Санкт-Петербургский государственный электротехнический университет им. В.И.Ульянова (Ленина)

СОЗДАНИЕ ПРИЛОЖЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ РЕШЕНИЯ СУДОКУ С ИСПОЛЬЗОВАНИЕМ ГЕНЕТИЧЕСКОГО АЛГОРИТМА

Выполнила: Лящевская Анастасия Петровна, студ. гр. 7382

Руководитель: Жукова Наталья Александровна д.т.н., доцент каф. МОЭВМ

Консультант: Борисенко Константин Алексеевич к.т.н., ст. преподаватель каф. МОЭВМ

Санкт-Петербург, 2021

Цель и задачи

Актуальность: Подход основанный на принципах эволюции и естественного отбора. Отсутствие требования дополнительной информации о задаче. Нахождение множества "хороших решений". Широкая применимость.

Цель: Разработка генетического алгоритма, решающего задачу Судоку, исследование его характеристик и реализация приложения использующего его.

Задачи:

- Найти тестовую выборку задач судоку разной сложности и их истинных решений для тестирования алгоритма
- Придумать и реализовать генетический алгоритм и его составляющие подходящие для решения выбранной задачи
- Провести тестирование алгоритма на имеющейся тестовой выборке, проанализировать результат
- Написать приложение с использованием разработанного алгоритма

Тестовая выборка

Количество	Откуда	Сложность
15	Газета Helsingin Sanomat (2006)	От 1 до 5
12	Газета Aamulehti (2006)	E, M, D, SD
9	Газета Рарросот (2006)	Easy, Medium и Hard
9	Созданны с помощью GA (Mantere and Koljonen 2007)	GA-Easy, GA-Medium и GA-Hard
1	AI Escargot ot Inkala (2006)	"Самое Сложное Судоку"

Инициализация

		1		8	5			
		3			1			
		9	4		2			
6	7					3		
		8				3 5		
9							7	2
9 1 4		5		4			2	
4	8							9
				3				

Рисунок 1 - Задача судоку.

[2,7]	[2,4,6]	[1]	[3,6,7,9]	[8]	[5]	[2,4,6,7,9]	[3,4,6,9]	[3,4,6,7]
[2,5,7,8]	[2,4,5,6]	[3]	[6,7,9,]	[6,7,9]	[1]	[2,4,6,7,8,9]	[4,5,6,8,9]	[4,5,6,7,8]
[5,7,8]	[5,6]	[9]	[4]	[6,7]	[2]	[1,6,7,8]	[1,3,5,6,8]	[1,3,5,6,7,8]
[6]	[7]	[2,4]	[1,2,5,8,9]	[1,2,5,9]	[4,8,9]	[3]	[1,4,8,9]	[1,4,8]
[2,3]	[1,2,3,4]	[8]	[1,2,3,6,7,9]	[1,2,6,7,9]	[3,4,6,7,9]	[5]	[1,4,6,9]	[1,4,6]
[9]	[1,3,4,5]	[4]	[1,3,5,6,8]	[1,5,6]	[3,4,6,8]	[1,4,6,8]	[7]	[2]
[1]	[3,6,9]	[5]	[6,7,8,9]	[4]	[6,7,8,9]	[6,7,8]	[2]	[3,6,7,8]
[4]	[8]	[2,6,7]	[1,2,5,6,7]	[1,2,5,6,7]	[6,7]	[1,6,7]	[1,3,5,6]	[9]
[2,7]	[2,6,9]	[2,6,7]	[1,2,5,6,7,8,9]	[3]	[6,7,8,9]	[1,4,6,7,8]	[1,4,5,6,8]	[1,4,5,6,7,8]

Рисунок 2 - "Вспомогательный массив" для судоку на Рис. 1, используемый в генетическом алгоритме.

Генетический алгоритм ошибка

Генерация особи и ее оценка

1	2	3	4	5	6	7	8	9
7	3	2	9	1	8	6	5	4
1	9	6	7	4	8	3	2	5
6	8	3	5	7	4	9	1	2
4	5	7	2	9	1	8	3	6
2	1	9	8	6	3	5	4	7
3	6	1	4	2	9	7	8	5
5	7	4	1	8	6	2	9	3
9	2	8	3	5	7	4	6	1

block_count[8]=9

fitness_function = column_sum * block_sum

$$column_sum = \sum_{i=0}^{8} \left(\frac{1}{9 - column_count[i] + 1} \right) \frac{1}{9}$$

$$block_sum = \sum_{i=0}^{8} \left(\frac{1}{9 - block_count[i] + 1} \right) \frac{1}{9}$$

$$column_count[i] = \bigcup_{j=0}^{8} given[i][j], i \in \overline{1,9}$$

$$block_count[i] = \bigcup_{j=0}^{8} given[j][i], i \in \overline{1,9}$$

 $fitness_function \rightarrow (0; 1]$

Рисунок 3 - Особь - решение.

Селекция

Кроссинговер

Прошедшие этап селекции parent1 и parent2 принимают участие в создании потомства. Их дети, child1 и child2, будут иметь случайные блоки строк их родителей.

			pa	irei	nt I							pai	ren	t2			
8	4	5	6	3	2	1	7	9	8	6	5	4	3	2	1	7	9
7	3	2	9	1	8	6	5	4	7	3	1	9	2	8	6	5	4
1	9	6	5	7	4	3	2	8	1	9	6	7	4	5	3	2	8
6	8	3	5	7	4	9	1	2	6	8	3	5	7	4	9	1	2
4	5	7	2	9	1	8	3	6	4	5	7	2	9	1	8	3	6
2	1	9	8	6	3	5	4	7	2	1	9	8	6	3	5	4	7
3	6	1	4	2	9	7	8	5	3	4	1	6	2	9	7	8	5
5	7	4	1	8	6	2	9	3	5	7	4	8	9	6	2	1	3
9	2	8	3	5	7	4	6	1	9	2	8	3	5	7	4	6	1
			ch	nul	d1)			ch	ild	2			
8	4	5	6	3	2	1	7	9	8	6	5	4	3	2	1	7	9
7	3	2	9	1	8	6	5	4	7	3	1	9	2	8	6	5	4
1	9	6	7	4	5	3	2	8	1	9	6	5	7	4	3	2	8
6	8	3	5	7	4	9	1	2	6	8	3	5	7	4	9	1	2
4	5	7	2	9	1	8	3	6	4	5	7	2	9	1	8	3	6
2	1	9	8	6	3	5	4	7	2	1	9	8	6	3	5	4	7
3	6	1	4	2	9	7	8	5	3	4	1	6	2	9	7	8	5
5	7	4	1	8	6	2	9	3	5	7	4	8	9	6	2	1	3
9	2	8	3	5	7	4	6	1	9	2	8	3	5	7	4	6	1

Мутация

Исходная строка:

Вспомогательный массив:

Возможная мутация:

Невозможные мутации:

Тестирование алгоритма и анализ

Интерфейс приложения

PRESS D TO RESET TO DEFAULT / R TO EMPTY
ENTER VALUES AND PRESS ENTER TO VISUALIZE

PRESS D TO RESET TO DEFAULT / R TO EMPTY ENTER VALUES AND PRESS ENTER TO VISUALIZE

FINISHED PRESS R or D

Апробация работы

Исходный код выложен в открытый доступ в репозитории проекта: http://github.org/Anastasiyalp/genetic_sudoku

Заключение

- Разработаны неотъемлемые составляющие для генетического алгоритма такие как, кроссинговер, мутация, инициализация первого поколения, функция приспособленности и турнир, подобраны оптимальные параметры.
- Добавлена новая составляющая вспомогательный массив, благодаря которому были улучшены результаты алгоритма.
- Было проведено тестирование алгоритма на достаточной выборке, а также проанализирован результат.
- Разработано приложение решающее судоку с использованием генетических алгоритмов, описан принцип работы.

Судоку

Судоку - головоломка с числами, где требуется заполнить клетки таблицы 9х9, поделенной на 9 квадратов 3х3, цифрами от 1 до 9 так, чтобы в каждой строке, в каждом столбце и в каждом выделенном квадрате 3х3 каждая цифра встречалась бы только один раз.

8		2			3	5	1	
	6			9	1			3
7		1				8	9	4
6		8			4		2	1
			2	5	8		6	
9	2		3	1		4		
			4		2	7	8	
		5		8	9			
2					7	1		

8	9	2	7	4	3	5	1	6
5	6	4	8	9	1	2	7	3
7	3	1	6	2	5	8	9	4
6	5	8	9	7	4	3	2	1
1	4	3	2	5	8	9	6	7
9	2	7	3	1	6	4	5	8
3	1	9	4	6	2	7	8	5
4	7	5	1	8	9	6	3	2
2	8	6	5	3	7	1	4	9