4 Solution of system of differential equations

4.1 Objective

- To solve the system of n-th order differential equations of the form $X^n = AX + B$ using diagonalization method.
- To develop code for solving physical problems which can be modeled in the above form.

4.2 Mathematical Model

System of differential equations arise in modeling of various engineering application. A system of first order differential equation can be represented as

$$x'_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} + b_{1}$$

$$x'_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} + b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} + b_{n}$$

$$(4)$$

or in matrix form

$$X' = AX + B$$

where A and B are coefficient matrix.

If A is diagonalisable, i.e. if there exist a nonsingular $n \times n$ matrix P such that

$$D = P^{-1}AP$$

then in order to solve the given system of equation, assume

$$X = PY \tag{5}$$

then, the system of differential equation (1) becomes

$$Y' = DY + C \tag{6}$$

or

$$y_1' = \lambda_1 y_1 + c_1$$

$$y_2' = \lambda_2 y_2 + c_2$$

$$\vdots$$

$$y_n' = \lambda_n y_n + c_n$$

$$(7)$$

where D is the diagonal matrix similar to A and $C = P^{-1}B$ is a $n \times 1$ column vector. Equation (3) is a decoupled differential equation which can be solved using any of the method for solving differential equations. After solving (3) for Y, we can get x by (2).

4.3 MATLAB Functions

MATLAB provides many matrix functions for various matrix/vector manipulations; see Table 3.3 for some of these functions. Use the online help of MATLAB to and how to use these functions.

Command	Explanation
inv	inv(A) returns inverse of matrix A.
round	Y = round(X,N) rounds X to N digits
\	$X = A \setminus B$ solves the system of linear equations $AX = A \setminus B$
	B. The matrices A and B must have the same number
	of rows.
det	det(A), returns the determinant of matrix A
diag	diag(A), returns an equivalent diagonal matrix of A
eig	[V,D] = eig(A) returns matrices V and D . The columns
	of V present eigenvectors of A. The diagonal matrix D
	contains eigenvalues.
null	Z = null(A) returns an orthonormal basis for the null
	space of A.

Exercise:

Write a MATLAB code for solving the following system of differential equations

Solve the system of homogeneous differential equations

$$x'_1(t) = 2x_1(t) - 2x_2(t) + x_3(t)$$

$$x'_2(t) = -x_1(t) + 3x_2(t) - x_3(t)$$

$$x'_3(t) = -2x_1(t) - 4x_2(t) + 3x_3(t)$$

with initial conditions

$$x_1(0) = 1, x_2(0) = 0, x_3(0) = 0.$$

2. Solve the system of non-homogeneous differential equations

$$x'_1(t) = 2x_1(t) - 2x_2(t) + x_3(t)$$

$$x'_2(t) = -x_1(t) + 3x_2(t) - x_3(t) + 3$$

$$x'_3(t) = -2x_1(t) - 4x_2(t) + 3x_3(t) + 3t$$

3. Write the mathematical Model of the given electrical network and solve using matrix diagonalization method, if, $R_1 = 8\Omega$, $R_2 = 3\Omega$, $L_1 = 1h$, $L_2 = 1h$, $E(t) = 100 \sin(t) \text{ V}$, $i_1(0) = 0$, and $i_2(0) = 0$.

4. Write the mathematical Model of the given mass spring system and solve using matrix diagonalization method.

