MACHINE LEARNING LAB

01-09-2025

Name: DHRUV THAKUR	SRN:PES2UG223CS	Section
	175	C

Introduction

- Objective: build an end-to-end classification pipeline on the IBM HR
 Attrition dataset and compare a manual grid search with scikit-learn's
 GridSearchCV for selecting robust models.
- Primary evaluation uses ROC AUC for threshold-independent discrimination with Accuracy, Precision, Recall, and F1 as complementary measures to capture different error trade-offs.

Dataset

- IBM HR Analytics Employee Attrition & Performance is a widely used benchmark with employee demographics, job attributes, and outcomes, where "Attrition" is the binary target.
- The dataset is one-hot encoded for categorical variables and split using stratified sampling to maintain class proportions in train and test sets.

Methodology

Pipeline design: StandardScaler(with_mean=False) →
 VarianceThreshold → SelectKBest(f_classif) → Classifier; all steps

- are embedded within cross-validation to avoid leakage and ensure identical preprocessing across folds.
- Tuning strategy: both the manual implementation and GridSearchCV use StratifiedKFold(5) with scoring='roc_auc' so the search is comparable and driven by a ranking-sensitive metric.
- Parameter grids: Decision Tree (max_depth, min_samples_split, min_samples_leaf), k-NN (n_neighbors, weights, p), Logistic Regression (penalty, C, solver='liblinear'), and feature_selection_k is capped at the available features.

Implementation details

- Manual grid search enumerates all parameter combinations, fits the full pipeline inside each CV fold, aggregates mean ROC AUC, and refits the best configuration on the entire training set.
- GridSearchCV replicates the same pipeline and grid with parallel execution and standardized attributes (best_estimator_, best_params_, best_score_).

Results

- Individual models (test set): Decision Tree Acc 0.807, Prec 0.348, Rec 0.225, F1 0.273, ROC AUC 0.714; k-NN Acc 0.843, Prec 0.600, Rec 0.085, F1 0.148, ROC AUC 0.729; Logistic Regression Acc 0.878, Prec 0.698, Rec 0.423, F1 0.526, ROC AUC 0.822.
- Voting classifier (soft): Acc 0.867, Prec 0.875, Rec 0.197, F1 0.321, ROC AUC 0.803; probability averaging improves stability but does not outperform the best single model on ROC AUC.

Performance table

Model	Accuracy	Precision	Recall	F1	ROC AUC
Decision Tree	0.807	0.348	0.225	0.273	0.714

k-NN	0.843	0.600	0.085	0.148	0.729
Logistic Regression	0.878	0.698	0.423	0.526	0.822
Voting (soft)	0.867	0.875	0.197	0.321	0.803

Visualizations

- ROC curves (Manual and Built-in): plots indicate that Logistic Regression has the highest curve across most thresholds and the largest AUC, consistent with the tabulated metrics.
- Confusion matrices (Manual and Built-in): high true negatives with modest true positives demonstrate class imbalance effects and threshold sensitivity for minority attrition cases.

Analysis

- Manual and GridSearchCV runs match because both use identical preprocessing pipelines, splits, and scoring, which validates the manual implementation.
- Logistic Regression performs best by AUC, suggesting that after scaling and univariate selection, a linear decision boundary captures most separability; tree depth limits and k values affect recall for the other models.

Best model and rationale

- Best single model: Logistic Regression with SelectKBest, achieving the highest ROC AUC on the test set and balanced precision-recall trade-off relative to alternatives.
- The voting ensemble is competitive but does not exceed the linear model's separability, indicating averaging does not add new complementary signal under the current feature set.

Limitations and next steps

- Address class imbalance with class_weight='balanced' (Logistic Regression, Decision Tree) or resampling to improve recall on minority attrition events.
- Expand grids or switch to RandomizedSearchCV and try calibrated models or threshold tuning using ROC/PR analysis for business-aligned operating points.

Reproducibility

 Use fixed random_state and StratifiedKFold for deterministic splits, and keep transforms inside the Pipeline so every fold uses fitted scalers/selectors only on training data.