Concurrent and Distributed Systems Spring 2017

Course Outline

Instructor: Dr. Taimur Bakhshi email: taimur.bakhshi@nu.edu.pk

Objective of the Course

This course mainly aims to build the following capabilities in you.

- This course covers a broad range of topics related to parallel and distributed computing, including
 parallel and distributed architectures and programming paradigms of parallel and distributed systems.
 Basic goal of this course is to understand the fundamental concepts of parallel and distributed
 computing
- You should be able to understand the basic principles of distributed systems and to comprehend the problems associated with building applications for distributed systems
- You should be able to analyse an existing distributed systems with respect to the principles of distributed systems and compare different computing systems according to these principles.
- You should be able to write distributed applications using existing paradigms like MPI, RPC, RMI, etc.

The course assumes knowledge of computer networks and operating systems. This course does not deal with the details of computer networking (e.g., details of different routing protocols in the Internet), except as applied to topics listed.

Text Book

Distributed Systems: Concepts and Design by George Coulouris, Jean Dollimore and Tim Kindberg, 5th Ed. **Research papers**, provided during the course

Reference Book

Ref 1:Distributed System: Principles and Paradigms by Andrew S. Tenenbaum and Maarten van Steen, 2nd Ed.

Ref 2:Introduction to Parallel Computing by Ananth Grama and Anshul Gupta

Course Contents

Week	Lecture #	Topics Covered	Book/Reference
1	1	Introduction to concurrent and distributed systems	Text Book: Ch.1,
		Goals	Ref Book 1: Ch.1
		Examples of distributed systems	
		Trends in distributed systems	
		Challenges	
1	2	Scalability Issues, Amdahl's law	Text Book: Ch.1,
		Flynn's Taxonomy	Ref Book 1: Ch.1
			Research Papers
2	3	Shared memory systems	Ref book 2
		Introduction	
		Multi-threading, superscalar processors,	
		Intel's hyper-threading	
2	4	Shared Memory architecture	Ref book 2
		Processor to memory connection strategies	
3	5	Multiprocessors,	Ref book 2
		Homogeneous and Heterogeneous Multicomputer	
		systems	
3	6	Network Operating Systems	Ref book 2
4	7	Middleware	Text Book: Ch.1

		Distance of Communication	T. I D. I Cl. 4
4	8	Brief Overview of Computer Networks.	Text Book: Ch.1
_		Layered architecture and Protocols	
5	9	Application layer and Transport Layer Protocols	
5	10	Review	
	T	Mid I	T
6	11	Operating system support	Text Book: Ch.7
		Introduction	
		The operating system layer	
		Protection	
6	12	Processes and threads	Text Book: Ch.7
		Communication and invocation	
		Virtualization at the operating system level	
7	13	Remote Invocation	Text Book: Ch.5
		Introduction	
		Request- Reply protocols	
7	14	RPC	Text Book: Ch.5
		Remote Method Invocation	
		JavaRMI: Introduction and Implementation details	
8	15	Distributed File System	Text Book: Ch.12
		File service architecture	
		Case study: Sun Network File System	
8	16	Synchronization and Coordination	Text Book: Ch.15
		Distributed mutual exclusion	
		Elections	
9	17	Coordination and agreement in group communication	Text Book: Ch.15
		Consensus and related problems	
9	18	Review	
		Mid II	
10	19	Transactions and concurrency Control	Text Book: Ch.16
		Concurrency control in distributed transactions	
10	20	Fault tolerance	Ref Book 1: Ch.7
		Basic Concepts	
		Failure Models	
		Failure Masking by Redundancy	
11	21	Process Resilience	Ref Book 1: Ch.7
		Design Issues	
		Failure Masking and Replication	
		Agreement in Faulty Systems	
		Failure Detection	
11	22	Reliable client-server communication	Ref Book 1: Ch.7
		Point-to-Point Communication	
		RPC Semantics in the Presence of Failures	
12	23	Introduction to Cluster and Grid Computing	Research/Survey
		Introduction	Papers
		Cluster classification and their applications	
		Grid Components	
12	24	Cloud Computing at a Glance	Reference Text
		The Vision of Cloud Computing	Mastering Cloud
		Defining a Cloud	Computing by
		Cloud Computing Reference Model	Rajkumar Buyya
		Characteristics and Benefits	
		Challenges Ahead	
13	25	Software defined networking	Research/Survey
		Introduction	Papers
		Control and data forwarding plane	100
13	26	Controller scalability	Research/Survey

		Distributed Network/Controller Operating Systems	Papers			
14	27	Emulation and Simulation Environments	Research/Survey			
		SDN applications	Papers			
		Research Challenges				
14	28	Review				
Final						

Evaluation

Quizzes 10% Mid Exams 30% (15% + 15%) Final Exam 50%	
Quizzes 10%	
Assignments 10%	

Course Policies

- There will be <u>no retake</u> of quizzes or exams. Special consideration may be given only for mid or final
 exam for an emergency on per case basis. In approved circumstances, percentage of mid will be
 awarded for final or vice versa.
- Integrity in the assignments/quizzes is expected; otherwise result would be an F grade in the course or may be the case is forwarded to Disciplinary committee.
- Attendance MUST be ensured according to the University policy to avoid disqualification.