Homework 1

Problem 1

1.

Since $u \rightarrow v \equiv \neg u \lor v$, then:

$$u \lor v \equiv (\neg u) \to v$$

Furthermore,

$$eg(u o
eg v) \equiv
eg(
eg u ee
eg v)$$
 $\equiv u \wedge v$

Thus, all logical statements that can be represented with $\{\neg, \land, \lor\}$ can be represented with $\{\rightarrow, \neg\}$. Since $\{\neg, \land, \lor\}$ is complete, we've reached the conclusion that $\{\rightarrow, \neg\}$ is also complete.

2.

 $\{\land,\lor\}$ is not complete.

CLAIM:

if f is a logical statement composed of $\{\land,\lor,\mathbb{T},\mathbb{F},p\}$ only, where p is arbitrary proposition, then the f can only be equivlaent to:

$$egin{aligned} f &\equiv p \ f &\equiv \mathbb{F} \ f &\equiv \mathbb{T} \end{aligned}$$

Base Case: Statement hold trivially for the cases where $f \in \{p, \mathbb{T}, \mathbb{F}\}$.

Induction Step: Suppose f_1 , f_2 are logical statements composed of $\{\land, \lor, \mathbb{T}, \mathbb{F}, p\}$ only, and they can only be equivalent to p, \mathbb{T} , or \mathbb{F} , then, by cases analysis, and Idempotent Law of \land and \lor , we have:

	$f_1=p$	$f_1=\mathbb{T}$	$f_1=\mathbb{F}$
$f_2=p$	$f_1 \wedge f_2 = p \wedge p = p \ f_1 ee f_2 = p ee p = p$	$egin{aligned} f_1 \wedge f_2 &= \mathbb{T} \wedge p = p \ f_1 ee f_2 &= \mathbb{T} ee p = \mathbb{T} \end{aligned}$	$egin{aligned} f_1 \wedge f_2 &= \mathbb{F} \wedge p = \mathbb{F} \ f_1 ee f_2 &= \mathbb{F} ee p = p \end{aligned}$
$f_2=\mathbb{T}$		$egin{aligned} f_1 \wedge f_2 &= \mathbb{T} \wedge \mathbb{T} = \mathbb{T} \ f_1 ee f_2 &= \mathbb{T} ee \mathbb{T} &= \mathbb{T} \end{aligned}$	$egin{aligned} f_1 \wedge f_2 &= \mathbb{F} \wedge \mathbb{T} = \mathbb{F} \ f_1 ee f_2 &= \mathbb{F} ee \mathbb{T} &= \mathbb{T} \end{aligned}$
$f_2=\mathbb{F}$			$f_1 \wedge f_2 = \mathbb{F} \wedge \mathbb{F} = \mathbb{F} \ f_1 ee f_2 = \mathbb{F} ee \mathbb{F} = \mathbb{F}$

Other cases left blanked also hold, since commutative law holds for \land and \lor .

By CLAIM above, there's no logical statement f composed of $\{\land,\lor,\mathbb{T},\mathbb{F},p\}$ only such that $f\equiv \neg p$, since it contradicts to CLAIM.

Problem 2

1.

Prove that $[\neg q \land (p \rightarrow q)] \rightarrow \neg p$ is tautology

2.

Prove that $(\neg p \land (q \land r)) \lor ((\neg p \land q) \land \neg r)$ is equivalent to $q \land \neg p$

原題
$$\equiv ((\neg p \land q) \land r) \lor ((\neg p \land q) \land \neg r)$$
 (Associative Law)
$$\equiv (\neg p \land q) \lor (r \land \neg r)$$
 (Distributive Law)
$$\equiv (\neg p \land q) \lor \mathbb{F}$$
 (Negation Law)
$$\equiv (\neg p \land q)$$
 (Identity Law)
$$\equiv (q \land \neg p)$$
 (Comutative Law)

Problem 3

Define:

P(x): student x has a person computer

E(x): student x is in EE C(x): student x is in CS

 $c: \mathbf{Paul}$

Then:

Steps	Reason	No
orall x (eg P(x) ightarrow eg E(x))	Premise	1
orall x(C(x) o P(x))	Premise	2
E(c) ee C(c)	Premise	3
eg P(c) ightarrow eg E(c)	1, Universal Instantiation	4
C(c) ightarrow P(c)	2, Universal Instantiation	5
$ egraphicup \neg \neg (P(c)) \lor \neg E(c) $	4, Implication Law	6
$P(c) \lor \lnot E(c)$	6. Double Negation Law	7
$\neg C(c) \lor P(c)$	5, Implication Law	8
C(c)ee E(c)	3, Commutative Law	9
P(c) ee E(c)	8, 9 Resolution	10
$ eg E(c) \lor P(c)$	7, Commutative	11
E(c)ee P(c)	10, Commutative	12
P(c)ee P(c)	11, 12, Resolution	13
P(c)	13, Idempotent. QED.	14

P: superman is able to prevent evil

 ${\cal Q}:$ superman does prevent evil

E: superman exists

 $I: {\it superman}$ is impotent

 $L: \ensuremath{\mathsf{It}}$ is impossible to learn logic

then:

No	Steps	Reason
1	P o Q	Premise
2	eg P o I	Premise
3	E ightarrow eg I	Premise
4	E ightarrow eg P	Premise
5	$ eg E \lor eg I$	3, Implication Law
6	$ eg I \lor eg E$	5, Commutative Law
7	I o eg E	6, Implication Law
8	E o I	4, 2, Hypothetical Syllogism
9	E ightarrow eg E	8, 7, Hypothetical Syllogism
10	$ eg E \lor eg E$	9, Implication Law
11	eg E	10, Idempotent Law
12	eg E ee L	11, Addition
13	E o L	12, Implication Law. QED

3.

T(x): x lives in Taipei

D(x):x lives within 100 km to the ocean

F(x): x never eats seafood

Then:

No	Steps	Reason
1	orall x(T(x) o D(x))	Premise
2	$\exists y (T(y) \wedge F(y))$	Premise
3	$T(c) \wedge F(c)$	2, Existential Instantiation
4	T(c) o D(c)	1, Universal Instantiation
5	T(c)	3, Simplification
6	D(c)	4, 5, Modus Ponens
7	$D(c) \wedge T(c)$	5, 6, Conjunction
8	$\exists z. D(z) \wedge T(z)$	7, Existential Generalization. QED

4.

D(x): x in discrete mathematic class

S(x): x knows calculus C(x): x knows C++

p: Peter

then

No	Step	Reason
1	orall x(D(x) o S(x))	Premise
2	orall x(eg C(x) ightarrow eg D(x))	Premise
3	S(p) o eg C(p)	Premise
4	D(p) o S(p)	1, Universal Instantiation
5	eg C(p) ightarrow eg D(p)	2, Universal Instantiation

6	D(p) o eg C(p)	4, 3 Hypothetical Syllogism
7	D(p) o eg D(p)	6, 5 Hypothetical Syllogism
8	eg D(p) ee eg D(p)	7, Implication Law
7	eg D(p)	8, Idempotent Law. QED.

Problem 4

1.

$$\neg((p \lor q) \land (r \lor s)) \equiv \neg((r \lor s) \land (p \lor q)) \qquad \text{(Commutative Law)}$$

$$\equiv \neg(r \lor s) \lor \neg(p \lor q) \qquad \text{(De Morgan's Law)}$$

$$\equiv (\neg r \land \neg s) \lor (\neg p \lor q) \qquad \text{(De Morgan's Law)}$$

$$\equiv (\neg r \land \neg s) \lor (\neg p \land \neg q) \qquad \text{(De Morgan's Law)}$$

$$\equiv (\neg s \land \neg r) \lor (\neg p \land \neg q) \qquad \text{(Commutative Law)}$$

2.

Problem 5

$$egin{aligned} 2^{S_1} &= \{arnothing, \{\{1,2\}\}\} \ 2^{S_2} &= \{arnothing\} \end{aligned}$$

Collaborators & Reference

我是外系邊緣人,所以沒有跟人一起討論作業,也沒有 Reference。