Содержание

Введение	8
1 Интенсификация теплообмена с помощью капиллярных сил	10
1.1 Конденсация на горизонтальном цилиндре большой кривизны	10
1.2 Математический анализ конденсации на горизонтальном цилиндре	11
1.2.1 Решение уравнений движения и энергии для пленки конденсата	11
1.2.2 Определение толщины пленки вдоль поверхности постоянной кривизны	14
1.2.3 Определение коэффициента теплоотдачи	16
2 Методика расчета термосифонных теплообменников	18
2.1 Конструктивные особенности термосифонного теплообменника	18
2.2 Цель и задачи расчета	20
2.3 Описание методики расчета	21
2.4 Исходные данные для расчета	22
2.5 Определение площади поверхности испарительной зоны	23
2.5.1 Определение тепловой мощности термосифонного теплообменника	23
2.5.2 Определение среднего температурного перепада в теплообменнике	24
2.5.3 Определение коэффициента теплопередачи от греющей среды к на-	
греваемой	25
2.6 Компоновка поверхности теплообменника	31
2.6.1 Теплообменник с прямотоком и противотоком теплоносителей	31
2.6.2 Теплообменник с продольно-поперечным обтеканием пучка термоси-	
фонов	32
2.7 Уточнение коэффициента теплопередачи с учетом внутренних процес-	
сов в термосифонах	33
2.7.1 Расчет коэффициента теплоотдачи при испарении	33
2.7.2 Расчет коэффициента теплоотдачи при конденсации	38
2.8 Аэродинамический расчет	45
2.9 Расчет на прочность	47
3 Принципы автоматизированного расчета	
термосифонных теплообменников	49
3.1 Интерполяция функций, заданных таблично	51
3.2 Теплофизические свойства воды и водяного пара	52
3.2.1 Уравнения для первой области	52
3.2.2 Уравнения для второй области	54

Изм.	Пист	N докум.	Подпись	Дата

3.2.3 Уравнения для четвертой области	57
3.3 Теплофизические свойства других теплоносителей	59
3.3.1 Свойства воздуха (диапазон температур 100÷1200 °C)	59
3.3.2 Свойства дымовых газов (диапазон температур 100÷1200 °C)	59
3.3.3 Свойства хладона R11 (диапазон температур –60÷140 °C)	60
3.3.4 Свойства этилового спирта (диапазон температур 0÷180 °C)	61
3.3.5 Свойства термекса (диапазон температур 100÷400 °C)	62
4 Программа расчета	64
4.1 Архитектура программы расчета	65
4.1.1 Класс Calc Wizard	66
4.1.2 Класс fmChoose	67
4.1.3 Kласс HeatExchanger	67
4.1.4 Структуры с расчетными данными	68
4.1.5 Математические функции	68
4.1.6 Функции расчета теплофизических свойств	69
4.2 Порядок применения программы расчета	70
5 Пример расчета	71
Заключение	7 8
Список литературы	79
Приложения	81

	- 0			
Изм.	Лист	N докум.	Подпись	Дата

Список иллюстраций

1.1	Расчетная схема для конденсации пара на поверхности постоянной	
	кривизны	1
1.2	Изменение толщины пленки по поверхности горизонтального цилин-	
	дра	1
1.3	Зависимость коэффициента теплоотдачи от диаметра цилиндра	1
1.4	Влияние кривизны на интенсивность теплообмена при конденсации	1
2.1	Схема термосифонного теплообменника:	
	1 – зона отвода теплоты; 2 – газоплотная перегородка; 3 – зона под-	
	вода теплоты; 4 – поперечные ребра	1
2.2	Схема термосифонного теплообменника с продольно-поперечным об-	
	теканием пучков термосифонов	1
2.3	Расчетная схема обводных течений в межтрубном пространстве ко-	
	жухотрубных ТА:	
	Д – основной (действительный) поток;	
	О – окружной поток через зазор между перегородкой и кожухом;	
	Π – перепускной поток через зазоры между трубами и отверстиями	
	в перегородке	2
2.4	Вид крепления днища и крышки термосифона	4
3.1	Области и уравнения IAPWS-IF97	5
4.1	Диаграммы наследования (a) и включения (b) классов	6
5.1	Ввод исходных данных	7
5.2	Определение тепловой мощности термосифонного теплообменника .	7
5.3	Определение коэффициента теплопередачи и компоновка поверхности	7
5.4	Выбор рабочей жидкости термосифона	7
5.5	Определение параметров термосифонов и уточненный расчет	7
5.6	Аэродинамический расчет	7
5.7	Расчет на прочность	7

	8			
Изм.	Лист	N докум.	Подпись	Дата

Список таблиц

2.1	Критериальные зависимости для определения коэффициента тепло-	
	отдачи при испарении в термосифоне	35
2.3	Критериальные зависимости для определения коэффициента тепло-	
	отдачи при конденсации в термосифоне	40
3.1	Численные значения коэффициентов и показателей степеней безраз-	
	мерной свободной энергии Гиббса для области 1	53
3.2	Численные значения коэффициентов и показателей степеней части	
	для идеального газа γ^o безразмерной свободной энергии Гиббса для	
	области 2	55
3.3	Численные значения коэффициентов и показателей степеней оста-	
	точной части γ^r безразмерной энергии Гиббса для области 2	56
3.4	Численные значения коэффициентов безразмерных уравнений ли-	
	нии насыщения	57

Введение

Актуальность исследования. Украина является морским государством с большим флотом. Выход в Черное и Средиземное моря дает стране широкие возможности развития флота, усовершенствования грузоперевозок. Однако, сложные экономические условия, энергетический кризис тормозят развитие этой отрасли транспорта. Решение задач по повышению эффективности морских перевозок в настоящее время связано в значительной мере с топливо- и энергосбережением.

Утилизация теплоты судовых двигателей внутреннего сгорания — традиционный способ снижения суточного расхода топлива на судовую энергетическую установку. Однако, энергетический потенциал выпускных газов малооборотных двигателей имеет постоянную тенденцию к снижению. Кроме того, в последнее время проявляется тенденция к использованию теплоты отходящих газов дизельгенераторов, массовые расходы газов которых не соответствуют оптимальным для установленных утилизационных котлов. То есть, современные тепловые схемы утилизации теплоты не являются экономичными и требуют улучшения своих характеристик.

Достичь повышения показателей эффективности энергоиспользования и уменьшения размеров агрегатов можно, применив термосифонные теплообменные аппараты. Обладая рядом особенностей — высокой теплопередающей способностью, возможностью трансформировать тепловые потоки, автономностью, надежностью и т.д. теплообменники с двухфазными термосифонами успешно могут конкурировать с традиционными теплообменниками.

Для успешной эксплуатации таких теплообменников необходим точный расчет основных теплотехнических характеристик. Однако, процессы, протекающие в термосифонах, весьма сложны для аналитического описания, поэтому предпочтение отдается экспериментальным исследованиям. В настоящее время накоплен обширный материал по основным характеристикам, но в большинстве случаев опытные данные и обобщающие зависимости различных исследователей отличаются друг от друга. Отсюда необходимость сопоставления отдельных данных и выдача строгих и последовательных рекомендаций к расчету термосифонов и, соответственно, термосифонных теплообменников. Кроме того, имеющиеся расчетные алгоритмы теплообменных аппаратов основаны, в основном, на малоформализованных графоаналитических зависимостях, непригодных для автоматизированного проектирования.

В связи с вышеизложенным, работу, посвященную вопросам интенсификации теплообмена с применением термосифонных аппаратов, формализации методики

3 4	8 8			
Изм.	Лист	N докум.	Подпись	Дата

их расчета и разработки автоматизированных алгоритмов расчета следует считать актуальной.

Цель и задачи исследования. Основной целью работы является повышение эффективности работы судовых теплообменных аппаратов на основе разработанного комплекса их автоматизированного проектирования и расчета.

Для достижения поставленной цели в работе были решены следующие основные задачи:

- интенсификации теплообмена при конденсации в термосифонах;
- разработки строго формализованного и, одновременно, универсального расчетного алгоритма для наиболее часто встречающихся конструкций теплообменных аппаратов;
- разработки программного обеспечения автоматизированного расчета термосифонных теплообменных аппаратов.

Научная новизна.

- 1. Проведен уточненный теоретический анализ процесса конденсации пленки жидкости внутри термосифонов с сеточными интенсификаторами, получены значения толщин пленок конденсата и коэффициентов теплоотдачи при конденсации на поверхностях с постоянной кривизной, собраны обобщающие зависимости по данным теоретических исследований.
- 2. Разработанный алгоритм расчета позволяет спроектировать широкий спектр судовых теплообменных аппаратов с термосифонными поверхностями различного назначения.

Практическая ценность. Состоит в разработке конструкции утилизационного теплообменника с термосифонной поверхностью теплообмена, реализации метода интенсификации теплопереноса и в разработке универсального программного обеспечения для расчета термосифонных теплообменных аппаратов, полностью реализующего предложенную универсальную методику расчета. Программное обеспечение может быть применено при проектировании любых судовых и стационарных термосифонных теплообменных аппаратов.

Апробация работы. Основные положения работы докладывались на студенческих научно-технических конференциях Украинского государственного морского технического университета (г. Николаев, 2001-2002 гг.).

2 - 10 10 - 14	8 8		ĵ,		
Изм.	Лист	N докум.	ı	Подпись	Дата

1 Интенсификация теплообмена с помощью капиллярных сил

1.1 Конденсация на горизонтальном цилиндре большой кривизны

При пленочной конденсации скорость теплопередачи контролируется теплопроводностью через пленку жидкости, примыкающую к поверхности. Следовательно, чтобы интенсифицировать процесс пленочной конденсации, необходимо найти какой-нибудь способ утонения жидкой пленки. В 1953 году Грегориг [18], изучая конденсацию на волнистых поверхностях, заметил, что поверхностное натяжение может приводить к большим градиентам давления в пленке жидкости вследствие изменения кривизны поверхности пленки конденсата. Большие градиенты давления неизбежно ведут к утонению пленки, при этом коэффициенты теплоотдачи оказываются в несколько раз выше, чем те, которые наблюдаются при обычной пленочной конденсации. Поэтому Грегориг предложил усовершенствовать вертикальные конденсаторные трубки, располагая параллельно их осям желобки определенной геометрической формы. В профиле, предложенном Грегоригом, использовалось постепенное уменьшение кривизны твердой поверхности, позволяющее получить очень тонкую, но почти равнотолщинную пленку конденсата. Эти же общие идеи остаются справедливыми и для твердой поверхности постоянной кривизны, которую легче реализовать на практике. С тех пор описанный подход распространили на горизонтальные конденсаторные трубы и на подогреватели и испарители с вертикальными трубами. В данной работе предлагается использовать капиллярные силы для интенсификации теплопередачи при конденсации в термосифонах. Необходимый профиль достигается применением сеточных покрытий.

Сеточные покрытия состоят из горизонтальных и вертикальных рядов проволоки, переплетающейся между собой. Такое покрытие образует волнистую поверхность сложной формы. Упрощенно же, проволочная сетка представляется в виде множества горизонтальных и вертикальных цилиндров малого радиуса и, следовательно, большой кривизны.

Результаты экспериментальных исследований показывают, что воздействие сил поверхностного натяжения на вертикальных цилиндрах весьма незначительно, однако в случае с горизонтальными цилиндрами обещает быть определяющим на интенсивность процесса конденсации.

Изм.	Лист	N докум.	Подпись	Дата

1.2 Математический анализ конденсации на горизонтальном цилиндре

1.2.1 Решение уравнений движения и энергии для пленки конденсата

Конденсат на поверхности цилиндра (рисунок 1.1) образует движущуюся ламинарную пленку. Уравнение ее движения записывается как

$$\frac{dv}{dt} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right), \tag{1.1}$$

где градиент давления $\frac{\partial p}{\partial x}$ обусловлен действием сил поверхностного натяжения.

Рис. 1.1. Расчетная схема для конденсации пара на поверхности постоянной кривизны

В допущении, что $\frac{dv}{dt}=0, \frac{\partial^2 v}{\partial x^2}=0, \ \frac{\partial^2 v}{\partial z^2}=0$ уравнение движения сводится к виду

$$\frac{dv}{dt} = X - \frac{1}{\rho} \frac{dp}{dx} + \nu \frac{\partial^2 v}{\partial y^2}.$$
 (1.2)

Формулируя краевую задачу, запишем граничные условия:

$$y = 0; \ v = 0;$$
 (1.3)

$$y = \delta; \ \frac{dv}{dy} = 0. \tag{1.4}$$

Предполагая, что пленка тонкая ($\delta \ll r_0$) и кривизна твердой поверхности постоянная для $0 < \varphi < \pi/2$, а также, в интересах сохранения верхнего предела для решения, пренебрегая изменение центра кривизны поверхности раздела, опреде-

	(6			
Изм.	Лист	N докум.	Подпись	Дата

лим разность давлений на искривленной поверхности жидкость-пар:

$$p - p_v = \frac{\sigma}{r_0 + \delta}.\tag{1.5}$$

Но p_v постоянно, следовательно

$$\frac{dp}{dx} = \frac{d}{dx} \left(\frac{\sigma}{r_0 + \delta} \right) = -\frac{\sigma}{(r_0 + \delta)^2} \frac{d\delta}{dx}$$
 (1.6)

или для $\delta \ll r_0$

$$\frac{dp}{dx} \cong -\frac{\sigma}{r_0^2} \frac{d\delta}{dx}.\tag{1.7}$$

Выполняя преобразование координат

$$x = r_0 d\varphi \tag{1.8}$$

$$dx = r_0 d\varphi \tag{1.9}$$

получим

$$\frac{dp}{d\varphi} = -\frac{\sigma}{r_0^2} \frac{d\delta}{d\varphi}.\tag{1.10}$$

Подставляя (1.10) в уравнение движения (1.2) и раскрывая значение массовой силы получим

$$\nu \frac{d^2 v}{dy^2} + g \sin \varphi + \frac{\sigma}{\rho r_0^3} \frac{d\delta}{d\varphi} = 0.$$
 (1.11)

Проинтегрируем это выражение по y:

$$\frac{dv}{dy} = \frac{1}{\nu} \left(-\frac{\sigma}{\rho r_0^3} \frac{d\delta}{d\varphi} - g \sin \varphi \right) \cdot y + C_1; \tag{1.12}$$

$$v = \frac{1}{2\nu} \left(-\frac{\sigma}{\rho r_0^3} \frac{d\delta}{d\varphi} - g\sin\varphi \right) \cdot y^2 + C_1 y + C_2.$$
 (1.13)

Учитывая граничные условия течения конденсата в пленке, получим C_1 и C_2 :

$$y = 0; \ v = 0 \Rightarrow C_2 = 0;$$
 (1.14)

$$y = \delta; \ \frac{dv}{dy} = 0 \ \Rightarrow \ C_1 = \left(\frac{\sigma}{\rho r_0^2} \frac{d\delta}{d\varphi} + g\sin\varphi\right)\delta.$$
 (1.15)

То есть, скорость течения пленки конденсата

$$v = \left(\frac{\sigma}{\nu \rho r_0^3} \frac{d\delta}{d\varphi} + \frac{g}{\nu} \sin \varphi\right) \left(\delta y - \frac{y^2}{2}\right). \tag{1.16}$$

Изм.	Лист	N докум.	Подпись	Дата

Средняя по толщине скорость пленки конденсата находится как средняя интегральная

$$\bar{v} = \frac{1}{\delta} \int_0^\delta v \, dy; \tag{1.17}$$

$$\bar{v} = \frac{1}{\delta} \left(\frac{\sigma}{\nu \rho r_0^3} \frac{d\delta}{d\varphi} + \frac{g}{\nu} \sin \varphi \right) \left(\frac{\delta^3}{2} - \frac{\delta^3}{6} \right); \tag{1.18}$$

$$\bar{v} = \left(\frac{\sigma}{\nu \rho r_0^3} \frac{d\delta}{d\varphi} + \frac{g}{\nu} \sin \varphi\right) \frac{\delta^2}{3}.$$
 (1.19)

Из соображений неразрывности количество конденсата, проходящее через сечение, составляет

$$G = \rho \bar{v}\delta. \tag{1.20}$$

На участке $d\varphi$ происходит приращение расхода

$$dG = \rho \, d(\bar{v}\delta); \tag{1.21}$$

$$dG = \rho d \left(\left(\frac{\sigma}{\nu \rho r_0^3} \frac{d\delta}{d\varphi} + \frac{g}{\nu} \sin \varphi \right) \frac{\delta^3}{3} \right). \tag{1.22}$$

Это приращение происходит за счет конденсации пара на участке $d\varphi$. Приравнивая теплоту, выделяющуюся на поверхности, теплоте, проходящей через пленку, и принимая линейным температурный профиль в пленке, получим из уравнения энергии

$$dQ = r dG; (1.23)$$

$$dQ = \frac{\lambda}{\delta} (t_s - t_w) r_0 \, d\varphi; \tag{1.24}$$

$$\frac{dG}{d\varphi} = \frac{\lambda r_0}{r\delta} (t_s - t_w); \tag{1.25}$$

$$\frac{dG}{d\varphi} = \rho \frac{d}{d\varphi} \left(\left(\frac{\sigma}{\nu \rho r_0^3} \frac{d\delta}{d\varphi} + \frac{g}{\nu} \sin \varphi \right) \frac{\delta^3}{3} \right); \tag{1.26}$$

$$\frac{\lambda r_0}{r\delta}(t_s - t_w) = \frac{\sigma}{12 \nu r_0^3} \frac{d^2 \delta^4}{d\varphi^2} + \frac{\rho g \sin \varphi}{\nu} \delta^2 \frac{d\delta}{d\varphi} + \frac{\rho g \cos \varphi}{3\nu} \delta^3.$$
 (1.27)

Анализируя правую часть полученного дифференциального уравнения нетрудно заметить, что первое слагаемое представляет собой результат действия капиллярных сил на пленку конденсата, второе — сил тяжести, а третье учитывает изменение силы тяжести на участке $d\varphi$ при движении конденсата по поверхности.

То есть, возможно выделить три уравнения различной сложности для определения толщины пленки конденсата с допущениями или без них:

2	6			
Изм.	Лист	N докум.	Подпись	Дата

• без учета влияния силы тяжести на движение пленки конденсата

$$\frac{d^2\delta^4}{d\varphi^2} = \frac{12\,\lambda\nu r_0^4(t_s - t_w)}{r\sigma\delta};\tag{1.28}$$

• с учетом влияния силы тяжести

$$\frac{d^2\delta^4}{d\varphi^2} = \frac{12\,\lambda\nu r_0^4(t_s - t_w)}{r\sigma} \frac{1}{\delta} - \frac{3\,\rho r_0^3 g\sin\varphi}{\sigma} \frac{1}{\delta} \frac{d\delta^4}{d\varphi};\tag{1.29}$$

ullet с учетом изменения силы тяжести на участке darphi

$$\frac{d^2\delta^4}{d\varphi^2} = \frac{12\,\lambda\nu r_0^4(t_s - t_w)}{r\sigma} \frac{1}{\delta} - \frac{3\,\rho r_0^3 g \sin\varphi}{\sigma} \frac{1}{\delta} \frac{d\delta^4}{d\varphi} \frac{4\,\rho r_0^3 g \cos\varphi}{\sigma} \delta^3. \tag{1.30}$$

Граничные условия для данных дифференциальных уравнений:

$$\varphi = 0 \ \delta = \delta_0; \tag{1.31}$$

$$\varphi = 0 \, \frac{d\delta}{d\varphi} = 0. \tag{1.32}$$

1.2.2 Определение толщины пленки вдоль поверхности постоянной кривизны

Для получения численных значений толщины пленки необходимо оценить толщину пленки па вершине цилиндра δ_0 . Возвращаясь к уравнению (1.28) и немного видоизменяя его, получим

$$\delta \frac{d}{d\varphi} \left(\delta^3 \frac{d\delta}{d\varphi} \right) = \frac{3 \lambda \nu r_0^4 (t_s - t_w)}{r\sigma}.$$
 (1.33)

Но при $arphi=0,\;\delta=\delta_0$ и $\frac{d\delta}{darphi}=0,$ следовательно

$$\delta_0^4 \left(\frac{d^2 \delta}{d\varphi^2} \right)_0 = \frac{3 \lambda \nu r_0^4 (t_s - t_w)}{r\sigma} \tag{1.34}$$

или

$$\delta_0 = \left(\frac{3 \lambda \nu r_0^4 (t_s - t_w)}{r \sigma \left(\frac{d^2 \delta}{d \varphi^2}\right)_0}\right)^{1/4}.$$
(1.35)

Для того, чтобы оценить δ_0 , необходимо определить $\frac{d^2\delta}{d\varphi^2}$ при $\varphi=0$. Допущение, что поверхность раздела жидкость—пар при $\varphi=0$ повторяет контур поверхности

	(6			
Изм.	Лист	N докум.	Подпись	Дата

постоянной кривизны, дает по определению кривизны поверхности $\left(\frac{d^2\delta}{d\varphi^2}\right)_0=0$. Наоборот, если предположить, что поверхность раздела только касается цилиндра при $\varphi=0$, получим, что $\left(\frac{d^2\delta}{d\varphi^2}\right)_0=r_0$. Ясно, что в рассматриваемом случае $\left(\frac{d^2\delta}{d\varphi^2}\right)_0$ лежит где-то между этими двумя значениями. Однако, чтобы в данном анализе по-прежнему придерживаться верхней оценки, $\left(\frac{d^2\delta}{d\varphi^2}\right)_0$ выбрано равным r_0 . Хотя такой выбор несколько произволен, δ_0 обратно пропорционально $\left(\frac{d^2\delta}{d\varphi^2}\right)_0$ и, следовательно, не слишком чувствительно к выбору $\left(\frac{d^2\delta}{d\varphi^2}\right)_0$.

Подстановка $\left(\frac{d^2\delta}{d\varphi^2}\right)_0 = r_0$ в уравнение (1.35) приводит к выражению

$$\delta_0 = \left(\frac{3\,\lambda\nu r_0^3(t_s - t_w)}{r\,\sigma}\right)^{1/4}.\tag{1.36}$$

Для воды при температуре насыщения 100 °C и переохлаждении поверхности 3 °C уравнение (1.36) дает $\delta_0=3,23$ мкм на горизонтальном цилиндре с радиусом кривизны 0,2 мм.

Уравнения решаются численно методом Рунге-Кутта. Полученные в результате численного решения профили представлены на рисунке 1.2.

Рис. 1.2. Изменение толщины пленки по поверхности горизонтального цилиндра

Из графика видно, что толщина увеличивается с ростом φ , а также наклон профиля δ уменьшается с ростом φ . Этих результатов следовало ожидать. Как это ясно из уравнений (1.5) и (1.6), постоянство радиуса кривизны r_0 требует увеличения толщины пленки δ с ростом φ , чтобы обеспечить необходимый градиент

	8 8			
Изм.	Лист	N докум.	Подпись	Дата

давления в пленке. Когда толщина пленки увеличивается, местная скорость конденсации уменьшается и соответственно падает скорость роста пленки $\frac{d\delta}{d\varphi}$.

1.2.3 Определение коэффициента теплоотдачи

Чтобы определить интенсивность теплоотдачи при конденсации необходимо получить выражение для определения коэффициента теплоотдачи α . При ламинарной пленочной конденсации α можно приближенно представить как

$$\alpha = \frac{\lambda}{\delta}.\tag{1.37}$$

Средний коэффициент теплоотдачи на участке поверхности $0 < \varphi < \varphi_t$ равен

$$\bar{\alpha} = \frac{\lambda}{\frac{1}{\delta} \int_0^{\varphi_t} \delta \, d\varphi}.\tag{1.38}$$

Зависимость коэффициента теплоотдачи для от диаметра цилиндра представлена на рисунке 1.3. Как видно из графика, влияние капиллярных сил на коэффициент теплоотдачи начинает проявляться на цилиндрах с диаметрами, меньшими 1,25 мм. Для цилиндров больших диаметров коэффициенты теплоотдачи совпадают с рассчитанными по теории Нуссельта.

Рис. 1.3. Зависимость коэффициента теплоотдачи от диаметра цилиндра

На рисунке 1.4 представлен анализ влияния кривизны поверхности на интенсивность теплообмена в обобщенных координатах $Re = \frac{\bar{\alpha} r_0 \Delta t}{r \mu}$ и $Z = Ga^{1/3} \frac{\lambda \Delta t}{r \mu}$, $Ga = \frac{gh^3}{\nu^2}$.

В теории Нуссельта зависимость числа Рейнольдса от числа Z выражается как

$$Re = 0,728 Z^{0,75}. (1.39)$$

	ė				ДР 8.090
Изм.	Лист	N докум.	Подпись	Дата	дг 6.030

Рис. 1.4. Влияние кривизны на интенсивность теплообмена при конденсации

Для конденсации на тонких цилиндрах это выражение необходимо видоизменить, чтобы учесть влияние диаметра цилиндра. Выразив его числом Вебера $\mathrm{We} = \frac{\sigma}{\rho g r_0^2}$, получим обобщающую критериальную зависимость

$$Re = 0,728 Z^{0,75} We^{0,0225}. (1.40)$$

Изм.	Лист	N докум.	Подпись	Дата

2 Методика расчета термосифонных теплообменников

2.1 Конструктивные особенности термосифонного теплообменника

Термосифонный теплообменник состоит из двух газоходов, разделенных газоплотной перегородкой, в которой закреплены замкнутые термосифоны со свободными концами, размещенными в газоходах с греющим и охлаждающим теплоносителями. Внутри термосифонов заключен промежуточный теплоноситель, с помощью которого теплота в испарительно-конденсационном цикле передается от греющего к охлаждающему теплоносителю. В качестве теплоносителей могут быть использованы различные жидкости. Наиболее часто для этих целей используется химически очищенная вода, спирты, эфиры, разрешенные к использованию хладоны, толуол, дифенильная смесь, аммиак.

Рис. 2.1. Схема термосифонного теплообменника: 1 – зона отвода теплоты; 2 – газоплотная перегородка; 3 – зона подвода теплоты; 4 – поперечные ребра

Наружная поверхность труб, как показано на рисунке 2.1, может иметь поперечное спирально-ленточное оребрение, которое повышает тепловую эффективность теплообмена, а это, в свою очередь, способствует уменьшению габаритных размеров теплообменника. Преимущества таких теплообменников по сравнению

	8 8			
Изм.	Лист	N докум.	Подпись	Дата

с обычными рекуперативными: автономность, простота исполнения, надежность работы теплопередающих элементов и теплообменника в целом; возможность оребрения поверхности как со стороны греющего, так и охлаждающего теплоносителя; гидравлическая плотность теплообменника при повреждении элементов теплообменной поверхности; отсутствие необходимости устройств компенсаторов температурных расширений; простота установки теплообменников на существующих газоходах агрегатов при использовании вторичных энергоресурсов.

Для применения на судах более предпочтительны теплообменники с продольнопоперечным обтеканием пучков термосифонов, показанные на рисунке 2.2. Такое предпочтение вызвано, прежде всего, фактом восходящего движения нагревающих теплоносителей на судне (в основном, дымовых газов). В случае установки теплообменника с продольно-поперечным обтеканием не придется осуществлять поворот потока нагревающего теплоносителя.

Рис. 2.2. Схема термосифонного теплообменника с продольно-поперечным обтеканием пучков термосифонов

2 - 10 10 - 14	8 8			
Изм.	Лист	N докум.	Подпись	Дата

2.2 Цель и задачи расчета

В настоящее время в литературе [3, 5, 10] приводится несколько методик расчета, ни одна из которых не является универсальной. При составлении данной методики была произведена попытка обобщения существующих методик расчета термосифонных теплообменников и самих термосифонов. Методикой охватывается широкий диапазон рабочих жидкостей термосифона, а также и греющего и нагреваемого теплоносителей. В отличие от весьма распространенной практики выполнять сперва конструктивный (определение компоновки теплообменной поверхности и геометрических размеров без учета многих термических сопротивлений), а затем уточненный расчет (используя совокупность уравнений теплового баланса), предлагается вести расчет с уточнениями на каждом шаге. Данный подход к организации расчета приводит к упрощению методики и облегчению составления алгоритма для автоматизированного расчета. Собственно говоря, основной целью даной методики и являлось получение обобщенного и надежного алгоритма расчета термосифонных теплообменников на ЭВМ с последующим созданием соответствующего программного обеспечения для расчета. Особое внимание уделено внутренним процессам, протекающим в термосифонах.

Изм.	Лист	N докум.	Подпись	Дата

2.3 Описание методики расчета

В качетсве исходных данных для расчета предлагается задавать температуры нагреваемого теплоносителя на входе и на выходе, температуру греющего теплоносителя на входе, расходы теплоносителей и скорости их движения, геометрические размеры термосифонов и параметры их расположения в трубной решетке. Также возможно задание параметров оребрения как испарительной, так и конденсационной зон. Затем производится расчет тепловой мощности и коэффициента теплопередачи теплообменника с целью определения площади поверхности испарительной зоны. После этого, компонуется поверхность термосифонного теплообменника. В результате нахождения площадей испарительной и конденсационной поверхности термосифонов, становится возможным выбор рабочей жидкости и расчет внутренних термических сопротивлений самих термосифонов. Далее производится пересчет коэффициента теплопередачи и площадей поверхностей теплообменника с учетом термических сопротивлений термосифонов. Выполняется также аэродинамический расчет и расчет на прочность.

	,			
Изм.	Лист	N докум.	Подпись	Дата

2.4 Исходные данные для расчета

1.	Греющий теплоноситель:	
	вид теплоносителя (вода, воздух, дымовые газы)	
	температура на входе в теплообменник, °С	t_{1}^{\prime}
	объемный расход, м $^3/\mathrm{c}$	V_1
	средняя скорость движения, м/с	$ar{w}_1$
2	Нагреваемый теплоноситель:	
	вид теплоносителя (вода, воздух)	
	температура на входе в теплообменник, °С	t_2'
	температура на выходе из теплообменника, °С	+"
	объемный расход, м ³ /с	V_2
	- · · · · · · · · · · · · · · · · · · ·	_
	средняя скорость движения, м/с	$ar{w}_2$
3.	Термосифон:	
	наружный диаметр трубы, м	d_1
	толщина стенки трубы, м	δ_w
	теплопроводность материала трубы, Вт/(м·К)	λ_w
	оребрение зоны подвода теплоты:	
	толщина ребра, м	δ_{hr}
	высота ребра, м	h_{hr}
	шаг ребра, м	s_{hr}
	теплопроводность материала ребра, Вт/(м·К)	λ_{hr}
	оребрение зоны отвода теплоты:	
	толщина ребра, м	δ_{cr}
	высота ребра, м	h_{cr}
	шаг ребра, м	s_{cr}
	теплопроводность материала ребра, Вт/(м·К)	λ_{cr}
	наличие сеточных интенсификаторов в зоне отвода теплоты	
4.	Теплообменник:	
	схема движения теплоносителей (прямоток, противоток, продольно-п	оперечное
	обтекание)	•
	расп. термосифонов в трубной решетке (коридорное, шахматное)	
	поперечный шаг термосифонов в трубной решетке, м	s_1
	продольный шаг термосифонов в трубной решетке, м	s_2
	внешний диаметр кожуха (для сл. продпоперечн. обтекания), м	D_{ext}
	1 0 (1 F-71 F	Cati

Изм.	Лист	N докум.	Подпись	Дата

2.5 Определение площади поверхности испарительной зоны

Первостепенной задачей теплового конструктивного расчета термосифонного теплообменника является определение площади испарительной зоны, что в дальнейшем позволит скомпоновать поверхности теплообменного аппарата, определить количество термосифонов и их рядов.

Площадь поверхности испарительной зоны определим как

$$F_1 = \frac{Q}{k \cdot \Delta t},\tag{2.1}$$

где Q — тепловая мощность термосифонного теплообменника, Вт; k — коэффициент теплопередачи от греющего теплоносителя к нагреваемому, Вт/(м²·K); Δt - средний температурный перепад в теплообменнике, °C.

2.5.1 Определение тепловой мощности термосифонного теплообменника

Тепловую мощность теплообменника Q определим по уравнению теплового баланса для нагреваемой среды

$$Q_2 = G_2(C''_{p2}t''_2 - C'_{p2}t'_2), (2.2)$$

где G_2 – массовый расход нагреваемой среды, кг/с (можно принять равным $V_2 \rho_2^{HY}$, где ρ_2^{HY} – плотность среды при нормальных условиях);

 $t_{2}^{'},\,t_{2}^{''}$ – температура нагреваемого теплоносителя соответственно на входе и выходе из теплообменника, °C;

 $C_{p2}^{''}=f(t_2^{''}),$ $C_{p2}^{'}=f(t_2^{'})$ – удельные массовые теплоемкости нагреваемого теплоносителя (Дж/(кг·К)) соответственно при температуре $t_2^{''}$ и $t_2^{'}$, °C.

Для дальнейших расчетов, в частности, среднего температурного перепада, необходимо знать температуру греющего теплоносителя на выходе из теплообменника $t_1^{''}$. Эта температура определяется из уравнения теплового баланса, составленного для греющей среды:

$$Q_1 = G_1(C'_{p1}t'_1 - C''_{p1}t''_1), (2.3)$$

где G_1 — массовый расход греющего теплоносителя, кг/с (можно принять равным $V_1\rho_1^{HY}$, где ρ_1^{HY} — плотность среды при нормальных условиях); t_1' , t_1'' — температура нагреваемого теплоносителя соответственно на входе из теплообменника, °C;

	8 8			
Изм.	Лист	N докум.	Подпись	Дата

 $C_{p1}^{"}=f(t_1^{"}), C_{p1}^{'}=f(t_1^{'})$ – удельные массовые теплоемкости нагреваемого теплоносителя (Дж/(кг·К)) соответственно при температуре $t_1^{"}$ и $t_1^{'}$, °C.

Перед определением температуры греющего теплоносителя следует проверить достаточно ли теплоты греющей среды для нагрева теплоносителя от t_1' до t_1'' . Из уравнения теплового баланса очевидно, что

$$G_2(C''_{p2}t''_2 - C'_{p2}t'_2) = Q_2 = G_1(C'_{p1}t'_1 - C''_{p1}t''_1), \tag{2.4}$$

т.е. должно выполняться условие

$$C'_{p1}t'_1 - Q_2/G_1 > 0. (2.5)$$

Если условие (2.5) выполняется, то температура греющего теплоносителя может быть определена методом последовательных приближений (итераций) из соотношения

$$C_{p1}^{"}t_1'' = C_{p1}^{'}t_1' - Q_2/G_1. (2.6)$$

Итерации следует продолжать до тех пор, пока не станет выполняться неравенство

$$\frac{Q_2 - Q_1}{Q_2} \cdot 100\% < 1\%. \tag{2.7}$$

Массовые теплоемкости воды можно найти по эмпирическим зависимостям, приведенным в [21, 24] или по таблицам теплофизических свойств [4, 13]. Теплоемкости воздуха и дымовых газов могут быть найдены по [9, табл. 9,16].

2.5.2 Определение среднего температурного перепада в теплообменни-

В термосифонном теплообменнике может быть реализована как прямоточная, так и противоточная схема движения теплоносителей (задается в исходных данных).

Средний температурный напор при прямотоке и противотоке

$$\Delta t = \frac{\Delta t_g - \Delta t_l}{\ln \frac{\Delta t_g}{\Delta t_l}},\tag{2.8}$$

где Δt_g , Δt_l – соответственно большая и меньшая разность температур.

Теперь, после определения среднего температурного напора, последняя неизвестная величина в уравнении (2.1) определения площади поверхности испарительной зоны - коэффициент теплопередачи.

3 4	8			
Изм.	Лист	N докум.	Подпись	Дата

2.5.3 Определение коэффициента теплопередачи от греющей среды к нагреваемой

Коэффициент теплопередачи рассчитывается так:

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_w}{\lambda_w} \left(1 + \frac{h_1}{h_2} \right) + \frac{1}{\alpha_2} \frac{h_1}{h_2}},$$
 (2.9)

где h_1/h_2 — отношение высоты зоны подвода теплоты к высоте зоны отвода теплоты;

 α_1 и α_2 – коэффициенты теплоотдачи со стороны соответственно греющего и охлаждающего теплоносителя.

Отношение высот испарительной и конденсационной зон h_1/h_2 зависит от массовых расходов теплоносителей G_1 и G_2 ; средних плотностей $\bar{\rho}_1$ и $\bar{\rho}_2$ (определяемых на основании [9, табл. 9,11,16] по средним температурам \bar{t}_1 и \bar{t}_2); скорости потока дымовых газов \bar{w}_1 и воздуха \bar{w}_2 ; коэффициентов живого сечения ψ_1 и ψ_2 :

$$\frac{h_1}{h_2} = \frac{G_1}{G_2} \frac{\bar{\rho}_2 \bar{w}_2 \psi_2}{\bar{\rho}_1 \bar{w}_1 \psi_1}.$$
 (2.10)

Если оребрение испарителя и конденсатора термосифона одинаково, то $\psi_1 = \psi_2$. Иначе, эти характеристики определяются как:

$$\psi_1 = 1 - \frac{d_1}{s_1} \left(1 + \frac{2\delta_{hr} h_{hr}}{s_{hr} \alpha_1} \right), \tag{2.11}$$

$$\psi_2 = 1 - \frac{d_1}{s_1} \left(1 + \frac{2\delta_{cr} h_{cr}}{s_{cr} \alpha_2} \right). \tag{2.12}$$

Теперь рассмотрим порядок определения коэффициентов теплоотдачи со стороны греющего α_1 и со стороны охлаждающего α_2 теплоносителей. В наиболее общем случае, мы имеем три вида теплоносителей: воду, воздух и дымовые газы, которые, в свою очередь, могут протекать в каналах с коридорными или шахматными пучками труб термосифонов (как с оребрением, так и без него). Далее приведены критериальные зависимости для определения коэффициентов теплоотдачи.

Гладкотрубные пучки, теплоноситель — воздух или дымовые газы:

коридорный пучок:

$$\alpha = 0,233 C_z C_s \frac{\lambda}{d_1} \text{Re}^{0,65} \text{Pr}^{0,33};$$
 (2.13)

. 4	6			
Изм.	Лист	N докум.	Подпись	Дата

шахматный пучок:

$$\alpha = 1,163 C_z C_s \frac{\lambda}{d_1} \text{Re}^{0.6} \text{Pr}^{0.33}.$$
 (2.14)

Здесь C_s – поправочный коэффициент, учитывающий влияние относительных шагов труб поперечного s_1/d_1 и продольного (по ходу газов) s_2/d_1 на теплоотдачу; C_z – поправочный коэффициент на количество рядов z_2 в трубном пучке (в первом приближении при расчетах может быть принят равным 1);

 Re – критерий Рейнольдса, рассчитываемый по средней скорости потока теплоносителя \bar{w} , принимая d_1 за характерный размер;

 \Pr — число Прандтля, определяемое на основании [9, табл. 9,11,16] по средней температуре потока.

Коэффициенты C_s и C_z определяются по номограммам, приведенным в [6].

Гладкотрубные пучки, теплоноситель — капельная жидкость (вода):

$$\alpha = 0, 26 \frac{\lambda}{d_1} \left(\frac{\bar{w}d_1}{\nu}\right)^{0.65} \Pr^{0.33} \sigma^{-0.15},$$
(2.15)

где \bar{w} , λ , ν , \Pr – соответственно средняя скорость течения, теплопроводность, кинематическая вязкость и число Прандтля для теплоносителя, определяемые по его средней температуре.

Оребренные пучки, теплоноситель — вода, воздух или дымовые газы:

В случае, когда поверхность термосифонного теплообменника компонуется из оребренных труб, в (2.9) подставляются приведенные коэффициенты теплоотдачи со стороны греющего и/или охлаждающего теплоносителя. Приведенный коэффициент теплоотдачи для оребренной поверхности в расчете на гладкую поверхность

$$\alpha = \alpha_k \left(\frac{F_{ribs}}{F} E + \frac{F_{nr}}{F} \right) \frac{\varphi_r}{1 + \varepsilon \psi_r} \varphi_r, \tag{2.16}$$

где α_k – коэффициент теплоотдачи конвекцией;

 F_{ribs}/F — отношение площади поверхности ребер к полной площади поверхности оребренной трубы;

 F_{nr}/F – отношение площади поверхности межреберных участков к полной площади поверхности оребренной трубы;

E – теоретическая эффективность ребра;

 ψ_r – поправочный коэффициент, учитывающий форму ребер (для круглых спиральных ребер принимаем $\psi_r = 0,9$);

	8			
Изм.	Лист	N докум.	Подпись	Дата

 ε – коэффициент загрязнения (можно принять равным нулю или определить как $\varepsilon=(12,09-0,6292\,\bar{w}+0,01903\,\bar{w}^2-3,055\cdot 10^{-4}\,\bar{w}^3+1,995\cdot 10^{-6}\,\bar{w}^4)\cdot 10^{-3});$ φ_r – коэфициент оребрения.

коэффициент теплоотдачи — коридорный пучок:

$$\alpha_k = 0,105 C_s C_z \frac{\lambda}{s_r} \left(\frac{d_1}{s_r}\right)^{-0,54} \left(\frac{h_r}{s_r}\right)^{-0,14} \left(\frac{\bar{w}s_r}{\nu}\right)^{0,72};$$
 (2.17)

коэффициент теплоотдачи — шахматный пучок:

$$\alpha_k = 0, 23 C_z \varphi_{\sigma}^{0,2} \frac{\lambda}{s_r} \left(\frac{d_1}{s_r} \right)^{-0.54} \left(\frac{h_r}{s_r} \right)^{-0.14} \left(\frac{\bar{w} s_r}{\nu} \right)^{0.65}.$$
 (2.18)

Здесь C_s – поправочный коэффициент, учитывающий влияние относительных шагов труб поперечного s_1/d_1 и продольного (по ходу газов) s_2/d_1 на теплоотдачу; C_z – поправочный коэффициент на количество рядов z_2 в трубном пучке (в первом приближении при расчетах может быть принят равным 1);

 λ , ν – теплопроводность и кинематическая вязкость потока при средней температуре потока $\bar{t}_1 = \frac{1}{2}(t_1' + t_1'')$ или $\bar{t}_1 = \frac{1}{2}(t_1' + t_1'')$;

 $arphi_{\sigma}=(\sigma_{1}-1)/(\sigma_{2}^{'}-1)$ - параметр, учитывающий геометрическое расположение труб в пучке, при этом $\sigma_{1}=s_{1}/d_{1},\ \sigma_{2}=s_{2}/d_{2},\ \sigma_{2}^{'}=\sqrt{\frac{1}{4}\sigma_{1}^{2}+\sigma_{2}^{2}}.$

Рассмотрим определение значений остальных величин, входящих в (2.16).

Отношение площади поверхности ребер к полной площади поверхности оребренной трубы

$$\frac{F_{ribs}}{F} = \frac{\left(\frac{d_1 + 2h_r}{d_1}\right)^2 - 1}{\left(\frac{d_1 + 2h_r}{d_1}\right)^2 - 1 + \frac{2(s_r - \delta_r)}{d_1}}.$$
(2.19)

Отношение площади поверхности межреберных участков к полной площади поверхности оребренной трубы

$$\frac{F_{nr}}{F} = 1 - \frac{F_{ribs}}{F}. ag{2.20}$$

Теоретическая эффективность ребра

$$E = \frac{\operatorname{th}(A)}{A} (1 - 0,058 A), \tag{2.21}$$

где
$$A=\sqrt{rac{2lpha_k}{\lambda_r\delta_r}}\cdot h_r.$$

	8			
Изм.	Лист	N докум.	Подпись	Дата

Коэффициент оребрения

$$\varphi_r = 1 + \frac{2h_r(h_r + d_1 + \delta_r)}{d_1 s_r}. (2.22)$$

Случай продольно-поперечного обтекания: Вначале рассчитывается коэффициент теплоотдачи α_{ideal} для поперечного обтекания пучка труб термосифонов по одной из формул (2.13, 2.14, 2.15, 2.16, 2.17, 2.18). Затем находятся поправочные коэффициенты для коэффициента теплоотдачи, которые позволяют определить действительный коэффициент теплоотдачи:

$$\alpha = \alpha_{ideal} x_o x_c x_z x_b, \tag{2.23}$$

где x_o — поправочный коэффициент, учитывающий влияние окружного потока; x_c — поправочный коэффициент, учитывающий влияние размера выреза окна сегментной перегородки;

 x_z — поправочный коэффициент, учитывающий отклонение угла атаки поперечно омываемых труб от $\pi/2$;

 x_b — поправочный коэффициент, учитывающий влияние байпасного и перепускного потоков.

Поправочный коэффициент x_o определяется как

$$x_o = e^{-r_o}; (2.24)$$

$$r_o = 1,35 \, m_i \left(1 - \sqrt[3]{2z_g/z_t} \right),$$
 (2.25)

где m_i – отношение усредненной площади F_o сечения для прохода окружного потока к площади F_s расчетного сечения $m_i = \frac{D_{he} - D_o}{F_s} l_b$;

 D_{he} – внутренний диаметр кожуха TA;

 D_{o} – диаметр окружности, в которую вписан трубный пучок;

 l_b – длина отсека (расстояние между соседними перегородками);

 z_g — число герметизирующих полос в зазоре между кожухом и трубным пучком (число волн уплотняющего устройства);

 z_t — число поперечно омываемых рядов труб в пучке (между срезами окон соседних перегородок).

Если Re < 150, то в формуле (2.25) вместо числа 1,35 следует принимать 1,5. Если $2z_g > z_t$, то $x_o = 1$.

	(6			
Изм.	Лист	N докум.	Подпись	Дата

Рис. 2.3. Расчетная схема обводных течений в межтрубном пространстве кожухотрубных ТА:

Д – основной (действительный) поток;

О – окружной поток через зазор между перегородкой и кожухом;

 Π – перепускной поток через зазоры между трубами и отверстиями в перегородке.

	.,,			
Изм.	Лист	N докум.	Подпись	Дата

Поправочный коэффициент x_c равен

$$x_c = 1 - r_c + 0.524 r_c^{0.32} (F_s/F_c)^{0.03},$$

где $r_c = 2n_c/n$;

 n_c – число труб, попадающих в вырез окна сегментной перегородки;

 F_c – площадь проходного сечения при продольном омывании труб в области выреза окна сегментной перегородки.

Поправочный коэффициент x_z , учитывающий отклонение угла атаки поперечно омываемых труб от $\pi/2$, определяют в зависимости от числа Рейнольдса:

$\mathrm{Re} < 150$	Re = 1504000	Re > 4000
$x_z = (10/z_y)^{0.18}$	$x_z = 1$	$x_z = (0,93+0,0156z_t)^{-1}$ при $z_t \geq 15;$
		$x_z = (0,878+0,0052\ z_t)^{-1}$ при $z_t = 8\dots 14;$
		$x_z = (0,785 + 0,017 z_t)^{-1}$ при $z_t < 8;$

Здесь z_y – общее число значительных сужений при прохождении потока через все межтрубное пространство ТА, $z_y=z_1z_t+(z_1+1)z_c$;

 z_c – число рядов труб пучка, попадающих в вырез окна сегментной перегородки.

Установлено, что байпасный поток примерно в 3 раза ухудшает теплоотдачу по сравнению с перепускным потоком. Это объясняется тем, что он практически не омывает теплопередающую поверхность, а скорость потока в зазорах перегородка – труба в 2-3 раза выше скорости w (гладкотрубные пучки).

Поправочный коэффициент, учитывающий влияние байпасного и перепускного потоков,

$$x_{b} = 1 - X_{1}\psi_{\alpha}$$

где
$$X_1 = (F_{b1} + 2F_{b2})/(F_{b1} + F_{b2});$$

 F_{b1} – площадь проходного сечения в зазорах труба – перегородка;

 F_{b2} – площадь проходного сечения в зазоре кожух – перегородка;

 $\psi_{\alpha} = 0,45 \,\theta_{\alpha} + 0,1[1 - \exp(-30\theta_{\alpha})]$ для гладкотрубных пучков и пучков из низкооребренных труб;

$$\theta_{\alpha} = (F_{b1} + F_{b2})/F_c.$$

При $\theta_{\alpha} > 0, 9$

$$x_b = 0.4 m_f + (1 - 0.4 m_f) \exp(-1.5 \theta_{\alpha}),$$

где
$$m_f = \frac{F_{b1}}{F_{b1} + F_{b2}}$$
.

Для пучков труб, оребренных винтовой накаткой при $\theta_{\alpha}=0,5\dots0,564;~X_1=1\dots1,22;~\mathrm{Re}=98\dots4500$

$$x_b = -6,947 - 6,618 \theta_{\alpha} + 16,95 X_1 + 8,39 \theta_{\alpha}^2 - 8,15 X_1^2 + 0,342 \cdot 10^{-4} \text{ Re.}$$

2 - 10 10 - 14	8 8			
Изм.	Лист	N докум.	Подпись	Дата

2.6 Компоновка поверхности теплообменника

После определения площади поверхности испарительной зоны F_1 по (2.1) становится возможным нахождение площади поверхности теплообменника

$$F = \left(\varphi_1 + \varphi_2 \frac{h_1}{h_2}\right),\tag{2.26}$$

где φ_1 и φ_2 – коэффициент оребрения соответственно испарительной и конденсационной зоны, который находится из (2.22).

2.6.1 Теплообменник с прямотоком и противотоком теплоносителей

Для компоновки поверхности теплообменника задается ширина газохода a или высота испарительной зоны h_1 . Если задана одна из этих величин, вторая определяется из уравнения

$$G_1 = \bar{\rho}_1 \bar{w}_1 \psi_1 a h_1. \tag{2.27}$$

Обычно отношение $\frac{h_1}{a}$ должно находиться в пределах 0,8...1,5. Заданное соотношение подставляется в (2.27) и, соответственно, находится либо h_1 либо a.

Высоту зоны охлаждения найдем на основании вычисленного значения h_1 и соотношения $\frac{h_1}{h_2}$, определенного по (2.10).

Общее количество труб термосифонного теплообменника

$$n = \frac{F_1}{\pi d_1 h_1}. (2.28)$$

Количество труб в поперечном направлении

$$z_1 = \frac{a}{s_1} - 1. (2.29)$$

При этом за величину z_1 принимаем целую часть числа, полученного в (2.29).

Количество рядов труб термосифонов

$$z_2 = \frac{n}{z_1}. (2.30)$$

При этом за величину z_2 принимаем ближайшее целое число.

	8				
Изм.	Лист	N докум.	T	Подпись	Дата

2.6.2 Теплообменник с продольно-поперечным обтеканием пучка термосифонов

Общее количество труб термосифонного теплообменника

$$n = 0,75 \cdot \left(\left(\frac{D_{ext}}{d_1} \right)^2 - 1 \right). \tag{2.31}$$

за n принимаем целую часть полученного числа.

Высота зоны испарения

$$h_1 = \frac{F_1}{\pi d_1 \varphi_1 n}. (2.32)$$

Высоту зоны охлаждения найдем на основании вычисленного значения h_1 и соотношения $\frac{h_1}{h_2}$, определенного по (2.10). Обычно, результирующая высота оказывается малой и ее следует увеличить.

Изм.	Лист	N докум.	Подпись	Дата

2.7 Уточнение коэффициента теплопередачи с учетом внутренних процессов в термосифонах

Влияние внутренних процессов в термосифонах на процессы теплообмена отражаются в модифицированной по сравнению с (2.9) расчетной зависимости:

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_w}{\lambda_w} \left(1 + \frac{h_1}{h_2} \right) + \frac{h_1}{h_2} k_{int} + \frac{1}{\alpha_2} \frac{h_1}{h_2}},$$
 (2.33)

где k_{int} – внутренний продольный коэффициент теплопередачи в термосифоне.

Внутренний коэффициент теплопередачи определим как

$$k_{int} = \frac{1}{\frac{1}{\alpha_{vap}} + \frac{1}{\alpha_{con}}},\tag{2.34}$$

где α_{vap} – коэффициент теплоотдачи при испарении рабочей жидкости, α_{con} – коэффициент теплоотдачи при конденсации рабочей жидкости.

2.7.1 Расчет коэффициента теплоотдачи при испарении

Выражение для α_{vap} следует из уравнения теплообмена при кипении, записанного по аналогии с выражением для однофазного конвективного теплообмена в форме закона охлаждения Ньютона

$$\alpha_{vap} = \frac{q}{\Delta t}.\tag{2.35}$$

В общем случае задача о теплообмене при кипении достаточно сложна, поэтому предлагается пользоваться упрощенными зависимостями и теориями, результатами экспериментальных исследований.

В испарителе термосифона в зависимости от режимных и геометрических параметров возможны различные случаи теплообмена:

- испарение с поверхности раздела фаз;
- кипение в столбе жидкости;
- кипение пленки,

чем и объясняется обилие имеющихся расчетных выражений.

В таблице 2.1 приведены критериальные зависимости для определения интенсивности теплообмена. Наряду с физически обоснованными уравнениями подобия, имеются и соотношения в безразмерной форме без учета физической сущности

	ļ.,			
Изм.	Лист	N докум.	Подпись	Дата

процесса (поскольку коэффициент теплоотдачи при кипении зависит от многих факторов, то соответствующим подбором эмпирических коэффициентов, пользуясь даже физически необоснованными построениями, можно получить в безразмерной форме расчетные зависимости для конкретных жидкостей и действительных в диапазоне проведенных исследований). При расчете следует выбирать выражение для определения коэффициента теплоотдачи исходя из указанных областей применимости каждого из них (диапазона плотностей теплового потока, давлений, видов теплоносителя, геометрических размеров термосифонов).

Изм.	Лист	N докум.	Подпись	Дата

Таблица 2.1. Критериальные зависимости для определения коэффициента теплоотдачи при испарении в термосифоне

Формула	Область примене- ния	Лит.
$\begin{aligned} &\mathrm{Nu} = 0,0123 \mathrm{Re}^{0,5} \mathrm{Pr}^{0,35} K_p^{0,54} (d/l)^{0,17}; \\ &\alpha_{vap} = 0,0123 \frac{\lambda}{l} \left(\left(\frac{q}{r \rho_v \nu} \right) \left(\frac{\sigma}{g(\rho - \rho_v)} \right)^{0,5} \right)^{0,5} \times \\ &\times \mathrm{Pr}^{0,35} K_p^{0,54} \left(\frac{d}{l} \right)^{0,17}, \\ &\mathrm{где} \ l = \left(\frac{\sigma}{g(\rho - \rho_v)} \right)^{0,5}. \end{aligned}$	Для термосифонов с противоточным движением фаз: $p=0,01\div 1,5~\mathrm{M}\Pi\mathrm{a}$ $q_F=(0,6\div 110)\cdot 10^4$ $d=6\div 24~\mathrm{m}$ $h_1=0,25\div 0,7~\mathrm{m}$.	[14]
Nu = 3050 Re ^{-0,33} Pr ^{-0,9} $(h_1/d)^{0,75}$; $\alpha_{vap} = 3050 \frac{\lambda}{h_1} \left(\frac{4q_F h_1}{r\mu}\right)^{-0,33} \left(\frac{\nu}{a}\right)^{-0,9} \left(\frac{h_1}{d}\right)^{0,75}$.	Для термосифонов с противоточным движением фаз: $p=0,03\div 0,35~\mathrm{M}\Pi\mathrm{a}$ $q_F=(0,16\div 15)\cdot 10^3$ $d=6\div 24~\mathrm{m}$ мм $l=50\div 350~\mathrm{m}$ мм.	[15]
$Nu = 0,0096 \text{Pe}^{0,7} \text{Pr}^{-1} K_p^{0,6};$ $\alpha_{vap} = 0,0096 \lambda \left(\frac{g(\rho - \rho_v)}{\sigma}\right)^{0,5} \times$ $\times \left(\frac{q_F}{r\rho_v \nu} \left(\frac{\sigma}{g(\rho - \rho_v)}\right)^{0,5}\right)^{0,7} \left(\frac{\nu}{a}\right)^{-1} \times$ $\times \left(\frac{p}{\sigma g(\rho - \rho_v)^{0,5}}\right)^{0,6}.$	Для термосифонов с противоточным движением фаз: $p=0,08\div 1,2 \ \mathrm{M}\Pi \mathrm{a}$ $q_F=(2\div 50)\cdot 10^3$ $d=6\div 24 \ \mathrm{M}\mathrm{M}$ $l=50\div 350 \ \mathrm{M}\mathrm{M}.$	
$lpha_{vap}=0,32rac{ ho^{0,65}\lambda^{0,3}c_p^{0,7}g^{0,2}q_F^{0,4}}{ ho_v^{0,25}r^{0,4}\mu^{0,1}}\left(rac{p}{p_{atm}} ight)^{0,23},$ где p_{atm} — атмосферное давление.	Для кипения в столбе жидкости: $q_F = (0, 1 \div 3, 5) \cdot 10^4$ теплоноситель — вода, этанол, R113 $t_s = 32 \div 60$ °C.	[23]

	,,			
Изм.	Лист	N докум.	Подпись	Дата

Формула	Область примене- ния	Лит.
$lpha_{vap}=1,1\lambda\left(rac{4xq_F}{r u} ight)^{-0,33}\left(rac{g}{ u^2} ight)^{0,33},$ где $x=L_{fluid}+0,5L_{film};$ L_{fluid} — высота столба жидкости в испарителе; L_{film} — длина испарителя, покрытая пленкой.	Для кипения в пленке жидкости.	
$\begin{aligned} &\text{Nu} = 0,0786 \text{Re}^{0,6} \text{Pr}^{0,33}; \\ &\alpha_{vap} = 0,0786 \frac{\lambda (r\rho_v)^2}{c_p \rho \sigma T_s} \left(\frac{q_F c_p \rho \sigma T_s}{(r\rho_v)^3 \nu} \right)^{0,6} \left(\frac{\nu}{a} \right)^{0,33}; \\ &\text{Nu} = \alpha_{vap} l / \lambda; \\ &\text{Re} = \frac{q_F l}{r\rho_v \nu}; \\ &l = \frac{c_p \rho \sigma T_s}{(r\rho_v)^2}; \\ &T_s - \text{температура насыщения, K.} \end{aligned}$	Для кипения в термосифоне: $p=0,003 \div 0,1 \ \mathrm{M}\Pi \mathrm{a}$ $q_F=(2 \div 15) \cdot 10^3.$	[17]
$ \begin{aligned} \alpha_{vap} &= 2,35 \alpha_{lv} (p_s/p_{cr})^{0,14}, \\ \text{где } l &= \left(\frac{\sigma}{g(\rho - \rho_v)}\right)^{0,5}; \\ \text{Nu}_{lv} &= 0,082 \text{Pr}^{-0,45} K_q^{0,7} K_u^{0,33}; \\ \alpha_{lv} &= 0,082 \frac{\lambda}{l} \left(\frac{\mu c_p}{\lambda}\right)^{-0,45} \left(\frac{r \rho_v q_F}{t_s \lambda(\rho - \rho_v)g}\right)^{0,7} \times \\ &\times \left(\frac{t_s c_p \sigma \rho}{r^2 \rho_v^2 l}\right). \end{aligned} $	Для кипения в большом объеме: $p=0,01\div0,16$ МПа $q_F=(0,5\div16)\cdot10^4$ теплоноситель — вода, ацетон, $R12$	[25]
$\alpha_{vap} = 2,05 \cdot 10^{-2} p_s^{0,52} q_F^{0,7}$	Для кипения на торцевой поверхности (термосифон — в поперечном сечении плоский элемент размером 100×8 мм.): $p=0,002\div0,03$ МПа $q_F=(2\div100)\cdot10^3$.	[1]

Изм.	Лист	N докум.	Подпись	Дата

Формула	Область примене- ния	Лит.
$lpha_{vap} = C q_F^{0,4} \left(rac{t_w - t_s}{t_w - t_f} ight)^{0,9};$ $lpha_{vap} = 0,32 rac{g^{0,2} ho^{0,55} \lambda^{0,3} c_p^{0,7}}{r^{0,4} ho_v^{0,25} u^{0,1}} q_F^{0,4} \left(rac{t_w - t_s}{t_w - t_f} ight)^{0,9},$ где $C = 81$ для теплоносителя — воды; $C = 40$ для этанола; $C = 36$ для u -гексана; $C = 36$ для ССІ; t_f — входная температура жидкости.	Для открытого термосифона с внутренним каналом для подачи жидкости.	[22]
$lpha_{vap}=46Bq_F^{0,7},$ где $B=\lambda\left(rac{\sigma}{(g(ho- ho_v))^{-0,15}}(r\mu_v)^{-0,7} ight);$ $B=0,715$ для аммиака; $B=0,475$ для хладона R12; $B=0,272$ для пропана.	Для двухфазных термосифонов с: $q_F \leq 500$.	[10]

Величины, входящие в формулы таблицы 2.1:

```
\rho – плотность жидкости, кг/м<sup>3</sup>;
\rho_v – плотность пара, кг/м<sup>3</sup>;
\sigma – коэффициент поверхностного натяжения, \mathrm{H}/\mathrm{M}
g – ускорение свободного падения, м<sup>2</sup>/c;
\lambda – коэффициент теплопроводности, \mathrm{Br}/(\mathrm{M}\cdot\mathrm{K})

u – кинематический коэффициент вязкости, м^2/{
m c}
\mu – динамический коэффициент вязкости, \Pi a \cdot c
p – давление в термосифоне, Па
p_s – давление насыщения рабочей жидкости, \Piа
p_{cr} – критическое давление, Па
t_s – температура насыщения рабочей жидкости, °C;
t_w – температура стенки термосифона, °C;
t_{cr} – критическая температура, °C;
t_f – температура жидкости, °C;
q_F – плотность теплового потока, B_T/M^2;
K_p = \frac{p}{(\sigma g(\rho - \rho_v))^{0.5}};
h_1 – высота испарительной части термосифона, м;
d – внутренний диаметр термосифона, м;
a – коэффициент температуропроводности, м^2/c
c_p – удельная теплоемкость, Дж/(кг·К).
```

2.7.2 Расчет коэффициента теплоотдачи при конденсации

Процесс конденсации пара протекает при докритических состояниях пара и, в зависимости от режимных параметров и конструктивных особенностей конденсатора, конденсация может проходить:

- в объеме жидкости (если степень заполнения зоны нагрева 100% или более, длина транспортной зоны незначительна, т.е. имеет место вынос жидкости в конденсатор);
- в объеме пара (если пар значительно переохлажден относительно температуры насыщения);
- на холодных поверхностях (если температура поверхности меньше температуры насыщения при данном давлении).

При конденсации пара на твердых поверхностях возможно образование пленки конденсата с толщиной, намного превышающей расстояние эффективного дей-

	8 8			
Изм.	Лист	N докум.	Подпись	Дата

ствия межмолекулярных сил (пленочная конденсация), или на поверхности образуются отдельные капли конденсата (капельная конденсация).

В таблице 2.3 представлены критериальные зависимости для расчета коэффициента теплоотдачи при конденсации при различных режимах работы и для различных конструкций термосифонов.

При использовании сеточных интенсификаторов для конденсационной поверхности коэффициент теплоотдачи при конденсации следует в определять как

$$\alpha_{con} = 0, 4 \cdot \alpha_{con,tab} \cdot We^{0,025}, \tag{2.36}$$

где $\alpha_{con,tab}$ – коэффициент теплоотдачи, рассчитанный по формулам таблицы 2.3; We – число Вебера, We = $\frac{\sigma}{\rho g r_i^2}$; r_i – радиус проволоки в сетке.

	,			
Изм.	Лист	N докум.	Подпись	Дата

Таблица 2.3. Критериальные зависимости для определения коэффициента теплоотдачи при конденсации в термосифоне

Формула	Область примене- ния	Лит.
$\begin{aligned} &\text{Nu} = 0,95 \ \text{Re}^{-0,28}; \\ &\alpha_{con} = 0,95 \ \lambda \left(\frac{\nu^2}{g}\right)^{-0,33} \left(\frac{4G}{\mu}\right)^{-0,28}, \\ &\text{где } G - \text{расход жидкости в пленке, приходящийся на единицу длины поверхности,} \\ &\kappa \Gamma/(\text{M·c}). \end{aligned}$	Для внутренней поверхности вертикальной трубы: $d=6\div 24$ мм $p=0,03\div 1,5$ МПа $q_F=(0,3\div 40)\cdot 10^3$ теплоноситель — R11, R113, R142, этанол	[16]
$\alpha_{con} = 1,47 \mathrm{Re}^{-0,33} (g/\nu^2)^{0,33};$ $\alpha_{con} = 0,93 \left(\frac{r\rho^2\lambda^2g}{\mu q_F h_2}\right)^{0,33}$	Для внутренней поверхности верти- кальной трубы: $d=6\div 24$ мм $p=0,03\div 1,5$ МПа $q_F=(0,3\div 40)\cdot 10^3$ $t_s=32\div 60$ теплоноситель — вода, R113, этанол	[23]
$\alpha_{con} = 0,943 \left(\frac{r\rho^2 g\lambda^3}{\mu(t_s - t_w)h_2}\right)^{0.25}$	Для вертикальной стенки	[8, 26]
$\alpha_{con} = 0,924 \left(\frac{r\rho^2 g\lambda^3}{\mu q_F h_2}\right)^{0,33}$	Для вертикальной стенки	
$lpha_{con} = lpha_{con,st} (\sin arphi)^{0,25},$ где $lpha_{con,st}$ – коэффициент теплоотдачи для вертикальной стенки.	Для наклонной стенки	

Изм.	Лист	N докум.	Подпись	Дата

Формула	Область примене- ния	Лит.
$\alpha_{con} = 0,728 \left(\frac{r\rho^2 g\lambda^3}{\mu(t_s - t_w)d}\right)^{0,25}$	Для наружной поверхности гори- зонтальной трубы	
$\alpha_{con} = 0,656 \left(\frac{r\rho^2 g\lambda^3}{\mu q_F d}\right)^{0,33}$	Для наружной поверхности гори- зонтальной трубы	
$\alpha_{con} = 0,656 \lambda \left(\frac{\nu^2}{g} \right)^{-0,33} \left(\frac{q_F d}{r \mu} \right)^{-0,33} \times \\ \times \varepsilon_t^{1,33} \left(1 + 1, 1 \cdot \exp \left(-0,022 \frac{t}{h} - 1, 2 \frac{t}{d} \right) \right),$ где t – осевое расстояние между соседними выступами; h – высота выступов, принимаемая равной глубине наружных канавок; $\varepsilon_t = \left(\frac{\lambda_w^3 \mu_s}{\lambda_s \mu_w} \right)^{0,125};$ λ_w – коэффициент теплопроводности жидкости при t_w ; λ_s – коэффициент теплопроводности жидкости при t_s ; μ_s – динамический коэффициент вязкости жидкости при t_s ; μ_w – динамический коэффициент вязкости жидкости при t_w ;	Для конденсации водяного пара на одиночных горизонтальных профилированных трубах с кольцевыми и спиральными канавками на наружной поверхности $t/h>8$ $t/d>0,25$	
$egin{aligned} lpha_{con} &= 0,925\lambda\left(rac{ u^2}{g} ight)^{-0,33}\left(rac{q_F d}{r\mu} ight)^{-0,28} imes \\ & imes arepsilon_t^{1,33}\left(1+0,7\cdot\exp\left(-0,1rac{t}{\hbar} ight) ight) \end{aligned}$	Для конденсации неподвижного водяного пара на вертикальных профилированных трубах с кольцевыми канавками: $t/h>8$ $t/d>0,25$	

Изм.	Лист	N докум.	Подпись	Дата

Формула	Область примене- ния	Лит.
$\alpha_{con} = 220 \lambda \left(\frac{\nu^2}{g}\right)^{-0.33} \left(\frac{q_F d}{r\mu}\right)^{-0.28} \times \left(\frac{t}{d}\right)^{0.4} \left(\frac{h}{d}\right)^{0.8}$	Для конденсации неподвижного водяного пара на вертикальных профилированных трубах со спиральными трехзаходными канавками на наружной поверхности: $0,5 < t/d < 1,5$ $0,025 < h/d < 0,075$	
$lpha_{con}=0,003\left(rac{\lambda^3 ho^2gh_2(t_s-t_w)}{\mu^3\Delta i} ight)^{0,5},$ где Δi – энтальпия испарения	Для конденсации пара внутри трубы с заглущенным верхним концом: $t_s=37\div76$ °C $q_F=(8,2\div47)\cdot10^3$ теплоноситель — R115	[20]
$\begin{split} \alpha_{con} &= \alpha_{\mathrm{Nu}} (p_s \cdot 10^{-5})^{0,37} (A(\varphi - 30)^2 + B), \\ \text{где } A &= (-3.865 \varepsilon^2 + 6\varepsilon - 2,74) \cdot 10^{-4}; \\ B &= 0,07 \varepsilon^2 - 0,8 \varepsilon + 1,7; \\ \alpha_{\mathrm{Nu}} &= 0,943 \left(\frac{r \rho^2 g \lambda^3}{\mu(t_s - t_w) h_2}\right)^{0,25}. \end{split}$	Для конденсации пара внутри трубы с заглущенным верхним концом: $p_s = (0,08 \div 1,5) \cdot 10^5$ Па теплоноситель — вода	[26]

Формула	Область применения	Лит.
$\begin{aligned} &\text{Nu} = ((\text{Nu}_{lam} f_w)^2 + \text{Nu}_{turb}^2)^{0.5}; \\ &\text{Nu}_{lam} = 0,925 \text{Re}_{\varphi}^{-0.33}; \\ &\text{Nu}_{turb} = 0,021 \text{Re}_{\varphi}^{0.33}; \\ &f_w = \frac{1.15}{\left(1 - 0.63 \left(\frac{p}{pcr}\right)^{3.3}\right)}; \\ &\text{Re}_{\varphi} = \text{Re} F(\varphi); \\ &\text{Re} = \frac{q_F h_2}{r\mu}; \\ &\text{Nu} = \frac{\alpha}{\lambda} \left(\frac{\nu^2}{g(1 - \rho_v/\rho)}\right)^{0.33}; \\ &80 < \varphi \le 90: \ F(\varphi) = 1; \\ &0 \le \varphi \le 80: \ F(\varphi) = 2,869 d(h_2 \cos \varphi)^{-1}. \end{aligned}$	Для конденсации пара внутри трубы с заглущенным верхним концом: теплоноситель — вода, метанол, ацетон, хладоны R11, R22, R13, R113, бензол, этанол.	[19]

43

Величины, входящие в формулы таблицы 2.3:

- ρ плотность жидкости, кг/м³;
- ρ_v плотность пара, кг/м³;
- σ коэффициент поверхностного натяжения, H/M
- g ускорение свободного падения, м²/с;
- λ коэффициент теплопроводности, $\mathrm{Br/(M\cdot K)}$
- ν кинематический коэффициент вязкости, м $^2/c$
- μ динамический коэффициент вязкости, $\Pi a \cdot c$
- р давление в термосифоне, Па
- p_s давление насыщения рабочей жидкости, Π а
- p_{cr} критическое давление, Па
- t_s температура насыщения рабочей жидкости, °C;
- t_w температура стенки термосифона, °C;
- t_{cr} критическая температура, °C;
- t_f температура жидкости, °C;
- q_F плотность теплового потока, $\mathrm{Br/m^2}$;
- h_2 высота конденсационной части термосифона, м;
- d внутренний диаметр термосифона, м;
- a коэффициент температуропроводности, м 2 /с
- c_p удельная теплоемкость, Дж/(кг \cdot К)
- ε степень объемного заполнения термосифона, %
- φ угол наклона термосифона.

250000	20000	24.703.00040		
Изм.	Лист	N докум.	Подпись	Дата

2.8 Аэродинамический расчет

Аэродинамический расчет производится для определения перепада давления при течении потока теплоносителей через теплообменный пучок. По результатам этого расчета выбирают нагнетатели для обеспечения заданной скорости потока.

Гидравлическое сопротивление Δp определяется интегрально для всего пучка отдельно для потоков греющего и охлаждающего теплоносителей, Π а:

$$\Delta p = \mathrm{Eu} \cdot \bar{\rho} \bar{w}^2, \tag{2.37}$$

где Еи – критерий Эйлера;

 $\bar{
ho}$ — плотность теплоносителя, определенная по средней температуре потока;

 $ar{w}$ – средняя скорость греющего или охлаждающего теплоносителя в пучке.

Критерий Эйлера

$$Eu = Az_2 C_S C_z \left(\frac{l_0}{d_e}\right)^{0,3} Re^n, \qquad (2.38)$$

где для шахматных пучков:

$$A=2,7; n=-0,25$$
 при $\mathrm{Re} \leq 1,8\cdot 10^5$

$$A=0,13;\, n=0$$
 при ${
m Re}>1,8\cdot 10^5$

$$C_s = 1$$

для коридорных пучков:

$$A = 0, 26; n = -0, 08; C_s = \left(\frac{s_2 - d}{s_1 - d}\right)^{0,68};$$

в зависимости от количества рядов труб в теплообменнике z_2 поправка C_z :

	2 / 1	<u> </u>
z_2	C_z для шахматных пучков	C_z для коридорных пучков
1	1,30	2,4
2	1,20	1,6
3	1,10	1,3
4	1,05	1,1
5 и более	1,00	1,0

 l_0 – характерный размер при расчете течений в оребренных пучках:

$$l_0 = \frac{F_{nr}d_1 + F_r\left(\frac{2}{s_r}\right)^{3/4}}{F_r + F_{nr}},\tag{2.39}$$

где F_r – площадь ребер:

$$F_r = \frac{2\pi h_r}{s_r} (d_1 + h_r); (2.40)$$

		No. 18 Control		
Изм.	Лист	N докум.	Подпись	Дата

 F_{nr} – площадь межреберных участков:

$$F_{nr} = \pi d_1 \left(1 + \frac{\delta_r}{s_r} \right); \tag{2.41}$$

 d_e – эквивалентный диаметр наиболее сжатого сечения,

$$d_e = \frac{(s_1 - d_1) - \frac{2\delta_r h_r}{s_r}}{\frac{2h_r}{s_r} + 1}; \tag{2.42}$$

Re – число Рейнольдса для потока теплоносителей,

$$Re = \frac{\bar{w}l_0}{\nu},\tag{2.43}$$

где $\bar{w},\ \nu$ — соответственно скорость и кинематическая вязкость потока теплоносителя, определенные по средней температуре потока.

Для пучков неоребренных труб принимается:

$$l_0 = d_1; (2.44)$$

$$d_e = s_1 - d_1. (2.45)$$

Рассчитанное гидравлическое сопротивление входит в полное гидравлическое сопротивление тракт, по которому и определяется мощность нагнетающих устройств. В состав тракта движение, например, по ходу греющего теплоносителя могут входить гидравлическое сопротивление технологического агрегата, термосифонного теплообменника, фильтров, других устройств. Полное гидравлическое сопротивление тракта определяется как сумма сопротивлений этих устройств и соединяющих их газоходов:

$$\Delta p_1 = \sum \Delta p_i. \tag{2.46}$$

Аналогично рассчитывается полное сопротивление тракта движения нагреваемого теплоносителя Δp_2 .

Нагнетатели выбирают по расходу среды и необходимому напору.

Изм.	Лист	N докум.	Подпись	Дата

2.9 Расчет на прочность

Целью расчета на прочность является определение минимально допустимых толщин стенок термосифонов для нормальных условий эксплуатации. Данный расчет учитывает только внутренние напряжения в термосифоне и не учитывает такие внешние нагрузки, как осевые усилия, изгибающие и крутящие моменты от действия собственного веса или веса присоединенных элементов. Расчет ведется в соответствии с правилами Регистра судоходства Украины [12], которые с одинаковым успехом могут быть применены и к стационарным установкам.

Толщина стенки s, м должна быть не менее, чем определенная по формуле:

$$s = \frac{dp}{2\sigma\varphi + p} + c, (2.47)$$

где d – внешний диаметр термосифона, м;

p – расчетное давление, принимаемое равным рабочему давлению теплоносителя в термосифоне, Π а;

 σ – допустимое напряжение, Π а;

 φ – коэффициент прочности, $\varphi = 0, 7$;

c – дополнение, равное не менее 0,001 м.

Толщина днища s_b должна быть не менее

$$s_b = kd\sqrt{\frac{p}{\sigma}} + c, (2.48)$$

где k=0,5 – расчетный коэффициент согласно вида крепления, обозначенного на рисунке 2.4.

Рис. 2.4. Вид крепления днища и крышки термосифона

Допустимое напряжение σ определяется как

$$\sigma = \frac{X_{\sigma}}{k_{\sigma}},\tag{2.49}$$

где X_{σ} – характеристика прочности материала, равная для стали верхней границе

3 4	8 8			
Изм.	Лист	N докум.	Подпись	Дата

текучести R_{eH} при расчетных температурах до 50 °C и нижней границе текучести R_{eL} при температурах 50 ÷ 350 °C (свойства конструкционных материалов можно найти в [11, табл. 28]);

 k_{σ} – коэффициент запаса прочности, для термосифонов $k_{\sigma}=1,7.$

Если заданная в исходных данных толщина стенки $\delta_w < s$, то требуется либо увеличить δ_w , либо увеличить зону конденсации, либо применить высокотемпературный теплоноситель.

	6		30	
Изм.	Лист	N докум.	Подпись	Дата

3 Принципы автоматизированного расчета термосифонных теплообменников

В настоящее время актуальными стали вопросы автоматизированного проектирования, расчета и моделирования технологических агрегатов и устройств. Доказательством этого является все увеличивающееся количество работ, в которых так или иначе применяется компьютерное моделирование и расчет.

При программировании расчетных процедур инженер сталкивается с некоторыми характерными явлениями, не позволяющие ему эффективно реализовать задуманное. Это

- отсутствие математического аппарата для решения задачи;
- неадекватное представление расчетных зависимостей, не позволяющих эффективно запрограммировать задачу;
- табличное и номограммное представление многих справочных данных, представляющее самое большое неудобство при автоматизированных расчетах.

Проблемы отсутствия математического аппарата, в основном, на данный момент не существует. Например, в дополнение к хорошо известным и исследованными методам решения дифференциальных уравнений Рунге-Кутта (наиболее полно описаны в [2]), на данное время вполне доступен метод Адамса (он предназначен для решения дифференциальных уравнений как первого порядка, так и второго порядка и представляет собой уточнения к методу Рунге-Кутта на 3-м и далее шагах решения при том, что шаг не является постоянным). Сложность метода долгое время не позволяла его использовать (время расчета каждого последующего шага имеет тенденцию к значительному увеличению, также при интегрировании гладких решений с автоматическим выбором шага наблюдается явление периодического укрупнения и уменьшения шага, что также приводит к увеличению объемов расчета), однако все возрастающаяся мощность вычислительных машин уже позволяет получать результаты по методу Адамса в приемлемое время.

Влияние неадекватного представления расчетных зависимостей, не позволяющего эффективно организовывать вычисления, нивелируется разработкой современных методик, учитывающих необходимость автоматизированных расчетов. Одной из таких разработок является методика расчета термосифонных теплообменников, приведенная в разделе 2.

Особое внимание при программировании расчетных задач приходится уделять справочным данным, представленным в виде таблиц и номограмм. При расчетах

3 4	8			
Изм.	Лист	N докум.	Подпись	Дата

теплообменных аппаратов это, в основном, таблицы теплофизических свойств воды и водяного пара, воздуха, дымовых газов, хладонов, спиртов и номограммы для расчета коэффициентов теплоотдачи для воздуха и дымовых газов. В предлагаемой в разделе 2 методике приводятся формулы расчета коэффициентов теплоотдачи (2.13, 2.14, 2.15, 2.17, 2.18), в которых не участвуют номограммные коэффициенты теплоотдачи. К способам представления табличных данных в удобном для программирования виде относятся применение интерполяционных многочленов и аппроксимационных зависимостей.

Изм.	Лист	N докум.	Подпись	Дата

3.1 Интерполяция функций, заданных таблично

Основным и самым простым методом использования табличных данных является интерполяция. Для инженерных расчетов достаточную точность интерполяции обеспечивает многочлен Лагранжа [2]:

$$Ln(x) = \sum_{i=1}^{n} f(x_i) \cdot \prod_{i \neq j} \frac{x - x_j}{x_i - x_j},$$
 (3.1)

где x_i и $f(x_i)$ – соответственно аргумент и значение функции в узловых точках интерполяции;

x – аргумент функции, для которого требуется найти значение функции.

Для подсчета погрешности метода интерполирования по формуле Лагранжа применима оценочная формула [7]:

$$|Rn(x)| \le \frac{M_{n+1}}{(n+1)!} \left| \prod (x) \right|,$$
 (3.2)

где
$$M_{n+1} = \max |f^{(n+1)}(x)|,$$
 $\prod (x) = (x-x_0)(x-x_1)\cdot\ldots\cdot(x-x_n).$

	,			
Изм.	Лист	N докум.	Подпись	Дата

3.2 Теплофизические свойства воды и водяного пара

Для расчета теплофизических свойств воды и водяного пара ассоциацией IAPWS [24] были представлены расчетные зависимости как для промышленных расчетов, так и для научных.

Для получения более точной аппроксимации предлагается для разных областей значений температуры и давления воды и водяного пара использовать различные соотношения. Вся область значений была разделена на 5 частей, как показано на рисунке 3.1. Уравнения для расчета теплофизических свойств воды и водяного пара для областей 1 и 2 приведены ниже в разделах, соответственно, 3.2.1 и 3.2.2. Уравнение, описывающее линию насыщения приведено в разделе 3.2.3. Уравнения для областей 3 и 5, которые не входят в диапазон рабочих температур и давлений, не представляют интереса для расчета теплообменных аппаратов и могут быть найдены в [24].

Рис. 3.1. Области и уравнения IAPWS-IF97

3.2.1 Уравнения для первой области

Для первой области используется уравнение для удельной энергии Гиббса g(p,T), которое в безразмерном виде представляется как

$$\gamma(\pi,\tau) = \frac{g(p,T)}{RT} = \sum_{i=1}^{34} n_i (7,1-\pi)^{I_i} (\tau - 1,222)^{J_i}, \tag{3.3}$$

7 1	()			
Изм.	Лист	N докум.	Подпись	Дата

где $\pi=p/p^*$ и $\tau=T^*/T$ при $p^*=16,53$ МПа и $T^*=1386$ K; коэффициенты $n_i,\ I_i,\ J_i$ приведены в таблице 3.1.

Таблица 3.1. Численные значения коэффициентов и показателей степеней безразмерной свободной энергии Гиббса для области 1

i	I_i	J_i	n_i	i	I_i	J_i	n_i
1	0	- 2	0.146 329 712 131 67	18	2	3	$-0.441\ 418\ 453\ 308\ 46 \times 10^{-5}$
2	0	- 1	- 0.845 481 871 691 14	19	2	17	$-0.72694996297594 \times 10^{-15}$
3	0	0	$-0.375\ 636\ 036\ 720\ 40 \times 10^{1}$	20	3	-4	$-0.31679644845054 \times 10^{-4}$
4	0	1	$0.338\ 551\ 691\ 683\ 85 \times 10^{1}$	21	3	0	$-0.282\ 707\ 979\ 853\ 12 \times 10^{-5}$
5	0	2	- 0.957 919 633 878 72	22	3	6	$-0.852\ 051\ 281\ 201\ 03\times 10^{-9}$
6	0	3	0.157 720 385 132 28	23	4	- 5	$-\ 0.224\ 252\ 819\ 080\ 00\times 10^{-5}$
7	0	4	$-0.166\ 164\ 171\ 995\ 01 \times 10^{-1}$	24	4	-2	$-0.651\ 712\ 228\ 956\ 01 \times 10^{-6}$
8	0	5	$0.812\ 146\ 299\ 835\ 68 \times 10^{-3}$	25	4	10	$-0.143\ 417\ 299\ 379\ 24 \times 10^{-12}$
9	1	- 9	$0.283\ 190\ 801\ 238\ 04 \times 10^{-3}$	26	5	-8	$-0.40516996860117\times10^{-6}$
10	1	-7	$-0.607\;063\;015\;658\;74\times10^{-3}$	27	8	-11	$-0.127\;343\;017\;416\;41\times10^{-8}$
11	1	- 1	$-0.189\ 900\ 682\ 184\ 19 \times 10^{-1}$	28	8	-6	$-0.174\ 248\ 712\ 306\ 34 \times 10^{-9}$
12	1	0	$-0.32529748770505\times 10^{-1}$	29	21	- 29	$-0.687\;621\;312\;955\;31\times 10^{-18}$
13	1	1	$-0.218\ 417\ 171\ 754\ 14 \times 10^{-1}$	30	23	-31	$0.144\ 783\ 078\ 285\ 21 \times 10^{-19}$
14	1	3	$-0.528\ 383\ 579\ 699\ 30 \times 10^{-4}$	31	29	-38	$0.263\ 357\ 816\ 627\ 95 \times 10^{-22}$
15	2	- 3	$-0.471~843~210~732~67 \times 10^{-3}$	32	30	- 39	$-0.11947622640071 \times 10^{-22}$
16	2	0	$-0.300\ 017\ 807\ 930\ 26\times 10^{-3}$	33	31	-40	$0.182\ 280\ 945\ 814\ 04 \times 10^{-23}$
17	2	1	$0.476\ 613\ 939\ 069\ 87\times 10^{-4}$	34	32	-41	$-0.935\ 370\ 872\ 924\ 58 imes 10^{-25}$

Термодинамические свойства, выраженные через γ :

удельный объем: $v(\pi, \tau) \frac{p}{RT} = \pi \gamma_{\pi}$;

удельная внутренняя энергия: $\frac{u(\pi,\tau)}{RT} = \tau \gamma_{\tau} - \pi \gamma_{\pi};$

удельная энтропия: $\frac{s(\pi,\tau)}{R} = \tau \gamma_{\tau} - \gamma;$

удельная энтальпия: $\frac{h(\pi,\tau)}{RT}= au\gamma_{ au};$

удельная изобарная теплоемкость: $\frac{c_p(\pi,\tau)}{R} = -\tau^2 \gamma_{\tau\tau};$

удельная изохорная теплоемкость: $\frac{c_v(\pi,\tau)}{R} = -\tau^2 \gamma_{\tau\tau} + \frac{(\gamma_\pi - \tau \gamma_{\pi\tau})^2}{\gamma_{\pi\pi}};$

скорость звука: $\frac{w^2(\pi,\tau)}{RT} = \frac{\gamma_\pi^2}{\frac{(\gamma\pi - \tau\gamma\pi\tau)^2}{\tau^2\gamma\tau} - \gamma_{\pi\pi}}$.

	,			
Изм.	Лист	N докум.	Подпись	Дата

В приведенных выше формулах γ_{π} , $\gamma_{\pi\pi}$, γ_{τ} , $\gamma_{\tau\tau}$, $\gamma_{\pi\tau}$ – производные безразмерной энергии Гиббса γ :

$$\gamma_{\pi} = \left(\frac{\partial \gamma}{\partial \pi}\right)_{\tau} = \sum_{i=1}^{34} -n_i I_i (7, 1-\pi)^{I_i-1} (\tau - 1, 222)^{J_i};$$
 (3.4)

$$\gamma_{\pi\pi} = \left(\frac{\partial^2 \gamma}{\partial \pi^2}\right)_{\tau} = \sum_{i=1}^{34} n_i I_i (I_i - 1) (7, 1 - \pi)^{I_i - 2} (\tau - 1, 222)^{J_i}; \tag{3.5}$$

$$\gamma_{\tau} = \left(\frac{\partial \gamma}{\partial \tau}\right)_{\pi} = \sum_{i=1}^{34} n_i (7, 1 - \pi)^{I_i} J_i (\tau - 1, 222)^{J_i - 1}; \tag{3.6}$$

$$\gamma_{\tau\tau} = \left(\frac{\partial^2 \gamma}{\partial \tau^2}\right)_{\pi} = \sum_{i=1}^{34} n_i (7, 1 - \pi)^{I_i} J_i (J_i - 1) (\tau - 1, 222)^{J_i - 2}; \tag{3.7}$$

$$\gamma_{\pi\tau} = \left(\frac{\partial^2 \gamma}{\partial \pi \partial \tau}\right) = \sum_{i=1}^{34} -n_i I_i (7, 1 - \pi)^{I_i - 1} J_i (\tau - 1, 222)^{J_i - 1}. \tag{3.8}$$

3.2.2 Уравнения для второй области

Основным уравнением для этой области также является выражение удельной свободной энергии Гиббса g. Уравнение преобразовывается в безразмерный вид и разделяется на две части – идеального газа γ^o и остаточную γ^r :

$$\frac{g(p,T)}{RT} = \gamma(\pi \tau) = \gamma^{o}(\pi \tau) + \gamma^{r}(\pi \tau); \tag{3.9}$$

$$\gamma^{o} = \ln \pi + \sum_{i=1}^{9} n_{i}^{o} \tau^{J_{i}^{o}}; \tag{3.10}$$

$$\gamma^r = \sum_{i=1}^{43} n_i \pi^{I_i} (\tau - 0, 5)^{J_i}, \tag{3.11}$$

где n_i^o , J_i^o , n_i , I_i , J_i находятся по таблицам 3.2 и 3.3; $\pi=p/p^*$ и $\tau=T^*/T$ при $p^*=1$ МПа и $T^*=540$ К.

Термодинамические свойства, выраженные через γ^o и γ^r :

удельный объем: $v(\pi,\tau)\frac{p}{RT} = \pi(\gamma_{\pi}^{o} + \gamma_{\pi}^{r});$

удельная внутренняя энергия: $\frac{u(\pi,\tau)}{RT}= au(\gamma_{ au}^o+\gamma_{ au}^r)-(\gamma_{\pi}^o+\gamma_{\pi}^r);$

удельная энтропия: $\frac{s(\pi,\tau)}{R}= au(\gamma_{ au}^o+\gamma_{ au}^r)-(\gamma^o+\gamma^r);$

	(6			
Изм.	Лист	N докум.	Подпись	Дата

Таблица 3.2. Численные значения коэффициентов и показателей степеней части для идеального газа γ^o безразмерной свободной энергии Гиббса для области 2

i	J_i^{o}	n_i^0	i	J_i^0	n_i^0
1ª	0	$-0.969\ 276\ 865\ 002\ 17 \times 10^{1}$	6	- 2	$0.142\ 408\ 191\ 714\ 44 \times 10^1$
2^a	1	$0.100~866~559~680~18\times 10^2$	7	- 1	$-\ 0.438\ 395\ 113\ 194\ 50\times 10^{1}$
3	- 5	$-$ 0.560 879 112 830 20 \times 10 $^{-2}$	8	2	- 0.284 086 324 607 72
4	– 4	$0.714\ 527\ 380\ 814\ 55 imes 10^{-1}$	9	3	$0.212\ 684\ 637\ 533\ 07 imes 10^{-1}$
5	- 3	$-\ 0.407\ 104\ 982\ 239\ 28$			

удельная энтальпия: $\frac{h(\pi,\tau)}{RT} = au(\gamma_{ au}^o + \gamma_{ au}^r);$

удельная изобарная теплоемкость: $\frac{c_p(\pi,\tau)}{R} = -\tau^2(\gamma^o_{\tau\tau} + \gamma^r_{\tau\tau});$

удельная изохорная теплоемкость: $\frac{c_v(\pi,\tau)}{R} = -\tau^2(\gamma^o_{\tau\tau} + \gamma^r_{\tau\tau}) - \frac{(1+\pi\gamma^r_{\pi}-\tau\pi\gamma^r_{\pi\tau})^2}{1-\pi^2\gamma^r_{\pi\pi}};$

скорость звука: $\frac{w^2(\pi,\tau)}{RT} = \frac{1+2\pi\gamma_\pi^r - \pi^2(\gamma_\pi^r)^2}{(1-\pi^2\gamma_{\pi\pi}^r) + \frac{(1+\pi\gamma_\pi^r - \tau\pi\gamma_{\pi\tau}^r)^2}{\tau^2(\gamma_\pi^2 + \gamma_{\tau\pi}^r)}}$.

Здесь γ_{π}^{r} , $\gamma_{\pi\pi}^{r}$, γ_{τ}^{r} , $\gamma_{\tau\tau}^{r}$, $\gamma_{\tau\tau}^{r}$, γ_{τ}^{o} , $\gamma_{\tau\tau}^{o}$ – производные безразмерной энергии Гиббса для идеального газа γ^{o} и остаточной γ^{r} :

$$\gamma_{\pi}^{o} = \left(\frac{\partial \gamma^{o}}{\partial \pi}\right)_{\tau} = \frac{1}{\pi}; \tag{3.12}$$

$$\gamma_{\pi\pi}^o = \left(\frac{\partial^2 \gamma^o}{\partial \pi^2}\right)_{\tau} = -\frac{1}{\pi^2}; \tag{3.13}$$

$$\gamma_{\tau}^{o} = \left(\frac{\partial \gamma^{o}}{\partial \tau}\right)_{\pi} = \sum_{i=1}^{9} n_{i}^{o} J_{i}^{o} \tau^{J_{i}^{o}-1}; \tag{3.14}$$

$$\gamma_{\tau\tau}^{o} = \left(\frac{\partial^{2} \gamma^{o}}{\partial \tau^{2}}\right)_{\pi} = \sum_{i=1}^{9} n_{i}^{o} J_{i}^{o} (J_{i}^{o} - 1) \tau^{J_{i}^{o} - 2}; \tag{3.15}$$

$$\gamma_{\pi\tau}^o = \left(\frac{\partial^2 \gamma^o}{\partial \pi \partial \tau}\right) = 0; \tag{3.16}$$

$$\gamma_{\pi}^{r} = \left(\frac{\partial \gamma^{r}}{\partial \pi}\right)_{\tau} = \sum_{i=1}^{43} n_{i} I_{i} \pi^{I_{i}-1} (\tau - 0, 5)^{J_{i}};$$
 (3.17)

$$\gamma_{\pi\pi}^{r} = \left(\frac{\partial^{2} \gamma^{r}}{\partial \pi^{2}}\right)_{\tau} = \sum_{i=1}^{43} n_{i} I_{i} (I_{i} - 1) \pi^{I_{i} - 2} (\tau - 0, 5)^{J_{i}}; \tag{3.18}$$

3 4	8 8			
Изм.	Лист	N докум.	Подпись	Дата

Таблица 3.3. Численные значения коэффициентов и показателей степеней остаточной части γ^r безразмерной энергии Гиббса для области 2

i	I_i	J_i	n_i
Î.	1	0	$-0.177\ 317\ 424\ 732\ 13 \times 10^{-2}$
2	1	1	$-0.17834862292358 \times 10^{-1}$
3	1	2	$-0.45996013696365 \times 10^{-1}$
4	1	3	$-0.57581259083432 \times 10^{-1}$
5	1	6	$-0.503\ 252\ 787\ 279\ 30 \times 10^{-1}$
6	2	1	$-0.330\ 326\ 416\ 702\ 03 \times 10^{-4}$
7	2	2	$-0.18948987516315 \times 10^{-3}$
8	2	4	$-0.39392777243355 \times 10^{-2}$
9	2	7	$-0.43797295650573 \times 10^{-1}$
10	2	36	$-0.26674547914087 \times 10^{-4}$
11	3	0	$0.20481737692309 \times 10^{-7}$
12	3	1	$0.438\ 706\ 672\ 844\ 35 \times 10^{-6}$
13	3	3	$-0.32277677238570 \times 10^{-4}$
14	3	6	$-0.15033924542148 \times 10^{-2}$
15	3	35	$-$ 0.406 682 535 626 49 \times 10 ⁻¹
16	4	1	$-0.78847309559367 \times 10^{-9}$
17	4	2	$0.127\ 907\ 178\ 522\ 85 \times 10^{-7}$
18	4	3	$0.482\ 253\ 727\ 185\ 07 \times 10^{-6}$
19	5	7	$0.229\ 220\ 763\ 376\ 61 \times 10^{-5}$
20	6	3	$-0.167\ 147\ 664\ 510\ 61 \times 10^{-10}$
21	6	16	$-0.21171472321355 \times 10^{-2}$
22	6	35	$-0.23895741934104 \times 10^{2}$
23	7	0	$-0.59059564324270 \times 10^{-17}$
24	7	11	$-0.126\ 218\ 088\ 991\ 01 \times 10^{-5}$
25	7	25	$-0.389\ 468\ 424\ 357\ 39 \times 10^{-1}$
26	8	8	$0.11256211360459 \times 10^{-10}$
27	8	36	$-0.823\ 113\ 408\ 979\ 98 \times 10^{-1}$
28	9	13	$0.198\ 097\ 128\ 020\ 88 \times 10^{-7}$
29	10	4	$0.104\ 069\ 652\ 101\ 74 \times 10^{-18}$
30	10	10	$-0.10234747095929 \times 10^{-12}$
31	10	14	$-0.100\ 181\ 793\ 795\ 11 \times 10^{-8}$
32	16	29	$-0.80882908646985 \times 10^{-10}$
33	16	50	0.106 930 318 794 09
34	18	57	- 0.336 622 505 741 71
35	20	20	$0.891\ 858\ 453\ 554\ 21 \times 10^{-24}$
36	20	35	$0.306\ 293\ 168\ 762\ 32 \times 10^{-12}$
37	20	48	$-0.420\ 024\ 676\ 982\ 08 \times 10^{-5}$
38	21	21	$-0.59056029685639 \times 10^{-25}$
39	22	53	$0.378\ 269\ 476\ 134\ 57 \times 10^{-5}$
40	23	39	$-0.127\ 686\ 089\ 346\ 81 \times 10^{-14}$
41	24	26	$0.730\ 876\ 105\ 950\ 61 \times 10^{-28}$
42	24	40	$0.554\ 147\ 153\ 507\ 78 \times 10^{-16}$
43	24	58	$-0.943\ 697\ 072\ 412\ 10 \times 10^{-6}$

L					
	- 1	0.00		(4)	
П	/Ізм.	Лист	N докум.	Подпись	Дата

$$\gamma_{\tau}^{r} = \left(\frac{\partial \gamma^{r}}{\partial \tau}\right)_{\pi} = \sum_{i=1}^{43} n_{i} \pi^{I_{i}} J_{i} (\tau - 0, 5)^{J_{i} - 1};$$
(3.19)

$$\gamma_{\tau\tau}^{r} = \left(\frac{\partial^{2} \gamma^{r}}{\partial \tau^{2}}\right)_{\pi} = \sum_{i=1}^{43} n_{i} \pi^{I_{i}} J_{i} (J_{i} - 1) (\tau - 0, 5)^{J_{i} - 2}; \tag{3.20}$$

$$\gamma_{\pi\tau}^{r} = \left(\frac{\partial^{2} \gamma^{r}}{\partial \pi \partial \tau}\right) = \sum_{i=1}^{43} n_{i} I_{i} \pi^{I_{i}-1} J_{i} (\tau - 0, 5)^{J_{i}-1}. \tag{3.21}$$

3.2.3 Уравнения для четвертой области

Для расчета теплофизических свойств воды и водяного пара можно пользоваться зависимостями для 1-й и 2-й области при давлении и температуре, соответствующим давлению и температуре насыщения.

Уравнение, описывающее линию насыщения представляет собой квадратичное уравнение, которое может быть решено как относительно давления насыщения p_s , так и относительно температуры насыщения T_s . Оно выглядит следующим образом:

$$\beta^2 \vartheta^2 + n_1 \beta^2 \vartheta + n_2 \beta^2 + n_3 \beta \vartheta^2 + n_4 \beta \vartheta + n_5 \beta + n_6 \vartheta^2 + n_7 \vartheta + n_8 = 0, \tag{3.22}$$

где
$$\beta=\left(\frac{p_s}{p^*}\right)^{1/4}$$
;
$$\vartheta=\frac{T_s}{T^*}+\frac{n_9}{(T_s/T^*)-n_{10}};$$
 коэффициенты $n_1\dots n_{10}$ находятся по таблице 3.4 ; $p^*=1$ МПа и $T^*=1$ К.

Таблица 3.4. Численные значения коэффициентов безразмерных уравнений линии насыщения

i	n_i	i	n_i
1	$0.116\ 705\ 214\ 527\ 67 \times 10^4$	6	$0.149\ 151\ 086\ 135\ 30 \times 10^2$
2	$-\ 0.724\ 213\ 167\ 032\ 06\times 10^6$	7	$-\ 0.482\ 326\ 573\ 615\ 91\times 10^{4}$
3	$-0.17073846940092 \times 10^{2}$	8	$0.405\ 113\ 405\ 420\ 57 \times 10^6$
4	$0.120\ 208\ 247\ 024\ 70 \times 10^5$	9	- 0.238 555 575 678 49
5	$-\ 0.323\ 255\ 503\ 223\ 33\times 10^{7}$	10	$0.650\ 175\ 348\ 447\ 98\times 10^3$

Решение уравнения (3.22) относительно давления насыщения:

$$\frac{p_s}{p^*} = \left[\frac{2C}{-B + (B^2 - 4AC)^{1/2}} \right]^4, \tag{3.23}$$

	- 0				ДР 8.090
Изм.	Лист	N докум.	Подпись	Дата	ді 0.000

где
$$A = \vartheta^2 + n_1 \vartheta + n_2;$$

$$B = n_3 \vartheta^2 + n_4 \vartheta + n_5;$$

$$C = n_6 \vartheta^2 + n_7 \vartheta + n_8.$$

Решение уравнения (3.22) относительно температуры насыщения:

$$\frac{T_s}{T^*} = \frac{n_{10} + D - \left[(n_{10} + D)^2 - 4(n_9 + n_{10}D) \right]^{1/2}}{2},\tag{3.24}$$

где
$$D=rac{2G}{-F-(F^2-4EG)^{1/2}};$$
 $E=eta^2+n_3eta+n_6;$

$$E = \beta^2 + n_3 \dot{\beta} + n_6;$$

$$F = n_1 \beta^2 + n_4 \beta + n_7;$$

$$G = n_2 \beta^2 + n_5 \beta + n_8.$$

3.3 Теплофизические свойства других теплоносителей

При невозможности проведения интерполяции табличных значений можно воспользоваться аппроксимационными формулами, приведенными ниже. Формулы получены аппроксимацией таблиц значений уравнением вида $y = Ax^2 + Bx + C$. В случае их использования следует отдавать отчет, что погрешность погрешность результатов может в некоторых случаях превышать 5%, хотя, в основном, находится в пределах 1%.

3.3.1 Свойства воздуха (диапазон температур 100÷1200 °C)

Аппроксимированы данные о теплофизических свойствах воздуха из [9, табл. 9].

Теплоемкость, Дж/(кг·К):

$$C_p = 975 + 0,2672t - 5,794 \cdot 10^{-5}t^2;$$
 (3.25)

Плотность, $\kappa \Gamma/M^3$:

$$\rho = 1,151 - 1,913 \cdot 10^{-3} t + 1,012 \cdot 10^{-6} t^{2}; \tag{3.26}$$

Теплопроводность, Вт/(м·К):

$$\lambda = 0.916 \cdot 10^{-2} + 2.221 \cdot 10^{-4} t - 1.818 \cdot 10^{-7} t^{2}; \tag{3.27}$$

Число Прандтля:

$$Pr = 0,691 - 3,68 \cdot 10^{-5} t + 6,163 \cdot 10^{-8} t^{2};$$
(3.28)

Кинематический коэффициент вязкости, ${\rm m}^2/{\rm c}$:

$$\nu = 7,067 \cdot 10^{-11} t^2 + 9,519 \cdot 10^{-8} t + 1,320 \cdot 10^{-5}. \tag{3.29}$$

3.3.2 Свойства дымовых газов (диапазон температур $100 \div 1200~^{\circ}\mathrm{C}$)

Аппроксимированы данные о теплофиз. свойствах дымовых газов из [9, табл. 16].

Теплоемкость, Дж/(кг·К):

$$C_p = 1035, 5 + 0,3297 t - 6,029 \cdot 10^{-5} t^2;$$
 (3.30)

	0.0				ДР 8.090509.007.01
Изм.	Лист	N докум.	Подпись	Дата	Д. 0.030303.007.03

Плотность, $\kappa \Gamma/M^3$:

$$\rho = 1,1684 - 1,897 \cdot 10^{-3} t + 9,8 \cdot 10^{-7} t^{2}; \tag{3.31}$$

Теплопроводность, Вт/(м·К):

$$\lambda = 2,285 \cdot 10^{-2} + 8,499 \cdot 10^{-5} t + 9,64 \cdot 10^{-10} t^{2};$$
 (3.32)

Число Прандтля:

$$Pr = 0,710 - 1,88 \cdot 10^{-4} t + 5,594 \cdot 10^{-8} t^{2};$$
(3.33)

Кинематический коэффициент вязкости, ${\rm m}^2/{\rm c}$:

$$\nu = 1,624 \cdot 10^{-5} + 4,188 \cdot 10^{-8} t - 9,595 \cdot 10^{-11} t^{2}. \tag{3.34}$$

3.3.3 Свойства хладона R11 (диапазон температур −60÷140°C)

Аппроксимированы данные о теплофиз. свойствах хладона R11 из [11, табл. 8].

Теплопроводность, Вт/(м·К):

$$\lambda = 0,093 - 3,117 \cdot 10^{-4} t + 3,846 \cdot 10^{-7} t^{2}; \tag{3.35}$$

Плотность, $\kappa \Gamma/M^3$:

$$\rho = 1536, 2 - 2, 19t - 4, 47 \cdot 10^{-3} t^{2}; \tag{3.36}$$

Плотность пара, $\kappa \Gamma/M^3$:

$$\rho_v = -2,0005 + 0,111 t + 3,958 \cdot 10^{-3} t^2; \tag{3.37}$$

Динамический коэффициент вязкости, Пас:

$$\mu = 6,072 \cdot 10^{-4} - 7,738 \cdot 10^{-6} t + 3,8 \cdot 10^{-8} t^{2}; \tag{3.38}$$

Поверхностное натяжение, H/M:

$$\sigma = 2,139 \cdot 10^{-2} - 1,204 \cdot 10^{-4} t - 3,287 \cdot 10^{-8} t^{2}; \tag{3.39}$$

. 4	6			
Изм.	Лист	N докум.	Подпись	Дата

Теплота парообразования, Дж/(кг):

$$r = 191, 65 - 354, 2t - 1,024t^{2}; (3.40)$$

Теплоемкость, Дж/(кг·К):

$$C_p = 864, 5 + 0,692t + 5,171 \cdot 10^{-3}t^2;$$
 (3.41)

Давление, Па:

$$p = -3, 4 \cdot 10^4 + 2188, 9t + 72, 08t^2. \tag{3.42}$$

3.3.4 Свойства этилового спирта (диапазон температур 0÷180 °C)

Аппроксимированы данные о теплофиз. св-вах этилового спирта из [11, табл. 15].

Теплопроводность, Вт/(м·К):

$$\lambda = 0,183 - 1,995 \cdot 10^{-4} t + 3,977 \cdot 10^{-7} t^{2}; \tag{3.43}$$

Плотность, $\kappa \Gamma/M^3$:

$$\rho = 865, 2 - 1,53t + 1,032 \cdot 10^{-3} t^{2}; \tag{3.44}$$

Плотность пара, $\kappa \Gamma/M^3$:

$$\rho_v = 1,635 - 0,123 t + 1,426 \cdot 10^{-3} t^2; \tag{3.45}$$

Динамический коэффициент вязкости, Пас:

$$\mu = 1,665 \cdot 10^{-3} - 2,124 \cdot 10^{-5} t + 7,3 \cdot 10^{-8} t^2;$$
 (3.46)

Поверхностное натяжение, Н/м:

$$\sigma = 2,439 \cdot 10^{-2} - 7,946 \cdot 10^{-5} t - 1,041 \cdot 10^{-7} t^{2}; \tag{3.47}$$

Теплота парообразования, Дж/(кг):

$$r = 1042, 07 \cdot 10^3 - 2904, 8t - 8,789t^2; \tag{3.48}$$

	6			
Изм.	Лист	N докум.	Подпись	Дата

Теплоемкость, Дж/(кг \cdot K):

$$C_p = 2261, 4 + 6,658t + 3,844 \cdot 10^{-2}t^2;$$
 (3.49)

Давление, Па:

$$p = 1, 15 \cdot 10^5 - 8863, 5t + 102, 2t^2. \tag{3.50}$$

3.3.5 Свойства термекса (диапазон температур 100÷400 °C)

Аппроксимированы данные о теплофиз. свойствах термекса из [11, табл. 25].

Теплопроводность, Вт/(м·К):

$$\lambda = 0,143 - 1,698 \cdot 10^{-4} t + 5,238 \cdot 10^{-8} t^{2}; \tag{3.51}$$

Плотность, $\kappa \Gamma/M^3$:

$$\rho = 1052, 07 - 0, 517t - 8, 333 \cdot 10^{-4}t^{2}; \tag{3.52}$$

Плотность пара, $\kappa \Gamma/M^3$:

$$\rho_v = 21,899 - 0,277 t + 8,014 \cdot 10^{-4} t^2; \tag{3.53}$$

Динамический коэффициент вязкости, Па-с:

$$\mu = 1,73 \cdot 10^{-3} - 9,015 \cdot 10^{-6} t + 1,3 \cdot 10^{-8} t^{2};$$
 (3.54)

Поверхностное натяжение, Н/м:

$$\sigma = 4,226 \cdot 10^{-2} - 1,116 \cdot 10^{-4} t + 4,619 \cdot 10^{-8} t^{2}; \tag{3.55}$$

Теплота парообразования, Дж/(кг):

$$r = 365, 5 \cdot 10^3 - 137, 14t - 0, 657t^2; \tag{3.56}$$

3 4	8 8			
Изм.	Лист	N докум.	Подпись	Дата

Теплоемкость, Дж/(кг·K):

$$C_p = 1256, 4 + 6,769 t - 5,952 \cdot 10^{-3} t^2;$$
 (3.57)

Давление, Па:

$$p = 5,035 \cdot 10^5 - 6252, 2t + 18,57t^2. \tag{3.58}$$

	,			
Изм.	Лист	N докум.	Подпись	Дата

4 Программа расчета

В качестве реализации методики, приведенной в разделе 2 предлагается программное обеспечение для расчета термосифонных теплообменных аппаратов. ПО полностью реализует заложенную в методику идею универсализации и обобщения расчета для многих типов конструкций теплообменников.

При разработке были использованы наиболее современные технологии проектирования и кодирования программного обеспечения. Так, общая идеология построения соответствует требованиям объектно-ориентированного дизайна, а для создания пользовательского интерфейса применяется объектно-ориентированная библиотека виджетов QT/X11 Free Edition, являющаяся многоплатформенным инструментом разработки. Примененный язык программирования — c++, компилятор g++ (компилятор с языка c++ для платформ Linux, Unix, Windows, входящий в поставку GNU Compiler Collection (gcc)), среда разработки KDevelop 2.0.2, первичная операционная система для разработки — Redhat GNU/Linux 7.2.

Текст программы приведен в приложении 1.

	8 8				
Изм.	Лист	N докум.	T	Подпись	Дата

4.1 Архитектура программы расчета

Программа состоит из главного загрузочного модуля main.cpp, модулей содержащих определения и реализацию классов и библиотек функций.

На рисунке 4.1 представлены диаграммы наследования и включения классов. Классы QT, QObject, QWidget, QDialog и QWizard представляют собой имеющиеся в библиотеке QT скелеты объектов, визуальных элементов управления и системных окон. Классы CalcWizard, fmChoose определяют интерфейс пользователя, а класс HeatExchanger и структуры SourceData, HeatCapData, TransferData, ExactData, AeroData, StrongData реализуют объектно-ориентированный подход собственно к расчету.

Рис. 4.1. Диаграммы наследования (а) и включения (b) классов

Кроме классов и структур, программа расчета содержит модули с математическими функциями и функциями расчета теплофизических свойств рабочих тел теплообменного аппарата.

	(6			
Изм.	Лист	N докум.	Подпись	Дата

4.1.1 Класс Calc Wizard

Унаследован от *QWizard*, реализует поэтапный расчет с шагами вперед, назад и отменой расчетов на любом этапе. Данный подход к организации работы программы в теории проектирования интерфейсов называется «работа в режиме мастера или волшебника (wizard)».

• Методы:

- CalcWizard(QWidget *parent=0, const char *name=0) конструктор класса, инициализирует все этапы мастера расчета;
- void sourceDataPage() отображает наименования исходных величин в табличном виде и дает возможность ввода их значений;
- void heatCapPage() отображает подсчитанные значения тепловой мощности теплообменника в табличном виде;
- void transferPage() отображает подсчитанные значения коэффициента теплопередачи и площадей поверхностей теплообменника в табличном виде;
- void exactPage() отображает уточненные значения коэффициента теплопередачи и площадей поверхностей теплообменника с учетом внутренних процессов в термосифонах в табличном виде;
- $void\ aeroPage()$ отображает результаты аэродинамического расчета в табличном виде;
- $void\ strongPage()$ отображает результаты расчета на прочность в табличном виде;
- virtual void next() вызывает функции расчета для следующего этапа после нажатия кнопки «Next».

• Свойства:

- QHBox *sourceData, *heatCapData, *transferData,
- *exactData, *aeroData, *strongData контейнеры для размещения таблиц с данными;
- QTable *sourceDataTable, *heatCapTable, *transferTable,
- *exactTable, *aeroTable, *strongTable таблицы с данными;
- HeatExchanger unit объект термосифонный теплообменник.

Изм.	Лист	N докум.	Подпись	Дата

4.1.2 Класс fmChoose

Унаследован от стандартного диалога *QDialog*, представляет собой диалог выбора рабочей жидкости внутри термосифона.

• Методы:

- fmChoose(QWidget*parent = 0, const char*name = 0,
- $bool\ modal = FALSE,\ WFlags\ fl = 0)$ конструктор класса, инициализирующий надписи, кнопки и раскрывающийся список;
- $void\ initChoose(double\ t1,\ double\ t2)$ выбирает рабочую жидкость термосифона на основании заданного диапазона температур переменными t1 и t2.

4.1.3 Класс HeatExchanger

HeatExchanger — теплообменный аппарат. Он содержит в себе структуры данных о его свойствах и свойствах рабочих жидкостей, а также методы для расчета этих свойств.

• Методы:

- $void\ fill Source Data(QTable\ *table,\ int\ col)\ --$ принимает исходные данные из таблицы table, колонки col и сохраняет их в структуре $source\$ типа Source Data;
- $void\ getHeatCapData()$ рассчитывает тепловую мощность теплообменника и сохраняет подсчитанные величины в структуре heatCap типа HeatCapData;
- $void\ populateHeatCapData(QTable\ *data)$ заполняет таблицу data значениями из структуры heatCap;
- $void\ getTransferData()$ рассчитывает коэффициент теплопередачи и площади теплообменных поверхностей, сохраняет подсчитанные величины в структуре $transfer\ Tuna\ TransferData;$
- $void\ populate Transfer Data (QTable\ *data)$ заполняет таблицу data значениями из структуры transfer;
- void getExactData() рассчитывает уточненные коэффициент теплопередачи и площади теплообменных поверхностей, сохраняет подсчитанные величины в структуре exact типа ExactData;

_				
Изм.	Лист	N докум.	Подпись	Дата

- $void\ populateExactData(QTable\ *data)\ -$ заполняет таблицу data значениями из структуры exact;
- $void\ getAeroData()$ производит аэродинамический расчет и сохраняет подсчитанные величины в структуре $aero\$ типа AeroData;
- $void\ populateAeroData(QTable\ *data)$ заполняет таблицу data значениями из структуры aero;
- $void\ getStrongData()$ производит расчет на прочность и сохраняет подсчитанные величины в структуре $strong\ Tuna\ StrongData;$
- $void\ populateStrongData(QTable\ *data)$ заполняет таблицу data значения-ми из структуры strong;
- void doApprox() производит аппроксимацию табличных данных свойств
 рабочих жидкостей если только задано условие компиляции –
 DDO_APPROX или в тестке программы определено #define DO_APPROX

• Свойства:

SourceData source; HeatCapData heatCap; TransferData transfer;

 $ExactData\ exact;\ AeroData\ aero;\ StrongData\ strong\ -$ структуры с расчетными данными.

4.1.4 Структуры с расчетными данными

Полное описание структур с расчетными данными: SourceData, HeatCapData, TransferData, ExactData, AeroData, StrongData можно найти в приложении 1, в исходном коде файла heatexchanger.h.

4.1.5 Математические функции

Размещены в файле *mymath.cpp*, заголовки функций находятся в *mymath.h*.

- double $Ln(double\ x,\ double\ yn[],\ double\ xn[],\ int\ n)$ реализация интерполяционного многочлена Лагранжа (3.1), где x аргумент, yn[] массив табличных значений функции, xn[] массив табличных значений аргумента, n размерность массивов xn[] и yn[];
- $void\ approx(double\ yn[],\ double\ xn[],\ double\ n)\ -$ нахождение коэффициентов $A,\ B,$ C аппроксимационной зависимости $y=Ax^2+Bx+C$ по методу наименьших квадратов.

Изм.	Лист	N докум.	Подпись	Дата

4.1.6 Функции расчета теплофизических свойств

```
Размещены в файлах:
```

```
waterv2.cpp, waterv2.h: свойства воды и водяного пара; air.cpp, air.h: свойства сухого воздуха; gas.cpp, gas.h: свойства дымовых газов; freon11.cpp, freon11.h: свойства хладона R11; alcohol.cpp, alcohol.h: свойства этилового спирта; thermex.cpp, thermex.h: свойства термекса.
```

При включении опции компиляции $-DDO_APPROX$ вместе с интерполяцией по Лагранжу функции отыскания свойств будут производить аппроксимацию и выдавать ее результаты на stderr (стандартный вывод ошибок — по умолчанию консоль).

Для воздуха, дымовых газов, хладона, этилового спирта и термекса функции выглядят следующим образом (здесь fluid следует заменить на название жидкости – air, gas, freon11, alcohol, thermex):

```
double fluidLambdaw(double temp) — расчитывает теплопроводность; double fluidRow(double temp) — расчитывает плотность жидкости; double fluidRov(double temp) — расчитывает плотность пара; double fluidMuw(double temp) — расчитывает динамический коэффициент вязкости; double fluidSigma(double temp) — расчитывает поверхностное натяжение; double fluidR(double temp) — расчитывает теплоту парообразования; double fluidCp(double temp) — расчитывает удельную теплоемкость; double fluidP(double temp) — расчитывает давление.
```

Изм.	Лист	N докум.	Подпись	Дата

4.2 Порядок применения программы расчета

- 1. Запустить программу ./heatexch (на платформе Linux, Unix) или heatexch.exe (на платформе Windows).
- 2. Ввести исходные данные и нажать кнопку «Next». Если выдается сообщение о недостаточности теплоты греющего теплоносителя, требуется вернуться на этап ввода исходных данных нажатием кнопки «Back» и изменить значение тепмератур или расходов теплоносителей.
- 3. Пройти этапы расчета тепловой мощности и коэффициента теплоотдачи нажатием «Next».
- 4. Перед выполнением уточненного расчета требуется выбрать рабочую жидкость термосифона в соответствующем диалоговом окне выбора. Можно отказаться от выбора рабочей жидкости, нажав кнопку «Не выбирать» в диалоге. В этом случае уточненный расчет произведен не будет и таблица результатов уточненного расчета повторит таблицу предыдущего этапа.
- 5. По окончании расчета следует нажать «Finish» для выхода из программы. Для окончания расчета в любой момент времени можно воспользоваться кнопкой «Cancel».

Изм.	Лист	N докум.	Подпись	Дата

5 Пример расчета

Пример расчета показан в виде снимков экрана на всех этапах выполнения программы.

Рис. 5.1. Ввод исходных данных

2	6			
Изм.	Лист	N докум.	Подпись	Дата

Рис. 5.2. Определение тепловой мощности термосифонного теплообменника

2 1	(6			
Изм.	Лист	N докум.	Подпись	Дата

Рис. 5.3. Определение коэффициента теплопередачи и компоновка поверхности

2 1	(6			
Изм.	Лист	N докум.	Подпись	Дата

73

Рис. 5.4. Выбор рабочей жидкости термосифона

2 - 50 3 - 54	0.00			
Изм.	Лист	N докум.	Подпись	Дата

Рис. 5.5. Определение параметров термосифонов и уточненный расчет

	8 8			
Изм.	Лист	N докум.	Подпись	Дата

75

Рис. 5.6. Аэродинамический расчет

2 1	(6			
Изм.	Лист	N докум.	Подпись	Дата

Рис. 5.7. Расчет на прочность

2 1	(6			
Изм.	Лист	N докум.	Подпись	Дата

Заключение

- 1. Предложена математическая модель, учитывающая влияние сил поверхностного натяжения и силы тяжести для случая ламинарной конденсации пара на цилиндрах малого диаметра.
- 2. Методом Рунге-Кутта получены результаты численного расчета распределения толщины, скорости и местного коэффициента теплоотдачи для задачи конденсации пара на поверхности горизонтальных цилиндров малого диаметра.
- 3. Установлено интенсифицирующее влияние на теплоотдачу сил поверхностного натяжения при значениях чисел Вебера, превышающих 5. Получена обобщенная критериальная зависимость для задачи конденсации пара с учетом сил поверхностного натяжения.
- 4. Разработана конструкция теплообменника—утилизатора теплоты с поверхностью нагрева, выполненной из оребренных двухфазных гравитационных термосифонов.
- 5. Выполнены конструктивный и проверочный расчеты теплообменника рассмотренной конструкции.
- 6. Предложены упрощенные методики расчета теплофизических свойств воды и водяного пара
- 7. Получены аппроксимационные зависимости для расчета теплофизических свойств различных рабочих жидкостей, применяющихся в термосифонных теплообменниках.
- 8. Создано универсальное программное обеспечение для конструктивного и уточненного расчетов термосифонных теплообменников, реализующее применение новейшего объектно-ориентированного подхода к разработке и функционированию программного обеспечения.

Список литературы

- 1. Андреев С.П. Исследование теплообмена при фазовых превращениях жидкости в замкнутом канале // Теплоэнергетика. 1972.—№ 7.—С. 88.
- 2. Бахвалов Н.С. Численные методы. М.: «Наука» ,1973.— 632с.
- 3. Безродный М.К., Хавин С.А., Подгорецкий В.М. Расчет термосифонных утилизаторов теплоты. К.: КПИ.,1992.—40с.
- 4. Вукалович М.П., Ривкин С.Л., Александров А.А. Таблицы теплофизических свойств воды и водяного пара. М.: Издательство стандартов, 1969.
- 5. Дан П., Рей Д. Тепловые трубы. М.: «Энергия», 1979.
- 6. Енин В.И. Судовые парогенераторы. Л.: «Судостроение», 1975.—272с.
- 7. Заварыкин В.М., Житомирский В.Г., Лапчик М.П. Численные методы.–М.: Просвещение, 1990.–176с.
- 8. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача.–М.: Энергоиздат, 1981.-416c.
- 9. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче.–М.: «Энергия», 1975.–280с.
- 10. Курылев Е.С., В.В. Оносовский, В.С. Соколов Сравнительный анализ внутренних процессов в термосваях.
- 11. Пиоро И.Л., Антоненко В.А., Пиоро Л.С. Эффективные теплообменники с двухфазными термосифонами. Киев: Наук.думка, 1991.—248с.
- 12. Регистр судоходства Украины. Правила классификации и постройки морских судов. Том 2. Киев, 2000.
- 13. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. М.: "Энергия", 1975.
- 14. Семена М.Г., Киселев Ю.Ф. Исследование процессов теплообмена в зоне теплоподвода двухфазных термосифонов на фреонах-11, 113, 142, воде и этаноле // Инж.-физ. журн.-1978.-35, № 2.-С. 211-217.

Изм.	Лист	N докум.	Подпись	Дата

- 15. Семена М.Г., Киселев Ю.Ф. Исследование процессов теплообмена в зоне теплоподвода двухфазных термосифонов при малых степенях заполнения // Инж.-физ. журн.-1978.-35, № 4.-С. 600-605.
- 16. Семена М.Г., Киселев Ю.Ф. Исследование процессов теплообмена в конденсационной части двухфазных термосифонов // Теплообмен в энергетических установках.–Киев: Наук. думка, 1978.–С. 68–74.
- 17. Casarosa C., Latrofa E., Shelginski A. The geyser effect in a two-phase thermosyphon // Int. J. Heat and Mass Transfer.-1983.-26, № 6.-P. 933-941.
- 18. Gregorig R. Hautkondensation an Feingewellten Oberflachen bei Berucksichtigung der Oberflachenspannungen. Z.Angew. Math.Phys., Vol.5, 1954, p. 36.
- 19. Grob V., Hahre E. Condensation heat transfer inside a closed thermosyphon generalized correlation of experimental data // Proc. 4th Int heat pipe conf. (London, Sept. 1981).—London, 1981.—P. 466–471.
- 20. Hahn E., Gross U. The influence of the indication angle on the perfomance of a closed two-phase thermosyphon // Proc. 4th Int. heat pipe conf. (London, Sept. 1981).—London, 1981.—P. 125—136.
- 21. International Formulation Committee of the 6th International Conference on the Properties of Steam, The 1967 IFC Formulation for Industrial Use, Verein Deuthscher Ingenieure, Dusseldorf, 1967.
- 22. Kusuda H., Imura H. Boiling heat transfer in a open thermosyphon // Bul. JSME.–1973.–16, № 101.–P. 1734-1740.
- 23. Shiraishi M., Kukuchi K, Yamanichi T. Investigation of heat transfer characteristics of a two-phase closed thermosyphon // Proc. 4th Int. heat pipe conf. (London, Sept. 1981).-London, 1981.-P. 95-104.
- 24. The International Association for the Properties of Water and Steam, Release on the IAWPS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Enlangen, Germany, 1997.
- 25. Wen Yaopu, Guo Shun. Experimental heat transfer perfomance of two-phase thermosyphons // Proc. 5th Int. heat pipe conf. Tsukuba, May 1984.—Vol. 1.—P. 43–49.
- 26. Yiwei M., Jigu L., Yi F. The characteristics of condensation heat transfer in thermosyphons //Ibid.-P. 445-450.

Изм.	Лист	N докум.	Подпись	Дата

ДР 8.090509.007.01.ПЗ 🗔											
Программа расчета термосифонных теплообменников — ДР 8.090509.007.01.ПЗ											
ДР 8.090509.007.01.ПЗ	Π	Приложения									
ДР 8.090509.007.01.ПЗ 🗔	Программа расчета термосифонных теплообменников										
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ Г _о											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔											
ДР 8.090509.007.01.ПЗ 🗔		•									
THE PARTY OF THE P	Лист	N докум.	Подпись	Дата	ДР 8.090509.007.01.ПЗ	Лис [.]					