VGG-16 모형 및 CAM 기법을 이용한 개의 피부병 이미지 분류 및 관심영역 도출

Classification of Dog's Skin Disease Images and Extracting Region of Interest Using VGG-16 Models and CAM Techniques

계명대학교 경영정보학과

(c) Allergic

Global Max Pooling: Accuracy 0.926

이병우, 류재석, 정세민, 문보미, 김양석

(d) Impetigo

Ⅰ. 서론

- 연구 배경

2019년 한국에서 반려동물을 키우는 가구가 1,418만명에 육박하여

반려동물의 의료에 대한 관심이 급증.

- 검역본부 통계

딥러닝의 발전에 따라 눈으로 보고 진단할 수 있는 CT영상 또는 X선 사진 분류 및 잡음 제거,

피부암 식별 및 분류에 대한 연구 지속.

(Kim 등 2020, Li와 Shen 2018..)

- 연구 목적

피부암 식별 및 분류 사례와 유사하게 개의 피부병을 분류하고 분류 모형의 관심영역을 도출하여 개의 피부병 분류 시 데이터 구성에 도움이 되고자 함.

Ⅱ. 연구 방법

- 수정된 VGG-16 모형

분류 모형은 VGG-16 모형의 구조를 이용하였으며, 각각의 합성곱 층은 총 5개 층으로 구성. 각층은 ReLU 활성화 함수를 이용하며 0보다 작은 값들은 0으로 처리됨.

$$ReLU(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x \ge 0 \end{cases}$$

본 연구에서는 기존 VGG-16 모형에서 마지막 판별층(fully connected layer)를 제외시키고 Global Pooling 층을 이용.

Global Pooling 층은 파라미터의 수를 줄이고 과적합을 방지하며, 모델의 학습 속도를 줄일 수 있다. 모형은 Cross entropy 손실함수를 줄이는 방향으로 학습이 진행됨.

$$-\sum_{i=1}^{n} t_i' P(s_i)$$

t와 s는 각각 실제값과 예측값을 뜻하고 i는 각 Label을 의미. 이를 최소화하기 위해서 Adam 알고리 즘을 통해 학습 진행.

Global Pooling층의 Feature를 이용하여 softmax층을 통해 정상 또는 피부병으로 예측하도록 구성 되어 있으며, 본 연구에서 실험은 Global Average Pooling과 Global Max Pooling의 결과 비교및 관심영역을 비교함.

* Global Average Pooling

Convolution 층의 Feature를 채널 개수로 변환하며, 평균값을 이용

* Global Max Pooling

Convolution 층의 Feature를 채널 개수로 변환하며, 최댓값을 이용.

- CAM(Class Activation Map)

분류 모형 결과가 이미지의 어느 부분이 분류 결정에 큰 영향을 주었는지 관심영역을 도출하기 위한 기법. 마지막 판별층에서 가지는 가중치값을 합성곱 층과 Pooling층을 거친 n*n 행렬에 곱하여 가중치히트맵 도출. $f_{\downarrow}\left(x,y\right)$

수정된 VGG-16 모형의 Conv6의 k번째 채널의 값들 중 (x,y)에 위치한 값을 뜻하며 아래 수식은 Global Pooling을 거친 값을 나타냄.

$$F^k = \sum_{x,y} f_k(x,y)$$

아래 수식은 분류되는 값 c에 대해 softmax층으로 입력되는 값을 나타내며 예측되는 값인 c에서 Fk 만큼 중요하다는 것을 나타냄. $S_c = \sum w_k^c \sum f_k(x,y)$

 $= \sum_{x,y} \sum_{k} w_{k}^{c} f_{k}(x,y)$ $= \sum_{x,y} \sum_{k} w_{k}^{c} f_{k}(x,y)$

Mc는 c에 대한 CAM(Class Activation Map)값으로 다음 식을 통해 도출됨.

$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$
$$S_c = \sum_{x,y} M_c(x,y)$$

Ⅲ. 실험 설계

- 데이터 및 전처리

학습용 데이터: 정상 284장 피부병 315장. 총 599장 테스트용 데이터: 정상 71장 피부병 78장. 총 149장

전처리: Image resizing(224x224), Pixel Normalization(0~1),

Labeling(Normal - 0, Skin disease - 1)

- Global Pooling 비교

Global Average Pooling과 Global Max Pooling 의 분류 정확도(Accuracy)와 관심영역 비교. 채널 수 : 1024 epoch : 20 batch size : 10 로 설정하여 비교.

Ⅳ. 실험 결과

Global Average Pooling: Accuracy 0.919

- 분류 정확도

V. 결론

Global Average Pooling의 분류 성과는 Accuracy 0.919, Global Max Pooling의 분류 성과는 Accuracy 0.926으로 Global Max Pooling이 분류 성과를 올리는데 효과적.

Global Average Pooling과 Global Max Pooling의 관심영역에는 큰 차이는 없었으나 공통적으로 개의 종에 따라 털의 길이 또는 색상에 대한 차이 , 주름, 점 등 때문에 오분류가 발생하는 것으로 나타남.

따라서, 개의 피부병에 대한 분류를 할 때 개의 종별로 데이터를 따로 선별하거나 피부병이 있는 부위를 마스킹 처리, 정형화 된 데이터를 확보해야 정확한 분류가 가능할 것임.