Exponentielle

Propriétés de l'exponentielle

Caractérisation

La fonction exponentielle notée exp et définie sur $I=\mathbb{R}$ est définie par $\exp x=e^x$

 \bullet exp est dérivable sur $\mathbb R$

•
$$(e^x)\prime = e^x$$

•
$$e^0 = 1$$

Signe

 $\forall x \in \mathbb{R}, e^x > 0$

3 Propriétés algébriques

Soient $\forall x, y \in \mathbb{R}$

$$\bullet$$
 $e^x = e^y \Leftrightarrow x = y$

•
$$e^x < e^y \Leftrightarrow x < y$$

La fonction exponentielle vérifie les règles des puissances $\forall x, y \in \mathbb{R} \text{ et } \forall n \in \mathbb{Z}$

$$\bullet$$
 $e^{x+y} = e^x e^y$

$$\bullet \ e^{-x} = \frac{1}{e^x}$$

•
$$e^{x-y} = \frac{e^x}{e^y}$$

•
$$e^{x+y} = e^x e^y$$
 • $e^{-x} = \frac{1}{e^x}$ • $e^{x-y} = \frac{e^x}{e^y}$ • $(e^x)^n = e^{nx}$

Étude de l'exponentielle В

Limites

Aux bornes de son ensemble de définition, les limites de l'exponentielle sont:

$$\bullet \lim_{x \to -\infty} e^x = 0$$

$$\bullet \lim_{x \to +\infty} e^x = +\infty$$

(a) Croissances comparées

$$\bullet \lim_{x \to -\infty} x e^x = 0$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Dérivée

(a) Dérivée de e^u

u est une fonction dérivable et strictement positive sur I, e^u est alors dérivable sur I

$$(e^u)\prime(x) = u\prime(x)e^{u(x)}$$