

Читали ли вы присланные материалы?

Да, достаточно внимательно.

Нет. Не нашёл для этого времени.

Смотрел "по диагонали".

Ответить

Следующий слайд

Tex. поддержка: support@hsemath.ru HSE. Math. 2015

HSE. Math

Леммы, связанные с полнотой (непрерывностью) множества действительных чисел

<u>Определение</u>: Будем говорить, что *система* S={X} *множеств* X *покрывает множество* Y, если Y⊂ $\bigcup_{X \in S} X$, т.е., если каждая точка множества Y содержится хотя бы в одном

из множеств \sim X системы \sim S.

<u>Определение</u>: Подмножество множества $S = \{X\}$, являющегося системой множеств, будем называть подсистемой системы $\sim S$. Таким образом, подсистемы множеств сама является системой множеств того же типа.

Теорема (Лемма Гейне - Бореля): В любой системе интервалов, покрывающей отрезок, имеется конечная подсистема, покрывающая этот отрезок.

Предыдущий слайд

Следующий слайд

HSE. Math

HSE. Math

<u>Определение</u>: Точка $x \in R$ называется *предельной точкой* (или *точкой сгущения*) *множества* $\mathbf{X} \subset R$, если <u>любая</u> окрестность этой точки содержит бесконечное подмножество элементов множества \mathbf{X} . Или, тоже самое: в любой окрестности точки x есть по крайней мере одна, не совпадающая с x точка множества \mathbf{X} . Множество предельных точек множества \mathbf{X} обозначается через: \mathbf{X} .

Пример 1. Пусть
$${f X}=(0,1)$$
. Тогда ${f X}=[0,1]$.

Пример 2. Пусть
$$\mathbf{X}=Q$$
. Тогда $\mathbf{X}=R\bigcup\{\pm\infty\}$.

Пример 3. Пусть
$$\mathbf{X} = \left\{ \frac{1}{n}, \; n \in N \right\}$$
. Тогда $\overset{-}{\mathbf{X}} = \{0\}$.

Пример 4. Пусть
$$\mathbf{X} = \{(-1)^n, \; n \in N\}$$
. Тогда $\mathbf{X} = \{-1,1\}$.

Предыдущий слайд

Следующий слайд

HSE. Math

Теорема (Лемма Больцано - Вейерштрасса): Всякое бесконечное ограниченное числовое множество имеет, по крайней мере, одну предельную точку.

Доказательство. Пусть **X** -- данное подмножество множества R. Из определения ограниченности этого множества следует, что $\exists [a;b]=I\subset R$ такой, что $\mathbf{X}\subset I$. Покажем, что хотя бы одна из точек этого отрезка является предельной для ${\bf X}$. Предположим, что каждая точка x отрезка I имеет окрестность ${\bf U}(x)$, в которой либо вообще нет точек множества X, либо их там конечное число. Совокупность $\{U(x)\}$ таких окрестностей, построенных для каждой точки отрезка I, образует его покрытие интервалами U(x), из которого по лемме Гейне-Бореля можно выделить конечную подсистему:

$$U(x_1), U(x_2), \ldots, U(x_n)$$

интервалов, покрывающую отрезок I. Но, т.к. $\mathbf{X} \subset I$, эта же система покрывает все множество \mathbf{X} . Однако, в любой окрестности $\mathbf{U}(x_i)$ находится только конечное число точек множества ${\bf X}$, значит, и в их конечном объединении тоже конечное число точек ${\bf X}$, т.е. ${\bf X}$ -- конечное множество, что неверно. %Зафиксируем далее произвольное $\varepsilon>0$. Требуется найти хотя бы одну точку отрезка I_0 , в ε - окрестности которой находится бесконечно много точек множества **X**. Так как рассматриваемое множество -- бесконечно, то хотя бы одна из половин отрезка содержит бесконечное число точек множества X. Обозначим данную половину за I_1 . Далее, одна из половин отрезка I_1 содержит бесконечно число точек рассматриваемого множества. Обозначим её I_2 , и так далее. В силу того, что $|I_n|=rac{I_0}{2^n} o 0$ при $n o \infty$, получаем, что при достаточно большом n. весь отрезок I_n содержится в некоторой ε -- окрестности. Выбирая в этом отрезке любую из бесконечного числа точек множества \mathbf{X} , получаем требуемое.

Предыдущий слайд

Следующий слайд

HSE. Math

Поняли ли Вы приведённое доказательство?

да нет чуть-чуть понял Ответить

Предыдущий слайд

Следующий слайд

HSE. Math

Определение: Точка $a\in R$ называется изолированной точкой множества $\mathbf{X}\subset R$, если $\exists \delta>0$ такое, что $\mathbf{U}_{\delta}(a)\bigcap \mathbf{X}=\{a\}$.

Предыдущий слайд

Следующий слайд

HSE. Math

HSE. Math

Частичные пределы числовой последовательности

Определение: Если $\{x_n\}_{n=1}^\infty$ — некоторая последовательность, а $k_1 < k_2 < \ldots < k_n < \ldots$ — возрастающая последовательность натуральных чисел, то последовательность $\{x_{k_n}\}$ называется *подпоследовательностью последовательности* $\{x_n\}$.

<u>Утверждение 1</u>: Если последовательность $\{x_n\}$ сходится к пределу a, то и любая её подпоследовательность сходится к тому же пределу a.

Доказательство.

Фиксируем произвольное arepsilon>0 . Т.к. $\lim_{n o\infty}x_n=a$, то

$$\exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Longrightarrow |x_n - a| < \varepsilon.$$

Далее, т.к. $k_n\geqslant n$, то для $orall k_n\geqslant N(arepsilon)$ элементы последовательности $\{x_{k_n}\}$, и подавно, удовлетворяют неравенству: $|x_{k_n}-a|<arepsilon$, а это и означает, что $\lim_{n o\infty}x_{k_n}=a$.

Замечание: Очевидно, что обратное -- неверно, т.е., если любая подпоследовательность некоторой последовательности сходится, то сама последовательность может и расходится.

Упражнение: Докажите, что любая подпоследовательность бесконечно большой последовательности является бесконечно большой.

Предыдущий слайд

Следующий слайд

HSE. Math

<u>Определение</u>: Точка $a \in R \bigcup \{\pm \infty\}$ называется *частичным пределом* (предельной точкой) числовой последовательности $\{x_n\}$, если выполнено одно из условий:

- 1. В любой окрестности точки a находится бесконечно много элементов последовательности $\{x_n\}$;
- 2. Существует подпоследовательность $\{x_{k_n}\}$ сходящаяся к a при $n o \infty$.

Утверждение: Оба этих утверждения эквивалентны.

Доказательство.

Семинарские занятия.

Предыдущий слайд

Следующий слайд

HSE. Math

Tex. поддержка: support@hsemath.ru HSE. Math. 2015

EN 🕐 🗸 📥 🖫 🜓 🥼

HSE. Math

<u>Определение</u>: Точка $a \in R \bigcup \{\pm \infty\}$ называется *частичным пределом* (предельной точкой) числовой последовательности $\{x_n\}$, если выполнено одно из условий:

- 1. В любой окрестности точки a находится бесконечно много элементов последовательности $\{x_n\}$;
- 2. Существует подпоследовательность $\{x_{k_n}\}$ сходящаяся к a при $n o \infty$.

Утверждение: Оба этих утверждения эквивалентны.

Доказательство.

Семинарские занятия.

Предыдущий слайд

Следующий слайд

HSE. Math

<u>Лемма</u>: Числовая последовательность сходится тогда, и только тогда, когда у неё есть только одна предельная точка, совпадающая с пределом данной последовательности. Доказательство.

Лекция №6.

Предыдущий слайд

Следующий слайд

HSE. Math

Поняли ли Вы приведённое доказательство?

да нет чуть-чуть понял Ответить

Предыдущий слайд

Следующий слайд

HSE. Math

<u>Определение</u>: Наибольшая предельная точка последовательности $\{x_n\}$ называется верхним пределом этой последовательности, и обозначается символом: $\overline{\lim_{n o \infty}} x_n$.

Определение: Наименьшая предельная точка последовательности $\{x_n\}$ называется нижним пределом этой последовательности, и обозначается символом: $\lim x_n$ $n\rightarrow\infty$

Запишем несколько следствий леммы Больцано - Вейерштрасса.

Утверждение (Теорема Больцано - Вейерштрасса): Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность. %У всякой ограниченной последовательности существуют верхний и нижний пределы и, в частности, существует хотя бы одна предельная точка.

<u>Утверждение</u>: Если $\{x_n\}$ -- ограниченная последовательность, x и \overline{x} -- её нижний и верхний пределы, ε -- произвольное положительное число, то вне интервала $(x-arepsilon;\overline{x}+arepsilon)$ лежит лишь конечное число элементов этой последовательности. Или, что тоже самое, на данном интервале лежат все элементы последовательности $\{x_n\}$, начиная с некоторого номера (зависящего от ε).

Предыдущий слайд

Следующий слайд

HSE. Math

HSE. Math

Выберете последовательность:

$$\bigcirc x_n = (-1)^n \cdot \left(1 + \frac{1}{n}\right)$$

$$_{\odot}x_{n}=\sin n$$

$$x_n = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$$

$$x_n = \left\{ \frac{1}{1} - \frac{1}{2}, \frac{1}{1} - \frac{1}{3}, \frac{1}{2} - \frac{1}{4}, \frac{1}{1} - \frac{1}{5}, \frac{1}{2} - \frac{1}{6}, \frac{1}{3} - \frac{1}{7}, \dots \right\}$$

$$\bigcirc x_n = \{0, 1, -1, 0, 1, -1, 0, 1, -1, 2, -2, 0, 1, -1, 2, -2, 3, -3, \ldots\}_{\bigcirc x_n} = \frac{2 + (-1)^n}{n}$$

$$\bigcirc x_n = rac{1+(-1)^n}{n}$$

$$\bigcirc x_n = (0.9)^n$$

$$x_n = \frac{2}{\sqrt{n}} - \frac{n}{n+5} \cdot \sin\left(\frac{\pi n}{4}\right)$$

$$\bigcirc x_n = \left(\cos\left(\frac{\pi n}{4}\right)\right)^{n+1} + \frac{n}{n+10} \cdot \sin\left(\frac{\pi n}{3}\right)$$

$$\{\ldots\}_{\textstyle\bigcirc x_n}=rac{2+(-1)^n}{n}$$

$$_{\odot}x_{n}=(-1)^{n}$$

$$\bigcirc x_n = \frac{(-1)^n}{n}$$

$$x_n = (-1)^n \cdot n^{\frac{1}{n}} + \frac{2n+6}{n} \cdot \cos\left(\frac{\pi n}{5}\right)$$

Рисовать

Анимация Логарифмическая шкала Вертикальные отрезки

Предыдущий слайд

HSE. Math

$$\begin{cases} x_n = \left(1 + \frac{1}{n}\right)^n \\ y_n = \sum_{i=0}^n \frac{1}{i!} \end{cases}$$

$$x_n = \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\} \\
 x_n = \left\{ \frac{1}{1} - \frac{1}{2}, \frac{1}{1} - \frac{1}{3}, \frac{1}{2} - \frac{1}{4}, \frac{1}{1} - \frac{1}{5}, \frac{1}{2} - \frac{1}{6}, \frac{1}{3} - \frac{1}{7}, \dots \right\}$$

$$\bigcirc x_n = rac{1+(-1)^n}{n}$$

$$\bigcirc x_n = (0.9)^n$$

$$_{\bigcirc}x_{n} = \frac{2}{\sqrt{n}} - \frac{n}{n+5} \cdot \sin\left(\frac{\pi n}{4}\right)$$

$$x_n = \left(\cos\left(\frac{\pi n}{4}\right)\right)^{n+1} + \frac{n}{n+10} \cdot \sin\left(\frac{\pi n}{3}\right)$$

$$\ldots \}_{\,\bigcirc x_n} = rac{2+(-1)^n}{n}$$

$$\bigcirc x_n = (-1)^n$$

$$\bigcirc x_n = \frac{(-1)^n}{n}$$

$$x_n = (-1)^n \cdot n^{\frac{1}{n}} + \frac{2n+6}{n} \cdot \cos\left(\frac{\pi n}{5}\right)$$

Рисовать

Предыдущий слайд

HSE. Math

