Q1 Consider a n d.o.f system with generalized co-ordinates $q_1,q_2,q_3,.....q_n$. A set of m external forces F_1 , $F_2,F_3,.....F_m$ act at positions $\vec{r}_1,\vec{r}_2,\vec{r}_3,.....\vec{r}_m$ respectively. Using the definition of virtual work, δW , obtain an expression for the generalized force Q_i corresponding to the generalized co-ordinate q_i . (5)

Q2: In the truss shown all the members are light. Find the forces in members 1, 2, 3 and 4. Clearly indicate whether the members are in tension or compression.

Q3: For the system shown the generalized coordinates are x and θ . The bearings at A and B and the hinge at C are frictionless. The rod CD is light and m_3 may be treated as a point mass. The springs are un-deformed for $x=0,\ \theta=0$.

- i) Determine the kinetic energy T and potential energy V for the system.
- ii) Determine the generalized non-conservative forces Q_1^{nc} and Q_2^{nc} .
- iii) Determine $\frac{\partial T}{\partial x}$; $\frac{\partial T}{\partial \dot{\theta}}$; $\frac{\partial V}{\partial \theta}$ and $\frac{\partial V}{\partial \dot{x}}$.
- iv) Determine $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\Theta}} \right)$.

Note: Each set of wheels (with centres at A and B) has a mass m_2 and k_2 is the radius of gyration about the wheel axis.

Q4: In the system shown, rods AB and BC are light. The springs are un-deformed for $\theta = \pi/2$.

- i) Show that $\theta_1 = \pi/2$ is an equilibrium configuration for all values of k_t and k.
- ii) For $k_t = 0$, determine the 2^{nd} equilibrium solution θ_2 . What is the condition for a distinct 2^{nd} equilibrium solution to exist?
- iii) For $k_t = 0$, determine the stability of θ_1 .

Q5: A disc of mass M is eccentrically and rigidly mounted on a light vertical rod at A as shown. The rod is supported on a long bearing at O which permits rotation only about the z-axis. The centre of mass of the disc is C and its radius is R. A small friction torque M_f acts at the bearing. The angular speed of the rod at this instant (t_0) is ω . At $t=t_0$, a bullet of mass m and velocity V_0 along $(-\hat{e}$ direction as shown) strikes the disc at location $r\hat{j}$ (r < R) and gets embedded in it. The angles made by the unit vector \hat{e} with the axes x, y and z are α, β and γ respectively.

- Draw a free body diagram of the rod-disc-bullet system clearly indicating all the external reactions.
- ii) Determine the angular velocity $\vec{\omega}'$ of the rod/disc immediately after the impact with the bullet.
- iii) Determine the velocity of the bullet immediately after the impact.
- iv) Determine the impulsive force and impulsive couple reaction at 0.

Q6: An aircraft is moving at a constant speed V = 500 m/s. It is performing a vertical loop of radius R=5 km. At this instant it is rolling at a constant rate $\omega_r = 1$ rad/s. The pilot is also swinging his wings back at a constant rate $\omega_s = 0.5$ rad/s. The centre of mass of the right wing is C and the principal radii of gyration of the right wing about C are $k_x = 1$ m, $k_y = 5$ m, $k_z = 10$ m. The mass of the right wing is 500 kg.

What is the net moment about C applied by the plane body and the aerodynamic forces on the wing, at this instant, to enable this motion of the wing?

R=5 km/ z $\omega_r = 1 \text{ rads/s}$

 $\omega_s = 0.5 \text{ rad/s}$ $\omega_s = 0.5 \text{ rad/s}$ ω_r $\omega_$

Q7: A plate CD (body 1) is being pulled to the left by a force P as shown. The plate's movement is resisted by the semi-circular disc 2. The hinges and rollers are frictionless however the coefficient of friction between the plate and disc is μ . What is the largest value of thickness h for which the system is self-locking? i.e. for given F > 0, the plate will not move no matter how large P is.

You may assume all bodies are light so gravity does not play any role here.

