Notes 3: Simple Linear Regression

Nathaniel E. Helwig

Department of Statistics
University of Illinois at Urbana-Champaign

Stat 420: Methods of Applied Statistics Section N1U/N1G – Spring 2014

Outline of Notes

- 1) Intro to SLR Model:
 - Model form (scalar)
 - SLR assumptions
 - Model form (matrix)

- 2) Estimation of SLR Model:
 - Ordinary least squares
 - Calculus derivation
 - Maximum likelihood

- 3) Inferences in SLR:
 - Estimating error variance
 - Distribution of estimator
 - Cls and prediction

- 4) SLR in R:
 - The lm Function
 - Example A: Alcohol
 - Example B: GPA

SLR Model: Form

The simple linear regression model has the form

$$y_i = b_0 + b_1 x_i + e_i$$

for $i \in \{1, \dots, n\}$ where

- $y_i \in \mathbb{R}$ is the real-valued response for the *i*-th observation
- $b_0 \in \mathbb{R}$ is the regression intercept
- $b_1 \in \mathbb{R}$ is the regression slope
- $x_i \in \mathbb{R}$ is the predictor for the *i*-th observation
- $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ is Gaussian measurement error

SLR Model: Name

The model is *simple* because we have only one predictor.

The model is *linear* because y_i is a linear function of the parameters (b_0 and b_1 are the parameters).

The model is a *regression* model because we are modeling a response variable (Y) as a function of a predictor variable (X).

SLR Model: Visualization

SLR Model: Example

Have GPA from high school and university for n = 105 students.

Simple linear regression equation for modeling university GPA:

$$(U_{gpa})_i = 1.0968 + 0.6748(H_{gpa})_i + (error)_i$$

Data from http://onlinestatbook.com/2/regression/intro.html

SLR Assumptions: Overview

The fundamental assumptions of the SLR model are:

- Relationship between x and y is linear
- \bullet $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ is an unobserved random variable
- \bullet b_0 and b_1 are unknown constants
- **1** $(y_i|x_i) \stackrel{\text{ind}}{\sim} N(b_0 + b_1x_i, \sigma^2)$; note: homogeneity of variance

Note: b_1 is expected increase in Y for 1-unit increase in X

SLR Assumptions: Visualization

http: //2012 books. lard bucket.org/books/beginning-statistics/s14-03-modelling-linear-relationships. html. large and large

SLR Model: Form (revisited)

The simple linear regression model has the form

$$y = Xb + e$$

where

- $\mathbf{y} = (y_1, \dots, y_n)' \in \mathbb{R}^n$ is the $n \times 1$ response vector
- $\mathbf{X} = [\mathbf{1}_n, \mathbf{x}] \in \mathbb{R}^{n \times 2}$ is the $n \times 2$ design matrix
 - $\mathbf{1}_n$ is an $n \times 1$ vector of ones
 - $\mathbf{x} = (x_1, \dots, x_n)' \in \mathbb{R}^n$ is the $n \times 1$ predictor vector
- $\mathbf{b} = (b_0, b_1)' \in \mathbb{R}^2$ is the 2 × 1 vector of regression coefficients
- $\mathbf{e} = (e_1, \dots, e_n)' \in \mathbb{R}^n$ is the $n \times 1$ error vector

SLR Model: Assumptions (revisited)

In matrix terms, the error vector is multivariate normal:

$$\mathbf{e} \sim \mathrm{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$$

In matrix terms, the response vector is multivariate normal given **x**:

$$(\mathbf{y}|\mathbf{x}) \sim N(\mathbf{X}\mathbf{b}, \sigma^2 \mathbf{I}_n)$$

Ordinary Least Squares: Scalar Form

The ordinary least squares (OLS) problem is

$$\min_{b_0,b_1 \in \mathbb{R}} \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$$

and the OLS solution has the form

$$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$$

$$\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

where $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$ and $\bar{y} = (1/n) \sum_{i=1}^{n} y_i$

Ordinary Least Squares: Matrix Form

The ordinary least squares (OLS) problem is

$$\min_{\boldsymbol{b} \in \mathbb{R}^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2$$

where $\|\cdot\|$ denotes the Frobenius norm; the OLS solution has the form

$$\hat{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

where

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{n\sum_{i=1}^{n} (x_i - \bar{x})^2} \begin{pmatrix} \sum_{i=1}^{n} x_i^2 & -\sum_{i=1}^{n} x_i \\ -\sum_{i=1}^{n} x_i & n \end{pmatrix}$$

$$\mathbf{X}'\mathbf{y} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{pmatrix}$$

Fitted Values and Residuals

SCALAR FORM:

Fitted values are given by

$$\hat{y}_i = \hat{b}_0 + \hat{b}_1 x_i$$

and residuals are given by

$$\hat{e}_i = y_i - \hat{y}_i$$

MATRIX FORM:

Fitted values are given by

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{b}}$$

and residuals are given by

$$\hat{\mathbf{e}} = \mathbf{y} - \hat{\mathbf{y}}$$

Hat Matrix

Note that we can write the fitted values as

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{b}}$$

= $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
= $\mathbf{H}\mathbf{y}$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the *hat matrix*.

H is a symmetric and idempotent matrix: $\mathbf{H}\mathbf{H} = \mathbf{H}$

H projects **y** onto the column space of **X**.

Properties of OLS Estimators

Some useful properties of OLS estimators include:

- $\sum_{i=1}^{n} \hat{e}_i = 0$
- $\sum_{i=1}^{n} \hat{e}_{i}^{2}$ is minimized with $\mathbf{b} = \hat{\mathbf{b}}$

- **5** Regression line passes through center of mass: (\bar{x}, \bar{y})

Example #1: Pizza Data

The owner of Momma Leona's Pizza restaurant chain believes that if a restaurant is located near a college campus, then there is a linear relationship between sales and the size of the student population. Suppose data were collected from a sample of 10 Momma Leona's Pizza restaurants located near college campuses.

Population (1000s): x										
Sales (\$1000s): y	58	105	88	118	117	137	157	169	149	202

We want to find the equation of the least-squares regression line predicting quarterly pizza sales (y) from student population (x).

Example #1: OLS Estimation

First note that
$$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$$
 and $\hat{b}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$.

Next note that...

•
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

•
$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

We only need to find means, sums-of-squares, and cross-products.

Example #1: OLS Estimation (continued)

	Χ	У	x^2	y^2	xy
	2	58	4	3364	116
	6	105	36	11025	630
	8	88	64	7744	704
	8	118	64	13924	944
	12	117	144	13689	1404
	16	137	256	18769	2192
	20	157	400	24649	3140
	20	169	400	28561	3380
	22	149	484	22201	3278
	26	202	676	40804	5252
\sum	140	1300	2528	184730	21040

Example #1: OLS Estimation (continued)

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = 2528 - 10(14^2) = 568$$

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} = 21040 - 10(14)(130) = 2840$$

$$\hat{b}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = 2840/568 = 5$$

$$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x} = 130 - 5(14) = 60$$

$$\hat{y} = 60 + 5x$$

Nathaniel E. Helwig (University of Illinois)

Regression Sums-of-Squares

In SLR models, the relevant sums-of-squares are

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

 $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

• SST:
$$df_T = n - 1$$

• SSR:
$$df_R = 1$$

• SSE:
$$df_F = n - 2$$

Partitioning the Variance

We can partition the total variation in y_i as

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2\sum_{i=1}^{n} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i)$$

$$= SSR + SSE + 2\sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{e}_i$$

$$= SSR + SSE$$

Partitioning the Variance: Proof

To show that $\sum_{i=1}^{n} (\hat{y}_i - \bar{y}) \hat{e}_i = 0$, note that

$$\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y}) \hat{e}_{i} = (\mathbf{H}\mathbf{y} - n^{-1}\mathbf{1}_{n}\mathbf{1}'_{n}\mathbf{y})'(\mathbf{y} - \mathbf{H}\mathbf{y})$$

$$= \mathbf{y}'\mathbf{H}\mathbf{y} - \mathbf{y}'\mathbf{H}^{2}\mathbf{y} - n^{-1}\mathbf{y}'\mathbf{1}_{n}\mathbf{1}'_{n}\mathbf{y} + n^{-1}\mathbf{y}'\mathbf{1}_{n}\mathbf{1}'_{n}\mathbf{H}\mathbf{y}$$

$$= \mathbf{y}'\mathbf{H}\mathbf{y} - \mathbf{y}'\mathbf{H}^{2}\mathbf{y} - n^{-1}\mathbf{y}'\mathbf{1}_{n}\mathbf{1}'_{n}\mathbf{y} + n^{-1}\mathbf{y}'\mathbf{H}\mathbf{1}_{n}\mathbf{1}'_{n}\mathbf{y}$$

$$= 0$$

given that $\mathbf{H}^2 = \mathbf{H}$ (because \mathbf{H} is idempotent) and $\mathbf{H}\mathbf{1}_n\mathbf{1}_n' = \mathbf{1}_n\mathbf{1}_n'$ (because $\mathbf{1}_n\mathbf{1}_n'$ is within the column space of \mathbf{X} and \mathbf{H} is the projection matrix for the column space of \mathbf{X}).

Coefficient of Determination

The coefficient of determination is defined as

$$R^{2} = \frac{SSR}{SST}$$
$$= 1 - \frac{SSE}{SST}$$

and gives the amount of variation in y_i that is explained by the linear relationship with x_i .

When interpreting R² values, note that...

- $0 < R^2 < 1$
- Large R² values do not necessarily imply a good model

ANOVA Table and Regression F Test

We typically organize the SS information into an ANOVA table:

 F^* -statistic and p^* -value are testing $H_0: b_1 = 0$ versus $H_1: b_1 \neq 0$

Example #1: Fitted Values and Residuals

Returning to the Momma Leona's Pizza example: $\hat{y} = 60 + 5x$

	Χ	У	ŷ	ê	\hat{e}^2	y^2
	2	58	70	-12	144	3364
	6	105	90	15	225	11025
	8	88	100	-12	144	7744
	8	118	100	18	324	13924
	12	117	120	-3	9	13689
	16	137	140	-3	9	18769
	20	157	160	-3	9	24649
	20	169	160	9	81	28561
	22	149	170	-21	441	22201
	26	202	190	12	144	40804
$\overline{\sum}$	140	1300	1300	0	1530	184730

Example #1: ANOVA Table and R²

Using the results from the previous table, note that

$$SST = \sum_{i=1}^{10} (y_i - \bar{y})^2 = \sum_{i=1}^{10} y_i^2 - 10\bar{y}^2 = 184730 - 10(130^2) = 15730$$

$$SSE = \sum_{i=1}^{10} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{10} \hat{e}_i^2 = 1530$$

$$SSR = SST - SSE = 15730 - 1530 = 14200$$

which implies that $R^2 = SSR/SST = 14200/15730 = 0.9027336$

Source	SS	df	MS	F	p-value
SSR	14200	1	14200.00	74.24837	< .0001
SSE	1530	8	191.25		
SST	15730	9			
D :					

Reject $H_0: b_1=0$ at any typical α level.

Example #1: SS Partition Trick

Note that $\hat{y}_i = \hat{b}_0 + \hat{b}_1 x_i = \bar{y} + \hat{b}_1 (x_i - \bar{x})$ because $\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$

Plugging $\hat{y}_i = \bar{y} + \hat{b}_1(x_i - \bar{x})$ into the definition of *SSR* produces

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
$$= \sum_{i=1}^{n} \hat{b}_1^2 (x_i - \bar{x})^2$$
$$= 5^2 (568)$$
$$= 14200$$

so do not need the sum-of-squares for y_i

Vector Calculus: First Derivative

Given $\mathbf{A} = \{a_{ij}\}_{n \times p}$ and $\mathbf{b} = \{b_j\}_{p \times 1}$, we have that

$$\frac{\partial \mathbf{Ab}}{\partial \mathbf{b}'} = \begin{pmatrix}
\frac{\partial \sum_{j=1}^{p} a_{1j}b_{j}}{\partial b_{1}} & \frac{\partial \sum_{j=1}^{p} a_{1j}b_{j}}{\partial b_{2}} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{1j}b_{j}}{\partial b_{p}} \\
\frac{\partial \sum_{j=1}^{p} a_{2j}b_{j}}{\partial b_{1}} & \frac{\partial \sum_{j=1}^{p} a_{2j}b_{j}}{\partial b_{2}} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{1j}b_{j}}{\partial b_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \sum_{j=1}^{p} a_{nj}b_{j}}{\partial b_{1}} & \frac{\partial \sum_{j=1}^{p} a_{nj}b_{j}}{\partial b_{2}} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{nj}b_{j}}{\partial b_{p}}
\end{pmatrix}_{n \times p}$$

= A

Vector Calculus: First Derivative (continued)

Given $\mathbf{A} = \{a_{ij}\}_{p \times p}$ and $\mathbf{b} = \{b_i\}_{p \times 1}$, we have that

$$\frac{\partial \mathbf{b'Ab}}{\partial \mathbf{b'}} = \left(\frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_{i} b_{j} a_{ij}}{\partial b_{1}} \quad \frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_{i} b_{j} a_{ij}}{\partial b_{2}} \quad \dots \quad \frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_{i} b_{j} a_{ij}}{\partial b_{p}}\right)_{1 \times p}$$

$$= \left(2 \sum_{i=1}^{p} b_{i} a_{i1} \quad 2 \sum_{i=1}^{p} b_{i} a_{i2} \quad \dots \quad 2 \sum_{i=1}^{p} b_{i} a_{ip}\right)_{1 \times p}$$

$$= 2\mathbf{b'A}$$

Vector Calculus: Second Derivative

Given
$$\mathbf{A} = \{a_{ij}\}_{p \times p}$$
 and $\mathbf{b} = \{b_i\}_{p \times 1}$, we have that

$$\frac{\partial^2 \mathbf{b'Ab}}{\partial \mathbf{b} \partial \mathbf{b'}} = \begin{pmatrix} \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_1^2} & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_1 \partial b_2} & \cdots & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_1 \partial b_p} \\ \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_2 \partial b_1} & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_2^2} & \cdots & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_2 \partial b_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_p \partial b_1} & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_p \partial b_2} & \cdots & \frac{\partial^2 \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_p^2} \end{pmatrix}_{p \times p}$$

= 2A

Ordinary Least Squares: First Derivative

Note that we can write the OLS problem as

$$\begin{aligned} SSE &= \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 \\ &= (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}) \\ &= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b} \end{aligned}$$

Taking the first derivative of SSE with respect to **b** produces

$$\frac{\partial SSE}{\partial \mathbf{b}'} = -2\mathbf{y}'\mathbf{X} + 2\mathbf{b}'\mathbf{X}'\mathbf{X}$$

Setting to zero and solving for **b** gives

$$\hat{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

Ordinary Least Squares: Second Derivative

Taking the second derivative of SSE with respect to **b** produces

$$\frac{\partial^2 SSE}{\partial \boldsymbol{b} \partial \boldsymbol{b}'} = 2\boldsymbol{X}'\boldsymbol{X}$$

Note that **X'X** is positive definite (assuming **x** is not a constant vector), so the second order condition is fulfilled.

Therefore *SSE* reaches its minimum at $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

Ordinary Least Squares: Positive Definite Proof

To prove that X'X is positive definite in SLR model note that

$$\mathbf{w}'\mathbf{X}'\mathbf{X}\mathbf{w} = (w_1 \quad w_2) \begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$= w_1^2 n + 2w_1 w_2 \sum_{i=1}^{n} x_i + w_2^2 \sum_{i=1}^{n} x_i^2$$

$$= \left[w_1 n^{1/2} + n^{-1/2} w_2 \sum_{i=1}^{n} x_i \right]^2 + w_2^2 \left[\sum_{i=1}^{n} x_i^2 - n^{-1} \left(\sum_{i=1}^{n} x_i \right)^2 \right]$$

$$\geq 0$$

with equality holding only when $w_1 = w_2 = 0$ or when $x_i = a \forall i$.

Note: $\sum_{i=1}^{n} x_i^2 \ge n^{-1} \left(\sum_{i=1}^{n} x_i\right)^2$ due to Cauchy-Schwarz inequality.

Relation to ML Solution

Remember that $(\mathbf{y}|\mathbf{x}) \sim N(\mathbf{Xb}, \sigma^2 \mathbf{I}_n)$, which implies that \mathbf{y} has pdf

$$f(\mathbf{y}|\mathbf{x}, \mathbf{b}, \sigma^2) = (2\pi)^{-n/2} (\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})}$$

As a result, the log-likelihood of **b** given $(\mathbf{y}, \mathbf{x}, \sigma^2)$ is

$$\ln\{L(\mathbf{b}|\mathbf{y},\mathbf{x},\sigma^2)\} = -\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\mathbf{b})'(\mathbf{y}-\mathbf{X}\mathbf{b}) + c$$

where c is a constant that does not depend on \mathbf{b} .

Relation to ML Solution (continued)

The maximum likelihood estimate (MLE) of **b** is the estimate satisfying

$$\max_{\mathbf{b} \in \mathbb{R}^2} -\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{b})' (\mathbf{y} - \mathbf{X}\mathbf{b})$$

Now. note that...

$$\bullet \ \operatorname{\mathsf{max}}_{\mathbf{b} \in \mathbb{R}^2} - \tfrac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}) = \operatorname{\mathsf{max}}_{\mathbf{b} \in \mathbb{R}^2} - (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$\bullet \ \operatorname{\mathsf{max}}_{\mathbf{b} \in \mathbb{R}^2} - (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}) = \operatorname{\mathsf{min}}_{\mathbf{b} \in \mathbb{R}^2} (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$

Thus, the OLS and ML estimate of **b** is the same: $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{v}$

Estimated Error Variance (Mean Squared Error)

The estimated error variance is

$$\hat{\sigma}^2 = SSE/(n-2)$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2/(n-2)$$

$$= \|(\mathbf{I}_n - \mathbf{H})\mathbf{y}\|^2/(n-2)$$

which is an unbiased estimate of error variance σ^2 .

The estimate $\hat{\sigma}^2$ is the *mean squared error (MSE)* of the model.

Proof $\hat{\sigma}^2$ is Unbiased

First note that we can write SSE as

$$\|(I_n - H)y\|^2 = y'y - 2y'Hy + y'H^2y$$

= $y'y - y'Hy$

Now use the trace trick

$$\begin{aligned} \textbf{y}'\textbf{y} - \textbf{y}'\textbf{H}\textbf{y} &= \operatorname{tr}(\textbf{y}'\textbf{y}) - \operatorname{tr}(\textbf{y}'\textbf{H}\textbf{y}) \\ &= \operatorname{tr}(\textbf{y}\textbf{y}') - \operatorname{tr}(\textbf{H}\textbf{y}\textbf{y}') \end{aligned}$$

Proof $\hat{\sigma}^2$ is Unbiased (continued)

Plugging in the previous results and taking the expectation gives

$$\begin{split} \mathrm{E}(\hat{\sigma}^2) &= \frac{\mathrm{E}\left[\mathrm{tr}(\mathbf{y}\mathbf{y}')\right]}{n-2} - \frac{\mathrm{E}\left[\mathrm{tr}(\mathbf{H}\mathbf{y}\mathbf{y}')\right]}{n-2} \\ &= \frac{\mathrm{tr}(\mathrm{E}\left[\mathbf{y}\mathbf{y}'\right])}{n-2} - \frac{\mathrm{tr}(\mathbf{H}\mathrm{E}\left[\mathbf{y}\mathbf{y}'\right])}{n-2} \\ &= \frac{\mathrm{tr}(\sigma^2\mathbf{I}_n)}{n-2} - \frac{\mathrm{tr}(\mathbf{H}\sigma^2\mathbf{I}_n)}{n-2} \\ &= \frac{n\sigma^2}{n-2} - \frac{2\sigma^2}{n-2} \\ &= \sigma^2 \end{split}$$

which completes the proof; note that $tr(\mathbf{H}) = 2$.

ML Estimate of σ^2 : Overview

Remember that the pdf of **y** has the form

$$f(\mathbf{y}|\mathbf{x}, \mathbf{b}, \sigma^2) = (2\pi)^{-n/2} (\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})}$$

As a result, the log-likelihood of σ^2 given $(\mathbf{y}, \mathbf{x}, \hat{\mathbf{b}})$ is

$$\ln\{L(\sigma^2|\mathbf{y},\mathbf{x},\hat{\mathbf{b}})\} = -\frac{n\ln(\sigma^2)}{2} - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{2\sigma^2} + d$$

where d is a constant that does not depend on σ^2 .

ML Estimate of σ^2 : First Derivative

The MLE of σ^2 is the estimate satisfying

$$\max_{\sigma^2 \in \mathbb{R}^+} -\frac{n \ln(\sigma^2)}{2} - \frac{\hat{\mathbf{e}}' \hat{\mathbf{e}}}{2\sigma^2}$$

Taking the first derivative with respect to σ^2 gives

$$\frac{\partial - \frac{n\ln(\sigma^2)}{2} - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{2\sigma^2}}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{2\sigma^4}$$

Setting to zero and solving for σ^2 gives

$$\tilde{\sigma}^2 = \hat{\mathbf{e}}'\hat{\mathbf{e}}/n$$

ML Estimate of σ^2 : Second Derivative

Taking the second derivative with respect to σ^2 gives

$$\frac{\partial^2 - \frac{n\ln(\sigma^2)}{2} - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{2\sigma^2}}{\partial(\sigma^2)^2} = \frac{n}{2(\sigma^2)^2} - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{(\sigma^2)^3}$$

and plugging in $\tilde{\sigma}^2 = \hat{\mathbf{e}}'\hat{\mathbf{e}}/n$ produces

$$\frac{\partial^2 - \frac{n \ln(\sigma^2)}{2} - \frac{\hat{\mathbf{e}}'\hat{\mathbf{e}}}{2\sigma^2}}{\partial(\sigma^2)^2} \bigg|_{\sigma^2 = \tilde{\sigma}^2} = \frac{n^3}{2(\hat{\mathbf{e}}'\hat{\mathbf{e}})^2} - \frac{n^3}{(\hat{\mathbf{e}}'\hat{\mathbf{e}})^2} < 0$$

so the second order condition is fulfilled.

ML Estimate of σ^2 : Bias

From our previous results using $\hat{\sigma}^2$, we have that

$$E(\tilde{\sigma}^2) = \frac{n-2}{n}\sigma^2$$

Consequently, the *bias* of the estimator $\tilde{\sigma}^2$ is given by

$$\frac{n-2}{n}\sigma^2 - \sigma^2 = -\frac{2}{n}\sigma^2$$

and note that $-\frac{2}{n}\sigma^2 \to 0$ as $n \to \infty$.

Reminder: the MSE and MLE of σ^2 are given by

$$\begin{split} \hat{\sigma}^2 &= \|(\mathbf{I}_n - \mathbf{H})\mathbf{y}\|^2/(n-2) \\ \tilde{\sigma}^2 &= \|(\mathbf{I}_n - \mathbf{H})\mathbf{y}\|^2/n \end{split}$$

From the definitions of $\hat{\sigma}^2$ and $\tilde{\sigma}^2$ we have that

$$\tilde{\sigma}^2 < \hat{\sigma}^2$$

so the MLE produces a smaller estimate of the error variance.

Example #1: Calculating $\hat{\sigma}^2$ and $\tilde{\sigma}^2$

Returning to Momma Leona's Pizza example:

•						
Sc	ource	SS	df	MS	F	p-value
	SSR	14200	1	14200.00	74.24837	< .0001
	SSE	1530	8	191.25		
	SST	15730	9			

So the estimates of the error variance are given by

$$\hat{\sigma}^2 = MSE = 191.25$$
 $\tilde{\sigma}^2 = (8/10)MSE = 153$

OLS Coefficients are Random Variables

Note that $\hat{\mathbf{b}}$ is a linear function of \mathbf{y} , so $\hat{\mathbf{b}}$ is multivariate normal.

The expectation of $\hat{\mathbf{b}}$ is given by

$$\begin{split} \mathrm{E}(\hat{\mathbf{b}}) &= \mathrm{E}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}] \\ &= \mathrm{E}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\mathbf{b} + \mathbf{e})] \\ &= \mathrm{E}[\mathbf{b}] + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathrm{E}[\mathbf{e}] \\ &= \mathbf{b} \end{split}$$

and the covariance matrix is given by

$$\begin{split} \mathbf{V}(\hat{\mathbf{b}}) &= \mathbf{V}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}] \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}[\mathbf{y}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\sigma^2\mathbf{I}_n)\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \end{split}$$

OLS Coefficients are Random Variables (continued)

Given the results on the previous slide, have that $\hat{\mathbf{b}} \sim \mathrm{N}(\mathbf{b}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$.

Remembering the form of $(\mathbf{X}'\mathbf{X})^{-1}$, we have that

$$V(\hat{b}_0) = \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}$$
$$V(\hat{b}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Fitted Values are Random Variables

Similarly $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{b}}$ is a linear function of \mathbf{y} , so $\hat{\mathbf{y}}$ is multivariate normal.

The expectation of $\hat{\mathbf{y}}$ is given by

$$\begin{split} \mathrm{E}(\hat{\mathbf{y}}) &= \mathrm{E}[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}] \\ &= \mathrm{E}[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\mathbf{b} + \mathbf{e})] \\ &= \mathrm{E}[\mathbf{X}\mathbf{b}] + \mathbf{H}\mathrm{E}[\mathbf{e}] \\ &= \mathbf{X}\mathbf{b} \end{split}$$

and the covariance matrix is given by

$$V(\hat{\mathbf{y}}) = V[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]$$

$$= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'V[\mathbf{y}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

$$= \mathbf{H}(\sigma^2\mathbf{I}_n)\mathbf{H}$$

$$= \sigma^2\mathbf{H}$$

Residuals are Random Variables

Also $\hat{\mathbf{e}} = (\mathbf{I}_n - \mathbf{H})\mathbf{y}$ is a linear function of \mathbf{y} , so $\hat{\mathbf{e}}$ is multivariate normal.

The expectation of $\hat{\mathbf{e}}$ is given by

$$E(\hat{\mathbf{e}}) = E[(\mathbf{I}_n - \mathbf{H})\mathbf{y}]$$

$$= (\mathbf{I}_n - \mathbf{H})E[\mathbf{y}]$$

$$= (\mathbf{I}_n - \mathbf{H})\mathbf{X}\mathbf{b}$$

$$= \mathbf{0}$$

and the covariance matrix is given by

$$V(\hat{\mathbf{e}}) = V[(\mathbf{I}_n - \mathbf{H})\mathbf{y}]$$

$$= (\mathbf{I}_n - \mathbf{H})V[\mathbf{y}](\mathbf{I}_n - \mathbf{H})$$

$$= (\mathbf{I}_n - \mathbf{H})(\sigma^2 \mathbf{I}_n)(\mathbf{I}_n - \mathbf{H})$$

$$= \sigma^2(\mathbf{I}_n - \mathbf{H})$$

Summary of Results

Summarizing the results on the previous slides, we have

$$\hat{\mathbf{b}} \sim \mathrm{N}(\mathbf{b}, \sigma^2 (\mathbf{X}'\mathbf{X})^{-1})$$

$$\hat{\mathbf{y}} \sim N(\mathbf{Xb}, \sigma^2 \mathbf{H})$$

$$\hat{\mathbf{e}} \sim N(\mathbf{0}, \sigma^2(\mathbf{I}_n - \mathbf{H}))$$

Typically σ^2 is unknown, so we use the MSE $\hat{\sigma}^2$ in practice.

Inferences about $\hat{\mathbf{b}}$ with σ^2 Known

If σ^2 is known, form 100(1 – α)% Cls using

$$\hat{b}_0 \pm Z_{\alpha/2} \sigma_{b_0}$$
 $\hat{b}_1 \pm Z_{\alpha/2} \sigma_{b_1}$

where

- $Z_{\alpha/2}$ is normal quantile such that $P(X > Z_{\alpha/2}) = \alpha/2$
- σ_{b_0} and σ_{b_1} are square-roots of diagonals of $V(\hat{\mathbf{b}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$

To test $H_0: b_j = b_j^*$ vs. $H_1: b_j \neq b_j^*$ (for $j \in \{0, 1\}$) use test statistic

$$Z = (\hat{b}_j - b_j^*)/\sigma_{b_j}$$

which follows a standard normal distribution under H_0 .

Inferences about $\hat{\mathbf{b}}$ with σ^2 Unknown

If σ^2 is unknown, form 100(1 – α)% Cls using

$$\hat{b}_0 \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_{b_0}$$
 $\hat{b}_1 \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_{b_1}$

where

- $t_{n-2}^{(\alpha/2)}$ is t_{n-2} quantile such that $P\left(T>t_{n-2}^{(\alpha/2)}\right)=\alpha/2$
- $\hat{\sigma}_{b_0}$ and $\hat{\sigma}_{b_1}$ are square-roots of diagonals of $\hat{V}(\hat{\mathbf{b}}) = \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$

To test $H_0: b_j = b_j^*$ vs. $H_1: b_j \neq b_j^*$ (for $j \in \{0, 1\}$) use test statistic

$$T = (\hat{b}_j - b_j^*)/\hat{\sigma}_{b_j}$$

which follows a t_{n-2} distribution under H_0 .

Confidence Interval for σ^2

Note that
$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2}=\frac{\mathit{SSE}}{\sigma^2}=\frac{\sum_{i=1}^n\hat{e}_i^2}{\sigma^2}\sim\chi_{n-2}^2$$

This implies that

$$\chi^2_{(n-2;1-\alpha/2)} < \frac{(n-2)\hat{\sigma}^2}{\sigma^2} < \chi^2_{(n-2;\alpha/2)}$$

where $P(Q > \chi^2_{(n-2;\alpha/2)}) = \alpha/2$, so a 100(1 - α)% CI is given by

$$\frac{(n-2)\hat{\sigma}^2}{\chi^2_{(n-2;\alpha/2)}} < \sigma^2 < \frac{(n-2)\hat{\sigma}^2}{\chi^2_{(n-2;1-\alpha/2)}}$$

Example #1: Inference Questions

Returning to Momma Leona's Pizza example, suppose we want to...

- (a) Construct a 90% CI for b_1
- (b) Test the assumption that students do not affect the sales. That is, test H_0 : $b_1 = 0$ vs. H_1 : $b_1 \neq 0$. Use $\alpha = 0.01$ for the test.
- (e) Test H_0 : $b_0 = 75$ vs. H_1 : $b_0 < 75$. Use a 5% level of significance.
- (f) Construct a 95% confidence interval for σ^2 .

Example #1: Answer 1a

Question: Construct a 90% CI for b_1 .

The variance of \hat{b}_1 is given by

$$\hat{V}(\hat{b}_1) = \hat{\sigma}^2 / \sum_{i=1}^n (x_i - \bar{x})^2$$
= 191.25/568
= 0.3367077

and the critical t_8 values are $t_{(8;.95)} = -1.85955$ and $t_{(8;.05)} = 1.85955$

So the 90% CI for b_1 is given by

$$\hat{b}_1 \pm t_{(8;.05)} \sqrt{\hat{V}(\hat{b}_1)} = 5 \pm 1.85955 \sqrt{191.25/568}$$

= [3.920969; 6.079031]

Example #1: Answer 1b

Question: Test $H_0: b_1 = 0$ vs. $H_1: b_1 \neq 0$. Use $\alpha = 0.01$ for the test.

The variance of \hat{b}_0 is given by

$$\hat{V}(\hat{b}_0) = \frac{\hat{\sigma}^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}$$
$$= \frac{191.25(2528)}{10(568)}$$
$$= 85.11972$$

and the critical t_8 values are $t_{(8;.995)} = -3.3554$ and $t_{(8;.005)} = 3.3554$

Observed *t* test statistic is $T = \frac{60-0}{\sqrt{85.11972}} = 6.503336$, so decision is

$$t_{(8;.005)} = 3.3554 < 6.503336 = T \Longrightarrow \text{ Reject } H_0$$

Nathaniel E. Helwig (University of Illinois)

Example #1: Answer 1e

Question: Test H_0 : $b_0 = 75$ vs. H_1 : $b_0 < 75$. Use $\alpha = 0.05$ for the test.

The variance of \hat{b}_0 is given by

$$\hat{V}(\hat{b}_0) = \frac{\hat{\sigma}^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}$$
= 85.11972

and the critical t_8 value is $t_{(8:.95)} = 1.859548$

Observed *t* test statistic is $T = \frac{60-75}{\sqrt{85.11972}} = -1.625834$, so decision is

$$t_{(8,.95)} = -1.859548 < -1.625834 = T \Longrightarrow \text{ Retain } H_0$$

Nathaniel E. Helwig (University of Illinois)

Example #1: Answer 1f

Question: Construct a 95% confidence interval for σ^2 .

Using $\alpha=$.05, the critical $\chi^2_{\rm 8}$ values are

$$\chi^2_{(8:.975)} = 2.179731 \qquad \text{and} \qquad \chi^2_{(8:.025)} = 17.53455$$

So the 95% confidence interval for σ^2 is given by

$$\left[\frac{8\hat{\sigma}^2}{\chi^2_{(8;.025)}}; \frac{8\hat{\sigma}^2}{\chi^2_{(8;.975)}}\right] = \left[\frac{1530}{17.53455}; \frac{1530}{2.179731}\right] \\
= [87.2563; 701.9215]$$

Interval Estimation

Idea: estimate expected value of response for a given predictor score.

Given x_h , the fitted value is $\hat{y}_h = \mathbf{x}_h \hat{\mathbf{b}}$ where $\mathbf{x}_h = (1 \ x_h)$.

Variance of
$$\hat{y}_h$$
 is given by $\sigma_{\bar{y}_h}^2 = V(\mathbf{x}_h \hat{\mathbf{b}}) = \mathbf{x}_h V(\hat{\mathbf{b}}) \mathbf{x}_h' = \sigma^2 \mathbf{x}_h (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_h'$

• Use $\hat{\sigma}_{\bar{y}_h}^2 = \hat{\sigma}^2 \mathbf{x}_h (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_h'$ if σ^2 is unknown

We can test $H_0: E(y_h) = y_h^*$ vs. $H_1: E(y_h) \neq y_h^*$

- Test statistic: $T = (\hat{y}_h y_h^*)/\hat{\sigma}_{\bar{y}_h}$, which follows $t_{(n-2)}$ distribution
- 100(1 α)% CI for $E(y_h)$: $\hat{y}_h \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_{\bar{y}_h}$

Predicting New Observations

Idea: estimate observed value of response for a given predictor score.

• Note: interested in actual \hat{y}_h value instead of $E(\hat{y}_h)$

Given x_h , the fitted value is $\hat{y}_h = \mathbf{x}_h \hat{\mathbf{b}}$ where $\mathbf{x}_h = (1 \ x_h)$.

Note: same as interval estimation

When predicting a new observation, there are two uncertainties:

- location of the distribution of Y for X_h (captured by $\sigma^2_{\bar{y}_h}$)
- variability within the distribution of Y (captured by σ^2)

Predicting New Observations (continued)

Two sources of variance are independent so $\sigma_{y_h}^2 = \sigma_{\bar{y}_h}^2 + \sigma^2$

• Use $\hat{\sigma}_{y_h}^2 = \hat{\sigma}_{ar{y}_h}^2 + \hat{\sigma}^2$ if σ^2 is unknown

We can test $H_0: y_h = y_h^*$ vs. $H_1: y_h \neq y_h^*$

- Test statistic: $T = (\hat{y}_h y_h^*)/\hat{\sigma}_{y_h}$, which follows $t_{(n-2)}$ distribution
- 100(1 α)% Prediction Interval (PI) for y_h : $\hat{y}_h \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_{y_h}$

Familywise Confidence Intervals

Returning to the idea of interval estimation, we could construct a $100(1-\alpha)\%$ CI around $E(y_h)$ for g>1 different x_h values.

• Note: we have an error rate of α for each individual CI

The *familywise error rate* is the probability that we make one (or more) errors among all *g* predictions simultaneously.

If predictions are independent, we have that $FER = 1 - (1 - \alpha)^g$.

- Note: familywise error rate increases as g increases
- With g = 1 and $\alpha = .05$, we have FER = 1 (1 .05) = .05
- With g = 2 and $\alpha = .05$, we have $FER = 1 (1 .05)^2 = 0.0975$

Familywise Confidence Intervals (continued)

There are many options (corrections or adjustments) we can use.

Bonferroni adjustment controls FER at α by using $\alpha^* = \alpha/g$ as significance level for each of the g Cls.

Bonferroni's adjustment is very simple, but is conservative

- Does not assume independence between g predictions
- Will be overly conservative if predictions are independent

Simultaneous Confidence Bands

In SLR we typically want a *confidence band*, which is similar to a CI but holds for multiple values of x.

Given the distribution of $\hat{\mathbf{b}}$ (and some probability theory), we have that

$$\frac{(\hat{\mathbf{b}} - \mathbf{b})'\mathbf{X}'\mathbf{X}(\hat{\mathbf{b}} - \mathbf{b})}{\sigma^2} \sim \chi_2^2$$
$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$

which implies that

$$\frac{(\hat{\textbf{b}}-\textbf{b})'\textbf{X}'\textbf{X}(\hat{\textbf{b}}-\textbf{b})}{2\hat{\sigma}^2}\sim\frac{\chi_2^2/2}{\chi_{n-2}^2/(n-2)}\equiv\textit{F}_{2,n-2}$$

Simultaneous Confidence Bands (continued)

To form a $100(1 - \alpha)\%$ confidence band (CB) use limits such that

$$(\hat{\mathbf{b}} - \mathbf{b})' \mathbf{X}' \mathbf{X} (\hat{\mathbf{b}} - \mathbf{b}) \leq 2\hat{\sigma}^2 F_{2,n-2}^{(\alpha)}$$

where $F_{2,n-2}^{(\alpha)}$ is the critical value corresponding to significance level α .

For the SLR model we can form a 100(1 $-\alpha$)% CB using

$$\hat{b}_0 + \hat{b}_1 x \pm \sqrt{2 F_{2,n-2}^{(\alpha)} \hat{\sigma}^2 \begin{pmatrix} 1 & x \end{pmatrix} (\mathbf{X}' \mathbf{X})^{-1} \begin{pmatrix} 1 \\ x \end{pmatrix}}$$

Example #1: Prediction Questions

Returning to Momma Leona's Pizza example, suppose we want to...

- (h) Construct a 95% confidence interval for E(Y|X=38).
- (i) Construct a 95% prediction interval for a future value of Y corresponding to X = 38.
- (j) University of Illinois at Urbana-Champaign has 38 thousand students. Momma Leona would agree to open a restaurant near the UIUC campus, but only if there is enough evidence that the average quarterly sales would be over \$225,000. Using $\alpha = 0.05$, test $H_0: E(Y|X=38) = 225$ vs. $H_1: E(Y|X=38) > 225$.

Example #1: Answer 1h

Question: Construct a 95% confidence interval for E(Y|X=38).

The fitted value is $\hat{y} = 60 + 5(38) = 250$ and the variance of E(Y|X=38) is given by

$$\sigma_{\bar{y}}^{2} = \hat{\sigma}^{2} \left(1 \quad 38 \right) (\mathbf{X}'\mathbf{X})^{-1} \begin{pmatrix} 1 \\ 38 \end{pmatrix}$$

$$= \hat{\sigma}^{2} \left(\frac{1}{n} + \frac{(38 - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right)$$

$$= 191.25 \left(\frac{1}{10} + \frac{(38 - 14)^{2}}{568} \right)$$

$$= 191.25(1.114085)$$

$$= 213.0687$$

and the critical t_8 values are $t_{(8;.975)} = -2.306$ and $t_{(8;.025)} = 2.306$

Example #1: Answer 1h (continued)

Question: Construct a 95% confidence interval for E(Y|X=38).

Note that
$$\hat{y}=60+5(38)=250,\,\sigma_{\bar{y}}^2=213.0687,\,{\rm and}\,\,t_{(8;.025)}=2.306$$

So the 95% CI for E(Y|X=38) is given by

$$\hat{y} \pm t_{(8;.025)} \sigma_{\bar{y}} = 250 \pm 2.306 \sqrt{213.0687}$$

= [216.3396; 283.6604]

Example #1: Answer 1i

Question: Construct a 95% prediction interval for a future value of Y corresponding to X=38.

The fitted value is $\hat{y} = 60 + 5(38) = 250$ and the variance of a predicted value corresponding to X = 38 is given by

$$\sigma_{\hat{y}}^{2} = \hat{\sigma}^{2} \begin{bmatrix} 1 + (1 \quad 38) (\mathbf{X}'\mathbf{X})^{-1} \begin{pmatrix} 1 \\ 38 \end{pmatrix} \end{bmatrix}$$
$$= 191.25 [1 + 1.114085]$$
$$= 404.3187$$

So, given X = 38, the 95% PI for Y would be

$$\hat{y} \pm t_{(8;.025)} \sigma_{\hat{y}} = 250 \pm 2.306 \sqrt{404.3187}$$

= [203.6316; 296.3684]

Example #1: Answer 1j

Question: Test H_0 : E(Y|X=38)=225 vs. H_1 : E(Y|X=38)>225 using significance level of $\alpha=0.05$.

The fitted value is $\hat{y} = 60 + 5(38) = 250$ and the variance of E(Y|X=38) is given by

$$\sigma_{\bar{y}}^2 = \hat{\sigma}^2 \begin{pmatrix} 1 & 38 \end{pmatrix} (\mathbf{X}'\mathbf{X})^{-1} \begin{pmatrix} 1 \\ 38 \end{pmatrix}$$
= 213.0687

and the critical t_8 value is $t_{(8;.05)} = 1.859548$

Observed *t* test statistic is $T = \frac{250-225}{\sqrt{213.0687}} = 1.712696$, so decision is

$$t_{(8;.95)} = 1.859548 > 1.712696 = T \Longrightarrow \text{ Retain } H_0$$

Nathaniel E. Helwig (University of Illinois)

Linear Models in R using 1m Function

In R linear models are fit using the ${\tt lm}$ function.

For SLR the basic syntax of the 1m function is

```
lm(y\sim x, data=mydata)
```

where

- y is the response variable
- x is the predictor variable
- ~ separates response and predictors
- mydata is the data frame containing y and x

Note: if y and x are defined in workspace, you can ignore data input.

Output from 1m Function

We fit and save a linear model using the code

where mymod is the object produced by the lm function.

Note that mymod is an object of class lm, which is a list containing many pieces of information about the fit model:

- coefficients: \hat{b}_0 and \hat{b}_1 estimates
- residuals: $\hat{e}_i = y_i \hat{y}_i$ estimates
- fitted.values: \hat{y}_i estimates
- And more...

print and summary of 1m Output

We can input an object output from the lm function into...

- print function to see formula and coefficients
- summary function to see formula, coefficients, and some basic inference information (R^2 , $\hat{\sigma}$, $\hat{\sigma}_{b_0}$, $\hat{\sigma}_{b_1}$, etc.)

Note 1: print (mymod) produces same result as typing mymod

Note 2: summary is typically more useful than print

Example A: Drinking Data

This example uses the drinking data set from A Handbook of Statistical Analyses using SAS, 3rd Edition (Der & Everitt, 2008).

Y: number of cirrhosis deaths per 100,000 people (cirrhosis).

X: average yearly alcohol consumption in liters/person (alcohol).

Have data from n = 15 different countries (note: this is old data).

Example A: Drinking Data (continued)

> drinking

```
country alcohol cirrhosis
       France
               24.7
                        46.1
        Italy
               15.2
                       23.6
    W.Germany 12.3
                      23.7
4
      Austria 10.9
      Belgium 10.8
         USA
               9.9
                        14.2
       Canada 8.3
                        7.4
              7.2
                         3.0
         E&W
9
       Sweden 6.6
                        7.2
       Japan 5.8
                       10.6
  Netherlands
               5.7
                         3.7
                         3.4
12
                5.6
      Ireland
13
              4.2
                         4.3
       Norway
14
      Finland
                3.9
                         3.6
15
       Israel
                3.1
                         5.4
```

Example A: Analyses and Results

```
> drinkmod=lm(cirrhosis~alcohol,data=drinking)
> summary(drinkmod)
Call:
lm(formula = cirrhosis ~ alcohol, data = drinking)
   Min 10 Median 30 Max
-8.5635 -2.3508 0.1415 2.6149 5.3674
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.9958 2.0977 -2.858 0.0134 *
alcohol 1.9779 0.2012 9.829 2.2e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 4.17 on 13 degrees of freedom
Multiple R-squared: 0.8814, Adjusted R-squared: 0.8723
F-statistic: 96.61 on 1 and 13 DF, p-value: 2.197e-07
```

Example A: Manual Calculations

```
> X=cbind(1,drinking$alcohol)
> y=drinking$cirrhosis
> XtX=crossprod(X)
> Xty=crossprod(X,y)
> XtXi=solve(XtX)
> bhat=XtXi%*%Xtv
> vhat=X%*%bhat
> ehat=v-vhat
> sigsq=sum(ehat^2)/(nrow(X)-2)
> bhatse=sgrt(sigsg*diag(XtXi))
> tval=bhat/bhatse
> pval=2*(1-pt(abs(tval),nrow(X)-2))
> data.frame(bhat=bhat, se=bhatse, t=tval, p=pval)
2 1.977916 0.2012283 9.829211 2.19651e-07
```

Example A: Visualization

```
plot(drinking$alcohol, drinking$cirrhosis, type="n",
     xlab="yearly alcohol (liters/person)", ylab="cirrhosis deaths (per 100,000)")
text (drinking$alcohol, drinking$cirrhosis, drinking$country)
abline(drinkmod$coef[1],drinkmod$coef[2])
```


Example A: Prediction

drinknew

Suppose we have the following data from four countries

```
country alcohol cirrhosis
 Lithuania 12.6
                      NA
Romania 12.7
                      NA
   Latvia 13.2
                      NA
Luxembourg 15.3
                      NA
```

To get the associated \hat{y}_h values use the predict function:

```
> predict(drinkmod, newdata=drinknew)
18.92599 19.12378 20.11274 24.26636
```

Example A: Prediction (continued)

You can use the predict function to make CIs around $E(\hat{y}_h)$:

```
> predict (drinkmod, newdata=drinknew, interval="confidence", level=.9)
                lwr
1 18.92599 16.61708 21.23489
2 19.12378 16.79459 21.45296
3 20.11274 17.67686 22.54861
4 24,26636 21,30626 27,22645
```

Or you can use the predict function to make PIs around \hat{y}_h :

```
> predict(drinkmod, newdata=drinknew, interval="prediction", level=.9)
                lwr
1 18.92599 11.18828 26.66369
2 19.12378 11.38000 26.86755
3 20.11274 12.33620 27.88927
4 24.26636 16.31003 32.22269
```

Example A: Visualization (revisited)

Example A: Visualization (R code)

```
drng=range(drinking$alcohol)
drinkseq=data.frame(alcohol=seq(drng[1],drng[2],length.out=100))
civals=predict(drinkmod, newdata=drinkseq, interval="confidence")
pivals=predict(drinkmod, newdata=drinkseg, interval="prediction")
sevals=predict(drinkmod, newdata=drinkseg, se.fit=T)
plot(drinking$alcohol, drinking$cirrhosis, ylim=c(-5,55),
     xlab="yearly alcohol (liters/person)",
     ylab="cirrhosis deaths (per 100,000)")
abline(drinkmod$coef[1],drinkmod$coef[2])
W=sqrt(2*qf(.95,2,13))
lines(drinkseq$alcohol,civals[,2],lty=2,col="blue",lwd=2)
lines(drinkseq$alcohol,civals[,3],lty=2,col="blue",lwd=2)
lines(drinkseg$alcohol,sevals$fit+W*sevals$se.fit,
      ltv=3,col="LimeGreen",lwd=2)
lines(drinkseg$alcohol, sevals$fit-W*sevals$se.fit,
      ltv=3,col="LimeGreen",lwd=2)
lines(drinkseg$alcohol,pivals[,2],ltv=4,col="red",lwd=2)
lines(drinkseq$alcohol,pivals[,3],lty=4,col="red",lwd=2)
legend("topleft",c("CI", "CB", "PI"), lty=2:4, cex=2,
       lwd=rep(2,3),col=c("blue","LimeGreen","red"),bty="n")
```

Example B: GPA Data

This example uses the GPA data set that we examined before.

From http://onlinestatbook.com/2/regression/intro.html

Y: student's university grade point average.

X: student's high school grade point average.

Have data from n = 105 different students.

Example B: GPA Data (continued)

GPAs for the first 10 students in data set:

```
> gpa[1:10,]
  high_GPA math_SAT verb_SAT comp_GPA univ_GPA
     3.45
              643
                      589
                            3.76
                                    3.52
    2.78
                     512
                            2.87 2.91
                            2.54 2.40
4
     3.67
             685
                     602
                            3.83 3.47
     3.24
                            3.29 3.47
     2.10
                     486
                            2.64 2.37
     2.82
                            2.86 2.40
     2.36
                            2.03 2.24
             559
     2.42
                            2.81 3.02
     3.51
              617
                            3.41 3.32
                     591
```

Example B: Analyses and Results

```
> gpamod=lm(univ GPA~high GPA,data=gpa)
> summary(gpamod)
Call:
lm(formula = univ GPA ~ high GPA, data = gpa)
    Min 10 Median 30
                                  Max
-0.69040 -0.11922 0.03274 0.17397 0.91278
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.09682 0.16663 6.583 1.98e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.2814 on 103 degrees of freedom
Multiple R-squared: 0.6077, Adjusted R-squared: 0.6039
F-statistic: 159.6 on 1 and 103 DF, p-value: < 2.2e-16
```

Example B: Manual Calculations

```
> X=cbind(1,gpa$high_GPA)
> y=qpa$univ_GPA
> XtX=crossprod(X)
> Xty=crossprod(X,y)
> XtXi=solve(XtX)
> bhat=XtXi%*%Xtv
> vhat=X%*%bhat
> ehat=v-vhat
> sigsq=sum(ehat^2)/(nrow(X)-2)
> bhatse=sgrt(sigsg*diag(XtXi))
> tval=bhat/bhatse
> pval=2*(1-pt(abs(tval),nrow(X)-2))
> data.frame(bhat=bhat, se=bhatse, t=tval, p=pval)
1 1.0968233 0.16662690 6.58251 1.976679e-09
2 0.6748299 0.05342238 12.63197 0.000000e+00
```

Example B: Visualization

```
par(mar=c(5,5.4,4,2)+0.1)
plot(gpa$high_GPA,gpa$univ_GPA,xlab="High School GPA",
    ylab="University GPA",cex.lab=2,cex.axis=2)
abline(a=gpamodScoef[1],gpamod$coef[2])
```


Example B: Prediction

Predicted university GPA for data from five new students

```
qpanew=data.frame(high GPA=c(2.4,3,3.1,3.3,3.9),
                 univ GPA=rep(NA, 5))
+
 gpanew
 high_GPA univ_GPA
  2.4
 3.0 NA
  3.1
 3.3 NA
    3.9
              NA
> predict(gpamod, newdata=gpanew)
2.716415 3.121313 3.188796 3.323762 3.728660
```

Example B: Visualization (revisited)

Example B: Visualization (R code)

```
drng=range(gpa$high GPA)
gpaseg=data.frame(high GPA=seg(drng[1],drng[2],length.out=100))
civals=predict(gpamod, newdata=gpaseq, interval="confidence")
pivals=predict(gpamod, newdata=gpaseq, interval="prediction")
sevals=predict(gpamod,newdata=gpaseg,se.fit=T)
plot(gpa$high_GPA, gpa$univ_GPA, ylim=c(2,5),
     xlab="High School GPA",
     ylab="University GPA")
abline(gpamod$coef[1],gpamod$coef[2])
W=sqrt(2*qf(.95,2,103))
lines(gpaseq$high_GPA,civals[,2],lty=2,col="blue",lwd=2)
lines(gpaseg$high GPA,civals[,3],lty=2,col="blue",lwd=2)
lines(gpaseq$high_GPA, sevals$fit+W*sevals$se.fit,
      ltv=3,col="LimeGreen",lwd=2)
lines(gpaseg$high GPA, sevals$fit-W*sevals$se.fit,
      ltv=3,col="LimeGreen",lwd=2)
lines(gpaseg$high_GPA, pivals[,2], lty=4, col="red", lwd=2)
lines(gpaseg$high GPA,pivals[,3],lty=4,col="red",lwd=2)
legend("topleft", c("CI", "CB", "PI"), lty=2:4, cex=2,
       lwd=rep(2,3),col=c("blue","LimeGreen","red"),bty="n")
```