1. (a) We have

10

$$\begin{split} \frac{1}{2}\|x-d\|_2^2 &= \frac{1}{2} \left\| x - c - \left(\frac{1 - e^T c}{n} \right) e \right\|_2^2 \\ &= \frac{1}{2} \|x - c\|_2^2 - (x - c)^T \left(\frac{1 - e^T c}{n} e \right) + \frac{1}{2} \left\| \frac{1 - e^T c}{n} e \right\|_2^2 \\ &= \frac{1}{2} \|x - c\|_2^2 - (1 - c^T e) \left(\frac{1 - e^T c}{n} \right) + \frac{1}{2} \left\| \frac{1 - e^T c}{n} e \right\|_2^2, \end{split}$$

for all $x \in \mathbb{R}^n$ such that $e^T x = 1$. Hence (P_c) and (P_d) have the same optimal solutions.

(b) We have that $\frac{1}{2}||x-d||_2^2 \geq 0$ with equality when x=d. Morever

$$e^{T}d = e^{T}c + e^{T}\left(\frac{1 - e^{T}c}{n}\right)e = e^{T}c + n\left(\frac{1 - e^{T}c}{n}\right) = 1.$$

Thus if $d \ge 0$, then $x^* = d$ is an optimal solution of (P_d) .

(c) Assume $d_j < 0$ and $0 < x_j^*$, for some $j \in [1, n]$, and x^* optimal solution of (P_d) . We have $\nabla f(x^*) = (x^* - d)$, $\nabla h(x^*) = e$ and $\nabla g_i(x) = -e_i$, for $i = 1, \ldots, n$. Note that e/n is a Slater point and (P_D) is a convex optimization problem, thus x^* satisfies KKT conditions. That is there exists (u, v) such that $u \ge 0$ and

$$(x^* - d) - \sum_{i \in I(x^*)} u_i e_i + ve = 0$$

By looking at the j-th coordinate, we have $v = d_j - x_j^* < 0$. Now multiply by e^T the above equation

$$0 = e^{T}(x^* - d) - e^{T} \sum_{i \in I(x^*)} u_i e_i + e^{T} v e = -\sum_{i \in I(x^*)} u_i + nv < 0,$$

contradiction. \Box

(d) Let's say we start with the problem (P_c) in an n-dimensional space. We know that (P_c) and (P_d) have the same optimal solutions. If $d \geq 0$, then $x^* = d$ is the only optimal solution and we are done. Otherwise there exists $j \in [1, n]$ such that $d_j^* < 0$, then we know all optimal solutions of (P_D) have $x_j^* = 0$. Thus let c' be the vector d with the j-coordinate removed. Hence the solutions of (P_D) are exactly the solutions of

$$(P_{c'})$$
 $\min_{x} \frac{1}{2} ||x - c'||_{2}^{2}$
s.t. $e^{T}x = 1$
 $x \ge 0$,

by adding a 0 after the j-1th coordinate. Hence we reduced (P_c) , a n dimensional problem, to $(P_{c'})$, a n-1 dimensional problem. Then we repeat the same argument for $(P_{c'})$. This procedure will take at most n steps.

2. If C = D, then it is clear that their support function are equal. Now assume that their support functions are equal and $C \neq D$. WLOG, there exists $\overline{x} \in C \setminus D$. By Theorem B.3.1, there exists a nonzero vector p and scalar α such that $p^T \overline{x} > \alpha$ and $\alpha > p^T x$ for all $x \in D$. Thus

$$S_C(p) = \sup\{p^T x \colon x \in C\} \ge p^T \overline{x} > \alpha \ge \sup\{p^T x \colon x \in D\} = S_C(p),$$

contradiction. Hence C = D.

3. We have

$$L^*(u_{[n]}) = \inf_{x \in X} f(x) + \sum_{i=1}^m u_i g(i) \le \inf_{x \in \overline{X}} f(x) + \sum_{i=1}^m u_i g_i(x) \le \inf_{x \in \overline{X}} f(x) + \sum_{i=1}^r u_i g_i(x) = \overline{L}^*(u_{[r]}),$$

for all $u \geq 0$, because $\overline{X} \subseteq X$ and $g_{r+1}(x) \leq 0, \ldots, g_m(x) \leq 0$, for all $x \in \overline{X}$. Thus

$$v^* = \sup_{u \ge 0} L(u_{[n]}) \le \sup_{u \ge 0} \overline{L}^*(u_{[r]}) = \overline{v}^*.$$

By weak duality and feasibility, we have $\overline{v}^* \leq f^*$. We conclude that $v^* \leq \overline{v}^* \leq f^*$.

4. (a) We have

$$\begin{array}{ll} (P_1) & \min_x & f_1(x) \\ & \text{s.t.} & g_i(x) \leq 0, \ i = [1, m] \\ & f_j(x) \leq b_j, \ j = [2, s]; \end{array}$$

(P₂)
$$\min_{x} \sum_{j=1}^{s} w_{j} f_{j}(x)$$

s.t. $g_{i}(x) \leq 0, i = [1, m].$

(b) WLOG, we can assume $w_1 = 1$. Let x^* be a solution of (P_2) and let $b_j = f_j(x^*)$, for j = [2, ..., s]. We have

$$\begin{array}{lll} \min_{x} & f_{1}(x) + \sum_{j=2}^{s} w_{j} f_{j}(x^{*}) & \min_{x} & f_{1}(x) + \sum_{j=2}^{s} w_{j} f_{j}(x) \\ \mathrm{s.t.} & g_{i}(x) \leq 0, \ i = [1, m] & \geq & \mathrm{s.t.} & g_{i}(x) \leq 0, \ i = [1, m] \\ & f_{j}(x) \leq f_{j}(x^{*}), \ j = [2, s]; & f_{j}(x) \leq f_{j}(x^{*}), \ j = [2, s]; \end{array}$$

An optimal solution of the RHS is x^* , thus an optimal solution for LHS is x^* . But note that the LHS has the same optimal solutions as (P_1) .

(c) The first order KKT necessary conditions for (P_1) are

$$\nabla f_1(x^*) + \sum_{j=2}^s u_j \nabla f_j(x^*) + \sum_{i=1}^m v_i \nabla g_i = 0$$
$$u_j \ge 0, \ j = 2, \dots, s; \quad v_i \ge 0, \ i = 1, \dots, m.$$
$$u_i f_i(x^*) = 0, \ j = 2, \dots, s; \quad v_i g_i(x^*) = 0, \ i = 1, \dots, m$$

The first order KKT necessary conditions for (P_2) are

$$\sum_{j=1}^{s} w_{j} \nabla f_{j}(x^{*}) + \sum_{i=1}^{m} v_{i} \nabla g_{i} = 0$$
$$v_{i} \ge 0, \ i = 1, \dots, m$$
$$v_{i} g_{i}(x^{*}) = 0, \ i = 1, \dots, m.$$

(d) Let x^* be an optimal solution of (P_1) . Since a constraint qualification is satisfied, we have that x^* satisfies the first order KKT necessary conditions. Let $w_1 = 1$ and $w_j = u_j$, for j = 2, ..., s. Since (P_2) is a convex problem, by Theorem 3.2.1, it follows that x^* is an optimal solution for (P_2) . \square

5. Let x^* be a current that satisfies law (1) and (2) with voltage drop v^* . Let \overline{x} be a solution to our programming problem. Thus by Theorem 3.1.8, there exists a \overline{v} such that

$$\nabla_{x_{\tilde{i}\tilde{j}}} L(\overline{x}, \overline{v}) = 0$$

$$\Leftrightarrow \nabla_{x_{\tilde{i}\tilde{j}}} \sum_{(i,j)\in A} \left(\frac{1}{2} R_{ij} x_{ij}^2 - t_{ij} x_{ij}\right) + \sum_{i\in N} v_i \nabla_{x_{\tilde{i}\tilde{j}}} \left(\sum_{j:\; (j,i)\in A} x_{ij} - \sum_{j:\; (i,j)\in A} x_{ij}\right) = 0$$

$$\Leftrightarrow R_{\tilde{i}\tilde{j}} x_{\tilde{i}\tilde{j}} - t_{\tilde{i}\tilde{j}} - v_{\tilde{i}} + v_{\tilde{j}} = 0$$

for all $(\tilde{i}, \tilde{j}) \in A$. Moreover,

$$\nabla_{x_{i_1j_1}x_{i_2j_2}}L(\overline{x},\overline{v}) = \begin{cases} R_{i_1j_1}, & \text{if } (i_1,j_1) = (i_2,j_2) \\ 0, & \text{otherwise }, \end{cases}$$

for all $(i_1, j_1), (i_2, j_2) \in A$. Since $R_{ij} > 0$ for all $(i, j) \in A$, we have that $\nabla_x L(\overline{x}, \overline{v})$ is positive definite. Note that our problem is a convex problem and (x^*, v^*) satisfies the necessary conditions conditions. By Theorem 3.2.1 and Theorem 3.4.2, we have that x^* is a solution to our problem and it is a strict local minimum. Assume that \tilde{x} was another current that satisfied law (1) and (2) with voltage drop \tilde{v} . Thus $\lambda x^* + (1 - \lambda)\tilde{x}$ is a current that satisfies law (1) and (2) with voltage drop $\lambda v^* + (1 - \lambda)\tilde{v}$, for all $\lambda \in [0, 1]$. Hence $\lambda x^* + (1 - \lambda)\tilde{x}$ is an optimal solution for our problem for all $\lambda \in [0, 1]$, contradiction with strict minimality of x^*