the equation

REACTIONS & STOICHIOMETRY

NAI	ИЕ: <u></u>		TIME ALLOWED: 60 MINUTES
	ıl Marl ual Ma		/40 /40
Sect	ion On	e:	Multiple Choice Questions. (10 marks)
1.	0.80	g of s	ulphur trioxide (SO ₃) gas contains
	A.	6.0	X 10 ²¹ atoms of oxygen
	B.	6.0	X 10 ²¹ atoms of sulphur
	C.	1.0	$X 10^{21}$ molecules of gas
	D.	2.4	X 10 ²² molecules of gas.
2.	All of	the fo	ollowing are true relationships except
	A.	PV:	= nRT
	B.	R =	PV/nT
	C.	n =	PV /RT
	D.	PT=	= nRV
3.	The	molar	volume of oxygen, in L, at 1.00 atmosphere and 100°C, is closest to
	A.	30.6	5
	B.	24.	5
	C.	22.4	1
	D.	8.2	
4.		00 litre I gas 2	e sample of a gas X weighs 2.60 g at 27 ⁰ C and 101.3 kPa. Which of the following X be?
	A.	O_2	
	B.	SO ₂	
	C.	CO ₂	2
	D.	F_2	
5.	Whe	n 1.0 ı	mole of Cu_3FeS_3 and 1.0 mole of O_2 are mixed and allowed to react according to

 $2Cu_3FeS_{3(s)} + 7O_{2(g)}$ \rightarrow $6Cu_{(s)} + 2FeO_{(s)} + 6SO_{2(g)}$

- A. no reagent is in excess.
- B. 5 mole of O₂ is in excess.
- C. 5/7 mole of Cu_3FeS_3 is in excess.
- D. 2/7 mole of Cu_3FeS_3 is in excess.
- 6. One possible reaction that occurs when trinitrotoluene (TNT), C₇H₅N₃O₆, explodes is

$$2C_7H_5N_3O_{6(s)} \rightarrow 2C_{(s)} + 12CO_{(g)} + 5H_{2(g)} + 3N_{2(g)}$$

When one mole of TNT explodes the total volume of the gases produced from this reaction, measured at 27 °C and 1.00×10^2 kPa, is **closest** to

- A. 0.249 L
- B. 22.7 L
- C. 249 L
- D. 274 L
- 7. The total concentration of ions in 0.20 mol L^{-1} Al₂(SO₄)₃ is:
 - A. 0.20 mol L⁻¹
 - B. 0.80 mol L⁻¹
 - C. 0.60 mol L⁻¹
 - D. 1.00 mol L⁻¹
- 8. Sodium azide is used in automobile airbags to provide a source of nitrogen gas for rapid inflation in an accident. The equation shows the production of nitrogen gas from sodium azide.

$$2NaN_{3(s)} \rightarrow 2Na_{(s)} + 3N_{2(g)}$$

What mass of sodium azide will produce 40 L of N₂ at 100 kPa and 0°C?

- A. 70 g
- B. 76 g
- C. 114 g
- D. 172 g

9.	A 2 L sample of a gaseous hydrocarbon is burnt in excess oxygen. The only products of the reaction are 8 L of $CO_{2(g)}$ and 10 L of $H_2O_{(g)}$, all at 100°C and 101.3 kPa pressure.				
	The f	formula of the hydrocarbon is			
	A.	CH			
	B.	C_2H_4			
	C.	C_4H_{10}			
	D.	C_8H_{10}			
10.		g of Fe powder and 8 g of S powder are mixed and heated, what mass of FeS will be uced?			
	A.	22 g			
	C.	44 g			
	D.	50 g			
	E.	66 g			
		End of Section One			

9.

A.	Write a balanced chemical equation to represent the reaction
	1 mar
B.	Calculate the volume of gas produced at 25°C and 100 kPa.
	3 mar
in the	ne process a common triglyceride in palm oil, known as POP, is reacted with mether presence of potassium hydroxide as a catalyst. The result is a mixture of methyloge fatty acids (biodiesel). How many moles of methanol are required to react with one mole of POP?
	(1 ma
B.	Calculate the volume, in litres, of methanol (density = 0.79 g mL^{-1}) required to re completely with 10.0 kg of the triglyceride POP (Mr = 833) to produce glycerol armixture of methyl esters.
В.	completely with 10.0 kg of the triglyceride POP (Mr = 833) to produce glycerol ar
B. 	completely with 10.0 kg of the triglyceride POP (Mr = 833) to produce glycerol ar

The	nitrogen content of bread was determined using the following procedure:
•	The nitrogen in the sample was converted into ammonia. The ammonia was collected in 50.0 mL of 0.125 mol L ⁻¹ hydrochloric acid. All of the ammonia was neutralised, leaving an excess of hydrochloric acid.
A. V	Vrite a balanced equation for the reaction of the hydrochloric acid with sodium hydroxid
B.	Calculate the moles of excess hydrochloric acid.
	Write a balanced equation for the reaction of the hydrochloric acid with ammonia.
D.	Calculate the moles of ammonia.
 E.	Calculate the percentage by mass of nitrogen in the bread.

Sextion Three:

Extended Answer Questions (15 marks)

15. Chocolate is made from the seeds of a plant called *Theobroma cacao*. Chocolate contains many compounds, including the bitter alkaline substance, theobromine. It is found in the cacao plant and is a water insoluble, crystalline white solid.

The compound theobromine contains the elements carbon, hydrogen, nitrogen and oxygen.

The complete combustion of 3.22~g of the compound released 5.51~g of carbon dioxide and 1.28~g of water.

Further testing of 1.68 g of the compound converted all its nitrogen to NO_2 gas. This gas occupied a volume of 1.12 L, at 100° C and 103 kPa pressure.

A.	Determine the empirical formula of theobromine.
	6 marks
В.	Analysis of the compound indicates that its relative molecular mass is approximately 180. Determine its molecular formula.
	2 marks
C.	Theobromine is toxic to dogs. The toxicity level is 300 mg per kg of dog. How much chocolate would a 8.00 kg dog need to consume to poison itself if a particular brand of chocolate on offer contains 2.50 % (by mass) theobromine?

leve	Drinking and driving is a dangerous combination. It is illegal to drive with a blood-alcohol level above a stated limit. In Western Australia the limit for P-plate (novice) drivers is 0.02% (i.e. 0.02 g alcohol per 100 g blood). One method of measuring the blood alcohol content (BAC) of a human is the Kozelka and Hine procedure. In this method, protein, aldehydes and ketones are first removed from a blood sample and the purified sample is then reacted with an acidified dichromate solution.					
Hin						
	25.0 mL sample of blood taken from a driver involved in an accident yielded sufficient bhol (ethanol) to consume 3.00 x 10^{-5} moles of $Cr_2O_7^{-2}$ (aq) according to the equation:					
2Cr	$^{-1}2O_{7}^{-2}(aq) + 3CH_{3}CH_{2}OH_{(aq)} + 16H^{+}_{(aq)} \rightarrow 4Cr^{3+}_{(aq)} + 3CH_{3}COOH_{(aq)} + 11H_{2}O_{(l)}$					
A.	What observations would be recorded during the procedure?					
	1 mark					
A.	Calculate the BAC of the driver expressed in millimoles of ethanol per 100 mL of blood. [Note: 1 millimole = 10^{-3} mole.]					
В.	2 marks Assuming that 1.00 mL of blood weighs 1.00 g, calculate the percentage by mass of ethanol in the driver's blood.					
	2 marks					

END OF TEST

UNIT3ACHE

SOLUTIONS

REACTIONS AND STOICHIOMETRY: Answer all questions

Section One: Multiple Choice Questions (10 marks)

LB 2D 3A 4A	5C 6C	7D 8B	9C 10A
-------------	-------	-------	--------

Section Two: Short Answer Questions (16 marks)

```
11.
        Zn_{(s)} + 2HCI_{(aq)} = ZnCI_{2(aq)} + H_{2(q)}
                                                                                              1 mark
Α.
В.
        n = m/M
                       = 10 \div 63.38 = 0.1529 \text{ mol}
        n(Zn)
       n(H<sub>2</sub>)
                       = n(Zn)
                                    = 0.1529 mol
                                                                                              1 mark
       n =cV
       n(HCI)
                       = 0.5 \times 0.02 = 0.1 \text{ mol}
                       = 1/2 \times n(HCI) = 0.05 \text{ mol}
                                                                                              1 mark
       n(H_2)
       HCl is limiting
       PV = nRT; V = nRT \div P
       V(H<sub>2</sub>)
                      = 0.05 \times 8.315 \times (273.1 + 25) \div 100 = 1.24 L
                                                                                              1 mark
                                                                                              [4 marks]
12.
        3
                                                                                              1 mark
Α.
       n(POP)
B.
                       = 10,000 \div 833 = 12.00 \text{ mol}
                                                                                              1 mark
                       = 3 x 12.00 = 36.01 mol
                                                                                              1 mark
        n(CH<sub>3</sub>OH)
                       = 36.01 \times [12.0 + 4(1.008) + 16] = 36.01 \times 32.042 = 1153.97 g
       m(CH₃OH)
                                                                                              1 mark
       Density:
                       0.79 g is equivalent to 1 mL
                       1.0 g is equivalent to 1 \div 0.79 mL
                       1153.97 g is equivalent to 1 \div 0.79 \times 1153.97 \text{ mL} = 1460 \text{ mL}
                       = 1460 mL or 1.46 L
                                                                                              1 mark
       V(CH<sub>3</sub>OH)
                                                                                              [5 marks]
13.
       HCI + NaOH = NaCI + H<sub>2</sub>O
                                                                                              1 mark
Α.
В.
       n = cV
       n(NaOH)
                       = 0.116 \times 0.02330 = 0.002702 \text{ mol}
                                                                                              1 mark
       n(HCI)<sub>inxs</sub>
                       = n(NaOH) = 0.002702 mol
C.
                                                                                      1 mark
       HCI + NH_3 = NH_4CI or H^+_{(aq)} + NH_{3(aq)} = NH_4^+_{(aq)}
D.
       n(HCI)<sub>initially</sub>
                       = 0.125 x 0.05 = 0.00625 mol
                                                                                              1 mark
        n(NH<sub>3</sub>)
                       = n(HCI)<sub>reacting</sub>
                       = n(HCI)_{initially} - n(HCI)_{inxs} = 0.00625 - 0.002702 = 0.003548 \text{ mol}
                                                                                              1 mark
E.
       n(N) = n(NH_3) = 0.003548 \text{ mol}
        m(N) = 0.003548 \times 14.01 = 0.0497 g
                                                                                              1 mark
       \%(N) = 0.0497 \div 2.8 \times 100 = 1.78 \%
                                                                                              1 mark
                                                                                              [7 marks]
```

14.

A.
$$m(C)_{in \ 3.22 \ g} = 5.51 \times 12.01 \div 44.01 \ g = 1.504 \ g$$
 1 mark $\%(C) = 1.504 \div 3.22 \ g \times 100\% = 46.70\%$ 1 mark

$$m(H)_{in \; 3.22 \; g} = 1.28 \; x \; 2(1.008) \div 18.016 \; g = 0.1432 \; g$$
 1 mark %(H) = 0.1432 ÷ 3.22 x 100% = 4.45% 1 mark

PV = nRT then

$$n(NO_2)$$
 = PV / RT = 103 x 1.12 ÷ (8.315 x (273 + 100))
= 0.03719 mol 1 mark

 $n(N) = n(NO_2) = 0.03719 \text{ mol}$

 $m(N)_{in \ 1.68 \ g} = 0.03719 \times 14.01 = 0.5211 \ g$ 1 mark %(N) = 0.5211 / 1.68 × 100% = 31.02% 1 mark

%(O) = 100 - (46.70 + 4.45 + 31.02) = 17.83% 1 mark

	C	H	0	N	
m =	46.70	4.45	17.83	31.02	
n = m/M	46.70/12.01	4.45/1.008	17.83/16	31.02/14.01	
n =	3.888	4.419	1.114	2.214	
÷ 1.114	3.49	3.97	1	1.99	
x 2 to get the smallest whole number ratio					
Formula	7	8	2	4	

Therefore EF (theobromine) = $C_7H_8O_2N_4$ 2 marks

B.
$$m(EF) = 7 \times 12.01 + 8 \times 1.008 + 2 \times 16.00 + 4 \times 14.01 = 180.174$$
 1 mark

Therefore the EF = MF i.e. MF (theobromine) = $C_7H_8O_2N_4$ 1 mark

C. Toxicity level (for 8.00 kg dog) =
$$8.00 \times 300 \text{ mg} = 2400 \text{ mg}$$

= $2.40 \text{ g theobromine}$ 1 mark

Mass of brand chocolate =
$$2.40 \times (100 \div 2.50) = 96.0 \text{ g}$$
 1 mark

[14 marks]