

TD 3: Théorèmes Thévenin et Norton Antivirus

Théorème de superposition

1) $E_1 = 10 \text{ V ; } R_1 = 2 \text{ k}\Omega$ $E_2 = 20 \text{ V ; } R_2 = 5 \text{ k}\Omega$ $R_3 = 10 \text{ k}\Omega$

Calculer U.

2) E_1 = 20 V ; R_1 = 200 Ω I_0 = 0,2 A ; R_2 = 100 Ω R_3 = 500 Ω R_4 = 400 Ω

Calculer I₁ et I₃.

Théorème de Thévenin

コッンエュ

1) E = 20 V; R_1 = 10 k Ω R_2 = 15 k Ω R_3 = 10 k Ω R_4 = 4 k Ω

Déterminer le générateur de Thévenin "vu" par R₄ et en déduire U

2) $E_1 = 10 \text{ V}$; $R_1 = 3 \text{ k}\Omega$; $R_2 = 3 \text{ k}\Omega$ $E_2 = 10 \text{ V}$ $R_3 = 6 \text{ k}\Omega$; $R_4 = 10 \text{ k}\Omega$ $R_5 = 2 \text{ k}\Omega$

Déterminer le générateur de Thévenin "vu" par R_c . Calculer R_c telle que $U=2\ V$.

- 3) a) Déterminer la tension E_{TH} du générateur de Thévenin "vu" par R_C et en déduire la relation qui doit exister entre les 4 résistances R_1 à R_4 pour que le courant soit nul dans R_C quelle que soit la valeur de cette résistance.
- R_1 R_2 R_2 R_2 R_3 R_4

b) Déterminer l'expression de R_{TH}.

4)
$$E_1 = 10 \text{ V}$$
 $R_1 = 1 \text{ k}\Omega$ $R_2 = 3 \text{ k}\Omega$ $R_3 = R_4 = 5 \text{ k}\Omega$

Calculer le générateur de Thévenin "vu" par R_C et en déduire E_4 pour que I=0 quelle que soit R_C

- 5) a) Calculer le générateur de Thévenin "vu" par la résistance R2 de droite.
- b) Si l'on suppose que R_2 varie, pour quelle valeur de cette résistance (par rapport à R_1) la tension U est-elle maximum ?

Théorème de Norton Antivirus

Exercice 5:

1)
$$E = 10 \text{ V}$$
 $R_1 = 100 \Omega$ $R_2 = 200 \Omega$ $R_3 = 300 \Omega$ $R_C = 100 \Omega$

 $E \uparrow \qquad \qquad R_1 \qquad R_2 \qquad R_3 \qquad R_C \uparrow U$

Calculer le générateur de Norton "vu" par R_{C} et en déduire U et I

2)
$$E_1 = 10 \text{ V}$$
 $R_1 = 2 \text{ k}\Omega$ $R_2 = 6 \text{ k}\Omega$ $R_2 = 10,5 \text{ k}\Omega$

 E_1 R_1 R_2 R_2 R_2 R_2 R_3 R_4 R_5

Calculer le générateur de Norton "vu" par R_{C} et en déduire U et I

Electronique

3)
$$E_1 = 10 \text{ V}$$
 $R_1 = 4 \text{ k}\Omega$ $R_C = 2 \text{ k}\Omega$ $E_2 = 9 \text{ V}$ $R_2 = 3 \text{ k}\Omega$ $E_3 = 15 \text{ V}$ $R_3 = 6 \text{ k}\Omega$

 R_1 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_8

Calculer le générateur de Norton "vu" par R_C et en déduire I .

4)
$$E_1 = 10 \text{ V}$$
 $R_1 = R_2 = 10 \Omega$
 $I_3 = 5 \text{ A}$ $R_3 = 3 \Omega$, $R_4 = 2 \Omega$
 $R_C = 8,4 \Omega$

Calculer I .

