

SEM 2-1 (RC 07-08)

F.E. (Semester – II) (Revised in 2007 – 08) Examination, November/December 2017 APPLIED MATHEMATICS – II

Duration: 3 Hours

Total. Marks: 100

7

6

7

6

Instructions: 1) Attemptany five questions, at least one from each Module.
2) Assume suitable data, if necessary.

MODULE-I

 a) Assuming the validity of differentiation under integral sign rule evaluate the following integrals:

 $\int_0^1 \frac{X^m - X^n}{\log X} dX.$

- b) Find the length of the curve $x = a(2\cos t \cos 2t)$ and $y = a(2\sin t \sin 2t)$ measured from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
- c) The curve $r = 2a \cos \theta$ is revolved about x-axis, find the surface area of the solid generated.
- 2. a) Evaluate $\int_0^{\pi} ((\cos t)i + (\sin^2 t)j + k)dt$.
 - b) Define Torsion. If \bar{r} (t) is the position vector of moving object then show that $T = \frac{|r'r''r'''|}{|r' \times r''|^2}$
 - c) Show that $\overline{r}(t) = Ate^{2t}i + Be^{3t}j$ satisfies $\frac{d^2r}{dt^2} 4\frac{dr}{dt} + 4r = 0$.

MODULE-II

- 3. a) Evaluate $\int_{1}^{2} \int_{0}^{y} \frac{1}{x^{2} + y^{2}} dxdy$.
 - b) Evaluate $\int \int (x^2 + y^2) dxdy$ over the region enclosed by the curves y = 4x, x + y = 3, y = 0, y = 2.

- c) Change the order of integration and evaluate $\int_{1}^{2} \int_{1-x}^{x-1} (xy+5) dxdy$.
- 4. a) Evaluate $\iiint \frac{dxdydz}{x^2 + y^2 + z^2}$ throughout volume of the sphere $x^2 + y^2 + z^2 = a^2$. 6
 - b) Find the volume of the region enclosed by $x^2 + y^2 = 4$ and $x^2 + z^2 = 4$.
 - c) Evaluate the spherical coordinate integral $\int_0^{\frac{\pi}{2}} \int_0^{\pi} \int_0^{1-\cos\phi} 3r^2 \sin\phi + 4\cos\theta dr d\theta d\phi$.

MODULE-III

- 5. a) In what direction from the point (1, 3, 2) is the directional derivative of $\phi = 2xz y^2$ a maximum? What is its magnitude?
 - b) Find the total work done in moving a particle in the force field $\overline{F} = 3xyi 5zj + 10xk$ along $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 and t = 2.
 - c) Evaluate $\iint_s (\nabla r^2) \cdot (\hat{n}) ds = 6V$, where S is any closed surface, \hat{n} is the unit outward normal to S, V is the volume enclosed by S and $r^2 = x^2 + y^2 + z^2$.
- 6. a) Verify Greens theorem in plane for $\oint [(xy+4y^2)dx+(x^2+3)dy]$ over the boundary of the region bounded by x=1 and $y^2=x$.
 - b) Verify Stoke's theorem for $\overline{F} = (x + y)i + (2x z)j + (y + z)k$ taken over the triangle ABC cutoff by the plane x + 2y + 3z = 6 on the coordinate axis.

MODULE-IV

7. Solve the following differential equations.

a)
$$(x^2 - 2xy + 3y^2) dx + (4y^3 + 6xy - x^2) dy = 0.$$

b)
$$\frac{dy}{dx} + xy = x^3y^4$$
.

c)
$$\frac{dy}{dx} = \frac{2x + 9y - 20}{6x + 2y - 10}$$
.

d)
$$\frac{dy}{dx} = \frac{y}{x} + \sin \frac{y}{x}$$
.

8. Solve the following differential equations.

a)
$$(D^2 - 2D + 2)y = e^x + \cos x$$
.

b)
$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = x^2$$

c)
$$(D^2 - 2D + 1)y = x^2e^{3x}$$
.

d)
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} - 5y = \sin(\log(x))$$
.