Quantitative Methods in Finance

Tutorial, Part 13: *Univariate modelling of volatility.*

Example: We will examine and model volatility based on univariate volatility models, where we focus on the return to the euro exchange rate against the US dollar. The data are daily and run from 7 July 2002 to 6 June 2013, giving a total of 3,988 observations. The data are contained in Stata data file currencies.dta. The programming code is given in Stata Do file currencies-commands-t13.do.

- a) Inspect the euro exchange rate time series visually. Does it look stationary? Construct continuously compounded percentage returns (percentage changes). Check for stationarity of the newly generated time series. What do you find?
- b) Fit a constant-only model of the percentage return to the euro by the ordinary least squares estimator and test for ARCH effects by using Engle's Lagrange multiplier test. What do you find?
- c) Identify the mean equation as an ARMA model (or components thereof) by inspecting the appropriate information criterion. Also, identify the variance equation as a GARCH(1,1) model. Estimate the two equations together by the maximum likelihood estimator. Test jointly the ARCH(1) and GARCH(1) coefficients for statistical significance.
- d) Let us assume that the financial markets respond differently to unanticipated increases in the euro rate than they do to unanticipated decreases. We can see if the data support this supposition by specifying a GARCH model that allows an asymmetric effect of "news" (disturbances or unanticipated changes). Estimate two such models; the GJR model and the exponential GARCH (EGARCH) model. For the former, also generate the news-response curve. What do you find?
- e) Let us assume that there exists a feedback from the conditional variance to the conditional mean, i.e. that the eure rate is partly determined by its volatility (risk). We can see if the data support this supposition by specifying a GARCH-in-mean (GARCH-M) model with a feedback term in the mean equation. What do you find?
- f) Suppose that the GJR model was estimated using the first 2,890 observations (from 8 July 2002 till 5 June 2010), leaving 1,097 remaining observations for constructing mean and volatility forecasts (for the period from 6 June 2010 till 6 June 2013). Generate static and dynamic mean and volatility forecasts and present them graphically. What do you find?

Computer printout of the results in Stata:

. twoway line EUR Date

Generating continuously compounded percentage returns (percentage changes) and performing the ADF test $\,$

. generate reur=100*(ln(EUR/L.EUR))

(1 missing value generated)

. twoway line reur Date

. dfgls reur, notrend maxlag(7)

DF-GLS test for unit root Number of obs = 3,979

Variable: reur

Lag selection: User specified Maximum lag =

			Critical value	
[lags]	DF-GLS mu	1%	5% 	10%
7	-18.102	-2.580	-1.951	-1.628
6	-19.396	-2.580	-1.951	-1.628
5	-21.739	-2.580	-1.951	-1.628
4	-24.261	-2.580	-1.952	-1.628
3	-28.166	-2.580	-1.952	-1.628
2	-32.168	-2.580	-1.952	-1.629
1	-38.850	-2.580	-1.952	-1.629

Opt lag (Ng-Perron seq t) = 6 with RMSE = .4781864 Min SIC = -1 461914 at lag 1 with RMSE = .4804462

Min SIC = -1.461914 at lag 1 with RMSE = .4804462 Min MAIC = -.6670497 at lag 7 with RMSE = .4780518

Fitting a constant-only model and testing for ARCH effects

. regress reur

Source	SS .	df	MS	Number of ob	-	3,987
Model Residual	0	0 3 , 986	.227167449	_	= = = d =	0.00 0.0000 0.0000
Total	905.48945	3,986	.227167449	Adj R-square Root MSE	a = =	
		Std. err.	t	P> t [95%	conf.	interval]
_cons	+ 0074132	.0075483	-0.98	0.3260222	 121 	.0073857

. estat archlm, lags(1/10)

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p)	ļ	chi2	df	Prob > chi2
1		191.261	1	0.0000
2	i	205.141	2	0.0000
3	i	207.426	3	0.0000
4	1	207.624	4	0.0000
5	1	216.005	5	0.0000
6	1	235.139	6	0.0000
7	1	313.283	7	0.0000
8	1	317.933	8	0.0000
9	1	331.409	9	0.0000
10		331.086	10	0.0000

HO: no ARCH effects vs. H1: ARCH(p) disturbance

Identifying the ARMA components and estimating a GARCH(1,1) model

. generate variable=reur

(1 missing value generated)

```
. scalar pset=4
. scalar qset=4
. forvalues p=0/`=pset' {
  2. forvalues q=0/`=qset' {
  qui arima variable, arima(`p',0,`q')
  4. scalar bic_p'_q'=-2*e(11)+e(rank)*ln(e(N))
 5. }
6. }
. forvalues p=0/`=pset' {
  2. forvalues q=0/`=qset' {
  3. display "SBIC(`p', `q') = "bic_`p'_`q'
 4. }
5. }
SBIC(0,0) = 5421.1927
SBIC(0,1) = 5334.993
SBIC(0,2) = 5342.9514
SBIC(0,3) = 5351.1197
SBIC(0,4) = 5355.7096
SBIC(1,0) = 5335.735
SBIC(1,1) = 5342.9826
SBIC(1,2) = 5351.2263
SBIC(1,3) = 5358.6979
```

```
SBIC(1,4) = 5363.4543
SBIC(2,0) = 5342.8287
SBIC(2,1) = 5350.2025
SBIC(2,2) = 5357.9651
SBIC(2,3) = 5356.9569
SBIC(2,4) = 5371.6321
SBIC(3,0) = 5350.4465
SBIC(3,1) = 5358.2112
SBIC(3,2) = 5364.3527
SBIC(3,3) = 5364.6364
SBIC(3,4) = 5371.7929
SBIC(4,0) = 5356.5335
SBIC(4,1) = 5363.1554
SBIC(4,2) = 5371.4462
SBIC(4,3) = 5371.9948
SBIC(4,4) = 5380.7008
```

. arch reur, ma(1) arch(1) garch(1) nolog

ARCH family regression -- MA disturbances

Sample: 08jul2002 - 06jun2013 Distribution: Gaussian Log likelihood = -2320.973					Wald	er of obs = chi2(1) = > chi2 = =	3,987 183.13 0.0000
		 Coefficient +				[95% conf.	interval]
reur	_cons	0145532	.0074799	-1.95	0.052	0292136	.0001071
ARMA		+ 					
	ma L1.	.2011728	.0148657	13.53	0.000	.1720366	.230309
ARCH		+ 					
	arch L1.	.0253159	.0021344	11.86	0.000	.0211326	.0294992
	garch L1.	.9732146	.0019799	491.55	0.000	.9693341	.9770951
	_cons	.0003358	.0001139	2.95	0.003	.0001125	.0005591

. test [ARCH]L1.arch [ARCH]L1.garch

- (1) [ARCH]L.arch = 0 (2) [ARCH]L.garch = 0
 - chi2(2) = 1.7e+06Prob > chi2 = 0.0000
- . generate et= $(_n-1994)/500$
- . predict var_GARCH, variance at(et 1)
- . label variable var_GARCH "Variance GARCH"

. arch reur, ma(1) arch(1) tarch(1) garch(1) nolog // GJR model //

ARCH family regression -- MA disturbances

Sample: 08jul2002 - 06jun2013 Number of obs = 3,987 Distribution: Gaussian Wald chi2(1) = 182.62 Log likelihood = -2318.698 Prob > chi2 = 0.0000

	reur	 Coofficient	OPG	7	DNIEL	[95% conf.	intoruall
		+ +					
reur							
	_cons	0124398	.007545	-1.65	0.099	0272278	.0023482
ARMA		 					
	ma						
	L1.	.2004768	.0148349	13.51	0.000	.1714008	.2295527
ARCH		+ 					
711(011	arch	 					
	L1.	.0185563	.0029701	6.25	0.000	.012735	.0243776
	tarch	I					
	L1.	•	.0038379	2.76	0.006	.0030617	.0181058
	garch						
	L1.	.9743547	.0019509	499.45	0.000	.970531	.9781783
		0003610	0001000	2 20	0 001	0001467	000577
	_cons	.0003619	.0001038	3.30	0.001	.0001467	.000577

- . predict var_GJR, variance at(et 1)
- . label variable var_GJR "Variance GJR"
- . line var_GARCH var_GJR et in 2/1, m(i) c(1) title(News-response function)

. arch reur, ma(1) earch(1) egarch(1) nolog // EGARCH model //

ARCH family regression -- MA disturbances

Log likelihood = -2325.341					o > chi2 =	0.0000
reur	Coefficient	OPG std. err.	Z	P> z	[95% conf	. interval]
reurcons	0138688	.0075768	-1.83	0.067	0287191	.0009815
ARMA ma	1 .1983254	.014395	13.78	0.000	.1701119	.226539
ARCH earch	 .0069072	.0036314	1.90	0.057	0002101	.0140246
earch_a L1.	.0600615	.004954	12.12	0.000	.0503518	.0697712
egarch L1.	.9975515	.0006838	1458.73	0.000	.9962111	.9988918
_cons	0001273	.0012745	-0.10	0.920	0026252	.0023706

Estimating a GARCH-M model

. arch reur, ma(1) arch(1) garch(1) archm nolog

ARCH family regression -- MA disturbances

Sample: 08jul2002 - 06jun2013 Distribution: Gaussian Log likelihood = -2320.24					Wald	er of obs = chi2(2) = chi2 =	183.18
	reur	 Coefficient	OPG std. err.	z	P> z	[95% conf	. interval]
reur		+ 		2 05		05400	0011000
		0280391 +					0011982
ARCHM	sigma2	.0865367		1.18		0573884	.2304617
ARMA		 					
	ma L1.	.2006999	.0148769	13.49	0.000	.1715417	.229858
ARCH		 					
	arch L1.	 .0255826 	.0021656	11.81	0.000	.0213382	.0298271
	garch L1.	 .9729244	.0020038	485.55	0.000	.9689971	.9768517
	_cons	.0003427	.0001146	2.99	0.003	.0001181	.0005673

Mean and volatility forecasting based on the ${\it GJR}$ model

. arch reur if Date<=td(05jun2010), ma(1) arch(1) tarch(1) garch(1) nolog

${\tt ARCH\ family\ regression\ --\ MA\ disturbances}$

Sample: 08jul2002 - 05jun2010	Number of obs	=	2 , 890
Distribution: Gaussian	Wald chi2(1)	=	66.82
Log likelihood = -1753.218	Prob > chi2	=	0.0000

	reur	 Coefficient	OPG std. err.	Z	P> z	[95% conf.	interval]
reur	_cons	0151996	.0084702	-1.79	0.073	031801	.0014017
ARMA		 					
	ma L1.	 .1437661 +	.0175869	8.17	0.000	.1092965	.1782357
ARCH							
	arch L1.	 .0169227	.0032851	5.15	0.000	.010484	.0233614
	tarch L1.	'	.0045458	3.55	0.000	.0072126	.0250319
	garch L1.	.9740383	.0020868	466.75	0.000	.9699481	.9781284
	_cons	.0003237	.0001169	2.77	0.006	.0000947	.0005527

- . predict mean_stat_reur, xb
 . predict mean_dyn_reur, xb dynamic(td(06jun2010))
- . twoway (tsline mean_stat_reur) (tsline mean_dyn_reur) if Date>=td(06jun2010),
 legend(rows(2))

- . predict var_stat_reur, variance
 . predict var_dyn_reur, variance dynamic(td(06jun2010))
- . twoway (tsline var_stat_reur) (tsline var_dyn_reur) if Date>=td(06jun2010), legend(rows(2))

