Algèbre linéaire avancée II printemps 2021

Série 2

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1.

- i) Soit K un corps. Un polynôme p(x) divise chaque $f(x) \in K[x]$ si et seulement si p(x) = a pour un élément $a \neq 0$ de K.
- ii) Soit K un corps et $f(x),g(x)\in K[x]$. On considère les assertions suivantes: a) f(x) = ag(x), $a \in K$. b) f(x) et g(x) ont les mêmes racines (avec multiplicité).

Montrer que a) implique b). Est-ce que b) implique a)? (Justifiez votre réponse)

Exercice 2. Soit K un corps et $f(x) \in K[x]$ un polynôme de degré 3. Montrer que f(x) est irréductible si et seulement si f(x) n'a pas de racines en K.

Exercice 3. Factoriser $f(x) \in K[x]$ en polynômes irréductibles.

a)
$$f(x) = 3x^4 + 2$$
, $K = \mathbb{Z}_5$.

a)
$$f(x) = 3x^4 + 2$$
, $K = \mathbb{Z}_5$.
d) $f(x) = x^3 + 2x^2 + 2x + 1$, $K = \mathbb{Z}_3$.

b)
$$f(x) = 3x^4 + 2$$
, $K = \mathbb{Z}_{11}$.

b)
$$f(x)=3x^4+2,\ K=\mathbb{Z}_{11}.$$
 e) $f(x)=x^4-x^2+x-1,\ K=\mathbb{Z}_{13}.$

c)
$$f(x)=x^3+2x^2+2x+1, \ K=\mathbb{Z}_7.$$
 f) $f(x)=x^4-x^2+x-1, \ K=\mathbb{Z}_{17}.$

Exercice 4. Calculer gcd(f,g) et $p,q \in F[x]$ t.q. $gcd(f,g) = p \cdot f + q \cdot g$:

1.
$$f(x) = x^2 + 2$$
, $g(x) = x^3 + 4x^2 + x + 1$, $K = \mathbb{Z}_5$

2.
$$f(x) = x^2 + 1$$
, $g(x) = x^5 + x^4 + x^3 + x^2 + x + 1$, $K = \mathbb{Z}_2$

3.
$$f(x)=x^2-x-2, \ g(x)=x^5-4x^3-2x^2+7x-6, \ K=\mathbb{Q}.$$

Exercice 5. (*) Soit $f(x) \in \mathbb{R}[x] \setminus \{0\}$, $\deg(f) \geq 2$.

- i) Si deg(f) est impair, alors f(x) n'est pas irréductible.
- ii) Si f(x) est irréductible, alors deg(f) = 2.
- iii) Montrer comment ii) implique que chaque polynôme $f(x) \in \mathbb{R}[x]$, $\deg(f) \geq 1$ possède une racine complexe.