

Structural Causal Bandits: Where to Intervene?

Sanghack Lee and Elias Bareinboim {lee2995,eb}@purdue.edu
Causal Al Lab, Purdue University

Overview

We propose **SCM-MAB**, marrying Multi-armed Bandit (**MAB**) with Structural Causal Model (**SCM**). Whenever the underlying causal mechanism for arms' rewards is well-understood, an agent can play a bandit *more effectively*, while a naive agent ignorant to such a mechanism may be *fail* or *slow* to converge.

Multi-armed bandit (MAB) is one of the prototypical sequential decision-making settings found in various real-world applications.

- ► **Arms**: There are arms **A** in the bandit (i.e., slot machine); each arm associates with a reward distribution,
- ▶ Play: an agent plays the bandit by pulling an arm $A_x \in A$ each round,
- **Reward**: a reward Y_x is drawn from the arm's reward distribution,
- ▶ Goal: to minimize a cumulative regret (CR) over time horizon T.

Multi-armed Bandit through Causal Lens

- pulling an arm = intervening on a set of variables (intervention set, IS)
- reward mechanism = causal mechanism

► Formally, playing an arm A_x is setting X to x (called do), and observing Y drawn from P(Y|do(X=x)) where $P(y|do(x)) := \sum_{u} \mathbf{1}_{f(x,u),y} P(u)$.

Why do we need Causal MABs? A Motivating Example

▶ **Q**: How many **arms** are there? (We can control 2 binary variables, X_1 and X_2) **A**: **Nine**. We need to choose a set among

$$\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$$

and then make the corresponding assignment (all-subsets). A *naive* combinatorial agent will intervene on $\{X_1, X_2\}$, simultaneously (= 4 arms).

▶ **Q**: Why is playing $\{X_1, X_2\}$ (all-at-once) considered *naive*? **A**: This strategy may *miss* the optimal arm, as shown in the simulation below:

There exists a environment (i.e., parametrization) where intervening on X_2 is optimal, and intervening on $\{X_1, X_2\}$, simultaneously is always sub-optimal. e.g., $X_1 = X_2 \oplus U$, $Y = X_1 \oplus U$. (when $X_2 = 1$, X_1 carries $\neg U$, and Y checks $X_1 \neq U$)

▶ **Q**: What are the arms **worth** playing, regardless of the parametrization? **A**: Intervening on either $\{X_2\}$ or $\{X_1\}$ can be shown to be sufficient since:

 \therefore (i) max $\mu_{X_2} \ge \max \mu_{\emptyset}$, (ii) max $\mu_{X_1} = \max \mu_{X_1,X_2}$, (iii) max $\mu_{X_2} <> \max \mu_{X_1}$

SCM-MAB — Connecting Bandits With Structural Causal Models

A Structural Causal Model (**SCM**) \mathfrak{M} is a 4-tuple $\langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$:

- ► U is a set of unobserved variables (unknown);
- ► V is a set of observed variables (known);
- ► F is a set of causal mechanisms for V using U and V;
- $ightharpoonup P(\mathbf{U})$ is a joint distribution over the \mathbf{U} (randomness).

The **SCM** allows one to model the underlying causal relations (usually unobserved). The environment where the MAB solver will perform experiments can be modeled as an **SCM**, following the connection established next.

SCM-MAB

- ► SCM $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ and a reward variable $Y \in \mathbf{V}, \langle \mathcal{M}, Y \rangle$
- ▶ Arms A correspond to *all* interventions $\{A_{\mathbf{x}}|\mathbf{x} \in D(\mathbf{X}), \mathbf{X} \subseteq \mathbf{V} \setminus \{Y\}\}$.
- ► Reward: distribution $P(Y_x) := P(Y|do(X = x))$, expected, $\mu_x := \mathbb{E}[Y|do(X = x)]$. We assume that a causal graph \mathcal{G} of \mathcal{M} is accessible, but not \mathcal{M} itself.

SCM-MAB Properties — Dependence Structure Across Arms

1. Equivalence among Arms

Two arms share the same reward distribution, i.e.,

$\mu_{\mathbf{X},\mathbf{Z}} = \mu_{\mathbf{X}}$

whenever intervening on some variables doesn't have a causal effect on the outcome.

- \rightarrow Test $P(y|do(\mathbf{x},\mathbf{z})) = P(y|do(\mathbf{x}))$ through $Y \perp \!\!\! \perp \mathbf{Z} \mid \mathbf{X}$ in $\mathcal{G}_{\overline{\mathbf{x}} \cup \overline{\mathbf{z}}}$ (do-calculus).
- Minimal Intervention Set (MIS, Def. 1)
- ► A minimal set of variables among ISs sharing the same reward distribution.
- ► Given that there are sets with the same reward distribution, we would like to intervene on a *minimal* set of variables yielding smaller # of arms.

2. Partial-orderedness among Intervention Sets

A set of variables **X** may be preferred to another set of variables **Z** whenever their maximum achievable expected rewards can be ordered:

$$\mu_{\mathbf{X}^*} = \max_{\mathbf{x} \in D(\mathbf{X})} \mu_{\mathbf{x}} \geq \max_{\mathbf{z} \in D(\mathbf{Z})} \mu_{\mathbf{z}} = \mu_{\mathbf{z}^*}$$

— Possibly-Optimal Minimal Intervention Set (POMIS, Def. 2)

- ▶ Each MIS that can achieve an optimal expected reward in some SCM $\mathfrak M$ confirming to the causal graph $\mathfrak G$ is called a POMIS.
- ► Clearly, pulling non-POMISs will incur regrets and delay the identification of the optimal arms.

Toy Examples for MISs and POMISs

(* a dashed bidirected edge = existence of an unobserved confounder)

Same MISs $\{\emptyset, \{X\}, \{Z\}\}\$ since do(x) = do(x, z) for $z \in D(Z)$. POMIS are $\{\{X\}\}, \{\emptyset, \{X\}\}, \{\{Z\}, \{X\}\}, \{\emptyset, \{Z\}, \{X\}\}\}$

- ► We characterized a complete condition whether an IS is a (PO)MIS.
- ▶ We devised an algorithmic procedure to enumerate all (PO)MIS given (G, Y).

Empirical Evaluation

4 strategies \times 2 base MAB solvers \times 3 tasks; (T = 10k, 300 simulations)

Strategies

▶ Brute-force: all possible arms, $\{x \in D(X) \mid X \subseteq V \setminus \{Y\}\}$ (aka all-subsets)

▶ All-at-once: intervene on all variables simultaneously, $D(V \setminus \{Y\})$

► MIS: arms related to MISs

► POMIS: arms related to POMISs

Base MAB solvers

Thompson Sampling (TS) and kl-UCB

Results

(**top**) averaged cumulative regrets and (**bottom**) optimal arm probability TS in solid lines, kl-UCB in dashed lines

- ightharpoonup CRs: Brute-force \geq MIS \geq POMIS (smaller the better)
- ► If the number of arms for All-at-once is *smaller* than POMIS, then, it implies that All-at-once is missing possibly-optimal arms.

Conclusions

- ► Introduced SCM-MAB = MAB + SCM = $\frac{MAB}{SCM}$.
- Characterized structural properties (equivalence, partial-orderedness) in SCM-MAB given a causal graph.
- Studied conditions under which intervening on a set of variables might be optimal (POMIS).
- ► Empirical results corroborate theoretical findings.
- ► We have a *new* paper to be presented at **AAAI**'2019
- Introduced non-manipulability constraints (not all variables are intervenable),
- ► Characterized MISs / POMISs w/ the constraints,
- ► Introduced novel strategy to leverage structural relationships across arms with improved finite-sample properties.

Papers at causalai.net

Code at https://github.com/sanghack81/SCMMAB-NIPS2018