A RISC-V Processor Components CircuiTikZ Library

Niklas Ladurner March 26, 2025

Contents

1	Intro	oduction	3					
	1.1	Motivation	3					
	1.2	Usage	3					
2	Component List							
	2.1	Memory Components	4					
	2.2	Arithmetic Components	4					
	2.3	Multiplexers	5					
	2.4	Control Units	5					
	2.5	Miscellaneous Components	6					
3	Keys 8							
	3.1	CircuiTikZ keys	8					
	3.2	Special node keys	8					
4	Examples							
	4.1	Single-Cycle RISC-V Processor	10					
	4.2	Multi-Cycle RISC-V Processor						
	4.3	Pipelined RISC-V Processor	11					

1 Introduction

1.1 Motivation

This CircuiTikZ library offers some components to efficiently draw RISC-V processors in LATEX. The library was designed with the goal of resembling the RISC-V processor schematics as presented in 'Digital Design and Computer Architecture: RISC-V Edition' by Sarah L. Harris and David Harris.

1.2 Usage

To use the predefined components, you must include the library riscvproc. Your preamble should look like this:

```
...
\usepackage{tikz}
\usepackage{circuitikz}
\usetikzlibrary{riscvproc}
...
```

Components are then available in circuitikz environments:

```
A RD | Instruction | Instruction | Memory | Memory | A mode[instrmem, align=center] (comp) {Instruction | Memory}; | A mode[instrmem, align=center] (comp) {Instruction | Memory}; | A mode | A
```

2 Component List

2.1 Memory Components

2.2 Arithmetic Components

bb

Subtractor, type: node, fillable (node[subtr]{}). Class: processor.

2.3 Multiplexers

Multiplexer, type: node, fillable (node[mux] {}). Class: processor.

Multiplexer with 3 inputs, type: node, fillable (node[3mux]{}). Class: processor.

Multiplexer with 4 inputs, type: node, fillable (node[4mux]{}). Class: processor.

2.4 Control Units

Single-Cycle Control Unit (b-Anchors), type: node, fillable (node[ctrlunitsc]{}). Class: processor.

2.5 Miscellaneous Components

3 Keys

3.1 CircuiTikZ keys

The desired CircuiTikZ key can be set via $\texttt{ctikzset\{processor/<key>=value\}}$. E.g. if one whishes to set the line width of all components to 4, the line $\texttt{ctikzset\{processor/thickness=4\}}$ would have to be included in the specific circuitikz picture. A list of all CircuiTikZ keys can be found in Table 1. A list of component families can be found in Table 2.

Key	Description	Default value
scale	Sets scale for all processor components.	1
thickness	Sets line width for all processor components.	2
font	Sets font family for all labels of processor components.	\rmfamily
memory/height	Sets height for all memory components.	2
memory/width	Sets width for all memory components except regfile.	1.25
control/heightsc	Sets height for ctrlunitsc.	2.5
control/heightmc	Sets height for ctrlunitmc.	3.5
control/width	Sets width for control components.	0.9
control/radius	Sets border radius for control components.	5
arith/height	Sets height for arithmetic components.	0.9
arith/width	Sets height for arithmetic components.	0.7
arith/slope	Sets slope for arithmetic components in degrees.	15
extend/height	Sets height for big side of extend components.	0.6
extend/width	Sets height for extend components.	2
extend/slope	Sets slope for extend components in degrees.	7
mux/slope	Sets slope for multiplexers in degrees.	15
misc/smallheight	Sets height for small components.	0.65
misc/smallwidth	Sets width for small components. Also affects the CLK input triangle.	0.3
misc/leadlen	Sets length for input and output leads.	0.25

Table 1: List of CircuiTikZ keys

Component family	Component list
memory components	instrmem, datamem, regfile
control components	ctrlunitsc, ctrlunitmc
arithmetic components	alu, add, subtr
extend components	extend
small components	mux, reg

Table 2: List of component families

3.2 Special node keys

Some keys are also defined as Tikz keys and can therefore be directly passed to nodes likes shown in Figure 1. A list of all these keys can be found in Table 3.

```
| The standard of the st
```

Figure 1: Passing options to a node

Key	Description	applicable to
input leads	Specifies wether to draw input leads.	all components
output leads	Specifies wether to draw output leads.	all components
leads	Specifies wether to draw leads at all.	all components
stacks	Sets height of a register in multiples of the default height, allows for stretched registers.	reg
enable input	Specifies wether to draw an enable input or not. This also gives two new anchors, en and ben.	reg
clock	Specifies wether to draw a clk input on a component that supports it.	all timed components

Table 3: List special node keys

More keys might be added in future.

4 Examples

4.1 Single-Cycle RISC-V Processor

4.2 Multi-Cycle RISC-V Processor

4.3 Pipelined RISC-V Processor

