Chocolate bar ratings 2022

The chocolate rating dataset was downloaded from kaggle

https://www.kaggle.com/datasets/nyagami/chocolate-bar-ratings-2022

(https://www.kaggle.com/datasets/nyagami/chocolate-bar-ratings-2022). The original data was scraped from flavours of cacao http://flavorsofcacao.com/chocolate_database.html

(http://flavorsofcacao.com/chocolate_database.html). The dataset comprises various chocolate bars with their ingredients. These determine the overall taste and flavour of the chocolates, which consequently affect their ratings.

The chocolate reviews are between 2006 and 2022. The dataset was last updated on June 26, 2022.

Rating Scale

The ratings are between 1 and 5 with 1 considered the lowest rating and 5 as the highest rating possible.

4.0 - 5.0 = Outstanding 3.5 - 3.9 = Highly Recommended 3.0 - 3.49 = Recommended 2.0 - 2.9 = Disappointing 1.0 - 1.9 = Unpleasant

Review Guide

Ratings assigned to the chocolate bars are based on the following aspects:

Flavor is the most important component of the Flavors of Cacao ratings. Diversity, balance, intensity and purity of flavors are all considered. Texture has a great impact on the overall experience and it is also possible for texture-related issues to impact flavour. Aftermelt is the experience after the chocolate has melted. Higher quality chocolate will linger and be long-lasting and enjoyable. Overall Opinion is really where the ratings reflect a subjective opinion. Other Notes- These are topics that may be interesting to discuss but may not necessarily impact the flavour or experience. For example, appearance, snap, packaging, cost etc.

Variables

There are ten variables in the dataset as follows:

REF (reference number). The highest REF numbers were the last entries made. They are not unique values Company name or manufacturer Company location (Country) Date of review of the chocolate ratings Origin of bean (Country) Specific bean origin or bar name Cocoa percent Ingredients: Represents the number of ingredients in the chocolate; B = Beans, S = Sugar, S* = Sweetener other than white cane or beet sugar, C = Cocoa Butter, V = Vanilla, L = Lecithin, Sa = Salt) Most memorable characteristics Rating

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from pyecharts.charts import Map
from pyecharts import options as opts

from wordcloud import WordCloud
from PIL import Image
import seaborn as sns
```

In [3]:

```
df = pd.read_csv('Chocolate bar ratings 2022.csv', encoding = 'utf-8')
```

In [4]:

df. head()

Out[4]:

	REF	Company (Manufacturer)	Company Location	Review Date	Country of Bean Origin	Specific Bean Origin or Bar Name	Cocoa Percent	Ingredients	N
0	2454	5150	U.S.A.	2019	Tanzania	Kokoa Kamili, batch 1	76%	3- B,S,C	
1	2454	5150	U.S.A.	2019	Madagascar	Bejofo Estate, batch 1	76%	3- B,S,C	С
2	2458	5150	U.S.A.	2019	Dominican Republic	Zorzal, batch 1	76%	3- B,S,C	
3	2542	5150	U.S.A.	2021	Fiji	Matasawalevu, batch 1	68%	3- B,S,C	
4	2542	5150	U.S.A.	2021	India	Anamalai, batch 1	68%	3- B,S,C	m
4									•

1. Information about Review Date

In [5]:

```
# To count the number of reviews according to years
review_date = df['Review Date'].value_counts().sort_index()
review_date
```

Out[5]:

```
2006
         62
2007
         73
2008
         92
2009
        123
2010
        110
2011
        163
2012
        194
2013
        183
2014
        247
2015
        284
2016
        217
2017
        105
2018
        228
2019
        193
2020
         81
2021
        175
2022
         58
```

Name: Review Date, dtype: int64

In [6]:

```
# Plot the trend of review date
sns. set(rc={'figure.figsize':(15,10)})
review_date.plot()
```

Out[6]:

<AxesSubplot:>

From this data, it can be inferred that chocolate bars were reviewed for each of the years from 2006 to 2022. It appears that the number of reviews has generally first increased and then decreased over time. The highest number of reviews was in 2014 with 247 reviews, and the lowest number of reviews was in 2017 with 105 reviews. It seems that the trend of reviews is increasing until 2016, then it drops significantly in 2017, but it increases again until 2020, then it drops again in 2021 and 2022. This could indicate that the chocolate industry is fluctuating and the number of reviews is not a stable indicator of the market demand or the popularity of the product.

2. Country of Bean Origin

In [7]:

In [8]:

```
# To check the country names
df['Country of Bean Origin'].unique()
```

Out[8]:

```
array(['Tanzania', 'Madagascar', 'Dominican Rep.', 'Fiji', 'India',
    'Venezuela', 'Uganda', 'Bolivia', 'Peru', 'Panama', 'Brazil',
    'Ecuador', 'Colombia', 'Burma', 'Papua New Guinea', 'Cuba', 'Togo',
    'São Tomé and Príncipe', 'Mexico', 'Indonesia', 'Vanuatu',
    'Trinidad', 'Vietnam', 'Nicaragua', 'Ghana', 'Belize', 'Blend',
    'Jamaica', 'Grenada', 'Guatemala', 'Honduras', 'Costa Rica',
    'Haiti', 'Congo', 'Philippines', 'Solomon Islands', 'Malaysia',
    'Sri Lanka', "Côte d'Ivoire", 'Gabon', 'Taiwan', 'Puerto Rico',
    'Martinique', 'Saint Lucia', 'Australia', 'Liberia',
    'Sierra Leone', 'Bali', 'United States', 'Nigeria',
    'St. Vin. and Gren.', 'Thailand', 'Tobago', 'Sumatra',
    'El Salvador', 'Cameroon', 'Samoa', 'China', 'Sulawesi',
    'Suriname', 'DR Congo'], dtype=object)
```

In [9]:

```
# To prepare the data of country name and counts of bean origin for the map
origin = df['Country of Bean Origin'].value_counts()
df_origin = origin.to_frame()
df_origin= df_origin.reset_index(drop=False)
df_origin=df_origin.rename(columns={'index':'Country Name'})
df_origin[0:30]
```

Out[9]:

	Country Name	Country of Bean Origin		
0	Venezuela	254		
1	Peru	248		
2	Dominican Rep.	234		
3	Ecuador	223		
4	Madagascar	184		
5	Blend	156		
6	Nicaragua	103		
7	Brazil	81		
8	Colombia	81		
9	Tanzania	81		
10	Bolivia	81		
11	Belize	78		
12	Vietnam	74		
13	Guatemala	66		
14	Mexico	56		
15	Papua New Guinea	50		
16	Costa Rica	43		
17	Trinidad	43		
18	Ghana	42		
19	India	38		
20	United States	33		
21	Haiti	32		
22	Honduras	27		
23	Jamaica	25		
24	Philippines	24		
25	Uganda	21		
26	Indonesia	21		
27	Grenada	19		
28	São Tomé and Príncipe	17		
29	Fiji	16		

In [10]:

```
# Draw the Choropleth Map for Country of Bean Origin
origin_map = (
    Map(init_opts=opts.InitOpts(width="600px",height='350px'))
    .add("Origin", [list(z) for z in zip(df_origin['Country Name'],df_origin['Country of Bean Origin'],
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Country of Bean Origin"),
        visualmap_opts=opts.VisualMapOpts(max_=260),
    )
)
origin_map.render_notebook()
```

Out[10]:

From the data and map, it can be inferred that chocolate beans are planted in a wide range of the world, including South America, North America, Africa, Asian and Austrailia. The majority of chocolate beans are sourced from South America such as Venezuela, Peru, and Ecuador. It is also worth noting that there is also a "Blend" option that accounts for 156 beans, which could mean that the chocolate industry is using a combination of beans from different countries to create a unique flavor. This data suggests that a few countries are the major producers of chocolate beans and they are the main suppliers to the market.

3. Company Location Distribution

In [11]:

```
# To find the top 10 companies which produce most chocolate bars,
# and classify the remaining companies into the "others" category,
# and then draw a pie chart
company_loc = df['Company Location'].value_counts()
df_company_loc = company_loc.to_frame()
df_company_loc[0:30]
```

Out[11]:

Company Lo	ocation
------------	---------

	Company Location		
United States	1168		
France	179		
Canada	178		
United Kingdom	134		
Italy	79		
Belgium	72		
Ecuador	58		
Australia	53		
Switzerland	44		
Germany	43		
Spain	36		
Denmark	34		
Venezuela	31		
Japan	31		
Colombia	30		
Austria	30		
New Zealand	27		
Brazil	27		
Hungary	26		
Peru	23		
Netherlands	21		
Madagascar	17		
Vietnam	16		
Singapore	15		
Dominican Rep.	11		
Scotland	11		
Korea	11		
Mexico	10		
Guatemala	10		
Taiwan	10		

In [12]:

```
# To calculate the number of "other" companies
sum_company = df_company_loc['Company Location'].sum()
sum_top10=0
for i in range(10):
    sum_top10+=df_company_loc['Company Location'][i]

others = sum_company-sum_top10
others
```

Out[12]:

580

In [13]:

```
# Insert the 'other' category into the dataframe
df_loc_top10 = df_company_loc.iloc[0:10]
df_loc_top10=df_loc_top10.reset_index(drop=False)
df_loc_top10=df_loc_top10.rename(columns={'index':'Country Name'})
df_loc_top10.loc[10] = ['Other', others]
df_loc_top10
```

Out[13]:

Country Name Company Location

0	United States	1168
1	France	179
2	Canada	178
3	United Kingdom	134
4	Italy	79
5	Belgium	72
6	Ecuador	58
7	Australia	53
8	Switzerland	44
9	Germany	43
10	Other	580

In [14]:

```
# Plot the pie chart of company location distribution
category_names=df_loc_top10['Country Name']
sizes=df_loc_top10['Company Location']
plt.figure(figsize=(5,5),dpi=300)
custom_colors=['#ffcccc','#ffdd59','#fc5c65','#26de81','#fed330','#a55eea','#48dbfb','#ffa801','#7be

plt.pie(sizes,textprops={'fontsize':8},startangle=90,colors=custom_colors,autopct = lambda p: formaplt.legend(bbox_to_anchor=(1.1,1.05),fontsize=8,labels=category_names)
plt.title("Company location distribution",fontsize=10)
plt.show()
```

Company location distribution

In [15]:

Out[15]:

From the pie chart and the map, we can see that the majority of chocolate bar companies are located in the United States, with 1168 companies, taking up almost half of the total companies. Other countries with a significant number of companies include France, Canada, and the United Kingdom. The rest of the countries on the list have fewer companies, with Italy, Belgium, Ecuador and Australia having a notable number of companies. It appears that the United States and some European countries are the major producers of chocolate bars. This suggests that the chocolate industry is heavily concentrated in some specific developed countries.

4. Rating Distribution

In [16]:

```
# To count the number of ratings according to the scores
rating = df['Rating'].value_counts().sort_index()
rating
```

Out[16]:

```
1.00
          4
1.50
         10
1.75
          3
2.00
         33
2.25
         17
2.50
        169
2.75
        339
3.00
        534
3.25
        474
3.50
        584
3.75
        306
4.00
        115
Name: Rating, dtype: int64
```

In [17]:

```
# To calculate the average rating of the chocolate bars.
df['Rating'].mean()
```

Out[17]:

3. 198319165378671

In [18]:

```
# To plot the rating distribution plt.bar(rating.index, rating.values, width=0.2)
```

Out[18]:

<BarContainer object of 12 artists>

The average rating for different brands of chocolate is around 3.2, which indicates that the majority of the brands of chocolate are generally considered to be satisfactory by the majority of raters. Additionally, it can also be seen that most of the ratings are distributed within the range of 2.75 to 3.75, which implies that there is a relatively small spread in the ratings among different brands of chocolate and that the majority of raters have similar opinions about these brands of chocolate bars. Furthermore, the fact that ratings under 2.25 occupy a very small portion of the ratings and there are no ratings higher than 4.0 suggests that the majority of chocolate bars are perceived as being of similar quality, and that there is a lack of exceptional products. This could mean that the chocolate industry is a competitive industry and most of the time the difference between chocolate bars are minor.

5. Manufacturer for the Recommanded Chocolate

In [19]:

```
# To find out the average rating of chocolate bars from each company df_grouped=df.groupby(df['Company (Manufacturer)'])['Rating'].mean()
manufacturer_recommended=df_grouped.sort_values(ascending=False)
manufacturer_recommended
```

Out[19]:

4.000000
3.875000
3.875000
3.812500
3. 791667
2.000000
2.000000
1.875000
1.875000
1.000000
1.000000

In [20]:

```
# To plot the top 20 companies with the highest average rating of chocolate
ax_manufacturer_recommended = manufacturer_recommended[0:20].plot(
    kind='bar',
    figsize=(12, 10),
    title="Manufacturer Recommended",
    ylim=(3.4, 4.1),
    legend=False,
    color='#ffcccc',
    fontsize=10)
plt.show()
```


In [21]:

df_manufacturer = manufacturer_recommended.to_frame()

In [22]:

```
df_manufacturer_recommand = df_manufacturer[df_manufacturer['Rating']>=3.0]
df_manufacturer_recommand
```

Out[22]:

Rating

Company (Manufacturer)

Tobago Estate (Pralus) 4.000000

Ocelot 3.875000

Heirloom Cacao Preservation (Zokoko) 3.875000

Matale 3.812500

Patric 3.791667
...

Baiani 3.000000

Millcreek Cacao Roasters 3.000000

Sacred 3.000000

By Cacao 3.000000

Atypic 3.000000

411 rows × 1 columns

In [23]:

```
# to see the location of company whose chocolates are recommended
manufacturer_list = df_manufacturer_recommand.index.to_list()
df_filtered = df[df['Company (Manufacturer)'].isin(manufacturer_list)].drop_duplicates(subset='Company)
```

In [24]:

```
location_counts = df_filtered['Company Location'].value_counts()
location_counts=location_counts.to_frame()
location_counts
```

Out[24]:

	Company Location
United States	178
Canada	22
France	17
United Kingdom	16
Japan	10
Italy	10
Brazil	10
Switzerland	10
Australia	10
Ecuador	9
Germany	9
Peru	8
Belgium	8
Spain	7
Colombia	6
New Zealand	6
Korea	5
Netherlands	5
Mexico	5
Madagascar	4
Sweden	4
Taiwan	3
Vietnam	3
Venezuela	3
Austria	3
Dominican Rep.	3
Finland	2
Denmark	2
Hungary	2
Costa Rica	2
Argentina	2
Scotland	2
Singapore	2

Company Location

	Company Location
Philippines	2
Nicaragua	2
Russia	2
Bolivia	1
Czech Republic	1
Suriname	1
Fiji	1
Iceland	1
Chile	1
Ireland	1
Lithuania	1
Poland	1
United Arab Emirates	1
Honduras	1
Saint Lucia	1
Thailand	1
Israel	1
Guatemala	1
Norway	1
El Salvador	1

In [25]:

```
# Draw a bar chart of the location of recommended company
ax_location_recommended = location_counts[0:20].plot(
    kind='bar',
    figsize=(12, 10),
    title="Location of Recommended Manufacturer",
    ylim=(0, 180),
    legend=False,
    color='#778beb',
    fontsize=10)

# plt.tight_layout()
plt.show()
```


It can be inferred that a majority of the recommended chocolate bars come from the United States, with 178 out of 365 total. Canada, France, and the United Kingdom also have a notable presence in the list with 22, 17, and 16 recommended chocolate bars respectively. Additionally, it can be inferred that the data has a relatively even distribution among other countries, with several of them having between 3 to 10 recommended chocolate bars. Some countries like Bolivia, Czech Republic, Suriname, Fiji, Iceland, Chile, Ireland, Lithuania, Poland, United Arab Emirates, Honduras, Saint Lucia, Thailand, Israel, Guatemala, Norway, and El Salvador have only one chocolate bar recommended. This suggests that the recommendations for chocolate bars are come from a diverse range of countries and regions, but are dominated by the United States.

6. Facts about Cocoa Percentage

In [26]:

```
# To transform the str type into float type in column 'Cocoa Percent'
cocoa_percent=df['Cocoa Percent'].str.strip('%').astype(float) / 100
df['Cocoa Percent New'] = cocoa_percent
df
```

Out[26]:

	REF	Company (Manufacturer)	Company Location	Review Date	Country of Bean Origin	Specific Bean Origin or Bar Name	Cocoa Percent	Ingredients
0	2454	5150	United States	2019	Tanzania	Kokoa Kamili, batch 1	76%	3- B,S,C
1	2454	5150	United States	2019	Madagascar	Bejofo Estate, batch 1	76%	3- B,S,C
2	2458	5150	United States	2019	Dominican Rep.	Zorzal, batch 1	76%	3- B,S,C
3	2542	5150	United States	2021	Fiji	Matasawalevu, batch 1	68%	3- B,S,C
4	2542	5150	United States	2021	India	Anamalai, batch 1	68%	3- B,S,C
2583	1205	Zotter	Austria	2014	Blend	Raw	80%	4- B,S*,C,Sa
2584	1996	Zotter	Austria	2017	Colombia	APROCAFA, Acandi	75%	3- B,S,C
2585	2036	Zotter	Austria	2018	Blend	Dry Aged, 30 yr Anniversary bar	75%	3- B,S,C
2586	2170	Zotter	Austria	2018	Congo	Mountains of the Moon	70%	3- B,S,C
2587	2170	Zotter	Austria	2018	Belize	Maya Mtn	72%	3- B,S,C

2588 rows × 11 columns

In [27]:

To see the average number of cocoa percentage for all chocolate df['Cocoa Percent New'].mean()

Out[27]:

0.7161302163833236

In [28]:

```
# To see the average number of cocoa percentage for highly recommended chocolate df_highly_recommend = df.loc[df['Rating']>=4.0] df_highly_recommend['Cocoa Percent New'].mean()
```

Out[28]:

0.707565217391305

In [29]:

```
# To see the average number of cocoa percentage for unpleasant chocolate df_unpleasant = df.loc[df['Rating']<2.0] df_unpleasant['Cocoa Percent New'].mean()
```

Out [29]:

0.8429411764705881

In [30]:

```
# Draw a scatter plot of the ratings
X = [[number] for number in df['Rating']]
y=df['Cocoa Percent New']
plt. scatter(X, y)
```

Out[30]:

<matplotlib.collections.PathCollection at 0x199a9a339d0>

From the data of average cocoa percentage and the scatter plot, it can be inferred that the average cocoa percentage for all chocolate bars is 71.6%. However, chocolate bars that are rated as unpleasant have a higher average cocoa percentage of 84.3%. On the other hand, chocolate bars that are highly recommended have a lower average cocoa percentage of 70.8%. The majority of the cocoa percentage falls between 60% to 90%.

Furthermore, it can be inferred that chocolate bars with a rating below 3.75 tend to have a higher cocoa percentage, with 100% cocoa chocolate bars appearing in this group. However, chocolate bars with a rating of more than 3.75 tend to have a cocoa percentage mostly between 60%-80%, with the highest cocoa percentage being 90%. This suggests that a higher cocoa percentage does not necessarily correspond to higher ratings. It could be that the chocolate bars with a higher cocoa percentage tend to have a more intense and bitter taste, which some people may not prefer. On the other hand, chocolate bars with a cocoa percentage of 60%-80% tend to have a well-balanced, nuanced flavor profile with a focus on rich, natural flavors, which is why they are highly recommended.

Overall, the data suggests that while a higher cocoa percentage may be associated with a more intense and bitter taste, it is not the only factor that affects the taste and rating of a chocolate bar. Other factors such as the origin of cocoa beans, the manufacturing process, and the balance of flavors also play a crucial role in determining the taste and quality of a chocolate bar.

7. the Most Memorable Characteristics of Recommanded and Disappointing Chocolate

In [31]:

```
# Define the recommended chocolate bar as the ones with rating greater or equal to 3.0,
# and disappointing chocolate with rating less than 3.0
# Then join the words into a string in order to generate wordcloud
df_recommend = df.loc[df['Rating']>=3.0]
df_disappoint = df.loc[df['Rating']<3.0]

string_recommend = ' ,'.join(df_recommend['Most Memorable Characteristics'])
string_disappoint = ' ,'.join(df_disappoint['Most Memorable Characteristics'])</pre>
```

In [32]:

```
# Generate Word Cloud for Recommended Chocolate
chocolate_file = 'chocolate.png'
icon=Image.open(chocolate_file).convert("RGBA")
image_mask=Image.new(mode='RGB', size=icon.size, color=(255, 255, 255))
image_mask.paste(icon, box =icon)

rgb_array=np.array(image_mask)

word_cloud=WordCloud(mask=rgb_array, background_color='white', max_words=500, colormap='copper', contou word_cloud.generate(string_recommend)

plt.figure(figsize=[16,8])

plt.imshow(word_cloud, interpolation='bilinear')
plt.axis('off')
plt.show()
```


In [33]:

```
# Generate Word Cloud for Unpleasant Chocolate
chocolate_file = 'chocolate.png'
icon=Image.open(chocolate_file).convert("RGBA")
image_mask=Image.new(mode='RGB', size=icon.size, color=(255, 255, 255))
image_mask.paste(icon, box =icon)

rgb_array=np.array(image_mask)

word_cloud=WordCloud(mask=rgb_array, background_color='white', max_words=500, colormap='copper', contou word_cloud.generate(string_disappoint)

plt.figure(figsize=[16, 8])

plt.imshow(word_cloud, interpolation='bilinear')
plt.axis('off')
plt.show()
```


From the two wordcloud, it can be inferred that the recommended chocolate bars are typically described as having roasty, nutty, cocoa, creamy, mild, sweet, spicy, and earthy flavors. These terms suggest that the recommended chocolate bars have a rich, complex flavor profile with a balance of sweetness and nuttiness, with a creamy texture and notes of cocoa and spices.

The words used to describe the disappointing chocolate bars are bitter, earthy, sweet, intense, sandy, fatty, sour and vanilla. These terms suggest that the disappointing chocolate bars have a harsh, unbalanced flavor profile with a strong bitter taste and a sandy texture.

The presence of 'sweet' in both recommended and disappointing chocolate bars suggests that sweetness is a common attribute in chocolate bars, but it could be that the sweet in disappointing chocolate bars is not well balanced with other flavors.

In general, the data indicates that the recommended chocolate bars have a well-balanced, nuanced flavor profile with a focus on rich, natural flavors, while the disappointing chocolate bars have a harsh, unbalanced flavor profile with a focus on bitter and sour notes.