Central Force Motion

The motion of a system consisting of two bodies in the presence of a Central Force.

- Angular momentum is conserved
- 2 body problem →2 masses m₁ & m₂: Need 6
 coordinates.
- Lagrangian for such a system

center of mass for a two particle system

$$R = \frac{1}{M} \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{r}_{\alpha} = \frac{m_{1} \mathbf{r}_{1} + m_{2} \mathbf{r}_{2}}{m_{1} + m_{2}}$$

The distance of the CM from m_1 and m_2 is in the ratio m_2/m_1 .

if $m_1 >> m_2$, then the CM will be very close to m_1 .

The Gravitation 2-Body Problem

Two bodies of mass m_1 and m_2 , at positions \mathbf{r}_1 and \mathbf{r}_2 . The potential energy is

$$U(\mathbf{r}_1,\mathbf{r}_2) = -\frac{Gm_1m_2}{|\mathbf{r}_1 - \mathbf{r}_2|}.$$

It depends only on the magnitude $\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ $U(\mathbf{r}_{1},\mathbf{r}_{2})=U(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|).$

a new variable, $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$, which is the position of body 1 relative to body 2. U = U(r).

The Gravitation 2-Body Problem

In terms of Lagrangian mechanics, we have for the two-body problem:

$$\mathcal{L} = T - U = \frac{1}{2} m_1 \dot{\mathbf{r}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{r}}_2^2 - U(r).$$

Write r_1 and r_2 in terms of the center of mass R.

$$\mathbf{r}_1 = \mathbf{R} + \frac{m_2}{M}\mathbf{r}$$
 and $\mathbf{r}_2 = \mathbf{R} - \frac{m_1}{M}\mathbf{r}$.

Reduced Mass

$$T = \frac{1}{2}M\dot{\mathbf{R}}^2 + \frac{1}{2}\mu\dot{\mathbf{r}}^2.$$

$$\mu$$
 for the **reduced mass**:
$$\mu = \frac{m_1 m_2}{m_1 + m_2}.$$

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}.$$

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$$

$$\mathcal{L} = T - U = \frac{1}{2}M\dot{\mathbf{R}}^2 + \left(\frac{1}{2}\mu\dot{\mathbf{r}}^2 - U(r)\right)$$
$$= \mathcal{L}_{CM} + \mathcal{L}_{rel}.$$

CM and relative cords \rightarrow generalized cords which split the problem into two parts.

Lagrangian for 2 body problem

$$L = L_{\rm CM} + L_{\rm rel}$$

Transformed the 2 body problem into <u>2 one body</u> <u>problems!</u>

1. Motion of the CM

$$L_{\rm CM} \equiv (1/2) M |R|^2$$

2. Relative Motion

$$L_{\rm rel} \equiv (1/2)\mu |r|^2 - U(r)$$

$$\frac{\text{Motion of CM}}{\text{Motion of CM}} \rightarrow L_{\text{CM}} \equiv (\frac{1}{2})M|R|^2$$

Assuming no external forces.

R = (X,Y,Z)
$$\Rightarrow$$
 3 Lagrange Eqns:
(d/dt)($\partial[L_{CM}]/\partial X$) - ($\partial[L_{CM}]/\partial X$) = 0
($\partial[L_{CM}]/\partial X$) = 0 \Rightarrow (d/dt)($\partial[L_{CM}]/\partial X$) = 0
 \ddot{X} = 0, CM acts like a free particle!

 \rightarrow Solution: $\dot{\mathbf{X}} = \mathbf{V}_{\mathbf{x}0} = \text{constant}$; Determined by initial conditions!

$$\Rightarrow$$
 X(t) = X₀ + V_{x0}t, exactly like a free particle!

Similar eqns for Y, Z:

$$\Rightarrow$$
 R(t) = R₀ + V₀t, exactly like a free particle!

<u>CM Motion → trivial motion of a free particle.</u>

The Equations of Motion

Lagrangian
$$\mathcal{L} = T - U = \frac{1}{2}M\dot{\mathbf{R}}^2 + \left(\frac{1}{2}\mu\dot{\mathbf{r}}^2 - U(r)\right)$$

What are The equations of motion?

The CM equation is:
$$M\ddot{\mathbf{R}} = 0$$
 or $\dot{\mathbf{R}} = \text{const.}$

The Lagrange equation for the relative position r

$$\mu \ddot{\mathbf{r}} = -\nabla U(r),$$

This is the equation of motion for a single free particle of mass μ (reduced mass) subject to potential energy U(r).

The CM Reference Frame

Since the velocity of the CM is constant, we can change to a frame moving with this constant velocity \rightarrow alternate inertial frame, $\dot{\mathbf{R}} = 0$.

In the CM frame, the Lagrangian is just

$$\mathcal{L} = \frac{1}{2} \mu \dot{\mathbf{r}}^2 - U(r)$$

and the problem is reduced to a one-body problem. Kind of pseudo-single body system.

Origin at CM, Path relative to CM

Relative Motion

Relative Motion is

$$L_{\rm rel} \equiv (1/2)\mu |\dot{\mathbf{r}}|^2 - \mathbf{U}(\mathbf{r})$$

- Assuming no external forces. And $L_{rel} \equiv L$
- origin of coordinates at CM: $\Rightarrow R = 0$

$$r_1 = (\mu/m_1)r;$$
 $r_2 = -(\mu/m_2)r$
 $\mu \equiv (m_1m_2)/(m_1+m_2)$
 $(\mu)^{-1} \equiv (m_1)^{-1} + (m_2)^{-1}$

The 2 body, central force problem has been reduced to an <u>EQUIVALENT ONE BODY PROBLEM</u> in which the motion of a "particle" of mass μ in U(r) is to be determined! Get r(t), \rightarrow get $r_1(t)$ & $r_2(t)$

- > System: "Particle" of mass μ ($\mu \rightarrow m$) moving in a force field described by potential U(r).
- ➤ Now, conservative Central Forces:

$$U \rightarrow V$$
 where $V = V(r)$

- V(r) depends only on $r = |r_1 r_2| = distance$ of particle from force center. No orientation dependence. \Rightarrow System has spherical symmetry
- Rotation about any fixed axis can't affect eqns of motion.
- The angle representing such a rotation be cyclic
- the corresponding generalized momentum (angular momentum) will be conserved.

Angular Momentum of the system?

Angular Momentum for a Single Particle

Law of conservation of angular momentum.

vector

The angular momentum \vec{l} of a single particle is defined as the $\vec{\ell} = \mathbf{r} \times \mathbf{p}$

particle's position vector r, relative to the chosen origin O, and its momentum p.

Angular Momentum of the system?

Spherical symmetry

The Angular Momentum of the system is conserved:

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = \text{constant (magnitude & direction!)}$

Angular momentum conservation!

r & p (the particle motion!) always <u>lie in a plane</u> ⊥ L, which is fixed in space.

The problem is reduced

from 3d to 2d

(particle motion in a plane)!

Motion in a Plane

3d motion in spherical coordinates (r,θ,ψ) .

 θ = angle in the plane (plane polar coordinates).

 ψ = azimuthal angle.

L *is fixed*, Choose the polar (z) axis along L.

 $\psi = (\frac{1}{2})\pi$ & drops out of the problem.

⇒ The motion is in a plane. Effectively reducing the 3d problem to a 2d.

Conservation of angular momentum L

- > Started with 6d, 2 body problem.
- ➤ Reduced it to 2, 3d 1 body problems, one (CM motion) of which is trivial.
- ➤ Angular momentum conservation reduces 2nd 3d problem (relative motion) from 3d to 2d (motion in a plane)!
- \triangleright Lagrangian ($\mu \rightarrow m$, conservative, central forces):

$$L = (\frac{1}{2})m|\dot{r}|^2 - V(r)$$

Motion in a plane

plane polar coordinates to do the problem:

$$L = (\frac{1}{2})m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

The Lagrangian is cyclic in θ

 \Rightarrow The generalized momentum p_{θ} is conserved:

$$p_{\theta} \equiv (\partial L/\partial \theta) = mr^2 \theta$$

Lagrange's Eqn: $(d/dt)[(\partial L/\partial \theta)] - (\partial L/\partial \theta) = 0$

- \Rightarrow $\dot{p}_{\theta} = 0$, $p_{\theta} = \text{constant} = mr^2\dot{\theta}$
- $p_{\theta} = mr^2\dot{\theta} = \text{angular momentum about an axis} \perp \text{the plane of motion. } Conservation of angular momentum!}$
- The problem symmetry has allowed to integrate one eqn of motion. $\mathbf{p}_{\theta} \equiv \text{a "1}^{\text{st}} \text{ Integral"}$ of motion.

Let us define: $\ell \equiv p_{\theta} \equiv mr^2\theta = \text{constant.}$ (interpretation!!)

The Lagrangian is cyclic in **0**

 \Rightarrow The generalized momentum p_{θ} is conserved:

$$p_{\theta} \equiv (\partial L/\partial \theta) = mr^2 \theta$$

Lagrange's Eqn: $(d/dt)[(\partial L/\partial \theta)] - (\partial L/\partial \theta) = 0$

- \Rightarrow $\dot{p}_{\theta} = 0$, $p_{\theta} = \text{constant} = mr^2\dot{\theta}$
- $p_{\theta} = mr^2\dot{\theta} = \text{angular momentum about an axis} \perp \text{the plane of motion. } Conservation of angular momentum!}$
- The problem symmetry has allowed to integrate one eqn of motion. $\mathbf{p}_{\theta} \equiv \text{a "1}^{\text{st}} \text{ Integral"}$ of motion.

Let us define: $\ell \equiv p_{\theta} \equiv mr^2\theta = \text{constant.}$ (interpretation!!)

Kepler's Second Law

Kepler's second law states that

As each planet moves around the Sun, a line drawn from the planet to the Sun sweeps out equal areas in equal times.

□ The two segments of the orbit that can be approximated as triangles (the approximation becomes exact in the limit as the width of the triangles goes to zero).

Kepler's Second Law

Kepler's second law states that

As each planet moves around the Sun, a line drawn from the planet to the Sun sweeps out equal areas in equal times.

- □ The two segments of the orbit that can be approximated as triangles (the approximation becomes exact in the limit as the width of the triangles goes to zero).
- Example 2 Kepler's 2^{nd} law is equivalent to saying that so long as the elapsed time dt for the planet to go from P to Q is the same as for it to go from P' to Q', then the areas of these two triangles must be equal. Equivalently, dA/dt = constant.

- two sides of a triangle are given by vectors \mathbf{a} and \mathbf{b} , then the area is $A = \frac{1}{2} |\mathbf{a} \times \mathbf{b}|$ (area = ½ base × height). Thus, the area of triangle OPQ is $dA = \frac{1}{2} |\mathbf{r} \times \mathbf{v} dt|$.
 - This can be rearranged to get: $\frac{dA}{dt} = \frac{1}{2m} |\mathbf{r} \times \mathbf{p}| = \frac{\ell}{2m}$ since the angular momentum $\ell = \text{constant}$ implies that Kepler's law holds.

$(dA/dt) = (1/2)(\ell/m) = constant!$

- ⇒ Areal velocity is constant in time!
- First derived empirically by Kepler for planetary motion.
 Conservation of areal velocity → General result for central forces!

Not limited to the gravitational force law (r-2).

$$L = (\frac{1}{2})m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

Remove θ from this equation.

$$L = (\frac{1}{2})m(\dot{r}^2 + r^2\theta^2) - V(r)$$

 $\ell \equiv \mathbf{mr^2\dot{\theta}} = \text{constant}$, the Lagrangian is:

$$L = (\frac{1}{2})m\dot{r}^2 + [\ell^2/(2mr^2)] - V(r)$$

Symmetry & the conservation of angular momentum has reduced the effective 2d problem (2 degrees of freedom) to an effective 1d problem!

1 degree of freedom, one generalized coordinate r!

Solve the problem using the above Lagrangian.?

Lagrange's Eqtn for r

In terms of $\ell \equiv mr^2\theta = const$, the Lagrangian is: $L = (\frac{1}{2})m\dot{r}^2 + [\frac{\ell^2}{(2mr^2)}] - V(r)$

> Lagrange's Eqtn for r:

```
(d/dt)[(\partial L/\partial r)] - (\partial L/\partial r) = 0
\Rightarrow \qquad m\ddot{r} - [\ell^2/(mr^3)] = - (\partial V/\partial r) \equiv f(r)
(f(r) \equiv \text{force along } r)
```

Energy Conservation.

Energy

➤ Total mechanical energy is also conserved since the central force is conservative:

E = T + V = constant
E =
$$(\frac{1}{2})m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r)$$

> angular momentum is:

$$\ell \equiv \mathbf{mr^2\theta} = \text{const}$$

 $\mathbf{\theta} = [\ell/(\mathbf{mr^2})]$

$$\Rightarrow$$
 E = (½)mr² + (½)[ℓ 2/(mr²)] + V(r) =const

Another "1st integral" of the motion

$r(t) & \theta(t)$

$$E = (\frac{1}{2})m\dot{r}^2 + [\frac{\ell^2}{(2mr^2)}] + V(r) = const$$

- Energy Conservation allows us to get solutions to the eqns of motion in terms of $\mathbf{r}(t)$ & $\mathbf{\theta}(t)$ and $\mathbf{r}(\mathbf{\theta})$ or $\mathbf{\theta}(\mathbf{r}) \equiv$ The orbit of the particle!
 - Eqn of motion to get r(t): One degree of freedom
 - ⇒ Very similar to a 1 d problem!
- \triangleright Solve for $\mathbf{r} = (\mathbf{dr}/\mathbf{dt})$:

$$\dot{r} = \pm (\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{1/2}$$

This gives **r**(**r**), the phase diagram for the relative coordinate & velocity.

Solve for dt & formally integrate to to get r(t).

Get $\theta(t)$ in terms of r(t) using conservation of angular momentum. Find $\theta(r)$.

Get $\theta(t)$ in terms of r(t) using conservation of angular momentum. Find $\theta(r)$.

$$(d\theta/dr) = \pm (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2}$$

Integrating this gives the eqn for the orbit

$$\theta(r) = \pm \int (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2} dr$$

- Once the central force is specified, we know V(r) & can, in principle, do the integral & get the orbit θ(r), or, (if this can be inverted!) r(θ).
- ⇒ Assuming only a central force law & nothing else:
 - We have reduced the original 6 d problem of 2 particles to a 2 d problem with only 1 degree of freedom. The solution for the orbit can be obtained simply by doing the above (1d) integral!