清华大学本科生考试试题专用纸

考试课程 高等线性代数选讲 A 卷 2021 年 4 月 13 日本试题共 4 道大题,满分 <u>50</u> 分.

1. 填空题 (12 分)

- (1) 考虑所有实系数一元多项式的集合 $\mathbb{P}(\mathbb{R})$,和 n 阶方阵空间 $M_{n\times n}$,作为实数域 \mathbb{R} 上的线性空间,请列出下列映射中是线性映射的是 ______:
 - (a) $\mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$, $f(x) \mapsto f'(x) + f''(x)$;
 - (b) $\mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R}), \quad f(x) \mapsto f(x) + 1;$
 - (c) $M_{n\times n} \to M_{n\times n}$, $A \mapsto AA^{\mathrm{T}}$;
 - (d) $M_{n \times n} \to M_{n \times n}$, $A \mapsto A A^{\mathrm{T}}$.
- (2) 设 T 是有限维线性空间 V 上的算子,Null(T), Range(T) 分别是 T 的零空间和像空间.请问 $Null(T) \oplus Range(T) = V$ 是否对任意的 T 都成立? ______:
 - (a) 是;
 - (b) 不是.
- (3) 设 T 为 5 维线性空间 V 上的算子,令 d_i 为零空间 $\text{Null}(T^i)$ 的维数,i=1,2,3,4,5. 那么 (d_1,d_2,d_3,d_4,d_5) 可能的取值有 ______:
 - (a) (1,2,3,4,5);
 - (b) (2,3,3,3,3);
 - (c) (1,1,2,2,2);
 - (d) (2,3,4,5,6).
- 2. (8 分) 设 \mathbb{F}^2 上的算子 $T: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$.
 - (1) 求 T 的所有特征值和特征子空间;
 - (2) 判断 T 是否可对角化,并简明说明理由.

3.
$$(18\ \mathcal{G})$$
 设 \mathbb{F} 上的二阶方阵 $A=\begin{bmatrix}2&1\\0&2\end{bmatrix}$. 考虑线性映射

$$T_A: M_{2\times 2} \rightarrow M_{2\times 2}$$

$$X \mapsto AX - XA.$$

取 $M_{2\times 2}$ 的两组基

$$e_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, e_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, e_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$t_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, t_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, t_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, t_{4} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- (1) 求 T_A 在这两组基下的矩阵 $\mathcal{M}(T_A,(e_1,e_2,e_3,e_4),(t_1,t_2,t_3,t_4))$.
- (2) 将 T_A 看作 $M_{2\times 2}$ 上的算子. 在 $\{0\}$ 和 $M_{2\times 2}$ 之外,找到两个 $M_{2\times 2}$ 的 T_A 不变子空间 (不需证明).
- (3) 判断 T_A 是否是幂零算子,并说明原因.
- 4. (12 分) 设 $S: V_0 \to V_1, T: V_1 \to V_2$ 为有限维线性空间之间的线性映射,满足 TS = 0.
- (1) 证明: Range(S) 是 Null(T) 的子集;
- (2) 令 $W_0 = \text{Null}(S), W_1 = \text{Null}(T) / \text{Range}(S), W_2 = V_2 / \text{Range}(T)$, 证明下列等式:

$$\dim(V_0) - \dim(V_1) + \dim(V_2) = \dim(W_0) - \dim(W_1) + \dim(W_2).$$