International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules Country: HRV

Detecting Molecules

Krešo radi za kompaniju koja proizvodi uređaje za detekciju molekula. Svaka molekula ima težinu koja je prirodan broj. Uređaj ima *raspon detektiranja* \([l, u]\), gdje su \(l\) i \(u\) prirodni brojevi. Uređaj može detektirati skup molekula ako i samo ako taj skup sadrži podskup molekula s ukupnom težinom koja je unutar raspona detektiranja.

Formalno, promotrimo \((n\) molekula s težinama \((w_0, \ldots, w_{n-1}\)). Detekcija je uspješna ako postoji skup različitih indeksa \(I = \{i_1, \ldots, i_m\}\) takvih da vrijedi \(\ldots w_{i_1} + \ldots w_{i_m} \le u\).

Zbog specifičnosti uređaja, garantirano je da je razmak između (l) i (u) veći ili jednak razlici između najteže i najlakše molekule. Formalno, $(u - l \ge w_{max} - w_{min})$, gdje su $(w_{max}=\max(w_0, \ldots, w_{n-1}))$ i $(w_{min}=\min(w_0, \ldots, w_{n-1}))$.

Vaš je zadatak napisati program koji pronalazi bilo koji podskup molekula s ukupnom težinom unutar raspona detekcije, ili zaključuje da ne postoji nijedan takav podskup.

Implementacijski detalji

Trebate implementirati jednu funkciju (metodu):

- o int[] solve(int I, int u, int[] w)
 - liu: rubovi raspona detekcije,
 - w: težine molekula.
 - ako traženi podskup postoji, funkcija treba vratiti niz indeksa molekula koje čine jedan takav podskup. Ako postoji više točnih rješenja, vratite bilo koje od njih.
 - o ako traženi podskup ne postoji, funkcija treba vratiti prazan niz.

Potpis funkcije malo je drugačiji za jezik C:

- int solve(int I, int u, int[] w, int n, int[] result)
 - o n: broj elemenata niza w (broj molekula),
 - o ostali parametri isti su kao gore.
 - umjesto vraćanja niza od \(m\) indeksa (kao iznad), funkcija treba spremiti indekse u prvih \(m\) polja niza result te vratiti \(m\).
 - ako traženi podskup ne postoji, funkcija ne treba ništa upisati u niz result i treba vratiti \(o\).

Indekse možete u bilo kojem poretku upisati u povratni niz.

Za implementacijske detalje koristite dane template datoteke.

Primjer

Primjer 1

solve(15, 17, [6, 8, 8, 7])

U ovom primjeru zadane su četiri molekule s težinama 6, 8, 8 i 7. Uređaj može detektirati podskupove molekula s ukupnom težinom između 15 i 17, uključivo. Primijetite da je $(17-15 \ge 8-6)$. Ukupna težina molekula 1 i 3 je $(w_1 + w_3 = 8 + 7 = 15)$, tako da funkcija može vratiti [1, 3]. Moguća rješenja su i [1, 2]($(w_1 + w_2 = 8 + 8 = 16)$) i [2, 3]($(w_2 + w_3 = 8 + 7 = 15)$).

Primjer 2

solve(14, 15, [5, 5, 6, 6])

U ovom primjeru zadane su četiri molekule s težinama 5, 5, 6 i 6, te tražimo podskup s ukupnom težinom između 14 i 15, uključivo. Primijetite da je \(15-14 \ge 6-5\). Ne postoji podskup molekula s ukupnom težinom između \(14\) i \(15\), stoga funkcija mora vratiti prazan niz.

Primjer 3

solve(10, 20, [15, 17, 16, 18])

U ovom primjeru zadane su četiri molekule s težinama 15, 17, 16 i 18, te tražimo podskup s ukupnom težinom između 10 i 20, uključivo. Primijetite da je \((20-10 \ge 18-15\)). Svaki podskup koji se sastoji od jednog člana zadovoljava ograničenja, stoga su točni odgovori: [0], [1], [2] i [3].

Podzadatci

- 1. (9 bodova): \(1 \le n \le 100\), \(1 \le w_i \le 100\), \(1 \le u, l \le 1000\), svi \(w_i\) su jednaki.
- 2. (10 bodova): $(1 \le n \le 100)$, $(1 \le w_i, u, l \le 1000)$, te $(\max(w_0, ldots, w_{n-1}) \min(w_0, ldots, w_{n-1}) \le 1)$.
- 3. $(12 \text{ bodova}): (1 \le n \le 100) \text{ te } (1 \le w_i, u, l \le 1000).$
- 4. (15 bodova): (1 le n le 10,000) te $(1 \text{ le w_i,u,l le 10},000\text{)}$.
- 5. (23 boda): $(1 \le n \le 10,000)$ te $(1 \le w_i,u,l \le 500,000)$.
- 6. (31 bod): (1 le n le 200 , 000) te $(1 \text{ le } w_i, u, l < 2^{31} \text{)}$.

Priloženi grader

Priloženi grader učitava ulaz u sljedećem formatu:

- linija 1: brojevi \(n\), \(l\), \(u\).
- linija 2: $\langle (n \rangle)$ brojeva: $\langle (w_0, \lceil dots, w_{n-1} \rangle)$.