

Motivation

We propose a novel approach for embedding novel views in a single JPEG image while preserving the perceptual fidelity View in 2D of the modified JPEG image and the restored novel views. User B View in 3D Embedding process different angles Restoration process Restoration Net

Our approach can embed an MPI into a JPEG image, and then share it on social networks. With our restoration network (as a plugin), users can view image in 3D from different viewpoints. Meanwhile, users without our restoration network can still view this image as an ordinary 2D image.

User C

Summary

- We propose the first dedicated model that can embed MPIs in JPEG images.
- adversarial training introduce and frequency domain loss to suppress highfrequency artifacts in the embedding image.
- Our system can embed MPIs in JPEG images in nearly-imperceptible form and restore highfidelity novel views synthesis. Moreover, our system is robust to a range of image manipulations such as JPEG compression, color adjusting, and cropping.

Embedding Novel Views in a Single JPEG Image

Yue Wu* Guotao Meng* Qifeng Chen The Hong Kong University of Science and Technology

Method

The framework of the proposed method. First, the features of the RGB layers, the alpha layers, and the reference image are fused to feed into the embedding network to generate the embedding image. Subsequently, the embedding image is compressed and altered. Later the restoration network decodes the embedding image into MPIs. Finally, the novel views can be rendered from different viewpoints with the restored MPIs.

The effectiveness of our proposed loss functions

Without the freq loss and the adv loss, the embedding image has evident artifacts.

Quantitative Result

	Stereo-Mag [32]				PB-MPI [21]							
	Embedding			Render			Embedding			Render		
	$SSIM \!\!\uparrow$	PSNR↑	LPIPS↓	SSIM↑	PSNR↑	$LPIPS\!\downarrow$	SSIM↑	PSNR↑	$LPIPS\!\downarrow$	SSIM↑	PSNR↑	LPIPS↓
UNet	0.8830	25.644	0.2654	0.8490	22.676	0.2717	0.8619	26.005	0.2783	0.8016	21.869	0.3057
ResUNet	0.8229	25.780	0.3763	0.8931	24.326	0.2169	0.7871	25.565	0.3785	0.8441	23.071	0.2614
Video Snapshot [34]	0.7939	30.395	0.1007	0.8703	27.066	0.1732	0.7705	30.305	0.1045	0.8417	25.885	0.2553
Ours w/o GAN	0.8661	32.884	0.1832	0.9664	35.174	0.0637	0.9537	36.529	0.1215	0.9393	30.435	0.1107
Ours w/o Render	0.9688	33.998	0.0926	0.9492	32.301	0.1137	0.9695	37.650	0.0667	0.8912	27.497	0.1845
Ours w/o Frequency	0.7970	30.911	0.2844	0.9773	38.105	0.0509	0.7983	27.796	0.2349	0.9513	30.831	0.0948
Ours	0.8941	34.616	0.1736	0.9750	36.683	0.0535	0.9593	36.736	0.0951	0.9533	32.840	0.0951

The comparison of the quality of the embedding images and the rendered novel views.

SICCOVIRTUAL

Qualitative Result

The results of the synthesized images and the difference maps.

Quantitative Result

	SSIM/PSNR	Speed (s)	Model (M)		Model (M)	Recover MPI (s)	Render (s)
LDI	0.8426/25.735	42.3	438	SynSin [28]	273	-	0.077
Two views (PNG)	0.9016/27.639	0.448	264	S-MPI [24]	167	0.692	0.706
Ours (PNG)	0.8953/27.198	0.017	6.3	Stereo [32] PB [21]	185 524	0.427 2.483	0.441 2.497

The comparison between our method and LDI in terms of render quality.

		Render	
	SSIM↑	PSNR↑	LPIPS↓
SynSin [28]	0.7851	24.078	0.2016
S-MPI [24]	0.8084	23.837	0.1905
Ours	0.8810	26.732	0.1507

The first column is the model size. The second column is the inference time for generating single MPI. The third column is the time for rendering a single view.

We compare our method with state-of-the-art single image view synthesis methods. The results demonstrate that embedding the novel views into a single image produces much better results than single image view synthesis.