Bacheliers en Sciences Mathématiques et Physiques, bloc 1

MATHF102: Séance 21, lundi 6 et mardi 7 février 2017

1. Décrire explicitement une transformation linéaire $A: \mathbb{R}^4 \to \mathbb{R}^3$ appliquant \mathbb{R}^4 sur le sous-espace engendré par (2,1,0) et (5,-1,2), et ayant pour noyau le plan déterminé par les équations x=y=z.

2. Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs

$$e_1 = (1,0,0)$$
 $f_1 = (2,0,-5)$
 $e_2 = (0,1,0)$ $f_2 = (\sqrt{3}, -\sqrt{2},5)$
 $e_3 = (0,0,1)$ $f_3 = (0,0,7)$

L'opérateur linéaire A qui transforme e_i en f_i pour tout i=1,2,3, est-il inversible? Calculer A((x,y,z)) pour tout $(x,y,z) \in \mathbb{R}^3$. Quelles sont les coordonnées

- (a) du vecteur (-3, 2, 4) dans la base $\{f_1, f_2, f_3\}$?
- (b) du vecteur A((-3,2,4)) dans la base $\{e_1, e_2, e_3\}$?
- (c) du vecteur A((-3,2,4)) dans la base $\{f_1, f_2, f_3\}$?

3. Soient U,V et W trois espace vectoriel réels de dimension finie, et soient $A:U\to V$ et $B:V\to W$ deux transformations linéaires. Quel est le terme manquant dans l'égalité suivante:

$$\dim_{\mathbb{R}}(Im(A) \cap Ker(B)) = \dim_{\mathbb{R}}(Im(A)) - \dim_{\mathbb{R}}(?)$$

Justifiez soigneusement votre réponse.

4. Si A est un opérateur linéaire sur un espace vectoriel réel V de dimension finie n et si $rang(A^2) = rang(A)$, que vaut $Ker(A) \cap Im(A)$?

5. Donner une base de Ker(A), Ker(B), Im(A) et Im(B), où

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & -1 & 3 & 0 \\ 3 & 1 & 2 & 0 \end{bmatrix}, \quad \text{et} \quad B = \begin{bmatrix} 1 & 5 & 7 \\ 3 & -1 & 2 \\ -5 & 7 & 3 \\ 4 & 4 & 9 \end{bmatrix}.$$