

planetmath.org

Math for the people, by the people.

orbit-stabilizer theorem

Canonical name OrbitstabilizerTheorem

Date of creation 2013-03-22 12:23:10 Last modified on 2013-03-22 12:23:10

Owner yark (2760) Last modified by yark (2760)

Numerical id 22

Author yark (2760) Entry type Theorem Classification msc 20M30 Suppose that G is a group http://planetmath.org/GroupActionacting on a set X. For each $x \in X$, let Gx be the orbit of x, let G_x be the stabilizer of x, and let \mathcal{L}_x be the set of left cosets of G_x . Then for each $x \in X$ the function $f: Gx \to \mathcal{L}_x$ defined by $gx \mapsto gG_x$ is a bijection. In particular,

$$|Gx| = [G:G_x]$$

and

$$|Gx| \cdot |G_x| = |G|$$

for all $x \in X$.

Proof:

If $y \in Gx$ is such that $y = g_1x = g_2x$ for some $g_1, g_2 \in G$, then we have $g_2^{-1}g_1x = g_2^{-1}g_2x = 1x = x$, and so $g_2^{-1}g_1 \in G_x$, and therefore $g_1G_x = g_2G_x$. This shows that f is well-defined.

It is clear that f is surjective. If $gG_x = g'G_x$, then g = g'h for some $h \in G_x$, and so gx = (g'h)x = g'(hx) = g'x. Thus f is also injective.