Exp. No.: 3 Map Reduce program to process a weather dataset

AIM:

To implement MapReduce program to process a weather dataset.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse. Login with your hadoop user.

Download the dataset (weather data)

Output:

Fl	subbu@subbu: ~/exp3						Q			×
GNU	U nano 6.2 dataset.txt									
23907	20150101	2.423	-98.08	30.62	2.2	-0.6	0.8	0.9	7.0	>
23907	20150102	2.423	-98.08	30.62	3.5	1.3	2.4	2.2	10.2	>
23907	20150103	2.423	-98.08	30.62	15.9	2.3	9.1	7.5	3.1	>
23907	20150104	2.423	-98.08	30.62	9.2	-1.3	3.9	4.2	0.0	>
23907	20150105	2.423	-98.08	30.62	10.9	-3.7	3.6	2.6	0.0	>
23907	20150106	2.423	-98.08	30.62	20.2	2.9	11.6	10.9	0.0	>
23907	20150107	2.423	-98.08	30.62	10.9	-3.4	3.8	4.5	0.0	>
23907	20150108	2.423	-98.08	30.62	0.6	-7.9	-3.6	-3.3	0.0	>
23907	20150109	2.423	-98.08	30.62	2.0	0.1	1.0	0.8	0.0	>
23907	20150110	2.423	-98.08	30.62	0.5	-2.0	-0.8	-0.6	3.9	>
23907	20150111	2.423	-98.08	30.62	10.9	0.0	5.4	4.4	2.6	>
23907	20150112	2.423	-98.08	30.62	6.5	1.4	4.0	4.3	0.0	>
23907	20150113	2.423	-98.08	30.62	3.0	-0.7	1.1	1.2	0.0	>
23907	20150114	2.423	-98.08	30.62	2.9	0.9	1.9	1.8	0.7	>
23907	20150115	2.423	-98.08	30.62	13.2	1.2	7.2	6.4	0.0	>
23907	20150116	2.423	-98.08	30.62	16.7	3.5	10.1	9.9	0.0	>
23907	20150117	2.423	-98.08	30.62	19.5	5.0	12.2	12.3	0.0	>
23907	20150118	2.423	-98.08	30.62	20.9	7.6	14.3	13.7	0.0	>
23907	20150119	2.423	-98.08	30.62	23.9	6.7	15.3	14.3	0.0	>
23907	20150120	2.423	-98.08	30.62	26.0	9.5	17.8	15.9	0.0	>

Step 2: Mapper Logic - mapper.py:

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

```
nano mapper.py
# Copy and paste the mapper.py code
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
# the mapper will get daily max temperature and group it by month, so output will be
(month,dailymax_temperature)
for line in sys.stdin:
  # remove leading and trailing whitespace
  line = line.strip()
                     # split
the line into words
                     words =
line.split()
  #See the README hosted on the weather website which help us understand how each
position represents a column month = line[10:12] daily_max = line[38:45]
= daily_max.strip()
  # increase counters
                        for
word in words:
     # write the results to STDOUT (standard output);
     # what we output here will be go through the shuffle proess and then
    # be the input for the Reduce step, i.e. the input for reducer.py
     # tab-delimited; month and daily max temperature as output
print ('%s\t%s' % (month ,daily_max))
```

Step 3: Reducer Logic - reducer.py:

Create a file named "reducer.py" to implement the logic for the reducer. The reducer will aggregate the occurrences of each word and generate the final output.

```
nano reducer.py
# Copy and paste the reducer.py code
```

reducer.py

#!/usr/bin/env python

from operator import itemgetter import sys

#reducer will get the input from stdid which will be a collection of key, value(Key=month, value=daily max temperature)

#reducer logic: will get all the daily max temperature for a month and find max temperature for the month

#shuffle will ensure that key are sorted(month)

```
current_month = None
current_max = 0 month =
None
# input comes from STDIN for
line in sys.stdin:
  # remove leading and trailing whitespace
                                             line
= line.strip()
  # parse the input we got from mapper.py
                                             month.
daily_max = line.split('\t', 1)
  # convert daily_max (currently a string) to float
                                                    try:
     daily_max = float(daily_max)
ValueError:
    # daily_max was not a number, so silently
    # ignore/discard this line
continue
  # this IF-switch only works because Hadoop shuffle process sorts map output
  # by key (here: month) before it is passed to the reducer
if current_month == month:
                                if daily_max > current_max:
current_max = daily_max
                            else:
                                      if current_month:
       # write result to STDOUT
       print ('%s\t%s' % (current_month, current_max))
current_max = daily_max
    current\_month = month
# output of the last month if current_month == month:
print ('%s\t%s' % (current_month, current_max))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

start-all.sh

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files.

chmod 777 mapper.py reducer.py

Step 7: Run the program using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the program using Hadoop Streaming.

hadoop fs -mkdir -p /weatherdata

hadoop fs -copyFromLocal /home/sx/Downloads/dataset.txt /weatherdata

hdfs dfs -ls /weatherdata

hadoop jar /home/sx/hadoop-3.2.3/share/hadoop/tools/lib/hadoop-streaming-3.2.3.jar \

- -input /weatherdata/dataset.txt \
- -output /weatherdata/output \
- -file "/home/sx/Downloads/mapper.py" \
- -mapper "python3 mapper.py" \
- -file "/home/sx/Downloads/reducer.py" \
- -reducer "python3 reducer.py"

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/outputfile.txt

Step 8: Check Output:

Check the output of the program in the specified HDFS output directory.

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/output/ /part-00000

```
subbu@subbu: ~/exp3
                                                             Q
demo_pig.pig
                       pig_1726811332057.log udf_example.pig
pig_1726806667729.log sample.txt
                                               uppercase_udf.py
subbu@subbu:~/exp4$ cd ...
subbu@subbu:~$ cd exp3
subbu@subbu:~/exp3$ ls
                               treaming-3.3.6.jar mapper.py reducer.py
cmd.txt dataset.txt
subbu@subbu:~/exp3$ dataset.txt
dataset.txt: command not found
subbu@subbu:~/exp3$ nano dataset.txt
subbu@subbu:~/exp3$ chmod 777 mapper.py reducer.py
subbu@subbu:~/exp3$ hdfs dfs -cat /exp3/output1/part-00000
01
02
        26.6
03
        29.1
04
        30.8
05
        31.1
06
        33.6
07
        38.5
08
        40.2
09
        36.5
10
        36.9
11
        27.6
12
        25.9
```

After copy and paste the above output in your local file give the below command to remove the directory from hdfs: hadoop fs -rm -r /weatherdata/output

Result:

Thus, the program for weather dataset using Map Reduce has been executed successfully.