Semantics and Verification

Lecture 4

23 February 2010

Overview

Last lecture:

Behavioral equivalences: strong bisimilarity

This lecture:

- Weak bisimilarity
- Introduction to Concurrency Workbench

Next lecture:

Hennessy-Milner logic

Behavioral Equivalences: Weak Bisimilarity

- Strong Bisimilarity
- Weak Bisimilarity
- Case Study: Simple Mutual Exclusion Algorithm

Behavioral Equivalences (R)

Main Idea

Two processes are behaviorally equivalent if and only if an external observer cannot tell them apart.

- black-box experiments

Strong Bisimilarity (R)

Let $(Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$ be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s',t') \in R$
- if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $(s', t') \in R$.

Strong Bisimilarity

Two processes $p_1, p_2 \in Proc$ are strongly bisimilar $(p_1 \sim p_2)$ if and only if there exists a strong bisimulation R such that $(p_1, p_2) \in R$.

 $\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$

Properties

Strong Bisimilarity is a Congruence for All CCS Operators

Let *P* and *Q* be CCS processes such that $P \sim Q$. Then

- $\alpha.P \sim \alpha.Q$ for each action $\alpha \in Act$
- $P + R \sim Q + R$ and $R + P \sim R + Q$ for each CCS process R
- $P \mid R \sim Q \mid R$ and $R \mid P \sim R \mid Q$ for each CCS process R
- $P[f] \sim Q[f]$ for each relabelling function f
- $P \setminus L \sim Q \setminus L$ for each set of labels L.

Following Properties Hold for any CCS Processes P, Q and R

• $P+Q\sim Q+P$

P | Nil ∼ P

 \bullet $P \mid Q \sim Q \mid P$

• $(P+Q)+R \sim P+(Q+R)$

• $P + Nil \sim P$

• $(P \mid Q) \mid R \sim P \mid (Q \mid R)$

Example

Buffer of Capacity 1

$$B_0^1 \stackrel{\text{def}}{=} in.B_1^1$$

 $B_1^1 \stackrel{\text{def}}{=} \overline{out}.B_0^1$

Buffer of Capacity n

$$B_0^n \stackrel{\text{def}}{=} in.B_1^n$$

 $B_i^n \stackrel{\text{def}}{=} in.B_{i+1}^n + \overline{out}.B_{i-1}^n$ for $0 < i < n$
 $B_n^n \stackrel{\text{def}}{=} \overline{out}.B_{n-1}^n$

Example

Buffer of Capacity 1

$$B_0^1 \stackrel{\text{def}}{=} in.B_1^1$$

 $B_1^1 \stackrel{\text{def}}{=} \overline{out}.B_0^1$

Buffer of Capacity n

$$B_0^n \stackrel{\text{def}}{=} in.B_1^n$$

$$B_i^n \stackrel{\text{def}}{=} in.B_{i+1}^n + \overline{out}.B_{i-1}^n \quad \text{for } 0 < i < n$$

$$B_n^n \stackrel{\text{def}}{=} \overline{out}.B_{n-1}^n$$

Example (contd.)

Theorem

For all natural numbers n: $B_0^n \sim \underbrace{B_0^1 \mid B_0^1 \mid \dots \mid B_0^1}_{n \text{ times}}$

Proof.

Construct the following binary relation where $i_1, i_2, ..., i_n \in \{0, 1\}$.

$$R = \{ (B_i^n, B_{i_1}^1 | B_{i_2}^1 | \cdots | B_{i_n}^1) | \sum_{j=1}^n i_j = i \}$$

- $\bullet \ (B_0^n, \ B_0^1 \, | \, B_0^1 \, | \cdots \, | \, B_0^1) \in R$
- R is a strong bisimulation

Strong Bisimilarity Weak Bisimilarity Case Study

Properties of strong bisimilarity

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like
 - $P \mid Q \sim Q \mid P$
 - P | Nil ∼ P
 - $(P | Q) | R \sim Q | (P | R)$
 - ...

Question

Should we look any further???

Problems with Internal Actions

Question

Does $a.\tau.Nil \sim a.Nil$ hold?

Problems with Internal Actions

Question

Does $a.\tau.Nil \sim a.Nil$ hold?

NO!

Problem

Strong bisimilarity does not abstract away from τ actions.

Weak Transition Relation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Definition of Weak Transition Relation

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

- If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions.
- If $a = \tau$ then $s \stackrel{\tau}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions.

Strong Bisimilarity Weak Bisimilarity Case Study

Weak Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Weak Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$ (including τ):

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\Longrightarrow} t'$ for some t' such that $(s', t') \in R$
- if $t \stackrel{a}{\longrightarrow} t'$ then $s \stackrel{a}{\Longrightarrow} s'$ for some s' such that $(s', t') \in R$.

Weak Bisimilarity

Two processes $p_1, p_2 \in Proc$ are weakly bisimilar $(p_1 \approx p_2)$ if and only if there exists a weak bisimulation R such that $(p_1, p_2) \in R$.

$$\approx = \bigcup \{R \mid R \text{ is a weak bisimulation}\}\$$

Weak Bisimulation Game

Definition

All the same except that

• defender can now answer using $\stackrel{a}{\Longrightarrow}$ moves.

The attacker is still using only $\stackrel{a}{\longrightarrow}$ moves.

Theorem

- States s and t are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t).
- States s and t are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

Properties of weak bisimilarity

- an equivalence relation
- the largest weak bisimulation
- validates lots of natural laws, e.g.

•
$$P + \tau . P \approx \tau . P$$

•
$$a.(P + \tau.Q) \approx a.(P + \tau.Q) + a.Q$$

•
$$P + Q \approx Q + P$$
 $P \mid Q \approx Q \mid P$ $P + Nil \approx P$...

- \bullet strong bisimilarity is included in weak bisimilarity: $\sim \, \subseteq \, \approx$
- abstracts from τ loops:

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha.P \approx \alpha.Q$ for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- P[f] ≈ Q[f] for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha.P \approx \alpha.Q$ for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

What about choice?

 τ .a.Nil \approx a.Nil but τ .a.Nil + b.Nil $\not\approx$ a.Nil + b.Nil

Conclusion

Weak bisimilarity is **not** a congruence for CCS.

Case Study: Simple Mutual Exclusion Algorithm

Two concurrent processes, P1 and P2, communicate via a shared variable k to avoid being at the same time in the critical section:

```
P1:
                         P2:
while true do
                         while true do
  if k=1 then
                         if k=2 then
    enter critical section
                              enter critical section
    exit critical section
                             exit critical section
    k := 2
                             k := 1
  endif
                           endif
endfor
                         endfor
```

CCS Model of the Algorithm

Boolean variable k

– can be read and written with value 1 or 2:

$$K1 \stackrel{\text{def}}{=} \overline{kr1}.K1 + kw1.K1 + kw2.K2$$

 $K2 \stackrel{\text{def}}{=} \overline{kr2}.K2 + kw1.K1 + kw2.K2$

Process P1

$$P1 \stackrel{\text{def}}{=} kr2.P1 + kr1.P12$$

 $P12 \stackrel{\text{def}}{=} enter1.exit1.\overline{kw2}.P1$

Process P2

$$P2 \stackrel{\text{def}}{=} kr1.P2 + kr2.P22$$

 $P22 \stackrel{\text{def}}{=} enter2.exit2.\overline{kw1}.P2$

Whole algorithm

 $Impl \stackrel{\text{def}}{=} (P1|P2|K1) \setminus \{kr1, kr2, kw1, kw2\}$

Verification Question

$$Spec \stackrel{\text{def}}{=} enter1.exit1.Spec + enter2.exit2.Spec$$

Question

$$\textit{Impl} \stackrel{?}{\stackrel{?}{pprox}} \textit{Spec}$$

Will use Concurrency Workbench for model checking.

(But could also have done it by hand.)

CCS CWB

$$K1 \stackrel{\text{def}}{=} \overline{kr1}.K1 + kw1.K1 + kw2.K2$$

$$\text{agent K1} = 'kr1.K1 + kw1.K1 + kw2.K2;$$

$$K2 \stackrel{\text{def}}{=} \overline{kr2}.K2 + kw1.K1 + kw2.K2$$

$$\text{agent K2} = 'kr2.K2 + kw1.K1 + kw2.K2;$$

$$Impl \stackrel{\text{def}}{=} (P1|P2|K1) \setminus \{kr1, kr2, kw1, kw2\}$$

$$\text{set L} = \{kr1, kr2, kw1, kw2\};$$

$$\text{agent Impl} = (P1 \mid P2 \mid K1) \quad L;$$

(Rest see transcript.)