Template 6: Course Learning Syllabus

Course Learning Syllabus (// includes Learning Outcomes & Learning Plan & Assessment Plan)

Course	18MAB1	02T	Course Name	.08	ADVANCE	ED CAL PLEX AI				ID			Cou	rse gory	В	25	Bas	sic s	Sciei	nces		3	T	P	C
Pre requis	site 18MAB	71017			Co- requisite Courses	NII	VII L	yJI	3	7			<i> </i>	Prog	ress	11	Vil					3	7	0	4
	Offering		Mathe	matics	Courses		Data Codes			rds			n	vil											
	Learning ale (CLR):		The purp	pose of	learning this	course is	L	ear	ning				I	Prog	ram	Lei	arnir	ig C	utc	ome	es (PLC))		
CLR-1	To gain know triple Integr Engineering	ral and	d apply t				1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	To gain know Volume Inte Stokes and	gral a	re Applio	ation d	of Gauss th	eorem,																			
2 1	To know the inverse trans of Science	sform	and app	ly then		_																			
	To know the					ns and	om)	, 8	(%)				45	arch			Sustainability		rk		e				
	To gain kno integrals inv theorem and	olving	complex	functi	ons using i	Residue	Thinkina (Bloom)	Proficiency (%)	Attainment		ng Knowledge	Analysis	Development	Design, Research	Tool Usage	. Culture	8		& Team Work	ation	Mgt. & Finance	Learning			
	Learning nes (CLO):		At the e		his course, le	earners will	Level of	Expected	Expected		Engineering	Problem	Design &	Analysis,	Modern 7	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	1 - 05d	P50 - 2	PSO - 3
1	Gain familiar using change			tion of	multiple in	tegrals	2	85			L	4	М	9	U	8	_ш	B	М	Ü	A	1	ď	σ.	ď
CLO-2 :	Gain knowled calculus in p. In solving Ol	dge in roblen	applying				2	85	80		L			М	М										
CLO-3 :	Many Engine problems inv transform m be used for	olving nethod	ODE, P.	DE and	integrals.	Laplace	2	85	80			М							М			Н			
	Gain knowled functions an				of complex	analytic	2	85	80		L	М		L					М			Ι-I			
CLO-5	Gain knowled Residue thed Engineering	dge in	evaluati	ng impi			2	85	80			М	М						М			Н			
				1000																					

Learning Unit /	Learning Unit / Module	Learning Unit /	Learning Unit /	Learning Unit /
Module 1	2	Module 3	Module 4	Module 5

	ation our)	12	12	12	12	12
S-1	SLO-	Evaluation of double integration Cartesian and plane polar coordinates	Review of vectors in Cartesian and plane 2,3 dimensions,		Definition of Analytic Function - Cauchy Riemann equations	Cauchy's integral formulae - Problems
	Evaluation of double SLO- integration of		integration of Gradient, divergence, properties		Cauchy Riemann equations	Cauchy's integral formulae- Problems
5-2	SL0-	Evaluation of double integration of plane polar coordinates	curl - Solenoidal	Transforms of Derivatives and Integrals	Properties of analytic function functions	Cauchy's integral formulae- Problems
5-2.	5L0- 2	Evaluation of double integration of plane polar coordinates	Irrotational fields	Transform of derivatives and integrals	Determination of analytic function using - Milne- Thomson's method	Taylor's expansions with simple problems
<i>5-3</i>	SLO-	Evaluation of double integral by changing of order of integration	Vector identities (without proof) - Directional derivatives	Initial value theorems (without proof) and verification for some problems	Determination of analytic function using - Milne- Thomson's method	Taylor's expansions with simple problems
	SL0- 2	Evaluation of double integral by changing of order of Line integrals proof) and verification for		Determination of analytic function using - Milne- Thomson's method	Laurent's expansions with simple problems	
5-4	SL0-	Problem solving using tutorial sheet	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
Jr	SL0- 2	Problem solving using tutorial sheet	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
<i>9-5</i>	SLO-	Evaluation of double integral by changing of order of integration	Line integrals	Inverse Laplace transforms using partial fractions	Conformal mappings:	Laurent's expansions with simple problems
1	SL0- 2	Area as a double Inverse Laplace Integral (Cartesian) Surface integrals transforms sing			Conformal mappings:	Singularities
5-6	SL0-	Area as a double integral (Cartesian)	Surface integrals	Inverse Laplace transforms section shifting theorem	Conformal mappings: inversion	Types of Poles and Residues

		Area as a double		LT using			
	SL0- 2	integral (polar)	Volume Integrals	Convolution theorem -problems only	Conformal mappings:	Types of Poles and Residues	
<i>S-7</i>	SLO-	Area as a double integral (polar)	Green's theorem (without proof),	LT using Convolution theorem -problems only	Conformal mappings: reflection	Cauchy's residue theorem (without proof)-	
,	<i>SLO-</i>	Triple integration in Cartesian coordinates	Green's theorem (without proof),	ILT using Convolution theorem -problems only	Conformal mappings: reflection	Contour integration Unit circle·	
5-8	SLO-	Problem solving Problem solving Problem solving using tutorial sheet using tutorial sheet using tutorial sheet			Problem solving using tutorial sheet 17	Problem solving using tutorial sheet 14	
J-8	SL0- 2	Problem solving using tutorial sheet	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet	
	SLO- 1	Conversion from Cartesian to polar in double integrals	,		bilinear transformation	Contour integration. Unit circle·	
5-9	5L0- 2	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof) applications to cubes.	LT of periodic functions -problems only	bilinear transformation	Contour integration. Unit circle	
5-10	SLO- 1	Triple integration in Cartesian coordinates	Gauss divergence theorem (without proof applications to parallelepiped·	Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only	bilinear transformation	Contour integration semicircular contour	
, 10	SLO- 2	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) - Verification	Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only		Contour integration semicircular contour	
5-11	1	Triple integration in Cartesian coordinates	Stoke's theorems (without proof) - Applications to	Solution of Integral		Contour integration: semicircular contour	

			cubes	involving convolution type		
	SLO- 2	Area of triple Integral	Stoke's theorems (without proof) - Applications to parallelepiped only	Solution of Integral equation and integral equation involving convolution type	Cauchy's integral theorem applications	Contour integration semicircular contour
	SLO- 1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet	Problem solving	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
5-12	5L0- 2	Application of Multiple integral in engineering	Application of Line and Volume Integrals in engineering	Application of Laplace Transform in engineering	Application of Bilinear Transformation and Cauchy Integral in engineering	Application Contour integration in engineering

Learning Resources

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11*Reprint, 2010
- $5.\ G.B.\ Thomas\ and\ R.L.\ Finney,\ Calculus\ and\ Analytic\ geometry,\ 9_{th}\ Edition,\ Pearson, Reprint,\ 2002$
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

	Level of		Final Examination				
	Thinking	CLAT - 1 (10%)	CLAT - 2 (15%)	CLAT - 3 (15%)	CLAT - 4 (10%)	(50%)	
Level	Remember	Services in the services	3000				
1	Understand	40 %	30 %	30 %	30 %	30 %	
Level	Apply						
2	Analyze	40 %	40 %	40 %	40 %	40 %	
Level	Evaluate			80.00			
3	Create	20 %	30 %	30 %	30 %	30 %	

CLAT - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

5LO - Session Learning Outcome

Course Designers						
(a) Experts from Indust	ry					
1 Mr·V·Maheswaran	CTS, Chennai	maheswaran@yah	2			
(b) Experts from Higher	r Technical Institution	15				
3 Dr·K·C·SivaKumar	IIT, Chennai	kcskumar@iitm·a	4	Dr·nanjundan	Bangalore University	nanzandan@gmail·com
(b) Internal Experts						
5 Dr·A·Govindarajan	SRMIST	givindarajan·a@kt r·srmuniv·ac·in	6	Dr·sundarammalkes	SRMIST	Sundarammal·k@srmu

Commencement of Cycle Test – I	07.05.2021 (Portions Unit-I)
Commencement of Cycle Test – II	21.06.2021 (Portions Unit - II, III)
Commencement of Cycle Test – III	27.07.2021
Last working day	13.08.2021

Dr. N. Parvathi

Professor

1/4/2021

Course Coordinator

Email: parvathn@srmist.edu.in

Mobile: 9443004036

Dr. A. Govindarajan

Professor & Head

Department of Mathematics

Email: hod.maths.ktr@srmist.edu.in

Tel: +91-44-27417000 Ext: 2701

Dr. A. GOVINDARAJAN, M.Sc.,M.Phil.,Ph.D.,
Professor & Head
Department of Mathematics
Faculty of Engineering & Technology
SRM Institute of Science and Technology
SRM Nagar, Kattankulathur - 603 203.
Kancheepuram Dist., Tamil Nadu, India.