

Universidade Federal da Fronteira Sul

Desenvolvimento de um sistema para reconhecimento de objetos utilizando visão computacional

Rodrigo Levinski

rd.levinski@gmail.com

Orientador: Prof. Claunir Pavan, Dr.

Tema

Investigação de técnicas de visão computacional e como consequência o desenvolvimento de um sistema capaz de reconhecer objetos por meio da extração e correspondência de descritores locais . Pretende-se com isso facilitar a tarefa de reconhecimento e identificação de um objeto em ambientes não controlados.

Objetivo geral

Desenvolver um sistema que utilize técnicas de visão computacional para reconhecimento de objetos em ambientes não controlados.

Objetivos específicos

- Identificar técnicas de reconhecimento de objetos em ambientes não controlados;
- Identificar as restrições de cada técnica;
- Desenvolver uma ferramenta para reconhecimento de objetos a partir do processamento de imagens;
- Verificar e validar os resultados obtidos por meio de benchmarks e gráficos.

Justificativa

Facilitar o acesso a um sistema de identificação de objetos.

Esclarecer o funcionamento da visão computacional em sistemas de reconhecimento.

Investigar e apresentar uma técnica para reconhecimento de objetos, e como resultado deste processo desenvolver um sistema para o mesmo fim, tendo em vista o grande número de aplicações para este modelo de sistema.

Delimitação da pesquisa

Este trabalho abrangerá uma investigação de técnicas de modo a descobrir quais oferecem melhores resultados para identificação de objetos em ambientes não controlados.

A partir desta investigação desenvolver um sistema aplicando um método específico para execução do reconhecimento de objetos nesses ambientes adversos.

Os principais autores acerca do tema são:

- David G. Lowe;
- Krystian Mikolajczyk e Douglas C. Schmidt;
- Herbert Bay, Andreas Ess, Tinne Tuytelaars e Luc Van Gool

Descritores locais:

- Correspondência direta entre duas imagens;
- Não necessário um grande conjunto de amostras;
- Invariância quanto a escala, iluminação, rotação e ângulo de visão;
- Representação de partes importantes da imagem;

Encontro de descritores locais conforme SIFT

Processo de cálculo de DoG e construção das oitavas

Máximos e Mínimos locais

Atribuição de orientação

Construção do descritor

Correspondência entre imagens

Metodologia

- 1. Investigação de técnicas e métodos de reconhecimento no âmbito da visão computacional;
- 2. Leituras do material bibliográfico escolhido a partir de uma classificação por relevância;
- 3. Escolha da técnica baseando-se no que foi lido;
- 4. Proposta do software;
- 5. Validação de resultados;

Cronograma

Tarefa	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul
Revisão bibliográfica	X	Х	X	Х								
Estudo dos artigos			Х	Х								
Definição técnica				Х	Х							
Estudo técnica				Х	Χ	Х						
Elaboração do projeto				Х	Χ							
Defesa do projeto					Χ							
Implementação do sistema						Х	Х	Χ	Х	Х		
Testes							Х	Χ	Х	Х		
Elaboração da monografia							Х	Χ	Х	Х	Х	Х
Defesa final												Х

Resultados esperados

Pretende-se alcançar com este estudo a eficiência na identificação de características chaves de objetos em ambientes de trabalho não controlados, bem como a efetividade do sistema a ser desenvolvido.

Referências

- [1] David G. Lowe. Object recognition from local scale-invariant features. pages 1150–, 1999. URL http://dl.acm.org/citation.cfm?id=850924.851523.
- [2] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004. ISSN 0920-5691.
- [3] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Proceedings of the 7th European Conference on Computer Vision-Part I, ECCV '02, pages 128–142, 40 London, UK, UK, 2002. Springer-Verlag
- [4] J. G. R. Maia. Detecção e reconhecimento de objetos utilizando descritores locais. Maio 2010

Universidade Federal da Fronteira Sul

Desenvolvimento de um sistema para reconhecimento de objetos utilizando visão computacional

Obrigado.

Rodrigo Levinski

rd.levinski@gmail.com

Orientador: Prof. Claunir Pavan, PhD