Jared Lin (jcl84@pitt.edu);

Luke Donnelly (lwd7@pitt.edu);

Andrew Preston (arp119@pitt.edu);

Five Stage Pipeline:

Trace File	prediction_method=0 (cycles)	prediction_method=1 (cycles)	% Reduction in Cycles
sample1.tr	1233112	1128480	8.4851984
sample2.tr	1159167	1140907	1.5752691
sample3.tr	1278927	1268969	0.7786215
sample4.tr	3671198	3538348	3.6187098
sample_large1.tr	108044161	103703599	4.0173962
sample_large2.tr	119348777	115530363	3.1993742

Eight Stage Pipeline:

	prediction_method=0	prediction_method=1	% Reduction
Trace File	(cycles)	(cycles)	in Cycles
sample1.tr	3514261	3501066	0.3754701
sample2.tr	3131749	3119427	0.3934543
sample3.tr	3369978	3359077	0.3234739
sample4.tr	10015948	9979533	0.3635702
sample_large1.tr	318830015	315661622	0.9937562
sample_large2.tr	321386948	315481058	1.837626

On average, (considering prediction_method = 0) the number of cycles increases by a factor of 2.760 times when moving from five-stage to eight-stage. With prediction_method set to 1, this actually increases to a factor of 2.846 times since branch prediction is less effective on the eight-stage pipeline than it is on the five-stage. Considering numbers from both the eight-stage and five-stage architectures, branch prediction reduces the number of cycles by 2.163%. What's interesting here is that on the five-stage pipeline a branch predictor reduces the number of cycles by an average of 3.612% while on the eight-stage pipeline, the branch predictor only reduces the number of cycles by 0.715%. A branch predictor isn't even 1/5 as effective on the eight-stage pipeline as it is on the five-stage pipeline.

Below are values representing the factor of increase in cycles when moving from the five-stage to the eight-stage pipeline. For example, we interpret the first number as meaning, "the eight-stage pipeline takes 2.850 times as many cycles to run trace file sample1.tr when prediction method = 0."

sample1.tr

```
3514261 cycles / 1233112 cycles = 2.850 (prediction_method = 0) 3501066 cycles / 1128480 cycles = 3.102 (prediction_method = 1)
```

sample2.tr

```
3131749 cycles / 1159167 cycles = 2.702
3119427 cycles / 1140907 cycles = 2.734
```

sample3.tr

```
3369978 cycles / 1278927 cycles = 2.635
3359077 cycles / 1268969 cycles = 2.647
```

sample4.tr

```
10015948 cycles / 3671198 cycles = 2.728
9979533 cycles / 3538348 cycles = 2.820
```

sample_large1.tr

```
318830015 cycles / 108044161 cycles = 2.951
315661622 cycles / 103703599 cycles = 3.044
```

sample large2.tr

```
321386948 cycles / 119348777 cycles = 2.693
315481058 cycles / 115530363 cycles = 2.731
```

From the results of the trace files, we see that the eight-stage pipeline uses approximately 2.803 times as many cycles as the five-stage pipeline. We reached this number by finding the average value when considering all the cycle increase factors from five-stage to eight-stage (including both prediction method = 0 and prediction method = 1).

Since we are assuming the clock frequency of the eight-stage pipeline is double that of the five-stage pipeline, the efficiency of both programs can be calculated as follows:

Let x = clock frequency on the five-stage pipeline $(\frac{cycles}{second})$

Let y = the number of cycles needed to run a program on the five-stage pipeline (cycles)

We can calculate the time per program with the following equation:

time per program (seconds) =
$$\frac{y\left(\frac{cycles}{second}\right)}{x\left(cycles\right)}$$

FIVE_STAGE.C:

clock frequency =
$$x \frac{cycles}{second}$$
 (by definition of x);

cycles = y *seconds* (by definition of y);

time per program = $\frac{y}{x}$ seconds (by equation defined above);

EIGHT STAGE.C:

clock frequency = $2x \frac{cycles}{second}$ (by definition of eight-stage pipeline clock frequency in project description);

cycles = 2.803*y cycles* (by calculated value of average factor of increase in cycles from five-stage to eight-stage above);

time per program =
$$\frac{2.803y}{2x}$$
 seconds = 1.402 * $\frac{y}{x}$ seconds (by equation defined above);

From calculations performed above, we can see that the eight-stage design runs, on average, approximately 1.402 times longer than the five-stage pipeline. This leads us to our conclusion that even with twice the clock frequency, the eight-stage design is still less efficient than the five-stage design. **Therefore, we recommend use of the five-stage architecture over the eight-stage architecture.**