## University of California, Los Angeles Department of Statistics

Instructor: Nicolas Christou

Statistics C183/C283

## A model for stock prices

From Options Futures and Other Derivatives by John Hull, Prentice Hall 6th Edition, 2006.

- Stochastic process: Any variable that changes over time in an uncertain way it follows a stochastic process.
- Markov process: Special case of stochastic process. Only the current value of a random variable is relevant for future prediction.
- ullet Wiener process: A particular type of a Markov process. The random variable Z follows the Wiener process if:

a. 
$$\Delta Z = \epsilon \sqrt{\Delta t}$$
, where  $\epsilon \sim N(0, 1)$ .

b. The values of  $\Delta Z$  for two different short intervals  $\Delta t$  are independent.

Consider the change in Z over a long period of time (from 0 to T). Let Z(T) be the value of Z at the end of period T, and Z(0) be the value of Z now (time zero).

- 1. Change in value of Z from now until T:
- 2. This change can be be viewed as the sum of n small intervals each one of length  $\Delta t$  as follows:
- 3. Therefore
- 4. Find the distribution of the change in Z.

Example: Let Z be a random variable that follows the Wiener process and time is measured in years. Initially its value is \$20. Find the distribution of its value at the end of the (i.) first year, (ii.) second year, (iii.) fifth year.

ullet Generalized Wiener Process: So far the mean of the change in Z was assumed to be zero. If indeed it is zero, then the expected value of Z in the future is equal to the current value!

Definition: Let X follow the generalized Wiener process. Then  $\Delta x = a\Delta t + b\epsilon\sqrt{\Delta t}$ .

Therefore  $\Delta x \sim N(a\Delta t, b\sqrt{\Delta t})$ . This Wiener process has expected drift rate of a per  $\Delta t$  and variance of  $b^2$  per  $\Delta t$ .

Example: The current price of a stock is \$50 and has expected drift rate of 20 per year, and variance 900 per year. Find the distribution of the price of the stock at the end of the (i.) first year, (ii.) second year, (iii.) sixth month.

• Process for Stock Prices: The generalized Wiener process could have been the correct model for stock prices, however the drift rate and variance do not include the current price of the stock.

Assumed a drift rate equal to  $\mu S$  where  $\mu$  is the expected return of the stock, and variance  $\sigma^2 S^2$  where  $\sigma^2$  is the variance of the return of the stock. The model now is:

$$\Delta S = \mu S \Delta t + \sigma S \epsilon \sqrt{\Delta t}$$

or

$$\frac{\Delta S}{S} = \mu \Delta t + \sigma \epsilon \sqrt{\Delta t}.$$

Therefore

$$\frac{\Delta S}{S} \sim N(\mu \Delta t, \sigma \sqrt{\Delta t}).$$

S Price of the stock.

 $\Delta S$  Change in the stock price.

 $\Delta t$  Small interval of time.

 $\epsilon$  Follows N(0,1).

Example: The current price of a stock is  $S_0 = \$100$ . The expected return is  $\mu = 0.10$  per year, and the standard deviation of the return is  $\sigma = 0.20$  (also per year).

- 1. Find an expression for the process of the stock  $(\frac{\Delta S}{S} = \cdots)$ .
- 2. Find the distribution of the change in S divided by S at the end of the first year (distribution of  $\frac{\Delta S}{S}$ ).

- 3. Divide the year in weekly intervals and find the distribution of  $\frac{\Delta S}{S}$  at the end of each weekly interval.
- 4. Repeat (3) by assuming daily intervals.

Monte Carlo Simulation of a stock's path.

 $S_0=\$20$ , annual mean and standard deviation:  $\mu=0.14, \sigma=0.20$ . Consider time intervals of 3.65 days or  $\Delta t=0.01$  years.

| i        | epsilon                      | DS                             | S                    |
|----------|------------------------------|--------------------------------|----------------------|
| 1        | epailon                      | DS                             | 20.00000             |
| 1        | -1.703034618                 | -0.6532138473                  | 19.34679             |
| 2        | -0.178328033                 | -0.0419159860                  | 19.30487             |
| 3<br>4   | 0.626012018<br>0.372285880   | 0.2687284327<br>0.1731425256   | 19.57360<br>19.74674 |
| 5        | -0.891222913                 | -0.3243295254                  | 19.42241             |
| 6        | -0.040610484                 | 0.0114163056                   | 19.43383             |
| 7        | 1.726364596                  | 0.6982048082                   | 20.13203             |
| 8        | 1.120874720                  | 0.4794945764                   | 20.61153             |
| 9        | 0.226489910                  | 0.1222221973                   | 20.73375             |
| 10       | 0.595893749                  | 0.2761294837                   | 21.00988             |
| 11<br>12 | -0.583445574<br>-1.385848921 | -0.2157485874<br>-0.5472386807 | 20.79413 20.24689    |
| 13       | -0.428217124                 | -0.1450556662                  | 20.10184             |
| 14       | 0.865628958                  | 0.3761571979                   | 20.47799             |
| 15       | 1.035171785                  | 0.4526340065                   | 20.93063             |
| 16       | 0.973033321                  | 0.4366268329                   | 21.36725             |
| 17<br>18 | -2.081263166<br>0.512261722  | -0.8595034214<br>0.2388175642  | 20.50775<br>20.74657 |
| 19       | -0.859783037                 | -0.3277057531                  | 20.41886             |
| 20       | 2.069083428                  | 0.8735530064                   | 21.29242             |
| 21       | 1.390716075                  | 0.6220434713                   | 21.91446             |
| 22       | 1.450279390                  | 0.6663220053                   | 22.58078             |
| 23       | 0.941865554                  | 0.4569742885                   | 23.03776             |
| 24<br>25 | 1.055756037<br>0.224687801   | 0.5186978406<br>0.1388359872   | 23.55645<br>23.69529 |
| 26       | -0.715660734                 | -0.3059823545                  | 23.38931             |
| 27       | -0.940489092                 | -0.4072027270                  | 22.98210             |
| 28       | -0.308339601                 | -0.1095509099                  | 22.87255             |
| 29       | 1.455468561                  | 0.6978272123                   | 23.57038             |
| 30<br>31 | -0.710234853<br>-0.356732662 | -0.3018115790<br>-0.1334371730 | 23.26857<br>23.13513 |
| 32       | -3.199841196                 | -1.4481857549                  | 21.68695             |
| 33       | -1.631378973                 | -0.6772308227                  | 21.00971             |
| 34       | -0.542553852                 | -0.1985644345                  | 20.81115             |
| 35       | 0.615265435                  | 0.2852232422                   | 21.09637             |
| 36       | -1.010607048                 | -0.3968679572                  | 20.69951             |
| 37<br>38 | 0.019320693<br>0.509565404   | 0.0369778841<br>0.2403629708   | 20.73648 20.97685    |
| 39       | 0.975317430                  | 0.4385492689                   | 21.41540             |
| 40       | 1.437012949                  | 0.6454655794                   | 22.06086             |
| 41       | -0.377870717                 | -0.1358378649                  | 21.92502             |
| 42       | -1.729262423                 | -0.7275873570                  | 21.19744             |
| 43<br>44 | -0.569424217<br>-0.071416430 | -0.2117302605<br>-0.0005944957 | 20.98571 20.98511    |
| 45       | 0.383453641                  | 0.1903155045                   | 21.17543             |
| 46       | -2.507501365                 | -1.0323026462                  | 20.14312             |
| 47       | -0.089458653                 | -0.0078391612                  | 20.13529             |
| 48       | -0.978120617                 | -0.3657053529                  | 19.76958             |
| 49<br>50 | 1.597830335<br>-0.844416911  | 0.6594461006<br>-0.3164116639  | 20.42903 20.11261    |
| 51       | -0.566026512                 | -0.1995277986                  | 19.91309             |
| 52       | 0.111094058                  | 0.0721228328                   | 19.98521             |
| 53       | -0.876851894                 | -0.3225020802                  | 19.66271             |
| 54       | -2.271871464                 | -0.8658950808                  | 18.79681             |
| 55<br>56 | 0.959173234<br>0.533664170   | 0.3869035196<br>0.2316104363   | 19.18372<br>19.41533 |
| 57       | -0.345212257                 | -0.1068667147                  | 19.30846             |
| 58       | -0.340939728                 | -0.1046285748                  | 19.20383             |
| 59       | 0.798637338                  | 0.3336232902                   | 19.53745             |
| 60       | -2.124504725                 | -0.8027958370                  | 18.73466             |
| 61       | 1.227559445<br>-0.624467688  | 0.4861866567<br>-0.2131467492  | 19.22084<br>19.00770 |
| 63       | -1.292942709                 | -0.4649065190                  | 18.54279             |
| 64       | -1.882423867                 | -0.6721479645                  | 17.87064             |
| 65       | 0.346697760                  | 0.1489331441                   | 18.01958             |
| 66       | 0.336584496                  | 0.1465296117                   | 18.16611             |
| 67       | 3.154811753<br>-0.107884452  | 1.1716454740                   | 19.33775             |
| 68<br>69 | 0.336946400                  | -0.0146520027<br>0.1572693193  | 19.32310<br>19.48037 |
| 70       | -0.728225530                 | -0.2564495276                  | 19.22392             |
| 71       | 1.480563041                  | 0.5961579893                   | 19.82008             |
| 72       | 0.570817040                  | 0.2540208709                   | 20.07410             |
| 73       | 0.540706838                  | 0.2451877856                   | 20.31929             |
| 74<br>75 | 0.663504794<br>-1.297452022  | 0.2980858797<br>-0.5061367055  | 20.61737<br>20.11124 |
| 76       | 0.328802214                  | 0.1604081056                   | 20.11124             |
| 77       | 0.941722076                  | 0.4101853885                   | 20.68183             |
| 78       | 0.658260601                  | 0.3012352253                   | 20.98306             |
| 79       | -0.613416879                 | -0.2280510263                  | 20.75501             |
| 80<br>81 | 1.447850461<br>0.005486955   | 0.6300601289<br>0.0322858814   | 21.38507             |
| 01       | 2.000400000                  |                                | _1.11.00             |

```
82 -1.117569817 -0.4487235828 20.96864
83 -1.913593757 -0.7731529170 20.19548
84 0.511726943 0.2349651292 20.43045
85 0.508464333 0.2363657082 20.66681
86 -0.903868221 -0.3446679818 20.32215
87 -0.678098181 -0.2471571957 20.07499
88 0.776638495 0.3399251599 20.41491
89 3.225883282 1.3457034482 21.76062
90 -1.012105629 -0.4100159962 21.35060
91 -0.830983810 -0.3249492345 21.02565
92 -0.876913599 -0.3393176872 20.68633
93 0.006448467 0.316287707 20.71796
94 -0.848032954 -0.323851576 20.39558
95 0.240807586 0.1267820054 20.52236
96 3.039850403 1.2764293740 21.79879
97 -0.112546625 -0.0185492981 21.78024
98 -0.857173384 -0.3428965014 21.43734
99 -0.075933105 -0.0025438002 21.436612
```



```
Stock simulation - R commands:
```