Sayısal Sistemler-H9CD2 Flip-Flop Türleri

Dr. Meriç Çetin versiyon131120

Bu derste öğreneceklerimiz

5 Synchronous Sequential Logic

```
Introduction
                                                                190
          Sequential Circuits
                                                                190
          Storage Elements: Latches
                                                                193
          Storage Elements: Flip-Flops
                                                                196
          Analysis of Clocked Sequential Circuits
5.5
                                                                204
          Synthesizable HDL Models of Sequential Circuits
5.6
                                                                217
          State Reduction and Assignment
5.7
                                                                231
5.8
          Design Procedure
                                                                236
```

Eş-zamanlamalı Saat Darbeli Ardışık Devreler

FIGURE 5.2

Synchronous clocked sequential circuit

RS Tipi Flip-Flop

- Flip-flopun hem S hem de R girişlerine 1 uygulanırsa, her iki çıkış da 0'a gider.
- Bu eylem, tanımlanmamış bir sonraki durum oluşturur, çünkü giriş geçişlerinden kaynaklanan durum, bunların 0'a dönme sırasına bağlıdır.
- Ayrıca çıktıların birbirinin tümleyeni olması şartını da ihlal eder.
- Normal çalışmada, bu durum, 1'lerin her iki girişe aynı anda uygulanmadığından önlenir.

(b) Graphic symbol

RS Flip-Flop Doğruluk Tablosu

Önceki Durum				Sonraki Durum
СР	Q(t)	S	R	Q(t+1)
1	0	0	0	0 (Durum Değiştirmez)
1	0	0	1	0
1	0	1	0	1
1	0	1	1	Tanımsız
1	1	0	0	1 (Durum Değiştirmez)
1	1	0	1	0
1	1	1	0	1
1	1	1	1	Tanımsız

Genel Tablo

Q(t): Önceki Durum, Q(t+1): Sonraki Durum

Q(t)	Q(t+1)	R	S
0	0	X	0
0	1	0	1
1	0	1	0
1	1	0	X

RS Flip-Flop Doğruluk Tablosu

Önceki Durum			Sonraki Durum	
СР	Q(t)	S	R	Q(t+1)
1	0	0	0	0 (Durum Değiştirmez)
1	0	0	1	0
1	0	1	0	1
1	0	1	1	Tanımsız
1	1	0	0	1 (Durum Değiştirmez)
1	1	0	1	0
1	1	1	0	1
1	1	1	1	Tanımsız

(d) Characteristic equation

D Tipi Flip-Flop

• D tipi flip-flop, RS tipi flip-flop'un girişlerinin değiştirilmesiyle elde edilir. D girişi doğrudan S girişine, R girişi ise S girişine bir invertor (tersleyici) ile bağlanarak D tipi flip-flop elde edilir.

D Tipi Flip-Flop

• D tipi flip-flop, RS tipi flip-flop'un girişlerinin değiştirilmesiyle elde edilir. D girişi doğrudan S girişine, R girişi ise S girişine bir invertor (tersleyici) ile bağlanarak D tipi flip-flop elde edilir.

(c) Characteristic table

(b) Graphic symbol

(d) Characteristic equation

D Tipi Flip-Flop Doğruluk Tablosu

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Genel Tablo

Q(t): Önceki Durum,

Q(t+1): Sonraki Durum ise

Q(t+1) = D

JK Tipi Flip-Flop

• JK tipi flip-flop'lar, RS tipi flip-flop'lardaki belirsizlik durumunu ortadan kaldırmak için tasarlanmıştır.

JK Tipi Flip-Flop

Q	J	K	Q(t+1)
0	0	0	0
	0	1	0
0 0 0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(c) Characteristic table

(d) Characteristic equation

(b) Graphic symbol

T (Trigger) Tipi Flip-Flop

(b) Graphic symbol

T (Trigger) Tipi Flip-Flop

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

(c) Characteristic table

(d) Characteristic equation

(b) Graphic symbol

Özetle;

RS Flip-Flop

Q	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	indeterminate

JK Flip-Flop

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

D Flip-Flop

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

T Flip-Flop

Q	Τ	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Kenar Tetiklemeli Flip-Flop'lar

- Flip-flop çıkışlarında herhangi bir hataya sebep vermemek için flip-flop'ların durum değiştirmeleri saat darbelerinin (clock pulse) uygulama zaman aralığı yerine saat darbelerinin
 - lojik «0» dan lojik «1» durumuna yükselme zamanlarında veya
 - lojik «1» den lojik «0» durumuna düşmeleri esnasında
- durum değiştirmelerini sağlamak amacıyla kenar tetiklemeli flip-flop'lar kullanılır.
- Bu sayede çıkış ile giriş arasındaki geri beslemeden dolayı meydana gelebilecek hatalı durum değiştirmeler ortadan kaldırılır.

FIGURE 5.11
Graphic symbol for edge-triggered *D* flip-flop

Kenar Tetiklemeli Flip-Flop'lar

FIGURE 5.8
Clock response in latch and flip-flop

Kenar Tetiklemeli Flip-Flop'lar

• Blok diyagram gösterimi için bir örnek:

FIGURE 5.11
Graphic symbol for edge-triggered *D* flip-flop

Kenar Tetiklemeli Flip-Flop'larda Sinyal Seviyeleri

Bir örnek;

Logic diagram of master-slave flip-flop

Timing relationships in a master-slave flip-flop

Kenar Tetiklemeli Flip-Flop'lar için bir örnek

CLOCK	Т	Q	Q'
+	0	1	0
+	1	0	0
+	0	1	0
ţ	1	0	1

Timing Diagram

Kenar Tetiklemeli Flip-Flop'lar için başka bir örnek

Kenar Tetiklemeli Flip-Flop'lar için başka bir örnek

Kenar Tetiklemeli Flip-Flop'lar için başka bir örnek

