Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 5 1 (currently amended): A multiple step-sized levels adaptive method for time scaling to synthesize an $S_3[n]$ signal from an $S_1[n]$ signal and an $S_2[n]$ signal, the method comprising:
 - (a) calculating a first magnitude of a cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal according to a first index;
- (b) comparing the first magnitude with a threshold value;
 - (c) if the first magnitude is smaller than the threshold value, calculating a first reference magnitude of the cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal according to a first reference index behind the first index by a first determined number, or calculating a second reference magnitude of the cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal according to a second reference index behind the first index by a second number; and
 - (d) synthesizing the $S_3[n]$ signal by weighting the $S_1[n]$ signal and adding the weighted $S_1[n]$ signal to an $S_4[n]$ signal that lags the $S_2[n]$ by a maximum index adding the $S_4[n]$ signal to the $S_2[n]$ signal in accordance with a maximum index corresponding to a largest magnitude among all of the magnitudes calculated in step (c),
 - wherein the $S_1[n]$ signal has N_1 elements while the $S_2[n]$ signal has N_2 elements, and the $S_3[n]$ signal
- = the $S_1[n]$ signal, where $0 \le n \le$ the maximum index;
 - $= (N_1-n)/(N_1 the maximum index)*S_1[n]+(n the maximum index)/(N_1 the maximum index)*S_4[n the maximum index], where the maximum index <math>\le n \le N_1$;
 - $= S_{\underline{4}}[n- \text{ the maximum index}], \text{ where } N_{\underline{1}} \le n \le N_{\underline{2}} \text{ the maximum index}.$

15

2-3 (cancelled).

5

15

- 4 (original): The method of claim 1 wherein step (c) further comprises:
- (e) setting each of the magnitudes corresponding to indexes between the first index and the first or second reference index to zero.
- 5 (original): The method of claim 1 further comprising:
 - (f) updating the threshold value according to the maximum index.
- 6 (original): The method of claim 1 wherein the $S_1[n]$ signal and the $S_2[n]$ signal are sampled from an $S_1(t)$ signal and an $S_2(t)$ signal respectively.
 - 7 (original): The method of claim 6 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are both derived from an original signal.
 - 8 (original): The method of claim 7 wherein the original signal is an audio signal.
 - 9 (original): The method of claim 7 wherein the original signal is a video signal.
- 10 (original): The method of claim 7 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are identical.
 - 11 (original): The method of claim 7 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are different from each other.
 - 12 (original): The method of claim 1 wherein the second number is equal to one.
 - 13 (original): The method of claim 1 wherein the first determined number is larger than one.

5

10

25

- 14 (currently amended): A multiple step-sized levels adaptive method for time scaling to synthesize an $S_3[n]$ signal from an $S_1[n]$ signal and an $S_2[n]$ signal, the method comprising:
 - (a) delaying the S₁[n] signal by a predetermined number to form an S₅[n] signal;
 - (b) calculating a first magnitude of a cross-correlation function of the $S_1[n]$ signal and $S_5[n]$ signal according to a first index;
 - (c) comparing the first magnitude with a threshold value;
 - (d) if the first magnitude is smaller than the threshold value, calculating a first reference magnitude of the cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal according to a first reference index behind the first index by a first determined number, or calculating a second reference magnitude of the cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal according to a second reference index behind the first index by a second number; and
- (e) synthesizing the S₃[n] signal by weighting the S₁[n] signal and adding the weighted S₁[n] signal to an S₄[n] signal that lags the S₅[n] signal by the predetermined number plus a maximum index adding the S₁[n] signal to the S₂[n] signal in accordance with a maximum index corresponding to a largest magnitude among all of the magnitudes calculated in step (d).
- wherein the $S_1[n]$ signal has N_1 elements while the $S_2[n]$ signal has N_2 elements, and the $S_3[n]$ signal equals:
 - = the $S_1[n]$ signal, where $0 \le n \le$ (the predetermined number + the maximum index);
 - $= (N_1-n)/(N_1-(the predetermined number + the maximum index))*S_1[n]+(n-(the predetermined number + the maximum index))/(N_1-(the predetermined number + the maximum index))*S_4[n-(the predetermined number + the maximum index)], where (the predetermined number + the maximum index) <math display="block"><= n < N_1;$
 - = $S_4[n-(the\ predetermined\ number + the\ maximum\ index)]$, where $N_1 \le n \le (N_2 + the\ predetermined\ number + the\ maximum\ index)$.

15-16 (cancelled).

5

10

- 17 (original): The method of claim 14 wherein step (d) further comprises:
 - (f) setting each of the magnitudes corresponding to indexes between the first index and the first or second reference index to zero.
- 18 (original): The method of claim 14 further comprising:
 - (g) updating the threshold value according to the maximum index.
- 19 (original): The method of claim 14 wherein the second number is equal to one.
- 20 (original): The method of claim 14 wherein the first determined number is larger than one.