Sistema de atención técnica remota basado en la tecnología WebRTC

Diego Otero González

Facultad de Informática Grado en Ingeniería Informática Mención en Tecnologías de la Información Director: Diego Fernández Iglesias

Trabajo fin de grado, 2017

- Introducción
 - Motivación
 - Objetivos
- Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Motivación

Problemas existentes

- No existe una aplicación gratuita que permita dar soporte técnico.
- Existen una serie de herramientas que simplifican esta tarea, pero necesitan: la instalación de software por parte del cliente y no son multiplataforma.
- El cliente no siempre dispone de un conocimiento tecnológico adecuado para atender al técnico.
- La tarea del técnico es dura y complicada, ya que depende del cliente.
- Todo esto impide atender y resolver las dudas del cliente de manera eficiente y eficaz.

Objetivos

Objetivos principales del proyecto

- Se desarrollará una aplicación web que permita dar soporte técnico mediante una videoconferencia, permitiendo la compartición de escritorio.
- Se empleará únicamente el propio navegador web.
- Además, la aplicación web permitirá administrar las salas, la gestión de usuarios, el control de acceso y la gestión de eventos.
- Se utilizará en la aplicación la tecnología WebRTC.

Objetivos

Objetivos principales del proyecto

■ Simplificar el acceso por parte del cliente.

Evitar la posible complejidad de la atención técnica.

■ Facilitar la gestión de los usuarios por parte del soporte.

- Introducción
 - Motivación
 - Objetivos
- Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Comparativa entre aplicaciones actuales

¿Qué aporta la aplicación sobre las existentes?

■ Proyecto de software libre.

¿Qué aporta la aplicación sobre las existentes?

■ Proyecto de software libre.

■ No se necesita instalar software del lado cliente.

¿Qué aporta la aplicación sobre las existentes?

- Proyecto de software libre.
- No se necesita instalar software del lado cliente.

Calendario de eventos para los empleados.

¿Qué aporta la aplicación sobre las existentes?

- Proyecto de software libre.
- No se necesita instalar software del lado cliente.

Calendario de eventos para los empleados.

■ La aplicación es multiplataforma.

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

WebRTC

Web Real-Time Communication

- Es un framework de código abierto que permite comunicaciones en tiempo real desde el navegador sin la necesidad de instalar ningún software adicional.
- Se compone de varias interfaces en JavaScript que están integradas en los principales navegadores (Chrome, Firefox y Opera).
- Estas interfaces permiten emplear el tráfico multimedia.
- Es un proyecto reciente, en continuo desarrollo y con cierta falta de estabilidad.

Licode

Primer framework

- Es un proyecto que emplea la tecnología WebRTC, desarrollado por Lynckia.
- El cliente emplea: Erizo (Stream, Room, Event).
- El servidor emplea: NuveAPI y Erizo (Controller).

Licode

Arquitectura

EasyRTC

Segundo framework

■ Es un stack WebRTC completo con licencia libre, desarrollado por Priologic Software.

Se compone de EasyRTC Client y EasyRTC Server.

Node.js

Entorno de ejecución

JavaScript V8 de Chrome.

Es un entorno de ejecución para JavaScript asíncrono construido con el motor de

- Permite atender a una gran cantidad de conexiones entrantes sin retardo en las respuestas.
- Usa un solo hilo de ejecución.

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasvRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Scrum: Metodología de desarrollo ágil

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

5 Desarrollo

- Base de datos
- Arquitectura de la aplicación
- Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Base de datos

Uso de una base de datos no relacional

- Es un sistema de base de datos NoSQL.
- Orientado a documentos.
- En lugar de guardar los datos en tablas, se guardan en estructuras de datos similares a JSON.

Arquitectura de la aplicación

Soluciones probadas

Se probaron las siguientes soluciones para su implementación:

- Cambiar certificados.
- NGINX y TURN.

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasvRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Gestión de usuarios, salas y eventos

- A través de las historias de usuario se han podido sacar los requisitos para las gestiones.
- Con los mockups se han obtenido los requisitos a emplear en las vistas.
- Los usuarios, salas y eventos se pueden eliminar, crear y modificar de manera sencilla desde la aplicación.
- Los usuarios y salas se pueden visualizar en listas ordenables.
- Los eventos se pueden visualizar en un calendario interactivo.

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

Demo

- Introducción
 - Motivación
 - Objetivos
- 2 Estado del arte
- 3 Tecnologías
 - WebRTC
 - Licode
 - EasyRTC
 - Node.js
- 4 Planificación y Metodología

- 5 Desarrollo
 - Base de datos
 - Arquitectura de la aplicación
 - Cambio de framework
- 6 Implementación
 - Gestión de usuarios, salas y eventos
- 7 Demo
- 8 Conclusiones
 - Conclusiones del proyecto
 - Lineas futuras

■ Se han alcanzado los objetivos.

- Se han alcanzado los objetivos.
- La aplicación permite gestionar usuarios, salas y eventos de manera sencilla y eficaz.

- Se han alcanzado los objetivos.
- La aplicación permite gestionar usuarios, salas y eventos de manera sencilla y eficaz.
- Se ha desarrollado la aplicación empleando WebRTC.

- Se han alcanzado los objetivos.
- La aplicación permite gestionar usuarios, salas y eventos de manera sencilla y eficaz.
- Se ha desarrollado la aplicación empleando WebRTC.
- Se ha utilizado NoSQL con MongoDB.

- Se han alcanzado los objetivos.
- La aplicación permite gestionar usuarios, salas y eventos de manera sencilla y eficaz.
- Se ha desarrollado la aplicación empleando WebRTC.
- Se ha utilizado NoSQL con MongoDB.
- Se ha conseguido desarrollar una aplicación que permite dar soporte técnico y permite evitar una posible complejidad en la atención al cliente.

Lineas futuras

Mejoras para la aplicación

- Almacenar información sobre los clientes.
- Mejorar la calidad de la videoconferencia, ya que el framerate está limitado.
- Incluir elementos estéticos y de manejo en las vistas.
- Generar certificados digitales de una autoridad certificadora de confianza.
- Realizar búsquedas múltiples en el calendario de eventos.

Sistema de atención técnica remota basado en la tecnología WebRTC

Diego Otero González

Facultad de Informática Grado en Ingeniería Informática Mención en Tecnologías de la Información Director: Diego Fernández Iglesias

Trabajo fin de grado, 2017

