1 Exercici

Resumeix graficament el data set DelayedFlights.csv Airlines Delay: Airline on-time statistics and delay causes (https://www.kaggle.com/giovamata/airlinedelaycauses)

```
In [1]: import os
        {\color{red}\textbf{import}} \  \, \text{pandas} \  \, {\color{red}\textbf{as}} \  \, \text{pd}
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        import joypy
        import warnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
        executed in 3.70s, finished 12:45:11 2021-04-26
In [2]: #importem el dataset
        pd.options.display.max_columns = None
        datasets_path = r"D:\Oscar\FORMACIO\DIGITAL\DATA SCIENCE with Python\Datasets" + os.sep
        file = datasets_path + "DelayedFlights.csv"
        dataset = pd.read_csv(file, sep=',', encoding='utf8', index_col=0)
        #generem un nou dataframe amb les dades que utilitzarem per la pràctica
        dataset.rename(columns=rename, inplace=True)
        cols = ['AEROLÍNIA', 'RETARD ARRIBADA', 'RETARD SORTIDA', 'DURACIÓ DEL VOL', "Year", "Month", "DayofMonth"]
        df = dataset[cols].copy()
        del dataset
        #eliminem els nulls
        df.dropna(subset=["RETARD ARRIBADA"], how='any', inplace=True)
        #convertim a float32 les columnes numèriques
        cols.remove('AEROLÍNIA')
        dtype = ["int32"] * len(cols)
        dic = dict(zip(cols, dtype))
        df = df.astype(dic)
        #importem l'arxiu d'aerolínies com una series
        file = datasets_path + "DelayedFlights-carriers.csv"
        ap_s = pd.read_csv(file, sep=',', encoding='utf8', index_col=0, squeeze=True)
        ap_s.sample(3)
        #subsituïm la columna del codi pel seu nom a partir de la taula
        #creem la nova columna mapejant la series
        df["AEROLÍNIA"] = df["AEROLÍNIA"].map(ap_s)
        del ap_s
        #treiem l'explicació entre parèntesi d'una aerolínia que ens allarga molt el titol
        df["AEROLÍNIA"] = df["AEROLÍNIA"].apply(lambda x: re.sub(r' +\(.*\)', '', x))
        df.sample(3)
        executed in 17.9s, finished 12:45:29 2021-04-26
Out[2]:
```

	AEROLINIA	RETARD ARRIBADA	RETARD SORTIDA	DURACIO DEL VOL	Year	Month	DayofMonth
4142288	American Airlines Inc.	15	22	167	2008	7	7
296957	Southwest Airlines Co.	88	96	256	2008	1	1
3676433	Southwest Airlines Co.	23	38	122	2008	7	24

```
In [5]: #treiem dates màxima i mínima del dataframe per agregar-li una informació al títol
    des_s = df.sort_values(by=["Year", "Month", "DayofMonth"]).iloc[0]
    fins_s = df.sort_values(by=["Year", "Month", "DayofMonth"]).iloc[-1]

b = "/"
    des = str(des_s.DayofMonth) + b + str(des_s.Month) + b + str(des_s.Year)
    fins = str(fins_s.DayofMonth) + b + str(fins_s.Month) + b + str(fins_s.Year)
    titol_info = " Dades des del {0} fins al {1}".format(des, fins)
    executed in 1.24s, finished 12:45:30 2021-04-26
```

1.1 Visualització de Una variable categòrica (UniqueCarrier)

```
In [6]: #visualitzem utilitzant seaborn el nombre de vols per aerolínia
    titol = "Nombre de vols per aerolínia"
    plt.figure(figsize = (9, 9))
    axis = sns.countplot(y="AEROLÍNIA", data=df, order=df['AEROLÍNIA'].value_counts().index)
    plt.yticks(rotation=10)
    plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
    plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
    plt.ylabel('Aerolínies')
    plt.xlabel('Nombre de vols')
    desa_figura(plt, titol)
    plt.show()

    executed in 2.84s, finished 12:45:33 2021-04-26
```


Dades des del 1/1/2008 fins al 31/12/2008

Gràfic de porcions del nombre de vols per aerolínia

Dades des del 1/1/2008 fins al 31/12/2008

```
In [8]: #funció per arrodonir al multiple de 10 més proper (cap amunt: direccio = "sup"; cap avall: direccio = "inf")
         #la creem per establir els ticks dels eixos al múltiple de 10 més proper als quantils q1 i q2 establerts
         def round10(x, direccio):
             if x % 10 == 0: return int(x)
             x = int(x)
             if x == 0: return 0
             last_digit = int(str(x)[-1])
             if x < 0:
                  if direccio == "sup": return (x + last_digit)
elif direccio == "inf": return (x - 10 + last_digit)
              elif x > 0:
                  if direccio == "sup": return (x + 10 - last_digit)
elif direccio == "inf": return (x - last_digit)
         #creem una funció que donada una series i el porcentatge dels quantils ens retornarà un rang dels valors temporals
         #de la series pasada per fer visualitzacions selectives dels rangs significatius (arrodonirem aquests valors a desenes)
         def genera_rang_arrodonit(series, qmin, qmax):
              qmax /= 100
              values = series.values
              vmin, vmax = np.quantile(values, qmin), np.quantile(values, qmax)
             vmin = round10(vmin, "inf")
vmax = round10(vmax, "sup")
             return vmin, vmax
         executed in 24ms, finished 12:45:35 2021-04-26
```

```
In [15]: data = df["RETARD ARRIBADA"].value_counts()
            titol = "Recompte de vols en funció del retard d'arribada."
            #dibuixarem la gràfica entre els els quantils que van del 5 al 60% (arrodonits a desenes)
            xmin, xmax = genera_rang_arrodonit(data.index, 1, 60)
            plt.figure(figsize =(14, 10))
            \verb|sns.lineplot(x=data.index, y=data.values, color="r")|\\
            plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
            plt.xlabel('Retard (minuts)')
plt.ylabel('Nombre de vols')
            plt.vlines(x=0, ymin=0, ymax=data[0], colors="blue", linestyles="dotted")
plt.hlines(y=data[0], xmin=xmin, xmax=0, colors="blue", linestyles="dotted")
            plt.annotate(text="{} vols en hora exacta".format(data[0]), xy=(0, data[0]),
                            xytext=(40 , data[0] + 225),
                            arrowprops=dict(facecolor='blue', headwidth=4, width=1, headlength=4), horizontalalignment='left', verticalalignment='top')
            plt.xlim(xmin, xmax)
            plt.ylim(0, data.values.max()+50)
            plt.xticks(np.arange(xmin, xmax, step=20))
            desa_figura(plt, titol)
            plt.show()
            executed in 1.61s, finished 12:48:19 2021-04-26
```

Recompte de vols en funció del retard d'arribada.

30000 - 27040 vols en hora exacta

25000 - 10000 -

```
In [10]: #podríem discretitzar aquesta variable fent intervals significatius per nosaltres dels temps de retard
         #per visualitzar el grafic de porcions de retards. (El considerem enraderit quan arriba més tard de 10 min de l'hora prevista) data = df['RETARD ARRIBADA'].values
          titol = "Pastís de porcentatges de vols en funció del retard d'arribada"
          def m(temps):
              hores = temps[0]
              minuts = temps[1]
return hores*60 + minuts + 1
          bins = [data.min(), -10, m([0,10]), m([0,20]), m([1,0]), m([1,30]), m([2,0]), m([4,0]), data.max()+1]
          #amb la funció histogram de numpy podem veure els valors del conteig dels blocs categoritzats
          histograma = np.histogram(data, bins=bins)
          recompte = histograma[0]
          plt.figure(figsize =(7, 7))
          plt.pie(recompte, labels=retard_lbl, startangle=0, shadow = True, pctdistance=.8, labeldistance=1.04,
                  rotatelabels=False, radius=1.5, autopct='%1.0f%%')
          plt.title(titol, fontsize=20, color='#6146C6', alpha=0.7, loc="center", pad=70) plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
          desa_figura(plt, titol)
          plt.show()
          executed in 1.08s, finished 12:45:41 2021-04-26
```

Pastís de porcentatges de vols en funció del retard d'arribada

Dades des del 1/1/2008 fins al 31/12/2008

```
In [16]: #Podem dibuixar el Violinplot de densitats de retards d'arribada
           data = df['RETARD ARRIBADA']
           titol = "Violinplot del retard d'arribada"
           ymin, ymax = genera_rang_arrodonit(data, 0, 99.5)
           plt.figure(figsize=(7, 8))
           axes = sns.violinplot(y=data)
           plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
           plt.ylabel('Retard (minuts)')
           plt.xlabel('Densitat de vols')
           #dibuixem els quantils q25, q50, q75 (vermells) i promig (groc)
           quantils = list(np.quantile(data.values, [.25,.5,.75]))
           quantils.append(data.values.mean())
           colors = ["r", "r", "r", "y"]
           plt.hlines(y=quantils, xmin=-.5, xmax=.5, colors=colors, linestyles="dotted")
text = ["q25", "q50", "q75", "mean"]
for i in range(len(text)):
               plt.annotate(text=text[i], xy=(-.5 , quantils[i]), horizontalalignment='left', verticalalignment='bottom')
           plt.ylim(ymin, ymax)
           desa_figura(plt, titol)
           plt.show()
           executed in 16.1s, finished 12:50:25 2021-04-26
```


Dades des del 1/1/2008 fins al 31/12/2008

```
In [17]: #podem comprobar que els valors s'ajusten als dels gràfics round(df["RETARD ARRIBADA"].describe(),1)

executed in 95ms, finished 12:50:36 2021-04-26

Out[17]: count 1928371.0
```

```
Out[17]: count 1928371.0
mean 42.2
std 56.8
min -109.0
25% 9.0
50% 24.0
75% 56.0
max 2461.0
Name: RETARD ARRIBADA, dtype: float64
```

1.3 Visualització d'una variable numèrica i una categòrica (ArrDelay i UniqueCarrier)

```
In [18]: data = df[['AEROLÍNIA', 'RETARD ARRIBADA']]
    titol = "Boxplots dels retards d'arribada per aerolínia"
    #establim el rang de visualització entre els quantils que van del 0 al 97% (Arrodonint a desenes)
    ymin, ymax = genera_rang_arrodonit(data["RETARD ARRIBADA"], 0, 97)

plt.figure(figsize =(14, 10))
    sns.boxplot(x=data["AEROLÍNIA"], y=data["RETARD ARRIBADA"])
    plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
    plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
    plt.xlabel("Aerolínia")
    plt.ylabel("Retard d'arribada (minuts)")
    plt.xticks(rotation='vertical')
    plt.ylim(ymin, ymax)

desa_figura(plt, titol)
    plt.show()
    executed in 3.84s, finished 12:50:55 2021-04-26
```



```
In [26]: #podriem visualitzar els valors significatius dels quantils i promig
def q25(x):
    return np.quantile(x, .25)
def q50(x):
    return np.quantile(x, .5)
def q75(x):
    return np.quantile(x, .75)

data = df[['AEROLÍNIA', 'RETARD ARRIBADA']]
    agr = {'RETARD ARRIBADA': [q25, q50, q75, "mean"]}
    data = data.groupby("AEROLÍNIA", as_index=False).agg(agr).round(2)
    data.columns = data.columns.droplevel(level=0)
    data.rename(columns={"": "AEROLÍNIA"}, inplace=True)
    data
    executed in 825ms, finished 12:56:31 2021-04-26
```

Out[26]:

	AEROLÍNIA	q25	q50	q75	mean
0	AirTran Airways Corporation	10	25	57.00	43.68
1	Alaska Airlines Inc.	8	22	46.00	36.06
2	Aloha Airlines Inc.	6	13	27.25	21.26
3	American Airlines Inc.	11	29	63.00	46.56
4	American Eagle Airlines Inc.	11	28	60.00	45.30
5	Atlantic Southeast Airlines	11	28	63.00	47.55
6	Comair Inc.	14	33	68.00	51.02
7	Continental Air Lines Inc.	5	21	55.00	40.57
8	Delta Air Lines Inc.	9	23	51.00	39.88
9	Expressjet Airlines Inc.	11	30	68.00	50.18
10	Frontier Airlines Inc.	8	17	34.00	27.94
11	Hawaiian Airlines Inc.	9	18	34.00	34.21
12	JetBlue Airways	10	33	76.00	55.09
13	Mesa Airlines Inc.	15	34	75.00	55.29
14	Northwest Airlines Inc.	12	27	54.00	43.91
15	Pinnacle Airlines Inc.	11	28	63.00	46.94
16	Skywest Airlines Inc.	10	27	63.00	45.37
17	Southwest Airlines Co.	5	17	39.00	30.09
18	US Airways Inc.	6	21	49.00	36.45
19	United Air Lines Inc.	10	29	67.00	47.78

1.4 Visualització de dues variables numèriques (ArrDelay i DepDelay)

```
In [30]: data = df[["RETARD SORTIDA", "RETARD ARRIBADA"]]
    titol = "Scatterplot entre retards d'arribada i sortida"

#fem L'scatterplot entre Les dues columnes
plt.figure(figsize = (14, 10))
    axes = sns.relplot(data=data, x="RETARD SORTIDA", y="RETARD ARRIBADA", kind="scatter")
    plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
    plt.show()
    executed in 5.99s, finished 13:06:43 2021-04-26
```

<Figure size 1008x720 with 0 Axes>

Scatterplot entre retards d'arribada i sortida


```
In [31]: #podem observar que te una forta relació Lineal entre Les variables
#fem Lineplot amb la Linea de regressió entre les dues columnes
titol = "Scatterplot amb recta de regressió entre retards d'arribada i sortida"
sns.lmplot(data=data, x="RETARD SORTIDA", y="RETARD ARRIBADA", fit_reg=True, line_kws=dict(color="red"))
plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
plt.show()

executed in 6m 24s, finished 13:13:07 2021-04-26
```

Scatterplot amb recta de regressió entre retards d'arribada i sortida


```
In [32]: #com a curiositat podriem calcular nosaltres la recta de regressió lineal teient el model d'sklearn
          #i dibuixarla sobre un scatterplot per obtenir la mateixa sortida que hem obtingut amb seaborn.
          from sklearn.linear_model import LinearRegression
          rtd sortida = df["RETARD SORTIDA"].values
          rtd arribada = df["RETARD ARRIBADA"].values
          rtd_sortida = rtd_sortida.reshape(-1, 1)
          model = LinearRegression()
          model.fit(rtd_sortida, rtd_arribada)
beta_0_f = float(model.intercept_)
          beta_1_f = float(model.coef_)
          del rtd sortida, rtd arribada
          titol = "Scatterplot amb recta de regressió generada amb model sklearn entre retards d'arribada i sortida"
          def f(x):
              return beta_0_f + beta_1_f * x
          x_samples_1 = [0, int(df["RETARD SORTIDA"].max())]
          plt.figure(figsize =(13, 8))
          plt.plot(x_samples_1, [f(i) for i in x_samples_1], c="blue")
          plt.scatter(df["RETARD SORTIDA"].values, df["RETARD ARRIBADA"].values, c="red")
          plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
          plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
          plt.xlabel("Retard de sortida (minuts)")
          plt.ylabel("Retard d'arribada (minuts)")
plt.xlim(0, df["RETARD SORTIDA"].max())
          plt.ylim(0, f(df["RETARD SORTIDA"].max()))
          desa_figura(plt, titol)
          plt.show()
          executed in 15.6s, finished 13:13:23 2021-04-26
```

Scatterplot amb recta de regressió generada amb model sklearn entre retards d'arribada i sortida

Dades des del 1/1/2008 fins al 31/12/2008

```
In [33]: #podem calcular el coeficient de correlació on observem, com es veu a simple vista, que el retard d'arribada està fortament #relacionat amb el de la sortida. Fent-la fácilment predible np.corrcoef([df["RETARD SORTIDA"],df["RETARD ARRIBADA"]])[0,1]

executed in 98ms, finished 13:13:23 2021-04-26
```

Out[33]: 0.9529266852026792

```
In [34]: #també que la pendent de la recta es gairebé 1, i l'offset de -1 minut (molt petit), amb el que podríem concloure #que el retard en les arribades gairebé amb la seva totalitat degut al de les sortides.

print("pendent:", beta_1_f, "/ offset:", beta_0_f)

executed in 11ms, finished 13:13:24 2021-04-26
```

pendent: 1.0158763368329562 / offset: -1.5759463952356754

1.5 Visualització de tres variables (ArrDelay, DepDelay i UniqueCarrier)

```
In [35]: #dibuixem en boxplots els retards de sortida i arribada agrupats per aerolínia
r_sort_df = df[['AEROLÍNIA', 'RETARD SORTIDA']].copy()
r_sort_df.rename(columns={'RETARD SORTIDA': 'RETARD'}, inplace = True)
              r_sort_df['TIPUS'] = "Retard SortIDA': 'RETARD'}, inplace = True)
r_sort_df['TIPUS'] = "Retard Sortida"
r_arr_df = df[['AEROLÍNIA', 'RETARD ARRIBADA']].copy()
r_arr_df.rename(columns={'RETARD ARRIBADA': 'RETARD'}, inplace = True)
r_arr_df['TIPUS'] = "Retard Arribada"
              data = pd.concat([r_sort_df, r_arr_df])
              del r_sort_df, r_arr_df
              titol = "Boxplots dels retards de sortida i arribada per aerolínia"
              #establim els limits de visualització
              ymin, ymax = genera_rang_arrodonit(data["RETARD"], 5, 90)
              plt.figure(figsize =(14, 10))
               sns.boxplot(x=data["AEROLÍNIA"], y=data["RETARD"], hue=data["TIPUS"], )
              plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
plt.xlabel("Aerolinia")
              plt.ylabel("Retard (minuts)")
              plt.xticks(rotation='vertical')
              plt.legend(loc='upper right')
              plt.ylim(ymin, ymax)
              desa_figura(plt, titol)
              plt.show()
               executed in 11.3s, finished 13:21:15 2021-04-26
```



```
In [36]: #podriem visualitzar els valors significatius dels quantils i promig pels dos retards, per aerolínia
data = df[['AEROLÍNIA', 'RETARD SORTIDA', 'RETARD ARRIBADA']]
agr = {'RETARD ARRIBADA': [q25, q50, q75, "mean"], 'RETARD SORTIDA': [q25, q50, q75, "mean"],}
data = data.groupby("AEROLÍNIA", as_index=False).agg(agr).round(2)
data.set_index("AEROLÍNIA", inplace=True)
data
executed in 3.44s, finished 13:21:18 2021-04-26
```

Out[36]:

	RETARD ARRIBADA			RETARD SORTIDA				
	q25	q50	q75	mean	q25	q50	q75	mean
AEROLÍNIA								
AirTran Airways Corporation	10	25	57.00	43.68	12	23	51	42.49
Alaska Airlines Inc.	8	22	46.00	36.06	11	21	45	37.98
Aloha Airlines Inc.	6	13	27.25	21.26	9	15	29	26.02
American Airlines Inc.	11	29	63.00	46.56	13	28	59	46.40
American Eagle Airlines Inc.	11	28	60.00	45.30	13	26	54	43.60
Atlantic Southeast Airlines	11	28	63.00	47.55	13	28	61	48.26
Comair Inc.	14	33	68.00	51.02	15	30	60	48.91
Continental Air Lines Inc.	5	21	55.00	40.57	11	22	52	43.06
Delta Air Lines Inc.	9	23	51.00	39.88	11	21	44	39.01
Expressjet Airlines Inc.	11	30	68.00	50.18	13	28	64	49.96
Frontier Airlines Inc.	8	17	34.00	27.94	10	16	30	27.67
Hawaiian Airlines Inc.	9	18	34.00	34.21	9	16	32	33.06
JetBlue Airways	10	33	76.00	55.09	14	31	70	54.94
Mesa Airlines Inc.	15	34	75.00	55.29	15	33	75	55.35
Northwest Airlines Inc.	12	27	54.00	43.91	12	22	47	41.26
Pinnacle Airlines Inc.	11	28	63.00	46.94	13	27	61	47.35
Skywest Airlines Inc.	10	27	63.00	45.37	12	25	60	44.70
Southwest Airlines Co.	5	17	39.00	30.09	11	20	42	34.59
US Airways Inc.	6	21	49.00	36.45	11	21	47	38.76
United Air Lines Inc.	10	29	67.00	47.78	13	29	65	49.90

```
In [60]: #podem dibuixar una ridgeline amb la corva de densitat de retards d'arribada i sortida per cadascuna de les aerolínies
          data = df[['AEROLÍNIA', 'RETARD SORTIDA', 'RETARD ARRIBADA']]
          titol = "Densitats de probabilitat de retards de sortida i arribada per aerolínia"
          #calculem rang de l'eix x per visualitzar la part interesada (sense els outliers que queden fora de la nostra consideració)
#establim el rang de visualització entre els quantils que van de l'1 al 97%
          qmin, qmax = 1, 97
          xmin1, xmax1 = genera_rang_arrodonit(data["RETARD SORTIDA"], qmin, qmax)
          xmin2, xmax2 = genera_rang_arrodonit(data["RETARD ARRIBADA"], qmin, qmax)
          xmin, xmax = min([xmin1, xmin2]), max([xmax1, xmax2])
          fig, axes = joypy.joyplot(data=data, column=['RETARD SORTIDA', 'RETARD ARRIBADA'], by="AEROLÍNIA",
                                       ylim='own', figsize=(10, 15), legend=True, color=['blue', 'orange'], alpha=0.7)
          plt.rc("font", size=12)
          plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
          plt.xlabel("Temps de retards (m)", fontsize=16)
          #Establim els limits de visualització i els ticks al gràfic (cada aerolínia és un axes i l'eix x n'és un altre) for i in range(len(df["AEROLÍNIA"].unique())+1):
              axes[i].set_xlim(xmin, xmax)
          axes[-1].set_xticks(range(xmin, xmax, 20))
          desa_figura(plt, titol)
          plt.show()
```


executed in 5m 26s, finished 14:33:50 2021-04-26


```
In [41]: #podriem dibuixar l'scatterplot de retards per aerolínia, però com hi ha moltes aerolínies i vols no és una bona solució pa 
#no ho visualitzem amb claredat, excepte els outliers
data = df[['AEROLÍNIA', 'RETARD SORTIDA', 'RETARD ARRIBADA']]
titol = "Scatterplot de relacions entre els retards, per aerolínia"
sns.relplot(data=data, x="RETARD SORTIDA", y="RETARD ARRIBADA", hue="AEROLÍNIA")
plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8, pad=50)
plt.show()
executed in 2m 59s, finished 13:49:58 2021-04-26
```

Scatterplot de relacions entre els retards, per aerolínia

1.6 Visualització de més de tres variables (ArrDelay, DepDelay, AirTime i UniqueCarrier)

```
In [42]: #com les tres variables son temporals, podriem dibuixar l'agrupació de boxplot per les tres alhora
               r_sort_df = df[['AEROLÍNIA', 'RETARD SORTIDA']].copy()
r_sort_df.rename(columns={'RETARD SORTIDA': 'MINUTS'}, inplace = True)
              r_sort_dt.rename(columns={'RETARD SORTIDA': 'MINUTS'}, inplace = True)
r_sort_df['ITPUS'] = "Retard Sortida"
r_arr_df = df[['AEROLÍNIA', 'RETARD ARRIBADA']].copy()
r_arr_df.rename(columns={'RETARD ARRIBADA': 'MINUTS'}, inplace = True)
r_arr_df['ITPUS'] = "Retard Arribada"
duracio_df = df[['AEROLÍNIA', 'DURACIÓ DEL VOL']].copy()
duracio_df.rename(columns={'DURACIÓ DEL VOL': 'MINUTS'}, inplace = True)
duracio_df['ITPUS'] = "Duració del vol"
               data = pd.concat([r_sort_df, r_arr_df, duracio_df])
del r_sort_df, r_arr_df, duracio_df
               titol = "Boxplots dels retards de sortida, arribada i duració de vol per aerolínia"
               #establim els limits de visualització
               ymin, ymax = genera_rang_arrodonit(data["MINUTS"], 5, 99)
               plt.figure(figsize =(14, 10))
               sns.boxplot(x=data["AEROLÍNIA"], y=data["MINUTS"], hue=data["TIPUS"], )
               plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
plt.figtext(1, 0, titol_info, fontsize=10, ha='center')
               plt.xlabel("Aerolinia")
               plt.ylabel("Temps (minuts)")
               plt.xticks(rotation='vertical')
               plt.legend(loc='upper right')
               plt.ylim(ymin, ymax)
               desa_figura(plt, titol)
               plt.show()
               executed in 14.6s, finished 13:50:12 2021-04-26
```


In [43]: #no se si es tractarà d'errors en les dades però de l'observació als boxplots podem observar que hi ha vols #de duracions molt curtes, inclús de 0 minuts.. (??) df[df['DURACIÓ DEL VOL'] < 3]

executed in 42ms, finished 13:50:13 2021-04-26

Out[43]:

	AEROLÍNIA	RETARD ARRIBADA	RETARD SORTIDA	DURACIÓ DEL VOL	Year	Month	DayofMonth
172574	Skywest Airlines Inc.	24	26	1	2008	1	3
175925	Skywest Airlines Inc.	85	87	2	2008	1	5
175926	Skywest Airlines Inc.	61	64	2	2008	1	5
175929	Skywest Airlines Inc.	139	141	1	2008	1	5
175935	Skywest Airlines Inc.	118	98	0	2008	1	5
177448	Skywest Airlines Inc.	104	67	0	2008	1	6
182328	Skywest Airlines Inc.	112	104	2	2008	1	9
612019	Southwest Airlines Co.	16	24	2	2008	2	4
782963	Skywest Airlines Inc.	183	177	0	2008	2	12
1047958	Pinnacle Airlines Inc.	60	130	2	2008	2	3
1277190	Expressjet Airlines Inc.	24	10	0	2008	3	31
1374982	Skywest Airlines Inc.	97	108	0	2008	3	18
1940166	Comair Inc.	-5	10	1	2008	4	4
1975668	Skywest Airlines Inc.	92	100	1	2008	4	25
2588815	Skywest Airlines Inc.	3	19	1	2008	5	21
2588940	Skywest Airlines Inc.	12	10	0	2008	5	21
2597845	Skywest Airlines Inc.	-2	15	0	2008	5	27
3092250	Expressjet Airlines Inc.	29	23	1	2008	6	16
3191723	Skywest Airlines Inc.	2	6	1	2008	6	17
3775091	Comair Inc.	120	80	2	2008	7	29
3935840	Atlantic Southeast Airlines	15	13	1	2008	7	11
4179923	JetBlue Airways	233	150	1	2008	7	29

```
In [50]: #podem dibuixar el pairplot entre les tres columnes temporals
#podem observar com seguim veient la relació de linealitat entre els retards de sortida i arribada,
#mentre que la duració de vol es totalment independent i sense cap relació lineal amb les altres dues columnes

data = df[["RETARD ARRIBADA", "RETARD SORTIDA", "DURACIÓ DEL VOL"]]
titol = "Taula de relacions amb scatterplot, entre les columnes temporals"
plt.figure(figsize = (14, 10))
axis = sns.pairplot(data)
plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8, pad=200)
plt.figtext(1, 0, titol_info, fontsize=10, ha='center')

desa_figura(plt, titol)
plt.show()

executed in 1m 58.4s, finished 14:03:55 2021-04-26
```

<Figure size 1008x720 with 0 Axes>

Taula de relacions amb scatterplot, entre les columnes temporals


```
In [62]: #podriem visualitzar, encara que no hi ha relació lineal, les rectes de regressió dels promijos dels retards
#en funció de la duració de vol, per veure quina és la tendència
data = df[["AEROLÍNIA", "RETARD SORTIDA", "RETARD ARRIBADA", "DURACIÓ DEL VOL"]]

data = data.groupby(["AEROLÍNIA", "DURACIÓ DEL VOL"], as_index=False).agg(
    PROMIG_RETARD_SORTIDA = ("RETARD SORTIDA", "mean"),
    PROMIG_RETARD_ARRIBADA = ("RETARD ARRIBADA", "mean")).round(2)
data.sample(3)

executed in 676ms, finished 14:35:29 2021-04-26
```

Out[62]:

	AEROLÍNIA	DURACIÓ DEL VOL	PROMIG_RETARD_SORTIDA	PROMIG_RETARD_ARRIBADA
1149	American Airlines Inc.	298	57.62	58.01
2041	Comair Inc.	279	151.00	309.00
6735	United Air Lines Inc.	549	17.00	41.00

```
In [68]: titol = "Rectes de regressió del retard d'arribada en funció de la duració de vol, per aerolínia"

#establim els limits de visualització
ymin, ymax = genera_rang_arrodonit(data["PROMIG_RETARD_ARRIBADA"], 3, 98)
xmin, xmax = genera_rang_arrodonit(data["DURACIÓ DEL VOL"], 0, 99)

sns.lmplot(data=data, x="DURACIÓ DEL VOL", y="PROMIG_RETARD_ARRIBADA", hue="AEROLÍNIA", scatter=False)
plt.title(titol, fontsize=15, alpha=0.8, pad=50)
plt.xlabel("Duració del vol")
plt.ylabel("Promig de retard d'arribada (minuts)")
plt.ylim(ymin, ymax)
plt.xlim(xmin, xmax)
desa_figura(plt, titol)
plt.show()

executed in 6.60s, finished 14:37:25 2021-04-26
```

Rectes de regressió del retard d'arribada en funció de la duració de vol, per aerolínia


```
In [67]: titol = "Rectes de regressió del retard de sortida en funció de la duració de vol, per aerolínia"

#establim els limits de visualització
ymin, ymax = genera_rang_arrodonit(data["PROMIG_RETARD_SORTIDA"], 3, 98)
xmin, xmax = genera_rang_arrodonit(data["DURACIÓ DEL VOL"], 0, 99)

sns.lmplot(data=data, x="DURACIÓ DEL VOL", y="PROMIG_RETARD_SORTIDA", hue="AEROLÍNIA", scatter=False)
plt.title(titol, fontsize=15, alpha=0.8, pad=50)
plt.xlabel("Duració del vol")
plt.ylabel("Promig de retard de sortida (minuts)")
plt.ylaim(ymin, ymax)
plt.xlim(xmin, xmax)
desa_figura(plt, titol)
plt.show()

executed in 6.71s, finished 14:36:59 2021-04-26
```

Rectes de regressió del retard de sortida en funció de la duració de vol, per aerolínia AEROLÍNIA


```
In [59]: #podem dibuixar un ridgeline amb les corves de densitat de retards i duració del vol per cadascuna de les aerolínies
           #com ens torna dades de probabilitats, veiem que aquestes s'extenen més enllà dels valors reals possibles
            #(com duracions de vol negatives)
           data = df[["AEROLÍNIA", "RETARD SORTIDA", "RETARD ARRIBADA", "DURACIÓ DEL VOL"]]
titol = "Densitats de retards d'arribada, sortida i duració del vol per aerolínia"
            #establim el rang de visualització entre els quantils que van del 1 al 97%.
           #Agafarem els rang dels minims i màxims de cada columna
           amin. amax = 1, 97
           xmin1, xmax1 = genera_rang_arrodonit(data["RETARD SORTIDA"], qmin, qmax)
           xmin2, xmax2 = genera_rang_arrodonit(data["RETARD ARRIBADA"], qmin, qmax)
xmin3, xmax3 = genera_rang_arrodonit(data["DURACIÓ DEL VOL"], qmin, qmax)
            xmin, xmax = min([xmin1, xmin2, xmin3]), max([xmax1, xmax2, xmax3])
           fig, axes = joypy.joyplot(data=data, column=['RETARD SORTIDA', 'RETARD ARRIBADA', 'DURACIÓ DEL VOL'], by="AEROLÍNIA", ylim='own', figsize=(15, 15), legend=True, color=['blue', 'orange', 'green'], alpha=0.7)
           plt.rc("font", size=12)
           plt.title(titol, fontsize=20, color='#6146C6', alpha=0.8)
           plt.xlabel("Temps(m)", fontsize=16)
           #Establim els limits de visualització i els ticks al gràfic (cada aerolínia és un axes i l'eix x n'és un altre) for i in range(len(df["AEROLÍNIA"].unique())+1):
                axes[i].set_xlim(xmin, xmax)
            axes[-1].set_xticks(range(xmin, xmax, 20))
           desa_figura(plt, titol)
           plt.show()
```


2 Exercici

Exporta els gràfics com imatges o com html

```
In [4]: #establim el path on desarem els gràfics per l'exercici 2 i inicialitzem un comptador per mostrar les figures ordenades
path_grafics = "grafics/fig"
num_fig = 0

#generarem una funció per desar les figures
def desa_figura(plt, titol):
    global num_fig
    num_fig += 1
    fig = path_grafics + str(num_fig) + "-" + titol.replace("/", "-")
    plt.savefig(fig, transparent=True, bbox_inches="tight", pad_inches=1)

executed in 92ms, finished 12:45:29 2021-04-26
```

In []: # Repassem tots els grafics d'aquest notebook afegint la funció creada, en els que ens semblen significatius, per desar-los

3 Exercici

Exporta el data set net i amb les noves columnes a Excel

4 Exercici

Integra les visualitzacions gràfiques, en la tasca 5, del Sprint 3.

```
In [69]: #Ajunto La tasca 5: "estructures_dataframe_amb_visualitzacions.pdf" i "Tasca 5 amb visualitzacions.ipynb"
#a la mateixa carpeta d'entrega amb les modificacions necessàries i els gràfics de les visualitzacions afegits
executed in 13ms, finished 14:49:39 2021-04-26
```