

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 00/18886
C12N 5/04, 15/00, 15/09, 15/11, 15/29, 15/63, 15/74, 15/81, 15/82, A01H 5/00			(43) International Publication Date: 6 April 2000 (06.04.00)
(21) International Application Number: PCT/US99/22363		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 24 September 1999 (24.09.99)			
(30) Priority Data: 60/101,814 25 September 1998 (25.09.98) US			
(71) Applicant (for all designated States except US): WISCONSIN ALUMNI RESEARCH FOUNDATION [US/US]; 614 Wal- nut Street, Madison, WI 53705 (US).			
(72) Inventors; and		Published	
(75) Inventors/Applicants (for US only): SPALDING, Edgar, P. [US/US]; 7417 South Avenue, Middleton, WI 53562 (US). NOH, Bosl [US/US]; 308E Eagle Heights, Madison, WI 53705 (US).		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(74) Agents: KLANN, Ellen, M. et al.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103 (US).			

(54) Title: XENOBIOTIC DETOXIFICATION GENE FROM PLANTS

(57) Abstract

A novel plant gene is provided, which is a member of the *mdr* family of genes encoding ABC transporters. The gene is inducible by NPPB, and is preferentially expressed in roots upon induction. The gene is useful for detoxification of certain xenobiotics to protect plants from the detrimental effects of such compounds. Also provided are plants that over-express and under-express this *mdr* gene.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

XENOBIOTIC DETOXIFICATION GENE FROM PLANTS

This application claims priority to U.S. 60/101,814, filed September 25, 1998, the entirety of which is incorporated by reference herein.

5. Pursuant to 35 U.S.C. §202(c), it is acknowledged that the U.S. Government has certain rights in the invention described herein, which was made in part with funds from the National Science Foundation, Grant No. IBM-9416016.

10

FIELD OF THE INVENTION

This invention relates to the field of stress resistance in plants. In particular, the invention provides a novel gene from plants, which encodes an MDR-like ABC transporter, involved in detoxification of certain xenobiotics to protect plants from their detrimental effects.

BACKGROUND OF THE INVENTION

20 Several publications are referenced in this application to describe the state of the art to which the invention pertains. Each of these publications is incorporated by reference herein.

Environmental stress is one of the most 25 important limitations on plant productivity, growth and survival. An ever-increasing source of environmental stress to plants is the stress caused by environmental pollutants in the soil, water and atmosphere. Such pollutants include herbicides, pesticides and related 30 agronomic products, as well as organic and inorganic waste material from industry and other sources. Other toxic agents that threaten the survival of plants include various toxins produced by ephiphytic or soilborne

- 2 -

microorganisms, such as fungi and bacteria.

In order to survive in toxic environments, plants must have mechanisms to detoxify xenobiotics, heavy metals and other toxic compounds. This generally

5 involves modification of the toxic compound and subsequent excretion into the vacuole or apoplastic space. Recently, certain ATP-binding cassette (ABC) transporters have been identified in plants, which appear to be involved in the detoxification process.

10 The ABC transporter family is very large, with representatives existing in many different classes of organisms. Two well studied groups of ABC transporters, encoded by *mdr* and *mfp* genes, respectively, are associated with the multi-drug resistance phenomenon observed in mammalian tumor cells. The *mdr* genes encode a family of P-glycoproteins that mediate the energy-dependent efflux of certain lipophilic drugs from cells.

15 The *mfp* genes encode a family of transporters that mediate the extrusion of a variety of organic compounds after their conjugation with glutathione. *YCF1*, the yeast homolog of *mfp*, encodes a protein capable of glutathione-mediated detoxification of heavy metals.

Homologs of *mfp* and *mdr* genes have been identified in plant species. In *Arabidopsis thaliana*, 25 the glutathione-conjugate transporter encoded by the *mfp* homolog is located in the vacuolar membrane and is responsible for sequestration of xenobiotics in the central vacuole (Tommasini et al., *FEBS Lett.* 411: 206-210, 1997; Li et al., *Plant Physiol.* 107: 1257-1268, 30 1995). An *mdr*-like gene (*atpgp1*) has also been identified in *A. thaliana*, which encodes a putative P-glycoprotein homolog. The *atpgp1* gene was found to share significant sequence homology and structural organization with human *mdr* genes, and was expressed with particular

- 3 -

abundance in inflorescence axes (Dudler & Hertig, J. Biol. Chem. 267: 5882-5888, 1992). Other MDR homologs have been found in potato (Wang et al., Plant Mol. Biol. 31: 683, 1996) and barley (Davies et al., Gene 199: 195, 5 1997).

The aforementioned *mrp* and *mdr* plant homologs were identified as a result of an effort to understand the molecular basis for development in plants of cross-resistance to herbicides of unrelated classes. However, 10 these transporters are likely to serve the more general role in plants of sequestering, secreting, or otherwise detoxifying various organic and inorganic xenobiotics. Accordingly, it will constitute an advance in the art of 15 plant genetic engineering of stress tolerance to identify and characterize other members of this class of transporters in plants.

SUMMARY OF THE INVENTION

In accordance with the present invention, a new 20 plant *mdr* homolog has been identified. Unlike the previously identified plant *mdr* homologs, this new gene is inducible by a class of compounds known to inhibit chloride ion channels.

According to one aspect of the invention, a 25 nucleic acid isolated from a plant is provided, which encodes a p-glycoprotein that is inducible by exposure of the plant to NPPB. The isolated nucleic acid is preferentially expressed in plant roots upon exposure of the plant to NPPB. In a preferred embodiment, the plant 30 from which the nucleic acid is isolated is selected from the group consisting of *Brassica napus* and *Arabidopsis thaliana* and is 3850-4150 nucleotides in length. In a more preferred embodiment, the nucleic acid has the restriction sites shown in Figure 4 for at least three

- 4 -

restriction enzymes. In particularly preferred embodiments, the nucleic acid molecule encodes a polypeptide having SEQ ID NO:2. In an exemplary embodiment, the nucleic acid is a cDNA comprising the 5 coding region of SEQ ID NO:1 or SEQ ID NO:10.

According to another aspect of the invention is an expression cassette that comprises a p1PAC gene operably linked to a promoter, and in a more preferred embodiment the p1PAC gene is from *Arabidopsis*. In 10 preferred embodiments, the expression cassette comprises the cauliflower mosaic virus 35S promoter, and part of all of SEQ ID NO:1 or SEQ ID NO:10. Further included in this aspect is a vector comprising the expression cassette and a method for producing transgenic plants 15 with the expression cassette and vector.

Another aspect of the invention are transgenic cells and plants containing the nucleic acids of the invention. In one preferred embodiment, the nucleic acids are be in the aforementioned expression cassette. 20 Furhter included in this aspect are reporductive units from the transgenic plant.

According to another aspect of the invention, an isolated nucleic acid molecule is provided, which has a sequence selected from the group consisting of: a) SEQ 25 ID NO:1 and SEQ ID NO:10; b) a nucleic acid sequence that is at least about 60% homologous to the coding regions of SEQ ID NO:1 or SEQ ID NO:10; c) a sequence hybridizing with SEQ ID NO:1 or SEQ ID NO:10 at moderate stringency; d) a sequence encoding part or all of a 30 polypeptide having SEQ ID NO:2; e) a sequence encoding an amino acid sequence that is at least about 70% identical to SEQ ID NO:2; f) a sequence encoding an amino acid sequence that is at least about 80% similar to SEQ ID NO:2; g) a sequence encoding an amino acid sequence that .

- 5 -

is at least about 40% similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2; and h) a sequence hybridizing at moderate stringency to a sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2. A 5 polypeptide produced by expression of the above listed sequences is also provided.

According to another aspect of the invention, an isolated plant p-glycoprotein, which is inducible upon exposure of the plant to NPPB, is provided. The 10 polypeptide preferably confers upon a cell in which it is found resistance to Rhodamine 6G. The polypeptide is preferentially produced in roots upon the exposure to the NPPB. The polypeptide is preferably from *Brassica napus* or *Arabidopsis thaliana*. In most preferred embodiments, 15 the polypeptide has a sequence that is a) an amino acid sequence that is at least 80% similar to SEQ ID NO:2; b) an amino acid sequence that is at least 70% identical to SEQ ID NO:2; c) an amino acid sequence that is at least 40% similar to residues 1-76, 613-669 or 1144-1161 of SEQ 20 ID NO:2; and d) an amino acid sequence encoded by a nucleic acid sequence hybridizing at moderate stringency to a amino acid sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

According to other aspects of the invention, 25 antibodies immunologically specific for the polypeptides of the invention are provided, that immunologically specific to any of the polypeptides, of polypeptide encoded by the nucleic acids of the invention. In a preferred embodiment, the antibody is immunospecific to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

According to another aspect of the invention, a plant p-glycoprotein gene promoter, which is inducible by NPPB, is also provided. In a preferred embodiment, the promoter is part or all of residues 1-3429 of SEQ ID

- 6 -

NO:10.

According to another aspect of the invention, plants that have reduced levels of *plPAC* protein are provided. In a preferred embodiment, these plants have mutations in the *plPAC* gene, and in a particularly preferred embodiment, the *plPAC* gene is mutated due to the insertion of a T-DNA. Also provided with this aspect is a method for selecting plants with mutations in *plPAC* using SEQ ID NOS:11-14 as PCR primers.

These and other features and advantages of the present invention will be described in greater detail in the description and examples set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Amino acid sequence lineup of ATPAC deduced amino acid sequence and the amino acid sequences of related mammalian and plant genes. The lineup shows the ATPAC deduced amino acid sequence (SEQ ID NO:2) compared with (1) hmldr1 (SEQ ID NO:3); (2) mmdrl1 (SEQ ID NO: 4); (3) hmldr3 (SEQ ID NO:5); (4) mmdrl2 (SEQ ID NO:6); (5) atpgp1 (SEQ ID NO:7); and (6) atpgp2 (SEQ ID NO:8). A consensus sequence (SEQ ID NO: 9) is also shown.

Figure 2. Graph depicting the effect of rhodamine 6G on the growth rate of cells transformed with and expressing ATPAC as compared with control cells not containing ATPAC.

Figure 3. Restriction map of genomic clone of ATPAC, SEQ ID NO:10.

Figure 4. Restriction map of cDNA clone of ATPAC, SEQ ID NO:1.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

Various terms relating to the biological

- 7 -

molecules of the present invention are used hereinabove and also throughout the specification and claims.

With reference to nucleic acids of the invention, the term "isolated nucleic acid" is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome of the organism from which it was derived. For example, the "isolated nucleic acid" may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a prokaryote or eucaryote. An "isolated nucleic acid molecule" may also comprise a cDNA molecule.

With respect to RNA molecules of the invention the term "isolated nucleic acid" primarily refers to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from RNA molecules with which it would be associated in its natural state (i.e., in cells or tissues), such that it exists in a "substantially pure" form (the term "substantially pure" is defined below).

Nucleic acid sequences and amino acid sequences can be compared using computer programs that align the similar sequences of the nucleic or amino acids thus define the differences. For purposes of this invention, the DNASTar program (DNASTar, Inc., Madison, Wisconsin) and the default parameters used by that program are the parameters intended to be used herein to compare sequence identity and similarity. Alternately, the Blastn and Blastp 2.0 programs provided by the National Center for Biotechnology Information (at <http://www.ncbi.nlm.nih.gov/blast/>; Altschul et al., 1990, J Mol Biol 215:403-410) using a gapped alignment

- 8 -

with default parameters, may be used to determine the level of identity and similarity between nucleic acid sequences and amino acid sequences.

The term "substantially the same" refers to 5 nucleic acid or amino acid sequences having sequence variation that do not materially affect the nature of the protein (i.e. the structure, thermostability characteristics and/or biological activity of the protein). With particular reference to nucleic acid 10 sequences, the term "substantially the same" is intended to refer to the coding region and to conserved sequences governing expression, and refers primarily to degenerate codons encoding the same amino acid, or alternate codons encoding conservative substitute amino acids in the 15 encoded polypeptide. With reference to amino acid sequences, the term "substantially the same" refers generally to conservative substitutions and/or variations in regions of the polypeptide not involved in determination of structure or function.

20 The terms "percent identical" and "percent similar" are also used herein in comparisons among amino acid and nucleic acid sequences. When referring to amino acid sequences, "percent identical" refers to the percent of the amino acids of the subject amino acid sequence 25 that have been matched to identical amino acids in the compared amino acid sequence by a sequence analysis program. "Percent similar" refers to the percent of the amino acids of the subject amino acid sequence that have been matched to identical or conserved amino acids.

30 Conserved amino acids are those which differ in structure but are similar in physical properties such that the exchange of one for another would not appreciably change the tertiary structure of the resulting protein.

Conservative substitutions are defined in Taylor (1986,

- 9 -

J. Theor. Biol. 119:205). When referring to nucleic acid molecules, "percent identical" refers to the percent of the nucleotides of the subject nucleic acid sequence that have been matched to identical nucleotides by a sequence analysis program.

With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid, oligonucleotide, protein, etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-99% by weight, the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g. chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).

With respect to antibodies of the invention, the term "immunologically specific" refers to antibodies that bind to one or more epitopes of a protein of interest, but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.

With respect to oligonucleotides, the term "specifically hybridizing" refers to the association between two single-stranded nucleotide molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally

- 10 -

used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.

The term "expression cassette", as used herein, comprises 5' and 3' regulatory regions operably linked to a coding sequence. The coding sequence may be in the sense or antisense orientation with respect to the 5' regulatory region.

The term "promoter region" refers to the 5' regulatory regions of a gene.

The term "reporter gene" refers to genetic sequences which may be operably linked to a promoter region forming a transgene, such that expression of the reporter gene coding region is regulated by the promoter and expression of the transgene is readily assayed.

The term "selectable marker gene" refers to a gene product that when expressed confers a selectable phenotype, such as antibiotic resistance, on a transformed cell or plant.

The term "operably linked" means that the regulatory sequences necessary for expression of the coding sequence are placed in the DNA molecule in the appropriate positions relative to the coding sequence so as to effect expression of the coding sequence. This same definition is sometimes applied to the arrangement of coding sequences and transcription control elements (e.g. promoters, enhancers, and termination elements) in an expression vector.

The term "DNA construct" refers to genetic

- 11 -

sequence used to transform plants and generate progeny transgenic plants. These constructs may be administered to plants in a viral or plasmid vector. Other methods of delivery such as Agrobacterium T-DNA mediated
5 transformation and transformation using the biolistic process are also contemplated to be within the scope of the present invention. The transforming DNA may be prepared according to standard protocols such as those set forth in "Current Protocols in Molecular Biology",
10 eds. Frederick M. Ausubel et al., John Wiley & Sons, 1995.

The term "xenobiotic" refers to foreign chemicals or agents not produced or naturally found in the organism. The term is commonly used in reference to
15 toxic or otherwise detrimental foreign chemicals, such as organic pollutants or heavy metals.

II. Description of *plPAC* and its Encoded Polyptide

20 In accordance with the present invention, a nucleic acid encoding a novel ATP-binding-cassette (ABC) transporter has been isolated and cloned from plants. The nucleic acid is referred to herein as *plPAC*.

25 A cDNA clone of the *plPAC* from *Arabidopsis thaliana*, an exemplary *plPAC* of the invention, is described in detail herein and its nucleotide sequence is set forth in Example 1 as SEQ ID NO:1. This nucleic acid molecule is referred to as "ATPAC". It is 36% identical and 51% similar to human *mdrl* across the entire sequence.
30 It is 51% identical to the *atpgp1* gene reported by Dudler & Hertig (1997, *supra*) and 50% identical to *atpgp2*, a close homolog of *atpgp1*, published in the Genbank database. ATPAC protein is 65% similar to *atpgp1* and *atpgp2* proteins.
35

- 12 -

A partial clone of a p1PAC of the invention was originally isolated from *Brassica napus* via differential expression screening of plants grown in the presence or absence of the chloride channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). A 0.5 kb gene fragment was identified, which had been up-regulated in response to NPPB treatment. This cDNA fragment was used to screen an *Arabidopsis* cDNA library, from which the complete ATPAC clone was isolated. The isolation and characterization of ATPAC is described in Example 1.

A genomic clone of ATPAC (SEQ ID NO:10) has also been isolated from a bacterial artificial chromosome (BAC) library of the *Arabidopsis* genome (BAC clone IGF F3J22, obtained from the *Arabidopsis* stock center, Ohio State University). A 7 kb fragment containing part of ATPAC and additional 5' regulatory sequences was subcloned into a plasmid vector (pBluescript). A restriction map of ATPAC is found in Fig. 3. The corresponding cDNA clone of ATPAC is found in SEQ ID NO:1 and its restriction map is Fig. 4.

Among the unique features of this nucleic acid molecule as compared with other mdr-like genes from plants are its inducibility by certain compounds, including NPPB and herbicides, and its preferential expression in roots. The promoter regulatory region of ATPAC comprises residues 1-3429 of SEQ ID NO:10.

Although the ATPAC cDNA clone from *Arabidopsis thaliana* is described and exemplified herein, this invention is intended to encompass nucleic acid sequences and proteins from other plant species that are sufficiently similar to be used instead of ATPAC nucleic acid and proteins for the purposes described below. These include, but are not limited to, allelic variants and natural mutants of SEQ ID NO:1, which are likely to

- 13 -

be found in different species of plants or varieties of *Arabidopsis*.

Because such variants are expected to possess certain differences in nucleotide and amino acid sequence, this invention provides an isolated pIPAC nucleic acid molecule having at least about 60% (preferably 70% and more preferably over 80%) sequence homology in the coding regions with the nucleotide sequence set forth as SEQ ID NO:1 or SEQ ID NO:10 (and, most preferably, specifically comprising the coding region of SEQ ID NO:1). Also provided are nucleic acids that encode a polypeptide that is at least about 40% (preferably 50% and most preferably 60%) similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2. Also provided are nucleic acids that hybridize to the nucleic acids of SEQ ID NO:1, SEQ ID NO:10, or nucleic acids encoding the regions of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2, preferably under moderate stringency (more preferably, high stringency, and most preferably, very high stringency).

In other preferred embodiments, the nucleic acids have a restriction digest map that is identical for at least 3 enzymes (more preferably 6 enzymes and most preferably 9 enzymes) to the maps shown in Figs. 3 or 4. In another preferred embodiment, the nucleic acids have a restriction digest map identical to those shown in Fig. 3 for enzymes *Xba*I, *Xcm*I and *Spe*I (preferably additionally *Sac*I, *Pac*I and *Bsa*I, and most preferably additionally *Acl*I, *Ban*I and *Sna*BI). In another preferred embodiment, the nucleic acids have a restriction digest map identical to those shown in Fig. 4 for enzymes *Xba*I, *Tat*I and *Nci*I (preferably additionally *Dra*I, *Bsm*I and *Bcl*I, and most preferably additionally *Acc*I, *Bsg*I and *Tli*I). The nucleic acids of the invention are at least 20 nucleic

- 14 -

acids in length (preferably at least 50 nucleic acids and most preferably at least 100 nucleic acids).

In accordance with the invention, novel *plPAC* genes from two plant species, *Brassica napus* and 5 *Arabidopsis thaliana*, are presented. This constitutes the first description of this unique p-glycoprotein in plants. Indeed, the closest known protein sequence, also from *Arabidopsis*, is only 65% identical suggesting that the *ATPAC* gene is novel and is expected to have novel 10 properties. The isolation of two *plPAC* genes from different species enables the isolation of further *plPAC* genes from other plant species. Isolated nucleic acids that are *plPAC* genes from any plant species are considered part of the instant invention. In particular, 15 the nucleic acids of other *plPAC* genes can be isolated using sequences of *ATPAC* that distinguish *plPAC* genes from other plant *mdr* genes according to methods that are well known to those in the art of gene isolation. In particular, sequences that encode residues 1-76, 613-669 20 and 1144-1161 of SEQ ID NO:2 can be used. In a preferred embodiment, the *plPAC* gene is from any higher plant species (more preferred from a dicot species, and most preferred from a species in *Brassicaceae* (or *Cruciferae*)).

25 This invention also provides isolated polypeptide products of the open reading frames of SEQ ID NO:1 or SEQ ID NO:10, having at least about 70% (preferably 80% and most preferably 90%) sequence identity, or at least about 80% similarity (preferably 30 90% and more preferably 95%) with the amino acid sequence of SEQ ID NO:2. In another embodiment, the polypeptides of the invention are at least about 40% identical (preferably 50%, and most preferably 60%) to the regions of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

- 15 -

Because of the natural sequence variation likely to exist among p1PAC genes, one skilled in the art would expect to find up to about 30-40% nucleotide sequence variation, while still maintaining the unique properties of the 5 p1PAC gene and encoded polypeptide of the present invention. Such an expectation is due in part to the degeneracy of the genetic code, as well as to the known evolutionary success of conservative amino acid sequence variations, which do not appreciably alter the nature of 10 the encoded protein. Accordingly, such variants are considered substantially the same as one another and are included within the scope of the present invention.

Also provided are transgenic plants transformed with part or all of the nucleic acids of the invention. 15 Transgenic plants that over-express a p1PAC coding sequence are one embodiment of this aspect of the invention. Example 3 provides for one prototype of such a plant. In a preferred embodiment, the ATPAC gene is used, and in a most preferred embodiment SEQ ID NO:1 or 20 SEQ ID NO:10 is used. The p1PAC gene may be placed under a powerful constitutive promoter, such as the Cauliflower Mosaic Virus (CaMV) 35S promoter or the figwort mosaic virus 35S promoter. In a preferred embodiment, the 35SCaMV promoter is used. Transgenic plants expressing 25 the p1PAC gene under an inducible promoter (either its own promoter or a heterologous promoter) are also contemplated to be within the scope of the present invention. Inducible plant promoters include the tetracycline repressor/operator controlled promoter. In 30 a preferred embodiment, a native p1PAC promoter is used, and in a most preferred embodiment, residues 1-3429 of SEQ ID NO:10 is used. Plant species that are contemplated for overexpression of a p1PAC coding sequence include, but are not limited to, soybean.

- 16 -

In another embodiment, overexpression of *plPAC* is induced to generate a co-suppression effect. This excess expression serves to promote down-regulation of both endogenous and exogenous *plPAC* genes.

5 In some instances, it may be desirable to down-regulate or inhibit expression of endogenous *plPAC* in plants possessing the gene. Accordingly, *plPAC* nucleic acid molecules, or fragments thereof, may also be utilized to control the production of *plPAC*-encoded P-glycoproteins. In one embodiment, full-length *plPAC* antisense molecules or antisense oligonucleotides, targeted to specific regions of *plPAC*-encoded RNA that are critical for translation, are used. The use of antisense molecules to decrease expression levels of a 10 pre-determined gene is known in the art. In a preferred embodiment, antisense molecules are provided *in situ* by transforming plant cells with a DNA construct which, upon transcription, produces the antisense sequences. Such constructs can be designed to produce full-length or 15 partial antisense sequences. One example of antisense *plPAC* transgenic plants is given in Example 3.

20

In another embodiment, knock-out plants are obtained by screening a T-DNA mutagenized plant population for insertions in the *plPAC* gene (see Krysan et al., 1996, PNAS 93:8145). One example of this 25 embodiment of the invention is found in Example 3. Optionally, transgenic plants can be created containing mutations in the region encoding the active site of *plPAC*. These last two embodiments are preferred over the 30 use of anti-sense constructs due to the high homology among P-glycoproteins.

The promoter of *ATPAC* is also provided in accordance with the invention. This promoter has the useful properties of root expression and inducability by

- 17 -

NPPB. The prototypic example of this aspect of the invention is residues 1-3429 of SEQ ID NO:10. It is anticipated that p1PAC genes from other plant species will likewise exhibit the aforementioned useful properties. As these promoter regions can easily be isolated from the p1PAC genes that are provided with the invention, all plant p1PAC gene promoters are provided with the invention. The nucleic acids of the invention therefore include a nucleic acid molecule that is at least about 70% identical (preferably 80% and most preferably 90%) to the residues 1-3429 of SEQ ID NO:10. Also provided are nucleic acids that hybridize to the nucleic acid residues 1-3429 of SEQ ID NO:10 preferably under moderate stringency (more preferably, high stringency, and most preferably, very high stringency).

The present invention also provides antibodies capable of immuno-specifically binding to polypeptides of the invention. Polyclonal or monoclonal antibodies directed toward any of the peptides encoded by p1PAC may be prepared according to standard methods. Monoclonal antibodies may be prepared according to general methods of Köhler and Milstein, following standard protocols. In a preferred embodiment, antibodies are prepared, which react immuno-specifically with various epitopes of the p1PAC-encoded polypeptides. In a preferred embodiment, the antibodies are immunologically specific to the polypeptide of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

The following description sets forth the general procedures involved in practicing the present invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. Unless otherwise specified, general cloning procedures, such as those set

- 18 -

forth in Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory (1989) (hereinafter "Sambrook et al.") or Ausubel et al. (eds) Current Protocols in Molecular Biology, John Wiley & Sons (1997) (hereinafter "Ausubel et al.") are used.

III. Preparation of PIPAC Nucleic Acid Molecules,
encoded Polypeptides, Antibodies Specific for the
Polypeptides and Transgenic Plants

10

1. Nucleic Acid Molecules

PIPAC nucleic acid molecules of the invention may be prepared by two general methods: (1) they may be synthesized from appropriate nucleotide triphosphates, or (2) they may be isolated from biological sources. Both methods utilize protocols well known in the art.

The availability of nucleotide sequence information, such as the cDNA having SEQ ID NO:1, enables preparation of an isolated nucleic acid molecule of the invention by oligonucleotide synthesis. Synthetic oligonucleotides may be prepared by the phosphoramidite method employed in the Applied Biosystems 38A DNA Synthesizer or similar devices. The resultant construct may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC). Long, double-stranded polynucleotides, such as a DNA molecule of the present invention, must be synthesized in stages, due to the size limitations inherent in current oligonucleotide synthetic methods. Thus, for example, a long double-stranded molecule may be synthesized as several smaller segments of appropriate complementarity. Complementary segments thus produced may be annealed such that each segment possesses appropriate cohesive termini for attachment of an adjacent segment. Adjacent segments may be ligated by annealing cohesive termini in the

- 19 -

presence of DNA ligase to construct an entire long double-stranded molecule. A synthetic DNA molecule so constructed may then be cloned and amplified in an appropriate vector.

5 *PIPAC* genes also may be isolated from appropriate biological sources using methods known in the art. In fact, the *ATPAC* clone was isolated from an *Arabidopsis* cDNA library using a partial clone obtained from *Brassica napus*. In alternative embodiments, genomic
10 clones of *plPAC* may be isolated.

In accordance with the present invention, nucleic acids having the appropriate level sequence homology with part or all the coding regions of SEQ ID NO:1 or SEQ ID NO:10 may be identified by using
15 hybridization and washing conditions of appropriate stringency. For example, hybridizations may be performed, according to the method of Sambrook et al., using a hybridization solution comprising: 5X SSC, 5X Denhardt's reagent, 1.0% SDS, 100 µg/ml denatured,
20 fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42°C for at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2X SSC and 1% SDS; (2) 15 minutes at room
25 temperature in 2X SSC and 0.1% SDS; (3) 30 minutes-1 hour at 37°C in 2X SSC and 0.1% SDS; (4) 2 hours at 45-55° in 2X SSC and 0.1% SDS, changing the solution every 30 minutes.

One common formula for calculating the
30 stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology (Sambrook et al., 1989):

$$T_m = 81.5^\circ\text{C} + 16.6 \log [\text{Na}^+] + 0.41(\% \text{G+C}) - 0.63 (\% \text{formamide}) - 600/\# \text{bp in duplex}$$

- 20 -

As an illustration of the above formula, using $[N^+] = [0.368]$ and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the T_m is 57°C. The T_m of a DNA duplex decreases by 1 - 1.5°C with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42°C.

The stringency of the hybridization and wash depend primarily on the salt concentration and 10 temperature of the solutions. In general, to maximize the rate of annealing of the probe with its target, the hybridization is usually carried out at salt and temperature conditions that are 20-25°C below the calculated T_m of the hybrid. Wash conditions 15 should be as stringent as possible for the degree of identity of the probe for the target. In general, wash conditions are selected to be approximately 12-20°C below the T_m of the hybrid. In regards to the nucleic acids of the current invention, a moderate stringency 20 hybridization is defined as hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 µg/ml denatured salmon sperm DNA at 42°C, and wash in 2X SSC and 0.5% SDS at 55°C for 15 minutes. A high stringency hybridization is defined as hybridization in 6X SSC, 5X Denhardt's 25 solution, 0.5% SDS and 100 µg/ml denatured salmon sperm DNA at 42°C, and wash in 1X SSC and 0.5% SDS at 65°C for 15 minutes. A very high stringency hybridization is defined as hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 µg/ml denatured salmon sperm 30 DNA at 42°C, and wash in 0.1X SSC and 0.5% SDS at 65°C for 15 minutes.

Nucleic acids of the present invention may be maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in plasmid

- 21 -

cloning/expression vector, such as pGEM-T (Promega Biotech, Madison, WI) or pBluescript (Stratagene, La Jolla, CA), either of which is propagated in a suitable *E. coli* host cell.

5 *plPAC* nucleic acid molecules of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides (sense or antisense strands of DNA or RNA) having sequences capable of
10 hybridizing with at least one sequence of a nucleic acid molecule of the present invention, such as selected segments of SEQ ID NO:1 or SEQ ID NO:10. Such oligonucleotides are useful as probes for detecting *plPAC* genes or mRNA in test samples, e.g. by PCR amplification,
15 mapping of genes or for the positive or negative regulation of expression of *plPAC* genes at or before translation of the mRNA into proteins.

The *plPAC* promoter is also expected to be useful in connection with the present invention, inasmuch
20 as it is inducible in plants upon exposure to anion channel blockers. As mentioned above, seven-kilobase fragment of genomic DNA has been isolated, which contains part or all of the *plPAC* promoter from *Arabidopsis thaliana*. This promoter can be used in chimeric gene constructs to facilitate inducible expression of any coding sequence of interest, upon exposure to NPPB or similar-acting compounds.

2. Proteins

30 Polypeptides encoded by *plPAC* nucleic acids of the invention may be prepared in a variety of ways, according to known methods. If produced *in situ* the polypeptides may be purified from appropriate sources, e.g., plant roots or other plant parts.

- 22 -

Alternatively, the availability of nucleic acid molecules encoding the polypeptides enables production of the proteins using *in vitro* expression methods known in the art. For example, a cDNA or gene may be cloned into 5 an appropriate *in vitro* transcription vector, such a pSP64 or pSP65 for *in vitro* transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocytes. *In vitro* transcription and translation systems are 10 commercially available, e.g., from Promega Biotech, Madison, Wisconsin or BRL, Rockville, Maryland.

According to a preferred embodiment, larger quantities of plPAC-encoded polypeptide may be produced by expression in a suitable prokaryotic or eukaryotic 15 system. For example, part or all of a DNA molecule, such as the cDNA having SEQ ID NO:1, may be inserted into a plasmid vector adapted for expression in a bacterial cell (such as *E. coli*) or a yeast cell (such as *Saccharomyces cerevisiae*), or into a baculovirus vector for expression 20 in an insect cell. Such vectors comprise the regulatory elements necessary for expression of the DNA in the host cell, positioned in such a manner as to permit expression of the DNA in the host cell. Such regulatory elements required for expression include promoter sequences, 25 transcription initiation sequences and, optionally, enhancer sequences.

The plPAC polypeptide produced by gene expression in a recombinant prokaryotic or eukaryotic system may be purified according to methods known in the 30 art. In a preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are

- 23 -

not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein. Such methods 5 are commonly used by skilled practitioners.

The *plPAC*-encoded polypeptides of the invention, prepared by the aforementioned methods, may be analyzed according to standard procedures.

10 C. Transgenic Plants

Transgenic plants expressing the *plPAC* gene can be generated using standard plant transformation methods known to those skilled in the art. These include, but are not limited to, *Agrobacterium* vectors, PEG treatment 15 of protoplasts, biolistic DNA delivery, UV laser microbeam, gemini virus vectors, calcium phosphate treatment of protoplasts, electroporation of isolated protoplasts, agitation of cell suspensions with microbeads coated with the transforming DNA, direct DNA 20 uptake, liposome-mediated DNA uptake, and the like. Such methods have been published in the art. See, e.g., Methods for Plant Molecular Biology (Weissbach & Weissbach, eds., 1988); Methods in Plant Molecular Biology (Schuler & Zielinski, eds., 1989); Plant 25 Molecular Biology Manual (Gelvin, Schilperoort, Verma, eds., 1993); and Methods in Plant Molecular Biology - A Laboratory Manual (Maliga, Klessig, Cashmore, Gruissem & Varner, eds., 1994).

The method of transformation depends upon the 30 plant to be transformed. The biolistic DNA delivery method is useful for nuclear transformation. In another embodiment of the invention, *Agrobacterium* vectors are used to advantage for efficient transformation of plant nuclei.

- 24 -

In a preferred embodiment, the gene is introduced into plant nuclei in *Agrobacterium* binary vectors. Such vectors include, but are not limited to, BIN19 (Bevan, 1984, Nucleic Acid Res 12: 8711-8721) and derivatives thereof, the pBI vector series (Jefferson et al., 1987, PNAS 83:8447-51), and binary vectors pGA482 and pGA492 (An, 1986) and others (for review, see An, 1995, Methods Mol Biol 44:47-58). In preferred embodiments, the pPZP211 vector (Hajdukiewicz et al., 1994, PMB 25:989-994) or PCGN7366 (Calgene, CA) are used. DNA constructs for transforming a selected plant comprise a coding sequence of interest operably linked to appropriate 5' (e.g., promoters and translational regulatory sequences) and 3' regulatory sequences (e.g., terminators).

Using an *Agrobacterium* binary vector system for transformation, the *plPAC* coding region, under control of a constitutive or inducible promoter as described above, is linked to a nuclear drug resistance marker, such as kanamycin resistance. *Agrobacterium*-mediated transformation of plant nuclei is accomplished according to the following procedure:

- (1) the gene is inserted into the selected *Agrobacterium* binary vector;
- (2) transformation is accomplished by co-cultivation of plant tissue (e.g., leaf discs) with a suspension of recombinant *Agrobacterium*, followed by incubation (e.g., two days) on growth medium in the absence of the drug used as the selective medium (see, e.g., Horsch et al. 1985, Cold Spring Harb Symp Quant Biol. 50:433-7);
- (3) plant tissue is then transferred onto the selective medium to identify transformed tissue; and
- (4) identified transformants are regenerated

- 25 -

to intact plants.

It should be recognized that the amount of expression, as well as the tissue specificity of expression of the *p1PAC* gene in transformed plants can vary depending on the position of their insertion into the nuclear genome. Such position effects are well known in the art. For this reason, several nuclear transformants should be regenerated and tested for expression of the transgene.

10

IV. Uses of *P1PAC* Nucleic Acids, Encoded Proteins and Antibodies

1. *P1PAC* Nucleic Acids

15 *P1PAC* nucleic acids may be used for a variety of purposes in accordance with the present invention. The DNA, RNA, or fragments thereof may be used as probes to detect the presence of and/or expression of *p1PAC* genes. Methods in which *p1PAC* nucleic acids may be utilized as probes for such assays include, but are not limited to: (1) *in situ* hybridization; (2) Southern hybridization (3) northern hybridization; and (4) assorted amplification reactions such as polymerase chain reactions (PCR).

25 The *p1PAC* nucleic acids of the invention may also be utilized as probes to identify related genes from other plant species. As is well known in the art and described above, hybridization stringencies may be adjusted to allow hybridization of nucleic acid probes 30 with complementary sequences of varying degrees of homology. Thus, *p1PAC* nucleic acids may be used to advantage to identify and characterize other genes of varying degrees of relation to the exemplary ATPAC, thereby enabling further characterization of this family

- 26 -

of genes in plants. Additionally, they may be used to identify genes encoding proteins that interact with the P-glycoprotein encoded by *plPAC* (e.g., by the "interaction trap" technique).

5

2. *PlPAC Proteins and Antibodies*

Purified *plPAC*-encoded P-glycoproteins, or fragments thereof, may be used to produce polyclonal or monoclonal antibodies which also may serve as sensitive 10 detection reagents for the presence and accumulation of plant P-glycoproteins in cultured plant cells or tissues and in intact plants. Recombinant techniques enable expression of fusion proteins containing part or all of the *plPAC*-encoded protein. The full length protein or 15 fragments of the protein may be used to advantage to generate an array of monoclonal or polyclonal antibodies specific for various epitopes of the protein, thereby providing even greater sensitivity for detection of the protein in cells or tissue.

20

Polyclonal or monoclonal antibodies immunologically specific for *plPAC*-encoded proteins may be used in a variety of assays designed to detect and quantitate the protein. Such assays include, but are not limited to: (1) flow cytometric analysis; (2) 25 immunochemical localization in cultured cells or tissues; and (3) immunoblot analysis (e.g., dot blot, Western blot) of extracts from various cells and tissues.

30 Polyclonal or monoclonal antibodies that immunospecifically interact with one or more of the polypeptides encoded by *plPAC* can be utilized for identifying and purifying such proteins. For example, antibodies may be utilized for affinity separation of proteins with which they immunospecifically interact. Antibodies may also be used to immunoprecipitate proteins

- 27 -

from a sample containing a mixture of proteins and other biological molecules.

3. pIPAC Transgenic Plants

5 Transgenic plants that over- or under-express pIPAC can be used in a varied of agronomic and research applications. From the foregoing discussion, it can be seen that pIPAC and its homologs, and transgenic plants containing them will be useful for improving stress
10 resistance or tolerance in plants. This provides an avenue for developing marginal or toxic soil environments for crop production. Both over- and under-expressing pIPAC transgenic plants have great utility in the research of herbicides and other xenobiotic compounds.

15 As discussed above and in greater detail in Example 1, the similarity between plant and mammalian mdr genes indicates that their functional aspects will also be conserved. Thus, pIPAC is expected to play an important role in the exclusion of toxic metabolic or
20 xenobiotic compounds from cells. The fact that pIPAC also is inducible and appears to be preferentially expressed in roots, where contact with such compounds often occurs, makes pIPAC particularly desirable for genetic engineering of plants to increase their tolerance
25 to such compounds. Accordingly, plants engineered to overexpress the pIPAC gene should be resistant to a wide range of chemicals, both intentionally applied as herbicides or unintentionally as wastes. Examples of the kinds of xenobiotics that should be detoxified by the
30 pIPAC of the invention include, but are not limited to, hydrophobic (i.e., lipophilic) herbicides and other compounds, such as 3(3,4-dichlorophenyl)-1,1, dimethyl urea (also known as DCMU or Diuron, available from Sigma Chemical Co., St. Louis, MO) or other hydrophobic

- 28 -

compounds that disrupt photosynthetic electron transport, as well as Metachlor (Ciba Geigy, Basel Switzerland), Taurocholate (Sigma Chemical Co.), Primisulfuron (Ciba Geigy), and IRL-1803.

5 As illustrated in Example 2, plant cells that over-express a pIPAC gene have surprisingly higher growth rate with or without the xenobiotic compound Rhodamine 6G. It is contemplated that pIPAC overexpression may be a generally useful way to increase plant and plant cell 10 culture growth, even without the presence of xenobiotic compounds.

The following specific examples are provided to illustrate embodiments of the invention. They are not 15 intended to limit the scope of the invention in any way.

EXAMPLE 1

20 Cloning and Analysis of a
pIPAC From Arabidopsis thaliana

The pIPAC of the present invention was identified by its up-regulation in response to a chloride 25 ion channel blocker. *Brassica napus* plants were grown either in the presence or absence of 20 µM 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). After five days, the roots of the seedlings were harvested and total RNA was extracted separately from the treated and untreated 30 plants. From the total RNA preparations, poly (A)+ RNA was isolated and used as the starting material to create a cDNA subtraction library, using the CLONTECH PCR-SELECT™ cDNA Subtraction Kit and accompanying instructions (CLONTECH Laboratories, Inc., Palo Alto, 35 CA).

- 29 -

Using the subtractive hybridization kit, a gene fragment was identified that was up-regulated in response to treatment of the plants with NPPB. This fragment (0.5 kb) was used to screen a cDNA library of *Arabidopsis thaliana*, from which a full-length cDNA clone was isolated. The nucleotide sequence of this cDNA clone, referred to as ATPAC (*Arabidopsis thaliana* putative anion channel) is set forth below as SEQ ID NO:1.

The 3.76 kb cDNA clone encodes a polypeptide 10 1,254 amino acids in length. The deduced amino acid sequence encoded by SEQ ID NO:1 is shown in Figure 1 as "atpac" (SEQ ID NO:2), in a lineup with the following sequences: (1) hmdr1 (SEQ ID NO:3); (2) mmdr1 (SEQ ID NO:4); (3) hmdr3 (SEQ ID NO:5); (4) mmdr2 (SEQ ID NO:6); 15 (5) atpgp1 (SEQ ID NO:7); and (6) atpgp2 (SEQ ID NO:8). A consensus sequence (SEQ ID NO:9) is also shown.

A search of various sequence databases indicates that ATPAC is a new and distinct member of the 20 *mdr* family of ABC transporters. In none of the databases, including the EST collection, does an exact match exist. The ABC transporter family is very large, consisting of at least two sub-groups, *mfp* and homologs and *mdr* and homologs. The only examples of plant *mdr*-like genes are atpgp1 and atpgp2 from *A. thaliana* and two 25 homologs from potato and barley, respectively. Though the atpgp1 and atpgp2 genes are similar to ATPAC, they are only 51 and 50% identical, respectively, indicating that ATPAC is a distinct gene by comparison. Sequence homology with the potato and barley *mdr*-like genes is even more divergent. Another difference between the 30 agpgp1 gene and the ATPAC gene is their respective preferential expression in inflorescens and roots, respectively.

- 30 -

EXAMPLE 2

Effect of ATPAC Expression in Bacterial Cells
5 on Their Ability to Detoxify Rhodamine 6G

The compound Rhodamine 6G is a well known substrate of mammalian p-glycoproteins (Kolaczkowski et al., J. Biol. Chem. 271: 31543-31548, 1996). The ability 10 of a cell to detoxify the compound is indicative of activity of p-glycoproteins. A bacterial cell line was transformed with an expression vector comprising ATPAC. The growth rate of transformed and non-transformed cells was then measured, in the presence or absence of 15 Rhodamine 6G. Results are shown in Figure 2. As can be seen, ATPAC-expressing cells grown in the absence of the drug had the best growth rate. Moreover, even in the presence of the drug, the cells grew more quickly than non-transformed cells in the presence or absence of 20 Rhodamine 6G. These results demonstrate that ATPAC encodes a functional and robust p-glycoprotein.

Example 3

Transgenic Plants that Overexpress
25 and Underexpress ATPAC

Transformation construct. The Agrobacterium binary vector pPZP211 (Hajdukiewicz et al., 1994 Plant Mol. Biol. 25:989-994) was digested with EcoRI and SmaI, 30 and self-ligated. This molecule was named pPZP211'. The Agrobacterium binary vector pCGN7366 (Calgene, CA) was digested with XhoI and cloned in SalI-digested pPZP211'. We named this binary vector pPZP-PCGN. The 3.8 kb full-length ATPAC cDNA was cloned into the pGH19 vector. 35 After digestion with SmaI (in the multiple cloning site upstream) and EcoRI, a 3.1 kb cDNA fragment was cut out.

- 31 -

This *Sma*I-*Eco*RI 3.1 kb fragment was cloned into the *Sma*I/*Eco*RI site of pPZP-pCGN. The rest of ATPAC gene was amplified using polymerase chain reaction to have translationally fused HA-tag at its 3'-terminal. After 5 ligating *Eco*R1 linkers to the ends of the resulting PCR product, the 0.7 kb fragment was cloned into the *Eco*RI site of the *Sma*I-*Eco*RI 3.1 kb ATPAC fragment in pPZP-pCGN. The final construct was named pATPAC-OE.

Plant transformation. pATPAC-OE was introduced 10 into *Agrobacterium tumefaciens* strain by a direct transformation method. *Agrobacterium*-mediated transformation was performed using vacuum infiltration (Bechtold et al., 1993,. CR Acad. Sci. [III] 316: 1194-1199.)

15 T1 plants which survived on kanamycin-containing plates were selected, transplanted into soil and grown to set T2 seed. T3 seeds were collected from kanamycin-resistant T2 plants. T3 plants which showed 100% kanamycin-resistance were selected and 20 were considered homozygous for the transgene.

Antisense Plants. The full length cDNA in pBluescript SK(-) vector (Stratagene, CA) is digested with *Eco*RI (there is a cleavage site in the upstream polylinker) and *Ssp*I. The resulting 1.3 Kb fragment representing a 5' portion of the ATPAC cDNA was cloned 25 into the aforementioned pPZP-PCGN, which had been digested with *Eco*RI/*Sma*I, ensuring that this fragment of the cDNA was inserted in the antisense orientation. This 30 construct was named pATPAC-AE. pATPAC-AE was introduced into *Arabidopsis* plants by *Agrobacterium* transformation, as described above.

- 32 -

Knock-out Plants. The method of Krysan et al (1996, PNAS 93:8145, incorporated by reference herein) was followed using the following primers:

Gene-specific primers:

5 AtpacF: CACTGCTCAATGATCTCGTTTCTCACTA (SEQ ID NO:11)

AtpacR: CTTGAATCACACCAATGCAATCAACACACCTC (SEQ ID NO:12)

Primers for T-DNA left boarder:

JL202: CATTAAATAAACGCTGCGGACATCTAC (SEQ ID NO:13)

JL270: TTTCTCCATATTGACCATCATACTCATTG (SEQ ID NO:14)

10

While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various 15 modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

- 33 -

What is claimed:

1. A nucleic acid isolated from a plant, which encodes a p-glycoprotein that is inducible by exposure of
5 the plant to NPPB.

2. The isolated nucleic acid of claim 1, which is preferentially expressed in plant roots upon exposure of the plant to NPPB.

10

3. The isolated nucleic acid of claim 1, wherein the plant is selected from the group consisting of *Brassica napus* and *Arabidopsis thaliana* and is 3850-4150 nucleotides long.

15

4. The isolated nucleic acid of claim 1, which has the restriction sites shown in Figure 4 for at least three enzymes.

20

5. The isolated nucleic acid of claim 4, which encodes a polypeptide having SEQ ID NO:2.

25

6. The isolated nucleic acid of claim 5, which is a cDNA comprising a coding region selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:10.

7. An isolated protein, which is a product of expression of part or all of the isolated nucleic acid molecule of claim 1.

30

8. Antibodies immunologically specific for the protein of claim 7.

9. A expression cassette, which comprises a

- 34 -

plPAC gene coding sequence operably linked to a promoter.

10. The expression cassette of claim 9, which comprises a plPAC gene from *Arabidopsis thaliana*.

5

11. The expression cassette of claim 10, in which the promoter is the cauliflower mosaic virus 35S promoter.

10

12. The expression cassette of claim 10, in which the plPAC gene is part or all of SEQ ID NO:1 or SEQ ID NO:10.

15

13. A vector comprising the expression cassette of claim 9.

14. The vector of claim 13, which is comprised of an *Agrobacterium* binary vector selected from the group consisting of pPZP211 and pCGN7366.

20

15. A method for producing a plant with enhanced resistance to xenobiotic compounds by transforming *in vitro* the plant with the expression cassette of claim 9.

25

16. The method of claim 15, wherein the transformation step further uses the vector of claim 13.

30

17. A transgenic plant produced by the method of claim 15.

18. A reproductive unit form the transgenic plant of claim 17.

- 35 -

19. A cell from the transgenic plant of claim
17.

20. A recombinant DNA molecule comprising the
5 nucleic acid molecule of claim 1, operably linked to a
vector for transforming cells.

21. A cell transformed with the recombinant
DNA molecule of claim 20.

10

22. The cell of claim 21, selected from the
group consisting of bacterial cells, yeast cells and
plant cells.

15

23. A transgenic plant regenerated from the
transformed cell of claim 22.

20

24. An isolated nucleic acid molecule of at
least 20 nucleotides in length having a sequence selected
from the group consisting of:

25

a) SEQ ID NO:1 and SEQ ID NO:10;
b) a nucleic acid sequence that is at least
about 60% homologous to the coding regions of SEQ ID NO:1
or SEQ ID NO:10;

c) a sequence hybridizing with SEQ ID NO:1 or
SEQ ID NO:10 at moderate stringency;

d) a sequence encoding part or all of a
polypeptide having SEQ ID NO:2;

30

e) a sequence encoding an amino acid sequence
that is at least about 70% identical to SEQ ID NO:2;

f) a sequence encoding an amino acid sequence
that is at least about 80% similar to SEQ ID NO:2;

g) a sequence encoding an amino acid sequence
that is at least about 40% similar to residues 1-76, 613-

- 36 -

669 or 1144-1161 of SEQ ID NO:2; and

h) a sequence hybridizing at moderate stringency to a sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

5

25. A polypeptide produced by expression of the nucleic acid sequence of claim 24.

10 26. Antibodies immunologically specific for the polypeptide of claim 24.

15 27. An oligonucleotide between about 10 and about 100 nucleotides in length, which specifically hybridizes at moderate stringency with a portion of the nucleic acid molecule of claim 24.

28. A recombinant DNA molecule comprising the nucleic acid molecule of claim 24, operably linked to a vector for transforming cells.

20

29. A cell transformed with the recombinant DNA molecule of claim 28.

25 30. The cell of claim 29, selected from the group consisting of bacterial cells, yeast cells and plant cells.

31. A transgenic plant regenerated from the cell of claim 30.

30

32. An isolated plant p-glycoprotein, which is inducible upon exposure of the plant to NPPB.

33. The p-glycoprotein of claim 32, which

- 37 -

confers upon a cell in which it is found resistance to Rhodamine 6G.

34. The p-glycoprotein of claim 33, which is
5 preferentially produced in roots upon the exposure to the
NPPB.

35. The p-glycoprotein of claim 34, from a
plant selected from the group consisting of *Brassica napus*
10 and *Arabidopsis thaliana*.

36. The p-glycoprotein of claim 35, having an
amino acid sequence that selected from the group
consisting of:

15 a) an amino acid sequence that is at least 80%
similar to SEQ ID NO:2;
 b) an amino acid sequence that is at least 70%
identical to SEQ ID NO:2;
 c) an amino acid sequence that is at least 40%
20 similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID
NO:2; and
 d) an amino acid sequence encoded by a nucleic
acid sequence hybridizing at moderate stringency to a
amino acid sequence encoding residues 1-76, 613-669 or
25 1144-1161 of SEQ ID NO:2.

37. Antibodies immunologically specific for the
p-glycoprotein of claim 32.

30 38 The antibodies of claim 35, that are
immunologically specific to residues 1-76, 613-669 or
1144-1161 of SEQ ID NO:2.

39. A plant p-glycoprotein gene promoter which

- 38 -

is inducible by NPPB.

40. The plant p-glycoprotein gene promoter of
claim 39, that is part or all of residues 1-3429 of SEQ ID
5 NO:10.

41. A plant with reduced levels of plPAC
protein.

10 42. The plant of claim 41, wherein the native
plPAC gene is mutated.

43. The plant of claim 42, wherein the plPAC
gene is mutated due to the insertion of a T-DNA.

15 44. A method for making the plant of claim 42,
wherein a population of mutated plants are screened using
at least one of SEQ ID NOS:11-14 as PCR primers.

20 45. The method of claim 44, wherein the
population of plants is mutated by T-DNA insertion.

hndr1	1	M DLEGDRNGGAKKQF . . . FKCLNNKSEKOKKEKKPPT . . . VSVTSMFRYSNWLDKLYMVGTLAIIHGAGLPLMLVFGEMTDIFANAGNLEDLMSNITNSDINDTGF
atpac	1	-----MSETNTTDAKTVPAEAEKKKEQSLPFTKLFSADKFDYLLMFVGSILGAIVHGSSMPVFFLFCMVGKQOMDL.....
consensus	1	md e g a 1 dr kkk vgv 1 Fryadw Dk1 M 1gtlaAllHgs 1plmlvfgemtd fa s
hndr1	105	M N . LEEDMTRYAYYYSGIGAVLVAIYQVSFWCLAGROUHKIRKOFFHAIMRQEIGWFDVH . DVGELENTRTDDSKNKEVGDKIGMFFOSMATEFTGFIVGGFTRG
nmldr1	102	SNSSLEEMAIAYYYTGIGAGVLVAVIYQSLWCLAAGRQHKKRQKPFHAIMQEI GWFDVH . DVGELENTRTDDSKNKEDGTGDKGMFFOSITTFLAGFIIIGFISG
atpac	77	. HQMVEHRSRYSRSLYFVYLGUVCFSSYAEIACMNSGERQVAALRKCYLEAVLKQDGFFFDTDARTGDIVSFSTDTLJYQDAISEKVNFIHYLSTFLAGLVNGFVSA
atppp1	80	. EKMTMEEVVKYALYFLWVGAIAWSSWAIEISCMWWSGEROTTKRIRKYLEAALNQDIQFFDEVRSTDWFAINTDAYMVQDAISEKLNFIHYMATFVSFGFIVGPATAV
atppp2	73	. KOASHRVAKYSLDFFVYLSVAILFFSSWLEVACKWETTERGEROAKMIRRAYLRSMLSQDISLFDTEASTGEVISAITSDILVVQDAISEKVNPLHYISRFIAGFAGFTSV
consensus	111	k leemtryayyysglqglv ayiqvs w laagRQtrk1R kfphairQeig9wd1 tgelntrtddiskindg1gdKvGmffq vatflagfivgfi 9
hndr3	214	WKLTVIMAISPILGLSAAWAKILSAFSKELLAAYAKAGAYAAEALGAI RTVIAGGGQNKELERYOKHLENAKEIGIKKASANISMGIAFLILLYIASYALAFWYGSTLV
nmldr2	211	WKLTVIMAISPILGLSTAVWAKILSTSDFKELLAAYAKAGAYAAEALGAI RTVIAGGGQNKELERYOKHLENAKEIGIKKASANISMGIAFLILLYIASYALAFWYGSTLV
hndr1	212	WKLTVILVIAISPVLGLSAAWAKILSSFTDKELLAAYAKAGAYAAEALGAI RTVIAGGGQNKELERYOKHLENAKEIGIKKASANISMGIAFLILLYIASYALAFWYGSTLV
nmldr1	211	WKLTVILVIAISPVLGLSAAWAKILSSFTDKELLAAYAKAGAYAAEALGAI RTVIAGGGQNKELERYOKHLENAKEIGIKKASANISMGIAFLILLYIASYALAFWYGSTLV
atpac	185	WKLALLSVAVIPGIAFAGGLYAYLTGITSKSRESYANAGVTAQIAQRTVSYGESKALNAYSDAIQYTLKGLGKGMARKEGKMGKTYGACMSWALVFWYAGVFI
atppp1	188	WKLALLTVLAVPLAVPLAVVGGIHHTTLKSLSNKSOESLSQAGNTYEQTVORVVMAFGEQSRAQYSSALKIAQKLGKYTGLAKGKGELGATYTFVFCYCAYLLWGYLV
atppp2	181	WQISLVTLSIVPLIALLAGGIYAFVAGLIARVRKSYIKAGEIAEEVIGNVRTVQAFTGEERAVRLYREALENTYKGRAGLTKGLGUGSMHCVLFISWALLIWFTSVV
consensus	221	Wkltvilaisplglssawakils fs kel ayakaGavaE 1gaiRTviaggg keleryqk le aktigikkaisa 1smg afiliyasyalafwygstlv
hndr3	324	ISKEYTIGNAMTVFFSILIGAFSVGQAPCIDAFANARGAAVYIFDIIDNPKIDSFSERGHKPDSIKGNLEFDNYVHFSYSPRANTVKKLGMLNKKYQSCGTCVALVGSSGC
nmldr2	321	ISKEYTIGNAMTVFFSILIGAFSVGQAPCIDAFANARGAAVYIFDIIDNPKIDSFSERGHKPDPNICKGNLEFSIDVHFSPSRANTIKLGMLNKKYQSCGTCVALVGSSGC
hndr1	322	ISGEYSIGCQVLTVFFSILIGTFSIGHLAPNIEAFANARGAAVEFKLIDNPKPSIDSYSKSGHKPDNIKGNLFRNVHFSYSPSRKEVKKLGMLNKKYQSCGTCVALVGSSGC
nmldr1	321	ISNEYSIGEVLTVFESIILGTFSEVQILKGMLNKKYQSCGTCVALVGSSGC
atpac	295	RNGCDDGCKRAFTAIFSIAVGGMSLQGFSNLGAFQAPSIAEVGKMLNKKYQSCGTCVALVGSSGC
atppp1	298	RHHITNGGLAIAATMFMVMIIGLALGQGAPSMAAFAKVAAKIFRIDIHKPTENSEGVLDSTVGLIVELKNDVDFSPSRPDVYVPAKCTIALVGSSGC
atppp2	291	HDIADGCKSFTMLNVIAIGLSLGQAPDISAFVRAKAAAPIFMOMERTVTKTSAKSGRKLGKVDGHIOFKDATEFSYSPSRPDVYVPAKCTIALVGSSGC
consensus	331	is eytig antvffsilgafsvqaap idfaanargay ifkildn psldsf Ghkpd ikgnlefkdvhf ypsr evkilgjnlkv scgtyvalvg sgc

Figure 1 (sheet 1 of 4)

2/7

hmdr3	434	GKSTTIVQLIQRILYDPEDEGTINIDGODIRNENVYIRELIGVVSQEPVLFSTTTIAENICYGRNTMDEIEKAVKEANAYEFIMKLPOKFDTLVGERGAOLSGGGOKORIAI
nmldr2	431	GKSTTIVQLLQLRILYDPETEKISIDGODIRNENVCLRELIGVVSQEPVLFSTTTIAENICYGRNTMDEIEKAVKEANAYDFIMKLPOKFDTLVGERGAOLSGGGOKORIAI
hmdr1	432	GKSTTIVQLMQLRILYDPTEGMVSVDGODIRNTVYIRELIGVVSQEPVLFATTIAENICYGRNTMDEIEKAVKEANAYDFIMKLPHKFDTLVGERGAOLSGGGOKORIAI
nmldr1	431	GKSTTIVQLMQLRILYDPTEGMVSVDGODIRNTVYIRELIGVVSQEPVLFATTIAENICYGRNTMDEIEKAVKEANAYDFIMKLPHQFDTLVGERGAOLSGGGOKORIAI
atpp1	405	GKSTTIVQLMQLRILYDPTEGMVSVDGODIRNTVYIRELIGVVSQEPVLFATTILENLYGKPDATMVEVERAASAAHASFITLIPKGYDFTQVGERGVOLSGGGOKORIAI
atpp1	408	GKSTVSLISLIERFYDPNSQVLLDGQDLKTLKRLMRQQIGIVSQEPAFLATSIKENILQLKFIREQIGINQNQEPALFATTILENLYGKPDATMVEVERAASAAHASFITLIPKGYDFTQVGERGVOLSGGGOKORIAI
atpp2	401	GKSTVSLISLIERFYEPISCAVILDGNNVISLDIKMLRCQIGIVNQEPAFLATTIRENLYGKPDATMVEVERAASAAHASFITLIPKGYDFTQVGERGVOLSGGGOKORIAI
consensus	441	GKSTVtvlqjRlydp eg v 1DGqdirtinvrlReiGIVSQEPAFLATTIAENI ygr dvtndeIEkavkeanayefimklP fdtlvgergaolsgggokorai

W_b

hmdr3	544	ARALVRNPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAADVIAFGEDGVIVVEQGSHSELMKK..EGYVFCLVNMTGSQI0SEE.....F.
nmldr2	541	ARALVRNPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTIRNADVIAGEDGVIVVEQGSHSELMKK..EGYVFCLVNMTGSQI0SEE.....F.
hmdr1	542	ARALVRNPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAADVIAFGDDGVIVVEQGNHDELMRE..KGIVFCLVNMTGSQI0SEE.....AA.
nmldr1	541	ARALVRNPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAADVIAFGDDGVIVVEQGNHDELMRE..KGIVFCLVNMTGSQI0SEE.....AA.
atpac	515	ARAMLKDPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAADVIAFGDDGVIVVEQGNHDELMRE..KGIVFCLVNMTGSQI0SEE.....AA.
atpp1	518	ARAMLKNPATLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTIRKADLVQVLLQQSVSEETGTHDELLAK..SIGASLIRFQEMVGTRDFSNPSTRTRSTR
atpp2	511	SRAIVKNPSPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAIDLIAVHEGKIVTEFGNHENLIS..NPDGAVTSLLRJQBTASLQRNPSLNRTLSPHS
consensus	551	ARALVRNPKILLDEATSALDTESEAEVOALDCKAREGRRTTIVIAHLRSTVRNAADVIAFGEDGVIVVEQGSHSELMKK..GYIFLV mqt g 1 n

hmdr3	643	EINDEKAATRMAPNGWKSRLFRHSTQKNLKN9QMCQK...SLDVETDGELEANVPPVSFLKVVKLNKTTEWPYFWGTVCAIANGLOPASFVSEFSEIIAIFGPGDD..AVK
nmldr2	641	VELSDEKAAGDVAAPNGWTKARIFRNSTKSLKSPH..QN...RLDEETNEILDANVPPVSFLKVVKLNKTTEWPYFWGTVCAIANGLOPASFVSEFSEIIAIFGPGDD..AVK
hmdr1	642	DESKSEIDALEMSSNDRSSSLIRKRSTRRSVRSQAOQ...RKLSKTEALDESIPFVSRWIMKLNLTEWPYFWGTVCAIANGLOPASFVSEFSEIIAIFGPGDD..AVK
nmldr1	641	YGSQSTDTDASELTSEESKSPLIR..RSLYRSVHRKQDQE...RSGSLRNLSYSYSTGDRGRIEMISNAFTRKTA...PENYFYLKLNQGAVVSILSGFTSYTDDYMSME
atpac	623	LJSHSLSTKSLSL...RGSGLRNLSYSYSTGDRGRIEMISNAFTRKTA...PENYFYLKLNQGAVVSILSGFTSYTDDYMSME
atpp1	628	ARNVSSSPINTRNSSYGRSPYSSRLLDFSTSDFELSIDASSYPTNRYEKAFLDKQANSFWRLAKNSPENWKYALLGSVSYIGCGSISAFAYFVLSAVLSSVYNPDHEMYMI
atpp2	620	IJKS.....RELISRTRSSFCSER..ESVTRPDGADPSKVKVOTV..RUYSMIRPDMYVGUGGTICAFLAGSSMPLEALGVSQL..VSYXSGWDETQ
consensus	661	se a m ks 1 R s qd r d d le vp vsfrwlkn tewpy vwgtvcaing 1qp fails iiafv dd v k

hmdr3	748	00KCNFISIIFLFLGLISFFFTFLQGFTFGKAGEILTRRLRSMAFKAMLRQDMSWFDDHKVSTGALSTRLATDAQVQGATGTRALLAQNIANLGTGIIISFIYGMQLT
nmldr2	745	QOKCNMFSIVFLGLCVISFFFTFLQGFTFGKAGEILTRRLRSMAFKAMLRQDMSWFDDHKVSTGALSTRLATDAQVQGATGTRALLAQNIANLGTGIIISFIYGMQLT
hmdr1	749	RONSNLFSIIFLFLGLISFFFTFLQGFTFGKAGEILTRRLRSMAFKAMLRQDMSWFDDHKVSTGALSTRLATDAQVQGATGTRALLAQNIANLGTGIIISFIYGMQLT
nmldr1	747	RONCNLFSIIFLFLGLISFFFTFLQGFTFGKAGEILTRRLRSMAFKAMLRQDMSWFDDHKVSTGALSTRLATDAQVQGATGTRALLAQNIANLGTGIIISFIYGMQLT
atpac	725	RK..TKEYFVYIGAGLYAVGAYLIOHYFFSIMGENLTTRVRMMLSAILRNENEYGFDEBHNSSLIAARLATDAADVKSALAEERISVILONNTSLITSFIVAEWRS
atpp1	738	KQ..IDKYCYUJLIGLSSPAVENTLQHSFWDIVGENLTKVRERMLSAILRNENEYGFDEBHNSSLIAARLATDAADVKSALAEERISVILONNTSLITSFIVAEWRS
atpp2	707	KE..IKKIALIFCCASVTIIVTYIEHICFGTMGERLTLVRVNMFRAILNEIGWFDEVNTSSMIALESDAITLKLTVVDRSTILLQNLGLVUTSFIAFILNTRLT
consensus	771	rq nifsliflgigisfitfflqgftfgkageiltrrvr mifkamlrqdnswfda knstg 1 strlatdaaqvkaig flavi Qnianlgtgllistfygqqlt

Figure 1 (sheet 2 of 4)

3 / 7

hndr3	858	LLLAVVPIAVSVGIVEMKLLAGNAKRDKELEAGKATEALEINRTVSLTQERKTESMVEKLGPYRNSV.	. QKAHIGITFSISOAQFTYTSIACFGTREGAYLIVN
nmdr2	855	LLLSVVPIAVAGIVEMMLAGNAKRDKELEAGKATEALEINRTVSLTQERKTESMVEKLGPYRNSV.	. RQAHIGITFSISOAQFTYTSIACFGTREGAYLIVN
hndr1	859	LLLAVVPIIAVGIVEMMLSGAQLKOKKELEAGKATEALEINRTVSLTQERKTESMVEKLGPYRNSL.	. RQAHIGITFSFTQAMCYTSIACFGTREGAYLYAH
nmdr1	857	LLVVVPLIVLGGIEMKLSGAQLKOKQEISGKATEALEINRTVSLTREQKETMAYASLOVPPYRNM.	. KQAVNGITFSFTQAMCYTSIACFGTREGAYLYAQ
atpac	834	LLLGTFLPLVLANFAQQLSKGFAGDTAAKHTSMAGEGSNIRTVAFNAQS KILS LCFELRVPKQRSLSLYRSQTSGLFLGSQLALYCSELALITYGAHLYSK	
atppg1	847	LVLVATPVPVVAATVLQOMMFMTGFSQDLEAATGKTQLAGELIANRTVAFNSEAKTRLYTANLEPPKLR.	. CFWKQQLAGSGGYVAQFCLYASVYGLWYASWLVKH
atppg2	816	LVLVATYPLIVISGHISEKLFMGGDANKAYKANMAGESVSNIRTVAFCAEKIELEYSRLELEPSKS.	. FRRGQLAGFLFYGSOFFIPSSYGLWYGSTMDK
consensus	881	LLLAVVPIIVVAGIVEMKL Gna rdk1 le agklatealeINRTVSLt	• Kfesmy L Pyrnsv rkahiygitfsisqamysyagctfrgraylyvh

三

966 GMRFRDVILVSAIVGAVALGHASSFAPDYAKAKLSSAAHLLPMLFERQPLIDSSEEGL. KPDKEGNITNEVVNPYTRANVPVLQGLSLEVVKGTQTLVYGSSECC
 967 KLMSEFDVLVSAIVGAVALGHASSFAPDYAKAKLSSAAYLFLSFLFERQPLIDSSEEGL. WPDKEGVSITNEVVNPYTRANVPVLQGLSLEVVKGTQTLVYGSSECC
 968 QMLTFENVMVLFSAVVFGAMAVGVQVSSFAPDYAKAKTSAAHIMIETKPLIDSSETEGL. MPNTLEGVNFTGEVVNPYTRDPDIPVLQGLSLEVVKGTQTLVYGSSECC
 969 GVSTFSKVIFVULVITANSVAETVS LAPEI1RGGEAVGSVTSVLDQTRIDDDADDPV. ETIRGDIEFRRHVDFAYPSPRDPM/FRDFNLRI.RAGHSQALVYGSSECC
 970 GLAGFKSVMKTEFMVLTTALAMGETLALAPDILKGNQMVASYREILDRKTQV. . GETSEELNVEGTTIELKGVHFYSYSPSRPDWVFRDFDLTRAGKSMAVYGSSECC
 971 glm F vilvf saivlgAvalg tssfapdyakaklssaa lf 1ier p ldsys egl pd leg v f v EnyPtrpdvplqglsvlevkkgtqlavlygssecc
 972 consensus

hmd r3	1075	KSTVVQLLERFYDPLAGTVLIDGQEAKKLIVQWLRALGLIVSQEPILFCSTAENIAYGDNSRVSQDEIVSAAKANTHPPFIELTLPHQYETRVGDKGQTOLSSGGQKORIA
numd r2	1072	KSTVVQLLERFYDPMGSVLLDGOEAKKLIVQWLRALGLIVSQEPILFCSTAENIAYGDNSRVPHDIEVRAAKEANIHPPFIELTLPQKINTRGDGKGTOLSSGGQKORIA
hmd r1	1076	KSTVVQLLERFYDPFGVLLDGKEIKRLLNQWLRALHLGLIVSQEPILFDGDSIAENIAYGDNSRVSQBEIVRAAKEANIHAFIESLPNKYSTVGDKGTQTLSSGGQKORIA
numd r1	1074	KSTVVQLLERFYDPAGKVLLDGKEIKOLNQWLRALHLGLIVSQEPILFDGDSIAENIAYGDNSRVSHEEVRAAKEANIHQFDISLSDKINTRGDGKGTQTLSSGGQKORIA
atpac	1053	KSSVIAMIERFYDLAGVKMIDGDIRRLNLSLRLKIGLVQQEPAFLATTIFDNIALYGKDG.. ATESVIDARAANAHFISGLPSEGKTPVGERGVQLSSGGQKORIA
atbp1	1065	KSSVISLIQRFYEPSSGRVMIDGDIRKYNLKAIRKHLATVQPECLFGTTIYENIALYGHEC.. ATAREIIQIAATLASAHKFISALPEGKTYVGERGVQLSSGGQKORIA
atbp2	1031	KSSVISLILRFYDPTAGKVMIEGDKICLDLICALRKHIGLVQQEPAFLATTIYENILYNEG.. ASQSEVEVESAMLANHSFITSLPEGYSTKVGGERGVQMSSGGQORORIA
consensus	1101	KStvvqlleRfydplagkvlldgkeikklnlvqwrabhlglivsqepilfdcsiaeNIAygdnsr vs dEv aAk Anih fietlpdky trvgdkgtQlSSGGQKORIA

Figure 1 (sheet 3 of 4)

	W ₃	1185	ARALIROP OILLDEATSALDTESEKVVQEA LDKAREGRCTIVIAHRLSTIONADLIVV FONGRVKEHGTHQQLAQK. .GIVFSM VSVOAGTQNL~~~
hmldr3		1182	ARALIROP RVRILLDEATSALDTESEKVVQEA LDKAREGRCTIVIAHRLSTIONADLIVV FONGRVKEHGTHQQLAQK. .GIVFSM VSVOAGTQNL~~~
nmldr2		1186	ARALVROPHILLDEATSALDTESEKVVQEA LDKAREGRCTIVIAHRLSTIONADLIVV FONGRVKEHGTHQQLAQK. .GIVFSM VSVOAGTQNL~~~
hmldr1		1184	ARALVROPHILLDEATSALDTESEKVVQEA LDKAREGRCTIVIAHRLSTIONADLIVV FONGRVKEHGTHQQLAQK. .GIVFSM VSVOAGTQNL~~~
nmldr1		1161	ARAVLKNP PTILLDEATSALDAESEC VQEAELRMRGRTTVVAHRLSTIRGVDCI GVIQDGRIVEQGSHSELV. SRPEGAY SRLQLQLOTHRI+~
atpac		1173	ARALVRAEIMLDEATSALDAEERS VSQEAQDQACSGRTSTVVAHRLSTIRNA HVIAVIDDGKVAEGQSHSHLLKHNPD GIVYARMILQLCRFTHTQVIGATSGSS SRVK
atppgp1		1139	ARAVLKNP AILDEATSALDVESERV QQUALDRMANRTTIVADTISVLHGGK KIVEQGSRKCVLNK. SGPYPKLISI LQQQOP~~~
atppgp2		1211	ARALIROP ILLDEATSALDTESEKVVQEA LDKAREGRCTIVIAHRLSTIONADLIVV FONGRVKEHGTHQQLAQK GIVFSM VSVOAGTQNL~~~
consensus			
hmldr3		1280	~~~~~
nmldr2		1277	~~~~~
hmldr1		1281	~~~~~
nmldr1		1277	~~~~~
atpac		1255	~~~~~
atppgp1		1283	EDDA
atppgp2		1234	~~~~~
consensus		1321	

Figure 1 (sheet 4 of 4)

5/7

Figure 2

Figure 3

7/7

Figure 4

1.

SEQUENCE LISTING

<110> Wisconsin Alumni Research Foundation
 Spalding, Edgar P.
 Noh, Bosl

<120> Xenobiotic Detoxification Gene from
 Plants

<130> WARF S212

<150> 60/101,814
<151> 1998-09-25

<160> 14

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 4051

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> misc_feature

<222> (94)...(0)

<223> Translation start codon

<221> misc_feature

<222> (3932)...(0)

<223> Stop codon

<400> 1

cttgaacttc acaaaacaat tgcagattt tcaagaaaaa ctttataaaaa caaaaacat	60
tccattttt ctctctctct ctctcactgc tcaatgatct cgttttctca ctaaaccac	120
tcgtttcttc ttactttttt taactcgat ctacaaaaaa ccatgtcgga aactaacaca	180
accgtgccca agactgttcc agcagaagca gagaagaaga aagaacagag tttaccattc	240
ttaaaactct tttcttcgc tgataaaattt gattatctct taatgttcgt tggttcttt	300
ggtgcattt ttcatggctc ttccatgcct gtcttcttt tactcttgg tcaaatgggt	360
atggattttt gtaaaaacca atggattta catcaatgg ttcatgaagt ctctagatat	420
tctctatatt tcgtctactt gggtttggtc gtttgcctt cttcttacgc agagatagca	480
tggtggatgt attctggaga aagacaagta gcagcattaa ggaagaaata tcttgaagca	540
gtattaaac aagacgttgg gttcttgc actgatgcta gaactggta cattgtcttt	600
agtgtttcta ctgatactct tcttgcattt gatgcattt gtgaaaagggt tggaaacttt	660
atacattacc tctcaacatt tttggcggga ttagtagttt gattttgtatc agcatggaaa	720
ttagctttgt taagtgttgc tggattccc ggaatcgctt tcgccccgggg tttatacgct	780
tatacactca ccggattttt ttcaaaagacg cgtaatctt atgctaacgc cgggtttatc	840
ggcgagcagg caattgcata agttcgaact gtttattttt atgttggaga gagtaaggca	900
cttaatgcgtt attcggatgc gattcagtat acgcttaagc tcgggtataa agcggggatg	960
gctaaagggt tgggtttagg atgtactttt ggaatagctt gtatgtcatg ggctttgggt	1020
ttttggatgt ctggatttttt tattcgaaat ggacaaaccg atggaggaaa ggcgtttact	1080
gctatattct ctgctattttt tggtggatg agtttggggc aatcttctc gaatcttggg	1140
gcgttttagta aaggtaaagc ggctggttat aagttgatgg agataattaa ccagagaccg	1200
acgataatttcc aagaccgtt ggatggaaaa tggttggatc aagttcatgg gaacattgag	1260
ttttaaagatg tgacttttag ctatcctca cggcctgtatg ttatgtatctt caggaacttt	1320
aatattttct tcccttctgg gaaaactgttgc ggggttggt gttggatgtgg ctctggaaag	1380
agtactgtt tttccctcat tgagagattt tatgtatcca acagcgggc aattcttgg	1440
gatgggtttt agataaaagac gtttcagtgg aagtttttgc gtgaacaaat cgggcttgc	1500
aatcaagaac ctgcgtctt tgccactact atactagaga acatactcta tggaaagcct	1560
gatgcacaa tggttgaagt tgaagctgc gttccgcgtg cgaatgcgc aatcttgcgtt	1620
acattacttc ctaaaggcta cgacacacag gttggagaac gttggatcactctcagg	1680

2

ggacagaagc	agagaattgc	aattgctagg	gcgtatgtta	aagacccaaa	gattctgtta	1740
ctagatgaag	ctacaagcgc	tcttgatgt	agctctgaga	gcattgttca	ggaagcttta	1800
gacagagtca	tggggggag	gaccacttt	gttgggtct	atcgctctg	caccatcaga	1860
aatgttatt	ccattgccgt	gatacagca	ggccaagtt	ttgaaacccgg	aacacatgaa	1920
gaactcatt	ccaaatccgg	tgcttacga	tccctcatca	ggtttcagga	aatgggttgt	1980
actcgagatt	tctcaaacc	gtcaactcg	cgcaactcg	caacccgtt	gagccattca	2040
ctgtcaacga	aatcaactcg	ttaagatca	ggaagttga	ggaatctgag	ctattcttac	2100
agcactggag	ctgatggtc	gataagatg	atttcaatg	cagagactga	ccgaaaagact	2160
cgtccccctg	aaaattactt	ctacaggctt	ctcaagctt	attcaccgg	atggccttac	2220
tcaatcatgg	gagcagtagg	ctcaatttctt	tctgggttca	ttggtcctac	atttgttatt	2280
gtgatgagca	acatgatcg	agtcttctac	tacacagact	atgattcaat	gaaaaaggaaa	2340
acaaaagagt	atgtcttcat	ctacattgg	gctggctct	atgctgtgg	tgcttattt	2400
atccaacatt	acttctttag	catcatgg	gaaaacctca	caacaagagt	aagaagaatg	2460
atgctctcag	ctatctttag	aaacgaagtt	ggttggttcg	atgaggatga	acacaactca	2520
agcctgatcg	ctgcacgtt	agctactgt	gcagcagatg	ttaaatccgc	tatagccgag	2580
agaatctcag	taattctaca	aaacatgact	tcacttctca	catccttcat	agtcgccttc	2640
atagtagaat	ggagagtc	acttctcatc	ttaggcacat	tcccacttct	agtccctcgct	2700
aactttgtc	agcaactatc	tctgaagggt	tttgcgtgg	acacagctaa	ggctcatgca	2760
aagacttcaa	tgattgtcg	tgaaggagtc	agtaacatta	gaaccgttagc	agctttcaat	2820
gcacagagca	agattctc	tttgcgtgt	catgagcttc	gtgtacctca	gaaaagaagc	2880
ttaagcttat	accgaagtca	aacctcggtt	ttcccttattt	gcctctcgca	gcttgcetctc	2940
tatggttctg	aggcttaat	tctctgtat	gggtccccacc	ttgtgagtaa	aggcgtgtca	3000
acctttcca	aagtgtatcaa	agtgtttgt	gtttgggtca	ttactgcaaa	ctctgttgc	3060
gaaactgtca	gtcttgc	tgaatttatt	cggggagggt	aagctgtgg	ttcggttttc	3120
tcggctttgg	acagggcagac	caggattgac	ccggatgtat	ctgtatgtca	tcccgttggag	3180
acgatccgt	gagacattga	gtttaggcat	gttgcattcg	cttacccttc	aaagaccgcac	3240
gtcatgttt	tcagggact	taacctcaga	attcgatgt	gacatagcca	agctttgtg	3300
ggcgcgatgt	ggtcaggaa	gagttctgt	attgcgtatg	tcgagcggtt	ttacgacctt	3360
cttgcgtggaa	aagtcatgtat	tgtatggaaa	gacatccgc	ggctaaacct	gaaatctcta	3420
aggctaaaaa	tcggcttgc	tcaacaagaa	ccagctctt	tcgcagcaac	gatcttcgac	3480
aacatccct	atgttaaaga	tggtgcact	gaatccgagg	taattgtatgc	agctcgagcc	3540
gcaaatgtc	acggtttcat	cagtggttt	cctgaagggt	acaaaactcc	agtaggcgaa	3600
agaggagtgc	agttatcagg	tggacagaaa	cagaggatcg	cgatagcaag	agctgtgtc	3660
aagaacccta	cagtgttgc	tctagacgaa	gcaactagcg	cactagatgc	agaatcagaa	3720
tgcgtctgc	aagaggcg	agagaggct	atgagagg	ggaccacgt	ggttagttgt	3780
caccgcttgc	ccaccataag	aggtgttgc	tgcatgttgc	tgattcaaga	cggccggatt	3840
gtggagcaag	gcagccattc	agagctcg	agccgaccag	agggagctt	ttcaaggctg	3900
ttacagcttc	aaacacatag	gatttgaagc	ttgatcatgg	attaaaaaca	aaaaatcggt	3960
ttgtgtatt	tttttatat	taaaactta	atttggaaaga	tttctatgg	ctataacgat	4020
aatatqaata	ggtgttagata	atgaagctt	t			4051

<210> 2

<211> 1254

<212> PRT

<213> *Arabidopsis thaliana*

<400> 2

Met	Ser	Glu	Thr	Asn	Thr	Asp	Ala	Lys	Thr	Val	Pro	Ala	Glu	Ala	
1					5			10					15		
Glu	Lys	Lys	Lys	Glu	Gln	Ser	Leu	Pro	Phe	Phe	Lys	Leu	Phe	Ser	Phe
						20			25				30		
Ala	Asp	Lys	Phe	Asp	Tyr	Leu	Leu	Met	Phe	Val	Gly	Ser	Leu	Gly	Ala
						35			40			45			
Ile	Val	His	Gly	Ser	Ser	Met	Pro	Val	Phe	Phe	Leu	Leu	Phe	Gly	Gln
						50			55			60			
Met	Val	Asn	Gly	Phe	Gly	Lys	Asn	Gln	Met	Asp	Leu	His	Gln	Met	Val
						65			70			75			80
His	Glu	Val	Ser	Arg	Tyr	Ser	Leu	Tyr	Phe	Val	Tyr	Leu	Gly	Leu	Val
						85				90			95		
Val	Cys	Phe	Ser	Ser	Tyr	Ala	Glu	Ile	Ala	Cys	Trp	Met	Tyr	Ser	Gly
						100				105			110		
Glu	Arg	Gln	Val	Ala	Ala	Leu	Arg	Lys	Lys	Tyr	Leu	Glu	Ala	Val	Leu

115	120	125
Lys Gln Asp Val Gly Phe Phe Asp Thr Asp Ala Arg Thr Gly Asp Ile		
130	135	140
Val Phe Ser Val Ser Thr Asp Thr Leu Leu Val Gln Asp Ala Ile Ser		
145	150	155
Glu Lys Val Gly Asn Phe Ile His Tyr Leu Ser Thr Phe Leu Ala Gly		
165	170	175
Leu Val Val Gly Phe Val Ser Ala Trp Lys Leu Ala Leu Leu Ser Val		
180	185	190
Ala Val Ile Pro Gly Ile Ala Phe Ala Gly Gly Leu Tyr Ala Tyr Thr		
195	200	205
Leu Thr Gly Ile Thr Ser Lys Ser Arg Glu Ser Tyr Ala Asn Ala Gly		
210	215	220
Val Ile Ala Glu Gln Ala Ile Ala Gln Val Arg Thr Val Tyr Ser Tyr		
225	230	235
Val Gly Glu Ser Lys Ala Leu Asn Ala Tyr Ser Asp Ala Ile Gln Tyr		
245	250	255
Thr Leu Lys Leu Gly Tyr Lys Ala Gly Met Ala Lys Gly Leu Gly Leu		
260	265	270
Gly Cys Thr Tyr Gly Ile Ala Cys Met Ser Trp Ala Leu Val Phe Trp		
275	280	285
Tyr Ala Gly Val Phe Ile Arg Asn Gly Gln Thr Asp Gly Gly Lys Ala		
290	295	300
Phe Thr Ala Ile Phe Ser Ala Ile Val Gly Gly Met Ser Leu Gly Gln		
305	310	315
Ser Phe Ser Asn Leu Gly Ala Phe Ser Lys Gly Lys Ala Ala Gly Tyr		
325	330	335
Lys Leu Met Glu Ile Ile Asn Gln Arg Pro Thr Ile Ile Gln Asp Pro		
340	345	350
Leu Asp Gly Lys Cys Leu Asp Gln Val His Gly Asn Ile Glu Phe Lys		
355	360	365
Asp Val Thr Phe Ser Tyr Pro Ser Arg Pro Asp Val Met Ile Phe Arg		
370	375	380
Asn Phe Asn Ile Phe Phe Pro Ser Gly Lys Thr Val Ala Val Val Gly		
385	390	395
Gly Ser Gly Ser Gly Lys Ser Thr Val Val Ser Leu Ile Glu Arg Phe		
405	410	415
Tyr Asp Pro Asn Ser Gly Gln Ile Leu Asp Gly Val Glu Ile Lys		
420	425	430
Thr Leu Gln Leu Lys Phe Leu Arg Glu Gln Ile Gly Leu Val Asn Gln		
435	440	445
Glu Pro Ala Leu Phe Ala Thr Thr Ile Leu Glu Asn Ile Leu Tyr Gly		
450	455	460
Lys Pro Asp Ala Thr Met Val Glu Val Glu Ala Ala Ala Ser Ala Ala		
465	470	475
Asn Ala His Ser Phe Ile Thr Leu Leu Pro Lys Gly Tyr Asp Thr Gln		
485	490	495
Val Gly Glu Arg Gly Val Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile		
500	505	510
Ala Ile Ala Arg Ala Met Leu Lys Asp Pro Lys Ile Leu Leu Asp		
515	520	525
Glu Ala Thr Ser Ala Leu Asp Ala Ser Ser Glu Ser Ile Val Gln Glu		
530	535	540
Ala Leu Asp Arg Val Met Val Gly Arg Thr Thr Val Val Val Ala His		
545	550	555
Arg Leu Cys Thr Ile Arg Asn Val Asp Ser Ile Ala Val Ile Gln Gln		
565	570	575
Gly Gln Val Val Glu Thr Gly Thr His Glu Glu Leu Ile Ala Lys Ser		
580	585	590
Gly Ala Tyr Ala Ser Leu Ile Arg Phe Gln Glu Met Val Gly Thr Arg		
595	600	605
Asp Phe Ser Asn Pro Ser Thr Arg Arg Ser Thr Arg Leu Ser		

610	615	620
His Ser Leu Ser Thr Lys Ser Leu Ser Leu Arg Ser Gly Ser Leu Arg		
625	630	635
Asn Leu Ser Tyr Ser Tyr Ser Thr Gly Ala Asp Gly Arg Ile Glu Met		640
645	650	655
Ile Ser Asn Ala Glu Thr Asp Arg Lys Thr Arg Ala Pro Glu Asn Tyr		
660	665	670
Phe Tyr Arg Leu Leu Lys Leu Asn Ser Pro Glu Trp Pro Tyr Ser Ile		
675	680	685
Met Gly Ala Val Gly Ser Ile Leu Ser Gly Phe Ile Gly Pro Thr Phe		
690	695	700
Ala Ile Val Met Ser Asn Met Ile Glu Val Phe Tyr Tyr Thr Asp Tyr		
705	710	715
Asp Ser Met Glu Arg Lys Thr Lys Glu Tyr Val Phe Ile Tyr Ile Gly		720
725	730	735
Ala Gly Leu Tyr Ala Val Gly Ala Tyr Leu Ile Gln His Tyr Phe Phe		
740	745	750
Ser Ile Met Gly Glu Asn Leu Thr Thr Arg Val Arg Arg Met Met Leu		
755	760	765
Ser Ala Ile Leu Arg Asn Glu Val Gly Trp Phe Asp Glu Asp Glu His		
770	775	780
Asn Ser Ser Leu Ile Ala Ala Arg Leu Ala Thr Asp Ala Ala Asp Val		
785	790	795
Lys Ser Ala Ile Ala Glu Arg Ile Ser Val Ile Leu Gln Asn Met Thr		800
805	810	815
Ser Leu Leu Thr Ser Phe Ile Val Ala Phe Ile Val Glu Trp Arg Val		
820	825	830
Ser Leu Leu Ile Leu Gly Thr Phe Pro Leu Leu Val Leu Ala Asn Phe		
835	840	845
Ala Gln Gln Leu Ser Leu Lys Gly Phe Ala Gly Asp Thr Ala Lys Ala		
850	855	860
His Ala Lys Thr Ser Met Ile Ala Gly Glu Gly Val Ser Asn Ile Arg		
865	870	875
Thr Val Ala Ala Phe Asn Ala Gln Ser Lys Ile Leu Ser Leu Phe Cys		880
885	890	895
His Glu Leu Arg Val Pro Gln Lys Arg Ser Leu Ser Leu Tyr Arg Ser		
900	905	910
Gln Thr Ser Gly Phe Leu Phe Gly Leu Ser Gln Leu Ala Leu Tyr Gly		
915	920	925
Ser Glu Ala Leu Ile Leu Trp Tyr Gly Ala His Leu Val Ser Lys Gly		
930	935	940
Val Ser Thr Phe Ser Lys Val Ile Lys Val Phe Val Val Leu Val Ile		
945	950	955
960		
Thr Ala Asn Ser Val Ala Glu Thr Val Ser Leu Ala Pro Glu Ile Ile		
965	970	975
Arg Gly Gly Glu Ala Val Gly Ser Val Phe Ser Val Leu Asp Arg Gln		
980	985	990
Thr Arg Ile Asp Pro Asp Asp Ala Asp Ala Asp Pro Val Glu Thr Ile		
995	1000	1005
Arg Gly Asp Ile Glu Phe Arg His Val Asp Phe Ala Tyr Pro Ser Arg		
1010	1015	1020
Pro Asp Val Met Val Phe Arg Asp Phe Asn Leu Arg Ile Arg Ala Gly		
1025	1030	1035
1040		
His Ser Gln Ala Leu Val Gly Ala Ser Gly Ser Gly Lys Ser Ser Val		
1045	1050	1055
Ile Ala Met Ile Glu Arg Phe Tyr Asp Leu Leu Ala Gly Lys Val Met		
1060	1065	1070
Ile Asp Gly Lys Asp Ile Arg Arg Leu Asn Leu Lys Ser Leu Arg Leu		
1075	1080	1085
Lys Ile Gly Leu Val Gln Gln Glu Pro Ala Leu Phe Ala Ala Thr Ile		
1090	1095	1100
Phe Asp Asn Ile Ala Tyr Gly Lys Asp Gly Ala Thr Glu Ser Glu Val		

1105	1110	1115	1120
Ile Asp Ala Ala Arg Ala Ala Asn Ala His Gly Phe Ile Ser Gly Leu			
1125	1130	1135	
Pro Glu Gly Tyr Lys Thr Pro Val Gly Glu Arg Gly Val Gln Leu Ser			
1140	1145	1150	
Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Val Leu Lys Asn			
1155	1160	1165	
Pro Thr Val Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ala Glu			
1170	1175	1180	
Ser Glu Cys Val Leu Gln Glu Ala Leu Glu Arg Leu Met Arg Gly Arg			
1185	1190	1195	1200
Thr Thr Val Val Val Ala His Arg Leu Ser Thr Ile Arg Gly Val Asp			
1205	1210	1215	
Cys Ile Gly Val Ile Gln Asp Gly Arg Ile Val Glu Gln Gly Ser His			
1220	1225	1230	
Ser Glu Leu Val Ser Arg Pro Glu Gly Ala Tyr Ser Arg Leu Leu Gln			
1235	1240	1245	
Leu Gln Thr His Arg Ile			
1250			

<210> 3
<211> 1280
<212> PRT
<213> Homo sapiens

<300>
<308> Genbank P08183
<309> 1997-11-01

<400> 3			
Met Asp Leu Glu Gly Asp Arg Asn Gly Gly Ala Lys Lys Lys Asn Phe			
1	5	10	15
Phe Lys Leu Asn Asn Lys Ser Glu Lys Asp Lys Lys Glu Lys Lys Pro			
20	25	30	
Thr Val Ser Val Phe Ser Met Phe Arg Tyr Ser Asn Trp Leu Asp Lys			
35	40	45	
Leu Tyr Met Val Val Gly Thr Leu Ala Ala Ile Ile His Gly Ala Gly			
50	55	60	
Leu Pro Leu Met Met Leu Val Phe Gly Glu Met Thr Asp Ile Phe Ala			
65	70	75	80
Asn Ala Gly Asn Leu Glu Asp Leu Met Ser Asn Ile Thr Asn Arg Ser			
85	90	95	
Asp Ile Asn Asp Thr Gly Phe Phe Met Asn Leu Glu Glu Asp Met Thr			
100	105	110	
Arg Tyr Ala Tyr Tyr Ser Gly Ile Gly Ala Gly Val Leu Val Ala			
115	120	125	
Ala Tyr Ile Gln Val Ser Phe Trp Cys Leu Ala Ala Gly Arg Gln Ile			
130	135	140	
His Lys Ile Arg Lys Gln Phe Phe His Ala Ile Met Arg Gln Glu Ile			
145	150	155	160
Gly Trp Phe Asp Val His Asp Val Gly Glu Leu Asn Thr Arg Leu Thr			
165	170	175	
Asp Asp Val Ser Ile Asn Glu Val Ile Gly Asp Lys Ile Gly Met			
180	185	190	
Phe Phe Gln Ser Met Ala Thr Phe Phe Thr Gly Phe Ile Val Gly Phe			
195	200	205	
Thr Arg Gly Trp Lys Leu Thr Leu Val Ile Leu Ala Ile Ser Pro Val			
210	215	220	
Leu Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ser Phe Thr			
225	230	235	240
Asp Lys Glu Leu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu			
245	250	255	

Val Leu Ala Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Lys Lys
 260 265 270
 Glu Leu Glu Arg Tyr Asn Lys Asn Leu Glu Glu Ala Lys Arg Ile Gly
 275 280 285
 Ile Lys Lys Ala Ile Thr Ala Asn Ile Ser Ile Gly Ala Ala Phe Leu
 290 295 300
 Leu Ile Tyr Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Thr Thr Leu
 305 310 315 320
 Val Leu Ser Gly Glu Tyr Ser Ile Gly Gln Val Leu Thr Val Phe Phe
 325 330 335
 Ser Val Leu Ile Gly Ala Phe Ser Val Gly Gln Ala Ser Pro Ser Ile
 340 345 350
 Glu Ala Phe Ala Asn Ala Arg Gly Ala Ala Tyr Glu Ile Phe Lys Ile
 355 360 365
 Ile Asp Asn Lys Pro Ser Ile Asp Ser Tyr Ser Lys Ser Gly His Lys
 370 375 380
 Pro Asp Asn Ile Lys Gly Asn Leu Glu Phe Arg Asn Val His Phe Ser
 385 390 395 400
 Tyr Pro Ser Arg Lys Glu Val Lys Ile Leu Lys Gly Leu Asn Leu Lys
 405 410 415
 Val Gln Ser Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly
 420 425 430
 Lys Ser Thr Thr Val Gln Leu Met Gln Arg Leu Tyr Asp Pro Thr Glu
 435 440 445
 Gly Met Val Ser Val Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg
 450 455 460
 Phe Leu Arg Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe
 465 470 475 480
 Ala Thr Thr Ile Ala Glu Asn Ile Arg Tyr Gly Arg Glu Asn Val Thr
 485 490 495
 Met Asp Glu Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe
 500 505 510
 Ile Met Lys Leu Pro His Lys Phe Asp Thr Leu Val Gly Glu Arg Gly
 515 520 525
 Ala Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala
 530 535 540
 Leu Val Arg Asn Pro Lys Ile Leu Leu Asp Glu Ala Thr Ser Ala
 545 550 555 560
 Leu Asp Thr Glu Ser Glu Ala Val Val Gln Val Ala Leu Asp Lys Ala
 565 570 575
 Arg Lys Gly Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Val
 580 585 590
 Arg Asn Ala Asp Val Ile Ala Gly Phe Asp Asp Gly Val Ile Val Glu
 595 600 605
 Lys Gly Asn His Asp Glu Leu Met Lys Glu Lys Gly Ile Tyr Phe Lys
 610 615 620
 Leu Val Thr Met Gln Thr Ala Gly Asn Glu Val Glu Leu Glu Asn Ala
 625 630 635 640
 Ala Asp Glu Ser Lys Ser Glu Ile Asp Ala Leu Glu Met Ser Ser Asn
 645 650 655
 Asp Ser Arg Ser Ser Leu Ile Arg Lys Arg Ser Thr Arg Arg Ser Val
 660 665 670
 Arg Gly Ser Gln Ala Gln Asp Arg Lys Leu Ser Thr Lys Glu Ala Leu
 675 680 685
 Asp Glu Ser Ile Pro Pro Val Ser Phe Trp Arg Ile Met Lys Leu Asn
 690 695 700
 Leu Thr Glu Trp Pro Tyr Phe Val Val Gly Val Phe Cys Ala Ile Ile
 705 710 715 720
 Asn Gly Gly Leu Gln Pro Ala Phe Ala Ile Ile Phe Ser Lys Ile Ile
 725 730 735
 Gly Val Phe Thr Arg Ile Asp Asp Pro Glu Thr Lys Arg Gln Asn Ser
 740 745 750

Asn Leu Phe Ser Leu Leu Phe Leu Ala Leu Gly Ile Ile Ser Phe Ile
 755 760 765
 Thr Phe Phe Leu Gln Gly Phe Thr Phe Gly Lys Ala Gly Glu Ile Leu
 770 775 780
 Thr Lys Arg Leu Arg Tyr Met Val Phe Arg Ser Met Leu Arg Gln Asp
 785 790 795 800
 Val Ser Trp Phe Asp Asp Pro Lys Asn Thr Thr Gly Ala Leu Thr Thr
 805 810 815
 Arg Leu Ala Asn Asp Ala Ala Gln Val Lys Gly Ala Ile Gly Ser Arg
 820 825 830
 Leu Ala Val Ile Thr Gln Asn Ile Ala Asn Leu Gly Thr Gly Ile Ile
 835 840 845
 Ile Ser Phe Ile Tyr Gly Trp Gln Leu Thr Leu Leu Leu Ala Ile
 850 855 860
 Val Pro Ile Ile Ala Ile Ala Gly Val Val Glu Met Lys Met Leu Ser
 865 870 875 880
 Gly Gln Ala Leu Lys Asp Lys Lys Glu Leu Glu Gly Ala Gly Lys Ile
 885 890 895
 Ala Thr Glu Ala Ile Glu Asn Phe Arg Thr Val Val Ser Leu Thr Gln
 900 905 910
 Glu Gln Lys Phe Glu His Met Tyr Ala Gln Ser Leu Gln Val Pro Tyr
 915 920 925
 Arg Asn Ser Leu Arg Lys Ala His Ile Phe Gly Ile Thr Phe Ser Phe
 930 935 940
 Thr Gln Ala Met Met Tyr Phe Ser Tyr Ala Gly Cys Phe Arg Phe Gly
 945 950 955 960
 Ala Tyr Leu Val Ala His Lys Leu Met Ser Phe Glu Asp Val Leu Leu
 965 970 975
 Val Phe Ser Ala Val Val Phe Gly Ala Met Ala Val Gly Gln Val Ser
 980 985 990
 Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Ile Ser Ala Ala His Ile
 995 1000 1005
 Ile Met Ile Ile Glu Lys Thr Pro Leu Ile Asp Ser Tyr Ser Thr Glu
 1010 1015 1020
 Gly Leu Met Pro Asn Thr Leu Glu Gly Asn Val Thr Phe Gly Glu Val
 1025 1030 1035 1040
 Val Phe Asn Tyr Pro Thr Arg Pro Asp Ile Pro Val Leu Gln Gly Leu
 1045 1050 1055
 Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala Leu Val Gly Ser Ser
 1060 1065 1070
 Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu Glu Arg Phe Tyr Asp
 1075 1080 1085
 Pro Leu Ala Gly Lys Val Leu Leu Asp Gly Lys Glu Ile Lys Arg Leu
 1090 1095 1100
 Asn Val Gln Trp Leu Arg Ala His Leu Gly Ile Val Ser Gln Glu Pro
 1105 1110 1115 1120
 Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly Asp Asn
 1125 1130 1135
 Ser Arg Val Val Ser Gln Glu Glu Ile Val Arg Ala Ala Lys Glu Ala
 1140 1145 1150
 Asn Ile His Ala Phe Ile Glu Ser Leu Pro Asn Lys Tyr Ser Thr Lys
 1155 1160 1165
 Val Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile
 1170 1175 1180
 Ala Ile Ala Arg Ala Leu Val Arg Gln Pro His Ile Leu Leu Leu Asp
 1185 1190 1195 1200
 Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val Gln Glu
 1205 1210 1215
 Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile Ala His
 1220 1225 1230
 Arg Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Phe Gln Asn
 1235 1240 1245

Gly Arg Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala Gln Lys
 1250 1255 1260
 Gly Ile Tyr Phe Ser Met Val Ser Val Gln Ala Gly Thr Lys Arg Gln
 1265 1270 1275 1280

<210> 4
 <211> 1175
 <212> PRT
 <213> Mus musculus

<300>
 <308> Genbank P06795
 <309> 1998-07-15

<400> 4
 Ser Asn Ser Ser Leu Glu Glu Glu Met Ala Ile Tyr Ala Tyr Tyr Tyr
 1 5 10 15
 Thr Gly Ile Gly Ala Gly Val Leu Ile Val Ala Tyr Ile Gln Val Ser
 20 25 30
 Leu Trp Cys Leu Ala Ala Gly Arg Gln Ile His Lys Ile Arg Gln Lys
 35 40 45
 Phe Phe His Ala Ile Met Asn Gln Glu Ile Gly Trp Phe Asp Val His
 50 55 60
 Asp Val Gly Glu Leu Asn Thr Arg Leu Thr Asp Asp Val Ser Lys Ile
 65 70 75 80
 Asn Asp Gly Ile Gly Asp Lys Ile Gly Met Phe Phe Gln Ser Ile Thr
 85 90 95
 Thr Phe Leu Ala Gly Phe Ile Ile Gly Phe Ile Ser Gly Trp Lys Leu
 100 105 110
 Thr Leu Val Ile Leu Ala Val Ser Pro Leu Ile Gly Leu Ser Ser Ala
 115 120 125
 Leu Trp Ala Lys Val Leu Thr Ser Phe Thr Asn Lys Glu Leu Gln Ala
 130 135 140
 Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Val Leu Ala Ala Ile Arg
 145 150 155 160
 Thr Val Ile Ala Phe Gly Gly Gln Lys Glu Leu Glu Arg Tyr Asn
 165 170 175
 Lys Asn Leu Glu Glu Ala Lys Asn Val Gly Ile Lys Lys Ala Ile Thr
 180 185 190
 Ala Ser Ile Ser Ile Gly Ile Ala Tyr Leu Leu Val Tyr Ala Ser Tyr
 195 200 205
 Ala Leu Ala Phe Trp Tyr Gly Thr Ser Leu Val Leu Ser Asn Glu Tyr
 210 215 220
 Ser Ile Gly Glu Val Leu Thr Val Phe Phe Ser Ile Leu Leu Gly Thr
 225 230 235 240
 Phe Ser Ile Gly His Leu Ala Pro Asn Ile Glu Ala Phe Ala Asn Ala
 245 250 255
 Arg Gly Ala Ala Phe Glu Ile Phe Lys Ile Ile Asp Asn Glu Pro Ser
 260 265 270
 Ile Asp Ser Phe Ser Thr Lys Gly Tyr Lys Pro Asp Ser Ile Met Gly
 275 280 285
 Asn Leu Glu Phe Lys Asn Val His Phe Asn Tyr Pro Ser Arg Ser Glu
 290 295 300
 Val Gln Ile Leu Lys Gly Leu Asn Leu Lys Val Lys Ser Gly Gln Thr
 305 310 315 320
 Val Ala Leu Val Gly Asn Ser Gly Cys Gly Lys Ser Thr Thr Val Gln
 325 330 335
 Leu Met Gln Arg Leu Tyr Asp Pro Leu Glu Gly Val Val Ser Ile Asp
 340 345 350
 Gly Gln Asp Ile Arg Thr Ile Asn Val Arg Tyr Leu Arg Glu Ile Ile
 355 360 365
 Gly Val Val Ser Gln Glu Pro Val Leu Phe Ala Thr Thr Ile Ala Glu

370	375	380
Asn Ile Arg Tyr Gly Arg	Glu Asp Val Thr Met Asp Glu Ile Glu Lys	
385	390	395
Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe Ile Met Lys Leu Pro His		400
405	410	415
Gln Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly		
420	425	430
Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Asn Pro Lys		
435	440	445
Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu		
450	455	460
Ala Val Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Thr		
465	470	475
Ile Val Ile Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile		480
485	490	495
Ala Gly Phe Asp Gly Gly Val Ile Val Glu Gln Gly Asn His Asp Glu		
500	505	510
Leu Met Arg Glu Lys Gly Ile Tyr Phe Lys Leu Val Met Thr Gln Thr		
515	520	525
Arg Gly Asn Glu Ile Glu Pro Gly Asn Asn Ala Tyr Gly Ser Gln Ser		
530	535	540
Asp Thr Asp Ala Ser Glu Leu Thr Ser Glu Glu Ser Lys Ser Pro Leu		
545	550	555
Ile Arg Arg Ser Ile Tyr Arg Ser Val His Arg Lys Gln Asp Gln Glu		560
565	570	575
Arg Arg Leu Ser Met Lys Glu Ala Val Asp Glu Asp Val Pro Leu Val		
580	585	590
Ser Phe Trp Arg Ile Leu Asn Leu Asn Leu Ser Glu Trp Pro Tyr Leu		
595	600	605
Leu Val Gly Val Leu Cys Ala Val Ile Asn Gly Cys Ile Gln Pro Val		
610	615	620
Phe Ala Ile Val Phe Ser Arg Ile Val Gly Val Phe Ser Arg Asp Asp		
625	630	635
Asp His Glu Thr Lys Arg Gln Asn Cys Asn Leu Phe Ser Leu Phe Phe		640
645	650	655
Leu Val Met Gly Leu Ile Ser Phe Val Thr Tyr Phe Phe Gln Gly Phe		
660	665	670
Thr Phe Gly Lys Ala Gly Glu Ile Leu Thr Lys Arg Val Arg Tyr Met		
675	680	685
Val Phe Lys Ser Met Leu Arg Gln Asp Ile Ser Trp Phe Asp Asp His		
690	695	700
Lys Asn Ser Thr Gly Ser Leu Thr Thr Arg Leu Ala Ser Asp Ala Ser		
705	710	715
Ser Val Lys Gly Ala Met Gly Ala Arg Leu Ala Val Val Thr Gln Asn		720
725	730	735
Val Ala Asn Leu Gly Thr Gly Val Ile Leu Ser Leu Val Tyr Gly Trp		
740	745	750
Gln Leu Thr Leu Leu Val Val Ile Ile Pro Leu Ile Val Leu Gly		
755	760	765
Gly Ile Ile Glu Met Lys Leu Leu Ser Gly Gln Ala Leu Lys Asp Lys		
770	775	780
Lys Gln Leu Glu Ile Ser Gly Lys Ile Ala Thr Glu Ala Ile Glu Asn		
785	790	795
Phe Arg Thr Ile Val Ser Leu Thr Arg Glu Gln Lys Phe Glu Thr Met		800
805	810	815
Tyr Ala Gln Ser Leu Gln Val Pro Tyr Arg Asn Ala Met Lys Lys Ala		
820	825	830
His Val Phe Gly Ile Thr Phe Ser Phe Thr Gln Ala Met Met Tyr Phe		
835	840	845
Ser Tyr Ala Ala Cys Phe Arg Phe Gly Ala Tyr Leu Val Ala Gln Gln		
850	855	860
Leu Met Thr Phe Glu Asn Val Met Leu Val Phe Ser Ala Val Val Phe		

10.

865	870	875	880
Gly Ala Met Ala Ala Gly Asn Thr Ser Ser Phe Ala Pro Asp Tyr Ala			
885	890	895	
Lys Ala Lys Val Ser Ala Ser His Ile Ile Arg Ile Ile Glu Lys Thr			
900	905	910	
Pro Glu Ile Asp Ser Tyr Ser Thr Glu Gly Leu Lys Pro Thr Leu Leu			
915	920	925	
Glu Gly Asn Val Lys Phe Asn Gly Val Gln Phe Asn Tyr Pro Thr Arg			
930	935	940	
Pro Asn Ile Pro Val Leu Gln Gly Leu Ser Leu Glu Val Lys Lys Gly			
945	950	955	960
Gln Thr Leu Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr Val			
965	970	975	
Val Gln Leu Leu Glu Arg Phe Tyr Asp Pro Met Ala Gly Ser Val Phe			
980	985	990	
Leu Asp Gly Lys Glu Ile Lys Gln Leu Asn Val Gln Trp Leu Arg Ala			
995	1000	1005	
His Leu Gly Ile Val Ser Gln Glu Pro Ile Leu Phe Asp Cys Ser Ile			
1010	1015	1020	
Ala Glu Asn Ile Ala Tyr Gly Asp Asn Ser Arg Ala Val Ser His Glu			
1025	1030	1035	1040
Glu Ile Val Arg Ala Ala Lys Glu Ala Asn Ile His Gln Phe Ile Asp			
1045	1050	1055	
Ser Leu Pro Asp Lys Tyr Asn Thr Arg Val Gly Asp Lys Gly Thr Gln			
1060	1065	1070	
Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val			
1075	1080	1085	
Arg Gln Pro His Ile Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp			
1090	1095	1100	
Thr Glu Ser Glu Lys Val Val Gln Glu Ala Leu Asp Lys Ala Arg Glu			
1105	1110	1115	1120
Gly Arg Thr Cys Ile Val Ile Ala His Arg Leu Ser Thr Ile Gln Asn			
1125	1130	1135	
Ala Asp Leu Ile Val Val Ile Glu Asn Gly Lys Val Lys Glu His Gly			
1140	1145	1150	
Thr His Gln Gln Leu Leu Ala Gln Lys Gly Ile Tyr Phe Ser Met Val			
1155	1160	1165	
Gln Ala Gly Ala Lys Arg Ser			
1170	1175		

<210> 5
<211> 1066
<212> PRT
<213> Homo sapiens

<300>
<308> Genbank P21439
<309> 1998-07-15

<400> 5

Trp Lys Leu Thr Leu Val Ile Met Ala Ile Ser Pro Ile Leu Gly Leu			
1	5	10	15
Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ala Phe Ser Asp Lys Glu			
20	25	30	
Leu Ala Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Ala Leu Gly			
35	40	45	
Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Asn Lys Glu Leu Glu			
50	55	60	
Arg Tyr Gln Lys His Leu Glu Asn Ala Lys Glu Ile Gly Ile Lys Lys			
65	70	75	80
Ala Ile Ser Ala Asn Ile Ser Met Gly Ile Ala Phe Leu Leu Ile Tyr			
85	90	95	

Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser
 100 105 110
 Lys Glu Tyr Thr Ile Gly Asn Ala Met Thr Val Phe Phe Ser Ile Leu
 115 120 125
 Ile Gly Ala Phe Ser Val Gly Gln Ala Ala Pro Cys Ile Asp Ala Phe
 130 135 140
 Ala Asn Ala Arg Gly Ala Ala Tyr Val Ile Phe Asp Ile Ile Asp Asn
 145 150 155 160
 Asn Pro Lys Ile Asp Ser Phe Ser Glu Arg Gly His Lys Pro Asp Ser
 165 170 175
 Ile Lys Gly Asn Leu Glu Phe Asn Asp Val His Phe Ser Tyr Pro Ser
 180 185 190
 Arg Ala Asn Val Lys Ile Leu Lys Gly Leu Asn Leu Lys Val Gln Ser
 195 200 205
 Gly Gln Thr Val Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr
 210 215 220
 Thr Val Gln Leu Ile Gln Arg Leu Tyr Asp Pro Asp Glu Gly Thr Ile
 225 230 235 240
 Asn Ile Asp Gly Gln Asp Ile Arg Asn Phe Asn Val Asn Tyr Leu Arg
 245 250 255
 Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ser Thr Thr
 260 265 270
 Ile Ala Glu Asn Ile Cys Tyr Gly Arg Gly Asn Val Thr Met Asp Glu
 275 280 285
 Ile Lys Lys Ala Val Lys Glu Ala Asn Ala Tyr Glu Phe Ile Met Lys
 290 295 300
 Leu Pro Gln Lys Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu
 305 310 315 320
 Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg
 325 330 335
 Asn Pro Lys Ile Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr
 340 345 350
 Glu Ser Glu Ala Glu Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly
 355 360 365
 Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Val Arg Asn Ala
 370 375 380
 Asp Val Ile Ala Gly Phe Glu Asp Gly Val Ile Val Glu Gln Gly Ser
 385 390 395 400
 His Ser Glu Leu Met Lys Lys Glu Gly Val Tyr Phe Lys Leu Val Asn
 405 410 415
 Met Gln Thr Ser Gly Ser Gln Ile Gln Ser Glu Glu Phe Glu Leu Asn
 420 425 430
 Asp Glu Lys Ala Ala Thr Arg Met Ala Pro Asn Gly Trp Lys Ser Arg
 435 440 445
 Leu Phe Arg His Ser Thr Gln Lys Asn Leu Lys Asn Ser Gln Met Cys
 450 455 460
 Gln Lys Ser Leu Asp Val Glu Thr Asp Gly Leu Glu Ala Asn Val Pro
 465 470 475 480
 Pro Val Ser Phe Leu Lys Val Leu Lys Leu Asn Lys Thr Glu Trp Pro
 485 490 495
 Tyr Phe Val Val Gly Thr Val Cys Ala Ile Ala Asn Gly Gly Leu Gln
 500 505 510
 Pro Ala Phe Ser Val Ile Phe Ser Glu Ile Ile Ala Ile Phe Gly Pro
 515 520 525
 Gly Asp Asp Ala Val Lys Gln Gln Lys Cys Asn Ile Phe Ser Leu Ile
 530 535 540
 Phe Leu Phe Leu Gly Ile Ile Ser Phe Phe Thr Phe Phe Leu Gln Gly
 545 550 555 560
 Phe Thr Phe Gly Lys Ala Gly Glu Ile Leu Thr Arg Arg Leu Arg Ser
 565 570 575
 Met Ala Phe Lys Ala Met Leu Arg Gln Asp Met Ser Trp Phe Asp Asp
 580 585 590

His Lys Asn Ser Thr Gly Ala Leu Ser Thr Arg Leu Ala Thr Asp Ala
 595 600 605
 Ala Gln Val Gln Gly Ala Thr Gly Thr Arg Leu Ala Leu Ile Ala Gln
 610 615 620
 Asn Ile Ala Asn Leu Gly Thr Gly Ile Ile Ser Phe Ile Tyr Gly
 625 630 635 640
 Trp Gln Leu Thr Leu Leu Leu Ala Val Val Pro Ile Ile Ala Val
 645 650 655
 Ser Gly Ile Val Glu Met Lys Leu Leu Ala Gly Asn Ala Lys Arg Asp
 660 665 670
 Lys Lys Glu Leu Glu Ala Ala Gly Lys Ile Ala Thr Glu Ala Ile Glu
 675 680 685
 Asn Ile Arg Thr Val Val Ser Leu Thr Gln Glu Arg Lys Phe Glu Ser
 690 695 700
 Met Tyr Val Glu Lys Leu Tyr Gly Pro Tyr Arg Asn Ser Val Gln Lys
 705 710 715 720
 Ala His Ile Tyr Gly Ile Thr Phe Ser Ile Ser Gln Ala Phe Met Tyr
 725 730 735
 Phe Ser Tyr Ala Gly Cys Phe Arg Phe Gly Ala Tyr Leu Ile Val Asn
 740 745 750
 Gly His Met Arg Phe Arg Asp Val Ile Leu Val Phe Ser Ala Ile Val
 755 760 765
 Phe Gly Ala Val Ala Leu Gly His Ala Ser Ser Phe Ala Pro Asp Tyr
 770 775 780
 Ala Lys Ala Lys Leu Ser Ala Ala His Leu Phe Met Leu Phe Glu Arg
 785 790 795 800
 Gln Pro Leu Ile Asp Ser Tyr Ser Glu Glu Gly Leu Lys Pro Asp Lys
 805 810 815
 Phe Glu Gly Asn Ile Thr Phe Asn Glu Val Val Phe Asn Tyr Pro Thr
 820 825 830
 Arg Ala Asn Val Pro Val Leu Gln Gly Leu Ser Leu Glu Val Lys Lys
 835 840 845
 Gly Gln Thr Leu Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr
 850 855 860
 Val Val Gln Leu Leu Glu Arg Phe Tyr Asp Pro Leu Ala Gly Thr Val
 865 870 875 880
 Leu Leu Asp Gly Gln Glu Ala Lys Lys Leu Asn Val Gln Trp Leu Arg
 885 890 895
 Ala Gln Leu Gly Ile Val Ser Gln Glu Pro Ile Leu Phe Asp Cys Ser
 900 905 910
 Ile Ala Glu Asn Ile Ala Tyr Gly Asp Asn Ser Arg Val Val Ser Gln
 915 920 925
 Asp Glu Ile Val Ser Ala Ala Lys Ala Asn Ile His Pro Phe Ile
 930 935 940
 Glu Thr Leu Pro His Lys Tyr Glu Thr Arg Val Gly Asp Lys Gly Thr
 945 950 955 960
 Gln Leu Ser Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu
 965 970 975
 Ile Arg Gln Pro Gln Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu
 980 985 990
 Asp Thr Glu Ser Glu Lys Val Val Gln Glu Ala Leu Asp Lys Ala Arg
 995 1000 1005
 Glu Gly Arg Thr Cys Ile Val Ile Ala His Arg Leu Ser Thr Ile Gln
 1010 1015 1020
 Asn Ala Asp Leu Ile Val Val Phe Gln Asn Gly Arg Val Lys Glu His
 1025 1030 1035 1040
 Gly Thr His Gln Gln Leu Leu Ala Gln Lys Gly Ile Tyr Phe Ser Met
 1045 1050 1055
 Val Ser Val Gln Ala Gly Thr Gln Asn Leu
 1060 1065

<211> 1266

<212> PRT

<213> Mus musculus

<300>

<308> Genbank P21440

<309> 1997-11-01

<400> 6

Trp Lys Leu Thr Leu Val Ile Met Ala Ile Ser Pro Ile Leu Gly Leu
 1 5 10 15
 Ser Thr Ala Val Trp Ala Lys Ile Leu Ser Thr Phe Ser Asp Lys Glu
 20 25 30
 Leu Ala Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Ala Pro Gly
 35 40 45
 Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Asn Lys Glu Leu Glu
 50 55 60
 Arg Tyr Gln Lys His Leu Glu Asn Ala Lys Lys Ile Gly Ile Lys Lys
 65 70 75 80
 Ala Ile Ser Ala Asn Ile Ser Met Gly Ile Ala Phe Leu Leu Ile Tyr
 85 90 95
 Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser
 100 105 110
 Lys Glu Tyr Thr Ile Gly Asn Ala Met Thr Val Phe Phe Ser Ile Leu
 115 120 125
 Ile Gly Ala Phe Ser Val Gly Gln Ala Ala Pro Cys Ile Asp Ala Phe
 130 135 140
 Ala Asn Ala Arg Gly Ala Ala Tyr Val Ile Phe Asp Ile Ile Asp Asn
 145 150 155 160
 Asn Pro Lys Ile Asp Ser Phe Ser Glu Arg Gly His Lys Pro Asp Asn
 165 170 175
 Ile Lys Gly Asn Leu Glu Phe Ser Asp Val His Phe Ser Tyr Pro Ser
 180 185 190
 Arg Ala Asn Ile Lys Ile Leu Lys Gly Leu Asn Leu Lys Val Lys Ser
 195 200 205
 Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly Lys Ser Thr
 210 215 220
 Thr Val Gln Leu Leu Gln Arg Leu Tyr Asp Pro Thr Glu Gly Lys Ile
 225 230 235 240
 Ser Ile Asp Gly Gln Asp Ile Arg Asn Phe Asn Val Arg Cys Leu Arg
 245 250 255
 Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ser Thr Thr
 260 265 270
 Ile Ala Glu Asn Ile Arg Tyr Gly Arg Gly Asn Val Thr Met Asp Glu
 275 280 285
 Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe Ile Met Lys
 290 295 300
 Leu Pro Gln Lys Phe Asp Thr Leu Val Gly Asp Arg Gly Ala Gln Leu
 305 310 315 320
 Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg
 325 330 335
 Asn Pro Lys Ile Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr
 340 345 350
 Glu Ser Glu Ala Glu Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly
 355 360 365
 Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Ile Arg Asn Ala
 370 375 380
 Asp Val Ile Ala Gly Phe Glu Asp Gly Val Ile Val Glu Gln Gly Ser
 385 390 395 400
 His Ser Glu Leu Met Lys Lys Glu Gly Ile Tyr Phe Arg Leu Val Asn
 405 410 415
 Met Gln Thr Ala Gly Ser Gln Ile Leu Ser Glu Glu Phe Glu Ala Arg

14.

420	425	430
Ala Leu Val Arg Asn Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser		
435	440	445
Ala Leu Asp Thr Glu Ser Glu Ala Val Val Gln Val Ala Leu Asp Lys		
450	455	460
Ala Arg Lys Gly Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr		
465	470	475
Val Arg Asn Ala Asp Val Ile Ala Gly Phe Asp Asp Gly Val Ile Val		
485	490	495
Glu Lys Gly Asn His Asp Glu Leu Met Lys Glu Lys Gly Ile Tyr Phe		
500	505	510
Lys Leu Val Thr Met Gln Thr Ala Gly Asn Glu Val Glu Leu Glu Asn		
515	520	525
Ala Ala Ala Arg Ala Leu Val Arg Asn Pro Lys Ile Leu Leu Asp		
530	535	540
Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Ala Val Val Gln Ala		
545	550	555
Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Thr Ile Val Ile Ala His		
565	570	575
Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile Ala Gly Phe Asp Gly		
580	585	590
Gly Val Ile Val Glu Gln Gly Asn His Asp Glu Leu Met Arg Glu Lys		
595	600	605
Gly Ile Tyr Phe Lys Leu Val Met Thr Gln Thr Arg Gly Asn Glu Ile		
610	615	620
Glu Pro Gly Asn Asn Ala Val Glu Leu Ser Asp Glu Lys Ala Ala Gly		
625	630	635
Asp Val Ala Pro Asn Gly Trp Lys Ala Arg Ile Phe Arg Asn Ser Thr		
645	650	655
Lys Lys Ser Leu Lys Ser Pro His Gln Asn Arg Leu Asp Glu Glu Thr		
660	665	670
Asn Glu Leu Asp Ala Asn Val Pro Val Ser Phe Leu Lys Val Leu		
675	680	685
Lys Leu Asn Lys Thr Glu Trp Pro Tyr Phe Val Val Gly Thr Val Cys		
690	695	700
Ala Ile Ala Asn Gly Ala Leu Gln Pro Ala Phe Ser Ile Ile Leu Ser		
705	710	715
Glu Met Ile Ala Ile Phe Gly Pro Gly Asp Asp Ala Val Lys Gln Gln		
725	730	735
Lys Cys Asn Met Phe Ser Leu Val Phe Leu Gly Leu Gly Val Leu Ser		
740	745	750
Phe Phe Thr Phe Phe Leu Gln Gly Phe Thr Phe Gly Lys Ala Gly Glu		
755	760	765
Ile Leu Thr Thr Arg Leu Arg Ser Met Ala Phe Lys Ala Met Leu Arg		
770	775	780
Gln Asp Met Ser Trp Phe Asp Asp His Lys Asn Ser Thr Gly Ala Leu		
785	790	795
Ser Thr Arg Leu Ala Thr Asp Ala Ala Gln Val Gln Gly Ala Thr Gly		
805	810	815
Thr Lys Leu Ala Leu Ile Ala Gln Asn Thr Ala Asn Leu Gly Thr Gly		
820	825	830
Ile Ile Ile Ser Phe Ile Tyr Gly Trp Gln Leu Thr Leu Leu Leu		
835	840	845
Ser Val Val Pro Phe Ile Ala Val Ala Gly Ile Val Glu Met Lys Met		
850	855	860
Leu Ala Gly Asn Ala Lys Arg Asp Lys Lys Glu Met Glu Ala Ala Gly		
865	870	875
Lys Ile Ala Thr Glu Ala Ile Glu Asn Ile Arg Thr Val Val Ser Leu		
885	890	895
Thr Gln Glu Arg Lys Phe Glu Ser Met Tyr Val Glu Lys Leu His Gly		
900	905	910
Pro Tyr Arg Asn Ser Val Arg Lys Ala His Ile Tyr Gly Ile Thr Phe		

15.

915	920	925
Ser Ile Ser Gln Ala Phe Met Tyr Phe Ser Tyr Ala Gly Cys Phe Arg		
930	935	940
Phe Gly Ser Tyr Leu Ile Val Asn Gly His Met Arg Phe Lys Asp Val		
945	950	955
Ile Leu Val Phe Ser Ala Ile Val Leu Gly Ala Val Ala Leu Gly His		
965	970	975
Ala Ser Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Leu Ser Ala Ala		
980	985	990
Tyr Leu Phe Ser Leu Phe Glu Arg Gln Pro Leu Ile Asp Ser Tyr Ser		
995	1000	1005
Gly Glu Gly Leu Trp Pro Asp Lys Phe Glu Gly Ser Val Thr Phe Asn		
1010	1015	1020
Glu Val Val Phe Asn Tyr Pro Thr Arg Ala Asn Val Pro Val Leu Gln		
1025	1030	1035
Gly Leu Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala Leu Val Gly		
1045	1050	1055
Ser Ser Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu Glu Arg Phe		
1060	1065	1070
Tyr Asp Pro Met Ala Gly Ser Val Leu Leu Asp Gly Gln Glu Ala Lys		
1075	1080	1085
Lys Leu Asn Val Gln Trp Leu Arg Ala Gln Leu Gly Ile Val Ser Gln		
1090	1095	1100
Glu Pro Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly		
1105	1110	1115
Asp Asn Ser Arg Val Val Pro His Asp Glu Ile Val Arg Ala Ala Lys		
1125	1130	1135
Glu Ala Asn Ile His Pro Phe Ile Glu Thr Leu Pro Gln Lys Tyr Asn		
1140	1145	1150
Thr Arg Val Gly Asp Lys Gly Thr Gln Leu Ser Gly Gln Lys Gln		
1155	1160	1165
Arg Ile Ala Ile Ala Arg Ala Leu Ile Arg Gln Pro Arg Val Leu Leu		
1170	1175	1180
Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val		
1185	1190	1195
Gln Glu Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile		
1205	1210	1215
Ala His Arg Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Ile		
1220	1225	1230
Glu Asn Gly Lys Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala		
1235	1240	1245
Gln Lys Gly Ile Tyr Phe Ser Met Val Asn Ile Gln Ala Gly Thr Gln		
1250	1255	1260
Asn Leu		
1265		

<210> 7
<211> 1207
<212> PRT
<213> *Arabidopsis thaliana*

<300>
<308> Genbank A42150
<309> 1997-03-13

<400> 7

Glu Lys Met Met Glu Glu Val Leu Lys Tyr Ala Leu Tyr Phe Leu Val		
1	5	10
Val Gly Ala Ala Ile Trp Ala Ser Ser Trp Ala Glu Ile Ser Cys Trp		
20	25	30
Met Trp Ser Gly Glu Arg Gln Thr Thr Lys Met Arg Ile Lys Tyr Leu		
35	40	45

Glu Ala Ala Leu Asn Gln Asp Ile Gln Phe Phe Asp Thr Glu Val Arg
 50 55 60
 Thr Ser Asp Val Val Phe Ala Ile Asn Thr Asp Ala Val Met Val Gln
 65 70 75 80
 Asp Ala Ile Ser Glu Lys Leu Gly Asn Phe Ile His Tyr Met Ala Thr
 85 90 95
 Phe Val Ser Gly Phe Ile Val Gly Phe Thr Ala Val Trp Gln Leu Ala
 100 105 110
 Leu Val Thr Leu Ala Val Val Pro Leu Ile Ala Val Ile Gly Gly Ile
 115 120 125
 His Thr Thr Leu Ser Lys Leu Ser Asn Lys Ser Gln Glu Ser Leu
 130 135 140
 Ser Gln Ala Gly Asn Ile Val Glu Gln Thr Val Val Gln Ile Arg Val
 145 150 155 160
 Val Met Ala Phe Val Gly Glu Ser Arg Ala Ser Gln Ala Tyr Ser Ser
 165 170 175
 Ala Leu Lys Ile Ala Gln Lys Leu Gly Tyr Lys Thr Gly Leu Ala Lys
 180 185 190
 Gly Met Gly Leu Gly Ala Thr Tyr Phe Val Val Phe Cys Cys Tyr Ala
 195 200 205
 Leu Leu Leu Trp Tyr Gly Gly Tyr Leu Val Arg His His Leu Thr Asn
 210 215 220
 Gly Gly Leu Ala Ile Ala Thr Met Phe Ala Val Met Ile Gly Gly Leu
 225 230 235 240
 Ala Leu Gly Gln Ser Ala Pro Ser Met Ala Ala Phe Ala Lys Ala Lys
 245 250 255
 Val Ala Ala Ala Lys Ile Phe Arg Ile Ile Asp His Lys Pro Thr Ile
 260 265 270
 Glu Arg Asn Ser Glu Ser Gly Val Glu Leu Asp Ser Val Thr Gly Leu
 275 280 285
 Val Glu Leu Lys Asn Val Asp Phe Ser Tyr Pro Ser Arg Pro Asp Val
 290 295 300
 Lys Ile Leu Asn Asn Phe Cys Leu Ser Val Pro Ala Gly Lys Thr Ile
 305 310 315 320
 Ala Leu Val Gly Ser Ser Gly Ser Gly Lys Ser Thr Val Val Ser Leu
 325 330 335
 Ile Glu Arg Phe Tyr Asp Pro Asn Ser Gly Gln Val Leu Leu Asp Gly
 340 345 350
 Gln Asp Leu Lys Thr Leu Lys Leu Arg Trp Leu Arg Gln Gln Ile Gly
 355 360 365
 Leu Val Ser Gln Glu Pro Ala Leu Phe Ala Thr Ser Ile Lys Glu Asn
 370 375 380
 Ile Leu Leu Gly Arg Pro Asp Ala Asp Gln Val Glu Ile Glu Glu Ala
 385 390 395 400
 Ala Arg Val Ala Asn Ala His Ser Phe Ile Ile Lys Leu Pro Asp Gly
 405 410 415
 Phe Asp Thr Gln Val Gly Glu Arg Gly Leu Gln Leu Ser Gly Gly Gln
 420 425 430
 Lys Gln Arg Ile Ala Ile Ala Arg Ala Met Leu Lys Asn Pro Ala Ile
 435 440 445
 Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ser Glu Ser Glu Lys
 450 455 460
 Leu Val Gln Glu Ala Leu Asp Arg Phe Met Ile Gly Arg Thr Thr Leu
 465 470 475 480
 Ile Ile Ala His Arg Leu Ser Thr Ile Arg Lys Ala Asp Leu Val Ala
 485 490 495
 Val Leu Gln Gln Gly Ser Val Ser Glu Ile Gly Thr His Asp Glu Leu
 500 505 510
 Phe Ser Lys Gly Glu Asn Gly Val Tyr Ala Lys Leu Ile Lys Met Gln.
 515 520 525
 Glu Ala Ala His Glu Thr Ala Met Ser Asn Ala Arg Lys Ser Ser Ala
 530 535 540

Arg Pro Ser Ser Ala Arg Asn Ser Val Ser Ser Pro Ile Met Thr Arg
 545 550 555 560
 Asn Ser Ser Tyr Gly Arg Ser Pro Tyr Ser Arg Arg Leu Ser Asp Phe
 565 570 575
 Ser Thr Ser Asp Phe Ser Leu Ser Ile Asp Ala Ser Ser Tyr Pro Asn
 580 585 590
 Tyr Arg Asn Glu Lys Leu Ala Phe Lys Asp Gln Ala Asn Ser Phe Trp
 595 600 605
 Arg Leu Ala Lys Met Asn Ser Pro Glu Trp Lys Tyr Ala Leu Leu Gly
 610 615 620
 Ser Val Gly Ser Val Ile Cys Gly Ser Leu Ser Ala Phe Phe Ala Tyr
 625 630 635 640
 Val Leu Ser Ala Val Leu Ser Val Tyr Tyr Asn Pro Asp His Glu Tyr
 645 650 655
 Met Ile Lys Gln Ile Asp Lys Tyr Cys Tyr Leu Leu Ile Gly Leu Ser
 660 665 670
 Ser Ala Ala Leu Val Phe Asn Thr Leu Gln His Ser Phe Trp Asp Ile
 675 680 685
 Val Gly Glu Asn Leu Thr Lys Arg Val Arg Glu Lys Met Leu Ser Ala
 690 695 700
 Val Leu Lys Asn Glu Met Ala Trp Phe Asp Gln Glu Glu Asn Glu Ser
 705 710 715 720
 Ala Arg Ile Ala Ala Arg Leu Ala Leu Asp Ala Asn Asn Val Arg Ser
 725 730 735
 Ala Ile Gly Asp Arg Ile Ser Val Ile Val Gln Asn Thr Ala Leu Met
 740 745 750
 Leu Val Ala Cys Thr Ala Gly Phe Val Leu Gln Trp Arg Leu Ala Leu
 755 760 765
 Val Leu Val Ala Val Phe Pro Val Val Val Ala Ala Thr Val Leu Gln
 770 775 780
 Lys Met Phe Met Thr Gly Phe Ser Gly Asp Leu Glu Ala Ala His Ala
 785 790 795 800
 Lys Gly Thr Gln Leu Ala Gly Glu Ala Ile Ala Asn Val Arg Thr Val
 805 810 815
 Ala Ala Phe Asn Ser Glu Ala Lys Ile Val Arg Leu Tyr Thr Ala Asn
 820 825 830
 Leu Glu Pro Pro Leu Lys Arg Cys Phe Trp Lys Gly Gln Ile Ala Gly
 835 840 845
 Ser Gly Tyr Gly Val Ala Gln Phe Cys Leu Tyr Ala Ser Tyr Ala Leu
 850 855 860
 Gly Leu Trp Tyr Ala Ser Trp Leu Val Lys His Gly Ile Ser Asp Phe
 865 870 875 880
 Ser Lys Thr Ile Arg Val Phe Met Val Leu Met Val Ser Ala Asn Gly
 885 890 895
 Ala Ala Glu Thr Leu Thr Leu Ala Pro Asp Phe Ile Lys Gly Gly Gln
 900 905 910
 Ala Met Arg Ser Val Phe Glu Leu Leu Asp Arg Lys Thr Glu Ile Glu
 915 920 925
 Pro Asp Asp Pro Asp Thr Thr Pro Val Pro Asp Arg Leu Arg Gly Glu
 930 935 940
 Val Glu Leu Lys His Ile Asp Phe Ser Tyr Pro Ser Arg Pro Asp Ile
 945 950 955 960
 Gln Ile Phe Arg Asp Leu Ser Leu Arg Ala Arg Ala Gly Lys Thr Leu
 965 970 975
 Ala Leu Val Gly Pro Ser Gly Cys Gly Lys Ser Ser Val Ile Ser Leu
 980 985 990
 Ile Gln Arg Phe Tyr Glu Pro Ser Ser Gly Arg Val Met Ile Asp Gly
 995 1000 1005
 Lys Asp Ile Arg Lys Tyr Asn Leu Lys Ala Ile Arg Lys His Ile Ala
 1010 1015 1020
 Ile Val Pro Gln Glu Pro Cys Leu Phe Gly Thr Thr Ile Tyr Glu Asn
 1025 1030 1035 1040

Ile Ala Tyr Gly His Glu Cys Ala Thr Glu Ala Glu Ile Ile Gln Ala
 1045 1050 1055
 Ala Thr Leu Ala Ser Ala His Lys Phe Ile Ser Ala Leu Pro Glu Gly
 1060 1065 1070
 Tyr Lys Thr Tyr Val Gly Glu Arg Gly Val Gln Leu Ser Gly Gly Gln
 1075 1080 1085
 Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Lys Ala Glu Ile
 1090 1095 1100
 Met Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ala Glu Ser Glu Arg
 1105 1110 1115 1120
 Ser Val Gln Glu Ala Leu Asp Gln Ala Cys Ser Gly Arg Thr Ser Ile
 1125 1130 1135
 Val Val Ala His Arg Leu Ser Thr Ile Arg Asn Ala His Val Ile Ala
 1140 1145 1150
 Val Ile Asp Asp Gly Lys Val Ala Glu Gln Gly Ser His Ser His Leu
 1155 1160 1165
 Leu Lys Asn His Pro Asp Gly Ile Tyr Ala Arg Met Ile Gln Leu Gln
 1170 1175 1180
 Arg Phe Thr His Thr Gln Val Ile Gly Met Thr Ser Gly Ser Ser Ser
 1185 1190 1195 1200
 Arg Val Lys Glu Asp Asp Ala
 1205

<210> 8

<211> 1161

<212> PRT

<213> Arabidopsis thaliana

<300>

<308> Genbank CAA71277

<309> 1997-05-19

<400> 8

Lys Gln Ala Ser His Arg Val Ala Lys Tyr Ser Leu Asp Phe Val Tyr
 1 5 10 15
 Leu Ser Val Ala Ile Leu Phe Ser Ser Trp Leu Glu Val Ala Cys Trp
 20 25 30
 Met His Thr Gly Glu Arg Gln Ala Ala Lys Met Arg Arg Ala Tyr Leu
 35 40 45
 Arg Ser Met Leu Ser Gln Asp Ile Ser Leu Phe Asp Thr Glu Ala Ser
 50 55 60
 Thr Gly Glu Val Ile Ser Ala Ile Thr Ser Asp Ile Leu Val Val Gln
 65 70 75 80
 Asp Ala Leu Ser Glu Val Gly Asn Phe Leu His Tyr Ile Ser Arg
 85 90 95
 Phe Ile Ala Gly Phe Ala Ile Gly Phe Thr Ser Val Trp Gln Ile Ser
 100 105 110
 Leu Val Thr Leu Ser Ile Val Pro Leu Ile Ala Leu Ala Gly Gly Ile
 115 120 125
 Tyr Ala Phe Val Ala Ile Gly Leu Ile Ala Arg Val Arg Lys Ser Tyr
 130 135 140
 Ile Lys Ala Gly Glu Ile Ala Glu Glu Val Ile Gly Asn Val Arg Thr
 145 150 155 160
 Val Gln Ala Phe Thr Gly Glu Glu Arg Ala Val Arg Leu Tyr Arg Glu
 165 170 175
 Ala Leu Glu Asn Thr Tyr Lys Tyr Gly Arg Lys Ala Gly Leu Thr Lys
 180 185 190
 Gly Leu Gly Leu Gly Ser Met His Cys Val Leu Phe Leu Ser Trp Ala
 195 200 205
 Leu Leu Val Trp Phe Thr Ser Val Val Val His Lys Asp Ile Ala Asp
 210 215 220
 Gly Gly Lys Ser Phe Thr Thr Met Leu Asn Val Val Ile Ala Gly Leu

225	230	235	240
Ser Leu Gly Gln Ala Ala Pro Asp Ile Ser Ala Phe Val Arg Ala Lys			
245	250	255	
Ala Ala Ala Tyr Pro Ile Phe Lys Met Ile Glu Arg Asn Thr Val Thr			
260	265	270	
Lys Thr Ser Ala Lys Ser Gly Arg Lys Leu Gly Lys Val Asp Gly His			
275	280	285	
Ile Gln Phe Lys Asp Ala Thr Phe Ser Tyr Pro Ser Arg Pro Asp Val			
290	295	300	
Val Ile Phe Asp Arg Leu Asn Leu Ala Ile Pro Ala Gly Lys Ile Val			
305	310	315	320
Ala Leu Val Gly Gly Ser Gly Ser Gly Lys Ser Thr Val Ile Ser Leu			
325	330	335	
Ile Glu Arg Phe Tyr Glu Pro Ile Ser Gly Ala Val Leu Leu Asp Gly			
340	345	350	
Asn Asn Ile Ser Glu Leu Asp Ile Lys Trp Leu Arg Gly Gln Ile Gly			
355	360	365	
Leu Val Asn Gln Glu Pro Ala Leu Phe Ala Thr Thr Ile Arg Glu Asn			
370	375	380	
Ile Leu Tyr Gly Lys Asp Asp Ala Thr Ala Glu Glu Ile Thr Arg Ala			
385	390	395	400
Ala Lys Leu Ser Glu Ala Ile Ser Phe Ile Asn Asn Leu Pro Glu Gly			
405	410	415	
Phe Glu Thr Gln Val Gly Glu Arg Gly Ile Gln Leu Ser Gly Gly Gln			
420	425	430	
Lys Gln Arg Ile Ala Ile Ser Arg Ala Ile Val Lys Asn Pro Ser Ile			
435	440	445	
Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ala Glu Ser Glu Lys			
450	455	460	
Ser Val Gln Glu Ala Leu Asp Arg Val Met Val Gly Arg Thr Thr Val			
465	470	475	480
Val Val Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Ile Ile Ala			
485	490	495	
Val Val His Glu Gly Lys Ile Val Glu Phe Gly Asn His Glu Asn Leu			
500	505	510	
Ile Ser Asn Pro Asp Gly Ala Tyr Ser Ser Leu Leu Arg Leu Gln Glu			
515	520	525	
Thr Ala Ser Leu Gln Arg Asn Pro Ser Leu Asn Arg Thr Leu Ser Arg			
530	535	540	
Pro His Ser Ile Lys Tyr Ser Arg Glu Leu Ser Arg Thr Arg Ser Ser			
545	550	555	560
Phe Cys Ser Glu Arg Glu Ser Val Thr Arg Pro Asp Gly Ala Asp Pro			
565	570	575	
Ser Lys Lys Val Lys Val Thr Val Gly Arg Leu Tyr Ser Met Ile Arg			
580	585	590	
Pro Asp Trp Met Tyr Gly Val Cys Gly Thr Ile Cys Ala Phe Ile Ala			
595	600	605	
Gly Ser Gln Met Pro Leu Phe Ala Leu Gly Val Ser Gln Ala Leu Val			
610	615	620	
Ser Tyr Tyr Ser Gly Trp Asp Glu Thr Gln Lys Glu Ile Lys Lys Ile			
625	630	635	640
Ala Ile Leu Phe Cys Cys Ala Ser Val Ile Thr Leu Ile Val Tyr Thr			
645	650	655	
Ile Glu His Ile Cys Phe Gly Thr Met Gly Glu Arg Leu Thr Leu Arg			
660	665	670	
Val Arg Glu Asn Met Phe Arg Ala Ile Leu Lys Asn Glu Ile Gly Trp			
675	680	685	
Phe Asp Glu Val Asp Asn Thr Ser Ser Met Leu Ala Ser Arg Leu Glu			
690	695	700	
Ser Asp Ala Thr Leu Leu Lys Thr Ile Val Val Asp Arg Ser Thr Ile			
705	710	715	720
Leu Leu Gln Asn Leu Gly Leu Val Val Thr Ser Phe Ile Ile Ala Phe			

725	730	735
Ile Leu Asn Trp Arg Leu Thr Leu Val Val Leu Ala Thr Tyr Pro Leu		
740	745	750
Val Ile Ser Gly His Ile Ser Glu Lys Leu Phe Met Gln Gly Tyr Gly		
755	760	765
Gly Asp Leu Asn Lys Ala Tyr Leu Lys Ala Asn Met Leu Ala Gly Glu		
770	775	780
Ser Val Ser Asn Ile Arg Thr Val Ala Ala Phe Cys Ala Glu Glu Lys		
785	790	795
Ile Leu Glu Leu Tyr Ser Arg Glu Leu Leu Glu Pro Ser Lys Ser Ser		
805	810	815
Phe Arg Arg Gly Gln Ile Ala Gly Leu Phe Tyr Gly Val Ser Gln Phe		
820	825	830
Phe Ile Phe Ser Ser Tyr Gly Leu Ala Leu Trp Tyr Gly Ser Thr Leu		
835	840	845
Met Asp Lys Gly Leu Ala Gly Phe Lys Ser Val Met Lys Thr Phe Met		
850	855	860
Val Leu Ile Val Thr Ala Leu Ala Met Gly Glu Thr Leu Ala Leu Ala		
865	870	875
Pro Asp Leu Leu Lys Gly Asn Gln Met Val Ala Ser Val Phe Glu Ile		
885	890	895
Leu Asp Arg Lys Thr Gln Ile Val Gly Glu Thr Ser Glu Glu Leu Asn		
900	905	910
Asn Val Glu Gly Thr Ile Glu Leu Lys Gly Val His Phe Ser Tyr Pro		
915	920	925
Ser Arg Pro Asp Val Val Ile Phe Arg Asp Phe Asp Leu Ile Val Arg		
930	935	940
Ala Gly Lys Ser Met Ala Leu Val Gly Gln Ser Gly Ser Gly Lys Ser		
945	950	955
Ser Val Ile Ser Leu Ile Leu Arg Phe Tyr Asp Pro Thr Ala Gly Lys		
965	970	975
Val Met Ile Glu Gly Lys Asp Ile Lys Lys Leu Asp Leu Lys Ala Leu		
980	985	990
Arg Lys His Ile Gly Leu Val Gln Gln Glu Pro Ala Leu Phe Ala Thr		
995	1000	1005
Thr Ile Tyr Glu Asn Ile Leu Tyr Gly Asn Glu Gly Ala Ser Gln Ser		
1010	1015	1020
Glu Val Val Glu Ser Ala Met Leu Ala Asn Ala His Ser Phe Ile Thr		
1025	1030	1035
Ser Leu Pro Glu Gly Tyr Ser Thr Lys Val Gly Glu Arg Gly Val Gln		
1045	1050	1055
Met Ser Gly Gly Gln Arg Gln Arg Ile Ala Ile Ala Arg Ala Ile Leu		
1060	1065	1070
Lys Asn Pro Ala Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp		
1075	1080	1085
Val Glu Ser Glu Arg Val Val Gln Gln Ala Leu Asp Arg Leu Met Ala		
1090	1095	1100
Asn Arg Thr Thr Val Val Ala His Arg Leu Ser Thr Ile Lys Asn		
1105	1110	1115
Ala Asp Thr Ile Ser Val Leu His Gly Gly Lys Ile Val Glu Gln Gly		
1125	1130	1135
Ser His Arg Lys Leu Val Leu Asn Lys Ser Gly Pro Tyr Phe Lys Leu		
1140	1145	1150
Ile Ser Leu Gln Gln Gln Gln Pro		
1155	1160	

<210> 9

<211> 986

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic consensus sequence

<400> 9

Met Asp Glu Gly Ala Leu Ser Asp Arg Lys Lys Lys Val Gly Val Leu
 1 5 10 15
 Phe Arg Tyr Ala Asp Trp Asp Lys Leu Met Leu Gly Thr Leu Ala Ala
 20 25 30
 Ile Ile His Gly Ser Leu Pro Leu Met Met Ile Val Phe Gly Glu Met
 35 40 45
 Thr Asp Phe Ala Ser Lys Leu Glu Glu Glu Met Thr Arg Tyr Ala Tyr
 50 55 60
 Tyr Tyr Ser Gly Leu Gly Ala Gly Val Leu Val Ala Tyr Ile Gln Val
 65 70 75 80
 Ser Trp Leu Ala Ala Gly Arg Gln Ile Arg Lys Ile Arg Lys Phe Phe
 85 90 95
 His Ala Ile Leu Arg Gln Glu Ile Gly Trp Phe Asp Ile Thr Gly Glu
 100 105 110
 Leu Asn Thr Arg Leu Thr Asp Asp Ile Ser Lys Ile Asn Asp Gly Ile
 115 120 125
 Gly Asp Lys Val Gly Met Phe Phe Gln Val Ala Thr Phe Leu Ala Gly
 130 135 140
 Phe Ile Val Gly Phe Ile Gly Trp Lys Leu Thr Leu Val Ile Leu Ala
 145 150 155 160
 Ile Ser Pro Ile Ile Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu
 165 170 175
 Ser Phe Ser Lys Glu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu
 180 185 190
 Glu Leu Gly Ala Ile Arg Thr Val Ile Ala Phe Gly Gln Lys Glu
 195 200 205
 Leu Glu Arg Tyr Gln Lys Leu Glu Ala Lys Ile Gly Ile Lys Lys
 210 215 220
 Ala Ile Ser Ala Ile Ser Met Gly Ala Phe Leu Leu Ile Tyr Ala Ser
 225 230 235 240
 Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser Glu Tyr
 245 250 255
 Thr Ile Gly Ala Met Thr Val Phe Phe Ser Ile Leu Ile Gly Ala Phe
 260 265 270
 Ser Val Gly Gln Ala Ala Pro Ile Asp Ala Phe Ala Asn Ala Arg Gly
 275 280 285
 Ala Ala Tyr Ile Phe Lys Ile Ile Asp Asn Pro Ser Ile Asp Ser Phe
 290 295 300
 Ser Gly His Lys Pro Asp Ile Lys Gly Asn Leu Glu Phe Lys Asp Val
 305 310 315 320
 His Phe Ser Tyr Pro Ser Arg Glu Val Lys Ile Leu Lys Gly Leu Asn
 325 330 335
 Leu Lys Val Ser Gly Gln Thr Val Ala Leu Val Gly Ser Gly Cys Gly
 340 345 350
 Lys Ser Thr Thr Val Gln Leu Ile Gln Arg Leu Tyr Asp Pro Glu Gly
 355 360 365
 Val Ile Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg Tyr Leu Arg
 370 375 380
 Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ala Thr Thr
 385 390 395 400
 Ile Ala Glu Asn Ile Tyr Gly Arg Asp Val Thr Met Asp Glu Ile Glu
 405 410 415
 Lys Ala Val Lys Glu Ala Asn Ala Tyr Glu Phe Ile Met Lys Leu Pro
 420 425 430
 Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly Gln
 435 440 445
 Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Asn Pro Lys Ile
 450 455 460
 Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Ala

22.

465	470	475	480
Val Val Gln Ala Leu Asp Lys Ala Arg Gly Arg Thr Thr Ile Val Ile			
485	490	495	
Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile Ala Gly Phe			
500	505	510	
Glu Asp Gly Val Ile Val Glu Gly Ser His Asp Glu Leu Met Lys Lys			
515	520	525	
Gly Val Tyr Phe Lys Leu Val Met Gln Thr Gly Ile Asn Ser Glu Ala			
530	535	540	
Met Lys Ser Leu Arg Ser Ser Gln Asp Arg Asp Asp Leu Glu Val Pro			
545	550	555	560
Val Ser Phe Trp Arg Val Leu Lys Leu Asn Thr Glu Trp Pro Tyr Val			
565	570	575	
Val Gly Thr Val Cys Ala Ile Ile Asn Gly Leu Gln Pro Phe Ala Ile			
580	585	590	
Ile Leu Ser Ile Ile Ala Val Phe Asp Asp Val Lys Leu Leu Leu			
595	600	605	
Ala Val Val Pro Ile Ile Val Val Ala Gly Ile Val Glu Met Lys Leu			
610	615	620	
Leu Gly Asn Ala Arg Asp Lys Lys Leu Glu Ala Gly Lys Ile Ala Thr			
625	630	635	640
Glu Ala Ile Glu Asn Ile Arg Thr Val Val Ser Leu Thr Glu Lys Phe			
645	650	655	
Glu Ser Met Tyr Leu Pro Tyr Arg Asn Ser Val Arg Lys Ala His Ile			
660	665	670	
Tyr Gly Ile Thr Phe Ser Ile Ser Gln Ala Met Tyr Phe Ser Tyr Ala			
675	680	685	
Gly Cys Phe Arg Phe Gly Ala Tyr Leu Val His Gly Leu Met Phe Val			
690	695	700	
Ile Leu Val Phe Ser Ala Ile Val Leu Gly Ala Val Ala Leu Gly Thr			
705	710	715	720
Ser Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Leu Ser Ala Ala Leu			
725	730	735	
Phe Leu Ile Glu Arg Pro Ile Asp Ser Tyr Ser Glu Gly Leu Pro Asp			
740	745	750	
Leu Glu Gly Val Phe Val Phe Asn Tyr Pro Thr Arg Pro Asp Val Pro			
755	760	765	
Val Leu Gln Gly Leu Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala			
770	775	780	
Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu			
785	790	795	800
Glu Arg Phe Tyr Asp Pro Leu Ala Gly Lys Val Leu Leu Asp Gly Lys			
805	810	815	
Glu Ile Lys Leu Asn Val Gln Trp Leu Arg Ala His Leu Gly Ile			
820	825	830	
Val Ser Gln Glu Pro Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile			
835	840	845	
Ala Tyr Gly Asp Asn Ser Arg Val Ser Asp Glu Ile Val Ala Ala Lys			
850	855	860	
Ala Asn Ile His Phe Ile Glu Thr Leu Pro Asp Lys Tyr Thr Arg Val			
865	870	875	880
Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala			
885	890	895	
Ala Ile Ala Arg Ala Leu Ile Arg Gln Pro Ile Leu Leu Asp Glu			
900	905	910	
Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val Gln Glu Ala			
915	920	925	
Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile Ala His Arg			
930	935	940	
Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Ile Asn Gly Lys			
945	950	955	960
Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala Gln Lys Gly Ile			

23.

965 970 975
 Tyr Phe Ser Met Val Val Gln Ala Gly Thr
 980 985

<210> 10
<211> 14000
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<222> (3429)...(0)
<223> Translation start codon

<300>
<308> Genbank AP000386
<309> 1999-08-03

<400> 10
 caattaatataccaaaatt tcgtatatacattttaaaatttcaactactgatttttttttaga
 aaaaaagata gatacgatggacatgcgtcgaaatttttaatatatcctatgtaacagtgt
 tcatataatc aaaaaagaaa aaataattac tattttttgtgttcttgcacaatgcgtt
 agaaaactcgagaccacttgtttttcctcttatgatttcgatcttgcatacatccaca
 gcatctcac ggtacaaaatatcttacaaatggacatgttatcttgcataatcaag
 gagttagaaa gacagaactgaaagcttcttgcgtatcgatataatgttcaagctac
 caccatcttagggagacaagaatggaagaagatggacacgttcatcgacttgcgtt
 cttaacttaaa tgggtcgaca aacaatatacgaaaccaactgtctctaatttgcgtt
 tgataggtgg tatgactaaggctcttaaat ttgggttacgttgcgttgcgttgcgtt
 aaaatttttggtttagtgcataatgttttttttttttttttttttttttttttttttttt
 acgctatt
 aattcaaaacaatccctatcttacgatcaatactacatcttgcgttgcgttgcgtt
 aagaccgttc tatttacatt
 gttggagatataccttagtt
 acggaaacatcttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
 aaccacttca catggctgc ttttacatttataaccgttgcgttgcgttgcgttgcgtt
 tgtaattttttaactattat tccaaacaccttttttttttttttttttttttttttttt
 agaaatatttttaatttcttaaatttataatgaaagtaaaatgttgcgttgcgttgcgtt
 tgtggaaaac ttaaaaagtttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
 gaaaaaaagaa gatcttt
 tatatacaag aatttacat aaaaaaaaaatcttgcgttgcgttgcgttgcgttgcgtt
 tctgttgcataatt
 tcaccaaatt
 acaaatttaca cttccataaaac ttttttttttttttttttttttttttttttttttt
 tgcgttataacccaaaacagtttttttttttttttttttttttttttttttttttttt
 aattttatata tcgaaatttgatccatccatccatccatccatccatccatccatcc
 tctaaatgttacattacaaaatccatccatccatccatccatccatccatccatcc
 tttggcgca ttctggtaaaatccatccatccatccatccatccatccatccatcc
 caaatttttaa aatgacaacttccatccatccatccatccatccatccatccatcc
 cacacatattttccaaacaaatccatccatccatccatccatccatccatccatcc
 aactgtgtgg tttgcacaagttccatccatccatccatccatccatccatccatcc
 cagtttcgtatctcggttt
 gtatgagaga gtcagagagatccatccatccatccatccatccatccatccatcc
 ttgttattttactcgatataatccatccatccatccatccatccatccatccatcc
 aatggagat aatgaaatggatccatccatccatccatccatccatccatccatcc
 ataacacaaa aagtaatcgatccatccatccatccatccatccatccatccatcc
 atactaatgttctaaatgtgttccatccatccatccatccatccatccatccatcc
 aaaatataaa gttcttcatccatccatccatccatccatccatccatccatccatcc
 cctaaatttttagaaatttatccatccatccatccatccatccatccatccatccatcc
 tgttttcttaa atgtgacatgttccatccatccatccatccatccatccatccatcc
 ccaaaggataca tcatcattgttccatccatccatccatccatccatccatccatcc
 acattactta tttaaatqaaatccatccatccatccatccatccatccatccatcc

aaatacttct atataatTTT agacaagttg tctatacata tatatatata tataatatata	2640
tatatatatg tatttacaca aaaatcaagt ttTcttaatg taacaatata aaaatataaa	2700
atatctaagt ttgtttaaaa attatTTGA ccaaaaaaaaaaaa aaaaaactgt aatcaaactt	2760
tcattggatt atatctaact ctaaacatga atTTTtatac aatgacatgt tcaataaaat	2820
tcccatttca tagTTGacc agaaaaaaatg cttgcagatt tggtaaaatc tctacttatg	2880
caaacaccatt gaatcacacc agatTTTGTt ttgttagtact ttaaaaatat taattgaaca	2940
caacataact ttaacaaaaa agatTTTtat aaaaaaaaaa cttctaaaaa tgacattaat	3000
taacacaaaat tagtcaattc aacaaatcca ataaaatcaa agttaaaccct taattgttt	3060
tttttccat ttTacaAAA gtaaaacatt aattacatca actagcaaca cgaatctc	3120
aatctctcat gtctcaatga gtcttGacc actagTttc atcaactctt ctcccctc	3180
tatataccaa tcacaccctt ctccaaccac actctcattc tctctctt ctcaccactt	3240
caaaaacaaga cactcgaaa agagttcttg aacttcacaa aacaattgtc agatTTTcaa	3300
gaaaaacttt ataaaacaaa aacatTTca ttctttctt ctctctctt cactgctcaa	3360
tgatctcggt ttctcactaa accaactcgT ttcttcttac ttctttaac tcggatctac	3420
aaaaaaccat gtcggaaact aacacaaccg atGCCAAGAC tggccagca gaagcagaga	3480
agaagaaaaga acagagTTT ccattttta aacttttcc ttTcgctgat aaatttgatt	3540
atctcttaat gttcgttgg tctcttggT ccattgttca tggcttcc atgcctgtct	3600
tcttttact ctttggTcaa atggtaatg gatttggtaa aaaccaaaatg gatttacatc	3660
aatggTTca tgaagtctt agagaatgc ttTTTTCT ttcttggTT tatcaaatta	3720
gatccaagat ctgatctaat ttTgtttt gtgaaatttt gcagtattt ctatattc	3780
tctacttggg ttggTcgTT tggTTCTT cttacgcagg tttggTTT acaaattccaa	3840
tcttctttt ctttatttcaat caatcaagaa acccagtaat taaatcacat tataaacaag	3900
atcaagaaat ttTTGcaca aaaaaaaaaaag aaaacaagat caagaaatTTT ataaagTTT	3960
gattaaacat ttgcattatt ttctttttt tggTTcaacc aattaaccca ttaacataaa	4020
ttaaatcaga ttattaggca agaaaatctaa aggtgtattt ttggTTTTT atttgattt	4080
tcctcaaaagt gaccatttac tctgaaggta aaacatTTT ttTactcta caacaaaaac	4140
ccaaacttctt ttTTTtttgc cttcaaaattt ataaaaaaa aagaagctt aaactttgtt	4200
aaaatcttgc ttTTTTGTt catTcgTTT tgatttagac taaaaaaacc atTTTtatag	4260
aatgttggTt acataatgttga tgaatTTGGG ttCGGAAGCA actttccgtt ccaaccgtt	4320
ttatagacaa gaaatctaa ggtgtattt ttggTTTTT atttgatttct tccacaaaagt	4380
gatcatttac tctggtaaac atttttttac tctacaacaa aaacccaact ttTTTatgtt	4440
tgcttcaata aataaaaacc tagaaacaga aatcacaatc tagagagaat caaaattata	4500
tataaaaaaa aaacacttca aattttttaaa aattttataa tggtaaaagg ataagccaag	4560
tccacgttat ccatggacta ctactttgtc tataatcgaaa aaaaaaaaaa aatgggcattc	4620
tctctcacat ttattacaac ttcaaaaaaa ttcttgcatt aataaccata atTTTtttgc	4680
aaataatTTT acagagatag catgttggat gtattctgg aaaaagacaag tagcagcatt	4740
aaggaagaaa tatcttgaag cagtattttaa acaagacgtt ggTTCTTt atactgtgc	4800
tagaactggT gacattgtct tttagtggTt tactgataact ctTCTTgtc aagatggccat	4860
tagtggaaag gtaaccattt ttTTTTTtac tccaacaaa atctagtatt taccggcggg	4920
tcccattttt ttcatgatca atctttatca aagTTTggg tccgTTTatg ttagcaaccg	4980
tcgTTTatct tgcgcctcag gtggTTtaggg aagaaaaaag actatagatt gatTTTTT	5040
tttggTTaaa taaaagtgg attttttca taagatgtg aaaataagtA atTTTtttgc	5100
acaaatttgc tatagaaataa gaggatTTT ttcaacttta aactaaaact taaatgtat	5160
agtactcatt ttcttacatt tttaatataa aaatagCTTc ttTTTTCCA ttgtgaaaaa	5220
tatttattat gcaaataat gtttctttaa caagttaaat aaatatttgc tattaaaaaa	5280
aatgtgtaaa gtaccttcaa attttatag tacattttat ctaaaactgt ttTTTTTTT	5340
gcaatttggT cctgttctgt tggTgcacgt tagcaagcac gagctaacat gcaactgggtc	5400
cccttagtttC attattatca tcaactttt ttattgttga tgaagtgtat taataacaga	5460
gtatgtaaa aaaaattgaa ttTctcaggT tggaaactttt atacattacc tctcaacatt	5520
tttggcgggA tttagttagtgc gatTTTtac agcatggaaa tttagTTTgt ttagtggTgc	5580
tgtgattccc ggaatcgctt tgcggcgggTTtataacgct tataactca ccggattac	5640
ttcaaaagac cgtgaatctt atgctaaacgc cggTgttac gcccagcagg taaaAAAaga	5700
ttaaagtttgc ttctttattt tggTTTTTattt aatgcccacc aactgttgcg cgtatgtct	5760
ttaaactgtt cttaggtttt cttctttgtt cttgatctt caaatgattt ttTTTTTTT	5820
tcattgttcc ttatgcaatc caaagactta aacagtgttt tcaactaattc aaaatcttgc	5880
cttttcttgc gtggTTtaat gattgatgtt ttggTTTtca aggcaattgc tcaagtgc	5940
actgtttattt cttagtggT agagagtaag gcacttaatg cgtattcga tgcgattcag	6000
tatacgttta agctcggtt aaaaagcccccc atggctaaag gttggggTTT aggatgtact	6060
tatggaaatag ttgtatgtc atggcTTTGt gttttgggtt atgctggagt ttttattcgg	6120
aatggacaaa ccgatggagg aaaggcgttt actgctat tctctgctat tggggTggaa	6180
atgtaaagat tcaaaacata acaatgtgt gttttgtgt attttgtttt ttgttattac	6240
ttggatgtca ctTTTtttgc ttgtgtgtgt tttaggagt tggggcaat ctttctcgaa	6300

tcttggggcg tttagtaaag gtaaagcggc tggttataag ttgatggaga taattaacca	6360
gagaccgacg ataattcaag acccggttga tggaaaatgt ttgatcaag ttcatggaa	6420
cattgagtt aaagatgtga ctttagcta tccttcacgg cctgtatgtt tgatcttcag	6480
gaactttaat attttcttc ctctcgaa aactgtggcg gttgttggtg ggagtggctc	6540
tggaaagagt actgttggc ccctcattga gagattctat gatccaaaca gcggtaattt	6600
gattgaattt gtttttgc attttagtct ttggctatgt actggatcat aactttgtt	6660
atttttctt gatgagcagg gcaaattctg ttggatggt ttgagataaa gacgcttcag	6720
ttgaagttt tgctgtaca aatcgggctt gtgaatcaag aacctgcgtc ctttgcact	6780
actatactag agaacatact ctatggaaag cctgtatcaa caatgggtga agttgaagct	6840
gctgttccg ctgcgaatgc gcatagttt attacattac ttcttcaaagg ctacgacaca	6900
caggtataaa tcaaattttt gattatatgt ctatgttata tcatggcctt ttgcttaatt	6960
ttttgttga tgcataataca attaggttgg agaacgtgg gttcaactct caggtggaca	7020
gaagcagaga attgcaattt cttagggcgat gttgaagac ccaaagattc ttgtactaga	7080
tgaagctaca agcgcttgc atgctagctc tgagagcatt gttcaggaaag ctttagacag	7140
agtcatggtg gggaggacca ctgttggtt tgctcatcgt ctctgcacca tcagaaatgt	7200
tgattccatt gcccgtatac agcaaggcca agttgttga accggaacac atgaagaact	7260
cattgccaaa tccggtgctt acgcattccct catcaggtt cagaaatgg ttggtactcg	7320
agatttctca aaccgtcaa ctctgtgcac tcgttcaacc cgtttgagcc attcaactgtc	7380
aacgaaatca ctcagtttaa gtcaggaaag tttgagaaat ctgagctatt ttacagcac	7440
tggagctgat ggtcgatag agatgattt aatgcagag actgaccgaa agactcgtgc	7500
ccctgaaaat tacttctaca ggcttctcaa gcttaattca cccggaaatggc ttactcaat	7560
catggggaca gtaggtctaa ttcttctgg tttcatttgtt cctacatttg ctattgtat	7620
gagcaacatg atcgaatgtc ttactacac agactatgtat tcaatggaaa ggaaaacaaa	7680
agagtatgtt ttcatctaca ttggtgctgg tctctatgtc gtgggtgctt atttgatcca	7740
acattactt ttagcatca tgggagaaaa cctcacaaca agagtaagaa gaatgtatgc	7800
ctcaggatgt tatcaaattt tcttgcattt gcttaaaatc actttccat ttcttatttt	7860
ggtttcttga ttgttcttat tttagctatct tgagaaacga agttgttgg ttcgatgagg	7920
atgaacacaaa ctcaagcctg atcgctgcac gtttagctac tgatgcagca gatgttaat	7980
ccgctatagc cgagaaatc tcaatgtt tacaaaacat gacttcaattt ctcacatct	8040
tcatagtcgc ttctcatgtc gaatggagag tctcactt catcttaggc acatccccac	8100
ttcttagtctt cgtcaacttt gtcaggtaa ataatctaat tttttactc aaaatcttc	8160
aatattcatc aatcattaaa atataattgg aatcttgcattt tcacattat gatcttaaga	8220
aaaacacaca aaaggccaga tttttataaa ttatatttg ttttcaaaa gttcaaaact	8280
ttatagaaca tggcaacaca gccactgcct ctacagtgc ttcatcttct aactttatcc	8340
aagtttgcattt ttatgtttt aataataatc ataaaagaat tattaagaag cttttttttt	8400
ctactttttt gaaatagtgt aagggtcaag atcatggagc cctcacatca ataaatgtgc	8460
aaaaaaaaatt aaaaacagt aggttttagt ttactctgt ggcattgttg aagaatattt	8520
attatatagt ttcttatttgtt actatgaccc atagataaca gtgttcaacgaa aatagctaa	8580
gattcctctg tcttttgcct ctgtctaaatc tattttactt taagtttca tattttactt	8640
actctctgaa ctctgaactg tgatcccact tctctttta tttaattttt ttgccctataa	8700
aacctcacca caaaaatcca aaaaatctgc aattttttt cttcttagaa ccaatatttt	8760
atttagagtt ttcttatttgtt caaagttgtt gtctcaatgc attattttact tattttactt	8820
tgtgtgtcag tgtttttaca ccatccacta gtcaatgtt gttgttgggt ttctttgtt	8880
tggtagatta gttgtgtat agttttttt ttgtttctaa ctatgtcata gtttcaggac	8940
tctgttttgc tatatcacca acattttttc acccgatgtc taatttttag ttgaaaaatc	9000
tatcaaatacg atttccacaca gaagaacata gataggcatt gtacttgcatt tgatgttgc	9060
gggatagatg gttcatatg tgatataact atatgtttt acgtcatgtt ttatgtggcga	9120
cttagacctt tgattgtcaa ttcttattttt tacaatgtaa ctattttactt catctgttgc	9180
tctaaatcat aagtattaaat atatgtggct acattgcaggc aactatctt gaaagggttt	9240
gctggagaca cagctaaaggc tcatgtcaag acttcaatgc ttgttgcattt aggactcgt	9300
acatttagaa ccgttagcgc ttcaatgc cagagcaaga ttctctttt gttctgtcat	9360
gagcttcgtg tacctcgaa aagaagctt taccgttgc aacatcttcggg ttctctttt	9420
gcccctctgc agcttgcattt ctatgttgc gaggctttaa ttctctgtt gttgcccac	9480
tttgcgttgc aaggctgttca aaggatgtca aagtgtttt gttttggc	9540
attactgcattt actctgttgc tggaaactgtc agtcttgcctt ctgaaattat tcggggaggt	9600
gaagctgtt gttcggtttt ctctgttgc gacagccaga ccaggatttgc cccggatgtat	9660
gctgtatgtt atccctgttgc gacatgttgc gggatgttgc agtttaggca ttgttgcattt	9720
gcttaccctt caagacccca cgtcatgtt ttcttgcattt aatctcgtatc aatctcgtatc	9780
ggacatagcc aagcttgcattt gggcgccat gggatgttgc agtttgcattt aatctcgtatc	9840
atcgagcgtt ttacatgttgc ttttgcattt aatctcgtatc aatctcgtatc aatctcgtatc	9900
cggtctaaacc tggaaatctt aaggctcaaa atcgatgttgc ttcaacaaga accagcttc	9960
ttcgccatgtt cgtatgttgc caacatgttgc tatgttgcattt aatctcgtatc aatctcgtatc	10020

gttaattatg cagctcgagc cgcaaatgct cacggttca tcagtggttt acctgaaggt
tacaaaactc cagttaggcga aagaggagtg cagttatcg gtggacagaa acagaggatc
gcatagcaa gagctgtct caagaacct acagttgc ttctagacga agcaactagc
gcactatgt cagaatcaga atgcgtctg caagaggcgtagagaggct catgagaggt
cgaccacccg tggtagttgc tcaccgctt tccaccataa gaggtgttgatgcatttgg
gtgattcaag acggccggat tggagcaaa ggcagccatt cagagctcgtagccgacca
gagggagctt attcaaggctt gttacagctt caaacacata ggatttgaag ctgtatcatg
gattaaaaac aaaaatcggtt tttgttaat ttttttataa ttaaaaactt aatttggaaag
atttctatgg actataacga taatatgaaat aggtgttagat aatgaagctt ttggagtt
tatgaaggtt cttaattaa gggttatttt tttcgatctt tgctttagtgccttgg
aacataagac tgaactatgt tttcgatctt ttttaattt atgcctcgaa aaaaaacaaa
atcaactcaa tactttggtt gatcaaaattt ccctaaaac atttggttca tgactagaat
tgatcgacca tggtagtttta ggggtttagt ctcgcattgtt ctaatcaggat tatgtggct
tacagcgact taatcaattt agaccggcta tcaaattttag attcagcccta aacagcaaaa
tttgtttata taatatccta aatcacagac cggattttt tttttataa actctatcg
ctgatccggta caaccccggt agaaacgcac tgaagttt catagtggac ttcaaccga
aattttgcag aaatttgcagat gagaatgagc tctaccgc attgacatgt tatttcgtt
ttgagatctt aagtaattttt ttgagatctt aagtaattttt ttggatttca agttccatt
tttttgcgg ttactcgct tgacatgtt tttcgatctt gtgtacttataa cataccacaa
tatatgttagg tttctaaaca tatataatag gaatgttgc ttatatatgtt gttgtt
acgtaaagag taatctgggtt ctacgttagt tctatctt tttttttttt gatatttga
ctggactgca tggtaatccct cgcgcattgtt gtttagttac cgggttgcatttcc attcatttgg
ccacgctcaa attttctaga agactcttcg gtcttggta caaaggccctt cgttccatt
atgacaagtt cattcatatt tttttgtgac aacttgcattt tggttgcattt ccgaatattt
catgaacgt tcaaaactcaa aacggcagct tcaccaactt aactatcgcatttcc
aaggctttaa gcaggaatattt tttttttttt tttttttttt tttttttttt
tgttcacatg tatataatttt tttttttttt tttttttttt tttttttttt
taatataatc aacaaaatggg tttttttttt tttttttttt tttttttttt tttttttttt
tttagttttt ttttctattt tttttttttt tttttttttt tttttttttt tttttttttt
taattttctat gaaaagaaaat tttttttttt tttttttttt tttttttttt tttttttttt
ttatttctatc tggttggatct tttttttttt tttttttttt tttttttttt tttttttttt
gataaaggcc atatcttc tttttttttt tttttttttt tttttttttt tttttttttt
actccaaataa ttttgaatag tttttttttt tttttttttt tttttttttt tttttttttt
aagacctgcg atcacaagac tttttttttt tttttttttt tttttttttt tttttttttt
taataaataa gactcacaat tttttttttt tttttttttt tttttttttt tttttttttt
attgcataatc ttagtgaaca tttttttttt tttttttttt tttttttttt tttttttttt
cacataaaacc taaaagcatc tttttttttt tttttttttt tttttttttt tttttttttt
acaaggatcg aattttatgg tttttttttt tttttttttt tttttttttt tttttttttt
aaataattat gaacatggaaat tttttttttt tttttttttt tttttttttt tttttttttt
tgccctact catactgaca tttttttttt tttttttttt tttttttttt tttttttttt
tagtatgtgt atctgtttt tttttttttt tttttttttt tttttttttt tttttttttt
aggaacattt tgtaatcata tttttttttt tttttttttt tttttttttt tttttttttt
atttttggta acaaggatga tttttttttt tttttttttt tttttttttt tttttttttt
catcaagtaa ctgtatcacc tttttttttt tttttttttt tttttttttt tttttttttt
taatcaataa aaaatggaaa tttttttttt tttttttttt tttttttttt tttttttttt
aaactactttt catttggttt tttttttttt tttttttttt tttttttttt tttttttttt
ttgtttaattt ataatgatattttttttttt tttttttttt tttttttttt tttttttttt
ctcatccaaa tattattctc tttttttttt tttttttttt tttttttttt tttttttttt
agcgcatgg ccgtatctaa tttttttttt tttttttttt tttttttttt tttttttttt
atgttcaaaa aatattttt tttttttttt tttttttttt tttttttttt tttttttttt
aatgttcaaa gttttgtatt tttttttttt tttttttttt tttttttttt tttttttttt
ataaatggaaa agttaatacg tttttttttt tttttttttt tttttttttt tttttttttt
taaatggtaa aatataaaaca tttttttttt tttttttttt tttttttttt tttttttttt
tatgttattt gtattataat tttttttttt tttttttttt tttttttttt tttttttttt
aaagagggttt tgaggtgtta tttttttttt tttttttttt tttttttttt tttttttttt
tggaaaagtt tgaagactat tttttttttt tttttttttt tttttttttt tttttttttt
ttgtatgtatg agaaggcggaa tttttttttt tttttttttt tttttttttt tttttttttt
gtcactcggtt gtattattca tttttttttt tttttttttt tttttttttt tttttttttt
tcagaacatc atatccatca tttttttttt tttttttttt tttttttttt tttttttttt
gttaccccaa caggctttt tttttttttt tttttttttt tttttttttt tttttttttt
qaattctatq ttctqcatctt tttttttttt tttttttttt tttttttttt tttttttttt

ggtttaagtc ctaatacaga tttatttgtt gtgttatgtt tataaaccac attggaaccc 13800
aaactctaag agaatataag atcaatgtgt aattaataaa ttttatagtc attcgatata 13860
aacttagaaa gataacaaaa gtaagaacga gtatTTTaa gcgaatactc ttttagatatt 13920
cttgtattt atcattattt acaaaccatt aaacattttt gtagacccta aaatccgata 13980
tccaaaaaac aattcttattt 14000

<210> 11
<211> 29
<212> DNA
<213> *Arabidopsis thaliana*

<400> 11
cactgctcaa tgatctcggtt ttctcacta

29

<210> 12
<211> 30
<212> DNA
<213> *Arabidopsis thaliana*

<400> 12
cttgaatcac accaatgcaa tcaacacctc

30

<210> 13
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 13
cattttataaa taacgctgcg gacatctac

29

<210> 14
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 14
tttctccata ttgaccatca tactcattt

29

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/22363

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 800/278, 294, 300; 435/69.1, 71.2, 468, 419, 252.3; 320.1; 536/23.6, 24.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X ---	DUDLER ET AL. Structure of an mdr-like Gene from Arabidopsis thaliana. The Journal of Biological Chemistry. March 1992, Vol. 267, No. 9, pages 5882-5888, see pages 5883, 5885, and 5888.	24, 29-30 _____
Y	CHO et al. An Anion Channel in Arabidopsis Hypocotyls Activated by Blue Light. Proc. Natl. Acad. Sci. USA. July 1996, Vol. 93, pages 8134-8138, see page 8134.	1-6 1-2
X -- Y	EMYR DAVIES et al. Cloning and Characterization of a Novel P-Glycoprotein Homologue from Barley . Gene. June 1997, Vol. 199, pages 195-202, see whole document.	24, 29-30 _____ 1-6

 Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "E" document member of the same patent family

Date of the actual completion of the international search

23 DECEMBER 1999

Date of mailing of the international search report

27 JAN 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

MEDINA A. IDRAHIM

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/22363

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P ----	SIDLER et al. Involvement of an ABC Transporter in a Developmental Pathway Regulating Hypocotyl Cell Elongation in the Light. The Plant Cell. October 1998, Vol. 10, pages 1623-1636; see pages 1623 and 1629-1634.	24, 28-31 ----- 1-6, 9-23
Y	TOMMASINI et al. Differential Expression of Genes Coding for ABC Transporters after Treatment of Arabidopsis thaliana with Xenobiotics. FEBS Letters. May 1997, Vol. 411, pages 206-210, see page 206.	1-6, 24
A	US 5,786, 162 A (CORBISIER et al) 28 July 1998, see whole document.	1-6, 9-24, 28-31
A	US 5,073,677 A (HELMER et al) 17 December 1991, see whole document.	1-6, 9-24, 28-31

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/22363

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-6, 9-24, 28-31

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/22363

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):**C12N 5/04, 15/00, 15/09, 15/11, 15/29, 15/63, 15/74, 15/81, 15/82 ; A01H 5/00****A. CLASSIFICATION OF SUBJECT MATTER:**
US CL :**800/278, 294, 300; 435/69.1, 71.2, 468, 419, 252.3, 320.1; 536/23.6, 24.1****B. FIELDS SEARCHED**

Electronic data bases consulted (Name of data base and where practicable terms used):

DIALOG, WEST1.2a

SEARCH TERMS: MDR-LIKE GENES, P-GLYCOPROTEIN GENES, ARABIDOPSIS, NPPB, XENOBIOTIC, RESISTANT PLANTS, ABC TRANSPORTER, A_iPGP1 EXPRESSION, TRANSGENIC PLANT**BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING**

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-6, 9-24, 28-31, drawn to an isolated nucleic acid in a recombinant expression cassette, a vector comprising it, a transgenic plant, and a method for producing a plant with enhanced resistance to xenobiotic compounds.

Group II, claim(s) 7-8, 25-26, 32-38, drawn to an isolated protein and antibodies for the protein.

Group III, claim(s) 27, drawn to an oligonucleotide.

Group IV, claim(s) 39-40, drawn to P-glycoprotein gene promoter.

Group V, claim(s) 41-45, drawn to a plant with mutated pIPAC gene and a method of making it.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The claimed isolated nucleic acid molecules and transformed cells are anticipated by each of Dudler et al, Emrys Davis et al, and Sidler et al, as set forth in the Search Report, and so do not constitute a single special technical feature which would be an advance over the prior art.

The invention of Group I, drawn to a first product and process of use, requires an isolated nucleic acid encoding P-glycoprotein, a vector, host cells, and a method for plant transformation and regeneration not required by any other group.

The invention of Group II, drawn to a second product, requires an isolated polypeptide and antibodies for the polypeptide not required by any other group.

The invention of Group III, drawn to a third product, requires an oligonucleotide and a hybridization technique not required by any other group.

The invention of Group IV, drawn to a fourth product, requires a specific gene promoter not required by any other group.

The invention of Group V, drawn to a fifth product and method of use, requires a plant with mutated pIPAC gene and a method of making it not required by any other group.