Overview

Differentiable Architecture Search (DARTS)

DARTS as Surrogate

Beyond Finite Search Spaces

OVERVIEW

Differentiable Architecture Search (DARTS)

DARTS as Surrogate

Beyond Finite Search Spaces

Neural Architecture Search (NAS)

► Automatize choice of neural network architecture

Neural Architecture Search (NAS)

- ► Automatize choice of neural network architecture
- ► Discover new architectures

Neural Architecture Search (NAS)

- ► Automatize choice of neural network architecture
- ▶ Discover new architectures

DIFFERENTIABLE ARCHITECTURE SEARCH

DARTS [Liu et al., 2018] considered as pioneer work

DIFFERENTIABLE ARCHITECTURE SEARCH

DARTS [Liu et al., 2018] considered as pioneer work

Training start

0.42

DIFFERENTIABLE ARCHITECTURE SEARCH

DARTS [Liu et al., 2018] considered as pioneer work

Training end

Obtain best architecture

GUMBEL-SOFTMAX SAMPLING

We define the Standard Gumbel probability density as

$$g: \mathbb{R} \to [0,1], x \mapsto \exp^{-(x+\exp^{-x})}$$

For $k \in \mathbb{N}$, $G \sim P_g^k$ and architecture parameters $a \in \mathbb{R}^k$ it holds:

$$Softmax(a + G, 0) \sim Multinomial(1, Softmax(a))$$

OVERVIEW

Differentiable Architecture Search (DARTS)

DARTS as Surrogate

Beyond Finite Search Spaces

SEARCH SPACE

Relative Surrogate

Joint trained multinomials induce ranking on search space

Sampling probability per module per cell

Relative Surrogate

Validate surrogate ranking on actual architecture performances

ARCHITECTURE REGULARIZATION

Control speed of convergence dependent on cell index

Maximum norm of architecture parameter vector per epoch per cell

Overview

Differentiable Architecture Search (DARTS)

DARTS as Surrogate

Beyond Finite Search Spaces

SEARCH SPACE EXTENSION

FINITE DIFFERENCE DESCENT

Finite difference descent on pseudo environment in euclidean search space

2-dim euclidean search space

EXPERIMENTAL SEARCH SPACE

We model architectures with directed acyclic graphs (DAG)

EXPERIMENTAL SEARCH SPACE

We model architectures with directed acyclic graphs (DAG)

Eccentricity variance, degree variance and # edges for 6-vertice DAGs

EXPERIMENT RESULTS

Search space trajectories (per dimension) for one exemplary cell over 100 epochs of finite difference descent

EXPERIMENT RESULTS

Comparing performance of top 10 architectures found by Random Search, Bayesian Search and our approach

REFERENCES

[Liu et al., 2018] Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search.