HW₁

written by Seong-Min, Han (20221060)

Due: AM 08:00, March 8, 2022

1. Solve the Laplace equation for a 1D structure.

Length: Supplied by users

Boundary conditions (Dirichlet boundary conditions at both ends): Supplied by users

Mesh: Invent a clever way to build a mesh (non-equidistant grid points)

HW1의 경우, MATLAB으로 구현했습니다.

- region

mesh에 따라 region을 3개로 나누었고, 전체 구조는 3 / 2 / 1 / 1 / 2 / 3 으로 대칭형 구조입니다.

re	gion1	region2	region3	region3	region2	region1

L	200 nm	
region1	50 nm	
region2	30 nm	
region3	20 nm	

- mesh

uniform mesh가 아닌 중앙으로 갈수록 narrow 해지는 형태이며 첫 번째 mesh를 기준으로 3개로 나누었습니다. dx1을 기준으로 dx2 = dx1/5, dx3 = dx1/10으로 설정했습니다.

dx1	10 nm	
dx2	2 nm	
dx3	1 nm	

- node / interface

먼저 각 영역을 mesh로 나누어서 interface로 설정하였습니다. 4개의 interface로 나누었습니다.

interface1	region1 / dx1 + 1	6
interface2	interface1 + region2 / dx2	21
interface4	interface2 + 2*(region3 / dx3)	61
interface5	interface4 + region2 / dx2	86

총 node의 개수는 N = 2*(region1/dx1 + region2/dx2 + region3/dx3)+1 = 81로 설정했습니다.

- Matrix (A, b, phi)

b matrix의 경우 Dirichlet boundary conditions을 고려해 b[1]=0, b[N]=1로 나머지 값은 0으로 설정하였습니다. A matrix의 경우, (1,1)과 (N,N)의 값은 1로 설정하고 (i-1, i), (i, i). (i+1, i)의 행렬의 값은

$$\frac{\phi_{i+1}-\phi_i}{x_{i+1}-x_i}-\frac{\phi_i-\phi_{i-1}}{x_i-x_{i-1}}=0 \text{ 이므로 } \frac{\phi_{i+1}}{x_{i+1}-x_i}-(\frac{1}{x_{i+1}-x_i}+\frac{1}{x_i-x_{i-1}})\phi_i+\frac{\phi_{i-1}}{x_i-x_{i-1}}=0$$
으로 정리할 수 있습니다.

region1	$\frac{\phi_{i+1}}{dx^{1}} - (\frac{1}{dx^{1}} + \frac{1}{dx^{1}})\phi_{i} + \frac{\phi_{i-1}}{dx^{1}}$
interface1	$\left rac{\phi_{i+1}}{dx^2} - \left(rac{1}{dx^1} + rac{1}{dx^2} ight) \phi_i + rac{\phi_{i-1}}{dx^1} \right $
region2	$\frac{\phi_{i+1}}{dx^2} - (\frac{1}{dx^2} + \frac{1}{dx^2})\phi_i + \frac{\phi_{i-1}}{dx^2}$
interface2	$\frac{\phi_{i+1}}{dx^3} - (\frac{1}{dx^3} + \frac{1}{dx^2})\phi_i + \frac{\phi_{i-1}}{dx^2}$
region3	$\frac{\phi_{i+1}}{dx^3} - (\frac{1}{dx^3} + \frac{1}{dx^3})\phi_i + \frac{\phi_{i-1}}{dx^3}$
interface4	$\left[rac{\phi_{i+1}}{dx^2} - (rac{1}{dx^2} + rac{1}{dx^3})\phi_i + rac{\phi_{i-1}}{dx^3} ight]$
region2	$ \frac{\phi_{i+1}}{dx^2} - (\frac{1}{dx^2} + \frac{1}{dx^2})\phi_i + \frac{\phi_{i-1}}{dx^2} $
interface5	$\frac{\phi_{i+1}}{dx^{1}} - (\frac{1}{dx^{1}} + \frac{1}{dx^{2}})\phi_{i} + \frac{\phi_{i-1}}{dx^{2}}$
region1	$\frac{\phi_{i+1}}{dx^{1}} - (\frac{1}{dx^{1}} + \frac{1}{dx^{1}})\phi_{i} + \frac{\phi_{i-1}}{dx^{1}}$

각 region과 interface를 다음과 같이 나타낼 수 있었고, 위 값을 대입하여 A matrix를 구성했습니다. $\phi = A^{-1}b$ 로 역행렬을 구해 position에 따른 potential 값을 구했습니다.

- Result

좌측그래프는 전체 영역에 대한 결과그래프, 우측 그래프는 좌측 절반 영역에 대한 결과그래프입니다. 결과 그래프를 통해 non-equidistant grid point로 mesh가 잘 설정되어있는 것을 확인할 수 있었습니다.