Organic Reactions

Organic Reactions

VOLUME 10

EDITORIAL BOARD

ROGER ADAMS, Editor in Chief

4 H BLATT DAVID Y CURTIN

VIRGIL BOEXELHEIDF FRANK C McGREW

ADVISORY ROARD

1 OLIS F FIESER JOHN R JOHNSON HAROLD R. SNYDER

ASSOCIATE EDITORS

ERNST D BERGMANN RAPHAEL PAPPO
DAVID GINSBURG STANLEY M PA

STABLEY M PARMERTER

ROBERT R PRILLIPS

FORMER MEMBERS OF THE BOARD, NOW DECEASED

HOMER ADXINS "WERNER E BACHMANN

MLSU - CENTRAL LIBRARY

NEW YORK

JOHN WILEY & SONS, INC.

LONDON · CHAPMAN & HALL, LIMITED

COPYRIGHT © 1959 BY ROGER ADAMS

All Rights Reserved

This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

Library of Congress Catalog Card Number: 42-20265
PRINTED IN THE UNITED STATES OF AMERICA

PREFACE TO THE SERIES

In the course of nearly every program of research in organic chemistry the investigator finds it necessary to use several of the better-known synthetic reactions. To discover the optimum conditions for the application of even the most familiar one to a compound not previously subjected to the reaction often requires an extensive search of the literature; even then a series of experiments may be necessary. When the results of the investigation are published, the synthesis, which may have required months of work, is usually described without comment. The background of knowledge and experience gained in the literature search and experimentation is thus lost to those who subsequently have occasion to apply the general method. The student of preparative organic chemistry faces similar difficulties. The textbooks and laboratory manuals furnish numerous examples of the application of various syntheses, but only rarely do they convey an accurate conception of the scope and usefulness of the processes.

For many years American organic chemists have discussed these problems. The plan of compiling critical discussions of the more important reactions thus was evolved. The volumes of Organic Reactions are collections of chapters each devoted to a single reaction, or a definite phase of a reaction, of wide applicability. The authors have had experience with the processes surveyed The subjects are presented from the preparative viewpoint, and particular attention is given to limitations, interfering influences, effects of structure, and the selection of experimental techniques. Each chapter includes several detailed procedures illustrating the significant modifications of the method Most of these procedures have been found satisfactory by the author or one of the editors, but unlike those in Organic Syntheses they have not been subjected to careful testing in two or more laboratories. When all known examples of the reaction are not mentioned in the text, tables are given to list compounds which have been prepared by or subjected to the reaction. Every effort has been made to include in the tables all such compounds and references; however, because of the very nature of the reactions discussed and their frequent use as one of the several steps of syntheses in which not all of the intermediates have been isolated, some instances may well have been missed. Nevertheless, the investigator will be able

to use the tables and their accompanying bibliographies in place of most or all of the literature search so often required.

Because of the systematic arrangement of the material in the chapters and the entries in the tables, users of the books will be able to find information desired by reference to the table of contents of the appropriate chapter. In the interest of economy the entries in the indices have been kept to a minimum, and, in particular, the compounds listed in the tables are not repeated in the indices.

The success of this publication, which will appear periodically, depends upon the cooperation of organic chemists and their willingness to devote time and effort to the preparation of the chapters. They have manifested their interest already by the almost unanimous acceptance of invitations to contribute to the work. The editors will welcome their continued interest and their suggestions for improvements in *Organic Reactions*.

CONTENTS

CHAPTER	PAGE
1 The Coupling of Diszonium Salts with Aliphatic Carbon Atoms—Stanley M. Parmerler	1
2 THE JAPP-KLINGEMANN REACTION—Robert R Phillips	143
3. THE MICHAEL REACTION—Ernst D. Bergmann, David Ginsburg, and Raphael Pappo	179
AUTHOR INDEX, VOLUMES 1-10	557
CHAPTER INDEX, VOLUMES 1-10	559
SUBJECT INDEX, VOLUME 10	561

CHAPTER 1

THE COUPLING OF DIAZONIUM SALTS WITH ALIPHATIC CARBON ATOMS

STANLEY M. PARMERTER Wheaton College

CONTENTS

INTRODUCTION					
MECHANISMS OF THE REACTIONS					4
Score and Limitations .					7
Ketones					7
β Keto Acids, Esters, and Amids	75				10
Malonic Acids, Esters, and Amid	les				13
Arylacetic Acids and Esters					15
Nitriles					16
Sulfones					. 18
Nitro Compounds					19
Hydrocarbons					. 21
Hydrazones					24
Heterocyclic Compounds					26
SYNTHETIC APPLICATIONS .		٠.			27
Cinnolines					27
Indazoles					29
Tetrazolium Salts					29
Theocarbazones .				,	29
Amidrazones					30
Amines					30
EXPERIMENTAL CONDITIONS					39
Diazonium Salts					30
Solvents .					37
pH .					31
Reactant Ratios					32
Time of the Reaction					32

1

	22.01
Experimental Procedures	35
Ethyl α,β -Dioxobutyrate α -Phenylhydrazone	35
Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone	33
1-Nitro-1-p-chlorophenylhydrazonoethane	33
1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-butadiene	33
N,N'-Diphenyl-C-methylformazan	34
4-Hydroxy-3-methylcinnoline	34
TABULAR SURVEY	34
Table I. Coupling of Diazonium Salts with Ketones	35
A. Monoketones	35
B. β -Ketoaldehydes	39
C. β -Diketones	39
D. Cyclic β -Diketones	43
E. 4-Hydroxycinnnolines from o-Aminoketones	40
Table II. Coupling of Diazonium Salts with β-Keto Acids, Esters, and	
Amides	49
	49
A. β-Keto Acids	51
B. β-Keto Esters	58
C. β-Keto Amides. ,	•
Table III. Coupling of Diazonium Salts with Malonic Acids, Esters, and	
Amides	64
A. Malonic Acids	64
B. Malonic Esters	65
C. Malonic Amides	67
Table IV. Coupling of Diazonium Salts with Arylacetic Acids and Esters.	69 70
Table V. Coupling of Diazonium Salts with Nitriles	80
Table VI. Coupling of Diazonium Salts with Sulfones	83
Table VII. Coupling of Diazonium Salts with Nitro Compounds	92
Table VIII. Coupling of Diazonium Salts with Hydrocarbons	
A. Unsaturated Hydrocarbons	92
B. Compounds Containing a Reactive Methyl Group	94
Or onmonest tomornation of the state of the	100
zi i ziyatony amadan a zidir o zimadpizity acceptonen i v i v i v	102
E. Indazoles from o-Toluidines	103
Table IX. Coupling of Diazonium Salts with Hydrazones	106
	106
B. Hydrazones of Sugars	115
	116
	117
E. Diformazana from Dibenzalaminoguanidines	118
F. Hydrazones Which Couple with Elimination of a Substituent	118

Table X. Coupling of Diazonium Salts with Heterocyclic Compounds		121
A. 5-Pyrazolones B. Miscellaneous Heterocyclic Compounds		121
D Princentancous Reterocyclic Compounts .	•	129
Table XI Coupling of Diszonium Salts with Miscellaneous Compounds		135

INTRODUCTION

A diazonium salt will couple with an aliphatic compound containing an activated carbon-hydrogen bond. This diacussion is limited to those reactions in which both nitrogen atoms of the diazonium salt are retained in the resulting molecule. The discussion is further limited by the exclusion of coupling reactions which occur with the elimination of a group from an activated methanyl compound, the Japp-Klingemann reaction, as these reactions are discussed in Chanter 2.

Victor Meyer was the first to report the coupling of a diazonium salt with an activated alphate carbon atom. He found that benzenediazonium sulfate reacts with the sodium salt of nitroethane to give a colored product which was assigned the azo structure I.

$$C_0H_0N = NCHNO_2$$
 CH_0

Coupling with other nitroparaffins¹⁻³ as well as with ethyl acetoacetate^{4,7} was soon reported. A question regarding the structure of the reaction products arose when it was discovered that bennenediaronium chloride coupled with diethyl malonate to give a product identical with the behealthylarization of diethyl mesozalate (II) ⁵⁶

$$\begin{aligned} & C_{6}H_{1}N_{2}CI + CH_{2}(CO_{2}C_{2}H_{6})_{2} \\ & \searrow \\ & C_{6}H_{3}NHNH_{2} + CO(CO_{2}C_{2}H_{6})_{1} \end{aligned} \\ & \searrow C_{6}H_{3}NHNH_{2} + CO(CO_{2}C_{2}H_{6})_{1} \end{aligned}$$

Much of the early work with the coupling reaction was prompted by the desire to determine whether the products were of the azo or hydrazone

- 1 Mover and Ambahl, Ber., 8, 751 (1875).
- Meyer and Ambuhl, Ber, 8, 1073 (1875).
- Friese, Ber , 8, 1078 (1875).
- Meyer, Ber., 9, 384 (1878).
 Zublin, Ber., 10, 2087 (1877).
- Moyer, Ber. 10, 2075 (1877)
 Zublin, Ber. 11, 1417 (1878).
- Züblin, Ber., 11, 1417 (1878)
 Meyer, Ber., 21, 118 (1888)

	PAG
Experimental Procedures	3
Ethyl α, β -Dioxobutyrate α -Phenylhydrazone	3
Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone	3
	3
1-Nitro-1-p-chlorophenylhydrazonoethane	_
1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-butadiene	3
N,N'-Diphenyl-C-methylformazan	3
4-Hydroxy-3-methylcinnoline	3
TABULAR SURVEY	3
Table I. Coupling of Diazonium Salts with Ketones	3
A. Monoketones	38
B. β-Ketoaldehydes	39
	39
C. β -Diketones	43
D. Cyclic β -Diketones	4(
E. 4-Hydroxycinnnolines from o-Aminoketones	40
Table II. Coupling of Diazonium Salts with β-Keto Acids, Esters, and	
Amides	49
A. β-Keto Acids	45
	51
F	58
C. β -Keto Amides	0.
malla TIT Compliant of Discontinue Called the Relative Acide Totage and	
Table III. Coupling of Diazonium Salts with Malonic Acids, Esters, and Amides	64
A. Malonic Acids	64
B. Malonic Esters	65
	67
C. Malonic Amides	0,
Table IV. Coupling of Diazonium Salts with Arylacetic Acids and Esters .	69
Table V. Coupling of Diazonium Salts with Nitriles	70
Table VI. Coupling of Diazonium Salts with Sulfones	80
• •	83
Table VII. Coupling of Diazonium Salts with Nitro Compounds	92
Table VIII. Coupling of Diazonium Salts with Hydrocarbons	0.
A. Unsaturated Hydrocarbons	92
B. Compounds Containing a Reactive Methyl Group	94
C. Cinnolines from o-Aminophenylethylenes	100
D. 4-Hydroxycinnolines from o-Aminophenylacetylenes	102
	103
E. Indazoles from o-Toluidines	100
Table IX. Coupling of Diazonium Salts with Hydrazones	106
A. Simple Hydrazones	106
B. Hydrazones of Sugars	115
C. Diformazans from Hydrazones and Diamines	116
D. Diformazans from Dihydrazones	117
E. Diformazana from Dibenzalaminoguanidines	118
	118
F. Hydrazones Which Couple with Elimination of a Substituent	

with hydrazones. ¹³⁻¹⁸ From the observation that primary hydrazones (IV) couple readily with diazonium salts, whereas secondary hydrazones (V) do not react, ¹⁵ he proposed that the first product was an N-azo compound (VI) which rearranged to give the formazan derivative VII.* A crystalline intermediate, assumed to be the N-azo compound, was isolated from the reaction of benzenediazonium chloride with benzaldehyde

phenylhydrazone in alcoholic sodium acetate.** Evaporation of an ether solution of this compound produced a formazan.

More recent study of the reaction between benzaldshyde phenyl-hydratone and benzenedizatonum chloride has shown that the product was dependent on the pH of the reaction medium. ***** In a solution of pH 3, benzaldshyde p-phenylaxophenylhydrazone was isolated. Reaction at pH values of 4 to 8 produced up to 66% ynelso 64 shenzylidene-1,3-diphenyl-1-tetrazene, whereas at a pH greater than 9 the product was NyN_C-triphenylformazan. The tetrazene changed to the formazan within a few hours at room temperature or rapidly when heated to 90°. Rearrangement also occurred in pyridine or ethanolic potassium hydroxide. The fact that no 1-phenylazo-2-naphthol was formed when the rearrangement was carried out in ethanolic potassium hydroxide containing \$B-naphthol indicated that the reaction was inframolecular.

$$C_{4}H_{1}CH=NNHC_{4}H_{5}+C_{4}H_{3}N_{5}CI \xrightarrow{pH+8} C_{4}H_{5}CH=NNC_{4}H_{5}N_{5}$$

$$C_{5}H_{1}CH=NNHC_{4}H_{5}+C_{4}H_{3}N_{5}CI \xrightarrow{pH+8} C_{4}H_{5}CH=NNC_{5}H_{5}$$

$$N=NC_{5}H_{5}$$

C₄H₃C==NNHC₄I | N=NC₄H₃

- 16 Busch and Pfeiffer, Ber , 59, 1162 (1926).
- 14 Busch and Schmidt, Ber. 63, 1958 (1930)
- Busch and Schmidt, J. prakt. Chem. [2], 129, 151 (1931)
 Busch and Schmidt, J. prakt. Chem. [2], 131, 182 (1931)
- Busch and Schmidt, J. prakt Chem., [2], 181, 182 (4)
 von Pechmann, Ber., 27, 1679 (1894).
- These compounds are named as derivatives of the hypothetical formazan, B_pNS= CHN=NH
- 144 Hauptmann and Périsse, Experientia, 10, 60 (1934) [C A 49, 4554 (1955)]
 - 140 Hauptmann and Pérsse, Chem. Ber , 89, 1081 (1956).

structure. It is difficult to establish with certainty the structures in such cases where two tautomeric forms are possible. However, it is generally assumed that the hydrazone is the stable form whenever coupling occurs at a methyl or methylene carbon. Recently, Wiley and Jarboe have presented ultraviolet and infrared absorption data which corroborate this view. In the limited number of compounds where coupling occurs on a methinyl carbon without the elimination of a group only the azo structure is possible.

MECHANISMS OF THE REACTIONS

Various mechanisms for the coupling reaction have been proposed. Dimroth observed that reaction occurred only with the enol forms of various ketones.⁹ He proposed that the first product was an enol ether which rearranged to give the final product. The isolation of intermediate

$$\begin{array}{c} \text{OH} \\ \downarrow \\ \text{C}_6\text{H}_5\text{N=NOH} + -\text{CH=C-} \rightarrow -\text{CH=C-} \\ \downarrow \\ \text{OH} \\ \text{ON=NC}_6\text{H}_5 \\ \end{array} \rightarrow \begin{array}{c} \text{OH} \\ \downarrow \\ \text{N=NC}_6\text{H}_5 \\ \end{array}$$

O-azo compounds in certain instances gave further support to his proposal.¹⁰⁻¹² However, these intermediates were isolated only from highly substituted aliphatic reactants such as tribenzoylmethane. It is probable that this mechanism is applicable in special cases.

When certain α,α -diarylethylenes react with diazonium salts, a crystalline intermediate can be isolated.^{13,14} This is considered to be the carbonium salt III. The salt readily loses hydrogen halide to give an

$$\text{Ar}_2\text{C} = \text{CH}_2 + \text{Ar}'\text{N}_2\text{X} \rightarrow (\text{Ar}_2\text{CCH}_2\text{N}_2\text{Ar}')^+\text{X}^- \rightarrow \text{Ar}_2\text{C} = \text{CHN} = \text{NAr}' + \text{HX}$$

azo compound. Since these intermediates have been isolated only with rather complex molecules, it may be unwise to propose their formation as part of a general mechanism for coupling with all unsaturated hydrocarbons and enols.

Busch has studied the mechanism of the reaction of diazonium salts

⁴⁶ Wiley and Jarboe, J. Am. Chem. Soc., 77, 403 (1955).

⁹ Dimroth, Ber., 40, 2404 (1907).

¹⁰ Dimroth and Hartmann, Ber., 41, 4012 (1908).

¹¹ Dimroth, Leichtlin, and Friedemann, Ber., 50, 1534 (1917).

¹² Auwers, Ann., 378, 243 (1910).

¹³ Dilthey and Blankenburg, J. prakt. Chem., [2], 142, 177 (1935).

¹⁴ Wizinger and Cyriax, Helv. Chim. Acta, 28, 1018 (1945).

Diazotized o-aminoacetophenones also couple intramolecularly with the formation of 4-hydroxycinnolines. This reaction, which is favored by a strongly acidic reaction medium, is believed to proceed through an acid-catalyzed enolization of the carbonyl group.²⁴

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

SCOPE AND LIMITATIONS

Since the principal factor that influences this reaction is the nature of the alphatic reactant rather than that of the diazonium salt, the following discussion is based upon the types of compounds that undergo coupling.

Ketones

Few examples of the reaction of a simple ketone with a diazonum salt have been reported. Acctone reacts with benzenediazonum chloride in alkalme solution to give a product? that was later identified as methyl formazyl ketone (IX). The methyl group in pyruvic acid likewise reacts with two molecules of diazonium salt? When one of the hydrogen atoms of acctone is replaced by an activating group, the

$$CH_3COCH_3 + 2C_6H_5N_3C1 \rightarrow C_6H_5Ns=NC=NNHC_6H_5$$
 $COCH_4$

ıχ

Schofield and Sympson J Chem Soc., 1948, 1170
 Bamberger and Wulz, Ber., 24, 2793 (1891)

²⁴ von Pechmann, Ber , 25, 3190 (1892)

¹⁷ Bamberger and Müller, Ber . 27, 147 (1894)

However, when the tetrazene was dissolved in a cold solution of hydrogen chloride in ethanol, benzaldehyde phenylhydrazone and benzenediazonium chloride were regenerated.

Most of the current theories formulate the reaction as the direct attack of the diazonium cation on a carbanion or a carbon atom with high electron density.^{19c,19d} Tarbell has proposed such a mechanism for the reaction of a diazonium salt with nitromethane.²⁰ The reaction of the

$$\Lambda r N_2^+ + (CH_2NO_2)^- \rightarrow \Lambda r N = NCH_2NO_2 \Rightarrow \Lambda r N H N = CHNO_2$$

product with a second molecule of diazonium salt also was postulated as being ionic in nature.

$$\Lambda rN_2^+ + (\Lambda rN = NCHNO_2)^- \rightarrow \Lambda rN = NC = NNHAr$$

|
NO2

Although the second reaction seems to be at variance with the experiments of Busch mentioned above, it should be noted that the facts given by Busch do not exclude the possibility of an ionic mechanism for the reaction. Since the reactions in the system appear to be reversible, the isolation of N-azo compounds and the fact that they can generate the final product do not prove that they are intermediates. An alternative explanation for the observation that secondary hydrazones, such as V above, do not react may be that the coupling reaction requires the resonance-stabilized carbanion VIIIa \leftrightarrow VIIIb.²¹

$$\begin{array}{c} \text{RNIIN=CHR} \xrightarrow{\text{Base}} \text{RN=NCHR} \longleftrightarrow \text{RNN=CHR} \\ \text{VIII}a & \text{VIII}b \end{array}$$

The diazonium salts prepared from o-aminophenylacetylenes undergo intramolecular coupling to yield 4-hydroxycinnolines. Schofield and his co-workers believe that the first step in this reaction is the coordination of the diazonium cation with one carbon atom of the acetylene, followed by the addition of hydroxyl ion to the other carbon atom.^{22,23}

$$\begin{array}{c}
\text{OH} \\
\text{C=CH} \\
\text{N=N}
\end{array}$$

¹⁹c Hunig and Boes, Ann., 579, 28 (1953).

¹¹d Scott, O'Sullivan, and Reilly, J. Am. Chem. Soc., 75, 5309 (1953).

²⁰ Tarbell, Todd, Paulson, Lindstrom, and Wystrach, J. Am. Chem. Soc., 70, 1381 (1948).

²¹ D. S. Tarbell, private communication.

²² Schofield and Simpson, J. Chem. Soc., 1945, 520.

²³ Schofield and Swain, J. Chem. Soc., 1949, 2393.

ethoxalyl group was eliminated when 9-ethoxalylfluorene (XIII) was treated with a diazonium salt.36 The reaction of heterocyclic esters with 2 moles of a diazonium salt is a convenient preparation of C-heterocyclic formazans.36c Ethyl 2-quinolylpyruvate, for example, reacts with p-bromobenzenediazonium chloride to give a 79% yield of the formazan,

$$CH_{2}COCO_{2}C_{2}H_{3}+2p\cdot BrC_{4}H_{4}N_{2}CI\rightarrow$$

The only acetophenones that have been shown to undergo coupling are the o aminoacetophenones. When these amines are diazotized, reaction occurs intramolecularly to give 4-hydroxycinnolines Although this reaction is favored by the presence of electronegative groups ortho or para to the amino group, a 70-75% yield of 4-hydroxycinnoline (XIV)

could be obtained by warming a solution of diazotized o-aminoacetophenone in hydrochloric acid 37 This transformation proceeds smoothly with a variety of substituted o-aminoacetophenones. It has been extended to include o-aminophenacyl halides which give 3-halogenated 4-hydroxycinnolines,24,38 Higher homologs of o-aminoacetophenone produce the corresponding 3 alkyl-1-hydroxycinnolines.39-41

The methylene group in \$-diketones reacts readily with diazonium salts The product may be formulated as the monohydrazone of a triketone Benzovlacetone, for example, has been converted into the monophenylhydrazone XV m 90% yield.42 A variety of β-diketones has been employed in the same general reaction. Cyclic β -diketones, such as

- " Kuhn and Levy, Ber , 51, 2249 (1928).
- see Roed and Haff-chmidt, Ann . 581, 23 (1953)
- " Keneford and Simpson, J Chem Soc., 1947, 917
- " Schofield Swain, and Theobald, J Chem Soc., 1949, 2399
- 39 Leonard and Boad, J Org Chem . 11, 419 (1946). " Keneford and Simpson, J Chem. Sor . 1948, 254
- 41 Keneford and Simpson, J Chem Sec. 1948, 2318
- " Chattaway and Lie J Chem Soc . 1933, 450

methylene carbon is the one attacked. Compounds of this type that have been investigated include chloroacetone,²⁸ 2,4-dinitrophenyiacetone,²⁹ acetonylpyridinium bromide,³⁰ and a variety of 3-acetonyl-1,2,4-oxadiazoles.^{31,32} The product from acetonylpyridinium bromide had the betaine structure X.

$$(\mathrm{CH_2COCH_2NC_5H_5})^+\mathrm{Br^-} \div ({}^{\mathrm{c}}_{\mathrm{c}}\mathrm{H_5N_2Cl} \to \mathrm{CH_3COCNC_5H_5} \\ \mathrm{NNC_6H_5} \\ \odot$$

Dieckmann reported that cyclopentane-1,2-dione reacts with benzene-diazonium chloride to give the I-phenylhydrazone of cyclopentane-1,2,3-trione.²³ The only instance of the coupling of 2 moles of a diazonium salt with a cyclic ketone was the reaction used by Willstätter to show the presence of two active methylene groups in tropinone (XI).²⁴

The reaction of a diazonium salt with 1-ethoxalylindene (XII) produces the 1-arylazocompound.²⁵ This contrasts with the observation that the

A β -keto sulfone acid retains the acid group when it couples with a diazonium salt. \$8.59 For example, the phenylhydrazone XIX has been prepared in 60% yield from 2-oxo-2-phenylethane-1-sulfonic acid.

$$C_a\Pi_aCOCH_aSO_aH + C_aH_aN_aCI \rightarrow C_aH_aCOCSO_aH$$

$$\parallel NNHC_aH_a$$

$$NNHC_aH_a$$

The reactions of β -keto esters with diazonium salts have been studied extensively. Products from ethyl acetoacetate and over fifty different diazonium salts have been reported Good yields of the α -hydrazones of α , β -diketo esters are obtained if 1 mole of the diazonium salt is employed. However, the use of 2 moles of benzenediazonium chloride causes the elimination of the acetyl group to give an 80% yield of C-carbethox-NN-dishneyflormazan (XN).

$$\begin{aligned} & \text{CH}_{3}\text{COCH}_{4}\text{CO}_{2}\text{C}_{4}\text{H}_{4} + \text{C}_{4}\text{H}_{4}\text{N}_{4}\text{CI} \rightarrow \text{CH}_{2}\text{COCCO}_{6}\text{C}_{4}\text{H}_{4} \\ & \text{NNHC}_{4}\text{H}_{5} \\ & \text{CH}_{4}\text{COCCO}_{6}\text{C}_{4}\text{H}_{5} + \text{C}_{8}\text{H}_{5}\text{N}_{4}\text{CI} \rightarrow \text{C}_{8}\text{H}_{8}\text{N}_{9}\text{=NCCO}_{4}\text{C}_{4}\text{H}_{8} \\ & \text{NNHC}_{4}\text{H}_{5} \\ & \text{NNHC}_{4}\text{H}_{5} \end{aligned}$$

Diethyl oxaloacetate hkewsse can react with 1 or 2 moles of benzenediazonum chloride, st-#3 If 1 mole of the salt is used, the product is diethyl dioxosuccunate phenylhydrazone (XXI). The addition of 2 moles of diazonium salt in strongly alkaline solution causes the replacement of the ethoxalt oroup

There are no reports of the elimination of groups other than acetyl and ethogalyl when 2 moles of a diazonium salt react with a β -keto ester

²⁵ Parkes and Fisher, J Chem Soc , 1938, 83.

¹⁰ Parken and Tinaley, J Chem. Soc., 1924, 1861.

Bamberger and Wheelwright, J. prakt Chem. [2], 65, 125 (1902).
 Winhoenus and Jensen, Ber. 25, 2448 (1892).

^{**} Rabuschong, Bull soc chim France, [3], 31, 76 (1904).

Rabischong, Bull soc chim France, [3], 31, 70 (1904).
 Rabischong, Bull soc chim France, [3], 31, 83 (1904).

cyclohexanc-1,3-dione, 43 methone, $^{44-46}$ and indan-1,3-dione 47,48 react as readily as the acyclic analogs.

$$\begin{array}{c} C_6H_5COCH_2COCH_3 + C_6H_5N_3Cl \rightarrow C_6H_5COCCOCH_3 \\ \parallel \\ NNHC_6H_5 \\ XV \end{array}$$

A limited number of β -keto aldehydes has been investigated.⁴⁹⁻⁵¹ In these compounds, the methylene group reacts in the same manner as in β -diketones.

β-Keto Acids, Esters, and Amides

When a β -keto carboxylic acid is treated with a diazonium salt, carbon dioxide is eliminated. The product from the reaction of benzenediazonium chloride with acctoacetic acid is the 1-phenylhydrazone of pyruvaldehyde (XVI). If 2 moles of diazonium salt are employed, methyl formazyl ketone (XVII) is the product.⁵² In carrying out this reaction, the general practice is to saponify a β -keto ester and then to add the diazonium salt solution directly to the hydrolysis mixture without isolation of the unstable β -keto acid.⁵³⁻⁵⁵

Acetonedicarboxylic acid reacts with 2 moles of diazonium salt with the elimination of both carboxyl groups.^{56,57} The resulting product is a mesoxaldehyde diarylhydrazone (XVIII).

$$CO(CH_2CO_2H)_2 + 2ArN_2Cl \rightarrow CO(CH = NNHAr)_2$$
XVIII

- 43 Vorländer, Ann., 294, 253 (1897).
- 44 Lifschitz, Ber., 47, 1401 (1914).
- 45 Iyer and Chakravarti, J. Indian Inst. Sci., 17A, 41 (1934) [C. A., 28, 4390 (1934)].
- 46 Iyer, J. Indian Inst. Sci., 21A, Pt. 6, 65 (1938) [C. A., 33, 148 (1939)].
- 47 Wislicenus and Reitzenstein, Ann., 277, 362 (1893).
- 48 Das and Ghosh, J. Am. Chem. Soc., 43, 1739 (1921).
- 49 Beyer and Claison, Ber., 21, 1697 (1888).
- 50 Benary, Meyer, and Charisius, Ber., 59, 108 (1926).
- 61 Benary, Ber., 60, 914 (1927).
- ⁵² Bamberger and Lorenzen, Ber., 25, 3539 (1892).
- 43 Japp and Klingemann, J. Chem. Soc., 53, 519 (1888).
- ⁵⁴ Japp and Klingemann, Ann., 247, 190 (1888).
- 65 Reynolds and Van Allan, Org. Syntheses, 32, 84 (1952).
- ⁵⁸ von Pechmann and Jenisch, Ber., 24, 3255 (1891).
- 67 von Pechmann and Vanino, Ber., 27, 219 (1894).

pigments. The Hansa Yellows are obtained from the reactions of acetoacetanilides with varous dazonium salts "-4" Many variations in the anilide as well as in the disconum salt have been studied in attempts to improve the color, stability, and solubility of the resulting dyes. Limitations of space preclude a survey of the extensive patent literature on this subject. However, those \(\theta \) bateo amides whose coupling has been reported in the general iterature are included in Table IIC. The dyes may be formulated as existing in both hydrazone (XXVI) and azo (XXVII) and b) tautoment forms.

OH

$RCOCCONHAr \Rightarrow RC \longrightarrow CCONHAr \Rightarrow RCOCHCONHAr$

NNHAr N⇒NAr N⇒NAr xxvi xxvii6 xxviib

Malonic Acids, Esters, and Amides

Malonic acid can react with 1, 2, or 3 moles of a diazonium salt. It appears that the reaction proceeds through the following steps, with decarboxylation occurring in the first and second stages.⁷⁰ Even when

$$CII_1(CO_2H)_1 + ArN_2X \rightarrow ArNHN = CHCO_2H$$

 $ArNHN = CHCO_2H + ArN_2X \rightarrow ArNHN = CHN = NAr$

$$ArNHN=CHN=NAr + ArN_{*}X \rightarrow ArNHN=C(N=NAr)_{*}$$

equimolecular amounts of acid and salt are used, the reaction usually give a mixture of the first two products. The relative amounts of these substances formed depend upon the nature of the diszonum salt employed. Busch and Wolbring were able to isolate the phenylhydrazone XXVIII in Softy yield from the reaction of malonic acid with o-mitra-benzenedazonum chloride, but under similar conditions p-bromobenzene-diazonium chloride gave mainly NX-di-(p-bromophenylformazan

 ${}_{0}\text{-}\mathrm{O}_{2}\mathrm{NC}_{4}\mathrm{H}_{4}\mathrm{NHN} \!\!=\!\! \mathrm{CHCO}_{2}\mathrm{H} \qquad p\mathrm{BrC}_{4}\mathrm{H}_{4}\mathrm{NHN} \!\!=\!\! \mathrm{CHN} \!\!=\!\! \mathrm{NC}_{4}\mathrm{H}_{4}\mathrm{Br}\text{-}p$ XXIX

(XXIX).⁷¹ A formazan derivative is the main product with either 1 or 2 moles of most diazonium salts.

- ** Fierz-David and Ziegler, Helv Chim. Acta, 11, 776 (1928).
- ** Burr and Rowe, J Soc Dyers Colourists, 44, 205 (1928) [C. A., 22, 3400 (1928)].
- ⁴⁹ Rowe, Burr, and Corbiebley. J. Soc. Dyere Colourists, 42, 80 (1926) [C. A. 20, 1718 1926)]
 - von Pechmann, Ber., 25, 3175 (1892).
 Busch and Wolbring, J. prolit Chem., [2], 71, 366 (1903)

containing a methylene group. However, by analogy with the Japp-Klingemann reaction (p. 143), it would be expected that other acyl groups could be eliminated as well.

Diethyl acetonedicarboxylate (XXII) reacts smoothly with 1 mole of diazonium salt.^{64,65} There have been no reports of further reaction with the second methylene group present in the molecule.

$$\begin{array}{c} C_2H_5O_2CCH_2COCH_2CO_2C_2H_5 \,+\, C_6H_5N_2Cl \rightarrow C_2H_5O_2CCCOCH_2CO_2C_2H_5 \\ XXII & & & & & & & & & & \\ XNHC_6H_5 & & & & & & & & \\ \end{array}$$

Diethyl oxalocrotonate (XXIII) may be regarded as a vinylog of diethyl oxaloacetate. Its behavior with diazonium salts depends upon the pH of the reaction mixture. When the ester is treated with excess p-bromobenzenediazonium chloride in ethanolic hydrochloric acid, the only product is the monophenylhydrazone XXIV. This product is converted into the azo derivative XXV if sodium acetate is added. The original ester reacts with 2 moles of diazonium salt in dilute ammonia with the loss of the ethoxalyl group.

The coupling of diazonium salts with β -keto anilides has been studied extensively, because the products have found use as yellow dyes and

^{**} Bulow and Höpfner, Ber., 34, 71 (1901).

⁴³ Balow and Göller, Ber., 44, 2835 (1911).

⁵⁴ Prager, Ann., 338, 360 (1905).

$$\begin{array}{c} C_1 H_1 O_1 CC H_1 CH = CH CO_2 C_1 H_1 + C_2 H_1 N_1 CI \rightarrow C_1 H_1 O_2 CC CH = CH CO_2 C_2 H_1 \\ \times XXXIV \end{array}$$

Arviacetic Acids and Esters

The only arylacetic acid that has been observed to couple with diazonium salts is 2,4-dinitrophenylacetic acid. The Decarboxylation occurs as two molecules of the salt attack the α -carbon atom to yield the formazan derivative XXXVI.

$$O_3N$$

$$CH_1CO_3H + 2ArN_4X \rightarrow O_3N$$

$$NO_3$$

$$NO_3$$

$$XXXVI$$

Reactions of a variety of diazonum salts with methyl 2,4-dmitrophenylacetate have given good yields of the hydrazones of methyl 2,4dmitrophenylgyoxalate (XXXVII).**,1° These hydrazones undergo ring closure in the presence of alkali with the formation of 1-arylindazoles (XXXVIII).**

Although diethyl homophthalate does not react with benzenediazonium chloride, homophthalac anhydrade in ethanol-chloroform solution is

XXXVIII

Parkes and Aldis, J. Chem. Soc., 1938, 1841.
 Bouche and Bütschli, Ann., 522, 285 (1936).

Borsche and Discont, Ann. 510, 287 (1934).

⁴ Mayer, Ber , 22, 319 (1889)

If an acidic solution of a diazonium salt is added to a solution of potassium malonate and sodium nitrite, both nitrosation and coupling take place to yield the azo derivative of formaldoxime.⁷¹

$${\rm ArN_2X} + {\rm CH_2(CO_2K)_2} \xrightarrow[{\rm CH_2CO_2H}]{\rm NaNO_2} {\rm ArN} = {\rm NCH} = {\rm NOH}$$

Formazyl chloride (XXX) is obtained from the reaction of 2 moles of benzenediazonium chloride with chloromalonic acid.⁷² Alkylmalonic acids are converted into formazyl alkanes (XXXI) in a similar reaction.⁷³

When malonic acid monoethyl ester reacts with a diazonium salt, carbon dioxide is eliminated with the formation of an arylhydrazone of ethyl glyoxalate (XXXII).^{74a} This hydrazone can react with a second mole of diazonium salt to give the formazan XXXIIa. It appears that the formazan is the only product isolated unless there is an o-substituent in the diazonium salt.^{19c},^{74b} Diethyl malonate, on the other hand, gives the arylhydrazone of diethyl mesoxalate (XXXIII).^{74c} Similarly,

$$CH_2(CO_2C_2H_5)_2 + ArN_2X \rightarrow ArNHN = C(CO_2C_2H_5)_2$$

XXXIII

malonamide and its N-substituted derivatives are converted into the hydrazones of the corresponding mesoxalamides.⁷⁵

Diethyl glutaconate (XXXIV) may be regarded as a vinylog of diethyl malonate. Henrich has studied its reactions with both 1 and 2 equivalents of diazonium salt. The use of 1 equivalent of salt gives diethyl oxoglutaconate phenylhydrazone (XXXV). A second equivalent couples at the other α-carbon atom.

⁷² Fusco and Romani, Gazz. chim. ital., 76, 419 (1946).

⁷³ Walker, J. Chem. Soc., 123, 2775 (1923).

⁷⁴a Leonard, Boyd, and Herbrandson, J. Org. Chem., 12, 47 (1947).

⁷⁴b S. Parmerter and E. J. Hodges, unpublished observations.

⁷⁴c Hantzsch and Thompson, Ber., 38, 2266 (1905).

⁷⁵ Whiteley and Yapp, J. Chem. Soc., 1927, 521.

⁷⁶ Henrich et al., Ann., 376, 121 (1910).

Ring closure to give a 71% yield of 3-cyanoindazole (XLII) takes place when o-aminophenylacetonitrile is diazotized. **S It appears that this cyclization has not been investigated with nuclear-substituted o-aminophenylacetonitriles.

Nitriles in which the cyano group is adjacent to a methinyl carbon vary in their reactions with diazonium salts. Benzylmalononitrile (XLIII), ** \(\alpha\) cyano-y-hydroxybutyric acid lactone (XLIV), ** 1,2,3,4-

ArSO₂CHCN CH₃

tetrahydroacridine-4-carbonitrile (XLV), ⁸⁴ and α-arylsulfonylpropionitriles (XLVI) ⁸⁵ form the azo compounds. Ethyl α-cyanobutyrate is reported to undergo two different reactions. With this ester Favrel isolated the hydrazone XLVII formed by migration of the ethyl group,

$$\begin{array}{c} c_1H_5 \subset C_1C_1C_1C_1H_2 + C_1H_1N_1C_1 \rightarrow \\ \subset N & C_1H_4 & C_1H_4 \\ \subset C_1H_1N_1 - CCO_1C_1H_4 + C_1H_1N_1 - NCOO_1C_1H_2 \\ \subset C_1H_1N_1 - CCO_1C_2H_2 + C_2H_2N_1 - NCOO_1C_2H_2 \\ \subset C_1H_1N_1 - CCO_1C_2H_2 + CCO_1C_2H$$

ess Pachorr and Hoppe, Ber , 43, 2543 (1910).

^{**} Curtin and Russell, J Am Chem Soc., 73, 4975 (1951)
** Feoflaktov and Onishchenko, J Gen Chem U.S.S.R., 9, 325 (1939) [C. A., 34, 379 (1940)]

Borsche and Manteuffel, Ann., 534, 56 (1938).

converted into the z-phenylhydrazono compound. 51 Dimethyl 5-nitrohomophthalate (XXXIX) also couples, and a simultaneous ring closure produces the substituted dihydrophthalazone XL.79

$$O_{2}N \xrightarrow{CH_{2}CO_{2}CH_{2}} + C_{\epsilon}H_{5}N_{2}CI \rightarrow O_{2}N \xrightarrow{NC_{\epsilon}H_{5}} O_{2}N$$

Nitriles

A nearly quantitative yield of ethyl cyanoglyoxalate phenylhydrazone (XLI) is obtained from ethyl cyanoacetate and benzenediazonium

$$\begin{array}{c} C_6H_5N_2Cl + CH_2CO_2C_2H_5 \rightarrow C_6H_5NHN = CCO_2C_2H_5 \\ \downarrow \\ CN \\ \end{array}$$

chloride in the presence of sodium acetate or sodium carbonate. 82 A variety of diazonium salts has been used in similar reactions with esters of eyanoacetic acid. Other nitriles that undergo the same type of coupling contain a methylene group between the cyano group and some other activating group. Examples are malononitrile, 83,84 cyanoacetaldehyde, 85,86 cyanoacetanilide, 74a ethyl cyanopyruvate, 86,87 nitroacetonitrile, 88,89 β -iminonitriles, 90,91 and β -sulfonitriles. 92,93 The coupling products from β -ketonitriles form chromium complexes that are dyes. 94 Cyanoacetic acid combines with 2 equivalents of benzenediazonium chloride to produce formazyl cyanide.954

```
<sup>61</sup> Dieckmann and Meiser, Ber., 41, 3253 (1908).
```

⁸² Krückeberg, J. prakt. Chem., [2], 49, 321 (1894).

⁸³ Schmidtmann, Ber., 29, 1168 (1896).

⁸¹ Lythgoe, Todd, and Topham, J. Chem. Soc., 1944, 315.

as Claisen, Ber., 36, 3664 (1903).

⁸⁶ Borsche and Manteuffel, Ann., 512, 97 (1934).

⁸⁷ Fleischhauer, J. prakt. Chem., [2], 47, 375 (1893).

⁸⁸ Steinkopf and Bohrmann, Ber., 41, 1044 (1908).

⁸⁹ Steinkopf, J. prakt. Chem., [2], 81, 193 (1910).

⁹⁰ von Meyer, J. prakt. Chem., [2], 52, 81 (1895).

⁹¹ von Meyer, J. prakt. Chem., [2], 78, 497 (1908).

³² Tröger and Berndt, J. prakt. Chem., [2], 102, 1 (1921). Tröger and Wunderlich, J. prakt. Chem., [2], 101, 157 (1921).

¹¹ Long, J. Am. Chem. Soc., 69, 990 (1947).

⁹⁵⁰ Wedekind, Ber., 30, 2993 (1897).

o-aminophenylsulfonylacetic acid (sulfazone) (XLIXd) and various diazonium salfa 163

Nitro Compounds

A nitroparaffin that has one or more hydrogen atoms on the x-carbon atom can couple with a diazonium sait. A mixture of products is obtained from the interaction of nitromethane and benzenediazonium chloride ¹³⁸ Nitroformaldehyde phenylhydrazone (L) is obtained when the reaction is carried out in dilute hydrochloric acid. ²³⁸ However, N.N.-diphenyl-C-nitroformazan (LI) is the principal product in weakly alkaline solution or even at PH 4.576 In alkaline solution, a third molecule of diazonium saft causes replacement of the nitro group by a phenyl group.

$$\begin{array}{c} \operatorname{CH_4NO_6} \xrightarrow{\operatorname{Cul}_4 \times \operatorname{Cl}} \operatorname{C_2H_4NHN} {=} \operatorname{CHNO_6} \xrightarrow{\operatorname{Cul}_4 \times \operatorname{Cl}} \\ \operatorname{C_2H_4NHN} {=} \operatorname{CNO_6} \xrightarrow{\operatorname{Cul}_4 \times \operatorname{Cl}} \operatorname{C_2H_4NHN} {=} \operatorname{CC_4H_4NHN} = \operatorname{CC_4H_4NHN} \\ \operatorname{C_2H_4N} {=} \operatorname{N} & \operatorname{C_4H_4NHN} = \operatorname{CC_4H_4NHN} \end{array}$$

The product isolated from the reaction of nitromethane with other diazonium salts usually has been the nitroformazan derivative. 20,100

Other primary nitroparaffins couple only once to give hydrazones of 1-nitroaldehydes, and secondary nitroparaffins yield azo compounds.

$$RCH_2NO_2 + ArN_2X \rightarrow RCNO_2$$

$$\parallel NNHAr$$
 $R_2CHNO_3 + ArN_2X \rightarrow R_2CNO_2$

$$\parallel NNHAR$$

¹²² Classe, Ber., 45, 747 (1912)

¹⁰⁶ Bamberger, Schmidt, and Levinstein, Ber , 33, 2043 (1900).

¹⁴³ Bamberger, Ber. 27, 155 (1894)
160 Hubbard and Scott, J. Am. Chem. Soc. 65, 2390 (1943).

as well as the expected azo compound XLVIII.⁹⁹ When an acetyl group is attached at the methinyl carbon, as in ethyl α -cyanoacetoacetate, the Japp-Klingemann reaction occurs with loss of the acetyl group.¹⁰⁰

One example of the loss of the cyano group during a coupling reaction has been reported. The products isolated from the reaction of 3-methylquinoxaline-2-acetonitrile and p-chlorobenzenediazonium chloride in dilute ammonium hydroxide were the formazan (XLVIIIa) and urea.

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2\text{CN} \end{array} + 2p\text{-ClC}_6\text{H}_4\text{N}_2\text{Cl} \xrightarrow{\text{NH}_4\text{OH}} \\ \\ \text{N} \xrightarrow{\text{C}=\text{NNHC}_6\text{H}_4\text{Cl}-p} \\ \\ \text{N} = \text{NC}_6\text{H}_4\text{Cl}-p \end{array}$$

Sulfones

A methylene group adjacent to two sulfonyl groups is attacked by a diazonium salt. The normal product is the monophenylhydrazone XLIXa even when an excess of the salt is used. However, in the reaction of p-nitrobenzenediazonium fluoroborate with various sulfones two other products, the arylazosulfone XLIXb and the tetrazolium betaine XLIXc, were isolated also. 19c

$$\begin{array}{c} {\rm ArN_2}^{\oplus} + ({\rm RSO_2})_2{\rm CH_2} \rightarrow ({\rm RSO_2})_2{\rm C} \\ {\rm \times NNHAr} + {\rm ArN} \\ {\rm \times NSO_2R} + {\rm ArN} \\ {\rm \times N} \\ {\rm \times N} \\ {\rm OO}^{\oplus} \\ {\rm N} \\ {\rm Ar} \\ {\rm \times LIXe} \end{array}$$

Other sulfones that couple with diazonium salts have a methylene group between a sulfonyl and some other activating group such as nitro, 19c, 102 cyano, 19c, 92, 93 carboxyl, 19c, 92 carbethoxy, 19c, 92 or carboxamide. 19c, 92 Class prepared a series of dyes from the cyclic amide of

⁹³ Favrel, Bull. eoc. chim. France, [4]. 47, 1290 (1930).

¹⁰⁰ Favrel, Bull. soc. chim. France, [3], 27, 200 (1902).

¹⁰¹ Backer, Rec. trav. chim., 70, 733 (1951).

¹⁰¹ Tröger and Nolte, J. prakt. chem., [2], 101, 136 (1921).

In this section are included aliphatic hydrocarbons and compounds containing a reactive hydrocarbon radical bonded to an aromatic ring

A number of aliphatic hydrocarbons with conjugated double bonds form monoize derivatives with diazonium salts ^{13,16}. The yields are issually low, even with the reactive diazonium salts prepared from p-nitroaniline or 2,4-dinitroaniline. Coupling occurs at the carbon atom having the highest electron density. In 1,3-butadiene this is carbon 1, whereas in 1,3-pentadiene it is carbon 4

$$\begin{array}{c} p\text{-}0_2\text{NC}_4\text{H}_4\text{N}_1\text{X} + \text{CH}_2\text{CH} = \text{CH}\text{CH} = \text{CH}_3 \\ & \downarrow \\ p\text{-}0_2\text{NC}_4\text{H}_4\text{N} = \text{NC} = \text{CH}\text{CH} = \text{CH}_2 \\ \end{array}$$

The only two monoolefins that couple are 2-methylpropene and 2-methyl-2-butene ¹¹⁶ The cyclic hydrocarbons cyclopentadiene ¹¹⁷, ¹¹⁸ and indene ¹¹⁸ also give monoazo derivatives.

The coupling of x,x-diarylethylenes with diazonium salts was discussed above (p. 4). A similar reaction, which occurs intramolecularly when o-aminophenylethylenes are diazotized, is the Widman-Stoermer synthesis of cinnolines, 11-111 The scope of this reaction has been studied by

Simpson and Stephenson, 22 and by Schofield, 22 who have found that good yields of the einnoiline are obtained when R' is methyl or aryl and R is hydrogen. Chmohas formation also occurs when both R and R' are aromatic However, if R' is hydrogen or carboxyl and R is aromatic, 22 there. Br. S. 23, 1462 (1919)

- 105 Terent'ev and Demidous, J Gen Chem U.S.S.R. 7, 2464 (1937) [C. A., 32, 2094 (1938)].
 - Eibner and Laue Ber , 39, 2022 (1906)
 Tarent'ev and Gomberg, J. Gen. Chem. U.S.S. R., 8, 662 (1938) [C. A., 33, 1285 (1939)].
 - 11. Widman, Ber., 17, 722 (1884).
 - Stoermer and Fincke, Ber , 42, 3115 (1909)
 Stoermer and Gaus, Ber., 45, 3104 (1912).
 - 111 Simpson and Stephenson, J Chem Soc. 1942, 353
 - 18 Schofield, J Chem Soc , 1949, 2408

Degradation of the molecule sometimes occurs when a nitroalcohol reacts with a diazonium salt. For example, 2-nitropropanol and benzene-diazonium chloride give formaldehyde and a 78% yield of 1-nitroacetal-dehyde phenylhydrazone. Similarly, 2-nitro-1-butanol is converted into 1-nitropropionaldehyde phenylhydrazone. If the reaction mixture from 2-nitro-1-butanol and a diazonium salt is acidified immediately, the

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CHCH}_2\text{OH} + \text{ArN}_2\text{X} \rightarrow \\ & | \\$$

2-arylazo-2-nitro-1-butanol (LII) can be isolated. ¹⁰⁸ 2-Hydroxy-1-nitroparaffins couple normally to give the phenylhydrazones of 2-hydroxy-1-nitroaldehydes. However, the addition of a second mole of diazonium salt causes the elimination of aldehyde from these products. ¹⁰⁷

$$\begin{array}{c} \text{RCHCH}_2\text{NO}_2 \xrightarrow{C_6\text{H}_6\text{N}_2\text{X}} \text{RCHC} \begin{array}{c} \text{-NNHC}_6\text{H}_5 \xrightarrow{C_6\text{H}_6\text{N}_2\text{X}} \\ | & | & | \\ \text{OH} & \text{HO} & \text{NO}_2 \\ \\ & & \text{C}_6\text{H}_5\text{N} \\ & & \text{NC} \\ & & \text{NO}_7 \end{array}$$

Migration of the nitro group is observed when the α -carbon atom holds two other electron-attracting substituents, one of which is a phenyl group. In these instances the nitro group migrates to the position para to the hydrazone group. (If the para position is blocked, the nitro group enters the ortho position.) Examples that have been reported include phenyldinitromethane (LIII), 109-111 diphenylnitromethane, 112,113 and α -nitrophenylacetonitrile, 114

$$C_6H_5CH(NO_2)_2 + C_6H_5N_2CI \rightarrow C_6H_5C=NNH$$

NO2

NO2

- 107 Jones and Kenner, J. Chem. Soc., 1930, 919.
- 108 Gochenour and Degering, Proc. Indiana Acad. Sci., 57, 88 (1948) [C. A., 43, 4646 (1949)].
 - 109 Ponzio, Gazz. chim. ital., 39, II, 535 (1909).
 - 110 Ponzio and Macciotta, Gazz. chim. ital., 44, I, 269 (1914).
 - 111 Ponzio and Macciotta, Gazz. chim. ital., 44, II, 63 (1914).
 - 112 Ponzio, Gazz. chim. ital., 42, I, 525 (1912).
 - 113 Busch and Schäffner, Ber., 56, 1612 (1923).
 - 114 Ponzio and Giovetti, Gazz. chim. ital., 39, II, 546 (1909).

Hydrocarbons

In this section are included aliphatic hydrocarbons and compounds containing a reactive hydrocarbon radical bonded to an aromatic ring.

A number of aliphatic hydrocarbons with conjugated double bonds form monoazo derivatives with diazonium salts ^{11,18}. The yields are usually low, even with the reactive diazonium salts prepared from p-nitroaniline or 2,4 dinitroaniline. Coupling occurs at the carbon atom having the highest electron density. In 1,3-butadiene this is carbon 1, whereas in 1,3 bentadiene it is carbon 4

$$p\text{-}O_1NC_0H_4N_2X + CH_2 = CHCH = CH_2 \rightarrow$$

$$p\text{-}O_2NC_0H_4N = NCH = CHCH = CH_1$$

$$\begin{array}{c} p\text{-}O_2NC_4H_4N_2X + CH_3CH = CHCH = CEL_2 \rightarrow \\ & CH_3 \\ | \\ p\text{-}O_2NC_3H_4N = NC = CHCH = CEL_4 \end{array}$$

The only two monoolefins that couple are 2-methylpropene and 2-methyl2-butene. 118 The cyclic hydrocarbons cyclopentadiene 117,118 and indene 118
also give monoazo derivatives.

The coupling of a,a-diarylethylenes with diazonium salts was discussed above (p. 4). A similar reaction, which occurs intramolecularly when o-aminophenylethylenes are duazotized, 1s the Wudman-Stoermer synthesis of cinnolines 110-111 The scope of this reaction has been studied by

Simpson and Stephenson,²² and by Schofield,²² who have found that good yields of the cunnolme are obtained when R' is methyl or aryl and R is hydrogen. Cinnolme formation also occurs when both R and R' are aromatic. However, if R' is hydrogen or carboxyl and R is aromatic,

- Meyer, Ber. 52, 1468 (1919).
 Terent'ev and Demedors, J. Gen. Chem. U.S.S.R., 7, 2464 (1931) [C. A., 32, 2094 (1931)]
 - Fibner and Laue, Ber. 39, 2022 (1906)
 Terent'ev and Gomberg, J. Gen. Chem. U.S.S. R. 8, 662 (1938) [C. A. 23, 1285 (1939)].
 - Widman, Ber. 17, 722 (1884). He Stoermer and Fincke, Ber. 42, 3115 (1909).
 - Stoermer and Fineke, Ber. 42, 3115 (1907)
 Stoermer and Cous, Ber. 45, 3104 (1912)
 - 111 Simpson and Stephenson, J Chem Sor., 1942, 353
 - 111 Simpson and Stephenson, J Chem S.

the diazotized amine undergoes the Pschorr reaction to yield a phenanthrene derivative.

When p-methoxyphenylacetylene couples with 2,4-dinitrobenzenediazonium sulfate, a 69% yield of α -p-anisylglyoxal β -2,4-dinitrophenylhydrazone (LIV) is formed.¹²⁴ This reaction is similar to the synthesis

$$CH_3O \bigcirc C = CH + HO_4SN_2 \bigcirc NO_2 \rightarrow$$

$$CH_3O \bigcirc COCH = NNH \bigcirc NO_2$$

$$IIV$$

of 4-hydroxycinnoline (LV) from diazotized o-aminophenylacetylene.¹²⁵ In each case the elements of a hydroxyl group, derived from the aqueous reaction medium, appear in the product. This ring closure was used first

$$\begin{array}{c}
\text{OH} \\
\text{NH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NaNO}_{2} + \text{HCI} \\
\text{NNH}_{2}
\end{array}$$

by von Richter to make 4-hydroxycinnoline-3-carboxylic acid from o-aminophenylpropiolic acid.¹²⁶ Recent examples of the reaction have employed nuclear substituted o-aminophenylacetylenes, o-aminophenylpropiolic acids, and o-aminodiphenylacetylene.^{23,125}

Although styrene does not react with 2,4-dinitrobenzenediazonium sulfate, p-methoxystyrene (LVI) is converted to the 2,4-dinitrophenyl-hydrazone of anisaldehyde by this reagent.¹²⁴ The same product is obtained when the dry diazonium salt is added to an alcoholic solution of anethole (LVII).¹²⁷ Acetaldehyde is eliminated in the second reaction. Other compounds that show a similar coupling with the loss of acetal-dehyde are isoeugenol,¹²⁸ isosafrole,¹²⁷ isoapiole,¹²⁷ and p-propenyl-dimethylaniline.¹²⁹ It is even possible to obtain a 60% yield of p-hydroxybenzaldehyde p-nitrophenylhydrazone from the action of dry

¹²⁴ Ainley and Robinson, J. Chem. Soc., 1937, 369.

¹²¹ Schofield and Simpson, J. Chem. Soc., 1945, 512.

¹²⁵ von Richter, Ber., 16, 677 (1883).

¹²⁷ Quilico and Freri, Gazz. chim. ital., 58, 380 (1928).

¹²⁵ Quilico and Fleischner, Gazz. chim. ital., 59, 39 (1929).

¹²⁹ Quilico and Freri, Gazz. chim. ital., 60, 606 (1930).

p-nitrobenzenediazonium sulfate on an alcoholic solution of p-propenylphenol. 130

The reaction of an $\alpha.\beta$ -unsaturated tertiary amme with a diazonium salt resembles that of an unsaturated hydrocarbon. Coupling occurs at the β -carbon atom, and the amino group is eliminated. If there is a hydrogen substituent on the β -carbon, the β -arythydrazone of a glyoxal is obtained. However, if there is no hydrogen attached to the β -carbon, the enamine is cleaved to give the hydrazone of a keton.

$$RCH = CHNR'_1 + ArN_2X \rightarrow RCCHO + R'_1NH$$
 \parallel
 $NNHAr$

$$R_1C$$
=CHNR' + ArN₂X \rightarrow R_2C =NNHAr + R'NCHO

Methyl groups in the α or γ positions of some heterocyclic compounds combine with diazonium salts. For example, 9-methylacridine (LVIII)

has been coupled with a number of salts to give the arylhydrazones of acridine 9-carboxaldehyde.¹¹¹ If the hetero atom is converted into the onum salt, the activity of the methyl group is increased ¹²¹ 2.33-Trimethylindolenine is an exception, for the base is more reactive than

¹¹⁹ Quilico and Fren, Gazz. chem. stal , 59, 600 (1929)

nes Crary, Quayle, and Lester, J Am. Chem. Soc., 78, 5584 (1956).

11 Poral Koshus and Kharkharov, Bull. acad ec. U R.S.S. claser soc., chim., 1944, 143

[[]C A, 39, 1631 (1945)]
III. Kharkharov, J. Gen. Chem. U.S.S. R., 23, 1175-1181 (1953) [C. A., 47, 12390 (1953)].

the diazotized amine undergoes the Pschorr reaction to yield a phenanthrene derivative.

When p-methoxyphenylacetylene couples with 2,4-dinitrobenzenediazonium sulfate, a 69% yield of α -p-anisylglyoxal β -2,4-dinitrophenylhydrazone (LIV) is formed. This reaction is similar to the synthesis

of 4-hydroxycinnoline (LV) from diazotized o-aminophenylacetylene. ¹²⁵ In each case the elements of a hydroxyl group, derived from the aqueous reaction medium, appear in the product. This ring closure was used first

$$\stackrel{\text{C}\equiv\text{CH}}{\underset{\text{NH}_2}{\longleftarrow}} \stackrel{\text{OH}}{\underset{\text{N}\rightarrow\text{N}}{\longleftarrow}}$$

by von Richter to make 4-hydroxycinnoline-3-carboxylic acid from o-aminophenylpropiolic acid. Recent examples of the reaction have employed nuclear substituted o-aminophenylacetylenes, o-aminophenylpropiolic acids, and o-aminodiphenylacetylene. 23,125

Although styrene does not react with 2,4-dinitrobenzenediazonium sulfate, p-methoxystyrene (LVI) is converted to the 2,4-dinitrophenyl-hydrazone of anisaldehyde by this reagent.¹²⁴ The same product is obtained when the dry diazonium salt is added to an alcoholic solution of anethole (LVII).¹²⁷ Acetaldehyde is eliminated in the second reaction. Other compounds that show a similar coupling with the loss of acetal-dehyde are isoeugenol,¹²⁸ isosafrole,¹²⁷ isoapiole,¹²⁷ and p-propenyl-dimethylaniline.¹²⁰ It is even possible to obtain a 60% yield of p-hydroxybenzaldehyde p-nitrophenylhydrazone from the action of dry

¹²⁴ Ainley and Robinson, J. Chem. Soc., 1937, 369.

¹²⁵ Schofield and Simpson, J. Chem. Soc., 1945, 512.

¹²⁶ von Richter, Ber., 16, 677 (1883).

¹²⁷ Quilico and Freri, Gazz. chim. ital., 58, 380 (1928).

¹²⁸ Quilico and Fleischner, Gazz. chim. ital., 59, 39 (1929).

¹²⁹ Quilico and Freri, Gazz. chim. ital., 60, 606 (1930).

not take place with secondary hydrazones was mentioned on p 5.19 The reaction of the phenylhydrazones of 2-hydroxy-1-nitroaldehydes with degradation of the molecule to give an aldehyde and nitroformazan was mentioned under the discussion of nitro compounds. The formazans obtained from phenylhydrazones of aldoses have proved to be useful derivatives of these sugars 139a-1

The hydrazones of only two kinds of ketones have been converted into formazans. These are the arylhydrazones of α-keto acids (LXI)19,140-145 and the α-arylhydrazones of α,β-diketobutyric esters (LXII),19,60,142,146 With the first type coupling causes decarboxylation, and with the second type an acetyl group is replaced. These eliminations are very similar to the Japp-Klingemann reaction.

$$\begin{array}{c} \mathrm{CH_{5}COCCO_{2}R} + \mathrm{C_{8}H_{5}N_{2}X} \rightarrow \mathrm{C_{8}H_{5}N} \\ \parallel & \parallel & \parallel \\ \mathrm{NNHC_{8}H_{5}} \end{array}$$

LXII Reports of the isolation of two isomeric forms of unsymmetrical

formazans18,147 have been shown to be erroneous 148-150 The unsymmetrical formazans obtained by both possible routes (A and B) are identical. The isolation of the same compound from both of these reactions has been rationalized by the assumption that the product has the structure of the resonance hybrid of the chelated forms LXIII 148,149

- 1364 Mester, J Am Chem. Soc., 77, 4301 (1955) 1100 Mester and Major, J Am Chem Sec., 78, 1403 (1956).
- 110: Zemplén and Mester, Acta Chim Acad Sci. Hung , 2, 9 (1952) [C. A. 48, 1986 (1954)].
- 1314 Meeter and Major, J Am Chem. Soc , 77, 4305 (1955).
- ine Mester and Major, J. Am. Chem. Soc., 77, 4297 (1955).
- 110/ Zemplén, Mester, Messmer, and Eckhart, Acta Chim Acad Scs Hung , 2, 25 (1952) [C A , 48, 1966 (1954)]
 - 140 Bamberger, Ber , 25, 3547 (1892)
- 141 Wedekind and Stauwe, Ber , 21, 1746 (1898) 142 Bamberger and de Gruyter, J prakt Chem , [2], 64, 222 (1961).
- 143 Busch and von Beust, Ber , 58, 442 (1925)
- 144 Ragno and Bruno, Gazz chim. stal., 78, 485 (1946). 145 Fusco and Romans, Gazz, chim stal , 78, 342 (1948).
- 14s Lapworth, J. Chem Soc , 83, 1114 (1903) 147 Fighter and Schiess, Ber., \$3, 747 (1900)
- 118 Kuhn and Jerchel, Ber , 74, 241 (1941).
- 140 Hunter and Roberts, J Chem Soc , 1941, 820.
- 359 Haussor, Jerchel, and Kuhn, Chem Ber , 84, 651 (1951).

Path A: RCH=NNHAr + Ar'N₂Cl
$$\longrightarrow$$
 RC $\stackrel{\text{N-N}}{\longrightarrow}$ RC $\stackrel{\text{N-N}}{\longrightarrow}$ RC $\stackrel{\text{N-N}}{\longrightarrow}$ Ar' $\stackrel{\text{N-N}}{\longrightarrow}$ Path B: RCH=NNHAr' + ArN₂Cl \longrightarrow RC $\stackrel{\text{N-N}}{\longrightarrow}$ RC $\stackrel{\text{N-N}}{\longrightarrow}$ Ar LXIII

A formazan in which the carbon is joined to a carboxyl, 19,70,140,151,152 acetyl, 52,142 or oxalyl group loses that group when it couples with another molecule of diazonium salt.

Heterocyclic Compounds

In this section are included those heterocyclic compounds that have a methylene group with a carbonyl group adjacent to it in the ring. These reactants can exist in the tautomeric enolic form as well.

Of the compounds in this group, the 5-pyrazolones have been investigated most extensively because of the successful use of their azo derivatives as dyes. No attempt has been made to include here all of the pyrazolones that appear in the patent literature. The early patents in this field have been reviewed by Roux and Martinet, 154 and some of the more recent ones have been discussed by Venkataraman. 155 The 1-aryl-3-methyl-5-pyrazolones (LXIV) have been used most frequently in the preparation of dyes. Pyrazolones with a methyl group in the

¹¹¹ Bamberger and Wheelwright, Ber., 25, 3201 (1892).

¹¹¹ Chattaway and Lye, Proc. Roy. Soc. London, A137, 489 (1932) [C. A., 26, 5555 (1932)].

¹⁵¹ Bamberger and Müller, J. prakt. Chem., [2], 64, 199 (1901).

¹³⁴ Roux and Martinet, Rev. gén. mat. color., 27, 115-120, 134-139, 152-155 (1923), 28, 13-14, 74-77 (1924).

¹¹¹ Venkataraman, The Chemistry of Synthetic Dyes, Chapter XVIII, Academic Press, New York, 1952.

4-position fail to react with diazonium salts ¹⁵⁶ On the other hand, pyrazolones with an ethylene, isopropylidene, or benzal group in the 4-position couple with the loss of that substituent. ¹⁵⁷, ¹⁵⁸

Other heterocycles that contain a methylene group active toward diazonum salts melude 3,5-pyrazoludnediones (LXV), 5-isoxazolones (LXVI), 1,2,3-triazole 5-ones (LXVII), 2(3)-thianaphthenone (LXVII), 3(2)-thianaphthenone (LXIX), 1-phenyloxndole (LXX), indoxyl (LXXI), barbuture actd, and homophthalimide.

SYNTHETIC APPLICATIONS

The reactions of diazonum salts with many alphatic compounds have been used only to prepare derivatives for purposes of characterization. The adaptability of the resction to large-scale syntheses is evident from the quantities of dyes that have been produced from β-ketoamides and 5-pyrazolones The Pschort synthesis and related diazonium ring closure reactions are decussed in Chapter 7 of Organic Reactions, Volume 9.

Cinnolines

All of the general methods for the preparation of cinnolines employ the intramolecular coupling of a diazonium salt with some aliphatic substituent

¹³⁴ Verkade and Dhont, Rec. trav chim., 64, 165 (1945)

¹¹⁷ Stolz, Ber , 28, 623 (1895)

¹¹⁶ Sawdey, Ruoff, and Vittum, J. Am Chem Soc , 72, 4947 (1950)

in the ortho position. The Borsche synthesis¹⁵⁹ from o-aminophenyl ketones (LXXII) has been used to prepare a variety of 3-, 5-, 6-, 7-, and 8-substituted 4-hydroxycinnolines.^{22,24,37-41,159-167a,b} The method of von Richter¹²⁶ based upon o-aminophenylacetylenes (LXXIII) produces 3-carboxy- or 3-phenyl-4-hydroxycinnolines.^{23,125} Cinnolines with alkyl or aryl substituents in the 4 position are obtained by the Widman-Stoermer synthesis from o-aminoarylethylenes (LXXIV).^{119-121,167c}

COCH₂R
$$\xrightarrow{\text{NaNO}_2 + \text{HX}}$$
 $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NNO}_2 + \text{HX}}$ $\xrightarrow{$

3-Nitrocinnolines have been synthesized by coupling diazotized o-aminobenzaldehyde or o-aminoacetophenone with nitromethane and cyclizing the resulting arythydrazone of nitroformaldehyde. 1674

$$o\text{-RCOC}_{6}H_{4}N_{2}X + CH_{2}NO_{2} \rightarrow R$$

$$o\text{-RCOC}_{6}H_{4}NHN = CHNO_{2} \rightarrow NO_{2}$$

$$(R = H \text{ of } CH_{3})$$

Indazoles

Intramolecular coupling of diazotized o-toluidines has been used to prepare a number of substituted indazoles. This method is best for the synthesis of nitroindazoles (LIX). A good yield of indazole-3-carboxylic acid is obtained via the nitrile XLII from o aminophenylacetonitrile, \$53,188 A method for the preparation of 1-aryl-6-nitroindazoles (XXXVIII) employs the reaction of a diazonium salt with methyl 2.4-dinitrophenylacetate When the resulting hydrazone is treated with alkali, it undergoes ring closure with the loss of one nitro group.78-80

Tetrazolium Salts

When a formazan is oxidized with lead tetraacetate, a tetrazolium salt (LXXV) is produced The formazans in turn are synthesized by coupling a diazonium salt with an arythydrazone. This general route appears to be the only good one for the preparation of tetrazolium salts. The preparations and uses of formazans and tetrazolium salts have been reviewed by Ried169 and by Nineham 169

$$\begin{array}{c} \text{RCII=NNIIAr} + \text{Ar'N}_1 X \rightarrow \\ \\ \text{RC=NNIIAr} \xrightarrow{\text{PictoCocin}_{Plo}} \\ \text{N=NAr'} \end{array}$$

Thiocarbazones

The first step in the synthesis of thiocarbazones utilizes the reaction of nitromethane with two equivalents of diazonium salt.20,106,170 The resulting nitroformazan is reduced by ammonium sulfide to the thiocarbazide LXXVI which is oxidized readily to the thiocarbazone.

$$2 \text{ArN}_2 \text{X} + \text{CH}_2 \text{NO}_1 \rightarrow \text{ArNHN=CN=NAr} \xrightarrow{\text{(NH}_2),3} \\ \text{S} \\ \text{(ArNHNH)}_2 \text{CS} \xrightarrow{\text{(0)}} \text{ArNHNECN=NAr}$$

¹⁰⁰ Rousseau and Lindwall, J Am Chem Soc., 72, 3047 (1950)

¹⁴⁹ Ried, Angew Chem. 64, 391 (1952), Nineham, Chem Revs., 55, 355 (1955).

¹¹⁴ Ocsper and Khngenberg, J Org. Chem., 13, 309 (1948).

A related synthesis starts with chloromalonic acid.^{170a} In this method the chloroformazan is converted directly to the thiocarbazone by sodium hydrogen sulfide.

$$\begin{array}{c|c} Cl & S \\ & | & \parallel \\ 2ArN_2X + ClCH(CO_2H)_2 \rightarrow ArNHN = CN = NAr \xrightarrow{NaSH} ArNHNHCN = NAr \end{array}$$

Amidrazones*

The catalytic reduction of arylhydrazones of α-nitrobenzaldehyde (LXXVII) offers a convenient synthesis of amidrazones.¹⁷¹ Coupling of a diazonium salt with phenylnitromethane furnishes the required hydrazone. Ponzio obtained the amidrazones from the reaction of the α-nitrobenzaldehyde arylhydrazone with ammonia.¹⁷²

Amines

The only report of the use of the coupling reaction to introduce the amino group into active methylene compounds appears in the patent literature. In this method the phenylhydrazones obtained from ethyl acetoacetate, ethyl cyanoacetate, or acetylacetone and benzenediazonium chloride were reduced with zinc and acetic acid to give the α -acetamido compounds.

EXPERIMENTAL CONDITIONS

Diazonium salts react with so many different types of aliphatic compounds that it is difficult to make generalizations about experimental conditions. However, the following summary may serve as a useful guide.

Diazonium Salts

For the diazotization of most arylamines a solution of sodium nitrite is added to a cold solution of the arylamine in aqueous mineral acid.

¹⁷⁰a Irving and Bell. J. Chem. Soc., 1953, 3538.

^{*} Amidrazones may be represented by the general formula RC(NH₂)=NNHR'. They are indexed in *Chemical Abstracts* as the hydrazones of amides.

¹⁷¹ Jerchel and Fischer, Ann., 574, 85 (1951).

¹⁷² Ponzio, Gazz. chim. ital., 40, I, 312 (1910).

¹⁷³ Pfister and Tishler, U.S. pat. 2,489,927 [C. A., 44, 2552 (1950)].

For weakly basic amines or amino acids it is necessary to employ special techniques. These methods have been reviewed by Saunders. ²⁷⁴

Solvents

These reactions have been conducted most frequently in cold dilute aqueous solutions buffered with sodium acetate. Alcohol or occasionally pyridine or acetic acid is added if the reactiants are too insoluble in water. Special reactions that have been carried out under anhydrous conditions were discussed under Scope and Lumtations, pp. 22–23.

pН

Reaction can occur between a duazonium salt and many active methylene compounds over a wide pH range. Coupling in dilute hydrochloric acid^{48,48} or in dilute sodium hydroxide¹⁷³ is usually less satisfactory than coupling in the presence of sodium carbonate or sodium acetate buffers ⁴⁸ The general practice is to use a large excess of sodium acetate.

Hung and Boes made an extensive study of the relative reactivity of various methylene compounds, XCH₄Y, toward p-introbenzenediasonium fluoroborate over a pH range from 2 to 10.1st. The lowest pH at which a compound would couple was taken as an indication of its reactivity. The substituents X and Y arranged in the order of their decreasing ability to activate were. NO₂ CHO, COCH₃ CN, CO₂CH₅ CONH₂ COCH₃ SOC₂CH₅ SOCH₃ Ch₄. Only the most active compounds coupled m acide solution, and the least active failed to couple even in altalues solutions.

In the intramolecular coupling reactions used to prepare cinnolnes or indazoles a strongly acidic solution is employed. This promotes the coupling reaction and decreases the competing decomposition of the diazonium salt to the phenol. Acidic solutions are used in the reactions of diazonium salts with hydroarbons for similar reasons.

The optimum reaction conditions for intro compounds vary considerably. It has been customary to employ an aqueous solution of the sodium sait of the act-nitro compound. The coupling of intromethane, on the other hand, proceeds well at a pH of 4.5.12 With intro alcoholo a fairly high pH is required. The reaction of Zenitro-I-bustanol with p-chlorobenzenediazonium chloride does not occur below pH 10 8, and best yields are obtained at pH 13 9.12 It has been reported that solutions

²⁷⁴ Saunders, The Aromatic Diazo Compounds, Edward Arnold & Co., London, 1949, 194 von Rothenburg, Ber., 27, 685 (1894)

of 1-N-morpholino-2-nitropropane between pH 7 and 10 explode with great violence during the coupling process. 1752

Reactant Ratios

Equivalent amounts of reactant and diazonium salt are most commonly employed. Excess diazonium salt should be avoided since the product is frequently a hydrazone which can couple with another molecule of the salt to produce a formazan derivative. The latter reaction is favored by a strongly alkaline solution.

Time of the Reaction

Since most of the coupling reactions are rapid, the product can be isolated soon after the diazonium salt has been added. However, the reactions that involve intramolecular coupling require more time for completion. In the preparation of indazoles, the diazotized o-toluidine derivative may be left for several days to effect the ring closure.^{127,125} Likewise, the formation of cinnolines is often slow.^{22,22,22,164-1672-2} For certain cinnolines this cyclization is accelerated by the use of a warm, strongly acidic reaction medium.^{27,40}

EXPERIMENTAL PROCEDURES

The preparation of pyruvaldehyde 1-phenylhydrazone from acetoacetic acid and benzenediazonium chloride in 73-82% yield is described in Organic Syntheses.⁵⁵

Directions for the preparation of 5-nitroindazole in yields of 72-80% by the intramolecular coupling of diazotized 2-methyl-4-nitroaniline are given in Organic Syntheses. 126

room temperature One liter of water is added before the yellow solid is collected. The yield is $229 \, g. \, (98\%)$ of product that melts at about 70° , but whose melting point varies markedly with the rate of heating.

Ethyl Cyanoglyoxalate m-Chlorophenylhydrazone. A solution of 38 g (0.30 mole) of m-chloroanthne in 85 ml. of concentrated hydro-chlore acid and 300 ml. of water is scooled to 5° with stirring. Discottiation is effected by the slow addition of a solution of 23 g. (0.33 mole) of sodium intrite in 50 ml. of water while the temperature is held below 5°. The solution is stirred with activated carbon for an additional ten minutes (temperature below 10°) and filtered. The filtrate is added dropwise during one hour to a well-stirred mixture of 33.9 g (0.30 mole) of ethyl cyanoacetate in 300 ml of water at 5-10°. Sodium carbonate (100 g) is added in small portions to keep the mixture alkaline to litmus. The mixture is extracted with ether until the extracts are no longer colored. The combined ether extracts are dred over magnesium sulfate and concentrated. The residue is crystallized from ethanol to give 73 g. (1970) of pale-orange crystals; nn. 8.9–90°.

By the same procedure, diethyl malonate is converted into diethyl mesoxalate m-chlorophenylhydrazone in 78% yreld. Likewise, ethyl acctoacetate is converted into ethyl z,β-dioxobutyrate α-m-chlorophenylhydrazone in 78% yreld.

In-Nitro-1-p-chilorophenylhydrazonoethane.**• To a cold solution of 8 tg. (0.066 mole) of p-chloroanilme m 17 mi of concentrated hydro-chloric acid and 200 mi of water is added slowly with stirring a solution of 4 Tg (0.068 mole) of solumn nitrate in 50 ml. of water. The temperature is held at 0.5° during the addition. After ten minutes, the solution is diluted with 1 7 l. of cold water, and 30 g. of sodium acetate trihydrate sadded. Meanwhile, 5 g. (0.068 mole) of introethane is disolved in an rec-cold solution of 2 6g of sodium hydroxide in 20 ml. of water. The introethane solution is added dropwise during ten munutes to a well-stirred solution of the diazonium salt. The temperature of the mixture is held at 5-10° during the addition. After thirty minutes the orange solid is collected. The yield of product melting at 116-118° is 14g. (100%). Recrystallization from ethanol gives orange-yellow crystals which decompose at 126-12° when placed in a bath proheated to 120°.

1-(p-Nitrophenylazo)-2,3-dimethyl-1,3-butadiene. ¹¹³ A warm solution of 13 8g. (0.10 mole) of p-nitroaniline in 25 ml of concentrated hydrochloric acid and 25 ml of water is poured onto 100 g of ice. The mixture is attirred with a solution of 7 g (0.10 mole) of sodium nutrite in 50 ml of water until the solid dissolves. The solution is diluted with 100 ml. of water and shaken for two hours with 9 g. (0.11 mole) of

¹⁹⁴⁵ Bamborger and Grob, Ber., 25, 67 (1902)

2,3-dimethyl-1,3-butadiene. The solid is collected and dried to give 12 g. (47%) of product. After recrystallization from acetic acid containing some charcoal, the product melts at 177°.

N,N'-Diphenyl-C-methylformazan.¹³⁹ Aqueous benzenediazonium chloride is prepared by the addition of a solution of 7 g. (0.1 mole) of sodium nitrite in 15 ml. of water to 9.3 g. (0.1 mole) of aniline dissolved in 25 ml. of concentrated hydrochloric acid and 25 ml. of water. A warm solution of 13.4 g. (0.1 mole) of acetaldehyde phenylhydrazone (α or β form) in 100 ml. of ethanol is mixed with a warm solution of 30 g. of sodium acetate trihydrate in 150 ml. of ethanol. The mixture is cooled to 5° with vigorous stirring before the diazonium salt solution is added dropwise. The product separates as an oil which soon solidifies. The solid is collected and washed with a little cold ethanol to give 21 g. (88%) of N,N'-diphenyl-C-methylformazan, which melts at 123°. Recrystallization from ethanol raises the melting point to 125°.

4-Hydroxy-3-methylcinnoline.⁴⁰ To a cold solution of 45.5 g. (0.31 mole) of o-aminopropiophenone in 1.2 l. of concentrated hydrochloric acid is added slowly with stirring 23 g. (0.33 mole) of sodium nitrite in 30 ml. of water. The temperature is kept at 5-10° during the addition. The solution is filtered, and 4 l. of concentrated hydrochloric acid is added to the filtrate. The reaction mixture is warmed at 60° for four hours before it is evaporated to a small volume under reduced pressure. An excess of saturated sodium acetate solution is added to precipitate the product, which is collected and dried to give 40.7 g. (83%) of almost pure 4-hydroxy-3-methylcinnoline. Recrystallization from 50% aqueous ethanol gives slender, silvery needles, m.p. 241-242°.

TABULAR SURVEY OF THE COUPLING OF DIAZONIUM SALTS WITH ALIPHATIC CARBON ATOMS

The tables include those reactions recorded prior to the January, 1956, issue of *Chemical Abstracts*. Some more recent examples are also given. The reactants within a table are in general listed in order of increasing size and complexity.

Where more than one reference is given for a single entry, the yield reported is taken from the first reference. Since yields are but infrequently reported, the omission of parenthesized figures in the product column indicates that no yield was reported:

176c Allen and Bell, Org. Syntheses Coll. Vol. 3, 312 (1955).

		A. Monoketones		
	Substituent(s)			
Ketone	in Antline*	Product (Yield, %)	References	DI
Acetone	ı	C,H,NHN=C(COCH,N=NC,H,	255	ΑZ
Chloroacetone	1	CH,COC(CI)=NNHC,H, (30)	28	01
	2-Methyl	CH,COC(CI)=NNHC,H,CH,-0 (25)	28	VII
	4-Methyl	CH, COC(C!) = NNHO, H, CH, p (15)	88	UM
a,a'-Dichloroacetone	1	CICH,COC(CI)=NNHO,H.	177	1 0
	2-Methyl	CICH,COC(CI)=NNHC,H,CH,-0	177	:01
	4-Methyl	CICH,COC(CI)=NNHC,H,CH,-D	177	JΡ
a,a.Dichloroacetone	1	C.H.N=N,CC.	173	LI
	4-Methyl	(p-CH,C,H,N=N),CCI,	177	NG
sym-Tetrachloroacetone	1	C.H.N.I.C.C.	177	, 1
	4-Methyl	(p-CH,C,H,N=N),CC,	177	VI
Nifroacetone	4-Nitro	CH.COC/NO.)=NNHC.II.NOv (59)	ė.	TF
Methylsulfonylacetons	4-Nitro	CH.SO.C(COCH.)=NNHC.II.NO" (70)	100	1
4-Imino-2-pentanone	ı	CH.COCYN = NC. H >= C/N H >CH	307	AL.
Pyruvic acid	į	C.H.NHN=C/N=NC G 2000 H 762	110	IP
Levaline acid	ŀ		103, 227	H.
y-Oxopimelie acid	,		178, 153, 180	ΑT
Cyclopentane-1,2-dione	ļ	Ordensations 1994 and 1997	153, 180	IC
a-Hydroxy-z-methyl-y-	ı	a Francisco Light Continued a particular of the continued	99	c
oxoglutaric acid lactone		buddenson a property of the second actions property and the second property.	181	AI
Ethyl 3-hydroxy-2,5-dioxo-3-	i	Dibar dibardeness of a second second		RВ
cyclopentene-1-carboxylic neid		contrardic and	182	ON
2,4-Dinitrophenylacetone	i	1.00 Charles		1 4
2-Nitro-4-	1	"(2,1" Linitrophenyl)propane-1,2 dione 1-phenylhydrazone	58	AΤ
carbomethoxyphenylacetone		1-t-variable description of the state of the	183	03
Note: References 177-480 and an 120 110	120 140			ıs

carpomethoxyppenylacetone

35

Note: References 177-480 are on pp. 136-142.

The full name is given when it is awakward to name the arylamine as a derivative of amine.
 The formula of the formersyl radical is ColiNINS—CN=NC, Hz.
 Sacchin cold was a full man and the formers.

31, 32

m-Nitrophenyl m-Nitrophenyl

p-Tolyl u-Tolyl

3,3-Dimethoxybiphenylene

3,3-Dimethoxybenzidine

o-Anisyl

2-Methoxy

m-Nitrophenyl

Phenyl

9-Benzylphenyl

o-Biphenylyl

P-Naphthyl

3-Naphthylamine

I-Phenyl

-Benzyl

p-Tolyl o-Tolyl

T.ABLE I—Conlinued

A. Monoketones-Continued

Substituent R in

References 31, 32 31, 32 31, 32 Yield, p-Tolyl Phenyl D-Toly o-Tolyl p-Tolyl p-Toly] p-Tolyl o-Tolyl Substituents in Product, CH,COCC p-Dimethylaminophenyl R'HNN 2.4-Dimethylphenyl 2.5-Dimethylphenyl o-Carboxyphenyl p-Carboxyphenyl m-Chlorophenyl p-Chlorophenyl m-Nitrophenyl p-Nitrophenyl o-Nitrophenyl z-Naphthyl m-Anisyl o-Anisyl p-Tolyl o-Tolyl Phenyl Phenyl 1-Dimethylamino x-Naphthylamine Substituent(s) 2.1-Dimethyl 2,5-Dimethyl 2-Methoxy 3-Methoxy 2-Carboxy 1-Carboxy in Aniline 2-Methyl 4-Methyl 3-Chloro 1-Chlory 2-Nitro 3-Nitro L-Nitro

> p-Tolyd Phenyl

Ketone	Substituent(s) in Aniline	Product (Yield, %)	References	
Acetonylpyridinium bromide Phemacyl chloride	1.1	CH,COC(C,LH,)=NTC,Hs (84) C.H.COC(C)=NNHC,H.	821	DIA
4-Carbomethoxy-3-methyl-5-phenyl-	!	4-Carbomethoxy-3-methyl-5-phenyl-3-cyclohexene-	270	zon
4-Carbethoxy-3-methyl-5-phenyl-3-	1	4-Cabethoxy-3-methyl-5 phenyl-3-cyclohexene-1,2-	276	IUM
-Carbethoxy-3,5 diphenyl-1,3-cyclo-	í	4 Carbethoxy-3.5-diphenyl-3-cyclohevene-1, 2-dione	277	cor
Phenyl 2,4-dinitrobenzyl Letone	1	2,4-(NO2),C,H,COC(C,H,)=NNHC,H, (quant.)	48	PLI
Phenacylpyridinium bromide	1	C,HcOC(NC,Hs)=NNC,H, (89)	30	NG
	2-Nitro	C,H,COC(NC,H,)=NNC,H,NO,-0	30	wit
	3-Nitro	C,H,COC(NC,H,)=NNC,H,NO,m	30	н
	4-Nitro	Causcoc(NCaus)=NNCausNOs-2	30	LII
p-Bronophenacylpyridinium bromide 5-p-Nitrophenacyl-3-p-tolyl- 1,2,4-oxadinzole	11	p-BrC,H,COC(NC,H,)==NNC,H, (74) 1-(3-p-Tolyl-1,2,4-oxadiazol-5-yl)-3-p-ntrophenyl-	184	PHATIC
	2-Methoxy	1-(3-p-Tolyl-1,2-doxadascol-5-yl-3-p-ntrophenyl- athenel 2 direct - comother controphenyl-	32	CAI
	4-Nitro	1-(5-part)	33	RBON
Fropinone I-Ethoxalylındene	1 1	2,4-Dioxotropinone diphenyllydrazone (80)	38	ATO
	3-Nitro	1-m-Nitrophenylazo-1-ethoxalylindene 1-p-Nitrophenylazo-1 ethoxalylindene	5 50 50	oms
Note: References 177-480 are on pp. 136-142.	o. 136–142.		3	3

TABLE I-Continued

A. Monoketones-Continued

`	JIIG	1111C	REA	CIIO	IN S			
References 186, 185	185, 186	185, 186	185	185, 186	185, 186	185, 186	$\begin{array}{c} 186 \\ 36a \\ \end{array}$	36a 36a 36a
Product (Yield, %) 2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6- phenylazo-2-cyclohexen-1-one) (quant.)	2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6-o-	2,2'-Methylenebis-Gylydroxy-5,5-dimethyl-6-	2,2'-Methylenebis-(3-hydroxy-5,5-dimethyl-6- p -xylylazo-2-cyclohexen-1-one)			જો વ	N,N'-Di- $(p$ -bromophenyl)-C-2-quinolylformazan (79) N,N' -Di- $(p$ -bromophenyl)-C-2-quinoxal v - (p) -bromophenyl)-C-2-quinoxal v - (p) -bromophenyl)-C-2-quinoxal v - (p) -	(78) N,N'-Di-(p-bromophenyl)-C-2-quinazolylformazan N,N'-Di-(p-bromophenyl)-C-2-benzoxazolylformazan (76)
Substituent(s) in Aniline —	2-Methyl	2,3-Dimethyl	2,5-Dimethyl	4-Bromo	α-Naphthylamine	β-Naphthylamine	4-Bromo	4-Bromo 4-Bromo
Ketone (CII_3)_2 (Methyleneblamethono)							Bthyl 2-quinolylpyruvate Bthyl 2-quinoxalylpyruvate	Ethyl 2-quinazolylpyruvate Ethyl 2-benzoxazolylpyruvate

CH,COC(COCH,) -NNHC, H,Br, 2,4,6

2,4,6-Tribromo

2-Nitro

CH,COC(COCH,)-NNIIC,H,NO,-0

	DIAZON	HUM COUPLING WITH AL	IPHATIC CARBON
364	36a 36a	References 40 19e 50 51 40 50 50	References 12, 187, 188 189 190
N,N'-DI-(p-bromophenyl)-C-2-benzothiazolylformazan	N. ND. (p-bramopleny) JC. (2-(2-benzozazoly)), unyl) formazan NYDu-(p-bramopleny) JC. (2-(2-benzothazoly))- v. nyl Johnszan (10)	B. p.Kronidopulo Product (Yield, %) CH, COC(CITO)—NNICH, CH, COC(CITO)—NNICH, No.p. (17) CH, COC(CITO)—NNICH, CH, COC(CITO)—NNICH, CH, COC(CITO)—NNICH, PCH, COC(CITO)—NNICH, PC	G. ft Databased Product (Yield, %) GILCONGOOGH_SNINGLIL GILCONGOOGH_SNINGLILE, 993) GILCONGOOGH_SNINGLILE, 993 GILCONGOOGH_SNINGLILE, 993 GILCONGOOGH_SNINGLILE, 94
4-Bromo	4-Bromo	Substituent(s) in Aniline 4-Nitro	Substituent(s) in Anline*
Ethyl 2 benzothiazolylpyruvate	Ethyl 2-oxo-5-(2-benzoxazolyl)-4- pentenoato Ethyl 2-oxo-5-(2-benzothazolyl)-4- pentenoate	β-Ketoaldehyde β-Oxoubryndichyde g-Oxoubrahydeyde β-Mehyly-G-oxo-thycan β-Oxo-β-yr-propionaldhyde β-Oxo-β-yr tolypropionaldehyde β-Oxo-β-yr painylpropionaldehyde	p.Diketone Pentane-2,4-dione

These compounds are named as derivatives of the hypothetical formazan, II, NN=CHN=NH. . The full name is given when it is awkward to name the arylamine as a derivative of aniline. Note: References 177-480 are on pp. 136-142.

TABLE I-Continued

C. \(\beta\)-Dikclones—Continued

					O	RGA	TN	IC F	REA	CTION	S				
References	188	189	190	190	191, 192	191 109	101 (101	191, 192	193	19.4		195	196	197	198 199 199 200
Product (Yield, %)	$CH_3COC(COCH_3)$ = $NNHC_6H_1NO_2$ - R $CH_3COC(COCH_2)$ = $NNHC_1$ + R R - R	CH ₃ COC(COCH ₃)=NNHC,E ₃ CH ₃ f-NO ₃ -3	CH,COC(COCH,)=NNHC,H,Br-1-NO,-2	CII,COC(COCII,)=NNHC,H,Br,-2,4-NO,-0	3,3'-(4,4'-Biphenylenedihydrazono)bis(pentane-	3,3'-(3,3'-Dimethyl-4,4'-biphenylenedihydrazono)	bis(pentane-2,3,4-trione)	3,3'-(3,3'-Dimethoxy-4,4'-biphenylenedihydrazono) bis(pentame-2,3,4-rioma)	P.	P. 2000-1-74) 1-Phenyl-2,3-dimethyl- Pentane-2,3,4-trione 3-arythydrazone 4-amino-5-iso-		1-Phenyl-3,5-dimethyl-Pentane-2,3,4-trione 3-arylhydrazone 4-aminopyrazole	Pentane-2,3,4-trione 3-arylhydrazone	Pentane-2,3,4-trione 3-arylhydrazone	$\begin{array}{l} \mathrm{CH_3COC(COCH_3)} \!$
Substituent(s) in Aniline*	3-Nitro 4-Nitro	4-Methyl-3-nitro	4-Bromo-2-nitro	2,4-Dibrome-6-nitro	Benzidine	3,3'-Dimethyl-	benzidine	3,3'-Dimethoxy- benzidine	4-(3-Methyl-5-phenyl-	P. Phenyl-2,3-dimethyl-4-amino-5-iso-	pyrazolono	1-Phenyl-3,5-dimethyl- 4-aminopyrazolo	3,5-Dimethyl-4- aminopyrazole	5-Amino-3-isopropyl- 1,2,4-triazole	4-Nitro 4-Nitro 4-Nitro
eta-Diketone	Pentane-2,4-dione (Cont.)													Don't in	rentune-z,-t-thone enol othyl ether 1,6-Dichloropentane-z,-t-dione Hexane-2,-t-dione Heptane-2,-t-dione

199

(CH₃),CHCH,COC(COCH₃)=NNHC,H,NO₈-p

4-Nitro

6-Methylheptane-2,4-dione

leptane-3,5-dione	4-Chloro	C,H,COC(COC,H,)=NNHC,H,CI-p	199	
Ieptane-2, 1, 6-trione	I	(C,H,NHN=CHCOCHN=NC,H,),CO	201	
	ı	2,6-Dimethyl-3,5-diphenylazopyrone	202	D:
Nonane-1,0-dione	4-Chloro	$n \cdot C_1 H_1 COC(COC_1 H_2 \cdot n) = NNHC_6 H_1 CI \cdot p$	109	IA2
	4-Nitro	n-C,H,COC(COC,H,-n)=NNHC,H,NO,-n	199	zo
1-Phenylbutane-1,3-drone	i	Call COC(COCH,)=NNHC, H. (90)	42, 187	NI
	I	C,H,N=NC(COC,H,)=NNHC,H, (25)	203, 204	U
	2-Nitro	C,H,COC(COCH,)=NNHC,H,NO0	205	I (
	4-Nitro	C,H,COC(COCH,)=NNHC,H,NO,-v (quant.)	205, 208	co
	4-Acetamido	C,H,COC(COCH,)=NNHC,H,NHCOCH,	202	UI
	2,4-Dibromo	C,H,COC(COCH,)=NNIIC,H,Br2.4	48	PL.
	2,4,6-Tribromo	C.H.COCCCCH.) NNHC.H.Br9.4 A	9 \$	IN
	3,5-Dimethyl-4-	1-Phenylbutane-1.2.3-trione 2-(3.5-dymethyl.4.	90	G
	aminopyrazole	pyrazolyl)hydrazone	201	W
1-o-Anny Ibutane-1,3-dione	4-Nitro	o-CII,OC,H,COC(COCH,)=NNHC,H,NO,-n	808	T
1.(2,4-1)timethoxyphenyl)butane-	4-Nitro	2,4-(CH,O),C,H,COC(COCH,)-NNHC,H,NO,-p	208	H A
1-(2,4-Diethoxyphenyl)butane-	ı	2.4-(C.H. O) G H 00000000000		LI
1,3-dlone		-i- (cirro) setus co (coons) = NNIC, H, (good)	210, 209	PH
1-1 heny Pentane-2,4-dlone	4.Nitro	C.H.CH. COCCOCH V. MANNO H NO.		A
2,8-Dimethy Inonane-4,6-dione	4-Nitro	ICH.) CHOT CO. O. NWICH IN NO.	199	ΓIC
1-Thenylhexane-3,5-dione	4-Nitro	OH CH CH COOCCOOL	108	
1,3-Dipheny lpropane-1,3-dione	!	OLI COLE TOO COCCE NO HO HOLE NO TO (70)	211	A
	4-Nitro	Cancolicanner, H.	187	RJ
	4-Sulfo	C, H, CO), C=NNIC, H, NO, -p	199	30
1,3-Di-p-nitrophenylogonane-1.3.	4-Nites	(C,H,CO),C=NNHC,H,SO,H-p	187	N
dione		(b-O'NC,H,CO),C=NNHC,II,NO,-p	199	ÀΊ
				ľ

Note: References 177–180 are on pp. 136–142.

• The full name is given when it is swikward to name the arylamine as a dervative of aniline. I This product was obtained by the use of excess diazonium salt,

TABLE I-Continued

C. \(\beta\text{-Dikelones-Continued}\)

References	212	209	209	. 209	209	213 199 214	215	216	216 216	$\frac{216}{216}$
Product (Yield, %)	$3,5-(\mathrm{CH_3O})_2\mathrm{C}_6\mathrm{H_3COC}(\mathrm{COC}_6\mathrm{H_5})$ ==NNHC $_6\mathrm{H_5}$	$2,4,6$ - $(CH_3O)_3C_6H_2COC(COC_6H_5)$ = $NNHC_6H_5$	2,4,6-(CH ₃ O) ₃ C ₆ H ₂ COC(COC ₆ H ₄ OCH ₃ - p)== NNHC, H.	$2,4,6-(CH_3O)_3C_6H_2COC(COC_6H_4OC_2H_5-p)==NNHC_6H_5$	$2,4,6\cdot(\mathrm{CH_3O})_3\mathrm{C_6H_3COC(COC_6H_3OCH_3} - 3\cdot\mathrm{OC_2H_6\cdot4})$ $=\mathrm{NNHC_6H_5}$	C ₆ H ₅ CH ₂ COC(COC ₆ H ₅)=NNHC ₆ H ₅ (quant.) (C ₆ H ₅ CH ₂ CO) ₂ C=NNHC ₆ H ₄ NO ₂ -p 1-(2-Hydroxy-1-naphthyl)-3-phenylpropane-1,2,3- trione 2-phenylhydrazone (79)	CH ₃ COC(COCO ₂ H)=NNHC ₃ H ₃ CH ₃ COC(COCO ₂ C ₂ H ₃)=NNHC ₃ H ₅ (96)	$CH_3COC(COCO_2C_2H_5) = NNHC_6H_4CH_3-0$ (78) $CH_3COC(COCO_2C_2H_5) = NNHC_6H_4CH_3-p$ (98)	$CH_3COC(COCO_2, c_2H_3) = NNHC_6H_4CI-m$ (99) $CH_3COC(COCO_2, c_2H_3) = NNHC_6H_4Br-m$ (99) $CH_3COC(COCO_3, c_2H_3) = NNHC_6H_4Br-m$ (99)	CH ₃ COC(COCC ₂ C ₂ H ₆)=NNHC ₆ H ₄ NO ₂ -o (73) CH ₃ COC(COCC ₂ C ₂ H ₆)=NNHC ₆ H ₄ NO ₂ -m (90) CH ₃ COC(COCC ₂ C ₂ H ₆)=NNHC ₆ H ₄ NO ₂ -p (76)
Substituent(s) in Aniline*	Ī	I	I	1	I	4-Nitro	9.Mother	4-Methyl 3-Chloro	3-Bromo 2-Nitro	3-Nitro 4-Nitro
$ heta ext{-} ext{Diketono}$	1.(3,5-Dimethoxyphenyl)-3- phenylpropane-1,3-dione	1-(2,4,6-Trimethoxyphenyl)-3-phenylpropane-1,3-dione	1-(2,4,6-Trimethoxyphenyl)-3- p-anisylpropane-1,3-dione	1-(2,4,6-Trimethoxyphenyl)-3- (2-ethoxyphenyl)propane-1,3- dione	1-(2,4,6-Trimethoxyphenyl)-3- (3-methoxy-4-ethoxyphenyl)- propane-1,3-dione	1,4-Diphenylbutane-1,3-dione 1,5-Diphenylpentane-2,4-dione 1-(2-Hydroxy-1-naphthyl)-3- phenylpropane-1,3-dione	Ethyl a,y-dioxovalerate			

yrazol-1-yl)phenyl]butyrate dicarbethoxy-2,5-dimethyl-

Ethyl «,y-dioxo-y [p-(3,4-

beptenoate

acetaraidophenyl)butyrate Ethyl 2,4-droxo-6-methyl-5-

Ethyl a,y-dioxo-y-(p-

5,5-Dimethylcyclohexane-1,3-

dione (methone)

Cyclohexane-1,3-dione

Duthyl B, diphenylazoxanthochelidonate

Ethyl «.y-dioxo-y-phenylbutyrate x,y. Dioxo-y-phenylbutyric acid

Diethyl xanthochelidonate

. The full name is given when it is awkward to name the arylamine as a derivative of anilne. Note: References 177-480 are on pp. 136-142.

I Other products were also isolated from the reaction mixture,

TABLE I—Continued

D. Cyclic \(\beta\)-Dikclones—Continued

	Substituent.(s)		
\$-Diketone	in Aniline*	Product (Yield, %)	References
5,5-Dimethyleyclohexane-1,3-dione (methone) (Gaul.)	2-Arsono	5,5-Dimethyleyclohexane-1,2,3-trione 2-o-arsonophenyl-hydrazone	220
	3-Arsono	5,5-Dimethyleyclohexane-1,2,3-trione 2-m-arsonophenyl-hydrazone	220
	4-Arsono	5,5-pinnethyleyelohexane-1,2,3-trione 2-p-arsonophenyl-hydriannyl	220
	a-Naphthylamine	ນລົ	55
	heta-Naphthylamine	5,6-maphilyeyelohexane-1,2,3-trione 2-\theta-naphthyl-hydrazane	45
	Benzidine	9,2'-(4,4'-Biphenylenedilydrazono)bis-[5,5-dimethyl-	97
	3,3'-Dimethyl- benzidine	2,2'-(3,3'-Dimethyl-4,4'-biphenylenedihydrazono)bis- [5,5'-dimethyl-4,4'-biphenylenedihydrazono)bis-	46
	3,3'-Dimethoxy- benzidine	2,2'-(3,3'-Dimethyxy-4,4'-biphenylenedillydrazono)bis- [5,5-dimethylexelohexane-1, 2,3-4-ione]	46
5-Phenyleyelohexane-1,3-dione	1	5-Phenyleyclohexane-1,2,3-trione 2-phenylhydrazone (quant.)	221

43	nyl- 43	e 221 nyl- 222	222	223	47	83	8	48	ne) 18	ne 224
4-Cyano-5-phenylcyclohexane-I,2,3-trione 2-phenyl-	4-Cartenana 4-Cartenary-5 phenylcyclohexane-1,2,3-trione 2-phenyl-hydragone	5-(2-Puryley elohexane-1,2,3-trione 2-phenylhydruzone 0,0-Dimethyleyelohexane 1,3,3,4,5-pentaone 2,4-diphenyl-	nyudzone 2-Butyryl 6:6-dimethyleyclohexane-1,3,4,5-tetraone 4-phenylhydrazona	2,3-Mehylenebis-(0,6-dimethyleyelohexane-1,3,4,5- tetraone 4-phenylhydrazone)	Indan-1,2,3-trione 2-phenylhydrazone (35)	Indan 1 2 2 trione 2-p-tolylhydrazone	Indan 1,2,3 Hione 2-p-nitrophenylhydrazone	9 9' 44 4' Fr.	2,2 "(4,4 -Diphenylenedihydrazono)bis(indan-1,2,3-trione)	3. plens lbwlenger.
I	1	1.1	1	1	4-Methel	4-Nutro	6-Naphthylamino	Benzidine		
4-C'yano 5-phenyleyelohexane-1,3-	4 Carbethoxy 5 phenyloyelo- hexane-1,3 dione	5 (2-Fury!)cyclohexane-1,3-dione Filteinio acid	2-Butyryl-6,6 dimethyleyelo- hexane-1,3,5 tilone	2,2. Methylenebis (0,6 dimethyl- cyclohexane-1,3,5-ti1one) Indan-1,3 dione	2000				2,4-Dioxo-1,2,3,4,1a,9,10,10a-	octahydrophenanthrene

* The full name is given when it is awkward to name the arylamine as a derivative of aniline. Note: References 177-480 ate on pp. 136-142.

3 phenylhydrazone

2-Amino-6-methoxy 2-Amino-5-methoxy 2-Amino-4-methoxy

2-Amino-4-methyl 2-Amino-3-methyl

2-Amino

Reactant Acclophenone 2-:Amino-3-methoxy

2-Amino-5-chloro

2-Amino-4-chloro 2-Amino-3-chloro 2-Amino-5-bromo 2-Amino-3-bromo

2-Amino-6-nitro 2-Amino-5-nitro 2-Amino-4-nitro 2-Amino-3-nitro

2-Amino-5-lodo

TABLE I—Continued

E. 4-Hydroxycinnolines from o-Aminoketones

Substituent(s) in 4-Hydroxycinnoline (Yield, %)

References

1	(70–75)	37, 22, 39
7-Met	7-Methyl (58)	164
S-Met	8-Methyl (78)	164
5-Metl	5-Methoxy (55)	224a
6-Metl	10XY (53)	224a
7-Metl	7-Methoxy (63)	224a
8-Metl	8-Methoxy (92)	167a
6-Chlo	6-Chloro (74)	22, 39
7-Chlo	ro (90–95)	37, 39, 161
8-Chlo	8-Chloro (69)	22
6-Bron	no (95)	39, 22
8-Bron	8-Bromo (57)	22
opol-9		33
5-Nitro (70)	o (70)	165
6-Nitr	0 (87)	39, 22, 159
7-Nitro (76)	0 (76)	165, 166
8-Nitro (70)	0 (10)	163, 164
8-Chlo	8-Chloro** (45)	164
6-Cyar	6-Cyano (70-90)	22
7-Acet	cyl (47)	165
6-Acet	6-Acetamido (33)	39
6-Phe	6-Phenylazo (60)	166
		1

166

6-(3-Acctylphenylazo) (50)

2-Amino-5-(3-acetylphenylazo)

2-Amino-5-acetamido

2-Amino-5-cyano 2-Amino-4-acetyl 2-Amino-phenylazo

2.Andro-4.5-directhyl 2.Andro-4.5-directhoxy 2.Andro-4.5-dichloro	6,7-Dimethyl (91) 6,7-Dimethoxy (67) 6,7-Dichloro (91)	38 167 <i>b</i> 162
2.Amino.3.4-dhchloro 2-Amino.3.5-dibromo	7,8-Dichloro (59) 6,8-Dibromo (65)	DLA Sp. Sp.
2-Antho-5-chlore-1-methyl	6-Chloro-7-methyl (90)	***
Z-Millio-3-chloro-1-methyl	8-Chloro-7-methyl (75)	
2. Amho. 5. Dromo-1-methy1	6-Bromo-7-methyl (37)	162
2. Amino-4-methyl-5-metro	7-Methyl-6-nitro (76)	_
2-Antino-1-chloro-3-ntro	7-Chlore-8-mtre (57)	00 E E
Phenacul Chlorule		LI
2:Amino		NC
2- Anino-5-methyl	3-Chloro (85)	
2-Ammo-5-thurn	3.f. Deblore (71)	VII 88 ;
2-Antho-4,5-dim thy 1	3 Chloro 6,7-dimethyl (80)	TH .
l'henaryl Bromide		ALI
2-Atribus	December 1800	PH
2. Unino-5-chloro	3-Brome-6-chlora (77)	AT.
- antitot-a-profito	3,6-Dibromo (76)	C S
Prophenone		CAI
2.Animu	9-Medical some	εв
2. Unino-5-chioro	A.C. Come a market some	6. 3 8. 0 0. 0
2-Vadace-5-brumo	6-Rome 2 methy (94)	
2. Imho.5.nitro	3. Methyl 6 - 11 - 1 - 12	
2 Inho-3-nitro	3-Methyl-8-nitro (60)	39°
Nade: Perfessions 177 ton	(60)	

.. The 8-chiero compound is obtained if the diazotization is run in hydrochloric acid. Note: 1tt ferences 177-180 are on pp. 136-142.

TABLE I—Continued

E. 4-Hydroxycinnolines from o.-Aminoketones—Continued

Substituent in 4-Hydroxycinnoline

References 38 38 38 38 38 38 60 991 3-Carbethoxymethyl-7-carbethoxy (13) 3-Carboxymethyl-6,7-dimethoxy (71) 4,4'-Dihydroxy-6,6'-azocinnoline (69) 3-Chloro-6,7-cyclopenteno (57) 3-Chloro-6,7-cyclohexeno (67) 6,7-Cyclopenteno (60) 6.7-Cyclohexeno (70) 3-Carboxyethyl (53) 7,8-Cyclopenteno 7,8-Cyclohexeno 3-Ethyl (68) (Yield, %) ,2,3,4-Tetrahydro-6-amino-7-chloroacetylnaphthalene Ethyl β -(2-amino-4-carbethoxybenzoyl)propionate θ -(2- λ mino-4.5-dimethoxybenzoyl)propionic acid ,2,3,4-Tetrahydro-6-amino-7-acetylnaphthalene ,2,3,4-Tetrahydro-5-amino-6-acetylnaphthalene 3,3'-Diacetyl-4,4'-diaminoazobenzene y-(2-Aminobenzoyl)butyric acid 5-Amino-6-chloroacetylindane Miscellancous o-tuninoketones 2-Aminobutyrophenone 5-Amino-6-acetylindane 4-Amino-5-acetylindane Reactant

Note: References 177-480 are on pp. 136-142.

COUPLING OF DIAZONUM SALTS WITH P.KETO ACIDS, ESTERS, AND AMIDES TABLE II

	Substituent(s)	A. \$-Keto Acids		DIA
p.Keto Acid Acctoacetic acid	in Anilme*	Product (Yield, %) CH,COCH=NNHC4H, (73-82)	References 55, 53, 54,	AZONIU
	4-Methyl 2-Methoxy	CH_COC(N=NQ,H_j)=NNHC,H_t (41) C,H_C(N=NC,H_j)=NNHC,H_t CH_COC(N=NC,H_j)=NNHC,H_CH_r CH_COC(N=NC,H_T)=NNHC,H_CH_r CH_COC(N=NC,H_T) CH_T	225 52, 226 140 52	M COUPL
	3-Nitro	CH,COCH==NNHC,H,NO,-0 CH,COCH==NNHC,H,NO,-0	238, 239	ING W
	2.4-Dibromo 2-Bromo-4-nitro	CHI,COCH == NNHC, H, NO, -P CHI,COCH == NNHC, H, In-2, -2 CH, COCH == NNHC, H, In-2, NO, -4	152	TTH A
	2,4.6-Tribrono 2,6-Dibrono-4-nitro e-Naphthylamine	CH,COCH=NNHC,H,Ch,24,6 CH,COCH=NNHC,H,Br,24,6 CH,COCH=NNHC,H,Br,24,4,6 CH,COCH=NNHC,H,Br,2,6-NO ₂ -4	8 0 0 8	ALIPHAT
Propiony laced is acid a-Acelopropionic acid Ty tronic acid Benzoy lacette acid	f-Natra	CTI, COC(N=NC ₀ , II ₁ , N=NN IIIC ₀ , II ₁ , N=NN IIC ₁ ₁ , N=	285 130 231 231 231	IC CARBON
Note: References 177-180 are on pp. 130-142.	are on pp. 130-142.	C,H,COC(N==NC,H,S)==NNHC,H,† (30)	83	V ATO

. The fall name legiven when it is ankward to name the arciamme by a derivative of amiline. Note: References 177-180 are on pp. 130-142.

This product was obtained when 2 equivalents of the diazonium sait were used. This product was obtained when 3 equivalents of the diazonium sait nere used.

TABLE II-Continued

mfinuri	
ت	
J. Icint.	
11-1 cto	
-;	

																									•	f		
	Product (Vield, %)	Chicoch Annehioch,	CHUCOLIN NAMED IN CO. III.O.	CHICOCH - NNHCH NO.	CHICOCH NAME IN NO.		,	1011-24 15	COLCH NYHOUR COLO	COCH NNIICHERS (*18)	COCH - NAME OF STREET	CHCOCKOIN NAME II		CHCOCSO HIS NAME IN PRO						Oliver of the state of the stat		CHICOCKO, IL SENIORIO CHICA	Chicago in the second					CHECOCKSOME NNIHOUSTAND
Substituent(s)	in Amiliar	t-Methoxy	F-Chiloro	2-Nitro	3-Nitro	t-Nitzo	1-Carboxy	2-Hydroxy-5-chloro	1	f-Methyl	4-Chloro	1	f-Chloro	1-Bromo	2-Nitro	3-Nitz	E.Nitz	9 fallighter	2.1-12/cmaro	z, i-Dibromo			-	F-Nita	2.4-Dichlory	2.4-Dibromo	9 4 G.Triebline	CLUCATION OF THE STREET
R Work Cold	p-weto weig	Benzoylacetic acid (Cont.)						o-Carboxybenzoylacetic acid	Acetonedicarboxylic acid		•	2-Oxo-1-propanesulfonic acid								2-Oxo-2-phenyl-1-othens	Sulfonic acid							

C,H,COC(SO,H)=NNHC,H,Br,-2,4,6

2.4.6-Tribromo

Ethyl formylacetate Sthyl acetoacetate 5-Keto Ester

 The full name is given when it is ankward to name the arylamine as a derivative of aniline. This product was obtained when 2 equivalents of the diazonium salt were used. Note: References 177-480 are on pp. 136-142.

51

CARBON

ALIPHATIC

DIAZONIUM COUPLING

* The full name is given when it is awkward to name the arylamine as a derivative of aniline. Nofe: References 177-480 are on pp. 130-142.

methyl-1-pyrazolyl)

TABLE II-Continued

Continued
Ĭ
eto Esters
B. B-Keto

eta-Keto Ester	Substituent(s) in Aniline*	Product (Yield, %)	References
Ethyl acetoacetate (Cont.)	3-Amino-5-iso- propyl-1,2,4- triazole	Ethyl α,β -dioxobutyrate α -(5-isopropyl-1,2,4-triazol-3-yl-) hydrazone	197
	Benzidine	α,α' -(4,4'-Biphenylenedihydrazono)bis(ethyl α,β -dioxobutyrate) (98)	254, 255
	3,3'-Dicarboxy-benzidine	$\alpha_s\alpha'-(3,3'-\mathrm{Dicarboxy-4},4'-\mathrm{biphenylenedihydrazono})\mathrm{bis}(\mathrm{ethyl}$ $\alpha_s\beta$ -dioxobutyrate)	256
l-Menthyl acetoacetate		CH3COC(CO2C10H19-1)=NNHC4H5	146
	4-Methyi	$\mathrm{CH_3COC(CO_2C_{10}H_{10}\text{-}l)} = \mathrm{NNHC_6H_4CH_3\text{-}p}$	146
	4-Chloro	$C_{C_1C_2C_3C_4C_4C_4C_3C_1C_4C_4C_4C_4C_4C_4C_4C_4C_4C_4C_4C_4C_4C$	146 148
1	4-Bromo	$CH_3COC(CO_2C_{10}H_{19}-t)=NNHC_4H_3Br-p$	146
Methyl γ -chloroacetoacetate	1	CICH2COC(CO2CH3)=NNHC4H,	257
	2-Methyl	CICH2COC(CO2CH3)=NNHC6H4CH3-0	257
Without a oblome and	4-Metnyl	CICH, COC(CO, CH3)=NNHC, H, CH3-p	257
Fully 7-chioroacetoacetate		CICH,COC(CO,C,H,)=NNHC,H,	152, 957
	2-Methyl	CICH, COC(CO, C, H,)=NNHC, H, CH, -0	987
	4-Methyl	CICH2COC(CO2C2Hs)=NNHC2H,CH,-n	9 6 5 7 5 1
	4-Chloro	$CICH_2COC(CO_2C_2H_5)=NNHC_2H_2CI-v$	159
	4-Nitro	$CICH_2COC(CO_2C_2H_5)$ =NNHC,H,NO,- ν	248
	2,4-Dichloro	CICH, COC(CO, C, H5) = NNHC, H3 Cl2-2,4	152
	2.4.6-Tribromo	$CICH_2COC(CO_2C_2H_3)$ = $NNHC_6H_2CI_3$ -2,4,6	230
	2-Chloro-4-nitro	$\begin{array}{c} \text{CICH}_2\text{COC}(\text{CO}_2\text{C}_2\text{H}_5) = \text{NNHU}_6^4\text{H}_2\text{H}_3^-2,4,6} \\ \text{CICH}_2\text{COC}(\text{CO}_2\text{C}_2\text{H}_5) = \text{NNHC}_6^4\text{H}_3\text{CI}-2\text{-NO}_2^-4 \end{array}$	230 248
	2,0-Dichloro-4-nitro	$CCH_2COC(CO_2C_2H_6) = NNHC_6H_2CI_3-2,6-NO_2-4$	248

258 258		CARBON ATOMS 5 CARBON ATOMS 5
личн,00с(со,сн,)=хинс,н, Веп,сос(со,сн,)=хинс,н,сн,- Веп,сос(со,сн,)=хинс,н,сн,- Веп,сос(со,сн,-		**Conf. Order Conf.
noctate	2 Meday 4 Dechy 4 Dechy 4 Dechy 2 Mitro 2 Mitro 4 Mitro 4 Mitro 4 Mitro 4 Dechy 5 A Dechy 5 A Dechy 5 A Dechy 5 A Dechy 5 A Dechy 5 A Dechy 6 Dechy 7 Dechy	Shyl hemoplacetale Shyltre 4-Mitor 4-Mitor 5-Minor 4-Minor 5-Minor 6-Minor 6-Minor 6-Minor 6-Minor 6-Minor 7-Minor 6-Minor 7-Minor 7-Minor 17-Minor 1
Methyl y-bromoacetoacetate Elbyl y-bromoacetoacetate	Ethyi 3 oxobaxanoada Ethyi 3 oxobaxanoada	Elbyl bernoylacetate Elbyl bernoylacetate Wete. References 177-4 7 Tale product was obt

TABLE II—Continued

				On	GAMIC	REAU	110772				
	References	268	268 268	268 268	268 269	269 269	269 269	269 62 270	62, 61 63, 61 69, 971	63	00 66 979
B. \(\beta\)-Keto Esters—Continued	Product (Yield, %)	$o\text{-}\mathrm{CH_3OC_6H_4COC(CO_2CH_3)}\!\!=\!\!\mathrm{NNHC_6H_5}$	o-CH ₃ OC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₄ NO ₂ - pm -CH ₃ OC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₅	m-CH ₃ OC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₄ NO ₂ - pp -CH ₃ OC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₅	$p\text{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4\mathrm{COC}(\mathrm{CO}_2\mathrm{CH}_3)\text{=-}\mathrm{NNHC}_6\mathrm{H}_4\mathrm{NO}_2\text{-}p\\ o\text{-}\mathrm{CIC}_6\mathrm{H}_4\mathrm{COC}(\mathrm{CO}_2\mathrm{CH}_3)\text{=-}\mathrm{NNHC}_6\mathrm{H}_5$	$o\text{-CIC}_6 \mathbf{H}_4 \text{COC}(\text{CO}_2 \text{CH}_3) \textcolor{red}{=} \text{NNHC}_6 \mathbf{H}_4 \text{NO}_2 \text{-} p \\ m\text{-CIC}_6 \mathbf{H}_4 \text{COC}(\text{CO}_2 \text{CH}_3) \textcolor{red}{=} \text{NNHC}_6 \mathbf{H}_5$	m-ClC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₄ NO ₂ - pp -ClC ₆ H ₄ COC(CO ₂ CH ₃)=NNHC ₆ H ₅	$p\text{-CIC}_6 H_4 \text{COC}(\text{CO}_2 \text{CH}_3) = \text{NNHC}_6 H_4 \text{NO}_2 - p$ $\text{CH}_3 O_2 \text{CCOC}(\text{CO}_2 \text{CH}_3) = \text{NNHC}_6 H_6 (40)$ $\text{[CH}_3 O_2 \text{COC}(\text{CO}_2 \text{CH}_3) = \text{NNHC}_6 H_4 - l_3 (65)$ $\text{C}_6 H_5 O_5 \text{CCOC}(\text{CO}_2 \text{CH}_3) = \text{NNHC}_6 H_4 - l_3 (65)$	$C_{1}^{-1}C_{1}^{-1}C_{2}^{-1}C_{2}^{-1}C_{3}^{-1}C_{4$	$^{o-\mathrm{CH}_3}\mathrm{C}_6\mathrm{H}_4\mathrm{N} = \mathrm{NC}(\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5) = \mathrm{NNHC}_6\mathrm{H}_4\mathrm{CH}_3^{-o+}(81)$ $\mathrm{C}_2\mathrm{H}_6\mathrm{O}_2\mathrm{CCOC}(\mathrm{CO}_3\mathrm{C}_3\mathrm{H}_4) = \mathrm{NNHC}_3\mathrm{H}_3\mathrm{H}_{-20}(62)$	$p ext{-BrC}_0H_4N ext{-NC}(CO_2^C_4H_8) ext{-NNHC}_0H_2^Br^p^\dagger$ (41) $C_2^LH_8O_2^RC_9C_3C_4H_8) ext{-NNHC}_0H_2^Br^2p^\dagger$ (41)
Substituents	in Aniline*	1	4-Nitro	4-Nitro —	4-Nitro	4-Nitro	4-Nitro	4-Nitro — Benzidine —	2-Methyl	4-Bromo	2,4-Dibromo
	eta-Keto Ester	Methyl o-methoxybenzoyl- acetate	Methyl m-methoxybenzoyl-	acetate Methyl p-methoxybenzoyl- acetate	Methyl o-chlorobenzoyl- acetate	Methyl m -chlorobenzoyl-ucetate	Methyl p -chlorobenzoyl-necetate	Dimethyl oxalacetate Diethyl oxalacetate			

		The state of the s	:	
	Benzidine 3,3'-Dimethyl- benzidine	4.4'-Biphenylenedhydrazonobis(diethyl diozosuccinate) (76) 3.3'-Dimethyl-4.4'-biphenylenedihydrazonobis(diethyl diozosuccinate (60)	270, 273 273, 270	
:	3,3'-Dimethoxy- benzidine	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(diethy) doxosucemate) (55-60)	273, 270	DI
Diethyl acetonedicarboxylate		C,H,O,CCH,COC(CO,C,H,)=NNHC,H, (86)	65, 274	AZ
	2-Methyl	CH, 0, CCH, COC(CO, C, H,)=NNHC, H, CH, CH, 041)	92	ON
	4-Nitro	CH, O. CCH, COC(CO, C, H,)—NNHO, H, CH, P. (90)	65	w
	2-Carboxy	CH, O, CCH, COC(CO, CH,) = NNHC, H, CO, H-o (70)	\$ \$	t c
	Z,4.Dimetbyl	C, H, O, CCH, COC(CO, C, H,) -NNHC, H, (CH,), 2,4	8 8	ου
	tobenzoyl)	Dictayl α, β -dioxoglutarate α - $\{p$ - $\{p$ -phenylmercaptobenzoyl $\}$ - phenylhydraconal (27)	13	PL
	4-(3,4-Dicarbethoxy- 5-methyl-1-	ā	253	NG V
Diethyl a,a-diethyl f.	pyrazolyl)	Diethyl a.a.diethyl. 8dioxochtanete		VITE
6-Ilydroxy-3-oxo-4-herenoid		Party Maragana Character Marazone	274	I A
acid lactone		0-119droxy-3-0xo-2-phenylhydrazono-4-hexenoic acid lactone (80)	275	LIP
ricity o-oxo-z-herendioate	4-Bromo	C,H,N=NC(CH=CHCO,C,H,)=NNHC,H,§ (18)	99	НАТ
		P-BrC,H,N=NC(CH=-CHCO,C,H,)=NNHC,H,Br-p (65)	8	nc.
		P-Broad N=NC(CO,C,H,)=CHC(COCO,C,H,)=	8 8	CAF
	4-Ethory	C,H,O,CCOC(CH==CHCO,C,H,)==NNHC,H,Of.H-mf /26 /27		BO
" The full remove 177-480 are on pp. 136-142.	are on pp. 136-142.	(05-00) 1/5-100	9	N A
This product was obtain	hen it is awkward to red when 2 equivalents	This product was obtained when it is sawkward to name the arriamine as a derivative of aniline.		ATO:
This product was obtained by coupling in the presence of ammonia.	d by coupling in the	presence of ammonia,		MS

....

THE RESIDENCE OF THE PARTY OF T

: : :

I This product was obtained by coupling in the presence of ammonia.

I This product was obtained by coupling in alcoholic hydrochloric acid.

This product was obtained by coupling in the presence of sodium carbonate.

TABLE II-Continued

٠.
Ę
≋
≂
•
~
≂
_
ñ
O
Ī
•
- 27
crs
35
- :
~
cfo
~~
ಾ
8-K
-
•'
~
_
. •
20
-

								01	 		, 11	,,,,,,,			<i>-</i> 11	U										
	Document	references	278	000	250, 279	į	280				References	281, 282	283	283	283	283	283	283	283	283	67 68	67, 60	67, 68	28.4		283
h-Keto Esters—Continued		Product (Yield, %)	β, β' -Oxaldilydrazonobis(ethyl α, β -dioxobutyrate)	a,a -aipnenyinyarazone	β, β' -Mesoxaldihydrazonobis(ethyl α, β -dioxobutyrate)	$\alpha, \alpha', \alpha''$ -triphenylhydrazone (72)	$\beta.\beta'$ -Mesoxaldihydrazonobis(ethyl α,β -dioxobutyrate)	$\alpha, \alpha', \alpha''$ -tri-p-tolylhydrazone (50)	C. p-weto amides		Product (Yield, %)	CH3COC(CONHC,H3)=NNHC,H5	CII,COC(CONIIC, H,)=NNIIC, H,CH,-0	$CII_{s}COC(CONIIC_{s}II_{s}) = NNIIC_{s}II_{s}OII_{s}p_{s}$	CH,COC(CONHC,H,)=NNHC,H,OCH,-0	$CH_3COC(CONHC_6H_6) = NNIIC_6H_3OCH_3-n$	CII,COC(CONIIC,H,)=NNHC,H,OC,H,-,	CII,COC(CONHC,II,)=NNHC,II,Cl-,	$CII_3COC(CONHO_6H_6) = NNHC_6H_3CI_7$	$CH_3COC(CONHC_6H_5) = NNHC_6H_3Br-p$	CII,COC(CONIIC,II,)=NNIIC,H,NO,-0	CU,COC(CONIIC,H,)=NNHC,H,CH,-I-NO2	CII,COC(CONIIC,II,)=NNIIC,II,CI-1-NO2	CII,COC(CONIIC,H6)=NNHC,H(CH1),-2,4,6-NO,-3		$\mathrm{CH_3COC(CONIIC_6H_6)}$ =NNHC $_{10}\mathrm{H_7-\alpha}$
В.	Substituent(s)	in Aniline*			I		4-Methyl			Substituent(s)	in Aniline*	!	2-Methyl	4-Methyl	2-Methoxy	4-Methoxy	4-Ethoxy	3-Chloro	4-Chloro	4-Bromo	2-Nitro	4-Methyl-2-nitro	4-Chloro-2-nitro	2,4,6-Trimothyl-3-	Olding	«-Naphthylamine
		θ -Keto Ester	Oxaldihydrazonobis(ethyl	ncetoncetate)	Malondihydrazonobis(ethyl	nceloncetule)					β-Keto Amide	Acctoncotanilido										-				

	β-Naphthylamine Anhydrotris o- aminobenzalde-	CH ₅ COC(CONIC, H ₅)=NNIC, H ₇ β CH ₅ COC(CONIC, H ₅)=NNIC, H ₇ CHO- α	283 285	
	4-(3,4-Dicarbethoxy- 2,5-dimethyl-	+ $(3,4.)$ isorbethoxy- α,β -Dioxobutyranilide α -arythydrazone $2,\beta$ -dimethyf-	286	
	pyrrolyl) 4-(3,4-Dicarbethoxy- 5-methyl-1-	pyrobi) pyrobi) eg-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f-f	253	
-Acetoacetotoluide	Benzidus	$c_{A,A'}\cdot (i, H'. Biphenylemedhiydenzono)bis\cdot (\alpha,\beta \ dioxobutyrannide) \\ CH_{\delta}COC(CONHC_{i}H_{i}CH_{I}O) = NNHC_{i}H_{\delta}$	282	
?-Acetoacetotoluide	Benzidine	$(UI_sCOC(CONHC_sH_sCH_s \cdot \sigma) = NNHC_sH_s \cdot J_s$ $UI_sCOC(COHNC_sH_sCH_s \cdot p) = NNHC_sH_s$	282	
-Acetoacetaniside	Benzidine	$[CH_sCOC(CONIC_sH_sCH_s-p) = NNHC_sH_s-]_s$ $CH_sCOC(CONIC_sH_sOCH_s-p) = NNHC_sH_s$	283	
p-Acetoacetamside	Denzidine	$(CH_sCOC(CONHC_sH_sOCH_s, p)=NNHC_sH_s-1, COC(CONHC_sH_sOCH_s, p)=NNHC_sH_s$	282	
p-Ethoxyacetoacetanılide	p (3,4-Dicarbethoxy- 2,5-dimethyl-	(CH,COC(CONHC,H,CH,SP)=NNHC,H,−1, CH,COC(CONHC,H,COLH,P)=NNHO,H, P-Ethoxy-a,β-dloxobutyranlide α-arylbydrasone	287 282 280	
o-Chloroacetoacetanilido m-Chloroacetoacetanilido	pyrrolyl) Benzidine 4-Chloro 2-nitro	(CH,COC(CONIIC,H,OC,H,2)—NNHC,H,-1, CH,COC(CONIIC,H,CH,0)—NNHC,H,CH-NO,t,2 (CH,COC(CONIIC,H,CH,0)—NNHC,H,1 (CH,COC(CONIIC,H,CH,0)—NNHC,H,1	287 67, 68 283	
Note: References 177-480 are on pp. 136-142.	are on pp. 136-142.	E(287	

Note: References 177-480 are on pp. 130-142.

The full name is given when it is awkward to name the arylamine as a derivative of aniline. ** Some monophenylhydrazone was isolated,

TABLE II—Continued

C. B-Keto Amides-Continued

References	282	287	282	288	288	288	13.82	285 282	13851	288	288	288	280	280	281	55 55 55 55 55 55 55 55 55 55 55 55 55	287
Re										•	••	••	••	••	24	टाटाटाटा	
Product (Yield, %)	CH,COC(CONHC,H,CI-p)=NNHC,H,	$(CH_3COC(CONHC_4H_3CP_9)=NNHC_4H_4-)_3$ $CH_3COC(CONHC_4H_3P_5-n)=NNHC_4H_4-)_3$	[CH,COC(CONIIC,H,Br-p)=NNHC,H,-],	CH,COC(CONHC,H,SO,NH,-p)=NNHC,H,NO,-o	CH.COCCONHC.H.SO.NHp)=NNHC.H.NOm	$CH_3CO(CONHC_1H_2^2)=NNHC_1H_1NO_2^2P$ $CH_3CO(CONHC_1H_2^2)=NNHC_1H_1$	STT DITTON	$[\mathrm{CH_3COC(CONHC_{10}H_{1^{-2}})=NNHC_{4}H_{1^{-}}]_{!}}$ $\mathrm{CH_3COC(CONHC_{10}H_{7^{-}}\beta)=NNHC_{4}H_{3}}$	$[CH_3COC(CONIG_1_0H_7\beta)=NNIHC_1H_7]_1$	(C,H3):NCOC(COCH3) - NNHC H NO 3-0 (SO-90)	(C,H ₃),NCOC(COCH,)=NNHC II NO (NO-90)	CH3COC(CONHSO, II) = NNHC II NO	CH3COC(CONHSO, NH2) - NVHC II NO	CH,C(=NNHC,H,)C(=NNHC,H,)CONTIG	STOCKET STOCKE	C ₄ H ₅ COC(CONHC ₄ H ₃)=NNHC ₄ H ₃ C ₄ H ₅ COC(CONHC ₄ H ₃)=NNHC ₄ H ₄ CH ₃ -p C ₄ H ₅ COC(CONHC ₄ H ₃)=NNHC ₄ H ₄ OCH ₃ -p C ₄ H ₅ COC(CONHC ₄ H ₃)=NNHC ₄ H ₄ OCH ₃ -p C ₄ H ₅ COC(CONHC ₄ H ₃)=NNHC ₄ H ₄ OC ₄ H ₅ -p	Catascoc(CONHC,Hs)==NNIIC,H,-);
Substituent(s) in Aniline*	 Bonzidino		Benzidine	3-Nitro	4-Nitro	1		Benzidine —	Benzidine 2-Nitro	3-Nitro	f-Nitro	4-Nitro	4-Nitro	1		4-Methyl 4-Methoxy 4-Ethoxy 4-Chloro Benzidine	
β-Keto Amide	p-Chloroacetoacetanilide	$p ext{-}Bromoacetoacetanilide}$	p-Sulfamylacetosocatanilida	animina macanatamina		$N-(\alpha-Naphthyl)$ acetoacet-	amae	$N-(\beta-Naphthy1)$ acetoacetamide	N,N-Diphenylacetoacetamide		N-Sulfoprotogotomia	N-Sulfamylacetonoctania.	Acetoacetanilide whom-	hydrazone	Benzoylacetanilide		

NHIL

Substituents in Product CH,COC(CONHC,H,OCH, p)=NNHC,H, -NNHC,H, |C'E'COC(CONHC'H'CI-b)=NNHC'H'-1 C.H.COC(CONHC.H.CH.T) -NNHC.H. "H"COC(CONHC"H"CH"-D)=NNHC"H "L'COC(CONHC, H,OCH,") L'COC(CONHC) C.H.COC(CONHC.

N-p-Chlorophenylbenzoylp-Benzoylacetophenetide p-Benzoylacetotoluide p-Benzoylacetaniside

acetarnide

Benzidine Benzidine Benzidine OCCONHR

MLSU - CENTRAL LIBRARY

Substituent R in

Phenyl

cactant.

Telegraphic and

2-Methoxy Methoxy n Andine -Methyl -Ethoxy 2-Methyl

heny Phenyl Phenyl henyl 'henyl

p-Ethoxypheny n-Chloropheny p-Bromopheny p-Chloropheny

-Anisyl -Anisyl ·Tolyl

-Tolyl

Phenyl Phenyl Phenyl Phenyl Phenyl Phenyl

> -Naphthylamine -Naphthylamin 4-Bromo -Chloro -Chloro

3iphenylene The full name is given when it is awkward to name the arylamine as a derivative of aniline. Note: References 177-480 are on pp. 136-142. Benzidine

9-Naphthyl

a r

TABLE II—Continued

C. \(\beta\text{-Kclo Amides-Continued}\)

Substituents in Product,

	References	283	287	282	287	282	287	282	287	282	287	282	287	282	287	282	287	282	287	282	287
Соссомия минк'	R'	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Riphenylene	Phenyl	Biphenylene	Phenyl	Biphenylene	Phenyl	Enphenylene	L'henyl	Liphenylene	Phenyl	Biphenylene	Fhenyl	Biphenylene
	R	o-Tolyl	o-Tolyl	p-Tolyl	P-10151	O-TABLES !	0-zvilisyi	p-valusyl	p-ransyl	p-remoxyphenyl	p-Ethoxyphenyl	m-Culorophenyl	m-Culorophenyl	n-Chlorophenyl	n-Bromonlens	n-Bromonlean	z-Naphthan	2-Norther	B-Naphthyl	G-North	16mman, d
Suhetituante	in Aniline	Donnel 11	Denzianio	Benzidine	ļ	Benzidine	1	Benzidine	i	Benzidine	}	Benzidine		Benzidine	1	Benzidine	1	Benzidine	1	Benzidine	
Reactant, Substituent R in		0-10191	$p ext{-Tolyl}$		o-Anisyl		p-Anisyl		$p ext{-Ethoxyphenyl}$		m-Chlorophenyl	į	p-Chlorophenyl	e e	p-promophenyl	2. Nowbell-1	d-raphingi	R.Nonhth	P-rachitotty1		

Substituents in Product,	
-	

Reactant,		o o o o o o o o o o o o o o o o o o o	COCCONHIC	
Supericuent to the			NNHR'	
H,O COCH,CONHR		21	II,	
Phenvi	[Phenyl	Phenyl	200
	2-Methyl	Phenyl	o-Tolyl	200
	4-Methyl	Phenyl	p-Tolyl	290
	2-Methoxy	Phenyl	o-Anisyl	290
	4-Methoxy	Phenyl	p-Anisyl	200
	4-Ethoxy	Phenyl	p-Ethoxyphenyl	200
	3-Chloro	Phenyl	m-Chlorophenyl	200
	4-Chloro	Phenyl	p Chlorophenyl	200
	4-Bromo	Phenyl	p-Bromophenyl	290
	a-Naphthylamine	Phenyl	a Naphthyl	290
	\$-Naphthylamus	Phenyl	B-Naphthyl	290
o-Tolyl	1	o-Tolyl	Phenyl	290
p-Tolyl	ı	p-Tolyl	Phenyl	200
o-Anisyl	I	o-Anisyl	Phenyl	200
p-Anisyl	i	p-Anisyl	Phenyl	290
p-Ethoxyphenyl	1	p-Ethoxyphenyl	Phenyl	290
m Chlorophenyl	1	m-Chlorophenyl	Phenyl	200
p-Chlorophenyl	1	p-Chlorophenyl	Phenyl	006
p-Bromophenyl	1	p-Bromophenyl	Phenyl	900
a-Naphthyl	1	a-Naphthyl	Phenyl	006
\$-Naphthyl	1	\$-Naphthyl	Phenyl	280
Note: References 177-480 are on nn 128-149	nn nn 128–149			

References 177-480 are on pp. 136-142.

TABLE III

COUPLING OF DIAZONIUM SALIS WITH MALONIC ACIDS, ESTERS, AND AMIDES

	References	500000000000000000000000000000000000000	0.2	2904	240	T.	71, $170a$	71	71, 291	71.240	71		71	7.1	7.1	71	71	72, $170a$	72	72	72, $170a$	73	73	202 202	1
A. Malonic Acids	Product (Yield, %)	$C_6H_5N=NCH=NNHC_6H_5$ (46)	C,H ₅ N=NC(C,H ₅)=NNHC,H ₅ †	0-CH ₃ 0C ₆ H ₄ N=NCH=NNHC ₆ H ₄ 0CH ₃ -0 (67)	h^{-c} H_1 H_2 H_3 H_4 H_4 H_4 H_5 H_5 H_5 H_6 H	p-BrC ₆ H ₃ N=NCH==NNHC ₁ H ₂ R ₂	0-IC,HIN=NCH=NNHC,HILOI	0-01NC,HINHN=CHCO,H (50)	"-0,NC,H,N=NCH=NNHC,H,NO,-"	$p \cdot O_2 N C_6 H_4 N = N C H = N N H C_6 H_4 N O_3 \cdot p$ $C_4 H_5 N = N C H_5 N O_4 \cdot p$	HON===170-17-17-17-17-17-17-17-17-17-17-17-17-17-	o-CH3OC,H1N=NCH=NOH	o-CIC,H,N=NCH=NOH	2,4-(CH ₃) ₂ C ₆ H ₃ N=NCH=NOH	$\alpha \cdot C_{10}H_1N = NCH = NOH$	θ -C ₁₀ H ₇ N=NCH=NOH	$C_6H_5N=NC(CI)=NNHC_6H_6$ (40-50)!!	p-CH ₃ C ₆ H ₄ N=NC(CI)=NNHC ₆ H ₅ CH ₂ ·n (10=50)			Cels, N=NC(C, Hs)=NNHC, Hr (quant.)	P-CH ₃ C ₆ H ₄ N=NC(CH ₃ CH=CH ₃)=NNHC II OH	$C_{i}H_{i}N=NC(CH_{2}C_{i}H_{5})=NNHC_{i}H_{5}$ (50)	STREET OF COCHECOCHES == NNHC, H2	
Substituent(s)	in Aniline*	1	9 Methorn	4-Methoxy	2-Bromo	4-Bromo	2-Iodo	z-initro	4-Nitro			2-Methoxy	2-Chloro	z,*-Dimethyl	g-traphthyl	p-tyaputuyi	L.Mothers	4-Nitro	B-Naphthylaming	all minus francis	4-Mother		1		
	Majonic Acid	Malonic acid								Malonic acid and sodium	nitrite					Chloromalonic acid			• • • • • • • • • • • • • • • • • • • •	Ethylmalonic acid	Allylmalonic acid	Benzylmalonic acid	thenacylmalonic acid		

		Comment of the commen		
	Substituent(s)			
Malonic Ester	in Andine*	Product (Tield, %)	References	D
Ethyl hydrogen malonate	4-Nitro 2-Carboxy-4- chloro	$p \cdot O_1NC_1\Pi_4N = NC(CO_4C_4\Pi_4) = NNHC_4H_4NO_4 \cdot p$ (52) 2,4- $HO_1C(C)O_4H_4NHN = CHCO_4C_4H_4$ (52)	19c 74a	IAZUN
	2-Carboxy-5-	2,5-HO ₂ C(G)C ₄ H ₅ NHN==CHCO ₂ C ₂ H ₄ (72)	74a	IUM
Dimethyl malonate	ı	C,H,NHN=C(CO,CH,)	745. 293	cu
	2-Methyl	O.CH,C.H.NHN=C(CO,CH,),	293	U
	3-Methyl	m-CH,C,H,NHN=C(CO,CH,),	203	Ľ.
	4-Methyl	P-CH.C.H.NHN=C(CO.CH.),	293	IN
	2-Methory	O-CH,OC,H,NHN=C(CO,CH,),	203	G
	4-Methoxy	P-CH,OC,H,NHN-C/CO,CH,),	203	W.
	2-Nitro	9-0,NC,H,NHN=C(CO,CH,)	203	IT.
	3-Nitro	m-0,NC,H,NHN==C(CO,CH,)	606	н
	4.Nitro	P.O.NG.H.NHN CCCO.CH.	506	AI
	2-Carboxy	P-HO.CC.H.NIFN = C/CO.CH.).	000	Л
	3-Carboxy	m-HO CC II NHN C(CO CH.)	000	'H
	4-Carboxy	P-HO CC. H.NHN -C/CO. CH.).	000	AT
	2,4-Dimethyl	2.4-(CH.), C.H.NHN	283	CIC
	Benzidine	4,4'-Biphenylenedihydrazonobis(dimethyl mesoxalate)	294. 205	· C
Note: References 177-480 are on pp. 136-142.	80 are on pp. 136-1	42.		ARI

B. Malonic Esters

. The full name is given when it is awkward to name the arylamine as a derivative of aniline.

Olyorylic acid o lodophenythydrazone was also formed in 8% yield. This product was obtained when excess diazonium salt was used.

N.N. Di-o-nitrophenyfformatan was also formed in 5% yield.

With excess chloromalonic acid the corresponding 3-aryl-1,3,4-oxadiazol-2-one was formed.

TABLE III-Continued

B. Malonic Esters—Continued

Malonic Ester	Substituent(s) in Aniline*	Product (Viold 9/)	ŕ
		1 100000 (1 1010; /o)	References
Dinictnyi malonate (Cont.)	3,3'-Dimethyf- benzidine	3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (84)	294, 295
	3,3'-Dimethoxy- benzidine	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (71)	294, 295
Dethyi malonate	3-Chloro	$C_6H_5NHN=C(CO_2C_2H_5)_2=C(CCH_5NHN=C(CO_3H_5)_2=C(CO_$	8, 74c, 296
	4-Bromo	$p\text{-BrC}_6H_1NHN=C(CO_3C_2H_5)_3$	74a
	4-Nitro	$p \cdot O_2 N C_6 H_4 N H N = C(CO_2 C_2 H_5)_2$ (71)	19c
	4-Phenyl	m-HO ₂ CC ₆ H ₄ NHN=C(CO ₂ C ₂ H ₅) ₂	242
	4-Methoxy-2-nitro	$F^{-}_{6}L_{5}C_{6}L_{4}N_{H}N_{H}N_{H}N_{H}N_{H}N_{h}N_{h}$ (50)	96
	2-Carboxy-5-	2 -G ₂ -G ₂ -G ₂ -G ₃ -G ₄ -G ₄ -G ₄ -G ₂ -G ₄	74a 74a
	Benzidine 3,3'-Dimethyl-	4.4'-Biphenylenedihydrazonobis(diethyl mesoxalate)	767 767
	benzidine	mesoxalate) (80)	294
	3,3'-Dimethoxy- benzidine	3,3'- Dimethoxy-4,4'-biphenylenedihydrazonobis(diethyl mesoxalate)	. ¥6Z
Diothyl older	3,3'-Dicarboxy- benzidine	3,3'-Dienrboxy1,-l'-biphenylenedihydrazonobis(diethyl mesoxalale)	242
	4-Nitro	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72
The state of the second to	T-	C,H,NIIN=C(CO,C,H,)CII=CHCO,C,H, 77)	297
	2-Methyl	$\begin{array}{l} C_{6}H_{5}NHN = C(CO_{3}C_{2}H_{5})CH = C(CO_{3}C_{3}H_{5})N = NC_{6}H_{5} \parallel (62) \\ o \cdot CH_{3}C_{6}U_{4}NHN = C(CO_{3}C_{2}H_{5})CH = C(CO_{3}C_{3}H_{5})N = NC_{6}H_{4}CH_{5} \cdot o \parallel \end{array}$	298, 76 297, 76, 299 o¶ 76

References

223

76	16	76		16	7.6	76	76	26	70	76	26	7.8	7.0		
p-CH ₂ C,H ₄ NHN—C(CO ₂ C ₂ H ₃)CH—C(CO ₂ C ₄ H ₅)N=NC ₄ H ₄ CH ₅ . p	o-c _t H ₅ OC,H ₄ NHN=C(CO ₂ C ₂ H ₅)CH=CHCO ₂ C ₂ H ₅	o-C,H,OC,H,NHN=C(CO,C,H,)	CH=C(CO,C,H,)N=NC,H,OC,H,-0	p CIC, H,NHN=C(CO,C,H,)CH=C(CO,C,H,)N=NC,H,CI-p(o-BrC,II,NIIN =C(CO,C,II,)CH=C(CO,C,II,)N=NC,II,Br-o	m-BrC,H,NHN=C(CO,C,H,)CH=C(CO,C,H,)N=NC,H,Br-m	p-BrC,II,NIIN=C(CO,C,II,)CII=C(CO,C,II,)N=NC,H,Br-p-	p-0,NC,H,NHN=C(CO,C,H,)CH=CT(CO,C,H,	2.4-(CH1),CH1NHN—C(CO2C,H1)CH—CHCO2C,H2	2,4-(CII ₃) ₂ C ₆ II ₅ NIIN=C(CO ₂ C ₂ II ₆)-	$CII = C(CO_3C_2\Pi_a)N = NC_a\Pi_a(CII_a)_a - 2,44$	2.4.0 (CH ₃) ₂ C ₄ H ₂ NHN—C(CO ₂ C ₄ H ₂)CH—CHCO ₃ C ₄ H ₂	2 4.6-(CII,),C,II,NHN=C(CO,C,H,)CII=C(CO,C,II,).	N=NC ₆ H ₂ (CH ₃) ₃ -2,4,6¶	
4-Methyl	2-Ethoxy			4-Chloro	2-Bromo	3-Bromo	4-Bromo	4-Nitro	2,4-Dunethyl			2,4,6-Trimethyl			

C. Madea	Product (Yield, %)	C.II.MIN =C(COMIL).	C,H,NIIN-C(CONHCO,C,H,), (97)	$C_tH_sNIIN = C(CONHCO_tC_tH_s)N = NC_0H_s^{**}$ (74) p-CH_sC_tH_sNIIN = C(CONHCO_tH_s).
Substituent	in Aniline	1	1	4-Methyl
	Malonic Amide	Malonamide	Diethyl N,N'-malonyl-	

Minterest Acres 18

Ç

p-CH₃C₁H₂NHN=C(CONHCO₂C₃H₃)N=NC₄H₄CH₃·p** Note: References 177-480 are on pp. 136-142.

** This product is obtained when 2 equivalents of duazonium salt are used in the presence of sodium carbonate. · The full name is given when it is awkward to name the arylamine as a derivative of amiline. This product was obtained when 2 equivalents of diazonium salt were used.

TABLE III—Continued

B. Malonic Esters—Continued

										_					
References	294, 295	294, 295	8, 74c, 296	74c	19c	242	96	74a	74a	294 294	. 76Z	242	72	297	298, 76 297, 76, 299 o¶ 76
Product (Yield, %)	3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (84)	3,3'-Dimethoxy-4,4'-biphenylenedihydrazonobis(dimethyl mesoxalate) (71)	$C_0H_0NHN=C(CO_2C_2H_3)_2 = m\cdot C(C_1H_0)M\cdot C(C_2H_1)MHN=C(C_2H_1)_2 = m\cdot C(C_2H_1)MHN=C(C_2H_1)_3 = m\cdot C(C_2H_1)MHN=C(C_2H_2)_3 = m\cdot C(C_2H_1)MHN=C(C_2H_1)_3 = m\cdot C(C_2H_1)_3 = m\cdot C(C_2H_1$	$p\text{-BrC}_6H_4^{\bullet}NHN=C(CO_2^{\bullet}C_2H_5^{\bullet})_2^{\bullet}$	$p \cdot O_2 N C_6 H_4 N H N = C(CO_2 C_2 H_5)_2$ (71)	$m-HO_2CC_6H_4NHN=C(CO_2C_2H_5)_2$	$p \cdot C_6 H_5 C_6 H_4 NHN = C(CO_2 C_2 H_5)_2$ (50)		$^{2-HO_2C-5-C!C_6H_3NHN==C(CO_2C_2H_5)_2}$ (67)	4,4'-Biphenylenedihydrazonobis(diethyl mesoxalate) 3,3'-Dimethyl-4,4'-biphenylenedihydrazonobis(diethyl	3,3'-Dimetriony-4,4'-biphenylenedihydrazonobis(diethyl	3,3'-Dicamer, mesoxajnte)	$P = O_2NG_6H_4N = NCCl(CO_2C_2H_5)_2$ (quant.) $C_2H_4N = NCCH = CHCO_4$	CoHonen CCO C. H. OH - CHCO C. H.	$\begin{array}{l} C_6H_5NHN = C(CO_2C_2H_5)CH = C(CO_2C_3H_5)N = NC_6H_5 \parallel (62) \\ o - CH_3C_6H_4NHN = C(CO_2C_3H_5)CH = C(CO_2C_3H_5)N = NC_6H_4CH_3 - 0 \end{array}$
Substituent(s) in Aniline*		3,3'-Dimethoxy- benzidine	3-Chloro	4-Bromo	4-Nitro	3-Carboxy	4-r nenyi	4-Methoxy-Z-nitro 2-Carboxy-5-	chloro	Benzidine 3,3'-Dimethyl- benzidine	3,3'-Dimethoxy-benzidine	3,3'-Dicarboxy-benzidine	4-Nitro	1	2-Methyl
Malonic Ester	Dimethyl malonate (Cont.)		Diethyi malonate										Dictnyl chloromalonate Glutaconic acid	Dielnyl glutaconate	

Coupling of Diazonium Salin with Arylacetic Acids and Esters

JO DATIADON	DIAZONIUM SALTS	COUPLING OF DIAZONION SALES WITH ARYLACETIC ACIDS AND ESIERS	
	Substituent(s)		
And or Exter	in Andine	Product (Yield, %)	References D
2.4 Danitropheny lacette serd	1	2,4 (O,N),C,H,C(N=NC,H,)=NNHC,H,	I.A
	4 Brome	2,4 (O,N),C,H,C(N=NC,H,Br p)=NNHC,H,Br p	z
	2,4 Duchloro	2.4 (O,N),C.H.C(N=NC,H,Cl., 2,4)=NNHC,H,Cl., 2,4	5
	2,4 Dibromo	2.4 (O.N),C.H.C(N=NC.H.Br. 2,4)=NNHC.H.Br. 2.4	II I
Methyl 2,4 dantrophenylacetate	1	2.4 (O.N), C.H. C(CO, CH.) = NNHC, H.	79, 80, 301
	2 Methyl	2,4.(O,N),C,H,C(CO,CH,)=NNHC,H,CH, o (98)	
	4 Methyl	2,4 (O,N),C,H,C(CO,CH,)=NNHC,H,CH,P (75)	
	4-Methoxy	2.4 (O,N),C,H,C(CO,CH,)=NNHC,H,OCH, p	pt.
	Chloro	2.4 (O,N),C,H,C(O,CH,)=NNHC,H,C(P	
	-Bromo	2,4 (0,N),C,H,C(CO,CH,)=NNHC,H,Br p	LI E
	4 Acotyl	2,4 (O,N),C,H,CNCO,CH,)=NNHC,H,COCH, p	
	Z INITED	2.4 (O,N),C,H,C(CO,CH,)=NNHC,H,NO, o (30)	g g
	Dilling &	2.4 (0,1/1,0,1/1,0,0,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0,1/1,0/1,0	
	200	2,4 (Upla),Chi, Chi, Chi, Chi, Chi, Chi, Chi, Chi,	21
	- Carolaxy	z. (O.N.), C.H. COOJCH NAMC, H. CO.H. O (quent.)	
	4 Carboxy	Z.4 (ULN),C.H.C(CU,CH.) =NNHC,H.CO,H p (quant.)	
	o como	Z.4.(U.N.)C.H.C(CO.CH.)=NNHC.H.SO.H.P	
	z a Dimethyl	2.4 (U,N),C,H,C(CU,CH,)=NNHC,H,(CH,), 2,4	
	z,4 Dichioro	2,4 (U,N),C,H,C(CU,CH,)=NNHC,H,C,, 2,4 (55)	_
	Z,4 Dibromo	2.4 (0,N),C,H,C(CO,CH,)=NNHC,H,Br, 2,4	
	Z.4.5 Trumethy	2.4 (O,N),C,H,C(CO,CH,)=NNHC,H,(CH,), 2,4,6 (80)	r e
	z, a, b i richloro	2,4 (0,N),C,H,C(O,CH,)=NNHC,H,C),-2,4 6 (45)	20
	a Naphthyl	2,4 (0,N),C,H,C(CO,CH,)=NNHC,H, a	302
	p.Naphthyl	2.4 (O,N),C,H,C(CO,CH,)=NNHC,H, p	
		CO.CH.	R
			в
		×	ON
Dimethyl 4 hitrohomophthalate	1	O'N NCH.	e e
		; >- >	
		-0	ОМ
Methyl 4 carbomethoxy 2 nitrophenylacetate	!	C,H,NHN=C(CO,CH,JC,H,CO,CH,-4 NO. 2	
and the same of th	,	a Pheny hydrazonohomophthalic anhydride	81.5
Note References 177-480 are on pp 136-142			69
 The full name is given when it is awkward to name the arrymmer as a derivative of anchors. 	to name the arylamine	and derivatives of exclusion	•

TABLE III-Continued

C. Malonic Amides-Continued

	Substituent		
	in Aniline	Product (Yield, %)	References
	2-Nitro	$o \cdot O_2NC_6H_4NHN = C(CONHCO_3C_2H_5)_2$	75
	3-Nitro	$o \cdot O_2NC_6H_4NHN = C(CONHCO_3C_2H_5)N = NC_6H_4NO_2 \cdot o **$ $m \cdot O_2NC_6H_4NHN = C(CONHCO_3C_2H_5)_3$	75
•	4-Nitro	$p \cdot 0_2 \text{NC}_6 \text{H}_1 \text{NHN} = \text{C(CONHCO}_2 \text{C}_2 \text{H}_5)_2$ C H NHN—CCC—NHNH	75
$CII_s[CONHN=C(CH_s)]$. $C(CO_sC_sH_s)=NNHC_sH_sI_s$.	1	C_{0}^{1} C_{0	300a 250
	1 1	C,HsNHN=C(CO,C,Hs)CONHC,Hs C,HsNHN=C(CO,CH,)CONHC,H.N (annut)	3008
,	1	C,H,NHN==C(CO,C,H,)CONHC,H,N-7	3000
77 77	4-Nitro 4-Nitro	$p \cdot 0_1 NC_6 H_4 N = NC(CONH_2) = NNHC_6 H_4 NO_2 \cdot p$ (89)	190
	Modern Date	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	19c

Note: References 177–180 are on pp. 136–142. ** This product is obtained when 2 equivalents of diazonium salt are used in the presence of sodium carbonate,

 $CNC(CO_1C_3H_1\cdot n) =: NNHC_6H_4$ CNC(CO,C,H,")=NNHC,H, CNC(CO,C,H1,")==NNHC,H

> 4-Methyi 4-Bromo 4-Nitro

l-Menthyl cyanoacetate

n-Amyl cyanoacetate Cyanoscetamide

314 314 315 315 315 315

31	312	312	312	88	311	310	311	82	82	313	313	311	311	238	000	1	311	00.00	005, 310	002, 310	à	305, 310
CNC(CO,C,H,)=NNHC,H,Br-m CNC(CO,C,H,)=NNHC,H,Br-m	CNC(CO,C,H,)-NNHC,H,NO,-m (76)	CNCCO CHIP = NNHC, H, NO. 1971	CHOO'CO CHENNER TO THE	CNCCCO CH NINHC, IL, CO, H-m	CNC/OO CH TOWNER, H.CO, CH, CO	CNCCO CH. SO.H. SO.H.	CNCCO CT	CNC(CO O II NHC, H2(CH2), 2,4,5	CNCICO C 14	CNC(CO C II.	CNCICO OF THE NAME OF 12,5	CNC/CO O TT	ONCING C 11 - NNIIC, H. Cl. 2-CH -4 (71)	ONCICO CHE MINISTRA LCH. 2 (00)	CNOCO CLERO NNHC II-	A A THE COLUMN COME OF THE PARTY OF THE PART	9 9	5.9 -Dimethy 1-4,4'-binhen-long evanogiyoxalatei	cyanoglyoxalate) cheminydrazonobis(ethyl	o.S. Dimethoxy-4.4'-binhenwie	Cyanogiyoxalate)	CNC(CO,C,H,-n)=NNHC II
3-Bromo 2-Nitro 3-Nitro	4-Natro	2-Carboxy	3-Carboxy	2-Carbomethoxy	4-Sulfo	2,4-Dimethyl	2,4,5-Trimethy	2,6-Dichloro	2,5 Dichloro	2,5-Libromo	a,4,0.Tribromo	2 Chloro-4-methyl	* Chloro 2 methyl	a Naphthylamine	p-Naphthylamine	Benzidine	3,3'-Dimethyl.	benzidine	3,3'-Dimethor-	benzidine	ı	J
																				n-Propal even	n-Butyl cvanoscotte.	n-Amy over

 The full name is given when it is an tward to name the arrianme as a derivative of amiliae. Note: References 177-480 are on pp. 136-142

CNC(CONH,)=NNHC,H,NO,-p (56) CNC(CO2C10H13-4)==NNHC2H,CH2-79 $CNC(CO_2C_{10}H_{11}-l)=NNHC_6H_4Br-p$

TABLE V

COUPLING OF DIAZONIUM SALTS WITH NITHIES

Product (Yield, %) CNC(CHO)=NNHC ₆ H ₁ Br-p CNC(CHO)=NNHC ₆ H ₁ Br-p CNC(CHO)=NNHC ₆ H ₁ NO ₂ -p (11) $C_6H_5N=NC(CN)=NNHC_6H_1$ $C_6H_5N=NC(CN)=NNHC_6H_1$ $C_6H_5N=NC(CN)=NNHC_6H_1$ $CNC(CO_4CH_1)=NNHC_6H_1$ $CNC(CO_4CH_1)=NNHC_6H_1$ $CNC(CO_4CH_2)=NNHC_6H_1$ $CNC(CO_4CH_3)=NNHC_6H_1$ $CNC(CO_4C_4H_3)=NNHC_6H_1$ $CNC(CO_4C_4H_3)=NNHC_6H_2$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_3$ $CNC(CO_4C_4H_3)=NNHC_6H_$	M7111	Substituent(s)	. ;	
		in Aniline*	Product (Yield, %)	References
4-Bromo CNC(CHO)=NNHC ₆ H ₁ Br- p 4-Nitro CNC(CHO)=NNHC ₆ H ₁ NO ₂ - p (11) $C_6H_5N=NC(CN)=NNHC_6H_2$ 2-Carboxy $o-HO_2C_6H_4N=NC(CN)=NNHC_6H_2$ 2-Hydroxy-5-chloro $2^{-1}HO_5$ -CC($C_6H_3N=NC(CN)=NNHC_6H_2$ 2-Hydroxy-5-chloro $2^{-1}HO_5$ -CC($C_1I_3N=NC(CN)=NNHC_6H_3$ CH- I_3 Benzidine 1_4 -Mchyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₁ CH- I_5 1_5 -Mchyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₁ CH- I_5 1_5 -Mchyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₁ CH- I_5 1_5 -Mchyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₁ CH- I_5 1_5 -Mchyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₁ CH- I_5 1_5 -Mchyl CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₂ CH ₃ CH ₃ CH ₃ CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₂ CH ₃ CH ₃ CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₂ CH ₃ CH ₃ CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ CH ₅ D 1_5 -Mchyl CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OCH ₃ - p 1_5 -Mchyl CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OCH ₃ - p 1_5 -Mchyl CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OCH ₃ - p 1_5 -Mchyl CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OCH ₃ - p 1_5 -Mchoxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₃)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OH- p 1_5 -Hydroxy CNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OH- p 1_5 -H	staldehydo		$CNC(CHO) = NNHC_{s}H_{s}$ (15)	Su or
4-Nitro $CNC(CHIO)=NNHC_0H_1NO_2-p$ (11)		4-Bromo	CNC(CHO)=NNHC, II, Br-p	30°, 30°
2-Carboxy $C_0H_3N=NC(CN)=NNHC_0H_3$ 2-Carboxy ρ - $\Omega_3C_0H_4N=NC(CN)=NNHC_0H_1$ 2-Hydroxy-5-chloro ρ - $\Omega_3C_0H_4N=NC(CN)=NNHC_0H_4NO_2-p$ 2-Hydroxy-5-chloro ρ - $\Omega_3C_0H_4N=NC(CN)=NNHC_0H_3$ 2-Methyl ρ - Ω	6.00	4-Nitro	$CNC(CHO) = NNIIC_6H_4NO_2 \cdot p$ (11)	196
2-Carboxy 2-Carboxy 4-Nitro $p-O_2NC_6II_4N=NC(CN)=NNHC_6II_4NO_2p$ 2-Hydroxy-5-chloro $2-HO-5-ClC_6II_5N=NC(CN)=NNHC_6II_4$ 2-Methyl CNC(CO ₂ CH ₃)=NNHC ₆ II ₄ Cl-5-OH-2 CNC(CO ₂ CH ₃)=NNHC ₆ II ₄ Cl-5-OH-2 CNC(CO ₂ CH ₃)=NNHC ₆ II ₄ Cl-5-OH-2 CNC(CO ₂ CH ₃)=NNHC ₆ II ₄ Cl-5-OH-2 CNC(CO ₂ CH ₃)=NNHC ₆ II ₄ Cl-5-OH-2 CNC(CO ₂ CII ₃)=NNHC ₆ II ₄ ClI-p Benzidine 3,3'-Dimethyl- CNC(CO ₂ CII ₃)=NNHC ₆ II ₄ ClI-p benzidine 3,3'-Dimethyl- CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ ClI-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ ClI-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ ClI-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₂ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OCII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₃)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄)=NNHC ₆ II ₄ OII-p CNC(CO ₃ C ₃ II ₄	seic acia	1	$C_b II_b N = NC(CN) = NNIIC_b II_b$	0.20
2-Hydroxy-5-chloro 2-10-5-ClC ₆ II ₄ N=NC(CN)=NNHC ₆ II ₄ NO ₅ -p 2-Hydroxy-5-chloro 2-10-5-ClC ₆ II ₅ N=NC(CN)=NNHC ₆ II ₅ Cl-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		2-Carboxy	$o\text{-}IIO_2(C_6II_1N) = NC(CN) = NNIIC_1II_1(CO_1II_1CO_1)$	303
2-Hydroxy-5-chloro 2-110-5-ClC ₆ II ₅ N=NC(CN)=NNIIC ₆ II ₅ Cl-5-OH-2 CNC(CO ₂ CH ₃)=NNIIC ₆ II ₅ 4-Methyl CNC(CO ₂ CH ₃)=NNIIC ₆ II ₆ Cl ₇ Benzidine CNC(CO ₂ CII ₃)=NNIIC ₆ II ₆ Cl ₇ Benzidine CNC(CO ₂ CII ₃)=NNIIC ₆ II ₆ Cl ₇ Benzidine CNC(CO ₂ CII ₃)=NNIIC ₆ II ₆ Cl ₇ Benzidine CNC(CO ₂ C ₁ I ₅)=NNIIC ₆ II ₆ (quant.) 2-Methyl CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 2-Methyl CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 2-Methoxy CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 2-Methoxy CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 2-Iydroxy CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Iydroxy CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Iydroxy CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₅)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₇ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ (II ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II ₆ 3-Chloro CNC(CO ₂ C ₂ II ₆)=NNIIC ₆ II		4-Nitro	p-0,NC,II,N=NC(CN)=NNHC,II,NO,-p	Š
2-Methyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₃ 4-Methyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ CH ₃)=NNHC ₆ H ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ CH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OGH ₅ -o GNC(CO ₂ C ₄ H ₅)=NNHC ₆ H ₄ OH ₅ -o	Vannacefate	z-Elyaroxy-5-chloro	2-110-5-ClC,11,N=NC(CN)=NNIIC,11,Cl.5-011-2	23.58
4-Methyl CNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -0 GNC(CO ₂ CH ₃)=NNHC ₆ H ₄ CH ₅ -0 4.4'-Biphenylenedhydrazonobis(methyl 3,3'-Dimethyl- benzidine 3,3'-Dimethyl- benzidine cyanoglyoxalate) 3,3'-Dimethyl- benzidine cyanoglyoxalate) 3,3'-Dimethyl- cyanoglyoxalate) 3,3'-Dimethyl- cyanoglyoxalate) CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₃ (quant.) 2-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ CH ₅ -0 4-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ CH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OCH ₅ -0 4-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OCH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OCH ₅ -0 3-Liydroxy CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₄ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₃)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅)=NNHC ₆ H ₅ OH ₅ -0 CNC(CO ₂ C ₂ H ₅	,	9-Mother	CNC(CO3CH3)=NNIIC,II,	301
Benzidine 3,3'-Dimethyl- 9,3'-Dimethyl- 9,3'-Dimethyl- 9,3'-Dimethyl- 9,3'-Dimethyl- 9,3'-Dimethoxy- 9,3'-Dimethoxy- 9,3'-Dimethoxy- 1,4'-hiphenylenedihydrazonobis(methyl 1,4'-hiphenylenedihydrazonobis(methyl 1,4'-biphenylenedihydrazonobis(methyl 1,3'-Dimethoxy- 1,3'-Dimethoxy- 1,3'-Dimethoxy- 1,3'-Dimethoxy- 1,4'-hiphenylenedihydrazonobis(methyl 1,4'-Biphenylenedihydrazonobis(methyl 1,4'-Biphenylenedihydrazonobis(methyl 1,4'-Biphenylenedihydrazonobis(methyl 1,4'-Methyl 1,5'-Methyl 1,5		J-Mother]	$CNC(CO_2CH_3) = NNHC_3H_4CH_3 \cdot \sigma$	301
3.3'-Dimethyl- 3.3'-Dimethyl-1.'.'-biphenylenedihydrazonobis(methyl benzidine 3.3'-Dimethoxy		Rongiding	$CNC(CO_1CU_3) = NNIIC_4U_1CU_3 \cdot p$	
benzidne 3,3'-Dimethoxy- benzidne 3,3'-Dimethoxy- cyanoglyoxalate) 3,3'-Dimethoxy- cyanoglyoxalate) a,3'-Dimethoxy- cyanoglyoxalate) cyanoglyocy cyanoglyoxalate) c		3 3'-Dimothan	1.4 - Siphenylenedihydrazonobis(methyl cyanoglyoxalate)	305, 308
3,3'-Dimethoxy- benzidine cyanoglyoxalate) CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₂ Clunnt.) 2-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₂ Clunnt.) 2-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₂ Clunnt.) 2-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₂ Clunnt.) 4-Methyl CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ Clunnt. CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ Clunnt. CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ Clunnt. CNC(CO ₃ C ₂ H ₃)=NNHC ₄ H ₄ Clunnt. CNC(CO ₃ C ₂ H ₃)=NNHC ₄ H ₄ Clunnt. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ Oll. CNC(CO ₃ C ₄ H ₄)=NNH		benzidine	33 - Unnethyl-1, f - biphenylenedihydrazonobis(methyl	305, 300
benzidine eyanoglyoxalate) 2-Methyl $CNC(CO_2C_2H_3) = NNHC_4H_3$ (quant) 4-Methoxy $CNC(CO_3C_2H_3) = NNHC_4H_3$ (CO_1T_3) 4-Methoxy $CNC(CO_3C_2H_3) = NNHC_4H_3$ (OOI_1T_3) 2-Methoxy $CNC(CO_3C_2H_3) = NNHC_4H_3$ (OOI_1T_3) 3-Hydroxy $CNC(CO_3C_2H_3) = NNHC_4H_3$ (OII_3) 4-Hydroxy $CNC(CO_3C_3H_3) = NNHC_4H_3$ (OII_3) 3-Chloro $CNC(CO_3C_3H_3) = NNHC_4H_3$ (OII_3) 3-Chloro $CNC(CO_3C_3H_3) = NNHC_4H_3$ (OII_3) 3-Chloro $CNC(CO_3C_3H_3) = NNHC_4H_3$ (OII_3)		3,3'-Dimethoxy-	33'-Dimolboxy (17 bish)	
$\begin{array}{lll} & \text{CNC}(\text{CO}_2 \vec{C}_2 H_3) = \vec{N} \text{NHC}_4 H_3 \; (\text{quant.}) \\ & \text{2-Methyl} & \text{CNC}(\text{CO}_2 \vec{C}_2 H_3) = \text{NNHC}_4 H_4 \text{CH}_3 \cdot \theta \\ & \text{4-Methyl} & \text{CNC}(\text{CO}_3 \vec{C}_2 H_3) = \text{NNHC}_4 H_4 \text{CH}_3 \cdot \theta \\ & \text{2-Methoxy} & \text{CNC}(\text{CO}_3 \vec{C}_2 H_3) = \text{NNHC}_4 H_4 \text{CH}_3 \cdot \theta \\ & \text{4-Methoxy} & \text{CNC}(\text{CO}_3 \vec{C}_2 H_3) = \text{NNHC}_4 H_4 \text{OCH}_3 \cdot \theta \\ & \text{4-Lythoxy} & \text{CNC}(\text{CO}_3 \vec{C}_2 H_3) = \text{NNHC}_4 H_4 \text{OCH}_3 \cdot \theta \\ & \text{3-Lythoxy} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{OH} \cdot \theta \\ & \text{3-Lythoxy} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{OH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{OH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_4 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 H_3) = \text{NNHC}_4 H_5 \text{CH} \cdot \theta \\ & \text{3-Chlory} & \text{CNC}(\text{CO}_3 \vec{C}_4 $	-	benzidine	eyanoglyoxalate)	305, 306
CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ CH ₅ - σ CNC(CO ₂ C ₄ H ₃)=NNHC ₄ H ₄ CH ₅ - σ CNC(CO ₂ C ₄ H ₃)=NNHC ₄ H ₄ OCH ₅ - σ CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ OCH ₅ - σ CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ OCH ₅ - σ CNC(CO ₂ C ₂ H ₃)=NNHC ₄ H ₄ OH ₅ - σ CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ OH ₅ - σ CNC(CO ₃ C ₄ H ₃)=NNHC ₄ H ₄ OH ₅ - σ CNC(CO ₂ C ₄ H ₃)=NNHC ₄ H ₄ OH ₅ - σ CNC(CO ₂ C ₄ H ₃)=NNHC ₄ H ₅ OH ₅ - σ CNC(CO ₂ C ₄ H ₃)=NNHC ₄ H ₅ OH ₅ - σ	noacetate	1	CNC(CO2C2H3)=NNHC4H3 (quant.)	82, 74c, 175
$CNC(CO_2C_2H_3)$ =NNIIC ₄ H_4CH_3 -0 $CNC(CO_2C_2H_3)$ =NNIIC ₄ H_4CH_3 -0 $CNC(CO_2C_2H_3)$ =NNIIC ₄ H_4COH_3 -0 $CNC(CO_2C_2H_3)$ =NNIIC ₄ H_4COH_3 -10 $CNC(CO_3C_2H_3)$ =NNIIC ₄ H_4OH_3 -10 $CNC(CO_3C_2H_3)$ =NNIIC ₄ H_4OH_3 -10 $CNC(CO_3C_3H_3)$ =NNIIC ₄ H_4OH_3 -10 $CNC(CO_3C_3H_3)$ =NNIIC ₄ H_4OH_3 -10 $CNC(CO_3C_3H_3)$ =NNIIC ₄ H_4OH_3 -110 $CNC(CO_3C_3H_3)$ =NNIIC ₄ H_4OH_3 -110		2-Mothwel		301 307 300
$CNC(CO_3C_2H_3)=NNHC_8H_3CH_3-P$ $CNC(CO_3C_2H_3)=NNHC_8H_3CH_3-P$ $CNC(CO_3C_2H_3)=NNHC_8H_3OCH_3-P$ $CNC(CO_3C_2H_3)=NNHC_8H_3OCH_3-P$ $CNC(CO_3C_2H_3)=NNHC_8H_3OC_3H_3-P$ $CNC(CO_3C_2H_3)=NNHC_8H_3OH-P$ $CNC(CO_3C_3H_3)=NNHC_8H_3OH-P$ $CNC(CO_3C_3H_3)=NNHC_8H_3OH-P$ $CNC(CO_3C_3H_3)=NNHC_8H_3OH-P$		J.Modley	CNC(CO,C, II,)=NNIIC, II, CII,	00 00 00
$CNC(CO_2C_4H_3) = NNHC_4H_4OCH_5O$ $CNC(CO_2C_4H_3) = NNHC_4H_4OCH_5O$ $CNC(CO_2C_4H_3) = NNHC_4H_4OCH_5O$ $CNC(CO_2C_4H_3) = NNHC_4H_4OH_5O$		9 Medici	$CNC(CO_4C_4II_4) == NNIIC_4II_1CII_5.$	100.50
$CNC(CO_2C_4I_4) = NNIIC_4I_4OCI_4-p$ $CNC(CO_2C_4I_4) = NNIIC_4I_4OC_4I_4-p$ $CNC(CO_2C_4I_4) = NNIIC_4I_4OI_4-p$		z-niethoxy.	CNC(CO,C,11,)=NNIIC,II,OCII	82, 304
$\begin{array}{lll} \text{CNC}(\text{CO}_2\text{C}_1\text{I}_3) = \text{NNIC}_4\text{II}_3\text{CO}_{13}\text{-}P \\ \text{CNC}(\text{CO}_2\text{C}_1\text{II}_3) = \text{NNIC}_4\text{II}_4\text{OC}_4\text{II}_3\text{-}P \\ \text{CNC}(\text{CO}_2\text{C}_1\text{II}_3) = \text{NNIC}_4\text{II}_4\text{OII}_4\text{-}P \\ \text{CNC}(\text{CO}_2\text{C}_1\text{II}_3) = \text{NNIC}_4\text{II}_4\text{OII}_4\text{-}P \\ \text{CNC}(\text{CO}_2\text{C}_1\text{II}_3) = \text{NNIC}_4\text{II}_4\text{OII}_4\text{-}P \\ \text{CNC}(\text{CO}_2\text{C}_2\text{II}_3) = \text{NNIC}_4\text{II}_4\text{OII}_4\text{-}P \\ \end{array}$		d-Methoxy	CNC(CO,C,II,)==NNIIC II OOII	310
$\begin{array}{lll} \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_1\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_1\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_2\text{II}_5) & \text{CNC}(\text{CO}_2\text{C}_2$		4-Ethoxy	CNC(CO,C,IL)==NNIIC II OC II	310
$CNC(CO_1C_1H_3) = NNHC_4H_1OH$ $CNC(CO_1C_1H_3) = NNHC_4H_1OH$ $CNC(CO_2C_2H_3) = NNHC_4H_1OH$ $CNC(CO_2C_2H_3) = NNHC_4H_1OH$		2-Hydroxy	ONC(CO,C,II,) = NNIIC II OIL.	310
$CNC(CO_2C_2H_b) = NNHC_4H_1OH^2$ $CNC(CO_2C_2H_b) = NNHC_4H_1CH^2$ $CNC(CO_2C_2H_b) = NNHC_4H_1CH^2$		3-Hydroxy	CNC(CO,C,II,)=NNIIC II OII	311
$CNC(CO_2C_2\Pi_3) = NNIIC_3\Pi_1(Cl_1) (07)$		4-Hydroxy	ONC(CO,C,U,)=NNIIC,II,OII.	311
		010112-0	$CNC(CO_2C_2U_6) == NNIIC_6U_4CI_1CI_2U_1$	311

94	70	94	76	9.6	94	10	ž	76	7 6	94	8	
2.Hydroxy.4.suifo- C,II,COC(CN)=NNHC,H,OH-2.SO,H-4-CH,.5	C ₄ H ₄ COC(CN)=NNHC ₄ H ₄ OH-2-SO ₄ H-3-Cl-5	$C_bH_bCOC(CN)\!\!=\!\!NNHC_bH_aOH\cdot 2\cdot SO_bH\cdot 3\cdot NO_b\cdot 5$	C, H, COC(CN) -NNHC, H, OH-2.CO, H-3-80, H-5	α,β -Dioxo- β -phenylpropionitrile α -(2 hydroxy-4-sulfo-1-naphhylhydrazone)	α,β -Dioxo- β -phenylpropionitrile α - $(2$ -hydroxy- 4 -sulfo- 6 -nitrolnaphthylkydrazone)	α.β-Dioxo-p-tolylpropionitrile α-(3-hydroxy-4-sulfo-1-	a, b. open. g. and state of the section of the sect	a., 1 1 1 1 1 1 1 1.	α,β-Dιοχο-ο propoxyphay)propionitrile α-(2-hydroxy-4-sulfo- 1-naphthylhydragone)	α.β.Dioxo-o-benzyloxyphenylpropionitule α-(2-hydroxy-4-sulfo-1-naphthylhydroxy-a-	ર્શ	o n lso ras
2. Hydroxy.4.sulfo-	5-methyl 2-Hydroxy-3-sulfo- 5-chloro	2-Hydroxy-3-sulfo- 5-ntro	2-Hydroxy-3- carboxy-5-sulfo	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4 sulfo- 6-nitro-1-naph-	Lhylamine 2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-suifo-	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy.4-sulfo- 1-naphthylamne	2-Hydroxy-4-sulfo- I-naphthylamine	2-Hydroxy.4-sulfo- I-naphthylamine	Where References 177-469 are on pp. 1949-142. The full name is given when it is sevened to name the arrhal some p-QAVIGINGUIAN COLLINGUIAN was also formed. from pe. QAVIGIANGUIAN COLLINGUIAN was also formed if some p-DRCHIAN (C.H.IN=CICNYCO, C.H.I. was also formed. from p-BrC.H.I.N(C.H.IN=CICNYCO, C.H.I. was also formed.
						p-Toluoylacetomtrile	o-Anisoylacetonitrile	o-Ethoxybenzoyl- acetonitrile	acetonitrile	sectonitrile	p-unorobenzoyl- acetonitrile	Note: References 177- The full name is give Some p-0,NC,H,N(C, Some C,H,N(C,H,N(S,H,N(S,H,N(C

C, H, COC(CN)-NNHC, H, CO, H-2-SO, H-4

2-Carboxy-4-sulfo

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITHILES

Rofuroneae	merences	##: <i>1</i>	8 8	86	130 VS	50°, 52	10,00	61, 10	31, 190	9 (96	96	88, 80	10c	10c	19c	2912,	e e	00	0:1	00	0:3		ដ	ť	100	16
Product (Yield, %)	CNC(CONIC, H.)=NNHC, II, OCH., f. NO.,	p-0,NC,II,N=NC(CH,)(CN)CO,C,II,+	C, H, N=NC(C, H,)(CN)CO, C, H, 1	p-BrC, H, N=NC(C, H,)(CN)CO,C, H, \$	C,H,NHN=C(CN)C0C0,C,H, (72)	p-BrC,H,NHN=C(CN)COCO,C,H, (83)	$C_bH_sNIIN=C(CN)$.	p-0,NC,H,NHN=C(CN), (75)	C,H,N=NC(CN),CH,C,H, (81)	p-0,NC,H,N=NC(CN),CH,C,11, (87)	p-C,H,C,H,N=NC(CN),CH,C,H, 197)	C.H.NIIN = CINO.1CN	p-0,NC,H,NHN=C(NO,)CN (50)	p-0,NC.H.N=NC/CN-NNIIC II XO	p-0,NC,H,NHN, C/CN/s0 CH (12)	0.0.N.T.T.C.C.V.V.T.C.	or control on January 18 18	CH3COC(CN)=NNHC,II,	CH,COC(CN)=NNIIC,II,	۵.	C,H,COC(CN)=NNHC,II,		C,H ₅ N=C(CH ₃)C(CN)=NNHC ₃ H	Sira	$C_sH_sCOC(CN) = NNIIC_sH_s$	CH COCON = NNIIC II CII 3.0	ofth; COC(CN)=NNHC, H, OH-2-80, H-5
Substituent(s) in Aniline*	4-Methoxy-2-nitro	4-Nitro	1	4-Bromo	1 !	4-Bromo	j	4-Nitro	i	4-Nitro	4-Phenyl	1	4-Nitro	4-Nitro	4-Nitro	1	ļ	ı	į	ì	1		1		2-Methyl	2-Hydroxv-5-sulfo	
Nitrile	Cyanoacetanilide	Ethyl a-cyanopropionate	Ethyl a-cyanobutyrate	, in	Ethyl cyanopyruvate	Mr. 1	Malononitrile		Denzylmalononitrile		NEL .	Mitroacetonitrile		Metaylsuinnylacetonitrile	Methylsulfonylacetonitrile	p-initrophenylacetonitrile	β -Iminobutyronitrile	B-Oximinobuteronitrile	θ -Iminovaleronitrile	B-Imino-B-nhon-1	pronionitaile	B-Phenyliminohut	nitrile	Benzovlacetonitrile			

94 1-naphthylhydrazone) 94 ylpropionitrile 94	4. β-Dioxo-β-(5,6,7,8 tetrahydro-2-naphthyl) propionitule 94 ex-β-hydroxy-4-sulfo Inaphthyllydrarone 2-(2-hydroxy-4-sulfo-4β-Dioxo β-(5-acenaphthyl)propionitule «(2-hydroxy-4-sulfo-94-sulf		lle α-(2-hydroxy-4-sulfo-1. 94 de α-(2-carboxy-4- 94	le æ-(2-carboxy-3-sulfo-4- de æ-(2-hydroxy-4-sulfo-0- 94	nylkydrazone) 94 nylkydrazone) 94 02 02 03 03 03 04 04 05 06 06 06	
ulfo a.g. Dioxo-3 methoxy-2 naphthylpropionitruls c.(2-tydroxy-4-sulfo-6-niro-1-naphthylpydrazone) no c.(2-tydroxy-4-sulfo-6-niro-1-naphthylpydrazone) tro-a.g. Proxo-3-nartox-2-naphthylpydoutirile tro-a.g. Parkovy-2-anthylpydoutirile				iio. «¿Lonco-½(2.4uv)]prophontrile a-(2-carboxy-3-suifo-4-chlorophenylpydrazone) alfo- a,\$-Doxo-\$-(2-fuv)lpophontrile a-(2-hydroxy-4-suifo-d-nitvo-1-naphihylhydrazone)	in 4.4' Biphenylenebis-(a,philoxopropountile) ax'4-di-(zabbxy-4-saliophenylhydraxone) G,II,80,Q(CN)=NNHG,H, G,II,80,Q(CN)=NNHG,H,oH,o G,II,80,Q(CN)=NNHG,H,CH,oH,o G,II,80,Q(CN)=NNHG,H,CH,oH,o	4-Methoxy C ₄ H ₂ SO ₄ C(CN)=NNHC ₄ H ₂ OCH ₅ Tp • The full name is given when it is an kward to name the accommon as a decination.
2-Hydroxy-4-sulfo- 6-nitro-1- naphthylamine 2-Hydroxy-3-nitro- 4-sulfo	2-Hydroxy-4-sulfo- 1-naphthylamine 2-Hydroxy-4 sulfo-	1-naphthylamine 2-Hydroxy-4-sulfo- 1-naphthylamine	1-naphthylamine 2 Carboxy-4-sulfo	2-Carbory-3-suito- 4-chloro 2-Hydroxy-4-suifo- 6-nilro-1- naphthylamina	ရဲ မြန်လို	4-Methoxy n when it 18 aukw:
	5,4,7,8-Tetruhydro-2- naplithoylacetonitrile 5-Acenaphthenoyl-	arctonitule 2.Theneylacetonitule 2.Lumelacetonitule			4.4'-Bipheny labearbonyl- actionit ille Theny lsulfonylacetonitrile	• The full name is giver

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

References	76	94	94	94	94	94	94	94	7€	94	94	94
Product (Yield, %)	$\alpha,\beta\text{-Dioxo-}m\text{-aminophenylpropionitrile}$ $\alpha\text{-}(2\text{-hydroxy-}4\text{-sulfo-}1\text{-naphthylhydrazone})$	α,β -Dioxo-m-nitrophenylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthyllvdrazone)	α, β -Dioxo- <i>m</i> -carboxyphenylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α, β -Dioxo-2,4-dimethoxyphenylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α,β -Dioxo-3,4-dichlorophenylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α,β -Dioxo-3,4,5-trimethoxyphenylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrozone)	α,β-Dioxo-3,4,5-triethoxyphenylpropionitrile α-(2-hydroxy-4-sulfo-1-naphthyrhyd-α-0-0)	α, β -Dioxo- p - $(p$ -cyanoacetophenyl)phenylpropionitrile α - $(2$ -hydroxy- 4 -sulfo-1-naphthylhydrazone)	α, β -Dioxocyclohexylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α,β -Dioxo-1-naphthylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α,β -Dioxo-2-naphthylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)	α,β -Dioxo-3-methoxy-2-naphthylpropionitrile α -(2-hydroxy-4-sulfo-1-naphthylhydrazone)
Substituent(s) in Aniline*	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-sulfo- I-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-sulfo- I-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	1-naphthylamine	2-Hydroxy-4-sulfo- 1-naphthylamine	1-naphthylamine	2-Ayaroxy-4-sulfo- 1-naphthylamine
Nitrile	m-Aminobenzoyl- acetonitrile	m-Nitrobenzoyi- acetonitrile	m-Carboxybenzoyl- acetonitrile	2,4-Dimethoxybenzoyl- acetonitrile	3,4-Dichlorobenzoyl- acetonitrile	acetonitrile	acetonitrile	P-(P-Cyanoacetophenyl)- benzoylacetonitrile Hexalydrobonzoyl.	acetonitrile a-Naphthowheetonitrile	B-Naphthoxlacetonit ile	3-Methoxv-2-narhthowl	acetonitrile

acrtonitrile	I	p-c,ett,50,c(cn)=innic,tt,	60
	3-Methyl	\$-C ₁₀ H,SO ₁ C(CN)=NNHC ₄ H,CH ₅ ·m	83
	4-Methyl	β·C, H,SO,C(CN)=NNHC,H,CH,rp	93
	4-Ethory	β-C, H,SO,C(CN)=NNHC,H,OC,H,-p	93
a-Phenylsulfonylpropionitrile	1	C,II,SO,C(CN)(CH,)N=NC,H,	83
	4-Methyl	C,H,SO,C(CN)(CH,)N=NC,H,CH,p	83
	4-Methoxy	$C_bH_bSO_gC(CN)(CH_b)N=NC_bH_bOCH_b$	93
	4-Ethoxy	$C_aH_aSO_aC(CN)(CH_a)N=NC_aH_aOC_aH_{a-2}$	93
a-p-Chlorophenylsulfonyl- propionitale	1	p-CtC,H,SO,C(CN)(CH,IN=NC,H,	93
 e.p-Hromophenylsulfonyl- propionitrile 	\$.Naphthylamine 4-Methyl	$\begin{array}{l} P \text{-}\mathrm{ClC}_{\mathbf{i}} \mathbf{I}_{\mathbf{i}} \mathbf{SO}_{\mathbf{i}} C(\mathrm{CN}) (\mathrm{CH}_{\mathbf{i}}) \mathbf{N} = \mathrm{NC}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}} \cdot \boldsymbol{\beta} \\ P \text{-}\mathrm{DrC}_{\mathbf{i}} \mathbf{I}_{\mathbf{i}} \mathbf{SO}_{\mathbf{i}} C(\mathrm{CN}) (\mathrm{CH}_{\mathbf{i}}) \mathbf{N} = \mathrm{NC}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}} C(\mathbf{u}_{\mathbf{i}} \cdot \boldsymbol{\beta}) \end{array}$	93
	4-Methoxy	P-BrC.H.SO.CCNNCH.NV—NC H OCH	é
a-{\$'Naphthylsulfonyl}- proponetrile		B-C, U, SO, C(CN)(CU, N=NC, H,	3 8
	4-Methyl	B-C, II, SO, C(CN)(CII, 1N==NC, II, CII,	5
a-Uhrnexpacetyl-filmino-fi- phenylpropionstrale	!	C, H, OCH, COC(CN)(N=NC, H,)C(=NH)C, H,	318
β-Phenoxyacetimido-β- phenylpropionitrale	1	C,II,OCII,CON=C(C,II,)C(CN)=NNHC,II,	319

TOTAL CHONOLOGIES OF

Note: References 177-480 are on pp. 136-142.
• The full name is given when it is awkward to name the arylamine as a derivative of amiline.

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

11 7128	Substituent(s)	Dwdnet (Xiold: 92)	References
Nitrile	m Annine	tionace (Ficial /0)	
Phenylsulfonylacetonitrile 4-Ethoxy	4-Ethoxy	$C_6H_5SO_2C(CN)$ =NNH $C_6H_1OC_2H_5$ - p	95
(2,4-Dimethyl	$C_{k}H_{s}SO_{s}C(CN)=NNHC_{k}H_{s}(CH_{s})_{s}-2,4$	92
p-Tolylsulfonylacetonitrile		p-CH, C, H, SO, C(CN) = NNHC, H,	55
•	2-Methyl	p-CH3C,H,SO,C(CN)=NNIIC,H,CII,-0	36
	3-Methyl	p-CH3C,H,SO,C(CN)=NNHC,H,CH3-m	92
	4-Methyl	p-CH ₃ C,H ₃ SO ₃ C(CN)=NNHC,H ₄ CH ₃ -p	95
	2-Methoxy	p-CH ₃ C,H ₄ SO ₃ C(CN)=NNHC,H ₄ OCH ₃ -o	33
	4-Methoxy	p-CH ₃ C ₆ H ₁ SO ₂ C(CN)=NNHC ₆ H ₁ OCH ₃ -p	92
	4-Ethoxy	p-CH3C,H,SO,C(CN)=NNHC,H,OC,H,-p	95
	2,4-Dimethyl	p-CH3C,H,SO,C(CN)=NNHC,H,(CH3),-2,4	95
p-Bromophenylsulfonyl- acetonitrile	_	p-BrC,H,SO,C(CN)=NNHC,H,	93
	4-Ethoxy	p-BrC, U, SO, C(CN)=NNHC, H, OC, H, -n	8
a-Naphthylsulfonyl- acetonitrile		a-C, oH, SO, C(ON)=NNHC, H, (07)	93
	2-Methyl 4-Methyl 4-Methoxy	α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ H,CH;-o α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ H,CH;-p α -C ₁₀ H;SO ₂ C(CN)=NNHC ₆ H,OCH;-p	93 93 93

TABLE V-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRILES

Nitrile	Substituent in Aniline			Yield, %	References
(3-p-Tolyl-1,2,4-oxadiazol-5-yl)-	ì	$\mathbb{R} = \mathbb{R}$	R' = p-Tolyl	20	32
	2-Methoxy 4-Nitro	R = o-Anisyl $R = p$ -Nitrophenyl	R' = p-Tolyl $R' = p-Tolyl$	20	33 33
(3-m-Nitrophenyl-1,2,4-0xa-	4-Diethylamino 4-Diethylamino	R = p-Diethylaminophenyl $K' = p$ -Tolyl $R = p$ -Tolyl $R = p$ -Diethylaminophenyl $R' = m$ -Nitrophenyl	1V = p-Tolyl $1V = m$ -Nitrophenyl	20 20	35 25
diazol-5-yl)acetomitrile 1,2,3,4-Tetrahydroacridine- 4-carbonitrile	4-Methoxy			50	98
	4-Bromo	CN N=N	CN N=NC ₆ H ₄ OCH ₃ -p	56	98
		N CN N=N	CN N=NC ₆ H ₄ Br−p		
2,3-Dihydro-1-cyclopenta[b]-quinoline-3-enrbonitrile	4-Bromo			61	98
		N N N N N N N N N N N N N N N N N N N	CN N=NC6H4Br-p		

Ethyl p tolyfaulfonylacetate	2-Nethyl 3-Methyl 4-Methyl 2-Nethory	P-CH.G.H.80.C(CO.G.H.)=NNHG.H. P-CH.G.H.80.C(CO.G.H.)=NNHG.H.G.H.90 P-CH.G.H.80.C(CO.G.H.)=NNHG.H.Q.H.90 P-CH.G.H.80.C(CO.G.H.)=NNHG.H.CH.70 P-CH.G.H.80.C(CO.G.H.)=NNHG.H.CH.70	2 2 2 2 2
Phone 1/	4-Methory 4-Ethory 2,4-Dimethyl	P-CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCO, CHACHASOCOCOCO, CHACHASOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
seen pariting thereatings	2-Methyl 3-Methyl 4-Methyl	C,H,SU,C(CONH,)=NNHC,H, C,H,SO,C(CONH,)=NNHC,H,CH,o C,H,SO,C(CONH,)=NNHC,H,CH,o C,H,SO,C(CONH,)=NNHC,H,CH,o C,H,SO,C(CONH,)=NNHC,H,CH,o	8 8 8 8 8 8 8 8
p-Tulytaultonylacetamida	2-Nethoxy 4-Nethoxy 4-Ethoxy 2,4-Dimethyl	C.H.SO.(CODH).—NNIEG.H.COUIL.« C.H.SO.(COONH).=NNIEG.H.COUIL.« C.H.SO.(COONH).=NNIEG.H.(OCH).« C.H.SO.(COONH).=NNIEG.H.(OCH).» P.C.H.C.H.SO.(COONH).—NNIEG.H.(OTH).»	8 8 8 8 8
	2-Nethyl 3-Nethyl 4-Nethyl 2-Methoxy 4-Methoxy	P-CH,C,U,80,C(CONH,)=NNHG,H,CH,o P-CH,C,U,H,S0,C(CONH,)=NNHG,H,CH,on P-CH,C,U,H,S0,C(CONH,)=NNHG,H,CH,on P-CH,C,U,H,S0,C(CONH,)=NNHG,H,CH,on 	2 2 2 2 2
Prenylaultony Infromethane Protylaultonylnifromethane	4-Ethoxy 2,4-Dimethyl 4-Nitro	P. CHARLE AND CONTROL OF THE P. P. CHAR	92 102 102

Note: References 177-480 are on pp. 136-142,

The full name is given when it is swkward to name the arylamine as a derivative of aniline.
 In addition, some 5-hydroxy-1,3-bis-(p-nilrophenyl)letrarolium betaine was formed.

TABLE VI

COUPLING OF DIAZONIUM SALTS WITH SULFONES

	Substituent(s)		
Sulfono	in Aniline*	Product (Yield, %)	References
Bis(methylsulfonyl)methane	1	$(CH_3SO_2)_2C$ =NNHC,H ₅ (56)	101
	2-Methyl	$(CH_2SO_3)_2C=NNHC_6H_4CH_3-o$ (43)	101
	4-Methyl	$(CH_3SO_2)_3C=NNHC_6H_4CH_3-p$ (36)	101
	4-Nitro	$(CH_3SO_3)_2C$ $=NNHC_6H_3NO_2-p\dagger$	19c
Bis(ethylsulfonyl)methano	ĺ	$(C_2H_5SO_2)_3C$ —NNH C_6H_5 (43)	101
	2-Methyl	$(C_2H_5SO_2)_2C$ —NNH $C_6H_4CH_3$ - o (48)	101
	4-Methyl	$(C_1H_5SO_2)_2C$ =NNH $C_6H_3CH_3-p$ (33)	101
		$(C_2H_bSO_2)_2C$ =NNH $C_bH_4NO_3-p\dagger$	19c
Methyl (methylsulfonyl)methyl sulfoxide	-30	$p \cdot O_1 NC_6 H_1 N = NC(SO_1 CH_1) = NNHC_6 H_1 NO_1 \cdot p \uparrow$	19c
Ethyl methylsulfonylacetate	4-Nitro	CH,SO,C(CO,C,H,)—NNHC,H,NO,-p (79)	19c
2-(Methylsulfonyl)acetamide	4-Nitro	p-0,NC,H,N=NC(SO,CH,)=NNHC,H,NO,-v (54)	196
Methyl nitromethyl sulfone	4-Nitro	CH,SO,C(NO,)=NNHC,H,NO,-v (35)	196
Bis(phenylsulfonyl)methane	4-Nitro	$(C_nH_nSO_n)_nC_mNNHC_nH_nNO_n-n\dagger$	196
Bis(methylsulfonyl)methylthiomethane	ŀ	(CH ₃ SO ₂) ₃ C(SCH ₃)N=NC ₂ H; (66)	320
Phenylsulfonylacetic acid	2-Methyl	CeH;SO,C(N=NC,H,CH,-0)=NNHC,H,CH,-0	600
Title 1 1 1	2-Methoxy	C,H,SO,C(N=NC,H,OCH,-0)=NNHC,H,OCH,-0	88
Einyi phenyishitonyiacetato	ļ	C,H,SO,C(CO,C,H,)=NNHC,H,	86
	2-Mothyl	C,H,SO,C(CO,C,H,)=NNHC,H,CH,-0	95
	3-Methyl	C,H,SO,C(CO,C,H,)=NNHC,H,CH,-,,	88
	4-Methyl	$C_nH_sSO_1C(CO_1C_1H_s)$ =NNH $C_nH_1CH_1-p$	93
	Z-Methoxy	CeH,SO,C(CO,C,H,)=NNHC,H,OCH,-0	92
	4-Methoxy	Calson C(CO,C,Hs)=NNHC,H,OCH,-p	92
	4-Echoxy	C,H,SO,C(CO,C,H,)=NNHC,H,OC,H,-p	92
	z,*-Dimeenyi	$\mathrm{C_6H_5SO_2C(CO_3C_2H_5)}$ $=\mathrm{NNHC_6H_3(CH_3)_2-2,4}$	92

Ethyl p-tolylsulfonylacetate	2-Methyl	p-CH_C,H_SO_C(CO,C,H_,)=NNHC,H_, p-CH_C,H_SO_C(CO,C,H_)==NNHC,H_CH	2 2
	3-Methyl	p-CH,C,H,SO,C(CO,C,H,)=NNHC,H,CH,-m	3 8
	4-Methyl	p-CH,C,H,SO,C(CO,C,H,)==NNHC,H,CH,-p	8
	2-Methoxy	p-CH'C'H'80'C(CO'C'H')=NNHC'H'OCH'-9	85
	4-Methory	PCH,C,H,SO,C,CO,C,H,)=NNHC,H,OCH,P	85
	4-Ethory	P.CH.C.B.SO.C(CO,C.H.) -NNHC, H.OC.H. P	95
	2,4-Dimethyl	PCH.C. H. SO. C/CO.C. H. 1=NNHO. H. CH. 1. 24	60
Phenylsulfonylacetamide	ı	C.H.SO.C(CONH,)=NNHC.H.	2
	2-Methyl	C.H.SO.C.CONH, !=-NNHC,H.CH0	2
	3-Methyl	C,H,SO,C(CONU,)=NNHC,H,CH,-m	83
	4-Methyl	C.H.SO, C(CONH,) =NNHC, II, CH., a	20
	2-Methory	C.H.SO.C.CONH. :=NNHC.H.GCH9	8
	t-Methoxy	C.H.SO.C(CONH.)=NNHC,H.OCH.	8
	4-Ethory	C.H.SO, C(CONH,)=NNHC,H,DC.H,"	5
:	2,4-Dimethyl	C.H.SO.CICONH. N. NNIIO. II. ICH. 1. 2.4	3
p-Tolylsulfonylacetamade	1	P-CH C.H.SO C CONH.)=NNHC.H.	3 8
	2-Methyl	P.CH.C. R. SO. C(CONH.) NNIPC, R CH. A	9 8
	3-Methyl	P-CH.C.H.SO.C/CONT. I=NNIIC. II CH.	3 5
	4-Methy!	P-CH,C. H.SO,C(CONH,)=NNHC, H.CHn	3 8
	2-Methoxy	P-CH.C.H.SO.C/CONH. V=NNHC. H.OCH.	3 8
	4-Methory	PCH C.P. SO. CICOMI, N. NNTIC II OCT	3 2
	4-Ethoxy	PICH O TI SO COOKED WAS IN TO SEE	2
	2,4-Dimethyl	P.CH.O. B.SO.C.CONE NAME IN COLUMN	22.5
Phenylsulfon flaitromethans		C.H.SO. O'NO.)-NNHO II	22
p-Tolylsulfonylnitromethane	4-Nitro	P-CH-C-H-SO-C/NO-1=NN-HC-H-NO-2-280	20 5
Weds Definition to		(77) discontinuous de la	190

p-CH,C,H,SO,C(NO,)==NNHC,H,NO,p (22) 4-Nitro Note: References 177-480 are on pp. 136-142,

. The full name is given when it is awkward to name the arylamine as a derivative of aniline. t in addition, some 5 hydroxy-1,3-bis-ip-nithophenylitetrazolium betaine was formed.

TABLE VI-Continued

COUPLING OF DIAZONIUM SALTS WITH SULFONES

References	102	102	103	103			103	103		321	321		321	
Product (Yield, %)	$p ext{-BrC}_{_6} ext{H}_{_3} ext{SO}_{_3} ext{C(NO}_{_3}) ext{=-NNHC}_{_6} ext{H}_{_5}$	m-O,NC,H,C(SO,C,H,)=NNHC,H,	2-(5-Sulfo-1-naphthylazo)sulfazone	2-(8-Hydroxy-6-sulfo-1-naphthylazo)sulfazono		9 to Calfe at the sufficient and	z-tə-samo(<i>p</i> -samopnenyıazo)pnenyıazo)sunazone	~	phenylazo}sulfazone	2-(p-Sulfophenyhrzo)sulfazone-7-sulfonylacetic acid	2-(3-Carboxy-4-hydroxyphenylazo)sulfazone-7-	sulfonylacetic acid	2-(4-Sulfo-1-naphthylazo)sulfazone-7-	monday weeks were
Substituent(s) in Aniline*	1	1	5-Sulfo-1-	naphthylamine 8-Hydroxy-6-	sulfo-1-	naphthylamine	sulfophenylazo)	4-fp-(4-Hydroxy-3-	carboxyphenylazo)- phenyl]	-Sulfo	3-Carboxy-4-	hydroxy	4-Sulfo-1- naphthylamine	
Sulfone	p-Bromophenylsulfonylnitromethane	m-Nitrobenzyl phenyl sulfone	Sulfazone, i.e.,		=:	340	1 3 ch 2	ď	:	Sulfazone-7-sulfonylacetic acid				· · · · · · · · · · · · · · · · · · ·

Note: References 177-480 are on pp. 136-142.
• The full name is given when it is awkward to name the arylamine as a derivative of aniline.

TABLE VII

COUPLING OF DIAZONE'S SALTS WITH NITHS COMPSI SING Product (Titld, .,) Substituent(s)

in Aniline

Nitro Compound Nitromethane

References

1	CH,NHNCHNO,	101, 105,
		107, 323
	CH,N NC(NO,) NNHC,H, (50)	20, 3, 10t-
		107, 323
2-Methyl	ocilicalin-Nc(No.) NNIICara	201
4-Methyl	PCHACHAN-NOOD, NAME II.	104
2-Ethoxy	PCHOCH NAVIONA NAME HOURS	9
4-Bromo	P.D.C.H.N. NONO. S. NNH. H. B. B.	3
2-Nita	9-0.NC.II.NIIN CIINO. 673	There want
4-Natro	P.O.N.C.H.N NCONO. P - NNHC. H. NO. B.	2
	PONCH NIIN CHNO. (b)	171
2-Pormyl	9-11COC.11,NHN - CHNO. 633	
2 Acety 1	o CH,COCH,NHN * CHND, 6040	
2-Carboxy	P. 10. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	
2-Carbomethory		100
	(ca) distribution of the control of	77501
-Carbelliony	PCHOCK HANDA CHNO, (M)	Ē
olms-F	A HOTEL NEW CONDA TO THE TOTAL	į
4-Sulfamy)	P.H.N.C. C.H.N. N.	2
2,4-Dimethyl	2.4-CHANGE MANAGEMENT AND	
2.Innual	(C2) 1'2', (C1) 1'11' 11' 11' 11' 11' 11' 11' 11' 11'	0.1
	9.11.0.11.0H.N. (10N.) N. 11.0.11.0	ê
3.1 Henyl	M-CHCH'N-NCINO'N-NNHCH'CH'-H	5
4-1-Iren)	P.C.H.C.H.Non-NCING.) - NNHC II - 11	1 2
4.Phenoxy		6
	dilliante and one of the state	ŝ

Note: References 177-480 are on pp. 130-142.

* The full name is given when it is an kname to name the arytamine na a derivative of aniline.

TABLE VI-Continued

COUPLING OF DIAZONIUM SALTS WITH SULFONES

m References	102	102	103		103) !		103		103) }		39.1		39.1	1	391	170
Product (Yield, %)	$p\text{-BrC}_6 \text{H}_4 \text{SO}_2 \text{C(NO}_2) = \text{NNHC}_6 \text{H}_5$	$m-0_2NC_6H_4C(SO_3C_6H_5)$ =NNHC,H5	2-(5-Sulfo-1-naphthylazo)sulfazone		2-(8-Hydroxy-6-sulfo-1-naphthylazo)sulfazone			2-[3-Sulfo-4-(p-sulfophenylazo)phenylazo sulfazone		$2-\{p-(4-Hydroxy-3-carboxyphenylazo)-phenyll-$	phenylazo}sulfazone		2- $(p$ -Sulfophenylazo)sulfazone- 7 -sulfonylacetic	acid	2-(3-Carboxy-4-hydroxyphenylazo)sulfazone-7-	sulfonylacetic acid	2-(4-Sulfo-1-naphthylazo)sulfazone-7-	sulfonylacetic acid
Substituent(s) in Aniline*	1		5-Sulfo-1-	naphthylamine	8-Hydroxy-6-	sulfo-1-	naphthylamine	3-Sulfo- 4 - $(p$ -	sulfophenylazo)	$4-[p-(4-\mathrm{Hydroxy-3-}$	carboxyphenylazo)-	phenyl]	4-Sulfo		3-Carboxy-4-	hydroxy	4-Sulfo-1-	naphthylamine
Sulfone	$p ext{-}Bromophenyl sulfonyl nitromethane}$	m-Nitrobenzyl phenyl sulfone	Sulfazone, i.e.,			ж:	·9;			02		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sulfazone-7-sulfonylacetic acid					

Note: References 177-480 are on pp. 136-142. lacktriangle The full name is given when it is awkward to name the arylamine as a derivative of aniline.

e

2-Nitropropane	d-Methyl	$(CH_5)_5C(NO_2)N=NC_6H_5$ $(CH_5)_5C(NO_5)N=NC_6H_4CH_5-p$	2, 333
	4-Chloro	(CH,),C(NO,)N=NC,H,CI-p (CH,),C(NO,)N=NC,H,Br-n	333
	2-Nitro	(CH,),C(NO,)N=NC,H,NO,-9	222
	3-Nıtro	$(CH_1)_2C(NO_2)N=NC_2H_2NO_2-m$	333
	4.Nitro	(CH,),C(NO,)N=NC,H,NO,-p	324, 333
	2-Carboxy	(CH ₂),C(NO ₂)N=NC,H,CO ₂ H-o	333
	4-Carboxy	(CH ₂) ₂ C(NO ₂)N=NC ₄ H ₂ CO ₄ H ₂ p	333
	4-Sulfo	(CH ₂) ₂ C(NO ₂)N=NC ₂ H ₂ SO ₃ H-p	325
	4-Acetamido	(CH ₂) ₂ C(NO ₂)N=NC, H ₄ NHCOCH, p	333
	2,5-Dichloro	(CH ₂),C(NO ₂)N=NC,H ₂ Cl ₂ -2,5	333
	2-Methyl-5-nitro	(CH ₅),C(NO ₅)N=NC,H,CH ₅ -2-NO ₄ -5	333
	2,4,6-Tribromo	(CH,),C(NO,)N=NC,H,Br,-2,4,6	333
	θ -Naphthylamine	(CH ₂),C(NO ₂)N=NC ₁₀ H ₂ -β	324, 333
	Benzidine	[(CH ₃),C(NO ₂)N=NC,H,-],	333
	4-Phenylazo	p.(C,H,N=N)C,H,N=NC(CH,),NO,	333
1-Nitro-2-propene	1	CH;-CHC(NO,)-NNHC,H,	334
	2-Methyl	CH2=CHC(NO,)==NNHC,H,CH,.0	334
	4-Methyl	CH4=CHC(NO ₄)=NNHC,H,CH ₄₋₂	334
	4-Methoxy	CH2=CHC(NO ₂)=:NNIIC,H,OCH ₃₋₂	334
	4-Ethoxy	CH2=CHC(NO,)=NNHC, H,OC, H,-20	P88
	4-Chloro	CH, -CHC(NO,) -NNIIC, H,CL-1	300
	3-Bromo	CH2=CHC(NO,)=NNHC,H,Br-m	* FEE
	4-Carboxy	CH, CHC(NO,) =NNHC, H, CO, H.20	866
1-Nitro-n-butsue	1	n-C,H,C(NO,)=NNHC,H,	107

Note: References 177-480 are on pp. 130-142

• The fill amon is given when it is awared to name the arylanme as a derivative of snillnes. The formatan structure is ILNN-GIRI—NII.

† The defition, some diarylatonitroethane was formed.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRO COMPOUNDS

Product (Yield, %) $\alpha\text{-C}_{10}\text{H}_7\text{N} = \text{NC(NO}_2) = \text{NNHC}_{10}\text{H}_7 - \alpha$ 106	-1	N,N'-Di-(2-phenoxy-4-phenyl)phenyl-C-nitroformazan† N,N'-Di-(2-phenylthio-4-phenyl)phenyl-C-nitroformazan† 20	HC ₆ H ₅ (quant.) 326, 1, 2, 107, 171, 324		32	luant.)					2H ₃ C(NO ₂)=NNHC ₆ H ₃ Cl ₂ -2,4 (95)	HC,H2Cl3-2,4,6‡ 330, 331	$\mathrm{JH_3C(NO_2)} = \mathrm{NNHC_6H_3Br_3-2,4,6} \ (49)$	$\mathrm{HC_{10}H_{7^{-}\alpha}}$ (5)	$\mathrm{HC_{10}H_{7}-}\beta$ 324, 332	326	324 \HC.H.CHn 324		NHC ₁₀ H ₇ -β 324
Product (Yield, %) α-C ₁₀ H,N=NC(NO)	β-C ₁₀ H,N=NC(N o-C ₆ H ₅ SC ₆ H ₄ N= N,N'-Di-o-(p-unis	N,N'-Di-(2-pheno N,N'-Di-(2-pheny	CH3C(NO2)=NNHC8H5 (quant.)	CH,C(NO,)=NNHC,H,CH3-0	CH3C(NO3)=NNHC,H4CH3-P	CH3C(NO2)=NN	CH3C(NO2)=NNHC,HLBr-p	CH3C(NO3)=NNHC6H4NO2-m	CH ₃ C(NO ₃)=NNHC ₆ H ₄ NO ₃ -p	CH3C(NO2)=NNHC,H4SO3H-P	CH2C(NO2)-NN	CH3C(NO3)=NNHC,H3Cl3-2,4,6‡	CH2C(NO2)=NN	$CH_3C(NO_3) = NNHC_{10}H_7 - \alpha$ (5)	CH3C(NO2)=NNHC10H7-B	C ₂ H ₅ C(NO ₂)=NNHC ₆ H ₆ (87)	C.H.C(NO.)=NNHC.H.CHv	CH,C(NO.)=NNHC,H,NOp	C2H6C(NO2)=NNHC10H7-B
Substituent(s) in Aniline* \$\alpha\$-Naphthylamine	β -Naphthylamine 2-Phenylthio 2- $(p$ -Anisyloxy)	2-Phenoxy-4-phenyl 2-Phenylthio-4-	puerty.	2-Methyl	4-Methyl	4-Chloro	4-Bromo	3-Nitro	4-Nitro	4-Sulfo	2,4-Dichloro	2,4,6-Trichloro	2,4,6-Tribromo	a-Naphthylamine	heta-Naphthylamine	1	4-Methyl	4-Nitro	θ -Naphthylamine
Nitro Compound			Nitroethane													1-Nitropropano			

4-Nifro-1-butanesulfonic acid 4-Nitro	4-Nitro	p-0,NC,H,N==NC(NO,)(C,H,)CH,SO,H (51)	213
	4 Phenylazo	p-(C,H,N=N)C,H,N=NC(NO,)(C,H,)CH,SO,H (56)	343
	3,3'-Dimethoxy-	2,2'-(3,3'-Dimethoxy-4,4'-biphenylenedisazo)bis-[2-nitro-	343
	benzidine	1-butanesulfone acid] (77)	
2-Nitroethanol	1	HOCH,C(NO,)=NNHC,H, (94)	107, 344
	4 Sulfo	HOCH,C(NO,)=NNIIC,H,SO,H-p	344
2-Nitropropanol	1	CH,C(NO,)=NNIIC,H, (78)	107
1-Nitro-2-propanol	1	CH,CHOHC(NO,)=NNHC,H,	107
2-Nitro-1-butanol	1	C.H.C(NO.)=NNIIC.H.	107
	4-Methyl	HOCH,C(NO,)(C,H,)N=NC,H,CH,-p§	108
	2-Chloro	HOCH,C(NO,)(C,H,)N=NC,H,C)-08	108
	4-Chloro	$IIOCH_2C(NO_2)(C_2II_6)N = NC_6II_4Cl-p§$ (56)	108
		C,H,C(NO,)=NNHC,H,CI-p	108
	2-Bromo	HOCH,C(NO,)(C,H,)N-NC,H,Br-o§	108
	4-Bromo	HOCH ₂ C(NO ₂)(C ₁ U ₂)N==NC ₄ H ₁ Br-p ₃	108
		C,H,C(NO,)-NNHC,H,Br-p	108
	2,5-Dichloro	HOCH,C(NO,)(C,H,)N-NC,H,Cl,-2,55	108
	2-Methyl-4-nitro	C.H.C(NO.) -NNHC.H.CH2 NO4	108
	5 Methyl-3-nitro	HOCH, C(NO.)(C.H.)N = NC.H. CH., 6-NO38	308
1-Nitro-2-butanol	,	C.H.CHOHCANO, Y-NNHC.H.	102
3-Nitro-2 butanol	1	PALONO VIEW IN	107
1.1.1-Trichloro-3-nitro-2-	J	Control of the second of the s	707
ndonanol		COCCUPATION IN THE STREET	107

Note: References 177-480 are on pp. 136-142.

propanol

· The full name is given when it is awkward to name the arrianme as a derivative of aniline. f This produce was obtained by acidification of the reaction mixture.

| This product was obtained when the alkaline reaction mixture was left for several days.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITRO COMPOUNDS

	Substituent(s)		
Nitro Compound	in Aniline*	Product (Yield, %)	References
2-Nitro-n-butane	3-Nitro	$C_2H_5C(NO_2)(CH_3)N=NC_6H_4NO_2-m$	333
	4-Carboxy	$C_2H_3C(NO_2)(CH_3)N=NC_6H_1CO_2H_2p$	333
	2,5-Dichloro	$C_2H_3C(NO_2)(CH_3)N=NC_6H_3CI_2-2,5$	333
	2-Methyl-5-nitro	C, H, C(NO,)(CH,)N=NC, H, CH,-2-NO,-5	333
	2,4,6-Tribromo	$C_2H_3C(NO_2)(CH_3)N \Longrightarrow NC_6H_2Br_3-2,4,6$	333
	4-Phenylazo	$C_2H_3C(NO_2)(CH_3)N=NC_6H_1(N=NC_6H_5)-p$	333
2-Methyl-1-nitropropane	ſ	$(CII_3)_2CIIC(NO_2)=NNIIC_6II_5$	າວ
	4-Sulfo	$(CH_3)_2CHC(NO_2) = NNHC_4H_1SO_3H-p$	325
1-Nitro-n-pentane	1	$n \cdot C_4 H_9 C(NO_2) = NNHC_6 H_5 (90-100)$	326
Dinitromethane	ļ	$C_6H_5N==NCH(NO_2)_2$	335
	4-Nitro	$p \cdot 0_2 NC_6 H_1 N II N = C(NO_2)_2$ (37)	19c
I,3-Dinitropropane	1	C,H,NHN=C(NO,)CH,C(NO,)=NNIIC,II,	330
	4-Methyl	p-CII ₃ C ₆ II ₄ NIIN=C(NO ₂)CII ₃ C(NO ₂)=NNIIC ₄ II ₄ CII ₃ - p	336
	4-Methoxy	p-CH ₃ OC ₆ U ₄ NHN=C(NO ₂)CH ₂ C(NO ₂)=NNHC ₆ H ₄ OCH _{3-P}	3336
I,5-Dinitro-n-pentane	I	CallyNHN=C(NO2)(CH2),C(NO2)=NNHCall,	337
I,7-Dinitro-n-heptane	i	C,H,NUN=C(NO,)(CII,),C(NO,)=NNIIC,II,	3338
Iodonitromethane	1	IC(NO ₂)=NNIIC ₆ II ₅	333
	4-Methyl	$IC(NO_2) = NNIIC_1II_1CII_2 \cdot p$	339
Methazonic acid		C,H;NHN=C(NO;)CII=NOII	340
Nitropostomido	4-Methyl	p-CH ₃ C ₆ H ₄ NHN=C(NO ₂)CH=NOH	3.10
tari ouce (ulluae		$C_{i}H_{i}NHN = C(NO_{i})CONU_{i}$	88
Methyl nitroncetate	0.11NI-F	p-O ₂ NC ₆ H ₁ NHN==C(NO ₂)CONH ₂ (66)	19c
Ethyl nitroacetate		$C_6 H_5 N H N == C(NO_2) CO_2 CH_3 (56)$ $C_5 H_5 N H N == C(NO_2) CO_2 CH_3 (56)$	13:6
	4-Nitro	p-0,NC,H,NHN=C(NO,)CO,C,H,	3 23

	4-Benzyloxy	C,U,C(NO,)=NNHC,H,OCH,C,H,p (39)	171	
	3-Nitro	C, 11, C(NO,)== NNHC, 11, NO, -m (quant.)	320	
	4-Nitro	C,H,C(NO,)=NNHC,H,NO,p	111, 172, 350	I
	4-I'heny]	C.II,C(NO,)=NNHC,II,C,II, p (33)	171	ı
	2,4-Dinitro	C, II, C(NO,) == NNIIC, II, (NO,),-2,4	320	Z
	2-Methyl-4-nitro	C.II,C(NO,)=NNIIC,II,CII, 2:NO.4	173	0.5
	4-Methyl-2-nitro	C.H.C(NO.) = NNHC, H.CH, 4-NO. 2	170	I
	2-Chloro-4-nitro	C.H.C(NO.)=NNHC.H.C1-2-NO4	- 2	:м
	8-Naphthylamine	C.H.C(NO.)=NNHC, IL. 6 (34)	2	c
	2-(o-Nitrophenyl)	C.H.C(NO.)=NNHC.H.(C.H.NO0)-0 (55)		ot
	4-Chloro-2-(4-	C.H.C(NO.)=NNHC.H.C.H.C.H.C.H.C. 1. 21.2 72.1	2000	т
	chloro-2-nitro-		Sec.	LIS
	pheny!)			C
	4-Bromo-2-(4-	C, II, C(NO,) == NNIIC, II, Br-4-(C, II, Br-4-NO, 22.2	102.	v
	bromo-2-nitro-			17
	phenyl)			гн
a-Nitrobenzyleyanide	1	C,H,C(CN)NNHC,H,NO	:	A
	2-Methyl	CX 6. U.S. IT STEAM - (NO. 11. C	-	L
	4-Methyl		ž	IF
		CITY CONTROL OF THE CITY OF THE CONTROL OF THE CONT	*	н
	2-Chloro	C.H.C(CN)=NNHC.H.Cl-3-NO4		A
	4-Chloro	CHCCN)=NNHCHCLNO.	::	ΤI
	2-Nitro	CH,C(CN)=NNHC,H,NO, 1, 9	1	c
	4-Nitro	CHCCN)-NNICHON	≣ :	CA
p-Methoxy-x-nitrotoluene	!	1.01.00 tr 0.00 tr 0.00 tr	Ĭ	R
p-Chloro-a-nitrotoluene	2-(o-Nifronhans 1)	COLD COLD COLD COLD COLD COLD COLD COLD	321	Ese
a,m-Dinitrotoluene	- Carried and Carried and	P-110,111, (NU,) = NNIIC, II, (C, II, NO, 0) o (75)	3234	03
z.p.Duntrotoluene		"O'NC,II,C(NO,)=NNIIC,II, (quant.)	359	٠.
	, ,	p-0,NC,H,C(NO,)=NNHC,H,	222	ΛT
	WILLIAM CO.	p-0,NC,H,C(NO,)=NNHC,H,NO,-p	200	0
Note: References 177-480 are on pp. 136-142.	ue on pp. 136-142.		215	us

,

. The full name is given when it is awkward to name the arylamine as a derivative of amiline. m-0,NC,II,C(NO,)=NNIIC,II, (quant.) p-0,NC,II,C(NO,)=NNIIC,II, p-0,NC,II,C(NO,)=NNIIC,II,NO,p Note: References 177-480 are on pp. 136-142.

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITHO COMPOUNDS

References 345	2 2 2 2 2 2 C	101 101 101 101 101 101 101	315 315 316 317 171, 318, 310 171 171
Product (Yield, %) Cl.CCH(O.CCH,)C(NO.)=NNHC.H.	CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,·• CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,···· CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,···· CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,··· CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,··· CI,CCH(O,CCH,)C(NO,)=NNHC,H,CH,···	CI, CH (Q, CLI), C(NO ₂)—NARC, H, (97) n-C, H, C(NO ₂)=NNHC, H, n-C, H, CHOHC(NO ₂)=NNHC, H, n-C, H, CHOHC(NO ₂)=NNHC, H, C, H, CHOHC(NO ₂)=NNHC, H, C, H, CHOHC(NO ₂)=NNHC, H, CH, CHCC', C(O ₂ CC'H ₂)(C(NO ₂)=NNHC, H,	CH ₂ CHCICCI ₂ C(0 ₂ CCH ₃)C(NO ₂)=NNHC ₄ H ₄ CH ₂ P CH ₃ CHCICCI ₂ C(0 ₂ CCH ₃)C(NO ₂)=NNHC ₄ H ₄ Cl ₂ P CH ₃ CHCICCI ₂ C(0 ₂ CCH ₃)C(NO ₂)=NNHC ₄ H ₄ NO ₂ -P C ₄ H ₅ CHCICCI ₂ C(NO ₂)=NNHC ₄ H ₄ NO ₂ -P C ₄ H ₅ CHOHCH(NO ₂)CH(C ₄ H ₃)C(NO ₂)=NNHC ₄ H ₅ C ₄ H ₅ C(NO ₄)=NNHC ₄ H ₅ (H ₃) C ₄ H ₅ C(NO ₄)=NNHC ₄ H ₅ (H ₃) C ₄ H ₅ C(NO ₄)=NNHC ₄ H ₅ (H ₃) C ₄ H ₅ C(NO ₄)=NNHC ₄ H ₅ (H ₃)
Substituent(s) in Aniline*	2-Methyl 3-Methyl 4-Methyl 4-Chloro 4-Nitro	ου 	4-Methyl 4-Chloro 4-Nitro 4-Nitro — 4-Methyl 4-Methyl 4-Methyl 4-Butoxy
Nitro Compound 1,1,1-Trichloro-3-nitro-2-	propyl acetato	2-Nitro-1,3-propanediol 2-Nitro-1-pentanol 1-Nitro-2-pentanol 1-Nitro-2-hexanol 2-Nitro-1-phenylethanol 3,3,4-Trichloro-1-nitro-2-	pentyl acetate 1-Benzoyl-2-nitroethanol 2,4-Dinitro-1,3-diphenyl-1- butanol Nitrotoluene

91 91 91	100, 358 109, 358	1762 1762 1763			176a 350 350	100
C,H,CON=NC,H,CH,2:NO ₂ -4 CH,CON=NC,H,CH,2:NO ₂ -2 CH,CON=NC,H,CH,4:NO ₃ -3 CH,CON=NC,H,CH,4:NO ₃ -3 CH,CON=NC,H,Bh ₂ -2,A	p-CH ₂ C,H ₂ C(NO ₄)=NNHC,H ₁ NO ₄ -p p-CH ₂ OC,H ₂ C(NO ₄)=NNHC,H ₂ NO ₂ -p	4-[2-Miro-2-phen) faropropyl/morpholme (22) 4-[2-Miro-2-(p-chlorphenylazo/propyl/morpholme (20) 4-[2-Miro-2-(o-nitrophenylazo/propyl/morpholme (20) 4-[2-Miro-2-(m-nitrophenylazo/propyl/morpholme (21) 4-[2-Miro-2-(m-nitrophenylazo/morpholme (11)	2. Xinro-X-positephen Jazopropy I prorpholine (16) 4(2-Xinro-Zi-cearboxyplenylazopropy I prorpholine (13) 4(2-Xinro-Zi-cearboxyplenylazopropy I prorpholine (13) 4(2-Xinro-Zi-defalenophenylazopropy I prorpholine (13) 4(2-Xinro-Zi-defalenophenylazopropy I prorpholine (14) 6(2-Xinro-Zi-defalenophenylazopropy I prorpholine (14) 6(2-Xinro-Zi-depalenylazopropy I prorpholine (14)	4-(2-Nitro-2-(p-phen) lazopheny lazo)propy Jmorpholine (80) 2-(p-Chlorophenylazo)-2-nitrotributy lamine (7)	2-6-Napithylazo-2-aitrotributylamine (17) 2-5-Dipkorp-1-14-dibidrobulane (89) 2-5-Di-6-3-Arachylarendiszypkorp-1-14-dibidrobulane (89) 2-5-Di-6-3-Arachylarendiszypkorp-1-14-dibidrobulane (89) 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Note: Refrences 177-480 ave on pp. 138-112. The full name is given when it is awkward to name the arylamine as a derivative of amiline.
2-Methyl-4-mtro 4-Methyl-2-mtro 4-Methyl-3-mtro 2,4,6-Tribromo	ı I	4-Chloro 2-Nitro 3-Nitro	4-Nutro 2 Carboxy 4-Carboxy 2,4-Dichloro \$\beta\$-Naphthylamine	4-Phenylazo 4-Chloro	β-Naphthy lamine	e on pp. 136-142. en it is awkward to
	a,s-Duntro-p-xylene a,s-Duitro-p methoxytoluene	g-(z-ratropropy)inorprotine		1-Di-n-butylamino-2-nitro- butane	2,3-Diphenyl-1,4-dintrobutane 2,3-Di-(3,4-methylenedioxy- phenyl)-1,4-dintrobutane Nitromethyl p-tolyl sulfoxide	Note: References 177-480 are on pp. 136-142. The full name is given when it is awkward to

TABLE VII-Continued

COUPLING OF DIAZONIUM SALTS WITH NITHO COMPOUNDS

References	353		\$		312, 353	353	353	353	1920	333	128	112, 113	109, 111, 355	109, 356	253	100, 356	334	109, 350	356, 357	911
Product (Yield, %)	$C_{\mathfrak{d}}H_{\mathfrak{z}}COC(NO_{\mathfrak{z}}) = NNHC_{\mathfrak{z}}H_{\mathfrak{z}}$ (60)	$C_bH_5COC(NO_4) == NNIIC_bH_1CI_D$	Collscor(NO2)==NNIIC, II, Br-p	C, 11, COC(NO,)=NNIIC, 11, NO, .0	$C_tH_sCOC(NO_t) = NNHC_tH_tNO_t - n$	Calls COC(NO.) = NNHC, II, Cl2, 1	C II CONTROL (NO.) == NN II C, II C (1, 2, 3, 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CANCOCCONO.	(1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			C.H. C.N.D. A. A. A. M. C. M.	C.II. CONT. N. II. CH. J. C. II. CONT. N. C. II. C.	CHICKODVAIIO II GIONO	Call CON The Call of the Call	CILCINO MINISTER AND	CALICON TO THE BEST OF THE CALIFORNIA OF THE CAL	C,11,CON=-NC,11,(C11,),-2,1	
Substituent(s) in Aniline*	1	f-Chloro	f-Bromo	2-Mitro	4-MITTO	2.5-Dichloro	2.4-Dibramo	2.4.0-Tribramo	2,1,5-Tribromo	1	i	1	2-Methyl	4-Methyl	2-Chloro	1-Chloro	2-Bromio	4-Bromo	2,4-Dimethyl	
Nitro Compound	a-Nitroncet ophenone									1-Nitro-3-phenylpropane	Diphenylnitromethane	α,α-Dinitrotoluene								

	2.4-Dintro	3-(2.4-Dinitrophenylazo)-2.5-dimethyl-2.4-heyadiena	116
Indene	2.4-Dinitro	1-(2.4-Dintrophenylazolindene	2 =
m-Mothorwetwhene	9.4 Dimites	- OH OUT OF STATE IN CASE OF STATE OF S	
District of the second	STREET,	POLITOCOT STATE OF THE PROPERTY (NO. 1) 2.4 (ZI)	124
I'henylacetylene	4-Nitro	$C_iH_iCOCH=NNHC_iH_iNO_i-p$ (13)	12.
p-Methoxyphenylacetylene	4-Nrtro	p-CH,OC,H,COCH=NNHC,H,NO,-n (33)	124
	2,4-Dinitro	p-CH,OC,H,COCH NNHC,H,(NO.), 2.4 (69)	
Anethole	4-Nitro	p-CH,OC, H,CH=NNIIC, H,NO,-p (71)+	197
	2,4-Dinitro	p-CH,OC,H,CH-NNHC,H,(NO,1,-2,4 (62)+	101
o-Propenylphenol	4-Nitro	9-HOC.H.CH=NNHC.H.NO20 (2514	
p-Propenylphenol	4-Nitro	P-BOC.H.CH == NNHC.H.NOD (60)+	22
Isosafrole	4-Nitro	Piperonal n-nitrophenylhydrazone (79.4	
	2,4-Dintro	Piperonal 2.4-dinit marken why drawn at	-
Isoeugenol	4-Nitro	Vanillin n-nifronhanelly-dearens (90.4	22.5
	2.4.Dinitro	Varillin 9 4 draft ment and the district	22
Isoaniole	A.Nitan	arried at a distribution of the property of th	128
a. Proportidam of halfand	T.IVIERO	Apiolaldehyde p-nitrophenylhydrazone	127
P-r ropenylambernylamine	4-Nitro	p-(CII,),NC,H,CII = NNHC,H,NO,m++	001
I,I-Diphenylethylene	2,4-Dintro	C. H. LO TO	
I,1-Bis-(p-tolyl)ethylene	4-(p-Phenyl-	(9-CH-C-H-L) C=CHN = NO H (200 H co H	= :
	mercaptobenzoy	diddinary property and the second	2
1,1-Bis-(p-anisyl)ethylene	4-Nitro	(p-CH,OC,H,AC,H,CHN,H,C,H,NO,H,NO,H,M,H,M,H,M,H,M,H,M,H,M,H,M,H,M,H,M,H,	
	4-(p-Phenyl-	(a) CHOOL IN COOK IN C	Ξ:
	mercaptobenzoy])	didinasimanasiman in a second a second	13
I-Phenyl-1-(p-anisyl)ethylene	1	2-CH,OC,H,OC,H,OH,OC,H,OC,H	
	2,4-Dmitro	p-CH,OC,H,C(C,H,)=CHN=NC,H,(NO,),-2,4 (40)	2.2
Note: Defenesses 127 400		Anat	*

. The full name is given when it is awkward to name the arylamine as a derivative of amiline. References 177-480 are on pp. 136-142.

† These products were obtained by the addition of the dry diszonium salt to an ethanolic solution of the reactant.

‡ When an alcoholic solution of the reactant was added to the dry diazonum salt, the entire side chain was eliminated to give a nearly quantitative yield of N,N-dimethyl-p-(p-nitrophenylazo)aniline,***

TABLE VIII

COUPLING OF DIAZONIUM SALTS WITH HYDROCARBONS

A. Unsalurated Hydrocarbons

	(c)ompanageme		Defendance
Hydrocarbon	in Aniline*	Product (Yield, %)	references
0.015-11-12-0000	4-Amino	(CH.), C=CHN=NC, H, N=NCH=C(CH.),	116
z-mennyipropene	2.4-Dinitm	2.4.(0,N),C,H,N=NCH=C(CH ₃),	116
1 9 Districtions	T-Nifm	p-0,NC,H,N=NCH=CHCH=CH,	300
1,5-Ducadene	2.4-Dinitro	2.4-(0,N),C,H,N=NCH=CHCH=CH, (13)	115
9-Methyl-2-butene	4-Amino	(CH_3) , $C=C(CH_3)N=NC_4H_1N=NC(CH_3)=C(CH_3)$,	116
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH3)=C(CH3),	116
1,3-Pentadiene	4-Amino	CH ₃ =CHCH=C(CH ₃)N=NC ₄ H ₄ N=	116
		NC(CH,)=CHCH=CH;	
	4-Nitro	p.o.NC,H,N=NC(CII,)=CHCII=CII,	115, 116
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CII,)=CHCH=CII,	115, 116
2-Methyl-1,3-butadiene	4-Nitro	p-0,NC,H,N=NCII=C(CH,)CII=CH,	361a
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH,)=CHCH=CH,	115
2,4-Hexadiene	4-Nitro	p-0,NC,H,N=NC(CH,)=CHCH=CHCH,	116, 360
	2,4-Dinitro	2,4-(0,N),C,H,N=NC(CH,)=CHCH=CHCH,	116
2-Methyl-2,4-pentadiene	2,4-Dinitro	2,4-(0,N),C,H,N=NCII=CIICII=C(CII,), (19)	3618
2,3-Dimethyl-1,3-butadiene	4-Nitro	$p-0.NC_0H_1N=NCH=C(CH_1)C(CH_1)=CH_1$ (47)	115
	2,4-Dinitro	2,4-(0,N),C,II,N=NCII=C(CII,)C(CII,)=CII,	115
Cyclopentadiene	•	1-Phenylazocyclopentadiene (small)	117, 362
	4-Nitro	1-(p-Nitrophenylazo)cyclopentadiene	118
	2,4-Dinitro	1-(2,4-Dinitrophenylazo)cyclopentadiene	118
2,4-Cyclopentadiene-1- carhovylic acid	2-Hydroxy-5-sulfo	1-(2-Hydroxy-5-sulfophenylazo)-2,4-cyclopentadiene-1-	363
9 5-Dimothyl 9 4-howndians	A series	Softer The motion (40)	
to Dancay (-2) racadalene	4-Nitro	3.4 - (p - ruchylenedistzo) bis - (z, 5 - dimethyl - 2, 4 - hexadiene) 3-(p - Nitrophenylazo) - 2,5 - dimethyl - 2,4 - hexadiene	116 116

1329

1,2-Dahydro-1 methyl-2-(p-nutrophenylazomethylene)-

4-Nutro

N-Methy loumaldmum

The property of the second contract of	A TAILOR	minutes	6701
mernosuntro	2,5-Dichloro	quinolitie 1,2-Dihydro-1-methyl-2-(2,5-dichlorophenylaromethylene)-	1329
		quinoline	
	2-Methoxy 5-chloro	2-Methoxy 5-chloro 1,2-Duhydro-1-methyl-2-(2-methoxy-5-chlorophenylazo-	132g
		methy lene)quinoline	
	2-Methoxy-4-nitro	1,2-Dihydro-1-methyl-2-(2-methoxy-4-nitrophenylazo-	1329
		methylene)quinoline	
N-Ethyllepidmum iodide	4-Nitro	1,4-Dihydro-1-ethyl-4-(p-nitrophenylazomethylene)-	1329
		danoline	
	2,5-Dichloro	1,4-Dihydro-1-ethyl-4-(2,5-dichlorophenylazomethylene)-	132g
	2-Methoxy 5-chloro	1,4-Dihydro-1-ethyl-4-(2 methoxy-5-chlorophenylazo-	1320
		methylene)quinoline	•
	2 Methoxy-4-nitro	1,4-Dihydro-1-ethyl-4-(2-methoxy-4-nitrophenylazo-	1320
		methylene)quinoline	,
2,3,3-Trimethylindolenine	1	3,3-Dimethylindolenine-2-carboxaldehyde phenyl-	1324
		hydrazone (60-90)	,
	4-Chloro	3,3-Dimethyludolenine-2-carboxaldehyde n-chloro-	132a
		phenylhydrazone (60-99)	
	4-Nitro	3,3-Dimethylindolenine-2-carboxaldehyde p-nitrophenyl-	1324
		hydrazone	
1,2,3,3-1 etramethyhndolenium jodide	1	1,2-Dihydro 2-phenylazomethylene-1,3,3-trimethylindoline	133, 135
!	- N. P.		
	CONTRACTOR OF THE CONTRACTOR O	1,2-Dihydro-2-(p-nitrophenylazomethylene)-1,3,3-	133, 135
		trimethylindoline	
	4-lodo	1,2.Dihydro-2-(p-rodophenylazomethylene)-1,3,3.	22
		tumethylindolne	3
	2-Methoxy-4-nitro	1,2-Diliydro 2-(2-methoxy-4-nitrophenylazomethylene).	135
		1 3 9 termodiani and	

Note: References 177-480 are on pp 136-142. The full name is given when it is awkward to name the arylamine as a derivative of aniline.

1,3,3 tramethylindoline

TABLE VIII-Continued

A. Unsaturated Hydrocarbons-Continued

References	14	### ###	FI	11 11 305	366	References 132 132 132 132 133, 134 133, 134
Product (Yield, %)	$[p\text{-}(CH_3)_2NC_6H_4]_2C$ =CHN= NC_6H_5	$[p \cdot (CH_3)_2 N C_6 H_4]_2 C = CHN = N C_6 H_4 N O_2 - p$ $[p \cdot (CH_3)_2 N C_6 H_4]_2 C = CHN = N C_6 H_3 (N O_2)_2 \cdot 2, 4$ $[p \cdot (CH_3)_2 N C_6 H_4]_2 C = CHN = N C_1 H_7 O_2$ (SS)	p-(CH ₅) ₂ NC ₆ H ₄ C(C ₆ H ₅)=CHN=NC ₆ H ₅	$p ext{-}(\mathrm{CH_3})_2 \mathrm{NC}_6 \mathrm{H_4}(\mathrm{C(C}_6 \mathrm{H_3}) = \mathrm{CHN} = \mathrm{NC}_6 \mathrm{H_4} \mathrm{NO}_2 - p$ $p ext{-}(\mathrm{CH_3})_2 \mathrm{NC}_6 \mathrm{H_4}(\mathrm{C(C}_6 \mathrm{H_3}) = \mathrm{CHN} = \mathrm{NC}_6 \mathrm{H_3}(\mathrm{NO}_2)_2 - 2, 4$ $\mathrm{C}_6 \mathrm{H_4} \mathrm{CH} = \mathrm{CHCH} = \mathrm{CHN} = \mathrm{NC}_6 \mathrm{H_3} \mathrm{NO}_2 - p$	2,4-(02N)2C6H3N=NCH=C(C6H3)C(C6H3)=CH2	B. Compounds Containing a Reactive Methyl Group stituent(s) niline r-Product (Yield, %) Troduct (Yield, %) 2.4,6-Trinitrobenzaldehyde p-nitrophenylhydrazone (36) tro 2.4,6-Trinitrobenzaldehyde p-nitrophenylhydrazone (84) Imidazole-2-enrboxaldehyde p-nitrophenylhydrazone (84) tro 3,5-Dicarboxy-6-methylpyridine-2-earboxaldehyde p-nitrophenylhydrazone (94) 1,2-Dihydro-1-methyl-2-phenylazomethylenequinoline tro 1,2-Dihydro-1-methyl-2-(p-nitrophenylazomethylene)- quinoline
Substituent(s) in Aniline*	1	4-Nitro 2,4-Dinitro 1-Aminoanthra- quinone	·	4-Nitro 2,4-Dinitro 4-Nitro	2,4-Dinitro	B. Compour Substituent(s) in Aniline 4-Nitro 4-Nitro 1-Nitro 4-Nitro
Hydrocarbon	1,1-Bis-(p-dimethylamino- phenyl)ethylene		1-Phenyl-1-(p-dimethylamino- phenyl)ethylene	1-Phenyl-1,3-butadiene	2,3-Diphenyl-1,3-butadiene	Reactive Methyl Compound &-Picoline 2.4,6-Trinitrotoluene 2.4-6-Pimithylinidazole 2.6-Dimethylinidazole pyridine N-Methylquinaldinium iodide

TABLE VIII—Continued

cq
ž
3
õ
Ÿ
1
roup
ξ.
~
Ž
Methy
~=
S
₹
c_{α}
2
ä
<u>1</u>
Ĩ
ţ
ã
Ö
ş
≋
p_0
Compounds
ర
B.

	Substituents		
Reactive Methyl Compound	in Aniline	Product (Yield, %)	References
2-Methylbenzothiazole	4-Nitro	Benzothiazole-2-carboxaldehyde p -nitrophenylhydrazone (30)	366a, b
2,3-Dimethylbenzothiazolium iodide	1	2-[Bis(phenylazo)methylene]-3-methylbenzothiazoline	132c
	4-Nitro	2-[Bis- $(p$ -nitrophenylazo)methylene]- 3 -methylbenzo-thiazoline	132c
2,3-Dimethylbenzothinzolium methosulfate	1	2-[Bis-(phenylazo)methylene]-3-methylbenzothiazoline (80)	132d
	4-Methyl	2-[Bis-(p-tolylazo)methylene]-3-methylbenzothiazoline	132d
	4-Methoxy	2-[Bis-(p-anisylazo)methylene]-3-methylbenzothiazoline	132d
	.t-Chloro	2-[Bis-(p-chlorophenylazo)methylene]-3-methylbenzo- thiazoline	132b, 132d
	2-Nitro	2-[Bis-(o-nitrophenylazo)methylene]-3-methylbenzo-thiazoline	132d
	4-Nitro	2-(p-Nitrophenylazomethylene)-3-methylbenzothiazoline	132g
		2-1 bis-(p-introphenylazo)methylene]-3-methylbenzo- thiazoline	132b, 132d
	-Sulfo	2-[Bis-(p-sulfophenylazo)methylene]-3-methylbenzo-thiazoline	132d
	2,5-Dichloro	2-[Bis-(2,5-dichlorophenylazo)methylene]-3-methylbenzo-thiazoline	132d
	2-Methoxy-4-nitro	2-(2-Methoxy-t-nitrophenylazomethylene)-3-methylbenzo- thiazoline	132g
2-Methyl-3-ethylbenzo- thiazolium iodide	4-Chloro	2-[Bis-(p-chlorophenylazo)methylene]-3-ethylbenzo-thiazoline	132b
	4-Nitro	2-[Bis-(p-nitrophenylazo)methylene]-3-ethylbenzo-thiazoline	132b, 132c

	2,5-Dichloro	9,10-Dihydro-9-methyl-10-(2,5-dichlorophenylazo-	132g	
	2 4. Denitro	methylene)acridine	;	
		methylene)acndine	1 4	DI.
	2-Methaxy-5-chloro	2-Methoxy-5-chloro 9,10-Dhiydro 9-methyl-10-(2-methoxy-5-chlorophenylazo- methylenclacidine	1329	ZON
	2-Methoxy-4 nitro	9,10-Dhydro-9-methyl-10 (2-methoxy 4-nitrophenylazo- methylene)aeridine	132g	NUM
2-Acetamido 9 methylaeridine		2-Acetamidoacridine-9-carboxaldchyde phenyllydrazone (66)	133	C
	4-Nitro	2-Acetamidoacndine-9-cm boxaldehyde p nitrophenyl-	132	OUP
9-Methylxanthylum perchlorate	1	Xanthene-9-cartoxaldebyde phenylhydrazone	14	LING
	4-Nitro	Xanthene-9-carboxaldehyde n-nitronhenyllyydgagaga	2	v
•	2,4-Dinitro	Xanthene 9-carboxaldehyde 2.4-dunitonhenylbydengen	5 3	via
9-Methylthioxanthylium perchlorate	1	Thioxanthene 9-carboxaldehyde phenylhydrazone	<u> </u>	TH A
	4-Nitro	Thioxanthene-9-carhoxaldehyde zanitworkenulhuda zazaz	:	ALI
	2,4 Dinitro	Thioxanthenc-9-carboxaldehyde 2,4 dintrophenyl-	* F	PH.
1-Phenyl-3-methyl-4-180-	ı	hydrazone		ΑT
propyldene-2-pyrazolm-5 one		A.r. Britz, 1-3-methyl-4 a-(phenylazomethyl)ethylidene-2- byrazolin-5-one (57)	135a	IC ·
	4-Nitro	1-Phenyl 3-methyl-4-a (p-nitrophenylazomethyl).	195.	CAI
	O Charles	ethylidene 2-pyrazoline-5-one (76)	9001	RB
	o-carboxy	1-Phenyl-3-methyl-4-a-(m-carboxyphenylazomethyl)-	135a	ON
	2,5-Dichloro	thyndene-2-pyrazolm-5-one (62)		A7
		ethylidene-2-pyrazolan-5-one (51)	135a	гом
				s

TABLE VIII-Continued

B. Compounds Containing a Reactive Methyl Group—Continued

Substituent(s) Reactive Methyl Compound in Aniline		References
	Acridine-9-carboxaldehyde phenylhydrazone	131
2-Methyl	Acridine-9-carboxaldehyde o-tolylhydrazone	131
3-Methyl	Acridine-9-carboxaldehyde m-tolylhydrazone	101
4-Methyl	Acridine-9-carboxaldehyde p -tolylhydrazone	191
2-Methoxy	Acridine-9-carboxaldehyde o-anisylhydrazone	131
4-Methoxy	Λ cridine-9-carboxaldehyde p -anisylhydrazone	131
Tropostal	Acridine-9-curboxaldehyde p-hydroxyphenylhydrazone	131
4-Chloro	Λ cridine-9-carboxaldehyde p -chlorophenylhydrazone	131
4-Iodo	Λ cridine-9-carboxaldehyde p -iodophenylhydrazone	131
2-Nitro	Acridine-9-carboxaldehyde o-nitrophenylhydrazone	131
3-Nitro	Acridine-9-carboxaldehyde m-nitrophenylhydrazone	131
4-Nitro	λ cridine-9-carboxaldehyde p -nitrophenylhydrazone	131
2-Carboxy	Acridine-9-carboxaldehyde o-carboxyphenylhydrazone	131
3-Carboxy	Acridine-9-carboxaldehyde m-carboxyphenylhydrazone	131
4-Carboxy	Acridinc-9-carboxaldehyde p-carboxyphenylhydrazone	131
oJlnS-1	λ cridine-9-carboxaldehyde p -sulfophenylhydrazone	131
2,4-Dimethyl	,	131
2,4-Dinitro	Acridine-9-carboxaldehyde 2,4-dinitrophenylhydrazone	131
2,5-Dimethoxy-4-	ty-4- Acridine-9-carboxaldehyde 2,5-dimethoxy-4-(phenyl-	132
phenylamino	no amino)phenylhydrazone (43)	
9,10-Dimethylacridinium — — — methosulfate	9,10-Dihydro-9-methyl-10-phenylazomethyleneacridine	14
4-Nitro	9,10-Dihydro-9-methyl-10-(p-nitrophenylazomethylene)- acridine	14, 132g

TABLE VIII-Continued

B. Compounds Containing a Reactive Methyl Group—Continued

References	135a	135a	135a	135a	135a	135a
Product (Yield, %)	1-Phenyl-3-methyl-4-α-phenylazomethylbenzylidene-2- pyrazolin-5-one (70)	1-Phenyl-3-methyl-4-a-(p-nitrophenylazomethyl)benzyl-idene-2-nyrazolin-5-one (73)	1-Photon Franchistor (10) I-Photon 3-methyl-4-corboxyphenylazomethyl- honoriting 0	Jenzylagene-z-pyrazonn-5-one (oz.) I-Phenyl-3-methyl-4-α-(2,5-dichlorophenylazomethyl)-	Denzyndene-z-pyrazohn-5-one (87) L-Phenyl-3-methyl-4-a-(4-chloro-2-nitrophenylazomethyl)-	Denzyndene-2-pyrazolin-5-one (47) I-Phenyl-3-methyl-4-[x-(p-nitrophenylazomethyl]-m- nitrobenzylidene]-2-pyrazoline-5-one (52)
Substituent(s) in Aniline	ı	4-Nitro	2-Carboxy	2,5-Dichloro	4-Chloro-2-nitro	4-Nitro
Reactive Methyl Compound	1-Phenyl-3-methyl-4-α-methyl-benzylidene-2-pyrazolin-5-one					 1-Phenyl-3-methyl-4-(α-methyl- 4-Nitro m·nitrobenzylidene)-2- pyrazolin-5-one

C. Cinnolines from o-Aminophenylethylenes

137, 138, 376 137, 374, 375, 376

References

E. Indazoles from o-Toluidines

Product, Substituent(s) in Indazole

Reactabl. Substituent(s) in Aniline	Uniline	Violation of a
4-Nerfit		(0/ 1077)
2 Canonic Dal		1 (3-5)
P.M. (hall-3 mans)		3-Cyano (71)
o Character		4-Nitro (96-98)
2.Marks Indian		5-Methyl
T. Marchael S. serlan		5-Natro (82-90)
2. Methyl Graften		6-Nitro (00-98)
2 d d Teleschiel		7-Nitro (80)
2.L.Dunitmen med had		5,7-Dimethyl (small)
2.3. Dimethyl-t-pleas		5,7-Dinitro (31-38)
2.3-Tilmethal Septes		1-Methyl-5-netro (79-86)
2.7 Identhyl Gaires		1-Methyl-6-nitro (91)
2,1-Interthyl-3 pitte.		4-Methyl-7-nutro (100)
2,4-finne that 5 mitra		5-Methy 1-1-nutro (79)
2,1 smethyl 6 min.		5-Methyl 6-natro (75-80)
2,5-17km (hy) 3 nitry		5-Methyl-7-nutro (18-53)
2,5-Puncthyt-Lightn		6-Wethyl-4-mtre (93)
		6-Wethyl-5-mtro (83)
Note little Princes 172 and the		

Title le an over-all yield from the rates compound.

TABLE VIII-Continued

D. 4-Hydroxycinnolines from o-Aminophenylacetylenes

Substituent(s) in

	References	125 125 23 23 23 367, 125, 126 23 125
\N.	(Yield, %)	6-Methoxy 6-Chloro (20*) 6-Bromo (20*) 3-Phenyl (55) 6-Methoxy-3-phenyl 3-Carboxy (60) 3-Carboxy-6-chloro (66) 3-Carboxy-6-bromo (66) 3-Carboxy-6-methoxy (68*) 3-Carboxy-6-methoxy (68*)
	Amine	2-Amino-5-methoxyphenylacetylene 2-Amino-5-methoxyphenylacetylene 2-Amino-5-bromophenylacetylene 2-Amino-5-bromophenylacetylene 1-(0-Aminophenyl)-2-phenylacetylene 1-(2'-Amino-4'-methoxyphenyl)-2-phenylacetylene 0-Aminophenylpropiolic acid 2-Amino-5-chlorophenylpropiolic acid 2-Amino-5-chlorophenylpropiolic acid 2-Amino-5-methoxyphenylpropiolic acid 2-Amino-4,5-methoxyphenylpropiolic acid 2-Amino-4,5-methylenedioxyphenylpropiolic acid

380

(80)

Bis-(2-amino-4-chlorophenyl)methane

Substituents X in

Bis-(2-ammo-4-acetamudopheny1)methane Bis-(2-ammo-4-carboxyphenyl)methane Bis-(2.ammo-4.cyanophenyl)methane Dis-(2-amino-4-acetylphenyl)methane

Note: References 177-480 are on pp 136-142. Ins-(2-ammo-4-carbethoxyphenyl)methane

One nero group was replaced by chloring when the diazotization was run in hydrochloric acid.

† This product was prepared by tetrazottring the amine and reacting the tetrazonium salk with sodium azide.

Carbethoxy Acetamido Carboxy Acetyl Chloro Cyano

TABLE VIII—Continued

Indazoles from o-Toluidines—Continued E.

Product, Substituent(s) in Indazole

Reactant, Substituent(s) in Aniline

2,5-Dimethyl-6-nitro 2,6-Dimethyl-3-nitro 3-Chloro-2-methyl-4-nitro 3-Chloro-2-methyl-6-nitro 4-Chloro-2-methyl-6-nitro

	(Yield, %)	References
	6-Methyl-7-nitro (81)	137
	7-Methyl-4-(or 6-)nitro (100)	137
•	4-Chloro-5-nitro (86)	380
•	4-Chloro-7-nitro	379
•••	5-Chloro-7-nitro	379
	7-Chloro-6-nitro* (85)	380
-4*	4-Methoxy-7-nitro	379
_	6-Methoxy-7-nitro (83)	383
77	4-Diethylsulfamyl-7-nitro	379
,	5,6-Dimethyl-4-nitro (58)	137
41.3	5,6-Dimethyl-7-nitro (20)	137
41,	5,7-Dimethyl-4-(or 6-)nitro (100)	137
,	5-Methyl-4,6-dinitro (80)	137
	7-Methyl-4,6-dinitro (86)	137
	6-Methyl-5,7-dinitro (100)	137
	5,7-Dinitro-6-sulfo	381
•••	5,7-Dimethyl-4-triazo†	389
	5,6-Dimethyl-4,7-dinitro (75–85)	137
	5,7-Dimethyl-4,6-dinitro (100)	137

3-Diethylsulfamyl-2-methyl-6-nitro

2,4-Dinitro-6-methyl-3-sulfo

2,5-Dinitro-3,4,6-trimethyl 3,5-Dinitro-2,4,6-trimethyl

2,4,6-Trimethyl-3-amino 3,6-Dimethyl-2,4-dinitro 2,4-Dimethyl-3,5-dinitro 2,6-Dimethyl-3,5-dinitro 2,4,6-Trimethyl-3-nitro 2,4,5-Trimethyl-3-nitro 3,4,6-Trimethyl-2-nitro

3-Methoxy-2-methyl-6-nitro

2,3-Dinitro-6-methyl

3-Methoxy-6-methyl-2-nitro

p.O.NC,H.

2,4-(O,N),C,H,

392

12

296	2984	143	143	143	143	143	148	401	393, 392	52, 236	52	52	389	392	387	393a	392	392	148	389	194	393, 392	389	392	
l	ļ	I	I	I	I	I	34	80	65	68-71	I	1	75	1	I	72	1	I	81	Quant.	I	46	93	1	
			-								•	-=	ī									_	7		
11	i e	NO NO	10,220,0	C424	P. D. V.	1000	S C	i c	1	10.0	NO.	CS CL		Ė	į	i ii	C.H.	E	n-IIO.SC	5 Tetrazol	C.H.	O. O.I.	C,II,	C.II.	
(C.H.), NCO	C.II.	i i	2.4-(CH.), C.H.	2.4-(CH.), C.B.	2,4-(CH.),C.II.*	C.II.	P-110.SC.II.+	C.II.	C.II.	c'n'	с,п,	C, II,	Cholyl (C, II, O,	O,II,	c'u'	C,III,	C, 11,	r'i	c'n'	II,N(HN=)C	c'n'	C.II.	C,H		
															3					_					
· Ho	спос	O.0.10	OIL'O'C	O'O'II	7,0,117	o'n'o	0,011	c'n'	CII,CO	CIL	CH,CO	n-C, II,	,C,11,	11.						T. C. II				-	

. Only the syn bonies of methyl giveralate 2.4-directhylphenyllydrasone gavo a formarin. The onti bonies reacted with Note: References 177-480 are on pp. 136-142. the climination of nitrogen.

† The phenyl-uifamyl group was replaced by a phenyl group in the coupling reaction.

TABLE I

COUPLING OF DIAZONIUM SALTS WITH HYDRAZONES

		Yield, %
A. Simple Hydrazones	$^{\prime\prime}N_2X \rightarrow \stackrel{ }{\mid} N_2X \rightarrow \stackrel{ }{\mid} N=NR'$	ΙΑ"
A. Simple	RCH=NNHR' + R'N ₂ X ->	B' Cholyl (C. HO.)

~

References	387	322	139, 144, 388	1.4.4	1 17	139, 144	380	389a	3808	389a	389a	380c	1:1:1	1.1.4	144	144	129, 144	390	391	390	390
Yield, %	!	j	88	I	[Quant.	Quant.	89	1	16	<u>21</u>	28	Small	1	i	1	SI:	1	1	ļ	1
ΙΑ"	C_6H_5	H _s	H.),NC,H,	O ₂ NC ₆ H ₄) ₂ NC ₆ H ₄	${ m IO_3SC_6H_4}$	$C_{i}H_{i}CII = CHC_{i}II_{i}$	$C_6U_8C(CN) = CIIJC_6II_4$	p-0 ₂ NC ₆ II ₄ CII=CII)C ₆ II ₁	P-CH ₃ CONHC ₆ H ₄ CH=CH)C ₆ H ₄	$C_0 H_5 N == N C_0 H_4$	21NC6111	15 N. 13		I SIN C		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 02 0		1110011
	O ₅)					Calls p-0													, .	, T	,

	DIAZC	ONIUM	COUL	LIN	3 17.1	TH A	LIPE	ATIC	CAR	BON	ATO	MS
395a 395a 395a	389a 389a	389a 389a	389e 389e 389e	3896	3896	389c	389c 150, 147, 149,	390 150, 149, 390	395a	398a	395a	398a
64	23.52	8 2	8 23 23	22 23	8 23	55 es	S S	r. e	8	Н	ន !	1 8
p CH ₂ CONH(CH ₂) ₁ ,N(COCH ₁)C ₄ U ₄ P-{(C ₄ H ₃) ₂ N(CH ₄) ₂ O ₃ CH ₄ P-{(C ₄ H ₃) ₂ N(CH ₄) ₂ CH(CH ₄)NHO ₃ SC ₄ H ₄	$p \cdot (C_e H_eCH = CH)C_e \Pi_e$ $p \cdot (p \cdot HOC_e H_eCH = CH)C_e \Pi_e$ $p \cdot (p \cdot BrC_e H_eCH = CH)C_e \Pi_e$	p-(p-0,NC,H,CH=CH)C,H, p-(p-CH,CONHC,H,CH=CH)C,H, n-(C,H,N=N)C H	p-(p-CH_CH_N=N)C,H, p-(p-CH_CH_N=N)C,H,	P-(P-HOC, H, N=N)C, H, P-(P-O, NC, H, N=N)C, H,	P-(P-(CLI)) INC, H. N. P. P. P. P. P. P. P. C. P. P. P. C. P.	P. G. C. 4 - HOC, H. N - H. N C, H. P. G. C. 4 - HOC, H. N - H. N C, H. 2.5 (CH), - 4 - C, H. N - M. C. H. N	α C, H,	$\beta \cdot C_{10}H$, $4 \cdot (C_{0}H_{s}N = N) \cdot C_{10}H_{s}$	6-A yetayı 6-A yetayı 7 Onnolyl	6 Ethoxy-2 quincly!	2 ThinnlyImethyl	5-Methyl-2 thuazolyl
H'0'0'		หู้ หู้ เก็บ เก็บ	ដូច ភូមិ ភូមិ	i i i i	, in co	H H	C,H,	มี่มี่มี ขึ้นขึ้น	น์ นับ นับ	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓	นี้นั่ง อื่นใ	C,H,

Nofe: References 177-480 are on pp. 136-142

TABLE IX—Continued

Simple Hudrazones—Continued
S-Co
-SOK
drazo
Hu
Simple
÷

p-BrC ₆ U ₄ p-BrC ₆ U ₄ sc-C ₁₀ U ₇ cc-C ₁₀ U ₇ cc-C ₁₀ U ₇ cc-C ₁₀ U ₇ cc-U ₃ C ₆ U ₄ p-CU ₃ C ₆ U ₄ cc-C ₁₀ C	
p-BrC ₆ H ₄ p-O ₃ NC ₆ H ₄ p-O ₃ NC ₆ H ₄ c-C ₁₀ U ₇ c ₆ U ₈	4C ₆ H ₄
p-BrC ₆ H ₄ p-O ₂ NC ₆ H ₄ p-O ₂ NC ₆ H ₄ c-C ₁₀ U ₇ C ₆ U ₁ C ₆ U ₁ C ₆ U ₂ c ₆ U ₃ c ₆ U ₄ p-CU ₃ C ₆ U ₄ p-i-C ₁₁ C ₆ U ₄ p-i-C ₁₂ U ₄ C ₆ U ₄ p-BrC ₆ U ₄ p-BrC ₆ U ₄ p-BrC ₆ U ₄ p-BrC ₁₂ U ₄ p-GCU ₆ U ₄	, u.,
p-BrC ₆ H ₄ p-O ₂ NC ₆ H ₄ p-O ₃ NC ₆ H ₄ a-C ₁₀ H ₇ c ₆ H ₅ p-CH ₅ C ₆ H ₄ p-t-C ₁₁ C ₆ H ₄ p-t-C ₁₂ H ₅ C ₆ H ₄	4C ₆ H ₄
	4C ₆ H ₄
	C, H; C, H; C, H; C, H; C, H; P-D, NC, H, C, H;

	DIA	ZO	NI	CM	1 (01	CF	L	N	3 1	7.1	TF		\L	[P]	HA	TI	С	C	ıRı	30	X	A7	CON
398c	3080	303	141	141	141	141	141	141	380c	389	147	198	3984	147, 149, 390	330	390	150, 149	3984	298A	398	387	3894	398a	194
23 8	35	75-80	ļ	I	1	1	1	I	10	26	1	33	ı	I	;	ı	308	1	f	13	1	47	I	1
β C ₁₆ H, p-(p-C ₂ H ₅ OC ₆ H ₄)C ₆ H ₄ 3.CH O.4.(ω.CH O. H)C H	3-CH ₂ O-4-(3,4-(CH ₂ O) ₂ C ₂ H ₂ C ₄ H ₂ 2.5-(CH ₂ O) ₂ -4-(n ₂ O) ₂ C ₃ H ₂ C ₄ H ₂	o-HO2CC,H	, in J	o Cic,III.	m-O ₂ NC ₆ H ₄	o-HO2CC,II,	m-IIO,CC,H,	р-по,сс,п,	p-(C,H,N=N)C,H,	p (C,H,N=N)C,H,	C,H,	C,EE,	C,H,	CHIT	p CH ₂ C,H ₄ ;	*H2N20-4	Collis	111	1,011	"1"" "1" " " " " " " " " " " " " " " "		P (Call CH = CH)C, H.	in the second	1
p-0,NC,H, p-0,NC,H, n-0.NC,H,	p O,NC,H,	o-Ho,cc,H,	m-HO,CC,H,	"-Ho'cc'H	m-HO2CC,II	"H-00'CC'H	m-HO,CC,H,	m-HO,CC,H,	p-HO,CC,H,	p-CH,CONIIC,H,	p-H0,8C,H,	p-H ₂ NO ₂ SC ₂ H ₃	OONEGER (1)	8 C ₁₀ H,	2.Clett	2 C 11	(A.C. II) NCO	A.C. II O. II MOD	CONTRACTOR AND	Cholst C II O	n-(C.H. NN of H	2-Pendy	2-Qunolel	Note: References 177 400
C, II, C, II, C, II,	n n o	CH,	ที่ E		1 t	, E	Sun S	ıı ı	# E	นี้ เก็บ	5110	1	1	i i	C.II.	С.П.	c'H'	H,O	C.H.	цо	C,H,	C,H,	°п°	Note: Refer

† These products are probably 4-arytazonaphitylhythrazones rather than formatains. See ref. 160. § A 58% yield of the 1-phenylaro-2 naphitylhydrazone of berzaldchyde was obtained also. Note: References 177-480 are on pp 136-142,

References

TABLE IX-Continued

A. Simple Hydrazones-Continued

R" 4-Methyl-2-thiazolyl 4,5-Dimethyl-2-thiazolyl
2,5-Dimethyl-4-(2-thiazolylazo)phenyl p-(6-Methyl-2-benzothiazolyl)phenyl
$p_{ ext{-}0_2 ext{NC}_6 ext{H}_4}$
O ₆ H ₅ CH C H
α - $C_{10}\Pi_{7}$
β-C ₁₀ H,
7-CH3OC,H3
$C_{\mathbf{H_s}}$
ပီ
C,H,
CIC H
$^{\prime\prime}$ (C ₆ H ₅ N=N)C ₆ H ₄
$C_{\mathbf{t}}\mathbf{H}_{\mathbf{b}}$
p-IC ₆ H ₄
$p\text{-}\mathrm{IC}_{\mathbf{G}}\Pi_{\mathbf{I}}$
ر ا
P-CaHsCall,
11,

~

65	98	1	i	40	19	49	63	ì	æ	40	23	17	1	ı	26	3	ı	1	43	S	14	ļ	i		ı	1	I	9	92	Q.
C,H,	p-NCC,H	p-cic, H.	p-cic,H	C,II,	p-cn oc. u.	p-C,H,C,H,	3-CH,0-4-(m-CH,OC,H,)C,H,	n'o	p-(C,H,CHCH)C,H,	p-(C,H,CII—CH)C,II,	C,H,	p-CH,CONHC,H,	p-(p-HOC,H,N=N)C,H,	c'n'	р-СН,ОС,П,	C.H.	100	i i i	in the second	P-CallsCall	C,B,	i Br	p-cuc,H,	9-GC.H.	1	176 F	m-r scoon	O,B.	P-Cusuc, H	p-CiC, H.
C,H,	C,III,	2-Pytodyl	2-Quinolyl	C,H,	p-CH ₂ OC,H ₄	P-O,NC,H	p-O,NC,H,	H,N(HN=)C	p-(C,H,N=N)C,H,	P-(C, H,N=N)C, H,	# 100 m	C, H,	P-CH,CONHC,H,	Ħ.	C,H,	Cholyl (C, H,O,)	H.0	, E	1000	Tall of the last	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	On the state of	2-rynayi	Z-Qunolyl	Cholyl (C.H.O.)	C.H.	Î p	i H	i i	Ī
NCC, H,	NCC, H.	O,NC,H	o,NC,H,	ONCH.	-O,NC,H,	O.NC,H	O,NC,H	-ONC.H.	HOCCH.	off Course of	OIL COMMON	OH CONTROLL	TO SO IT	The Property	S,4-1CH,D,C,H;	C, H, CH,	on II'o	P-C, H, C, H,	P-C.H.C.H.	2.Furvl	2-Furvi	2 Furvi	Found	1	S-Furyl	2-Thienyl	2-Pyridyl	2-Pyridy]	2-Pyridyl	2-Pyridyl

teferences 177-480 are on pp. 136-

TABLE IX—Continued

A. Simple Hydrazones—Continued

References	398a	398b	9888	9889	9868		405	402	19d	15	389a	323b	323b	398a	398a	19d	398a	398a	323b	p_{61}	395a	395a	389a	2984	398a	398a	3890
Yield, %	1	99	50	38	22		19	I	1	ļ	83	43	15	1	1	İ	1	1	44	1	80	10	14	1	i	1	50
m R''	p-CIC, H.	Ç,H,	C,H,	C ₆ H ₅	C_6H_5	•	C,H,	m-O ₂ NC ₆ H ₃	5-Tetrazolyl	C_6H_5	p -(C_6H_5CH = CH) C_6H_4	$p ext{-CIC}_{f k}{f H}_{f k}$	$p ext{-}0_2 ext{NC}_6 ext{H}_4$	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	p-CIC ₆ H ₄	5-Tetrazolyl	5-Tetrazolyl	5-Tetrazolyl	o-CH3OC,H4	5-Tetrazolyl	p-BrC ₆ H ₄	2,4,6-Br ₃ C ₆ H ₂	p-(C,H,CH=CH)C,H,	O'H's	p-CiC, H.	P-CIC,H	P-(CoH n = N)CoH,
R, H	2-Quinolyl	2-Thiazolyl	4-Methyl-2-thiazolyl	4-Phenyl-2-thiazolyl	4,5-Diphenyl-2-	thiazolyl	$H_2N(NH==)C$	$H_2N(HN==)C$	$H_2N(HN==)C$	$c_{i}H_{s}$	C_6H_5	$p ext{-}\mathrm{ClC}_{6}\mathrm{H}_{4}$	$p ext{-}O_2 ext{NC}_6 ext{H}_4$	2-Pyridyl	2-Quinolyl	$H_2N(NH=)C$	2-Pyridyl	2-Quinolyl	o-CH ₃ OC ₆ H ₄	$H_2N(NH==)C$	Chis	Cens.	Counts	(Cens), NCO	2-Fyriayi 9-Oninoled		Corre
rt Lt	C.H.	ž, K,	i i i	Î Î	$C_{\mathbf{t}}\mathbf{H}_{\mathbf{s}}$		C,H,	$C_{f d}H_{f s}$	p - $(CH_3)_3$ CHC_6H_4	$p ext{-}\mathrm{CH_3OC_6H_4}$	$p ext{-}\mathrm{CH_3OC_6H_4}$	$p ext{-}\mathrm{CH_3OC_6H_4}$	p-CH ₃ OC ₆ H ₄	p-CH ₃ OC ₆ H ₄	p-CH ₃ OC ₆ H ₄	p-chjOc,H,	o-cic _e H ₁	9-CIC ₆ H ₄	p-cic, H ₁	p-civens	P-Diogram	P-Drogers	P-DICERT	HOCH-	0-110C.H.	n-1100.11.	

B. Hydrazones of Sugars

Substituent	n Andre Product (Yield, %)	D-Glucose diphenylformazan (64) 1395. 139c.		ormazan (27)	D Galactose diphenylformazan (73) 1395,	D-Galactose phenyl (p-bromophenyl)formazan	d)formazan	D-Mannose diphenylformazan (68) 1395, 1395, 1396	r Rhamnose diphenylformazan (45) 1398, 1398, 1398	D-Aylose diphenylformayan (55)	D-Mannows diphenylformazan pentaacetate (57) 139e	
		D-Glucose phenylhydrazone	Anhydro n glucos phonology	D-Galactose phenyllydersons	D-Galactose phenylhydrazone	drazone	D-Mannose phenylhydrazone	L-Arabinose phenylhydragone	D-Xylose phenylhydrazone	out the decree	anomin friday to the same	Note: References 177-480 are on pp. 136-142.

TABLE IX-Continued

4. Simple Hydrazones-Continued

Poforomos	100	1020	+02a	398a	3980	308	2000	28080	398a	402a	300	402d, 139a	400, 402e	402d, 402f,	·102 <i>g</i>	132b, 402f	1326, 402f.	1027	405d	132b, 402f	132b, 402f	132b, 402f.	102%	132b, 402f,	1029	1026	103
Yield, %	0/ 1	01.	e	I	J	1		!	I	50	76	50	59	두		İ	I		55	1	1	I		1		s	65
**	p-(C,11,C11=C11)C,11.	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$P \cdot (C_6 \cup_5 N = N) C_6 \cup_4$	ה-CIC 11	p-CIC,11;	6-Quinoly-l	ש-כוכיוו'	6.Onings:	i dinama).	71.5	C613	() (1) () () () () () () () () ()	0-103/C(-011)	(0115	W-CIC-11.		712	0.110,00 11	110	- COD-a		9	p-0,NC,11.		כיווי	o-110,(C.11,	
R'	C _a II,	C.H.	C6443	2-Cyriayi	I.ioumb-z	z-Quinolyi	2-Quinolyl	2-Quinolyl	0.11.	ביים האברים	11.0	C. IT.	֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		C, III,	C _e H _s	,	G,11,5	p-כוכ _י וו	p-CIC ₆ II,	$p \cdot O_3 N C_6 \Pi_1$		$p \cdot O_2 N C_6 \Pi_4$;	Call	Calls	
~	2-Pyridyl	2-Pvridyl	9-Punidal	9.Denicles	5 Danitari	24 yearst	4-17Fidy1	-f-lyridyl	2-Phenyl-1,2,3-(rinzol-4-y)	2,6-Dioxy-f-pyrimidyl	2-Quinolyl	2-Quinolyl	2-Benzothinzolyl		2-Benzothiazolyl	2-Benzothiazolyl		2-Benzethiazolyl	3-Benzothiazolyl	2-Denzol hazolyl	z-penzotmazolyl	9-18	z-oenzothuzolyl	". Represed Courts, 11.1	2-Denied Mannely	Mound flows -	

		Į,	14	Z	17	IC	м	COLI
3984	3984	402k, 398a	3984	3984	402k, 398a	402k, 398a	3080	398a
1	1	40	1	1	19	19	}	ì
O,TIO	CII,O	CII,0	OII)	11	cn,o	опо	спо	сп,0
r r	2-Pyridyl	c'n'	2-Pyridyl	c'n'	C,III,	c'n'	2-Pyridyl	c,u,
2-Pyridyl	2-Pyridyl	4-Pyridyl	4-Pyridyl	2-Thienyl	2-Thienyl	2-Thianaphthenyl	2-Thianaphthenyl	2-Benzothuzolyi

D. Diformazans from Dihydrazones

	Substituent		
Hydrazone	in Aniline	Product (Yield, %)	Perferen
Glyoxal dicholylhydrazone	1	Bis-(N-Cholvi-N'-nbenviformaran)	
Dioxosuccinic acid phenylhydrazone	1	Bis-(N.NDiohenviformasan) (small)	2
Succinaldehyde bisphenylhydrazone	1	C.C. Ethylenebis-(N. N. dinhonylCameron) (67)	1001
Succinaldebyde bisphenylhydrazone	4.Phenylazo	C,C'-Ethylenebis-[N-phenyl-N'-(p-phenylazonhenyl)-	62.
Subsection to the state of		formazan] (29)	2000
Suberaluenyae onsphenyinydrazone	1	C,C'-Hexamethylenebus-(N,N'-diphenylformazan)	205
	4-Phenylazo	C,C'. Hexamethylenebis-[N-phenyl-N'-(p-phenylaxo-	180
Bernell Alberta and a second		phenyl/formazan] (30)	2000
rereputatoenyde otsphenylbydrazone		p-l'henylenebis-(N.N'-dipbenylformazan) (90)	130
	4-Carbethoxy		1 2
		formazan] (47)	

Note: Reference 177–480 oz oz pp. 182-1.12. Place string moderiel was place) glyvytie edd phosylhydraxone. I The product was also oblained from place) glyvytie edd phosylhydraxone in 50%, yield.

TABLE IX—Continued

. Diformazans from Hydrazones and Diamines

	References	179	402j	402;	402k, 402j	398c	398c	398a	398a	402k	398a	398a	402k	398a	398a	398c	398c	402k	402k, 398a	398a	398a
$^{N_2}X \rightarrow \begin{bmatrix} RC=NNHR' \\ N=N \end{bmatrix}$	Yield, %	1	llo6	39	72	11	18	1	1	1	i	1	1	i) :	49	12	79	70	1	
$\begin{bmatrix} \\ \\ \end{bmatrix}$	×	н	Н	$^{ m cH}_{ m 3}$	$^{ m CH_3O}$	H	$_{ m CH_3O}$	CH ₃ O	CH ₃ 0	CH ₃ O	OH 30	CH ₃ O	OH O	0,00	CE TO	т Н	CH ₃ O	CH ₃ O	OH O	0.10	2670
$RCH=NHNR' + XN_2$	R,	C_6H_5	$\operatorname{C}_{\mathbf{H}_{\mathbf{s}}}^{\mathbf{H}_{\mathbf{s}}}$	Ç.H.	CeH ₅	p-0-NC,H,	p - $O_2NC_6H_4$	Z-Fyridyl	Z-Quinoiyi	Och 5 Prmidu	2-1 yildyi 9-0ninolul	C.H.	2-Peridel	2-Quinolyl	DO.O.a.	H.D.N.C.	C.H.	C.H.	2-Pyridyl	2-Quinolyl	•
																	£	ı			

2

	DIA	LON	CM	CO	UPI	'IV	G 1	WIT	H	ΑI	JP.	HA	TI	C (AI	RBC
145	27, 153, 95a 144	290a 290a	0.02	19	52, 142 19	141	141	- -	141	120	60, 70, 140, 151	10	19	403a	403a	403a
1.1	87.8	5	Quant.	lë	2	1	1 1	! !	1	1:	26	1 !	8	t-	38	4
p-0,NC,H,	o-O-NC,H,	P-CH ₂ OC,H ₂	o, H	P-CH,C,H,	ОН	P-CH ₂ C ₆ H ₄	m O,NC,H.	p-O,NC,H	2,4-(CH ₃),C ₆ H ₃	รู้ น	P-CH C II	C,H,	o-CIC,III,	о-сн.с, п,	o-Cic,II,	PO2INCEIL.
o-CH,O2CC,H, 2,4-(CH,)2C,H,	C,H,	р СП,00,П,	in in	o i	ů,	i ii	o, II,	o'll'o	i H	C.	о,н,	p-CII,C,H,	PCII,O,II,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0-NC.II	
110,C 110,C																Note: References 177-480 are on pp. 130-149
C CH,	.	CH, CH, O, C	2'0'H'2	cn'co	i i	t'n's		15	0,11,00	N=N'II')	N I N I S	HOCH CH.	HOCH CH	HOCH, CH,	"" Inching	Note: Reference

Note: References 177-480 are on pp. 138-142. 0-O'NC'H

TABLE IX—Continued

E. Diformazans from Dibenzalaminoguanidines

F. Hydrazones Which Couple with Elimination of a Substituent

ĸ

耳耳び

References

143 170α 145 14, 406, 407

7, 403, 409

TABLE X

	Состича от Вілгочи	CHEFING OF DIAZONIUM SALIS WITH HETSROCYCLIC COMPOUNDS	
Heterseyvilo Compound, substituent(s) in		.1. 5. Pyrazolones Product (Yield, %), Nubstituent(s),	
2	Substituent(s) in Aniline* 4-Methyl 2-Amineanthra- quinone	#	References 405, 404 405, 404, 406, 40 550, 408
Carlemethory Carlethory	2-Carbory 2-Carbethoxy	3-Carboxy-L-phenylazo 3-Carboxy-L-(o-carboxyphenylazo) 3-Carboxy-L-(o-carbethoxyphenylazo) 3-Carbomethoxy-4-phenylazo)	404 409 409
3 Carbethonymethyl 3-fhenyl	2-Carbory 2 Carbory 4-Methyl	3 (Arbethory 4-phenylazo 3 (Arbethory 4-(Cerebbyyphenylazo) 3 (Arbethory 4-(Gerebbyyphenylazo) 3 (Arbethorymethy) 4-(Petolylazo) (98) 3 (Phenylazo)	404 404 409 409 55
2. Verlijst 4. Verlijst 6. Verlijstanst 7. Saphthylanst 7. Verlijstanske 171-180 ave og pp. 139-142.	2. Methyl 4. Methyl 2. Naphthylanine \$\beta \text{Suphthylanine} \text{\$\beta \text{Suphthylanine} \text{\$\beta \text{\$\empty}	3-theory t-4-to-to) stands 3-theory t-4-to-to) stands 3-theory t-4-tr-orphity stand 3-theory t-4-tr-orphity stand 3-theory t-4-tr-orphity stand	404, 407, 408, 409 404, 409 404, 409 404, 409 604, 409

Net | Defenses | 171-140 are to pp. 130-142.

• The full name is given when it is an kward to name the ary lamine as a derivative of aniline. 3-Phenyl-4-(x-naphthylazo)
3-Phenyl-4-(\$-naphthylazo)

TABLE X-Continued

A. 5-Pyrazolones-Continued

Product (Yield, %), Substituent(s) in

Heterocyclic Compound. Substituent(s) in

References	410	411	411	412	408	157	413, 414, 415	415, 416, 417	415, 417	415, 417	415, 417	415, 417	415, 417	415, 417	68, 415	415	415, 417	415, 417	417		415, 417
$0 = c_5 \prod_{\substack{1 \text{old} \\ 1 \text{old} \\ 1 \text{old} }}^{\text{H}}$	3-(2-Furyl)-4-phenylazo	1-Methyl-3-amino-4-(p-anisylazo) (41)	1-Methyl-3-carbethoxy-4-(p-anisylazo) (88)	1-Methyl-3-phenyl-4-phenylazo	1-Acetyl-3-phenyl-4-phenylazo	1-Phenyl-4-phenylazo	1-Phenyl-3-methyl-4-phenylazo	1-Phenyl-3-methyl-4-(o-tolylazo)	1-Phenyl-3-methyl-4-(m-tolylazo)	1-Phenyl-3-methyl-4-(p-tolylazo)	1-Phenyl-3-methyl-4-(0-anisylazo)	1-Phenyl-3-methyl-4-(p-anisylazo)	1-Phenyl-3-methyl-4-(0-ethoxyphenylazo)	1-Phenyl-3-methyl-4-(p-ethoxyphenylazo)	1-Phenyl-3-methyl-4-(0-chlorophenylazo)	1-Phenyl-3-methyl-4-(m-chlorophenylazo)	1-Phenyl-3-methyl-4-(p -chlorophenylazo)	1-Phenyl-3-methyl-4-(p-bromophenylazo)	1-Phenyl-3-methyl-4-(p-acetylphenylazo)	1-Phenyl-3-methyl-4-(o-nitrophenylazo)	1-Phenyl-3-methyl-4-(m-nitrophenylazo)
Substituent(s) in Aniline*	i	4-Methoxy	4-Methoxy	ı	1	***	1	2-Methyl	3-Methyl	4-Methyl	2-Methoxy	4-Methoxy	2-Ethoxy	4-Ethoxy	2-Chloro	3-Chloro	4-Chloro	4-Bromo	4-Acetyl	2-Nitro	3-Nitro
0=C 1 2 0=C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-(2-Furyl)	1-Methyl-3-amino	1-Methyl-3-carbethoxy	1-Methyl-3-phenyl	1-Acetyl-3-phenyl	1-Phenyl	1-Phenyl-3-methyl														

TABLE X-Continued

A. 5-Pyrazolones-Confinued

Product (Yield, %), Substituent(s) in

Hete racy effer Companied.

Substituent(s) in

×= 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Substituent(s) in Aniline•	$0 = C_s^{-1} \frac{1}{2N}$ $1 = C_s^{-1} \frac{1}{2N}$ $1 = C_s^{-1} \frac{1}{2N}$	References
1.Phenyl-3-carbethoxymethyl	4-Methyl	1-Phenyl-3-earbethoxymethyl-4-(p -tolylazo) (89)	65
	f-Nitro	1-Phenyl-3-carbethoxymethyl-4-(p-nitrophenylazo) (85)	5) (55
1,3-Diphenyl	-	1,3-Diphenyl-4-phenylazo	409, 415, 422
	2-Methyl	1,3-Diphenyl-4-(o-tolylazo)	409, 415
	3-Methyl	1,3-Diphenyl-4-(m-tolylazo)	415
	4-Methyl	1,3-Diphenyl-4-(p-tolylazo)	409, 415
	2-Methoxy	1,3-Diphenyl-1-(o-anisylazo)	415
	4-Methoxy	1,3-Diphenyl-4-(p-anisylazo)	415
	2-Ethoxy	1,3-Diphenyl-4-(o-ethoxyphenylazo)	415
	4-Ethoxy	1,3-Diphenyl-4-(p-ethoxyphenylazo)	415
	2-Chloro	1,3-Diphenyl-4-(o-chlorophenylazo)	415
	3-Chloro	1,3-Diphenyl-f-(m-chlorophenylazo)	415
	4-Chloro	1,3-Diphenyl-4-(p-chlorophenylazo)	415
	4-Bronno	1,3-Diphenyl-4-(p-bromophenylazo)	415
	2-Nitro	1,3-Diphenyl-4-(o-nitrophenylazo)	415
	3-Nitro	1,3-Diphenyl-4-(m-nitrophenylazo)	415
	4-Nitro	1,3-Diphenyl-4-(p-nitrophenylazo)	415
	3-Salfo	1,3-Diphenyl-4-(m-sulfophenylazo)	418
	4-Sulfo	1,3-Diphenyl-4-(p-sulfophenylazo)	418
	2,5-Dichloro	1,3-1)iphenyl-4-(2,5-dichlorophenylazo)	415
	4-Chloro-2-methyl	1,3-Diphenyl-4-(4-chloro-2-methylphenylazo)	415

0.2-in (b) [dice) land) 415 0.2-ii (rophen) land) 415 31-i-and (ophen) land) 418 31-i-and (ophen) land) 418	flator		110, 110,		1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab) 1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab) 1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab) 1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab) 1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab) 1.Pren) t-3 (2-fuz) b-t(t-chloro-2-neth) phen) tab)
1.3-Dipten) - 4-(3-chlare-2-na (15) phen) laza) 1.3-Dipten) - 6-(4 chlare-2-nitrophen) laza) 1.3-Dipten) - 1-(3 meth) - 4-willopheny laza) 1.3-Dipten) - 1-(4 chlare 3-willopheny laza)	Lif-Diplenyl-4-(v.naphthylazo) Lif-Diplenyl-4-(f.naphthylazo) Lif-Diplenyl-4-(f-valfo-2-naphthylazo) Lifbenyl-3-(f.nrs)) 4-thenylazo	1-Periyl-3-(2-fury))-4-to toly later) 1-Periyl-3-(2-fury))-4-to toly later) 1-Periyl-3-(2-fury) (-freely later) 1-Periyl-3-(2-fury) (-fo-ansylater) 1-Periyl-3-(2-fury) (-fo-ansylater)	r i trensy i S (in INP) - televalus Jazo, -1-Ternsy S (in INP) - televelus y Sub ro Jazo, -1-Ternsy S (in INP) - televelus y Sub ro Jazo, -1-Ternsy S (in INP) - televelus	1-Theory Science in strople my lazari 1-Theory Science in Service in the service	1-Pheny F-3-(2-fury) -4-(4 1-Pheny F-3-(2-fury) -4-(5 1-Pheny F-3-(2-fury) -4-(4
_	Jamine 1 Jamine 1	2-Nethyl 1-17 3-Nethyl 1-17 4-Nethyy 1-17 2-Nethoxy 1-17			100 z
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				#-Chlory.2 to 5-Chlory.2-m 4-Chlory.2-m Ref. reness 177 - 160

Nofe: References 177-480 are on pp. 134-142. • The full name is given when it is sakkward to name the ary lumine as a derivative of amine.

19.4 19.7 19.7

1-(o-Carboxyphenyl)-3-phenyl-4-(p-tolylazo)

4-Methyl

1-(o-Carboxyphenyl)-3-methyl 1-(o-Carboxyphenyl)-3-phenyl

|-(o-Carboxyphenyl)-3-methyl-4-phenylazo |-(o-Carboxyphenyl)-3-phenyl-4-phenylazo

TABLE X-Continued

A. 5-Pyrazolones—Continued

Product (Yield, %),

Heterocyclic Compound.

Substituent(s) in

Substituent(s) in

References 410, 415 415 217 110 416 럞 125 5 33 2 |-Phenyl-3-(a-phenylbutyramido)-4-(p-anisylazo) (80) 1-(p-Chlorophenyl)-3-methyl-4-(p-chlorophenylazo) 1-Phenyl-3-(2-furyl)-4-(3-methyl-4-sulfophenylazo) 1-(o-Chlorophenyl)-3-methyl-4-(o-chlorophenylaza) 1-Phenyl-3-(2-furyl)-4-(4-chloro-3-sulfophenylazo) -(p-Nitrophenyl)-3-methyl-4-(o-chlotophenylazo) -(p-Nitrophenyl)-3-methyl-4-(p-anisylazo) (52) |-Phenyl-3-(2-furyl)-4-(1-sulfo-2-naphthylazo) 1-(m-Chlorophenyl)-3-methyl-1-(2,4-dichloro-1-(2,4-Dichlorophenyl)-3-methyl-4-phenylazo -(m-Nitrophenyl)-3-phenyl-1-phenylaza 1-Phenyl-3-(2-furyl)-4-(x-naphthylazo) 1-Phenyl-3-(2-furyl)-4-(\beta-naphthylazo) 1-p-Tolyl-3-methyl-4-(p-tolylazo) 1-p-Tolyl-3-methyl-4-phenylazo phenylazo) 11.¢4---3;11 a-Naphthylamine 8-Naphthylamine naphthylamine 3-Methyl-4-sulfo 4-Chloro-3-sulfo Substituent(s) 2,4-Dichloro in Aniline* 4-Methoxy 4-Methoxy 1-Sulfo-2-4-Methyl 2-Chloro 2-Chloro 4-Chloro 1-Phenyl-3-(x-phenylbutyramido) 1-(2,4-Dichlorophenyl)-3-methyl 1-(m-Chlorophenyl)-3-methyl I-(p-Chlorophenyl)-3-methyl 1-(o-Chlorophenyl)-3-methyl 1-Phenyl-3-(2-furyl) (Cont.) 1-(m-Nitrophenyl)-3-phenyl 1-(p-Nitrophenyl)-3-methyl I-p-Tolyl-3-methyl

1-(m-Carboxy phenyl)-3-methyl	ı	1-(m-Carboxyphenyl)-3-methyl-4-phenylazo	498	
1-(p-Carbox) phenyl)-3-methyl		1-(p-Carboxyphenyl)-3-methyl-4-phenylazo	428	
1-to Sulfaphenyl)-3-methyl	I	1-(o-Sulfophenyl) 3 methyl-4-phenylazo	429	
I-(p-Suffophenyl)-3-methyl	1	1-(p-Sulfophenyl)-3-methyl-4-phenylazo	430, 431	
	4-Nitro	1 (p Sulfophenyl)-3-methyl-4-(p-nitrophenylaza)	430, 432	
	2,5-Dichloro	1-(p-Sulfophenyl)-3-methyl-4 (2,5-dichlorophenylazo)	430	
	4-Chloro-2-methy1	I (p Suifophenyl) 3 methyl-4-(4-chloro-2-methyl	430	
		phenylazo)		
	5-Chloro-2-methyl	1-(p-Sulfophenyl)-3-methyl-4-(5-chloro 2 methyl-	430	
		phenylazo)		
I-(p-Suifophenyl)-3-phenyl	1	1-(p-Sulfophenyl)-3 phenyl-4-phenylazo	430	
	2-Nitro	1-(p Sulfophenyl)-3-phenyl-4-(o-mtrophenylazo)	430	
	4-Nitro	1-(p-Sulfophenyl) 3-phenyl-4-(p-introphenylazo)	430	
	2,5-Dichloro	1 (p-Suffophenyl)-3-phenyl-4-(2,5-dichlorophenylazo)	430	
	4-Chloro-2 methyl	1-(p-Sulfophenyl)-3-phenyl-4-(4-chloro-2-methyl.	067	_
		phenylazo)	100	
	5-Chloro-2-methyl	1-(p-Sulfophenyl)-3-phenyl-4-(5-chloro-2 methyl-	430	
1-frachalfordaments & so as a		phenylazo)		
(p********************************	1	I-(p-Sulfophenyl)-3-(2-furyl)-4 phenylazo	430	
	2-Nitro	1-(n Shifonhenvil-Sa/2-family 4 (c manne)	00%	
	4-Netwo	(ozmename) a committee and other and	430	
	0.0	(p-component)-a-(2 turyl)-4 (p-nitrophenylazo)	430	
	Old Harden	1-(p-Suitophenyl)-3-(2-furyl)-4-(2,5 dichloro-	430	
		plienylazo)	2	
	** nioro-2-methyl	I-(p-Suffopheny I)-3-(2-furyl)-4-(4-chloro-2-methv).	430	•
		phenylazo)	490	
	5-Chloro-2-methyl	1-(p-Sulfophenyl)-3-(2-furyl)-4-(5-chloro-2-methyl.	430	.,
		phenylazo)	207	
Note: References 177-450 are on pp. 136-142.	on pp. 136-142.			0.0
the luit name is given wher	it is awkward to no	the 1913 name is given when it is awkward to name the sand manages and		

Aard to name the arylamine as a derivative of aniline.

TABLE X—Continued

A. 5-Pyrazoloncs-Continued

Heterocyclic Compound, Substituent(s) in		Product (Yield, %), Substituent(s) in	
πZ		π×	
$0 = c_5^{-1} \frac{2N}{2H}$ $H_2C_4^{2}C_H$	Substituent(s) in Aniline*	0=c, 1 : N 	References
1-(m-Sulfamylphenyl)-3-methyl	2-Hydroxy-4-sulfo-	2-Hydroxy-4-sulfo- 1-(m-Sulfamylphenyl)-3-methyl-4-(2-hydroxy-4-sulfo-	433
	I-naphthylamine 2-Hydroxy-1-sulfo- 6-nitro-1-	1-naphthylazo) 1-(m-Sulfamylphenyl)-3-methyl-4-(2-hydroxy-4-sulfo- 6-nitro-1-naphthylazo)	433
	naphthylamine		
1-Diphenylmethyl-3-methyl	4-Methyl	1-Diphenylmethyl-3-methyl-4-(p-tolylazo)	434
1-(2-Naphthyl)-3-methyl	2-Amino-	1-(2-Naphthyl)-3-methyl-4-(2-anthraquinonylazo)	250
	anthraquinone	(quant.)	
1-(2-Anthraquinonyl)-3-methyl	1	1-(2-Anthraquinonyl)-3-methyl-4-phenylazo	250
	a-Naphthylamine	1-(2-Anthraquinonyl)-3-methyl-4-(x-naphthylazo)	250
	θ -Naphthylamine	1-(2-Anthraquinonyl)-3-methyl-4-(\theta-naphthylazo)	250
	2-Amino-	1-(2-Anthraquinonyl)-3-methyl-4-(2-anthra-	250
	anthraquinone	quinonylazo)	
1-(2-Benzothiazolyl)-3-methyl	J	1-(2-Benzothiazolyl)-3-methyl-4-phenylazo	435
	4-Sulfo	1-(2-Benzothiazolyl)-3-methyl-4-(p-sulfophenylazo)	435

ALIPHATIC CARBON ATOMS

= Ξ 2 Ξ 553

Mucellancous Heterocyclic Compounds

	Substiturni(e)		
terencycue treactant	to Anture	Traduct () ichl	Heferences
-Methyl-3-hydroxy-5-pyrazolone 4-Methoxy inide	4-Methuay	1 Methyl 3 hydrax 4 th metheryphenylam) 5 pyrazologe (mide (35)	₹
-(p-Tolyl)-5-pyrazolone inisle	1	3.(p-Tolyl) 4-pleny has 5 pyramicone milde	318
-Phenyl-3-methyl-5-pyrazolone imide	ļ	I Pengi 3 methyl i phenylam 5 pyrandone mule (50) - 637, 436	(37, 430
	4-Sulfo	1-17senyl-3 methyl-4-(p sulfophenylazo)-5 pyrazolone Imate	ęş
1-(o-Toly1)-3-methyl 5-pyrazolone mide	\$ Naphthylamine	1-thenyl 3 methyl -f. (f naj hthylam) 5 pyrambine imide 1-(o-Tolyl) 3 methyl -f-phenylam-5 pyrambine imide	83
1-Thenyl-3-methyl-5-thinnyrays			

411, 412 13,41 1-(o-Carbox) phenyl)-t-phenylam-5 methyl 3 pyramione P(p-Bronnplanyl)-4-planylam-5-methyl-3 pyrandone 1-Phenyl-3 methyl-f-pheny han 5 theopyrandene (P.Tolyl)-4 | beny lame 5 methyl 3 hyracolone 1-(o-Tolyi)-4-phenylam-5-methyl 3 pyrambone -Phenyl-t-phenylase-5-methyl 3 pyrazadopa ... (p.Tuly Last)pyrazaluline-3,5-dune 4-Methyl ١ 1-(p-Tolyl)-5-methyl-3-pyrazolone 1-(o-Toly!)-5-methy!-3-pyrazolone DISTRICTOR STREET -(o-Carboryphen, 1)-5-meth, 1.3-I-l'henyl-5-methyl-3-pyrazolone -(p-Bromophenyl)-5-methyl-3-1-Phenylpyrazolidme-3,5-dione Pyrazoluline-3,5-dione DYFRZolone Pyrazolone

Note: References 177-480 are on pp. 130-142.

* The full name is given when it is awkward to name the arylamine as a derivative of amine.

All myl-t-ethyl-t-plien, bazapy machdine-3,5-dune

-Thenyl-4-(p-tolylaza)pyrazahulme-3,5-dana

4-Methyl

1-Phenyl-4-ethylpyrazolidine-3,5-

-Prenyl-f placey Lampy tambidine 3.5 doing

TABLE X-Continued

B. Miscellaneous Heterocyclic Compounds—Continued

Heterocyclic Reactant	Substituent(s) in Aniline*	Product (Yield, %)	References
A C - TELL		1.(n.Tolyl)-4-phenylazonyrazolidine-3.5-dione	450
[-p-Tolylpyrazolldine-ə,ə-wone ə Mothyl E-icoverolone	1	3-Methyl-4-phenylazo-5-isoxazolone (quant.)	451, 227, 452
5-1450H y1-5-150 Addonor	2-Methyl	3-Methyl-4-(o-tolylazo)-5-isoxazolone	227
	4-Methyl	3-Methyl-4- $(p$ -tolylazo)-5-isoxazolone	227
	2-Methoxy	3-Methyl-4-(o-anisylazo)-5-isoxazolone	227
,	α-Naphthylamine	3-Methyl-4-(α -naphthylazo)-5-isoxazolone	227
	β -Naphthylamine	3-Methyl-4-(\(\beta\)-naphthylazo)-5-isoxazolone	227
3.Phenyl-5-isoxazolone		3-Phenyl-4-phenylazo-5-isoxazolone	453
3-(m-Tolyl)-5-isoxazolone	1	3-(m-Tolyl)-4-phenylazo-5-isoxazolone	454
3-(p-Tolyl)-5-isoxazolone	ļ	3-(p-Toly1)-4-phenylazo-5-isoxazolone	454
3-(m-Chlorophenyl)-5-isoxazolone	4-Nitro	3-(m-Chlorophenyl)-4-(p-nitrophenylazo)-5-isoxazolone	455
3-(m-Nitrophenyl)-5-isoxazolone	4-Nitro	3-(m-Nitrophenyl)-4-(p-nitrophenylazo)-5-isoxazolone	455
3-Anilino-5-isoxazolone	1	3-Anilino-4-phenylazo-5-isoxazolone	450
3-Methyl-5-iminoisoxazole	1	3-Methyl-4-phenylazo-5-iminoisoxazole	06
2-Benzyl-4-imidazolone	4-Nitro	3-Benzyl-5-(p-nitrophenylazo)-4-imidazolone	457
1,2,3-Triazol-5-one	4-Methyl	4-(p-Tolylazo)-1,2,3-triazol-5-one	458
1-Carboxymethyl-1,2,3-triazol-5-	4-Methyl	1- Carboxymethyl-4- (p-tolylazo)-1,2,3-triazol-5-one	458
one			
1-Phenyl-1,2,3-triazol-5-one	1	1-Phenyl-4-phenylazo-1,2,3-triazol-5-one	459
1-Acetylbenzalhydrazide-1,2,3- triazol-5-one	4-Methyl	1-Acetylbenzalhydrazide- 4 - $(p$ -tolylazo)-1,2,3-triazol-5-one	460
1-Acetylglycinbenzalhydrazide- 1,2,3-triazol-5-one	4-Methyl	1-Acetylglycin benzalhydrazide -4 - (p-tolylazo) -1, 2, 3-triazol -5 -one	460
Barbituric acid	1	5-Oxobarbituric acid phenylhydrazone (quant.)	461
	2-Nitro	5-Oxobarbituric acid o-nitrophenylhydrazone	461

	4-Nitro	5-Oxobarbituric acid p-nitrophenylhydrazone	461	
	4-Sulfamyl	5-Oxobarbitume acid p-sulfamylphenylhydrazone	244	
	4·(p-Dimethyl-	5-Oxobarbituric acid p-(p-dimethylsuifamylphenyl)-	244	
	sulfamylphenyl)- sulfamyl	sulfamylphenylhydrazone		
N,N'-Diplienylbarbituric acid		N,N'-Diphenyl 5-oxobarbitune and phenylhydiazone	462	
	4-Nitro	N.NDiphenyl-5 oxobarbituric acid p-nitrophenyl-	462	
N.N'-Diplieny I-5-benzy Barbitunic	!	by drazone N.N'-Inphenyl-5 benzyl 5 phenylazobarbiturie aeid	462	
	4-Nitro	N.N.*Diphenyl-5-benzyl-5-(p-introphenylago).	462	
		barbituric acid		
N.NDiplomyl-5-diplomylmethyl- 4-Nitro Intlature and	4-Nitro	N.N. Diphenyl-5-diphenylmethyl-5-(p-nitrophenylazo)-	462	
N.NDurbe ny Hylicharlutures and		barbiturie acid	•••	
The principal of the second of	1	N.N. Diplienyl-5-phenylazothiobarbitume acid	163	
N.NDubenyl-Sadushenylmyrbyl.	1-101070	N,N. Diphenyl-5-(p-nitrophenylazo)thiobarbituric acid	463	
thiobarbitume acid	ŀ	N.N. Diphenyl-5-diphenylmethyl-5 phenylazothuo-	463	$_{AL}$
2-Thianaphthenone	1	3 Phonyland-9-thionogeth-man-		
	4-Nutro	2-(v. Melmaland) - (d) and phone in the		
	A. Nardeller Learner	o (Printed placety) and printer one		
	g v. rapidita) lemme	3-(x-Naphthylazo)-2-thanaphthenone	464	
3-Thatanhithenese	- vapunytumbe	3-(p-Naphthylazo)-2-thuanaphthenone		
5-Methyl-thinaphthenena	4-1/100	2-(p-Nitrophenylazo) 3-thanaphthenone		
3-5-1 namaphtheneme	1 1	2-Phenylazo-5-methyl-3-thianaphthenone		ΚВ
0- Mironximialulu	1 4	Z-l'hen lazo-3-selenanaphthenone		
1-Plenslogmdolo	omore.	3-(p-Bromophenylazo)-6-mtrooxindole		
Induxyl	l i	1-Phenyl-3-phenylazooxındole		711
	1	2-Thenylazoindoxyl		
Note: Reference 177 ten				

Nofe: References 177–480 are on pp. 138–142.

• The full name is given when it is awkward to name the arylamme as a derivative of aminno.

TABLE X-Continued

B. Miscellaneous Heterocyclic Compounds—Continued

Heterocyclic Reactant Homophthalimide

Substituent(s)		
in Aniline*	Product (Yield, %)	References
}	α-Phenylazohomophthalimide	470, 471, 472
2-Methyl	α -(o-Tolylazo)homophthalimide	472
3-Methyl	α - $(m$ -Tolylazo)homophthalimide	472
4-Methyl	α - $(p$ -Tolylazo)homophthalimide	472
2-Chloro	a-(o-Chlorophenylazo)homophthalimide	472
2-Nitro	α-(o-Nitrophenylazo)homophthalimide	472
4-Nitro	α - $(p$ -Nitrophenylazo)homophthalimide	472
2-Carboxy	α-(o-Carboxyphenylazo)homophthulimide	472
3-Carboxy	α -(m-Carboxyphenylazo)homophthalimide	472
4-Sulfo	α - $(p$ -Sulfophenylazo)homophthalimide	473
2,4-Dimethyl	α -(2,4-Dimethylphenylazo)homophthalimide	472
4-Methyl-2-nitro	α-(4-Methyl-2-nitrophenylazo)homophthalimide	472
4-Methyl-3-nitro	α-(4-Methyl-3-nitrophenylazo)homophthalimide	472
a-Naphthylamine	α -(1-Naphthylazo)homophthalimide	472
heta-Naphthylamine	α -(2-Naphthylazo)homophthalimide	472
4-Sulfo-1-	α -(4-Sulfo-1-naphthylazo)homophthalimide	473
naphthylamine		
6,8-Disulfo-2-	α -(6,8-Disulfo-2-naphthylazo)homophthalimide	473
naphthylamine		
2-Hydroxy-4-sulfo-	a-(2-Hydroxy-4-sulfo-1-naphthylazo)homophthalimide	473
1-naphthylamine)
Benzidine	a,a'-(4,4'-Biphenylenedisuzo)bis(homophthalimide)	472
3,3'-Dimethyl-	α,α'-(3,3'-Dimethyl-4,4'-biphenylenedisuzo)bis-	479
benzidine	(homophthalimide)	l
3,3'-Dimethoxy-	α, α' -(3,3'-Dimethoxy-4,4'-biphenylenedisazo)bis-	479
benzidine	(homophthalimide)	1

N.Phenylhomophthalimide 4-Hydroxycoumarin	11	a-Phenylazo-N-phenylhomophthalimide 3-Phenylazo-d-hydroxycoumarm (91)	474
	4-Methyl 4-Nutro 4-Sulfo	3-(p-Tolylaxo)-4-hydroxycoumarn (88) 3-(p-Nitrophenylaxo)-4-hydroxycoumarn (75) 7-Esilfothenylaxo)-4-hydroxycoumarn (10)	475 475
[-Mather] A hadecomorphoster.	4 Sulfamyl	3-(p-Sulfamylphenylazo)-4-hydroxycoumarin (50)	476
Clutaconic anhydrade	3-Niko	1-Methyl-3-(m-nitrophenylazo)-4-hydroxycarbostyni n-K <i>etonintaconic anbwdrada nban</i> ailyndagaga (67)	476a
	2-Methyl	7-Ketoglutaconic anhydride o-tolylhydrazone (57)	
	4-Methyl	y-Ketoglutaconic anhydride p-tolylhydrazone (79)	
	Z-Methoxy	y-Ketoglutaconic anhydride o-anisylhydrazone (56)	
	outment framing	p-retognataconic anhydride p-dimethylaminophenyl- hydrazona (21)	4754
	2-Carboxy	y-Ketoglutaconic anhydride o-carboxyphenyl-	475a
	a-Naphthylamine	nydrazone (80) ?-Ketoglutaconic anhydride g-naphthyllwdrazone (80)	4760
B-Methylelutaconic anhydrida	β -Naphtbylamine	7-Ketoglutaconic anhydride \(\theta\)-naphthylhydrazone (87)	475
anin furn organish for	ì	7-Keto-\$-methylglutacome anhydride phenylhydrazone	
	2-Methoxy	y-Keo-g-methylglutaconic anhydride o-ansylhydrazone	PHA ≅
	4-Methoxy	7. Keto-6-methylglutaconic anhydride p-anisylhydrazone	28
	2-Nitro	(40) $\sim Keto-\beta$ -methylglutacome anhydride o-mitrophenyl-	5
	4-Dimethylamino	hydrazone (64) 7-Keto-\$-methylglutaconic anhydride p-dumethylamıno-	BON
	4-Diethylamino	phenylhydrazone (72) ?-Keto-f-methylglutacone anhydride p-diethylamino-	ATO
Ned.		phenylhydrazone (71)	

Note: References 177-480 are on pp. 136-142.

* The full name is given when it is swkward to name the arylamine as a derivative of andine.

TABLE X-Continued

B. Miscellancous Heterocyclic Compounds—Continued

	Substituent(s)		
Hetemestellie Benefant	in Aniline*	Product (Yield, %)	Keterences
parental all tenerals only duide	d-Sulfo	γ -Keto- β -methylglutaconic anhydride p -sulfophenyl-	q_S
(Conf.)		hydrazone (85)	ţ
(court)	3-Trifluoromethyl	γ-Keto-β-methylglutaconic anhydride m-trifluoromethyl-	86
		phenylhydrazone (65)	10
	2,4-Dinitro	γ-Keto-β-methylglutaconic anhydride 2,4-dinitrophenyl-	98
		hydrazone (69)	,
	a-Naphthylamine	γ -Keto- β -methylglutaconic anhydride α -naphthyl-	80
		hydrazone (85)	,
	β -Naphthylamine	γ -Keto- eta -methylglutaconic anhydride eta -naphthyl-	98
		hydrazone (S5)	
B-Chloroglutaconic anhydride	ì	β -Chloro- γ -ketoglutaconic anhydride phenylhydrazone	4762
b-Carboxyglutaconic anhydride]	\$-Carboxy-7-ketoglutaconic anhydride phenylhydrazone	476c
(trans-aconitic anhydride)		(84)	
θ -Carbomethoxyglutaconic	1	θ -Carbomethoxy- γ -ketoglutaconic anhydride phenyl-	476c
anhydride		hydrazone (70)	
Malonyl-x-aminopyridine	i	3-Phenylazo-4H-pyrido[1,2-a]pyrimidin-4-one (S5)	300
	4-Carboxy	3-(p-Carboxyphenylazo)-4H-pyrido[1,2-a]pyrimidin-4-one	300p
		(96)	
	4-Carbomethoxy	3-(p-Carbomethoxyphenylazo)-4H-pyrido[1,2-a]-	300b
		pyrimidin-4-one (70)	
	4-Carbethoxy	3-(p-Carbethoxyphenylazo)-4H-pyrido[1,2-a]pyrimidin-	3000
		4-one	
	4-Sulfo	3-(p-Sulfophenylazo)-4H-pyrido[1,2-a]pyrimidin-4-one (93)	3000

Note: References 177-480 are on pp. 136-142. * The full name is given when it is awkward to name the arylamine as a derivative of aniline.

				- 4
	Substituent			D)
Reactant	in Aniline	Product (Yield, %)	References	m
Diazomethane	4-Nitro	Chloroformaldehyde v nitrophenyllydrazone* (85)	4764	·V.
Acetaldehyde	1	N.N. Dubenyl-C-phenylazoformazan (20-30)	168 97	
Ketene diethylacetal	I	1-Phenyl-4-ethoxy-6-pyridazone (35)	477	UD.
	4-Ethoxy	1-p-Ethoxyphenyl-4 ethoxy-6-pyridazone+ (21)	477	
	4-Nitro	1-p-Nitrophenyl 4-ethoxy-6-pyridazone (25)	477	v
	4-Carbethoxy	1-p-Carbethoxyphenyl-4-ethoxy-6-pyridazone (33)	477	m,
Ethyl p aminocrotonate	1	Ethyl α phenylazo-β-sminocrotonate (52)	478	ы.
Ethyl p-methylaminocrotonate	1	Ethyl x-phenylazo-ß methylaminocrotonate (51)	478	NO
Ethyl p diethylaminocrotonate	1	1-Phenyl-3-duethylammo-3-methyl-4-phenylazo-5-	479	, ,
		ethoxypyrazolme (75)		v 1
Dis(phenybulfinyl)methane	ı	Bis(phenylsulfinyl)formaldehyde nhenyllyydrazone	000	7.
1-(2-Methylpropenyl)piperidine	4-Chloro	Acetone n-chloronbenvilved-some	000	λ.
	4-Nitro	Acetone n-mirrorhenyllydeszone	poet.	3 L
1-(I-Butenyl)piperidine	4-Methoxy	1.2-Rutandone 9 a onionBudan 1701	1300	11
	4-Chloro	1 9 December of present of the prese	130a	.11
	A Notes	1,2-Butanedione 2-p chlorophenylhydrazone (65)	130a	4
N.N. Diethwistwarjamina	7. TUTTO	1,2-Butanedione 2-p-nitrophenylhydrazone (41)	130a	ш
Smith Tool Comment	4-Methoxy	Phenylgiyoxal \$-p-anisylhydrazone (76)	1300	v
	4-Culoro	Phenylglyoxal \(\beta\)-p-chlorophenylhydrazone (90)	1200	
	4-1/100	Phenylglyoxal \$ p-nitrophenylhydrazone (94)	190	42.
1-(6-Methyleterrellmandam	4-Carboxy	Phenylglyoxal \(\beta\)-carboxyphenylhydrazone (89)	1300	$^{\circ}$
amminds of the fact of the fac	- NICLO	Acetophenone p-nitrophenylhydrazone (87)	130-	AN.
	4-Carboxy	Acetophenone p carboxyphenyllydrazone (95)	2007	4
	2,4-Dinitro	Acetophenone 2.4-duntrophenvilwdrazona (97)	1302	10
Note: Deferment ton		(10) OHOMEN CALLED TO A CALLED	1304	и,

DIAZONIUM COUPLING WITH ALIPHATIC CARBON ATOMS

^{*} The reaction was run in methanol saturated with lithium chloride. Note: References 177-480 are on pp. 136-142.

[†] Nmeteen per cent of N,N'-dr-p-ethoxyphenyl-C-carbelhoxyformazan was also formed.

REFERENCES FOR TABLES I-XI

- 177 Favrel, Bull. soc. chim. France, [5], 1, 981 (1934).
- 118 Benary, Reiter, and Soenderop, Ber., 50, 65 (1917).
- 179 Jerchel and Fischer, Ann., 563, 208 (1949).
- 180 Bamberger and Kuhlemann, Ber., 26, 2978 (1893).
- 181 Wolff, Ann., 317, 1 (1901).
- ¹⁸¹ Wislicenus and Schöllkopf, J. prakt. Chem., [2], 95, 269 (1917).
- ¹⁸¹ Borsche, Stackmann, and Makaroff-Semljanski, Ber., 49, 2222 (1916).
- 184 Kröhnke and Kubler, Ber., 70, 538 (1937).
- 185 Kowjalgi and Iyer, Current Sci. India, 19, 210 (1950) [C. A., 45, 863 (1951)].
- 186 Lyer and Kowjalgi, J. Indian Inst. Sci., 34, 81 (1952) [C. A., 46, 8857 (1952)].
- 167 Beyer and Claisen, Ber., 21, 1697 (1888).
- 188 Bülow and Schlotterbeck, Ber., 35, 2187 (1902).
- 188 Bulow and Spengler, Ber., 58, 1375 (1925).
- 190 Chattaway and Ashworth, J. Chem. Soc., 1934, 930.
- 191 Favrel, Bull. soc. chim. France, [3], 27, 328 (1902).
- 193 Fayrel, Compt. rend., 128, 318 (1899).
- 193 Reilly, Daly, and Drumm, Proc. Roy. Irish Acad., 40B, 94 (1931) [C. A., 26, 452 (1932)].
- 194 Morgan and Reilly, J. Chem. Soc., 103, 808 (1913).
- 185 Reilly and MacSweeney, Proc. Roy. Irish Acad., 39B, 497 (1930) [C. A., 25, 1523 (1931)].
 - 100 Morgan and Ackerman, J. Chem. Soc., 123, 1308 (1923).
 - 197 Reilly and Drumm, J. Chem. Soc., 1926, 1729.
 - 198 Morgan and Drew, J. Chem. Soc., 119, 610 (1921).
 - 199 Sieglitz and Horn, Chem. Ber., 84, 607 (1951).
 - 200 Claisen and Ehrhardt, Ber., 22, 1009 (1889).
 - ²⁰¹ Feist and Belart, Ber., 28, 1817 (1895).
 - 103 Mullen and Crowe, J. Chem. Soc., 1927, 1751.
 - ²⁰² Bamberger and Witter, Ber., 28, 2786 (1893).
 - ¹⁰⁴ Bamberger and Witter, J. prakt. Chem., [2], 65, 139 (1902).
 - 205 Chattaway and Ashworth, J. Chem. Soc., 1933, 1624.
 - 204 Bulow, Ber., 32, 2637 (1899).
 - 201 Bulow and Busse, Ber., 39, 2459 (1906).
 - 108 Sachs and Herold, Ber., 40, 2714 (1907).
 - 100 Kostanecki and Tambor. Ber., 35, 1679 (1902).
 - 210 Bulow and Sautermeister, Ber., 37, 354 (1904).
 - ²¹¹ Morgan and Porter, J. Chem. Soc., 125, 1269 (1924).
 - 111 Balow and Riess, Ber., 35, 3900 (1902).
 - 213 Bulow and Grotowsky, Ber., 34, 1479 (1901).
 - ³¹⁴ Anand, Patel, and Venkataraman, Proc. Indian Acad. Sci., 28A, 545 (1948) [C. A., 43, 5778 (1949)].
 - 114 Claisen and Roosen, Ann., 278, 274 (1894).
 - 114 Favrel and Jean, Bull. soc. chim. France, [4], 37, 1238 (1925).
 - 217 Bulow, Ber., 37, 2198 (1904).
 - 214 Balow and Nottbohm, Ber., 36, 2695 (1903).
 - 318 Bolow and Nottbohm, Ber., 38, 392 (1903).
 - 119 Krishnan, Iyer, and Guha, Science and Culture India, 11, 567 (1946) [C. A., 40, 5712 (1946)].
 - 111 Vorlander and Erig, Ann., 294, 302 (1897).
 - 111 Bochin, Ann., 318, 230 (1901).
 - 111 Boehm, Ann., 329, 269 (1903).
 - 114 Rabe, Ber., 31, 1896 (1898).
 - 214 O-born and Schoffeld, J. Chem. Soc., 1955, 2100.
 - 411 den Otter, Rec. trav. chim., 57, 427 (1938).
 - 344 Bamberger, Ber., 24, 3260 (1891).

- tar Schiff and Viciani, Gazz. chem. stol., 27, 11, 70 (1897). the Chattaway and Ashworth, J. Chem. Soc., 1833, 475.
- Bamberger, Ber , 17, 2415 (1884) 338 Chattaway and Lye, Proc Roy. Soc London, A135, 282 (1932) [C. A. 26, 5074 (1932)].
- Wolff and Luttrunghaus, Ann. 312, 155 (1980).
- 101 Bamberger and Schmidt, Ber , 34, 2001 (1901).
- Mis Wizinger and Herzog, Helv. Chim. Acta, 38, 531 (1953).
- Michael, Ber., 38, 2098 (1905). von Richter and Munzer, Ber , 17, 1926 (1884)
- 314 Bulow and Neber, Ber , 45, 3732 (1912).
- 188 Goldberg and Kelly, J. Chem. Soc , 1948, 1919
- 197 Bolow and Schaub, Ber , 41, 2355 (1908) 144 Bulow and Engler, Ber . 51, 1246 (1918).
- 314 Kjellin, Ber , 30, 1965 (1897)
- 210 Le Bris and Wahl, Compt rend., 241, 1143 (1955)
- won Pechmann and Wedekind, Ber , 28, 1688 (1895).
- 841 Bolow, Ber. 31, 3122 (1898).
- ses Griess, Ber., 18, 960 (1885)
- 11 Balow, Ber , 33, 187 (1980). 344 Mossin., Ann chim farm , Dec 1939, 47 [C. A., 34, 2175 (1940)]
- 244 Chattaway and Parkes, J. Chem Soc , 1935, 1805.
- ted Chattaway and Daldy, J. Chem. Soc , 1928, 2756
- 47 Chattaway, Ashworth, and Grimwade, J. Chem. Soc., 1935, 117.
- 345 Chattaway and Ashworth, J Chem Soc . 1833, 475
- 149 Oddo, Gazz chim. stal., 21, I, 264 (1891).
- 160 Saunders, J Chem. Soc , 117, 1264 (1920).
- 131 Morgan and Read, J. Chem Soc., 121, 2709 (1922).
- 144 Balow, Ber . 44, 601 (1911) 162 Bolow and Baur, Ber , 58, 1928 (1925)
- 114 Wedekind, Ann , 295, 324 (1897).
- 55 Winnger and Herzog, Hele Chun Acts, 34, 1202 (1951)
- 334 Bulow and von Reden, Ber , 31, 2574 (1898).
- 137 Favrel, Compt. rend , 145, 194 (1907).
- 304 Fayrel, Bull soc. chim. France, [4], I. 1238 (1907).
- 345 Wolff and Fertig, Ann , 313, 12 (1900) 144 Wahl and Doll, Bull soc. chim. France, [4], 13, 265 (1913).
- 161 Wahl, Compt rend , 147, 72 (1908).
- 212 Wahl, Bull soe chim. France, [4], 3, 846 (1908). 24 Bamberger and Calman, Ber , 18, 2563 (1885).
- M4 Stierbn. Ber . 21, 2120 (1888)
- 145 Wahl, Bull soc. chim. France, [4], 1, 729 (1907).
- 144 Ctusa, Gazz chem stal , 50, I, 194 (1920).
- 347 Bulow and Busse, Ber., 39, 3861 (1906) see Wahl and Silberzweig, Bull. soc chim. France, [4], 11, 61 (1912).
- ** Wahl and Rolland, Ann chim. Parss, [10], 10, 5 (1928).
- 114 Rabischong, Bull. soc. chim. France, [3], 31, 87 (1904). 171 Chattaway and Humphrey, J. Chem. Soc , 1927, 2793.
- 275 Chattaway and Humphrey, J Chem. Soc , 1927, 1323 272 Rabischong, Bull. soc. chim France, [3], 27, 982 (1902).
- sre Sonn, Ann., 518, 290 (1935) 174 Tamburello and Carapelle, Gazz chem stol , 37, I, 561 (1907).
- 274 Disckmann, Ber , 45, 2689 (1912). pr Dieckmann, Ber., 44, 975 (1911).
- 118 Balow, Ber , 40, 3787 (1907).
- 279 Bulow, Ber., 41, 641 (1908). 210 Balow and Bozenhardt, Ber., 43, 224 (1910).

- ¹⁸¹ Knorr and Reuter, Ber., 27, 1169 (1894). ²⁸² Andrisano and Pentimalli, Ann. chim. Rome, 40, 292 (1950) [C. A., 45, 6384 (1951)]. ²⁶³ Andrisano, Boll. sci. fac. chim. ind. Bologna, 7, 58 (1949) [C. A., 44, 9404 (1950)]. ²⁸⁴ Morgan and Davies, J. Chem. Soc., 123, 228 (1923). 285 Seidel, Ber., 59, 1894 (1926). 280 Bülow and Dick. Ber., 57, 1281 (1924). ²⁸⁷ Andrisano and Passerini, Ann. chim. Rome, 40, 439 (1950) [C. A., 45, 8775 (1951)]. ²⁸⁸ Chelintsev, J. Gen. Chem. U.S.S.R., 14, 941 (1944) [C. A., 39, 4611 (1945)]. 289 Petersen, Chem. Ber., 83, 551 (1950). ²⁹⁰ Andrisano and Majoli, Ann. chim. Rome, 40, 442 (1950) [C. A., 45, 8775 (1951)]. ²⁹⁰⁴ Abramovitch and Schofield, J. Chem. Soc., 1955, 2326. 291 Busch and Frov. Ber., 36, 1362 (1903). ²⁹² Fusco and Romani, Gazz, chim. ital., 78, 332 (1948). 293 Bülow and Ganghofer, Ber., 37, 4169 (1904). ²⁹⁴ Favrel, Bull. soc. chim. France, [3], 27, 313 (1902). 295 Favrel, Compt. rend., 128, 829 (1899). 296 Moyer, Ber., 24, 1241 (1891). ²⁰⁷ Henrich and Thomas, Ber., 40, 4924 (1907). 298 Henrich, Monatsh., 20, 537 (1899). 209 Henrich, Ber., 35, 1663 (1902). 300a Shaw, J. Biol. Chem., 185, 439 (1950). ^{200b} Snyder and Robison, J. Am. Chem. Soc., 74, 4910 (1952). ²⁰⁰⁰ Snyder and Robison, J. Am. Chem. Soc., 74, 5945 (1952). ²⁰¹ Meyer, Ber., 21, 1306 (1888). 302 Hausknecht, Ber., 22, 324 (1889). 303 Wizinger and Biro, Helv. Chim. Acta, 32, 901 (1949). 304 Haller, Compt. rend., 106, 1171 (1888). 305 Favrel, Bull. soc. chim. France, [3], 27, 104 (1902). 306 Favrel, Compt. rend., 127, 116 (1898). ²⁰⁷ Krückeberg, J. prakt. Chem., [2], 46, 579 (1892). 308 Krückeberg, J. prakt. Chem., [2], 47, 591 (1893). 309 Weissbach, J. prakt. Chem., [2], 57, 206 (1898). 310 Lax, J. prakt. Chem., [2], 63, 1 (1901). 311 Marquardt, J. prakt. Chem., [2], 52, 160 (1895). ³¹² Uhlmann, J. prakt. Chem., [2], 51, 217 (1895). 213 Bülow and Neber, Ber., 49, 2179 (1916). ³¹⁴ Favrel, Compt. rend., 122, 844 (1896). ²¹⁵ Bowack and Lapworth, J. Chem. Soc., 85, 42 (1904). ³¹⁶ Perkin, J. Chem. Soc., 43, 111 (1883). 317 Haller, Compt. rend., 108, 1116 (1889). ³¹⁸ von Meyer, J. prakt. Chem., [2], 90, 1 (1914). 310 Benary and Hosenfeld, Ber., 55, 3417 (1922). 320 Bucker, Rec. trav. chim., 70, 892 (1951). ³²¹ Finzi and Bottiglieri, Gazz. chim. ital., 48, II, 113 (1918). 322 Bamberger and Schmidt, Ber., 34, 574 (1901). ³²³ Bamberger, Padova, and Ormerod, Ann., 446, 260 (1925). 323a Jerchel and Elder, Chem. Ber., 88, 1284 (1955). 322b Robbins and Schofield, J. Chem. Soc., 1957, 3186. Dermer and Hutcheson, Proc. Oklahoma Acad. Sci., 23, 60 (1943) [C. A., 38, 2006 (1944)].
 - 325 Kappeler, Ber., 12, 2285 (1879).
 - 326 Bamberger, Ber., 31, 2626 (1898).
 - 227 Barbieri, Ber., 9, 386 (1876).
 - 228 Wald, Ber., 9, 393 (1876).
 - 229 Hallmann, Ber., 9, 389 (1876).
 - 230 Bamberger and Frei, Ber., 35, 82 (1902).

139

- 111 Bamberger and Free, Ber 38, 3833 (1983).
- 114 Oddo and Ampela, Gazz chem stol , 23, I, 257 (1893).
- Feasley and Degering, J Org Chem , 8, 12 (1943)
- 124 Askenssy and Meyer, Ber , 25, 1701 (1802)
 - Duden, Ber , 26, 3003 (1893)
- ** Keppler and Meyer, Ber , 25, 1709 (1892).
 *** von Braun and Sobeeks, Ber , 44, 2526 (1911)
- on Braun and Dantiger, Ber . 45, 103 (1913)
- 11. Russanow Ber , 25, 2835 (1892)
- *** Kimich, Ber . 10, 140 (1877)
 *** Wieland, Jan . 328, 250 (1903)
- Wicland, .Inn. 328, 250 (1903) His Meyer and Wertheimer, Ber. 47, 2374 (1914)
- ³⁴⁹ Gold and Levine, J Org Chem. 16, 1507 (1951)
- 144 Demuth and Meyer, dnn , 256, 28 (1890)
- 340 Chattaway, Drewitt, and Parkes, J Chem Soc , 1938, 1693.
- 14 Canonica, Gazz chem utal , 79, 738 (1949)
- Meisenheimer and Heim, Ber., 38, 456 (1905)
 Holleman, Rec. trav. chim., 12, 403 (1894)
- Bamberger, Ber . 33, 1781 (1900)
- 114 Ponzio, Gazz chim stal . 42, I, 525 (1912)
- H1 Bamberger and Scheutz, Ber , 34, 2023 (1901)
- 35 Bamberger and Pemsel, Ber , 36, 57 (1903)
- Parkes and Williams, J Chem Soc , 1934, 67
- von Braun and Kruber, Ber , 45, 384 (1912)
- 314 Ponzio. Gazz chim idal , 38, I, 509 (1908)
- 114 Ponzio and Charrier, Gazz chim stal , 39, I, 625 (1909).
- Ponzio, Gazz chim stal , 39, I. 559 (1909)
- 254 Ponzio and Charrier, Gazz chim stal , 38, I, 526 (1908).
- 50 Sonn and Schrilenberg, Ber , 50, 1513 (1917)
- Arbuzov and Rafikov, J. Gen. Chem. U.S.S.R. 7, 2195 (1937) [C. A., 32, 515 (1938)].
 Meyer, Irschick, and Schlosser, Ber., 47, 1741 (1914)
- *** Bachman and Hatton, J Am Chem Soc , 68, 1513 (1944).
- *** Thiele, Ber , 33, 666 (1900)
 *** Sos. Ann , 556, 85 (1944).
- 184 Quilico and Fieti, Gazs. chim stol., 62, 253 (1932) 184 Terent'ev and Zegelman, Scs. Repts Moscow State Univ., 1938, No. 8, 257 (C. A., 38,
- 2516 (1938)),
 - Allen, Ehot, and Bell, Can J. Res., 17B, 75 (1938).
 Pierrot and Webl, Compt. rend., 240, 879 (1985).
 - Pierrot and Wahl, Compt. rend., 240, 879 (1955).

 1440 Pierrot and Wahl, Compt. rend., 239, 1549 (1954).
- ser Busch and Klett, Ber , 25, 2847 (1892).
- Jacobs, Winstein, Henderson, and Spaeth, J. Am. Chem. Soc., 68, 1310 (1946).
 Atkinson and Simpson, J. Chem. Soc., 1947, 808.
- 874 Schofield and Swain, J. Chem Soc , 1949, 1367
- *** Simpson, J Chem Soc , 1946, 673
- Simpson, J. Chem. Soc., 1943, 447
 Krabler and Burger, J. Am. Chem. Soc., 63, 2367 (1941).
- 474 Witt, Nolting, and Grandmougen, Ber , 23, 3835 (1890).
- Michel and Grandmougus, Ber., 26, 2349 (1893).
 yon Ausers and Schwegler, Ber., 53, 1211 (1920).
- 377 Gabriel and Steizner, Ber., 29, 303 (1896)
 378 Zincke and Malkomenus, Ann., 339, 218 (1905).
- Zincke and Malketnemus, Ann. 339, 218 (1995).

 Soc. anon de mat. color et prod chim Francolor, Brit pat 599834 [C. A., 42, 7538]
- (1948)] *** Petitoolas and Sureau, Bull soc chim. France, 1950, 466.
- 211 Zincke and Kuchenbecker, Ann. 339, 226 (1905).

```
201 Morgan and Davies, J. Chem. Soc., 123, 228 (1923).
 262 Dadswell and Kenner, J. Chem. Soc., 1927, 580.
 284 Duval, Compt. rend., 154, 780 (1912).
 346 Duval, Compt. rend., 146, 1407 (1908).
 286 Daval, Compt. rend., 144, 1222 (1907).
 201 Capka, Chem. Zvesti, 2, 1 (1948) [C. A., 44, 1523 (1950)].
 288 Bamberger and Pemsel, Ber., 36, 85 (1903).
  389 Jerchel, Ber., 75B, 75 (1942).
  2894 Nineham, Pain, and Slack, J. Chem. Soc., 1954, 1568.
  Lettré, Hacde, and Schäfer, Hoppe-Seyler's Z., physiol. Chem., 289, 298 (1952) [C. A.,
48, 10677 (1954)].
  240c Libman, Nineham, and Slack, J. Chem. Soc. 1954, 1565.
  200 Ragno and Oreste, Gazz. chim. ital., 78, 228 (1948).
  201 Ragno and Bruno, Gazz. chim. ital., 77, 12 (1947).
  392 Breusch and Keskin, Rev. fac. sci. univ. Istanbul, 9A, No. 1, 30 (1944) [C. A., 40, 1319
  203 Hausser, Jerchel, and Kuhn, Chem. Ber., 82, 515 (1949).
  3934 Duffin and Kendall, J. Chem. Soc., 1954, 408.
  284 Wislicenus, Ber., 25, 3456 (1892).
  <sup>295</sup> Mattson, Jensen, and Dutcher, J. Am. Chem. Soc., 70, 1284 (1948).
  <sup>396a</sup> Ashley, Davis, Nineham, and Slack, J. Chem. Soc., 1953, 3881.
  346 Fox and Atkinson, J. Am. Chem. Soc., 72, 3629 (1950).
  397 Wedekind, Ber., 32, 1918 (1899).
  398 Jerchel and Fischer, Ann., 563, 200 (1949).
  398a Ried, Gick, and Oertel, Ann., 581, 29 (1953).
   398b Beyer and Pyl, Chem. Ber., 87, 1505 (1954).
   <sup>3980</sup> Tsou, Cheng, Nachlas, and Seligman, J. Am. Chem. Soc., 78, 6139 (1956).
   398d Ried and Hillenbrand, Ann., 581, 44 (1953).
   200 Ludolphy, Chem. Ber., 84, 385 (1951).
   600 Seyhan, Rev. fac. sci. univ. Istanbul, 17A, 182 (1952) [C. A., 47, 12390 (1953)].
   <sup>601</sup> von Pechmann, Ber., 29, 2161 (1896).
   402 Wedekind, Ber., 30, 444 (1897).
   402a Cottrell, Pain, and Slack, J. Chem. Soc., 1954, 2968.
   402b Seyhan, Chem. Ber., 87, 1124 (1954).
   401d Seyhan, Chem. Ber., 88, 646 (1955).
   4026 Seyhan, Chem. Ber., 87, 396 (1954).
   402/ Wahl and Le Bris, Bull. soc. chim. France, 1954, 1281.
   4029 Wahl and Le Bris, Compt. rend., 235, 1405 (1952).
   402h Wahl and Le Bris, Compt. rend., 236, 294 (1953).
   4024 Seyhan, Chem. Ber., 88, 212 (1955).
   4025 Seiler and Schmid, Helv. Chim. Acta, 37, 1 (1954).
    402k Ried and Gick, Ann., 581, 16 (1953).
    403 Scott, O'Sullivan, and Roilly, J. Chem. Soc., 1951, 3508.
    403a Duffin and Kendall, J. Chem. Soc., 1955, 3470.
    404 von Rothenburg, J. prakt. Chem., [2], 51, 43 (1895).
    405 Knorr, Ber., 29, 249 (1896).
    406 von Rothenburg, Ber., 26, 2972 (1893).
    407 von Rothenburg, Ber., 27, 790 (1894).
    408 von Rothenburg, J. prakt. Chem., [2], 52, 23 (1895).
    409 von Rothenburg, Ber., 27, 783 (1894).
    410 Torrey and Zanetti, Am. Chem. J., 44, 391 (1910).
    411 Graham, Porter, and Weissberger, J. Am. Chem. Soc., 71, 983 (1949).
    412 Michaelis and Dorn, Ann., 352, 163 (1907).
    413 Knorr, Ann., 238, 183 (1887).
     414 Eibner, Ber., 36, 2687 (1903).
     <sup>415</sup> Casoni, Boll. sci. fac. chim. ind. Bologna, 9, 4 (1051) [C. A., 45, 7353 (1951)].
```

- 410 Michaelie, Ann., 232, 183 (1903)
- 41) Crippe, Long. and Perroncite, Gaza chim utal . 62, 944 (1931).
- 419 Casons, Bull see for chim and Bulogna, 9, 13 (1951) [C. A. 45, 7355 (1951)]. 110 Hayashi, Oshima, Tsuruona, and Seo, Rept Jopon Assoc. Advance. Sci., 17, 47 (1942)
- (C A . 44, 3258 (1950),
 - 440 Kohlbach, Arch Hem Farm , 11, 99 (1927) [C A , 33, 2897 (1939)]
 - en Mackie and Cutier, Rec trop chim . 7L [198 (1932)
 - " Knorr and Kiota, Ber . 20, 2343 (1887)

 - 10 Vittum, Sandey, Herdle, and Scholl, J .4m Chem Soc , 72, 1833 (1930). 444 Chattaway and Strouts, J Chem. Soc . 123, 2423 (1924)
 - 44 Michaelia and Willert, Ann . 25E, 171 (1908)
 - " Michaelia, Ann . 373, 129 (1910)
 - 40' Michaelia, Ann , 272, 196 (1910)
 - ** Michaelie and Horn, Ann , 272, 213 (1910)
- 500 Sharvin, Arbusov, and Varshavskii, J. Chem. Ind. Moscow, 8, 1409 (1929) [C. A., 25, 501 (1911)
- 409 Casoni, Boll set for chim and Bologna, 9, 9 (1951) [C A . 45, 7355 (1951)].
- 441 Mollenhoff, Ber . 25, 1941 (1892) 419 Infle and Khavin, J Gen Chem U.S.S. R., 17, 522 (1947) [C. A., 42, 903 (1948)]
- 444 Hoyashi, Hagiyama, and Seo, Rept Japon Assoc Advance Sci., 17, 253, 257 (1942)
- IC A . 44. 3239 (1930);
 - 44 Daropaky, J prois Chem , [2], 67, 175 (1903).
 - ** Efroe and Devidenkov, J. Gen Chem U.S.S. R. 21, 2048 (1951) [C. A. 46, 8100 (1952)]
 - Michaelia and Brust, Ann., 339, 134 (1905)
 - 4" Mohr, J prait. Chem . [2], 79, 1 (1909).
 - *** Michaelia and Klopetock, Ann., 254, 102 (1907) us Michaelia and Schafer, Ann., 397, 119 (1913).
 - 44 Michaelis and Klappert, Ann., 397, 149 (1913)
 - 44 Michaelis and Pender, Ber., 27, 2774 (1904).
 - 44 Michaelis and Pander, Ann . 361, 251 (1908). 44 Michaelia, Ber . 38, 134 (1905).
 - 444 Michaelis and Behrens, dan., 328, 228 (1905).
 - 44 Michaelia, Ann. 358, 127 (1907).
 - 44 Michaelm, Ann., 272, 209 (1910).
 - 441 Michaelie and Burmeister, Ber., 25, 1502 (1892).
- 444 Michaelia and Simon, Ann., 338, 217 (1905).
- 44 Michaelis and Schenk, Ber , 41, 2863 (1908). 44 Asher, Ber , 30, 1018 (1897).
- us Schiff, Ber . 28, 2731 (1895). 44 Schiff and Viciani, Ber., 30, 1159 (1897).
- 40 Clausen and Zedel, Ber., 24, 140 (1891).
- as Posner and Schreiber, Ber., 57, 1127 (1924).
- ** Khromov and Poral Koshua, J. Gen Chem. U.S.S.R. 17, 1828 (1947) [C A , 42, 4171
- (1948)]. 44 Worrall, J. Am Chem. Soc., 44, 1551 (1922)
- 41 Finger and Zeh, J prakt. Chem , [2], 82, 50 (1910).
- 44 Curtius and Thompson, Ber., 39, 4140 (1906).
- se Dunroth, Ann , 335, 86 (1904). 44 Curtius and Callan, Ber., 43, 2447 (1910)
- 41 Kuhling, Ber., 31, 1972 (1898)
- est Whiteley, J. Chem. Soc., 91, 1330 (1907) on Whiteley and Mountain, Chem News, 89, 234 (1909).
 - 44 Marschalk, J. pratt Chem., [2], 88, 227 (1913). 419 Friedlander, Monatek . 30, 347 (1909).
- at Auwers and Arndt, Ann , 381, 299 (1911).
- Mr Lesser and Schoeller, Ber , 47, 2292 (1914).

- 468 Stollé, Hecht, and Becker, J. prakt. Chem., [2], 135, 345 (1932).
- 469 Baeyer, Ber., 16, 2188 (1883).
- 470 Gabriel, Ber., 20, 1198 (1887).
- 471 Pulvermacher, Ber., 20, 2492 (1887).
- 472 Meyer and Vittenet, Compt. rend., 192, 885 (1931).
- 473 Meyer and Vittenet, Compt. rend., 193, 344 (1931).
- 474 Dieckmann, Ber., 47, 1428 (1914).
- 475 Huebner and Link, J. Am. Chem. Soc., 67, 99 (1945).
- 475a Wiley and Ellert, J. Am. Chem. Soc., 77, 5187 (1955).
- 476a Waldmann, J. prakt. Chem., [2], 147, 321 (1937).
- 476b Malachowski and Kalinski, Roczniki Chem., 6, 768 (1926) [C. A., 21, 3615 (1927)].
- 476c Malachowski, Giedroyc, and Jerzmanowska, Ber., 61, 2525 (1928).
- 478d Huisgen and Koch, Naturwiss., 41, 16 (1954) [C. A., 49, 5344 (1955)].
- 477 McElvain and Jelinek, J. Am. Chem. Soc., 65, 2236 (1943).
- 478 Prager, Ber., 34, 3600 (1901).
- 479 Prager, Ber., 36, 1451 (1903).
- 480 Hinsberg, J. prakt. Chem., [2], 85, 337 (1912).

CHAPTER 2

THE JAPP-KLINGEMANN REACTION

ROBERT R PRILLIPS Eastman Kodak Company

CONTENTS

INTRODUCTION ,	PAGE
MECHANISM	143
SCOPE AND APPLICATION	151
EXPERIMENTAL CONDITIONS .	. 157
EXPERIMENTAL PROCEDURES	159
Ethyl Pyruvate o Nitrophenylliydrazone 1.2 Cyclohexanedione Monophenylliydrazone	159 159
TABLEAR SURVEY OF THE JAPP KILLSENANN REACTION	159
A Reactions in Which an Acyl Group Is Cleaved	161
Table 1. Derivatives of Formy propionic and Haloacetoacetic Acids	161
Table II Monoaubstituted Arctoacetic Esters	162
Table III. Acylacetoscetic Esters	166
Table IV. Acyley anoacetic Esters .	167
Table V Cyclic Compounds in Ring Opening Reactions	168
Table VI 1,3 Dicarbonyl Compounds	170
Table VII. Miscellaneous Compounds	172
B. Reactions Accompanied by Decarboxylation	173

173

174

174

175

Table VIII. Acetoacetic Acid Derivatives

Table X. Malonic Acid Derivatives

Table XI. Miscellaneous Reactions

Table IX. Cyanoacetic Acid Derivatives .

INTRODUCTION

In an attempt to prepare the azo ester I by coupling benzenediazonium chloride with ethyl 2-methylacetoacetate, Japp and Klingemann¹ obtained a product which was soon recognized¹-⁴ as the phenylhydrazone of ethyl pyruvate (II). It thus appeared that the acetyl group had been dis-

$$\begin{array}{c} \mathrm{CH_{3}COCHCO_{2}C_{2}H_{5}} + \mathrm{C_{6}H_{5}N_{2}} + \mathrm{Cl}^{-} \rightarrow \begin{bmatrix} \mathrm{CO_{2}C_{2}H_{5}} \\ | \\ \mathrm{CH_{3}COC} - \mathrm{N} = \mathrm{NC_{6}H_{5}} \\ | \\ \mathrm{CH_{3}} \end{bmatrix} \xrightarrow{\mathrm{H_{2}O}} \\ \\ \mathrm{CH_{3}} \\ \\ \mathrm{CO_{2}C_{2}H_{5}} \\ \\ \mathrm{CH_{3}CO_{2}H} + \mathrm{CH_{3}C} = \mathrm{N} - \mathrm{NHC_{6}H_{5}} \\ \\ \mathrm{II} \end{array}$$

placed; actually the coupling product I was unstable under the conditions of its formation, undergoing hydrolytic scission of the acetyl group and rearrangement of the azo structure. A year later the same authors discovered that, if the substituted acetoacetic ester was saponified and the coupling carried out on the sodium salt, the carboxylate function, rather than the acetyl group, was lost and the product isolated was the phenylhydrazone of biacetyl.^{4,5}

$$\begin{array}{c} \mathrm{CH_{3}COCHCO_{2}^{-}} \xrightarrow{\mathrm{C_{6}H_{5}N_{2}^{+}}} \left[\begin{array}{c} \mathrm{CO_{2}^{-}} \\ \mathrm{CH_{3}COC} \\ \mathrm{CH_{3}} \end{array} \right] \xrightarrow{\mathrm{H_{2}O}} \\ \mathrm{CH_{3}COC} \xrightarrow{\mathrm{N} = \mathrm{N}\mathrm{C_{6}H_{5}}} \right] \xrightarrow{\mathrm{H_{2}O}} \\ \mathrm{CH_{3}COC} \xrightarrow{\mathrm{N}\mathrm{N}\mathrm{HC_{6}H_{5}}} + \mathrm{HCO_{3}^{-}} \\ \mathrm{CH_{3}} \end{array}$$

In later years the reaction has been extended to other systems containing activated methinyl groups. The process can be generalized as shown in the following equation, in which x and y are electron-withdrawing groups.

- ¹ Japp and Klingemann, Ber., 20, 2942 (1887).
- ² Japp and Klingemann, Ber., 20, 3284 (1887).
- ² Japp and Klingemann, Ber., 20, 3398 (1887).
- 4 Japp and Klingemann, Ber., 21, 549 (1888).
- ⁵ Japp and Klingemann, Ann., 247, 190 (1888); J. Chem. Soc., 53, 519 (1888).

$$\begin{array}{c} x & \Pi \\ \downarrow 0 \\ \downarrow R \end{array} + \Lambda r N_1^+ \rightarrow \begin{bmatrix} x & N = N - \Lambda r \\ \downarrow 0 \\ \downarrow R \end{array} \begin{array}{c} \Pi_1 0 \\ \downarrow 0 \\ \downarrow 0 \\ \downarrow 0 \end{array} + X - C = N - N H \Lambda r \end{array}$$

MECHANISM

As is apparent from the above equations the Japp-Klingemann reaction is a special case of the coupling of diazonium salts with aliphatic compounds (see Chapter 1), distinguished by the fact that the coupling product ordinarily undergoes solvolysis as rapidly, or almost as rapidly, as it is formed. It resembles very closely the nitrosation and cleavage of active methinyl compounds discussed in an earlier volume of this series.6 The first step undoubtedly occurs by the same mechanism as the similar coupling with an active methylene compound (for a discussion see p. 6), and is probably best represented as a direct union of the anion of the active methinyl compound and the diazonium cation, which are shown in the accompanying equation as the forms carrying full unit charges on the atoms that unite in the process.

$$C_tH_tN = N^{\odot} + {\overset{\frown}{\ominus}} : C_t - y \rightarrow C_tH_tN = N - C_t - y$$

$$\overset{\frown}{\underset{R}{\downarrow}} \qquad \qquad \overset{\frown}{\underset{R}{\downarrow}}$$

Much of the early concern?-* about the mechanism of such couplings dealt with the question of the participation of the enolic forms of the active methinyl compounds and with the status of O-azo compounds as possible intermediates (p. 4). Although the mechanism just shown is probably an accurate representation of the coupling of mono-8-keto esters, there can be little doubt but that O-azo compounds are sometimes first formed from di-β-keto esters and triketones. Thus tribenzovimethane yields a coupling product that generates an azo dye upon treatment with β-naphthol and undoubtedly is the derivative of the enol.10

^{*} Touster, in Adams, Organic Reactions, Vol. 7, Chapter 8, John Wiley & Sons. 1953. Demroth and Hartmann, Ber . 41, 4012 (1908)

Dumroth, Ber , 40, 2404 (1907) Dimroth and Hartmann, Ber., 40, 4460 (1907).

Dimroth, Leichthn, and Friedemann, Ber , 50, 1534 (1917)

When it is heated to its melting point it changes to an isomer that does not have this property and must be the C-azo compound.

$$\begin{array}{c} C_6H_5 & COC_0H_5 \\ \downarrow & \downarrow \\ (C_6H_5CO)_2C = C - O - N = N - C_6H_5 \xrightarrow{Heat} (C_6H_5CO)_2 - C - N = N - C_6H_5 \end{array}$$

The cleavage step is closely similar to the scission of triacylmethanes and of nitroso derivatives of monosubstituted active methylene compounds. The cleavage is favored by increasing alkalinity of the solution; for example the azo compound III can be obtained from the diazonium salt prepared from 2,4-dinitroaniline and ethyl cyclopentanone-2-carboxylate by coupling in acetic acid solution, but it is rapidly cleaved by aqueous base, yielding IV. In analogy with the base-catalyzed

cleavage of nitroso esters⁶ the second step of the Japp-Klingemann reaction can be represented as shown. In the decomposition of the

¹¹ Linstead and Wang, J. Chem. Soc., 1937, 807.

product obtained by coupling with a salt of a keto acid, the resonating amon which gives rise to the phenylhydrazone probably results from the loss of carbon dioxide from the carboxylate amon.

Support for the above interpretation of the Japp-Klingemann process can be found in the isolation of many intermediate are compounds, ^{1,13–14} although not all attempts to obtain these intermediates have been successful.¹³ That the coupling with salts of \(\textit{\textit{F}}\)-keto acids and malonic acids does not proceed by a direct displacement of the carboxyl group is indicated by the observation that malonate salts of the type V react much more slowly than their decarboxylation products VI ¹⁵ Thus it appears likely that the malonate salt V undergoes decarboxylation before it reacts with the disacourse.

$$CO_1Na$$
 CHR CO_2Na CO_2Na CO_2Na

Azo derivatives of cyclohexanone-2-carboxanilide are relatively stable and can be isolated from coupling reactions of the anilide 11 However,

some of the monoarylhydrazone of cyclohexanedione was formed along with the azoanilide, presumably as a result of hydrolysis followed by decarboxylation

The phenylpyrazolone obtained from ethyl cyclohexanone-2-carboxylate couples with diazotized p-nitroaniline to give the unusually interesting azo derivative VII. Although quite unstable, VII does not undergo the

$$N_{NC_{4}H_{4}}$$
 $N_{C_{4}H_{4}}$ - 11 Favrel, Bull. soc chem France, [4], 47, 1290 (1930).
- Favrel, Compt rend., 189, 335 (1927)
 Kalb, Schweitzer, Zellner, and Berthold, Ber., 59, 1860 (1926)
- 11 Frank and I'billips, J Am Chem Soc . 71, 2804 (1949)

Bülow and Hailer applied the Japp-Klingemann reaction to the ethyl esters of several diacylacetic acids. 18 From ethyl propionylacetoacetate they isolated the phenylhydrazone corresponding to cleavage of the propionyl group. The product from ethyl benzoylacetoacetate contained the benzoyl group (loss of acetyl) and that from ethyl phenacetylacetoacetate contained the phenacetyl group (loss of acetyl). It was concluded that in such cleavages the acyl group corresponding to the weaker acid is liberated the more readily (the corrected acidity constants, 22 $10^5~K_a$, of the acids concerned are: propionic acid, 1.33; acetic acid, 1.75; phenylacetic acid, 4.88; benzoic acid, 6.27). In a study of the cleavage of unsymmetrical 1,3-diketones of the type RCOCH, COR', Hauser, Swamer, and Ringler²³ found a correlation of the relative yields of the acids RCO₂H and R'CO₂H with the rates of saponification of the ethyl esters of these acids, although the relationship did not hold well with purely aliphatic compounds. On this basis the acetyl group would be expected, contrary to observation, to undergo cleavage in either ethyl benzoylacetoacetate or ethyl propionylacetoacetate (the rate constants, 104 k, for the alkaline hydrolysis of the ethyl esters of the acids are:24 C_aH₅CO₂C₂H₅, 5.50; CH₃CH₂CO₂C₂H₅, 35.5; CH₃CO₂C₂H₅, 69.5).

In the cleavage of substituted cyanoacetic esters during the second stage of the Japp-Klingemann reaction, saponification and decarboxylation invariably occur leading to the phenylhydrazones of α -ketonitriles. Apparently no instance of the scission of the nitrile group has been recorded.

Perhaps one reason why more precise information is lacking on the direction of cleavage of azodiketones in the Japp-Klingemann reaction is that the arythydrazones produced in the process usually are capable of existing in geometrically isomeric forms (e.g., X and XI). Both isomers often are produced, and it may be economical to subject the crude

$$\begin{array}{ccc} \text{NNHC}_0\text{H}_5 & \text{C}_6\text{H}_5\text{NHN} \\ \parallel & \parallel \\ \text{RCCO}_2\text{C}_2\text{H}_5 & \text{RCCO}_2\text{C}_2\text{H}_5 \\ \text{X} & \text{XI} \end{array}$$

²² Ingold, Structure and Mechanism in Organic Chemistry, p. 734, Cornell University Press, Ithaca, N. Y., 1953.

²³ Hauser, Swamer, and Ringler, J. Am. Chem. Soc., 70, 4023 (1948).

²⁴ Hammett, Physical Organic Chemistry, p. 121, McGraw-Hill Book Co., New York, 1940.

material to the next reaction in a sequence, with purification at a later stage, rather than to isolate the pure arythydrazone. As a result, yields of the arythydrazones often are not reported

SCOPE AND APPLICATION

The first requirement for the occurrence of the Japp-Klingenann reaction is the presence of a hydrogen atom of sufficient activity to permit the coupling with the diazonium salt. Although normally two or three the coupling with the diazonium salt. Although normally two or three are present in the molecule, only one such group is required if other labilizing influences are operative upon the hydrogen atom concerned For example, 9-ethoxalylfluorene reacts in the typical fashion. ¹¹ A

$$\overbrace{\bigcirc \text{COCO}_{1}\text{C}_{1}\text{H}_{4}}^{\text{COCO}_{2}\text{C}_{1}\text{H}_{4}} \xrightarrow{\text{NNHC}_{4}\text{H}_{4}}$$

particularly interesting reaction is that of 9-nutrofluorene;²⁶ in the coupling with diazotized anilme the displaced nitro group appears in the para position of the phenyihydrazune residue of the product.

A methinyl group in the α -position of a pyridine compound also is reactive enough to participate in the Japp-Klingemann process if one additional activating group is present. For example, 2-n-butyrylpyridine has been prepared in good yield from 2-(2"-py ridyl)pentanoue acid by the process abown 1" A somewhat similar reaction is that of 1-ethoxalyl-1,2-3,4-tetrahydroacridine and the analogous cyclopenteno derirative."

Kuhn and Levy. Ber. 61, 2240 (1928)
 Ponzio, Gazz chem stal., 42, [11], 55 (1912).

[&]quot; Boreche and Manteuffel, Ann., 534, 56 (1938)

$$\begin{array}{c|c} & C_6H_6N_2^+ \\ & & NNHC_6H_5 \end{array}$$

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\$$

In contrast with 9-nitrofluorene, α -nitropropionic acid retains the nitro group in the reaction. Decarboxylation takes place to yield the phenylhydrazone, $\mathrm{CH_3C(NO_2)}\!\!=\!\!\mathrm{NNHC_6H_5}$, identical with the product obtained from nitroethane and benzenediazonium chloride.²⁸

Esters of a great variety of monosubstituted acetoacetic acids have been subjected to the reaction. Chlorine and bromine atoms may serve as the third substituent on the methinyl carbon. These halogen atoms are not removed during the reaction but appear in the products, which are phenylhydrazones of unusual structure, as shown in the equation.^{29,30}

$$\begin{array}{c} \text{CH}_3\text{COCHCO}_2\text{C}_2\text{H}_5 \xrightarrow{\text{C}_6\text{H}_5\text{N}_1^+} \text{C}_6\text{H}_5\text{NHN} = \text{CCO}_2\text{C}_2\text{H}_5 \\ | & | & | \\ \text{Cl} & & | \end{array}$$

One exception to the statement that halogen is not removed is the coupling of 3-bromotriacetic lactone (XII), which furnishes the same arylhydrazone XIII as that obtained from triacetic lactone itself.^{30a} Methylene bis(triacetic lactone) (XIV) on coupling also yields the arylhydrazone XIII.

$$\begin{array}{c} OH \\ H_3C \\ O \\ XII \end{array} \longrightarrow \begin{array}{c} O \\ H_3C \\ O \\ XIII \end{array} \longrightarrow \begin{array}{c} OH \\ H_3C \\ O \\ O \end{array} \longrightarrow \begin{array}{c} OH \\ CH_2 \\ XIII \end{array}$$

Alkyl-substituted acetoacetic esters are more commonly encountered. The products from such esters are readily reduced and hydrolyzed, and

²⁸ Steinkopf and Supan, Ber., 43, 3239 (1910).

²⁹ Favrel, Compt. rend., 134, 1312 (1902).

²⁰ Favrel, Bull. soc. chim. France, [3], 31, 150 (1904).

³⁰⁴ Wiley and Jarboe, J. Am. Chem. Soc., 78, 624 (1956).

this method of synthesis of a-amino acids has been employed extensively. Examples are the syntheses of alanine5,31-34 and methionine.35

$$\begin{array}{c} \mathrm{CH_{4}COCHCO_{4}C_{4}H_{4}} \xrightarrow{C_{4}H_{4}N_{4}} \mathrm{CH_{5}CO_{4}C_{4}H_{4}} \xrightarrow{4H_{4}} \mathrm{CH_{5}CH$$

The phenylhydrazones from the Japp-Klingemann reaction on simply substituted acetoacetic esters also have been used extensively in the synthesis of indoles. The Fischer cyclization converts them to esters of substituted indole-2-carboxylic acids. The preparation of ethyl 3phenylindole-2-carboxylate is illustrative.36

$$\overset{\operatorname{CH_4Cochco}_1\operatorname{C_1H_4}}{\underset{\longrightarrow}{\bigcap}} \xrightarrow{\operatorname{C_4H_4CH_4CCO_2\operatorname{C_1H_4}}} \xrightarrow{\operatorname{H}^+} \overset{\operatorname{H}^-}{\underset{\longrightarrow}{\bigcap}} \overset{\operatorname{C}_4\operatorname{H}_4}{\underset{\longrightarrow}{\bigcap}}$$

Substituents in the benzene ring of the indole may be introduced through the use of a substituted benzenediazonium salt in the coupling. Diazonium salts from 2- and 4-substituted andines can give only one product in a simple Fischer cyclization, but two different indoles may be obtained from a m-substituted aniline, 37 and consequently these have been employed infrequently. Examples of the products obtained from 2- and 4-substituted anilines are shown.38,39

- Feefilaktov, Compt rend good. set U.R.S.S., 24, 755 (1939) [C. A., 34, 1971 (1940)]. Feefilaktov and others, Bull. good sex. U.R.S.E. Classe ecs. chem., 1940, 259 [C. A., 35,
- 3606 (1941));
 - 33 Bamberger, Ber . 25, 3547 (1892) Feofilaktov and Zattsevs, J. Gen. Chem. U.S.S.R., 10, 258 (1940) [C. A., 34, 7283]
- (1940)]. Feofilaktov and Ivanova, J. Gen Chem. U.S.S.B., 21, 1884 (1951) [C. A., 46, 3955] (1952))
 - Maneke, Perkin, and Robinson, J. Chem Soc , 1927, 1. 57 Koelsch, J. Org Chem , 8, 295 (1943).
- ¹⁰ Hughes, Liona, and Ritchie, J. Proc. Roy Soc. N. S. Wales, 72, 209 (1938) [C. A., 33, 6837 (1939)1
- ** Hughes and others, J. Proc. Roy Soc. N S Wales, 71, 475 (1937) [C. A., 33, 587 (1939)].

If the substituent in the acetoacetic ester has a carbonyl group attached to the first carbon atom, the phenylhydrazone from the Japp-Klingemann reaction will readily cyclize to a pyrazole. Acetonyl¹⁰ and phenacyl⁴¹

groups, which may bear additional substituents, have been employed in this way.

Acyl derivatives of acetoacetic ester also may be employed. The products are monophenylhydrazones of α, β -diketo esters. Thus ethyl benzoylacetoacetate reacts as shown.¹⁸

$$\begin{array}{c} C_{6}H_{5}COCHCO_{2}C_{2}H_{5} \xrightarrow{C_{4}H_{4}N_{1}^{+}} C_{6}H_{5}C -CCO_{2}C_{2}H_{5} \\ COCH_{3} \end{array}$$

⁴⁰ Bischler, Ber., 26, 1881 (1893).

⁴¹ Bischler, Ber., 25, 3143 (1892).

Probably because they have been less readily available than acetoacetic esters. 1.3-diketones have not been extensively employed in the Japp-Klingemann reaction. Among those which have been examined are α-chloro-,42 α-methyl-43 and α-ethyl-acetylacetone,42 The products are monophenylhydrazones of 1,2-diketones, as illustrated for the methyl derivative The same products are available from the substituted \$\beta\$-keto

$$\text{CH}^{2}\text{COCHCOCH}^{2} \xrightarrow{\text{C}^{2}\text{H}^{2}\text{N}^{2}_{+}} \text{CH}^{2}\text{COCCH}^{2}$$

$$\stackrel{\parallel}{\text{NNHC}^{6}}$$

esters, provided the ester group is saponified before the coupling is performed (p 144). Such monophenylhydrazones have been prepared from several substituted acetoacetic esters.

When the Japp-Klingemann reaction is applied to a cyclic β -keto ester. the ring is opened in the second stage of the process. The reaction of ethyl cyclohexanone-2-carboxylate is illustrative 11,44 Cyclonentanone

derivatives undergo similar ring opening. The products from both series have been employed in the synthesis of amino acids and indoles. The ring opened may be that of a lactone, as in acetobutyrolactone, which vields the phenylhydrazone of ketobutyrolactone 45 This product also

has found use in the synthesis of ammo acids.48,47 Alternatively the ring opened may be that of a lactam, as in the elegant synthesis of tryptamine

- 4 Dieckmann and Platz, Ber , 38, 2986 (1905)
- 42 Favrel, Bull soc chim France, [3], 27, 336 (1902), Compt rend , 132, 41 (1901) Feedlahtov and Ivanov, J., Gen. Chem. U.S.S. R., 13, 457 (1942) [C. A., 38, 3255 (1944)].
- ** Harradence and Leons, J Proc. Roy Soc N. S Wales, 72, 221 (1938) [C. A., 33, 6838 (1939n.
 - ** Feofilaktov and Omehchenko, J Gen Chem. U.S.S. R., 9, 314 (1939) [C. A., 34, 378 (1940)] " Snyder, Andreen, Cannon, and Peters, J Am Chem Soc., 64, 2082 (1942)

and serotonin (5-hydroxytryptamine) based on the coupling with a salt of α -carboxy- α -valerolactone and a Fischer cyclization of the products.^{47a}

As in the reactions of acyclic β -keto esters, the reaction takes the decarboxylation course if the ester is saponified before the coupling. Thus a monophenylhydrazone of cyclohexane-1,2-dione is obtained from ethyl cyclohexanone-2-carboxylate.¹¹

Such compounds may serve as sources of derivatives of ω -aldehydo acids. When the o-nitrophenylhydrazone obtained from cyclopentanone-2-carboxylic acid was allowed to stand in aqueous alcoholic potassium hydroxide for five days it was converted to the o-nitrophenylhydrazone of δ -formylbutyric acid in about 35% yield.¹¹

Monosubstituted cyanoacetic esters couple readily. When the products are hydrolyzed, decarboxylation ensues leading to hydrazones of α -keto nitriles. Substituted malonic esters yield phenylhydrazones of α -keto acids, identical to those which can be obtained from similarly substituted acetoacetic esters.

The diazonium salts used in the reaction include those derived from aniline and its simple substitution products, polysubstituted anilines, benzidine and substituted benzidines, and even antipyrine. The diazonium salt related to the last substance has been coupled with 3-methylpentane-2,4-dione⁴⁸ to give the hydrazone shown in the equation.

$$H_3C_6N-CO$$
 $CN_2+Cl^- + CH_3COCHCOCH_3 + H_2O \rightarrow$
 CH_3
 CH_3
 H_3C_6N-CO
 $CNHN=CCOCH_3 + HCl + CH_3CO_2H$
 CH_3
 CH_3
 CH_3

⁴⁷⁴ Abramovitch and Shapiro, Chemistry & Industry, 1955, 1255.

⁴⁴ Morgan and Reilly, J. Chem. Soc., 103, 808 (1913).

It might be expected that diagonium salts in which electron-withdrawing groups are located in ortho or para positions, so that they accentuate the positive character of the diazonium cation, would be most active in the coupling. In couplings with 2-pyridylacetic acid, diszotized n-aminobenzoic acid gave the best results, and diazotized p-nitroaniline and sulfanilic acid were superior, both with regard to the yield and the purity of the products, to diazotized aniline 16 Although few experiments have been carried out with a single active methinyl compound and a variety of diazonium salts in the Japp-Klingemann reaction under identical conditions, the yields from substituted anilines appear to run higher than those from anilme. It is possible that substituents such as the nitro and carboxyl groups may give rise to higher melting and less soluble products, leading to easier isolation as well as to more complete resetion

If the arylamino portion of a Japp-Klingemann product is to be removed, as in a reduction to an a-amino acid (pp 152-153), the diagonium salt should be selected not only on the basis of the probable yield in the coupling but also with consideration of the character of the second product in the further reaction. For example, if a diazotized aminobenzoic acid were used in a coupling carried out as part of a sequence to an g-amino acid, the difficulty of separating this product from the regenerated aminobenzoic acid might outweigh any advantage gained in the counling.

In the preparation of arvihydrazones to be employed in the synthesis of indoles and pyrazoles the choice of the diazonium salt is dictated by the substituents desired in the final product.

EXPERIMENTAL CONDITIONS

Most of the reactions have been run in aqueous medium at about 0°. Occasionally ethanol has been added to increase the solubility.49 In the coupling of 1-ethoxalyl-1,2,3,4-tetrahydroacridine (p. 151) the medium was pyridine diluted with the water in which the diazonium salt was prepared 27 The aqueous solutions usually are buffered with sodium acetate in reactions in which an acyl group is to be cleaved. 20,40 Stronger bases have been used, however. In the conversion of ethyl cyclopentanone-2-carboxylate to the phenylhydrazone of ethyl hydrogen a-ketoadipate, Manske and Robinson⁵¹ employed potassium hydroxide; for the preparation of the similar product from diazotized m-aminobenzoic scid,

^{**} Luons and Spruson, J. Proc. Roy. Soc. N S. Wales, 66, 171 (1932) [C. A., 27, 291 (1933)].

^{*} Favrel and Chrs. Bull. soc. chim. France, [4], 37, 1238 (1925).

Manake and Robinson, J. Chem. Soc., 1927, 240

Koelsch³⁷ preferred to carry out the coupling in acid solution and to convert the azo compound so obtained to the substituted hydrazone by a two-minute treatment with boiling 7% aqueous sodium carbonate. Other couplings also have been found to occur under either acid or basic conditions, 8,43,52 and even sodium ethoxide has been used as the base.⁵³

If the cleavage of the acyl group from a β-keto ester is desired, the basic solution of the ester should be treated with the diazonium salt immediately.⁵⁴ If such basic solutions are allowed to stand at 0° for periods up to twenty-four hours before the treatment with the diazonium salt, the ester group is removed and the product obtained is a derivative of a 1,2-diketone.^{11,55,56}

The time required for the Japp-Klingemann process varies, with the activity of the methinyl group, from a few seconds to as much as four days. When aqueous solutions are employed the products often separate, and the mixture can be stirred until no further change occurs. The azo compounds, sometimes encountered as intermediates (p. 147), are much more deeply colored (usually red) than the arylhydrazones. Accordingly, a color change sometimes furnishes a useful guide to the course of the reaction.

Most of the reactions have been run with equivalent amounts of the methinyl component and the diazonium salt. The use of excess diazonium salt may result in the loss of some of the product by conversion to the formazyl, as shown in the equation.^{33,57} This appears to be the only

serious side reaction in the Japp-Klingemann process, aside from the alternative cleavage of keto esters (above). Another disadvantage to the use of an excess of the diazonium salt is the formation of colored materials and tars as a result of its decomposition when the reaction mixture is allowed to warm.

The products from the Japp-Klingemann reaction usually have been

⁵² Findlay and Dougherty, J. Org. Chem., 13, 560 (1948).

⁵³ Feofilaktov, J. Gen. Chem. U.S.S.R., 17, 993 (1947) [C. A., 42, 4537 (1948)].

⁵⁴ Jackson and Manske, J. Am. Chem. Soc., 52, 5029 (1930).

⁵³ Manske, Can. J. Research, 4, 591 (1931).

⁵⁸ Lions, J. Proc. Roy. Soc. N. S. Wales, 66, 516 (1932) [C. A., 27, 2954 (1933)].

⁵⁷ Walker, J. Chem. Soc., 123, 2775 (1923).

recrystallized from ethanol or benzene; 80% acetic acid has been employed in some instances. 18

EXPERIMENTAL PROCEDURES

Ethyl Pyruvate o-Nitrophenylhydrazone. ** To an ree-cold solution of 20.5 g. (0.14 mole) of ethyl 2-methylacetoacetate m 150 ml. of chanol is added 51 ml of 50% aqueous potassium hydroxide. This mixture is then diluted with 300 ml of see water, and the cold diazonium salt solution, prepared from 20.0 g. (0.14 roole) of o-introamline, 60 ml. of concentrated hydrochloric acid, 90 ml of water, and 10.5 g. of sodium nitrite, is rapidly run in with stirring. Stirring is continued for five minutes, at the end of which time the separated ethyl pyruvate o-introphenylhydrazone is collected by filtration. It melts at 106°, after recrystallization from ethanol The vield is 30.0 g. (83%).

1.2-Cyclohexanedione Monophenylhydrazone.¹⁸ To an ies-cold solution of 36 og (0.21 mole) of ethyl cyclohexanone-2-carboxylate m 60 ml. of ethanol is added an ies-cold solution of 12.0 g, of potassum hydroxide in 60 ml. of water. The reaction mixture is held at 0° for twenty-four hours and then diluted with 1 l. of ies water. A benzene-duzzonium chloride solution is prepared from 18 6 g, 10.2 mole) of antine, 50 ml. of concentrated hydrochloric scal in 100 ml. of water, and 13.8 g, of sodium nitrite. The cold diazonium solution is then added to the first solution with vigorous stirring and contained cooling in iee, followed immediately by the addition of 30.0 g of sodium acetate. Carbon doxide is seen to evolve, and the reaction is allowed to continue at 0° until the gas evolution ceases. The solid product which separates is 1,2-cyclohexanedone monophenylhydrazone. It is collected by filtration and recrystallized from ethanol. It melts at 185–186°. The yield is almost ouantitative.

TABULAR SURVEY OF THE JAPP-KLINGEMANN REACTION

The following list of Japp-Klingemann reactions includes many examples in which the products were further modified, so that yields are not available. The lat is based on a literature survey to January 1, 1956, but because of the difficulties of locating scattered instances of the reaction in the literature, especially when the products are chiefly of interest as intermediates in further reactions, it probably does not include

¹⁶ Feofilahtov and Vinogradova, Compt send and ses U.R.S.S., 24, 759 (1939) [C.A., 34, 1871 (1940)]

all recorded applications of the Japp-Klingemann reaction. For convenience the reactions in which an acyl group is cleaved are listed separately (section A) from those accompanied by decarboxylation (section B). Accordingly, some compounds will be found in both sections. Section A is subdivided as follows:

- I. Derivatives of nitropropionic, formylpropionic, and haloaceto-acetic acids.
 - II. Monosubstituted acetoacetic esters.
 - III. Acylacetoacetic esters.
 - IV. Acylcyanoacetic esters.
 - V. Cyclic compounds.
 - VI. 1,3-Dicarbonyl compounds.
 - VII. Miscellaneous compounds.

Section B is subdivided as follows:

- VIII. Acetoacetic acid derivatives.
 - IX. Cyanoacetic acid derivatives.
 - X. Malonic acid derivatives.
 - XI. Miscellaneous reactions.

A. Reactions in Which an Acyl Group Is Cleaved

TABLE I

DERIVATIVES OF FORMYLPROPIONIC AND HALOACETOACETIC ACIDS
(The group lost in the cleavage is italic.)

Substituent	$_{ m in}$
(- T	

	N.+ or			
		Yield,		Conversion
Substance	(Other Diazonium Ion)	%	References	Product
CH,CHCO,C,H,		_	16	_
1				
ĊНО				
CH,COCHCO,CH,	_	_	30	
1	-		59	_
Ćl	2-CH,		30	_
	4-CH,	_	30	
CH ₁ COCHCO ₁ C ₁ H ₅	~ '	_	29, 30	_
1	_•	_	59	_
C1	5-CH,	_	29, 30	-
	4-CH,*	_	29, 30	-
	4-Br*	_	60	
	(Certain benzidine			
	derivatīves]		30	_
CH,COCHCONHC,H,		80	61	-
1	3-CH ₂ , 4-CH ₃	-	61	-
Ċl	3-CH ₁ , 5-CH ₂	_	61	_
	[\alpha - C_{10} H_7 N_2 +]	_	61	_
	[\$-C ₁₀ H ₁ N ₂ +]	_	61	_
CH_COCHCO_C10H10†			62	_
1	4-Br		62	_
Br	4-CH ₃	_	62	_

Note: References 59-118 are on pp. 177-178.

These reagents have also been coupled with ethyl α-bromoacetoacetate, ref. 60.

er. oo. † The (—)-menthyl ester.

[‡] Certain reactions of the ethyl ester are entered under ethyl α-chloroacetoacetate.

TABLE II

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

 \mathbf{R}

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

$$CH_3COCHCO_3C_2H_5 + ArN_3+X^- \rightarrow [CH_3COCCO_4C_2H_4] \xrightarrow{H_4O}$$
 $N=NAr$

NNHAP

 $CH_3CO_2H + RCCO_2C_2I$ Substituent in

Substituent R in				
CH3COCHCO3C3H	⟨ ⟩N₂+or			
1		Yield,		Conversion
Ŕ	[Other Diazonium Ion]	%	References	Product
си,соси,	_	_	40	Pyrazole
	4-NO ₂ *	_	67	Pyrazole
C ₂ H ₅ O ₂ CCH ₂ CH ₂	_	74	113	_
-	2-CH ₃	88	113	_
	3-CH ₂	34	113	_
	2-C1	60	113	_
	3-C1	72	113	
	4-C1	81	113	_
	2-CO ₂ H	96	113	_
	4-80 ₃ H	95	113	
	4-NO.	87	113	
	(a-C ₁₀ H ₂ N ₂)	47	113	_
	$(\beta - C_{10}H_7N_1)$	33	113	_
NCCH,CH,	_	98	112, 113	Indole
	4-NO.	98	113	_
C,H,O,CCH,CH,		_	68, 69	Indole
	2-CI	-	52	
	3-Cl	_	52	
	4-C1	-	52	_
	2-CII ₃	_	111	Amino acid
	2-OCH ₂	-	52	Indole
	3-OCII,	_	52	Indole
	4-OCH,		52	Indole
С.И.ОСИ,СИ,СИ,		15	70	Indole
C'H'O'CCHCH'CH'	_	Good	71	Indole
\ МНСО₁С₁Н₁				

Note: References 59-118 are on pp. 177-178.

 The arc compound was isolated; upon standing or upon treatment with aqueous alkali, followed by achification, it underwent loss of the acetyl group and cyclization to the pyrazolo.

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

75

81

Amino acid

TABLE II-Continued

MONOSUBSTITUTED ACETOACETIC ESTERS IN THE REACTION:

$$\begin{array}{c} & R \\ \text{CH}_3\text{COCHCO}_2\textbf{C}_2\textbf{H}_1 + A_{\Gamma}\textbf{N}_2 + \textbf{X}^- \rightarrow [\text{CH}_3\text{COCCO}_2\textbf{C}_2\textbf{H}_3] \xrightarrow{\textbf{H}_2\textbf{O}} \\ & N = NA_{\Gamma} \end{array}$$

NNHAR

CH-CO-H + RCCO-C-H-

		CI	13CO2H ⊤ K	CCOLCINE
Substituent R in CH ₂ COCHCO ₂ C ₂ H ₅	Substituent in N ₁ + or [Other Diazonium Ion]	Yield,	References	Conversion Product
CH	-	70	82	Indole
CH ₁		50	82	Indole
CAH, COCH,		_	41	Pyrazole
	2-CH.		40	Pyrazole
	4-CH,		40	Pyrazole
$C_{\bullet}H_{\bullet}COCH(C_{\bullet}H_{\bullet})$		-	40	Pyrazole

TABLE III

ACYLACETOACETIC ESTERS IN THE REACTION:

18 18

18

18

18

Note: References 59-118 are on pp. 177-178.

2-CO₂H

 2-CO_2H

3-O2NC6H4†

4-O2NC6H4†

C6H5CH2CO†

^{*} Reaction course b.

[†] Reaction course a.

_

TABLE IV

ACYLCYANOACETIC ESTERS IN THE REACTION: CO.C.H.

$$\begin{array}{c} \operatorname{RCOCHCO}_4 C_4 H_5 + \operatorname{ArN}_4 {}^* X^- \to [\operatorname{RCOC}^{\stackrel{l}{\longleftarrow}} N = N - Ar] \xrightarrow{H_4 O} \\ \stackrel{l}{\longleftarrow} CN & \operatorname{CO}_4 C_4 H_5 \\ & \operatorname{RCO}_4 H + \stackrel{l}{\longleftarrow} N \operatorname{NHC}_4 H_5 \end{array}$$

Substituent in Yield, Refer-Conversion

R in Ester Other Diazonium Ion ences Product CH. 20, 21 20 сн,сн, 20, 21 (CH₂),CH 20, 21 20

(CH₃)₂CHCH₂ 20, 21 20, 21 C.H.

TABLE V

CYCLIC COMPOUNDS IN RING-OPENING REACTIONS*

Substituent in

Note: References 59-118 are on pp. 177-178.

* See p. 155.

† The bond broken in the ring opening is indicated by the dotted line.

TABLE V-Continued

CYCLIC COMPOUNDS IN RING-OPENING REACTIONS*

Substituent in

Note: References 59-118 are on pp. 177-178.

* See p. 155.

† The bond broken in the ring opening is indicated by the dotted line.

§ Methyl cyclohexanone-2-carboxylate was also coupled.

TABLE VI

1,3-DICARBONYL COMPOUNDS (The group that is lost is italic.)

Sul			

Carbonyl Compound $CH_3COCHCOCH_3$ Cl	[Other Diazonium Ion]	Yield, % — 60	References 42 90	Conversion Product —
$\begin{array}{c} \mathrm{CH_{3}COCH}COCO_{2}C_{2}H_{5} \\ \\ \mathrm{Cl} \end{array}$	_		91	
CH3COCHCOCH3	2-CH ₃ 4-CH ₃ 4-NO ₂		43 43 43 13	- - -
	$[^{+}N_{2}]$ $N_{2}^{+}]$ $[^{+}N_{2}]$ CH_{3} CH_{3}	_	43 43	
	H_5C_0N — CO CN_2^+ H_3CN — C CH_3		48	
CH ₃ COCH <i>COCH</i> ₃ CH ₂ CH ₃	2-CH ₃ 4-CH ₃ 4-NO ₂ 4-Cl 4-Br		43 43 43 13 13	
	$[^+N_2]$ $N_2^+]$		43	

TABLE VI-Continued 1,3-DICARBONYL COMPOUNDS (The group that is lost is italic.)

•	group	that	19	lost	is	italıc.	
	Substituent in						

	N ₁ + or			Con
		Yield,	Refer-	
Carbonyl Compound	[Other Diazonium Ion]	%	ences	Produ
CH,COCHCOCH,	***	80	113	
4		(as acid)		
CH2CH2CO2C2H2	2-CH ₃	72	113	_
		(as acid)		
	3-CH ₃	85 (as acid)	113	_
	4-CH,	81	113	
	4-0113	(as acid)		_
	4-NO.	85	113	_
	1-1101	(as acid)		
CAHACOCHCHO	-		92, 93	_
oluloochono	4-Br	_	8	_
Ċ,H,	4-NO,	_	8	_
ĊH²				
.d.				
си сисно			94	_
н,соси,				
CH ₂ CO				
CH				
CH-COCH,	_	_	19	_
CHEOCH,				
"\				
ů.				
•				
~~~				
CH_OC,H	_	-	19	_
- 1				
o				
- 0				
H,C CHCOC,H,	_	_	19	_
~ ~				
ő				
Note: References 59-118 a	re on pp. 177-178.			
More: Testerement				

TABLE VII
MISCELLANEOUS COMPOUNDS

## Substituent in

Starting Material $Coco_2 C_2 H_5$	$N_2^+$ $-*$ $4-0CH_3*$ $4-Br*$	Yield, % — — —	References 27 27 27	Conversion Product
NO ₂	—†		26	_
$\mathrm{COCO_2C_2H_{\delta}}$	‡ 4-NO ₂ ‡	_	95 25	Ξ
COCH ₃	_	90-96	45, 46, 47	Amino acid
CICH ₂ COCH ₃		83	96, 97	Amino acid
CH ₂ —CO CO—CHCH ₃	_	_	98	_

- * The reaction was run in pyridine solution.
- † The nitro group eliminated from the 9 position of fluorene apparently attacked the coupling product, since the *p-nitro*-phenylhydrazone of fluorenone was isolated.
  - ‡ The ethoxalyl group was eliminated.

## B. Reactions Accompanied by Decarboxylation

## TABLE VIII ACETOACETIC ACID DERIVATIVES

			-	
R in RCHCO ₂ H         COCH ₂	Substituent in	Yield,	References	Conversion Product
CH _a	_	Quant.	4, 5, 33	
C,H,	_	_	4, 5	_
KO,CCH,CH,		80	99	
C.H.CH.	_	86	36	Indole
	3-NO.	80	36	_
	2-OCH, 5-OCH,	80	36	_
	3-OCH, 4-OCH,	Quant.	49	_
C,H,COCH,	_		40	Pyrazole
CHECHECHECHE	 3-OCH ₃ 3-CI	86 85	36 38 36	Indole Indole —

TABLE IX

CYANOACETIC ACID DERIVATIVES

${f R}$ in	Substituent in			
RCHCO ₂ H	$\sqrt{N_2^+}$	Yield,	-	Conversion
$C \equiv N$	\/	%	References	Product
$CH_3$	<del></del>		100, 101	
	$2\text{-CH}_3$	25	100, 101	<del></del>
	$4\text{-CH}_3$	28	100, 101	
$C_2H_5$	_	31	100, 101	
	$2\text{-CH}_3$	25	100, 101	_
	$4\text{-CH}_3$	15	100, 101, 102	-
	4-Cl	Quant.	102	-
$C_6H_5$	_		102	
$\mathrm{C_6H_5CH_2}$		30	58, 103	Amino acid
	*****	Quant.	102	
	4-CH ₃	25	102	
	$4-NO_2$		102	

Note: References 59-118 are on pp. 177-178.

TABLE X

MALONIC ACID DERIVATIVES

	Substituent in			
R in RCH(CO ₂ H) ₂	$\boxed{\hspace{1cm}} N_2{}^+$	Yield, %	References	Conversion Product
Cl			59	
	$2\text{-CO}_2\mathrm{CH}_3$	_	59	
$CH_3$	_	_	104, 105	
	$4\text{-CH}_3$		104, 105	_
$C_2H_5$		_	104, 105	_
	$2\text{-CH}_3$		104, 105	
$\mathrm{HO_{2}CCH_{2}CH_{2}}$	-	49	113	
$C_6H_5CH_2$	<del></del>		58, 103	Amino acid
		_	80	Azoformaldoxime

### TABLE XI

MISCELLANEOUS REACTIONS
Substituent in
N _s + or

		N ₂ + or			
	Starting Material	[Other Diazonium Ion]	Yıeld,	References	Conversion Product
NO; CH'CHCO'H	-	-	28		
CE CE	· 1	2-NO ₂ 4-NO ₂	Quant.	11, 56, 106 11 11	Indole
CE CE	· 1	2-NO ₂ * 4-NO ₂ *	_	11 11	Ξ
ĆI    -	· 1	$\begin{array}{c} -\\ 4 \text{ CH}_3\\ 4\text{-NO}_2\\ [\alpha \text{ C}_{10}\text{H}_7\text{N}_2^+]\\ [\beta\text{-C}_{18}\text{H}_7\text{N}_1^+] \end{array}$	Quant. Quant. — — Quant.	11, 56 56 11 58 56	Indole Indole Indole Indole Indole
СН Н СН	*сссн*		_	107	-
	N-CO CHCH,	4-CO ₂ C ₂ H ₄	89	108	-

Note: References 59-118 are on pp. 177-178. * The azo compound was isolated also

the product was α-C₂H₄NNHCOCH(CH₃)=NNHC₄H₄CO₂C₂H₃-(p)

# TABLE XI—Continued MISCELLANEOUS REACTIONS

$$N_2^+$$
 or

	Other Diazonium	Viold		Conversion
Starting Material	Ion]	%	References	Product
CHCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH	.‡ 4-CO₂H	94	15	_
CH ₂ —CHCN CH ₂ CO		88	109	_
CH ₂ —CHCO ₂ H CH ₂ CO	_	83	46	Amino acid
S CO ₂ H	_	Quant.	110	_

Note: References 59-118 are on pp. 177-178. ‡ The product was 2-n-butyrylpyridine.

#### REFERENCES FOR TABLES I-XI

- ¹⁹ Fusco and Romani, Gazz chim ital , 78, 419 (1946); 78, 342 (1948). 55 Bewack and Lapworth, J. Chem. Soc , 87, 1854 (1905).
- 41 Bolow and King, Ann , 439, 211 (1924).
  - 41 Lapworth, J. Chem. Soc , 83, 1114 (1903).
- ** Rydon and Siddappa, J Chem. Soc., 1951, 2462
- 44 Hegedus, Helv Chem. Acta, 29, 1499 (1945). 44 Feofilaktov and Zaitseva, J. Gen. Chem. U.S.S. R., 13, 358 (1943) (C. A., 38, 1211
- (1944)1 ** Feofilaktov and Zaitseva, J. Gen. Chem. U.S.S.R., 10, 1391 (1940) [C. A., 25, 3606

#### (1941)) 47 Eastman and Detert, J. Am Chem Soc., 70, 962 (1948)

- ** Tanaka, J. Pharm. Soc. Japan, 60, 74 (1940) [C. A., 34, 3735 (1940)]. ** King and L'Ecuyer, J Chem. Soc , 1934, 1901.
  - ¹⁰ Manske, Can J. Research, 4, 591 (1931)

  - 71 Pheninger, Ber . 83, 268 (1950). Feofilaktov and Blanko. J. Gen. Chem USSR, 11, 859 (1941) [C A, 36, 4096 (1942)].
  - Feofilaktov, J Gen Chem U.S.S.B., 10, 247 (1940) [C A, 34, 7283 (1940)]
  - ¹⁴ Bolow and Schlesinger, Ber. 32, 2880 (1899).
  - " Balow, Ber , 33, 3266 (1900).
  - 26 Stolz, Ber., 33, 262 (1990). 77 Bulow and Schlesinger, Ber., 33, 3352 (1900).
  - ** Balow and Baur, Ber., 58, 1928 (1925)
- Feofilaktov and Vinogradova, J. Gen. Chem. U.S.S.R., 10, 255 (1940) [C. A., 34, 7233. (1940)].
  - 40 Walker, J. Chem. Soc . 127, 1860 (1925).
- 41 Feofilaktov, Zastasva, and Surotkins, J. Gen Chem. U.S.S. R., 13, 362 (1943) [C. A., 38, 1211 (1944)].
  - ** Sempronj, Gazz chim. stal , 68, 263 (1938).
  - ** Rabischong, Bull. 200, chim. France, [3], 31, 91 (1994)
  - Schroeter, Ber , 49, 2697 (1916).
  - 4 Kalb, Schweizer, and Schimpf, Ber., 59, 1858 (1926) M Barrett, Perkin, and Robinson, J. Chem. Soc., 1929, 2942.
  - Peofilektov, Bull acad scs. U.R.S.S. Classe ses, chim., 1941, 521 [C. A., 37, 2347]
- (1943)1 4 Wieland, Garbsch, and Chavan, Ann. 461, 295 (1928).

#### ** Feofilaktov, J Gen. Chem. U.S.S.R., 21, 362 (1951) [C. A., 45, 7551 (1951)]

- ** Neber and Worner, Ann. 526, 173 (1936)
- 21 Payrel and Chrz, Bull. soc chem France, [4], 41, 1603 (1927).
- ** Wishconus and Ruthing, Ann , 379, 229 (1911). ** Roy and Sen, J Indian Chem. Soc., 10, 347 (1933).
- 14 Bishop, Claison, and Sinclair, Ann , 281, 314 (1894).
- Wishcenus and Densch, Ber., 35, 759 (1902).
- * Feofilaktov and Onishchenko, Compt. rend. scad. sci. U.R.S.S., 20, 133 (1938) [C. A., 33, 1725 (1939)].
  - ** Foofilaktov and Onishchenko, J. Gen Chem. U.S.S R., 9, 331 (1839) [C. A., 34, 379]
  - ** Wolff, Ann., 312, 119 (1900). " Cleme and Welch, J. Chem Soc , 1928, 2621.
  - 100 Favrel, Compt. rend., 132, 983 (1901).
  - 101 Favrel, Bull. soc chim. France. [3], 27, 193 (1902) 101 Walker, J. Chem Soc , 125, 1622 (1924)
- 100 Feofilaktov and Vinogradova, Compt rend ucad sci. U.R.S.S., 24, 759 (1939) [C A . 34, 1971 (1940)]. J Gen Chem U.S.S.R., 10, 260 (1940) [C. A., 34, 7283 (1940)].
  - 104 Favrel, Compt. rend , 132, 1336 (1901).

- 105 Favrel, Bull. soc. chim. France, [3], 27, 324 (1902).
- 106 Dieckmann, Ann., 317, 27 (1901).
- 107 Betti, Ber., 32, 1995 (1899).
- 108 Snyder and Robison, J. Am. Chem. Soc., 74, 4910 (1952).
- ¹⁰⁹ Feofilaktov and Onishchenko, J. Gen. Chem. U.S.S.R., 9, 325 (1939) [C. A., 34, 379 (1940)].
  - 110 Friedlander, Monatsh., 30, 347 (1909).
- ¹¹¹ Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenif, Sbornik, 2, 74 (1952) [C. A., 48, 592 (1954)].
- 112 Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintery Org. Soedinenii, Sbornik, 2, 63 (1952) [C. A., 48, 666 (1954)].
  - 113 Feofilaktov and Semenova, Zhur. Obschel Khim., 23, 450 (1953) [C. A., 48, 4443 (1954)].
- ¹¹⁴ Feofilaktov, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenil, Sbornik, 2, 103 (1952) [C. A., 48, 666 (1954)].
  - 115 Polaczkowa and Porowska, Przemsyl Chem., 6, 340 (1950) [C. A., 46, 3039 (1952)].
  - 116 Feofilaktov, J. Gen. Chem. U.S.S.R., 21, 399 (1951) [C. A., 46, 2014 (1952)].
- 117 Feofilaktov and Ivanova, J. Gen. Chem. U.S.S.R., 21, 1851 (1951) [C. A., 47, 2698 (1953)].
- ¹¹⁸ Feofilaktov and Semenova, Akad. Nauk S.S.S.R. Inst. Org. Khim. Sintezy Org. Soedinenii, Sbornik, 2, 98 (1952) [C. A., 48, 668 (1954)].

#### CHAPTER 3

#### THE MICHAEL REACTION*

ERNST D. BERGMANN Scientific Department, Ministry of Defence. Tel. Ann

# DAVID GINSBURG

Chemistry Department, Israel Institute of Technology, Harfa

#### RAPHAEL PAPPO

Department of Organic Chemistry, Hebrew University, Jerusalem

CONTENTS	
Introduction	PAGE
INTRODUCTION	182
Mechanisms of the Processes Involved in the Michael Reaction	184
The Normal Reaction	184
The Nature of the Amon of the Adduct	185
A Competitive Side Reaction	187
The Reverse or Retrograde Reaction	187
The "Abnormal" Michael Condensation	191
The Question of Para Bridged Intermediates	197
Stereochemistry of the Michael Condensation	199
COPE AND LIMITATIONS	203
Donors	203
Reactions with Cyclopropane Derivatives	205
The System C=C-C=N	
Acceptors	09
αβ-Ethylenic Aldehydes (Table I)	:09
Aliphatic α.β.Ethylenic Ketones (Table II)	11

* This cooperative study was begun when the three authors were working at the Weizmann Institute of Science, Rehot oth.

	MOD
$\alpha, \beta$ -Acetylenic Ketones	213
Aromatic α,β-Ethylenic Ketones (Tables III, IV)	216
Heterocyclic $\alpha, \beta$ -Ethylenic Ketones (Tables V, VI)	219
Cycloalkenones and Acyl Cycloalkenes (Table VII)	220
	222
Robinson's Modification of the Michael Condensation (Table VIII)	
p-Quinones and Derivatives (Table IX)	224
Acrylonitrile, Other α,β-Ethylenic Nitriles, and Their Amides (Tables X,	
XI, and XIA)	229
α,β-Ethylenic Aliphatic Esters (Tables XII, XIII, XIV)	234
Alicyclic and Aromatic $\alpha, \beta$ -Ethylenic Esters (Tables XV and XVI)	238
Unsaturated Keto Esters (Table XVII)	238
Aromatic α,β-Acetylenic Esters (Table XVIII)	239
Aromatic $\alpha, \beta$ -Acetylenic Esters (Table Aviii)	2000
Olefins with Substituents Based on Hetero Atoms (N, S, P; Tables XIX,	040
XX, XXI)	240
2- and 4-Vinylpyridines (Table XXI)	241
Fulvenes	242
Systems That Did Not Undergo Condensation	245
•	
Synthetic Applications	248
Synthesis of Cyclic Systems	248
Cyclopropane Rings	248
Cyclobutane Rings	248
Cyclopentane Rings	248
Cyclohexane and Condensed Alicyclic Ring Systems	249
Aromatic Ring Systems	254
Oxygen-Containing Rings	256
Piperidines and Pyridines	258
Demolos	261
Pyrroles	262
Pyrrolizidines and Related Ring Systems	263
Synthesis of Amino Acids	203
77	004
EXPERIMENTAL CONDITIONS	264
Solvents	264
Catalysts	264
Temperature	266
Zomporavaro	
Experimental Procedures	267
Experimental Procedures	201
$\gamma$ -Acetamido- $\gamma$ -carbethoxy- $\gamma$ -cyanobutyraldehyde	267
5-Nitro-4,4-dimethylpentan-2-one	267
7-Keto-1-methoxy-13-methyl-5,6,7,9,10,13-hexahydrophenanthrene	267
trans-3-Keto-2-phenylcyclohexaneacetic Acid	268
Methyl 3-Keto-2-phenylcyclohexyl-α-nitroacetate	268
Triethyl α-Acetyltricarballylate	268
Diethyl 6-Keto-4-methyl-2-heptene-1,5-dicarboxylate	269
Hexaethyl 3-Butene-1,1,2,2,3,4-hexacarboxylate	269
Diethyl & 8-Diphenyleluterate	269
Diethyl $\alpha,\beta$ -Diphenylglutarate	269
Ethyl α-Benzoyl-γ-(2-pyridyl)hutyrate	270
ATKTVERTY OF A PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	410

THE MICHAEL REACTION
TABULAR SURVEY OF THE MICHAEL CONDENSATION
Table II. Michael Condensations with α,β-Ethylenic Aldehydes Table II. Michael Condensations with Alphatic α,β-Ethylenic Ketones
Table III. Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Ketones . Table IV. Michael Condensations with Ethylenic Ketones of the Dibenzyl- ideno- and Dimnamyliden-Acetone Type
Table V. Michael Condensations with Unsaturated Ketones Containing Heterocyclic Rings
Table VI. Michael Condensations with 3-Acylcoumarins and Related Compounds Table VII. Michael Condensations with Cyclosikenones and Acyl Cyclo-
alkenes Table VIII. Rohmson's Modification of the Michael Condensation with
z.β-Ethylenic Ketones Table IX. Michael Condensations with Quinones and Their Derivatives Table X. Michael Condensations with Acrylonitrile
Table XI. Michael Condensations with Unsaturated Nitriles Other than
Table XIA. Michael Condensations with Acrylamide and Methacrylamide

Table XII. Michael Condensations with Aliphatic α,β-Ethylenic Acid Derivatives

Table XIII. Michael Condensations with Ethyl Ethoxymethelenecyanoacetate, Diethyl Ethoxymethylenemalonate, and Diethyl Aminomethylenemalonate

Table XIV. Michael Condensations with Aliphatic Dienic and Trienic Esters

Table XV. Michael Condensations with Alicyclic  $\alpha, \beta$  Ethylenic Esters . .

Table XVIA Intramolecular Michael Condensations of Aromatic α,β-

Table XVII Michael Condensations with  $\alpha, \beta$  Ethylenic Keto Esters . .

Table XIX. Michael Condensations with  $\alpha,\beta$ -Ethylenic Nitro Compounds Table XX. Michael Condensations with  $\alpha.\beta$ -Ethylenic Sulfones . . . .

Table XXI. Michael Condensations with 2- and 4-Vinylpyridine, with Analogs of 2-Vinylpyridine, and with Diethyl Vinylphosphonate . .

Table XVIII. Michael Condensations with  $\alpha, \beta$ -Acetylenic Esters .

Table XXII Donors Used in Michael Condensations

Table XVI. Michael Condensations with Aromatic α,β-Ethylenic Esters

449

447

450

47R

480

484

489

502

504

519

535

537

542

# INTRODUCTION

The Michael condensation in its original scope¹⁻²¹ is the addition of an addend or donor (A) containing an α-hydrogen atom in the system O—C—CH to a carbon-carbon double bond that forms part of a conjugated system of the general formulation C—C—C in an acceptor (B).

The condensation takes place under the influence of alkaline reagents, typically alkali metal alkoxides.

The range of addends is very broad. Generally speaking, all structures O=C-CH in which the hydrogen is active by the Zerewitinoff test will serve as donors in the Michael condensation. In addition, many compounds that do not meet this test of hydrogen activity, such as acetophenone, are effective Michael reactants.

Typical acceptors are  $\alpha,\beta$ -unsaturated aldehydes, ketones, and acid derivatives.

By extension of the original scope, the Michael condensation has come to be understood to include addends and acceptors activated by groups other than carbonyl and carbalkoxyl. The wider scope is encompassed

```
<sup>1</sup> Michael, J. prakt. Chem., [2], 35, 349 (1887).
```

- ² Michael, Am. Chem. J., 9, 115 (1887).
- ³ Michael, J. prakt. Chem., [2], 49, 20 (1894).
- 4 Michael, Ber., 27, 2126 (1894).
- ⁵ Michael, Ber., 33, 3731 (1900).
- ⁶ Michael and Schulthess, J. prakt. Chem., [2], 45, 55 (1892).
- ⁷ von Auwers, Ber., 24, 307 (1891).
- * von Auwers, Koebner, and v. Meyenburg, Ber., 24, 2887 (1891).
- ⁹ von Auwers, Ber., 26, 364 (1893).
- 10 von Auwers and Jacob, Ber., 27, 1115 (1894).
- 11 von Auwers, Ber., 28, 1130 (1895).
- 12 Knoevenagel, Ann., 281, 25 (1894), especially p. 33.
- ¹² Knoevenagel, Ann., 281, 25 (1894), especially p. 53.
- ¹⁴ Knoevenagel, Ann., 289, 131 (1896), especially p. 170.
- 15 Knoevenagel, Ann., 297, 185 (1897).
- 16 Merling, Ber., 38, 979 (1905).
- 17 Knoevenagel and Schwartz, Ber., 39, 3441 (1906).
- 18 Knoevenagel and Mottek, Ber., 37, 4464 (1904).
- 19 Knoevenagel and Speyer, Ber., 35, 395 (1902).
- 20 Connor and McClellan, J. Org. Chem., 3, 570 (1938).
- ²¹ H. Henecka, Chemie der Beta-Dicarbonyl-Verbindungen, Berlin-Goettingen-Heidelberg, 1950.

by this survey, which therefore includes as donors nitriles, nitro compounds, sulfones, and certain hydrocarbons such as cyclopentadiene, indene, and fluorene that contain sufficiently reactive hydrogen atoms. It also includes as acceptor molecules a vnylsulfonum compound⁴² and certain hydrocarbons of permanent polar character (finite depole moment) such as fulvenes. Another hydrocarbon acceptor is the conjugated tetraaccetylenic compound which adds diethyl sochomalonate as shown ⁵²⁸

$$\begin{array}{c} \mathrm{CH_{3}C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} + + + \mathrm{CH_{3}(CO_{3}C_{3}H_{3})_{2}} \rightarrow \\ \mathrm{CH_{3}C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} = \mathrm{C} - \mathrm{C} + = \mathrm{C}(\mathrm{CH_{3})\mathrm{CH_{3}(CO_{3}C_{3}H_{3})_{2}} \\ \end{array}$$

The relatively few Michael condensations in which acetylenic aldehydes, ketones, and esters serve as acceptors are also considered

The interesting examples of activation of an ethylenic double bond by a neighboring autfonium group provided by the observations that vinyldimethylasifonium bromide adds methyl acetoacetate and diethyl malonate in the presence of aqueous sodium hydroxide, according to the following equation,

$$(CH_3)_2 \tilde{S} - CH = CH_2 + CH_5 COCH_1 CO_1 C_1 H_3 \rightarrow \\ (CH_3)_2 SCH_2 CH_1 CH_1 COCH_1) CO_2 C_1 H_3$$

are good illustrations of the mechanism of the Michael reaction, as set out in the following section.

Unsaturated cyclic quaternary ammonium salts can also act as acceptors in the presence of bases. A recent example is furnished by the 2,7,10 trumethylacridinium halides which react with diethyl malonate in the presence of sodium ethoxide as shown in the accompanying equation. 28

$$H_1C$$
 $CH_2$ 
 $CH_4$ 
 $CH_5$ 
 $CH_4$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_5$ 
 $CH_6$ 
 $CH_6$ 
 $CH_6$ 
 $CH_7$ 

Doering and Schreiber, J. Am. Chem. Soc., 77, 514 (1955).
 Bohlmann, Inhoffen, and Politt, Ann., 604, 207 (1957)

¹⁰ Dimenth and Gregor, Chen. Bir., 90, 2207 (1937). Other examples are given by Krechika and Hong, Chen. Ber., 90, 2215 (1937). Krechika and Vogi, A.e., 800, 211 (1956), and Chem. Bir., 80, 2277 (1937). These rescions results of chief chievratured of the rescions of unsaturated cyclic quasarray summinous pseudo Bases with chip is estated and with antroparadize. Executy and proposed bases with chip is estated and with antroparadize. Execution of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th

# MECHANISMS OF THE PROCESSES INVOLVED IN THE MICHAEL REACTION

# The Normal Reaction

From the nature of the alkaline reagents that cause the Michael condensation to occur, it is logical to suppose that they act by removing the  $\alpha$ -hydrogen atom from the donor as a proton. The residual anion is

presumably to be viewed as a hybrid of the enolate ion form and the carbanion form, as depicted here, though the subsequent condensation is most readily visualized as involving the carbanion.

The condensation proper occurs when a new bond is formed between the electron-rich carbon of this ion and the most electron-poor carbon of the conjugated system in the acceptor, namely, the  $\beta$ -carbon atom. Where the acceptor has (as shown) carbonyl activation of the  $\alpha,\beta$  double bond, the carbanion product C is a resonance hybrid. It is noteworthy that ability of acceptors to serve in the Michael condensation is enhanced by polarizing substituents (R^{III}, R^{IV}, R^V) that stabilize the ions C.

The proton that converts the ionized product (C) into the keto form isolated (D) may come from another donor molecule. This interpretation accounts for the fact that much less than the equivalent amount of basic reagent often suffices to bring about the condensation. Where a full equivalent of base is employed, the proton is supplied by neutralization of the reaction system.

The over-all reaction has, then, the effect of 1,4 addition of the donor (in fragments O=C-C- and -H) to the conjugated system of the acceptor,

The foregoing description obviously does not apply to those condensations, included as Michael reactions in the larger sense, in which the acceptor is an unsaturated hydrocarbon of permanent polar character. Here the product C must be formulated exclusively as a carbanion, and the over-all reaction has the appearance of 1,2 addition of the donor RH (as R— and —H) to the polarized double bond.

#### The Nature of the Anion of the Adduct

Where R^{II} is hydrogen, the carbanion C may undergo a proton shift. It must be supposed that the anion readily assumes the form C' if this

is more stable than C, as may be the case if the substituent  $\mathbb{R}^I$  makes the proton of the group  $\mathbb{R}^I$ CH more highly acide than that of  $\mathbb{R}^V$ CH

Although on durect isolation the same product is obtained from C and from C, the reactions carried out on the anion may duclose when the change has taken place, as in the following example, ¹² The Michael product from ethyl cyanoacetate and ethyl methacrylate (with a full equivalent of base) can be methylated in alcoholic solution with methyl isolatic. Upon hydrolysis and decarboxylation, 2,2-dimethylglutaric

acid (IV) is obtained. This must be derived from III, and the anion is then better represented as II than I, which would be the primary result of the addition outlined in the foregoing.

Many similar observations of this rearrangement, which is not in itself part of the Michael reaction, have been made in the course of efforts to establish Michael mechanisms.²⁴

From one particular example, it appears that the rearrangement may be impeded in non-hydroxylic solvents. 25,26 Ethyl phenylpropiolate (V) with diethyl sodiomalonate in *inert solvents* gives a yellow sodium salt and in *ethanol solution* a colorless isomer. The formulas VI (before rearrangement) and VII (after rearrangement), respectively, have been assigned to these salts. Diethyl sodiomethylmalonate in benzene also gives a yellow compound VIII with ethyl phenylpropiolate, but no colorless isomer; this is attributed to the lack of an  $\alpha$ -hydrogen atom in VIII that would permit shift to the form analogous to VII. It should

be noted that the structures indicated for VI and VIII do not fully explain their yellow color.

²⁴ Ingold and Powell, J. Chem. Soc., 119, 1976 (1921).

²⁵ Gidvani and Kon, J. Chem. Soc., 1932, 2443.

²⁶ Gidvani, Kon, and Wright, J. Chem. Soc., 1932, 1027.

#### A Competitive Side Reaction

Compounds of the type formulated above as acceptors tend to undergo addition reactions with amons in general, e.g., with alkoxide amons, which are frequently used as catalysts in the Michael reaction. In such cases, the catalyst competes with the donor for the acceptor molecule.

Although this possibility should always be borne in mind, it seems that only acceptors in which  $\mathbb{R}^{11} = \mathbb{R}^{10} = \mathbb{H}_{\text{quadriate}}$ , acrylomittely add alkoxide anions availy enough to interfere with the Michael reaction. It is preferable with these acceptors to carry out the condensation without solvent or in non-hydroxyle medica.*

## The Reverse or Retrograde Reaction

The Michael reaction is a reversible process adducts D can be split into precursors A and B by the same catalysts that effect the condensation. A tendency toward such retrogression can be combatted to a degree by using an excess of one of the reactants, this appears to be a case of mass action affecting an equilibrium. Although few quantitative data are available on the position of the equilibrium, it appears that low temperature retrogression is more likely to occur when the condensation is low; one of the factors causing slow condensation is the presence of a large number of substituents (R¹¹, R¹², R¹³) at the  $\alpha, \beta$  double bond of the acceptor molecule (see p. 247). These two effects are exemplified in

Koelsch, J. Am Chem Soc , 65, 437 (1943).

Grob and Baumann, Helv. Chim. Acta, 38, 594 (1955)
 Dornow and Boberg, Ann., 578, 101 (1952)

the following table in which the yields of condensation product obtained possibly represent the equilibria attained.

Reaction between Diethyl	Yield of Adduct at	
Malonate and	100°	25°
Ethyl crotonate	65	?
Ethyl cinnamate	35	?
Ethyl $\beta,\beta$ -dimethylacrylate	30	70
Ethyl $\alpha, \beta, \beta$ -trimethylacrylate	Trace?	?

Whenever at least one of the substituents R^I and R^{II} in the donor is hydrogen, the general formulation of the condensation product acquires

the symmetry of a 1,5-diketopentane with hydrogen atoms in the 2 and 4 positions. With such a structure, retrogression can occur to give fragments different from the starting materials. In this process, the bond broken is the one that was originally  $\alpha,\beta$  in the acceptor; the remainder of this end of the molecule is then isolated as a fragment having O=C-CH ("donor") structure. At the same time, the original donor reappears with C=C-C=O ("acceptor") structure. The combination of condensation and retrogression in such cases has the net effect of transferring an alkylidene substituent from the  $\alpha$ -carbon of the original acceptor to the  $\alpha$ -carbon of the original donor. Thus, the Michael condensation between phenylacetone and  $\alpha$ -nitrostilbene gives, inter alia, 3,4-diphenyl-3-buten-2-one (IX),20 and the condensation of isopropyl

$$p-\mathrm{CH_3OC_6H_4CH} = \mathrm{C(CO_2C_2H_5)_2} \xrightarrow{\mathrm{Hydrolysis}} p-\mathrm{CH_3OC_6H_4CH} = \mathrm{CHCO_2H}$$

p-methoxybenzylidenemethyl ketone with diethyl malonate, when carried out in ethanol as solvent, gives p-methoxycinnamic acid.³⁰ (See equations at top of p. 189.)

Cleavage formally identical with this can occur in molecules of suitable structure, even though they were not formed by a Michael reaction. The

³⁹ Vorlaender and Knoetzsch, Ann., 294, 317 (1897), especially p. 334.

following examples from the chemistry of natural products illustrate cleavages that may be designated retrograde Michael reactions in a formal sense.

1. Dimethyl caryophyllenate (X) is converted by successive treatments with sodium anide in xylene at 130° and with dilute hydrochloric acid into 4.4-dimethyl-2-cyclohexenone (XI)  $^{\rm at}$ 

$$(\operatorname{CH}_{\mathfrak{p}})_{\mathfrak{p}} = \operatorname{CH}_{\mathfrak{t}} \operatorname{O}_{\mathfrak{t}} \operatorname{CH}_{\mathfrak{p}}$$

$$(\operatorname{CH}_{\mathfrak{p}})_{\mathfrak{p}} = \operatorname{CH}_{\mathfrak{t}} \operatorname{CO}_{\mathfrak{t}} \operatorname{CH}_{\mathfrak{p}}$$

$$(\operatorname{CH}_{\mathfrak{p}})_{\mathfrak{p}} = \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}}$$

$$(\operatorname{CH}_{\mathfrak{p}})_{\mathfrak{p}} = \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{CH}_{\mathfrak{p}} \operatorname{C$$

 Dimethyl α-tanacetonedicarboxylate (XII) is analogously converted into tanacetophorone (XIII).²²
 CH₂CO₂CH₃

st Eschenmoser and Fuerst, Experientia, 7, 290 (1951)

¹¹ Wallsch, Ann , 388, 49 (1912).

3. The conversion of santoric acid (XIV) into santoronic acid (heptane-2,3,6-tricarboxylic acid, XV) has been formulated as follows.³³

4. The phenyl ketone XVII, obtained from 4-cholesten-3-one (XVI), is converted (in its intramolecular aldol form) by heating with alkali at 200-240° to XVIII and vinyl phenyl ketone, which decomposes further into formaldehyde and acetophenone.³⁴

- 5. Pyrolysis of the keto aldehyde XIX gives XX and 2-dodecenal. 35,36
- 6. Similarly, XXI is converted to 2-methylcyclohexanone and XXII.³⁷

²³ Woodward, Brutschy, and Baer, J. Am. Chem. Soc., 70, 4216 (1948).

²⁴ Julia, Eschenmoser, Heusser, and Tarköy, Helv. Chim. Acta, 36, 1885 (1953).

¹¹ Achtermann, Hoppe-Seyler's Z. physiol. Chem., 225, 141 (1934).

M. Laucht, Hoppe-Seyler's Z. physiol, Chem., 237, 236 (1935).

²⁷ Cornforth, Hunter, and Popják, Biochem. J., 54, 599 (1953).

Other retrogressions of this type may take place by heating or under base catalysis 38-47

# The "Abnormal" Michael Condensation

When the Michael condensation product from ethyl  $\beta_i\beta^i$ -dimethyl-acylate and ethyl a-cyanorpoinate as methylated (with sodium ethoxide and methyl sodule), the product upon hydrolysas and partial decarboxylation is  $\alpha_i x^i \beta_i$ -flextenarelylightars and  $(XXYI)^3$ . This carbon skeleton shows that the methylation product before hydrolysus is XXV. In turn, XXV probably can only arise by methylation of XXII, where the hydrogen atom replaced is doubly activated (emolizable), because it is generally assumed that (analy activated) x-hydrogen atoms like those in XXIII (the alternative possible precursor of XXV) cannot be methylated

- 14 Hill, J Chem Soc , 1928, 256.
- 10 Leonard, Sunon, and Felley, J. Am Chem. Soc . 73, 827 (1951)
- 4º Vorlaender, Bar , 23, 3185 (1900).
- Vorlaender and Koethner, Ann., 345, 158 (1908)
   Meerwein, Ber., 53, 1829 (1920)
- 45 Smith and Engelhardt, J Amer Chem Soc., 71, 2675 (1949)
  - Cornelson and Kostanecki, Ber., 29, 240 (1896)
     Kostanecki and Rossbach, Ber., 29, 1488 (1896).
  - ** Meerwein, J prolt. Chem , [2], 97, 225 (1918)
- D Arigoni, Viterbo, Duennenberger, Jeger, and Ruzieka, Hele Chim Acta, 37, 2306 (1954).

by sodium ethoxide plus methyl iodide.* (Hydrolysis of the primary adduct gives  $\alpha, \beta, \beta$ -trimethylglutaric acid,⁴⁹ which does not permit differentiation between XXIII and XXIV.) The initial condensation product must therefore be not the expected ("normal") XXIII but the ester XXIV, which is formally the result of adding the donor molecule as the fragments  $CH_3$ — and  $-CH(CN)CO_2C_2H_5$ . This is called the "abnormal" Michael reaction; in this and similar cases studied by

Thorpe and co-workers, the products formed were attributed to literal addition of a methyl group as one portion of the donor. "Abnormal" addition of diethyl methylmalonate involves the apparent adding of the fragments C₂H₅OCO— and —CH(CH₂)CO₂C₃H₅.

In some systems, it is observed that the course of the reaction can be varied at will by the amount of condensing agent employed. For example, 50 diethyl malonate and ethyl crotonate give the normal adduct, triethyl 2-methylpropane-1,1,3-tricarboxylate (XXVII), which, having an enolizable hydrogen atom, can be methylated to triethyl 3-methylbutane-2,2,4-tricarboxylate (XXVIII). The adduct XXVIII is also obtained from ethyl crotonate and diethyl methylmalonate in the presence of one-sixth equivalent of sodium ethoxide. If a full equivalent of the condensing agent is employed, however, an isomer of XXVIII is formed; this must have the "abnormal" structure XXIX, for it contains an

There are occasional observations to the contrary.

⁴⁸ Schlenk, Hillemann, and Rodloff, Ann., 487, 135 (1931).

⁴¹ Cf. Michael and Ross, J. Am. Chem. Soc., 53, 1150 (1931).

⁵⁰ Michael and Ross, J. Am. Chem. Soc., 52, 4598 (1930).

enolizable hydrogen atom and can be methylated by sodium ethoxide and methyl iodule to yield XXX "Furthermore, the isomer XXIX can be obtained by the Michael condensation of ethyl tuglate and diethyl malonate, though this synthesis provides vahid evidence only if the condensation takes the "normal" course. In contrast to the behavior of

 $CH_3CHCI1(CH_3)CO_3C_2H_3$ 

CH₃C(CO₂C₂H₅)₅

XXIX, when XXVIII is treated again with sodium ethoxide and subsequently methyl iodide, retrogression takes place to ethyl crotomate and duethyl methylmalonate, the latter being further methylated to diethyl dimethylmalonate

The most widely accepted explanation for the "abnormal" reaction is that of Holden and Lapoorth "I The primary product of the Michael condensation always has the normal formula (e.g., XXVIII from ethyl crotonate and diethyl methylmalonate), however, it is stable only when small quantities of catalyst are employed. In the presence of larger quantities of catalyst, a Duckmann condensation is assumed to occur (XXVIII.—XXXI). This cyclization may be facultated by the presence of a relatively large number of substituents, which could cause a change

in the valence angles, as proposed by Ingold in other cases.^{52,53} The cyclobutanone derivative XXXI in turn is also unstable, particularly as a consequence of the  $\beta$ -keto ester structure; accordingly, it is alcoholyzed to XXIX, which is the product actually obtained.

$$\begin{array}{c} \text{CH}_3\text{CHCH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{C}(\text{CO}_2\text{C}_2\text{H}_5)_2 \\ \text{XXVIII} \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3\text{CH} - \text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{C}_3\text{C} & \text{C}_2\text{H}_5\text{OH} \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{CO}_2\text{C}_2\text{H}_5 \\ \text{XXXI} \end{array} \xrightarrow{\text{XXXI}} \begin{array}{c} \text{CH}_3\text{CHCH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{CH}_3\text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{XXIX} \end{array}$$

A variation of the Holden-Lapworth mechanism proposed later⁵⁴ is based on the assumption that the intermediary product is not a cyclobutanone derivative but the anion of a hemiacetal. This yields, for the reaction of ethyl crotonate with diethyl methylmalonate, the following reaction sequence.

It was emphasized that the C—C linkage connecting the hemiacetal carbon with the CHCO₂R group is "highly polarized" (symbolized \$\display\$), but the significance of this statement is not clear. An analogous mechanism was suggested for the abnormal Michael reaction between diethyl methylmalonate and ethyl tetrolate.

A possible means of distinguishing between the mechanisms of Thorpe and of Holden and Lapworth should be to use an acyl group in the acceptor in place of the carbalkoxy group, i.e., to use an unsaturated ketone rather than an ester. However, an attempt to make the distinction in this way was confounded by instability of the condensation

¹¹ Ingold, J. Chem. Soc., 119, 305 (1921).

¹³ Ingold, J. Chem. Soc., 119, 951 (1921).

⁴⁴ Henecka, Fortschr. chem. Forsch., 1, 685 (1950).

product. Benzylideneacetophenone and diethyl methylmalonate should give XXXII according to Thorpe, and XXXIII according to Holden and Lapworth In fact, neither of the two compounds was obtained, but instead a mixture of retrogression products, ethyl e-methylcinnamate and ethyl benzylacetate. These appear to be compatible only with



CH³CHCO¹C²H² →

 $C_tH_4CH \rightleftharpoons C(CH_3)CO_tC_2H_4$ 

C.H.COCH.CO.C.H.

formula XXXIII. as indicated in the reaction scheme, because if XXXII

were formed it would decompose into diethyl benzyldenemalonate and propiophenone.*

Additional evidence on mechanism was sought, with only limited success, by investigations of the condensation of diethyl benzylmalonate with diethyl fumarate, ^{9,30} of diethyl benzylmalonate with trans-tiliencoylethylene and x-chlorodhenzoylethylene, ⁹⁵ of diethyl methylmalonate with ethyl cyclohoxene-1-carbovylate and ethyl x-ethylerotonate, ⁹⁵ and of duethyl ethylmalonate with ethyl tiglate, ⁹⁵ Though no direct proof was obtained, this work tended to support the Holden-Lauworth view ^{95,41}

An effort by Mebael and Ross** to invalidate this conclusion, on the basis that the observed retrograssion products could be don'ted from an adduct of two molecules of bentylidensectophonoon and one imbelies of distribution the products (see p. 308), foundered on their nability to prepare such a product from distributionalism, an spite of its ready preparation from distributionalism.

^{*} Michael and Ross, J. Am. Chem Soc. 55, 1632 (1933).

Michael and Ross, J. Am. Chem. Soc., 55, 1632
Duff and Ingold, J. Chem. Soc., 1934, 87.

¹⁷ Rydon, J. Chem Soc , 1935, 420.

^{**} Gardner and Rydon, J. Chem. Soc., 1838, 45.

Gardner and Rydon, J. Chem. Soc., 1838, 48.

Gardner and Rydon, J. Chem. Soc., 1938, 42.
 Cf. Ingold and Rydon, J. Chem. Soc., 1935, 857.

Attention has recently been called⁶² to the fact that higher yields of "abnormal" Michael products are often obtained from the usual starting materials than by subjecting the "normal" product (synthesized independently) to Michael reaction conditions. This appears to mean that the "normal" product is not necessarily an intermediate in the "abnormal" reaction. Consideration of the experimental results obtained in the condensation of ethyl crotonate and diethyl methylmalonate led to the following suggested pathway of reaction:⁶³ The full equivalent of base required for the abnormal reaction permits the assumption of initial bond formation between the reactants by a kind of Claisen condensation involving an anion (XXXIV) formed from the base and the acceptor.

$$C_{2}H_{5}O \ominus + CH_{3}CH = CHCO_{2}C_{2}H_{5} \Leftrightarrow CH_{3}CHCHCO_{2}C_{2}H_{5}$$

$$CC_{2}H_{5}$$

$$XXXIV$$

$$OC_{2}H_{5} \quad OC_{2}H_{5}$$

$$XXXIV + CH_{3}CH(CO_{2}C_{2}H_{5})_{2} \Leftrightarrow CH_{3}CHCH - CCH(CH_{3})CO_{2}C_{2}H_{5} \xrightarrow{-C_{2}H_{5}O^{\ominus}}$$

$$CO_{2}C_{2}H_{5}$$

$$CH_{3}CHCHCOCH(CH_{3})CO_{2}C_{2}H_{5}$$

$$CH_{3}CHCHCOCH(CH_{3})CO_{2}C_{2}H_{5}$$

$$CO_{2}C_{2}H_{5}$$

$$XXXV$$

Base-catalyzed loss of ethanol from intermediate XXXV would give the ester XXXVI. This ester may undergo an intramolecular Michael reaction with formation of the cyclobutanone intermediate XXXI postulated by Holden and Lapworth. Alternatively, it was suggested⁶³ that the cyclic intermediate may not have significant independent existence, but that the ester XXXVI can change directly to the observed abnormal product XXXVII by concerted alcoholysis and addition (see equations on p. 197).

A recent kinetic study⁸⁴ of the abnormal reaction between diethyl fumarate and diethyl ethylmalonate showed that the donor anion and diethyl fumarate combine rapidly to form the anion of the normal product

⁴² P. R. Shafer, Ph. D. Thesis, University of Wisconsin, 1951.

⁴¹ Shafer, Loeb, and Johnson, J. Am. Chem. Soc., 75, 5963 (1953).

⁴⁴ Tsuruta, Yasuhara, and Furukawa, J. Org. Chem., 18, 1246 (1953).

(distinguished from the abnormal product by specific gravity measurements) Isomerization of this amon to that of the abnormal product was observed to follow as a slow step. It was also observed that excess free diethyl ethylmalonate suppressed the abnormal reaction even when sodium ethoxide equivalent to the diethyl fumarate was present. This led to the deduction that the first-formed amon can be stabilized by the abstraction of hydrogen ion from free diethyl ethylmalonate in a fast reaction competitive with the isomerization

CH_SCHCH(CO₂C₂H₅)₂ CH2CHCO2C2HA ĊН。 YYYYI

Definitive evidence that the "abnormal" reaction involves migration of a carboxyl group (in some form or other) has at last been obtained by isotopic tracer experiments. When ethyl crotonate containing C14 in the carbethoxyl group was condensed with diethyl methylmalonate, the product was found to result from migration of the labeled carbon atom 60 Enrichment of earbethoxyl groups with O18 in ethyl crotonate, ethyl cinnamate, and diethyl methylmalonate provided further evidence that the condensation of either of the first two with the last (using one equivalent of base as catalyst to favor "abnormal" reaction) proceeds by carbethoxyl migration, 56-48

With this exidence in hand, it can be firmly concluded that the Holden-Lapworth mechanism is basically correct, though the modifications suggested by Johnson63 provide the most plausible view of the detailed reaction course

### The Question of Para-Bridged Intermediates

The condensation of 3-methyl-2-cyclohexenone (XXXVIII) and diethyl malonate presents features that have been rationalized 69,70 in a fashion

^{**} Simamura, Insmoto, and Suchiro, Bull (hem Soc Japan, 27, 221 (1954) [C.A. 49. 7494 (1935)1 " Swan, J Chem. Soc , 1955, 1039

^{**} Samuel and Ginsburg, J. Chem. Soc., 1955, 1288

** Samuel and Ginsburg, J. Chem. Soc., 1955, 1288

** Cf. Baker and Rothstein, Chemistry & Industry, 1955, 778

** Farmer and Rose, J. Chem. Soc., 127, 2358 (1925)

¹⁶ harmer and Ross, J Chem Soc , 1926, 3233

consistent with and tending to support the Holden-Lapworth cyclo-butanone intermediate. Carried out at room temperature and with one equivalent of sodium ethoxide, the reaction leads to only one identified product, the diethyl ester XXXIX. At the temperature of boiling ethanol, this compound is accompanied by a product of ethanolysis, the open-chain triethyl ester XL.

In this condensation, the "abnormal" position in which the carbethoxy portion of the donor molecule appears is para rather than ortho on the alicyclic ring. By way of explanation, it has been postulated that the primary product would be XLI, from the normal condensation; this was believed to be converted by a Dieckmann reaction into the bicyclic diketone XLII. Ethanolysis of the diketone in the manner indicated by the broken line was believed to lead to XXXIX.

This mechanism was advanced as a parallel to the Holden-Lapworth formulation, but with a cyclohexanone rather than a cyclobutanone intermediate because formation of a para bridge where possible (as in this instance) is more favorable than the alternative XLIII.

However, the suggestion has recently been mades: that a para-bridged intermediate may not be formed in such instances. Instead the expected product of the abnormal Michael reaction, XLIV, may be first produced, and this may undergo ethanolysis (reverse Dickmann) to give the open-chain triester XLIV, which then velues the a known reaction to XXXIV.

In any case, it has been shown that the normal adduct XLI is not the precursor of XXXIX, since the latter is produced in higher yield from 3-methyl-2-cyclohexenous and duethyl malonate than from XLI **0* It is suggested,**0* as in the case mentioned above, that the first step is an eater condensation, either at position 0 (which would my olve subsequent para bridging) or more probably at position 2 via the amon XLVI

$$\bigcup_{i=0}^{CH_1} \cdots \bigcup_{i=0}^{CH_1} cocH_i co_i c_i H_i \quad \text{or} \quad \bigcup_{i=0}^{CH_1} cocH_i co_i c_i H_i$$

This explanation is based on a parallel with the mechanism for the reaction of 3-methyl-2-cyclohexenone with ethyl cyanoacetate, which was outlined on the basis of detailed evidence as involving the following succession of intermediates:

$$\begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CO}_{\mathsf{C},\mathsf{IH}_{\bullet}} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}_{\bullet} \\ \operatorname{CH}_{\bullet} \\ \end{array} \xrightarrow{\operatorname{CH}_{\bullet}} \begin{array}{c} \operatorname{CH}$$

#### Stereochemistry of the Michael Condensation

Little is known about the steric course of the Michael condensation, although the formation of asymmetric carbon atoms in open-chain products and the possibility of cis-trans isomerism in alleyche adducts

raise a number of stereochemical problems. The formation of diasteromeric adducts has often been noted, e.g., with the following reactants: benzylideneacetone and dimethyl malonate;⁷¹ benzylideneacetophenone and benzyl cyanide,⁷² diethyl succinate,⁷³ and p-tolyl benzyl sulfone;⁷⁴ α-benzylidenepropiophenone and dimethyl malonate;^{75,76} ethyl cinnamate and diethyl methylmalonate;^{50,77} ethyl β-isopropylacrylate and ethyl cyanoacetate;⁷⁸ ethyl cinnamate and ethyl cyanoacetate;^{79,80} ethyl phenylacetate,^{81,82} or benzyl cyanide;^{27,83,84} cinnamonitrile and m-aminobenzyl cyanide;²⁷ 2-nitro-2-butene and benzyl cyanide,⁸⁵ 2-nitro-1-phenyl-1-propene and diethyl malonate;⁸⁶ α-nitrostilbene and diethyl malonate;⁸⁶ and 3-cyano-1,2,5,6-tetrahydropyridine and diethyl malonate.⁸⁷

In the condensation of ethylideneacetone with 7-chloro-4,6-dimethoxycoumaran-3-one, two possible isomers are formed simultaneously;⁸⁸ a similar result was obtained in the condensation with the chlorine-free analog. The reaction between 4-methylcyclohexanone and methyl isopropenyl ketone also leads to two stereoisomeric forms of 3,6-dimethyl-9-hydroxy-2-decalone.⁸⁹

The reaction pairs benzylideneacetophenone-benzyl cyanide⁷² and  $\alpha$ -benzylidenepropiophenone-dimethyl malonate^{75,76} represent two different ways in which asymmetric carbon atoms can be formed as a result of a Michael condensation. In the adduct XLVII the  $\alpha$ - and  $\beta$ -carbon atoms of the acceptor become asymmetric; in the adduct XLVIII the  $\beta$ -carbon atom of the acceptor and the carbon atom of the donor molecule that is linked to the acceptor become the centers of asymmetry. In view of the undoubted ability of the alkaline condensing agent to invert configuration around carbon atoms substituted as in —CH(CH₃)COC₆H₅

```
<sup>71</sup> Qudrat-I-Khuda, J. Indian Chem. Soc., 8, 215 (1931) [C.A., 26, 123 (1932)].
72 Kohler and Allen, J. Am. Chem. Soc., 46, 1522 (1924).
<sup>72</sup> Stobbe, Ann., 314, 111 (1901).
74 Connor, Fleming, and Clayton, J. Am. Chem. Soc., 58, 1386 (1936).
<sup>15</sup> Kohler, Am. Chem. J., 46, 474 (1911).
<sup>16</sup> Kohler and Davis, J. Am. Chem. Soc., 41, 992 (1919).
<sup>27</sup> Michael and Ross, J. Am. Chem. Soc., 53, 1150 (1931).
78 Howles, Thorpe, and Udall, J. Chem. Soc., 77, 942 (1900).
<sup>19</sup> Carter and Lawrence, Proc. Chem. Soc., 16, 178 (1900).
<sup>80</sup> Avery and McGrew, J. Am. Chem. Soc., 57, 208 (1935).
<sup>81</sup> Badger, Campbell, and Cook, J. Chem. Soc., 1949, 1084.
82 Borsche, Ber., 42, 4496 (1909).
83 Avery, J. Am. Chem. Soc., 50, 2512 (1928).
44 Avery and McDole, J. Am. Chem. Soc., 30, 1423 (1908).
85 Buckley, Hunt, and Lowe, J. Chem. Soc., 1947, 1504.
 <sup>86</sup> Boberg and Schultze, Chem. Ber., 88, 74 (1955).
```

MacMillan, Mulholland, Dawkins, and Ward, J. Chem. Soc., 1954, 429.
 Colonge, Dreux, and Kehlstadt, Compt. rend., 238, 693 (1954).

87 Wohl and Losanitsch, Ber., 40, 4698 (1907).

and —CH(CN)C₄H₃, the product is lated must be an equilibrium maxture of all possible forms. The isolation of diastercomerides from product maxtures is then evidence that the forms involved are approximately equal energetically.

Both cis and trans forms arise in the condensation of 1-introcyclohexene with p-bromobenzy1 cyanide to XLIX, 25 whereas only one isomer (L) is formed from cis-2-hydrindyhdeneacetonitrile and cyanoacetamide 20

One unsaturated Michael adduct LI appears in cis and trans isomeric forms; this is the product of the reaction between acetylacetone and 2 moles of 1-evanobutadene. ⁹¹

When only one adduct is formed, the determination of its configuration is usually difficult due to the lack of reference compounds of established configuration. However, it has been proved that the dieyelic compounds formed from acyl- or carbalkoxy-cyclohexenes frequently, if not generally, have the trans configuration. This applies to the following cases thy evolporentereachoxylate with ethyl cyanoacetate or dethyl malonate

Kandish, J. Chem. Soc., 1931, 922.
 Charlish, Davies, and Rose, J. Chem. Soc., 1948, 232.

(trans only); ⁹² acetylcyclohexene and ethyl acetoacetate (trans only); ⁹³ acetylcyclohexene and diethyl malonate (cis and trans); ⁹⁴⁻⁹⁵ 2-methyl-1-butyrylcyclohexene and diethyl malonate (trans only); ⁹⁶ 2,6-dimethyl-butyrylcyclohexene and diethyl malonate (trans only); ⁹⁶ vinyl cyclohexenyl ketone and diethyl malonate (trans only); ¹⁰⁰ 4-methoxy- and 3,4-methylchedioxy-benzalacetophenone and 3-methylcyclohexanone (cis and trans); ¹⁰⁰² methyl isopropenyl ketone and 3- and 4-methylcyclohexanone (cis and trans); ¹⁰¹ and (+)-dihydrocarvone and 1-diethylamino-3-pentanone methiodide (cis and trans). ¹⁰²

Isomers have also been formed in the self-condensation of 1-acetyl-1-cyclohexene ^{97,98} and in the condensation of 1-acetyl-1-cyclohexene with 1-tetralone. ⁹⁹

In the total synthesis of santonin, 103 use was made of the fact that the Michael condensation of diethyl methylmalonate and 1,10-dimethyl-2-oxo-2,3,4,5,6,10-hexahydronaphthalene introduces the side chain so that

it is cis to the methyl group at  $C_{10}$ . An analogous observation has been made for 3,5-cholestadien-7-one.

Cis addition is observed in the addition of diethyl malonate, diethyl methylmalonate, and ethyl acetoacetate to methyl bicyclo[2,2,1]hepta-2,5-diene-2-carboxylate¹⁰⁴² and in the addition of diethyl malonate to ethyl 1-cyclohexene-1-carboxylate.¹⁰⁴⁵

A tendency for trans addition is evident in the Michael condensation of 2-aryl-2-cyclohexen-1-ones. Here it has been shown with diethyl malonate that a trans compound is obtained, for the product could be related to the known trans-2-phenyley-clohexylacetic acid (LII) 19-184

$$\Pi^{t}C \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{$$

It has further been demonstrated that the addition of dibenzyl malonate to 4-phenyl- or 5-phenyl-2-cyclohexenone¹⁰⁷ and of methyl nitroacetate to 2-phenyl-2-cyclohexenone takes the same steric course.¹⁰⁸

#### SCOPE AND LIMITATIONS

#### Donors

All of the donor molecules appearing in Tables I-XXI are collected in Table XXII. In the almost complete absence of kinetic studies of the Michael condensation, an exact comparison of the compounds acting as donors in the condensation is impossible. However, in some cases in which the donor contains two active hydrogen atoms, the efficacy of the

¹⁰¹ Bachmann and Fornefeld, J Am Chem Soc., 72, 5529 (1950)

¹⁰⁰ Gineburg and Pappo, J. Chem Soc., 1951, 938.

¹⁴⁷ Bergmann and Szmuszkovicz, J. Am. Chem Soc . 75, 2226 (1953)

¹⁰⁰ Ginsburg and Pappo, J. Chem. Soc., 1953, 1524

activating groups can be compared directly. For example, two carbethoxy groups activate hydrogen more than one carbethoxy¹⁰⁹ or one aldehyde group,¹¹⁰ but one carbonyl group is more effective than one carbethoxy group.¹¹¹ The groups  $CH(CH_3)$  and  $CH(C_6H_5)$  have greater activating power than a methylene group,^{112–113} and a nitro group is a more powerful activator than a carbethoxy¹¹⁶ or an alkylsulfonyl group.¹¹⁷ It also appears to be generally true that unsaturated ketones are more reactive than nitriles and nitriles more than esters, and that  $\alpha,\beta$ -unsaturated sulfones are least reactive.^{118–122} The behavior of methyl  $\beta$ -cyanocthyl ketone in Michael additions¹²³ confirmed the stronger activating influence of a carbonyl group as opposed to a nitrile group. Recent work¹²⁴ has shown that the phosphonate group — $PO(OR)_2$  also activates hydrogen atoms on the adjoining carbon atom. Like the nitro and sulfoxide functions, it also activates neighboring double bonds to act as acceptors (see Table XXI).

Though one would expect the reactivity of a donor to be related to the degree of enolization in the reaction environment, no simple relationship was found between reactivity and the tendency of the donor to enolize in the pure state. Likewise, the reactivity of a methylene or methine group toward a Grignard reagent (Zerewitinoff test) does not appear to parallel its activity as a donor in the Michael reaction. 126

Generally speaking, one would expect that the degree to which the Michael reaction takes place, as well as its rate, should be importantly influenced by the acidity of the donor and the polarity of the carbon-carbon double bond in the acceptor. As to the former, the acidity of the

hydrogen atom in the group RCH decreases in the following sequence:

```
100 Friedmann, J. prakt. Chem., [2], 146, 79 (1936).
110 Moe, Warner, and Buckley, J. Am. Chem. Soc., 73, 1062 (1951).
111 Hill, Am. Chem. J., 24, 1 (1900).
112 Bachmann and Wick, J. Am. Chem. Soc., 72, 3388 (1950).
113 Boekelheide, J. Am. Chem. Soc., 69, 790 (1947).
114 Frank and Pierle, J. Am. Chem. Soc., 73, 724 (1951).
115 Wilds, Ralls, Wildman, and McCaleb, J. Am. Chem. Soc., 72, 5794 (1950).
118 Leonard, Felley, and Nicolaides, J. Am. Chem. Soc., 74, 1700 (1952).
117 Buckley, Elliott, Hunt, and Lowe, J. Chem. Soc., 1947, 1505.
118 Truce and Wellisch, J. Am. Chem. Soc., 74, 2881 (1952).
119 Henecka, Chem. Ber., 81, 197 (1948).
120 Henecka, Chem. Ber., 82, 41 (1949).
121 Henecka, Chem. Ber., 82, 104 (1949).
122 Henecka, Chem. Ber., 82, 112 (1949).
123 Chem. Werke Huels, Ger. pat. 811,231 [C.A., 47, 11234 (1953)].
<sup>124</sup> Pudovik and Lobedeva, Zhur. Obshchei Khim., 22, 2128 (1952) [C.A., 48, 564 1954]].
```

Connor and Andrews, J. Am. Chem. Soc., 56, 2713 (1934).
 McAlpine and Ongley, Anal. Chem., 27, 55 (1955).

 $R=NO_4>SO_4R>CN>CO_1R>CHO>COR^{124}$  As to the latter, the electromeric effects of the activating groups which produce polarity in the double bond dimmish in the sequence  $CHO>COR>CN>CO_1R$  NO. Through possession of appropriate combinations of these NOA, certain substances, e.g.,  $\beta$ -diketones,  $\beta$ -keto esters or ethyl  $\beta$ -animocrotomate, can act either as donors or acceptors

Donors	Acceptors
сп¹со <u>сп</u> ¹сосн³	он     сп²с≕снсосн²
сп'со <del>сп</del> 'со'с'п'	он   сп²с=∢нсо³с⁴н²
хи сп¹ссп¹со¹с¹н²	СН₃С≕СНСО₂С₃Н₃ NН₃

## Reactions with Cyclopropane Derivatives

A few cyclopropane derivatives have been observed to participate in the Michael condensation. In the reaction of ethyl 1-cyanocyclopropane-learnboxlate (LHI) with both ethyl cyanocyclopropane-learnboxlate (LHI) with both ethyl cyanocectate¹²³ and dicthyl malonate,¹²³ ring seasion occurs.¹²³⁻¹²³ The intermediates LIV and LV cyclize to the conesponding cyclopentanomenide derivatives LIV and LVII, subsequent elimination of the cyano and the second carbethoxy group, respectively, leads to dethyl cyclopentanone.^{2,5}-derachoxylate (LVIII). In the analogous reaction between dethyl malonate and diethyl cyclopropane.^{1,1}-decarboxylate, the same cyclopentanome derivative, LVIII, formed via tetrachyl butane-1,1,4,4-tetracarboxylate can be isolated.^{136,123} The similarity between a double bond and the cyclopropane ring illustrated by this reaction is supported by other

¹⁸⁷ Arndt, Scholz, and Frobel, Ans. 521, 111 (1936)

¹⁰ Thorps, J Chem Soc , 95, 1901 (1909)

Mitchell and Thorpe, J. Chem. Soc., 97, 997 (1910)
 Bone and Porkin, Jr., J. Chem. Soc., 67, 108 (1895)

in Cf Fittig and Roeder, Ann. 227, 13 (1885) in Cf Best and Thorpe, J Chem Soc. 98, 697, 699 (1909).

Radulescu, Ber., 44, 1018 (1911)
 Kierstead, Lanstead, and Wesdon, J. Chem. Soc., 1952, 3616.

evidence,¹³⁵⁻¹⁴¹ particularly by the recent experiments showing that the enolate of diethyl malonate undergoes a Michael reaction with diethyl 2-vinyleyelopropane-1,1-diearboxylate (LIX);¹³⁴ this partly follows the

¹³⁵ Cf. Klotz, J. Am. Chem. Soc., 66, 88 (1944); Roberts and Green, ibid., 68, 214 (1946); Rogers, ibid., 69, 2544 (1947); ef. ref. 137.

- 126 Kierstead, Linstead, and Weedon, J. Chem. Soc., 1952, 3610.
- ¹³⁷ Mariella, Peterson, and Ferris, J. Am. Chem. Soc., 70, 1494 (1948).
- 128 Smith and Rogier, J. Am. Chem. Soc., 73, 3831 (1951).
- 139 Smith and Rogier, J. Am. Chem. Soc., 73, 3840 (1951).
- 140 Mariella and Raube, J. Org. Chem., 18, 282 (1953).
- 141 Greenfield, Friedel, and Orchin, J. Am. Chem. Soc., 76, 1258 (1954).
- 142 Perold, J. S. African Chem. Inst., 6, 22 (1953) [C.A., 48, 4314 (1954)].
- 143 Eastman, J. Am. Chem. Soc., 76, 4115 (1954).
- 144 Eastman and Selover, J. Am. Chem. Soc., 76, 4118 (1954).

above scheme, but partly takes place at the ends of the "conjugated" system. Both reactions occur also in  $\alpha, \beta, \gamma, \delta$  doubly unsaturated carboxylic acid derivatives (see p. 237).

A similar study has been made¹¹⁰ of the reaction of ethyl cyanoacetate with ethyl 1-cyano-2-vnuyleyclopropane-1-carboxylate, synthesized in situ from trans-14-dibromo-2-butene and ethyl cyanoacetate. The product, obtained in 30%, yield, was a mixture of the two cyclopentane derivatives LX and LXI.

$$\begin{array}{c|ccccc} \mathrm{CH_1}\!\!=\!\!\mathrm{CHCH}\!-\!\mathrm{CHCN} & \mathrm{CH_2}\!\!=\!\!\mathrm{CHCO_1}\!c_1\mathrm{H_1} & \mathrm{CH_2}\!\!=\!\!\mathrm{CHCO_1}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCO_1}\!c_1\mathrm{H_2} & \mathrm{CH_2}\!\!=\!\!\mathrm{CHCO_1}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCH}\!-\!\!\mathrm{CHCO_2}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCO_2}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCH}\!-\!\!\mathrm{CHCO_2}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCO_2}\!c_2\mathrm{H_2} \\ & c_{\mathrm{LX}}\!\!=\!\!\mathrm{CHCO_2}\!c$$

### The System C=C-C=N

The system C=C_C=N behaves like the system C=C_C=O in the Michael reaction The most extensive studies, on the addition of reactive methylene compounds to quinone imides, have been summarized ties selected examples are given in Table IX

2-Vmylpyndine and 4-vmylpyridine are suitable acceptors for the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the co

In this connection, it should be mentioned that Schiff bases of the benzylideneamline type (but not ketone anils) add, for example, ethyl acetoacetate, 145-139 ethyl oxaloacetato, 148, 151 diethyl malonate, 152 ethyl

¹⁴⁴ Kierstead, Linstead, and Weedon, J Chem Soc , 1953, 1799

¹⁴⁰⁴ Adams and Redischneider, Bull see chim France, 1858, 23.

Caldwell, J Chem Soc., 1952, 2035
 Muram and Bergell, Ber., 45, 3040 (1912)

¹⁴⁴ Schuff and Bertini, Ber , 30, 601 (1897)

Schiff, Ber , 31, 205 (1898).
 Schiff, Ber , 31, 601 (1898)

¹¹¹ Philpott and Jones, J Chem. Soc , 1938, 337

¹⁵¹ Philpott and Jones, J. Chem. 200, 1830; 1851 Betts, Gazz chim. stal., 30, 11, 301 (1900).

 $C_2H_5O_2C$ 

LXVIII

cyclopentanone-2-carboxylate,151 ethyl cyanoacetate, malonamide, cyanoacetamide,133 and ethyl nitroacetate,134 according to the following scheme.

$$\textbf{C_4H_4CH} \!\!=\!\! \textbf{NC_6H_5} + \textbf{CH_4COCH_4CO_2C_2H_5} \rightarrow \textbf{C_6H_5CHNHC_6H_5}$$

сн.сосисо.с.н.

The C-N group in Schiff bases and azines appears to behave as a carbonyl group, for these compounds can serve as donors. Examples are furnished by the Schiff bases of aliphatic aldehydes and ketones and of cycloalkanones which can be cyanoethylated in the a position to the carbon atom of the azomethine group 1541 The reaction can be illustrated with cyclohexanone azine and methyl acrylate. 1540

Also, one can at least formally explain the reaction of the 3-hydrogen atom of indole (LXIX) with I-ethylthiomethyl-2-naphthol by the formulation of indole as the tautomeride LXX. An analogous reaction

is that between indolylmagnesium bromide and compounds of the ω-nitrostyrene type, 156

#### Acceptors

α,β-Ethylenic Aldehydes (Table I). The condensation of α.βethylenic aldehydes (acrolein, crotonaldehyde, cinnamaldehyde) with suitable acid derivatives 118,157-162 (malonates, cyanoacetates, ethyl

- 140 Lazzareschi, Gazz chim stal , 67, 371 (1937) 144 Dornow and Frese, Ann., 578, 122 (1952)
- 1544 Krimm, U S pat 2,768,962 [C.A , 51, 6684 (1957)].
- 1848 Haring and Wagner-Juareg, Helv Chim Acta, 40, 852 (1957)
- Poppelsdorf and Holt, J. Chem Soc., 1954, 4094.
   Poppelsdorf and Holt, J. Chem Soc., 1954, 4094.
   Noland, Christensen, Sauer, and Dutton, J. Am. Chem. Soc., 77, 456 (1235).
- 167 Farmer and Mehta, J Chem Soc , 1931, 2561. 114 Standinger and Ruzicka, Hely Chim Acta, 7, 442 (1924)
- ** Warner and Mos, J. Am. Chem. Soc., 70, 3470 (1948).

  *** Warner and Mos, J. Am. Chem. Soc., 71, 2586 (1949), U.S. pat. 2,468,352 [C.A., 43,
- 7505 (1949) 381 Warner and Mos. U.S pat. 2,506,050 [C A., 44, 8946 (1950)]
  - 182 Cope and Synerholm, J. Am. Chem. Soc., 72, 5228 (1959).

cyclohexanone-2-carboxylate) leads to derivatives of  $\delta$ -aldehydo acids. Alkyl substitution in the  $\alpha$  position does not appear to influence adversely the ability of the aldehydes to undergo Michael condensation;  $\beta$  substitution, on the other hand, alters the course of the reaction. ^{157,158} (For further synthetic uses of the condensation products see p. 249.)

There are very few examples of condensations between  $\alpha,\beta$ -ethylenic aldehydes and ketones or aldehydes. In the aldehyde- $\alpha,\beta$ -ethylenic aldehyde condensations secondary reactions regularly accompany the condensation. For example, the product to be expected from the interaction between cinnamaldehyde and phenylacetaldehyde, the dialdehyde LXXI, undergoes an intramolecular Cannizzaro reaction to yield  $\delta$ -hydroxy- $\beta,\gamma$ -diphenylvaleric acid, isolated as its lactone LXXII.

The "dimerization" of  $\alpha,\beta$ -unsaturated aldehydes such as 2-ethyl-2-hexenal which takes place under the influence of aqueous-alcoholic alkali has been explained as a Michael reaction followed by intramolecular aldolization to yield a cyclic product.^{165a}

Table I includes some acceptors having a hydroxy (or alkoxy or amino) group attached to the double bond, i.e., they are the enolic forms of compounds that can also function as donors in the Michael reaction (see p. 205). All primary condensation products from donors that contain a C—NH group in the immediate vicinity of the reactive methylene group spontaneously cyclize with elimination of the hydroxy (alkoxy, amino) groups to yield pyridine derivatives. 166

¹⁴³ Meerwein, J. prakt. Chem., [2], 97, 225 (1918).

¹⁶⁴ Hacusermann, Helv. Chim. Acta, 34, 1482 (1951).

¹⁴¹ Meerwein, Ber., 53, 1829 (1920).

¹⁴⁵³ Nielsen, J. Am. Chem. Soc., 79, 2518, 2524 (1957).

¹⁶⁶ Dornow, Ber., 72, 1548 (1939). Compare, Baumgarten and Dornow, Ber., 72, 563 (1939).

However, the course of cyclization can sometimes vary. From benzoylacetaldehyde and ethyl  $\beta$ -aminocrotonate one does not obtain the expected ethyl 2-methyl-4-phenylpyridine-3-carboxylate, but the 6-phenyl isomer LXXIV.187 This probably results from the reaction of benzoylacetaldehyde as  $\beta$ -hydroxycinnamic aldehyde (LXXIII) or as hydroxymethyleneacetophenone.

Aliphatic α,β-Ethylenic Ketones (Table II). The Michael condensation of aliphatic α,β-ethylenic ketones proceeds normally; the yields reported are often very high. The ease with which the ethylenic ketones undergo the condensation is exemplified by the fact that substances such as β-naphtholiss or ethyl 3-hydroxy-4,5-benzofuran-2-carboxylate118 react with methyl vinyl ketone in their ketonic forms. The same is true for the reactions of 4-hydroxycoumann with ethylideneacetone and meattyl oxide, respectively.169 Compare also the reaction of kojic acid with acry longrile.170

¹⁴⁷ Spacth and Burger, Monolek , 49, 265 (1928).

Miller and Robinson, J. Chem. Soc., 1934, 1535 see Ikawa, Stahmann, and Link, J. Am. Chem. Soc., 86, 902 (1944)

¹¹⁰ Woods, J. Am Chem. Soc . 74, 3959 (1952)

$$\begin{array}{c|c} OH & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OH & \longrightarrow & OH \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CO_2C_2H_5 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 & \longrightarrow & CH_2\text{CH}_2\text{COCH}_3 \\ \hline \\ OCO_2C_2H_5 &$$

An example of the reaction of hydroxymethylene ketones is seen in the condensation of the methyl ethyl ketone derivative LXXV with cyano-acetamide (under the catalytic influence of pyridine or piperidine). The primary product cyclizes spontaneously and, dependent on the operating conditions, 2-keto-3-cyano-4-hydroxy-5,6-dimethyl-1,2,3,4-tetrahydropyridine (LXXVII) or its dehydration product, 2-hydroxy-3-cyano-5,6-dimethylpyridine (LXXVII), is obtained.

Mention should finally be made of the behavior of doubly unsaturated ketones. Of this group, two types have been somewhat cursorily investigated. Crotylideneacetone (LXXVIII) yields with diethyl malonate

¹⁷¹ Tracy and Elderfield, J. Org. Chem., 6, 63 (1941).

¹⁷¹ Joshi, Kaushal, and Deshapande, J. Indian Chem. Soc., 18, 479 (1941) [C.A., 36, 4482 (1942)].

in the presence of sodium methoxide a mixture of two substances, of which the predominant one, LXXIX, results from 1,6 addition, the isomer LXXX from 1,4 addition. 22 5-Methyl-1,4-hexaden-3-one (LXXXI) reacts, under the influence of sodium methoxide, both with dethyl

malonate and acetylacetone at the less-substituted end of the molecule only, gwing LXXXIII and LXXXIII, respectively ¹⁸ Phorone (LXXXIV) does not react analogously to LXXXI with dethyl malonate in alcoholic solution. Instead the product obtained, LXXXVI¹⁸ is identical with that obtained from meatry toxide. ¹⁹⁸⁷ Apparently

$$(\mathrm{CH}_3)_k \mathrm{C} = \mathrm{CHCOCH} = \mathrm{CH}_1 \longrightarrow (\mathrm{CH}_3)_k \mathrm{C} = \mathrm{CHCoCH}_1 \mathrm{CH}_1 \mathrm{CH}_1 \mathrm{COCH}_1 \mathrm{H}_2 \mathrm{H}$$

$$(\mathrm{CH}_3)_k \mathrm{C} = \mathrm{CHCOCH} = \mathrm{C}(\mathrm{CH}_1)_1$$

$$(\mathrm{CH}_3)_k \mathrm{C} = \mathrm{CHCOCH}_4 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH}_5 \mathrm{CH$$

phorone reverts to mesityl oxide more quickly than it reacts with the malonate, or the adduct formed suffers retrogression.

 $\alpha,\beta$ -Acetylenic Ketones. Acetylenic ketones that contain the triple bond in the x  $\beta$  position would be expected to give  $x,\beta$ -olefinic ketones in

- 112 Farmer and Mehta, J Chem Soc , 1931, 1904.
- 16 Nazarov and Terkhova. Bull acad sex. U R.S.S. Classe sex chim., 1948, 201 [C.4., 42, 7729 /19481]
  - 175 Vorisender and Gaertner, Ann., 304, 1 (1899).
  - Komppa, Ber., 32, 1421 (1829)
     Singer and Todd. Org. Synthesis Coll. Vol. 2, 200 (1950)
  - 114 \ orlander, Ann , 294, 273 (1897)
  - 114 Vorlander and Log. Jan , 294, 302 (1897)

the Michael condensation, as shown in the formulation. In the cases investigated (acetyl-n-butylacetylene, 180 propionylphenylacetylene, 181

$$\begin{array}{c} \text{RC} \underline{=} \text{CCOR}' + \text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 \rightarrow \text{RC} \underline{=} \text{CHCOR}' \\ & | \\ & \text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \end{array}$$

benzoylphenylacetylene,  182  benzoyl-o-chlorophenylacetylene 183 ), the primary products from malonic esters and the corresponding sodium alkoxides as catalysts proved too reactive to be isolated; eyclization products were isolated instead. From acetyl-n-butylacetylene, the  $\alpha$ -pyrone derivative LXXXVI, which could be converted to 5-n-butyl-resorcinol, was obtained. The phenylacetylene derivatives also cyclized

$$\begin{array}{c}
\text{CH} \\
 & \text{COCH}_3 \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{NaOR} \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{NaOR} \\
 & \text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}_2(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{COCH}_3 \\
\text{RO}_2\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3\text{C}_6\text{COR}'
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{RO}_2\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{RO}_2\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{RO}_2\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

$$\begin{array}{c}
\text{CH} \\
\text{CH}(\text{CO}_2\text{R})_2
\end{array}$$

to yield α-pyrones, LXXXVII.^{181,182} Analogously, the reaction between cyanoacetamide and propionylphenylacetylene¹⁸¹ or benzoylphenylacetylene¹⁸¹ leads to the substituted 2-pyridols, LXXXVIII. From

$$\begin{array}{c} \text{CH} \\ \text{C_6H_3C} \\ \text{NCCH} \\ \text{CONH_2} \end{array} \xrightarrow{\text{H_3C_6}} \begin{array}{c} \text{H_3C_6} \\ \text{NH} \\ \text{OH} \\ \text{LXXXVIII} \end{array}$$

¹⁴⁹ Anker and Cook, J. Chem. Soc., 1945, 311.

¹⁴¹ Bardhan, J. Chem. Soc., 1929, 2223.

¹⁰¹ Kohler, J. .1m. Chem. Soc., 44, 379 (1922).

¹¹¹ Bickel, J. Am. Chem. Soc., 72, 1022 (1950).

¹⁴⁴ Barat, J. Indian Chem. Soc., 7, 851 (1930) [C.A., 25, 2145 (1931)].

5-methyl-3-hexyn-2-one and diethyl malonate in the presence of a small quantity of sodium ethoxide 3-carbethoxy-4-isopropyl-6-methyl-a-pyrone (LXXXIX) was obtained in 59% yield 185

Cyclization also takes place in the reaction between methyl ethynyl ketone and 2-methylcyclohexanone Under the influence of sodium hydride, 2-keto-10-methyl-2,5,6,7,8,10-hexahydronaphthalene is formed. 188

In the Michael condensation between ethyl ethynyl ketone and the cyclohexanone derivative XC under the influence of sodium triphenylmethide, very low yields of XCI were obtained.187 cf. refs. 188 and 189. As similar unsatisfactory results had been recorded in analogous

- 144 Smith and Kelly, J. Am. Chem. Soc , 74, 3305 (1952)
- 100 Woodward and Singh, J Am. Chem Soc., 72, 494 (1950)
- 147 Cleme and McQuillin, J Chem. Soc., 1252, 3839
- 33 Gunstone and Tulloch, J. Appl. Chem. London, 4, 291 (1954).
- 114 Abe, Harukawa, Ishikawa, Miki, Sumi, and Toga, Proc. Japan. Acad , 28, 425 (1952) [C A., 48, 1317 (1954)].

reactions,  190,191  a systematic study of the reaction between 2-methyl-cyclohexanone (in the form of its metal enolates) and ethyl ethynyl ketone, formed in situ, was undertaken. However,  $\beta$ -chlorovinyl ethyl ketone,  $\beta$ -ethoxyvinyl ethyl ketone, and  $\beta$ -propionylvinylpyridinium chloride gave about the same yields as ethyl ethynyl ketone itself; and  $\beta$ -dimethylaminovinyl ethyl ketone did not react at all with the sodium enolate. Moreover, in addition to the expected 1,10-dimethyl-2-keto-2,5,6,7,8,10-hexahydronaphthalene (XCII), the open-chain product 2-methyl-2-( $\beta$ -propionylvinyl)cyclohexanone (XCIII) was formed. A

considerable advantage was noted in use of the calcium or the lithium enolate of 2-methylcyclohexanone with  $\beta$ -chlorovinyl ethyl ketone; these gave yields of 12–14 and 20%, respectively, whereas the sodium enolate gave only 3–4%.

Aromatic  $\alpha,\beta$ -Ethylenic Ketones (Tables III, IV). The introduction of aromatic radicals into the terminal positions of the system C=C-C=O appears to increase its polar character and therefore its tendency to undergo the Michael condensation. Perhaps it is for this reason that a very large number of such reactions has been carried out. Those in which the ketone is unsaturated on only one side are summarized in Table III, in which the following order is observed: vinyl phenyl ketones, methyl styryl ketones, phenyl styryl ketones.

The unsaturated ketone dypnone (XCIV) undergoes self-condensation when treated with alkali. The product "dypnopinacol" has been given the formula XCV.^{191–193} Although XCVI has been assumed to be an intermediate, ^{191,192} it seems quite unlikely that the methyl group has a

¹⁹⁰ Gunstone and Heggie, J. Chem. Soc., 1952, 1437.

¹⁹¹ Iwanow and Iwanow, Ber., 76, 988 (1943).

¹⁰² Iwanow and Iwanow, Ber., 76, 1148 (1943).

¹⁹³ Meerwein, Ber., 77, 229 (1944).

sufficiently reactive hydrogen to act as a donor. It is suggested by the authors that some of the dypnone is hydrolyzed to acetophenone by analogy with the known hydrolyss of mestly oxide. Acetophenone then gives the dilectone XCVII by Michael condensation; the dilectone condenses with another molecule of acetophenone to yield the aldol XCVIII, which cycliess normally to dypnopusace!

Few doubly unsaturated ketones of the type C₄H₂CH=CHCH=CHCOR appear to have been studied. When ennamylideneacetone (XCIX) is treated with diethyl malonate and sodium ethoxide, 1,4 addition takes place. The primary product C cyclizes spontaneously, leading to

4-carbethoxy-5-styrylcyclohexane-1,3-dione (I). 178, 184, 185 Cunnamylideneacetophenone also gives the 1,4 addition products II and III, respectively, with diethyl malonate and sodium ethoxide, 186 and with acetophenone

Enumeration of formulas begins with I again after C to reduce the complexity of the
imbers
 184 Vorlander, Ber - 36, 2339 (1903).

¹⁹⁹ Vorlaceder and Groebel, Ann , 345, 155 (1908), especially p 206.

¹¹⁰ Vorlaender and Staudinger, Ann , 345, 155 (1906), especially p. 217.

and potassium hydroxide in ethanol.¹⁹⁷ This is in contradiction to the behavior of diethyl cinnamylidenemalonate (see p. 501), which undergoes 1,6 condensation. The adduct III from cinnamylideneacetophenone and acetophenone is accompanied by a product whose formation involves two moles of acetophenone. Condensation of cinnamylideneacetophenone with ethyl acetoacetate gave a substance  $C_{28}H_{22}O_3$  of unelucidated structure.¹⁹⁶

Considerable attention has been paid to Michael condensations with doubly unsaturated ketones of the type RCH=CHCOCH=CHR, e.g., dibenzylideneacetone (IV)^{198–200} and dicinnamylidenacetone (V).¹⁹⁸ The experimental material available, summarized in Table IV, shows that the two double bonds in dibenzylideneacetone undergo Michael condensation

$${\rm C_6H_5CH} = {\rm CHCH} = {\rm CHC_6H_5}$$
 
$${\rm IV}$$
 
$${\rm C_6H_5CH} = {\rm CHCH} = {\rm CHCH} = {\rm CHC_6H_5}$$

independently of each other. If the donor contains two enolizable hydrogen atoms, there is often a secondary intramolecular step leading to a six-membered ring (VI).¹⁹⁸ Substances of the dicinnamylideneacetone type appear to undergo the Michael condensation by 1,4 (not 1,6) addition.¹⁹⁸

$$C_{\mathfrak{g}}H_{\mathfrak{s}}CH \xrightarrow{CH_{\mathfrak{s}}(CO_{\mathfrak{s}}C_{\mathfrak{s}}H_{\mathfrak{s}})_{\mathfrak{s}}} C_{\mathfrak{s}}H_{\mathfrak{s}}CH \xrightarrow{CH(CO_{\mathfrak{s}}C_{\mathfrak{s}}H_{\mathfrak{s}})_{\mathfrak{s}}} C_{\mathfrak{s}}H_{\mathfrak{s}}CH \xrightarrow{CH(CO_{\mathfrak{s}}C_{\mathfrak{s}}H_{\mathfrak{s}})_{\mathfrak{s}}} C_{\mathfrak{s}}H_{\mathfrak{s}}CH \xrightarrow{C} C_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak{s}}H_{\mathfrak$$

¹³⁷ Wittig and Kosack, Ann., 529, 167 (1937).

¹⁸⁸ Kohler and Dewey, J. Am. Chem. Soc., 46, 1267 (1924).

¹⁰⁰ Kohler and Helmkamp, J. Am. Chem. Soc., 46, 1018 (1924).

¹⁰⁰ Marvel and Moore, J. Am. Chem. Soc., 71, 28 (1949).

It is of interest to compare the reactivity of the double bonds in unayumetrically substituted dibenzylidene-acetones. In dibenzylidene-acetone, chlorine in the 2, 3, or 4 postion²⁴ or a methoxyl group in the 4 position¹⁴⁸ deactivates the neighboring double bond so that Michael reaction occurs only on the side of the unsubstituted benzene ring. The chlorine atom in  $\alpha$ -(3- or 4-chlorobenzylidene)- $\beta$ -(4'-methoxybenzylidene)-acetone causes the reaction to take place on the double bond adjacent to the chlorinated nucleus On the other hand, a hydroxyl group in the 2 or 4 position of the benzene nucleus has a stronger activating influence than a 2-methoxy group or a chlorine atom in 4 or 4 position.  $^{12-24}$ 

It is noteworthy as well as surprising that ethyl acetoacetate condenses with a 4.4-dimethylaminobenzylutene)-\$\textit{\beta}(2-\texth{hydroxybenzylidene]acetone, in the presence of potassium hydroxic as catalyst on the dimethylamino group side, whereas ethyl cyanoacetate with sodium hydroxide as catalyst adds to the side of the 2-hydroxyphenyl radical. \$^{23}\$ The same difference is evident in two other cases, listed in Table IV.

Heterocyclic α,β-Ethylenic Ketones (Tables V, VI). In view of the aromatic character of the furan system, α,β-ethylenie ketones containing the furyl group should behave like their phenyl analogs ^{112,162–118}. This expectation is borne out by the examples in Table V. A characteristic difference, however, is the fact that almost no secondary cyclization or isomerization reactions take place Table V also includes a few heterocyclic compounds not derived from furan.

Table VI lists a number of other heterocyclic  $a_i\beta$ -ethyleruc ketones, mostly of the acylcouraerin type, iii-1¹²³ Several reactions carried out with 2-(p-methoxybernylidene)-4,5-henze-2,3-dihyrdofuran-3-ora-gin-1¹⁴⁴ and y-pyrone are included, iii The reaction of y-pyrone and diethyl malonate is somewhat complicated, but it can be assumed that the first step is a Michael condensation to VII, which is followed by ring opening and

- 101 Heilbron and Hill, J. Chem Soc., 1928, 2863
- Bes Heilbron and Forster, J Chem Soc., 125, 2064 (1924).
- For Heilbron and Hill, J. Chem Soc , 1927, 018
- Jennings and McGookin, J. Chem. Soc., 1934, 1741.
   Heilbron, Ferster, and Whitworth, J. Chem. Soc., 127, 2159 (1925)
- Heilbron, Forster, and Whitworth, J Chem. Soc., 127, 2169
  104 Peak and Robinson, J Chem. Soc., 1937, 1581.
- box Andrews and Connor, J. Am. Chem. Soc., 57, 895 (1935)
- Drake and Gilbert, J. Am. Chem. Soc., 52, 4965 (1930)
- *** Kloetzel, J. Am. Chem. Soc., 69, 2271 (1947).
  *** Turner, J. Am. Chem. Soc., 72, 1284 (1951).
- 111 Koelsch and Sundet, J. Am Chem Soc., 72, 1681 (1950).
- 115 Koelsch and Sundat, J. Am. Chem Soc , 72, 1844 (1950)
- Sagtri and Seshadri. Proc. Indian Acad. Sci., 16A, 29 (1942) [C A., 37, 880 (1943)]
   Panso, Shah, and Wheeler, J. Indian Chem. Soc., 18, 453 (1941) [C A., 38, 4507 (1942)].
- Nasse, Shah, and Wheeler, J. Univ. Bombay, 10, Part 3, 83 (1941) [C.A., 38, 4507 (1942)]

¹¹² R. B Woodward, private communication

recyclization. Elimination of one of the carbethoxyl groups makes possible the aromatization to form VIII.

Table VI also includes the Michael condensation between rhodanine and alkylidenerhodanines. In this reaction,  $\alpha,\alpha$ -bis-(2-thio-4-ketotetrahydro-5-thiazolyl)alkanes are formed from rhodanine and aliphatic aldehydes.216

Cycloalkenones and Acyl Cycloalkenes (Table VII). The Michael condensations of cycloalkenones and 1-acylcycloalkenes have been listed in a separate table (Table VII) in view of the importance of the products in the synthesis of hydroaromatic polycyclic substances related to the steroids and steroidal alkaloids.

The adducts obtained from acetylcycloalkenes^{83-99,216-218} undergo intramolecular condensation to polycyclic ring systems, as exemplified in the accompanying reactions of 1-acetylcyclohexene (IX).93,98

²¹⁶ Bradsher, Brown, and Grantham, J. Am. Chem. Soc., 73, 5377 (1951).

²¹⁷ Hawthorne and Robinson, J. Chem. Soc., 1936, 763.

²¹⁶ Hewett, J. Chem. Soc., 1938, 50.

Table VII further includes some cases in which cycloally hideneace tones have been subjected to the Michael condensation  $^{14-123}$ . Here, too, cyclization of the primary adduct is spontaneous as shown by the formation of  $X_c^{-21}$ . As in many other reactions, the remaining carbethoxyl group is often eliminated in the process.

$$\begin{array}{c} \text{CHCOCH}_1 \\ + \text{CH}_2(\text{CO}_1\text{C}_1\text{H}_1)_2 \rightarrow \\ & \begin{array}{c} \text{CH}_2(\text{COCH}_2 \\ \text{CHCO}_2\text{C}_2\text{H}_2 \\ \text{CO}_1\text{C}_2\text{H}_3 \\ \text{X} \end{array} \end{array}$$

Michael condensations with hydroxymethylene- or alkoxymethylenecycloalkanones lead to interesting cycle products The product, eg, from 2-hydroxymethylenecyclohexanone and cyanoseetamide (in the presence of piperdine or diethylamine). It aliminates water between the amide group and the carbonyl group of the cyclobexanone. The hydroxyl of the hydroxymethylene group is also eliminated as water, yielding XI ( $R = H, CH_3$ ).

The dunerization of puperitone⁸¹⁵ (XII) appears to be a special case of Michael condensation. The methyl group of one molecule provides the hydrogen for the saturation of the second, the first molecule behaves, therefore, as a vnylog of a methyl ketone and does not utilize the exacting hydrogen in the ortho position, perhaps due to steric highbition by the isopropyl group. Two stereoisomers are formed. The structure of the dimeride of piperitone, which is stabilized by phydrogen bond formation.

¹¹⁰ Kandish, J Chem Soc , 1931, 952.

¹¹² Kon and Thakur, J. Chem. Soc., 1939, 2217

sai Norras and Thorpe, J Chem. Soc , 119, 1199 (1921)

Thakur, J. Chem Soc., 1932, 2147.
 Thakur, J. Chem Soc., 1932, 2157

^{***} Thakur, J. Chem Soc , 1932, 2157 *** Sen-Gupta, J. Chem Soc , 107, 1347 (1915).

²⁰⁰ Taylor, Chemistry & Industry, 1954, 252 Cf. Colo, and, 1954, 661.

$$\begin{array}{c} 2\\ i \cdot H_{7}C_{3} \\ O \\ XII \end{array} \begin{array}{c} CH_{3} \\ i \cdot H_{7}C_{3} \\ O \\ O \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ O \\ O \\ O \\ O \\ O \end{array} \begin{array}{c} CH_{3} \\ O \\ O \\ O \\ O \\ O \\ O \end{array}$$

between the carbonyl and the hydroxyl groups,²²⁵ has been indicated by analogy with evidence obtained by degradation of the dimeride of 3,5-dimethyl-2-cyclohexen-1-one.²²⁷

Robinson's Modification of the Michael Condensation (Table VIII). The use of a masked form of the  $\alpha,\beta$ -ethylenic carbonyl compound, which produces the latter in situ, is of practical importance with sensitive ketones and in condensations requiring stringent experimental conditions. Although saturated  $\beta$ -chloroketones had had some use as precursors of the corresponding  $\alpha,\beta$ -ethylenic ketones, ²²³ Robinson and his co-workers ^{93,229–231} introduced the use of  $\beta$ -dialkylaminoketones or their quaternary salts; these decompose gradually into a dialkylamine or trialkylammonium salt and the desired  $\alpha,\beta$ -ethylenic ketone. These starting materials are readily accessible by appropriate Mannich reactions ²³² of saturated ketones and, if necessary, subsequent quaternization as shown in the accompanying reaction sequence.

$$\label{eq:ch3_coch3} \begin{split} \mathrm{CH_3COCH_2CH_2N(CH_3)_2} &\rightarrow \mathrm{CH_3COCH_2CH_2N(CH_3)_3I} \rightarrow \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH_2CH_2N(CH_3)_3I} \rightarrow \mathrm{CH_3COCH} \\ \mathrm{CH_2} &\leftarrow \mathrm{CH_3COCH} \\ \mathrm{CH_3} &\leftarrow \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} &\leftarrow \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COCH} \\ \mathrm{CH_3COC$$

- 226 Briggs and Colebrook, Chemistry & Industry, 1955, 200.
- 227 Ayer and Taylor, J. Chem. Soc., 1955, 2227.
- 218 Allen and Bell, Can. J. Research, 11, 40 (1934) [C.A., 29, 150 (1935)].
- 229 du Feu, McQuillin, and Robinson, J. Chem. Soc., 1937, 53.
- ²²⁰ McQuillin and Robinson, J. Chem. Soc., 1938, 1097.
- McQuillin and Robinson, J. Chem. Soc., 1941, 586.
- 222 Blicke, in Adams, Organic Reactions, Vol. 1, Chapter 10, John Wiley & Sons, 1942.

Although these reactions are included here (Table VIII) among Michael condensations, it has not been certain that they proceed by way of the α,β-ethylenic ketone as an intermediate 233 A recent study of these reactions has led to the conclusion that the olefinic intermediate, as outlined by Robinson, occurs whenever there is a hydrogen atom on the carbon atom beta to the nitrogen *

The scope of Robinson's modification of the Michael reaction has been widened by the observation²⁵¹ that 1-dialkylamino-2-nitroalkanes (the Mannich bases of nitroalkanes) can replace the corresponding nitroolefins in Michael condensations

$$R_1NCH_1CH(NO_2)CH_2CH_3 \Rightarrow R_2NH + CH_2 = C(NO_2)CH_2CH_3$$

Another variant is the use of the alkylthic instead of the dialkylamino group. Thus, 1-ethylthiomethyl-2-naphthol reacts as the 1-methylene derivative of the keto form of 2-naphthol. 155

$$OH \Rightarrow O+ C_tH_tSH$$

199 Brewster and Eliel, in Adams, Organic Reactions, Vol. 7, Chapter 3, John Wiley & Sons, 1953. Note, however, that Bradford and co-workers have observed differences of reaction

- in cyanocthylation with \$\beta\$ diethylaminoethyl cyanide methiodide as compared with cyanoethylation with acrylonitrile, and have assumed that the positive ion NCCH_CH_0 is the intermediate. This explanation suggests the relation of the Michael condensation to reactions of typical Michael donors with gramine (\$\beta\$ diethylaminoethylindole) and its derivatives 136 350
  - 224 Bradford, Meek, Turnbull, and Wilson, Chemistry & Industry, 1951, 839.
  - 104 Eliel and Murphy, J Am. Chem Soc., 75, 3589 (1953)
  - 104 Dornow and Them, Ann , 581, 219 (1953)
  - 181 Holland and Nayler, J. Chem Soc., 1953, 280
  - 114 Gray, J Am. Chem Soc , 75, 1252 (1953). 210 Kissman and Witkop, J Am Chem Soc , 75, 1967 (1953)
  - 240 Atkinson, Poppsisdorf, and Williams, J Chem Soc. 1953, 580. un Jones and Kornfeld, US pat 2,621,187 [C.A., 47, 10857 (1953)].
  - 145 Kutscher and Klamerth, Chem Ber , 86, 352 (1953) 144 Brewster and Eliel, in Adams, Organic Reactions, Vol 7, p 99, John Wiley & Sons,
- 1953
- 344 Thening, Chem. Ber , 87, 692 (1954)
- 140 Atkinson, J Chem Soc , 1954, 1329 assa Hellmann, Hallmann, and Lingens, Chem. Ber , 86, 1346 (1953).
- 14 Hardegger and Corrods, Helv Chem. Acta, 38, 488 (1955). 117 Albertson, Archer, and Suter, J. Am. Chem. Soc., 66, 500 (1944)
- 244 Snyder and Smith, J Am Chem Soc , 68, 350 (1944). 140 Lyttle and Weublat, J. Am Chem. Soc . 69, 2118 (1947)
  - 148 Hegedus, Helv. Chum. Acto, 29, 1499 (1946). 351 Shoemaker and Keewa, J Am. Chem Soc. 78, 6374 (1954).

p-Quinones and Derivatives (Table IX). As in many other reactions, e.g., the Diels-Alder synthesis, p-quinones behave in the Michael condensation as  $\alpha,\beta$ -ethylenic ketones. However, although the enols formed in the Michael condensation of most  $\alpha,\beta$ -ethylenic ketones ketonize spontaneously, the enols formed from quinones are hydroquinones and are stable.

Certain of the hydroquinone products are dehydrogenated in situ by an excess of the original quinone, so that the newly formed quinone can undergo a second Michael condensation.²⁵²

$$O \longrightarrow O \longrightarrow CHCO_{2}C_{2}H_{5} \longrightarrow OH$$

$$XIII + \bigcirc O \longrightarrow O \longrightarrow CHCO_{2}C_{2}H_{5}$$

$$O \longrightarrow O \longrightarrow CHCO_{2}C_{2}H_{5} \longrightarrow OH$$

$$XIV + NCCH_{2}CO_{2}C_{2}H_{5} \longrightarrow C_{2}H_{5}O_{2}CHC$$

$$OH \longrightarrow CHCO_{2}C_{2}H_{5}$$

$$OH \longrightarrow CHCO_{2}C_{2}H_{5}$$

$$OH \longrightarrow CHCO_{2}C_{2}H_{5}$$

$$OH \longrightarrow CHCO_{2}C_{2}H_{5}$$

$$\begin{array}{c} \text{CH}_3\\ \text{O} \\ \text{CH}_3 \end{array} + \text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 \rightarrow \begin{array}{c} \text{CH}_3\\ \text{H}_3\text{C} \\ \text{CH}_3 \end{array} + \begin{array}{c} \text{CH}_3\\ \text{CH}_3\text{CO}_2\text{C}_2\text{H}_5)_2 \end{array} \rightarrow \begin{array}{c} \text{CH}_3\\ \text{CH}_3\text{CO}_2\text{C}_2\text{H}_5 \end{array}$$

²²² Wood, Colburn, Jr., Cox, and Garland, J. Am. Chem. Soc., 66, 1540 (1944).

Other hydroquinones undergo cyclization involving the hydroxyl group of the hydroquinone and leading to condensed heterocyclic ring systems As example is the formation of the lactone XV shown on p. 224.252

In other cases not only recommarones are formed, but also commarin derivatives such as XVI 224 When zinc chloride is used to catalyze the

$$\underbrace{\Pi_i C}_{CH_1} = O + C\Pi_i COCH_i CO_i C_i \Pi_i \rightarrow \underbrace{\Pi_i C}_{CH_2} \underbrace{CH_1}_{CH_2} O_i C_i \Pi_i$$

reaction of p-benzoquinone and ethyl acetoacetate, either a mono (XVII)

M4 Smith and Prochard J Ory Chem. 4, 342 (1939)

³⁴⁴ Smith and Boyack, J. Am Chem Soc , 70, 2690 (1948) 44 Pechmann, Ber., 21, 3005 (1888)

¹⁸⁴ Ikuta, J prakt Chem . [2], 45, 78 (1892) 25' Grache and Levy, Ann., 283, 245 (1894)

when benzoquinone reacts with the imine of ethyl acetoacetate (ethyl  $\beta$ -aminocrotonate). In acetone or anhydrous ethanol as solvent, 2-methyl-3-carbethoxy-5-hydroxyindole (XIX) is formed.²⁵⁸ In the same way,

$$\begin{array}{c} CH_2CO_2C_2H_5 \\ + CCH_3 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CCH_3 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CH_3 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \end{array} \rightarrow \begin{array}{c} CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_2C_2H_5 \\ - CHCO_$$

N-phenyl-2-methyl-3-carbethoxy-5-hydroxyindole was obtained with ethyl  $\beta$ -anilinocrotonate, and the corresponding N-carbethoxymethyl compound from ethyl  $\beta$ -(carbethoxymethylamino)crotonate.

Ordinarily only an unsubstituted carbon atom of the quinone ring is attacked by a donor anion, possibly for steric reasons. Thus, trisubstituted quinones undergo only mono condensation.^{254,259,260} However, it

$$\begin{array}{c|c} O & O & O \\ H_3C & H_3C & H_3C & H_3C & H_3C \\ O & CH_3 & H_3C & CH_2 & H_3C & CH_2 \\ O & XX & O & O \end{array}$$

is possible for a tetrasubstituted quinone to participate in the Michael condensation.^{261–263} A substance like duroquinone (XX) presumably reacts in a tautomeric form (considered to be the intermediate in the "dimerization" of this quinone),²⁶⁴ which is evidently much freer of steric hindrance than the normal form.

In one instance, a methylene quinone (1-methylene-1,2-naphthoquinone, XXI) has been shown to undergo the Michael reaction with diethyl

²⁵⁸ Nenitzescu, Bul. Soc. Chim. România, 11, 37 (1929) [C.A., 24, 110 (1930)].

²⁵⁹ Smith and Kaiser, J. Am. Chem. Soc., 62, 133 (1940).

²⁴⁰ Smith and King, J. Am. Chem. Soc., 65, 441 (1943).

²⁶¹ Smith and Dobrovolny, J. Am. Chem. Soc., 48, 1693 (1928).

²⁴² Smith and Kaiser, J. Am. Chem. Soc., 62, 138 (1940).

²⁶³ Smith and Tenenbaum, J. Am. Chem. Soc., 59, 667 (1937).

²⁶⁴ Smith, Tess, and Ullyot, J. Am. Chem. Soc., 66, 1320 (1944).

malonate, though in small yield. In this case, too, cyclization occurred and ethyl 5,6-benzo-3,4-dihydrocoumarin-3-carboxylate (XXII) was formed. 245

$$\bigcap_{XXI}^{CH_2} = 0 \longrightarrow \bigcap_{XXII}^{CH_2(CO_1C_2H_3)_2} \bigcap_{XXII}^{CO_1C_2H_3} \bigcap_{XXII}^{CO_$$

A complicated modification of the Michael reaction of p-quimones has been observed to result from condensation of 1.4-naphthoquimon (cf. ref. 261) with ethyl acctoacetate in the presence of pyridine and pyridinium hydrochloride, **id. cf. ref. 267. The final product had lost the acetyl group of the acctoacetate molecule; the same product (1.-arbethoxy-2.3phtholoy)pyrrocoline, XXIII) was therefore obtained when ethyl benzoylacetate was employed. The reaction has been formulated as shown.

The complexity of this sequence explains the low yield (14%) as well as the fact that also 2-bromo. and 2,3-dichloro-naphthoquinone and 1,4naphthoquinone-2-sulfonate give the same product, with loss of the polar

xxm

- Smith and Horner, Jr., J. Am Chem. Soc., 60, 676 (1938)
   Pratt, Luckenbaugh, and Erickson, J. Org. Chem., 19, 176 (1954).
- 23 Pratt and Bochme, J. Am. Chem. Soc. 12, 444 (1951). Inequandline shows a reactivity comparable with that of pyridine. Quincline, however, is relatively unreactive and the product dearched in rf. 256 as derived from quincline have been shown to have been formed from asoquinoline present in the quincline used. Pratt, Rice, and Luckenbaugh, J. Am. Chem. Soc., 78, 1121 (1957).

substituents.²⁶⁸ According to Suryanarayana and Tilak,²⁶⁹ 2,3-dichloro-naphthoquinone also yields the same compound (XXIII) when condensed with diethyl malonate or ethyl benzoylacetate. The Indian authors assigned to it, originally, the formula XXIV, but withdrew it later in favor of XXIII.^{270–273}

They further observed, in the condensation of 2,3-dichloro-1,4-naphthoquinone with acetoacetanilide in pyridine, that the ultimate partial degradation of the side chain involved either the acetyl or the anilide group, thus leading both to XXV and XXVI. Compound

$$\begin{array}{c} O \\ \bigoplus \\ CHCO_2C_2H_5 \\ O \\ XXIV \\ O \\ XXVI \\ \end{array}$$

XXVI is also obtained when acetoaceto-o-chloroanilide, -o-toluide, or 2-(acetoacetamido)-6-ethoxybenzothiazole is employed instead of the unsubstituted anilide.

An analogous reaction was observed when ethyl acetoacetate in pyridine solution was condensed with chloranil or 2,6-dichloroquinone, leading to a mixture of XXVIIA and XXVIIB. The structure of XXVIIA was proved by its synthesis from tetraethyl 2,5-dichloroquinone-3,6-dimalonate and ethyl acetoacetate in pyridine solution.

²⁶⁸ Michel, Ber., 33, 2402 (1900).

²⁶⁹ Suryanarayana and Tilak, Proc. Indian Acad. Sci., 39A, 185 (1954) [C.A., 49, 12411 (1955)].

²⁷⁰ Suryanarayana and Tilak, Proc. Indian Acad. Sci., 38A, 534 (1953) [C.A., 49, 2396 (1955)].

Suryanarayana and Tilak, Current Sci. India, 22, 171 (1953) [C.A., 48, 14212 (1954)].
 Acharya, Tilak, and Venkiteswaran, J. Sci. Ind. Research India, 14B, 250 (1956) [C.A.,

 ^{50, 15531 (1956)].} Acharya, Suryanarayana, and Tilak, J. Sci. Ind. Research India, 14B, 394 (1955) [C.A.,
 50, 12971 (1956)].

Chlorani enters also into Michael reactions with  $\beta$ -naphthol or 2-hydroxy-3 naphthamilde. These donors react in their tautomeric keto forms, as in several other instances (see p 211), and cause the loss of the halogen atoms, leading to compounds of the following types.

 $(R = H, CONHC_6H_6)$ 

Acrylonitrile. Other u.g.-Unsaturated Nitriles, and Their Amides (Tables X, XI, and XIA). Acrylontrile has been used as an acceptor in Michael synthesis more widely than any other derivative of «g.-ettylenic acids. The reaction with acrylonitrile has not only been used for preparative purposes, but it has become a tool for testing organic molecules for enoisable hydrogen atoms. The hiterature is summarzaed in Table X, which also brings up to date an earlier review of the cyanoctivalization reaction.²²

Some interesting generalizations emerge from Table X. In alphabus methyl ketones, a methine group adjacent to the earbonyl is more reactive than a methylene group, and a methylene group is more reactive than a methylene group with the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties

- abio U.S pat 2,386,736 (C 4 , 42, 7234 (1946)).
  19 Barkley and Levine, J. Am. Chem. Soc., 72, 3699 (1956)
  - Campbell, Carter, and Slater, J. Chem. Soc., 1948, 1741
     Zellars and Levine, J. Org. Chem., 13, 911 (1948)
  - tre Bruson and Niederhauser, U'S pat 2,437,805 (C 4 . 42, 4196 (1948))
  - 11) Bruson and Riener, J. Am. Chem. Soc. 70, 214 (1948)

attacked by the nitrile.^{275,279} In aryl methyl ketones, all three hydrogen atoms of the methyl group react successively with acrylonitrile.²⁷⁷

Nitromethane and nitroethane are reported to give varying yields in the reaction with acrylonitrile. Dinitromethane, on the other hand, readily gives bis(cyanoethyl)dinitromethane, which loses one nitro group, and the scission product reacts with a third molecule of acrylonitrile to yield tris(cyanoethyl)nitromethane. Dinitromethane.

$$\begin{array}{c} \mathrm{CH_2(NO_2)_2} \rightarrow \mathrm{(NCCH_2CH_2)_2C(NO_2)_2} \xrightarrow{\mathrm{Hydrolysis}} \\ \\ \mathrm{(NCCH_2CH_2)_2CHNO_2} \rightarrow \mathrm{(NCCH_2CH_2)_3CNO_2} \\ \\ \mathrm{XXVIII} \end{array}$$

In some  $\alpha,\beta$ -ethylenic carbonyl and carboxyl compounds, the inherent possibility of tautomerization to the  $\beta,\gamma$ -unsaturated forms is enhanced by the reaction with acrylonitrile. From mesityl oxide, for example, a mono and a bis adduct are obtained; cf. ref. 764. For the latter, the formula XXIX has been established by degradation. For the former, Bruson and Riener have proposed the  $\alpha,\beta$ -unsaturated structure XXX because of the formation of XXXI by hydrolysis. The evidence does

not exclude the possibility, however, that during hydrolysis the double bond shifts into the  $\alpha,\beta$  position and that the correct structure is the one shown in XXXII. In any event, XXXII undoubtedly represents the structure of the primary product of the interaction between acrylonitrile and mesityl oxide.

Revising a previous statement²⁵³ on the reaction of isophorone with acrylonitrile, Bruson and Riener have obtained mono-, bis-, and

²⁵⁰ Thurston, Can. pat. 443,713 [C.A., 42, 205 (1948)].

¹⁴¹ Wulff, Hopff, and Wiest, Ger. pat. 728,531 [C.A., 38, 376 (1944)].

²³² Bruson and Riener, J. Am. Chem. Soc., 65, 23 (1943).

²²³ Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942).

²¹⁴ Bruson and Riener, J. Am. Chem. Soc., 66, 56 (1944).

tris-cyanoethyl derivatives (XXXIII to XXXV) of isophorone, to which they assigned the following structures ( $R=CH_4CH_5CN$ ) ²⁶⁵

However, it has been shown n that the mono derivative is XXXVI, as it could be ozonized to yield 3,3-dimethyl-5-ketohexanoic acid (XXXVII) (after hydrolysis of the nitrilogroup), wherea XXXVIII should have given XXXVIII as in the case of meantyl oxide (p. 230), the tautoraeric

form (XXXIX) of nophorone undergoes reaction, the primary product XL then isomerizes on a x_p-unsaturated ketone. The infrared spectra of the bis and tris products reported by Bruon and Riener** suggest the following structures for the mono-, dx-, and tra-cyanoethylated products, respectively

The alkylation of isophorone takes place in an analogous manner.287

- Bruson and Riener, J. Am. Chem. Soc., 75, 2585 (1953)
   Julia, Compt. rend., 237, 913 (1953)
- ser Coms, Bull see chim. France, 1954, 690

2-Ethyl-2-hexenal (XLI) also reacts in the  $\beta,\gamma$ -isomeric form with crotononitrile and  $\beta,\beta$ -dimethylacrylonitrile.

An interesting point emerges from the behavior of compounds such as indene (XLII),²⁸⁸ which gives a tris(cyanoethyl) derivative. One has to assume that the primary products rearrange to give a new reactive methylene group. In a similar fashion, cyclopentadiene gives a hexacyanoethyl derivative.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

In the reaction of dimethylbenzofulvene (XLIII), which gives a mono derivative XLIV, it has been supposed that an isomerization precedes the reaction.

Kojic acid (XLV) provides an instance in which an enolic hydroxyl group reacts in the tautomeric keto form;¹⁷⁰ after hydrolysis the product is a 6-propionic acid derivative (XLVI) of kojic acid:

²¹⁴ Bruson, J. Am. Chem. Soc., 64, 2457 (1942).

$$\begin{array}{c} \text{Hom}^{\text{tot}} \overset{O}{\overset{\text{CH}^{\text{tot}}} \text{Hom}^{\text{tot}}} \overset{O}{\overset{\text{Hom}^{\text{tot}}} \text{OH}} \overset{\text{Ch}^{\text{tot}}}{\overset{\text{Co}^{\text{tot}}} \text{CH}^{\text{tot}}} \overset{\text{Hom}^{\text{tot}}}{\overset{\text{Co}^{\text{tot}}} \text{CH}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}}{\overset{\text{Co}^{\text{tot}}} \text{CH}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}}{\overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}}{\overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{Ch}^{\text{tot}}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{tot}}} \overset{\text{Ch}^{\text{Ch}^{\text{Ch}}}} \overset{\text{Ch}^{\text{Ch}^{C$$

Considerably less work has been done on the Michael condensation with other unsaturated nitriles. The available data, collected in Table XI, deal mainly with comamonitrile, 2, 25, 25, 26 and allyl cyanide, 27, 21, 21, 21, isomerized to crotonoutrile by the alkaline reagents that catalyze the isomerized to crotonoutrile by the alkaline reagents that catalyze the Michael condensation. Table XI also includes some data on 1-cyanobutadene 9, 22, 28 In contradistinction to  $\alpha, \beta, \gamma, \delta$ -diethylenic ketones (see p 217), the Michael condensation of 1-cyanobutadene with nitroalkanes takes place in the 1,6 positions, yielding  $\beta, \gamma$ -unsaturated intriles 193

z,β-Unsaturated amides could be expected to react in the same manner as the intriles. Acrylamide adds, in the presence of benzyltrimethyl-ammonium hydroxide, one molecule of 2-intripropane, if and cinnamide condenses with dethyl sodiomalonate to give the normal 1.1 adduct which cylines to yield ethyl 2,6-diketo-4-penylpiperdine-3-carboxylate (XLVII), ¹⁸⁸⁸ However, in the reactions studied (Table XL4) acrylamide appears to offer no particular advantage for synthesis. ¹⁸⁸⁹

$$C_4H_4CH=CHCONH_4$$
 $CH_4(CO_1C_2H_5)_4$ 
 $CH_4(CO_1C_2H_5)_4$ 
 $CO_1C_1H_5$ 
 $C_4H_5$ 
 $CO_1C_1H_5$ 
 $CO_1C_1H_5$ 
 $CO_1C_1H_5$ 

- see Campbell and Fairfull, J Chem Soc , 1949, 1239
- Koelsch, J. Am Chem Soc, 65, 2459 (1945)
   Tucker, J. Chem Soc, 1949, 2182
- Tucker, J. Caem Soc., 1939, 44, 5904 (1950)]

  111 Bruson, U.S. pat. 2,484,683 [C.4., 44, 5904 (1950)]

  112 Charlish, Davies, and Rose, J. Chem. Soc., 1948, 227
- Christian, Ann. 1982.
   Rruson, U.S. pat. 2,370,142 [C.A., 39, 3544 (1945)]
   Herrmann and Vorlacender, Chem. Zentr., 1899, I. 730
   Lind and Ginaburg, J. Chem. Soc., 1953, 4137

 $\alpha,\beta$ -Ethylenic Aliphatic Esters (Tables XII, XIII, XIV). The Michael condensations that have been carried out with  $\alpha,\beta$ -ethylenic aliphatic esters (Table XII) show that activation by a carbalkoxy group is less strong than that effected by a nitro group.

A number of saturated  $\alpha$ - and  $\beta$ -hydroxy esters react with ethyl cyanoacetate as if they were first dehydrated to  $\alpha,\beta$ -ethylenic esters, which then undergo the Michael condensation;²⁹⁶ the same applies to certain cyanohydrins.²⁹⁷ In view of the uncertainty of the mechanism, these reactions have not been listed in Table XII. Likewise, the dimerization of methyl acrylate and ethyl acrylate^{5,298–300} can be considered formally as involving a Michael reaction, but it probably proceeds by a different mechanism.

The self-condensation of diethyl glutaconate (XLVIII) under the influence of sodium ethoxide is, by contrast, a typical Michael condensation. It can be formulated as involving an intermediary shift of the double bond. Part of the product aromatizes, by elimination of ethyl acetate, to give diethyl 4-hydroxyisophthalate (XLIX).³⁰¹ One molecule

$$2C_2H_3O_2CCH_2CH=CHCO_2C_2H_5 \rightarrow C_2H_3O_2CCH_2CHCH=CHCO_2C_2H_5$$

$$C_2H_3O_2CCH_2CHCH_2CO_2C_2H_5 \rightarrow CO_2C_2H_5 \rightarrow CO_2C_2H_5$$

$$C_2H_3O_2CCH_2CHCH_2CO_2C_2H_5 \rightarrow CO_2C_2H_5$$

of glutaconate, therefore, acts as a donor, and a second one as acceptor. (Under the influence of metallic sodium, a Claisen condensation takes place.)²⁰² The same interpretation applies to the self-condensation of trimethyl propylene-2,3,3-tricarboxylate, which involves two successive

Michael condensations. The first yields the open-chain ester L, whereas the second is intramolecular and yields the cyclic product LL 303

$$\begin{array}{c} H_1C = C(CO_1CH_1)CH(CO_1CH_1)_1 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_2 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_2 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_1CH_1)_3 \\ \\ C(H_1O_1C)_1CH(CO_$$

The addition of ethyl 5-methylcyclopentanone-2-carboxylate to ethyl crotonate involves the  $\alpha$ -hydrogen atom in the 2-position, and not in the 5-position as erroneously stated in the abstract literature  304,365 

The Michael reaction is not involved in the condensation of ethyl acetoacetate and diethyl acetone-1,3-dicarboxylate to diethyl 3,5-dibydroxytoluene-2,4-dicarboxylate 2004

Table XIII is devoted to reactions of  $\beta$ -hydroxy-,  $\beta$ -ethoxy-, and  $\beta$ -amino-z, $\beta$ -ethylence seters. These reactions are generally accompanied by the elimination of the  $\beta$  substituent (as water, alcohol, or ammonia, respectively). For example, when ethyl  $\beta$ -ethoxyacrylate is condensed with duethyl methylmalonate under the catalytic influence of benyltrimethylammonium ethoxide, the expected triester LII not only undergoes ethanolysis to duethyl carbonate and the diester LIII but the diester decomposes further to give ethanol and the unsaturated ester LIV. ²⁰

CH2CO2C2H2	CH2CO2C2H2	CHCO*C*H*
сность	CHOC ₂ H ₅	сн
CH ₃ C(CO ₂ C ₃ H ₃ ) ₂	CH,CHCO,C,H,	си,спсо,с,п,
111	LIM	LIV

The behavior of diethyl 2-ethoxyethylene-l,l-dicarboxylate LV is very similar, 308-319 With nitromethane and secondary bases the ester LV

¹⁴³ Baker, J. Chems Soc., 1935, 188.

M. Sen Gupts, Chakraborts, and Bhattacharayya, J Indian Chem Soc., 24, 249 (1947)
 (C.d., 43, 2584 (1949)).

O.ct., 93, 2384 (1992).
168 Private communication from Dr. B. K. Bhattacharayya
169 Koller and Krakawer, Monatch., 53-54, 931 (1929)

Koner and Krakaser, J Am. Chem Soc., 72, 970 (1930).

¹⁴⁴ Menon, J Chess. Soc , 1935, 1061

Menon, J Chem Soc., 1938, 1775
 Simonsen, J Chem Soc., 93, 1022 (1908).

undergoes a curious reaction, which has been represented as a Michael reaction followed by scission of the product according to the accompanying scheme.311 By this reaction, 2-piperidino- and 2-morpholino-1-nitroethylene were obtained in 40 and 34% yield, respectively. Analogously, diethyl 2-ethoxypropylene-1,1-dicarboxylate gave 2-piperidino- and 2-morpholino-1-nitropropene in 21 and 40% yield, respectively.  311 

A  $\beta$ -amino group is not always eliminated. Ethyl  $\beta$ -aminocrotonate312,313 and ethyl a-methyl-\beta-aminocrotonate314 react with diethyl malonate in presence of sodium ethoxide to give the pyridine derivatives LVI. These, however, are not Michael reactions.

It is interesting that dry sodium ethoxide or sodium metal causes a direct condensation of diethyl citraconate (LVII), whereas alcoholic ethoxide solution leads first to isomerization to diethyl itaconate (LVIII) and then to Michael condensation.315 It is equally worthy of note that,

in the addition of ethyl acetoacetate, ethyl methylacetoacetate, or ethyl cyanoacetate to diethyl citraconate, the  $\alpha$ -hydrogen atom of the donor adds to the non-methylated side of the unsaturated ester³¹⁶ whereas the addition of diethyl malonate to the unsaturated ester involves the methylated side. Diethyl malonate adds in the same direction to diethyl

³¹¹ Hurd and Sherwood, Jr., J. Org. Chem., 13, 471 (1948).

³¹² Knoevenagel and Fries, Ber., 31, 767 (1898).

³¹³ Kooyman and Wibaut, Rec. trav. chim., 65, 10 (1946). 314 Wibaut and Kooyman, Rec. trav. chim., 63, 231 (1944).

²¹⁵ Crossley, J. Chem. Soc., 79, 138 (1901); Proc. Chem. Soc., 16, 90 (1900).

³¹⁶ Mitter and Roy, J. Indian Chem. Soc., 5, 33 (1928) [C.A., 22, 3882 (1928)].

mesaconate, this is the only example of the use of this trans compound as an acceptor in the Michael condensation 217

In the Michael condensation of esters of polycarboxylic acids, two tendencies are apparent First, the highly substituted reaction products tend to dissociate into simpler substances by elimination of some smaller molecules, such as ethanol or diethyl malonate, with formation of a double bond 315,318-321 Second, those adducts containing both an enolizable hydrogen atom and a suitable acceptor structure undergo an intramolecular Michael condensation with the formation of a sixmembered ring. Tetraethyl propylene-1,1,3,3-tetracarboxylate is reported to lead, under the influence of piperidine or sodium ethoxide, to the cyclobutane derivative LIX, 221-323 and piperidine converts diethyl

3-cyanopropylene-1,3-dicarboxylate and diethyl 4-cyanobutylene-2,4-

dicarboxylate into the cyclobutanes LX and LXI, respectively \$22,523 However, reaction of diethyl acetylenedicarboxylate with tetraethyl ethane 1,1,2,2-tetracarboxylate has been recently shown 324,325 to give not a cyclobutane derivative but hexaethyl butene-1,1,2,2,3,4 hexacarboxylate Table XIV summarizes our knowledge of the behavior of aliphatic

dienic esters and one trienic ester in the Michael condensation. With the dienic esters, 1,6 addition predominates over 1,4 addition; with the trienic ester, 1,8 addition predominates This, however, applies only to esters in which the polar groups are unsymmetrically distributed about the double bond, dualkyl muconates, RO, CCH = CHCH = CHCO, R, undergo 1,4 addition exclusively, giving RO2CCH=CHCHR'CH,CO.R 326

¹¹⁷ Hope, J Chem Soc , 101, 892 (1912) to Cornforth and Robinson, J Chem Soc., 1949, 1855

¹¹⁰ Cox and McEham, J Am Chem Soc , 58, 2459 (1934)

^{***} Cox, Kroeker and McEls ain, J Am Chem Soc., 56, 1173 (1934)

Pti Guthreit, Ber . 34, 675 (1961)

the Ingold, Perren, and Thorpe, J Chem Soc 121, 1765 (1922) especially p 1788 110 Verkade, Lerelag Akad Hetenschappen Amsterdam 27, 1120 (1919) [C 4 , 13, 3149

⁽¹⁹¹⁹⁾¹ No Overberger and Kabasakuhan, J Am Chem Soc , 75, 6008 (1953)

²¹¹ Read, Chemistry 4 Industry, 1953, 846

³⁴ Farmer, J Chem Soc . 121, 2015 (1922)

Alicyclic and Aromatic  $\alpha,\beta$ -Ethylenic Esters (Tables XV and XVI). In the alicyclic series, a small number of Michael condensations have been carried out (Table XV). These proceed normally, and the only point of interest is that the reactions of ethyl cyclopentenecarboxylate with ethyl acetoacetate and diethyl malonate, respectively, give exclusively the *trans* form of the reaction products. As pointed out on p. 199, relatively little is known of the stereochemistry of the Michael reaction.

In the aromatic series, even fewer reactions have been studied (Table XVI). Acetophenone gives a Michael condensation with methyl and ethyl cinnamate; it is in competition, however, with a Claisen condensation between the reactants under the influence of sodium amide or sodium. Acetone undergoes with alkyl cinnamates the Claisen reaction exclusively.^{327,328}

The three dienic esters that have been studied do not give a consistent picture. In two of them 1,6 and in one 1,4 addition takes place, without any obvious difference either in the structure of the unsaturated ester or in the operating conditions.⁵⁶,¹⁹⁴,¹⁹⁵,³²⁹

Ortho-substituted aromatic  $\alpha,\beta$ -ethylenic esters provide ideal structures for internal Michael condensation. If one introduces in the ortho position to the unsaturated ester group a substituent that contains an enolizable hydrogen atom at a suitable distance from the ring, a bicyclic system can be formed easily. This possibility has been utilized with substances of the general formula LXII for the synthesis of bicyclic systems such as LXIII, where X=0, S, or N-alkyl. The pertinent data form the second part of Table XVI, in which an analogous case from the alicyclic series is also included.

Unsaturated Keto Esters (Table XVII). Table XVII contains the scanty material pertaining to the Michael condensation of unsaturated keto esters, in which the double bond is activated both by a keto and an ester group.^{8,120,310,330,331} It is interesting to note that in esters of the type RCOCH=CHCO₂R', the keto group gives a more stable carbanion

²²⁷ Hauser, Yost, and Ringler, J. Org. Chem., 14, 261 (1949).

³²⁸ Ryan and Dunlea, Proc. Roy. Irish Acad., 32B, 1 (1913) [Chem. Zentr., 1913, II, 2039].

²²⁴ Kohler and Engelbrecht, J. Am. Chem. Soc., 41, 764 (1919).

²²⁰ Errera, Ber., 33, 2969, 3469 (1900).

²³¹ Palit, J. Indian Chem. Soc., 14, 354 (1937) [C.A., 32, 561 (1938)].

than the ester group the Michael condensation with a donor R"H leads to a product of the structure RCOCH.CHR'CO.R'

Theoretically, it should be possible to effect internal Michael condensations with o-acetyl derivatives of cinnamic acid. It has, indeed, been found that methyl a acetylemnamate reacts with sodium methoxide, but the expected product LXIV could not be isolated in pure form 332

Aromatic α,β-Acetylenic Esters (Table XVIII). In the aromatic series, as in the aliphatic, an acetylenic bond in conjunction with an ester group behaves in the Michael condensation like a double bond (Table XVIII). In certain cases, the correct formulation of the anion of the primary product of the condensation appears uncertain. It has been observed, for example, that the condensation of ethyl phenylpropiolate with diethyl malonate, using ethanolic sodium ethoxide and using sodium in benzene, lead to different amons, formulated as LXV and LXVI 25,26,333,334 This problem is discussed on p 186.

$$[C_1H_3O_2CCH=C(C_4H_5)C(CO_2C_2H_5)_2]Na \oplus LXV$$

 $[C_{\mathbf{t}}\mathbf{H}_{\mathbf{t}}O_{\mathbf{t}}\mathbf{CC} = \mathbf{C}(C_{\mathbf{t}}\mathbf{H}_{\mathbf{t}})\mathbf{C}\mathbf{H}(\mathbf{C}O_{\mathbf{t}}C_{\mathbf{t}}\mathbf{H}_{\mathbf{s}})_{\mathbf{t}}]\mathbf{N}\mathbf{a} \oplus$ 

It is often thought that the reaction between acetylenic esters and substances like 2-picoline or quinaldine is a specific case of the Michael condensation, although the components react in a 2 I ratio Diethyl acetylenedicarboxylate and 2-picoline yield the conjugated diene LXVII:

$$\bigcap_{N} \text{CH}_{5} \text{C} = \text{QCO}_{2} \text{C}_{2} \text{H}_{6} \text{)C} = \text{CHOO}_{2} \text{C}_{2} \text{H}_{6}$$

$$\bigcap_{CO_{2} \text{C}_{2} \text{H}_{6}} \text{CO}_{3} \text{C}_{2} \text{H}_{6}$$

$$\bigcap_{CO_{2} \text{CH}_{6}} \text{CO}_{3} \text{CH}_{6}$$

$$\bigcap_{CO_{2} \text{CH}_{6}} \text{CO}_{3} \text{CH}_{6}$$

$$\bigcap_{CO_{2} \text{CH}_{6}} \text{CO}_{3} \text{CH}_{6}$$

LXVII

⁵¹⁸ Koelsch and Stephens, Jr., J Am Chem Soc., 72, 2209 (1950) 232 Farmer, Ghosal, and Ken, J. Chem Soc , 1936, 1804

see Michael, J Org Chem., 2, 303 (1938)

снон

the acetylenic dimethyl ester with 2-quinaldine gives the analogous, but more complex, product LXVIII.335-337

It is known that similar dimeric forms of acetylenic compounds often occur in the Diels-Alder reaction at least as formal intermediary products.³³⁸

Olefins with Substituents Based on Hetero Atoms (N, S, P; Tables XIX, XX, XXI). A nitro group activates a double bond to which it is attached as it activates adjacent hydrogen atoms. Table XIX summarizes the Michael condensations involving  $\alpha,\beta$ -ethylenic nitro compounds. Data pertaining to hydroxymethylenenitroacetaldehyde (the enolic form of nitromalondialdehyde, LXIX) are included. This

compound reacts with many donor molecules, including even aliphatic ketones, to give derivatives of 4-nitrophenol. The reaction with methyl ethyl ketone is illustrative. The activating power of the nitrogroup is so great that o- and p-nitrostyrene can also act as acceptors in

$$\begin{array}{c} \text{CH=CH}_2 \\ \text{NO}_2 \end{array} + \text{CH}_3\text{COCH}_2\text{CO}_2\text{C}_2\text{H}_5 \rightarrow \\ \\ \text{CH}_2\text{CH}_2\text{CH}(\text{COCH}_3)\text{CO}_2\text{C}_2\text{H}_5 \end{array}$$

- 335 Diels, Alder, et al., Ann., 498, 16 (1932).
- ³³⁶ Diels and Keeh, Ann., 519, 140 (1935).
- ³³⁷ Diels and Pistor, Ann., 530, 87 (1937).
- ²³⁸ Diels and Alder, Ann., 498, 16 (1932); *ibid.*, 505, 103 (1933); *ibid.*, 510, 87 (1934); Diels and Kock, *ibid.*, 556, 38 (1944).
  - 339 Hill and Torroy, Jr., Am. Chem. J., 22, 89 (1899).
  - 340 Hill and Hale, Am. Chem. J., 33, 1 (1905).
  - 341 Hill, Ber., 33, 1241 (1900).
  - ³⁴² Prelog and Wiesner, Helv. Chim. Acta, 30, 1465 (1947).
  - ³⁴³ Prelog, Wiesner, Ingold, and Haefliger, Helv. Chim. Acta, 31, 1325 (1948).

the Michael reactions. Formally, the addition of the donor takes place in the y, & and e, & positions of the activated unsaturated system, respectively.344

It appears that the S=O bond in sulfoxides and sulfones (Table XX) has sufficient double bond character to conjugate with and activate neighboring ethylenic double bonds.345-354 In this respect, it is recalled that 1,2-bis(arylsulfons liethenes are highly active dienophiles, 355 and that vinyl sulfones add aromatic hydrocarbons in the presence of aluminum chloride in the same manner as do α,β-unsaturated ketones. 356 Organomagnesium and organolithium compounds also add 1,4 to α,β-unsaturated sulfones 357

Table XX also includes the Michael reactions of N,N-diethylvinylsulfonanilide358 and the interesting condensations of vinyldimethylsulfonium bromide with ethyl acetoacetate and diethyl malonate 22

Reactions involving diethyl vinylphosphonate, CH2-CHPO(OC2H3)2, a newly discovered type of acceptor in the Michael reaction, are listed in Table XXI It has already been pointed out (p. 204) that compounds containing phosphono groups have sufficiently active hydrogen atoms to serve as donors in the Michael condensation. The reaction referred to here leads to the supposition that the P=O bond, like the S=O bond, is able to form a conjugated system with an adjacent ethylenic linkage.

2- and 4-Vinylpyridines (Table XXI). Although practically no work appears to have been done on the ability of the open-chain system C=C-C=N to undergo Michael condensations (see p 207), the behavior of 2- and 4-vinylpyridine shows that, at least under certain conditions, this system gives typical Michael products The reactions investigated appear in Table XXI 359

³⁴⁴ Dale and Strobel, J Am Chem Soc., 76, 8172 (1954).

144 Koch, J Chem Soc , 1950, 2892

** Karrer, Antia, and Schwyzer, Helv Chim Acia, 34, 1392 (1951)

Warsanyı and Ladik, Acta Chim Acad Sci Hung, 3, 243 (1953) [C.A., 47, 11000 (1953)]. Kloosterziel and Backer, Rec trav chim. 72, 185 (1953).

200 Zollinger, Buechler, and Wittwer, Helv Chim Acta, 38, 1711 (1953) an Bordwell and Andersen. J. Am Chem Soc , 75, 6019 (1953)

112 Jaffé, J Phys. Chem , 58, 185 (1954)

243 Price and Morita, J Am Chem Soc. 75, 4747 (1953).

1-4 Price and Gillis, J Am Chem Soc , 75, 4750 (1953) 111 Truce and McMaourne, J Am. Chem. Soc., 75, 1672 (1953)

Truce, Simms, and Hill, J Am Chem Sec., 75, 5411 (1953). 113 Potter, J Am Chem Soc , 78, 5472 (1954)

338 Buess and Jones, J Am Chem Soc. 76, 5558 (1954). For the addition of enohable hydrogen compounds to the C=N double bond itself.

see Lazzareschi¹⁵⁸ and Philpott and Jones,¹⁶¹

¹⁴⁴ Samuel, J. Chem. Physics, 12, 380 (1944), abid, 13, 672 (1945), Bergmann and Techudnowsky, Ber. 65, 457 (1932), Lister and Sutton, Trans Faraday Sec. 35, 495 (1939) See, however, Arndt and Eistert, Ber , 74, 423 (1941)

Fulvenes. Calculations as well as physical and chemical evidence have shown that the fulvenes, represented by the formula LXX, possess a polar double bond.^{260,361} It is, therefore, not surprising that fulvenes are

also acceptors in the Michael condensation. The experimental material on the subject is scanty, 362,363 and the only donors that have been tested so far are fluorenes. Thus dibiphenyleneëthylene (LXXI) adds fluorene under the catalytic influence of sodium hydroxide, to give an 82% yield

of tribiphenylenepropane (LXXII). The same reaction can be effected between 2,7-dibromofluorene and 2,7,2',7'-tetrabromodibiphenylene-ethylene.

It is to be expected that these highly substituted systems will show a considerable tendency to dissociate (in the way that decaphenylbutane dissociates into pentaphenylethyl).³⁶⁴ Thus one can explain the observation that 9-aminofluorene (LXXIII) reacts with dibiphenyleneëthylene (LXXIV) in the presence of ammonia to give dibiphenyleneëthane (LXXV) and fluorenone imide (LXXVI) by the accompanying equation. 9-Fluorenol behaves analogously. The observation that 2,7,2',7'-tetrabromodibiphenyleneëthylene and fluorene yield the dibromo derivative

Pullman, Berthier, and Pullman, Bull. soc. chim. France, 1950, 1097.

²⁴¹ Bergmann and Fischer, Bull. soc. chim. France, 1950, 1084.

²⁶² Pinck and Hilbert, J. Am. Chem. Soc., 68, 2014 (1946).

²⁶³ Pinck and Hilbert, J. Am. Chem. Soc., 68, 2739 (1946).

²⁶⁴ Schlenk and Mark, Ber., 55, 2296 (1922).

(LXXVII) and 2.7-dibromofluorene can be understood on the basis of a sequence of condensation and disproportionation steps.

2,7-Dibromofluorene and dibiphenyleneëthylene give with sodium ethoxide as catalyst a 58% yield of  $\alpha$ -(2,7-dibromobiphenylene)- $\beta$ , $\gamma$ -dibiphenylenepropane (LXXVII), whereas, in the presence of potassium hydroxide and pyridine, α,β-bis-(2,7-dibromobiphenylene)-y-biphenylenepropane (LXXVIII) is formed. Thermal decomposition of these two compounds gives, inter alia, 2,7-dibromodibiphenylenecthylene, 2,7dibromodibiphenyleethane, 2,7,2',7'-tetrabromodibiphenylenethylene, and 2.7.2',7'-tetrabromodibiphenylenecthane (formulas on p 244). The second fulvene derivative that has been employed as an acceptor

in the Michael condensation is benzylidenefluorene (LXXIX), which adds fluorene in 70% yield under the influence of a mixture of pyridine and aqueous sodium hydroxide. In accordance with the direction of the dipole moment in the semicyclic double bond of the fulvenes, the product is  $\alpha,\gamma$ -dibiphenylene- $\beta$ -phenylpropane (LXXX).²⁶⁵

$$\begin{array}{c|c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

It is not surprising that formylfluorene, i.e., 9-hydroxymethylenefluorene, is also capable of undergoing the Michael condensation (see pp. 221, 235). Formylfluorene has been converted by reaction with malonic

²⁶⁵ Bergmann and Lavie, J. Am. Chem. Soc., 74, 3173 (1952).

acid (with loss of water and carbon dioxide) to f-(9-fluorenylidene)propionic acid (LXXXI) in 11% yield.384



## Systems That Did Not Undergo Condensation

The following is a list of reactant systems that have not given Michael condensation products The listing is in order of increasing number of carbon atoms in the acceptor.

Acrylonitrile and diethyl acetosuccinate.367

Methyl vinyl sulfone and ethyl phenylacetate, acetophenone, or benzyl p-tolyl sulfone, 118

Methyl vinyl ketone and "Inhoffen's ketone," 368

Methyl isopropenyl ketone and cyclopentanone.369

Acetylacetone and chloroacetamide, phenylacetamide, benzyl cyan-

ide,370 or a-cyanopropionamide,371 Ethyl acrylate and 3-acetyloxindole or 1-methyl-3-acetyloxindole. 272 Methyl crotonate and nitropropane in the presence of diethylamine. 973

Mesityl oxide and 2-quinaldine.374 Crotonaldehyde with N-(1,3-dimethylbutylidene)-1,3-dimethylbutyl-Amma 575

Ethyl crotonate and 2,7-dibromofluorene. 376

p-Benzoquinone and ethyl N-acetyl-\$-aminocrotonate or diethyl aminomethylenemalonate. 571

- 84 Borsche and Niemann, Ber , 69, 1993(1938)
- 107 Blood and Linstead, J Chem Soc , 1852, 2255 see Pander and Robinson, J. Chem. Soc , 1952, 1224.
- 149 Colonge and Dreux, Bull soc chim France, 1952, 47
- 214 Basu, J Indian Chem Soc , 7, 815 (1930) [C A . 25, 1528 (1931)]
- 171 Bardhan, J Chem Soc . 1929, 2223
- 112 Julian and Printy, J Am. Chem. Soc , 75, 5301 (1952) 11 Klorizel, J. Am Chem Soc , 70, 3571 (1948)
- ste Weist and Hauser, J. Am Chem. Soc., 71, 2025 (1949) 118 Smith, Norton, and Ballard, J. Am. Chem Soc , 75, 3316 (1953)
- 2" Taylor and Conner, J. Org. Chem . 6, 696 (1941)
- 377 Beer, Davenport, and Robertson, J. Chem. Soc , 1953, 1262

3-Methyl-2-cyclopentenone and ethyl acetoacetate. 378

Ethyl α-acetamidoacrylate and oxindole.379

1-Acetylcyclohexene and 6-methoxy-9-methyl-1-keto-1,4,5,6,7,8,9,10-octahydronaphthalene.³⁸⁰

Methyl 5-methyl-2-hexenoate or  $\delta$ -methylsorbate with dimethyl malonate or methyl cyanoacetate.³⁸¹

1-Acetyl-2-methylcyclohexene with various reagents.382-387

Trimethylquinone and biacetyl or its half-acetal.388

Methyl α-cyano-β-methylsorbate and methyl cyanoacetate. 381

Ethyl  $\beta$ -diethylaminovinyl ketone and 2-methylcyclohexanone.³⁸⁹

Trimethylquinone monomethylimine and 3,3-dimethoxy-2-butanone.388

Methyl 2-hydroxystyryl ketone and ethyl oxaloacetate, ethyl cyanoacetate, or diethyl malonate.³⁸

Methyl α-cyclohexylideneëthyl ketone with diethyl malonate.390

4-Phenyl-2-methylamino-2-buten-4-one and ethyl cyanoacetate. 391

Diethyl 1-pentene-1,3-dicarboxylate and ethyl cyanoacetate. 392

Ethyl cinnamate or diethyl benzylidenemalonate and fluorene or 2,7-dibromofluorene.³⁷⁶

Diethyl 2-acetyl-2-hexene-1,6-dioate and 1-tetralone or 6-methoxy-1-tetralone. 206,393

2-Dimethylamino- or 2-morpholino-benzo suberone or their methiodides with biacetyl or its monoxime.  394 

3-Phenyl-5,5-dimethyl-2-cyclohexenone and diethyl malonate, ethyl cyanoacetate, or nitromethane.³⁹⁵

3-Benzylidene-6-formylcyclohexanone and 5-diethylaminopentane-2,3-dione-3-monoxime or its methiodide.³⁹⁴

```
<sup>278</sup> Acheson, J. Chem. Soc., 1952, 3415.
```

²⁷⁹ Julian, Printy, Ketcham, and Doone, J. Am. Chem. Soc., 75, 5305 (1953).

³¹⁰ Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Otdel. Khim. Nauk, 1952, 437 [C.A., 47, 5365 (1953)].

281 Reid and Sause, J. Chem. Soc., 1954, 516.

²⁴² Bagchi and Banerjee, J. Indian Chem. Soc., 23, 397 (1946) [C.A., 42, 1601 (1948)].

283 Dimroth, Angew. Chem., 59, 215 (1947).

284 Huber, Ber., 71, 725 (1938).

Johnson, Szmuszkovicz, and Miller, J. Am. Chem. Soc., 72, 3726 (1950).

Ludevitz, Dissertation, Goettingen, 1944.

²⁴⁷ Turner and Voitle, J. Am. Chem. Soc., 72, 4166 (1950).

218 Smith and Dale, J. Org. Chem., 15, 832 (1950).

249 Hills and McQuillin, J. Chem. Soc., 1953, 4060.

*** Kon, J. Chem. Soc., 1928, 1792.

²³¹ Basu, J. Indian Chem. Soc., 12, 299 (1935) [C.A., 29, 6878 (1935)].

¹¹¹ Thorpe and Wood, J. Chem. Soc., 103, 1579 (1913).

²¹³ Peak, Robinson, and Walker, J. Chem. Soc., 1938, 752.

³³⁴ Tarbell, Wilson, and Ott, J. Am. Chem. Soc., 74, 6263 (1952).

215 Woods, J. Am. Chem. Soc., 69, 2549 (1947).

Benzylideneacetophenone and diethyl cyanomalonate,125 diethyl ethylmalonate, 396 diethyl butylmalonate 125 or diethyl phenylmalonate 125

m- or p-Nitrobenzylideneacetophenone and fluorene. 376 α-Cyanostilbene and ethyl phenylacetate 82

Diethyl cinnamylidenemalonate and methyl cyanoacetate 397

cis-Dibenzoylethylene and diethyl benzylmalonate.58

2-Acetyl-1,3-diphenyl-2-propen-1-al and ethyl tetrahydroanthranil-

Ata 398 Ethyl 2,4-diphenylbutadiene-1-carboxylate and ethyl cyanoacetate. 397 2-(Trimethylquinonyl)methylene-3,5,6-trimethyl-2-acetoxy- (or meth-

oxy-)3,5-cyclohexadienone with diethyl malonate or ethyl cyanoacetate 399 Unsaturated carbonyl-bridged system such as

with diethyl malonate or cyanoacetamide. 400

Diethyl benzylidenemalonate and nitroethane **

2,3-Dichloro-1,4-naphthoquinone and acetone. 273 Mesityl oxide and cyclohexanone 401

Acrylomtrile and diethyl trimethylsuccinate, which appears to give an O-substituted derivative of the enol form. 402

3-Methyl-4-amino-3-penten-2-one and cyanoacetamide, 398

2-Methylcycloheptylideneacetonitrile and cyanoacetamide. 4026

Examination of these examples does not lead to definite conclusions as to the factors responsible for the failure of the condensation. However, the qualitative impression gained is that many substituents about the reacting centers tend to prevent the reaction In the donors, this can be ascribed to lowering acidity, but steric factors undoubtedly also play a part in interfering with the condensation. As a case in point, the failure of diethyl phenylmalonate to undergo any Michael reaction any be cited.

and de Benneville, Clagett, and Connor, J. Org. Chem. 8, 690 [1941]

see Bloom and Ingold, J. Chem Soc., 1931, 2785.

¹⁸⁸ Basu, J. Indian Chem Soc, 8, 319 (1931) [C.A., 28, 458 (1932)]. *** Smith, Davis, Jr , and Sogn, J. Am. Chem. Soc., 72, 3651 (1950)

¹⁰⁰ Allen and Van Allan, J. Org. Chem , 18, 882 (1953) 601 Braude and Wheeler, J. Chem Soc., 1955, 329.

¹⁰² Talukdar and Bageln, J. Org. Chem., 20, 13 (1955) tone Kandish and Linstead, J. Chem. Soc., 1929, 2139.

¹⁹³ Conner, J Am. Chem. Soc., 55, 4591 (1933).

## SYNTHETIC APPLICATIONS

Certain products of the Michael condensation may be used for the preparation of amino acids; others may undergo spontaneous cyclization or cycloisomerization reactions and thus open routes to a variety of ring compounds. In particular, the Robinson modification of the Michael reaction has been utilized for the synthesis of alicyclic ring systems (Table VIII). It seems, therefore, desirable to give a systematic picture of these synthetic possibilities.

## Synthesis of Cyclic Systems

Cyclopropane Rings. Compounds that serve as intermediates for the formation of products containing the cyclopropane ring can be obtained by Michael condensation. For example, the product of the Michael reaction between benzylideneacetophenone and dimethyl malonate can be brominated and dehydrobrominated to yield a cyclopropane

$$\begin{array}{c} \text{C}_6\text{H}_5\text{CHCH}_2\text{COC}_6\text{H}_5 \xrightarrow{\text{Br}_2} \text{C}_6\text{H}_5\text{CHCHBrCOC}_6\text{H}_5} \xrightarrow{\text{Mg(OCH}_3)_2} \\ | & | & | & | & \\ \text{CH(CO}_2\text{CH}_3)_2 & | & \text{CH(CO}_2\text{CH}_3)_2 \\ \end{array}$$

$$\begin{array}{c} \text{H}_5\text{C}_6 \xrightarrow{\text{COC}_6\text{H}_5} \\ \text{CH}_3\text{O}_2\text{C} \xrightarrow{\text{CO}_2\text{CH}_3} \\ \text{LXXXII} \end{array}$$

derivative (LXXXII), as shown in the formulation.⁴⁰⁴ Many highly substituted cyclopropane derivatives can be prepared by this route.

Cyclobutane Rings. It has been reported that cyclobutane derivatives were formed by intramolecular Michael condensation of esters of certain polycarboxylic acids.^{322,323,405} Recent investigations^{324,325} have shown, however, that reaction of diethyl acetylenedicarboxylate with, for example, tetraethyl ethane-1,1,2,2-tetracarboxylate does not give hexaethyl cyclobutane-1,2,3,3,4,4-hexacarboxylate but hexaethyl butene-1,1,2,2,3,4-hexacarboxylate.

Cyclopentane Rings. Cyclopentanone derivatives are formed in situ by Dieckmann condensation of the primary adducts of the Michael condensation between ethyl citraconate (or itaconate) and malonates or

⁴⁰⁴ Kohler and Conant, J. Am. Chem. Soc., 39, 1404 (1917).

⁴⁰⁵ Guthzeit, Weiss, and Shaefer, J. prakt. Chem., [2], 80, 393 (1909).

substituted malonates, 9,145,468 (Compare also the analogous formation of cyclopentanones from cyclopropane derivatives; see pp. 205-207).

Cyclohexane and Condensed Alicyclic Ring Systems. Divinyl ketones of the dibenzylideneacetone type react with donors that contain an active methylene group according to the accompanying general equation, yielding substituted cyclohexanons (LXXXIII) 183-100

$$\mathbf{R}_{s} = \begin{bmatrix} \mathbf{R}_{t} & \mathbf{R}_{t} \\ \mathbf{R}_{t} \end{bmatrix} + \mathbf{R}_{s} \mathbf{C} \mathbf{R}_{t} \mathbf{R}_{t} - \mathbf{R}_{s} \begin{bmatrix} \mathbf{R}_{t} & \mathbf{R}_{t} \\ \mathbf{R}_{t} & \mathbf{R}_{t} \end{bmatrix}$$

In general, Michael adducts of unsaturated aldehydes and ketones with ethyl acctoacetate easily undergo a secondary condensation between the terminal methyl group of the adduct and the carbonyl group of the original acceptor molecule. In a fair number of cases, this cyclization reaction is accompanied by the elimination of the carbothoxy group. This reaction is illustrated by the synthesis of the keto esters LXXXIV, ²⁸-LXXXV, ²⁸-LXXXV, ²⁸-LXXXV, ²⁸-LXXV and LXXXV and the sate parameter of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the sate properties of the

Obviously, the same reaction will take place whenever 1,5-diketones of the above type are formed, e.g., in the condensation product of ethyl cyclohexanone-2-carboxylate and ethyldeneaectone or benyidieneaectone, yielding LXXXVII (R = CH₃ or C₃H₃). 409 A similar cyclustion takes place with the adduct of 1-tertaions and ethyldeneaectoncette or

⁴⁰⁰ Totvonen, John, Szinio, and Kunamen, Suomen Kemistilehti, SB, 45 (1935) [C.A., 30, 2185 (1936)].

⁴⁰⁰ Mannich, Koch, and Borkowsky, Ber., 70, 355 (1937)
401 Mannich, Koch, and Borkowsky, Ber., 70, 355 (1937)
402 In this and the following formulations, the dotted lines indicate the components from

⁴⁴ In this and the following incriminations, the dotted lines indicate the components fro which the starting materials of the cyclication reaction are formed as Rapson, J. Chen. Soc., 1938, 1626.

acetylcyclopentene, yielding the tricyclic keto ester LXXXVIII206 and (via LXXXIX) the tetracyclic ketone XC, 38 respectively.

A related reaction is the cyclization of diethyl alkylidenebisacetoacetates. Diethyl methylenebisacetoacetate (XCI), for example, forms XCII: this then loses water and one carbethoxyl group to give the "Hagemann ester" XCIII. In other instances, both carboethoxy groups

are split off and 1-methyl-5-alkyl-1-cyclohexen-3-ones are formed. The reaction of ethyl sodioacetoacetate and ethyl ethoxymethyleneacetoacetate is more complicated.418-413 Other examples are the condensation products of mesityl oxide and ethyl benzoylacetate, 414 acetylacetone, 415

ets Clausen, Ann., 297, 1 (1897), especially p. 49.

an Lucbermann, Ber., 39, 2071 (1906), and previous papers 113 Fasat, Delfe, and Langenkamp, Ber , 59, 2958 (1928).

¹¹⁵ Foist, Janssen, and Chen, Ber , 60, 199 (1927). 14 Beringer and Kuntz, J. Am. Chem. Soc . 73, 364 (1961).

en Scheiber and Messel, Ber., 48, 238 (1915).

or deoxybenzoin;⁴¹⁶ the 1:2 adducts of diethyl malonate or its monosubstitution products with aerolein and methaerolein;^{110,417} and the condensation products of methyl vinyl ketone with 2-methylcyclopentanone,^{229,239} 2-methylcyclohexanone,²²⁹ or aliphatic ketones.^{418,419}

There are a few cases in which the methyl of an acetyl group other than that of the ethyl acetoacetate component supplies the hydrogen for the water molecule to be eliminated, e.g., in the formation of the cyclohexenones XCIV¹²⁰ and XCV.⁹³ This cyclization is also possible with

$$\begin{array}{c} O \\ H_3CCH \\ CCH \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} H_3C \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \end{array} \longrightarrow \begin{array}{c} CCH_3 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ CO_2C_2H_5 \\ C$$

unsaturated 1,5-diketones. Obviously, the configuration of the double bond must be cis for cyclization to take place. The product XCVI from accetylacetylene and 2-methylcyclohexanone gives the dienone XCVII.

CO₂C₂H₅

an ethoxy group and a hydrogen atom in the s position. Cyclic 1.3-diones. such as XCVIII.422 XCIX,423 C.424 and I.424,* are formed. Analogous

adducts derived from ethyl cyanoacetate (instead of malonate) give the same final products, e.g., the cyclohexanedione II 425

$$(CH_3)_2 C CH_3 \\ H_2 C CH_3 \\ 0 \\ 0 \\ CH_3 \\ CH_3 \\ 0 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\$$

452 Mattar, Hastings, and Walker, J. Chem. Soc., 1930, 2455 ess Chuang, Ma, and Tien, Ber , 63, 1946 (1935)

en Hinkel, Ayling, Dippy, and Angel, J Chem Soc., 1931, 814

^{*} Enumeration of formulas begins with I again after C to reduce the complexity of the

us Vorlaceder, Ann , 294, 253 (1897)

Analogous behavior has, of course, been observed with the  $\delta$ -keto esters formed, for example, from  $\beta$ -keto esters and  $\alpha, \beta$ -ethylenic esters.⁴²⁶

Aromatic Ring Systems. When the  $\delta$ -keto ester contains a double bond in the  $\beta$ , $\gamma$  position, the final product is a substituted resorcinol; thus the adduct of diethyl malonate and n-butylacetylacetylene gives 5-n-butylresorcinol (see p. 214). Other reaction schemes in which aromatic products are formed in the Michael condensation are described in the remaining paragraphs of this section.

Esters of styrylacetic acid, which can be obtained from arylacetates and diethyl ethoxymethylenemalonate, cyclize to derivatives of  $\alpha$ -naphthol (III)²⁰⁸ or hydroxyphenanthrene IV.³⁰⁹ Similarly, the condensation of the enolic forms of  $\beta$ -keto aldehydes and  $\beta$ -diketones with diethyl

$$\begin{array}{c} C_2H_5O_2C \\ \hline \\ CHCO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ C_2H_5O_2CCH \\ \hline \\ CHCO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\ \hline \\ CO_2C_2H_5 \\$$

C.11.

loss of one carbethoxy group beta to the keto group, leads to tetraethyl cyclohexanone-2,4,4,6-tetracarboxylate (X). This can again undergo a Michael reaction with diethyl ethylene-1,1-dicarboxylate to give XI. Renewed Dieckmann reaction and loss of a carbethoxy group yields as

the final product tetraethyl bicyclo[3.3.1]nonane-2,6-dione-1,3,5,7-tetra-carboxylate (XII).

Oxygen-Containing Rings.  $\delta$ -Keto esters containing a double bond in the  $\alpha,\beta$  position cyclize by an entirely different course from their  $\beta,\gamma$  analogs. Thus, although the  $\beta,\gamma$  compounds form 5-alkylresorcinols (see p. 214), the adducts of diethyl malonate and hydroxymethylene ketone

derivatives lose water or ethanol in the course of condensation, and  $\alpha$ -pyrone derivatives such as XIII are formed. Another example is the adduct of ethyl acetoacetate and diethyl ethoxymethylene-malonate or -cyanoacetate. The condensation products of ethyl phenylpropiolate

with ethyl acetoacetate430,431 and acetylacetone432,433 behave analogously, giving XIV (R = OC. H, and CH, respectively).

An additional case, in which a saturated &keto ester is cyclized by enolization of the carbonyl group, is represented by the adduct of cyclohexanone and diethyl benzylidenemalonate. Here, the e-methylene group is sterically prevented from participation in a potential ring system and the enol lactone XV is formed

$$\begin{array}{c} C_{g}H_{5} \\ CH_{CHCO_{2}C_{2}H_{5}} \\ CO_{2}C_{2}H_{5} \end{array} \longrightarrow \begin{array}{c} C_{g}H_{5} \\ CO_{3}C_{2}H_{5} \\ XV \end{array}$$

γ-(o-Hydroxyphenyl)ketones are converted to 2,3-benzo-1,4 dshydropyran derivatives (XVI, R = CH3, CoH5) under the conditions of the

Michael condensation. 263,434 Similar ring closures have been treated in an earlier chapter of Organic Reactions 435 The adduct from 3-chloro-2cyclohexen-1-one and diethyl methylmalonate loses hydrogen chloride

- 439 Feint and Fomme, Ann , 370, 72 (1909)
- 431 Ruhemann, J Chem Soc , 75, 245 (1899)
- 434 Ruhemann, J. Chem Soc., 75, 411 (1889) 43) Ruhemann and Cunnington, J Chem Soc . 75, 778 (1899)
- 634 Forster and Heilbron, J. Chem Soc., 125, 340 (1924)
- Hauser, Swamer, and Adams, in Adams, Organio Reactions, Vol. 8, Chapter 3, John Wiley & Sons, 1954 See especially pp 90-95 and Tables XVI and XVII.

and cyclines to the saturated lactone XVII.424 Dovey and Robinson Dr have suggested that the formation of 2,4,6-triphenylpyrylium fluoroborate

from acetophenone and boron triflioride takes place by a Michael reaction. However, it has recently been proved that this is not the case. (1)

Piperidines and Pyridines. & Ketonie amides formed by Michael condensations from cyanoacetamide and zifiethylenic ketones undergo cyclization to unsaturated cyano-substituted 2-ketopiperidines (XVIII).

The first of the accompanying examples shows a hydroxylated intermediate, such as has been isolated in a number of reactions. 439

A slightly different scheme applies to the condensation products of cyanoacetamide and α-hydroxymethylene ketones, in which, by the loss of water, a second double bond is introduced into the ring and thus the enolization to 2-hydroxypyridines (XIX and XX) is facilitated.^{171,224} Aminomethylene ketones behave analogously,³⁹⁸ and cyanoacetamide can

¹³⁶ Paranjpe, Phalnikar, Bhide, and Nargund, Current Sci. India, 12, 150 (1943) [C.A., 37, 6671 (1943)].

⁴²⁷ Dovey and Robinson, J. Chem. Soc., 1935, 1389.

⁴³⁴ Eldersteld and King, J. Am. Chem. Soc., 76, 5437 (1954).

⁴¹⁰ Barat, J. Indian Chem. Soc., 7, 321 (1030) [C.A., 24, 4786 (1030)].

be replaced by malonamide.³¹⁸ The same result is obtained with the adducts from cyanoacetamide and acetylenic ketones Compounds having the general structure XXI ( $R = C_1H_4$  or  $C_2H_3$ ) are formed  10,194 

If the precursor of XXI is shown in the tautomeric form XXIA, it is evident that compounds of type XXIB will be capable of a similar

transformation into pyridme derivatives. Thus "diacetonitrile" and benzylideneacetone give, after spontaneous loss of hydrogen from the primary product, 3-cyano-4-phenyl-2,6-dimethylpyridine (XXII).449

440 Chatterjee, J. Indian Chem. Soc., 29, 323 (1952) [C A , 47, 9972 (1953)].

Likewise, the imine of ethyl acetoacetate condenses with diethyl ethoxymethylenemalonate with loss of ethanol to give diethyl 2-hydroxy-6-methylpyridine-3,5-dicarboxylate (XXIII).⁴⁴¹

Generally speaking, the imines of  $\beta$ -keto esters and  $\beta$ -diketones react in this manner with hydroxymethylene, alkoxymethylene, and aminomethylene ketones and esters. Thus, from 2-hydroxymethylene-cyclopentanone and ethyl iminoacetoacetate, ethyl 5-methyl-4-azaindene-6-carboxylate (XXIV) becomes available. Also ethyl tetrahydroanthranilate (XXV) reacts in the manner of an aminomethylene ester

$$\begin{array}{c|cccc} CO_2C_2H_5 & CO_2C_2H_5 & CONH_2 \\ \hline & & & & & & & & & & & \\ N & CO_2C_2H_5 & & & & & & & \\ XXIV & & & & & & & & \\ & & & & & & & & \\ XXV & & & & & & & \\ \end{array}$$

giving with malonamide 1-hydroxy-3-keto-2,3,4,5,6,7,8,10-octahydroiso-quinoline-4-carboxamide (XXVI).³⁸¹ The only exception to this rule is the reaction of 2-aminomethylenecyclohexanone (XXVII) with ethyl cyanoacetate, which is claimed⁴⁴⁶ to yield 3-keto-4-cyano-2,3,5,6,7,8-hexahydroisoquinoline (XXVIII). In this connection Berson and

Brown⁴² consider that Hantzachs synthesis of 1,4-dihydropyridines involves a Michael reaction. These authors assume that, e.g., in the condensation of formaldelyde, ammona, and ethyl acceptacetate, ethyl β-ammocrotonate and ethyl methyleneacetoacetate are formed and then react in the following way:

Another route to the pyridine series is possible in all Michael condensations that lead to 1,5-diketones capable of being cyclized by treatment with ammonia, in these reactions ammonia can be used as the catalyst for the Michael condensation A special example of this general possibility is provided in the reaction of ethal ammonthyleneactoactate with ethyl acetoacetate or cyclohexanone ¹⁵⁰ ammonia is climinated from the primary product XXIX in the first step and utilized in the second step of the subsequent process.

Pyrroles. Clarke and Lapworthi⁴⁶ have assumed that the pyrrole synthesis discovered by von Miller and Piloschi⁴⁶ mvolves a Michael reaction; thus, one could formulate the synthesis of 1-(p-tolyl)-2,3diphenylpyrrole from a-toludinobenzyl cyanute and annanzalebyte in the presence of potassium hydroxide as follows. (Compare ref. 450)

$$\begin{array}{c} C_{t}H_{t}CH=-CHCHO+C_{t}H_{t}CH(CN)NHC_{t}H_{t}CH_{t}P\rightarrow \\ & CH_{t}-CHC_{t}H_{t}\\ & HCO \\ & NH \\ & C_{t}H_{t} \end{array}$$

C.H.CII, p

Berson and Brown, J Am Chem Soc. 77, 444 (1955)
 Clarke and Lapworth, J. Chem Soc. 91, 694 (1907)

⁴⁴ Miller and Ploechi, Ber , 31, 2718 (1898)

⁴⁰⁰ Bodforse, Ber , 54, 1111 (1931)

Treibs and Derra, 451 however, have suggested that the synthesis proceeds through a hemiacetal of the unsaturated aldehyde (formed by interaction with the solvent, e.g., methanol) and is, therefore, not a Michael reaction.

Pyrrolizidines and Related Ring Systems. The Michael condensation has been employed by Leonard in the preparation of pyrrolizidines (XXX) by reductive cyclization of y-nitropimelic esters, which are available from nitroparaffins and acrylates or substituted acrylates. 452-457

Similarly, the reaction has been extended to the synthesis of 6-methylazabicyclo[5.3.0]decane (XXXI) by 1,6-addition of methyl  $\gamma$ -nitrobutyrate to methyl sorbate, followed by reductive cyclization. 116

There is also a synthesis of an indole derivative XXXII from quinone and ethyl iminoacetate ( $\beta$ -aminocrotonate),²⁸⁸ which can be formulated as follows,258

⁴¹¹ Treibs and Derra, Ann., 589, 176 (1954).

⁴¹⁴ Leonard, Hruda, and Long, J. Am. Chem. Soc., 69, 690 (1947).

⁴¹³ Leonard and Beck, J. Am. Chem. Soc., 70, 2504 (1948).

⁴⁴⁴ Leonard and Boyer, J. Am. Chem. Soc., 72, 4818 (1950).

⁴¹⁸ Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1762 (1949). 444 Leonard and Felley, J. Am. Chem. Soc., 71, 1758 (1949).

¹³⁷ Leonard and Felley, J. Am. Chem. Soc., 72, 2537 (1950).

$$\bigcap_{OH} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{H}^2} \bigcap_{CH^2 \text{CH}^2 \text{CH}^2} \bigcap_{CH^2 \text{CH}^2 \text{CH}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{H}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{C}^2 \text{H}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{C}^2 \text{C}^2 \text{C}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{C}^2 \text{C}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{C}^2 \text{C}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2} \bigcap_{CH^2 \text{CO}^2 \text{C}^2 \text{C}^2} \bigcap_{CH^2 \text{CO}^2  \bigcap_{CH^2 \text{C}^2} \bigcap_{C$$

### Synthesis of Amino Acids

The observation that substances such as ethyl acetamidomalonate and ethyl phthalimido-malonate or -cyanoacetate act as donors in the Michael condensation has opened a useful avenue to the synthesis of amino acids, 161,458-462 The preparation of DL-glutamic acid (XXXIII) illustrates this method. 463 The products derived from α,β-ethylenic aldehydes and N-acylated aminomalonates 160, 161, 460-462, 464 and aminocyanoacetates180,480 are likewise of considerable interest; they are potential

$$\begin{aligned} \text{CH}_{4} &= \text{CHC}_{0}\text{CH}_{4} + \text{CH}_{5}\text{CONHCH}(\text{CO}_{4}\text{C}_{1}\text{H}_{3})_{3} &\xrightarrow{\text{NoC}_{4}\text{H}_{5}} \\ & \text{CH}_{5}\text{CONHC}(\text{CO}_{4}\text{C}_{1}\text{H}_{3})_{2}\text{CH}_{5}\text{CH}_{5}\text{CO}_{1}\text{CH}_{3} &\xrightarrow{\text{Hydrobus}} \\ & \text{Ho.CEHNH.}(\text{CH.CH.CO.H}) \end{aligned}$$

TYTHE

intermediates in the construction of the ornithine system and appear to be the key substances in the biogenesis of a number of alkaloids. 445

- 419 Albertson and Archer, J. Am Chem Soc., 57, 2043 (1945)
- 419 Galat, J Am Chem Soc , 69, 965 (1947)
- Mon and Warner, J. Am. Chem. Soc., 70, 2763 (1948).
- 441 Rinderknecht and Niemann, J. Am. Chem. Soc., 72, 2295 (1950)
- 44 Van Zyl, van Tamelen, and Zuidema, J Am Chem Soc . 73, 1765 (1951).
- soyder, Shekleton, and Lewis, J. Am Chem Soc. 87, 310 (1945) 44 Mos and Warner, U.S par. 2,508,927 [C.A., 44, 8374 (1950)]
- 44 Robinson, Proc. Univ. Durham Phil. Soc., 8, Pt. 1, 14 (1927-1928) [C A., 23, 1883] (1029))

As esters of nitroacetic acid become more generally available, these may also be used in the synthesis of amino acid precursors through the Michael condensation. 106,466

## EXPERIMENTAL CONDITIONS

Solvents. If the products are sensitive to alcoholysis or if there is competition between the alkoxide ion and the donor anion for the acceptor molecule, a non-hydroxylic solvent is chosen or the reaction is carried out without solvent. Compare, however, ref. 278. When such competition is encountered or when the enolate of the donor is prepared with difficulty, sodium or sodium amide in an inert solvent may be used. Solvents used most often in the Michael condensation are methanol, ethanol, t-butyl alcohol, ether, benzene, dioxane, and mixtures of these solvents. Ester exchange has been observed in some condensations in which esters were employed as reactants. 163

Catalysts. The following catalysts have been used: sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium n-butoxide, potassium t-butoxide, potassium  $\alpha, \alpha$ -dimethylpropoxide; dry or aqueous sodium or potassium hydroxide, methanolic or ethanolic sodium or potassium hydroxide, potassium hydroxide in t-butanol; metallic sodium or potassium; ammonia, alcoholic ammonia, ammonia in conjunction with ammonium chloride, sodium amide as such or in liquid ammonia; diethylamine, diisopropylamine, piperidine, pyridine, triethylamine, tributylamine, and other trialkylamines; methyltriethylammonium hydroxide, benzyltrimethylammonium hydroxide (Triton B), and its methoxide or butoxide.

Calcium and sodium hydride have been used very rarely; 165,4552,4557 the same applies to potassium carbonate 205 and sodium triphenylmethide, 453 which was used as condensing agent for Michael reactions with the ethyl esters of acetic, isobutyric, and phenylacetic acids. The first ester underwent Claisen condensation under these conditions before Michael reaction took place.

Aqueous sodium cyanide was employed as catalyst in the condensations of acrylonitrile with ethyl cyanoacetate or benzyl cyanide. 409

It is worthy of note that the reaction between cyclohexanone or 2-methylcyclohexanone and acrylonitrile, carried out in the presence of

⁴⁸⁴ E. D. Bergmann, unpublished results.

⁴¹² Fishman and Zuffanti, J. Am. Chem. Soc., 73, 4466 (1951).

⁴⁴⁷ McElvain and Lyle, Jr., J. Am. Chem. Soc., 72, 384 (1959).

¹¹⁴ Hauser and Abramovitch, J. Am. Chem. Soc., 62, 1763 (1940).

[&]quot; Rogers, U.S. pat. 2,460,536 [C.A., 43, 3446 (1949)].

optically active quartz, coated with sodium, potassium, or lithium ethoxide, has been reported to give slightly optically active products, 470

Several examples have been reported 155,255,471-473 of Michael-type condensations brought about by acidic catalysts such as boron trifluoride. zinc chloride, or sulfur dioxide. Of practical importance are the condensations of pyrrole derivatives with free a positions which react with α,β-unsaturated aldehydes, ketones, acids, and acid derivatives in the presence of acidic catalysts such as boron trifluoride etherate or hydrobromic acid 474,475 As in the case of indole (see p. 209), one can assume that the donor is a tautomeric form of the pyrrole, in which the a position is transformed into an (activated) methylene group This product reacts further to give a dipyrryltrimethine derivative

One or two condensations have been effected without an added catalyst.

Thus condensation occurs when ethyl hydroxymethylenephenylacetate is heated with malonic or cyanoacetic acid, 366,476,427 and when methyl vinyl ketone vapor is passed together with acctone or methyl ethyl ketone through a hot tube.419 Particular mention should be made of the possibility offered by the

recent development of strongly basic exchange resins; they appear to be highly promising condensing agents, especially where either a reactant or a reaction product is sensitive to dissolved alkali. Thus acctone or methyl ethyl ketone reacts easily with acrylonitrile in the presence of quaternized cross-linked polyvinylpyridine resin. 478 More complicated reactions can also be catalyzed in this way. 479,480

- ere Terent'ev, Klabumovskii, and Budovskii, Sbornik Statei Obshchei Ahim., 2, 1612 (1953) [C.4 , 49, 5263 (1955)].
- ers Hauser, J. Am. Chem Soc., 60, 1957 (1938).
- 473 Hauser and Breslow, J Am Chem Soc., 62, 2389 (1940) 428 Berlin and Sherlin, J. Gen Chem. USSR. 8, 16 (1938) [C.A., 32, 5397 (1938)].
- ers Treebs and Michl, Ann., 589, 162 (1954)
- *** Treibs and Herrmann, Ans . 592, 1 (1955). 1 Phalmkar and Nargund, J. Univ. Bombay, 4, 105 (1935) [C.A., 30, 5185 (1936)].
- 477 Harris, Stiller, and Folkers, J. Am Chem. Soc., 61, 1242 (1939).
- ** Howk and Langkammerer, U.S. pat. 2,579,580 [C.A., 48, 7114 (1952)]. 69 E. D. Bergmann and R. Korett, J Org Chem., 21, 107 (1936), 23, 1507 (1958)
- ** Schmidle and Mansfield, U.S pat. 2,638,070 [C.A., 48, 13715 (1954)]

## EXPERIMENTAL PROCEDURES

y-Acetamido-y-carbethoxy-y-cyanobutyraldehyde. As Asolution of 50 mg, of sodium in 60 ml of absolute ethanol is mixed with 17 g, of ethyl acetamidocyanoacetate, and the resulting suspension is cooled in a water bath while 7.5 ml, of acrolein is added dropwise. After the addition is complete, the mixture is attreed for two hours and neutralized with glacial acetic acid. The mixture in filtered, and the filtrate, after refrigeration for twenty-four hours, deposits the crystalline product. Filtration yields 15 g. (60%) of material melting at 106-109° Crystal-haation from 55% ethanol raises the melting point to 113,5-114,5°. S-Nitro-4,4-dimethylperana-2-one,2° A mixture of 1 mole of

mesityl oxide, 10 moles of ntromethane, and 1 mole of diethylamine is allowed to stand at 30° for thrty days Unreacted material is removed by distillation up to 55°/20 mm, and the residue is fractionated. After a forerun of 4-diethylamino-4-methylpentan-2-one (10%), the product distils as an oil, b.p. 112-113.5°/14 mm. (65%). The product may be completely freed of basic impurities by shaking with 10% hydrochlorio acid. After two distillations, a pure product, boiling at 128-129°/22 mm., can be obtained in 58% yield:

The same product may be obtained in 55-60% yield by heating the reaction mixture under reflux for forty-eight hours and treating subsequently as above.

7-Keto-1-methoy-13-methyl-5.6.7,9,10,13-hexahydrophenanthrene (Robinson's modification). ³⁴⁰ While 15.63 g, of desthylaminobutanones is swirled gently in a 1-l. fissk and cooled m ice, 15.0 g, of methyl oddie is added portionwise during thirty minutes. The swarling is regulated so as to obtain the crystalline methodde as an even coating on the walls of the fissk. When no more liquid remains, the flask is kept in ice for thirty minutes and then under the tep for forty-five minutes. A solution of 20.0 g of 5-methoxy-1-methyl-2-tetralone in 100 ml. of dry thiophene-free benzene is added, are is expelled by dry mtregen, and a solution of 5.5 g, of potassium in 100 ml. of dry ethanol is added with cooling during for minutes.

cooming nursing are amounted until the methodide dissolves (about thirty Swirling is continued until the methodide dissolves (about thirty minutes) and is replaced by a precipitate of potassium bodide. The mixture is kept in ice for an additional hour, and then boiled gently for twenty-five minutes. An excess of 2 N sulturie said is added, followed by enough water to dissolve the potassium suifiste. The betness layer is separated and the aqueous layer extracted twice with ether. The ether and benzene layers are combined, washed with water, and clarified with

magnesium sulfate, and the solvents are evaporated. The residue is distilled and 23.2 g. of product is collected up to 180°/0.1 mm. Crystallization from ether yields 17 g. of product, m.p. 115–117°. An additional gram of material is obtained by distillation of the mother liquors, making a total yield of 18 g. (71%).

This procedure is a general one, in which sodium methoxide or sodium ethoxide may be used effectively as a catalyst.

trans-3-Keto-2-phenylcyclohexaneacetic Acid. 108 A mixture of 50 g. of 2-phenyl-2-cyclohexen-1-one, 150 g. of dibenzyl malonate, and a solution of potassium t-butoxide, prepared from 1.3 g. of potassium and 20 ml. of t-butyl alcohol, is kept at 60° for three hours, and then left overnight at room temperature. The mixture is acidified with 2.5 ml. of acetic acid and diluted to a volume of 250 ml. with ethyl acetate. Thirteen grams of 10% palladium-charcoal is added, and the mixture is hydrogenated for an hour at room temperature at an initial pressure of 4 atm. The catalyst is filtered, the solvent evaporated, and the residue is heated for 10 minutes at 170–180° to effect decarboxylation of the malonic acid. The residue is taken up in ether, the solution extracted several times with 10% sodium carbonate solution, and the alkaline extract acidified. The product is obtained as a solid, m.p. 125° (55 g., 82%).

Dibenzyl malonate is preferred to diethyl malonate as a donor if further hydrolysis of the Michael condensation adduct is desired.

Methyl 3-Keto-2-phenylcyclohexyl-α-nitroacetate. 106,108 A mixture of 17.2 g. of 2-phenyl-2-cyclohexen-1-one, 23.0 g. of methyl nitroacetate, 486 and 0.025 mole of 30% methanolic solution of benzyltrimethyl-ammonium methoxide 487 is allowed to stand at 60° for twelve hours. The mixture is acidified with acetic acid and extracted with ether, and the extract is washed with water and with sodium bicarbonate solution to remove most of the unchanged ester. After removal of the rest of the unreacted materials by distillation in high vacuum, 26.2 g. of product (90% yield) is obtained as an oil.

Triethyl α-Acetyltricarballylate. To 20 g. of technical potassium hydroxide in 150 ml. of acetaldehyde dipropyl acetal are added 51.6 g. of diethyl maleate and 52 g. of ethyl acetoacetate, the temperature being maintained at 20° during the addition. The temperature then rises spontaneously to 27°, and the mixture is heated at 90° for one hour. After acidification with dilute sulfuric acid, the acetal layer is separated, the solvent is removed, and the residue distilled in vacuum. Some ethyl acetoacetate is recovered, and 65 g. of product is obtained as an oil,

⁴¹⁴ Feuer, Hass, and Warren, J. Am. Chem. Soc., 71, 3078 (1949).

¹⁰⁷ Croxall and Schneider, J. Am. Chem. Soc., 71, 1257 (1949). Cf. Meisenheimer, Ann., 397, 295 (1913).

b.p. 189°/12 mm. The yield based on material that entered the reaction is 72%

Diethyl 6-Keto-4-methyl-2-heptene-1,5-dicarboxylate.** To a solution of 2 5 g. of potassum in 150 ml. of absolute t-butyl alcohol are added 98 g of ethyl actoactae and 53 g of ethyl solution. The mature is heated under reflux in an oil bath at 110-120° for twelve hours. The cooled solution is poured into dilute sulfurne acid and the precipitated oil taken up in benzene. After removal of the benzene and unreacted material by distillation, 78 g. of product (75%, yield) is obtained as an almost colorless oil, b.p. 1207/95 mm.

Hexaethyl 3-Butene-1.1.2.2.3.4-hexacarboxylate.321,325,449 Under anhydrous conditions and with stirring, a mixture of 34 g, of dicthyl acetylenedicarboxylate, 66 g of tetracthylethane-1.1.2.2-tetracarboxylate. and 10 ml of absolute ethanol is heated to 45° to obtain a clear solution. A solution of 1 5 g of sodium dissolved in 24 ml of absolute ethanol is added dropwise with rapid stirring. After addition of about 10 drops of ethoxide solution, the temperature of the reaction mixture suddenly rises to 92° and then slowly falls as the rest of the catalyst is added. As the temperature rises, the color of the solution changes to dark brown. The mixture is poured into 100 ml, of N hydrochloric acid and is exhaustively extracted with other. Evaporation of the other leaves a mixture of solid and oil. The solid is collected and crystallized from 80°, ethanol. The product, obtained in several crops, weighs 48.5 g. (48%) and melts at 78°. Diethyl a.S-Diphenylejutarate. 11,12 One hundred grams of ethyl cinnamate and 100 g of ethal phenalacetate are mixed with a solution of 4 g. of sedium in 60 ml, of ethanol and heated under reflux for two and one-half hours. The mixture is neutralized with the calculated amount of dilute hydrochloric acid, and enough water is added to produce turbidity. When the solution is cooled, the pre-luct crystallizes in quantita

tive yield as a mixture of isomers. After several crystallizations from

dilute ethanol, the product melts at 92-93'.

Ethyl α-Benzoyl-γ-(2-pyridyl)butyrate.⁴⁹⁰ To a mixture of 246 g. of freshly distilled ethyl benzoylacetate and 66 g. of freshly distilled 2-vinylpyridine, 1 g. of sodium is added, and the mixture is boiled for five hours. The solution is cooled, acidified, and extracted with ether to remove neutral material. The aqueous layer is made alkaline, the oil that separates is taken up in ether, and the extract is dried over anhydrous calcium sulfate. The ether and 2-vinylpyridine are evaporated under reduced pressure, and the residue is distilled to furnish 135 g. (70%) of the product as a pale orange oil, b.p. 170–175°/0.3 mm.

## TABULAR SURVEY OF THE MICHAEL CONDENSATIONS

The following tables summarize the data in the literature through October 1955. Tables I-XXI classify the material according to the unsaturated acceptors. Table XXII lists most of the important donors that have been used in the Michael condensation.

The acceptors in Tables I-XXI have been arranged according to increasing number of carbon atoms unless otherwise stated. Alkyl esters are listed (independent of the number of the carbon atoms in the alkyl group) under the lowest member of the series employed. With each acceptor, the donors have been listed according to the following scheme:

Esters and other acid derivatives (except nitriles)
Keto esters
Cyano compounds
Aldehydes and ketones
Nitro compounds
Sulfones
Miscellaneous donors

Commas between items in the catalyst column separate the components of a catalyst combination; semicolons are used to separate different catalyst combinations.

When yields are cited, the first references cited are those to the articles containing the information on yields.

⁶¹⁰ Bockelheide and Agnello, J. Am. Chem. Soc., 72, 5005 (1950).

TABLE

MICHAEL CONDENSATIONS WITH A R. F. PRINTER

ces 16# 481

	N SWOTTENBERGER	CONTRIBUTIONS WITH 4,6-ETHYLENIC ALDEHYDES	
Iteactants Acrolein and	Catalyst	Product (Yield, %)	Referen
Diethyl malonate	NaOC.H.	A = -CH ₁ CH ₁ CHO	
Dethyl ethylmalonate	(n-C,H,),N	A.C.(CO,C.H.), (50)	159, 417,
Diethyl n-hexylmalonate Diethyl n-decylmalonate		$AC(C_kH_s)(CO_kC_kH_s)_s$ (40) $AC(C_kH_{1s}^{-n})(CO_sC_kH_s)_s$	159, 161,
Diethyl n-hexadecylmalonate			159, 161, 4
Diethyl chloromalonate	(n.C.H.),N; NaOC,H,	٠,	161
Dethyl formanidamalonate	NaOC,H.	ACCI(CO.C.H.), (76)	150, 493
a supplied that the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied to the supplied t	Na Nacosi	ACINHOOCH, ICO.C. H. 1627	494
	NAOC,H.	•	9
	Exchange resin (HO- or CN- form)	AC(NHCOCH,)(CO,C,H,), (62)†	462, 494, 4
Diethyl phthalmidemaleneta		૦ઇ	

THE MICHAEL REACTION

493





400, 404

- Note: References 491-1045 are on pp. 545-555.
- When sodum ethoxide was used as the enlayer, debydrohalogonation took place.
   The product was isolated as the pherylhydrazone.

TABLE I-Continued

# Michael Condensations with $\alpha_i \beta$ -Ethylenic Aldehydes

MICI	MICHAEL CONDENSATIONS WITH MP TIME	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
Neartants	Catalyst	Product (Yield, %)	References
Acrolein (Cont.) and Die(hyl acetoxymalonate CH(CO ₂ C ₂ H ₅ ) ₂	NaOC2Hs NaOC2Hs	$A =\mathrm{CH_3CH_2CHO}$ $\mathrm{CH_3CO_2C(A)(CO_2C_2H_5)_2}$ $A_2\mathrm{C(CO_2C_2H_5)_3}; \ 5,5\text{-diearbethoxy-1-cyclohexene-1-earboxaldehyde}$	159, 497 110, 417
СН ₂ СП ₂ СИО Bthyl acetoncetate	$ m NnOC_2H_S$	CH ₃ COCH(A)CO ₂ C ₂ H ₅ (40, 39); 2-eyclohexen- 1-one (20, 23)	408, 499
Ethyl methylacet oacetate	NaOC ₂ H ₅ Not indicated NaOC ₂ H ₅	CH ₃ COCH(.4)CO ₂ C ₂ H ₅ 2-Cyclohexen-1-one 6-Methyl-2-cyclohexen-1-one (20)	500 501 199
Ethyl cyclohexanone-2-carboxylate $\mathrm{NaOC_2H_5}$	NaOC ₂ H ₅	O CO ₂ C ₂ H ₅	162
Ethyl cyanoacetate	NaOC.H.	ACH(CN)CO ₂ C ₂ H ₅ (12); 5-earbethoxy-5-eyano- 1-eyeloheyene-1-earboxnldohyde	159, 417, 502, 503
Ethyl acetamidocyanoacetate QH(CN)CO_CH _b	NaOC ₂ H ₆ NaOC ₂ H ₆	(0)	460, 494, 504 110, 417
сы,сп.спо		OHO F	
Cyclohexaneearboxaldeliyde	80°	(677)	475



CHO

## TABLE I—Continued

276					OR	GAN	IIC	RE	ACT	'ION	S					
	References	514	516		514	515	515	515		514	166 166	166	100	165, 164	. 163	)
Michael Condensations with $\alpha_i eta$ -Ethylenic Aldehydes	Product (Yield, %)	Ethyl 2-amino-6-methylpyridine-3-carboxylate (13)	4,6,6-Trimethyl-1,3-cyclohexadiene-4-carboxal-		Ethyl 2-aminopyridine-3-carboxylate (18)	Ethyl 2-methylpyridine-3-carboxylate (30)	3-Acetyl-2-methylpyridine (25)	3-Benzoyl-2-methylpyridine (5)		Ethyl 2-amino-6-methylpyridine-3-carboxylate	2.07 June 2, 6-dimethylpyridine (40)	3-Acetyl-2,6-dimethylpyridine (40) 3-Benzoyl-2, 6-dimethylpyridine (20)	(20)	$CH_3CH_2CHCH(CH_3)C=0 (42, 15)$	(CH ₃ ) ₂ C—CH ₂ —O CH ₃ CH ₂ CHCH(CH ₃ )OHO	с, н, онсос, н,
MICHAEL CONDENSATION	c. Catalyst	None	$NaNH_2$	•	None	None None	None	None		None	None	None None		KOCH ₃ , aq. NaOH, 130–180°	$NaOCH_3$	
	Reactants	$\begin{array}{l} \beta\text{-}Hydroxycrotonaldelyde and} \\ H_2NG(==NH)GH_2GO_2G_2H_5\  \end{array}$	eta,eta-Dimethylaerolein eta,eta-Dimethylaerolein	β-Ethoxyacrolein¶ and	Han C(=NH)CHaCOaCaH,	$\mathrm{CH_3C}(=\mathrm{NH})\mathrm{CH_2CO_2C_2H_3}$ $\mathrm{CH_3C}(=\mathrm{NH})\mathrm{CH_2CN}$	CH ₃ (=NH)CH ₂ COOH ₃	$CH_3C(=NH)CH_2COC_6H_5$	β-Ethoxycrotonaldehyde¶ and	$H_2NC(=NH)CH_2CO_2C_2H_5  $ $CH_3C(=NH)CH_3CO_3C_3H_5$	CH ₃ C(=NH)CH ₂ CN	CH ₃ C(=NH)CH ₂ COC ₆ H ₅	α-Mcthyl-β-ethylacrolein and	Isobutyraldchyde	Deoxybenzoin	

a-Elhyl-fi n-propylacrolein and				
Ethyl acetoacetste	KOH, acetal	n-C,H,CHCH(C,H,)CH0 (61)	483, 517, 518	
Butyraldehyde**	Aq NaOH, 200°	сп,сосисо,с,н, л-с,н,сисис,н,о= с,н,си—сп,—о	164	
Christmatistiquis and Christmatistiquis and Diethyl etchniquionate Diethyl acconcate Sirly acconcate Sirly in reconcate Sirly in very concate Sirly formation of the concate Sirly formation of the concate Sirly formation of the concate Sirly formation of the concate Sirly formation of the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for the concate Sirly for t	NaOCH, NaOCH, NaOCH, NaOCH, NaOCH, NaOCH, NaOCH,	A = C ₄ L/GICEL/GHO AC(C ₄ H ₁ NCO ₄ CH ₂ ), AC(C ₄ H ₁ NCO ₄ CH ₂ ), AC(NHCO ₄ CH ₂ ), C-Cachellory-Sepheny-Sey-Sey-Sey-Sey-Sey-Sey-Sey-Sey-Sey-Se	512 512 513 163 163	THE MICHAEL
2-Nitropropane	NaOC,H,	$CH_3CH_3CH(A)NO_3$ $(CH_3)_3C(A)NO_2$		REA
β-Hydroxycnnamaldehyde and H ₄ NC(≈=NH)CH ₄ CO ₅ C ₅ H ₅	None	Ethyl 2-amno 6-phenylpyridine-3-carboxylate (31)	128	CTION
2-Heptylidenehepkanalt and				
Heptanal	Aq. NaQH, 200°.	3 n-Hexyl-2,4-di-n pentylvalerolactone (9)	167	
Note, Detectores 401-1404, so many p. 514-555.  [Most detectors 401-1404] and my p. 514-555.  [Tas ablative awa target arms of there was employed, it reacted as the amodine.  The ablative awa target in early in each of the acceld.  "The buttersdayled was formed in eith by the seemen of a reaction.  " The translurated allebyte was formed in rate from replanal.	n pp. 545–555. ether was employed; it n the form of its acetal. d in situ by sossion of a formed in situ from h	reacted as the aundme. = ethyl-\$-p-propylarolem. phani.		277
				,

## ABLE II

# Michael Condensations with Aliphatic $\alpha, \beta$ -Ethyle Ketones

References	522, cf. 523 524	525	525	119 420 526	527 119	528
Product (Yield, %)	$A = \text{CH}_3\text{COCH}_2\text{CH}_2$ — $[C_6H_6\text{CH}_2\text{N}(\text{CH}_3)_3]\text{OH}  A_2\text{C}(\text{CO}_2\text{C}_2\text{H}_5)_2  (85)$ $\text{NaOC}_2\text{H}_5  A\text{C}(C_2\text{H}_5)(\text{CO}_2\text{C}_2\text{H}_5)_2  (42)$	$\begin{array}{c c} CO \\ CH_2 \\ CH_2 \\ CO \\ CO \\ CO \end{array}$	O O O O O O O O O O O O O O O O O O O	CH ₂ COC( <i>A</i> ) ₂ CO ₂ C ₂ H ₅ (92) 4-Ethyl-3-methyl-2-cyclohexen-1-one CH ₃ COC(CH ₂ SCH ₃ )( <i>A</i> )(CO ₂ C ₂ H ₅ (47)	6-Carbethoxy-6-isopropyl-3-methyl-2-cyclohexen- 1-one (32)††† CH ₃ COC(A)(C ₃ H ₇ -i)CO ₂ C ₂ H ₅ (74)	(small)
Catalyst	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH NaOC ₂ H ₅	$ m Na OCH_3$	NaOCH3*	NaOC2Hs Na NaOC2Hs	${ m NaOC_2H_5}$	NaOH
Reactants	Melhyl Vinyl Ketone and Diethyl malonate Diethyl ethylmalonate	$lpha$ -Methyl- $eta$ -oxo- $\gamma$ -butyrolactone		Ethyl acetoacetate Ethyl ethylacetoacetate Ethyl α-(methylthiomethyl)- acetoacetate	Ethyl isopropylacetoacetate†	Ethyl 2-oxocyclohexane-1- carboxylate‡

53 538



4-Carbethoxy-3-(a-fury)-3-hydroxycyclohexan. CO.C.H. 1-one C.H.OH,NCH, 10H Not indecated Ethyl (x-furoyl)acetate Ethyl benzoylacetate

 In this condensation the amount of catalyst was twice that used in the preceding condensation. Note: References 491-1045 are on pp. 545-555. † Methyl chloroethyl ketone was employed.

it! When the adduct was hydrolyzed, a 26% over-all yield of (±)-piperitone was obtained. ‡ In this experiment the actual reagents used were the ester, acctone, and formaldebyde.

# TABLE II—Continued

				01.0	******	O IVIJI	10110	115				
	References		532			533		531	119, 122 $121$	121		123
Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Ketones	Product, (Yield, %)	$A = \mathrm{CH_3COCH_2CH_2} -$	CO ₂ CH ₃	(88)	OA CO2CH3		₹ 3	3-Carbethoxy-3-hydroxy-2-methyl-4-phenyl-	cyclobexanone $(A)_2C(CN)_2$ (74) $C_6H_5CH(A)CN$	$\mathrm{C_6H_5C(A)(CN)CO_2C_2H_5}$ (90)	CH ₂ CN	H ₃ C A
IL CONDENSATIONS WI	Catalyst		$ m \dot{N}_{a}OCH_{a}$			$NaOCH_3$	posses	Not indicated	NaOCH ₃	างล	KCN	
. Місна	Reactants	Methyl Vinyl Ketone (Cont.) and	Methyl 1-oxo-1,2,3,4-tetrahydro- phenanthrene-2-carboxylate			Methyl 4-oxo-1,2,3,4-tetrahydro- phenanthrene-3-carboxylate		Ethyl phenylpyruvate	Malononitrile Benzyl cyanide Ethyl phenylevanoscetete	There is a model and	Methyl $eta$ -cyanoethyl ketone	

Acetons Hodout studetydo Mehyi ethyl keton Dorliylacetaldebydo 2-lillylbesanal	f KOCH, f KOCH, KOCH,	3-Methyl-2-cyclohezen-1-one (3) 44-Dmethyl-2-cyclohezen-1-one [] (40) 44-Dmethyl-2-cyclohezen-1-one (3) 44-Dhethyl-2-cyclohezen-1-one 4-n-Butyl-4-cthyl-2-cyclohezen-1-one	410 534 419 534 534
Сусюваньно	Enamine from cyclohexanone	(30-40)	535, 531
Pheny lact tone	(c,H,cH,N(cH,))ou	$\bigcap_{C_{i}H_{i}}^{O} \inf \bigcup_{mad} \bigcap_{H_{i}C_{i}}^{O} \bigcap_{GH_{i}^{(40)}}^{O}$	636
() cloke same-1,3-dumo	NaOCH,	·	632
KOH, CHJO  Nofe: References 401-1045 are un pp. 515-555. This experiment was pun in the valory planse (	KOH, CH,OH n pp 515-555,	KOII, CII,OII  Note: Reference 401-1015 are on pp. 515-555. This expections to see that in the visite place, the lite presence of cashes of course.	638

ice of axides of group II to IV of the periodic system. " This was reported as the probable structure of the product,

115

538

## TABLE II-Continued

MICHAEL CONDENSATIONS WITH ALIPIIATIC  $\alpha, \beta$ -ETHYLENIC KETONES

References Catalyst Reactants

Methyl Vinyl Ketone (Cont.) and

Product (Yield, %)

Product (Yield, %)
$$A = CH_3COCH_2CH_2$$

NaOCH3; (C2Hs)3N

2-Methylcyclohexane-1,3-dione

525, 530

кон, снаон

5,5-Dimethyleyelohexane-1,3-dione

NaOCH,

5-Methyloctahydronaphthalene-

1,6-dione

[C,H,CH,N(CH,),]OH

6-Methoxy-1-methyl-2-tetralone

Not indicated

531

506, 523

542

533

and the 3-formyl

3-Hydroxymethylene-4-keto-1,2,3,4- NaOCH,

tetrahydrophenanthrene

506 506, 543

CH,CH(A)NO, (49) (CH,),C(A)NO, (69)

NaOCH,

2-Nitropropane Nitromethane Nitroethane

KOH

Methyl fluorene-9-carboxylate

[Cal,CH,N(CH,),]OH; ACH,NO, (51)

NaOC,H; t-amines

544

168

Note: References 491-1045 are on pp. 545-555.

2-Naphthol

# TABLE 11-Continued

MICHAEL CONDENSATIONS WITH ALIPHATIC  $\alpha,\beta$ -ETHYLENIC KETONES

			•									
References		119	545	545	. 261	427	521 547		755		400	
Catalyst Product (Yield, %)	$A = CH_3COCH_2CH_2$ —	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	1'-0xo-2'-(y-oxobutyl)-1',2',3',4'-tetrahydro-1,2- benz-3,4-aceperinaphthane (70)	1'-Oxo-2'-(7'-0xobutyl)-1',2',3',4'-tetrahydro-1,2-benz-3,4-aceperinaphthane (20)	2-Hvdroxv-4-methylbenzoic acid (55)	Diethyl 2-hydroxy-4-methylisophthalate (49) CH,COCH,CHOHCH,NO, (4)	Ethyl 2-amino-6-methylnicofinate (32) 3-Cyano-2-hydroxy-6-methylpyridine (55–62)	$A = \mathrm{CH_3CHCH_3COCH_3}$	2,3-Dimethyleyclohexane-1,5-dione (10)			င့်ဝးပါန
Catalyst		$ m NaOC_2H_6$	$NaOCH_3$	1.001,H ₀ -1	NaOC ₃ H _k	NaOC ₂ H ₆ CH ₃ COCH=CHONa	None Piperidine acctate		$NaOC_2H_b$	KOC, II,	Yes.	
. Reactants	Methyl Vinyl Kelone (Cont.) and	Ethyl 3-hydroxybenzofuran-2- carboxylate	2'-llydroxymethylene-1'-oxo-1',2',3',4'-tefrahydro-1,2-benz-3,4-aceperinaphthane		Hydroxymethyleneaeelone and Ethyl neetoneelate	Diethyl acetone-1,3-dicarboxylate Nitromethane	Bthyl malonamate¶ Cyanoacetamide	Bthylideneacetone and	Diethyl methylmalonate	Ethyl 2-oxocyclohexane-1-		

551

537

# TABLE II—Continued

Michael Condensations with Aliphatic  $\alpha,\beta$ -Ethylenic Ketones

References		549 550 549
Product (Yield, %)	$A = CH_3CH_2COCH_2CH_3$	JCH(CO ₂ C ₂ H ₅ ); CH ₃ COCH(A)CO ₂ C ₂ H ₅ CH ₃ COCH(A)COCH ₃
Catalyst		NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅
Reactants	Ethyl Vinyl Ketone and	Diethyl malonate** Ethyl acetoacetate** Acetylacetone**

Ethyl Vinyl Kelone and 
$$A = CH_3CH_2COCH_2CH_2$$
—
Diethyl malonate**

Diethyl malonate**

NaOC₂H₃

Ethyl acetoacetate**

NaOC₂H₃

CH₃

COCH(A)COCH(A)COCH₃

CH₃

Cyclohexane-1,3-dione

Cyclohexane-1,3-dione

CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

A CHO

2-Methylcyclohexane-1,3-dione Divinyl Ketone and

NaOCH3

538

420 420 119 418, 552†† 418, 552	369, 101	101, cf. 8	
A = CH_COCH(CH,ICH, 3.4-Dmethy_2-cyclobercu-l-cone 5-Ehyi-4-methyl-2-cyclobercu-l-cone (CH_ACHCOCH,ICH,COC_H,IT) 3.6-Dmethyl-2-cyclobercu-l-cone 3.4.6-Thinethyl-2-cyclobercu-l-cone;t; (10, 43)	(56), 90, 23) (13)	$\Pi_s$	по
Na Na KOH, C,H,OH KOH, CH,OH KOH, CH,OH	кон, с,и,оп	кон, сы,он	
Methyl Inopropenyl Kelone and Ethyl acetoacetate Ethyl propionylacetate Ethyl isobulyrylacetate Acetone Methyl ethyl ketone	Сусюнежанове	4-Methylcyclohexanone	

Note: References 401-1045 are on pp. 545-555.

41 When 3-hydroxy-5-methylbuden 2-cne was used, matered of the wasturated betone, the yield was 11% 41 The same product was obtained from methyl ethyl ketone and formaldehyde (49-52%) and from methyl ketone and 3-hydroxy-2-methylbutan-2-cne (43-49%).

	THE M	IICHAEL
420 420 119 418,552†† 418,552	369, 101	101, cf. 8
A = CH_COORI(CH_1)CH_1 3.4-Dmethy2-grejothexen-1-one SEDy1-methy1-g-grejothexen-1-one CH_1,PUTOGAT_I,OOG_H_1 3.6-Dmethy1-g-grejothexen-1-one 3.6-Dmethy1-g-grejothexen-1-one; 3.4,6-Trimethy1-g-grejothexen-1-one; (10, 43)	OH (00, 90, 20,) (00, 90, 20,)	п,с Сп, (13)
Na Na KOH, C,H ₆ OH KOH, CH ₅ OH KOH, CH ₅ OH	кон, с _г н,он	кон, сынон
Methyl Isopropanyl Ketone and Rhyl sectoacetate Ethyl propionylacetate Ethyl isobulyrylacetate Acetone Methyl ethyl ketone	Cyclohexanone	4-Methylcyclohexanone

Note: References 491-1045 are on pp. 545-555.

Two isomers)

** \$-Chloroethyl ethyl ketone was employed.

H. When d'dyldray-3-methyland-2-was usad, madead of the umatunical ketome, the yield was 11%, I. The same product was obtained from media they have and formaliabyle (16-52%) and from methyl ethyl ketone and Shydrary-2-methylbuland-2-me (13-40%).

### TABLE II-Continued

## Michael Condensations with Aliphatic $\alpha, \beta$ -Bthylenic Ketones

			ORGANIC	REACTIONS		
References		101		101	101	427 370 370
Product (Yield, %)	$A = \mathrm{CH_3COCH(CH_3)CH_2} -$	$H_3C$ $CH_3$ $CH_3$	$H_3C$ $CH_3$ (Two isomers)	$\begin{array}{c c} & \text{OH} & \text{OH} \\ & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array}$	$i$ - $H_1C_3$ $CH_3$ $CH_3$	Diethyl 2-hydroxy-4,6-dimethylisophthalate (92) 4,6-Dimethyl-2-pyridone-3-carboxamide 4,6-Dimethyl-3-cyano-2-pyridone
Catalyst	pu	кон, сеньон		кон, с ₂ н ₆ он	кон, с ₂ ньон	NaOC ₂ H _b None None
Reactants	Methyl Isopropenyl Kelone (Cont.) and	3-Methylcyclohexanone		2-Methylcyclohexanone	Tetrahydrocarvone	4-Hydroxy-3-penten-2-one and Diethyl acetone-1,3-diearboxylate Malonamide Malononitrile

							•	E	31	ICB	ne.		) K.A.	1110	) IN							289
514, 521	370	553, 371, 554 555	555	553	555	444		555	556		171, 179		292		07.4	ě			558			
Ethyl 2-amino-4,6-dimethylpyrıdıne-3-carboxylate (50, 69)	4,6-Dinethyl-2-pyridone 3-carboxamide	3-Cyano-1,6-dimethyl-2-pyridone (51, 100)	3 Cyano-1,4,6-trimethyl 2-pyridone	3-Cyano-4,6-dimethyl-1-ethyl-2-pyndone	I Allyl 3-cyane-4,6-dimethyl 2-pyridone	Metnyl 2,4,6-trimethyl-3-pyridyl ketone (>75)		3-Cyano-4,6-dimethyl-2-pyridone	3-Cyano-1,4,6-trimethyl-2-pyridone		3 Cyano-4 hydroxy 5,6-dimethyl-2,3,4,5-tetra	bydro 2-pyridone or 3-cyano-5,6 dimethyl-2.	Bytroxypyridine (23) Ethyl 2,5,6-trimethylpyridine-3-carboxylate		Compound CoH4N,Oo		$A \Rightarrow CH_sCOCH_sC(CH_s)_s$		4-Carbomethoxy-5,5-dimethylcyclohexane-1,3-	(00)		care manner of the appropriate arms was used in these experiments.
None	None	NH,	CH ₃ NH ₂	OH CHOIL	CH. CHCH, NH.	эпом		None	None	done and	Piperidine		None	me and	NaOC ₂ H ₂			NaOCIL	î	on pp. 545-555.	sed.	93 30 11110111111
H,NC(=NH)CH,CO,C,H,T	Cyanoacetamide	Cyanoacetamides	NCCII.CONHCII.55	NCVII CONICH CIT. CIT 52	CH.COCH CALNIDOR SA	ES\$170/11110/1110/1110	4-Amino-3-penten-2-one and	Ethyl cyanoacetate N-Mathylevanoacetamida	anima amora for financia	Methyl a-Hydroxymethyleneethyl Kelone and	C) anoacetamide		CH,C(==NII)CH,CO,C,H,	3-Hydroxymethylenepentane-2,4-dione and	Cyanoacetamide	Meetly! Oxide and		Dimethyl malonate		Note: References 491-1045 are on pp. 545-555.	§§ A mixture of ethyl cyanoacetat.	

## TABLE II—Continued

		ORGANI	C RE	EACTIONS					
References	668, 668a	315 82 15, 16, 17, cf. 119	414	415, 425 559	÷1.	415 560 900		( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	652, 418
Michael Condensations with Aliphathc $\alpha_i\beta$ -Ethylenic Ketones Calalyst $A = \mathrm{CH_3COCH_2C(CH_3)_2}$	 6,5-Dimethyleyelohexane-1,3-dione (67-85) or 4-carbethoxy-5,5-dimethyleyelohexane-1,3-	dione (95–97) 4,5,5-Trimethyleyelohexane-1,3-dione 5,5-Dimethyl-4-phenyleyelohexane-1,3-dione 3,5,5-Trimethyl-2-cyelohexen-1-one (low)	4-Carbethoxy-5,5-dimethyl-3-phenyl-2-eyelo-	NCCH(4)CO_CH3 NCCH(4)CO_CH3 4-Cyano-6,5-dinethyleyclohexane-1,3-dione (50) 3-Cyano-6-hydroxy-4,4,6-trimethyl-2-piperidone (auant.)	C ₆ H ₂ COCH(A)C ₆ H ₅ and 5,5-dimethyl-3,4- diphenyl-2-eyelohexen-1-one	6-Actyl-3,5-5-4rimethyl-2-cyclohexen-1-one ACH ₂ NO ₂ (63)	4-(4-1lydroxycoumarinyl)-4-methylpentan-2-one (15–20) 4-(4-1lydroxycoumarinyl)-4-methylpentan-2-one (43)		4,6-Diethyl-3-methyl-2-cyclohexenone [[] (7, 20)
Michael Condensations with Calalyst	$\rm NaOG_2H_b$	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOG ₂ H ₅	$NaOG_2H_5$	$\begin{matrix} Nn \\ Nn OG_2H_b \\ Nn OG_2H_b \end{matrix}$	NaOC.H.	Na NaOG ₂ H ₅	(C ₂ H ₂ ) ₂ NAA KOU, pyridine Pyridine		KOII, CH ₃ OII
Reaclants	Diethyl malonato	Diethyl methylmalonate Ethyl phenylacetate Ethyl acetoacetate	Blhyl benzoylacetate	Methyl cynnoacctato Ethyl cynnoacctato Cynnoacctanide	Deoxybenzoin	Acetylacetone Nitromethane	Fluoreno 4-Hydroxycoumarin	3-Ethyl-3-buten-2-one and	Methyl propyl ketone

3-Methyl-3-penten-2-one and Diethyl malonate	NaOC ₂ H ₆	4,5-Dmethyloyclohexane-1,3-dione*** (10)	<b>423</b>	
2-Methyl-1-penten:3-one and Ethyl propionylacetate Ethyl methylacetoacetate Ethyl ethylacetoacetate	Not indicated Not indicated Not indicated	2.4-Directhyl-3-ethyl-2-cyclohexenone 3 Ethyl-4-domethyl-2-cyclohexenone 3.6-Diethyl-4-methyl 2-cyclohexenone	450 450	
4-Hydroxy-3-nethyl-3-penlen-2-one and Cyanoacctamide§§ NCOH,CONHOH _{§§§}	rd None Piperidine None		\$20 555 562, cf. 563	THE
Ethyl x-Hydroxymethylenesthyl Kelone and Cyanoacetamde CH_C(=NH)CH_CO_C_H_s None	e and sec-Amine None		555	MICHAE
CH ₄ C(=NII)CH ₄ COCH ₂ Natromethane	None CH ₃ CH ₂ COC. (=CHONa)OH ₃	cutyl oethyl-2,5-dimethylp) ridine-3-carboxylate (56) Methyl 6-ethyl-2,5-dimethyl-3-pyridyl ketone (46) 5-Hydroxy 4-methyl 6-nitrohexan-3-one (54)		L REACTION
Methyl B-Bhazyansyl Keime and Pyperdine Cyanoacetamide Pyperdine Note, References 491–1045 are on pp. 545-555.	Piperidine 1 pp. 545-555.	3-Cyano 6-methyl-2-pyrudone (75)	564	ON
ss A mixture of chily (yanouacelate and ammonia or the app     A mixture of throxymethylene and the factone was used.     The same product was obtained in 23%, rueld from the 	ate and ammonia or the and the ketone was use the in 23% yield from thaldehyde.	<ol> <li>A mirror of cleft yearousche and among or the appropriate amone was used in these experiments.</li> <li>R mirror of the property and the ketons was used.</li> <li>R mirror is problet with the ketons was used.</li> <li>The mirror of the problet was the ketons was used.</li> <li>The interpretation of the problet with the ketons and 2 ethyl-4 hydroxy-2-betanoon, and in 20% yield with the ketons and 2 ethyl-4 hydroxy-2-betanoon, and in 20% yield</li> </ol>	a 20% yield	

-	
Demistra O	٠
- 3	ж
٠,	
	ú
	-
- 2	
1	
F	
ļ	
-	d
	ч
	_
	_

			ORC	GANIC	REACTION	SNC			
	References		380	505, 422	560	422, 567, 568	569	370	477
MICHAEL CONDENSATIONS WITH ALIPHATIC α,β-ETHYLENIC KETONES	Product (Yield, %)		$\begin{array}{c c} & \text{CH}_3 \\ & \text{-CH} = \text{CHCOC}_2\text{H}_5 \\ & \text{-CH}_3 \\ & \text{-CH}_3 \\ \end{array} $	5-n-Propylcyclohexane-1,3-dione (16, 24)	3-Cyano-4-ethyl-6-hydroxy-4,6-dimethyl-2- piperidone (63)	5-Isopropylcyclohexane-1,3-dione (80)	4,5,5-Trimethylcyclohexane-1,3-dione	3-Cyano-4,6-diethyl-2-pyridone	3-Cyano-4-ethoxymethyl-6-methyl-2-pyridone (81)
ONDENSATIONS WITH	Catalyst	.1	Na	$ m NaOC_2H_5$	$\rm NaOC_2H_5$	NaOC ₂ H ₅	$\rm NaOC_2H_5$	None	Piperidine
MICHAEL CONDER	Reactants	β-Methoxyvinyl Ethyl Ketone and	2-Methylcyclohexanone	3-Hepten-2-one and Diethyl malonate	4- <i>Methyl-3-hexen-2-one and</i> Cyanoacetamide	5-Methyl-3-hexen-2-one and Diethyl malonate	3,4. Dimethyl-3-penten-2-one and "Diethyl malonate".	Cyanoacetamide	4-Hydroxy-5-ethoxy-3-penten-2-one and Cyanoacetamide

		Inc	MICHAEL	, KEACIR	'N	
371	380		525	422	570 566	564
3-Cyano-5-ethyl-4,8-dimethyl-2-pyridone	CH,COCH=CHCH(CO,C,H,h, and H,COCO)	. 0	CH, CH, COCH, COLCO, CH,	O 6 Isopropyl-2-methylcyclohexane-1,3-dione (43)	5,5-Dichtyltyrlohexane-1,3-dione (50) 3-Cyano-4,4-dichtyl 6-hydroxy-6-methyl-2- ppendone (75)	3-Cyano-6-n-propyl 2-pyridone (64)
None	Na		Na0CH ₂	NaOC ₂ U ₅	NaOC,H, NaOC,H,	Piperidine p. 545–555.
4-Hydroxy-3-ethyl 3-penten-2-one and Cyanoscelamide	Mehyi P-tsopropozystnył Ketone and Diethyi malonate	Methyl 4-Oxo-5-hexenoate and	2-Methylcyclohexane-1,3-dione	0-Mehyl 4-keplen-3-one and Diethyl malonate	Dethyl malonate Cyanoacttamide	n.rropp; p-athonypungi Kelone and Cyanoacetamude Note: References 431-1045 are on pp. 545-555.

### TABLE II-Continued

Michael Condensations with Aliphatic  $\alpha, \beta$ -Ethylenic Keyones

Reactants	Catalyst	Product (Yield, %)	References
Isopropyl β-Ethoxyvinyl Ketone and Cyanoncetamide	Piperidine	3-Cyano-6-isopropyl-2-pyridone (77)	564
3-n-Amyl-3-buten-2-one     and Methyl hexyl ketone	кон, сн,он	4,6-Di-(n-amyl)-3-methyl-2-cyclohexenone (23, 33) 413, 552	418, 552
6-Mehyl-5-nonen-4-one and Diethyl malonate	$ m NaOC_2H_5$	2-Ethyl-5-methyl-5-n-propylcyclohexane-1,3-dione	57.1
Decanc-2,4-dione (enol) and		CH ₃ C ₆ H ₁₃ -11	
Cyanoacetamide§§	None	$n$ - $H_{13}C_6$ $N$	55 55 50
β-Ethoxyvinyl n-Amyl Kelone and			
Cyanoacotamido	Piperidine	6-n-Amyl-3-cyano-2-pyridone (68)	504

8-Methyl-7-tridecen-6-one and Diethyl malonate	NaOCeH	$A=n\cdot \mathrm{C_6H_{11}COOH_2C(OH_9)C_6H_{11}\cdot n}$ $5\cdot n\cdot \mathrm{Amyl}\cdot 2\cdot n\cdot \mathrm{butyl}\cdot 5\cdot \mathrm{methylcetane.} 13.$	9	
Cyanoacetamide	NaOC ₂ H ₂	dione (60) ACH(DN)CONH, (64)		
1-Hydroxymethyleneheptadecan-2-one and Diethyl acetone-1,3-dicarboxylate	end NaOC _k H _k	Diethyl 2-hydroxy-4-n-pentadecelmonhthalass rea	9 1	
13-Methyl-12-fricosen-11-ons and		$A = n \cdot C_1 \circ H_{1_1} C(CH_3) CH_1 COC_{1_0} H_{1_1} n$	27	
Diethyl malonate	NaOC ₂ III,	5-r-Decyl 5-methyl 2-n-nonviewolch-contract		
Cyanoacetamide	NaOC,H,	done (60)	672	
Note: Reference ago, 1-101 see on pp. 545-505.  §§ Amitture of cityl convected and ammona or the appropriate  §§ A mixture of transprachable and the sectors was used.  †† Thus product was obtained after send hydrolysis and esternication.	pp. 545–555. ate and armons and the ketons er acid hydrolysi	Work: References (9)-105 are on pp. 545-565.  §§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§	22	AEACIIO

				ORGANIC REACTIONS		
	References	573	FF9	574 228 228 228 574 575 575 575 575 576	677 422 422 642 645	577
Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Ketones	Product (Yield, %)	$A = C_6H_6COCH_2CH_2$ — $ACH(CO_2CH_3)_2$ (70), (A) $_2C(CO_2CH_3)_2$ (small)	A CO ₂ CH ₂	6-Carbethoxy-3-phenyl-2-cyclohexen-1-one (A) ₂ C(CN) ₂ (A) ₂ C(CN)CO ₂ CH ₃ (70) (A) ₂ C(CN)CONH ₂ 3.6-Diphenyl-2-cyclohexen-1-one C ₆ H ₃ CU(A)COC ₆ H ₄ C ₆ H ₅ -p (A) ₃ CNO ₂ (C ₆ H ₃ CN(A)NO ₂ (82)	Ethyl 3-hydroxybiphenyl-4-carboxylate (42) Diethyl 3-hydroxybiphenyl-2,4-dicarboxylate (50) 3-Acetyl-2-methyl-6-phenylpyridine 3-Benzoyl-2-methyl-6-phenylpyridine \$\theta\$-Hydroxy-\theta\$-mitrobutyrophenone	Ethyl 3-hydroxybiphenyl-4-carboxylate (42)
iael Condensations we	Catalyst	$NaOCH_3$	кон	NaOC ₂ H ₅ NaOCH ₃ NaOCH ₃ NaOCH ₃ NaOCH ₃ NaOCH ₃ NaOCH ₃ NaOC ₂ H ₅ NaOCH ₃ NaOCH ₃ NaOCH ₃	[CH,COCHCO,C,H,]Na NaOC,H, None None C,H,COCH—CHONa	[CH3COCHCO3C2H3]Na
Mice	Reactants	Vinyl Phenyl Ketone* and Dimethyl malonate	Methyl fluorene-9-carboxylate	Ethyl acetoacetate Malononitrile Methyl cyanoacetate Cyanoacetamide Methyl benzyl ketone Deoxybenzoin Dibenzyl ketone Benzyl p-biphenylyl ketone Nitromethane Phenylnitromethane Hydroxymethylencacetophenone and	Ethyl acetoncetate Diethyl acetone-1,3-dicarboxylate CH ₃ C(=NH)CH ₂ COCH ₃ CH ₃ C(=NH)CH ₂ COC ₆ H ₅ Nitromethane (Methoxymethylene)acetophenone and	Etnyl acctoacctate

				THE M	CHAEL RE	ACTION
	4, 578	579 483, 517, 518,	580, 30 82	409	409	121 581 121 439
A = CH,COCH,CHC.H.	ACH(CO ₂ CH ₃ ), 6-Phenylcyclohexane-1,3-dione (75)	or 4.8 4-carbethoxy derivative ACH(CO ₂ C ₂ H ₆ ) ₁ (84)	4,5-Diplienylcyclohexane-1,3-dione	, to confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confidence of the confide	CO ₂ C;H ₄	ACH(CN/CO ₂ C ₁ H ₂   81) CH ₂ CH(CN/CO ₂ C ₂ H ₁   72) CH ₂ CH(CA)(CN/CO ₂ C ₂ H ₁   72) SO ₂ HH CO ₂ C ₂ H ₁   72) SO ₂ HH CO ₂ H ₂   72) SO ₂ HH CO ₂ HH CO ₂ H ₂   4-phenyl-2-pipendane 3-Cvann-2-knn-4-main-main-main-main-main-main-main-main
	NaOCH, Na. NaOC,H,	KOII, acetal	NaOC, II,	KOC,H,	KOC,II,	NaOC,11, NaOC,11, NaOC,11, sec. Amine NaOC,41,

Ethyl cyclopentanone-2-

carboxylate

Ethyl phenylacetate

Benzylideneacetone and

Danethyl malonate Dethyl malonate Uhyl cyclohexanone-2-Uthyl a cyanobuty rate Ethyl arey anocaproate

carboxylate

Lthyl cyanoacetate

Cyanoacetamide

483, 517, 518 439, 224 Cyano-Z-keto-6 methyl-4-phenyl-2,3,4,5-tetra-3-Cyano-2,6-dunethyl-4-phenylpyridine (12) C,H,CH(A)CN (87) C,H,COCH(A)C,H, hydropyridine 4CH₂CN (82) KOII, acetal NaOC.H.

 p.Chleropropiophenone was actually used in these condensations. Note. References 401-1045 are on pp 545-555

NaOC II.

CII,C (=NH)CH,CN

Acetonitrile

Benzyl cyanide Deux3 benzon

### TABLE III—Continu

			0,	MOMENTO INDICATION		
	References		86	88	282	209 209 - 209 154
Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Ketones	Product (Yield, %)	$A = \operatorname{CH_3COCH_2CHC_6H_6}$	C ₆ H ₅	CH ₃	(606) H	ACH ₂ NO ₂ (58) CH ₃ CH ₂ CH(A)NO ₂ (two isomers: total, 90) (CH ₃ ) ₂ C(A)NO ₂ (77) O ₂ NCH(A)CO ₂ C ₂ H ₅ (54)† O ₂ NCH(A)CO ₂ C ₂ H ₅
THAEL CONDENSATIONS WITH	Catalyst		$\mathrm{NaNH}_{\underline{x}}$	$\mathrm{NaNH}_{2}$	Piperidine	(C ₂ H ₅ ) ₂ NH (C ₂ H ₅ ) ₂ NH (C ₂ H ₅ ) ₂ NH (C ₂ H ₅ ) ₂ NH [C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH
Mi	Reactants	Benzylideneacelone (Cont.) and	Cyclohoxanone	2-Methyl-1-tetralone	Anthrone	Nitromethane 1-Nitropropane 2-Nitropropane Ethyl nitroacetate

124

Ti	IE MICHAEL	REACTION	
376	583	169, 684	585
		-	
Br (11)			
	}on		T (76-60)
<u>\</u> •	~~~~		= ___\

376

NaOC,H

Fluorene

NaOC,H

2,7-Dibromofluorene

2.Hydroxy-1,4-naphthoquinone Pyridine

> >	OH (19-20)	(C.H.O).P(O)CH(4)CO C 17 (48)	(0) 474,700(1)
	NII, f-ammes	NaOC ₂ H ₂	are on pp. 545–535. as a salt of the aes form,
		Trethyl phosphonoacetate	Note: References 491-1045 are on pp. 545-555. † The product was obtained as a sait of the act form,

Paperidine

4-Hydroxycoumarm

## TABLE 111—Continued

STACTAL ST Ė

		References		. 38 38 38 38	586
Michael Condensations with Aromatic $lpha, eta$ -Ethylenic Ketones	lencacelones	Product (Yield, %)	$^{\mathfrak{g}} = \operatorname{ArylCHOH}_{\mathfrak{g}}$	NaOC ₂ H ₅ 4-Acetonyl-2-methyl-1,4-benzopyran NaOC ₂ H ₅ 4-Acetonyl-2,3-dimethyl-1,4-benzopyran (52) NaOC ₂ H ₅ 4-Acetonyl-2-methyl-3-phenyl-1,4-benzopyran	CH=CHC ₆ H ₄ OH-2
тти Авомат	A. Substituted Benzylideneacelones	Catalyst		NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅	$ m NaOC_2H_5$
MICHAEL CONDENSATIONS W	A. Substit	1 Addend	coem	Ethyl acetoacetate Ethyl methylacetoacetate Ethyl phenylacetoacetate	$2 ext{-Hydroxybenizylide}$ neacetone NaO $\mathbb{C}_2\mathbb{H}_{oldsymbol{b}}$
		Substituent in	4 CHECHCOCH3	2-Hydroxy	

134 587 587 588 109 Aq. NaOII 2 (or 4)-Carbethoxy-5-(o-methoxyphenyl)-3- $5 \cdot (p\text{-Methoxyphenyl}) \text{cyclohexane-1,3-dione}$ 5-(o-Methoxyphenyl)cyclohexane-1,3-dione methyl-2-cyclohexen-1-one <u>0</u>5 Piperidine CH₃COCII(A)CO₂C₂H₆ (55) CO₂C₂H₆ C C.H.OCH.  $2\cdot 110 iny C_6 H_4$ NaOC₂H₅ NaOC₂H₅ NaOCIII Triethyl ethane-1,2,2-Ethyl acetoacetate Ethyl acetoacetate Diethyl malonate Diethyl malonate tricarboxylate

2-Methoxy

4-Methoxy

	THE MICHAEL REACTION							
409	409	589 589 416	169	590 590 587	109	189	282	812
CH ₂ COCH ₂ CH(C ₆ H ₄ OCH ₅ -p)CH(CO ₂ C ₂ H ₅ ). CH ₂ CH ₂ CH ₂ CO ₂ H	CO,C,H, CO,C,H, CO,H,OCH, p	4-Cyano-5-(p-methoxyphenyl)cyclohexane- 1,3-dione (90) C ₆ H ₆ COCH(A)C ₆ H ₈	OH CH(C, U, OCH, P)CH, COCH, (45)	5-(m.Ntrophenyl)cyclobexane-1,3-dione 5-(p-Ntrophenyl)cyclobexane-1,3-dione 5-(o-Chlorophenyl)cyclobexane-1,3-dione (21)	OH CH OCH		hydroxy 5-rethrumethylaminophenyl)-5- 5-(n-Isomonthylaminophenyl)-5-	(60)
KOC,H,	кост	NaOC ₂ H ₂	Pyridine	NaOC,H, NaOC,H, NaOC,H,	Pyridine	NaOC ₂ H,	NaOC,H,	,
Ethyl cyclopentanone-2- carboxylate	Ethyl cyclohexanone-2- carboxylate	Ethyl cyanoucetate Deoxybenzoin	4-IIydroxycoumarın	Dethylmalonate Diethyl malonate Diethyl malonate	4-Hydroxy coumarm	Ethyl a-cyanobutyrate Ethyl acetoacefate	Diethyl malonate	Note: Ref. rences 491-1045 are on pp. 545-555
			;	3-Nifro 4-Nifro 2-Cidoto	4-By droxy-3-methoxy 4-Hydroxy coumarm	2,3-Dimethoxy 4-Dimethylamino	4-Isopropy1	Note: References 49

## TABLE III-Continued

# Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Ketones

Reactants	Catalyst	Product (Yield, %)	References
Ethylideneacetophenone and		CH3	
Cyanoacetamide	$\mathrm{NaOC}_2\mathrm{H}_5$	H ₃ C ₆ N N O	591
Hydroxymethylene-p-methylacetophenone and	none and		t 1
CH ₂ C(=NH)CH ₂ CO ₂ C ₂ H ₅ CH ₃ C(=NH)CH ₂ COCH ₃ CH ₃ C(=NH)CH ₂ COC ₆ H ₅	None None None	Ethyl 2-methyl-6-(p-tolyl)pyridine-3-curboxylate 3-Acetyl-2-methyl-6-(p-tolyl)pyridine 3-Benzoyl-2-methyl-6-(p-tolyl)pyridine	142, 557 442
~ Hudrommothilonophil Phonil Kolone and	מוסום מוחן		
CH ₃ C(=NH)CH ₂ CO ₂ C ₂ H ₅	None	Ethyl 2,5-dimethyl-6-phenylpyridine-3-carboxylate	555
Benzoylacetone (Enol) and			
Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	$NnOC_2H_s$	Diethyl 3-hydroxy-5-methylbiphenyl-2,4	121
Cyanoacetamide	$(C_2H_5)_2NH$	alcarboxylate (41) 3-Cyano-6-methyl-4-phenyl-2-pyridone and	371, 592
Ethyl cyanoacetate	(C,H _c ),NH	3-cyano-4-methyl-6-phenyl-2-pyridone 3-Carbethoxy-4-methyl-(t-phenyl-2-pyridone flow)	370
Malononitrile	(C,H,),NH	3-Cyano-4-methyl-0-phenyl-2-pyridone	370
3-Amino-1-phenyl-2-buten-1-one and	ch.		
Malonamide	None	2-Hydroxy-4-methyl-0-phenylpyridine-3-	391, 398
Ethyl cyanoacetate Cyanoacetamide	NaOC ₂ H ₅ None	3-Cyano-6-methyl-4-phenyl-2-pyridone 3-Cyano-4-methyl-6-phenyl-2-pyridone	301 301

592 285

3-Cyano-6-methyl-4-phenyl-2-pyridone (30)

NaOC,II,; (C,II,),NH

NaOC,II,

5- Phenyl-3-proten-2-onet and

Nitromethane Nitromethane

Dethyl nudonate

4-I'henyl-4-methoxy-3-buten-2-one and

Cyanoacetamide Cyanoace tamide

1. Phenul-3-ethoxu-2-buten-1-one and

NaOC,II,

3-Cyano-4-methyl-6-phenyl-2-pyridone

The keture was produced in situ by isomerization of 5-phenyl-4-penten-2-one.

Note: References 491-1015 are on pp. 545-555.

3-Cyano-4-cthyl-6-phenyl-2-pyridone	371
CollinNiO, 5-cyano-6-hydroxy-2-phenethyl- pyridine (?)	172
C.H.COCH(CH.)CH(CH.)CH,NO. (63)	200
CaHacochac(CHa)aCHaNOa (76)	290
5-Benzylcyclohexane-1,3-dione	283

Piperidine

1-Hydroxy-5-phenyl-1-penten-3-one and

Ethyl Phenacyl Ketone (Enol) and

Cyanoucetamide Cyanoacetamide 1-Phenul-2-methyl-2-buten-1-one and 1. Phenyl-3-methyl-2-buten-1-one and

423, 422

2-Methyl-4,5-diphenylcyclohexane-1,3-dione (21, 32)

2-Methyl-5-phenyl-cyclohexane-1,3-dione (80) 4-Carbethoxy-2-methyl-5-phenylcyclohexane-

1.3-dione (70)

NaOC, II, NaOC,H None

Lihyl Slyryl Ketone and Ethyl phenylactate

Dethyl malonate

NCCII CONHCII,

None

391 423

3-Cyano-1,4-dimethyl-6-phenyl-2-pyridone and

3-cyano-4-methyl-6-phenyl-2-pyridone

#### 3LE III—Continued

# Michael Condensations with Aromatic $\alpha, \beta$ -Ethylebnic Ketones

Michai	MICHAEL CONDENSATIONS WITH AMORALIC WIP TITLE	MUMBELL STREET, John Ollahout	
Reactants	Catalyst	Product (Yield, %)	References
p-Methylbenzoylacetone (Enol) and Cyanoacetamide	$(C_2H_5)_2NH$	3-Cyano-4-methyl-6-p-tolyl-2-pyridone (80) and 3-cyano-6-methyl-4-p-tolyl-2-pyridone (in small	594
$ m NCCH_2CONHCH_3$	$(C_2H_5)_2NH$	amount from the isomeric enol) 3-Cyano-1,6-dimethyl-4-p-tolyl-2-pyridone	594
1-Phenyl-3-methylamino-2-buten-1-one and	one and		
Cyanoacetamide	r	3-Cyano-4-methyl-6-phenyl-2-pyridone and 3-cyano-1,4-dimethyl-6-phenyl-2-pyridone	391
Ethoxymethyleneacetophenone and			
Diethyl malonate	Na enolate of the ester	Ethyl 6-phenylcoumalin-3-carboxylate (44)	577
n-Propyl Styryl Kelone and			
Diethyl malonate	$\mathrm{NaOC_2H_5}$	4-Carbethoxy-2-ethyl-5-phenylcyclohexane-1,3-dione (41)	423
Isopropyl Styryl Ketone and			
Diethyl malonate	NaOC ₂ H ₅	(CH ₃ ) ₂ CHCOCH ₂ CH(C ₆ H ₅ )CH(CO ₂ C ₂ H ₅ ) ₂ (79)	319
Ethyl p-Methoxystyryl Ketone and			
Diethyl malonațe	$NaOC_2H_5$	4-Curbethoxy-5-(p-methoxyphenyl)-2-methylcyclo- hoxonel 2-dime (44)	595
Bthyl cyanoacetate	$\rm NaOG_2H_5$	4-Cyano-5-(p-methoxyphenyl)cyclohexane-1,3-dione (55)	589

CH₂NO₂ (42–52)

CH2-CHCILCH, COC, H, Cit. Cit.NO. (71)

CH,CO,C,H, сп.—спессн,спе,н,

CHOOC

Triethyl ethane-1,1,2-tricarboxylate NaOC,Hs

Cyclopropyl Styryl Ketone and

Nitromethane

#### 1. Phenyl 3-cyclopropyl-2-propen-1-one and Attromethane

N.OCH,

1-Activi-3,4-dihydronaphthalene and

NaOC,II, Uhyl actoacetate

3-Acelyl-1-phenyl-3-buten-2-one and Phenylantromethane

n-Budyl Slyryl Ketone and Dethyl nulonate

Note: References 491-1045 are on pp. 545-555.

1,3-dione (35)

53 123

3-Acetyl-4,5-diphenyl-5-miropentan-2-one (84) 4-Carbethoxy-5-phenyl-2-n-propylcyclohexane-

## TABLE III-Continued

KETONES
с α,β-Ετηνιενις Κετ
AROMATIC
WITH
Fighari. Condensations with Aromatic $\alpha, \beta$ -Ethylenic
TICHAEL

Reactants  Tinyl p-n-Proposyphenyl Kelone and Nitromethane Cyanoacetamide  Benzalpinacolone and Dinethyl malonate Diethyl p-nitrophenylacetate Ethyl p-nitrophenylacetate Nitromethane	Catalyst Catalyst NaOCH, NaOCH, NaOCH, NaOCZH, NaOCZH, NaOCZH, NaOCZH,	Catalyst Product (Yield, %)  Catalyst $A = p \cdot n \cdot C_1 H_1 O C_6 H_4 CO C H_2 C H_2 - C_4 H_2 O C_6 H_4 CO C H_2 C H_2 - C_4 H_2 O C_6 H_4 C O C H_2 C H_2 - C_4 H_2 O C_6 H_4 C O C H_2 C H_2 O C H_2 C H_2 O C H_2 C H_3 O C H_2 C H_3 O C H_2 C H_4 O C H_2 C C C H_2 O C C H_2 C H_4 C H_4 O C H_2 C H_4 C H_4 O C H_2 C H_4 C H_4 C H_4 C H_4 O C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 C H_4 $	Beferences 597 597 597 598 598 600 600 600
Isopropyl p-Aethoxystyryl Ketone and Diethyl malonate	Enolate	$(CH_3)_2CHCOCH_2CH(C_6H_4OCH_3-p)CH_2CO_2H$	30
3-Ethoxy-1-p-tolyl-2-buten-1-one and Cyanoacetamide	(C ₂ H ₅ ) ₂ NH	$3 ext{-Cyano-4-methyl-6-}p ext{-tolyl-2-pyridone}$ (quant.)	594
2-Benzylidenecyclohexanone and Diethyl malonate	Enolate	$C_6H_5$ $C_2G_2G_2H_5$ $(S0)$	602
	Enolate	Ethyl $\beta$ -(2-oxocyclohexyl)hydrocinnamate (70)	603

#### p-Methoxybenzylidenecyclohezanone and

F + the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	ø		
Diethyl malonate	Na	C,H,OCH,P	808
n-Hezyl Slyryl Kelone and Diethyl malonate	NaOC ₂ H ₅	4-Carbethay-2-pentyl-5-phenylcyclohexane-	£2 82
1,2-Diphenyl-2-propen-1-one and Benzyl p-chlorophenyl ketone	кон, сп,он	$C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}COCH(C_{i}H_{i})CH_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i}-C_{i}H_{i$	ğ
Benry P Jolyl ketone Benry P Jolyl ketone Deory Pensiyl ketone Pleny i p-nihotobenryi ketone Pleny i p-nihotobenryi ketone Plenyi p-methyibenryi ketone Plenyi P-dimethyibaninobenryi ketone	KOH, CH,OU KOH, CH,OH KOH, CH,OH KOH, CH,OH KOH, CH,OH KOH, CH,OH	CH,GUIADOOCH,GU,-P (83) CH,GUIADOOCH,GUI-P (74) CH,GUIADOOCH, (80) P-CH,GUIANOOCH, (77) P-CH,GUIANOOCH, (77) P-CH,GUIANOOCH, (78)	cf. 505, 606 804 804 804 804
Dibenzoylmethane (Enol) and Cyanoacetamide	,		į
Vinyl p-Bsphenylyl Kelone and	NaOC,H, (C,H,),NH Piperidine	3-Cyano-4,0-diphenyl-2-pyridone (5-20) 3-Cyano-4,0-diphenyl-2-pyridone (55-70) 3-Cyano-4,6-diphenyl-2-pyridone	370, 592 370, 592 370, 592
Deoxybenzon  NaOCH ₃ Node: References 401–1045 are on pp. 515–555,  § The acid was isolated in this experiment	NaOCII, pp. 545-555.	P-C _t U,C _t U,COCH,CH,CH(C _t U,)COC _t U,	575

THE MICHAEL REACTION

## TABLE III-Continued

Michael Condensations with Argmatic  $\alpha, \beta$ -Ethylenic Ketones

Reactants	Catalyst	Product (Yield, ",")	References
Chalcone, C.H.CH=CHCOC,H., and	and	รี้หรือดว่าเอเมื่อหรือ == ห	
		••	
Dimethyl malonate	NaOCII,	ACH(CO;CH ₂ ); (Su, 91)	75, 101
Dimetal i maronace	Pineridene	ACHI(('O, CH3); (poor)	7.
Disting malonate	Pincridine: 0.1 equiv.		30, 55, 125,
Dietayi maionace	NaOC'II; KOII, acetal		483, 517, 518
	1 equiv. NaOC; IIs	$\overline{a}$	55
		1,1-dicarboxylate (70)	
Diethyl methylmalonate	Piperidine. NaOC, II,	AC(CH ₃ )(CO ₂ C ₂ H ₃ ); (SO)	55, 125, 51
•	Na	Retrogression products	396, 607
Diethyl ethylmalonate	NaOC.H5	Retrogression products	125
Diethyl phenylmalonate	NaOC III	3C(C,115)(CO;C,115); (94)	<b>155</b>
Diethyl succinate	NaOC II	ACHCO,H."	72
77			
		CH;CO;H	
Methyl phenylacetate	NaOCH	C,1115(11(.1)('O),C'H3	163, 605
Ethyl phenylacetate	NaOC, Hs	C. 115 (11(14) (O. 1711; (02); compound C. 11310.	82, 125
Ethyl a-phenylbutyrate	NaOC, IIs	C21157(C2115)(CO5C3115).1 (3)	125
$p ext{-}0_2 ext{NC}_6 ext{H}_1 ext{CH}_2 ext{CO}_2 ext{CH}_3$	NaOCH ₃	p-O;NC,III,CH(.1)('O;CH', (05)	OHE
$p ext{-}O_2NC_6H_2CH_2CO_2C_2H_3$	NaOC, IIs	p-0,Nc,H,CH(A)CO,C,H,	GNO
$p$ - $0_2$ NC $_6$ H $_4$ CH $_2$ CO $_2$ C $_4$ H $_9$ - $_n$	NaOC, H.	p-0;NC,H,CH(.1)(O),C,H,-n	963
		<b>O</b>	
Ethyl acetoacetate	NaOC,11s; piperidine	11.C CO.C.H.	125, cf. 19

125	123	121 121 12		HAEL 2 2	_				13
_	~ ~		5 ¥ ¥	<del>-</del> 60	5, 5	≓ដ	207 125 207	207	125
n,c, c,n, (0)	Call COCH (A) CO ₄ C ₄ III, (0.1) Compound C ₄ oII, (0.6)	4CHICNICO,CH, and (4),CCNICO,CH, (83) (4),CUNCO,CH, (91) 4CH,CNICONCO,CH, (78) 4CHICNICO,CH, (78)		1,4-dihydro derivative  AOH(CN), C'H CHE CONS	CHI,C(A),CN (81)	CHACOCOTO A MAN CHACOCOTO (CALLACOCOTO (COLLACOCOTO (COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO COLLACOCOTO COLLACOCOTO COLLACOCOTO (COLLACOCOTO COLLACOCOTO COLLACO	CH,COCH(A), (27) and CH,COC(A), (25) CH,CH(A)COC,H, (51) and CH,C(A),COC,U, (27) CH,CH(CH(A)COC, H, (31) and CH,C(A),COC,U, (27)	CH, CH, CCC, Lt, (12) and CH, CH, CCC, Lt, (13) (CH, ), C(CCC, Lt, CH, CCC, Lt, (20) C, Lt, CH, CH, (A) CCC, Lt, (20)	(C,H,CO),CHA (1)
NaOC,H,	Piperidine, NaOC ₂ H ₃ Na in C ₄ U ₆	NaOCH, NaOC,H, NaOC,H, NaOCH,	Piperidine or (C ₁ H _s ) _L NH I equiv. NaOC ₂ H _s NaOC ₂ H _s	NaOCH, NaOCH,	NaOCH,	NaOC, II, NaOC, II,	NaOC ₂ H ₆ NaOC ₃ H ₆ NaOC ₃ H ₆	NaOC,H, NaOC,H,	on pp. 545-555.
CH3COCH(C,H,)CO,C,H,	Ethyl benzoylacetate C,H;COCH;CH(C,H;)CH(C,H;). CO,C;H;	Methyl cyanoacetate Ekhyl evanoacetate Ekhyl mbutyleyanoacetate Cyanoacetatnide	$\mathrm{CH_5C}(\mathbf{\longrightarrow}\mathrm{NH})\mathrm{CH_2CN}$	Malcoontule Benzyl cyanide	Phenylacetaldchyde	Distriyl ketone Pinacolone Acetonhenena	Tropiophenoue n-Butyrophenone	Isobutyrophenone Deoxybenzon Dibenzoylmethane	Note: References 491-1045 are on pp. 545-555.

Note References 491–1045 are on pp. 542–565.  $\|\ Two\ temeries\ and\ a\ non-scale product,\ C_{p,H_{m}}D_{\phi}\ of\ unknown\ structure\ were obtained.$ 

61.4

## TABLE III-Continued

Michael Condensations with Aromatic  $\alpha, \beta$ -Ethylenic Ketones

Catalyst

Chalcone, CeHsCH=CHCOCeHs, (Cont.) and

Reactants

Product (Yield, %)

References

 $A = C_{i}U_{i}CUCU_{i}COC_{i}U_{i}$ 

Anthrone

ethanol; sec-amines NaOCHs; NaOH,

E

NaOH, ethanol

2-Phenyl-2,3-dihydro-y-pyrone

Na B

2-(3',4'-Methylenedioxyphenyl)-

2,3-dihydro-y-pyrone

Aq. NaOH; NaNH; Na

2-Phenyl-2,3-dihydrobenzo-y-

015

Note: References 491-1045 are on pp. 545-555.

113, 617

616

NaOH, ethanol; (C,Hs),NH

NaOII, ethanol

NaOH, ethanol; piperidine

3-Methylcyclohexanone

613, 616

THE MICHAEL REACTION

919

## TABLE III-Continued

# MICHAEL CONDENSATIONS WITH AROMATIC $\alpha, \beta$ -BTHYLENIC KETONES

Reactants	Catalyst	Product (Yield, %)	References
Chalcone, CellsCH==CHCOCeHs, (Cont.) and	b, (Cont.) and	$A = C_6H_6CHCH_2COC_6H_5$	
Cyclohexane-1,3-dione	Piperidine	(68)	618
Nitromethane	NaOCH3; NH3, ethanol (C,H6)2NH	JCHNO ₂ (75, 88) and (A) ₂ CHNO ₂ (small) (A) ₂ CHNO ₂ (two isomers, 77)	620, 209, 619 621
Nitrocthano 1-Nitropropano	CaH ₃ , CH ₃ OH (C ₂ H ₃ ) ₂ NH; NaOCH ₃ (C ₂ H ₃ ) ₂ NH CaH CH CH	JCH ₂ NO ₂ (65-92) CH ₃ CH(J)NO ₂ ((wo isomers: 78 + 11; quant.) CH ₃ CH ₂ CH(J)NO ₂ (97) CH ₃ CH(J)NO ₂ (45-92)	400 <i>a</i> 209, 620 209 466 <i>a</i>
2-Nitropropane	(C ₂ H ₆ ) ₂ NII; NaOCH ₃ ;	(CH ₂ ) ₂ C(JNO ₂ (92–96)	209, 166a,
Ethyl nitroacelate Benzyl p-tolyl sulfono	Cally, Chion (c ₂ H _b ) ₂ NH NaOcH ₃	$O_2NCH(A)CO_3C_2\Pi_b$ (94) $O_6\Pi_bCH(A)SO_2C_6H_4CH_5-p$ (two isomers: 16, 11)	050 222 74
Cyclopentadiene	Na derivative; piperidino	C11(C ₆ H ₆ )CH(A)COC ₆ H ₆ (Small)	376
		у _Ч	
Pluorene	Pyridine, NaOII, 1120	(Quant.)	362, 623



1-Hydroxycoumarin

2-Methylpyridine

2.7-Dibromofluorene

4-Methylquinohne

376

370

## TABLE III—Continued

MICHAEL CONDENSATIONS WITH AHOMATIC A.P.ETHYLENIC KITTONES

References 22 55. 624 625 370 A = Appropriately Substituted с, изсиси, сос, из Product (Yield, %) (CII, =CII), CII.1 (II) (CII,==(II),CII.4 (4) лен(со_ген₂); (я2) лен(со_ге₁н₂); ACH, NO, (87) ACH;NO; ACHINO, NaOCills; NaNH. B. Substituted Chalcones Catalyst. NuOCH, NaOC, Hs NaOCH, NaOCH, CH3NO2 CU2(CO2CH3)2 CH2(CO2C2H5)2 I,4-Pentadiene Addend CH₃NO; CH,NO. Substituent(s) in

> 3-Br 4-Br 4'-Br

3 3 and a NaOC,II, 2,7-Dibromofluorene NaOC, II,

Fluorene



## TABLE III-Continued

Michael Condensations with Aromatic  $\alpha, \beta$ -Ethylenic Ketones

0.6.		020	9739	<b>39</b>	027 nyd- 628	r xy- 50f J-	918
MICHAEL CONDENSATIONS WITH AROMATIC \$(\$\rho\$-in_in_in_in_in_in_in_in_in_in_in_in_in_i	Product (Alefa, %)  A = Appropriately Substituted  Call CHCHECOCAL  O	.4 (10)	F. (66)	011	4CH(CO ₂ CH ₃ ), (good) 2-Carbethoxy-3-p-methoxyphenyl-	a-phenyl-a-cyclobexen-1-one 3-Cyano-2-hydroxy-1-p-methoxy- phenyl-0-phenyl-1,5-dihydro- pyridine	o (
WITH AROMATIC &,	Catalyst	(C ₂ H ₅ ) ₂ NH	NaOII, ethanol	Pyridine	NaOCH ₂ NaOC ₂ H ₂	Na enolate	scc-Amines
EL CONDENSATIONS	Addend	Cyclopentanone	Cyclohexanone	4-Hydroxycoumarin Pyridine	CH ₂ (CO ₂ CH ₃ ); NaOCH ₃ CH ₃ COCH ₂ CO ₂ C ₃ H ₃ NaOC ₃ H ₃	иссн.сомн.	Cyclopentanone
Місна	Substituent(s) in  3 2  4  CH=CHCO  6' 5'	2-H0 (Cont.)		2′-НО	4-CH ₃ O		



3'-CII,

Note: References 491-1045 are on pp. 545-555,

## TABLE 111—Continued

## Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Ketonies

MICH	MICHAEL CONDENSATIONS WITH AMORALIC WIFE	the anteneous Helv		•
Substituent(s) in	Addend	Catalyst	Product (Yield, %)	References
3 2 CH=CHCO			A = Appropriately Substituted Callschell_COC_111s	
CCH ₃ (Cont.)	NCCH ₂ CONH ₂	Piperidine	3-Cyano-6-lydroxy-4-phenyl-6- $p$ - $tolyl-2$ -nin-ridone (75)	430
		NaOC ₂ II ₅	3-(Yano-2-keto-4-phenyl-6-p-tolyl	439
.NO <u>.</u> .Br, 4-CH ₃ 0	CH,NO. CH,(CO.CH,),	NaOCH3 NaOCH3	(4);CH(0); ACH(CO;CH ₃ );	021 027
,4'-Dimethoxy	2-Phenyl-2,3-di- hydro- <i>y-</i> pyrone	Na Na	0	<b>F</b> 19
-сн,0, 4'-си,	сизсосиссости	NaOC ₂ IIs	O CH3U,CC, H3.0 CH3-p	SZ9
	2-Phenyl-2,3-di- hydro-7-pyrone	u N	C. U.	61.4

Auto References 431-1744 are on pp. 545-555.

		THE	місн.	AEL REA	CTION
616	616	621	References	631	
	- ಕೆ	n) 2, and (A) _k CHNO _k	(leld, %)	ď-20	н

sec-Amines

Cyclopentanone

3,4-Methylenedoxy

			0-	
	3-Nethyleyclo- hexanone	sec.Amnes; KOII, C ₁ II,OH		616
	CIL,NO	NaOCH,	ACH,NO, and (A),CHNO,	021
Reactants a-liromobenzyluleneacetophenone and	Catalyst ne and		Product (Yield, %)	References
p-0,NC,H,CH,CN	NaOCH,	OHO OHO	H,C,CH——C(CN)C,H,NO,p	631
3,4-Methylenedioxymyrył n-Hexyl Kelone and	exyl Kelone and	(Mixture of stereolsomers)	ereolsomers)	
Ethyl acctoacetate	NaOC ₁ H,	2,4-212,02,13-4.8 (A)	CH ₂ COCHCO ₄ C ₄ H ₄ 3.4-CH ₂ O ₄ C ₄ H ₄ COC ₄ H ₄ m ₄ (A1 E ₇ 68%)	481
		·-(		
Auto References 431-2745 are on pp. 545-255.	100 mg 12 mg 100 mg	n-H ₁₃ C,	n-H ₁₃ C _p C _p C _p L _p O _p CH _p -3,4 (At refout 60%, together with some of the beauticities of directive)	632, 633

## TABLE III-Continued

MICHAEL CONDENSATIONS WITH AROMATIC A, \( \hat{\psi} \)-ETHYLENIC KITONES

A = C ₄ H ₅ COCH ₂ CHCOC ₄ H ₅ )  C ₄ H ₅ CH ₂ C(A)(CO ₄ C ₄ H ₅ ); (20) 1,2,3-Tribenzylpropane (1) C ₄ H ₅ COCH ₂ CH(A)COC ₄ H ₅ (62)  3-Cyano-5-methyl-4,6-diphenyl-2-pyridone  I -Nitro-1,2,3-triphenylpentan-4-one (68)  C ₄ H ₅ COCH(CH ₃ )CH(C ₄ H ₅ )CH(C ₉ CH ₃ ); (two isomers: 52 ÷ 10)  3-Cyano-5-methoxy-4,6-diphenyl-2-pyridone (34) and 3-cyano-4-phenyl-4-p-tolyl-2-pyridone (17)	MICHAEL	Condensations	MICHAEL CONDENSATIONS WITH TRESPONDE OF PRACTICE (Nield, 9,1)	References
A == C ₄ H ₃ COCH ₂ CHCOC(4H ₃ )  OCH ₃ C ₄ H ₅ CH ₂ C(A)(CO ₂ C ₂ H ₃ ); (20)  1,2,3-Tribenzylpropane (1)  C ₄ H ₅ COCH ₂ CH(A)COC ₄ H ₃ (62)  C ₄ H ₅ COCH ₂ CH(A)COC ₄ H ₃ (62)  1-Nitro-1,2,3-triphenylpentan-1-one (68)  C ₄ H ₅ COCH(CH ₃ )CH(C ₄ H ₃ )CH(C ₄ H ₃ )CH(C ₉ CH ₃ ); (two isomers: 52 ÷ 10)  3-Cyano-5-methoxy-4,6-diphenyl-2-pyridone (31) and 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (31) and 3-Cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		Catalyst	Trounci (Treat, 197	
CeH ₅ CH ₂ C(4)(CO ₂ C ₂ H ₅ ); (20) 1,2,3-Tribenzylpropane (1) CeH ₅ COCH ₂ CU(4)COC ₆ H ₅ (62) CeH ₅ COCH ₂ CU(4)COC ₆ H ₅ (62)  3-Cyano-5-methyl-1,6-diphenyl-2-pyridone H ₅ ) ₂ NH 1-Nitro-1,2,3-triphenylpentan-1-one (68) CeH ₅ COCH(CH ₅ )CH(C ₆ H ₅ )CH(CO ₂ CH ₅ ); (two isomers: 52 ÷ 10) 3-Cyano-5-methoxy-4,6-diphenyl-2-pyridone 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (31) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)			$A = C_{H_s} COCH_s CHCOC_{H_s}$	
OC413 OC414  C4H3COCH4CH(A)COC414 (02)  3-Cyano-5-methyl-4,0-diphenyl-2-pyridone  H5)2NH  1-Nitro-1,2,3-triphenylpentan-4-one (08)  C4H3COCH(CH3)CH(C4H3)CH(CO2CH3); (1wo isomers: 52 ÷ 10)  3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone  3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		NaOC.II, NaOCH,	C ₂ H ₂ CH ₂ C(A)(CO ₂ C ₂ H ₃ ); (20) 1,2,3-Tribenzylpropare (1)	58 831
H ₅ ) ₂ NH  3-Cyano-5-methyl-4,0-diphenyl-2-pyridone  1-Nitro-1,2,3-triphenylpentan-4-one (68)  C ₄ H ₅ COCH(CH ₅ )CH(C ₄ H ₅ )CH(CO ₅ CH ₅ ) ₂ (two isomers: 52 -; 10)  3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone  3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		NaOC, Hs	C415COC112CH(A)COC7H5 (62)	1550
H ₅ ) ₂ NH 1-Nitro-1,2,3-triphenylpentan-4-one (68)  OCH ₅ C ₄ H ₅ COCH(CH ₅ )CH(C ₇ H ₅ )CH((C ₀ CH ₅ )) ₂ (two isomers: 52 ÷ 10)  3-Cyano-5-methoxy-4,6-diphenyl-2-pyridone  3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		(C,H3);NH	3-Cyano-5-methyl-1,0-diphenyl-2-pyridone	7.89
OCH ₅ C ₄ H ₅ COCH(CH ₄ )CH(C ₄ H ₅ )CH(CO ₂ CH ₃ ); (two isomers: 52 ÷ 10) 3-Cyano-5-methoxy-4,4-diphenyl-2-pyridone 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		$(C_2\Pi_5)_2N\Pi$	1-Nitro-1,2,3-triphenylpentam-1-one (68)	ខ្ល
OCII ₅ 3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone  H _b ;NH  3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and  3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		NaOCH,	C _t H ₂ COCH(CH ₃ )CH(C _t H ₃ )CH(CO ₂ CH ₃ ); (two	១៸
NaOCH ₃ 3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone (C ₂ H ₅ ) ₂ NH 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)	-1-01	ıc and		
(C ₂ H _b ) ₂ NH 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)		NaOCH,	3-Cyano-5-methoxy-4,0-diphenyl-2-pyridone	120
3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)	pur			
		(C,III,),NII	3-Cyano-4-phenyl-6-p-tolyl-2-pyridone (34) and 3-cyano-6-phenyl-4-p-tolyl-2-pyridone (17)	370

3-Benzoyl-5 nitto-4,5 diphenylpentan-2-one (38) 5.Acetyl-2.methyl-4,6-diphenyl-3-p-tolucyl-3,4-4-Carbethoxy-2-benzyl-5-phenylcyclohexane-

1.3-dione (60)

dihydropyridme

370 594 633

23 ă

	416
o=< (	CH(C,H,)CH(C,H,)COC,H,
	NaOC, H.
	Deoxybenzoin

ACH(CO,CH,), NaOCH, Styryl Phenethyl Ketone and Dimethyl malonate

A = C, II, CH, CH, COCH, CHC, H,

3-Benzoyl-4-phenyl-3-buten-2-one and Diethyl malonate

NaOC,II,

P-CH,C4H,COCH,C(=NH)CH, Phenylnitromethane

(C₂H₈)₂NH None (C,H,),NH

3-Methoxy-3-phenyl-1-p-tolyl-2-propen-1-one and

Cyanoacetamide

3-Mehoxy-1-phenyl-3-p-anisyl-2-propen-1-one and

Cyanoacetamide

KOII, acetal (C,Hs),NH Fluorenylideneacetophenone ¶ und Acetophenone

3 Cyano 4-p-anisyl-6-phenyl-2-pyridone 3-Cyano-4-phenyl-6-p-tolyl-2-pyridone

9.9-Diphenacylfluorene

5-Mestloylacenaphthylene and Dethyl malonate

Note: References 491-1045 are on pp. 545-555. NaOC,H,

¶ The unsaturated ketone was formed an sate from fluorenone and acetophenone. •• The sent was obtained after hydrolysus of the adduct

636

5-Mesitoylacenaphthene-1-acetic acid** (50)

#### LABLE IV

ENIC KETONES OF THE DIBENZYLIDENE- AND DICINNAMYLIDENE-ACETONE TYPE Ė

MICHAEL CONDENSATIONS V	VITH ETHYLENIC ]	MICHAEL CONDENSATIONS WITH ETHYLENIC KETONES OF THE DIBERGALIDES.	References
Reactants	Catalyst	Product (Yield, %)	
Dibenzylidencacetone and		$A = C_{e}H_{s}CH = CHCOCH_{s}CHC_{e}H_{s}$	
Dimethyl malonate	Piperidine NaOCH,	ACH(CO ₂ CH ₃ ) ₂ (59) Dimethyl 2,6-diphenyl-4-oxocyclohexane-1,1-dicarboxylate	198 198
Diethyl malonate	Piperidine NaOCH.	JCH(CO ₂ C ₂ H ₅ ) ₂ Diethyl 2,6-diphenyl-4-oxocyclohexane-1,1-dicarboxylate	108
Ethyl acetoacetate Methyl cyanoacetate	(C ₂ H ₅ ) ₂ NH NaOCH ₃	CH ₃ COCH(A)CO ₂ C ₂ H ₅ (38) 4-Carbomethoxy-4-cyano-3,5-diphenylcyclohexan-1-one 4-Carbomethoxy-4-cyano-3,5-diphenylcyclohexan-1-one	21 198, 199 199
Ethyl cyanoacetate	NaOC, Hs	4-Carbethoxy-4-cyano-3,5-diphenylcyclohexan-1-one (88)	002
		0 =	
3-Methylcyclohexanone	$(C_2H_5)_2NH$	$\bigcirc_{\mathrm{CII}_{\mathfrak{p}}}^{\mathcal{A}}  \text{or}  {}^{\mathcal{A}} \bigcirc_{\mathrm{CII}_{\mathfrak{p}}}$	. 919
Benzyl cyanide	NaOCII3	$\gamma$ -Cinnamoyl- $\alpha_4\beta$ -diphenylbutyronitrile (two isomers), and 4-cyano-3,4,5-triphenylcyclohexan-1-one (total 44)	952
		or 4-Cyano-3,4,5-triphenylcyclohexan-1-one (52)	•
Nitromethane	NuOCH3	4-Nitro-3,5-diphenyleyelohexan-1-one	108

#### Substituted Dibenzylideneacetones

References		201	201	201	501				198
Substituents in Product (Yield, %) References	© = \( \sqrt{\frac{a}{a}} \sqrt{\frac{a}{a}} \rightarrow \( \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \( \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \( \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}{a} \rightarrow \frac{a}	3-0-CiC,H,CH-CH-CH-, 5-C,Hs, 6 C.H.O.C (35)	ė	ę		6-C,H,O,C— 3-9 CIC,H,—, 5-p CIC,H,CH—CII.	3-m-Clc,H,O,C-	6 C.H.O.C.	CHCO ₃ CH ₃ ), 3-p-Ansyl 4,4-dicarbomethoxy-5- phenylcyclohexan-1-one
Catalyst		NaOC,H; precidine	NaOC,H,	NaOC ₂ H ₆ ;	piperidine NaOCH,	NaOCH	NaOCH,	Piperidine	NaOCH,
Addend		CH,COCH,CO,C,H, NaOC,H;	CII, COCH, CO, C, H, NAOC, H,	CHICOCHICOLUI, NaOCHE	CH,COCH,CO,C,H, NaOCH,	CH, COCH, CO, C, H, NAOCH,	CH,COCH,CO,C,H, NaOCH,	CII,(CO,CII,),	<b>.</b> 9. 546–555.
Substituent(s) in	CHI-CHCOCH-CH			57	2,3'-Di-Ci	2, f'-D _{i-Cl}	3,1'-1),-(1	4-Cif ₁ 0	Note: References 491–1015 are on pp. 545–555.

MICHAEL CONDENSATIONS WITH BTHYLENIC KEYTONES OF THE DIBENZYLIDENE. AND DICINNAMYLIDENE-ACETONE TYPE

TABLE IV—Continued

Substituted Dibenzylideneacetones—Continued

Substituents in Product (Yield, %) References

Catalyst

Addend

Substituent(s) in

CII=CIICOCII=CH(

2-HO, 2'-CI

203

203

Callecollicoge His Naoca His

CH = CHC6 H, CH-0

3-m-ClC,H,CH=CH-, 5-0-HOC,H,-, 203 CH,COCH,CO,C,H, NaOH, aq. ethanol

203 803 3-p-GC,H,CH-CH-, 5-o-HOC,H,-,

6-C,H,O,C- (33)

ethanol

CH = CHC4H4CH-P

2-HO, 47-CI

CH,COCH,CO,C,H, NaOH, aq.

203

204 204 204 20,5

3-m-ClC,H,CH=CH-, 5-p-HOC,H,-,

CH,COCH,CO,C,H, NaOH, aq. ethanol

NaOH, aq. ethanol CH,COCH,CO,C,H,

NaOH, aq ethanol

ethanos

CH,COCH,CO,C,H, NaOH, aq

CH,COCH,CO,C,II,

3-Cl. 4'-CH,0

3-Cl. 4'-110 4-CI, 4'-IIO 4-CI. 4-CII,0

2-110, 3'-CI

"H=CHC₆H₄Cl-m

# MICHAEL CONDENSATIONS WITH BRHYLLING KENTONES OF THE DIBENZYLLDENE: AND DICINNAMYLLDENE; ACETIONE TYPE

TABLE IV-Continued

	References		202, 586	202	202 202	70 70 70				205 205	202
Continued	Substituents in Product (Yield, %)	⊃= <u></u> 71	3-o-HOC, H, CH=CH-,	3-o-culsocantententente	5-0-1100¢,11,— 3-0-013-00¢,11,011—011—,	5-o-CH ₃ OC ₆ H ₄ — (88) 3-o-CH ₃ OC ₆ H ₄ CH==-CH,	5-0-CH ₃ OC ₆ H ₄ —, 2-CH ₃ CO— 4,4-Dieurbomethoxy-3,5-di-p-methoxy-	phenyleyelohexan-1-one 3,5-Di-(p-methoxyphenyl)-4-carbo-	methoxy-f-cyanocyclohexan-1-one 3-p-(CH ₃ ) ₂ NC ₆ H ₄ (TI=CH,	5-p-(CH ₃ ),NC ₆ H ₄ —, 6-C ₂ H ₅ O ₂ C— 3-o-HOC ₆ H ₄ CH=-CH—,	5-p-(CH ₃ ) ₂ NG ₆ H ₄ —, 6-C ₂ H ₅ O ₂ C— p-(CH ₃ ) ₂ NC ₆ H ₄ CH==CHCOCH ₂ - CH(C ₆ H ₄ OH-o)OH(CO ₂ H) ₂ *
deneacelones-	Catalyst		NaOll, aq.	NaOH, aq.	ethanol NaOll, aq.	ethanol NaOH, aq.	ethanol NaOCH ₃	NaOCH,	NaOll, aq.	:4	ethanol NaOH, aq. ethanol
Substituted Dibenzylideneacelones—Continued	Addend		CH3COCH3CO3C3Hs NaOH, nq.	CH ₃ COCH ₂ CO ₂ C ₂ H ₅ NaOH, aq.	ethanol CH3COCH2CO2C2H6 NaOH, aq.	си,соси,соси,	$\operatorname{OII}_{\mathfrak{g}}(\operatorname{CO}_{\mathfrak{g}}\operatorname{CII}_{\mathfrak{g}})_{\mathfrak{g}}$	NCGII,CO,CII,	CII3COCII3CO2C2IIa NaOII, aq.	CM,COCH,CO,C,H,	NCUI1,CO,C,III,
	Substituent(s) in	STATE OF THE OFFICE OF STATE O	2,2'-Di-110	2-110, 2'-CH ₃ O	2,2'-Di-CH ₃ O		4,4'-Di-CH ₃		N ₂ (-U)-(CII ₃ ) ₂ N	2-110, 4'-(CII ₃ ) ₂ N	

				THE	ніснаві	. RE	SACIIC	IN.			
202	202	202	202	203	References	901	8	108	198		224
NaOH, aq. 3-0-CH,OC,H,OH—CH—,	တဲ	rio .	÷	ethanol 5-p-(OH-1,NC,H ₁ —, 6-C,H ₂ O ₂ C— NaOOH ₁ 3-p-OC,H ₁ CH=—CH—, 5-oCH ₂ OC,H ₁ —, 6-C,H ₂ O ₂ C— (57)	Product (Tfeld, %)	4,4-Dicarbomethoxy-3-phenyl-5-styrylovelo-	hexan-1-one	5.styrylcyclohexan-1-one	4,4-Dicarbomethoxy-3,5-distyrylcyclo-	Mexan-L-one	Compound C, U, U, N, O,
CH,COCH,CO,C,H, NaOH, aq.	CH,COCH,CO,C,H, NaOH, aq.	ethanol CII,COCII,CO,C,II, NaOH, aq. ethanol	CH,COCH,CO,C,H, NAOH, aq.	cu,coch,co,c,H, NaOCH,	Catalyst	NaOCH	etone and NaOCH.	•	NaOCH		NaOC ₁ II ₂ Irolysis of the adduct.
2-CII,0, 4'-(CII,),N	2-110, 3-CH,O, 4'-(CH,),N	2-HO, 4-CH ₃ O, 4'-(CH ₃ ) ₄ N	2·110, 5·CH ₂ 0, 4'·(CH ₂ ) ₄ N	2-0CH, 4'-C	Renctants Berzyldenermanyldeneaceione and	Dimethyl malonate	p-Methoxybenxylidenecinnamylideneacetone and Dimethyl matonato	Decinnamyluleneacelone and	Dimethyl malonate	Commence of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr	* The acid was obtained after hydrolysis of the adduct.

#### V SI ISING

MIGHAEL CONDENSATIONS WITH UNSATURATED KETONES CONTAINING HETEROCYCLIC RINGS

Reactants	Catalyst	Product (Yield, %)	References
Furfurylidencaeelone and		$A = \begin{bmatrix} \\ 0 \end{bmatrix}$ CHCH ₂ COCH ₃	
Benzyl cyanide 1-Nitropropane 2-Nitropropane Triethyl phosphonoacotate	NaOCH ₃ (C ₂ H ₅ ) ₂ NH (C ₂ H ₅ ) ₂ NH NaOC ₂ H ₅	C ₄ H ₅ CH(A)CN (81) CH ₃ CH ₅ CH(A)NO ₂ (75) (CH ₃ ) ₂ C(A)NO ₂ (95) (C ₂ H ₅ O) ₂ P(O)CH(A)CO ₂ C ₂ H ₆ (9)	121 202 203 24 24
Parfurylidencaectophenone and		$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ CHOIL, COC, II,	
Diethyl malonate Acet ophenone Nitromethane 1-Nitropropane 2-Nitropropane Phenylnitromethane	NaOC ₂ U _b NaOC ₂ U _b NaOCU ₁ (C ₂ U _b ) ₂ NH (C ₂ U _b ) ₂ NH NaOCH ₃	, CH(CO ₂ C ₂ H _b ) ² (75) C ₄ H ₅ COCH ₂ ·A (25) AOH ₂ NO ₂ CH ₃ OH(A)NO ₂ (79) (CH ₃ ) ² C(A)NO ₂ (90) C ₄ H ₅ CH(A)NO ₂ (90)	200 200 200 200 200 200 200 200 200

Purfurylideneacelophenones Containing a Substituent in the Phemil Graun

	of or bearing and and	enones Com	- " July promoter of the containing a Substituent in the Prenyl Group	
Substituent in	Adduct	Catalyst	Product (Yield, %)	Defenomen
Colon-cuco 1			ıbstıtı	Sparra rate of
4-CH,0 4-Cyclobexyl	CH,NO, C,H,CH,NO, CH,(CO,C,H,), CH,(CO,CH,),	NaOCH, NaOCH, NaOCH, NaOCH,	ACH,NO, R = 4 Br (75) $CH_0$ ,CHC,NO, R = 4 Er (72) $ACH(CO,H_0, R = 4 + CE_f(20)$ $ACH(CO,H_0, R = 4 + CE_f(20)$ $ACH(CO,H_0, R = 4 + CE_f(20)$	208 208 210 210
Reactants 2-Furylidene-1-fefralone and	Catalyst		Product (Yield, %)	References
Ethyl acetoacetate	NaOC, H,	_	CO.C. P. H.	000
2-Furylidene-G-methoxy-1-letralone and	raione and	1		2
Ethyl acetoacetate	NaOC II		CO ₂ C ₂ H ₅	

* The malonic ester adduct could not be obtained crystalling so it was hydrolyzed to the acid

#### TABLE V-Continued

MICHAEL CONDENSATIONS WITH UNSATURATED KETONES CONTAINING HETEROCYCLIC RINGS

	References	
	Product (Yield, %)	
MINISTER CONTRACTOR CO	Catalyst	nd.
TOTAL TOTAL	Reactants	han anormanoolahoo G-omekil

Benzylidene-2-acetylcoumarone and

2-Acetylcoumarone †

COCH, — CHC, H,

$$rac{2}{2} rac{1}{2} rac{1}{2$$

Hydroxymethylene-2-acetylthiophene and

Diethyl acetone-1,3-dicarboxylate

Diethyl 2-hydroxy-4-(a-thienyl)isophthalate (61)

427

NaOC₂H₅ Hydroxymethylene-2-acetylpyridine and

Diethyl 2-hydroxy-4-(a-pyridyl)isophthalate (76)

NaOC2H5 Diethyl acetone-1,3-dicarboxylate

Phenyl \(\beta\)-(4-Quinolyl)vinyl Ketone and

Acetophenone;

NaOH

1,5-Diphenyl-3-(4-quinolyl)pentane-1,5-dione (87)

638

427

Note: References 491-1045 are on pp. 545-555.

‡ A mixture of acetophenone and quinoline-4-carboxaldehyde was used. † A mixture of benzaldehyde and 2-acetylcoumarone was used.

Ξ

TABLE VI

MICHAEL CONDENSATIONS WITH 3-ACTLCOUMARINS AND RELATED COMPOUNDS

rences

Reactants	Catalyst	Product (Yield, %)	Refe
s-Aodyleoumarn and		nuless arrectures	
Cyanoacetamide	None	R = 3-Coumariny (45-52)*	٠
Acetone	Piperidine	HO CH,	'

 The symmetranide could be replaced by malonumide, formamide, or urea without changing the product. The same product was obtained when prperiding was used as a catalyst. The earlier report (ref. 213) that the product with cyanonecta-22222

 $R = C_b H_a$  (42)  $R = C_b H_a$  (21)  $R = 3 \cdot Coumariny1$  $R = CH_s$  (32)

NH,(NCCII,CONH,)† NH, (NCCH, CONH,) NH, (NCCH, CONH,)?

> Methyl ethyl ketone 3-Acetylcoumarm Acetophenone

+ In these experiments eyanoacetamide was present; its decomposition furnished the ammonia. mide and piperidine was 3-acetyldihydrocoumarm-4-(a cyanosoctamide) could not be confirmed.

#### TABLE VI-Continued

MICHAEL CONDENSATIONS WITH 3-ACYLCOUMARINS AND RELATED COMPOUNDS

Reactants

3-Acetylcoumarin (Conl.) and

Catalyst

Product (Yield, %)

References

Piperidine

3-Acetylcoumarin

Ē

NH3(NCCH2CONH2)+

Cyclohexanone

Cyanoscetamide	Piperidine	3-Benzoyldıhydrocoumarın-4-(«-cyanoacetamide)	213
7-Hydroxyeaumarın and Cyanoacetamide	Piperdine	7-Hydroxydthydrocoumarin-4-(x-cyanogeetamide) (30)	639
7-Methoxycoumarın and Cyanoacetamıde	Piperidine	7-Methoxydibydrocoumarm-4-(z.cyanoacetamide) (90)	629
2-(p-Methoxybenzylidene)coumaran 2-one\$ and	naran 2-one‡ and	A = COUCHC, OCH, P	THE M
Ethyl acetoucetate Deuxybenzon	NaOC ₂ H ₄ NaOC ₂ H ₄	o o caronal Arca Car.	CHAEL REAG
Cyclobexanono NaOG ₁ H _s	NaOC ₁ H ₄	- <u>`</u>	etion E

3-Benzoylcoumarın and

Note: References 491-1045 are on pp. 545-555.

In these experiments cynnacetamide was present; its decomposition furnished the armonia.
 The corresponding 5-methoxy compound behaves analogomity with eithyl acetoacetate, deoxybetamia, and cyclohexanone; ref. 214c.

TABLE VI Confinied

		References	215		216		010	640
TABLE VI—Continued	Michael Condensations with 3-acylcoumanins and Related Compounds	Product (Yield, %)	Ethyl p-hydroxybenzoate		a,a-Bis-(2-thio-4-ketotetrahydro-5-thiazoly1)ethane and homologs (22–55)		5,5'-Methylidynebis-(3-methylrhodanine) (31-69)	0 0 C—C—CH—CH—CH—C NC ₆ H ₅ (38)
	HAEL CONDENSATIONS	Catalyst	$NaOC_2H_5$		NH,OH, NH,CI	rhodanine and	t-Amines	(C ₂ H ₅ ) ₃ N
	Mrc	Reactants	$\gamma ext{-}Pyrone$ and Diethyl malonate	Alkylidenerhodanines and	Rhodanine§	5-Ethoxymethylene-3-methylrhodanine and	3-Methylrhodanine	3-Phenylrhodanine

1.1' Diphenyl-1' (p-bromophenyl)-3,3',3'-trimethyl. 1.1', ("-Triphenyl-3,3',3"-trimethyl-(4,4',4"-ter-2.

(4,4',4"-cer-2-pyrazolme)-5,5',5"-trione Pyrazolne)-5,5',5'-trione

The Action

3-Methylrhodagine

sak of 3,3'-ethylenebis-5-(2"-thiono-4"-keto-3"-methyl-Salt of 3,3'-ethylenebis 5'(2'-thiono-4'-keto-8"-pbenyl-5*-thuazolidylmethylenerhodanine) (50) 5"-this rolldylmethylenerhodanne) (37) 3.3'-Lihylenebis-(5-ethozymethylenerhodanine) and

950 940

(O,H,),N (C,11,)N

3-Pbenylrhodanne 3-Methylrhodanne

1-Phenyl-3-methyl-2-pyrazolm- None 1-(p-Mremophenyl)-3-methyl-2. Nape Pyrazol blue and

Note: References 491-1015 are on pp. 545-555. Pyruzohn-5-one

f The actual ingredients used were rhodanine and various alphatic aldelydes.

#### TABLE VII

# MICHAEL CONDENSATIONS WITH CYCLOALEENONES AND ACYL CYCLOALEENES

		Ondam	O MIMOI	. 1011	•	
References	427 427 445		642 643 643		436	
Product (Yield, %)	5-Indanol-6-carboxylic acid (18) Diethyl 5-indanol-4,6-dicarboxylate (92) 6-Methyl-2,3-dibydro-6-pyridindene*	o =	ACH(CO ₂ C ₂ II ₅ ) ₂ (90) ACH ₂ NO ₂ (50) CH ₃ CH(A)NO ₂ (57)		GH ₃	
Catalyst	and NaOC,Hs NaOC,Hs		NaOC ₂ H ₅ NaOCH ₃ NaOCH ₃		$NnOCH_3$	
Reactants	2-Hydroxymethylenecyclopentanone and Ethyl acetoacetate Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₈ Ethyl $\beta$ -aminocrotonate	2-Cyclohexen-1-one and	Diethyl malonate Nitromethane Nitroethane	3-Chloro-2-cyclohexen-1-one and	Dimethyl methylmalonate	1-Acetyl-1-cyclopentene and

611

98, 217 200 217
R = H R = CH ₂ O (55) R = C ₂ U ₄ O
NaNH, NaNH, NaNH,
1-Tetraione 6-Methoxy-1-tetraione 6-Ethoxy-1-tetraione

2-Methylenecyclohexanonet and Methyl ethyl ketone Ethyl acetoacetate

кон, сн,ои

Cyclobexanone

Note: References 491-1045 are on pp 545-555.

This product was obtained after hydrolysis and decarboxylation. † 2-Hydroxymethylcyclohexanone was used in these experiments.
† A mixture of cyclohexanone and formaldehyde was employed.

TABLE VII-Continued

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

62, 647, cf. 69, 175 62, 647, cf. 18, 70 References 048, 00 649 1-Methylbicyclo[3.3.1]nonan-5-ol-7-one Product (Yield, %) CO₂C₂H₅
CH₃
(6
CH₂CO₂C₂H₅ CH(CN)CONH. [C,H,CH,N(CH,),]OCH, Catalyst NaOC2H5 NaOC2H5 NH3 3-Methyl-2-cyclohexen-1-one and Reactants Ethyl cyanoacetate Ethyl cyanoacetate Ethyl acetoacetate Diethyl malonate

OH,

Piperidine, 1/15 mole

651

Note: References 491-1045 are on pp. 545-555.

HC

1,3-Dunethylindole

Cyanoacetamide

(C,U,CH,N(CH,),)OCH,

g

### TABLE VII-Continued

CYCLOALICENES
ACYL
AND
MICHAEL CONDENSATIONS WITH CYCLOALRENONES AND ACYL, CYCLOALRENES
WITH
CONDENSATIONS
MICHAEL

MICHAEL C	ONDENSATIONS WITH CYCL	MICHAIN, CONDENSATIONS WITH CYCLOALIDINONES AND ACYL, CYCLOALICES	Poforoncos
Renotants	Catalyst	Product (Yield, %)	
2-Hydroxymethylenecyclohexanone and Ethyl acetoncelthe Diethyl acetone-1,3-dicarboxylate NaOC ₂ H _b Cyamonectamide Ch ₃ C(:=:NH)CH ₃ CO ₂ C ₂ H _b	nd NaOC ₂ H ₆ NaOC ₂ H ₆ Piperidine; (C ₂ H ₆ ) ₂ NII None	Ethyl 6-hydroxytetralin-7-carboxylate (50) Diethyl 6-hydroxytetralin-5,7-dicarboxylate (83) 3-Cyano-5,6,7,8-tetrahydroquinolin-2-ol Bihyl 2-methyl-5,6,7,8-tetrahydroquinoline-3-carboxylate§	427 427 224 443, 662
CH ₃ C(=NH)CH ₄ CN (H ₃ C(=NH)CH ₄ COCH ₃ (H ₃ C(=NH)CH ₅ COC ₄ H ₆	None None None	3-Cyano-2-methyl-5,6,7,8-tetrahydroquinoline 3-Acetyl-2-methyl-5,6,7,8-tetrahydroquinoline 3-Benzoyl-2-methyl-5,6,7,8-tetrahydroquinoline	653 653 653
2-Aminomethylenceyelohexanone and Bahyl cyanoacotate	, Na	4-Cyano-3-0x0-2,3,5,6,7,8-hexahydroisoquinoline	97-7
1-Acetyl-2-methyl-A-cyclopentene and	***		
Dicthyl malonate	$NnOG_4H_b$	$\begin{array}{c} co_{a_{1}n_{b}} \\ co_{a_{2}n_{b}} \\ co_{a$	7-6-7- 6-7-
Diethyl phenethylmalonate	NnOC ₂ 11 ₆	Aoid, C ₁₀ II ₂₄ O ₂ (poor)	218

Diethyl malonate

N.OC.H.

1-Acetyl-1-cycloherene and Diethyl malonate

Ethyl acetoacetate

NaUC,II

Nani,

Cyclohexanone

Note: References 401–1015 are on pp. 515–555. § At 0° the product is chyl O-bydroxy-2-methyl-5,6/7,8/9,10-hexaly droquinolme-3-carbaxy late.

22

FI. ES. 96.

VU, cf. US

770

### TABLE VII-Continued

MICHARRI, CONDENSATIONS WITH OXOLOALIGENONES AND ACXL OXOLOALIGENES Product (Yield, %)

References

Reactants

1-Acetyl-1-cyclohexene (Cont.) and

Catalyst

1000,111,4

Cyclohoptanone

3

CIII3CO

NuNII

1-Acetyl-1-oyelohexene

(Mixture of leamers)

Nu.NII,

212

1-Tetralone



NaNE,

cu. 1. Decalone

NaNH,

6-Methoxy-1-tetralone

NaNH

1-Oxo-9-methyl-1,2,5,6,7,8,9,10. octahydronaphtlaslene



3,8-Dimethyl-4,7,8,0-tetrahydro- NaNH, 2-Methoxymethylenecyclohexan-1-one and

Indan-1-one

Ethyl acetoacetate

55

2-Hydroxy-5,8,7,8-tetrahydro-3-naphthoic acid and

ethyl «-acetyl-\$-(2-ketocyclohexyl)acrylate

Note: References 491-1045 are on pp. 545-555.

### TABLE VII-Continued

## MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

			ORGA	NIC REAC	CTIONS				
	References	127	941	176	r z	3	Faa		
MICHAEL CONDENSATIONS WITH CICHOALBENONES AND MICH CYCLOALBENES	Product (Yield, %)	5,7-Dicarbethoxy-8-methyl-0-hydroxy- 1,2,3,4-tefrahydronaphthalene (36)	$CH_3 \longrightarrow CN$ $CH_3 \qquad CN$ $CH_3 \qquad CH_3$	$\bigcup_{CN} \bigcup_{and} \bigcup_{and} \bigcup_{N} \bigcup_{N} \bigcup_{and} \bigcup_{N} \bigcup_{$	CH ₃ ÖH ₃ 1,3-Dimethyl-6-hydroxybicyclof3,3.1 monun-7-eme		$H_1C = CIUCH(CN)CO_1C_2H_5$	H ₃ C CN and H ₃ C N	TT 017
en condensations with co	Catalyst	xan-1-one and late NaOC;H _s	Piperidine; NaOC ₂ H ₅	Piperidine; NaOC ₂ H _s	and $\mathrm{NaOc}_{2}\mathrm{H}_{5}$	loheranone and	(C ₂ 11 ₆ ) ₂ N11	Piperidine; $(C_2\Pi_5)_2N\Pi$	
MICHA	Reactants	2-(x-Hydroxycthylidenc)cyclohexan-1-one and Diethyl acetone-1,3-diearboxylate NaOC ₂ H _s	(Yanoucetamide	N-Methyleyanoncetamide	3,5-Dimethyl-2-cyclohexen-1-one and Ethyl acetoacetate	2-Hydroxymethylene-5-methyleyelohexanone and	Ethyl cyanoncetate	Cyanoacetamido	

yleyclohexanone and	N.
2-Amnomethylene-3-meth	Sthyl cyanoacetate

None

None

### TABLE VII-Continued

### MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

ield, %) References		£25.	-tetrahydroquinoline-3-		979		S
Product (Yield, %)	\ \ \	OH, N	Ethyl 2,8-dimethyl-5,6,7,8-tetrahydroquinoline-3-carboxylate (42)		$\begin{pmatrix} 0 \\ \parallel \\ CH_3 \end{pmatrix}_2$		CH3
Catalyst	ileyelohexanone and	sec-Amine	None	can-1-one and	кон, с _е н,он	thylcyclohexan-1-one and	thylcyclohexan-1-one and
Reactants	2-Hydroxymethylene-6-methyleyclohexanone and	Cyanoacetamide	CH,C(≔NH)CH,CO,C,H,	2-Methylenc-3-methylcyclohexan-1-one and	3-Methylcyclohexanone	2-(x-11 ydroxyethylidene)-4-methyleyelohexan-1-one and	Z-(x-Hydroxychylidene)-4-me

941

2-(a-Hydroxyethyldene)-6-methylcyclohexan-1-one and

Meltyl 
$$\alpha$$
-Cyclopentyltdenesityl Kelone and  
Ivettyl malonate  
Na $\mathbb{O}_{\mathbf{G}}$ 

176

Ethyl 6 methyl-2,3-dibydropyridindene 7-carboxy-Diethyl 3-hydroxybieyclo[5.4.0]bendeea-1(6),2,4. triene-2,4-dicarboxylate (61)

221, 390

### TABLE VII-Continued

CYCLOALKENES
ACYL
AND
CYCLOALKENONES
WITH
CONDENSATIONS
MICHAEL

References		659				653		650	96 099
Catalyst Product (Yield, %) Re	H ₃ C CH ₃	$CH_2CH(COCH_3)CO_2C_2H_5 \\ (8-20)$	or	CO ₂ C ₂ H ₅ (42)	OH.	ethyl-5,6,7,8-tetrahydroquinoline-	o-cirboxylate	5-Nitromethyl-3,3,5-trimethylcyclohexanone (0)	10-Methyldecalin-1,3-dione (low) 4-Carbethoxy-10-methyldecalin-1,3-dione (good)
Catalyst	капопе апд	$\mathrm{Na}\mathrm{OC}_{2}\mathrm{H}_{5}$			cyclohexanone and	None		Piperidine	nd ${ m NaOC}_2{ m H}_3$
Reactants	2-Methylenc-3,3-dimethylcyclohexanone and	Ethyl nectoncefute			2-Hydroxymelhylene-4,5-dimethyleyelohexanone and	$\mathrm{CH_3C}(=\mathrm{NH})\mathrm{CH_2CO_2C_2H_5}$	Isophorone and	Nitromethane	1-Acetyl-2-methyl-1-cyclohexene and Diethyl malonate



401, 384

KOC, H.

Cyclobexanone

1-Acetyl-6-methyl 1 cyclohexene and

Cyclohexanone

KOC,Ho-1

Note: References 491-1045 are on pp. 545-555. || A 50% yield of

was also obtained. Other authors (ref. 387) describe this compound as the only product of the reaction || In addition, a. 49% yield of

was obtained.

Maximus of lacasers, 22 1)

Otaxture of semeer, 1971

-coch-

(26 crude)

#### TABLE VII-continued

MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLALKENES

References 661 Product (Yield, %) CH3⊝  $(C_2H_5)_2NH$ Catalyst 2-Methyl-3-vinyl-2-cyclohexen-1-one and 2-Methylcyclohexanone-1,3-dione Reactants

H₃O₍₂₃₎

 ${\rm Cyclopentanone} \qquad \qquad {\rm NaOCH_3}$ 

1-Acetylcycloheptene and

Cyclohexanone KOC₄H₉-t

644

3

Dethyl 3-hydroxybicyclo[6.4.0]dodeca-1(6),2,4. triene-2,4-dicarboxylate (59)

428

Piperidine NaOC,H,

3-Methyl 5-n-propyl-2-cyclohezen-1-one and

Nitromethane

2-Methylcyclohexylideneacetone and

Diethyl malonate

2-Hydroxymethylenecycloöclanone and

Diethyl acetone-I,3-dicarboxylate

NaOC, H,

3-Methyl-3-nutromethyl-5-n-propylcyclohexanone (25) 650

1-Carbethoxy-7-methylspiro[5.5]hendecane-2,4-dione

Note: References 491-1045 are on pp. 545-555.

** This product is formed from an intermediate of the formula

which has, however, not been isolated.

### TABLE VII-Continued

# MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

		OROZAMIC I	VE.	CT	IUNS			
References	520	662		550	662		431	50
Product (Yield, %)	8-Methylspiro[5.5]hendecane-2,4-dione	$\begin{array}{c c} \operatorname{CH_2} \\ \operatorname{OH} \\ \operatorname{CH_3} & \operatorname{CN} \end{array}$		9-Methylspiro[5.5]hendecane-2,4-dione	$H_3C \xrightarrow{CU_3} OII$ $CU_3$ $NII$ $CN_3$ $CN_3$		5-Hydroxy-3-isopropenyl-9-methylbicyclo[3,3,1]-	nonun-7-one (54) Ethyl 2-methyl-5-isopropenylcyclohexanone-3- cyanoacetate (25–33)
Catalyst	me and NaOC ₂ H _s	NaOC ₂ H ₅	ne and	$NnOC_2H_s$	NaOC ₂ H,		$NnOC_2H_3$	$(C_2H_b)_kNII$
Reactants	3-Mehylcyclohexylideneaeclone and Diethyl malonate	Cyanoacelamide	4-Methylcyclohexylideneaectone and	Ethyl cyanoacetate	Cyanoacetamide	Carrone and	Bthyl acctoacetate	Ethyl cyanoacetate

NaOC, II, Dathyl malonate

1-Accept-2,6-dimethyleyclohezene and

NaOC,II, Dothy Inalonate

1..lectyl-0,6-dimethyleyclohexene and

Dethyl a actyladipate

8 Carbethory 0-methyl-2-cycloheren-1-one and

NAOC, II,

Dethyl malonate

Dethyl methylmakonate

Note: References 491-1045 are on pp. 515-555

4-Carbethoxy-8,10-dunethyldecalın-1,3-dione (42) trans(?)-8,10-Dimethyldecalm-1,3-dione





### TABLE VII-Continued

### MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

Reactants	Catalyst	Product (Yield, %)	References
1-Butyryl-2-methyl-1-cyclohexene and Diethyl malonate	nd ${ m NaOC}_2{ m H}_5$	trans(?)-2-15t hyl-1,0-met hyldecalin-1,3-dione	96
2-Hydroxymchylenementhone and		CH3	
Cyanoacetamide	see-Amine	$\begin{array}{c c} CN & CN \\ CM & CM \end{array}$	Fee
2-Hydroxymethylenecamphor and		, trypo	
Malonic acid Cyanoacetic acid	None None	$\beta$ -Camphorylidenepropionic acid (50) $\beta$ -Camphorylidenepropionitrile (80)	366 366
10-Methyl-2-oxo-2,3,4,5,6,10-hexabydronaphthalene and	dronaphthalene and	CH,	
Diethyl malonate	NaOC <u>.</u> Us	O CH(CO ₂ C ₂ H ₅ ) ₂ (33)	190
2-Hydroxymethylenecyclodecanone and	pu		
Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	NaOC ₂ H ₅	Diethyl 3-hydroxybicyclo[8.4.0]tetradeca-1(6),2,4-	428
2-Phenyl-2-cyclopenten-1-one and		trene-2,4-dicarboxylate (60)	
Dicthyl malonate Dibenzyl malonate	NaOC <u>.</u> H ₆ KOC ₄ H ₉ -t	Diethyl 2-phenylcyclopentan-1-one-3-malonate (67) 3-0xe-2-phenylcyclopentane-1-acetic acid (53)	685 686

Dibenzyl malonate	KOC,H,-	trans(?)-2-Benzoylcyclopentylmalonic acid	100
2-Phenyl-2-cyclohexen-1-one and			
Diethyl malonate	NaOC _t H,	Diethyl trans 2-phenylcyclohexan-1-ene-3-malonate 105, 106.	105, 106,
Dibenzyl malonate	KOC,Hy-t	(96) Dibenzyl frans-2-phenylcyclohexan-1-one-3-malonate 108, 609	608, 600
Methyl cyanoacetate	NaOCH,	(90) Methyl 2-phenylcyclobexan-1-one-3-cyanoacetate	106. 668
Benzyl cyanoucetate Nitromethane Methyl nitroacetate	KOC,H, 1 (C,H,CH,N(CH,),]OCH, [C,H,CH,N(CH,),]OCH,	(80)  terre 3-Cyanomethyt-2-phenyley clohexan-1-one (84) 2-thenyl-3-nitromethylcyclohexan-1-one (80) Methyl tenue-2-phenyleyclohexan-1-one-3-nitro-	108 100, 668
6-Phenyl-2-cyclohexen-1-one and		acetate (90)	900, 000
Dibenzyl malonate††	KOC,H,-4	frans-6-Phenylcyclohexanone-3-acetic acid11	107
4 Phenyl-2-cyclohexen-1-one and			
Dibenzyl malonate††	KOC,Up-t	trans-4-Phenyleyclohexanone-3-acette acid tt	107
Cyclohexylidenecyclohexanone and			
Cyanoucetarnide	NaOC ₂ H _s	Compound CisHseN,O	670
1-Bulyryl-2,6-dimethylcyclohezene and	and		070
Diethyl malonate	$NaOC_2II_b$	frans(?)-2-Kthyl-8-10 dimethyllanding 1.2 dimen	1
Note: References 491-1045 are on pp. 545-555.	on pp. 545-555.	and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	96

1-Benzoylcyclopentene and

†† A mixture of 4- and 6 phenyl-2-cyclohoxen-1-one was used in this experiment.
†† The product was obtained after hydrolysis and partial decarboxylation.

### TABLE VII-Continued

MICHAEL CONDENSATIONS WITH CYCLOALRENONES AND ACYL, CYCLOALRENES

Reactants .

2-Hydrindanylidencaectone and

Catalyst

Product (Yield, %)

References

COLCLID

ê

NnOC,IIb

Diethyl malonate

CII, OII

NaOCalls

Cyanoacetamide

1,10-Dimethyl-2-oxo-2,3,4,5,6,10-hexalydronaphthalene and

NaOCall

Diethyl malonate

CII

Diethyl methylmalonate

272

071

1-Benzoylcyclohexene and Dibenzyl malonate	KOC,H,-4	frans(?)-2-Benzoyleyclohexylmalonic acid (64)	199
2-Phenyi-2-cyclohepten-1-one and Dibenzyl malonate	KOC,H,-4	Dibenzyl 2-phenylcycloheptan-1-one-3-malonate (90) 108	108
1-Actyl-9-methyl-0-oxo-3,4,6,7,8,9-Aexahydronaphthalene and	hexahydronaphthalene and		
		H ₃ C O ₃ c ₃ H ₆	

Diethyl a acetyladipate

Ethyl acctoacetate

Note: References 491-1045 are on pp. 545-555

†† The product was obtained after bydrolysis and partial decarboxylation.

Cyclohexane-1,2-dione

357

674 673

### TABLE VII-Continued

# MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

	0.	10.11110 1	ILITOTION D
References	223	. 428	106, 668 106, 668 108, 669 106, 668 106, 668 106, 668
Product (Yield, %)	$(H_2)$	Diethyl 3-hydroxybicyclo[ $10.4.0$ ]- $1(6)$ , $2,4$ -triene- $2,4$ -diearboxylate	$A = \begin{cases} O & CH_2O & OCH_3 \\ A = \begin{pmatrix} CH_2O & CCH_3 \\ ACH(CO_2CH_3)_2 & (91) \\ ACH(CO_2CH_2C_4H_5)_2 & (83) \\ ACH(CN)CO_2CH_5 & (90) \\ ACH(CN)CO_2CH_5 & (90) \\ ACH(CN)CO_2CH_5 & (90) \\ ACH_2CN & (82)\S\S \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)CO_2CH_5 & (90) \\ ACH(NO_2)C$
Catalyst	Celone and Na	w and NaOC ₂ H ₅	Exen-1-one and  NaOCH ₃ NaOC ₄ H ₅ -t  NaOC ₄ H ₅ -t  NaOC ₄ H ₅ -t  KOC ₄ H ₅ -t  [C ₆ H ₅ -t  KOC ₄ H ₅ -t  KOC ₄ H ₅ -t
Reactants	Methyl α-Hydrindanylideneëthyl Ketone and Diethyl malonate Na	$2$ -Hydroxymethylenccyclododccanone and Diethyl acetone-1,3-dicarboxylate ${ m NaOC_2H_5}$	2-(2',3'-Dimethoxyphenyl)-2-cyclohexen-1-one and Dimethyl malonate Diethyl malonate NaOC ₂ H ₅ Dibenzyl malonate Nebyl cyanoacetate Ethyl cyanoacetate Benzyl cyanoacetate ROC ₄ H ₅ -I RoC ₄ H ₅ -I Rehyl cyanoacetate Co ₄ H ₅ -I Rehyl nitroacetate NaOC ₄ H ₅ -I Rehyl malonate nad Dibenzyl malonate

3-Oxo-2-(2',3',4'-trumethoxyphenyl)cycloheptane-1-

acetic acid (72);;

675

== CHCOCOCH₃

(Jew)

Note: References 401-1045 are on pp. 545-555.

Compound Callson'sOa

‡‡ The product was obtained after hydrolysus and partial decarboxylation.
§‡ This product was obtained after partial hydrolysus and decarboxylation.

The product results from spontaneous dehydrogenation or disproportionation of the expected compound. Ill The product was obtained after hydrolysis.

677

#### TABLE VII-Continued

# MICHAEL CONDENSATIONS WITH CYCLOALKENONES AND ACYL CYCLOALKENES

References		675	532	158		428
Product (Yield, %)	0	CH=CHCOCOCH ₃ (35) ⁵⁷⁵	Diethyl cyclopentadecan-1-one-3-malonate (41)	Diethyl 3-hydroxybicyclo[13.4.0]nonadeca-1(6),2,4,-	triene-2,4-dicarboxylate (79)	Diethyl 3-hydroxybicyclo[14.4.4.0]eicosa-1(6),2,4-triene-2,4-dicarboxylate (35)
Catalyst	rone and	Na	NaOC2H5	canone and te NaOC ₂ H _s	anone and	te NaOC ₂ H ₅
Reactants	2-Isopropoxymethylenebenzosuberone and	Biacetyl monodimethyl ketal	2-Cyclopentadecen-1-one and Diethyl malonate	2-Hydroxymethylenecyclopentadecanone and Diethyl acetone-1,3-dicarboxylate NaOC ₂ H ₅	2-Hydroxymethylenecyclohexadecanone and	Diethyl acetone-1,3-dicarboxylate NaOC ₂ H _s

Diethyl 7-oxo-5-cholestene-3-malonate (50)

863

C.H.N(CH,)MgB.

Note: References 491-1045 are on pp. 545-555 COLCLYS

17 The product result from spontaneous dehydrogenation or disproportionation of the expected compound.
••• This reaction takes place when

-ссиси,си,со,с,п,

is treated in that he reagent or when 1-acetyl Q.C.-dimethyl-1-cyclodicene is constaned with ethyl a-a-eetyladigate in the presence co.c.u.

THE MICHAEL REACTION

				-10110		
	References	679 629, 681 682 683 683	100	685	980	230
Robinson's Modification of the Michael Condensation of a.fEthylenic Ketones	Product (Vield, %)	A = CH ₃ COCH ₂ CH ₂ .— ACH(CO ₂ C ₂ H ₅ ) ₂ C ₆ H ₅ (L ₄ )(CO ₂ C ₂ H ₅ ) ₂ 4-Carbethoxy-3-methyl-2-cyclohexen-1-one 3,6-Dimethyl-2-cyclohexen-1-one 6-Benzyl-3-methyl-2-cyclohexen-1-one Elhyl 2-isobutyryl-5-oxolohexanoute (65)	6-Isopropyl-3-methyl-2-cyclohexen-1-one* (50)	Ethyl 1-methyl-2,4-dioxocyclohexane- 1-pyruvate	O CH2CH2CO2CH3 (8)	CH ₃ CO ₂ CH ₃ 2-(\(\beta\text{-Acetylethyl}\)-2-carbethoxycyclohexan- 1-one
MICHAEL CO	Catalyst .	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ — NaOC ₂ H ₆	$NaOC_2H_5$	NaOC ₂ H _k	NaOCH ₃ , pyridine	NaOC ₂ H ₆ , pyridine
ROBINSON'S MODIFICATION OF THE	Addend	CH ₂ (CO ₂ C ₂ H ₃ ) ₂ C ₆ H ₅ CH(CO ₂ C ₂ H ₄ ) ₂ CH ₃ COCH ₂ CO ₃ C ₂ H ₄ CH ₃ COCH(CH ₃ C ₂ C ₂ H ₅ CH ₃ COCH(CH ₃ C ₆ H ₅ )CO ₂ C ₂ H ₅ Ethyl isobutyrylace(ate	Ethyl α-ncetylisovalerate	Diethyl «-methyloxalacetate	Dimethyl α-methyl-β-oxoadipate	2-Carbethoxyeyclohexan-1-one
	Substituent R in CH ₃ COCH ₂ CH ₂ R	(CL ₃ ) ₂ N (C ₂ H ₃ ) ₂ N·CH ₃ I (CH ₃ ) ₂ N·CH ₃ I (C ₂ H ₃ ) ₂ N·CH ₃ I	(P.H.) N. CH. 7	1677		(C ₂ U ₅ ) ₂ N



Note: Heferences 491-1015 are on pp. 515-555.

This product, piperitone, results from hydrolysis and decarboxylation.

# TABLE VIII—Continued

ones References	532	533	691	691	229, 230
Robinson's Modification of the Michael Condensation of $\alpha,\beta$ -Ethylenic Ketones in Addend Catalyst Product (Yield, %) $A=\mathrm{CH_3COCH_2CH_2}.$	CO ₂ CH ₃	O A CO2 CH ₃	3-Methyl-2-cyclohexen-1-one (16)	GH, CB)	,
Irchael Cond Catalyst	NaOCH,	$ m Na OCH_3$	None	None	NaNH2; NaOC2H5
beinson's Modification of the M Addend	Methyl 1-0xo-1,2,3,4-tetrahydro- phenanthrene-2-carboxylate	Methyl 4-oxo-1,2,3,4-tetrahydro- phenanthrene-3-carboxylate	сн,сосн,	Cyclopentanone	2-Methylcyclopentanone
Ro Substituent R in CH ₃ COCH ₂ CH ₂ R	$\bigvee_{N\cdot \mathrm{CH}_3\mathrm{I}}$		$(C_2H_5)_2N$		$(C_2H_5)_2N \cdot CH_3I$



2-Methylcyclohexanone

Note. References 401-1015 are on pp. 545-555.

2-Pormyleyelohexanone

# TABLE VIII—Continued

References F99695 537 700229Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones (21) CH2CO2CH3  $A = CH_3COCH_2CH_2 -$ Product (Yield, %) COCH3 (40) CH, (CH₃)₂ Catalyst 5-Carbomethoxymethyl-2-methyl- NaOCH₃ 2-Acetyl-3,3-dimethylcyclohexane- NaOCH₃ NaOCH₃ NaNH, NaNH. Addend cyclohexan-1-one trans-2-Decalone Substituent R in сн,сосн,сн,в  $(C_2H_5)_2N\cdot CH_3I$ (Cont.)

Note: 14 firences 191-1015 are on pp. 515-555

1-Methyl-2 deculone

; A mixture of this compound with the isomer of the structure

was used. Part of the material was delty drogenated to 0-hydroxy-5-methyl-1-tetralone.

(£)§

### TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

Substituent R in сн,сосн,сн,в

Addend

Catalyst

References

 $A = CH_3COCH_2CH_2$ Product (Yield, %)

4-Cyclohexyl-2-hydroxymethylene- NaOCH₃

cyclohexan-1-one

 $(C_2H_5)_2N \cdot CH_3I$ (Cont.)

700

(76) and

C,H111

NaOCH3 2-Hydroxymethylene-4-(trans-4'-

hydroxycyclohexyl)cyclohexan-

2-Hydroxymethylene-4-(trans-4'hydroxycyclohexyl)cyclohexan-

 $(C_2H_5)_2N$ 

 $NaOCH_3$ 

 $(C_2H_5)_2N \cdot CH_3I$ 

2-Hydroxymethylene-4-(eis-4'-oxo-NaOCH₃ cyclohexyl)cyclohexan-1-one

692

<u>چ</u> (کا

532

§(⊕)



(C,H,),N.CH,I

(C,H,),N

§ This product resulted from the cyclization of the primary product, which has not been isolated. Note: References 491-1045 are on pp. 545-555

Ę

30.5

,—C,II,CO,II-,,

1\eferences -thothophia = r Product (Yield, %) Catalyst Addend Substituent R in

2-Hydroxymethylene-4-(4'-carboxy- NaOCH3 phenyl)cyclohexan-1-one

CH3COCH2CH3R

(CIII₃)₃N·1 (Cont.)

NaOC113

2-Hydroxymethylene-4-(4'-earbo-

methoxycyclohexyl)cyclohexan-

l-one

4.112.00,111,9—

NaOCH,

2-Hydroxymethylene-4-(4'-carbomethoxyphenyl)cyclohexan-1-one

252

703

NuNII,

(C,11,5),N.C11,1

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylesic Klitones

TABLE VIII-Continued

(Mixture of feamers)

andmomethylene-trans-2-decalone 1.IIydroxymethylene-3.methyl.

(C, II, ), N · CII, I

Note: References 491-1045 are on pp. 545-555. If This is the structure assumed by the authors.

2-Hydroxymethylene-1-oxo-1,2,3,4. NaOCH,

tetrahydrophenanthrene

NaNH,

F₃C



one (52-56)

NaOC,IL

2,2'-Dunethorydeoxybenzom tetrahydrophenanthrene

(CII, N. CII, I

3-IIydroxymethylene-4-oro-1,2,3,4- NaOCII,



Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones TABLE VIII-Continued Catalyst

Addend

си,соси,си,в Substituent R in

References

 $m CH_3$ 

 $A = CH_3COCH_2CH_2 -$ Product (Yield, %)

CH3 and

528, 706

(37)

NaOCH3

2-Methylcyclopentane-1,3-dione

 $(C_2H_b)_2N \cdot CH_3I$ (Cont.)

Piperidine

Cyclohexane-1,3-dione

\CH3,

None

2-Methylcyclohexane-1,3-dione

663

NaOCH3;

ĊĦ,

663, 706,

707

NaNH₂; (C₂H₅)₂NH; pyridine; NaOC₂H₅



2-Methyleyelohexane-1,3-dione

2-Methyleyelohexane-1,3-dione

C,II, N.CII, J

538 910

2.Nitropropane Nitromethane

CHO,N

# TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

Substituent R in сп,сосп,сы,п

Addend

Catalyst

References

NaNH,

(C2HS)N·CH3I

HOM

Methyl fluorene-9-carboxylate

N.CH JI

Catalyst

Reactants

NCH3-CH3I and

Ethyl acetoacetate Diethyl malonate

ACH(CO₂C₂H₅)₂ (25) CH₃COCH(A)CO₂C₂H₅ KOC,H, KOC,H,

681 681

References

544

Methyl 9- $(\beta$ -acetylethyl)fluorene-9- $A = (CH_3)_2NCH_2CH_2COCH_2CH_2$  $A = CH_3COCH_2CH_2$ Product (Yield, %) Product (Yield, %) carboxylate (45)

(CH₃)₂C(A)NO₂ (41)

KOC,H,

2-Nitropropane

2 Carbethoxycyclopentanone

2 Carbethoxycyclohexanone

Dethyl malonate

|| This is the structure assumed by the authors, Note: References 491-1045 are on pp. 545-555.

# TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

		ORGAI	NIC REACTION	NS	
References	231	632 633	115, 532	713	714
Product (Yield, %)	CH ₃	Methyl 1-oxo-2-(β-propionylethyl)-1,2,3,4-tetra- hydrophenanthrene-2-carboxylate (96) Methyl 4-oxo-3-(β-propionylethyl)-1,2,3,4-tetra- hydrophenanthrene-3-carboxylate (87)	OH (Enol)	OH (Quant.)	$CH_{\mathfrak{s}}$ and $CH_{\mathfrak{s}}$ $CH_{\mathfrak{s}}$ $CH_{\mathfrak{s}}$ $CH_{\mathfrak{s}}$ $CH_{\mathfrak{s}}$ $CH_{\mathfrak{s}}$
Catalyst	$ m NuOC_2H_6$	NaOCH ₃	(C2H5)3N	None	NaNH,
Reactants	$CH_3CH_2COCH_2CH_2N(C_2H_5)_2\cdot CH_3I$ and $2 ext{-}Carbethoxyeyclohexanone**}$	Methyl 1-oxo-1,2,3,4-tetrahydrophenanthrene-2- NaOCH ₃ carboxylate Methyl 4-oxo-1,2,3,4-tetrahydrophenanthrene-3- NaOCH ₃ carboxylate	Cyclohexane-1,3-dione	2-Hydroxycyclohexanone	2-Mothylcyclohexanone



(35)

NaOOH,

2-Acetorycyclohexanone

NaNH,

(+)-Dhlydrocaryone

I



, de,

Note. References 491-1015 are on pp. 545-555.

If This compound resulted from the treatment of the crude primary product with boiling potassium hydroxide solution. ** In this instance, the tertiary base was used instead of the quaternary methiodide,

# TABLE VIII-Continued

References Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

Reactants

 $CH_3CH_2COCH_2CH_2N(C_2H_5)_2\cdot CH_3I\ (Cont.)\ and$ 

Catalyst

Product (Yield, %)

 $CH_3$ 

 $_{
m CH_3}$ 

714

and

CH3 ÓН

 $NaNH_2$ 

(-)-Dihydrocarvone

CH2CH2CH2CH3 (30)

NaOCH3

HO2CCH(CH3)

664, 718

(15‡‡, 70§§)

 $5-(\alpha-Carbonnethoxyethyl)-2-methylcyclo-$ 

NaNHa

(45, 10)HO2CCH(CH3)

 $CH_3$ 

188, 718

	THE	MICHAEL REAC	TIO	N
187	230	684	100	720
(C,H,),CNa HO,CCH(CH,)	0.5	CNI, 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3,1,6-Trimethyl-2-cyclobexen-1-one (65)	U ₄ C (311)
(C,H,),CNa	NaNH,	ſ	N.OC, H.	NaOt III,

ent whenkan

I thy two butyry Leretate

9 Methylhydrindan-d-one

Hydroxymethyletecatyotanacetone Hilly 1 acres berepentate

Note: References ful 1015 are on pp. 545-555

^{**} The companied resulted from the trestment of the crude primary product with boiling polassium by droxide solution. ;; Mean than thinks of the keto owter failed to enter into the reaction,

il the quarter of the heto ester could be recovered unchanged. The rater obtained in the reaction was hydrolyzed

## TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

Product (Yield, %) Catalyst Reactants

CH.

References

 $CH_3COCH[CH_2N(CH_3)_2 \cdot C_2H_5I]_2$  and

NaOCH₃

2-Carbethoxycyclohexanone

(74, conversion 65¶¶)

NaOCH3

2-Carbethoxycycloheptanone

689

(67)

689

NaOCH,

2-Carbomethoxyeycloüctanone

(66, conversion 8911)



100

References

Product (Yield, %)

Catalyst

### TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

Product (Yield, %) References	pm	0	ії о́°н	and 721	
Catalyst	$OCH(OCH_3)CH_2N(C_2H_5)_2$ (mixture) of		TI .	Pyridine CH30	
Reactants	$CH_3OCH_2COCH_2CH_2N(C_2H_5)_2 \ and \ CH_3COCH(OCH_3)CH_2N(C_2H_5)_2 \ (mixlure) \ and \ channel of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the c$			0 Metherlandehamene, 1 9 diana	z-mennyicy cionevane-1,0-mone

Substituent R in  $(CH_3)_2CHCOCH_2CH_2R$  Addend  $(CH_3)_2N$  Ethyl acetoacetate  $O(H_3)_2N$  Ethyl methylacetoacetate  $O(H_3)_2N$  Ethyl methylacetoacetate

ethylacetoacetate — 3-Isopropyl-2-cyclohexen-1-one ethylacetoacetate NaOC₂H_s Carvenone (43)

Catalyst Product (Yield, %)

References 100 3-Isobutyl-2-cyclohexen-1-one (45) Product (Yield, %) NaOC,H (CH₃)₂CHCH₂COCH₂CH₂N O·CH₃I and Reactants Ethyl acetoacetate

 $(CH_3)_3CCOCH_2CH_2N O \cdot CH_3I$  and Ethyl aceloacetate

100

3-t-Butyl-2-cyclohexen-1-one (45)

 $N_{\Omega}OC_2H_5$ 

Product (Yield, %)

Catalyst

Addend

bulatituent It in

NaOC,11,

2. Dothylaminomethyl 5-methylcyclopenlanone methodule and

Lib) | acrimentate

229



NaOC II. NaOC II. NaOC, II,

Diethyl malonate Diethyl malonate

611.055 611.055 CH2



Ethyl acrtoacetate

CHAS CHA 25



255

(10-65)

NAUC;H,: NAUC;H,-1

Note: Heferences (4) 1015 are on pp. 545-555. Lital ethylacricaseriate

725



# TABLE VIII-Continued

Robinson's Modification of the Michael Condensation of  $\alpha_i\beta\text{-}\textsc{Ethylenic}$  Ketones

			ORGA	VIC	RE	ACTIONS
References		721		References	25.5	100
Product (Yield, %)	rc) and 0 0	H ₃ C mand	) cui	Product (Yield, %)	3-Isopropyl-2-cyclohexen-1-one	Carvenone (43)
st.	$N(C_2H_5)_2$ (mixtu	or CH ₃ O	ò	Catalyst	ļ	NaOC ₂ H5
tants Catalyst	$CH_3OCH_2COCH_2CH_2N(C_2H_5)_2 \ and \ CH_3COCH(OCH_3)CH_2N(C_2H_5)_2 \ (mixture) \ and \ channel{eq:coch}$	dione		Addend	Ethyl acefoacetate	Bthyl methylacetoacetate
Reactants	$CH_3OCH_2COCH_2CH_2N(C$	2-Methylcyclohexane-1,3-dione	Substituent R in	(CH ₃ ),CHCOCH2CH2R	$(CH_3)_{\underline{\imath}}N$	O N.CH3I

References 100 3-Isobutyl-2-cyclohexen-1-one (45) Product (Yield, %,) NaOC.IIs Catalyst  $(CH_3)_2CHCH_2COCH_2CH_2N$   $O\cdot CH_3I$  and (CH₃)₃CCOCH₂CH₂N O CH₃I and Reactants Ethyl acetoacetate

100

NaOC₂H₅ 3-t-Butyl-2-cyclohexen-1-one (45)

Ethyl acctoacctate



Reactants

Note: References 491-1015 are on pp. 545-555.

Lthyl acetoacetate

Dethyl malonate

386 References 691 725 725 725691 726Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones OH2CH=CH2 (20) າCH₂C₆H₅ (35–40)  $^{1}\mathrm{C}_{3}\mathrm{H}_{7}$ - n  (30–35) CH3COC(A)(CeH5)CO2CH5 Product (Yield, %) 9 COCH, 33 A = ATABLE VIII—Continued NaOC.H. Catalyst NaOC, H NaOC.H. NaOC,H, None None Ethyl n-propylacetoacetate Ethyl phenylacetoacetate Ethyl benzylacetoacetate Ethyl allylacetoacetate Addend Cyclopentanone Acetylacetone Substituent R in  $(CH_3)_3N \cdot CH_3I$ (Cont.)CH,R



Pyridine

Ethyl 7-psperiding-5-oxoheplanoule and 2-Methylcyclohexane-1,3 dione

Ethyl propionylacetate Ethyl acetoacetate

NaOC,II,

Ethyl acetoacetate

CH,N(CH,),-CH,I and

*** The compound is formed by tag fascon of the prumary product and reconstanton. When the methodale of chlyst apportunes "cardoplanate was employed in commetton with sodium methoride, the disease and was the main product Note: References 491-1045 are on pp 545-555

389

# TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

References Product (Yield, %) Catalyst Reactants

2-Diethylaminomethyl-4-methylcyclohexanone Methiodide and

CH,CH(CO,C,H5), (<del>1</del>0 NaOC2H5

Diethyl malonate

CH, CH, CO, C, H, (87) CH3

2-Diethylaminomethyl-4-methoxycyclohexanone Methiodide and

NaOC₂H₅ Ethyl acetoacetate

NaOC₂H₅

Ethyl \(\beta\)-oxovalerate

697

Diethyl malonate

NaOC2Hs

Diethyl 2-(2'-oxocycloheptyl)ethane-1,1-dicarboxylate

727



Note: References 491-1045 are on pp. 545-555.

# TABLE VIII—Conlinued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

			`	ozeuzz.	1110 1111110	110110				
	References	729	729		100		References	729		100
KOBINSON'S MODIFICATION OF THE MICHAEL CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERALLY CONDENSATION OF "IF LITERAL	Product (Yield, %)	3-Cyclohexyl-2-cyclohexen-1-one (30)	nd 4-Acetyl-4-carbomethoxy-1-decalone (47)	0	(77)	C ₂ H ₅ O ₂ C CO ₂ C ₂ H ₅	Product (Yield, %)  A =CH, CH, COO, H.	3-Phenyl-2-cyclohexen-1-one (60)	3-Phenyl-2-cyclohexen-1-one (60) 6-Carbethoxy-3-phenyl-2-cyclohexen-1-one	3-Phenyl-2-cyclohexen-1-one (60)
MICHAEL CO.			oride and 4-Acety	pu		C ₂ H ₅ O ₂ Č	Catalyst	KOC,H,-t	KOC,H9-1 NaOC,H6	NaOC2H5
INSON'S MODIFICATION OF THE	Catalyst	eta-Dimethylaminochyl Cyclohexyl Ketone Hydrochloride and Methyl acetoacetate $\mathrm{KOC_4H_9}$ -t	1-( <i>\b.Dimethylaminopropionyl</i> )-1- <i>cyclohexene Hydrochloride and</i> Methyl acetoacetate KOC ₄ H ₉ -1	1-(f-Morpholinopropionyl)-1-cyclohexene Methiodide and	NaOC2H,		Addend	Methyl acetoacetate	Ethyl acetoacetate Ethyl acetoacetate	Ethyl acetoacetate
TOP	Reactants	β- <i>Dimethylaminoethy</i> Mothyl acetoacetate	1-(β-Dimethylaminop) Methyl acetoacetate	1-( $eta$ -Morpholinopropi	Diethyl malonate		Substituent R in RCH ₂ CH ₂ COC ₆ H ₅	(CH,),N·HCl	$(CH_3)_2N$	O N.CH ₃ 1



# TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of  $\alpha, \beta$ -Ethylenic Ketones

	References	729	729		100		References	729 730 6 574	
	Product (Yield, %)	3-Cyclohexyl-2-cyclohexen-1-one (30)	nd 4-Acetyl-4-carbomethoxy-1-decalone (47)	0	/ \/	:	Product (Yield, %) $A =\text{CH}_2\text{CH}_2\text{COC}_6\text{H}_5$	3-Phenyl-2-cyclohexen-1-one (60) 3-Phenyl-2-cyclohexen-1-one (60) 6-Carbethoxy-3-phenyl-2-cyclohexen-1-one	3-Phenyl-2-cyclohexen-1-one (60)
			ride and 4-Acety	pı		$C_2H_5O_2C$	Catalyst	KOC ₄ H ₉ -t KOC ₄ H ₉ -t NaOC ₂ H ₅	NaOC2H5
TOTAL STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE	Catalyst	$eta$ -Dimelhylaminoethyl Cyclohexyl Ketone Hydrochloride and Methyl neetoacetate $\mathrm{KOC_4H_9}$ - $t$	1-(β-Dimethylaminopropionyl)-1-cyclohexene Hydrochloride and Methyl acetoacetate KOC ₄ H5-t	1-(β-Morpholinopropionyl)-1-cyclohexene Methiodide and	$\rm NaOC_2H_5$		Addend	Methyl acetoacetate Ethyl acetoacetate Ethyl acetoacetate	Ethyl acetoacetate
TOT	Reactants	β-Dimethylaminoethyl Methyl acetoacetate	1-(β- <i>Dimethylaminopr</i> Methyl acetoacetate	1-(β-Morpholinopropic	Diethyl malonate		Substituent R in RCH2CH2CO6,H5	$(\mathrm{CH_3})_2\mathrm{N}\cdot\mathrm{HCl}$ $(\mathrm{CH_3})_2\mathrm{N}$	O N·CH ₃ I

CH1), CH and CO, C, Hp. W - H (30)

732

β-Dimethylamino-p-hydroxypropiophenone Hydrochloride and

KOC,H,

Ethyl acctoacetate

Ethyl a,y-diphenylacetoacetate Ethyl a-propionylpropionate Ethyl 180propylacetoacetat Ethyl ethylacetoscetate

Acetylacetone

2-Morpholunomethyl-1-hydrindone Methiodide and Ethyl \$-oxovalerate

Ethyl acetoacetate

Note: References 401-1045 are on pp. 545-555.

co,cm,

(C2He,), N. (CH3), SO, Methyl fluorene-9-carboxy late KOII

Catalyst

Reactants

ethrodute and 
$$CII_1$$

R' = CII,CO, R*

607

# TABLE VIII—Continued

Robinson's Modification of the Michael Condensation of  $\alpha.\beta\text{-}$ Ethylenic Ketones

Substituent R in	Addend	Catalyst	Product (Yield, %)  A = —CH_sCH_sCOC_kH_s	References
(CH ₃ ) ₂ N	Hexane-9,5-dione Acetophenone Deoxybenzoin Nitromethane	None None None NaOC ₂ H ₃ ŅaOH	6-Acet onyl-3-phenyl-2-cyclohexen-1-one (22) JCH ₂ COC ₆ H ₅ (40) C ₆ H ₅ CH(A)COC ₆ H ₅ (9) JCH ₂ NO ₂ , (A) ₂ CHNO ₂ , (A) ₃ CNO ₂ JCH ₂ NO ₂ (13)	691 691 691 710 691
$(C_2H_5)_2N$	Nitroethane	None NaOII	.4CH ₂ NO ₂ (15) .4CH(CH ₃ )NO ₂ (7) and .4 ₂ C(CH ₃ )NO ₂ (50)	691 691
	Nitroethane	NaOH	4°C(CH3)NO° (30)	691
(CH ₃ ) ₂ N (C ₄ H ₅ ) ₂ N (CH ₃ ) ₂ N	1-Nitropropane 1-Nitropropane 2-Nitropropane	NaOC <u>.</u> Us NaOH NaOC.Hs NaOH	4CH(CH ₃ )NO ₂ (48) and A ₂ C(CH ₃ )NO ₂ (30) 4CH(C ₂ H ₅ )NO ₂ (80) 4CH(C ₂ H ₅ )NO ₂ (00) (CH ₃ ) ₂ C(A)NO ₂ (12)	691 691 691 691
(2)	2-Nitropropane	NaOH	(CH ₃ ) ₂ C(A)NO ₂ (84)	691
$(\mathrm{CH_3})_{\underline{\imath}}\mathrm{N}$	1-Nitro-2-phenylethane	NaOII	C ₆ H ₅ CH ₅ CH(A)NO ₂ (08) and C ₆ H ₅ CH ₅ C(A),NO ₅ (7)	691



Ethyl ethylacetoacetate

Acetylacetone

Ethyl acetoacetate

Reactants

Ethyl \$-oxovalerate

Ethyl acetoacetate

### TABLE VIII-Continued

	_
beinson's Modification of the Michael Condensation of $\alpha, \beta$ -Ethylenic Ketones	
KETC	
NIC	
HYLE	
я-Ет	
OF &	
HOL	
ENSAT	
OND	
EL C	
Ilchia	
же Л	
OF 1	
TION	
IFICA	
Mod	
s'No	
OBINSON'	
Ä	

Deferences	Neichences		i	657 130	000	200	82)	710		729, 730
	Product (Yield, %)	o = (	md C ₄ H ₄ OCH ₅ -p	R = H (40)	$R = C_2 H_3 (64)$	$R = (CH_2)_2 CH (30)$	$R = CH_3CO (36)$	$p ext{-}Methoxy-\omega ext{-}nitrobutyrophenone$		4-Methyl-3-phenyl-2-cyclohexen-1-one (40, 38)
			Iydrochloride a	* **	**	* **	# #	M- $d$	thloride and	W-F
	Catalyst		phenyl Ketone I	KOC,H9-1	KOC,Hp-1	KOC,H9-1	KOC,H9-4	KOC,Ho-1	1 Kclone Hydro	KOC, H,-1
DOBINGON S MOST STORY	Reactants		β-Dimethylaminoethyl p-Methoxyphenyl Ketone Hydrochloride and	Ethyl acetoacetate	Ethyl ethylacetoacetate	Ethyl isopropylacetoacetate	Acetylacetone	Nitromethane††	β-Dimchylaminoisopropyl Phenyl Ketone Hydrochloride and	Ethyl acetoacetate

(F) 6-Isopropyl-3-methyl-2-morpholinomethyleyclohexan-1-one Methiodide and NaOC.H.

Ethyl acetoacetate

733

69

2-Methyl-2-nitro-4-phenylhexan-5-one (89)

β-Morpholino-α-phenylethyl Methyl Kelone and

2-Nitropropane

NaOH

#### 2-Dimethylaminomethyl-1-lefralone and

NaOC,H, NaOC,H, Lihyl methylacetoacetate Ethyl acetoacetate

R = H R = CH,

β-Dunethylamino-α-(p-methozyphenyl)ethyl Methyl Ketone Methiodide and

NaOCH, 2-IIrdroxymethylene-6-methoxy-

bexahydrophenanthrene (46) 1-tetralone

3.4-Dimethoxyphenyl β-Dimethylaminochyl Kelone and NaOC, H, Nitromethane

β-Dimethylamino-β-(p-methozyphenyl)chyl Methyl Ketone and

Nitromethane

4-(p-Methoxyphenyl)-5-ntropentan 2-one β-Demethylamino-β-(3,4-dimethoxyphenyl)ethyl Methyl Ketone and NaOC,H,

NaOC,H Nitromethane

11 The free base was employed, instead of the hydrochlorude.

12 22

734 2-(p-Methoxyphenyl)-3-0x0-7-methoxy-1,2,3,9,10,10a-

110 310

1-(3',4'-Dimethoxyphenyl)-4-mtrobutan-1-one

4-(3',4'-Dimethoryphenyl)-5-nitropentan-2-one

50

Note: References 491-1045 are on pp. 545-555.

#### PABLE VIII -Continued

Rohinson's Modepication of the Michael Condensation of  $\alpha,\beta$ -Ethylenic Ketonis

Reactants	Catalyst	Product (Yield, ".,)	Кебетет
p-Dimethylamino-p-(3.4-methylenediaxyphenyt)chyl Methyl Ketone und Nitromethame A-(3',4'-Methy	dioxyphenyDelhyl Me NaOC ₂ U ₃	thyt Ketone and 4-(37,47-Methylenedioxyphenyl)-5-nitropentan-2-one	017
2-Dimethylaminomethylbenzosuberone and	me and	O CHCH4COCOCH3	
Biacetyl mono dimethyl ketal	Na enclate	(Small)	<del>-</del>

KOII, (CII₄)₄CHOII 3-(6'-Methoxy-2'-naphthyl)eyelohexen-1-one (70) P-Dimethylamino-p-phenylethyl 2-Nitro-4,5-dimethoxyphenyl Kelone and p-Dinchykaninochyl v-Methaxy-2-naphthyl Kelone Hydrochloride and Methyl noctoncetate

12

4-Nitro-1-(2'-nitro-4',5'-dimethoxyphenyl)-3-phenylbutan-NaOC₂H_b Nitromethane



C,H,S

Note: References 491-1015 are on pp. 515-555,

### TABLE VIII—Conlinued

Robinson's Modification of the Michael Condensation of  $\alpha_i\beta$ -Bthylenic Kietones

Product (Yield, %) References	СИ ₂ СП(СОС ₆ П ₆ ) ₂ 736, сf. 738, сf. 737 738	<b>&gt;</b>	CH ₂ C(NO ₂ )(CH ₃ ) ₂ OH (50)	——————————————————————————————————————
Catalyst Proc	псі, сіньон		NaOII	
Addend	Dibenzoylmethane		2-Nitropropane Na	propune
Substituent R in			C ₂ II,S	aunt R in

			1	гне м	існа	AEL RE	EACTION	:
251	251	251	251	251	951	1	251, 739 251, 739 251 251, 739 251 251 251	
ACH(CO,C,H,), (13)	NaOC,He; NaOC,Hr-n CH,COCH(A)CO,C,He (46)	CH4COCH(A)CO4C4H5 (17)	C,H,O,CC(A)(COCH,)CH,CO,C,H, (72)	C, II, O, CC(A)(COCH,)CH, CO, C, II, (8)	CH,CH,CH(A)NO, (33)	CH ₂ CH ₂ CH(A)NO ₂ (50) (CH ₃ ) ₂ C(A)NO ₂ (52) (CH ₃ ) ₂ C(A)NO ₂ (43)	$A = CI_LCI_LCII(NO_1/CII_1-CII_LCII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CII_1/CI$	
NaOC, II,-n	NaOC, H.; NaOC, H.	NaOC, Hp.m	NaOC, H.n	NaOC _e H _s -n	II,N(CII,),JOH	NaOH [C ₆ H ₆ CH ₂ N(CH ₂ ) ₃ ]OH NaOH	NaOH NaOH NaOH NaOH NaOH (CH,CH,N(CH,h)OH NaOH (CH,CH,NOH,h)OH NaOH	
Diethyl malonate	Ethyl acetoacetate	Ethyl acetoacetate	Ethyl «-acetylsuccinate	Ethyl a-acetylsucemate	1-Nitropropane	2-Nitropropane	habdulean R m 442HNO ₂ CH2(1) 145HNO ₂ CH2(1) 14,N 14,N 15,N 15,Ntropropane N 14,N 15,Ntropropane N 14,N 15,Ntropropane N 14,N 17,Ntropropane N 17,N 17,Ntropropane N 17,Ntropro	
(*)	(,-C,II,),N	<b>z</b>	(i-C ₁ II ₁ ) _k N	z)	(1-C,H;),N		Substituent II in RCH ₁ CH ₁ CH ₂ CH ₃	

#### TABLE 1X

MICHAEL CONDENSATIONS WITH QUINOUES AND THEIR DERIVATIVES

		0350325	ic istail	1107	15	
References	556		377	377	292 202	29 29
Product (Vield, %)	HO CO4C ₂ H ₂	H ₂ O ₂ O ₂ O CH ₃	110/- (C(CH ₂ )(CO ₂ C ₂ H ₃ )C(NH)CH ₃ (31)	Ethyl 2-ethoxy-5-hydroxyindole-3-carboxylate (38)	110 (CH(CN)CO ₄ C ₂ H ₂ (16) (16) (16) (17) (17) (18)	HO (16) (16) OH (16) CH(CN)CONH ₂
Calalyst	Zn(1 ₂ (1)		None	None	NH ₃ , ethanol	NII3, ethanol
Reactants	p-Benzoquinone and Ethyl neet oneetate		CH ₅ C(~~NH)CH(CH ₃ )CO ₂ C ₂ H ₅	C ₂ H ₆ OC(NH)CH ₂ CO ₂ C ₂ H ₆	Bhyl cyanoacotato	Cyanoacetamide

55	740	Ę	272



2,6-Dichlorobenzoquinone and Ethyl acetoacetate

Note: References 491-1015 are on pp. 545-555.

Thus is the formula assumed by the author.

Malononitrile

#### TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERLYATIVES

References

Product (Yield, %)

Catalyst

Reactants

Chloranil and

CO2C2H6

272

272

Pyridine

Ethyl acetoacetate

Pyridine

\$-Naphthol

272

CONHCaH

377

Ethyl 2 ethoxy-5-hydroxy-6-methoxyindole-3-C(CH₃)(CO₃C₃H₃)C(=NH)CH₃

None None

p-Xylogurnone and

Diethyl malonate

CH,C(=NH)CH(CH,)CO,C,H, CILOC(=NH)CH,CO,C,II,

Methoxybenzoqumone and

2-Hydroxy-3-naphthanilide

carboxylate† (40)

Note. References 491–1045 are on pp. 515–555. † The position of the methoxyl group has not been determined,

### TABLE IX—Continued

# MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

		(	ORGA	INIC REA	CTIONS			
References		743		744		253, 745	745	745 746 746
Product (Yield, %)	000	$\begin{array}{c c} \text{Br} & \text{CHCO}_2\text{C}_2\text{H}_5 \\ \text{H}_3\text{C} & \text{CH}_3 & \text{(26)} \\ \text{OH} & \text{OH} \end{array}$	CH,	$ \begin{array}{ccccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & $	$A = \frac{\text{CH}_3}{\text{H}_0}$ $B = \frac{\text{CH}_3}{\text{H}_0}$ $B = \frac{\text{CH}_3}{\text{H}_0}$ $B = \frac{\text{CH}_3}{\text{CH}_3}$		A, R = H (4), and $\frac{H_3C}{HO}$ (20)	$A, R = COCH_3$ (55) $A, R = COC_{13}H_{31} \cdot n$ $A, R = COC_{17}H_{35} \cdot n$ (27)
Catalyst	попе апд	NaOC ₂ H ₅	iquinone and	Na		NaOC ₂ H,	NaOC ₂ H5; Na	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅
Reactants	2. Bromo-3,5-dimethylbenzoquinone and	Diethyl malonate	$3,5 extcolor{-}D$ ibromo- $2,6 extcolor{-}d$ imelhylbenzoquinone and	Diethyl malonate	$T_{rime}$ thyl $b$ enzoquinone and	Dicthyl malonate	Ethyl aceloacetate	Ethyl palmitoylacetate Ethyl stearoylacetate

0-

A, R = CO,C, H, (50)

NaOC,Hei Mg(OC,He),

Diethyl rsobutyry Imalonate

Ethyl cyanoacetate

Trimethylbenzoquinone and

REACTION 200 3,5 65.5 239 9 Diby tennethy lby druquinonecyanoscetata (32) ×  $B, W' = (CH_s)_s \text{CHCOCHCOCH}(CH_s)_s$  (76)  $B_i$   $W = \operatorname{CH}_{\mathfrak{p}} \operatorname{COCHUOC} \operatorname{H}(\operatorname{CH}_{\mathfrak{p}})_{\mathfrak{p}}$  (81) B,  $W = CH_a COC HCOC_{13}H_{13}$ -n (14)

22.2

B. W - CH, COCHCOCH, (72)

NuOC, H NaOC, II,

NaOCII,

NaOCH,

Cyanoacetamide Benzyl cyanide Acetylacetone NaOC, II,

2,6-Dimethylheptane-3,5-dione

Isobutyrylacetone

NaOC, II,

Heptadecane-2,4 dione

 $A. R = C_b \Pi_b (32)$ 

221

CH(CH,)(CH,),CH(CH,),

Bromomagnessum enolate  $B, W = \cup \coprod_k (\mathbb{O}(\operatorname{dil}_i(\mathrm{CH}_k)_k (\mathfrak{gu}))$ 

Note: References 491-1045 are on pp. 545-555.

ACH(CH3)(CH2)3CH(CH3)(CH3)3-

NaOC,H,

5,9,13,17-Tetramuthylocta-

decane 2,4-dione Acetomesitylene 22.3

Bromotrimethylbenzoquinone and

Reactants

Catalyst

Diethyl malonate

NaOC, IIs

Duroquinone and

Diethyl malonate

Methyl cyanoacctate Ethyl acetoacetate

zz

ž

Trimethylethyldenzoquinone and

Diethyl malonate

ź

TABLE IX-Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THERE DERIVATIVES Product (Yield, %)

01

$$R = CO_s C_s H_b$$

201, cf. 747*a*, 747*b* 203 262

$$R = COCH_3$$
 (25)  
 $R = CN$  (26)

1,4-Naphhoguinane and

Diethyl malonate

266

NaOH, ethanol

Ethyl acetoacetate

Note: References 491-1045 are on pp. 545-555.

260

#### TABLE 1X-Continued

MICHAEL, CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

Reactants

1,4-Naphthoquinone (Cont.) and

Catalyst

266

Product (Yield, %)

References

Pyridine, pyridine hydrochloride

Ethyl acetoacetate (Cont.)

3

CO2C2H5

9

CO.C.H.

HO

267

(<del>1</del>0₹)

Ethyl benzoylacetate

Pyridine, pyridine hydrochloride

Polassium 1,4-naphthoquinone-2-sulfonale and

Diethyl malonate

Pyridine

2-Bromo-1,4-naphthoguinone and Ethyl acetoacetate

#### TABLE IX—Continued

References		266	269 266	200	266	266, 269		266
MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES  Catalyst  O  O  O  O  O  O  O  O  O  O  O  O  O	B = B	$B, R = CO_2CH_3$ (20)	$A, R = CO_2C_2H_5$ (6) $B, R = CO_2C_2H_5$ (11)	$A, R = CO_2CH_3$ (51)	$B, R = CO_2CH_3$ (39)	A, $R = CO_2C_2H_s$ (49, 62) or	o ==(	CH, COCH,
MICHAEL CONDENSATIONS WITH  Catalyst	tinone and A=	Quinoline, quinoline hydrochloride	Pyridine Quinoline, quinoline hydrochloride	Pyridine, pyridine hydrochloride	Quinoline, quinoline hydrochloride	Pyridine, pyridine hydrochloride		
Reactants	2,3-Dichloro-1,4-naphthoguinone and	Dimethyl malonate	Diethyl malonate	Methyl acetoacetate		Ethyl acetoncetate		

			THE MICHAEL	REACTI	ON	
266	271. 271. 271. 272. 272. 273. 273. 273.	32 E E E E E		202		240
B, H = CO,C,H, (45)	A. B = COCH, (31) and A. B = COMIC ₁ H ₁ (8) A. B = COCH, A. B = COCH, A. B = COCH, A. B = COCH,	4, R = COCH, (30) 4, R = COCH, (3) 4, R = COCH, (3)	Boccin	\[ \] 1	0 000 column	Cr., OH.
Quinoline, quinoline	Jyunkaloriue Ilyridue Ilyridue Ilyridue	Pyridine Pyridine Pyridine		4X	one and	a Z
	Acetoscetaniido Acetoscet-o-chloroaniide Acetoscet-o-coluide 2-(Acetoscetanido)-0-chlory	Acetylacetone Acetoplenone Dibenzoy Imethane	CH, :	Diethyl majonate	2,3-Dinieklyk-1,4-napkthoguinone ond	Dethyl malonate

Note: References 491-1015 are on pp. 545-555.

#### TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

References 749a 749a 750 750 750 750 750 NHSO,C,H, NHSO,C,H, C₆H₅COCH(A)CO₂C₂H₅ (94 crude) CH₃COCH(A)CO₂C₂H₅ (90 crude) CH₃COCH(A)COCH₃ (25 crude) Product (Yield, %) NHCOC, H, NHCOC,II, (97 crude) CH₃COCH(A)COCH₃ (75) | | ACH(CO,C,H,), (76) ACH(CO2C2H5)2 (57) 1 NaOCH, NaOCH, NaOCH, NaOCH, NaOCH, NaOCH, Na OCH3 Catalyst 2-Carbethoxyeyclopentanone Ethyl benzoylacetate Reactants Ethyl acetoacetate and ess Diethyl malonate Diethyl malonate Acetylacetone Acetylacetone  $NSO_2C_6H_5\S$ NSO.C.H. NCOC, II.

	THE MICHAEL REACTION	
35	55 55 55	355
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOSHN  HT-JOS	NIBOJCH, CH, CCH, ACHCO, CH, ACHCO, CH, CCC, CH, CCC, CH, CCC, CH, CCC, CH, CD, CH, CH, CD, CH
NaOCH	NaOCH, NaOCH, NaOCH,	NaOCH, NaOCH, NaOCH,
() dobexane-1,3-done	NSO,G.H., NSO,G.H., NSO,G.H., Debly) maleaner Aces, lactioner Aces, lactions NSO,G.H., ASO,G.H., M.P., M. M. M. M. M. M. M. M. M. M. M. M. M.	NSO ₂ C ₄ H ₄ Dethyl malonate Ethyl acetoacetate Acetylucetone

Ç ==

Natr. References 401–1015 are on pp. 615–635. N'Mit this compound, ethyl cyanoacciate, malonoutrile, intronctioner, introctioner and 2-miropropane gave only tarry products.

752 752

#### TABLE IX—Continued

MICHAEL CONDENSATIONS WITH QUINONES AND THEIR DERIVATIVES

References 751 751 751 751 751 NHSO.C.H. NHSO,C,H, C,H,COCH(A)CO,C,H, (90) Product (Yield, %) СН₃СОСН(А)СОСН₃ (84) 4CH(CO2C2H5)2 (S3) ACH(CH₃)NO₂ (64) (A)2CHNO2 (84) || || (C₂H₆)₃N (C₂H₆)₃N (C₂H₆)₃N (C₂H₆)₃N Catalyst (C, IL, ), N and Ethyl benzoylacetate Reactants NSO₂C₆H₅ NSO,C, II's Diethyl malonate Acetylacetone Nitromethane Nitroethane

NCOC.II.

 $\sim NCOC_6 II_6$ 

Diethyl malonate Acctylacetone Cl  $NCOC_6H_5\P$  and  $NCOC_6H_5$ 

CI NHCOC6H5 NHCOC6H5 CH(COCH5)2||

NaOCII

Acetylacetone

(92)

Note: References 491-1045 are on pp. 545-555.

| The position in which the substitution has taken place has not been determined. ! With diethyl malonate, this compound gave only an oily product.

752

ış.

#### TABLE X

References 754 754, 755 754, 755 288 888 288 289 289 288 Œ) 1-(\$ Cyanoethyl)-1,2,3,4-tetrahydrofluoranthene 4,5-{D1-(\$-cyanoethy!)methylene]phenanthrene 1-(B-Cyanoethyl)-2,2,4-trimethyl-1,2-dibydro-9,9-Di-(\$-cyanosthyl)-1-methylfluorene (70) 2,7-Dibromo-9,9 di-(\$-cyanoethyl)fluorene 9,9-Di-(\$-cyanoethyl)-2-nitrofluorene (70) Hexa-(\(\beta\)-cyclopentadiene (\(\theta\)) 9-(\$ Cyanoethyl)-9-phenylfluorene (73) Product (Yield, %)  $A = -CH_2CH_2CN$ 1,1,3-Tris-(\$-cyanoethyl)indene 35) A = CH,CH,CN 9,9-Di-(\$-cyanoethyl)fluorene (74) x,x-Bis-(\$-cyanoethyl)indene (14) CH,CH(A)CHO, CH,C(A),CHO (\$-Cyanoethyl)-9-fluorenol MICHAEL CONDENSATIONS WITH ACRYLONITRIES* (A),CHCHO, (A),CCHO fluoranthene [C,H,CH,N(CH,)]OH [C,H,CH,N(CH,)]OH [C,H,CH,N(CH,),]OH C.H.CH,N(CH,),JOH C.H.CH,N(CH,),10H [C,H,CH,N(CH,),]OH (C,H,CH,N(CH,),JOH IC, H, CH, N(CH,), OH [C,H,CH,N(CH,),]OH C, H, CH, N(CH,), JOH C4H2CH2N(CH2)3OH Catalyst Note: References 481-1045 are on pp. 545-555. Not indicated Compare the review by Bruson,274 1,2,3,4-Tetrahydrofluoranthene 2,2,4-Trunethyl-1,2-dihydro-4,6-Methylenephenanthrene 1-Isopropylideneindene Reactants 2,7-Dibromofluorene -Methylfluorene 4. Hydrocarbons 9-Phenylfluorene Cyclopentadiene Proponaldehyde 2-Nitrofluorene Ruoranthene B. Aldehydes Acctaldehyde 9-Fluorenol Pluorene Indene

#### TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

		ORGA	NIC RE	ACT	1002					
References	478, 756, 757	278, 284 284 278, 284 758	478	750	760, 761 762	763, 761	275, 278	702 478	275, 278, 478, 701	
	$A =CH_1CH_2CA$ $(CH_2)_2C(A)CHO (40, 70)$	(C ₂ H ₃ ) ₂ C(A)CHO (75-80) CH ₃ CH ₂ CH=CHC(A)(C ₂ H ₃ )CHO (50) C ₄ H ₅ C(A)(C ₂ H ₃ )CHO (75, 80) (C ₆ H ₃ )(CH ₃ )C(A)CHO (74)	$A = -CH_2CH_2CN$ $CH_3COCH_2A (19) \text{ and } CH_3COC(A)_3 (32)$	CH ₃ COCH ₂ A (8), CH ₃ COCH(A) ₂ (14),	CH ₃ COC(A) ₃ (24) CH ₃ COC(A) ₃ (75–80) and (A) ₂ CHCOC(A) ₃ CH COCH A (18) ⁴	CH,COC(A),CH, (51, 90) and (A),CHCOC(A),CH,	СШ,СОСИ(A)СИ, (6, 20) and СИ,СОС(A),СИ, (47);	CH,COCH(A)CH, and CH,COC(A),CH, (24-30)† CH,COCH(A)CH, and CH,COC(A),CH, (total, 47)	CH,COC(A),CH,CN (82) CH,COCH(A)C,H, (15, 20), CH,COC(A),C,H, (14, 43), and ACH,COC(A),C,H,	
Catalyst	Quaternized polyvinyl- pyridine resin; aq.	кси кон, сн,он кон кон, сн,он кон	Quaternized polyvinyl-	pyridine resin NaOH	[C,H,CH ₂ N(CH ₃ ) ₃ ]OH	Centerialon Na;	[C,H,CH,N(CH,),]OH KOH, C,H,OH;	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH [C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH Polyvinylpyridine resin	Aq. KCN KOH, C.H.OH; [C.H.CH2N(CH3),10H; quaternized polyvinyl-	pyriame resin
Reactants	B. Aldehydes (Cont.) Isobutyraldehyde	Diethylacetaldehyde 2-Ethyl-2-hexenal 2-Ethylhexanal «-Phenylpropionaldehyde	C. Ketones Acetone			Methyl ethyl ketone			Methyl <i>β</i> -cyanoethyl ketone Methyl <i>n</i> -propyl ketone	

									TI	ŧΕ	M	IC	H	ΑE	L	RI	EΑ	CT	IO	IN				
275	181	275, 761		764, 283		275, 761		274, 275,	765	766		275, 761		275		276	276	277		277		161	200	101
CH ₃ COC(A)(CH ₃ ) ₁ (54)‡	CH ₃ CH(A)COC(A) ₂ CH ₃ (31)	CH2COCH(A)CH(CH2)2 (17) and	OH,COC(A),OH(CH,), (15);	$CH_2COC(A)_2C(CH_2) = CH_2$ (35, 74) and	CH2COC(A)=C(CH2)2 (10-15)	CH3COCII(A)C4H4-n (19) and CH3COC(A)hC4H4-n	\$(07)	(CH ₃ ) ₂ C(A)COCH(CH ₃ ) ₂ (40, 10) and	(CH ₂ ) ₂ C(A)COC(A)(CH ₂ ) ₂ (1);	(CH ₂ ) ₂ C(A)COCH(CH ₃ ) ₂ (28) and	$(CH_s)_sC(A)COC(A)(CH_s)_s$ (small)	CH,COCH(A)C,H11-n (19) and	$CH_{s}COC(A)_{s}C_{s}H_{11}-n$ (31);	(CH ₂ ),CHCH(A)COCH,CH(OH ₃ ), (35) and	(OH ₃ ),OHOH(A)COCH(A)CH(OH ₃ ), (19);	n-Collicoc(A)(CHa)	n-C,H,COC(A)(CH,),	CH,COC(A),COCH, (49-55)		CH,COC(A),CH,COCH, (46-50)		2,2,5,5-Tetra-(\theta-cyanoethyl)cyclopentanone (97)	9.9 K S. Totha . ( B. orne mod bare) bared concentration of the OT.	z.c.oretra-(p-cyanostnyt)cyclopentanone (vo-91)
KOH, Callon;	C,H,CH,N(CH,),JOH	KOH, C.H.OH;	[C,H,CH,N(CH,),]OH	(C,H,CH,N(CH,),JOH		KOH, C'HOH;	[O,H,CH,N(CH,),]OH	[C,H,CH,N(CH,),]OH		Aq. NaOH		[C,H,CH,N(CH,),]OH;	KOH, CLESOH	KOH, C'HOII;	[C,H,CH,N(CH,),]OH	кон, си,оп	кон, сн,он	[C,H,CH,N(CH,),]OH	or OC, He-n	[C,H,CH,N(CH,),]OH	or OC,II, n	(C,H,CH,N(CH,),]OH;	C.H.CH.NICH.J.DH.	[C,U,N(CH,)]OC,H,
Methyl isopropyl ketone	Diethyl ketone	Methyl isobutyl ketone		Meatyl oxide		Methyl n amyl ketone		Disopropyl ketone				Methyl bexyl ketone		Disobutyl ketone		Isopropyl n-amyl ketone	Isopropyl n-nonyl ketone	Acetylacetone		Acetonylacetone		Cyclopentanone		

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Note: References 401-1045 are on pp. 545-555.

* Compare the review by Bruson.***

† A large excess of the ketone was used in this experiment.
† The acrylomitrie was formed in situ from \$\rho\$-chloropropionitrile in the experiments described in per 275.

#### TABLE X-Continued

## MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Reactants	Catalyst	Product (Yield, %)	References
( Tolonge (Cont)		$A = -\mathrm{CH_2CH_2CN}$	
Cyclohexanone	кон, с.н.он;		114, 234, 275
	[C,H,CH,N(CH,),JOH	2,2-d1-(p-c) anoct ny 1/2) cromes ano c ( 1 - 7 + 2 - ( p-c) anoct ny 1/2) cyclohex ano ne ( 47 ) or	702, 108
		2,2-di-(\beta-cyanoethyl)cyclohexanone (18-20)	200
	NaNH ₂	2,2,6,6-Tetra-(\$-cyanoethy1)cyclohexanone (12)3 215, 234 9 9 4 4.Tetra-(\$-cyanoethy1)cyclohexanone (\$1, 80-95) 761, 763	275, 25± 701, 703
	[C ₆ II ₅ CH ₂ N(CH ₃ ) ₃ ]OII;		
	NaOH	2-(\beta-Cyanoethyl)eyclohexanone (20) and	202
	Enamine of the ketone	2,2-Di- $(\beta$ -cyanoethyl)cyclonexanone (40) 2- $(\beta$ -Cyanoethyl)cyclohexanone (80)	535
	with pyrrolidine		:
	NaOC ₂ H ₅	$2-(\beta-Cyanoethy1)$ eyelohexanone (5), 2,2-di- $(\beta-Cyano-chy1)$ eyelohexanone (5), and 2,2,6,6-tetra- $(\beta-Cyano-chy1)$	766
		ethyl)cyclohexanone	
	кон	$2\cdot(\beta$ -Cyanoethyl)cyclohexanone (29) and	769
Cyclohexane-1,3-dione	Na OCH3	2,2-di- $(\beta$ -cyanoethyl)cyclohexanone (26) 2- $(\beta$ -Cyanoethyl)cyclohexane-1,3-dione (23)	770
		0=	
		(53)	
2,4-Dimethyleyclopentan-1-one	кон	п,с	769

		THE	MICHAEL RE	ACTION	
769	769	114	114 769 771 535	769	
$\Pi_i \mathcal{O} $ $\longrightarrow \mathcal{A}$ $(\mathfrak{C})$	H ₃ C CH ₃	2-Methyl-2-(\$-cyanoethyl)cyclohexanone (80) 2-Methyl-2,6,6-tr-(\$-cyanoethyl)cyclohexanone (38)	2-(β-Cyanoethyl)-4-methylcydolaexanone (21) 2-(β-Cyanoethyl)-2-methylcydolaexane-1,3-dione (82)) 1-Carlethyry-7-quo-6-methylaeptan-4-one (63) 2-(β-Cyanoethyl)-ycydolaeptan-1-one 2-(β-Cyanoethyl)-2-cyanocydolaeptan-1-one (65)	0 4 4 0 d d	H,O OH, H,O CH,
Not indicated	Not indicated	[C,H,CH,N(CH,),]OH [C,H,CH,N(CH,),]OH; ROH	[C,II,OH,N(CH,),]OH NaOCH, NaOC,II, Enamine of the ketone KOH, CH,OH	NaOCHa	
2,4-Dimetryl.2 cyclopenten-1-one Not industed	3,6-Dunethyl-2-cyclopenten-1-one Not indicated	2-Methylcyclohexanone	4-Methylcyclohexanone 2-Methylcyclohexane-1,3-diono Cycloheptanone 2-Cyanocycloheptanono	5,6-Dunetlylcyclohexane-1,3- dione	Malar Deference 404

Note: References 491-1045 are on pp. 545-555. · Compare the review by Bruson. #14

The acrylonitric was formed from  $\beta$ -chloroproponitrie in the experiments described in reference 275. The acrylonitrile was formed  $\beta$  that from the mathematic  $\beta$  and  $\beta$  in the second second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco

The acrylomitule was formed in situ from the methiodids of 2-diethylaminoethyl cyanide.

I Under more drastic conditions, part of the product was hydrolyzed to 5-(\$-cyanoethyl)-7-cyano-2,2-dimethyl-4-oxobeptane-Under more drastic conditions, this product is hydrolyzed to 7-eyano-6-methyl-4-oxoheptane-1-carboxyla acid (74). 1-carboxylic acid.

TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITELLS*

References 285 234 : :: Product (Yield, %)  $A = -CII_2CII_2CI$ (83) [CollochiaN(CIIa)a]OII Catalyst  $NnOC_2H_b$ NaNH, 5,5-Dimethyleyclohexane-1,3-dione (Cont.) Reactants C. Kelones (Conl.) Isophorone

$$(H_3)$$

$$(H_3)$$

$$(H_4)$$

$$(1)$$

9,6	151	312	101	
ć.	í-	ès	ĭ	
(CIIs)	[C,H,CH,N(CH,N10H; 2,2,6,5-Tetra-(\$-c) anocthyb-t-4 amyley clohexanone KOH	2 (Sciolex-1'enyl-2-(\$-cyanocthyle) cloberations (50) and 2-cyclohex-1 enyl-2.0,0 trl (\$-cyano-	ett) (k) stoueramone (20) 22,6,0-Tetra-(f-e, anos thy l)-1-cy clobery ley clo- liexamone (80-65)	0 111,
NaOC, II.1.4	(C,H,CH,N(CH,),JOH; KOH	ic,n,cu,N(cu,),joir	(с,и,си,мень), рои, кои	TO THE STATE OF
	4-4-Amylcyclohexanone	2.(Cyclohex-1'-enyl)cyclo- hexanone	4-Cyclohexylcyclohexanone	2. Over Conhonviored chancel.

10,000,000 3.Oxo. Phenylcyclohexy1-

Note: References 491-1015 are on pp. 545-555. · Compare the review by Bruson, 161

§ The acrylonitrile was formed in salu from the methiodide of 2-diethy laminos thy I cyanide.

11 Thus structure has been proven (ref. 280) by ozonization to 3,3-dirnethyl-5-oxoliczane-1-carboxylic acid. In ref. 285, .. The directons was recovered to an extent of 31%. When \$-chloropropuonitals was employed instead of acrylometrie, the yield was 21%, and 52% of the disetone was recovered.

was incorrectly assigned to the monosubstitution product.

#### TABLE X-Continued

### HAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSAT	MICHAEL CONDENSATIONS WITH ACKYLONIAMIES	
Reactants	Catalyst	Product (Yield, %)	References
C. Kelones (Cont.) 2-Phenylcyclohexanone	NaNH2 [C ₆ H ₅ CH2N(CH3) ₃ ]0H N3	$A =\mathrm{CH_2CH_2CN}$ 2- $(\beta\text{-Cyanoethy}]$ -2-phenylcyclohexanone (63–70) 2- $(\beta\text{-Cyanoethy}]$ -2-phenylcyclohexanone 2- $(\beta\text{-Cyanoethy}]$ -2-phenylcyclohexanone (60)	112 113 773
4-(\a,\a,\gamma,\gamma,\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-\gamma-	[C,H,CH2N(CH3),3]OH [C,H,CH2N(CH3),3]OH	<ul> <li>2,2,6,6-Tetra-(β-cyanoethyl)-4-(α,α,γ,γ-tetramethyl-butyl)cyclohexanone (80-95)</li> <li>2-Benzylidene-6-(β-cyanoethyl)-6-phenylcyclo-</li> </ul>	761 112
hexanone		hexanone (63) O	
α-Tetralone	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH; KOH	A A	761
1-Methyl-cis-2-decalone	[C,H5CH2N(CH3)3]OH	H ₃ C CH ₂ CH ₂ CO ₂ H	368
1-Methyl- <i>trans-</i> 2-decalone	[C,H5CH2N(CH3)3]OH	H ₃ C H O CH ₂ CH ₂ CO ₂ H	368

108

108

[C,H,CH,N(CH,),]OH

IC, II, CH, N(CH,), JOH

542

Note: References 491-1045 are on pp. 545-555.

1; This product was isolated after saponification of the adduct. . Compare the review by Bruson, ""

[C,H,CH,N(CH,),]OH 3-(Methylandmomethylene)-1methyl-trans-2-decalone

368

References

Product (Yield, %)  $A = -CH_2CH_2CN$  774

CH2CH2CO2H

H3C C8H17

8

#### TABLE X-Continued

## MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Reactants

$$[C_6H_5N(CH_3)_3]OH$$

[C6H6N(CH3)3]0H

[CeHeN(CH3)3]OH

HO2CCH2CH2 CH2CH2CO2H

368, 775

161

192 161 191

[C,H,N(CH,),10H

HNCH 1C, HA

Acetophenone

#### 33% of and 40% & upmer)

C, II, COCH(A), (30) and C, II, COC(A), (small) C,H,COC(A), (57-64)

277, 279,

776 767 767

C,H,CH,N(CH,),JOH C,H,CH,N(CH,),JOH C,H,N(CH2),10C,H, C,H,CH,N(CH,), or OC, Hon 0C.H."

4-Chloroacetophenone

4-Bromoacetophenone 4-Methylacetophenone 4-Methoxyacetophenone

Propiophenone Phenylacetone Note: References 491-1095 are on pp. 545-555. * Compare the review by Bruson, 274

C, H, COC(A), (65) C, H, COC(A), (64)

p-CH,C,H,COC(A), p-BrC,H,COC(A), C, II, COC(A), (57) p-CIC, H, COC(A), C, H, CH, N(CH,), JOH, C,H,CH,N(CH,), JOH; (C, H, CH, N(CH,), JOH;

HON KOH KOH

C,H,COC(A),CH, (quant.) p-CH,0C,H,COC(A), C,H,CH,N(CH,),10H; [C,H,CH,N(CH,),]OH;

C,H,CH,N(CH,), JOH; Na enolate KOH KOH

C,H,C(A),COCH, (86)

C,IL,CH(A)COCH, (80)

107

THE MICHAEL REACTION 767

9

#### TABLE X-Continued

## MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSAT	MICHAEL CONDENSATIONS WITH TRAILEDATIONS	
Renetants	Catalyst	Product (Yield, %)	References
		$A = -CH_2CH_2CN$	
C. Actones (Cont.)	1	, 11000 5000 th 5	276
Isobutyrophenone Benzoylacetone	KOH, CH ₃ OH [C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	C,HsCOC(A),COCH3 C,HsCOC(A),COCH3	277
2,4,6-Trimethylacetophenone	Of OC,44,5.77 [C,H,CH,N(CH,),]OH; FOH	$2,4,6$ -(CH ₃ ) $_3$ C $_6$ H $_2$ COC( $4$ ) $_3$ (30)	761
Isopropyl benzyl ketone	кон, спрон	C,H3CH3COC(A)(CH3)3	276
Methyl p-naphthyl ketone	[C,H,CH,N(CH,),]OH	β-C ₁₀ H-COC(Δ) ₃ C H COC(Δ)(CH )G H -::	761 276
α-n-ButyIprophophenone α-n-PropyIbutyrophenone	KOII, CH ₃ OH	C,H;COC(A)(C,H;)C,H;-n	276
Deoxybenzoin	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH; KOH	$C_6^{ m L}_6^{ m C}(A)_2^{ m C}{ m COC}_6^{ m L}_8$ (80)	761
Anthrone	[C6H3CH2N(CH3)3]OII	9,9-Di-(\beta-cyanocthyl)-10-anthrone (S9)	288
		0=	
	KOC,H ₉ -ł		777
		H CH,CH,CO,H	
		\$\$ (50-00)	
4-Phenylacet ophenone	[C ₆ H ₅ CH ₂ N(CH ₅ ) ₃ ]OH; KOH	4-C ₆ H ₅ C ₆ H ₄ COC(A) ₃	761
Dibenzyl ketone	[C6H6CH2N(CH3)3]OH; KOH	$\mathrm{C_6H_5C(4)_2COCH(4)C_6H_5}$	761

			THE MI	CHAEL 1	REACTION	ON		
270 276	277, 279	178	279	118	778	279	178	
C, H, COC(A)(C, H, 1, 1, 1), C, H, 1, 1, 1), C, H, COC(A)(C, H, 1, 1, 1), C, H,	COC(A), (90-93)	H ₃ CCOC(A) ₃ (11)	COC(A),CH,	H,CCOC(A),	II, C COC(A), CII, (62)	COC(A)CH,CH,	n,c cocn(A)CH,	(27)
кон, си,он кон, си,он	[C ₄ II,CH,N(CH,) ₃ ]0H or OC ₄ II ₅ ·n	1C,H,CH,N(CH,),)OH	lo'n'cn'n(cn'))on	(c,u,cu,N(cu,))OH	ic,H,CH,N(CH,),10H	ic, H, cH, N(CH, ), JOH	[С, И,СИ, Х(СИ, ),]ОН	
a-n-Octylpropiophenone Mathyl a-phenylnonyl ketone	2.Acetylfuran	2-Actyl-5-methylfuran	2-Propiony Maran	3-Acctyl-2,5-dimethylfurun	2-Propiony l-6-methylfaran	2-n-Buty rylfuran	2,5-Dimethy I-3-propiony furan	2000

Note: References 401-1045 are on pp. 545-555.

Il Arrybailteile was formed in sets from \$-chloropropionitelle.

#### TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSAT	MICHAEL CONDENSATIONS WITH ACCULABATIANTS	Roforences
Reactants	Catalyst	Product (Yield, %)	TIGICICIO
C. Kelones (Cont.) 2-n-Butyryl-5-methylfuran	[C,H3CH2N(CH3)3]OH	$A = -CH_2CH_2CH$ $H_3C \left( \frac{1}{2} \right) COCH(A)C_2H_3 H_3 C \left( \frac{1}{2} \right) COC(A)_2C_2H_3$	778
3-n-Butyryl-2,5-dimethylfuran	[C,H5CH2N(CH3)3]OH	(23) $COC(A)_2C_2H_5$ (54) $H_3C$	877
2-Acetylthiophene	[C ₆ II ₅ CII ₂ N(CH ₃ ) ₃ ]OH or OC ₄ II ₉ -n	COC(.41) ₃ (87-80)	277, 279
2-Aeetyl-5-methylthiophene	[C,H,CH,N(CH,),]0H	$\Pi_{\mathfrak{s}}^{C} \subset \mathbb{R}^{C} \subset \mathbb{R}^{S}$	778
2-PropionyHhiophene	[C,U,CH2N(CH3),]0H	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	976
5-Methyl-2-propionylthiophene	[C,U,CH,N(CH,),]0H	$\Pi_3 C $ COC( $A$ ) $_2 CH_3$ (70)	778
2-n-Butyrylthiophene	[C,H,CH,N(CH,),]OH	$ \begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & &$	778



Note: References 491-1015 are on pp. 545-555.

Compare the review by Bruson,***

TABLE X-Continued

MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

References 769 769(60) F. Product (Yield, %)  $A = -CH_2CH_2CN$ (<u>0</u> (S)  $CH_3$ N Catalyst KOH HON 1,2-Dimethyloctahydro-4-(1H)-2,2-Dimethyl-4-pyranone Reactants C. Ketones (Cont.) quinolone

HOH.C. [C₆H₅CH₂N(CH₃)₃]OH; KOH [C,H,CH,N(CH,),]OH 3-Oxo-2,2,5,5-tetramethy:Itetra-hydrofuran Kojic acid

779

C2H5 (71)

[C,U,CH,N(CH,),]OH

3-Ethyl-1-methyloxindole

 $_{
m OH_3}$ 

/(CH3);

(CH3); \

761

170

D. Esters and Amides Diethyl malonate	NaOC ₂ H ₆ ; Na	ACH(CO ₂ C ₂ H ₂ ) ₂ (57-63); (A) ₂ C(CO ₃ C ₁ H ₄ ) ₁ (12)	780, 781, 288, 781a
	[C,H,CH,N(CH,),]OH [C,H,N(CH,),]OC,H,	$(A)_2C(CO_3C_2H_3)_3$ (82) $ACH(CO_2C_3H_3)_3$ (27); $(A)_3C(CO_2C_2H_3)_3$ (10)	767
Malonamide Diethyl methylmalonate	[C,H,CH,N(CH,),JOH	(A),C(CONH,), (14) AC(CH,)(CO,C,H,), (93)	182
	кон, сп.он	a-Methylglutaric acid;	783
Diethyl n-propyimalonate Diethyl n-butylmalonate	KOH, CH,OH	a-fropylgiutaric acid‡‡ a-n-Butylglutaric acid‡‡	783
	Na; NaOCH,; NaOCHs; [O,H,CH,N(CH,),10H		282, 781, H
Diethyl n-hexylmalonate	NaOCH, NaOCH	n C,H12C(A)(CO,C,H6)2 (82)	
Diethyl n-octylmalonate	NaOCH3; NaOCzHs	n-C,H,C(A)(CO,C,H,), (90)	18L
Diethyl z-decylmalonate	NaOCH,; NaOCH,	n-C,ьП,,С(A)(CO,С,Нь,), (S9)	
Diethyl n-dodecylmalonate	NaOCHs; NaOC,H.	n-C ₁₂ H ₁₃ C(A)(CO ₂ C ₂ H ₆ ), (92)	
Diethyl n-tetradecylmalonate	NaOCH ₃ ; NaOC ₃ H ₃	"-C,"II,"C(A)(CO,C,II,), (80)	784
Diethyl cetylmalonate	NaOCH,; NaOC,H,	n-C, H., (A)(CO, C, H.), (89)	
Tetracthyl ethane-1,1,2,2-tetra- carboxylate	[C,H,CH,N(CH,),JOH	$(G_2H_6O_2O_3C(A)CH(CO_2C_2H_6)_2$ (77)	LOS S
Diethyl phenylmalonate	KOH, CH,OH	a-Phenylglutaric acid;t	
Diethyl benzylmalonate	кон, сн,он	x-Benzylgiutarie acidtt	783
Diethyl phenethylmalonate	KOH, CH,OH	C.H.CH.C(A)(CO.C.H.). (81)	183
South a section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th	ACH, CH,OH	a (1-Naphthyl)glutaric acid;;	783
Note: References 491-1045 are on pp. 545-555.	s on pp. 545-555.		

[•] Compare the review by Bruson, it.

11 This product was isolated after saponification of the adduct.

||| \$\textit{\beta}\$ Ethoxypropionitrile was employed instead of acrylonitrile

# TABLE X—Continued

# MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

	MICHAEL CONDENSATIONS		
Donotonia	Catalyst	Product (Yield, %)	References
Trencutives	•	$A = -CH_2CH_2CN$	
D. Esters and Amides (Cout.) Diethyl 2-naphthylmalonate Diethyl (1-naphthylmethyl)-	КОН, СН ₃ ОН КОН, СН ₃ ОН	$\alpha$ -(2-Naphthyl)glutaric acid‡‡ $\alpha$ -(1-Naphthylmethyl)glutaric acid‡‡	783 783
malonate Diethyl (2-naphthylmethyl)-	кон, сн,он	$\alpha\text{-}(2\text{-Naphthylmethyl})glutaric\ acid\ddagger\ddagger$	783
malonate Diethyl (\$-1-naphthylethyl)-	кон, снаон	$\alpha\text{-}(\beta\text{-}1\text{-Naphthylethyl})\text{glutaric acid}\ddagger$	783
malonate Diethyl ( $\beta$ -2-naphthylethyl)-	кон, сн _з он	$lpha  ext{-}(eta  ext{-}2 ext{-Naphthyle(hyl)glutaric} \  ext{acid} \ddagger \ $	783
malonate Vinylacetamide (or crotonamide) $~[\mathrm{C_6H_5CH_2N(CH_3)_3}]\mathrm{OH}$	$[\mathrm{C_6H_5CH_2N(CH_3)_3}]\mathrm{OH}$	$CH_2 = CHC(A)_2CONH_2$ (18)	283
Diethyl $eta$ -(4-methoxy-1-naph-thyl)ethylmalonate	кон, сн _з он, (сн _з ) ₃ сон	CH2CHCO2H‡‡ CH2CHCO2H (40)	786
Diethyl $eta$ -(5-methoxy-1-naph-thylmalonate	КОН, СН ₃ ОН, (СН ₃ ) ₂ СОН	CH ₂ CH ₂ CHCO ₂ H [‡] [‡] CH ₂ CH ₂ CO ₂ H (32) OCH ₃	786

		THE MICHAEL REACTION	
786	780	450 458 460 367,283 460 283 783 787 787 787,780 700	
culoulululululululululululululululululul	cuto, cutcutoni	Οθημασία σειμή: 16.3)  CH, COMITCARCO, CH, ANCALACO, FI, ANCALACOO, FI, ANCALACOO, FI, ANCALACOO, FI, ANCALACOO, FI, ANCALACOO, FI, ANCALACOO	
кон, сп,он, (сн,)сон	кон, сп.он, (сн.),сон	NocCH, NocCH, An NoOH, An NoOH, An NoOH, NoCH, CH, CH, A) NoCH, CH, CH, NCH, A) Not Indicated (CH, CH, NCH, A) Not Indicated	
Diethyl & (6-methoxy-1-naph- thyl)ethylmalonate	Diethyl \$-(7-methoxy-1-naph- thyl)ethylmalonate	Dithly incommissionates purity incentanismonate Purity examentate Stayi cyanacetate Edity cyanacetate Edity controplypranacetate Purity centaly is "cyano-fluctual Purity cally cyano-fluctual." Dithly is again of methy! Dithly is again of demethy! Dithly is "cyano-fluctual." Puthly is "cyano-fluctual."	

Note: References 491-1045 are on pp. 545-555.
* Compare the review by Bruson.¹¹¹
1‡ This product was isolated after saponification of the salduct.

### [ABLE X—Continued

# MICHAEL CONDENSATIONS WITH ACRYLONITRIE*

	MICHAEL CONDENSAL	MICHAEL CONDENSATIONS WITH ACCURATION	
Donolonie	Catalyst	t (Yield, %)	References
D. Eslers and Amides (Cont.) Ethyl phenylcyanoacctate	KOH, CH ₃ OH	$A = -CH_2CH_3CN$ $C_6H_5C(A)(CN)(CO_2C_2H_5) (69-83)$ $C_7H_7O_7C(CH_2)_2C(CN)(CH_3)C(A)(CN)(CO_2C_3H_6 (99)$	792 793
Diethyl 1,2-dicyano-2-methyl- pentane-1,5-dicarboxylate Methyl ethylphenylacetate Methyl n-propylphenylacetate	Cehernengian Naoch, Naoch	(C ₆ H ₅ )(C ₂ H ₅ )C(A)CO ₂ CH ₃ (C ₆ H ₅ )(n-C ₃ H ₇ )C(A)CO ₂ CH ₃ (C ₆ H ₅ )(n-C ₃ H ₅ )C(A)CO ₂ CH ₃	794 794 794
Methyl n-butylphenylacetate Methyl isobutylphenylacetate Methyl diphenylacetate Methyl fluorene-9-carboxylate Ethyl 1-methylfluorene-9-	NaOCH ₃ NaOCH ₃ KOH NaOH, pyridine	C ₆ H ₅ (c·C ₄ H ₉ )C(A)CO ₂ CH ₃ (C ₆ H ₅ ) ₂ C(A)CO ₂ CH ₃ 9-Carbomethoxy-9-(\theta-cyanoethyl)fluorene (94) 9-Carbethoxy-9-(\theta-cyanoethyl)-1-methylfluorene (78)	794 794 795 482
carboxylate Ethyl 2,7-dibromofluorene-9- carboxylate	[C6H6CH2N(CH3)3]OH	9-Carbethoxy-9- $(\beta$ -eyanoethyl)-2,7-dibromofluorene (93) 796	796
		$H \xrightarrow{\text{CH}_2\text{CO}_2\text{H}}$	
Methyl 4-cyclopenta[ <i>def]</i> - phenanthrenc-4-carboxylate	[C,H,CH,N(CH,1),JOH	§ 3	797
Ethyl α-furylacetate	[C,H,CH,N(CH,),]OH or OC,H,n	$ \bigcup_{\mathbf{O}} C(A)_2 CO_2 C_2 \mathbf{H}_5 $ (26)	277

Ethyl a-thienylacetate	[C,H,CH,N(CH,),]OH or OC,H,º**	$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	277
Ethyl 2-pyridylacetate	e.N	CH(A)CO,C2H, (72)	708
E. Keto Esters and Amides Methyl acetoacetate Ethyl acetoacetate	[O,U,CH,N(CH,),]OH [G,H,CH,N(CH,),]OH or OO,H,,n	CH,COC(A),CO,CH, (40) CH,COC(A),CO,CH, (170-80) or CH,COC(H(A)CO,CH, 700-80)	760, 761
Ethyl methylacetoacetate	[C,H,CH,N(CH,),]OC,H, NaOC,H, KOH, CH,OH, (CH,),COH	-	761, 767 799 796, 800
Ethyl ethylacetoacetate	NaOC ₂ H ₄ KOII, CH ₂ OH, (CH ₃ ) ₂ COH	e-Mehylglutans and (51);† CH5,COC(CH7,A/COC);†; CH5,COC(A/OH; (34);†; CH5,COC(C,H5)(A/OC);COC(C,H5)(A/OC); CH5,COC(C,H5)(A/OC);COC(C,H5)(A/OC);	800 782 801 800
Ethyl n-propylacetoacetate		a-Ethylglutaric acid (62);† $CH_sCOCH(A)CH_sCH_s$ (43);†† $CH_sCOC(C_bH_sn)(A)CO_sC_bH_s$ (38)	800 801 800
Note: References 491-1045 are on un Elf FFF	1 6	w-n-Propylglutaric acid (88);; CH ₃ COCH(A)CH ₂ CH ₃ CH ₃ (88);;	800

Note: References 491–1046 are on pp. 545–555,

Compare the review by Bruson, ²⁴

†† This product was isolated after saponsfication of the adduct.

### TABLE X—Continued

# MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

					U.	KG.	AIN	IC	K	E4F	LC.	TT	JIN	B										
References		591, 800 800	000	008	119, 800	800	801	781, 800		800	801	800	800	800	800	802		581	800	800	801	217, 119		199
Product (Yield, %)	$A = -CH_2CH_2CN$	$CH_3COC(C_3H_7-i)(A)CO_2C_2H_6$ (37, 43)	a-Isopropylgiutaric acid (43)‡‡	$\mathrm{CH_3COC(C_3H_5)}(A)\mathrm{CO_2C_2H_5}\ (76)$	a-Allylglutaric acid (70)‡‡	$\alpha_{-n}$ -Butvlelutaric acid (75)‡‡	CH,COCH(A)CH,CH,CH,CH, (35)##	$CH_3COC(C_6H_{11}-n)(A)CO_2C_2H_6$ (71)		$\alpha$ -n-Amylglutaric acid (71)‡‡	$CH_3COCH(A)(CH_2)_4CH_3$ (32)‡‡	$CH_3COC(C_6H_{11}-i)(A)CO_2C_2H_5$ (72)	α-Isoamylglutaric acid (72)‡‡	$CH_3COC(C_6H_{13}-n)(A)CO_2C_2H_5$ (84)	$\alpha$ -n-Hexylglutaric acid (84)‡	$\mathrm{CH_3COC}(\mathrm{C_6H_6})(A)\mathrm{CO_2C_2H_6}$ (27)		$CH_3COC(CH_2C_6H_5)(A)CO_2C_2H_5$ (85)	$CH_3COC(CH_2C_6H_5)(A)CO_2C_2H_5$ (66)	α-Benzylglutaric acid (66)‡‡	$CH_3COCH(A)CH_2C_6H_5$ (31) $\ddagger\ddagger$	$n\text{-}C_3\text{H}_7\text{COC}(A)_2\text{CO}_2\text{C}_2\text{H}_6 \ (34-36,\ 74)$		$n\text{-}\mathrm{C_3H_2COCH}(A)\mathrm{CO_2C_2H_6}$ (52)
Catalyst	(f.)	КОН, СН ₃ ОН, (СН ₃ ) ₃ СОН		КОН, СН ₃ ОН, (СН ₃ ) ₃ СОН	HOD ( HO) MO MO AND AND AND	NOE, Chaoti, (Chaoticon	-	кон, сн.он,	(CH ₃ ),COH; Na		1	KOH, CH,OH, (CH,),COH		KOH, CH3OH, (CH3)3COH		NaOC ₂ H ₆ ; KOH,	СН ₃ ОН, (СН ₃ ) ₃ СОН	$NaOC_2H_5$	КОН, СН ₃ ОН, (СН ₃ ) ₃ СОН		1	[C ₆ H ₆ CH ₂ N(CH ₃ ) ₃ ]OH or	$OC_4H_0-n$	$NaOC_2H_b$
Renctants	To Veto Refore and Amides (Conf.)	Ethyl isopropylacetoacetate	•	Ethyl allylacetoucetate		Ethyl n-butylacetoacetate		Ethyl n-amylacetoacetate				Ethyl isonmylacefoacetate		Bthyl n-hexylacetoacetate		Ethyl phenylacetoacetate		Ethyl benzylacetoacetate				Ethyl n-butyrylacetate		

		TI	не місн		
277	799 799 799 277	581, 799	190	119, 121, 694 119	<b>\$</b> 08
(CH ₂ ) ₂ CHCOC(A) ₃ CO ₃ C ₄ H ₄ (65–68)	(CII ₁ ),CHCOCHIA)CO _C C _I I ₄ (33) +CII ₄ COCHIACO _C C _I I ₄ (18) +C _I I ₄ COCHIACO _C C _I I ₄ (18) +C _I I ₄ COCHIACO _C C _I I ₄ (38) C _I I ₅ COC(A) ₅ CO _C I ₄ (33)	C,H,COCH(A)CO,C,H, (86, 43)	S COCHIANCO, CH. (6)	0 COA(1)I, 3 Conformethory 3-45-cymoethyl)camplor (78)	co,cu,
[C,H,CH,N(CH,),]OH or	NaOC,H, NaOC,H, NaOC,H, NaOC,H, NaOC,H,	NaOC ₁ H,	NaOC, II.	KOH, CHLOH; NaOCHI, NaNH; [CHCH,NCH,N]OH KOH, CHLOH	(C,U,CH,N(CH,),)0H
bith; the butyry facetate	Lihyi harrak placetate Ethyi hexanoy lacetate Ethyi heptanoy lacetate Ethyi heptanoy lacetate	Ethyl 2 furnylacetate	Lilyl Z-them) beetate	2 Catethory cycloheranone Methyl campbur-3-earboxylate	2 Carbonard bory-1-to trabone (CAL),CUL,N(CH, Note: References 401-1015 are on pn. 515-555.

Note: References 491-1015 are on pp. 615-555.

Compare the review by Henon, 111

The product was holated after asponitication of the adduct.

### TABLE X—Conlinued

# MICHAEL CONDENSATIONS WITH ACRYLONITRILE*

Reservats	Catalyst	Product (Yield, %)	References
the Olympian to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	_	A = -cu, $cu$ , $cv$	
E. Acto Esters and Amacs Com.		II DIMOD W TOOK HE	760
Acetoacetanilide	[C, II, CH2N(CH3), JOH	CH ₃ COC(A) ₂ COMMC ₆ H ₃	760
Acetoncet-2-chloroanilide	[C ₆ H ₅ CH ₂ N(CH ₂ ) ₅ ]OH	CH COCCA CONTICATOR	760
Acetoncet-2,5-dichloroanilide Acetobutyrolactone	$\{C_{\mathbf{L}_{\mathbf{L}}}^{\mathbf{L}_{\mathbf{L}}}\mathbf{CL}_{\mathbf{L}_{\mathbf{L}}}^{\mathbf{L}}\}_{\mathbf{L}_{\mathbf{L}}}^{\mathbf{L}}$ $\operatorname{NaOC}_{\mathbf{L}}\mathbf{L}_{\mathbf{L}}$	2-Aceto-2-(\$-cyanoethy!)butyrolactone (80-02)	581
F. Nitriles			į
Allyl evanide (or crotonomitrile) [CallaCHaN(CHa),1011	[C,II,CII,N(CII,),10II	$CII_3CII = C(A)CN(0)$	283
, , , , , , , , , , , , , , , , , , , ,	HOLAHON HO HOL	(CH ₂ =CHC(A),(N (23) (CH ₂ ),C=C(A)(N (5)	
Isopropenyl cymmae (or	1,001,501,211,011,511,011	CII,=C(CII,)C(A),CN (11)	283
Denort provide	Ag. NECN	C.II.CH(A)CN (80)	400
Denzyl cyannac	[C.H.CH.N(CH.), 1011	C, II, C(A), CN (94)	282
	NaOC, II,	C,H,C(A),CN (46)	805
	кон, сн,он, (сн.),сон	C, H, C(A), CN (70)	707
	[C,II,N(CII,),]OC,II,	C,H,C(A),CN (00)	707
n-Nitrobenzyl cyanide	(C, II, CH, N(CH, ), JOH	p.0.NC, II, C(A), CN (90)	585
o-Chlorobenzyl cyanide	кон, сп,он, (сп,)сон	0-CIC. II, C(A), CN (47)	908
m-Chlorobenzyl cyanide	кон, сп,он, (сп,),сон	m-CIC, H, C(A), CN (64)	80u
n-Chlorobenzyl cyanide	KOII	p-CIC, II, C(A), UN (80)	807
m-Bromobenzyl cyanide	кон, сп,оп, (си,),сон	m-BrC, 11, C(A), CN (80)	800
p-Bromobenzyl cyanide	коп, сн,оп, (сн,)сон	p-BrC, U, C(A), CN (84)	808
m-Methylbenzyl cyanide	кон, спрон, (спр)соп	m-CII,C(II,C(A),CN (88)	800
p-Methylbenzyl cyanide	коп, сн ₃ он, (сп ₃ ) ₃ сон	p-CH ₂ C ₂ H ₄ C(A) ₂ CN (95)	800
a-Phenylpropionitrile	коп, сп,оц, (сн,),соп	(C,H2)(CH3)C(A)CN (55)	758

				THE MI	CHAEL REA	CT.	ION		
807	283	808	807	808	805a		117, 281	282	281 117 117 808
$p \cdot (\mathrm{CH_2})_2 \mathrm{CHC_6H_6}(A)_2 \mathrm{CN}$	$\bigcirc C(A)_k CN  (37)$	$\left( \begin{array}{c} \left( A \right) \left( C_{\mathbf{d}} \mathbf{H_{\mathbf{b}}} \right) \mathbf{CN} \end{array} \right)$	$\alpha$ -C ₁₀ $\mathbf{H}_{r}$ C( $A$ ) _k CN (55)	$C(A)(C_aH_b)ON$	Contra		(A) ₂ CHNO ₄ (low); (A) ₃ CNO ₂ (52)	(4) ₃ CNO ₂ (45) CH ₃ CH(4)NO ₂ (39)	CH.C(A),NO, (67) (CH,jC(A)NO, (67) 1-Mitro-1-(\$-vyanoethyl)vyclohexane (40) (A),C(NO,h, (34); (A),CNO, (12)
кон	{C,H,CH,N(CH,),}0H	[C,H,CH,N(CH,),JOH	[C,H,CH,N(CH,)OH	[C,H,CH,N(CH,),]OH	Li salt		NaOCH3; aq. K,CO3	(C,H,CH,N(CH,),JOH (C,H,),NH; NaOCH,	Aq. K ₁ CO ₃ Aq. KOH Aq. KOH Aq. solution
p-Isopropylbenzyl cyanide	Oyclohexenylacetonitrile	a-(2-Thienyl)benzyl cyanide	a-Naphthylacetonitrile	a-(1-Cyclohexenyl)benzyl cysnide [C ₆ H ₄ CH ₄ N(CH ₄ ) ₁ ]OH	1-Cyano-2-benzoyl-1,2-dhydro- Li salt Isoqunoline	G. Nutra Compounds	Nitromethane	Nitroethane	2-Nitropropane Nitrocyclohexane O,NCil.see NO,K

Note: References 491-1045 are on pp. 545-555.

TABLE X—Continued

# MICHAEL CONDENSATIONS WITH ACRYLONITHILE*

References		810	117	117	0- 117		811	812	812	6777	810			813		
Product (Yield, %)	$A = -CH_1CH_2CN$	AC(NO.), CH. CH. CO. CH.	p-BrC, H, C(4, 1, NO. (15)	3-Nitro-3-methyl-4-methoxy-4-phenylvaleronitrile	(30) 3.Nitro-3-methyl-5-(butylsulfonyl)-1-pentanecarbo-	nitrile	Ethyl z-nitro-y-cyanobutyrate (19)	O.NCH(A)CO,C,H, (52)	0;NC(A);CO;C;H; (80)	O,NCH(A)CO,C.H, (diethylamine salt) (81)	Methyl 6-cyano-1,4-dinitrohexanoate (51)	in Curi	___________________		<u> </u>	SON /
Catalyst		Ag. solution	C.H.CH.N(CH.), 10H	Aq. NaOH	IOI A.H.). MOI		KOH, ethanol	[C,H,CII.N(CII,),10H	,	(C,H,),NH	Na derivative in water			NaOCH,		
Reactants	G. Nitro Compounds (Cont.)	CH O CCH CH C/NO 1=NO.Na Ap. solution	Demonstrational principality	Methyl 2-nitro-1-phenylpropyl	ether	and the second of the second	Ethyl nitroacetate				Methyl 7,7-dinitrobutyrate			Endo(nitroethylene)anthracene		

3

and an artist of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
henyl benzyl sulfone	IC,H,CH,N(CH,),JOH	C ₆ H ₅ SO ₂ C(A) ₂ C ₆ H ₆ (80)	279, 814	
Ally! p-tolyl sulfone	(C4HcH2N(CH3)3)OH	p-CH ₂ C ₄ H ₄ SO ₅ CH(A)CH=CH ₂ and p CH-C.H.SO.C(A).CH=CH	814	
cu,c,u,so,cu,co,c,u,	кон, спроп	p-CH,C,H,SO,C(A),CO,C,H,	814	
Thenyl p-chlorobenzyl suifone   C, H, CH, N(CH, 1)10H	[C,H,CH,N(CH,),]OH	p-ClC,H,C(A),SO,C,H, (60)	816	
<ol> <li>Phosphanoacetales</li> </ol>				
Triethyl Phosphonoacetate	[C,H,CH,N(CH,)]OH	(C ₂ H ₅ O) ₂ P(O)C(A) ₂ CO ₂ C ₂ H ₅ (87)	816	
	NaOC,H,	(C,H,O),P(O)CH(A)CO,C,H, (28)		T
	;	(C ₂ H ₆ O) ₂ P(O)C(A) ₃ CO ₂ C ₃ H ₆ (27)	124	HE
	Na Na	(C,H,O),P(O)CH(A)CO,C,H, (40)	817	X
	;	(C ₂ H ₅ O) ₂ P(O)C(A) ₂ CO ₃ C ₂ H ₅ (19)		IIC
Dethyl evenometherenhon.	K	(C ₂ H ₆ O) ₂ P(O)C(A) ₂ CO ₂ C ₂ H ₆ (68)	817	H
phonate	Ho(s(cm))vimoshiol	$(C_2H_3O)_2P(O)C(CN)(A_2)$ (90)	810	<b>AEI</b>
Triethyl z-nhosnhonomonometr	K	$(C_{k}H_{k}O)_{k}\Gamma(O)C(CN)(A)_{k}$ (80)	817	RI
Triethyl «-phosphonohexanogte	NaOC.H.	(C ₂ H ₅ O) ₂ P(O)C(CH ₃ )(A)CO ₂ C ₂ H ₅ (58)	124	EAC
	N N	(C,H,U)2('U)C(C,H,N)(A)CO2C,H, (71)	124	TI
		(51) Tana (4) (4, 4, 4) (4) (4) (1, 4) (4) (1, 4) (1, 4)	817	O

H. Sullones

Note: References 491-1015 are on pp. 545-555.

Compare the review by Brusson in §¶ The ortho and math isomers give analogous reactions. From o- and w-methyl benzylphenyl sulfone only undefined old were formed; the pure kenner failed to react.

#### TABLE XI

MICHAEL CONDENSATIONS WITH UNSATURATED NITRILES OTHER THAN ACRYLONITRILE	~ /o ~
THAN	
Отнев	1 /0 /2(2) 1 / T. T. C.
NITRILES	
Unsaturated	
WITH	
CONDENSATIONS	
MICHAEL	

References	Froduct (11etu, %) $A = CH_3CHCH_2CN$	$^{1}_{CO_{2}C_{2}H_{3}}(90)$ $^{1}_{CN}(CO_{2}C_{2}H_{3})$ $^{1}_{2}CN$ $^{1}_{3}CN$ $^{1}_{4}CN$ $^{1}_{5}CN$ $^{1}_{5}$	(51)	CO ₂ CH ₃ (73) 291	CU ₂ C ₂ H ₅ (70) 291	1- $(\beta$ -Cyanopropy1)-1,2,3,4-tetrally drofluoranthene 754, 755
MICHAEL CONDENSATIONS WITH UNSATURATED MIMILES CITED 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Catalyst	NaOC ₂ H ₅ NaOC ₂ H ₅ CH ₃ (CN)CO ₂ C ₂ H ₅ (90) CH ₃ C(J)(CN)CO ₂ C ₂ H ₅ NaOC ₂ H ₅ C ₆ H ₅ CH ₄ )CN (76) Aq. NaOH C ₂ H ₅ CH ₄ JNO ₂ (80) (CH ₃ N(C ₂ H ₅ ) ₃ JOH (CH ₃ ) ₂ C(J)NO ₂ (80)	$[C_6H_5CH_2N(CH_3)_3]OH$ (61)	CO ₂ CH ₃		$[C_6H_5CH_2N(CH_3)_3]OH \qquad 1-(\beta-Cyanopropyl)-1,2,3,4-4$
MICHAEL CONI	Reactants Crolononitrile (or Allyl Cyanide) and	Ethyl cyanoacetate Ethyl α-cyanopropionate Benzyl cyanide 1-Nitropropane 2-Nitropropane	Fluorene	Methyl fluorene-9-carboxylate	Ethyl fluorene-9-carboxylate	Mchacryloniirile and 1,2,3,4-Tetrahydrofluoranthene

821

Methoryerolonondrile and		A = CILOCH.CHCH.CN	
Nethyl malonate	NaOC ₂ H ₃	ACH(CO ₂ C ₂ H ₃ ), (74)	818, cf. 819
Diethyl ethylmalonate	NaOC ₂ H ₄	ACC(H ₂ H)(CO ₂ C ₃ H ₃ ), (36)	820
Diethyl $\beta$ methoxyethylmalonate	NaOC ₂ H ₃	AC(CH ₂ CH ₂ OCH ₃ )(CO ₂ C ₃ H ₃ ), (40–50)	820
Diethyl $\beta$ -ethoxyethylmalonate	NaOC ₂ H ₃	AC(CH ₃ CH ₃ OC ₃ H ₃ )(CO ₂ C ₃ H ₃ ), (42)	820

3-Cyano-1,2,5,6-tetrahydropyruline and	dine and	
Diethyl malonate	NaOC,H	н, со, н т
		\x/
		p

(Cinchololponic actd, 2 isomers)

83

HNH	
	)
NaOC ₂ H ₅	
) anoacetamide	

Cyclopentylideneacelonitrile and





Cyanoacetamide









821

822



MICHABL CONDENSATIONS WITH UNSATURATED NITRILLS OTHER THAN ACRYLONITRILE

			·		1110			•				
References	,	402a			405a			290 27	27, 806	តិត		280
Product (Yiold, %)	HN	NH (26)	CH ₃ CN	III L	$H_{\rm a}C$ $NH$ $C$	on No	$A=\mathrm{C}_0\mathrm{H}_b\mathrm{CHCH}_b\mathrm{CN}$	$A\mathrm{CII}(\mathrm{CO_{u}C_{u}II_{b}})_{u}$ (83) $\mathrm{C_{0}II_{b}}(\mathrm{CO_{u}C_{u}II_{b}})_{u}$ (60)	C ₀ H ₀ CII(A)CN (80-87)	p-Cri ₃ OC ₆ LI ₄ CLI(A)CN (23) m-Ll ₂ NC ₆ LI ₄ CLI(A)CN (Two isomers: 17, 30)	× × × ×	(09)
Catalyst	ite and	$\mathrm{NaOC_2H_b}$		ile and	$\mathrm{NaOC}_{\mathbf{u}}\mathrm{H}_{\delta}$			NaOC ₂ H _b NaOC ₂ H _b ; NaOCH ₃	NaOCaHa; NaOCHa	NaOCalls; NaOCHa NaOCalls; NaOCHa		[C ₀ 11 ₆ C11 ₂ N(C11 ₃ ) ₃ ]O11
Renotants	(3-Methyleyctohexylidene)acetonitrile and	Cyanoacetamide		(4-Methyleyclohexylidene)acetonitrile and	Cyanoacetamide		Cinnamonitrile and	Diothyl malonato Ethyl phenylacetate	Benzyl eyanide	p-Methoxybenzyl cyanide m-Aminobenzyl cyanide		Phorene

p-Mehoryennamondrik and Ik nzyl cyambo	NAUNTHE NAUM HE	CHARA NA BALIGA II, pA II, A (22)	į,
2-Hydrindanyldeneacetondrite und		S.	
C) answertambe	Nath', H.	S S	3
		CHCSCOSH,	
a-Phenylennannondrile and		A Chigh Hapte	
Nitromethane Nitrothane	HN(chta)	ACHANO, (11) CHA BLASNO, (57)	==
æ-(p-Uronophenylkennamondele and Netroelhano	nad Dye ridine	сијитененрходинехедијит	ä
1-Cyano-1,3-butadiene and Diethyl malonate Ethyl acetoacetate	ichtch, ven, ven	A CHOID CHOLOS (A)COCALCHA, (B) (A)COCALCHA, (B)	33

Note: References 491-1015 are on pp. 515-555.

MICHAEL CONDENSATIONS WITH UNSATURATED NITHLIES OTHER THAN ACRYLONITRILE

Defendance	References		91	91	203	203	203	203			203	
	Product (Yield, %)	$A = -CH_{C}H = CHCH_{C}N$	CAN CICINICO C.H.	(A) (COOCH) (29)		CH CHIANO, and CH.C(A),NO. (total, 05)	CITACIA CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CON	CH ) C 100 (42)	(CH3)20(A)AC2 (11)	NO.	<i>_</i>	\ /
MICHAEL CONDENSATIONS WITH CIRCLE	Catalyst		TOTAL STORES	C, H, CH, N (CH, ), JOH	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	[C,H,CH,N(CH3)3]OH	C, H, CH, N (CH, J, J) OH	Cellschan(Cha)alon	[C,H,CH,N(CH,J,J)OR		[C,H,CH,N(CH,),]OH	
MICHAEL CONDE	Decetants	Neitouthis	1-Cyano-1,3-butadiene (Cont.) and	Ethyl cyanoacetate	Acetylacetone	Nitromethane	Nitroethane	1-Nitropropane	2-Nitropropane		Nitrocyclohexane	

TABLE XIA

MICHAEL CONDENSATIONS WITH ACRYLAMIDE, 194 AND METHACHYLAMIDE, 19	Product (Yield, %,)		2.Oxo-1,2,3,4,5,6,7,8-octahydroquinoline (1	y-Benzoylbutyric acid. (20)	C'II CHCHCH, CH, CONII, I), CO (48)
WITH ACT	Catalyst		iali	KOC,II,	100 II
MICHAEL CONDENSATIONS	Reactants		•	,	-
		Acrylamide and	Cyclohexanone	Acetophenone	Dibenzyl Letone

(10) out

2-Phenyleyclohexanone

Izetam of β-(2-keto-1-phen}leyeloheptyl)propionie acid (31) Izetam of β-(2-keto-1-phen}leyeloheptyl)propionie acid (22)

KOC, H. 1

2-Phenylcycloheptanone

This product was obtained after hydrolysis.

. ....

# TABLE XI4-Continued

MICHAEL CONDENSATIONS WITH ACRYLAMIDE 395 AND METHACRYLAMIDE 823

Product (Yield, %) Catalyst Reactants

Acrylamide (Cont.) and

KOC,H,-4

4-Oxo-1,2,3,4,9,10,11,12-octahydrophenanthrene

KOC, Hg-t

4,9-Dioxo-1,2,3,4,9,10,11,12-octahydrophenan-

9

NaH

Methacrylamide and

NaOC₂U, when the residual reaction mixtui

† The yield of lactam was 23%; when the residual reaction mixture was hydrolyzed, the yield of the corresponding acid was 27%. ‡ The yield of lactam was 67%; further work up of the mother liquor yielded an additional 19% of the lactam.

#### TABLE XII

Ethyl (w.tetralylidene)cyano- NaOC ₂ H ₃ acetate‡	$N_{\Delta}OG_{\underline{s}}H_{\underline{s}}$	C(A)(CN)CO ₃ C ₃ H ₄	827	
2-(1'-Cyclohexenyl)cyclo- hexanone	(Ctu.CH2N(CH3)1)OCH5	(6)	828	
Oxindole	NaOC ₂ H ₅	CH,CH,CO,H, f	829	THE MICH
I-Methyloxindole	NaOC _t H,	(CH, CH, CO, H),	372	AEL REAC
1-Ethyloxindole	NaOC ₁ Иs	(CH,CH,CO,H);	820	TION
Note: References 491–1045 are on pp. 545–555.  This neid was pointed after bydrobysm and partial decarboxylation.  This commoner was accelered by a control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	re on pp. 545-555. r hydrolysis and partial d	eearboxylation.		

† This compound was isolated by partial hydrolysis and decarboxylation, which were accompanied by elimination of one † This compound reacts in the tautoment #17-unsaturated form. § This compound was isolated after saponification. molecule of ethanol.



The dinitro compound was used as its potassium sait in aqueous solution; no other catalyst was employed. The dmitro compound was employed as its acresodium salt in aqueous solution. § This compound was isolated after saponification.

¹¹ When methyl acrylate and sodium ethoxide were employed, an 83% yield of n-C.II,C(A)(CO.C.III, was obtained. ** In this experiment methyl acrylate was used as starting material; it was francesterified by the catalyst solution.

		THE MIC	HAEL REACTION	ON
812	846	846	452 830, 452 830 830	
N N	$(a) \qquad (b) \qquad (c) $	CH.	(Al ₂ CHNO ₁ ACUCHINO ₂ (90) or (Al ₂ CH ₂ NO ₂ CH ₂ CH ₃ NO ₃ CH ₂ CH ₃ NO ₃ (CH ₂ CH ₃ NO ₃ (CH ₂ CH ₃ NO ₃ )	on autometate (CH/CH/NCH/NCH/h)OH CAGING, 0,000,111, 455)  AGNO,000 G.H. (22)  AGNO,000 G.H. (22)  AGNO,000 G.H. (22)  AGNO,000 G.H. (23)  AGNO D.H. (23)  AG
NaOC, II,	Na OC, III,	NaOC, И,	(C,H,CH,N(CH,1)OH (C,H,CH,N(CH,1)OH (C,H,CH,N(CH,1)OH (C,H,CH,N(CH,1,1)OH (C,H,CH,N(CH,1,1)OH	[C ₁ H ₂ CH ₁ N(CH ₁ h ₂ )OH [C ₁ H ₂ N(CH ₁ h ₂ )OH 45 are on pp. 545–555.  was used as the potassum as eithyl screlets was used as a
Oxindole	1-Methyloxindolo	1,3-Dimethyloxindole	Nitromethane Nitroethane 1-Nitropropane 2-Nitropropane Phylogene	(C,H,CH,NCH,),  Note: Neterance 401–1015 are on p. 565–565.  The duttion compound and asset to the person.

a use experiment methy acrylate was used as attring material; it was from-esterified by the callyst and are in a first speciment, the configuration product as fact holdiscle, how was treated directly with cityly a bronchistic factor of the cyclobrane ring.

	****				
30.7	307	307	307		810
9 •	· (55)	(C, II, C'II, N'C'II, N) OC, II, Diethyl 3-ethoxy butane-2, 4-dicarboxylate (19) and diethyl tearbonate, diethyl 1-butene-1, 3-dicarboxylate (18)	C,H,O,C CO,C,H,		OH CHICHICOIN (49)
C'II,0,C'C,II,	History	, Diethyl 3-ethoxybutar diethyl carbonate, 1 late (18)	H,CC CO,C,H,	0=	HOH, COLICIE
NaOC ₁ U,	נכיוויכוליאוכווייוסכיווי כיוויסיכ	(c'n'cn'n(cn'))oc'n	NaOC,III,		Na HCO,
Diethyl malonate		Diethyl methylmalonate		Croionic Acud and	Kopre acrd

Node: References 461-1015 are on pp. 545-555. | The distitre compound was used as its potassium salt in aqueous solution; no other eatalyst was employed.

Michael Condensations with Aliphatic  $\alpha, \beta$ -Ethylenic Acid Dehivatives

			ONON	.,,,,	11111011011	,	
References	5, 851, 50, 850, 7, 8	50, cf. 407	50, cf. 607 852 853	782	180, 851	855	856, 857, 858
Product (Yield, %)	$A = -\mathrm{CH}(\mathrm{CH_3})\mathrm{CH_2}\mathrm{CO_2}\mathrm{C_2H_5}$ $A\mathrm{CH}(\mathrm{CO_2}\mathrm{C_2H_5})_2$ (38, 53, 95, 98)	2-Methylbutane-1,3,3-tricarboxylic neid§ and 2-methylbutane-1,1,3-tricarboxylic neid§ (9:1,90)	2-Methyllatane-11,3-tricarboxylic acid§ (90) C ₈ H ₃ CH(A)CO ₂ C ₂ H ₂ (22) 3,4-(CH ₃ O) ₂ C ₈ H ₃ CH(A)CO ₂ C ₂ H ₃ (70)	CH ₃ COCH(A)(Co ₄ C ₂ H ₅ (60)	O (89, 65) (CO ₂ C ₂ H ₂ (CH ₃	O (65) (55)	O
Catalyst	NaOC ₂ II _s	$NaOC_2H_\delta$ (1/6 mole)	NaOC ₂ H ₅ (1 mole) K NaOC ₂ H ₅	$NaOC_2U_5$			$\mathrm{KOC_2H_b}$
Reactants	Ethyl Crotonate and Diethyl malonate	Diethyl methylmalonate	Blhyl phenylacetate Ethyl 3,4-dimethoxyphenyl-	acetate Bihyl acetoacetate			2-Carbethoxycyclopentanone

triethyl 2-methylhexame-1,3,6-tricarboxylate§§

2-Carbethoxy-5-methylcyclo- pentanone	KOC,II,	H ₂ CC ₂ C ₂ H ₁ (40)	304, 305	
Ethyl cyanoacetate Ethyl acyanopropionate Ethyl acyanobutyrate Ethyl acyanobutyrate Ethyl acyanobutyrate Cyanoacetanide Benzyl cyanide	NaOC,H, NaOC,H, NaOC,H, NaOC,H, Na erolate NaOC,H,	ACHUNIOO,C.H.f.f. CHICALONNOO,C.H. (43) CHICALONNOO,C.H. (43) CHICALONNOO,C.H. 3-Cymo.2,&-dunoo-+-eath) piperidme C.H.CHI.d.NON (43-68)	859, 860 77, 80 77 50 80 310	т
1-(\$-Diethylaminoethyl)-2- tetralone	NaOC,H,	CH_CH_CH_8h_1 CH_8h_1 CH_6h_1 CH_6h_1 CH_6h_1 CH_6h_1 CH_6h_1 CH_6h_2h_1 CH_6h_2 CH_6h_2h_2 CH_6h_2	861	не міснае
Nitromethane Triethyl phosphonoacetate	(C,H,CH,N(CH,),10C,H, ACH,NO, (55) (C,H,b,NH ACH,NO, (15) (+C,H,b,NH ACH,NO, (25) K (C,H,b,NH C,H,N)	4CH,NO, (55) 4CH,NO, (15) 4CH,NO, (10) 6CH, O'DODGHI AND O'T (50)	456 456 456	L REACTI
Ethyl a-Chlorocrotonale and		(00)	817	ON
Ethyl acetoacetate	Na enolate	C,H,O,CO,CH,	862	
Note: References 491-1045 are on pp. 545-555.	re on pp. 545-555.	,		

F This concurs was absarded after asponited in the sity of a first and a sity of the sity of a first and a first and a first and a first and a first and a first and a first and a first and a first and a first and a first feel between the first sets, and a first sets a first sets a first sets a first sets a first sets a first sets a first set and a first a first and a first sets a first set a first sets a first set a first a fi

Reactants	Catalyst	Product (Yield, %)	References
Elhyl β-Hydroxycrotonate and Cyanoacetamide	Piperidine	3-Cyano-6-hydroxy-4-methyl-2-pyridone	378
Ethyl &-Aminocrotonate and Malonoamide Cyanoacetamide	Piperidine Piperidine	6-Hydroxy-4-methyl-2-pyridone-3-carboxamide 3-Cyano-6-hydroxy-4-methyl-2-pyridone	378 391
Ethyl β-Ethoxycrolonate and Cyanoacetamide	Piperidine	3-Cyano-6-hydroxy-4-methyl-2-pyridone	378
Elhyl y-Actoxycrotonate and Nitromethane	[C6H5CH2N(CH3)3]OC4H3	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OC ₄ H ₉ CH ₃ CO ₂ CH ₂ CH(CH ₂ NO ₂ )CH ₂ CO ₂ C ₂ H ₅ (65)	457
Ethyl 7,7,7-Trifluorocrotonate and Nitromethane	$^{ m d}$ $^{ m (C_2H_5)_3N}$	CF3CH(CH2NO2)CH2CO2C2H5 (68)	863
Methyl Methacrylate and Diethyl methylmalonate Ethyl acetoacetate	NaOC,Hs NaOC,Hs	$A =CH_2CH(CH_3)CO_2CH_3$ Triethyl pentane-2,2,4-tricarboxylate (66) $CH_3COCH(CO_2C_2H_5)CH_2CH(CH_3)CO_2CH_3$	864 782
2-Carbethoxycyclopentanone	$NaOCH_3$	O CH2CH(CH3)CO2C2H5 CO2C2H5	865
Diphenylacetonitrile	NaOC2H5	$(G_6H_5)_2C(A)CN$ (80)	823

Reactants	Catalyst	Product (Yield, %) R	References
Diethyl Methylenemalonale††† and Diethyl malonate Tetraethyl propane-1,1,3,3-	nnd KOH, C ₂ H ₅ OH KOH, C ₂ H ₅ OH	(C ₂ H ₅ O ₂ C) ₂ CHCH ₂ CH(CO ₂ C ₂ H ₅ ) ₂ (quant.) Hexaethyl pentane-1,1,3,3,5,5-hexacarboxylate	870 870
tetracarboxylate Ethyl o-nitrophenylacetate	$\rm NaOC_2H_6$	$_{o}$ - $_{o}$ N $_{c}$ H $_{d}$ CH(CO $_{a}$ C $_{2}$ H $_{b}$ )CH $_{a}$ CH(CO $_{a}$ C $_{2}$ H $_{b}$ ) $_{a}$ (60)	871, 829, 872
Ethyl acetoacetate	$\mathrm{NaOC_2H_5}$	Triethyl 2-oxopentane-3,5,5-tricarboxylate (38)	867
Dimethyl Maleate and Diethyl n-butylmalonate Diethyl isoamylmalonate Diethyl n-hexylmalonate Diethyl cyclohexylmalonate Diethyl isoöctylmalonate Benzyl cyanide	Not indicated Not indicated Not indicated Not indicated Not indicated NaOCH ₃	n-C ₄ H ₉ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₅ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* n-C ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* i-C ₆ H ₁₁ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H* C ₆ H ₂ CH(CO ₂ H)CH(CO ₂ H)CH ₂ CO ₂ H*	873 873 873 873 873 27
Dimethyl Maleate and 2-Nitropropane‡‡‡	$(\mathrm{c_2H_5})_2\mathrm{NH}\cdot\mathrm{CH_3CO_2H}$ $\mathrm{c_2H_5NH}$	$(CH_3)_2C(NO_2)CH(CO_2CH_3)CH_2CO_2CH_3$ (69) $(CH_3)_2C(NO_2)CH(CO_2CH_3)CH_2CO_2CH_3$ (80);	832 832
Triethyl phosphonacetate	$(C_2H_b)_2NH$ NaO $C_2H_b$	$(C_1)_2 \subset C(C_2 \subset C_3) \subset C(C_3)$ $(C_1)_2 \subset C(N_2) \subset C(C_2 \subset C_3)$ $(C_1)_2 \subset C(N_2) \subset C(C_2 \subset C_3)$ $(C_2 \subset C_3) \subset C(C_3 \subset C_3)$	832 124
Diethyl Maleate and Diethyl malonate	Na; KOH, acetal	$A =\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5$ $A\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \text{ (72)}$	483, 6, 517, 518

474	316, 675	UT-8	acarburylate (94)§§ 474 27 483, 617,		118 118 118
CHCOCHTROCH!	O, CO,C,H,	(b) (60) (60) (co) (7.11, (60)	Trinethyl hexane-1,23.4-tetraearboxylate (96)§§ C,H,C'HGANN (52-58) C,H,C'HGANN (74)	Trechyl 3 methyl-f-oxobeptane-1.2,7-tricarboxylate (62)f}	4
Notice Koll, acreal	Nat Nath,	Pyerbline	KOKTH, NaOCHT, NAOCHI, KOH, acetal	Nath', II,	CHONNE CHONNE CHONNE CHONNE
Libyl plenybectate Libyl sectionstate		2 4 actor than 3 eyclasperal assertan	licast esauls	2 Methykythdanne 1,3 dum - Nathyll,	trimital transmissional training the training training to the training training to the training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training training traini

MICHAEL	MICHAEL CONDENSALIONS "11"		
Reactants	Catalyst	Product (Yield, %)	Kelerences
		$A = -\mathrm{CH}(\mathrm{CO_2C_2H_5})\mathrm{CH_2CO_2C_2H_5}$	
Diethyl Fumarate (Cont.) and Diethyl malonate	Na; NaOC2Hs	$ACH(CO_2C_2H_b)_2$ (90, 55)	77, 5, 7, 8, 6, 877, 878
Diethyl methylmalonate	$ m NaOC_2H_5$	$AC(\mathrm{CH_3})(\mathrm{CO_2C_2H_5})_2$	77, 878, 7, 8
Diethyl ethylmalonate	$ m NaOC_2H_5$	$AC(C_2H_5)(CO_2C_2H_5)_2$ (61, 80)	5, 879, 7, 8, 77, 878
Diethyl isopropylmalonate Diethyl benzylmalonate	NaOC2Hs NaOC2Hs	$AC(C_3H_7^{-i})(CO_2C_2H_5)_2$ $AC(CH_2C_6H_5)(CO_2C_2H_5)_2$ (23–31)§§§	7, 878 56, 880
Ethyl acetoacetate	$ m Na; NaOC_2H_5$	CH ₃ COCH(A)CO ₂ C ₂ H ₅ and CO ₂ C ₂ H ₅	875
Ethyl methylacetoacetate	NaOC2H5	OOC(CH ₃ )(A)CO ₂ C ₂ H ₅ and CH ₃ CO ₂ C ₂ H ₅	316, 878
Ethyl ethylacetoacetate Ethyl propionylacetate Ethyl benzylacetoacetate Ethyl cyanoacetate	NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ Na	CH ₂ COC(C ₂ H ₅ )(A)CO ₂ C ₂ H ₅ C ₂ H ₅ COCH(A)CO ₂ C ₂ H ₅ CH ₃ COC(CH ₂ C ₆ H ₅ )(A)CO ₂ C ₂ H ₅ NCCH(A)CO ₂ H; NCCH(A)CO ₂ C ₂ H ₅	875 879 875 316
Benzyl cyanide	NaOC2Hs	$C_{c}H_{s}CH(CN)C$ $C_{c}H_{s}$ $C_{c}H_{s}$ $C_{c}H_{s}$	881

465

Diethyl Chlorofumarate and

2-Nifropropane

Ethyl acetoacetate

Ethyl methylacetoacetate

\$§§ Gardner and Rydon (refs. 58-61) have ascribed to the product the isomene structure ColloCH_CH_CH_SCH_SCH_ Note: References 491-1045 are on pp. 545-555. (со спосисо сп.) |||||| The formula

NaOC,H

Ethyl benzylacetoacetate

COCH

III By analogy with the behavior of ethyl methylacetoacetate, this formula is more probable than the one originally originally (refs. 882-883) assumed has been proven incorrect.

suggested:

# Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Acid Derivatives

Reactants	Catalyst	Product (Yield, %)	References
Ethyl $eta,eta$ -Dimethylacrylate and Diethyl malonate	KOC1Hs; NaOC1Hs	$A = (CH_3)_2 CCH_2 CO_2 C_2 H_3$ $A = (CH_3)_2 CCH_2 CO_2 C_2 H_3$	886, 11, 24
Ethyl acetoacetate	Na		415
Ethyl α-cyanopropionate Benzyl cyanide	Na NaOC <u>.</u> Us	CH ₃ C(A)(CN)CO ₂ C ₂ H ₂ *** C ₂ H ₃ CH(A)CN (43)	នួក
Ethyl Tiglate and Diethyl malonate	NaOC ₂ H _s	A = —CH(CH ₃ )CH(CH ₃ )CO ₂ C ₂ H ₃ ACH(CO ₂ C ₂ H ₃ ) ₂ (15, 63)	50, 59, cf.
Diethyl ethylmalonate Ethyl phenylacetate Ethyl cyanoacetate	NaOC ₂ H _s K Na enolate	4C(C ₂ H ₂ )(CO ₂ C ₂ H ₃ ) ₂ (14) C ₄ H ₅ CH(A)(O ₂ C ₂ H ₃ ACH(CN)(O ₂ C ₂ H ₃ (12, 65)	851 50 852 50,887,888
Ethyl a-Ethylacrylate and Ethyl acetoacetate	NaOC ₂ U ₆	CH,COCH(CO,C,H,)CH,CH(C,H,)CO,C,H, (20), diethyl «-ethylglutarate	880

Methyl cyanoacetate Ethyl cyanoacetate Nitromethane	NaOCH, Na; NaOCH, NaOCH, ACH(CN)CO,C,C,H, (84) (C,H,CH,N(CH,),JOH ACH(CN)CO,C,C,H, (64)	ACH(CN)CO,CH ₄ (46) ACH(CN)CO,C ₂ H ₄ (64) ACH ₂ NO ₂ (51)	890 890, 392 891
Demethyl Ethylidenemalonale and Deoxybenzoin	i NaOCH ₃	C.H.COCH(C.H.)CH(CH3)CH2CO2H (55)*	163
Diethyl Ethyludenemalonale and		$A = \mathrm{CH_iCHCH(CO_iG_iH_i)_t}$	
Diethyl malonate ! ! ! !	None; Na	$ACH(CO_2C_2H_5)_2$ (95)	892, 893
Ethyl acetoacetate	NaOC, Hs	o orthotol	14
Nitromethane	[CeHeCH2N(CH2),]OH ACH2NO2 (69)	ACH ₂ NO ₂ (69)	457

 $A = -CH(CH_sCO_sCH_s)_s$ 

Dimethyl Glutaconale and

 This acid was isolated after hydrolysis and partial decarboxylation. Note: References 491-1045 are on pp. 545-555.

CH,CH(CH(CO,C,H,)CONH,], (73)

KOH; (C,H,),NH

Ethyl Ethylidenemalonamate ### and

Ethyl malonamate

895

1111 The same reaction takes place when acetaldehyde and diethyl malonate react in the presence of secondary amines; •••• The product has not been isolated, but has been methylated directly.

### This material is formed in situ from the aldehyde or ketone and the derivative of malonic or cyanoacetic acid. the yield is from 11 (ref. 887) to 55% (ref. 894).

Міснаві	CONDENSATIONS WITH A	MICHAEL CONDENSATIONS WITH ALIPHATIC $\alpha, \rho$ -ETHYLENIC ACLD DENTALLED	
Reactants	Catalyst	Product (Yield, %)	References
Ethylidenecyanoacelamide‡‡‡‡ and	пл	CH ₃	
Cyanoacetamide	КОН	$CH_3CH[CH(CONH_2)CN]_2$ , $O \sim N$ $NH$	896 9
Ethylidenemalononitrile‡‡‡‡ and			1
Malononitrile	Piperidine	CH ₃ CH[CH(CN) ₂ ] ₂	202
Ethyl ¤-Ethylcrotonate and		$A = \text{CH}_3\text{CHCH}(\text{C}_4\text{H}_5)\text{CO}_2\text{C}_4\text{H}_5$	
Diethyl malonate	NaOC ₂ H _b	ACH(CO ₂ C ₂ H ₂ ) ₂ (48)	0.00
Dientyl continuouses Ethyl cyanoacetate	NaOC ₂ H ₅	JCV_215/CO_2C_215; (02)	12
Ethyl \(\beta\)-n-Propylacrylate and		c	
		o <b>=</b> {	
Ethyl acetoacetate	$NaOC_2H_b$	$^{n-11,C_3}$	808
		ČO ₂ C ₂ H _s	
Nitromethane	[C6H5CH2N(CH3)3]OC4H9	$[C_6\Pi_5\mathrm{CH_2N}(\mathrm{CH_3})_3]\mathrm{OC_4H_5}$ $n\text{-}C_3\Pi_7\mathrm{CH}(\mathrm{CH_2NO_2})\mathrm{CH_2CO_2C_2H_3}$ (71)	116
Ethyl β-Isopropylacrylate and			
Diethyl malonate	$NnOC_211_6$	$i \cdot C_3 \Pi_1 \mathrm{CH}_1 \mathrm{CO}_2 \mathrm{C}_2 \Pi_6) \mathrm{CH} (\mathrm{CO}_2 \mathrm{C}_2 \Pi_6)_2$	880

901

	TH		
888	180	888	000
$\mathrm{CNCH}(\mathrm{CO}_{\mathbf{j}}\mathrm{C}_{\mathbf{j}}\mathrm{II}_{\mathbf{k}})\mathrm{CH}(\mathrm{C}_{\mathbf{j}}\mathrm{II}_{\mathbf{k}^{-n}})\mathrm{CO}_{\mathbf{j}}\mathrm{C}_{\mathbf{k}}\mathrm{H}_{\mathbf{k}}\ (54)$	$\bigcap_{n,H,G}^{O}\bigcap_{CQ,G,H_{s}}^{(n)}$	(\$\theta\$-\text{Cut_total_ty})adips acid (78)* C,H_cOH_cOL_COL_C,H_s)\CH(CH_cO_tO_tH_s)\CH_cOL_COL_C,H_s)\CH_cOL_COL_C,H_s)\CH_cOL_COL_C,H_s\(H_s\)	Chiologiche (Chiche) (Co.), (Chiologiche) (Co), (Chiologiche) (Co), (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chiologiche) (Chi
NaOC,H,	NaOC ₄ H ₅	NaOC ₄ H ₅ KOC ₄ H ₅	NaOC, Hs

Dimethyl 1,2-Dihydromuconate and Diethyl 1,2-Dihydromuconale and

Ethyl acetoacetate

Methyl B-n-Pentylacrylate and Ethyl a.n. Butylacrylate and Ethyl cyanoacetate

Ethyl phenethylcyanoacetate

Dethyl malonate

Ethyl eyanoacetate

Ethyl 4,4,5,5,6,6,6,6-heptafluoro-3 nitromethylhexanoate

C,H,CH[CH(CO,C,H,s)2]2 (quant ) Note: References 491-1015 are on pp. 545-555. Enolate Dethyl malonate

Lihyl 4,4,5,5,6,6,6-Heptafluoro-2-hexenoate and

Nitromethane

(C,H6),N

Duchyl Propylidenemolonate and

*** This material is formed in situ from the aldehyde or ketone and the derivative of malonic or cyanoacetic acid. · Thus acid was isolated after hydrolysis and partial decarboxylation

	ES Reforences	O.H.	HN NO B96	901, 902, 903, 904 905, 415		415	415
TABLE XII—Continued	Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Acid Derivatives Catalyst Product (Yield, %)		C ₂ H ₅ CH[CH(CONH ₂ )ON] ₂ and H ₂ NOC	$(CH_3)_3C[CH(CO_2C_2H_6)_3]_3$ (95, 30, 8) $CH_3(CO_3C_3H_6)_3$ , $CH_3(COCH(CO_3C_3H_6)_5)_3$ ,	O CO ₂ C ₂ H ₅ (OH ₃ ) ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_3C$ $CO_3C_3H_6$ $CO_3C_3H_6$
TAB	EL CONDENSATIONS WITH Catalyst	tt and	КОН	te and NuOC ₂ H ₅ ; enolate NuOC ₂ H.		$\mathrm{NnOG}_{\mathtt{a}}\mathrm{H}_{\mathtt{b}}$	NaOOall
	Micha	Propylidenceyanoacetamide‡‡‡‡ and	Cyanoacelamide	Dicthyl Isopropylidenemalonale and Dicthyl malonuto	Blhyl neetoneetavo	Cyanoacotono§§§§	Acelylncelone

"CHICH(CN)CONE, and

KOH

Cyanoacetarnide

Elbyl Isopropylidencyanoaceldel; 111 and (C,Hs) _L NH (C,Hs) _L NH NH, NH, NH, NIOmethave	(CH ₅ ) ₂ C(CH(CN)CO _C (H ₂ ), (10) \$\tilde{\rho}_{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde	906 821 907
Shyl 4-Ethozymethyl-2-hexenoate and Ma	908 (6H,04,0H,0H(0H,0O,0H,0H(0O,0H,1), (79)	808
thyl 4,4-Diethosymethyl-2-hesenode and Siethyl malonato ${ m NaOC_2H_4}$	C,H,CH(CC,H,),OH(CH,CO,C,H,)CH(CO,C,H,)),	606
. Dulylidenecyanoocelamide‡‡‡‡ and	0 NO	

894 CONH Piperidme; (C,H,)2NH (CH,)2CHCH[CH(CO,C,H,),]4 (41) Diethyl Isobulylsdenemalonale‡‡‡‡ and Diethyl malonate

Ethyl Ledwighidenerganoacedale and OH, C,H, Ethyl acetoncelate NAOCH, NO COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO, C, COO,

‡‡‡‡ This material is formed in solu from the aldebyde or ketone and the derivative of malonic or cyanoacetic acid.
§§§§ Inateal of cyanoacetone, a-methylisoxazole was employed. Note: References 491-1045 are on pp. 545-555.

#### TABLE XII-Continued

# Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Acid Derivatives

eld, %) References	₁₂ (79) 910		J,)CH2CO2C2Hs	yclopentanone-2,3,5-tri-8, 317, entanone-3-carboxylate, 911, 912 (or 2,3-) dicarboxylate,	
Product (Yield, %)	$(CH_3)_2CHCH[CH(CN)CONH_2]_3$ (79) CN O $CN$ O	$i ext{-}\mathbf{H}_7\mathbf{C}_3$ NH (Small) NH CONH ₂	$A = -\mathrm{CH_2CH(CO_2C_2H_5)CH_2CO_2C_2H_5}$	ACH(CO ₂ C ₂ H ₆ ) ₂ , triethyl cyclopentanone-2,3,5-tricarboxylate, ethyl cyclopentanone-3-carboxylate, diethyl cyclopentanone-2,4- (or 2,3-) dicarboxylate,	ACH(CO ₂ C ₂ H ₅ ), triethyl cyclopentanone-carboxylate, ethyl cyclopentanone-3-cark diethyl cyclopentanone-2,4- (or 2,3-) dicark CH(CO ₂ C ₂ H ₅ ) ₂ CH(CO ₂ C ₂ H ₅ )  CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅ Co ₂ C ₂ H ₅
Catalyst	$de\ddagger\ddagger\ddagger$ and $(C_2H_5)_2\mathrm{NH}$		;	$ m NaOC_2H_6$	NaOC ₂ H ₅
Reactants	Isobutylidenecyanoacelamide $\ddagger\ddagger\ddagger\ddagger$ and Gyanoacetamide ( $\mathbb{C}_2$ I		Diethyl Itaconate and	Diethyl malonate	Diethyl malonate

 $AC(CH_3)(CO_2C_2H_6)_{l}$  (small)

		TH	E MICE	IARL	REACT	10X			473
911	316	913	316	891	6, 317		318, 317	sig c acid, ment, was	
C,44,0,0 C,44,0,0,0 C,00,0,44,0	CH ₃ COCH(A)CO ₂ C ₄ H ₅	O A CO ₄ C ₂ H ₄ (90 crokk)	ACH(CN)CO ₃ C ₃ H ₃ ACH ₃ NO ₃ (25)	$CH_aCH(A)NO_a$ (40)	$c_{_1H_4O_4COH(CH_4)CH(CO_4C_4H_4)CH(CO_4C_4H_6)_1\ (40-75)}$	C,H,O,COH,C(OH,VCO,C, H)-OTHCO, OF W.	CiH ₅ O ₂ CCH ₂ CH(CO ₂ C ₂ H ₃ )CH ₂ CH(CO ₂ C ₃ H ₃ ) ₃ (50)¶¶¶¶ 2,3.5-Tbcarbethoxycyclopentanona	Met. Merwess 49-1016 as any pr 618-535.  If of Marka Merwest is not from the adaptyde or betons and the derivative of malonic or granacetic activities will be made of decityl staconic, diethyl effected effects, which knowness where the conditions of the experiment, as a popular decision of the experiment, was	
$N_{a}OC_{p}H_{b}$	NaOC ₂ H ₆	[C,H,CH,N(CH,),jOH	NuOC2H5 (C2H4)2NH; (+-C4H2)2NH	(-C,H,),NH	$N_4OC_1U_6$	Na enolate	NaOC ₂ II, NaOC ₂ II _E	e on pp 645-555 in situ from the aldehy onate, diethyl citracon	erized to staconate.
Teirsethyl 1,1,2,3-butaneteira- NaOC,Hs carboxylete	Ethyl acetoacetate	2.Carbethoxyeyclopentanone	Ethyl cyanoacetate                Nifromethane	Nitroethane	Dicthyl Meaconale and Diethyl malonato	Diethyl Citraconate and Diethyl malonate		Note: References 491-1045 are on pp. 645-555 1111 This makerial is formed in site from the signal and strategies of deetby? I taconate, diethyl city of strategies.	hill the citraconate is isomerized to itaconate.

#### TABLE XII-Continued

# Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Acid Dehivations

Reaclants	Catalyst	Product (Yield, %)	References
Diethyl Citraconate (Cont.) and Diethyl malonato (Cont.)	NaOC ₂ H ₅	Diethyl itaconate, diethyl mesaconate, 3-carbethoxy-cyclopentanone, 2,3-(or 3,4-)dicarbethoxycyclopentanone, 2,3,5-tricarbethoxycyclopentanone,	317, 912; cf. 5, 0, 8, 911
		CH(CO,C,H,),	
Diethyl ethylmalonata	Na enolate	$0 = \begin{array}{c c} & CO_1C_2H_3 \\ \hline & CH_3 \\ \hline & CH_3 \end{array}$	ເລ
		стьо,с	:
Ethyl acetoacetate	Na; dry NaOC,H,	CH,COCH(CO,C,H,)C(CH,)(CO,C,H,)CH,CO,C,H;;	316
		0 0 0	
		cn, co.c.n.	
Ethyl methylacetoacetate	Nu	CH,COC(CH,)(CO,C,H,)C(CH,)(CO,C,H,)CH,CO,C,H,;	310
		0 cu,	
		, 10, 00 Lus	

			THE	E M	ıc	HA	EL :	RE	ACT	ΓI	ON					
}		316		914	914	914		915, 878	7, 9, 10		875		916		9164	
CHICOCOLLING TO THE COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COL	nochico, chico, chiann	NCCH(CO'C'H')C(CH'NCO'C'H')CH'CO'C'H' NCCH(CO'C'H')C(CH'CO'C'H')CH'CO'C'H'	$A = \mathrm{CH_1O_1CCH_1CH(CO_1CH_1)CHCO_1CH_2}$	ACII(CO ₂ CII ₂ ) ₂	ACH(CO ₂ C ₂ H ₂ ) ₂	ACH,COCH(A)CO,C,H,		Pentacthyl butane-1,1,2,3,4-pentacarboxylate	Tetraethyl butane-1,2,3,4-tetracarboxylate,	entrant occupated conferences	Tetraethyl 2-oxobexane-3,4,5,6-tetracurboxylato		Diethyl a-cyanoglutaconate and diethyl malonate		Tetracthyl ethylidenebisglutaconate	
NaOC ₂ H ₆		Na NaOC ₁ H ₂		Na enolate	Na enolate	Na enolate		Dry NaOC, II,	Ns.		Na enolate		Na	nd	(C,H,),NH	
		Ethyl cyanoscetate	Trimethyl Aconitate**** and	Dunethyl malonate	Diethyl malonate	Ethyl acetoacetate	Triethyl Acondale and	Diethyl malonate		Tail of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o	Ethyl acetoacetate	Triethyl Isoacandale and	Ethyl cyanoacetate	Diethyl Ethylideneglutaconale and	Diethyl glutaconate	

CH. COCKER, MCO. C. H. MCH. CHICO. C. H. P.

M.OOR

^{....} Truncthyl chlorotricarballylate was employed instead of trimethyl aconitate. TIL The citraconate is isomerized to itaconate. Note: References 491-1045 are on pp. 545-555.

#### TABLE XII-Continued

# Michael Condensations with Aliphatic $\alpha, \beta$ -Ethylenic Acid Dehivatives

			OI	(O.1.51).	REMET	3028			
References	891, 878, 917, 918	216		910	821	168	917	910	
Product (Yield, %)	Na enolate; piperidine; $i \cdot C_1 H_g CH[CH(CO_2 C_2 H_s)_k]_k$ (6.3) $(C_2 H_s)_2 NH$	α,x'-Dicyano-β-isobutylglutaric acid	CH ₂ CH(CH ₃ ),	H ₂ NOC (Small)	11 p./f-Diethylglutarimide (quant.)	and Piperidine; (C ₂ H ₃ ) ₂ NH n-C ₂ H ₁₃ CH(CH(CO ₂ C ₂ H ₃ ) ₂ );	n-C _e H ₁₃ CH{CH{CN}CO ₂ H} ₂	n-C ₂ H ₁₃ CH[CH(CN)CONH ₂ ] ₂ (87),	$\begin{array}{ccc} C_{\bullet}H_{13}\text{-}n & & \\ H_{2}\text{NOC} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $
Catalyst	'e‡‡‡‡ and Na enolate; piperidine; (C ₂ H ₈ ) ₂ NH	l‡‡‡‡ and Piperidine		(C,II,),NII		*** and Piperidine; (C ₂ H ₃ ) ₂ NH	ridine	eridine	
Reactants	Diethyl Isoamylidenemalonale‡‡‡‡ and Diethyl malonate $\mathbb{N}_{a}$ en $(\mathbb{C}_{2})$	Isoamylidenceyanoacetic Acid‡‡‡‡ and Cyanoacetic acid	Isoamylidenecyanoacelamide‡‡‡‡ and	Cyanoacetamide	Ethyl (3-Pentylidene)cyanoacetale‡‡‡‡ and Ethyl cyanoacetate NII3	Dichyl Heptylidenemalonale‡‡‡‡ and Dichyl malonate Pipe	Heplylidenceyanoacetic Acid‡‡‡‡ and Cyanoacetic acid	Heplylidenceyanoacelamide'‡‡‡‡ and Cyanoacelamide Pip	

Duthyl pearly thoxy acy any lutaconate and diethyl

methy hashorate

NaOC, H,

Ethyl cyanosectate

878, 910

telifotoania manta ofetifania (afiata)

Trichyl Elhylenelricarboxylule and

Diethyl malonate Diethyl malonate

Triethyl 1-Propylene-1,1,2-tricarboxylate und Diethyl malonate Na enolato	arboxylate and Na enolato	(a) En (chtateantextitateantem) Chetta	020	
Trathyl 1-Propylene-2,3,3-tricarboxylate and Diethyl malonate Na enolate	carloxylate and Na enolate	(19) ¹ (11) OCHCH(CO [†] CH [†] CH [†] CH(CO [†] C [†] H [†] ) (91)	020	
Tetrachyl Ethylendetracarbozylale and Dethyl malonate	rylate and Na	Treachallytic acid.	H03, h78	THE M
Tetrackyl 1-Propylene-1,1,3,3-tetracurboxylute and Ethyl cyanoacetate Pyporidme	3-tetracurboxylate and Psperidme	Dichyl yearlathusy ees anoglutacunate and diethyl	173	RUITARE
	NaOC _t H,	malonate Diethyl y-arbethoxy-z-cyanoglutaconate, diethyl malonate, and diethyl a.y-dieyaroglutarate	916	, Itrate
Trielyil 3-Cyano-1-propylene-1,1,3-trkarboxylate and Ethyl cyanoacetate NaOC; II,	e-1,1,3-trearboxylate and NaOC ₄ H ₆	Preftyl a.y-dies amoglutaconate and diethyl maloriate	910	110.4
Tetraethyl 1-Butene-1,1,3,3-tetracarboxylate and	etracurboxylafe and			

Note: References 491-1095 are on pp. 545-555.

^{####} This material is formed in situ from the aideligde or ketone and the derivative of malonic or eyanoucetic acid. This acid was isolated after hydrolysis and partial decarboxylation.

#### TABLE XIII

Michael Condensations with Ethyl Ethonymethylenecyanoacetate, Diethyl Ethonymethylenemalonate, AND DIETHYL AMINOMETHYLENEMALONATE

	TVV	AND DESIGNED STATES	
Reactants	Catalyst	Product (Yield, %) R	References
Ethyl Ethoxymethylenecyanoacetale and	te and	H C CO	
Ethyl acetoacetate	NaOC ₂ H,	NaOC, H, C, H, CO, C, H, S	310
Diethyl Ethoxymethylenemalonale and	and		560
Diethyl malonate	NaOC, H,	(c,H,O,C);C=CHCH(CO,C,H,I); N: Jhal Thadasssanabthalana-2 4-dicarbaxvlate*	308
Ethyl phenylacetate Ethyl p-chlorophenylacetate	NaOC, H,	Diethyl 7-113 mext impriming the property of the Diethyl 7-14 mext in the Diethyl 7-14 mext in the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of	300
Ethyl p-bromophenylacetate	NaOC.H,	z-tp-emorophen; tgenescome sees (117) Diethyf 7-bromo-1-hydroxymphthalene-2,4-dicarboxylate* (11) and	309
Ethyl a-naphthylacetate	NaOC; Hs	NaOC.H. 1-Hydroxyphenanthrene-2,4-dicarboxylic acid (5)† and a-(1-naphthyl)glutaconic acid†	300
		COCHI	
Methyl 2-pyridylacetate	None	CO ₂ C ₂ H ₃ (26)	653
		<b>~</b> ∙0	
		co,c,u,	
Ethyl 2-pyridylacetate	None	N CO.C. II,	023

0

. This compound could be isolated only after distillation of the crude condensation product. Direct hydrolysis of this product proved that it consisted of thethyl e-carbethory-r-phenylgithseonate, C,H,O,CCH(C,H,ICH=C)CO,O,H,I,, † This and was present in the crude product in the form of its seter, but was not solated as such. Note: References 491-1045 are on pp. 545-555.

#### TABLE XIV

MICHAEL CONDENSATIONS WITH ALIPHATIC DIENIC AND TRIENIC ESTERS

Reactants	Catalyst	Product (Yield, %)	References
Methyl 1,3-Butadienc-1-carboxylate and Dimethyl malonate NaOCH ₃ ; N Ethyl α-cyanopropionate NaOCH ₃ (1/	rrboxylate and NaOCH3; Na NaOCH3 (1/8 mole)	$A =(H_2CH = CHCH_3CU_3CH_3$ $ACH(CO_2CH_3)_2$ (75) $CH_3C(A)(CN)CO_2C_2H_3$	397, 925, 926 926
Methyl Sorbate and		$A = CH_3CHCH = CHCH_1CO_2CH_3$	
Dimethyl malonate	NaOCH ₃	ACH(CO ₂ CH ₃ ) ₂ and CH ₃ CH==CHCHCH ₂ CO ₂ CH ₃	025-926, 927,
		C11(CO ₂ C1I ₃ ) ₂ (Mxture 9 : 1; 60-70, 80)	877
Ethyl α-cyanopropionate NaOCH ₃ (1/8 mole) Nitromethane (i-C, H.), NH	NaOCH ₂ (1/8 mole) (i-C,H-),NH	AC(C11 ₃ )(CN)CO ₂ C ₂ H ₅ (60–70) ACH,NO, (21)	926
Methyl $\gamma$ -nitrobutyrate	(i-C3H-)2NII	O_NCH(.4)CH_CH_CO_CH, (32)	116
Ethyl Sorbate and Diethyl malonate	Na	HO2CCH2CH=CHCH(CH3)CO2H•	928
Elhyl cyanoacetate	NaOC ₂ II,	CH ₂ CHCH=CHCH ₂ CO ₂ C ₂ H ₂ (77) 	397
		pun	
		CH,CH=CHCH('H,CO,C,H',	

		THE MICHAE	L REACTION
488	397	173	397
$\begin{array}{c} \operatorname{CH}_{s}\operatorname{CH}_{s}\operatorname{CH}_{s}\operatorname{Co}_{s}\mathcal{C}_{s}H_{s}\\ \\  \\ \operatorname{CH}(\operatorname{COCH}_{s})\operatorname{Co}_{s}\mathcal{C}_{s}H_{s} \end{array}$	cu,cucu=chcu(cu,oo,c,u, cu,cn)co,c,u,	CH,GUCH=CRCH,BCH,CO,C,H,  and CH,CUCCH,A,  And CH,COCCH,A,  And CH,COCCH,A	CHICO-CHI-04 CHICOLIT—CICHO-CHI-04 CHICOLIT—CICHO-CHI-04 CHICOLIT — CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI-04 CHI
кос,п	NaOC ₁ II ₅	NaOC _t H ₅	NaOC, H.

Ethyl a-Methylsorbate and

Lthyl acetoacetate

Lthyl cyanoacetate

Elhyl b-Mehylsorbale and

Dethyl malonate

Note: References 491–1015 are on pp. 545–555.
This product was obtained after hydrolysis and partial decarbozylation

CH,CH=CHC(CH,)CH,CO,C,H, CH(CN)CO.C.H.

Ethyl cyanoacetate

### TABLE XIV-Continued

ena rea
TRIENIC
AND
DIENI
ALIPHATIC
WITH
MICHAEL CONDENSATIONS WITH ALIPHATIC DIENIC AND TRIENIC ESITEM
MICHAEL

		1/0 51-325 / 1 4	References
Reactants	Catalyst	Product (Yield, %)	references
Ethyl y-Methylsorbate and Ethyl cyanoacetate	NaOC2Hs	$ ext{CH}_3 ext{CHC(CH}_3)$ =CHCH $_2 ext{CO}_2 ext{C}_2 ext{H}_5$	173
		OH(CN)CO ₂ C ₂ H ₆	
		and	
		$\mathrm{CH_3CH} = \mathrm{C(CH_3)CHCH_2CO_2C_2H_5}$	
		$\bigcap_{\mathbf{CH}(\mathbf{CN})\mathbf{CO_{a}C_{a}H_{b}}}\mathbf{C}_{\mathbf{H}(\mathbf{CN})\mathbf{CO_{a}C_{a}H_{b}}}$	
Methyl Hexa-1,3,5-triene-1-carboxylate and Dimethyl malonate ${\rm NaOC_2H_5}$	carboxylate and NaOC ₂ H ₆	Mixture of isomers of the formula $C_{13}H_{18}O_{\mathfrak{g}}$ (44)	929
Methyl Hepla-1,3,5-triene-1-carboxylate and Dimethyl malonate NaOCH3	-carboxylate and NaOCH ₃	CH3CHCH=CHCH=CHCH2CO2CH3	930
		CH(CO ₂ CH ₃ ) ₂	
		and	
		CH3CH=CHCH=OHCHCH2CO2CH3	
		$\overset{\mid}{\mathrm{CH}(\mathrm{CO_2CH_3})_2}$ (Mixture 7:1; 74)	

381

	370	
	CH ₂ CHCH—CHCH(CO ₄ CH ₂ ) ₃	ch(cn)co,ch,
e-1,1-dicarboxylate and	NaOCH,	
Dimethyl Penla-1,3-diene-1,1-dicarboxylate and	Methyl cyanoacetate	

and	CH ₃ CH=CHCHCH(CO ₃ CH ₃ ),	CH(CN)CO,CH,
	5	

Methyl a-Carbomethoxy-5-methylsorbale and

C2H6O2CCH2CH2C(-CHCO2C4H3)CH(CO2C4H3), (32, 90)  $\mathrm{C}_{\mathbf{t}}\mathrm{H}_{\mathbf{t}}\mathrm{O}_{\mathbf{t}}\mathrm{CCH}_{\mathbf{t}}\mathrm{CH}_{\mathbf{t}}\mathrm{C}(=\mathrm{CHCO}_{\mathbf{t}}\mathrm{C}_{\mathbf{t}}\mathrm{H}_{\mathbf{t}})\mathrm{CH}(\mathrm{CN})\mathrm{CO}_{\mathbf{t}}\mathrm{C}_{\mathbf{t}}\mathrm{H}_{\mathbf{t}}~(90)$ (CH₂)₂C=CUCH[CH(CO₂CH₂)₃]₂ (83) CHOO CCH CH CCH CO CH CH(CO₁C₁H₂)₂ NaOC₂H₃ (small quant.) NaOC,H, NaOCH, Diethyl Muconate and Ethyl cyanoscetate Dimethyl malonate Diethyl malonate

Note: References 491-1045 are on pp. 545-555.

#### TABLE XV

Michael Condensations with Alicyclic  $\alpha, \beta$ -Ethylenic Esters

Reactants	Catalyst	Product (Yield, %)	References
Methyl 1-Cyclobutene-1-carboxylate and Diethyl malonate $\mathrm{KOC}_4\mathrm{H}_9$ -I Bthyl cyanoacetate $\mathrm{KOC}_4\mathrm{H}_9$ -4	nboxylate and KOC ₄ H ₉ -4 KOC ₄ H ₉ -4	Diethyl (2-carbomethoxycyclobutyl)malonate (54) Ethyl (2-carbomethoxycyclobutyl)cyanoacctate (52)	933 933
Methyl 3,3-Dimethyl-1-cyc Diethyl malonate Ethyl cyanoacetate	Methyl 3,3-Dimethyl-1-cyclobutene-1-carboxylate and Diethyl malomate KOC,H ₅ -t Ethyl cyanoacetate KOC,H ₅ -t	d Diethyl (4-carbomethoxy-2,2-dimethylcyclobutyl)malonate (57) Ethyl (4-carbomethoxy-2,2-dimethylcyclobutyl)cyanoacetate (9)	933 ) 933
Ethyl 1-Cyclopentenc-1-carboxylate and	boxylate and	$A = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $	
Diethyl malonate Ethyl acetoacetate	NaOC ₂ H ₅ NaOC ₂ H ₅	JCH(CO ₂ C ₂ H ₅ ) ₂ (80–85) JCH ₂ CO ₂ C ₂ H ₅ (23), CH ₃ COCH(J)CO ₂ C ₂ H ₅ (8)	92 93
Elhyl cyanoacetate	$ m NaOC_2H_5$	4CH(CN)CO ₂ C ₂ H ₅ (30-35) CH(CN)CO ₄ H ₅ CH(CN)CO ₄ H ₅	92, 934, 935
Ethyl 2-Hydroxy-1-cyclopentene-1-carboxylate and	ntene-1-carboxylate and	•	
Ethyl cyanoacetate	Piperidine; KOC ₂ H ₅	CH(CN)CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ (50, 50)	936
Cyanoacetamide	Piperidine	NC NOH	937

Ethyl 1-Cyclohexene-1-carboxylate and

1

Diethyl malonate

4CH(CO2C3H6)2 (40)

59, 938 939

976

NaOC, II, NaOC, II, Diethyl methylmalonate Ethyl cyanoacetate

piperidine N.OC.H.;

ACH(CN)(CO₂C₂H₅) (74, 35, 18) 4C(CN)(CO2C1H2)CH2CO2C2H2* 4C(CH2)(CO2C2H2), (6) KOC, H,; NaOC,H,

Ethyl 2-Hydroxycyclohexene-1-carboxylals and

Cyanoacetamide

но см

Elhyl 2-Ammocyclohezene-1-carboxylate and

Pyperidine None Cyanoacetamide Malonamide

. Thus compound was obtained by direct treatment of the condensation product with ethyl bromoacetate. Note: References 491-1045 are on pp. 545-555.

398

176

398

4-Cyano-1-hydroxy-3-oxo-2,3,5,6,7,8-hexahydrosoquinolme

1-Hydroxy-3-oxo-2,3,5,6,7,8-hexahydrolsoquinoline-4-

carboxamide

#### TABLE XV-Continued

# MICHAEL CONDENSATIONS WITH ALICYCLIC $\alpha, \beta$ -ETHYLENIC ESTERS

			,
Reactants	Catalyst.	Product (Yield, %)	Keferences
$\label{eq:encoder} Elhyl \ 4-Methyl-1-cyclohexene-1-carboxylale \ and \\ Ethyl \ eyanoacetate \\ NaOC_2H_5$		Bthyl 1-carbethoxy-4-methylcyclohexane-2-cyanoacetate†	942
Ethyl (3-Methyleyclopentylidene)cyanoacelate‡ and	lene)cyanoacelale‡ and	CH(CN)CO	
Ethyl cyanoacetate	NH ₃	$^{\circ}$ NH (50) $^{\circ}$ CH(CN)CO	943
Ethyl Cyclohexylidenceyanoacctate‡ and Ethyl cyanoacctate NaOC ₂ H	ω.	Cyclohexane-1,1-diacetic acid	221
Elhyl (3-Melhyl-2-cyclohexenylidene)cyanoacelate‡ and	ıylidene)cyanoacelale‡ and	CH(CN)CONH ₂	
Ethyl cyanoacetate	NH ₃	(44) O=(44)	649
		OH, CN	
Elhyl (3-Elhyl-2-cyclohexenylidene)cyanoacelate‡ and	lidene)cyanoacelate‡ and	CH(CN)CONIH ₂	
Bthyl cyanoacetate	$ m _{NH_3}$	$\begin{array}{c} \text{NII} \\ \text{=0} \end{array}$	649
		C ₂ H ₆	

Elhyl (cis-2-Hydrındanylıdene)cyanoacelale and

ž	¥. <
NE,	
Ethyl cyanoscetato	

8

Ethyl (trans-2-Hydrindanylidene)cyanoacetalet, and

(cm.2.1Iydrindanyldene)cyanoacelamide and

Cyanoacetamide

(Irans-2-II ydrindanylsdene)cyanoacelamides and

Cyanoacetamide

Note: References 491-1045 are on pp. 545-555.

† This product was directly condensed further with ethyl bromoscetste or ethyl \$-chloropropionats.

27ale compound was formed in ailst from ethyl cynnometate and the corresponding betone. § This compound was formed to ailst from cynnomectation and the corresponding betone.









487

### TABLE XV—Conlinued

## MICHAEL CONDENSATIONS WITH ALICYCLIC $\alpha, \beta$ -Ethylenic Esters

Reactants	Catalyst	Product (Yield, %)	References
Ethyl (cis-2-Decalylidene)cyanoacetale and	noacetate and	ON O	
Ethyl cynnoucctate	$_{ m NH_3}$	ONO OCIO	944
Ethyl (trans-2-Decalylidene)cyanoacelale   and	yanoacetate   and	O, NO-	
Ethyl cyanoacetate	$NH_3$	O NO	944

Note: References 491-1045 are on pp. 545-555.

|| When this compound was formed in situ from ethyl cyanoacetate and trans-2-decalone, a 60% yield of the same condensation product was obtained.

ឧឧដ្ឋ

55

ŝ

TABLE XVI

	References			
MICHAEL CONDENSATIONS WITH ABOMATIC R. P. DTHYLENIC ESTERS	Product (Vield, ",)			C. A'TICH, CO.C. H. A'TIRCO, C. H.
MICHAEL CONDENSATION	Catalyst		NaOC, II,	
	Reactants	Elhyl (2-Furyl)acrylute and	Diethyl malonate	

	CHCH'CO'C'H')CHCHCO'H'	98
		NaOC,H,
Ethyl (4-Pyridyl)acrylafe and		Diethyl malonate

Diethyl malonate	NaOC, II,	CH(CH,CO,C,H,CH(CO,C,H,),
Methyl Cinnamate and		
Benzyl cyanide	KOCH	CH.CHert on car sense at an
Acetophenone	Dry NaOC,III, NaNH,	CHACHEOLICE, CHACHEOL

Note: References 491-1045 are on pp. 545-555.

This product was isolated after hydrolysis.

#### ABLE XVI-Continued

MICHAEL CONDENSATIONS WITH AROMATIC  $\alpha, \beta$ -ETHYLENIC ESTERS

Reactants Cat	Catalyst	Product (Yield, %)	References
	!		
ರ್"	$ m NaOC_2H_5$	$A\mathrm{CH}(\mathrm{CO_2C_2H_5})_2$ (quant.)	2, 24, 878, 947
రో రో	NaOC ₂ H ₅ (catalyt. amt.) NaOC ₂ H ₅ (1 equiv.)	$AC({ m CH_3})({ m CO_2C_2H_5})_2~(50) \ { m C_6H_5CHCH({ m CH_3})CO_2C_2H_5} \  ho$	50
		ĊH(CO ₂ C ₂ H ₆ ) ₂ (Mixture of 2 isomers, 40)	
7. 7	NaOC2Hs C.H.).CNa	$(CH_3)_2C(A)CO_2C_2H_5$ (50)	468
_ ===	$NaOC_2H_5$	2-Phenylbutane-1,3,4-tricarboxylic acid (24)*	468 948
	NaOC ₂ H ₆ (C H ) CN ₂	C ₆ H ₅ CH(A)CO ₂ C ₂ H ₅ (quant.)	81, 82
	$(C_6H_5)_3CNa$	$C_6H_3CO(4)CO_2C_2H_5$ (10) $CH_3COCH(4)CO_2H_5$ (60)	468
-	$NaOC_2H_5$	$NCCH(A)CO_2C_2H_6$ (two isomers, 85)	290, 79,
	Na enolate NaOC ₂ H ₆ NaOC ₂ H ₆ NaOC ₂ H ₆	$3\text{-Cyano-}2,6\text{-dioxo-}4\text{-phenylpiperidine}$ $NCC(c_2H_5)(A)CO_3C_2H_5$ $NCC(c_3H_7\cdot i)(A)CO_2C_2H_5$ $NCC(CH_2C_6H_5)(A)CO_2C_2H_5$	80, 949 843 80 80 80

Benzyl cyanide

Call, CH(A)CN (Two isomers: 27 total; 50 total; and

27, 83, 952, 84 920 C,H,CH(A)CN (80); C,H,CH(CN)CH(C,H,OH,CO,H 32 + 12 or 44 total) C,H (Small);

Dry NaOC, II,

H'C CN CLE

Note: References 491-1095 are on pp. 545-555.

According to ref. 80, amides of cinnamic acid and cinnamonitrile react analogously Hydrolysis of the primary condensatwn product affords, with partial decarboxylation, &phenylglutaric acid. The primary product from ennamamide is This product was isolated after hydrolysis.

‡ Ethyl acciate was used; it was transformed into ethyl acetoacetate before the reaction with ethyl cinnamate.

### TABLE XV1-Continued

Міснаві. Соиdensations with Aromatic  $\alpha, \beta$ -Втихіленіє Ібятеня

				•••			
References	83 35); 950	952	327 327, 953	79. 191	37.1	124, 817	: : :
Product (Yield, %)	$A = (c_0 \Pi_b \text{CHGH}_2 \text{CO}_2 \text{C}_2 \Pi_b) \\ (c_0 \Pi_b \text{CH}(\text{CN}) \text{CH}(\text{C}_6 \Pi_b) \text{CH}_2 \text{CO}_2 \text{CH}_3) \\ (c_0 \Pi_b \text{CH}(A) \text{CN} (33); c_0 \Pi_b \text{CH}(\text{CN}) \text{CH}(\text{C}_6 \Pi_b) \text{CH}_2 \text{CO}_2 \text{H} (35); \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) \text{CON} \Pi_2 (12)) \\ (c_0 \Pi_b \text{CH}(A) C$	$\Pi_b C_g = \begin{pmatrix} O \\ C_g \Pi_b \\ C_g \Pi_b \end{pmatrix} (4)$	$\mathcal{A}\mathrm{CH}_2\mathrm{COC}(\mathrm{CH}_3)_3$ (64) $\mathcal{A}\mathrm{CH}_2\mathrm{COC}(\mathrm{GH}_6)$ (19) of $\mathrm{C}_4\mathrm{H}_5\mathrm{COCH}_2\mathrm{CH}(\mathrm{C}_6\mathrm{H}_6)\mathrm{CH}_2\mathrm{CO}_2\mathrm{H}$		(10)* (10)* (11,011(0,11,011,00),11	$(C_4\Pi_bO)_2P(O)(U1(A))(CO_4C_4\Pi_b)$ (24, 50)	$3$ -(\gamma-2,0-d\pixo-4-( $p$ -nitrophenyl)piperidine
Catalyst	nd NaOCH3 Dry NaOH	NaO(2116	NaNII ₂ NaNII ₂	[C ₆ H ₆ CH ₂ N(CH ₅ ) ₃ ]OC ₄ H ₅ -n [C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	1	NaO('1118; K	Na emolato
Reactants	Ethyl Cinnamate (Cont.) and Benzyl cyanide (Cont.)	$p ext{-} ext{Benzoy1-}lpha_teta ext{-} ext{dipheny1-}$ butyroniteile	Pinacolone Acet ophenone	Nitromethano Ethyl nitroacetate	2-Quinaldine	Priethyl phosphonoacetate NaOC, 115; K	Ethyl 4-Nitrovinnamale and Cynnoneelanddo

33

		TH	е мі	CHAI	EL R	EACT	ION	
921	92	922		555		922	553	
6.1b, draxy-2-methyl-4-phenylpyridine-3-carboxylic scud (25)*	าหร่าง ภาษาการเกราะเกราะ	2,6-Dity droxy-3-pleny tpy ridme (28)	<	NC C.11. (33)		HO SOIL CON OF HANGE CONTROL OF HANGE	enylpyridme (	•
O _E C ₂ H ₆ None	Bhyl Mropate (2-Phenytacylate) and Tresttyl ethane-1,1,2- carboxylate	Ethyl fi-Methoxy x-phenylactylate and Cyanoacetamudo NaOC ₂ II ₅	β-Methoxy-α-phenylactylonstrile and	NaOC ₁ H ₈	Ethyl f-Ethoxy-x-(p-chlorophenyl)acrylate and	NaOC ₂ II,	Liky) p-Isobutoxy-a-phenylacrysate and Cyanoacetamide NaOC ₂ H ₃	$\beta$ -Isobutoxy- $\alpha$ -phenylaerylonitrile and
CH ₃ C(=NH)CH ₂ CO ₂ C ₂ H ₆ None	Bibyl Alropole (x-Phen Trachyl ethanc-1,1.2- carboxylate	Ethyl p. Methory : Cynnuscetamido	p-Methoxy-x-pher	Cyanoacetamide	Ethyl \b.Ethoxy-a	Cyanoscetamide	Ethyl p-Isobutory Cyanoacetumide	\$-Isobulozy-x-ph

Ethyl β-Hydroxycinnamate and

Note: References 491-1015 are on pp. 545-555.

• This product was isolated after hydrolysis.

NaOC, II,

C) anoacetamide

### TABLE XVI—Continued

### Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Esters

Reactants	Catalyst	Product (Yield, %)	References
Ethyl p-Methylcinnamate and Ethyl a-cyanopropionate	NaOC2H5	$\mathrm{CH_3C}(\mathrm{CN})(\mathrm{CO_2C_2H_5})\mathrm{CH}(\mathrm{C_6H_4CH_3-}P)\mathrm{CH_2CO_4C_2H_5}$	80
Ethyl ¤-Methylcinnamate and Ethyl cyanoacetate	NaOC ₂ H ₅	NCCH(CO2C2H5)CH(C6H5)CH(CH3)CO2C2H5 (Two	50, 80
Ethyl Hydroxymethylenephenylaectate and Malonic acid Cyanoacetic acid None	rectate and None None	isomers, bs) α-Phenylglutaconic acid (75)* Ethyl 4-cyano-2-phenyl-2-butenoate (47)	366 366
Ethyl β-Benzylacrylate and		$A = C_{\mathbf{c}}H_{\mathbf{c}}CH_{\mathbf{c}}CH_{\mathbf{c}}CO_{\mathbf{c}}C_{\mathbf{c}}H_{\mathbf{c}}$	
Diethyl malonate Diethyl methylmalonate§ Ethyl cyanoacetate§	Na enolate NaOC ₂ H ₅ NaOC ₂ H ₅	ACH(CO ₂ C ₂ H ₃ ) ₂ (51) AC(CH ₃ )(CO ₂ O ₂ H ₃ ) ₂ (42) ACH(CN)CO ₂ O ₂ H ₃ (67)	956 77 77
β-Isobutoxy-α-phenylerotononitrile and	le and	Ti C	
Cyanoacetamide	NaOC2Hs	$\begin{array}{c c} NC & C_{\mathfrak{s}} \\ C_{\mathfrak{s}} H_{\mathfrak{s}} \\ HO & NH_{\mathfrak{s}} \end{array} (33)$	955
Dimethyl Benzylidenemalonate and	pu	$A = C_b H_b CHCH(CO_2 CH_3)_2$	
Isobutyraldehyde Deoxybenzoin	NaOCH ₃ NaOCH ₃	(CH ₅ ) ₂ C(A)CHO (80) C ₆ H ₅ COCH(A)C ₆ H ₅ (44)	957 163



Demethyl m-Nurobenzylidenemalonale and

Nitromethane

Anthrone

3

Piperidine

Anthrone

Dimethyl o-Chlorobenzylidenemalonate and

Phenylnitromethane

Anthrone

CH(C, H,CI-0)CH(CO,CH,),

960

Note. References 491-1045 are on pp. 545-555. This product was isolated after hydrolysis.

Instead of ethyl \$-benzylacrylate, ethyl styrylacetate was employed.

### TABLE XVI-Continued

## Michael Condensations with Aromatic $\alpha, \beta$ -Ethylenic Esters

$^2\mathrm{C_2H_5}$ 80	50, 80	9 99 8	KE	050 77 77		955		967 163
$\mathrm{CH_3C(CN)(CO_2C_2H_6)CH(C_6H_4CH_3-p)CH_3CO_3C_2H_5}$	NCCH(CO2C2H6)CH(C6H6)CH(CH3)CO2C2H6 (Two isomers, 58)	a-Phenylglutaconic acid (75)* Ethyl 4-cyano-2-phenyl-2-butenoate (47)	$A = C_0 H_b C H_2 C H C H_2 C O_2 C_2 H_b$	$A \operatorname{CH}(\operatorname{CO}_2 \operatorname{C}_2 \operatorname{H}_6)_2$ (51) $A \operatorname{C}(\operatorname{CH}_3)(\operatorname{CO}_2 \operatorname{C}_2 \operatorname{H}_6)_2$ (42) $A \operatorname{CH}(\operatorname{CN}) \operatorname{CO}_2 \operatorname{C}_2 \operatorname{H}_6$ (67)	OH.	$\begin{array}{c c} NC & C_0H_b \\ \hline & HO & NH_2 \end{array}$	$A = C_{\mathfrak{o}} H_{\mathfrak{o}}^{C} HCH(CO_{\mathfrak{o}} CH_{\mathfrak{s}})_{\mathfrak{s}}$	$(\mathrm{GH_3})_{\mathrm{s}}\mathrm{C}(A)\mathrm{OHO}$ (80) $\mathrm{C_6H_6}\mathrm{COCH}(A)\mathrm{C_6H_6}$ (44)
$\mathrm{NaOC_2H_5}$	$ m NnOC_2H_b$	acclate and None Nono		Na enolate NaOC ₂ H ₅ NaOC ₂ H ₅	ile and	$NaOC_2II_5$	and	NaOCH ₃ NaOCH ₃
Ethyl p-Methylcinnamate and Ethyl a-cyanopropionate	Ethyl α-Melhyleinnamate and Ethyl cyunoncotate	Elhyl Hydroxymethylenephenylaeclate and Malonic acid None Cyanoacelic acid None	Ethyl f-Benzylaerylate and	Diethyl malonate Diethyl methylmalonate§ Ethyl cyanoacetate§	eta-Isobuloxy- $lpha$ -phenylcrolononitrile and	Cyanoacetamide	Dimelhyl Benzylidenemalonate and	Isobutyraldehyde Deoxybenzoin



Ê

NaOCH, NaOCH,

ACH,NO, (95)

Dimethyl m-Nutrobenzylidenemalonate and

Nitromethane Anthrone



Piperidine

NaOCH,

Phenylnitromethane

Dimethyl o-Chlorobenzylidenemalonale and

систи-

Piperidine

Anthrone

38

§ Instead of ethyl \$-benzylacrylate, ethyl styrylacetate was employed. Note: References 491-1045 are on pp. 545-555. · This product was isolated after hydrolysis.

495

### TABLE XVI-Conlinued

ERS
Est
$\alpha, \beta$ -Ethylenic
Акоматіс
WITH
Michael Condensations with Aromatic $\alpha, \beta$ -Byhylenic Esteris
MICHAEL

	MICHAEL CONDENSATIONS		
Reactants	Catalyst	Product (Yield, %)	References
Diethyl Benzylidenemalonate and	e and	$A = C_b H_b \text{CHCH}(\text{CO}_2 \text{C}_2 H_b)_2$	
Diethyl malonate Bihyl acetoacetate	Na enolate NaOC ₂ 11 ₅	$ACH(CO_s c_2 \Pi_b)_z$ (quant.) $CH_3 COCH(A) CO_s C_2 \Pi_b$ (81)	901
CH₃C(≔NH)CH₃CO₂C₂Hδ	None	$C_2H_5O_2C \underbrace{C_6H_5}_{H_3}CO_2C_2H_5 \underbrace{C_5b}_{H}$	902, 580, 903
Ethyl isobutyrylncetate	NaOC ₂ 11 ₅	(CH ₃ ),(CHCOCH(A)(CO ₂ C ₂ H ₆ (65)	196
Anthrone	Piperidine; (C ₂ II ₆ ) ₂ NII	0 (31, 11)	46, 960
Deoxybenzoin Phenylnitromethane Ethyl nitroacefate	NaOC ₂ II ₅ (C ₂ II ₆ ) ₂ NII; NaOC ₂ II ₂ (C ₂ II ₆ ) ₂ NII	C ₆ H ₆ COCH(A)C ₆ H ₈ C ₆ H ₅ CH(A)NO ₂ (80, 52) ACH(NO ₂ )CO ₂ C ₂ H ₆ (90)	416 29, 965 20

		THE MI	CHAEL REACT	TON
References	090	001	958	900 901 986 416 416 410
Product (Yield, %)	(6)	II CHI(C,H,C+Z)CH(CO,C,H,J,1) Na enolate (C,H,O,C),CHCH(C,H,NO,13)CH(CO,C,H,J,1)	O CHO, CHO, CHO, CHO, CHO, CHO, CHO, CHO	ολναϊ στις μ, λο, ενατισος μη, (ελμο όχειατιση μης αντισος μη, ολναιξατίς μ, λο, -κατισος μη, σε μοσαιτίς μ, μο, -κατισος μη, σε μοσαιτίς μ, μο, ενατισος μη, σε μοσαιτίς μ, μο, ενατισος μη, σε μοσαιτίς μ, μο, ενατισος μη, σε μος σε μος μος μος σε μος μος μος μος μος σε μος μος μος μος σε μος μος μος μος σε μος μος μος μος σε μος μος μος σε μος μος μος σε μος μος μος σε μος μος μος σε μος μος σε μος μος σε μος μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε μος σε σε μος σε μος σε μος σε σε μος σε μος σε σε μο
Catalyst	Piperidine		Piperidine	NaOC ₂ H ₅ Na enolate NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅
Addend	Anthrone	Diethyl malonate	Anthrone	Nitromethane Diethyl malonate Nitromethane Deexybenzom Deexybenzom Deexybenzom Deoxybenzom
Substituent(s) in C ₆ H ₅ CH=C(CO ₂ C ₂ H ₅ ) ₂	2-Cliloro	3-Nitro		4-Nitro Nutronedana Na d. Alektosy Nutronedana Na d. Alektosy Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutronedana Nutr

Substituted Diethyl Benzylidenemalonates

References

Product (Yield, %)

со**,**с<u>,</u>н<u>,</u> о

### TABLE XVI-Continued

Michael Condensations with Aromatic  $\alpha, \beta$ -Ethylenic Esters

Substituted Diethyl Benzylidenemalonates—Continued

Addend

C,H,CH=C(CO,C,H,)2 Substituent(s) in

Catalyst

4-Acetoxy

Ethyl acetoacetate NaOC, H, 4-CH, CO, C, H, --

CO,C,H,

COCHE

CH3

CO.C.H.

Ethyl propionyl- NaOC, H, p-CH, CO, C, H, -

acetate

420

References	
Product (Yield, %)	c, H
Catalyst etde and	
Reactants Ethyl Benzyldenecyanoace	

OCH,

3-Methory-4-acetory Ethyl acetoacetate NaOC, H. CH,CO,

Ethyl cyanoacetate (C ₂ H ₅ ) _k NH	ON CONTINUED MAT, 60) H	696
C ₆ H ₆ C(=NH)OH ₂ CN (C ₂ H ₆ ) ₂ NH	3,5 Dicyano-4,6-diphenyl-2-piperidone (5)	331
Ethyl (a-Phenylethylidene)cyanoacetale and		
Ethyl acetoacetate NaOC, III,		
	No co,c,H,	415

Note: References 491-1045 are on pp. 545-555.

### TABLE XVI-Continued

MICHAEL CONDENSATIONS WITH AROMATIC &, \( \beta \)-ETHYLENIC ESTERS

(°) References	H=C(CN)CONH; 896		194, 195
Product (Yield, %)	C ₆ H ₅ CH ₂ CH(CN)CONH ₂ or C ₆ H ₅ CH==C(CN)CONH ₂	NC C, H,s  ON NO  H	heta-Styrylglutaric acid (38) $ullet$
Catalyst	ide and KOH		ate and NaOC ₂ H _b
Reactants	Benzylidenecyanoacetamide and Cyanoacetamide		Elhyl Cinnamyiideneacelate and Diethyl malonate

Ethyl 3,4-Dihydronaphthoale and

Ethyl acetoacetate

I

Ethyl 4-Phenyl-2-pentenoate and

Ethyl cyanoacetate

i.

Calch(CH3)CH(CH2CO2C2H3)CH(CN)CO2C2H6 (50)

070

CO2H

8

77

Diethyl 3. Fyridylmethylenemalonafe and

072 Call CH(CH(CO2CH2)2)CH2CH(CH(CO2CH2)2)2 C.H.CH.=CHCH(CH,NO,)CH(CO,CH,), (87) 2-Phenylbutane-1,1,3,4-tetracarboxylic acid,* OH[CH(CO,C,H,),]CH(NO,)CO,C,H, 2-phenylbutane-1,3,4-trienrboxylic acid* \$\beta\$-Benzhydrylglutaric acid* (12-21) (84) 3 (C,H,),NH (C,H,)NH (C,U,),NH NAOOH, KOC,II, Elhyl x-Cyano-y.y-diphenylcrotonale and NaOCH, Dimethyl Cinnamylidenemalonate and Diethyl Benzylidenesuccinale and Ethyl eyanoacetate? 1 henylmtromethane Dunethyl malonate Ethyl ntroacetate Diethyl malonate Nitromethane

THE MICHAEL REACTION

Note: References 491-1045 are on pp. 545-555. This product was isolated after hydrolysis.

I The is the formula of the expected condensation product; in fact, a pentamethyl ester was isolated. This same product is obtained in 87% yield when comamaidehyds and donethyl malonate are condensed in the presence of sodium methoxids. . The unsaturated ester was formed in silu from diphonylacetaldehyde and ethyl cyanoacetate.

#### TABLE XVIA

Intramolecular Michael Condensations of Aromatic  $\alpha, \beta$ -Ethylenic Esteres

	Ontant	(. MMCHO	.10	
References 074, 973	973	73 XX	333	073, 074
Product (Yield, %) (H,CO,C,H, (77) (77)	OCH, (CO,C,H,	СН, (°0,СН,	CH, CO,CH,	H ₃ CCO ₁ C ₁ H ₄ CO ₂ C ₁ H ₄ CO ₁ CO ₁ C ₁ H ₄ CO ₁
Catalyst NaOC ₂ H ₂	NaOC ₂ IIs	NaOCH3	NaOCH,	NaOC ₁ H,
Reactant CH=CHCO ₂ C ₂ H ₅ OCH ₂ CO ₂ C ₂ H ₅	CH=CHCO,C,H, OCH,CO,C,H,	CH=CHCO,CH, SCH,CO,CH,	O2N CH-CHCO,CH, CH,	H,C(CH,)=CHCO,C,H,



#### TABLE XVII

## Michael Reactions with $\alpha,\beta\text{-}BThixleric$ Keto Beters

Reactants	Catalyst	Product (Yield, %)	References
Sodium Methyleneaceloacelale* and 2-Carboxycyclobexanone	NaOH	CH ₂ CH ₂ COCH ₃ and COCH ₂	528
2-Carbethoxycyclohexanone	NaOH	$CO_{\underline{a}}C_{\underline{a}}H_{\underline{b}}$ and $O_{\underline{b}}C_{\underline{a}}H_{\underline{b}}$	528
2-Methyleyelopentane-1,3-dione 2-Methyleyelohexane-1,3-dione	NaOH, piperidine NaOH	NaOII, piperidine 8-11ydroxy-9-methylhydrindane-3,6-dione $2-(\beta$ -Acetylethyl)-2-methyleyelohexane-1,3-dione	628 528
Ethyl Methyleneacetoacetalet and Ethyl acetoacetate 2-Carbethoxycyclohexanone	NaOH, sec-amine NaOH	NaOII, sec-amine 4-Carbethoxy-3-methyl-2-cyclohexen-1-one NaOII	628 628
2-Carbethoxy-1-tetralone	МаОШ		628
2-Formyl-1-cyclohexanone	NaOII	$2$ -( $\beta$ -Acetyl- $\beta$ -earbethoxyethyl)- $2$ -formyleyelohexanone (37)	628

Sodium Methyleneacetonedicarbozylate; and

NaOH 2-Methylcyclopentane-1,3-dione

NaOH

2-Methylcyclohexane-1,3-dione

Elhyl a.(Aminomethylene)acetoacetale and Ethyl acetoacetate Acetone

None None None

Cyclobexanone

Ethyl \$-Acetylacrylate and

Ethyl B.Acetyl-a-hydroxyacrylate (Acetylpyrnaule) and NaOC,H. Diethyl malonate

NH3; (C,H5,),NH Piperidme NaOCH, Cyanoacetamide

Note: References 491-1045 are on pp. 545-555.

CH,C(≔NH)CH,CO,C,H,

* A mixture of sodium acetoacetate and formaldehyde was employed.

A mixture of sodium acetonedicarboxylate and formsidehyde was employed. A mixture of ethyl acctoactate and formaldehyde was employed.

528 258 120 120 975

Ethyl 2-methyl-5,6,7,8-tetrahydroquinoline-3-carboxylate Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (30)

Ethyl 2,5,6-trimethylpyridme-3-carboxylate (8)

20-301

CH,COCH,CH(CO,C,H,)CH(CO,C,H,),

I-Carbethoxy-3-cyano-6-methyl-2-pyridone (15) 1-Curbethoxy-3-cyano-6-methyl-2-pyridone

Dethyl 2,6-dumethylpyridine-3,4-dicarboxylate (90) 4-Carbethoxy-3 cyano-8-methyl-2-pyridone (65) 4-Carbethoxy-3-cyano 6-methyl-2-pyridone (82)

976, 977

976 976

### TABLE XVII-Continued

## Michael Reactions with $\alpha,\beta$ -Ethiyilenic Keto Estens

		ONGAM	IC REACT	1072	
References	80	538	308	638	080
Product (Yield, %)	2-Carbethoxy-6-cyano-4-methyl-6-pyridone (73)	O CH3 CH3COCH4CO26H6 (30)	CO ₂ C ₃ H ₅	CH ₃	OCH,CH,CO,C,H, Sund Ethyl 3-cyano-6-ethyl-2-hydroxypyridine-4-carboxylate (68)
Catalyst	/ K ₂ CO ₃	NnOCH3	Diacetylacetate) and Pyridino	NaOCH ₃	le (Propionylpyrura Piperidino
Reactants	Ethyl β-Acetyl-α-ethoxyacrylate and Cynnoucolunnido	Ethyl 3-Oxo-4-pentenoate and 2-Methyleyelohexane-1,3-dione	Bhyl $\alpha$ -Acclyl- $\beta$ -hydroxycrofonale (Diacclylacelale) and Cyanouccbamido	Methyl 5-0x0-6-heptenoate and 2-Methyleyclohexane-1,8-dione	0 Ethyl β-Propionyl-α-lydroxyacrylate (Propionylpyrurate) and Cyanoacolamido Piperidine Ethy (5)

984

Ethyl a-Ethylidensaceloacetate and Ethyl acetoacetate	NaOC _t H _s ; piperidine	Dieldyl a, a'-dlacetyl-P-methylglutarate (93)
1-Tetralone	NaNH,	
Ethyldeneacetoacetanitde and Acetoacetaniildo	Pyridine None	CH,CH(CH(COCH,)CONHC,H,h (50) CH,CH(CH(COCH,)CONHC,H,h (50)
DVA.PES	Pyridine	HO CONHC, H, A

200

981, 982, 983

CONHC.H.CH.-0 ONHC, H,CH,-0 CH.

Pyridine

Acetoacet-o-toluida

Ethylideneacetoacet-o-toluide and

984

Note: References 491-1045 are on pp. 545-555. § Ethyl acetate is eliminated in this reaction.

The ethylenic compound was formed in situ from the corresponding aldehyde and the keto acid derystive. | The ethylene compound was formed as sets from the corresponding aldehys
| This product is formed when the reaction is carried out in boiling pyridine.

### TABLE XVII-Continued

## MICHAEL REACTIONS WITH & #-BTHYLENIC KETO ESTERS

			ORGAN	IC	REACT	101	šs.		
:	Kelerences	180	- 88 - 88 - 88		330		310	310	985
MICHAEL MEACTIONS WITH 8.0-15TH LEAR IN METO TESTINGS	Product (Netd, %)	CH3CH[CH(COCH3)CONHC4H4CH3-P];	$\begin{array}{c} 0 \\ 110 \\ \text{CH}_3 \\ \text{CONHC}_6 H_4 \text{CH}_3 - p \text{C} \\ \text{CONHC}_6 H_4 \text{CH}_3 - p \text{C} \\ \text{CONHC}_6 H_4 \text{CH}_3 - p \text{C} \\ \text{CONHC}_6 H_4 \text{CH}_3 - p \text{C} \\ \end{array}$		$NC = CO_2C_2H_3$ $O = CH_3 = C0$		C: H;0;C) (C0;C);H;	0.200,03C 10.3C 10	'ale) and Ethyl 3-cyano-2-hydroxy-6-propylpyridine-4-carboxylate (51)
MICHABL MEACTIC	Catalyst	/ None	Pyridino	clate and	NaOC, II,	te and	NaOC ₂ H ₅	NaOC ₂ II ₅	le (n-Balyrylpyra Piperidine
	Renctants	Ethylideneaectaact-p-toluide and Acctoncet-p-toluide		Ethyl &-Methoxymethyleneaeeloaeelale and	Cynnoncetamide	Ethyl &-Ethoxymethyleneaceloacelale and	Diethyl malonate	Ethyl cyanoucetate	Bhyt fen-Batyryt-vehydrosyaerylate (n-Batyrytpyraede) and Cyanoaceetamide (I

~=	1yl 3 cyano-2-hydroxy-6-isopropylpyridine-4-carb
ant	Ethy.
crylate (Isobutyrylpyrurate)	K,CO,
Elhyl B.Isobulyryl-a-hydroxyae	Cyanoacetumide

977

		THE	MICHAEL I	SEAUTIO	N	
	986	982, 983, 986a	982	981	186	
CH(CO,G,H ₀ ) ₂	0 CO ₂ CO ₁ ,	Diethyl $\alpha_i \alpha'$ -diacetyl $\beta$ ethylglutarate	O (0)	C _t H ₆ CH(CH(COCH ₄ )CONHC _t H ₆ ) ₂ ,	HO CONHIGATA HIC CLII, OONIIGAI,	
n-1-one and	Na enolate	NaOC ₁ II ₆ ; (C ₄ II ₆ ) _k NH	Pipendine	None	Pyridine	on pp. 545-555.
4 Carbomethoxy:3-methyl 2-cyclohexe	Dictbyl nulonate	Elhyl a-Propylutenraceloacelate and Elhyl acetoacetate		x-170pyldeneaceloacelunilde]  and Aceluacelamlide		Note: References 491-1045 are on pp. 545-555.
	4 Carbonethory 3-methyl 2-cyclohezen-1-one and CHICO, C.H.)2	CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CII(CO,C,H.), CI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} CH(OQ_G, H_a)_1 & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	CH(CO,C,H,b,  O_CH(CO,C,H,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_CH(C,CH,b,  O_C,H,CH(CH(CO,CH,b,b,  O_C,H,CH(CH(CO,CH,b,b,  O_C,H,CH(CH(CO,CH,b,b,  O_C,H,CH(C,CH,b,  O_C,H,CH(C,H,b,  O_C,H,C,H,CH(C,H,	CH(CO,C,H,b,  CH(CO,C,H,b,  CH(CO,C,H,b,  CH(CO,C,H,b,  CH(C,H,b,  CH(CO,C,H,b,  CH(C,H,b,  CH(C,H,

The this horse now now for the 3-50.

The this horse compound was farmed in a fut from the corresponding allebyde and the keto and derivative.

This product is formed by some the state of the control and in boiling syntline.

This is the structure seasoned by the authors.

### TABLE XVII—Continued

Micharl Reactions with  $\alpha,\beta$ -Ethylenic Keto Esters

			,	ORGANI	C REA	crions		
	References	659	052	662	200	110	603	888
MICHAEL MEACHONS WITH CHARLES AND ACTUAL TO THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CON	Product (Yield, %)	Diethyl 2,8-dimethyl-O-hydroxy-5,0,7,8,9,10-hexahydro- quinoline-3,4-dicarboxylate	Diethyl 2,7-dimethyl-9-hydroxy-5,6,7,8,9,10-hoxahydro-quinoline-3,4-diearboxylate	Diethyl 2,6-dimethyl-9-hydroxy-5,6,7,8,9,10-hexahydro-quinoline-3,1-dicarboxylate	CH2[CH(COC4H3)CO2C2H3]1	md Ethyl 3-cyano-2-hydroxy-6-phenylpyridine-4-carboxylate (30)	3,4,6-Triphenyl-2-cyclobexen-1-one	$C_2\Pi_6O_2C$ $C_2\Pi_6O_3C$ $C_2\Pi_6O_3C$ $C_2\Pi_6O_3C$ $C_2\Pi_6O_3C$
ICHARL MEACTIO	Catalyst	oxalale and None	oxalate and None	oxalale and None	$(C_2 \Pi_b)_2 N M$	Benzoylpyruvale) Piperidine	NaOC ₂ U ₈	Piperidine
M	Reaclants	Ethyl (2-Keto-3-methyleyelohexyl)glyoxalale and CII ₃ C(==NII)CII ₂ CO ₂ C ₂ II ₅	3thyl (2-Keto-1-methyleyetohexyl)glyoxaldto and \text{MI_3C(:=NII)CII_3CO_2C_2II_6} None	Ethyl (2-Keto-5-methyleyelohexyl)glyoxalule and CH3C(==NH)CH2CO2C2H6	Bhyl Mchylenebenzoylacetate   and Bthyl benzoylacetate	Ethyl β-Benzoyl-α-kydroxyaerylate (Benzoylpyruvate) and Cyanoncolamido	Ellyt y-Benzylideneaceloacelale and Dooxybenzoln	Ethyl α-Benzylideneaeeloaeelale and Ethyl neotoneelate

thyl cyanoacetate	(C ₂ H ₃ ) ₂ NH	NC CO,C.H. (89)	696	
	Aq. (C,II,),NII	$\mathrm{C}_{\mathtt{k}}\mathrm{H}_{\mathtt{b}}\mathrm{O}_{\mathtt{c}}\mathrm{CCH}(\mathrm{COCH}_{\mathtt{b}})\mathrm{CH}(\mathrm{C}_{\mathtt{c}}\mathrm{H}_{\mathtt{b}})\mathrm{CH}(\mathrm{CN})\mathrm{CONH}_{\mathtt{a};\parallel}$	696	
		No City, Cot, City, Cot, City,		THE M
CH,C(==NU)CH,CN	(с,н,),ин	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440	ICHAEL REA
C, II, C(==NII)CH, CN	NaOCH,	Ethyl 5-cyano-4,6-diphenyl-2-methylpyridne-3-	331	CTI
P-CH,C,U,C(=NH)CH,CN	Na0CH,	carboxylate†† Ethyl 5-cyano-2-methyl-4-phenyl-6 p-tolylnyridine-3-	331	ON
P-CH,OC,H,C(=NH)CH,CN	NaOCH,	carboxylate Ethyl 5-cyano-6-p-methoxyphenyl 2-methyl-4-nhenyl.	ī	
Phenylacetaldehyde	NaOC,II,	pyrulus-3-carboxylate C ₄ H ₆ CH[CH(C, H ₆ )CHO]CH(COCH ₃ )CO ₄ C ₄ H ₆ (39)	163	

### TABLE XVII-Continued

## MICHAEL REACTIONS WITH $\alpha,\beta$ -ETHYLENIC KETO ESTERS

Reactants		Catalyst	Product (Yield, %)	References
Ethyl α-Benzylidene	Ethyl α-Benzylideneacetoacetate (Cont.) and	pu	0 =	
Anthrone	Na.	$ m NaOC_2H_5$	(833)	163
Phenylnitromethane		(C ₂ H ₅ ) ₂ NH 3	C ₆ H ₆ CHCH(COCH ₃ )CO ₂ C ₂ H ₅ 3-Carbethoxy-5-nitro-4,5-diphenyl-2-pentanone (78)	29
		Substituted Ethyl	Substituted Ethyl α-Benzylideneacetoacetates	
Substituent(s) in	Addend	Catalyst	t Product (Yield, %)	References
CH3COCCO.P.				
			0=	
3-Nitro	Ethyl acetoacetate    Piperidine	Piperidine	HO CO ₂ C ₂ H ₅	982, 994

536

C,H,(O,CH,)-3,4

CO.C.H. CO'C'H

3,4-Methyleneduxy Ethyl acetoacetate | {C,H,CH,N(CH,),10H

Note: References 491-1015 are on pp. 545-555.

982; cf. 982, 994 416 986 966 3-NCC, H, CH(CH(COCH,)CO, C, H,), (77)
4-NCC, H, CH(CH(COCH,)CO, C, H,), (77) 3-0,NC,H,CHCH(COCH,)CO,C,H, C.H.OCH,-2 O.H.NO. с н спсос н CO.C.H. CO,C,II, Ethyl acetoacetate || Piperidine NaOC,II, Ethyl acetoacetate || NaOC, H. Ethylacetoacetate | Pyridine

> 2-Methoxy 3-Cyano 4-Cyano

4-Nitro

Deoxybenzoin

I The chipkenic compound was formed in our from the corresponding aldehyde and the keto acid derivative.

### TABLE XVII—Continued

MICHAEL REACTIONS WITH  $\alpha, \beta$ -BTHYLENIC KETO ESTERS

Substituted Ethyl x-Benzylidenacetoacetates—Continued

Substituent(s) in Addend

CH,COCCO,C,H,

Catalyst

References

Product (Yield, %)

CO₂C₂H₅
CO₂C₂H₅
CO₂C₂H₅
CO₂C₂H₅

[C₆H₅CH₂N(CH₃)₃]OH

Ethyl acetoacetate ||

3,4-Dimethoxy

O CO₂C₂H₆ H₃C C₆H₃(OCH₃)₂-3,4

530

(14)

 $CO_2C_2H_5$ (Mixtures of stereoisomers, 34)



| The chylenc compound was formed as sits from the corresponding allehyde and the keto acid derivative. I This product is formed when the reaction is carried out in boding pyridine.

### TABLE XVII-Continued

MICHAEL REACTIONS WITH  $\alpha,\beta$ -ETHYLENIC KETO ESTERS

Substituted Ethyl a-Benzylidenaceloacetates—Continued

Product (Yield, %)

Catalyst

Addend

Substituent(s) in CH3COCCO2C2H5

References

C₆H₃(OCH₃)₂-3,4 CO2C2H5 ČO₂C₂H₅

HO,

Ethyl acetoacetate|| [C₆H₅CH₂N(CH₃)₃]0H

3,4-Dimethoxy

536

(14)

CO₂C₂H₆ C₆H₃(OCH₃)₂-3,4

ČO₂C,H,

(Mixtures of stereolsomers, 34)

			Ine A	HUHABL RI	SACTIO	N	
References	066	981	984	786		186	
Product (Yield, %)	Diethyl a,a'-diacetyl-f-n-dexylglutarate	o O O O O O O O O O O O O O O O O O O O	n C ₄ U ₃ CH(CH(COCH ₃ )CONHC ₄ H ₂ ) ₂	HO CAH."	GONEG,H,	HO CONICH, CH. of H. CONICH, CH. of H. CONICH, CH. of	Nack Reference (no. 1-615 no on pp. 845-355. I The tribune congramme an former it said from the corresponding addityte and the keto and derretive. I The product is formed when the reaction is exerted out in Soling pyrulus.
Catalyst Gacefale and	$NaOC_kH_{a}; (C_kH_k)_2NH$	Piperidine	nulide   and None	Pyridine	o-toluide   and	Pyridine	Note: References 491-1045 are on pp. 545-355.  I The staylone compound was formed an star from the corresponding aldshyy  Thus product is formed when the reaction is earned out in boiling synthme.
Reactants Ethyl a-n-Heptyldeneacefoacefate and	Ethyl acetoacetate		a-n-Heptyludeneacetoacetantide   and Acetoacetanilde None		a-n-Heptylideneaceloacef-o-toluide   and	Acetoacet-o-toluide	Note: References 491.    The ethylenic comp

### TABLE XVII-Continued

## MICHAEL REACTIONS WITH $\alpha, \beta$ -ETHYLENIC KETO ESTERS

References	984	,		260	20	vative.
Product (Yield,%)	O CONHC,HCH3-p¶	H ₃ C CoNHC ₆ H ₃ -n  uvate) and  Diethyl 2-methyl-6-styryloyridine-3.4-dicarboxylate (48)	C,H,CHCH(CO,C,H,)COCH(CH,),	 CH(CO ₂ C ₂ H ₅ ); (72) Diethyl citrylidenc-bis-acetoacetate (61)	Ethyl $\alpha$ -benzoyl- $\gamma$ -nitro- $eta_i \gamma$ -diphenylbutyrate (71)	Note: References 491–1045 are on pp. 545–555. $\parallel$ The ethylenic compound was formed in situ from the corresponding aldehyde and the keto acid derivative. $\parallel$ This product is formed when the reaction is carried out in boiling pyridine.
Catalyst	p-toluide∥ and Pyridine	xyac	yrylacelate and NaOC ₂ H ₅	de   and Piperidine	cetate and (C ₂ H ₅ )2NH	Note: References 491–1045 are on pp. 545–555. I The ethylenic compound was formed in situ from This product is formed when the reaction is ca
Reactants	a-n-Heptylideneacetoacet-p-toluide   and Acetoacet-p-toluide Pyridine	Ethyl β-Cinnamoyl-α-hydro CH,C(=NH)CH,CO,C,H ₅	Ethyl α-Benzylideneisobutyrylacetate and Diethyl malonate NaOC.H.	Ethyl Citrylideneacetoacetate   and Ethyl acetoacetate Pi	Ethyl Benzylidenebenzoylacetate and Phenylnitromethane	Note: References 491-1    The ethylenic compor    This product is forme

#### TABLE XVIII

MICHAEL	CONDENSATIONS WIT	MICHAEL CONDENSATIONS WITH a, \$-ACETYLENIC ESTERS	
Reactants	Catalyst	Product (Yield, %)	References
Methyl Propolate and			
l-Tetralone	NaNH,	Methyl 1-tetralone-2-acrylate*	866
Elbyl Propiolate and Duthyl methylmalonate Ethyl acetoncetate	Na NaOC,H,	$A = -OH - CHCO_1C_1H_1$ $CH_1CO(A)(CO_1C_1H_1)_1$ (14) $CH_1COCH(A)CO_2C_2H_3$	333 906
6-Methory-1-tetralone	NaNH, hq. NH,	CH ₀ O	808
1-Keto-1,2,3,4 tetrabydrophenanthæne	NaNH, liq. NH,	\$	866
a-Phenylbutyronitrile	(O, H, CH, N.	CH4CH4C(C4H4)(A)ON (35)	1000

⁽UH,bk10H
Note: References 491-1045 are on pp. 645-556.

The product was directly reduced to methyl 1-tetralone-2-propnonate.

### TABLE XVIII—Continued

MICHAEL CONDENSATIONS WITH A, \beta-ACETYLENIC ESTERS

20	References		1000	1000		100, 1001,	1001 60 61	IC REA 1001; 1001	CTIO	NS	1003		
MICHAEL CONDENSATIONS WITH $\alpha, \beta$ -ACETYLENIC LISTERS	Product (Yield, %)		$(C_2\Pi_5)_2NCH_2CH_2C(C_6\Pi_5)(A)CN$ (59)	(C ₆ H ₆ ) ₂ C(A)CN (92)	$A = \mathrm{CH_3C} = \mathrm{CHCO_2C_2H_5}$	JCH(CO ₂ C ₂ H ₅ ) ₂	(TII3 CII3	$CH = CHC(CH_3) = CHCOC(A)(CO_2C_2H_2)_2$		CH, CH,	CH=CHC(CH ₃ )=CHCOC(CO ₂ C ₂ H ₃ ) ₂ CH ₃ CH ₃		
ONDENSATIONS	Catalyst		CHSCHIN-	$\{C_6H_5CH_2N^2\}$ $\{CH_3\}_3\}OH$		$\mathrm{NaOC}_2\mathrm{H}_b$		$NaOC_2 H_{\mathfrak{s}}$			NaOC ₂ H _s		
MICHAEL C	Reactants	Ethyl Propiolate (Cont.) and	7-27ectly talling-a-phenylbut yronitrile	Diphenylacetonitrile	Ethyl Tetrolate and	Diethyl malonate	CH ₃ CH ₃	CH=CHC(CH ₃ )=CHCOCH(CO ₂ C ₂ H ₅ ) ₂	Tetrolonitrile and	CH3, CH3,	$\bigcup_{\text{CH}_3}^{\text{CH}} = \text{CHC(CH}_3) = \text{CHCOCH(CO}_2 C_2 \Pi_6)_2$	Ethyl Phenylpropiolate and	

		β-Phenylglutaconic acid†	1000, 1007,
Diethyl methylmalonate	Na; NaOC, H	Na; NaOC ₁ H ₂ CH ₂ C(A)(CO ₂ C ₁ H ₂ ) ₂ (14)	333, 25,
Dethyl benzylmalonate		C, H, CH, C(A) (CO, C, H, J)	131
Ethyl acetoacetate Ethyl acmountmentments	NaOC, H	$B_{i}(I_{i}) = CO_{i}(I_{i}I_{i}, I_{i}) = CII_{i}(II_{i})$ $CH(COVANC, II_{i}, n, CO, C, II_{i})$	433
Ethyl oxaloscetate		B. R. = R. = CO.C.H.	133
Ethyl benzoylacetate		$B, R_1 = (0, C, \Pi_1, R_1 = C, \Pi_1)$	131
Ethyl cyanoacetate		NCCH(A)CO,C,H,	22
Acetylacetone	NaOC, II,	$CH_sCOCH(A)COCH_s$ ; $B, R_1 = COCH_s$ , $R_1 = CH_s$	ş
		B, R, = II, R, = CII,	e :

Ethyl p-Nutrophenylpropiolale and

Na enolate

Ethyl fluorene-9-carboxylate

Benzoylacetone Deoxybenzon

NaOC,III, NaOC,III,

Ethyl acetoacetate

Note: References 491-1045 are on pp. 545-555.

† This product results from hydrolysis and partial decarboxylation.

433 432, 433 1009 1010

433

C'H'NO'-P

NaOC, H,

Ethyl benzoylacetate

433

### TABLE XVIII—Continued

### MICHAEL CONDENSATIONS WITH $\alpha, \beta$ -ACETYLENIC ESTERS

References	1011	1011	1011			333 333 325 325, 489	433, 1012 433, 1012
Product (Yield, %)	5-Carbethoxy-4-(2',3'-dimethoxyphenyl)-6-	methyl-α-pyrone (71) 2,3-(CH ₃ O) ₂ C ₆ H ₃ C=CHCO ₂ C ₂ H ₅	$CH_3COC = C(OH)CH_3$ (33); 2,3- $(CH_3O)_2C_6H_3C = CHCN$	$CH_3COC = C(OH)CH_3$ (43);	$A = \mathbf{C}_{\mathbf{H}_{\mathbf{s}}} \mathbf{O}_{\mathbf{s}} \mathbf{C} \mathbf{C} \mathbf{H}_{\mathbf{s}} - \mathbf{C} \mathbf{C} \mathbf{O}_{\mathbf{s}} \mathbf{C}_{\mathbf{s}} \mathbf{H}_{\mathbf{s}}$	HHOF	(10)} CH,COCH(A)CO,C,H, C,H,COCH(A)CO,C,H,
Catalyst	NaOC ₂ H ₅	NaOC ₂ H ₅	NaOC2H6			Na Na; NaOC ₂ H ₅ NaOC ₂ H ₅ NaOC ₂ H ₅	$ m NaOC_2H_5$ $ m NaOC_2H_5$
Reactants	Ethyl 2,3-Dimethoxyphenylpropiolate and Ethyl acetoacetate	Acetylacetone	2,3-Dinethoxyphenylpropiolonitrile and Acetylacetone		Dichyl Acetylenedicarboxylate and	Diethyl malonate Diethyl methylmalonate Triethyl ethane-1,1,2-tricarboxylate Tetraethyl ethane-1,1,2,2-tetracarboxylate	Ethyl acetoacetate Ethyl benzoylacetate

Note: References 491-1045 are on pp. 545-555.

[§] Originally (ref. 489), this product was assumed to be a cyclobutane derivative, formed by a second, intramolecular, Michael reaction. The cyclobutane structure has now been disproved (ref. 325). ‡ The free acid corresponding to this product was actually isolated.

TABLE XIX

MICHAEL CONDENSATIONS WITH A B-B-DIVILENIC NITEO COMPOUNDS

MICHAEN	CONDESSATIONS WITH	MUNICIPAL CONDESSATIONS WITH MIN THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	
Reactants	Catalyst	Product (Yield, %)	References
1-Nuro-1-propene and Ethyl acetoacetate	NaOC,H,	O,NCH,CH(CH,)CH(COCH,)CO,C,H, (31)	1013
CH,C(≔NCH,)CH,CO,C,H,	None	n,c co,c,u,	1013
CH ₂ Q-NCH(CH ₂ ) ₂ )CH ₂ CO ₂ C ₂ H ₂	None	H, C CO, CH,	1013
CH,C(=NCH(CH,)CH,NO,). CH,CO,C,H,	None	H,C CO,C,H,  CM, CUI, GS) CH(CUI,CUI,NO)	1013
2.Nitro-1-propene and 2.Nitropropane Methyl 2-nitropropyl ether Methyl 2-nitropropyl aulijdo	NaOC,H, NaOC,H, NaOCH,	$A = CH_sCH(NO_s)CH_s$ $AC(CH_s)_sNO_s (20)$ $AC(NO_s)(CH_s)CH_s(CH_s)CH_s (50)$ $AC(NO_s)(CH_s)CH_sCH_s (30)$	1014 1014 1014

THE MICHAEL REACTION

Note: References 491-1045 are on pp. 545-555.

#### TABLE XIX-Continued

# Michael Condensations with $\alpha, \beta$ -Ethylenic Nitro Compounds

Reactants	Catalyst	Product (Yield, %)	References
~	Nitromalonaldehyde (Hydroxymethylenenitroacelaldehyde) and		
	Alkali	5-Nitrosalicylic acid	111
_	[C,H,CH,N(CH,J,JOH	3-Cyano-5-nitro-2-pyridone (93)	111
-	Alkali	2-Hydroxy-5-nitrophenylacetic acid (82)	111
	Alkali	2-Hydroxy-5-nitrobenzene-1,3-dicarboxylic acid	111
~	Alkali	p-Nitrophenol	339
Alkali		2-Methyl-4-nitrophenol (90)	111
_	Alkali	Methyl 2-hydroxy-5-nitrobenzyl ketone,	
		2,2'-dihydroxy-5,5'-dinitrobiphenyl	1015, 1016
_	Alkali	2-Hydroxy-5-nitrobiphenyl	111, 340,
			341
Alkali		2,6-Diphenyl-4-nitrophenol (94)	341
=	Na enolate	2.6-Pentamethylene-4-nitronhenol* (10)	349, 343
ă	Na enolate	2,0-Hexamethylene-4-nitrophenol (62)	51.55
Ĕ	Na enolate	2,6-Heptamethylene-4-nitrophenol (6)	342
g	Na enolate	2,6-Octamethylene-4-nitrophenol (2)	343
ā	Na enolate	2,6-Nonamethylene-4-nitrophenol (28)	342
Ħ	Na enolate	2,6-Decamethylene-4-nitrophenol (70)	342
Ē	Na enolate	2,6-Undecamethylene-4-nitrophenol (64)	342
ੜ	Na enolate	2,0-Dodecamethylene-4-nitrophenol (74)	342
ā	Na enolate	2,6-Tridecamethylene-4-nitrophenol (63)	342
Ξ	Na enolate	2,6-Tetradecamethylene-4-nitrophenol (57)	342
显	Na enolate	2,6-Pentadecamethylene-4-nitrophenol (40)	343
=	Na enolate	2,6-Hexadecamethylene-4-mitrophenol (43)	343

THE MICHAEL REACTION

unfodud was employed, the yield was somewhat nigner, Tinstead of 2-nitto-1-butene, 1-dimethylamino-2-nitrobutane was employed.

### TABLE XIX-Continued

# MICHAEL CONDENSATIONS WITH α,β-ΕΤΗΥΙΕΝΙC ΝΙΤΙΚΟ COMPOUNDS

MICH	MICHAEL CONDENSATIONS TILL THE		
Reactants	Catalyst	Product (Yield, %)	References
2-Nitro-2-butene and		$A = \text{CH}_2^{CHCH}(\text{NO}_2)^{CH_3}$	
Benzyl cyanide Nitroethane	NaOCH ₃ [C ₆ H ₅ CH ₂ N(CH ₃ ) ₄ ]OH;	C,H,CH(A)NO, (28)	85 1014
2-Nitropropane	NaOC ₂ H ₅ ; piperidine NaOC ₂ H ₅	$(\mathrm{CH}_{\mathbf{i}})_{\mathbf{i}}\mathrm{C}(A)\mathrm{NO}_{\mathbf{i}}$ (47)	1014
2-Methyl-1-nitro-1-propene and		$A = (CH_1)_1CCH_1NO_1$	
Diethyl malonate Ethyl acetoacetate Ethyl cyanoacetate Benzyl cyanide p-Bromobenzyl cyanide Acetone	NaOC ₂ H ₃ Na (C ₂ H ₃ ) ₃ N KOC ₃ H ₁₁ -t KOC ₄ H ₁₁ -t Na	ACH(CO,C,H,), (72) CH,COCH(A)(CO,C,H, ACH(CN)CO,C,H, C,H,CH(A)CN (80) p-BrC,H,CH(A)CN (70) ACH,COCH,	1020 1017 1018 85 85 1022
1-Chloro-3-nitro-2-butene and		0	
2-Nitropropane	NaOC;H,	0N CH; (35-10)	1023
		(CH ₃ );C(NO ₄ )C(CH ₃ );NO ₂ (10-12) CH ₃ C(NO ₄ )=CHCH=-C'(CH ₃ ); (3)	

1020

 $CH_2OH_1CH_2CH(OH_2NO_2)CH(CO_2O_2H_3)_3$  (95)

Ne

1-Nutro-1-pentens and Diethyl malonate

3,3,4,4,5,5,5-Heptafluoro-1-nitro-1-pentene and	pentene and	$A = \mathrm{CF_2CF_2CF_CHOH_2NO_3}$	
Nitromethane Diethyl malonate	NaOCH ₃ NaOC ₂ H ₃	ACH ₂ NO ₂ (38) ACH(CO ₂ C ₂ H ₅ ) ₂ (54)	863
3-Nutro-3-lexene and Diethyl malonate	NaOC,H,	CH,CH,CH(NO,)CH(C,H,)CH(CO,C,H,),	1020
Elhyl w.Nitro-y,y,y-truhlorocrolonale and Elhyl nitroacetalo (C ₂ H	te and (C ₁ H ₄ ) ₁ NH	Clacol(CH(NO2)COlcanta (34)	1024
1-Nurocyclohezene and			
p-Bromobenzyl cyanide	кос,µ,4	OH(CN)C,H,Br-p	39
i		(Mature of Leoners, 8)	
Z-Nitropropane	NaOC,Hs	C(CH _a ) ₂ NO ₂	1014
Note: References 491-1045 are on pp. 545-555.	on pp. 545–555,	(10)	

### TABLE XIX—Continued

# 

		ORGAS	ac r	GEACTIONS
References	813 813	77.99		329 1025 1017, 1025 1019, 1025 1025 154 622 314 314
Product (Yield, %)  A == CH_1CH_1CHCH(NO_1)CO_1CH_1	4C(NO ₂ ) ₂ C(4)CH ₂ CH ₃ (61) (NO ₂ ) ₂ C(4)CH ₂ CH ₃ CH ₃	Ethyl 3-(x-furyl)-2, f-dinitrobutaneate (95)	A . CHICHINO.	4CH(CO ₂ CH ₃ ) ₂ 4CH(CO ₂ CH ₃ ) ₂ (51) CH ₃ COCH(A)CO ₂ CH ₃ (68) CH ₃ COCH(A)COCH ₃ (78) ACH(CO ₂ CH ₃ ) ₂ (49) ACH(CO ₂ CH ₃ ) ₂ (49) ACH(CO ₂ CH ₃ ) ₂ (49) C ₂ H ₂ C(A)(CO ₂ CH ₃ ) ₂ (49) C ₃ H ₂ C(A)(CO ₂ CH ₃ ) ₂ (49) C ₄ H ₂ COCH(A)(CO ₂ CH ₃ ) ₂ (49) C ₄ H ₂ COCH(A)(CO ₂ CH ₃ ) ₂ (49)
Catalyst	NaOH, aq. CH ₃ OH Na derivative, water	(C;H3);NH		Na NaOCH ₂ Na; (C;H ₂ ) ₃ N Na; (C;H ₂ ) ₃ N (C;H ₃ ) ₃ N (C;H ₃ ) ₃ NH (C;H ₃ ) ₂ NH
Reactants Methyl 2-Nitro-2-pentenoate and	1,1-Dinitroethane Methyl 2,2-dinitrobutyrate	1-(a-Furyl)-2-nitrochylene and Ethyl nitroacetate	w-Nilrostyrene and	Dimethyl malonate Diethyl malonate Ethyl acetoacetate Ethyl benzoylacetate Acetylacetone Benzoylacetone Benzoylacetone Benzoylacetone Phyl nitroacetate Phenylnitromethane o-Nitrostyrene and Dimethyl malonate Diethyl malonate Diethyl acetoacetate

	THE MICHAEL REAC	TION
344 344 344 344 344	344 344 344 344 344 344 344 344 344	98
CH,COCH(A)CO,C,H, (42) CH,COCH(CH,n)I,A/CO,C,H, (01) ACH(CN)CO,C,H, (00) ACH(CN)CO,C,H, (78) (A,A,C(CN)CONH, (42)	A = p-0,NCμ1CH,CH,— ACHICOCH, (8), ACHCOCH, (82) ACHCOCH, (8), ACHCOCH, (82) ACCHLACOCH, (8), ACHCOCH, (82) CH,COCHLACOCH, (8), CH,COCL, (14), CH,COCL, (15), CH,COCL, (16), CH,COCL, (16	Diethyl 3-natro-2-phenylbutane-1,1-dicarboxylata
NaOC,H, NaOC,H, NaOCH, NaOC,H, NaOC,H,	NaOOII, NaOOII, NaOOII, NaOOII, NaOOII, NaOOII, NaOOII, NaOOII, NaOOII, NaOOII,	Na enolate
Ethyl acctoacetato Ethyl n-butylacetoacetate Methyl cyanoacetato Ethyl cyanoacetate Cylyl cyanoacetate Cyanoacetate	p-Nitrodyrrae and Branch Jundonich Diesky indicate Diesky it indicate Rhy actioacetale Rhy actioacetale Rhy actioacetale Rhy in vulyacet caccetale Rhy Transcetale Rhy Sanocetale Nath Canocetale Nath Canocetale Nath Canocetale Nath Canocetale Nath Canocetale Nath Canocetale	p-Nethyl-p-uitrostyrene and Diethyl malonate

(79)111 Note: References 491-1015 are on pp. 545-555.

.. The product was isolated as the act-chethylammonium salt.

II In there as solvent, only one of the two distinctionations as it is formed; in alcohol a matture of the two is obtained.

When the reaction product is worked up with sord, this compound is transformed into 1,1-dueurschloxy2-2-planylbulan.
Soure.

### TABLE XIX—Continued

# Міснаєї Сомбенватіонѕ мітн $\alpha, \beta$ -Етнуї Енніс Мітно Сомроимов

TOTAL	THE CONDENSATIONS WITH	michael contenantions with the time come content		
Reactants	Catalyst	Product (Yield, %)	References	
Ethyl $\beta$ -(2-Furyl)- $\alpha$ -nilroacrylale $\S\S$ and	§ and			
Ethyl nitroacetate	(C ₂ II ₅ ) ₂ NII	CHICH(NO,)CO,C,H,), (13, 18)"	154, 1024	
Ethyl α-Nitro-β-(2-pyridyl)acrylatc§§ and	:§§ and	<		
Ethyl nitroacetate	$(C_2H_3)_2NH$	CH(CH(NO,)CO,C,H,), (62, 54)**	154, 1024	ORC
Ethyl $\alpha$ -Nitro- $\beta$ -(3-pyridyl) $a$ crylate $\S\S$ and	i§§ and	4		JANI
Ethyl nitroacetate	$(C_2H_\delta)_2NH$	CH[CH(NO ₂ )CO ₂ C ₃ H ₂ ]; (53)**	121	C RE.
Methyl α-Nitrocinnamate§§ and Methyl nitroacetate	СН, МИ,; (С, П,), МИ	C,H,CH(CH(NO,)(O,CH,), (70)	1021	ACTIONS
Elhyl a-Nilrocinnamale and		$A = C_1 H_1 CHCH(NO_2) CO_2 C_2 H_2$		
Diethyl malonate	$(C_2H_L)_1NH$	   3,3-Dicurbethoxy-1-nitro-2-phenylbutyric acid	1098	
Ethyl acetoacetato Benzyl cyanide Ethyl nitroacetate§§	(C,H _c ),Nii (C,H _c ),Nii (C,H _c ),Nii	diethylamide (82) CH ₃ COCH(A)CO ₃ C ₄ H ₃ (85) C ₄ H ₂ CH(A)CN (83) ACH(NO ₃ )CO ₄ C ₅ H ₄ (80, 84–98, 74)*•	1020	
Phenylnitromethano	$(C_{\mathbf{i}}\Pi_{\mathbf{i}})_{\mathbf{i}}N\Pi$	C4H,CH(A)NO, (82)	1020	

Elhyl a,2-Dınıfrocinnanale§§ and Ethyl nitroacetate	(C,H,),NH	2-0,NC,H,CH(CH(NO,)CO,C,H,), (82, 68)**	154, 1024
Elhyl a,3-Dınılrocinnamale§§ and Ethyl nitroacetate	HN,(C,H,),NH	3-0,NC,H,CH[CH(NO,)CO,C,H,h, (90-95, 66)**	154, 102
Ethyl a,4-Dinitrocannamate and Ethyl acetoacetate	(C,H,),NH	CH,COCH(CO,C,H,)CH(C,H,NO,-4).	1026
Ethyl nitroacetate§§	(C ₂ H ₂ ),NH	CH(NO ₄ )CO ₄ C ₂ H ₄ (65) 4·O ₄ NC ₄ H ₄ CH(CH(NO ₄ )CO ₄ C ₄ H ₄ ) ₄ (82, 60, 38)**	15
Elhyl 2-Hydroxy-a-nitrocinnamale§§ and Ethyl nitroacetate	is and (C,H _b ),NH	2-HOC,H.CHICH(NO, 100, 691, 190, 98)**	
Elhyl 4-Hydroxy-a-nutrocinnamate§§ and Elbyl nutroacetate (C,H,	i§ and (C _t H _s ) _t NH	4-HOC, H, CH(CH(NO, )CO, C, H, ], (64)**	154
Elhyl 2-Chloro-x-nitrocinnamaleşş and Ethyl nitroacetate (C _x	and (C ₂ H ₆ ) ₃ NH	2-CC, II, CHICHINO, 100, C. H. 1, 19714	100. 73
Ethyl 4-Chloro-x-nutrocinnamate and Ethyl acetoacetatn	d		
Ethyl cyanoscetate	(C,H ₅ ),NH	CH,COCH(CO,C,H,)CH(C,H,CH(NO,)CO,C,H, (85) NCOH(CO,C,H,)OH(C,H,CH,CHO,O,CO,C,H,	
Ethyl nitroacetate§§	(C,H,),NH	(85) 4-ClC,H.CHCOH(NO.)CO.C.H.J. Agraes	1026
Note: References 491-1045 are on pp. 545-555.  The product was isolated as the or-ducthylammonium saile.  The unsaiumeted ester was formed as size from the ester of	on pp. 545–555, the aci-diethylammonium s ormed in silu from the este	<ul> <li>** Medicates 401-1045 are on pp. 545-555.</li> <li>** The product was bolazed as the aci-dechylamonalum salt.</li> <li>** The bussiunited evier was formed in suit from the ester of nitronectic acid and the appropriate aldahyde.</li> </ul>	164, 1024

* *

531

### TABLE XIX—Continued

# MICHAEL CONDENSATIONS WITH 4, B-ETHYLENIC NITRO COMPOUNDS

	, 1111		
Reactants	Catalyst	Product (Yield, %)	References
Ethyl 4-Methoxy-x-nitrocinnamate§§ and Ethyl nitroacetate (C.H	§§ and (C ₂ H ₅ ) ₂ NH	4-CH,0C,H,CH(CH(NO;)CO,C;H,1], (72)••	151
Ethyl β-Methyl-x-nitrocinnamate§§ and Ethyl nitroacetate [C ₆ ]	wnd   C ₆ H ₅ CH ₂ N(CH ₅ ) ₃ ]0C ₄ H ₉ -n	und [C _e H _s CH _s N(CH _s ) ₄ ]0C _e H _s -n Diethyl 1,3-dinitro-2-methyl-2-phenylglutarate (70)	151
Ethyl Cyclohexylidenenitroacelate     and	and		
Ethyl nitroacetate	[C,H,CH,N(CH,),]OC,H,-,n	CH(NO ₂ )CO ₂ C;H ₃ CH(NO ₂ )CO ₂ C;H ₃	154
Ethyl &-Nitro-\bpropylacrylate\sqrt{s} and	pi q	(19)	
Ethyl nitroacetate	(C;H ₅ );NH	Diethyl 1,3-dinitro-2-n-propylglutarate (95)**	655
Ethyl \$-Isopropyl-x-nitroacrylute\$\$ and Ethyl nitroacetate	and (C ₂ H ₃ ) ₂ NH	Diethyl 1,3-dinitro-2-isopropylglutarate••	680
Ethyl β-Isobutyl-x-nitroacrylate§§ and Ethyl nitroacetate	nd (C ₂ H ₃ ) ₂ NH	Diethyl 1,3-dinitro-2-isobutylelutarata (400).	<b>,</b>
2-Nitro-2-phenyl-1-(3'-pyridyl)ethyleneff and Phenylnitromethane CH3NH2	ene" q and CH3NH2	1,3-Dinitro-1,3-diphenyl-2-(3'-pyridyl)propane (48)	8

a-Nutrostilbene and

Dimethyl malonate	NaOCH	ACH(CO ₂ CH ₃ ) ₃ (85)	965
Dethyl malonate		ACH(CO2C2H6)2 (29)	
		ACH(CO,C,II,), (two isomers, 87)***	
Ethyl acetoacetate		CH,COCH(A)CO,C,H, (42)	
Ethyl cyanoacetate		C, H, CH, NO, and C, H, CH C(CN)CO, C, H, (60)	
Acetylacetone		CH,COCH(A)COCH, (11)	
Phenylacetone	NaOC, H.	C,H,CH(A)COCH, (13); C,H,CH,NO, and	68
		C.H.CH-C(C.H.)COCH,	
Benzoylacetone	NaOC,H,	C,H,COCH(A)COCH, (21)	н
Thenylnitromethane		C, H,CII(A)NO,; 1-nitro-1,2,3-triphenyl-1-	E

C.H.COCH,CH(NO2)CH(C,H,)CH(CO,CH,) propene; 3,4,5-triphenylsoxazole (65)111 NAOCH, 3-Nuro-1,4-diphenyl-3-bulen-1-one and Dimethyl malonate

Note: References 491-1045 are on pp. 545-555.

§§ The unsaturated ester was formed in auti from the ester of nutroacetic acid and the appropriate aldehyde. .. The product was isolated as the act-diethylamnonum salt,

MICHAEL REACTION

1027 1028

If Thu compound was formed or atta from pyridine-Searboxaldshyte and plenyfurivomethane.
*** Upon separation of the two isomens, yields of 47 and 11%, respectively, of the pure compounds were obtained. |||| The unsaturated ester was formed on situ from ethyl nitroacetate and the appropriate ketone.

117 This resiston takes place when bernaldebyde and phenyfultromethane are conferned in the presence of methylamine.
117 This product is obtained at ~20°; at ~6°; a 20% yield of Q,H,CH(CH(Ch(Ch,CH,I),CH,—CHCOC,H, is obtained, and at -33° 10% of an undentified product, CoLinNO, which gives the same 2.4-dimitrophenylhydrazone as the products obtained at the lower temperature,

TABLE XIX—Continued

MICHAEL CONDENSATIONS WITH  $\alpha, \beta$ -ETHYLENIC NITRO COMPOUNDS

Reactant	Catalyst	Product (Yield, %)	References
eta-Nitrobenzylideneacelophenone and	1	¹Ħ°Õ	
Dimethyl malonate	NaOCH,	$H_sC_{\bullet}$ $CO_sCH_{3}$ $(5)$	1029
		or	
		C,H,CH=C[CH(CO,CH,),]COC,H, (20)	
CoH5COCH C(NO2)CH2CoH5 and			
Diethyl malonate	NaOCH,	CH ₂ C ₄ H ₄ CO ₂ C ₂ H ₄ (Small)	1029
	•	H,C, LOLO	
Note: References 491-1045 are on pp. 545-555.	on pp. 545–555.		

MICHAEL CONDENSATIONS WITH A.B-ETHYLENIC SULFONES TABLE XX

	MICHAEL CONDENSATIONS	MICHAEL CONDENSATIONS WITH A, p-EIHILLENIC BOLLCARES	
Reactants	Catalyst	Product (Yield, %)	References
Methyl Vanyl Sulfone and		$A = CH_3SO_3CH_3CH_3$	
Destrui malonate	IC.H.CIL.NICH. MOH	(4),C(CO,C,H,), (61)	118
Diethyl phenylmalonate	C.H.CH.N(CH.), JOH	AC(C,H,)(CO,C,H,), (58)	118
Ethyl acetoacelate	C.H.CH.N(CH.), JOH	CH,COC(A),CO,C,H, (70)	118
Ethyl evanoacetate	ICH CH, N(CH,), JOH	NCC(A),CO,C,H, (81)	118
Benzyl cyanide	C.H.CH.N(CH.), JOH	NOC(A),C,H, (68)	118
Acetylacetone	[C,H,CH,N(CH,),]OH	CH,COC(A),COCH, (36), CH,COCH(A), (24)	118
Phenylacetone	IC. H. CH. N(CH.), JOH.	C,H,CH(A)COCH, (61)	118
Nitromethane	Aq. KOH	(A),CNO, (50)	1030
p-Bromophenylnitromethane	[CH,N(C,H,),10H	p-BrC, H, CH(A)NO, (50)	1030
Phenacyl p-tolyl sulfone	[C,H,CH,N(CH,),JOH	C.H.COCH(A)SO,C.H.CH, 79 (61)	118
Bisbenzenesultonylmethane	[C,H,CH,N(CH,),]OH	(A),O(SO,C,H,), (82)	118
Burnethanesulfonylmethane	10, H, CH, N(CH,), 10H	(A) ₂ C(SO ₂ CH ₂ ) ₂ (84)	118
Vinyl n-Bulyl Sulfone and		A = n.C, H, SO, CH, CH, -	
Nitroethane	Aq. NaOH	ACH(CH3)NO, (45), (A), C(CH3)NO, (13)	1030
1.Niteoneono	Aq. KOH	(A)2C(CH ₂ )NO ₂ (75)	1030
amafordoniu-	Aq. Maon	ACH(C, H, )NO, and A, C(C, H, )NO, (16)	1030
Vinyl Isobulyl Sulfone and			
p-Bromophenylnitromethane	NaOH	i.C,H,SO,CH,CH,CH(NO,)C,H,Br-p (30)	1030
Divinyl Sulfone and			
2-Nitropropane	Aq. K0H	O,S(CH,CH,C(CH,),NO,),	1030
Note: References 491-1045 are on pp. 545-555.	are on pp. 545-555.		

### TABLE XX-Continued

	MICHAEL CONDENSATION	Michael Condensations with $\alpha, \beta$ -Ethylenic Sulfones	<b>3</b>
Reactants	Catalyst	Product (Yield, %)	References
Vinyl p-Tolyl Sulfone and		$\mathcal{A}=p ext{-}\mathrm{CH_3C_6H_4SO_2CH_2CH_2}$	
Nitromethane 1-Nitropropane 2-Nitropropane	NaOCH ₃ Aq. KOH Aq. KOH	(4) ₂ CHNO ₂ (91) (4) ₂ C(C ₂ H ₅ )NO ₂ (CH ₃ ) ₂ C(4)NO ₂	1030 1030 1030
Phenyl Styryl Sulfone and Dicthyl malonate	Na	C,H,SO2CH2CH(C,H5)CH(CO2C2H5)2 (97)	OR6
p-Tolyl Styryl Sulfonc and Diethyl malonate	Na	p-CH3C6H4SO2CH2CH(C6H5)CH(CO2C2H5)2 (quant.)	GANIC :
Distyryl Sulfone and Diethyl malonate	Na	O_S[CH_CH(C6H_5)CH(CO_2C2H_5)_2]_2 (74)	REACTI 880 100
Vinylsulfonic Acid N-Ethylanilide and	ide and	$A = \operatorname{CH}_{\mathbf{L}} \operatorname{CH}_{\mathbf{L}} \operatorname{SO}_{\mathbf{L}} \operatorname{N}(\operatorname{C}_{\mathbf{L}} \mathbf{H}_{\mathbf{S}}) \operatorname{C}_{\mathbf{c}} \mathbf{H}_{\mathbf{S}}$	ONS
Nitromethane	KOH, CH ₃ OH	(4),CHNO (18)	358 358
Nitroethane 1-Nitropropane 2-Nitropropane	KOH, CH ₃ OH KOH, CH ₃ OH KOH, CH ₃ OH	(Al ₂ C(NO ₂ )CH ₂ (18-61), ACH(NO ₂ )CH ₂ (31-44) (Al ₂ C(NO ₂ )CH ₂ CH ₃ (31), ACH(NO ₂ )CH ₂ CH ₃ (35-40) (CH ₃ ) ₂ C(A)NO ₂ (83)	358 358 358 358
Vinyldimethylsulfonium Bromide and	de and		
Diethyl malonate	Aq. NaOH	3,8-Diearbethoxypropyldimethylsulfonium salt (48)	25
Methyl acetoacetate	Aq. NaOH	(3-Acetyl-3-carbomethoxypropyl)dimethylsulfonium	65
Note: References 401-1045 are on pp. 545-555.	are on pp. 545-555.		

MICHAEL CONDENSATIONS WITH 2- AND 4-VINTLPTRIDINE, WITH ANALOGS OF 2-VINYLPTRIDINE, AND WITH DILTHYL VINYLPHOSPHONATE

References 1039, 1040 1034, 1035 1035, 1036, 1037, 1035 1037 1038 1035 1038 989 1041 CH,CH, Product (Yield, %) CH,COC(C,H,n)(A)CO,C,H, (3) ACH(CO,C,H5), (84, 42-43, 62) CH2COCH(A)CO2C2H6 (58, 50) (A)2C(CO,C,IL,), (42-43) AC(C,H,)(CO,C,H,), (39) (CH₃),C(A)CO,C,H, (48) NecH(A)CO,C,II, ACH(CO,C,H,), (53) C,H,CH(A)CO,C,H, A. 2-Vinylpyridine [C,H,CH,N(CH,),]OH Note: References 491-1045 on are pp. 545-555. Na, NaOC₂H₃ Na Catalyst NaOC,H NaOC,H. Ŗ, ž 2-Carbethoxycyclopentanone Ethyl n-butylacetoacetate Ethyl 2-pyridylacetate Diethyl ethylmalonate Ethyl phenylacetate Ethyl acetoacetate Ethyl 180butyrate Donor Diethyl malonate

### TABLE XXI—Continued

		ORGANIC	REAC	TIC	)NS	8							
	References	490 1038	490	798	1038	96 <i>1</i> .	1042	1038	1	1038	1035	1038	1038
$A. \ 2-Vinylpyridine$ —Continued	$A = igg( egin{array}{c}  ext{Product (Yield, \%)} &  ext{R} \ &  ext{CH}_2  ext{CH}_2  ext{CH}_2 -  ext{CH}_2 \ \end{array}$	C,H,COCH(A)CO ₂ C ₂ H ₅ (70) C,H,COCH(A)CO ₂ C ₂ H ₅ O	4 (40) COCH ₂	$ACH(CN)CO_2C_2H_6$ (48)	$CH_3CH(A)CN$ (19); $CH_3C(A)_2CN$ (39)	$C_6H_5CH(A)CN$ (77)	$\operatorname{CH}_{\operatorname{CH}}(A)\operatorname{COCH}_3$	CH ₃ CH(A)COCH ₃ (33), CH ₃ C(A) ₂ COCH ₃ (31) CH ₃ COCH(A)CH ₃ (71), CH ₃ COC(A) ₂ CH ₃ (31),	ACH,COC(A),CH, (16)	$CH_3CH_2COCH(A)CH_3$ (53), $CH_3CH_2COC(A)_2CH_3$ (32)	CH ₃ COCH(A)COCH ₃ (16), CH ₃ COC(A) ₂ COCH ₃ (7)	$CH_3COC(A)(CH_3)_2$ (65), $ACH_2COC(A)(CH_3)_2$ (31), (4), $CHCOC(A)(CH_2)_2$ (39)	CH ₃ COCH(A)CH(CH ₃ ) ₂ (20) CH ₃ COC(A) ₂ CH(CH ₃ ) ₂ (34), ACH ₂ COC(A) ₂ CH(CH ₃ ) ₂ (13)
	Catalyst	Na [C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	Na	Na	Na	Na	None	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ JOH Na		Na	$NaOC_2H_b$	Na	Na
	Donor	Ethyl benzoylacetate	y-Acetyl-y-butyrolactone	Ethyl cyanoacetate	Propionitrile	Benzyl cyanide	Methyl ethyl ketone			Diethyl ketone	Acetylacetone	Methyl isopropyl ketone	Methyl isobutyl ketone

				TH	ЕМ	ICHA	EL RE	EACT	ION
1038	1038	1038	1038 1038 1038	1041	1038	1041	1038	454	
(CH ₃ ) ₂ CHCOC(A)(CH ₃ ) ₃ (72), (CH ₃ ) ₂ CHCOC(A)(CH ₃ ) ₃ (72),	22	(CH ₂ ) ₂ CHCH ₂ COCH(A)CH(CH ₂ ) ₂ (63), (CH ₂ ) ₂ CHCH ₂ COC(A) ₂ CH(CH ₃ ) ₂ (14)	(CH,1,C(A)COCH—C(CH,1)CH(CH,1, (29) C,H_COCH,A (8), C,H_COCH(A), (58) C,H_COCH,A (11)				I COCH, A (5)	1,3-Di-(«-pyr.dyl)propane (33)	no (
Na	Na 10. H. CH., NICH., LIGH	Na	Na Na IC.H.CH.N/CH.L.10FI	NaOC,H,	Na No H OH N/CH 1 10H	NaOC ₂ H _s	$[C_6H_6CH_4N(CH_4)_2]OH$	Ne	
Disopropyl ketone	Methyl n-amyl ketone	Dusobutyl ketone	2,5,6-Trimethyl-4-hepten-3-one* Na Acetophenone Na	Phenylacetone	Proprophenone	Deoxybenzom	2.Acetylfuran	2-Preofine	

Note: References 481-1015 are on pp. 545-555.
This ketone was formed and reacted when metal isopropyl ketone was brought together with sodium metal and 2-vinylpyridine.

ž

4-Hydroxyconnarm

8

## TABLE XXI-Confinued

# A. 2-Vinylpyridine—Conlinued

		ORGAN	IC
References	490	805a	
Product (Yield, %)	$\left( \prod_{N} \text{CH}_2 \text{CH}_2 \text{CH}_3 \text{COC}_6 \text{H}_4 \text{OH} \cdot 2 \right)$		COCells
Catalyst	N.	Li sult	
Болог	3-Methyl-1-hydroxycoumarin	1-Cyano-2-benzoyl-1,2-dihydro- Li salt isoquinoline	

### B. 4-Vinylpyridine

ž z

Ethyl benzoylacetate

y-Picaline

1041 484

### Reactants

C. Analogs of 2-Vinylpyridine

## 2. Vinylquinoline; and

_zH⊃,cH₂,−

||

$$1043 \\ 1043$$

NaOC, H.

CHICH CHICO.C.II.).

101

 $A = (C_1H_4O)_2P(O)CH_3CH_3$ Catalyst NaOC, II,

D. Duelhyl Vinylphosphonale 1944

Donor

Product (Yield, %)

ACII(CO,C,III,), (80)

Diethyl n propylmalonate Dethyl methylmalonate bethyl ethylmalonate Dethyl malonate

Dethyl n-butylmalonate

Ethyl n-propylacetoacetate Ethyl methylcyanoacetate Ethyl cyanoacetate Ethyl acetoacetate

NCCH(A)CO,C,H, (16); NCC(A),CO,C,H, (18)

3H,COC(A)(C,H,-n)CO,C,H, (16)

n-C,H,C(A)(CO,C,H,), (86) CH,COCH(A)CO,C,H, (15) NCC(A)(CH,)CO,C,H, (89)

"C,II,C(A)(CO,C,II,), (78 CHICANCO,CH.), (59 CII,C(A)(CO,C,II,), (70)

> Sthyl isopropyleyanoacetate Ethyl n-butyleyanoacetate Sthyl ethylcyanoacetate Benzyl cyanide

NCC(A)(C, II,-i)CO,C, II, (84 NCC(A)(C, II, )CO, C, II, (66)

C, II, C(A), CN (8)

Note: References 491-1045 are on pp. 545-555.

† This product is obtained after hydrolysis and decarboxylation

When this compound was formed to ofto from 1-(\$ dimethylaminoethy) isoquinoline methiolide, a more complex reaction This compound was formed in situ from 2. (\$-diethylaminoethyl)quinoline methosulfate. product was obtained

### TABLE XXII

### Donors Used in Michael Condensations

Malonates, RCH(CO₂C₂H₅)₂: R = H, Cl, Br, NO₂, methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, β-methoxyethyl, β-ethoxyethyl, phenyl, benzyl, phenethyl, 1-naphthyl, 1-naphthyl, 1-naphthyl, 2-naphthyl, 2-naphthylmethyl, β-(2-naphthylethyl); β-aldehydoethyl, β-aldehydopropyl, acetoxy, formamido, acetamido, phthalimido, R'O₂CCH₂—, (R'O₂C)₂CH—, R'O₂CCH(CH₃)-CH(CO₂R')—, CH₂=C(CO₂C₂H₅)—, β-ionylideneacetyl, isobutyryl.

Dibenzyl malonate, malonamide, ethyl malonamate, ethyl malonamidinate, diethyl  $\alpha$ -cyano- $\beta$ -methylsuccinate, diethyl  $\alpha$ -cyano- $\beta$ , $\beta$ -dimethylglutarate.

Cyanoacetates, RCH(CN)CO₂C₂H₅: R = H, methyl, ethyl, isopropyl, n-butyl, phenyl, phenethyl,  $\beta$ -aldehydoethyl, acetamido, R'O₂C(CH₂)₃-C(CH₃)(CN)—.

Acetoacetates,  $CH_3COCHRCO_2C_2H_5$ : R=H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isoamyl, hexyl, phenyl, benzyl, allyl; acetoacetanilide. Ethyl iminoacetoacetate,  $CH_3C(=NH)CH_2CO_2C_2H_5$ , and its N-methyl derivative; ethyl iminomethylacetoacetate,  $CH_3C(=NH)CH(CH_3)CO_2C_2H_5$ .

Other ketonic esters: ethyl propionylacetate, butyrylacetate, isobutyrylacetate, hexanoylacetate,  $\gamma$ -ethoxyacetoacetate, palmitoylacetate, stearoylacetate; diethyl acetone-1,3-dicarboxylate, ethyl isobutyrylisobutyrate, ethyl  $\alpha$ -acetylsuccinate, ethyl  $\alpha$ -acetyladipate,  $C_2H_5O_2CCH_2CH_2COCH(CH_3)$ - $CO_2C_2H_5$ , ethyl benzoylacetate, ethyl 2-oxocyclohexane-1-carboxylate and its 3-methyl derivative, ethyl 2-oxocyclopentane-1-carboxylate and its 5-methyl derivative, higher cycloalkanone-2-carboxylates, 2-carbomethoxy-1-tetralone, methyl 1-keto-1,2,3,4-tetrahydrophenanthrene-2-carboxylate, ethyl camphor-3-carboxylate, 3-ethoxy-5,5-dimethyl-6-carbethoxy-2-cyclohexen-1-one, ethyl phenylpyruvate ( $\alpha$ -keto ester).

Monocarboxylic acid esters: ethyl acetate, ethyl isobutyrate, diethyl glutaconate, diethyl itaconate, ethyl phenylacetate (also  $m\text{-NO}_2$ ,  $p\text{-NO}_2$ , Cl, Br, and  $C_2H_5$  analogs) and its  $\alpha\text{-ethyl}$ , n-propyl, n-butyl, isobutyl derivatives, ethyl furan-2-acetate, ethyl thiophene-2-acetate, ethyl  $\alpha\text{-naphthylacetate}$ , methyl diphenylacetate, ethyl  $\alpha\text{-pyridylacetate}$ , triethyl phosphonoacetate, triethyl  $\alpha\text{-phosphonohexanoate}$ .

Ketones: acetone, methyl ethyl ketone, methyl n-propyl ketone,* methyl isopropyl ketone,* methyl isobutyl ketone,* pinacolone, methyl n-butyl ketone,* methyl n-amyl ketone,* diisopropyl ketone,* diisobutyl ketone, isopropyl n-amyl ketone,* isopropyl n-nonyl ketone,* methyl  $\beta$ -cyanoethyl ketone,  $\beta$ , $\beta$ -diethoxyethyl alkyl ketones, acetylacetone, acetonylacetone,* heptadecane-2,4-dione, octadecane-2,4-dione, isobutyrylacetone, diisobutyrylmethane, cyclopentanone, 2-methylcyclopentane-1,3-dione, cyclohexanone,

* Condensed only with acrylonitrile as acceptor.

2. 3. and 4-methylcyclohexanone, carrenone, dihydro- and tetrahydro-carvone, carvotanaectone, cyclohexano-12-dione and its 2-airyl derivatives, 5.5-dimethyl-13-cyclohexanone, 2-add-16-dione, cyclohexano-12-dione and its 2-airyl derivatives, 5.5-dimethyl-13-cyclohexanone, 2-add-16-dioneyneyn-1-cyclohexanone, 2-add-16-dioneyn-1-cyclohexanone, 2-add-16-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-dioneyn-1-cyclohexanone, 1-add-16-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dioneyn-1-dione

Actophenone, phrajactione, prepaphenone, asobaly rephenone, bennaylactione, dibernyl ketone, decrybernoin, p-phenylactylbiphenyl, dibennoylmethane, 1,2-dibennoylethane, -methyl-a-botylacetophenone, *amethyla-motylacetophenone, *a-thyl-a-propylacetophenone, *approprietorylketone, *a-phenyl-a-motylacetome, *2-phenyl-coheranone and ind-benzyldene derivative, *a-akichyd-o-t-(p-carboxy- and p-carbomethoxyphenyl)cytcheranone, 2-phenyl-coheptanone.

2-Act; Jfuran, * -methyl-2-act; Jfuran, * 2-propos) ffuran, * 5-methyl-2-propos) ffuran, * 2-dimethyl-3-act; Jfuran, * 2-dimethyl-3-propos) ffuran, * 2-but; yffuran, * 2-dimethyl-3-act; Jfuran, * 2-act; yfuran, * 2-act; yfur

Nutries: malonominie, acetonitiele, proposantiele, cyanoscetamude and its Nally) derivatives, bansi yamide and its derivatives nuclearly substituted by oct., mcl. Bs., Cl., NII, p-Dr., Clf., OCH, NO₁; benzyl cyande e-substituted by methyl, chtyl, usproppyl, n-bustyl, n-pentyl, Semethylbustyl, (1-cyclorescyl), (p-thospheryl), (p-th

Condensed only with acrylomitrile as acceptor.

### TABLE XXII-Continued

### DONORS USED IN MICHAEL CONDENSATIONS

Nitro compounds: nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 1-nitroisobutane,  $\beta,\beta$ -dinitroethanol, methyl 2-nitropropyl ether, methyl 2-nitropropyl sulfide, butyl 3-nitrobutyl sulfone, nitrocyclohexane, dinitromethane, phenylnitromethane and its p-bromo derivative, methyl 2-nitro-1-phenylpropyl ether, methyl and ethyl nitroacetates, methyl  $\gamma,\gamma$ -dinitrobutyrate, diethyl nitromalonate, 1,1-dinitroethane.

Sulfones: phenyl benzyl sulfone, p-tolyl benzyl sulfone, allyl p-tolyl sulfone, ethyl p-toluenesulfoacetate, phenacyl p-tolyl sulfone, bis(benzenesulfonyl)methane, bis(methanesulfonyl)methane.

Hydrocarbons and derivatives: cyclopentadiene, divinylmethane, indene, 1-isopropylideneindene, fluorene, 2-nitrofluorene,* 2,7-dibromofluorene, 1-methylfluorene, 9-phenylfluorene, 9-hydroxyfluorene, fluorene-9-carboxylates, ethyl 1-methylfluorene-9-carboxylate, 1,2,3,4-tetrahydrofluoranthene, 2,3,4-trimethyl-1,2-dihydrofluoranthene, 4,5-methylenephenanthrene, methyl 4-cyclopenta[def]phenanthrene-4-carboxylate.

Miscellaneous donors (of occasional use): α-aceto-γ-butyrolactone, ethyl oxaloacetate and its α-methyl derivative, ethyl  $\beta$ -methyl-γ-nitrobutyrate, diethyl succinate, isophorone, 1-formyl-2-keto-10-methyl- $\Delta^3$ , hexahydronaphthalene, α-naphthol (keto form), ethyl 4-hydroxy-2,3-benzofuran-5-carboxylate (keto form), 4-hydroxycoumarin (keto form), 2-hydroxy-1,4-naphthoquinone (keto form), 2-acetyl-5-cyclohexan-1-one, ethyl (3,4-dihydro-1-naphthyl)cyanoacetate, ethyl (1-methyl-1,2,5,6-tetrahydro-4-pyridyl)acetate, α- and γ-picoline, α- and γ-quinaldine, rhodanine, Inhoffen ketone, kojic acid, 1-methyloxindole, 1,3-dimethyloxindole, methyl oxindole-3-propionate, 2,3-dihydro-2-phenylbenzo-γ-pyrone.

* Condensed only with acrylonitrile as acceptor.

### REFERENCES FOR TABLES I-XXII

- *** Warner and Moe, U.S. par. 2,520,666 [C.A., 45, 643 (1951)]. 401 Warner and Moe. U.S. pat 2,575,375 [C A . 46, 5081 (1952)].
- 449 Moe and Warner, U.S. pat 2,540,053 [C.A. 45, 5720 (1951)]
- *** Warner and Moe, US pat 2,523,746 [C 4 , 45, 5719 (1951)].
- 494 Warner and Moc. U.S. pat 2,523,743 [C.A. 45, 5718 (1951)]
- ⁴⁸ Yamada, Chibata, and Tsurus, J. Phorm. Soc. Japon, 73, 123 (1953) [C.A., 47, 11133]
- 397 Warner and Mor. U.S. pat 2,546,958 [C.A. 45, 8035 (1951)].
- 400 Jacquer, Zagdoun, and Fontaine, Bull soc chim. France, 1953, 25
- 100 Mouseron, Jacquier, Fontaine, and Zagdoun, Hull. soc chim France, 1954, 1248.
- *** Mos and Warner, U.S. pat 2,610,204 [C.A. 47, 5961 (1953)]
  - 101 Jacquer and Fontame, Bull soc chim France, 1952, 248 ses Warner and Moe, US pat 2,532,047 [C A , 45, 2971 (1951)]
  - *** Warner and Moe, U S pat 2,532,048 [C 4 . 45, 2971 (1951)]
  - *** Moe and Warner, US pat 2,551,568 [C.4.46, 133 (1952)] *** Smith, U S put 2,516,729 [C .4 . 45, 6217 (1951)]
  - 5m Shechter, Ley, and Zeldin. J. Am Chem. Soc , 74, 3664 (1952)
- ser Warm'r and Moe, J Am Chem Sor , 74, 1064 (1952) ** NV de Batanische Petroleum Maatschappy Brit pat 668,023 [C.A., 48, 11230 (1952)1
  - *** Moe and Warner, U.S. pat 2,599,653 [C.A., 47, 3339 (1953)].
  - *18 Mos and Warner, US pat 2,548,960 [C.A. 45, 8036 (1951)]
    - 411 Moe and Warner, U S pat 2,540,054 [C A , 45, 5720 (1951)] 418 Mukherjoe and Bhattacharyya, J. Indian Chem. Soc., 23, 451 (1946) [C.A., 42, 128
- (1948)
  - 412 Distillers Company Ltd , British pat 706,178 [C.A., 49, 9030 (1955)].
  - 214 Dornow and Karlson, Ber , 73, 542 (1940). 114 Baumparten and Dornow, Ber., 72, 563 (1939).
  - *** Fischer and Hultrach, Ber , 68, 1726 (1935).
  - 419 Weizmann, Brit. pat 594,182 [C.4 , 42, 2986 (1948)]
  - 414 Weizmann, US pet 2,472,135 [C A , 43, 6664 (1949)]
  - 410 Mos and Warner, US pat 2,523,710 [C.A. 45, 5717 (1951)] 140 Moe and Warner, US pat 2,628,980 [C A , 48, 724 (1954)]
  - 111 Dornow and Hargesheimer, Chem Ber., 86, 461 (1953) 4th Kress, U.S. pat 2,540,257 [C.A., 45, 5720 (1951)]
  - 418 Tauruta. Bull Ines. Chem. Research, Kyoto Univ., 31, 190 (1953) [C.A., 49, 6183
- (1955)1. 514 Rhinesmith, J Am Chem Soc., 58, 596 (1936) Nazarov and Zav'valov, Izvest Akad, Nauk S.S.S.R. Otdel, Khim Nauk, 1952, 300
- [C.A., 47, 5364 (1953)]
  - 344 Boehme and Mundlos, Chem Ber , 88, 1414 (1953). 417 Walker, J. Chem. Soc., 1935, 1585
- 114 Wieland and Miescher, Helv. Chim. Acts, 33, 2215 (1950), cf Miescher and Wieland abid , 33, 1847 (1950)
- 520 Dauben, Tweit, and MacLean, J Am Chem Soc . 77, 48 (1955). 410 Dreiding and Tomasewski, J. Am Chem. Soc , 77, 411 (1955).
- 111 Stork, Bull soc chun, France, 1955, 256
  - 12 Wilds and Werth, J Org Chem . 17, 1149 (1952).
  - 500 Wilds and Werth, J. Org Chem , 17, 1154 (1952)
  - 514 Chem Werke Huels, Ger pat 833,845 [C A 47, 2205 (1952)] sss Stork, Terrell, and Szmuszkovicz, J Am Chem Soc., 76, 2029 (1954).
  - 550 Walker, J Am Chem Soc , 77, 3664 (1955)
  - 487 Ralls, Wildman, McCaleb, and Wilds, U S pat. 2,674,627 [C.A., 49, 1813 (1955)]. 116 Nazarov and Zav'yalov, Zhur Obshchel Khim , 23, 1703 (1953) [C A , 48, 13667 (1954) ]

- 539 Wendler and Slates, U.S. pat. 2,542,223 [C.A., 45, 7599 (1951)].
- 540 Poos, Arth, Beyler, and Sarett, J. Am. Chem. Soc., 75, 422 (1953).
- 541 Sarett and Beyler, U.S. pat. 2,617,828 [C.A., 47, 9365 (1953)].
- Wieland, Ueberwasser, Anner, and Miescher, Helv. Chim. Acta, 36, 1231 (1953).
- 543 British Celanese Ltd., Brit. pat. 671,412 [C.A., 47, 2198 (1953)].
- 544 Stubbs and Tucker, J. Chem. Soc., 1950, 3288.
- Dannenberg and Dannenberg-von Dresler, Ann., 593, 232 (1955).
- 546 Leonard and Simon, J. Org. Chem., 17, 1262 (1952).
- 547 Mariella, Org. Syntheses, 32, 32 (1952).
- 548 Wilds and Djerassi, J. Am. Chem. Soc., 68, 1715 (1946).
- 540 Blaise and Maire, Bull. soc. chim. France, [4], 3, 421 (1908).
- 550 Blaise and Maire, Bull. soc. chim. France, [4], 3, 413 (1908).
- 551 Woodward, Sondheimer, Taub, Heusler, and McLamore, J. Am. Chem. Soc., 74, 4223 (1952).
  - 552 Dreux, Bull. soc. chim. France, 1954, 1443.
  - ⁵⁵³ van Wagtendonk and Wibaut, Rec. trav. chim., 61, 728 (1942).
  - 554 Mariella and Leech, J. Am. Chem. Soc., 71, 331 (1949).
  - 555 Guareschi, Chem. Zentr., 1899, I, 289.
  - 556 Moir, J. Chem. Soc., 81, 113 (1902).
  - ⁵⁵⁷ Basu, J. Indian Chem. Soc., 12, 289 (1935) [C.A., 29, 6891 (1935)].
  - 558 Steiner and Willhalm, Helv. Chim. Acta, 35, 1752 (1952).
  - 558a Stobbe, Ber., 34, 1955 (1901).
  - 559 Qudrat-I-Khuda, J. Chem. Soc., 1929, 201.
  - 580 Smith and Engelhardt, J. Am. Chem. Soc., 71, 2671, 2676 (1949).
  - ⁵⁶¹ France, Maitland, and Tucker, J. Chem. Soc., 1937, 1739.
  - 582 Prelog, Komzak, and Moor, Helv. Chim. Acta, 25, 1654 (1942).
  - 563 Oparina, Ber., 64, 569 (1931).
  - ⁵⁶⁴ Kochetkov, Doklady Akad. Nauk S.S.S.R., 84, 289 (1952) [C.A., 47, 3309 (1953)].
  - 565 Eccott and Linstead, J. Chem. Soc., 1930, 905.
  - 566 Qudrat-I-Khuda, J. Chem. Soc., 1929, 1913.
  - ⁵⁰⁷ Frank and Hall, Jr., J. Am. Chem. Soc., 72, 1645 (1950).
  - ⁵⁶⁸ Crossley, Proc. Chem. Soc., 17, 172 (1901).
  - 569 Bardhan, J. Chem. Soc., 1928, 2604.
  - ⁵⁷⁰ Kon and Linstead, J. Chem. Soc., 127, 815 (1925).
  - ⁵⁷¹ Kon and Leton, J. Chem. Soc., 1931, 2496.
  - 572 Birch and Robinson, J. Chem. Soc., 1942, 488.
  - ⁵⁷³ Allen and Cressman, J. Am. Chem. Soc., 55, 2953 (1933).
  - ⁵⁷⁴ Abdullah, J. Indian Chem. Soc., 12, 62 (1935) [C.A., 29, 3995 (1935)].
  - 575 Allen and Barker, J. Am. Chem. Soc., 54, 736 (1932).
  - ⁵⁷⁶ Allen and Bridgess, J. Am. Chem. Soc., 51, 2151 (1929).
  - 577 Walker, J. Chem. Soc., 1939, 120.
  - 578 Rosenmund, Herzberg, and Schütt, Chem. Ber., 87, 1258 (1954).
  - ⁵⁷⁹ Vorlaender, Ber., 27, 2053 (1894).
  - ⁵⁸⁰ Gohdes, J. prakt. Chem., [2], 123, 169 (1929).
  - ⁵⁸¹ Albertson, J. Am. Chem. Soc., 72, 2594 (1950).
  - 582 Baddar and Warren, J. Chem. Soc., 1939, 944.
  - 583 Zaugg, J. Am. Chem. Soc., 71, 1890 (1949).
  - 584 Seidman, Robertson, and Link, J. Am. Chem. Soc., 72, 5193 (1950).
  - 585 Starr and Haber, U.S. pat. 2,666,064 [C.A., 49, 380 (1955)].
  - 586 Kuhn and Woiser, Chem. Ber., 88, 1601 (1955).
  - ⁵⁸⁷ Hinkel, Ayling, and Dippy, J. Chem. Soc., 1935, 539.
  - 586 Horning and Field, J. Am. Chem. Soc., 68, 387 (1946).
  - 569 Friedmann, J. prakt. Chem., [2], 146, 71 (1936).
  - 490 Hinkel and Dippy, J. Chem. Soc., 1930, 1387.
  - ⁵⁹¹ Barat, J. Indian Chem. Soc., 8, 699 (1931) [C.A., 26, 1608 (1932)].
  - ⁴⁹² Basu, J. Indian Chem. Soc., 7, 481 (1930) [C.A., 24, 5752 (1930)].

- Lanstond and Williams, J. Chem. Soc., 1926, 2735.
- 544 Basu, J. Indian Chem Soc. 8, 119 (1931) [C A., 25, 4881 (1931)].
- *** Friedmann, J. prakt. Chem , [2], 148, 65 (1936).
- *** Mukherp, Science and Culture India, 13, 39 (1947) [C.A., 42, 2957 (1948)]. 240 Profit, Runge, and Jumer, J proit Chem , [4], 1, 57 (1954)
- 410 Hill, J. Am Chem. Soc., 49, 566 (1927)
- 100 Vorlaender and Kalkow, Ber , 30, 2268 (1897)
- 440 Avery, Biswell, and Liston, J Am Chem Soc , 54, 229 (1932).
- *** Kohler and Rao, J. Am Chem Soc . 41, 1697 (1919). ees Badger, Cook, and Walker, J Chem Soc , 1948, 2011
- *** Vorisender and Kunze, Ber , 59, 2078 (1926).
- 444 Mehr, Becker, and Spoerrs, J Am Chem Soc , 77, 984 (1955) *** Wishcenus and Carpenter, Ann., 202, 223 (1898).
- *** Ziegler and Schnell, Ann , 445, 266 (1925) 487 Michael and Ross, J. Am Chem Soc , 54, 407 (1932), see Michael and Ross, shid., 52,
- 4598 (1930).
- *** Allen, Massey, and Nicholls, J Am Chem Soc , 59, 679 (1937).
- 449 Kohler, Graustein, and Merrill, J Am Chem Soc. 44, 2536 (1922) *10 Kohler and Souther, J Am Chem Soc , 44, 2903 (1922)
  - *** Rupe and Stern, Hele Chim Acts. 10, 859 (1927).
  - 411 Upson, Maxwell, and Parmelee, J Am. Chem Soc , 52, 1971 (1930)
  - *** Allen and Salians, Can. J Research, 9, 574 (1933) [C A , 28, 2006 (1934)]. ett Kaplash, Shah, and Wheeler, J. Indian Chem. Soc., 19, 117 (1942) [C.A., 37, 375
- (1943)] 415 Kaplash, Shah, and Wheeler, Current Sci. India, 8, 512 (1939) [C.A., 34, 5830 (1940)].
  - *16 Stabbe, J. pralt Chem , (2), 88, 209 (1912).
  - 117 Cope, Fawcett, and Munn, J. Am. Chem Soc , 72, 3309 (1950). ** Mikhallov, J. Gen Chem. U.S.S.R., 7, 2950 (1937) [C.A., 32, 5402 (1938)].
  - *10 Kohler, J Am Chem Soc , 46, 503 (1924).
  - 418 Kohler, J. Am. Chem Soc , 38, 889 (1916).
  - 441 Worrall and Bradway, J. Am. Chem. Soc , 58, 1607 (1936).
  - 424 Dornow and Frees, Ann., 581, 211 (1953). Tucker and Whalley, J. Chem. Soc , 1949, 50
  - *** Kohler, Hill, and Bigelow, J. Am. Chem Soc., 39, 2405 (1917).
  - *** Kohler and Williams, J Am Chem. Soc., 41, 1644 (1919). 100 Hill, J. Chem Soc , 1935, 1115.
  - *** Kohler and Conant, J. Am. Chem Soc , 39, 1699 (1917).
  - *** Petrow, Ber , 63, 898 (1930)
  - ⁴¹⁸ Dilthey, Trosken, Plum, and Schommer, J. prakt. Chem., [2], 141, 331 (1934). 410 Petrow and Anzus, Ber , 66, 420 (1933)
  - 411 Allen and Scarrow, Can J Research, 11, 395 (1934) [C.A., 29, 121 (1935)].
  - 414 Hedenburg and Wachs, J Am. Chem Soc , 70, 2216 (1948). *** Hedenburg, US pat. 2,524,107 [C A . 45, 811 (1951)].
  - *** Lutz and Palmer, J Am Chem Soc , 57, 1947 (1935).
  - 414 Garden and Gunstone, J. Chem Soc., 1952, 2650
  - *** Fuson and Mange, J. Org. Chem , 19, 805 (1954). Polonovski, Pesson, and Polmanss, Bull. soc. chem. Prance, 1953, 200.
  - *** Kwartler and Lindwall, J Am. Chem. Soc. 59, 524 (1937).
- 416 Seshadrı and Venkateswarlu, Proc. Indian Acad. Sci., 15A, 424 (1842) [C.A., 38, 7018 (1942)
- 144 Lo and Croxell, J. Am Chem. Soc., 78, 4168 (1954) eu Westoo, Acta Chem Scand , 7, 355 (1953) [C.A., 48, 3349 (1954)].
  - Bartlett and Woods, J. Am. Chem Soc , 62, 2933 (1940).
  - *** McCoubrey, J. Chem. Soc , 1951, 2931. *** Rosenfelder and Gussburg, J Chem. Sec., 1954, 2955.
  - 649 Colonge, Dreux, and Delpisce, Compt. rend., 238, 1237 (1954).

- Colonge, Bull. soc. chim. France, 1955, 250.
- shafer, Loeb, and Johnson, J. Am. Chem. Soc., 75, 5963 (1953).
- 648 Rabe, Ber., 37, 1671 (1904).
- 649 Cronvn and Riesser, J. Am. Chem. Soc., 75, 1664 (1953).
- 650 Nightingale, Erickson, and Shackelford, J. Org. Chem., 17, 1005 (1952).
- 651 Robinson and Saxton, J. Chem. Soc., 1953, 2596.
- 652 Basu, Ann., 530, 131 (1937).
- 653 Basu. Ann., 514, 292 (1934).
- 654 Eistert and Reiss, Chem. Ber., 87, 92 (1954).
- 655 Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Otdel. Khim. Nauk, 1952, 437 C.A., 47, 5365 (1953)].
  - 826 Robinson and Walker, J. Chem. Soc., 1935, 1530.
  - 657 Rabe and Appuhn, Ber., 76, 982 (1943). Cf. Rabe, Ann., 360, 1005 (1952).
  - 658 Desai, J. Indian Chem. Soc., 10, 257 (1933) [C.A., 27, 5310 (1933)].
  - 558 Stauffacher and Schinz, Helv. Chim. Acta, 37, 1207 (1954).
  - 860 Rosenmund and Herzberg, Chem. Ber., 87, 1575 (1954).
  - 461 Eschenmoser, Schreiber, and Julia, Helv. Chim. Acta, 36, 482 (1953).
  - ⁶⁶² Qudrat-I-Khuda and Mukherji, J. Chem. Soc., 1936, 570.
  - 662 Friedmann and Robinson, Chemistry & Industry, 1951, 777.
  - Gunstone and Tulloch, J. Chem. Soc., 1955, 1130.
  - Winternitz, Mousseron, and Rouzier, Bull. soc. chim. France, 1954, 316.
  - 444 Amiel, Loeffler, and Ginsburg, J. Am. Chem. Soc., 78, 3625 (1954).
  - 667 Ginsburg, J. Chem. Soc., 1954, 2361.
- *** Pappo and Ginsburg, Bull. Research Council Israel, 1, Pt. 1-2, 145 (1951) [C.A., 46, 7064 (1952)].
- *** Pappo and Ginsburg, Bull. Research Council Israel, 1, Pt. 3, 121 (1951) [C.A., 47, 2161 (1953)].
  - ⁶⁷⁰ Sen and Neogi, J. Indian Chem. Soc., 7, 305 (1930) [C.A., 24, 4767 (1930)].
  - ⁶⁷¹ McQuillin, Chemistry & Industry, 1954, 311.
  - 672 Dutta, Chakravarti, and Dutta, Chemistry & Industry, 1955, 170.
  - ⁶⁷² Mukharji and Raha, Science and Culture India, 19, 569 (1954) [C.A., 49, 5414 (1955)].
  - 674 Birch and Quartey, Chemistry & Industry, 1953, 489.
  - 475 Ott and Tarbell, J. Am. Chem. Soc., 74, 6266 (1952).
  - 676 Ginsburg, J. Am. Chem. Soc., 78, 3628 (1954).
  - ⁴⁷⁷ Parihar and Dutt, Indian Soap J., 16, 154 (1950) [C.A., 46, 8066 (1952)].
  - 678 Ralls, J. Am. Chem. Soc., 75, 2123 (1953).
  - 479 Mannich and Fourneau, Ber., 71, 2090 (1938).
  - 880 Bardhan, Chemistry & Industry, 1940, 369.
  - cardwell and McQuillin, J. Chem. Soc., 1949, 708.
  - Jacquier and Boyer, Bull. soc. chim. France, 1955, 8.
  - 482 Jacquier and Boyer, Bull. soc. chim. France, 1954, 717.
  - 884 Roy, Science and Culture India, 19, 156 (1953) [C.A., 48, 13660 (1954)].
  - 685 Martin and Robinson, J. Chem. Soc., 1949, 1866.
  - 856 Robinson and Seijo, J. Chem. Soc., 1941, 582.
  - 437 Hussey, Liao, and Baker, J. Am. Chem. Soc., 75, 4727 (1953).
  - ess Prelog, Wirth, and Ruzicka, Helv. Chim. Acta, 29, 1425 (1946).
  - Prelog, Barman, and Zimmermann, Helv. Chim. Acta, 32, 1284 (1949).
  - Prelog, Ruzicka, Barman, and Frenkiel, Helv. Chim. Acta, 31, 92 (1948).
  - 431 Gill, James, Lions, and Potts, J. Am. Chem. Soc., 74, 4923 (1952).
  - 412 Wilds, Hoffman, and Pearson, J. Am. Chem. Soc., 77, 647 (1955).
  - 532 Johnston and Holly, U.S. pat. 2,671,808 [C.A., 49, 3264 (1955)].
  - Banerjee, Chatterjee, and Bhattacharya, J. Am. Chem. Soc., 77, 408 (1955).
  - Buechi, Jeger, and Ruzicka, Helv. Chim. Acta, 31, 241 (1948).
  - *** Robinson and Weygand, J. Chem. Soc., 1941, 386.
  - ** Cook and Robinson, J. Chem. Soc., 1941, 391.
  - Cornforth and Robinson, J. Chem. Soc., 1948, 676.

- *** Grob and Jundt, Helv Chem. Acta, 31, 1691 (1948). 740 Shunk and Wilds, J Am. Chem. Soc. 71, 3946 (1949).
- 741 Ghosh and Robinson, J. Chem. Soc., 1944, 506
- tes Wilds and Shunk, J Am. Chem. Soc , 72, 2388 (1950)
- 702 Martin and Robinson, J. Chem Soc , 1943, 491
- You Mukharji, J. Indian Chem. Soc., 24, 91 (1947) [C A., 42, 1312 (1948)]. 705 Huang, J Chem. Soc., 1954, 3655.
- Yieland and Miescher, Helv. Chim. Acta, 33, 2215 (1950).
- 702 CIBA, Swiss pat 293,104 [C.A., 49, 3263 (1955)] ⁷⁰⁸ Chaudhuar, and Mukharp, Science and Culture India, 18, 602 (1953) [C.A., 48, 7592
- Wendler, Slates, and Tishler, J. Am. Chem. Soc., 73, 3816 (1951).
  - Reichert and Posemann, Arch Pharm, 275, 67 (1937) [C A, 31, 3984 (1937)]
- 111 Barltrop, J Chem Soc., 1946, 958
  - 111 Cardwell, J. Chem. Soc., 1949, 715 118 Szmuszkovicz and Born, J. Am Chem. Soc , 75, 3350 (1953)
  - 114 McQuillin, J. Chem Soc , 1955, 528.
  - 115 Roy, Chemistry & Industry, 1954, 1393
- 108 Howe and McQuillin, J Chem Soc , 1955, 2423 Adamson, McQuillin, Robinson, and Simonsen, J. Chem. Soc., 1937, 1576.
- ³¹⁸ Abe, Harukawa, Ishikawa, Miki, Sumi, and Toga, J Am Chem Soc., 75, 2567 (1953). Abe, Harukawa, Ishikawa, Miki, Sumi, and Toga, Proc Japan Acad , 29, 113 (1953)
- [C.A. 48, 10706 (1954)].
  - 780 Roy, Science and Culture India, 19, 266 (1953) [C.A. 49, 1676 (1955)]
  - 191 Szmuszkowicz, J. Org Chem., 19, 1424 (1954) Jacquier and Boyer, Bull soc chim. France, 1954, 442.
  - 188 Mannich and Koch, Ber , 75, 803 (1942). 134 Mannich, Koch, and Berkowsky, Ber., 70, 355 (1937).
  - ⁷³⁸ Logan, Marvell, La Pore, and D. C Bush, J Am. Chem Soc., 76, 4127 (1954).
  - Jacquier and Lanet, Bull sor. chim France, 1953, 795.
  - Treibs and Muchistaedt, Chem. Ber., 87, 407 (1954) 711 Jacquier and Christol, Bull. soc. chim. France, 1954, 556
  - Novello, Christy, and Sprague, J. Am. Chem. Soc., 75, 1330 (1953)
  - 78 F C Novello, private communication
- ²⁴¹ Cope and Hermann, J Am. Chem. Soc., 72, 3405 (1950) ²⁰¹ Harradence and Lions, J. Proc. Roy. Soc. N.S. Bules, 72, 284 (1939) [C.A., 33, 6825] (1939)]
  - 114 Gill and Lions, J. Am Chem Soc , 72, 3468 (1950)
  - 114 Juday, J Am Chem Soc , 75, 4071 (1953) 724 Novello and Christy, J. Am. Chem. Soc , 75, 5431 (1953)
  - 784 Lieberman and Wagner, J. Org. Chem , 14, 1001 (1949)
  - 717 Dalghesh, J. Am. Chem. Soc. 71, 1697 (1949)
  - 188 Ehel, J Am Chem Soc., 73, 43 (1951) ¹⁴⁹ Snyder and Hambn, J. Am Chem Soc., 72, 5082 (1950).
  - 240 Bernstek, Acta Chem Scand , 7, 677 (1953) [C.A., 48, 4501 (1954)].
  - 141 Ionescu, Bull soc. chim. France, [4], 41, 1094 (1927)
  - 748 Smith and Nichols, J Am. Chem Soc., 65, 1739 (1943) 145 Smith and Wiley, J Am Chem Soc . 68, 834 (1946)
  - 744 Smith and Byers, J Am Chem Soc , 63, 612 (1941) 746 Smith and MacMullen, J Am. Chem Soc. 58, 529 (1938)
  - 14 Bergel, Jacob, Todd, and Work, J Chem. Soc., 1938, 1375 74' Smith and Johnson, J Am Chem Soc., 59, 673 (1937)
  - 2012 Smith, J Am Chem Soc , 58, 472 (1934) rese Smith and Denyes, J. Am Chem Soc , 58, 304 (1936)
  - 144 Smith and Opic, J Am Chem Soc. 63, 932 (1941)
  - 740 Smith and Webster, J. Am Chem Soc., 59, 662 (1937).

- 749a Adams and Acker, J. Am. Chem. Soc. 74, 5872 (1952).
- 750 Adams and Blomstrom, J. Am. Chem. Soc., 75, 3404 (1953).
- 751 Adams and Moje, J. Am. Chem. Soc., 74, 5557 (1952).
- 752 Adams and Way, J. Am. Chem. Soc., 76, 2763 (1954).
- 753 CIBA, Swiss pat. 276,141 [C.A., 47, 7546 (1953)].
- 754 CIBA, British pat. 666,713 [C.A., 47, 7546 (1953)].
- 765 Hoffmann and Tagmann, Helv. Chim. Acta, 32, 1470 (1949).
- 756 E. I. du Pont de Nemours and Co., Brit. pat. 576,427 [C.A., 42, 2269 (1948)].
- 167 Hoch and Karrer, Helv. Chim. Acta, 37, 397 (1954).
- 758 Fuson and Miller, J. Org. Chem., 17, 886 (1952).
- 759 Terent'ev and Gurvich, Vestnik Moskov. Univ., 5, No. 5 (1950) [C.A., 45, 7005 (1951)].
- ⁷⁶⁰ Bruson, U.S. pat. 2,383,444 [C.A., 40, 351 (1946)].
- 761 Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942).
- ⁷⁶² Baumgarten and Eifert, J. Am. Chem. Soc., 75, 3015 (1953).
- ⁷⁶³ Wiest and Glaser, U.S. pat. 2,403,570 [C.A., 40, 6498 (1946)].
- ⁷⁶⁴ Frank and McPherson, Jr., J. Am. Chem. Soc., 71, 1387 (1949).
- ⁷⁶⁵ Bruson, U.S. pat. 2,386,736 [C.A., 40, 7234 (1946)].
- ⁷⁰⁶ Terent'ev and Gurvich, Sbornik Statei Obshchei Khim. Akad. Nauk S.S.S.R., 1, 404 (1953) [C.A., 49, 1047 (1955)].
- 767 Terent'ev, Kost, and Gurvich, Zhur. Obshchei Khim., 22, 1977 (1952) [C.A., 47, 8663 (1953)].
- ⁷⁶⁸ Levina, Shusherina, and Kaminskaya, Doklady Akad. Nauk S.S.S.R., 86, 79 (1952)
  [C.A., 47, 4849 (1953)].
- Nazarov, Shvekgheimer, and Rudenko, Zhur. Obshchei Khim., 24, 319 (1954) [C.A., 49, 4651 (1955)].
  - ²⁷⁰ Nazarov and Zav'yalov, Zhur. Obshchei Khim., 24, 469 (1954) [C.A., 49, 6142 (1955)].
  - ⁷⁷¹ Stetter and Coenen, Chem. Ber., 87, 990 (1954).
  - 772 Iwanoff, Chem. Ber., 87, 1600 (1954).
  - ²⁷³ Boekelheide, J. Am. Chem. Soc., 69, 790 (1947).
- ⁷⁷⁴ Barkley, Farrar, Knowles, Raffelson, and Thompson, J. Am. Chem. Soc., 78, 5014 (1954).
  - ²⁷⁵ Pinder and Robinson, Nature, 167, 484 (1951).
  - 776 Chem. Werke Huels, Ger. pat. 811,350 [C.A., 47, 3337 (1953)].
  - ⁷⁷⁷ Daub and Doyle, J. Am. Chem. Soc., 74, 4449 (1952).
  - ¹⁷⁸ Acara and Levine, J. Am. Chem. Soc., 72, 2864 (1950).
  - ¹⁷⁷⁹ Horning and Rutenberg, J. Am. Chem. Soc., 72, 3534 (1950).
  - ²⁸⁰ Albertson and Fillman, J. Am. Chem. Soc., 71, 2818 (1949).
  - ⁷⁸¹ Mikeska, U.S. pat. 2,461,336 [C.A., 43, 4689 (1949)].
  - ⁷⁸¹⁴ Hesse and Bucking, Ann., 563, 31 (1949).
- ¹⁸² Smrt and Šorm, Collections Czechoslov. Chem. Communs., 18, 131 (1953) [C.A., 48, 3903 (1954)].
  - 783 Ansell and Hey, J. Chem. Soc., 1950, 1683.
  - ⁷⁸⁴ Floyd, J. Am. Chem. Soc., 71, 1746 (1949).
  - 785 Wideqvist, Arkiv Kemi, 3, 59 (1951) [C.A., 45, 10217 (1951)].
  - 786 Green and Hey, J. Chem. Soc., 1954, 4306.
  - ⁷⁸⁷ Newman and McPherson, J. Org. Chem., 19, 1717 (1954).
  - 788 Talukdar and Bagchi, Science and Culture India, 19, 201 (1953) [C.A., 49, 1656 (1955)].
  - Talukdar and Bagchi, J. Org. Chem., 20, 21 (1955).
  - 780 Talukdar and Bagchi, Science and Culture India, 18, 503 (1953) [C.A., 48, 8180 (1954)]-
  - ⁷⁹¹ Raha and Mukharji, J. Org. Chem., 19, 1376 (1954).
  - ⁷⁸² Horning and Finelli, J. Am. Chem. Soc., 71, 3204 (1949); Org. Syntheses, 30, 80 (1950).
  - ⁷⁹³ Banerjee and Shafer, J. Am. Chem. Soc., 72, 1931 (1950).
  - ¹⁹⁴ Walter and Barry, U.S. pat. 2,524,643 [C.A., 45, 7154 (1951)].
  - ¹⁸⁵ Campbell and Tucker, J. Chem. Soc., 1949, 2623.
  - ¹⁸⁶ Holbro and Tagmann, Helv. Chim. Acta, 33, 2178 (1950).
  - ⁷⁹⁷ Campbell and Reid, J. Chem. Soc., 1952, 3281.

- ¹⁴⁶ Bockelheide, Lann, O'Grady, and Lumborg, J. Am Chem. Soc., 75, 3243 (1953). 100 Yoho and Levine, J. Am. Chem Soc., 74, 5597 (1952).
- 200 Misra and Shukla, J. Indian Chem Soc., 29, 455 (1952).
- 111 Misra and Shukla, J. Indian Chem Soc., 30, 37 (1953).
- ** Koelsch and Walker, J. Am. Chem. Soc , 72, 346 (1950).
- ** Nakazawa and Matenura, J. Phorm Soc. Japan, 72, 51 (1952) [C.A., 46, 11142 (1952)].
- ⁴⁴⁴ Bachmann and Johnson, J. Am. Chem. Soc., 71, 3463 (1949) *** Kost and Terent'ev, J. Gen. Chem. U.S.S.R., 22, 655 (1952) [C.A., 47, 2759 (1953)].
- Boekelheide and Godfrey, J. Am. Chem. Soc., 75, 3679 (1953).
- am Misra and Shukla, J. Indian Chem Soc , 29, 201 (1952).
- *** Rubin and Wishinsky, J. Am. Chem. Soc., 68, 828 (1946). *** Tagmann, Sury, and Hoffmann, Helv. Chem Acta, 35, 1541 (1952)
- see Herzog, Gold, and Geckler, J Am. Chem Soc., 73, 749 (1951).
- 818 Klagor, J. Org. Chem., 16, 161 (1951).
- un Boyd and Leshin, J. Am. Chem Soc , 74, 2675 (1952). all Redionov and Belikov, Doklady Akad Nauk S.S.S.R., 93, 827 (1953) [C.A., 49, 1650

### (1955)]. *18 Klager, J. Org. Chem., 20, 650 (1955).

- 414 Bruson, U.S. pat, 2,435,552 [C A , 42, 3778 (1948)]
- 115 Asthana and Misra, J. Indian Chem. Soc., 31, 459 (1954). ets Ladd, U.S. pat. 2,632,019 [C.A , 48, 1418 (1954)]
- 117 Fiszer and Michalaki, Roczniks Chem., 28, 185 (1954) [C.A., 49, 9493 (1955)].
- 118 Koelsch, J. Am Chem. Soc., 65, 2460 (1943).
- 416 Koelsch, J. Am. Chem. Soc., 68, 146 (1946).
- Koelsch and Rolfson, J. Am. Chem. Soc , 72, 1871 (1950).
- ** Birch and Kon, J. Chem. Soc., 123, 2440 (1923).
- 411 Linstead and Millidge, J. Chem. Soc , 1936, 478. *** Oesterr. Stickstoffworks A.G., Austrian pat. 176,845 [C.A., 48, 10772 (1954)].
- at Albertson, J. Am. Chem. Soc., 70, 669 (1948).
- *** Koelsch, J Am. Chem. Soc., 65, 2458 (1943). Sury and Hoffmann, Helo Chem. Acta, 38, 1815 (1953); cf. Tagmann, Sury, and
- Hoffmann, Helv. Chim Acta, 25, 1235, 1541 (1952). ¹³⁷ Johnson, Johnson, and Petersen, J. Am. Chem. Soc., 68, 1926 (1946).
  - 886 Schneider, Riener, and Bruson, J. Am. Chem. Soc., 72, 1486 (1950).
  - 140 Lloyd and Horning, J. Am Chem Soc , 78, 3651 (1954).
  - ese Bruson, U.S. pat 2,390,918 [C.A , 40, 2456 (1948)]. Micheel and Albers, Ann., 581, 225 (1953).
  - 412 Kloetzel, J. Am. Chem. Soc , 70, 3571 (1848).
  - 271 Thedacker and Wendtland, Ann., 570, 33 (1950). 114 Moffett, Org. Syntheses, 32, 88 (1952).
  - 813 Brown and van Gulick, J. Am. Chem Soc., 77, 1079 (1955).
  - *** Kleger, US pat. 2,840,072 [C.A , 48, 7626 (1954)].
  - *** Klager, U.S. pat. 2,668,176 [C.A., 49, 4013 (1955)] *** Floyd and Miller, J. Org. Chem., 15, 882 (1951).
  - Kappeler, Stauffacher, Eschenmoser, and Schmz, Hele. Chem. Acta, 37, 957 (1954).
  - Steuffscher and Schint, Hely. Chim. Acts, 37, 1223 (1954) ses Perkin, Jr , and Thorpe, J. Chem. Soc , 85, 128 (1904).
  - *** Plattner, Fuerst, Meyer, and Keller, Helv. Chim. Acta, 37, 266 (1954).
  - ses Barat, J. Indian Chem. Soc. 8, 37 (1931). Stetter, Buentgen, and Coonen, Chem Ber., 88, 77 (1955).
  - ess Horner, Ann , 548, 117 (1941) 444 Palazzo and Romati, Gazz, chim stal., 82, 584 (1952).
  - ser Wessblat and Lyttle, US pat 2,606,921 [C.A., 47, 4903 (1953)]. *** Dryanovs, Zav'yslov, and Preobrathonskii, J. Gen. Chem. U.S.S. R., 18, 1733 (1948)
- (C.4., 43, 2625 (1949)) w. Woods, J. Am. Chem. Soc., 75, 1510 (1953).

- 850 Hunsdiecker, Ber., 75, 1197 (1942).
- 851 Komppa and Rohrmann, Ann. Acad. Sci. Fennicae, A44, No. 3 (1935) [C.A., 30, 2949 (1936)].
  - 852 Scheibler, Emden, and Neubner, Ber., 63, 1557 (1930).
  - 853 Edwards, Jr., and Cashaw, J. Am. Chem. Soc., 76, 6188 (1954).
  - 854 Schilling and Vorlaender, Ann., 308, 184 (1899).
  - 855 Blanchard and Goering, J. Am. Chem. Soc., 73, 5863 (1951).
  - 856 Bhattacharyya, J. Indian Chem. Soc., 22, 214 (1945).
  - 857 Bhattacharyya, Science and Culture India, 8, 426 (1943) [C.A., 37, 5031 (1943)].
  - 858 Herz, J. Org. Chem., 20, 1062 (1955).
  - 859 Chakravarti, J. Indian Chem. Soc., 21, 319 (1944).
  - 860 Hope and Perkin, Jr., J. Chem. Soc., 99, 762 (1911).
  - 881 Barltrop, J. Chem. Soc., 1947, 399.
  - 862 Ruhemann and Wolf, J. Chem. Soc., 69, 1383 (1896).
  - 853 Cook, Pierce, and McBee, J. Am. Chem. Soc., 76, 83 (1954).
  - 864 Noller and Pannell, J. Am. Chem. Soc., 77, 1862 (1955).
  - 865 Talukdar and Bagchi, J. Org. Chem., 20, 25 (1955).
  - 866 von Auwers and Koebner, Ber., 24, 1935 (1891).
  - 867 Ruzicka, Helv. Chim. Acta, 2, 144 (1919).
  - ⁸⁶⁸ Phalnikar and Nargund, J. Univ. Bombay, 4, 106 (1935) [C.A., 30, 5186 (1936)].
- 869 Miwa, Ohsuka, and Sakan, J. Chem. Soc. Japan Pure Chem. Sect., 74, 113 (1953)
  [C.A., 48, 9962 (1954)].
  - 870 Welch, J. Chem. Soc., 1930, 257.
  - 871 Kotake, Sakan, and Miwa, J. Am. Chem. Soc., 72, 5085 (1950).
  - 872 Romeo, Corrodi, and Hardegger, Helv. Chim. Acta, 38, 463 (1955).
- *73 Phalnikar, J. Univ. Bombay, 19, Sect. A, Pt. 3, Sci. No. 28, 62 (1950) [C.A., 47, 1606 (1953)].
  - 874 Aoki, J. Pharm. Soc. Japan, 66, 51 (1946) [C.A., 45, 6173 (1951)].
  - 875 Ruhemann and Browning, J. Chem. Soc., 73, 727 (1898).
  - 876 Ghosh, J. Indian Chem. Soc., 24, 45 (1947).
  - 877 Staudinger, Ann., 341, 99 (1905).
  - 878 Ruhemann and Cunnington, J. Chem. Soc., 73, 1006 (1898).
  - 879 Challenger and Fishwick, J. Inst. Petroleum, 39, 220 (1953) [C.A., 48, 9355 (1954)].
  - 880 Malachowski, Bilbel, and Biliński-Tarasowicz, Ber., 69, 1295 (1936).
  - 881 Henze, Ber., 33, 966 (1900).
  - 852 Ruhemann, J. Chem. Soc., 71, 325 (1897).
  - 883 Ruhemann and Stapleton, J. Chem. Soc., 77, 804 (1900).
  - 884 Ruhemann and Tyler, J. Chem. Soc., 69, 530 (1896).
  - 885 Woodward and Reed, J. Am. Chem. Soc., 65, 1569 (1943).
  - 886 Perkin, Jr., J. Chem. Soc., 69, 1472 (1896).
  - 887 Ray, J. Am. Chem. Soc., 50, 558 (1928).
  - 888 Blaise, Compt. rend., 136, 243 (1903).
  - 889 Blaise and Luttringer, Bull. soc. chim. France, [3], 33, 760 (1905).
  - 890 Kohler and Reid, J. Am. Chem. Soc., 47, 2803 (1925).
  - 891 Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1876 (1949).
  - 892 Komnenos, Ann., 218, 145 (1883).
  - 893 Koetz and Stalmann, J. prakt. Chem., [2], 68, 156 (1903).
  - 894 Knoevenagel, Ber., 31, 2585 (1898).
  - 895 Gupta, J. Chem. Soc., 119, 298 (1921).
  - ⁸⁹⁶ Day and Thorpe, J. Chem. Soc., 117, 1469 (1920).
  - 897 Diels, Gaertner, and Kaack, Ber., 55, 3439 (1922).
  - 898 Sonn, Ber., 61, 2479 (1928).
  - 889 Robinson and Thompson, J. Chem. Soc., 1938, 2009.
  - 900 Farmer, J. Chem. Soc., 123, 3324 (1923).
  - 901 Koetz, J. prakt. Chem., [2], 75, 433 (1907).
  - 902 Gaind and Guha, J. Indian Chem. Soc., 11, 421 (1934).

- ** Chmo and Welch, J. Chem. Soc , 1928, 2621.
- 144 Kerr, J 4m Chem Soc , 51, 614 (1929)
- ** Mayuranathan and Guha, J. Indian Inst. Scs., 15A, 131 (1932) [C.A., 27, 3211 (1933)]. ** Komppa, Ber . 33, 3530 (1900)
- ser Brown and van Gulick, J. Am Chem. Soc., 77, 1083 (1955)
- Zakharkin and Preobrazhonskii, Zhur. Obshchei Khim, 22, 1890 (1952) [C.A. 47, 7507 (1953)] 888 Bantova, Evetigneeva, Livshite, Kuz'mina, and Preobrazhonskii, Zhur. Obshchei
- Ahm . 23, 149 (1953) [C .4 , 48, 1360 (1954)]
  - Curtis, Day, and Kimmins, J. them. Soc., 123, 3131 (1923).
  - 11 Ingold and Shoppee, J Chem Soc , 1926, 1912
  - an Ingold, Shopper, and Thorpe, J. Chem. Soc., 1826, 1477. Arnold Amidon, and Dodson, J Am Chem Soc., 72, 2871 (1950)
  - 114 Bertram, Ber . 38, 3291 (1903) 228 (1940) [C A , 34, 7851 (1940)].
  - 116 lagold and Perren, J Chem Soc . 119, 1582 (1921)
  - *** Henrich, Ber , 35, 1663 (1902) 117 Knorvenagel, Ger pat 150,560 [Chem Zentr., 1905, I, 56]
  - *11 Ruhemann and Cumington, J. Chem. Soc., 75, 778 (1899)
  - Traube, Ber , 40, 4942 (1907)
  - *** Malachowski and Czornodola, Ber . 68, 363 (1935)
  - mi Ingold and Perren, J Chem Soc., 121, 1414 (1922)
  - ers Clausen, Ann., 297, 1 (1897), especially p. 88 ** Bockelheide and Lodge, Jr., J Am Chem Soc. 73, 3681 (1951)
  - 111 Bockelheide and Gall, J. Org Chem , 19, 499 (1954). ** Kohler and Butler, J. Am Chem Soc . 48, 1036 (1926)
  - en Farmer and Healey, J Chem Soc , 1927, 1065 917 Farmer and Mehts, J. Chem Soc , 1930, 1610.
  - Vorlander, Weissheimer, and Sponnagel, Ann., 345, 227 (1906). *** Cairns, Engelhardt, Jackson, Kalb, and Sauer, J. Am Chem Soc., 74, 5836 (1952).
  - Farmer and Martin, J Chem Soc , 1933, 960
  - Blood, Cartwright, and Linstead, J. Chem. Soc., 1952, 2268.
  - an Farmer and Mehta, J Chem, Soc , 1931, 1762 231 Campbell and Rydon, J Chem. Soc , 1953, 3002
  - 314 Bardhan and Banery. J Chem Soc , 1935, 474
  - se Sirear, J Chem Soc , 1927, 1252 124 Kon and Nanja, J Chem Soc , 1932, 2426
  - 10 Prelog and Metzler, Helv Chun Acta, 29, 1170 (1946)
  - 100 Halfer, Helv Chun Acto, 9, 814 (1926). Bhattscharyya, J Indian Chem Sec., 22, 85 (1945)
  - tee Chatterjee, J Indian Chem Soc , 14, 417 (1937)
  - *** Sen and Bose, J. Indian Chem. Soc., 4, 51 (1927). Hardhan and Banory, J Chem Soc., 1935, 476
  - 142 Vogel, J Chem Soc , 1931, 907

  - Reschatern, Zachokke, Gehring, and Rona, Helv Chim Acta, 15, 1118 (1932) ** Rubtsov and Mikhlins, Dollady Akad. Nauk S.S.R., 88, 1003 (1953) [C.A. 48, 8782
  - Ni Herrmann and Vorlacuder, Abhandi naturforsch Ges Halle, 21, 251 (1899) 1954)]
    - *** Stobbe, Ann , 315, 219 (1901) Deani, J Chem Soc . 1932, 1079
    - 350 Barr and Cook, J Chem Soc , 1945, 438 151 Erlenmeyer, Jr , Ber , 33, 2006 (1900)
    - ser Helmkamp, Tanghe, and Plats, J Am. Chem Sec. 82, 3215 (1940)
    - 11 Lawson, Perkin, Jr, and Robinson, J Chem Soc., 125, 626 (1924)

- 650 Hunsdiecker, Ber., 75, 1197 (1942).
- kii Komppa and Rohrmann, Ann. Acad. Sci. Fennicae, A44, No. 3 (1935) [C.A., 30, 2919 (1936)].
  - 852 Scheibler, Emden, and Neubner, Ber., 63, 1557 (1930).
  - 552 Edwards, Jr., and Cashaw, J. Am. Chem. Soc., 76, 6188 (1954).
  - 854 Schilling and Vorlaender, Ann., 308, 184 (1899).
  - Blanchard and Goering, J. Am. Chem. Soc., 73, 5863 (1951).
  - 856 Bhattacharvya, J. Indian Chem. Soc., 22, 214 (1945).
  - Bhattacharyya, Science and Culture India, 8, 426 (1943) [C.A., 37, 5031 (1943)].
  - Herz, J. Org. Chem., 20, 1062 (1955).
  - 849 Chakravarti, J. Indian Chem. Soc., 21, 319 (1944).
  - 440 Hope and Perkin, Jr., J. Chem. Soc., 99, 762 (1911).
  - 841 Barltrop, J. Chem. Soc., 1947, 399.
  - 862 Ruhemann and Wolf, J. Chem. Soc., 69, 1383 (1896).
  - 662 Cook, Pierce, and McBee, J. Am. Chem. Soc., 76, 83 (1954).
  - *** Noller and Pannell, J. Am. Chem. Soc., 77, 1862 (1955).
  - *65 Talukdar and Bagehi, J. Org. Chem., 20, 25 (1955).
  - von Auwers and Koebner, Ber., 24, 1935 (1891).
  - 867 Ruzicka, Helv. Chim. Acta, 2, 144 (1919).
  - ⁸⁶⁸ Phalnikar and Nargund, J. Univ. Bombay, 4, 106 (1935) [C.A., 30, 5186 (1936)].
  - Miwa, Ohsuka, and Sakan, J. Chem. Soc. Japan Pure Chem. Sect., 74, 113 (1953) [C.A., 48, 9962 (1954)].
    - 870 Welch, J. Chem. Soc., 1930, 257.
      - ⁸⁷¹ Kotake, Sakan, and Miwa, J. Am. Chem. Soc., 72, 5085 (1950).
      - ⁸⁷² Romeo, Corrodi, and Hardegger, Helv. Chim. Acta, 38, 463 (1955).
  - *** Phalnikar, J. Univ. Bombay, 19, Sect. A, Pt. 3, Sci. No. 28, 62 (1950) [C.A., 47, 1606 (1953)].
    - ⁸⁷⁴ Aoki, J. Pharm. Soc. Japan, 68, 51 (1946) [C.A., 45, 6173 (1951)].
    - 875 Ruhemann and Browning, J. Chem. Soc., 73, 727 (1898).
    - 876 Ghosh, J. Indian Chem. Soc., 24, 45 (1947).
    - ⁸⁷⁷ Staudinger, Ann., 341, 99 (1905).
    - 878 Ruhemann and Cunnington, J. Chem. Soc., 73, 1006 (1898).
    - ⁵⁷⁹ Challenger and Fishwick, J. Inst. Petrolcum, 39, 220 (1953) [C.A., 48, 9355 (1954)].
    - Malachowski, Bilbel, and Biliński-Tarasowicz, Ber., 69, 1295 (1936).
    - 881 Henze, Ber., 33, 966 (1900).
    - 882 Ruhemann, J. Chem. Soc., 71, 325 (1897).
    - 883 Ruhemann and Stapleton, J. Chem. Soc., 77, 804 (1900).
    - 884 Ruhemann and Tyler, J. Chem. Soc., 69, 530 (1896).
    - 885 Woodward and Reed, J. Am. Chem. Soc., 65, 1569 (1943).
    - 856 Perkin, Jr., J. Chem. Soc., 69, 1472 (1896).
    - 887 Ray, J. Am. Chem. Soc., 50, 558 (1928).
    - 888 Blaise, Compt. rend., 136, 243 (1903).
    - Blaise and Luttringer, Bull. soc. chim. France, [3], 33, 760 (1905).
    - 880 Kohler and Reid, J. Am. Chem. Soc., 47, 2803 (1925).
    - ** Leonard and Shoemaker, J. Am. Chem. Soc., 71, 1876 (1949).
    - 892 Komnenos, Ann., 218, 145 (1883).
    - 892 Koetz and Stalmann, J. prakt. Chem., [2], 68, 156 (1903).
    - *** Knoevenagel, Ber., 31, 2585 (1898).
    - 895 Gupta, J. Chem. Soc., 119, 298 (1921).
    - 896 Day and Thorpe, J. Chem. Soc., 117, 1469 (1920).
    - 897 Diels, Gaertner, and Kaack, Ber., 55, 3439 (1922).
    - 898 Sonn, Ber., 61, 2479 (1928).
    - Robinson and Thompson, J. Chem. Soc., 1938, 2009.
    - 900 Farmer, J. Chem. Soc., 123, 3324 (1923).
    - ¹⁰¹ Koetz, J. prakt. Chem., [2], 75, 433 (1907).
    - 902 Gaind and Guha, J. Indian Chem. Soc., 11, 421 (1934).

- 100 Hacrds and Thorne, J. Chem. Soc., 127, 1237 (1925).
- 1001 Ruhemann, J. Chem. Soc , 97, 457 (1910).
- Ruhemann, Ber , 53, 287 (1920).
- 1411 Walker, J Am Chem. Soc., 76, 309 (1954).
- 1412 Ruhemann and Stapleton, J. Chem. Soc., 77, 239 (1900). 1018 Grob and Camenach, Hely Cham. Acta, 38, 49 (1953).
- 1014 Lambert and Piggott, J. Chem. Soc , 1847, 1489.
- 1915 Hale and Robertson, Am Chem. J., 39, 685 (1908), cf. Hale, Ber., 45, 1600 (1912).
- 1818 Fanta and Stom, J. Am. Chem. Soc., 77, 1045 (1985). Bahner, U.S. pat. 2.425,276 [C.A., 41, 7410 (1947)]
- 1415 Bahner, U.S pat 2,426,158 [C A , 41, 7410 (1947)]
- 101. Bahner, U.S. pat 2,447,828 [C.A. 42, 8819 (1948)].
- 1009 Bahner, U.S. pat 2,431,451 [C.A. 42, 2615 (1948)]
- 1981 Snyder and Hamhn, J. Am Chem. Soc., 72, 5082 (1950).
- 1411 J F Bourland, Thesis, Purdue University, 1941, quoted by Hass and Riley in Chem. Revs . 32, 414 (1943)
  - ins Shechter and Conrad. J. Am Chem Soc , 76, 2716 (1954).
- 1048 Perckalm and Sopova, Zhur. Obshche: Khim., 24, 513 (1954), Dollady Abad. Nauk S.S.R., 95, 993 (1954) [C.A., 49, 6180-6181 (1955)].
  - 100 Dornow and Menzel, Ann., 588, 40 (1954).
  - 1047 Heim, Ber , 44, 2016 (1911). tess Smith and Kelly, J. Am Chem. Soc., 74, 3300 (1952)
  - 1619 Smith and Davis, J Am. Chem Soc . 78, 5376 (1954) iese Buckley, Charlish, and Rose, J. Chem Soc., 1947, 1514.
  - 180 Smith and Davis, J. Org. Chem . 15, 824 (1950).
  - 1441 Kohler and Potter, J. Am. Chem. Soc , 57, 1316 (1935)
  - 1001 Backer, Rec. trav. chim , 72, 119 (1953)
  - 1944 Doering and Weil, J Am Chem Soc., 69, 2461 (1947).
  - Boekelheide and Rothchild, J Am Chem Soc., 71, 879 (1949)
  - Winterfeld and Heinen, Ann , 573, 85 (1951), 578, 171 (1952)
  - 1647 Bookelheide and Rothchild, J. Am Chero Soc , 69, 3149 (1987).
  - 1898 Wilt and Lovine, J Am Chem Soc , 75, 1368 (1953)
  - 1010 Winterfeld, Wald, and Rink, Ann , 588, 125 (1954) 1841 Boekelheids and Mason, J Am Chem Soc., 73, 2358 (1981)

  - 1ees Chifford, U.S. pst 2,579,419 [C A., 46, 7593 (1952)] Boekelheide and Mannetts, J. Am Chem Soc. 73, 4015 (1951).
  - 1944 Bockelheide and Sieg, J Org Chem , 19, 587 (1954).
  - 1448 Pudovik and Grubina, Zhur Obshchei Khim. 23, 267 (1953) [C.A., 43, 2573 (1954)]

- 133 Chase and Walker, J. Chem. Soc., 1953, 3548.
- *** Vorlaender and Strunck, Ann., 345, 233 (1906).
- 437 Meerwein and co-workers, J. prokt. Chem., [2], 116, 229 (1927).
- Vachon, Gagnon, and Kane, Can. J. Research, 11, 644 (1934) [C.A., 29, 1087 (1935)].
- *** Kohler and Darling, J. Am. Chem. Soc., 52, 1174 (1930).
- *** Gravel, Naturaliste can., 57, 181 (1931) [C..1., 28, 169 (1934)].
- 341 Bredt, Ber., 24, 603 (1891).
- 342 Knoevenagel and Fries, Ber., 31, 761 (1898).
- 163 Knoevenagel and Brunswig, Ber., 35, 2177 (1902).
- ⁸⁴⁴ Kroeker and McElvain, J. Am. Chem. Soc., 58, 1171 (1934).
- 563 Kohler and Barrett, J. Am. Chem. Soc., 48, 1773 (1926).
- 844 Kohler and Darling, J. Am. Chem. Soc., 52, 424 (1930).
- *67 Papadakis, J. Am. Chem. Soc., 67, 1799 (1945).
- ⁸⁴⁸ Papadakis, Seigliano, Chin, and Adrian, J. Am. Chem. Soc., 72, 1250 (1950).
- 249 Palit, J. Indian Chem. Soc., 14, 219 (1937).
- *10 Rabe, Ber., 31, 1890 (1898).
- ⁹⁷¹ Meerwein, Ann., 360, 323 (1908).
- 372 Newman and Joshel, J. Am. Chem. Soc., 60, 485 (1938).
- *** Koelsch, U.S. pat. 2,507,473 [C.A., 44, 7883 (1950)].
- *** Koelsch, J. Am. Chem. Soc., 67, 569 (1945).
- 173 Emery, J. prakt. Chem., [2], 53, 308 (1896).
- 974 Henecka, Chem. Ber., 82, 36 (1949).
- ⁹⁷⁷ Isler, Gutmann, Straub, Fust, Böhni, and Studer, Helv. Chim. Acta, 38, 1033 (1955).
- *** Mumm and Hueneke, Ber., 50, 1568 (1917).
- 970 Mumm and Hueneke, Ber., 51, 150 (1918).
- *** Tracy and Elderfield, J. Org. Chem., 6, 70 (1941).
- 351 Horning, Denekas, and Field, J. Org. Chem., 9, 547 (1914).
- 312 Rabe and Elze, Ann., 323, 83 (1902).
- 953 West, J. Biol. Chem., 66, 63 (1925).
- 244 Pastour, Compt. rend., 237, 1094 (1953).
- *** Gruber and Schloegl, Monatsh., 81, 83 (1950).
- Nazarov and Zav'yalov, Izvest. Akad. Nauk S.S.S.R. Otdel. Khim. Nauk, 1952, 703 [C.A., 47, 10515 (1953)].
  - *** Wallach, Ann., 323, 135 (1902).
    - ** Merling, Ber., 38, 979 (1905).
    - *** Merling and Welde, Ann., 366, 119 (1909).
    - 349 Jeger and Buechi, Helv. Chim. Acta, 31, 134 (1948).
    - *** Knoevenagel, Ann., 288, 323 (1895).
    - 991 Mukherji, Science and Culture India, 8, 190 (1942) [C.A., 37, 1994 (1943)].
    - *** Knoevenagel, Ann., 281, 25 (1894).
  - ³⁹³ Cornubert, Borrel, de Demo, Garnier, Humeau, Le Bihan, and Sarkis, Bull. soc. chim. France, [5], 2, 195 (1935).
    - *** Knoevenagel, Ann., 303, 223 (1898).
    - 995 Schilling and Vorlaceder, Ann., 308, 184 (1899).
    - 996 Dyer, Kidd, and Walker, J. Chem. Soc., 1952, 4778.
    - 897 Knoevenagel, J. prakt. Chem., [2], 97, 288 (1918).
    - ⁹⁹⁸ Bachmann, Fujimoto, and Raunio, J. Am. Chem. Soc., 72, 2533 (1950).
    - ** Simonson, J. Chem. Soc., 97, 1910 (1910).
    - 1000 Urech, Tagmann, Sury, and Hoffmann, Helv. Chim. Acta, 36, 1809 (1953).
    - 1001 Feist, Ann., 345, 100 (1906).
    - 1002 Feist, Ann., 345, 60 (1906).
    - 1003 Milas, U.S. pat. 2,369,158 [C.A., 39, 5044 (1945)].
    - 1004 Milas, U.S. pat. 2,432,921 [C.A., 42, 2278 (1948)].
    - 1005 Thorpe and Wood, J. Chem. Soc., 103, 1569 (1913).
    - 1006 Feist, Ann., 428, 25 (1922).
    - 1007 Feist, Ann., 428, 40 (1922).

### AUTHOR INDEX, VOLUMES 1-10

Adams, Joe T 8

| Governbehart, Tuticonn R , 6

ruants, Joe 1 , 8	Govindienan, Tuticomi it, o
Adkins, Homer, 8	Gutsche, C. David, 8
Angoal, S J , 8	ciuc anej a ma
	Hageman, Howard A, 7
Bachmann, W E, 1, 2	Hamilton, Chif S , 2
Behr, Lyell C , 6	Hamho, K L 9
Denr, Lyen C , 6	
Bergmann, Eanst D , 10	Hanford, W. D., 3
Berliner, Linst, 5	Hartung, Walter H , 7
Blatt, V. J. I	Hassall, C H, 9
white a second	Hauser, Charles R , 1, 8
Blick F F , 1	Hauser, Charles IC, 1, 0
Breaster, James II , 7	Henne, Albert L. 2
Brown, Weldon G , 6	Hoffman, Roger 1, 2
Bruson, Herman Alexander, 5	Holmes, H L., 4, 9
But Merman Alexander, 5	Homes, is 25, 5
Buck, Johannes S , 4	House, Herbert O , 9
Butz, Lewis S , 5	Hudson, Boyd E , Jr , I
	1
Communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communica	Ide, Walter S , 4
Carmack, Marvin, 3	Ingersoll, 1 W . 2
Carter, II E. 3	Ingerson, t, 2
Cason, James, 4	
Cope, Arthur C , 9	Jackson, Ernest L. 2
Commander C , 9	Jacobs, Thomas L . 5
Corcy, Lina J , 9	Johnson, John R , 1
Crounse, Nathan N , 5	Johnson, William S. 2, 6
	Johnson, William C.
Dest as a	Jones, Reuben G , 6
Daub, Guido S . 6	
Delar, Delay E o	Kloetzel, Milton C , 4
Dicrasos, Carl, 6	Kornblum, Nathan, 2
Drake, Nathan L. 1	Kosolapoff, Gennady M 6
Date Sathan L. 1	Kosolapon, Carman
Dullors, Adrien S . 5	Isulka, Marshall, 7
Elel, Lenst L. 7	Lane, John F 3
land L. 7	Leffler Marbo T . 1
nerson, William S. 4	12 mer mann
Legisted, D.C. 6	McLlvain, S. M. 4
	McLivani.
I many a	Mckeever C H. 1
Irver, Louis F , 1	Magerlein Barner 1.5
"NAPTE BAHLO	Manske Richard H 1 7
luen Resnold C. 1	Martin, Limore I
	Marcia, Laure
t	Moore, Maurice 1 5
(nissian T.A.2	Morgan, Jack !-
	Marton John W. Jr.
	Mosting, Lo b 4 8
Canadana Tara, 6, 8	Most of the L
Canadar E. Daval, 10	Mozing's Rafoh 4

557

### SUBJECT INDEX, VOLUME 10

Since the tables of contents of the individual chapters provide a quite complete index, only those items which are not readily found on the contents pages are indexed here

Numbers in boldface type refer to experimental procedures

γ-Acctamido γ-carbethoxy-γ-cyanobutyraldehyde, 267

Acctonylpyridmium bromide, reaction with diazonium salts, 8

Alkylidenerhodamnes, use in Michael reaction, 220 Amidrazones, 30

Amino acids, synthesis via Japp-Klingemann reaction, 153, 153-156

mann reaction, 133, 153-150 synthesis via Michael icaction, 263 Aromatic rings, synthesis via Michael reaction, 254-256 Arylazosulfones, 18

Azines, use in Michael reaction, 209

Betaines, synthesis using diazonium salts, 8, 18 Borsche synthesis of cinnolines, 28

Cannizzaro reaction, intramolecular,

210 1-Carbethoxy-2,3-phthaloylpytrocoline, 227

4-Carbomethovy-7-nitro-2-phenyl-1(2)phthalazone, 16 Cannolines, 4-hydroxy-, from diszonium

salts, 6-7, 9, 27-28
Widman-Stoermer synthesis, 21, 28
Cleavage of Michael adducts, 188-191
Condensed alleyche compounds, synthesis via Michael reaction, 215-216.

220-221, 249-251 Coumarins, 225, 227

Coupling of diszonium saits with aliphatic carbon atoms, 1-142 climination of groups during, 10-12, 18, 20, 22-23, 25-27, see also Jappkingemann reaction Cyclobutanes, synthesis via Michael reaction, 237, 248 Cyclobutanones as intermediates in abnormal Michael reaction, 193-197

 Cyclohevanedione monophenylhydiazone, 159
 Cyclohevanes, synthesis via Michael re-

action, 249
Cyclopentanes, synthesis via Michael re-

action, 248
Cyclopropanes, synthesis via Michael reaction, 248

2,4,6,8-Decatetrayne, as acceptor in Michael reaction, 183

Diazonium salts, coupling with alphatic carbon atoms, 1-142 reversal of the coupling, 147

reaction with hydrazones, 4-6 reactivity of methylene compounds toward, 31 Diethyl α, β-diphenylglutarate, 269

Diethyl glutaconate, reaction with diazonium salts, 14-15 self-condensation, 234

Diethyl 6 keto-4-methyl-2-heptene-1,5dicarboxylate, 269

Diethyl vinylphosphonate, use in Michael reaction, 241

Dimenzation, of 3,5-dimethyl-2-cycloheven-1-one, 222 of 2-ethyl-2 hevenal, 210

of methyl acrylate, 234 of piperitone, 221 Dimethylbenzofulvene, behavior in

Michael reaction, 232 Dimethyl (a-phenyl-3-mitroethyl)malonate, 269

561

### Oppenauer oxidation, 6

Pechmann reaction, 7 Periodic acid oxidation, 2 Perkin reaction and related reactions, 1 Pictet-Spengler synthesis of tetrahydroisoquinolines, 6 Pomeranz-Fritsch synthesis of isoquinolines, 6 Preparation of amines by reductive alkylation, 4 Preparation of benzoquinones by oxidation, 4 Preparation of ketenes and ketene dimers. 3 Preparation of phosphonic and phosphinic acids, 6 Preparation of thiazoles, 6 Preparation of thiophenes and tetrahydrothiophenes, 6

Reaction of diazomethane and its derivatives with aldehydes and ketones, 8 Reaction of halogens with silver salts of carboxylic acids, 9

Pschorr synthesis and related ring

closure reactions, 9

Reduction with aluminum alkoxides, 2 Reduction with lithium aluminum bydride, 6 Reformatsky reaction, 1 Replacement of aromatic primary aminogroups by hydrogen, 2

Resolution of alcohols, 2
Rosenmund reduction, 4
Schmidt reaction, 3

Selenium dioxide oxelation, 5
Skraup synthesis of quinolines, 7
Sommelet reaction, 8
Stobbe condensation, 6
Substitution and addition reactions of thiocyanogen, 3
Synthesis of aldehydes from carboxylic acids, 8
Synthesis of ketones from acid chlorides and organometallic compounds of magnesium, zinc, and cadmium, 8

von Braun cyanogen bromide reaction, 7

Willgerodt reaction, 3 Wolff-Kishner reduction, 4

- 18-19 Tetrazolium salts, synthesis via dia-
- zonium salts, 29 Thiocarbazones, synthesis via diazonium salts, 29-30
- Sulfazone, reaction with diszonium salts, | Triethyl a-acetylcarballylate, 268 Trimethyl propylene-2,3,3-tricarbox late, self-condensation, 234 Tryptamine, 155
  - Widman-Stoermer cannoline synthesis, 21, 28

- N,N'-Diphenyl-C-methylformazan, 24, 34
- N,N'-Diphenyl-C-nitroformazan, 19 Dypnopinacol, 216-217
- Ethyl  $\alpha$ -benzoyl- $\gamma$ -(2-pyridyl)butyrate, 270
- Ethyl cyanoglyoxalate m-chlorophenylhydrazone, 33
- Ethyl  $\alpha,\beta$ -dioxobutyrate  $\alpha$ -phenylhydrazone, 32
- Ethyl pyruvate o-nitrophenylhydrazone, 159
- Formazans, preparation via diazonium salts, 9, 11, 13-15, 19, 24, 158 Formazyl chloride, 14
- Hagemann ester, 251
- Hansa yellows, 13
- Heterocyclic rings, synthesis via Michael reaction, 256-263; see also individual heterocyclic rings, e.g. Pyridines
- Hexaethyl 3-butene-1,1,2,2,3,4-hexacarboxylate, 269
- Holden-Lapworth mechanism of abnormal Michael reactions, 193-197
- Hydrazones, reaction with diazonium salts. 4-6
- $\alpha$ -Hydrazones of  $\alpha,\beta$ -diketo esters, 11 4-Hydroxy-3-methylcinnoline, 34
- Indazoles, synthesis via diazonium salts, 15, 17, 24, 29
- Indene, behavior in Michael reaction, 232
- Indoles, synthesis via Japp-Klingemann reaction, 153
- synthesis via Michael reaction, 226 Isophorone, behavior in Michael reaction, 230
- Japp-Klingemann reaction, 143-178
- 7-Keto-1-methoxy-13-methyl-5,6,7,9,10,-13-hexahydrophenanthrene, 267 trans-3-Keto-2-phenylcyclohexaneacetic acid, 268

- Kojic acid, behavior in Michael reaction, 232
- Mannich bases, use in Michael reaction, 222-223
- Mesityl oxide, behavior in Michael reaction, 230
- Methyl 3-keto-2-phenylcyclohexyl-αnitroacetate, 268
- Michael reaction, 179-555 involving 1,6-addition, 213, 237-238 involving 1,8-addition, 237
- 1-Nitro-1-p-chlorophenyldrazonoethane, 33
- 5-Nitro-4,4-dimethylpentan-2-one, 267 Nitromalondialdehyde, use in Michael reaction, 240
- 1-(p-Nitrophenylazo)-2,3-dimethyl-1,3butadiene, 33
- Phenanthrenes, Pschorr synthesis of, 21-22, 27
- Piperidines, synthesis via Michael reaction, 233, 258-261
- Pyrans, synthesis via Michael reaction, 257
- Pyrazoles, synthesis via Japp-Klingemann reaction, 154
- Pyridines, synthesis via Michael reaction, 207-208, 210-212, 214, cf. 236, 258-261
- α-Pyrones, synthesis via Michael reaction, 214-215, 256-257
- Pyrroles, synthesis via Michael reaction, 261
- Pyrrolizidines, synthesis via Michael reaction, 262
- Pyruvaldehyde 1-phenylhydrazone, 32
- Rearrangement, of carbanions of Michael adducts, 186
  - of nitro groups on treatment with diazonium salts, 20, 151
- Rhodanine, use in Michael reaction, 220
- Schiff bases, use in Michael reaction, 207-209
- Serotonin, 156