Prueba de Caja Blanca

"Título proyecto sistema de automatización de mensajes e ingreso de datos para fechas importantes"

Integrantes:

Alejandro De La Cruz Santiago Nogales Ian Escobar **Prueba caja blanca de (REQ005)** "Buscar clientes por atributos y editar/borrar mensajes"

1. CÓDIGO FUENTE

2. DIAGRAMA DE FLUJO (DF)

3. GRAFO DE FLUJO (GF)

4. IDENTIFIACCIÓN DE LAS RUTAS (Camino básico)

RUTAS

R1:
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 12$$
 (Bucle de opciones).

R2:
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12$$
 (Bucle de opciones).

5. COMPLEJIDAD CICLOMÁTICA

Se puede calcular de las siguientes formas:

1. V(G) = número de nodos predicados(decisiones)+1

$$V(G) = 3 (N4, N6, N11) + 1 = 4$$

2. Método aristas-nodos:

$$V(G) = 15 \text{ aristas} - 13 \text{ nodos} + 2 = 4$$

DONDE:

P: Número de nodos predicado

A: Número de aristas **N:** Número de nodos

Prueba de Caja Blanca

"Título proyecto sistema de automatización de mensajes e ingreso de datos para fechas importantes"

Integrantes:

Alejandro De La Cruz Santiago Nogales Ian Escobar

Prueba caja blanca de describa el requisito funcional

Prueba caja blanca de (REQ006) "Realizar mensajes prede terminados para los clientes, basados en fechas conmemorativas."

1. CÓDIGO FUENTE

Pegar el trozo de código fuente que se requiere para el caso de prueba

2. DIAGRAMA DE FLUJO (DF)

Realizar un DF del código fuente del numeral 1

3. GRAFO DE FLUJO (GF) Realizar un GF en base al DF del numeral 2

4. IDENTIFIACCIÓN DE LAS RUTAS (Camino básico)

Determinar en base al GF del numeral 4

Rutas Independientes:

R1:
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$
 (Bucle de opciones).

R2:
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 6$$
 (Bucle de opciones).

5. COMPLEJIDAD CICLOMÁTICA

Se puede calcular de las siguientes formas:

- V(G) = número de nodos predicados(decisiones)+1
- V(G)=P+1=3+1=4
- V(G) = A N + 2
- V(G)=A-N+2=14

DONDE:

P: Número de nodos predicado

A: Número de aristas **N:** Número de nodos

- \circ \rightarrow Terminar programa.
- 2. **R2:** N5 → N15
 - o Camino: Ingresar opción inválida → Mostrar error → Volver al menú.
- 3. **R3:** N5 \rightarrow N6 \rightarrow N16 \rightarrow N17 \rightarrow N5
 - o Camino: Opción 1 (Agregar cliente) \rightarrow Ejecutar función \rightarrow Pausa \rightarrow Volver al menú.
- 4. **R4:** N5 \rightarrow N7 \rightarrow N18 \rightarrow N5
 - o Camino: Opción 2 (Listar clientes) → Ejecutar → Volver al menú.
- 5. **R5:** N5 \rightarrow N9 \rightarrow N20 \rightarrow N21 \rightarrow N5
 - o Camino: Opción 4 (Mensaje individual) → Enviar → Pausa → Volver al menú.

Se puede calcular de las siguientes formas:

- V(G) = número de nodos predicados(decisiones)+1
 V(G)= P = 8+1= 9
- V(G) = A N + 2V(G) = 21-18+2 = 5.

DONDE:

P: Número de nodos predicado

A: Número de aristas **N:** Número de nodos