統計的モデリング基礎④ ~最尤推定~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

(いろいろな話題についての) 参考書

現代統計学

出版社:日本評論社

発刊年月: 2017.03

ISBN: 978-4-535-78818-3

A5判; 256ページ

幅広いトピックで基本的事項がコ ンパクトにまとまっている

最尤推定

統計モデリングの考え方: 部分から全体について知る

- ■母集団:確率分布で表される、我々が本当に興味のある集合
 - -分布のクラスやパラメータで指定されるとする
- ■標本:実際に観測できる母集団の一部
 - -確率分布に従って抽出された具体的なデータ
- 目的: 標本から母集団について推測する (標本抽出の逆)
 - パラメータを推定する(どうやって?)

パラメータの推定問題: サイコロの各目の出る確率を実際の出目から推定する

■ 母集団は離散分布に従うとする

$$-P(X = k) = f(k)$$
 (ただし $\sum_{k \in \mathcal{X}} f(k) = 1, f(k) \ge 0$)

$$-$$
たとえば(厳密な)サイコロであれば $P(X=k)=\frac{1}{6}\approx 0.17$

■標本抽出:

-20回(独立に)振ったところ、 63513141226122544465が出た

出目	1	2	3	4	5	6
回数	4	4	2	4	3	3

■ 母集団のパラメータ(それぞれの目の出る確率)は?

サイコロのパラメータ推定問題へのひとつの解:出た目の回数の割合で推定する

■ ひとつのアイディア:

20回中で1が4回出たのだから
$$P(X=1) \approx \frac{4}{20} = 0.2$$
 と推定する

出目	1	2	3	4	5	6
回数	4	4	2	4	3	3
確率の推 定値	0.2	0.2	0.1	0.2	0.15	0.15

- 正解が約0.17なので悪くない...
- この推定値はどのような原理に基づいているのか?

最尤推定: 確率分布の代表的な推定手法のひとつ

- 標本からの母集団確率分布の推定
- 代表的な推定手法
 - -最尤推定
 - -モーメント推定
 - -ベイズ推定

—..

最尤推定とは:

標本をもっともよく再現するパラメータを推定値とする

■ n個のデータ: $x_1, x_2, ..., x_n$ が生成される確率(尤度):

$$L = P(X = x_1)P(X = x_2) \cdots P(X = x_n) = \prod_{i=1}^{n} P(X = x_i)$$

- サイコロの例:
 - -目kが出る確率を p_k , 目kが出た回数を n_k とする
 - 尤度 $L(p_1, p_2, ..., p_n) = p_1^{n_1} p_2^{n_2} \cdots p_6^{n_6} = \prod_{k=1}^6 p_k^{n_k}$
 - -これを最大化する $p_1, p_2, ..., p_n$ を求める(最大化問題を解く)と $\hat{p}_k = \frac{n_k}{n_1 + n_2 + \cdots + n_6}$

サイコロ (離散分布) の最尤推定: ラグランジュの未定乗数法によって推定値が求まる

北度の代わりに対数尤度を最大化すると扱いやすい(解は変わらない):

$$\log L(p_1, p_2, ..., p_n) = \sum_{k=1}^{6} n_k \log p_k$$

- 確率分布の制約: $\sum_{k=1}^{6} p_k = 1, p_k > 0$
- ラグランジュ未定乗数法:

$$G(\{p_k\}_{k=1}^6, \lambda) = \sum_{k=1}^6 n_k \log p_k + \lambda \left(1 - \sum_{k=1}^6 p_k\right)$$

練習:

正規分布のパラメータの最尤推定

• 正規分布:
$$f(x) = N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- パラメータ: 平均μと分散σ²の最尤推定量を求めてみよう
 - 1. データ: $x_1, x_2, ..., x_n$ に 対する対数尤度をつくる
 - パラメータについての最大化 問題を解く

f(x)

ベイズ決定

応用問題:

どちらのサイコロが使われた?

- 2つの(いびつな)サイコロA, Bがある
 - -サイコロAを20回振ったところ:

出目	1	2	3	4	5	6
回数	5	1	4	2	4	4

-サイコロBを16回振ったところ:

出目	1	2	3	4	5	6
回数	2	8	2	2	1	1

応用問題:

どちらのサイコロが使われた?

■ (いびつな) サイコロA, Bのパラメータの最尤推定値は:

−サイコロA:

出目	1	2	3	4	5	6
確率	5/20	1/20	4/20	2/20	4/20	4/20

−サイコロB:

出目	1	2	3	4	5	6
確率	2/16	8/16	2/16	2/16	1/16	1/16

応用問題:

どちらのサイコロが使われた?

■ (いびつな) サイコロA, Bのパラメータの最尤推定値は:

−サイコロA:

出目	1	2	3	4	5	6
確率	5/20	1/20	4/20	2/20	4/20	4/20

-サイコロB:

出目	1	2	3	4	5	6
確率	2/16	8/16	2/16	2/16	1/16	1/16

■今、2つのサイコロのいずれかを選んで(Cとする)5回振ったところ:

出目	1	2	3	4	5	6
回数	1	1	0	2	0	1

■ 使われたサイコロはA, Bのいずれだろうか? (C=A or C=B?)

ベイズ決定:

事後確率によって決定する

- A, B どちらのサイコロを選んだかを確率変数Xで表す
 - -事前確率:でたらめに選ぶと P(X = A) = P(X = B) = 1/2
 - -何も情報がなければこれ以上はわからない
- 事後分布:C(A, Bのいずれか)を振って出たデータのを見たあとの、Xの確率分布 $P(X|\mathcal{D})$
- ベイズ決定:事後確率がP(X = A|D) > P(X = B|D)であれば、Aが使われた可能性が高いと判断できる
- 事後確率の計算: $P(X|\mathcal{D}) = \frac{P(\mathcal{D}|X)P(X)}{P(\mathcal{D})}$ (ベイズの定理)

事後確率の計算:

ベイズの定理と最尤推定で事後確率を計算

事後確率の計算には「ベイズの定理」をつかう:

$$P(X|\mathcal{D}) = \frac{P(\mathcal{D}|X)P(X)}{P(\mathcal{D})}$$

$$P(X|\mathcal{D}) = \frac{P(\mathcal{D}|X)P(X)}{P(\mathcal{D})}$$

- -判断基準: $P(X = A|\mathcal{D}) \ge P(X = B|\mathcal{D})$
 - $\leftrightarrow P(\mathcal{D}|X = A)P(X = A) \ge P(\mathcal{D}|X = B)P(X = B)$
 - -注意:分母 $P(\mathcal{D}) = \sum_{X} P(\mathcal{D}|X)P(X)$ は今回は計算する必要はない
- サイコロのパラメータ $\{p_k^A\}_{\nu=1}^6$ 、 $\{p_k^B\}_{\nu=1}^6$ は最尤推定によって推定

$$P(\mathcal{D}|X=\mathrm{A})=\prod_{k=1}^6 p_k^{\mathrm{A}n_k^{\mathrm{C}}} \gtrless P(\mathcal{D}|X=\mathrm{B})=\prod_{k=1}^6 p_k^{\mathrm{B}n_k^{\mathrm{C}}}$$
で判断

線形回帰モデルの確率的解釈

最尤推定:

データをもっともよく再現するパラメータを推定値とする

- n個のデータ $x_1, x_2, ..., x_n$ から確率モデル $f(x \mid \theta)$ のパラメータ θ を推定したい
- n個のデータが(互いに独立に)生成される確率(尤度):

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

・ 尤度最大になるパラメータを推定値êとする

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i=1}^{n} f(x_i \mid \theta) = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log f(x_i \mid \theta)$$

–もっともデータを生成する確率が高い(「最も尤もらしい」)

実際には対数尤度

で扱うことが多い

線形回帰モデルの最尤推定:線形回帰の確率モデルを考える

- データ: $\mathbf{x} = (x^{(1)}, x^{(2)}, ..., x^{(n)})$ と $\mathbf{y} = (y^{(1)}, y^{(2)}, ..., y^{(n)})$ に 線形モデル: $g(x) = \beta x + \alpha$ を当てはめる
- 最小二乗法: $\ell(\alpha,\beta) = \sum_{i=1}^n \left(y^{(i)} \left(\beta x^{(i)} + \alpha \right) \right)^2$ を最小化
- 一方、線形回帰モデルに対応する確率モデルを仮定する:
 - -正規分布: $y^{(i)}$ は平均 $\beta x^{(i)} + \alpha$ 、分散 σ^2 の正規分布に従う
 - -確率密度: $f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} (\beta x^{(i)} + \alpha))^2}{2\sigma^2}\right)$
 - -「平均的に」回帰直線 $y = \beta x + \alpha$ に乗るデータを生成できる

線形回帰モデルの最尤推定: 線形回帰の確率モデルの最尤推定 = 最小二乗法

■ 線形回帰モデルに対応する確率モデルを考える:

■確率密度関数:
$$f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - (\beta x^{(i)} + \alpha))^2}{2\sigma^2}\right)$$

• 対数尤度:
$$L(\alpha, \beta) = \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)})$$

= $-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^2 + \text{const.}$

対数尤度をα, βについて最大化すること(最尤推定)二乗誤差をα, βについて最小化すること(最小二乗法)

線形回帰モデルの最尤推定: 分散の最尤推定量

■ 確率密度関数:
$$f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - (\beta x^{(i)} + \alpha))^2}{2\sigma^2}\right)$$

■ 分散については、対数尤度:

$$L(\sigma^{2}) = n \log \frac{1}{\sigma} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^{2} + \text{const.}$$

■ L(σ²)を最大化する最尤推定量は:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^2$$

※ 以上の議論は重回帰モデルの場合も同様

最尤推定の性質

最尤推定量の性質: 一致性

- 『パラメータ母の推定量としてêを得たとする(例えば最尤推定で)
- 推定量の良さはどのように評価するか?
 - -不偏性 $E[\hat{\theta}] = \theta$: 推定量の期待値が真の値に一致する
 - Eは様々な標本の採り方についての期待値を表す
 - たとえば、平均の最尤推定量は不偏性をもつが、分散の最尤 推定量はもたない
 - -一致性:標本サイズを大きくしていくと真の値に一致する:

$$\hat{\theta} \xrightarrow[n \to \infty]{} \theta$$

■ 最尤推定は、適当な条件のもと一致性をもつ

漸近正規性:

最尤推定は漸近正規性をもつ

- 最尤推定量の分布は $n \to \infty$ で、真のパラメータ θ を平均とする正規分布に従う
- もう少し厳密にいうと: $\sqrt{n}(\hat{\theta} \theta)$ の分布が平均0、分散 $I(\theta)^{-1}$ の正規分布に近づく

•
$$I(\theta)$$
はフィッシャー情報量:
$$I(\theta)$$
はフィッシャー情報量:
$$I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right]$$

$$= -\int \left(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right) f(x|\theta) dx$$

• $n \to \infty \overline{C} \hat{\theta} \to \theta$

最尤推定の利点: モデリングの自動化

- ■最尤推定の利点:確率モデルの形(データの生成プロセスの仮定)を決めればモデルパラメータが自動的に決まる
 - -ただし、最後に最大化問題を解いて、パラメータ推定量を求める 必要がある
 - 離散分布、ポアソン分布、正規分布などは解析的に解が求まる
 - -線形回帰(正規分布でノイズが載る)は連立方程式(いちおう解析的な解)
 - -ただし、他の多くのモデルでは、最適化問題を数値的に解く必要がある

ポアソン回帰

ポアソン分布の最尤推定:

標本平均がパラメータの最尤推定量になる

• ポアソン分布:
$$P(Y = y \mid \lambda) = \frac{\lambda^y}{y!} \exp(-\lambda)$$

■ データ: $y_1, y_2, ..., y_n$ に対する対数尤度:

$$L(\lambda) = \sum_{i=1}^{n} \log P(Y = y_i \mid \lambda) = \log \lambda \sum_{i=1}^{n} y_i - n\lambda + \text{const.}$$

■ パラメータの最尤推定量:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} y_i}{n}$$

https://en.wikipedia.org/wiki/Poisson_distribution#/media/File:Poisson_pmf.svg

ポアソン回帰: 非負整数の回帰モデル

- 例えば、ある機械の各日の故障件数をモデル化したいとする
 - -曜日や気温などに依存して平均的な故障件数が変わるとする
- 独立変数(曜日など)に依存する回数のモデル:ポアソン回帰

$$P(Y = y \mid \mathbf{x}, \boldsymbol{\beta}) = \frac{\left(\exp(\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x})\right)^{y}}{y!} \exp(-\exp(\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}))$$

-ポアソン分布の平均が線形モデルで表されるとする:

・ポアソン分布:
$$P(Y = y \mid \lambda) = \frac{\lambda^y}{y!} \exp(-\lambda)$$
 組み合わせる・重回帰モデル: $\lambda = \exp(\boldsymbol{\beta}^\mathsf{T} \mathbf{x})$

ポアソン回帰の最尤推定:解析解は得られなさそう...

- ■独立変数:(x⁽¹⁾,x⁽²⁾,...,x⁽ⁿ⁾) # n日分の測定
- 従属変数: $(y^{(1)}, y^{(2)}, ..., y^{(n)})$ # n日分の故障数
- ■対数尤度(最大化問題):

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log \frac{\left(\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})\right)^{y^{(i)}}}{y^{(i)}!} \exp(-\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}))$$
$$= \sum_{i=1}^{n} y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)} - \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}) + \text{const.}$$

■ これを最大化するβを求めたいが、解析解は得られない