Ψηφιακή Επεξεργασία Εικόνας (ΨΕΕ) – ΜΥΕ037 Εαρινό εξάμηνο 2023-2024

Intensity Transformations (Histogram Processing)

Άγγελος Γιώτης

a.giotis@uoi.gr

Contents

Over the next few lectures we will look at image enhancement techniques working in the spatial domain:

- Histogram processing
- Spatial filtering
- Neighbourhood operations

Image Histograms

The histogram of an image shows us the distribution of grey levels in the image Massively useful in image processing, especially in segmentation

A. Giotis – Digital Image Processing (MYE037)

Histogram processing

- Let r_k , for k = 0,1,2,...,L 1, denote the intensities of an L-level digital image, f(x,y).
- The unnormalized histogram of f is defined as:

$$h(r_k) = n_k$$
 for $k = 0, 1, 2, ..., L - 1$

Where n_k is the number of pixels in f with intensity r_k , and the subdivisions of the intensity scale are called *histogram bins*.

Normalized histogram of f:

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

Histogram Examples

A. Giotis – Digital Image Processing (MYE037)

Contrast Stretching

- We can fix images that have poor contrast by applying a pretty simple contrast specification
- The interesting part is how do we decide on this transformation function?

Histogram Equalisation

- Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images.
- At first, the continuous case will be studied:
 - -r is the intensity of the image in [0, L-1].
 - we focus on transformations s=T(r):
 - T(r) is monotonically increasing.
 - T(r) must satisfy:

$$0 \le T(r) \le L - 1$$
, for $0 \le r \le L - 1$

- The condition for T(r) to be monotonically increasing guarantees that ordering of the output intensity values will follow the ordering of the input intensity values (avoids reversal of intensities).
- If T(r) is **strictly** monotonically increasing then the mapping from s back to r will be 1-1.
- The second condition (T(r) in [0,1])
 guarantees that the range of the output will
 be the same as the range of the input.

- a) We cannot perform inverse mapping (from s to r).
- b) Inverse mapping is possible.

- We can view intensities r and s as random variables and their histograms as probability density functions (pdf) $p_r(r)$ and $p_s(s)$.
- Fundamental result from probability theory:
 - If $p_r(r)$ and T(r) are known and s=T(r) is continuous and differentiable, then

$$p_s(s) = p_r(r) \frac{1}{\left| \frac{ds}{dr} \right|} = p_r(r) \left| \frac{dr}{ds} \right|$$

- The pdf of the output is determined by the pdf of the input and the transformation.
- This means that we can determine the histogram of the output image.
- A transformation of particular importance in image processing is the cumulative distribution function (CDF) of a random variable:

$$s = T(r) = (L-1)\int_{0}^{r} p_{r}(w) dw$$

- It satisfies the first condition as the area under the curve increases as r increases.
- It satisfies the second condition as for r=L-1 we have s=L-1.
- To find $p_s(s)$ we have to compute

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr}\int_{0}^{r} p_{r}(w) dw = (L-1)p_{r}(r)$$

Substituting this result:

$$\frac{ds}{dr} = (L-1)p_r(r)$$

to

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$
 Uniform pdf

yields

$$p_s(s) = p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right| = \frac{1}{L-1}, \ 0 \le s \le L-1$$

A. Giotis – Digital Image Processing (MYE037)

 A continuous histogram will always result in a uniform histogram

The formula for histogram equalisation in the discrete case is given

$$S_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

where

- r_k: input intensity
- s_k: processed intensity
- n_j: the frequency of intensity j
- *MN*: the number of image pixels.

A 3-bit 64x64 image has the following intensities:

TABLE 3.1 Intensity distribution and histogram values for a 3-bit, 64 × 64 digital image.

n_k	$p_r(r_k) = n_k / MN$
790	0.19
1023	0.25
850	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	790 1023 850 656 329 245 122

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$

Applying histogram equalization:

$$s_0 = T(r_0) = 7 \sum_{j=0}^{0} p_r(r_j) = 7 p_r(r_0) = 1.33$$

$$s_1 = T(r_1) = 7\sum_{j=0}^{1} p_r(r_j) = 7p_r(r_0) + 7p_r(r_1) = 3.08$$
 $s_2 = ?7$

A. Giotis – Digital Image Processing (MYE037)

Rounding to the nearest integer:

$$s_0 = 1.33 \rightarrow 1$$
 $s_1 = 3.08 \rightarrow 3$ $s_2 = 4.55 \rightarrow 5$ $s_3 = 5.67 \rightarrow 6$
 $s_4 = 6.23 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_6 = 6.86 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

Due to discretization, the resulting histogram, though extended, will rarely be perfectly flat.

Histogram equalization example

A. Giotis – Digital Image Processing (MYE037)

Histogram Matching (Specification)

- Histogram equalization transformation aims to create an output image with a uniform histogram.
- Beneficial for automatic enhancement predictable and straightforward implementation.
- However, there are scenarios where histogram equalization may not be suitable.
- Sometimes, it's necessary to specify the shape of the histogram for the processed image.
- The technique used to generate images with a specified histogram is known as histogram matching or histogram specification.

Histogram Specification

 Histogram equalization does not always provide the desirable results.

- Image of Phobos (Mars moon) and its histogram.
- Many values near zero in the initial histogram

Histogram specification (cont.)

- In these cases, it is more useful to specify the final histogram.
- Problem statement:
 - Given $p_r(r)$ from the image and the target histogram $p_z(z)$, estimate the transformation z=T(r).
- The solution exploits histogram equalization.

Histogram specification (cont...)

G(z) = T(r)

•Equalize the initial histogram of the image:

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw \quad ($$

•Equalize the target histogram:

$$s = G(z) = (L-1) \int_{0}^{r} p_{z}(w) dw$$

- •Obtain the inverse transform: $z = G^{-1}(s) = G^{-1}(T(r))$ In practice, for every value of r in the image:
- get its equalized transformation s=T(r).
- perform the inverse mapping $z=G^{-1}(s)$, where s=G(z) is the equalized target histogram.

Histogram equalization

A. Giotis – Digital Image Processing (MYE037)

Histogram specification (cont...)

The discrete case:

•Equalize the initial histogram of the image:

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

•Equalize the target histogram:

$$S_k = G(z_q) = (L-1)\sum_{i=0}^{q} p_z(r_i)$$

•Obtain the inverse transform: $z_q = G^{-1}(s_k) = G^{-1}(T(r_k))$

Histogram specification (algo...)

- 1. Compute the histogram, pr(r), of the input image, and use it to map the intensities in the input to those in the histogram-equalized image. Round the resulting s_k , to the integer range [0, L-1].
- 2. Compute all values of $G(z_q)$ for q=0,...,L-1, where $p_z(z_i)$ are the values of the specified histogram. Round the values of G to integers in [0,L-1] and store them in a lookup table
- 3. For every s_k , use the stored values of G from Step 2 to find the corresponding value of z_q so that $G(z_q)$ is closest to s_k . Store these mappings from s to z. When more than one value of z_q gives the same match (i.e., the mapping is not unique), choose the smallest value by convention.
- 4. Form the histogram-specified image by mapping every equalized pixel with value s_k to the corresponding pixel with value z_q in the histogram-specified image, using the mappings found in Step 3.

Consider again the 3-bit 64x64 image:

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

It is desired to transform this histogram to:

$$p_z(z_0) = 0.00$$
 $p_z(z_1) = 0.00$ $p_z(z_2) = 0.00$ $p_z(z_3) = 0.15$
 $p_z(z_4) = 0.20$ $p_z(z_5) = 0.30$ $p_z(z_6) = 0.20$ $p_z(z_7) = 0.15$

with
$$z_0 = 0$$
, $z_1 = 1$, $z_2 = 2$, $z_3 = 3$, $z_4 = 4$, $z_5 = 5$, $z_6 = 6$, $z_7 = 7$.

A. Giotis – Digital Image Processing (MYE037)

The first step is to equalize the input (as before):

$$s_0 = 1$$
, $s_1 = 3$, $s_2 = 5$, $s_3 = 6$, $s_4 = 6$, $s_5 = 7$, $s_6 = 7$, $s_7 = 7$

The next step is to equalize the output:

$$G(z_0) = 0$$
 $G(z_1) = 0$ $G(z_2) = 0$ $G(z_3) = 1$
 $G(z_4) = 2$ $G(z_5) = 5$ $G(z_6) = 6$ $G(z_7) = 7$

Notice that G(z) is not strictly monotonic. We must resolve this ambiguity by choosing, e.g. the smallest value for the inverse mapping.

Perform inverse mapping: find the smallest value of z_a that provides the closest $G(z_a)$ to s_k :

$$S_k = T(r_i)$$
 $G(z_q)$ $S_k \to z_q$
 $S_0 = 1$ $G(z_0) = 0$ $1 \to 3$
 $S_1 = 3$ $G(z_1) = 0$ $3 \to 4$
 $S_2 = 5$ $G(z_2) = 0$ $5 \to 5$
 $S_3 = 6$ $G(z_3) = 1$ $5 \to 5$
 $S_4 = 6$ $G(z_4) = 2$ $6 \to 6$
 $S_5 = 7$ $G(z_5) = 5$
 $S_6 = 7$ $G(z_6) = 6$

 $s_7 = 7$ $G(z_7) = 7$

$$S_k \longrightarrow Z_q$$

e.g. every pixel with value $s_0 = 1$ in the histogramequalized image would have a value of 3 (z_3) in the histogram-specified image.

Notice that due to discretization, the resulting histogram will rarely be exactly the same as the desired histogram.

a b c d

FIGURE 3.22

(a) Histogram of a
3-bit image. (b)
Specified
histogram.
(c) Transformation
function obtained
from the specified
histogram.
(d) Result of
performing
histogram
specification.

Compare (b) and (d).

A. Giotis – Digital Image Processing (MYE037)

Original image

Histogram equalization

A. Giotis – Digital Image Processing (MYE037)

Specified histogram

Transformation function and its inverse

Resulting histogram

A. Giotis – Digital Image Processing (MYE037)

Local Histogram Processing

- Image in (a) is slightly noisy but the noise is imperceptible.
- HE enhances the noise in smooth regions (b).
- Local HE reveals structures having values close to the values of the squares and small sizes to influence HE (c).

Local Histogram Processing

Summary

We have looked at:

- Different kinds of image enhancement
- Histograms
- Histogram equalisation
- Histogram specification

Next we will start to look at spatial filtering and neighbourhood operations