Project: TMDB Data Analysis

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

I have selected **The Movie Database(TMDB)** that contains data of around 10,000 movies including their votes, release date, score of popularity, budget, revenue and runtime.

With this dataset, we can ask following questions:

- Most popular movies from year to year.
- Movies with higher ratings from year to year.
- Which genres are most popular from year to year? (based on profit).
- · What are the properties associated with profitable movies?
- · Movies having longest and shortest runtime.
- Best Month to Release a Movie.

```
In [71]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
```

Data Wrangling

Gathering

```
In [72]:
```

```
\label{lownloads} $$ df = pd.read_csv(r'C:\Users\Kami\Downloads\tmdb-movies.csv') $$ \#gathering the data, aka data acquisition $$
```

Assessing

. Printing few lines of data

```
In [73]:
```

```
df.head()
df.tail(50)
```

```
Out[73]:
```

	id	imdb_id	popularity	budget	revenue	original_title	cast	homepage
10816	16378	tt0077147	0.064602	0	0	The Rutles: All You Need Is Cash	Eric Idle John Halsey Ricky Fataar Neil Innes	NaN Eric

	id	imdb_id	popularity	budget	revenue	original_title	Robbist	homepage	
10817	13963	tt0077838	0.064029	0	321952	The Last Waltz	Robertson Rick Danko Levon Helm Richard	http://www.mgm.com/#/our- titles/1092/The-Last	
10818	39995	tt0079482	0.047645	0	0	Long Weekend	John Hargreaves Briony Behets Mike McEwen Roy	NaN	
10819	16214	tt0077696	0.044675	0	78000000	Hooper	Burt Reynolds Robert Klein Adam West Jan- Micha	http://en.wikipedia.org/wiki/Hooper_(film)	Hal
10820	13377	tt0060345	1.227582	315000	0	How the Grinch Stole Christmas!	Boris Karloff June Foray Thurl Ravenscroft Dal	NaN	,
10821	1714	tt0060390	0.929393	0	0	Fahrenheit 451	Oskar Werner Julie Christie Cyril Cusack Bee D	NaN	I
10822	396	tt0061184	0.670274	7500000	33736689	Who's Afraid of Virginia Woolf?	Elizabeth Taylor Richard Burton George Segal S	NaN	Mil
10823	3591	tt0060782	0.613444	0	0	One Million Years B.C.	Raquel Welch John Richardson Percy Herbert Rob	NaN	Dc
10824	2525	tt0060164	0.533292	18000000	0	The Bible: In the Beginning	Michael Parks Ulla Bergryd Richard Harris Fran	NaN	Jol
10825	1052	tt0060176	0.509263	0	0	Blow-Up	David Hemmings Vanessa Redgrave Sarah Miles Jo	NaN	Mic
10826	874	tt0060665	0.418900	0	0	A Man for All Seasons	Paul Scofield Wendy Hiller Leo McKern Robert S	NaN	Z
10827	2661	tt0060153	0.410366	1377800	0	Batman	Adam West Burt Ward Cesar Romero Burgess Mered	NaN	
10828	5780	tt0061107	0.402730	3000000	13000000	Torn Curtain	Paul Newman Julie Andrews Lila Kedrova HansjĶ	NaN	
10829	6644	tt0061619	0.395668	4653000	6000000	El Dorado	John Wayne Robert Mitchum James Caan Charlene	NaN	Howa
10830	4772	tt0060268	0.380321	0	0	Cul-de-sac	Donald Pleasence Françoise Dorléac Lionel St	NaN	
10831	1888	tt0060424	0.529721	0	0	The Fortune Cookie	Jack Lemmon Walter Matthau Ron Rich Judi West	NaN	В
10832	23030	tt0060121	0.358161	4800000	0	Arabesque	Gregory Peck Sophia Loren Alan Badel Kieron Mo	NaN	Stan
10833	3001	tt0060522	0.737730	0	0	How to Steal a Million	Audrey Hepburn Peter O'Toole Eli Wallach Hugh	NaN	Will
10834	12639	tt0060897	0.310688	0	0	Return of the Seven	Yul Brynner Robert Fuller JuliÃjn	NaN	Bur

	id	imdb_id	popularity	budget	revenue	original_title	ıvıaιeos∣vvarre cast	homepage	
10835	5923	tt0060934	0.299911	12000000	20000000	The Sand Pebbles	Steve McQueen Richard Attenborough Richard Cre	NaN	Rc
10836	38720	tt0061170	0.239435	0	0	Walk Don't Run	Cary Grant Samantha Eggar Jim Hutton John Stan	NaN	
10837	19728	tt0060177	0.291704	0	0	The Blue Max	George Peppard James Mason Ursula Andress Jere	NaN	ı
10838	22383	tt0060862	0.151845	0	0	The Professionals	Burt Lancaster Lee Marvin Robert Ryan Woody St	NaN	
10839	13353	tt0060550	0.276133	0	0	It's the Great Pumpkin, Charlie Brown	Christopher Shea Sally Dryer Kathy Steinberg A	NaN	Bill
10840	34388	tt0060437	0.102530	0	0	Funeral in Berlin	Michael Caine Paul Hubschmid Oskar Homolka Eva	NaN	Guy
10841	42701	tt0062262	0.264925	75000	0	The Shooting	Will Hutchins Millie Perkins Jack Nicholson Wa	NaN	Mont
10842	36540	tt0061199	0.253437	0	0	Winnie the Pooh and the Honey Tree	Sterling Holloway Junius Matthews Sebastian Ca	NaN	R
10843	29710	tt0060588	0.252399	0	0	Khartoum	Charlton Heston Laurence Olivier Richard Johns	NaN	Dea
10844	23728	tt0059557	0.236098	0	0	Our Man Flint	James Coburn Lee J. Cobb Gila Golan Edward Mul	NaN	Da
10845	5065	tt0059014	0.230873	0	0	Carry On Cowboy	Sid James Jim Dale Angela Douglas Kenneth Will	NaN	
10846	17102	tt0059127	0.212716	0	0	Dracula: Prince of Darkness	Christopher Lee Barbara Shelley Andrew Keir Fr	NaN	Terei
10847	28763	tt0060548	0.034555	0	0	Island of Terror	Peter Cushing Edward Judd Carole Gray Eddie By	NaN	Terei
10848	2161	tt0060397	0.207257	5115000	12000000	Fantastic Voyage	Stephen Boyd Raquel Welch Edmond O'Brien Donal	NaN	
10849	28270	tt0060445	0.206537	0	0	Gambit	Michael Caine Shirley MacLaine Herbert Lom Joh	NaN	Rona
10850	26268	tt0060490	0.202473	0	0	Harper	Paul Newman Lauren Bacall Julie Harris Arthur	NaN	Ja
10851	15347	tt0060182	0.342791	0	0	Born Free	Virginia McKenna Bill Travers Geoffrey Keen Pe	NaN	,
10852	37301	tt0060165	0.227220	0	0	A Big Hand for the Little	Henry Fonda Joanne Woodward Jason	NaN	Fie

	id	imdb_id	popularity	budget	revenue	original_title	Robards Paul	homepage	
10853	15598	tt0060086	0.163592	0	0	Alfie	Michael Caine Shelley Winters Millicent Martin	NaN	Le
10854	31602	tt0060232	0.146402	0	0	The Chase	Marlon Brando Jane Fonda Robert Redford E.G. M	NaN	А
10855	13343	tt0059221	0.141026	700000	0	The Ghost & Mr. Chicken	Don Knotts Joan Staley Liam Redmond Dick Sarge	NaN	A
10856	20277	tt0061135	0.140934	0	0	The Ugly Dachshund	Dean Jones Suzanne Pleshette Charles Ruggles K	NaN	Nor
10857	5921	tt0060748	0.131378	0	0	Nevada Smith	Steve McQueen Karl Malden Brian Keith Arthur K	NaN	
10858	31918	tt0060921	0.317824	0	0	The Russians Are Coming, The Russians Are Coming	Carl Reiner Eva Marie Saint Alan Arkin Brian K	NaN	
10859	20620	tt0060955	0.089072	0	0	Seconds	Rock Hudson Salome Jens John Randolph Will Gee	NaN	Fran
10860	5060	tt0060214	0.087034	0	0	Carry On Screaming!	Kenneth Williams Jim Dale Harry H. Corbett Joa	NaN	
10861	21	tt0060371	0.080598	0	0	The Endless Summer	Michael Hynson Robert August Lord 'Tally Ho' B	NaN	Ві
10862	20379	tt0060472	0.065543	0	0	Grand Prix	James Garner Eva Marie Saint Yves Montand Tosh	NaN	Fran
10863	39768	tt0060161	0.065141	0	0	Beregis Avtomobilya	Innokentiy Smoktunovskiy Oleg Efremov Georgi Z	NaN	
10864	21449	tt0061177	0.064317	0	0	What's Up, Tiger Lily?	Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh	NaN	W
	22293	tt0060666	0.035919	19000	0	Manos: The Hands of Fate	Harold P. Warren Tom Neyman John Reynolds Dian	NaN	

- Number of rows in data
- Number of columns in data

In [74]:

```
num_rows , num_cols = df.shape
print("Number of rows = {}, Number of Columns = {}".format(num_rows,num_cols))
```

Number of rows = 10866, Number of Columns = 21

• Duplicate rows in data

In [75]:

```
print('Number of duplicated row = ', df.duplicated().sum()) #we have one duplicated row.
#let's see duplicated row
duplicate_row_id = df [ df.duplicated() ].id.iloc[0] #extracting duplicate row id.
print ('Duplicate row ID = ', duplicate_row_id)
df [ df.id == duplicate_row_id ] #taking look at duplicated rows.
```

Number of duplicated row = 1 Duplicate row ID = 42194

Out[75]:

	id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	director	tagline	 overview	runtime
2089	42194	tt0411951	0.59643	30000000	967000	TEKKEN	Jon Foo Kelly Overton Cary- Hiroyuki Tagawa Ian	NaN	Dwight H. Little	Survival is no game	 In the year of 2039, after World Wars destroy	92
2090	42194	tt0411951	0.59643	30000000	967000	TEKKEN	Jon Foo Kelly Overton Cary- Hiroyuki Tagawa Ian	NaN	Dwight H. Little	Survival is no game	 In the year of 2039, after World Wars destroy	92
2 rows	× 21 c	olumns										
4)

Issue No 1: Need to drop duplicated row.

• Datatypes of each column

In [76]:

df.dtypes

Out[76]:

id	int64
imdb_id	object
popularity	float64
budget	int64
revenue	int64
original_title	object
cast	object
homepage	object
director	object
tagline	object
keywords	object
overview	object
runtime	int64
genres	object
production_companies	object
release_date	object
vote_count	int64
vote_average	float64
release_year	int64
budget_adj	float64
revenue_adj	float64
dtype: object	

Issue No 2: Change datatype of release_date from strings to datetime.

I ooking for missing values in each column

- LOOKING FOR THISSING VALAGES IN GAGIN GOTAININ

In [77]:

```
df.isnull().sum()
```

Out[77]:

id	0
imdb_id	10
popularity	0
budget	0
revenue	0
original_title	0
cast	76
homepage	7930
director	44
tagline	2824
keywords	1493
overview	4
runtime	0
genres	23
production_companies	1030
release_date	0
vote_count	0
vote_average	0
release_year	0
budget_adj	0
revenue_adj	0
dtype: int64	

Issue No 3: Need to address missing values for following columns

['imdb_id','cast','homepage','director','tagline','keywords','overview','genres','production_companies']

• Non null unique values in each column

In [78]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	10866 non-null	int64
1	imdb_id	10856 non-null	object
2	popularity	10866 non-null	float64
3	budget	10866 non-null	int64
4	revenue	10866 non-null	int64
5	original_title	10866 non-null	object
6	cast	10790 non-null	object
7	homepage	2936 non-null	object
8	director	10822 non-null	object
9	tagline	8042 non-null	object
10	keywords	9373 non-null	object
11	overview	10862 non-null	object
12	runtime	10866 non-null	int64
13	genres	10843 non-null	object
14	production_companies	9836 non-null	object
15	release_date	10866 non-null	object
16	vote_count	10866 non-null	int64
17		10866 non-null	float64
18	release_year	10866 non-null	int64
19	budget_adj	10866 non-null	float64
20	revenue_adj	10866 non-null	float64
dtyp	es: float64(4), int64(6), object(11)	

• identifying rows with missing data

memory usage: 1.7+ MB

```
In [79]:
```

```
df[ df.isnull().any(axis=1) ]
```

Out[79]:

∟ Midnight is										
IIIST THE	Kenneth Branagh	NaN	Lily James Cate Blanchett Richard Madden Helen	Cinderella	542351353	95000000	5.556818	tt1661199	150689	18
a Believe in Hope	Antoine Fuqua	NaN	Jake Gyllenhaal Rachel McAdams Forest Whitaker	Southpaw	91709827	30000000	5.337064	tt1798684	307081	21
Comina	Seth MacFarlane	NaN	Mark Wahlberg Seth MacFarlane Amanda Seyfried	Ted 2	215863606	68000000	4.564549	tt2637276	214756	26
	Elizabeth Banks	NaN	Anna Kendrick Rebel Wilson Hailee Steinfeld Br	Pitch Perfect 2	287506194	29000000	3.877764	tt2848292	254470	32
. ,	Steven Spielberg	NaN	Tom Hanks Mark Rylance Amy Ryan Alan Alda Seba	Bridge of Spies	162610473	40000000	3.648210	tt3682448	296098	33
n NaN	Bruce Brown	NaN	Michael Hynson Robert August Lord 'Tally Ho' B	The Endless Summer	0	0	0.080598	tt0060371	21	10861
	John Frankenheimer	NaN	James Garner Eva Marie Saint Yves Montand Tosh	Grand Prix	0	0	0.065543	tt0060472	20379	10862
Nan	Eldar Ryazanov	NaN	Innokentiy Smoktunovskiy Oleg Efremov Georgi Z	Beregis Avtomobilya	0	0	0.065141	tt0060161	39768	10863
WOODY ALLEN STRIKES BACK!	Woody Allen	NaN	Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh	What's Up, Tiger Lily?	0	0	0.064317	tt0061177	21449	10864
	Harold P. Warren	NaN	Harold P. Warren Tom Neyman John Reynolds Dian	Manos: The Hands of Fate	0	19000	0.035919	tt0060666	22293	10865

• Notice we have 8874 rows with missing data

Cleaning

Issue No 1: Need to drop duplicated row.

Issue No 2: Change datatype of release_date from strings to datetime.

Issue No 3: Need to address missing values for following columns

 $['imdb_id','cast','homepage','director','tagline','keywords','overview','genres','production_companies']\\$

Solving Issue No 1: Need to drop duplicated row.

```
df_clean = df.copy() #making copy so that original data set remains intact.
df clean.drop duplicates(inplace=True)
In [81]:
df clean.duplicated().sum() #verifying that there should be now 0 duplicates.
df_clean.shape #Also notice , number of rows are now 10865 instead of 10866. So our Issue No 1 is
resolved successfully.
Out[81]:
(10865, 21)
Solving Issue No 2: Change datatype of release_date from strings to datetime.
In [82]:
df_clean['release_date'] = pd.to_datetime(df_clean['release_date'])
In [83]:
print(df_clean.dtypes['release_date']) #verifying datetime conversion.
df_clean.tail(-10700)[['release_date','release_year']]
datetime64[ns]
Out[83]:
      release_date release_year
10701
        2065-08-06
                        1965
10702
        2065-10-15
                        1965
10703
        2065-06-22
                        1965
10704
        2065-06-23
                        1965
10705
        2065-04-01
                        1965
                          ...
        2066-06-15
                        1966
10861
10862
        2066-12-21
                        1966
        2066-01-01
10863
                        1966
        2066-11-02
10864
                        1966
10865
        2066-11-15
                        1966
165 rows × 2 columns
It seems like above conversion converted datatype to date time but there are some problems. Years like 1966,1965 are
converted into 2066 and 2065 respectively, which is obviously not good enough. So we need to fix this somehow.
In [84]:
from datetime import datetime
df_clean[ df_clean['release_date'] > datetime.today() ].shape #So we have total 362 rows with wron
g year information.
Out[84]:
(362, 21)
In [85]:
#Now we will extract unique future years and type cast them as a list.
years_to_be_changed = list (df_clean[ df_clean['release_date'] > datetime.today() ]['release_date'
1.dt.vear.unique())
```

In [80]:

```
In [86]:
def change_year (date):
    if date.year in years_to_be_changed:
        #print(date)
         #print(date.year)
        date = datetime.strftime(date,'%Y-%m-%d')
        date= date.replace('20','19')
        date = datetime.strptime(date,'%Y-%m-%d')
    return date
df_clean['release_date'] = df_clean['release_date'].apply(change_year) #applying function change_ye
ar to release date column.
In [87]:
df_clean.tail(20)[['release_date','release_year']]
df clean[ df clean['release date'] > datetime.today() ]
#So now we don't have any rows with future dates, It means Issue No 2 is resolved successfully.
Out[87]:
  id imdb_id popularity budget revenue original_title cast homepage director tagline ... overview runtime genres production
0 rows × 21 columns
Solving Issue No 3: Need to address missing values for following columns
['imdb_id','cast','homepage','director','tagline','keywords','overview','genres','production_companies']
In [88]:
null_columns_mask = df_clean.isnull().sum()>0 #creating null columns mask.
print (df clean.isnull().sum()[null columns mask].sort values()) #Printing names of columns with
null values in ascending order.
overview
                             4
imdb id
                            10
genres
                            23
                            44
director
                            76
cast
production_companies
                          1030
kevwords
                          1493
tagline
                          2824
                          7929
homepage
dtype: int64
It looks like we don't have homepage, tagline, keywords, production companies for many of the movies. I think deleting
these columns will be a good solution as they won't be playing any significant role in terms of analyzing data.
In [89]:
df_clean.drop(['homepage','tagline','keywords','production_companies'],axis=1,inplace=True)
In [90]:
df clean.isnull().sum()[null columns mask].sort values() #now again taking look at remaining null
values (in ascending order).
Out[90]:
overview
            10
imdb id
genres
             23
director
             44
```

76

cast

```
dtype: int64
```

These columns can play important role in analyzing the data or trends, especially genres, director or even cast. So, deleting these won't be a good solution.

This time I would opt for deleting rows with missing values.

```
In [91]:

df_clean[df_clean.isna().any(axis=1)].shape
df_clean.dropna(inplace=True)
df_clean.shape

Out[91]:
(10724, 17)

In [92]:

df_clean.isnull().sum().sum() #Verifying if there any null value exists in any of the column. Sinc
e, it returns 0, means
#there are no more null or missing values left. It means our Issue No 3 is also resolved now. We a
re good to go for EDA.

Out[92]:
0
```

Exploratory Data Analysis

Research Question 1: Most popular movies from year to year.

• we can answer this question by finding max popularity score for movie in each year.

step 1: find max popularity score for each release_year.

```
In [93]:

popularity_score_year_wise = list(df_clean.groupby(['release_year'])['popularity'].max())
df_popular_score_year_wise = df_clean[df_clean.popularity.isin(popularity_score_year_wise)]
#df_popular_score_year_wise[['original_title','release_year','popularity','vote_count']]
```

step 2: sort by descending order of release year.

```
In [94]:
```

```
df_popular_score_year_wise.sort_values('release_year',ascending=False,inplace=True)
#df_popular_score_year_wise[['original_title','release_year','popularity','vote_count']]

C:\Users\Kami\anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
"""Entry point for launching an IPython kernel.
```

step 3: extract movie title and release year to be used as x axis labels.

```
In [95]:

xlabels = []
for i,j in df_popular_score_year_wise[['original_title','release_year']].iterrows():
    # print (j['original_title'],j['release_year'])
    xlabels.append(j['original_title'] + ' ' + str(j['release_year']))
```

step 4: extract popularity score to be plotted on y axis.

In [96]:

```
y_score = []
for i,j in df_popular_score_year_wise[['popularity']].iterrows():
    #print (j['popularity'])
    y_score.append(j['popularity'])
#y_score
```

step 5: finally plotting bar char to see graphically which movie was popular in each year along with its popularity score.

In [97]:

```
plt.subplots(figsize=(20,10))
plt.bar(x=xlabels,height=y_score,label='popularity')
plt.xticks(rotation=90);
plt.xlabel('Movie Title and Year')
plt.ylabel('Popularity Score')
plt.title("Most popular movies in each year")
plt.legend();
```


 For movies released in year 2015, most popular movie was "Jurasic World" while "Psycho" received more popularity among movies released in 1960.

Research Question 2: Movies with higher ratings from year to year.

. we can answer this question by calculating the max vote_average and grouping it by release_year.

step 1: first we will find movies with max average rating in each year.

```
In [65]:
```

```
vote_year_wise = dict (df_clean.groupby(['release_year'])['vote_average'].max())
cols_list = list(df_clean.columns)
df_vote_average = pd.DataFrame(columns=cols_list) #creating empty dataframe to store year wise mov
ies with max vote_average.

for key,value in vote_year_wise.items():
    #print (df_clean[(df_clean.release_year == key) & (df_clean.vote_average == value)])
    #print("\n\n")
    df_vote_average = df_vote_average.append(df_clean[(df_clean.release_year == key) & (df_clean.vote_average == key) & (df_clean.v
```

step 2: extract movie title and release year to be used as x axis labels.

In [66]:

step 3: extract vote_average to be plotted on y axis.

In [67]:

```
y_score = []
for i,j in df_vote_average[['vote_average']].iterrows():
    #print (j['popularity'])
    y_score.append(j['vote_average'])
#y_score
```

step 4: finally plotting bar char to see graphically which movie received highest average votes in each year.

In [68]:

```
plt.subplots(figsize=(20,6))
plt.bar(x=xlabels,height=y_score,label='vote_average')
plt.xticks(rotation=90);
plt.xlabel('Movie Title and Year')
plt.ylabel('Average Votes')
plt.title("Movies with higher ratings in each year")
plt.legend();
```


 Among movies that were released in year 2015, the movie which received highest vote average was "the jinx life and death of robert durst" while "Psycho" received highest vote average among movies released in 1960.

Research Question 3: Which genres are most popular from year to year? (based on profit)

. To answer this question, we can find which genres contribute most to the profitable movie in each year.

step 1: Calculating profit for each movie.

```
In [36]:

df_clean.insert(5,'profit',df_clean.revenue-df_clean.budget) #calculating profit of each movie.
```

step 2: Taking profitable movies into account.

```
In [37]:

df_profitable_movies = df_clean[(df_clean.profit > 0) & (df_clean.budget > 0)] #Taking only profit
able movies in every year.
df_profitable_movies.shape

Out[37]:
(2776, 18)
```

step 3: Now we will plot bar chart for each year separately to visualize which genres was most popular in profitable movies in each year.

```
In [38]:
```

```
release_years = list (df_profitable_movies['release_year'].unique())

genres_dict = {}

for year in release_years:
    df_genres = df_profitable_movies[df_profitable_movies.release_year == year ]
    dummies_genres = df_genres.genres.str.get_dummies('|')
    dummies_genres.sum().sort_values(ascending=False).plot(kind='bar');
    plt.xlabel('genres')
    plt.ylabel('count')
    plt.title('Count of genres in profitable movies for year {}'.format(year))
    plt.show()
    print("\n\n\n")
```


step 4: Now we will plot combined bar chart for all genres used in profitable movies in every year.

In [40]:

```
df_profitable_movies['genres'].str.get_dummies(sep='|').sum().sort_values(ascending=False).plot(kin
d='bar',figsize=(12,5));
plt.xlabel('genres');
plt.ylabel('count');
plt.title('Overall genres used in profitable movies');
```


• We can see clearly, Most of the profitable movies are based on the genre Drama followed by Comedy, Thriller and Action.

Research Question 4: What are the properties associated with profitable movies?

step 1: Let's analyze correlation between profit and other features.

In [566]:

plt.subplots(figsize=(10,6))
sn.heatmap(df_profitable_movies.corr(),annot=True); #plotting heatmap to visualize graphically.

• By plotting heatmap, we can clearly see there is a positive correlation of profit with features like runtime, budget and popularity.

step 2: Let's analyze each of them one by one.

profit vs runtime

In [41]:

```
df_profitable_movies[['profit','runtime']].plot(kind='scatter',x='runtime',y='profit'); #plotting
scatter plot
plt.title('Profit vs Runtime');
```


• Most of the profitable movies have runtime greater than 50 mins but less than 200 mins. Only few movies are having runtime greater than 200 mins while only 1 movie having runtime less than 50 mins.

In [42]:

```
df_profitable_movies['runtime'].hist();
plt.xlabel('runtime');
plt.ylabel('frequency');
plt.title('Distribution of runtime');
```


• Most of the durations of profitable movies lie between 90 to 150 mins. Distribution is right or positive skewed.

In [569]:

```
df_profitable_movies.runtime.mean()
```

Out[569]:

110.16750720461096

Average duration of profitable movie is 110 mins i.e. around (2 hours).

· profit vs budget

In [43]:

```
df_profitable_movies.plot(kind='scatter',x='budget',y='profit'); #plotting scatter plot
plt.title('Profit vs Budget');
```


• Most of the movies are with budget range under 200,000,000 (20 crore).

In [44]:

```
df_profitable_movies['budget'].hist();
plt.xlabel('budget');
plt.ylabel('frequency');
plt.title('Distribution of budget');
```


• Budget for most of the porfitable movies lies between 1,00,00,000 (1 crore) to 120,000,000 (12 crore).

In [572]:

```
df_profitable_movies.budget.mean()
```

Out[572]:

40301757.668227665

Average budget for profitable movie is around 4 crore.

· profit vs popularity

```
In [45]:
```

```
df_profitable_movies.plot(kind='scatter',x='popularity',y='profit'); #plotting scatter plot
plt.title('Profit vs Popularity');
```


• Most of the popularity scores are between 0 to 10.

In [46]:

```
df_profitable_movies['popularity'].hist();
plt.xlabel('popularity');
plt.ylabel('frequency');
plt.title('Distribution of popularity');
```


• Now we can clearly see, popularity score for most of the profitable movies lies between 0 to 3.

In [575]:

```
df_profitable_movies['popularity'].mean()
```

Out[575]:

1.4146774859510078

Average popularity score is 1.41.

step 3: Let's find cast associated with profitable movies.

In [48]:

```
profitable_movie_cast = df_profitable_movies['cast'].str.get_dummies(sep="|")
```

In [49]:

 $\label{lem:profitable_movie_cast.sum().sort_values(ascending=False)[:10] \#Printing top 10 Artists associated with porfitable movies.$

Out[49]:

```
Robert De Niro
Tom Hanks
                     33
Bruce Willis
                     33
Tom Cruise
                     31
Brad Pitt
                     30
Samuel L. Jackson
                     30
Denzel Washington
                     29
                     28
Harrison Ford
Morgan Freeman
                     28
Cameron Diaz
                     27
dtype: int64
```

visualizing top 10 artists associated with porfitable movies.

In [52]:

```
profitable_movie_cast.sum().sort_values(ascending=False)[:10].plot(kind='bar');
plt.xlabel('Actor Names')
plt.ylabel('Count of profitable movies')
plt.title('Top 10 artists associated with profitable movies');
```


• Robert De Niro is an actor having 38 profitable movies followed by Tom Hanks and Bruce Willis both with count 33.

step 4: Let's find directors associated with profitable movies.

In [55]:

```
profitable_movie_directors = df_profitable_movies['director'].str.get_dummies(sep="|")
```

In [56]:

```
profitable_movie_directors.sum().sort_values(ascending=False)[:10] #Printing top 10 directors asso
ciated with porfitable movies
```

Out[56]:

```
Steven Spielberg 27
Clint Eastwood 21
Tim Burton 16
Ridley Scott 16
Robert Zemeckis 15
```

```
Robert Rodriguez 14
Martin Scorsese 14
Woody Allen 13
Steven Soderbergh 12
Ron Howard 12
dtype: int64
```

Visualizing top 10 directors associated with porfitable movies.

In [57]:

```
profitable_movie_directors.sum().sort_values(ascending=False)[:10].plot(kind='bar');
plt.xlabel('Director Names')
plt.ylabel('Count of profitable movies')
plt.title('Top 10 artists associated with profitable movies');
```


• So we can see, Steven Spielberg is the director having highest profitable movies count (27) while Steven Soderbergh Ron Howard share same profitable movies count i.e. 12.

Research Question 5: Movies having longest and shortest runtime.

step 1: First let's find movie with longest runtime.

```
In [582]:
```

```
df_runtime = df_clean[df_clean.runtime > 0] #since duration cannot be 0 for any movie.
```

In [583]:

```
df_runtime [df_runtime.runtime == df_runtime.runtime.max()]
```

Out[583]:

	id	imdb_id	popularity	budget	revenue	profit	original_title	cast	director	overview	runtime	genres
3894	125336	tt2044056	0.006925	0	0	0	The Story of Film: An Odyssey	Mark Cousins Jean- Michel Frodon Cari Beauchamp	Mark Cousins	The Story of Film: An Odyssey, written and dir	900	Documentary
4												Þ

So the movie with longest runtime 900 mins is "The Story of Film: An Odyssey". It belongs to the Documentary genre.

In [584]:

```
df_runtime [df_runtime.runtime == df_runtime.runtime.min()]
```

Out[584]:

	id	imdb_id	popularity	budget	revenue	profit	original_title	cast	director	overview	runtime
1112	264170	tt3643208	0.202776	0	0	0	Batman: Strange Days	Kevin Conroy Brian George Tara Strong	Bruce Timm	Celebrating Batman's 75th anniversary, DC En	3
2232	55692	tt1791596	0.267950	0	0	0	Scrat's Continental Crack-Up	Chris Wedge Simon Pegg	Steve Martino Mike Thurmeier	You may think you know the history of continen	3
2830	26840	tt0307461	0.254157	0	0	0	Shrek in the Swamp Karaoke Dance Party	Mike Myers Eddie Murphy	Vicky Jenson Andrew Adamson	Shrek and his friends enjoy themselves with so	3
3298	140656	tt1315885	0.152615	0	0	0	Mamá	Victoria Harris Irma Monroig Berta Ros	Andy Muschietti	Little Victoria is waken up by her sister Lili	3
3350	105759	tt1430144	0.037628	0	0	0	The Black Hole	Napoleon Ryan	Philip Sansom Olly Williams	Charlie, a sleep- deprived office worker accide	3
3891	98857	tt2115386	0.028803	0	0	0	Scrat's Continental Crack-Up: Part 2	Chris Wedge	Steve Martino Mike Thurmeier	This short film continues the adventures of th	3 An
5399	43629	tt0411302	0.168542	0	0	0	Doodlebug	Jeremy Theobald	Christopher Nolan	A man is trying to catch some sort of bug runn	3
5993	259761	tt3605002	0.039953	0	0	0	Lights Out	Lotta Losten	David F. Sandberg	A woman prepares for bed, but realizes that so	3
8706	13930	tt0248808	0.811101	0	0	0	For the Birds	Ralph Eggleston	Ralph Eggleston	One by one, a flock of small birds perches on 	3
4											<u> </u>

So we have total 9 movies with shortest runtime i.e 3 mins.

Research Question 6: Best Month to Release a Movie.

we can answer this question by analyzing the release date of profitable movies.

step 1: Get release month from release date of each profitable movies

In [59]:

```
#adding new column release_month from release_date for each profitable movie.

df_profitable_movies.insert(13,'release_month' ,df_profitable_movies['release_date'].apply(lambda x : x.month))
```

In [60]:

```
release_months = df_profitable_movies['release_month'].value_counts().sort_index()
release months
Out[60]:
1
      148
2
      176
3
      207
      192
4
5
      223
6
      281
      253
8
      237
      262
9
10
      240
11
      223
12
      334
Name: release_month, dtype: int64
```

step 3: Plotting bar chart to visualize graphically.

In [64]:

```
release_months.plot(kind='bar');
plt.xlabel('Month Number');
plt.ylabel('No of profitable movies');
plt.title('Best month to release a movie');
```


• So it looks like most profitable month for movies is December followed by June.

Conclusions

After the analysis of the given data set, we can provide information about following questions.

Research Question 1: Most popular movies from year to year.

By plotting bar chart of popular movies for each year, we can say that, for movies released in year 2015, most popular movie was "Jurasic World" while "Psycho" received more popularity among movies released in 1960.

Research Question 2: Movies with higher ratings from year to year.

By plotting bar chart of movies with higher rating for each year, we can say that, among movies that were released in year 2015, the movie which received highest vote average was once again "the jinx life and death of robert durst" while "Psycho" received highest vote average among movies released in 1960.

Research Question 3: Which genres are most popular from year to year? (based on profit)

By looking at the chart, we can say, top 4 genres of profitable movies were Drama, Comedy, Thriller and Action.

Research Question 4: What are the properties associated with profitable movies?

We have concluded following properties about porfitable movies.

Most of the durations of profitable movies lie between 90 to 150 mins with average duration being 110 mins i.e. around (2 hours).

Budget for most of the porfitable movies lies between 1,00,00,000 (1 crore) to 120,000,000 (12 crore) with average budget is around 4 crore.

Popularity score for most of the profitable movies lies between 0 to 3 with average popularity score being 1.41. Top 10 Artists associated with profitable movies are following:

- Robert De Niro
- Tom Hanks
- Bruce Willis
- Tom Cruise
- Brad Pitt
- Samuel L. Jackson
- · Denzel Washington
- Harrison Ford
- Morgan Freeman
- Cameron Diaz

Top 10 Directors associated with profitable movies are following:

- Steven Spielberg
- Clint Eastwood
- Tim Burton
- Ridley Scott
- Robert Zemeckis
- Robert Rodriguez
- Martin Scorsese
- Woody Allen
- · Steven Soderbergh
- Ron Howard

Research Question 5: Movies having longest and shortest runtime.

The movie with longest runtime 900 mins is "The Story of Film: An Odyssey". It belongs to the Documentary genre.

On the other hand, we have total 9 movies with shortest runtime i.e 3 mins.

Research Question 6: Best Month to Release a Movie.

December followed by June are two most profitable months

Limitations

All the above presented analysis, insights and visualization about the data are totaly based on the information that we have gathered through the data without performing any statiscal inferences.

For question 1 and 2, we have drawn our conclusion on the basis of popularity score and average votes respectively. Popularity score for the movie "Jurasic World" is much higher than the popularity score for other movies, So, in this situation we might have applied some statistics to discover any outliers or there might be missing data in terms of popularity score for other movies. On the other hand we can see, Average votes are almost same for all the movies.

Question 3,4 and 6 are based on the analysis of profitable movies. Again this is not 100 percent true that if we follow all properties associated with profitable movies while making a movie, then that movie also makes profit, Because in our

dataset there are many movies having budget equal to 0. While analyzing the data, We have dropped all the rows where budget was 0. Movie having budget equal to 0 does not make sense at all because there is always some budget associated for movie, So, technically these are the missing values that need to filled before analyzing the data.