

Parsivanath Charitable Trust's A. P. SHAVH INSTRICTED OF TRECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Experiment No:3

Course Outcome: CO2 Blooms Level: L3

Aim: To implement Linear Regression

Abstract:

Linear Regression is a fundamental statistical and machine learning technique used to model the relationship between a dependent variable and one or more independent variables. It aims to fit a linear equation to observed data, enabling predictions and insights into data trends.

Multiple Linear Regression (MLR) is a statistical technique used to model the relationship between one dependent variable and two or more independent variables.

Sample Input and Output:

Case 1:

Revenue
534.799
625.1901
660.6323
487.707
316.2402
367.9407
308.8945
696.7166
55.39034
737.8008
325.9684
71.16015

Sample Output

The linear regression model learns a relationship of the form:

AY: 2025-26

Revenue=m·Temperature+c

Example

Revenue = $25.6 \cdot \text{Temperature} + 100$

Case 2:

A. P. SHAH INSTRUTUD OF TEXCHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Area (sq ft)	Price (\$)
800	150,000
950	175,000
1100	200,000
1300	230,000
1500	260,000
1700	295,000
2000	340,000
2200	370,000
2500	410,000
2800	450,000

This table can be used as a training dataset for a Simple Linear Regression model to learn the relationship:

 $Price = m \cdot Area + c$

Case 3:

Experience (X)	Salary (y) (in lakhs)
2	3
6	10
5	4
7	13

$$y = -2.14 + 1.928x$$

Theory:

LINEAR REGRESSION

Regression falls under supervised learning where the system tries to predict a value for an input based on previous information.

Simple Linear regression involves finding the "best" line to fit two attributes (or variables) so that one attribute (x) can be used to predict the other (y).

Regression involves two variables:

- i. First variable: denoted by x: predictor, explanatory or independent variable
- ii.Second variable: denoted by y: response, outcome or dependent variable

AY: 2025-26

Mathematical Representation –

In a simple regression problem(a single x and a single y), the form of the model would be:

$$y = \beta 0 + \beta 1x$$

 β values are called **model coefficients**. These values are "learned" during the model fitting/training step, where :

A. P. SHAH INSHHIPUHD OF TRECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

$$\beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

and

$$\beta_0 = \frac{1}{n} \left(\sum y_i - \beta_1 \sum x_i \right) = \bar{y} - \beta_1 \bar{x}$$

Multiple Linear Regression: A linear regression model with more than one independent variable and one dependent variable. Polynomial Regression is a type of Regression analysis that models the relationship of values of the Dependent variable "x" and Independent variables "y" as non linear. It is a special case of Multiple Linear Regression.

Program:

1. You own an ice cream business and you would like to create a model that could predict the daily revenue in dollars based on the outside air temperature (degC). You decide that a Linear Regression model might be a good candidate to solve this problem.

Independent variable X: Outside Air Temperature

Dependant Variable Y: Overall daily revenue generated in dollars.

AY: 2025-26

Output:

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  %matplotlib inline

C:\Users\Ramya\Anaconda3\lib\site-packages\statsmodels\tools\_testing.py:19: FutureWarning: pandas.ut
  il.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm
```


A. P. SHAH INSTITUTE OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

A. P. SHAH INSHHHUMD OF THECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

A. P. SHAH INSHHHUHD OF TREEHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

A. P. SHAH INSHHHUMD OF THECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

A. P. SHAH INSHHIPUID OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

```
A Multiple Linear Regression model for predicting profit of a company according to various factors. Dataset consists of five features( first 4 are independent
features and remaining last is dependent)
  In [1]: #importing libraries
           import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
  In [2]: #importing dataset and declaring independent and dependent variable
            #the dependent variable is in last column, hence y is assigned with [:,-1] (meaning all rows of last co
           ds = pd.read_csv('C:/Users/Ramya/Desktop/ML/datasets/50_Startups.csv')
           x = ds.iloc[:,:-1].values
           y = ds.iloc[:,-1].values
  In [3]: #checking our dataset
           ds.head(10)
  Out[3]:
              R&D Spend Administration Marketing Spend
                                                    State
            0 165349.20
                           136897.80
                                        471784.10 New York 192261.83
            1 162597.70
                         151377.59
                                        443898.53 California 191792.08
            2 153441.51 101145.55 407934.54 Florida 191050.39
            3 144372.41
                           118671.85
                                        383199.62 New York 182901.99
            4 142107.34 91391.77 366168.42 Florida 166187.94
                            99814.71
                                        362861.36 New York 156991.12
            6 134615.46 147198.87 127716.82 California 156122.51
            7 130298.13 145530.06
                                        323876.68 Florida 155752.60
            8 120542.52 148718.95 311613.29 New York 152211.77
            9 123334.88
                           108679.17
                                        304981.62 California 149759.96
 In [4]: #checking for missing values
          ds.isnull().any()
 Out[4]: R&D Spend
                              False
          Administration
                              False
          Marketing Spend
                             False
          State
                              False
          Profit
          dtype: bool
          no missing data
 In [5]: #categorical data found in column [3]
           $encoding categorical data using OneHotEncoding
          from sklearn.preprocessing import OneHotEncoder
          from sklearn.compose import ColumnTransformer
          ct = ColumnTransformer(transformers = [('encoding', OneHotEncoder(), [3])], remainder = 'passthrough')
          x = np.array(ct.fit_transform(x))
```


A. P. SHAH INSHHIPUID OF TEXCHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

```
In [7]: #splitting dataset in training and testing set
           from sklearn.model_melection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0)
 In [8]: #training the model
          from sklearn.linear_model import LinearRegression
lr = LinearRegression()
          lr.fit(x_train,y_train)
 Out[8]: LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
 In [9]: #comparing the predicted values of the model with the actual values of the model y\_pred = lr.predict(x\_test)
           np.set_printoptions(precision = 2)
          print(np.concatenate((y_pred.reshape(-1,1),y_test.reshape(-1,1)),1))
          [[103015.2 103282.38]
            [132582.28 144259.4 ]
[132447.74 146121.95]
            [ 71976.1
            [178537.48 191050.39]
            [116161.24 105008.31]
            [ 67851.69 81229.06]
[ 98791.73 97483.56]
            [167921.07 166187.94]]
          AS YOU CAN SEE THE COLUMN [0] HAS PREDICTED VALUES AND COLUMN [1] HAS ACTUAL VALUES, BOTH THE VALUES ARE
          PRTTY CLOSE WHICH SUGGESTS THAT OUR MODEL DID A GOOD JOB IN PREDICTING VALUES.
In [10]: #getting accuracy of the model
           from sklearn.metrics import r2 score
          r2_score(y_test, lr.predict(x_test))
Out[10]: 0.9347068473282303
```

THE ACCURACY FOR THE MODEL CAME OUT TO BE 93.4% WHICH IS PRETTY GOOD.

Conclusion: Linear Regression is implemented on the Ice cream Dataset where temperature is the independent variable and Revenue is the dependent variable. A Multiple Linear Regression model is built on the Startup dataset with four independent variables namely R&D Spend, Administration, Marketing Spend and State and the dependent variable Profit. State being a categorical variable is one hot encoded before model building.

Exercise 1:

You work in the real estate sector and you would like to create a model that could predict the selling price of a property based on its area in square feet. You decide that a Linear Regression model might be a good candidate to solve this problem.

Data set:

- Independent variable X: Area of the property (in square feet)
- Dependent variable Y: Selling price of the property (in dollars)

Students shall draw flowchart of exercise question in the writeup and submit.

AY: 2025-26

Exercise 2:

Predict the total fare amount of a Chicago taxi trip based on trip distance and duration using a Linear Regression model

A. P. SIEVII INSTRUTUTE OF TEXTINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Students shall draw flowchart of exercise question in the writeup and submit.