house_value']].copy()

Random split: This splits the data randomly without preserving any specific distribution. train_set_random, test_set_random = train_test_split(housing_selected, test_size=0.2, random_state=42)

For stratified sampling, first create an income category.
housing_selected['income_cat'] = pd.cut(housing_selected['median_income'],
bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
labels=[1, 2, 3, 4, 5])

Use StratifiedShuffleSplit to ensure the income distribution is preserved in both sets.

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)

for train_index, test_index in split.split(housing_selected, housing_selected['income_cat']):

strat_train_set = housing_selected.loc[train_index]

strat_test_set = housing_selected.loc[test_index]

Remove the temporary income category attribute. for dataset in (strat_train_set, strat_test_set): dataset.drop("income_cat", axis=1, inplace=True)

from sklearn.preprocessing import OneHotEncoder

```
# Extract the categorical attribute
housing_cat = housing[["ocean_proximity"]]
# Perform one-hot encoding
encoder = OneHotEncoder()
housing_cat_1hot = encoder.fit_transform(housing_cat).toarray()
# Create a DataFrame for the encoded features
housing_cat_1hot_df = pd.DataFrame(housing_cat_1hot,
                    columns=encoder.get_feature_names_out(["ocean_proximity"]))
housing_cat_1hot_df.head()
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
# Custom transformer to add engineered attributes
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
  def __init__(self, add_bedrooms_per_room=True):
    self.add_bedrooms_per_room = add_bedrooms_per_room
  def fit(self, X, y=None):
    return self
  def transform(self, X):
    # Assumes X is a NumPy array with the following columns:
    # total_rooms (index 3), total_bedrooms (index 2), population (index 4), households
(index 5)
    rooms_per_household = X[:, 3] / X[:, 5]
```

```
population_per_household = X[:, 4] / X[:, 5]
    if self.add_bedrooms_per_room:
       bedrooms_per_room = X[:, 2] / X[:, 3]
       return np.c_[X, rooms_per_household, population_per_household,
bedrooms_per_room]
    else:
       return np.c_[X, rooms_per_household, population_per_household]
# Identify numerical and categorical columns
num_attribs = housing.drop("ocean_proximity", axis=1).columns # All numeric columns
cat_attribs = ["ocean_proximity"]
# Build numerical pipeline: impute missing values, add new attributes, then scale
num_pipeline = Pipeline([
  ('imputer', SimpleImputer(strategy="median")),
  ('attribs_adder', CombinedAttributesAdder()),
  ('std_scaler', StandardScaler()),
])
# Build the full pipeline combining numerical and categorical processing
full_pipeline = ColumnTransformer([
  ("num", num_pipeline, num_attribs),
  ("cat", OneHotEncoder(), cat_attribs),
])
# Process the dataset using the pipeline
housing_prepared = full_pipeline.fit_transform(housing)
print("Shape of processed data:", housing_prepared.shape)
```

Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.

OBSERVATION BOOK

	LABORATORY - 03
	ABOKATORY - US
_	Implementing Linear & Multiple Regulia Algorith
(8) =>	Find the linear negression of the data of week and Product.
	2; (week) y; (dale in themse)
	3
	4 9
:-	Y= B. + B.X
	X = \(\begin{picture} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
	B = (xTx) + xTy
	x 'x (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(xTx) 1 10 30 7 (0.75 -0.25 0.1)
	X ^T Y = (20)

-	Question:-
0	Data Prie processing steps performed:
:-	Missing values :- Filled with column
	One-hot Encoding :- Consuted text to
	numbers
	Geologica
@	Relation between year and percapita
	· The plot showed strong linear rel " between year and per copies income
	· Heure positive cornelation
3	Predicted Calary: \$137, 493.22
H	Encoded State Using One- hot Encoding
0	In "Jalay-Cou", filled the missing values in Years Experience column with fill.
4/3/4	In hining-con, filled "test score" column mean
	In hiring csy performed one-hot encoder

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt
from sklearn.tree import plot tree
# Load the iris dataset (make sure iris.csv is in the working directory)
iris = pd.read csv("iris.csv")
# Assuming the last column is the target (species) and the rest are features.
X = iris.iloc[:, :-1]
y = iris.iloc[:, -1]
# Split data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and train the Decision Tree classifier
clf_iris = DecisionTreeClassifier(criterion='entropy', random_state=42)
clf_iris.fit(X_train, y_train)
# Make predictions and evaluate the model
y_pred_iris = clf_iris.predict(X_test)
accuracy_iris = accuracy_score(y_test, y_pred_iris)
conf_matrix_iris = confusion_matrix(y_test, y_pred_iris)
print("IRIS Dataset Decision Tree Classifier")
print("Accuracy:", accuracy_iris)
print("Confusion Matrix:\n", conf_matrix_iris)
print("Classification Report:\n", classification_report(y_test, y_pred_iris))
# Visualize the decision tree
plt.figure(figsize=(12, 8))
plot tree(clf iris, filled=True, feature names=X.columns, class names=clf iris.classes)
plt.title("Decision Tree for IRIS Dataset")
plt.show()
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
# Load the drug dataset (make sure drug.csv is in the working directory)
drug = pd.read_csv("drug.csv")
# Since the target column is 'Drug', drop it from the features
```

```
X_drug = drug.drop('Drug', axis=1)
y_drug = drug['Drug']
# If there are categorical features, perform necessary encoding
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
# Encode features that are categorical
for col in X drug.select dtypes(include='object').columns:
  X_{drug}[col] = le.fit_transform(X_drug[col])
# Also encode the target variable if necessary
y_drug = le.fit_transform(y_drug)
# Split the data (80% training, 20% testing)
X_train_d, X_test_d, y_train_d, y_test_d = train_test_split(X_drug, y_drug, test_size=0.2,
random_state=42)
# Initialize and train the Decision Tree classifier using entropy criterion
clf drug = DecisionTreeClassifier(criterion='entropy', random state=42)
clf_drug.fit(X_train_d, y_train_d)
# Make predictions and evaluate the model
y_pred_drug = clf_drug.predict(X_test_d)
accuracy_drug = accuracy_score(y_test_d, y_pred_drug)
conf_matrix_drug = confusion_matrix(y_test_d, y_pred_drug)
print("Drug Dataset Decision Tree Classifier")
print("Accuracy:", accuracy_drug)
print("Confusion Matrix:\n", conf_matrix_drug)
print("Classification Report:\n", classification_report(y_test_d, y_pred_drug))
# Visualize the decision tree
plt.figure(figsize=(12, 8))
plot tree(clf drug, filled=True, feature names=X drug.columns,
      class_names=[str(cls) for cls in clf_drug.classes_])
plt.title("Decision Tree for Drug Dataset")
plt.show()
```

Drug Dataset Decision Tree Classifier Accuracy: 1.0 Confusion Matrix: [[6 0 0 0 0] [0 3 0 0 0] [0 0 5 0 0] [000110] [000015]] Classification Report: recall f1-score support precision 0 1.00 1.00 1.00 6 1.00 1.00 1.00 3 1.00 1.00 1.00 5 2 1.00 1.00 1.00 3 11

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset

OBSERVATION BOOK

	Date/ Fage
_	Accuracy is 80% => accuracy of the made, it good and acceptable a it conservery product employee returns is 8 out of 10 clan.
_	Decupe Torce:
1.	Chapte the bed Splitting attribute (02/93)
-	1. Entropy calculation:
	4 No. 1-Yes
_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	= 0. 728
	2. Information gain for as -
	Hat (4 non) = 3No's , 144
_	Endrighy = 0.811
	(ool (layer) -> Entropy -0
	Entropy (02) = $\left(\frac{4}{5} \times 0.81\right) + \left(\frac{1}{5} \times 0\right) =$
	3
_	Processing Control of the Control of
_	

	3. Information gain for az
1	High - 4No; Entry -0
	Nonmal - 174 (Normal) = 0
	Entropy (03) · (1 x0 + 1 x0)
	Information gain = 0.722-0
	= 0.720
	1. gam (Q3) = 0.722
7.	1 gam (02) = 0.649
	2 7 1 1
	But Molithing attached is as
=>	For inis csv datast accuracy is &
	Confusion matrix identifies to 81
	times properly - i.e. there positive
_	E 19/100 false positive. & false negoti
-3	F :- 0
=>	For Peter consumption is dataut,
	Manay 11 871
	July
Tre-	4/11
	U U

```
import pandas as pd
from sklearn.linear model import LinearRegression
# Load the data
income_data = pd.read_csv("canada_per_capita_income.csv")
# Assumed data columns: 'Year' and 'PerCapitaIncome'
print("Canada Income Data Head:")
print(income_data.head())
# Prepare feature and target
X_income = income_data[["year"]] # Predictor variable: Year
y_income = income_data["per capita income (US$)"]
# Build and train the linear regression model
model_income = LinearRegression()
model_income.fit(X_income, y_income)
# Predict per capita income for the year 2020
predicted income = model income.predict([[2020]])
print("\nPredicted per capita income for Canada in 2020:", predicted_income[0])
# Plot the data points and the regression line
plt.scatter(X_income, y_income, color='blue', label='Actual Data')
plt.plot(X income, model income.predict(X income), color='red', label='Regression Line')
# Plot the prediction for 2020
plt.scatter(2020, predicted income[0], color='green', label='Prediction for 2020')
# Customize the plot
plt.xlabel('Year')
plt.ylabel('Per Capita Income (US$)')
plt.title('Canada Per Capita Income Prediction')
plt.legend()
plt.grid(True)
# Display the plot
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
# Load the salary data
salary_data = pd.read_csv("salary.csv")
print(income_data.head())
# Prepare feature and target
X_salary = salary_data[["YearsExperience"]] # Predictor variable: Years of Experience
y_salary = salary_data["Salary"]
```

```
# Build and train the linear regression model
model_salary = LinearRegression()
model_salary.fit(X_salary, y_salary)
import matplotlib.pyplot as plt
# Plot the data points and the regression line
plt.scatter(X_salary, y_salary, color='blue', label='Actual Data')
plt.plot(X_salary, model_salary.predict(X_salary), color='red', label='Regression Line')
# Plot the prediction for 12 years of experience
plt.scatter(12, predicted_salary[0], color='green', label='Prediction for 12 years')
# Customize the plot
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.title('Salary Prediction based on Experience')
plt.legend()
plt.grid(True)
# Display the plot
plt.show()
```

Predicted salary for an employee with 12 years of experience: 139980.88923969213

import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression

Read the CSV file (ensure the file is uploaded in your Colab environment)

```
df = pd.read_csv("hiring.csv")
# Rename columns for convenience
df.columns = ['experience', 'test score', 'interview score', 'salary']
print("Original Data:")
print(df)
# Function to convert experience values to numeric
def convert experience(x):
     return float(x)
  except:
     x_{lower} = str(x).strip().lower()
     return num_map.get(x_lower, np.nan)
# Convert the 'experience' column using the mapping
df['experience'] = df['experience'].apply(convert_experience)
# Convert 'test_score', 'interview_score', and 'salary' to numeric (coerce errors to NaN)
df['test_score'] = pd.to_numeric(df['test_score'], errors='coerce')
df['interview_score'] = pd.to_numeric(df['interview_score'], errors='coerce')
df['salary'] = pd.to_numeric(df['salary'], errors='coerce')
print("\nData After Conversion:")
print(df)
# Fill missing values in numeric columns using the column mean
df['experience'].fillna(df['experience'].mean(), inplace=True)
df['test score'].fillna(df['test score'].mean(), inplace=True)
df['interview_score'].fillna(df['interview_score'].mean(), inplace=True)
print("\nData After Filling Missing Values:")
print(df)
# Prepare the feature matrix X and target vector y
X = df[['experience', 'test_score', 'interview_score']]
y = df['salary']
# Build and train the Multiple Linear Regression model
model = LinearRegression()
model.fit(X, y)
# Predict salaries for the given candidate profiles
# Candidate 1: 2 years of experience, 9 test score, 6 interview score
candidate1 = np.array([[2, 9, 6]])
predicted_salary1 = model.predict(candidate1)
# Candidate 2: 12 years of experience, 10 test score, 10 interview score
candidate2 = np.array([[12, 10, 10]])
predicted_salary2 = model.predict(candidate2)
```

```
print("\nPredicted Salary for Candidate (2 yrs, 9 test, 6 interview): $",
round(predicted salary1[0], 2))
print("Predicted Salary for Candidate (12 yrs, 10 test, 10 interview): $",
round(predicted_salary2[0], 2))
import matplotlib.pyplot as plt
# Create the plot
plt.figure(figsize=(10, 6)) # Adjust figure size for better visualization
plt.scatter(df['experience'], y, color='blue', label='Actual Salary') #Plot actual salary against
years of experience
# Plot the regression line (this is an approximation since it's a multi-variable regression)
# You can visualize a single feature against the predicted salary
plt.plot(df['experience'], model.predict(X), color='red', label='Regression Line')
# Highlight predictions
plt.scatter(candidate 1 [0, 0], predicted salary 1, color='green', label='Candidate 1 Prediction')
plt.scatter(candidate2[0, 0], predicted_salary2, color='purple', label='Candidate 2 Prediction')
# Add labels and title
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Salary Prediction based on Experience, Test Score, Interview Score")
# Add a legend
plt.legend()
plt.grid(True)
plt.show()
```

Build Logistic Regression Model for a given datasetOBSERVATION BOOK

	⇒ Logistic Regnession
	Buerton 11:- 1111
prost No. 1	m=0.8 (==5
(a)	5igmoid (7) = -1
	7 = 1 1 + e × (0.8x + (5))
(P)	
- ,	: = 1 = 0.6456
(c)	Keeping threeshold as 0.5 and 7 = 0.6456, the predicted charge
(a)	which yourseles have a direct and done impact on employee Intension
- %	Considerion with employee netention.
ectiff 1	· Promotion in last 5 years affects the stability of the job as they are likely to leave
(3)	In house, bearing her our wi

_	Date
_	it good and acceptable a it consuly product employee notices in 8 out of
	Decuan Torce:
t-	Chaole the had Splitting attribute (02/G3)
-	1. Entropy calculation:
_	4 No. 1-Yes
	Enthory : $-\frac{h}{(5)}\frac{h}{J}\nu\frac{h}{5}$ $\frac{1}{5}\frac{h}{(5)}\frac{h}{(5)}$
	= 0. 702
_	2. Information gain for as -
	Hot (4 non) = 3Nois , 144
	Endergy = 0.811
	(col (layer) -> Entragy -0
	Entropy (03) $\frac{4}{5}$ $\frac{4}{5}$ $\frac{1}{5}$ $\frac{1}{5}$
	0.649
	3
	The same of the sa

	3. Information gain for az
	Figh - 4No's : Entry -0
	Notional - 144 (Normal) = 0
	Entropy (03) · $(\frac{1}{5} \times 0 + \frac{1}{5} \times 0)$.
	Information 90in = 0.722 - 0
	(47.5)
	: 1.gam (a3) = 0.722
-	1 gam (a2) = 8.649
	Bet Splitting attended is as
=>	For inis csv dadast, accuracy is 81;
	Confusion matrix identifies to 811
	times propely - i.e. there positives & false positives
	E 19/100 false positive & five negative
=>	For Petrol consumption con dataset
	acanacy 11 871.
	Pr
	14/25
1/2-	11
	ų į

```
import pandas as pd
from matplotlib import pyplot as plt
# %matplotlib inline
#"%matplotlib inline" will make your plot outputs appear and be stored within the notebook.
df = pd.read_csv("insurance_data.csv")
df.head()
plt.scatter(df.age,df.bought_insurance,marker='+',color='red')
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(df[['age']],df.bought_insurance,train_size=0.9,random_state=10)
X_train.shape
X test
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
X_test
y_test
y_predicted = model.predict(X_test)
y_predicted
model.score(X_test,y_test)
model.predict_proba(X_test)
y_predicted = model.predict([[60]])
y_predicted
\#model.coef\_indicates\ value\ of\ m\ in\ y=m*x+b\ equation
model.coef
\#model.intercept\_indicates\ value\ of\ b\ in\ y=m*x+b\ equation
model.intercept
#Lets defined sigmoid function now and do the math with hand
import math
def sigmoid(x):
 return \frac{1}{1} / (\frac{1}{1} + \text{math.exp}(-x))
def prediction_function(age):
 z = 0.127 * age - 4.973 # 0.12740563 \sim 0.0127  and -4.97335111 \sim -4.97
```

```
y = sigmoid(z)
return y
age = 35
prediction_function(age)
```

"""0.37 is less than 0.5 which means person with 35 will not buy the insurance"""

Import necessary libraries

import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn import metrics import matplotlib.pyplot as plt

Load the Iris dataset iris = pd.read_csv("iris.csv") iris.head()

X=iris.drop('species',axis='columns')# Features (sepal length, sepal width, petal length, petal width)

y = iris.species # Target labels (0: Setosa, 1: Versicolor, 2: Virginica)

Split the dataset into 80% training and 20% testing X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize the Multinomial Logistic Regression model # Use 'multinomial' for multi-class classification and 'lbfgs' solver model = LogisticRegression(multi_class='multinomial') # Train the model on the training data model.fit(X_train, y_train)

Make predictions on the test data y_pred = model.predict(X_test)

Calculate the accuracy of the model on the test data accuracy = accuracy_score(y_test, y_pred)

Display the accuracy

print(f"Accuracy of the Multinomial Logistic Regression model on the test set: {accuracy:.2f}")

confusion_matrix = metrics.confusion_matrix(y_test, y_pred)

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix,
display_labels = ["Setosa", "Versicolor", "Virginica"])

cm_display.plot()
plt.show()

Accuracy of the Multinomial Logistic Regression model on the test set: 1.00

Build KNN Classification model for a given dataset.

OBSERVATION BOOK

-					Page	
_	LABORATO RY -05					
=>	Builde	o a k	NM claus		dal	
-	101	a givan	dataset.	i Cation ma	000	
	0	9	unose-		li .	
(81)	For dh	lallaming	datase	t lanks	2	
0	Johne	June)	KNN or	, 6		
	-the	tayor a		× (31, 10		
		9	1		n	
:	K=3	252000000	Maria and			
	Dictances	:- 1	(x,-x,)=+ 1	y -y,)2-		
		1 1	1	y. y.		
	Penion	Ace	Salary	Tags	Distance	
	A	16	50	N	52.8	
	6	23	55	N	46-6	
)	c	24	70	N	31.9	
)	D	u, u	. 60	4	40.4	
)	E	43	Zo	У	31.0	
)	F	38	40	У	60-1	
	×	35	ceo	· ·		
		4	wednesday		A	
1	Amongh all the neighbouring points,					
	dated E(43,70) (24,70) and					
	55/ 		60) a.e	the s	Cletter	
	polyoti / neighbarn					
	The state of the s					
	E (431	70) -	Y) 24		
	C (24,=	·) —	N	1 1 11	1.4	
	D (ui,	(0) -	y		1 -5/2	
				de la trial	1	
		<u> </u>	Producted	torget	clan for	
0.0		1	X	(35,100) =	1 Y	

	Date Page
	Overtion -
0	How to choose the K value.
)-	Choice of 'K' value 11 very country
	Methods to shope "k" value:
	· Accuracy gratu and Exercis gratus
	cuation the model performance for
3 6	- For each k, cale according to E
	W 2 5 5
9.13	"k" and chasse the "k" that girly
1+5	highest accuracy or land ever
(a)	For the diabetes distance, what it is
	Pumpose of feature dealing?
٢	Perpose of Jectus dating!-
¥,	brained secrets.
A N	- Fecture scaling engine that all feations
λ,	Contribute Equality to the model.
=)	
	· Min - May Scalling

CODE WITH OUTPUT

Import necessary libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

For model building and evaluation

from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

------ # # Load the iris dataset (ensure iris.csv is in the same directory or provide correct path) iris_df = pd.read_csv("iris.csv")

Separate features and target

X_iris = iris_df.drop("species", axis=1)

```
y_iris = iris_df["species"]
# Split the data (80% training, 20% testing)
X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(
  X_iris, y_iris, test_size=0.2, random_state=42
# Choose a value for k; here K=3 is used as an example.
knn_iris = KNeighborsClassifier(n_neighbors=3)
# Train the model on training data
knn_iris.fit(X_train_iris, y_train_iris)
# Predict on test data
y_pred_iris = knn_iris.predict(X_test_iris)
# Calculate accuracy score
acc_iris = accuracy_score(y_test_iris, y_pred_iris)
print("IRIS Dataset Accuracy Score:", acc_iris)
# Compute confusion matrix and classification report
cm_iris = confusion_matrix(y_test_iris, y_pred_iris)
print("\nIRIS Dataset Confusion Matrix:\n", cm_iris)
```


Build Support vector machine model for a given dataset OBSERVATION BOOK

	Page				
	LABORATORY - 06				
	3 Support Vector Monthinest				
6-	Draw an optimal hyperplane for the point, (4,1), (4,-1), and (6,0) belong to positive claw and points (1,0), (0,1) and (0,-1) belong to regulative claw. (4,1) (4,1) (9) Positive clay (610)				
	(0,1) Negative Clau (0,1)				
)					
	(0,1) (40) (1,0) (50)				
	-1 (0,-1) · C+,-1)				
	=> Support Vectoris are (1,0) - Positive Clay (4,1) - Neg clay (4,1) - reg clay				
	{ 3, (6) / (7) }				

	Dote
Augmented stupped Mechani-	@ Fon includes
) { 5. = (;) 5. (;) 5. (;) }	Linear Kernel accuracy : 1.0 RBF Kand accuracy = 1.0
=) 0,5,5, + 0,5,5, + 0,5,5, = +1	Performance of total is some.
x, 5, 5, 1 x, 5, 5, + x 5, 5, : -1	Similar performance is likely because the datated is liverally depurable for most parts
v, (;)(;) + «, (;) (;) +«, (;) (;)	(2) Confusion Medica throw throw degrand wolver, but some calls Blod similar looking house it visible
$a \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{\alpha_{L}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{\alpha_{J}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1 and 6 Mar N
\(\alpha\)\(\begin{array}{c} \begin{array}{c} \alpha\\ \\ \\ \end{array}\)\(\begin{array}{c} \beta\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Acuray there - 0.995 (1) Nodel has good professione assessable Classed.
·) 20, + 50, + 50; = 1	SVAL model put on this diabet - 1.0
50. + 180. + 164. + -1	ley outst ~ cas
5x, + 16x, + 18x, =-1	3
=) 2: 3.5	31/11/

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
# Data points
X = \text{np.array}([[4, 1], [4, -1], [6, 0], [1, 0], [0, 1], [0, -1]])
y = np.array([1, 1, 1, -1, -1, -1])
# Fit linear SVM with a very large C to approximate hard-margin
clf = SVC(kernel='linear', C=1e6)
clf.fit(X, y)
# Extract model parameters
w = clf.coef_{0}
b = clf.intercept_{0}
# Compute decision boundary and margins
xx = np.linspace(-1, 7, 500)
yy = -(w[0] * xx + b) / w[1]
\# Margin offset: distance = 1/||w||
margin = 1 / np.linalg.norm(w)
yy_down = yy - np.sqrt(1 + (w[0] / w[1])**2) * margin
yy_up = yy + np.sqrt(1 + (w[0] / w[1])**2) * margin
# Plotting
plt.figure(figsize=(8, 6))
plt.scatter(X[y == 1, 0], X[y == 1, 1], c='blue', marker='o', label='Positive class')
plt.scatter(X[y == -1, 0], X[y == -1, 1], c='red', marker='s', label='Negative class')
plt.plot(xx, yy, 'k-', label='Decision boundary')
plt.plot(xx, yy_down, 'k--', label='Margin lines')
plt.plot(xx, yy_up, 'k--')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('Optimal Hyperplane and Margins')
plt.grid(True)
plt.show()
# Print hyperplane equation
print(f"Hyperplane: \{w[0]:.3f\}x + \{w[1]:.3f\}y + (\{b:.3f\}) = 0"\}
print(f"Margin on each side: {margin:.3f}")
```


import pandas as pd

```
# Load both datasets
```

iris_df = pd.read_csv("/content/iris.csv")

1. IRIS DATASET - SVM with RBF and Linear Kernels

X_iris = iris_df.drop("species", axis=1)

y_iris = iris_df["species"]

Encode labels

le_iris = LabelEncoder()

y_iris_encoded = le_iris.fit_transform(y_iris)

Split dataset

X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_iris, y_iris_encoded, test_size=0.2, random_state=42)

Train models

svm_rbf = SVC(kernel='rbf')

svm_linear = SVC(kernel='linear')

svm_rbf.fit(X_train_iris, y_train_iris)

svm_linear.fit(X_train_iris, y_train_iris)

Predictions

y_pred_rbf = svm_rbf.predict(X_test_iris)

y_pred_linear = svm_linear.predict(X_test_iris)

Accuracy and Confusion Matrix

acc_rbf = accuracy_score(y_test_iris, y_pred_rbf)

acc_linear = accuracy_score(y_test_iris, y_pred_linear)

cm_rbf = confusion_matrix(y_test_iris, y_pred_rbf)

cm_linear = confusion_matrix(y_test_iris, y_pred_linear)

Load dataset

letter_df = pd.read_csv("/content/letter-recognition.csv") # Update path if needed
letter_df['letter'] = LabelEncoder().fit_transform(letter_df['letter'])

```
# Split features and labels
X = letter_df.drop('letter', axis=1)
y = letter_df['letter']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardize
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Train SVM

svm = SVC(kernel='rbf', probability=True)
svm.fit(X_train, y_train)
y_pred = svm.predict(X_test)
y_prob = svm.predict_proba(X_test)

Accuracy and Confusion Matrix

print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

ROC and AUC (one-vs-rest)

 $roc_auc[i] = auc(fpr[i], tpr[i])$

y_test_bin = label_binarize(y_test, classes=np.unique(y))
n_classes = y_test_bin.shape[1]

fpr = dict()
tpr = dict()
roc_auc = dict()

for i in range(n_classes):
 fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_prob[:, i])

Implement Random forest ensemble method on a given dataset.

OBSERVATION BOOK


```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv("iris.csv") # Adjust filename if needed
# Prepare data
X = df.drop(columns=["species"]) # Assuming 'species' is the target column
y = df["species"]
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Default Random Forest with 10 trees
rf_default = RandomForestClassifier(n_estimators=10, random_state=42)
rf_default.fit(X_train, y_train)
y_pred_default = rf_default.predict(X_test)
acc default = accuracy score(y test, y pred default)
conf_matrix_default = confusion_matrix(y_test, y_pred_default)
print(f"Default RF (10 trees) Accuracy: {acc_default}")
print("Confusion Matrix:\n", conf_matrix_default)
# Try different numbers of trees to find the best
best acc = 0
best n = 10
acc_list = []
for n in range(1, 101):
  rf = RandomForestClassifier(n estimators=n, random state=42)
  rf.fit(X_train, y_train)
  y_pred = rf.predict(X_test)
  acc = accuracy_score(y_test, y_pred)
  acc_list.append((n, acc))
  if acc > best_acc:
    best_acc = acc
    best_n = n
    best_conf_matrix = confusion_matrix(y_test, y_pred)
print(f"\nBest Accuracy: {best_acc} using {best_n} trees")
print("Best Confusion Matrix:\n", best_conf_matrix)
# Plot accuracy vs number of trees
x_vals, y_vals = zip(*acc_list)
plt.plot(x_vals, y_vals, marker='o')
plt.title("Accuracy vs Number of Trees")
plt.xlabel("Number of Trees")
```

plt.ylabel("Accuracy")
plt.grid(True)
plt.show()

LABORATORY PROGRAM – 9

Implement Boosting ensemble method on a given dataset.

OBSERVATION BOOK

		LASORATO	PY - 08	Poge Poge
		ADA B	co5 T	
-)	decision	dump a	alutotion di	Show the
	Capa	Predicted Job	Actual	7.
		Offen	offen	Top
	>:9	Yes	Ye	100 Co
	< 9	No	Yu	6
	>=9	44	No	
	< 9	No	No	У
	7=9	44	Yes	4
	7-9	Yes	Yes	/ 4
	Ei =	5 14 (d;) 2 2 × 1	(at(di)	
	« cuen	= 1	Ecops	
		z J g	n (1-0.333)	
	Z _{CAPA} =		+7	
			× e-0.34+ +	1 × 2×

	14.4			JJ
	m (4) =	cut (dj)	of course ineter	Xe-Kenn
			Zicus	
	ut (dj) _{in =}	6 0.9436	- 0.1249	
	ut (dj.),,	1 ×	e °3/1 = 0.25	0 (
	Capa	Predicted Job	Actual Job	
-	>=9	gfa	Office Job	Weight
	<9	No	Y4 Y4	0-1769
	7=9	Y4 .	N ₀	0.250
	< 9 7-9	No Ye,	N6 74	0.1249
	7=9	Yeu	Ye	0.1249
	Best occuracy do	ne achieved us		ц
	57.705		h - 500	
	5/21			
_				

CODE WITH OUTPUT

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
# Load dataset
data = pd.read_csv('income.csv')
# Display basic info
print("First five rows:")
print(data.head())
print(f"\nDataset shape: {data.shape}")
# Define features and target
target_column = 'income_level'
y = data[target_column]
X = data.drop(columns=[target_column])
# Identify categorical vs numerical columns
categorical_cols = X.select_dtypes(include=['object', 'category']).columns.tolist()
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
print(f"\nNumerical columns: {numerical_cols}")
print(f"Categorical columns: {categorical_cols}")
# Preprocessor: scale numericals, one-hot encode categoricals
preprocessor = ColumnTransformer(
  transformers=[
    ('num', StandardScaler(), numerical cols),
    ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_cols)
  ]
)
# Initial AdaBoost model with 10 estimators
pipeline = Pipeline([
  ('preprocess', preprocessor),
  ('clf', AdaBoostClassifier(n_estimators=10, random_state=42))
1)
# Split into train/test sets
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.2, random_state=42, stratify=y
# Train and evaluate initial model
pipeline.fit(X_train, y_train)
```

```
y_pred = pipeline.predict(X_test)
initial_acc = accuracy_score(y_test, y_pred)
print(f"Initial test accuracy (n_estimators=10): {initial_acc:.4f}")
# Hyperparameter tuning: find best n_estimators
tree counts = list(range(10, 201, 10)) # 10,20,...,200
cv scores = []
for n in tree counts:
  model = Pipeline([
    ('preprocess', preprocessor),
    ('clf', AdaBoostClassifier(n_estimators=n, random_state=42))
  1)
  scores = cross_val_score(
    model, X_train, y_train, cv=5, scoring='accuracy', n_jobs=-1
  )
  mean_score = scores.mean()
  cv_scores.append(mean_score)
  print(f"n estimators={n}: CV mean accuracy={mean score:.4f}")
# Plot CV accuracy vs. number of estimators
plt.figure()
plt.plot(tree_counts, cv_scores, marker='o')
plt.title('AdaBoost CV Accuracy vs. n_estimators')
plt.xlabel('Number of Estimators')
plt.ylabel('CV Mean Accuracy')
plt.grid(True)
plt.tight_layout()
plt.show()
# Determine optimal number of trees
best\_score = max(cv\_scores)
best_n = tree_counts[cv_scores.index(best_score)]
print(f"\nBest CV accuracy={best score:.4f} with n estimators={best n}")
# Retrain and evaluate best model
best_model = Pipeline([
  ('preprocess', preprocessor),
  ('clf', AdaBoostClassifier(n estimators=best n, random state=42))
1)
best_model.fit(X_train, y_train)
y_best = best_model.predict(X_test)
best_test_acc = accuracy_score(y_test, y_best)
print(f"Test accuracy with best n_estimators ({best_n}): {best_test_acc:.4f}")
# Plot comparison of initial vs. best test accuracy
plt.figure()
plt.bar(['n=10', f'n={best_n}'], [initial_acc, best_test_acc])
plt.title('Test Accuracy: Initial vs. Optimized')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.tight_layout()
```

plt.show()

Plot confusion matrix for best model

cm = confusion_matrix(y_test, y_best)
labels = best_model.named_steps['clf'].classes_
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
plt.figure()
disp.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix for Best AdaBoost Model')
plt.tight_layout()
plt.show()

Best CV accuracy=0.8330 with n_estimators=200
Test accuracy with best n_estimators (200): 0.8344

LABORATORY PROGRAM – 10

Build k-Means algorithm to cluster a set of data stored in a .CSV file.

OBSERVATION BOOK

			Date_ Pose_	
I ABORATORY - 09	Heration 31-	13211 13-141-85	, , , , , , , , , , , , , , , , , , , ,	
Build k. Means Algorithm to cluves a Su of Pala Stoned in a CSi File	0		***************************************	
Build K. Minny Might In a Court	Rec Numby	Clay to C	Clar to co	Assig
du of Dala stories		(183, 233)	(410.531)	Clus
	PI	1.57	5.31	·······································
	Pa	0.143	4.27	Y
Compay two clusters any 1. mount algorithms	R3	2.04	1.72	co
for clustery with contrac (4.1) and	PY	5.64	185	CA
(57)	R5	3.15	D-73	C
	RC	3-78	0.51	Ca
Ikalion 1:	K7	2.74	1.07	EZ
Num. Clase to Cl Class to C2 August To	=) New	cluster are !-	Kile	
(6.7)				
IN THE STATE OF TH	cluster 1	-> {R1, R2} => {R2, P4, R5		
R1 (1.1) 0 7-21 C	Cluster 2	=> f Pa, Pu, Pr	R. R. S	
R2 (1.5.3) 1.12 6.12 C/	1 -1			
R3 (3.4) 3.61 (2)) New o	entroid 1-		
P4(5.7) 7-21 0,0 CL	p)			
Pr (8.5.5) 4.12 0.5	C :	125, 1.5	C2 - 3.9.	5.1
RE (45,5) 5.31 2.06 C2				
87(3.5,45) h.30 2.96 C2	* 5		. Y	
195 V.	=) Objevationij-		0.00	
New Controid and				
	For "Inview	datuel:	are the second	
(1: 5:5 7:0	The	elbow piet their	u o duch	elbour
C1 : 5.5 7.0	at k : 3	indication	that thorse	
(, : (183, Q.33)	afanta it	the optimal c	hoice los the	
1 . (- 1 4 2 1)	laste Daniel	a function of of	inu debud	
(2: (4.10, 5.37)	pera xives	7 1110	A LIVE	
CE . (-(nx , 5.31)				

CODE WITH OUTPUT

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

def load_data(csv_path='iris.csv'):

Try loading from csv_path; if not found, load via sklearn.

Expects columns: sepal_length, sepal_width, petal_length, petal_width, species.

Returns DataFrame with a 'species' column.

.....

try:

```
df = pd.read_csv(csv_path)
     # Fixed typo here: use c.strip().replace, not ace()
    df.columns = [c.strip().replace(' ', '_') for c in df.columns]
  except FileNotFoundError:
     iris = load_iris()
     df = pd.DataFrame(
       data=np.c_[iris['data'], iris['target']],
       columns=iris['feature_names'] + ['target']
     df.columns = [c.strip().replace('(cm)', ').replace('', '_')
             for c in df.columns]
     df['species'] = df['target'].map(lambda x: iris['target_names'][int(x)])
  return df
def preprocess(df):
  Select only petal_length & petal_width, then standard-scale.
  Returns scaled numpy array.
  X = df[['petal\_length', 'petal\_width']].values
  scaler = StandardScaler()
  X_scaled = scaler.fit_transform(X)
  return X_scaled, scaler
def plot_elbow(X_scaled, max_k=10):
  Compute KMeans inertia for k=1..max_k and plot the elbow curve.
  Returns list of inertias.
  inertias = []
  ks = range(1, max_k + 1)
  for k in ks:
     km = KMeans(n clusters=k, random state=42)
     km.fit(X_scaled)
     inertias.append(km.inertia_)
  plt.figure(figsize=(6, 4))
  plt.plot(ks, inertias, 'o-', linewidth=2)
  plt.xlabel('Number of clusters (k)')
  plt.ylabel('Inertia')
  plt.title('Elbow Method for Optimal k')
  plt.xticks(ks)
  plt.grid(True, linestyle='--', alpha=0.5)
  plt.tight_layout()
  plt.show()
  return inertias
def run_kmeans(X_scaled, k):
  Fit KMeans with k clusters, return labels and fitted model.
  km = KMeans(n_clusters=k, random_state=42)
```

```
labels = km.fit\_predict(X\_scaled)
  return km, labels
def plot_confusion(df, labels, k):
  Builds and displays a confusion matrix comparing true species vs. cluster.
  species_names = df['species'].unique()
  species_to_num = {name: idx for idx, name in enumerate(species_names)}
  true_nums = df['species'].map(species_to_num)
  cm = confusion_matrix(true_nums, labels)
  disp = ConfusionMatrixDisplay(
    confusion_matrix=cm,
    display_labels=[f"Cluster {i}" for i in range(k)]
  fig, ax = plt.subplots(figsize=(6, 6))
  disp.plot(ax=ax, cmap='Blues', colorbar=True)
  ax.set_xlabel('Predicted Cluster')
  ax.set_ylabel('True Species')
  plt.title('K-Means Clustering Confusion Matrix')
  plt.tight_layout()
  plt.show()
  cm df = pd.DataFrame(
    index=[f"True: {name}" for name in species_names],
    columns=[f"Cluster {i}" for i in range(k)]
  print("\nConfusion Matrix (counts):")
  print(cm_df)
def main():
  #1) Load data
  df = load_data('iris.csv')
  if 'species' not in df.columns:
    print("Error: 'species' column not found.")
    return
  #2) Preprocess
  X_scaled, scaler = preprocess(df)
  # 3) Elbow plot to decide k
  print("Generating elbow plot to find optimal k...")
  inertias = plot elbow(X scaled, max k=10)
  # 4) From the elbow you'll typically see a bend at k=3
  optimal k = 3
  print(f"Choosing k = {optimal_k}) (you can adjust this based on the plot).")
  # 5) Run K-Means and assign clusters
```

```
km_model, labels = run_kmeans(X_scaled, optimal_k)
   df['cluster'] = labels
   # 6) Visualize clusters in feature space
   plt.figure(figsize=(6, 4))
   plt.scatter(
     X_{scaled[:, 0]}, X_{scaled[:, 1]},
     c=labels, cmap='viridis', edgecolor='k', s=50
   centroids = km_model.cluster_centers_
   plt.scatter(
     centroids[:, 0], centroids[:, 1],
     marker='X', c='red', s=200, label='Centroids'
   plt.xlabel('Scaled Petal Length')
   plt.ylabel('Scaled Petal Width')
   plt.title(f'K-Means Clusters (k={optimal_k})')
   plt.legend()
   plt.grid(True, linestyle='--', alpha=0.5)
  plt.tight_layout()
   plt.show()
   #7) Confusion matrix vs. true species
   plot_confusion(df, labels, optimal_k)
if __name__ == "__main__":
   main()
                   Elbow Method for Optimal k
                                                        Choosing k=3 (you can adjust this based on the plot).
                                                                           K-Means Clusters (k=3)
   300
  250
                                                           1.0
   200
                                                        Scaled Petal Width
  150
                                                           0.0
  100
                                                          -0.5
                                                                           -0.5
                                                                                             1.0
                                                                                                   1.5
                                                                                 0.0
                      Number of clusters (k)
```


LABORATORY PROGRAM – 11

Implement Dimensionality reduction using Principle Component Analysis (PCA) method.

OBSERVATION BOOK

Date (2) or) as		Date
LABORATORY PROGRAM - 11	7, (-4, 2.5) - 0-	5574 (-4) + (-0.8303) (J.
Implement Dimensionality Reduction wing PCA	=	- 4.30 535
=> Recluse the dimension from 2 to 1	73 (0,-4.5) = 0.	5574 (0) + (-0.8303)(·4.
ting Pell.		
Dato Madrix 1-	= 5	674 (5) + (-08 303) (-3·5)
×, 4 8 13 7	Z4 (-1, 5.5) = 0.5	5g74(-1) + (-08303)(5·5
У, п 4 5 14		5.12.40
>, = 30-3849	Z = \[-4.3	
7 = 6.6151	3.43	-
e: [0.5574]	L -5 · 1.	
And the second of	> Obdervation :-	
Mean of x = 34/4 = 8	· Accuracy before PCA	i
X _{Critical} = X = Neon = \[-4 \ 0 \ 5 \ -1 \ 7 \]	Logictic Regrection	0-9016
0-5 -4.5 -3.5 525	SVH - 0-1 Pancton facet -	
Since 2, is larger , e, is the first	· Accusey after PCA:	
e, T = [0.6574 -0.8303]	Logistic Pogración	D-8 689
Let Z ₁ = e, T - Y ₁	Logistic Rosecuion 5VM 0 Randon Jones	-8689
ru r: c, -li	Peterday Ones	0.00 3 2

CODE WITH OUTPUT

import pandas as pd

df = pd.read_csv("heart.csv")

Step 3: Split Features and Target

X = df.drop("target", axis=1)

y = df["target"]

Step 4: Preprocessing

from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline

```
categorical_features = ["cp", "thal", "slope"]
numerical_features = [col for col in X.columns if col not in categorical_features]
preprocessor = ColumnTransformer(transformers=[
  ("num", StandardScaler(), numerical features),
  ("cat", OneHotEncoder(), categorical_features)
1)
# Step 5: Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 6: Models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
models = {
  "Logistic Regression": Logistic Regression(max_iter=1000),
  "SVM": SVC(),
  "Random Forest": RandomForestClassifier()
# Step 7: Train and Evaluate Models (Before PCA)
print("Accuracy Before PCA:")
results = \{ \}
for name, model in models.items():
  pipeline = Pipeline(steps=[
     ("preprocessor", preprocessor),
    ("classifier", model)
  pipeline.fit(X train, y train)
  y_pred = pipeline.predict(X_test)
  acc = accuracy_score(y_test, y_pred)
  results[name] = acc
  print(f"{name}: {acc:.4f}")
from sklearn.decomposition import PCA
print("\nAccuracy After PCA (n_components=5):")
pca_results = {}
for name, model in models.items():
  pipeline pca = Pipeline(steps=[
    ("preprocessor", preprocessor),
    ("pca", PCA(n_components=5)),
    ("classifier", model)
  1)
  pipeline_pca.fit(X_train, y_train)
  y_pred_pca = pipeline_pca.predict(X_test)
```

```
acc_pca = accuracy_score(y_test, y_pred_pca)
pca_results[name] = acc_pca
print(f"{name}: {acc_pca:.4f}")
```

Accuracy Before PCA:

Logistic Regression: 0.9016

SVM: 0.8525

Random Forest: 0.8361

Accuracy After PCA (n_components=5):

Logistic Regression: 0.8689

SVM: 0.8689

Random Forest: 0.8852