Assignment 2 Solutions

Problem 1

Let R be a row-reduced echelon matrix which is row equivalent to A. Then the systems AX=0 and RX=0 have the same solutions from the following Lemma.

<u>Lemma</u>: If A and B are row-equivalent $m \times n$ matrices, the homogeneous systems of linear equations AX = 0 and BX = 0 have exactly the same solutions.

Now, if r is the number of non-zero rows in R, then certainly $r \leq m$, and since m < n, we have r < n. Thus, AX = 0 has a non-trivial solution.

Problem 2

We have to prove the if and the only if parts seprarately.

• Proof of if A is row equivalent to I_n then AX=0 has only the trivial solution: If A is row equivalent to I_n then, A is invertible which implies that A only has the trivial solution.

$$AX = 0 \implies A^{-1}AX = 0 \implies IX = 0 \implies X = 0$$

• Proof of if AX=0 has only the trivial solution, then A is row equivalent to I_n : Let $R_{n\times n}$ be a row-reduced echelon matrix which is row equivalent to A. Then $AX=0\iff RX=0\implies RX=0$ has only the trivial solution.

Thus, $r \geq n$ where r is the number of non-zero rows in R. But, given there are only n rows in the matrix, we have r=n.

Thus, $R = I_n$ and A is row equivalent to I_n .

Problem 3

Let
$$\mathbf{A}=[a]_{mn}, \mathbf{B}=[b]_{np}, \mathbf{C}=[c]_{pq}$$
 be matrices.

From inspection of the subscripts, we can see that both $(\mathbf{AB})\mathbf{C}$ and $\mathbf{A}(\mathbf{BC})$ are defined such that \mathbf{A} has n columns and \mathbf{B} has n rows, while \mathbf{B} has p columns and \mathbf{C} has p rows.

1

Consider
$$(\mathbf{AB})\mathbf{C}$$
. Let $\mathbf{R}=[r]_{mp}=\mathbf{AB}, \ \mathbf{S}=[s]_{mq}=\mathbf{A}(\mathbf{BC})$.

Assignment 2 Solutions

Then we have the following:

$$egin{aligned} s_{ij} &=& \sum_{k=1}^p r_{ik} \circ c_{kj} \ & r_{ik} &=& \sum_{l=1}^n a_{il} \circ b_{lk} \ &
ightsquigarrow s_{ij} &=& \sum_{k=1}^p \left(\sum_{l=1}^n a_{il} \circ b_{lk}
ight) \circ c_{kj} \ & =& \sum_{k=1}^p \sum_{l=1}^n \left(a_{il} \circ b_{lk}
ight) \circ c_{kj} \end{aligned}$$

Now consider ${f A}({f B}{f C})$. Let ${f R}=[r]_{nq}={f B}{f C},\ \ {f S}=[s]_{mq}={f A}({f B}{f C})$.

Then we have the following:

$$egin{aligned} s_{ij} &=& \sum_{l=1}^n a_{il} \circ r_{lj} \ & r_{lj} &=& \sum_{k=1}^p b_{lk} \circ c_{kj} \ &
ightharpoonup &=& \sum_{l=1}^n a_{il} \circ \left(\sum_{k=1}^p b_{lk} \circ c_{kj}
ight) \ &=& \sum_{l=1}^n \sum_{k=1}^p a_{il} \circ (b_{lk} \circ c_{kj}) \end{aligned}$$

Using associativity of product we finally have the following:

$$s_{ij} = \sum_{k=1}^p \sum_{l=1}^n (a_{il} \circ b_{lk}) \circ c_{kj} = \sum_{l=1}^n \sum_{k=1}^p a_{il} \circ (b_{lk} \circ c_{kj}) = s'_{ij}$$

Assignment 2 Solutions

Thus, it is concluded that (AB)C = A(BC).

Problem 4

The three types of elementary row operations should be taken up separately for the proof.

· Operation I

$$E_{ik} = egin{cases} \delta_{ik}, \ i
eq r \ \delta_{rk} + c\delta_{sk}, \ i = r \end{cases} \ (EA)_{ij} = \sum_{k=1}^m E_{ik} A_{kj} = egin{cases} A_{ij}, \ i
eq r \ A_{rj} + cA_{sj}, \ i = r \end{cases} = e(A)_{ij} \ \end{cases}$$

Operation II

$$E_{ik} = egin{cases} \delta_{ik}, \ i
eq r \ c\delta_{rk}, \ i = r \end{cases} \ (EA)_{ij} = \sum_{k=1}^m E_{ik} A_{kj} = egin{cases} A_{ij}, \ i
eq r \ cA_{rj}, \ i = r \end{cases} = e(A)_{ij}$$

Operation III

$$E_{ik} = egin{cases} \delta_{ik}, \ i
eq r, \ i
eq s \ \delta_{rk}, \ i = s \ \delta_{sk}, \ i = r \end{cases}$$

$$(EA)_{ij} = \sum_{k=1}^m E_{ik} A_{kj} = egin{cases} A_{ij}, \ i
eq r, \ i
eq s \ A_{rj}, \ i = s \ A_{sj}, \ i = r \end{cases} = e(A)_{ij}$$

Thus, e(A)=EA.