* results

*

01. plot the input data in blue point and the regression result in red curve

In []: plot_data_regression(x, y, f)

22. 1. 8. 오후 8:57 assignment_06

02. plot the values of the model parameters θ_0 in blue curve and θ_1 in green curve over the gradient descent iterations

In []: plot_model_parameter(theta0_iteration, theta1_iteration)

22. 1. 8. 오후 8:57 assignment_06

03. plot the loss values $\mathcal{L}(\theta)$ in red curve over the gradient descent iterations

In []: plot_loss_curve(loss_iteration)

04. plot the loss surface in 3-dimension surface where x-axis represents θ_0 , y-axis represents ℓ_0 and ℓ_0 -axis represents ℓ_0

```
In [ ]: plot_loss_surface(grid_theta0, grid_theta1, grid_loss)
```

<ipython-input-12-4681cda39795>:18: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes curren
tly reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning
can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
 pls = plt.axes(projection='3d')

assignment_06

22. 1. 8. 오후 8:57 ass 10.0

In []:			