密级状态:绝密() 秘密(√) 内部资料(√) 公开()

文档编号:(芯片型号)-ASR6501(英文、数字)

ASR6501 Datasheet

文件状态:	当前版本:	V0.7
[√] 正在修改	作者:	ASR6501 Design Team
[]正式发布	启动日期:	2018-5-16
	审核:	
	完成日期:	2018-9-13

翱捷科技(上海)有限公司

ASR Microelectronics Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	修改日期	作 者	修 改 说 明
V0. 1	2018. 05. 16	ASR6501 Design Team	Created
V0. 2	2018. 05. 22	ASR6501 Design Team	1. Change the package size to 6mm x 6mm x 0.9mm
			2. Add current in Tx 17dBm output Spec.
VO. 3	2018. 05. 23	ASR6501 Design Team	1. Remove module information.
			2. Change the SRAM from 4kBytes to 16kBytes.
V0. 4	2018. 05. 31	ASR6501 Design Team	1. Change 1.2 Block diagram DIO direction.
V0. 5	2018. 07. 05	ASR6501 Design Team	1. Change XRES pin function description.
V0.6	2018. 08. 03	ASR6501 Design Team	1. Change RX current from 15mA to 11mA.
VO. 7	2018. 09. 13	ASR6501 Design Team	1. Add deepsleep current without RF Config
			Retention and without RTC mode current.
			2. Update RX mode current to 10mA.
			3. Update TX mode current at TX OPT mode
			results.

Table of Contents

1	GENI	ERAL I	DESCRIPTION		4
	1.1	Key F	eature		4
	1.2	Block	Diagram		4
	1.3	Gene	ral Specification		5
2	ELEC	CTRIC	AL CHARACTERISTICS		5
	2.1	Absol	ute Maximum Rating		5
	2.2	Powe	r Consumption Characteristics		5
	2.3	Recoi	nmended Operating Range		6
	2.4	RF Ch	aracteristics		6
	2.5	Digita	l Characteristics		ϵ
	2	2.5.1	DC Characteristics		6
	2	2.5.2	RST Characteristics		7
3	PIN I	EFINI	TION		7
	3.1				
4	MEC	HANIC	CAL DIMENSION		9
5	PACE	KAGE I	NFORMATION	1	. (
				1	

1 **General Description**

The ASR6501 is a general LoRa Wireless Communication Chipset, with integrated LoRa Radio Transceiver, LoRa Modem and a 32-Bit RISC MCU. The MCU uses ARM Cortex M0+, with 48MHz operation frequency. The LoRa Radio Transceiver has continuous frequency coverage from 150MHz to 960MHz. The LoRa Modem supports LoRa modulation for LPWAN use cases and (G)FSK modulation for legacy use cases. The LoRa Wireless Communication module designed by ASR6501 provides ultra long range, ultra low power communication for LPWAN application.

The ASR6501 can achieve a high sensitivity of over -140dBm and the maximum transmit power is higher than +21dBm. This makes it suitable to be used in long range LPWAN and have high efficiency. The total chip package is of very small size, 6mm x 6mm.

1.1 Key Feature

- ♦ Small footprint: 6mm x 6mm x 0.9mm.
- LoRa Radio and LoRa Modem.
- ◆ Frequency Range: 150MHz ~ 960MHz.
- ◆ Maximum Power +21dBm constant RF output.
- High sensitivity: down to -140dBm.
- Programmable bit rate up to 62.5kbps in LoRa modulation mode.
- Programmable bit rate up to 300kbps in (G)FSK modulation mode.
- Preamble detection.
- Embedded memories (up to 128kbytes of Flash memory and 16Kbytes of SRAM).
- ◆ 6x configurable GPIOs, 1xI2C, 1xUART, 1xSWD.
- ◆ 48-MHz ARM Cortex-M0+ CPU.
- ◆ 8-Channel DMA engine.
- ◆ Embedded 12-bit 1Msps SAR ADC.
- ◆ 32.768kHz External Watch Crystal Oscillator.
- ◆ 4-33MHz External Crystal Oscillator for MCU (Optional).
- ◆ 32MHz External Crystal Oscillator for LoRa Radio.
- ◆ Embedded internal High frequency (48MHz) RC oscillator.
- ◆ Embedded internal Low frequency (40kHz) RC oscillator.
- ◆ Embedded internal PLL to generate 48MHz clock.

1.2 Block Diagram

Fig. 1.1 shows the block diagram of ASR6501 and the ASR LoRa Communication Module.

Fig. 1.1: The block diagram of ASR6501 and the ASR LoRa Communication Module

The module of LoRa Communication is designed by ASR6501 and also a reference design for customers. Customers could communicate with ASR6501 by UART and GPIO interfaces.

1.3 General Specification

Following Table 1.1 shows the general specifications of ASR6501 chipset and module.

Table 1.1 General specifications of ASR6501 chipset and module

Chipset Name	ASR6501		
Module Name	ASR6501 LoRa Wireless Communication Module		
Host Interface	UART, GPIO		
Operation Conditions			
Temperature	• Storage: -55C ~ +125C		
	● Operating: -40C ~ +85C		
Humidity	• Storage: 5 ~ 95% (Non-Condensing)		
	 Operating: 10 ~ 95% (Non-Condensing) 		
Dimension	6mm x 6mm x 0.9mm		
Package	QFN Type		

2 Electrical Characteristics

Electrical Characteristics include Absolute Maximum Ratings for the Chipset and Module, Recommended Operating Range and Power Consumption Characteristics.

2.1 **Absolute Maximum Rating**

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	-0.3		3.9	V
Vin	Digital Input Voltage Level	-0.3		3.9	V
Pin	RF Input Power			+10	dBm

2.2 **Power Consumption Characteristics**

Symbol	Parameter	Conditions	Тур.	Max.	Unit
IDD_SL	Supply current in Sleep	Without RF Config Retention, without RTC	2		uA
	mode	Without RF Config Retention, with RTC	2.7		
Y	<i>y</i>	With RF Config Retention and RTC	3.1		uA
IDD_RX	Supply current in Receiver		10		mA
	mode				
IDD_TX	Supply current in Transmitter	Pout=+22dBm	108		mA
	mode	Pout=+22dBm(TX OPT)	85		mA
		Pout=+21dBm	106		mA
		Pout=+20dBm	98		mA
		Pout=+17dBm	90		mA
		Pout=+17dBm(TX OPT)	52		mA

Pout=+14dBm	78	mA
Pout=+10dBm	59	mA
Pout=+5dBm	47	mA

2.3 Recommended Operating Range

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	VDD Supply Voltage		3.3	3.7	V
Pin RF Input Power				+10	dBm

2.4 RF Characteristics

The table 2.1 gives the electrical specifications for the LoRa RF transceiver operating with LoRa modulation. Following conditions apply unless otherwise specified:

- ◆ Supply Voltage = 3.3V.
- ◆ Temperature = 25C.
- ◆ Frequency bands: 470MHz.
- ◆ Bandwidth (BW) = 125kHz.
- ◆ Spreading Factor (SF) = 12.
- ◆ Coding Rate (CR) = 4/6.
- ◆ Package Error Rate (PER) = 1%.
- ◆ CRC on payload enabled.
- ◆ Payload length = 10bytes.
- Preamble Length = 12 symbols.
- ♦ With matched impedances.

Table 2.1: LoRa RF Transceiver Characteristics

LoRa Transmitter RF Characteristics						
Items	Condition		Тур.	Max.	Unit	
Frequency Range		150	470	960	MHz	
Tx Power	RFO Pin	18	20	22	dBm	
	LoRa Receiver RF Characteristics					
Items	Items Condition		Тур.	Max.	Unit	
Frequency Range	Frequency Range		470	960	MHz	
Sensitivity	125kHz Bandwidth, SF=7		-126		dBm	
	125kHz Bandwidth, SF=10		-135		dBm	
	125kHz Bandwidth, SF=12		-140		dBm	
2nd order harmonic	Tx Power = 20dBm		-41		dBm	

2.5 **Digital Characteristics**

2.5.1 DC Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
VIH	I/O input high level		0.7xVDD			V

VIL	I/O input low level				0.3xVDD	V
RPU	Weak pull up resistor	Vin=GND	30	45	60	κΩ
RPD	Weak pull down resistor	Vin=VDD	30	45	60	κΩ

2.5.2 **RST Characteristics**

Fig. 2.1 shows the recommended XRES pin connection. An external RESET button is used to generate reset pulse of the whole chip. The 0.1uF capacitor is to filter out the parasitic reset glitch.

Fig. 2.1: XRES Pin Connection

3 Pin Definition

Pin NO.	Pin Name	P/G/I/O	Description
1	VDD_IN	Р	Input voltage for power amplifier, VR_PA
2	ADC_IN	I	ADC input pin.
3	GND	G	Ground
4	XTA	I	XO32M for LoRa input
5	XTB		XO32M for LoRa output
6	GPIO	I/O	MCU GPIO
7	AUX	1/0	MCU GPIO
8	SETA	I/O	MCU GPIO
9	DIO3	I/O	Multipurpose digital I/O-external TCXO32M supply voltage
10	VREG	0	Regulated output voltage from the internal LDO/DC-DC
11	GND	G	Ground
12	DCC_SW	0	DC-DC Switcher Output
13	VBAT_RF	Р	Supply for the LoRa Radio
14	UART_RX	I/O	UART RX pin
15	UART_TX	I/O	UART TX pin
16	SWD_DATA	I/O	SWD Data pin
17	SWD_CLK	I/O	SWD Clock pin
18	VDDD	Р	Power supply for MCU digital section
19	P4.0	I/O	MCU GPIO for SPI
20	P4.1	I/O	MCU GPIO for SPI
21	P4.2	I/O	MCU GPIO for SPI
22	P4.3	I/O	MCU GPIO for SPI
23	VBAT_DIO	Р	Digital I/O supply voltage
24	DIO2	I/O	Multipurpose digital I/O-RF switch control

25	DIO1	I/O	Multipurpose digital I/O
26	SPI_BUSY	I/O	SPI busy indicator
27	SPI_NRESET	I/O	Reset signal, active low
28	I2C_SCL	I/O	I2C SCL pin
29	I2C_SDA	I/O	I2C SDA pin
30	SETB	I/O	MCU GPIO
31	WCO_IN	I	XO32K for MCU input
32	WCO_OUT	I	XO32K for MCU output
33	UART_CTS	I/O	UART CTS pin
34	UART_RTS	I/O	UART RTS pin
35	SPI_MISO	I/O	SPI slave output
36	SPI_MOSI	I/O	SPI slave input
37	SPI_SCK	I/O	SPI clock
38	XRES	l	External reset pin
39	SPI_NSS	I/O	SPI slave select
40	SCAN	l	LoRa Scan pin
41	VCCD	Р	Regulated digital supply (1.8V±5%)
42	VDDD	Р	Power supply for MCU digital section
43	VDDA	Р	Power supply for MCU analog section
44	VSSA	G	Ground
45	RFI_P		RF receiver input
46	RFI_N		RF receiver input
47	FRO	0	RF transmitter output
48	VR_PA	0	Regulated power amplifier supply

3.1 **Pin Assignment**

Fig. 3.1 shows the pin assignment of ASR6501, QFN 6mmx6mm package is used and the total footprint is 48 pins.

Fig. 3.1 Pin assignment of ASR6501

4 Mechanical Dimension

* CONTROLLING DIMENSION : MM

A2		0.65	0.70		0.0260.028			
А3	0	.203	REF.	0.008 REF.				
b	0.15	0.20	0.25	0.006	0.008 0.010			
D	6.00 bsc			0.236 bsc				
D2	4.20	4.30	4.40	0.165	0.169	0.173		
E	6.00 bsc			0.236 bsc				
E2	4.20	4.30	4.40	0.165	0.169	0.173		
L	0.35	0.40	0.45	0.014	0.016	0.018		
е	0.40 bsc			0.016 bsc				
TOLERANCES OF FORM AND POSITION								
aaa	0.10			0.004				
bbb	0.10			0.004				

SIDE VIEW

SEATING PLANE

NOTES :

1.ALL DIMENSIONS ARE IN MILLIMETERS.

2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM)

3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.

4.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY. 5.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL. 6.PACKAGE WARPAGE MAX 0.08 mm.

7.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.

8.APPLIED ONLY TO TERMINALS.

ASR MI	CROELEC	TRONICS	SCALE		$\overline{}$	PB	101.	♦ □
PACKAGE OUTLINE 48L SAWN OFN				DWG. NO. AAA07182				
6.0x6.0x0.9 mm			SHRET 1 OF 2					SEZE A4
UNIT	TOLERANCE		Ι.	DESERVE POCUMENT				
UNIT	DIMENSION	ANGLE	REFERENCE DOCUMENT					IENT
INCH / MM	±0.05		1					

5 Package Information

5.1 **Product Marking**

Fig. 5.1 shows the product marking of ASR6501.

Fig. 5.1 The product marking of ASR6501